Tensor correlation in neutron halo nuclei

Takayuki Myo, Kiyoshi Kato, Hiroshi Toki and Kiyomi Ikeda

1Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047, Japan
2Division of Physics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
3The Institute of Physical and Chemical Research (RIKEN), Wako 351-0198, Japan

E-mail: myo@rcnp.osaka-u.ac.jp

Abstract. We investigate the effect of the tensor correlation on the light neutron-rich nuclei. We extend the model space of ^4He core with the shell model approach to incorporate the tensor correlation, and π-like 0^- particle-hole correlation is strongly favored. This affects the LS splitting in ^5He and the 0^+_2 state of ^6He. We also investigate that the tensor correlation is suppressed in ^{11}Li for p^2 configuration of last two neutrons, which naturally mixes the s^2 component in the ground state and produces the halo structure.

1. Introduction

The tensor force is an important ingredient in the nuclear force derived from the meson theory, and plays a characteristic role in the nuclear structure. Actually, we know that the contribution of the tensor force on the binding energy in ^4He is of the same magnitude as that of the central force[1]. Although there is real space analyses of ^4He with realistic interaction, it is important to understand the effect of the tensor force on the nuclear structure in a physically transparent manner by describing explicitly the tensor correlation in the model space.

Recently, Sugimoto, Toki and Ikeda have brought a progress in description of the tensor correlation in the model space[3]. Considering that the dominant term of the tensor force is expressed by a one-pion exchange potential, they showed that the tensor correlation can be described as what causes the charge-parity mixing of the single-nucleon orbit mediated by the pion-field. They applied this framework of the charge-parity-projected Hartree-Fock method (CPPHF) to ^4He and succeeded in describing the tensor correlation[3].

The basic purpose of this paper is to understand the essential effects of the tensor correlation on the nuclear structure by treating the tensor force explicitly. For this purpose, first ^4He is chosen because of simpleness of its structure. We take a similar framework of the CPPHF, but a simpler and more conventional shell model approach for ^4He[4]. We furthermore analyze the light neutron-rich nuclei including halo ones using the extended cluster model with the tensor correlation.

2. Tensor correlation in ^4He

For ^4He, we extend the shell model type wave function from the conventional $(0s)^4$ configuration into the $(0s)^4+(0s)^2(0p)^2$ configurations under the consideration of the properties of the tensor force, that is, all the $2p-2h$ configurations of $(0s)^2(0p)^2$ can be coupled with the $(0s)^4$ one by the tensor force. We treat the length parameters of two orbits, b_{0s} and b_{0p} (units in fm) as variational ones to conveniently include the higher shell effect caused by the tensor force, because the CPPHF studies of ^4He[3, 5] showed the narrower $0p$ orbit than $0s$ orbit.
Figure 1. Results of $^4\text{He}-n$ phase shifts with KKNN-T2 in comparison to experiment[9].

We use Akaishi potential constructed from the G-matrix theory using the realistic AV8' interaction [5], and adjust the central part in order to fit the experimental matter radius and binding energy of the ^4He in the present model, but retaining the tensor and the LS parts.

The energy minimum is obtained at $(b_{0p}, b_{0p})=(1.39, 0.79)$, where $\langle V_T \rangle$ has -29.9 MeV, showing the largest contribution. These results mean that the tensor force can be incorporated with a small b_{0p} value which describes the higher shell effects. The $2p-2h$ component of $(0s_{1/2})_T^0(0p_{1/2})_T^0$ with $(J,T)=(1,0)$ for spin and isospin, is strongly mixed, about 8% amount the total $2p-2h$ components of 12.5%. This is caused by the strong 0^- coupling between the orbits of $0s_{1/2}$ and $0p_{1/2}$ like a pion effect[3].

3. Tensor correlation in $^4\text{He}+n$ scattering

Here, we construct a reliable ^4He-interaction with the tensor-correlated ^4He cluster. We start from the KKNN potential[6], a semi-microscopic $^4\text{He}+n$ interaction having central and LS parts constructed with the $(0s)^3$ assumption of ^4He. Therefore, there is no tensor correlation of ^4He.

In our model, due to the large mixing of $0p_{1/2}$ component from the tensor correlation in ^4He, the Pauli blocking mainly occurs in the $^5\text{He}(1/2^-)$ state and the splitting of $1/2^-\rightarrow 3/2^-$ can arise. Similar studies were performed by the old analyses[7, 8]. In fact, we make a new $^4\text{He}+n$ interaction so-called KKNN-T2 with weakening the LS part by 48% by solving the coupled problem of the “tensor-correlated ^4He cluster”-+n model[4]. The results are shown in Fig. 1. We also investigate the d wave phase shifts in comparison to the KKNN’s results. The KKNN-T2 improves the d wave behavior and get closer to the experiments[9], which means that the description of the $^4\text{He}+n$ scattering is naturally improved with considering the tensor correlation.

4. Tensor correlation in ^6He and ^{11}Li

We also investigate the structures of ^6He and ^{11}Li with “tensor-correlated core cluster”-+$n+n$ model. Our results show that the tensor suppression occurs in both nuclei when two valence neutrons occupy $0p_{1/2}$ orbit. In ^6He, 0^+_2 state is pushed up about 3 MeV in comparison to the simple three-body model[10]. In the ground state of ^{11}Li, we confirm that the $(1s_{1/2})^2$ component increases by about 20%, which naturally produces the halo structure.

References
[1] Y. Akaishi, Int. Rev. of Nucl. Phys.4(1986)259, H. Kamada et al., Phys. Rev. C 64(2001)044001.
[2] H. Kamada et al., Phys. Rev. C 64(2001)044001.
[3] S. Sugimoto, K. Ikeda, H. Toki, Nucl. Phys. A 740(2004)77.
[4] T. Myo, K. Katō and K. Ikeda, Prog. Theor. Phys. 113(2005)763.
[5] Y. Akaishi, Nucl. Phys. A 738(2004)80.
[6] H. Kanada, T. Kaneko, S. Nagata and M. Nomoto, Prog. Theor. Phys. 61(1979)1327.
[7] T. Terasawa, Prog. Theor. Phys. 22(1959)150, 23(1960)87.
[8] S. Nagata, T. Sakawa, T. Sawada and R. Tamagaki, Prog. Theor. Phys. 22(1959)274.
[9] Th. Stammbach, and R. L.Walter, Nucl. Phys. A 180(1972)225.
[10] T. Myo, S. Aoyama, K. Katō and K. Ikeda, Phys. Rev. C 63(2001)054313.