Supplementary Information: Metabolomics and genomics combine to unravel the pathway for the presence of fragrance in rice.

Venea Dara Daygon, Mariafe Calingacion, Louise C. Forster, James J. De Voss, Brett D. Schwartz, Ben Ovenden, David E. Alonso, Susan R. McCouch, Mary J. Garson, Melissa A. Fitzgerald
Supplementary Information S1. Methodology of chemical synthesis.

A. 2AP

2-(Methoxycarbonyl)-1-pyrroline (6)

Following a method identical to that of De Kimpe (1993), To a solution of methyl prolinate 7 (1.94 g, 15.1 mmol) in anhydrous ether (130 mL) at 0 ºC, was added drop wise tert-butylhypochlorite (1.67 g, 15.4 mmol) and the reaction then stirred for 1 hour. The reaction was checked by GC-MS to monitor for the formation of the N-chloro product, then triethylamine (1.55 g, 15.4 mmol) was added drop wise and stirred at room temperature overnight. The mixture was filtered through a bed of celite then concentrated in vacuo to afford an oil which was purified by short-path Kugelrohr distillation (bp. 70 - 90 ºC, 160 mmHg [lit bp. 41-44 ºC, 13 mmHg]) to give 2-(methoxycarbonyl)-1-pyrroline (244.7 mg, 13%) as a colourless oil with spectroscopic data identical to those reported in the literature by De Kimpe (1993).

2-Acetyl-1-pyrroline (1) and 6-methyl-5-oxo-2,3,4,5-tetrahydropyridine (5)

Synthesised using a method similar to that of De Kimpe (1993): To a solution of 6 (45 mg, 3.5 mmol) in anhydrous ether (5 mL) under nitrogen at -15 ºC (salt / ice) was added methylmagnesium bromide (140 µL, 4.0 mmol, 3 M solution in ether) dropwise over 5 mins. The reaction was monitored over 2.5 hours by GC-MS, then quenched with 1 M HCl and stirred for 30 min. The ethereal layer was then removed and discarded and the aqueous layer neutralised with 2 M NaOH and basified to pH 10. The mixture was extracted with DCM (5 × 5 mL), dried over anhydrous sodium sulfate, filtered and stored in the freezer in DCM. The crude residue was examined by GC-MS and by 1H NMR, revealing the presence of traces of the double addition product. A portion of the final product mixture was purified by silica flash chromatography using silica that was pre-washed with hexane/triethylamine (10 mL, 99:1). After application of the product mixture to the column, fractions were eluted with ether:pentane (1:3), combined and concentrated to give a mixture of 2AP and 6M5OTP, together with trace amounts of tertiary alcohol by-product, as a malodorous slightly pale yellow oil. This was then carefully concentrated under nitrogen, diluted in CDCl3 and subjected to acid-base partitioning by extraction into 1 M HCl, followed by basification to pH 10 using 1 M NaOH, and extraction back into deuterated chloroform. GC-MS and 1H NMR data were run, showing a ratio of 76:24 (GC-MS) and 78:22 (1H NMR). The remaining unpurified sample was stored frozen in solution in DCM at -78 ºC.
2-Acetyl-1-pyrroline: 1H NMR (CDCl$_3$, 700 MHz) δ$_H$ 1.93-1.97 (2H, m, H$_2$-4), 2.49 (3H, s, CH$_3$), 2.72-2.75 (2H, m, H$_2$-3) and 4.11-4.13 (2H, tt, J = 15.0, 7.5, 2.5 Hz, H$_2$-2); 13C NMR (CDCl$_3$, 700 MHz) δ$_C$ 197.9, 174.5, 62.6, 33.2, 26.1, 22.2; GC-MS 111 (14), 83 (35), 69 (15), 68 (17), 55 (4)

6-Methyl-5-oxo-2,3,4,5-tetrahydropyridine: 1H NMR (CDCl$_3$, 700 MHz) δ$_H$ 2.08-2.12 (2H, m, H$_2$-3), 2.12 (3H, t, J = 2.0 Hz, CH$_3$), 2.52 (2H, t, J = 6.3 Hz, H$_2$-4) and 3.84-3.86 (2H, m, H$_2$-2); 13C NMR (CDCl$_3$, 700 MHz) δ$_C$ 191.7, 164.8, 49.9, 36.6, 23.7, 20.1; GC-MS 111 (22), 83 (29), 56 (4).

B. 1-Pyrroline (4)

Following a method identical to that of Ottinger and Hofmann (2002): To a solution of L-proline (2.58 g, 22.4 mmol) in water (40 mL), was added to an aqueous solution of sodium metaperiodate (50 mL, 0.3 mmol/L) and the reaction then stirred for 2 hours in the dark at room temperature. The pH of the reaction was then adjusted to 9 with 1 M aqueous sodium hydroxide. The solution was extracted with diethyl ether (3 × 20 mL), and the combined organic layers then washed with brine (20 mL). After the organic layer was dried over Na$_2$SO$_4$ it was concentrated under a gentle stream of nitrogen. A portion of the product mixture was carefully concentrated under nitrogen and rapidly purified on a neutral alumina pipette column (slightly deactivated, pre-washed with n-pentane/water; 5 mL, 99:1). After flushing the column with 100% n-pentane (5 mL), 1-pyrroline was eluted with n-pentane:diethyl ether (8:2). GC-MS and 1H NMR data were collected. 1-Pyrroline was stored frozen in solution in n-pentane/ether (8:2) at -20 °C.

1-Pyrroline (4): 1H NMR (CDCl$_3$, 500 MHz) δ$_H$ 1.82 (2H, m, H$_2$-3), 2.54 (2H, m, H$_2$-2) 3.85 (2H, m, H$_2$-4) and 7.62 (1H, m, H-1); GC-MS 69 (43), 68 (29), 42 (47), 41 (100).
Supplementary Information S2. GC-MS, NMR and GC × GC-TOF-MS operating conditions.

Nuclear Magnetic Resonance Spectroscopy

Proton nuclear magnetic resonance ($^1\text{H NMR}$) spectra were recorded on a Bruker Avance 500 spectrometer using a 5 mm SEI probe or a Bruker Avance DRX 700 spectrometer with a 5 mm TXI Zgrad probe. Carbon-13 nuclear magnetic resonance ($^{13}\text{C NMR}$) spectra were recorded on a Bruker Avance DRX 700 spectrometer with a 5 mm TXI Zgrad probe. Measurements were made in deuterated chloroform (CDCl$_3$, referenced to: δ$_\text{H}$ 7.26 ppm, δ$_\text{C}$ 77.16 ppm). Chemical shifts (δ) were recorded in parts per million (ppm) and coupling constants (J values) were measured in Hertz (Hz). Two dimensional NMR (2D NMR) data were acquired from Bruker Avance 500 and 700 MHz instruments. Gradient enhanced HMBC (geHMBC) and HSQC (geHSQC) NMR were obtained with 8 to 64 transients per increment with the evolution delay set at $^2J_{\text{CH}}$ of 4 Hz or 8 Hz (geHMBC) and $^1J_{\text{CH}}$ of 135 Hz (geHSQC). Gradient COSY (gCOSY) was recorded with 8 to 32 transients per increment with a pulse delay of 2.0 seconds.

Gas Chromatography/Mass Spectrometry

Gas chromatography/mass spectrometry (GC/MS) spectra were recorded on a Shimadzu GC-MS-QP2010 Plus. GC/MS programme: flow rate 1.5 mL/min; initial oven temperature 100 °C (isothermal for 3 minutes); ramped 16 °C/min to 270 °C held for 10 min; injection temperature 250 °C.

Comprehensive Two-dimensional Gas Chromatography/Time-of-flight Mass Spectrometry

Synthesised authentic standards (1 µL) were allowed to equilibrate in 10ml GC vials for two hours without heating and agitation. The headspace (500 µL) was collected using a 2.5 mL headspace syringe and injected on a Leco Pegasus 4D GC × GC-TOF-MS (St. Joseph, MI, USA) in splitless mode. The inlet and transfer line temperatures were set at 250 and 240 °C, respectively. The primary oven temperature was held initially at 45 °C for 1 min and then ramped at a rate of 10 °C/min to 235 °C. The secondary oven and the modulator were set at 15 and 25 °C higher than the primary oven, respectively for the entire run. The modulation period was set at 2.5 s, with a hot pulse of 0.4 s and 0.85 s cold pulse between stages. Data acquisition was done in full scan at 1500 V and 70 V electron
energy. The ion source was set at 240 °C. TOF-MS autotuning (acquisition system adjustment, ion optic focusing and mass calibration) was done every 48 hours. The total analysis time is 30 mins.
Table S1. Information on samples included in Set 2, including variety name, pedigree information, FGR allele, and peak areas of the compounds.

Taxa	Pedigree	FGR allele	acetoin (Analyte 4)	1-pyrroline (Analyte 4)	Pyrrole (Analyte 5)	2AP (Analyte 5)	6M5OTP (Analyte 5)	2-acetylpyrrole					
AZUCENA	#N/A	#N/A	51553.02	9753.54	13043.26	183313.06	69345.01	66760.055					
Baru	#N/A	#N/A	1	1	1	734.135	1	1					
Basmati_370	#N/A	#N/A	11945.245	1	10279.16	33556.066	7023.7	3741.765					
BENGAL	#N/A	#N/A	1	1	1978.765	4043.43	1418.86	2388.7					
CALMATI_201	#N/A	#N/A	1	1	43068.625	18097.88	30452.87	7708.81					
DELLA	#N/A	#N/A	1	1	1400.63	1	1	1					
DELLMONT	#N/A	#N/A	7681.975	18167.926	8097.56	92207.945	19626.795	17922.28					
DELLROSE	#N/A	#N/A	7866.265	181074.5	14578.3	128181.52	50904.34	41068.414					
DOONGARA	#N/A	#N/A	1	1	2058.47	7248.855	1704.035	6464.055					
DULAR	#N/A	#N/A	11067.95	1	1662.115	4210.57	1	1804.275					
GOOLARAH	#N/A	#N/A	1	1	37845.18	13568.28	166882	60648.773					
HOM_MALI_NIA	#N/A	#N/A	15907.39	5249.935	5690.6	46780.19	11184.345	10045.08					
HOM_NANG_NE	#N/A	#N/A	12055.675	14092.48	11577.31	185398.56	69819.39	11309.91					
Illabong	#N/A	#N/A	1	1	1526.485	1993.35	1	1					
Jarrah	#N/A	#N/A	19464.325	1	1446.35	1	1	1					
JEFFERSON	#N/A	#N/A	4119.615	1	1	1	1	1					
Kulu	#N/A	#N/A	21842.045	1	1	1	1	1					
KYEEMA	#N/A	#N/A	1	1	101157.69	33433.57	91890.76	21484.42					
L_202	#N/A	#N/A	1	1	3231.91	1444.645	1	1396.14					
LANGI	#N/A	#N/A	1	1	5440.56	4919.945	1914.91	1207.595					
M_9	#N/A	#N/A	10881.105	1	3506.755	3262.955	1949.33	1870.465					
M104	#N/A	#N/A	10891.84	1	1967.32	714.285	1	1					
M205	#N/A	#N/A	1	1	1834.51	2757.02	1	3227.45					
MILLIN	#N/A	#N/A	8260.535	1	2084.345	3100.94	1	2584.195					
NORIN_PL_8	#N/A	#N/A	11768.57	1	4090.94	2839.64	1	1337.075					
Opus_	#N/A	#N/A	6814.11	1	1	1969.29	1	1					
PANDAN_WANG I_7_Y1_	#N/A	#N/A	5078.44	1	8814.555	86772.58	16981.54	44195.914					
Y20140001	BENGAL/PANDAN WANGI (7)	fgr	1	256318.97	9752.59	76923.11	14194.415	13075.28					
Y20140002	BENGAL/PANDAN WANGI (7)	Fgr	1	5158.345	11030.7	3268.21	5662.54	1523.69					
Y20140003	BENGAL/PANDAN WANGI (7)	Fgr	1	3816.105	1	1886.99	3424.865	1	1385.64				
Y20140004	BENGAL/PANDAN WANGI (7)	#N/A	1	13751.96	8609.42	5215.345	2895.825	4185.64					
Y20140005	BENGAL/PANDAN WANGI (7)	Fgr	1	17626.164	4088.245	4243.705	1	1555.79					
Y20140006	BENGAL/PANDAN WANGI (7)	Fgr	1	17626.164	4088.245	4243.705	1	1555.79					
Y20140007	BENGAL/PANDAN WANGI (7)	Fgr	1	6550.7	1	1739.915	1	1					
Y20140009	BENGAL/PANDAN WANGI (7)	fgr	1	32792.58	9943.131	132561.64	39848.49	22403.795					
Y20140010	BENGAL/PANDAN WANGI (7)	fgr	1	157929.55	10800.08	71324.32	12432.245	9965.625					
Y20140011	BENGAL/PANDAN WANGI (7)	fgr	1	49854.21	11810.46	155429.73	54859.547	19600.39					
Y20140012	BENGAL/PANDAN WANGI (7)	fgr	1	42482.37	12184.84	35172.89	8388.375	8377.61					
Y20140013	BENGAL/PANDAN WANGI (7)	Fgr	1	1	2705.84	13434.21	1660.09	4977.105					
Y20140014	BENGAL/PANDAN WANGI (7)	fgr	1	5332.885	8326.975	46318.14	8228.56	4711.265					
Y20140015	BENGAL/PANDAN WANGI (7)	fgr	1	52607.516	11474.55	156571.55	47076.91	42854.465					
Y20140016	BENGAL/PANDAN WANGI (7)	Fgr	1	4549.5	1	3026.33	122908.47	20879.27	47762.5				
Y20140017	BENGAL/PANDAN WANGI (7)	fgr	1	12815.431	10839.656	1	4852.16	1	2647.069				
Y20140018	BENGAL/PANDAN WANGI (7)	fgr	1	3457.515	15179.82	15644.36	267211.88	103210.95	49811.227				
Y20140019	BENGAL/PANDAN WANGI (7)	fgr	1	4517.415	466292.8	14472.95	149524.28	41350.297	84468.21				
Y20140020	BENGAL/PANDAN WANGI (7)	Fgr	1	42655.098	1	39570.664	6878.775	1					
Y20140021	BENGAL/PANDAN WANGI (7)	Fgr	1	1	4598.415	1398.84	1677.745						
Y20140022	BENGAL/PANDAN WANGI (7)	Fgr	1	4364.385	1	4732.755	1	1901.505					
Y20140023	BENGAL/PANDAN WANGI (7)	Fgr	1	8798.53	26218.94	6373.985	5908.27	1656.45	3119.61				
Date	Code	Origin	Type	Value1	Value2	Value3	Value4	Value5	Value6	Value7	Value8		
------------	---------------------------	------------------	------	--------	--------	--------	--------	--------	--------	--------	--------		
Y20140024	BENGAL/PANDAN WANGI (7)	fgr	1	1	16424.346	6886.795	64287.27	9665.53	12742.82				
Y20140025	BENGAL/PANDAN WANGI (7)	fgr	1	1	30367.71	11351.12	90345.664	16283.835	17839.535				
Y20140026	BENGAL/PANDAN WANGI (7)	#N/A			19657.025	24163.346	6701.465	2921.92	1	1			
Y20140027	BENGAL/PANDAN WANGI (7)	#N/A			21325.095	1	4160.87	6803.805	1793.8	1			
Y20140028	DOONGARA/PANDAN WANGI (7)	fgr	1	1	13362.06	204690.94	82033.27	71251.47					
Y20140030	DOONGARA/PANDAN WANGI (7)	Fgr	1	1	1	90345.664	16283.835	17839.535					
Y20140031	DOONGARA/PANDAN WANGI (7)	Fgr	1	1	1	1783.33	1	1214.84					
Y20140032	DOONGARA/PANDAN WANGI (7)	Fgr	1	1	9382.675	1	14028.46	113193.805	18716.244	7080.455			
Y20140033	DOONGARA/PANDAN WANGI (7)	Fgr	1	1	1	2252.895	2229.03	1					
Y20140034	DOONGARA/PANDAN WANGI (7)	Fgr	1	1	1	1712.57	1223.08	1					
Y20140035	DOONGARA/PANDAN WANGI (7)	Fgr	1	1	1	1860.66	1						
Y20140036	DOONGARA/PANDAN WANGI (7)	fgr	1	1	9382.675	1	14028.46	113193.805	18716.244	7080.455			
Y20140037	DOONGARA/PANDAN WANGI (7)	fgr	1	1	1	2252.895	2229.03	1					
Y20140038	DOONGARA/PANDAN WANGI (7)	Fgr	1	1	1	1712.57	1223.08	1					
Y20140039	DOONGARA/PANDAN WANGI (7)	Fgr	1	1	1	1860.66	1						
Y20140040	DOONGARA/PANDAN WANGI (7)	Fgr	1	1	1	1860.66	1						
Y20140041	JEFFERSON/AZUCENA	Fgr	1	1	1	1860.66	1						
Y20140042	JEFFERSON/AZUCENA	Fgr	1	1	1	1860.66	1						
Y20140043	JEFFERSON/AZUCENA	Fgr	1	1	1	1860.66	1						
Y20140044	JEFFERSON/AZUCENA	Fgr	1	1	1	1860.66	1						
Y20140045	JEFFERSON/AZUCENA	Fgr	1	1	1	1860.66	1						
Y20140046	JEFFERSON/AZUCENA	Fgr	1	1	1	1860.66	1						
Y20140047	JEFFERSON/AZUCENA	Fgr	1	1	1	1860.66	1						
Y20140048	JEFFERSON/AZUCENA	Fgr	1	1	1	1860.66	1						
Y20140049	JEFFERSON/AZUCENA	Fgr	1	1	1	1860.66	1						
Y20140050	JEFFERSON/AZUCENA	Fgr	1	1	1	1860.66	1						
Y20140051	JEFFERSON/AZUCENA	Fgr	1	1	1	1860.66	1						
Y20140052	JEFFERSON/AZUCENA	Fgr	1	1	1	1860.66	1						
Y20140053	JEFFERSON/AZUCENA	Fgr	1	1	1	1860.66	1						
Y20140054	JEFFERSON/AZUCENA	Fgr	1	1	1	1860.66	1						
Y20140055	JEFFERSON/AZUCENA	Fgr	1	1	1	1860.66	1						
Y20140056	JEFFERSON/AZUCENA	Fgr	1	1	1	1860.66	1						
Y20140057	JEFFERSON/AZUCENA	Fgr	1	1	1	1860.66	1						
Y20140058	JEFFERSON/AZUCENA	fgr	1	1	1	1860.66	1						
Y20140059	JEFFERSON/AZUCENA	Fgr	1	1	1	1827.68	1	1					
Y20140060	JEFFERSON/AZUCENA	Fgr	1	1	7715.67	46155.31	10393.68	8514.73					
Y20140061	JEFFERSON/AZUCENA	fgr	8993.302	20273.4	21628.44	267563.03	106636.85	81880.99					
Y20140062	JEFFERSON/AZUCENA	fgr	1	1	5772.92	5741.435	12460.65	1946.12					
Y20140063	JEFFERSON/AZUCENA	fgr	10890.91	10097.2	11043.63	244487.67	74905.6	86728.29					
Y20140064	JEFFERSON/AZUCENA	Fgr	1	1	6288.27	6697.23	1631.215	4402.565					
Y20140065	JEFFERSON/AZUCENA	fgr	1	1	18913.27	23610.94	6480.91	5517.08					
Y20140066	JEFFERSON/AZUCENA	fgr	1	1	4877.92	5471.435	2160.435	1946.12					
Y20140067	JEFFERSON/AZUCENA	Fgr	9878.75	1	2344.31	3052.91	1	1					
Y20140068	JEFFERSON/AZUCENA	fgr	1	1	18913.27	23610.94	6480.91	5517.08					
Y20140069	JEFFERSON/AZUCENA	fgr	1	1	5772.92	5741.435	12460.65	1946.12					
Y20140070	JEFFERSON/AZUCENA	fgr	1	1	4877.92	5471.435	2160.435	1946.12					
Y20140071	JEFFERSON/AZUCENA	Fgr	3195.85	46836.22	66671.81	261935.67	103647.08	81910.28					
Y20140072	JEFFERSON/AZUCENA	Fgr	8705.575	419732.16	17537.76	289562.28	92274.28	105070.76					
Y20140073	JEFFERSON/AZUCENA	Fgr	10433.38	5051.555	1643.25	3480.67	1	2925.455					
Y20140074	JEFFERSON/AZUCENA	Fgr	1	1	18913.27	23610.94	6480.91	5517.08					
Y20140075	JEFFERSON/AZUCENA	Fgr	10849.13	1	4042.89	1172.76	1	1					
Y20140076	JEFFERSON/AZUCENA	fgr	1	1	4877.92	5471.435	2160.435	1946.12					
Y20140077	JEFFERSON/AZUCENA	Fgr	1	1	5772.92	5741.435	12460.65	1946.12					
Y20140078	KYEEMA/BASMATI 370	fgr	11227.465	365396	18550.6	293553.75	96295.47	117380.84					
Y20140079	KYEEMA/BASMATI 370	fgr	3195.85	46836.22	66671.81	261935.67	103647.08	81910.28					
Y20140080	KYEEMA/BASMATI 370	fgr	9500.585	46263.72	15806.98	33198.36	38527.305						
Y20140081	KYEEMA/BASMATI 370	fgr	3195.85	46836.22	66671.81	261935.67	103647.08	81910.28					
Y20140082	KYEEMA/BASMATI 370	Fgr	31702.35	324287.56	14834.22	176361.47	65210.51	62614.844					
Y20140083	KYEEMA/BASMATI 370	Fgr	31702.35	324287.56	14834.22	176361.47	65210.51	62614.844					
Y20140084	KYEEMA/BASMATI 370	Fgr	31702.35	324287.56	14834.22	176361.47	65210.51	62614.844					
Y20140085	KYEEMA/BASMATI 370	Fgr	31702.35	324287.56	14834.22	176361.47	65210.51	62614.844					
Y20140086	KYEEMA/BASMATI 370	Fgr	31702.35	324287.56	14834.22	176361.47	65210.51	62614.844					
Y20140087	KYEEMA/BASMATI 370	Fgr	31702.35	324287.56	14834.22	176361.47	65210.51	62614.844					
Y20140088	KYEEMA/BASMATI 370	Fgr	31702.35	324287.56	14834.22	176361.47	65210.51	62614.844					
Y20140089	KYEEMA/BASMATI 370	Fgr	31702.35	324287.56	14834.22	176361.47	65210.51	62614.844					
Y20140090	KYEEMA/BASMATI 370	Fgr	31702.35	324287.56	14834.22	176361.47	65210.51	62614.844					
Y20140091	KYEEMA/BASMATI 370	Fgr	31702.35	324287.56	14834.22	176361.47	65210.51	62614.844					
Y20140092	KYEEMA/BASMATI 370	Fgr	31702.35	324287.56	14834.22	176361.47	65210.51	62614.844					
Date	Variety	Genotype	Rc	Sf	Rsf	Yt	Df						
------------	--------------------	----------	----	----	-----	------	------						
Y20140093	KYEEMA/BASMATI 370	fgr	1	24262.375	9073.769	44773.906	8874.1	9062.774					
Y20140094	KYEEMA/BASMATI 370	fgr	1	50871.12	17541.93	95784.42	19937.436	10142.49					
Y20140095	KYEEMA/BASMATI 370	fgr	1	9143.315	233817.1	52061.35	299520.47	105959.56	111912.42				
Y20140096	KYEEMA/BASMATI 370	fgr	1	3040.51	31848.75	9318.745	177942.8	56995.49	66506.12				
Y20140097	KYEEMA/BASMATI 370	fgr	1	8843.21	174729.19	13985.61	89978.63	20255.83	37637.016				
Y20140098	KYEEMA/BASMATI 370	fgr	1	9458.83	623688.6	20995.85	111301.08	24460.83	30444.006				
Y20140099	KYEEMA/BASMATI 370	fgr	1	9689.905	151074.19	16349.27	177248	52937.98	68480.92				
Y20140100	KYEEMA/BASMATI 370	fgr	1	230693.19	12461.86	88511.44	19596.23	13021.89					
Y20140101	KYEEMA/BASMATI 370	fgr	1	28463.24	8111.3	48857.555	10651.545	7280.475					
Y20140102	KYEEMA/BASMATI 370	fgr	1	30410.495	48248.934	8535.475	199361.03	60403.28	82444.53				
Y20140103	KYEEMA/BASMATI 370	fgr	1	23761.705	5831.88	193038.44	64426.38	73108.28					
Y20140106	KYEEMA/BASMATI 370	fgr	1	10001.11	65689.51	13094.03	10548.67						
Y20140107	KYEEMA/BASMATI 370	fgr	1	41883.1	15264.97	34589.684	29320.78						
Y20140108	KYEEMA/BASMATI 370	fgr	1	12736.4	160933.1	58319.344	67387.195						
Y20140109	KYEEMA/BASMATI 370	fgr	1	22783.52	158264.97	34589.684	29320.78						
Y20140110	KYEEMA/BASMATI 370	fgr	1	64134.31	44934.03	808427.58	73989.96	73108.28					
Y20140111	KYEEMA/BASMATI 370	fgr	1	12736.4	160933.1	58319.344	67387.195						
Y20140112	KYEEMA/BASMATI 370	fgr	1	23761.705	193038.44	64426.38	72844.87						
Y20140117	KYEEMA/KDML 105	fgr	1	26096.23	11476.47	161156.56	51217.85	58126.746					
Y20140118	KYEEMA/KDML 105	fgr	1	18591.105	719819.94	48386	662168.5	217139.69	266148.84				
Y20140119	KYEEMA/KDML 105	fgr	1	7485.79	15454.11	21042.65	239611.55	86572.75	89363.57				
Y20140120	KYEEMA/KDML 105	fgr	1	4026.655	119584.23	20328.09	207504.69	79542.39	47827.9				
Y20140121	KYEEMA/KDML 105	fgr	1	32877.305	17945.37	93092.1	21242.285	16341.405					
Y20140122	KYEEMA/KDML 105	fgr	1	32877.305	17945.37	93092.1	21242.285	16341.405					
Y20140123	KYEEMA/KDML 105	fgr	1	32877.305	17945.37	93092.1	21242.285	16341.405					
Y20140124	KYEEMA/KDML 105	fgr	1	32877.305	17945.37	93092.1	21242.285	16341.405					
Y20140125	KYEEMA/KDML 105	fgr	1	32877.305	17945.37	93092.1	21242.285	16341.405					
Y20140126	KYEEMA/KDML 105	fgr	1	32877.305	17945.37	93092.1	21242.285	16341.405					
Y20140127	KYEEMA/KDML 105	fgr	1	32877.305	17945.37	93092.1	21242.285	16341.405					
Y20140129	KYEEMA/KDML 105	fgr	1	32877.305	17945.37	93092.1	21242.285	16341.405					
Y20140130	KYEEMA/KDML 105	fgr	1	32877.305	17945.37	93092.1	21242.285	16341.405					
Date	Variety	Code	Weight	Length	Width	Height	Thickness	Density	Area				
------------	------------------	------	---------	--------	-------	--------	-----------	---------	-------				
Y20140131	KYEEMA/KDML 105	fgr	10236.78	187478.6	13520.3	289992	94468.79	102957.625					
Y20140132	KYEEMA/KDML 105	fgr	11548.578	918473.9	22299.03	360634.72	141771.4	145683.33					
Y20140133	KYEEMA/KDML 105	fgr	8752.73	31331.955	11945.77	160871.14	53150.184	56983.477					
Y20140134	KYEEMA/KDML 105	fgr	1	48306.33	19036.46	107986.17	21305.74	15638.15					
Y20140135	KYEEMA/KDML 105	fgr	1	37298.27	19036.46	107986.17	21305.74	15638.15					
Y20140136	LANGI/BASMATI 370	fgr	19141.035	382671.4	48317.81	339721.56	134159.44	128116.83					
Y20140137	LANGI/BASMATI 370	fgr	16905.645	30154.936	18151.19	319610.6	128175.53	71452.8					
Y20140138	LANGI/BASMATI 370	fgr	9446.445	460863.28	39611.66	243307.83	81496.27	97122.086					
Y20140139	LANGI/BASMATI 370	fgr	1	1	4742.59	3000.755	1	2489.38					
Y20140140	LANGI/BASMATI 370	Fgr	16905.645	30154.936	18151.19	319610.6	128175.53	71452.8					
Y20140141	LANGI/BASMATI 370	Fgr	9446.445	460863.28	39611.66	243307.83	81496.27	97122.086					
Y20140142	LANGI/BASMATI 370	fgr	1	1	4742.59	3000.755	1	2489.38					
Y20140143	LANGI/BASMATI 370	Fgr	1	1	4742.59	3000.755	1	2489.38					
Y20140144	LANGI/BASMATI 370	Fgr	1	1	4742.59	3000.755	1	2489.38					
Y20140145	LANGI/BASMATI 370	Fgr	1	1	4742.59	3000.755	1	2489.38					
Y20140146	LANGI/BASMATI 370	Fgr	1	1	4742.59	3000.755	1	2489.38					
Y20140147	LANGI/BASMATI 370	Fgr	1	1	4742.59	3000.755	1	2489.38					
Y20140148	LANGI/BASMATI 370	Fgr	1	1	4742.59	3000.755	1	2489.38					
Y20140149	LANGI/BASMATI 370	Fgr	1	1	4742.59	3000.755	1	2489.38					
Y20140150	LANGI/BASMATI 370	Fgr	1	1	4742.59	3000.755	1	2489.38					
Y20140151	LANGI/BASMATI 370	Fgr	1	1	4742.59	3000.755	1	2489.38					
Y20140152	LANGI/BASMATI 370	Fgr	1	1	4742.59	3000.755	1	2489.38					
Y20140153	LANGI/BASMATI 370	Fgr	1	1	4742.59	3000.755	1	2489.38					
Y20140154	LANGI/BASMATI 370	Fgr	1	1	4742.59	3000.755	1	2489.38					
Y20140155	LANGI/BASMATI 370	Fgr	1	1	4742.59	3000.755	1	2489.38					
Y20140156	LANGI/BASMATI 370	Fgr	1	1	4742.59	3000.755	1	2489.38					
Y20140157	LANGI/BASMATI 370	Fgr	1	1	4742.59	3000.755	1	2489.38					
Y20140158	LANGI/BASMATI 370	Fgr	1	1	4742.59	3000.755	1	2489.38					
Y20140159	LANGI/BASMATI 370	Fgr	1	1	4742.59	3000.755	1	2489.38					
Y20140160	LANGI/BASMATI 370	Fgr	1	1	4742.59	3000.755	1	2489.38					
Y20140161	LANGI/BASMATI 370	Fgr	1	1	4742.59	3000.755	1	2489.38					
Y20140162	LANGI/BASMATI 370	Fgr	1	1	4742.59	3000.755	1	2489.38					
Y20140163	LANGI/BASMATI 370	Fgr	1	1	4742.59	3000.755	1	2489.38					
Y20140164	LANGI/BASMATI 370	Fgr	1	1	4742.59	3000.755	1	2489.38					
Y20140165	LANGI/BASMATI 370	Fgr	1	1	4742.59	3000.755	1	2489.38					
Y20140166	LANGI/BASMATI 370	Fgr	1	1	4742.59	3000.755	1	2489.38					
Y20140167	LANGI/BASMATI 370	Fgr	1	1	4742.59	3000.755	1	2489.38					
Y20140168	LANGI/BASMATI 370	Fgr	1	1	4742.59	3000.755	1	2489.38					
Y20140169	LANGI/BASMATI 370	Fgr	1	1	4742.59	3000.755	1	2489.38					
Year	Variety	Stock	Quantity	Weight (kg)	Value 1 (KES)	Value 2 (KES)	Value 3 (KES)	Value 4 (KES)	Value 5 (KES)				
--------	------------------	-------	----------	-------------	---------------	---------------	---------------	---------------	---------------				
Y20140170	LANGI/BASMATI 370	fgr	1	32317.047	12853.3	67046.41	14534.848	9040.019					
Y20140171	LANGI/BASMATI 370	fgr	17369.7	480682.9	52800.84	101756.75	17876.775	16537.705					
Y20140172	LANGI/BASMATI 370	fgr	142851.305	924820.44	22265.65	55403.246	12698.285	11987.39					
Y20140174	LANGI/BASMATI 370	fgr	3727.075	2209.65	2495.28	1	1						
Y20140176	LANGI/BASMATI 370	Fgr	42851.305	1	42851.305	139864.89	52112.01	11223.97					
Y20140177	LANGI/BASMATI 370	Fgr	3827.735	1	3827.735	1	1						
Y20140178	LANGI/BASMATI 370	Fgr	13655.815	924820.44	22265.65	55403.246	12698.285	11987.39					
Y20140179	LANGI/BASMATI 370	Fgr	9551.06	1	9551.06	38996.273	8475.504	7398.891					
Y20140180	LANGI/BASMATI 370	Fgr	12766.895	23160.03	5078.075	1974.97	1	1					
Y20140181	LANGI/BASMATI 370	Fgr	13537.975	6500.445	4118.47	1	1						
Y20140182	LANGI/BASMATI 370	Fgr	7408.97	1	7408.97	1	1						
Y20140183	LANGI/BASMATI 370	Fgr	11170.235	11170.235	8395.96	3850.07	1		2752.885				
Y20140185	LANGI/BASMATI 370	Fgr	12831.33	3743.395	6295.08	1760.196	1		4846.02				
Y20140186	LANGI/BASMATI 370	Fgr	49982.766	17720.97	98940.65	19540.33	1		15810.01				
Y20140187	LANGI/BASMATI 370	Fgr	25570.365	9300.28	120403.055	21330.096	1		30404.22				
Y20140189	LANGI/BASMATI 370	Fgr	1	2275.135	1480.26	1		1					
Y20140190	LANGI/BASMATI 370	Fgr	4590.57	1	2166.655	3188.155	1		1646.73				
Y20140191	LANGI/BASMATI 370	Fgr	1	1	1794.725	6387.095	3518.195		1804.005				
Y20140192	LANGI/BASMATI 370	Fgr	34480.405	8599.05	4137.35	1		7091.21					
Y20140193	LANGI/BASMATI 370	Fgr	16709.655	4577.87	915.665	1		1					
Y20140195	LANGI/BASMATI 370	Fgr	1	1	2955.915	3187.46	1		3143.345				
Y20140196	LANGI/BASMATI 370	Fgr	1	1	27578.309	6437.471	3685.167	1	3559.078				
Y20140198	LANGI/BASMATI 370	Fgr	1	1	3132.335	15214.21	2455.7		1901.02				
Y20140199	LANGI/BASMATI 370	Fgr	1	1	2974.61	722.18	1						
Y20140201	LANGI/BASMATI 370	Fgr	1	1	1	1738.92	1						
Y20140202	LANGI/BASMATI 370	Fgr	1	1	2169.67	2638.03	1						
Y20140203	LANGI/BASMATI 370	Fgr	1	1	2974.61	722.18	1						
Y20140204	LANGI/BASMATI 370	Fgr	14360.885	218045.08	15950.74	344490.88	98783.55		174608.97				
Y20140205	LANGI/BASMATI 370	Fgr	14612.565	303984.16	19290.21	437838.4	127842.01		147162.19				
Y20140206	LANGI/BASMATI 370	Fgr	1	54822.773	39147.9	73413.17	17417.836		11705.68				
Date	Plant Type	Unit	Paddy	Middling	Rice	By-products	Value						
------------	-----------------------------	------	-------	----------	------	-------------	-------						
Y20140207	LANGI/BASMATI 370	fgr	9991.597	34445.027	18569.65	273169.56	84417.1	96735.586					
Y20140208	LANGI/BASMATI 370	Fgr	215656.39	1	4339.065	6628.345	1	7322.06					
Y20140209	LANGI/BASMATI 370	fgr	1	48824.83	15774.24	69044.41	15727.5	12254.77					
Y20140210	LANGI/BASMATI 370	Fgr	1	1	2404.905	2952.845	1	1628.39					
Y20140214	LANGI/BASMATI 370	#N/A	20972.295	10520.85	7583.76	15727.5	1934.97						
Y20140215	LANGI/BASMATI 370	Fgr	1	1	2049.15	4925.83	1	7322.06					
Y20140216	LANGI/BASMATI 370	Fgr	1	1	1	1016.135	1	7322.06					
Y20140217	LANGI/BASMATI 370	Fgr	1	1	1	757.75	1	7322.06					
Y20140218	LANGI/BASMATI 370	Fgr	1	1	1	1016.135	1	7322.06					
Y20140219	LANGI/BASMATI 370	Fgr	1	1	36031.395	8118.21	15030.34	8944.16					
Y20140221	LANGI/KDML 105	Fgr	1	1	3507.15	4621.365	1	3976.36					
Y20140222	LANGI/KDML 105	Fgr	1	1	7466.11	8776.19	3748.6	3488.82					
Y20140223	LANGI/KDML 105	Fgr	1	1	9532.14	279951.78	18178.38	44238.336	35083.36				
Y20140224	LANGI/KDML 105	Fgr	1	1	4366.725	2599.095	1	1					
Y20140225	LANGI/KDML 105	Fgr	1	1	11217.46	35599.24	146318.95	60374.23	7822.355				
Y20140226	LANGI/KDML 105	Fgr	1	1	3643.415	892.92	1	1					
Y20140227	LANGI/KDML 105	Fgr	1	1	20946.88	9552.605	15557.59	12274.395					
Y20140228	LANGI/KDML 105	Fgr	1	1	51630.804	28587.443	21670	98045.94	94271.66				
Y20140229	LANGI/KDML 105	Fgr	1	1	10164.145	491926.5	393862.8	135518.9	142545.12				
Y20140231	LANGI/KDML 105	Fgr	1	1	8992.945	33515.047	13791.03	64009	68002.445				
Y20140232	LANGI/KDML 105	Fgr	1	1	7976.35	4222.66	1	3855.81					
Y20140233	LANGI/KDML 105	Fgr	1	1	12073.675	62653.63	19555.52	274810.4	98508.47	98232.53			
Y20140234	LANGI/PANDAN WANGI (7)	Fgr	1	1	4131.925	5568.49	1967.9	4882.255					
Y20140235	LANGI/PANDAN WANGI (7)	Fgr	1	1	42787.49	33212.92	12087	877.46	1				
Y20140237	LANGI/PANDAN WANGI (7)	#N/A	769301.02	1	5600.04	5755.985	1860.16	3068.55					
Y20140238	LANGI/PANDAN WANGI (7)	Fgr	1	1	8495.695	4478.87	1434.895	2466.735					
Y20140239	LANGI/PANDAN WANGI (7)	Fgr	1	1	7572.81	46151.055	9775.695	12171.575					
Y20140240	LANGI/PANDAN WANGI (7)	Fgr	1	1	4079.715	42795.344	224618.38	80928.66	87666.28				
Y20140241	LANGI/PANDAN WANGI (7)	Fgr	1	1	3394.3	3495.78	1	1362.695					
Y20140242	LANGI/PANDAN WANGI (7)	Fgr	1	1	4099.85	5004.195	1535.73	1					
Y20140243	LANGI/PANDAN WANGI (7)	Fgr	1	1	17565.965	28908.57	12773.54	89693.34	110471.79				
Y20140244	LANGI/PANDAN WANGI (7)	Fgr	1	1	36715.435	19684.275	4398.955	2646.785	1				
Y20140245	LANGI/PANDAN WANGI (7)	Fgr	1	1	8904.655	364992.88	18133.71	399433.3	139297	148471.47			
Year	Cultivar/Cross	Type	Code 1	Code 2	Code 3	Code 4	Code 5	Code 6					
-------	----------------	------	--------	--------	--------	--------	--------	--------					
Y20140246	LANGI/PANDAN WANGI (7)	fgr	6149.614	24409.695	5487.659	65307.383	13499.863	13293.333					
Y20140247	LANGI/PANDAN WANGI (7)	fgr	9728.59	1	7673.695	5892.4	1353.885	4843.105					
Y20140249	LANGI/PANDAN WANGI (7)	fgr	12571.987	1	9843.058	319564.4	96198.76	111118.91					
Y20140251	YRL126/KDML 105	fgr	12833.235	445450.97	21153.8	311308.7	108990.96	121734.086					
Y20140252	YRL126/KDML 105	fgr	6842.13	255578.92	16064.27	74890.586	16149.675	15905.165					
Y20140253	YRL126/KDML 105	fgr	1	47207.77	8163.13	27322.57	6280.585	5332.31					
Y20140254	YRL126/KDML 105	fgr	1	198567.39	15986.71	42738.504	10019.625	9038.07					
Y20140255	YRL126/KDML 105	fgr	6915.38	184022.7	12286.24	103771.6	22994.895	28250.215					
Y20140256	YRL126/KDML 105	fgr	8585	219303.8	19659.44	89819.9	18388.795	14279.09					
Y20140257	YRL126/KDML 105	fgr	7705.815	407164.25	22101.54	109428.63	34470.57	33862.566					
Y20140262	Pelde/Gopalbhog(4)/YR71048-10/YRL101	fgr	1	20995.27	10973.51	71714.98	14967.827	9626.479					
Y20140269	PELDE/G'BHOG(4)/D.10///YRL101///YRF203	fgr	1	10314.635	316312	17054.76	54969.99	13166.255	8554.395				
Y20140270	PELDE/G'BHOG(4)/D.10///YRL117/YRF203	fgr	1	31413.26	16958.01	78049.195	16223.585	10490.7					
Y20140271	YRF205/LANGI	fgr	1	180127.52	10056.21	74756.695	16355.029	14906.579					
Y20140272	YRF208/DELLROSE	fgr	1	31546.314	7254.535	47849.71	10109.28	9510.535					
Y20140273	YRF208/DELLROSE	fgr	7705.815	407164.25	22101.54	109428.63	34470.57	33862.566					
Y20140274	KYEEMA///PELDE/G'BHOG(4)/D.10//YRL101	fgr	1	20995.27	10973.51	71714.98	14967.827	9626.479					
Y20140275	KYEEMA///PELDE/G'BHOG(4)/D.10//YRL101	fgr	10314.635	316312	17054.76	54969.99	13166.255	8554.395					
Y20140276	KYEEMA///PELDE/G'BHOG(4)/D.10//YRL101	fgr	1	31413.26	16958.01	78049.195	16223.585	10490.7					
Y20140277	KYEEMA///PELDE/G'BHOG(4)/D.10//YRL101	fgr	1	180127.52	10056.21	74756.695	16355.029	14906.579					
Y20140278	KYEEMA///PELDE/G'BHOG(4)/D.10//YRL101	fgr	1	31546.314	7254.535	47849.71	10109.28	9510.535					
Y20140279	PELDE/G'BHOG(4)/D.10//YRL101///YRF203	fgr	7705.815	407164.25	22101.54	109428.63	34470.57	33862.566					
Y20140280	YRF208/DELLROSE	fgr	4433.92	5153.64	1928.84	1	1	1					
Date	Material	Type	Weight 1	Weight 2	Weight 3	Weight 4	Weight 5	Weight 6	Weight 7	Weight 8	Weight 9	Weight 10	Weight 11
------------	-----------	------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------
Y20140281	KYEEM///YRD91V55//P/GO(4)/D.10/4/CALMATI201	fgr	325077.03	14835.51	47084.33	8079.125	9196.14						
Y20140282	YRF209/3/L202//PELDE*4/M9	Fgr	226384.83	15367.71	79795.8	18416.984	15503.965						
Y20140283	YRF208/YRL125_CT18	fgr	9612.261	940661.06	63870.31	219466.95	82112.79	87607.65					
Y20140284	YRF208/YRL125_CT18	fgr	4397.455	103127.555	14780.02	78119.8	17456.35	13943.65					
Y20140285	BASMATI370/PELDE//BASMATI370//L202	Fgr	17601.435	4945.2	609.545	1	1						
Y20140286	BASMATI370/PELDE//BASMATI370//L202	Fgr	10901.405	3056.855	2707.6	1	3009.72						
Y20140287	L202///BASMATI370/PELDE//BASMATI 370	fgr	1	1	1614.2	1456.14	1	1					
Y20140288	L202///BASMATI370/PELDE//BASMATI 370	Fgr	1	1	1	588.655	1	1					
Y20140289	PELDE/G'BHOG(4)/D.10///YRL101///YRF203	fgr	645187.4	43565.09	94355.62	18400.324	12321.98						
Y20140290	PELDE/G'BHOG(4)/D.10///YRL101///YRF203	fgr	467169.8	19375.88	74923.19	12754.35	12598.04						
Y20140291	PELDE/G'BHOG(4)/D.10///YRL101///YRF203	fgr	670328.06	24009.35	108266.91	22585.4	6679.835						
Y20140292	PELDE/G'BHOG(4)/D.10///YRL101///YRF203	fgr	692836.7	17505.01	53526.797	10408.085	13759.505						
Y20140293	YRF208/3/DELLMONT //BASMATI370//PELDE	fgr	4111.89	22682.02	14011.4	66704.35	13524.97	11155.185					
Y20140294	YRF208///MILLIN//LIJIANGHEIGU	fgr	568251.5	39709.81	113953.266	22598.02	9891.415						
Y20140295	YRF208///MILLIN//LIJIANGHEIGU	Fgr	1	1	1713.38	974.595	1	1					
Y20140296	YRF208///MILLIN//LIJIANGHEIGU	Fgr	1	1	1	1	1						
Y20140297	YRF208///MILLIN//LIJIANGHEIGU	Fgr	1	1	2727.91	2397.47	1	1					
Y20140298	2*YRF208///MILLIN//LIJIANGHEIGU	#N/A	1	1	3344.695	3763.335	1	2788.915					
Y20140299	KYEEMA///LIJIANGHEIGU	Fgr	209796.95	11438.02	97368.516	27679.945	16448.115						
Y20140300	KYEEMA///LIJIANGHEIGU	Fgr	45259.37	15405.99	73121.16	14693.61	9200.71						
Y20140301	YRF208///MILLIN//LIJIANGHEIGU	Fgr	1	1	2041.25	2838.835	1	1230.04					
Y20140302	YRF208///MILLIN//LIJIANGHEIGU	Fgr	1	1	1	910.7	1	1					
Y20140303	YRF208///MILLIN//LIJIANGHEIGU	Fgr	1	1	1	1	1	1					
Date	Variety	Type	Output1	Output2	Output3	Output4	Output5	Output6					
-----------	--------------------------------	------	---------	---------	---------	---------	---------	---------					
20140304	YRF208/MILLIN/LIJIANGHEIGU	Fgr	1	1	1910.82	3019.93	1647.51	2839.81					
20140305	YRF208/MILLIN/LIJIANGHEIGU	fgr	3709.34	34128.22	15629	77473.17	12675.71	28735.78					
20140306	YRF208/MILLIN/LIJIANGHEIGU	Fgr	1	1	1	1	1	1					
20140307	YRF208/MILLIN/LIJIANGHEIGU	Fgr	1	1	1615.50	918.47	1	1					
20140308	YRF208/MILLIN/LIJIANGHEIGU	Fgr	1	1	3240.24	4039.16	1	4757.08					
20140309	2*YRF208/MILLIN/LIJIANGHEIGU	fgr	19380.61	30370.69	12356.78	99613.66	1516.86	33646.51					
20140310	2*YRF208/MILLIN/LIJIANGHEIGU	fgr	1	1	17626.74	14696.47	78251.22	15886.31					
20140311	2*YRF208/MILLIN/LIJIANGHEIGU	Fgr	1	1	1014.24	1	1	1					
20140312	2*YRF208/MILLIN/LIJIANGHEIGU	Fgr	1	1	1	1	1014.24	1					
20140313	2*YRF208/MILLIN/LIJIANGHEIGU	Fgr	1	1	9583.94	1	1	1390.01					
20140314	2*YRF208/MILLIN/LIJIANGHEIGU	fgr	3466.78	16859.03	13992.66	16869.14	48634.75	51232.41					
20140315	2*YRF208/MILLIN/LIJIANGHEIGU	fgr	9992.68	27674.24	20100.16	171424.92	66844.81	15353.67					
20140316	2*YRF208/MILLIN/LIJIANGHEIGU	Fgr	1	1	1420.35	2918.11	1	1474.96					
20140317	2*YRF208/MILLIN/LIJIANGHEIGU	fgr	1	1	4082.01	10001.94	64318.19	14196.71					
20140318	2*YRF208/MILLIN/LIJIANGHEIGU	fgr	9610.74	63273.49	18288.7	79071.51	17388.37	9263.8					
20140319	KYEEEMA/LIJIANGHEIGU	Fgr	1	1	1513.85	3206.4	1	1272.05					
20140320	KYEEEMA/LIJIANGHEIGU	fgr	10475.28	47703.78	11552.71	53332.97	10886.94	9309.34					
20140321	KYEEEMA/LIJIANGHEIGU	#N/A	1	1	4608.87	2545.90	1	1064.76					
20140322	KYEEEMA/LIJIANGHEIGU	fgr	1	1	15684.85	50315.59	70076.02	15281.57					
20140323	KYEEEMA/NORIN PL8	Fgr	154902.99	4259.75	6033.89	1720.42	2767.41						
20140324	KYEEEMA/NORIN PL8	Fgr	1	1	2549.68	2152.54	1508.20	2419.81					
20140325	KYEEEMA/NORIN PL8	Fgr	1	1	1263.91	1	1619.41						
20140326	KYEEEMA/NORIN PL8	Fgr	171104.055	1853.92	2296.20	1	1767.44						
20140327	KYEEEMA/NORIN PL8	Fgr	31500.165	2232.52	4137.98	1	2543.76						
20140328	YRK4/KOSHIHIKARI (TYNAN)/JYUODEKI	#N/A	1	1	2037.57	2322.89	1	1					
20140329	YRK4/KOSHIHIKARI (TYNAN)/JYUODEKI	#N/A	1	1	1517.59	1794.51	1	1379.67					
20140330	M104/YRM49/KIRARA 397	#N/A	1	1	2735.30	1	2363.56						
20140331	M104/AKIHAKARI/HSC55	#N/A	1	1	1	1	1	1					
20140332	CALMOCHI101/DOONGARA/DOONGARA	#N/A	1	1	2296.83	5572.38	2072.33	2398.98					
Y2014036S	Doongara/Phka Rumdang/4/PELDE/G’BHOG(4)/D.10/YRL101///YRL117/YRF203	#N/A	9039.25	1	1710.755	9023.4	1816.04	7066.355					
------------	---	------	---------	---	----------	-------	---------	----------					
YRF_208	#N/A	#N/A	1	320803.5	60733.68	65247.18	15653.555	6134.74					
YRF_209__smoo th_	#N/A	#N/A	1	456586.6	23808.98	78337.74	19526.244	13647.935					
YRF203	#N/A	#N/A	1	103909.45	10659.14	57663.355	11345.73	21747.494					
YRF205	#N/A	#N/A	1	32823.72	15729.35	37733.586	9311.19	6730.295					
YRF206	#N/A	#N/A	1	461174.97	14249.53	25130.15	5330.98	5284.225					
YRL_101	#N/A	#N/A	18155.438	1	4206.598	1	1	1					
YRL_117	#N/A	#N/A	1	1	2951.755	2359.315	1	1389.395					
YRL_125	#N/A	#N/A	11313.785	1	1	1646.885	1	1					
YRL_126	#N/A	#N/A	1	8807.885	2441.525	3843.5	1	4792.27					
Table S2. GC × GC-TOF-MS parameters for comprehensive profiling of rice volatile metabolites.

Autosampler settings	
Incubator and agitator	On
Incubator temperature	80 °C
Fill speed	50 µl/s
Injection speed	100 µl/s
Injection volume	1.5 ml
Syringe temperature	80 °C

GC × GC-TOF-MS conditions	
Injection mode	Splitless
Injector temperature	250 °C
Carrier gas	Helium (99.9999%)
Flow rate	1 ml/min
Primary column	Agilent DB-624UI (midpolar)
Primary column composition	6% cyanopropyl phenyl, 94% polydimethyl siloxane
Primary column length	30 m × 250 µ × 1.4 µ
Secondary column	Restek Stabilwax (polar)
Secondary column composition	crossbond polyethylene glycol
Secondary column length	0.9 m × 250 µ × 0.50 µ
Secondary column temperature	15 °C offset primary
Modulator temperature	25 °C offset primary
Modulation	2.5 s
Hot pulse time	0.4 s
Cool time	0.85 s
Transfer line	240 °C
MS voltage	1500 V
Electron energy	70 V
Scan rate	200 spectra/s
Mass range	35-500 m/z
Ion source	240 °C

Metadata pre-processing parameters	
Baseline offset	0.5
Peak Width	15
Match Required to combine (2D)	600
Peak width (2D)	15
Minimum signal/noise (S/N)	25
Segmented Processing S/N	250
Number of hits to return	5
Minimum mol Weight	45
Maximum mol Weight	500
Mass Threshold	10
Minimum similarity match	600

Stat Compare options	
ChromaTof version	V4.50
Minimum similary match	700
Maximum modulation periods apart	1
Maximum RT difference (s)	0.1
Minimum number of samples that contain the analyte	5
Minimum percent of samples in a class that contain the analyte	50
Figure S1. OPLS-da Scores plot of the Set 1 rice varieties and the compounds with VIP scores greater than 1.3.

Putative compound	VIP	Putative compound	VIP
Pyrrole	2.2144	2-Octene, 3,7-dimethyl-	1.3427
2-Acetyl-1-pyrroline	1.6191	Benzene, 1,2,3-trimethyl-	1.69128
Analyte 5	1.60788	2-Decen-1-ol	1.32913
Ethanone, 1-(1H-pyrrol-2-yl)-	1.47624	Toluene	1.62535
Analyte 4	1.44464	2-Butanol	1.62546
1-Pentene, 2,3,3-trimethyl-	1.33509	1-Pentanol	1.33878
2-Decen-1-ol	1.32913	2-Butanone	1.62546
Pentanal	1.3135	Toluene	1.62535

Putative compound	VIP	Putative compound	VIP
Pyrrole	Decane	3,7-dimethyl-	1.83784
2-Acetyl-1-pyrroline	1-Octene, 1-ethyl-	1.83784	
Analyte 5	1-Octene, 1-ethyl-	1.83784	
Ethanone, 1-(1H-pyrrol-2-yl)-	1-Octene, 1-ethyl-	1.83784	
Analyte 4	1-Octene, 1-ethyl-	1.83784	
1-Pentene, 2,3,3-trimethyl-	1-Octene, 1-ethyl-	1.83784	
2-Decen-1-ol	1-Octene, 1-ethyl-	1.83784	
Pentanal	1-Octene, 1-ethyl-	1.83784	
Figure S2. Mass spectral EI pattern of chemical standards analysed by GC × GC-TOF-MS (A) 2-acetylpyrrole (RT: 820, 2.12s) m/z (%): 109 (60), 95 (6), 94 (100), 80 (2), 66 (80), 65 (8), 53 (11), 50 (7), 40 (18), 39 (60), 38 (23), 37 (10), 22 (22); (B) 2-acetyl-1-pyrroline (RT: 627.5, 1.02s) m/z (%): 83 (22), 69 (8), 68 (10), 43 (100), 41 (50), 42 (20), 39 (16); (C) pyrrole (RT: 475, 2.25s) m/z (%): 68 (4), 67 (100), 66 (8), 39 (83), 41 (72), 40 (55), 38 (35), 37 (23), 52 (4).
Figure S3. GC x GC HRT 4D EI spectra of (A) Analyte 4 (1-pyrroline), and (B) Analyte 5 (6M5OTP).
Figure S4. Identification of Analyte 4 (1-pyrroline). MS Electron ionisation fragmentation pattern of Analyte 4 detected in GC × GC-TOF-MS (A) rice, and (B) synthesised 1-pyrroline standard. (C) 1H NMR trace of the synthesised 1-pyrroline standard.
Figure S5. (A) HSQC and (B) HMBC of 2AP and 6M5OP.
Figure S6. Manhattan plots for 2-AP (A); pyrrole (B); 1-pyrroline (Analyte 4) (C); 6M5OTP (Analyte 5) (D); 2-acetylpyrrole (E). QQ plot for 2AP (pink), pyrrole (yellow), 1-pyrroline (Analyte 4) (green), 6M5OTP (red), 2-acetylpyrrole (blue) (F) before addition of the FGR functional allele in the SNP matrix.