Morphology is not just a naive Bayes – UniMelb Submission to SIGMORPHON 2022 ST on Morphological Inflection

Andreas Scherbakov Ekaterina Vylomova
The University of Melbourne

andreas@softwareengineer.pro vylomovae@unimelb.edu.au

Abstract

The paper describes the Flexica team’s submission to the SIGMORPHON 2022 Shared Task 1 Part 1: Typologically Diverse Morphological Inflection. Our team submitted a non-neural system that extracted transformation patterns from alignments between a lemma and inflected forms. For each inflection category, we chose a pattern based on its abstractness score. The system outperformed the non-neural baseline, the extracted patterns covered a substantial part of possible inflections. However, we discovered that such score that does not account for all possible combinations of string segments as well as morphosyntactic features is not sufficient for a certain proportion of inflection cases.

1 Introduction

Previous years’ shared tasks on morphological inflection demonstrated superior performance across a variety of typologically diverse languages, especially in high-resource setting (Cotterell et al., 2016, 2017, 2018; McCarthy et al., 2019; Vylomova et al., 2020; Pimentel et al., 2021). Still, in low-resource setting and languages with limited resources in which paradigms were only partially represented the accuracy numbers were much less optimistic (Vylomova et al., 2020; Pimentel et al., 2021). Recently, Goldman et al. (2022) experimented with the 2020 shared task data splitting it by lemmas and demonstrated the 30% accuracy drop on average among top-3 top ranked systems in that year’s shared task. This motivated organizers of this year’s shared task to focus on various aspects of morphological generalisation and conduct controlled experiments to evaluate systems’ ability to predict inflected forms for unseen lemmas and morphosyntactic feature combinations.

In this paper, we describe a modification of our earlier model, Flexica (Scherbakov, 2020), that has been participated in the 2020 shared task (Vylomova et al., 2020).1 We provide a summary of its modified version where we attempted to improve its pattern-based generalization ability. We added ability to reuse word forms observed at different combinations of grammatical tags. Also, we improved scoring mechanism to enable better fitting to rule-and-exception hierarchy which typically presents in a language, and to reduce noise in pattern selection.

2 Task Description

This year’s shared task setting substantially differed from previous years in controlling the lemma and feature sets. More specifically, the training, development, and tests sets for the shared task were designed to assess various kinds of generalization. The shared task organizers considered four scenarios of overlap between the training and test sets: 1) both test lemma and feature set are observed in the training (but separately); 2) a test lemma is observed in the training set whereas the feature combination is entirely novel; 3) a feature combination is observed in the training set but the lemma is novel; 4) both a test pair’s lemma and feature set are entirely novel and were not presented in the training set.

In addition, the training data sizes vary from 700 training instances in the small (low-resource) setting to 7,000 instance in the large (high-resource) setting. For some under-resourced languages the large setting contained fewer samples.

3 Data

3.1 Data Format

All shared task data are in UTF-8 and follow UniMorph annotation schema (Sylak-Glassman, 2016). Training and developments samples consist of a
lemma, an inflected (target) form, and its morphosyntactic features (tags). Test samples omit the target form.

3.2 Languages

The shared task covered morphological paradigms for 33 typologically diverse languages representing 11 language families: Arabic (Modern Standard), Assamese, Braj, Chukchi, Eastern Armenian, Evenki, Georgian, Gothic, Gujarati, Hebrew, Hungarian, Itelmen, Karelian, Kazakh, Ket, Khalkha Mongolian, Kholosi, Korean, Lamahalot, Low German, Ludic, Magahi, Middle Low German, Old English, Old High German, Old Norse, Polish, Pomak, Slovak, Turkish, Upper Sorbian, Veps, and Xibe.

4 Baseline Systems

As in previous years’ shared tasks, two types of baseline systems were provided: neural and non-neural. The non-neural baseline aligns suffixes and prefixes based on lemma–form alignments, later associating them with corresponding morphosyntactic features (Cotterell et al., 2017, 2018). As the neural baseline, organizers provided a character-level adaptation of transformer (Wu et al., 2021).

5 Evaluation

The systems submitted to the shared task were evaluated in terms of test accuracy between predicted and gold forms. Besides the overall accuracy, four categories were distinguished in the analytic data provided by organizers. Depending on whether a test sample lemma has been seen in the training set, and whether an exact tag combination (“feature”) has been seen in the training set, a test sample might fall into one of the following four categories: “Lemma Overlap”, “Feature Overlap”, “Neither Overlap”, or “Both Overlap”.

6 System Description

6.1 Training

We implemented a non-neural system (Flexica) where an inflected form is inferred from string-to-string transformation patterns observed in training samples. We produce multiple transformation patterns per each training sample. Those patterns differ in their level of abstractness and also depend on string-to-string alignments between a lemma and an inflected form. Later on, we also distinguish two types of patterns, namely a string pattern and a transformation pattern. A string pattern is a string which may consist of concrete characters and wildcards, e.g. “u<nd” pattern for the word “understand”. A transformation pattern is a triple (lemma_pattern, tag → form_pattern) which is produced from (lemma, tag → form) training samples by replacing certain character subsequences with wildcards. lemma_pattern and form_pattern share the same wildcards within a transformation pattern.

In order to produce transformation patterns for a given training sample we follow the stages:

1. Find the longest common substring for a lemma and its form. Introduce a wildcard (character subsequence) and replace the matching part by the wildcard symbol. For example, an inflection (“observe”, V;3;SG → “observes”) produces a pattern (“”, V;3;SG → “es”). If there are multiple longest matches, we produce as many transformation pattern variants. For example, (“bring”, V;PST → “brang”) will result in two patterns at this stage, (“ing”, V;PST → “ang”) and (“bri”, V;PST → “bra”). We recursively apply the above procedure to the remaining concrete subsequences, finding longest matches and adding new wildcards until no more matching fragments are available. While doing so, we never nest wildcards into each other. We also reject lemma patterns where two or more wildcards would be immediately adjacent, because it would lead to excessive ambiguity in further matching.

Note: although the process described above may seem to be proliferating, just a single pattern is produced for a vast majority of inflection samples, as they usually have a single longest match. A notable exception are languages with templatic morphology.

2. Produce patterns with various character refinements. At this stage, we partially “surrender” longest matches found at the alignment stage. We replace some characters

2We apply an upper threshold for the number of wildcards specifying its as a hyperparameter (usually 2 or 3), which does not affect prediction accuracy.
in wildcard groups back to their concrete values that were observed in a training sample. Once a character is reverted to its concrete value, a wildcard that contained it may be split into two wildcard groups or even disappear. The latter happens whenever a wildcard standing for an empty substring is produced. We do such for 0,1,CCL characters selected in all possible combinations, where CCL is a limit of the concrete characters. Transformation patterns such as ("o\textlowercase{e}"\hspace{1em}V\textsubscript{3};SG → "\textcircled{\textlowercase{e}a}"), ("\textcircled{\textlowercase{e}}"\hspace{1em}V\textsubscript{3};SG → "\textcircled{\textlowercase{e}a}"), ("o\textlowercase{e}"\hspace{1em}V\textsubscript{3};SG → "\textcircled{\textlowercase{e}a}"), V\textsubscript{3};SG → "\textcircled{\textlowercase{e}a}"") constitute a non-exhaustive list of refinements for the pattern ("\textcircled{\textlowercase{e}}", V\textsubscript{3};SG → "\textcircled{\textlowercase{e}a}"") produced for an ("\textlowercase{observe}", V\textsubscript{3};SG → "\textlowercase{observe}"") sample.

We collect all unique patterns produced over a training corpus, finally constructing a trie database model in which data records are as follows: l → {s → \{t, c, d\}} where l is a lemma pattern; s is an inflected form pattern; t is a grammatical tag combination; c is a number of training samples matching the transformation \{l, t\} → s\}; d is a number of samples where lemma and tags match l and t, respectively, but the inflected form doesn’t match s.

6.2 Inference

In order to predict an infected form for a (lemma, tag) pair, our system finds all the transformation patterns that match the lemma (given any non-empty substring substitution for each wildcard group). Then it picks the transformation that yields the highest score. The score is hierarchical which means that a less significant score factor is considered if and only if all the factors of greater significance are in a tie. Here are the list of score factors, ordered by decreasing significance:

1. Penalty for the pattern abstractness, measured as count of characters substituted into wildcard groups. We include an extra “pad” character per group while calculating that sum;

2. Penalty for tag sets’ mismatch (which is fixed per each mismatching tag) plus (optionally) a fixed “lump” amount for any two mismatching tag sets;

3. Representative premium (optional), which is a fixed bonus assigned to transformations that are the most abstract while being correct representations of at least one training sample. This score component serves as a counterweight to the pattern abstractness score component described above. It may be seen as an adaptation of the idea of the most general paradigm (Hulden et al., 2014);

4. A (squashed) frequency f of transformation pattern occurrence in a training set for the given tag combination, minus double (squashed) frequency observed for alternative transformations for the same lemma pattern and tag combination.

7 Results

Tables 1 and 2 present accuracy across all the shared task’s languages measured for the small and large settings, respectively. For Flexica, the column “B” stands for the basic option (without representative bonus), while the column “R” stands for the option with representative bonus. The official submission accuracy numbers are shown in the “Sh.” column. Also, accuracy results for the non-neural and neural baselines (“BL”) and best results across neural systems submitted to the shared task (“neural”/“max”), are presented for the reference.

We also explored some modifications to pattern scoring, but they did not affect performance much. In particular, we tried the following options:

- Increased penalty for impure patterns where different transformations were learnt for a given lemma pattern. The change resulted in approx. 1% accuracy increase for Middle Low German, although a nearly equal decrease happened in Old High German;

- We added an extra bonus for the exact match of grammatical tag combinations. Surprisingly, due to a notable sparseness of such combinations in the dataset we used, that

\footnotesize{3In our officially reported results CCL is taken to be 3, because computations are too numerous for greater values. However, our observations suggest that this value is not sufficient, and increasing it enables better performance.}

\footnotesize{4We also considered using a variable tag-to-tag mismatch penalty which was proportional to a negative log-likelihood of tag interchangeability, but our experiments demonstrated lower accuracy for that option.}
lang	non-neural Flexica	BL max	BL	neural Flexica	BL max	BL
ang	41 41 85 37 49 54 33			ang 46 47 91 41 61 64 43		
ara	31 31 70 32 65 66 22			ara 37 37 79 37 78 75 26		
asm	33 33 47 30 54 57 26			asm 35 35 63 34 76 75 31		
bra	55 56 82 58 55 60 57			evn 3 3 70 3 57 57 25		
ckt	21 21 29 10 6 21 13			got 44 44 80 21 72 73 46		
evn	3 3 43 3 29 34 25			heb 29 29 45 28 48 51 20		
gml	27 27 92 26 42 56 22			hun 34 34 75 32 77 74 37		
goh	49 50 73 40 56 60 42			hye 43 42 66 42 69 93 44		
got	38 38 68 18 60 61 38			kat 32 32 75 45 87 83 45		
guj	47 47 61 47 39 66 48			kaz 40 40 52 34 55 65 42		
heb	19 19 31 19 39 40 14			kkh 31 31 50 23 49 49 38		
hsb	13 13 52 13 5 83 10			kor 33 34 63 33 56 54 32		
hsi	16 16 27 13 0 96 20			krl 36 37 53 37 27 64 5		
hun	26 26 58 25 65 61 23			lud 83 78 93 89 52 89 89		
hye	40 40 61 39 64 86 38			non 41 41 86 47 84 87 37		
iti	30 30 53 31 34 34 28			pol 50 50 84 52 69 90 43		
kat	36 36 63 34 60 59 43			poma 34 34 65 33 63 61 24		
kaz	40 40 52 34 55 65 42			slk 49 49 87 58 70 93 47		
ket	21 21 42 18 10 35 32			tur 36 36 53 35 39 94 36		
khk	24 24 46 22 41 41 28			vep 30 30 60 30 48 62 32		
kor	32 31 57 30 23 50 28					
krl	23 23 31 23 16 45 5					
lud	88 87 91 88 46 87 88					
mag	58 58 79 58 51 64 55					
nds	29 29 62 31 25 50 16					
non	35 35 71 39 55 52 30					
pol	40 40 67 43 59 78 30					
poma	29 29 49 29 51 50 22					
sjo	55 55 90 65 58 76 67					
slk	44 44 81 51 61 84 38					
slp	7 7 51 8 15 30 5					
tur	18 18 25 18 34 85 16					
vep	20 20 41 20 35 42 21					

Table 1: Accuracy (in %) measured in the small training condition. B - basic options; R - with a bonus score for “representative” patterns; Av. - theoretical limit at a perfect pattern choice; Sb. - submitted version; BL - baseline; max - best among submitted systems

Table 2: Accuracy (in %) measured in the large training condition. B - basic options; R - with a bonus score for “representative” patterns; Av. - theoretical limit at a perfect pattern choice; Sb. - submitted version; BL - baseline; max - best among submitted systems

change produced no significant difference, except for a minor accuracy increase for Gothic and Georgian.

* Tag combinations in some UniMorph inflection data files may denote multiple options. For instance, multiple tags corresponding to the same category may be included into a single combination, in which any of them is meant to be equally suitable for producing a given inflected form. In order to meet that an option yields approximately the same performance as the previous one described.

As exact tag combinations were significantly sparse in training and test sets, the majority of mispredictions can be attributed to failures to inference tag interchangeability. Indeed, in most cases of misprediction a correct transformation was available in the learnt model, but it deemed to be irrelevant due to low “similarity” between the learnt tag combination and the target one. The “Av.” column in Tables 1 and 2 shows the percentage of test samples where a correct transformation was available for the model. It tells the upper bound of accuracy

243
that our system would have if the pattern selection mechanism worked perfectly.

8 Discussion

The system we explored in this paper relies on two simple hypotheses. According to the first one, a choice of inflection paradigm in most cases may be associated with some distinctive subsequence of characters in a lemma. The second hypothesis claims existence of a hierarchy of rules and exceptions in most languages, where each exception domain is fenced by a more concrete character pattern than one associated with an embracing general inflection rule. We note that our current approach only admits a very restrictive meaning for such a “concreteness”, namely, the number of concrete characters in a template. Due to this substantial limitation, we only consider an *approximate* split of rule-specific domains.

While the analysis of predictions suggests this approach is generally reasonable, the distinguishing of relevant patterns from noise is challenging. Certain information-based criteria such as entropy, cross-entropy and the like did not work, mainly due to specific patterns being sparsely distributed in the dataset (especially small ones), so that majority of highly concrete patterns peaked the distribution of inflection transformations. On the other hand, many relevant generic patterns demonstrate rather disperse distributions due to numerous exceptions. As a result, it is not possible to easily link the entropy to the relevancy. We intentionally avoided imposing extra biases toward “known” common language rules in order to focus our exploration on the system’s learning capability itself. Unfortunately, we have not yet found universal enough criteria to assess pattern relevance against inflection rules, so in this aspect the system should be considered as a work in progress. We attempted “promotion” of one maximally abstract pattern per training sample, that match the given sample and does not contradict any other observed samples. The underlying hypothesis was that every inflection paradigm is probably justified by a single “cause”, where a “cause” in our restricted context stands for a distinct character pattern for a lemma. Therefore, it should be reasonable to restrict prediction selection to those transformation patterns which were proven to be correctly representing at least one training sample in the most generic way. However, our experiments disproved such an approach, because, as we already said above, relevance criteria based on distribution purity are fundamentally flawed.

Our system operates at character level without considering more generic classes of sub-patterns. However, it did not seem to be a significant issue in most languages. In other words, patterns needed for correct inflection have usually been successfully learnt in most languages (still, non necessarily with the same grammatical tag). However, there are numerous languages where correct patterns cannot be found for a large fraction of examples; this severely jeopardised the respective prediction rates. Besides the “genuinely” high morphological complexity of languages such as Veps, there also occurred some “technical” reasons for the pattern match missing, such as non-standardized scripting of spoken languages (Pomak, Evenki). It is our system’s lack of a mechanism for the affix concatenation which was responsible for inferior results observed in agglutinative languages like Turkish of Hungarian, especially in their low-resource settings.

In the 2022 shared task, we faced a new challenge of extreme sparsity of grammatical tag combinations. A separate model per learnt tag combination does not work in such an environment. We allowed using transformation patterns observed at grammatical tag combinations different from a requested one, with a score penalty proportional to the number of different “atomic” tags (morphosyntatic features). From the inflection perspective, many grammatical tags are not as significant for a correct prediction as others are. This inspired us to use variable penalty per tag substitutions, which was proportional to a log-likelihood of observing the same transformation regardless whether a given tag is present, as measured over all learn transformation patterns, without considering other tags. For instance, in Polish, the animacy does not affect inflection paradigms much, and ignoring it would significantly increase the average accuracy of inference. However, to our surprise, according to the likelihood, some case tag substitutions occurred to be better candidates for being ignored. For instance, the dative and the instrumental cases produce same forms for a majority of Polish feminine nouns, therefore our predictor frequently chooses \texttt{INS} \rightarrow \texttt{DAT} substitution, which is usually incorrect beyond the feminitive (instead of correct \texttt{ANIM} \rightarrow \texttt{INAN}). Thus, such Bayesian approach, that considers tags independently, even failed to outperform
a simplistic technique based on the “edit distance” between tag combinations. We did not yet consider more complex sub-combinations of tags, still the results definitely suggest one to do that way.

An excessive number of generated patterns is another challenge which yet needs to be addressed. Currently, our system unrolls all the combinations of concrete characters in lemma patterns until ultimately discriminative ones are found over a training set. This leads to huge proliferation of noisy patterns of no extra value. In practice, this fact prevents the system from considering longer subsequences of concrete characters where those subsequences could really help to delimit paradigm domains.

Summarizing our impressions from the experiments, we suggest that the system is primarily interesting as it prototypes a simple but efficient approach to the conversion of a sequence-to-sequence task into a “plain” classification task. In this view, further enhancements of the system may be broken into two separate directions. The first one concerns the pattern matching mechanism which would become less consuming, more generalized, based on incrementally collected “cues” (and, in such a way, borrowing features of the “soft attention”). Another direction, which is less specific, would be an exploration of better classification models to be used. Also, the principally optimistic results obtained in our experiments inspire us to attempt expanding the proposed multi-pattern approach into other sequence-to-sequence tasks beyond the re-inflection one.

9 Conclusion

We developed a non-neural system for morphological inflection. We submitted it to the SIGMORPHON 2022 shared task 1, part 1. The system outperformed the non-neural baseline, still we discovered a fundamental insufficiency of simplistic approaches that rely on observed probabilities of particular transformation patterns.

Acknowledgements

We are deeply thankful to all the organizers of SIGMORPHON workshop and its re-inflection shared task, and to all the contributors to the UniMorph database, for the opportunity to participate in this inspirational contest and to carry out insightful experiments on amazingly diverse morphological corpora.

References

Ryan Cotterell, Christo Kirov, John Sylak-Glassman, Géraldine Walther, Ekaterina Vylomova, Arya D. McCarthy, Katharina Kann, Sebastian Mielke, Garrett Nicolai, Miikka Silfverberg, David Yarowsky, Jason Eisner, and Mans Hulden. 2018. The CoNLL–SIGMORPHON 2018 shared task: Universal morphological reinflection. In Proceedings of the CoNLL–SIGMORPHON 2018 Shared Task: Universal Morphological Reinflection, pages 1–27, Brussels. Association for Computational Linguistics.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman, Géraldine Walther, Ekaterina Vylomova, Patrick Xia, Manaal Faruqui, Sandra Kübler, David Yarowsky, Jason Eisner, and Mans Hulden. 2017. CoNLL-SIGMORPHON 2017 shared task: Universal morphological reinflection in 52 languages. In Proceedings of the CoNLL SIGMORPHON 2017 Shared Task: Universal Morphological Reinflection, pages 1–30, Vancouver. Association for Computational Linguistics.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman, David Yarowsky, Jason Eisner, and Mans Hulden. 2016. The SIGMORPHON 2016 shared Task—Morphological reinflection. In Proceedings of the 14th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 10–22, Berlin, Germany. Association for Computational Linguistics.

Omer Goldman, David Guriel, and Reut Tsarfaty. 2022. (un)solving morphological inflection: Lemma overlap artificially inflates models’ performance. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 864–870, Dublin, Ireland. Association for Computational Linguistics.

Mans Hulden, Markus Forsberg, and Malin Ahlberg. 2014. Semi-supervised learning of morphological paradigms and lexicons. In Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 569–578, Gothenburg, Sweden. Association for Computational Linguistics.

Arya D. McCarthy, Ekaterina Vylomova, Shijie Wu, Chaitanya Malaviya, Lawrence Wolf-Sonkin, Garrett Nicolai, Christo Kirov, Miikka Silfverberg, Sebastian J. Mielke, Jeffrey Heinz, Ryan Cotterell, and Mans Hulden. 2019. The SIGMORPHON 2019 shared task: Morphological analysis in context and cross-lingual transfer for inflection. In Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 229–244, Florence, Italy. Association for Computational Linguistics.

Tiago Pimentel, Maria Ryskina, Sabrina J. Mielke, Shijie Wu, Eleanor Chodroff, Brian Leonard, Garrett Nicolai, Yustinus Ghanggo Ate, Salam Khalifa, Nizar Habash, Charbel El-Khaiissi, Omer Goldman,
Michael Gasser, William Lane, Matt Coler, Arturo Oncevay, Jaime Rafael Montoya Samame, Gema Celeste Silva Villegas, Adam Ek, Jean-Philippe Bernardy, Andrey Shecherbakov, Aziyana Bayyar-oool, Karina Sheifer, Sofya Ganieva, Matvey Pluggyov, Elena Klyachko, Ali Salehi, Andrew Krizhanovsky, Natalia Krizhanovsky, Clara Vinia, Sardana Ivanova, Aelita Salchak, Christopher Straughn, Zoey Liu, Jonathan North Washington, Duygu Ataman, Witold Kieraś, Marcin Woliński, Toto Sukardijanto, Niklas Stoehr, Zahroh Nuriah, Shyam Ratan, Francis M. Tyers, Edoardo M. Ponti, Grant Aiton, Richard J. Hatcher, Emily Prud’hommeaux, Ritesh Kumar, Mans Hulden, Botond Barta, Dorina Lakatos, Gábor Szolnok, Judit Acς, Mohit Raj, David Yarowsky, Ryan Cotterell, Ben Ambridge, and Ekaterina Vylomova. 2021. SIGMORPHON 2021 shared task on morphological reinflection: Generalization across languages. In Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 229–259, Online. Association for Computational Linguistics.

Andreas Scherbakov. 2020. The UniMelb submission to the SIGMORPHON 2020 shared task 0: Typologically diverse morphological inflection. In Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 177–183.

John Sylak-Glassman. 2016. The composition and use of the universal morphological feature schema (unimorph schema). Johns Hopkins University.

Ekaterina Vylomova, Jennifer White, Elizabeth Salesky, Sabrina J. Mielke, Shijie Wu, Edoardo Maria Ponti, Rowan Hall Maudslay, Ran Zmigrod, Josef Valvoda, Svetlana Toldova, Francis Tyers, Elena Klyachko, Ilya Yegorov, Natalia Krizhanovsky, Paula Czarnowska, Irene Nikkarinen, Andrew Krizhanovsky, Tiago Pimentel, Lucas Torroba Hennigen, Christo Kirov, Garrett Nicolai, Adina Williams, Antonios Anastasopoulos, Hilaria Cruz, Eleanor Chodroff, Ryan Cotterell, Miikka Silfverberg, and Mans Hulden. 2020. SIGMORPHON 2020 shared task 0: Typologically diverse morphological inflection. In Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 1–39, Online. Association for Computational Linguistics.

Shijie Wu, Ryan Cotterell, and Mans Hulden. 2021. Applying the transformer to character-level transduction. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 1901–1907.