Exponential iteration and Borel sets

David S. Lipham

Abstract. We determine the exact Borel class of escaping sets in the exponential family $\exp(z) + a$. We also prove that the sets of non-escaping Julia points for many of these functions are topologically equivalent.

1. Introduction

The escaping set
\[I(f) = \{ z \in \mathbb{C} : f^n(z) \to \infty \} \]
is one of the most studied objects in complex dynamics [6, 7, 14, 12]. For any entire function f, it is easily seen to be an $F_{\sigma \delta}$-subset of the complex plane \mathbb{C}. However, it was recently shown by Lasse Rempe [13] that if f is transcendental (with an essential singularity at ∞), then $I(f)$ is not F_σ. Here we will strengthen this result for functions in the exponential class
\[f_a(z) = e^z + a ; \quad a \in \mathbb{C}. \]

The main result of the paper is the following.

Theorem 1. $I(f_a)$ is not $G_{\delta \sigma}$ for any $a \in \mathbb{C}$.

In other words, $I(f_a)$ cannot be written as a countable union of G_{δ}-subsets of \mathbb{C}. Theorem 1 is new even for the plain exponential $f_0(z) = e^z$, and completes the Borel classification of $I(f_a)$.

| \(G_\delta \) [9, Theorem 4.1] | \(G_{\delta \sigma} \) (Theorem 1) | \(G_{\delta \sigma \delta} \) | \ldots |
| \(F_\sigma \) [13, Theorem 1.2] | \(F_{\sigma \delta} \) [13, Section 1] | \(F_{\sigma \delta \sigma} \) | \ldots |

Figure 1. Borel classes of $I(f_a)$ (in green only).

A simple consequence of Theorem 1 is that given any G_δ-set of escaping points, there exists an escaping point whose orbit does not enter the set.

Corollary 2. If X is a G_δ-subset of \mathbb{C} that is contained in $I(f_a)$, then the pre-images $f_a^{-n}[X]$ do not cover $I(f_a)$. Thus there exists $z \in I(f_a)$ such that $f_a^n(z) \notin X$ for all $n = 0, 1, 2, 3, \ldots$.

Next we focus on the f_a’s which have attracting or parabolic cycles. The parameters a associated with this class form a large and conjecturally dense subset of \mathbb{C}. The conjugacy in [12] established that all escaping sets are mutually homeomorphic in

2020 Mathematics Subject Classification. 54F45, 54H05, 54E52, 30D05, 37F10.

Key words and phrases. complex exponential, Julia set, escaping set, Borel set.
this context. Using a localized version of Theorem 1, we will prove the following complementary result wherein \(J(f_a)\) denotes the Julia set of \(f_a\).

Theorem 3. If \(f_a\) and \(f_b\) have attracting or parabolic cycles, then \(J(f_a) \setminus I(f_a)\) and \(J(f_b) \setminus I(f_b)\) are topologically equivalent (homeomorphic).

The homeomorphism in Theorem 3 is not necessarily induced by a homeomorphism of the escaping sets, as \(J(f_a)\) and \(J(f_b)\) are often non-homeomorphic. The result also cannot be extended to all \(a \in \mathbb{C}\); the spaces in Theorem 3 are totally disconnected [10, Corollary 10], but there are other parameters (e.g., postsingularly finite) for which \(J(f_a) \setminus I(f_a)\) contains unbounded connected sets [3, Section 2].

Ideas behind the proofs. We will prove Theorem 1 by constructing a stratification, or ‘tree’, of first category \(G_\delta\)-subspaces of \(I(f_{-1})\), such that every infinite branch of the tree has an accumulation point in \(I(f_{-1})\). This idea comes from a classical proof that the infinite power of the rationals \(\mathbb{Q}\) is not \(G_\delta\). The stratification sets in that proof are of the form \(\{q_0\} \times \ldots \times \{q_n\} \times \mathbb{Q} \times \mathbb{Q} \times \ldots\), while ours will be defined with rates of escape in mind. Results from [12] will allow us to work inside a relatively simple topological model of \(J(f_{-1})\), and to generalize from \(I(f_{-1})\) to \(I(f_a)\). For attracting and parabolic parameters we will in fact see that \(I(f_a)\) is nowhere \(G_\delta\), and \(J(f_a) \setminus I(f_a)\) nowhere \(F_\omega\). This latter is one of the conditions in a uniqueness theorem of van Engelen [16]. The other conditions involve Baire category and topological dimension, both of which are known for \(J(f_a) \setminus I(f_a)\) [4, 10]. In this way, Theorem 3 will follow from van Engelen’s characterization.

2. Preliminaries

2.1. Dynamics of entire functions. For each positive integer \(n\), the \(n\)-fold composition of an entire function \(f\) is denoted \(f^n\). The orbit of a point \(z \in \mathbb{C}\) is the sequence of iterates \(\{f^n(z)\}_{n=0}^\infty\).

A point \(z\) belongs to the escaping set \(I(f)\) if \(f^n(z) \to \infty\), that is, if the orbit of \(z\) converges to the point at infinity on the Riemann sphere.

The Julia set \(J(f)\) is the set of non-normality for the family of iterates of \(f\). For \(f_a\) this roughly means that \(z \in J(f_a)\) if every neighborhood of \(z\) contains points whose orbits are very different from one-another; for instance, points with periodic orbits and points whose orbits go to \(\infty\). In context of exponential functions it is well-known that the Julia set is equal to the closure of the escaping set; \(J(f_a) = \overline{I(f_a)}\) [7, Corollary 1].

2.2. Attracting and parabolic parameters. The function \(f_a\) has an attracting (or parabolic) cycle if there exists \(z \in \mathbb{C}\) such that the orbit \(\{f^n_a(z)\}_{n=0}^\infty\) is periodic and \(|f'_a(z)| < 1\) (or \(|f'_a(z)| = 1\)). The number \(a\) is then called an attracting (parabolic) parameter. For example, \(a = -2\) is attracting and \(a = -1\) is parabolic.

The Julia set of \(f_{-1}\) is a Cantor bouquet of uncountably many disjoint rays (homeomorphic images of \([0, \infty)\)); see [5, 1]. Each ray belongs to \(I(f_{-1})\) with the possible exception of its finite endpoint [14, Theorem 4.2].

More generally, if \(a\) is any attracting or parabolic parameter then \(I(f_a)\) is a disjoint union of rays and curves (homeomorphic images of \((0, \infty)\)). Different curves may terminate at the same point of \(\mathbb{C}\). In the event that they do, the point at which

\(1\)In many of the papers cited here, the functions \(f_a\) with \(a \in (-\infty, -1]\) are represented in the form \(\lambda e^z\) with \(\lambda \in (0, \frac{1}{e}]\). Note that \(f_a\) is conjugate to \(e^a e^z\) via the translation \(z \mapsto z - a\).
they terminate is non-escaping and thus belongs to $J(f_a) \setminus I(f_a)$; see Figure 2. This pinched Cantor bouquet phenomenon was proved explicitly for attracting parameters in [12], and is explained further in [10, Section 3]. Generalizations to larger classes of transcendental entire functions appear in [2].

2.3. Borel sets. All spaces under consideration are assumed to be separable and metrizable. A subset X of a space Y is said to be an

- F_{σ}-subset of Y if X is a countable union of closed subsets of Y
- G_{δ}-subset of Y if X is a countable intersection of open subsets of Y
- $F_{\sigma\delta}$-subset of Y if X is a countable intersection of F_{σ}-subsets of Y
- $G_{\delta\sigma}$-subset of Y if X is a countable union of G_{δ}-subsets of Y.

Recall that in metric spaces, G_{δ}-subsets include all closed subsets.

If Y is locally compact and X is an F_{σ}-subset of Y, then X is σ-compact. And then X is an F_{σ}-subset of every space into which it is embedded. In this event X is called an absolute F_{σ}-set.

If Y is completely metrizable and X is a G_{δ} (respectively, $F_{\sigma\delta}$ or $G_{\delta\sigma}$) subset of Y, then X is a G_{δ} ($F_{\sigma\delta}$ or $G_{\delta\sigma}$) subset of every space Z into which it is embedded. Now X is called an absolute G_{δ}-set (and similarly for $F_{\sigma\delta}$ and $G_{\delta\sigma}$).

The absolute Borel properties described above are intrinsic to the space X and are preserved by homeomorphisms. Indeed, X is an absolute :

- F_{σ}-set \iff X is σ-compact
- G_{δ}-set \iff X is completely metrizable [8, Theorem 3.11]
- $F_{\sigma\delta}$-set \iff X has a Sierpiński stratification [15]
- $G_{\delta\sigma}$-set \iff X is σ-complete (i.e. X is a countable union of completely metrizable subspaces).

We say that a space X is nowhere $G_{\delta\sigma}$ if every absolute $G_{\delta\sigma}$-subset of X has empty interior; likewise for $F_{\sigma\delta}$.

\footnote{This is a consequence of Lavrentiev’s theorem [8, Theorem 3.9] and the fact that Z has a metric completion. See also [11, p.432 Corollary 1 and Remark 1]}

Figure 2. Disjoint curves in $I(f_{2+\pi^2})$ which terminate at non-escaping points. See also [12, Figure 1].
2.4. Baire category. A Borel set X is first category if X can be written as a countable union of nowhere dense subsets, and Baire if X contains a dense completely metrizable subspace [16, Theorem 1.12.2].

The first category property is inherited by open subspaces, and first category spaces are not Baire [8, Theorem 8.4].

2.5. Lower semi-continuity. A function $\varphi : X \to [0, \infty)$ is lower semi-continuous if $\varphi(x_n) \to \varphi(x)$ whenever $x_n \to x$ and $\varphi(x_n) \leq \varphi(x)$ for all n. This is equivalent to $\varphi^{-1}(r, \infty)$ being open in X for every $r \geq 0$.

3. A topological model of $\exp(-1)$

We will prove Theorem 1 first for the function $f = f_{-1}$ using a dynamical system $(J(\mathcal{F}), \mathcal{F})$ which models $(J(f), f \upharpoonright J(f))$. The model was introduced in [12] and was used extensively in [3].

3.1. The model. Let \mathbb{Z}^ω denote the space of integer sequences $\underline{s} = s_0s_1s_2\ldots$.

Define $\mathcal{F} : [0, \infty) \times \mathbb{Z}^\omega \to \mathbb{R} \times \mathbb{Z}^\omega$ by

$$\langle t, \underline{s} \rangle \mapsto (F(t) - |s_1|, \sigma(\underline{s})),$$

where $F(t) = e^t - 1$ and $\sigma(s_0s_1s_2\ldots) = s_1s_2s_3\ldots$ is the shift on \mathbb{Z}^ω. For each $x = \langle t, \underline{s} \rangle \in [0, \infty) \times \mathbb{Z}^\omega$ put $T(x) = t$ and $\omega(x) = \underline{s}$. Let

$$J(\mathcal{F}) = \{ x \in [0, \infty) \times \mathbb{Z}^\omega : T(F^n(x)) \geq 0 \text{ for all } n \geq 0 \};$$

and

$$I(\mathcal{F}) = \{ x \in J(\mathcal{F}) : T(F^n(x)) \to \infty \}.$$

Remark 1. $J(\mathcal{F})$ is closed in $[0, \infty) \times \mathbb{Z}^\omega$ by continuity of each $T \circ F^n$.

Remark 2. In [12, Section 9] it was shown that $\mathcal{F} \upharpoonright J(\mathcal{F})$ is topologically conjugate to $f \upharpoonright J(f)$, meaning that there is a homeomorphism $\varphi : J(\mathcal{F}) \to J(f)$ such that $\varphi \circ \mathcal{F} \upharpoonright J(\mathcal{F}) = f \circ \varphi$. Technically, the conjugacy in [12] was constructed only in the case that f has an attracting cycle, whereas the fixed point of f_{-1} is parabolic. However, f_{-1} is conjugate on its Julia set to other exponentials with attracting fixed points, such as f_{-2}, due to more recent results in [2]. See [2, Example 11.1].

3.2.Endpoints of $J(\mathcal{F})$. For each $\underline{s} \in \mathbb{Z}^\omega$ put

$$t_{\underline{s}} = \min \{ t \geq 0 : \langle t, \underline{s} \rangle \in J(\mathcal{F}) \},$$

or $t_{\underline{s}} = \infty$ if there is no such t. Observe that

$$J(\mathcal{F}) = \bigcup_{\underline{s} \in \mathbb{Z}^\omega} [t_{\underline{s}}, \infty) \times \{ \underline{s} \},$$

and thus $E(\mathcal{F}) = \{ \langle t_{\underline{s}}, \underline{s} \rangle : t_{\underline{s}} < \infty \}$ consists of the (finite) endpoints of $J(\mathcal{F})$.

Remark 3. In light of Remark 1 and the representation of $J(\mathcal{F})$ above,

$$J(\mathcal{F}) \setminus E(\mathcal{F}) = \bigcup_{n=1}^{\infty} J(\mathcal{F}) + \langle 1/n, 000\ldots \rangle$$

is an F_σ-subset of $J(\mathcal{F})$. Hence $E(\mathcal{F})$ is a G_δ-subset of $J(\mathcal{F})$ (and of the completely metrizable space $[0, \infty) \times \mathbb{Z}^\omega$). Therefore $E(\mathcal{F})$ is completely metrizable.

Remark 4. The map $\underline{s} \mapsto t_{\underline{s}}$ is lower semi-continuous [12, Observation 3.1].
Remark 5. The set of endpoints is completely invariant under the mapping \(F \). Moreover, for every \(n \geq 0 \) and \((t_\#, g) \in E(F) \) we have

\[
F^n((t_\#, g)) = (t_{\sigma^n(g)}, \sigma^n(g)) \in E(F).
\]

In particular, if \(x \in E(F) \) then \(T(F^n(x)) = t_{\sigma^n(g(x))} \).

Remark 6. By Montel’s theorem and the conjugacy between \(F \upharpoonright J(F) \) and \(f \upharpoonright J(f) \), the completely \(F \)-invariant sets \(E(F) \), \(I(F) \), and \(E(F) \cap I(F) \) are each dense in \(J(F) \).

3.3. Estimates of \(t^*_\# \). Let \(F^{-1} \) denote the inverse of \(F \). So \(F^{-1}(t) = \ln(t + 1) \). The \(k \)-fold composition of \(F^{-1} \) will be denoted \(F^{-k} \). The following can be verified with elementary calculus.

Proposition 1. \(F^{-k}(t - 1) > F^{-k}(t) - 1 \) for all \(k \geq 1 \) and \(t \in [1, \infty) \).

Now for each \(g \in \mathbb{Z}^\omega \) define

\[
t^*_g = \sup_{k \geq 1} F^{-k}|s_k|.
\]

The next proposition comes from [3, Lemma 3.8] and [3, Observation 3.7].

Proposition 2.

(a) \(t^*_g \leq t_\# \leq t^*_g + 1 \),

(b) \((t_\#, g) \in E(F) \cap I(F) \) if and only if \(t^*_g < \infty \) and \(t^*_{\sigma^n(g)} \to \infty \), and

(c) if \(|s_0| \leq |s_n| \) for all \(n < \omega \), then \(t^*_{\sigma^0} \leq t^*_\# \) (and likewise for \(t^* \)).

We will also need the following.

Proposition 3. For any positive real number \(R > 0 \) and integer \(n \geq 0 \),

\[
\{ x \in J(F) : t^*_{\sigma^n(g(x))} > R \}
\]

is open in \(J(F) \). Further, if \(y \in E(F) \cap \{ x \in E(F) : t^*_{\sigma^n(g(x))} > R \} \) then

(a) \(t_{\sigma^n(g(y))} \geq R \), and

(b) \(t^*_{\sigma^n(g(y))} \geq R - 1 \).

Proof. Let \(S = \{ g \in \mathbb{Z}^\omega : t^*_g < \infty \} \). Note that \(S \) is equal to \(\{ g \in \mathbb{Z}^\omega : t^*_g < \infty \} \) by Proposition 2(a). The mapping \(g \mapsto t^*_g \) is easily seen to be lower semi-continuous, so \(\mathbb{U} = \{ g \in S : t^*_g > R \} \) is open in \(S \). Thus \(\sigma^{-n}\mathbb{U} = \{ g \in S : \sigma^n(g) \in \mathbb{U} \} \) is open in \(S \).

By continuity of the projection of \(J(F) \) onto \(S \), we conclude that

\[
\{ x \in J(F) : g(x) \in \sigma^{-n}\mathbb{U} \} = \{ x \in J(F) : t^*_{\sigma^n(g(x))} > R \}
\]

is open in \(J(F) \).

By Remark 5, Proposition 2(a) and continuity of \(T \circ F^n \) we have

\[
E(F) \cap \{ x \in E(F) : t^*_{\sigma^n(g(x))} > R \} \subset E(F) \cap \{ x \in E(F) : t_{\sigma^n(g(x))} > R \} \]

\[
= E(F) \cap \{ x \in E(F) : T(F^n(x)) > R \} \]

\[
\subset \{ x \in E(F) : T(F^n(x)) \geq R \} \]

\[
= \{ x \in E(F) : t_{\sigma^n(g(x))} \geq R \} \]

\[
\subset \{ x \in E(F) : t^*_{\sigma^n(g(x))} + 1 \geq R \},
\]

which proves both (a) and (b).
4. Stratifying the escaping endpoints

Let \(\mathbb{N}^{<\omega} \) denote the set of all finite functions \(\alpha : n \to \mathbb{N} \), where \(n < \omega \) and
\[
\text{dom}(\alpha) = n = \{0, \ldots, n-1\}.
\]
We sometimes represent \(\alpha \) as an \(n \)-tuple of integers \(\langle N_0, N_1, \ldots, N_{\text{dom}(\alpha)-1} \rangle \) where \(N_i = \alpha(i) \) for each \(i < \text{dom}(\alpha) \). Given \(\alpha \in \mathbb{N}^{<\omega} \) and \(N \in \mathbb{N} \), the notation \(\alpha \upharpoonright N \) will stand for the extension of \(\alpha \) that has representation \(\langle N_0, N_1, \ldots, N_{\text{dom}(\alpha)-1}, N \rangle \). For example, if \(\alpha = \langle 1, 2, 5 \rangle \) then \(\alpha \upharpoonright 8 = \langle 1, 2, 5, 8 \rangle \).

We recursively define a system \(\langle X_\alpha \rangle \) of subsets of
\[
\tilde{E}(\mathcal{F}) = E(\mathcal{F}) \cap I(\mathcal{F}) = \{ x \in E(\mathcal{F}) : t_{\sigma^a(g(x))} \to \infty \}.
\]
for increasing functions \(\alpha \in \mathbb{N}^{<\omega} \). To begin, let
\[
X_\emptyset = \tilde{E}(\mathcal{F}).
\]
For each \(N \in \mathbb{N} \) define
\[
X_\langle N \rangle = \{ x \in X_\emptyset : t_{\sigma^a(g(x))} > 2 \text{ for all } n \geq N \}.
\]
If \(\alpha = \langle N_0, N_1, \ldots, N_{\text{dom}(\alpha)-1} \rangle \in \mathbb{N}^{<\omega} \) is increasing, \(X_\alpha \) has been defined, and \(N > N_{\text{dom}(\alpha)-1} \), then define
\[
X_{\alpha \upharpoonright N} = \{ x \in X_\alpha : t_{\sigma^a(g(x))} > 3 \text{dom}(\alpha) + 2 \text{ for all } n \geq N \}.
\]

Observation 1. Every \(X_\alpha \) is a \(G_\delta \)-subset of \(\tilde{E}(\mathcal{F}) \).

Proof. This is an easy consequence of the first part of Proposition 3. \(\square \)

Observation 2.
\[
X_\alpha = \bigcup_{N=1}^{\infty} X_{\alpha \upharpoonright N}.
\]

Proof. The inclusion \((\supset) \) is trivial, and \((\subset) \) holds by Proposition 2(b). \(\square \)

We will now show that every \(X_\alpha \) is first category, as witnessed by the extensions \(X_{\alpha \upharpoonright N} \). In the proof below, the observation
\[
t_{\sigma^a(g(x))} = \sup_{k \geq 1} F^{-k} |s_{n+k}|
\]
will be helpful.

Theorem 4. \(X_{\alpha \upharpoonright N} \) is nowhere dense in \(X_\alpha \).

Proof. Let \(\langle t_2, \tilde{s} \rangle \in X_{\alpha \upharpoonright N} \). We will show that there is a sequence of points in \(X_\alpha \setminus \overline{X_{\alpha \upharpoonright N}} \) converging to \(\langle t_2, \tilde{s} \rangle \). To that end, for each \(m < \omega \) define \(\tilde{s}^m \) coordinate-wise by setting
\[
\tilde{s}^m_n = \begin{cases}
 s_n & \text{if } n \leq m \\
 \min\{|s_n|, |F^{n-m}(3 \text{dom}(\alpha))|\} & \text{if } n > m.
\end{cases}
\]
Clearly \(\tilde{s}^m \to \tilde{s} \) and \(|s^m_n| \leq |s_n| \) for every \(n \). So \(t_{\tilde{s}^m} \leq t_\tilde{s} \) by Proposition 2(c). From lower semi-continuity of \(\tilde{s} \mapsto t_\tilde{s} \) we get \(\langle t_\tilde{s^m}, \tilde{s}^m \rangle \to \langle t_\tilde{s}, \tilde{s} \rangle \).

We will now prove that a subsequence of \(\langle t_\tilde{s^m}, \tilde{s}^m \rangle \) is contained in \(X_\alpha \setminus \overline{X_{\alpha \upharpoonright N}} \). This will be established by showing:

For any integer \(M \) there exists \(m \geq M \) such that \(\langle t_\tilde{s^m}, \tilde{s}^m \rangle \in X_\alpha \setminus \overline{X_{\alpha \upharpoonright N}} \).
For each \(i < \text{dom}(\alpha) \) put \(N_i = \alpha(i) \), and let \(N_{\text{dom}(\alpha)} = N \). For each \(n \in [N_i, N_{i+1}) \) there exists \(k_n \geq 1 \) such that
\[
F^{-k_n} |s_{n+k_n}| > 3i + 2.
\]
Now let \(M \) be given; we may assume that \(M > N + \max\{k_n : n < N\} \). For each \(n \in [N, M] \) there exists \(k_n \geq 1 \) such that
\[
F^{-k_n} |s_{n+k_n}| > 3 \text{dom}(\alpha) + 2.
\]
Let \(m = \max\{n + k_n : n \in [N, M]\} \). Clearly \(m \geq M + k_M > M \).

Claim 1. \(\langle \delta^m, \gamma^m \rangle \in X_\alpha \)

Proof of Claim 1. By the choice of \(m \), for every \(i \leq \text{dom}(\alpha) \) and \(n \in [N_i, m) \) we have guaranteed that \(t_{\alpha}(\delta^m) > 3 \text{dom}(\alpha | i) + 2 \). Additionally, if \(n \geq m \) then \(t_{\alpha}(\delta^m) > 3 \text{dom}(\alpha) - 1 \). This is trivial if \(s_n^m = |s_{n'}| \) for all \(n' > n \). On the other hand, if there exists \(n' > n \) such that \(s_n^m = [F^{n'-m}(3 \text{dom}(\alpha))] \) then by Proposition 1 we get
\[
t_{\alpha}(\delta^m) \geq F^{-(n'-n)}[F^{n'-m}(3 \text{dom}(\alpha))] \geq F^{-(n'-n)}(F^{n'-m}(3 \text{dom}(\alpha)) - 1) > F^{-(n'-n)}(F^{n'-m}(3 \text{dom}(\alpha))) - 1 = F^{n'-m}(3 \text{dom}(\alpha)) - 1 \geq 3 \text{dom}(\alpha) - 1.
\]
This also shows that \(t_{\alpha}(\delta^m) \to \infty \) in the case when
\[
\{n < \omega : s_n^m = [F^{n'-m}(3 \text{dom}(\alpha))]\}
\]
is infinite, due to the fourth line in the inequality above. So in this case \(\langle \delta^m, \gamma^m \rangle \in \tilde{E}(\mathcal{F}) \) by Proposition 2(b). In the other case \(s^m \) is essentially \(\delta \), which clearly belongs to \(\tilde{E}(\mathcal{F}) \). We thus have \(\langle \delta^m, \gamma^m \rangle \in \tilde{E}(\mathcal{F}) \), and conclude that \(\langle \delta^m, \gamma^m \rangle \in X_\alpha \).

Claim 2. \(\langle \delta^m, \gamma^m \rangle \notin \overline{X_{\alpha - N}} \)

Proof of Claim 2. Since \(m \geq N \), the hypothesis \(\langle \delta^m, \gamma^m \rangle \in X_{\alpha - N} \) would imply \(t_{\alpha}(\delta^m) \geq 3 \text{dom}(\alpha) + 1 \) by Proposition 3(b). But
\[
t_{\alpha}(\delta^m) = \sup_{k \geq 1} F^{-k} |s_{m+k}| \leq \sup_{k \geq 1} F^{-k} [F^k(3 \text{dom}(\alpha))] \leq 3 \text{dom}(\alpha).
\]
Therefore \(\langle \delta^m, \gamma^m \rangle \notin \overline{X_{\alpha - N}} \).

We have shown that each point of \(X_{\alpha - N} \) lies in the closure of \(X_\alpha \setminus \overline{X_{\alpha - N}} \). Therefore \(X_{\alpha - N} \) is nowhere dense in \(X_\alpha \). This concludes the proof of Theorem 4.

Corollary 5. Each \(X_\alpha \) is a first category space.

Proof. Observation 2 and Theorem 4.

5. Proof of Theorem 1

We are now ready for the main results.

Theorem 6. \(\tilde{E}(\mathcal{F}) \) is nowhere \(G_{\delta_\sigma} \).
PROOF. Let d be a complete metric for $E(\mathcal{F})$. All closures in the proof will be taken in the space $E(\mathcal{F})$, and diameters will be with respect to d.

Let $\mathcal{A} = \{A_n : n < \omega\}$ be a collection of completely metrizable subspaces of $\tilde{E}(f)$. Let W be any non-empty open subset of $E(\mathcal{F})$. We will show that \mathcal{A} does not cover $W \cap \tilde{E}(\mathcal{F})$. This will prove that W is not σ-complete, and more generally that $E(\mathcal{F})$ is nowhere $G_{\delta\sigma}$.

Recall that any open subset of a first category space is again of first category. Hence the intersection $W \cap X_{\varnothing}$ is first category by Corollary 5. This set is also non-empty by Remark 6. Therefore A_0 is not dense in $W \cap X_{\varnothing}$. So $W \cap X_{\varnothing} \setminus \overline{A_0} \neq \emptyset$. Thus there is a non-empty open set $U \subset E(\mathcal{F})$ such that $U \subset W$, $\text{diam}(U) < 1$, and $\overline{U} \cap A_0 = \emptyset$. Let $U_0 = U \cap X_{\varnothing}$.

By Observation 2 there exists N_0 such that $X_{(N_0)} \cap U_0 \neq \emptyset$. Since $U_0 \cap X_{(N_0)}$ is first category (Corollary 5), it does not have a dense completely metrizable subspace. By Observation 1, $U_0 \cap X_{(N_0)} \cap A_1$ is a G_δ-subset of A_1 and is therefore completely metrizable. So $U_0 \cap X_{(N_0)} \cap A_1 \neq \emptyset$. Hence there is a non-empty relatively open $U_1 \subset U_0 \cap X_{(N_0)}$ such that $\text{diam}(U_1) < 1/2$ and $\overline{U_1} \cap A_1 = \emptyset$. Now choose $N_1 > N_0$ such that $X_{(N_0,N_1)} \cap U_1 \neq \emptyset$.

This process can be continued to get an increasing sequence

$$
\lambda = (N_0, N_1, N_2, \ldots) \in \mathbb{N}^\omega
$$

and non-empty sets $U_0 \supset U_1 \supset U_2 \supset \ldots$ such that U_n is open in $X_{\lambda[n]}$, $\text{diam}(U_n) < \frac{1}{n+1}$, and $\overline{U_n} \cap A_n = \emptyset$. By completeness of the metric space $(E(\mathcal{F}), d)$ there exists

$$
x \in \bigcap_{n=0}^{\infty} \overline{U_n}
$$

Then $x \in \cap_{n=0}^{\infty} X_{\lambda[n]}$, so by Proposition 3(a) $t_{\sigma^n(\varnothing(x))} \to \infty$. We have

$$
x \in \bigcap_{n=0}^{\infty} \overline{U_n} \cap E(\mathcal{F}) \subset W \cap \tilde{E}(\mathcal{F})
$$

and yet $x \notin \bigcup_{n=0}^{\infty} A_n$. Hence \mathcal{A} does not cover $W \cap \tilde{E}(\mathcal{F})$. \hfill \Box

Recall that from Section 3 that $f = f_{-1}$, and $\mathcal{F} \upharpoonright J(\mathcal{F})$ is conjugate to $f \upharpoonright J(f)$.

COROLLARY 7. $I(f)$ is nowhere $G_{\delta\sigma}$.

PROOF. Since $I(f)$ is homeomorphic to $I(\mathcal{F})$, it suffices to show that $I(\mathcal{F})$ is nowhere a $G_{\delta\sigma}$-subset of $[0, \infty) \times \mathbb{Z}^\omega$. This follows from Theorem 6 and the fact that $\tilde{E}(\mathcal{F})$ is a dense G_{δ}-subset of $I(\mathcal{F})$. \hfill \Box

We can now prove Theorem 1 by combining Corollary 6 with the following.

PROPOSITION 4 (cf. [12, Theorem 1.1]). For every $a \in \mathbb{C}$ there exists $R > 0$ and a homeomorphism $\varphi : \mathbb{C} \to \mathbb{C}$ such that $\varphi[A \cap I(f)] = \varphi[A] \cap I(f_a)$, where

$$
A = \{z \in \mathbb{C} : |f^n(z)| \geq R \text{ for all } n \geq 1\}.
$$

Let $a \in \mathbb{C}$ and let $R > 0$ and φ be given by Proposition 4. Note that

$$
I(f) = \bigcup_{n=0}^{\infty} f^{-n}[A \cap I(f)].
$$

Since $G_{\delta\sigma}$-sets are preserved by continuous pre-images and countable unions, by Corollary 7 $A \cap I(f)$ is not $G_{\delta\sigma}$. So $\varphi[A \cap I(f)]$ is not $G_{\delta\sigma}$. This is a closed subset of $I(f_a)$
because it is equal to $\varphi[A] \cap I(f_a)$. Therefore $I(f_a)$ cannot be $G_{\delta \sigma}$. This concludes the proof of Theorem 1.

6. Proof of Theorem 3

A space X is zero-dimensional if the topology of X has a basis consisting of clopen subsets of X. We can now state van Engelen’s theorem.

Proposition 5 ([16, Theorem A.2.6]). Up to homeomorphism, there is only one zero-dimensional Baire space that is $G_{\delta \sigma}$ and nowhere $F_{\sigma \delta}$.

The standard representation of the space in Proposition 5 is $\mathbb{R} \setminus X$, where X is a densely embedded copy of \mathbb{Q}^ω (the infinite product of the rationals) in \mathbb{R}. It can be expressed more concretely as $\mathbb{P}^\omega \setminus (\mathbb{Q} + \pi)^\omega$, where \mathbb{P} denotes the space of irrationals.

Theorem 8. If f_a has an attracting or parabolic cycle, then $J(f_a) \setminus I(f_a)$ is a zero-dimensional Baire space that is $G_{\delta \sigma}$ and nowhere $F_{\sigma \delta}$.

Proof. Clearly $J(f_a) \setminus I(f_a)$ is $G_{\delta \sigma}$ because its Julia complement $I(f_a)$ is $F_{\sigma \delta}$. It is zero-dimensional by [10, Corollary 10], and Baire because it contains a dense G_{δ}-set in the form of all points whose orbits are dense in the Julia set [4, 9]. Finally, since $I(f_a)$ is dense in $J(f_a)$, an $F_{\sigma \delta}$-neighborhood in $J(f_a) \setminus I(f_a)$ would complement a $G_{\delta \sigma}$-neighborhood in $I(f_a)$. But $I(f_a)$ is nowhere $G_{\delta \sigma}$ by Corollary 7 and the equivalence $I(f_a) \simeq I(f)$ ([12, Theorem 1.2] and [2, Example 11.1]). Therefore $J(f_a) \setminus I(f_a)$ is nowhere $F_{\sigma \delta}$. □

In light of Proposition 5, Theorem 8 implies Theorem 3.

References

[1] J. M. Aarts and L. G. Oversteegen, *The geometry of Julia sets*, Trans. Amer. Math. Soc. 338 (1993), no. 2, 897–918.
[2] M. Alhamed, L. Rempe, and D. Sixsmith, *Geometrically finite transcendental entire functions*. J. London Math. Soc. 106 (2022), 485–527.
[3] N. Alhabiband L. Rempe-Gillen, *Escaping Endpoints Explode*. Comput. Methods Funct. Theory 17, 1 (2017), 65–100.
[4] I. N. Baker and P. Domínguez, *Residual Julia sets*. J. Anal. 8 (2000), 121–137.
[5] R. L. Devaney and M. Krych, *Dynamics of exp(z)*. Ergodic Theory Dynamical Systems 4 (1984), 35–52.
[6] A. Eremenko, *On the iteration of entire functions*. Dynamical Systems and Ergodic Theory (Warsaw, 1986) (Banach Center Publications, 23). PWN, Warsaw, 1989, 339–345.
[7] A. E. Eremenko and M. Y. Lyubich, *Dynamical properties of some classes of entire functions*. Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989–1020.
[8] A. S. Kechris, *Classical Descriptive Set Theory*. Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995.
[9] D. S. Lipham, *A note on the topology of escaping endpoints*. Ergodic Theory Dynam. Systems 41 (2021), no. 4, 1156–1159.
[10] D. S. Lipham, *The topological dimension of radial Julia sets*. Comput. Methods Funct. Theory 22 (2022), no. 2, 367–377.
[11] K. Kuratowski, *Topology*, Vol. 1 (Translated from the French by J. Jawaroski.) Academic Press, London and New York, PWN - Polish Scientific Publishers. Warsaw, 1966.
[12] L. Rempe, *Topological dynamics of exponential maps on their escaping sets*. Ergodic Theory Dynam. Systems 26(6) (2006), 1939–1975.
[13] L. Rempe, *Escaping sets are not sigma-compact*. Proc. Amer. Math. Soc. 150 (2022), no. 1, 171–177.
[14] D. Schleicher and J. Zimmer. *Escaping points of exponential maps*. J. London Math. Soc. 67(2) (2003), 380–400.

[15] W. Sierpiński, *Sur une définition topologique des ensembles $F_{\alpha \delta}$*. Fund. Math. 6 (1924), 24–29.

[16] A. J. M. van Engelen, *Homogeneous Zero-Dimensional Absolute Borel Sets*. Amsterdam, the Netherlands: Centrum voor Wiskunde en Informatica, 1986.

Department of Mathematics and Data Science, College of Coastal Georgia, Brunswick GA 31520, United States of America

Email address: ds10003@auburn.edu, dlipham@ccga.edu