Abstract: Photocatalytic water splitting for hydrogen generation is a significant pathway for sustainable energy conversion and production. The photocatalysts with a Z-scheme water splitting charge transfer pathway is superior due to the good separation and migration ability of photoexcited charge carriers. Herein, Co$_3$O$_4$/g-C$_3$N$_4$ photocatalysts with Z-scheme charge transfer pathway were successfully constructed by an electrostatic interaction-annealing method. The as-prepared Co$_3$O$_4$/g-C$_3$N$_4$ ultra-thin nanosheets were tested and analyzed by XRD, EA, ICP, SEM, TEM, AFM, XPS, UV-Vis DRS, PL and photoelectrochemical measurements. Moreover, the influences of fabrication parameters on performance of Co$_3$O$_4$/g-C$_3$N$_4$ catalysts were investigated, and 0.5% Co$_3$O$_4$/g-C$_3$N$_4$ exhibited the optimal activity. Based on the characterization and catalytic performance, the Z-scheme charge transfer pathway of Co$_3$O$_4$/g-C$_3$N$_4$ was established and put forward. To further improve the catalytic performance of Co$_3$O$_4$/g-C$_3$N$_4$, 0.5% Pt was added as a co-catalyst. The obtained Pt/0.5% Co$_3$O$_4$/g-C$_3$N$_4$ was recyclable and remained the original catalytic water splitting performance within 20 h. The modification of Co$_3$O$_4$ and Pt improved the separation and migration of e^- and h^+, and induced the increased hydrogen evolution rate of g-C$_3$N$_4$.

Keywords: Co$_3$O$_4$/g-C$_3$N$_4$ ultra-thin nanosheets; Z-scheme charge transfer pathway; photocatalytic; water splitting; H$_2$ evolution

1. Introduction

Photocatalytic hydrogen generation is a high efficiency, environmentally friendly and economically practical technology for utilizing solar energy [1–3]. It promises a sustainable alternative via semiconductors to address environmental issues and energy shortages all around the world [4–6]. The strong optical absorption ability, high separation and migration efficiency and stability are major factors for the photocatalysts’ activity for hydrogen evolution [7,8]. Now efforts have been devoted to fabricating more and more effective semiconductors for solar-energy utilization and conversion, majorly categorized as metal oxides, amorphous (oxy)-hydroxides, (oxy)sulphides and polymeric catalysts [9,10].

Graphitic carbon nitride (g-C$_3$N$_4$) is a robust and nontoxicity polymeric catalyst with good properties [11]. It was constructed by the polymerization method as a photocatalytic water splitting catalyst in 2009 [12]. Up to now, g-C$_3$N$_4$ has been widely developed as an emerging and prospective catalyst in different areas, for example photocatalytic degradation of pollution [13], hydrogen evolution through photocatalytic water splitting [14] and CO$_2$ reduction [15]. Nowadays g-C$_3$N$_4$ with various morphologies have emerged,
such as quantum dots [16,17], nanotubes [18,19], bulk g-C\textsubscript{3}N\textsubscript{4} and g-C\textsubscript{3}N\textsubscript{4} nanosheets [20]. Two-dimensional g-C\textsubscript{3}N\textsubscript{4} nanosheets have been intensively explored because of their outstanding photocatalytic performance in the past few years [20]. For example, the hydrogen generation ability of two-dimensional g-C\textsubscript{3}N\textsubscript{4} nanosheets was improved by Lu and co-workers [21]. It is reported that g-C\textsubscript{3}N\textsubscript{4} nanosheets have an improved catalytic performance compared with bulk g-C\textsubscript{3}N\textsubscript{4}, benefiting from its enlarged redox potentials [22], and prolonged charge carrier lifetime. As has been reported, a short transfer path can be obtained in the g-C\textsubscript{3}N\textsubscript{4} nanosheets [22]. Therefore, efficient performance of g-C\textsubscript{3}N\textsubscript{4} with 2D ultra-thin structure can be anticipated. In 2015, Liu and co-workers reported that the as-synthesized g-C\textsubscript{3}N\textsubscript{4} nanosheets possessed an efficient water splitting ability by nature-inspired environment “phosphorylation” [23]. Unfortunately, g-C\textsubscript{3}N\textsubscript{4} has a lot of defects, such as an inner self-combination of electrons and holes, limited light response ability, and so on [24]. To overcome the above shortcomings and greatly enhance its photocatalytic \(\text{H}_2 \) production activity, semiconductor composite [25], dye sensitization, and co-catalyst modification [26] have been tried.

Among the semiconductor composites, the Z-scheme charge transfer pathway is a practical strategy. Its prominent advantages are the efficient separation of e− and h+ at conduction band edges (\(E_{\text{CB}} \)) of one semiconductor and valence band edges (\(E_{\text{VB}} \)) of other semiconductors, respectively. Therefore, it can inhibit the inner self-combination of electrons and holes. The transfer process schematic diagram has the same shape as the letter Z, called the Z charge transfer pathway. What is more, it is extensively utilized by researchers to boost the effective separation and migration of charges, facilitate hydrogen generation of water splitting and perform a superior photocatalytic performance. For instance, Xie and co-workers synthesized Ag\textsubscript{2}AgI/BiO\textsubscript{I}-Bi\textsubscript{2}O\textsubscript{3} photocatalyst with Z-scheme multi-charge transfer pathway, which exhibited excellent photocatalytic performance [27]. Qu et al. constructed Ag\textsubscript{2}MoO\textsubscript{4}/Ag/AgBr Z-scheme composites. The obtained composites exhibited an excellent performance for RhB photocatalytic degradation under various reaction conditions [28]. The photocatalysts with Z-scheme photocatalytic charge transfer pathway have different band structures. The p-type transition metal oxide semiconductor, Co\textsubscript{3}O\textsubscript{4}, is a narrow band gap photocatalyst, and has been widely employed as an excellent catalyst [29]. Co\textsubscript{3}O\textsubscript{4} and g-C\textsubscript{3}N\textsubscript{4} can meet the requirements of Z-scheme charge transfer pathway due to their suitable valence band edges and conduction band edges [30]. Through the modification of Co\textsubscript{3}O\textsubscript{4} and construction of Z-scheme charge transfer pathway, an electric field between Co\textsubscript{3}O\textsubscript{4} and g-C\textsubscript{3}N\textsubscript{4} photocatalysts is constructed, which is of benefit to the charge separation and migration. Therefore, improved photocatalytic performance can be obtained on Co\textsubscript{3}O\textsubscript{4}/g-C\textsubscript{3}N\textsubscript{4}.

Co\textsubscript{3}O\textsubscript{4}/g-C\textsubscript{3}N\textsubscript{4} catalysts have been applied to degrade tetracycline [30], several dye pollutants [31] and photocatalytic water oxidation [32]. They all exhibited outstanding photocatalytic performances. For instance, Jin et al. synthesized Co\textsubscript{3}O\textsubscript{4}/g-C\textsubscript{3}N\textsubscript{4} as peroxymonsulfate-mediated photocatalytic catalysts, which showed good activity for tetracycline degradation [30]. Qu et al. synthesized Co\textsubscript{3}O\textsubscript{4}/g-C\textsubscript{3}N\textsubscript{4} composites with outstanding photocatalytic peroxymonsulfate activation performance for dyes’ degradation [31].

As has been reported, introducing co-catalysts can greatly improve the hydrogen evolution reaction performance of semiconductors. Researchers have found that modification with noble metal Pt can boost the photocatalysts’ water splitting activity [33,34]. As an electron mediator, Pt has a low Fermi level, which has an important impact on the \(\text{H}_2 \) evolution performance.

Based on former reports, g-C\textsubscript{3}N\textsubscript{4} nanosheets with uniform thickness were synthesized by a polymerization method in the paper. Co\textsubscript{3}O\textsubscript{4} was then introduced via an electrostatic interaction–calcination method to form Z-scheme charge transfer pathway in order to obtain efficient separation of charge carriers and high photocatalytic water splitting performance. With further Pt modification, better activity was obtained. The Z-scheme photocatalytic charge transfer pathway of Co\textsubscript{3}O\textsubscript{4}/g-C\textsubscript{3}N\textsubscript{4} was put forward based on the experimental data.
2. Materials and Methods

2.1. Materials

All the reagents that were used were analytical pure. Triethanolamine (TEOA) was purchased from Aladdin Industry Corporation, Shanghai, China. Melamine was purchased from Tianjin Jiangtian Chemical Technology Co. Ltd., Tianjin, China. Ammonia chloride was purchased from Wind Ship Chemical Reagent Technology Co. Ltd., Tianjin, China. Anhydrous ethanol and ammonium bicarbonate were purchased from Guangfu Technology Development Co. Ltd., Tianjin, China. Cobalt chloride hexahydrate and chloroplatinic acid were purchased from Mascot Chemical Co. Ltd., Tianjin, China.

2.2. Fabrication of g-C$_3$N$_4$

The large-scale production of few-layer and ultra-thin g-C$_3$N$_4$ nanosheets with uniform thickness was performed by the facile method of polymerization. 5 g melamine and 10 g ammonia chloride were fully grounded into powder and then calcinated at 550 °C for 4 h in the air atmosphere. This product was collected and named as g-C$_3$N$_4$.

2.3. Synthesis of the Ultra-Thin Co$_3$O$_4$/g-C$_3$N$_4$ Catalysts

The series Co$_3$O$_4$/g-C$_3$N$_4$ nanosheets were prepared via electrostatic interaction and calcination methods. 0.72 g g-C$_3$N$_4$ was sonicated for 0.5 h to disperse in 100 mL anhydrous ethanol. Subsequently, different masses of CoCl$_2$·6H$_2$O were added into the above system, followed with a stoichiometric ratio of NH$_4$HCO$_3$, and n(CoCl$_2$·6H$_2$O): n(NH$_4$HCO$_3$) = 1:3 [31]. After continuous stirring for 6 h, the sample was centrifugated, washed and dried at 85 °C. The as-synthesized materials were calcinated at 350 °C for 2 h. The series Co$_3$O$_4$/g-C$_3$N$_4$ catalysts with various mass ratios were collected, and are denoted as 0.3, 0.5, 1, 3, 6, 12 wt.% Co$_3$O$_4$/g-C$_3$N$_4$, respectively. For comparison, the pure Co$_3$O$_4$ was fabricated by calcination of CoCl$_2$·6H$_2$O at 600 °C for 4 h.

2.4. Characterization

The X-ray powder diffraction (XRD) was characterized by a diffractometer from Rigaku Corporation. Scanning electron microscopy image was observed by a SU3500 (Hitachi, Tokyo, Japan) microscope. Elemental analysis was explored by Elemental Analyzer (Vario EL cube, Langenselbold, Germany). The ICP analysis was performed by Inductive Coupled Plasma Emission Spectrometer (SpectroBlue, Kleve, Germany). Transmission electron microscopy (TEM) was observed by a FEI TalosF200X instrument. EDS analyses were characterized by an energy dispersive X-ray spectroscope (Bruker, Billerica, MA, USA). Atomic force microscopy (AFM) images were performed by the Bruker icon AFM instrument. The X-ray photoelectron spectroscopy (XPS, Thermo escalab 250Xi) analysis was characterized on a photoemission spectroscopy, using a mono AlKα radiation source. The UV–Vis diffuse reflection spectra (UV–Vis DRS) was explored by a UV–Vis spectrophotometer (UV3600-Plus, Shimadzu, Kyoto, Japan). Photoluminescence spectra (PL) was conducted by a spectrophotometer (PTI, New York, NY, USA). Electrochemical experiments were explored with a workstation (Zahner Zenium, Kronach, Germany).

2.5. Photocatalytic Activity

The H$_2$ production tests were implemented with the catalyst (50 mg), which was dispersed in triethanolamine solution (10% vol TEOA) in the Labsolar-6A online system. 0.5 wt.% Pt, which was used as co-catalyst, was in-situ reduced by light on the catalysts by adding H$_2$PtCl$_6$ aqueous solution in the above suspension of the reaction. After vacuuming, the Argon gas was added. A 300 W Xenon lamp was served to achieve the system irradiation during tests. The solution temperature was controlled at 5 °C to avoid the thermal effect produced by light. Additionally, the tests were carried out using a gas chromatograph and the carrier gas is Argon (GC D7900 II, Tianmei, Shanghai, China).
3. Results and Discussion

3.1. XRD Analysis

The XRD measurement was characterized to confirm the phase of the catalysts, as shown in Figure 1. The peaks at 2θ = 13.0 and 27.7° were indexed to the characteristic peaks of g-C3N4 [36,35]. The diffraction peaks at 2θ = 19.0°, 31.3°, 36.9°, 38.5°, 44.8°, 55.7°, 59.4° and 65.2° were indexed as (1 1 1), (2 2 0), (3 1 1), (2 2 2), (4 0 0), (4 2 2), (5 1 1) and (4 4 0) plane of cubic Co3O4 (PDF#42-1467), respectively. It was evident that the peaks of Co3O4 and g-C3N4 were both existed in the 6% and 12% Co3O4/g-C3N4 photocatalysts’ XRD patterns. No obvious Co3O4 peaks were observed in Co3O4/g-C3N4 samples with 0.3%, 0.5%, 1% and 3% Co3O4. That might be owing to the relatively low content and high distribution of Co3O4 [36]. What is more, as clearly demonstrated, the peaks of the photocatalysts were sharp and strong, illustrating that the samples possessed an excellent crystallization. There were no peaks of other phases in Figure 1, which indicated the good purity of the synthesized photocatalysts.

![Figure 1. XRD pattern of fabricated samples.](image)

3.2. EA and ICP

For the g-C3N4 sample, the atomic ratio of C element and N element was investigated by EA. The value exhibited a result that the atomic ratio of C/N = 3.00: 4.27, which was very close to the value of g-C3N4. Based on XRD analysis results, the as-synthesized products were pure g-C3N4.

The amounts of Co element in the as-prepared catalysts were monitored by the ICP. The actual contents of 0.3%, 0.5%, 1%, 3%, 6% and 12% Co3O4/g-C3N4 is 0.3540, 0.5354, 1.146, 3.038, 6.253, 12.44 wt.%, respectively. The corresponding contents of Co3O4 in the series Co3O4/g-C3N4 photocatalysts are close to theoretical values. Due to the negative zeta potentials of g-C3N4, there was strong electrostatic interaction between Co2+ and g-C3N4 nanosheets [37]. As a result, the added Co2+ should have no considerable loss. Actually, the actual weight ratio of Co3O4 to g-C3N4 in the prepared Co3O4/g-C3N4 catalysts was a little higher than original CoCl2·6H2O to g-C3N4. It was assignable to the slight weight loss after the second calcination process of g-C3N4.

3.3. Morphology Analysis

The microstructure of as-fabricated catalysts was presented in Figure 2. From Figure 2a, Co3O4 had polyhedral structure, and the 0.5% Co3O4/g-C3N4 showed an irregular and crinkly structure. Pt/0.5% Co3O4/g-C3N4 exhibited 2D morphology with a crinkly nanosheet structure, which seem to be a loose and soft product with a diameter of several micrometers. As observed in the images, the microstructures of 0.5% Co3O4/g-C3N4 and Pt/0.5% Co3O4/g-C3N4 were nanosheets. The composition and elements distribution of 0.5% Co3O4/g-C3N4 and Pt/0.5% Co3O4/g-C3N4 were further investigated by EDS maps, as displayed in Figures 3 and 4. All of the elements were uniformly dispersed in the photocatalysts, and no signals of other elements were observed. Furthermore, the existence of C, N,
Co, O and Pt were highly coincided with the area of g-\textit{C}_3N_4. It seems that Co$_3$O$_4$ and Pt could be uniformly deposited on the g-\textit{C}_3N_4.

![SEM images](image1)

Figure 2. SEM images of (a) Co$_3$O$_4$, (b) 0.5\% Co$_3$O$_4$/g-C$_3$N$_4$, and (c) Pt/0.5\% Co$_3$O$_4$/g-C$_3$N$_4$. The TEM image of (d) 0.5\% Co$_3$O$_4$/g-C$_3$N$_4$ and (e,f) Pt/0.5\% Co$_3$O$_4$/g-C$_3$N$_4$.

Figure 3. (a) The TEM image of 0.5% Co$_3$O$_4$/g-C$_3$N$_4$. (b–e) Elemental maps of the catalyst: (b) C, (c) N, (d) Co and O elements.

Figure 4. (a) HAADF-TEM image of Pt/0.5% Co$_3$O$_4$/g-C$_3$N$_4$. (b–f) Elemental maps of the catalyst: (b) C, (c) N, (d) Co, (e) O and (f) Pt elements.

3.4. AFM Analysis

To further investigate the structure and height profiles of the photocatalysts, AFM was performed. The images and corresponding thickness of samples were presented in Figure 5. The architectures of the g-C$_3$N$_4$ were 2D ultra-thin nanosheets, with 1–2 nm step height. As illustrated in Figure 5c,d, there is no obvious step height change for 0.5% Co$_3$O$_4$/g-C$_3$N$_4$ ultra-thin nanosheets. Additionally, g-C$_3$N$_4$ and 0.5% Co$_3$O$_4$/g-C$_3$N$_4$ nanosheets both exhibited few-layer ultra-thin nanosheets with uniform thickness. Ultrathin nanosheets had a short bulk diffusion length [22,38]. Compared with bulk g-C$_3$N$_4$, ultrathin g-C$_3$N$_4$ nanosheets and 0.5% Co$_3$O$_4$/g-C$_3$N$_4$ photocatalysts had a shorter electron transfer path, which can increase the lifetime of photoexcited electrons. The unique structure of few-layer g-C$_3$N$_4$ photocatalyst generated numerous charge transfer nanochannels and provided a...
short transfer path for electron transfer, which would promote the efficient separation and migration of e\(^-\) and h\(^+\) [22].

![Figure 5. (a,b) AFM images and corresponding thickness of pure 2D g-C\(_3\)N\(_4\) and (c,d) 0.5 % Co\(_3\)O\(_4\)/g-C\(_3\)N\(_4\).](image)

3.5. XPS Analysis

To confirm the element compositions and chemical states in the as-synthesized 0.5% Co\(_3\)O\(_4\)/g-C\(_3\)N\(_4\), the XPS analysis was conducted. From XPS survey spectrum (Figure 6a), C 1s, N 1s and O 1s peaks were evident. What is more, no signals assigned to other elements were displayed in this survey spectrum, suggesting that the purity of the samples is very high. As displayed in Figure 6b, the peak at 287.7 eV is due to sp\(^2\) C atoms, which can bond to N atoms in catalysts [39]. Additionally, the peak at 293.1 eV is owing to π-excitation [40]. Evidently, N 1s has three different peaks at 398.1 eV, 400.0 eV and 404.0 eV in Figure 5c assigning to sp\(^2\) N atoms of triazine rings, bridging nitrogen atoms in (N–(C\(_3\)) and the charging effects of the hetero-cycles or positive charge localization [41], respectively. The Co 2p at the peaks of 780.4 and 796.1 eV are ascribed to Co 2p\(_{3/2}\) and Co 2p\(_{1/2}\), suggesting that Co\(_3\)O\(_4\) exists in the photocatalysts [42,43]. Compared with g-C\(_3\)N\(_4\), there was negative energy shift of C 1s and N 1s in 0.5% Co\(_3\)O\(_4\)/g-C\(_3\)N\(_4\) photocatalysts, indicating that the e\(^-\) are transferred from Co\(_3\)O\(_4\) to g-C\(_3\)N\(_4\) [31]. As discussed in the Z-scheme charge transfer system, e\(^-\) on CB of Co\(_3\)O\(_4\) can migrate to VB of the other semiconductor. Therefore, Z-scheme charge transfer pathway of Co\(_3\)O\(_4\)/g-C\(_3\)N\(_4\) system agreed with the results of negative binding energy shift in 0.5% Co\(_3\)O\(_4\)/g-C\(_3\)N\(_4\) photocatalysts. These results take firm evidence that the Co\(_3\)O\(_4\) and g-C\(_3\)N\(_4\) were co-existed in the samples and Z-scheme charge transfer pathway was constructed in photocatalysts.
3.6. UV–Vis DRS Analysis

The UV–Vis DRS spectrophotometer analysis was performed to measure optical absorption properties of the catalysts. 0.5% Co$_3$O$_4$/g-C$_3$N$_4$ possessed a strong absorption and its edge located at 443 nm in Figure 6a. Additionally, although the absorption edges and bandgap energies of g-C$_3$N$_4$ and 0.5% Co$_3$O$_4$/g-C$_3$N$_4$ had no apparent distinction, optical absorption intensity of 0.5% Co$_3$O$_4$/g-C$_3$N$_4$ was apparently increased, which made it easier to harvest light. The spectra (Figure 7a) of the catalysts suggested that the samples displayed a strong absorption all between 200–440 nm, which covered ultraviolet and visible regions. These photocatalysts can respond to the visible light and their responsiveness was enhanced, which has probably a more important advantage to photocatalytic water splitting. Bandgaps of Co$_3$O$_4$, g-C$_3$N$_4$ and 0.5% Co$_3$O$_4$/g-C$_3$N$_4$ photocatalysts were achieved by the Tauc plots, and results are presented in Figure 7b. The bandgap (E_g) of catalysts can be received by the Tauc Equation [44]. Because the Co$_3$O$_4$ [45] and g-C$_3$N$_4$ [46] are typical direct semiconductors, n in the Tauc equation should be all 1/2. The E_g of as-prepared g-C$_3$N$_4$ and Co$_3$O$_4$ are 2.8 eV and 2.0 eV, respectively. The E_{CB} values of Co$_3$O$_4$ and g-C$_3$N$_4$ are obtained via this equation.

$$E_{CB} = \chi - E_e - 0.5E_g$$ (1)
χ for g-C3N4 and Co3O4 are 4.64 [47] and 5.90 [48], respectively. E_CB of g-C3N4 and Co3O4 are −1.26 eV and 0.4 eV, respectively. So E_VB values of g-C3N4 and Co3O4 are 1.54 eV and 2.4 eV, respectively. Because of the appropriate band structure of two semiconductors, the e− would like to transfer from CB of Co3O4 to VB of g-C3N4. Finally, e− and h+ accumulate at CB of g-C3N4 and VB of Co3O4, respectively. Charge carriers can be effectively separated. These data of g-C3N4 and Co3O4 can be known based on the formulas and experiments.

![Figure 7](image1.png)

Figure 7. (a) UV–Vis DRS of the catalysts. (b) Bandgap energies of the photocatalysts.

3.7. PL

As displayed in Figure 8, the recombination ability of e− and h+ was speculated from the photoluminescence intensity of the samples. All the photocatalysts were evaluated at the excitation wavelength, which was 320 nm. Generally, the higher intensity of the PL emission spectra means a worse separation ability of carriers [49]. The spectrum of 0.5% Co3O4/g-C3N4 catalyst showed lower emission intensity than the intensity of g-C3N4, leading to a lower recombining frequency of e− and h+ in 0.5% Co3O4/g-C3N4. The lower the peak of photoluminescence spectra presented, the more excellent catalytic performance can be anticipated. It seems that 0.5% Co3O4/g-C3N4 catalyst may have a better photocatalytic performance than pure g-C3N4.

![Figure 8](image2.png)

Figure 8. Steady-state photoluminescence spectra of fabricated photocatalysts.

3.8. Photoelectrochemical Analysis

The photocurrent measurement was produced under the irradiation of 429 nm wavelength light, as illustrated in Figure 9. The photocurrent immediately increased to a value and remained when the light irradiated on the catalysts. The photocurrent decreased as soon as the light turned off. It manifested that 0.5% Co3O4/g-C3N4 has a photocurrent response and the photocurrent value is around 10 nA at 0.1 V. However, no photocurrent existed in g-C3N4. It indicated that 0.5% Co3O4/g-C3N4 is visible to light-responsive photocatalysts. After Co3O4 was introduced, the g-C3N4 catalyst can respond to visible light, and a photocurrent was exhibited. That should be attributed to the formation of Z-scheme charge transfer pathway, which resulted in improved separation and migration...
of the photo-induced charges. As a result, a photocurrent with higher intensity can be obtained.

![Figure 9](image-url)

Figure 9. The photocurrent measurement spectra of the 0.5% Co\(_3\)O\(_4\)/g-C\(_3\)N\(_4\) catalysts.

3.9. Photocatalytic Activity and Cycling Tests

As illustrated in Figure 10a, g-C\(_3\)N\(_4\) exhibits no activity. However, the series Co\(_3\)O\(_4\)/g-C\(_3\)N\(_4\) catalysts all present good photocatalytic performance, and 0.5% Co\(_3\)O\(_4\)/g-C\(_3\)N\(_4\) has the fine H\(_2\) evolution rate of 8.774 \(\mu\)mol·g\(^{-1}\)·h\(^{-1}\). Obviously, the modification of Co\(_3\)O\(_4\) can greatly promote the water splitting reaction rate of g-C\(_3\)N\(_4\). The results of photocatalytic activity tests can be proved by photoelectrochemical analysis. As indicated in the photoelectrochemical analysis, the g-C\(_3\)N\(_4\) can respond to 429 nm only after Co\(_3\)O\(_4\) was modified. Therefore, the quantum yield of g-C\(_3\)N\(_4\) is low. Catalytic activity of g-C\(_3\)N\(_4\) is also low. The photoluminescence spectra analysis showed that e\(^-\) and h\(^+\) in the g-C\(_3\)N\(_4\) have higher recombination rates. It suggested that g-C\(_3\)N\(_4\) has a lower photocatalytic hydrogen production.

![Figure 10](image-url-a) ![Figure 10](image-url-b)

Figure 10. (a,b) Photocatalytic hydrogen evolution performance of prepared catalysts.

According to the band structure of Co\(_3\)O\(_4\) and g-C\(_3\)N\(_4\) as we noted above, the reasonable photocatalytic charge transfer pathway was preliminarily put forward to explain the reason for catalytic improved-performance of 0.5% Co\(_3\)O\(_4\)/g-C\(_3\)N\(_4\) in Figure 11. The electrons of Co\(_3\)O\(_4\) and g-C\(_3\)N\(_4\) are photo-generated from VB to CB in response to irradiation. After calcination, interaction between Co\(_3\)O\(_4\) and g-C\(_3\)N\(_4\) was enhanced. The e\(^-\) on CB of Co\(_3\)O\(_4\) would quickly migrate to VB of g-C\(_3\)N\(_4\) and combine with h\(^+\), which replaced inner self-combination. Some holes were reacted with TEOA, which worked as an oxidation sacrificial agent. Therefore, the electric field between Co\(_3\)O\(_4\) and g-C\(_3\)N\(_4\) was formed, with electrons and holes accelerated at different parts. The electric field can promote the directional transfer of charges and introduction of Co\(_3\)O\(_4\) can boost the electric field of Co\(_3\)O\(_4\)/g-C\(_3\)N\(_4\). Hence, the existence of Co\(_3\)O\(_4\) effectively promoted the interfacial charges to separate and transfer and the hydrogen generation, leading to superior photocatalytic performance. What is more, the XPS analysis indicated that e\(^-\) are transferred from Co\(_3\)O\(_4\)
to g-C$_3$N$_4$ nanosheets. It suggested that the Z-scheme charge transfer pathway was in agreement with experiment results.

Figure 11. Proposed mechanism of photocatalytic system.

The probable reactions process of photocatalytic hydrogen generation is as follows:

$$
\text{Co}_3\text{O}_4/\text{g-C}_3\text{N}_4 + \text{hv} \rightarrow \text{Co}_3\text{O}_4(e^- + h^+) / \text{g-C}_3\text{N}_4(e^- + h^+) \tag{2}
$$

$$
h_{VB}^+(\text{Co}_3\text{O}_4) + \text{TEOA} \rightarrow \text{oxidation product of sacrificial reagent} \tag{3}
$$

$$
e_{CB}^-(\text{g-C}_3\text{N}_4) + 2\text{H}_2\text{O} \rightarrow \text{H}_2 + 2\text{OH}^- \tag{4}
$$

Thence, the proposed Z-scheme charge transfer pathway of photocatalysts showed good separation and migration of e^- and h^+. The obvious enhancement of the hydrogen generation ability of the 0.5% Co$_3$O$_4$/g-C$_3$N$_4$ ultra-thin nanosheets may attribute to the significant and ideal Z-scheme photocatalytic charge transfer pathway.

After Pt was added, further efforts were made to improve the performance of Co$_3$O$_4$/g-C$_3$N$_4$. As presented in Figure 10a, Pt/0.5% Co$_3$O$_4$/g-C$_3$N$_4$ exhibited a predominant rate and the average rate was up to 1620 µmol g$^{-1}$ h$^{-1}$. This is 2.1 times the photocatalytic performance of Pt/g-C$_3$N$_4$.

To explore the influence of Co$_3$O$_4$ contents on the performance of the Pt/Co$_3$O$_4$/g-C$_3$N$_4$, results of Pt/Co$_3$O$_4$/g-C$_3$N$_4$ with different Co$_3$O$_4$ contents were shown in Figure 10b. From this figure, it can be observed that all photocatalysts manifested improved hydrogen generation activity compared with Pt/g-C$_3$N$_4$, except Pt/12% Co$_3$O$_4$/g-C$_3$N$_4$. Owning to the relatively low content of Co$_3$O$_4$ (0.5% Co$_3$O$_4$), Pt was mainly deposited on g-C$_3$N$_4$ nanosheets. When the catalyst was illuminated, the electrons migrated from Co$_3$O$_4$ to g-C$_3$N$_4$, and were finally transferred to Pt. The H$^+$ in the solution obtained the electrons from the Pt particles to form H$_2$. When the Co$_3$O$_4$ content was relatively low (0.3%), Z-scheme charge transfer pathway is still the main pathway in this photocatalytic system. However, the amount of electrons and holes in Co$_3$O$_4$ was relatively low than that in the 0.5% one. Therefore relatively large amounts of holes in g-C$_3$N$_4$ were reacted with TEOA instead of combining with the electrons in Co$_3$O$_4$. As a result, e^- and h^+ in the Pt/0.3% Co$_3$O$_4$/g-C$_3$N$_4$ have higher recombination rates than in Pt/0.5% Co$_3$O$_4$/g-C$_3$N$_4$, and the Pt/0.3% Co$_3$O$_4$/g-C$_3$N$_4$ exhibited lower photoactivity. When Co$_3$O$_4$ contents increased, Co$_3$O$_4$ will accumulate. More and more Pt/Co$_3$O$_4$ interfaces formed, and the electrons migrated from Co$_3$O$_4$ to Pt, instead of combining with the holes in g-C$_3$N$_4$. Consequently, the Z-scheme charge transfer pathway was blocked, and the activity of Co$_3$O$_4$/g-C$_3$N$_4$ decreased with the increasing Co$_3$O$_4$ contents.

Cycling stability tests of the optimal Pt/0.5% Co$_3$O$_4$/g-C$_3$N$_4$ were evaluated by a recycle experiment, which was presented in Figure 12. It could suggest that after four successive cycles, no noticeable diminution was observed within 20 h with TEOA as sacrificing
agents, suggesting that the Pt/0.5% Co3O4/g-C3N4 photocatalyst had an excellent stability and it is reusable for practical applications.

![Figure 12](image_url). Photocatalytic stability performance of Pt/0.5% Co3O4/g-C3N4.

4. Conclusions

In this paper, g-C3N4 ultra-thin nanosheets were fabricated via the polymerization method. The Co3O4/g-C3N4 series were fabricated by an electrostatic interaction-calcination treatment. The various characterization results indicated that the Co3O4/g-C3N4 catalysts exhibit Z-scheme charge transfer pathway, and possessed excellent photocatalytic hydrogen evolution performance with high stability and fine charge transfer ability. After Pt is added, the Co3O4/g-C3N4 exhibited better activity, and Pt/0.5% Co3O4/g-C3N4 exhibited the best activity, with a hydrogen generation rate of 1620 μmol·g\(^{-1}\)·h\(^{-1}\). Based on the characterization and environment data, the catalytic reaction charge transfer pathway of Pt/Co3O4/g-C3N4 was proposed. Therefore, the work provided a promising method to design efficient and reusable photocatalytic systems with Z-scheme charge transfer pathways for solar-energy conversion. Further practical applications of this Z-scheme charge transfer pathway were anticipated.

Author Contributions: Conceptualization and methodology, Y.G. and W.L.; software, Y.G.; validation, Y.G., W.D. and G.Z.; formal analysis, Y.G., W.L. and W.D.; investigation, Y.G. and W.D.; resources, Y.G.; data curation, Y.G., W.D. and S.W.; writing—original draft preparation, Y.G.; writing—review and editing, Y.G. and W.L.; visualization, Y.G., W.D. and L.J.; supervision, B.Z., W.H. and S.Z.; project administration, B.Z., W.H. and S.Z.; funding acquisition, B.Z., W.H. and S.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant number 21271110.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Huang, Z.F.; Song, J.; Wang, X.; Pan, L.; Li, K.; Zhang, X.W.; Wang, L.; Zou, J.J. Switching charge transfer of C3N4/W18O49 from type-II to Z-scheme by interfacial band bending for highly efficient photocatalytic hydrogen evolution. *Nano Energy* 2017, 40, 308–316. [CrossRef]
2. Wang, Q.; Hisatomi, T.; Jia, Q.; Tokudome, H.; Zhong, M.; Wang, C.Z.; Pan, Z.H.; Takata, T.; Nakabayashi, M.; Shibata, N.; et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. *Nat. Mater.* 2016, 15, 611–615. [CrossRef]
3. Tan, M.; Yu, C.; Li, J.; Li, Y.; Tao, C.D.; Liu, C.B.; Meng, H.M.; Su, Y.J.; Qiao, L.J.; Bai, Y. Engineering of g-C3N4-based photocatalysts to enhance hydrogen evolution. *Adv. Colloid Interface Sci.* 2021, 295, 102488. [CrossRef] [PubMed]
4. Wang, M.; Xi, X.; Gong, C.; Zhang, X.L.; Fan, G.L. Open porous BiVO4 nanomaterials: Electrospinning fabrication and enhanced visible light photocatalytic activity. *Mater. Res. Bull.* 2016, 74, 258–264. [CrossRef]
5. Su, T.; Hood, Z.D.; Naguib, M.; Bai, L.; Luo, S.; Rouleau, C.M.; Ivanov, I.N.; Ji, H.B.; Qin, Z.Z.; Wu, Z.L. 2D/2D heterojunction of Ti3C2/g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution. *Nanoscale* 2019, 11, 8138–8149. [CrossRef] [PubMed]
12. Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric
11. Zhang, C.; Li, Y.; Shuai, D.; Shen, Y.; Xiong, W.; Wang, L.Q. Graphitic carbon nitride (g-C
31. Gao, H.; Yang, H.; Xu, J.; Zhang, S.W.; Li, J.X. Strongly coupled g-C
30. Jin, C.; Wang, M.; Li, Z.; Kang, J.; Zhao, Y.; Han, J.; Wu, Z.M. Two dimensional CoO
28. Qu, J.; Wang, X.; Zhang, Y.; Yuan, G.L. Multifunctional Ag nanoparticles in heterostructured Ag
25. He, F.; Chen, G.; Yu, Y.; Hao, S.; Zhou, Y.S.; Zheng, Y. Facile approach to synthesize g-PAN/g-C
21. Lu, X.; Xu, K.; Chen, P.; Jia, K.C.; Liu, S.; Wu, C.Z. Facile one step method realizing scalable production of g-C
20. Tonda, S.; Kumar, S.; Kandula, S.; Shanker, V. Fe-doped and-mediated graphitic carbon nitride nanosheets for enhanced
19. Liu, G.; Liao, M.; Zhang, Z.; Wang, H.Y.; Chen, D.H.; Feng, Y.J. Enhanced photodegradation performance of Rhodamine B with
18. Mo, Z.; Zhu, X.; Jiang, Z.; Song, Y.H.; Liu, D.B.; Li, H.P.; Yang, X.F.; She, Y.B.; Lei, Y.C.; Yuan, S.Q.; et al. Porous nitrogen-rich
17. Chen, X.; Liu, Q.; Wu, Q.; Du, P.W.; Zhu, J.; Dai, S.Y.; Yang, S.F. Incorporating graphitic carbon nitride (g-C3N4) quantum dots into bulk-heterojunction polymer solar cells leads to efficiency enhancement. Adv. Funct. Mater. 2016, 26, 1719–1728. [CrossRef]
16. Nasir, M.S.; Yang, G.; Ayub, I.; Wang, S.L.; Yan, W. Tin diselenide a stable co-catalyst coupled with branched TiO2 fiber and g-C3N4 quantum dots for photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2020, 270, 118900. [CrossRef]
15. Wang, K.; Li, Q.; Liu, B.; Cheng, B.; Ho, W.K.; Yu, J.G. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl. Catal. B Environ. 2013, 176, 44–52. [CrossRef]
14. Chen, X.; Liu, Q.; Wu, Q.; Du, P.W.; Zhu, J.; Dai, S.Y.; Yang, S.F. Incorporating graphitic carbon nitride (g-C3N4) quantum dots into bulk-heterojunction polymer solar cells leads to efficiency enhancement. Adv. Funct. Mater. 2016, 26, 1719–1728. [CrossRef]
13. Zhang, J.Y.; Zhang, S.H.; Li, J.; Zheng, X.C.; Guan, X.X. Constructing of 3D graphene aerogel-g-C3N4 nanosheets with superior purification efficiency for organic dyes. J. Mol. Liq. 2020, 310, 113242. [CrossRef]
12. Wang, J.; Shen, Z.; Lv, S.; Shen, K.; Wu, R.F.; Jiang, X.F.; Fan, T.; Chen, J.Y.; Li, Y.W. Fabricating sandwich-shelled ZnCdS/ZnO/ZnCdS dodecahedral cages with “one stone” as Z-scheme photocatalysts for highly efficient hydrogen production. J. Mater. Chem. A 2018, 6, 19631–19642. [CrossRef]
11. Zhou, H.; Qu, Y.; Zeid, T.; Duan, X.F. Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy Environ. Sci. 2012, 5, 6732–6743. [CrossRef]
10. Wang, Q.; Domen, K. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 2019, 120, 919–985. [CrossRef]
9. Zhou, H.; Qu, Y.; Zeid, T.; Duan, X.F. Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy Environ. Sci. 2012, 5, 6732–6743. [CrossRef]
8. Chen, J.; Shen, Z.; Lu, J.; Meng, F.Y.; Ma, C.C.; Yan, Y.S.; Meng, M.J. Nitrogen-doped hydrogenated TiO2 modified with CdS nanorods with enhanced optical absorption, charge separation and photocatalytic hydrogen evolution. Chem. Eng. J. 2020, 384, 123275. [CrossRef]
7. Qin, Y.; Li, H.; Lu, J.; Meng, F.Y.; Ma, C.C.; Yan, Y.S.; Meng, M.J. Nitrogen-doped hydrogenated TiO2 modified with CdS nanorods with enhanced optical absorption, charge separation and photocatalytic hydrogen evolution. Chem. Eng. J. 2020, 384, 123275. [CrossRef]
6. Cao, S.; Piao, L.; Chen, X. Emerging photocatalysts for hydrogen evolution. Trends Chem. 2020, 2, 57–70. [CrossRef]
32. Zhang, J.; Grzelczak, M.; Hou, Y.; Maeda, K.; Domen, K.; Fu, X.Z.; Antonietti, M.; Wang, X.C. Photocatalytic oxidation of water by polymeric carbon nitride nanohybrids made of sustainable elements. *Chem. Sci.* 2012, 3, 443–446. [CrossRef]

33. Zhang, G.; Lan, Z.A.; Wang, X. Surface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting. *Chem. Sci.* 2017, 8, 5261–5274. [CrossRef] [PubMed]

34. Liu, Y.; Liu, Y.; Li, Y.; Cao, Y.H.; Huang, J.N.; Wang, H.J.; Yu, H.; Liang, H.; Peng, F. Dual functional CuO$_{1-x}$ clusters for enhanced photocatalytic activity and stability of a Pt cocatalyst in an overall water-splitting reaction. *ACS Sustain. Chem. Eng.* 2018, 6, 17340–17351. [CrossRef]

35. Niu, P.; Zhang, L.; Liu, G.; Cheng, H.M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. *Adv. Funct. Mater.* 2012, 22, 4763–4770. [CrossRef]

36. Peng, S.; Cao, Y.; Zhou, F.; Xu, Z.D.; Li, Y.X. CoP decorated with Co$_3$O$_4$ as a cocatalyst for enhanced photocatalytic hydrogen evolution via dye sensitization. *Appl. Surf. Sci.* 2019, 487, 315–321. [CrossRef]

37. Zhang, X.; Xie, X.; Wang, H.; Wang, H.; Zhang, J.J.; Pan, B.C.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C$_3$N$_4$ nanosheets for bioimaging. *J. Am. Chem. Soc.* 2013, 135, 18–21. [CrossRef] [PubMed]

38. Li, A.; Wang, T.; Li, C.; Huang, Z.Q.; Luo, Z.B.; Gong, J.L. Adjusting the reduction potential of electrons by quantum confinement for selective photoreduction of CO$_2$ to methanol. *Angew. Chem. Int. Ed.* 2019, 58, 3804–3808. [CrossRef]

39. Fajrina, N.; Tahir, M. A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. *Int. J. Hydrogen Energy* 2019, 44, 540–577. [CrossRef]

40. Qiu, P.; Chen, H.; Jiang, F. Cobalt modified mesoporous graphitic carbon nitride with enhanced visible-light photocatalytic activity. *RSC Adv.* 2014, 4, 39969–39977. [CrossRef]

41. Cui, Y.; Ding, Z.; Fu, X.; Wang, X.C. Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis. *Angew. Chem. Int. Ed.* 2012, 51, 11814–11818. [CrossRef] [PubMed]

42. Chen, G.; Si, X.; Yu, J.; Bai, H.Y.; Zhang, X.H. Doping nano-Co$_3$O$_4$ surface with bigger nanosized Ag and its photocatalytic properties for visible light photodegradation of organic dyes. *Appl. Surf. Sci.* 2015, 330, 191–199. [CrossRef]

43. Chen, G.L.; Guyon, C.; Zhang, Z.X.; Ognier, S.; Beem, J.; Tatoulian, M. The different structure characteristics of nanosized Co$_3$O$_4$ film crystallized by the annealing and plasma techniques. *Mater. Lett.* 2013, 107, 111–114. [CrossRef]

44. Makula, P.; Pacia, M.; Macyk, W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. *Phys. Chem. Lett.* 2018, 9, 6814–6817. [CrossRef] [PubMed]

45. Wang, Y.; Zhu, C.; Zuo, G.; Guo, Y.; Xiao, W.; Dai, Y.X.; Kong, J.J.; Xu, X.M.; Zhou, Y.X.; Xie, A.M.; et al. 0D/2D Co$_3$O$_4$/TiO$_2$ Z-Scheme heterojunction for boosted photocatalytic degradation and mechanism investigation. *Appl. Catal. B Environ.* 2020, 278, 119298. [CrossRef]

46. Li, G.; Wang, B.; Zhang, J.; Wang, R.; Liu, H.L. Rational construction of a direct Z-scheme g-C$_3$N$_4$/CdS photocatalyst with enhanced visible light photocatalytic activity and degradation of erythromycin and tetracycline. *Appl. Surf. Sci.* 2019, 478, 1056–1064. [CrossRef]

47. Chen, M.; Wu, J.; Lu, C.; Luo, X.; Huang, Y.Q.; Jin, B.; Gao, H.X.; Zhang, X.W.; Argyle, M.; Liang, Z.W. Photoreduction of CO$_2$ in the presence of CH$_4$ over g-C$_3$N$_4$ modified with TiO$_2$ nanoparticles at room temperature. *Green Energy Environ.* 2020, 6, 938–951. [CrossRef]

48. Chang, X.; Wang, T.; Zhang, P.; Zhang, J.J.; Li, A.; Gong, J.L. Enhanced surface reaction kinetics and charge separation of p–n heterojunction CoO$_4$/BiVO$_4$ photoanodes. *J. Am. Chem. Soc.* 2015, 137, 8356–8359. [CrossRef] [PubMed]

49. Li, Y.; Xue, Y.; Tian, J.; Song, X.J.; Zhang, X.J.; Wang, X.Z.; Cui, H.Z. Silver oxide decorated graphitic carbon nitride for the realization of photocatalytic degradation over the full solar spectrum: From UV to NIR region. *Sol. Energy Mater. Sol. Cells* 2017, 168, 100–111. [CrossRef]