Isolation and Characterization of Lactic Acid Bacteria (Lactobacillus sp) from Sauerkraut with the Addition of Sugar

Resti Fevria\(^{(1)(*)}\) and Indra Hartanto\(^{(2)}\)

\(^{(1)}\)Departement of Biology, Faculty of Mathematic and Natural Science, Universitas Negeri Padang, Indonesia
*corresponding author: restifevria.rf@gmail.com

Abstract. Sauerkraut is a conventional biotechnology product in the field of food, made from cabbage with the addition of 2.5 percent salt and 2.5% sugar. Sauerkraut is made by a fermentation process that occurs naturally without the additional of microbes from the outside with the help of indegenic microflora. One of the microbes that determines the success of fermentation is lactic acid bacteria. The purpose of this study is isolate LAB from Sauerkraut with the addition of sugar, the type of LAB produced microscopically. Research methods, the ingredients used are cabbage fermentation (sauerkraut), MRSa, 0,9% NaCl, crystal violet paint from biological laboratories UNP. Isolation LAB from Sauerkraut done in with fermentation Sauerkraut and then plant the sauerkraut into the MRSa medium with streak plate methods. The isolates obtained were identified microscopically using a microscope with gram staining method. From the research that has been done, the following result are obtained: Sauerkraut directly into MRSa medium and gram staining, there were 29 colonies of gram positive bacteria with bacil cell form, and negative catalase test. We can identify this colonies as Lactobacillius sp.

Keywords: Isolation, sauerkraut, sugar, lactic acid bacteria, lactobacillus sp.

1. Introduction

Sauerkraut merupakan produk bioteknologi konvensional di bidang pangan yang dibuat dari bahan dasar kol dengan penambahan 2,5% garam dan 2,5% gula. Sauerkraut dibuat dengan proses fermentasi yang terjadi secara alami tanpa penambahan mikroba dari luar (starter) dengan bantuan mikroflora indigen. Carl (1971) mengatakan proses fermentasi ini terjadi karena adanya bakteri asam laktat (BAL) yang termasuk bakteri heterofermentatif. Hasil pertemubuhan bakteri asam laktat akan menghasilkan beberapa senyawa seperti asam laktat, asam asetat, etanol, ester dan karbondioksida. Sauerkraut dapat bertahan lama dan memiliki rasa yang cukup aman, hal ini disebabkan oleh bakteri asam laktat yang terbentuk pada saat fermentasi. Kondisi yang dibutuhkan dalam fermentasi sauerkraut adalah anaerob, dengan medium cair dengan proses tertutup. Fermentasi pada pembuatan Sauerkraut adalah fermentasi asam Laktat. Bakteri asam laktat merupakan bakteri yang biasa digunakan dalam pembuatan probiotik.

Bakteri asam laktat (BAL) merupakan mikroba yang berpotensi sebagai probiotik (Purwandi dan Rahayu, 2003). Sifat terpenting dari bakteri asam laktat adalah kemampuannya untuk merombak senyawa kompleks menjadi senyawa yang sederhana sehingga dihasilkan asam laktat. Kisaran temperatur pertumbuhan untuk BAL biasanya 15oC - 45oC. Produk asam menyebabkan pertumbuhan mikroba lain yang tidak diinginkan terhambat. Bakteri...
patogen seperti Salmonella dan Staphylococcus aureus yang terdapat pada suatu bahan akan dihambat pertumbuhannya jika dalam bahan terdapat bakteri asam laktat (Rahayu et al., 2004).

Saat ini, beberapa bakteri asam laktat yang berhasil disolasi dari makanan fermentasi diantaranya adalah strawberry (R, Fevria, 2018), markisa kuning (Sari, 2013) dan markisa ungu (Fatimatuz zahro, 2014), tomat (R.Fevria, 2018), Sauerkrout dengan penambahan cabe rawit.(R.Fevria, 2019). Berdasarkan hal diatas maka dilakukan penelitian, Isolasi Bakteri Asam Laktat (Lactobacillus sp) dari Sauerkrout dengan penambahan gula.

2. Method

Penelitian ini dilaksanakan di Laboratorium Biologi UNP pada agustus – September 2019, dengan prosedur:

Bahan

Penelitian ini menggunakan objek kol dan gula yang dibeli dari pasar Kota Padang Panjang. Kemudian bahan difermentasi dengan penambahan garam 2,5% dan gula 2,5%. Bagian yang akan diteliti adalah hasil fermentasi yang dikenal dengan sauerkraut. Dan medium yang digunakan adalah Medium de Men Rogrosa Sharpe (MRS) agar Marks, NaCl 0,9%, larutan H2O2 3%, cat Kristal violet, cat lugol iodin, alcohol 96% dan safranin yang diperoleh dari Laboratorium Biologi FMIPA Universitas Negeri Padang.

Peralatan

Alat yang digunakan dalam penelitian ini adalah toples, pisau cutter, timbangan analitik, labu ukur, labu Erlenmeyer, cawan petri, incubator, laminar air flow, autoclave, kaca objek, hot plate, pinset, Bunsen, cawan porselin, spatel logam, ose gores, rak tabung, mikroskop.

Pelaksanaan Penelitian

a. Penyiapan Sampel (Pembuatan Sauerkraut)

Proses pembuatan sauerkraut meliputi :
1) Persiapan bahan dan sortasi yaitu memilih kubis
2) Mencuci dengan menggunakan air yang mengalir dan bersih
3) Hati kubis dibuang dan daunnya diambil
4) Memotong daun kubis dengan ukuran lebih kurang 0,5 cm
5) Penimbangan
6) Pencampuran sampai rata garam 2,5%, gula 2,5%
7) Hasil pencampuran dimasukkan dalam toples fermentasi lalu ditekan secara pelan-pelan sampai air keluar dan menutupi seluruh permukaan media (potongan kubis)
8) Apabila airnya tidak banyak dapat diberi beban supaya dapat tertutup seluruh permukaan media dengan rata.
9) Toples ditutup dengan rapat
10) Fermentasi dalam suhu 37°C selama 3 hari
11) Hasil fermentasi (sauerkraut) selanjutnya dianalisis.

b. Penanaman Sampel.

Penanaman sampel dapat dilakukan dengan cara, sterilisasi permukaan sampel yang dipotong secara aseptik, kemudian dimasukan kedalam toples yang sudah disterilisasi dan ditutup dengan aluminium foil dan dinkubasi selama 5 hari. Setelah itu langsung distreak kan medium MRS dengan menggunakan jarum ose. Setelah proses inkubasi selesai dilanjutkan dengan mengisolasi koloni-koloni yang tumbuh masing-masing berdasarkan perbedaan morfologi koloni bakteri dalam cawan petri setiap kuadran. Dilakukan isolasi sampai diperoleh isolate atau koloni tunggal dari tiap cawan petri.

c. Identifikasi Bakteri Asam Laktat (BAL)

Isolat yang diperoleh diidentifikasi dengan metode makroskopik, dengan melihat langsung morfologi isolate bakteri yang tumbuh pada medium meliputi bentuk dan warna bakteri. Dan metode mikroskopik dengan menggunakan mikroskop dengan metode pewarnaan gram. Pewarnaan gram dilakukan dengan mengoleskan bakteri diatas objek glass, difikasasi lalu ditetesi cat gram A, diamkan selama 1 menit, ditetesi cat gram B, diamkan selama 1 menit, ditetesi cat gram C, diamkan selama 30 detik, ditetesi cat...
gram D, diamkan 2 menit. Kemudian ditutup dengan cover glass dan ditetesi dengan minyak emersi lalu diamati bentuk dan warna sel.

d. Uji Katalase.

Uji Katalase merupakan suatu pengujian terhadap bakteri tertentu apakah bakteri tersebut merupakan bakteri aerob, anaerob fakultatif, atau anaerob fakultatif, caranya adalah 1) mengambil biakan bakteri. 2) Meneteskan satu tetes H2O2 kedalam biakan bakteri 3) Mengamati hingga terdapat gelembung atau tidak.

3. Result and Discussion

Result

Isolasi Bakteri Asam Laktat (BAL)

Isolasi bakteri asam laktat dari sauerkraut dengan penambahan gula berhasil dilakukan. Bakteri yang tumbuh memperlihatkan adanya koloni yang berwarna putih susu, dan memiliki zona halo yang tumbuh setelah proses inkubasi pada suhu 370C dengan waktu tumbuh rata-rata 40 jam. Penambahan gula diduga dapat memberikan nutrisi tambahan bagi bakteri asam laktat untuk metabolisme dan pertumbuhan sel, dengan tersedianya nutrisi yang optimal, maka aktivitas bakteri asam laktat akan meningkat, sehingga menyebabkan jumlah asam hasil metabolisme juga meningkat. Sifat-sifat khusus bakteri asam laktat adalah mampu tumbuh pada kadar gula, alkohol, dan garam yang tinggi, mampu memfermentasikan monosakarida dan disakarida (Syahrurahman, 1994).

Bakteri asam laktat memanfaatkan gula sebagai sumber energi, pertumbuhan dan menghasilkan metabolit berupa asam laktat selama proses fermentasi. Mikroba akan merombak senyawa karbon (sukrosa/gula) menjadi energi untuk pertumbuhan dan asam laktat sebagai metabolitnya. Mikroba membutuhkan gula untuk aktivitas metabolisme dan perkembangbiakan sel. Hal tersebut berkaitan dengan peningkatan jumlah sel bakteri, dimana semakin banyak sel bakteri yang ada, maka sukrosa akan semakin banyak digunakan untuk metabolisme sel. Menurut Spreer (1998), asam laktat dan asetaldehid yang dihasilkan menyebabkan penurunan pH media fermentasi atau meningkatkan keasaman dan menimbulkan aroma khas.

Figure 1. Isolasi Bakteri Asam Laktat dari Sauerkraut dengan penambahan gula pengamatan 36 jam dari pengenceran 10^6 pada medium

Berdasarkan gambar diatas bakteri asam laktat yang dapat diisolasi 17 koloni. Bakteri asam laktat diisolasi untuk menghasilkan antimikroba yang dapat digunakan sebagai probiotik. Bakteri asam laktat merupakan bakteri yang biasa digunakan sebagai probiotik. Bakteri ini bersifat nonpatogenik, nonontosikogenik, Gram positif, anaerobik, tidak menghasilkan spora, bakteri penghasil asam laktat yang diproduksi dari fermentasi karbohidrat (Desai, 2008).

Pertumbuhan BAL dipengaruhi oleh banyak faktor, diantaranya adalah keberadaan oksigen, kandungan air bebas, komposisi kimia dan ketersediaan substrat pada media pertumbuhan, total padatan, temperatur lingkungan pertumbuhan, dan keberadaan mikroba patogen awal (Surono, 2004). Pertumbuhan BAL memerlukan substrat vitamin dan nitogen non-protein yang mengandung asam amino esensial dalam jumlah yang cukup, namun pada umumnya keberadaan vitamin dan senyawa nitrogen non-protein pada bahan terdapat dalam jumlah yang terlalu rendah sebagai penyedia nutrisi yang cukup bagi pertumbuhan sel-sel bakteri.
Identifikasi Isolat Hasil Isolasi

a. Pewarnaan Gram

Hasil pewarnaan gram pada isolat bakteri sauerkraut dengan penambahan gula adalah positif, yaitu sel bakteri berwarna ungu setelah dilakukan pewarnaan gram. Pewarnaan gram dibagi menjadi dua hasil yaitu gram positif dan gram negatif, tergantung dari reaksi dinding sel terhadap tinta safranin atau kristal violet. Hasil uji pewarnaan gram terhadap isolat menghasilkan beberapa isolat yang memiliki bentuk morfologi sel batang dengan susunan berantai, dan diduga isolat ini merupakan genus *Lactobacillus sp.*

Zat warna yang digunakan dalam pewarnaan bersifat basa dan asam. Pada zat warna basa bagian yang berperan dalam memberikan warna disebut kromofoor dan memiliki muatan positif. Sebaliknya, pada zat warna asam bagian yang berperan memberikan zat warna mempunyai muatan negatif. Zat warna asam lebih banyak digunakan karena muatan negatif banyak ditemukan di dinding sel, membran sel dan sitoplasma. Sewaktu proses pewarnaan muatan positif pada zat warna basa akan berkaitan dengan muatan negatif dalam sel, sehingga mikroorganisme lebih jelas terlihat.

Prinsip pewarnaan gram adalah kemampuan dinding sel mengikat zat warna kristal violet yang telah diberi peluntur (alcohol 95%). Keadaan ini berhubungan dengan komposisi senyawa penyusun dinding sel. Pada bakteri Gram positif mengandung peptidoglikan lebih banyak dan lemak lebih sedikit dibandingkan bakteri gram negatif. Morfologi BAL hasil pewarnaan gram dapat dilihat pada gambar 3.2

Kode isolate	Morfologi koloni	Gambar koloni	Pewarnaan Gram +/-
S	Bentuk : bundar		Gram : Positif
	Tepian : licin		Bentuk sel : Bacil
	E elevasi : datar		
	Warna : puti susu		
	Ukuran : sedang		

Karakteristik bakteri gram positif adalah homogen dan tebal serta sebagian besar tersusun dari peptidoglikan, polisakarida lain dan asam teikot dapat ikut menyusun dinding sel. Bentuk sel bulat, batang atau filament. Bakteri gram positif adalah bakteri yang mempertahankan zat warna Kristal violet sewaktu proses pewarnaan gram sehingga akan berwarna biru atau ungu dibawah mikroskop.

b. Uji Katalase

Uji katalase digunakan untuk mengetahui aktivitas katalase pada bakteri yang diuji. Uji katalase dilakukan dengan meneteskan hydrogen peroksid (H₂O₂) 3% pada gelas objek yang bersih. Biakan dioleskan pada gelas objek yang sudah diteteskan hydrogen peroksid. Suspensi dicampur secara perlahan menggunakan ose. Hasil negatif ditandai dengan tidak terbentuknya gelembung-gelembung gas. Hasil uji katalase pada 17 isolat bakteri menunjukkan hasil negatif yang ditunjukkan dengan tidak adanya gelembung gas yang berisi oksigen ketika isolat ditetes terlarutan H₂O₂. Bakteri asam laktat termasuk bakteri dengan katalase negatif. Bakteri katalase negatif tidak memiliki enzim katalase yang menguraikan H₂O₂.

4. Conclusion

The conclusions are isolat bakteri asam laktat dari sauerkraut dengan penambahan gula mempunyai karakteristik secara makroskopik yaitu bentuk bundar, tepian licin, elevasi timbul warna putih susu dan ukuran kecil. Hasil identifikasi bakteri asam laktat dari sauerkraut dengan penambahan gula merupakan bakteri gram positif dengan bentuk sel bacill, dari pewarnaan gram dan katalase negatif dari uji katalase
5. References

[1] Carl, S. P. 1971. *Microbiology and Food Fermentation*. The AVI Publishing Company Inc. Connecticut.

[2] Carr, F. J., D. Chill, and N. Maida. 2002. The Lactic Acid Bacteria: A Literature Survey. *Crit. Rev. Microbiol.*

[3] Desai, 2008. Quantitative methods, economics, and other models, journal of Policy Analysis and Management, Volume 27, Issue 3.

[4] Fevria, Resti. Hartanto, I. 2018 Isolation and Characterization of Lactic Acid Bacteria (*Lactobacillus sp*) from Tomato. E-Jurnal.UnP.Biosience

[5] Fevria, Resti. Hartanto, I. 2019 Isolation and Characterization of Lactic Acid Bacteria (*Lactobacillus sp*) from Sauerkraut with the addition of Cayenne Pepper. E-Jurnal.UnP.Biosience

[6] Fevria, Resti. Hartanto, I. 2019 Isolation and Characterization of Lactic Acid Bacteria (*Lactobacillus sp*) from Strawberry (*Fragaria vesca*). Prosiding Seminar Internasional Icomset. https://iopscience.iop.org/issue/1742-6596/1317/1

[7] Fuller, R. 1989. Probiotics in Man and Animals. *Journal Application Bacteriol.* Vol.66. No. 1: 365-378.

[8] Malik, et al. 2008. Skrining Gen Glukosiltranferase (GTF) dan Bakteri Penghasil Asam Laktat Penghasil Eksopolisakarida, Makara Sains. Vol.12 No.1:1-6

[9] Pelczar, M.J., and E. C. S. Chan. 1986. *Dasar Dasar Mikrobiologi* 2. Diterjemahkan oleh Hadioetomo RS, Imas T, Tjitrosomo SS, Angka SL. Jakarta: Penerbit Universitas Indonesia. hal:489-522.

[10] Sari, Yuni et al. 2013. Isolasi, karakterissasi dan Identifikasi DNA Bakteri Asam Laktat (BAL) yang berpotensi sebagai antimikroba dari fermentasi Markisa Kuning. Jurnal Kimia Universitas Andalas Vol.2 No.2

[11] Sneath, P.H.A, N.S. Mair, M.E. Sharpe, dan J.G. Holt. 1986. *Bergey’s Manual of Systematic Bacteriology*. Vol 2. *Baltimore*: Williams and Wilkins.

[12] Stamer, J. R. 1979. The Lactic Acid Bacteria: Microbe of Diversity. *Journal of Food Technology*. 33 (1): 60 – 65

[13] Zahro Fatimatus. 2014. Isolasi dan Identifikasi Bakteri Asam Laktat Asal Fermentasi Markisa Ungu sebagai penghasil eksopolisakarida, Jurusan Biologi, Fakultas Sain dan Teknologi Universitas Maulana Malik Ibrahim Malang