ON THE UNUSUAL DEPLETIONS TOWARD Sk 155, OR WHAT ARE THE SMALL MAGELLANIC CLOUD DUST GRAINS MADE OF?

Aigen Li,1,2 K. A. Misselt,1 and Y. J. Wang1

Received 2005 December 6; accepted 2006 March 2; published 2006 March 14

ABSTRACT

The dust in the Small Magellanic Cloud (SMC), an ideal analog of primordial galaxies at high redshifts, differs markedly from that in the Milky Way by exhibiting a steeply rising far-ultraviolet extinction curve, an absence of the 2175 Å extinction feature, and a local minimum at ∼12 μm in its infrared emission spectrum, suggesting the lack of ultrasmall carbonaceous grains (i.e., polycyclic aromatic hydrocarbon molecules), which are ubiquitously seen in the Milky Way. While current models for the SMC dust all rely heavily on silicates, recent observations of the SMC line of sight toward Sk 155 have indicated that Si and Mg are essentially undepleted and that the depletions of Fe range from mild to severe, suggesting that metallic grains or iron oxides, instead of silicates, may dominate the SMC dust. However, here we apply the Kramers-Kronig relation to demonstrate that neither metallic grains nor iron oxides are capable of accounting for the observed extinction; silicates remain as an important contributor to the extinction, consistent with current models for the SMC dust.

Subject headings: dust, extinction — ISM: abundances — Magellanic Clouds — stars: individual (Sk 155)

1. INTRODUCTION

As a metal-poor (with a metallicity only ∼1/10 of that in the Milky Way; see Kurt & Dufour 1998) and gas-rich (with a dust-to-gas ratio over 10 times lower than in the Milky Way; see Bouchet et al. 1985) irregular dwarf galaxy, the Small Magellanic Cloud (SMC) is often considered to be a local analog of primordial galaxies at high redshifts, which must have formed at very low metallicity. Therefore, the dust in the SMC, which differs substantially from that in the Milky Way (see Li & Draine 2002), allows us to probe the primordial conditions in more distant galaxies.

The SMC extinction curve displays a nearly linear rise with inverse wavelength and no detectable 2175 extinction bump (Lequeux et al. 1982; Cartledge et al. 2005), presumably because of destruction of the carriers of the 2175 Å hump by the intense ultraviolet radiation and shocks associated with star formation. (An exception to this is the line of sight toward Sk 143 [=AvZ 456], for which the extinction curve has a strong 2175 Å hump [Lequeux et al. 1982; Cartledge et al. 2005]. This sight line passes through the SMC wing, a region with much weaker star formation [Gordon & Clayton 1998].) Although the precise nature of the carriers of the 2175 Å hump remains unclear, it is generally believed to be due to the π → π* transition of small aromatic carbonaceous (i.e., graphitic) grains, probably a cosmic mixture of polycyclic aromatic hydrocarbon (PAH) molecules (Li & Draine 2001). The overall infrared emission spectrum of the SMC peaks at λ ∼ 100 μm with a local minimum at λ ∼ 12 μm, which is commonly believed to be emitted by PAHs (see Stanimirović et al. 2000; Li & Draine 2002; references therein).

The absence of the 2175 Å extinction bump and the very weak 12 μm emission in the SMC imply the lack of PAHs in the SMC.4 The paucity of PAHs appears to be a general feature of metal-poor galaxies (see, e.g., Thuan et al. 1999; Madden 2000; Houck et al. 2004; Engelbracht et al. 2005; Wu et al. 2006). A natural question one may ask is, Are their large-size counterparts—carbon dust (either graphite or amorphous carbon) with radii larger than ∼100 Å—also deficient in the SMC and low-metallicity galaxies, or more generally, what are the dust grains in the SMC (or metal-poor galaxies) made of?

Our knowledge about the SMC dust is mainly derived from the extinction curve. As early as 1983, when ∼3–9 μm 1 UV extinction data had just become available for the SMC thanks to the International Ultraviolet Explorer satellite, Bromage & Nandy (1983) already recognized “the conspicuous absence of normal graphite grains” in the SMC. Subsequent models for the SMC dust all rely heavily on silicates, with silicate-to-carbon mass ratios of ∼5.5 (Rodrigues et al. 1997), ∼2.5 (Zubko 1999), ∼1.2 (Weingartner & Draine 2001), ∼1.6 (Clayton et al. 2003), and ∼1.2 (Cartledge et al. 2005). Pei (1992) even attributed the SMC extinction to silicates alone. However, based on an analysis of Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS) interstellar absorption spectra of the SMC components, Welty et al. (2001) recently reported that the Si and Mg elements in the interstellar cloud toward Sk 155 in the SMC appear to be essentially undepleted, posing a serious challenge to all dust models for the SMC, since they all require a substantial amount of silicates to account for the observed extinction.

It is the purpose of this Letter to examine the unusual depletions observed in the SMC sight line toward Sk 155. To this end, we investigate whether the depleted elements are sufficient to account for the observed extinction. Our approach, as described in § 2, is based on the Kramers-Kronig dispersion relation (Purcell 1969) and is independent of any specific dust model.

2. CONSTRAINTS FROM THE KRAMERS-KRONIG RELATION

In 1926–1927, H. A. Kramers and R. Kronig independently demonstrated that the real (dispersive) and imaginary (absorp-

1 Department of Physics, Hunan Normal University, Changsha, 410081 Hunan, China; wyj@hunnu.edu.cn.
2 Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211; Lia@missouri.edu.
3 Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721; kmisselt@as.arizona.edu.

4 The PAH emission features have been detected locally—in the SMC B1 No. 1 quiescent molecular cloud (Reach et al. 2000), and in the N66 star-forming region (Contursi et al. 2000).
tive) parts of the index of refraction are not independent but are related to each other through a relation that is now known as the Kramers-Kronig dispersion relation. Applying this relation to the interstellar medium (ISM), Purcell (1969) related the interstellar extinction integrated over wavelength to the total volume of grains in the ISM: \[
\int_0^\infty \tau_\text{ext}(\lambda)N_\text{H} d\lambda = 3\pi FV_{\text{dust}}/H,
\]
where \(\tau_\text{ext}(\lambda)\) is the extinction optical depth at wavelength \(\lambda\), \(N_\text{H}\) is the H column density, \(V_{\text{dust}}/H\) is the total volume occupied by dust per H nucleon, and the dimensionless factor \(F\) is the orientational-averaged polarizability relative to the polarizability of an equal-volume conducting sphere, which depends only upon the grain shape and the static (zero-frequency) dielectric constant \(\varepsilon_0\) of the grain material (Purcell 1969).\(^5\)

Very recently, we applied this relation to examine whether porous dust could solve the so-called interstellar subsolar abundance “crisis” (Li 2005). Similarly, this approach can be applied to the unusual depletions seen along the Sk 155 sight line: if Si and Mg are indeed undepleted, would there be enough raw material to form the dust to account for the extinction observed for the SMC?

To make an economical use of the heavy elements, we consider fluffy dust with a “fluffiness” or “porosity” of \(p\) (i.e., the volume fraction of vacuum contained in a grain). Assuming that all heavy elements depleted from the gas phase have been locked up in dust that consists of \(N\) grain species, the maximum volume of dust per H nucleon can be estimated from \(V_{\text{dust}}/N_\text{H} = \sum X f_X (\{X/H\}_\text{tot} - \{X/H\}_\text{gas}) \mu_X/(1 - p) \rho_\text{f} \), where \(\{X/H\}_\text{tot}\) and \(\{X/H\}_\text{gas}\) are respectively the total and gas abundance of element \(X\) relative to H (the amount of \(X\) contained in dust is therefore \(\{X/H\}_\text{dust} = \{X/H\}_\text{tot} - \{X/H\}_\text{gas}\)). \(\mu_X\) is the atomic weight of \(X\), \(\rho_\text{f}\) is the mass density of dust species \(j\) (we take \(\rho = 3.5, 3.58, 5.7, 5.25, 5.18, 1.8, and 7.85\) g cm\(^{-3}\) for amorphous olivine [MgFeSiO\(_4\)], MgO, FeO, Fe\(_2\)O\(_3\), Fe\(_3\)O\(_4\), amorphous carbon, and pure iron grains, respectively); and \(f_X\) is the fraction of element \(X\) locked up in dust species \(j\). The first summation is over all possible dust species, and the second one is over all condensible elements. Since \(\tau_\text{ext}(\lambda)\) is a positive number for all wavelengths, we can use the extinction observed over a finite wavelength range (say, from 912 Å to 1000 μm) to place a lower bound on \(F(1 - p); f_{\text{obs}} = F(1 - p) = \int_{912}^{1000} \tau_\text{ext}(\lambda)N_\text{H} d\lambda/(3\pi \sum X f_X \{X/H\}_\text{tot} - \{X/H\}_\text{gas} \mu_X/(1 - p)\).

The SMC selective extinction toward the Sk 155 sight line is \(E(B-V) \approx 0.09\) mag (Fitzpatrick 1985). From fitting the STIS Ly\(_\alpha\) data and the Far Ultraviolet Spectroscopic Explorer (FUSE) Ly\(_\beta\) data, D. E. Welty (2005, private communication) has determined the H I column density to be \(N_\text{H} \approx 2.51 \times 10^{21}\) cm\(^{-2}\) for this region; he also estimated the H\(_\alpha\) column density from FUSE data to be \(N_\text{H} \approx 1.38 \times 10^{19}\) cm\(^{-2}\). With a total-selective extinction ratio of \(R = 2.1\), typical for the SMC wing where Sk 155 is located (Clayton et al. 2003), the visual extinction per H column for Sk 155 is \(A_\text{V}/N_\text{H} = R(E(B-V))/N_\text{H} \approx 7.44 \times 10^{-3}\) mag cm\(^{-2}\) for 912 Å < \(\lambda < 3\) μm, we take the extinction curve typical for the SMC bar (Gordon & Clayton 1998) for Sk 155, since preliminary analysis of the extinction toward Sk 155 indicates that it is more similar to the “typical” SMC bar curve than to the curve for Sk 143 (D. E. Welty 2005, private communication); for 3 μm < \(\lambda < 1000\) μm, we adopt the theoretical values of \(\tau_\text{ext}(\lambda)N_\text{H}\) calculated from the silicate-graphite-PAH model for the SMC bar, which has been shown to successfully reproduce the observed extinction from the far-UV to mid-IR and the observed IR emission (Weingartner & Draine 2001; Li & Draine 2002). The integration of the extinction over the 912 Å to 1000 μm wavelength range is approximately \(f_{\text{obs}} = \tau_\text{ext}(\lambda)N_\text{H} d\lambda \approx 2.08 \times 10^{-2}\) cm\(^{-2}\) per H nucleon.

If we know the total abundances \([X/H]_\text{dust}\) and gas-phase abundances \([X/H]_\text{gas}\) for the key dust-forming heavy elements, we can derive \(f_{\text{obs}}\) from above through a general assumption for the constituent dust materials (e.g., silicates, amorphous carbon, magnesium oxides, or iron oxides) of the porous composite grains with a given porosity \(p\), without any detailed knowledge of the dust sizes and shapes. On the other hand, for such a grain with a given porosity \(p\) and a given shape (e.g., prolate or oblate), we can calculate the theoretical values of \(f_{\text{mod}} = \int F(1 - p)N_\text{H} d\lambda\) (see Purcell 1969; Li 2005). Apparently, for any valid grain model, the model-predicted \(f_{\text{mod}}\) should exceed \(f_{\text{obs}}\). Below we examine the two possible grain models implied from the anomalous depletions suggested by Welty et al. (2001).

1. **Metallic grains?** Welty et al. (2001) suggested that metallic grains or iron oxides may dominate the dust populations in the SMC sight line toward Sk 155, since they thought that Si and Mg are essentially undepleted while Fe is severely depleted. If we take the abundances of heavy elements to be solar (Asplund et al. 2005) scaled by the abundance of Zn \(([[Zn/H]]_{\text{Sk 155}} = 0.004\) parts per million [ppm]; Welty et al. 2001), which is typically considered to be undepleted, the total iron abundance is \([Fe/H]_{\text{dust}} = [Zn/H]_{\text{dust}}/[Fe/Zn]_{\text{dust}} \approx 2.5\) ppm. For compact metallic iron grains \((P = 0)\), this implies \(f_{\text{min}} \approx 24\). In order to have \(f_{\text{mod}} > 24\), these grains need to be highly elongated, with an elongation of at least \(\sim 25\) for prolate and \(\sim 84\) for oblate grains (see Fig. 3 of Li 2003b). However, these needle-like iron grains would produce an extinction curve very different from that observed for the SMC, since their extinction cross sections are essentially constant at wavelengths shorter than the long-wavelength cutoff and beyond this they decline as \(\lambda^{-2}\) (see eqs. [3]–[5] of Li 2003a). Therefore, metallic iron grains are unlikely to be the dominant dust component in the SMC.

2. **Iron oxides?** Assuming that all 2.5 ppm Fe (relative to H) is evenly tied up in FeO, Fe\(_2\)O\(_3\), and Fe\(_3\)O\(_4\), porous grains consisting of FeO, Fe\(_2\)O\(_3\), and Fe\(_3\)O\(_4\) would have \(f_{\text{obs}} \approx 12\). However, as shown in Figure 1a, the \(f_{\text{mod}}\) values predicted for the porous iron oxide dust are much smaller than \(f_{\text{obs}}\) even for grains with an elongation as large as 15. Therefore, iron oxides are also unlikely to be the dominant dust components in the SMC. Furthermore, even if we assume that (1) there is another major dust species (amorphous carbon),\(^7\) (2) the total C abundance is solar scaled by the abundance of Zn \(([C/H]_{\text{dust}} = [Zn/H]_{\text{dust}}/[Zn/H]_\odot \approx 24.5\) ppm), and (3) all C atoms are tied up in amorphous carbon grains, the model-predicted \(f_{\text{mod}}\) values are still much smaller than the lower limit of \(f_{\text{obs}} \approx 2.13\) (see Fig. 1b). Therefore, the extinction observed for the Sk 155 sight line is unlikely to be produced by a mixture of iron oxides and amorphous carbon.

\(^5\) The static dielectric constants of the dust materials adopted in this Letter are \(\varepsilon_0 = 10\) for amorphous olivine (Draine & Lee 1984), \(\varepsilon_0 = 9\) for MgO (Roesler & Huffman 1998), \(\varepsilon_0 = 28\) for FeO, \(\varepsilon_0 \approx 16\) for Fe\(_2\)O\(_3\) (Sleeter 1974), \(\varepsilon_0 \approx 23\) for Fe\(_3\)O\(_4\) (Landolt-Börnstein tables), and \(\varepsilon_0 \approx 6\) for amorphous carbon (J. Robertson 2005, private communication).

\(^6\) We do not consider porous metallic needles, since it is hard for us to believe that they could form and survive in the SMC.

We do not consider graphite grains because if they are the dominant contributor to the SMC extinction, they need to be very small; but very small graphite grains would produce a strong 2175 Å extinction bump, which is not commonly seen in the SMC.
3. DISCUSSION

The anomalous depletions in the SMC sight line toward Sk 155 were derived by comparing the relative abundances [X/Zn] in the SMC with the corresponding patterns seen in the Galactic ISM, and assuming the relative total abundances of the SMC are not very different from solar (Welty et al. 2001). Vladilo (2002) argued that the SMC abundances may deviate from the solar ratios. Sofia et al. (2006) argued that Zn is not a suitable reference for comparison because Zn is modestly depleted in the Milky Way ISM; they further suggested that S may be a better comparison species, since (1) S is essentially undepleted and (2) both Si and S are formed through the same process (i.e., oxygen burning).

With S as the comparison species and adopting the solar abundances but scaled by the Sk 155 sulfur abundance ([S/H]_{Sk155} ≈ 2.4 ppm; Welty et al. 2001), we find that the available heavy elements are not sufficient to account for the observed extinction. One may argue that it is more appropriate to use the SMC abundances (Russell & Dopita 1992, hereafter RD92) as a reference rather than solar abundances (i.e., assuming the abundances for the Sk 155 sight line to be those of the SMC scaled by S). In this case, the total abundances (relative to H) of the key dust-forming elements would be {Si, Mg, Fe, C} ≈ {6.6, 5.9, 4.3, 3.3} ppm. Subtracting the gas-phase abundances {Si, Mg, Fe} ≈ {4.8, 3.0, 0.35} ppm of Sk 155 (Welty et al. 2001), the abundances available for depletion are {Si, Mg, Fe} ≈ {1.8, 2.9, 3.9} ppm. We assume that all the dust-phase Si atoms are incorporated into amorphous olivine, MgFeSiO₄. This will also consume 1.8 ppm Mg and Fe. We take the remaining 1.1 ppm Mg to be depleted in MgO, and the remaining 2.1 ppm Fe to be evenly tied up in FeO, Fe₂O₃, and Fe₃O₄. We also assume that all the 33 ppm of C is bound up in amorphous carbon. In so doing, we obtain f_{min} ≈ 1.2. However, as shown in Figure 2a, the model-predicted f_{mod} values never exceed f_{min}, even for grains with rather large elongations. Therefore, the total abundances for Sk 155 are unlikely to be just the RD92 SMC abundances scaled by S.

If we simply adopt the RD92 SMC abundances as the total abundances for the Sk 155 sight line (i.e., without scaling down the SMC abundances), the dust-phase abundances would be {Si, Mg, Fe} ≈ {5.9, 6.6, 6.6} ppm after subtracting the gas-phase abundances of Welty et al. (2001). This depletion pattern roughly points to a composition of olivine silicates. As shown in Figure 2b, the f_{mod} values calculated from these silicate grains are still smaller than the observational lower boundary of f_{min} ≈ 1.35, even for grains with an elongation as large as 15°. This suggests that either the actual abundances for the heavy elements Mg, Si, and Fe toward Sk 155 are higher than those of RD92 or, alternatively, that there must exist another dust component (e.g., amorphous carbon) that makes a considerable contribution to the extinction. For the latter case, with the addition of an amorphous carbon component that takes two-thirds of the total SMC C abundance (like the Milky Way diffuse ISM, in which about two-thirds of the total C is depleted to form carbon dust; see Li 2005), the model-predicted f_{mod} values exceed f_{min} ≈ 0.77 for grains of any shape and of a wide range of porosities (see Fig. 3a). This implies that grain models consisting of a mixture of silicate and carbon dust are capable of accounting for the SMC extinction. It is worth noting that a recent, more comprehensive study of Sk 155 found that Si could be depleted by a factor of ~2, but the Sk 155 depletion patterns are still different from those of the Milky Way (D. E. Welty 2005, private communication).

The calculations discussed above all put a substantial fraction of Si and Mg in gas, as found for the Sk 155 sight line by Welty et al. (2001). Existing models for the SMC dust all include 20% for A_v/N_H, silicate grains (together with oxides, amorphous carbon, or both) with large elongations that can account for the observed extinction (see Figs. 2a–2b), but oxides (even together with amorphous carbon) are unable to do it (see Figs. 1a–1b).
assume a nearly complete depletion of Si, Mg, and Fe into silicates. As shown in Figure 3b, the \(f_{\text{mod}} \) values calculated from silicates consuming all of the Si, Mg, and Fe elements (i.e., no gas-phase Si, Mg, or Fe) of the RD92 SMC abundances exceed \(f_{\text{obs}} \approx 0.99 \) for grains with modest elongations and a wide range of porosities (the Sk 155 dust is expected to be elongated, since an appreciable amount of polarization has been detected along the Sk 155 sight line; see Wayte 1990).\(^6\) On the other hand, even if we assume that all the C elements are locked up in amorphous carbon, they alone are not able to account for the extinction, since the model-predicted \(f_{\text{mod}} \) values are always smaller than \(f_{\text{obs}} \approx 1.2 \), suggesting that carbon dust cannot be the dominant grain component in Sk 155.

4. SUMMARY

By comparing the abundances of heavy elements relative to Zn in the SMC with the corresponding patterns seen in the Galactic ISM, and assuming that the relative total abundances of the SMC are not very different from those of solar, Welty et al. (2001) derived the more or less nondepletion of Si and Mg and mild to severe depletions of Fe for the SMC star Sk 155. They further suggested that iron oxides or metallic grains, instead of silicates, may dominate the SMC dust, in marked contrast with current dust models for the SMC, which all rely heavily on silicates. Based on the Kramers-Kronig relation, we have studied these anomalous depletions and their implications for our understanding of the SMC dust. We find that neither iron oxides nor metallic grains (even with the addition of an amorphous carbon dust component) can account for the observed extinction. If one uses sulfur as a reference and scales either the solar abundances or the SMC abundances, the resulting abundances of the condensible elements are also insufficient to explain the observed extinction. However, we are

\(\approx 37\% \) higher than that of RD92.

 able to account for the SMC extinction if we adopt the SMC abundances and assume that all Si, Mg, and Fe elements are locked up in silicates or assume a combination of a partial depletion of these elements in silicates and a partial depletion of C in amorphous carbon. In both cases, silicates are a major contributor to the SMC extinction.

We thank D. E. Welty and the anonymous referee for their very helpful comments. This work was supported in part by a University of Missouri Summer Research Fellowship, the University of Missouri Research Board, and NASA award P20436.

REFERENCES

Asplund, M., Grevesse, N., & Sauval, A. J. 2005, in ASP Conf. Ser. 336, Cosmic abundances as records of stellar evolution and nucleosynthesis, ed. T. G. Barnes III & F. N. Bash (San Francisco: ASP), 25
Bromage, G. E., & Nandy, K. 1983, MNRAS, 204, 29P
Bouchet, P., Lequeux, J., Maurice, E., Prévot, L., & Prévot-Burnichon, M. L. 1985, A&A, 149, 330
Cartledge, S. I. B., et al. 2005, ApJ, 630, 355
Clayton, G. C., Wolff, M. J., Sofia, U. J., Gordon, K. D., & Missett, K. A. 2003, ApJ, 588, 871
Contursi, A., et al. 2000, A&A, 362, 310
Draine, B. T., & Lee, H. M. 1984, ApJ, 285, 89
Engelbracht, C. W., Gordon, K. D., Rieke, G. H., Werner, M. W., Dale, D. A., & Latter, W. B. 2005, ApJ, 628, L29
Fitzpatrick, E. L. 1985, ApJ, 299, 219
Gordon, K. D., & Clayton, G. C. 1998, ApJ, 500, 816
Houck, J. R., et al. 2004, ApJS, 154, 211
Kurt, C. M., & Dufour, R. J. 1998, Rev. Mex. AA Ser. Conf., 7, 202
Lequeux, J., Maurice, E., Prévot-Burnichon, M.-L., Prévot, L., & Rocca-Volmerange, B. 1982, A&A, 113, L15
Li, A. 2003a, ApJ, 584, 593
— 2003b, ApJ, 599, L45
— 2005, ApJ, 622, 965
Li, A., & Draine, B. T. 2001, ApJ, 554, 778
— — 2002, ApJ, 576, 762
Madden, S. C. 2000, NewA Rev., 44, 249
Pei, Y. C. 1992, ApJ, 395, 130
Purcell, E. M. 1969, ApJ, 158, 433
Reach, W. T., Boulanger, F., Contursi, A., & Lequeux, J. 2000, A&A, 361, 895
Rodrigues, C. V., Magalhães, A. M., Coyne, G. V., & Pirola, V. 1997, ApJ, 485, 618
Roessler, D. M., & Huffman, D. R. 1998, in Handbook of Optical Constants of Solids II, ed. E. D. Palik (Boston: Academic), 919
Russell, S. C., & Dopita, M. A. 1992, ApJ, 384, 508 (RD92)
Sofia, U. J., Gordon, K. D., Clayton, G. C., Misselt, K., Wolff, M. J., Cox, N. L. J., & Ehrenfreund, P. 2006, ApJ, 636, 755
Stanimirović, S., Staveley-Smith, L., van der Hulst, J. M., Bontekoe, T. R., Kester, D. J. M., & Jones, P. A. 2000, MNRAS, 315, 791
Steyer, T. R. 1974, Ph.D. thesis, Univ. Arizona
Thuan, T. X., Sauvage, M., & Madden, S. 1999, ApJ, 516, 783
Vladilo, G. 2002, ApJ, 569, 295
Wayte, S. R. 1990, ApJ, 355, 473
Weingartner, J. C., & Draine, B. T. 2001, ApJ, 548, 296
Welty, D. E., Lauroesch, J. T., Blades, J. C., Hobbs, L. M., & York, D. G. 2001, ApJ, 554, L75
Wu, Y., Charmandaris, V., Hao, L., Brandl, B. R., Bernard-Salas, J., Spoon, H. W. W., & Houck, J. R. 2006, ApJ, 639, 157
Zubko, V. G. 1999, ApJ, 513, L29

\(^6\) Fig. 3b shows that with the RD92 SMC abundances, compact spherical silicate grains are not able to account for the SMC extinction. The reason why Pei (1992) could fit the SMC extinction curve using such grains is that he adopted a higher Si abundance (higher than the RD92 SMC abundance by \(\approx 30\% \)). In the Weingartner & Draine (2001) model for the SMC, the extinction is also predominantly contributed by compact spherical silicate grains. This is also because they took a Si abundance \(\sim 37\% \) higher than that of RD92.

![Fig. 3](image) — Same as Fig. 1, but for (a) models consisting of a mixture of silicates and amorphous carbon (with a more modest elongation) for which the total abundances are taken to be those of the RD92 SMC with the Si and Mg gas-phase abundances of Welty et al. (2001) subtracted and with two-thirds of the total C locked up in amorphous carbon and (b) models consisting of only silicates for which the dust-phase Si, Mg, and Fe abundances are taken to be those of the RD92 SMC abundances (i.e., assuming 100% depletions of Si, Mg, and Fe).