Effect of lactoperoxidase on the antimicrobial effectiveness of the thiocyanate hydrogen peroxide combination in a quantitative suspension test

A Welk*1, Ch Meller2, R Schubert3, Ch Schwahn1, A Kramer4 and H Below4

Address: 1Department of Restorative Dentistry, Periodontology and Endodontontology, Dental School, University of Greifswald, Greifswald, Germany, 2Department of Operative Dentistry and Periodontology, Center of Dentistry, Oral Medicine, and Maxillofacial Surgery, University Hospital Tuebingen, Tuebingen, Germany, 3Private dental practice, Berlin, Germany and 4Institute of Hygiene and Environmental Medicine, University of Greifswald, Greifswald, Germany

Email: A Welk* - welk@uni-greifswald.de; Ch Meller - christian.meller@med.uni-tuebingen.de; R Schubert - ron.schubert@gmx.de; Ch Schwahn - schwahn@uni-greifswald.de; A Kramer - kramer@uni-greifswald.de; H Below - Below@uni-greifswald.de

* Corresponding author

Published: 9 July 2009
BMC Microbiology 2009, 9:134 doi:10.1186/1471-2180-9-134

Received: 8 September 2008
Accepted: 9 July 2009

This article is available from: http://www.biomedcentral.com/1471-2180/9/134
© 2009 Welk et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: The positive antimicrobial effects of increasing concentrations of thiocyanate (SCN-) and H2O2 on the human peroxidase defence system are well known. However, little is known about the quantitative efficacy of the human peroxidase thiocyanate H2O2 system regarding Streptococcus mutans and sanguinis, as well as Candida albicans. The aim of this study was to evaluate the effect of the enzyme lactoperoxidase on the bactericidal and fungicidal effectiveness of a thiocyanate-H2O2 combination above the physiological saliva level. To evaluate the optimal effectiveness curve, the exposure times were restricted to 1, 3, 5, and 15 min.

Results: The bactericidal and fungicidal effects of lactoperoxidase on Streptococcus mutans and sanguinis and Candida albicans were evaluated by using two test mixtures of a 2.0% (w/v; 0.34 M) thiocyanate and 0.4% (w/v; 0.12 M) hydrogen peroxide solution, one without and one with lactoperoxidase. Following the quantitative suspension tests (EN 1040 and EN 1275), the growth of surviving bacteria and fungi in a nutrient broth was measured. The reduction factor in the suspension test without lactoperoxidase enzyme was < 1 for all three tested organisms. Thus, the mixtures of 2.0% (w/v; 0.34 M) thiocyanate and 0.4% (w/v; 0.12 M) hydrogen peroxide had no in vitro antimicrobial effect on Streptococcus mutans and sanguinis or Candida albicans. However, the suspension test with lactoperoxidase showed a high bactericidal and fungicidal effectiveness in vitro.

Conclusion: The tested thiocyanate and H2O2 mixtures showed no relevant antimicrobial effect. However, by adding lactoperoxidase enzyme, the mixtures became not only an effective bactericidal (Streptococcus mutans and sanguinis) but also a fungicidal (Candida albicans) agent.

Background

Maintaining daily oral hygiene is essential to prevent caries, gingivitis, and periodontitis [1-3]. To support mechanical plaque control, which is mostly insufficient [4-6], antiseptics are used in toothpastes and mouth rinses [7-10].
However, the concentrations and frequency of use of anti-
septics are limited to avoid side effects, such as discolora-
tion of teeth and tongue, taste alterations, mutations
[11,12], and, for microbiostatic active agents, the risk of
developing resistance or cross-resistance against antibiot-
ics [13]. Therefore, it would seem better to stimulate or
support the innate host defence system, such as the oral
peroxidase-thiocyanate-hydrogen peroxide system.

Human saliva contains peroxidase enzymes and lys-
ozyme, among other innate host defence systems. The
complete peroxidase system in saliva comprises three
components: the peroxidase enzymes (glycoprotein
enzyme), salivary peroxidase (SPO) from major salivary
glands and myeloperoxidase (MPO) from polymorpho-
nuclear leucocytes filtering into saliva from gingival crev-
icular fluid; hydrogen peroxide (H₂O₂), and an oxidizable
substrate such as the pseudohalide thiocyanate (SCN⁻)
from physiological sources [14,15]. SPO is almost identi-
cal to the milk enzyme lactoperoxidase (LPO) [16,17]. All
these peroxidase enzymes catalyze the oxidation of the
salivary thiocyanate ion (SCN⁻) by hydrogen peroxide
(H₂O₂) to OSCN⁻ and the corresponding acid hypothiocy-
anous acid (HOSCN), O₂SCN⁻, and possibly O₃SCN⁻ [18],
which have been shown to inhibit bacterial [19-23], fun-
gal [24], and viral viability [25]. However, the system is
effective only if its components are sufficiently available
in saliva. Salivary concentration of SCN⁻ varies consider-
ably and depends, for instance, on diet and smoking hab-
bits. The normal range of salivary SCN⁻ for nonsmokers is
from 0.5 to 2 mM (29–116 mg/l), but in smokers [26,27],
the level can be as high as 6 mM (348 mg/l). Pruitt et al.
[28], for example, see the main limiting component for
the production of the oxidation products of SCN⁻ in whole
saliva to be the hydrogen peroxide (H₂O₂) concentration.
Thomas et al. [29] showed that the combination of LPO,
SCN⁻, and 0.3 mM (10.2 mg/l) H₂O₂ caused complete
inhibition that lasted for nearly 16 h, whereas 0.3 mM
(10.2 mg/l) H₂O₂ alone had no effect. However, if no
more H₂O₂ was added, the concentration of the inhibitor
OSCN⁻ fell because of slow decomposition of OSCN⁻; and,
when OSCN⁻ fell below 0.01 mM (0.74 mg/l), the bacteria
resumed metabolism and growth. The loss of OSCN⁻ over
time is based on decomposition, not on the reaction with
bacteria [29].

The typical concentration of peroxidases in whole saliva is
roughly 5 μg/ml, whereas the MPO concentration (3.6 μg/
ml) is approximately twice the amount of SPO (1.9 μg/
ml) [30]. Therefore, even if SPO is deficient, MPO activity
would probably be adequate for SCN⁻ oxidation in mixed
saliva [30]. The study by Adolphe et al. [31] showed that
the lactoperoxidase system's antimicrobial efficiency can
be enhanced by better concentration ratios of the LPO sys-
tem components. However, this finding was postulated
for only near physiological conditions and did not con-
sider a concentration of thiocyanate and H₂O₂ higher
than the physiological one.

Rosin et al. [32] showed that, in the saliva peroxidase sys-
tem, increasing SCN⁻/H₂O₂ above its physiologic saliva
level reduced plaque and gingivitis significantly compared
to baseline values and a placebo. A new dentifrice formu-
lated on these results showed the same effects regarding
plaque and gingivitis prevention in comparison to a
benchmark product containing triclosan [33]. However,
the effects were not sufficient to recommend using the
SPO system to effectively prevent oral diseases in the long
run.

Thus, the question arose, Is it possible to increase antimi-
icrobial effectiveness by adding not just thiocyanate and
hydrogen peroxide but also LPO to oxidize as much the
SCN⁻ anions as possible to become an effective antimicro-
bial agent? Therefore, we conducted a standardized quan-
titative suspension test at a fixed concentration level of all
three components above the physiological one to evaluate
the influence of LPO on the lactoperoxidase-thiocyanate-
hydrogen peroxide system relative to its bactericidal and
fungicidal effectiveness against Streptococcus mutans and sanguinis and Candida albicans.

Results
The reduction factors (RF) of the test suspensions without
and with LPO on the viability of Streptococcus mutans,
Streptococcus sanguinis, and Candida albicans at differ-
ent time points (1, 3, 5, and 15 min) are shown in tables
1, 2 &3. The accompanying suspension tests with single compo-
nents (SCN⁻, LPO) and combinations of two components
(LPO+SCN⁻, LPO+H₂O₂) showed no clinically relevant
effects (RF ≤ 0.3) at all time points. Only the single com-
ponent H₂O₂ showed a reduction factor of 1.5 after 15
min.

Streptococcus mutans
The antibacterial reductions of the thiocyanate-hydrogen
peroxide system without LPO increased with time and
were statistically significantly different between 5 and 15
min. However, they remained at a very low level (RF < 1).
Thus, the suspension without LPO had practically no bac-
tericidal effectiveness. The suspension with LPO showed a
distinct antibacterial reduction (RF 7.49) after 5 min,
which means the complete killing of all cells. Thus, a fur-
ther increase of the reduction factor was not possible. The
comparison between groups A (without LPO) and B (with
LPO) showed a statistically significant difference in favour
of group B after 5 and 15 min (Table 1).
Streptococcus sanguinis

The antibacterial reductions of the thiocyanate-hydrogen peroxide system without LPO increased with time but only to a very low level (RF ≤ 1) with practically no bactericidal effectiveness. The suspension with LPO showed an effective antibacterial reduction after 5 min (RF 4.01 ± 3.88) and after 15 min (RF 8.12 ± 0.22). The RFs between 3 and 5 min were statistically significantly different. The comparison between groups A and B showed a statistically significant difference in favour of B (with LPO) after 15 min (Table 2).

Candida albicans

The antifungal reduction of the thiocyanate-hydrogen peroxide system without LPO (Group A) increased with time but only to a very low level (RF < 1) with practically no fungicidal effectiveness. The suspension with LPO (Group B) showed an effective fungicidal reduction after 3 min (RF 6.78 ± 0.25), which means the complete killing of all microbes. Thus, a further increase of the reduction factor was not possible.

Table 1: Reduction factors of the test thiocyanate hydrogen peroxide microbial suspension without and with LPO to Streptococcus mutans at different time points.

Time [min]	Group A Without LPO	Group B With LPO	A vs. B²
1	0.23 ± 0.26	0.03 ± 0.17	0.128
3	0.21 ± 0.36	0.53 ± 0.22	0.026
5	0.25 ± 0.12	7.49 ± 0.64³	< 0.001
15	0.69 ± 0.43	7.41 ± 0.69³	< 0.001

1) Wilcoxon test with a significant level of < 0.05
2) Mann-Whitney U test with a significance level of < 0.001
3) Complete killing of all cells in test suspension

Table 2: Reduction factors of the test thiocyanate hydrogen peroxide microbial suspension without and with LPO to Streptococcus sanguinis at different time points.

Time [min]	Group A Without LPO	Group B With LPO	A vs. B²
1	0.10 ± 0.90	0.13 ± 0.12	0.710
3	0.16 ± 0.15	0.78 ± 0.67	0.073
5	0.27 ± 0.17	4.01 ± 3.88³	0.073
15	1.03 ± 0.60	8.12 ± 0.22³	< 0.001

1) Wilcoxon test with a significant level of < 0.05
2) Mann-Whitney U test with a significance level of < 0.001
3) Complete killing of all cells in test suspension
The RFs between 3 and 5 min were statistically significantly different. The comparison between groups A and B showed a statistically significant difference in favour of B (with LPO) after 3 min (Table 3).

Discussion

The applied quantitative suspension tests are recognized European norm tests for evaluating bactericidal (EN 1040) and fungicidal efficacy (EN 1275) of a newly developed antiseptic [34,35]. In contrast to common antimicrobial tests (inhibition tests), these quantitative suspension tests facilitate, for example, the strict distinctions between bacteriostatic/fungistatic and bacteriocidal/fungicidal effects by neutralizing the active agent. The tests are also useful for determining a quantitative curve for concentration and time of an antiseptic. Thus, the tests are suitable for evaluating the effect of LPO on the lactoperoxidase-thiocyanate-hydrogen peroxide system's antimicrobial effects. However, the results must be interpreted within the limitations of an in vitro test.

The industrially produced LPO enzyme such as that used in toothpaste [36] was used because of its reproducible quality. Human SPO is slightly different from industrially produced LPO. However, the main characteristics of the industrially produced LPO are identical to saliva peroxidase [16,17]. Based on this similarity, industrially produced LPO is used instead of SPO in studies and is often referred to as LPO in the literature [37].

The efficiency of the LPO system depends – besides the concentration of its components – on exposure time and pH value [29,31]. Therefore, to determine when the LPO system or the oxidation products reached their initial optimal bactericidal and fungicidal effectiveness, tests were conducted at the exposure times of 1, 3, 5, and 15 min.

All tests were conducted at the pKₐ (pH 5.3) of HOSCN/OSCN⁻ [38], because pretests showed that the lactoperoxidase-thiocyanate-hydrogen peroxide system was effective at 5.3 pH. Lumikari et al. [23] found the optimum pH to be about 5.0. Increasing the HOSCN/OSCN⁻ concentration by adding H₂O₂ could raise the inhibition of Streptococcus mutans in human saliva [21,36] but only at a pH around 5 and not at neutral pH because of the shift of OSCN⁻ to HOSCN by a low pH value in favour of HOSCN. Unlike OSCN⁻, HOSCN has no charge, which facilitates penetration through the lipophilic bacterial cell membrane and raises the antimicrobial effectiveness of the saliva antiperoxidase system [18]. Thus, the most effective product of the LPO system works around the pH, where the biofilm/saliva pH level is pathologically effective.

To completely ensure that the tested effect of the lactoperoxidase enzyme on the thiocyanate-hydrogen peroxide system above the physiological concentration level was not based primarily on single components (H₂O₂, SCN⁻, LPO) or on combination of two components (LPO+SCN⁻, LPO+H₂O₂), accompanying suspension tests were conducted.

With one exception, all accompanying single component tests showed no clinically relevant antimicrobial effectiveness (RF: ≤ 0.3). Only the single component H₂O₂ showed a moderate reduction factor of 1.5 after 15 min. This result is in line with the known bactericidal effect of H₂O₂ [29]. However, in combination with LPO, the effect of H₂O₂ was reduced compared to its single

Table 3: Reduction factors of the test thiocyanate hydrogen peroxide suspension without and with LPO to Candida albicans at different time points.

Group	Without LPO	With LPO	A vs. B²						
Time	Reduction factor	Comparisons within A³	Reduction Factor	Comparisons within B³					
[min]	Mean ± SD	p	p	p	Mean ± SD	p	p	p	p
1	0.12 ± 0.19	0.496	0.077						
3	0.26 ± 0.26	0.141	6.78 ± 0.25³	0.004	0.551	< 0.001			
5	0.15 ± 0.13	0.004	6.75 ± 0.22³	1.000	< 0.001				
15	0.93 ± 0.58	6.74 ± 0.26³	1.000	< 0.001					

1) Wilcoxon test with a significant level of < 0.05
2) Mann-Whitney U test with a significance level of < 0.001
3) Complete killing of all cells in test suspension
effect. We assume that the radicals, which are produced by the reaction of LPO with H$_2$O$_2$ [39], are short-lived intermediates that cannot react bactericidally under the test conditions.

All suspension tests without LPO at all time points showed no or no clinically relevant antimicrobial effectiveness (highest RF: Streptococcus mutans 0.6, Streptococcus sanguinis 1.0, and Candida albicans 0.9). The low reduction potential could be based on H$_2$O$_2$ itself or, to a small extent, on the oxidation without enzyme of SCN$^-$ to OSCN$^-$ by H$_2$O$_2$, especially at higher exposure times.

On the other hand, all suspensions with LPO showed remarkably high antimicrobial effectiveness. In the quantitative suspension test, the lactoperoxidase-thiocyanate-hydrogen peroxide system (group B) showed its maximal reduction (complete) of Streptococcus mutans (RF 7.49) after a 5-min incubation time. Both reduction factors (after 5 and 15 min) were statistically significantly different from group A (without LPO).

The results show the large effect of the LPO enzyme on antibacterial effectiveness of the lactoperoxidase-thiocyanate-hydrogen peroxide system, which can be a powerful bactericide, not just bacteriostatic, if all components are above their physiological levels. It is assumed that the effect is based on not just the described shift of OSCN$^-$ to HOSCN (pH 5.3) [38] but also a higher amount of the more effective LPO-caused oxidation products, O$_2$SCN$^-$ and O$_3$SCN$^-$ [21,23,28].

In the case of Streptococcus sanguinis, the reduction factor at 5 min (RF 4.01) was statistically significantly higher in comparison with the reduction factor at 3 min (RF 0.78) of Group B (with LPO). However, there was no statistically significant difference between the reduction factors at 5 min in either group (A and B), despite a great difference in their mean values. The reason was the large standard deviation of in RF (4.01 ± 3.88).

We assume that, when the 5-min measurement was taken, the bactericidal effect by HOSCN/OSCN$^-$ was already occurring in some experiments but not yet in others. One of the reasons could be the NAD(P)H-SCN$^-$ oxidoreductase system, which Streptococcus mutans and Streptococcus sanguinis and other bacteria have. This system can reduce HOSCN/OSCN$^-$ to the less effective components, SCN$^-$ and H$_2$O$_2$. Streptococcus sanguinis has more of this reducing enzyme than does Streptococcus mutans. Thus, we assume that a higher concentration of HOSCN/OSCN$^-$ is needed to achieve a similar bactericidal effect on Streptococcus sanguinis than on Streptococcus mutans [40,41], meaning more time in the experiment. After 15 min, the test suspension with LPO had a similar antibacterial effectiveness on Streptococcus sanguinis (RF 8.12 ± 0.22) as on Streptococcus mutans (RF 7.41 ± 0.69).

Rosin et al. [32] used more than the physiological level of SCN$^-$/H$_2$O$_2$ in a toothpaste to increase the human oral defence system. This toothpaste reduced gingivitis and inhibited plaque. The enhancement of these effects by an optimal combination not only of H$_2$O$_2$ and thiocyanate, but also of LPO enzyme, for mouth rinses or toothpaste formula is certainly possible and should be considered in further clinical studies.

In our study, the LPO system was bactericidal at pH 5.3 to Streptococcus mutans and sanguinis. However, experiments by Thomas et al. [29] showed that the LPO system was effectively bacteriostatic, but not bactericidal, at pH 7 during a 1-h incubation. This finding may mean that the LPO system might shift from bacteriostatic to bactericidal at a point when the Streptococcus mutans causes low pH (<5.5), leading, for example, to demineralisation of tooth hard substances. Thus, the system could be a reservoir, getting its highest antibacterial activity when it is most needed: at a point when pH falls as a result of bacterial lactic acid production.

After 3 min, the reduction of Candida albicans in the test suspension with LPO was already complete. Thus, of the three tested microorganisms, Candida albicans was most sensitive to the lactoperoxidase-thiocyanate-hydrogen peroxide system, even if it was buffered by phosphate. Majerus and Courtois [42], as well as Samant et al. [43], could not find a sufficient antifungal effect of the SCN$^-$/H$_2$O$_2$-LPO system. Lenander-Lumikari [22] found that C. albicans is sensitive to HOSCN/OSCN$^-$, but saliva and salivary concentrations of phosphate blocked the antifungal effect of the peroxidase systems. However, they used all components of this system at the physiological human saliva level.

Thus, the lactoperoxidase-thiocyanate-hydrogen peroxide system can be not only fungistatic [44] but also fungicidal for Candida albicans; independently, it is phosphate-buffered at salivary concentrations or higher.

C. albicans can be isolated from the mouth of most individuals, but the fungus causes oral disease such as oral mucositis in primarily immunocompromised individuals [45-47]. Further, Candida albicans is seen as a reservoir for pneumonia [48] and intestinal related diseases [49].

Theraud et al. [50] showed that chlorhexidine was fungicidal on pure cultures, yeast mixtures, and biofilms above a concentration level of 0.5% (w/w). However, Pitten et al. [51] showed that treatment with a 0.3% (w/w) chlorhexidine-based product did not provide a clinical benefit.
for cancer patients with chemotherapy-induced leukopenia. In their study, the risk of mucositis and clinical sequelae (e.g., C-reactive protein) seemed to be enhanced by chlorhexidine mouth rinse, although the counts of microorganisms on the oral mucous membranes were significantly reduced. They assumed that the reason was the reduced tissue tolerance to chlorhexidine. This assumption is supported by a study that showed a discrepancy between antiseptic activity and clinical effect on radiation-induced [52] or chemo-induced mucositis [53] by chlorhexidine mouth rinse compared with placebo. In a peritoneal explant test for evaluating tissue tolerance, chlorhexidine showed the highest cytotoxicity in comparison to an essential oil and an amine/stannous fluoride mouth rinse [54]. Thus, it could be interesting to increase host innate defence systems, such as the lactoperoxidase-thiocyanate-hydrogen peroxide system, which have no or low effectiveness at the physiological level, by increasing their level of concentration instead of using common anti-septics.

Conclusion

In summary, in the quantitative suspension test, the SCN- and H2O2 mixture above normal physiological saliva levels showed little or no antimicrobial effect within 15 min. However, by adding lactoperoxidase enzyme, the tested mixtures became not only an effective bactericidal (Streptococcus mutans and sanguinis) but also a fungicidal (Candida albicans) agent. Thus, all three components of the LPO-system are needed for its microbicidal effect. Subsequent studies should consider loading tests with human saliva and different concentrations of all three components.

Methods

The study was performed based on the European norms (EN) 1040 and EN 1275. A 9.9-ml test solution (with and without LPO) was mixed with a 0.1-ml bacteria or fungus suspension (overnight culture) and stored at 37°C.

After 1, 3, 5, and 15 min contact time, the test mixture was again well mixed (vortexed), and 1 ml was transferred into 9 ml of neutralizer (polysorbate 80 30 g/L, lecithin 3 g/L, L-histidine 1 g/L, sodium thiosulfate 5 g/L, aqua bidestilata ad 1000 mL). The neutralizer was tested in a prestudy according to the recommended neutralization test of the German Society for Hygiene and Microbiology (DHGM). After 5 min of neutralization time, 1.0 ml of the neutralized test suspension was mixed with 0.1 ml bacteria or fungus suspension (overnight culture) and stored at 37°C.

The microbial counts were expressed as their decimal logarithms. The reduction factor (RF) was calculated as follows:

$$\text{lg RF} = \text{lg (cfu c)} - \text{lg (cfu t}_{A/B})$$

where cfu c = number of cfu per ml control medium (water with standardized hardness), and cfu t_{A/B} = number of cfu per ml test group A or B.
The comparisons at the time points between groups A and B (without and with LPO, respectively) were performed with the Mann-Whitney U test and within groups with the Wilcoxon test. All statistical analyses were carried out with SPSS 11.5.

Authors' contributions
AW, HB, and AK participated in the design and coordination of the study, supervised the study, and analyzed the data. RS performed most of the laboratory work with the assistance of CHM and HB. CHS carried out the statistical analysis. AW wrote the manuscript. All authors read and approved the final version of the manuscript.

Acknowledgements
We thank David Armbruster, Scientific Editing, University of Tennessee Health Science Center, for final copyediting.

References
1. Loe H, Silness J: Periodontal disease in pregnancy. I. Prevalence and severity. Acta Odontol Scand 1963, 21:533-551.

2. Lindhe J, Hamp SE, Loe H: Plaque induced periodontal disease in beagle dogs. A 4-year clinical, roentgenographical and histometrical study. J Periodontal Res 1975, 10(3):243-255.

3. Axelsson G, Lindhe J, Nyvold B: On the prevention of caries and periodontal disease. Results of a 15-year longitudinal study in adults. J Clin Periodontal 1991, 18(3):182-189.

4. De la Rosa M, Zacarias Guerra J, Johnston DA, Radike AW: Plaque growth and removal with daily toothbrushing. J Periodontal Res 1979, 14(12):611-664.

5. Brown RS, Schwabacher KL: Much dentistry qualifies for medical insurance. Dent Econ 1991, 81(3):33-34.

6. Hugoson A, Norderoyd O, Slotte C, Thorstensson H: Oral hygiene and gingivitis in a Swedish adult population 1983 and 1993. J Clin Periodontal 1973, 25(10):807-812.

7. Frandsen A: Mechanical and hygiene practices. In Dental plaque control measures and oral hygiene practices Edited by: Loe HK. D.V. Oxford: IRL Pr; 1986:93-116.

8.andel ID: Chemotherapeutic agents for controlling plaque and gingivitis. J Clin Periodontal 1988, 15(8):488-498.

9. Kocher T, Sawaf H, Warncke M, Weik A: Resolution of interden- tal inflammation with 2 different modes of plaque control. J Clin Periodontal 2000, 27(12):883-888.

10. Weik A, Spilich CH, Schmidt-Martens G, Schwahn C, Kocher T, Kramer A, Rosin M: The effect of a polyhexamethylene bigua- midine mouthrinse compared with a triclosan rinse and a chlorhexidine rinse on bacterial counts and 4-day plaque re-
growth. J Clin Periodontal 2005, 32(5):499-505.

11. Adjmy M: Chlorhexidine compared with other locally delivered antimicrobials. A short review. J Clin Periodontal 1986, 13(10):957-964.

12. Grassi TF, Camargo EA, Salvadori DM, Marques ME, Ribeiro DA: DNA damage in multiple organs after exposure to chlorhex-idine in Wistar rats. J Hyg Environ Health 2007, 210(2):163-167.

13. Russell AD: Plasmin and bacterial resistance to biocides. Jour- nal of Applied Microbiology 1997, 83(2):155-165.

14. Morrison M, Steele WF: Lactoperoxidase, the peroxidase in the salivary gland. In Biology of the mouth Edited by: Person P. Washington DC: American Association for the Advancement of Science; 1968.

15. Thomas EL, Bozeman PM, Lear DB: Lactoperoxidase: structure and catalytic properties. In Peroxidases in Chemistry and Biology Edited by: Everse J, Everse KE, Grisham MB. Boca Raton, FL: CRC Press; 1991:123-142.

16. Mansson-Rahemtulla B, Rahemtulla F, Humphreys-Beher MG: Human salivary peroxidase and bovine lactoperoxidase are cross-reactive. J Dent Res 1990, 69(12):1839-1846.

17. Ihalin R, Leimaranra V, Tenovuo J: Origin, structure, and biological activities of peroxidases in human saliva. Arch Biochem Biophys 2006, 445(2):261-268.

18. Thomas EL: Lactoperoxidase-catalyzed oxidation of thiocyan- ate: equilibrium between oxidized forms of thiocyanate. Bio-chemistry 1981, 20(11):3279-3280.

19. Courtois P, Majerus P, Labbe M, Abbeele A Vanden, Yourassowsky E, Pourtois M: Susceptibility of anaerobic microorganisms to hypochlorite produced by lactoperoxidase. Acta Stomatol Belg 1992, 89(3):155-162.

20. Germaine GR, Tellefsen LM: Effect of human saliva on glucose uptake by Streptococcus mutants and other oral microorgan- isms. Infect Immune 1981, 31(2):598-607.

21. Mansson-Rahemtulla B, Baidon DC, Pruitt KM, Rahemtulla F: Effects of variations in pH and hypochlorite concentrations on S. mutans glucose metabolism. J Dent Res 1987, 66(2):486-491.

22. Tenovuo J, Antilla O, Mumiki M, Sievers G: Antibacterial effect of myeloperoxidase against Streptococcus mutans. Oral Microbial Immunal 1988, 3(2):68-71.

23. Thomas EL, Soukka T, Nurmia S, Tenovuo J: Inhibition of the growth of Streptococcus mutans, Streptococcus sobrinus and Lactobacillus casei by oral peroxidase systems in human saliva. Arch Oral Biol 1991, 36(2):155-160.

24. Lenander-Lumikari M: Inhibition of Candida albicans by the Peroxidase/SCN-H2O2 system. Oral Microbial Immunal 1992, 7(5):315-320.

25. Mikola H, Waris M, Tenovuo J: Inhibition of herpes simplex virus type 1, respiratory syncytial virus and echovirus type 11 by peroxidase-generated hypochlorite. Antiviral Res 1995, 26(2):161-171.

26. Tenovuo J, Makinen KK: Concentration of thiocyanate and ionizable iodine in saliva of smokers and nonsmokers. J Dent Res 1976, 55(4):161-163.

27. Lamberts BL, Buijink PM, Pederson ED, Gelding MP: Comparison of salivary peroxidase system components in caries-free and caries-active naval recruits. Caries Res 1984, 18(6):488-494.

28. Pruitt KM, Tenovuo J, Flemming W, Adamson M: Limiting factors for the generation of hypochlorite ion, an antimicrobial agent, in human saliva. Caries Res 1982, 16(4):315-323.

29. Thomas EL, Milligan TW, Joyner RE, Jommer EM: Antibacterial activity of hydrogen peroxide and the lactoperoxidase- hydrogen peroxide-thiocyanate system against oral strepto- cocci. Infect Immune 1994, 62(2):529-535.

30. Thomas EL, Jommer EM, Jommer RE. Cook GS, King CC: Leukocyte myeloperoxidase and salivary lactoperoxidase: identification and quantitation in human mixed saliva. J Dent Res 1994, 73(2):544-555.

31. Adolphe Y, Jacquot M, Linder M, Revol-Junelues AM, Milliere JB: Optimization of the components concentrations of the lacteroxidase system by RSM. J Appl Microbial 2006, 100(5):1034-1042.

32. Rosin M, Kocher T, Kramer A: Effects of SCN-/H2O2 combina- tions in dentifrices on plaque and gingivitis. J Clin Periodontal 2001, 28(3):270-276.

33. Rosin M, Kramer A, Bratke D, Richter G, Kocher T: The effect of a SCN-/H2O2 toothpaste compared to a commercially available triclosan-containing toothpaste on oral hygiene and gingival health – a 6-month home-use study. J Clin Periodontal 2002, 29(12):1086-1091.

34. EN 1940 Chemical disinfectants and antiseptics. Basic bacte- ricidal activity. Test method and requirements (phase 1). Beuth-Publishing, Berlin; 1997.

35. EN 1275 Chemical disinfectants and antiseptics. Basic fungi- cidal activity. Test method and requirements (phase 1). Beuth-Publishing, Berlin; 1997.

36. Lenander-Lumikari M, Tenovuo J, Mikola H: Effects of a lacteroxidase system-containing toothpaste on levels of hypochlo- rite and bacteria in saliva. Caries Res 1993, 27(4):285-291.

37. Reiter B, Harmal G: Lactoperoxidase antibacterial system: natural occurrence, biological functions and practical applica-
tions. J Food Prot 1984, 47:724-732.

38. Tenovuo J, Pruitt KM, Mansson-Rahemtulla B, Harrington P, Baidon DC: Products of thiocyanate peroxidation: properties and reaction mechanisms. Biochim Biophys Acta 1986, 870(3):377-384.

39. Kohler H, Jenzer H: Interaction of lactoperoxidase with hydro-
gen peroxide. Formation of enzyme intermediates and generation of free radicals. Free Radic Biol Med 1989, 6(3):323-339.

40. Hoogendoorn H, Piessens JP, Scholtes W, Stoddard LA: Hypothiocy-
antine ion; the inhibitor formed by the system lactoperoxid-
dase-thiocyanate-hydrogen peroxide. I. Identification of the inhibiting compound. Caries Res 1977, 11(2):77-84.

41. Carlsson J, Iwami Y, Yamada T: Hydrogen peroxide excretion by oral streptococci and effect of lactoperoxidase-thiocyanate-hydrogen peroxide. Infect Immun 1983, 40(1):70-80.

42. Majerus PM, Courtois PA: Susceptibility of Candida albicans to peroxidase-catalyzed oxidation products of thiocyanate, iodide and bromide. J Biol Buccal 1992, 20(4):241-245.

43. Samant PA, Jefferson MM, Thomas EL: Lactoperoxidase antimicrobial activity against Candida albicans. J Dent Res 1999, 78(Spec. Iss):1208.

44. Benoy MJ, Essy AK, Sreekumar B, Haridas M: Thiocyanate mediated antifungal and antibacterial property of goat milk lactoperoxidase. Life Sci 2000, 66(25):2433-2439.

45. Belazi M, Velgraksi M, Koussidou-Eremondi T, Andreadis D, Hini S, Arsenis G, Elopoulou C, Destouni E, Antoniadis D: Oral Candida isolates in patients undergoing radiotherapy for head and neck cancer: prevalence, azole susceptibility profiles and response to antifungal treatment. Oral Microbial Immunol 2004, 19(6):347-351.

46. Nicolatou-Galitis O, Dardoufas K, Markoulatos P, Sotiropoulou-Lentou A, Kyprianou K, Kolitsi G, Pissakas G, Skarlas C, Kouloulis V, Papanicolaou V, et al.: Oral pseudomembranous candidiasis, herpes simplex virus-1 infection, and oral mucositis in head and neck cancer patients receiving radiotherapy and granulocyte-macrophage colony-stimulating factor (GM-CSF) mouthwash. J Oral Pathol Med 2001, 30(8):471-480.

47. Gomes MF, Kahlmann KR, Pienis G, Silva MM, Pontes EM, da Rocha JC: Oral manifestations during chemotherapy for acute lymphoblastic leukemia: a case report. Quintessence Int 2005, 36(4):307-313.

48. Yamamoto T, Ueta E, Kamatani T, Osaka T: DNA identification of the pathogen of candidal aspiration pneumonia induced in the course of oral cancer therapy. J Med Microbial 2005, 54(Pt 5):493-496.

49. Zollner-Schwetz I, Auner HW, Paulitsch A, Buzina W, Staber PB, Ofner-Kopeinig P, Reisinger EC, Krause R: Oral and Intestinal Candida Colonization in Patients Undergoing Hematopoietic Stem-Cell Transplantation. J Infect Dis 2008, 198(1):150-153.

50. Theraud M, Bedouin Y, Guignen JP, Efficacy of antiplanktonic and antibiofilm conditions. J Med Microbial 2004, 53(Pt 10):1013-1018.

51. Pitten FA, Kiefer T, Buth C, Doelken G, Kramer A: Do cancer patients with chemotherapy-induced leukopenia benefit from an antiseptic chlorhexidine-based oral rinse? A double-blind, block-randomized, controlled study. J Hoop Infect 2003, 53(4):283-291.

52. Foote RL, Loprinzi CL, Frank AR, O’Fallon JR, Gulavita S, Tewfik HH, Ryan MA, Earle J, Novotny P: Randomized trial of a chlorhexidine mouthwash for alleviation of radiation-induced mucositis. J Clin Oncol 1994, 12(12):2630-2633.

53. Potting CM, Uisterhove R, Op Reimer WS, Van Achterberg T: The effectiveness of commonly used mouthwashes for the prevention of chemotherapy-induced oral mucositis: a systematic review. Eur J Cancer Care (Engl) 2006, 15(5):431-439.

54. Welk A, Rosin M, Luddeke C, Schwahn C, Kramer A, Daeschlein G: The peritoneal explant test for evaluating tissue tolerance to mouthrinses. Skin Pharmacol Physiol 2007, 20(3):162-166.