Detection of Gelatin Adulteration in Traditional Chinese Medicine: Analysis of Deer-Horn Glue by Rapid-Resolution Liquid Chromatography-Triple Quadrupole Mass Spectrometry

Jia Chen, Xian-Long Cheng, Feng Wei, Qian-Qian Zhang, Ming-Hua Li, and Shuang-Cheng Ma

National Institute for Food and Drug Control, State Food and Drug Administration, 2 Tiantan Xili, Beijing 100050, China

Correspondence should be addressed to Xian-Long Cheng; lncxl@sina.com and Feng Wei; weifeng@nifdc.org.cn

Received 29 September 2014; Revised 3 February 2015; Accepted 27 February 2015

Copyright © 2015 Jia Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Simultaneous identification of donkey-hide gelatin and bovine-hide gelatin in deer-horn glue was established by rapid-resolution liquid chromatography-triple quadrupole mass spectrometry. Water containing 1% \(\text{NH}_4 \text{HCO}_3 \) was used for sample dissolution and trypsin was used for hydrolysis of the gelatins. After separation by a SB-C18 reversed-phase analytical column, collagen marker peptides were detected by mass spectrometry in positive electrospray ionization mode with multiple reaction monitoring. The method was specific, precise and reliable, and suitable for detection of adulterants derived from donkey-hide gelatin and bovine-hide gelatin in deer-horn glue.

1. Introduction

Deer-horn glue (\textit{Cervi Cornus Colla}) is a traditional Chinese medicine (TCM) that has been widely used in China for about 2000 years. It is a solid glue prepared from deer horn by decoction and concentration [1]. It is viewed as a nutritious, high-quality TCM, as indicated in “Shennong’s Herbal,” and is predominantly used for treating kidney disorders and Qi deficiency. It is claimed that long-time consumption of deer-horn glue will nourish yin, replenish blood, and prolong life. Because of the high market price and an inability to satisfy demand, adulteration is common and the most widely practiced approach is to substitute and/or replace the authentic material with donkey- and bovine-hide gelatin.

It has long been difficult to control the quality of deer-horn glue because of the absence of appropriate quality assessment methods. The polymerase chain reaction method has been used in DNA analysis for collagen identification [2, 3], but the method is not suitable for gelatin identification because of the breakdown of gelatin DNA during sample processing. Literature research has revealed that proteomic methods have been proposed as alternative tools for the assessment of collagen species in gelatins [4] and mass spectrometry has been successfully applied to elucidate differences among homological gelatins [5]. In our work, the focus of research has been on method specificity for differentiation of homological gelatins. In our previous work [6, 7], for instance, tryptic peptides of gelatins were measured by ultrahigh performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS), and principal component analysis was used to classify donkey-hide gelatin, bovine-hide gelatin, and deer-horn glue. Thereafter, gelatins were analyzed by doubly charged selected ion monitoring (DCSIM) with tandem mass spectrometry (MS/MS) to aid in the identification of the gelatins. The possibility of detecting the target peptides in such gelatins with rapid-resolution liquid chromatography (RRLC) coupled to electrospray ionization- (ESI-) ion trap (IT) MS would be a useful development.

Generally, HPLC-QQQ MS/MS is a sensitive analytical method available for detection of the adulterants. As shown recently, high-pressure liquid chromatography-mass
Table 1: Gelatin sources.

Sample	Standard gelatin	Source	Lot number by NIFDC
1	Deer-horn glue	Cervus elaphus Linnaeus	121694-201301
2	Donkey-hide gelatin	Equus asinus L.	121274-201202
3	Bovine-hide gelatin	Bos taurus domesticus Gmelin	121695-201301

Table 2: Precursor and product ions for the gelatin species and operating parameters for fragmentation voltage and collision-activated dissociation voltage.

Number	Precursor m/z	Product ion m/z	Originated from	Retention time (min)	Fragment voltage (eV)	Collision energy (eV)
A1	732.8	817.9/961.9	Deer-horn glue	11.2080	175	30
A2	765.4	554.0/733.0	Deer-horn glue	17.1209	135	15
B1	641.3	783.3/726.2	Bovine-hide gelatin	7.4309	135	37
B2	790.9	912.4/841.3	Bovine-hide gelatin	12.5446	175	32
B3	747.3	903.3/847.1	Bovine-hide gelatin	13.4004	155	26
B4	604.8	569.8/910.1	Bovine-hide gelatin	15.2002	135	25
C1	618.8	721.9/778.9	Donkey-hide gelatin	7.7407	135	23
C2	539.8	612.4/923.8	Donkey-hide gelatin	10.1043	135	15
C3	765.9	823.1/991.0	Donkey-hide gelatin	18.8379	155	45

Figure 1: (a) Characteristic selected ion chromatograms for deer-horn glue. (b) Characteristic selected ion chromatograms for bovine-hide gelatin. (c) Characteristic selected ion chromatograms for donkey-hide gelatin.
spectrometry (HPLC-MS) is a widely used technique for qualitative and quantitative analyses, combining the efficient separation capability of HPLC with the powerful structural capability of MS [8–19]. In addition, the MS method offers the potential for high sensitivity and selectivity through multiple reaction monitoring (MRM) without the need for baseline chromatographic separation of the target analytes [20–22].

In the present work, RRLC-QQQ-MS with MRM has been used for characterization of deer-horn glue and detection of gelatin adulteration. A fully validated method has been developed, permitting measurement of the collagen marker peptides in commercial samples of deer-horn glue adulterated with donkey-hide and bovine-hide gelatins.

2. Experimental

2.1. Materials and Reagents. Formic acid was purchased from Sigma-Aldrich (St. Louis, MO, USA) and HPLC-grade acetonitrile (MeCN) was purchased from Fisher Scientific (Pittsburgh, PA, USA). Ultrahigh-purity water was prepared using a Milli-Q water purification system (Millipore Corporation, Bedford, MA, USA). Trypsin (sequencing grade) was obtained from Promega (Madison, WI, USA). Syringe filters (0.22 μm) were purchased from Millipore (Billerica, MA, USA). All other chemicals used were of analytical grade. All samples were collected by the National Institute for Food and Drug Control.

2.2. Sample Preparation. First, 100 mg of the gelatin was dissolved in 50 mL of a 1% NH₄HCO₃ solution (pH 8.0). Then 10 μL of trypsin solution (1 mg/mL in 1% NH₄HCO₃, pH 8.0) was added to 100 μL of the gelatin solution. The mixture was incubated at 37°C for 12 h. All gelatin samples were prepared in this way. The sources of the gelatin samples are shown in Table 1.

2.3. Chromatographic Separation and Mass Spectrometry. The RRLC analysis was performed using an Agilent 1200 LC system (Agilent, MA, USA). Chromatographic separation was performed on an Agilent Zorbax SB-C18 reversed-phase analytical column (100 mm × 2.1 mm; 1.8 μm particle size) at a column temperature of 45°C. The sample injection volume was 5 μL. The mobile phase consisted of 0.1% formic acid
in water (eluent A) and acetonitrile (eluent B). Gradient elution was performed as follows: 0–25 min eluent B 5% → 20%; 25–40 min eluent B 20% → 50%. The flow rate was 0.3 mL·min⁻¹.

Mass spectrometry experiments were performed with an ESI source in positive ion mode. The vaporizer temperature was maintained at 350°C. The temperature of the drying gas was set at 350°C. The flow rate of the drying gas and the pressure of the nebulizer gas were set at 6 L/min and 60 psi, respectively. In MRM scan mode, the precursor and product ions should be set. The intensity of the precursor ion should be higher after optimizing the fragmentation voltage and the intensity of the product ion should also be higher after collision energy (CE) optimization. After optimization, the voltages for fragmentation and the CE were recorded (Table 2). An Agilent ChemStation was used for instrument (Agilent 6410B series triple quadrupole MS system) control and data processing. This included definitive identification of metabolites using retention times and fragmentation transition matching. Chromatographic separation was achieved using identical conditions to those described above for IT-MS experiments [6, 7]. Gradient elution was performed as follows: 0–25 min eluent B 5% → 20%; 25–40 min eluent B 20% → 50%. The flow rate was 0.3 mL·min⁻¹.

3. Results and Discussion

Method validation was performed according to the guidelines of the Chinese Pharmacopoeia (2010 edition) for TCM. The key performance parameters evaluated were selectivity, signal linearity, sensitivity, and repeatability.

3.1. Selectivity. The specificity of the method was investigated using deer-horn glue as a blank sample, while donkey-
bovine-hide gelatin serving as positive control samples. In previous work, the gelatins were characterized using DCSI-MS/MS. In this study, doubly charged ions at \(m/z\) 641.3, 747.5, 790.9, and 604.8, which are the species-specific peptides of bovine-hide gelatin, were selected for monitoring. Also, the fragments of these monitored ions resulted in the following additional characteristic molecular ion pairs: \(m/z\) 641.3 \(\rightarrow\) 783.3, 641.3 \(\rightarrow\) 726.2, 747.5 \(\rightarrow\) 903.3, 747.5 \(\rightarrow\) 847.1, 790.9 \(\rightarrow\) 912.4, 790.9 \(\rightarrow\) 841.3, 604.8 \(\rightarrow\) 569.8, and 604.8 \(\rightarrow\) 910.1. Doubly charged ions at 539.8, 618.8, and 765.9, which are species-specific peptides of donkey-hide gelatin, were selected for monitoring and yielded the following
molecular ion transition pairs: 539.8 → 612.4, 539.8 → 923.8, 618.8 → 721.9, 618.8 → 778.9, 765.9 → 823.1, and 765.9 → 991.0. The chromatographic peaks were verified by checking the retention times and fragments of the peaks. As a result, chromatographic peaks for deer-horn glue were different to those of donkey-hide gelatin and bovine-hide gelatin. This meant that the mass spectra for the peptides in deer-horn glue were not subject to interference, as shown in Figure 1.

3.2. Signal Linearity

3.2.1. Calibration Curves for Bovine-Hide Gelatin. A matrix solution of deer-horn gelatin standard was prepared by dissolving 100.0 mg of standard in 50 mL of a 1% NH₄HCO₃ solution (pH 8.0). Next, 100.6 mg of the bovine-hide gelatin standard was dissolved in 50 mL of a 1% NH₄HCO₃ solution (pH 8.0). Increasing aliquots (0.1, 0.5, 1.0, 1.5, and 5.0 mL) of the bovine-hide gelatin standard solutions were dissolved in 10 mL of the differing matrix solutions. Then, 100 μL of the gelatin standard solution was taken and 10 μL of trypsin solution (1 mg/mL in 1% NH₄HCO₃, pH 8.0) was added. The mixtures were incubated at 37°C for 12 h.

3.2.2. Calibration Curves for Donkey-Hide Gelatin. For sample preparation, 119.6 mg of the donkey-hide gelatin standard was dissolved in 50 mL of a 1% NH₄HCO₃ solution (pH 8.0). This solution was subjected to the same method as outlined in Section 3.2.1.

The regression equations, correlation coefficients, and test ranges for calibration are shown in Table 3. The results showed that there was an excellent correlation between the ratio of peak area response and concentration for each compound within the test ranges examined.

3.3. Sensitivity. The limit of detection (LOD), defined as the peak signal with a signal to noise ratio = 3/1, was determined based on injections (2 μL) of low level standard solutions. The results demonstrated that the method was very sensitive with LODs of 10×10^{-6} g/mL and 20×10^{-6} g/mL for the peptides in the bovine- and donkey-hide gelatin samples, respectively.
Table 3: Signal linearity curves for two analytes.

Analytes	Linear equations	Range (µg/mL)	R^2
Bovine-hide gelatin	$Y = 3715X + 321.1$	20.12–1006	0.957
Donkey-hide gelatin	$Y = 32485X - 1130$	23.92–1196	0.995

Table 4: Results for commercial samples of deer-horn glue.

Number	Sample	Origin	Donkey-hide gelatin	Bovine-hide gelatin	Deer-horn glue
1	Deer-horn glue 001	Henan Province	−	+	+
2	Deer-horn glue 002	Henan Province	−	+	−
3	Deer-horn glue 003	Shandong Province	−	+	−
4	Deer-horn glue 004	Henan Province	−	+	+
5	Deer-horn glue 005	Henan Province	−	+	−
6	Deer-horn glue 006	Shandong Province	−	+	+
7	Deer-horn glue 007	Hubei Province	+	−	+
8	Deer-horn glue 008	Hubei Province	+	−	+
9	Deer-horn glue 009	Hunan Province	−	+	+
10	Deer-horn glue 010	Henan Province	−	+	+
11	Deer-horn glue 011	Henan Province	−	+	−
12	Deer-horn glue 012	Hunan Province	−	+	+
13	Deer-horn glue 013	Inner Mongolia Autonomous Region	−	+	+
14	Deer-horn glue 014	Shandong Province	−	+	+
15	Deer-horn glue 015	Shandong Province	−	+	+
16	Deer-horn glue 016	Shandong Province	−	+	+
17	Deer-horn glue 017	Beijing Municipality	−	−	+
18	Deer-horn glue 018	Beijing Municipality	−	−	+
19	Deer-horn glue 019	Beijing Municipality	−	−	+
20	Deer-horn glue 020	Hubei Province	−	−	+
21	Deer-horn glue 021	Hubei Province	−	−	+
22	Deer-horn glue 022	Hubei Province	−	−	+
23	Deer-horn glue 023	Henan Province	−	−	+
24	Deer-horn glue 024	Henan Province	−	−	+
25	Deer-horn glue 025	Henan Province	−	−	+
26	Deer-horn glue 026	Shandong Province	−	−	+
27	Deer-horn glue 027	Shandong Province	−	−	+
28	Deer-horn glue 028	Beijing Municipality	−	−	+
29	Deer-horn glue 029	Beijing Municipality	−	−	+
30	Deer-horn glue 121694-201301	Standard gelatin from NIFDC	−	−	+
31	Donkey-hide gelatin 121274-201202	Standard gelatin from NIFDC	+	−	−
32	Bovine-hide gelatin 121695-201301	Standard gelatin from NIFDC	−	+	−

3.4. **Repeatability.** Five replicate samples were prepared by the above method and the selected ion chromatograms, shown in Figures 2 and 3, confirm that the method provided reproducible detection of the collagen marker peptides.

3.5. **Species Identification by RRLC-QQQ-MS.** The complex peptide pools obtained by tryptic digestion of the gelatins were subjected to LC-MS/MS and the characteristic molecular ion peaks for the bovine- and donkey-hide gelatins were detected as ion pairs listed in Table 2. Typical MRM chromatograms are shown in Figures 4 and 5. Commercial samples were positively identified after matching specific peptides in these samples with the corresponding reference samples. In 29 commercial samples of deer-horn glue analyzed, 12 tested positive for bovine-hide gelatin and 2 tested positive for donkey-hide gelatin, as indicated in Table 4. Overall, the proposed method provides a new and efficient route for unambiguous measurement of collagen marker peptides of bovine- and donkey-hide gelatins.
4. Conclusions

The RRLC-MS method with MRM provides an excellent qualitative tool for quality assessment of deer-horn glue because of its high sensitivity and specificity. As shown, collagen marker peptides associated with donkey-hide gelatin and bovine-hide gelatin and presented as adulterants in deer-horn glue, were readily detected. Furthermore, according to the signal linearity, we can estimate the amount of adulteration roughly and provide a specified limitation for adulteration. In survey analysis, almost 50% of commercial samples were found to have been adulterated by the addition of donkey- and/or bovine-hide gelatin, which were more than 3% of adulterants in samples according to the signal linearity.

Conflict of Interests

The authors declare that there is no conflict of interests.

Acknowledgments

This study was supported in part by grants from the Important Program of Ministry of Science and Technology of the People’s Republic of China (no. 2014ZX09304-307-002) and the National Natural Science Foundation of China (nos. 81202909 and 81274025).

References

[1] The State Pharmacopoeia Commission of PR China, Pharmacopoeia of the People’s Republic of China (English Edition), vol. 1, People’s Medical Publishing House, Beijing, China, 2010.
[2] K. Tasanen, R. Palatsi, and A. Oikarinen, “Demonstration of increased levels of type I collagen mRNA using quantitative polymerase chain reaction in fibrotic and granulomatous skin diseases,” British Journal of Dermatology, vol. 139, no. 1, pp. 23–26, 1998.
[3] S. G. Kauschke, A. Knorr, M. Heke et al., “Two assays for measuring fibrosis: reverse transcriptase-polymerase chain reaction of collagen Archives Internationales de Pharmacodynamie et de Thérapie (III) mRNA is an early predictor of subsequent collagen deposition while a novel serum N-terminal procollagen (III) propeptide assay reflects manifest fibrosis in carbon tetrachloride-treated rats,” Analytical Biochemistry, vol. 275, no. 2, pp. 131–140, 1999.
[4] H. Lam and R. Aebersold, “Building and searching tandem mass (MS/MS) spectral libraries for peptide identification in proteomics,” Methods, vol. 54, no. 4, pp. 424–431, 2011.
[5] G. Zhang, T. Liu, Q. Wang et al., “Mass spectrometric detection of marker peptides in tryptic digests of gelatin: a new method to differentiate between bovine and porcine gelatin,” Food Hydrocolloids, vol. 23, no. 7, pp. 2001–2007, 2009.
[6] X.-L. Cheng, F. Wei, X.-Y. Xiao et al., “Identification of five gelatins by ultra performance liquid chromatography/time-of-flight mass spectrometry (UPLC/Q-TOF-MS) using principal component analysis,” Journal of Pharmaceutical and Biomedical Analysis, vol. 62, pp. 191–195, 2012.
[7] X.-L. Cheng, F. Wei, J. Chen et al., “Using the doubly charged selected ion coupled with MS/MS fragments monitoring (DCSI-MS/MS) mode for the identification of gelatin species,” Journal of Analytical Methods in Chemistry, vol. 2014, Article ID 764397, 7 pages, 2014.
[8] M. J. Swortwood, D. M. Boland, and A. P. DeCaprio, “Determination of 32 cathinone derivatives and other designer drugs in serum by comprehensive LC-QQQ/MS/MS analysis,” Analytical and Bioanalytical Chemistry, vol. 405, no. 4, pp. 1383–1397, 2013.
[9] A. A. M. Stolker, W. Niesing, E. A. Hogendoorn, J. F. M. Versteegh, R. Fuchs, and U. A. T. Brinkman, “Liquid chromatography with triple-quadrupole or quadrupole-time of flight mass spectrometry for screening and confirmation of residues of pharmaceuticals in water,” Analytical and Bioanalytical Chemistry, vol. 378, no. 4, pp. 955–963, 2004.
[10] T.-L. Chen, Y.-B. Zhang, W. Xu, T.-G. Kang, and X.-W. Yang, “Biotransformation of isoimperatorin by rat liver microsomes and its quantification by LC–MS/MS method,” Fitoterapia, vol. 93, pp. 88–97, 2014.
[11] L. Vlacvik, A. Schreiber, O. Lacina, T. Cajka, and J. Hajslova, “Liquid chromatography-mass spectrometry-based metabolomics for authenticity assessment of fruit juices,” Metabolomics, vol. 8, no. 5, pp. 793–803, 2012.
[12] X. Xue, J. N. Selvaraj, L. Zhao et al., “Simultaneous determination of aflatoxins and ochratoxin a in bee pollen by low-temperature fat precipitation and immunoaffinity column cleanup coupled with LC–MS/MS,” Food Analytical Methods, vol. 7, no. 3, pp. 690–696, 2014.
[13] J.-J. Chen, L.-J. Zhao, J.-L. Xu, R. Yang, S. He, and X. Yan, “Determination of oxidized scytosin in Nostoc commune Vauch cultured on different conditions by high performance liquid chromatography coupled with triple quadrupole mass spectrometry,” Journal of Applied Phycology, vol. 25, no. 4, pp. 1001–1007, 2013.
[14] J. Lee, G. Zhang, E. Wood, C. Rogel Castilho, and A. E. Mitchell, “Quantification of amygdalin in nonbitter, semibitter, and bitter almonds (Prunus dulcis) by UHPLC-(ESI)QqQ MS/MS,” Journal of Agricultural and Food Chemistry, vol. 61, no. 32, pp. 7754–7759, 2013.
[15] X. Wang, X.-E. Zhao, B. Yang, H. Dong, D. Liu, and L. Huang, “A combination of ultrasonic-assisted extraction with RRLC-QQQ method for the determination of artemisinin in the Chinese herb Artemisia annua L.,” Phytochemical Analysis, vol. 22, no. 3, pp. 280–284, 2011.
[16] M. M. Aguilera-Luiz, P. Plaza-Bolaños, R. Romero-González, J. L. M. Vidal, and A. G. Frenich, “Comparison of the efficiency of different extraction methods for the simultaneous determination of mycotoxins and pesticides in milk samples by ultra high-performance liquid chromatography-tandem mass spectrometry,” Analytical and Bioanalytical Chemistry, vol. 399, no. 8, pp. 2863–2875, 2011.
[17] M. S. Lowenthal, M. M. Phillips, C. A. Rimmer et al., “Developing qualitative LC-MS methods for characterization of Vaccinium berry Standard Reference Materials,” Analytical and Bioanalytical Chemistry, vol. 405, no. 13, pp. 4451–4465, 2013.
[18] B. J. A. Berendsen, L. A. M. Stolker, and M. W. F. Nielen, “The (Un)certainty of selectivity in liquid chromatography tandem mass spectrometry,” Journal of the American Society for Mass Spectrometry, vol. 24, no. 1, pp. 154–163, 2013.
[19] W. Fu, M. Magnúsdóttir, S. Brynjólfsson, B. Ö. Palsson, and G. Paglia, “UPLC-UV-MS(E) analysis for quantification and identification of major carotenoid and chlorophyll species in algae,” Analytical and Bioanalytical Chemistry, vol. 404, no. 10, pp. 3145–3154, 2012.
[20] D. R. Mani, S. E. Abbatiello, and S. A. Carr, “Statistical characterization of multiple-reaction monitoring mass spectrometry (MRM-MS) assays for quantitative proteomics,” *BMC Bioinformatics*, vol. 13, supplement 16, article S9, 2012.

[21] J. W. Hager, “Recent trends in mass spectrometer development,” *Analytical and Bioanalytical Chemistry*, vol. 378, no. 4, pp. 845–850, 2004.

[22] N. Guo, M. Liu, D.-W. Yang et al., “Quantitative LC-MS/MS analysis of seven ginsenosides and three aconitum alkaloids in Shen-Fu decoction,” *Chemistry Central Journal*, vol. 7, no. 1, article 165, 2013.