Osimertinib in the treatment of patients with epidermal growth factor receptor T790M mutation-positive metastatic non-small cell lung cancer: clinical trial evidence and experience

Ivana Sullivan and David Planchard

Abstract: Patients with advanced epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC) are particularly sensitive to treatment with first- or second-generation EGFR tyrosine kinase inhibitors such as gefitinib, erlotinib and afatinib, which block the cell-signaling pathways that drive the growth of tumor cells. Unfortunately, the majority of patients develop resistance to them after a median duration of response of around 10 months, and in over half of these patients the emergence of the EGFR T790M resistance mutation is detected. Osimertinib is an oral, highly selective, irreversible inhibitor of both EGFR-activating mutations and the T790M-resistance mutation, while sparing the activity of wild-type EGFR. This article reviews clinical trial development of osimertinib in patients with NSCLC, presenting efficacy and safety evidence for its value in the EGFR T790M mutation-positive population and in different settings, including patients with metastatic disease. The preclinical background of clinically acquired resistance to osimertinib is presented and the combination tactics being investigated in an attempt to circumvent this are addressed.

Keywords: AZD9291, ctDNA, epidermal growth factor receptor, metastatic, non-small cell lung cancer, osimertinib, T790M

Introduction

Over the past decade, the outcomes of biomarker-selected patients with non-small cell lung cancer (NSCLC) have been improved by the in crescendo discovery of activating mutations, with the consequent development of targeted therapies. The first notable success in this personalized medicine era came with the identification of activating mutations in the kinase domain (exons 18–21) of the epidermal growth factor receptor (EGFR) gene, leading to dramatic responses to EGFR tyrosine kinase inhibitors (TKIs). EGFR mutations account for 10–17% of NSCLC cases in North America and Europe and 30–50% of NSCLCs in Asian countries [Kris et al. 2014; Barlesi et al. 2016]. The most common EGFR mutations are the p.Leu858Arg (L858R) point mutation in exon 21 and small in-frame deletions in the region encoded by exon 19, together accounting for approximately 85–90% of all EGFR mutations [Lynch et al. 2004; Paez et al. 2004; Pao et al. 2004]. The first-generation TKIs gefitinib (Iressa®, AstraZeneca Pharmaceuticals, London, United Kingdom) and erlotinib (Tarceva®, F. Hoffmann-La Roche, Basel, Switzerland), and the second-generation TKI afatinib (Giotrif®, Boehringer Ingelheim, Ingelheim, Germany) have shown overall response rates (ORRs) ranging from 50% to 75%, improving progression-free survival (PFS) and quality of life compared with standard platinum-based chemotherapy in patients with EGFR-mutant NSCLC [Mok et al. 2009; Rosell et al. 2012; Yang et al. 2015]. This resulted in their approval as first-line treatments for patients with advanced NSCLC harboring activating mutations in the EGFR kinase domain.

Despite these impressive outcomes, acquired resistance arises after a median period of 9–13
Biochemical and preclinical background

Osimertinib is a mono-anilino-pyrimidine compound that acts as a covalent EGFR TKI. In EGFR-recombinant enzyme assays, osimertinib showed potent activity against diverse EGFR mutations (L858R, L858R/T790M, exon 19 deletion, and exon 19 deletion/T790M) and exhibited nearly 200 times greater potency against L858R/T790M than wild-type EGFR. Subsequent murine in vivo studies revealed that osimertinib is metabolized to produce at least two circulating metabolites, AZ5104 and AZ7550.

In biochemical assays, AZ7550 had a comparable potency and selectivity profile to osimertinib, although AZ5104 showed greater potency against exon 19 deletions, T790M mutants (both approximately 8-fold) and wild-type (approximately 15-fold) EGFR [Cross et al. 2014]. In addition, osimertinib and its active metabolites displayed minimal off-target kinase activity for various kinases such as ERBB2/4, ACK1, ALK, BLK, BRK, MLK1, and MNK2 in in vitro studies [Cross et al. 2014]. The area under the plasma concentration–time curve (AUC), maximal plasma concentration (Cmax), and minimal concentration (Cmin) of osimertinib increased over the 20–240 mg dose range with linear pharmacokinetics and the Cmax/Cmin ratio for the 80 mg osimertinib (capsule formulation) was 1.6 [Planchard et al. 2016]. The AUC of osimertinib metabolites AZ5104 and AZ7550 was approximately 10% of osimertinib exposure. Pharmacokinetic exposure was not significantly different between Asian versus non-Asian patients [Planchard et al. 2016]. The median time to Cmax occurred after 6 h (range 3–24). Plasma concentrations decreased with time and the estimated mean half life was 48 h, with clearance (CL/F) of 14.2 (liter/h). Unlike erlotinib, food intake does not impact osimertinib kinetics.

The main metabolic pathways of osimertinib are oxidation (mainly by cytochrome P450, family 3, subfamily A, also known as CYP3A) and dealkylation and it is eliminated primarily in the feces (>65%) and urine (<15%). No clinically significant differences in the pharmacokinetics of osimertinib have been identified in terms of age, sex, ethnicity, body weight, smoking status, mild to moderate renal impairment, or mild hepatic dysfunction. Osimertinib is a competitive inhibitor of CYP3A but does not inhibit CYP2C8, 1A2, 2A6, 2B6, 2C9, 2C19, 2D6, and 2E1. It is a substrate

months. Multiple mechanisms have been identified, including secondary mutations in EGFR (notably EGFR T790M), along with mutations in the PIK3CA and BRAF genes and amplifications in ERBB2 and MET [Sequist et al. 2011; Yu et al. 2013; Gainor and Shaw, 2013; Stewart et al. 2015]. The development of a secondary mutation in EGFR when threonine is replaced by methionine at position 790 of exon 20, formally known as T790M (p.Thr790Met), is the most common mechanism, seen in around 50% of cases. While the EGFR-T790M mutation was initially reported as a secondary EGFR resistance mutation, several studies reported de novo EGFR-T790M mutations, sometimes concomitantly with other EGFR-activating mutations [Inukai et al. 2006; Su et al. 2012; Li et al. 2014].

First-generation TKIs compete with adenosine triphosphate (ATP) to bind to the kinase domain of EGFR, and EGFR T790M significantly increases this affinity reducing TKI efficacy [Yun et al. 2008]. Second-generation EGFR TKIs were originally developed to be irreversible EGFR inhibitors with the hope of being active against EGFR-T790M resistance mutations, but they have failed to produce meaningful disease response after resistance to gefitinib or erlotinib [Sequist et al. 2010; Miller et al. 2012; Ellis et al. 2014].

Osimertinib (AZD9291; AstraZeneca Pharmaceuticals), rociletinib (CO-1686; Clovis Oncology, Boulder, United States), olmutinib (BI-1482694/HM61713, Boehringer Ingelheim/Hanmi, Songpa-gu, Korea), ASP8273 (Astellas, Tokyo, Japan), EG816 (Novartis Pharmaceuticals, Basel, Switzerland), and PF-06747775 (Pfizer, New York, United States) are third-generation EGFR TKIs with selectivity against EGFR-T790M resistance as well as EGFR-sensitizing mutations, all of which have progressed to clinical trials [Cross et al. 2014; Jänne et al. 2015; Sequist et al. 2015b; Lee et al. 2015; Goto et al 2015; Jia et al. 2016]. Table 1 presents available efficacy data from phase I and II clinical trials.

To date, osimertinib (Tagrisso™, AstraZeneca Pharmaceuticals) is the only drug to be approved by the European Medicines Agency and the US Food and Drug Administration for treatment of EGFR-T790M mutated NSCLC patients. This review provides an overview of preclinical and clinical data.
Table 1. Efficacy of third-generation TKIs in EGFR-T790M-mutated NSCLC populations from phase I and II trials.

Trial	Osimertinib	Rociletinib	Olmutinib	EGF816	ASP8273							
	Dose	ORR, % (95% CI)	Median PFS, months (95% CI)	Reference	Dose	ORR, % (95% CI)	Median PFS, months (95% CI)	Reference	Dose	ORR, % (95% CI)	Median PFS, months (95% CI)	Reference
AURA phase I (N = 138)	20–240 mg qd	61 (52–70)	9.6 (8.3–NR)	Jänne et al. [2015]	500–1000 mg bid	62	75–350 mg qd	300 mg qd	6.8 (5.5–NR)	31		
AURA phase I (N = 63)	80 mg qd	71 (57–82)	9.7 (8.3–13.6)	Yang et al. [2016b]	45 [31–60]	62	44	31				
AURA extension phase II (N = 201)	80 mg qd	66 [61–71]	11.0 (9.6–12.4)	Sequist et al. [2016]	6.1 [4.2–9.6]	6.9*	9.7 [7.3–11.1]	6.8	31			
AURA2 phase II (N = 210)				Lee et al. [2015] and Park et al. [2016]								
TIGER-X phase I (N = 51)§				Tan et al. [2016]								
HM-EMSI-101 phase I/II (N = 76)				Yu et al. [2016]								
NCT02108964 phase I (N = 132) ongoing												
NCT02113813 phase I (N = 58) ongoing												

*Dose at the time of progression.

*Updated results from 2016 ASCO Annual Meeting.

*Updated results from phase I TIGER-X trial. While the development of rociletinib was discontinued, the other drugs are still being developed.

EGFR, epidermal growth factor receptor; NR, not reached; NSCLC, non-small cell lung cancer; ORR, overall response rate; PFS, progression-free survival; qd, once daily; TKI, tyrosine kinase inhibitor.
of P-glycoprotein and ATP-binding cassette subfamily G member 2, but is not a substrate of organic anion-transporting polypeptide proteins. In a clinical pharmacokinetic study [ClinicalTrials.gov identifier: NCT02163733], the osimertinib exposures were not affected by concurrent administration of omeprazole [Vishwanathan et al. 2015]. Gastric pH modifying agents can be concomitantly used with osimertinib Tagrisso™ without any restrictions.

Clinical efficacy of osimertinib

Phase I clinical trials
The safety and efficacy of osimertinib was assessed in the phase I/II AURA trial [ClinicalTrials.gov identifier: NCT01802632] in patients with locally advanced or metastatic EGFR-mutated NSCLC who had radiologically documented disease progression after treatment with at least one first- or second-generation EGFR TKI [Jänne et al. 2015]. The study included 253 patients who received osimertinib at five dose levels ranging from 20 to 240 mg daily and distributed between two cohorts. Among 31 patients enrolled in the dose-escalation cohort, no dose-limiting toxic effects occurred and an additional 222 patients were treated in five expansion cohorts. All patients had received at least one prior EGFR TKI, and 80% had received prior cytotoxic chemotherapy. The EGFR-T790M mutation was detected in tumors from 138 patients (62%) in the expansion cohort. Of the 253 patients treated across all dose levels, 239 were evaluated for response. The ORR in the combined T790M-positive and T790M-negative populations was 51% [95% confidence interval (CI) 45–58], with 122 patients having a confirmed partial response (PR) and one patient a complete response (CR). Stable disease (SD) was observed in 78 patients (33%) and 34 (14%) experienced disease progression. The disease control rate (DCR; CR, PR or SD) was 84% (95% CI 79–88). The ORR was similar between the 150 Asian and 89 non-Asian patients (50% versus 54%). The 80 mg daily dose was adopted for future studies based on increasing toxicity at 160 and 240 mg daily combined with similar response rates across all dose levels.

Osimertinib exhibited improved efficacy in patients whose tumor harbored the EGFR-T790M mutation. Of 138 patients with a centrally confirmed EGFR-T790M mutation, 127 were evaluable for response. Outcomes were substantially better in this EGFR T790M-positive population compared with patients with T790M-negative tumor, with an ORR of 61% (95% CI 52–70%) versus 21% (95% CI 12–34%), a DCR of 95% (95% CI 90–98%) versus 61% (95% CI 47–73%), and median PFS of 9.6 versus 2.8 months, respectively [Jänne et al. 2015].

Updated results from this trial were recently presented. The efficacy and safety data from the 80 mg expansion cohort in patients with centrally confirmed T790M-positive NSCLC with disease progressing following either one prior therapy with an EGFR-TKI or both an EGFR-TKI and another anticancer therapy, as well as from two expansion cohorts who received osimertinib 80 mg or 160 mg once daily as first-line treatment in patients with EGFR-mutated advanced NSCLC. The former population included 63 patients, 61 of whom were evaluable for response with an ORR of 71% (95% CI 57–82%), a DCR of 93% (95% CI 84–98%), and median PFS of 9.7 (95% CI 8.3–13.6) months [Yang et al. 2016b]. The latter population included 60 patients treated with osimertinib 80 mg (n = 30) or 160 mg (n = 30) daily and all were evaluable. The confirmed ORR was 77% (95% CI 64–87%) with a DCR of 98% (95% CI 89–100%). Median PFS was 19.3 (95% CI 13.7–not calculated), supporting osimertinib use in both first-line and later settings [Ramalingam et al. 2016].

Phase II clinical trials
The 80 mg daily dose was evaluated in the phase II T790M-positive extension cohort of the AURA trial (described above) and in an additional phase II AURA2 study [ClinicalTrials.gov identifier: NCT02094261] designed for patients with confirmed EGFR-mutant T790M-positive locally advanced or metastatic NSCLC who have progressed following prior therapy with an approved EGFR TKI. A preplanned pooled analysis of both studies was recently presented, including a total of 411 patients: 201 patients from the extension cohort of the AURA trial and 210 patients from the AURA2 trial, 397 of whom were included in the response rate evaluation. The ORR was 66% (95% CI 61–71%) and the DCR was 91% (95% CI 88–94%). Median PFS was 11.0 (95% CI 8.3–13.6) months, with a median response duration of 12.5 months (95% CI 11.1–not reached) [Yang et al. 2016b].
Additional phase III trials involving osimertinib in different settings are ongoing. The phase III First-Line-AURA (FLAURA) trial [ClinicalTrials.gov identifier: NCT02296125] in EGFR-mutated treatment-naïve patients with NSCLC was designed to compare osimertinib 80 mg daily versus current standard of care EGFR TKIs (gefitinib/erlotinib). The AURA3 trial [ClinicalTrials.gov identifier: NCT02151981] was an open-label, randomized study in the second-line setting of osimertinib versus a platinum-based doublet chemotherapy for locally advanced or metastatic NSCLC with the EGFR-T790M mutation. In a very recent press release (dated 18 July 2016) published on the AstraZeneca website, it was announced that the AURA3 phase III trial had met its primary endpoint, demonstrating superior PFS compared with standard platinum-based doublet chemotherapy. In this study that included over 400 patients, osimertinib demonstrated a similar safety profile as in previous trials and results for ORR, DCR, and duration of response were also clinically meaningful compared with chemotherapy. Figure 1 summarizes the development of osimertinib monotherapy from phase I through III trials in patients with advanced EGFR-mutant NSCLC.

In the adjuvant setting, the ongoing ADjuvant-AURA (ADAURA) trial [ClinicalTrials.gov identifier: NCT02511106] is a double-blind, randomized, placebo-controlled trial assessing the efficacy and safety of osimertinib versus placebo in patients with EGFR-mutated stage IB–IIIA NSCLC following complete tumor resection. The results are not yet available.

Osimertinib in brain and leptomeningeal metastasis

The cumulative incidence of brain metastasis (BM) and leptomeningeal metastasis (LM) in patients with NSCLC is 16–35% and 3–5%, respectively, and is associated with poor prognosis [Schouten et al. 2002; Chamberlain and Kormanik, 1998; Liao et al. 2015]. The real incidence in the EGFR-mutated NSCLC population is unknown, although some data are available from retrospective cohorts reporting an incidence of 24% for BM and 9% for LM [Rangachari et al. 2015; Kuiper et al. 2015]. First- and second-generation EGFR TKIs have limited blood brain barrier penetration [Omuro et al. 2005; Lee et al. 2010; Jamal-Hanjani and Spicer, 2012], with afatinib having the highest efficacy despite its incomplete penetration [Hoffknecht et al. 2015]. Osimertinib induced sustained tumor regression in an EGFR-mutated PC9 mouse BM model and human pharmacokinetics and mouse pharmacokinetics/pharmacodynamics models suggest
that doses of 80 mg and 160 mg could be active in human central nervous system (CNS) disease [Kim et al. 2014]. Clinical activity of osimertinib in CNS disease was observed in the phase I AURA trial and an analysis from AURA phase II trials [Ahn et al. 2015] demonstrated the consistent activity of osimertinib in patients with EGFR-mutant T790M NSCLC with and without brain metastases, suggesting its activity in the brain. The analysis of osimertinib pharmacokinetics in cerebrospinal fluid was an exploratory objective in the AURA extension phase II trial.

The phase I BLOOM study [ClinicalTrials.gov identifier: NCT02228369] was designed to assess for the first time the safety, tolerability, pharmacokinetics, and preliminary antitumor activity of AZD3759, an oral EGFR TKI which has excellent CNS penetration and which induces strong regression of BM in a mouse model [Zeng et al. 2015]. In this study, patients with BM and LM may also be enrolled to assess the antitumor efficacy, safety, pharmacokinetics, and potential biological activity of osimertinib 160 mg daily in patients with EGFR-mutated NSCLC whose disease failed to respond to standard treatment and who developed CNS disease (Figure 2). The AZD3759 cohort is ongoing while an update from the EGFR-mutant NSCLC cohort with LM from the osimertinib arm was recently presented; 21 Asian patients with EGFR-mutated NSCLC and LM disease were treated with osimertinib 160 mg daily. All were evaluable for efficacy; seven (33%) had a confirmed radiological response, nine (43%) had stable disease, and neurological function improvement was seen in five (24%) patients [Yang et al. 2016a].

Osimertinib in the first-line setting

Considering the activity of osimertinib against EGFR-sensitizing as well as EGFR-T790M resistance mutations, added to a favorable toxicity profile, in the near future osimertinib may well be considered the option of choice to treat patients with EGFR-mutant NSCLC in the first-line setting. Indeed, preliminary efficacy results are encouraging in patients with EGFR-mutant NSCLC who are treatment naïve as reported from the two expansion cohorts from the phase I AURA trial [Ramalingam et al. 2016]. Results from the phase III FLAURA trial [ClinicalTrials.gov identifier: NCT02296125] are eagerly awaited; if they confirm preliminary results, changes in the current sequence strategy should be discussed.

The safety profile of osimertinib

The dose-limiting toxicity (DLT) of the currently available first- and second-generation TKIs gefitinib, erlotinib, and afatinib is dominated by inhibition of wild-type EGFR in the skin and gastrointestinal tract. Osimertinib exhibited around 200 times greater potency against L858R/T790M than wild-type EGFR, resulting in an attractive EGFR-selective agent in comparison with early-generation TKIs [Cross et al. 2014].

Osimertinib was relatively well tolerated in the phase I AURA trial [Jänne et al. 2015]. No DLT was observed at any dose level up to 240 mg daily. In the combined cohort of 253 patients, the most common adverse events (usually grade 1–2) were diarrhea (47%), skin toxicity (rash/acne, 40%), nausea (22%), and anorexia (21%). Diarrhea and skin toxicity increased with escalating doses of
Osimertinib. Overall, however, osimertinib was associated with less dermatologic and gastrointestinal toxicity compared with historic data and clinical experience with other approved EGFR TKIs. Only 13% of patients experienced a grade 3 or higher drug-related adverse event. Serious adverse events were observed in 22% of patients (pneumonitis-like events, pulmonary embolism, and pleural effusion), with 6% of patients experiencing a serious drug-related adverse event. Adverse events prompted drug reductions in 7% of patients and drug discontinuation in 6% of patients. The frequency and severity of adverse events were similar between Asian and non-Asian patients. The six cases of potential pneumonitis-like events resolved after treatment discontinuation. Hyperglycemia and QT prolongation were reported in 3% of patients each and only one case of grade 2 hyperglycemia was reported [Yang et al. 2016b]. Unlike osimertinib, hyperglycemia was reported in 36% of patients treated with rociletinib [Sequist et al. 2015b].

Table 2 summarizes drug-related adverse events occurring at the approved dose of 80 mg/day from the phase I AURA trial and the pooled analysis from the AURA extension and AURA2 studies, respectively.

Osimertinib-resistant mutations

Preclinical studies and patient post-progression biopsies allowed identification of multiple resistance mechanisms to first- to third-generation EGFR TKIs. Following the discovery that T790M is the most common acquired resistance mutation

Table 2. Summary of drug-related adverse events of osimertinib occurring in at least 15% of patients at the approved dose of 80 mg/day from the phase I AURA trial and the pooled analysis of phase II trials (AURA extension and AURA2) in patients with EGFR-T790M-mutant advanced NSCLC.

Adverse event, n (%)	Grade 1	Grade 2	Grade ≥3	Any grade
AURA phase I N = 63				
Rash	21 [33]	2 [3]	0	23 [36]
Diarrhea	16 [25]	3 [5]	1 [2]	22 [35]
Paronychia	11 [18]	6 [10]	1 [2]	18 [29]
Dry skin	11 [18]	3 [5]	0	14 [22]
Fatigue	9 [14]	0	0	10 [16]
Select AEs				
ILD	0	0	1 [2]	1 [2]
QT prolongation	0	0	1 [2]	1 [2]
Hyperglycemia	0	0	0	0
AURA pooled phase II analysis N = 411				
Rash	146 [36]	18 [4]	3 [<1]	167 [41]
Diarrhea	138 [34]	17 [4]	2 [<1]	157 [38]
Dry skin	116 [28]	9 [2]	0	125 [30]
Paronychia	88 [21]	30 [7]	0	118 [29]
Select AEs				
ILD	4 [1]	0	8 [2]	12 [3]
QT prolongation	7 [2]	3 [<1]	4 [1]	14 [3]
Hyperglycemia	0	1 [<1]	0	1 [<1]

*63 patients with ‘centrally confirmed’ T790M-positive NSCLC who have received osimertinib 80 mg/day.
AE, adverse event; EGFR, epidermal growth factor receptor; ILD, interstitial lung disease; NSCLC, non-small cell lung cancer.
to gefitinib and erlotinib, several drugs were developed targeting both EGFR-sensitizing and T790M-resistant mutations. Although various second-generation EGFR TKIs such as afatinib, neratinib, and dacomitinib showed promising activity against T790M-positive cells in preclinical studies, this did not translate into the clinic, with none of them showing efficacy in patients whose disease progressed on the first-generation agents gefitinib and erlotinib [Miller et al. 2012; Reckamp et al. 2014; Sequist et al. 2010]. As a consequence, third-generation EGFR TKIs were developed to target the T790M mutation.

Despite impressive initial outcomes with these new molecules, new mutations and other mechanisms of resistance are emerging. Among these, the C797S mutation in exon 20 of EGFR was found to be the most common mechanism responsible for resistance to osimertinib. This point mutation was identified from circulating tumor DNA (ctDNA) of patients included in the phase I AURA trial whose disease progressed on osimertinib (6 out of 15 patients, 40%) [Thress et al. 2015]. The same mutation was also reported in one case that led to resistance to olmutinib, another oral, third-generation EGFR TKI active against mutant EGFR isoforms, including T790M [Song et al. 2016]. Preclinical EGFR L858R/T790M/C797S mutation cell models exhibited in vitro sensitivity to cetuximab, an antibody that blocks EGFR dimerization [Li et al. 2005; Erkan et al. 2015], but this was not confirmed in in vivo analyses. However, the allosteric inhibitor EAI045 in combination with cetuximab exhibited mechanistic synergy and was effective in mouse models of lung cancer driven by EGFR L858R/T790M and by EGFR L858R/T790M/C797S [Jia et al. 2016]. Interestingly, the allelic context in which C797S was acquired may predict responsiveness to subsequent TKI treatments. For example, if the C797S and T790M mutations are in trans, cells will be resistant to third-generation EGFR TKIs, but sensitive to a combination of first- and third-generation TKIs; and if C797S develops in T790 wild-type cells, this results in resistance to third-generation TKIs, while sensitivity to first-generation TKIs is retained [Niederst et al. 2015]. These data are of great clinical value in sequencing for this mutation in patients with acquired resistance to osimertinib.

The acquired resistance associated with the EGFR T790M mutation can occur either by selection of preexisting EGFR T790M-positive clones or via genetic evolution of initially EGFR T790M-negative drug-tolerant cells, suggesting that cancer cells that survive third-generation TKIs may serve as a key reservoir from which acquired resistance can emerge during treatment [Hata et al. 2016]. Navitoclax (ABT-263, [Ackler et al. (2012)], Abbott Laboratories, Illinois, USA) a BCL-2 family inhibitor, enhances the apoptotic response of late-resistant EGFR T790M cells with decreased sensitivity to EGFR inhibition. The combination of navitoclax with the third-generation EGFR TKI WZ4002 (preclinical compound) induced more apoptosis compared with WZ4002 alone in both in vivo and in vitro analyses. This approach could be an effective strategy for treating EGFR T790M-positive cancers that have a decreased apoptotic response to EGFR inhibition [Hata et al. 2016]. An ongoing phase Ib trial is evaluating the safety and tolerability of the osimertinib/navitoclax combination in patients with EGFR-mutant NSCLC following resistance to prior EGFR TKIs [ClinicalTrials.gov identifier: NCT02520778].

Additional EGFR-independent mechanisms of resistance to osimertinib have been reported. NRAS mutations, including a novel E63K mutation, and amplifications of wild-type NRAS or KRAS have been described as mechanisms of acquired resistance to osimertinib but also to gefitinib and afatinib [Eberlein et al. 2015]. In vitro, a combination of osimertinib with the MEK inhibitor selumetinib prevented emergence of resistance in PC9 (Ex19del) cells and delayed resistance in NCI-H1975 (L858R/T790M) cells. In vivo, concomitant osimertinib with selumetinib caused regression of osimertinib-resistant tumors in an EGFR-mutant/T790M transgenic model [Eberlein et al. 2015]. This association is been evaluated in the phase Ib TATTON trial [ClinicalTrials.gov identifier: NCT02143466]. In addition, the combination of trametinib, another MEK inhibitor, with WZ4002 prevents the development of acquired resistance in EGFR-mutant lung cancer models [Tricker et al. 2015].

Amplifications in HER2 and MET genes were also described as potential mechanisms of acquired resistance to osimertinib in patients with EGFR-T790M-mutant NSCLC [Planchard et al. 2015]. Additionally, loss of T790M at the time of progression may be mediated by overgrowth of cells harboring HER2 amplification, BRAF V600E or
PIK3CA mutations, as was recently reported following examination of plasma specimens from patients included in the phase I AURA trial [Oxnard et al. 2015].

In addition, resistant tumors have been reported to show phenotypic changes, such as small-cell lung cancer transformation or epithelial to mesenchymal transition [Sequist et al. 2011; Yu et al. 2013; Kim et al. 2015]. Figure 3 summarizes the known mechanisms of resistance to third-generation **EGFR** TKIs.

Overcoming osimertinib-resistant disease

The heterogeneity in the acquired resistance mechanisms to osimertinib provides the basis for investigating different inhibitory combination strategies. Therefore, osimertinib-based combinations are currently being investigated in several studies. The multiarm phase Ib TATTON trial [ClinicalTrials.gov identifier: NCT02143466] was designed to evaluate the safety, tolerability, and preliminary antitumor activity of osimertinib in combination with durvalumab (anti-PD-L1 monoclonal antibody), savolitinib (**MET** inhibitor) or selumetinib (**MEK** 1/2 inhibitor) in patients with advanced **EGFR**-mutant NSCLC whose disease has progressed on an **EGFR** TKI. Preliminary results from the osimertinib/durvalumab arm were recently presented [Ahn et al. 2016]. In patients with prior **EGFR** TKI therapy, investigator-assessed ORR was 67% (6/9) in those with T790M-mutant tumors compared with 21% (3/14) in T790M-negative NSCLC. Regarding safety data, interstitial lung disease was reported in 38% (13/34) of patients, higher than would be expected with either drug alone. Five events were grade 3–4 and there were no fatalities; most cases were managed using steroids [Ahn et al. 2016]. Based on these data, the recruitment into the osimertinib plus durvalumab arm of TATTON is currently on hold, but expansion cohorts of the **MET** and **MEK** inhibitor combinations are ongoing. In addition, the phase III Combination-AURA in Lung (CAURAL) trial [ClinicalTrials.gov identifier: NCT02454933] is being conducted in second-line metastatic **EGFR**-mutant/T790M-positive NSCLC patients testing osimertinib plus durvalumab versus osimertinib monotherapy for their impact on PFS. This study was also stopped prematurely due to the pulmonary toxicity observed in the TATTON trial.

On the basis of preclinical observations that afatinib (an irreversible ErbB family blocker) plus cetuximab (an anti-**EGFR** monoclonal antibody) overcame T790M-mediated resistance [Regales et al. 2009], the combination was evaluated in a phase Ib trial enrolling 126 heavily pretreated patients with advanced **EGFR**-mutant NSCLC who developed resistance to first-generation erlotinib/gefitinib. The ORR was 29%, comparable in both T790M-positive and T790M-negative tumors (32% versus 25%) and the median PFS was 4.7 (95% CI 4.3–6.4) months [Janjigian et al. 2014]. However, dual **EGFR** inhibition significantly improves toxicity,
Therapeutic Advances in Respiratory Disease 10(6)

including (all grade) rash (seen in 90% of patients), diarrhea (71%), and stomatitis (56%). Grade 3–4 adverse events were observed in 46% of patients [Janjigian et al. 2014]. A randomized phase II/III trial [ClinicalTrials.gov identifier: NCT02438722] of afatinib plus cetuximab versus afatinib alone is currently open in treatment-naïve patients with advanced EGFR-mutant NSCLC. The dual EGFR blockade is being evaluated in a phase I trial [ClinicalTrials.gov identifier: NCT02496663] combining osimertinib with the anti-EGFR monoclonal antibody necitumumab to assess safety and determine the optimal dose in patients with EGFR-mutant advanced NSCLC whose disease has progressed on a previous EGFR TKI.

The dual vascular endothelial growth factor receptor (VEGFR) and EGFR blockade inhibits tumor growth in EGFR TKI resistance xenograft models [Naumov et al. 2009]. Indeed, this hypothesis was confirmed in two phase II clinical trials in patients with EGFR-mutant NSCLC who are treatment naïve: the randomized Japanese (JO25567) trial comparing erlotinib plus bevacizumab versus erlotinib alone, and the single-arm (Bevacizumab and ErLotinib In EGFR Mut+ NSCLC [BELIEF]) trial in white patients. Median PFS was encouraging and similar in both studies, supporting the combination in the first-line setting [Seto et al. 2014; Stahel et al. 2015]. A phase I trial was thus designed to evaluate the safety of two osimertinib-based combination strategies, with necitumumab or ramucirumab (an anti-VEGFR2 monoclonal antibody) in patients with advanced EGFR-T790M-mutant NSCLC after progression on first-line EGFR TKI therapy [ClinicalTrials.gov identifier: NCT02789345]. Finally, the combination of osimertinib and bevacizumab will be evaluated in another phase I/II 3+3 dose-escalation design [ClinicalTrials.gov identifier: NCT02803203] to test the safety of combining these drugs.

For patients whose tumors undergo small-cell lung cancer transformation, platinum-based plus etoposide chemotherapy is recommended. Table 3 provides information about ongoing and forthcoming osimertinib-based combination trials to treat or prevent osimertinib-acquired resistance.

Osimertinib in the era of liquid biopsies

To date, there is increasing evidence that a single tissue biopsy may not adequately represent intrinsic tumor heterogeneity, particularly in cases of disease progression. Moreover, tumor location and the risk of complications are limitations for new tissue biopsies. Emerging evidence suggests that analysis of ctDNA could more broadly capture the spectrum of resistant clones that may appear throughout the course of the disease. Performing serial ctDNA analyses could also evaluate the longitudinal response, and potentially detect resistance mutations before documented radiographic progression [Thress et al. 2015; Piotrowska et al. 2015]. For example, ctDNA was used to detect T790M in plasma in 70% (23 of 35) of patients treated with rociletinib who had a T790M wild-type tissue biopsy [Sequist et al. 2015]. Notably, the efficacy of rociletinib was equivalent whether T790M was detected in tissue or in plasma, suggesting that noninvasive testing may be adequate for predicting response and could provide additional information in patients with tissue biopsies which are negative for T790M [Thress et al. 2015; Piotrowska et al. 2015]. In addition, early acquisition of EGFR-resistance mutations could be found by measuring ctDNA in the urine [Husain et al. 2015]. Recently, genotype-matched results from plasma, tissue, and urine samples from patients included in the phase I/II TIGER-X trial were reported. Considering the tissue sample as the reference, sensitivity for detecting T790M mutation in plasma and urine was 80.9% and 81.1%, respectively. Response rates were similar in the T790M-mutant population irrespective of whether the status was identified in plasma, tissue, or urine [Wakelee et al. 2016].

Plasma samples from 192 patients enrolled in the phase I AURA trial were collected and genotyped. Sensitivity for detecting EGFR-sensitive and T790M-resistant mutations was 87% and 78%, respectively. Clinical response rates were greater in T790M-positive patients, as assessed by either tissue or plasma genotyping [Thress et al. 2014]. Eligibility for treatment with osimertinib will be dependent on mutational status, which will be determined via a validated diagnostic test based on a tumor tissue sample or plasma. Availability of a blood-based test for ctDNA means that physicians and patients have multiple options to test for a T790M-resistant mutation.

Discussion

The EGFR-T790M mutation is the main mechanism of acquired resistance to first- and
Table 3. Ongoing and forthcoming osimertinib-based combination trials.

Trial, ClinicalTrials.gov identifier	Drug combination	Mechanism of action	Population and setting	Primary endpoint	Status
NCT02143466 'TATTON' phase Ib	Durvalumab	Anti PD-L1 antibody	Advanced *EGFR*-mutant NSCLC that has progressed to *EGFR* TKI	Part A: safety and tolerability Part B: safety, tolerability and efficacy	On hold Recruiting
	Savolitinib + Selumetinib	*MET* inhibitor			Recruiting
NCT02454933 'CAURAL' phase III	Osimertinib monotherapy	Anti PD-L1 antibody	*EGFR* mutant/T790M-positive NSCLC that has progressed to *EGFR* TKI	PFS	On hold
NCT02496663 phase I	Durvalumab + Necitumumab	Anti *EGFR* antibody	Advanced *EGFR*-mutant NSCLC that has progressed to *EGFR* TKI	Safety and tolerability	Recruiting
NCT02803203 phase I/II	Bevacizumab	Anti *VEGF* antibody	Advanced *EGFR*-mutant NSCLC in first-line setting	Phase I: MTD Phase II: PFS	Recruiting
NCT02789345 phase I	Necitumumab + Ramucirumab	Anti *EGFR* antibody	*EGFR*-mutant/T790M-positive NSCLC that has progressed on first-line *EGFR* TKI	ORR	Forthcoming
NCT02520778 phase Ib	Navitoclax	Bcl-2 family inhibitor	Advanced *EGFR*-mutant NSCLC that has progressed to *EGFR* TKI	Safety and tolerability	Recruiting
NCT02503722 phase I/II	Sapanisertib	TOR1/2 inhibitor	Advanced *EGFR*-mutant NSCLC that has progressed to *EGFR* TKI	Safety and recommended phase II dose Safety and efficacy in T790M population	Forthcoming

MTD, maximal tolerated dose; *EGFR*, epidermal growth factor receptor; NSCLC, non-small cell lung cancer; ORR, overall response rate; PFS, progression-free survival; TKI, tyrosine kinase inhibitor; *VEGF*, vascular endothelial growth factor receptor.
second-generation \textit{EGFR} TKIs and represents a barrier in the treatment of patients with \textit{EGFR}-mutant advanced NSCLC. Osimertinib has demonstrated strong efficacy and safety data in phase I and II trials, and has become the first \textit{EGFR} inhibitor approved for the treatment of NSCLC with the \textit{EGFR}-T790M mutation. Patients with advanced NSCLC with \textit{EGFR}-activating mutations whose disease progresses on a first-line \textit{EGFR} TKI have traditionally been offered platinum-doublet chemotherapy as second-line treatment. Platinum-doublet chemotherapy shows ORRs of approximately 30\%, slightly higher than the rate observed in the T790M-negative population, but significantly lower than the 61–71\% ORR reported in T790M-positive cohorts in phase I and II trials with osimertinib. The phase III AURA3 trial [ClinicalTrials.gov identifier: NCT02151981] confirms the superiority of osimertinib for treating patients with \textit{EGFR}-T790M-mutant NSCLC in the second-line setting compared with standard pemetrexed-containing/platinum-based chemotherapy. In addition, considering the favorable safety profile of osimertinib added to its systemic and CNS efficacy, osimertinib is currently the most attractive option in the second-line setting for patients with T790M-mutant NSCLC, delaying chemotherapy to the third-line setting, as well as for patients with T790M-positive NSCLC with brain or leptomeningeal metastases. Figure 4 illustrates a potential treatment algorithm for patients with \textit{EGFR}-mutated advanced NSCLC. If we take into consideration the encouraging response outcomes (ORR 77\%, DCR 98\%) and PFS (approximately 19 months in the first-line setting), osimertinib is likely to be the best option for treating patients with advanced \textit{EGFR}-mutant NSCLC as first-line therapy. The phase III FLAURA trial [ClinicalTrials.gov identifier: NCT02296125] probably gives us the approach for better positioning osimertinib regarding current \textit{EGFR} TKIs in order to improve sequences with the final objective of improving patient outcomes.

The role of \textit{EGFR} TKIs in the adjuvant setting for nonmetastatic \textit{EGFR}-mutated lung cancer is in a very early development stage and remains
controversial. Erlotinib and gefitinib were evaluated in prospective trials suggesting an improvement in disease-free survival, but none of these trials demonstrate a benefit in overall survival [Goss et al. 2013; Janjigian et al. 2011; Pennell et al. 2014; Kelly et al. 2015]. The phase III ADAURA trial [ClinicalTrials.gov identifier: NCT02511106] comparing osimertinib with placebo as adjuvant therapy in stage IB-IIIA EGFR-mutated NSCLC following complete tumor resection is currently recruiting patients, and the jury remains out until at least preliminary results become available. These studies have the potential to significantly expand the role of osimertinib in the treatment algorithm for EGFR-mutated NSCLC.

The heterogeneity of resistant cancers plays an important role, not only in terms of response and resistance to the new EGFR TKIs, but in allowing different combination strategies to be more effective in preventing and delaying resistance mechanisms. Due to its safety profile, osimertinib is now considered an attractive drug to combine with other targeted therapies. While combinations with MEK and MET inhibitors as well as antiangiogenic agents are promising, we must exercise precaution with respect to their toxicity profiles. Table 3 summarizes ongoing and forthcoming osimertinib-based combination trials.

Conclusion
Osimertinib, developed in less than 3 years, represents one of the fastest cancer drug development programs with respect to obtaining approval for the treatment of patients with EGFR-T790M NSCLC whose disease has progressed on EGFR TKIs. The encouraging results obtained in patients with EGFR-mutant NSCLC in the first-line setting place it as an established critical drug in this scenario.

Acknowledgement
The authors thank Sarah MacKenzie PhD for English editing.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

Conflict of interest statement
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References
Ahn, M., Tsai, C., Yang, J., Shepherd, F., Satouchi, M., Kim, D. et al. (2015) AZD9291 activity in patients with EGFR-mutant advanced non-small cell lung cancer (NSCLC) and brain metastases: data from phase II studies. *Eur J Cancer* 51: S625–S626.

Ahn, M., Yang, J., Yu, H., Saka, H., Ramalingam, H. and Huang, X. (2016) Osimertinib combined with durvalumab in EGFR-mutant non-small cell lung cancer: results from the TATTON phase Ib trial. Sixth IASLC/ESMO. *Eur Lung Cancer Conf* 11: S115; abstract LBA2.

Barlesi, F., Mazieres, J., Merlio, J., Debierre, D., Mosser, J., Lena, H. et al. (2016) Routine molecular profiling of patients with advanced non-small-cell lung cancer: results of a 1-year nationwide programme of the French Cooperative Thoracic Intergroup (IFCT). *Lancet Oncol* 387: 1415–1426.

Chamberlain, M. and Kormanik, P. (1998) Carcinoma meningitis secondary to non-small cell lung cancer: combined modality therapy. *Arch Neurol* 5: 506–512.

Cross, D., Ashton, S., Ghiorgiu, S., Eberlein, C., Nebhan, C., Spitzleet, P. et al. (2014) AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. *Cancer Discov* 4: 1046–1061.

Eberlein, C., Stetson, D., Markovets, A., Al-Kadhimi, K., Lai, Z., Fisher, P. et al. (2015) Acquired resistance to the mutant-selective EGFR inhibitor AZD9291 is associated with increased dependence on RAS signaling in preclinical models. *Cancer Res* 75: 2489–2500.

Ellis, P., Shepherd, F., Millward, M., Perrone, F., Seymour, L., Liu, G. et al. (2014) Dacomitinib compared with placebo in pretreated patients with advanced or metastatic non-small-cell lung cancer (NCIC CTG BR.26): a double-blind, randomised, phase 3 trial. *Lancet Oncol* 15: 1379–1388.

Ercan, D., Choi, H., Yun, C., Capelletti, M., Xie, T., Eck, M. et al. (2015) EGFR mutations and resistance to irreversible pyrimidine-based EGFR inhibitors. *Clin Cancer Res* 21: 3913–3923.

Gainor, J. and Shaw, A. (2013) Emerging paradigms in the development of resistance to tyrosine kinase inhibitors in lung cancer. *J Clin Oncol* 31: 3987–3996.
Goss, G., O’Callaghan, C., Lorimer, I., Tsao, M., Masters, G., Jett, J. et al. (2013) Gefitinib versus placebo in completely resected non-small-cell lung cancer: results of the NCIC CTG BR19 study. J Clin Oncol 31: 3320–3326.

Goto, Y., Nokihara, H., Murakami, H., Shimizu, T., Seto, T., Krivoshik, A. et al. (2015) ASP8273, a mutant-selective irreversible EGFR inhibitor in patients (pts) with NSCLC harboring EGFR activating mutations: preliminary results of first-in-human phase I study in Japan. J Clin Oncol 33(Suppl.); abstract 8014.

Hata, A., Niederst, M., Archibald, H., Gomez-Caraballo, M., Siddiqui, F., Mulvey, H. et al. (2016) Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat Med 22: 262–269.

Hoffknecht, P., Tufman, A., Wehler, T., Pelzer, T., Wiewrodt, R., Schütz, M. et al. (2015) Efficacy of the irreversible ErbB family blocker afatinib in epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI)-pretreated non-small-cell lung cancer patients with brain metastases or leptomeningeal disease. J Thorac Oncol 10: 156–163.

Husain, H., Kosco, K., Vibat, C., Melnikova, V., Erlander, M., Cohen, E. et al. (2015) Kinetic monitoring of EGFR T790M in urinary circulating tumor DNA to predict radiographic progression and response in patients with metastatic lung adenocarcinoma. J Clin Oncol 33(Suppl.); abstract 8011.

Inukai, M., Toyooka, S., Ito, S., Asano, H., Ichihara, S., Soh, J. et al. (2006) Presence of epidermal growth factor receptor gene T790M mutation as a minor clone in non-small cell lung cancer. Cancer Res 66: 7854–7858.

Jamal-Hanjani, M. and Spicer, J. (2012) Epidermal growth factor receptor tyrosine kinase inhibitors in the treatment of epidermal growth factor receptor-mutant non-small cell lung cancer metastatic to the brain. Clin Cancer Res 18: 938–944.

Janjigian, Y., Park, B., Zakowski, M., Ladanyi, M., Pao, W., D’Angelo, S. et al. (2011) Impact on disease-free survival of adjuvant erlotinib or gefitinib in patients with resected lung adenocarcinomas that harbor EGFR mutations. J Thorac Oncol 6: 569–575.

Janjigian, Y., Smit, E., Groen, H., Horn, L., Gettinger, S., Camidge, D. et al. (2014) Dual inhibition of EGFR with afatinib and cetuximab in kinase inhibitor-resistant EGFR-mutant lung cancer with and without T790M mutations. Cancer Discov 4: 1036–1045.

Jänne, P., Yang, J., Kim, D., Planchar, D., Ohe, Y., Ramalingam, S. et al. (2015) A AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med 372: 1689–1699.

Jia, Y., Juarez, J., Li, J., Manuia, M., Niederst, M., Tompkins, C. et al. (2016) EGFR816 exerts anticancer effects in non-small cell lung cancer by irreversibly and selectively targeting primary and acquired activating mutations in the EGF receptor. Cancer Res 76: 1591–1602.

Kelly, K., Altorki, N., Eberhardt, W., O’Brien, M., Spigel, D., Crinò, L. et al. (2015) Adjuvant erlotinib versus placebo in patients with stage IB-IIIA non-small-cell lung cancer (RADIANT): a randomized, double-blind, phase III trial. J Clin Oncol 33: 4007–4014.

Kim, D., Yang, J., Cross, D., Ballard, P., Yang, P., Yates, J. et al. (2014) Preclinical evidence and clinical cases of AZD9291 activity in EGFR-mutant non-small cell lung cancer (NSCLC) brain metastases (BM). Ann Oncol 25(Suppl. 4): i146–i164.

Kim, T., Song, A., Kim, D., Kim, S., Ahn, Y., Keam, B. et al. (2015) Mechanisms of acquired resistance to AZD9291: a mutation-selective, irreversible EGFR inhibitor. J Thorac Oncol 10: 1736–1744.

Kris, M., Johnson, B., Berry, L., Kwiatkowski, D., Iafrate, A., Wistuba, I. et al. (2014) Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 311: 1998–2006.

Kuiper, J., Hendriks, L., van der Wekken, A., de Langen, A., Bahce, I., Thunnissen, E. et al. (2015) Treatment and survival of patients with EGFR-mutated non-small cell lung cancer and leptomeningeal metastasis: a retrospective cohort analysis. Lung Cancer 89: 255–261.

Lee, J., Park, K., Han, J., Lee, K., Kim, J., Cho, E. et al. (2015) Clinical activity and safety of the EGFR mutant-specific inhibitor, BI1482694, in patients (pts) with T790M-positive NSCLC. Ann Oncol 26(Suppl. 9): ix128–ix129.

Lee, Y., Choi, H., Kim, S., Chang, J., Moon, J., Park, Y. et al. (2010) Frequent central nervous system failure after clinical benefit with epidermal growth factor receptor tyrosine kinase inhibitors in Korean patients with nonsmall-cell lung cancer. Cancer 116: 1336–1343.

Liao, B., Lee, J., Lin, C., Chen, Y., Chang, C., Ho, C. et al. (2015) Epidermal growth factor receptor tyrosine kinase inhibitors for non-small-cell lung cancer patients with leptomeningeal carcinomatosis. J Thorac Oncol 10: 1754–1761.

Li, H., Hu, H., Wang, R., Pan, Y., Wang, L., Li, Y. et al. (2014) Primary concomitant EGFR T790M mutation predicted worse prognosis in non-small cell lung cancer patients. Onco Targets Ther 7: 513–524.
Li, S., Schmitz, K., Jeffrey, P., Wiltzius, J., Kussie, P. and Ferguson, K. (2005) Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. *Cancer Cell* 7: 301–311.

Lynch, T., Bell, D., Sordella, R., Gurubhagavatula, S., Okimoto, R., Brannigan, B. *et al.* (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. *N Engl J Med* 350: 2129–2139.

Miller, V., Hirsh, V., Cadranel, J., Chen, Y., Park, K., Kim, S. *et al.* (2012) Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/3 randomised trial. *Lancet Oncol* 13: 528–538.

Mok, T., Wu, Y., Thongprasert, S., Yang, C., Chu, D., Saijo, N. *et al.* (2009) Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma. *N Engl J Med* 361: 947–957.

Naumov, G., Nilsson, M., Cascone, T., Briggs, A., Straume, O., Akslen, L. *et al.* (2009) Combined vascular endothelial growth factor receptor and epidermal growth factor receptor (EGFR) blockade inhibits tumor growth in xenograft models of EGFR inhibitor resistance. *Clin Cancer Res* 15: 3484–3494.

Niederer, M., Hu, H., Mulvey, H., Lockerman, E., Garcia, A., Piotrowska, Z. *et al.* (2015) The allelic context of the C797S mutation acquired upon treatment with third-generation EGFR inhibitors impacts sensitivity to subsequent treatment strategies. *Clin Cancer Res* 21: 3924–3933.

Omuro, A., Kris, M., Miller, V., Franceschi, E., Shah, N., Milton, D. *et al.* (2005) High incidence of disease recurrence in the brain and leptomeninges in patients with nonsmall cell lung carcinoma after response to gefitinib. *Cancer* 103: 2344–2348.

Oxnard, G., Thress, K., Paweletz, C., Stetson, D., Dougherty, B., Markovets, A. *et al.* (2015) Mechanisms of acquired resistance to AZD9291 in EGFR T790M positive lung cancer. *J Thorac Oncol* 10(9 Suppl. 2); ORAL 17.07.

Paez, J., Janne, P., Lee, J., Tracy, S., Greulich, H., Gabriel, S. *et al.* (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. *Science* 304: 1497–1500.

Pao, W., Miller, V., Zakowski, M., Doherty, J., Politi, K., Sarkaria, I. *et al.* (2004) EGFR receptor gene mutations are common in lung cancers from ‘never smokers’ and are associated with sensitivity of tumors to gefitinib and erlotinib. *Proc Natl Acad Sci USA* 101: 13306–13311.

Park, K., Lee, J., Lee, K., Kim, J., Cho, B., Min, Y. *et al.* (2016) BI 1482694 (HM61713), an EGFR mutant-specific inhibitor, in T790M+ NSCLC: efficacy and safety at the RP2D. *J Clin Oncol* 34 (Suppl.); abstract 9055

Pennell, N., Neal, J., Chaft, J., Azzoli, C., Jänne, P., Govindan, R. *et al.* (2014) SELECT: a multicenter phase II trial of adjuvant erlotinib in resected early-stage EGFR mutation-positive NSCLC. *J Clin Oncol* 32(Suppl.); abstract 7514.

Piotrowska, Z., Niederer, M., Karlovich, C., Wakelee, H., Neal, J., Mino-Kenudson, M. *et al.* (2015) Heterogeneity underlies the emergence of EGFR T790M wild-type clones following treatment of T790M-positive cancers with a third-generation EGFR inhibitor. *Cancer Discov* 5: 713–722.

Planchard, D., Brown, K., Kim, D., Kim, S., Ohe, Y., Felip, E. *et al.* (2016) Osimertinib Western and Asian clinical pharmacokinetics in patients and healthy volunteers: implications for formulation, dose, and dosing frequency in pivotal clinical studies. *Cancer Chemother Pharmacol* 77: 767–776.

Planchard, D., Lorig, Y., André, F., Gobert, A., Auger, N., Lacroix, L. and Soria, J. (2015) EGFR-independent mechanisms of acquired resistance to AZD9291 in EGFR T790M-positive NSCLC patients. *Ann Oncol* 26: 2073–2078.

Ramalingam, S., Yang, J., Lee, C., Kurata, T. and Kim, D. (2016) Osimertinib (AZD9291) as first-line treatment for EGFR mutation-positive advanced NSCLC: updated efficacy and safety results from two phase I expansion cohorts. *J Thorac Oncol* 11 (Suppl. 4): S152–S155.

Rangachari, D., Yamaguchi, N., VanderLaan, P., Folch, E., Mahadevan, A., Floyd, S. *et al.* (2015) Brain metastases in patients with EGFR-mutated or ALK-rearranged non-small-cell lung cancers. *Lung Cancer* 88: 108–111.

Reckamp, K., Giacone, G., Camidge, D., Gadgeel, S., Khuri, F., Engelman, J. *et al.* (2014) A phase 2 trial of dacomitinib (PF-00299804), an oral, irreversible pan-HER (human epidermal growth factor receptor) inhibitor, in patients with advanced non-small cell lung cancer after failure of prior chemotherapy and erlotinib. *Cancer* 120: 1145–1154.

Regales, L., Gong, Y., Shen, R., de Stanchina, E., Vivanco, I., Goel, A. *et al.* (2009) Dual targeting of EGFR can overcome a major drug resistance mutation in NSCLC: updated efficacy and safety at the RP2D. *J Clin Oncol* 34 (Suppl.); abstract 9055

Rosell, R., Carcereny, E., Gervais, R., Vergnenegre, A., Massuti, B., Felip, E. *et al.* (2012) Erlotinib versus standard chemotherapy as first-line treatment for
European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. *Lancet Oncol* 13: 239–246.

Schouten, L., Rutten, J., Huveneers, H. and Twijnstra, A. (2002) Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. *Cancer* 94: 2698–2705.

Sequist, L., Besse, B., Lynch, T., Miller, V., Wong, K., Gitlitz, B. *et al.* (2010) Neratinib, an irreversible pan-ErbB receptor tyrosine kinase inhibitor: results of a phase II trial in patients with advanced non-small-cell lung cancer. *J Clin Oncol* 28: 3076–3083.

Sequist, L., Goldman, J., Wakelee, H., Camidge, D., Yu, H., Varga, A. *et al.* (2015a) Efficacy of rociletinib (CO-1686) in plasma-genotyped T790M-positive non-small cell lung cancer (NSCLC) patients (pts). *J Clin Oncol* 33(Suppl.); abstract 8001.

Sequist, L., Soria, J. and Camidge, D. (2016) Update to rociletinib data with the RECIST confirmed response rate. *N Engl J Med* 374:2296–2297.

Sequist, L., Soria, J., Goldman, J., Wakelee, H., Gadgeel, S., Varga, A. *et al.* (2015b) Rociletinib in EGFR-mutated non-small-cell lung cancer. *N Engl J Med* 372: 1700–1709.

Sequist, L., Waltman, B., Díaz-Santagata, D., Digumarthy, S., Turke, A., Fidias, P. *et al.* (2011) Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. *Sci Transl Med* 3: 75ra26.

Seto, T., Kato, T., Nishio, M., Goto, K., Atagi, S., Hosomi, Y. *et al.* (2014) Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced non-squamous non-small-cell lung cancer harbouring EGFR mutations (JO25567): an open-label, randomised, multicentre, phase 2 study. *Lancet Oncol* 15: 1236–1244.

Song, H., Jung, K., Yoo, K., Cho, J., Lee, J., Lim, S. *et al.* (2016) Acquired C797S mutation upon treatment with a T790M-specific third-generation EGFR inhibitor (HM61713) in non-small cell lung cancer. *J Thorac Oncol* 11: e45–e47.

Stahel, R., Dafni, U., Gautschi, O., Felip, E., Curioni-Fontecedro, A., Peters, S. *et al.* (2015) A phase II trial of erlotinib (E) and bevacizumab (B) in patients with advanced non-small-cell lung cancer (NSCLC) with activating epidermal growth factor receptor (EGFR) mutations with and without T790M mutation. The Spanish Lung Cancer Group (SLCG) and the European Thoracic Oncology Platform (ETO) BELIEF Trial. *Eur J Cancer* 51(Suppl. 3): S711.

Stewart, E., Tan, S., Liu, G. and Tsao, M. (2015) Known and putative mechanisms of resistance to EGFR targeted therapies in NSCLC patients with EGFR mutations—a review. *Transl Lung Cancer Res* 4: 67–81.

Su, K., Chen, H., Li, K., Kuo, M., Yang, J., Chan, W. *et al.* (2012) Pretreatment epidermal growth factor receptor (EGFR) T790M mutation predicts shorter EGFR tyrosine kinase inhibitor response duration in patients with non-small-cell lung cancer. *J Clin Oncol* 30: 433–440.

Tan, D., Yang, J., Leigl, N., Riely, G., Sequist, L., Felip, E. *et al.* (2016) Updated results of a phase 1 study of EGFR816, a third-generation, mutant-selective EGFR tyrosine kinase inhibitor (TKI), in advanced non-small cell lung cancer (NSCLC) harboring T790M. *J Clin Oncol* 34(Suppl.); abstract 9044.

Thress, K., Pawelec, C., Felip, E., Cho, B., Stetson, D., Dougherty, B. *et al.* (2015) Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. *Nat Med* 21: 560–562.

Thress, K., Yang, J., Ahn, M., Kim, D., Kim, S., Ohe, Y. and Planchard, D. (2014) Levels of EGFR T790M in plasma DNA as a predictive biomarker for response to AZD9291, a mutant-selective EGFR kinase inhibitor. *Ann Oncol* 25(Suppl. 4): iv426–iv470.

Tricker, E., Xu, C., Uddin, S., Capelletti, M., Ercan, D., Ogino, A. *et al.* (2015) Combined EGFR/MEK inhibition prevents the emergence of resistance in EGFR-mutant lung cancer. *Cancer Discov* 5: 960–971.

Vishwanathan, K., Dickinson, P., Bui, K., Weilert, D., So, K., Thomas, K. *et al.* (2015) Effect of food and gastric pH modifiers on the pharmacokinetics of AZD9291. *AACR; Mol Cancer Ther* 14(12 Suppl. 2); abstract B153.

Wakelee, H., Gadgeel, S., Goldman, J., Reckamp, K., Karlovich, C., Melnikova, V. *et al.* (2016) Epidermal Growth Factor Receptor (EGFR) genotyping of matched urine, plasma and tumor tissue from non-small cell lung cancer (NSCLC) patients (pts) treated with rociletinib. *J Clin Oncol* 34(Suppl.); abstract 9001.

Yang, J., Kim, D., Kim, S., Byoung, C. and Lee, J. (2016a) Osimertinib activity in patients (pts) with leptomeningeal (LM) disease from non-small cell lung cancer (NSCLC): updated results from BLOOM, a phase I study. *J Clin Oncol* 34(Suppl.); abstract 9002.

Yang, J., Ramalingam, H., Jänne, P., Ahn, M., Bazhenova, L., Blackhall, F. *et al.* (2016b) Osimertinib (AZD9291) in pre-treated patients with T790M-positive advanced NSCLC: updated phase I
and pooled phase II results. *J Thorac Oncol* 11(Suppl. 4): S152–S155.

Yang, J., Wu, Y., Schuler, M., Sebastian, M., Popat, S., Yamamoto, N. *et al.* (2015) Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): analysis of overall survival data from two randomised, phase 3 trials. *Lancet Oncol* 16: 141–151.

Yu, H., Arcila, M., Rekhtman, N., Sima, C., Zakowski, M., Pao, W. *et al.* (2013) Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. *Clin Cancer Res* 19: 2240–2247.

Yu, H., Tian, S., Drilon, A., Borsu, L., Riely, G., Arcila, M. and Ladanyi, M. (2015) Acquired Resistance of EGFR-Mutant Lung Cancer to a T790M-Specific EGFR Inhibitor: Emergence of a Third Mutation (C797S) in the EGFR Tyrosine Kinase Domain. *JAMA Oncol* 1: 982–984.

Yu, H., Spira, A., Horn, L., Weiss, J., West, H., Giaccone, G., *et al.* (2016) Antitumor activity of ASP8273 300 mg in subjects with EGFR mutation-positive non-small cell lung cancer: Interim results from an ongoing phase 1 study. *J Clin Oncol* 34(Suppl.); abstract 9050.

Yun, C., Mengwasser, K., Toms, A., Woo, M., Greulich, H., Wong, K. *et al.* (2008) The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. *Proc Natl Acad Sci USA* 105: 2070–2075.

Zeng, Q., Wang, J., Cheng, Z., Chen, K., Johnström, P., Varnäs, K. *et al.* (2015) Discovery and evaluation of clinical candidate AZD3759, a potent, oral active, central nervous system-penetrant, epidermal growth factor receptor tyrosine kinase inhibitor. *J Med Chem* 58: 8200–8215.