Acknowledgments: Enroll-HD is a longitudinal observational study for Huntington’s disease families intended to accelerate progress toward therapeutics; it is sponsored by the CHDI Foundation, a nonprofit biomedical research organization exclusively dedicated to developing therapeutics for HD. Enroll-HD would not be possible without the vital contribution of the research participants and their families.

Amy C. Ogilvie, MS, 1,2
Pedro Gonzalez-Alegre, MD, PhD, 3,4† and
Jordan L. Schultz, PharmD1,5,6†
1Department of Psychiatry, Carver College of Medicine at the University of Iowa, Iowa City, Iowa, USA
2Department of Epidemiology, College of Public Health at the University of Iowa, Iowa City, Iowa, USA
3Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
4Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
5Department of Neurology, Carver College of Medicine at the University of Iowa, Iowa City, Iowa, USA
6Division of Pharmacy Practice and Sciences, University of Iowa College of Pharmacy, Iowa City, Iowa, USA

References
1. Ott A, Stolk RP, Hofman A, van Harskamp F, Grobbee DE, Breteler MM. Association of diabetes mellitus and dementia: the Rotterdam study. Diabetologia 1996;39(11):1392–1397.
2. Sequeir ER. The final frontier: how does diabetes affect the brain? Diabetes 2010;59(1):4–5.
3. Bello-Chavolla OY, Antonio-Villa NE, Vargas-Vazquez A, Avila-Funes JA, Aguilar-Salinas CA. Pathophysiological mechanisms linking type 2 diabetes and dementia: review of evidence from clinical, translational and epidemiological research. Curr Diabetes Rev 2019;15(6):456–470.
4. Farhadi A, Vosough M, Zhang JS, Tahamtani Y, Shahpasand K. A possible Neurodegeneration mechanism triggered by diabetes. Trends Endocrinol Metab 2019;30(10):692–700.
5. Schultz JL, Harshman LA, Langbehn DR, Nopoulos PC. Hypertension is associated with an earlier age of onset of Huntington’s disease. Mov Disord 2020;35(9):1558–1564.
6. Zhang Y, Long JD, Mills JA, et al. Indexing disease progression at study entry with individuals at-risk for Huntington disease. Am J Med Genet B Neuropsychiatr Genet 2011;156B(7):751–763.
7. Bendlin BB. Antidiabetic therapies and Alzheimer disease. Dialogues Clin Neurosci 2019;21(1):83–91.

Expanding the Spectrum of AP5Z1-Related Hereditary Spastic Paraplegia (HSP-SPG48): A Multicenter Study on a Rare Disease

Biallelic mutations in AP5Z1 are known to cause a rare, autosomal-recessive, complex form of hereditary spastic paraplegia (HSP) referred to as SPG48 (MIM#613647). 1 To date, only 11 SPG48 patients have been reported. The clinical spectrum of SPG48 is complex and heterogeneous, presenting with neuropathy, ataxia, dystonia, and parkinsonism in addition to spastic paraplegia (SP). AP5Z1 codes for the subunit of the AP-5 complex, implicated in vesicular-mediated intracellular sorting and trafficking of cargo proteins. 1 - Functional studies demonstrate the accumulation of multilamellar structures (endolysosomes) in SPG48 skin fibroblasts. 2

Here, we screened 2035 HSP patients from 3 tertiary centers (Athens, University of Athens [UOA]; London, University College London; and Paris, Paris, Sciences & Lettres [PSL], Assistance Publique-Hôpitaux de Paris [APHP]) for mutations in AP5Z1 and performed functional studies in 2 cases with pathogenic variants in AP5Z1. We also present a literature review for AP5Z1 cases, a pathway analysis, and follow-up data on previously reported patients, where available (Supplementary Material 1, 4, and 5).

In total, 9 patients from 8 unrelated families carrying biallelic pathogenic variants in AP5Z1 were identified (Fig. 1; Supplementary Material 1). We show that AP5Z1-related disease usually presents with a combination of late-onset SP (mean: 54.3 ± 5.3 years) and axonal neuropathy. Other frequent clinical features in our cohort were urinary incontinence, hearing loss, and visual impairment. Interestingly, 1 patient had epileptic seizures. Brain magnetic resonance imaging (MRI) was available for 6 patients. Leukoencephalopathy and thinning of the corpus callosum (TCC) were present in 1 patient and “ears of the lynx” sign, a “moth-eaten” appearance of the basal ganglia, and TCC in another (Fig. 2). The remaining 4 patients had normal MRI.

Our extended analysis of all SPG48 patients identified in the literature (Supplementary Material 1) shows that 22 AP5Z1 variants are linked to SPG48 worldwide, including...
the 8 newly reported here. Follow-up data were obtained from 3 SPG48 patients, all of whom had a disease duration of ≥10 years. The progression of the disease was slow (Supplementary Material 5), with the phenotype consisting of predominantly severe lower-limb spasticity with patients becoming wheelchair-bound after 10 years from onset.

AP5Z1 protein levels in patient fibroblasts were reduced to undetectable levels, correlating with an accumulation of lysosomal-associated membrane protein 1 (LAMP1)-positive structures and a 25% deficit in recycling between endosomes and Golgi (Fig. 3, Fig. 4, Supplementary Material 6). This was also supported by functional enrichment analyses which pinpointed that within the network of HSP-associated genes mediating membrane trafficking, AP5Z1 relates to endosomal trafficking, determining the fate of sorting endosomes toward lysosomal fusion, the plasma membrane, or the trans-Golgi network (Supplementary Material 4).

In this study we expanded the phenotypic and genotypic spectrum of SPG48 showing that SPG48 is a slowly progressing, late-onset, complicated HSP manifesting with SP,
axonopathy, cognitive impairment in line with the SPG48 patients reported so far [and in Refs 1 and 3] and, interestingly, epileptic seizures (patient G, Supplementary Material 3). Epileptic seizures have not been previously reported in SPG48; however, they are well described in other HSP subtypes, such as SPG11 and SPG15, which are functionally related to SPG48 and in many lysosomal storage diseases. Indeed, our functional studies on SPG48 cell lines confirm defects in endosome and lysosome homeostasis. We also confirm here previously described neuroimaging findings (“ears of the lynx” sign, TCC, and white matter lesions) in a subgroup of patients.

To date, no specific therapies are approved for HSP. Of note, treatment strategies are proposed in complex forms of HSP such as cholesterol-lowering agents for HSP-CYP7B1 (SPG5A), as CYP7B1 gene is involved in the degradation of cholesterol into primary bile acids. A randomized-controlled trial showed that atorvastatin treatment can effectively lower 27-hydroxycholesterol levels in the serum of SPG5 patients, and evolocumab (PCSK9 inhibitor) is currently evaluated in a phase 2 clinical trial (NCT04101643). In addition, “tideglusib” (GSK3β inhibitor) was tested on iPS neuronal lines of an SPG11 patient and decreased cell death.
Our study strengthens the evidence supporting autophagic dysfunction as one of the underlying molecular pathways in HSP\(^7\) and further expands the phenotypic spectrum of AP5Z1-related SPG48.

Acknowledgments: We thank the participants and their families for their essential help with this work. The Greek family was recruited as part of the SYNaPS Study Group collaboration funded by the Wellcome Trust and strategic award (Synaptopathies) funding (WT093205 MA and WT104033AIA). This research was conducted as part of the Queen Square Genomics group at University College London, supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre. This work was supported by the Wellcome Trust (Synaptopathies strategic award [104033]), a Wellcome Trust Multi-User Equipment Grant, Muscular Dystrophy UK (MD UK), MDC USA, and the Medical Research Council (MRC UK International Centre and project grants), the French Strumpell-Lorrain association, Spastic Paraplegia Foundation, the MRC (MR/S01165X/1, MR/S005021/1, G0601943), the National Institute for Health Research University College London Hospitals Biomedical Research Centre, Rosetree Trust, Ataxia UK, MSA Trust, Brain Research UK, Sparks GOSH Charity, Muscular Dystrophy UK (MD UK), Muscular Dystrophy Association (MDA USA), European Union funding (grant 779257 Solve-RD from the Horizon 2020 Research and Innovation Programme) was provided to G.S. J.H. was supported by grants from the Wellcome Trust: 086598 and 214272 to Microsoft Research Cambridge. G.K. acknowledges support from Genesis Pharma (Grant Number 13044) special account for research grants for the National and Kapodistrian University of Athens.

Marianthi Breza, MD, MSc,\(^1\)†* Jennifer Hirst, PhD,\(^2\)† Viorica Chelban, MD, MSc,\(^3,4\)† Guillaume Banneau, MD, PhD,\(^5,6\) Laurène Tissier, MD,\(^5\) Bophara Kol, MD,\(^5\) Thomas Bourinaris, MD,\(^3\) Samia A. Said, MD,\(^5\) Yann Péréon, MD,\(^7\) Anna Heinzmann, MD,\(^5\) Rabab Debs, MD,\(^8\) Raul Juntas-Morales, MD,\(^9\) Victoria G. Martinez, MD,\(^9\) Jean P. Camdessanche, MD,\(^9\) Clarisse Scherer-Gagou, MD,\(^9\) Jean-Médard Zola, MD,\(^9\) Alkyoni Athanasiou-Fragkouli, MSc,\(^9\) Stephanie Efthymiou, MSc,\(^3\) George Vavougios, MD, PhD,\(^10\) Georgios Velonakis, MD, PhD,\(^11\) Maria Stamelou, MD, PhD,\(^1,12,13\) John Tzartos, MD, PhD,\(^1\)

FIG. 4. Functional studies on SPG48 patient fibroblasts. (A) Immunofluorescence microscopy of patient-derived fibroblasts and treated with monensin for 90 minutes followed by washout for 2.25 hours. In APSZ1-deficient patient lines, there is reduced retrieval of GOLIM4 back to the juxtanuclear region (where GM130 is located) compared to healthy control patient lines. Scale bar: 20 μm.; (B) Quantification of the retrieval defect (the reduction in the level of colocalization of GOLIM4 and GM130) was performed for 2 independent SPG48 patient-derived fibroblast lines using Pearson’s correlation coefficient. At least 20 cells were quantified per condition. Data show mean of 3 independent experiments and results of a 2-tailed Mann-Whitney U test: **\(P < 0.01\). [Color figure can be viewed at wileyonlinelibrary.com]
Constantin Potagas, MD, PhD, 1
Thomas Zambelis, MD, PhD, 3
Caterina Mariotti, MD, PhD, 14
Craig Blackstone, MD, PhD, 15
Jana Vandrovcova, PhD, 3
Theodoros Mavridis, MD, 1
Chrisoula Kartanou, MSc, 1
Leonidas Stefanis, MD, PhD, 3, 16
Nicholas Wood, MD, PhD, 3, 16
Georgia Karadima, PhD, 1
Eric LeGuern, MD, PhD, 3, 16

Hirst J, Madeo M, Edgar JR, et al. Complicated spastic paraplegia in patients with AP5Z1 mutations (SPG48). Neurol Genet 2016;2:e98.
https://doi.org/10.1212/NXG.0000000000000098

Hirst J, Edgar JR, Esteves T, et al. Complicated spastic paraplegia: clinical features and pathogenetic mechanisms. Lancet Neurol 2008;7:1127–1138.
https://doi.org/10.1016/S1474-4422(08)70258-8

Schols L, Fratiglioni L, Houlden H, et al. Hereditary spastic paraplegia: clinical features and pathogenetic mechanisms. Lancet Neurol 2003;2:137–144.
https://doi.org/10.1016/S1474-4422(02)00309-1

References

1. Hirst J, Edgar JR, Esteves T, et al. Loss of AP-5 results in accumulation of aberrant endolysosomes: defining a new type of lysosomal storage disease. Hum Mol Genet 2013;22:4984–4996.
https://doi.org/10.1093/hmg/ddt220

2. Hirst J, Edgar JR, Estéves T, et al. Loss of AP-5 results in accumulation of aberrant endolysosomes: defining a new type of lysosomal storage disease. Hum Mol Genet 2013;22:4984–4996.
https://doi.org/10.1093/hmg/ddt220

3. Pensato V, Castellotti B, Gellera C, et al. Overlapping phenotypes in complex spastic paraplegias: SPG15, SPG35 and SPG48. Brain 2014;137:1907–1920.
https://doi.org/10.1093/brain/awu121

4. Salinas S, Proukakis C, Crosby A, Warner TT. Hereditary spastic paraplegia type 5: natural history, biomarkers and a randomized controlled trial. Brain 2017;140:3112–3127. https://doi.org/10.1093/brain/awx273

5. Pozner T, Schray A, Regensburger M, et al. Tideglusib rescues neurite branching of complex spastic paraplegia. Front Neurosci 2018;12:1–10.
https://doi.org/10.3389/fnins.2018.00914

6. Kara E, Tucci A, Manzoni C, et al. Genetic and phenotypic characterization of complex hereditary spastic paraplegia. Brain 2016;139: 1904–1918. https://doi.org/10.1093/brain/aww111

Supporting Data

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site.

PRKRA-Related Disorders:
Bilateral Striatal Degeneration in Addition to DYT16 Spectrum

Biallelic mutations on PRKRA cause a rare form of progressive generalized dystonia with bulbar involvement and parkinsonism (DYT16). So far, 32 PRKRA mutated patients have been reported, and brain magnetic resonance imaging (MRI) was normal in all cases except one boy who presented with bilateral striatal degeneration (BSD). We recently observed 2 nonrelated patients who presented at 30 (number 1) and 14 (number 2) months of life, with recurrent fever-induced episodes of acute encephalopathy resulting in cognitive impairment, axial hypotonia, limb spasticity, generalized dystonia, hypomimia, and hypokinesia. MRI revealed BSD in both (Fig. 1), associated to cerebellar atrophy in one.

Whole-exome sequencing detected biallelic PRKRA variants in patient 1: the known mutation P222L and the novel variant G43S were considered likely pathogenic according to ACMG guidelines. Patient 2 had the known C213F variant.

[Corrections added on 12 March 2021 after first online publication: Correspondence address updated for Belen Perez-Dueñas.]

© 2021 International Parkinson and Movement Disorder Society

*Correspondence to: Dr. Davide Tonduti, Child Neurology Unit, COALA (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children’s Hospital, Via Castelvetro 32, 20154, Milan, Italy; E-mail: davide.tonduti@asst-fsb-sacco.it or Dr. Belen Perez-Dueñas, Faculty of Medicine, Universitat Autònoma de Barcelona, Unitat Docent Vall d’Hebron Passeig Vall d’Hebron 119-129a, 08035, Spain; E-mail: belen.perez@vhir.org

1 Belen Perez-Dueñas and Davide Tonduti are both senior authors of this manuscript.

Relevant conflicts of interest/financial disclosures: The authors have no potential conflicts of interest to disclose.

Funding agencies: For #2genetic diagnosis was performed based on a research project funded by Instituto de Salud Carlos III, grant/award number: P118/01319.

Received: 28 August 2020, Revised: 1 December 2020, Accepted: 21 December 2020

Published online 19 February 2021 in Wiley Online Library (wileyonlinelibrary.com), DOI: 10.1002/mds.28492