COMMENTARY

A novel definition and treatment of hyperinflammation in COVID-19 based on purinergic signalling

Djo Hasan1 · Atsuko Shono2 · Coenraad K. van Kalken3 · Peter J. van der Spek4 · Eric P. Krenning5 · Toru Kotani2

Received: 20 January 2021 / Accepted: 18 July 2021 / Published online: 10 November 2021
© The Author(s) 2021

Abstract

Hyperinflammation plays an important role in severe and critical COVID-19. Using inconsistent criteria, many researchers define hyperinflammation as a form of very severe inflammation with cytokine storm. Therefore, COVID-19 patients are treated with anti-inflammatory drugs. These drugs appear to be less efficacious than expected and are sometimes accompanied by serious adverse effects. SARS-CoV-2 promotes cellular ATP release. Increased levels of extracellular ATP activate the purinergic receptors of the immune cells initiating the physiologic pro-inflammatory immune response. Persisting viral infection drives the ATP release even further leading to the activation of the P2X7 purinergic receptors (P2X7Rs) and a severe yet physiologic inflammation. Disease progression promotes prolonged vigorous activation of the P2X7R causing cell death and uncontrolled ATP release leading to cytokine storm and desensitisation of all other purinergic receptors of the immune cells. This results in immune paralysis with co-infections or secondary infections. We refer to this pathologic condition as hyperinflammation. The readily available and affordable P2X7R antagonist lidocaine can abrogate hyperinflammation and restore the normal immune function. The issue is that the half-maximal effective concentration for P2X7R inhibition of lidocaine is much higher than the maximal tolerable plasma concentration where adverse effects start to develop. To overcome this, we selectively inhibit the P2X7Rs of the immune cells of the lymphatic system inducing clonal expansion of Tregs in local lymph nodes. Subsequently, these Tregs migrate throughout the body exerting anti-inflammatory activities suppressing systemic and (distant) local hyperinflammation. We illustrate this with six critically ill COVID-19 patients treated with lidocaine.

Keywords COVID-19 · P2X7 receptor antagonist · Lidocaine base · Hyperinflammation · Cytokine storm · Immune paralysis

Introduction

Hyperinflammation and acute respiratory distress syndrome (ARDS) caused by coronavirus disease 2019 (COVID-19) have become the world’s number 1 challenge. The exponential pattern in the number of severe cases in the second and third waves of the SARS-CoV-2 pandemic has shown to reach nations’ maximum ICU capacities in weeks rather than months after outbreak of the disease irrespective of rigorous population-based preventive measures. In a recently published systematic review, the case fatality rates in patients in the ICU across 7 countries vary between 14.9 and 66.7%, while the case fatality rates among those who required mechanical ventilation vary between 16.7 and 97.0% [1]. In addition, the case fatality rate in a cohort of 1035 critically ill COVID-19 patients requiring extracorporeal membrane oxygenation (ECMO, artificial lungs) is alarmingly high (37.4%) [2].
The clinical manifestations of severe COVID-19 consist of pneumonia with dyspnoea and hyperinflammation. Hyperinflammation is thought to be the basis of the development of severe and critical COVID-19 [3–5]. Currently, a clear-cut definition of hyperinflammation is lacking. Some authors describe the condition of hyperinflammation as a form of very severe inflammation with cytokine storm [6]. The criteria of hyperinflammation are not consistent and include clinical data and/or different combinations of the parameters of the activation of the pro-inflammatory response of the immune system (i.e. fever, rapid respiratory deterioration, cytokine, ferritin and/or CRP concentrations, changes in blood levels of several types of immune cells, etc., examples are presented in Table 1) [3, 4, 6–8, 9, 10–14]. In addition, the current definitions of hyperinflammatory syndrome do not provide an

Table 1 Examples of the criteria of hyperinflammation. These criteria are not consistent and include different combinations of symptoms and laboratory parameters of the activation of the pro-inflammatory response of the immune system

| Author                | Year of publication | Criteria of hyperinflammation                                                                 | Reference number |
|-----------------------|--------------------|---------------------------------------------------------------------------------------------|------------------|
| Webb BJ et al.        | 2020              | Fever (temperature of more than 38.0°C) Macrophage activation (ferritin concentration of 700 μg/l or more) Haematological dysfunction (neutrophil to lymphocyte ratio of 10 or more or both haemoglobin concentration of 9.2 g/dl or less and platelet count of 110 × 10^9 cells/L or less) Haematological dysfunction (neutrophil to lymphocyte ratio of 10 or more or both haemoglobin concentration of 9.2 g/dl or less and platelet count of 110 × 10^9 cells/L or less) Coagulopathy (D-dimer concentration of 1.5 μg/ml or more) Hepatic injury (lactate dehydrogenase concentration of 400 U/L or more, or an aspartate aminotransferase concentration of 100 U/L or more) Cytokinaemia (defined as an IL-6 concentration of 15 pg/ml or more, or a triglyceride concentration of 150 mg/dl or more, or a CRP concentration of 15 mg/dl or more) | [7]               |
| Fajgenbaum DC and June CH | 2020          | Very severe inflammation with cytokine storm                                                | [6]               |
| Manson JJ et al.      | 2020              | C-reactive protein (CRP) concentration greater than 150 mg/L Doubling of CRP concentration within 24 h from a concentration of greater than 50 mg/L Ferritin concentration of greater than 1500 μg/L | [3]               |
| Gustine JN and Jones D | 2021            | Cytokine storm, dysregulated macrophage activation, impaired natural killer cell response, lymphopenia, elevated absolute neutrophil count and neutrophil/lymphocyte ratio and increased levels of neutrophil extracellular traps (NETs) | [4]               |
| Anka AU et al.        | 2021              | Excessive secretion of pro-inflammatory cytokines and the recruitment of pro-inflammatory cells such as granulocytes and macrophages caused by tissue injury result in a snowballing of cytokine secretion leading to a systemic inflammatory response such as macrophage activation syndrome (MAS), secondary haemophagocytic lymphohistiocytosis (sHLH—cytokine storm) | [11]              |
| Cardone MC et al.     | 2020              | Increased plasma levels of pro- and anti-inflammatory cytokines (IL-1β, IL-6, IL-7, IL-8, IL-9, IL-10, IFN-γ, TNF), chemokines (MCP1, MIP1A, MIP1B) and growth factors (G-CSF, GM-CSF) | [8]               |
| Mehta P et al.        | 2020              | Trends in laboratory results such as increasing ferritin, decreasing platelet counts or high erythrocyte sedimentation rate | 12                |
| Freeman TL et al. (2020) | 2020        | Vigorous stimulation of the innate immune response activating the Nod-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome pathway. This causes the release of the pro-inflammatory cytokines IL-6 and IL-1β | [13]              |
| De Luca G et al.      | 2020              | Elevation of CRP to ≥100 mg/l or ferritin to ≥900 μg/l in the presence of any increase in lactate dehydrogenase (LDH) | [14]              |
| Bozzi G et al.        | 2021              | Ferritin plasma levels of ≥1000 ng/mL and/or CRP of ≥10 mg/dl                             | [9]               |
| Landewé RBM et al.    | 2021              | Rapid respiratory deterioration on or during admission Plus fulfilment of at least two out of three biomarker criteria: CRP of >100 mg/L, serum ferritin of >900 μg/L, D-dimer of >1500 μg/L | [10]              |
Purinergic signalling

In 1929 adenylic acid (identical to adenosine) was identified [45], and in the same year, the adenosine triphosphate (ATP) molecule was discovered and isolated [46]. Ten years later (1939), researchers contributed to the understanding of intracellular ATP as an intracellular energy transport molecule [47–50]. In 1948 and in 1959, it was reported that extracellular ATP has a different function than ATP within the cytoplasm [51, 52]. The authors showed that extracellular ATP molecules have an intracellular signalling function. The intracellular signalling by nucleotides (ATP, ADP, UTP and UDP) and nucleoside (adenosine) is referred to as purinergic signalling. The purinergic co-transmission in neurons was discovered by Geoffrey Burnstock in 1972 [53]. It took over 20 years for the importance of purinergic signalling to be accepted [54, 55]. Finally, researchers of the University of Ferrara first reported that the P2Z receptor (the former name of the P2X7R) plays an intriguing role in immunity, inflammation and cell death [56].

The intracellular levels of ATP are high at millimolar concentrations (2–8 mM) [57], and the ATP concentrations in synaptic vesicles are even higher in the range of 5 to 100 mM [58]. In contrast, under normal resting conditions, the extracellular levels of ATP are quite low at nanomolar concentrations (<3 nM) [57, 59]. Under specific conditions, ATP release can rise by more than 1000-fold [53, 57, 60, 61] and leads to a significant increase in the extracellular levels of ATP. The resulting significant increase in extracellular nucleotides and adenosine concentrations activates their purinergic receptors inducing certain cellular functions. Examples of such conditions are membrane depolarisation (i.e. sympathetic neuron endings) [53], mechanical stress (i.e. high mechanical power ventilation) [59–63], hypoxia [64], hyperosmosis, hypotonic and isotonic stress of endothelial cells [65–68], inflammation [69, 70], surfactant release by alveolar epithelial type II cells [59–61], mucin release by airway smooth muscle cells [71], insulin release by pancreatic islet beta-cells [72, 73], etc. There is an exception to this concept: Although a spontaneous ATP-induced inward Ca2+ current through the P2X7R could not be detected below extracellular ATP levels of 200 μmol/ml [74], low tonic basal activation of P2X7R at nanomolar extracellular ATP concentrations promotes serum independent cellular proliferation [75], promotes closure of the wound area in scratch wound assay [76], protects from apoptosis [77], initiates anaerobic glycolysis independent of the oxygen contents [78], etc. (Table 2, rows 80–85). However, low tonic basal activation of the P2X7Rs by extracellular ATP does not cause a pro-inflammatory response of the immune system. Therefore, this topic is beyond the scope of this paper and will not be discussed here.

Clearance of the ATP molecule in order to avoid accumulation in the extracellular space is performed by enzymes attached to the outside of the cell membranes (ecto-enzymes)
Purinergic signalling in inflammation and hyperinflammation

The purinergic control of cellular processes including the pro-inflammatory and anti-inflammatory responses of the immune system is depending on the activation and the desensitisation phenomenon of the nucleotides and adenosine receptors of the immune cells [74, 276–282]. Except for the P2X7R, all other purinergic receptors, i.e. P2XRs, P2YRs and P1 receptors (adenosine receptors—AdoRs), are subject to desensitisation [279–283]. In addition, a certain extent of desensitisation occurs after every activation, and this desensitisation requires time to return to the state of complete resensitisation [279, 280]. The higher and the longer the stimulus of the activation, the higher the extent of desensitisation and the longer the recovery time to the state of complete resensitisation [278].

One of the P2 receptors, the P2X7 receptor, is not prone to desensitisation following receptor activation as discussed below.

and by soluble enzymes excreted to the extracellular space (Fig. 2) [57, 272–275]. A proportion of the enzymatic-breakdown product of ATP adenosine enters the cells via the equilibrative nucleoside transporters (ENT1 and ENT2) and concentrative nucleoside transporters (CNT1 and CNT2) (Fig. 2) [57, 60, 61]. The release and subsequently clearance of the extracellular nucleotides and adenosine cause fluctuation in the extracellular levels of ATP, other nucleotides and adenosine. These fluctuations in extracellular concentrations are indispensable for the receptor resensitisation after desensitisation following receptor activation as discussed below.

Purinergic signalling in inflammation and hyperinflammation

The purinergic control of cellular processes including the pro-inflammatory and anti-inflammatory responses of the immune system is depending on the activation and the desensitisation phenomenon of the nucleotides and adenosine receptors of the immune cells [74, 276–282]. Except for the P2X7R, all other purinergic receptors, i.e. P2XRs, P2YRs and P1 receptors (adenosine receptors—AdoRs), are subject to desensitisation [279–283]. In addition, a certain extent of desensitisation occurs after every activation, and this desensitisation requires time to return to the state of complete resensitisation [279, 280]. The higher and the longer the stimulus of the activation, the higher the extent of desensitisation and the longer the recovery time to the state of complete resensitisation [278].

One of the P2 receptors, the P2X7 receptor, is not prone to desensitisation, and apart from the low tonic basal activation of this receptor at low nanomolar concentrations as mentioned above, the extracellular concentration of ATP required to activate this receptor is much higher. Activation of the P2X7R starts at 100 μM with an EC50 of >1 mM [74, 279, 284].

Summary of the effects of extracellular nucleotides and nucleoside on the innate and adaptive immune system through different purinergic receptors is presented in Table 2, rows 1–
Table 2  Summary of the effects of extracellular nucleotides and nucleoside on the innate and adaptive immune system through different purinergic receptors. AdoR adenosine receptor; TNF-α tumour necrosis factor alpha; FcγR receptors belonging to the immunoglobulin superfamily; IFN-γ interferon gamma; IFN-β interferon beta; MAC-1 macrophage-1 antigen comprised CD11b (integrin αM) and CD18 (integrin β2); CpG-A oligodeoxynucleotides; PARP Poly ADP ribose polymerase; FMLP N-Formylmethionyl-leucyl-phenylalanine, a chemotactic factor; COX-2 cytochrome C oxidase polypeptide II; PG2 prostaglandin E2; MIP-1α macrophage inflammatory protein 1 alpha (MIP-1α = CCL3 chemokine ligand 3 ); MIP-1β (CCL4), MIP-2α (CXCL2 chemokine CXC motif ligand 2) and MIP-3α(CCL20); RANTES (Regulated on Activation, Normal T cell Expressed and Secreted, CCL5); LTB4 Leukotriene B4; LTA4 Leukotriene A4; VCAM-1 vascular cell adhesion molecule 1 (CD106); ICAM-1 intercellular adhesion molecule 1 (CD54); HMGB-1 high-mobility group box 1 (belongs to danger-associated molecular patterns); MCP-1 monocyte chemoattractant protein 1 (CCL2); Foxp3 Forkhead box P3; CTL cytotoxic T lymphocyte; Th T helper cell; CTLA-4 cytotoxic T-lymphocyte-associated protein 4 (CD152); CD39 nucleoside triphosphate diphosphohydrolase 1 (NTPD1); CD73' nucleotidase (5'-NT); VEGF vascular endothelial growth factor; IDO Indoleamine-pyrole 2,3-dioxgenase; α-SMA alpha smooth muscle actin; CTGF connective tissue growth factor (CCN2); hFGF basic fibroblast growth factor; TCRT-cell receptor; Nfat nuclear factor of activated T cells; NLRP3 Nod-like receptor family pyrin domain containing 3 gene; ART2-P2X7 pathway extracellular NAD+-induced ATP-independent p2X7R activation involving ADP-ribosyltransferase 2; MMP-9 matrix metalloproteinase-9; TIMP-1 tissue inhibitor of metalloproteinase 1; LC-MSM5 liquid chromatography and tandem mass spectrometry; STAT-1 signal transducer and activator of transcription 1. Updated table, source: Hasan D, et al. (2017) [60] with permission

| Effects of extracellular nucleotides and nucleoside on the innate and adaptive immune system through different purinergic receptors | Reference number |
|---|---|
| AdoRA1 Adenosine | Promotes chemotaxis | [79, 80] |
| Neutrophils | Increases adherence to endothelial cells | [81] |
| Neutrophils | Inhibits TNF-α release | [82] |
| Neutrophils | At low concentrations adenosine enhances FcγR phagocytosis and actin dynamics | [83–85] |
| Neutrophils | Restores LPS-inhibited chemotaxis | [86] |
| Neutrophils | Inhibits vesicular MHC class I cross-presentation | [87] |
| Plasmacytoid DCs (pDCs) | Potent chemotactants, reduces IL-6, IL-12 and IFN-γ release | [88] |
| CD39high B-cells (Bregs) | Promotes expansion and function of CD39high B-cells | [89, 90] |
| Monocytes | Inhibits IL-12 and TNF-α release | [91, 92] |
| Neutrophils | Promotes chemotaxis | [80] |
| Neutrophils | Inhibits oxygen radical generation | [79] |
| Neutrophils | Inhibits upregulation of beta2 integrins or MAC-1 (CD11/CD18) and shedding of L-selectin by FMLP | [93, 94] |
| Neutrophils | Promotes Cox-2 and PG2 release | [95] |
| Neutrophils | Decreases adherence to endothelial cells | [81] |
| Neutrophils | Decreases adherence to fibrinogen coated surfaces | [96] |
| Neutrophils | Inhibits TNF-α release and chemokines MIP-1α (CCL3), MIP-1β (CCL4), MIP-2α(CXCL2) and MIP-3α (CCL20) | [82, 97] |
| Neutrophils | At high concentrations adenosine inhibits FcγR functions and actin dynamics | [83–85] |
| Neutrophils | Inhibits leukotriene (LTB4, LTA4) synthesis | [98–102] |
| Neutrophils | Inhibits degranulation and superoxide release or oxidative burst | [96, 103–106] |
| Neutrophils | Delays neutrophil apoptosis | [107] |
| Neutrophils | Inhibits autophagy suppressed apoptosis of neutrophils by blocking caspase-8, caspase-3 and PARP signalling | [108] |
| Mast cells | Increases IL-1β, IL-3 and IL-8 release | [109] |
| Macrophages | Inhibits LPS-induced TNF-α release | [110] |
| Endothelial cells | | [111] |
### Table 2 (continued)

Effects of extracellular nucleotides and nucleoside on the innate and adaptive immune system through different purinergic receptors

| Row number | Receptor model | Ligand [52] | Immune cell expression or experimental model | Results of receptor signalling | Reference number |
|------------|----------------|-------------|---------------------------------------------|-----------------------------|------------------|
| 25         | Naïve T-cells |             | Promotes the differentiation towards CD4+FoxP3*Lag3* Tregs, inhibits Th1 and Th17 differentiation, inhibits IL-6 secretion and increases TGF-β secretion | Reduces thrombin-induced permeability. Inhibits thrombin-mediated expression of VCAM-1, ICAM-1 an E-selectin. Inhibits thrombin induced increase of IL-6, HMGB-1; chemokines, MCP-1 (CCL-2), CXCL-1 and CXCL-3 | [112] |
| 26         | Th1, Th2 and Th17 cells |             | Reduces release of IL-2, IL-4, TNF-α and IFN-γ | | [113–115] |
| 27         | CD8*CTLs, Th1, Th2 |             | Reduces release of IL-2, TNF-α, IFN-γ. Inhibits CD8*CTL and Th1 expansion to alloantigens | | [116] |
| 28         | CD4+ T-cells |             | Inhibits TCR-mediated IFN-γ release | | [117] |
| 29         | CD4*CD25*FoxP3* Tregs |             | Increases number of Tregs and increases the expression of CTLA-4 receptor | | [118] |
| 30         | CD4*CD25*FoxP3* Tregs |             | Upregulates ecto-enzymes CD39 and CD73 expression accelerating adenosine generation from extracellular ATP | | [118] |
| 31         | AdoRA2A-knockout mice |             | Bleomycin-induced fibrosis is more severe and elevated TGF-β is higher than in wild-type mice | | [119] |
| 32         | Human leukaemia monocytic cell line THP-1 cells |             | TNF-α upregulates the expression of AdoRA2A followed by the increase of the expression of CD163 and TGF-β1 | | [120] |
| 33         | Human CD4+ CD25+ CD127low/* Tregs and CD8+ T-cells |             | Tregs from gastric cancer patients hydrolyse ATP into adenosine. Adenosine synthesised by Tregs promote apoptosis and suppresses proliferation of CD8+ T-cells. Tregs reduces CD8+ T-cell activity by promoting cAMP synthesis. Tregs inhibit the immune function of CD8+ T-cells through A2aR pathway | | [121] |
| 34         | AdoRA2A and AdoRA2-B | | Differentiation of monocytes towards M2 macrophages with VEGF and IL-10 release | | [122–126] |
| 35         | AdoRA2B Adenosine | Macrophages | Inhibits LPS-induced IL-6, MIP-2 and TNF-α release | | [127, 128] |
| 36         | AdoRA2B | Neutrophils | Inhibits neutrophil recruitment and transmigration, release of TNF-α, IL-6, MIF-1α and IL-8 | | [129, 130] |
| 37         | Neutrophils | | Inhibits superoxide generation | | [131] |
| 38         | Neutrophils | | Inhibits TNF-α release | | [82] |
| 39         | Mast cells | | Stimulates degranulation (mice), IL-13, IL-4 (Th2 cytokines) | | [109] |
| 40         | Macrophages | | Stimulates IL-10 release | | [132] |
| 41         | DCs | | Differentiation and maturation towards regulatory DCs: High level expression of angiogenic (VEGF), wound healing (IL-6), chemokine (IL-8), immune suppressing (IL-10) and tolerogenic (IDO) factors | | [133] |
| 42         | DCs | | Promotes Th17 differentiation via stimulation of IL-6 release | | [134] |
| Row number | Receptor Ligand [52] | Immune cell expression or experimental model | Results of receptor signalling | Reference number |
|------------|-----------------------|-----------------------------------------------|------------------------------|-----------------|
| 43         | Bone marrow cells     | Promotes differentiation towards CD11c<sup>+</sup>Gr-1<sup>+</sup> DCs that promotes Th17 response |                              | [135]           |
| 44         | Myeloid cells in systemic bleomycin-induced pulmonary fibrosis | Myeloid cells AdoR2B knockout mice show a reduction in CD206 and arginase-1 (markers for M2 macrophages). 10-fold reduction in IL-6 and 5-fold reduction in hyaluronan (both linked to pulmonary fibrosis) |                              | [136]           |
| 45         | Mast cells            | Upregulates the IL-4 and IL-13 release        |                              | [109]           |
| 46         | B-cells               | Induces Ig-E release through IL-4 and IL-13 release by the adenosine-activated mast cells |                              | [109]           |
| 47         | Endothelial cells     | Reduces endothelial permeability, ICAM-1, P-selectin and E-selectin (adhesion molecules) |                              | [137]           |
| 48         | Endothelial cells     | Stimulates basic fibroblast growth factor (bFGF) and insulin-like factor-1 release |                              | [138]           |
| 49         | Bronchial epithelial cells | Increases IL-19 release                     |                              | [139]           |
| 50         | Human leukaemia monocytic cell line THP-1 cells | Increases TNF-α release through mast cell-released IL-19 |                              | [139]           |
| 51         | Renal fibroblasts     | Increases the expression of α-SMA, IL-6, TGF-β, CTGF and fibronectin (pro-fibrotic mediators) |                              | [140]           |
| 52         | AdoR2B knock-out mice | Negligible effect on bleomycin-induced acute lung injury. Enhanced loss of barrier function |                              | [141]           |
| 53         | AdoR2B knock-out mice exposed to systemic bleomycin | Substantial reduction of fibrosis and IL-6 production |                              | [141]           |
| 54         | Specific pathogen-free male Sprague-Dawley rats | Inhibition of AdoRA2B: Attenuates necrotizing enterocolitis in newborn rats and protects against body weight loss, decreases myeloperoxidase activity, decreases TNF-α, IFN-γ and IL-6 intestinal levels and increases IL-10 intestinal levels |                              | [142]           |
| 55         | RAW 264.7 murine macrophage cells with and without transfection with AdoRA2B siRNA cultured with B. abortus 544 biovar 1 strain (ATCC 23448) | Blocking of AdoR2B using siRNA induces productions of IL-6, MCP-1 and TNF-α in cells without infection. AdoR2B siRNA macrophages have reduced uptake of B. abortus. Inhibition of AdoRA2B results in higher total weight of the spleens and less Brucella colonisation in this organ, decreases IL-10, elevates the levels of IFN-γ and IL-12 at three days p.i. and elevates the levels of IL-6, TNF-α and IL-12 at 14 days p.i. |                              | [143]           |
| 56         | AdoRA2B and AdoRA3    | Mast cells | Stimulates IL-8(chemokine) and VEGF (angiogenic) release | [144]           |
| 57         | Peritoneal macrophages from wild type, AdoRA2A knockout and AdoRA3 knockout FVB or C57BL/6 male mice | Simultaneous adenosine AdoRA2B and AdoR3 signalling is required to promote chemotactic migration of macrophages towards the apoptotic cells |                              | [145]           |
| 58         | AdoRA3                | Neutrophils | Synergistic AdoR3 and P2Y2R neutrophil chemotaxis through autocrine ATP release by pannexin-1, extracellular |                              | [146–152]       |
### Table 2 (continued)

| Row number | Receptor Ligand [52] | Immune cell expression or experimental model | Results of receptor signalling | Reference number |
|------------|----------------------|---------------------------------------------|-----------------------------|----------------|
| 59         | Microglial cells and colonic epithelial cells | Suppresses LPS-induced TNF-α production | [153, 154] |
| 60         | Anti-CD3-activated CD8+ CTLs | Reduces the expression of mRNAs coding for granzyme B, perforin, Fas ligand and TNF-related apoptosis-inducing ligand (TRAIL). Diminishes Nalpha-CBZ-L-lysine thiobenzylester esterase activity (enzyme with cytotoxic activity). Reduces IL-2 and IFN-γ release. | [155] |
| 61         | Microglia BV-2 cell line | Reduces elevated hydrostatic pressure-induced inducible nitric oxide synthase (iNOS) expression, microglia migration and phagocytosis in BV-2 cells | [156] |
| 62         | AdoRA3 knock-out mice exposed to intratracheal bleomycin | Increase in eosinophil numbers and selective upregulation of eosinophil-related chemokines and cytokines. But decreased eosinophil peroxidase activity in the BALF | [157] |
| 63         | Human colonic mucosa biopsies | Significantly decreases TNF-α and IL-1β production and attenuates the NF-κBp65 activation | [158] |
| 64         | P2X1R ATP | Neutrophils and platelets | Promotes thrombosis and fibrinogenesis: Keeps circulating neutrophils in quiescent state, recruit neutrophil to the injury site, activate adhered neutrophils and platelets | [159] |
| 65         | Bovine polymorphonuclear leukocytes (PMNs) | Oleic acid (OA) and linoleic acid (LA) induce Neutrophil Extracellular Traps (NETs) formation and ATP release via PANX1 and activation of P2X1 | [160] |
| 66         | P2X1R, P2X4R and P2X7 ATP | Naïve T-cells | TCR stimulation results in the translocation of pannexin-1 hemichannels, P2X1Rs and P2X4Rs to the immune synapse. While the P2X7Rs remain uniformly distributed. This process is required to induce calcium entry, NFAT and release of IL-2 | [161] |
| 67         | P2X3R ATP | Mast cells | Increases the expression of IL-4, IL-6, IFN-γ, TNF-α, RANTES and MIP-2. Increases the release of IL-6 and IL-13 Article retracted due to figure irregularities [162] |
| 68         | P2X4R ATP | γδ T-cells | Activates and upregulates TNF-α and IFN-γ release | [163] |
| 69         | Microglial cells | Promotes survival after LPS-activation | [164] |
| 70         | CD4+ T-cells from Human peripheral blood mononuclear cells (PMBCs) | Chemokine stromal-derived factor-1α (SDF-1α) triggered mitochondrial ATP | [165] |
| Row number | Receptor Ligand | Immune cell expression or experimental model | Results of receptor signalling | Reference number |
|------------|----------------|---------------------------------------------|-------------------------------|-----------------|
| 71         | P2X4R and P2Y11R ATP | Chinese hamster ovary (CHO) cells transfected with human Kv1.3 cDNA and rat P2X4 construct | The voltage-gated potassium channel Kv1.3 is required for microglia activation. Inhibition of Kv1.3 channels completely nullified the ability of Kv1.3 to normalise membrane potential changes, resulting in excessive depolarisation and reduced calcium transients through P2X4 receptors | [166] |
| 72         | CD4+ T-cells from Human peripheral blood mononuclear cells (PMBCs), Jurkat T cells (clone E6-1) and U-937 cells | P2Y11Rs retract from the immune synapse (IS) towards the back of cells where their stimulation by extracellular ATP induces cAMP/PKA signalling that redirects mitochondrial trafficking to the IS. P2Y11Rs thus reinforce IS signalling by promoting the aggregation of mitochondria with panx1 ATP release channels and P2X4 receptors at the IS. This dual purinergic signalling mechanism involving P2X4Rs and P2Y11Rs focuses mitochondrial metabolism to the IS where localised ATP production sustains synaptic activity in order to allow successful completion of T cell activation responses | [167] |
| 73         | CD4+ T-cells from Human peripheral blood mononuclear cells (PMBCs) | Autocrine P2X4R and simultaneous P2Y11R activation regulate mitochondrial metabolism, T-cell polarisation, pseudopod formation and redistribution of P2Y11Rs to the back of polarised T-cells resulting in T-cell trafficking. Exogenous activation of P2Y11R blocks T-cell trafficking | [168] |
| 74         | P2X4R and/or P2X7R ATP | Neutrophils, monocytes, macrophages, DCs, CD4+ T-cells, CD8+ T-cells, iNKTs, adenoviral infected macrophages and alveolar epithelial cells | Mediates NLRP3 inflammasome-dependent IL-1β and IL-18 secretion (signal 2, non-classical pathway), increases IL-6 production | [169–176] |
| 75         | C57BL/6J mice: wild type, P2X5R knockout, P2X7R knockout and P2X5R/P2X7R knockout and their bone marrow-derived macrophages (BMMs) | P2X5R-deficient BMMs exhibit defective cytosolic killing of L. monocytogenes P2X5R is required for L. monocytogenes-induced inflammasome activation and IL-1β production and that defective L. monocytogenes killing in P2X5R-deficient BMMs is substantially rescued by exogenous IL-1β or IL-18. The P2X5-dependent anti-L. monocytogenes response is mediated by NLRP3 inflammasome activation. | [177] |
Table 2 (continued)

| Row number | Receptor | Ligand | Immune cell expression or experimental model | Results of receptor signalling | Reference number |
|------------|----------|--------|---------------------------------------------|-------------------------------|------------------|
| 76         | P2X7R    | Unactivated state in the absence of ATP | Macrophages and P2X7R-transfected HEK-293 cells | P2X7 is a scavenger receptor for apoptotic cells in the absence of its ligand ATP | [178, 179] |
| 77         | ATP release channel | Alveolar epithelial type I cells (AT I cells), mice osteoclast cells, murine neuroblastoma cells, astrocytic cell line, mice astrocytes, B16 melanoma cells | Release ATP after mechanical deformation (AT I cells), spontaneously (osteoblast cells), after activation (neuroblastoma cells, astrocytic cell line), after γ irradiation (melanoma cells) | | [180–185] |
| 78         | P2X7R-mediated ATP release | Mouse 3T3 fibroblasts | P2X7R-mediated ATP secretion is accompanied by depletion of cytosolic ATP | | [186] |
| 79         | Bone marrow–derived dendritic cells from WT mice and Panx1−/− C57BL/6 mice | | Upon stimulation of the P2X7 receptor by ATP, Panx1 contributed to fast DC motility by increasing the permeability of the plasma membrane, which resulted in supplementary ATP release | | [187] |
| 80         | ATP, low tonic basal activation | HET293 and HELa cells | Elevates mitochondrial calcium and potential, cellular ATP levels and promotes serum-independent growth. This process requires a full pore-forming function | | [75] |
| 81         | In-vitro scratch wound assay with HaCat cells (human skin keratinocytes) | Medium hyaluronan fragment (MMW-HA, between 100 and 300 kD) increases tight junction ZO-1 protein expression and induces a low activation of P2X7 receptor resulting in improved closure of the wound area. This is accompanied by pore formation as shown by Yo-Pro-1 cellular uptake. The P2X7R antagonist brilliant blue G (BBG) completely inhibits this process | | | [76] |
| 82         | HEK293 and NIH3T3 cells | Increases the Ca2+ content of the endoplasmic reticulum, activates NFATc1 and protects from apoptosis | | | [77] |
| 83         | PC3 cells LNCaP, Kelly, RPMI-8226, DU145 and SK-MEL-5 cells | Drives the expression of nfP2X7, a key mediator of cell survival | | | [188] |
| 84         | Osteoclast-like cells | Promotes the increase in the extracellular adenosine concentrations | | | [189] |
| 85         | HEK293 cells | The initiation of anaerobic glycolysis independent of the oxygen content: Upregulates glucose transporter Glut1 (thus enhances intracellular glycogen stores); Upregulates glycolytic enzymes (PFK, G3PDH, PKM2), phosphorylated Akt/PKB and hypoxia-inducible factor 1a (HIF-1a) expression | | | [78] |
| 86         | ATP >1 mM, vigorous activation | C57BL/6 mice | P2X7 activation inhibits the suppressive potential and stability of Tregs. In contrast, P2X7R inhibition promotes the conversion of the cell-autonomous | | [190] |
| Row number | Receptor Ligand [52] | Immune cell expression or experimental model | Results of receptor signalling | Reference number |
|------------|----------------------|---------------------------------------------|-----------------------------|-----------------|
| 87         | C57BL/6 wild type and P2X7 knockout mice | P2X7 knock-out mice show an increase of CD90/CD45RB<sup>low</sup>FoxP3<sup>+</sup> Tregs in colon lamina propria, prevents Tregs death in mesenteric lymph nodes and these Tregs produce more IL-10. Colitis is prevented or reduced and P2X7 knock-out mice. Treg cells lacking the P2X7 receptor have higher levels of integrin CD103 | [191] |
| 88         | C57BL/6 mice | P2X7R activation reduces the frequency of Tregs and P2X7R inhibition increases the expansion of Tregs | [192] |
| 89         | C57BL/6 wild type, P2X7 knockout mice and foetal thymus organ culture | Selectively increases immature γδ+CD25<sup>+</sup> cells which are much more competent to release ATP than pre-TCR expressing cells following TCR stimulation and Ca<sup>2+</sup> influx. Genetic ablation as well as pharmacological antagonism of P2X7 results in impaired ERK phosphorylation, reduction of early growth response (Egr) transcripts induction, diversion of γδTCR-expressing thymocytes towards the αβ lineage fate and increased representation of the Id3-independent NK1.1-expressing γδ T-cell subset in the periphery | [193] |
| 90         | C57BL/6J mice implanted with melanoma B16F10 cells | P2X7 activation in tumour infiltrating CD8<sup>+</sup> lymphocytes (TILs) promotes cell cycle arrest and p38 MAPK mediated cellular senescence in the tumour microenvironment | [194] |
| 91         | BAC1.2F5 macrophage cell line | P2X7 receptor-dependent blebbing and the activation of Rho-effector kinases, caspases and IL-1β release | [195] |
| 92         | Dendritic cells cultured from mouse bone marrow precursor cells | Autocrine-mediated (pannexin-1 channels) fast migration of dendritic cells through the reorganisation of the actin cytoskeleton | [187] |
| 93         | RAW 264.7 murine macrophages | Mediates actin reorganisation and membrane blebbing via p38 MAP kinase and Rho | [196] |
| 94         | Monocytes | Induces MMP-9 and TIMP-1 release, fibrosis markers | [197] |
| 95         | M1 macrophages | Induces release of 74 pro-inflammatory proteins detected by antibody protein array and 33 inflammatory proteins detected by LC-MS/MS | [198] |
| 96         | M2 macrophages | Induces release of 21 anti-inflammatory proteins detected by LC-MS/MS | [198] |
| 97         | Macrophages | Enhances intracellular bacterial killing | [199] |
| 98         | Macrophages and P2X7R-transfected HEK-293 cells | Mediates rapid uptake of beads and bacteria in the absence of serum after ATP activation | [200] |
| 99         | Mast cells | Induces degranulation | [200] |
| Row number | Receptor Ligand | Immune cell expression or experimental model | Results of receptor signalling | Reference number |
|------------|-----------------|-----------------------------------------------|------------------------------|-----------------|
| 100        | Naïve NKTs      | Facilitates NAD⁺-induced inhibitory signal through the ART2-P2X7 pathway resulting in non-functional NKTs | [201]                        |
| 101        | Activated NKTs  | Facilitates NAD⁺-induced stimulatory signal through the ART2-P2X7 pathway resulting in functional NKTs with increased IFN-γ and IL-4 release | [201]                        |
| 102        | B cells         | Induces shedding of IgE receptor (CD23) and CXCL16. Soluble CD23 sustains growth of B-cell precursors, promotes B and T cell differentiation and drives cytokine release from monocytes. CXCL16 is a chemoattractant for lymphocytes | [202, 203]                   |
| 103        | CD11c⁺CD103⁺ DCs| Mediates infection-induced rapid recruitment of CD11c⁺CD103⁺ DC subsets into the epithelial layer of the gut | [204]                        |
| 104        | Naïve T-cells   | TCR stimulation triggers rapid release of ATP and upregulates P2X7 gene expression. Autocrine ATP stimulation through the P2X7R is required for the TCR-mediated calcium influx, NFAT activation and IL-2 production | [205]                        |
| 105        | T follicular B helper cells (Tfh cells) | Reduces and thus controls the number of Tfh cells in Peyer’s patches in the gut with high-affinity IgA responses to promote host-microbiota mutualism | [206]                        |
| 106        | CD4⁺CD25⁺FoxP3⁺ regulatory T-cells (Tregs) | Facilitates NAD⁺-induced Tregs depletion through the ART2-P2X7 pathway | [207]                        |
| 107        | DCs             | Increases CD80, CD 86, STAT-1 and P2X7R expression, IFN-β release and T-cells expansion. Reduces Tregs numbers | [208]                        |
| 108        | AT I cells      | Induces VCAM-1 shedding and neutrophil transmigration in acute lung injury | [209]                        |
| 109        | Human endometrial mesenchymal stem cells, murine luteal cells | Causes cell cycle arrest in G0/G1 phase and suppresses cell replication | [210, 211]                   |
| 110        | Brain-derived type-2 astrocyte cell, mesangial cells | Stimulates TGF-β mRNA expression | [212, 213]                   |
| 111        | Sprague-Dawley rats with and without spinal cord injury | After spinal cord injury P2X7R of microglia was upregulated by BzATP and down-regulated by P2X7R antagonist A-438079. Upregulation of P2X7R on microglia coincides with increase of neuroinflammation after spinal cord injury. P2X7R of microglia participates in spinal cord-mediated neuroinflammation via regulating NLRP3 inflammasome-dependent inflammation | [214]                        |
| 113        | Abdominal cells of male Kunming mice of clean grade | Transfection of the long non-coding siRNA uc.48+ decreases the upregulated mRNA and protein levels of the P2X7 receptor in diabetes mellitus type 2 mice model | [215]                        |
| 114        | Human embryonic kidney cells (HEK293T) | Promotes paxillin and NLRP3 migration from the cytosol to the plasma membrane and facilitates P2X7R-paxillin interaction and | [216]                        |
| Row number | Receptor Ligand [52] | Immune cell expression or experimental model | Results of receptor signalling | Reference number |
|------------|----------------------|----------------------------------------------|--------------------------------|------------------|
| 115        | P2Y1R knockout, P2Y12R knockout, P2Y13R knockout, NLRP3 knockout and wild type C57BL/6 mice | Paxillin-NLRP3 association, resulting in the formation of the P2X7R-Paxillin-NLRP3 complex. Paxillin is essential for ATP-induced NLRP3 inflammasome activation in mouse bone marrow-derived macrophages and bone marrow-derived dendritic cells (PMDCs) as well as in human PBMCs and THP-1-differentiated macrophages | Aggravates inflammatory bowel disease through ERK5-mediated tyrosine phosphorylation of the adaptor protein ASC essential for NLRP3 inflammasome activation and the secretion of IL-1β | [217] |
| 116        | C57BL/6 mice: Wild-type, P2X7 knockout, NLRP3 knockout and caspase-1/11 knockout | Induces the release of extracellular vesicles containing CD14. Extracellular CD14 induced during sepsis controls bacterial dissemination and cytokine secretion | | [218] |
| 117        | C57BL/6 J mice and their peritoneal macrophages, immortalised human liver stellate cell line LX-2 and immortalised human leukaemia monocyctic cell line THP-1 cells | Blockade of P2X7R reverses TAA-induced liver fibrosis thioacetamide and attenuates thioacetamide-induced inflammatory response by inhibiting NLRP3 and NF-κB activation in mice liver. P2X7R overexpression significantly enhances TGF-β1-induced α-SMA and collagen I protein and mRNA level in LX-2 cells. Macrophages increase fibrogenesis in LX-2 HSCs through the release of IL-1β by P2x7R stimulation | | [219] |
| 118        | Macrophages derived from human leukaemia monocyctic cell line THP-1 cells cultured with T. pallidum with and without P2X7R gene siRNA-transfection | T. pallidum increases both the mRNA and protein levels of P2X7R, increases levels of NLRP3 mRNA expression and IL-1β. SiRNA transfection of the macrophages reduces the percentage of spirochete-positive macrophages and spirochete internalisation | | [220] |
| 119        | Human and mice macrophages | Enhances the Neutrophil Extracellular Traps (NETs) and LL-37 formation (an antibacterial protein externalised on NETs) activated caspase-1, the central enzyme of the inflammasome, in both human and murine macrophages, resulting in release of active IL-1β and IL-18. LL-37 activation of the NLRP3 Inflammasome utilises P2X7R-mediated potassium efflux. IL-18 can stimulate NETosis (NET activation and release) in human neutrophils | | [221] |
| 120        | ATP >1 mM, prolonged vigorous activation | Induces pannexin-1 mediates large pore formation and IL-1β release | | [222] |
| 121        | Human neutrophils and HL-60 cells | Mediates membrane large pore formation and superoxide generation | | [223] |
| 122        | Matured peripheral T-cells | High dose ATP promotes apoptosis, cell death and CD62L shedding (homing | | [224–226] |
| Row number | Receptor Ligand [52] | Immune cell expression or experimental model | Results of receptor signalling | Reference number |
|------------|----------------------|---------------------------------------------|-------------------------------|------------------|
| 123        | P2X7R and P2Y13R     | J774 cells and HEK cells expressing the P2X7 receptor | Promotes the formation of pores permeable to very large ions leading to cytolysis | [227]            |
| 124        | Human mast cell line HMC-1 and rat basophilic leukaemia cell line (RBL-2H3) with and without transfection of P2Y13-siRNAs and P2X7-siRNAs | Promotes chemotaxis | [228]            |
| 125        | P2Y1R and P2Y12R     | Platelets                                   | P2Y1R and P2Y12R synergistic action in thrombin-induced platelet activation | [229]            |
| 126        | ADP>ATP              | Neutrophils and fibroblasts                 | Mediates recruitment of neutrophils into the lungs, proliferation and migration of lung fibroblasts and IL-6 production | [230]            |
| 127        | P2Y2R UTP>ATP        | Neutrophils                                 | Synergistic AdoR3 and P2Y2R neutrophil chemotaxis (see under AdoR3 above) | [146, 147]       |
| 128        | Monocyte-derived DCs (moDCs), eosinophils | Promotes chemotaxis | [231]            |
| 129        | Eosinophils          | Induces VCAM-1 expression                   | [232]            |
| 130        | Peritoneal macrophages (RPMs) isolated from resting C57/B6 mice | P2Y2R-Induced c-Jun N-terminal kinase (JNK) activation is responsible for increased in IL-1 | [233]            |
| 131        | Murine model of cutaneous leishmaniasis | Induces VEGF-1 activation and IL-1β secretion during L. amazonensis infection. IL-1β/IL-1R signalling is crucial for P2Y2R-mediated protective immune response in an experimental model of cutaneous leishmaniasis | [234]            |
| 132        | ChAT-BAC-eGFP mice   | Elicits tracheal brush cells generation of cysteinyl leukotrienes. Aeroallergens elicit P2Y2-dependent tracheal brush cells cysteinyl leukotrienes generation and tracheal brush cells -dependent airway eosinophilia | [235]            |
| 133        | P2Y4R and P2Y12      | Microglial cells                            | P2Y4R and P2Y12R synergistic action increases microglial chemotaxis | [236]            |
| 134        | UTP>ATP, ADP>ATP, respectively | Neutrophils                                 | Induces neutrophil activation and extracellular trap formation | [237, 238]       |
| 135        | Human leukaemia monocytic cell line THP-1 cells | Induces IL-1β release | [239]            |
| 136        | Macrophages          | Promotes phagocytosis                       | [240]            |
| 137        | Microglial cells     | Promotes phagocytosis                       | [241]            |
| 138        | Microglial cells     | Promotes phagocytosis                       | [242]            |
| 139        | Basophils            | Promotes phagocytosis                       | [243]            |
| 140        | Plasmacytoid DCs     | UDP promotes IgE-dependent degranulation     | [244, 245]       |
| 141        | Tissue cells         | Induces IL-1α, IL-8/CXCL8 and IL-6 release  | [246]            |
| 142        | UDP and UTP strongly inhibit IFN-alpha secretion induced by influenza virus or CpG-A | UDP promotes IgE-dependent degranulation | [247]            |
| 143        | Tissue cells         | Induces IL-1α, IL-8/CXCL8 and IL-6 release  | [248, 249]       |
Table 2  (continued)

Effects of extracellular nucleotides and nucleoside on the innate and adaptive immune system through different purinergic receptors

| Row number | Receptor | Ligand [52] | Immune cell expression or experimental model | Results of receptor signalling | Reference number |
|------------|----------|-------------|---------------------------------------------|-------------------------------|------------------|
| 144        | Tissue cells | Induces IFN-β release | || |
| 145        | Wild-type C57BL/6 mice and their DCs | Inhibits the maturation and activation of DCs via suppressing the activation of the transcription factor NF-κB. In-vitro studies show that P2Y6 signalling inhibits the production of IL-12 and IL-23 and the polarisation of Th1 and Th17 subsets mediated by DCs. Mice lacking P2Y6 develop more severe experimental autoimmune encephalomyelitis compared with wild-type mice. | [250] |
| 146        | Institute of Cancer Research (ICR) mice, primary microglial cells and neurons from Sprague Dawley rat | Transient middle cerebral artery occlusion (tMCAO) increases P2Y6R expression. P2Y6 receptor-specific inhibitor blocked the phagocytosis of primary microglia under LPS and UDP stimulation. P2Y6 receptor-specific inhibitor down-regulates myosin light-chain kinase (MLCK) required for the cytoskeletal remodelling for the formation of the phagocytic cup. Inhibition of P2Y6R does not reduce the tMCAO-induced upregulation of mRNA levels of IL-1α, IL-1β, IL-6, IL-10, TNF-α and TGF-β. | [251] |
| 147        | P2Y11R | ATP | Neutrophils | Inhibits neutrophil apoptosis | [252] |
| 148        | Neutrophils | Enhances chemotactic response | | |
| 149        | Neutrophils and moDCs | Induces maturation of the granulocytic progenitors and monocyte differentiation | | |
| 150        | moDCs | Inhibits migratory capacity | | |
| 151        | moDCs | Induces IL-8 release | | |
| 152        | Monocytes | Autocrine differentiation towards M1 macrophages, induces IL-1β, IL-6, IL-12 and TNF-α release | | |
| 153        | P2Y12R | ADP>ATP | Monocytes | Increases monocyte adhesion | [253] |
| 154        | Vascular smooth muscle cells | Upregulates MCP-1 (CCL-2) | | |
| 155        | DCs | Increases antigen endocytosis with subsequent enhancement of specific T-cell activation | | |
| 156        | Microglial cells | Induces movement of juxta-vascular microglial processes to close the injured blood-brain barrier (BBB) and microglial activation | | |
| 157        | Microglial cells | Promotes migratory, inflammatory (TNF-α and IL-6 release) responses | | |
| 158        | Microglial cells | ADP treated microglial cells induces CCL3 expression in activated T-cells | | |
| 159        | Murine model of sepsis, caecal ligation and puncture (CLP), Co-cultures of human platelets and T-cells with or without anti-CD3/CD28 | Blockade of the P2Y12 signalling pathway restrains Treg proliferation in vivo and in vitro | | |
| 160        | Male C57BL/6 mice microglial cells | Mediates microglial activation via Ras homolog family member A/Rho-associated protein kinase (RhoA/ROCK) pathways | | |
| 161        | P2Y13R | ADP>ATP | Red blood cells | Inhibits ATP release | [254] |
| 162        | P2Y14R | UDP>UDP-glucose | Neutrophils | | |

Purinergic Signalling (2022) 18:13–59
Coronaviruses can induce inflammation by the activation of the intracellular sensing molecules IRIG1/MDA5 [285, 286]. Reportedly, acute inflammation [69, 70] and infection with SARS-CoV-2 virus induce ATP release [287]. The vesicular exocytosis-mediated release of ATP, connexin-43 (Cx43)-mediated ATP release and pannexin-1 (Panx-1)-mediated ATP release can be triggered by the activation of Toll-like receptor 4 (TLR4) and TLR2 by pathogen-associated molecular patterns (PAMPs) and by the activation of P2X7Rs [180–182, 187]. In turn, activation of the P2X7Rs upregulates the protein expression of TLR 2, TLR3, TLR4 and TLR 5 [288]. Additionally, increased levels of TNF-α during inflammation induce ATP release via Panx-1 [289]. Pro-inflammatory immune response is initiated by the increase in the extracellular ATP, ADP and adenosine levels in the microenvironment of immune cells activating the P2XRs, P2YRs and AdoRs (Fig. 3) [57, 60, 169, 290]. In this case, ATP acts as a danger-associated molecular pattern (DAMP) [291, 292].

Increased ADP levels promote platelet activation and intravascular thrombosis (Table 2, rows 125 and 126). Reportedly, the pathological changes in the lung in patients with COVID-19 pneumonia showed marked microvascular thrombosis [293]. The EC50 for AdoRs is in the range of 26 nM to 1.4 μM [281] and for ATP, UTP or ADP receptors (P2XRs and P2YRs with the exception of the P2X7R) in the range of 0.01 nM to 10 μM [284, 294]. Obviously, the extent of the cellular ATP release is proportional to the severity of the infection. A severe infection with SARS-CoV-2 causes massive extracellular ATP release by the infected cells. This may be confined to the airway mucosa and the lung or may be extensive in multiple organs. Although increased extracellular ATP concentrations upregulate the expression of ecto-nucleotidases [295] these high ATP concentrations exceed the capacity of these ecto-enzymes (CD39, CD73, etc.) to clear the extracellular space from ATP molecules [60] ending in ATP concentrations of >1 mM. This is demonstrated in a report where the authors show that TLR-mediated CD39 internalisation (causing the deactivation of the ecto-enzyme CD39) in mice bone marrow-derived dendritic cells (BMDCs) leads to the accumulation of extracellular ATP to 1.4 mM [296]. The activation of P2X7Rs in ongoing inflammation is the hallmark of severe pro-inflammatory immune response (Table 2, rows 74, 86–119 and Fig. 3) [297] including COVID-19 [298]. If these levels of extracellular ATP are accompanied by the absence of the required fluctuations for other purinergic receptor to recover from desensitisation, all P1 and P2 (other than P2X7) purinergic receptors will become fully desensitised demarcating the initiation of hyperinflammation (Fig. 3 and Table 2, rows 120–123) [279–283].

### Table 2 (continued)

| Row number | Receptor ligand | Immune cell expression or experimental model | Results of receptor signalling | Reference number |
|------------|----------------|-----------------------------------------------|------------------------------|------------------|
| 163        | Sprague-Dawley Rats and human leukaemia monocytic cell line THP-1 cells | Enhances neutrophil chemotactic response through IL-8 dependent manner P2Y14R knockout reduces in-vivo and in-vitro monosodium urate-induced NLRP3 inflammasome activation, increased expressions of NLRP3, ASC, active Caspase-1 and downstream active IL-1β. Therefore, increases resistance to monosodium urate-induced acute gouty arthritis. Decreased AMP reverses the in-vivo and in-vitro protective effect of P2Y14R knockout. | | [271] |

Hyperinflammation is characterised by the activation of P2X7Rs and desensitisation of other P2 receptors and AdoRs

As mentioned above, hyperinflammation starts when fluctuation of the extracellular nucleotides and adenosine no longer occurs and leads to prolonged activation of the P2X7Rs of the immune cells. Prolonged vigorous activation of the P2X7Rs leads to macrophage formation and cytolysis with uncontrolled ATP release [222, 223, 227, 299] (Table 2, rows 120–123) causing hyperinflammation with massive pro-inflammatory immune response, massive pro-inflammatory and anti-inflammatory cytokine release: the cytokine storm (Fig. 3). In the early phase of COVID-19, hyperinflammation may be confined to the site of viral entry (i.e. airway mucosa and conjunctiva) but as viral replication and viral spreading progress, systemic hyperinflammation develops.
The upregulation of the expression of ectonucleotidases also leads to an increase in the concentrations of other nucleotides (i.e. ADP) and adenosine. These high extracellular concentrations of nucleotides and adenosine do not show concentration fluctuations required for the recovery (resensitisation) from desensitisation causing a state of persistent desensitisation of all P2XRs, P2YRs [279, 280, 283, 300, 301] and AdoRs [282] with the exception of P2X7Rs. Consequently, the physiological function in the affected organs and inflammatory response of the immune system are deactivated. This leads to the failure of organ function (i.e. ARDS in the lungs as we reported earlier [61]) and the immune system (immune paralysis) rendering the host susceptible to secondary co-infections(Fig. 3). Sepsis-induced immunosuppression [302, 303] or compensatory anti-inflammatory response syndrome (CARS) in critically ill patients [304] was already raised by researchers in 1996 [305] and is a well-known phenomenon in critically ill patients [302]. Secondary bacterial infections occurred in 34.4% of 274 surviving elderly patients (age over 60 years) with COVID-19 and in 81.7% of 65 deceased patients [15]. In addition, it was found that 76 co-infections with other respiratory pathogens occurred in another cohort of 354 COVID-19 patients (16 of 115 mild cases (13.9%), 33 of 155 severe cases (21.3%) and 27 in 84 critical cases (32%)) [16]. In a meta-analysis involving 118 scientific reports on patients with COVID-19, co-infection with other pathogens at admission was observed in 19% and superinfection with other pathogens during admission in the hospital in 24% [306].

Control of hyperinflammation is annihilated by the downregulation of Tregs through the activation of P2X7R and the desensitisation of adenosine receptors

Tregs are key elements in the control of hyperinflammation [307]. Activation of AdoRA2As promotes the differentiation of naïve T-cells towards regulatory T-cells(Tregs) [112], increases the frequency of Tregs and the expression of CTLA-4 receptor and upregulates ecto-enzymes CD39 and CD73 expression accelerating adenosine generation from extracellular ATP [118] (Table 2, rows 25, 29, 30 and 33). This process is upset in case of desensitisation of AdoRs. In addition, activation of P2X7Rs inhibits the suppressive potential and stability of Tregs, inhibits the clonal expansion of Tregs, promotes Treg death, induces Treg depletion and reduces Treg IL-10 production (Table 2, rows 86–88, 106 and 107). In COVID-19 patients, significant lower Treg frequencies [308–310], lower expression of forkhead box protein P3 (FoxP3), lower expression of transforming growth factor-β (TGF-β) and lower cytokine TGF-β secretion [309] are observed compared to healthy control. Additionally, a reduced proportion of specific SARS-CoV-2-reactive Tregs was reported [311]. The desensitisation of AdoRs and the activation of P2X7Rs may well be the underlying mechanism of the low Tregs frequency in severe and critically ill COVID-19.

P2X7R antagonist restores the reduced Tregs population and Tregs function in hyperinflammation

As stated above, infected cells release ATP into the extracellular space. Obviously, the P2X7R antagonist blocks the activation of the P2X7Rs. Because a significant proportion of the ATP release to the extracellular space is mediated by the P2X7R (Table 2, rows 77–79), P2X7R antagonism combined with the upregulated ATP hydrolysing activity of the ecto-enzymes results in the decrease of the extracellular ATP concentrations. This can potentially abrogate hyperinflammation.
Fig. 3 A schematic presentation of the activation of the purinergic receptors of the immune cells causing a pro-inflammatory response leading to hyperinflammation. Viral infection drives the controlled cellular release of ATP molecules. Increased extracellular nucleotides levels activate P2XRs and P2YRs. Upregulation of the extracellular ATP hydrolysing enzymes as depicted in Fig. 2 results in the increase of extracellular adenosine levels followed by the activation of the adenosine receptors (AdoRs). These processes initiate the physiologic pro-inflammatory response of the immune system. The green line at the bottom of the graph represents the extracellular ATP levels. The ascending part is caused by the ATP release, and the descending part results from the clearance of ATP by the extracellular or membrane-bound ATP hydrolysing enzymes. As the disease progresses and extracellular ATP levels increase above 1 mM, the P2X7R is additionally and effectively activated leading to a severe immune response. Except for P2X7Rs, all these receptors are known to be subject to desensitisation. Desensitisation of a receptor is defined as being unresponsive to activation by the ligand, resulting in (near) zero transmembrane signal transduction. A certain extent of desensitisation occurs after every activation, and this desensitisation requires time to return to the state of complete resensitisation. Increasing intensity and duration of the activation stimuli leads to increasing extent of desensitisation and duration of the recovery time to the state of complete resensitisation (represented by brown boxes with increasing size at the bottom of the graph). Severe viral infection can increase the controlled ATP release beyond the capacity of the extracellular enzymes to clear ATP and adenosine molecules. This causes a sustained high extracellular ATP and adenosine levels preventing the purinergic receptors from recovering from the state of desensitisation. The capacity to clear invading microorganisms diminishes leading to immune paralysis. In addition, prolonged high extracellular levels of ATP and activation of the P2X7R lead to macropore formation and cell death with uncontrolled release of ATP. In turn, this leads to vigorous activation of the P2X7R of the immune cells promoting massive production of cytokines ending in a cytokine storm and hyperinflammation.
and the concomitant immune paralysis. Moreover, P2X7R inhibition promotes the cell-autonomous conversion of CD4+ T cells into Tregs after stimulation of their T-cell receptors (TCRs) [190]. In addition, P2X7R knock-out mice, mimicking the state of complete P2X7R inhibition, show an increase in tissue Tregs, prevent Tregs death and the Tregs produce more IL-10 and TGF-β [191]. Experimental inhibition of P2X7Rs restores the Tregs levels and function (Table 2, rows 86–88, 106 and 107) [190–192]. Inhibition of the P2X7R or P2X7R knock-out can attenuate severe inflammation in abdominal sepsis [312] and in acute lung injury [313, 314]. Apparently, amelioration of hyperinflammation by P2X7R inhibition is based on the increased activation and clonal expansion of the anti-inflammatory Tregs population (Table 2, rows 86–88, 106 and 107).

Some authors proposed that the P2X7R is an ideal candidate to target in COVID-19-associated severe pneumonia [298, 315], and others suggested that hyperactivation of the P2X7R plays a key role in the neuropathology of COVID-19 and that P2X7R antagonism may prevent or treat neurological manifestations of COVID-19 [316].

**Lidocaine is a P2X7R antagonist**

In 2015 it was discovered that lidocaine is a P2X7R antagonist [74], and therefore, lidocaine can potentially reduce the clinical symptoms of hyperinflammation significantly. In experimental sepsis, lidocaine improves organ failure [317–319] and survival [317]. In septic patients, lidocaine reduces neutrophil recruitment by the mitigation of chemokine-induced arrest and transepithelial neutrophil migration [320]. Neutrophil recruitment is an important facilitating process in the pathogenesis of multiple organ failure [320] and hyperinflammation in COVID-19 [321–324]. In patients with skin lesions from atopic dermatitis, lidocaine increases the proportion of Tregs and upregulates the FoxP3 expression [325]. In addition, lidocaine increases the IL-10 levels in mechanically ventilated mice [326] and decreases the TNF-α in BAL, plasma and lung samples in pigs undergoing surgery for lung resection [327].

The P2X7R antagonist dose-response relationship of lidocaine is presented in Fig. 4. The IC$_{50}$ for the inhibition of the P2X7R by lidocaine is about 66.07 μg/ml (0.28 mM) [74] where IC$_{50}$ is defined as the required extracellular concentrations of the receptor antagonist to reach an inhibitory effect of halfway between maximal activation and maximal inhibition (half-maximal inhibitory concentration). The main issue is that the IC$_{50}$ for P2X7R inhibition is much higher than the maximal tolerable plasma concentration for mammals. The maximal tolerable plasma concentration in humans is about 4.7 μg/ml (0.02 mM); this corresponds with an IC$_{10}$ or lower (<10% inhibitory concentration, Fig. 4). Above this lidocaine plasma concentration, adverse effects in increasing severity occur as presented in Table 3 [328, 329]. Thus, systemic lidocaine plasma concentrations of >4.7 μg/ml must be avoided [328, 329]. Caveat: The inhibitory concentrations of lidocaine for P2X7R as presented in Fig 4 are not corrected for the series resistance (in the range of 1–3 MΩ) of the used whole-cell voltage clamp method with two puller microelectrodes [74]. One should bear in mind that after correction for series resistance, the reported inhibitory concentration values including IC$_{50}$ are expected to be higher [330].

In addition to the P2X7R antagonist properties, lidocaine is also known to have several other inhibitory pharmacological targets: the voltage-gated sodium channels (VGSC: Nav1.2 [331], Nav1.3 [332], Nav1.4 [333], Nav1.5 [334], Nav1.7 [335], 1.8 [336] and Nav 1.9 [337]), the Toll-like receptor 2 (TLR 2) [338], TLR4 [339] and the N-methyl-D-aspartate receptor (NMDAR) [339].

VGSCs conduct sodium ions inward and are essential for the transduction of sensory stimuli, the generation of the action potential and the release of neurotransmitters from sensory neuron terminals. Lidocaine inhibition of VGSCs can effectively reduce pain signalling [340]. In addition, VGSCs are present on dendritic cells (maintain chemokine-induced migration) [341], macrophages (regulate phagocytosis and endosomal pH during LPS-mediated endosomal acidification) [342], microglia (regulate phagocytosis cytokine release ad migration) [343], neutrophils (regulate attachment,

| Symptoms of toxic plasma levels of lidocaine | Lidocaine concentration |
|---------------------------------------------|-------------------------|
|                                             | mmol/L | μmol/L | μg/ml |
| No noticeable symptoms                      | <0.020 | <20    | <4.69 |
| Anxiety, dizziness                          | 0.020  | 20     | 4.69  |
| Decreased spinal reflexes                   | 0.042  | 42     | 9.84  |
| Central nervous system (confusion, diplopia, nausea and vomiting, twitching and tremors, seizures with reduced consciousness, respiratory depression, coma, etc.) | 0.080 | 80 | 18.74 |
| Cardiac toxicity (bradycardia, hypotension, cardiovascular depression, cardiac arrest, etc.) | 0.130 | 130 | 30.46 |
| Cytotoxicity                                 | 3.0    | 3000   | 702.9 |
transmigration and chemotaxis) [344] and T-cells (regulate positive selection of CD4+ T cells) [345]. However, until date no relevant data have been published suggesting that other VGSC antagonists (such as HYP-17 [346], A-803467 [347, 348], PF-05089771 [349], phenytoin [350] or tetrodotoxin [351, 352]) may substitute non-steroidal anti-inflammatory drugs let alone may suppress COVID-19-related hyperinflammation [353]. A plausible reason is that during hyperinflammation—including hyperinflammation in COVID-19—the cytokine levels (i.e. IL-1β [354], IL-6, IL-10 [355, 356] and IL-12 [357]) are high. Reportedly, IL-1β [358] and IL-6 [359] inhibit sodium currents of VGSCs, and IL-10 downregulates the expression of VCSCs [360].

Moreover, activation of the P2X7R reduced the density and currents of VGSCs [361]. Therefore, we do not consider the inhibitory properties of lidocaine on VGSCs to be relevant for the treatment of hyperinflammation in COVID-19.

At first glance, the downregulation of the expression of TLR 2 [338] and TLR 4 [318] is an important anti-inflammatory mechanism directly induced by lidocaine. But at a closer look, it appeared that activation of P2X7R by the agonist catholicidin (LL-37) leads to the upregulation of the protein expression of TLR2, TLR3, TLR4 and TLR 5 [288].

This is in line with the MyD88 (myeloid differentiation primary-response protein 88)-dependent activation of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) following the activation of the P2X7R by BzATP [362, 363]. The MyD88-dependent activation of NF-κB is part of the TLR4/NF-κB pathway. Therefore, it is unsurprising that the inhibition of P2X7R by its antagonists (Brilliant Blue G, A-438079 and A-740003) neutralises the above-mentioned P2X7R-induced upregulation of TLRs [362]. Consequently, we argue that lidocaine inhibits inflammation directly by blocking P2X7Rs independent from the neutralisation of the P2X7R-induced upregulated TLR2 and TLR4.

The subpopulation of NMDA receptors present on the peripheral neurons are involved in nociception, and their number increases during inflammation contributing to the sensitisation of peripheral nerves to noxious stimuli. NMDA receptor antagonists have anaesthetic-like effects [364]. In addition, NMDA receptor antagonist can prevent hypoxic neuronal death, IL-1β and TNFα release [365], reduce the activation of inflammatory experimental colitis [366] and suppress glial pro-inflammatory cytokine expression [367]. Moreover, the NMDA receptor antagonist memantine can increase IL-10.
Lidocaine inhibits NMDA receptors [339, 369, 370], and thus the anti-inflammatory properties of lidocaine could be attributed to the inhibition of NMDA receptors. However, it has been reported that the anti-inflammatory effect in T-cell functions (inhibition of antigen-specific T-cell proliferation, T-cell cytotoxicity, T-cell migration towards chemokines and decrease in IL-2 and IFN-γ production by Th1 effector cells in favour of IL-10 and IL-13 production by Th2 cells) of the NMDA receptor antagonist ifenprodil is effective both in wild-type and in NMDA receptor (GluN1) knockout mice [371]. Moreover, it was found that KN-62, an inhibitor of Ca2+/calmodulin-dependent kinase type II and a potent P2X7R antagonist, provides neuroprotection against NMDA-induced cell death [372]. Therefore, we argue that the anti-inflammatory properties of NMDA receptor antagonists (including lidocaine) should be attributed to the inhibition of P2X7Rs rather than to the inhibition of NMDA receptors.

Selective inhibition of the P2X7Rs of the immune cells in the lymphatics avoids exceeding the maximal tolerable plasma concentration of lidocaine and inhibits hyperinflammation in two stages

As mentioned above, the main issue is that the IC_{50} for P2X7R inhibition is much higher than the maximal tolerable plasma concentration for mammals because P2X7Rs are indispensable for normal physiological functions (i.e. in the central nervous system [373], the peripheral nervous system [374] and in the lungs [60, 61]). Therefore, intravenous or oral administration aimed at achieving an effective concentration of lidocaine to inhibit P2X7Rs in serum and in target organs will hamper organ functions and is potentially dangerous.

The lymphatic system is populated exclusively by trafficking immune cells, i.e. naïve T cells, activated T cells, B cells [375], dendritic cells [376], monocytes [377], macrophages [378], neutrophils [379], mast cells [380], eosinophils [381] and basophils [382]. We postulate that selective inhibition of the P2X7Rs of the immune cells of the lymphatic system by lidocaine suppresses hyperinflammation in two stages: stage 1, the selective inhibition of the P2X7Rs of the immune cells residing in the lymph nodes induces clonal expansion of Tregs in these lymph nodes; stage 2, subsequently, these Tregs migrate throughout the body exerting anti-inflammatory activities reducing systemic and (distant) local hyperinflammation (Fig. 1).

The endothelium of the dermal capillaries of the skin belongs to the structural type “continuous endothelium” [383]. Although capillary walls can transport substances from blood to tissue, the absorption of substances from tissue to blood is, if any, extremely low [384]. Apparently, specialised initial lymphatics harbouring one-way valve leaflets capable of absorbing fluid and molecules from the interstitium are localised in the dermis. The absorbed lymph fluid is then propelled forward in the lymphatic network by collecting lymphatic vessels harbouring a rhythmic contracting muscle layer [385]. This system brings fluids and particles into the lymph nodes where numerous immune processes take place. The administration route to target the lymphatic system in a domestic swine model is illustrated by the subcutaneous or intradermal injection of compounds (isosulfan blue, fluorescein and radioactive technetium-99 isotope—Tc^{99m}) and by tracing the extent and the transit time of the distribution of these compounds using whole body scintigraphy in pigs [386]. The absorption of intradermal application of radioactive Tc^{99m} into the lymph nodes is 10 times faster than after deep subcutaneous application and leads to higher concentrations in the lymph nodes related to these lymphatic vessels [386]. Radionuclide lymphoscintigraphy with molecules of different sizes after intradermal and subcutaneous injections showed that smaller particles (i.e. 99mTc-dextran and 99mTc-human serum albumin) migrate more rapidly towards the lymphatic vessels and lymphatic nodes than larger particles (i.e. radiocolloids of larger molecular size) [387]. The rate of clearance of 99mTc-pertechnetate and 99mTc-DTPA after subcutaneous and intradermal administration in the back of the hand in humans is 1 %/min and 8 to 10 %/min, respectively [387].

The additional advantage is that the plasma concentrations of subcutaneously administered lidocaine are much lower than intravenously administered lidocaine. Intravenous administration of 2 mg/kg lidocaine in cats is almost immediately followed by a peak plasma concentration of 3.6 μg/mL [388]. In contrast, the achieved mean peak plasma concentrations after the subcutaneous administration of 30 mg/kg, 20 mg/kg and 10 mg/kg lidocaine are much lower: 1.69, 1.07 and 0.77 μg/mL, respectively [389]. Note that the applied subcutaneous dose [389] is 15, 10 and 5 times higher than the intravenous dose, respectively [388, 389]. Reportedly, the difference in the plasma concentrations after intravenous and subcutaneous administration of lidocaine is caused by the fact that, in contrast to the intravenous administration, a large proportion of the subcutaneously administered lidocaine is drained into the lymphatic system [390–392]. Obviously, this slows down the release of lidocaine to the venous blood. This is confirmed for bevacizumab in mice [390], for trastuzumab in rats [391] and for docetaxel in rats by [392].

As stated above, lymphatic absorption after intradermal administration is much higher than after deep subcutaneous administration [386, 387]. Practically, the intradermal infusion with lidocaine is not an accepted administration route for lidocaine. Therefore, we argue that a subdermal administration of lidocaine using a catheter inserted just beneath the dermis (subdermal infusion, Fig. 5) will result in higher
concentrations of lidocaine in the draining local lymph nodes than a deep subcutaneous or intravenous infusion as depicted in the schematic presentation of the putative distribution of lidocaine in Fig. 6.

In summary, by means of the subdermal administration of lidocaine, we can ensure high concentrations of lidocaine in the local lymph nodes enabling an effective inhibition of the P2X7R of the immune cells while keeping the lidocaine plasma concentrations <4.7 μg/ml (stage 1a and 1b in Fig. 1). The induced Tregs clonal expansion in these local lymph nodes produces Tregs which migrate throughout the body controlling the ongoing hyperinflammation (stage 2 in Fig. 1). Obviously, the subdermal administration route may also apply to other P2X7R antagonists.

Three other P2X7R antagonists have been tested in human: CE-224,535 500 (Pfizer), AZD-9056(Astra-Zeneca) and JNJ-54175446 (Johnson and Johnson). A phase IIa study with CE-224,535 in patients with rheumatoid arthritis not responding adequately to methotrexate was recently reported [393]. Patients in the treatment arm received oral CE-224,535 500 mg twice/day for 12 weeks. Although the safety and tolerability for the compound were acceptable, CE-224,535 was not effective in this group of patients. The results of a phase II study with AZD-9056 in patients with active rheumatoid arthritis despite treatment with methotrexate or sulphasalazine was published. The treatment arm consists of oral AZD-9056 100 or 400 mg/day for 6 months [394]. The AZD-9056 used in this trial is non-lipophilic as indicated by the fact that this compound cannot penetrate the blood-brain barrier [395]. The authors conceded that “AZD-9056 does not have significant efficacy in the treatment of RA, and the P2X7 receptor does not appear to be a therapeutically useful target in RA” [394]. Recently, a randomised, placebo controlled, sequential-group, single-centre ascending dose phase I study was reported. The patients in the 5 treatment arms received 0.5, 2.5, 10, 50, 150 and 300 mg JNJ-54175446, respectively. The authors reported dose-dependent plasma levels, no serious adverse events, ex vivo attenuation of lipopolysaccharide-induced IL-1β release in peripheral blood and confirmation of passive brain penetration of JNJ-54175446 [396]. The approach of the P2X7R antagonist therapy of the above-mentioned authors is quite different from ours: While these authors directly targeted the diseased organs via the gut absorption of the drug, we target the immune cells in local lymph nodes inducing an anti-inflammatory immune response which in turn targets the diseased organs (Fig. 1). This is illustrated by the following study concerning a placebo-controlled, multicentre, double-blind phase IIa study in patients with moderately to severely active Crohn’s disease. The patients in the treatment arm received oral AZD-9056 200 mg/day for 28 days. The authors found a significant improvement in the Crohn’s Disease Activity Index (CDAI) at day 28 [397]. In contrast to the skin, the endothelium of the mucosal capillaries of the mouth and the gastrointestinal tract are fenestrated allowing molecules to pass from the submucosal tissue into the capillaries [383]. Unlike the failure of the treatment of rheumatoid arthritis described above, the successful treatment of gut inflammation here can be attributed to the absorption of non-lipophilic oral AZD-9056 by the mucosa-associated lymphoid tissue (MALT). This is the inductive site of the mucosal immune system consisting of mesenteric lymph nodes, Peyer’s patches and isolated lymph follicles [398, 399]. Although lymphatic transport to the lymph nodes of the non-lipophilic oral AZD-9056 is limited [400, 401], AZD-9056 inhibits P2X7Rs of the local T-cells via absorption by the inductive sites of MALT. This induces a local anti-inflammatory immune response executed by the effector sites of MALT consisting of lamina propria lymphocytes and intraepithelial lymphocytes [398, 399].

Fig. 5 The cannula for subdermal infusion of lidocaine is superficially positioned just below the dermis to promote the uptake of lidocaine by the initial lymphatics of the dermis and to avoid accumulation of lidocaine in the subcutaneous fat tissue.
Real-world subdermal administration of lidocaine in critically ill COVID-19 patients

Six COVID-19-induced ARDS patients

From April 2020 until end of July 2020, two of the authors of this report (AS and TK) have successfully treated six critically ill patients with COVID-19 admitted to the ICU of the Showa University in Tokyo, Japan, with lidocaine. The lidocaine treatment was based on off-label use. The Medical Ethical Committee of the Showa University, School of Medicine, Tokyo, approved the collection, analysis and publication of patients on mechanical ventilation admitted to the ICU (protocol number 3313). The administration was initially intravenously in the two first patients, followed by subdermally (a superficially inserted subcutaneous catheter as illustrated in Fig. 5). In the other four patients, only the subdermal administration was further applied. The concentration of the intravenous lidocaine infusion solution is 20 mg/ml (2%), the route for continuous administration of lidocaine commonly used in daily practice. The dose for intravenous administration is 0.6 mg/kg/h as recommended earlier [402]. Due to the limited efficacy of intravenous lidocaine and based on the hypothesis of selectively targeting the inhibition of the P2X7Rs of the immune cells, the infusion in both patients was converted to subdermal infusion of 1.0 mg/kg/h (dosage as reported by Japanese researchers [403]) after 7 and 6 days, respectively. The time course of clinical parameters of these six patients
is presented in Figures 7, 8, 9, 10. In about 20% of the inserted subdermal cannulae, local subdermal indurations were observed. Whenever this occurred, the infusion cannula was removed and replaced with a new cannula at a different location.

The first patient (Fig. 7), a 63-year-old male (75 kg, 168 cm), developed fever and nausea on March 27, 2020, and 3 days later, he started to cough and became dyspnoeic. After 5 days, the PCR SARS-CoV-2 test was positive, and he was admitted to the hospital with SARS-CoV-2-induced ARDS. Co-morbidities include COPD and smoking 60 cigarettes per day for more than 40 years. About 40 years earlier, the patient suffered from pneumothorax. On day 3, the patient deteriorated and was intubated and mechanically ventilated due to poor blood gases. No haemodynamic instability was observed. The CT scan showed bilateral ground glass opacities compatible with ARDS. On day 5, the patient was transferred to the ICU of the university hospital because of further respiratory deterioration. The patient received favipiravir for 14 days after admission; the patient did not receive dexamethasone. Prone position mechanical ventilation was initiated due to the progression of the respiratory disease with an extremely low PaO2/FiO2 ratio of 63.3 mm Hg (severe ARDS according to the Berlin definition). The Berlin definition of ARDS includes severe PaO2/FiO2 ratio ≤100 mm Hg, moderate PaO2/FiO2 >100 to 200 mm Hg, mild PaO2/FiO2 >200 to 300 mm Hg, no ARDS PaO2/FiO2 >300 mm Hg [404]. The initial ventilator settings include APRV, Phigh27 cm H2O, Thigh 7.0 s, Plow 0 cm H2O and Tlow 0.32 s. The

![Fig. 7](image-url)
PaCO\textsubscript{2} was normal. The echocardiographic estimated pulmonary arterial systolic pressure (PASP) was 80 mm Hg. The Krebs von Lungen 6 (KL-6, a marker for lung fibrosis [405]) plasma level was highly elevated (1299 U/mL; normal value <425 U/mL), CRP was also high (40.4 mg/L; normal value <10 mg/L), and albumin was 2.2 g/dl. The white blood cell count, platelet count and urine production were normal. On day 4, the chest X-ray was not improved. On day 6, the PaO\textsubscript{2}/FiO\textsubscript{2} ratio was slightly increased but remained low at 103 mm Hg, and the chest X-ray showed progression of the ARDS. ECMO was initiated due to exhausted ventilatory strategy. On day 9, the PaO\textsubscript{2}/FiO\textsubscript{2} ratio was slightly increased but remained low at around 21.8 mg/L. The patient was put on muscle relaxants. The patient’s ARDS status had improved from severe to moderate ARDS. From day 10 until day 30, the ferritin levels were well >1000 ng/ml (>100 µg/dl, normal values <300 ng/ml). From day 11 until day 62, D-Dimer was very high reaching 121.9 nM/L day 14. On day 11, no improvement of the blood gases was observed, and it was decided to treat the patient with continuous intravenous lidocaine 0.6 mg/kg/h. The CRP showed a progressive decline from 19 (on day 12) to 12.8 (on day 16) and 7.4 (on day 19), but the PaO\textsubscript{2}/FiO\textsubscript{2} ratio remained poor at around 90 mm Hg (severe ARDS according to the Berlin criteria) and the chest X-ray image on day 15, 3 days after the initiation of the intravenous lidocaine infusion, deteriorated dramatically. The lidocaine plasma concentrations were 3.4 µg/ml on day 13 and 5.4 µg/ml on day 14. On day 19, the continuous intravenous lidocaine infusion was replaced by continuous subdermal lidocaine infusion of 1 mg/kg/h. Although the PaO\textsubscript{2}/FiO\textsubscript{2} ratio remained unchanged on day 20 (1 day after the switch to the continuous subdermal lidocaine), the chest X-ray improved clearly. On day 21, the lidocaine plasma concentration was 2.6 µg/ml, and albumin was 2.5 g/dl. From day 22, the PaO\textsubscript{2}/FiO\textsubscript{2} ratio was gradually improving reaching 151 mm Hg on day 34.

**Fig. 8** Patient 2. A 68-year-old male with COVID-19-induced ARDS admitted to the ICU and required mechanical ventilation. The CT scan showed bilateral ground glass opacities. Co-morbidity: Asthma. After admission the patient’s condition was deteriorating. On day 5, continuous intravenous lidocaine of 0.6 mg/kg/h was initiated, but the clinical condition and the PaO\textsubscript{2}/FiO\textsubscript{2} ratio kept worsening. On day 11, the intravenous lidocaine of 0.6 mg/kg/h was changed to continuous subdermal lidocaine of 1 mg/kg/h. A few days later, this was followed by improvement of the clinical condition and the PaO\textsubscript{2}/FiO\textsubscript{2} ratio. No new ECG changes were observed during treatment with lidocaine. Blood metHb were within the normal range (0.1–0.6%). The patient was discharged from the ICU on day 30 home on day 37. At 3 months after admission, the patient is doing well. The red coloured labels of the legends refer to graph plots using the (left) primary Y-axis, and the black-coloured labels of the legends refer to graph plots using the (right) secondary Y-axis.
(moderate ARDS). The KL-6 on day 22 dropped to 458 U/L (this is only slightly above the normal value of <450 U/L). On day 31, the CRP was low at 1 mg/L, and the lidocaine plasma concentration was 1.2 μg/ml. The muscle relaxants were discontinued. Albumin was 2.3 g/dl. On day 33, the chest X-ray was further improved, and the CRP remained low at 5.5 mg/L. The patient was awake and could communicate with the nurses. On day 38, the lidocaine plasma level was 2.3. On day 43, the PaO₂/FiO₂ ratio was increased to 214 mm Hg. According to the Berlin definition of ARDS [404], the patient’s ARDS status had changed from moderate to mild. Albumin was 2.8 g/dl. On day 50, the patient was weaned from ECMO. On day 51, the patient underwent tracheotomy. Because the clinical condition of the patient was stabilised with a low CRP of 6.3 mg/L on day 55, the continuous subdermal lidocaine was discontinued on day 57. On day 69, he developed pneumothorax requiring pleural drainage. On day 99, he was weaned from the mechanical ventilator and was discharged from the ICU on day 121. No new ECG changes were observed during treatment with lidocaine. Blood methHb were within the normal range (0.1–0.3%). The patient was discharged from the ICU on day 8 and was discharged home on day 20. After 3 months, he is doing well. Right graph: Patient 4. A 51-year-old male with fever, dyspnoea and cough due to COVID-19. The CT scan showed bilateral ground glass opacities. Co-morbidity: none. No new ECG changes were observed during treatment with lidocaine. Blood methHb were within the normal range (0.1–0.3%).
He talked to the treating intensivist without requiring oxygen and had no shortness of breath or tachypnoea.

The second patient (Fig. 8) is a 68-year-old male (75 kg, 164 cm) with SARS-Cov-2-induced ARDS and positive SARS-Cov-2 PCR test admitted to the university hospital. Co-morbidity is asthma. The CT scan showed bilateral ground glass opacities. Haemodynamically the patient was stable. The patient received tocilizumab on day 8 and favipiravir for 14 days; he did not receive dexamethasone. The PaO2/FiO2 ratio improved to around 150 mm Hg.

On day 2, the respiratory conditions deteriorated, and the PaO2/FiO2 ratio was 118 mm Hg (moderate ARDS according to the Berlin ARDS definition [404]). The patient was intubated and required mechanical ventilation. The initial ventilator settings include pressure control, peak inspiratory pressure 28 cm H2O, PEEP 13 cm H2O and respiratory rate 30/min. CRP was 10.6 mg/L, and KL-6 was 486 U/ml. White blood cell count, platelet count and urine production were normal. The ferritin levels remained >1000 ng/ml (100 μg/dl) during the entire ICU stay. Albumin was 2.9 g/dl. In the following 3 days, the PaO2/FiO2 ratio improved to around 150 mm Hg.

Continuous intravenous lidocaine of 0.6 ml/kg/h was started. Albumin was 1.8 g/dl. On day 7, the PaO2/FiO2 ratio increased to 128 mm Hg. CRP dropped to 10.3 mg/mL and the lidocaine plasma concentration was 2.2 μg/ml. From day 3 until discharge from the ICU, D-dimer values were elevated reaching 75 nM/L on day 14. On day 14, the patient was discharged from the ICU. He was discharged from the hospital on day 20, and a t 3 months after admission, he is doing well, playing golf regularly and has returned to work. The red-coloured labels of the legends refer to graph plots using the (left) primary Y-axis, and the black-coloured labels of the legends refer to graph plots using the (right) secondary Y-axis.
changed from moderate to severe according to the Berlin ARDS criteria [404]. Lidocaine treatment was switched from continuous intravenous to continuous subdermal (dosage: 1 mg/kg/h). On day 14, the lidocaine plasma level was 2.7 μg/ml. KL-6 dropped to 549 U/l. On day 17, the clinical condition of the patient was improving, and the PaO2/FiO2 ratio reached 158 mm Hg. The patient was weaned from ECMO. The PaO2/FiO2 ratio improved further reaching 291 mm Hg on day 21, and the patient’s ARDS status has changed from moderate to mild ARDS [404]. On day 22, mechanical ventilation was discontinued, and the patient was extubated. The patient was orientated, and no signs of confusion were detected. CT scan on day 25 showed persistent ground glass opacities in both lungs, some pulmonary effusion (right > left), and no signs of vascular thrombosis. In addition, no signs of deep venous thrombosis were found in the lower extremities. Lidocaine treatment was continued until discharge from the ICU on day 30. No new ECG changes were observed during treatment with lidocaine. Blood metHb were within the normal range (0.1–0.6%). The patient was discharged home on day 37. At 3 months after admission, the patient is doing well.

The third patient (Fig. 9 right), a 51-year-old male (68 kg, 175 cm). Nine days before admission, he developed fever and 2 days before admission dyspnoea and coughing. On the day of admission, the PCR SARS-CoV-2 test was positive. The CT scan showed bilateral ground glass opacities. Co-morbidity is none. The patient was intubated and put on mechanical ventilation on admission. The patient received favipiravir for 14 days; he did not receive dexamethasone. On day 3, he was transferred to the university hospital because of deterioration of pulmonary condition. The initial ventilator settings include pressure control, peak inspiratory pressure 24 cm H2O, PEEP 12 cm H2O and respiratory rate 15/min. The haemodynamic conditions were stable. White blood cell count and platelet count were normal. Albumin was 2.6 g/dl. Continuous subdermal lidocaine was started immediately. On day 4, the PaO2/FiO2 ratio was 214 (moderate ARDS according to the Berlin definition [404]). KL-6 was 177 U/l, and CRP was 17.4 mg/L. On day 5, the PaO2/FiO2 ratio was increased to 382 (the patient’s ARDS status had changed from mild ARDS to no ARDS), and lidocaine plasma concentration was 5.2 μg/ml. CRP was 27.3 mg/L. Lidocaine plasma levels on day 3 and 4 were 3.4 and 4.2 μg/ml, respectively. KL-6 was 163 U/l. The patient was extubated. The patient was orientated, and no signs of confusion were detected. The patient was discharged from the ICU on day 8, and the CRP was 9.3 mg/L. No new ECG changes were observed during treatment with lidocaine. Blood metHb were within the normal range (0.1–0.3%). He was discharged home on day 28. At 3 months, he is doing well and has returned to work.

The fifth patient (Fig. 10 left) is a 58-year-old male (80 kg, 175 cm). Nine days before admission, he developed a sore throat. A day later, he developed fever. Two days before admission, he started coughing and was dyspnoeic. On the day of admission, the PCR SARS-CoV-2 test was positive. Co-morbidity includes fatty liver. The CT scan showed bilateral ground glass opacities. The patient was initially admitted to the hospital ward. The patient received tocilizumab on day 7 and favipiravir for 10 days; dexamethasone was not prescribed. On day 3, the patient deteriorated and had to be intubated and put on mechanical ventilation. On day 4, the patient was transferred to the university hospital due to deterioration of the pulmonary condition. The initial ventilator
settings include pressure control, peak inspiratory pressure 27 cm H2O, PEEP 12 cm H2O and respiratory rate 25/min. PaO2/FiO2 ratio was 188 (moderate ARDS according to the Berlin definition). Haemodynamic parameters were stable, and CRP was 12.9 mg/ml. White blood cell count was increased (14.4.10⁹/L), but platelet count was normal. KL-6 was 330 U/L. Continuous subdermal lidocaine was started at 1 mg/kg/h at arrival at the ICU of the university hospital. Albumin was 2.8 g/dl. On day 5, the PaO2/FiO2 ratio was unchanged, CRP was 10.4 mg/L and the lidocaine plasma level was 4 μg/ml. On day 6, the lidocaine plasma level was 3.2 μg/ml. KL-6 remained stable at 400 U/L. Albumin was 2.3 g/dl. On day 10, the respiratory insufficiency had cleared; although the PaO2/FiO2 ratio remained 184, the CRP dropped to 2.4 mg/L, and KL-6 was 322 U/L. The patient was extubated, and he was orientated; no signs of confusion were detected. On day 14, the patient was discharged from the ICU.

No new ECG changes were observed during treatment with lidocaine. Blood metHb were within the normal range (0.1–0.3%). On day 20, the patient was discharged home and is doing well at 3 months after admission.

The sixth patient (Fig. 10) is a 59-year-old male (65 kg, 175 cm) with fever, dyspnoea and cough due to COVID-19. CT scan showed bilateral ground glass opacities. Co-morbidity includes hypertension on medication. The patient was admitted to the general ward. KL-6 233 U/L, white blood cell count and platelet count were normal. Albumin was 3.6 g/dl. On day 3, there is a deterioration of the respiratory function necessitating a transfer to the ICU and mechanical ventilation. Tocilizumab was given on day 4. The patient received favipiravir for 11 days, and the patient did not receive dexamethasone. The initial ventilator settings include pressure control, peak inspiratory pressure 22 cm H2O, PEEP 10 cm H2O and respiratory rate 20/min. Continuous subdermal lidocaine of 1 mg/kg/h was initiated after admission to the ICU. Haemodynamic parameters were stable, CRP was 6.3 mg/L, and KL-6 was 263 U/L. On day 4, a progressive respiratory failure occurred requiring intubation and mechanical ventilation. PaO2/FiO2 ratio was 218 mm Hg; the haemodynamic parameters remained stable. CRP was 6.3 mg/L, and the white blood count and platelet count were normal. Lidocaine plasma level was 4.6 μg/ml. On day 5, the PaO2/FiO2 ratio dropped further to 164 mm Hg. Lidocaine plasma level was 3.4 μg/ml. Albumin was 3.2 g/dl. On day 9, the clinical condition of the patient improved. The ventilator settings could be decreased, the PaO2/FiO2 ratio remained 207 mm Hg during the weaning period, and CRP was 0.7 mg/L. On day 10, the patient was extubated, he was orientated, and no signs of confusion were detected. On day 13, the patient was discharged from the ICU. No new ECG changes were observed during treatment with lidocaine.

Blood metHb were within the normal range (0.1–0.3%). He was discharged from the hospital on day 20, and at 3 months after admission, he is doing well, played golf regularly and has returned to work.

**Additional 14 patients with COVID-19-induced ARDS**

From July 2020 until beginning of December 2020, 14 additional critically ill patients with COVID-19-induced ARDS requiring mechanical ventilation were treated in the ICU of the Showa University with continuous subdermal lidocaine infusion (1 mg/kg/h) plus intravenous or oral dexamethasone (6 mg/day) as reported earlier [35]. Of these 20 patients, 19 survived, but an 87-year-old female patient died of invasive aspergillosis. No other patient developed secondary co-infections (unpublished data, personal communication by AS and TK).

**Discussion of the clinical cases**

After completing the novel definition of hyperinflammation, we developed a new approach to target the lymphatic system with continuous subdermal administration of lidocaine. This is meant to increase the anti-hyperinflammatory effect of lidocaine while avoiding toxic plasma levels. We described the treatment of six critically ill patients with COVID-19 with lidocaine. Two patients required mechanical ventilation and ECMO, and four patients were treated with mechanical ventilation. As mentioned under the heading “Introduction”, the case fatality rates of patients requiring mechanical ventilation and/or ECMO are alarmingly high [1, 2]. Patient 1 and patient 2 were older than 60 years. Additionally, patient 1 had COPD and had smoked 60 cigarettes per day for more than 40 years. Patient 3 suffered from obesity and diabetes mellitus. These are serious prognostic factors for bad outcome COVID-19 [406, 407]. Patient 1 and patient 2 were initially treated with continuous intravenous lidocaine through a central venous line. In both patients, the pulmonary conditions deteriorated after the initiation of intravenous lidocaine: Patient 1 who was already on ECMO showed progressive pulmonary deterioration on the chest X-rays, and patient 2 deteriorated further necessitating the initiation of ECMO therapy. Remarkably, the pulmonary conditions of both patients improved within 48 h after the switch from intravenous to subdermal continuous lidocaine. The lidocaine plasma levels remained around 5 μg/ml. To our knowledge, these six cases represent the first observations of the promising treatment of critically ill COVID-19 patients with lidocaine targeting P2X7Rs of the immune cells in the lymphatics. All patients recovered completely from their illness. None of the patients showed the feared side effect of cardiac arrhythmia and methaemoglobinaemia during lidocaine therapy. Our findings suggest that continuous subdermal lidocaine infusion at the
rate of 1 mg/kg/h has the potential to mitigate hyperinflammation and ARDS in critically ill COVID-19-patients. Obviously, although all six patients appeared to respond positively to the treatment and no severe adverse effects were observed, no final conclusions can be made on the efficacy of lidocaine in critically ill COVID-19 patients.

Researchers from Lima, Peru, reported the treatment of 28 (three mild, 21 moderate and four severe) COVID-19 patients with 0.5% lidocaine HCL solution with an intravenous dose of 1 mg/kg once a day for 2 days and 2% lidocaine HCL solution with a subcutaneous dose of 1 mg/kg once a day for 2 days [408]. The authors aimed at the improvement of pain, cough, respiratory rate and oxygen saturation. They found improvement in most patients. In severe cases, this treatment did not improve the oxygen saturation. As expected, treatment with a low daily dose of lidocaine once per day for a total treatment duration of 2 days could not adequately inhibit the P2X7R-

Recently, a group of researchers from Strasbourg, France, announced a study entitled: “Impact of intravenous lidocaine on clinical outcomes of patients with ARDS during COVID-19 pandemic (LidoCovid): A structured summary of a study protocol for a randomised controlled trial” (ClinicalTrials.gov Identifier: NCT04609865) [409].

Lately, an extraordinary treatment of COVID-19 ARDS was reported [410]. The authors performed lung transplantations in three critically ill COVID-19 ARDS patients: a 28-year-old female, a 62-year-old male and a 43-year-old male. The first patient underwent lung transplantation after weeks on veno-venous ECMO support with elevated pulmonary arterial pressures and severe secondary Serratia marcescens pneumonia. The second patient underwent lung transplantation after 100 days on veno-venous ECMO support complicated by Pseudomonas aeruginosa pneumonia, haemothorax and empyema, while the third patient after 90 days on the mechanical ventilator. This patient suffered from many complications: asystolic cardiac arrest, heparin-induced thrombocytopenia, a left frontal lobe infarct of the cerebral cortex, Serratia marcescens-mediated pneumonia with bacteraemia, acute kidney injury, a left haemothorax requiring thoracotomy and lung decortication, a right pneumothorax requiring tube thoracostomy, hypernatremia associated with seizures and malnutrition. Before lung transplantation, the patient developed increasing clinical signs of pulmonary fibrosis and severe pulmonary hypertension. The first two patients are reported to have achieved independence in daily life activities several months after lung transplantation. Three months after lung transplantation, the third patient made improvements in the neurocognitive status and muscular strength at an inpatient rehabilitation centre.

Far less drastic is our proposed treatment of hyperinflammation in COVID-19-induced ARDS with lidocaine, an old drug that is readily available to hospitals all over the world at a low cost. In November 1948, Xylocaine was approved by the Food and Drug Administration (FDA) in the USA [411]. Lidocaine is used as a local anaesthetic [411], treatment of chronic neuropathic pain [412] but also for the prophylaxis or treatment of ventricular arrhythmia [328, 329]. Recently, intravenous lidocaine has been administered as general anaesthetic replacing opioids in the perioperative settings [413]. Potentially, lidocaine, as a P2X7R antagonist, can abrogate hyperinflammation, can restore the capacity of the immune system to combat secondary co-infections and can improve the clinical condition in critically ill COVID-19 patients. Despite several in vitro [326, 327, 414, 415], animal studies [319, 416–420] and patient cohorts [408, 421] on the anti-inflammatory properties of lidocaine, completed clinical trials which deliver a proof of concept (i.e. a randomised controlled trial) have not yet been performed. We postulate that because the maximal tolerable plasma concentration of lidocaine is much lower than the required extracellular concentration to effectively inhibit P2X7Rs, intravenous systemic administration of lidocaine simply cannot be used to effectively treat hyperinflammation. This is a plausible reason why 5 years after the discovery of lidocaine as a P2X7R inhibitor (published in 2015) [74] the drug is still not used as an anti-hyperinflammatory treatment in clinical practice.

**Concluding remarks**

As stated in the introduction, therapeutic measures that can immediately attenuate the course of SARS-CoV-2-related lung damage are promptly needed on a global scale. In contrast to the investigational P2X7R-related lung damage are promptly needed on a global scale. In contrast to the investigational P2X7R antagonists described above, continuous subdermal infusion of 2% lidocaine solution to primarily deposit lidocaine into the lymphatics is readily available and can be used in the daily practice immediately and, in principle, even outside the ICU and is very well affordable. Therefore, this therapy deserves to be investigated in larger placebo controlled randomised clinical studies with COVID-19 patients.

**Future development**

However, our experience with subdermal administration of lidocaine in the ICU made clear that this method may not be routinely suitable outside hospital settings. Needless to say that high complexity and high-cost treatments (requiring highly skilled nurses and infusion pump equipment) are inaccessible to low-income COVID-19 patients in developing
countries. Also, as the severity and case fatality rate of COVID-19 increase with age [406], the case fatality rate in elderly patients in nursing homes is strikingly high, and many residents have poor access to medical care [422]. This encouraged us to explore alternative uncomplicated methods of lidocaine administration accessible to everyone, particularly elderly COVID-19 patients and COVID-19 patients in developing countries.

Recently, researchers stated in their article on targeting the P2X7R in COVID-19 that the P2X7R antagonists for human use are available only in oral form and that this might be an inefficient route of drug delivery [298]. We found a solution to this problem. Permeability of the skin and mucous membrane to water, drugs, etc. is said to be dependent on the site of the administration [423, 424]. For example, the permeability constant of the floor of the mouth (sublingual mucosa), lateral border of the tongue and buccal mucosa for tritium-labelled water is 22, 17 and 13 times as high as human skin, respectively [423]. We argue that this also applies to lidocaine. As mentioned above, the endothelium of the mucosal capillaries of the mouth and the gastrointestinal tract belong to the structural type “fenestrated endothelium” allowing molecules to pass from the submucosal tissue into the capillaries [383]. Lidocaine hydrochloride is highly soluble in water (solubility of 680 mg/ml in water) [425] and therefore will mainly be absorbed by the submucosal capillary [426] and the inductive sites of MALT [398, 399]. In contrast, the highly lipophilic lidocaine base (solubility of 4 mg/ml in water, 760 mg/ml in 95% ethanol and 790 mg/ml in chloroform) [425] is preferably absorbed by the local initial lymphatics in the submucosal tissue [426, 427]. In addition, the lymphatic drainage of the floor of the mouth is extensive, involving many lymph nodes [428–431].

We estimate that with a sublingual administration of lipophilic lidocaine base (Fig. 1), we may reach the IC50 of the P2X7Rs in the draining lymph nodes to control systemic hyperinflammation and avoid toxic lidocaine plasma levels (Figs. 4 and 6). Obviously, such solution may also apply to other P2X7R antagonists. We stress that sublingual and buccal administration of lipophilic lidocaine is different from oral administration of lidocaine. Oral administration of lidocaine is aimed at the resorption of the drug in the gastrointestinal tract (Fig. 6).

There are other methods of targeting the immune cells in the lymphatics, i.e. transdermal administration of lipophilic P2X7R antagonist with skin penetration enhancers (i.e. alpha-terpineol [432], ethanol [433] and lipid based nanoformulations [434]), intravenous administration of a P2X7R antagonist using nano-sized drug delivery systems [435], liposomes or polymer micelles [436] and oral administration of a P2X7R antagonist using delivery systems for intestinal lymphatic drug transport such as chylomicrons [437].
References

1. Quah P, Li A, Phua J (2020) Mortality rates of patients with COVID-19 in the intensive care unit: a systematic review of the COVID-19 literature. Crit Care 24(1):285. https://doi.org/10.1186/s13054-020-03000-6

2. Barbaro RP, MacLaren G, Boonstra PS, Ivashyna TJ, Slutsky AS, Fan E, Bartlett RH, Tonna JE, Hyslop R, Fanning JJ, Rycus PT, Hyer SJ, Anders MM, Agerstrand CL, Hryniewicz K, Diaz R, Lorusso R, Combes A, Brodie D (2020) Extracorporeal membrane oxygenation support in COVID-19: an international cohort study of the Extracorporeal Life Support Organization registry. Lancet 396(10257):1071–1078. https://doi.org/10.1016/S0140-6736(20)32008-0

3. Manson JJ, Crooks C, Naja M, Ledlie A, Goulden B, Liddle T, Khan E, Mehta P, Martin-Gutierrez L, Waddington KE, Robinson GA, Ribeiro Santos L, McLaughlin E, Snell A, Adeney C, Schim van der Loeff I, Baker KF, Duncan CJA, Hanrath AT et al (2020) COVID-19-associated hyperinflammation and escalation of patient care: a retrospective longitudinal cohort study. Lancet Rheumatol 2(10):e594–e602. https://doi.org/10.1016/j.lerr.2020.09.016

4. Gustine JN, Jones D (2021) Immunopathology of hyperinflammation in COVID-19. Am J Pathol 191(1):4–17. https://doi.org/10.1016/j.ajpath.2020.08.009

5. Afrin LB, Weinstock LB, Molderings GJ (2020) Covid-19 hyperinflammation and post-Covid-19 illness may be rooted in mast cell activation syndrome. Int J Infect Dis 100:327–332. https://doi.org/10.1016/j.ijid.2020.09.016

6. Faigenbaum DC, June CH (2020) Cytokine Storm. N Engl J Med 383(23):2255–2273. https://doi.org/10.1056/NEJMa2026131

7. Webb BJ, Peltan ID, Jensen P, Hoda D, Hunter B, Silver A, Starr N, Buckel W, Grisel N, Hummel E, Snow G, Morris D, Stenehjem E, Srivastava R, Brown SM (2020) Clinical criteria for COVID-19-associated hyperinflammatory syndrome: a cohort study. Lancet Rheumatol 2(10):e594–e602. https://doi.org/10.1016/j.lerr.2020.09.016

8. Cardone M, Yano M, Rosenberg AS, Puig M (2020) Lessons learned to date on COVID-19 hyperinflammatory syndrome: considerations for interventions to mitigate SARS-CoV-2 viral infection and detrimental hyperinflammation. Front Immunol 11:1311. https://doi.org/10.3389/fimmu.2020.01131

9. Bozzi G, Mangioni D, Minoia F, Aliberti S, Grasselli G, Barbetta L, Castelli V, Palomba E, Alagna L, Lombardi A, Ungaro R, Agostoni C, Baldini M, Blasi F, Cesari M, Costantini G, Francanacci AL, Montano N, Monzani V et al (2021) Anakinra combined with methylprednisolone in patients with severe COVID-19 pneumonia and hyperinflammation: an observational cohort study. J Allergy Clin Immunol 147(2):561–566.e564. https://doi.org/10.1016/j.jaci.2021.11.006

10. Landewé RBM, Ramiro S, Mostard RLM (2021) COVID-19-induced hyperinflammation, immunosuppression, recovery and survival: how causal inference may help draw robust conclusions. RMD Open 7(1). https://doi.org/10.1136/rmdopen-2021-001638

11. Anka AU, Tahir MI, Abubakar SD, Alsabbagh M, Zian Z, Hamedifar H, Sabrevari A, Azizi G (2021) Coronavirus disease 2019 (COVID-19): an overview of the immunopathology, serological diagnosis and management. Scand J Immunol 93(4):e12998. https://doi.org/10.1111/sji.12998

12. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JI (2020) COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. https://doi.org/10.1016/S0140-6736(20)30628-0

13. Freeman TL, Swift TH (2020) Targeting the NLRP3 Inflammasome in severe COVID-19. Front Immunol 11:1518. https://doi.org/10.3389/fimmu.2020.01518

14. De Luca G, Cavalli G, Campochiaro C, Della-Torre E, Angelillo P, Tomelleri A, Boffini N, Tenitore S, Mette F, Farina N, Rovere-Querini P, Ruggeri A, D’Aliberti T, Scarpellini P, Landoni G, De Cobelli F, Paolini JF, Zangrillo A, Tresoldi M et al (2020) GM-CSF blockade with mavrilimumab in severe COVID-19 pneumonia and systemic hyperinflammation: a single-centre, prospective cohort study. Lancet Rheumatol 2(8):e465–e473. https://doi.org/10.1016/s2665-9913(20)30170-3

15. Wang L, He W, Xu Y, Hu D, Bao M, Liu H, Zhou J, Jiang H (2020) Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. J Inf Secur. https://doi.org/10.1016/j.jinf.2020.03.019

16. Lv Z, Cheng S, Li J, Huang J, Feng L, Zhang B, Li Y (2020) Clinical characteristics and co-infections of 354 hospitalized patients with COVID-19 in Wuhan, China: a retrospective cohort study. Microbes Infect 22(4-5):195–199. https://doi.org/10.1016/j.micinf.2020.05.007

17. Kooistra EJ, Waalders NJB, Grondman I, Janssen NA, de Nooijer AH, Netea MG, van de Veerdonk FL, Ewals E, van der Hoeven JG, Kox M, Pickkers P (2020) Anakinra treatment in critically ill COVID-19 patients: a prospective cohort study. Crit Care 24(1):688. https://doi.org/10.1186/s13054-020-03364-w

18. Xu X, Han M, Li T, Sun W, Wang D, Fu B, Zhou Y, Zheng X, Yang Y, Li X, Zhang X, Pan A, Wei H (2020) Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A 117(20):10970–10975. https://doi.org/10.1073/pnas.2005615117

19. Perrone F, Piccirillo MC, Ascierto PA, Salvarani C, Parrella R, Marata AM, Popoli P, Ferraris L, Marrocco-Trischitta MM, Ripamonti D, Binda F, Bonfanti P, Squilace N, Castelli F, Muiñez ML, Lichter M, Calzetti C, Salerno ND, Atipaldi L et al (2020) Tocilizumab for patients with COVID-19 pneumonia. The single-arm TOCIVID-19 prospective trial. J Transl Med 18(1):405. https://doi.org/10.1186/s12977-020-02573-9

20. Luis BM, Miguel MB, Pedro DL, David IP, Itziar A, Ana GH, Enrique JJ, María LV, Noelia TF, Julio César BB, Marta UI, Rodrigo SL, María CB, Andrés LM, Javier MJ, Juan Pablo GM, Gerardo HF, Carolina NF, Jorge BL et al (2021) Benefits of early aggressive immunosuppressive therapy (tocilizumab and methylprednisolone) in COVID-19: single center cohort study of 685 patients. J Transl Autoimmun 4:100086. https://doi.org/10.1016/j.jtauto.2021.100086

21. Yokotake Y, Kikukawa K, Kuriyama N, Kikukawa S, Sundar U, Chavan S, Kor A, Thakur S, Trivedi T, Kumar N, Baveja S, Wadal A, Kolte S, Deolankar A, Pednekar S, Kalekar L, Padiyar R, Londhe C et al (2021) Tocilizumab improves survival in severe COVID-19 pneumonia with persistent hypoxia: a retrospective cohort study with follow-up from Mumbai, India. BMC Infect Dis 21(1):241. https://doi.org/10.1186/s12879-021-05912-3

22. Aomar-Millán IF, Salvatierra J, Torres-Parejo Ú, Faro-Miguez N, Enrique IJ, María LV, Noelia TF, Julio César BB, Marta UI, Rodrigo SL, María CB, Andrés LM, Javier MJ, Juan Pablo GM, Gerardo HF, Carolina NF, Jorge BL et al (2021) Benefits of early aggressive immunosuppressive therapy (tocilizumab and methylprednisolone) in COVID-19: single center cohort study of 685 patients. J Transl Autoimmun 4:100086. https://doi.org/10.1016/j.jtauto.2021.100086

23. Cavalli G, Larcher A, Tomelleri A, Campochiaro C, Della-Torre E, De Luca G, Farina N, Boffini N, Ruggeri A, Poli A, Scarpellini P, Rovere-Querini P, Tresoldi M, Salonia A, Montorsi F, Landoni G, Castagna A, Ciceri F, Zangrillo A, Dagna L (2021) Interleukin-
1 and interleukin-6 inhibition compared with standard management in patients with COVID-19 and hyperinflammation: a cohort study. Lancet Rheumatol 3(4):c253–c261. https://doi.org/10.1016/s2665-9913(21)00012-6

24. Gordon AC, Mouncey PR, Al-Beidh F, Rowan KM, Nichol AD, Arabi YM, Annane D, Beane A, van Bentum-Puijik W, Berry LR, Bhimani Z, Bonten MJM, Bradbury CA, Brunkhorst FM, Buzgau A, Cheng AC, Detry MA, Dufly EJ, Eustcort LJ et al (2021) Interleukin-6 receptor antagonists in critically ill patients with Covid-19. N Engl J Med 384(16):1491–1502. https://doi.org/10.1056/NEJMo2100433

25. The CORIMUNO-19 Collaborative group (2021) Effect of anakinra versus usual care in adults in hospitals with COVID-19 and mild-to-moderate pneumonia (CORIMUNO-ANA-1): a randomised controlled trial. Lancet Respir Med 9(3):295–304. https://doi.org/10.1016/s2213-2600(20)30556-7

26. Hermine O, Mariette X, Tharaux PL, Resche-Rigon M, Porcher R, Hermine O, Mariette X, Tharaux PL, Resche-Rigon M, Porcher R, The CORIMUNO-19 Collaborative group (2021) Effect of tocilizumab vs usual care in hospitalized patients with COVID-19 and moderate or severe pneumonia: a randomized clinical trial. JAMA Intern Med 181(1):32–40. https://doi.org/10.1001/jamainternmed.2020.6820

27. Ramiro S, Mostard RL, Magro-Checa C, van Dongen CMP, Salama C, Han J, Yau L, Reiss WG, Kramer B, Neidhart JD, Hermine O, Mariette X, Tharaux PL, Resche-Rigon M, Porcher R, Ramiro S, Mostard RL, Magro-Checa C, van Dongen CMP, Salama C, Han J, Yau L, Reiss WG, Kramer B, Neidhart JD, The CORIMUNO-19 Collaborative group (2021) Effect of tocilizumab vs usual care in hospitalized patients with COVID-19 and moderate or severe pneumonia: a randomized clinical trial. JAMA Intern Med 181(1):32–40. https://doi.org/10.1001/jamainternmed.2020.6820

28. Rosas JO, Bräu N, Waters M, Go RC, Hunter BD, Bhagani S, Skiest D, Aziz MS, Cooper N, Douglas IS, Savic S, Youngstein T, Del Sorbo L, Cubillo Gracian A, De La Zerda DJ, Ustianowski A, Bao M, Dimonaco S, Graham E et al (2021) Tocilizumab in hospitalized patients with severe Covid-19 pneumonia. N Engl J Med 384(16):1503–1516. https://doi.org/10.1056/NEJMo2028700

29. Salama C, Han J, Yau L, Reiss WG, Kramer B, Neidhart JD, Criner GJ, Kaplan-Lewis E, Baden R, Pandit L, Cameron ML, Garcia-Diaz J, Chávez V, Mekebe-Beuter M, Lima de Menezes F, Shah R, Gonzalez-Lara MF, Assman B, Freedman J, Mohan SV (2021) Tocilizumab in patients hospitalized with COVID-19 pneumonia. N Engl J Med 384(1):20–30. https://doi.org/10.1056/NEJMo2030340

30. Salvarani C, Dolfi G, Massari M, Merlo DF, Cavuto S, Savoldi L, Buzzi P, Boni F, Braglia L, Turró C, Ballerini PF, Sciascia R, Zammarchi L, Para O, Scotton PG, Inojosa WO, Ravagnani V, Salerno ND, Sainaghi PP et al (2021) Effect of tocilizumab standard care on clinical worsening in patients hospitalized with COVID-19 pneumonia: a randomized clinical trial. JAMA Intern Med 181(1):24–31. https://doi.org/10.1001/jama.2020.6615

31. Soin AS, Kumar K, Choudhary NS, Sharma P, Mehta Y, Kataria S, Govil D, Deswal V, Chaudhry D, Singh PK, Gupta A, Agarwal V, Kumar S, Sangle SA, Chawla R, Narreddy S, Pandit R, Mishra L, Foulkes AS, Horick NK, Healy BC, Shah R, Bensaci AM, Phillips N (2021) The coronavirus is here to stay – here’s what that means. Nature 590(7846):382–384. https://doi.org/10.1038/d41586-021-00396-2

32. Stone JH, Frigault MJ, Serling-Boyd NJ, Fernandes AD, Harvey L, Foulkes AS, Horick NK, Nealy BC, Shah R, Bensaci AM, Woolley AE, Nikiforow S, Lin N, Sagar M, Schrager H, Huckins DS, Axerlof M, Pincus MD, Fleisher J et al (2020) Efficacy of tocilizumab in patients hospitalized with Covid-19. N Engl J Med https://doi.org/10.1056/NEJMo2028836

33. Huang E, Jordan SC (2020) Tocilizumab for Covid-19 - the ongoing search for effective therapies. N Engl J Med 383(24):2387–2388. https://doi.org/10.1056/NEJM20232071

34. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, Hohmann E, Chu HY, Luetkemeyer A, Kline S, Lopez de Castilla D, Finberg RW, Dierberg K, Tapson V, Hsieh L, Patterson TF, Paredes R, Sweeney DA, Short WR et al (2020) Remdesivir for the treatment of Covid-19 - final report. N Engl J Med 383(19):1813–1826. https://doi.org/10.1056/NEJMo2027764

35. Horby P, Lim WS, Emerson JR, Matham M, Bell J, Linsell L, Staplin N, Brightling C, Ustianowski A, Elmhæ i E, Prudon B, Green C, Felton T, Chadwick D, Rege K, Fegan C, Chappell LC, Faust SN, Jaki T et al (2021) Dexamethasone in hospitalized patients with Covid-19. N Engl J Med 384(8):693–704. https://doi.org/10.1056/NEJMo2021436

36. Kim PS, Read SW, Fauci AS (2020) Therapy for early COVID-19: a critical need. JAMA 324(21):2149–2150. https://doi.org/10.1001/jama.2020.22813

37. Cain DW, Cidlowski JA (2017) Immune regulation by glucocorticoids. Nat Rev Immunol 17(4):233–247. https://doi.org/10.1038/nri.2017.1

38. Sanders JM, Monogue ML, Jodlowski TZ, Caturelli JB (2020) Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA 323(18):1824–1836. https://doi.org/10.1001/jama.2020.6019

39. World Health Organisation (2021) COVID-19 vaccines: resolving deployment challenges. Bull World Health Organ 99(3):174–175. https://doi.org/10.2471/blt.21.020321

40. Troiano G, Nardi A (2021) Vaccine hesitancy in the era of COVID-19. Public Health 194:245–251. https://doi.org/10.1016/j.puhe.2021.02.025

41. Paris C, Bénézit F, Geslin M, Polard E, Baldeyrou M, Turmel V, Tadié É, Garlantezec R, Tattevin P (2021) COVID-19 vaccine acceptance, hesitancy and refusal among Canadian healthcare workers. Infect Dis Now. https://doi.org/10.1016/j.idnow.2021.04.001

42. Dzieciolowska S, Hamel D, Gaddio S, Dionne M, Gagnon D, Robitaille L, Cook E, Caron I, Talib A, Parkes L, Dubé É, Longtin Y (2021) Covid-19 vaccine acceptance, hesitancy, and refusal among Canadian healthcare workers: a multicenter survey. Am J Infect Control. https://doi.org/10.1016/j.ajic.2021.04.079

43. Phillips N (2021) The coronavirus is here to stay - here's what that means. Nature 590(7846):382–384. https://doi.org/10.1038/d41586-021-00396-2

44. Drury AN, Szent-Györgyi A (1929) The physiological activity of adenine compounds with special reference to their action upon the mammalian heart. J Physiol 68(3):213–237. https://doi.org/10.1113/jphysiol.1929.sp002608

45. Lohmann K (1929) Über die Pyrophosphatfraktion im Muskel. Naturwissenschaften 17(31):624–626. https://doi.org/10.1007/BF01506215

46. Engelhardt WA, Ljubimova MN (1939) Myosine and adenosinetriphosphatase. Nature 144(3650):668–669. https://doi.org/10.1038/1446680

47. Lipmann F (1940) A phosphorylated oxygenation product of pyruvic acid. J Biol Chem 134:463–464

48. Lipmann F (1944) Enzymatic synthesis of acetyl phosphate. J Biol Chem 155:55–70

49. Lipmann F (1944) Enzymatic synthesis of acetyl phosphate. J Biol Chem 155:55–70
50. Lipmann F, Jones ME, Black S, Flynn RM (1953) The mechanism of the ATP-CoA-acetate reaction. J Cell Physiol Suppl 41(Suppl 1):109–112
51. Feldberg W, Hebb C (1948) The stimulating action of phosphate compounds on the perfused superior cervical ganglion of the cat. J Physiol 107(2):210–221
52. Holton P (1959) The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. J Physiol 145(3):494–504
53. Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24(3):509–581
54. Burnstock G (2012) Purinergic signalling: its unpopular beginning. Experientia 51(3):256–225. https://doi.org/10.1007/bf01931108
55. Seminario-Vidal L, Kreda S, Jones L, O’Neal W, Trejo J, Boucher RC, Lazarowski ER (2009) Thrombin promotes release of ATP from lung epithelial cells through coordinated activation of rho and Ca2+-dependent signaling pathways. J Biol Chem 284(1):20638–20648. https://doi.org/10.1074/jbc.M109.004762
56. Guzman-Aranguez A, Perez de Lara MJ, Pintor J (2017) Hyperosmotic stress induces ATP release and changes in P2X7 receptor levels in human corneal and conjunctival epithelial cells. Purinergic Signal 13(2):249–258. https://doi.org/10.1007/s11302-017-9556-5
57. Sandigama R, Padmanabhan M, Wartenberg M, Sauer H (2006) Feed forward cycle of hypotonic stress-induced ATP release, purinergic receptor activation, and growth stimulation of prostate cancer cells. J Biol Chem 281(9):5686–5693. https://doi.org/10.1074/jbc.M510452200
58. Cheung-Flynn J, Alvis BD, Hocking KM, Guth CM, Luo W, McCallister R, Chadalavada K, Polcz M, Komalavilas P, Brophy CM (2019) Normal saline solutions cause endothelial dysfunction through loss of membrane integrity, ATP release, and inflammatory responses mediated by P2X7R/p38 MAPK/MK2 signaling pathways. PLoS One 14(8):e0220893. https://doi.org/10.1371/journal.pone.0220893
59. Bodin P, Burnstock G (1998) Increased release of ATP from endothelial cells during acute inflammation. Inflamm Res 47(8):351–354. https://doi.org/10.1007/s000110050341
60. Okada SF, Ribeiro CM, Sesma JJ, Seminario-Vidal L, Abdullah LH, van Heusden C, Lazarowski ER, Boucher RC (2013) Inflammation promotes arterial epithelial ATP release via calcium-dependent vesicular pathways. Am J Respir Cell Mol Biol 49(3):818–820. https://doi.org/10.1165/rcmb.2012-0493OC
61. Kim KC, Zheng QX, Van-Semmlingen J (1993) Involvement of a signal transduction mechanism in ATP-induced mucin release from cultured airway goblet cells. Am J Respir Cell Mol Biol 8(2):121–125. https://doi.org/10.1165/rcmb.8.2.121
62. Tozzi M, Larsen AT, Lange SC, Giannuzzo A, Andersen MN, Novak I (2018) The P2X7 receptor and pannexin-1 are involved in glucose-induced autocrine regulation in beta-cells. Sci Rep 8(1):8926. https://doi.org/10.1038/s41598-018-27281-9
63. Jacques-Silva MC, Correa-Medina M, Cabrera O, Rodriguez-Diaz R, Makeeva N, Fachado A, Diez J, Berman DM, Kenyon NS, Ricordi C, Pileggi A, Molano RD, Berggren PO, Caicedo A (2010) ATP-gated P2X3 receptors constitute a positive autocrine signal for insulin release in the human pancreatic beta cell. Proc Natl Acad Sci USA 107(14):6465–6470. https://doi.org/10.1073/pnas.0908935107
64. Okura D, Horishita T, Ueno S, Yanagihara N, Sudo Y, Uezono Y, Minami T, Kawasaki T, Sata T (2015) Lidocaine preferentially reduces the function of purinergic P2X7 receptors expressed in Xenoopus oocytes. Anesth Analg 120(3):597–605. https://doi.org/10.1213/ane.0000000000000585
65. Adinolfi E, Callegari MG, Ferrari D, Bolognesi C, Minelli M, Wieckowski MR, Pinton P, Rizzuto R, Di Virgilio F (2005) Basal activation of the P2X7 ATP receptor elevates mitochondrial calcium and increases cellular ATP levels, and promotes serum-independent growth. Mol Biol Cell 16(7):3260–3272. https://doi.org/10.1091/mbc.e04-11-1025
66. Ghazi K, Deng-Pichon U, Warnet JM, Rat P (2012) Hya lurenon fragments improve wound healing on in vitro cutaneous model through P2X7 purinergic basal activation: role of molecular weight. PLoS One 7(11):e48351. https://doi.org/10.1371/journal.pone.0048351
67. Adinolfi E, Callegari MG, Cirillo M, Pinton P, Giorgi C, Cavagna D, Rizzuto R, Di Virgilio F (2009) Expression of the P2X7 receptor increases the Ca2+ content of the endolplasmic reticulum, activates NFATc1, and protects from apoptosis. J Biol Chem 284(15):10120–10128. https://doi.org/10.1074/jbc.M805805200
68. Amoroso F, Falzoni S, Adinolfi E, Ferrari D, Di Virgilio F (2012) The P2X7 receptor is a key modulator of aerobic glycolysis. Cell Death Dis 3:e370. https://doi.org/10.1038/cddis.2012.105
69. Cronstein BN, Daguma L, Nichols D, Hutchison AJ, Williams M (1990) The adenosine/neutrophil paradox resolved: human neutrophils possess both A1 and A2 receptors that promote chemotaxis and inhibit O2 generation, respectively. J Clin Invest 85(4):1150–1157. https://doi.org/10.1172/jci114547
70. Rose FR, Hirschhorn R, Weissmann G, Cronstein BN (1988) Adenosine promotes neutrophil chemotaxis. J Exp Med 167(3):1186–1194
71. Felsch A, Stocker K, Borchard U (1995) Phorbol ester-stimulated adherence of neutrophils to endothelial cells is reduced by adenosine A2 receptor agonists. J Immunol 155(1):333–338
82. Thiel M, Chouker A (1995) Acting via A2 receptors, adenosine inhibits the production of tumor necrosis factor-alpha of endotoxin-stimulated human polymorphonuclear leukocytes. J Lab Clin Med 126(3):275–282
83. Salmon JE, Cronstein BN (1990) Fc gamma receptor-mediated functions in neutrophils are modulated by adenosine receptor occupancy. A1 receptors are stimulatory and A2 receptors are inhibitory. J Immunol 145(7):2235–2240
84. Zalavary S, Stendahl O, Bengtsson T (1994) The role of cyclic AMP, calcium and filamentous actin in adenosine modulation of Fc receptor-mediated phagocytosis in human neutrophils. Biochim Biophys Acta 1222(2):249–256
85. Thiel M, Chambers JD, Chouker A, Fischer S, Zourelidis C, Chambers JD, Chouker A, Fischer S, Zourelidis C, Link AA, Kino T, Worth JA, McGuire JL, Crane ML, Chrousos GP, Wilder RL, Elenkov IJ (2000) Ligand-activation of the adenyl cyclase-cAMP-protein kinase A signaling pathway. J Immunol 155(2):1391–1397. https://doi.org/10.1162/00222120065938
86. Xu X, Zheng S, Xiong Y, Wang X, Qin W, Zhang H, Sun B (2017) Adenosine effectively restores endotoxin-induced inhibition of human neutrophil chemotaxis via A1 receptor-p38 pathway. Inflamm Res 66(4):353–364. https://doi.org/10.1007/s00011-016-1021-3
87. Chen, L., Fredholm, B.B., Jondal, M. (2008) Adenosine, through the A1 receptor, inhibits vesicular MHC class I cross-presentation by resting DC. Mol Immunol 45(8):2247–2254. https://doi.org/10.1016/j.molimm.2007.11.016
88. Schnurr, M., Toy, T., Shin, A., Hartmann, G., Rothenfusser, S., Soellner, J., Davis, I.D., Cebon, J., Maraskovsky, E. (2004) Role of adenosine receptors in regulating chemotaxis and cytokine production of plasmacytoid dendritic cells. Blood 103(4):1391–1397. https://doi.org/10.1182/blood-2003-06-1959
89. Figueiro, F., Muller, L., Funk, S., Jackson, E.K., Battastini, A.M., Bardenheuer, H.J., Arfors, K.E., Peter, K. (1996) Effect of adenosine dA2a receptors on the expression of beta(2) integrins and L-selectin of human monocytes and neutrophils. J Immunol 156(4):436–442
90. Zhang, J.G., Hepburn, L., Cruz, G., Borman, R.A., Clark, K.L. (2005) The role of adenosine A2A and A2B receptors in the regulation of TNF-alpha production by human monocytes. Biochem Pharmacol 69(6):833–889. https://doi.org/10.1016/j.bcp.2004.12.008
91. Thiel, M., Chambers, J.D., Chouker, A., Fischer, S., Zourelidis, C., Bardenheuer, H.J., Arfors, K.E., Peter, K. (1996) Effect of adenosine on the expression of beta(2) integrins and L-selectin of human polymorphonuclear leukocytes in vitro. J Leukoc Biol 59(5):671–682
92. Wollner, A., Wollner, S., Smith, J.B. (1993) Acting via A2 receptors, adenosine inhibits the upregulation of Mac-1 (CD11b/CD18) expression on FMLP-stimulated neutrophils. Am J Respir Cell Mol Biol 9(2):179–185. https://doi.org/10.1165/ajrccm.9.2.179
93. Cadieux, J.S., Leclerc, P., St-Onge, M., Dussault, A.A., Lafleanche, C., Picard, S., Ledent, C., Borget, P., Pouliot, M. (2005) Potentiation of neutrophil cylooxygenase-2 by adenosine: an early anti-inflammatory signal. J Cell Sci 118(Pt 7):1437–1447. https://doi.org/10.1242/jcs.01737
94. Sullivan, G.W., Linden, J., Buser, B.L., Scheld, W.M. (1999) Neutrophil A2A adenosine receptor inhibits inflammation in a rat model of meningitis: synergy with the type IV phosphodiesterase inhibitor, rolipram. J Infect Dis 180(5):1550–1560. https://doi.org/10.1086/315084
95. McColl, S.R., St-Onge, M., Dussault, A.A., Lafleanche, C., Bouchard, L., Boulanger, J., Pouliot, M. (2006) Immunomodulatory effect of the A2A adenosine receptor on the profile of chemokines produced by neutrophils. FASEB J 20(1):187–189. https://doi.org/10.1096/fj.05-4804fje
96. Krump, E., Lemay, G., Borget, P. (1996) Adenosine A2 receptor-induced inhibition of leukotriene B4 synthesis in whole blood ex vivo. Br J Pharmacol 117(8):1639–1644
97. Krumpe, E., Picard, S., Mandini, J., Borget, P. (1997) Suppression of leukotriene B4 biosynthesis by endogenous adenosine in ligand-activated human neutrophils. J Exp Med 186(8):1401–1406
98. Surette, M.E., Krump, E., Picard, S., Borget, P. (1999) Activation of leukotriene synthesis in human neutrophils by exogenous arachidonic acid: inhibition by adenosine A2a receptor agonists and crucial role of autocrine activation by leukotriene B4. Mol Pharmacol 56(5):1055–1062
99. Flamand, N., Boudreaux, S., Picard, S., Austin, M., Surette, M.E., Plante, H., Krump, E., Vallee, M.J., Gilbert, C., Naccache, P., Laviolette, M., Borget, P. (2000) Adenosine, a potent natural suppressor of arachidonic acid release and leukotriene biosynthesis in human neutrophils. Am J Respir Crit Care Med 161(2 Pt 2):S88–S94. https://doi.org/10.1164/ajrccm.161.supplement_1.ltf18
100. Flamand, N., Surette, M.E., Picard, S., Bourgoin, S., Borget, P. (2002) Cyclic AMP-mediated inhibition of 5-lipoxygenase translocation and leukotriene biosynthesis in human neutrophils. Mol Pharmacol 62(2):250–256
101. Sullivan, G.W., Rieger, J.M., Scheld, W.M., Macdonald, T.L., Linden, J. (2003) Cyclic AMP-dependent inhibition of human neutrophil oxidative activity by substituted 2-propynylcyclohexyl adenosine A2A receptor agonists. Br J Pharmacol 135(2):1017–1026. https://doi.org/10.1038/sj.bjp.070389
102. Anderson, R., Visser, S.S., Ramafi, G., Theron, A.J. (2000) Accelerated resequesetation of cytosolic calcium and suppression of the pro-inflammatory activities of human neutrophils by CGS 21680 in vitro. Br J Pharmacol 130(4):717–724. https://doi.org/10.1038/sj.bjp.0703344
103. Richter, J. (1992) Effect of adenosine analogues and cAMP-raising agents on TNF-, GM-CSF-, and chemotactic peptide-induced degranulation in single adherent neutrophils. J Leukoc Biol 51(3):270–275
104. Visser, S.S., Theron, A.J., Ramafi, G., Ker, J.A., Anderson, R. (2000) Apparent involvement of the A2A subtype adenosine receptor in the anti-inflammatory interactions of CGS 21680, cyclopentyladenosine, and IB-MECA with human neutrophils. Biochem Pharmacol 60(7):993–999
105. Walker, B.A., Rocchini, C., Boone, R.H., Ip, S., Jacobson, M.A. (1997) Adenosine A2A receptor activation delays apoptosis in human neutrophils. J Immunol 158(6):2926–2931
106. Liu, Y.W., Yang, T., Zhao, L., Ni, Z., Yang, N., He, F., Dai, S.S. (2016) Activation of adenosine A2A receptor inhibits neutrophil apoptosis in an autophagy-dependent manner in mice with systemic inflammatory response syndrome. Sci Rep 6:33614. https://doi.org/10.1038/srep33614
107. Ryzhov, S., Goldstein, A.E., Matafonov, A., Zeng, D., Biaggioni, I., Feoktistov, I. (2004) Adenosine-activated mast cells induce IgE synthesis by B lymphocytes: an A2B-mediated process involving TH2 cytokines IL-4 and IL-13 with implications for asthma. J Immunol 172(2):773–7733
108. Kreckler, L.M., Gizewski, E., Wan, T.C., Auchampach, J.A. (2009) Adenosine suppresses lipopolysaccharide-induced tumor necrosis factor-alpha production by murine macrophages through a protein kinase A- and exchange protein activated by cAMP-independent signaling pathway. J Pharmacol Exp Ther 331(3):1051–1061. https://doi.org/10.1124/jpet.109.157651
111. Hassanian SM, Dinarvand P, Rezaie AR (2014) Adenosine regulates the proinflammatory signaling function of thrombin in endothelial cells. J Cell Physiol 229(9):1292–1300. https://doi.org/10.1002/jcp.24568

112. Zarek PE, Huang CT, Lutz ER, Kowalski J, Horton MR, Linden J, Drake CG, Powell JD (2008) A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells. Blood 111(1):251–259. https://doi.org/10.1182/blood-2007-03-081646

113. Csoka B, Himer L, Selmeczy Z, Vizi ES, Pacher P, Ledent C, Deitch EA, Spolarics Z, Nemeth ZH, Hasko G (2008) Adenosine A2A receptor activation inhibits T helper 1 and T helper 2 cell development and effector function. FASEB J 22(10):3491–3499. https://doi.org/10.1096/fj.08-107458

114. Alam MS, Kurtz CC, Wilson JM, Burnette BR, Wiznerowicz EB, Erdmann AA, Gao ZG, Jung U, Foley J, Borenstein T, Jacobson Lappas CM, Rieger JM, Linden J (2005) A2A adenosine receptor (AR) activation inhibits pro-inflammatory cytokine production by human CD4+ helper T cells and regulates Helicobacter-induced gastritis and bacterial persistence. Mucosal Immunol 2(3):232–242. https://doi.org/10.1038/mi.2009.4

115. Hasko G, Kuhel DG, Chen JF, Schwarzschild MA, Deitch EA, Mahley JG, Marton A, Szabo C (2000) Adenosine inhibits IL-12 and TNF-[alpha] production via adenosine A2A receptor-dependent and independent mechanisms. FASEB J 14(13):2065–2074. https://doi.org/10.1096/fj.99-5050com

116. Erdmann AA, Gao ZG, Jung U, Foley J, Borenstein T, Jacobson KA, Fowler DH (2005) Activation of Th1 and Th1 cell adenosine A2A receptors directly inhibits IL-2 secretion in vitro and IL-2-driven expansion in vivo. Blood 105(12):4707–4714. https://doi.org/10.1182/blood-2004-04-1407

117. Lappas CM, Rieger JM, Linden J (2005) A2A adenosine receptor induction inhibits IFN-gamma production by human CD4+ T cells. J Immunol 174(2):1073–1080

118. Ohta A, Kini R, Ohta A, Subramanian M, Madsu M, Sitkovsky M (2012) The development and immunosuppressive functions of CD4+ CD25+ FoxP3+ regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway. Front Immunol 3:190. https://doi.org/10.3389/fimmu.2012.00190

119. Huang X, He Y, Chen Y, Wu P, Gui D, Cai H, Chen A, Chen M, Dai C, Yao D, Wang L (2016) Batacin attenuates bleomycin-induced pulmonary fibrosis via adenosine A2A receptor related TGF-beta1-inducedERK1/2 signaling pathway. BMC Pulm Med 16(1):132. https://doi.org/10.1186/s12890-016-0294-1

120. Guillén-Gómez E, Silva J, Serra N, Caballero F, Leal J, Breda A, San Martín R, Pastor-Anglada M, Ballarín JA, Guirado L, Díaz- Outram S, Leibovich SJ (2013) The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Ralpha) signaling. Inflammation 36(4):921–931. https://doi.org/10.1007/s10753-013-9621-3

121. Kosco B, Csoka B, Kokai E, Nemeth ZH, Pacher P, Virág L, Leibovitch SJ, Hasko G (2013) Adenosine augments IL-10-induced STAT3 signaling in M2c macrophages. J Leukoc Biol 94(6):1309–1315. https://doi.org/10.1189/jlb.01113043

122. Hasko G, Pacher P (2012) Regulation of macrophage function by adenosine. Arterioscler Thromb Vasc Biol 32(4):865–869. https://doi.org/10.1161/ATVBAHA.111.226852

123. Koroskenyi K, Kiss B, Szondy Z (2016) Adenosine A2A receptor signaling attenuates LPS-induced pro-inflammatory cytokine formation of mouse macrophages by inducing the expression of DUSP1. Biochim Biophys Acta 1863(7 Pt A):1461–1471. https://doi.org/10.1016/j.bbamer.2016.04.003

124. Majumdur S, Aggarwal BB (2003) Adenosine suppresses activation of nuclear factor-kappaB selectively induced by tumor necrosis factor in different cell types. Oncogene 22(8):1206–1216. https://doi.org/10.1038/sj.onc.1206184

125. Mirakaj V, Thix CA, Laucher S, Mielke C, Morote-Garcia JC, Schmit MA, Henes J, Unertl KE, Kohler D, Rosenberger P (2010)Netrin-1 dampens pulmonary inflammation during acute lung injury. Am J Respir Crit Care Med 181(8):815–824. https://doi.org/10.1164/rccm.201005-0770OC

126. van der Hoeven D, Wan TC, Gizewski ET, Kreckler LM, Maas JE, Van Orman J, Ravid K, Auchampach JA (2011) A role for the low-affinity A2B adenosine receptor in regulating superoxide generation by murine neutrophils. J Pharmacol Exp Ther 338(3):1004–1012. https://doi.org/10.1124/jpet.111.181792

127. Nemeth ZH, Lutz CS, Csoka B, Deitch EA, Leibovitch SJ, Gause WC, Tone M, Pacher P, Vizi ES, Hasko G (2005) Adenosine augments IL-10 production by macrophages through an A2B receptor-mediated posttranscriptional mechanism. J Immunol 175(12):8260–8270

128. Novitskiy SV, Ryzhov S, Zaynagetdinov R, Goldstein AE, Huang Y, Tikhomirov OY, Blackburn MR, Biaggioni I, Carbone DP, Feoktistov I, Dikov MM (2008) Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 112(5):1822–1831. https://doi.org/10.1182/blood-2008-02-136325

129. Wilson JM, Kurtz CC, Black SG, Ross WG, Alam MS, Linden J, Ernst PB (2011) The A2B adenosine receptor promotes Th17 differentiation via stimulation of dendritic cell IL-6. J Immunol 186(12):6764–6772. https://doi.org/10.4049/jimmunol.1100117

130. Liang D, Zuo A, Shao H, Chen M, Kaplan HJ, Sun D (2015) A2B adenosine receptor activation switches differentiation of bone marrow cells to a CD11c(+)-Gr-1(+) dendritic cell subset that promotes the Th17 response. Immunity 43(3):360–373. https://doi.org/10.1016/j.immuni.2015.04.014

131. Karmouty-Quintaña H, Philip K, Acero LF, Chen NY, Weng T, Molina JG, Luo F, Davies J, Le NB, Bunge I, Volcik KA, Le TT, Johnston RA, Xia Y, Eltzschig HK, Blackburn MR (2015) Deletion of ADORA2B from myeloid cells dampens lung fibrosis and pulmonary hypertension. FASEB J 29(1):50–60. https://doi.org/10.1096/fj.14-260182

132. Eckle T, Grenz A, Laucher S, Eltzschig HK (2008) A2B adenosine receptor signaling attenuates acute lung injury by enhancing alveolar fluid clearance in mice. J Clin Invest 118(10):3301–3315

133. Grant MB, Tarnuzzer RW, Caballero S, Ozeck MJ, Davis MI, Spoorri PE, Feoktistov I, Biaggioni I, Shroyck JC, Belardinelli L (1999) Adenosine receptor activation induces vascular endothelial is
reorganization and membrane blebbing in RAW 264.7 macrophages via p38 MAP kinase and Rho. J Leukoc Biol 75(6): 1173–1182. https://doi.org/10.1189/jlb.1203648

197. Gu BJ, Wiley JS (2006) Rapid ATP-induced release of matrix metalloproteinase 9 is mediated by the P2X7 receptor. Blood 107(12):4946–4953. https://doi.org/10.1182/blood-2005-07-2994

198. de Torre-Minguela C, Barbera-Cremades M, Gomez Al, Martin-Sanchez F, Pelegrin P (2016) Macrophage activation and polarization modify P2X7 receptor secretosome influencing the inflammatory process. Sci Rep 6:22586. https://doi.org/10.1038/srep22586

199. Csoka B, Nemeth ZH, Toro G, Idzko M, Zech A, Koscso B, Pupovac A, Foster CM, Sluyter R (2013) Human P2X7 receptor activation modifies P2X7 receptor secretome influencing the inflammatory process. Sci Rep 6:22586. https://doi.org/10.1038/srep22586

200. Wareham KJ, Seward EP (2016) P2X7 receptors induce degranulation and neutrophil infiltration during acute lung injury. Immunol Cell Biol 95(2):178–187. https://doi.org/10.1038/icb.2014.69

201. Huang SW, Walker C, Pennock J, Else K, Muller W, Daniels MJ, Wareham KJ, Seward EP (2016) P2X7 receptors induce degranulation and neutrophil infiltration during acute lung injury. Immunol Cell Biol 95(2):178–187. https://doi.org/10.1038/icb.2014.69

202. Huang SW, Walker C, Pennock J, Else K, Muller W, Daniels MJ, Wareham KJ, Seward EP (2016) P2X7 receptors induce degranulation and neutrophil infiltration during acute lung injury. Immunol Cell Biol 95(2):178–187. https://doi.org/10.1038/icb.2014.69

203. Yip L, Woehrle T, Corriden R, Hirsh M, Chen Y, Inoue Y, Ferrari D, Kambham N, Semenova S, Shatrova A, Vassilieva I, Shamatova M, Pugovkina TV, Kovaleva-Kuznetsova N, Negulayev Y (2020) Adenosine-5'-triphosphate suppresses proliferation and migration capacity of human endometrial stem cells. J Cell Mol Med 24(8):4580–4588. https://doi.org/10.1111/jcmm.15115

204. Wang J, Liu S, Nie Y, Wu B, Wu Q, Song M, Tang M, Xiao L, Xu P, Tan X, Zhang L, Li G, Liang S, Zhang C (2015) Activation of P2X7 receptors decreases the proliferation of murine luteal cells. Reprod Fertil Dev 27(8):1262–1271. https://doi.org/10.1071/rd14381

205. Wang CM, Chang YY, Sun SH (2003) Activation of P2X7 purinoceptor-stimulated TGF-beta 1 mRNA expression involves PKC/ MAPK signalling pathway in a rat brain-derived type-2 astrocyte cell line, RBA-2. Cell Signal 15(12):1129–1137. https://doi.org/10.1016/s0898-6568(03)00112-8

206. Qu LP, Xue H, Yuan P, Zhou L, Yao T, Huang Y, Lu LM (2009) Adenosine 5'-triphosphate stimulates the increase of TGF-beta1 in rat mesangial cells under high-glucose conditions via reactive oxygen species and ERK1/2. Acta Pharmacol Sin 30(12):1601–1606. https://doi.org/10.1038/aps.2009.155

207. Fan X, Ma W, Zhang Y, Zhang L (2020) P2X7 receptor (P2X7R) of microglia mediates neuroinflammation by regulating (NOD)-like receptor protein 3 (NLRP3) inflammasome-dependent inflammation after spinal cord injury. Med Sci Monit 26:e925491. https://doi.org/10.12659/msm.925491

208. Wang W, Hu D, Feng Y, Wu C, Song Y, Liu W, Li A, Wang Y, Chen K, Tian M, Xiao F, Zhang Q, Chen W, Pan P, Wan P, Liu Y, Lan H, Wu K, Wu J (2020) Paxillin mediates ATP-induced activation of P2X7 receptor and NLRP3 inflammasome. BMC Biol 18(1):182. https://doi.org/10.1186/s12915-020-00918-w

209. Zhang C, Qin J, Zhang S, Zhang N, Tan B, Siwko S, Zhang Y, Wang Q, Chen J, Qian M, Liu M, Du B (2020) ADP/P2Y(1) aggravates inflammatory bowel disease through ERK3-mediated NLRP3 inflammasome activation. Mucosal Immunol 13(6):931–945. https://doi.org/10.1038/s41385-020-0307-5

210. Aparicio-Vila C, Baraja-Mazo A, de Torre-Minguela C, Martinez CM, Martinez-Garcia JJ, Martinez-Banaclocha H, Garcia-Palenciano C, Pelegrin P (2020) CD14 release induced by P2X7 receptor restricts inflammation and increases survival during sepsis. Elife 9. https://doi.org/10.7554/eLife.60849

211. Jiang M, Cui BW, Wu YL, Zhang Y, Shang L, Liu J, Yang HX, Qiao CY, Zhan ZY, Ye H, Jin Q, Nan JX, Lian LH (2020) P2X7R orchestrates the progression of murine hepatic fibrosis by making a feedback loop from macrophage to hepatic stellate cells. Toxicol Lett 333:22–32. https://doi.org/10.1016/j.toxlet.2020.07.023

212. Xu SL, Lin Y, Liu W, Zhu XZ, Liu D, Tong ML, Liu LL, Lin LR (2020) The P2X7 receptor mediates NLRP3-dependent IL-1β secretion and promotes phagocytosis in the macrophage response to Treponema pallidum. Int Immunopharmacol 82:106344. https://doi.org/10.1016/j.intimp.2020.106344

213. Kahlenberg JM, Carmona-Rivera C, Smith CK, Kaplan MJ (2013) Neutrophil extracellular trap-associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J Immunol 190(3):1217–1226. https://doi.org/10.4049/jimmunol.1202388

214. Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and neutrophil infiltration during acute lung injury. J Immunol 176(4):2152–2158. https://doi.org/10.4049/jimmunol.176.4.2152

215. Yang W, Hu D, Feng Y, Wu C, Song Y, Liu W, Li A, Wang Y, Chen K, Tian M, Xiao F, Zhang Q, Chen W, Pan P, Wan P, Liu Y, Lan H, Wu K, Wu J (2020) Paxillin mediates ATP-induced activation of P2X7 receptor and NLRP3 inflammasome. BMC Biol 18(1):182. https://doi.org/10.1186/s12915-020-00918-w

216. Zhang C, Qin J, Zhang S, Zhang N, Tan B, Siwko S, Zhang Y, Wang Q, Chen J, Qian M, Liu M, Du B (2020) ADP/P2Y(1) aggravates inflammatory bowel disease through ERK3-mediated NLRP3 inflammasome activation. Mucosal Immunol 13(6):931–945. https://doi.org/10.1038/s41385-020-0307-5

217. Aparicio-Vila C, Baraja-Mazo A, de Torre-Minguela C, Martinez CM, Martinez-Garcia JJ, Martinez-Banaclocha H, Garcia-Palenciano C, Pelegrin P (2020) CD14 release induced by P2X7 receptor restricts inflammation and increases survival during sepsis. Elife 9. https://doi.org/10.7554/eLife.60849

218. Jiang M, Cui BW, Wu YL, Zhang Y, Shang L, Liu J, Yang HX, Qiao CY, Zhan ZY, Ye H, Jin Q, Nan JX, Lian LH (2020) P2X7R orchestrates the progression of murine hepatic fibrosis by making a feedback loop from macrophage to hepatic stellate cells. Toxicol Lett 333:22–32. https://doi.org/10.1016/j.toxlet.2020.07.023

219. Xu SL, Lin Y, Liu W, Zhu XZ, Liu D, Tong ML, Liu LL, Lin LR (2020) The P2X7 receptor mediates NLRP3-dependent IL-1β secretion and promotes phagocytosis in the macrophage response to Treponema pallidum. Int Immunopharmacol 82:106344. https://doi.org/10.1016/j.intimp.2020.106344

220. Kahlenberg JM, Carmona-Rivera C, Smith CK, Kaplan MJ (2013) Neutrophil extracellular trap-associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J Immunol 190(3):1217–1226. https://doi.org/10.4049/jimmunol.1202388
224. Tsukimoto M, Maehata M, Harada H, Ikari A, Takagi K, Degawa M (2006) P2X7 receptor-dependent cell death is modulated during murine T cell maturation and mediated by dual signaling pathways. J Immunol 177(5):2842–2850
225. Aswad F, Dettner G (2006) P2X7 receptor expression levels determine lethal effects of a purine based danger signal in T lymphocytes. Cell Immunol 243(1):58–65. https://doi.org/10.1016/j.cellimm.2006.12.003
226. Scheuplein F, Schwarz N, Adiouch S, Krebs C, Bannas P, Rissiek S, Shen D, Shen X, Schwarz W, Grygorczyk R, Wang L (2020) ADP-mediated upregulation of expression of CD62P on human platelets is critically dependent on co-activation of P2Y1 and P2Y12 receptors. Pharmaceuticals (Basel) 13(12). https://doi.org/10.3390/pharmacy13120420
227. Muller T, Fay S, Vieira RP, Karmouty-Quintana H, Cicko S, Martin SF, Di Virgilio F, Boeynaems JM, Virchow JC, Idzko M (2010) The purinergic receptor P2Y6 receptor mediates chemotaxis of neutrophils and eosinophils in fibrotic lung disease. J Neurochem Res 86(7):1511–1519. https://doi.org/10.1002/jnr.21610
228. Grbic DM, Degagne E, Larrivee JF, Bilodeau MS, Vinette V, Shisheboran S, Uenishi K, Ito K, Nakamura Y, Hisaoka-Nakashima K, Nakata Y (2013) The activation of P2Y6 receptor in cultured spinal microglia induces the production of CCL2 through the MAP kinases-NF-kappaB pathway. Neuropharmacology 75:116–125. https://doi.org/10.1016/j.neuropharm.2013.07.017
229. Xu Y, Hu W, Liu Y, Xu P, Li Z, Wu R, Shi X, Tang Y (2016) P2Y6 receptor-mediated microglial phagocytosis through radiation-induced brain injury. Mol Neurobiol 53(6):3552–3564. https://doi.org/10.1007/s12035-015-9282-3
230. Shin A, Toy T, Rothemfuss S, Robson N, Vorac J, Dauer M, Stuplich M, Endres S, Cebon J, Maraskovsky E, Schnurr M (2008) P2Y6 receptor signaling regulates phenotype and IFN-gamma production in microglia. J Neurosci 38(5):1456–1466. https://doi.org/10.1016/j.jneurosci.2007.12.031
231. Ayata K, Zissel G, Goldmann T, Lungarella G, Ferrari D, Di Virgilio F, Robaye B, Boeynaems JM, Blackburn MR, Idzko M (2010) The purinergic receptor P2Y6 receptor mediates chemo tactic response in human basophils. Allergol Int. https://doi.org/10.3320/allergolint.2010.00701
232. Nakano M, Ito K, Yuno T, Soma N, Aburakawa S, Kasai K, Nakamura T, Takami H (2017) UDP/P2Y6 receptor signaling regulates IgE-dependent degranulation in human basophils. Allergol Int. https://doi.org/10.3320/allergolint.2017.02.014
233. Shin A, Toy T, Rothemfuss S, Robson N, Vorac J, Dauer M, Stuplich M, Endres S, Cebon J, Maraskovsky E, Schnurr M (2008) P2Y6 receptor signaling regulates phenotype and IFN-gamma secretion of human plasmacytoid dendritic cells. Blood 111(6):3062–3069. https://doi.org/10.1182/blood-2007-02-071910
234. Khine AA, Del Sorbo L, Vaschetto R, Voglis S, Tullis E, Slutsky AS, Downey GP, Zhang H (2006) Human neutrophil peptides induce interleukin-8 production through the P2Y6 signaling pathway. Blood 107(7):2936–2942. https://doi.org/10.1182/blood-2005-06-2314
235. Grbic DM, Degagne E, Larivee JF, Bilodeau MS, Vinette V, Arguin G, Stankova J, Hendron FP (2012) P2Y6 receptor contributes to neutrophil recruitment to inflamed intestinal mucosa by increasing CXC chemokine ligand 8 expression in an AP-1-dependent manner in epithelial cells. Inflamm Bowel Dis 18(8):1456–1469. https://doi.org/10.1002/ibd.21931
236. Li R, Tan B, Yan Y, Ma X, Zhang N, Zhang Z, Liu M, Qian M, Du B (2014) Extracellular UDP and P2Y6 function as a danger signal to protect mice from vesicular stomatitis virus infection through an increase in IFN-beta production. J Immunol 193(9):4515–4526. https://doi.org/10.4049/jimmunol.1301930
237. Li Z, He C, Zhang J, Zhang H, Wei H, Wu S, Jiang W (2020) P2Y6 Deficiency enhances dendritic cell-mediated Th1/Th17 differentiation and aggravates experimental autoimmune
encephalomyelitis. J Immunol 205(2):387–397. https://doi.org/10.4049/jimmunol.1900916

252. Wen RX, Shen H, Huang SX, Wang LP, Li ZW, Peng P, Mamattalihan M, Tang YH, Shen FX, Tian HL, Yang YG, Zhang JZ (2020) P2Y6 receptor inhibition aggravates ischemic brain injury by reducing microglial phagocytosis. CNS Neurosci Ther 26(4):416–429. https://doi.org/10.1111/cns.13296

253. Vaughan KR, Stokes L, Prince LR, Marriott HM, Meis S, Kassack MU, Bingle CD, Sabroe I, Surprenant A, Whyte MK (2007) Inhibition of neutrophil apoptosis by ATP is mediated by the P2Y11 receptor. J Immunol 179(12):8544–8553

254. Alkayed F, Kashimata M, Koyama N, Hayashi T, Tamura Y, Azuma Y (2012) P2Y11 purinoceptor mediates the ATP-enhanced chemotactic response of rat neutrophils. J Pharmacol Sci 120(4):288–295

255. van der Weyden L, Coniglade AV, Morris MB (2000) Signal transduction and white cell maturation via extracellular ATP and the P2Y11 receptor. ImmunoCell Biol 78(4):369–374. https://doi.org/10.1046/j.1440-1711.2000.00091.x

256. Wilkin F, Duhant X, Bruyns C, Suarez-Huerta N, Boeynaems JM, Meis S, Hamacher A, Hongwiset D, Marzian C, Wiese M, Lou N, Takano T, Pei Y, Xavier AL, Goldman SA, Nedergaard M, Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan tozaki-Saitoh H, Miyata H, Yamashita T, Matsushita K, Tsuda M, Inoue K (2017) P2Y12 receptors in primary microglia activate nuclear factor of activated T-cell signaling to induce C-C chemokine 3 expression. J Neurochem 141(1):100–110. https://doi.org/10.1111/jnc.13968

257. Albayati S, Vemulapalli H, Tsynganov AY, Liverani E (2020) P2Y(12) antagonism results in altered interactions between platelets and regulatory T cells during sepsis. J Leukoc Biol. https://doi.org/10.1002/jlb.3a0220-097r

258. Jing F, Zhang Y, Long T, He W, Qin G, Zhang D, Chen L, Zhou J (2019) P2Y12 receptor mediates microglial activation via RhoA/ROCK pathway in the trigeminal nucleus caudalis in a mouse model of chronic migraine. J Neuroinflammation 16(1):217. https://doi.org/10.1186/s12974-019-1603-4

259. Wang L, Olivecrona G, Gotberg M, Olsson ML, Winzell MS, Erlinge D (2005) ADP acting on P2Y13 receptors is a negative feedback pathway for ATP release from human red blood cells. Circ Res 96(2):189–196. https://doi.org/10.1161/01.res.0000153670.07559.e4

260. Arase T, Uchida H, Kajitani T, Ono M, Tamaki K, Oda H, Nishikawa S, Kagami M, Nagashima T, Masuda H, Asada H, Yoshimura Y, Manuyama T (2009) The UDP-glucose receptor P2RY14 triggers innate mucosal immunity in the female reproductive tract by inducing IL-8. J Immunol 182(11):7074–7084. https://doi.org/10.4049/jimmunol.0900001

261. Barrett MO, Sesma JL, Ball CB, Jayasekara PS, Jacobson KA, Lazarowski ER, Harden TK (2013) A selective high-affinity antagonist of the P2Y14 receptor inhibits UDP-glucose-stimulated chemotaxis of human neutrophils. Mol Pharmacol 84(1):41–49. https://doi.org/10.1124/mol.112.095654

262. Li H, Jiang W, Ye S, Zhou M, Liu C, Yang X, Hao K, Hu Q (2020) P2Y(14) receptor has a critical role in acute gouty arthritis by regulating pyroptosis of macrophages. Cell Death Dis 11(5):394. https://doi.org/10.1038/s41419-020-2609-7

263. Kaunitz JD, Yamaguchi DT (2008) TNAP, Trp, ecto-purinergic signaling, and bone remodeling. J Cell Biochem 105(3):655–662. https://doi.org/10.1002/jcb.21885

264. Burnstock G, Amett TR, Orriss IR (2013) Purinergic signaling in the musculoskeletal system. Purinergic Signal 9(4):541–572. https://doi.org/10.1007/s12013-012-9381-4

265. Sebastián-Serrano Á, de Diego-García L, Martínez-Frailes C, Ávila J, Zimmermann H, Millán JL, Miras-Portugal MT, Díaz-Hernández M (2015) Tissue-nonspecific alkaline phosphatase regulates purinergic transmission in the central nervous system during development and disease. Comput Struct Biotechnol J 13:93–100. https://doi.org/10.1016/j.csbj.2014.12.004

266. Zimmermann H (2021) History of ectonucleotidases and their role in purinergic signaling. Biochem Pharmacol 187:114322. https://doi.org/10.1016/j.bcp.2020.114322

267. Jacobson KA, Muller CE (2016) Medicinal chemistry of adenosine. P2Y and P2X receptors. Neuropharmacology. 104:31–49. https://doi.org/10.1016/j.neuropharm.2015.12.001

268. North RA (2016) P2X receptors. Philos Trans R Soc Lond Ser B Biol Sci 371(1700). https://doi.org/10.1098/rstb.2015.0427

269. Coddou C, Stojilkovic SS, Huidobro-Toro JP (2011) AllostERIC modulation of ATP-gated P2X receptor channels. Rev Neurosci 22(3):335–354. https://doi.org/10.1515/revneuro.2011.014

270. Coddou C, Yan Z, Ohsil T, Huidobro-Toro JP, Stojilkovic SS (2011) Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev 63(3):641–683. https://doi.org/10.1124.pr.110.003129

271. Sanabria P, Ross E, Ramirez E, Colon K, Hernandez M, Tremblay M, Inoue K (2017) P2Y12 receptors in primary microglia activate nuclear factor of activated T-cell signaling to induce C-C chemokine 3 expression. J Neurochem 141(1):100–110. https://doi.org/10.1111/jnc.13968
cells all mediate the phosphorylation of extracellular-regulated kinase 1/2. Mol Pharmacol 58(3):477–482.

282. Klaasse EC, Ijzerman AP, de Grijp WJ, Beukers MW (2008) Internalization and desensitization of adenosine receptors. Purinergic Signal 4(1):21–37. https://doi.org/10.1007/s11302-007-9086-7

283. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82(4):1013–1067. https://doi.org/10.1152/physrev.00015.2002

284. Klaasse EC, Ijzerman AP, de Grip WJ, Beukers MW (2008) Regulation of pannexin 1 channels in COVID-19 pathology in COVID-19 pneumonia. Lancet Rheumatol 2(7):e437–e445. https://doi.org/10.1016/s2665-9913(20)30121-1

285. Jacobson KA, Delicado EG, Gachet C, Kennedy C, von Kügelgen A, Arentzen G, Hidalgo B, Aota M, Santos MC, Fajardo V, et al. (2020) The P2X7 receptor in inflammatory diseases: angel or demon? Front Pharmacol. https://doi.org/10.3389/fphar.2018.00052

286. Flores RV, Hernandez-Perez MG, Aquino E, Garrad RC, Weissman GA, Gonzalez FA (2005) Agonist-induced phosphorylation and desensitization of the P2Y2 receptor. Mol Cell Biochem 280(1-2):35–45. https://doi.org/10.1007/s11010-005-8050-5

287. Savio LEB, da Andrade MP, da Silva CG, Coutinho-Silva R (2018) The P2X7 receptor in inflammatory diseases: angel or demon? Front Pharmacol. https://doi.org/10.3389/fphar.2018.00052

288. Illés P, Müller CE, Jacobson KA, Gutter T, Nicae A, Fountain SJ, Kennedy C, Schmalzing G, Jarvis MF, Stojilkovic SS, King BF, Di Virgilio F (2021) Update of P2X2 receptor properties and their pharmacology: IUPHAR review 30. Br J Pharmacol. https://doi.org/10.1111/bph.15138

289. Lohman AW, Leskov IL, Butcher JT, Johnstone SR, Stokes TA, North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82(4):1013–1067. https://doi.org/10.1152/physrev.00015.2002

290. Idzko M, Ferrari D, Eltzschig HK (2014) Nucleotide signalling. Mol Pharmacol 58(3):477–482.

291. Venereau E, Ceriotti C, Bianchi ME (2015) DAMPs from cell death to new life. Front Immunol 6:422. https://doi.org/10.3389/fimmu.2015.00422

292. McGonagle D, O’Donnell JS, Sharif K, Emery P, Bridgewood C, Venereau E, Ceriotti C, Bianchi ME (2015) DAMPs from cell death to new life. Front Immunol 6:422. https://doi.org/10.3389/fimmu.2015.00422

293. Suran AL, Philpott DJ, Whalen D, McMichael AJ, Eltzschig HK (2016) Pannexin 1 channels in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis 16(3):260–268. https://doi.org/10.1016/s1473-3099(15)00121-1

294. Sromek SM, Harden TK (1998) Agonist-induced internalization of the P2Y2 receptor. Mol Pharmacol 54(3):485–494

295. Roth-Cross JK, Bender SJ, Weiss SR (2008) Murine coronavirus mouse hepatitis virus is recognized by MD4A and induces type I interferon in brain macrophages/microglia. J Virol 82(20):9829–9838. https://doi.org/10.1128/jvi.01199-08

296. Illes P, Müller CE, Jacobson KA, Gutter T, Nicae A, Fountain SJ, Kennedy C, Schmalzing G, Jarvis MF, Stojilkovic SS, King BF, Di Virgilio F (2021) Update of P2X2 receptor properties and their pharmacology: IUPHAR review 30. Br J Pharmacol. https://doi.org/10.1111/bph.15138

297.-Colin F, Miao E, Wang F, Hou H, Luo Y, Tang G, Wu S, Huang M, Liu W, Zhu Y, Wang S, Li J (2017) Systemic blockade of P2X7 receptor protects.
against sepsis-induced intestinal barrier disruption. Sci Rep 7(1): 4364. https://doi.org/10.1038/s41598-017-04231-5

313. Wang S, Zhao J, Wang H, Liang Y, Yang N, Huang Y (2015) Blockage of P2X7 attenuates acute lung injury in mice by inhibiting NLRP3 inflammasome. Int Immunopharmacol 27(1): 38–45. https://doi.org/10.1016/j.intimp.2015.04.035

314. Galam L, Rajan A, Faila A, Soundararajan R, Lockey RF, Kolliputi N (2016) Deletion of P2X7 attenuates hyperoxia-induced acute lung injury via inflammasome suppression. Am J Phys Lung Cell Mol Phys 310(6):L572–L581. https://doi.org/10.1152/ajplung.00417.2015

315. Pacheco PAF, Faria RX (2021) The potential involvement of P2X7 receptor in COVID-19 pathogenesis: a new therapeutic target? Scand J Immunol 93(2):e12960. https://doi.org/10.1111/sji.12960

316. Ribeiro DE, Oliveira-Giacomelli À, Glaser T, Amaud-Sampaio VF, Andreyew R, Dieckmann L, Baranova J, Lameu C, Ratajczak MZ, Ulrich H (2021) Hyperactivation of P2X7 receptors as a culprit of COVID-19 neuropathology. Mol Psychiatry 26(4):1044–1059. https://doi.org/10.1038/s41380-020-00965-3

317. Wang HL, Xing YQ, Xu YX, Rong F, Lei WF, Zhang WH (2013) High mobility group box 1 expression and NF-κB activation. Inflamm Med 2013:570370. https://doi.org/10.1155/2013/570370

318. Li H, Li C, Zhang H, Zhang L, Cheng R, Li M, Guo Y, Zhang Z, Lu Z, Zhuang Y, Yan M, Gu Y, Feng X, Liang J, Yu X, Wang H, Yao Z (2016) Effects of lidocaine on regulatory T cells in atopic dermatitis. J Allergy Clin Immunol 137(2):e613–e617.e615. https://doi.org/10.1016/j.jaci.2015.07.039

319. Van Der Wal S, Vaneker M, Steegers M, Van Berkum B, Kox M, Van Der Laak J, Van Der Hoeven J, Vissers K, Scheffner GJ (2015) Lidocaine increases the anti-inflammatory cytokine IL-10 following mechanical ventilation in healthy mice. Acta Anaesthesiol Scand 59(1):47–55. https://doi.org/10.1111/aas.12417

320. Garutti I, Rancan L, Simón C, Cusati G, Sanchez-Pedrosa G, Moraga F, Olmedilla L, Lopez-Gil MT, Vara E (2014) Intravenous lidocaine decreases tumor necrosis factor alpha expression both locally and systemically in pigs undergoing lung resection surgery. Anesth Analg 119(4):815–828. https://doi.org/10.1213/ane.0000000000000360

321. Montnach J, Lorenzini M, Lesage A, Simon I, Nicolas S, Moreau E, Marionneau C, Barò I, De Waard M, Loussouarn G (2021) Computer modeling of whole-cell voltage-clamp analyses to delineate guidelines for good practice of manual and automated patch-clamp. Sci Rep 11(1):3282. https://doi.org/10.1038/s41598-021-82077-8

322. Wang Y, Jones PJ, Batts TW, Landry V, Patel MK, Brown ML (2009) Lidocaine decreases neutrophil extracellular traps as a combined phenyltoin-lidocaine pharmacophore. Bioorg Med Chem 17(19):7064–7072. https://doi.org/10.1016/j.bmc.2008.10.031

323. Cheng KJ, Lai CS, Wang FY, Wang HC, Chang LL, Ho ST, Tsai HP, Kwan AL (2011) Intrathecal lidocaine pretreatment ameliorates immediate neurogenic pain by modulating Nav1.3 expression and decreasing spinal microglial activation. BMC Neurol 11:71. https://doi.org/10.1186/1471-2377-11-71

324. Maddox TE, Vennes J, Truex A, Bongardt EJ, Wrba A, D'Alessio JA (2021) Neutrophils and the nav1.8 blocker a803467 in diabetic rats. J Am Assoc Lab Anim Sci 51(5):579–585

325. Van Der Wal S, Vaneker M, Steegers M, Van Berkum B, Kox M, Van Der Laak J, Van Der Hoeven J, Vissers K, Scheffner GJ (2015) Effects of lidocaine on regulatory T cells in atopic dermatitis. J Allergy Clin Immunol 137(2):e613–e617.e615. https://doi.org/10.1016/j.jaci.2015.07.039

326. Bennett DL, Clark AJ, Huang J, Waxman SG, Dib-Hajj SD (2019) The role of voltage-gated sodium channels in pain signaling.
Kis-Toth K, Hajdu P, Bacsikai I, Szilagyi O, Papp F, Szanto A, Posta E, Gogolak P, Panyi G, Rajnavolyei E (2011) Voltage-gated sodium channel Nav1.7 maintains the membrane potential and regulates the activation and chemokine-induced migration of a monocyte-derived dendritic cell subset. J Immunol 187(3):1273–1280. https://doi.org/10.4049/jimmunol.1003345

Carrithers LM, Hulseberg P, Sandor M, Carrithers MD (2011) The human macrophage sodium channel Nav1.5 regulates mycobacteria processing through organellar polarization and localized calcium oscillations. FEMS Immunol Med Microbiol 63(3):319–327. https://doi.org/10.1111/j.1574-695X.2011.00853.x

Black JA, Waxman SG (2012) Sodium channels and microglial function. Exp Neurol 234(2):302–315. https://doi.org/10.1016/j.expneurol.2011.09.030

Poffens M, Bühne N, Herzog C, Thorenz A, Chen R, Güler F, Carrithers LM, Hulseberg P, Sandor M, Carrithers MD (2011) The human macrophage sodium channel Nav1.5 regulates mycobacteria processing through organellar polarization and localized calcium oscillations. FEMS Immunol Med Microbiol 63(3):319–327. https://doi.org/10.1111/j.1574-695X.2011.00853.x

Lee JY, Kam YL, Oh J, Kim DH, Choi JS, Choi HY, Han S, Youn I, Cho HP, Yune TY (2017) HYP-17, a novel voltage-gated sodium channel blocker, reduces inflammatory pain in the rat. Proc Natl Acad Sci U S A 104(20):8520–8525. https://doi.org/10.1073/pnas.0611364104

Jarvis MF, Honore P, Shieh CC, Chapman M, Joshi S, Zhang XF, Lee JY, Kam YL, Oh J, Kim DH, Choi JS, Choi HY, Han S, Youn I, Cho HP, Yune TY (2017) HYP-17, a novel voltage-gated sodium channel blocker, reduces inflammatory pain in rats. Pharmacol Biochem Behav 153:116–120. https://doi.org/10.1016/j.pbb.2016.12.013

Kis-Toth K, Hajdu P, Móricz Z, Bacsikai I, Szilagyi O, Papp F, Szanto A, Posta E, Gogolak P, Panyi G, Rajnavolyei E (2011) Voltage-gated sodium channel Nav1.7 maintains the membrane potential and regulates the activation and chemokine-induced migration of a monocyte-derived dendritic cell subset. J Immunol 187(3):1273–1280. https://doi.org/10.4049/jimmunol.1003345

Scanio M, Kort M, Jarvis MF (2009) Additive antinociceptive effects of the selective Nav1.8 blocker A-803467 and selective Na(V)1.7 antagonists in vivo. Anesthesiology 110(9):1801–1809. https://doi.org/10.1097/ALN.0b013e3181b32f26

Del Puerto A, Fronzaroli-Moliniere L, Perez-Alvarez MJ, Giraud P, Carlier E, Wendosell F, Debanne D, Garrido JJ (2015) ATP-P2X7 receptor modulates axon initial segment composition and function in physiological conditions and brain injury. Cereb Cortex 25(8):2282–2294. https://doi.org/10.1093/cercor/bhu035

Belloël H, Dahan N, Plissonnier P, Gomtsyan A, Schmidt R, Gomtsyan A, Li X, Chen W, Sheng J, Cao D, Wang W (2014) Interleukin-10 inhibits voltage-gated sodium current in a time- and dose-dependent manner in cortical neurons. Neurochem Res 39(6):1116–1123. https://doi.org/10.1007/s11064-014-1456-8

Li X, Chen W, Sheng J, Cao D, Wang W (2014) Interleukin-10 inhibits voltage-gated sodium channel activity of cultured rat spinal cord neurons. Acta Neuroschiatr 26(3):170–177. https://doi.org/10.1017/isn.2013.49

Shen KF, Zhu HQ, Wei XH, Wang J, Li YY, Pang RP, Liu XG (2013) Interleukin-10 down-regulates voltage gated sodium channels in rat dorsal root ganglion neurons. Exp Neurol 247:466–475. https://doi.org/10.1016/j.expneurol.2013.01.018

Park J, Kim SH, Jeon K, Lee J, Kim H, Lee J, Kim J, Kim H, Park Y, Lee J, Lee J (2010) Multiple subunits of the NMDA receptor are differentially expressed in rat brain. J Neurochem 113(1):179–187. https://doi.org/10.1111/j.1471-4159.2009.06047.x

Sun D, Li H, Lu XX, Xiao H, Ren J, Zhang FR, Liu ZS (2020) Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: a single center's observational study. World J Pediatr. https://doi.org/10.1007/s12519-020-00354-4

Zhou C, Qi C, Zhao J, Wang F, Zhang W, Li C, Jing J, Kang X, Chai Z (2011) Interleukin-1β inhibits voltage-gated sodium currents in a time- and dose-dependent manner in cortical neurons. Neurochem Res 36(6):1116–1123. https://doi.org/10.1007/s11064-011-0456-8

Li X, Chen W, Sheng J, Cao D, Wang W (2014) Interleukin-10 inhibits voltage-gated sodium channel activity of cultured rat spinal cord neurons. Acta Neuroschiatr 26(3):170–177. https://doi.org/10.1017/isn.2013.49

Del Puerto A, Fronzaroli-Moliniere L, Perez-Alvarez MJ, Giraud P, Carlier E, Wendosell F, Debanne D, Garrido JJ (2015) ATP-P2X7 receptor modulates axon initial segment composition and function in physiological conditions and brain injury. Cereb Cortex 25(8):2282–2294. https://doi.org/10.1093/cercor/bhu035

Huang C, Chi XS, Li R, Hu X, Xu HX, Li JM, Zhou D (2017) Inhibition of P2X7 receptor ameliorates nuclear factor-kappa B mediated neuroinflammation induced by status epilepticus in rat hippocampus. J Mol Neurosci 63(2):173–184. https://doi.org/10.1007/s12031-017-0968-z

Liu Y, Xiao Y, Li Z (2011) P2X7 receptor positively regulates MDy88-dependent NF-κB activation. Cytokeine 55(2):229–236. https://doi.org/10.1016/j.cyto.2011.05.003

Petrenko AB, Yamakuni T, Baba H, Shimooji K (2003) The role of N-methyl-D-aspartate (NMDA) receptors in pain: a review. Anesth Analg 97(4):1108–1116. https://doi.org/10.1213/01.ane.0000081061.12235.55

Di Loreto S, Balestrino M, Pellegrini P, Berghella AM, Del Beato T, Di Marco F, Adorno D (1997) Blockade of N-methyl-D-aspartate receptor prevents hypoxic neuronal death and cytokine release. Neuroimmunomodulation 4(4):195–200. https://doi.org/10.1159/000097338

Ércecs D, Varga G, Fazekas B, Kovács T, Tiszlavicz L, Fülöp F, Vécsei L, Boros M, Kaszaki J (2012) N-methyl-D-aspartate receptor antagonist therapy suppresses colon motility

Springer
and inflammatory activation six days after the onset of experimental colitis in rats. Eur J Pharmacol 691(1-3):225–234. https://doi.org/10.1016/j.ejphar.2012.06.044

367. Liu CH, Cheng CH, Lin SL, Yeh CC, Wu CT, Tai YH, Wong CS (2011) N-methyl-D-aspartate receptor antagonist MK-801 suppresses glial pro-inflammatory cytokine expression in morphine-tolerant rats. Pharmacol Biochem Behav 99(3):371–380. https://doi.org/10.1016/j.pbb.2011.05.016

368. Simma N, Bose T, Kahlflüß S, Mankiewicz J, Lowinins T, Lühder F, Schüler T, Schraven B, Heine M, Bommarthrd U (2014) NMDA-receptor antagonists block B-cell function but foster IL-10 production in BCR/CD40-activated B cells. Cell Commun Signal 12:75. https://doi.org/10.1186/s12964-014-0075-5

369. Sugimoto M, Uchida I, Mashimo T (2003) Local anaesthetics.

370. Hajimohammadreza I, Probert AW, Coughenour LL, Borosky –

371. Kahlfuß S, Simma N, Mankiewicz J, Lowinins T, Lühder F, Schüler T, Schraven B, Heine M, Bommarthrd U (2014) NMDA-receptor antagonists block B-cell function but foster IL-10 production in BCR/CD40-activated B cells. Cell Commun Signal 12:75. https://doi.org/10.1186/s12964-014-0075-5

372. Thomasy SM, Pypendop BH, Ilkiw JE, Stanley SD (2005) Pharmacokinetics of lidocaine and its active metabolite, monoethylglycinexylidide, after intravenous administration of lidocaine to awake and isoflurane-anesthetized cats. Anesth Analg 96(6):1162–1166

373. Louie DAP, Liao S (2019) Lymph node subcapsular sinus macrophages as the frontline of lymphatic immune defense. Front Immunol 7:613. https://doi.org/10.3389/fimmu.2016.00613

374. Hunter MC, Tejeira A, Halin C (2016) T cell trafficking through lymphatic vessels. Front Immunol 7:613. https://doi.org/10.3389/fimmu.2016.00613

375. Cotrina ML, Nedergaard M (2009) Physiological and pathological functions of P2X7 receptor in the spinal cord. Purinergic Signalling 5(2):223–232. https://doi.org/10.1007/s11302-009-9138-2

376. Tse D, Stan RV (2010) Morphological heterogeneity of endothelium. Semin Thromb Hemost 36(3):236–245. https://doi.org/10.1055/s-0030-1253447

377. Kretsos K, Kasting GB (2005) Dermal capillary clearance: physiology and modeling. Skin Pharmacol Physiol 18(2):55–74. https://doi.org/10.1159/000083706

378. Breslin JW, Yang Y, Scallen JP, Sweat RS, Adderley SP, Murfee WL (2018) Lymphatic vessel network structure and physiology. Compr Physiol 9(1):207–299. https://doi.org/10.1002/cphy.e180015

379. Love F, Tamhane M, Morris ME (2012) Pharmacokinetics, lymph node uptake, and mechanistic PK model of near-infrared dye-labeled bevacizumab after IV and SC administration in mice. AAPS J 14(2):252–261. https://doi.org/10.1208/s12248-012-9342-9

380. Wu F, Tamhane M, Morris ME (2012) Pharmacokinetics, lymph node uptake, and mechanistic PK model of near-infrared dye-labeled bevacizumab after IV and SC administration in mice. AAPS J 14(2):252–261. https://doi.org/10.1208/s12248-012-9342-9

381. Shi HZ, Humbles A, Gerard C, Jin Z, Weller PF (2000) Lymph node trafficking and antigen presentation by endobronchial eosinophils. J Clin Invest 105(7):945–953. https://doi.org/10.1172/jci8945

382. Kim S, Prout M, Ramshaw H, Lopez AF, LeGros G, Min B (2010) Cutting edge: basophils are transiently recruited into the draining lymph nodes during helminth infection via IL-3, but infection-induced Th2 immunity can develop without basophil lymph node recruitment or IL-3. J Immunol 184(3):1143–1147. https://doi.org/10.4049/jimmunol.0902447

383. Hemelryck S, Biewenga J, Ceusters M, Bhattacharya A, van den
Boer M, van Nuenen L, de Boer P (2018) Clinical pharmacokinetics, pharmacodynamics, safety, and tolerability of JNJ-54175446, a brain permeable P2X7 antagonist, in a randomised single-ascending dose study in healthy participants. J Psychopharmacol 32(12):1341–1350. https://doi.org/10.1177/0269881118800067

Eser A, Colombel JF, Rutgeerts P, Vermeire S, Vogelsang H, Braddock M, Persson T, Reinsch W (2015) Safety and efficacy of an oral inhibitor of the purinergic receptor P2X7 in adult patients with moderately to severely active Crohn’s disease: a randomised placebo-controlled, double-blind, phase IIa study. Inflamm Bowel Dis 21(10):2247–2253. https://doi.org/10.1097/MIB.0000000000000154

Shakweh M, Ponchel G, Fattal E (2004) Particle uptake by Peyers’ patches: a pathway for drug and vaccine delivery. Expert Opin Drug Deliv 1(1):141–163. https://doi.org/10.1517/17425247.1.1.141

Zgair A, Wong JCM, Gershovich P (2016) Targeting immunomodulatory agents to the gut-associated lymphoid tissue. Neuro-Immuno-Gastroenterology: 237–261. https://doi.org/10.1007/978-3-319-28609-9_14

Trevasakis NL, Charman WN, Porter CJ (2008) Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update. Adv Drug Deliv Rev 60(6):702–716. https://doi.org/10.1016/j.addr.2007.09.007

Trevasakis NL, Charman WN, Porter CJ (2010) Targeted drug delivery to lymphocytes: a route to site-specific immunomodulation? Mol Pharm 7(6):2297–2309. https://doi.org/10.1021/mp100259a

Hsu YW, Somma J, Newman MF, Mathew JP (2011) Population pharmacokinetics of lidocaine administered during and after cardia surgery. J Cardiothorac Vasc Anesth 25(6):931–936. https://doi.org/10.1097/TA.0b013e31820e52f9

Mallapaty S (2020) The coronavirus is most deadly if you are older and male - new data reveal the risks. Nature 585(7823):1016–1017. https://doi.org/10.1038/d41586-020-02483-2

Izovich A, Ragusa MA, Tortosa F, Lavena Marzio MA, Agnoletti C, Bongelea A, Ceainaro A, Espinosa F, Saavedra E, Sanguine V, Tassara A, Cid C, Catalano HN, Agarwal A, Foroutan F, Rada G (2020) Prognostic factors for severity and mortality in patients infected with COVID-19: A systematic review. PLoS One 15(11):e0241955. https://doi.org/10.1371/journal.pone.0241955

Diaz-Vera M, Terrones Santa Cruz J, Fortini Headrington A, Cema Paz JA, Quintanilla Rios L, Medina Melendez MP, Del Aguila Torres J (2020) Lidocaine to reduce the severity of covid-19 cases. Therapia Neur. Sabadell, Barcelona, Spain. http://www.terapanieneural.com/articulos/28-studies-estudios/495-lidocaine-to-reduce-the-severity-of-covid-19-cases. Accessed 19-11-2020

Muller M, Lefebvre F, Harlay ML, Glad Y, Becker G, Muller C, Aberkane O, Tawk M, Julians M, Romoli A, Hecketeveseiler S, Schneider F, Pottecher J, Chamarraux-Tran TN (2021) Impact of intravenous lidocaine on clinical outcomes of patients with ARDS during COVID-19 pandemia (LidoCovid): a structured summary of a study protocol for a randomised controlled trial. Trials 22(1):131. https://doi.org/10.1186/s13063-021-05095-x

Bharat A, Querrey M, Markov NS, Kim S, Kurihara C, Garza-Castillon R, Manerikar A, Shlatifard A, Tomic R, Politsaina Y, Abdala-Valetencia H, Yeldandi AV, Lomasney JW, Misharin AV, Budinger GRS (2020) Lung transplantation for patients with severe COVID-19. Sci Trans Med. https://doi.org/10.1126/scitransmed.abe4282

Gordh T (2010) Lidocaine: the origin of a modern local anesthetic. 1949. Anesthesiology 113(6):1433–1437. https://doi.org/10.1097/ALN.0b013e3181fee998

Derry S, Wiffen PJ, Moore RA, Quinlan J (2014) Topical lidocaine for neuropathic pain in adults. Cochrane Database Syst Rev 2014(7):CD010958. https://doi.org/10.1002/14651858.CD010958.pub2

Beaussier M, Delbos A, Maurice-Szamburski A, Ecoffey C, Mercadal L (2018) Perioperative use of intravenous lidocaine. Drugs 78(12):1229–1246. https://doi.org/10.1007/s40265-018-0955-x

Su D, Gu Y, Wang Z, Wang X (2010) Lidocaine attenuates pro-inflammatory cytokine production induced by extracellular adenosine triphosphate in cultured rat microglia. Anesth Analg 111(3):768–774. https://doi.org/10.1213/ANE.0b013e3181e9d987

Yuan T, Li Z, Li X, Yu G, Wang N, Yang X (2014) Lidocaine attenuates lipopolysaccharide-induced inflammatory responses in microglia. J Surg Res 192(1):150–162. https://doi.org/10.1016/j.surg.2014.05.023

Flandor M, Listle H, Kemning GI, Zwissler B, Hofstetter C (2010) Effect of inhaled and intravenous lidocaine on inflammatory reaction in endotoxemic rats. Eur J Anaesthesiol 27(1):53–60. https://doi.org/10.1111/j.1399-5107.2009.09539.x

Chen LJ, Ding BY, Ma PL, Jiang SH, Li KZ, Li AZ, Li MC, Shi CX, Du J, Zhou HD (2018) The protective effect of lidocaine on lipopolysaccharide-induced acute lung injury in rats through NF-κB and p38 MAPK signaling pathway and excessive inflammatory responses. Eur Rev Med Pharmacol Sci 22(7):2099–2108. https://doi.org/10.26355/eurrev_201804_14743

Feng G, Liu S, Wang G-L, Liu G-J (2008) Lidocaine attenuates lipopolysaccharide-induced acute lung injury through inhibiting NF-kappaB activation. Pharmacology 81(1):32–40. https://doi.org/10.1159/000107792

Huang TK, Uyehara CF, Balaraman V, Miyasato CY, Person D, Egan E, Easa D (2004) Surfactant lavage with lidocaine improves pulmonary function in piglets after HCl-induced acute lung injury. Anesthesiology 100(6):1290–1304. https://doi.org/10.1097/00000542-200406000-00033

Kiyonari Y, Nishina K, Mikawa K, Maekawa N, Obara H (2000) Lidocaine attenuates acute lung injury induced by a combination of phospholipase A2 and trypsin. Crit Care Med 28(2):484–489. https://doi.org/10.1097/00003495-200002000-00003

Pedersen JL, Callesen T, Meiniche S, Kehlet H (1999) Analgesic response to intravenous lidocaine during epidural analgesia: a prospective, double-blind, placebo-controlled study. Acta Anaesthesiol Scand 43(9):980–986. https://doi.org/10.1111/j.1399-6576.1999.00340.x

Bhorat A, Querrey M, Markov NS, Kim S, Kurihara C, Garza-Castillon R, Manerikar A, Shlatifard A, Tomic R, Politsaina Y, Abdala-Valencia H, Yeldandi AV, Lomasney JW, Misharin AV, Budinger GRS (2020) Lung transplantation for patients with severe COVID-19. Sci Trans Med. https://doi.org/10.1126/scitransmed.abe4282
425. Gröningsson K, Lindgren JE, Lundberg E, Sandberg R, Wahlén A (1985) Lidocaine base and hydrochloride. In: Florey K (ed) Analytical profiles of drug substances, vol 14. Academic Press, pp 207-243. https://doi.org/10.1016/S0099-5428(08)60582-1

426. Charman WNA, Stella VJ (1986) Estimating the maximal potential for intestinal lymphatic transport of lipophilic drug molecules. Int J Pharm 34(1):175–178. https://doi.org/10.1016/0378-5173(86)90027-X

427. Porter CJ, Trevaskis NL, Charman WN (2007) Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov 6(3):231–248. https://doi.org/10.1038/nrd2197

428. Gvetadze SR, Ilkaev KD (2020) Lingual lymph nodes: anatomy, clinical considerations, and oncological significance. World J Clin Oncol 11(6):337–347. https://doi.org/10.5306/wjco.v11.i6.337

429. Ananian SG, Gvetadze SR, Ilkaev KD, Mochalnikova VV, Zayratiants GO, Mkhitarov VA, Yang X, Ciciashvili AM (2015) Anatomic-histologic study of the floor of the mouth: the lingual lymph nodes. Jpn J Clin Oncol 45(6):547–554. https://doi.org/10.1093/jjco/hyv029

430. Fujimura A, Sato Y, Shoji M, Onodera M, Nozaka Y (2007) Lymphatic architecture of the oral region - beneath the buccal mucosa. Microvasc Rev Commun 1(1):9–11. https://doi.org/10.14532/mrvr.1.9

431. Ossoff RH, Sisson GA (1981) Lymphatics of the floor of the mouth and neck: anatomical studies related to contralateral drainage pathways. Laryngoscope 91(11):1847–1850. https://doi.org/10.1288/00005537-198111000-00008

432. Mohammadi-Samani S, Jamshidzadeh A, Montaseri H, Rangbar-Zahedani M, Kianrad R (2010) The effects of some permeability enhancers on the percutaneous absorption of lidocaine. Pak J Pharm Sci 23(1):83–88

433. Sakdiset P, Kitao Y, Todo H, Sugibayashi K (2017) High-throughput screening of potential skin penetration-enhancers using stratum corneum lipid liposomes: preliminary evaluation for different concentrations of ethanol. J Pharm (Cairo) 2017: 7409420. https://doi.org/10.1155/2017/7409420

434. Ali Khan A, Mudassir J, Mohtar N, Darwis Y (2013) Advanced drug delivery to the lymphatic system: lipid-based nanof ormulations. Int J Nanomedicine 8:2733–2744. https://doi.org/10.2147/ijn.s41521

435. Cho HY, Lee YB (2014) Nano-sized drug delivery systems for lymphatic delivery. J Nanosci Nanotechnol 14(1):868–880. https://doi.org/10.1166/jnn.2014.9122

436. Zhang XY, Lu WY (2014) Recent advances in lymphatic targeted drug delivery system for tumor metastasis. Cancer Biol Med 11(4):247–254. https://doi.org/10.7497/j.issn.2095-3941.2014.04.003

437. Ahn H, Park JH (2016) Liposomal delivery systems for intestinal lymphatic drug transport. Biomater Res 20:36. https://doi.org/10.1186/s40824-016-0083-1

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Djo Hasan, MD, PhD is a neuro-intensivist (ret.) with extensive experience in treating mechanically ventilated patients with ARDS at the Erasmus University Hospital Rotterdam, The Netherlands and immune therapy at the Cell Therapy Clinic in Duderstadt, Germany. He is currently involved in the development of lidocaine as a P2X7R antagonist for the treatment of COVID-19 and other immune-related diseases.