The Medial Amygdalar Nucleus: A Novel Glucose-Sensing Region That Modulates the Counterregulatory Response to Hypoglycemia

Ligang Zhou,1 Nina Podolsky,2 Zhen Sang,1 Yuyan Ding,1 Xiaoning Fan,1 Qingchun Tong,3 Barry E. Levin,2 and Rory J. McCrimmon1,4

OBJECTIVE—To determine whether the medial amygdalar nucleus (MAN) represents a novel brain glucose-sensing region involved in the detection of hypoglycemia and generation of a counterregulatory hormone response.

RESEARCH DESIGN AND METHODS—Fura-2 calcium imaging was used to assess glucose responsivity in neurons isolated from the MAN and single-cell real-time reverse transcription PCR used to examine gene expression within glucose-responsive neurons. In vivo studies with local MAN perfusion of the glucoprivic agent, 2-deoxyglucose (2-DG), under normal and hypoglycemic conditions and also after MAN lesioning with ibotenic acid, were used to examine the functional role of MAN glucose sensors. In addition, retrograde neuronal tracer studies were used to examine reciprocal pathways between the MAN and the ventromedial hypothalamus (VMH).

RESULTS—The MAN contains a population of glucose-sensing neurons (13.5%), which express glucokinase, and the selective urocortin 3 (UCN3) receptor CRH-R2, but not UCN3 itself. Lesioning the MAN suppressed, whereas 2-DG infusion amplified, the counterregulatory response to hyperinsulminemic hypoglycemia in vivo. However, 2-DG infusion to the MAN or VMH under normoglycemic conditions had no systemic effect. The VMH is innervated by UCN3 neurons that arise mainly from the MAN, and ~1/3 of MAN UCN3 neurons are active during mild hypoglycemia.

CONCLUSIONS—The MAN represents a novel limbic glucose-sensing region that contains characteristic glucokinase-expressing glucose-sensing neurons that respond directly to manipulations of glucose availability both in vitro and in vivo. Moreover, UCN3 neurons may provide feedback inhibitory regulation of the counterregulatory response through actions within the VMH and the MAN. Diabetes 59:2646–2652, 2010

I n some patients with type 1 (and 2) diabetes, the ability to detect and respond to hypoglycemia is markedly impaired (1). Specialized glucose-sensing neurons exist within discrete regions of the brain and are thought to have a particular role in the regulation of glucose homeostasis. Glucose-excited neurons increase their activity as glucose levels rise, and glucose-inhibited neurons increase their activity as glucose levels fall (2,3). The mechanisms used by glucose-excited neurons to detect a fall in the glucose level to which they are exposed are thought to resemble those used by the classical glucose sensor, the pancreatic β-cell, with in particular roles for glucokinase and the ATP-sensitive potassium channel (KATP) (1), while glucose-inhibited neurons also use glucokinase, as well as nitric oxide and adenosine 5'-monophosphate-activated protein kinase to modulate their glucose sensing (4–6). Glucose-sensing neurons are located in a number of brain regions, although only those present in the ventromedial (VMH) (7–9), dorsomedial, and paraventricular hypothalami (10,11) to date have been shown in vivo, in rodent models, to modulate counterregulatory responses during insulin-induced hypoglycemia.

We have recently shown that urocortin 3 (UCN3), a member of the corticotrophin-releasing hormone (CRH) family of neuropeptides, and a selective ligand for the CRH-R2 receptor, may regulate the magnitude of the counterregulatory response to hypoglycemia through actions in the VMH (12,13). UCN3 nerve terminals provide a dense innervation to the shell of the VMH and tuberone area (14). The cell bodies of UCN3 neurons are found predominantly in the medial amygdalar nucleus (MAN), the hypothalamic medial preoptic nucleus, and the rostral perifornical area lateral to the paraventricular hypothalamic nucleus (14). Intriguingly, the pancreatic isoform of glucokinase, the rate-limiting step of glucose oxidation and a key step in the glucose-sensing mechanism (2,6), is also expressed in the MAN (15). This study examined the hypothesis that the MAN may represent a novel central glucose-sensing region and, moreover, that it might be directly linked with the VMH via UCN3 neurons.

RESEARCH DESIGN AND METHODS
Male Sprague-Dawley rats (mean ± SE, 405 ± 4 g) were housed in the local Animal Resource Center with water and chow pellet available ad libitum. The animal care and experimental protocols were reviewed and approved by Yale University Institutional Animal Care and Use Committee and the Institutional Animal Care and Use Committee of the East Orange Veterans Affairs Medical Center.
Animal surgery. The surgical procedures used in this study have been described in detail elsewhere (8,16). In brief, one week prior to each study, all animals were anesthetized with an intraperitoneal injection (1 ml/kg) of a mixture of xylazine (20 mg/ml; AnaSed, Lloyd Laboratories Inc.) and ketamine (100 mg/ml; Ketaset, Wyeth) at a ratio of 1:2 (vol/vol). Vascular catheters (PE50 tubing with a tip made of silastic tubing, 0.51 mm inner diameter) were inserted via a neck incision into the internal jugular vein and carotid artery. After catheter implantation, cannula guides were stereotaxically inserted, bilaterally to the MAN (coordinates from bregma, anterior-posterior [AP] = −2.80 mm, medio-lateral [ML] = ±3.3 mm, and dorso-ventral [DV] = 8.9 mm at an angle of 90°) or VMH (coordinates AP = −2.6 mm; ML = ±3.3 mm; DV = ±9.0 mm). Guide cannulae were designed to reach a point 1 mm proximal to the target nucleus, limiting gliosis in the region where microinjection would take place 7 days after guide catheter insertion.

Lesion study. At the initial surgery, as described above, and instead of guide cannula insertion, each rat received bilateral microinjections to the MAN of 2 pg of ibotenic acid (n = 6) using a 1 μl Hamilton syringe (total volume 200 nl over 30 min), after which the skin was closed with wound clips. Sham-lesion rats received the identical surgical procedure but were administered saline rather than ibotenic acid (n = 9).

Norglucogenic study. Seven days after surgery, overnight fasted rats had their catheters opened and were allowed to acclimatize over 90 min. Bilateral 26-gauge injection needles, designed to extend 1 mm beyond the tip of the guide cannula, were then inserted into each MAN or VMH, and each rat received bilateral microinjections (1 μl given at a rate of 0.053 μl/min for 30 min) of a mixture of ibotenic acid (2-DG), a nonmetabolizable form of glucose that creates local necrosis, or artificial extracellular fluid (aECF), depending on the study. Venous samples for measurement of plasma glucose were taken every 10 min and for glucagon and epinephrine preinjection (t = 0 min) and at 30 and 60 min after microinjection.

Hyperinsulinemic hypoglycemic study. A modified hyperinsulinemic glucose clamp was used to produce a standardized hypoglycemic stimulus, as described previously (17). Thirty min after bilateral MAN microinjections of 2-DG (n = 6) or artificial aECF (n = 9), a constant 20 μl/kg/min infusion of insulin (Human Regular Insulin, Lilly, IL) was started. Both solutions were mixed with 4% wheat germ agglutinin (WGA) to confirm the location of microinjection (supplementary Fig. 1, available in an online appendix at http://diabetes.diabetesjournals.org/cgi/content/full/db09-0855/DC1). Plasma glucose was allowed to fall to 70 mg/dl (−3.0 mmol/l), where it was maintained for 90 min using 20% dextrose, with the dextrose infusion rate adjusted every 5 min based on plasma glucose determinations. Blood samples for measurement of epinephrine, glucagon, and insulin were taken at 0, 60, and 90 min. Plasma glucose was measured by glucose oxidase method (Glucose Direct; Analox Instruments, Lunenberg, MA). Catecholamine analysis was performed by high-performance liquid chromatography using electrochemical detections (ESA, Acton, MA). Plasma glucose, glucagon, and insulin were measured by radioimmunoassay (Millipore, Temecula, CA).

Retrograde neuronal tracer studies. The retrograde tracing technique has been described previously (18). Briefly, each rat was microinjected bilaterally to the VMH or MAN (coordinates as above) with the retrograde neuronal tracer WGA or 4% fluorogold dissolved in aECF and delivered through a glass microinfusion needle (26-gauge) 1 mm proximal to the target nucleus, limiting gliosis in the region where microinjection would take place 7 days after guide catheter insertion. They were then incubated overnight with 1:1,000 rabbit anti-goat antibody (Millipore, Temecula, CA), which was partially seen with the filter set for fluorogold, Fos-immunoreactive neuropil and cytoplasmic mRNA of glucose-excited neurons was easily differentiated from retrograde labeled cell bodies with fluorogold fluorescence. The counting of triple staining for UCN3, Fos, and fluorogold was performed in three brains. All single-labeled neurons received the identical surgical procedure but were administered saline instead of ibotenic acid (n = 9).

In the MAN from the representative brain were taken with a digital camera. The digital images were arranged in a grid, referenced to the atlas of Paxinos and Watson (20). Light-microscope images in the MAN and its adjacent regions from a representative brain were taken with a digital camera. The digital images were arranged in the software Canvas (Deneba System, Miami, FL). The border of the MAN, its adjacent structures, and distribution of single labeling of UCN3 neurons were drawn using Canvas software. For triple staining, immunofluorescence serial sections from the brains of fluorogold-injected rats were incubated overnight with a mixture of 1 μg/ml anti-Fos goat antibody (1:1K; Santa Cruz) and anti-UCN3 rabbit serum (1:2,000). After a rinse in PBS, the sections were incubated for 1 h with 10 ng/ml biotinylated anti-rabbit IgG donkey antibody (Jackson) and then for 1 h with a mixture of 1 μg/ml Alexa488-conjugated chicken anti-goat antibody (1:400; Molecular Probes) and 1 μg/ml Alexa594 Streptavidin-conjugated antibody (Molecular Probes). Sections were observed under an epifluorescence microscope Olympus BX-50 with appropriate filter sets for Alexa488 (excitation, 450–490 nm; emission, 470–500 nm) and Alexa594 (excitation, 530–555 nm; emission, 615–655 nm). Dual fluorescence (excitation, 359–371 nm; emission, 397–590 nm). Although Alexa488 fluorescence could be partially seen with the filter set for fluorogold, Fos-immunoreactive neurons with Alexa488 fluorescence was easily differentiated from retrograde labeled cell bodies with fluorogold fluorescence. The counting of triple staining for UCN3, Fos, and fluorogold was performed in three brains. All single-labeled UCN3 neurons and dual-labeled and triple-labeled neurons in the MAN were counted.

MAN mRNA assays by quantitative real-time PCR. Frozen brains were cut on a cryostat at −12°C and placed in RNAlater (Ambion, Foster City, CA) until being micropunched. Micropunches of the MAN were performed by modifications of the method of Palkovits (21), where brain micropunches are made under microscope guidance from brain slices placed on the base of a glass micropipette. Micropunches were bathed in liquid nitrogen until immediately before being embedded in OCT compound (Tissue-Tek, Miles, Elkhart, IN) and frozen in liquid nitrogen. Micropunches were then incubated overnight with a mixture of 1:1,000 rabbit anti-goat antibody (Millipore, Temecula, CA), which was classified as glucose-excited, glucose-inhibited, and nonglucosensing, as previously described (22). Primer sets for each mRNA were designed by reference to published sequences, and their specificity was verified using Genebank. Primers and their sequence-specific FAM-labeled probes prepared by Applied Biosystems were sequenced and then quantified with an Applied Biosystems 7,700 real-time PCR system set for 40 PCR cycles. Standard curves were generated from serially diluted pooled samples for each probe and for constitutively expressed mRNA (cyclophilin) to control for differences in amplification efficiency and micropunch size. Results were calculated from the standard curves relative to cyclophilin mRNA levels in the same samples.

Fura-2 calcium imaging to assess glucose-induced changes in intracellular calcium ([Ca2+]i) oscillations. Studies were carried out in 3–4 week old male Sprague-Dawley rats (Charles River). The MAN punched cells were dissociated with papain (2 mg/ml, 30 min, 37°C) and mechanically triturated. Cells were plated onto cover slips and allowed to adhere for 60 min before loading with the Ca2+ fluorophore fura-2 acetoxymethyl ester (Molecular Probes) for 20 min in Hank’s balanced salt solution buffer containing 2.5 mmol/l glucose, washed twice, and transferred to a microscope chamber held at 37°C. Microscopic images were acquired using an alternating illumination system with excitation at 340 and 380 nm using a cooled, charge-coupled device camera at 420–600 nm emission. Changes in glucose were maintained for ~10 min after addition. Cells were classified as glucose-responsive in >500 neurons by significant (F(1,5)) fluctuations (as area under the curve) after changes in glucose concentrations using Origin 7.0 software (OriginLab). Neurons were microinjected with 0.033 mmol of fura-2 after ~10–15 min and imaged by passing 25-μl positive current pulse (7 s on/off) for <10 min. The rats were then allowed to recover for 7 days before undergoing a 90-min hyperinsulinemic (20 μU/kg/min) hypoglycemic (70 mg/dl) or hyperinsulinemic euglycemic (120 μU/ml) clamp, as described above.

Immunohistochemistry. The immunohistochemistry protocol used has been described in detail previously (18,19). Briefly, animals were perfused with 4% paraformaldehyde and 0.1 M phosphate buffer (pH 7.4) containing 30% sucrose prior to being sectioned. Sections were cut at 40-μm thickness and mounted on slides coated with 3% gelatin. Sections were blocked with 5% normal donkey serum for 1 h at room temperature. Sections were then incubated overnight in the primary antibody (dilution varies with each antibody). After washing in buffer, sections were incubated in fluorophore-conjugated secondary antibodies for 1 h at room temperature. Sections were then mounted on slides coated with 3% gelatin. Sections were observed under an epifluorescence microscope Olympus BX-50 with appropriate filter sets for Alexa488 (excitation, 450–490 nm; emission, 470–500 nm) and Alexa594 (excitation, 530–555 nm; emission, 615–655 nm). Dual fluorescence (excitation, 359–371 nm; emission, 397–590 nm). Although Alexa488 fluorescence could be partially seen with the filter set for fluorogold, Fos-immunoreactive neurons with Alexa488 fluorescence was easily differentiated from retrograde labeled cell bodies with fluorogold fluorescence. The counting of triple staining for UCN3, Fos, and fluorogold was performed in three brains. All single-labeled UCN3 neurons and dual-labeled and triple-labeled neurons in the MAN were counted.

For glucagon and epinephrine, differences between treatments were assessed via repeated-measures ANOVA and based on hormonal readings observed.
Fura-2 calcium imaging was used to measure changes in $[\text{Ca}^{2+}]_{i}$ oscillations while varying glucose concentrations 2.5 to 0.5 to 2.5 mmol/l glucose in neurons isolated from the MAN. GE, glucose-excited neuron; GI, glucose-inhibited neuron; NG, glucose-unresponsive neuron.

at 0, 60, and 90 min. Post hoc analysis was made using Bonferroni testing. Mean data were compared using a two-tailed Student t test. For all analyses, significance was assigned at the $P \leq 0.05$ level. Data are presented as mean ± SEM.

RESULTS

The MAN contains glucose-sensing neurons. Of 522 individual MAN neurons examined using fura-2 calcium imaging, 13.5% were glucose-sensing (Table 1). Six percent were glucose-excited, and 7.5% were glucose-inhibited (Fig. 1). By sc-QPCR, 54% of glucose-excited, 42% of glucose-inhibited, and 9% of nonglucose-sensing MAN neurons expressed glucokinase (Table 2). However, UCN3 was isolated from only 2, 16, and 4% of the glucose-excited, glucose-inhibited, and nonglucose-sensing neurons, respectively.

Glucokinase, CRH-R2, and UCN3 show different spatial relationships within the MAN. Having shown that only a minority of glucose-sensing neurons contained mRNA for UCN3, quantitative real-time PCR was used to examine the spatial distribution of glucokinase, UCN3, and CRH-R2 mRNA expression in MAN micropunches. A rostrocaudal gradient in glucokinase, UCN3, and CRH-R2 gene expression in the MAN was seen. Both glucokinase and CRH-R2 expression showed a similar rostrocaudal distribution, whereas UCN3 showed the opposite rostrocaudal distribution in the MAN (supplementary Fig. 2, available in an online appendix).

Lesioning the MAN results in a suppressed counterregulatory hormonal response to acute hypoglycemia. To examine whether the MAN contributed to the generation of a counterregulatory response during acute hypoglycemia in vivo, the MAN of male Sprague–Dawley rats was lesioned by direct microinjection of ibotenic acid.

Glucokinase and UCN3 mRNA expression in glucose-excited, glucose-inhibited, and glucose-unresponsive neurons in the MAN identified by Fura-2 calcium imaging, revealed by single-cell RT-PCR

Neuron	Number	Co-expressing with GK	Co-expressing with UCN3
GE	46	54%	2%
GI	45	42%	16%
NG	23	9%	4%

During the subsequent hyperinsulinemic hypoglycemia study, plasma glucose levels did not differ between MAN lesioned and control rats (70 ± 1 vs. 69 ± 1 mg/dl, respectively; Fig. 2A). Glucose infusion rates (GIR) required to maintain the hypoglycemic plateau were ~18% higher in MAN-lesioned rats (mean GIR over 60–90 min, 24.7 ± 1.7 vs. 20.3 ± 1.4 mg/kg/min), although the overall interaction was not significant ($F = 4.0; P = 0.07$; Fig. 2B). However, MAN lesioning did result in significantly impaired plasma epinephrine ($F = 6.0, P < 0.05$) and glucagon ($F = 6.9, P < 0.05$) responses to the hypoglycemic challenge (Fig. 2C and D).

Localized glucoprivation in the MAN and VMH in the fasting state has no effect on glucose counterregulation. To determine whether the MAN might respond directly to a local glucoprivic challenge, the MAN was locally perfused with 2-DG over 30 min. MAN glucoprivation did not result in a significant rise in plasma glucose or change in plasma levels of glucagon and epinephrine (Table 3). Application of 2-DG at an identical concentration and rate to the VMH also failed to elicit a glucoprivic response (Table 3). Additional studies injecting 5-Thiogluucose (a more potent glucoprivic agent) into the MAN or VMH also had no significant effect on glucose or counterregulatory hormones (data not shown).

MAN glucoprivation during mild systemic hypoglycemia amplifies the counterregulatory response. In contrast to the lack of effect of local MAN glucoprivation during euglycemia, comparable MAN glucoprivation during mild systemic hypoglycemia did alter the subsequent counterregulatory response. Despite equivalent hypoglycemia [mean (SEM) 60–90 min glucose levels, 70 ± 2
versus 69 ± 1 mg/dl (3.9 ± 0.1 vs. 3.9 ± 0.1 mmol/l); Fig. 3A), GIR (60–90 min) were threefold lower in the MAN 2-DG infused rats compared with the aECF control group (3.8 ± 1.1 versus 12.3 ± 2.2 mg/kg/min, respectively; F = 24.6, P < 0.01) (Fig. 3B). Consistent with the lower GIR, 2-DG microinjection to the MAN significantly amplified the glucagon (F = 4.8, P < 0.05) and epinephrine (F = 7.2, P < 0.05) responses during hypoglycemia (Figs. 3C and D).

TABLE 3

Microinfusion of the nonmetabolizable glucose analog 2-DG to the VMH and MAN of rats following an overnight fast had no effect on plasma glucose or counterregulatory hormones.

	MAN + 2-DG	VMH + 2-DG
	(n = 6)	(n = 4)
Glucose (mg/dL)	114 ± 6	124 ± 3
	60 min	112 ± 4
	0 min	72 ± 9
Glucagon (ng/L)	51 ± 3	81 ± 16
	0 min	58 ± 9
Epinephrine (pg/ml)	235 ± 66	294 ± 99
	60 min	208 ± 56
		70 ± 45

FIG. 2. Lesioning of the MAN leads to suppression of counterregulatory responses to acute hypoglycemia. A: Declines in plasma glucose level in response to the hyperinsulimic clamp (70 mg/dl) did not differ between control (white circle) and MAN lesion (black circle) groups. B: Decreased need for exogenous glucose (decreased glucose infusion rate [GIR]) after MAN lesion. C: Suppressed epinephrine and (D) glucagon secretory responses to hypoglycemia after MAN lesion. Data are expressed as mean ± SE.

DISCUSSION

The principal finding of the current study is the novel discovery that the MAN contains glucose-sensing neurons that can influence the magnitude of the counterregulatory response to insulin-induced hypoglycemia. The amygdala is a complex structure, containing a number of discrete nuclei involved in a wide range of behavioral and physiological functions. In the rodent, the MAN is strongly connected with the olfactory system, has numerous interconnections with other amygdalar nuclei (enabling it to integrate the neural outputs from these different regions), and, like the VMH, has also been shown to integrate with
the neural circuits linked to feeding and body weight control (25,26). Interestingly, a recent study using [18F]-fluorodeoxyglucose positron emission tomography, in 13 men with type 1 diabetes, reported reduced [18F]-fluorodeoxyglucose uptake in the amygdala during hypoglycemia in those subjects with hypoglycemia unawareness failure, suggesting a potential role for the amygdala in the development of hypoglycemia unawareness (27).

The VMH is integral to glucose-sensing during acute hypoglycemia (for a review, see ref [28]). The VMH contains specialized glucose-sensing neurons (23), and 14–19% of these are glucose-excited, whereas 3–14% are glucose-inhibited in type (29). As in the pancreatic β-cell, glucokinase appears to be a critical regulator of glucose-sensing in VMH neurons (6), where glucokinase is expressed in ~65% of glucose-excited and ~45% of glucose-inhibited neurons (23). In fact, it is most likely that all neurons that express glucokinase are actually glucose-sensing and that the finding of glucokinase mRNA in non-glucose-sensing neurons is due to the stringent criteria used to classify neurons. In the present study, we have been able to show, using fura-2-calcium imaging, that the expression of glucokinase mRNA in the MAN is associated with the presence of specialized glucose-sensing neurons. Of these, ~6% were glucose-excited whereas 7.5% were glucose-inhibited. Moreover, 54% of glucose-excited and 42% of glucose-inhibited, compared with only 9% of non-glucose-sensing neurons, contained mRNA for glucokinase. These findings clearly parallel those of the VMH, providing support for the hypothesis that the MAN may represent a novel glucose-sensing brain region.

To determine whether the MAN plays a functional role in glucose-sensing, we initially used the selective neurotoxin, ibotenic acid, to lesion the MAN and then performed a hyperinsulinemic hypoglycemic study. Consistent with a previous study where ibotenic acid was used to lesion the VMH (8), lesioning the MAN was shown to suppress the counterregulatory hormonal response to subsequent hypoglycemia. Subsequently, we sought to determine whether localized glucoprivation in the MAN of euglycemic animals would induce a glucoprivic response, characterized by a rise in plasma glucose and in the counterregulatory hormones glucagon and epinephrine, as previously demonstrated in the VMH (9). However, neither 2-DG nor 5-thio glucose infusions into either the MAN or VMH over 30 min raised plasma glucose, glucagon, or epinephrine levels. We then sought to determine whether combining local MAN glucoprivation during a moderate systemic hypoglycemic stimulus might influence counterregulatory responses to assess whether this additional glucoprivic stimulus might amplify the counterregulatory response. In fact, the combination of local MAN and systemic glucoprivation did have this effect. Taken together, these in vivo studies suggest that the MAN contributes to the counterregulatory response induced by systemic hypoglycemia but that local glucoprivation in the MAN alone is insufficient to generate a counterregulatory hormone response.

A previous study that used unilateral microinjection to localize glucose-sensing brain regions also failed to elicit a glucoprivic response in the majority of hypothalamic regions tested, although it did produce glucoprivic responses with unilateral hindbrain microinjections (30). More recently, bilateral VMH 5-TG microinjections were shown to stimulate food intake; however, no glucose

FIG. 3. Provision of an additional glucoprivic stimulus to the MAN amplifies the counterregulatory response to a mild systemic insulin-induced hypoglycemic challenge. A: Declines in plasma glucose level in response to the hyperinsulinemic clamp (70 mg/dl) did not differ between control (white circle) and 2-DG (black circle) groups. B: Decreased need for exogenous glucose (decreased glucose infusion rate [GIR]) after 2-DG injection into the MAN. C: Amplified epinephrine and (D) glucagon secretory responses to hypoglycemia in MAN 2-DG injected rats. Data are expressed as mean ± SE.
response to hypoglycemia, we then sought to examine UCN3 in the VMH in modulating the counterregulatory response to hypoglycemia and our previous studies showing a role for initiation.

and/or peripheral sensors before counterregulation is needed to be present in a number of glucose-sensing brain sensors in higher centers are more integrated in their re-
classical sensory reflex response, whereas glucose-sen-
sors in the hindbrain may form part of a region) mechanism. On the basis of the present findings that repeated hypoglycemia restrains hindbrain glucose-sensing neurons is greater. Interestingly, recurrent glucoprivation impairs hypothalamic but not hindbrain responses to subsequent hypoglycemia (32), suggesting that repeated hypoglycemia constrains hindbrain glucose-sensing via an upstream (hypothalamic and or other brain region) mechanism. On the basis of the present findings and those of Ritter et al. (30), we would speculate that glucose-sensors in the hindbrain may form part of a classical sensory reflex response, whereas glucose-sensors in higher centers are more integrated in their response to a glucoprivation, that is, hypoglycemia might need to be present in a number of glucose-sensing brain and/or peripheral sensors before counterregulation is initiated.

Given the importance of the VMH to the detection of hypoglycemia and our previous studies showing a role for UCN3 in the VMH in modulating the counterregulatory response to hypoglycemia, we then sought to examine whether UCN3 might link these two glucose-sensing regions. Previous neuroanatomical studies have shown that the MAN projects topographically to the VMH (25), findings confirmed in our study using retrograde neural tracers to show reciprocal pathways between these two regions. Additionally, we have been able to demonstrate that most of the UCN3 projections to the VMH arise in the MAN. Moreover, using triple-staining immunohistochemistry, we also found that 1/3 of these activated during acute hypoglycemia. In this context, our previous finding that pharmacological manipulation of CRH-R2 receptors in the VMH markedly altered counterregulatory responses to acute hypoglycemia is very suggestive of a functional role for this neural network (13). It is perhaps counterintuitive that UCN3 activation in the MAN during hypoglycemia might lead to suppression of glucose-sensing neurons in the VMH. However, it is notable that few of the individual MAN glucose-sensing neurons identified by Ca\(^{2+}\) imaging also expressed mRNA for UCN3. On the other hand, many did express mRNA for its receptor, CRH-R2. In addition, gene expression analysis from serial MAN micropunches showed that glucokinase and CRH-R2 gene expression had the same rostrocaudal distribution, but the opposite rostrocaudal distribution as UCN3 mRNA. This implies that UCN3 neurons may represent a discrete neuronal population in the MAN that are not in themselves glucose-sensing and, thus, may also directly regulate glucose-sensing neurons locally, as they do in the VMH. This would lead us to speculate that UCN3 neurons may regulate or coordinate the output, in terms of the counterregulatory responses, from these two discrete glucose-sensing regions.

In summary, in the current study we have identified the MAN as a novel limbic glucose-sensing region that contains characteristic glucokinase-expressing glucose-sensing neurons that respond directly to manipulations of glucose availability. In addition, manipulation of the MAN by lesion or through provision of an additional glucoprivic

readings were assessed in this study (31). Food intake was not measured in our study, but we did not find an increase in blood glucose after VMH 5-TG or 2-DG. The reasons for these discrepancies are not clear. Borg et al. (9) used microdialysis to deliver 2-DG locally to the VMH, and it is possible that, under these conditions, the stimulus to glucose-sensing neurons is greater. Interestingly, recurrent glucoprivation impairs hypothalamic but not hindbrain responses to subsequent hypoglycemia (32), suggesting that repeated hypoglycemia restrains hindbrain glucose-sensing via an upstream (hypothalamic and or other brain region) mechanism. On the basis of the present findings and those of Ritter et al. (30), we would speculate that glucose-sensors in the hindbrain may form part of a classical sensory reflex response, whereas glucose-sensors in higher centers are more integrated in their response to a glucoprivation, that is, hypoglycemia might need to be present in a number of glucose-sensing brain and/or peripheral sensors before counterregulation is initiated.

Given the importance of the VMH to the detection of hypoglycemia and our previous studies showing a role for UCN3 in the VMH in modulating the counterregulatory response to hypoglycemia, we then sought to examine whether UCN3 might link these two glucose-sensing regions. Previous neuroanatomical studies have shown that the MAN projects topographically to the VMH (25), findings confirmed in our study using retrograde neural tracers to show reciprocal pathways between these two regions. Additionally, we have been able to demonstrate that most of the UCN3 projections to the VMH arise in the MAN. Moreover, using triple-staining immunohistochemistry, we also found that 1/3 of these activated during acute hypoglycemia. In this context, our previous finding that pharmacological manipulation of CRH-R2 receptors in the VMH markedly altered counterregulatory responses to acute hypoglycemia is very suggestive of a functional role for this neural network (13). It is perhaps counterintuitive that UCN3 activation in the MAN during hypoglycemia might lead to suppression of glucose-sensing neurons in the VMH. However, it is notable that few of the individual MAN glucose-sensing neurons identified by Ca\(^{2+}\) imaging also expressed mRNA for UCN3. On the other hand, many did express mRNA for its receptor, CRH-R2. In addition, gene expression analysis from serial MAN micropunches showed that glucokinase and CRH-R2 gene expression had the same rostrocaudal distribution, but the opposite rostrocaudal distribution as UCN3 mRNA. This implies that UCN3 neurons may represent a discrete neuronal population in the MAN that are not in themselves glucose-sensing and, thus, may also directly regulate glucose-sensing neurons locally, as they do in the VMH. This would lead us to speculate that UCN3 neurons may regulate or coordinate the output, in terms of the counterregulatory responses, from these two discrete glucose-sensing regions.

In summary, in the current study we have identified the MAN as a novel limbic glucose-sensing region that contains characteristic glucokinase-expressing glucose-sensing neurons that respond directly to manipulations of glucose availability. In addition, manipulation of the MAN by lesion or through provision of an additional glucoprivic
stimulus modulates the counterregulatory response to moderate systemic hypoglycemia. Finally, we have shown that both these glucose-sensing regions are linked by UCN3 neurons, which potentially provides a mechanism for fine-tuning and integrating the stress response during a hypoglycemic challenge.

ACKNOWLEDGMENTS

This work was supported by National Institutes of Health Grants (DK-069831, R.J.M.) and (DK-53181, B.E.L.), the Diabetes and Endocrinology Research Center (DERC) at Yale, and the Juvenile Diabetes Research Foundation (R.J.M.). L.Z. is a Juvenile Diabetes Research Foundation Postdoctoral Research Fellow. B.E.L. is supported by the Research Service of the Veterans Administration.

No potential conflicts of interest relevant to this article were reported.

L.Z. conducted the in vivo studies and performed IHC; N.P. performed the fura-2 calcium imaging and sc-QPCR; Z.S. helped with the in vivo studies and IHC; Y.D. performed rodent surgeries and helped with in vivo studies; X.F. helped with in vivo studies; Q.T. contributed to the discussion; B.E.L. supervised fura-2 calcium imaging and sc-QPCR, helped with manuscript preparation, and contributed to the discussion; R.J.M. wrote the manuscript and designed and supervised the in vivo studies and IHC.

The authors are grateful to Ralph Jacob and Aida Groszmann, Yale University, for their support and assistance. The authors thank Drs. Wylie Vale, Salk Institute, CA, for kindly providing the Urocortin 3 antibody used in these studies, and Dr. Bradford Lowell, Beth Israel Deaconness Medical Center, Boston, MA, for his helpful comments.

REFERENCES

1. McCrimmon R. Glucose sensing during hypoglycemia: lessons from the lab. Diabetes Care 2000;23:1357–1363

2. Levin BE, Routh VH, Kang L, Sanders NM, Dunn-Meynell AA. Neuronal glucosensing: what do we know after 50 years? Diabetes 2004;53:2521–2528

3. Routh VH. Glucose-sensing neurons: are they physiologically relevant? Physiol & Behav 2002;76:403–413

4. Canabal DD, Song Z, Potian JG, Beuve A, McArulee J, Routh VH. Glucose, insulin, and leptin signaling pathways modulate nitric oxide synthesis in glucose-inhibited neurons in the ventromedial hypothalamus. Am J Physiol Regul Integr Physiol 2002;292:R1418–R1428

5. Fioramonti X, Marsollier N, Song Z, Fakira KA, Patel RM, Brown S, Duparc T, Pica-Mendra A, Sanders NM, Knauf C, Valet P, McCormin RJ, Beuve A, Magnan C, Routh VH. Ventromedial hypothalamic nitric oxide production is necessary for hypoglycemia detection and counterregulation. Diabetes 2010;59:519–528

6. Kang L, Dunn-Meynell AA, Routh VH, Gaspers LD, Nagata Y, Nishimura T, Eiki J, Zhang BB, Levin BE. Glucokinase is a critical regulator of ventromedial hypothalamic neuronal glucosensing. Diabetes 2006;55:412–420 [Erratum appears in Diabetes 2006;55(3):862]

7. Borg MA, Sherwin RS, Borg WP, Tamborlane WV, Shulman GI. Local ventromedial hypothalamic glucose perfusion blocks counterregulation during systemic hypoglycemia in awake rats. J Clin Invest 1997;99:361–365

8. Borg WP, During MJ, Sherwin RS, Borg MA, Brines ML, Shulman GI. Ventromedial hypothalamic lesions in rats suppress counterregulatory responses to hypoglycemia. J Clin Invest 1994;93:1677–1682

9. Borg WP, Sherwin RS, During MJ, Borg MA, Shulman GI. Local ventromedial hypothalamic glucopenia triggers counterregulatory hormone release. Diabetes 1995;44:180–184

10. Evans SB, Wilkinson CW, Gronbeck P, Bennett JL, Taborsky GJ, Jr, Figlewicz DP. Inactivation of the PVN during hypoglycemia partially simulates hypoglycemia-associated autonomic failure. Am J Physiol Regul Integr Physiol 2003;284:R57–65

11. Evans SB, Wilkinson CW, Gronbeck P, Bennett JL, Zavosh A, Taborsky GJ, Jr, Figlewicz DP. Inactivation of the DMH selectively inhibits the ACTH and corticosterone responses to hypoglycemia. Am J Physiol Regul Integr Physiol 2004;286:R123–128

12. Cheng H, Zhou L, Zhu W, Wang A, Tang C, Chan O, Sherwin RS, McCrimmon RJ. Type 1 corticotropin-releasing factor receptors in the ventromedial hypothalamus promote hypoglycemia-induced hormonal counterregulation. Am J Physiol Endocrinol Metab 2007;293:E705–E712

13. McCrimmon RJ, Song Z, Cheng H, McNay EC, Weikart-heckel C, Fan X, Routh VH, Sherwin RS. Corticotrophin-releasing factor receptors within the ventromedial hypothalamus regulate hypoglycemia-induced hormonal counterregulation. J Clin Invest 2006;116:1723–1730

14. Li C, Vaughan J, Sawchenko PE, Vale WW. Urocortin III-immunoreactive projections in rat brain: partial overlap with sites of type 2 corticotrophin-releasing factor receptor expression. Journal of Neuroscience 2002;22:991–1001

15. Lynch RM, Tompkins LS, Brooks HL, Dunn-Meynell AA, Levin BE. Localization of glucokinase gene expression in the rat brain. Diabetes 2000;49:693–700

16. Rossetti L, Shulman GI, Zawalich W, DeFronzo RA. Effect of chronic hyperglycemia on in vivo insulin secretion in partially pancreatectomized rats. J Clin Invest 1987;80:1037–1044

17. Powell AM, Sherwin RS, Shulman GI. Impaired hormonal responses to hypoglycemia in spontaneously diabetic and recurrently hypoglycemic rats. Reversibility and stimulus specificity of the deficits. J Clin Invest 1993;92:2667–2674

18. Zhou L, Furuta T, Kaneko T. Chemical organization of projection neurons in the rat accumens nucleus and olfactory tubercle. Neuroscience 2003;120:783–798

19. Zhou L, Furuta T, Kaneko T. Neurokinin B-producing projection neurons in the lateral stripe of the striatum and cell clusters of the accumens nucleus in the rat. J Comp Neurol 2004;480:143–161

20. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. San Diego, CA, Academic Press, 1997

21. Palkovits M. Isolated removal of hypothalamic or other brain nuclei of the rat. Brain Res 1973;59:449–450

22. Levin BE, Dunn-Meynell AA, Ricci MB, Cummings DE. Abnormalities of leptin and ghrelin regulation in obesity-prone juvenile rats. Am J Physiol Endocrinol Metab 2003;285:E940–E957

23. Kang L, Routh VH, Kuznikandathil EV, Gaspers LD, Levin BE. Physiological and molecular characteristics of rat ventromedial hypothalamic nucleus glucosensing neurons. Diabetes 2004;53:540–549

24. Liss B. Improved quantitative real-time RT-PCR for expression profiling of individual cells. Nucleic Acid Res 2002;30:88

25. Canteras NS, Smiley RB, Swanson LW. Organization of projections from the medial nucleus of the amygdala: a PHAL study in the rat. J Comp Neurol 1995;360:213–245

26. King BM. The rise, fall, and resurrection of the ventromedial hypothalumus in the regulation of feeding behavior and body weight. Physiol Behav 2006;87:221–244

27. Dunn JT, Cranston I, Marsden PK, Amiel SA, Reed LJ. Abnormality of amygdala and frontal cortical responses to low blood glucose concentration in asymptomatic hypoglycemia in type 1 diabetes: a new player in hypoglycemia unawareness? Diabetes 2007;56:2776–2777

28. McCrimmon R. The mechanisms that underlie glucose sensing during hypoglycemia in diabetes. Diabet Med 2008;25:513–522

29. Dunn-Meynell AA, Routh VH, Kang L, Gaspers L, Levin BE. Glucokinase is the likely mediator of glucosensing in both glucose-excited and glucose-inhibited central neurons. Diabetes 2002;51:2056–2065

30. Ritter S, Dinh TT, Zhang Y. Localization of hindbrain glucose-sensing site controlling food intake and blood glucose. Brain Res 2000;856:37–47

31. Dunn-Meynell AA, Sanders NM, Compton D, Becker TC, Eiki J, Zhang BB, Levin BE. Relationship among brain and blood glucose levels and spontaneous and glucoprivic feeding. J Neurosci 2009;29:7015–7022

32. Sanders NM, Taborsky GJ, Jr, Wilkinson CW, Daumen W, Figlewicz DP. Antecedent hindbrain glucoprivation does not impair the counterregulatory response to hypoglycemia. Diabetes 2007;56:217–223