Histopathology of mammary gland in *Staphylococcus aureus* induced mastitis in mice

Jayaraj Fakkirappa Chinchali, Basappa Baswanneppa Kaliwal*

Department of Studies and Research in Biotechnology and Microbiology, Karnatak University, Dharwad, India.

**ABSTRACT**

**Objective:** To investigate the histopathological changes of mouse mammary tissue damage in dose and durational pathogenicity of *Staphylococcus aureus* (*S. aureus*) inoculums.

**Methods:** The minimal tissue inflammation dose of *S. aureus* inoculum was determined by inoculating the lactating mice mammary gland to observe the mortality rate at 24, 48, 72 and 96 h of infection for each inoculum dilutions. To study dose pathogenicity, lactating mice were divided into one control and four induced groups of 5 mice each. *S. aureus* inoculums doses of 0.8伊10^1, 1.4伊10^2, 2伊10^2 and 2.8伊10^3 colony forming unit were inoculated to the induced groups II, III, IV and V respectively. Mice were sacrificed and mammary gland tissues were harvested after 48 h of infection. Similarly to study of durational pathogenicity, a dose of 2伊10^3 colony forming unit of *S. aureus* inoculums was inoculated to the induced groups II, III, IV and V respectively. Mice were sacrificed and mammary gland tissues were harvested after 24, 48, 72 and 96 h of infection. Body and mammary gland were weighed and histopathological responses of the tissue damage were observed for both dose and durational pathogenicity’s of *S. aureus* inoculums.

**Results:** The observations indicated mastitis symptoms, decrease in body and mammary gland weights. Histopathological evidences revealed massive infiltration of polymorphonuclear neutrophil leukocytes, damage of alveoli and secretory products as the doses and durations of *S. aureus* inoculums increased compared to the control.

**Conclusions:** The present study revealed that damage in mammary gland tissue of mice increased as the dose and duration of *S. aureus* inoculums increased.

**KEYWORDS**

*Staphylococcus aureus*, Mastitis, Polymorphonuclear neutrophil leukocytes, Mammary gland

---

1. Introduction

Bovine mastitis is an inflammation of the mammary gland, typically caused by microbial intramammary infection. *Staphylococcus aureus* (*S. aureus*) is the most prevalent infectious bacteria that affect the bovine udder and can provoke clinical mastitis but more frequently causes subclinical infections that tend to become chronic and difficult to eradicate by conventional antimicrobial therapies[1]. *S. aureus* is historically one of the most important causes of subclinical mastitis and clinical mastitis that becomes chronic[2]. *S. aureus* is an opportunistic bacterial pathogen that can infect, replicate and persist in diverse hosts, including humans and...
domestic animals of economic importance[3]. After entering the mammary gland through the teat canal and adapting to the udder environment, the bacterial load replicates rapidly, eliciting an inflammatory reaction, infiltration of polymorphonuclear neutrophils (PMN’s) into the alveolar space and leading to tissue damage.

The glitches of husbandry, management and cost associated with experimental intramammary infection in the cow, has led to the study of mouse as a model for mastitis. A mouse model of S. aureus mastitis was first described by Chandler in 1970[4]. Since 2000, S. aureus has been used to induce mastitis in mice and treat the disease by antimicrobial agents[5-7]. Many anti-inflammatory and antimicrobial agents are reported and in progress for the treatment of mastitis[8,9].

Mastitis in dairy animals occurs when the udder becomes inflamed and bacteria invade the teat canal and mammary glands. These bacteria multiply and produce toxins that cause injury to the milk secreting tissue, besides, physical trauma and chemical irritants[10]. Bacteria may escape from the natural defense mechanisms by multiplication along the streak canal or propulsion into the teat cistern by vacuum fluctuations at the teat end[11]. The infection occurs after bacteria gain entrance to the mammary gland via the teat canal and evade the cellular and humoral defense mechanisms of the mammary gland to establish disease[12]. If the infection is not eliminated, bacterial levels in the mammary gland eventually rise to a level at which they begin to damage the mammary epithelium and alveoli in the gland, making them start to lose structural integrity and the blood–milk barrier is breached, leading to visible changes include external swelling of teat, reddening of the gland, and clotting[11]. Hence, the present study was undertaken to understand the histopathological changes of mouse mammary gland tissue damage, when induced by increasing order of graded doses of S. aureus inoculum for a constant time of infection and in another experiment with a constant dose of S. aureus inoculum at increasing order of durations of infection.

2. Materials and methods

2.1. Inoculum preparation

The intramammary inocula preparation was based on the method described by Brouillette et al. with minor modifications[13]. S. aureus was isolated from a clinical case of bovine mastitis and grown overnight at 37 °C in the tryptic soy broth medium to reach mid–exponential growth. The actual number of colony forming unit (CFU) injected was confirmed by spreading the inoculum onto an agar plate and counting the colonies after overnight incubation. Bacterial concentration of the culture was determined using a standard curve plotting CFU as a function of the absorbance at 600 nm, the cultures were further serially diluted and suspended in phosphate buffer saline (PBS) to the desired number of CFU/mL.

2.2. Animals

Laboratory bred adult female Swiss albino mice were used in the experiments. Mice aged 90 d old weighing between 25–30 g was used. They were housed in separate polypropylene cages containing sterile paddy husk as bedding material. The mice were provided with standard mice pellet diet Gold Mohar (Krish Scientist’s Shopee, Bangalore) and water ad libitum. The mice were maintained under normal day/night schedule (12 : 12) at room temperature (25±2) °C.

2.3. Mouse mastitis model of infection

The intramammary inoculation technique was based on the method described by Brouillette and Malouini[14]. The lactating mice used for inducing intramammary infection were of 12–14th day of the parturition weighing 35–38 g. The pups were removed 1–2 h before bacterial inoculation of mammary glands and a mixture of ketamine/xylazine at 87 and 13mg/kg of weight, respectively, was used for anesthesia of the lactating mice. A 1 mL syringe with 28 gauge blunt needle was used to inoculate both L4 (on the left) and R4 (on the right) abdominal mammary glands. The study was approved by the Institutional Animal Ethical Committee, Department of Biotechnology and Microbiology, Karnatak University, Dharwad, India. Committee for the Purpose of Control and Supervision on Experiments on Animals (Animal House Registration No. 639/02/b/ CPCSEA) guidelines were followed for maintenance and use of the experimental animals.

2.4. S. aureus infection profile

To determine the minimal tissue inflammation dose of S. aureus inoculum, six groups of six lactating mice each in a group were used. An inoculum of 5x10⁶ CFU of S. aureus and its five dilutions of inoculum ranging from 10⁻¹ to 10⁻⁷ was inoculated by intramammary infection through R4 and L4 teat canals of the lactating mice mammary gland to observe the mortality rate at 24, 48, 72 and 96 h of infection for each group.

To study dose pathogenicity, lactating mice were divided into one control (group I) and four induced groups (PBS vehicle serves as control) of 5 mice each. S. aureus
inoculum (100 µL/gland) doses of 0.8x10^3, 1.4x10^3, 2x10^3 and 2.8x10^3 CFU were inoculated through R4 and L4 teat canals of mice for the induced groups II, III, IV and V respectively. Mice were euthanized and mammary gland tissues were harvested after 48 h of intramammary infection. Body and mammary gland weight were weighed and histopathological responses of the tissue damage were observed.

Similarly, to study durational pathogenicity, lactating mice were divided into one control (group I) and four induced groups (PBS vehicle serves as control) of 5 mice each. A single dose (100 µL/gland) of 2x10^5 CFU of S. aureus inoculum suspended in PBS was inoculated through R4 and L4 teat canals of the lactating mice for the induced groups II, III, IV and V respectively. Mice were sacrificed and mammary gland tissues were harvested after 24, 48, 72 and 96 h of intramammary infection. Body and mammary gland were weighed and histopathological responses of the tissue damage were observed.

2.5. Histological procedure

For histopathological examination the mammary gland tissues were fixed in aqueous Bouin’s fluid for 24 h and dehydrated in graded series of alcohol, cleared in benzene and embedded in paraffin wax. The paraffin blocks were sectioned at 5 µm thicknesses by LEICA RM2255 microtome and the tissue sections were subjected to rehydration by exposing them to decreasing concentrations of alcohol, 100%→10% and then stained with haematoxylin. The sections were dehydrated by using increasing concentrations of alcohol 10%→100% and then stained with eosin. The stained slides were photographed under Axio Imager M2 for histological studies.

2.6. Statistical analysis

Statistical significance between the control and experimental data were subjected to One-way analysis of variance (ANOVA) together with post-hoc Dunnett’s test (P<0.05).

3. Results

3.1. Clinical symptoms, body and mammary gland weight

In the present study the inoculated mice were examined daily for local and generalized reactions. Local reactions ranged from darkening of the skin at the base of the teat to obvious swelling of the infected mammary gland. Generalized reactions, when they occurred, included ruffled coat, hunched appearance, weakness and in some cases death. The results revealed that there was 50% mortality in S. aureus inoculum 5x10^3 CFU and 40% in the first dilution at 24 h and consecutive mortality was observed after 48, 72, 96 h of infection and surviving mice were killed at 96 h. The mortality rate observed became the basis to choose the minimal tissue inflammation dose of S. aureus inoculum strain to induce the intramammary infection for further studies (Table 1).

Table 1: Clinical observations of mice mastitis induced by S. aureus.

| Groups | Inoculum (CFU) | Clinical observations at |
|--------|---------------|-------------------------|
|        | 24 h | 48 h | 72 h | 96 h |
| I      | 5x10^3 | 3 D, 3 M | 1 D, 2 M | 2 D | - |
| II     | 10^3  | 2 D, 3 M | 1 D, 3 M | 2 D, 1 M | 1 K |
| III    | 10^2  | 6 M | 1 D, 3 M | 1 D, 4 M | 3 D, 1 K |
| IV     | 10^1  | 6 M | 6 M | 1 D, 5 M | 2 D, 3 K |
| V      | 10^0  | 6 M | 1 D, 5 M | 1 D, 4 M | 1 D, 3 K |
| VI     | 10^-1 | 6 M | 6 M | 1 D, 5 M | 1 D, 4 K |

Number of mice in each group is 6 and 2 teats (R4 and L4) inoculated, *S. aureus* inoculated, *S0*% mortality, *S40*% mortality. Mortality rate observed after 48, 72, 96 h of 96 h of intramammary infection for further studies.

There was a significant decrease in body and mammary gland weight at doses 2x10^2 and 2.8x10^3 CFU for 48 h and at durations of 48, 72 and 96 h for 2x10^5 CFU of S. aureus inoculum. The body and mammary gland weights of mice were decreased as the doses and durations of the S. aureus inoculum increased in the induced groups, respectively, compared to that of control (Table 2 and 3).

Table 2: Effect of graded doses of S. aureus inoculum induced mastitis on body and mammary gland weights in mice.

| Groups | Inoculum (CFU) | Body weight (g) | Mammary gland weight (g) |
|--------|---------------|----------------|-------------------------|
| I      | Control       | 35.50±1.56     | 0.28±0.38               |
| II     | 0.8x10^3      | 35.30±2.34     | 0.27±0.42               |
| III    | 1.4x10^3      | 35.90±0.98     | 0.243±0.64              |
| IV     | 2x10^3        | 33.70±1.48     | 0.178±0.56              |
| V      | 2.8x10^3      | 31.80±1.86     | 0.143±0.72              |

Values are mean±SEM of 5 animals, *Significant P<0.05 r.s. control.

Table 3: Temporal effect of S. aureus inoculum induced mastitis on body and mammary gland weights in mice.

| Groups | Time of infection (h) | Body weight (g) | Mammary gland weight (g) |
|--------|-----------------------|----------------|-------------------------|
| I      | Control               | 37.40±1.36     | 0.316±0.56              |
| II     | 24                    | 36.30±1.68     | 0.283±0.64              |
| III    | 48                    | 35.70±2.12     | 0.237±0.35              |
| IV     | 72                    | 34.10±1.24     | 0.182±0.47              |
| V      | 96                    | 32.60±1.44     | 0.138±0.53              |

Values are mean±SEM of 5 animals, *Significant P<0.05 r.s. control.

3.2. Histopathology

Histopathological changes of lactating mammary gland tissue of mice inoculated with PBS, which served as control and S. aureus inoculum induced groups at the doses 0.8x10^3, 1.4x10^3, 2x10^3 and 2.8x10^3 CFU for 48 h are presented in Figure 1. The present histological observations of control mammary gland showed no polymorphonuclear neutrophils (PMN), leukocyte infiltrations, compactly arranged epithelial and luminal cells of healthy alveoli.
filled with milk proteins, fat and lipid droplets as secretory products (Figure 1a). The mammary gland tissue of S. aureus inoculum induced groups caused massive PMN infiltrations and alveolar atrophy showing discontinuous epithelial and luminal cell lining and disturbed secretory products (Figure 1b–e). The aetiological symptoms were progressively observed as the CFU of S. aureus inoculum increased and prominently observed in 1.4×10^2, 2×10^2 and 2.8×10^3 CFU induced groups, when compared with that of control.

**Figure 1.** Histopathological changes of lactating mammary gland tissue of mice inoculated with PBS control and S. aureus inoculum induced groups at the doses 0.8×10^1, 1.4×10^2, 2×10^2 and 2.8×10^3 CFU for 48 h. Arrow represents alveoli, arrow head denotes PMN infiltration and star indicates secretory products. Magnifications 10×.

Histopathological changes of lactating mammary gland tissue of mice inoculated with PBS, which served as control, and S. aureus inoculum induced groups for durations of 24, 48, 72 and 96 h at 2×10^2 CFU are depicted in Figure 2. The present histological observations of control mammary gland showed no PMN’s leukocyte infiltrations, intact epithelial and luminal cells of alveoli filled with healthy secretory products (Figure 2a). The mammary gland tissue of S. aureus inoculum induced groups produced massive PMN infiltrations, alveolar damage exhibited irregular epithelial and luminal cell lining and unstable secretory products (Figure 2b–e). The symptoms were increasingly witnessed as the duration of CFU of S. aureus inoculum increased and significantly observed in 48, 72 and 96 h induced groups, when compared with that of control.

**Figure 2.** Histopathological changes of lactating mammary gland tissue of mice inoculated with PBS control and a dose of 2×10^2 CFU of S. aureus inoculum induced groups for durations 24, 48, 72 and 96 h of infection. Arrow represents alveoli, arrow head denotes polymorphonuclear neutrophil infiltration and star indicates secretory products. Magnifications 10×.

4. Discussion

Mastitis, the inflammation of the mammary gland, is characterized by the disruption of endothelial and epithelial integrity, the release of inflammatory mediators, and extensive neutrophil infiltration[15]. S. aureus is the major pathogen which infects the bovine udder causing severe clinical mastitis. The mouse model is used to study the host pathogen interaction of bovine mastitis disease by inducing the bacterial mastitis through intramammary inoculation of bacterial pathogens into the teat canal of the host mammary gland[16]. In the present study S. aureus inoculum dose of 5×10^4 CFU showed 50% mortality and first dilution of same dose showed 40% mortality at 24 h which may be due to severe pathophysiological infection, arresting the body systems and leading to the death. This inoculum dose became the basis to choose the minimal tissue inflammation dose of S. aureus inoculum strain to induce the intramammary infection for further studies. Akin results were reported with related clinical observations[13].

In the present study there was a significant decrease in body and mammary gland weight at dose 2×10^2 and 2.8×10^3 CFU for 48 h and at durations of 48, 72 and 96 h for 2×10^2 CFU induced groups respectively. Decrease in body and mammary gland weights of mice was observed as the dose and duration of S. aureus inoculum increased, which might
be due to the severe infection, progressive depression, weakness, and suppressed intake of the food. The bacterial load replicated rapidly and filled the alveolar space by PMN’s leading to decrease in milk volume, milk energy, or mammary gland weight and tissue damage[17]. Similar results were reported suggesting that the severity of mastitis may also progress to include systemic involvement such as fever, depression and loss of appetite which thereby results in decrease of body and mammary gland weights[18]. Thus, intramammary bacterial infection decreased the body and mammary gland weights of mice. In the present study histopathological evidences revealed massive infiltration of PMN leukocytes, the migration of PMN to the mammary gland tissue is due to the inflammation induced by S. aureus intramammary infection. Similar evidences were reported suggesting that infiltration by PMN in the mammary gland tissue is the hallmark of S. aureus mastitis[13,17]. In the present study it was observed that PMN infiltration was significantly increased and evident both in 2×10^7 and 2.8×10^7 CFU induced groups, indicating dose pathogenicity and at 72 and 96 h induced groups and durational pathogenicity of the intramammary infection respectively. It may be due to the presence of functional PMN is crucial to the host defense against bacterial pathogens but neutrophils may promote tissue injury and disturb mammary function, via reactive oxygen metabolite generation[19]. Further, PMN accumulated in the alveolar space damaged secretory products such as milk proteins, lipid droplets and fats, which might be due to the loss of action of phagocytosis of bacteria by the PMN’s leading to the tissue damage, were in accordance with earlier observations[20]. In the present study the alveolar damage witnessed in the induced groups of both dose and durational experiments showed progressive, unstable and discontinuous linings of epithelial, luminal and myoepithelial cell destructions. Alveoli damage was significantly evident both in 2×10^7 and 2.8×10^7 CFU induced groups, indicating dose pathogenicity and at 72 and 96 h induced groups and durational pathogenicity of the intramammary infection respectively. The recent studies revealed the presence of toxin producing genes in the S. aureus isolated from milk of the cow with bovine mastitis[21]. The alveolar damage may be due to toxins produced by S. aureus infection which destroy cell membranes, directly damaging milk-producing tissue. Cellular damage observed may be due to apoptosis or necrosis in tissue caused by migration of PMN to the mammary gland tissue attributing intramammary bacterial infection[22,23]. Analogous results were observed in naturally infected and S. aureus induced mastitis of bovine mammary gland tissue[24]. Similar results were also reported on experimentally induced mastitis by S. aureus in mice, suggesting that the tissue damage was initiated by intramammary bacterial infection[17]. In the present study tissue injury causing alveolar destruction led to the decrease of secretory products such as milk proteins, lipid droplets and fat content due to the bacterial infection which act by rapidly dividing in the host by inhibiting the phagocytosis by PMN cells. Secretory products significantly decreased both in 2×10^7 and 2.8×10^7 CFU induced groups, indicating dose pathogenicity and at 72 and 96 h induced groups and durational pathogenicity of the intramammary infection respectively. Similar inferences were reported suggesting that PMN accumulated in the alveolus reduced the secretion of milk products, thereby damaging alveoli and secretory products[11,12]. Histopathological evidences were comparable with findings referred in the literature for the pathogenesis of S. aureus induced mastitis in mice[14]. The present study results inferred that intramammary infection of S. aureus in mice damaged the mammary gland tissue. The increase in S. aureus inoculum doses and durations of infection increased the migration of quantity of PMN infiltration and intermittent quantity of virulence factors increased over time, leading to mammary gland tissue damage. The anatomical and cellular defense mechanisms of mammary gland weakened in function owing to the intramammary infection. Thus, histopathological changes and atrophies revealed that the tissue damage was due to increase in inoculum doses and durations of infection induced by S. aureus.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgements

The authors are grateful to the Department of Biotechnology, Ministry of Science and Technology, Government of India, New Delhi, for funding the Interdisciplinary Program for Life Science Project (BT/PR/4555/INF/22/126/2010 dated 30–09–2010), Bioinformatics Infrastructure Facility Project (BT/BI/25/001/2006 VOL II dt 05–03–2012) and P. G Departments of Microbiology and Biotechnology Karnatak University, Dharawad for providing the facilities.

Comments

Background

Worldwide, mastitis is one of the most important diseases in the dairy sector. The bovine mastitis caused by S. aureus has increased in many herds of urban and rural areas of the country. S. aureus constitute the majority of disease causing bacteria. It is known that the bacterial virulence proteins can influence the pathogenesis of the lesions. Mammary tissue damage has been shown to be induced by either apoptosis or necrosis. Both bacterial factors and host immune reactions contribute to epithelial tissue damage. During infection of the mammary glands, the tissue damage can initially be caused by bacteria and their products.

Research frontiers

In this paper the authors have made an attempt to
understand the histopathological changes of mouse mammary gland tissue damage when, induced by doses of \textit{S. aureus} inoculum at increasing order of durations of infection.

**Related reports**

This study shows that the tissue injury causing alveolar destruction leads to significant decrease in secretory products such as milk proteins, lipid droplets and fat content due to the bacterial infection, which act by rapidly dividing in the host by inhibiting the phagocytosis by PMN cells. These findings are in line with Zhao and Lacasse (2008); Sordillo and Streicher (2002) suggesting PMN accumulated in the alveolus reduced the secretion of milk products, thereby damaging alveoli and secretory products.

**Innovations & breakthroughs**

Even though it is accepted that neutrophils, bacteria, host proteases and cytokines contribute to mammary tissue injury during mastitis, many finer details are still unidentified. This study adds information to the literature which helps to understand the pathogenesis mechanisms.

**Applications**

It may be important to know the changes in histopathology of mammary gland during dose and durational study. This study has showed that the increased dose and duration of \textit{S. aureus} inoculum has significant effect of mammary tissues of mouse.

**Peer review**

The results are interesting and suggested that increased dose and duration of \textit{S. aureus} inoculum has substantiated effect on mammary tissues of mouse. This is a good study in which the authors evaluated the histopathological changes of mammary gland induced by \textit{S. aureus} in mice.

**References**

[1] Sears PM, McCarthy KK. Management and treatment of staphylococcal mastitis. \textit{Vet Clin North Am Food Anim Pract} 2003; 19: 171–185.

[2] Tenhagen BA, Hansen I, Reinecke A, Heuwieser W. Prevalence of pathogens in milk samples of dairy cows with clinical mastitis and in heifers at first parturition. \textit{J Dairy Res} 2009; 76: 179–187.

[3] Myles IA, Datta SK. \textit{Staphylococcus aureus}: an introduction. \textit{Semin Immunopathol} 2012; 34: 181–184.

[4] Chandler RL. Ultrastructural pathology of mastitis in the mouse. \textit{Br J Exp Pathol} 1970; 51(6): 639–645.

[5] Guo M, Zhang N, Li D, Liang D, Liu Z, Li F, et al. Biaclalin plays an anti-inflammatory role through reducing nuclear factor–\kappa B and p38 phosphorylation in \textit{S. aureus}–induced mastitis. \textit{Int Immunopharmacol} 2013; 16: 125–130.

[6] Li D, Fu Y, Zhang W, Su G, Liu B, Guo M, et al. Salidroside attenuates inflammatory responses by suppressing nuclear factor–\kappa B and mitogen activated protein kinases activation in lipopolysaccharide–induced mastitis in mice. \textit{Inflamm Res} 2013; 62: 9–15.

[7] Chen H, Mo X, Yu J, Huang Z. Alpinetin attenuates inflammatory responses by interfering toll–like receptor 4/nuclear factor kappa B signaling pathway in lipopolysaccharide–induced mastitis in mice. \textit{Int Immunopharmacol} 2013; 17: 26–32.

[8] Demon D, Ludwig C, Breyne K, Guédé D, Dörner JC, Froymán R, et al. The intramammary efficacy of first generation cephalosporins against \textit{Staphylococcus aureus} mastitis in mice. \textit{Vet Microbiol} 2012; 160: 141–150.

[9] Leitner G, Pinchasov Y, Morag E, Spamer Y, Jacoby S, Eliau D, et al. Immunotherapy of mastitis. \textit{Vet Immunol Immunopathol} 2013; 153: 209–216.

[10] Plastridge WN. Bovine mastitis: a review. \textit{J Dairy Sci} 1958; 41: 1141–1181.

[11] Zhao X, Lacasse P. Mammary tissue damage during bovine mastitis: causes and control. \textit{J Anim Sci} 2008; 86: 57–65.

[12] Sordillo LM, Streicher KL. Mammary gland immunity and mastitis susceptibility. \textit{J Mammary Gland Biol Neoplasia} 2002; 7: 135–146.

[13] Brouillette E, Grondin G, Lefebvre C, Talbot BG, Malouin F. \textit{Staphylococcus aureus} mastitis model of infection for antimicrobial compound efficacy studies against intracellular and extracellular forms of \textit{Staphylococcus aureus}. \textit{Vet Microbiol} 2004; 101: 253–262.

[14] Brouillette E, Malouin F. The pathogenesis and control of \textit{Staphylococcus aureus} induced mastitis: study models in the mouse. \textit{Microbes Infect} 2005; 7: 560–568.

[15] Bradley A. Bovine mastitis: an evolving disease. \textit{Vet J} 2002; 164: 116–128.

[16] Notebaert S, Meyer E. Mouse models to study the pathogenesis and control of bovine mastitis. A review. \textit{Vet Q} 2006; 28: 2–13.

[17] Brouillette E, Grondin G, Talbot BG, Malouin F. Inflammatory cell infiltration as an indicator of \textit{Staphylococcus aureus} infection and therapeutic efficacy in experimental mouse mastitis. \textit{Vet Immunol Immunopathol} 2005; 104: 163–169.

[18] Sordillo LM. New concepts in the causes and control of mastitis. \textit{J Mammary Gland Biol Neoplasia} 2011; 16: 271–273.

[19] Paape MJ, Rannerman DD, Zhao X, Lee JW. The bovine neutrophil: structure and function in blood and milk. \textit{Vet Res} 2003; 34: 597–627.

[20] Capuco AV, Ellis SE, Hale SA, Long E, Erdman RA, Zhao X, et al. Lactation persistency: insights from mammary cell proliferation studies. \textit{J Anim Sci} 2003; 81: 18–31.

[21] Akineden O, Annemüller C, Hassan AA, Lämmler C, Wolter W, Zschöck M. Toxin genes and other characteristics of \textit{Staphylococcus aureus} isolates from milk of cows with mastitis. \textit{Clin Diag Lab Immunol} 2001; 8: 959–964.

[22] Akers RM, Nickerson. Mastitis and its impact on structure and function in the ruminant mammary gland. \textit{J Mammary Gland Biol Neoplasia} 2011; 16: 275–289.

[23] Yu JJ, Bao SL, Yu SL, Zhang DQ, Loo WT, Chow LW, et al. \textit{Streptococcus uberis} genotypic characterization and control of bovine mastitis. \textit{J Dairy Sci} 2009; 92: 269–289.

[24] Brouillette E, Grondin G, Talbot BG, Malouin F. Inflammatory cell infiltration as an indicator of \textit{Staphylococcus aureus} infection and therapeutic efficacy in experimental mouse mastitis. \textit{Vet Immunol Immunopathol} 2005; 104: 163–169.

[25] Sordillo LM. New concepts in the causes and control of mastitis. \textit{J Mammary Gland Biol Neoplasia} 2011; 16: 271–273.

[26] Paape MJ, Rannerman DD, Zhao X, Lee JW. The bovine neutrophil: structure and function in blood and milk. \textit{Vet Res} 2003; 34: 597–627.

[27] Capuco AV, Ellis SE, Hale SA, Long E, Erdman RA, Zhao X, et al. Lactation persistency: insights from mammary cell proliferation studies. \textit{J Anim Sci} 2003; 81: 18–31.

[28] Akineden O, Annemüller C, Hassan AA, Lämmler C, Wolter W, Zschöck M. Toxin genes and other characteristics of \textit{Staphylococcus aureus} isolates from milk of cows with mastitis. \textit{Clin Diag Lab Immunol} 2001; 8: 959–964.

[29] Akers RM, Nickerson. Mastitis and its impact on structure and function in the ruminant mammary gland. \textit{J Mammary Gland Biol Neoplasia} 2011; 16: 275–289.

[30] Yu JJ, Bao SL, Yu SL, Zhang DQ, Loo WT, Chow LW, et al. \textit{Streptococcus uberis} genotypic characterization and control of bovine mastitis. \textit{J Dairy Sci} 2009; 92: 269–289.

[31] Brouillette E, Grondin G, Talbot BG, Malouin F. Inflammatory cell infiltration as an indicator of \textit{Staphylococcus aureus} infection and therapeutic efficacy in experimental mouse mastitis. \textit{Vet Immunol Immunopathol} 2005; 104: 163–169.

[32] Sordillo LM. New concepts in the causes and control of mastitis. \textit{J Mammary Gland Biol Neoplasia} 2011; 16: 271–273.

[33] Paape MJ, Rannerman DD, Zhao X, Lee JW. The bovine neutrophil: structure and function in blood and milk. \textit{Vet Res} 2003; 34: 597–627.