Receptor oligomerization: from early evidence to current understanding in class B GPCRs

Stephanie Y. L. Ng, Leo T. O. Lee and Billy K. C. Chow*

Endocrinology, School of Biological Sciences, The University of Hong Kong, Hong Kong, China

INTRODUCTION

G protein-coupled receptors (GPCRs) comprise the largest subset of cell surface receptors which transduce signals via coupling to heterotrimetric G proteins and are extensively involved in the fine-tuning of physiological processes. They constitute at least 3% of the human genome and have great pathophysiological importance with an abundance of information indicating their dysfunction to be associated with diseases such as diabetes, visual disability, and chronic inflammation. As a result, at least 30–40% of pharmaceutical drugs developed are targeted at GPCRs. Traditionally, GPCRs were recognized to elicit physiological responses via coupling as monomeric units to G proteins in a 1:1 stoichiometric ratio. However, there is now a growing body of evidence confirming that GPCRs can self-associate or associate with different receptors to form homo- and/or hetero-oligomers. With the wealth of information recently discovered, oligomerization has been implicated to play important roles in maturation, cell surface delivery, signaling, and internalization of GPCRs. The concept of oligomerization is groundbreaking as it not only widens our perspective in understanding the molecular determinants to receptor regulation and pharmacological drugs developed are targeted at GPCRs. Typically, GPCRs have been used to study the dimeric nature of angiotensin II receptor (ADRA1; Veiter et al., 1984) and human platelet α2-adrenergic receptor (ADRA2; Veiter et al., 1983) which each have molecular masses of 160 kDa. Alternatively, cross-linking experiments, using photoaffinity labeling reagents, cell permeable cross-linkers, and internalization of GPCRs have also provided biochemical evidence complementing earlier observations of oligomerization. For example, immunoaffinity chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed the subunit molecular weight of mammalian lung ADRA2 to be 59 kDa, while radiation inactivation of ADRA2 resulted in a functional subunit molecular weight of 109 kDa (Fraser and Veiter, 1982). Taken together, the contrasting molecular sizes indicate that ADRA2s exist in the membrane as dimers of two subunits (Fraser and Veiter, 1982). Similar suggestions have also been made for the rat liver membrane α1-adrenergic receptor (ADRA1; Veiter et al., 1994) and human platelet α2-adrenergic receptor (ADRA2; Veiter et al., 1983) which each have molecular masses of 160 kDa. Alternatively, cross-linking experiments, using photoaffinity labeling reagents, cell permeable cross-linkers, agonists, and antagonists (Capponi and Catt, 1980; Paglin and Jamieson, 1982; Guillemette and Escher, 1983; Rogers, 1984; Carson et al., 1987; Rondeau et al., 1990; Siemens et al., 1991) have been used to study the dimeric nature of angiotensin II (ANGII) receptors. Using similar methods, other GPCRs such as the dopamine D2 (Ng et al., 1996), calcium-sensing (Bus et al., 1998), and chemokine (Rodriguez-Frade et al., 1999) receptors have also been demonstrated to exist as dimeric units. Other experiments such as photoaffinity labeling of MRs from various brain regions and the heart have also provided evidence for the presence of interconvertible dimers and tetramers (Avisar et al., 1983). The idea of higher order oligomerization was further supported by...
comparable findings of thyrotropin hormone receptor complexes (Genneick et al., 1987).

In the 1990s, another line of evidence demonstrating GPCR oligomerization stemmed from trans-complementation, and dominant-negative and -positive effect studies on co-expression of chimeric and mutant receptor constructs. One of the first experiments of these series was performed in 1993 by co-expression of chimeric muscarinic and adrenergic receptors composed of their C-terminal units (Maggio et al., 1993). Although no binding activity was detected when the chimeras were expressed individually, co-expression restored ligand binding to a level comparable to wild-type receptors and allowed agonist-dependent phospholipase C (PLC) activation (Maggio et al., 1993). These observations were explained as molecular interaction of the chimeras restoring functionality in a heteromeric complex (Maggio et al., 1993). Other trans-complementation studies for GPCRs such as the ANGI type 1α (AGTR1α; Monnot et al., 1996), somatostatin (SST – SST1 and SST5; Rocheville et al., 2000) and dopamine (D1 and D3; Scarselli et al., 2001) receptors have also provided useful information in support of GPCR oligomerization. This concept was further explored in experiments showing dominant-negative or -positive effects such as those observed with the antidiuretic V2 vasopressin (Zhu and Weiss, 1998) and ADRB2 (Hebert et al., 1998), respectively. Although there are reports of different functional effects, the various studies described are useful in offering more clues to molecular interactions amongst GPCRs.

Though earlier experiments provided a large pool of information suggesting GPCR oligomerization, there was still no direct evidence to support this concept. Early western blot studies often showed presence of immunoreactive bands with molecular masses two or more times greater than a single receptor (Harrison and van der Graaf, 2006). Western blot was later performed in combination with immunoprecipitation using antibodies to endogenous or epitope tagged-receptors, providing for the first time direct evidence of GPCR interaction. Using this technique, homodimerization of ADRB2 (Hebert et al., 1996) was demonstrated. For example, cross-species oligomerization was also detected in rat serotonergic receptors with lyosphosphatidic acid receptors 1 and 3 and γ-aminobutyric acid B2 receptors (Salim et al., 2002), dopamine D1 and D2 receptors (Lee et al., 2004), and a9 and β2 adrenergic receptors (Uberti et al., 2005).

RET APPROACH IN GPCR OLIGOMERIZATION

Since the days of radioactive inactivation experiments, the concept of GPCR oligomerization has been confirmed with emergence of biophysical data providing more in-depth evidence. In the last decade, RET techniques have gained popularity and are one of the best resolution strategies developed for direct study of GPCR interactions. The basis of these techniques lies in non-radiative energy transfer from an excited “donor” molecule to an “acceptor” (Wu and Brand, 1994). Bioluminescence RET (BRET) and fluorescence RET (FRET) are two of the most widely used RET approaches. BRET relies on a naturally occurring biophysical process in marine species between a luminescent donor and fluorescent acceptor, while only fluorescent molecules are utilized in FRET (Wu and Brand, 1994). These have provided advantages over traditional biochemical methods including high signal to noise ratios, use of intact cells, precise targeting of fusion receptors and actual quantification of the proportion and type of GPCR oligomers formed, and therefore are currently the most commonly used methods. Based on these approaches, a wide range of GPCRs have since been identified to function as oligomers, including the yeast α-factor (Overton and Blumer, 2000), dopamine D2 (Wacht et al., 2001), thyrotropin (Latif et al., 2001, 2002), opioid (Ramsay et al., 2002), neuropeptide Y (Dinger et al., 2003), melatonin (Ayoub et al., 2004), adrenergic (Mercier et al., 2002; Ramsay et al., 2002; Carvile et al., 2004), and chemokine (Pecherancier et al., 2005) receptors. Despite the successes in identifying various oligomers, there are several drawbacks of the BRET and FRET techniques. With regards to these aforementioned RET techniques, a primary concern is that the signals generated cannot be used to discriminate between non-mature and mature proteins within the various cellular locations (e.g., intracellular complexes and plasma membrane). Therefore, the information provided is essentially limited and more steps may be needed to address this concern. Moreover, another drawback of BRET and FRET is potential bleed-through artifacts which may be due to spectral overlaps, substrate instability, and auto-luminescence from serum containing medium, which together skew the interpretation of the results (Pfeifer et al., 2006; Gandia et al., 2008). Therefore, the careful use of appropriate controls and fluorescent molecules need to be considered when using these RET techniques for the study of oligomerization. More recently, homogenous time-resolved fluorescence (HTRF) which combines FRET with time-resolved measurements has also been considered. HTRF provides the advantage of increasing assay sensitivity and accuracy via replacing donor molecules with rare-earth lanthanides (e.g., europium cryptate) whose properties include non-auto-fluorescence and long emission half-lives (Degorce et al., 2009). Using HTRF, a number of receptors have been identified to dimerize, e.g., GABA (Maurel et al., 2004) and metabolic glutamate-like receptors (Rondard et al., 2006; Brock et al., 2007) and oligomerize, e.g., dopamine D2 (Guo et al., 2008) and histamine H4 (Albiu et al., 2006) receptors. Fluorescence lifetime imaging microscopy (FLIM) is also useful in overcoming the drawback of the use of intact cells and bleed-through in BRET and FRET assays. Moreover, FLIM can also provide useful information on the proportion of non-dimerizing and dimerizing partners and also visual images indicating where the signals are localized, for example the dimerization of the transcription factor CCAAT and enhancer binding protein-α in live mouse pituitary cell nuclei (Sun et al., 2011).

OLIGOMERIZATION OF CLASS B GPCRs

Although techniques in studying oligomerization have existed for more than three decades, information with regards to the class B GPCRs is still in its infancy and largely contributed by the newer RET techniques. In class A GPCRs, several important interfaces including the transmembrane (TM) domains have been identified to contribute toward oligomerization. Moreover, oligomerization has also been shown to play a role in modulating function, via altering parameters such as ligand binding, signaling, and trafficking. Though the SCT receptor (SCTR) remains to be the most extensively studied class B GPCR, information regarding other class B
GPCRs continues to grow. Collectively, the SCT superfamily of hormones and receptors represent important drug targets due to their physiological roles in glucose homeostasis, feeding behavior, and vascular contractility. They are characterized by a large N-terminal extracellular domain (ECD) containing six cysteine residues for disulfide bond formation and N-glycosylation sites for receptor conformation and ligand binding. The N-terminal ectodomain is linked to seven hydrophobic TM domains arranged in α-helical bundles connected by three exoloops, three endoloops, and a short cysteolic C-terminus (Miller et al., 2007). Currently, there are intense efforts to link the various structural domains to oligomerization in hopes of unraveling the specific molecular determinants that may affect certain pathological conditions. Taken together, information regarding the oligomerization of class B GPCRs will be highly valuable in enhancing the specificity of future drug design.

SECRETIN RECEPTORS

The SCTR was first cloned from the rat in 1991 (Ishihara et al., 1991) and is now recognized as one of the most extensively studied class B GPCRs, and the first that was demonstrated to have the ability to form oligomers. By investigating wild-type and exon-3 splice variants using confocal imaging and BRET, SCTR has been shown to be capable of homo- and heterodimerization (Ding et al., 2002a,b; Tables 1 and 2). When expressed alone, the exon-3 splice variant receptors lack SCT binding and signaling activity but are able to traffic normally to the cell surface. However, co-expression of the variant with the wild-type SCT results in a dominant-negative effect, indicating direct physical interaction. Since the variant receptor is predominantly expressed, comprising up to 70% of SCTR in gastrinoma, over the wild-type receptor, heterodimerization has been suggested to be an underlying factor in facilitating tumor growth through its dominant-negative effects.

Table 1 | Homodimerization of class B GPCRs.

Homodimer	Technique	Key domain	Reference	
SCTR/SCTR	Morphological FRET	GxxG motif independent	Ding et al. (2002a), Hanikumar et al. (2006, 2007),	
	BRET	Lipid-exposed TM4 residues	(2008b), Lisenbee and Miller (2008)	
GCGR/GCGR	BRET	n/a	Poed et al. (2012), Schelshorn et al. (2012)	
GLP1R/GLP1R	BRET	n/a	Schelshorn et al. (2012), Whitaker et al. (2012)	
VIPR1/VIPR1	BRET	n/a	Schelshorn et al. (2012), Whitaker et al. (2012)	
VIPR2/VIPR2	Morphological FRET	n/a	Hanikumar et al. (2006)	
ADOCA/ADOCA	Time-resolved FRET	n/a	Maurel et al. (2008)	
GHRH/GHRH	Co-immunoprecipitation	ECD α-helix (human: Ile104, Arg179, Val182, Leu187)	Pioszak et al. (2010)	
PTH1R/PTH1R	Crystallography	'BRET	Schelshorn et al. (2012), Whitaker et al. (2012)	
CALCR/CALCR	Co-immunoprecipitation	Lipid-exposed TM4 residues	Seck et al. (2003), Hanikumar et al. (2010)	
CALCR/CALCR	BRET	C-terminal tail		
CALCR/CALCR	Co-immunoprecipitation	n/a	Herox et al. (2007)	
CRHR1/CRHR1	FRET	Pseudo signal peptide (based on rat	Kraetke et al. (2005), Young et al. (2007), Teichmann et al. (2012)	
CRHR2a/Asn13	BRET			

Techniques used for study and domains indicated to be important are described: SCTR, secretin receptor; GCGR, glucagon receptor; GLP1R, glucagon-like peptide 1 receptor; GLP2R, glucagon-like peptide 2 receptor; VIPR1, vasoactive intestinal peptide receptor; VIPR2, VIP receptor 2; ADOCA, adenylate cyclase type 1 receptor; GHRH, growth hormone-releasing hormone receptor; PTH1R, parathyroid hormone receptor type 1; CALCR, calcitonin receptor; CALCRL, CALCRL-like receptor; CRHR, corticotropin-releasing hormone receptor; FRET, fluorescence resonance energy transfer; BRET, bioluminescence resonance energy transfer; n/a, information not available.
Table 2 | Heterodimerization of class B GPCRs.

Heterodimer	Technique	Key domain	Reference
SCTR/RL3R	BRET	n/a	Harikumar et al., 2006b
GLP1R/GIPR	BRET	n/a	Schelshorn et al., 2012
GLP1R/GIPR	BRET	n/a	Schelshorn et al., 2012
GLP1R/GIPR	BRET	n/a	Schelshorn et al., 2012
GLP1R/GIPR	BRET	n/a	Schelshorn et al., 2012
GLP1R/GIPR	BRET	n/a	Schelshorn et al., 2012
VIPR2/GIPR	BRET	n/a	Harikumar et al., 2006

Techniques used for study are described.

This study in 2002 was a breakthrough for class B GPCRs, showing the first physiological relevance of class B GPCR oligomerization. Taken together with data from subsequent studies, SCTR homodimerization is now recognized to occur, independent of ligand binding (Ding et al., 2002a; Harikumar et al., 2009).

To decipher the molecular determinants of oligomerization, receptors with mutated N- and C-terminal domains were studied (Lisenbee and Miller, 2006). Mutant receptors, as expected, were unable to bind to the plasma membrane, but the ability to still produce BRET signals above background suggested that the TM spanning core alone was sufficient for oligomerization (Lisenbee and Miller, 2006). Moreover, SCTR suggested that the TM spanning core alone was sufficient for oligomerization (Lisenbee and Miller, 2006), which is essential for oligomerization of class A receptors, such as the yeast helix–helix motif (Lisenbee and Miller, 2006). This was similarly the case for GCGRs (Roed et al., 2012). Homodimerization of each GCG family receptor member has been reported through BRET experiments (Schelshorn et al., 2012), however, these events remained unconfirmed with the lack of appropriate negative controls and the fact that another group was unable to repeat some of these results (Roed et al., 2012). Amongst the receptors, the GCG receptor (GCGR) and GIP receptor (GIPR) exhibited the strongest ability to homodimerize but BRET signals were slightly reduced upon application of GCG or GIP, while the GLP receptors were weakly responsive and unaffected by agonist stimulation (Schelshorn et al., 2012). Further studies with BRET saturation experiments confirmed GLP1R and GIPR homodimerization, with some agonist-induced reduction (Schelshorn et al., 2012). On the basis of these results, it was suggested that ligand binding leads to a decrease in affinity and conformational change of the homodimers (Schelshorn et al., 2012). In a similar study, the same BRET saturation results were obtained for the GLP1R; however, no changes were observed when GLP1 was added (Roed et al., 2012). This was similarly the case for GCGRs (Roed et al., 2012). Taken together, it is highly likely that the GCG subfamily receptors are able to form homodimers (Table 1), while further studies with appropriate use of controls are necessary to solidify this conclusion.

Despite the controversy, heterodimerization of GLP1R and GIPR has been confirmed by BRET saturation and kinetic experiments (Roed et al., 2012; Schelshorn et al., 2012; Whitaker et al., 2012). The heterodimerization event between GLP1R and GIPR was found to be dose-dependently induced by GLP1 and inhibited by GIP (Schelshorn et al., 2012). Further application of GLP1 and its antagonists to this system showed heterodimerization to occur independently to GLP1R activation, but was induced by ligand binding, with BRET signals reaching a maximum 10–30 s after ligand binding (Harikumar et al., 2007). Although no direct pathophysiological connection has been made regarding these new data, reduced signaling of monomeric forms suggests that SCTR dimers are necessary in optimizing functionality (Harikumar et al., 2007).

Most recently, bimolecular luminescence complementation and BRET experiments have clarified SCTR’s existence as homodimers and not higher order oligomers (Harikumar et al., 2008a). Therefore, previous references to oligomerization of SCTRs should be referred to as homodimerization unless otherwise stated. Aside from homodimers, SCTRs have also been implicated to form heterodimers with a wide range of class B GPCRs, including the glucagon-like peptide 1 receptor (GLP1R), glucagon-like peptide 2 receptor (GLP2R), vasoactive intestinal peptide receptor 1 (VIPR1), vasoactive intestinal peptide receptor 2 (VIPR2), growth hormone-releasing hormone receptor (GHRHR), parathyroid hormone 1 receptor (PTH1R), parathyroid hormone 2 receptor (PTH2R), and calcitonin receptor-like (CALCRL, Harikumar et al., 2006, 2008b; Table 2).

GCG, GLP1, GLP2, and GIP Receptors

Receptors for glucagon (GCG), glucagon-like peptide 1 (GLP1), glucagon-like peptide 2 (GLP2), and glucose-independent insulinotropic polypeptide (GIP) are well-known regulators of carbohydrate, fat, and protein metabolism. Oligomerization within the GCG subfamily of receptors was recently identified but with some controversy (Roed et al., 2012; Schelshorn et al., 2012). Homodimerization of each GCG family receptor member has been reported through BRET experiments (Schelshorn et al., 2012), however, these events remained unconfirmed with the lack of appropriate negative controls and the fact that another group was unable to repeat some of these results (Roed et al., 2012). Amongst the receptors, the GCG receptor (GCGR) and GIP receptor (GIPR) exhibited the strongest ability to homodimerize but BRET signals were slightly reduced upon application of GCG or GIP, while the GLP receptors were weakly responsive and unaffected by agonist stimulation (Schelshorn et al., 2012). Further studies with BRET saturation experiments confirmed GLP1R and GIPR homodimerization, with some agonist-induced reduction (Schelshorn et al., 2012). On the basis of these results, it was suggested that ligand binding leads to a decrease in affinity and conformational change of the homodimers (Schelshorn et al., 2012). In a similar study, the same BRET saturation results were obtained for the GLP1R; however, no changes were observed when GLP1 was added (Roed et al., 2012). This was similarly the case for GCGRs (Roed et al., 2012). Taken together, it is highly likely that the GCG subfamily receptors are able to form homodimers (Table 1), while further studies with appropriate use of controls are necessary to solidify this conclusion.

Despite the controversy, heterodimerization of GLP1R and GIPR has been confirmed by BRET saturation and kinetic experiments (Roed et al., 2012; Schelshorn et al., 2012; Whitaker et al., 2012). The heterodimerization event between GLP1R and GIPR was found to be dose-dependently induced by GLP1 and inhibited by GIP (Schelshorn et al., 2012). Further application of GLP1 and its antagonists to this system showed heterodimerization to occur independently to GLP1R activation, but was induced by ligand binding, with BRET signals reaching a maximum 10–30 s after ligand binding (Harikumar et al., 2007). Although no direct pathophysiological connection has been made regarding these new data, reduced signaling of monomeric forms suggests that SCTR dimers are necessary in optimizing functionality (Harikumar et al., 2007).

Most recently, bimolecular luminescence complementation and BRET experiments have clarified SCTR’s existence as homodimers and not higher order oligomers (Harikumar et al., 2008a). Therefore, previous references to oligomerization of SCTRs should be referred to as homodimerization unless otherwise stated. Aside from homodimers, SCTRs have also been implicated to form heterodimers with a wide range of class B GPCRs, including the glucagon-like peptide 1 receptor (GLP1R), glucagon-like peptide 2 receptor (GLP2R), vasoactive intestinal peptide receptor 1 (VIPR1), vasoactive intestinal peptide receptor 2 (VIPR2), growth hormone-releasing hormone receptor (GHRHR), parathyroid hormone 1 receptor (PTH1R), parathyroid hormone 2 receptor (PTH2R), and calcitonin receptor-like (CALCRL, Harikumar et al., 2006, 2008b; Table 2).

GCG, GLP1, GLP2, and GIP Receptors

Receptors for glucagon (GCG), glucagon-like peptide 1 (GLP1), glucagon-like peptide 2 (GLP2), and glucose-independent insulinotropic polypeptide (GIP) are well-known regulators of carbohydrate, fat, and protein metabolism. Oligomerization within the GCG subfamily of receptors was recently identified but with some controversy (Roed et al., 2012; Schelshorn et al., 2012). Homodimerization of each GCG family receptor member has been reported through BRET experiments (Schelshorn et al., 2012), however, these events remained unconfirmed with the lack of appropriate negative controls and the fact that another group was unable to repeat some of these results (Roed et al., 2012). Amongst the receptors, the GCG receptor (GCGR) and GIP receptor (GIPR) exhibited the strongest ability to homodimerize but BRET signals were slightly reduced upon application of GCG or GIP, while the GLP receptors were weakly responsive and unaffected by agonist stimulation (Schelshorn et al., 2012). Further studies with BRET saturation experiments confirmed GLP1R and GIPR homodimerization, with some agonist-induced reduction (Schelshorn et al., 2012). On the basis of these results, it was suggested that ligand binding leads to a decrease in affinity and conformational change of the homodimers (Schelshorn et al., 2012). In a similar study, the same BRET saturation results were obtained for the GLP1R; however, no changes were observed when GLP1 was added (Roed et al., 2012). This was similarly the case for GCGRs (Roed et al., 2012). Taken together, it is highly likely that the GCG subfamily receptors are able to form homodimers (Table 1), while further studies with appropriate use of controls are necessary to solidify this conclusion.
after addition of GLP1 (Scheibhorn et al., 2012). More specifically, the heterodimers were suggested to play a role in atherosclerotic modulation with arrestin recruitment. In basal conditions, GLP1R and GIPR are proposed to exist mainly as monomers or homodimers, GLP1, under low concentrations (<30 nM), acts as a high affinity ligand for functioning of GLP1R but switches to become a low affinity ligand to GIPR with high concentrations (>30 nM). This promotes formation of heterodimers with altered G protein coupling resulting in GPR-like activity that can later be dissociated in the presence of GIP (Scheibhorn et al., 2012). Heterodimerization of GLP1R and GIPR was also confirmed by a later study with wild-type GLP1R rescuing mutant GIPR function (Whitaker et al., 2012).

VIP/PACAP RECEPTORS

To elicit physiological response, vasoactive intestinal peptide (VIP) and pituitary adenyl cyclase activating polypeptide (PACAP) bind to three receptors, namely VIPR1, VIPR2, and PACAP receptor type 1 (ADCYAP1R). Discoveries of VIPR1 and VIPR2 homodimers were made during the study of SCTR oligomerization in 2006 (Harikumar et al., 2006; Table 1). These physical interactions were demonstrated by BRET experiments and found to be modulated by agonist but not antagonist binding (Harikumar et al., 2006). In the same study, BRET results also indicated that VIPR1 and VIPR2 to form hetero-oligomers and VIP binding was found to affect this association negatively (Harikumar et al., 2006; Table 2). Formation of these-oligomeric complexes was also supported by co-immunoprecipitation studies (Langer et al., 2006). Besides formation of hetero-oligomers between the two subtypes, both VIPRs can oligomerize with SCTR. Interestingly, co-expression of SCTR with either VIPR resulted in strong intracellular FRET signals, suggesting the trapping of hetero-oligomers within organelles of the biosynthetic pathway (Harikumar et al., 2006). Since this retention occurred independent to SCTR and VIP interaction, it has been described as a regulatory step, allowing SCTR to have dominant-negative effects by inhibiting VIP’s action on cells expressing both receptors (Harikumar et al., 2006). Within a physiological context, the SCTR and VIP receptors are often co-expressed; therefore information regarding their physical interactions may provide some insights toward diseases such as pancreatic carcinomas (Efstathiou et al., 1981; Duggal et al., 2002a). Of the receptor trio, information regarding ADCYAP1R1 oligomerization is scarce with only one study indicating its homodimerization by time-resolved FRET studies (Maurer et al., 2008; Table 1).

GROWTH HORMONE-RELEASING HORMONE RECEPTORS

Growth hormone-releasing hormone (GHRH) is a hypothalamic peptide responsible for stimulating growth hormone release and disruption of the peptide-receptor pair often results in abnormal growth, such as dwarfism or gigantism. GHRHRs have been suggested to form oligomers, with co-expression of mutant and wild-type receptors having dominant-negative effects (McElvaine and Mayo, 2006). The physical interaction amongst GHRHRs was implied with the reduction of ligand binding ability and cyclic adenosine monophosphate (cAMP) production to 60% in presence of truncated receptors (McElvaine and Mayo, 2006). These observations were further supported by detection of both receptor forms by differentially tagged co-immunoprecipitation studies (McElvaine and Mayo, 2006). The relevance of these findings has been hypothesized in the context of pituitary adenomas for example, with preferential expression of the mutant receptor down-regulating signaling and thus modulating growth hormone release (Matsuno et al., 1999).

PARATHYROID HORMONE RECEPTORS

Parathyroid hormone receptors (PTHRs) play an important role in calcium homeostasis and bone maintenance, mediating the effects of its natural ligands parathyroid hormone (PTH) and PTH-related protein (PTHRP). In 2008 and 2009, the crystal structures of PTH and PTHrP bound human PTHR1 were determined by engineering the receptor as a readily crystallizing maltose binding protein (Pissazk and Xu, 2008; Pissazk et al., 2009). A “hot dog bun” three-layer α-β-α fold structure was described, forming the central hydrophobic groove within which the ligands in an amphipathic helical fashion docked (Pissazk and Xu, 2008; Pissazk et al., 2009). More importantly, the crystal structures depicted ligand binding to PTHR1 ECD monomers in a 1:1 stoichiometric ratio (Pissazk and Xu, 2008; Pissazk et al., 2009). Interestingly a year later, the crystal structure of ligand-free PTHR1 showed the ECDs as dimers (Pissazk et al., 2010). These ECD dimers were formed in a similar fashion to ligand-bound PTHR1, with the C-terminal of one ECD forming α-helices to occupy the peptide-binding groove of the other (Pissazk et al., 2010). Besides crystallography, BRET and FRET experiments also supported existence of these ECD-mediated PTHR1 homodimers (Pissazk et al., 2010). To confirm the ligand-independent nature of ECD dimerization shown by the crystal structures, PTH was applied to PTHR1s in BRET studies and as predicted, led to agonist-induced dissociation of the PTHR1 homodimers (Pissazk et al., 2010). Furthermore, co-expression of mutant and wild-type ECD PTHR1s showed that monomeric units of the PTHR1 were sufficient for functionality (Pissazk et al., 2010). With the discovery of monomeric and dimeric units of PTHR1, this may be useful in understanding how the two biologically distinct peptides PTH and PTHrP are able to modulate function through binding to the same receptor (Pissazk et al., 2010).

CALCITONIN AND CORTICOTROPIN-RELEASING HORMONE RECEPTORS

Targeting mainly osteoblasts, calcitonin is important in calcium homeostasis and has anorectic and analgesic effects in the central nervous system. In a study focused on rabbit calcitonin receptors (CALCRs), homo- and heterodimers of the alternatively spliced CALCR type 1a isoform (CALCR1a) were detected by co-immunoprecipitation and FRET analyses (Schock et al., 2003). Co-expression resulted in a dominant-negative effect of the splice variant Δe13 over CALCR1a, resulting in reduced CALCR1a surface expression, cAMP response, and extracellular signal-regulated kinase (ERK) phosphorylation (Schock et al., 2003). The combined data highlight the importance of CALCR1a homodimers in proper expression and functioning, and also suggest a role of Δe13 in regulating CALCR1a expression (Schock et al., 2003). In contrast, both static and saturation BRET studies on the human CALCR were found unable to form homodimers...
Within the large superfamily of cell surface proteins, obligatory be examined with emphasis on class B GPCRs, as examples. To decipher the underlying functional significance, the effect of off “by arrestin binding (Xu et al., 1997; Bayburt et al., 2011; Kuszak et al., 2009), kinase phosphorylation and signal “switch-of G proteins (White et al., 2007; Whorton et al., 2007, 2008; Kuszak et al., 2009), kinase phosphorylation and signal “switch-off” by arrestin binding (Xu et al., 1997; Bayburt et al., 2011). To decipher the underlying functional significance, the effect of GPCR oligomerization on various functional properties needs to be examined with emphasis on class B GPCRs, as examples.

Functional Consequences of Oligomerization in Class B GPCRs

Within the large superfamily of cell surface proteins, obligatory oligomerization is unique only to class C GPCRs and recognized as a prerequisite for activation and allosteric modulation (Kniaz-eff et al., 2011; Chun et al., 2012). However, in the case of class A and B GPCRs where oligomerization has also been established as a real event, the implications on their functions remain unresolved. This is further complicated by the fact that monomeric GPCRs are demonstrated to be independently capable of regulating sig-nal transduction via a series of processes including the activation of G proteins (White et al., 2007; Whorton et al., 2007, 2008; Kniazev et al., 2009), kinase phosphorylation and signal “switch-off” by arrestin binding (Xu et al., 1997; Bayburt et al., 2011). To decipher the underlying functional significance, the effect of GPCR oligomerization on various functional properties needs to be examined with emphasis on class B GPCRs, as examples.

Ligand Binding

Ligand binding, either with an agonist or antagonist, is fundamental in activating subsequent downstream signaling cascades. Natural ligands for the class B GPCRs share common features, comprising of 25 or more amino acids and have diffuse pharma-cophoric domains (Ulrich et al., 1998). Critical residues have been identified throughout the length of the peptides (Dong et al., 2004, 2008; Mann et al., 2007; Parthier et al., 2009), with the N-terminus recognized as necessary for receptor binding and signaling, whilst the C-terminus contributes mainly to high affinity binding and receptor specificity. Crystallography (Sasaki et al., 1975; Parrhier et al., 2007) and nuclear magnetic resonance (NMR, Grace et al., 2007; Venet et al., Hewage, 2011) analyses have also been useful, elucidating the class B ligands to preferentially assume an α-helical conformation particularly in their C-terminal regions. Structure–activity studies have fur-ther implicated the specific interaction of ligand–receptor regions, with the C-terminal ligand domain first fitting into the recep-tor ECD peptide-binding cleft, thus facilitating the N-terminal ligand domain to associate with the receptor core helical bun-dle domain (Dong et al., 2004, 2008; Mann et al., 2007; Parrhier et al., 2009). Though the molecular interactions described are on the basis of monomeric GPCRs, similar associations may be expected from oligomeric forms. Similarly, molecular modeling and crystallization studies have predicted the binding pockets in SCTR and PTHR homodimers, respectively, to be localized in the extracellular N-terminal domains (Gao et al., 2009; Pioszak et al., 2010). Moreover, the SCTR homodimer peptide-binding cloths are demonstrated to reside opposite to the dimerization interfaces that may allow structural freedom for each protomer to bind to its respective ligand in a 1:1 stoichiometric ratio, as expected for monomeric GPCRs (Gao et al., 2009). Though limited, the two models show oligomerization to have minimal structural modifications in terms of adequately exposing the binding pockets, allowing ligand–receptor interactions in class B GPCRs.

In majority of studies for this receptor class, the use of pepti-de or mutant receptors to inhibit dimerization events have been utilized to explore the contribution of such receptor interactions toward functionality. On the basis of these studies, oligomerization has been demonstrated to have differential effects on the ligand binding affinity of class B GPCRs. Using TM4 peptides that are known to disrupt SCTR homodimerization, both monomeric and dimeric SCTR forms were found to have analogous ligand bind-ing properties (Harikumar et al., 2007). Similarly, oligomerization was also found to have null effects on the ligand binding affinity of PTHR1, with the non-dimerizing R179A/V183A double mutant maintaining wild-type PTH binding activity (Pioszak et al., 2010). In another study, CALCR mutants also bound calcitonin satisfactorily with no statistically significant differences in binding affinity (Harikumar et al., 2010). In contrast, disruption of GLP1R homodimerization by TM4 peptides resulted in elimination of G protein-dependent high affinity binding to GLP1 (7–36)NH2 (Harikumar et al., 2012). Moreover, co-expression of full-length and truncated GHRHRs resulted in a decrease in GHRH ligand binding and has been described to be resultant of the truncated receptor inducing a dominant-negative effect, leading to confor-mational changes which inhibit proper binding (McElvaine and Mayo, 2006). Nevertheless, these contrasting findings are consistent with recent reports of oligomerization having variable effects on the kinetics and efficiencies amongst receptors (Dersch et al., 2009; Kern et al., 2010). Therefore, oligomerization may be important in modulating receptor activity via altering ligand binding affinity only in certain class B GPCRs.

Allostery

In recent studies, a link between oligomerization and allosteric regulation has been established in class B GPCRs. Allostery concerns association of a ligand or molecule to the receptor other than its orthosteric site, modifying its functional properties in either a positive or negative manner (May et al., 2007). Using a clas-sical radio-ligand binding approach, the dissociation of labeled
SCT in the absence or presence of unlabeled SCT was monitored to study the negative binding cooperativity of SCTR s (Gao et al., 2009). The wild-type dimerizing receptors were found to shift from monophasic to biphasic dissociation upon presence of unlabeled SCT peptide, whilst the non-dimerizing mutant receptors maintained monophasic dissociation, regardless of treatment (Gao et al., 2009). On the basis of these results, the homodimeric SCTR s have been speculated to predominantly exist in a G protein-coupled high affinity state and the monomeric forms in a G protein-uncoupled low affinity state (Gao et al., 2009). Though the molecular basis responsible for the allosteric effects are still unknown, steric hindrance by the two large extracellular amino-terminal domain or selectable coupling may be underlying factors contributing to the negative cooperativity observed in SCTR s (Miller et al., 2012). Similarly, the homodimerization event amongst the GCGR and GLP1R have also been identified to exhibit negative cooperativity with addition of labeled native peptides to their respective receptors leading to accelerated dissociation of unlabeled ligands (Roed et al., 2012). More recently, the ECD of the GCGR has been demonstrated to act as a negative regulator of receptor activity through interaction with the third extracellular loop (Koth et al., 2012), a region not only recognized to contribute to receptor affinity and efficacy, but may also aid in optimizing the arrangement of the TM bundle for efficient ligand binding (Peeters et al., 2011). As this case, agonist-occupied homodimers may induce negative cooperativity through structural modifications that affect ligand binding. Though the molecular determinants remain to be confirmed, there is a clear relation between dimerization and negative allosterity. Aside from the typical ligand-induced allosterity, physical coupling of each protomer in an oligomeric complex may also play a role (Wachowiak and McCarty, 2011). Within the class B GPCRs, this has only been demonstrated in heteromers of the GLP1R and GIPR, where GIPR is suggested to act allosterically on the GLP1R to decrease maximal responses in calcium flux and β-arrestin recruitment assays (Schelshorn et al., 2012). In a later study, mutant GIPFR function rescue by wild-type GLP1R was observed, with reduction in GLP1 responsiveness (Whitaker et al., 2012). Again GIPR may be exerting an allosteric effect on GLP1R, but the precise molecular basis needs to be explored with further structural and functional studies. **EFFECTS OF AGONIST OCCUPATION** Besides allosterity, agonist occupation of class B GPCRs can also promote the association or dissociation of oligomeric complexes. In contrast to SCT homodimers that are unaffected by ligand binding (Ding et al., 2002a; Harikumar et al., 2006), GLP1 binders were found to encourage the dimerization between GLP1R and GIPR (Schelshorn et al., 2012). A model proposed describes GLP1 to act as a high affinity ligand for GLP1R at low concentrations, but also becomes a low affinity ligand for GIPR at higher concentrations to trigger formation of the GLP1R and GIPR dimer (Schelshorn et al., 2012). Interestingly, the presence of the high affinity GIP reverses the GLP1 induced association, dissociating the heteromer to a monomeric state (Schelshorn et al., 2012). As previously discussed, the GIPR has allosteric effects on the GLP1R when heterodimerized. Taken together with the agonist-induced association and/or dissociation of receptors, this may be a mechanism by which the receptors activate their G proteins and subsequent downstream signaling cascades (Gomes et al., 2001). Agonist-induced dissociation has also been reported for the PTHR1 via structural mimicry of PTHR1/PTH binding (Pioszak et al., 2010), however the functional relevance remains unclear. Other examples of agonist-induced disruption of oligomerization include VIPR1 and VIPR2 homodimers and VIPR1/VIPR2 heterodimers (Harikumar et al., 2006). **SIGNALLING** Another prominent effect of oligomerization in class B GPCRs is on signaling selectivity and efficiency. In particular, cAMP and PLC are two of the predominant pathways in which physiological responses are elicited through in class B GPCRs. Therefore most oligomerization studies have extended their focus beyond information from ligand binding and BRET studies, but also rely on the cAMP and calcium mobilization responses of receptors. In particular, SCTR s are one of the first class B GPCRs demonstrated to have altered functionality due to homodimerization. By TM4 peptide competition studies, the disruption of SCTR dimerization was found to result in impairment of the generation of cAMP (Harikumar et al., 2007). The dimeric form of SCTR was, therefore, suggested be the optimal conformation for G protein activation (Harikumar et al., 2007). Similarly, disruption of the GLP1R homodimers was found to not only affect cAMP formation and ERK phosphorylation, but also lead to a complete loss of intracellular calcium mobilization response (Harikumar et al., 2012). In the case of GLP1R homodimers, signal transduction involves more than one G protein and/or accessory proteins such as β-arrestins. Nonetheless, dimerization is likely the basis in altering G protein coupling efficiency (Harikumar et al., 2012). This was also evident in the heterodimerization of GLP1 and GIP receptors, with the heteromer having more “GIP-like” (Schelshorn et al., 2012) pharmacological characteristics. Based on most of the studied class B GPCRs, oligomerization seems to exhibit a general trend in affecting G protein activation and signaling efficiency. However, oligomerization should not be a prerequisite for signaling, as monomers such as the PTHR1s have been demonstrated to be capable of activating G proteins on their own (Pioszak et al., 2010). Therefore, oligomerization is likely important in providing structural framework to facilitate G protein coupling and thus modulate function. **TRAFFICKING** A number of studies have suggested the importance of oligomerization in cellular trafficking of the receptors and is a process that occurs early in the biosynthetic pathway (Bulenger et al., 2003). Within the class B GPCRs, this aspect of oligomerization has been most thoroughly explored for the SCTR s. Indeed using a combination of fluorescence and morphologic FRET microscopy studies, the SCTR homodimers were localized within organelles of the biosynthetic pathway including the tubular endoplasmic reticulum, Golgi clusters and the plasma membrane (Lisenbee and Miller, 2006). The homodimerization of SCTR s has therefore been suggested to occur as early as newly synthesized receptors and continue throughout their maturation process.
CLASS B GPCRs

STRUCTURAL ELEMENTS GOVERNING OLIGOMERIZATION IN CLASS B GPCRs

With the class B GPCRs key in a number of pathophysiological diseases and mounting evidence indicating their oligomerization to have influence in modulating various functional properties, this has fueled research in unravelling the structural determinants to date. Majority of studies have suggested the importance of different domains in GPCR oligomerization. However within the class B GPCRs, a concept has been proposed wherein TM4 has been indicated to provide basis for dimerization in cases of SCTR constructs not expressed nor yielded a significant monomeric fragment by photoaffinity labeling: subunit

REFERENCES

Albo, L., Bakou, M. N., Botton, C., Pin, J. F., Mannuzi, M., Mouilac, B., et al. (2006). Probing the existence of Gp umpt-coupled receptor dimers by positive and negative ligand-dependent cooperativeanking: Mol. Pharmacol. 70, 1763–1771.

Armant, S., Amiaux, C., and Sokolovsky, M. (1985). Oligomeric structure of muscarinic receptors is shown by phenylthioethanol: subunit assembly mayexplain high- and low-affinity agonist states. Proc. Natl. Acad. Sci. U.S.A. 82, 156–159.

Ayoub, M. A., Levey, A., Delagrange, P., and Jockers, R. (2004). Preferential formation of MT1/MT2 melatonin receptor heterodimers with distinct ligand interaction properties.

Frontiers in Endocrinology | Neuroendocrine Science January 2013 | Volume 3 | Article 175 | 8

“fendo-03-00175” — 2013/1/2 — 20:01 — page 8 — #8
Carson, M. C., Harper, C. M., Baukal, A. C., Capponi, A. M., and Catt, K. J. (1980).
Carrillo, J. J., Lopez-Gimenez, J. F. (2012). Structure and ligand
receptors.
J. Biol. Chem.
286, 1123–1137.
Dong, M., Lin, P. C., Pinon, D. I., Sexton, P. M., Abagyan, R., and Miller, L. J. (2008). Spatial approxi-
mation between secretin reside field and the third extracellular loop of its receptor provides new insight into the molecular basis of natural ago-
nist binding. Mol. Pharmacol. 74, 415–422.
Dong, M., Lu, A., Te, J. A., Pinon, D. I., Berberian, A. J., and Miller, L. J. (2011). Importance of each residue
within secretin receptor binding and biological activity. Biochemistry 50, 2895–2893.
Dong, M., Pinon, D. I., Con, R. E., and Miller, L. J. (2004). Importance of the amino-terminus in secretin family
GPCR protein-coupled secretin receptor. Intracel-
ular photolabeling establishes initial docking constraints for the calc-
torin receptor. J. Biol. Chem. 279, 11077–11082.
Elsholtz, S., Kleen, K. N., Engel-
hardt, S., Lobes, M. J., and Beamman, M. (2009). Analy-
ysis of receptor oligomerization by FRAP microscopy. Nat. Methods 6, 303–305.
Entwistle, A., Clements, F., and Riber-
t, C. (2001). Adenocarcinoma of the human esophageal pancreas: presence of secretin and cas-
Cartmell, E., Kleinstützer, H., Schindler, T., Wiedenmann, B., and Miller, L. J. (2007). Transmembrane
domain inhibits both dimerization and activa-
tion fluorescence imaging of single molecules. Proc. Natl. Acad. Sci. U.S.A. 104, 2691–2696.
Ding, D., Gu, X., Lim, J., Medlin,
H., Kieny, J. M., Smith, M., and Miller, L. J. (2008a). Dimers and beyond: the functional
importance of a structurally distinct homodimeric complex of the family B G protein-coupled
secretin receptor. Mol. Pharmacol. 79, 226–274.
Sickinger, A. G. (2003). Homod-
ol. Sci.
26, 131–137.
Gao, F., Harikumar, K. G., Dong, M., Lin, P. C., Sexton, P. M., Christopoulos, A., et al. (2009). Func-
tional importance of a structurally distinct homodimeric complex of the family B G protein-coupled
secretin receptor. Mol. Pharmacol. 69, 365–373.
Harkaret, K. G., Pinon, D. I., and Miller, L. J. (2007). Transmembrane segment IV contributes a functionally
important interface for oligomeriza-
tion of the class II G protein-coupled secretin receptor. J. Biol. Chem. 282, N0653–N0672.
Harikumar, K. G., Wootton, D., Pinon, D. I., Koele, C., Ball, A. M., Furness, S. G., et al. (2012). Glucagon-like peptide-1 receptor dimera-
ization differentially regulates agonist signaling but does not affect small molecule allosteric allo-
nych. J. Biol. Chem.
286, 2119–2126.
Horne, T. E., Leoil, T. P., Adam, L., Ethier, N., Ono, S. S., and Bourner, M. (1998). Functional rescue of a constitutively down-
regulated beta2AR through receptor dimerization. Biochem. J. 330(Pt 1), 287–293.
Hurbolt, T. E., Moleti, S., Morladi, J. P., Leoil, T. P., Booth, D. G., Barrow, C., et al. (1996). A peptide derived from a beta2-adrenergic receptor trans-
membrane domain inhibits both receptor dimerization and activa-
tion. J. Biol. Chem. 271, 10684–10692.
Hern, J. A., Baug, A. H., Martin, G. I., Beland, B., Cortez, J. E., Laurence, S., et al. (2010). Formation and dis-
sociation of S1 muscarinic receptor dimers seen by total internal reflection
fluorescence imaging of single molecules. Proc. Natl. Acad. Sci. U.S.A. 107, 2693–2698.
Herna, M., Breton, B., Hugue, M., and Bourner, M. (2007). Theoretical model of GPCR signal-
ning of CERL and RAMP com-
plexes studied by BRET. Biochemistry 46, 7022–7033.
Ishihara, T., Nakamura, S., Kaziro, Y., Ishimaru, T., Nakanishi, S., Minami, K., et al. (2004). Adenocarcinoma of the human esoph-
ogeal pancreas: presence of secretin and cas-
secretin receptor. J. Biol. Chem.
271, 16384–16390.
Jiang K., et al. (2015). "Receptor oligomerization in class B GPCRs." Frontiers in Endocrinology 6, 9.
negative regulation of the ghrelin receptor. Proc. Natl. Acad. Sci. U.S.A. 101, 14939–14940.

Knirze, O., Vinzen, B., Eichhorst, J., Furtkert, J., Boentert, M., and Beyer- mann, M. (2003). Dimerization of corticotropin-releasing factor receptor type 1 is not coupled to ligand binding. J. Recept. Signal Transduct. Res. 23, 257–266.

Kusak, A., Jitkhirikul, S., Aanand, J. P., Mosberg, H. I., Walter, N. G., and Sanakuma, R. K. (2001). Purification and functional reconsti- tution of monomeric mus-opioid receptors: allosteric modulation of agonist binding by Gz2. J. Biol. Chem. 276, 26724–26732.

Laplant, L., Gaspard, N., and Robberecht, P. (2006). Pharmacological prop- erties of Chinese hamster ovary cells coexpressing two vasopressin intox- ical peptide receptors (VP3/VP4C) and VP2/VP4M2. Br. J. Pharmacol. 148, 1055–1059.

Lürl, B., Grano, P., and Davin, T. F. (2003). Oligomerization of the human photoreceptor rhodopsin fluores- cent protein-tagged HIV env reveals post-translational complexes. J. Biol. Chem. 278, 45075–45082.

Lürl, B., Grano, P., and Davin, T. F. (2002). Ligand-dependent inhibition of oligomerization at the human rh- tropin receptor. J. Biol. Chem. 277, 47485–47492.

Lund, S., Sørensen, C., Bahr, A., Vanghe, G., Cheng, K., Lanza, A. J., et al. (2004). DOPamine D2 and D2 co-receptor activation generates a novel phospholipase C-mediated cytosolic calcium response. J. Biol. Chem. 279, 36707–36718.

Maurel, D., Limbird, L. E., Meyts, P. D., and Lefkowitz, R. J. (1975). Beta- adrenergic receptors in smooth muscle. J. Biol. Chem. 246, 8110–8116.

Mélange, V., Segal, Z., and Weiz, J. (1993). Compression studies with mutant muscarinic/adenocortical receptors provide evidence for inter- molecular “cross-talk” between G-protein-coupled receptors. Proc. Natl. Acad. Sci. U.S.A. 90, 3103–3107.

Mann, R., Nao, N., Huddin, D., Sin- field, J., Abid, F., Al-Salibi, S., et al. (2007). Peptide binding at the GLP-1 receptor. Biochim. Biophys. Acta 1771, 713–716.

Matsuno, A., Katsukawa, H., Samet, N., Ogino, Y., Osamura, R. Y., Matsumura, S., et al. (1999). Primary soma- tostatin adenoma producing growth hormone (GH)-releasing hormone (GHRH) with an elevated plasma GHRH concentration: a model case for autoimmune and paracrine regulation of GH secretion by GHRH. J. Clin. Endocrinol. Metab. 84, 3248–3257.

McElvaine, A. T., and Mayo, K. E. (1975). Hydrodynamic properties of the extracellular domain of a G protein-coupled receptor. Trends Biochem. Sci. 10, 561–567.

Müller, D., Knaziev, J., Mathis, G., Trintek, E., Pin, J. F., and Ansaymy, H. (2004). Cell surface detection of membrane protein interaction with homogenous time-resolved fluorescence resonance energy transfer technology. Biochemistry 43, 1525–1532.

Müller, D., Gregoris, A., Brock, C., Rives, M. L., Bourrat, E., Ayed, M. A., et al. (2008). Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technology: application to GPCR-oligomerization. Nat. Methods 5, 961–967.

Müller, D., Knaziev, J., Mathis, G., Trintek, E., Pin, J. F., and Ansaymy, H. (2004). Cell surface detection of membrane protein interaction with homogenous time-resolved fluorescence resonance energy transfer technology. Biochemistry 43, 1525–1532.

Müller, D., Gregoris, A., Brock, C., Rives, M. L., Bourrat, E., Ayed, M. A., et al. (2008). Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technology: application to GPCR-oligomerization. Nat. Methods 5, 961–967.

Ng et al. Receptor oligomerization in class B GPCRs 90, 3103–3107. Acad. Sci. U.S.A. 3107.

Ng et al. Receptor oligomerization in class B GPCRs 90, 3103–3107. Acad. Sci. U.S.A. 3107.

Ng et al. Receptor oligomerization in class B GPCRs 90, 3103–3107. Acad. Sci. U.S.A. 3107.

Ng et al. Receptor oligomerization in class B GPCRs 90, 3103–3107. Acad. Sci. U.S.A. 3107.

Ng et al. Receptor oligomerization in class B GPCRs 90, 3103–3107. Acad. Sci. U.S.A. 3107.

Ng et al. Receptor oligomerization in class B GPCRs 90, 3103–3107. Acad. Sci. U.S.A. 3107.

Ng et al. Receptor oligomerization in class B GPCRs 90, 3103–3107. Acad. Sci. U.S.A. 3107.

Ng et al. Receptor oligomerization in class B GPCRs 90, 3103–3107. Acad. Sci. U.S.A. 3107.

Ng et al. Receptor oligomerization in class B GPCRs 90, 3103–3107. Acad. Sci. U.S.A. 3107.

Ng et al. Receptor oligomerization in class B GPCRs 90, 3103–3107. Acad. Sci. U.S.A. 3107.

Ng et al. Receptor oligomerization in class B GPCRs 90, 3103–3107. Acad. Sci. U.S.A. 3107.

Ng et al. Receptor oligomerization in class B GPCRs 90, 3103–3107. Acad. Sci. U.S.A. 3107.

Ng et al. Receptor oligomerization in class B GPCRs 90, 3103–3107. Acad. Sci. U.S.A. 3107.

Ng et al. Receptor oligomerization in class B GPCRs 90, 3103–3107. Acad. Sci. U.S.A. 3107.

Ng et al. Receptor oligomerization in class B GPCRs 90, 3103–3107. Acad. Sci. U.S.A. 3107.
Receptor oligomerization in class B GPCRs.

Rutz, C., Renner, A., Alken, M., Schulz, K., Beermann, M., Wieser, B., et al. (2004). Homodimerization of the beta2-adrenergic receptor as a prerequisite for cell surface targeting. J. Biol. Chem. 279, 15590-15597.

Salin, K., Fenton, T., Badia, J., Urrutia-Rodriguez, H., Bernat, T., Szymon, H. A., et al. (2002). Oligomerization of G-protein coupled receptors shown by selective co-immunoprecipitation. J. Biol. Chem. 277, 25842-25849.

Savalli, K., Nose, S., Sadaik, D. A., Tsok, T. J., and Buedell, T. (1975). X-ray analysis of glucagon and its relationship to receptor binding. Nature 257, 751-757.

Scarselli, M., Novi, F., Schallmach, E., Schelshorn, D., Joly, F., Mutel, S., Salim, K., Fenton, T., Bacha, Seck, T., Baron, R., and Horne, W. V., et al. (2012). Lateral allosteric peptide. J. Biol. Chem. 287, 279, 33390-33397.

Venter, J. C., Schaber, J. S., O'Prichard, D. C., and Fraser, C. M. (1984). Molecular state of the human placental alpha-2-adrenergic receptor as determined by radiation inactivation. Biochem. Biophys. Res. Commun. 120, 1070-1075.

Whiting, G. M., Lynch, F. C., McIntosh, C. H., and Acil, E. A. (2012). Regulation of GIP and GLP1 receptor cell surface expression by N-glycosylation and receptor homodimerization. FEBS Lett. 587, 196-203.

Wurtz, M. R., Bokoch, M. P., zuska, H. S., Huang, R., Zare, R. N., Koblika, R., et al. (2007). A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc. Natl. Acad. Sci. U.S.A. 104, 12199-12204.

Whorton, M. R., Bokoch, M. P., Rasmussen, S. G., Huang, R., Zare, R. N., Koblika, R., et al. (2007). The Pseudo signal peptide of the beta2-adrenergic receptor is an N-terminal pseudo signal releasing factor receptor type 2a conferring its G protein-coupled receptor cell surface expression by N-glycosylation. Front. Brain Res. 203, 4387-4394.

Wu, F., and Brand, L. (1994). Receptor energy transfer: methods and applications. Annu. Rev. Biochem. 63, 1-13.

Xu, J., Dodd, B. L., Makino, C. L., Simon, M. L., Baylin, D. A., and Chen, J. (1997). Prolonged phosphorylation in transgenic mouse rods lacking artemin. Nature 388, 505-508.

Xu, Z., F. Griffante, C., and Aguilera, G. (2007). Dimerization between vasopressin V1b and corticotropin releasing hormone type 1 receptors. Cell Mol. Neurobiol. 27, 699-704.