項目	内容
タイトル	下部大陸斜面の地質構造とその起源に関する一の問題
著者	志岐 常正 三沢 良文
雑誌	地球科学
発行日	1979-07-25
URL	http://hdl.handle.net/2433/120977
版式	© 1979 地学団体研究会
投稿者	
出版者	地学団体研究会
下部大陆斜面の地質構造と．その起源に関する2・3の問題

芝崎常正*・三沢良文**

I. まえがき

1977年8月、札幌において行なわれた第31回地学団体研究会総合研究発表シンポジウム「北日本における中生代以降の造山運動の諸問題」において、筆者らの1人、芝崎は、東北日本弧太平洋側海域の地質に関するコメントを行なった。その中で、彼は、当日の講演者の1人である岡田らの研究（鈴木・岡田1977）を引用しつつ、日本海溝周辺における地質構造、ときに、下部大陸斜面（Lower continental slope = 海溝内側斜面 Inner trench slope）を構成する堆積層とその下位にあるものとの関係について、筆者らがかかって抱いている見解に触れた。また、同9月、日本海洋学会秋季講演会においても、同じ問題について触れることができた（芝崎ほか、1977）。

その要点は、「1）下部斜面を構成する堆積層は、その下に大洋底から続いて見える音響的基盤との関係は、素直に見れば単なる被覆（Conformity または Non-conformity）であり、両者の境界にあたってあり面を考える必要はない。2）この堆積層の最下部は、遠洋性堆積物（Pelagic sediments）であろう。しかし、大陸斜面を構成する地層の主体は、あらかじめからプレートにのって運ばれてきたものではなく、もとと、はその場所に堆積していた陸源物質（Terrigenous sediments）である」ということにあった。

この10年以来、プレート・テクトニクス論の発展につれて、その諸概念が日本付近のテクトニクスにあてはまるか否かについて、多くの議論が行なわれてきた。しかし、それらの議論はしばしば抽象的であり、ときに上部地質学者による議論の場合、いわゆるプレート・テクトニクス論の重要な構成部分ではなく、それから派生した部分について是非を論じ、あるいはその機械的適用を試みることが多かったように思われる。

言うまでもなく、プレート・テクトニクスは、全地球的なオーダーでのリソースフェアの運動を問題にすることであり、その場合、いわば地球表面の折のような薄い堆積物の運動などは、大きな意味をもつものではない。しかし、この論が、大洋と大陸との遷移帯の構造運動を説明しようとすれば、どうして、大陸や島弧の地殻を構成している諸岩層の起源に触れざるを得ない。そのこととは、ほとんど必然的に、現在大陸や島弧の縁辺に形成されつつある具体的な地層の形や大きさ、構成、そして形成史などについての解明を要求する。

このことは、従来、遷移帯を舞台として地球科学的諸問題を捉ってきたものにとっては、かたえの軽重を問われる問題であり、ときに、島弧の地質を明らかにしてきたと自負する日本の地質学者にとっては大問題であった。そして、なお調査が不十分で、現在の海底堆積物の分布さえも明らかでない段階で、陸上の諸岩層の分布や地質構造が、プレートの収束に伴う諸現象として、かんがいし“説明”され、またこれに対する批判も行なわれてきているのである。

幸いにも、近年の海洋地質研究の発展は目覚しく、かつ抽象的な議論の多くを無意味なものに変えつつある。ときに、音響的探査法の発展は、大陸斜面構成岩層の下への“海洋底”の“もぐり込み”を、記録纸上で眼で見ることができるかような現象とした。さらにまたDSDPやPODによる深海探査は、現在の物質的証拠によって、“もぐり込み”を実証しつつあるように見える。

すでに、1975年頃には、太平洋のいくつかの地域について、多成分反射探査や深海堆積の確かな資料に基づく地質断面モデルが作製された。残念ながら、日本近海では、地図作札幌総会の当時にも至っても、深海堆積の資料が四国南方におけるDSDPの1・2点があるに過ぎず、また多成分反射探査の結果も、Beck（1975）のものを除き公表されていなかった。しかし、地質調査所や水路部その他の調査、研究の努力は著しいものがあり、下部大陸斜面から海溝にかけての地質構造を形成機構について、ある程度の予想的考察を行うことが可能となった。

* 京都支部・京都大学理学部地質学講座地質学教室
** 静岡支部・東海大学海洋学部海洋資源学教室
*** 常務に“漸移帯”と呼ばれている。しかし、これが“Transitional zone”の第であるとすれば、むしろ上記のように読むのが適当である。事実の問題としても、ここは次第次第に挙り変わってゆくというようなところではない。

(36)
筆者らは、この考察を行うにあたり、はじめに他地域についての情報や、それについての解釈を参照することを意識的に避ける、まず日本周辺自然からの資料に基づいて独立に考えようとしてきた。そこで、その結果を他地域と比較することによって、日本近海の大陸斜面-海溝付近の地質構造と、他の地域、とくに中米やアラバマなどのところが、多くの点で共通あるいは類似することを知ることができた。また、このことによって、日本周辺についての筆者らのモデルの基本的な正しい方針についても検討を厚くことができたように思われる。

もちろん、2・3の異なった点、あるいは、むしろ日本の地質研究に基づいて、島弧-海溝系の構造発達の一般論を補足、修正しなければならぬと思われる点もある。しかし、1977年秋以降に知った情報や、新たに検討した事項を含めて、上記の諸点を中心に述べて討論を提起したい。

今の時点でのこのような討論を行うことは、地質構造発達史に関する研究、とくに Post-GDPやPost-IPODの課題を打つ上で、かなり重要な意味を持って、また地球科学の論所の趣旨にも出るものと考える。

昨年以降、この問題に関して御教示、御討論、あるいは激励をいただいた、東京大学地理研究所倉田先生、関東地震研究所小野川三先生、京都大学地理学部福野教授、地質調査所海洋地質部水野篤行氏、大阪市立大学理学部藤田和夫氏、新潟大学理学部藤田至雄氏、東海大学海洋学部星野通平氏、日頃討論や協力をいただきている京都大学理学部中村圭二氏はじめ地向師・堆积グループの方たち、同群大三宅昌幸氏、東海大学海洋学部富士、斌氏、黒木重貴氏その他の方がたに厚く御礼申し上げる。

II. 下部大陸斜面-海溝の地質断面

A. 付加ブリズムの構造と構成

問題を、まず下部大陸斜面-海溝付近にしきって考えよう。

プレート・テクトニックによれば、海洋のプレートは海溝のところで陸側のプレートの下にくぐる込む。そのためあらゆる解釈を通じて、いわゆる和田-ペニオフ帯の地震が起こる。このような考えは、堆積物を無視して画けば、第1図のようなものである。

しかし、実際には海洋底には堆積物が存在する。それゆえ、それは、あたかもベルト・コンベアに載せられた土砂のように、プレートに載って陸との境である海溝のところまで運ばれてくるものと考えられている。

プレート・テクトニック論が生まれた当初、多くの人々は、海洋の堆積物が基盤とともに大陸構成層の下ににくぐり込んでゆく、たんなる考えていたようである。しかし、未図でブラスティックな新しい堆積物が、それよりより深い層に堆積して来るものである、これが重要な点である。そこで、プレートに載って運ばれてきた堆積物は、その層内部で断層を作り、最終的に地層構成層の下にいく込み、深く沈んでゆくということは、物理的にはいかにも不自然である。そこで、プレートに載って運ばれてきた堆積物は、その層内部で断層を作り、最終的に地層構成層の下にいく込み、深く沈んでゆくということは、物理的にはいかにも不自然である。そこで、プレートに載って運ばれてきた堆積物は、その層内部で断層を作り、最終的に地層構成層の下にいく込み、深く沈んでゆくということは、物理的にはいかにも不自然である。そこで、プレートに載って運ばれてきた堆積物は、その層内部で断層を作り、最終的に地層構成層の下にいく込み、深く沈んでゆくということは、物理的にはいかにも不自然である。そこで、プレートに載って運ばれてきた堆積物は、その層内部で断層を作り、最終的に地層構成層の下にいく込み、深く沈んでゆくということは、物理的にはいかにも不自然である。そこで、プレートに載って運ばれてきた堆積物は、その層内部で断層を作り、最終的に地層構成層の下にいく込み、深く沈んでゆくということは、物理的にはいかにも不自然である。そこで、プレートに載って運ばれてきた堆積物は、その層内部で断層を作り、最終的に地層構成層の下にいく込み、深く沈んでゆくということは、物理的にはいかにも不自然である。そこで、プレートに載って運ばれてきた堆積物は、その層内部で断層を作り、最終的に地層構成層の下にいく込み、深く沈んでゆくということは、物理的にはいかにも不自然である。そこで、プレートに載って運ばれてきた堆積物は、その層内部で断層を作り、最終的に地層構成層の下にいく込み、深く沈んでゆくということは、物理的にはいかにも不自然である。そこで、プレートに載って運ばれてきた堆積物は、その層内部で断層を作り、最終的に地層構成層の下にいく込み、深く沈んでゆくということは、物理的にはいかにも不自然である。そこで、プレートに載って運ばれてきた堆積物は、その層内部で断層を作り、最終的に地層構成層の下にいく込み、深く沈んでゆくということは、物理的にはいかにも不自然である。そこで、プレートに載って運ばれてきた堆積物は、その層内部で断層を作り、最終的に地層構成層の下にいく込み、深く沈んでゆくということは、物理的にはいかにも不自然である。そこで、プレートに載って運ばれてきた堆積物は、その層内部で断層を作り、最終的に地層構成層の下にいく込み、深く沈んでゆくということは、物理的にはいかにも不自然である。そこで、プレートに載って運ばれてきた堆積物は、その層内部で断層を作り、最終的に地層構成層の下にいく込み、深く沈んでゆくということは、物理的にはいかにも不自然である。そこで、プレートに載って運ばれてきた堆積物は、その層内部で断層を作り、最終的に地層構成層の下にいく込み、深く沈んでゆくということは、物理的にはいかにも不自然である。そこで、プレートに載って運ばれてきた堆積物は、その層内部で断層を作り、最終的に地層構成層の下にいく込み、深く沈んでゆくということは、物理的にはいかにも不自然である。そこで、プレートに載って運ばれてきた堆積物は、その層内部で断層を作り、最終的に地層構成層の下にいく込み、深く沈んでゆくということは、物理的にはいかにも不自然である。
堆積物が何らかの機構で大陸地殻に付加される（accretion）ということは、今では多くの海洋地質学者の支持を得ているようである。ただし、堆積物は海側から陸側へむかって大陸斜面の上へのしぼれてゆくのではなく*、大陸や島弧の地殻においては外れて複雑に傾斜し、逆に海へむかっての衝上構造（断層面は陸側へ傾斜する）を形成して考えられている（KARIK and SHARMAN 1975 など）。このような構造は、下部大陸斜面の多数の音波探査記録に認めることができる（第2 8, 12 13図）。

たとえば、四国南方においては、DSDP の Leg 31 航海の観測によって、逆転したタービダイト層の存在が確認され、下部大陸斜面に倒れた同様の傾けに衝上構造の発達することがほぼ確実であると考えられている（The Scientific Staff for Leg 31, 1973; The Shipboard Scientific Party 1975）。

DSDP の探査音波探査記録による、四国南方の下部大陸斜面・南海舟状海塚（西南日本海溝：星野 1963, 西南日本海溝：志岐ほか 1968）の地質構造断面（第4 図）は極めて興味深いものである。

この断面の示すところによれば、南海舟状海塚を埋蔵するタービダイト（Turbidite wedge）の大陆斜面に沿って、下部層に、ゆるやかな傾斜や衝上断層が観察される。Hole 298 によって確認された大陸斜面下部の構造は、この海塚下の構造が発達したものと考えることは自然である。そうなれば、Hole 298 が貫いた最下部大陸斜

古い地質時代の岩層に関しては、キブス島やノーカレドニのオフィオライト岩体についての、いわゆるオピダクション面（COLEMAN 1971; GEALEY 1977, など）がある。

(38)
面の地層は新海原状海盆の堆積物と未だ構成されてなく、海盆を埋没する上部タービディット層（更新統上部〜完新統）下部ないしの下の透明層（更新統中〜下部）に対比させ、それぞれの延長（ないし偏斜度）に相当するものと見なされるが、この対比は、Drake's Hole 298 と四国の海盆の Hole 297 の断面結果、および、南海海溝状海盆から Hole 297 までの連続音波探査の結果によって確認されている（The Scientific Staff for Leg 31, 1973 ）。したがって、南海海溝状海盆の堆積物は、下部大陸側の褶曲した地層の下に丸く詰め込まれたものではなく、むしろ、褶曲や断層運動により、相対的に上昇しつつ、大陸側面の構成物に加わってつきつあると言えるわけではない。

海溝の外側の大洋底から、より内側の大洋側までを観察的に見れば、海洋性断層の直上に、これを覆蔽して分布するものは比較的薄い遠洋性堆積物（Pelagic sediments）である。その上位に非遠洋性（Hemi-Pelagic）の堆積物が、ついで亜陆源性（Hemi-terrigenous）堆積物が分布し、さらにその上位に、海溝部の両側を埋めて、陸源性のタービディット層が累積し、いわゆる Turbidite wedge をつくっている（第 5 図）。

このような地層が大陆や島弧の地殻堆積されたと

第 6 図 オレゴン沖の大陸斜面を切る多成分反射法音波探査断面。KULM and POWDER (1975) より

第 7 図 ベルチリ海溝を切る多成分反射法音波探査断面解釈図。HUSSONG et al. (1976)
き、どのような構造をつくるかについては、SEELY ほか (1975) や、中央アメリカ海溝の場合を中心に、日本の四国沖 (LUDWIG et al. 1966; HILDE et al. 1969; Fitch and SCHOLZ 1971; The Scientific Staff for Leg 31 1973)。北米西岸のオレゴン沖 (KULM and POWDER 1975)、ジャパン海溝 (BECK 1972)、リュウゼン海溝 (VON HEUNE 1975) その他の資料を基に、数多くの検討と考察を行なっている。それによれば、大陸斜面を構成する付加ブリズムは倾斜状断層をついた多くの衝突断層によって切られ、特異な形状をブロック化しているが、もとの堆積層の基本的関係、つまり、下から上がった堆積相からタービナイト相への変化はその中で保存されている。そして、これらの地層とその構造は、より陸側のものほど古くかつ急斜面であると考えられる。そうして、たとえば、小アンチルの Barbados 島では、達洋性堆積物と、非常に変形したタービナイトが、とともに上昇 (Uplift) して Barbados Ridge を形成に至っている (CHASE and BUNCE 1969)。

同様な構造と地層の累積関係は、日本の大陸斜面の場合にもみられたとされる。ここで注目されるのは、SEELY ほか (1975) も示したように、付加ブリズムを構成する堆積層の多くの部分が、陸からはるか離れたところに堆積した遠洋性堆積物ではなく、陸続性のタービナイトでない海洋性堆積物であると考えられることである。

南海舟状海溝部の堆積層の全厚層約 1500 m のうち、7 〜800 m まではタービナイトであり、他、の 500 m ほども遠洋性の堆積層であると考えられる。しかも、遠洋性堆積層は、南海舟状海溝を越えて、はるか 100 km の沖合にまで拡がっている (The Scientific Staff for Leg 31, 1973)。このことから推定されることは、下部大陸斜面の付加ブリズムを構成する地層の大部分も、同様な遠洋性の堆積物が再び付加されたものである可能性が高いとと思われる。事実大陸斜面の最下部においても遠洋性のタービナイトであったことは前記のとおりである。

ただし、本州 - 四国沖の大陆斜面全体や、西南日本外帯東南外帯および付加帯内帯の構成物についても観察の結果、この場合には、上記の下部大陆斜面（下部堆積層斜面）についての考えを、そのまま単純に延長するわけにはいかないと思われる。というのは、1978 年地質学会年会のシンポジウムで平 (1978) が述べたように、四万十川扇状地の堆積物のかなりの部分は、南海舟状海溝や四国海溝のような堆積層堆積物が（再）付加されたものばかりではなく、土崎海溝や土佐海溝のよう、はるかに深い海溝平垣面の堆積物に形成された堆積層からなっていると考えられるからである。また、大陆斜面に多く存在する小ベンチの堆積物や、大陸斜面を薄く被覆する地層なども含まれているので、四万十川扇状地の構造と層相分布は、同様に、このような多種の環境に堆積した地層からなっているという考えによって解析されるとと思われる。

平が示した四国東部と四万十川扇状地の地質構造断面と堆積層構造モデル自体については、同地のフィールド研究者の間で一部異なった見解があるようである。しかし、上記のような意見で今後の調査研究を行う必要があることにば、意見の違いはないうである。

大陸斜面、ときにその下部の付加ブリズムの構造に関する上記のような考えを、東北日本の三陸冲についても基本的には適用できるものと考える。ただし、ここでは、更新世の陸続堆積物が堆積層を被覆して Turbidite wedge をつくり、広く大洋盆に拡がっていたをも、付加ブリズムについても、堆積層の基本は同じでも、堆積物質には多少の違いがある可能性がある。

最近、IPOD Leg 55, 57 の一部深海堆積層が三陸沖の付加ブリズムに対して発表された (Scientific Board for Leg 56, Scientific Board for Leg 57)。この結果の解析については必ずしも意見が統一されているようではあるが、ともかく、はっきりした遠洋性堆積層は見出されていない。

B. 付加ブリズム構成層は海洋性基盤を被覆している

ところで、海洋性基盤の上に堆積した遠洋性堆積物からタービナイトまでの堆積層が、基盤とともに大陸地殻の下に形成されるのでなくすれは、とり残される地層とともに堆積層が形成されるのである。
下部大陸斜面の地質構造と、その起源に関する2・3の問題

このことは、DSDP Leg. 31による記録では、海洋底基盤表面からの反射が大陸斜面の下までほとんど追跡されなかったために明らかでない。しかし、少なくとも、前記の、前後海洋底塩での地層と下部大陸斜面構成層との層相分布の共通性が、単に堆積層についてだけでなく、その基盤との関係までを含めて言えるときには、支障はないように思われる。

西南日本南部側に関しては、現在筆者らが参照できる形で公表された多成分反射音波探査記録がない。しかし、東北日本沖に関しては、Beckほか（1975）による報告がある（第11図）。この報告の記録に見られる海洋底基盤の大陸斜面下への延長は、まことに印象的である。多くの人びとはこれに関連して、Subduction 説に対する疑いを捨てたと思われる。

その際、多くの人びとは、太平洋底下から下部大陸斜面の下へ続く、この強い反射面自体を、和田一恵およびオホーツク沖で、付加プリズムを説込んで海洋底基盤の下層のにり面そのものと見えたものである。しかし、筆者らは、この反射面は、西南日本南部側の場合と同様、付加プリズム層が海洋底基盤を貫破する関係を示すものと考える。なぜなら、この反射面と、それをはさむ上、下の地層との音響的パターンの関係は、海溝部およびこれを越えた太平洋底塩部と下部大陸斜面とで特に変わり

第9図 潮岬南方の反射法音波探査断面と解釈図

第9図 潮岬南方の反射法音波探査断面と解釈図
四国海溝・南海縦状海溝の音響的基盤の起伏状態が、図の左側で大陸斜面構成物の下へ続く気配が見える。三沢（1967）

* 事実、前述のような、これまでの多くの断面図では、このようなにり面の存在が想定されている。

(41)
は認められず。前者で被覆関係に違いないものを、後者では断層とする根拠は何もないからである。
そこで問題はこうなる。
海洋性基盤（あるいはプレート）を被覆する堆積層は、基盤に対する単なる被覆関係を基本的に維持したまま、基盤とともに行動する。一方、この堆積層は基盤とともに大陸地殻の下へもぐり込むのではなく、海側へむかって上面で特徴づけられる付加ブリズムを形成する。
この2つのことが矛盾せず、両立するのは、衡面が堆積層と基盤との境ではなく堆積層の中に発達し、しかも基盤との境を切って下方へ続いているからである。
このように、付加ブリズム中に発達する衡面断層が基盤との境を切っているということは、最近までの多くの研究ではこの事実が確証がない。

音波探査記録からは知られていなかった。この点で、IOD の三陸沖事前調査音波探査記録の解釈（第12節）に注目される。

今1978年春、VON HEUNE は、東京で行われた GDP の国際シンポジウムにおいて、アリューシャン沖の実事な音波探査記録を示した。この記録から、彼は、付加ブリズムと基盤との境を切る断層が、下方でつながり、1つの低角衡面断層となることを推定している（VON HEUNE 1978）。筆者らは、まさにこの衡面断層が、地下深部で和達へへオフ带につながると考えるわけである。

言い換えれば、和達へへオフ带の上方延長は、付加ブリズムと海洋性基盤との境をなして海溝のところに出るのではなく、現象的には、多くの衡面断層に該当し、

第10図 四国南方の反射法音波探査断面
基盤の起伏状態が大陸側面の断面構成断層の下に続いて見える。志賀・西田・徳岡・久富・五十嵐・奈須（1977）

*ここでは、記述の簡単のため上記や反射層（おそらく玄武岩層の存在を示すものと思われる）から以下を「基盤」と呼び、いわゆるリスプロフと一括して扱っている。しかし、これはあまり正確なやり方ではない。

(42)
第11図 東北日本三陸沖下部大陸斜面 - 日本沖縄を切る多成分反射法音波探査断面。Beck et al. (1975)
太平洋底の基盤が下部大陸斜面（隆起海溝斜面）の下へ続いています。

第12図 IPD 事前調査、三陸沖多成分反射法音波探査断面解釈図
Scientists aboard Glomer Challenger for Leg 56 (1978)
この場を切って大陸側断層圏の中に延び、その多くは
大陸側面に現れるものと思われる。

先に述べたように、筆者らが本州～四国の
下部大陸断層の構成物や構造について考えたところは、
すでに他の研究者が、他の多くの地域について考えたと
ころ、ときに、SEELY ほか (1975) が米国側について明
らかにしたところと極めてよく一致している。

しかし、上記の、下部大陸断層下における海洋性基盤
とその上部の堆積物との層序的関係については、SEELY
らはおそらく注意を払っていない、筆者らの見くらべで
は、SEELY らの図（第13図）においても、少なくとも付
加ブリズムの最深海溝に近い部分に関しては、基盤と堆
積物との間は断層ではなく単なる被覆であるに違
ない。

以上の様々な検討結果を見るかぎり、かつて陸側物
質の及ばないところにあった海洋底が、今では大陸側
下にあり、付加ブリズムの一部を構成していることは明
らかであろう。しかし、これをもって、「海洋底と大
陸底下にとり込むできないと言えるかどうかは問題であ
る。」というのは、このような表現は、「海底堆積物が
海底基盤とともに大陸底下にとり込む」とか、「海底
堆積物が海底断層に地層鉛直に離れて付加ブリズ
ムを構成する」といった、従来の考えを想わせるか
である。

また、海底基盤が付加ブリズムを構成するといっ
も、いわば相対的な問題であって、遡り付加ブリズ
ムの形成される位置が時代ともに海洋側に進出している
とされることもできるであろう。

では次に、上記のような付加ブリズムや基盤を切る
大陸側断層と地震との関係について述べてみよう。

III. 和連＝ベニオフ面の上方延長

いよいよサブダクション説を支える最大の支柱の 1つ
が WADATI (1928) 以来の深発地震分布の研究結果にあ
ることは言うまでもない。

しかし、おそらく多くの地質学者が、これまで海溝付
近の地震の発生位置や機構についてもっていったであろう
理解には誤りがある。

たとえ、有名な UTSU (1971) のモデル（第14図）に
示されるように、東北日本側では、深発地震帯の上方延
長は、ほぼ海洋リソフスフェアの上面に沿って分布し、も
とうと日本海溝のところで海溝肢に現れる、その意味で
は、和連＝ベニオフ帯の延長は海溝肢に出ている。しかし、
吉井 (1977) が指摘するところによれば、地震発生ば
ようど大陸側断層と海洋リソフスフェアとの境界で発生し、
その際前者が上乗し、後者がもぐり込むように動き
のが大陸側の下部近だけである。大陸側の下では、むしろ
海洋リソフスフェアの中、被覆層との境界に斜
めに切るような力が働く地震が起こる（第15図）。

第14図 日本付近における上部マントルの構造と深
発地震帯構造図。UTSU (1971)
一方、東北日本の太平洋側海岸線から日本海溝までの間のくさび状の断面の部分で、多くの地震、とくに津波地震が起こることはよく知られている。この部分の地震の震源分布と発震機構について、鈴木・岡田 (1977) は、1973年根室半島沖地震や近年の東北日本沖での爆破地震、自然地震などの観測結果を総合して、くわしい検討を行なっている。その結果によれば、東北日本の太平洋側大陸斜面の下では、低角逆断層型の地震は、上部マントルの中でなく、その上部の陸性地殻の中で、これを破壊するか、または過去の逆断層面がスリップすることによって起こっている（第16図）。

この鈴木らのモデルにおいて、深発地震帯の上方延長が、ちょうど海溝のところではなく、もう少し陸寄りに、すなわち下部大陸斜面に出ることが示唆されている点は注目に値する。実際には、多くの衝上断層が存在することが、前記第11図のエア・ガス記録から読みと

第15図 東北日本の地殻・上部マントル構造の模式図
灰色部は地震の起る場所、破線はモホ面、小丸と矢印を組合せたものは震源に働く力の型を示す。
吉井 (1977)

第16図 1973年根室沖地震の震源（丸印）を示す断面図（海溝軸に直角）．鈴木・岡田 (1977)
推定断層面の位置に注意

(45)
の存在を示唆すること（野沢1975）などに注目されたことは古くから多くの研究がある（たとえば YOSHIZAWA 1954；YAJIMA 1972a・b；三宅 1978；三宅・久富 1978など）。全般的にみて、酸性から塩基性までの多様なものが共産すること、Na/K 比が高く、かたり海洋的な性格を示すものがあること、陸上に現れ、構造線または弱線の存在を示唆すること（野沢1975）などに注目される。

東北日本沖においても、少なくとも南部大陵断層の下付加ブリズムの下方に、下盤との間により面が発達するほど、深部における深発地震帯上界付近を境とする上・下部リソスフェアと大洋リソスフェアとの相対的運動の影響は、地表近くにおいては、鈴木・岡田（1977）が見出したものであり、大陵断層に沿っての動きとして現れるものと考えられる。

米国日本沖地震についても、同様な検討が可能である。筆者らは今後のところ、これについての資料を有していない。

大陵断層を切る断層断層の存在は、現在日本海はともに、ほとんどすべての卵殻・海溝系について認められており、ほとんど絶壁であると言ってもよい。最近では、陸上にみられる造山帯、たとえば四十万帯に発達する逆断層系についても、このような起源をもつつものとして説明されつつある（たとえば平1978）。

ただし、これらの場合、大陵断層とは付加ブリズムの中のたたえ込み構造の形成要因である点のまが記載され、それぞれと関連する地震の関係を地震地震震源分布との関係はあまり注意されてなかったように思われる。

日本の地震学の発展が、はじめてこれらの総合的検討を可能にしたと言えるだろう。

IV. 大陵断層貫入岩類とオフィオライト問題

湖沼、室戸岬、足摺岬など、本州・四国から南へ突出する半島の南端や、土佐崎などの上部大陵断層外縁に各種の火山岩類を産することは、この地帯の著しい特徴の1つである。これらと同様な岩石は東北日本沖で従来知られていたかたが、最近のIPOD の深海観測によってその存在が確認された。

後者についてはまだ明らかにされていないが、
構造帯の岩石はその多様性がないとは言え、同様のこととは、潮岬・土佐堡火成岩類についても言えるように思わせる。潮岬・土佐堡火成岩類、とくに酸性岩の岩石学的性質が黑瀬川構造帯や舞鶴地帯のそれに類似していること（志岐ほか 1976, Shiki et al. 1977）も留意されてよい。

要するに、丸山（1978）が主に考えたオフィオライトやそれに捕獲された岩石だけでなく、潮岬・土佐堡火成岩類や黒瀬川構造帯にみられる各种火成岩のような、酸性岩を含めた火成岩類も、和通 - ベイオフラットから陸側リソスフェアと海洋リソスフェアとの相対運動に伴なって、弱視としての衝突に沿って上昇してきたものと思われる。黒瀬川構造帯には各種の地殻深部岩類が存在するが潮岬・土佐堡火成岩類には伴われていないなどの点は、たんに時代や規模の違いということではなく、おそらく構造帯の傾斜や露出構造部位（深度）の違いを反映しているものであろう。

いずれにせよ、これらの火成岩類は、おそらく IPOP で発見された東北日本海のものを含めて、一般に大陸斜面、とくに基盤隆起帯（Basement high）や外縁隆起帯（Marginal high）、Trench slope break などと呼ばれると特徴的に見られるもの* である可能性がある。今後このような観点から、広く各地の調査の場所を探してみると必要があるのではないか。

なお、付言する必要もないかも知れぬが、筆者たちが今、潮岬・土佐堡火成岩類と呼んだものは、熊野酸性岩や大嶺酸性岩のような、潮岬・大隅線よりさらに内側にあって、南北に延びる大きな岩体をなして産するものを含んでいない。これらは岩石化学的におかし異なる岩体である。

またさらに付け加えておけば、上述の“大陸斜面貫入岩類の記述に際しては、たとえば御取説のオフィオライトのような、かなり広範な広がりをもって分布するようなオフィオライトの問題は全く考えていない。このような岩層は、上記黑瀬川構造帯のものとは全く違った地質環境と、全く違った機構で形成されるものであろう。

V. まとめと２·3 の問題

プレート・テクトニクスの是非論は、もともとこうして、和通 - ベイオフラットというものが大陸と大洋との境に存在することは事実である。ただしそれは、大陸や島弧の地殻（リソスフェア）と大洋のリソスフェアが接するところに生じている。いわば Globalな視点での問題であり、その上方、地表近くへの延長部について考える場合は、そこに存在する堆積物をも考慮に入れた、より細かく具体的な研究が必要である。

本州 - 四国沖や東北日本三陸などで、日本近海の資料を中心に、中米グアテマラ沖などの資料も参考にし
て検討すると、東海-ベニオフ帯の上方延長は、陸と海
との相対運動の際（にじめ）という意味では、多くの場合、
ちょうど海溝のところで出るのではない、それは、地表
近くには、プレートとは特性の異なる地殻層が存在する
からである。

陸側の上昇が激しいほど、より多くの陸殻物質が海へ
運ばれ、大きな Sedimentary body を形成する。この
body は、海洋底基盤を直接被覆する遠洋性堆積物から
主体をなす陸殻性堆積層までの連合関係を基本的に維持
したまま、ほぼ現地で層曲や衡衝運動により付加プレシ
ムを形成して陸側地殻に加わってゆく。

この層曲と衡衝の運動自体が陸側リソスフェアと海洋
リソスフェアとの相対運動の現れである。深部における
大きな相対運動の影響は、地表近くには海溝付近へ延び
る海洋底基盤と被覆層との間のとりとして現れるのでは
なく、付加プレスムの中の古い断層をにじめとした大陸
斜面へ出る衡衝断層の活動として現われる。この活動
が、たとえば東北日本沖の巨大津波地震である。

この衡衝断層は、たんにとり面として掘くだけではな
く、ここには、深部の東海-ベニオフ帯で生れた新・旧
のマグマが、いろいろな程度で分化し、溶融状態あるいは
は半固結状態で貫入上昇してくる。その際、深部の両側
の古い諸岩層や大陆地殻物質、あるいは大洋底地殻物質
を処理してくることもある。

このような諸運動の結果として、海洋底基盤は、海溝
部から、より陸側に、相対的に移動することになる。逆
に言えば、付加プレスムの形成場所が陸側から海側へ移
り、付加プレスムが海側へ成長する。そうして、一度衡
衝がの陸側上盤側にとり込まれた海洋底基盤物質は、い
わゆるオフィオライトの層序を保ったまま衡衝運動と同
じく段階的に上昇し、やがて地表に露出することになる
のかもしれない。

第18図 四国南方の大陸斜面-南海海槽海溝を切る地縦断面模式図
大陸基盤は海浜性基盤表面（音響反射面）、矢印は衡衝運動、図左方のカギ印を含む模様に新旧の大
陸斜面火成岩層（相接層を含む）を示す。図(1970)，Fitch and Scholz (1971)，Hilde et al．
(1969)。井上ほか(1977)，Kari(1975)，Ludwig et al. (1973)，三沢(1976)，奥田ほか(1976)，
志賀ほか(1977)，The Scientific Staff for Leg 31(1973)，The Shipboard Scientific Party
(1975)。吉井ほか(1970)などに基づく。
下部大陸斜面の地質構造と、その起源に関する 2・3 の問題

以上、小論の内容をまとめてみたが、ここに 2・3 の問題がある。今後の課題という意味を含めて簡単に触れておこう。

その 1 つは、上記のようにして付加プリズムが海側に成長してゆくとすれば、海溝の位置、あるいは大陸斜面と大洋底との境の位置と和遠−ベギナフ帯との距離は、次第に遠くなるのであろうかということである。

これに関しては、おそらく付加プリズムの成長とともに、和遠−ベギナフ帯の位置も海側へむかって移るのであろうと考えることができる。

付加プリズムは、成長とともに海側へむかって拡がるだけでなく、そのより古い、陸側寄りの部分ほど、緩曲と傾動によって厚くなってくる。このことを考慮に入れると、付加プリズムの成長とともにその下にある物を押し下げる、結局そこでの海洋リソスフェアの下方への曲りが増大するといった状況を無理なく考えることができるのである。

次に、以上の記述では、そのほとんどの部分で、あたかも付加プリズムの成長が連続的に進行されるかのように表現をとってきた。だが、大陸斜面−海溝での地質構造の発展は、第 2 章 A にも触れのように、断層的なものではなく段階的、飛躍的なものと考えた方がよい。その根拠についてはここでくわしく述べる余裕はないが、要するに、形成された地質構造自体がそれに示していないのである。

問題はこの飛躍的前進の機構であるが、もちろん今の段階でこれについて論することは難しい。あるいは、海洋リソスフェアがある程度以上、低速度層の中に入り込める、そこで急激にリソスフェアの沈込みが起こり、KANA-MORT（1971）のモデルと佐藤（1971）の考えに似たリソスフェア屈曲部の急激な移動が起こるのかかも知れない。

上に述べたように、海洋中性層は、付加プリズムの成長とともに相対的に陸側に進み、その一部は被覆堆積層とともに結果的に陸の地層にとり込まれる。このことは、

第 19 図 東北日本三陸沖大大陸斜面−日本海溝を切る地殻断面模式図

Tn: 古第三系、Tp: 古第三系、k: 白亜系、黒丸：震源の位置、太破線：海洋底基盤表面（同一時代面ではない、第 18 図も同様）、左方のカギ印を含む模式は大陆斜面欠岩層、Beck et al. (1975)，Honza (1977)，Honza et al. (1977)，石和田 (1975)，Ludwig et al. (1966)，Scientists aboard for Leg 56 (1978)，Scientists aboard for Leg 77 (1978)，鈴木・岡田 (1977)，吉井 (1977) などに基づく。

* 小論の内容を、具体的な南海日本前側と東北日本東側の大大陸斜面−海溝（または舟状海盆）の断面について、やや今模式化して第 18 図、第 19 図に示す。

** たとえば、紀州四万十帯の大断崖において、最も大規格にみれば、より外側（前側）になるほど上位の、かつより浅い相の地層が発達していながら、各層ごとは、むしろこれに反するといったこと。

(49)
一見，海洋プレートの水平移動，あるいは海洋底拡大説を支持し補強しているように見える。しかし，ここに実は大きな疑問が存在する。

というの上のようにして“海洋底”が水平に動き，大陸地殻に一部組入れられるとすれば，その遠さは，いわゆるプレート説でいわれている海洋プレートの水平移動の遠さより，ゲラが遠くて小さいと考えざるをえないのではないかと思われるからである。このことは，単にプレートの運動の遠さという問題ではなく，意外に地球のテクトニックスの本質的な部分にかかわることかも知れない。つまり，上に論じてきた程度の遠さの“海洋運動”ならば，現在のプレート・テクトニックスの体系で考えられているものと異なり，たとえば，地球の膨張・収縮にともなう運動としても，充分説明されるかも知れないように思われる。

さらに言えば，上に検討した結果えられた大陸斜面 - 海溝の構造断面は，これさらに新奇な考えを持ち出すつもりか，10年前の地殻構造発達論とも，別に大きく矛盾するところはないのではないかと思われる。

地球上に海洋プレートと陸のプレートが存在する。両者がぶつかるところに和達 - ベニオフ帯が形成される。その際，後者は前関の上に衝上しようとし，前者はもぐ込むようにとは，それぞれの物性と，低速度層，アセロソフォアの物性からみて当然のことであろう。大きなオーダーでのこのような運動の影響は，地表近くでは付加プレズムの形成や大陆斜面火成岩類の形成，貫入となって現れる。このことは，古い造山論からみて，何か不可議論であることであろう。

今回は一応疑問を表現するに止めるが，今後，海溝や大陸斜面に形成される地層の層序や構造をさらに確実に把握することが，意外に大きな問題の提起につながりうることを指摘して，小論のわりとしてしたい。

付記

小論投稿後間もなく，Dismembered ophioliteに関する丸山の斬新たる論文などを掲載した。地球科学オフィオライト特集号に手振りをつけられた。この論文では，サブダクション帯における蛇紋岩の形成と上昇に関する丸山の考えが，海洋科学の論文より簡明に打抜かれている。

なお，陸源性堆積物の再付加（re-accretion）という考えは，ここ数年でのうちに急速に拡がっているようである（たとえば，1978年秋の米国地球物理学連合大会）小論が印刷・公表される頃には，すでに旧聞に属することになっているかも知れない。

献

Beck, R. H. (1972) The ocean, the new frontier in exploration. Austral. Petrol. Exp. Assoc. 12, 5-28
Beck, R. H., Lehner, P., Dibold, P., Bakker, G. and Doust, H. (1975) New geophysical Data on key problems of global tectonics. Proc. 8th world Petroleum Congress, Tokyo, 1-4.
Burk, C. A. and Drake, C. L. (1975) The Geology of Continental Margins. Springer-Verlag, 109pp.
Chase R. L. and Bunce E. T. (1969) Underthrusting of the eastern margin of the Antilles by the floor of the western North Atlantic Ocean and origin of the Barbados ridge. Jour. Geophys. Res., 74, 1413-1420.
Coleman, R. G. (1971) Plate tectonic emplacement of the Upper Mantle Peridolites along continental edges. Jour. Geophys. Res., 76, 1212-1222.
田 壽一，吉井敬敏（1970）土佐海溝 - 南西海盆の地殻構造について。Part 2. 解析，星野通平・青木直子，島弧と海洋，東海大学出版会。
Fitch, T. J. and Scholz, C. H. (1971) Mechanism of underthrusting in Southwest Japan. a model of convergent plate interactions. Jour. Geophys. Res., 76, 7260-7292.
Gralley, W. K. (1977) Ophiolite obduction and geologic evolution of the Oman Mountains and adjacent areas. Geol. Soc. Amer. Bull., 88, 1183-1191.
Hilde, T. W. C., Wageman, J. M., and Hammond, W. T. (1969) The structure of Tosa Terrace and Nankai Trough off Southwestern Japan. Geol. Soc. Amer. Bull, 76, 119-127.
Holsen, A. (1978) Principles of physical geology. Third Ed. 768 pp.
Honza, E. (ed.) (1977) Geologic Investigation of Japan and Southem Kurile trench and slope areas GH76-2 cruise April-June 1976. Geol. Survey of Japan, 127 pp.
Honza, E., KAGAMI, H. and NASU, N. (1977) Neogene geological history of the Tohoku island arc system. Jour. Oceanogr. Soc. Japan, 33, 297-310.
Husson, D. M., Edwards, P. B., Johnson, S. H., Campbell, J. F. and Sutton, G. H. (1976) Crustal structure of the Peru-Chile Trench: 8°-12°S Latitude. In Sutton, G. H., Manginelli, M. H. and Maberly, R. (Ed.), McAfee (Ass; Ed.) The geophysics of the Pacific ocean basin and its margin. Geophysical Monogr. 19, 71-85.
星野通平（1963）西南日本海溝，海洋地質，1. No. 2, 10-15.
井上英二，石橋春一，石原丈実，木下泰正，山崎正人，玉木賢策（1977）西南日本外帯沖弧域海底地質調査所。石和田隆章（1975）日本列島周辺大陸亜動火山の石油地質，石油学会誌，18, 460-465.
Kanamori, M. (1971). Great earthquake at island arc and the lithosphere. Tectonophys. 12, 187-198.

Karig, D. E. (1975). Basin genesis in the Philippine Sea. In Karig, D. E., Ingle, J. C., Jr., et al., Initial Reports of the Deep Sea Drilling Project, 31, Washington (U.S. Government Printing Office), 857-879.

Karig, D. E. and Sharman G. F. (1975). Subduction and accretion in trenches. Geol. Soc. Amer. Bull., 86, 377-389.

Kulm, L. D. and Fowler, G. A. (1975). Oregon continental margin structure and stratigraphy: A test of the imbricate thrust model. In Burk, C. A. and Drake, C. L., The geology of continental margins. Springer-Verlag, 261-283.

Ludwig, W. J., Den, N., and Murauchi, S. (1973). Seismic reflection measurements of Southeast Japan margin. Jour. Geophys. Res., 78, 2506-2516.

Ludwig, W. J., Ewing, J. L., Ewing, M., Murauchi, S., Den, N., Asano, S., Hotta, H., Hayakawa, M., Ichikawa, K., and Noguchi, I. (1966). Sediments and structure of the Japan Trench. Geophys. Res., 71, 2121-2137.

丸山茂雄 (1978). 潮間構造帯のdismembered ophiolite. 海洋科学, 10, 287-296.

三沢正文 (1976). フォナ・マグナ南部西部縁の海底地質. 海洋科学, 8, 35-40.

三宅康幸 (1978). 潮間における粘性捕獲性火成活動. Magma, no. 53, 22-26.

三宅康幸・久富邦彦 (1978). 潮間構造帯の地質学的意義. 日本地質学会関西支部報, no. 83, 8-9.

野村保 (1975). 稲敷, 四国, 九州における西南日本外帶花崗岩の分布についての予察. 地図研究報, 19号, 209-212.

奥田満久・井上英二・石原大栄・木下泰正・玉木賢治・上崎猛・石橋嘉一 (1976) 南海道島深海とその北側面の海底地質. 海洋科学, 8, 192-200.

佐藤正弘 (1976) 深海平垣面と島弧-海溝系のSubduction Cycle. 海洋科学, 8, 708-711.

Scholl, D. W. (1975). Sedimentary sequences in the North Pacific trenches. In Burk, C.A. and Drake, C. L., The geology of continental margins. Springer-Verlag, 493-504.

Scientists aboard Glomar Challenger for Leg 56 of the Deep Sea Drilling Project (1978) Near the Japan Trench transects begun. Geotimes, 23, No. 3, 22-26.

Scientists aboard Glomar Challenger for Leg 57 of the Deep Sea Drilling Project (1978) On Leg 57, Japan trench transected. Geotimes, 23, No. 4, 16-21.

Seely, D. R., Vail, P. R., and Walton, G. G. (1975). Trench slope model. In Burk, C. A. and Drake, C. L., The geology of continental margins. Springer-Verlag, 249-260.

Shikl, T., Misawa, Y., Konda, I., and Nishimura, A. (1977). Geology and geohistory of the North-western Philippine Sea, with special reference to the results of the recent Japanese research cruises. Mem. Fac. Sci. Kyoto Univ., 44, 67-78.

志枝浩正・原田哲朗・木村春夫 (1968). 地震斜におけるいわゆるフリッシャー. 地質学会論集, 1号, 13-21.

志枝浩正・原田哲朗・木村春夫 (1973). 地震斜におけるいわゆるフリッシャー. 地質学会論集, 1号, 13-21.

志枝浩正・原田哲朗・木村春夫 (1986). 地震斜におけるいわゆるフリッシャー. 地質学会論集, 1号, 13-21.
A Few Problems Concerning the Structure Under the Continental Slope and Its Origin

by

Tsunemasa SHIKI and Yoshibumi MISAWA

(Abstract)

Development of the accretionary prism is one of the most characteristic features of the Pacific-side slopes of the Japanese Islands. Most of the sediments of the accretionary prisms are composed of terrigenous and hemi-terrigenous materials. The boundary between the oceanic basement and overlying pelagic sediments expected at the lowermost part of the accretionary prism should be merely a conformable or a non-conformable relation.

Tectonic influence of the relative movement of the continental lithosphere and the oceanic lithosphere, that is, influence of the activity of the Wadati-Benioff zone, appears as the thrust movement which cut the boundary between the oceanic basement and the overlying sediments. These thrusts extend into the accretionary prisms, and, some of them towards the surface of the sea floor. Earthquakes at intermediate depth under the continental slopes are the direct result of the movement of these thrusts.

Acidic and basic magmatic intrusions penetrate some large thrust planes and sometimes these magmas carry continental and oceanic crustal xenoliths. Good examples of the exposure of these continental slope igneous rocks can be found not only on the present slope of the Japanese Islands but also in the Permo-Triassic structural belts in the islands.

(1978年11月6日受付, 1979年3月10日受理)