Alien freshwater fish parasites from South Africa: Diversity, distribution, status and the way forward

Nico J. Smit a, *, Wynand Malherbe a, Kerry A. Hadfield a, b

a Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom, 2520, South Africa
b Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa

A R T I C L E I N F O
Article history:
Received 3 March 2017
Received in revised form 30 May 2017
Accepted 1 June 2017

Keywords:
Alien invasive
Fish parasites
Co-introduction
Co-invasive

A B S T R A C T
The global translocation and introduction of freshwater fish into non-native regions has created the perfect opportunity for the co-introduction of their parasites. In a recent review on non-native freshwater fish introductions in South Africa, 55 fishes were reported as introduced into novel environments in South Africa, with 27 alien and 28 extralimital. However, the parasites potentially co-introduced by these non-native fishes have received much less attention from researchers than the hosts themselves. Thus far, the only attempts at summarising our knowledge on the diversity of introduced freshwater fish parasites in this region dates back to the 1980s when only four parasite species were considered to be alien, with a further eight species as doubtful. Over the last thirty years, more records have been added and this paper aims to provide an up-to-date review of our knowledge on the diversity, distribution, status (co-invasive or co-introduced) and the direction for future studies on introduced freshwater fish parasites in South Africa. Here we consider seven species (four ciliates, and one cestode, copepod and branchiuran respectively) as confirmed co-invaders, and 16 species (one flagellate, four ciliates, one cestode and ten monogeneans) as co-introduced. In addition, six species (three ciliates, two monogeneans and one copepod) previously recorded as invasive are deemed to be of uncertain status, and one ciliate is removed from the list of known invasive parasites from this region. It is further proposed that future research should focus on extralimital co-introductions, especially in the Eastern and Western Cape regions of South Africa where more than half of the fishes present are introduced species. It is also recommended that all new records of introduced parasites and new distribution records of known invasive parasites should include the deposition of voucher specimens in museums and, as far as possible, include molecular confirmation of its identification.

© 2017 The Authors. Published by Elsevier Ltd on behalf of Australian Society for Parasitology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Worldwide, the translocation and subsequent introduction of freshwater fish into non-native regions is known to cause an effect on the native biota. However, a secondary ecological and economical risk is also created but often disregarded. This risk is the potential impacts of parasites due to host switching from introduced to a native host (Table 2). The common carp, *Cyprinus carpio*, introduced to southern Africa was by Bruton and Merron (1985), who compiled a checklist of alien and translocated aquatic animals from this region. In their report, Bruton and Merron (1985) listed 12 fish parasites, including 11 reported by Van As and Basson (1984) with the addition of the copepod *Achtheres pimelodi* Kroyer, 1863 (syn. *Achtheres micropteri* Wright, 1882). However, they only regarded four as alien with the status of the remaining eight species considered doubtful; suggesting that further taxonomic research might reveal that they are indigenous. In a book chapter on biological invasions in southern Africa, Bruton and Van As (1986) confirmed the assessment made by Bruton and Merron (1985) without adding additional information. Two years later, De Moor and Bruton (1988) published the first atlas of alien and translocated aquatic animals from southern Africa and only included the four fish parasites considered by Bruton and Merron (1985) as alien. These were the European trichodinid, *Trichodina acuta* Lom 1961 (ciliate); whitespot, *Ichthyophthirius multifiliis* Fouquet, 1876 (ciliate); Asian fish tape worm, *Schyzocotyle (Bothriocotyle) acheilognathi* Yamaguti, 1934 (cestode); and the Japanese fish louse, *Argulus japonicus* Thiele, 1900 (branchiuran). The most recent checklist of alien animals of southern Africa is a photo guide book by Picker and Griffiths (2011) that included all freshwater, marine and terrestrial species. These authors included two of the four species reported by De Moor and Bruton (1988) (*A. japonicus* and *S. acheilognathi*) and added the gill flukes *Gyrodactylus kherulensis* Ergens, 1974 and *Pseudodactylogyrus anguillae* (Yin and Sproston, 1948).

In addition to the checklist, atlas, and guides mentioned above, many independent studies on specific aspects of alien freshwater parasites were undertaken during the past four decades, however, not a single publication attempted to provide a concise summary of our knowledge on this important subject. The aim of this review is thus to provide an up-to-date review of our knowledge on alien introductions into southern Africa. The first attempt to summarise the extent of aquatic alien freshwater fish parasites, including 11 reported by Van As and Basson (1984) with the addition of the copepod *Achtheres pimelodi* Kroyer, 1863 (syn. *Achtheres micropteri* Wright, 1882). However, they only regarded four as alien with the status of the remaining eight species considered doubtful; suggesting that further taxonomic research might reveal that they are indigenous. In a book chapter on biological invasions in southern Africa, Bruton and Van As (1986) confirmed the assessment made by Bruton and Merron (1985) without adding additional information. Two years later, De Moor and Bruton (1988) published the first atlas of alien and translocated aquatic animals from southern Africa and only included the four fish parasites considered by Bruton and Merron (1985) as alien. These were the European trichodinid, *Trichodina acuta* Lom 1961 (ciliate); whitespot, *Ichthyophthirius multifiliis* Fouquet, 1876 (ciliate); Asian fish tape worm, *Schyzocotyle (Bothriocotyle) acheilognathi* Yamaguti, 1934 (cestode); and the Japanese fish louse, *Argulus japonicus* Thiele, 1900 (branchiuran). The most recent checklist of alien animals of southern Africa is a photo guide book by Picker and Griffiths (2011) that included all freshwater, marine and terrestrial species. These authors included two of the four species reported by De Moor and Bruton (1988) (*A. japonicus* and *S. acheilognathi*) and added the gill flukes *Gyrodactylus kherulensis* Ergens, 1974 and *Pseudodactylogyrus anguillae* (Yin and Sproston, 1948).

In addition to the checklist, atlas, and guides mentioned above, many independent studies on specific aspects of alien freshwater parasites were undertaken during the past four decades, however, not a single publication attempted to provide a concise summary of our knowledge on this important subject. The aim of this review is thus to provide an up-to-date review of our knowledge on alienfections due to host switching from introduced to a native host. However, a secondary ecological and economical risk is also created but often disregarded. This risk is the potential impacts of parasites due to host switching from introduced to a native host. However, a secondary ecological and economical risk is also created but often disregarded. This risk is the

The common carp, *Cyprinus carpio* Linnaeus, 1758, was clearly responsible for most of the co-introductions and co-invasions into South Africa with seven of the thirteen parasites recorded from this host (Table 2). The first attempt to summarise the extent of aquatic introductions into southern Africa was by Bruton and Merron (1985), who compiled a checklist of alien and translocated aquatic animals from this region. In their report, Bruton and Merron (1985) listed 12 fish parasites, including 11 reported by Van As and Basson (1984) with the addition of the copepod *Achtheres pimelodi* Kroyer, 1863 (syn. *Achtheres micropteri* Wright, 1882). However, they only regarded four as alien with the status of the remaining eight species considered doubtful; suggesting that further taxonomic research might reveal that they are indigenous. In a book chapter on biological invasions in southern Africa, Bruton and Van As (1986) confirmed the assessment made by Bruton and Merron (1985) without adding additional information. Two years later, De Moor and Bruton (1988) published the first atlas of alien and translocated aquatic animals from southern Africa and only included the four fish parasites considered by Bruton and Merron (1985) as alien. These were the European trichodinid, *Trichodina acuta* Lom 1961 (ciliate); whitespot, *Ichthyophthirius multifiliis* Fouquet, 1876 (ciliate); Asian fish tape worm, *Schyzocotyle (Bothriocotyle) acheilognathi* Yamaguti, 1934 (cestode); and the Japanese fish louse, *Argulus japonicus* Thiele, 1900 (branchiuran). The most recent checklist of alien animals of southern Africa is a photo guide book by Picker and Griffiths (2011) that included all freshwater, marine and terrestrial species. These authors included two of the four species reported by De Moor and Bruton (1988) (*A. japonicus* and *S. acheilognathi*) and added the gill flukes *Gyrodactylus kherulensis* Ergens, 1974 and *Pseudodactylogyrus anguillae* (Yin and Sproston, 1948).

In addition to the checklist, atlas, and guides mentioned above, many independent studies on specific aspects of alien freshwater parasites were undertaken during the past four decades, however, not a single publication attempted to provide a concise summary of our knowledge on this important subject. The aim of this review is thus to provide an up-to-date review of our knowledge on alien
Classification	Genus Species	Status	Host fish	Location - River system	Reference
Phylum: Euglenozoa					
Phylum Ciliophora					
Order: Prokinetoplastida					
Family: Ichthyobodoideae					
Ichthyobodo necator	Co-invader	*Cyprinus carpio*	Not specified	Todal et al. (2004)	
Phylum Ciliophora					
Order: Prokinetoplastida					
Class: Kinetoplastea					
Family: Ichthyobodoideae					
Ichthyobodo necator	Co-invader	*Cyprinus carpio*	Not specified	Todal et al. (2004)	
Phylum Ciliophora					
Order: Prokinetoplastida					
Class: Kinetoplastea					
Order: Prokinetoplastida					
Class: Kinetoplastea					
Order: Prokinetoplastida					
Family: Ichthyobodoideae					
Ichthyobodo necator	Co-invader	*Cyprinus carpio*	Not specified	Todal et al. (2004)	
Phylum Ciliophora					
Order: Prokinetoplastida					
Class: Kinetoplastea					
Family: Ichthyobodoideae					
Ichthyobodo necator	Co-invader	*Cyprinus carpio*	Not specified	Todal et al. (2004)	
Phylum Ciliophora					
Order: Prokinetoplastida					
Class: Kinetoplastea					
Order: Prokinetoplastida					
Class: Kinetoplastea					
Order: Prokinetoplastida					
Family: Ichthyobodoideae					
Ichthyobodo necator	Co-invader	*Cyprinus carpio*	Not specified	Todal et al. (2004)	
Phylum Ciliophora					
Order: Prokinetoplastida					
Class: Kinetoplastea					
Order: Prokinetoplastida					
Class: Kinetoplastea					
Order: Prokinetoplastida					
Family: Ichthyobodoideae					
Ichthyobodo necator	Co-invader	*Cyprinus carpio*	Not specified	Todal et al. (2004)	
Phylum Ciliophora					
Order: Prokinetoplastida					
Class: Kinetoplastea					
Order: Prokinetoplastida					
Class: Kinetoplastea					
Order: Prokinetoplastida					
Family: Ichthyobodoideae					
Ichthyobodo necator	Co-invader	*Cyprinus carpio*	Not specified	Todal et al. (2004)	
Phylum Ciliophora					
Order: Prokinetoplastida					
Class: Kinetoplastea					
Order: Prokinetoplastida					
Class: Kinetoplastea					
Order: Prokinetoplastida					
Family: Ichthyobodoideae					
Ichthyobodo necator	Co-invader	*Cyprinus carpio*	Not specified	Todal et al. (2004)	
Phylum Ciliophora					
Order: Prokinetoplastida					
Class: Kinetoplastea					
Order: Prokinetoplastida					
Class: Kinetoplastea					
Order: Prokinetoplastida					
Family: Ichthyobodoideae					
Ichthyobodo necator	Co-invader	*Cyprinus carpio*	Not specified	Todal et al. (2004)	
Phylum Ciliophora					
Order: Prokinetoplastida					
Class: Kinetoplastea					
Order: Prokinetoplastida					
Class: Kinetoplastea					
Order: Prokinetoplastida					
Family: Ichthyobodoideae					
Ichthyobodo necator	Co-invader	*Cyprinus carpio*	Not specified	Todal et al. (2004)	
Phylum Ciliophora					
Order: Prokinetoplastida					
Class: Kinetoplastea					
Order: Prokinetoplastida					
Class: Kinetoplastea					
Order: Prokinetoplastida					
Family: Ichthyobodoideae					
Ichthyobodo necator	Co-invader	*Cyprinus carpio*	Not specified	Todal et al. (2004)	
Phylum Ciliophora					
Order: Prokinetoplastida					
Class: Kinetoplastea					
Order: Prokinetoplastida					
Class: Kinetoplastea					
Order: Prokinetoplastida					
Family: Ichthyobodoideae					
Ichthyobodo necator	Co-invader	*Cyprinus carpio*	Not specified	Todal et al. (2004)	

Notes:
- *Ichthyobodo necator* - Co-invader
- *Cyprinus carpio* - Not specified
- Todal et al. (2004)
- **Class:** Kinetoplastea
- **Order:** Prokinetoplastida
- **Family:** Ichthyobodoideae
- **Reference:** N.J. Smit et al. / International Journal for Parasitology: Parasites and Wildlife 6 (2017) 386-401
Phylum: Platyhelminthes

Class: Phyllopharyngea

Order: Chlamydodontida

Family: Chilodonellidae

Chilodonella hexasticha	Co-introduced	Coptodon rendalli	Lebowa Fisheries Station	Basson (1982); Van As and Basson (1984)
Enteromius (Barbus) paludinosus		Turfloop Dam		Basson (1982); Van As and Basson (1984)
Pseudocrenilabrus philander		Nwanedzi River; Pietersburg Dam		Van As and Basson (1984)
Oreochromis mossambicus		Olifants River; Pietersburg Dam; Kouga River; Nyl River; Lebowa Fisheries Station; Nwanedzi River		Paperna and Van As (1983); Basson (1982); Van As and Basson (1984)
Tilapia sparrmanii		Olifants River; Lebowa Fisheries Station		Paperna and Van As (1983); Basson (1982); Van As and Basson (1984)

Chilodonella piscicola (syn. C. cyprini)	Co-introduced	Coptodon rendalli	University of Johannesburg aquarium; Olifants River	Basson (1982); Van As and Basson (1984)
Oreochromis mossambicus		Lowveld Fisheries Research Station		Van As and Basson (1984)
Pseudocrenilabrus philander		Vaal River (Christiana); Orlando Dam (Klip River in Vaal River)		Basson (1982); Van As and Basson (1984)
Tilapia sparrmanii		Lowveld Fisheries Research Station		Van As and Basson (1984)

Class: Monogenea

Order: Dactylogyridea

Schyzocotyle acheilognathi (syn. B. acheilognathi)	Co-introduced	Cyprinus carpio	Komatipoort - commercial ponds; Olifants River; Vaal River; Mta Matrix	Boomker et al. (1980); Brandt et al. (1980, 1981); Van As et al. (1981); Schramm (1992)
Enteromius annectens		Phongolo River		Current study
Enteromius argenteus		Olifants River		Mashego (1982)
Enteromius bifrenatus		Phongolo River		Current study
Enteromius brevipinnis		Marite River (Sablo River)		Schult and Schoonebe (1999)
Enteromius mattozi		Olifants River		Mashego (1982)
Enteromius paludinosus		Olifants River		Mashego (1982)
Enteromius trimaculatus		Mooi River; Olifants River		Van As et al. (1981); Mashego (1982)
Labeobarbus maraquesis		Olifants River		Mashego (1982)
Labeobarbus aeneus		Vaal River; Great Fish River		Bertasso and Avenant-Oldewage (2005); Stadtlander et al. (2011)
Labeobarbus kimberleyensis		Vaal River		Brandt et al. (1981); Bertasso and Avenant-Oldewage (2005)

Atractolytocestus huronensis	Co-introduced	Cyprinus carpio	Olifants River; Letaba River; Vaal River; Riet River	Scholz et al. (2015); Current study

(continued on next page)
Table 1 (continued)

Classification	Genus Species	Status	Host fish	Location - River system	Reference					
Family: Ancyrocephalidae	**Clavunculus bursatus**	Co-introduced	Micropterus salmoides	Friedrichskron Dam; Thomas Baine Nature Reserve	Truter et al. (2017)					
	Oncholeidus dispar	Co-introduced	Micropterus salmoides	Thomas Baines Nature Reserve	Truter et al. (2017)					
	Oncholeidus furcatus	Co-introduced	Micropterus salmoides	Mooi River and Potchefstroom Dam; Friedrichskron Dam	Truter et al. (2017)					
	Oncholeidus principalis	Co-introduced	Micropterus salmoides	Thomas Baines Nature Reserve	Truter et al. (2017)					
	Syncladostomum fusiformis	Co-introduced	Micropterus salmoides	Friedrichskron Dam	Truter et al. (2017)					
Family: Dactylogyridae	**Acolpenteron ureteroecetes**	Co-introduced	Micropterus salmoides	Jonkershoek inland fish hatchery; Groot-Letaba River (Tzaneen Dam)	Du Plessis (1948); Matla (2012)					
	Acolpenteron punctulatus	Co-introduced	Micropterus salmoides	Jonkershoek inland fish hatchery	Du Plessis (1948)					
	Acolpenteron dolomieu	Co-introduced	Micropterus salmoides	Jonkershoek inland fish hatchery	Du Plessis (1948)					
Order: Gyrogastlyidea	**Gyrodactylus kherulensis**	Co-introduced	Cyprinus carpio	Vaal River (Vaal Dam)	Crafford et al. (2014a, b)					
Family: Gyrodactylidae	**Gyrodactylus kobayashii**	Uncertain	Cyprinus carpio	Vaal River (Vaal Dam)	Crafford et al. (2014a, b)					
Subphylum: Crustacea	**Phylum: Arthropoda**	**Order: Cyclopodea**	**Family: Lernaeidae**	**Lernaea cyprinacea**	Co-invader	Phongolo River	Smit et al. (2016)			
	Labeo capensis		Orange River			Robinson and Avenant-Oldewage (1996)				
	Labeo congorensis		Mgalakwena River; Olfants River;			Van As and Viljoen (1984); Robinson and Avenant-Oldewage (1996)				
	Labeo ruddi		Olfants River			Robinson and Avenant-Oldewage (1996)				
	Labeo umbratus		Olfants River			Robinson and Avenant-Oldewage (1996)				
	Labeobarbus marequensis		Vaal River			Robinson and Avenant-Oldewage (1996)				
	Labeobarbus johni		Orange River			Robinson and Avenant-Oldewage (1996)				
	Oreochromis mossambicus		Olfants River; Selati River; Crocodile River (West); Lowveld Fisheries Station; Phongolo River (Nyamiti pan)			Robinson and Avenant-Oldewage (1996); Van As and Viljoen (1984); Van As and Basson (1984); Viljoen (1986); Smit et al. (2016); Welicky et al. (2017); Truter et al. (2017)				
	Pseudocrenilabrus philander		Harts River (Barberspan)			Truter et al. (2016)				
Order: Cyclopoida	**Family: Siphonostomatoida**	**Phyllum: Arthropoda**	**Subphylum: Crustacea**	**Class: Maxillopoda**	**Subclass: Copepoda**	**Family: Lernaeidae**	**Lernaea cyprinacea**	Co-invader	Phongolo River	Smit et al. (2016)
	Achtheres pinelotti		Uncertain			Micropterus dolomieu	Not specified	Barnard (1955); Fryer (1968)		
invasive freshwater fish parasites from South Africa with the specific focus on their status (co-introduced or co-invasive), known distribution, and hosts. Based on our current knowledge and international trends, this paper also aims to provide direction for future studies.

2. Confirmed co-invasive freshwater fish parasites

2.1. Phylum Ciliophora

2.1.1. Ichthyophthirius multifiliis

The ciliate I. multifiliis, the causative agent of the disease ichthyophthiriosis, is an important pathogen of freshwater teleosts globally, and accounts for significant economic losses to the aquaculture industry (Matthews, 2005). Similar to many other invasive parasites, I. multifiliis was most likely co-introduced into freshwater ecosystems throughout the world with the introduction of its native cyprinid hosts from Asia (Nigrelli et al., 1976). It was first reported from Africa (Uganda) by Paperna (1972), followed by Jackson (1978) reporting I. multifiliis from the longfin eel, Anguilla mossambica Peters, 1852, collected in the Keiskamma, South Africa (Table 1, Fig. 1A). Other records of I. multifiliis from South Africa include infestations on the introduced C. carpio, Salmo trutta Linnaeus, 1758 and Oncorhynchus mykiss (Walbaum, 1792), with spillover to the native Oreochromis mossambicus (Peters, 1852) and straightfin barb, Enteromius (Barbus) paludinosus (Peters, 1852) also recorded (Basson, 1982; Van As et al., 1984; Bragg, 1991). During a pilot study on the health status of ornamental freshwater fishes imported to South Africa, Mouton et al. (2001) recorded I. multifiliis from guppies, Poecilia reticulata Peters, 1859 and goldfish, Carassius auratus (Linnaeus, 1758). This study clearly demonstrated the potential for continual introductions of this pathogenic parasite through the ornamental fish trade and further emphasised the need for proper health screening of all imported fishes into South Africa.

2.1.2. Apisomaria piscicola

Apisomaria piscicola, first described more than 120 years ago from C. carpio collected in France, is a sessile peritrich from the Epistylididae that lives on the gills and body surface of its host (Li et al., 2008). With its native host being C. carpio, it is no surprise that this species has a similar global distribution and status as an invasive species, and has been reported as such from, amongst others, Canada (Cone and Odense, 1987), Egypt (El-Tantawy et al., 2013), and Mexico (Aguilar-Aguilar and Islas-Ortega, 2015). The first report of A. piscicola from South Africa was by Viljoen and Van As (1983) from the skin of the southern mouthbrooder, Pseudocrenilabrus philander (Weber, 1897), collected from the Westdene Dam in the Jukskei River (Table 1). In a follow-up study on sessile peritrichs from freshwater fishes in South Africa, Viljoen and Van As (1985) reported A. piscicola from an additional seven hosts collected in more than ten rivers as well as three fisheries stations (Table 1, Fig. 1B). This wide distribution and host range clearly indicated that this species has been a well-established co-invader long before its first report in the 1980s. As the focus of the Viljoen and Van As (1985) study was the northern regions of South Africa (Gauteng, Limpopo, North West and Mpumalanga provinces), it would be important to determine the presence, distribution and hosts of this alien in the rest of South Africa’s rivers.

2.1.3. Chilodonella hexasticha

Members of the chilodonelid genus Chilodonella Strand, 1928 that parasitise fishes are known to cause the disease chilodonellosis, which can lead to extreme high host mortalities, especially under aquaculture conditions (Mitra and Haldar, 2004; Pâdua et al.,
Two species, *C. hexasticha* and *C. piscicola* (Zacharias, 1894) are considered to be the main agents of chilodonellosis and occur globally on the body surface, gills, and fins of freshwater fish hosts. Although the majority of records of pathology caused by *Chilodonella* spp. are from aquaculture facilities, such as those in Finland (Rintamäki et al., 1994), these parasites have also been reported as the main cause of deaths of native fish in natural habitats, such as the Finke River near Alice Springs, Australia (Langdon et al., 1985). In the latter case, Langdon et al. (1985) reported that *C. hexasticha* induced severe generalised epithelial hyperplasia in the gills, which possibly compromised respiratory exchange and killed the fish through hypoxaemia.

The first record of *C. hexasticha* in South Africa, according to Paperna and Van As (1983), was most probably a conference contribution by Du Plessis (1952). This publication reported mass mortalities of the native Mozambique tilapia, *Oreochromis mossambicus*, due to heavy infections of a *Chilodonella* sp., from various fish ponds in South Africa. Its presence in South Africa, and the pathology it caused on native wild caught and farmed fishes, was confirmed by Paperna and Van As (1983) and Van As et al. (1984). Thus far, *C. hexasticha* has been reported from four cichlids and one cyprinid collected in more than five river systems and two aquaculture facilities (Table 1, Fig. 1C). No research in South Africa has been conducted on this important pathogen since the 1980s and specifically not regarding the control thereof. Therefore, in the light of the current global and South African drive towards increasing fresh water aquaculture, it is imperative that research into this and other disease causing invasive parasites are prioritised (Bastos Gomes et al., 2017).

2.1.4. *Chilodonella piscicola* (syn. *C. cyprini*)

The taxonomic status of this *Chilodonella* species was only resolved in the 1970s when *C. cyprini* was synonymised with *C. piscicola* and clear evidence was provided that *C. hexasticha* and *C. piscicola* are distinct species (Mitra and Haldar, 2004; Bastos Gomes et al., 2017). It is therefore no surprise that the first records of *C. piscicola* in South Africa, noted by Basson (1982) and Van As and Basson (1984), initially referred to this species as *C. cyprini*. These records from South Africa were not included in the recent review of the *Chilodonella* by Bastos Gomes et al. (2017), most probably due to the original identification as *C. cyprini*; however, it can now be included with the other seven countries listed as...
confirmed records of *C. piscicola*. In addition, its presence on two wild caught cichlids, *Copidotropis rendalli* (Boulenger, 1896) and *Pseudocrenilabrus philander*, is together with the record from Tibet (see Bastos Gomes et al., 2017), the only records of this parasite on native wild caught fishes (*Table 1, Fig. 1C*). Similar to *C. hexasticha*, *C. piscicola* has also been found to cause mortalities in fish aquaculture, however, the former is associated with warmer climates (between 26 and 31 °C), while the latter exhibits a wide thermal tolerance in the lower range (between 4 and 20 °C) (reviewed by Bastos Gomes et al., 2017). With the majority of South Africa’s river and impoundment temperatures dropping down to below 20 °C in winter, the potential for *C. piscicola* to proliferate under these conditions in the wild needs to be investigated.

2.2. Phylum Platyhelminthes

2.2.1. Schyzocotyle (Bothriocephalus) acheilognathi

It has been well documented that the Asian tapeworm, *S. acheilognathi*, was most likely first introduced during 1975 into South Africa with its native host, the grass carp *Ctenopharyngodon idella* Valenciennes, 1844 (Boomker et al., 1980; Bertasso and Avenant-Oldegrave, 2005; Stadtlander et al., 2011). Following its introduction, it successfully established itself in the common carp, *Cyprinus carpio* (introduced for commercial carp farming). The first published report of this invasive parasite was thus in *C. carpio* by Boomker et al. (1980), from a commercial fish farm in the Komatipoort area, Mpumalanga Province of South Africa (*Table 1, Fig. 1D*).

As *S. acheilognathi* appears to not be host specific both on an intermediate or definitive host level, this parasite quickly spread over to native hosts across South Africa when *C. carpio* was introduced for aquaculture and recreational angling purposes and *C. idella* for controlling aquatic weeds (Stadtlander et al., 2011; Ellender and Weyl, 2014). The first record of this species as a co-invader following spillover was that of Brandt et al. (1981) reporting it parasitising the Vaal-Orange largemouth yellowfish, *Labeobarbus kimberleyensis* Gilchrist and Thompson, 1913, collected from the Vaal Dam in the Vaal River (Fig. 1D). In the same year, Van As et al. (1981) reported another spillover event, this time in Boskop Dam, Mooi River, with the three-spot barb, *Enteromius (Barbus) trimaculatus*, as the infected host (Fig. 1D). Since these first reports, *S. acheilognathi* has been reported from at least 10 native hosts (*Table 1*) from six rivers (Fig. 1D) in South Africa (Mashego, 1982; Barkhuizen, 1991; Schramm, 1992; Retief et al., 2007; Stadtlander et al., 2011; Kuchta et al., 2012; Swanepoel, 2015), making it one of the most widespread co-invasive parasites reported in South Africa.

The pathological effects of *S. acheilognathi* on native hosts in aquaculture conditions, as well as its threat to wild populations, have been well documented globally (Dove et al., 1997; Salgado-Maldonado and Pineda-Lopez, 2003; Pullen et al., 2009). However, research in South Africa has mainly focussed on its distribution, ecology, and potential use as bioindicators of metal pollution (Bertasso and Avenant-Oldegrave, 2005; Retief et al., 2007; Degger and Avenant-Oldegrave, 2009), with a paucity of data on its population and community level impact on threatened native species. Future studies should specifically focus on these impacts and on regions of high endemicity, such as the Cape Floristic Region of the southern and southwestern Cape Province where the largest percentage of South Africa’s threatened freshwater fishes occur.

2.3. Phylum Arthropoda

2.3.1. Lernaea cyprinacea

The global distribution of the copepod *Lernaea cyprinacea* as an invasive ectoparasite, and the severe effects of it on native freshwater fish hosts, has been well documented (see Welicky et al., 2017). Despite the first record of the introduction of this ectoparasite into Africa dating back to the 1960s (Robinson and Avenant-Oldegrave, 1996), it was only recorded for the first time from South Africa twenty years later. Van As and Basson (1984) recognise the unpublished Masters dissertation of Viljoen (1982) as the first document to report *L. cyprinacea* from South Africa. In addition to Viljoen (1982) records of *O. mossambicus* and *Labeobarbus marquensis* (Smith, 1841) from Hartbeespoort Dam in the Crocodile River (West) and *Labeo cylindricus* Peters, 1852 from the Limpopo River as hosts, Van As and Basson (1984) recorded an infestation of *L. cyprinacea* on *O. mossambicus* from the Lowveld Fisheries Station (*Table 1, Fig. 2A*). Further confirmation of the presence of *L. cyprinacea* on South African native fishes was by Van As and Viljoen (1984) and Viljoen (1986) who also reported the presence of *L. cyprinacea* on *O. mossambicus* in Hartbeespoort Dam as well as from *Labeo congoro* Peters, 1852 (*syn. Labeo rubropunctatus*) in the Glen Alpine Dam, Mogalakwena River (*Table 1, Fig. 2A*).

Interestingly, Bruton and Merron (1985) included *L. cyprinacea* in their list of what they considered to be doubtful alien species and therefore De Moor and Bruton (1988) did not include this species in their atlas to alien aquatic animals in southern Africa. More than ten years later Robinson and Avenant-Oldegrave (1996) increased our knowledge on the distribution and hosts of *L. cyprinacea* and added another six cyprinid hosts collected from three different rivers (*Table 1, Fig. 2A*). These authors also provided a detailed morphological study of *L. cyprinacea* as well as an updated geographical distribution in Africa. Recently the identity of *L. cyprinacea* in South Africa was genetically confirmed and two more hosts and three localities where added (Smit et al., 2016; Truter et al., 2016; Welicky et al., 2017). The most surprising fact regarding the host records of *L. cyprinacea* in South Africa is that it does not include any of the invasive cyprinids which were potentially responsible for the co-introduction and subsequent co-invasion of this parasite. Globally, the severe effects on native freshwater fish hosts by *L. cyprinacea* have been well documented; however, the first study on the impact of this co-invader on native fish health in South Africa is the recent work by Welicky et al. (2017). In their paper, the authors reported on the change in host health following a natural drought induced treatment for *L. cyprinacea*, leaving hosts without this parasite in a much better overall health state than those infected. Future work should include host immune response to infection as well as laboratory based studies on the effect of *L. cyprinacea* on host fitness.

2.3.2. Argulus japonicus

With a very low host specificity, and one of its hosts from its native range (*C. carpio*) being considered among 100 of the world’s worst invasive alien species (Lowe et al., 2000), it is no surprise that the Japanese fish louse, *A. japonicus*, is one of the most prevalent and widespread co-invaders in South African freshwater systems. Although reports exist that *C. carpio*, and its other native host, the goldfish *Carassius auratus*, were already introduced into South Africa in 1859 and 1726 respectively (De Moor and Bruton, 1988), the first official record of the co-invading *A. japonicus* was only in 1983. Kruger et al. (1983) reported it from 11 hosts, including *C. carpio*, from two sites (Lake Baberspan and Bloemhof Dam) in the Orange-Vaal River system (*Table 1, Fig. 2B*). However, it was clear that the introduction of *A. japonicus* happened much earlier, with Van As and Basson (1984) adding another five hosts and four more localities, including sites from the Crocodile River (West) (Hartbeespoort Dam and Rooiplaat Dam), showing a widespread occurrence not typically associated with a recent introduction. Van As (1987) supported this and went further by proposing that the records of *Argulus* spp. by Du Plessis (1952) and Lombard (1968)
from the South African Mpumalanga Province were in fact A. japonicus, indicating a much earlier introduction. Following the above reports, additional records of its co-invasion have been published, clearly indicating its wide distribution throughout South Africa (Fig. 2B) and successful spillover onto at least nine native hosts (Avenant-Oldewage, 1994, 2001). Although more recent work on A. japonicus in South Africa focused on its anatomy, ultrastructure, and reproduction (Tam and Avenant-Oldewage, 2006; Avenant-Oldewage and Everts, 2010), there are still gaps in our knowledge on the full extent of its distribution throughout South Africa and its impact on native fishes at population and community levels.

3. Confirmed co-introduced freshwater fish parasites

3.1. Phylum Euglenozoa

3.1.1. Ichthyobodo necator
The ectoparasitic flagellate I. necator has been implicated in disease and mortality of cultured fish globally and is, amongst other things, probably the major cause of death of cultured salmonid fry in Scottish fish farms (Robertson, 1985). In South Africa, specimens identified as I. necator have been reported in the early 1980s from three native cyprinids and the alien C. carpio. These specimens were collected from impoundments in two rivers in the Limpopo Province (Paperna and Van As, 1983; Van As and Basson, 1984), and an aquaculture facility and a river (Kouga River) in the Eastern Cape Province of South Africa (Van As and Basson, 1984) (Fig. 2C). More recently, Ichthyobodo Pinto, 1928 isolates collected from pond-reared koi-carp C. carpio fry from South Africa (specific locality not known) were included in a molecular study by Todal et al. (2004) that aimed to test previous suggestions that I. necator comprises a complex of species. Todal et al. (2004) concluded that there were at least eight strains or species from the 14 isolates tested. The South African isolate showed the highest sequence similarity with the isolate from C. auratus collected in Singapore and grouped together with isolates from an Apistogramma sp. (Brazil) and a Morone Mitchell, 1814 hybrid (USA) (Todal et al., 2004). This molecular evidence suggests that the Ichthyobodo isolate from C. carpio in South Africa can be considered as co-introduced. However, the I. necator identified from native fishes needs to be molecular characterised in order to determine whether

Fig. 2. Maps indicating the South African distribution records for (A) Lernaea cyprinacea Linnaeus, 1758; (B) Argulus japonicus Thiele, 1900; (C) Ichthyobodo necator Henneguy, 1883 (needs molecular confirmation); (D) Trichodina acuta Lom, 1961, Trichodina mutabilis Kazubski and Migala, 1968, Trichodina reticulata Hirschmann and Partsch, 1955, and Trichodina uniforma Van As and Basson, 1989.
they are co-invaders spilled over from *C. carpio* or are a native South African sibling species.

3.2. Phylum Ciliophora

3.2.1. *Trichodina acuta*

The mobild peritrich, *T. acuta*, is a known invasive parasite and has, since its original description, been reported from at least seven different non-native regions (Basson and Van As, 1993). In South Africa, Basson et al. (1983) reported *T. acuta* from four cichlids and two cyprinid species collected at more than six different localities in the northern provinces of South Africa. These hosts included *T. acuta*’s type host, *C. carpio*, and thus further strengthened their conclusion that this parasite is a co-introduced species that spilled over to South African native fishes. However, in their remarks on the species, Basson et al. (1983) commented on the distinct variability in size and denticle dimensions between the South African population and those reported from Israel and the Philippines. Van As et al. (1984) also reported what they identified as *T. acuta* from a Fisheries Research Station where it was implicated in the mortalities of two different fish species. Bruton and Merron (1985) and De Moor and Bruton (1988) further included this species in their respective lists of confirmed invasive aquatic invertebrates. In their review on the taxonomic status of fish ectoparasitic trichodinids, Van As and Basson (1989), with new information available to them, re-evaluated their original records of *T. acuta* from South Africa. By using additional characteristics which enabled them to provide a better understanding of differences in denticle shape, Van As and Basson (1989) described what was previously identified as a South African population of *T. acuta*, as all belonging to a new species, *Trichodina compacta* Van As and Basson, 1989, thereby removing *T. acuta* from the list of invasive parasites from South Africa. However, a few years later, Basson and Van As (1993) accurately identified *T. acuta* in South Africa and this time on rainbow trout, *Oncorhynchus mykiss* (Wallbaum, 1792). This species was collected from a cage culture on a trout farm in the Free State province of South Africa (Table 1, Fig. 2D) confirming its status as a co-introduced parasite in South Africa. Basson and Van As (1993) also provided a detailed discussion on possible routes of introduction into South Africa, especially since its native hosts are European and Asian cyprinids and not salmonids, and concluded that it must have been a recent introduction and future research should focus on the potential spillover to South African native hosts.

3.2.2. *Trichodina mutabilis*

The history of discovery of *T. mutabilis* from South Africa is similar to that of *T. acuta* (see above) and thus not repeated here in detail. In short, Basson et al. (1983) reported this species from various invasive and native hosts in South Africa and then later Van As and Basson (1989) redescribed those specimens thought to be *T. mutabilis* as two species new to science, *Trichodina kazubskii* Van As and Basson, 1989 parasitising native fishes and *Trichodina uniforma* Van As and Basson, 1989 from four cichlids and two cyprinid species collected at more than six different localities in the northern provinces of South Africa. These hosts included *T. mutabilis*’ type host, *C. carpio*, and thus further strengthened their conclusion that this parasite is a co-introduced species that spilled over to South African native fishes. However, in their remarks on the species, Basson et al. (1983) commented on the distinct variability in size and denticle dimensions between the South African population and those reported from Israel and the Philippines. Van As and Basson (1989), with new information available to them, re-evaluated their original records of *T. mutabilis* from South Africa. By using additional characteristics which enabled them to provide a better understanding of differences in denticle shape, Van As and Basson (1989) described what was previously identified as a South African population of *T. mutabilis*, as all belonging to a new species, *Trichodina acuta* Van As et al., 1984) also reported what they identified as *T. acuta* from a Fisheries Research Station where it was implicated in the mortalities of two different fish species. Bruton and Merron (1985) and De Moor and Bruton (1988) further included this species in their respective lists of confirmed invasive aquatic invertebrates. In their review on the taxonomic status of fish ectoparasitic trichodinids, Van As and Basson (1989), with new information available to them, re-evaluated their original records of *T. acuta* from South Africa. By using additional characteristics which enabled them to provide a better understanding of differences in denticle shape, Van As and Basson (1989) described what was previously identified as a South African population of *T. acuta*, as all belonging to a new species, *Trichodina compacta* Van As and Basson, 1989, thereby removing *T. acuta* from the list of invasive parasites from South Africa. However, a few years later, Basson and Van As (1993) accurately identified *T. acuta* in South Africa and this time on rainbow trout, *Oncorhynchus mykiss* (Wallbaum, 1792). This species was collected from a cage culture on a trout farm in the Free State province of South Africa (Table 1, Fig. 2D) confirming its status as a co-introduced parasite in South Africa. Basson and Van As (1993) also provided a detailed discussion on possible routes of introduction into South Africa, especially since its native hosts are European and Asian cyprinids and not salmonids, and concluded that it must have been a recent introduction and future research should focus on the potential spillover to South African native hosts.

3.2.3. *Trichodina reticulata*

As one of the most prevalent ectoparasites of the goldfish, *C. auratus*, it is not surprising that *T. reticulata* has a similar global distribution to that of its popular ornamental fish host. Basson and Van As (1993) found this to be true when they recorded *T. reticulata* from *C. auratus* obtained from a local ornamental fish distributor in Bloemfontein, South Africa (Table 1, Fig. 2D). Notwithstanding being reported from more than 12 countries (Martins et al., 2012), it has never been implicated in spillover to native hosts. This is confirmed by the study of Dove and O’Donoghue (2005) who examined 2003 fishes belonging to 33 species from 58 sites in Queensland, Australia, and only found *T. reticulata* on wild caught *C. auratus* and another introduced species, the Eastern mosquitofish *Gambusia holbrooki* Girard, 1859. Based on current available information, it is most likely that if *T. reticulata* does get into South Africa’s natural waterways it will remain a co-introduced parasite with a low possibility of spillover, however this needs to be further investigated.

3.2.4. *Trichodina uniforma*

As mentioned above (section 3.2.2), *T. uniforma* described by Van As and Basson (1989) from *C. auratus* was originally identified as the invasive *T. mutabilis*. The same authors further concluded that despite extensive surveys throughout southern Africa, they did not find this species in any other locality other than the original fish farm in the Komatipoort River, which they described it from, nor on any other hosts other than the introduced *C. auratus* (Table 1, Fig. 2D). This raised the question as to whether *T. uniforma* was co-introduced with *C. auratus* or if it was spilloback from its native hosts. Since its description in 1989, various authors have reported this species from (amongst other hosts) *C. auratus* and *C. carpio* from their native range in China (see Tang et al., 2007; Qi et al., 2011; Li et al., 2014), thus confirming its status as a co-introduced parasite in South Africa. Recently, Tang and Zhao (2016), using 18S rDNA, supported Van As and Basson (1989) morphological identification of *T. uniforma* as a separate species to *T. mutabilis*.

3.3. Phylum Platyhelminthes

3.3.1. *Atractolytocestus huronensis*

One of the most recent reports of a co-introduced parasite from South Africa is that of the cestode *A. huronensis*. Scholz et al. (2015) reported this tapeworm from the intestine of *C. carpio* from four localities in the Limpopo Province of South Africa (Table 1, Fig. 2B). Their paper was also the first to include morphological and molecular confirmation of the identity of the introduced parasite. Although Scholz et al.’s (2015) report on this co-introduction is recent, the co-introduction of *A. huronensis* into South Africa might not be. During parasitological surveys conducted between 2013 and 2016 by the authors of this review in the Vaal River (North West Province), as well as in the Riet River (Northern Cape Province), *A. huronensis* specimens were collected from *C. carpio* at both sites (Smit unpublished records). These records are now included here (Table 1, Fig. 3A) and demonstrate a much wider distribution in different river systems than originally thought, and thus an unlikely pattern usually seen in a recent introduction. We concur with Scholz et al. (2015) that future work on this tapeworm should include phylogeographic studies employing molecular markers to reveal the source of introduction of this co-introduced parasite.

3.3.2. *Acroplenteron ureteroecetes*

The first record of a co-introduced parasite into South Africa is, according to our records, that of Du Plessis (1948), who reported the presence of the monogenean *A. ureteroecetes* in the urethras of three bass species, *Micropterus dolomieu* (Lacepède, 1802),
Micropterus punctulatus (Rafinesque, 1819), and Micropterus salmoides (Lacepede, 1802), bred in the Jonkershoek Fish Hatchery, Western Cape Province. Although all three species were infected, only *M. salmoides* had high parasite loads that directly lead to the mortality of large numbers of fingerlings (Du Plessis, 1948). Mortality of cultured *M. salmoides* due to *A. ureteroecetes* infections were more recently reported by Petrie-Hanson (2001) from pond reared fish in Mississippi, USA, confirming Du Plessis’ (1948) original observation of *A. ureteroecetes*’ pathogenicity. The only record of *A. ureteroecetes* in wild *M. salmoides* from South Africa is a non-peer reviewed published conference abstract by Matla et al. (2010) reporting a very low infection of this species from the ureter-urinary bladder of *M. salmoides* collected in the Tzaneen Dam, Limpopo Province (Table 1, Fig. 3B). As the stocking of most of the *M. salmoides* populations in South Africa was via the Jonkershoek Fish Hatchery (De Moor and Bruton, 1988), the co-introduction of *A. ureteroecetes* into the Limpopo Province was most likely from the original Jonkershoek Fish Hatchery stock. Research into the parasites of other populations of *M. salmoides* will most probably reveal a much wider distribution of *A. ureteroecetes* in South Africa and warrants further research.

3.3.3. *Dactylogyrus extensus*, *Dactylogyrus minutus* and *Dactylogyrus lamellatus*

The three dactylogyrids, *D. extensus*, *D. minutus*, and *D. lamellatus* are well documented known co-invaders, with their widely introduced host, *C. carpio*, for the former two and the grass carp, *Ctenopharyngodon idella* for the latter (Dove and Ernst, 1998; Yang et al., 2016). Crafford et al. (2014a) recorded all three of these species from their respective wild caught introduced hosts from the Vaal Dam in the Vaal River, South Africa (Table 1, Fig. 3C), with *Dactylogyrus extensus* and *D. minutus* collected from *C. carpio*, and *D. lamellatus* from *C. idella*. With representatives of *Dactylogyrus* Diesing, 1850 considered to be very host specific, the chances of host switching to native fish by these co-invaders are limited (Dove and Ernst, 1998; Simková et al., 2001). This is further supported by the work of Crafford et al. (2012; 2014a,b) on the monogeneans of fishes from the Vaal Dam, who did not report any spillover of these introduced *Dactylogyrus* species onto any of the native hosts studied.

3.3.4. *Gyrodactylus kherulensis*

The gyrodactylid *G. kherulensis* is a parasite of the common as well as the koi carp, *C. carpio koi*. Similar to the dactylogyrids

Fig. 3. Maps indicating the South African distribution records for (A) *Atractolytocestus huronensis* Anthony, 1958; (B) *Acolpenteron ureteroecetes* Fischthal and Allison, 1940; (C) *Dactylogyrus extensus* Mueller and Van Cleave, 1932, *Dactylogyrus minutus* Kulwiec, 1927 and *Dactylogyrus lamellatus* Achmerow, 1952; (D) *Gyrodactylus kherulensis* Ergens, 1974.
reported above, *G. kherulensis* has also been co-introduced world-
dwide due to the popularity of its natural host as an aquaculture and
ornamental species. The first report of *G. kherulensis* in South Africa
was in a non-peer reviewed published conference abstract by
Maseng et al. (2010). These authors collected *G. kherulensis* from
commercially bought, as well as wild caught, *C. carpio* in the
Western Cape Province of South Africa (Table 1, Fig. 3D). Recently
Crafford et al. (2014a) found a total of three *G. kherulensis* speci-
mens on the body surface of a single *C. carpio*, collected from the
Vaal Dam in the Vaal River (Table 1, Fig. 3D), confirming its status as
a co-introduced parasite in South Africa.

3.3.5. *Ancyrocephalid monogeneans of largemouth bass,*
Micropterus salmoides

As part of this special issue on invasive parasites, Truter et al.
(2017) provided the first peer reviewed published record of five
ancyrocephalid monogeneans form largemouth bass, *Micropterus
salmoides*, collected at three localities in South Africa. In that paper
the authors provide full descriptions as well as distribution records
and maps (see Truter et al., 2017), for these species. For
completeness of the current review these species, *Clavunculus
bursatus* (Mueller, 1963), *Oncholeidus dispar* (Mueller, 1936),
O. furcatus (Mueller, 1937), *O. principalis* (Mizelle, 1936) and *Syn-
cleithrium fusiformis* (Mueller, 1934) are only listed here and not
further discussed.

4. Parasites of uncertain invasive status

4.1. Phylum Ciliophora

4.1.1. *Apiosoma nasalis*

This sessile peritrich was originally described from the nasal
cavities of cyprinids from the Amur River Basin, Russia; however, in
his taxonomic revision of this genus, Lom (1966) suggested that re-
examination of live specimens of this species is needed to confirm its
identity. Its possible presence in South Africa was
first recorded by Viljoen and Van As (1983) from *Pseudocrenilabrus philander*
collected in the Westdene Dam, Johannesburg (Table 1). The authors acknowledged the uncertainty regarding its identity, espe-
cially as they collected it from the skin and gills and not the nasal
cavities, and therefore proposed that their identification be provi-
sional until more material from other localities and fish species are
collected. However, in Viljoen and Van As (1985) the same authors
recorded *A. nasalis* from *P. philander*, again from the Westdene Dam,
but this time without stating any uncertainties. It is thus not clear if the 1985 record was from new material or just a repeat of the 1983
record. As the 1985 record did not include more fish hosts from
different localities as proposed by Viljoen and Van As (1983), the
invasive status of this species is considered as uncertain.

4.1.2. *Trichodinella epizootica and Trichodina nigra*

Both *T. epizootica* and *T. nigra* were included in the report by
Basson et al. (1983) on trichodinids from selected fishes of South Africa (also see section 3.2.1.), Basson and Van As (1993), however,
suspected that their original identification was incorrect and that
re-evaluation of these species will most likely show that they are not representatives of either *T. epizootica* or *T. nigra*. Until proper re-
evaluation, we place both these species here in the uncertain in-
vasion status category.

4.2. Phylum Platyhelminthes

4.2.1. *Gyrodactylus kobayashii*

The gyrodactylid, *G. kobayashii*, is a parasite of the goldfish,
C. auratus, and has a world-wide distribution due to it being co-
introduced with its ornamental fish hosts. In a non-peer reviewed published conference abstract by Maseng et al. (2010), the authors reported *G. kobayashii* present on both commercially bought, as well as wild caught, *C. auratus* in the Western Cape Province of South Africa (Table 1). Maseng et al. (2010) did not list the specific locality of the wild caught fish in the conference ab-
tract but indicated the locality as the Kuils River in her unpublished Masters dissertation (Maseng, 2010). As this record of the co-
introduction of *G. kobayashii* into South Africa is in non-peer reviewed publications, these records are classified as uncertain until formal publication thereof.

4.2.2. *Pseudodactylogyrus anguillae*

The monogenean, *P. anguillae*, is an ectoparasite originally
described from the gills of the Japanese eel, *Anguilla japonica*
Tenminck and Schlegel, 1846. Following its original description, it was
discovered to have invaded Europe where it was first found in
1977 on the gills of the European eel, *Anguilla anguilla* from an eel
farm in the western Soviet Union (Buchmann et al., 1987). *Pseu-
dodactylogyrus anguillae* has subsequently been recorded from wild populations of the American eel, *Anguilla rostrata* (Lesueur, 1817) in
Canada (Cone and Margolis, 1995) and the USA (Hayward et al.,
2001). The first report from South Africa was by Christison and
Baker (2007) who reported *P. anguillae* from the gills of the long-
fins eel, *Anguilla mazzambica* collected from four rivers in the Eastern
Cape (Table 1). Parker et al. (2011) and McHugh et al. (2017) sub-
sequently extended the distribution range by including additional
sites from the Eastern Cape (Table 1). However, Ogawa et al. (2015)
and McHugh et al. (2017) raised concerns about the identity of what
was thought to be *P. anguillae* from South Africa as its origin in this region is uncertain since no record of the introduction of
A. japonica, or any other non-native eels into South Africa, can be
found (Ellender and Weyl, 2014). Until further molecular analysis
on the South African population of *P. anguillae*, using a combination of different genetic markers, has been completed and its identity
confirmed, we provisionally assign this species to the uncertain
invasive status category.

4.3. Phylum Arthropoda

4.3.1. *Achtheres pimelodi* (syn. *Achtheres micropteri*)

The lernaeopodid copepod, *A. pimelodi*, is an ectoparasite found
on the gills of various fish host in the USA, including the small-
mouth bass, *M. dolomieu* (Muzzall and Whelan, 2011). Barnard
(1955) presumed that *A. pimelodi* (using the synonym *A. micropteri*) might have been introduced into South Africa with the
smallmouth bass, *M. dolomieu*, but it is not clear whether he actually collected any from South Africa. Later, Fryer (1968) listed this
species (also using the synonym *A. micropteri*) in his paper on the
distribution of parasitic Crustacea from African freshwater fish,
but once again there was no indication on whether he collected any
himself or if he was just referencing Barnard (1955). No other re-
cord of this parasite from South Africa exists and thus its current
status as alien in South African waters is doubtful and needs further study.

5. Species previously reported as invasive but hereby removed from the list

5.1. Phylum Ciliophora

5.1.1. *Trichodina pediculus*

Basson et al. (1983) originally reported *Trichodina pediculus*
Ehrenberg, 1838 from two cichlids in South Africa, but later Van As
and Basson (1989) corrected the original identification and
Classification	Genus species	Parasite species
Family: Mormyridae	Marcusenius macrolepidotus	Apiosoma piscicola
Family: Anguillidae	Anguilla mossambica	Ichthyophthirius multifilis
Family: Cyprinidae	Carassius auratus	Ichthyophthirius multifilis, Trichodina mutabilis, Trichodina reticulata, Trichodina uniforma
	Cyprinus carpio	Argulus japonicus, Atractolytocestus huronensis, Dactylogyrus minutus, Dactylogyrus lamellatus, Gyrodactylus kherulensis, Ichthyophthirius multifilis, Ichthyobodo necator, Schyzocotyle acheilognathi
	Enteromius annectens	Schyzocotyle acheilognathi
	Enteromius brevipinnis	Schyzocotyle acheilognathi
	Enteromius bifrenatus	Schyzocotyle acheilognathi
	Enteromius trimaculatus	Apiosoma piscicola
	Enteromius argenteus	Schyzocotyle acheilognathi
	Enteromius paludinosus	Apiosoma piscicola, Chilodonella hexasticha, Ichthyophthirius multifilis, Schyzocotyle acheilognathi
	Enteromius matozi	Argulus japonicus, Schyzocotyle acheilognathi
	Labeobarbus kimberleyensis	Argulus japonicus, Lernaea cyprinacea, Schyzocotyle acheilognathi
	Labeobarbus aeneus	Argulus japonicus, Schyzocotyle acheilognathi
	Labeobarbus murequensis	Argulus japonicus, Lernaea cyprinacea, Lernaea cyprinacea, Schyzocotyle acheilognathi
	Labeo umbratus	Argulus japonicus, Lernaea cyprinacea
	Labeo capensis	Argulus japonicus, Lernaea cyprinacea
	Labeo roae	Argulus japonicus, Lernaea cyprinacea
	Labeo ruddi	Lernaea cyprinacea
	Labeo congoro	Lernaea cyprinacea
	Labeo cylindricus	Lernaea cyprinacea
Family: Claridae	Clarias gariepinus	Argulus japonicus, Dactylogyrus extensus
Family: Salmonidae	Salmo trutta	Ichthyophthirius multifilis
	Oncorhynchus mykiss	Argulus japonicus, Ichthyophthirius multifilis, Trichodina acuta
Family: Centrarchidae	Micropterus salmoides	Acolpenteron uretoeocetes, Clavunculus bursatus, Onchocleidus dispar, Onchocleidus furcatus, Onchocleidus principalis, Synclerithrum fusiformis, Apiosoma piscicola
	Micropterus dolomieu	Apiosoma piscicola, Acolpenteron uretoeocetes
	Micropterus punctulatus	Acolpenteron uretoeocetes
Family: Cichlidae	Pseudocrenilabrus philander	Apiosoma piscicola, Chilodonella piscicola (syn C. cyprini), Chilodonella hexasticha, Ichthyobodo necator, Lernaea cyprinacea
	Tilapia sparrmanii	Ichthyobodo necator, Chilodonella piscicola (syn C. cyprini), Chilodonella hexasticha
	Coptodon rendallii	Apiosoma piscicola, Chilodonella piscicola (syn C. cyprini), Chilodonella hexasticha, Lernaea cyprinacea
	Oreochromis mossambicus	Apiosoma piscicola
described the original specimens as *Trichodina magna* Van As and Basson, 1989. This correction was confirmed by Basson and Van As (1993), and as no further reports of *T. pediculus* from South Africa exists, it is hereby removed from the list of invasive freshwater fish parasites of South Africa.

6. Conclusions and future direction

All previously reported alien freshwater fish parasites were reviewed and categorised according to their invasive status. Based on available information, seven species were classified as co-invasive, 16 as co-introduced, six as uncertain invasive status, and a single species previously reported as invasive was removed from the list. The total confirmed number of alien parasites (23) in South Africa is low when considering that at least 17 species of alien freshwater fishes are established in South African waters, with the majority of the first introductions dating back to the mid twentieth century (Ellender and Weyl, 2014). Possible reasons for the low numbers of alien parasites might include that the original introductions where from stock already low in parasite diversity, for example, largemouth bass were introduced into South Africa from breeding facilities in Europe (De Moor and Bruton, 1988); or that the South African environment, although suitable to the host, is not suitable for its parasites. However, the most likely reason is probably the lack of extensive parasitological surveys in all the different regions of South Africa, as the current distribution records of alien parasites in South Africa is more related to the distribution of fish parasitologists than that of the parasites themselves [see Van As (2015) and Smit and Hadfield (2015) for reviews on the history of fish parasitology in South Africa]. A more targeted approach focussing specifically on South Africa’s coastal provinces should provide more accurate information on the current distribution and diversity of invasive freshwater fish parasites.

The role of invasive parasites in mass fish-kill events in natural systems has already been established, for example, in Australia Langdon et al. (1985) identified invasive *Chilodonella* spp. as the main cause of death of native fish in the Finke River near Alice Springs (also see section 2.1.3.). In South Africa, mass fish-kill events are often reported and usually attributed to sudden change in water temperature, oxygen levels, and stressors such as pollution, and potentially even invasive fishes (Wepener et al., 2011), however, thus far invasive parasites have not been considered as a contributing factor or even the cause of these incidents. Future research on invasive parasites in South Africa should therefore include their potential role in mass fish-kill events.

To date, no research in South Africa (and very limited internationally) has focussed on the co-introduction of parasites by translocated species, especially those that were introduced through inter-basin water transfer schemes. Ellender and Weyl (2014) listed 21 extralimited fish species that were already established in their new environments. Future research should therefore also focus on the parasites of these species in both their native and introduced range, as well as the possible spillover to native fishes.

One of the biggest challenges when working with invasive parasites is the confirmation of the identity of the species, especially if representatives of the same family or even genus occur naturally in that region. We therefore propose that all future work on invasive parasites should include both morphological and molecular approaches when determining the species. It is also of utmost importance to deposit voucher specimens into recognised collection facilities for future verification, comparison, and research in general.

Although this review specifically deals with freshwater fish parasites introduced into South Africa, the information presented on the majority of the different parasites is also applicable to the rest of Africa and other countries worldwide. Similarly, the need for future research on the role of invasive parasites in fish-kills, parasites introduced by extralimited fishes, as well as the molecular identification and deposition of voucher specimens, should be prioritised globally.

Conflict of interest

The authors declare there is no conflict of interest.

Acknowledgements

Research funding from the South African National Research Foundation (NRF) is hereby acknowledged (NRF project IFR170210222411 Grant 109352, NJ Smit, PI). Opinions expressed, and conclusions arrived at, are those of the authors and are not necessarily those of the NRF. Financial assistance for KA Hadfield from the Claude Leon Foundation and the Western Indian Ocean Marine Science Association (WIOMSA) Marine Research Grant for this research is also acknowledged. Dr. Scott Lawton, Kingston University, UK and Prof Tomáš Scholz, Institute of Parasitology, Czech Republic are thanked for the identification of the *Schyzocytoyle acheilognathi* collected from the Vaal River and Riet River respectively. This is contribution number 197 of the North-West University (NWU) Water Research Group.

References

Adlard, R.D., Miller, T.L., Smit, N.J., 2015. The butterfly effect: parasite diversity, environment, and emerging disease in aquatic wildlife. Trends Parasitol. 31, 160–165.

Aguilar-Aguilar, R., Islas-Ortega, A.G., 2015. A checklist of ciliate parasites (*Ciliophora*) of fishes from Mexico. Zoo taxa 4027, 270–280.

Avenant-Oldewage, A., 1994. A new species of *Argulus* from Kosi Bay, South Africa and distribution records of the genus. Koedoe 37, 89–95.

Avenant-Oldewage, A., 2001. *Argulus japonicus* in the Olifants River system - possible conservation threat? S. Afr. J. Wildl. Res. 31, 59–63.

Avenant-Oldewage, A., Everts, L., 2010. *Argulus japonicus*: sperm transfer by means of a spermatophore on *Carassius auratus* (L.). Exp. Parasitol. 126, 232–238.

Barkhuizen, L.M., 1991. Levensstrategie van die vislintwurm, *Bothriopephalus acheilognathi* Yamaguti, 1934 in die Oranje Vrystaat. M.Sc. dissertation. University of the Orange Free State, South Africa, p. 195.

Classification	Genus species	Parasite species
	Poecilia reticulata	*Ichthyophthirius multifilis*

Family: Poeciliidae
Schulz, G.W.C., Schoonbee, H.J., 1999. Aspects of the length, mass, fecundity, feeding habits and some parasites of the parasitic copepod Lernaeo cyprinica Linnaeus, 1758 and notes on its distribution in Africa. Crustaceana 69, 610–626.

Salgado-Maldonado, G., Pineda-Lopez, R.F., 2003. The Asian fish tapeworm Bothriocephalus acheilognathi: a potential threat to native freshwater fish species in Mexico. Biol. Invasions 5, 261–268.

Scholz, T., Tavakol, S., Halajian, A., Luus-Powell, W.J., 2015. The invasive fish tapeworm Atractolytocestus hurensonis (Cestoda), a parasite of carp, colonises Africa. Parasitol. Res. 114, 3521–3524.

Schramm, M., 1992. Ichthyobodo necator (Henneguy, 1883) an important and damaging fish parasite. In: Muir, J.F., Roberts, R.J. (Eds.), Recent Advances in Aquaculture. Springer, US, pp. 1–30.

Robertson, D.A., 1985. A Review of Atractolytocestus hurensonis (Cestoda: Pseudophyllidea) in a population of common carp Cyprinus carpio. J. S. Afr. Vet. Assoc. 63, 97.

Schulz, G.W.C., Schoonbee, H.J., 1999. Aspects of the length, mass, fecundity, feeding habits and some parasites of the parasitic copepod Lernaeo cyprinica Linnaeus, 1758 and notes on its distribution in Africa. Crustaceana 69, 610–626.

Saltman, K.A., 2015. A seasonal investigation of the genus Lernaeo (Cestacea: Larnaeidae) in Transvaal. S. Afr. J. Sci. 111, 179.

Van As, J.G., Basson, L., 1984. Checklist of freshwater fish parasites from southern Africa. S. Afr. J. Wildl. Res. 14, 49–61.

Van As, J.G., Basson, L. 1989: A further contribution to the taxonomy of the Trichodinidae (Ciliophora: Peritrichia) and a review of the taxonomic status of some fish ectoparasitic trichodinids. Syst. Parasitol. 14, 157–179.

Van As, J.G., Viljoen, S., 1984. A taxonomic study of sessile peritrichs (Ciliophora: Peritrichia) associated with crustacean fish ectoparasites in southern Africa. S. Afr. J. Zool. 19, 275–279.

Van As, J.G., Basson, L., Theron, J., 1984. An experimental evaluation of the use of formalin to control trichodiniasis and other ectoparasitic protozoans on fry of Cyprinus carpio L and Oreochromis mossambicus (Peters). S. Afr. J. Wildl. Res. 14, 42–48.

Van As, J.G., Schoonbee, H.J., Brandt, F.D.W., 1981. Further records of the occurrence of Bothriocephalus (Cestoda: Larnaeidae) in the Transvaal. S. Afr. J. Sci. 77, 343.

Viljoen, B.C.S., 1986. A seasonal investigation of the genus Lernaeo (Cestacea: Copepoda) on cyprinid fish in Boskop Dam, Transvaal, S. Afr. M.Sc. dissertation. Rand Afrikaans University, Johannesburg, South Africa, p. 210.

Viljoen, B.C.S., 1982. 'n Seseoondstude van die visetkopparasiet Larnaeo (Cestacea: Copepoda) in Boskopdam, Transvaal. M.Sc. dissertation. Rand Afrikaans University, Johannesburg, South Africa. p. 210.

Viljoen, B.C.S., 1986. A seasonal investigation of the genus Lernaeo (Cestacea: Copepoda) on cyprinid fish in Boskop Dam, Transvaal, South Africa [sic]. S. Afr. J. Wildl. Res. 16, 27–31.

Viljoen, S., Van As, J.G., 1983. A taxonomic study of sessile peritrichs of a small impoundment with notes on their substrate preferences. J. Limnol. Soc. S. Afr. 42, 48.

Viljoen, S., Van As, J.G., 1985. Sessile peritrichs (Ciliophora: Peritrichia) from freshwater fish in the Transvaal, South Africa. S. Afr. J. Zool. 20, 79–96.

Welicky, R.L., De Swart, J., Gerber, R., Netherlands, E., Smit, N.J., 2017. Drought-associated absence of alien invasive anchorworm, Lernaeo cyprinica (Copepoda: Larnaeidae), is related to changes in fish health. Int. J. Parasitol. Parasites Wildl. http://dx.doi.org/10.1016/j.ijppaw.2017.01.004.

Wepener, V., Van Dyk, C., Bervoets, L., O’Brien, G., Covaci, A., Cloete, Y., 2011. An assessment of the influence of multiple stressors on the Vaal River, South Africa. Phys. Chem. Earth 36, 949–962.

Yang, B.J., Zou, H., Zhou, S., Wu, S.G., Wang, G.T., Li, W.X., 2016. Seasonal dynamics and spatial distribution of the Dactylogyris species on the gills of Grass Carp (Ctenopharyngodon idellus) from a fish pond in Wuhan, China. J. Parasitol. 102, 507–513.