INFINITELY MANY POSITIVE AND SIGN-CHANGING SOLUTIONS FOR NONLINEAR FRACTIONAL SCALAR FIELD EQUATIONS

Wei Long
School of Mathematics and Statistics, Central China Normal University
Wuhan, 430079, China
and
College of Mathematics and Information Science, Jiangxi Normal University
Nanchang, Jiangxi 330022, China

SHUANGJIE PENG AND JING YANG
School of Mathematics and Statistics, Central China Normal University
Wuhan, 430079, China

Abstract. We consider the following nonlinear fractional scalar field equation

\[(-\Delta)^s u + u = K(|x|)u^p, \quad u > 0 \text{ in } \mathbb{R}^N, \]

where \(K(|x|) \) is a positive radial function, \(N \geq 2, \) \(0 < s < 1, \) and \(1 < p < \frac{N + 2s}{N - 2s} \). Under various asymptotic assumptions on \(K(x) \) at infinity, we show that this problem has infinitely many non-radial positive solutions and sign-changing solutions, whose energy can be made arbitrarily large.

1. Introduction. In this paper, we consider the following nonlinear fractional scalar field equation

\[(-\Delta)^s u + u = K(x)u^p, \quad u > 0 \text{ in } \mathbb{R}^N, \quad u \in H^s(\mathbb{R}^N) \]

with dimension \(N \geq 2, \) where \(K(x) \) is a positive continuous potential, \(0 < s < 1, \) \(1 < p < 2_*(s) - 1, \) \(2_*(s) = \frac{2N}{N - 2s} \) and

\[H^s(\mathbb{R}^N) := \left\{ u \in L^2(\mathbb{R}^N) : \frac{|u(x) - u(y)|}{|x - y|^{N/2 + s}} \in L^2(\mathbb{R}^N \times \mathbb{R}^N) \right\}. \]

Here, the fractional Laplacian of a function \(f : \mathbb{R}^N \to \mathbb{R} \) is expressed by the formula

\[(-\Delta)^s f(x) = C_{N,s} \text{P.V.} \int_{\mathbb{R}^N} \frac{f(x) - f(y)}{|x - y|^{N + 2s}} dy = C_{N,s} \lim_{\varepsilon \to 0} \int_{\mathbb{R}^N \setminus B_\varepsilon(x)} \frac{f(x) - f(y)}{|x - y|^{N + 2s}} dy, \]

(2)

where \(C_{N,s} \) is some normalization constant (See Sect.2).

Problem (1) arises from looking for standing waves \(\Psi(t, x) = \exp(iEt)u(x) \) for the following nonlinear equations

\[i \frac{\partial \Psi}{\partial t} = (-\Delta)^s \Psi + (1 + E)\Psi - K(x)|\Psi|^{p-1}\Psi, \quad (t, x) \in \mathbb{R}^+ \times \mathbb{R}^N, \]

(3)

2010 Mathematics Subject Classification. 35J20, 35J60.

Key words and phrases. Fractional Laplacian, nonlinear scalar field equation, reduction method.
where i is the imaginary unit, $E \in \mathbb{R}$. This equation is of particular interest in fractional quantum mechanics for the study of particles on stochastic fields modelled by Lévy processes. A path integral over the Lévy flights paths and a fractional Schrödinger equation of fractional quantum mechanics are formulated by Laskin [24] from the idea of Feynman and Hibbs’s path integrals (see also [25]).

The Lévy processes occur widely in physics, chemistry and biology. The stable Lévy processes that give rise to equations with the fractional Laplacians have recently attracted much research interest, and there are a lot of results in the literature on the existence of such solutions, e.g., [4, 7, 18, 35, 5, 1, 40, 26, 30, 10, 11] and the references therein.

A partner problem of (1) is the following Schrödinger equation

$$(-\Delta)^s u + V(x)u = |u|^{p-1}u, \quad \text{in } \mathbb{R}^N, \quad u \in H^s(\mathbb{R}^N).$$

(4)

In the sequel, we will assume that V, K is bounded, and $V(x) \geq V_0 > 0, K(x) \geq K_0 > 0$ in \mathbb{R}^N.

It is well known, but not completely trivial, that $(-\Delta)^s$ reduces to the standard Laplacian $-\Delta$ as $s \to 1$. When $s = 1$, the classical nonlinear Schrödinger equation and scalar field equation have been extensively studied in the last thirty years. Moreover, if

$$V(x) \leq \lim_{|x| \to \infty} V(x) \text{ and } V(x) \neq \lim_{|x| \to \infty} V(x)$$

resp.

$$K(x) \geq \lim_{|x| \to \infty} K(x) \text{ and } K(x) \neq \lim_{|x| \to \infty} K(x),$$

(5)

then, using the concentration compactness principle [31, 32], one can show that (1) (resp. (4)) has a least energy solution (See for example [17, 31, 32, 15, 40]). But if (5) does not hold, (1) or (4) may not have least energy solutions. For example, if $V(y)$ satisfies

$$V(y) > \inf_{y \in \mathbb{R}^N} V(y) = \lim_{|y| \to +\infty} V(y),$$

then it is easy to see that problem (4) has no least energy solutions. So, in this case, one needs to find solutions with higher energy. Recently, Cerami et al. [8] showed that problem (4) with $s = 1$ has infinitely many sign-changing solutions if $V(x)$ goes to its limit at infinity from below at a suitable rate. In [38], Wei and Yan gave a surprising result which says that (1) or (4) with $s = 1$ and $V(x)$ or $K(x)$ being radial has solutions with large number of bumps near infinity and the energy of this solutions can be very large. This kind of results was generalized by Ao and Wei in [2] very recently to the case in which $V(x)$ or $K(x)$ does not have any symmetry assumption. We should also mention another interesting paper [9], where infinitely many positive solutions to (4) with $s = 1$ were verified to exist by Cerami and Passaseo by using mini-max argument and no symmetry assumption was imposed on $V(x)$. For more results on (1) and (4) with $s = 1$, we can refer to [16, 17] and the references therein. For results on this aspect when $0 < s < 1$, the readers can refer [18, 27, 34] and the references therein.

In recent years, the singularly perturbed problem of (4) with $s = 1$ has been widely researched, such as [3, 6, 13, 22, 28, 29, 12, 14]. When $0 < s < 1$, Chen and Zheng [12] studied the following singularly perturbed problem

$$\varepsilon^{2s}(-\Delta)^s u + V(x)u = |u|^{p-1}u, \quad \text{in } \mathbb{R}^N.$$

(6)

They showed that when $N = 1, 2, 3$, ε is sufficiently small, $\max\{\frac{1}{2}, \frac{n}{4}\} < s < 1$ and V satisfies some smoothness and boundedness assumptions, equation (6) has
a nontrivial solution \(u_\varepsilon \) concentrated to some point as \(\varepsilon \to 0 \). Very recently, in [14], Dávila, del Pino and Wei generalized various existence results known for (6) with \(s = 1 \) to the case of fractional Laplacian. For results which are not for singularly perturbed type of (1) and (4) with \(0 < s < 1 \), the readers can refer to [4, 18, 36] and the references therein.

As far as we know, it seems that there is no result on the existence of multiple solutions of equation (1) which is not a singularly perturbed problem. The aim of this paper is to obtain infinitely many non-radial positive solutions and sign-changing solutions for (1) whose functional energy are very large, under some assumptions for \(K(x) = K(|x|) > 0 \) near the infinity. For convenience, in this paper, we consider the following nonlinear fractional scalar field equation

\[
(-\Delta)^s u + u = K(|x|)u^p, \quad u > 0 \quad \text{in } \mathbb{R}^N, \quad u \in H^s(\mathbb{R}^N). \tag{7}
\]

Let

\[
\frac{N + 2s}{N + 2s + 1} < m < N + 2s. \tag{8}
\]

We assume that \(0 < K(|x|) \in C(\mathbb{R}^N) \) satisfies the following conditions at infinity

\[
(K) : \quad K(r) = K_0 - \frac{a}{r^m} + O(\frac{1}{r^{m+\theta}}), \quad \text{as } r \to +\infty,
\]

or

\[
(K') : \quad K(r) = K_0 + \frac{a}{r^m} + O(\frac{1}{r^{m+\theta}}), \quad \text{as } r \to +\infty,
\]

for some \(a > 0, \theta > 0 \). Without loss of generality, we may assume that \(K_0 = 1 \).

Our main results in this paper can be stated as follows:

Theorem 1.1. Suppose that \(N \geq 2, 0 < s < 1, 1 < p < 2_*(s) - 1 \). If \(K(r) \) satisfies (K), then problem (7) has infinitely many non-radial positive solutions.

Theorem 1.2. Suppose that \(N \geq 2, 0 < s < 1, 1 < p < 2_*(s) - 1 \). If \(K(r) \) satisfies (K'), then problem (7) has infinitely many non-radial sign-changing solutions.

Remark 1. The radial symmetry can be replaced by the following weaker symmetry assumption: after suitably rotating the coordinated system,

(i) \(K(x) = K(x', x'') = K(|x'|, |x_3|, \cdots, |x_N|) \), where \(x = (x', x'') \in \mathbb{R}^2 \times \mathbb{R}^{N-2} \),

(ii) \(K(x) = K_0 - \frac{a}{|x|^{m+\theta}}(\text{or } + \frac{a}{|x|^{m+\theta}}) + O(\frac{1}{|x|^{m+\theta}}) \) as \(|x| \to +\infty \), where \(a > 0, \theta > 0 \) and \(K_0 > 0 \) are some constants.

Remark 2. Using the same argument, we can prove that if

\[
V(x) = V(x', x'') = V(|x'|, |x_3|, \cdots, |x_N|) = V_0 + \frac{a}{|x|^{m+\theta}} + O(\frac{1}{|x|^{m+\theta}}), \quad \text{as } |x| \to \infty,
\]

where \(V_0 > 0, \theta > 0 \), then problem (4) has infinitely many positive non-radial solutions if \(a > 0 \) and has infinitely many non-radial sign-changing solutions if \(a < 0 \).

Now let us outline the main idea to prove our main results.

We will use the unique ground state \(U \) of

\[
(-\Delta)^s u + u = u^p, \quad u > 0, \quad x \in \mathbb{R}^N, \quad u(0) = \max_{\mathbb{R}^N} u(x) \tag{9}
\]

to build up the approximate solutions for (7). It is well known that when \(s = 1 \), the ground state solution of (9) decays exponentially at infinity. But from [19, 20], we see that when \(s \in (0, 1) \), the unique ground solution of (9) decays like \(\frac{1}{|x|^{N+s}} \) when \(|x| \to \infty \).
For any integer $k > 0$, define
\[
x^i = (r \cos \frac{(i-1)\pi}{k}, r \sin \frac{(i-1)\pi}{k}, 0), \quad i = 1, \cdots, k,
\]
where 0 is the zero vector in \mathbb{R}^{N-2}, $r \in [r_0 k^{\frac{N+2s}{N+2s-m}}, r_1 k^{\frac{N+2s}{N+2s-m}}]$ for some $r_1 > r_0 > 0$.

Denote
\[
U_r(x) = \sum_{i=1}^{k} U_{x_i} (x),
\]
where $U_{x_i}(x) = U(x - x^i)$.

Set $x = (x', x'') \in \mathbb{R}^2 \times \mathbb{R}^{N-2}$. Define
\[
\mathcal{H} = \left\{ u : u \in H^s(\mathbb{R}^N), u \text{ is even in } x_j, j = 2, \cdots, N, \quad \right. \\
\left. u(r \cos \theta, r \sin \theta, x'') = u(r \cos(\theta + \frac{2i\pi}{k}), r \sin(\theta + \frac{2i\pi}{k}), x'') \right\},
\]

To prove Theorem 1.2, we only need to show that:

Theorem 1.3. Under the assumption of Theorem (1.1), there is an integer $k_0 > 0$, such that for any integer $k \geq k_0$, (7) has a solution u_k of the form
\[
u_k = U_r(x) + \omega_r
\]
where $\omega_r \in \mathcal{H}$, $r \in [r_0 k^{\frac{N+2s}{N+2s-m}}, r_1 k^{\frac{N+2s}{N+2s-m}}]$ for some $r_1 > r_0 > 0$ and as $k \to +\infty$,
\[
\int_{\mathbb{R}^{2N}} \frac{|\omega_r(x) - \omega_r(y)|^2}{|x-y|^{N+2s}} + \int_{\mathbb{R}^N} \omega_r^2 \to 0.
\]

To consider the sign-changing solutions, for any integer $k > 0$, we define
\[
\bar{x}^i = (r \cos \frac{(i-1)\pi}{k}, r \sin \frac{(i-1)\pi}{k}, 0), \quad i = 1, \cdots, 2k,
\]
where $r \in [r_0 k^{\frac{N+2s}{N+2s-m}}, r_1 k^{\frac{N+2s}{N+2s-m}}]$ for some $\bar{r}_1 > \bar{r}_0 > 0$.

Write
\[
\bar{U}_r(x) = \sum_{i=1}^{2k} (-1)^{i-1} U_{\bar{x}_i}(x).
\]

Denote
\[
\mathcal{H}' = \left\{ u : u \in H^s(\mathbb{R}^N), u \text{ is even in } x_j, j = 2, \cdots, N, \quad \right. \\
\left. u(r \cos \theta, r \sin \theta, x'') = (-1)^i u(r \cos(\theta + \frac{i\pi}{k}), r \sin(\theta + \frac{i\pi}{k}), x'') \right\}.
\]

To prove Theorem 1.2, we only need to show that:

Theorem 1.4. Suppose that $K(r)$ satisfies (K'), $N \geq 2$. Then there is an integer $k > 0$, such that for any integer $k \geq \bar{k}$, (7) has a solution \bar{u}_k of the form
\[
\bar{u}_k = \bar{U}_r(x) + \bar{\omega}_r
\]
where $\bar{\omega}_r \in \mathcal{H}'$, $r \in [\bar{r}_0 k^{\frac{N+2s}{N+2s-m}}, \bar{r}_1 k^{\frac{N+2s}{N+2s-m}}]$ for some constants $\bar{r}_1 > \bar{r}_0 > 0$ and as $k \to +\infty$,
\[
\int_{\mathbb{R}^{2N}} \frac{|\bar{\omega}_r(x) - \bar{\omega}_r(y)|^2}{|x-y|^2} + \int_{\mathbb{R}^N} \bar{\omega}_r^2 \to 0.
\]
The idea of our proof is inspired by that of [38] where infinitely many positive non-radial solutions to a nonlinear Schrödinger equations (3) with $s = 1$ are obtained when the potential approaches to a positive constant algebraically at infinity. We will use the well-known Lyapunov-Schmidt reduction scheme to transfer our problem to a maximization problem of a one-dimensional function in a suitable range. Compared with the operator $-\Delta$, which is local, the operator $(-\Delta)^s$ with $0 < s < 1$ on \mathbb{R}^N is nonlocal. So it is expected that the standard techniques for $-\Delta$ do not work directly. In particular, when we try to find spike solutions for (7) with $0 < s < 1$, $(-\Delta)^s$ may kill bumps by averaging on the whole \mathbb{R}^N. For example, the ground state for (7) with $0 < s < 1$ decays algebraically at infinity, which is a contrast to the fact that the ground state for $-\Delta$ decays exponentially at infinity. This kind of property requires us to establish some new basic estimates and give a precise estimate on the energy of the approximate solutions.

This paper is organized as follows. In Sect.2, we will give some preliminary properties related to the fractional Laplacian operator. In Sect.3, we will establish some preliminary estimate. We will carry out a reduction procedure and study the reduced one dimensional problem to prove Theorems 1.3 and 1.4 in Sect.4. In Appendix, some basic estimates and an energy expansion for the functional corresponding to problem (7) will be established.

2. Basic theory on fractional Laplacian operator. In this section, we recall some properties of the fractional order Sobolev space and the ground state solution U of the limit equation (9).

Let $0 < s < 1$. Various definitions of the fractional Laplacian $(-\Delta)^s f(x)$ of a function f defined in \mathbb{R}^N are available, depending on its regularity and growth properties.

It is well known that it can be defined as a pseudo-differential operator

$$(-\Delta)^s f(\xi) = |\xi|^{2s} \hat{f}(\xi),$$

where $\hat{\ }$ is Fourier transform. When f have some sufficiently regular, the fractional Laplacian of a function $f: \mathbb{R}^N \to \mathbb{R}$ is expressed by the formula

$$(-\Delta)^s f(x) = C_{N,s} P.V. \int_{\mathbb{R}^N} \frac{f(x) - f(y)}{|x - y|^{N+2s}} dy,$$

where $C_{N,s} = \pi^{-(2s+N/2)} \Gamma(N/2+s) / \Gamma(1-s)$. This integral makes sense directly when $s < \frac{1}{2}$ and $f \in C^{0,\alpha}(\mathbb{R}^N)$ with $\alpha > 2s$, or if $f \in C^{1,\alpha}(\mathbb{R}^N)$, $1 + 2\alpha > 2s$. It is well known that $(-\Delta)^s$ on \mathbb{R}^N with $0 < s < 1$ is a nonlocal operator. In the remarkable work of Caffarelli and Silvestre [5], this nonlocal operator was expressed as a generalized Dirichlet-Neumann map for a certain elliptic boundary value problem with nonlocal differential operator defined on the upper half-space $\mathbb{R}^{N+1}_+ := \{(x, y) : x \in \mathbb{R}^N, y > 0\}$. That is, for a function $f: \mathbb{R}^N \to \mathbb{R}$, we consider the extension $u(x, y): \mathbb{R}^N \times [0, +\infty) \to \mathbb{R}$ that satisfies the equation

$$u(x, 0) = f(x)$$

and

$$\Delta_x u + \frac{1 - 2s}{y} u_y + u_{yy} = 0.$$

The equation (11) can also be written as

$$\text{div}(y^{1-2s} \nabla u) = 0.$$
which is clearly the Euler-Lagrange equation for the functional

\[J(u) = \int_{y > 0} |\nabla u|^2 y^{1-2s} dxdy. \]

Then, it follows from (10)–(12) that

\[C(-\Delta)^s f = \lim_{y \to 0^+} y^{1-2s} u_y = \frac{1}{2s} \lim_{y \to 0^+} \frac{u(x, y) - u(x, 0)}{y^{2s}}. \]

When \(s \in (0, 1) \), the space \(H^s(\mathbb{R}^N) = W^{s,2}(\mathbb{R}^N) \) is defined by

\[H^s(\mathbb{R}^N) = \left\{ u \in L^2(\mathbb{R}^N) : \frac{|u(x) - u(y)|}{|x - y|^{N+2s}} \in L^2(\mathbb{R}^N \times \mathbb{R}^N) \right\}. \]

and the norm is

\[\|u\|_s := \|u\|_{H^s(\mathbb{R}^N)} = \left(\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|u(x) - u(y)|^2}{|x - y|^{N+2s}} dxdy + \int_{\mathbb{R}^N} |u|^2 dx \right)^{\frac{1}{2}}. \]

Here the term

\[[u]_s := \left(\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|u(x) - u(y)|^2}{|x - y|^{N+2s}} dxdy \right)^{\frac{1}{2}} \]

is the so-called Gagliardo (semi) norm of \(u \). The following identity yields the relation between the fractional operator \(-\Delta)^s\) and the fractional Laplacian Sobolev space \(H^s(\mathbb{R}^N)\),

\[[u]_{H^s(\mathbb{R}^N)} = C \left(\int_{\mathbb{R}^N} |\xi|^{2s} |\hat{u}(\xi)|^2 d\xi \right)^{\frac{1}{2}} = C \|(-\Delta)^{\frac{s}{2}} u\|_{L^2(\mathbb{R}^N)} \]

for a suitable positive constant \(C \) depending only \(s \) and \(N \).

Clearly, \(\| \cdot \|_{H^s(\mathbb{R}^N)} \) is a Hilbertian norm induced by the inner product

\[\langle u, v \rangle_{H^s(\mathbb{R}^N)} = \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{(u(x) - u(y))(v(x) - v(y))}{|x - y|^{N+2s}} dxdy + \int_{\mathbb{R}^N} u(x)v(x)dx = \langle u, v \rangle + \langle u, v \rangle_{L^2(\mathbb{R}^N)}. \]

On the Sobolev inequality and the compactness of embedding, one has

Theorem 2.1. [33] The following imbeddings are continuous:

1. \(H^s(\mathbb{R}^N) \hookrightarrow L^q(\mathbb{R}^N), \quad 2 \leq q \leq \frac{2N}{N-2s}, \quad \text{if} \quad N > 2s, \)
2. \(H^s(\mathbb{R}^N) \hookrightarrow L^q(\mathbb{R}^N), \quad 2 \leq q \leq +\infty, \quad \text{if} \quad N = 2s, \)
3. \(H^s(\mathbb{R}^N) \hookrightarrow C^j_b(\mathbb{R}^N), \quad \text{if} \quad N < 2(s-j). \)

Moreover, for any \(R > 0 \) and \(p \in [1, 2, (s) \) the embedding \(H^s(B_R) \hookrightarrow L^p(B_R) \) is compact, where

\[C^j_b(\mathbb{R}^N) = \left\{ u \in C^j(\mathbb{R}^N) : D^K u \text{ is bounded on } \mathbb{R}^N \text{ for } |K| \leq j \right\}. \]

Now, we recall some known results for the limit equation (9). If \(s = 1 \), the uniqueness and non-degeneracy of the ground state \(U \) for (9) is due to [23]. In the celebrated paper [19], Frank and Lenzmann proved the uniqueness of ground state solution \(U(x) = U(|x|) \geq 0 \) for \(N = 1, 0 < s < 1, 1 < p < 2^*_s(s) - 1. \)

Very recently, Frank, Lenzmann and Silvestre [20] obtained the non-degeneracy of ground state solutions for (9) in arbitrary dimension \(N \geq 1 \) and any admissible exponent \(1 < p < 2^*_s(s) - 1. \)
For convenience, we summarize the properties of the ground state U of (9) which can be found in [19, 20].

Theorem 2.2. Let $N \geq 1$, $s \in (0,1)$ and $1 < p < 2_* (s) - 1$. Then the following hold.

(i) (Uniqueness) The ground state solution $U \in H^s (\mathbb{R}^N)$ for equation (9) is unique.

(ii) (Symmetry, regularity and decay) $U(x)$ is radial, positive and strictly decreasing in $|x|$. Moreover, the function U belongs to $H^{2s+1}(\mathbb{R}^N) \cap C^\infty(\mathbb{R}^N)$ and satisfies

$$
\frac{C_1}{1 + |x|^{N+2s}} \leq U(x) \leq \frac{C_2}{1 + |x|^{N+2s}} \quad \text{for} \quad x \in \mathbb{R}^N,
$$

with some constants $C_2 \geq C_1 > 0$.

(iii) (Non-degeneracy) The linearized operator $L_0 = (-\Delta)^s + p|U|^{p-1}$ is non-degenerate, i.e., its kernel is given by

$$
\ker L_0 = \text{span}\{\partial_{x_1} U, \partial_{x_2} U, \cdots, \partial_{x_N} U\}.
$$

By Lemma C.2 of [20], it holds that, for $j = 1, \cdots, N$, $\partial_{x_j} U$ has the following decay estimate,

$$
|\partial_{x_j} U| \leq C_1 + \frac{1}{|x|^{N+2s}}.
$$

From Theorem 2.2, the ground bound state solution like $\frac{1}{|x|^{N+2s}}$ when $|x| \to +\infty$. Fortunately, this polynomial decay is enough for us in the estimates of our proof.

3. **Some preliminaries.** In the sequel, we mainly concentrate on the existence of positive solutions. For the existence of sign-changing solutions, we will only give a sketch at the end of Section 4.

Let

$$
Z_i = \frac{\partial U_{x^i}}{\partial r}, \quad i = 1, \cdots, k,
$$

where $x^i = (r \cos \frac{2(i-1)\pi}{k}, r \sin \frac{2(i-1)\pi}{k}, 0)$ and

$$
r \in \left[r_0 k^{\frac{N+2s}{N+2s-m}}, r_1 k^{\frac{N+2s}{N+2s-m}}\right]
$$

for some $r_1 > r_0 > 0$.

Define

$$
E = \left\{ v \in \mathcal{H} : \sum_{i=1}^k \int_{\mathbb{R}^N} U_{x^i}^{p-1} Z_i v = 0 \right\},
$$

and the norm of $H^s(\mathbb{R}^N)$ is written as:

$$
|v|_s = \sqrt{\langle v, v \rangle}, \quad v \in H^s(\mathbb{R}^N),
$$

where

$$
\langle v_1, v_2 \rangle = \langle v_1, v_2 \rangle_s + \int_{\mathbb{R}^N} v_1 v_2 dx = \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{(v_1(x) - v_1(y))(v_2(x) - v_2(y))}{|x-y|^{N+2s}} dxdy + \int_{\mathbb{R}^N} v_1(x) v_2(x) dx.
$$

Note that the variational functional corresponding to (7) is

$$
I(u) = \frac{1}{2} \langle u, u \rangle_s + \frac{1}{2} \int_{\mathbb{R}^N} u^2 - \frac{1}{p+1} \int_{\mathbb{R}^N} K(x)|u|^{p+1}.
$$
Letting
\[J(\varphi) = I(U_r + \varphi) = I\left(\sum_{i=1}^{k} U_{x_i} + \varphi \right), \quad \varphi \in E. \]

We can expand \(J(\varphi) \) as follows:
\[J(\varphi) = J(0) + l(\varphi) + \frac{1}{2} \langle L(\varphi), \varphi \rangle + R(\varphi), \quad \varphi \in E, \]
where
\[l(\varphi) = \int_{\mathbb{R}^N} \left(\sum_{i=1}^{k} u_{x_i}^p \varphi - \int_{\mathbb{R}^N} K(x) \left(\sum_{i=1}^{k} U_{x_i} \right)^p \varphi, \right. \]
\[\langle L(\varphi), \varphi \rangle = \langle \varphi, \varphi \rangle + \int_{\mathbb{R}^N} (\varphi^2 - pK(x)U_r^{p-1}\varphi^2) \]
and
\[R(\varphi) = -\frac{1}{p+1} \int_{\mathbb{R}^N} K(x) \left((U_r + \varphi)^{p+1} - U_r^{p+1} - (p+1)U_r^p \varphi - \frac{1}{2} (p+1)pU_r^{p-1}\varphi^2 \right). \]

In order to find a critical point for \(J(\varphi) \), we need to discuss each term in the expansion (13).

Now we come to the main result in this section.

Lemma 3.1. There is a constant \(C > 0 \) independent of \(k \) such that
\[\| R'(\varphi) \| \leq C \| \varphi \|_s^{\min\{p, 2\}} \]
and
\[\| R''(\varphi) \| \leq C \| \varphi \|_s^{\min\{p-1, 1\}}. \]

Proof. By direct calculation, we know that
\[\langle R'(\varphi), \psi \rangle = -\int_{\mathbb{R}^N} K(x) \left((U_r + \varphi)^p - U_r^p - pU_r^{p-1}\varphi \right) \psi \]
and
\[\langle R''(\varphi)(\psi, \xi) \rangle = -p \int_{\mathbb{R}^N} K(x) \left((U_r + \varphi)^{p-1} - U_r^{p-1} \right) \psi \xi. \]

Firstly, we deal with the case \(p > 2 \). Since
\[|\langle R'(\varphi), \psi \rangle| \leq C \int_{\mathbb{R}^N} U_r^{p-2}|\varphi|^2|\psi| \leq C \left(\int_{\mathbb{R}^N} (U_r^{p-2}|\varphi|^2)^{\frac{p+1}{p}} \right)^{\frac{p}{p+1}} \| \psi \|_s, \]
we find
\[\| R'(\varphi) \| \leq C \left(\int_{\mathbb{R}^N} (U_r^{p-2}|\varphi|^2)^{\frac{p+1}{p}} \right)^{\frac{p}{p+1}}. \]

On the other hand, it follows from Lemma A.2 that \(U_r \) is bounded. We obtain
\[\| R'(\varphi) \| \leq C \left(\int_{\mathbb{R}^N} |\varphi|^{\frac{2(p+1)}{p}} \right)^{\frac{p}{p+1}} \leq C \| \varphi \|_s^2, \]
since \(2 < \frac{2(p+1)}{p} < p + 1 \).

For the estimate of \(\| R''(\varphi) \| \), we have
\[|R''(\varphi)(\psi, \xi)| \leq C \int_{\mathbb{R}^N} U_r^{p-2}|\varphi||\psi||\xi| \]
\[\leq C \int_{\mathbb{R}^N} |\varphi||\psi||\xi| \leq C \left(\int_{\mathbb{R}^N} |\varphi|^3 \right)^{\frac{1}{3}} \left(\int_{\mathbb{R}^N} |\psi|^3 \right)^{\frac{1}{3}} \left(\int_{\mathbb{R}^N} |\xi|^3 \right)^{\frac{1}{3}} \]
\[\leq C \| \varphi \|_s \| \psi \|_s \| \xi \|_s. \]
So,
\[\|R''(\varphi)\| \leq C\|\varphi\|_s. \]
Using the same argument, for the case \(1 < p \leq 2\), we also can obtain that
\[\langle R'(\varphi), \psi \rangle \leq C \int_{\mathbb{R}^N} \varphi^p \psi \leq C \|\varphi\|_s^p \|\psi\|_s \]
and
\[\langle R'(\varphi)(\psi, \xi) \rangle \leq C \int_{\mathbb{R}^N} \varphi^{p-1} \psi \xi \leq C \|\varphi\|_s^{p-1} \|\psi\|_s \|\xi\|_s. \]

\[\square \]

4. The finite-dimensional reduction and proof of the main results. In this section, we intend to prove the main theorem by the Lyapunov-Schmidt reduction.

Associated to the quadratic form \(L(\varphi)\), we define \(L\) to be a bounded linear map from \(E\) to \(E\), such that
\[\langle Lv_1, v_2 \rangle = \langle v_1, v_2 \rangle_s + \int_{\mathbb{R}^N} (v_1 v_2 - pK(x)U_{r_k}^{p-1} v_1 v_2), \quad v_1, v_2 \in E. \]

Now, we assume that \(r \in S_k\) and define
\[
S_k := \left(\left(\frac{B_0(N + 2s)}{B_1 m} - \alpha \right)^{\frac{N+2s}{N+2s-m}} k^{\frac{N+2s}{N+2s-m}}, \right.
\[
\left. \left(\frac{B_0(N + 2s)}{B_1 m} + \alpha \right)^{\frac{N+2s}{N+2s-m}} k^{\frac{N+2s}{N+2s-m}} \right], \quad (14)
\]
where \(\alpha > 0\) is a small constant, \(B_0\) and \(B_1\) are defined in Proposition A.1.

Next, we show the invertibility of \(L\) in \(E\).

Proposition 4.1. There exists an integer \(k_0 > 0\), such that for \(k \geq k_0\), there is a constant \(\rho > 0\) independent of \(k\), satisfying that for any \(r \in S_k\),
\[\|Lu\| \geq \rho \|u\|_s, \quad u \in E. \]

Proof. We argue it by contradiction. Suppose that there are \(n \to +\infty, r_k \in S_k\), and \(u_n \in E\), such that
\[\|Lu_n\| = o(1) \|u_n\|_s, \quad \|u_n\|_s^2 = k. \]

Recall
\[\Omega_i = \left\{ x = (x', x'') \in \mathbb{R}^2 \times \mathbb{R}^{N-2} : \left(\frac{x'}{|x'|}, \frac{x''}{|x''|} \right) \geq \cos \frac{\pi}{k} \right\}, \quad i = 1, 2, \ldots, k. \]

By symmetry, we have
\[
\int_{\Omega_1} \int_{\mathbb{R}^N} \frac{(u_n(x) - u_n(y))(\varphi(x) - \varphi(y))}{|x-y|^{N+2s}} \, dx \, dy + \int_{\Omega_1} \left(u_n \varphi - pK(x)U_{r_k}^{p-1} u_n \varphi \right) \]
\[= \frac{1}{k} \langle Lu_n, \varphi \rangle = a \left(\frac{1}{\sqrt{k}} \right) \|\varphi\|_s, \quad \varphi \in E. \]

(15)

In particular,
\[\int_{\Omega_1} \int_{\mathbb{R}^N} \frac{|u_n(x) - u_n(y)|^2}{|x-y|^{N+2s}} + \int_{\Omega_1} \left(|u_n|^2 - pK(x)U_{r_k}^{p-1} |u_n|^2 \right) = o_n(1) \]
and
\[\int_{\Omega_1} \int_{\mathbb{R}^N} \frac{|u_n(x) - u_n(y)|^2}{|x-y|^{N+2s}} + \int_{\Omega_1} |u_n|^2 = 1, \]
where \(o_n(1) \to 0 \) as \(n \to +\infty \). Set \(\overline{u}_n(x) = u_n(x - x_1) \). Then for any \(R > 0 \), since \(dist(x_1, \partial \Omega) = r \sin \frac{\pi}{k} \geq C k^{\frac{n+2s}{n+2s-m}} \to +\infty \), \(B_R(x_1) \subset \Omega_1 \), i.e.

\[
\int_{B_R(x_1)} \int_{\mathbb{R}^N} \frac{|u_n(x) - u_n(y)|^2}{|x - y|^{N+2s}} + \int_{B_R(x_1)} |u_n|^2 \leq 1.
\]

One can obtain

\[
\int_{B_R(0)} \int_{\mathbb{R}^N} \frac{|\overline{u}_n(x) - \overline{u}_n(y)|^2}{|x - y|^{N+2s}} + \int_{B_R(0)} |\overline{u}_n|^2 \leq 1.
\]

So we suppose that there is a \(u \in H^s(\mathbb{R}^N) \), such that as \(n \to +\infty \),

\[
\overline{u}_n \rightharpoonup u, \quad \text{in} \quad H^s(\mathbb{R}^N)
\]

and

\[
\overline{u}_n \to u, \quad \text{in} \quad L^2_{loc}(\mathbb{R}^N).
\]

Since \(\overline{u}_n \) is even in \(x_j, j = 2, \cdots, N \), it is easy to see that \(u \) is even in \(x_j, j = 2, \cdots, N \). On the other hand, from

\[
\int_{\mathbb{R}^N} U_p^{-1} Z_1 u_n = 0,
\]

we get

\[
\int_{\mathbb{R}^N} U_p^{-1} \frac{\partial U}{\partial x_1} \overline{u}_n = 0.
\]

So, \(u \) satisfies

\[
\int_{\mathbb{R}^N} U_p^{-1} \frac{\partial U}{\partial x_1} u = 0. \quad (16)
\]

Now, we claim that \(u \) satisfies

\[
(-\Delta)^s u + u - pU_{p-1} u = 0 \quad \text{in} \quad \mathbb{R}^N. \quad (17)
\]

Indeed, we set

\[
\tilde{E} = \left\{ \varphi : \varphi \in H^s(\mathbb{R}^N), \int_{\mathbb{R}^N} U_p^{-1} \frac{\partial U}{\partial x_1} \varphi = 0 \right\}.
\]

For any \(R > 0 \), let \(\varphi \in C_0^\infty(B_R(0)) \cap \tilde{E} \) be any function, satisfying that \(\varphi \) is even in \(x_j, j = 2, \cdots, N \). Then \(\varphi_1(x) = \varphi(x-x_1) \in C_0^\infty(B_R(x_1)) \). We may identify \(\varphi_1(x) \) as elements in \(E \) by redefining the values outside \(\Omega_1 \) with the symmetry. By using (15) and Lemma A.2, we find

\[
\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{(u(x) - u(y))(\varphi(x) - \varphi(y))}{|x - y|^{N+2s}} + \int_{\mathbb{R}^N} (w \varphi - pU_{p-1} w \varphi) = 0. \quad (18)
\]

On the other hand, since \(u \) is even in \(x_j, j = 2, \cdots, N \), (18) holds for any \(\varphi \in C_0^\infty(B_R(0)) \cap \tilde{E} \). By the density of \(C_0^\infty(\mathbb{R}^N) \) in \(H^s(\mathbb{R}^N) \), it is easy to show that

\[
\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{(u(x) - u(y))(\varphi(x) - \varphi(y))}{|x - y|^{N+2s}} + \int_{\mathbb{R}^N} (w \varphi - pU_{p-1} w \varphi) = 0, \quad \forall \, \varphi \in \tilde{E}. \quad (19)
\]

We know \(\varphi = \frac{\partial U}{\partial x_1} \) is a solution of (19), thus (19) is true for any \(\varphi \in H^s(\mathbb{R}^N) \). One see that \(u = 0 \) because \(u \) is even in \(x_j, j = 2, \cdots, N \) and (17). As a result,

\[
\int_{B_R(x_1)} u_n^2 = o_n(1), \quad \forall \, R > 0.
\]
Now, using the Lemma A.2, we obtained that for any $1 < \eta \leq N + 2s$, there is a constant $C > 0$, such that

$$U_{rl}(x) \leq \frac{C}{(1 + |x - x^1|)^{N + 2s - \eta}}, \ x \in \Omega_1.$$

Thus,

$$o_n(1) = \int_{\Omega_1 \times \mathbb{R}^N} \frac{|u_n(x) - u_n(y)|^2}{|x - y|^{N + 2s}} + \int_{\Omega_1} \left(u_n^2 - pK(x)U_{p, n}^{p-1}u_n^2 \right)$$

$$+ C \left(\int_{B_{\frac{1}{2}R}(x^1)} + \int_{\Omega_1 \setminus B_{R}(x^1)} \frac{1}{(1 + |x - x^1|)^{N + 2s - \eta}}u_n^2 \right)$$

$$\geq \frac{1}{2} \left(\int_{\Omega_1} \int_{\mathbb{R}^N} \frac{|u_n(x) - u_n(y)|^2}{|x - y|^{N + 2s}} + \int_{\Omega_1} u_n^2 \right) + o_n(1) + o_R(1),$$

which is impossible for large R.

As a result, we get a contradiction. \(\square\)

Proposition 4.2. There is an integer $k_0 > 0$, such that for each $k \geq k_0$, there is a C^1 map from S_k to \mathcal{H}: $\omega = \omega(r), \ r = |x^1|$, satisfying $\omega \in E$, and

$$J'(\omega)|_E = 0.$$

Moreover, there exists a constant $C > 0$ independent of k such that

$$\|\omega\|_s \leq C k^\frac{1}{2} \left(\left(\frac{k^\frac{N + 2s + \tau}{r^{N + 2s - \eta}} \right) + \frac{1}{r^{\frac{N + 2s - \eta}}}, \right)$$

where $\tau > 0$ is a small constant.

Proof. We will use the contraction theorem to prove it. By the following Lemma 4.1, $l(\omega)$ is a bounded linear functional in E. We know by Reisz representation theorem that there is an $l_k \in E$, such that

$$l(\omega) = \langle l_k, \omega \rangle.$$

So, finding a critical point for $J(\omega)$ is equivalent to solving

$$l_k + L\omega + R'(\omega) = 0.$$

(21)

By Proposition 4.1, L is invertible. Thus, (21) is equivalent to

$$\omega = A(\omega) := -L^{-1}(l_k + R'(\omega)).$$

Set

$$\mathcal{S}_k := \left\{ \omega \in E : \|\omega\|_s \leq k^\frac{1}{2} \left(\left(\frac{k^\frac{N + 2s + \tau}{r^{N + 2s - \eta}} \right) + \frac{1}{r^{\frac{N + 2s - \eta}}}, \right) \right\}.$$
We shall verify that A is a contraction mapping from \tilde{S}_k to itself. In fact, on one hand, for any $\omega \in \tilde{S}_k$, by Lemmas 4.1 and 3.1, we obtain
\[
\|A(\omega)\| \leq C(\|l\| + \|R'(\omega)\|) \\
\leq C\|l\| + C\|\omega\|_{s}^{\min\{p,2\}} \\
\leq C\left(k^{\frac{1}{r}} \left(\frac{k}{r} \right)^{\frac{N+2s}{2} + \tau} + \frac{k^{\frac{1}{r}}}{r^{2+\tau}} \right) + C\left(k^{\frac{1}{r}} \left(\frac{k}{r} \right)^{\frac{N+2s}{2} + \tau} + \frac{k^{\frac{1}{r}}}{r^{2+\tau}} \right)^{\min\{p,2\}} \\
\leq k^{\frac{1}{r}} \left(\frac{k}{r} \right)^{\frac{N+2s}{2} + \tau} + \frac{k^{\frac{1}{r}}}{r^{2+\tau}}.
\]
On the other hand, for any $\omega_1, \omega_2 \in \tilde{S}_k$,
\[
\|A(\omega_1) - A(\omega_2)\| = \|L^{-1}R'(\omega_1) - L^{-1}R'(\omega_2)\| \\
\leq C\|R'(\omega_1) - R'(\omega_2)\| \\
\leq C\|R''(\theta \omega_1 + (1 - \theta)\omega_2)\|\|\omega_1 - \omega_2\|_s, \quad \text{if } 1 < p < 2 \\
\leq \begin{cases}
C(\|\omega_1\|^{p-1} + \|\omega_2\|^{p-1})\|\omega_1 - \omega_2\|_s, & \text{if } p \geq 2 \\
C(\|\omega_1\|_s + \|\omega_2\|_s)\|\omega_1 - \omega_2\|_s, & \text{if } p \geq 2
\end{cases}
\leq \frac{1}{2}\|\omega_1 - \omega_2\|_s.
\]
Then the result follows from the contraction mapping theorem. The estimate (20) follows Lemma 4.1.

The claim that $\omega(r)$ is continuously differentiable in r can be verified by using the same argument employed to prove Lemma 4.4 in [14].

Lemma 4.1. There is a constant $C > 0$ and a small constant $\tau > 0$, which are independent of k, such that
\[
\|l_k\| \leq C\left(k^{\frac{1}{r}} \left(\frac{k}{r} \right)^{\frac{N+2s}{2} + \tau} + \frac{k^{\frac{1}{r}}}{r^{2+\tau}} \right),
\]
provided $k \geq k_0$ for some integer $k_0 > 0$.

Proof. Notice that
\[
|l(\varphi)| = \left| \int_{\mathbb{R}^N} \sum_{i=1}^{k} U_i^n \varphi - K(x) \left(\sum_{i=1}^{k} U_i^n \right)^p \varphi \right| \\
\leq C \int_{\mathbb{R}^N} \left| \left(\sum_{i=1}^{k} U_i^n \right)^p - \sum_{i=1}^{k} U_i^n \varphi \right| + \int_{\mathbb{R}^N} |K(x) - 1| \left(\sum_{i=1}^{k} U_i^n \right)^p \varphi |.
\]
From $m > \frac{N+2s}{N+2s+1}$, we deduce that
\[
\frac{N+2s-m}{m} < N+2s < \left((N+2s)(p-1) + \frac{N+2s}{2} - \frac{p+1}{p+1} \right)^{-1}.
\]
Hence, we can choose $\sigma \in (0,\frac{N+2s}{2})$ such that
\[
\frac{p+1}{p} \left((N+2s)(p-1) + \frac{N+2s}{2} - \sigma \right) > N, \quad \frac{p}{p+1} - \frac{1}{2} < \frac{m}{N+2s-m} \sigma.
\]
Using the fact $U_{s^1} \leq U_{s^1}, \ (x \in \Omega_1)$ and Lemma A.2, we obtain
\[
\int_{\mathbb{R}^N} \left| \sum_{i=1}^k U_{s^i} - \sum_{i=1}^k U_{s^i}^p \right| |\varphi| = k \int_{\Omega_1} \left| \sum_{i=1}^k U_{s^i} - \sum_{i=1}^k U_{s^i}^p \right| |\varphi|
\]
\[
\leq Ck \int_{\Omega_1} \sum_{i=2}^k U_{s^i} |\varphi|
\]
\[
\leq Ck \left(\int_{\Omega_1} \left(\sum_{i=2}^k U_{s^i}^p \right)^{\frac{p+1}{p}} \right)^{\frac{p}{p+1}} \left(\int_{\Omega_1} |\varphi|^{p+1} \right)^{\frac{1}{p+1}}
\]
\[
\leq Ck \left(\frac{1}{(1 + |x - x^1|)(N+2s)(p-1)+\frac{N+2s}{2}\,\sigma} \left(\frac{k}{\tau} \right)^{\frac{N+2s}{2}+\sigma} \right)^{\frac{p+1}{p}} \left(\int_{\Omega_1} |\varphi|^{p+1} \right)^{\frac{1}{p+1}}
\]
\[
= Ck \frac{1}{\tau} \left(\frac{k}{\tau} \right)^{\frac{N+2s}{2}+\sigma} \left(\int_{\Omega_1} \left(\frac{1}{(1 + |x - x^1|)(N+2s)(p-1)+\frac{N+2s}{2}\,\sigma} \right)^{\frac{p+1}{p}} \right)^{\frac{p}{p+1}} \|\varphi\|_s
\]
\[
\leq C k^2 \left(\frac{k}{\tau} \right)^{\frac{N+2s}{2}+\sigma} \|\varphi\|_s, \tag{24}
\]
for some small constant $\tau > 0$, where we have used (23).

On the other hand, we have
\[
\int_{\mathbb{R}^N} |(K(x) - 1) \sum_{i=1}^k U_{x^i} \varphi| = k \int_{\mathbb{R}^N} |(K(x) - 1)U_{x^i} \varphi|
\]
\[
\leq Ck \left(\int_{\mathbb{R}^N} |K(x) - 1|^{\frac{p+1}{p}} U_{x^i}^{p+1} \right)^{\frac{p}{p+1}} \left(\int_{\mathbb{R}^N} |\varphi|^{p+1} \right)^{\frac{1}{p+1}}
\]
\[
\leq C\|\varphi\|_s \left(\left(\int_{B_{\frac{1}{m}}(x^1)} |K(x) - 1|^{\frac{p+1}{p}} U_{x^i}^{p+1} \right)^{\frac{p}{p+1}} \right)^{\frac{p}{p+1}} + C \int_{\mathbb{R}^N \setminus B_{\frac{1}{m}}(x^1)} |U_{x^i}^{p+1}|^{\frac{p}{p+1}} \right)^{\frac{p}{p+1}} \tag{25}
\]
\[
\leq C \|\varphi\|_s \left(k \frac{1}{\tau} + \frac{k}{\tau(N+2s)(p-1)+\frac{N+2s}{2}\,\sigma} \right)
\]
\[
\leq C \frac{k^2}{\tau} \|\varphi\|_s,
\]
for some small constant $\tau > 0$, where the last inequality is due to the assumption $\frac{N+2s}{N+2s+1} < m < N+2s$.

Inserting (24)–(25) into (22), we can complete the proof. \qed

Now, we are ready to prove our main theorem. Let $\omega = \omega(r)$ be the map obtained in Proposition 4.2. Define
\[
F(r) = I(U_r + \omega), \quad \forall \ r \in S_k.
\]
It follows from Lemma 6.1 in [14] that if r is a critical point of $F(r)$, then $U_r + \omega$ is a solution of (7).

Proof of Theorem 1.3. It follows from Propositions 4.2 and A.1 that
\[
F(r) = I(U_r) + O(||\|\omega|| + ||\omega||^2)
\]
\[
= k \left(A - \frac{B_0 k^{N+2s}}{\tau(N+2s)} + \frac{B_1}{\tau} + O\left(\frac{1}{\tau(m+\sigma)} + O\left(\frac{k}{\tau} \right)^{N+2s+2r} + \frac{1}{\tau(m+2r)} \right) \right) \tag{26}
\]
\[
= k \left(A - \frac{B_0 k^{N+2s}}{\tau(N+2s)} + \frac{B_1}{\tau} + O\left(\frac{1}{\tau(m+\sigma)} \right) \right).
\]
Define
\[F_1(r) := -\frac{B_0 k^{N+2s}}{r^{N+2s}} + \frac{B_1}{r^m} + O\left(\frac{1}{r^{m+\sigma}}\right). \]

We consider the following maximization problem
\[\max_{r \in S_k} F_1(r). \]

Suppose that \(\tilde{r} \) is a maximizer, we will prove that \(\tilde{r} \) is an interior point of \(S_k \).

We can check that the function
\[G(r) = -\frac{B_0 k^{N+2s}}{r^{N+2s}} + \frac{B_1}{r^m} \]
has a maximum point
\[\tilde{r} = \left(\frac{B_0(N+2s)}{B_1 m} \right)^{\frac{1}{N+2s}} k^{\frac{N+2s}{N+2s-m}}. \]

By direct computation, we deduce that
\[
F_1(\tilde{r}) = -\frac{B_0 k^{N+2s}}{(N+2s)^2 B_1^2} + \frac{B_1}{(N+2s)^m} + O\left(\frac{1}{(N+2s)^{m+\sigma}}\right)
\]
\[= \frac{B_1}{(N+2s)^m} \left(1 - \frac{m}{N+2s} \right) + O\left(\frac{1}{(N+2s)^{m+\sigma}}\right)
\]
\[= \frac{B_1^{N+2s-m}}{B_0^{N+2s-m}} \left(\frac{N+2s}{m} - 1 \right) k^{-\frac{(N+2s)m}{N+2s-m}} + O(k^{-\frac{(N+2s)m-n}{N+2s-m}}). \]

On the other hand, we find
\[
F_1\left(\left(\frac{B_0(N+2s)}{B_1 m} - \alpha \right)^{\frac{1}{N+2s-m}} k^{\frac{N+2s}{N+2s-m}} \right)
\]
\[= -\frac{B_0 k^{N+2s}}{(N+2s)^2 B_1^2 \left(\frac{N+2s}{m} - \alpha \right)^{N+2s-m} k^{\frac{(N+2s)^2}{N+2s-m}}} + \frac{B_1}{(N+2s)^m \left(\frac{N+2s}{m} - \alpha \right)^{N+2s-m} k^{\frac{m(N+2s)}{N+2s-m}}}
\]
\[+ O(k^{-\frac{(N+2s)m}{N+2s-m}}) \]
\[= \frac{B_1^{N+2s-m}}{B_0^{N+2s-m}} \left(\frac{N+2s}{m} - \alpha \frac{B_1}{B_0} \right)^{\frac{N+2s}{N+2s-m}} \left(\frac{N+2s}{m} - \alpha \frac{B_1}{B_0} - 1 \right) k^{-\frac{(N+2s)m}{N+2s-m}}
\]
\[+ O(k^{-\frac{(N+2s)m}{N+2s-m}}) \]
\[< F_1(\tilde{r}) \]

and similarly
\[
F_1\left(\left(\frac{B_0(N+2s)}{B_1 m} + \alpha \right)^{\frac{1}{N+2s-m}} k^{\frac{N+2s}{N+2s-m}} \right)
\]
\[= \frac{B_1^{N+2s-m}}{B_0^{N+2s-m}} \left(\frac{N+2s}{m} + \alpha \frac{B_1}{B_0} \right)^{\frac{N+2s}{N+2s-m}} \left(\frac{N+2s}{m} + \alpha \frac{B_1}{B_0} - 1 \right) k^{-\frac{(N+2s)m}{N+2s-m}}
\]
\[+ O(k^{-\frac{(N+2s)m}{N+2s-m}}) \]
\[< F_1(\tilde{r}), \]
where we have used the fact that the function \(f(t) = t^{-\frac{N+2s}{m}}(t-1) \) attains its maximum at \(t_0 = \frac{N+2s}{m} \) if \(t \in [\frac{N+2s}{m} - \alpha, \frac{N+2s}{m} + \alpha] \).

The above estimates implies that \(\hat{r} \) is indeed an interior point of \(S_k \). Thus
\[
\hat{r} = U_\hat{r} + \omega_\hat{r}
\]
is a solution of (7).

At last, we claim that \(u_{\hat{r}} > 0 \). Indeed, since \(\|\omega_\hat{r}\|_s \to 0 \) as \(k \to \infty \), noticing the fact (see [14] for example) that
\[
\|u_{\hat{r}}\|_s^2 = \int_{\mathbb{R}^N} |\nabla u_{\hat{r}}|^2 y^{1-2s} \, dx + \int_{\mathbb{R}^N} u_{\hat{r}}^2 \, dx,
\]
where \(u_{\hat{r}}(x, y) \) is the s-harmonic extension of \(u_{\hat{r}} \) satisfying \(u_{\hat{r}}(x, 0) = u_{\hat{r}}(x) \), we can use the standard argument to verify that \((u_{\hat{r}})_- = 0 \) and hence \(u_{\hat{r}} \geq 0 \). Since \(u_{\hat{r}} \) solves (12), we conclude by using the strong maximum principle that \(u_{\hat{r}} > 0 \). \(\square \)

The sketch of proof of Theorem 1.4. Set
\[
\hat{S}_k = \left[\left(\left(\frac{B'_0(N+2s)}{B'_1 m} - \alpha \right) \left(k^{\frac{N+2s}{N+2s-m}} \right) \right)^{N+2s-m} \right] \left(\left(\frac{B'_0(N+2s)}{B'_1 m} + \alpha \right) \left(k^{\frac{N+2s}{N+2s-m}} \right) \right],
\]
where \(B'_0, B'_1 \) are given in Proposition A.2, \(\alpha > 0 \) is a small constant. For \(r \in \hat{S}_k \), let
\[
\hat{U}_r(x) = \sum_{j=1}^{2k} (-1)^{j-1} U_{\hat{r}j}.
\]
We will find a solution for equation (7) of the form \(\hat{U}_r(x) + \hat{\omega} \) with
\[
\hat{\omega} \in \hat{E} := \left\{ u : u \in \mathcal{H}_s, \sum_{j=1}^{2k} \int_{\mathbb{R}^N} U_{\hat{r}j}^{p-2} Z_j u = 0 \right\}.
\]
To this end, we should also perform the same procedure as the proof of Theorem 1.3.

Proceeding as we prove Proposition 4.2, we conclude that for any \(r \in \hat{S}_k \), there is unique \(\hat{\omega}_r \in C^1(\hat{S}_k, \mathbb{E}) \), such that \(\hat{U}_r(x) + \hat{\omega}_r \) is a critical point of \(J \) on \(\hat{E} \). Moreover, \(\|\hat{\omega}_r\|_s \leq C k^{\frac{N}{2} + \frac{2s}{2s-m} + \frac{1}{2}} \). As we calculate (26), using Proposition A.2, one can prove
\[
F(r) := J(\hat{U}_r(x) + \hat{\omega}_r) = k \left(A + \frac{B'_0 k^{N+2s}}{p^{N+2s}} - \frac{B'_1}{p^m} + O\left(\frac{1}{r^{m+\sigma}} \right) \right).
\]
Now to prove that \(\hat{U}_r(x) + \hat{\omega} \) is a critical point of \(J \) on \(H^s(\mathbb{R}^N) \) can be reduced to finding a minimum point of function \(F(r) \) in \(\hat{S}_k \), which can be realized exactly as we have done in the proof of Theorem 1.3. \(\square \)

Appendix A. Energy expansion. In this section, we will give the energy expansion for the approximate solutions. Recall
\[
x^i = \left(r \cos \frac{2(i-1)\pi}{k}, r \sin \frac{2(i-1)\pi}{k}, 0 \right), \quad i = 1, \cdots, k,
\]
\[
\Omega_i = \left\{ x = (x', x^0) \in \mathbb{R}^2 \times \mathbb{R}^{N-2} : \left(\frac{x'}{|x'|}, \frac{x^0}{|x'|} \right) \geq \cos \frac{\pi}{k} \right\}, \quad i = 1, 2, \cdots, k,
\]
and
\[I(u) = \frac{1}{2} \int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^2}{|x - y|^{N+2s}} + \frac{1}{2} \int_{\mathbb{R}^N} u^2 - \frac{1}{p+1} \int_{\mathbb{R}^N} K(x)|u|^{p+1}. \]

Firstly, we will introduce Lemma B.1 in [39].

Lemma A.1. For any constant \(0 < \sigma \leq \min\{\alpha, \beta\} \), there is a constant \(C > 0 \), such that

\[
\frac{1}{(1 + |y - x|)\alpha (1 + |y - x|)\beta} \leq \frac{1}{|x_i - x|^{\sigma}} \left(\frac{1}{(1 + |y - x|)^{\alpha + \beta - \sigma}} + \frac{1}{(1 + |y - x|)^{\alpha + \beta - \sigma}} \right),
\]

where \(\alpha, \beta \geq 1 \) are two constants.

Then, we have the following basic estimate:

Lemma A.2. For any \(x \in \Omega_1 \), and \(\eta \in (1, N + 2s] \), there is a constant \(C > 0 \), such that

\[
\sum_{i=2}^k U_{x^i} \leq C \left(\frac{1}{(1 + |x - x^i|)^{N+2s-\eta}} \frac{1}{|x_1|^{\eta}} \right) \leq C \frac{k^{\eta}}{|x_1|^{\eta}}.
\]

Proof. The proof of this lemma is similar to Lemma A.1 in [38], we sketch the proof below for the sake of completeness.

For any \(x \in \Omega_1 \), we have for \(i \neq 1 \),

\[
|x - x^i| \geq |x - x^1|, \quad \forall x \in \Omega_1,
\]

which gives \(|x - x^i| \geq \frac{1}{2}|x^i - x^1| \) if \(|x - x^1| \geq \frac{1}{2}|x^i - x^1| \). On the other hand, if \(|x - x^1| \leq \frac{1}{2}|x^i - x^1| \), then

\[
|x - x^i| \geq |x^i - x^1| - |x - x^1| \geq \frac{1}{2}|x^i - x^1|.
\]

So, we find

\[
|x - x^i| \geq \frac{1}{2}|x^i - x^1|, \quad \forall x \in \Omega_1.
\]

Thus,

\[
\sum_{i=2}^k U_{x^i} = \sum_{i=2}^k \frac{C}{1 + |x - x^i|^{N+2s}} = \sum_{i=2}^k \frac{C}{(1 + |x - x^i|)^{N+2s}}
\]

\[
= C \sum_{i=2}^k \frac{1}{(1 + |x - x^i|)^{\eta}} \frac{1}{(1 + |x - x^i|)^{N+2s-\eta}} \leq C \frac{1}{(1 + |x - x^i|)^{N+2s-\eta}} \sum_{i=2}^k \frac{1}{|x^1 - x^i|^{\eta}}.
\]

Since

\[
|x^i - x^1| = 2|x^1| \sin \frac{(i-1)\pi}{k}, \quad i = 2, \ldots, k,
\]
we have
\[
\sum_{i=2}^{k} \frac{1}{|x^i - x^1|^\eta} = \frac{1}{(2|x^1|)^\eta} \sum_{i=2}^{k} \frac{1}{(\sin \frac{(i-1)\pi}{k})^\eta}
\]
\[
= \begin{cases}
\frac{1}{(2|x^1|)^\eta} \sum_{i=2}^{\frac{k}{2}} \frac{1}{(\sin \frac{i\pi}{k})^\eta} + \frac{1}{(2|x^1|)^\eta}, & \text{if } k \text{ is even}, \\
\frac{1}{(2|x^1|)^\eta} \sum_{i=2}^{\left\lfloor \frac{k}{2} \right\rfloor} \frac{1}{(\sin \frac{i\pi}{k})^\eta}, & \text{if } k \text{ is odd}.
\end{cases}
\]

But
\[
0 < c' \leq \frac{\sin \frac{(i-1)\pi}{k}}{\frac{(i-1)\pi}{k}} \leq C'', \quad j = 2, \ldots, \left\lfloor \frac{k}{2} \right\rfloor.
\]

So, there is a constant \(B > 0 \), such that
\[
\sum_{i=2}^{k} \frac{1}{|x^i - x^1|^\eta} = Bk^\eta \frac{1}{|x^1|^\eta} + O(\frac{k}{|x^1|^\eta}).
\]

Thus, we obtain
\[
\sum_{i=2}^{k} U_{x^i} \leq C \frac{1}{(1 + |x - x^1|)^{N+2s-\eta}} \frac{k^\eta}{|x^1|^\eta} \leq C \frac{k^\eta}{|x^1|^\eta}.
\]

Proposition A.1. There is a small constant \(\tau > 0 \), such that
\[
I(U_r) = k \left(A - \frac{1}{2} \sum_{j=2}^{k} B_0 \frac{1}{|x^1 - x^j|^{N+2s}} + B_1 \frac{1}{r^m} + O(\frac{1}{r^{m+\tau}}) + \left(\frac{k}{r} \right)^{N+2s+\tau}
+ \sum_{j=2}^{k} B_2 \frac{1}{|x^1 - x^j|^{N+2s+\tau}} \right),
\]

where \(A = (\frac{1}{p} - \frac{1}{p}) \int_{\mathbb{R}^N} U^p \), and \(B_0 \in [C_1, C_2] \), \(0 < C_1 < C_2 \), \(C_1, C_2, B_1 > 0 \) are some constants.

Proof. Using the symmetry, we have
\[
(U_r, U_r)_s + (U_r, U_r)_{L^2(\mathbb{R}^N)} = \sum_{i=1}^{k} \sum_{j=1}^{k} \int_{\mathbb{R}^N} U_{x^j}^p U_{x^i}^p
\]
\[
= k \left(\int_{\mathbb{R}^N} U_{x^1}^{p+1} + \sum_{j=2}^{k} \int_{\mathbb{R}^N} U_{x^1}^p U_{x^j}^p \right)
= k \sum_{i=2}^{k} \int_{\mathbb{R}^N} U_{x^i}^{p+1} + k \sum_{i=2}^{k} \int_{\mathbb{R}^N} U_{x^i}^p U_{x^i}.
\]
It follows from Lemma A.1 that
\[
\sum_{i=2}^{k} \int_{\mathbb{R}^N} U_{x_i}^p U_{x_i} = C \int_{\mathbb{R}^N} \left(\frac{1}{1 + |x - x^1|^N + 2s} \right)^p \sum_{i=2}^{k} \frac{1}{1 + |x - x^1|^N + 2s} \\
\leq C \sum_{i=2}^{k} \frac{1}{|x^1 - x^i|^N + 2s} \int_{\mathbb{R}^N} \left(\frac{1}{1 + |x - x^1|^N + 2s} \right)^p + O\left(\sum_{i=2}^{k} \frac{1}{|x^1 - x^i|^N + 2s + \tau} \right) \\
= \sum_{i=2}^{k} \frac{C_1}{|x^1 - x^i|^N + 2s} + O\left(\sum_{i=2}^{k} \frac{1}{|x^1 - x^i|^N + 2s + \tau} \right).
\]

However,
\[
\sum_{i=2}^{k} \int_{\mathbb{R}^N} U_{x_i}^p U_{x_i} = \int_{\mathbb{R}^N} \left(\frac{1}{1 + |x - x^1|^N + 2s} \right)^p \sum_{i=2}^{k} \frac{1}{1 + |x - x^1|^N + 2s} \\
\geq \sum_{i=2}^{k} \int_{B_{x^1,x^i}^1} \left(\frac{1}{1 + |x - x^1|^N + 2s} \right)^p \frac{1}{1 + |x - x^1|^N + 2s} \\
+ \sum_{i=2}^{k} \int_{B_{x^1,x^i}^1} \left(\frac{1}{1 + |x - x^1|^N + 2s} \right)^p \frac{1}{1 + |x - x^1|^N + 2s} \\
\geq \sum_{i=2}^{k} \frac{C_2}{|x^1 - x^i|^N + 2s} + O\left(\sum_{i=2}^{k} \frac{1}{|x^1 - x^i|^N + 2s + \tau} \right).
\]

Hence, there exists B'_0 (which may depend on k) in $[C_2, C_1]$, where C_1 and C_2 are independent of k, such that
\[
\sum_{i=2}^{k} \int_{\mathbb{R}^N} U_{x_i}^p U_{x_i} = \sum_{i=2}^{k} \frac{B'_0}{|x^1 - x^i|^N + 2s} + O\left(\sum_{i=2}^{k} \frac{1}{|x^1 - x^i|^N + 2s + \tau} \right).
\]

(28)

Now, by symmetry, we see
\[
\int_{\mathbb{R}^N} K(x) U_{x_i}^{p+1} = k \int_{\mathbb{R}^N} K(x) U_{x_i}^{p+1} + k(p + 1) \int_{\tilde{\Omega}_1} K(x) \sum_{i=2}^{k} U_{x_i}^p U_{x_i} \\
= \begin{cases}
O\left(\int_{\tilde{\Omega}_1} U_{x_i}^{p+1} \left(\sum_{i=2}^{k} U_{x_i} \right)^{2p+1} \right), & \text{if } 1 < p < 2, \\
O\left(\int_{\tilde{\Omega}_1} U_{x_i}^{p+1} \left(\sum_{i=2}^{k} U_{x_i} \right)^2 \right), & \text{if } p \geq 2.
\end{cases}
\]

For $x \in \tilde{\Omega}_1$, we have $|x - x^I| \geq \frac{1}{2} |x^I - x^1|$ and $|x - x^I| \geq |x - x^1|$,
\[
\sum_{i=2}^{k} U_{x_i} \leq C \sum_{i=2}^{k} \frac{1}{(1 + |x - x^1|)^N + 2s} \frac{1}{(1 + |x - x^1|)^\kappa} \\
\leq C \sum_{i=2}^{k} \frac{1}{|x^1 - x^i|^N + 2s} \frac{1}{(1 + |x - x^1|)^\kappa}.
\]
where \(\kappa > 0 \) satisfies \(\min\left\{ \frac{p-1}{2}(N+2s-\kappa), \ 2(N+2s-\kappa) \right\} > N+2s \). Hence, we get

\[
\int_{\Omega_1} \frac{U_{x^i}^{p+1} \left(\sum_{i=2}^{k} U_{x^i} \right)^{\frac{p+1}{2}}}{x^i - x^1} \leq \frac{C}{(1 + |x - x^1|)^{(N+2s)(p+1)}} \left(\sum_{i=2}^{k} \frac{1}{|x^i - x^1|^{N+2s-\kappa}} \right)^{\frac{p+1}{2}} \left(\frac{1}{1 + |x - x^1|}\right)^{2+\kappa}
\]

\[
= C \left(\sum_{i=2}^{k} \frac{1}{|x^i - x^1|^{N+2s-\kappa}} \right)^{\frac{p+1}{2}} \left(\frac{1}{1 + |x - x^1|} \right)^{(N+2s)(p+1)+2\kappa}
\]

\[
\leq C \left(\frac{k}{\tau} \right)^{N+2s+\tau}
\]

and

\[
\int_{\Omega_1} U_{x^i}^{p-1} \left(\sum_{i=2}^{k} U_{x^i} \right)^2 \leq \frac{C}{(1 + |x - x^1|)^{(N+2s)(p-1)}} \left(\sum_{i=2}^{k} \frac{1}{|x^i - x^1|^{N+2s-\kappa}} \right)^2 \left(\frac{1}{1 + |x - x^1|}\right)^{2+2\kappa}
\]

\[
= C \left(\sum_{i=2}^{k} \frac{1}{|x^i - x^1|^{N+2s-\kappa}} \right)^2 \left(\frac{1}{1 + |x - x^1|} \right)^{(N+2s)(p-1)+2\kappa}
\]

\[
= C \left(\frac{k}{\tau} \right)^{N+2s+\tau}
\]

On the other hand,

\[
\int_{\Omega_1} K(x) U_{x^i}^{p} \sum_{i=2}^{k} U_{x^i} = \int_{\Omega_1} U_{x^i}^{p} \sum_{i=2}^{k} U_{x^i} + \int_{\Omega_1} (K(x) - 1) U_{x^i}^{p} \sum_{i=2}^{k} U_{x^i}.
\]

But, from Lemma A.1 and (28),

\[
\int_{\Omega_1} U_{x^i}^{p} \sum_{i=2}^{k} U_{x^i} = \int_{\mathbb{R}^N} U_{x^i}^{p} \sum_{i=2}^{k} U_{x^i} - \int_{\mathbb{R}^N \setminus \Omega_1} U_{x^i}^{p} \sum_{i=2}^{k} U_{x^i}
\]

\[
= \int_{\mathbb{R}^N} U_{x^i}^{p} \sum_{i=2}^{k} U_{x^i} + O \left(\left(\frac{k}{\tau} \right)^{\sigma} \int_{\mathbb{R}^N \setminus \Omega_1} U_{x^i}^{p-\sigma} \sum_{i=2}^{k} U_{x^i} \right)
\]

\[
= \int_{\mathbb{R}^N} U_{x^i}^{p} \sum_{i=2}^{k} U_{x^i} + O \left(\left(\frac{k}{\tau} \right)^{\sigma} \sum_{i=2}^{k} \frac{1}{|x^i - x^1|^{N+2s}} \int_{\mathbb{R}^N \setminus \Omega_1} \left(U_{x^i}^{p-\sigma} + U_{x^i}^{p-\sigma} \right) \right)
\]

\[
= \sum_{i=2}^{k} \frac{B_0}{|x^1 - x^i|^{N+2s}} + O \left(\left(\frac{k}{\tau} \right)^{N+2s+\tau} \right),
\]

where \(\sigma > 0 \) satisfies \(p - \sigma > 1 \).
Moreover, similarly,
\begin{align*}
\int_{\Omega_1} |K(x) - 1| U_{x^1}^p \sum_{i=2}^k U_{x^i}^p & = \int_{\mathbb{R}^N} |K(x) - 1| U_{x^i}^p \sum_{i=2}^k U_{x^i}^p - \int_{\mathbb{R}^N \setminus \Omega_1} |K(x) - 1| U_{x^i}^p \sum_{i=2}^k U_{x^i}^p \\
& \leq \int_{B_{\bar{r}}(x^1)} |K(x) - 1| U_{x^i}^p \sum_{i=2}^k U_{x^i}^p + C \int_{\mathbb{R}^N \setminus B_{\bar{r}}(x^1)} U_{x^i}^p \sum_{i=2}^k U_{x^i}^p + O \left(\left(\frac{k}{r} \right)^{N+2s+\tau} \right) \\
& \leq \frac{C}{\bar{r}^m} \int_{\mathbb{R}^N} U_{x^i}^p \sum_{i=2}^k U_{x^i}^p + O \left(\frac{1}{\bar{r}^m} \sum_{i=2}^k \frac{1}{|x^i - x^1|^N} \int_{\mathbb{R}^N \setminus B_{\bar{r}}(x^1)} \left(U_{x^1}^{p \sigma} + U_{x^i}^{p \sigma} \right) \right) \\
& \quad + O \left(\frac{k}{r} \right)^{N+2s+\tau} + \frac{1}{r^{m+\tau}}.
\end{align*}

Hence,
\begin{align*}
\int_{\Omega_1} K(x) U_{x^1}^p \sum_{i=2}^k U_{x^i}^p & = \sum_{j=2}^k \frac{B_0'}{|x^i - x^1|^{|N+2s|}} + O \left(\left(\frac{k}{r} \right)^{N+2s+\tau} + \frac{1}{r^{m+\tau}} \right).
\end{align*}

Finally,
\begin{align*}
\int_{\Omega_1} K(x) U_{x^1}^{p+1} & = \int_{\mathbb{R}^N} K(x) U_{x^1}^{p+1} - \int_{\mathbb{R}^N \setminus B_{2\bar{r}}(x^1)} K(x) U_{x^1}^{p+1} + \int_{\Omega_1 \setminus B_{2\bar{r}}(x^1)} K(x) U_{x^1}^{p+1} \\
& = \int_{\mathbb{R}^N} K(x) U_{x^1}^{p+1} + O \left(\int_{\mathbb{R}^N \setminus B_{2\bar{r}}(x^1)} K(x) U_{x^1}^{p+1} \right) \\
& = \int_{B_{\bar{r}}(x^1)} K(x) U_{x^1}^{p+1} + \int_{\mathbb{R}^N \setminus B_{\bar{r}}(x^1)} K(x) U_{x^1}^{p+1} + O \left(\int_{\mathbb{R}^N \setminus B_{2\bar{r}}(x^1)} K(x) U_{x^1}^{p+1} \right) \\
& = \int_{\mathbb{R}^N} U_{x^1}^{p+1} + B_1' \frac{1}{r} + O \left(\frac{1}{r^{m+\tau}} \right) + O \left(\frac{k}{r} \right)^{N+2s(p+1) - N} \\
& = \int_{\mathbb{R}^N} U_{x^1}^{p+1} + B_1' \frac{1}{r} + O \left(\frac{1}{r^{m+\tau}} \right) + \frac{k}{r}^{N+2s+\tau}
\end{align*}

since \((N+2s)(p+1) - N > N + 2s\).

So, we have proved
\begin{align*}
\int_{\mathbb{R}^N} K(x) U_{x^1}^{p+1} & = k \left(\int_{\mathbb{R}^N} U_{x^1}^{p+1} + \sum_{j=2}^k \frac{B_0'}{|x^i - x^1|^{|N+2s|}} - B_1' \frac{1}{r} + O \left(\frac{1}{r^{m+\tau}} \right) + O \left(\frac{k}{r} \right)^{N+2s+\tau} \right).
\end{align*}

Now, inserting \((27)-(29)\) into \(I(U_r)\), we complete the proof. \(\square\)

Recall
\[\bar{x}^i = \left(r \cos \left(\frac{i-1}{k} \pi \right), r \sin \left(\frac{i-1}{k} \pi \right), 0 \right), \quad i = 1, \ldots, 2k. \]
Proposition A.2. There is a small constant \(\tau > 0 \), such that
\[
I(\tilde{U}_r) = k \left(A - \frac{1}{2} \sum_{j=2}^{2k} \frac{(-1)^j B_0^j}{|x^1 - x^j|^N + 2s} - \frac{B_1^j}{r^m} + O \left(\frac{1}{r^{m+\tau}} + \left(\frac{k}{r} \right)^{N+2s+\tau} \right) \right)
\]
\[
= k \left(A + \frac{B_0^j k^{N+2s}}{r^{N+2s}} - \frac{B_1^j}{r^m} + O \left(\frac{1}{r^{m+\tau}} \right) \right),
\]
where \(A = \left(\frac{1}{2} - \frac{1}{p} \right) \int_{\mathbb{R}^N} U^p \), and \(B_0' \in [C_1', C_2'] \), \(0 < C_1' < C_2' \), \(C_1, C_2, B_1' > 0 \) are some constants.

Proof. Similar to Proposition A.1, we have
\[
I(\tilde{U}_r) = k \left(A - \frac{1}{2} \sum_{j=2}^{2k} \frac{(-1)^j B_0^j}{|x^1 - x^j|^N + 2s} - \frac{B_1^j}{r^m} + O \left(\frac{1}{r^{m+\tau}} + \left(\frac{k}{r} \right)^{N+2s+\tau} \right) \right)
\]
\[
+ \sum_{j=2}^{2k} \frac{B_2^j}{|x^1 - x^j|^N + 2s} \right),
\]
where \(B_0' \in [C_1', C_2'] \), \(0 < C_1' < C_2' \), \(C_1, C_2, B_2' > 0 \) are some constants. Therefore, it is sufficient to prove that
\[
\sum_{j=2}^{2k} \frac{(-1)^j}{|x^1 - x^j|^N + 2s} = B_0^j k^{N+2s} - \frac{B_1^j}{r^{N+2s}} + O \left(\left(\frac{k}{r} \right)^{N+2s+\tau} \right),
\]
for some \(B_0^j > 0 \).

By Lemma A.2, we get
\[
\sum_{j=2}^{2k} \frac{(-1)^j}{|x^1 - x^j|^N + 2s} \leq \sum_{j=2}^{2k} \frac{1}{|x^1 - x^j|^N + 2s} = \frac{C k^{N+2s}}{|x^1|^N + 2s} + O \left(\frac{k}{|x^1|^N + 2s} \right), \quad (30)
\]
where \(C \) is a fixed constant. On the other hand, if \(k = 2m \) is sufficiently large, we find
\[
\sum_{j=2}^{2k} \frac{(-1)^j}{|x^1 - x^j|^N + 2s} = 2 \sum_{j=2}^{2m} \frac{(-1)^j}{|x^1 - x^j|^N + 2s} + \frac{(-1)^{2m+1}}{|x^1 - x^{2m+1}|^N + 2s}
\]
\[
= 2 \left[\left(\frac{1}{|x^1 - x^2|^N + 2s} - \frac{1}{|x^1 - x^2|^N + 2s} \right) + \left(\frac{1}{|x^1 - x^3|^N + 2s} - \frac{1}{|x^1 - x^3|^N + 2s} \right) + \cdots \right]
\]
\[
\geq 2 \left[\left(\frac{1}{|x^1 - x^2|^N + 2s} - \frac{1}{|x^1 - x^2|^N + 2s} \right) + \left(\frac{1}{|x^1 - x^3|^N + 2s} - \frac{1}{|x^1 - x^3|^N + 2s} \right) + \cdots \right]
\]
\[
= 2 \left[\left(\frac{1}{|x^1 - x^2|^N + 2s} - \frac{1}{|x^1 - x^2|^N + 2s} \right) + \left(\frac{1}{|x^1 - x^3|^N + 2s} - \frac{1}{|x^1 - x^3|^N + 2s} \right) + \cdots \right]
\]
\[
+ O \left(\left(\frac{k}{r} \right)^{N+2s+\tau} \right) \geq 2 \left(\frac{1}{|x^1 - x^2|^N + 2s} - \frac{1}{|x^1 - x^2|^N + 2s} \right) + \frac{1}{|x^1 - x^{2m+1}|^N + 2s}
\]
\[
= C k^{N+2s} + O \left(\frac{1}{r^{N+2s}} \right) + O \left(\left(\frac{k}{r} \right)^{N+2s+\tau} \right),
\]
for some constant $C_0 > 0$.

Similarly, if $k = 2m + 1$ is large, we get
$$
\sum_{j=2}^{2k} \frac{(-1)^k}{|x^1 - x^j|^{N+2s}} \geq \frac{1}{|x^1 - x^2|^{N+2s}} + \frac{1}{|x^1 - x^{2m+2}|^{N+2s}}
= C_0' k^{N+2s} N^{N+2s} + O\left(\frac{1}{r^{N+2s}}\right) + O\left(\left(\frac{k}{r}\right)^{N+2s+\tau}\right).
$$

Hence, we have
$$
\sum_{j=2}^{2k} \frac{(-1)^k}{|x^1 - x^j|^{N+2s}} = C_0' k^{N+2s} N^{N+2s} + O\left(\frac{k}{r^{N+2s}}\right) + O\left(\left(\frac{k}{r}\right)^{N+2s+\tau}\right).
$$

So the result follows. \hfill \Box

Acknowledgments. S. Peng was partially supported by the fund from NSF of China (NO.11125101) and Program for Changjiang Scholars and Innovative Research Team in University (NO.IRT13066). W. Long was partially supported by NSFC (No. 11501264) and the NSF of Jiangxi Province. J. Yang was partially supported by the excellent doctoral dissertation cultivation grant from Central China Normal University (2013YBZD15).

REFERENCES

[1] L. Abdelouhab, J. L. Bona, M. Felland and J.-C. Saut, Nonlocal models for nonlinear, dispersive waves, *Phys. D.*, **40** (1989), 360–392.

[2] W. Ao and J. Wei, Infinitely many positive solutions for nonlinear equations with non-symmetric potentials, *Calc. Var. Partial Differential Equations*, **51** (2014), 761–798.

[3] J. Byeon and Y. Oshita, Existence of multi-bump standing waves with a critical frequency for nonlinear Schrödinger equations, *Comm. Partial Differential Equations*, **29** (2005), 1877–1904.

[4] X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, *Adv. Math.*, **224** (2010), 2052–2093.

[5] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, *Comm. Partial Differential Equations*, **32** (2007), 1245–1260.

[6] D. Cao and S. Peng, Multi-bump bound states of Schrödinger equations with a critical frequency, *Math. Ann.*, **336** (2006), 925–948.

[7] A. Capella, J. Dávila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non-local semilinear equations, *Comm. Partial Differential Equations*, **36** (2011), 1353–1384.

[8] G. Cerami, G. Devillanova and S. Solimini, Infinitely many bound states for some nonlinear scalar field equations, *Calc. Var. Partial Differential Equations*, **23** (2005), 139–168.

[9] G. Cerami, D. Passaseo and S. Solimini, Infinitely many positive solutions to some scalar field equation with non-symmetric coefficients, *Comm. Pure Appl. Math.*, **66** (2013), 372–413.

[10] S.-M. Chang, S. Gustafson, K. Nakanishi and T.-P. Tsai, Spectra of linearized operators for NLS solitary waves, *SIAM. J. Math. Anal.*, **39** (2007/08), 1070–1111.

[11] W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, *Comm. Pure Appl. Math.*, **59** (2006), 330–343.

[12] G. Chen and Y. Zhang, Concentration phenomenon for fractional nonlinear Schrödinger equations, *Commun. Pure Appl. Anal.*, **13** (2014), 2359–2376.

[13] T. D’Aprile and A. Pistoia, Existence, multiplicity and profile of sign-changing clustered solutions of a semiclassical nonlinear Schrödinger equation, *Ann. Inst. H. Poincaré Anal. Non Linéaire*, **26** (2009), 1423–1451.

[14] J. Dávila, M. Del Pino and J. Wei, Concentrating standing waves for fractional nonlinear Schrödinger equation, *J. Differential Equations*, **256** (2014), 858–892.

[15] M. del Pino and P. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, *Calc. Var. Partial Differential Equations*, **4** (1996), 121–137.
ON NONLINEAR FRACTIONAL SCALAR FIELD EQUATIONS 939

[16] G. Devillanova and S. Solimini, Min-max solutions to some scalar field equations, Adv. Nonlinear Stud., 12 (2012), 173–186.

[17] W. Ding and W. M. Ni, On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Ration. Mech. Anal., 91 (1986), 283–308.

[18] P. Felmer, A. Quass and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1237–1262.

[19] R. L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in R, Acta Math., 210 (2013), 261–318.

[20] R. L. Frank, E. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, arXiv:1302.2652.

[21] A. Elgart and B. Schlein, Mean field dynamics of boson stars, Comm. Pure Appl. Math., 60 (2007), 500–545.

[22] X. Kang and J. Wei, On interacting bumps of semi-classical states of nonlinear Schrödinger equations, Adv. Differential Equations, 5 (2000), 899–928.

[23] M. K. Kwong, Uniqueness of positive solutions of ∆u−u+u^p=0 in R^n, Arch. Ration. Mech. Anal., 105 (1989), 243–266.

[24] N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298–305.

[25] N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108, 7 pp.

[26] A. J. Majda, D. W. McLaughlin and E. G. Tabak, A one-dimensional model for dispersive wave turbulence, J. Nonlinear Sci., 7 (1997), 9–44.

[27] M. Maris, On the existence, regularity and decay of solitary waves to a generalized Benjamin-Ono equation, Nonlinear Anal., 51 (2000), 1073–1085.

[28] E. S. Noussair and S. Yan, On positive multipeak solutions of a nonlinear elliptic problem, J. Lond. Math. Soc., 62 (2000), 213–227.

[29] E. S. Noussair and S. Yan, The effect of the domain geometry in singular perturbation problems, Proc. London Math. Soc., 76 (1998), 427–452.

[30] E. H. Lieb and H.-T. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Comm. Math. Phys., 112 (1987), 147–174.

[31] P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I., Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109–145.

[32] P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II., Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223–283.

[33] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573.

[34] G. Palatucci and A. Pisante, Improved sobolev embeddings, profile decomposition and concentration-compactness for fractional sobolev spaces, Calc. Var. Partial Differential Equations, 50 (2014), 799–829.

[35] Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842–1864.

[36] J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differential Equations, 42 (2011), 21–41.

[37] X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993), 229–244.

[38] J. Wei and S. Yan, Infinite many positive solutions for the nonlinear Schrödinger equation in R^n, Calc. Var. Partial Differential Equations, 37 (2010), 423–439.

[39] J. Wei and S. Yan, Infinite many positive solutions for the prescribed scalar curvature problem on S^N, J. Funct. Anal., 258 (2010), 3048–3081.

[40] M. Weinstein, Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation, Comm. Partial Differential Equations, 12 (1987), 1133–1173.

Received March 2014; revised January 2015.

E-mail address: hopelw@126.com
E-mail address: sjpeng@mail.ccnu.edu.cn
E-mail address: yyangecho@163.com