Dehiscence Syndrome Superior Semicircular Canal:
A Case of Dehiscence Syndrome of the Superior Semicircular

Abstract
The superior semicircular dehiscence syndrome is a pathology described in 1998 by Minor et al. Which presents several sound induced vertigo symptoms included, hearing loss and autophony due to bone dehiscence de este semicircular canal. The treatment was based on clinical and confirmation is given by temporal bone CT the. Treatment is surgical repair of expectant or continuity if the clinic is disabling. In this paper we present a case of auditory and vestibular DCSS with symptoms in issuing the phoneme "mmm".

Keywords: Superior semicircular canal; Dehiscence; Tullio phenomenon

Summary
Dehiscence syndrome superior semicircular canal (DCSS) is a condition described in 1998 by Minor et al, which presents various symptoms including dizziness induced by sound, hearing loss and autophony by the lack of bone coverage on that channel. Diagnosis is based on clinical and confirmation is obtained by computed tomography crag. The treatment is expectant or surgical repair of continuity if the clinic is incapacitating. In this article a case of DCSS with hearing and vestibular issuing the phoneme ”mmm” symptoms occur.

Introduction
DCSS syndrome is the presence of a solution of continuity between the apex of the superior semicircular canal (CSS) and cerebral fossa media. Minor et al. [2] were the first to identify this syndrome in 1998, and is characterized by the presence of vertigo and nystagmus front sounds, pressure changes in the middle ear and / or intracranial pressure. In addition symptoms such as autophony, instability, oscilloscopy and hyperacusis they may occur. Minor argued that the failure of bone coverage or dehiscence act as a ”third window” moving at the level of the inner ear in addition to the oval and round windows form, allowing the transmission of vibration to the vestibular apparatus, producing the sensation of vertigo [2]. The mechanism involved in syndrome DCSS would movement blister channel due to increased endolymphatic complacency, dehiscence [3] generated by the system.

A study studying thousand prevalencia4 hue-sos temporary appreciated one DCSS in 0.5% of cases, the bony plate that covered the CSS was less than 0.1 mm2 at 1.4%. No local changes were found in the temporal bone that give explain pu-bone erosion, and none of these patients had a prior history of head trauma. This dehiscence was bilateral in most patients, so it is suggested that some embryonic alteration might explain these hallaz-gos, and probably some later event, such as trauma or increased intracranial pressure, could accentuate this condition, de-finishing appearance síntomas [4].

Initial experiments by Tullio [5] and subsequently Huizinga & Euren [6,7] Demostra-rum fenestration semicircular canals in pigeons, eye and head movements caused by sound evoked in the same plane channel, denominating Tullio phenomenon. Initial clinical studies identified this faith-phe- in patients with syphilis congenital [8]. However, these findings were subsequently demonstrated in conditions such as deafness congé-nita [9] of Ménière [10] syndrome, periflínfática [11] fistula, trauma enceloflancraneano [12] of Lyme [13] disease and chronic otitis media with cholesteatoma semicircular [14] channel erosion.

In similar pathological conditions that can result Tullio phenomenon, the pressure in the ear canal (CAE) with the with- next movement of the tympanic membrane, produces symptoms and signs vestibulares [15]. This phenomenon was demonstrated in a study carried-do with chinchillas by Hirvonen et al, who investigated the changes of discharge afferents vestibular in response to changes in the CAE before and after fenestration CSS, and post reparación [16]. This relationship between the plane and the directional characteristics of the known eye movements evoked both the excitation or inhibition of CSS will help define the pathophysiological characteristics of patients. Then appears, a vér-tico-rotary nystagmus following the plane of the CSS affected, counterclockwise in the case of CSS right and clockwise in the CSS izquierdo [17]. The con-confirmation by computed tomography (CT) crag high resolution should rea-Lizar with cuts of at least 0.5 mm and Recon-ing in the plane channel to minimize the number
of false positives [18]. Another useful supplementary examination for the diagnosis of this table is vestibular myogenic evoked potentials (VEMP). With an increase in amplitude and a lower threshold to evoke the potentials [19], Halmagyi et al evaluated the OCU-lar movements in response to low-frequency clicks in patients and healthy control group DCSS. The carrier group had a ten times greater than that observed in healthy subjects answer, therefore present this technique as a valid alternative to DCSS research in patients with dizziness and/or disequilibrium [20].

Clinical Case

Male patient 33 years old, administrative mining. Browse box two years of evolution characterized by hearing loss and tinnitus pulsatile autophony left ear. In the past eight months imbalance and vertigo goal by issuing the phoneme “mmm” is added. The review highlights otoscopia standard; Weber test lateralized to the left ear. Audiometry, hearing loss presents driving left ear upward curve and a gap of 40 dB (125-250-500 Hz), bone conduction -10dB (Figure 1). With clinical and audiological suspected DCSS VEMP is requested stimulus Burst 500 Hz, which has a threshold of p13 waves and n23 to 65 dB nHL and asymmetry in the amplitudes of the p13 waves and n23 to 90 dB NHL (Figure 2).

The video presents ausen-cia oculonistagmografía spontaneous nystagmus. The patient is asked to perform phoneme “mmm” observed appearance of horizonto-rotary nystagmus in all positions look, clockwise (Figure 3). A significant caloric testing left vestibular hyperreflexia seen as parameter.

Conclusion

The DCSS is a relatively new entity. Most publications give few details of symptoms, mainly mentioning imbalance, vertigo or oscilloscopy noise-induced pressure or maneuvers. In a series reported by Kaski [21], reports that 89% of patients had imbalance, oscilloscopy or dizziness in the presence of intense external sounds of sudden onset, such as telephone, traffic noise, cry baby, cry or dental strawberry, expanding clinical presentation of DCSS. A third of them had Tullio phenomenon with his own voice when speaking or making buzz. Changes in intracranial pressure by coughing, nose blowing, flying, causing symptoms in 25% of subjects. In addition, patients often reported hearing unusual phenomena related to body sounds as heard his footsteps, his muscles when chewing or eye movements. Pulsatile tinnitus was a frequent complaint. It is important to consider the vertigo that occurs in the dental office, and the differential diagnosis between benign paroxysmal positional vertigo (BPPV) and DCSS, as they will be triggered differently. The intensity of the sound generated by the turbine reaches the inner ear by bone conduction, it is transmitted by solid media, such as the skull, with enormous efficiency and maximum speed. However, when it reaches the ear of a patient with DCSS Tullio phenomenon it occurs because above 95 dB SPL to trigger a precise rotational vertigo. All these inconveniences previously mentioned are caused by low frequency sounds (0.5-2 kHz). The patient reported, particularly referring symptoms when issuing the phoneme “mmm” which generates pressure changes as well as a retro reflected resonance, because the phonatory tube with a frequency of about 110 Hz is partially occluded, but includes harmonics and other complex frequencies noise. Given the nature of the problem, look for abnormal eye movements against exposure to sound stimuli, inducing positive pressure and/or negative in the CAE during impedance or performing Valsalva maneuver against glottis open and closed glottis. Increased intracranial pressure with the Valsalva maneuver and closed glottis, is transmitted in the CSS, through the meninges and the perilymph of the aqueduct cochlear, generating eye movements in the same plane but opposite direction (ampulípeta) to the observed during the loud noise. Pathophysiologically the “third window” causes a low-frequency conductive hearing loss is accompanied by thresholds via bone normal or even lower than 0 dB, with a normal acoustic reflex, allowing us to exclude the otosclerosis as a differential diagnosis. Bone conduction humans is less efficient than air conduction, however, the presence of a DCSS generate a vibration of the skull that may cause the oscillation of the dura over the defect, leading to the creation of standing waves and amplification sound, which is transmitted directly to the inner ear fluids with little attenuation, causing stimulation of hair cells in the cochlea at the appropriate frequencies. This explains the symptoms of tinnitus and pulsatile [22] autophony.

The VEMP is an objective test that evaluates the generation disynaptic vestibulo-cervical. This determines the function of

Figure 1: Conductive hearing loss left ear, rising. And GAP 40 dB. Bone conduction -10 dB.

Figure 2: Asymmetry in the amplitude responses, response threshold abnormally reduced left ear.Compatible with left vestibular pathology.
the sacculle, posterior labyrinth and inferior vestibular nerve principally [23,24]. It is thought that the ori-page VEMP by stimulation sacculle because the latter forms the vestibular organ terminal more sensitive to sound, to be close to the look-tana oval. The large intensity of motion of the perilymph produce greater stimulation of saccular receptors. Furthermore, most neurons sensitive vestibular nerve clicks, which would meet inclinations are in the saccular macula and there is diri-gene by afferents vestibular nerve to the lateral and inferior [25] vestibular nucleus. Thus, an auditory stimulus type click brief high intensity will produce an ipsilateral inhibitory potential of high amplitude and short latency in the sternocleidomastoid muscle when it is find tonically contracted and exci-rio in the contralateral muscle. This muscle response will be represented as a wave with a positive peak at 13 ms after a negative and the 23ms after stimulation peak. In normal subjects the VEMPs has a threshold usually 90-95 dB. In patients with DCSS, the threshold is about 20 dB lower than the normal subjects and breadth usual level of stimulation of 100-105 dB can be mind-abnormally high (> 300 microvolts). Patients with DCSS also have a lobby oculomotor reflex evoked by click abnormally intense and bajo [26,27] threshold.

Figure 3: Spontaneous nystagmus is studied, and the patient is asked to issue phoneme “mmm” horizonto emergence of left-rotatory nystagmus seen in all positions of gaze.

Description of the acquisition: A Toshiba Aquilion 64, Yokohama, Japan. Acquisition of 0.5 mm x 64. 120 Kv. 300 mAs. Matrix of 512 x 512. FOV of 240 mm. Reconstruction of 1 mm every 0.8 mm with Bone algorithm. Time of Rotation 0.6 sec.
There is a notable difference between the impact-cia radiological and anatomical. While in post mortem studies in temporal bones an incidence of 0.5% 4 was found, in contrast with the results obtained by CT, ranging from 1% to 17% [28,29]. This may be because the resolution of CT not sufficient for bone near delivery fino [30]; the orientation of the cuts can increase the number of false positives [31] and positioning the patient’s head varies with each study and therefore there is no standardized variable.

Cloutier [32] proposed holding TC with re-construction in the plane of committed channel (Pöschl), reducing the prevalence of radiological DCSS 10% to 4% with coronal reconstructions. However even diagnosis is made on this box.

The initial treatment of this disease should be conservative, avoiding the patient, the actions that trigger the clínica [2]. If this behavior is not sufficient or the symptoms are disabling it may refer the patient a resolution quirúrgica [3], consisting of closing the communication between the channel and the floor of the middle fossa, showing a clear improvement of vestibular symptoms and disappearance of Tullio phenomenon. The routes proposed for the closure of the fistula are transmastoid or through middle cranial fossa. Once identified dehiscence, it is sealed with bone wax or a bone graft could be added temporal [33] muscle fascia. Other alternatives such as fascia, fibrin glue, bone graft and hydroxyapatite cement have also been used in the repair of the defect, with 60. Dehiscence syndrome SEMICIRCULAR SUPERIOR CANAL. A CASE REPORT - V Market, F Fernandez Hernandez C, C Pino, I Novoa, P Herrera various results [1]. There is initially described by Silverstein [34] innovative approach, who suggested that dampen the sensitivity of the inner ear by strengthening the oval and round window with fascia may relieve symptoms in some patients, reducing complications Aquellos more invasive approaches, via transcranial. twenty-four patients centers who opted for the minimally invasive approach by strengthening the oval window and / or round were studied. The analysis revealed a statistically significant improvement in almost all symptoms except for hearing loss.

Finally, this clinical entity has a high rate of false positives and a variety of clinical presentations therefore we must consider in detail the diagnos-cos differential and supported by complementary examinations get raise this diagnosis with certainty and define the best patient treatment for those carriers DCSS.

References

1. Gianoli GJ (2001) Deficiency of the superior semicircular canal. Curr Opin Otolaryngol Head and Neck Surg 9(5): 336-341.
2. Minor LB, Solomon D, Zinreich JS, Zee DS (1996) Sound- and / or Pressure-induced vertigo due to bone dehiscence of the superior semicircular canal.
3. Silverstein A (1997) A novel surgical technique for the treatment of DCSS. Laryngoscope 107: 17-21.
Dehiscence Syndrome Superior Semicircular Canal: A Case of Dehiscence Syndrome of the Superior Semicircular Canal. Arch Otolaryngol Head Neck Surg 124(3): 249-258.

3. Caro J, Fernandez F (2006) Syndrome superior semicircular canal dehiscence: Review. Rev Cir Otorrinolaringol Head Neck 66: 119-125.

4. Carey JR, Minor LB, Nager GT (2000) Dehiscence and thinning of bone overlying the superior semicircular canal in a temporal bone survey. Arch Otolaryngol Head Neck Surg 126(2): 137-47.

5. Tullio P Das (1929) Ohr und die Entstehung der Sprache und Schrift. Berlin, Germany Urban & Schwarzenberg, Germany.

6. Huizinga E (1935) On the sound reactions of Tullio Acta Otolaryngologica (Stockh) 22(3):359-360.

7. Eumen AJH, HC Huizinga, Huizinga E, Die Tulliosche (1943) Reaktion mit der Funktion in Zusammenhang des Mittelhores. Acta Otolaryngolog (Stockh) 3(1-3):265-339.

8. Mayer JS Fraser (1936) Pathological Changes in the ear in late congenital syphilis. J Laryngol Otol 51(1): 683-714.

9. Kwee SL (1976) The occurrence of the Tullio phenomenon in congenitally deaf children. J Laryngol Otol 90: 501-507.

10. SK Kacker, Hinchrcliffe R (1970) Unusual Tullio phenomena. J Laryngol Otol 84(2): 155-66.

11. EL Fox, Balkany TJ, Arenberg IK (1988) The Tullio phenomenon and perilymph fistula. Otolaryngol Head Neck Surg 98(1): 88-89.

12. Rottach KG, von Maydell RD, DiScenna AO, Zivotofsky AZ, AZ Averbach-Heller, et al. (1996) Quantitative measurements of eye movements in a patient With Tullio phenomenon. J Vestib Res 6(4): 255-259.

13. Nields JA Kroten JF (1991) Tullio Lyme borreliosis phenomenon and seronegative. Lancet 338(8759): 128-129.

14. Ishizaki H, Pyykko I, Aalto HJ (1971) Tullio Starck phenomenon and postural stability: experimental study in Patients With Normal subjects and /or pressure-induced giddiness. Radiology 226(2): 337-343.

15. Hennebert C (1911) A new syndrome in hereditary syphilis of the labyrinth. Presse Med Brux Belg 63: 467.

16. TP Hirvonen, JP Carey, CJ Liang, Minor LB (2001) Top canal dehiscence: Mechanisms of pressure sensitivity in a chinchilla model. Arch Otolaryngol Head Neck Surg 127: 1331-1336.

17. KB Sung, Lee TK, Furman JM (2005) Abnormal eye movements in dizzy Patients. Neurol Clin 23(3): 675-703.

18. Williamson RA, Vrabeck JE, Coker NJ, Sandlin M (2003) Coronal scan prevalence of superior semicircular canal dehiscence. Otolaryngol Head Neck Surg 129: 481-489.

19. Wegampola MS, Colebatch JG (2005) Characteristics and clinical application of vestibular evoked myogenic-potentials. Neurology 64: 1682-1688.

20. Halmagyi GM, McGarvie LA, Yavor RA, Todd MJ (2003) The click-ocular reflex evolved lobby semicircular canal dehiscence in top. Neurology 67(7): 1172-1175.

21. Kaski D, Davies R, Luxon L, Bronstein AM, Rudge P (2012) The Tullio phenomenon: a neglected neurologically presentation. J Neurol 259(1): 4-21.

22. Tilikete C, Krolak-Salmon P, Truy E, Vighetto A (2004) Press synchronous oscillations eye bone superior canal dehiscence revealing. Ann Neurol 56: 556-560.

23. Colebatch JG, Halmagyi GM, Skuse NF (1994) Myogenic potentials generated by click-evoked reflex vestibulocolic. J Neurol Neurosurg Psychiatry 57(2): 190-197.

24. SR Watson, Halmagyi GM, Colebatch JG (2000) Vestibular hypersensitivity to sound (Tullio phenomenon): structural and functional assessment. Neurology 54(3): 722-728.

25. Halmagyi GM, Curtis IS (2003) Otolithic function tests. Rev Med Univ Navarra 47: 29-37.

26. Halmagyi GM, McGarvie LA, ST Aw, Yavor RA, MJ Todd (2003) The clickevoked vestibulo-ocular reflex dehiscence in superior semicircular canal. Neurology 60(7):1172-1175.

27. Halmagyi GM, Aw ST, McGarvie LA, MJ Todd, Bradshaw A, et al. (2003) Top semicircular canal dehiscence simulating otosclerosis. J Laryngol Otol 117(7): 553-537.

28. Krombach GA, DI Martino E, Schmitz-Rode T, Prescher A, Haage P, et al. (2003) posterior semicircular canal dehiscence: a morphologic cause of Similar giddiness superior semicircular canal dehiscence to. Eur Radiol 13(6): 1444-1450.

29. Piton J, Ngreerenge M, Portmann D (2008) Dehiscence of the superior semicircular canal: CT scan approach and classifications. Rev Laryngol Otol Rhinol 129(1): 17-26.

30. Whyte J, Martinez C, Cisneros A (2011) Undone the superior semicircular canal: anatomical study of incidence. Rev Cir Otorrinolaringol Head Neck 71: 39-43.

31. Belden CJ, Weg N, Minor LB, SJ Zinreich (2003) CT evaluation of bone dehiscence of the superior semicircular canal as a cause of sound and / or pressure-induced giddiness. Radiology 226(2): 337-343.

32. Superior I (2008) semicircular canal dehiscence positive predictive value of high-resolution CT scanning. Eur Arch Otorhinolaryngol 265(12): 1455-1460.

33. Whyte Orozco, Cisneros Gimeno AI, Basurko Aboitz, Oleaga Zufiria L, Sarrat R (2005) Torusolart dehiscence syndrome superior semicircular canal. embryological and surgical aspects. Acta Otorrinolaringol Esp 56: 6-11.

34. Silverstein H, Kartusch JM, Parsons LS, DS Poe, Babu SC (2014) MJ Levenson. Round window reinforcement for superior semicircular canal dehiscence: A retrospective multi-center case series. Am J Otolaryngol 35(3): 286-293.