As the climate changes, warmer spring temperatures are causing earlier leaf-out and commencement of CO₂ uptake in temperate deciduous forests, resulting in a tendency towards increased growing season length and annual CO₂ uptake. However, less is known about how spring temperatures affect tree stem growth, which sequesters carbon in wood that has a long residence time in the ecosystem. Here we show that warmer spring temperatures shifted stem diameter growth of deciduous trees earlier but had no consistent effect on peak growing season length, maximum growth rates, or annual growth, using dendrometer band measurements from 440 trees across two forests. The latter finding was confirmed on the centennial scale by 207 tree-ring chronologies from 108 forests across eastern North America, where annual ring width was far more sensitive to temperatures during the peak growing season than in the spring. These findings imply that any extra CO₂ uptake in years with warmer spring temperatures does not significantly contribute to increased sequestration in long-lived woody stem biomass. Rather, contradicting projections from global carbon cycle models, our empirical results imply that warming spring temperatures are unlikely to increase woody productivity enough to strengthen the long-term CO₂ sink of temperate deciduous forests.
annual growth is more closely linked to conditions within the growing season than to growing season length\textsuperscript{28, GPP21 or NEE21. Furthermore, growth of broadleaf deciduous trees may be sink-saturated17,29, such that longer growing seasons with more carbon fixation do not necessarily augment growth21,30,31. Tree-ring records, which can be used to examine annual growth but not growth seasonality, reveal that growth of temperate deciduous trees tends to be most sensitive to temperature or potential evapotranspiration between late spring and early summer32,33, with some evidence that warmer spring temperatures may have a modest positive effect on growth25,33. These observations do not necessarily align with the finding that warming spring temperatures increase annual forest CO\textsubscript{2} uptake in temperate deciduous forests1,18. Characterizing responses of stem growth to warming spring temperatures is critical to bridging this conceptual disconnect and understanding how forest biomass growth is likely to change as the climate warms.

Here, we evaluate how spring temperatures affect the timing, rates and annual increments of stem diameter growth of temperate deciduous trees across eastern North America. To test whether warmer spring temperatures advance the timing and extend the duration of stem diameter growth, we used dendrometer band measurements on 440 trees across two mid-latitude forests. To test whether warm spring temperatures consistently increased annual radial increments, we analysed 207 tree-ring chronologies from 108 forests.

\textbf{Dendrometer band analysis}

Using dendrometer band measurements taken throughout multiple growing seasons at the Smithsonian Conservation Biology Institute (SCBI; VA, USA; \textit{n} = 119 trees from 2011 to 2020) and Harvard Forest (MA, USA; \textit{n} = 321 trees from 1998 to 2003), we fit a logistic growth model34 to determine the days of year (DOYs) when 25\%, 50\% and 75\% annual diameter growth were achieved (DOY\textsubscript{25}, DOY\textsubscript{50} and DOY\textsubscript{75}), the peak growing season length (L\textsubscript{PGS} = DOY\textsubscript{75} − DOY\textsubscript{25}), the maximum growth rate (\textit{g}\textsubscript{max}) and the total annual increment in diameter at breast height (\textit{∆DBH}; Fig. 1). This analysis was performed separately for ring-porous and diffuse-porous species (Extended Data Table 1), which differ in the seasonal timing of growth27,35 (Extended Data Table 2 and Extended Data Fig. 1). These milestones in stem growth were compared with canopy foliage phenology (measured at the ecosystem level via remote sensing).

Both canopy foliage phenology and the timing of stem growth shifted earlier as spring temperatures increased (Fig. 2). We found a consistent effect of temperature (\textit{T}\textsubscript{max} or \textit{T}\textsubscript{min}) throughout the spring, but the strongest effects on the timing of stem growth were found using \textit{T}\textsubscript{max} during a critical temperature window (CTW). The CTW was identified by assessing the correlation between weekly \textit{T}\textsubscript{max} and DOY\textsubscript{25} for all combinations of consecutive weeks from 1 January to mean DOY\textsubscript{25} for each xylem architecture–site combination (Extended Data Table 2 and Extended Data Fig. 1). These milestones in stem growth were compared with canopy foliage phenology (measured at the ecosystem level via remote sensing).
Fig. 2 | Responses of foliage phenology and stem growth timing to spring temperatures at SCBI and Harvard Forest. a,b, Ecosystem-level canopy foliage phenology from 2001 to 2018 at SCBI (a) and Harvard Forest (b), obtained from the MODIS Global Vegetation Phenology product (MCD12Q2.006) for a single pixel at the centre of each ForestGEO plot. G, greenup; M, mid-greenup; P, peak; S, senescence (that is, beginning of greendown). c,d, Dates at which stem growth milestones were achieved, on average, for sampled populations of ring-porous and diffuse-porous trees at SCBI (2011–2020; c) and Harvard Forest (1999–2003; d).

The CTW was defined as the weeks for which this correlation was strongest, and mean T_{max} during this period (CTW T_{max}) was used as our independent variable.

For ring-porous and diffuse-porous species at both sites, warmer CTW T_{max} resulted in earlier achievement of seasonal milestones. Consistent with findings from previous studies, leaf phenological milestones advanced at both sites (Fig. 2a,b and Extended Data Figs. 3 and 4). Specifically, mean DOY$_{25}$, DOY$_{50}$ and DOY$_{75}$ advanced 0–1.7 days per °C for ring-porous species at both sites, and 2.8–2.9 days per °C for diffuse-porous species at SCBI, whereas the length of time between canopy greenup and senescence was extended by 3.5 days per °C at SCBI ($P = 0.016$) and 2.4 days per °C at Harvard Forest ($P = 0.1$). Similarly, with the exception of ring-porous DOY$_{25}$ at SCBI, the stem growth milestones DOY$_{25}$, DOY$_{50}$ and DOY$_{75}$ decreased with CTW T_{max} (Figs. 1 and 2c,d and Extended Data Figs. 3 and 4). Specifically, DOY$_{25}$, DOY$_{50}$ and DOY$_{75}$ advanced 0–1.7 days per °C for ring-porous species and 2.8–2.9 days per °C for diffuse-porous species at SCBI, and 10.3–12.3 days per °C for ring-porous species and 0.9–4.2 days per °C for diffuse-porous species at Harvard Forest (Extended Data Table 2).

Whereas the length of time between canopy greenup and senescence (that is, the day when greenness dropped below 90% of its peak) increased with the CTW T_{max} of the porosity group containing the dominant canopy species at each site (diffuse porous at SCBI and ring porous at Harvard Forest; Fig. 2a,b), there was no consistent lengthening of the growing season (Fig. 1 and Extended Data Figs. 3 and 4). Specifically, g_{max}, which occurred on average within 5 days of DOY$_{50}$, displayed extremely small negative changes (Harvard Forest) or changes in opposite directions (SCBI) in relationship to CTW T_{max} for ring-porous and diffuse-porous species. ΔDBH displayed a weak positive relationship (+0.003–0.008 cm per °C) with CTW T_{max} at SCBI and a weak negative relationship (−0.02 to 0.003 cm per °C) at Harvard Forest (Extended Data Fig. 3).

Tree-ring analysis

To understand how annual radial stem growth increments have responded to spring temperatures at the centennial scale, we analysed tree-ring chronologies of 12 species at SCBI and four species at Harvard Forest (Extended Data Table 1), plus an additional 191 chronologies from 106 sites (Fig. 3, Extended Data Table 3 and Extended Data Fig. 5). In total, our analysis included 207 chronologies representing 24 broadleaf species at 108 sites distributed from Alabama (34.35° N latitude) to Michigan (45.56° N latitude) and spanning a 15 °C range in April T_{max}. Across all chronologies, the standardized ring-width index (RWI) was significantly (95% confidence interval did not include 0) positively correlated with April T_{max}. For only 2% of chronologies: 1 of 142 ring-porous and 4 of 66 diffuse-porous species–site combinations (Extended Data Table 3). There were even fewer significant positive correlations with March and May T_{max}: 0% and 1%, respectively (Extended Data Table 3). By contrast, RWI was frequently negatively correlated with T_{max} during peak growing season months (May–August), with significant correlations for 52% (45 of 141 (May), 107 of 141 (June), 91 of 141 (July) and 53 of 141 (August)) and 46% (10 of 66 (May), 52 of 66 (June), 36 of 66 (July) and 23 of 66 (August)) of species–site–month
combinations for ring-porous and diffuse-porous species, respectively. \(T_{\text{min}} \) generally exhibited weaker relationships to annual growth than \(T_{\text{max}} \), with few significant correlations between spring \(T_{\text{min}} \) and RWI (Extended Data Fig. 6).

To test whether warm spring temperatures might result in storage of non-structural carbohydrates that would augment growth the following year\(^{36} \), we extended the analysis to examine correlations between RWI and \(T_{\text{max}} \) in the previous year (Extended Data Fig. 7). This revealed little effect of previous spring temperatures on annual growth, with significant positive correlations of RWI to previous March or April \(T_{\text{max}} \) for 5 of 142 ring-porous chronologies and to previous April or May \(T_{\text{max}} \) for 7 of 66 diffuse-porous chronologies.

To test whether there may be an enhancement of growth by warmer spring temperatures that was offset by the negative effect of high summer temperatures, we tested for the joint effects of April and June–July \(T_{\text{max}} \) on RWI. Results were qualitatively similar to the univariate correlations (Fig. 3), with significant \((P \leq 0.05)\) positive correlations to April \(T_{\text{max}} \) for only 4% of chronologies and significant negative correlations with June–July \(T_{\text{max}} \) for 77% of chronologies (Extended Data Table 3).

Discussion

Together, our results demonstrate that warmer spring temperatures in the temperate deciduous forests of eastern North America advance the timing of stem diameter growth but have little effect on annual increments (Figs. 1–3). The observed advance in stem growth under warmer spring temperatures parallels advances observed for canopy foliage phenology\(^{37} \) (Fig. 2a,b) and NEE\(^{37} \). However, inconsistent with
the concept that an earlier start to growth would increase ANPP\textsubscript{woody}, we demonstrate that warmer spring temperatures either hasten the deceleration of stem expansion or otherwise fail to translate extended growing seasons into biologically significant increases in stem growth (Fig. 1), and thereby have negligible effect on total annual growth for most species and locations (Fig. 3). Our observations suggest that the deceleration of stem expansion, which occurs in mid-summer near the time of peak canopy greening (Extended Data Fig. 1), is driven by cues other than photosynthetic limitation, such as water stress21,26,28, nutrient limitation2, day length2 or sink saturation12,29. This adds to a growing body of evidence for a sink limitation of stem growth21,30, in which global change factors known to enhance photosynthesis, such as longer growing seasons or elevated levels of CO\textsubscript{2}, do not cause a corresponding increase in stem growth21,28.

Combined with widespread observations that warming spring temperatures tend to lengthen the season of CO\textsubscript{2} uptake1,13 and increase net annual CO\textsubscript{2} uptake1,13–15, our findings imply a lengthening of the period from peak stem growth to the cessation of CO\textsubscript{2} uptake by the ecosystem and an increase in carbon allocated to functions other than stem expansion in the current or following year. It remains theoretically possible that warm spring temperatures could augment ANPP\textsubscript{woody}, which, although routinely calculated based on stem growth, can be partially decoupled from it through differences in wood density or carbon content2. Extra carbon fixed in years with warm spring temperatures could potentially be allocated to the formation of more carbon-dense wood, either through enhanced cell wall thickening (a process that lags behind stem expansion10) or to a higher ratio of high-density latewood to lower-density earlywood. However, existing evidence indicates that vessel features are most strongly controlled by summer drought stress in the previous (earlywood) or current (latewood) year, whereas warm spring temperatures have a neutral or negative effect on the width of latewood21,28. Thus, it is unlikely that warm spring temperatures have a positive effect on total carbon content of annual rings or ANPP\textsubscript{woody}.

The fate of any additional carbon fixed during years with warm spring temperatures remains unresolved, but possible destinations—including respiration, non-structural carbohydrate storage and production of foliage, reproductive structures, roots30 or root exudates—generally have shorter residence times than woody growth. Indeed, when GPP of a mature forest was increased through experimental enrichment of CO\textsubscript{2}, ANPP\textsubscript{woody} remained unchanged, whereas additional carbon was released back to the atmosphere on relatively short timescales through enhanced respiration39. Consistent with this, it has been observed that carbon gains from an earlier spring can be offset through autumn or winter respiration39, although even the carbon in shorter-lived pools would often be carried over into the following year14. Thus, observed augmentation of NEE by warm spring temperatures1,2,3 is likely to be compensated by increased respiration in subsequent years.

It is possible that as spring warming continues, forests will adjust to directional changes in growing season length with an enhancement of ANPP\textsubscript{woody}. Across latitudinal gradients, warmer spring temperatures are associated with earlier leaf-out43 and longer growing seasons, which in turn are correlated with greater tree growth44, ANPP\textsubscript{woody} (ref. 41) and NEE42. Thus, warming spring temperatures are likely to increase the biophysical potential for annual tree growth. If extra photosynthate made available through a growing difference between GPP and ANPP\textsubscript{woody} is allocated to functions that relieve limitations on woody growth—for example, by enhancing nutrient and water acquisition through enhanced allocation to roots20,47—it is possible that warming spring temperatures could ultimately increase ANPP\textsubscript{woody}, through indirect mechanisms. Understanding how warming spring temperatures are influencing carbon allocation within ecosystems remains a key outstanding question.

Regardless of the influence of spring temperatures on carbon cycling within the ecosystem, our results clearly demonstrate that the dominant effects of temperature on deciduous tree growth occur not in the spring, but during the peak growing season of the current or sometimes previous year (Fig. 3 and Extended Data Fig. 7), when increased atmospheric demand associated with high temperatures can limit both leaf-level gas exchange and stem growth21,26,28,48. Indeed, the timing of peak growth in June and July (Extended Data Table 2 and Extended Data Fig. 1) coincides with the timing of the greatest sensitivity of annual growth to T\textsubscript{max} (Fig. 3 and Extended Data Table 3). This finding is consistent with numerous tree-ring studies demonstrating strong sensitivity of growth to drought stress or high temperatures during the peak growing season41,32,33,44. Warm spring temperatures may also amplify summer drought stress in some times and places, effectively cancelling out any positive effects of an extended growing period49–50. Although such an interaction was unlikely to have had a major role within the scope of our dendrometer band study, given relatively mesic conditions and lack of significant correlation between spring temperatures and summer drought stress (see Methods), our tree-ring analysis does reveal a higher frequency of negative than positive correlations of annual growth to spring temperatures, particularly for ring-porous species in cooler climates (Fig. 3 and Extended Data Table 3). Thus, warm spring temperatures can have a net negative effect on growth, particularly when water is limiting51,52.

As spring temperatures become increasingly warmer, growing seasons will start earlier. However, barring rapid acclimation of temperate deciduous forests to the warming conditions, advancement in the timing of stem growth (Fig. 1) is unlikely to provide a sustained augmentation of carbon sequestration in woody biomass and ensuing negative climate change feedback that is anticipated in most climate forecasting models1,2,12,3. Rather, the dominant effect of rising temperatures on temperate deciduous forest woody productivity will be a negative effect of high summer temperatures11 (Fig. 3), which constitutes a positive feedback to climate change.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41586-022-05092-3.

1. Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. *Nat. Clim. Chang.* 4, 588–604 (2014).
2. Bueermann, W. et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. *Nature* 562, 110–114 (2018).
3. Fini, A. C. et al. Climate change feedback that is anticipated in most climate forecasting models. *Proc. Natl Acad. Sci. USA* 117, 886–897 (2020).
4. Keeling, C. D., Chin, J. F. S. & Whorf, T. P. Increased activity of northern vegetation inferred from atmospheric CO\textsubscript{2} measurements. *Nature* 382, 146–149 (1996).
5. Dragoni, D. et al. Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in central-Indiana, USA. *Glob. Chang. Biol.* 17, 886–897 (2011).
6. Zhou, S. et al. Explaining inter-annual variability of gross primary productivity from plant phenology and physiology. *Agric. For. Meteorol.* 226–227, 246–256 (2016).
7. Faegri, K. et al. Global patterns of woody residence time and its influence on model simulated aboveground biomass. *Global Biogeoch. Cycles* 123, 821–835 (2017).
8. Savage, J. A. & Chiuine, I. Coordination of spring vascular and organ phenology in temperate deciduous forest woody productivity will be a negative effect of high summer temperatures11 (Fig. 3), which constitutes a positive feedback to climate change.

1. Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. *Nat. Clim. Chang.* 4, 588–604 (2014).
2. Bueermann, W. et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. *Nature* 562, 110–114 (2018).
3. Fini, A. C. et al. Climate change feedback that is anticipated in most climate forecasting models. *Proc. Natl Acad. Sci. USA* 117, 886–897 (2020).
4. Keeling, C. D., Chin, J. F. S. & Whorf, T. P. Increased activity of northern vegetation inferred from atmospheric CO\textsubscript{2} measurements. *Nature* 382, 146–149 (1996).
5. Dragoni, D. et al. Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in central-Indiana, USA. *Glob. Chang. Biol.* 17, 886–897 (2011).
6. Zhou, S. et al. Explaining inter-annual variability of gross primary productivity from plant phenology and physiology. *Agric. For. Meteorol.* 226–227, 246–256 (2016).
7. Faegri, K. et al. Global patterns of woody residence time and its influence on model simulated aboveground biomass. *Global Biogeoch. Cycles* 123, 821–835 (2017).
8. Savage, J. A. & Chiuine, I. Coordination of spring vascular and organ phenology in temperate deciduous forest woody productivity will be a negative effect of high summer temperatures11 (Fig. 3), which constitutes a positive feedback to climate change.
16. Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).
17. Fatischi, S., Leuzinger, S. & Körner, C. Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. New Phytol. 201, 1086–1095 (2014).
18. Lu, X. & Keenan, T. F. No evidence for a negative effect of growing season photosynthesis on leaf senescence timing. Glob. Chang. Biol. 28, 3083–3093 (2022).
19. Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 586, 227–231 (2020).
20. Oishi, A. C. et al. Warmer temperatures reduce net carbon uptake, but do not affect water use, in a mature southern Appalachian forest. Agric. For. Meteorol. 252, 269–282 (2018).
21. Delpierre, N., Berveiller, D., Grandas, E. & Dufrene, E. Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest. New Phytol. 210, 459–470 (2016).
22. Huang, J.-G. et al. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proc. Natl Acad. Sci. USA 117, 20645–20652 (2020).
23. Rossi, S. et al. Critical temperatures for xylogenesis in conifers of cold climates. New Phytol. 233, 2429–2441 (2022).
24. Huang, J.-G. et al. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proc. Natl Acad. Sci. USA 117, 20645–20652 (2020).
25. Zweifel, R. et al. Multiple tree-ring proxies (earlywood width, latewood width and density) and common oak (Quercus robur L.) from eastern Europe. Forests 11, 600 (2020).
26. Kerz, Z. et al. Multiple tree-ring proxies (earlywood width, latewood width and 813C) from pedunculate oak (Quercus robur L.) in Hungary. Quat. Int. 293, 267–267 (2013).
27. Trumbore, S., Gaudinski, J. B., Hanson, P. J. & Southon, J. R. Quantifying ecosystem-atmosphere carbon exchange with a 13C label. Eos. Trans. Am. Geophys. Union 83, 265–268 (2002).
28. Del Mar Delgado, M. et al. Differences in spatial versus temporal reaction norms for spring and autumn phenological events. Proc. Natl Acad. Sci. USA 117, 31249–31258 (2020).
29. Anderson-Teixeira, K. J. et al. Joint effects of climate, tree size, and year on annual tree growth derived from tree-ring records of ten globally distributed forests. Glob. Chang. Biol. 28, 245–266 (2022).
30. Banbury Morgan, R. et al. Global patterns of forest autotrophic carbon fluxes. Glob. Chang. Biol. 27, 2840–2855 (2021).
31. Churkina, G., Schmetzl, D., Brassew, B. H. & Xiao, X. Spatial analysis of growing season length control over net ecosystem exchange. Glob. Chang. Biol. 11, 1777–1787 (2005).
32. Liu, H. et al. Phenological mismatches between above- and belowground plant responses to climate warming. Nat. Clim. Chang. 12, 97–102 (2022).
33. Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Chang. 6, 1023–1027 (2016).
34. Zhang, J. et al. Drought limits wood production of Juniperus przewalskii even as growing seasons lengthens in a cold and arid environment. CATENA 196, 104936 (2021).
35. Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2022).

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022.
Methods

Dendrometer band analysis

Dendrometer band measurements were collected at SCBI and Harvard Forest, both part of the Forest Global Earth Observatory (ForestGEO). SCBI (38.8935° N, 78.1454° W; elevation 273–338 m a.s.l.) is located in the Blue Ridge Mountains at the northern end of Shenandoah National Park, 5 km south of Front Royal, VA, USA. The forest is secondary and mixed age, having established in the mid-nineteenth century after conversion from agricultural fields. Dominant canopy species within the 25.6 ha ForestGEO plot include tuli poplar (Liriodendron tulipifera L.), oaks (Quercus spp.) and hickories (Carya spp.). The climate is humid temperate, with the 1950–2019 mean annual precipitation of 1.018 mm and temperatures averaging 1°C in January and 24°C in July. Within the study period for the dendrometer band analysis (2011–2019), spring temperatures (March and April T_{max}; source: CRU v.4.04 (ref. 44)) and the summer standardized precipitation evapotranspiration index (SPEI) values (4-month value of August) were similar to the average climate before the study period (1970–2010). Specifically, average spring T_{max} was 16.9 ± 1.4°C (mean ± 1 s.d.) before the study period (range: 14.1–19.9) and 17.6 ± 1.7°C (range: 15.6–20) during the study period, whereas the summer SPEI was −0.06 ± 1.02 (range: −1.7 to 2.4) before the study period and 0.5 ± 0.8 (range: −0.8 to 1.6) during.

Harvard Forest (42.5388° N, 72.1755° W; elevation 340–368 m a.s.l.) is located near the central Massachusetts town of Petersham. The forest is secondary and mixed age, having re-established around the beginning of the twentieth century following agricultural use and significant hurricane damage in 1938. Dominant species within the 35 ha ForestGEO plot are hemlock (Tsuga canadensis (L.) Carrière), oak (Quercus spp.) and red maple (Acer rubrum L.). The climate is temperate continental, with the 1950–2019 mean annual precipitation of 1.04 mm and temperatures averaging −5°C in January and 22°C in July. Within the study period for the dendrometer band analysis (1999–2003), spring temperatures (March and April T_{max}; source: CRU v.4.04 (ref. 44)) and summer SPEI values (4-month value of August) were similar to the average climate before the study period (1970–1998). Specifically, average spring T_{max} was 10.9 ± 1.5°C before the study period (range: 8.0–13.2) and 11.2 ± 1.0°C (range: 10.1–12.2) during the study period, whereas the summer SPEI was 0.1 ± 0.9 (range: −1.8 to 1.7) before the study period and 0.2 ± 0.9 (range: −1.0 to 1.1) during. The driest summer during the study period (1999) had the fifth lowest SPEI value (−1.0) in the period 1970–2010. Specifically, average spring temperatures were 3.0 ± 1.0°C before the study period (range: 1.7–4.5) and 3.9 ± 0.9°C (range: 3.0–4.6) during the study period. The driest summer during the study period (1999) had the fifth lowest SPEI value (−1.0) in the period 1970–2003, with precipitation of 52 mm per month in June–August.

The raw dendrometer band data were screened to remove records or entire tree-years that were inappropriate for our analysis because of reduced reliability of predicted growth in the modelled curves. Specifically, we removed tree-years with small or negligible total growth ($\Delta \text{DBH} \leq 0.005$ cm; SCBI = 26, Harvard Forest = 253) and tree-years in which the first intra-annual measurement was later than the first spring survey (trees that were missed in the initial census; SCBI = 22, Harvard Forest = 8). In total, this process removed 309 of the 2,701 available tree-year records for 2011–2020 at SCBI and 1999–2003 at Harvard Forest.

We fit a five-parameter logistic growth model to dendrometer band data from each tree-year to define stem growth milestones and growth rates (Fig. 1). In particular, we modelled the observed DBH on a given DOY (that is, Julian days) as:

$$\text{DBH} = L + \frac{K - L}{1 + (r - \text{DOY})/\text{DOY}_{\text{ip}}}$$

Here, L and K are lower and upper asymptotes of the model. DOY$_{\text{ip}}$ is the DOY during which the inflection point in growth rate occurs. r shapes the slope of the curve at the inflection point, and θ is a tuning parameter controlling the slope of the curve towards the upper asymptote. This allows an asymmetric fit to the data, in which the onset of growth can be estimated independent of the cessation of growth. When $\theta = 1$, DOY_{ip} occurs on DOY_{max}. The model outputs two additional variables, a and b, which represent the beginning and end DBH in each model year and are constrained by the first and last dendrometer band measurements. The model was fit in R v.4.0 using the functions developed in the Rendrometer package. These functions take the time series of manual dendrometer band measurements and return maximum-likelihood-optimized values of the above five parameters that best predict DBH for each DOY. An advantage of this approach is that short-term shrinkage and swelling associated with rain events and measurement errors show up as residual variation and do not unduly influence the parameters of interest. Having fit the model for each band year of data, we then modelled DBH using these optimal parameter values in our logistic growth model and extracted the intra-annual growth variables of interest (Fig. 1).

After fitting the growth model, we removed tree-years with poor fits. Models were judged to be poorly fit if modelled growth parameters were outliers, which were commonly indicative of unrealisitic fits (for example, growth occurring outside the growing season or over a very short period) and underrate the very slow tree growth or poor data records that passed the initial screening (described above). Modelled fits for tree-years were removed under two conditions: (1) g_{max} was 2.5 or more standard deviations away from the mean for each site–xylem architecture group combination (SCBI = 3, Harvard Forest = 11), and (2) timing variables (DOY$_{\text{ip}}$, DOY$_{\text{ip}}$, DOY$_{\text{max}}$, and DOY$_{\text{max}}$) were 2.5 or more standard deviations away from the means for their site, xylem architecture group and year (SCBI = 74, Harvard Forest = 101). In total, this process removed 189 of the 2,392 tree-year records deemed appropriate for analysis, leaving a total of 2,203 tree-years included in the final analysis (Extended Data Table 1). At both sites, the tree-years removed through this method were proportional to the original sample size, indicating that no species or size class was disproportionately removed compared with others. This process was repeated using 2 and 3 standard deviations as the cut-off for defining outliers, yielding qualitatively similar results.

Canopy foliage phenology data for the years 2001–2018 were extracted for SCBI and Harvard Forest from the MCD12Q2 V6 Land...
Cover Dynamics product (that is, MODIS Global Vegetation Phenology product) via Google Earth Engine. For each year at each site, we extracted data from the pixel (500-m resolution) containing the centre of each forest plot. Using the daily MODIS 2-band EVI2 data, the product yields the timing of phenometrics (vegetation phenology) over each year, including timing of green-up, mid-greenup, peak and senescence, as used in this study. Data points were included in the analysis if they were flagged as ‘good’ or ‘best’ quality.

For the dendrometer band and leaf phenology analyses, climate data corresponding to the measurement periods were obtained from local weather stations at each focal site. For SCBI, weather data were obtained from a meteorological tower adjacent to the ForestGEO plot, via the ForestGEO Climate Data Portal v1.0 (https://forestgeo.github.io/Climate/). The R package climpack (see www.climpack-sci.org) was used to plot temperatures for visual inspection and to identify readings that were more than 3 standard deviations away from yearly means, which were labelled as outliers and removed from the dataset. Gaps in the SCBI meteorological tower data were subsequently filled using temperature readings obtained from a National Center for Environmental Information (NCEI) weather station located in Front Royal, VA, USA (https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCNDU:USC00443229/detail). Daily temperature records for Harvard Forest, which had already been gap-filled on the basis of other local records, were obtained from the Harvard Forest meteorological tower (https://forestgeo.github.io/Climate/).

The CTW (Fig. 1), defined as the period over which T_{max} was most strongly correlated with DOY$_{25}$, was determined using the R package climwin4. This package tests the correlation between one or more predictor climate variable and a biological outcome variable over all consecutive time windows within a specified timeframe. It does so by reporting the correlation and AICc, the difference in Akaike information criterion corrected for small sample size relative to a null model for each window. Here, we tested for correlation between temperature predictor variables (T_{max} and T_{min}) and biological outcome variable DOY$_{25}$ over the timeframe from 1 January to the mean DOY$_{25}$ for the species group (by xylem porosity) and site (Extended Data Table 2). The time period yielding the lowest AICc was selected as the CTW. To avoid spurious correlations that could occur using temperature data at the daily resolution, we ran this analysis with weekly resolution, using temperatures averaged over weekly time periods. Because T_{max} proved to have a generally stronger influence over DOY$_{25}$ and other growth parameters, we focused on this variable in our ultimate model, as opposed to T_{min}. We defined CTW for DOY$_{25}$ as opposed to other parameters describing the timing of growth, because spring temperatures should have the most direct influence on this variable.

To ensure that patterns were robust under an alternative definition of CTW, and to parallel the monthly time windows used in our tree-ring analysis (detailed below; Fig. 3 and Extended Data Figs. 6 and 7), we also ran analyses in which we fixed the CTW identified by climwin to be the month with the most days in the CTW (Extended Data Table 2) for each critical window. The months identified were March and April for ring-porous and diffuse-porous species at SCBI, respectively, and April and May for ring-porous and diffuse-porous species at Harvard Forest, respectively.

Correlation between the dendrometer band-derived growth parameters (DOY$_{25}$, DOY$_{40}$, DOY$_{70}$, R_{max}, R_{max}, and R_{max}; and DBH; Fig. 1) and CTW T_{max} (at weekly or monthly resolution, as described above) were assessed using a linear mixed model in a hierarchical Bayesian framework. Analyses were run for both T_{max} and T_{min} with qualitatively similar results, but we present only results for T_{max} which had an overall stronger correlation with growth parameters. Mixed-effect models were used to test the response of growth parameters to fixed effects of xylem porosity and mean T_{max} (or T_{min}) during the CTW, along with random effects of species and of individual tree. We ran separate models for each site, and for the response of all growth parameters to T_{max} (or T_{min}). This mixed-effect model was run within a hierarchical Bayesian framework and fit using the rstanarm version 2.21.3 R interface to the Stan programming language. In all cases, unless otherwise specified, all prior distributions were set to be the weakly informative defaults.

To rule out the possibility that observed patterns were strongly influenced by summer drought, we examined the relationship between spring temperatures and summer SPEI indices. Linear models were run with 4-month, 6-month and 12-month SPEI values of June, July and August versus April T_{max} to determine whether warm spring temperatures were associated with greater summer drought stress in our dataset. No significant correlations were found (all $P > 0.05$).

Tree-ring analysis

We analysed tree-ring records for 108 sites, including our focal sites. All cores had been previously collected, cross-dated and measured using standard collection and processing methodologies.

Dominant tree species were cored at both SCBI and Harvard Forest following sampling designs that covered a broad range of DBH. We analysed records for the ring-porous and diffuse-porous species at each site (Extended Data Table 1), but excluded semi-ring-porous species (for example, *P. radiata* and conifers for example, *T. canadensis* at Harvard Forest). We studied a total of 976 cores, which included 12 species at SCBI and four species at Harvard Forest (Extended Data Table 1).

The tree-ring records from our focal sites were complemented with a much larger collection spanning 106 deciduous and mixed forest sites in eastern North America. For the majority of sampled populations (that is, site–species combinations), sampling focused on canopy trees (typically more than 20 trees per population), whereas approximately 15% of the total 207 chronologies came from plot-level collections in which trees above a certain diameter (typically 10-cm DBH) were censused and cored. Again, analyses were limited to broadleaf deciduous species with clearly defined xylem porosity (that is, excluding semi-ring-porous).

For each species–site combination, we converted tree-ring records into the dimensionless RWI to emphasize interannual variability associated with climate. A two-thirds n spline was applied to each core using ARSTAN V49_1b to produce standardized ring-width series; n is the number of years in each series. An adaptive power transformation, a process that also stabilizes the variance over time, was used to minimize the influence of outliers in all series. Low series replication, often in the earliest portions of a chronology collection, can also inflate the variance of tree-ring records. The one-thirds spline method was chosen when replication in the inner portion of each chronology (the earliest approximately 30–50 years of each record depending on the full chronology length) was less than three trees. When replication was greater than $n = 3$ trees, we used the average correlation between raw ring-width series (rbar) method. The robust biweight mean chronology (RWI) for each species–site combination was calculated from the ring-width indices following variance stabilization. We defined chronology start year (Extended Data Table 1) as the year in which subsample signal strength passed a threshold of subsample signal strength $= 0.8$, or where 80% or more of the population signal was captured in the chronology.

For the analysis of correlation between RWI and climate variables, we obtained monthly T_{max} and T_{min} data for 1901–2019 from CRU v.4.04 (ref. 4). Correlations between monthly climate and RWI were assessed in R v.4.0 (ref. 5) using the packages dplR and bootRes. Reported correlations and significance were determined using bootstrapped confidence intervals. Summary figures were created using the package dplR (Fig. 3 and Extended Data Figs. 6 and 7).

Our analysis focused on assessing correlations of RWI to months spanning January to September of the current year (presented in Fig. 3...
and Extended Data Fig. 6). To test for potential lag effects of spring temperatures on growth the following year, we also ran a version of the analysis extending back to include climate of every month of the previous year (Extended Data Fig. 7). Correlations and significance levels for months March–August are given in Supplementary Table 1.

We used a multivariate model to test for joint effects of April and summer max on RWI. We focused on April to represent spring temperatures because it was the month with the greatest overall alignment with the CTWs identified in the dendrometer band analysis and had the highest rate of positive correlations with RWI (Extended Data Table 3). We began by testing univariate correlations of max over three summer windows: June–June–July and May–August. Having determined that, among these, June–July explained the most variation, we then analysed the joint effects of April max and June–July max on RWI for each chronology independently using the base lm() function in R. Slopes and P values for each chronology are given in Supplementary Table 1. Although some models may have benefitted from data transformations, we determined that assumptions of normality and homoscedasticity were sufficiently met for the purposes of this analysis.

Reporting summary
Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated and analysed during the current study are available via GitHub in the growth_phenology repository of the ForestGEO Ecosystems & Climate Lab at SCBI (https://github.com/EcoClimLab/growth_phenology) and archived in Zenodo (https://doi.org/10.5281/zenodo.6632090). Master versions of the dendrometer band data are available for SCBI via GitHub in the Dendrobands repository of the SCBI ForestGEO plot (https://github.com/SCBI-ForestGEO/Dendrobands), which is archived in Zenodo (https://doi.org/10.5281/zenodo.5551143), and for Harvard Forest via the Harvard Forest Data Archive (https://harvardforest1.fas.harvard.edu/exist/apps/datasets/showData.html?id=HF149). Weather data for SCBI were obtained from the ForestGEO Climate Data Portal v1.0 (https://github.com/Forestgeo/Climate/tree/master/Climate_Data/Met_Stations/SCBI), which is archived in Zenodo (https://doi.org/10.5281/zenodo.3958215), and the NCEI weather station located in Front Royal, VA, USA (https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USC00443229/detail). Weather data for Harvard Forest are available through the Harvard Forest Data Archive (https://harvardforest1.fas.harvard.edu/exist/apps/datasets/showData.html?id=HF001 and https://harvardforest1.fas.harvard.edu/exist/apps/datasets/showData.html?id=HF000). Climate data were obtained from CRU v.4.04 via the ForestGEO Climate Data Portal v1.0 (https://github.com/Forestgeo/Climate/tree/master/Climate_Data/CRU), which is archived in Zenodo (https://doi.org/10.5281/zenodo.3958215). The SPEI was obtained from the ForestGEO Climate Data Portal v1.0 (https://github.com/Forestgeo/Climate/tree/master/Climate_Data/SPEI), which is archived in Zenodo (https://doi.org/10.5281/zenodo.3958215). Canopy foliage phenology data were extracted from the MODIS Global Vegetation Phenology product via Google Earth Engine (https://developers.google.com/earth-engine/datasets/catalog/MODIS_O06_MCD12Q2#description). In addition to being archived in the repository for this project, many tree-ring datasets are archived in the International Tree-Ring Data Bank (https://www.nci.noaa.gov/products/paleoclimatology/tree-ring), the DendroEcological Network (https://www.uwm.edu/femc/dendro/) and/or the Harvard Forest Data Archive (https://harvardforest.fas.harvard.edu/harvard-forest-data-archive), as detailed in Supplementary Table 1. Original tree cores are archived at the institutions of various members of the author team (Harvard Forest, SCBI, Indiana University and University of Idaho) and will be made available on reasonable request.

Code availability
Data were analysed in the open source statistical software R (version 4.0). We used the packages climwin v.1.2.3 (https://cran.r-project.org/web/packages/climwin/index.html), dplR v.1.0.2, bootRes v1.2.4, rstanarm v.2.21.1 and functions from Rddendum v.0.1.0 (https://github.com/seannmc/RDendorum/). We used climpact software v.1.2.8 (see www.clim-impact-sci.org). Mixed-effect models were run within a hierarchical Bayesian framework and fit using the rstanarm version 2.21.3 R interface to the Stan programming language (source code available at https://github.com/EcoClimLab/growth_phenology#steps-to-repeat-the-analysis). Tree-ring chronologies were developed using the program ARSTANV49.1b (https://www.geog.cam.ac.uk/research/projects/dendrosoftware/). All custom codes are available through the EcoClimlab GitHub repository (https://github.com/EcoClimLab/growth_phenology) and archived in Zenodo (https://doi.org/10.5281/zenodo.6632090).

51. Bourg, N. A., McShea, W. J., Thompson, J. R., McGarvey, J. C. & Shen, X. Initial census, woody seedling, seed rain, and stand structure data for the SCBI SIGEO Large Forest Dynamics Plot. Ecology 94, 2111–2112 (2013).
52. Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Chang. Biol. 21, 528–549 (2015).
53. Davies, S. J. et al. ForestGEO: understanding forest diversity and dynamics through a global observational network. Biol. Conserv. 253, 108907 (2021).
54. Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).
55. Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscale drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1710 (2010).
56. Hermann, V. et al. Tree-circumference dynamics in four forests characterized using automated dendrometer bands. PLoS ONE 11, e0160920 (2016).
57. Friedli, M., Gray, J. & Sulla-Menashe, D. MCD12Q2 MODIS Terra/Aqua Land Cover Dynamics Yearly L3 Global 500m Sin Grid V003. LAADS DAAC (https://doi.org/10.5067/MODIS/MCD12Q2.006 (2019).
58. Anderson-Teixeira, K. et al. ForestGEO: Climate initial release. Zenodo. https://doi.org/10.5281/ZENODO.4401609 (2020).
59. Benestad, R. E., Hansen-Bauer, I. & Chen, D. Empirical-Statistical Downscaling (World Scientific, 2008).
60. Boose, E. & Gould, E. Shaler Meteorological Station at Harvard Forest 1994–2002. Environmental Data Initiative https://doi.org/10.6073/PASTA/213335F5D4A17222A738C10/S9F86OC4 (2021).
61. Boose, E. Fisher Meteorological Station at Harvard Forest since 2001. Environmental Data Initiative https://doi.org/10.6073/PASTA/96DE92624B2589073044CF7E95CF8F8 (2021).
62. Beguería, S., Vicente-Serrano, S. M.,Reg, F. & Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3012 (2014).
63. van de Pol, M. et al. Identifying the best climatic predictors in ecology and evolution. Methods Ecol. Evol. 7, 1246–1257 (2016).
64. Gabry, J. et al. R package version 2.211. https://mc-stan.org/rstanarm (2020).
65. Stanford Development Team. Stanford modeling language users guide and reference manual, 2.28. https://mc-stan.org/users/documentation/ (2019).
66. Stokes, M. A. & Smiley, T. L. An Introduction to Tree-ring Dating (Univ. Arizona Press, 1968).
67. Spere, J. H. Fundamentals of Tree-ring Research (Univ. Arizona Press, 2010).
68. Alexander, M. R. et al. The potential to strengthen temperature reconstructions in ecoregions with limited tree line using a multispecies approach. Quat. Res. 92, 583–597 (2019).
69. Dye, A. et al. Comparing tree-ring and permanent plot estimates of aboveground net primary production in three eastern U.S. ecosystems. Ecosphere 7, e01454 (2016).
70. Pederson, N. Climatic Sensitivity and Growth of Southern Temperate Trees in the Eastern United States: Implications for the Carbon Cycle—ProcQuest (Columbia Univ., 2005).
71. Maxwell, J. T. et al. Sampling density and date along with species selection influence spatial representation of tree-ring reconstructions. Clim. Past 16, 1901-1916 (2020).
72. Cook, E. R. & KairikusL, A. Methods of Dendrochronology: Applications in the Environmental Sciences (Springer Netherlands, 1990).
73. Cook, E. R. A Time Series Analysis Approach to Tree-ring Standardization (Univ. Arizona, 1985).
74. Cook, E. R. & Peters, K. Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7, 361–370 (1997).
75. Jones, P. D., Osborn, T. J. & Briffa, K. R. Estimating sampling errors in large-scale temperature averages. J. Clim. 10, 2548–2568 (1997).
76. R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2020).
77. Burn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).
78. Zang, C. & Biondi, F. Dendroclimatic calibration in R: the bootRes package for response and correlation function analysis. Dendrochronologia 31, 68–74 (2013).
Acknowledgements We acknowledge all researchers who assisted with data collection in the field and laboratory, particularly T. Fung Au, J. Bregy, J. Dickens, K. Heeter, A. Hennage, D. King, J. Mccree, B. Lockwood, J. Mcgarvey, V. Meakem, J. Oliver, J. Shue, K. Schmidt-Simard, B. Strange, A. Terrell, B. Taylor, M. Thornton, S. Robeson, M. Wenzel and L. Wylie; and D. A. Orwig, R. Zweifel and members of the ForestGEO Ecosystems & Climate Lab at SCBI for helpful feedback. Analyses and SCBI data collection were funded by the Smithsonian Institution (ForestGEO—Smithsonian Tropical Research Institute, Smithsonian’s National Zoo & Conservation Biology Institute, and Scholarly Studies, Competitive Grants Program for Science and Grand Challenges Award Program grants to K.J.A.-T.). Collection of tree-ring samples was funded by the USDA Agriculture and Food Research Initiative grant 2017-67013-26191 (to J.T.M.), National Science Foundation grants nos. 1805276 (to G.L.H.) and 1805617 (to J.T.M.), and from the Indiana University Vice Provost for Research Faculty Research Program (to J.T.M.). L.D. received funding from the Natural Sciences and Engineering Research Council of Canada (DG RGPIN-2019-04353) and New Brunswick Innovation Foundation (RIF 2019-029). S.M.M. was partially funded by National Science Foundation RAPID-2030862.

Author contributions C.D. and K.J.A.-T. conceived the ideas and designed the study. C.D., L.D., E.B.G.-A., R.H., G.L.H., J.T.M., I.R.M., W.J.M., N.P., A.J.T. and K.J.A.-T. collected or oversaw collection of data. C.D., A.Y.K., V.H., J.T.M., I.R.M. and S.M.M. analysed the data or provided analytical tools. C.D. and K.J.A.-T. led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Competing interests The authors declare no competing interests.

Additional information Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41586-022-05092-3.

Correspondence and requests for materials should be addressed to Kristina J. Anderson-Teixeira.

Peer review information Nature thanks Cyrille Rathgeber, Roman Zweifel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permissions information is available at http://www.nature.com/reprints.
Extended Data Fig. 1 | Seasonal patterns of forest canopy greenness (top row) and stem growth of ring- and diffuse-porous trees, represented as both relative and cumulative fractions of total annual growth (middle and bottom rows, respectively), at the Smithsonian Conservation Biology Institute (SCBI) and Harvard Forest. In the top row, canopy greenness is characterized using the two band Enhanced Vegetation Index (EVI2), with each line representing a year between 2000 and 2018. For stem growth, each line represents the average growth over one year, as modeled based on a five-parameter logistic growth model to dendrometer band data. Dashed lines represent modeled DBH change which fell outside of the median DOY where predicted starting and ending DBHs were reached. Solid lines represent DBH change attributable to stem growth.
Extended Data Fig. 2 | Landscapes of relationships between the day of year on which 25% of annual growth is achieved (DOY_{25}) and temperature in prior weeks for ring- and diffuse-porous trees at the Smithsonian Conservation Biology Institute (SCBI) and Harvard Forest. Shown are matrices of \(\beta \) coefficients from first-order linear regressions between mean maximum temperature (\(T_{\text{max}} \)) and DOY_{25}. Window Open and Window Close indicate number of weeks prior to DOY_{25} (listed in Extended Data Table 2). Yellow shading indicates neutral relationships, while orange or red shading indicates that DOY_{25} advances with increased \(T_{\text{max}} \) over the given time window (negative \(\beta \)). Black circles indicate the critical temperature window selected based on minimization of \(\Delta AIC_c \), the difference in Akaike Information Criterion corrected for small sample size relative to a null model. Critical temperature windows are listed in Extended Data Table 2.
Extended Data Fig. 3 | Response of stem growth timing and rates to mean maximum temperatures (T_{max}) during the spring critical temperature window (CTW) for ring- and diffuse-porous species at the Smithsonian Conservation Biology Institute (SCBI) and Harvard Forest. CTW was defined as the period over which T_{max} was most strongly correlated with the day of year on which 25% of annual growth was achieved (DOY25; Extended Data Table 2, Extended Data Fig. 2). Shown are relationships between mean T_{max} over the CTW and days of the year on which 25%, 50%, and 75% total stem growth were achieved (DOY25, DOY50, DOY75, respectively; first row); the length of the peak growing season (L_{pgs}; second row); maximum growth rate (g_{max}; third row); and total seasonal radial stem growth (ΔDBH; fourth row). Posterior predictions of each variable that did not include zero are represented with solid lines, while those that do include zero use dotted lines. The 95% credible intervals are represented by bands centered on the posterior mean for each year. For both species groups at both sites, DOY25, DOY50, and DOY75 all declined significantly with mean T_{max} during their respective CTW. Dots represent growth parameter values for individual tree-year combinations, which were derived by fitting a five-parameter logistic growth model to dendrometer band data.
Extended Data Fig. 4 | Response of stem growth timing and rates to mean maximum temperatures (T_{max}) for the month most closely corresponding to the spring critical temperature window (CTW) for ring- and diffuse-porous species at the Smithsonian Conservation Biology Institute (SCBI) and Harvard Forest. CTW was defined as the period over which T_{max} was most strongly correlated with the day of year on which 25% of annual growth was achieved (DOY$_{25}$; Extended Data Table 2, Extended Data Fig. 2), and the most closely corresponding month was determined as that with the greatest number of days within the CTW. Shown are relationships between monthly T_{max} and days of the year on which 25%, 50%, and 75% total stem growth were achieved (DOY$_{25}$, DOY$_{50}$, DOY$_{75}$, respectively; first row); the length of the peak growing season (L_{pgs}; second row); maximum growth rate (g_{max}; third row); and total seasonal radial stem growth (ΔDBH; fourth row). Posterior predictions of each variable that did not include zero are represented with solid lines, while those that do include zero use dotted lines. The 95% credible intervals are represented by bands centered on the posterior mean for each year. For both species groups at both sites, DOY$_{25}$, DOY$_{50}$, and DOY$_{75}$ declined significantly with April T_{max} with the exception of DOY$_{25}$ for ring-porous species at SCBI. Dots represent growth parameter values for individual tree-year combinations, which were derived by fitting a five-parameter logistic growth model to dendrometer band data.
Extended Data Fig. 5 | Map of sampling locations of tree-ring chronologies analyzed in this study. Sites are colored by the xylem porosity type of species sampled: ring porous (RP), diffuse porous (DP), or both. Sampling details are provided in Supplementary Table 1. Base map source is ggplot2.
Extended Data Fig. 6 | Sensitivity of annual growth, as derived from tree-rings, to monthly mean minimum temperatures (T_{min}), for 207 chronologies from 108 sites across eastern North America (Extended Data Fig. 5). Colors indicate the bootstrapped correlation between monthly T_{min} and a dimensionless ring width index (RWI) derived from the multiple trees that form each chronology and emphasizing interannual variability associated with climate. Chronologies are grouped by xylem porosity and ordered by mean April T_{min}. Plots are annotated to highlight records from our two focal sites, the Smithsonian Conservation Biology Institute (SCBI) and Harvard Forest (HF) (Extended Data Table 1). Species analyzed and numbers of significant correlations to T_{min} are summarized in Extended Data Table 3, and chronology details are given in Supplementary Table 1.
Extended Data Fig. 7 | Sensitivity of annual growth, as derived from tree-rings, to monthly mean maximum temperatures (T_{max}) of the current and past year, for 207 chronologies from 108 sites across eastern North America (Extended Data Fig. 5). Colors indicate the bootstrapped correlation between monthly T_{max} and a dimensionless ring width index (RWI) derived from the multiple trees that form each chronology and emphasizing interannual variability associated with climate. Chronologies are grouped by xylem porosity and ordered by mean April T_{max}. Plots are annotated to highlight records from our two focal sites, the Smithsonian Conservation Biology Institute (SCBI) and Harvard Forest (HF) (Extended Data Table 1). Figure presents the same results as Fig. 3 but extends back to include the previous year. Species analyzed and numbers of significant correlations to T_{max} are summarized in Extended Data Table 3, and chronology details are given in Supplementary Table 1.
Extended Data Table 1 | Dominant broadleaf deciduous species at the Smithsonian Conservation Biology Institute (SCBI) and Harvard Forest, along with sample sizes included in our final analysis

	species	dendrometer bands	tree cores		
		n trees	n tree-years	n cores	date range
SCBI					
ring-porous	*Carya cordiformis*	0	0	18	1917-2009
	Carya glabra	0	0	39	1901-2009
	Carya ovalis	0	0	24	1896-2009
	Carya tomentosa	0	0	17	1926-2009
	Fraxinus nigra	0	0	16	1901-2016
	Fraxinus americana	0	0	69	1910-2009
	Quercus alba	34	272	66	1904-2009
	Quercus montana	0	0	67	1893-2009
	Quercus rubra	33	265	71	1870-2009
	Quercus velutina	0	0	83	1902-2009
diffuse-porous	*Fagus grandifolia*	13	75	81	1932-2009
	Liriodendron tulipifera	39	292	109	1920-2009
Harvard Forest					
ring-porous	*Fraxinus americana*	8	28	34	1901-2008
	Quercus rubra	119	529	179	1901-2014
	Quercus velutina	11	53	0	
diffuse-porous	*Fagus grandifolia*	8	35	0	
	Betula lenta	8	37	0	
	Betula populifolia	5	16	0	
	Betula papyrifera	3	10	0	
	Betula alleghaniensis	19	72	44	1952-2013
	Prunus serotina	8	29	0	
	Acer rubrum	128	477	59	1930-2014
	Acer pensylvanicum	4	13	0	
Extended Data Table 2 | Summary of parameters describing the seasonality and temperature sensitivity of broadleaf deciduous tree woody growth and canopy phenology at the Smithsonian Conservation Biology Institute (SCBI) and Harvard Forest

	SCBI	Harvard Forest		
	ring-porous	diffuse-porous	ring-porous	diffuse-porous
critical T_{max} window	3/5-3/19	3/19-5/28	3/12-5/21	5/7-6/11
Stem Growth				
DOY$_{25}$	128 (May 8)	155 (June 5)	144 (May 24)	166 (June 16)
DOY$_{50}$	154 (June 4)	172 (June 22)	168 (June 17)	183 (July 3)
DOY$_{75}$	185 (July 4)	190 (July 9)	195 (July 14)	201 (July 20)
g_{max} (cm/day)	0.0043	0.0061	0.003	0.003
L_{ps}	57.3	34.8	51.3	34.4
ΔDBH (cm/yr)	0.41	0.36	0.26	0.16
Canopy Foliage (ecosystem level)				
Greenup	101 (April 11)		115 (April 25)	
Mid-greenup	121 (May 1)		137 (May 17)	
Peak	173 (June 22)		182 (July 1)	
Senescence	215 (Aug. 3)		218 (Aug. 6)	
Temperature sensitivity (days/°C)				
Stem growth:				
DOY$_{25}$	$- 1.7 \pm 0.13$	$- 2.8 \pm 0.39$	$- 12.3 \pm 0.91$	$- 4.2 \pm 0.22$
DOY$_{50}$	$- 1 \pm 0.13$	$- 2.9 \pm 0.4$	$- 10.3 \pm 0.74$	$- 2.5 \pm 0.17$
DOY$_{75}$	0.08 ± 0.19	$- 2.9 \pm 0.6$	$- 11.1 \pm 0.96$	$- 0.9 \pm 0.23$
ΔDBH (cm/°C)	0.003 ± 0.001	0.008 ± 0.004	$- 0.027 \pm 0.004$	$- 0.003 \pm 0.001$
Canopy foliage:				
Greenup	3.45 ± 1.29		2.4 ± 1.51	
Mid-greenup	3.39 ± 0.86		3.16 ± 0.84	
Peak	4.21 ± 1.70		1.47 ± 1.02	
Senescence	3.85 ± 2.13		0.17 ± 1.53	

Temperature sensitivity refers to the sensitivity of a parameter to the mean maximum temperature (T_{max}) during the critical temperature window (CTW, Fig. 1). Because leaf phenology measurements were derived from satellite imagery and included both ring- and diffuse-porous trees, the selection of a critical window was less straightforward. We used the CTW of the porosity group containing the dominant canopy species at each site: Liriodendron tulipifera (diffuse porous) at SCBI and Quercus rubra (ring porous) at Harvard Forest.
species	n	March	April	May	June	July	Aug	April	June-July							
Ring-porous																
Carya cordiformis	1	0	0	0	0	0	0	0	0							
Carya glabra	7	0	0	0	0	0	0	0	0							
Carya ovalis	1	0	0	1	0	0	0	0	0							
Carya ovata	21	0	2	0	0	0	0	0	0							
Carya tomentosa	2	0	1	0	0	0	0	0	0							
Franinus americana	5	0	1	0	0	0	0	0	0							
Franinus nigra	2	0	0	0	0	0	0	0	0							
Quercus alba	35	0	2	0	4	0	18	0	3							
Quercus bicolor	1	0	0	0	0	0	0	0	1							
Quercus macrocarpa	17	0	1	0	2	1	4	0	10							
Quercus montana	1	0	0	0	0	0	1	0	1							
Quercus pagoda	1	0	0	0	0	0	1	0	1							
Quercus rubra	37	0	3	0	2	1	4	0	25							
Quercus sp (white oak group)	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	
Quercus stellata	2	0	0	0	0	0	1	0	0							
Quercus velutina	7	0	0	0	0	0	2	0	5							
TOTAL	141	0	10	1	8	2	45	0	107							
Diffuse-porous																
Acer rubrum	4	0	0	0	1	0	0	0	1							
Acer saccharum	16	0	0	1	0	2	0	14	0							
Betula alleghaniensis	2	0	0	0	0	0	0	2	0	0	0	0	0	0	1	
Betula lenta	3	0	0	0	0	0	1	0	1							
Fagus grandifolia	6	0	0	1	0	0	0	4	0							
Liriodendron tulipifera	32	0	0	2	1	0	7	0	30	0	17	0	16	1	0	27
Magnolia acuminata	1	0	0	0	0	0	0	0	0							
Nyssa sylvatica	1	0	0	0	0	0	0	0	0							
Populus grandidentata	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
TOTAL	66	0	0	4	2	0	10	0	52							
TOTAL	207	0	10	5	10	2	55	0	159							
Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
 - Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of any covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
 - Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection
No software was used for data collection.

Data analysis
Data were analysed in the open source statistical software R (version 4.0). We used packages climwin v.1.2.3 (https://cran.r-project.org/web/packages/climwin/index.html), dplyr v.1.0.2, and bootRes v.2.4, rstanarm v.2.21.1, and functions from Rdendrom v.0.1.0 (https://github.com/seanmcm/RDendrom). We used climpack software v.1.2.8 (see www.climpack-sci.org). Mixed effects models were run within a hierarchical Bayesian framework and fit using the rstanarm version 2.21.3 R interface to the Stan programming language (source code available at https://github.com/EcoClimLab/growth_phenology#steps-to-replicate-the-analysis). Tree-ring chronologies were developed using the program ARSTAN V4.9.1b (https://www.geog.cam.ac.uk/research/projects/dendrosoftware/). All custom code is available through the EcoClim Lab GitHub repository (https://github.com/EcoClimLab/growth_phenology) and archived in Zenodo (DOI: 10.5281/zenodo.6632090).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
The datasets generated and analysed during the current study are available via GitHub in the growth_phenology repository of the ForestGEO Ecosystems & Climate Lab @ SCBI (https://github.com/EcoClimLab/growth_phenology) and archived in Zenodo (DOI: 10.5281/zenodo.6632090). Master versions of the dendrometer band data are available for SCBI via GitHub in the Dendrobands repository of the Smithsonian Conservation Biology Institute ForestGEO plot (https://github.com/SCBI-ForestGEO/Dendrobands), which is archived in Zenodo (DOI 10.5281/zenodo.5551143), and for Harvard Forest via the Harvard Forest Data Archive (https://harvardforest.fas.harvard.edu/exist/apps/datasets/showData.html?ID=HF149). Weather data for SCBI were obtained from the ForestGEO Climate Data Portal v1.0 (https://github.com/forestgeo/Climate/tree/master/Climate_Data/Met_Station%5CSCBI), which is archived in Zenodo (DOI: 10.5281/zenodo.3958215), and the National Center for Environmental Information (NCEI) weather station located in Front Royal, Virginia (https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USC0043229/detail). Weather data for Harvard Forest are available through the Harvard Forest Data Archive (https://harvardforest.fas.harvard.edu/exist/apps/datasets/showData.html?ID=HF001) and the Harvard Forest Data Archive (https://harvardforest.fas.harvard.edu/harvard-forest-data-archive), as detailed in SI Table 1. Original tree cores are archived at the institutions of various members of the author team (Harvard Forest, Smithsonian Conservation Biology Institute, Indiana University, and University of Idaho) and will be available upon reasonable request.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- Life sciences
- Behavioural & social sciences
- Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/rr-reporting-summary-list.pdf.

Eco logical, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

Using dendrometer band measurements from 440 trees across two forests, we show that warmer spring temperatures shifted the woody growth of deciduous trees earlier but had no consistent effect on peak growing season length, maximum daily growth rates, or annual growth. The latter finding was confirmed on the centennial scale by 207 tree-ring chronologies from 108 forests across eastern North America, where annual growth was far more sensitive to temperatures during the peak growing season than in the spring.

Research sample

Overall, our research sampling was designed to represent dominant temperate broadleaf deciduous trees of North America. The focus was on large individuals with their crowns in the canopy, but smaller trees were included when data were available.

Dendrometer band measurements were made at two sites: Smithsonian Conservation Biology Institute (SCBI; VA) and Harvard Forest (MA), selected because they were the two only sites of which we were aware with multiple years of currently available intra-annual dendrometer band measurements. Both sites are dominated by common species of the temperate deciduous biome of eastern North America. Dendrometer band measurements were made on dominant broadleaf tree species at each site.

Tree core chronologies were created using cores from 108 sites across eastern North America: our two focal sites and an additional 106 sites for which tree-ring chronologies had already been developed. This data set included the largest previously published collection for the biome (D'Orangeville et al. 2018), along with other published and unpublished records developed over the years by the coauthor team. The sample was designed to maximize coverage of temperate broadleaf deciduous forests in eastern N. America, and we did not exclude any available chronologies.

Sampling strategy

Dendrometer bands:

At SCBI, dendrometer bands were installed on individuals of the two most dominant (in terms of contributions to woody productivity) ring-porous species (Quercus alba and Quercus rubra) and the two most dominant diffuse-porous species (Liriodendron tulipifera and Fagus grandifolia). Sampling was weighted towards large individuals. Banded trees were randomly located throughout the 25.6 ha ForestGEO plot, with some additional individuals within 25 m radius plots in which all trees were banded. Details are available in Extended Data Table 1 and the SCBI-ForestGEO dendrochronology repository (https://github.com/SCBI-ForestGEO/dendrochronology).

At Harvard Forest, dendrometer bands were placed on trees in 36 circular, 10-m radius plots located randomly along eight 500-m
transsects that extended from the EMS eddy-flux tower [detailed in D’Orangeville et al., 2021; https://doi.org/10.1093/treephys/tpab101]. We analyzed data for eight diffuse- and three ring-porous species [see Extended Data Table 1].

Tree cores:

At SCBI, we sampled the 12 species contributing most to woody productivity, sampling live and dead individuals randomly located throughout the plot [detailed in Heilcowski et al. 2019; https://doi.org/10.1111/nph.15906]. At Harvard Forest, all trees were cored within size-stratified circular plots [detailed in Dye et al. 2016; https://doi.org/10.1002/ecs2.1454].

The tree-ring records from our focal sites were complemented with a much larger collection of tree-ring chronologies spanning 106 deciduous and mixed forest sites in eastern North America, including both previously published (see Pederson 2005 PhD dissertation; D’Orangeville et al. 2018: https://doi.org/10.1111/gcb.14096; Maxwell et al. 2020: https://doi.org/10.5194/cp-16-1901-2020) and new chronologies. All of these samples were originally collected for other research projects, many for the estimation of the response of trees and species to climatic variation, and opportunistically included here. For the majority of sampled populations (i.e., site-species combinations), sampling focused on canopy trees (typically >20 trees per population), while ~15% of the total 207 chronologies came from plot-level collections where trees above a certain diameter (typically 10 cm DBH) were censused and cored.

Data collection

Dendrometer bands:

Metal dendrometer bands were installed on a total of 941 trees within the SCBI and Harvard Forest ForestGEO plots. They were placed at ~1.4 m above the base of the tree. Band windows were measured with a digital caliper approximately every 1–2 weeks within the growing season from 2011–2020 at SCBI and 1998–2003 at Harvard Forest. Measurements were made by many collaborators, including research scientists, field technicians, students, and interns. Data were recorded on paper data sheets for subsequent transfer to digital files or directly into digital files using iPads. The number of bands measured at each site fluctuated slightly as trees were added or dropped from the census (e.g., because of tree mortality). Across years, the number of bands sampled averaged 129 (range: 91–138) at SCBI and 717 (range: 700–755) at Harvard Forest. In total, after data cleaning, our analysis included 2210 tree-years (Extended Data Table 1).

Measurements were timed to begin before the beginning of spring growth and to continue through the cessation of growth in the fall. At SCBI, the median start date was April 14, which was adjusted forward when early leaf-out of understory vegetation was observed, with the earliest start date being March 30 (in 2020). Measurements were continued through to fall leaf senescence, with the median end date being October 17 and the latest end date November 26 (2012). At Harvard Forest, all measurements from 1998 were dropped because of a late start date (May 26). Among the remaining years, the median start date was April 21 and median end date of October 27. 1999 was an anomalous year where initial measurements were taken on January 5, but not taken again until April 15. The latest end date was November 11, 2002.

Leaf phenology:

Canopy foliage phenology data for the years 2001–2018 were extracted for SCBI and Harvard Forest from the MCD12Q2 V6 Land Cover Dynamics product (a.k.a. MODIS Global Vegetation Phenology product; Friedl et al. 2019, doi: 10.5067/MODIS/MCD12Q2.006) via Google Earth Engine. For each year at each site, we extracted data from the pixel containing the center of each forest plot (resolution of 500m). Using the daily MODIS 2-band Enhanced Vegetation Index data (EVI2), the product yields the timing of phenometrics (vegetation phenology) over each year, including timing of greenup, midgreenup, peak, and senescence as used in this study. Data points were included in the analysis if they were flagged as “good” or “best” quality.

Weather data:

Climate data corresponding to the measurement periods were obtained from local weather stations at each focal site. For SCBI, weather data were obtained from a meteorological tower adjacent to the ForestGEO plot, via the ForestGEO Climate Data Portal v1.0 (https://forestgeo.github.io/Climate/). The R package climpack (see www.climpack-sci.org) was used to plot temperatures for visual inspection and to identify readings that were >3 standard deviations away from yearly means, which were labeled as outliers and removed from the dataset. Gaps in the SCBI meteorological tower data were subsequently filled using temperature readings obtained from a National Center for Environmental Information (NCEI) weather station located in Front Royal, Virginia (https://www.ncdc.noaa.gov/epic-web/datasets/GHCNStations/GHCNUS20043295/detail). Daily temperature records for Harvard Forest, which had already been gap-filled based on other local records, were obtained from the Harvard Forest weather station. For each site, we used records of daily maximum (T\(_{\text{max}}\)) and minimum temperatures (T\(_{\text{min}}\)).

Standardized Precipitation Evapotranspiration Index (SPEI) values were obtained from the ForestGEO Climate Data Portal v1.0 (https://forestgeo.github.io/Climate/).

Tree cores:

All tree cores had been previously collected, cross-dated, and measured using standard collection and processing methodologies. Details are provided in the original publications cited in the manuscript. For those chronologies not in previous publications, all tree cores were collected, processed, and analyzed with the same methods as those in the cited publications.

Timing and spatial scale

Dendrometer band measurements were collected with no interruption in collection from 2011–2020 at SCBI and from 1998–2003 at Harvard Forest. Bands were measured with a digital caliper approximately every 1–2 weeks within the growing season. This sampling frequency was designed to capture the seasonality of stem growth. Measurements were timed to begin before the beginning of spring growth and to continue through the cessation of growth in the fall. At SCBI, the median start date was April 14, which was adjusted forward when early leaf-out of understory vegetation was observed, with the earliest start date being March 30 (in 2020). Measurements were continued through to fall leaf senescence, with the median end date being October 17 and the latest end date November 26 (2012). At Harvard Forest, all measurements from 1998 were dropped because of a late start date (May 26). Among the remaining years, the median start date was April 21 and median end date of October 27. 1999 was an anomalous year where initial measurements were taken on January 5, but not taken again until April 15. The latest end date was November 11, 2002.
Tree-ring chronologies were developed for 108 sites across the eastern North America, with analyzed years spanning from 1901-2019. Chronology end dates ranged from 1997 - 2019. The majority extended back prior to 1901, which was the first year analyzed due to climate data constraints.

Data exclusions

Data exclusions were planned to remove erroneous measurements of dendrometer bands or those that were unable to be modeled.

The raw dendrometer band data were screened before analysis to remove records or entire tree-years that were either unreliable or inappropriate for our analysis. First, we manually screened the data for three classes of errors. First, when a measurement was drastically different from previous and following measurements, it was assumed to be a human error and removed. Second, when measurements remained essentially unchanged for several readings, followed by a sudden jump then return to a normal growth pattern, this was assumed to be a case where the band was stuck on the tree bark and then released. In these cases, the full annual record for the tree was removed. Third, data points that deviated substantially from normal growth patterns, but for unknown causes, were removed. If a majority of the data points fell into this class within a tree-year, the entire year was removed from the analysis. We also removed tree-years with small or negligible total growth (DBH ≤ 0.005 cm; SCBI = 26, Harvard Forest = 253), and tree-years where first intraannual measurement was later than the first spring survey (trees that were missed in the initial census; SCBI = 22, Harvard Forest = 8). These were removed because they reduce the reliability of predicted growth in the modeled curves.

After fitting the growth model, we removed tree-years with poor fits. Models were judged to be poorly fit if modeled growth parameters were outliers, which were commonly indicative of unrealistic fits (e.g., growth occurring outside the growing season or ever a very short period) and underlain by very slow tree growth or poor data records that passed the initial screening (described above). Modeled fits for tree-years were removed under two conditions: (1) g_max was ≥ 2.5 standard deviations away from the mean for each site-xylem architecture group combination (SCBI = 3, Harvard Forest = 11); (2) fitting variables (DOY, DOY, DOY) were ≥ 2 standard deviations away from the means for their site, xylem architecture group, and year (SCBI = 74, Harvard Forest = 101). At both sites the tree-years removed through this method were proportional to the original sample size, indicating that no species or size class was disproportionately removed compared to others. This process was repeated using 2 and 3 standard deviations as the cutoff for defining outliers, yielding qualitatively similar results.

Tree cores:

We did not exclude any tree-ring chronologies from the available set. Early years of chronologies were excluded if the subsample signal strength (SSS) was below 0.8. This follows established dendrochronological practices (e.g., Helcoski et al. 2018), wherein chronology start years are defined to ensure that a dominant proportion of the population signal (here, ≥ 80%) was captured in the chronology.

Reproducibility

The study is not based on experiments.

Randomization

At SCBI, dendrometer bands were placed on a stratified random sample of trees within a the 25.6 ha ForestGEO plot, with additional trees from two 15-m radius plots in which all trees were sampled. Similarly, trees were cored on a stratified random sample of trees within the plot, and were also collected from all trees found dead in mortality censuses of 2015 and 2016.

At Harvard Forest, dendrometer bands were placed on trees within 36 circular, 10-m radius plots located randomly along eight 500-m transects that extended from the EMS eddy-flux tower. Similarly, tree cores were taken on all trees in nested circular plots (detailed in Dye et al. 2016; https://doi.org/10.1002/ecs2.1454).

Outside our focal sites, tree cores were collected either from canopy trees of the target species (traditional sampling approach, used for majority of chronologies) or from trees above a certain diameter (typically 10 cm DBH) within a censused plot. For chronologies sampled using a traditional approach, sampling targeted trees (typically >20 individuals per site) of large size, in dominant canopy positions, and appearing old in age. This was not a randomized design, but rather targeted the individuals likely to display the most pronounced responses to climatic variation. For plot-based sampling, all trees above the selected diameter threshold within a defined plot were sampled. Methods for tree selection may influence the strength of observed climate signals, but are unlikely to influence the direction or seasonal patterns. In both cases, sampling captures the dominant trees that contribute most to forest productivity.

Blinding

Blinding was not necessary as we did not perform experiments containing treatments or groups, but rather analyzed long-term data records. The risk that human behavior could have introduced bias into data collection was minimal, given that the vast majority of dendrometer band data had already been collected, and tree-ring records collected and cross-dated, prior to formulation of the research question in spring/summer 2020.

Did the study involve field work? ☑ Yes ☐ No

Field work, collection and transport

Field conditions

The study included 108 sites in eastern North America spanning 34.36 - 45.56°N latitude and 70.69 - 92.2°W longitude. Focal sites, where dendrometer bands were measured, included the Smithsonian Conservation Biology Institute (SCBI) ForestGEO plot (38 8935° N, 78 1454° W; 25.6 ha; elevation 273–338 m a.s.l.) and the Harvard Forest ForestGEO plot (42 5388° N, 72 1755° W; 35 ha; 340-368 m a.s.l.).

At SCBI, the climate is humid temperate, with 1950-2019 mean annual precipitation of 1018 mm and temperatures averaging 1°C in January and 24°C in July. Within the study period for the dendrometer band analysis (2011-2019), spring temperatures (March and April Tmax; source: CRU v.4.0454) and summer Standardized Precipitation Evapotranspiration Index (SPEI) values (4-month value of August) were similar to the average climate prior to the study period (1970-2010). Specifically, average spring Tmax was 16.9 ± 1.4°C (mean ± 1SD) prior to the study period (range: 14.1–19.9) and 17.6± 1.7°C (range: 15.6-20) during the study period, while summer
SPEI was -0.06± 1.02 (range: -1.7-2.4) prior to the study period and 0.5± 0.8 (range: -0.8-1.6) during.

At Harvard Forest, the climate is temperate continental, with 1950-2019 mean annual precipitation of 1104 mm and temperatures averaging -5°C in January and 22°C in July. Within the study period for the dendrometer band analysis (1999-2003), spring temperatures (March and April Tmax; source: CRU v.4.0454) and summer SPEI values (4-month value of August) were similar to the average climate prior to the study period (1970-1998). Specifically, average spring Tmax was 10.9± 1.5°C prior to the study period (range: 7.0-13.2) and 11.2± 1.0°C (range: 10.1-12.2) during the study period, while summer SPEI was 0.1± 0.9 (range: -1.8-1.7) prior to the study period and 0.2± 0.9 (range: -1.0-1.1) during. The driest summer during the study period (1999) had the 5th lowest SPEI value (-3.0) in the period 1970-2003, with precipitation of 52 mm mo-1 in June-August compared to average monthly precipitation of 100+ mm35.

Dendrometer band measurements were made during the growing season from spring to autumn. Weather conditions have a modest effect on these readings. For example, stems shrink and swell depending upon hydration status (which, in turn, is affected by soil moisture and vapor pressure deficit), and metal bands may be modestly affected by temperatures (through thermal expansion of metal). These effects should be largely removed through the fitting of a seasonal growth model (detailed in methods section) and are not expected to bias our analysis.

Tree cores were collected at various times of the year. Weather conditions at the time of collection would have no effect on these readings.

Location
Smithsonian Conservation Biology Institute (SCBI) ForestGEO plot [38.8935° N, 78.1454° W; 25.6 ha; elevation 273–338 m.a.s.l.]
Harvard Forest ForestGEO plot [42.5388° N, 72.1755° W; 35 ha; 340-368 m.a.s.l.]
106 additional sites spanning the eastern North America (locations listed in Supplementary Information)

Access & import/export
Site access and sampling at SCBI and Harvard Forest was conducted under the permission and following the guidelines of these institutions. For tree core sampling at the 106 non-focal sites, all site access and sample collection was done with permission from the appropriate authorities. There was no import/export of samples across international borders.

Disturbance
Disturbance to the forests from which we collected samples was minimized to the best of our abilities by always adhering to leave no trace practices.

Dendrometer bands were installed over the surface of tree bark and have no known impacts on tree health.

Tree cores (5-mm diameter) were extracted from sampled trees. An analysis conducted at SCBI revealed that coring had no detectable effect on tree mortality (Helcoski et al. 2018, Tree-Ring Research).