Effects of spinach tree leaves and high concentrates diets supplemented with micro minerals on *in vitro* rumen fermentation profiles

H Herdian¹, A Sofyan¹, A A Sakti¹, M F Karimy¹, E L Fitriana², E B Laconi²

¹ Bio-Feed Additive Technology Research Group, Research Division for Natural Material Technology, Indonesian Institutes of Sciences, Gunungkidul, Indonesia
² Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University, Bogor, Indonesia

* Corresponding author’s e-mail: hendravit@yahoo.com

Abstract. The effects of different level Spinach tree leaves *Cnidoscolus aconitifolius*, and high concentrate diets supplemented with micro minerals on in vitro rumen fermentation profiles were investigated. The basal diets consisted of 30% king grass (*Pennisetum* hybrid), and 70% concentrate. The mineral mix consists of FeCl₃.4H₂O; MnCl₂.4H₂O; CuSO₄.5H₂O; ZnSO₄.7H₂O; and CoCl₂.6H₂O. The treatments were Basal Ration (B), B+5% *C. aconitifolius* leaf (BC), B+2% mineral mix (BM), and B + 5% *C. aconitifolius* leaf + 2% mineral mix (BCM). The treatment diets were incubated for 48 h. Completely Randomized Design with one-factor consists of four treatments, and three replications were used in this experiment followed by One Way Analysis of Variance for statistical analysis. The gas production, N-ammonia, propionate, dry matter, and organic matter digestibility decreased significantly (p<0.05) by the treatment of mineral mix BM, BCM with the lowest value was found on BCM. Rumen microbial protein synthesis and pH was not influenced by the treatments of spinach tree alone (BC) (p>0.05) but increased significantly (p<0.05) when mineral mix treatments BM and BCM with the highest value at BCM. No effect (p>0.05) were observed for Protozoa population, methane production, acetate, and butyrate proportion. It was concluded that supplementation of *C. aconitifolius* leaves to the high concentrate diet has no effect on the fermentation variables whereas it combination with micro minerals reduced the fermentability and increased microbial protein synthesis in the rumen.

1. Introduction

Spinach tree leaf (*Cnidoscolus aconitifolius*) has a high protein content (around 18.74%) [1], and hence it is potential to be used as a feed for nitrogen source for ruminants. On the other hand, it also has a tannin content which has the potential as an anti-nutrient that could limit the usage as animal feed [2]. Besides the common anti-nutritive, i.e., the capability to bind with other feed compounds mostly protein so could alter the digestibility, the presence of tannin could lead to others function in the ruminant such us anti-microbial, anti-parasitic and antioxidant [3]. With almost the same function, tannin is also used in monogastric animals [4].

Feeding too much concentrates diet that has less fiber content to ruminant may lead to rumen upset and may disrupt the rumen functions like rumen acidosis, the condition which distinguished by the rapid declining acidic value of rumen liquid, bothering the optimal state for most rumen microbes. The conditions that occur due to the fast production of lactic acid as the impact of
degrading high concentration of fermentable carbohydrate by rumen microbes. Some of the ruminant microbes, which could influence rumen acidosis such as fibrolytic, amylolytic, were altered by tannin [5]. Addition of buffering mineral mix in concentrated feed for early lactating cows could prevent the subacute rumen acidosis [6]. At this study, we reported the result of in vitro ruminal fermentation characterization of high concentrate ration consists of spinach tree (*Cnidoscolus aconitifolius*) leaves and micro minerals supplementation.

2. Materials and methods
An *in vitro* gas production technique using glass syringes for 48 hours incubation time as described by [7] which was arranged on the completely randomized design. Rumen liquid was prepared from two fistulated Ongole Crossbreed cattle daily feeding with king grass (*P. hybrid*), wheat meal, molasses, urea, and minerals. The samples incubated were the samples consist of 4 treatments i.e. Basal ration (B), B + 5% Spinach tree leaf (*C. aconitifolius*) (BC), B + 2% mineral mix (BM), B + (5% Spinach tree leaf (*C. aconitifolius*) + 2% micro minerals mix (BCM) as described in Table 1, while the composition of the mineral mix was formulated according to Sofyan *et al.* [8] and presented in Table 2. All the treatments sample was repeated triplicate. By Using Neway Excel Program ver.6 [9], the ten times point for total 48 hours observation was fitted by an exponential model [10] to measure the complete gas production from the incubation. The response variables measured were gas production, dry matter digestibility, organic matter, pH, partial volatile fatty acid (by gas chromatography), i.e., acetic acid, propionic acid, butyric acid, N-ammonia [11], microbial protein synthesis [12], protozoa population [13] and methane production [14]. The data results were statistically analyzed by one way analysis of Variance using CoStat statistical software [15].

Table 1. Basal ration formula

Feedstuff	Unit	B	BC	BM	BCM
King grass (*P. purpureoides*)	% DM	30.00	30.00	30.00	30.00
Spinach tree leaf (*C. aconitifolius*)	% DM	0.00	5.00	0.00	5.00
Wheat meal	% DM	10.50	8.50	10.50	8.50
Soybean meal	% DM	14.30	12.10	14.30	12.10
Corn	% DM	44.20	43.40	44.20	43.40
CaCO₃	% DM	1.00	1.00	1.00	1.00
Mineral mix	% DM	2.00	2.00		

B = basal ration; BC = B + 5% spinach tree (*C. aconitifolius*); BM = B + 2% mineral mix; BCM = B (5% spinach tree (*C. aconitifolius*) + 2% mineral mix

Table 2. Composition of mineral mix composition

Micro-mineral	(%)
FeCl₂.4H₂O	0.59
MnCl₂.4H₂O	23.80
CuSO₄.5H₂O	32.75
ZnSO₄.7H₂O	42.22
CoCl₂.6H₂O	0.64
Amount	100.00
3. Results and discussions

All the variables respond result was described in table 3. Gas production values showed a different group at B, and BC treatment with higher gas production versus BM, and BCM treatment with lower gas production, it indicated that the mineral mix treatment provided a significant result (p<0.05) decreasing the gas production. N-Ammonia, Dry Matter, and Organic Matter digestibility were also decreased (p<0.05) by the treatment of mineral mix (BM, BCM). Acetic acid, microbial protein synthesis was decreased (p<0.05) by the treatment of mineral mix (BM, BCM). C3 (propionate proportion) was decreased by BCM treatments. Protozoa population, and estimated methane production were not affected by the treatment (p>0.05). Supplementation of C. aconitifolius alone on high concentrate ration does not provide significant effect (p>0.05) in all variables compared to the control ration (B).

Table 3, Effect of high concentrate diet consisting of spinach tree (Cnidoscolus aconitifolius) leaves supplemented with micro minerals on rumen fermentation

Variables	Unit	B	BC	BM	BCM
Gas Production	ml/200 mg DM	88.87 ± 0.977^a	85.98 ± 2.538^a	49.56 ± 7.919^b	48.01 ± 2.338^b
pH		6.70 ± 0.031^c	6.68 ± 0.015^a	6.81 ± 0.061^b	6.88 ± 0.052^c
NH₃	mM	29.73 ± 3.371^a	29.45 ± 1.233^a	8.44 ± 0.935^b	12.36 ± 2.269^b
MPS	mg/ml	0.57 ± 0.267^b	0.46 ± 0.289^b	2.69 ± 0.478^b	2.24 ± 0.191^c
Protozoa	Log cell/ml	4.951 ± 0.0605	5.133 ± 0.1985	4.81 ± 0.3880	4.773 ± 0.3708
Methane	mM	9.31 ± 1.914	8.76 ± 1.403	6.57 ± 1.807	6.32 ± 0.923
DM digestibility	%	62.01 ± 6.080	60.56 ± 9.647^{a,b}	47.56 ± 3.601^c	38.13 ± 8.330^c
OM digestibility	%	61.07 ± 6.420	60.10 ± 10.758^{a,b}	44.97 ± 4.805^c	34.15 ± 9.055^c
VFA partial		49.16 ± 1.105	49.77 ± 1.110	49.01 ± 2.642	53.42 ± 2.159
C2	%	35.43 ± 1.091^a	34.07 ± 1.501^{a,b}	35.03 ± 0.932^a	32.16 ± 1.081^b
C4	%	15.41 ± 0.302	16.16 ± 1.114	15.96 ± 1.721	14.42 ± 1.597

Mean with different superscript in the same row differ significantly (P<0.05). B = basal ration; BC= B + 5% spinach tree (C. aconitifolius); BM= B + 2% mineral mix; BCM= B (5% spinach tree (C. aconitifolius)) + 2% mineral mix, NH₃ = N-ammonium, MPS= Microbial Protein Synthesis, DM = Dry Matter, OM = Organic Matter VFA=Volatile Fatty Acid; C2=Acetic Acid, C3=Propionic Acid; C4=Butyric Acid. * the estimated methane was calculated by the formula [14].

Supplementation of C. aconitifolius at 5% DM in singular form was not affecting the ruminal fermentation parameter, although it contributed more tannin compound than control ration in this experiment, we measured the tannin content of C. aconitifolius, and found the level at 0.14% and 0.32% for tannin, and condensed tannin respectively. Similar results in previous study [16] reported that supplemented tannin on high grain diet was not affected ruminal fermentation parameter, nor the supplementation of condensed tannin extract of quebracho on low and high forage diet on the dairy cow was not influenced the dry matter digestibility [5]. Effectivity anti-microbial activity of tannin compound depends on the chemical structure, and species-specific microbes [3] this could be the reason why C. aconitifolius has not affected the variables. Metal sulfate bound has been known to have lower solubility in rumen liquid than hydroxyl form, causing lower dry matter digestibility of the diet [17] thus adding CuSO₄·5H₂O; ZnSO₄·7H₂O as a part of mineral mix in BM, and BCM ration can restore the decrease in dry matter, which is also directly related with decreasing organic matter, gas production, and also propionate proportion. The same result was explaining by the diminished of dry matter disappearance when in-sacco observation of the supplementation of trace mineral Cu, Zn, Mn on corn silage based diet for steer [18]. On the other hand, the addition of catalytic supplement consisting of gelatin, sago, Co, Zn, and ammonium sulfate could support the growth of rumen microbes [19] this explained the increased of microbial protein synthesized of the BM, and BCM
treatments in the present study. Meanwhile, lower degrading dry matter process can produce a stable condition of rumen pH value that could support the growth of rumen microbes. Rumen microbes will use N sourced from available N-ammonia to increase their populations, which in turn could reduce the N-ammonia concentration [20], and this explains why the same condition appears at BM, and BCM treatments.

4. Conclusion
Supplementation of C. aconitifolius leaf on the high concentrate diet does not affect the in vitro ruminal fermentation parameters while its combination with micro-minerals could reduced the fermentability and improve rumen microbial protein synthesis.

Acknowledgment
We are greatful to Lusty Istiqomah, Ayu Septi Anggraeni, I Nyoman Guna Dharma, and Melisa Ekaningrum for full assistance in the laboratory work.

References
[1] Fagbohun E D, Egbebi A O and Lawal O U 2012 IJPSR 13(1): 28 –33
[2] Obichi E A, Monago C C and Belonwu D C 2015 J Appl Sci Environ Manage 19(1): 201 –209
[3] Makkar H P S. 2003 Small Ruminant Res 49 241–256
[4] Huang Q, Xiuli L, Guoqi Z, Tianming H and uxi W. 2018 J. Anim Nutr 4 137-150
[5] Carrasco J M D, Claudio C, Leandro M R, Natalia D P V, Darío C, Marisa D F and Mariano E F F M 2017 Hindawi BioMed Res. Int. Volume 2017 11
[6] Branko P, Horea Š, Milan A, Velibor S, Tihomir P, Svetlana G Dragan Š and Radmila M 2010 Jpn J. Vet. Res. 58(3&4): 171-177
[7] Menke K H and Steingas H. 1988 J Anim Res Develop 28: 7-55
[8] Sofyan A, Sakti AA, Herdian H, Khairulli G, Suryani AE, Karti PDMH, and Jayanegara A. 2017 J Appl Anim Res 45: 122-125.
[9] Chen X B 1997 Aberdeen UK: Rowett Research Institute
[10] Ørskov E R and McDonald I 1979 J Agric Sci. 92: 499-503
[11] Eileen I S. 1954. J. Clin Path 7, 81
[12] Makkar H P S, Sharma O P, Dawra R K and Negi S S 1982 J Dairy Sci 65:2170–3
[13] Keiji O and Soichi I 1981 Atlas of rumen microbiology Japan Scientific Societies Press Pp 231
[14] Moss A R, Jouany J P and Newbold J 2000 J Ann Zootech 49: 231-253
[15] CoHort Software 2008 http://www.cohort.com
[16] Krueger W K, Gutierrez-Ba´nuelos H, Carstens G E, Min B R, Pinchak W E, Gomez R R, Anderson R C, Krueger N A and Forbes T D A. 2010 Anim. Feed Sci. Technol 159 1–9
[17] Genther O N and Hansen S L 2013 Iowa State University Animal Industry Report AS 659, ASL R2778
[18] Genther O N and Hansen S L 2015 J. Dairy Sci 98:566–573
[19] Uhi H T, Parakkasi A and Haryanto B 2005 J Media Peternakan 29(1):20-26
[20] Qori‘ah A, Surono and Sutrisno 2016 JJIP 26(2): 1-7