Central Mechanisms of Adiposity in Adult Female Mice with Androgen Excess

Kazunari Nohara¹,²,³, Amanda Laque⁴, Camille Allard⁵, Heike Münzberg⁴ and Franck Mauvais-Jarvis¹,²,³,⁵

Objective: Androgen excess in women is associated with visceral adiposity. However, little is known on the mechanism through which androgen promotes visceral fat accumulation.

Methods: To address this issue, female mice to chronic androgen excess using 5α-dihydrotestosterone (DHT) and studied the regulation of energy homeostasis was exposed.

Results: DHT induced a leptin failure to decrease body weight associated with visceral adiposity but without alterations in leptin anorectic action. This paralleled leptin’s failure to upregulate brown adipose tissue expression of uncoupling protein-1, associated with decreased energy expenditure (EE). DHT decreased hypothalamic proopiomelanocortin (pomc) mRNA expression and increased POMC intensity in neuronal bodies of the arcuate nucleus while simultaneously decreasing the intensity of POMC projections to the dorsomedial hypothalamus (DMH). This was associated with a failure of the melanocortin 4 receptor agonist melanoctan-II to suppress body weight.

Conclusion: Taken together, these data indicate that androgen excess promotes visceral adiposity with reduced POMC neuronal innervation in the DMH, reduced EE but without hyperphagia.

Introduction

Experimental models in mammals have shown that transient developmental exposure to androgen increases visceral adiposity in adult female offspring. Prenatal androgenization increases visceral adiposity in female nonhuman primates (1), heifers (2), and rats (3). Neonatal exposure to testosterone increases visceral fat deposition in adult female rats (4-6). We reported that neonatal androgenization in female mice programs visceral adiposity in adults (7). This programming is associated with diminished ability of leptin to upregulate the hypothalamic arcuate nucleus (ARC) melanocortin system (8) and dysregulation of sympathetic outflow to adipose tissue (7). In women with chronic androgen excess, plasma testosterone is positively correlated with waist circumference, an index of visceral obesity (9). Nonetheless, little is known about the mechanism through which chronic androgen excess induces adiposity in females with a preferentially visceral distribution.

In the experiments described in this article, we explored the mechanism by which chronic androgen excess in females induces visceral adiposity. We focused on the hypothalamic melanocortin system using female C57BL/6 mice exposed to the nonaromatizable androgen receptor (AR) agonist 5α-dihydrotestosterone (DHT). We observed that androgen excess induces leptin failure to activate brown adipose tissue (BAT) thermogenesis and suppress body weight associated with reduced energy expenditure (EE). We also observed decreased hypothalamic proproiomelanocortin (pomc) expression and POMC neuronal innervations into dorsomedial hypothalamus (DMH). These results suggest that androgen-induced visceral fat distribution and accumulation involves alteration of the melanocortin system between the ARC and DMH.

Methods

Animals

Nine- to ten-week-old C57BL/6 female mice were purchased from Jackson laboratory. After 1 week acclimation, DHT pellet (15 mg/pellet, 90-day release; Innovative Research of America #NA-161) insertions or sham operations were performed. The DHT pellet dose was chosen to elevate DHT serum concentrations to levels observed

1 Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
2 Comprehensive Center on Obesity, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
3 Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
4 Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
5 Division of Endocrinology and Metabolism, Department of Medicine, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana, USA.

Funding agencies: This research was supported by grants from National Institutes of Health (P50 HD044405, R01 DK074970-01), the March of Dimes (6-FY07-678), the American Heart Association (11RG5570010) and the American Diabetes Association (7-13-BS-101) to FMJ.

Disclosure: Dr. Mauvais-Jarvis received research support from Pfizer, Inc, and other authors declare no conflict of interest.

Author contributions: KN, HM, FMJ conceived, designed experiments. KN and AL carried out experiments; KN, CA, HM, and FMJ analyzed data. KN, CA, and FM-J wrote the article. All authors were involved in writing the article and had final approval of the submitted and published versions.

Received: 2 December 2013; Accepted: 3 February 2014; Published online 8 February 2014. doi:10.1002/oby.20719

www.obesityjournal.org Obesity | VOLUME 22 | NUMBER 6 | JUNE 2014 1477
in males. Experiments were performed between 3 and 8 weeks of DHT exposure, as shown in each figure. All animal experiments were approved by Northwestern University Animal Care and Use Committee (ACUC) in accordance with the National Institutes of Health Guide for the Care and Use of Animals.

Food intake measurement
Animals were housed individually for 1 week to acclimate to the new environment. Food intake was measured daily for 1 week following accommodation. For measurement of food intake following prolonged fasting, mice were starved for 24 h and following refeeding, food intake was measured at the indicated time points.

Serum hormone concentrations measurement
Serum leptin and adiponectin concentrations were measured by ELISA (Linco Research, Inc.).

Measurements of energy expenditure
EE was measured by indirect calorimetry using a computer-controlled open circuit calorimetry system (PhysioScan Oxygen Consumption/Carbon Dioxide Production System; AccuScan Instruments Inc., Columbus, OH). Heat production was normalized by total body weight (Kcal/hour/kg).

Extraction and analysis of tissue NE
NE analysis was performed as previously described (7). Briefly, BAT was weighed and homogenized in iced 0.2 N perchloric acid containing 1% Na2S2O5 (by weight) and 1 mmol/l EDTA in a poltron homogenizer (Brinkmann Instruments, Westbury, NY) to extract the catecholamines. After isolation and elution, aliquots of the alumina eluate were injected onto a liquid chromatographic system for catecholamine analysis.

In vivo leptin stimulation
Mice were separated into individual cages and left to acclimate for the first week. After the second week of basal daily food intake measurement, i.p. leptin (National Hormone and Peptide Program [NHPP]) was injected daily for 4 days (25 μg/20 g body weight). Food intake and body weight were measured daily as previously described (8).

Gene expression analysis by real-time quantitative PCR
BAT and hypothalami were harvested in fed mice or after 6 h following i.p. injections of PBS or leptin (3 μg/g body weight) in 24 h-fasted mice (8). Tissues were snap-frozen in liquid N2 until RNA extraction. Gene expression was quantified in tissues by real-time q-PCR (iCycler, Bio-Rad Laboratories) and normalized to β-actin expression. Briefly, total RNA was extracted from tissue in TRIzol Reagent (Invitrogen). One microgram of RNA was reverse-transcribed using iScript cDNA Synthesis Kit (Bio-Rad Laboratories) with random hexamers. Primer sequences are available on request.

Free-floating brain IHC
Mice were fasted for 24 h and refed overnight (15-18 h). Mice were killed following cardiac perfusion with 10% formalin and brains were postfixed in 10% formalin overnight at 4°C and transferred to 30% sucrose solution. Tissues were frozen on dry ice, cut into 30 μm coronal sections on a sliding microtome, collected, and stored in antifreeze solution (50% PBS, 15% ethyl glycol, and 35% glycerol) at −20°C. Brain sections were used for free-floating immunohistochemistry. Sections were washed and pretreated in methanol containing 1% H2O2, 0.3% glycine, 0.03% SDS. Sections were blocked in 3% normal donkey serum, followed by incubation with rabbit anti-ACTH (1:100, from National Hormone and Peptide Program [NHPP]) overnight at room temperature and visualized with a secondary donkey antirabbit-Alexa488 (Invitrogen).

Quantification of ACTH fibers
To quantify ACTH fiber density in mouse brains, we took confocal images (Leica Microsystem) from anatomically closely matched sites of the PVN and ARC. In each focused image, the gain and offset was kept constant and a stack of 75 optical sections was scanned through a volume of 10.1 μm covering the fluorescent signal. Further image analysis was performed with image J (NIH), and three rectangles (identical in size) were chosen per stack to measure average fluorescence intensity throughout the individual optical sections. Background signals were subtracted after ensuring that no significant difference in background signal was found between groups.

Melanotan-II (MT-II) sensitivity test
Mice were kept in individual cages for 1 week for adjustment. After 24 h fasting, half of the mice were injected with 1 μg/g i.p. MT-II (Bachem) and the other half with saline. Food intake was measured at the indicated time points following the MT-II injection.

Statistical analysis
Results are presented as mean ± SEM unless otherwise stated. Data were analyzed using the unpaired Student’s t-test or two-way ANOVA followed by post hoc analysis using Bonferroni test as appropriate. A value of P < 0.05 was considered statistically significant.

Results
Chronic DHT exposure alters body composition
Compared to female controls (FC) chronic DHT exposure in adult female mice (FDHT) increased their body weight (Figure 1A) with corresponding increases in androgen-sensitive lean mass, including calf muscle and heart muscles as well as kidney (Figure 1B-D). FDHT also showed a dramatic increase in subcutaneous and visceral fat mass (Figure 1E) with a clear and predominant visceral distribution (Figure 1F). Consistent with the development of visceral adiposity, serum levels of adiponectin were lower in FDHT (Figure 1G).

Chronic DHT exposure provokes leptin failure to increase energy expenditure
Compared to FC, FDHT did not exhibit any change in food intake in normal feeding conditions (Figure 2A) or after prolonged fasting (Figure 2B). However, consistent with their increased fat mass, FDHT exhibited hyperleptinemia suggestive of leptin resistance (Figure 2C). To investigate this issue, we performed an i.p. leptin sensitivity test. Consistent with the absence of hyperphagia, leptin decreased food
intake by 11% over three days and showed similar effects in both FC and FDHT (Figure 2D). FDHT displayed decreased EE in both fed (Figure 2E) and fasted conditions (Figure 2F). BAT is the main leptin target tissue that increases EE. Surprisingly, BAT mass was increased in FDHT (Figure 2G). We thus quantified norepinephrine (NE) content in BAT. Indeed, NE is a marker of sympathetic nervous outflow in this tissue (10) and is stimulated by central leptin (11). Interestingly, BAT NE content was lower in FDHT compared to FC (Figure 2H). We then quantified the expression of the uncoupling protein 1 (Ucp1), the main regulator of thermogenesis in BAT (12). In the fed state, Ucp1 expression was similar between groups (Figure 2I). However, under fasting conditions, Ucp1 expression was higher in FDHT (Figure 2J). Expectedly, in fasted FC, leptin treatment upregulated Ucp1 expression approximately 200% (Figure 2J). In contrast, consistent with lower NE content in BAT, in fasted FDHT, leptin failed to increase Ucp1 expression (Figure 2J). Finally and consistent these data, compared to FC, FDHT exhibited a failure of leptin to suppress body weight (Figure 2K).

Chronic DHT exposure alters POMC neurons
The ARC is a key hypothalamic area that has a primarily role in mediating leptin’s anorectic action. It contains first-order, leptin-responsive, anorexigenic POMC/cocaine and amphetamine-regulated transcript (CART) neurons, as well as orexigenic neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons (13). In these neurons, leptin upregulates anorexigenic Pomc/Cart and downregulates orexigenic Npy/Agrp expressions, thereby decreasing both energy intake and body weight (13). Previously, we showed that neonatal testosterone exposure in mice alters the hypothalamic melanocortin system and decreases EE in adults (8). We explored the hypothesis that decreased EE in FDHT might be due to altered melanocortin system function. The hypothalamic mRNA expression of the leptin receptor was unchanged in FDHT (FC: 1.00 ± 0.07; FDHT: 0.93 ± 0.05, Mean ± SE, n = 8-9). FDHT showed decreased Pmc mRNA expression (Figure 3A) without corresponding changes in mRNA expression of the other first order neuropeptides or Melanocortin 4 receptor (Mc4r) expression (Figure 3B). We therefore examined the possibility that ARC POMC neuronal function had been altered by chronic DHT exposure. We used ACTH as an accepted marker of POMC neurons (8). In the ARC of FDHT, the overall POMC fiber intensity was decreased compared to FC (Figure 3C). However, in FDHT ARC, POMC intensity was significantly increased at the level of the cell soma (Figure 3C). Accordingly, we explored whether POMC innervations of the hypothalamic nuclei were altered. In FDHT, POMC fiber intensity was reduced in the DMH and these...
Figure 2.

Mechanism of Adiposity in Androgenized Females

- Food intake (g)
- Cumulative food intake (g)
- Serum leptin (ng/ml)
- Decrease of food intake (% from basal)
- Heat (x1000 cal/hour/kg)
- BAT weight (mg)
- BAT NE contents (ng/g)
- Relative Ucp1 expression
- Decrease of body weight (% from basal)

Figure 2.
mice showed a trend toward reduction in the PVN (P = 0.09) compared with FC (Figure 3D). Thus, chronic DHT exposure is associated with increased POMC content in the cell body, but decreased intensity in fibers, suggesting alterations in POMC synthesis and export.

Chronic DHT exposure alters the MC4R sensitivity

To determine whether POMC downstream targets are also affected, we tested the sensitivity of the downstream melanocortin system following i.p. injection with MT-II, the MC4R agonist. MT-II injection suppressed food intake in FC and to a lesser extent in FDHT (Figure 4A). However, although MT-II suppressed body weight in FC, the ability of MT-II to reduce body weight was lost in FDHT (Figure 4B).

Discussion

To examine the effect of androgen excess on the development of obesity, we used DHT, the active metabolite of testosterone that unlike testosterone cannot be aromatized into estrogen. Chronic androgen excess promotes visceral fat deposition in adult female mice. Accord-ingly, in male orchidectomized mice, DHT treatment increases adiposity (14). In addition, treatment of these male mice with testosterone in the presence of an aromatase inhibitor—but not testosterone alone—induced retroperitoneal fat accumulation. Together, these observations demonstrate that in both sexes, DHT is instrumental in promoting visceral fat distribution (14), probably via action on AR.

We observe that in FDHT, visceral obesity is associated with decreased EE. Surprisingly, in FDHT, BAT weight is increased, as is also observed in DHT-treated orchidectomized male mice (14). This could reflect an increased BAT lipid content associated with decreased BAT function in FDHT. Indeed, although BAT weight is increased in FDHT, during fasting, leptin fails to increase the expression of the thermogenic gene *Ucp1* in this tissue. During fasting, *Ucp1* expression is normally low in BAT due to reduced leptin levels and decreased sympathetic outflow (15,16). Conversely, leptin increases BAT *Ucp1* expression and stimulates EE, via hypothalamic sympathetic outflow (17,18). We have used NE as a marker of sympathetic nervous outflow to BAT (7,10). The low BAT NE content in FDHT may indirectly reflect the reduced sympathetic tone to BAT. Indeed, a disruption in sympathetic tone is observed in several rodent models of obesity, such as neonatal androgenization (7), high-fat feeding (19), and genetic leptin resistance (20). Therefore, higher *Ucp1* expression during fasting along with leptin failure to further increase the expression of *Ucp1* and decreased EE in FDHT suggests a disruption in communication between the central leptin signal and BAT. Thus, chronic androgen excess induces leptin’s failure to properly activate BAT *Ucp1* gene expression which could decrease EE. Further studies are needed to link this leptin resistance to decreased EE.

The central regulation of energy metabolism is dependent on the activity of specialized fuel-sensing neurons within the hypothalamus: the most studied are the POMC/CART and the NPY/AgRP expressing neurons (13). Chronic androgen excess decreases POMC mRNA expression in whole hypothalamus of FDHT mice. In addition, chronic androgen excess increases the intensity of ACTH in POMC cell bodies of the ARC while simultaneously decreasing ACTH fiber projection intensity. It has been reported that obesity can lead to the decrease of POMC post-transcriptional processing, leading to the reduction of α-melanocyte stimulating hormone, the major ARC anorexigenic peptide (21). Together, these findings suggest that POMC synthesis is decreased and/or the neuropeptide produced by its cleavage (at least ACTH) remains localized in the soma and is insufficiently exported from the ARC to other nuclei. Indeed, POMC fiber density is significantly decreased in the DMH. Interestingly, evidence suggests that leptin signaling via MC4R in the PVN controls food intake while MC4R action in other CNS sites—like the DMH—stimulates EE (22). For example, cold exposure increased Fos expression in DMH (23) suggesting that DMH is the site that regulates sympathetic nervous outflow to BAT. Importantly, Zhang et al. (18) reported that sympathetic innervations to BAT are mediated via leptin receptor-expressing neurons in DMH—one of major POMC neuronal target site—and in medial preoptic area (mPOA). Finally, Enriori et al. (24) confirmed that leptin action in DMH increases sympathetic tone to BAT and increases thermogenesis. We observe that chronic DHT excess reduces POMC fiber intensity in the DMH, and that this is associated with a blunted ability of leptin to both increase BAT *Ucp1* expression. Together, these results suggest that hyperandrogenism in FDHT could alter EE via an alteration of the melanocortin pathway, in the DMH, a brain region known to be a site of leptin action.
Figure 3 Chronic DHT exposure disrupts POMC neuronal function. Relative expressions (A) Pomc, (B) Npy, Agpy, Cart, and Mc4r were measured using qPCR in whole hypothalami (n = 8-9) at 5-6 weeks of DHT exposure. (C) Hypothalamic POMC neuronal fibers and cell bodies intensity of the ARC were detected by IHC after ACTH staining followed by quantification as described in Materials and Methods (n = 5) at 5-6 weeks of DHT exposure. (D) Hypothalamic POMC neuronal fiber intensity in DMH and PVN were detected by IHC after ACTH staining followed by quantification as described in Materials and Methods (n = 5) at 5-6 weeks of DHT exposure. Results represent the mean ± SE. *P < 0.05; **P < 0.01; ***P < 0.001, FDHT vs. FC.
DHT excess produces a failure of MT-II, a MC4R agonist, to suppress body weight without change in MT-II ability to suppress food intake. In diet-induced obesity, the downstream melanocortin system is usually overresponsive to MT-II due to increased MC4R expression (25,26). In contrast, MC4R expression is normal in FDHT. Thus, the inability of these anorectic compounds (leptin and MT-II) to decrease body weight could be secondary not only to a decreased POMC fiber projection but also to alterations in MC4R pathways downstream of the ARC.

The primary neuronal site(s) of DHT action remains to be determined. In previous studies, only 3% of ARC POMC neurons expressed AR in rat hypothalamus (27,28). We also observed that few POMC neurons co-expressed with AR in mice (Nohara, Mauvais-Jarvis, unpublished). Thus, we cannot eliminate an indirect effect of androgen to afferent AR-expressing neurons in a manner that indirectly alters POMC neurons. ARC and DMH receive inputs from the POA, where AR-expressing neurons have been reported (29). It is noteworthy that elevation of body temperature induced by infection depends on GABAergic neuronal activity suppression in the POA (30), highlighting the role of POA neurons on thermoregulation. Conversely, GABAergic agonist injection into DMH suppresses sympathetic outflow to BAT and reduces temperature (30). One may speculate that androgen excess could act on POA neurons, altering signaling to ARC and DMH neuronal populations.

One limitation of this study is that there is no mechanistic causality between the androgen-induced alterations in POMC neurons and the metabolic alterations in EE and adiposity detected in androgen-treated mice. Therefore, further studies are needed to determine the implications of the DMH in androgen-induced visceral fat distribution in both males and females.

In conclusion, androgen excess reduces POMC neuronal innervation in the DMH, induces leptin’s failure to decrease body weight, reduces EE, and promotes visceral adiposity. These results will help better understand the central mechanisms linking androgen excess and visceral fat deposition.

Acknowledgments

The authors acknowledge the University of Cincinnati, Mouse Metabolic Phenotyping Center (NIH grant DK059630). Experiments represented in Figure 3C and D were supported by NIH R01-DK092587 (HM) and utilized the facilities of the Cell Biology and Bioimaging Core, supported in part by COBRE (NIH P20-RR021945) and CNRU (NIH 1P30-DK072476) center grants.

References

1. Eisner JR, Dumesic DA, Kemnitz JW, Colman RJ, Abbott DH. Increased adiposity in female rhesus monkeys exposed to androgen excess during early gestation. *Obes Res* 2003;11:279-286.
2. Reiling BA, Drackley JK, Grum LR, Berger LL. Effects of prenatal androgenization and lactation on adipose tissue metabolism in finishing single-calf heifers. *J Anim Sci* 1997;75:1504-1513.
3. Demissie M, Lajic M, Foecking EM, Aird F, Dunaf I, Levine JE. Transient prenatal androgen exposure produces metabolic syndrome in adult female rats. *Am J Physiol Endocrinol Metab* 2008;295:E262-E268.
4. Nilsson C, Niklasson M, Eriksson E, Stener-Victorin E, et al. Postnatal testosterone distribution at adult age in rats. *Endocrinology* 1998;140:3781-3791.
5. Alexander C, Eriksson E, Stener-Victorin E, et al. Postnatal testosterone exposure results in insulin resistance, enlarged mesenteric adipocytes, and an atherogenic lipid profile in adult female rats: comparisons with estradiol and dihydrotestosterone. *Endocrinology* 2007;148:5369-5376.
6. Nohara K, Zhang Y, Waraich RS, et al. Early-life exposure to testosterone programs the hypothalamic melanocortin system. *Endocrinology* 2011;152:1661-1669.
7. Evans DJ, Barth JH, Burke CW. Body fat topography in women with androgen excess. *Int J Obes* 1998;12:157-162.
8. Morrison SF, Ramamurthy S, Young JB. Reduced rearing temperature augments responses in sympathetic outflow to brown adipose tissue. *J Neurosci* 2009;29:9264-9271.
9. Haynes WS, Morgan DA, Walsh SA, Mark AL, Sivitz WI. Receptor-mediated regional sympathetic nerve activation by leptin. *J Clin Invest* 1997;100:270-278.
10. Thomas SA, Palmiter RD. Thermoregulatory and metabolic phenotypes of mice lacking noradrenaline and adrenaline. *Nature* 1997;387:94-97.

www.obesityjournal.org
13. Elmquist JK, Elias CF, Saper CB. From lesions to leptin: hypothalamic control of food intake and body weight. *Neuron* 1999;22:221-232.

14. Moverare-Skrtic S, Venken K, Andersson N, et al. Dihydrotestosterone treatment results in obesity and altered lipid metabolism in orchidectomized mice. *Obesity (Silver Spring)* 2006;14:662-672.

15. Rothwell NJ, Saville ME, Stock MJ. Brown fat activity in fasted and refed rats. *BioSci Rep* 1984;4:351-357.

16. Champigny O, Ricquier D. Effects of fasting and refeeding on the level of uncoupling protein mRNA in rat brown adipose tissue: evidence for diet-induced and cold-induced responses. *J Nutr* 1990;120:1730-1736.

17. Scarpace PJ, Matheny M, Pollock BH, Tumer N. Leptin increases uncoupling protein expression and energy expenditure. *Am J Physiol* 1997;273:E226-E230.

18. Zhang Y, Kerman IA, Laque A, et al. Leptin-receptor-expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits. *J Neurosci* 2011;31:1873-1884.

19. Cruciani-Guglielmacci C, Vincent-Lamon M, Rouch C, Orosco M, Ktorza A, Magnan C. Early changes in insulin secretion and action induced by high-fat diet are related to a decreased sympathetic tone. *Am J Physiol Endocrinol Metab* 2005;288:E148-E154.

20. Blouquit MF, Geloen A, Koubi H, Edwards D, Griposi D. Decreased norepinephrine turnover rate in the brown adipose tissue of pre-obese fa/fa Zucker rats. *J Dev Physiol* 1993;19:247-251.

21. Cakir I, Cyr NE, Perello M, et al. Obesity induces hypothalamic endoplasmic reticulum stress and impairs proopiomelanocortin (POMC) post-translational processing. *J Biol Chem* 2013;288:17675-17688.

22. Balthasar N, Dalgaard LT, Lee CE, et al. Divergence of melanocortin pathways in the control of food intake and energy expenditure. *Cell* 2005;123:493-505.

23. Cano G, Passerini AM, Schiltz JC, Card JP, Morrison SF, Sved AF. Anatomical substrates for the central control of sympathetic outflow to interscapular adipose tissue during cold exposure. *J Comp Neurol* 2003;460:303-326.

24. Enriori PJ, Sinnaiah P, Simonds SE, Garcia Rudaz C, Cowley MA. Leptin action in the dorsomedial hypothalamus increases sympathetic tone to brown adipose tissue in spite of systemic leptin resistance. *J Neurosci* 2011;31:12189-12197.

25. Enriori PJ, Evans AE, Sinnaiah P, et al. Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons. *Cell Metab* 2007;5:181-194.

26. Munzberg H, Flier JS, Bjorbaek C. Region-specific leptin resistance within the hypothalamus of diet-induced obese mice. *Endocrinology* 2004;145:4880-4889.

27. Fodor M, Delemarre-van de Waal HA. Are POMC neurons targets for sex steroids in the arcuate nucleus of the rat? *Neuroreport* 2001;12:3989-3991.

28. Simonian SX, Spratt DP, Herbison AE. Identification and characterization of estrogen receptor alpha-containing neurons projecting to the vicinity of the gonadotropin-releasing hormone perikarya in the rostral preoptic area of the rat. *J Comp Neurol* 1999;411:346-358.

29. Simmerly RB, Chang C, Muramatsu M, Swanson LW. Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study. *J Comp Neurol* 1990;294:76-95.

30. Nakamura Y, Nakamura K, Matsumura K, Kobayashi S, Kaneko T, Morrison SF. Direct pyrogenic input from prostaglandin EP3 receptor-expressing preoptic neurons to the dorsomedial hypothalamus. *Eur J Neurosci* 2005;22:3137-3146.