Fourth Generation Glucose Sensors Composed of Copper Nanostructures for Diabetes Management: A Critical Review

Tasbiha Awana, Gowhar A. Naikoo, Hiba Salima, Fareeha Arshad, Israr U. Hassan, Mona Zamani, Pedram, Waqar Ahmed, Hakkim L Faruck, Alaa A. A. Aljabali, Vijay Mishra, Ángel Serrano-Aroca, Rohit Goyal, Poonam Negi, Martin Birkett, Mohamed M. Nasef, Nitin B Charbe, Hamid A Bakshi and Murtaza M Tambuwala

*Corresponding at:
This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/btm2.10248

This article is protected by copyright. All rights reserved.
Abstract

More than five decades have been invested in understanding glucose biosensors. Yet, this immensely versatile field has continued to gain attention from the scientific world to better understand and diagnose diabetes. However, such extensive work done to improve glucose sensing devices has still not yielded desirable results. Drawbacks like the necessity of the invasive finger pricking step and the lack of optimization of diagnostic interventions still need to be considered to improve the testing process of diabetic patients. To upgrade the glucose-sensing devices and reduce the number of intermediary steps during glucose measurement, fourth-generation glucose sensors (FGGS) have been introduced. These sensors, made using robust electrocatalytic copper nanostructures, improve diagnostic efficiency and cost-effectiveness. This review aims to present the essential scientific progress in copper nanostructure-based FGGS in the past ten years (2010 – present). After a short introduction, we presented the working principles of these sensors. We then highlighted the importance of copper nanostructures as advanced electrode materials to develop reliable real-time FGGS. Finally, we cover the advantages, shortcomings, and prospects for developing highly sensitive, stable, and specific FGGS.

Keywords: Hybrid copper nanostructures; electrode materials; nonenzymatic glucose sensors; diabetes management; early detection.
1. Introduction

Glucose is the primary source of energy in living cells and plays a critical role in biology. Diabetes can result in elevated blood glucose levels that pose a severe hazard to human health [1,2]. Diabetes is an overgrowing global public disease and is characterized by insufficient insulin formation or distribution in the body, causing the death of 1.6 million people per year worldwide [3–6]. It is a chronic condition that requires daily monitoring of blood glucose levels [7], and in severe cases, insufficient insulin levels can result in diabetic ketoacidosis, leading to seizures [8]. Diabetes complications can also include neuro and cardiovascular diseases in addition to kidney disorders [9] and new risks such as heart failure, kidney dysfunction, poor vision, nerve damage, and disability [10–12]. These complications often result due to poor blood glucose control. Regulated and routine blood glucose tests are necessary when coping with emergencies, including hypoglycemia (low blood sugar level) [13–15]. Detecting glucose levels rapidly and reliably in clinical and biological samples remains a major challenge [16,17]. Limiting sugar consumption and continuously tracking blood glucose levels is critical to managing diabetes and can significantly reduce life-threatening diabetes and provide sufferers with a healthy lifestyle [18–22]. Electrochemical glucose sensors [23–25] with high sensitivity, good selectivity, rapid test, low-cost, reliable, and accurate in-situ detection [26–29], have attracted great attention when compared to other sensing technologies like chemiluminescence [30], surface-enhanced Raman scattering [31], mass spectrometry [32], calorimetry [33], fluorescence spectroscopy [34,35], and optical sensors [36]. In addition, substantial efforts have been made to investigate glucose-sensing in various potential fields such as the pharmaceutical industry, pathology, physiology, food processing, and bio-fermentation [37]. Glucose sensors account for approximately 85% of the biosensors industry because they represent the direct health consequences of diabetes, which affects over 400 million people worldwide [38–40]. Reliability and economic glucose sensors with good sensitivity and low detection limits are crucial to combat the prevailing situation. This current review targets the rapid development and recent advances of Cu-based electrochemical biosensors for glucose detection. It summarizes all the generations of electrochemical glucose sensors, followed by the fundamentals of FGGS. In the end, future challenges and perspectives for further development of Cu-based FGGS are proposed.

Electrochemical sensors are used to monitor blood glucose levels rapidly [41]. These devices allow for real-time detection. Furthermore, continuous glucose monitors have been used to enable autonomous insulin delivery, where glucose measurements automatically adjust insulin delivery in closed-loop systems. In this manner, insulin can be administered to the patient in cases of hyperglycemia [41]. Enzymatic glucose
sensors are based on glucose oxidase or glucose dehydrogenase enzymes and exhibit a very high and reliable sensitivity [42]. However, some limitations of such sensors, including chemical and thermal conditions, instability, and relatively high complexity of the test samples [43]. Fluctuations in external factors like pH, humidity level, and temperature, etc., hinder further exploration in the field of enzyme-based glucose biosensors [44–46].

Enzymes-based glucose sensors are divided into three significant generations [47–49]. The first generation requires free oxygen to immobilize the enzyme (GOx) on the electrode. Oxygen dependency of these sensors has limited applications in oxygen-deficient blood samples [15,50]. The second generation of enzyme-based glucose sensors included an artificial mediator, which directly reacts with the enzyme glucose oxidase leading to less sensitivity and accuracy. Artificial mediators involved one-electron reversible redox ferrocene derivatives and ferrocyanide [51]. The third generation was investigated to compensate for the shortcomings of the previous generations. However, minor changes in pH, temperature, and humidity were still susceptible to enzymatic denaturation [3,12]. The immobilization of enzymes on the conducting electrode’s surface is complex, and its quantity cannot be precisely controlled. The high cost, complicated fabrication procedure, short shelf life, and poor reproducibility of enzyme-based glucose sensors have always been challenging for researchers [52,53]. A description of enzymatic glucose oxidation mechanisms, viewed as first, second, and third-generation sensors, is depicted in (Fig. 1) [3]. The aforementioned disadvantages of enzymatic glucose sensors attracted researchers to develop fourth-generation metal-based enzyme-free glucose sensors (FGGS) [54–56] that oxidize glucose directly on the electrode surface [57–59]. FGGS that do not rely on enzymes have gained widespread attention [60] and are considered ideal for glucose analysis because of their low cost, efficient sensitivity, high selectivity, and good stability.

2. Working principle of FGGS

Among the electrochemical detection techniques, two basic methods, amperometry and potentiometry, have been widely used [15,50]. The potential difference between a reference electrode and a working electrode is determined in potentiometric sensors at zero applied currents. The potential of the working electrode varies with the concentration of glucose. It has been shown that these sensors can evaluate glucose concentrations of 10 M or higher (an average human’s blood glucose level is in the range of 4–7 mM) [12]. Nonenzymatic electrodes have recently been developed by combining various metals and metal nanoparticles (NPs), including metal/metal oxide and alloy composites, for high sensitivity and low detection limit of the FGGS [65]. Bimetallic NPs can also be used in FGGS due to their superior electronic
properties and increased catalytic activity. Similarly, alloys and metal oxides can be employed because they improve glucose oxidation and reduce the poisoning in the sensing electrodes of the sensor [43].

The previous decade has seen extensive advancements in the working mechanisms and principles of FGGS [62–64]. Like metal oxide-based nonenzymatic glucose (NEGS), the copper-based FGGS functions at varying pH. The functioning of the sensor depends on the stimulation of the metal oxide surface. This occurs in the vicinity of highly reactive hydroxide ions, which also serve the catalytic purpose during the oxidation of glucose molecules. Tian et al. developed the following mechanism for glucose sensing using copper oxide-based NEGS [65].

\[
\begin{align*}
CuO + OH^- & \rightarrow Cu(OH)_2 + e^- \\
Cu(OH)_2 + OH^- & \rightarrow CuOOH + H_2O + e^- \\
CuOOH + C_6H_{12}O_6 \text{(glucose)} & \rightarrow Cu(OH)_2 + C_6H_{10}O_6 \text{(gluconolactone)}
\end{align*}
\]

The mechanism of this reaction is based on the electrochemical function of copper oxide that changes its oxidation states during the reaction [66,67]. This is evident in the above-mentioned chemical reactions that occur in the FGGS. During the sensing process, as the voltage shifts, Cu\(^{2+}\) cations present in CuO get oxidized to Cu\(^{3+}\) and CuOOH is formed (Fig. 2). This then allows the oxidation of glucose to develop gluconolactone in the next step of the reaction. During the same stage, Cu\(^{3+}\) gets reduced to Cu\(^{2+}\), leading to the formation of CuO or Cu(OH)\(_2\) [65,68]. These step-by-step reactions cause a shift in the transfer rate of electrons on the electrode surface, thereby causing an increase in the overall electrical current generated. This is then recorded by the sensing detector, which detects glucose molecules in the given sample.

Metal oxide-based NEGS like Co\(_3\)O\(_4\), MnO\(_2\), CuO, Cu\(_2\)O have almost similar glucose-sensing mechanisms (Fig. 3). This could occur by any or all of the following three methods [63]: (1) the copper oxide gets activated under strongly alkaline conditions, (2) formation of intermediary by-products that function as a catalyst to oxidize glucose molecules, and (3) the intermediary by-products then undergo reduction to give the original copper oxide.

2.1. Mechanism of FGGS

The CuO-based glucose sensors combined with gold NPs (AuNPs) and modified with CuO nanowires electrode (CuO NWs) gave a linear range of 0.5 μM to 5.9 mM and sensitivity of 4398.8 μA mM\(^{-1}\) cm\(^{-2}\) and a rapid response rate of 5 seconds [69]. The synergistic mechanism proposed for CuO in alkaline media requires oxides, hydroxides, and oxyhydroxides for the electrochemical oxidation of glucose [70]. The strong catalytic properties of Cu and its derivatives have been reported to accelerate glucose oxidation.
Cu in CuO is electrochemically oxidized to strong oxidizing species such as Cu(OH)^4^- or CuOOH^-.

Thus the +2 oxidation state changes to +3 [119]:

\[\text{Cu} + 2\text{OH}^- \rightarrow \text{CuO} + \text{H}_2\text{O} + 2e^- \]
\[\text{CuO} + \text{OH}^- \rightarrow \text{CuOOH} + e^- \quad \text{OR} \]
\[\text{CuO} + \text{H}_2\text{O} \rightarrow \text{CuOH}_4^- + e^- \]

Cu(III) catalyses glucose’s oxidation into gluconolactone and hydrolysed into gluconic acid, as shown in (Fig. 4) [120]. The reduction of Cu(III) to Cu(II) can be demonstrated by oxidation and reduction peaks. Cu(III) is the most responsible medium for electron transfer compared to other valence Cu ions. The stability of the AuNPs modified CuO NWs electrode was also investigated for more than ten days with an interval of two days, which showed comparatively better stability than a bare CuO NWs electrode. The high catalytic capability of CuO NWs/AuNPs compared to bare CuO NWs could be attributed to incorporating AuNPs on the surface of CuO NWs, which significantly enhances the surface volume ratio of the designed electrode. The reported glucose sensor’s properties were highly effective and reliable in testing human blood. Because of its high sensitivity and low limit of detection (LOD), it is suitable for noninvasive glucose detection in saliva and urine.

\[\text{Cu(III)} + \text{Glucose} + e^- \rightarrow \text{Gluconolactone} + \text{Cu(II)} \]
\[\text{Gluconolactone} \rightarrow \text{Gluconic Acid} \]

The sensitivity, detection range, detection limit, and response time of FGGS composed of copper and copper oxide nanostructures are given in (Table 1).

3. Cu nanostructures as advanced electrode materials for FGGS

A variety of nanostructured electrocatalysts are being investigated to develop advanced FGGS, as simple electrodes cannot compete with their level of glucose detection [66–68]. FGGS, which are based on the electrochemical oxidation of glucose that operates through a variety of inorganic catalysts including noble metals (Ag, Au, Pt, and Pd) and their alloys (Pt-Pd, Pt-Au, Au-Pd), metal oxides (Co3O4, NiO, CuO, Cu2O, ZnO, etc.) or bimetallic electrodes and carbon-based nanomaterials have been extensively explored for their excellent [69,70] glucose detecting capabilities [71-73]. Pt-based nanosensors have shown high catalytic efficiency owing to their large surface area and their ability to control the kinetics of the reaction [82]. However, Pt and its derivatives are costly, which limits its practical application [83]. The same has been observed with Au and Pd-based NEGS. Therefore, widespread applications of noble metals have been...
hampered by disadvantages like low selectivity, high cost, toxicity, and metal scarcity, making their use impractical on a larger scale production [74,75].

In addition, metallic [78,86–89], metal-alloy based [90–92], metal hydrate [93], metal sulphide [94] and metal oxides [95–98] have been successfully used to study nonenzymatic glucose sensing. These metallic-based glucose sensors make use of a variety of sensing techniques like the fluorescent carbon dots-based fluorescent method [99], optical methods [100], Raman spectroscopy [101], and others. To achieve efficient reproducibility of glucose sensors, the continuous development of nanomaterials from other transition metals and their oxides is widely researched [102]. Subsequently, researchers are excited about FGGS since they can compare different transition metals with excellent redox activity and select those with superior stability and selectivity [103,104]. Transition metal oxides and their alloys, such as ZnO, CuO, NiO, and CO3O4, are widely used for glucose biosensors due to their high electrochemical activity, low cost, and the low potential requirement for electron transfer reactions [105–108].

Copper oxides (CuO and Cu2O) are particularly significant among transition metal oxides because of their excellent thermal, mechanical, and chemical stability. Much attention has been paid to developing copper oxide electrode materials for FGGS with high electrocatalytic activities [109,110]. X-ray diffraction (XRD) characterization of copper particles, their oxides, carbon quantum dots loaded with copper oxide NPs (CQDs/Cu2O NPs), or CoNiCu alloy nanotubes arrays transferred on indium tin oxide, helps to determine their crystal structure, orientation, shape, and size as well as other structural parameters such as average grain size, strain and crystal defects, characteristics that are important for FGGS applications. [111-114] (Fig. 5)

3.1 Electrochemical detection of glucose using Copper-based FGGS

Because of their outstanding chemical and thermal stability, various nanomaterials exhibit remarkable sensitivity and selectivity in glucose sensing [90]. Their electrochemical properties, high electrode catalytic activity, low cost, strength, natural abundance, non-toxicity, and environmentally friendly nature [115–118] have made Cu and its oxides a potential candidate for various applications such as photoelectric devices, gas sensing devices, lithium-ion batteries and especially as electrochemical sensors due to their optical nature and electrical characteristics [90–92]. CuNPs are an effective electrode material for glucose detection and are extremely sensitive to glucose oxidation due to their excellent electrical conductivity [93]. CuNPs have a high specific surface area, which improves FGGS activity significantly, and their synthesis techniques have evolved to include hydrothermal, pyrolysis, and electrodeposition [123–127]. CuO is a p-type semiconductor with a narrow bandgap of 1.2 eV, which is more stable than simple Cu for glucose
CuO nanomaterials show excellent electrocatalytic activity, proper redox potential, and low overpotential during electron transfer experiments [99–101]. CuO and CuS act as excellent electronic mediators in glucose oxidation due to the redox pairs of Cu\(^{2+}\) and Cu\(^{3+}\) [102].

Various CuO nanostructures have been extensively researched and synthesized into multiple shapes with individual properties and performance through the development of nanotechnology, such as NPs, nanorods, nanofibers, nanospheres, and flower-like structures, etc. [103,104]. In a study by Ding et al., they developed an FGGS based on CuCo\(_2\)O\(_4\) using electrospinning technology and carbonization treatment to prepare CuCo\(_2\)O\(_4\)–carbon nanofibers (CNFs) [133] (Fig. 6). This sensor exhibited an enhanced activity with two linear ranges of 0.01 – 0.5 mM and 0.5 – 1.5 mM and a high sensitivity of 2932 and 708 \(\mu\text{A} \cdot \text{mM}^{-1} \cdot \text{cm}^{-2}\).

A simple, cost-effective microwave-based method for synthesizing a sensitive FGGS with CuO nanodisks was investigated, which maintained its remarkable selectivity, high sensitivity of 627.3 \(\mu\text{A} \cdot \text{mM}^{-1} \cdot \text{cm}^{-2}\), and broad linear range from 2.0 M to 2.5 mM. [106]. Furthermore, glucose sensors showed high reproducibility and longstanding stability with only 9% sensitivity damage in 14 days with an interval of 2 days in the open air. The sensing ability of the proposed electrode was evaluated in human urine samples and can be attributed to the development of noninvasive biosensors in ambient conditions. The shape and size of CuO nanodisks composed of tiny nanorods are confirmed by TEM while their high crystalline nature is determined from selected area electron diffraction (SAED) patterns.

T. Dayakar et al. fabricated FGGS with pristine CuNPs on Glassy Carbon Electrode (GCE). They prepared this sensor by the simple green method using leaf extract of Ocimum tenuiflorum [107][135]. Less toxic, smooth surface, and small-sized NPs synthesized via this green method outperformed the catalytic activity towards glucose oxidation than other synthesized nanostructures. Furthermore, the modified Cu/GCE electrode exhibited the current response, which remained at 93.2% of its original value when stored for ten days at room temperature, reflecting its long-term stability towards glucose oxidation. The proposed electrode presented outstanding analytical sensing properties such as reproducibility, limited interference, and sensitivity of 1065.21 \(\mu\text{A} \cdot \text{mM}^{-1} \cdot \text{cm}^{-2}\), with a detection limit of 0.038 \(\mu\text{M}\) (S/N = 3), and linear response ranges from 1 to 7.2 mM with a fast response of 3 seconds.

CuO porous nanostructure (CuO PN) electrodes have been shown to enhance glucose detection capabilities, showing a linear range of 0.005 mM to 0.225 mM, high sensitivity of about 3072 \(\mu\text{A} \cdot \text{mM}^{-1} \cdot \text{cm}^{-2}\) and a low detection limit of about 0.41 \(\mu\text{M}\) [108]. Furthermore, the proposed sensor maintained its high stability over a month of monitoring, recording a 17% loss in current density under regular measurements. Thus, this cost-effective and highly stable porous CuO FGGS was used for detecting glucose in human saliva with a high sensitivity of \(~2299\) \(\mu\text{A} \cdot \text{mM}^{-1} \cdot \text{cm}^{-2}\).
Ashok and colleagues synthesized CuNPs using three methods, the colloidal method with NaBH$_4$ as a reducing agent producing the best homogeneous phase of CuO NPs (Cu-colloids) [137]. Simultaneously, combustion-based techniques, which were exploring glycine (Cu-gly) and hydrazine (Cu-hyd), did not yield any satisfactory results [109,110]. Flower-shaped Cu-colloidal particles showed a maximum electro-oxidation current of glucose, with a low detection limit of 0.25 μM, high sensitivity of 2062 μA mM$^{-1}$ cm$^{-2}$ for glucose, in a wide linear range of 1 μM to 850 μM. The Cu-Colloid particles’ excellent electrocatalytic activity is related to their unique blossomed flower-shaped morphology and the pointed tips of opened mesoporous or microporous petals [137]. This structure provided more active sites with a large surface area, promoting chemisorption of oxygen and charge transportation. The scanning electron microscopy (SEM) analysis demonstrates the morphology and composition of the Cu particles (Fig. 7).

Most Cu or Ni-based NEGS are synthesized by modifying the substrate with NPs, scattered structures, or metal-carbon hybrids [111]. In addition to CuO, nanostructures of cuprous oxide (Cu$_2$O) have also been investigated to study their electrocatalytic properties to fabricate FGGS. Zhang et al. synthesized a self-supported Cu$_2$O/Cu/CC (carbon cloth) using a single step, simple potentiostatic electrochemical deposition on CC [112,113]. The flexible glucose sensor (Cu$_2$O/Cu/CC) demonstrated a superior sensitivity of 6952 μA mM$^{-1}$ cm$^{-2}$, reproducibility (relative standard difference (RSD) = 2.74%) with an extremely low detection limit of 0.6 μM with a fast response time of less than 2s. Moreover, 90.2% of the original sensitivity of the electrode was maintained during a one-month stability test.

The sensitivity and conductivity of the purest Cu electrode can be easily contaminated by oxidation; thus, researchers are focused on improving their efficiency by incorporating other components [143]. L. Wu et al. manufactured a high-performance multilayer composite film-based FGGS through a layer by layer method, employing Cu-metal-organic frameworks (Cu-MOF), multi-walled carbon nanotubes (MWNTs) modified GCE, given in (Scheme 1) [115][144]. The glucose sensor showed excellent sensitivity of 3878 μA mM$^{-1}$ cm$^{-2}$, a more comprehensive linear range of 0.5 μM–11.84 mM, with low LOD of 0.4 μM and was free of interference. Researchers found that the hybrid composite’s enhanced catalytic properties were due to its large surface area, multiple active sites, accounting for its excellent electrical conductivity of MWNTs and good selectivity of Cu-MOF. The glucose detection efficiency of the developed sensor was tested in actual blood samples, yielding satisfactory and feasible results. However, due to the high alkaline conditions, its practical application was hindered.

3.2. Advantages and challenges of copper based FGGS
FGGS have received widespread attention in recent times because of their ability to deliver reproducible results with higher stability than traditional enzymatic glucose sensors. This, therefore, increases the practicability of FGGS in clinical applications and several recent studies support this advantage [57,140,145–147]. Furthermore, these NEGS remain functional even after one month and monitor glucose levels in undiluted whole blood after sterilization and thus exhibit long term stability [24,148,149]. This was previously not feasible with traditional glucose monitors that are active only for 7 – 14 days and get inactivated due to biofouling. In addition, NEGS show low detection time and rapid response rate, which adds to the advantage of these sensors over enzymatic glucose sensors. This was seen in the work by Yan et al., who demonstrated the practical clinical application of an FGGS based on copper sulfide nanoflakes-reduced graphene oxide that showed a rapid response rate as low as 6 seconds and a low detection limit of 0.19 μM in human blood and urine samples [150].

Hence, recently the scientific focus has shifted towards developing nanomaterials-based NEGS that provide better linear range and ease in operation. Nanomaterials also possess sizes equivalent to enzyme molecules that aid in their functionalization. Highly conductive carbon-based nanomaterials are the best choice for electro-oxidation of glucose; however, their stability is a significant concern. As a result, researchers have concluded that copper and its bimetallic nanomaterials have a promising potential for fostering and promoting FGGS in mass production. Because of its unusual electrocatalytic activity and use in many electrochemical devices, copper-based FGGS have gained widespread popularity in recent decades. Copper is abundantly available in nature, low-cost and environmentally friendly and shows high catalytic activity [123-124]. Moreover, copper-based FGGS with other metals in combination have displayed excellent sensing properties. In research carried out by Suneesh and colleagues, an FGGS based on Co-Cu alloy NPs was developed, which served as an excellent sensing device for quantifying glucose levels [123].

Despite the innumerable research done on FGGS and the use of nanomaterials in their construction, there are still a few challenges that need to be tackled before these sensors can be availed. The major obstacles that need to be addressed include miniaturization of the sensor, reduction in the sample required during sensing, and quick delivery of results. Furthermore, more work is necessary to improve the shelf life and reduce the cost of such test strips based on NEGS. The application of nanomaterials in the development of FGGS has also gained widespread attention, especially to create sweat based platforms and in vivo implantable glucose sensors for glucose measurements. However, such sensors to detect glucose concentrations in these fluids would require greater sensitivity of copper-based FGGS. Also, these sensors show a highly accurate correlation between glucose levels measured in interstitial fluids and blood when measured using the commercially available blood-glucose meter. This correlation has been observed in
several recent studies [153–157], and thus, such sensors can be potentially used in clinical applications for glucose measurements.

In addition, the biocompatibility and shelf-life of copper-based FGGS depend on the morphology of the copper architectures and the attached functional groups [157]. This is especially true in the case of implantable sensors made using nanoparticles. Immune reaction against NPs is inevitable; hence, such reactions can be controlled by monitoring the size and shape of the nanoparticles that indirectly influence the attachment of neutrophils or macrophages to them [158–160]. For example, particles that are not spherical and are over 6 μm in diameter may exhibit lowered macrophage adhesions and, therefore, will have better functional viability within the system [157]. Hence, the physical features of the NPs, their chemical nature, like their surface chemistry, influence their biocompatibility and enhance the sensor’s overall life [158].

Furthermore, there is no sophisticated control over the protective sheath, thickness, and pore size of the nanoporous layer that would allow FGGS to work on plasma, human serum, and blood when undiluted. Moreover, disturbances caused by various electro-active and electro-inactive chemical species must still be adjusted [62]. Therefore, although these sensors offer promising alternatives to traditional, invasive blood glucose monitoring; further works need to be done produce better electrode protective films in FGGS, before these sensors are made available commercially on a large scale.

3.3. Comparison of FGGS composed of Cu nanostructures with enzymatic glucose sensors (EGS)

The current glucose sensing devices available are based on enzymatic glucose sensors. A few studies have also demonstrated the catalytic effect of copper oxide in enzymatic glucose oxidation and hydrogen peroxide detection with good stability and ultra-sensitive response. Umar et al., for example, established a reproducible glucose biosensor based on well-crystallized flower-shaped CuO nanostructures formed of thin nanosheets [161]. The designed biosensor showed a response time of less than 5 seconds, high sensitivity of 47.19 μA mM⁻¹ cm⁻², and a LOD of 1.37 M. Several studies have shown that combining graphene with CuO NPs will produce more synergistic results and hence improve glucose detection. For instance, Qian et al. suggested a simple and straightforward method for depositing Cu_{2}O NPs on graphene sheets (Cu_{2}O@CRG) using sodium citrate as a reluctant agent [162], demonstrating better sensitivity and selectivity in alkaline media than Cu_{2}O or CRG. However, these sensors possess several drawbacks related to the inherent nature of the enzymes, like their minimal reproducibility and decreased stability when used for long durations. Also, the catalytic function of enzymes is easily affected by the external pH, temperature, absence or presence of humid conditions and other chemicals in the vicinity [163].
To reduce the drawbacks incurred by these enzymatic glucose sensors and the volatile nature of enzymes, the NEGS were introduced (Fig. 8). As discussed earlier, these sensors involve direct electrocatalytic oxidation of glucose molecules on their electrodes’ surface. Because of their high electrocatalytic activity and advantages like inexpensive availability, non-toxic nature, ability to be quickly processed, and readily stored, copper, copper oxides-based nanomaterials, and their hybrids have sparked significant interest for FGGS, too [164]. For example, Zhang et al. developed a nonenzymatic glucose sensing platform based on one-dimensional Cu nanowires, both sensitive and selective [165]. Wang et al. created a sensitive FGGS using CuO flowers and nanorods as the sensing material [166]. Moreover, significant efforts have been made to combine copper or copper oxides with carbon-based nanomaterials to enhance their catalytic activity [167,168]. Luo et al. designed an FGGS based on Cu–graphene nanocomposites, which demonstrated a significantly higher current and a lower negative onset potential for glucose oxidation than Cu NPs [167]. Field emission scanning electron microscopy (FESEM) analysis of copper particles helps analyse the arrangement of the physical features of the crystalline particles (Fig. 9).

Nanozymes have also gained popularity in recent decades. These nanozymes are nanomaterials that possess properties akin to enzymes and have been extensively studied for sensing purposes [169]. Wei and Wang were the first to equate catalytic NPs with artificial enzymes [170]. However, like EGS, NEGS face a few setbacks that hinder their practical application at a clinical level. This includes their lowered selectivity because of the lack of a prominent recognition element in the device, and their ability to function correctly under highly alkaline conditions, which means that these sensors will not show their best function within physiological pH. Also, most recent studies have focused on improving the material structure of nanomaterials used in NEGS and less work has been done to enhance targeted and highly sensitive glucose detection. EGS, on the contrary, have shown to give better glucose detection results. Therefore, the scientific focus must steer towards a better understanding of the mechanisms involved in the catalytic processes. Also, further works need to be done to explore other ways to develop nanomaterials that mimic enzymes like in EGS, and possess versatile 3D structures and have better application in the sensing process.

4. Conclusion and Future Perspective
Recent advances in the fabrication of FGGS have significantly improved. However, the practical application of these devices continues to face significant challenges and hurdles. Efforts are being made to investigate Cu as a competing electrode for FGGS by improving the surface area, shape, and size to volume ratio, enhancing catalytic properties and stability, and detection capability. Reduced stability, shorter shelf-life, and enzyme denaturation have limited the application of EGS, focusing researchers towards the tremendously growing field of FGGS. Even though numerous articles have been published demonstrating
the efficacy of transition elements as electrocatalytic nanostructures for FGGS advancement, enzyme-based glucose sensors still outperform the former category for their sensitivity and biocompatibility. To commercially enlist the FGGS, copper-based characteristics such as low cost, stability, simplicity, and natural abundance can be leveraged to achieve the central goal. When exposed to air, Cu-based biosensors are easily oxidized, reducing their stability. This can be improved by incorporating other nanomaterials within them, but this complicates FGGS fabrication.

Cu-based electrodes perform best in alkaline media that operate in a synergistic environment, though the exact mechanism remains unknown. The researchers hope to develop FGGS to detect low glucose levels in blood samples and other bodily fluids. These significant challenges in making Cu-based glucose sensors stable, reproducible, competitive, and commercially available with enzymatic glucose sensors are within reach, but the field remains exciting. Cu and its oxides are among the best electrocatalytic nanostructures for manufacturing glucose biosensors, but complete dedication is required to eliminate the shortcomings mentioned above. These efforts should be taken seriously to overcome the difficulties associated with maintaining optimal glucose levels in the blood. These findings contribute to the investigation of future research for the development of advanced versions of Cu-based FGGS.

Acknowledgement

Gowhar A. Naikoo, Tasbiha Awan, Hiba Salim, Israr Ul Hassan acknowledge the support received from The Research Council (TRC), Oman under the grant (Ref: BFP/RGP/HSS/18/122) to accomplish this work successfully.

Declaration

Availability of data and material: All data is given in the manuscript.

Funding: NA

Conflict of Interest

There is no conflict of interest among the authors
References

[1] J. Wang, Electrochemical glucose biosensors, Chem. Rev. (2008). https://doi.org/10.1021/cr068123a.

[2] E.H. Yoo, S.Y. Lee, Glucose biosensors: An overview of use in clinical practice, Sensors. (2010). https://doi.org/10.3390/s100504558.

[3] K.E. Toghill, R.G. Compton, Electrochemical nonenzymatic glucose sensors: A perspective and an evaluation, Int. J. Electrochem. Sci. (2010).

[4] Z. Li, Y. Chen, Y. Xin, Z. Zhang, Sensitive electrochemical nonenzymatic glucose sensing based on anodized CuO nanowires on three-dimensional porous copper foam, Sci. Rep. (2015). https://doi.org/10.1038/srep16115.

[5] V. Archana, Y. Xia, R. Fang, G. Gnana Kumar, Hierarchical CuO/NiO-Carbon Nanocomposite Derived from Metal Organic Framework on Cello Tape for the Flexible and High Performance Nonenzymatic Electrochemical Glucose Sensors, ACS Sustain. Chem. Eng. (2019). https://doi.org/10.1021/acssuschemeng.8b05980.

[6] L. WU, Z.W. LU, Y. MA, J.J. ZHANG, G.Q. MO, H.J. DU, J.S. YE, Cu(II) Metal-Organic Framework Encapsulated in Carbon Paste Electrode for High-Performance Non-Enzymatic Glucose Sensing, Chinese J. Anal. Chem. (2020). https://doi.org/10.1016/S1872-2040(20)60006-8.

[7] X. Zhu, Y. Ju, J. Chen, D. Liu, H. Liu, Nonenzymatic wearable sensor for electrochemical analysis of perspiration glucose, ACS Sensors. (2018). https://doi.org/10.1021/acssensors.8b00168.

[8] F.B. Hadgu, G.G. Sibhat, L.G. Gebretsadik, Diabetes ketoacidosis in children and adolescents with newly diagnosed type 1 diabetes in Tigray, Ethiopia: retrospective observational study, Pediatr. Heal. Med. Ther. (2019). https://doi.org/10.2147/phmt.s207165.

[9] E. Jean-Marie, Diagnosis and classification of diabetes mellitus, in: Encycl. Endocr. Dis., 2018. https://doi.org/10.1016/B978-0-12-801238-3.65822-1.

[10] World Health Organization, Global Report on Diabetes, Isbn. (2016). https://doi.org/ISBN 978 92 4 156525 7.

[11] A.J. Bandodkar, S. Imani, R. Nuñez-Flores, R. Kumar, C. Wang, A.M.V. Mohan, J. Wang, P.P. Mercier, Re-usable electrochemical glucose sensors integrated into a smartphone platform, Biosens. Bioelectron. (2018). https://doi.org/10.1016/j.bios.2017.10.019.

[12] M.M. Rahman, A.J.S. Ahammad, J.H. Jin, S.J. Ahn, J.J. Lee, A comprehensive review of glucose biosensors based on nanostructured metal-oxides, Sensors. (2010). https://doi.org/10.3390/s100504855.
[13] T. Battelino, M. Phillip, N. Bratina, R. Nimri, P. Oskarsson, J. Bolinder, Effect of continuous glucose monitoring on hypoglycemia in type 1 diabetes, Diabetes Care. (2011). https://doi.org/10.2337/dc10-1989.

[14] L.G. Singh, M. Satyarengga, I. Marcano, W.H. Scott, L.F. Pinault, Z. Feng, J.D. Sorkin, G.E. Umpierrez, E.K. Spanakis, Reducing inpatient hypoglycemia in the general wards using real-time continuous glucose monitoring: The glucose telemetry system, a randomized clinical trial, Diabetes Care. (2020). https://doi.org/10.2337/dc20-0840.

[15] V.B. Juska, M.E. Pembel, A critical review of electrochemical glucose sensing: Evolution of biosensor platforms based on advanced nanosystems, Sensors (Switzerland). (2020). https://doi.org/10.3390/s20216013.

[16] Q. Abbas, R. Raza, I. Shabbir, A.G. Olabi, Heteroatom doped high porosity carbon nanomaterials as electrodes for energy storage in electrochemical capacitors: A review, J. Sci. Adv. Mater. Devices. (2019). https://doi.org/10.1016/j.jsammd.2019.07.007.

[17] D.T. Rickard, Covellite formation in low temperature aqueous solutions, Miner. Depos. (1972). https://doi.org/10.1007/BF00207153.

[18] D. Olczuk, R. Priefer, A history of continuous glucose monitors (CGMs) in self-monitoring of diabetes mellitus, Diabetes Metab. Syndr. Clin. Res. Rev. (2018). https://doi.org/10.1016/j.dsx.2017.09.005.

[19] T.S. Bailey, G. Grunberger, B.W. Bode, Y. Handelsman, I.B. Hirsch, L. Jovanović, V.L. Roberts, D. Rodbard, W. V. Tamborlane, J. Walsh, American association of clinical endocrinologists and American college of endocrinology 2016 outpatient glucose monitoring consensus statement, Endocr. Pract. (2016). https://doi.org/10.4158/EP151124.CS.

[20] D.C. Klonoff, D. Ahn, A. Drincic, Continuous glucose monitoring: A review of the technology and clinical use, Diabetes Res. Clin. Pract. (2017). https://doi.org/10.1016/j.diabres.2017.08.005.

[21] R.J. Chung, A.N. Wang, Q.L. Liao, K.Y. Chuang, Nonenzymatic glucose sensor composed of carbon-coated nano-zinc oxide, Nanomaterials. (2017). https://doi.org/10.3390/nano7020036.

[22] P. Si, Y. Huang, T. Wang, J. Ma, Nanomaterials for electrochemical nonenzymatic glucose biosensors, RSC Adv. (2013). https://doi.org/10.1039/c2ra22360k.

[23] S.J. Cho, H.B. Noh, M.S. Won, C.H. Cho, K.B. Kim, Y.B. Shim, A selective glucose sensor based on direct oxidation on a bimetall catalyst with a molecular imprinted polymer, Biosens. Bioelectron. (2018). https://doi.org/10.1016/j.bios.2017.08.022.

[24] W.C. Lee, K.B. Kim, N.G. Gurudatt, K.K. Hussain, C.S. Choi, D.S. Park, Y.B. Shim, Comparison of enzymatic and nonenzymatic glucose sensors based on hierarchical Au-Ni alloy with conductive polymer, Biosens. Bioelectron. (2019). https://doi.org/10.1016/j.bios.2019.01.028.
[25] S.G. Leonardi, S. Marini, C. Espro, A. Bonavita, S. Galvagno, G. Neri, In-situ grown flower-like nanostructured CuO on screen printed carbon electrodes for nonenzymatic amperometric sensing of glucose, Microchim. Acta. (2017). https://doi.org/10.1007/s00604-017-2232-1.

[26] H. Wu, Q. Tian, W. Zheng, Y. Jiang, J. Xu, X. Li, W. Zhang, F. Qiu, Nonenzymatic glucose sensor based on molecularly imprinted polymer: a theoretical, strategy fabrication and application, J. Solid State Electrochem. (2019). https://doi.org/10.1007/s10008-019-04237-1.

[27] S. Wang, P. Su, H. E, Y. Yang, Polyamidoamine dendrimer as a spacer for the immobilization of glucose oxidase in capillary enzyme microreactor, Anal. Biochem. (2010). https://doi.org/10.1016/j.ab.2010.06.014.

[28] M. Figiela, M. Wysokowski, M. Galinski, T. Jesionowski, I. Stepniak, Synthesis and characterization of novel copper oxide-chitosan nanocomposites for nonenzymatic glucose sensing, Sensors Actuators, B Chem. (2018). https://doi.org/10.1016/j.snb.2018.05.173.

[29] N.S. Lopa, M.M. Rahman, F. Ahmed, T. Ryu, S.C. Sutradhar, J. Lei, J. Kim, D.H. Kim, Y.H. Lee, W. Kim, Simple, low-cost, sensitive and label-free aptasensor for the detection of cardiac troponin I based on a gold nanoparticles modified titanium foil, Biosens. Bioelectron. (2019). https://doi.org/10.1016/j.bios.2018.11.012.

[30] X. Mao, Y. Lu, X. Zhang, Y. Huang, β-Cyclodextrin functionalization of metal-organic framework MOF-235 with excellent chemiluminescence activity for sensitive glucose biosensing, Talanta. (2018). https://doi.org/10.1016/j.talanta.2018.05.077.

[31] C. Fu, S. Jin, J. Oh, S. Xu, Y.M. Jung, Facile detection of glucose in human serum employing silver-ion-guided surface-enhanced Raman spectroscopy signal amplification, Analyst. (2017). https://doi.org/10.1039/c7an00604g.

[32] C.W. Tsao, Z.J. Yang, High Sensitivity and High Detection Specificity of Gold-Nanoparticle-Grafted Nanostructured Silicon Mass Spectrometry for Glucose Analysis, ACS Appl. Mater. Interfaces. (2015). https://doi.org/10.1021/acsami.5b07395.

[33] W. Shen, J. Sun, J.Y.H. Seah, L. Shi, S. Tang, H.K. Lee, Needle-based sampling coupled with colorimetric reaction catalyzed by layered double hydroxide peroxidase mimic for rapid detection of the change of D-glucose levels with time in bananas, Anal. Chim. Acta. (2018). https://doi.org/10.1016/j.aca.2017.11.003.

[34] X. Chen, J. Wang, C. Yang, Z. Ge, H. Yang, Fluorescence resonance energy transfer from NaYF4:Yb,Er to nano gold and its application for glucose determination, Sensors Actuators, B Chem. (2018). https://doi.org/10.1016/j.snb.2017.08.124.

[35] S. Naaz, S. Poddar, S.P. Bayen, M.K. Mondal, D. Roy, S.K. Mondal, P. Chowdhury, S.K. Saha, Tenfold enhancement of fluorescence quantum yield of water soluble silver nanoclusters for nano-
molar level glucose sensing and precise determination of blood glucose level, Sensors Actuators, B Chem. (2018). https://doi.org/10.1016/j.snb.2017.07.143.

[36] O.W. Lau, B. Shao, Determination of glucose using a piezoelectric quartz crystal and the silver mirror reaction, Anal. Chim. Acta. (2000). https://doi.org/10.1016/S0003-2670(99)00783-7.

[37] K. Dhara, D.R. Mahapatra, Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials, Microchim. Acta. (2018). https://doi.org/10.1007/s00604-017-2609-1.

[38] R. Galindo, S. Gutiérrez, N. Menéndez, P. Herrasti, Catalytic properties of nickel ferrites for oxidation of glucose, β-nicotiamide adenine dinucleotide (NADH) and methanol, J. Alloys Compd. (2014). https://doi.org/10.1016/j.jallcom.2013.01.049.

[39] A.V. Rane, K. Kanny, V.K. Abitha, S. Thomas, Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites, in: Synth. Inorg. Nanomater., 2018. https://doi.org/10.1016/b978-0-08-101975-7.00005-1.

[40] R. A., R. K.V., K. P., C. M., J. S.C., I. H.S., T. S.S., R. V., A. Ramachandran, K. V Rupanagudi, P. Khanna, M. Chand, S.C. Jain, H.S. Illamathi, S.S. Thakur, V. Ravindranath, HEPATIC LIPOPROTEIN RECEPTOR RELATED PROTEIN MODULATORS AS POTENTIAL THERAPEUTICS FOR ALZHEIMER’S DISEASE, Alzheimer’s Dement. (2019).

[41] D. Rodbard, Continuous glucose monitoring: A review of recent studies demonstrating improved glycemic outcomes, Diabetes Technol. Ther. (2017). https://doi.org/10.1089/dia.2017.0035.

[42] R. Wilson, Q. Elizabeth, Glucose oxidase: An ideal enzyme Review article Glucose oxidase, Biosens. & Biowlectronica. (2016).

[43] N.I. Chandrasekaran, M. Matheswaran, Unique nonenzymatic glucose sensor using a hollow-shelled triple oxide Mn-Cu-Al nanocomposite, ACS Omega. (2020). https://doi.org/10.1021/acsomega.0c00417.

[44] G. Gnana Kumar, G. Amala, S.M. Gowtham, Recent advancements, key challenges and solutions in nonenzymatic electrochemical glucose sensors based on graphene platforms, RSC Adv. (2017). https://doi.org/10.1039/c7ra02845h.

[45] X. Niu, X. Li, J. Pan, Y. He, F. Qiu, Y. Yan, Recent advances in nonenzymatic electrochemical glucose sensors based on non-precious transition metal materials: Opportunities and challenges, RSC Adv. (2016). https://doi.org/10.1039/c6ra12506a.

[46] M. Adeel, M.M. Rahman, I. Caligui, V. Canzonieri, F. Rizzolio, S. Daniele, Recent advances of electrochemical and optical enzyme-free glucose sensors operating at physiological conditions, Biosens. Bioelectron. (2020). https://doi.org/10.1016/j.bios.2020.112331.

[47] M. Wei, Y. Qiao, H. Zhao, J. Liang, T. Li, Y. Luo, S. Lu, X. Shi, W. Lu, X. Sun, Electrochemical nonenzymatic glucose sensors: recent progress and perspectives, Chem. Commun. (2020).
Progress of Advanced Nanomaterials in the Nonenzymatic Electrochemical Sensing of Glucose and H2O2, Biosensors. (2020). https://doi.org/10.3390/bios10110151.

A highly sensitive nonenzymatic glucose sensor based on nickel and multi-walled carbon nanotubes nanohybrid films fabricated by one-step co-electrodeposition in ionic liquids, Electrochim. Acta. (2012). https://doi.org/10.1016/j.electacta.2012.01.007.

A critical review of Glucose biosensors based on Carbon nanomaterials: Carbon nanotubes and graphene, Sensors (Switzerland). (2012). https://doi.org/10.3390/s120505996.

A review of recent advances in nonenzymatic glucose sensors, Mater. Sci. Eng. C. (2014). https://doi.org/10.1016/j.msec.2014.04.013.

Enzymatic and nonenzymatic electrochemical glucose sensor based on carbon nano-onions, Appl. Surf. Sci. (2018). https://doi.org/10.1016/j.apsusc.2018.02.124.

A Nonenzymatic Electrochemical Sensor for Glucose Detection Based on Ag@TiO2@ Metal-Organic Framework (ZIF-67) Nanocomposite, Front. Chem. (2020). https://doi.org/10.3389/fchem.2020.573510.

Nanoporous cobalt oxide nanowires for nonenzymatic electrochemical glucose detection, Sensors Actuators, B Chem. (2015). https://doi.org/10.1016/j.snb.2015.06.015.

A nonenzymatic photoelectrochemical glucose sensor based on BiVO4 electrode under visible light, Sensors Actuators, B Chem. (2019). https://doi.org/10.1016/j.snb.2019.04.057.

Structuring Au nanoparticles on two-dimensional MoS2 nanosheets for electrochemical glucose biosensors, Biosens. Bioelectron. (2017). https://doi.org/10.1016/j.bios.2016.03.024.

Electrochemical sensing interfaces with tunable porosity for nonenzymatic glucose detection: A Cu foam case, Biosens. Bioelectron. (2014). https://doi.org/10.1016/j.bios.2013.07.032.

Photo-electrochemical properties of CuO-TiO2 heterojunctions for glucose sensing, J. Mater. Chem. C. (2020). https://doi.org/10.1039/d0tc01975e.

Three-Dimensional Copper Foam Supported CuO Nanowire
Arrays: An Efficient Nonenzymatic Glucose Sensor, Electrochim. Acta. (2017). https://doi.org/10.1016/j.electacta.2017.03.150.

[60] D. Basu, S. Basu, Performance studies of Pd-Pt and Pt-Pd-Au catalyst for electro-oxidation of glucose in direct glucose fuel cell, in: Int. J. Hydrogen Energy, 2012. https://doi.org/10.1016/j.ijhydene.2011.04.158.

[61] F. Xiao, F. Zhao, D. Mei, Z. Mo, B. Zeng, Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M = Ru, Pd and Au) nanoparticles on carbon nanotubes-ionic liquid composite film, Biosens. Bioelectron. (2009). https://doi.org/10.1016/j.bios.2009.04.045.

[62] D.W. Hwang, S. Lee, M. Seo, T.D. Chung, Recent advances in electrochemical nonenzymatic glucose sensors – A review, Anal. Chim. Acta. (2018). https://doi.org/10.1016/j.aca.2018.05.051.

[63] Q. Dong, H. Ryu, Y. Lei, Metal oxide based nonenzymatic electrochemical sensors for glucose detection, Electrochim. Acta. (2021). https://doi.org/10.1016/j.electacta.2021.137744.

[64] C. Li, Y. Su, S. Zhang, X. Lv, H. Xia, Y. Wang, An improved sensitivity nonenzymatic glucose biosensor based on a CuO modified electrode, Biosens. Bioelectron. (2010). https://doi.org/10.1016/j.bios.2010.07.007.

[65] K. Tian, K. Baskaran, A. Tiwari, Nonenzymatic glucose sensing using metal oxides – Comparison of CuO, Co3O4, and NiO, Vacuum. (2018). https://doi.org/10.1016/j.vacuum.2018.06.060.

[66] X. Zhang, A. Gu, G. Wang, Y. Wei, W. Wang, H. Wu, B. Fang, Fabrication of CuO nanowalls on Cu substrate for a high performance enzyme-free glucose sensor, CrystEngComm. (2010). https://doi.org/10.1039/b919749d.

[67] E. Reitz, W. Jia, M. Gentile, Y. Wang, Y. Lei, CuO nanospheres based nonenzymatic glucose sensor, Electroanalysis. (2008). https://doi.org/10.1002/elan.200804327.

[68] F. Cao, J. Gong, Nonenzymatic glucose sensor based on CuO microfibers composed of CuO nanoparticles, Anal. Chim. Acta. (2012). https://doi.org/10.1016/j.aca.2012.02.036.

[69] A.K. Mishra, B. Mukherjee, A. Kumar, D.K. Jarwal, S. Ratan, C. Kumar, S. Jit, Superficial fabrication of gold nanoparticles modified CuO nanowires electrode for nonenzymatic glucose detection, RSC Adv. (2019). https://doi.org/10.1039/C8RA07516F.

[70] L. Parashuram, S. Sreenivasa, S. Akshatha, V. Udayakumar, S. Sandeep kumar, A nonenzymatic electrochemical sensor based on ZrO2: Cu(I) nanosphere modified carbon paste electrode for electrocatalytic oxidative detection of glucose in raw Citrus aurantium var. sinensis, Food Chem. (2019). https://doi.org/10.1016/j.foodchem.2019.125178.

[71] G. Wang, Y. Wei, W. Zhang, X. Zhang, B. Fang, L. Wang, Enzyme-free amperometric sensing of glucose using Cu-CuO nanowire composites, Microchim. Acta. (2010). https://doi.org/10.1007/s00604-009-0260-1.
[72] J. Wang, W. De Zhang, Fabrication of CuO nanoplatelets for highly sensitive enzyme-free determination of glucose, Electrochim. Acta. (2011). https://doi.org/10.1016/j.electacta.2011.06.102.

[73] H. Wei, J.J. Sun, L. Guo, X. Li, G.N. Chen, Highly enhanced electrocatalytic oxidation of glucose and shikimic acid at a disposable electrically heated oxide covered copper electrode, Chem. Commun. (2009). https://doi.org/10.1039/b904673a.

[74] L. Wang, Q. Zhang, S. Chen, F. Xu, S. Chen, J. Jia, H. Tan, H. Hou, Y. Song, Electrochemical sensing and biosensing platform based on biomass-derived macroporous carbon materials, Anal. Chem. (2014). https://doi.org/10.1021/ac401563m.

[75] T. Unmütsig, A. Weltin, S. Urban, P. Daubinger, G.A. Urban, J. Kieninger, Nonenzymatic glucose sensing based on hierarchical platinum micro-/nanostructures, J. Electroanal. Chem. (2018). https://doi.org/10.1016/j.jelechem.2018.03.061.

[76] Y. Liu, X. Cao, R. Kong, G. Du, A.M. Asiri, Q. Lu, X. Sun, Cobalt phosphide nanowire array as an effective electrocatalyst for nonenzymatic glucose sensing, J. Mater. Chem. B. (2017). https://doi.org/10.1039/c6tb02882a.

[77] Y. Zhao, L. Fan, B. Hong, J. Ren, M. Zhang, Q. Que, J. Ji, Nonenzymatic detection of glucose using three-dimensional PtNi nanoclusters electrodeposited on the multiwalled carbon nanotubes, Sensors Actuators, B Chem. (2016). https://doi.org/10.1016/j.snb.2016.03.115.

[78] H. Jia, G. Chang, M. Lei, H. He, X. Liu, H. Shu, T. Xia, J. Su, Y. He, Platinum nanoparticles decorated dendrite-like gold nanostructure on glassy carbon electrodes for enhancing electrocatalysis performance to glucose oxidation, Appl. Surf. Sci. (2016). https://doi.org/10.1016/j.apsusc.2016.05.020.

[79] J. Zhang, N. Ding, J. Cao, W. Wang, Z. Chen, In situ attachment of cupric oxide nanoparticles to mesoporous carbons for sensitive amperometric nonenzymatic sensing of glucose, Sensors Actuators, B Chem. (2013). https://doi.org/10.1016/j.snb.2012.12.070.

[80] N. Zikalala, K. Matshetshe, S. Parani, O.S. Oluwafemi, Biosynthesis protocols for colloidal metal oxide nanoparticles, Nano-Structures and Nano-Objects. (2018). https://doi.org/10.1016/j.nanoso.2018.07.010.

[81] A. Gopalakrishnan, R. Sha, N. Vishnu, R. Kumar, S. Badhulika, Disposable, efficient and highly selective electrochemical sensor based on Cadmium oxide nanoparticles decorated screen-printed carbon electrode for ascorbic acid determination in fruit juices, Nano-Structures and Nano-Objects. (2018). https://doi.org/10.1016/j.nanoso.2018.05.004.

[82] I. Taurino, G. Sanzo, F. Mazzei, G. Favero, G. De Micheli, S. Carrara, Fast synthesis of platinum nanopetals and nanospheres for highly-sensitive nonenzymatic detection of glucose and selective
sensing of ions, Sci. Rep. (2015). https://doi.org/10.1038/srep15277.

[83] H. Zhang, F. Jiang, R. Zhou, Y. Du, P. Yang, C. Wang, J. Xu, Effect of deposition potential on the structure and electrocatalytic behavior of Pt micro/nanoparticles, Int. J. Hydrogen Energy. (2011). https://doi.org/10.1016/j.ijhydene.2011.08.072.

[84] A. Esmaeeli, A. Ghaffarinejad, A. Zahedi, O. Vahidi, Copper oxide-polyaniline nanofiber modified fluorine doped tin oxide (FTO) electrode as nonenzymatic glucose sensor, Sensors Actuators, B Chem. (2018). https://doi.org/10.1016/j.snb.2018.03.132.

[85] K.J. Babu, R.T. Kumar, D.J. Yoo, S.M. Phang, G. Kumar, Electrodeposited Nickel Cobalt Sulfide Flowerlike Architectures on Disposable Cellulose Filter Paper for Enzyme-Free Glucose Sensor Applications, ACS Sustain. Chem. Eng. (2018). https://doi.org/10.1021/acssuschemeng.8b04340.

[86] Y. Gu, R. Yuan, X. Yan, C. Li, W. Liu, R. Chen, L. Tang, B. Zheng, Y. Li, Z. Zhang, M. Yang, Catalytic amplification based on hole-transporting materials as efficient metal-free electrocatalysts for nonenzymatic glucose sensing, Anal. Chim. Acta. (2015). https://doi.org/10.1016/j.aca.2015.07.024.

[87] H. Heli, O. Amirizadeh, Nonenzymatic glucose biosensor based on hyperbranched pine-like gold nanostructure, Mater. Sci. Eng. C. (2016). https://doi.org/10.1016/j.msec.2016.02.068.

[88] C. Li, Y. Su, X. Lv, H. Xia, H. Shi, X. Yang, J. Zhang, Y. Wang, Controllable anchoring of gold nanoparticles to polypyrrole nanofibers by hydrogen bonding and their application in nonenzymatic glucose sensors, Biosens. Bioelectron. (2012). https://doi.org/10.1016/j.bios.2012.04.049.

[89] Y. Su, B. Luo, J.Z. Zhang, Controllable Cobalt Oxide/Au Hierarchically Nanostructured Electrode for Nonenzymatic Glucose Sensing, Anal. Chem. (2016). https://doi.org/10.1021/acs.analchem.5b03396.

[90] C. Wang, Y. Sun, X. Yu, D. Ma, J. Zheng, P. Dou, Z. Cao, X. Xu, Ag–Pt hollow nanoparticles anchored reduced graphene oxide composites for nonenzymatic glucose biosensor, J. Mater. Sci. Mater. Electron. (2016). https://doi.org/10.1007/s10854-016-4979-2.

[91] S. Liu, C. Zhang, L. Yuan, J. Bao, W. Tu, M. Han, Z. Dai, Component-controlled synthesis of small-sized Pd-Ag bimetallic alloy nanocrystals and their application in a nonenzymatic glucose biosensor, Part. Part. Syst. Charact. (2013). https://doi.org/10.1002/ppsc.201200150.

[92] P. Liu, M. Zhang, S. Xie, S. Wang, W. Cheng, F. Cheng, Nonenzymatic glucose biosensor based on palladium-copper oxide nanocomposites synthesized via galvanic replacement reaction, Sensors Actuators, B Chem. (2017). https://doi.org/10.1016/j.snb.2017.07.010.

[93] C. Xia, W. Ning, A novel nonenzymatic electrochemical glucose sensor modified with FeOOH nanowire, Electrochem. Commun. (2010). https://doi.org/10.1016/j.elecom.2010.09.002.
[94] V. Sridhar, H. Park, Carbon encapsulated cobalt sulfide nano-particles anchored on reduced graphene oxide as high capacity anodes for sodium-ion batteries and glucose sensor, J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.06.098.

[95] Y. Li, P. Guan, F. Yu, W. Li, X. Xie, CeO2 nanorods embedded in Ni(OH)2 matrix for the nonenzymatic detection of glucose, Nanomaterials. (2017). https://doi.org/10.3390/nano7080205.

[96] C.L. Sun, W.L. Cheng, T.K. Hsu, C.W. Chang, J.L. Chang, J.M. Zen, Ultrasensitive and highly stable nonenzymatic glucose sensor by a CuO/graphene-modified screen-printed carbon electrode integrated with flow-injection analysis, Electrochem. Commun. (2013). https://doi.org/10.1016/j.elecom.2013.02.015.

[97] Q. Dong, Y. Huang, D. Song, H. Wu, F. Cao, Y. Lei, Dual functional rhodium oxide nanocorals enabled sensor for both nonenzymatic glucose and solid-state pH sensing, Biosens. Bioelectron. (2018). https://doi.org/10.1016/j.bios.2018.04.021.

[98] Q. Dong, D. Song, Y. Huang, Z. Xu, J.H. Chapman, W.S. Willis, B. Li, Y. Lei, High-temperature annealing enabled iridium oxide nanofibers for both nonenzymatic glucose and solid-state pH sensing, Electrochim. Acta. (2018). https://doi.org/10.1016/j.electacta.2018.04.205.

[99] X. Sun, Y. Lei, Fluorescent carbon dots and their sensing applications, TrAC - Trends Anal. Chem. (2017). https://doi.org/10.1016/j.trac.2017.02.001.

[100] T. Ramon-Marquez, A.M. Sesay, P. Panjan, A.L. Medina-Castillo, A. Fernandez-Gutierrez, J.F. Fernandez-Sanchez, A microfluidic device with integrated coaxial nanofibre membranes for optical determination of glucose, Sensors Actuators, B Chem. (2017). https://doi.org/10.1016/j.snb.2017.04.140.

[101] Y. Hu, H. Cheng, X. Zhao, J. Wu, F. Muhammad, S. Lin, J. He, L. Zhou, C. Zhang, Y. Deng, P. Wang, Z. Zhou, S. Nie, H. Wei, Surface-Enhanced Raman Scattering Active Gold Nanoparticles with Enzyme-Mimicking Activities for Measuring Glucose and Lactate in Living Tissues, ACS Nano. (2017). https://doi.org/10.1021/acsnano.7b00905.

[102] S.A. Zaidi, J.H. Shin, Recent developments in nanostructure based electrochemical glucose sensors, Talanta. (2016). https://doi.org/10.1016/j.talanta.2015.11.033.

[103] W. Wang, Z. Li, W. Zheng, J. Yang, H. Zhang, C. Wang, Electrospun palladium (IV)-doped copper oxide composite nanofibers for nonenzymatic glucose sensors, Electrochem. Commun. (2009). https://doi.org/10.1016/j.elecom.2009.07.025.

[104] A. Akbari, M. Amini, A. Tarassoli, B. Eftekhar-Sis, N. Ghasemian, E. Jabbari, Transition metal oxide nanoparticles as efficient catalysts in oxidation reactions, Nano-Structures and Nano-Objects. (2018). https://doi.org/10.1016/j.nanoso.2018.01.006.

[105] M.M. Guo, Y. Xia, W. Huang, Z. Li, Electrochemical fabrication of stalactite-like copper
micropillar arrays via surface rebuilding for ultrasensitive nonenzymatic sensing of glucose,
Electrochim. Acta. (2015). https://doi.org/10.1016/j.electacta.2014.11.041.

[106] H. Hosseini, S.J.T. Rezaei, P. Rahmani, R. Sharifi, M.R. Nabid, A. Bagheri, Nonenzymatic glucose and hydrogen peroxide sensors based on catalytic properties of palladium nanoparticles/poly(3,4-ethylenedioxythiophene) nanofibers, Sensors Actuators, B Chem. (2014). https://doi.org/10.1016/j.snab.2014.01.015.

[107] Z. Chu, L. Shi, L. Liu, Y. Liu, W. Jin, Highly enhanced performance of glucose biosensor via in situ growth of oriented Au micro-cypress, J. Mater. Chem. (2012). https://doi.org/10.1039/c2jm35554j.

[108] S. Liu, B. Yu, T. Zhang, A novel nonenzymatic glucose sensor based on NiO hollow spheres, Electrochim. Acta. (2013). https://doi.org/10.1016/j.electacta.2013.03.191.

[109] Y. Li, Y. Wei, G. Shi, Y. Xian, L. Jin, Facile Synthesis of Leaf-Like CuO Nanoparticles and Their Application on Glucose Biosensor, Electroanalysis. (2011). https://doi.org/10.1002/elan.201000343.

[110] M. Liu, R. Liu, W. Chen, Graphene wrapped Cu2O nanocubes: Nonenzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability, Biosens. Bioelectron. (2013). https://doi.org/10.1016/j.bios.2013.02.010.

[111] H. Maaoui, F. Teodoresu, Q. Wang, G.H. Pan, A. Addad, R. Chtourou, S. Szunerits, R. Boukherroub, Nonenzymatic glucose sensing using carbon quantum dots decorated with copper oxide nanoparticles, Sensors (Switzerland). (2016). https://doi.org/10.3390/s16101720.

[112] R. Ahmad, M. Khan, P. Mishra, N. Jahan, M.A. Ahsan, I. Ahmad, M.R. Khan, Y. Watanabe, M.A. Syed, H. Furukawa, A. Khosla, Engineered Hierarchical CuO Nanoleaves Based Electrochemical Nonenzymatic Biosensor for Glucose Detection, J. Electrochem. Soc. (2021). https://doi.org/10.1149/1945-7111/abd515.

[113] X. Ji, A. Wang, Q. Zhao, Direct growth of copper oxide films on Ti substrate for nonenzymatic glucose sensors, J. Nanomater. (2014). https://doi.org/10.1155/2014/287303.

[114] X. Gong, Y. Gu, F. Zhang, Z. Liu, Y. Li, G. Chen, B. Wang, High-performance nonenzymatic glucose sensors based on CoNiCu alloy nanotubes arrays prepared by electrodeposition, Front. Mater. (2019). https://doi.org/10.3389/fmats.2019.00003.

[115] Y. Zhang, Y. Liu, L. Su, Z. Zhang, D. Huo, C. Hou, Y. Lei, CuO nanowires based sensitive and selective nonenzymatic glucose detection, Sensors Actuators, B Chem. (2014). https://doi.org/10.1016/j.snab.2013.08.096.

[116] J. Li, X. Jin, R. Li, Y. Zhao, X. Wang, X. Liu, H. Jiao, Copper oxide nanowires for efficient photoelectrochemical water splitting, Appl. Catal. B Environ. (2019).
Q. Zhang, J. Wang, D. Xu, Z. Wang, X. Li, K. Zhang, Facile large-scale synthesis of vertically aligned CuO nanowires on nickel foam: Growth mechanism and remarkable electrochemical performance, J. Mater. Chem. A. (2014). https://doi.org/10.1039/c3ta14767c.

R. Paulose, R. Mohan, V. Parihar, Nanostructured nickel oxide and its electrochemical behaviour—A brief review, Nano-Structures and Nano-Objects. (2017). https://doi.org/10.1016/j.nanoso.2017.07.003.

G. Zhu, H. Xu, Y. Xiao, Y. Liu, A. Yuan, X. Shen, Facile fabrication and enhanced sensing properties of hierarchically porous CuO architectures, ACS Appl. Mater. Interfaces. (2012). https://doi.org/10.1021/am2013882.

Y. Gao, Q. Kong, J. Zhang, G. Xi, General fabrication and enhanced VOC gas-sensing properties of hierarchically porous metal oxides, RSC Adv. (2017). https://doi.org/10.1039/c7ra06808c.

C.Y. Chiang, Y. Shin, K. Aroh, S. Ehrman, Copper oxide photocathodes prepared by a solution based process, Int. J. Hydrogen Energy. (2012). https://doi.org/10.1016/j.ijhydene.2012.02.049.

K. Sivasankar, K.K. Rani, S.F. Wang, R. Devasanathipathy, C.H. Lin, Copper nanoparticle and nitrogen doped graphite oxide based biosensor for the sensitive determination of glucose, Nanomaterials. (2018). https://doi.org/10.3390/nano8060429.

R. Rahmatolahzadeh, M. Aliabadi, K. Motevalli, Cu and CuO nanostructures: facile hydrothermal synthesis, characterization and photocatalytic activity using new starting reagents, J. Mater. Sci. Mater. Electron. (2017). https://doi.org/10.1007/s10854-016-5504-3.

S. Zhao, T. Wang, L. Wang, S. Xu, A nonenzymatic glucose amperometric biosensor based on a simple one-step electrodeposition of Cu microdendrites onto single-walled carbon nanohorn-modified electrode, J. Solid State Electrochem. (2015). https://doi.org/10.1007/s10008-014-2688-4.

F.B. Effenberger, M.A. Sulca, M.T. Machini, R.A. Couto, P.K. Kiyohara, G. Machado, L.M. Rossi, Copper nanoparticles synthesized by thermal decomposition in liquid phase: the influence of capping ligands on the synthesis and bactericidal activity, J. Nanoparticle Res. (2014). https://doi.org/10.1007/s11051-014-2588-7.

S. Yadav, P.K. Bajpai, Synthesis of copper sulfide nanoparticles: pH dependent phase stabilization, Nano-Structures and Nano-Objects. (2017). https://doi.org/10.1016/j.nanoso.2017.03.009.

N. Tsolekile, S. Parani, M.C. Matoeoe, S.P. Songca, O.S. Oluwafemi, Evolution of ternary I–III–VI QDs: Synthesis, characterization and application, Nano-Structures and Nano-Objects. (2017). https://doi.org/10.1016/j.nanoso.2017.08.012.
[128] H. Cao, A. Yang, H. Li, L. Wang, S. Li, J. Kong, X. Bao, R. Yang, A nonenzymatic glucose sensing based on hollow cuprous oxide nanospheres in a Nafion matrix, Sensors Actuators, B Chem. (2015). https://doi.org/10.1016/j.snb.2015.03.026.

[129] K. Li, G. Fan, L. Yang, F. Li, Novel ultrasensitive nonenzymatic glucose sensors based on controlled flower-like CuO hierarchical films, Sensors Actuators, B Chem. (2014). https://doi.org/10.1016/j.snb.2014.03.095.

[130] M. Long, L. Tan, H. Liu, Z. He, A. Tang, Novel helical TiO2 nanotube arrays modified by Cu2O for enzyme-free glucose oxidation, Biosens. Bioelectron. (2014). https://doi.org/10.1016/j.bios.2014.03.032.

[131] F. Foroughi, M. Rahsepar, M.J. Hadianfard, H. Kim, Microwave-assisted synthesis of graphene modified CuO nanoparticles for voltammetric enzyme-free sensing of glucose at biological pH values, Microchim. Acta. (2018). https://doi.org/10.1007/s00604-017-2558-8.

[132] Z. Chen, B. Zhao, X.Z. Fu, R. Sun, C.P. Wong, CuO nanorods supported Pd nanoparticles as high performance electrocatalysts for glucose detection, J. Electroanal. Chem. (2017). https://doi.org/10.1016/j.jelechem.2017.11.041.

[133] Y. Ding, H. Sun, C. Ren, M. Zhang, K. Sun, A nonenzymatic glucose sensor platform based on specific recognition and conductive polymer-decorated CuCO2O4 carbon nanofibers, Materials (Basel). (2020). https://doi.org/10.3390/ma13122874.

[134] M.S. Jagadeesan, K. Movlaee, T. Krishnakumar, S.G. Leonard, G. Neri, One-step microwave-assisted synthesis and characterization of novel CuO nanodisks for nonenzymatic glucose sensing, J. Electroanal. Chem. (2019). https://doi.org/10.1016/j.jelechem.2019.01.024.

[135] T. Dayakar, K.V. Rao, K. Bikshalu, V. Rajendar, S.H. Park, Novel synthesis and characterization of pristine Cu nanoparticles for the nonenzymatic glucose biosensor, J. Mater. Sci. Mater. Med. (2017). https://doi.org/10.1007/s10856-017-5907-6.

[136] P. Chakraborty, S. Dhar, N. Deka, K. Debnath, S.P. Mondal, Nonenzymatic salivary glucose detection using porous CuO nanostructures, Sensors Actuators, B Chem. (2020). https://doi.org/10.1016/j.snb.2019.127134.

[137] A. Ashok, A. Kumar, F. Tarlochan, Highly efficient nonenzymatic glucose sensors based on CuO nanoparticles, Appl. Surf. Sci. (2019). https://doi.org/10.1016/j.apsusc.2019.03.157.

[138] R. Ahmad, N. Tripathy, M.S. Ahn, K.S. Bhat, T. Mahmoudi, Y. Wang, J.Y. Yoo, D.W. Kwon, H.Y. Yang, Y.B. Hahn, Highly Efficient Nonenzymatic Glucose Sensor Based on CuO Modified Vertically-Grown ZnO Nanorods on Electrode, Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-06064-8.

[139] P. Chakraborty, S. Dhar, K. Debnath, T. Majumder, S.P. Mondal, Nonenzymatic and non-invasive
glucose detection using Au nanoparticle decorated CuO nanorods, Sensors Actuators, B Chem. (2019). https://doi.org/10.1016/j.snb.2018.12.086.

[140] X. Niu, M. Lan, H. Zhao, C. Chen, Highly sensitive and selective nonenzymatic detection of glucose using three-dimensional porous nickel nanostructures, Anal. Chem. (2013). https://doi.org/10.1021/ac3030976.

[141] H. Zhang, Y. Yu, X. Shen, X. Hu, A Cu2O/Cu/carbon cloth as a binder-free electrode for nonenzymatic glucose sensors with high performance, New J. Chem. (2020). https://doi.org/10.1039/c9nj05256a.

[142] S. Cheng, S. DelaCruz, C. Chen, Z. Tang, T. Shi, C. Carraro, R. Maboudian, Hierarchical Co3O4/CuO nanorod array supported on carbon cloth for highly sensitive nonenzymatic glucose biosensing, Sensors Actuators, B Chem. (2019). https://doi.org/10.1016/j.snb.2019.126860.

[143] D. Jiang, Q. Liu, K. Wang, J. Qian, X. Dong, Z. Yang, X. Du, B. Qiu, Enhanced nonenzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene, Biosens. Bioelectron. (2014). https://doi.org/10.1016/j.bios.2013.11.005.

[144] L. Wu, Z. Lu, J. Ye, Enzyme-free glucose sensor based on layer-by-layer electrodeposition of multilayer films of multi-walled carbon nanotubes and Cu-based metal framework modified glassy carbon electrode, Biosens. Bioelectron. (2019). https://doi.org/10.1016/j.bios.2019.03.064.

[145] D. Zhai, B. Liu, Y. Shi, L. Pan, Y. Wang, W. Li, R. Zhang, G. Yu, Highly sensitive glucose sensor based on pt nanoparticle/polyaniline hydrogel heterostructures, ACS Nano. (2013). https://doi.org/10.1021/nn400482d.

[146] A.A. Ensafi, M.M. Abarghoui, B. Rezaei, A new nonenzymatic glucose sensor based on copper/porous silicon nanocomposite, Electrochim. Acta. (2014). https://doi.org/10.1016/j.electacta.2014.01.031.

[147] Y. Xue, Y. Huang, Z. Zhou, G. Li, Nonenzymatic glucose biosensor based on reduction graphene oxide-persimmon tannin-Pt-Pd nanocomposite, in: IOP Conf. Ser. Mater. Sci. Eng., 2018. https://doi.org/10.1088/1757-899X/382/2/022016.

[148] S. Park, S. Park, R.A. Jeong, H. Boo, J. Park, H.C. Kim, T.D. Chung, Nonenzymatic continuous glucose monitoring in human whole blood using electrified nanoporous Pt, Biosens. Bioelectron. (2012). https://doi.org/10.1016/j.bios.2011.10.033.

[149] Y. Mu, D. Jia, Y. He, Y. Miao, H.L. Wu, Nano nickel oxide modified nonenzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential, Biosens. Bioelectron. (2011). https://doi.org/10.1016/j.bios.2010.11.042.

[150] X. Yan, Y. Gu, C. Li, B. Zheng, Y. Li, T. Zhang, Z. Zhang, M. Yang, A nonenzymatic glucose sensor based on the CuS nanoflakes-reduced graphene oxide nanocomposite, Anal. Methods.
[151] H.-H. Fan, W.-L. Weng, C.-Y. Lee, C.-N. Liao, Electrochemical Cycling-Induced Spiky Cu$_2$O/Cu Nanowire Array for Glucose Sensing, ACS Omega. 4 (2019) 12222–12229. https://doi.org/10.1021/acsomega.9b01730.

[152] P. V. Suneesh, V. Sara Vargis, T. Ramachandran, B.G. Nair, T.G. Satheesh Babu, Co-Cu alloy nanoparticles decorated TiO$_2$ nanotube arrays for highly sensitive and selective nonenzymatic sensing of glucose, Sensors Actuators, B Chem. (2015). https://doi.org/10.1016/j.snb.2015.03.073.

[153] X. Strakosas, J. Selberg, P. Pansodtee, N. Yonas, P. Manapongpun, M. Teodorescu, M. Rolandi, A nonenzymatic glucose sensor enabled by bioelectronic pH control, Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-46302-9.

[154] D. Bruen, C. Delaney, L. Florea, D. Diamond, Glucose sensing for diabetes monitoring: Recent developments, Sensors (Switzerland). (2017). https://doi.org/10.3390/s17081866.

[155] W. Zhang, Y. Du, M.L. Wang, Noninvasive glucose monitoring using saliva nano-biosensor, Sens. Bio-Sensing Res. (2015). https://doi.org/10.1016/j.sbsr.2015.02.002.

[156] D.R. Seshadri, R.T. Li, J.E. Voos, J.R. Rowbottom, C.M. Alfes, C.A. Zorman, C.K. Drummond, Wearable sensors for monitoring the physiological and biochemical profile of the athlete, Npj Digit. Med. (2019). https://doi.org/10.1038/s41746-019-0150-9.

[157] T.T. Ruckh, H.A. Clark, Implantable nanosensors: Toward continuous physiologic monitoring, Anal. Chem. (2014). https://doi.org/10.1021/ac402688k.

[158] D. Boraschi, L. Costantino, P. Italiani, Interaction of nanoparticles with immunocompetent cells: Nanosafety considerations, Nanomedicine. (2012). https://doi.org/10.2217/nnm.11.169.

[159] S.Y. Lin, W.H. Hsu, J.M. Lo, H.C. Tsai, G.H. Hsiue, Novel geometry type of nanocarriers mitigated the phagocytosis for drug delivery, J. Control. Release. (2011). https://doi.org/10.1016/j.jconrel.2011.04.023.

[160] K. Tillack, P. Breiden, R. Martin, M. Sospedra, T Lymphocyte Priming by Neutrophil Extracellular Traps Links Innate and Adaptive Immune Responses, J. Immunol. (2012). https://doi.org/10.4049/jimmunol.1103414.

[161] A. Umar, M.M. Rahman, A. Al-Hajry, Y.B. Hahn, Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets, Electrochem. Commun. (2009). https://doi.org/10.1016/j.elecom.2008.11.027.

[162] Y. Qian, F. Ye, J. Xu, Z.G. Le, Synthesis of cuprous oxide (Cu$_2$O) nanoparticles/graphene composite with an excellent electrocatalytic activity towards glucose, Int. J. Electrochem. Sci. (2012).

[163] W. Suginta, P. Khunkaewla, A. Schulte, Electrochemical biosensor applications of
polysaccharides chitin and chitosan, Chem. Rev. (2013). https://doi.org/10.1021/cr300325r.

[164] Z. Yang, J. Feng, J. Qiao, Y. Yan, Q. Yu, K. Sun, Copper oxide nanoleaves decorated multi-walled carbon nanotube as platform for glucose sensing, Anal. Methods. (2012). https://doi.org/10.1039/c2ay25283j.

[165] Y. Zhang, L. Su, D. Manuzzi, H.V.E. de los Monteros, W. Jia, D. Huo, C. Hou, Y. Lei, Ultrasensitive and selective nonenzymatic glucose detection using copper nanowires, Biosens. Bioelectron. (2012). https://doi.org/10.1016/j.bios.2011.11.006.

[166] X. Wang, C. Hu, H. Liu, G. Du, X. He, Y. Xi, Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing, Sensors Actuators, B Chem. (2010). https://doi.org/10.1016/j.snb.2009.09.067.

[167] J. Luo, S. Jiang, H. Zhang, J. Jiang, X. Liu, A novel nonenzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode, Anal. Chim. Acta. (2012). https://doi.org/10.1016/j.aca.2011.10.025.

[168] X. Zhou, H. Nie, Z. Yao, Y. Dong, Z. Yang, S. Huang, Facile synthesis of nanospindle-like Cu 2O/straight multi-walled carbon nanotube hybrid nanostructures and their application in enzyme-free glucose sensing, Sensors Actuators, B Chem. (2012). https://doi.org/10.1016/j.snb.2011.12.012.

[169] J.H. Hamman, Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems, Mar. Drugs. (2010). https://doi.org/10.3390/md8041305.

[170] G.A. Morris, S.M. Kök, S.E. Harding, G.G. Adams, Polysaccharide drug delivery systems based on pectin and chitosan, Biotechnol. Genet. Eng. Rev. (2010). https://doi.org/10.1080/02648725.2010.10648153.

[171] J. Lv, C. Kong, Y. Xu, Z. Yang, X. Zhang, S. Yang, G. Meng, J. Bi, J. Li, S. Yang, Facile synthesis of novel CuO/Cu2O nanosheets on copper foil for high sensitive nonenzymatic glucose biosensor, Sensors Actuators, B Chem. (2017). https://doi.org/10.1016/j.snb.2017.04.052.

[172] K. Kim, S. Kim, H.N. Lee, Y.M. Park, Y.S. Bae, H.J. Kim, Electrochemically derived CuO nanorod from copper-based metal-organic framework for nonenzymatic detection of glucose, Appl. Surf. Sci. (2019). https://doi.org/10.1016/j.apsusc.2019.02.130.

[173] G. Liu, J. Zhao, L. Qin, S. Liu, Q. Zhang, J. Li, Synthesis of an ordered nanoporous Cu/Ni/Au film for sensitive nonenzymatic glucose sensing, RSC Adv. (2020). https://doi.org/10.1039/d0ra01224f.

[174] V.K. Anand, A. Bukke, K. Bhatt, S. Kumar, S. Sharma, R. Goyal, G.S. Virdi, Highly sensitive and reusable Cu+2/polyaniline/reduced graphene oxide nanocomposite ink-based nonenzymatic glucose sensor, Appl. Phys. A Mater. Sci. Process. (2020). https://doi.org/10.1007/s00339-020-
03620-4.

[175] C. Wei, X. Zou, Q. Liu, S. Li, C. Kang, W. Xiang, A highly sensitive nonenzymatic glucose sensor based on CuS nanosheets modified Cu2O/CuO nanowire arrays, Electrochim. Acta. (2020). https://doi.org/10.1016/j.electacta.2020.135630.

[176] D.A. Nurani, R. Wibowo, I.F. El Fajri, Nonenzymatic glucose sensor based on electrodeposited copper on carbon paste electrode (Cu/CPE), in: AIP Conf. Proc., 2016. https://doi.org/10.1063/1.4946959.

[177] A. Remes, F. Manea, S. Motoc, A. Baciu, E.I. Szerb, J. Gascon, G. Gug, Highly sensitive nonenzymatic detection of glucose at mwcnt-cubtc composite electrode, Appl. Sci. (2020). https://doi.org/10.3390/app10238419.

[178] V. Vinoth, T.D. Shergilin, A.M. Asiri, J.J. Wu, S. Anandan, Facile synthesis of copper oxide microflowers for nonenzymatic glucose sensor applications, Mater. Sci. Semicond. Process. (2018). https://doi.org/10.1016/j.mssp.2018.03.032.

[179] W. Na, J. Lee, J. Jun, W. Kim, Y.K. Kim, J. Jang, Highly sensitive copper nanowire conductive electrode for nonenzymatic glucose detection, J. Ind. Eng. Chem. (2019). https://doi.org/10.1016/j.jiec.2018.09.050.

[180] S. Radhakrishnan, H.-Y. Kim, B.-S. Kim, A novel CuS microflower superstructure based sensitive and selective nonenzymatic glucose detection, Sensors Actuators B Chem. 233 (2016) 93–99. https://doi.org/10.1016/j.snb.2016.04.056.

[181] A. Muthumariappan, K. Sakthivel, S.M. Chen, T.W. Chen, G. Mani, B.S. Lou, Effects of annealing temperature on crystal structure and glucose sensing properties of cuprous oxide, Sensors Actuators, B Chem. (2018). https://doi.org/10.1016/j.snb.2018.03.146.

[182] W. Zheng, Y. Li, L. Hu, L.Y.S. Lee, Use of carbon supports with copper ion as a highly sensitive nonenzymatic glucose sensor, Sensors Actuators, B Chem. (2019). https://doi.org/10.1016/j.snb.2018.10.164.

[183] Z. Amirzadeh, S. Javadpour, M.H. Shariat, R. Knibbe, Nonenzymatic glucose sensor based on copper oxide and multi-wall carbon nanotubes using PEDOT:PSS matrix, Synth. Met. (2018). https://doi.org/10.1016/j.synthmet.2018.08.021.

[184] Z. Haghparas, Z. Kordrostami, M. Sorouri, M. Rajabzadeh, R. Khalifeh, Fabrication of Nonenzymatic Electrochemical Glucose Sensor Based on Nano-copper Oxide Micro Hollow-spheres, Biotechnol. Bioprocess Eng. (2020). https://doi.org/10.1007/s12257-020-0058-x.

[185] M. Saraf, K. Natarajan, S.M. Mobin, Nonenzymatic amperometric sensing of glucose by employing sucrose templated microspheres of copper oxide (CuO), Dalt. Trans. (2016). https://doi.org/10.1039/c6dt00670a.
[186] J. Jiang, P. Zhang, Y. Liu, H. Luo, A novel nonenzymatic glucose sensor based on a Cu-nanoparticle-modified graphene edge nanoelectrode, Anal. Methods. (2017). https://doi.org/10.1039/c7ay00084g.

[187] V.K. Anand, K. Bhatt, S. Kumar, B. Archana, S. Sharma, K. Singh, M. Gupta, R. Goyal, G.S. Virdi, Sensitive and Enzyme-Free Glucose Sensor Based on Copper Nanowires/Polyaniline/Reduced Graphene Oxide Nanocomposite Ink, Int. J. Nanosci. (2021). https://doi.org/10.1142/S0219581X21500204.

[188] T. Sridara, J. Upan, G. Saianand, A. Tuantranont, C. Karuwan, J. Jakmunee, Nonenzymatic amperometric glucose sensor based on carbon nanodots and copper oxide nanocomposites electrode, Sensors (Switzerland). (2020). https://doi.org/10.3390/s20030808.

[189] L. Liu, Y. Chen, H. Lv, G. Wang, X. Hu, C. Wang, Construction of a nonenzymatic glucose sensor based on copper nanoparticles/poly(o-phenylenediamine) nanocomposites, J. Solid State Electrochem. (2015). https://doi.org/10.1007/s10008-014-2659-9.

[190] V.B. Juska, A. Walcarius, M.E. Pemble, Cu Nanodendrite Foams on Integrated Band Array Electrodes for the Nonenzymatic Detection of Glucose, ACS Appl. Nano Mater. (2019). https://doi.org/10.1021/acsanm.9b01325.

[191] S. Phetsang, P. Kidkhunthod, N. Chanlek, J. Jakmunee, P. Mungkornasawakul, K. Ounnunkad, Copper/reduced graphene oxide film modified electrode for nonenzymatic glucose sensing application, Sci. Rep. 11 (2021) 9302. https://doi.org/10.1038/s41598-021-88747-x.

[192] F. Tehrani, L. Reiner, B. Bavarian, Rapid prototyping of a high sensitivity graphene based glucose sensor strip, PLoS One. (2015). https://doi.org/10.1371/journal.pone.0145036.
Table 1
Comparison of the performance of different Cu based nonenzymatic glucose sensors.

Electrodes/Samples/Electrocatalysts	Sensitivity cm^{-2}	Applied Potential (V)	Limit of Detection (LOD) (μM)	Linear range (mM)	Response time (s)	Ref.
Green synthesis of Cu Spherical NPs	1065.21		0.046	1 to 7.2	< 3	[135]
CuO PN	3072	0.6 Vs Ag/AgCl	0.225	~0.8	[136]	
CuO-Flower	2062	0.5 Vs Ag/AgCl	0.25	1.6	[137]	
Cu$_2$O/Cu/CC	6952	0.60 Vs Hg/HgO	0.001–1.555	< 2	[141]	
CuMOF/MWNTs/GCE	3878		0.4	0.0005–11.84	0.3	[144]
Au NPs modified CuO NWs	4398.8	0.6 Vs Ag/AgCl	0.0005–5.9	Approx 5	[69]	
CuO-ZnO NRs/FTO	2961.8		0.4	0.001–8.45	< 2	[138]
Cu$_4$O nanosheets/Cu	1541	0.60 Vs Ag/AgCl	0.57	4	~ 3	[171]
Cu$_3$(BTC)$_2$ derived CuO nanorod	1523.5	0.6 Vs Ag/AgCl	1	up to 1.25	5	[172]
Cu/Ni/Au nanoporous film	4135	-	0.1	0.0005–3,	-	[173]
Cu$^{2+}$/PANI/rGO/F R4 nanocomposite	4168.37, 525.4	0.66 Vs Ag/AgCl	4.93	0.0028–0.0222,	< 5	[174]
CuS nanosheets/Cu$_2$O	4262	0.60 Vs Ag/AgCl	0.89	0.002–4.1	350 to 800	[175]
Material	Value 1	Value 2	Value 3	Value 4	Value 5	Reference
--------------------------	-------------	---------	-------------	-------------	-------------	-----------
Copper oxide/CPE	1183.59	-	672.8	1.6-62.5	120	[176]
MWCNT-CuBTC	14,949	0.6	10	0.2-1	-	[177]
MOF-derived CuO	10–120	-	0.1	0.01–0.12	~6	[178]
CuO/CuBi$_2$O$_4$	330	-	0.7	0.000001–100	-	[179]
CuS microflowers	1007	0.5	-	0.2–5.4	~4	[180]
Cu2O-c/SPCE	2376.7	-1.0– 1.2	0.003	0.000031–1.42	-	[181]
Cu$^{2+}$/MWCNT-COOH	1732	-	0.02	0.00002–8.0	~2	[182]
CuO	663.2	+0.70 V	-	10	-	[183]
CuO hollow sphere	25.0 ± 0.8	-	-	0.001 – 3	-	[184]
CuO hollow sphere	13.6 ±0.3	-	-	3 – 11.5	-	[184]
CuO microspheres	26.59	-	20.6	2-9	-	[185]
Cu–GNE	-	0.5	0.12	1	~2	[186]
CuNWs/PANI/rGO	843.06	0.64	1600	0-4	-	[187]
CuO-C-dots	110	+0.50	200	0.5 to 2 and 2 to	-	[188]
CuO	63.3	-	-	-	-	[189]
Cu$_2$O/Cu	1210 ± 124	-0.2	10	0.01–7	~1	[151]
CuO nanoleaves	1467.32	+0.6	0.012	0.005–5.89	~3.5	[112]
CuNPs/PoPD/GC	-	0.5	0.25	0.005 - 1.6	~1	[189]
CoNiCu Alloy Nanotubes	791	-	0.5	0.05 – 1.551	-	[114]
Note: NRs — nanorods, FTO — fluorine doped tin oxide, Cu-MOF/MWNTs — Cu-metal-organic frameworks/multiwalled carbon nanotubes, GCE — Glassy Carbon Electrode, Cu₃(BTC)₂ (BTC — benzene tricarboxylate), Cu–GNE — Cu nanoparticles on a linear graphene edge nanoelectrode, PANI — polyaniline, rGO — reduced graphene oxide, NWAs — nanowire arrays, CC — Carbon cloth, CPE — carbon paste electrode, MWCNT-CuBTC — Multi-wall carbon nanotubes (MWCNTs)-copper-1,3,5-benzenetricarboxylic acid.

Figures and Figure Captions

Fig. 1: A description of the mechanisms of enzymatic glucose oxidation in first, second, third, and fourth generation glucose sensors[3].
Fig. 2: Reactions that occur in a copper based FGGS
Fig. 3: Operating principle for glucose sensing. When the device is on (top), $V_{\text{ph}} = -1$ V, the Pd contact absorbs H^+ from the solution and increases its pH. At high pH, the Au/Co$_3$O$_4$ contact is in its more reactive CoO$_2$ oxidized state. With $V_g = 0.5$ V, the CoO$_2$ contact oxidizes glucose and the resulting I_g is collected, which increases with increased glucose concentration. When the device is off (bottom), $V_{\text{ph}} = 0$ V, the pH is at physiological values, typically pH 7, no sensing occurs from the Au/Co$_3$O$_4$ and $I_g = 0$ A. Reprinted with permission from ref. [153], copyright @ 2019 (Nature)
Fig. 4: (a) Glucose detection mechanism in CuO, (b) glucose detection mechanism in Au, and (c) glucose detection mechanism in CuO NWs/ AuNP structure under applied potential. Reproduced with permission from ref. [69], copyright @ 2019 (The Royal Society of Chemistry)
Fig. 5: X-ray diffraction (XRD) characterization of copper particles used in NEGS. (a) XRD pattern of carbon quantum dots loaded with copper oxide nanoparticles (CQDs/Cu$_2$O NPs). Adapted with permission from ref. [111], copyright @ 2016 (MDPI). (b) XRD pattern of CuO nanoleaves. Adapted with permission from ref. [112], copyright @ 2021 (IOP Science). (c) XRD patterns of Ti substrate, CuO film on Ti substrate, and CuO powder. Adapted with permission from ref. [113], copyright @ 2014 (Hindawi). (d) XRD patterns of prepared CoNiCu alloy nanotubes arrays transferred on indium tin oxide. Adapted with permission from ref. [114], copyright @ 2019 (Frontiers).
Fig. 6: (a) Schematic diagram for the preparation of CuCo$_2$O$_4$–carbon nanofibers (CNFs) and (b) the representation of the proposed mechanism for electrocatalytic oxidation of glucose based on poly(thiophene-3-boronic acid) (PTBA)/CuCo$_2$O$_4$–CNFs/glassy carbon electrode (GCE). Reproduced with permission from ref. [133], copyright @ 2019 (MDPI).
Fig. 7: Scanning electron microscopy (SEM) characterization of copper particles used in NEGS. (a, b) Products deposited on CoNiCu alloy nanotubes with anodic aluminum oxide template. Adapted with permission from ref. [114], copyright © 2019 (Frontiers). (c) MWCNT-copper-1,3,5-benzentricarboxylic acid (CuBTC) composite electrode. Adapted with permission from ref. [177], copyright © 2020 (MDPI). (d) CuO film on Ti substrate. Adapted with permission from ref. [113], copyright 2014 (Hindawi).
Fig. 8 Nonenzymatic glucose (NEGS) with copper-based electrodes (a) Fabrication and application of NEGS for glucose detection. Adapted with permission from ref. [138], copyright @ 2017 (Nature). (b) Hydrogen bubble template-based electrodeposition process of the Cu foam and the SEM images of the resultant Cu Foam electrodeposits. Adapted with permission from ref. [190], copyright @ 2019 (American Chemical Society).
Fig. 9: Field emission scanning electron microscopy (FESEM) characterization of copper particles used in nonenzymatic glucose (NEGS). (a) Bare Cu(II)/GO modified SPCE. Adapted with permission from ref. [191], copyright @ 2021 (Nature). (b) Engineered hierarchical CuO nanoleaves. Adapted with permission from ref. [112], copyright @ 2021 (IOP Science). (c and d) Copper nanoparticles electrochemically deposited on the PRG sheets. Adapted with permission from ref. [192], copyright @ 2015 (Plos One).
Scheme 1: Schematic illustration of the Cu-MOF and multilayer films of Cu-MOF/MWNTs/GCE. Reproduced from ref. [144], copyright 2019 (Elsevier)