AN EXAMPLE OF A BOUNDED \mathbb{C}-CONVEX DOMAIN WHICH IS NOT BIHOLOMORPHIC TO A CONVEX DOMAIN

NIKOLAI NIKOLOV, PETER PFLUG AND WLODZIMIERZ ZWONEK

Abstract. We show that the symmetrized bidisc is a \mathbb{C}-convex domain. This provides an example of a bounded \mathbb{C}-convex domain which cannot be exhausted by domains biholomorphic to convex domains.

1. Introduction

Recall that a domain D in \mathbb{C}^n is called \mathbb{C}-convex if any non-empty intersection with a complex line is contractible (cf. [2] [9]). A consequence of the fundamental Lempert theorem (see [12]) is the fact that any bounded \mathbb{C}-convex domain D with C^2 boundary has the following property (see [8]):

(*) The Carathéodory distance and Lempert function of D coincide.

Any convex domain can be exhausted by smooth bounded convex ones (which are obviously \mathbb{C}-convex); therefore, any convex domain satisfies (*), too. To extend this phenomenon to bounded \mathbb{C}-convex domains (see Problem 4’ in [14]), it is sufficient to give a positive answer to one of the following questions:

(a) Can any bounded \mathbb{C}-convex domain be exhausted by C^2-smooth \mathbb{C}-convex domains? (See Problem 2 in [14] and Remark 2.5.20 in [2].)

(b) Is any bounded \mathbb{C}-convex domain biholomorphic to a convex domain? (See Problem 4 in [14].)

The main aim of this note is to give a negative answer to Question (b).

2000 Mathematics Subject Classification. 32F17.

Key words and phrases. \mathbb{C}-convex domain, linearly convex domain, symmetrized n-disc.

The paper was initiated while the third author’s research stay at the Carl von Ossietzky Universität Oldenburg which was supported by the Alexander von Humboldt Foundation. The third-named author was also supported by the KBN Research Grant No. 1 PO3A 005 28. The first and second named authors were supported by grants from DFG (DFG-Projekt 227/8).
Denote by G_2 the so-called symmetrized bidisc, that is, the image of the bidisc under the mapping whose components are the two elementary symmetric functions of two complex variables. G_2 serves as the first example of a bounded pseudoconvex domain in \mathbb{C}^2 with the property (*) which cannot be exhausted by domains biholomorphic to convex domains (see [3, 6]). We shall show that G_2 is a C-convex domain. This fact gives a counterexample to the question (b) and simultaneously, it supports the conjecture that (cf. Problem 4’ in [14]) any bounded C-convex domain has property (*). Note that the answer to the problem (a) for G_2 is not known. The positive answer to this question would imply an alternative (to that of [4] and [1]) proof of the equality of the Carathéodory distance and Lempert function on G_2 whereas the negative answer would solve Problem 2 in [14].

Some additional properties of C-convex domains and symmetrized polydiscs are also given in the paper.

2. Background and results

Recall that a domain D in \mathbb{C}^n is called (cf. [9, 2]):

- **C-convex** if any non-empty intersection with a complex line is contractible (i.e. $D \cap L$ is connected and simply connected for any complex affine line L such that $L \cap D$ is not empty);
- **linearly convex** if its complement in \mathbb{C}^n is a union of affine complex hyperplanes;
- **weakly linearly convex** if for any $a \in \partial D$ there exists an affine complex hyperplane through a which does not intersect D.

Note that the following implications hold

C-convexity \Rightarrow linear convexity \Rightarrow weak linear convexity.

Moreover, these three notions coincide in the case of bounded domains with C^1 boundary.

Let \mathbb{D} denote the unit disc in \mathbb{C}. Let $\pi_n = (\pi_{n,1}, \ldots, \pi_{n,n}) : \mathbb{C}^n \rightarrow \mathbb{C}^n$ be defined as follows:

$$\pi_{n,k}(\mu) = \sum_{1 \leq j_1 < \cdots < j_k \leq n} \mu_{j_1} \ldots \mu_{j_k}, \quad 1 \leq k \leq n, \quad \mu = (\mu_1, \ldots, \mu_n) \in \mathbb{C}^n.$$

The set $G_n := \pi_n(\mathbb{D}^n)$ is called the *symmetrized n-disc* (cf. [1], [11]).

Recall that G_2 is the first example of a bounded pseudoconvex domain with the property (*) which cannot be exhausted by domains biholomorphic to convex ones (see [3, 6]). On the other hand, G_n, $n \geq 3$, does not satisfy the property (*) (see [14]). In particular, it cannot be exhausted by domains biholomorphic to convex domains, either.
In this note we shall show the following additional properties of domains G_n, $n \geq 2$.

Theorem 1.
(i) G_2 is a \mathbb{C}-convex domain.
(ii) G_n, $n \geq 3$, is a linearly convex domain which is not \mathbb{C}-convex.

Theorem 1 (i) together with a result of [3] and [6] gives a negative answer to the following question posed by S. V. Znamenskiǐ (cf. Problem 4 in [14]):

Is any bounded \mathbb{C}-convex domain biholomorphic to a convex domain?

Moreover, it seems to us that Theorem 1 (ii) gives the first example of a linearly convex domain homeomorphic to \mathbb{C}^n, $n \geq 3$, which is not \mathbb{C}-convex, is not a Cartesian product and does not satisfy property (*). To see that G_n is homeomorphic to \mathbb{C}^n, observe that $\rho_{\lambda}(z) := (\lambda z_1, \lambda^2 z_2, \ldots, \lambda^n z_n) \in G_n$ if $z \in G_n$ and $\lambda \in \mathbb{C}$. Then setting $h(z) = \max \{|\mu_j| : \pi_n(\mu) = z\}$ and $g(z) = \frac{1}{1-h(z)}$, it is easy to see that the function $G_n \ni z \mapsto \rho_{g(z)}(z) \in \mathbb{C}^n$ is the desired homeomorphism.

These remarks also show that G_n is close, in some sense, to a balanced domain, that is, a domain D in \mathbb{C}^n such that $\lambda z \in D$ for any $z \in D$ and $\lambda \in \mathbb{D}$. On the other hand, in spite of the properties of G_n, one has the following.

Proposition 2. Any weakly linearly convex balanced domain is convex.

This proposition is a simple extension of Example 2.2.4 in [2], where it is shown that any \mathbb{C}-convex complete Reinhardt domain is convex.

We may also prove some general property of \mathbb{C}-convex domains showing that all non-degenerate \mathbb{C}-convex domains, that is, containing no complex lines, are \mathbb{C}-finitely compact. For definitions of the Carathéodory distance c_D of the domain D, \mathbb{C}-finite compactness, \mathbb{C}-completeness and basic properties of these notions we refer the Reader to consult [10].

Observe that a degenerate linearly convex domain D is linearly equivalent to $\mathbb{C} \times D'$ (cf. Proposition 4.6.11 in [2]). Indeed, we may assume that D contains the z_1-line. Since the complement cD of D is a union of complex hyperplanes disjoint from this line, then $^cD = \mathbb{C} \times G$ and hence $D = \mathbb{C} \times ^cG$. On the other hand, we have

Proposition 3. Any non-degenerate \mathbb{C}-convex domain is biholomorphic to a bounded domain and \mathbb{C}-finitely compact. In particular, it is \mathbb{C}-complete and hyperconvex.

Remarks. (i) In virtue of Proposition 3, we claim that one may conjecture more than Question (a) (see [15]), namely, any \mathbb{C}-convex domain containing no complex hyperplanes can be exhausted by bounded
\(C^2 \)-smooth \(\mathbb{C} \)-convex domains (this is not true in general without the above assumption); then the Carathéodory pseudodistance and Lempert function will coincide on any \(\mathbb{C} \)-convex domain.

(ii) The hyperconvexity of \(G_n \) is simple and well-known (see [7]). The above proposition implies more in dimension two. Namely, it implies that the symmetrized bidisc is \(c \)-finitely compact. Although the symmetrized polydiscs in higher dimensions are not \(\mathbb{C} \)-convex the conclusion of the above proposition, that is, the \(c \)-finite compactness of the symmetrized \(n \)-disc \(G_n \), holds for any \(n \geq 2 \). In fact, it is a straightforward consequence of Corollary 3.2 in [5].

(iii) Finally, we mention that, for \(n \geq 2 \), \(G_n \) is starlike with respect to the origin if and only if \(n = 2 \). This observation gives the next difference in the geometric shape of the 2-dimensional and higher dimensional symmetrized discs. Recall that the fact that \(G_2 \) is starlike is contained in [1]. For the converse just take the point \((3,3,1,\ldots,0)\).

3. Proofs

Proof of Theorem 1 (i). We shall make use of the following description of \(\mathbb{C} \)-convex domains. For \(a \in \partial D \), denote by \(\Gamma(a) \) the set of all hyperplanes through \(a \) and disjoint from \(D \). Then a bounded domain \(D \) in \(\mathbb{C}^n \), \(n > 1 \), is \(\mathbb{C} \)-convex if and only if any \(a \in \partial D \) the set \(\Gamma(a) \) is non-empty and connected as a set in \(\mathbb{C} P^n \) (cf. Theorem 2.5.2 in [2]).

So we have to check that \(\Gamma(\pi_2(\mu)) \) is a singleton.

To show the connectedness of \(\Gamma(\pi_2(\mu)) \), we shall check the simple-connectedness of \(A \). Let us recall that the mapping \(\frac{z-\alpha}{\bar{z}-\beta} \), where \(|\beta| > 1 \),
Proof of Proposition 2. Let D weakly linearly convex if and only if

$$\{ \frac{\lambda + \lambda_1 - 2x}{\lambda \lambda_1 - 1} : \lambda \in \mathbb{D} \} = \Delta(\frac{2x - 2 \text{Re}\lambda_1}{1 - |\lambda_1|^2}, \frac{|2x\lambda_1 - \lambda_1|}{1 - |\lambda_1|^2}) =: A_{\lambda_1}. $$

Consequently the set $A = \bigcup_{\lambda_1 \in \mathbb{D}} A_{\lambda_1} \subset \mathbb{C}$ is simply connected. \hfill \Box

Proof of Theorem 1 (ii). For the proof of the linear convexity of G_n consider the point $z = \pi_n(\lambda) \in \mathbb{C}^n \setminus G_n$. We may assume that $|\lambda_1| \geq 1$. Then the set

$$B := \{ \pi_n(\lambda_1, \mu_1, \ldots, \mu_{n-1}) : \mu_1, \ldots, \mu_{n-1} \in \mathbb{C} \}$$

is disjoint from G_n. On the other hand, it is easy to see that

$$B = \{ (\lambda_1 + z_1, \lambda_1z_1 + z_2, \ldots, \lambda_1z_{n-2} + z_{n-1}, \lambda_1z_{n-1}) : z_1, \ldots, z_{n-1} \in \mathbb{C} \},$$

so B is a complex affine hyperplane. Hence G_n is linearly convex.

To show that G_n is not C-convex for $n \geq 3$, consider the points

$$a_t := \pi_n(t, t, t, 0, \ldots, 0) = (3t, 3t^2, t^3, 0, \ldots, 0),$$

$$b_t := \pi_n(-t, -t, -t, 0, \ldots, 0) = (-3t, 3t^2, -t^3, 0, \ldots, 0), \quad t \in (0, 1).$$

Obviously $a_t, b_t \in G_n$. Denote by L_t the complex line passing through a_t and b_t, that is,

$$L_t = \{ c_{t,\lambda} := (3t(1 - 2\lambda), 3t^2, t^3(1 - 2\lambda), 0, \ldots, 0) : \lambda \in \mathbb{C} \}.$$

Assume that the set $G_n \cap L_t$ is connected. Since $a_t = c_{t,0}$ and $b_t = c_{t,1}$, then $c_{t,\lambda} \in G_n$ for some $\lambda = \frac{1}{2} + i\tau$, $\tau \in \mathbb{R}$. It follows that

$$c_{t,\lambda} = (-6i\tau t, 3t^2, -2i\tau t^3, 0, \ldots, 0).$$

We may choose $\mu \in \mathbb{D}^n$ such that $\mu_j = 0$, $j = 4, \ldots, n$, and $c_{t,\lambda} = \pi_n(\mu)$, $\mu \in \mathbb{D}^n$. Then $-36\tau^2 t^2 = (\mu_1 + \mu_2 + \mu_3)^2 = \mu_1^2 + \mu_2^2 + \mu_3^2 + 6t^2$ and hence

$$t^2 = \frac{\mu_1^2 + \mu_2^2 + \mu_3^2}{36\tau^2 + 6} < \frac{3}{36\tau^2 + 6} \leq \frac{1}{2}.$$

Therefore, $G_n \cap L_t$ is not connected if $t \in \left[\frac{1}{\sqrt{2}}, 1 \right]$ and so G_n is not a C-convex domain. \hfill \Box

Proof of Proposition 2. Set $D^* := \{ w \in \mathbb{C}^n : < z, w > \neq 1, \forall z \in D \}$. We shall use the fact that a domain D in \mathbb{C}^n containing the origin is weakly linearly convex if and only if D is a connected component of D^{**} (cf. Proposition 2.1.4 in [2]).

Since our domain D is balanced, it is easy to see that D^* is balanced. We shall show D^* is convex. Then, applying this fact to D^*, we conclude that D^{**} is a convex balanced domain. On the other hand,
it follows by our assumption that D is a component of D^{**} and hence $D^{**} = D$.

To see that D^* is convex, suppose the contrary. Then we find points $w_1, w_2 \in D^*$, $z \in D$ and a number $t \in (0, 1)$ such that $<z, tw_1 + (1 - t)w_2> = 1$. We may assume that $|<z, w_1>| \geq 1$. Since D is balanced, we get $\tilde{z} : = \frac{z}{<z, w_1>} \in D$ and $<\tilde{z}, w_1> = 1$, a contradiction. \hfill \Box

Proof of Proposition 3. Let D be non-degenerate \mathbb{C}-convex domain in \mathbb{C}^n. For any point $z \in \partial D$ consider a hyperplane L_z through z and disjoint from D. Let l_z be the orthogonal line through 0 and orthogonal to L_z. Denote by π_z the orthogonal projection of \mathbb{C}^n onto l_z and set $\alpha_z = \pi_z(a)$. Observe that $D_z = \pi_z(D)$ is biholomorphic to \mathbb{D}, since it is connected, simply connected (cf. Theorem 2.3.6 in [2]) and $\pi_z(z) \notin \pi_z(D)$. Moreover, since D is a non-degenerate linearly convex domain, it is easy to see that there are $n \mathbb{C}$-independent l_z's. We may assume that these l_z are the set C of coordinate planes. Then $D \subset G : = \prod_{l_z \in C} \pi_z(D)$ and G is biholomorphic to the polydisc \mathbb{D}^n. In particular, D is biholomorphic to a bounded domain, hence it is c-hyperbolic.

Further, we may assume that $0 \in D$. To see that D is c-finitely compact, it is enough to show that $\lim_{a \rightarrow z} c_D(0; a) = \infty$ for any $z \in \partial D$ and, if D is unbounded, $z = \infty$. But the last one follows by the fact that G is c-finitely compact. On the other hand, if $a \rightarrow z \in \partial D$, then $a_z \rightarrow \pi_z(z) \in \partial D_z$ and hence $c_D(0; a) \geq c_{D_z}(0; a_z) \rightarrow \infty$. \hfill \Box

REFERENCES

[1] J. Agler, N. J. Young, The hyperbolic geometry of the symmetrized bidisc, J. Geom. Anal. 14 (2004), 375–403.
[2] M. Andersson, M. Passare, R. Sigurdsson, Complex convexity and analytic functionals, Birkhäuser, Basel–Boston–Berlin, 2004.
[3] C. Costara, The symmetrized bidisc and Lempert’s theorem, Bull. London Math. Soc. 36 (2004), 656–662.
[4] C. Costara, Dissertation, Université Laval (2004).
[5] C. Costara, On the spectral Nevanlinna–Pick problem, Studia Math. 170 (2005), 23–55.
[6] A. Edigarian, A note on Costara’s paper, Ann. Polon. Math. 83 (2004), 189–191.
[7] A. Edigarian, W. Zwonek, Geometry of the symmetrized polydisc, Arch. Math. (Basel) 84 (2005), 364–374.
[8] D. Jacquet, C-convex domains with C^2 boundary, Complex Variables and Elliptic Equations 51 (2006), 303–312.
[9] L. Hörmander, Notions of convexity, Birkhäuser, Basel–Boston–Berlin, 1994.
[10] M. Jarnicki, P. Pflug, Invariant Distances and Metrics in Complex Analysis, Walter de Gruyter, 8 (1993).
AN EXAMPLE OF A BOUNDED C-CONVEX DOMAIN

[11] M. Jarnicki, P. Pflug, Invariant distances and metrics in complex analysis–revisited, Diss. Math. 430 (2005), 1–192.
[12] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427–474.
[13] N. Nikolov, P. Pflug, W. Zwonek, The Lempert function of the symmetrized polydisc in higher dimensions is not a distance, Proc. Amer. Math. Soc., to appear [arXiv:math.CV/0601367].
[14] S. V. Znamenski, Seven C-convexity problems (in Russian), Complex analysis in modern mathematics. On the 80th anniversary of the birth of Boris Vladimirovich Shabat, E. M. Chirka (ed.), FAZIS, Moscow, 2001, 123–131.
[15] S. V. Znamenskií, L. N. Znamenskaya, Spiral connectedness of the sections and projections of C-convex sets, Math. Notes 59 (1996), 253–260.

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
E-mail address: nik@math.bas.bg

Carl von Ossietzky Universität Oldenburg, Fachbereich Mathematik, Postfach 2503, D-26111 Oldenburg, Germany
E-mail address: pflug@mathematik.uni-oldenburg.de

Instytut Matematyki, Uniwersytet Jagielloński, Reymonta 4, 30-059 Kraków, Poland
E-mail address: Wlodzimierz.Zwonek@im.uj.edu.pl