PhANNs, a fast and accurate tool and web server to classify phage structural proteins

Vito Adrian Cantu1,4, Peter Salamon2,4, Victor Seguritan1,5, Jackson Redfield3,6, David Salamon2, Robert A. Edwards1,3,4, Anca M. Segall1,3,4,*

1) Computational Science Research Center, San Diego State University, San Diego, 92182, USA
2) Department of Mathematics and Statistics, San Diego State University, San Diego, 92182, USA
3) Department of Biology, San Diego State University, San Diego, 92182, USA
4) Viral Information Institute, San Diego State University, San Diego, 92182, USA
5) Current address: Experian, 475 Anton Blvd., Costa Mesa, CA 92626
6) Current address: Inova Diagnostics, 9900 Old Grove Rd., San Diego, CA 92131

Abstract

For any given bacteriophage genome or phage sequences in metagenomic data sets, we are unable to assign a function to 50-90% of genes. Structural protein-encoding genes constitute a large fraction of the average phage genome and are among the most divergent and difficult-to-identify genes using homology-based methods. To understand the functions encoded by phages, their contributions to their environments, and to help gauge their utility as potential phage therapy agents, we have developed a new approach to classify phage ORFs into ten major classes of structural proteins or into an “other” category. The resulting tool is named PhANNs (Phage Artificial Neural Networks). We built a database of 538,213 manually curated
phage protein sequences that we split into eleven subsets (10 for cross-validation, one for testing) using a novel clustering method that ensures there are no homologous proteins between sets yet maintains the maximum sequence diversity for training. An Artificial Neural Network ensemble trained on features extracted from those sets reached a test F1-score of 0.875 and test accuracy of 86.2%. PhANNs can rapidly classify proteins into one of the ten classes, and non-phage proteins are classified as “other”, providing a new approach for functional annotation of phage proteins. PhANNs is open source and can be run from our web server or installed locally.

Author Summary

Bacteriophages (phages, viruses that infect bacteria) are the most abundant biological entity on Earth. They outnumber bacteria by a factor of ten. As phages are very different within them and from bacteria, and we have comparatively few phage genes in our database, we are unable to assign function to 50%-90% of phage genes. In this work, we developed PhANNs, a machine learning tool that can classify a phage gene as one of ten structural roles, or “other”. This approach does not require a similar gene to be known.

Introduction

Bacteriophages (phages) are the most abundant biological entity on the Earth (1). They modulate microbial communities by lysing specific components of microbiomes. Via transduction and/or lysogeny, they mediate horizontal transfer of genetic material such as virulence factors (2), metabolic auxiliary genes (3), photosystems and other genes to enhance photosynthesis(4), and phage production in general, by providing the host with immunity from killing by other phages. Temperate phages can become part of the host genome as prophages; most bacterial genomes contain at least one, and often multiple, prophages (5,6).
Phage structures (virions) are composed of proteins that encapsulate and protect their genomes. The structural proteins (or virion proteins) also recognize the host, bind to it and deliver the phage’s genome into the host’s cell. Phage proteins, especially structural ones, vary widely between phages and phage groups, so much so that sequence identity-based methods to assign gene function fail frequently: we are currently unable to assign function to 50-90% of phage genes (7). Experimental methods such as protein sequencing, mass spectrometry, electron microscopy, or crystallography, in conjunction with antibodies against individual proteins, can be used to identify structural proteins but are expensive and time-consuming. A fast and easy-to-use computational approach to predict and classify phage structural proteins would be highly advantageous as part of pipelines for identifying functional roles of proteins of bacteriophage origins. The current increased interest in using phages as therapeutic agents (8,9) demands annotations for as high as possible a fraction of each phage genome, even if they are only provisional.

Machine learning has been used to attack similar biological problems. In 2012, Seguritan et al. (10) developed an Artificial Neural Network (ANN) that used normalized amino acid frequencies and the theoretical isoelectric point to classify viral proteins as structural or not structural with 85.6% accuracy. These ANNs were trained with proteins of viruses from all three domains of life. They also trained two distinct ANNs to classify phage capsid versus phage non-capsid and phage “tail associated” versus phage “non-tail-associated” proteins. Subsequently, several groups have used different machine learning approaches to improve the accuracy of predictions. The resulting tools are summarized in Table 1.

Each of these previous approaches has important limitations: 1) The classification is limited to two classes of proteins (e.g., "capsid" or "not capsid"). 2) Training and testing sets were small (only a few hundred proteins in some cases), limiting the utility of the approaches beyond those
proteins used in testing. 3) Methods that rely on predicting secondary structure (e.g., ViralPro\(^{(11)}\)) are slow to run. In general, these newer methods have improved accuracy at the cost of lengthening the time required for training, or have used very small training and/or test sets.

Artificial Neural Networks (ANN) are proven universal approximators of functions in \(\mathbb{R}^n\),\(^{(12)}\) including the mathematical function that maps features extracted from a phage protein sequence to its structural class. We have constructed a manually-curated database of phage structural proteins and have used it to train a feed-forward ANN to assign any phage protein to one of eleven classes (ten structural classes plus a catch-all class labeled "others"). Furthermore, we developed a web server where protein sequences can be uploaded for classification. The full database, as well as the code for PhANNs and the webserver, are available for download at http://edwards.sdsu.edu/phanns and https://github.com/Adrian-Cantu/PhANNs.

Methods

Database

In this work, we generated two complementary protein databases, "classes" and "others". The "classes" database contains curated sequences of ten phage structural roles (Major capsid, Minor capsid, Baseplate, Major tail, Minor tail, Portal, Tail fiber, Tail shaft, Collar, and Head-Tail joining). The "others" database contains all phage ORFs that do not encode proteins annotated as "structural" or as any of the 10 categories above.

The database of "classes"

Sequences from the ten structural classes were downloaded from NCBI's protein database.
using a custom search for the class title (the queries are in the “ncbi_get_structural.py” script in the GitHub repository). We manually removed all sequences whose description didn’t fit the corresponding class.

The "others" database

To generate a database for the "others" class, all available phage genomes (8,238) were downloaded from GenBank on 4/13/19. ORFs were found using the GenBank PATRIC server with the phage recipe. Sequences annotated as structural or any of the ten classes were removed during manual curation. Furthermore, the remaining sequences were de-replicated at 60% together with sequences in the "classes" database using CD-hit. Any phage ORF that clustered with a sequence from the "classes" database was removed from the "others" database.

Training, test, and validation split

Each class was clustered at 40% using CD-hit and split into eleven sets (10 for cross validation and one for testing, as shown in Figure 1). Once the clusters were determined, to prevent loss of the sequence diversity available within the clusters, which is essential for optimal training, the clusters were expanded by adding back within each set all the representatives of that set (described in Figure 1). Subsequently, the sets corresponding to each structural class were merged. We named the generated sets 1D-10D and TEST. Splitting the database this way ensures that the different sets share no homologous proteins, yet recapture all the sequence diversity present in each class. Finally, 100% dereplication was performed to remove identical sequences (See Table 2). The effect of the cluster expansion on performance is explored in Figures S1 and S2.

Extraction of features

The frequency of each dipeptide (400 features) and tripeptide (8,000 features) was computed
for each ORF sequence in both the “classes” and “others” databases. As a potential time-saving
procedure during neural net training while also permitting classification of more diverse
sequences, each amino acid was assigned to one of seven distinct "side chain" chemical
groups (Table S1). The frequency of the "side chain" 2-mers (49 features), 3-mers (343
features), and 4-mer (2,401 features) was also computed. Finally, some extra features, namely
isoelectric point, instability index(16) (whether a protein is likely to degrade rapidly), ORF length,
aromaticity(17) (relative frequency of aromatic amino acids) , molar extinction coefficient (how
much light the protein absorbs) using two methods (assuming reduced cysteins or disulfide
bonds), hydrophobicity, GRAVY(18) index (average hydropathy) and molecular weight, were
computed using Biopython(19). All 11,201 features were extracted from each of 538,213 protein
sequences. The complete training data set can be downloaded from the web server
(https://edwards.sdsu.edu/phan).

ANN architecture and training

We used Keras(20) with the TensorFlow(21) back-end to train eleven distinct ANN models using
a different subset of features. We named the models to indicate which feature sets were used in
training: composition of 2-mers/dipeptides (di), 3-mers /tripeptides (tri) or 4-mer/tetrapeptide
(tetra), or side chain groups (sc) (as shown in Table S1), and whether we included the extra
features (p) or not. A twelfth ANN model was trained using all the features (Table S2).

Each ANN consists of an input layer, two hidden layers of 200 neurons, and an output layer with
11 neurons (one per class). A dropout function with 0.2 probability was inserted between layers
to prevent overfitting. ReLU activation (to introduce non-linearity) was used for all layers except
the output, where softmax was used. Loss was computed by categorical cross-entropy and the
ANN is trained using the "opt" optimizer until 10 epochs see no training loss reduction. The
model at the epoch with the lowest validation loss is used. Class weights inversely proportional
to the number of sequences in that class were used.
10-fold cross-validation

Sets 1D to 10D (see Figure 1) were used to perform 10-fold cross-validation; ten ANNs were trained as described above sequentially using one set as the validation set and the remaining nine as the training set. The results are summarized in Figures 2, 3, and 4.

Web server

We developed an easy-to-use web server for users to upload and classify their own sequences. Although ANNs need substantial computational resources for training the model (between 54,861 and 127,756,413 parameters need to be tuned, depending on the model), the trained model can make fast de novo predictions. Our web server can predict the structural class of an arbitrary protein sequence in seconds and assign all the ORFs in a phage genome to one of the 11 classes in minutes. The application can also be downloaded and run locally for high-throughput queries or if privacy is a concern.

Results and discussion

We evaluated the performance of 120 ANNs (10 per model type) on their respective validation set. For each ANN, we computed the precision, recall, and F₁-score of the 11 classes. A “weighted average” precision, recall and F₁-score, where the score for each class is weighted by the number of proteins in that class (larger classes contribute more to the score) was computed. The weighted average is represented as a 12th class (see Table S3). This gives us ten observations for each combination of model type and class, which allows us to construct confidence intervals as those seen in Figures 2, 3, and 4.

Figure 2 shows that all the models follow the same trend as to which classes they predict with higher or lower accuracy. Some classes of proteins, for example major capsids, collars, and
head-tail joining proteins, are predicted with high accuracy. On the other hand, the minor capsid
and tail fiber protein classes seem to be intrinsically hard to predict with high accuracy
irrespective of the model type used (Figure 3). One reason for this is the limited size of the
training set: the minor capsid protein set is the smallest class, with only 581 proteins available
for inclusion in our database. Even if the classes were weighted according to their size during
training, it appears we do not have enough training examples to correctly identify this class.
Furthermore, "minor capsid" is often misclassified as “portal” (Figure 5). This is probably an
annotation bias, as there were about 800 proteins annotated as "portal (minor capsid)" in the
raw sequences. When the ~800 proteins are analyzed with PhANNs, over 90% are predicted to
be portal proteins. Although these were removed during manual curation of the training data
sets, some (small fraction of) minor capsid proteins in our database may have been annotated
as "minor capsid" by homology to one of those 800 sequences.
The predictive accuracy for a specific class of proteins is likely to be affected by the bias in the
training datasets. The bias could be biological and/or due to a sampling bias. An example of the
former is the tail fiber class: the tail fiber is one of the determinants of the host range of the
virus, and is under strong evolutionary selective pressure (22–27). On the other hand, sampling
bias may be introduced due to oversampling of certain types of phages, such as the thousands
of mycobacterial phages isolated as part of the SEA-PHAGES project(28); many of which are
highly related to each other.

Average validation F$_1$-scores range from 0.664 for the “di_sc” model to 0.906 for the “all” model
(Figure 4). Although the average validation F$_1$-score for the top three models “tri_p” (0.897),
“tetra_sc_tri_p” (0.901), and “all” (0.906) are not significantly different from each other, we
decided to use “tetra_sc_tri_p” for the web server because, while it uses ~7% fewer features
than “all” (10,409 vs 11,201), we expect that the tetra side chain features will be better than the
tripeptide features at generalizing predictions and accessing greater sequence diversity.
Using the “tetra_sc_tri_p” ensemble, we predicted the class of each sequence in the test set (47,879) by averaging the scores of each of the ten ANNs. Results are summarized in Figure 5. Doing this we reach a test F$_1$-score of 0.875 and accuracy of 86.2% over the eleven classes.

The performance of any machine learning system is limited by the availability and cost of training examples (29). This has resulted in top performing image and audio classification systems invariably augmenting their training data with synthetic examples created by applying semantically orthogonal transformations to the training set (slightly rotating or distorting an image, adding background noise to audio) (30,31). In bioinformatics, the current practice of de-replication moves us in exactly the opposite direction -- perfectly good samples cannot be used if their overlap with other samples is too high, leaving only one version of the biostring to learn, and thereby ignoring any variations. Our approach overcomes this failing by using all non-redundant data. By splitting the dataset into the training, validation and test sets after first de-replicating at 40%, we remove even slightly redundant samples and make sure that none of the performance is due to memorization rather than generalization. Augmenting the training set by expanding the clusters back out to all non-redundant samples is the novel idea we have introduced in the present paper as a way of increasing our training set size and hence our accuracy.

Conclusion

ANNs are a powerful tool to classify phage structural proteins when homology-based alignments do not provide usable functional predictions, such as “hypothetical” or “unknown function”. This approach will get more accurate as more and better characterized phage structural protein sequences, especially more divergent ones, are experimentally validated and become available for inclusion in our training sets. This method can also be applied to predicting the function of
unknown proteins of prophage origin in bacterial genomes. In the future, we plan to expand this
approach to more protein classes and to viruses of eukaryotes and archaea.

Acknowledgments

Funding This research is based upon work supported by the Office of the Director of National
Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via the Army
Research Office (ARO) under cooperative Agreement Number W911NF-17-2-0105, and
awarded as a partial subcontract to AMS. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the ODNI, IARPA, ARO, or the U.S.
Government. The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annotation thereon.

Victor Seguritan and Jackson Redfield were supported by NSF DMS 0827278 Undergraduate
BioMath Education grant awarded to AMS and PS.
Reference	Method	Target proteins	Database size	Accuracy
Seguritan et al. (10)	ANN	structural (all viruses) versus non-structural (all viruses)	6,303 structural 7,500 non-structural	85.6%
Seguritan et al. (10)	ANN	capsid versus non-capsid (phages only)	757 capsid 10,929 non-capsid	91.3%
Seguritan et al. (10)	ANN	Tail-associated versus non-tail (phages only)	2,174 tail 16,881 non-tail	79.9%
Feng et al. (32)	Naïve Bayes	structural versus non-structural	99 structural 208 non-structural	79.15%
Zhang et al. (33)	Ensemble Random Forest	structural versus non-structural	253 structural 248 non-structural	85.0%
Galiez et al. (11)	SVM	capsid versus non-capsid	3,888 capsid 4,071 non-capsid	96.8%
Galiez et al. (11)	SVM	tail versus non-tail	2,574 tail 4,095 non-tail	89.4%
Manavalan et al. (34)	SVM	structural versus non-structural	129 structural 272 non-structural	87.0%
This work	ANN	Ten distinct phage structural classes plus “others”	168,660 structural 369,553 non-structural	86.2%
Table 2. Database numbers - Raw sequences were downloaded using a custom script available at https://github.com/Adrian-Cantu/PhANNs. All datasets can be downloaded from the web server. *Numbers before and after removing sequences at least 60% identical to a protein in the classes database.

Class	Raw sequences	After manual curation	After de-replication at 40%	After expansion and de-replication at 100%
Major capsid	112,987	105,653	1,945	35,755
Minor capsid	2,901	1,903	261	1,055
Baseplate	75,599	19,293	401	6,221
Major tail	66,513	35,030	536	7,704
Minor tail	94,628	80,467	918	18,002
Portal	210,064	189,143	2,310	59,745
Tail fiber	29,132	18,514	1,222	7,256
Tail shaft	37,885	35,570	599	15,349
Collar	4,224	3,709	339	2,105
Head-Tail joining	60,270	58,658	1,317	15,468
Total structural	**694,203**	**547,940**	**9,848**	**168,660**
Others	733,006	643,735/643, 380*	106,004	369,553
Figure 1. Non homologous database split - To ensure that no homologous sequences are shared between the test, validation, and training sets the sequences from each class (Major capsid proteins in this figure) were de-replicated at 40%. In the de-replicated set, no two proteins have more than 40% identity and each sequence is a representative of a larger cluster of related proteins. The de-replicated set is then randomly partitioned into eleven equal size subsets, (1D\textsubscript{Mcp}-10D\textsubscript{Mcp} plus Test\textsubscript{Mcp}). Those subsets are expanded by replacing each sequence with all the sequences in the cluster it represents (subsets 1D\textsubscript{Mcp}-10D\textsubscript{Mcp} plus TEST\textsubscript{Mcp}). Analogous subsets are generated for the remaining ten classes and corresponding subsets are combined to generate the subsets used for 10-fold cross-validation and testing (1D-10D and TEST).
Figure 2. Model-specific F₁ scores - F₁ scores (harmonic mean of precision and recall) for each model/class combination. All models follow similar trends as to which classes are more or less difficult to classify correctly. Error bars represent the 95% confidence intervals.
Figure 3. **Class-specific F_1 score** - F_1 scores (harmonic mean of precision and recall) for each model/class combination. Some classes, such as minor capsid, tail fiber, or minor tail, are harder to classify correctly irrespective of the model used. Error bars represent the 95% confidence intervals.
Figure 4. Model-specific weighted average scores - Precision, recall, and F_1 scores for all models. Precision is higher in all models as the “others” class is the largest and easiest to classify correctly. Error bars represent the 95% confidence intervals.
Figure 5. Confusion matrix using the “tetra_sc_tri_p” model - Each row shows the proportional classification of test sequences from a particular class. A perfect classifier would have 1 on the diagonal and 0 elsewhere. In general, a protein that is misclassified is predicted as “others”.

Table S1 - Side chain groupings

Category	Group
Hydrophobic	A,I,L,M,V
Hydrophilic	N,Q,S,T
Small turn	G,P
Disulfide	C
Positive charge	H,K,R
Negative charge	D,E
Aromatic	F,W,Y
Table S2 - Feature types included in each of the 12 models. \(\text{di} \) - 2-mer/dipeptide composition; \(\text{tri} \) - 3-mer/tripeptide composition; \(\text{tetra} \) - 4-mer/tetrapeptide composition; \(\text{sc} \) - side-chain grouping; \(\text{p} \) - plus all the extra features [isoelectric point, instability index (whether a protein is likely to be degraded rapidly), ORF length, aromaticity (relative frequency of aromatic amino acids), molar extinction coefficient (how much light a protein absorbs) using two methods (assuming reduced cysteines or disulfide bonds), hydrophobicity, GRAVY index (average hydropathy), and molecular weight, as computed using Biopython].

Model	di	tri	di_sc	tri_sc	tetra_sc	p
di_sc			x			
di_sc_p			x		x	
tri_sc				x		
tri_sc_p				x	x	
tetra_sc					x	
tetra_sc_p					x	x
di			x			
di_p			x			x
tri				x		
tri_p				x		x
tetra_sc_tri_p					x	x
all	x	x	x	x	x	x
Figure S1 - Comparison of the validation weighted average F₁-score of three models on the same feature sets - We compared our ANN ensemble trained on 1D-10D sets against a logistic regression trained on the 1D-10D sets and an ANN ensemble trained on the 1d-10d sets (40% dereplication, without cluster expansion --see Methods). The ANN ensembles perform significantly better than the logistic regression. Error bars represent 0.95 confidence intervals.
Figure S2 Per class comparison of the validation F_1-score of three models on the "tetras_sc_tri_p feature" set - In the structural classes, the 1D-q0D ANN ensemble performs slightly better than the logistic regression and significantly better than the 1d-10d ANN ensemble. In the "others" class (by much the largest), 1D-10D ANN ensemble performs as well as 1d-10d ANN and better than logistic regression. Error bars represent 0.95 confidence intervals.
References

1. Cobián Güemes AG, Youle M, Cantú VA, Felts B, Nulton J, Rohwer F. Viruses as Winners in the Game of Life. Annu Rev Virol. 2016 Sep 29;3(1):197–214.

2. Waldor MK, Mekalanos JJ. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science. 1996 Jun 28;272(5270):1910–4.

3. Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nat Microbiol. 2018 Jul;3(7):754–66.

4. Frank JA, Lorimer D, Youle M, Witte P, Craig T, Abendroth J, et al. Structure and function of a cyanophage-encoded peptide deformylase. ISME J. 2013 Jun;7(6):1150–60.

5. Knowles B, Silveira CB, Bailey BA, Barott K, Cantu VA, Cobián-Güemes AG, et al. Lytic to temperate switching of viral communities. Nature. 2016 Mar 24;531(7595):466–70.

6. Kang HS, McNair K, Cuevas DA, Bailey BA, Segall AM, Edwards RA. Prophage genomics reveals patterns in phage genome organization and replication. bioRxiv. 2017 Mar 7;114819.

7. Edwards RA, Rohwer F. Viral metagenomics. Nat Rev Microbiol. 2005 Jun;3(6):504–10.

8. McCallin S, Sacher JC, Zheng J, Chan BK. Current State of Compassionate Phage Therapy. Viruses. 2019 Apr;11(4):343.

9. Hesse S, Adhya S. Phage Therapy in the Twenty-First Century: Facing the Decline of the Antibiotic Era; Is It Finally Time for the Age of the Phage? Annu Rev Microbiol. 2019;73(1):155–74.

10. Seguritan V, Alves Jr. N, Arnoult M, Raymond A, Lorimer D, Burgin Jr. AB, et al. Artificial Neural Networks Trained to Detect Viral and Phage Structural Proteins. PLoS Comput Biol.
11. Galiez C, Magnan CN, Coste F, Baldi P. VIRALpro: A tool to identify viral capsid and tail sequences. Bioinformatics. 2016;32(9):1405–7.

12. Csáji BC. Approximation with Artificial Neural Networks. 2001;45.

13. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, et al. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res. 2017 04;45(D1):D535–42.

14. McNair K, Zhou C, Dinsdale EA, Souza B, Edwards RA. PHANOTATE: a novel approach to gene identification in phage genomes. Bioinforma Oxf Engl. 2019 Apr 25;

15. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinforma Oxf Engl. 2006 Jul 1;22(13):1658–9.

16. Guruprasad K, Reddy BVB, Pandit MW. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng Des Sel. 1990 Dec 1;4(2):155–61.

17. Lobry JR, Gautier C. Hydrophobicity, expressivity and aromaticity are the major trends of amino-acid usage in 999 Escherichia coli chromosome-encoded genes. Nucleic Acids Res. 1994 Aug 11;22(15):3174–80.

18. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–32.

19. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinforma Oxf Engl. 2009 Jun 1;25(11):1422–3.

20. Chollet F, others. Keras [Internet]. 2015. Available from: https://keras.io

21. Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems [Internet]. 2015. Available from: https://www.tensorflow.org/

22. Drexler K, Dannull J, Hindennach I, Mutschler B, Henning U. Single mutations in a gene for
a tail fiber component of an Escherichia coli phage can cause an extension from a protein to a carbohydrate as a receptor. J Mol Biol. 1991 Jun 20;219(4):655–63.

23. Desplats C, Krisch HM. The diversity and evolution of the T4-type bacteriophages. Res Microbiol. 2003 May;154(4):259–67.

24. Medhekar B, Miller JF. Diversity-generating retroelements. Curr Opin Microbiol. 2007 Aug;10(4):388–95.

25. Ciezki K, Murfin K, Goodrich-Blair H, Stock SP, Forst S. R-type bacteriocins in related strains of Xenorhabdus bovenii: Xenorhabdicin tail fiber modularity and contribution to competitiveness. FEMS Microbiol Lett. 2017;364(1).

26. Akusobi C, Chan BK, Williams ESCP, Wertz JE, Turner PE. Parallel Evolution of Host-Attachment Proteins in Phage PP01 Populations Adapting to Escherichia coli O157:H7. Pharm Basel Switz. 2018 Jun 20;11(2).

27. Benler S, Cobián-Güemes AG, McNair K, Hung S-H, Levi K, Edwards R, et al. A diversity-generating retroelement encoded by a globally ubiquitous Bacteroides phage. Microbiome. 2018 23;6(1):191.

28. Jordan TC, Burnett SH, Carson S, Caruso SM, Clase K, DeJong RJ, et al. A Broadly Implementable Research Course in Phage Discovery and Genomics for First-Year Undergraduate Students. mBio [Internet]. 2014 Feb 4 [cited 2019 Nov 13];5(1). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3950523/

29. Halevy A, Norvig P, Pereira F. The Unreasonable Effectiveness of Data. IEEE Intell Syst. 2009 Mar;24(2):8–12.

30. Kanda N, Takeda R, Obuchi Y. Elastic spectral distortion for low resource speech recognition with deep neural networks. In: 2013 IEEE Workshop on Automatic Speech Recognition and Understanding. 2013. p. 309–14.

31. Ciregan D, Meier U, Schmidhuber J. Multi-column deep neural networks for image classification. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. 2012. p. 3642–9.
32. Feng P-M, Ding H, Chen W, Lin H. Naïve bayes classifier with feature selection to identify phage virion proteins. Comput Math Methods Med. 2013;2013.

33. Zhang L, Zhang C, Gao R, Yang R. An ensemble method to distinguish bacteriophage virion from non-virion proteins based on protein sequence characteristics. Int J Mol Sci. 2015;16(9):21734–58.

34. Manavalan B, Shin TH, Lee G. PVP-SVM: Sequence-based prediction of phage virion proteins using a support vector machine. Front Microbiol. 2018;9(MAR).