Implementation of Gray Level Co-occurrence Matrix on the Leaves of Rice Crops

Lilis Indrayani¹, Raden Wirawan²

¹STMK Kreatindo Manokwari, Jl. Kali Bambu Reremi Puncak, Manokwari, Papua Barat, 98314, Indonesia
²STMK Bina Adinata, Jl. Serikaya No.08, Bulukumba, Sulawesi Selatan, 92513, Indonesia

ABSTRACT

Rice is one of the cultivation plants that are very important for human survival. The success of rice harvesting affects the level of farmers’ income. However, farmers often suffer losses as a result of illness in rice. Rice plants infected with the disease will show symptoms in the form of patches that have certain patterns and colors on some parts of the body of rice plants, such as stems, leaves, and roots. Disease symptoms that emerge on the leaves are most easily identified because the leaves have a wider cross-section than other body parts of rice. Therefore, in this study, the leaf was used as an initial step parameter for disease detection in rice. This research aimed to identify diseases that exist in rice plants using the method of Gray Level Co-occurrence Matrix (GLCM). The GLCM method is a feature extraction method. The disease detection process on the leaves of the rice plants was done by retrieving the original image for the initial step; then, the original image was segmented before converted to greyscale imagery. After that, feature extraction was carried out using the GLCM features: Entropy, Eccentricity, Contrast, Energy, Correlation, Homogeneity. The results showed 90% accuracy results using GLCM extraction. The recognition of the emerging diseases on rice leaves can help to identify the type of disease infecting the rice plants.

1. INTRODUCTION

For farmers with rice, planting is their livelihood. The success rate of rice harvesting affects the level of farmers’ income because most farmers rely on their life from the wheat harvest. Paddy has a scientific name of Oryza sativa and belongs to the tribe of paddy-paddy or Poaceae. Paddy produces rice, which is the staple food of most of our nation, so rice is one of the fields of agriculture that affects daily life. However, farmers often suffer losses [1][2]; the main factor caused loss is the disease of rice. Although farmers have already gained some training and knowledge of how to care for and know the disease of paddy plants, mistakes remain occasionally occur in determining the disease [3][4]. This error occurs when human abilities are limited in knowing the disease visually [5]. Also, the characteristics of paddy disease are almost identical between one disease and another. This issue is in accordance with some previous research. Dadi Rosadi and Asril held research with the title "Rice Crop Diagnosis System Using Forward Chaining Method," which was designed using the Borland Delphi 7 programming language [6]. Meanwhile, Sri Wulandari et al. held another one with the title of the research "System for Diagnosis of Pests and Diseases of Rice Crops Using Bayes Method" [7].

One of the factors for the decline in rice production is the disease that affects rice crops, especially on the leaves. Types of diseases on the leaves of rice crops are Blast, leaf blight, Tungro, and leaf burn [5]. The symptoms of diseases that arise in rice leaves are most easily identifiable because rice leaves have a wider cross-section than other parts of the rice body So that discoloration and spot-shape can be visible [4]. Therefore, the rice leaves can be used as the first step of disease detection in rice. For these problems, the researchers created a disease recognition system for rice plants using leaf parameters. For this research, the GLCM (Gray-Level Co-occurrence Matrix) method was applied. GLCM was used for the extraction of rice leaf characteristics by using Matlab.
This research develops the image implementation using the GLCM method with feature extraction of six features: contrast, eccentricity, energy, homogeneity, entropy, and correlation with angles of 0°, 45°, 90°, 135°; and detect four types of rice diseases: Blast, Leaf Blight, Leaf Burn, and Tungro.

2. RESEARCH METHOD

2.1. System Design

First, the user will open the built-system application in Matlab [8][9]. The steps to be used in this study are 1) image capturing (Image Acquisition), 2) image improvement (preprocessing), 3) feature extraction, and 4) object identification [10]. It can be shown in Figure 1. In image acquisition, the object will be taken in the form of a digital image in the "JPG" format [11]. Image improvement will be made by changing the pixel's intensity by greyscaling and resizing the picture. Then, the result of the image improvement process will get its feature extracted with GLCM, and finally, will undergo the object identification process by the calculation of closest distance (Euclidean Distance) [12]. The value of each object's characteristics will be calculated: Contrast, Eccentricity, Correlation, Entropy, Homogeneity, and Energy [13][14][15]. Euclidean Distance is imagery premeasurement most used for measuring similarity and usually calculated from raw data, not from standardized data.

![System Design Diagram](image)

To configure GLCM, the co-occurrence matrix (Figure 2) for gray levels often calculates the intensity of the pixel (gray level) of in spatial relation to a pixel of m, primarily the spatial relationship defined as a pixel of interest and its adjacent pixel horizontally on the right direction. The element (n, m) produced in the co-occurrence matrix is simply the sum of the number of pixels that have a value of n in the spatial relationship specified for the pixel of m in the input image [16][17]. Processing requires a calculation of the co-occurrence matrix for the full variable range in the image; this is not desirable. So the number of density values in gray images needs to be reduced from 256 to 8 since the number of gray levels determines the size of the co-occurrence matrix [17][18]. Texture applications are divided into two categories, first is for segmentation purposes, where texture is used to perform separation between one object with another object, Second is for texture classification, which uses texture features for object classification [19].

![GLCM Co-occurrence Matrix](image)
Implementation of Gray Level Co-occurrence Matrix on the Leaves of Rice Crops (Lilis Indrayani)

It can be seen that the number of values from column 1 and column 2 and so on are inserted into the co-occurrence matrix according to rows and columns. Some GLCM features are described as follows. Energy, used to measure texture uniformity, will be of high value when the value of a pixel is similar to each other. Otherwise, a small value signifies the value of GLCM normalization is heterogeneous. The maximum energy value is 1, which means that the pixel distribution is in a constant or the periodic (not random) shape. The equation of energy is

\[E = \sum_{i=1}^{n} \sum_{j=1}^{m} (p(i,j))^2 \]

where \(i \) indicates row, \(j \) indicates column, and \(p(i,j) \) declares the value that belongs to line \(i \) and column \(j \) of the Co-Occurrence Matrix.

Entropy shows the amount of information of the image that is needed for image compression. Entropy measures the loss of information or message in a transmitted signal and also measures the image information. The entropy can be seen as

\[C_e = \sum_{i=1}^{n} \sum_{j=1}^{m} p(i,j) \log_2 p(i,j) \]

The contrast shows special frequencies of the imagery and differences of the resulting GLCM moment. The difference is the difference between the high and the low pixels. Contrast is 0 if the pixel's thickness value is equal. The contrast equation is written as

\[C = \sum_{i=1}^{n} \sum_{j=1}^{m} (i - j)^2 p(i,j) \]

Homogeneity is also known as Inverse Difference Moment. Homogeneity is used to measure the level of image homogenization. This value is used because it is susceptible to the value generated by the same pixel or uniform; it will be of high value. Contradictory to the contrast energy, a big value of the energy will be shown if the pixel values are similar.

\[C_h = \sum_{i=1}^{n} \sum_{j=1}^{m} \frac{p(i,j)}{1 + |i - j|} \]

Correlation measures the linear dependency of grey levels of neighboring pixels. Digital Image Correlation is an optical method that employs tracking & image registration techniques for accurate 2D and 3D measurements of changes in images. This is often used to measure deformation, displacement, strain, and optical flow, but it is widely applied in many areas of science and engineering. One widespread application is for measuring the motion of an optical mouse [20][15].

\[C_{cor} = \sum_{i=1}^{n} \sum_{j=1}^{m} \frac{(i - m_r)(j - m_c)p(i,j)}{\sigma_r \sigma_c} \]

The formulation and extraction of the Enam image feature rendered extracted using Matlab to calculate GLCM as images cannot be directly provided as inputs to be implemented using FPGAs. The extraction method of the image feature used in this paper is given in Figure 3 [19].
2.2 Training Process

Digital Image Acquisition aims to determine the data needed and choose digital image recording methods. In this stage, the researchers used a digital image recording method by searching for herbal plant image data through the Google search engine.

The preprocessing phase aims to simplify the process of image identification. This stage consists of changing the pixel size of the original image to 688x800 pixels, changing the background color of the image in the segmentation process, and changing the color of the RGB image to grayscale, LAB, and binary image to get the extraction of the shape value from the image[12][8].

At the stage of labeling, each image is labeled in training, and then data is done. Labeling aims to separate data based on labels that will be used in segmentation and classification.

GLCM, at this stage, texture analysis is performed using the GLCM feature. This process is related to the quantization of image characteristics into a group of corresponding characteristic values. Texture analysis is generally used as an intermediary process for image classification and interpretation. The extracted features are Entropy, Energy, Eccentricity, contrast, correlation, and homogeneity[15].

At the stage of training, the training process is carried out using a set of training data that contains parameter features or features that are used to differentiate between one object and another object. The characteristics used are texture analysis with GLCM and leaf shape recognition. The training process maps training data towards the training target through an algorithm formulation, image identification using GLCM features, and image classification using k-means clustering segmentation.

The formula used for testing the results of this system is demonstrated by

\[\text{Accuracy} = \frac{TP + TN}{TOTAL\ DATA} \]

(6)

2.3 Disease in Rice Plants

Rice leaves infected with the disease have different texture patterns, color, and shape of leaves between one disease to another. The types of disease discussed in this study are:

a. Blast (Figure 4) is showed on the leaves as brown spots with a gray-white center. Over time, the panicle's neck began to rot or break so that the process of filling the panicle was interrupted, and many were hollow in rice.

b. Leaf blight: the attacked leaves will be green-gray folding and rolling. In a severe state, it is capable of causing leaves to curl, wither, and die. It can be shown as in Figure 5.
Implementation of Gray Level Co-occurrence Matrix on the Leaves of Rice Crops (Lilis Indrayani)

3. RESULT AND DISCUSSION

Feature Extraction Flowcharts can be shown in Figure 8. Feature extraction is the process of obtaining and transforming the main characteristics contained in the imagery: contrast, eccentricity, energy, homogeneity, entropy, and correlation with angles of 0°, 45°, 90°, 135°. Once all values are obtained, it will be averaged. Here is the extraction flow feature: Grayscale will produce a quantized grayscale matrix used at this stage; this stage will calculate 5 statistical values of the co-occurrence matrix.

Feature extraction values to be searched are: Contrast, Eccentricity, Homogeneity, Energy, Entropy, Correlation. With a 3x3 pixel size, it has 16 degrees of grey with a range of 0-15. The training process used the GLCM method to calculate each extraction feature for each disease. It was thereby generating the features extraction values: Entropy, Contrast, Eccentricity, Correlation, Energy, Homogeneity. To detect 4 types of diseases using each of 20 training data for each type of disease, by producing the following training data as shown in Table 1.

c. Leaf burn, symptoms usually happen on the tips of old leaves, round spots, infected leaves usually dry out and turn brown, the edges are fading. It can be shown in Figure 6.

d. Tungro, symptoms can be seen in reduced small plants tillers, and the leaves turn yellow from the shoot to rice straw. It can be shown as in Figure 7.
Here are the stages of training GLCM implementation. This Matlab Program has 3 process buttons after Matlab Run: select image, process segmentation, and feature extraction. The first process is the “select image”. The image of the leaf that will be extracted is selected, taken from the existing folder on the computer. For a faster searching for image input data parameters, the initial input image is resized from the original image size 32x32 pixels using the RGB color method. The application MATLAB is used to detect diseases of the rice leaves. The tools used are Select Image (Pilih Gambar), GLCM Extraction (Ekstraksi GLCM), Segmentation (Segmentasi), Feature Extraction (Ekstraksi Fitur), the result (Hasil), and Reset. It can be shown in Figure 9.

![Feature Extraction Flowcharts](image)

Fig. 8. Feature Extraction Flowcharts

Nama File	Entropy	Eccentricity	Contrast	Correlation	Energy	Homogeneity	Information
Blast1	0.3125	0.9863	0.2612	0.8568	0.7907	0.9550	Correct
Blast2	0.5731	0.9146	0.2851	0.8586	0.7320	0.9447	Correct
Blast3	0.1802	0.9835	1.4112	0.6935	0.5299	0.8675	Correct
Blast4	0.3214	0.9589	0.8607	0.7939	0.4247	0.8739	Correct
Blast5	0.1663	0.9989	0.8453	0.9289	0.5701	0.9278	Correct
Lb1	0.3091	0.9667	0.2930	0.8487	0.8061	0.9543	Correct
Lb2	0.3901	0.9630	0.6879	0.9121	0.6111	0.9155	Correct
Lb3	0.4605	0.7213	0.3266	0.8595	0.7929	0.9537	Correct
Lb4	0.3504	0.9792	1.2013	0.8564	0.5746	0.8957	Correct
Lb5	0.5845	0.9163	1.1547	0.8658	0.4694	0.8776	Incorrect
Bl1	0.1127	0.9990	0.3674	0.7987	0.7854	0.9527	Correct
Bl2	0.4545	0.6951	1.2355	0.8606	0.3477	0.8462	Correct
Bl3	0.4226	0.9153	0.4788	0.7606	0.8098	0.9557	Correct
Bl4	0.0601	0.9997	0.3893	0.9062	0.6465	0.9415	Correct
Bl5	0.0944	0.9408	1.2467	0.8041	0.6220	0.9125	Correct
Tungro1	0.8058	0.8576	0.4816	0.9013	0.5915	0.9291	Correct
Tungro2	0.3063	0.8862	0.9925	0.8319	0.2512	0.8457	Correct
Tungro3	0.5719	0.9030	0.7769	0.8955	0.2284	0.8924	Correct
Tungro4	0.1345	0.9966	1.6127	0.7844	0.5996	0.8970	Correct
Tungro5	0.5127	0.9513	0.7572	0.8886	0.3062	0.8983	Correct
The button "Segmentation" is used to see the image segmentation results from the original image. At this stage, the conversion to greyscale imagery is carried out. Image segmentation is a binary image in which the desired object is white (1), while the background to be eliminated is black (0). The first step of the segmentation process is to take the original image, then do the image filtering with $\lambda = 4$ and $\theta = 45$. After that, a thresholding operation is performed against the magnitude image with a threshold value of 1000. Once a segmented binary image is obtained, then visualizing the segmentation results against the original image. In Matlab, it can be done by giving the command dst=rgb2gray(img); “dst” is output variables from image conversion to gray, and “src” is the input image variable RGB. It can be shown in Figure 10.

After processing the image input from the folder in the computer, and through the segmentation process and resizing stage, the next step is to change the RGB image to greyscale. This process aims to simplify each pixel value in an image that initially has three values, which converts RGB to one gray value. The equation used for the greyscaling process is:

$$X = 0.12 \times R + 0.72 \times G + 0.07 \times B$$ \hspace{1cm} (7)

Next is pressing the Button "extraction GLCM" to display the extraction result of each feature. It can be shown in Figure 11.
Once users find the extraction result of the sixth feature, then press the "Result" button to find out what kind of leaf disease has been extracted. With the value of Entropy = 0.3901, Eccentricity = 0.96303, Contrast = 0.68791, Correlation = 0.91206, Energy = 0.61115, Homogeneity = 0.9155, thereby detecting the results of Blast disease. It can be shown in Figure 12.

4. CONCLUSION

Based on the results of research and system testing carried out from the feature extraction process using the GLCM method, the authors conclude the results of disease detection in the leaves of rice plants with a total sample data of 40 image data with 40 training data images and 20 image test data showing an accuracy level of 90%. The result is not enough 100% due to several factors that affect the extraction result of which is the error in the detection process caused by a low image color detection factor. The advantage of this research with previous research is using the GLCM method, which is one of the accurate methods to perform the feature extraction process in a texture. The suggestion that the authors convey from the results of this research is necessary to do further research using other methods to perform the extraction of the characteristics on the leaves of the rice crop.
Acknowledgments

Authors would like to thank the colleagues at STMIK Kreatindo Manokwari and STMIK Bina Adinata Bulukumba for their help and cooperation in completing our research.

REFERENCES

[1] Y. Sari, A. R. Baskara, and F. Arya, “Klasifikasi grade daun padi sebagai penentu pemupukan urea dengan metode ekstraksi fitur,” Prosiding Seminar Nasional Lingkungan Lahan Basah, vol. 4, no. 1, pp. 148–151, April 2019. Google Scholar

[2] A. Candra, “Prototype Sistem Kontrol Air Sawah Otomatis Berdasarkan Level Air Berbasis Mikrokontroler Atmega8535 Pada Desa Bontoraja Kabupaten Bulukumba,” JECCOM, vol. 2, no. 1, pp. 22–33, 2020. Google Scholar

[3] S. Sudewi, A. Ala, Baharuddin, and M. Farid BDR., “Keragaman Organisme Penganggu Tanaman (OPT) pada Tanaman Padi Varietas Unggul Baru (VUB) dan Varietas Lokal pada Percobaan Semi Lapangan,” J. Agrik., vol. 31, no. 1, pp. 15–24, 2020. DOI: 10.24198/agrikultura.v31i1.25046

[4] N. Trisna, Y. Elva, and A. I. Jmhr, “Implementasi Sistem Pakar Diagnosa Penyakit Tanaman Padi Dengan Menggunakan Metode Forward Chaining,” Jurnal Informasi Komputer Logika, vol. 1, no. 3, pp. 1–10, 2019. Google Scholar

[5] J. Kusanti and N. A. Haris, “Klasifikasi Penyakit Daun Padi Berdasarkan Hasil Ekstraksi Fitur GLCM Interval 4 Sudut,” J. Pengemb. IT, vol. 03, no. 01, pp. 1–6, 2018. DOI: 10.30591/jpit.v3i1.669

[6] D. Rosadi and A. Hamid, “Sistem Pakar Diagnosta Penyakit Tanaman Padi Menggunakan Metode Forward Chaining,” J. Comput. Bisnis, vol. 8, no. 1, pp. 43–48, 2014. Google Scholar

[7] S. Wulandari, M. F. Noor, A. K. Wardhana, and Kusirin, “Sistem Pakar Diagnosta Hama Dan Penyakit Tanaman Padi Dengan Metode Bayes,” J. Inf., vol. 5, no. 2, pp. 59–64, 2019. DOI: 10.46808/informa.v5i2.83

[8] A. Priatmoko and E. Harahap, “Implementasi Algoritma DES Menggunakan MATLAB,” J. Mat., vol. 16, no. 1, pp. 11–19, 2017. DOI: 10.29313/jntmt.v16i1.3360

[9] I. D. Kurniawati and I. A. Kusumawardhani, “Implementasi Algoritma Canny dalam Pengenalan Wajah menggunakan Antarmuka GUI Matlab,” Institution of Engineering and Technology, 2017. Google Scholar

[10] A. P. Manullang, A. Prahutana, and R. Santoso, “Penerapan Metode Simple Additive Weighting (Saw) Dan Weighted Product (Wp) Dalam Sistem Penunjang Pemilihan Laptop Terfavorit Menggunakan Gui Matlab,” J. Gaussian, vol. 7, no. 2018, pp. 11–22. Google Scholar

[11] E. Nurrachio, “Implementasi Pembangunan Interfacing MATLAB-Arduino,” J. Teknol. Inf. Din., vol. 20, no. 2, pp. 100–105, 2015. Google Scholar

[12] E. Maria, Yulianto, Y. P. Arinda, Jumiaty, P. Nobel, “Segmentasi Citra Digital Bentuk Daun Pada Tanaman Di Politani Samarinda Menggunakan Metode Thresholding,” Jurnal Rekayasa Teknologi Informasi (JURT), vol. 2, no. 1, 2018. DOI: 10.30872/jurti.v2i1.1377

[13] I. Amalia, Indrawati, and Y. M. Amin, “Ekstraksi Fitur Citra Songket Berdasarkan Tekstur Menggunakan Metode Gray Level Co-occurrence Matrix (GLCM),” J. Infomedia, vol. 3, no. 2, pp. 64–68, 2018. DOI: 10.30811/jim.v3i2.715

[14] M. Lateif and R. Yusuf, “Gorontalo Medicinal Plants Image Identification System Using Artificial Neural Network with Back Propagation,” IJITEE (International Journal of Information Technology and Electrical Engineering), vol. 2, no. 2, 2018. DOI: 10.22146/ijitee.42154

[15] Priyanka and D. Kumar, “Feature Extraction Using and Selection Kidney Ultrasound Images Using GLCM and PCA,” Procedia Comput. Sci., vol. 167, no. 2019, pp. 1722–1731, 2020. DOI: 10.1016/j.procs.2020.03.382

[16] C. Liu and X. Zheng, “Comparative Investigation on Objective Evaluation Methods for Fabric Smoothness,” FIBRES Text. East. Eur., vol. 2, no. 140, pp. 43–49, 2020. Google Scholar DOI: 10.5604/01.3001.0013.7313

[17] K. H. Thanoon, "Proposed Algorithm for Using GLCM Properties to Distinguishing Geometric Shapes," Raf. J. Comp. Math’s, vol. 13, no. 1, pp. 32–47, 2019. DOI: 10.33899/csmj.2020.163501

[18] R. Andrian, D. Maharani, M. Ardhi, and A. Junaidi, “Butterfly identification using gray level co-occurrence matrix (glcm) extraction feature and k-nearest neighbor (knn) classification,” Sci. J. Inf. Syst. Technol. Available, vol. 6, no. 1, pp. 11–21, 2020. DOI: 10.26594/register.v6i1.1602

[19] P. Mohanaiah, P. Sathyanarayana, and L. Gurukumar, “Image Texture Feature Extraction Using GLCM Approach,” Int. J. Sci. Res. Publ., vol. 3, no. 5, pp. 1–5, 2013. Google Scholar

[20] H. A. Al-beiruti and H. A. Jeiad, “OPG Images Automatic Segmentation and Feature Extraction for Dental Lesion Diagnosis Purposes,” Int. J. Sci. Res., vol. 7, no. 11, pp. 717–724, 2018. DOI: 10.21275/ART20192396. Semantic Scholar
BIOGRAPHY OF AUTHORS

Lilis Indrayani, have completed Bachelor Computer-Information System in 2016, then Master Computer-Computer system in 2018. Currently, she is working as Lecturer and Chairman of information System Study Program in STMIK Kreatindo Manokwari, Papua Barat, Indonesia. Email: lilisindrayani8@gmail.com

Raden Wirawan, has finished Computer Master-Computer System in 2015. Currently, she is working as a lecturer of the Computer Systems Study Program in STMIK Bina Adinata Bulukumba, Sulawesi Selatan, Indonesia. Email: liliraden12790@gmail.com