Gut-seeded α-synuclein fibrils promote gut dysfunction and brain pathology specifically in aged mice

Collin Challis¹, Acacia Hori¹⁴, Timothy R. Sampson¹²⁴, Bryan B. Yoo¹, Rosemary C. Challis¹, Adam M. Hamilton⁰², Sarkis K. Mazmanian⁰¹, Laura A. Volpicelli-Daley³ and Viviana Gradinaru⁰¹*

¹Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA. ²Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA. ³Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA. *These authors contributed equally: Acacia Hori, Timothy R. Sampson. *e-mail: viviana@caltech.edu
Primary Antibodies	Manufacturer	Cat. #	Usage notes
Mouse IgG2a monoclonal anti-α-synuclein phospho (Ser129) (Clone81A)	BioLegend	MMS-5091	Duodenum IHC 1:300
			Brain IHC 1:500
Rabbit polyclonal anti-α-synuclein phosphor (Ser129)	Abcam	ab59264	Western 1:500
Rabbit monoclonal anti-Alpha-synuclein filament antibody [MJFR-14-6-4-2] - Conformation-Specific	Abcam	ab209538	Dot blot 2ng/mL
Rabbit polyclonal anti-Protein gene product 9.5 (PGP9.5)	Millipore	AB1761-I	Duodenum IHC 1:300
			Nodose IHC 1:100
Chicken polyclonal anti-Protein gene product 9.5 (PGP9.5)	ThermoFisher Scientific	PA1-10011	Duodenum IHC 1:300
Chicken polyclonal anti-Glial fibrillary acidic protein (GFAP)	Millipore	AB5541	Duodenum IHC 1:300
Goat polyclonal anti-Choline acetyltransferase (ChAT)	Millipore	AB144P	Brain IHC 1:500
Rabbit polyclonal anti-Tyrosine hydroxylase (TH)	Millipore	AB152	Brain IHC 1:500
Chicken polyclonal anti-Green fluorescent protein (GFP)	Aves Labs	GFP-1010	Brain IHC 1:1000
Rabbit polyclonal anti-Red fluorescent protein (RFP)	Rockland	600-401-379	Brain IHC 1:1000
Rabbit polyclonal anti-GBA1	Abcam	ab175869	Western 1:1000
Rabbit polyclonal anti-Interleukin 6 (IL6)	Abcam	ab7737	Western 1:500
Rabbit polyclonal anti-Iba1	Wako	016-20001	Western 1:1000
Rabbit polyclonal anti-β-Tubulin	Abcam	ab6046	Western 1:1000
Mouse IgG2b anti-β-actin	Cell Signaling	3700	Western 1:1000

Secondary Antibodies	Manufacturer	Cat. #	Usage notes
AlexaFluor 488 Goat anti-Mouse IgG2a	ThermoFisher Scientific	A-21131	IHC 1:300-1000
AlexaFluor 488 Donkey anti-Mouse IgG	ThermoFisher Scientific	A-21202	IHC 1:300-1000
AlexaFluor 488 Donkey anti-Chicken IgY	Jackson ImmunoResearch	703-545-155	IHC 1:300-1000
AlexaFluor 555 Donkey anti-Rabbit IgG	ThermoFisher Scientific	A-31572	IHC 1:300-1000
AlexaFluor 555 Donkey anti-Goat IgG	ThermoFisher Scientific	A-21432	IHC 1:300-1000
AlexaFluor 633 Goat anti-Rabbit IgG	ThermoFisher Scientific	A-21071	IHC 1:300-1000
AlexaFluor 633 Goat anti-Chicken IgY	ThermoFisher Scientific	A-21103	IHC 1:300-1000
Horseradish peroxidase (HRP)-linked Goat anti-Rabbit IgG	Cell Signaling	7074	Western, dot blot 1:2000
Horseradish peroxidase (HRP)-linked Goat anti-Mouse IgG	Cell Signaling	7076	Western 1:2000
Horseradish peroxidase (HRP)-linked Goat anti-Mouse IgG2a	Abcam	ab97245	Western 1:2000
Supplementary Table 2. Statistics and quantification

Main figures

Figure	Number of subjects	Test	Summary	Key comparisons
1b	For 0, 7, 21, 60, 120 dpi: α-Syn mon = 9, 9, 9, 8, 8 α-Syn PFF = 16, 14, 14, 11, 8	Two-way ANOVA	Condition x Time: F(4,96) = 1.857; P = 0.1243 Time factor: F(4,96) = 4.490; P = 0.0023 Condition factor: F(1,96) = 22.72; P < 0.0001	PFF: 0 dpi vs. 21 dpi, ** p = 0.00 PFF: 0 dpi vs. 60 dpi, ** p = 0.0027 60 dpi: α-Syn PFF vs. α-Syn mon, * p = 0.0187
1c	For 0, 7, 21, 60, 120 dpi: α-Syn mon = 6, 7, 6, 6, 6 α-Syn PFF = 7, 8, 9, 9, 8	Two-way ANOVA	Condition x Time: F(4,96) = 3.980; P = 0.0050 Time factor: F(4,96) = 1.808; P = 0.1136 Condition factor: F(1,96) = 6.438; P = 0.0128	PFF: 0 dpi vs. 120 dpi, p = 0.0745 60 dpi: α-Syn PFF vs. α-Syn mon, * p = 0.0259
1d	For 0, 7, 21, 60, 120 dpi: α-Syn mon = 4 α-Syn PFF = 4	Two-way ANOVA	Condition x Time: F(4,62) = 5.264; P = 0.0010 Time factor: F(4,62) = 3.042; P = 0.0235 Condition factor: F(1,62) = 14.47; P = 0.0003	PFF: 0 dpi vs. 120 dpi, ** p = 0.0042 60 dpi: α-Syn PFF vs. α-Syn mon, ** p = 0.0012 120 dpi: α-Syn PFF vs. α-Syn mon, * p = 0.0239
1e	α-Syn mon = 4 α-Syn PFF = 4	Student’s t-test, one-tailed	Fractalkine: t = 6.976, df = 3 IL-1α: t = 5.172, df = 3 IL-6: t = 2.562, df = 3 IL-7: t = 2.606, df = 3 MCP-1: t = 2.564, df = 3 MCSF: t = 2.430, df = 3 MIG: t = 2.572, df = 3 TECK: t = 2.711, df = 3 TIMP-2: t = 2.608, df = 3	Fractalkine, ** p = 0.0030 IL-1α, ** p = 0.0070 IL-6, * p = 0.0415 IL-7, * p = 0.0400 MCP-1, * p = 0.0416 MCSF, * p = 0.0467 MIG, * p = 0.0412 TECK, * p = 0.0365 TIMP-2, * p = 0.0400
1f	All conditions = 4	One-way ANOVA	F(7,24) = 29.13, P < 0.0001	WT vs. PFF 21 dpi, * p = 0.0366 WT vs. PFF 60 dpi, **** p < 0.0001 WT vs. PFF 120 dpi, * p = 0.0245 WT vs. ASO, **** p < 0.0001 PFF 60 dpi vs. mon. 60 dpi, *** p = 0.0001
1h	WT = 6 ASO = 6 For 7, 21, 60, 120 dpi: α-Syn PFF = 6, 6, 5, 5 For 7, 60 dpi: α-Syn mon = 5, 5	One-way ANOVA	F(8,45) = 1.519, P = 0.1776	WT vs. PFF 7dpi, * p = 0.0425
1i	For 7, 60 dpi: α-Syn mon = 5, 5	One-way ANOVA	F(8,45) = 2.501, P = 0.0269	WT vs. PFF 60 dpi, * p = 0.0329 WT vs. PFF 120 dpi, * p = 0.0232
1k	All conditions = 4	One-way ANOVA	F(8,27) = 6.622, P < 0.0001	WT vs. PFF 21 dpi, ** p = 0.0039
WT vs. PFF 60 dpi, * p = 0.0149				
WT vs. PFF 120 dpi, * p = 0.0467				
WT vs. ASO, * p = 0.0182				
2b	All conditions = 4	One-way ANOVA	F(8,27) = 3.230, P = 0.0116	WT vs. PFF 60 dpi, ** p = 0.0026
WT vs. PFF 120 dpi, * p = 0.0155				
WT vs. ASO, * p = 0.0032				
2d	All conditions = 4			
Except:				
WT = 6, ASO = 5				
For 7, 21, 60, 120 dpi:				
α-Syn PFF = 6, 5, 4, 4				
For 7, 60 dpi:				
α-Syn mon = 4, 4	One-way ANOVA	F(8, 30) = 4.993, P = 0.0005	WT vs. PFF 60 dpi, ** p = 0.0042	
WT vs. ASO, ** p = 0.0057				
2e	WT = 11			
ASO = 6				
For 7, 21, 60, 120 dpi:				
α-Syn PFF = 6, 5, 4, 4				
For 7, 60 dpi:				
α-Syn mon = 4, 4	One-way ANOVA	F(8,40) = 4.697, P = 0.0004	WT vs. PFF 7dpi, * p = 0.0202	
PFF 7 dpi vs. PFF 120 dpi, * p = 0.0415				
WT vs. ASO, ** p = 0.0035				
ASO vs. PFF 120 dpi, * p = 0.0109				
2i	All conditions = 5	Two-way ANOVA	Genotype x Treatment	
F(1,16) = 1.272; P = 0.2761				
Genotype factor:				
F(1,16) = 10.63; P = 0.0049				
Treatment factor:				
F(1,16) = 66.58; P < 0.0001	WT/GFP vs. WT/GBA1, **** p < 0.0001			
WT/GFP vs. ASO/GBA1, * p = 0.0192				
ASO/GFP vs. ASO/GBA1, *** p = 0.0008				
WT/GBA1 vs. ASO/GBA1, * p = 0.0410				
2j	All conditions = 5	Two-way ANOVA	Genotype x Treatment	
F(1,16) = 3.685; P = 0.0729				
Genotype factor:				
F(1,16) = 49.90; P < 0.0001				
Treatment factor:				
F(1,16) = 3.801; P = 0.0690	WT/GFP vs. ASO/GFP, **** p < 0.0001			
WT/GFP vs. ASO/GBA1, * p = 0.0139				
ASO/GFP vs. ASO/GBA1, p = 0.0879				
2k	For 0, 7, 21, 60 dpi:			
WT = 17, 12, 11, 8				
ASO = 13, 12, 11, 10				
Fecal pellets:				
Two-way ANOVA	Genotype x Time			
F(3,86) = 1.160; P = 0.3296				
Genotype factor:				
F(1,86) = 13.80; P = 0.0004				
Time factor:				
F(3,86) = 2.084; P = 0.1082	0 dpi: WT vs. ASO, ** p = 0.0078			
2l	Pellet weight:			
Two-way ANOVA	Genotype x Time			
F(3,85) = 1.612; P = 0.1926				
Genotype factor:				
F(1,85) = 14.14; P = 0.0004				
Time factor:				
F(3,85) = 2.084; P = 0.1082	0 dpi: WT vs. ASO, ** p = 0.0061			
2k	Proportion water weight: Two-way ANOVA	Whole gut transit time: Two-way ANOVA	0 dpi: WT vs. ASO, **** p < 0.0001 7 dpi: WT vs. ASO, *** p = 0.0003 ASO: 0 dpi vs. 60 dpi, * p = 0.0265	
---	---	---	---	---
For 0, 7, 21, 60 dpi: WT = 17, 12, 11, 8 ASO = 13, 12, 11, 10	Genotype x Time F(3,85) = 6.410; P = 0.0006 Genotype factor: F(1,85) = 54.34; P < 0.0001 Time factor: F(3,85) = 0.6193; P = 0.6044	Genotype x Time F(3,86) = 0.7794; P = 0.5087 Genotype factor: F(1, 86) = 19.15; P < 0.0001 Time factor: F(3,86) = 0.4554; P = 0.7142		
3i jR+	Baseline = 2(63) WT = 3(183) PFF 7 dpi = 4(355) PFF 60 dpi = 3(110) Mon 7 dpi = 3(110) Mon 60 dpi = 3(90)	One-way ANOVA Peak ΔF/F F(5, 949) = 60.52; P < 0.0001	WT, stim vs. no stim, **** p < 0.0001 WT vs. PFF 7 dpi, **** p < 0.0001 WT vs. PFF 60 dpi, **** p < 0.0001	
3i jR/ChR	Baseline = 2(12) WT = 3(28) PFF 7 dpi = 4(55) PFF 60 dpi = 3(40) Mon 7 dpi = 3(23) Mon 60 dpi = 3(15)	One-way ANOVA Peak ΔF/F F(5, 157) = 23.49; P < 0.0001	WT, stim vs. no stim, **** p < 0.0001 WT vs. PFF 7 dpi, **** p < 0.0001 WT vs. PFF 60 dpi, **** p < 0.0001	
3j jR+	WT 0 dpvi = 3(131) WT 7 dpvi = 3(78) WT 60 dpvi = 3(131) ASO 0 dpvi = 3(78) ASO 7 dpvi = 3(80) ASO 60 dpvi = 3(71)	Two-way ANOVA Peak ΔF/F Genotype x Time F(2,563) = 10.01; P < 0.0001 Genotype factor: F(1, 563) = 68.91 Time factor: F(2,563) = 3.847; P = 0.0219	WT vs. ASO, **** p < 0.0001 WT vs. ASO 60 dpvi, * p = 0.0296 ASO vs. ASO 60 dpvi, *** p = 0.0007 ASO 7 dpvi vs. ASO 60 dpvi, ** p = 0.0068	
3j jR+	Baseline = 2(63) WT = 3(131) WT 7 dpvi = 3(78) WT 60 dpvi = 3(131) ASO 0 dpvi = 3(78) ASO 7 dpvi = 3(80) ASO 60 dpvi = 3(71)	Area under the curve Genotype x Time F(2,72) = 1.407; P = 0.2516 Genotype factor F(1,72) = 48.71; P < 0.0001 Time factor F(2, 72) = 0.8416; P = 0.4352	WT vs. ASO, **** p < 0.0001 WT vs. ASO 60 dpvi, *** p = 0.0006 WT 7 dpvi vs. ASO 7 dpvi, ** p = 0.0031 ASO vs. ASO 60 dpvi, p = 0.0808	
---	---	---	---	---
3j	WT 0 dpvi = 3(131) WT 7 dpvi = 3(78) WT 60 dpvi = 3(131) ASO 0 dpvi = 3(78) ASO 7 dpvi = 3(80) ASO 60 dpvi = 3(71)	Two-way ANOVA	Peak ΔF/F	Genotype x Time
4a	WT = 11 Aged = 5 ASO = 6	One-way ANOVA	F(2,19) = 24.13; P < 0.0001	WT vs Aged, ** p = 0.0022 WT vs. ASO, **** p < 0.0001
4b	WT = 6 Aged = 4 ASO = 5	One-way ANOVA	F(2,12) = 14.09; P = 0.0007	WT vs. ASO, *** p = 0.0006 Aged vs. ASO, * p = 0.0202
4c	WT = 4 Aged = 4 ASO = 6	One-way ANOVA	F(2,11) = 4.298; P = 0.0418	WT vs. ASO, * p = 0.0468
4d	For 0, 60, 120 dpi: α-Syn mon. = 9, 6, 4 α-Syn PFF. = 10, 7, 6	Two-way ANOVA	Treatment x Time	F(2,36) = 2.635; P = 0.0855 Time factor
4e		Two-way ANOVA	Treatment x Time	F(2,36) = 3.713; P = 0.0342 Time factor
4f		Two-way ANOVA	Treatment x Time	F(2,29) = 0.9799; P = 0.3874 Time factor
4g	For 0, 60, 120 dpi:			
α-Syn mon. = 9, 6, 4				
α-Syn PFF. = 10, 7, 6	Two-way ANOVA	Treatment x Time		
F(2,36) = 8.681; P = 0.0008				
Time factor				
F(2,36) = 4.437; P = 0.0190				
Treatment factor				
F(1,36) = 31.53; P < 0.0001	PFF: 0 dpi vs. 60 dpi, * p = 0.0110			
PFF: 0 dpi vs. 120 dpi, *** p = 0.0002				
60dpi: mon. vs. PFF, ** p = 0.0044				
120 dpi: mon. vs. PFF, *** p = 0.0004				
4h	For 0, 60, 120 dpi:			
α-Syn mon. = 9, 6, 4				
α-Syn PFF. = 10, 7, 6	Two-way ANOVA	Treatment x Time		
F(2,36) = 2.229; P = 0.1223				
Time factor				
F(2,36) = 2.760; P = 0.0767				
Treatment factor				
F(1,36) = 3.591; P = 0.0661	PFF: 0 dpi vs. 120 dpi, * p = 0.0442			
4i	All conditions = 4	Two-way ANOVA	Treatment x Time	
F(2,36) = 1.724; P = 0.1927				
Time factor				
F(2,36) = 10.32; P = 0.0003				
Treatment factor				
F(1,36) = 1.917; P = 0.1747	PFF: 0 dpi vs. 120 dpi, *** p = 0.0006			
4l	All conditions = 4	Two-way ANOVA	Treatment x Time	
F(2,18) = 4.220; P = 0.0314				
Treatment factor				
F(1,18) = 15.22; P = 0.0005				
Time factor				
F(2,18) = 12.10; P = 0.0010	PFF: 0 dpi vs 120 dpi, *** p = 0.0005			
120 dpi: PFF vs. mon., * p = 0.0102				
4m	All conditions = 4	Two-way ANOVA	Treatment x Time	
F(2,18) = 0.7729; P = 0.4764				
Treatment factor				
F(1,18) = 10.55; P = 0.0045				
Time factor				
F(2,18) = 5.665; P = 0.0124	PFF: 0 dpi vs 120 dpi, p = 0.0771			
Mon 0 dpi vs PFF 120 dpi, ** p = 0.0049				
4n	For 0, 60, 120 dpi:			
WT = 4, 4, 4				
Aged PFF = 5, 5, 6				
For 60, 120 dpi:				
Aged mon. = 4, 4				
ASO young = 4				
ASO 12 m.o. = 6	One-way ANOVA	F(9,36) = 6.176; P < 0.0001	Aged PFF: 0 dpi vs. 120 dpi, * p = 0.0487	
ASO young vs. ASO 12 m.o., ** p = 0.0017				
Figure	Number of subjects	Test	Summary	Key comparisons
--------	-------------------	------	---------	-----------------
e1a	**WT = 42** **ASO = 20** **Aged = 19**	One-way ANOVA	**F(2,78) = 7.080; P = 0.0015**	**WT vs. ASO, ** p = 0.022** **ASO vs. Aged, ** p = 0.0075**
e1b	**WT = 13** **ASO = 9** **Aged = 12**	One-way ANOVA	**F(2,78) = 7.080; P = 0.0015**	**WT vs. ASO, **** p < 0.0001** **WT vs. Aged, *** p = 0.0009** **ASO vs. Aged, **** p < 0.0001**
e1c	**WT = 13** **ASO = 9** **Aged = 12**	One-way ANOVA	**F(2,78) = 7.080; P = 0.0015**	**WT vs. ASO, **** p < 0.0001** **WT vs. Aged, *** p = 0.0009** **ASO vs. Aged, **** p < 0.0001**
e1d	**WT = 3** **ASO = 4** **Aged = 4**	One-way ANOVA	**F(2,8) = 2.541; P = 0.1399**	**WT vs. Aged, **** p < 0.0001** **ASO vs. Aged, **** p < 0.0001**
e1e	**WT = 42** **ASO = 20** **Aged = 19**	One-way ANOVA	**F(2,78) = 7.080; P = 0.0015**	**WT vs. ASO, **** p < 0.0001** **ASO vs. Aged, **** p < 0.0001**
e1f	**WT = 3** **ASO = 4** **Aged = 4**	One-way ANOVA	**F(2,8) = 2.541; P = 0.1399**	**WT vs. Aged, **** p < 0.0001** **ASO vs. Aged, **** p < 0.0001**
e1g	See Fig. 1e			
e1i	**All conditions = 4**	One-way ANOVA	**F(7, 24) = 4.712; P = 0.0019**	**WT vs. ASO, * p = 0.0304** **WT vs. PFF 60 dpi, * p = 0.0327** **60 dpi: PFF vs. mon., * p = 0.0480**
e2d	**WT = 4** All PFF = 5 Mon. 7 dpi = 4 Mon. 60 dpi = 5	One-way ANOVA	Neurons per crypt **F(8, 45) = 0.07617; P = 0.9997** EGCs per crypt **F(8, 39) = 2.501; P = 0.0269**	**EGCs, WT vs. PFF 60 dpi, * p = 0.0329** **EGCs, WT vs. PFF 120 dpi, * p = 0.0232**
e2f	**α-Syn mon. = 4** α-Syn PFF. = 5	Student’s t-test, one-tailed	**F(4,3) = 58.59; P = 0.0071**	**Mon. vs. PFF, * p = 0.0071**
e3b	**WT = 8** PFF 7 dpi = 5 PFF 21 dpi = 5 PFF 60 dpi = 5 PFF 120 dpi = 5 Mon. 7 dpi = 4 Mon. 60 dpi = 4 ASO = 8 Aged = 5	One-way ANOVA	**F(8, 40) = 5.132; P = 0.0002**	**WT vs. ASO, ** p = 0.0092**
e3d	**All conditions = 3** except BSA, 50 = 4	One-way ANOVA	**F(4, 11) = 7.188; P = 0.0042**	**BSA vs. PFF, 50, ** p = 0.0080** **BSA vs. PFF, 100, *** p = 0.0009** **Mon., 50 vs. PFF, 50, * p = 0.0178** **Mon., 100 vs. PFF, 100, ** p = 0.0078**
Table 1: Statistical Analysis

Conditions	ANOVA Type	Effect	F Value	P Value
Treatment x Genotype	Two-way ANOVA	F(2,18) = 0.8512; P = 0.4434	0.8512	0.4434
Time factor	Two-way ANOVA	F(2,18) = 0.4326; P = 0.6554	0.4326	0.6554
Genotype factor	Two-way ANOVA	F(1,18) = 12.10; P = 0.0027	12.10	0.0027
Treatment x Genotype	Two-way ANOVA	F(2,18) = 0.08766; P = 0.9165	0.08766	0.9165
Time factor	Two-way ANOVA	F(2,18) = 0.8450; P = 0.4459	0.8450	0.4459
Genotype factor	Two-way ANOVA	F(1,18) = 6.227; P = 0.0225	6.227	0.0225
Treatment x Genotype	Two-way ANOVA	F(2,18) = 0.5592; P = 0.5813	0.5592	0.5813
Time factor	Two-way ANOVA	F(2,18) = 0.5461; P = 0.5885	0.5461	0.5885
Genotype factor	Two-way ANOVA	F(1,18) = 9.940; P = 0.0055	9.940	0.0055
Treatment x Genotype	Two-way ANOVA	F(2,18) = 0.1810; P = 0.8359	0.1810	0.8359
Time factor	Two-way ANOVA	F(2,18) = 0.4914; P = 0.6198	0.4914	0.6198
Genotype factor	Two-way ANOVA	F(1,18) = 41.38; P < 0.0001	41.38	< 0.0001

Table 2: Additional Analysis

Conditions	ANOVA Type	Effect	F Value	P Value
WT = 5 For 7, 60, 120 dpi: α-Syn PFF = 5, 5, 4 For 7, 60 dpi: α-Syn mon. = 4, 3 ASO = 5 Aged = 5	One-way ANOVA	F(7,28) = 5.007; P = 0.0009	5.007	0.0009
WT vs. ASO	One-way ANOVA	0.0011	0.0011	
ASO vs. mon. 7 dpi	One-way ANOVA	0.0027	0.0027	
ASO vs. mon. 60 dpi	One-way ANOVA	0.0176	0.0176	
ASO vs. Aged	One-way ANOVA	0.0323	0.0323	
WT = 3 α-Syn PFF, 60 dpi = 3 ASO = 3	One-way ANOVA	F(2, 6) = 47.90; P = 0.0002	47.90	0.0002
WT vs. ASO	One-way ANOVA	0.0003	0.0003	
PFF 60 dpi vs. ASO	One-way ANOVA	0.0007	0.0007	
WT = 3 α-Syn PFF, 60 dpi = 3 ASO = 3	One-way ANOVA	F(2, 6) = 32.76; P = 0.0006	32.76	0.0006
WT vs. ASO	One-way ANOVA	0.0011	0.0011	
PFF 60 dpi vs. ASO	One-way ANOVA	0.0014	0.0014	
e8a	For 0, 7, 21, 60, 90, 120 dpi:			
α-Syn PFF = 16,14,14,11,9,8				
α-Syn mon. = 9,9,9,8,8,8				
BSA = 17,16,11,9,7,7	Two-way ANOVA	Treatment x time		
F(10,172) = 2.399; P = 0.0108				
Time factor				
F(5, 172) = 2.388; P = 0.0400				
Treatment factor				
F(2, 172) = 18.24; P < 0.0001	PFF: 0 dpi vs. 60 dpi, ** p = 0.0012			
90 dpi: PFF vs. mon., * p = 0.0265				
---	---	---	---	
e8b	For 0, 7, 21, 60, 90, 120 dpi:			
α-Syn PFF = 16,14,14,11,9,8				
α-Syn mon. = 9,9,9,8,8,8				
BSA = 17,16,11,9,7,7	Two-way ANOVA	Treatment x time		
F(10,172) = 2.125; P = 0.2844				
Time factor				
F(5, 172) = 8.351; P < 0.0001				
Treatment factor				
F(2, 172) = 8.086; P = 0.0004	PFF: 0 dpi vs. 60 dpi, * p = 0.0306			
PFF: 0 dpi vs. 120 dpi, * p = 0.0285				
e8c	For 0, 7, 21, 60, 90, 120 dpi:			
α-Syn PFF = 16,14,14,11,9,8				
α-Syn mon. = 9,9,9,8,8,8				
BSA = 17,16,11,9,7,7	Two-way ANOVA	Treatment x time		
F(10,172) = 2.125; P = 0.2844				
Time factor				
F(5, 172) = 8.351; P < 0.0001				
Treatment factor				
F(2, 172) = 8.086; P = 0.0004	PFF: 0 dpi vs. 90 dpi, ** p = 0.0014			
PFF: 0 dpi vs. 120 dpi, * p = 0.0285				
60 dpi: PFF vs. mon., * p = 0.0193				
90 dpi: PFF vs. mon., * p = 0.0342				
e8d	For 0, 7, 21, 60, 90, 120 dpi:			
α-Syn PFF = 8,8,8,12,8,8				
α-Syn mon. = 9,9,9,8,8,8				
BSA = 17,16,11,9,7,7	Two-way ANOVA	Treatment x time		
F(10,152) = 0.1109; P = 0.9997				
Time factor				
F(5, 152) = 10.52; P < 0.0001				
Treatment factor				
F(2, 152) = 7.809; P = 0.0006				
e8e	For 0, 7, 21, 60, 90, 120 dpi:			
α-Syn PFF = 8,10,7,6,6				
α-Syn mon. = 9,9,9,8,8,8				
BSA = 17,16,11,9,7,7	Two-way ANOVA	Treatment x time		
F(10,145) = 0.5406; P = 0.8589				
Time factor				
F(5, 145) = 0.8005; P = 0.5510				
Treatment factor				
F(2, 145) = 5.321; P = 0.0059				
e8f	For 0, 7, 21, 60, 90, 120 dpi:			
α-Syn PFF = 8,10,7,6,6				
α-Syn mon. = 9,9,9,8,8,8				
BSA = 17,16,11,9,7,7	Two-way ANOVA	Treatment x time		
F(10,145) = 1.352; P = 0.2087				
Time factor				
F(5, 145) = 1.628; P = 0.1562				
Treatment factor				
F(2, 145) = 17.66; P < 0.0001	60 dpi: PFF vs. BSA, ** p = 0.0023			
e8g	Aged baseline: 10			
Aged monomer, 60 dpi: 4				
Aged PFF, 60 dpi: 6	One-way ANOVA	F(2,17) = 0.07091		
e9d	All conditions = 4	One-way ANOVA	F(2,9) = 0.1824; P = 0.8362	