An improved DNA method to unambiguously detect small hive beetle *Aethina tumida*, an invasive pest of honeybee colonies

Paolo Silacci, Claudine Bioley, Corinne Jud, Jean-Daniel Charrière and Benjamin Dainat*

The small hive beetle (SHB) *Aethina tumida* Murray (Coleoptera: Nitidulidae) is a scavenger native to sub-Saharan Africa and is a pest of honey bees without provoking significant damage within its endemic range.\(^1\,^2\) Since the first report in 1996 out of its native range\(^3\) in North Carolina, USA, the beetle became an invasive species in Australia, and in central and North America. It was introduced in Europe in 2004 in Portugal where an eradication program was effective and then in Italy in 2014 where infestation is still ongoing\(^4\) probably originating from an African population.\(^5\) Its life cycle is intimately linked to the honey bee where it mates and reproduces inside the colony and where the larvae feed on bee bread, honey and brood causing destruction.\(^1\,^6\,^7\) Besides honey bees, it can also affect bumble bees and stingless bees (see review in reference\(^2\)).

The economic damage to the beekeeping industry can therefore be substantial thereby explaining why the SHB is a statutory notifiable pest in the European Union (EU). After its introduction in Italy, the EU authorities (Commission Implementing Decision 2014/909/EU of 12 December 2014) established new protective measures to prevent SHB spread including the goal to eradicate it if possible. It is consequently of the utmost importance to have an easy, reliable and cheap technique for diagnostics. However, the eggs and larvae stage are extremely difficult to identify with conventional taxonomic techniques bearing a too high risk of incorrect results. A previous PCR assay is based on work published in 2007,\(^8\) where an amplification system targeting the cytochrome oxidase subunit I (COI) gene was proposed. However, the sequence of the reverse primer contains an important internal mismatch of three nucleotides with all currently published *A. tumida* COI sequences, rendering its application tedious and susceptible to false negative diagnostic. In this study, we propose a new SHB diagnostics using a multiplex PCR approach targeting COI gene and a common region of 18S ribosomal gene as internal control.

The DNA extraction method was chosen according to a previous study comparing different extraction procedures of genomic DNA from ticks providing material allowing maximal recovery and good quality for a consistent amplification.\(^9\) Briefly, insects stored in ethanol 70% (v/v) were air-dried prior to dissection into four quarters and then DNA was extracted using GeneJet Genomic Kit (Thermo Fisher, Waltham, MA, USA) following the manufacturer’s instructions and eluted into a final volume of 100 μL. Then, 4 μL (0.8–10 ng) of insect genomic DNA were used for amplification. PCR was performed in a 20 μL reaction volume containing 1x

* Correspondence to: B Dainat, Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, 3003 Bern, Switzerland. E-mail: benjamin.dainat@agroscope.admin.ch

© 2018 The Authors. *Pest Management Science* published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Table 1. Sequences of primers and probes targeting COI and 18S genes. Amplicon lengths were of 396 bp for COI and 80 bp for 18S

COI gene	18S gene
Forward primers	5'-CGACCCTCAGGCATAACCTT-3'
Reverse primers	5'-AGGCTCGAGTAGTATCAAGTCTA-3'
Probes	5'-HEX-GGAAGCCTTTGGAACTTTAGG-BHQ-3'
	5'-FAM-GTAACCCGCTGAACCTCCTT-BHQ-3'

Table 2. Results of multiplex *Aethina tumida* PCR system application to 49 different insect DNA

Species with GBOLD accession	Origin	Development stage	Atum Cq	18S Cq	
1 Aethina tumida	Italy	Adult	28.7	28.6	
2 Aethina tumida	Italy	Larvae	30.9	26.4	
3 Aethina tumida	Italy	Larvae	32.5	26.1	
4 Aethina tumida	Italy (Calabria)	Adult	21	22.8	
5 Aethina tumida	Italy (Calabria)	Adult	20.2	22.1	
6 Aethina tumida	United Kingdom (breeding from an US strain)	Larvae	35.2	28.2	
7 Aethina tumida	United Kingdom (breeding from an US strain)	Adult	30.3	26.2	
8 Aethina tumida	Mexico	Adult	18.8	21.4	
9 Aethina tumida	South Africa	Adult	27.9	34.1	
10 Aethina tumida	South Africa	Adult	28	33.4	
11 Aethina tumida	South Africa	Larvae	28	31.5	
12 Aethina tumida	South Africa	Larvae	22.4	30	
13 Harmonia axyridis	Switzerland	Adult	ND	16.1	
14 Harmonia axyridis	Switzerland	Adult	ND	23.5	
15 Muscidae	Switzerland	Adult	ND	42.1	
16 Forficula auricularia	Switzerland	Adult	ND	38.5	
17 Leptoglossus occidentalis	Switzerland	Adult	ND	37.1	
18 Galleria mellonella	Switzerland	Larvae	ND	21.4	
19 Galleria mellonella	Switzerland	Larvae	ND	22.8	
20 Lepidoptera	Switzerland	Larvae	ND	32.7	
21 Varroa destructor	Switzerland	Adult	ND	31	
22 Meligethes viridescens	Switzerland	Adult	ND	35	
23 Cychramus luteus (Nitidulidae)	ZFMK-TIS-2504554	Germany	Adult	ND	34.9
24 Cychramus luteus (Nitidulidae)	ZFMK-TIS-2503863	Germany	Adult	ND	33.3
25 Cychramus luteus (Nitidulidae)	ZFMK-TIS-2506747	Italy	Adult	ND	34.7
26 Epuraea aestiva (Nitidulidae)	ZFMK-TIS-13931	Germany	Adult	ND	24.3
27 Epuraea aestiva (Nitidulidae)	ZFMK-TIS-2504534	Germany	Adult	ND	29.4
28 Epuraea aestiva (Nitidulidae)	ZFMK-TIS-2504535	Germany	Adult	ND	28.4
29 Glischrochilus hortensis (Nitidulidae)	ZFMK-TIS-2522755	Germany	Adult	ND	30.6
30 Glischrochilus hortensis (Nitidulidae)	ZFMK-TIS-11274	Germany	Adult	ND	37.5
31 Glischrochilus hortensis (Nitidulidae)	ZFMK-TIS-11650	Germany	Adult	ND	29.5
32 Glischrochilus quadriguttatus (Nitidulidae)	ZFMK-TIS-2515238	Germany	Adult	ND	27.9
were positive for 18S, with Cq ≤ 6.4 cycles (Table 2). All the other 37 insect samples analyzed by this assay had Cq for the two systems never diverged for the 18S and COI gene amplification. Interestingly, the COI reverse primer and at 5′ extremity of the COI probe were designed completely complementary to any known sequences and probes with Primer3 version 0.4.0.11 Both primers and probes were synthesized by Microsynth (Microsynth, Balgach, Switzerland). Amplification results were analyzed with Eco Study v. 5.0 (PCRmax). Size and sequence of the COI amplicon (∼650 bp) were further verified on a DNA extracted from a beetle individual from ZFMK-TIS-251033, isolated in Italy (data not shown).

After optimization of the concentration of the two probes, to further confirm the specificity of the primers the multiplex assay was tested on a total of 49 DNAs extracted from different insects of different geographical origins and relatives from the Nitidulidae family. All the DNA extracted from 12 A. tumida individuals from Germany (individuals 33–34 and 38–41) were obtained from BOLD Germany, details can be found at https://doi.org/10.5883/DS-AETHINA. Some DNA from insects (individuals 23–34 and 38–41) were obtained from BOLD Germany, details can be found at https://doi.org/10.5883/DS-AETHINA. The DNA test set included 12 A. tumida individuals from Germany and 37 different insect species from other geographical origins. These observations prove the reliability of our multiplex PCR system for a rapid, reliable and specific diagnostics of SHB that may be found in the hive and thus facilitate for example early detection programs.

ACKNOWLEDGEMENTS

The authors thank Stève Breitenmoser, Daniel Cherix for providing samples and taxonomy expertise. The authors address thanks also to Giovanni Formato, Rémy Vandame, Mike Brown for providing samples. The authors thank Bjørn Rulik for providing genetic material from the German Barcode of Life, a project of the Humboldt Ring, grant-funded by the German Federal Ministry for Education and Research (GBOL1: BMBF #01LI1101A / 01LI1501A).

Financial support was partially granted by the Swiss Veterinary Office.

Use of commercial names in this paper is for information purpose only. There are no conflicts of interest to be declared.

REFERENCES

1. Lundie AE, The small hive beetle, Aethina tumida. South Africa Dept. Agric. Forestry Sci. Bull. 220:1 – 30 (1940).
2. Neumann P, Pettis JS and Schäfer MO, Quo vadis Aethina tumida? Biology and control of small hive beetles. Apidologie 47:1 – 40 (2016).
3. Hood WM, Clemson University Entomology Information Series. Small hive beetle, Clemson cooperative extension, Clemson, SC, USA (1999).
4 Mutinelli F, Montarsi F, Federico G, Granato A, Ponti AM, Grandinetti G et al., Detection of *Aethina tumida* Murray (Coleoptera: Nitidulidae.) in Italy: outbreaks and early reaction measures. *Jof Apic Res* **53**:569–575 (2014).

5 Granato A, Zecchin B, Baratto C, Duquesne V, Negrisolo E, Chauzat M-P et al., Introduction of *Aethina tumida* (Coleoptera: Nitidulidae) in the regions of Calabria and Sicily (southern Italy). *Apidologie* **48**:1–10 (2016).

6 Schmolke MD, *A Study of Aethina tumida: The Small Hive Beetle*. University of Rhodesia, South Africa, Rhodesia (1974).

7 Neumann P and Elzen PJ, The biology of the small hive beetle (*Aethina tumida*, Coleoptera : Nitidulidae): gaps in our knowledge of an invasive species. *Apidologie* **35**:229–247 (2004).

8 Ward L, Brown M, Neumann P, Wilkins S, Pettis J and Boonham N, A DNA method for screening hive debris for the presence of small hive beetle (*Aethina tumida*). *Apidologie* **38**:272–280 (2007).

9 Ammazzalorso AD, Zolnik CP, Daniels TJ and Kolokotronis SO, To beat or not to beat a tick: comparison of DNA extraction methods for ticks (*Ixodes scapularis*). *PeerJ* **3**:e1147 (2015).

10 Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S and Madden TL, Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. *BMC Bioinformatics* **13**:134 (2012).

11 Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M et al., Primer3—new capabilities and interfaces. *Nucleic Acids Res* **40**:e115 (2012).