Arching Effect and Displacement on Theoretical Estimation for Lateral Force Acting on Retaining Wall

Jun-feng Jiang (✉️ 524973903@qq.com)
Chengdu University of Technology https://orcid.org/0000-0002-2809-4884

Qi-hua Zhao
chengdu university of technology

Shuairun Zhu
chengdu university of technology

Sheqin Peng
chengdu university of technology

Yonghong Wu
Kunming University of Science and Technology

Research Article

Keywords: Retaining wall, Displacement, Arching effect, Numerical model and analysis, Intermediate state

Posted Date: February 22nd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-161970/v1

License: ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Arching effect and displacement on theoretical estimation for lateral force acting on retaining wall

Junfeng Jiang¹; Qihua Zhao¹*; Shuairun Zhu¹; Sheqin Peng¹; Yonghong Wu²

¹State Key Laboratory of Geo-hazard Prevention and Geo-environment Protection, Chengdu University of Technology, 610059, Chengdu, Sichuan, P. R. China
²College of Architectural Engineer, Kunming University of Science and Technology, Kunming City, 650500, Kunming, Yunnan, P. R. China

*corresponding author: zhqh@163.com

Submitted on January 7, 2021
Abstract

A new approach is proposed to evaluate the non-limit active earth pressure in cohesive-frictional based on the horizontal slices method and limit equilibrium method. This approach takes into account the arching effect, displacement, average shear stress of the soil slice, rupture angle and tension cracks. The accuracy of the proposed method is demonstrated by comparing the experimental results and other theoretical methods. The comparison results show that the proposed approach is suitable for calculating the non-limit active earth pressure in cohesive-frictional soil and cohesionless soil. Additionally, the empirical formulations of the mobilized internal friction angle and soil-wall interface friction angle usually used to cohesionless soil are still applied to cohesive-frictional soil through comparison calculated results of other theoretical methods and finite element method. Some valid formulations of the rupture angle and tension cracks were derived considering the cohesion, wall height, and unit weight.

Keywords: Retaining wall; Displacement; Arching effect; Numerical model and analysis; Intermediate state

1 Introduction

An effective estimation of the lateral earth pressure is essential to the design of retaining walls for cohesive or cohesionless soil. The classical Coulomb (1776) theory or Rankine (1857) theory has been widely used as the simple model in practice. However, several laboratories and field results observed for retaining wall shown that the distribution of active earth pressure was nonlinear, and the lateral earth pressure behind the field wall was mostly in the intermediate state (Tsagareli 1965; Matsuo 1978; Bang 1985; Fang 1986; Zhou et al. 1990; Yue et al. 1992). Some scholars have proposed substantially advanced procedures for predicting the nonlinear distribution of the lateral
earth pressure in cohesionless soil (Handy 1985; Paik and Salgado 2003; Lu et al. 2012; Li et al. 2017; Chen et al. 2019). The research results showed that the soil arching led to the nonlinear distribution of active earth pressure (Fang, 1986).

In recent years, various research methods have been applied to calculate the displacement-dependent the lateral earth pressure and evaluate the working status of a retaining wall. These calculated methods of the lateral earth pressure considering the displacement mainly utilize a fitting method of measured data (Mei et al. 2009; Ni et al. 2018), a geotechnical parameter substitution method (Xu et al. 2013; Wang et al. 2015), and a linear model (Bang 1985; Golam et al. 2015), but the arching effect is hardly still considered in these methods.

In addition, there have been many research achievements such as seismic, unsaturated or reinforced active earth pressure in cohesive-frictional soil (Ahmadabadi and Ghanbari 2009; Kumar 2010; Vahedifard et al. 2015), but few studies on the lateral earth pressure of cohesive-frictional soil considering arching effect and displacement (Zhu et al. 2015; Rao et al. 2016). Moreover, many advanced methods were directly based on the assumption of a slip surface angle (45°+φ/2) or the simplified Coulomb rupture angle (Handy 1985; Paik and Salgado 2003; Venanzio 2010; Tu and Jia 2012), which ignored the influence of cohesion and soil-wall interface friction angle for the slip surface and tension cracks. In this paper, an analytical procedure based on static limit equilibrium methods and horizontal slices method is applied to evaluate the non-limit active earth pressure considering the arching effect, displacement, horizontal average shear stress of soil slice and tension cracks.

2 Mobilization of friction angle and cohesion

The lateral earth pressure with the wall movement is gradually variation from an at-rest state to an
active state (Bang 1985). The internal friction angle (ϕ_m), soil-wall interface friction angle (δ_m) and cohesion (c_m) with displacement are gradually mobilized from an initial value to a peak value (Chang 1997). Bang (1985) believed that there is a linear relationship between the mobilized internal friction and displacement, so he first derived the formulation of the non-limit active earth pressure in cohesionless soil. Based on Bang’ study, Chang (1997) and Wang et al. (2015) constructed an empirical distribution mode of mobilized internal friction when the horizontal displacement (s) at the top of the wall exceeded the critical displacement (s_a). In practice, the relationship is not linear between the mobilized internal friction and displacement (Liu 2014; Chen et al. 2019). Furthermore, the critical displacement (s_a, s_c) of the critical internal friction angle and soil-wall interface friction angle are not consistent (Li et al. 2017).

An empirical model about the mobilized friction angle (ϕ_m, δ_m), the initial friction angle (ϕ_0, δ_0) and the critical friction angle (ϕ, δ) can be obtained by Eq. (1) and Eq. (2) in cohesionless soil (Chang1997; Li et al. 2017).

$$
\phi_m = \begin{cases}
\phi_0 + \frac{4 \arctan(s/s_a)}{\pi} (\phi - \phi_0) & (s \leq s_a) \\
\phi & (s \geq s_a)
\end{cases}
$$

$$
\delta_m = \begin{cases}
\delta_0 + \frac{4 \arctan(s/s_c)}{\pi} (\delta - \delta_0) & (s \leq s_c) \\
\delta & (s \geq s_c)
\end{cases}
$$

where s is the horizontal displacement of the wall at the arbitrary depth; s_a is the critical displacement condition corresponding to the maximum internal friction angle; and s_c is the critical displacement corresponding to the maximum soil-wall interface friction angle.

For normally consolidated soil, the internal friction angle (ϕ_0) under the initial state can be obtained by Eq. (3) when the influence of the initial soil-wall interface friction angle is not considered.
where k_0 is the coefficient of the at-rest earth pressure, which can be estimated by the empirical formulation (for example cohesive soil $k_0 = 0.95 - \sin \varphi'$, cohesionless soil $k_0 = 1 - \sin \varphi'$ and overconsolidated soil $k_0 = 1 - \sin \varphi' (OCR)^{sin\varphi}$) (Mayne and Kulhawy 1983; Chen et al. 2019).

Although most scholars have studied the relationship between the mechanical parameters (cohesion and friction angle) and displacement of a retaining wall under translational motion (T mode), few have studies cohesive-frictional soil in this way. Xu et al (2013) derived a formulation for calculating the mobilized internal friction angle of cohesive-frictional soil with displacement through the stress of the Mohr’s circle, which is quite different from some advised approaches for cohesionless soil; but his calculation method for mobilized soil-wall interface friction angle is based on prior achievements for cohesionless soil.

For the relationship between the mobilized cohesion (c_m) and displacement, Xu et al. (2013) obtained the Eq. (5) by the geometric relationship in the stress of the Mohr’s circle.

$$c_m = \frac{c \cdot \tan \Phi_m}{\tan \varphi}$$

For further illustration, the mobilizations of the friction angle in cohesive-frictional soil are presented based on the numerical results. The empirical model and a laboratory model test are used to verify the effectiveness of the numerical results. The finite element model is composed of a 10 m high cantilever retaining wall and silty sand (Matsuo 1978). The boundary conditions are: the thickness of the mesh was 1m to simulate the plane strain state; the total depth of the mesh and the width at the left side of retaining wall were two times the height of retaining wall. The top surface of the mesh is free, the bottom surfaces were fixed, and other sides can only rotate, as shown in Fig.1. The finite element mesh adopts a quadrilateral element. The element size is 0.5 m. The material
parameters are shown in Table 1. The calculated results of the finite element method are shown in Table 2.

Resultant forces of the lateral earth pressure from the at-rest to intermediate active state were recorded with the wall movement. It was observed that resultant forces of the lateral earth pressure decrease and remain at the same pace with the measured values in Fig 2. The shear force \(T \) and lateral resultant force \(N \) acting on retaining wall can be obtained by the finite element method. According to the shear force \(T = N \tan \delta + (H - z) c \) in Fig. 7 and the cohesion of soil-wall interface
\[c_w = c_m \tan \delta_m / \tan \varphi_m \] (Spangler and Handy 1984; Zhu et al 2014), the mobilized soil-wall interface friction angle \(\delta_m \) based on Rankine’s theory can be obtained by Eq. (5).

\[
\delta_m = \arctan \left(\frac{T}{N + cH \cot \varphi - \frac{2(c \cdot \cot \varphi)^2}{\gamma \cot \varphi_m \tan \left(\frac{\pi}{4} - \frac{\varphi_m}{2} \right)}} \right)
\]

where \(T \) and \(N \) are the total vertical shear force and lateral resultant force in the finite element method, which acts on the back of retaining wall, respectively.

Fig. 3 shows that the mobilized soil-wall interface friction angle always keeps increasing with the displacement until the soil is at the limit state. The initial value of the soil-wall interface friction angle \(\delta_0 \) obtained by the finite element method is 3.28°, which is not consistent with half of the limited internal friction angle in Fang’s (1986) experiment. Various errors in the model experiment may have caused certain deformation of the wall and soil, which make the experimental initial value of the soil-wall interface friction angle larger than the ideal initial value. However, for Matsuo’s measured value, the soil-wall interface friction angle is too bigger than the theoretical value. After checking the Mohr’s circle of stress for an arbitrary point near the retaining wall, this phenomenon is impossible (Paik and Salgado 2003). Moreover, according to the measured value and calculated
value by finite element method, the mobilized soil-wall interface friction angle is going to be smaller than the limit internal friction angle (ϕ), which is the same as what Fang (1986) and Li et al. (2017) observed in cohesionless soil. So the influence of the cohesion of the soil-wall interface on the soil-wall friction angle may be ignored in Matsuo’s experiment, which causes the measured value of the soil-wall interface friction angle to be larger. By comparing the calculated values between the theoretical method and finite element method under different conditions, it can be seen that Eq. (2) is also applicable for cohesive-frictional soil. The initial soil-wall interface friction angle is advised to be 0°, and the critical displacement (s_c) is approximately $0.01H$.

Meanwhile, the resultant force of lateral earth pressure based on Rankine’s theory can be expressed by Eq. (6).

$$N = \frac{1}{2} \left(H - \frac{2c_m}{\gamma K_a} \right) (\gamma K_a - 2c_n \sqrt{K_a})$$ \hspace{1cm} (6)

where H is the total height of the retraining wall, and γ is the unit weight of the soil.

By substituting Eq. (4) into Eq. (6), and solving a quadratic equation with one unknown, the mobilized internal friction angle (ϕ_m) can be obtained by Eq. (7).

$$\phi_m = \arcsin \left(\frac{\gamma H (\gamma H + 2c \cot \phi) - 2\sqrt{\gamma N (2\gamma H c \cdot \cot \phi + 2c^2 \cot^2 \phi + \gamma N)}}{(\gamma H + 2c \cot \phi)^2 + 2\gamma N} \right)$$ \hspace{1cm} (7)

The variation of the mobilized internal friction angle with the wall movement is presented in Fig. 4. Comparing the calculating values of the three methods, it shows that Eq. (1) is also applied to cohesive-frictional soil. The initial internal friction angle can be appropriately calculated by Eq. (3). The critical displacement (s_a) is approximately $0.01H$, which is agreement with s_c. It shows that the internal friction angle and soil-wall interface friction angle will reach the limit state at the same displacement.
3 Theoretical considerations

The detailed derivation procedures for the non-limit active earth pressure in cohesive-frictional soil are described in the following section. To facilitate the earth pressure for cohesive-frictional soil considering the arching effect and displacement, the present study makes the following assumptions:

1. The top of retaining wall is horizontal, and there is no load on it.
2. The rigid plate, whose initial condition is upright, rotates around the heel of the wall.
3. It is assumed that there is a polyline potential slip surface in cohesive-frictional soil, when retaining wall does not reach the limit equilibrium condition.
4. The potential slip surface passes through the heel of the wall.
5. The trajectory of the minor principal stress is an arc (Paik and Salgado 2003).

3.1 Coefficient estimation of non-limit active earth pressure

Quinlan (1987) and Kingsley (1989) proved the shape of the soil arching is closer to the arc. According to Paik and Salgado’s theory about soil arching, minor principal stress is always tangent to the arc, and major principal stress is always vertical to the arc tangent. As show in Fig. 5, the radius of the arc for the minor principal stress is \(r \), and the centre of arc is the point \(O \). The depth of tension cracks is \(z \). The length of the trapezoidal layer element is \(L \). The distance between the trapezoidal layer element and the top of the wall is \(y \). The deflection angle between the major principal stress and the horizontal surface is \(\theta_A \) at point A. For point B, the deflection angle between the major principal stress and the horizontal surface is \(\theta_B \). For the arbitrary point \(D \), the deflection angle between the major principal stress and the horizontal surface is \(\theta \).

To simplify the following theoretical derivation, the stress state will be analyzed by the translational coordinate system in Fig. 6. The transition formulation of the old stress and the new
stress is as follows in Eq. (8).

\[
\begin{align*}
\sigma' &= \sigma + \sigma_0 \\
\tau' &= \tau
\end{align*}
\] (8)

where \(\sigma\) and \(\tau\) are the normal stress and shear stress in the old coordinate system \((\tau O \sigma)\), \(\sigma'\) and \(\tau'\) is the normal stress and shear stress in the new coordinate system \((\tau' O \sigma')\), respectively.

According to the Mohr’s circle representation of stresses and stress analysis in Fig. 6, the normal stress \(\sigma_w'\) and shear stress \(\tau_w'\) acting on retaining wall at point A can be expressed by Eq. (9) (Tu et al. 2012; Lou 2015).

\[
\begin{align*}
\sigma'_w &= \sigma'_1 \cos^2 \alpha + \sigma'_3 \sin^2 \alpha \\
\tau'_w &= (\sigma'_1 - \sigma'_3) \sin \alpha \cos \alpha
\end{align*}
\] (9)

where \(\sigma'_1\) and \(\sigma'_3\) are the major principal stress and minor principal stress in the new coordinate system, respectively; \(\alpha\) is the angle between the direction of the major principle stress and the vertical direction of the retaining wall. According to the equation \(\tau'_w = \sigma'_w \tan \delta_w\), \(\alpha\) can be obtained from the following relationship with the soil-wall interface friction angle.

\[
\alpha = \frac{1}{2} \arccos \frac{-(1 + K_s) \tan^2 \delta_w - \sqrt{(1 - K_s)^2 - 4 K_s \tan^2 \delta_w}}{(1 - K_s)(\tan^2 \delta_w + 1)}
\] (10)

Then the horizontal stress \(\sigma_{Ah}'\) at point A can be obtained by Eq. (11).

\[
\sigma_{Ah}' = (\sigma'_1 \cos \alpha + \sigma'_3 \sin^2 \alpha) \cos \varepsilon
\] (11)

where \(\varepsilon\) is the rotation angle of the wall.

Similarly, according to the stress analysis in Figure 6 (c), the normal stress \(\sigma_s'\) and shear stress \(\tau_s'\) acting on retaining wall at point B can be expressed by Eq. (12).

\[
\begin{align*}
\sigma'_s &= \sigma'_1 \sin^2 \left(\frac{\pi}{4} - \frac{\varphi_s}{2}\right) + \sigma'_3 \cos^2 \left(\frac{\pi}{4} - \frac{\varphi_s}{2}\right) \\
\tau'_s &= (\sigma'_1 - \sigma'_3) \sin \left(\frac{\pi}{4} - \frac{\varphi_s}{2}\right) \cos \left(\frac{\pi}{4} - \frac{\varphi_s}{2}\right)
\end{align*}
\] (12)

According to the Mohr’s circle representation of the stresses in Figure 6(a), the horizontal normal
stress (σ_v) is related to the vertical normal stress (σ_h) by Eq. (13). Then the relationship can also be applied to an arbitrary point D in the AB trapezoidal layer element.

$$\sigma'_i - \sigma'_e = \sigma'_h - \sigma'_v$$ (13)

Although the direction of the principal stress deflects after the arching effect appears, the horizontal stress of the arbitrary position is nearly equal in the AB trapezoidal layer element of the sliding wedge. This is different from the vertical stress (Chen et al, 2019).

Similarly, the horizontal normal stress, the vertical normal stress and the shear stress at an arbitrary point D of the trapezoidal layer element can be obtained from the following relationship:

$$\begin{cases}
\sigma'_{ih} = \sigma'_i \cos^2 \theta + \sigma'_v \sin^2 \theta \\
\sigma'_{iv} = \sigma'_i \sin^2 \theta + \sigma'_v \cos^2 \theta \\
\tau'_{hv} = (\sigma'_i - \sigma'_v) \sin \theta \cos \theta
\end{cases}$$ (14)

In Fig. 5, the average vertical stress (σ_{av}) in the AB trapezoidal layer element can be derived from the total vertical stress divided by the width (L) (Rao et al. 2016).

$$\sigma'_{av} = \frac{\int_{\theta_A}^{\theta_B} \sigma'_{iv} \sin \theta \, d\theta}{L} = \frac{\int_{\theta_A}^{\theta_B} \left(\sigma'_i \sin^2 \theta + \sigma'_v \cos^2 \theta \right) \sin \theta \, d\theta}{L}$$

$$= \sigma'_i + \frac{\cos \theta_A - \cos \theta_B}{3(\cos \theta_A - \cos \theta_B)} (\sigma'_i - \sigma'_v)$$ (15)

where the radius of the arc can be solved by Eq. (16), and the deflection angle of the stress (θ_A, θ_B) can be obtained by Eq. (17).

$$r = \frac{L}{\cos \theta_A - \cos \theta_B}$$ (16)

$$\begin{cases}
\theta_A = \alpha + \epsilon \\
\theta_B = \frac{\pi}{4} - \frac{\theta_n}{2} + \beta
\end{cases}$$ (17)

where β is the angle between the potential slip surface and horizontal surface.

The coefficient of the non-limit active earth pressure (K_{aw}) is defined as the ratio of the horizontal stress to the average vertical stress at a wall with soil-wall friction and the effects of the soil arching
(Handy, 1985; Zhu, 2014). Thus, K_{aw} can be derived from Eq. (18).

$$K_{aw} = \frac{\sigma_{sh}}{\sigma_{w}} = \frac{\sigma'_{sh} - \sigma_0}{\sigma'_{w} - \sigma_0} = \frac{\sigma'_{1}(\cos\alpha + K_{aw}\sin\alpha)\cos\varphi - c_n\cot\varphi}{\sigma'_{1}[1 + (K_{aw} - 1)(\cos\theta_{a} - \cos\theta_{b})]} - c_n\cot\varphi_{aw}$$ \hspace{1cm} (18)

When a point in cohesionless soil reaches the limit state, the relationship between the major principal stress and the minor principal stress is given as follows (Rao et al. 2016; Chen et al. 2019).

$$K_{a} = \frac{\sigma'_{1}}{\sigma_{1}} = 1 - \frac{\sin\varphi_{aw}}{1 + \sin\varphi_{aw}}$$ \hspace{1cm} (19)

The major principal stress (σ'_{1}) in cohesive-frictional soil can be obtained by Eq. (20).

$$\sigma'_{1} = \sigma_{1} + \sigma_{0} = \gamma + c_n\cot\varphi_{aw}$$ \hspace{1cm} (20)

As shown in the above formulation, K_{aw} is related to the change with the depth, and it will cause difficulties when solving the differential equation later. However, when the wall is in the initial position, the effect of soil arching should not appear yet, and the coefficient of the non-limit active earth pressure (K_{aw}) should keep pace with the coefficient of the at-rest earth pressure (K_{0}). In reality, K_{aw} is inconsistent with the actual initial situation in Eq. (18), and it still continues to increase with the increasing depth in cohesive-frictional soil. In addition, there are generally tension cracks in cohesive-frictional soil on the top of retaining wall. When $y \geq z$ and $\varepsilon = 0$, the coefficient of the non-limit active earth pressure (K_{aw}) is equal at the arbitrary depths after the displacement is determined. If $y = H$, it can be substituted into Eq. (18), and it can be regarded the value as the initial coefficient (K_{0}) of every point along the depth. Then, the coefficient of the average non-limit active earth pressure (K_{awn}) of every point along the depth shows the same change as the wall movement.

$$K_{awn} = \frac{\sigma_{sh}}{\sigma_{w}} = \frac{\sigma'_{sh} - \sigma_0}{\sigma'_{w} - \sigma_0} = \frac{(\cos\alpha + K_{awn}\sin\alpha)\cos\varphi - c_n\cot\varphi_{wn}}{\gamma H + c_n\cot\varphi_{wn}} - \frac{c_n\cot\varphi_{wn}}{\gamma H + c_n\cot\varphi_{wn}}$$ \hspace{1cm} (21)

3.2 Coefficient estimation of horizontal shear stress
The horizontal slices method has been widely used for determining active earth pressure at the intermediate state (Ahmadabadi et al. 2009; Chen et al. 2019), but the horizontal shear stress of the trapezoidal layer element is hardly considered. Actually, if the horizontal displacement of each point on the retaining wall is inconsistent, there must be a mutual dislocation among the soil slices. On the other hand, the horizontal shear stress of each point in the trapezoidal layer element is not equal because of the arching effect. Therefore, the horizontal average shear stress \(\tau_{am} \) of the trapezoidal layer element can similarly be obtained from Eq. (22).

\[
\tau_{am} = \frac{\int \tau'_{av} dL \int_{\theta_1}^{\theta_2} \tau'_{av} \sin \theta d\theta}{L} = \frac{(\sigma'_{av} - \sigma'_w)(\sin^3 \theta_n - \sin^3 \theta_1)}{3(\cos \theta_1 - \cos \theta_n)}
\]

The coefficient of the average shear stress \(K \) can be defined as the ratio of the average shear stress \(\tau_{am} \) of the trapezoidal layer element to the average vertical stress. Similarly, \(K \) is also related to the depth \(y \), but it can be replaced with the coefficient \(K' \).

\[
K' = \frac{\tau_{am}}{\sigma'_{av}} = \frac{(1 - K_v)(\sin^3 \theta_n - \sin^3 \theta_1)}{3(\cos \theta_1 - \cos \theta_n) + (K_v - 1)(\cos \theta_1 - \cos \theta_n)}
\]

\[
K = \frac{\tau_{am}}{\sigma'_{av}} = K' \frac{\sigma_0}{\sigma_w} = K' + K' \frac{\sigma_0}{\sigma_w}
\]

3.3 Tension cracks and rupture angle in cohesive-frictional soil

Because the depth of tension cracks at the top of retaining wall is not only related to the mechanical parameters of the soil, but it is also related to the mechanical parameters of the soil-wall interface. Moreover, tension cracks at the top of retaining wall are more likely to occur at contact position of the wall and soil in engineering practice. The cohesion \(c_m \) of the soil should be replaced by cohesion of soil-wall interface \(c_w \) in practical engineering application in Eq. (26). According to the boundary conditions: \(y = z \), \(P_{am}|_{y=z} = 0 \) and \(K_m = 0 \), substitute the conditions into Eq. (18), the depth \(z \) of tension cracks considering the arching effect can be calculated by Eq. (26).
If the mechanical parameters of the soil were already known, the calculated values for tension
cracks could be compared with different theoretical methods in Fig. 8. Because Rankine’s theory
considered the influence of the soil cohesion \((c_m) \), Lou (2015) ignored the influence of the rotation
angle \((\varepsilon) \), while the proposed method considered the smaller cohesion of the soil-wall interface \((c_w) \),
the calculated values of the proposed method is smaller than other two approaches. Moreover, the
depth of tensile cracks for Rankine and Lou’s theory was about 1.9 m in the initial state, but it should
be closer to 0 m in the practical initial situation. Therefore, the proposed method is more applicable
for calculating the depth of tensile cracks under intermediate displacement.

It is well known that the rupture angle can be simply assumed to remain at \(45^\circ + \phi/2 \) in Rankine’s
theory. Based on this assumption, some scholars researched the nonlinear distribution of active earth
pressure (Paik and Salgado 2003; Tu and Jia 2012). Kuamr (2010) derived a formulation for the
rupture angle considering tension cracks, cohesion and seismic load, but tension cracks are still
obtained by the simple Rankine theory. Rao et al. (2016) also derived the calculated formulation for
the rupture angle by the geometrical relationship with soil arching. To obtain a simple formulation
for the angle of the potential slip surface \((\beta) \) in cohesive-frictional soil, the proposed method still
need to be assumed that the total weight of the slip zone \((ABC) \) always remains constant from the
initiation to failure.

In Fig. 7, \(T_1 \) and \(T_2 \) are the shear forces in the BC and AB plane, \(N_1 \) and \(N_2 \) are both the normal
forces across the contact surface BC and EB, respectively; \(Q \) and \(R \) are both the resultant forces
acting on the sliding wedge.

According to the static equilibrium condition of the sliding wedge in Fig. 7, then
Based on the Mohr-Coulomb criterion, the shear forces \((T_1, T_2) \) can be obtained by Eq. (27).

\[
\begin{align*}
T_1 &= N_1 \tan \varphi_m + \frac{c_m(H - z)}{\sin \beta} \\
T_2 &= N_2 \tan \delta_m
\end{align*}
\]

The normal force \((N_1, N_2) \) along the contact surface can be expressed by Eq. (28).

\[
\begin{align*}
N_1 &= \frac{G \cos \psi \cos (\epsilon + \delta_m)}{\cos (\beta - \psi - \epsilon - \delta_m)} \\
N_2 &= Q \cos \delta_m
\end{align*}
\]

The total weight \((G) \) of the soil wedge \((EBCD) \) can be obtained by Eq. (29).

\[
G = \frac{1}{2} \gamma H^2 (\cot \beta + \tan \epsilon) - \frac{\gamma z^2}{2} \cot \beta
\]

By Substituting Eq. (27), Eq. (28) and Eq. (29) into Eq. (26), resultant force of the lateral earth pressure \((Q) \) can be derived from Eq. (30).

\[
Q = \frac{1}{2} \lambda_1 \gamma H^2 (\cot \beta + \tan \epsilon) - \frac{\lambda_1 \gamma z}{2} \cot \beta - \lambda_2 c
\]

where \(\lambda_1 \) and \(\lambda_2 \) are the coefficients obtained by Eq. (31).

\[
\begin{align*}
\lambda_1 &= \frac{\sin (\beta - \varphi_m) \cos \psi}{\cos (\beta - \psi - \epsilon - \delta_m) \cos \varphi_m} \\
\lambda_2 &= \frac{H - z}{\tan \beta \cos (\epsilon + \delta_m)}
\end{align*}
\]

Because there is no cohesion in cohesionless soil, the angle between the reaction force \((R) \) and normal BC plane is equal to the internal friction angle \((\varphi_m) \). However, some scholars still ignored the influence of cohesion on the reaction force, when the soil is viscous (Xu et al 2013; Zhu et al. 2015).

Actually, the relationship between the angle \((\psi) \) and other factors is intricate in cohesive-frictional soil. Based on the equivalence principle of the shear strength (Zhao and Bai, 2004), the angle \((\psi) \) of the reaction force \(R \), internal soil friction \((\varphi) \) and cohesion \((c) \) can be established using the following relationship for Eq. (32).

\[
N_1 \tan \psi = N_1 \tan \varphi_m + \frac{c_m(H - z)}{\sin \beta}
\]
By Substituting Eq. (28) and Eq. (29) into Eq. (32), the following Eq. (33) can be obtained.

\[
\tan \psi = \frac{\gamma (H + z) \cdot \tan \varphi_m + 2c_n [1 + \tan \beta \cdot \tan (\delta_m + \varepsilon)]}{\gamma (H + z) - 2c_n [\tan \beta - \tan (\delta_m + \varepsilon)]}
\]

(33)

If the soil-wall interface is upright and smooth, the failure plane (β) is $45^\circ + \phi/2$, and this condition can be substituted into Eq. (33); therefore, the angle (ψ) of the reaction force R will become a known parameter taking into account the influence of the cohesion by Eq. (34).

\[
\tan \psi = \tan \varphi_m + \frac{2c_n [1 + \tan (\frac{\pi}{4} + \varphi_m)]}{\gamma H}
\]

(34)

According to Eq. (30), Q is a function about β. The depth (z) of tension cracks is also a function about β, but it is not related to the wall height. It is difficult to obtain a formulation about β by directly differentiating β from Eq. (30). However, if by substituting $H = y$ (depth) to Eq. (30), active earth pressure (p_a) can firstly be obtained through $p_a = \frac{\partial Q}{\partial y}$.

\[
p_a = \frac{\partial Q}{\partial y} = \lambda_i \gamma (\tan \varepsilon + \cot \beta) - \frac{c_n \cot \beta}{\cos (\varepsilon + \delta_n)}
\]

(35)

Because the failure plane always passes through point B, the rupture angle (β) is related to the wall height (H) instead of the depth (y). Substitute Eq. (31) and $h = H$ into Eq. (35); then active earth pressure (p_a) is a function about $\cot \beta$.

Because $\cot \beta$ is monotonic functions about β, if only one value exists for $\cot \beta$ which can make p_a reach the extreme value, it is obvious that only an existed value for β can make p_a reach an extreme value. Since β satisfies the conditions: $0^\circ < \beta < 90^\circ$, $\cot \beta$ cannot be negative (Kumar 2010). When $\frac{\partial p_a}{\partial (\cot \beta)} = 0$, only a limit value can be obtained for $\cot \beta$ by Eq. (36).

\[
cot \beta = -\tan (\psi + \varepsilon + \delta_n) + \frac{H \gamma [\tan (\psi + \varepsilon + \delta_n) - \tan \varepsilon] [\tan (\psi + \varepsilon + \delta_n) \tan \varphi_m + 1]}{H \gamma \tan \varphi_m - c_n \cdot \tan \psi \tan (\delta_n + \varepsilon) + c_n}
\]

(36)

When $c = 0$ and $\psi = \varphi_m$, Eq. (37) is the Coulomb solution of rupture angle by substituting them into Eq. (36) (Gong, 2014).
In Fig. 9, several theoretical methods for determining the rupture angle were compared. The results show that the potential rupture angle (β) continues to increase with displacement increase from a potential slip surface to the critical failure surface except for Rao’s method, calculated values of the proposed method is consistent with Rankine solution and Zhu’s method. When the shear strength of the soil will reach the limit state, the rupture angle for proposed method will gradually approach $45^\circ + \phi/2$. Because Rao et al. (2015) derived a formulation of rupture angle based on the geometrical relationship with arching effect, but other methods obtained the formulation of rupture angle based on the limit equilibrium method, the calculated values of Rao’s method were significantly larger than other methods. Moreover, the proposed method and Zhu’s method considered the influence of the wall height, cohesion and unit weight; but other methods only considered the internal friction angle and the soil-wall friction angle.

3.4 Lateral earth pressure at the intermediate active state

To obtain active earth pressure at the intermediate state, a trapezoidal layer element is subjected to mechanical analysis, as shown in Fig. 10.

By establishing the static equilibrium in the horizontal direction, Eq. (38) can be obtained (Chen et al. 2019).

$$\tau_y \, dy \tan \epsilon - \sigma_y \, dy + \sigma_y \, dy \tan \epsilon + \sigma_w \, L - (\tau_w + d \, \tau_w) L - dy (\tan \epsilon + \cot \beta) = 0$$

(38)

where the length (L) of the trapezoidal layer element can be expressed by the formulation

$$L = (H - y) (\tan \epsilon + \cot \beta).$$

According to the above assumptions, the stresses in the soil have the following relationships.

$$\tau_y = \sigma_y \tan \delta_w; \tau_z = \sigma_z \tan \phi_w + c_w \sigma_0; \sigma_{ah} = K_{um} \sigma_w$$

(39)
From Eq. (9) and Eq. (11), the following equation can be obtained:

\[\sigma_w = \frac{K_w \sigma_{aw}}{\cos \epsilon} + \sigma_0 \left(\frac{1}{\cos \epsilon} - 1 \right) \]

(40)

Based on Eq. (24), the average shear stress of the trapezoidal layer element (\(\tau_{am} \)) can be expressed as the following Eq. (41) by the average vertical stress (\(\sigma_{aw} \)).

\[\tau_{am} = K \sigma_{aw} \]

(41)

Eq. (39), Eq. (40) and Eq. (41) are substituted into Eq. (38). Considering that the second derivative and rotation angle (\(\epsilon \)) are generally sufficiently small, their influence can be ignored to simplify the formulation. Therefore, Eq. (42) can be derived as follows:

\[
\sigma_w = \frac{K'Ld \sigma_{aw}}{(1 - \tan \varphi_{aw} \cot \beta)dy} + \frac{\sigma_{aw}(K_{aw} - K' \cot \beta) - K' \cot \beta \sigma_0 + c_n \cot \beta}{1 - \tan \varphi_{aw} \cot \beta}
\]

(42)

For the trapezoidal layer element in Fig. 10, the static equilibrium in the vertical direction requires the use of Eq. (43):

\[
\sigma_n L + dG - (\sigma_w + d \sigma_w)(L - dy(\tan \epsilon + \cot \beta)) - \sigma_w dy \tan \epsilon - \tau_v dy - \sigma_w dy \cot \beta - \tau_v dy = 0
\]

(43)

The above formulation is simplified; The following Eq. (44) can be obtained.

\[
\frac{d \sigma_w}{dy} = \gamma + \frac{\sigma_{aw} - \sigma_n}{H - y} - \frac{\sigma_n(\tan \delta_n + \tan \epsilon) + \sigma_n(\cot \beta + \tan \varphi_{aw}) + c_n}{L}
\]

(44)

Eq. (40) and Eq. (42) are substituted into Eq. (44), and Eq. (45) is derived as follows:

\[
A \frac{d \sigma_w}{dy} = \gamma + B \sigma_w - \frac{C}{H - y}
\]

(45)

where \(A, B \) and \(C \) are the constants, and they yield the following expressions:

\[
\begin{align*}
A &= 1 + \frac{K'}{\tan(\beta - \varphi_{aw})} \\
B &= 1 - \frac{K_{aw}(\tan \delta_n + \tan \epsilon)}{\cos \epsilon(\cot \beta + \tan \epsilon)} - \frac{K_{aw} - K' \cot \beta}{\tan(\beta - \varphi_{aw})(\cot \beta + \tan \epsilon)} \\
C &= \sigma_n(\tan \delta_n + \tan \epsilon)(1 - \cos \epsilon) + \frac{c_n}{\cos \epsilon(\cot \beta + \tan \epsilon)} + \frac{c_n}{\cot \beta + \tan \epsilon}
\end{align*}
\]

(46)

Because the boundary condition is the average vertical stress \(\sigma_{aw} = \gamma z \), when \(y = z \). Substituting them
into equation (45), the average vertical stress can be expressed by Eq. (46).

\[
\sigma_v = \left[\gamma z + \gamma (H - z) \frac{C}{A + B} \right] \left[H - z \right] + \gamma (H - y) \frac{C}{A + B} \frac{2}{A + B} \frac{z}{A + B} (46)
\]

When \(0 \leq y < z\), the horizontal stress \(\sigma_h = 0\) because of tension cracks; when \(z \leq y < H\), the horizontal stress \(\sigma_h = K_{aw} \sigma_v\).

\[
\sigma_h = \begin{cases} 0 & (0 \leq y < z) \\ K_{aw} \left[\gamma z + \gamma (H - z) \frac{C}{A + B} \left(H - z \right) + \gamma (H - y) \frac{C}{A + B} \frac{2}{A + B} \frac{z}{A + B} \right] & (z \leq y < H) \\ \end{cases}
\]

In Fig. 7, the angle between active earth pressure and the horizontal surface is \(\delta_m + \varepsilon\) (Zhao and Bai 2004). Therefore, the non-limit active earth pressure \((p_{am})\) is derived from Eq. (48).

\[
p_{am} = \begin{cases} 0 & (0 \leq y < z) \\ \frac{K_{aw}}{\cos(\delta_m + \varepsilon)} \left[\gamma z + \gamma (H - z) \frac{C}{A + B} \left(H - z \right) + \gamma (H - y) \frac{C}{A + B} \frac{2}{A + B} \frac{z}{A + B} \right] & (z \leq y < H) \\ \end{cases}
\]

According to Eq. (48), the non-limit active earth pressure \((p_{am})\) with the displacement increases is possibly negative on the bottom of the wall as the displacement increases because of soil arching. Therefore, this part of the negative earth pressure should be ignored. Assuming that \(y_0\) is a critical point of the lateral earth pressure from the bottom of the wall, the non-limit lateral resultant force \((Q_m)\) is given as follows:

\[
Q_m = \int_{y_0}^{\gamma H} p_{am} dy = \frac{K_{aw}}{\cos(\delta_m + \varepsilon)} \left[\gamma z + \gamma (H - z) \frac{C}{A + B} \left(H - z \right) + \gamma (H - y) \frac{C}{A + B} \frac{2}{A + B} \frac{z}{A + B} \right] \left(y_0 \right) \frac{2}{A + B} \frac{z}{A + B} \left(\gamma H - z \right) \frac{C}{A + B} \frac{2}{A + B} \frac{z}{A + B} \frac{H - y_0}{A + B} \frac{2}{A + B} \frac{z}{A + B} (49)
\]

4 Parametric studies

4.1 Cohesion

Fig. 11 shows the distribution of active earth pressure along the depth of the wall with different values of cohesion. To obtain these data, the calculated parameters of the soil were based on the unit weight of the soil \(\gamma = 19.0 \text{kN/m}^3\), internal friction angle \(\varphi = 30^\circ\), wall height \(H = 10\text{m}\), and limit soil-wall
interface angle $\delta = 2\varphi/3$. Because active earth pressure at tension cracks is 0 kPa, the calculated value of active earth pressure for the proposed method is not uniformly marked throughout this paper in Fig.11.

According to Fig.11, active earth pressure gradually decreases with the increasing cohesion. The distribution of active earth pressure still keeps linearly increasing at $0 \leq y \leq 0.6H$, it does not significantly decrease until the obvious arching effect appears near the bottom of the wall. In addition, because tension cracks are considered in the proposed method, which is different from the Rankine theory, the changes of active earth pressure near the top is slight with the increasing cohesion. With the increasing depth, the effect of the cohesion on the active pressure gradually increases. From Fig.11, active earth pressure at the bottom appears a negative value with the increasing cohesion, which shows that tension cracks appear when the cohesion $c \geq 20kPa$.

Because the peak point of active earth pressure keeps moving up with increasing cohesion, it shows that the position of the vertical soil arching also continues moving up. The results show the cohesion is an important factor for arching effect.

4.2 Friction angle

Fig.12 shows the distribution of active earth pressure along the depth of the wall with different friction angles. To obtain these data, the calculated parameters of the soil are based on the unit weight of the soil $\gamma = 19.0$ kN/m3, cohesion $c = 10$ kPa, wall height $H = 10$m, and limit soil-wall interface angle $\delta = 2\varphi/3$.

Similarly, active earth pressure gradually decreases with the increasing internal friction angle. The upper active earth pressure basically increases linearly, and active earth pressure does not decrease rapidly until the stress deflection obviously occurs near the bottom of the wall. Moreover, as the
internal friction angle increases, the height of tension cracks also increases gradually in Fig.12.

Fig.13 shows the variation of the average vertical stress with different depth and soil-wall interface friction angle. The average vertical stress can be obtained from Eq. (48) as a function of the depth and soil-wall interface friction angle. The calculated parameters of the soil were based on the unit weight of the soil $\gamma=19.0$ kN/m3, cohesion $c=20$ kPa, internal friction angle $\phi=27^\circ$, initial soil-wall interface friction angle $\delta_0=0^\circ$, limit soil-wall interface friction angle $\delta=18^\circ$ and wall height $H=10$m.

According to Fig.13, when $\delta_m=0^\circ$, the average vertical stress linearly increases with increasing depth until the depth $y=0.9H$. When $\delta_m \neq 0^\circ$, the average vertical stress obviously appears nonlinear with increasing depth and soil-wall interface friction angle; it shows the significant reduction with the increasing soil-wall interface friction angle, especially at the bottom. At the same time, it shows that δ_m is also a crucial factor, due to causing a significant change for the position of the soil arching.

Fig.14 shows the coefficient variation of the average lateral active earth pressure with the different soil-wall interface friction angle and displacement. K_{awn} can be obtained from Eq. (22) as a function of the soil-wall interface friction angle and displacement. The calculated parameters of the soil were based on the unit weight of the soil $\gamma=19.0$ kN/m3, cohesion $c=20$ kPa, internal friction angle $\phi=27^\circ$, initial soil-wall interface friction angle $\delta_0=0^\circ$ and wall height $H=10$m. As shown in Fig.14, K_{awn} is nonlinearly decreasing with the displacement; as the critical soil-wall interface friction angle (δ) increases, the unit decrease in K_{awn} also decreases.

4.3 Horizontal shear stress between the slices

Fig.15 shows the coefficient variation of the average shear stress with different depth and displacement. The coefficient of the average shear stress (K) can be obtained from Eq. (24), Eq. (48)
and Eq. (24) as a function of the depth and displacement. To obtain the data, the calculated parameters of the soil were based on the unit weight of the soil $\gamma=19.0$ kN/m3, cohesion $c=20$ kPa, internal friction angle $\varphi=27^\circ$, initial soil-wall interface friction angle $\delta_0=0^\circ$, limit soil-wall interface friction angle $\delta=18^\circ$ and the wall height $H=10$ m. The coefficient of the average shear stress at a certain depth continuously increases with increasing displacement, and it gradually tends to a constant value until the soil-wall mass arrives at the limit state. In addition, because of the increasing depth of tension cracks, the coefficient of the average shear stress increases significantly at the depth $y/H=0.1$ than other depth. From Fig.15, the coefficient (K) is always smaller than $\tan \varphi_m$. This result shows that horizontal shear failure will not occur under normal conditions.

Fig.16 shows the distribution of active earth pressure along the depth of the wall considering soil arching and horizontal shear stress or only soil arching. The parameters used for the soil are the same as those mentioned above.

According to Fig.16, active earth pressure considering soil arching with horizontal shear stress is smaller than that only considering soil arching. At the same time, this indicates that the influence of the average shear stress gradually weakens with the displacement, and the horizontal shear stress between the slices hinders the destruction of the soil. Therefore, the horizontal shear stress of the soil slice can be used as a safe reserve for retaining wall’s stability under normal conditions.

5 Discussion and comparison of the results

To check the applicability of the proposed method in cohesive-frictional soil and cohesionless soil, the predictions from the derived equation were compared with experimental values and other theory methods.

First, in cohesive-frictional soil, Yue (1992) conducted 11 sets of centrifuge model tests by a
homemade hydraulic control device, which could control the displacement. The parameters of the soil were based on the unit weight of the soil $\gamma=18.6 \, kN/m^3$, cohesion $c=38.2 \, kPa$, internal friction angle $\phi=22.7^\circ$, wall height $H=250mm$, and model rate of 80.18. In the test, the horizontal displacement of retaining wall arriving at the limit state is $s=2.7mm$. According to Fig.17, the measured values of lateral earth pressure are mainly distributed on both sides of the calculated values of the proposed method. The results showed that the calculated values of the proposed method were in good agreement with the measured values. The measured resultant force of active earth pressure was approximately 698.24 kN, the calculated value of the proposed method was 677.75 kN, and the calculated value of Rankine theory was 788.11 kN.

Secondly, in cohesionless soil, Tsagareli (1965) measured the distribution of active earth pressure under the translation mode. The parameters of the soil were based on the unit weight of the soil $\gamma=18.0 \, kN/m^3$, cohesion $c=0 \, kPa$, internal friction angle $\phi=37^\circ$, wall height $H=4 \, m$, and critical soil-wall interface angle $\delta=2\phi/3$. From Fig.18, the calculated values of the proposed method were good agreement with Rankine theory at $0 \leq y \leq 0.5H$. The significant differences appeared at the bottom due to the arching effect. The measured resultant force of active earth pressure was approximately 40.06 kN, the calculated value of the proposed method was 33.04kN, the calculated value of Rankine theory was 35.80 kN, and the calculated value of Handy’s method was 29.58 kN.

Therefore, the calculated values of active earth pressure for the proposed method were basically consistent with the measured values and other theoretical methods.

6 Summary and Conclusions

The estimation of the lateral earth pressure acting on retaining wall is extremely important in practical engineering. The simple model for the classical Rankine theory and Coulomb theory has
been widely applied in practice. However, the lateral earth pressure behind the wall is mostly in the intermediate state with the increasing displacement, and its distribution is nonlinear. Although some had attempted to estimate active earth pressure considering arching effect, the displacement and the effect of soil arching exist mutually, but most studies consider them separately and ignore the influence of rotation angle and horizontal shear stress. In this paper, a new formulation for the non-limit active earth pressure is derived for cohesive-frictional soil, which is based on the horizontal slices and static equilibrium method. The relevant features of the proposed method are summarized below:

1. The influence of the displacement and the arching effect was considered in the proposed method. Analytical expressions of the lateral non-limit active earth pressure were obtained for the potential rupture angle, depth of tension cracks, rotation angle, and horizontal average shear stress.

2. The variation of the mobilized internal friction angle and soil-wall interface friction angle for cohesive-frictional soil with the displacement was performed by comparing the FEM and other theoretical methods. It shows that the empirical formulations for the mobilized soil-wall interface friction angle and internal friction angle are still applicable to cohesive-frictional soil.

3. A formulation of the rupture angle was derived by considering the cohesion, soil-wall interface friction angle, wall height and the unit weight. Depth of tension cracks was calculated considering the influence of the arching effect and cohesion of the soil-wall interface. The formulation of the rupture angle and tension cracks can better reflect the actual situation in cohesive-frictional soil by compared with other methods.

4. By comparing the experimental results and other theoretical methods, it was concluded that the proposed analytical procedure could reliably calculate the non-limit active earth pressure, lateral resultant force, rupture angle, depth of tension cracks, mobilized internal friction angle and soil-wall
interface friction in cohesive-frictional soil.

Data Availability Statement

All data generated or analyzed during this study are included within the article.

Acknowledgments

The study was supported by the National Natural Science Foundation of China (Grant 41272333), National Program on Key Basic Research Project of China (Grant 2011CB013501). We express our gratitude for this financial support.

https://github.com/jjf524973903/Theoretical-analysis-for-lateral-earth-pressure-considering-arching-effect-in-cohesive-soil

Conflict of interest

The authors declare that they have no conflict of interest.

Notation

The following symbols are used in this paper:

- H = total height of retaining wall
- s = displacement of retaining wall
- z = depth of tension cracks
- b = width of tension cracks zone
- y = arbitrarily depth of retaining wall
- β = rupture angle
- ε = rotational angle of retaining wall
- γ = unit weight
$c = \text{cohesion}$

$c_m = \text{the mobilized cohesion}$

$\phi = \text{internal friction angle}$

$\phi_0 = \text{initial internal friction angle}$

$\phi_m = \text{mobilized internal friction angle}$

$\Psi = \text{angle between slip surface and reaction force } R$

$\delta = \text{critical soil-wall interface friction angle}$

$\delta_0 = \text{initial soil-wall interface friction angle}$

$\delta_m = \text{mobilized soil-wall interface friction angle}$

$\lambda_1, \lambda_2 = \text{coefficient}$

$G = \text{weight of sliding wedge (EBCD)}$

$R = \text{reaction force}$

$Q = \text{reaction resultant force of wall to the soil wedge}$

$Q_m = \text{non-limit lateral resultant force}$

$T_1, T_2 = \text{shear force in the BC and AB plane}$

$N_1, N_2 = \text{vertical force across the contact surface}$

$P_a = \text{active earth pressure}$

$P_{am} = \text{non-limit active earth pressure}$

$s_a = \text{critical displacement condition under which the soil will yield}$

$s_c = \text{critical displacement corresponding to the maximum soil-wall interface friction angle}$

$k_0 = \text{coefficient of the at-rest earth pressure}$

$r = \text{radius of the arc for the minor principal stress}$

$L = \text{length of the trapezoidal layer element}$
\(K_{aw} = \) coefficient of the lateral active earth pressure

\(K_{awn} = \) coefficient of the average non-limit active earth pressure

\(K = \) coefficient of the horizontal average shear stress

\(T = \) the shear force acting on retaining wall in the FEM method

\(N = \) resultant force of the lateral earth pressure acting on retaining wall in the FEM method

\(\sigma_1 = \) major principal stress

\(\sigma_3 = \) minor principal stress

\(\sigma_{av} = \) average vertical stress

References

Ahmadabadi, M., Ghanbari. A., 2009. New procedure for active earth pressure calculation in retaining walls with reinforced cohesive-frictional backfill. Geotextiles and Geomembranes, Vol.27:456- 463. https://doi.org/10.1016/j.geotexmem.2009.06.004 .

Bang, S., 1985. Active earth pressure behind retaining walls. Journal of Geotechnical Engineering, Vol.111 (3):407-412. https://doi.org/10.1061/(asce)0733-9410(1985)111:3(407).

Coulomb, 1776.C.A: Essias sur une application des maximis et minimis a quelques problems de statique relatits a larchitecture. Mémoires de l’Académie Royale des Sciences presents par divers Savans, Paris 5, 7.

Clough, G.W., and Duncan, J.M., 1971. Finite element analysis of retaining wall behavior. Journal of Geotechnical Engineering, Vol.97 (12):1657-1673.

Clough, G.W., Duncan, J.M., 1991. Earth pressure. In foundation engineering handbook. 2nd ed. Edited by H.-Y. Fang. Van Nostrand Reinhold, New York. pp. 223-235.

Chang, M.F., 1997. Lateral earth pressures behind rotating walls. Canadian Geotechnical Journal,
Chen, J.X., Song, W.W., 2019. Non-limit active earth pressure for retaining wall under translational motion. Rock and Soil Mechanics, Vol.40(6): 2284–2292.

Fang, Y.S., Ishibashi, I., 1986. Static earth pressure with various wall movements. Journal of Geotechnical Engineering, 112(3): 317-333. https://doi.org/10.1061/(asce)0733-9410(1986)112:3(317) .

Golam, M., Alireza, A., 2015. Experimental and numerical investigation of arching effect in sand using modified Mohr Coulomb. Geomechanics and Engineering, Vol.8 (6):829-844. https://doi.org/10.12989/gae.2015.8.6.829

Gong, X.N., Xie, K.H., 2014. Soil Mechanics. China Building Industry Press, 149-161.

Handy, L.R., 1985. The arch in soil arching. Journal of Geotechnical Engineering, 111(3):302-318. https://doi.org/10.1061/(asce)0733-9410(1985)111:3(302) .

Jiang, M.J., He, J., Wang, J.F., Liu, F., et al, 2014. Distinct simulation of earth pressure against a rigid retaining wall considering inter-particle rolling resistance in sandy backfill. Granular Matter, 16(5), 797-814. https://doi.org/10.1007/s10035-014-0515-3 .

Khosravi, M.H., Pipatpongsa, T., Takemura, J., 2016. Theoretical analysis of earth pressure against rigid retaining walls under translation mode. Soil and Foundations, Vol.54 (4):664-675.https://doi.org/10.1016/j.sandf.2016.07.007 .

Kingsley, H.W.,1989. Arch in soil arching. Journal of Geotechnical Engineering, 115(3):415-419.https://doi.org/10.1061/(asce)0733-9410(1989)115:3(415) .

Kumar, S.S., 2010. Dynamic active thrust from c–φ soil backfills. Soil Dynamics and Earthquake Engineering, 31(3): 526–529.https://doi.org/10.1016/j.soildyn.2010.10.001 .

Li, M.G., Chen, J.J., Wang, J.H., 2017. Arching effect on lateral pressureof confined granular
material: numerical and theoretical analysis. Granular Matter, 1-11. doi 10.1007/s10035-017-0700-2. https://doi.org/10.1016/j.soildyn.2010.10.001.

Lou, P.J., 2015. A method to calculate active earth pressure with considering soil arching effect under the non-limit state of clayey soil. Rock and Soil Mechanics, Vol.36(04): 988—994.

Matsuo, M., Kenmochi, S., Yagi, H., 1978. Experimental study on earth pressure of retaining wall by field tests. Soils and Foundations, Vol.18 (3):27-41. https://doi.org/10.3208/sandf1972.18.3_27.

Mayne, P. W. and Kulhawy, F. H. 1983. K-OCR relationships in soil, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 20(1): A2. doi: 10.1016/0148-9062(83)91623-6.

Mei, G.X., Chen, Q.M., Song L.H., 2009. Model for predicting displacement dependent later earth pressure. Canadian Geotechnical Journal, Vol.46:969-975. https://doi.org/10.1139/t09-040.

Mazindrani, Z.H., M. H. Ganjal. Lateral earth pressure problem of cohesive backfill with inclined surface. Canadian Geotechnical Journal, 1997, 123(2): 110-112. https://doi.org/10.1061/(asce)1090-0241(1997)123:2(110).

Ni, P., Mangalathu, S., Song, L., Mei, G., Zhao, Y., 2018. Displacement-dependent lateral earth pressure models. Journal of Engineering Mechanics, 144(6): 04018032. https://doi.org/10.1061/(asce)em.1943-7889.0001451.

Paik. K.H., Salgado, R., 2003. Estimation of active earth pressure against rigid retaining walls considering arching effects. Géotechnique, 53(7):643-653. https://doi.org/10.1680/geot.2003.53.7.643.

Quinlan, J.F., 1987. Discussion of “The arch in soil arching” by R.L. Hand. Journal of Geotechnical Engineering, ASCE, 113(3):272-274. https://doi.org/10.1061/(asce)0733-9410(1987)113:3(272).

Rankine, W.J.M., 1857. On the stability of loose earth. Philos. Trans. R. Soc. Lond. 147, 9-27.
Rao, P.P., Chen, Q.S., Zhou, Y.T., Nimbalkar, S., Chiaro, G., 2016. Determination of active earth pressure on rigid retaining wall considering arching effect in cohesive backfill soil. International Journal of Geomechanics, 16(3): 04015082. https://doi.org/10.1061/(asce)gm.1943-5622.0000589.

Spangler, M.G., Handy, R. L., 1984. Soil engineering. New York: Harper & Row, 1984.

Terzaghi, K., 1934. Large retaining wall tests I-pressure of dry sand. Engineering News Record, 112(1): 136-140.

Tu, B.X., Jia, J.Q., 2012. Research on active earth pressure behind rigid research wall from cohesive soil backfill considering soil arching effects. Chinese Journal of Rock Mechanics and Engineering, Vol.31 (05): 1064-1070.

Tsagareli, Z.V., 1965. Experimental investigation of the pressure of a loose medium on retaining wall with vertical back face and horizontal backfill surface. Soil Mechanics. 91(4), 197-200. https://doi.org/10.1007/bf01706095.

Vahedifard, F., Leshchinsky, B.A., Mortezaei, K., Lu, N., 2015. Active earth pressures for unsaturated retaining structures. Journal of Geotechnical and Geoenvironmental engineering, 2015, 141(11): 04015048. https://doi.org/10.1061/(asce)gt.1943-5606.0001356.

Venanzio G.R., 2010. Discussion of “active earth pressure on retaining wall for c-ϕ soil backfill under seismic loading condition” by S. K. Shukla, S. K. Gupta, and N. Sivakugan. Journal of Geotechnical and Geoenvironmental Engineering, 136: 1583-1584. https://doi.org/10.1061/(asce)gt.1943-5606.0000276.

Wang, S.C., Sun, B.J., Shao, Y., 2015. Modified computational method for active earth pressure. Rock and Soil Mechanics. Vol.36(5), 1375-1379.

Xu, R.Q., Liao, B., Wu, J., Chang, S., 2013. Computational method for active earth pressure of cohesive soil under non-limit state. Rock and Soil Mechanics. Vol.34 (1), 148-154.
Yue, Z.R., Peng, Y.Z., Zhang, S.D., 1992. Centrifuge model tests on lateral pressure on walls retaining wall compacted cohesive soiley backfill. Chinese Journal of Geotechnical Engineering, Vol.14 (06), 90-96.

Zhou Y.Y., Ren M.L. 1990. An experimental study on active earth pressure behind rigid retaining wall. Chinese Journal of Geotechnical Engineering, 12(2): 19-26.

Zhao, C.G., Bai, B., 2004. Fundamentals of soil mechanics. Tsinghua University Press and Beijing Jiaotong University Press, 197-290.

Zhu, J.M., Zhao, Q., Lin, Q.T., Zhen, J.Y., et al, 2015. Study on calculation Method of soil arch effect. China University of Mining and Technology Press, 1-44.
Figure and Table Captions

Table 1 Material parameters used in the finite element model

Table 2 Calculated results of the finite element model

Fig. 1 Finite element analytical model for the lateral earth pressure

Fig. 2 Variation of resultant force of the lateral earth pressure with the wall movement

Fig. 3 Comparison of the mobilized soil-wall interface friction angles under different methods and conditions

Fig. 4 Comparison of the mobilized internal friction angles under different methods and conditions

Fig. 5 Trajectory of the minor principal stress in the differential element of the sliding wedge

Fig. 6 Mohr’s circle representation of the stresses on point A (a) and the stress analysis in the sliding wedge (b, c)

Fig. 7 Static equilibrium of the soil-wall system

Fig. 8 Comparison between the proposed method and other theoretical methods for tension cracks

Fig. 9 Comparison between the proposed method and other theoretical methods on the potential rupture angle

Fig. 10 Forces acted on the AB trapezoidal layer element

Fig. 11 Change of active earth pressure distribution with different cohesion

Fig. 12 Change of active earth pressure distribution with different friction angle

Fig. 13 Variations of the average vertical stress with different depth and soil-wall interface friction angle

Fig. 14 Change in K_{aw} with different critical soil-wall interface friction angle and displacement

Fig. 15 Change in K with different depth and displacement

Fig. 16 Comparison of the lateral earth pressure distribution considering soil arching and shear stress
or only soil arching

Fig. 17 Comparison between predicted and experimental values obtained about lateral earth pressure in cohesive-frictional soil

Fig. 18 Comparison between predicted and experimental values obtained about active earth pressure in cohesionless soil
Table 1 Material parameters used in the finite element model

Parameters	Silty sand	Concrete	Soil-wall interface
Unit weight \((\gamma, \text{kN/m}^3)\)	19.40	25.00	/
Cohesion \((c, \text{kPa})\)	23.00	/	/
Internal friction angle \((\phi, ^\circ)\)	27.00	/	/
Elastic modulus \((E, \text{MPa})\)	0.75	30000	/
Poisson ratio \((\nu)\)	0.32	0.20	/
Normal stiffness ratio coefficient	/	/	1
Tangential stiffness proportional coefficient	/	/	0.1

Table 2 Calculated results of the finite element model

Calculation Steps	Max horizontal displacement \(s (\text{mm})\)	Horizontal resultant force \(N (\text{kN})\)	Shear force \(T (\text{kN})\)	Internal frictional angle \(\phi_m (^\circ)\)	Soil-wall interface frictional angle \(\delta_m (^\circ)\)
Step 1	0	304.24	38.13	17.49	3.28
Step 2	4.1	294.43	41.88	17.90	3.67
Step 3	8.3	284.67	46.65	18.31	4.17
Step 4	12.5	274.94	52.22	18.73	4.76
Step 5	16.6	265.23	58.41	19.16	5.43
Step 6	21.2	255.55	65.06	19.59	6.18
Step 7	25.7	245.90	72.07	20.03	6.99
Step 8	30.2	236.28	79.33	20.48	7.86
Step 9	34.8	226.69	86.79	20.94	8.79
Step 10	39.5	217.11	94.41	21.41	9.78
Step 11	44.2	207.56	102.14	21.88	10.83
Step 12	49.0	198.03	109.97	22.37	11.93
Step 13	53.8	188.50	117.87	22.86	13.11
Step 14	58.7	178.99	125.83	23.37	14.34
Step 15	63.6	169.49	133.84	23.89	15.65
Step 16	68.5	160.00	141.88	24.43	17.04
Step 17	73.4	150.51	149.96	24.98	18.50
Step 18	78.4	141.03	158.06	25.55	20.06
Step 19	83.5	131.55	166.07	26.14	21.70
Step 20	90.4	121.92	171.16	26.75	23.10
Step 21	99.3	112.33	173.28	27.00	24.02
Fig. 1 Finite element analytical model for the lateral earth pressure
Fig. 2 Variation of resultant force of the lateral earth pressure with the wall movement

- FEM
- Measured value (Matsuo 1978)
- Rankine solution

\(\gamma = 19.4 \text{ kN/m}^3 \)
\(c = 23 \text{ kPa} \)
\(\varphi = 27^\circ \)
\(H = 10 \text{ m} \)
Fig. 3 Comparison of the mobilized soil-wall interface friction angles under different methods and conditions
Fig. 4 Comparison of the mobilized internal friction angles under different methods and conditions
Fig. 5 Trajectory of the minor principal stress in the differential element of the sliding wedge.
Fig. 6 Mohr’s circle representation of the stresses on point A (a) and the stress analysis in the sliding wedge (b, c)
Fig. 7 Static equilibrium of the soil-wall system
Fig. 8 Comparison between the proposed method and other theoretical methods for tension cracks.

- **Proposed Method**
- **Lou 2015**
- **Rankine solution**

Parameters:
- $\gamma = 19.4 \text{ kN/m}^3$
- $c = 23 \text{ kPa}$
- $\varphi = 27^\circ$
- $\delta_0 = 0^\circ$
- $\delta = 27^\circ$
- $s_u = s_c = 1.0\% H$
- $H = 10 \text{ m}$
Fig. 9 Comparison between the proposed method and other theoretical methods on the potential rupture angle.
Fig. 10 Forces acted on the AB trapezoidal layer element
Fig. 11 Change of active earth pressure distribution with different cohesion

\[\gamma = 19.0 \, \text{kN/m}^3 \]
\[\varphi = 30^\circ \]
\[\delta = 2\varphi/3 \]
\[H = 10 \text{m} \]

- Solid line: \(c = 5 \text{kPa} \)
- Dotted line: \(c = 10 \text{kPa} \)
- Dashed line: \(c = 20 \text{kPa} \)
- Dash-dotted line: \(c = 30 \text{kPa} \)
Fig. 12 Change of active earth pressure distribution with different friction angles
Fig. 13 Variations of the average vertical stress with different depth and soil-wall interface friction angle.
Fig. 14 Change in K_{awm} with different critical soil-wall interface friction angle and displacement.
Fig. 15 Change in K with different depth and displacement
Fig. 16 Change of the lateral earth pressure distribution considering arching effect and shear stress or only arching effect
Fig. 17 Comparison between predicted and experimental values obtained about lateral earth pressure in cohesive-frictional soil.
Fig. 18 Comparison between predicted and experimental values obtained about active earth pressure in cohesionless soil.
Figure 1

Finite element analytical model for the lateral earth pressure
Figure 2

Variation of resultant force of the lateral earth pressure with the wall movement

- FEM
- Measured value (Matsuo 1978)
- Rankine solution

\(\gamma = 19.4 \text{ kN/m}^3 \)
\(c = 23 \text{ kPa} \)
\(\phi = 27^\circ \)
\(H = 10 \text{ m} \)
Figure 3

Comparison of the mobilized soil-wall interface friction angles under different methods and conditions
Figure 4

Comparison of the mobilized internal friction angles under different methods and conditions.
Figure 5

Trajectory of the minor principal stress in the differential element of the sliding wedge

Figure 6

Mohr’s circle representation of the stresses on point A (a) and the stress analysis in the sliding wedge (b, c)
Figure 7

Static equilibrium of the soil-wall system
Figure 8

Comparison between the proposed method and other theoretical methods for tension cracks

Figure 9

Comparison between the proposed method and other theoretical methods on the potential rupture angle
Figure 10

Forces acted on the AB trapezoidal layer element

\[\begin{align*}
\sigma_{av} + d\sigma_{av} \\
\tau_{am} + d\tau_{am}
\end{align*} \]

\[\gamma = 19.0 \text{kN/m}^3 \]
\[\varphi = 30^\circ \]
\[\delta = 2\varphi/3 \]
\[H = 10\text{m} \]

Figure 11
Change of active earth pressure distribution with different cohesion

Figure 12

Change of active earth pressure distribution with different friction angles
Figure 13
Variations of the average vertical stress with different depth and soil-wall interface friction angle

Figure 14
Change in Kawn with different critical soil-wall interface friction angle and displacement
Figure 15
Change in K with different depth and displacement

![Graph showing change in K with different depth and displacement](image)

- $\gamma = 19.0 \text{ kN/m}^3$
- $c = 20 \text{kPa}$
- $\phi = 27^\circ$
- $H = 10 \text{m}$
- $\delta_p = 0^\circ$
- $\delta = 18^\circ$
- $s/H = 0.25\%$ (Considering soil arching and shear stress)
- $s/H = 0.50\%$ (Considering soil arching and shear stress)
- $s/H = 0.75\%$ (Considering soil arching and shear stress)
- $s/H = 1.0\%$ (Considering soil arching and shear stress)
- $s/H = 0.25\%$ (Only considering soil arching)
- $s/H = 0.50\%$ (Only considering soil arching)
- $s/H = 0.75\%$ (Only considering soil arching)
- $s/H = 1.0\%$ (Only considering soil arching)

Figure 16
Change of the lateral earth pressure distribution considering arching effect and shear stress or only arching effect
Figure 17

Comparison between predicted and experimental values obtained about lateral earth pressure in cohesive-frictional soil.

Figure 18
Comparison between predicted and experimental values obtained about active earth pressure in cohesionless soil