Multiple mechanisms mediating carbon monoxide inhibition of the voltage-gated K+ channel Kv1.5

Article

Published Version

Creative Commons: Attribution 4.0 (CC-BY)

Open Access

Al-Owais, M. M., Hettiarachchi, N. T., Boyle, J. P., Scragg, J. L., Elies, J., Dallas, Mark L., Lippiat, J, Steele, D. S. and Peers, C. (2017) Multiple mechanisms mediating carbon monoxide inhibition of the voltage-gated K+ channel Kv1.5. Cell Death and Disease, 8. e3163. ISSN 1350-9047 doi: https://doi.org/10.1038/cddis.2017.568 Available at https://centaur.reading.ac.uk/72670/

It is advisable to refer to the publisher's version if you intend to cite from the work. See Guidance on citing.

To link to this article DOI: http://dx.doi.org/10.1038/cddis.2017.568

Publisher: Nature Publishing Group

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.

www.reading.ac.uk/centaur
CentAUR

Central Archive at the University of Reading

Reading’s research outputs online
Multiple mechanisms mediating carbon monoxide inhibition of the voltage-gated K$^+$ channel Kv1.5

Moza M Al-Owais1, Nishani T Hettiarachchi1, John P Boyle1, Jason L Scragg1, Jacobo Elies1,3, Mark L Dallas1,4, Jon D Lippiat2, Derek Steele2 and Chris Peers*1

Kv1.5 is a rapidly activating, voltage-gated K$^+$ channel encoded by KCNA5 that inactivates slowly and incompletely.1 Distribution of Kv1.5 is widespread: it is expressed in various cell types in the central nervous system.2,3 and is implicated in certain types of cancers.4 Kv1.5 is, however, perhaps best studied in the cardiovascular system. Its expression/activity is associated with increased apoptosis in endothelial and smooth muscle cells.5,6 In vascular smooth muscle cells (VSMCs) of the pulmonary vasculature, it is of particular importance to hypoxic pulmonary vasoconstriction7–9 and in the development of pulmonary arterial hypertension (PAH).$^{10–12}$ Indeed, Kv1.5 expression is reduced in PAH patients13 and patients with idiopathic PAH possess important single-nucleotide polymorphisms in KCNA5, which encodes Kv1.5.14,15 In the systemic circulation, Kv1.5 also contributes to repolarization of the VSMC membrane potential, limiting Ca$^{2+}$ entry and hence vascular tone.$^{16–18}$ A recent study employing Kv1.5$^{1.5–/−}$ mice has shown that this channel is essential for balancing coronary blood flow with metabolic demands of the working myocardium.19

In the heart, Kv1.5 expression is largely confined to the atria where it is responsible for the ultrarapid outward current, IKur, the major repolarizing current that is active throughout phases 1–3 of the atrial action potential (AP).20,21 Targeting of Kv1.5 activity/expression is currently regarded as a promising therapeutic approach to the treatment of atrial fibrillation (AF).$^{22–25}$

Given the widespread importance of Kv1.5 in the cardiovascular system and elsewhere, it is perhaps unsurprising that it is regulated via numerous posttranslational modifications, including ubiquitination,26 sumoylation,26 palmitoylation,27 phosphorylation28,29 and nitrosylation.30 An additional means of regulation is via its sensitivity to reactive oxygen species (ROS). For example, tonic ROS production by mitochondria or NADPH oxidase (Nox 4) sustains Kv1.5 activity and keeps pulmonary VSMCs relatively hyperpolarized.31,32 In the coronary circulation, hydrogen peroxide (H$_2$O$_2$) has been proposed as the signal closely coupling cardiac metabolism to coronary blood flow$^{33–35}$ and this coupling appears via H$_2$O$_2$-mediated augmentation of Kv1.5.19 Recombinant Kv1.5 activity has also been demonstrated to be directly augmented by H$_2$O$_2$.36

An additional modulator of Kv1.5 is nitric oxide (NO), a long-established, biologically active signalling molecule in the cardiovascular system as well as other tissues.$^{37–39}$ NO regulates Kv1.5 via nitrosylation and activation of cGMP, an effect which is of potential importance in the context of AF, given the important role of this channel in atrial electrical activity, and also the fact that NO bioavailability is reduced in AF and NO synthases (NOSs) can become uncoupled, leading to superoxide formation.38,40,41

Accumulating data continue to establish carbon monoxide (CO) as an important gasotransmitter alongside NO (and hydrogen sulphide), which acts to provide a range of beneficial

1Division of Cardiovascular and Diabetes Research, LICAMM, Faculty of Medicine and Health, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK and School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK

2School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK

3Current address: School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK

4Current address: School of Pharmacy, University of Reading, Reading RG6 6UB, UK.

Received 25.7.17; revised 19.9.17; accepted 21.9.17; Edited by A Finazzi-Agrò
CO inhibits recombinant human Kv1.5. To examine any potential modulation of Kv1.5 by CO, we applied the CORM, CORM-2, to HEK293 cells stably expressing human Kv1.5 (hKv1.5). As exemplified in the time-series plot of Figure 1a, CORM-2 caused a reversible inhibition of K⁺ current amplitudes, and this was associated with a marked slowing of activation kinetics (Figure 1c). By contrast, the inactive amplitudes, and this was associated with a marked slowing of activation kinetics (Figure 1b and c). Inhibition of hKv1.5, and the associated slowing of kinetics, was seen throughout the range of activation test potentials employed (up to +80 mV; Figure 1d). A concentration–response relationship was constructed using time-series recordings as exemplified in Figure 1a, which yielded an IC₅₀ value of 23 µM for CORM-2 inhibition of hKv1.5 (Figure 1e).

CO can regulate ion channels via modulation of numerous signalling pathways.57 To investigate the mechanism of regulation of hKv1.5 by CO, we first explored the involvement of ROS. Figures 2a and b indicate that the ability of CORM-2 to inhibit hKv1.5 was significantly suppressed by a pretreatment of cells (1 h at 37 °C) with either the reducing agent diethiothreitol (DTT, 1 mM) or each of two superoxide dismutase (SOD) mimetics, 5, 10, 15, 20-tetrakis(1-methylpyridinium-4-yl)-21H, 23H porphyrin manganese (III) pentachloride (MnTMPyP; 50 µM), and manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (MnTBAP; 10 µM). All three of these agents significantly, but incompletely, reversed the inhibitory actions of CO, strongly suggesting that ROS contributed to CO-mediated inhibition of hKv1.5. To explore the source of ROS involved in CO-mediated inhibition of Kv1.5, cells were pretreated (1 h at 37 °C) with either diphenylene iodonium (DPI; 3 µM), a non-selective inhibitor of NADPH oxidases, or allopurinol (1 µM), a xanthine oxidase inhibitor. Neither agent altered the ability of CORM-2 to inhibit hKv1.5 (Figures 2c and d). By contrast, pretreatment of cells with mitoTEMPO (10 µM), a mitochondrially targeted antioxidant, almost fully reversed the inhibitory effects of CO (Figures 2c and d). Inhibition of hKv1.5 by CO was also significantly reduced following pretreatment with antimycin A, which inhibits cardiovascular (and other) effects. All three of these gasotransmitters are products of distinct, widely distributed enzymes.42, 43 CO dilates coronary and other vessels44–46 and induction of heme oxygenase-1 (HO-1, which produces heme oxygenase-1) is a target of CO.47–48 CO inhibits recombinant human Kv1.5. (Figure 1a). By contrast, the inactive amplitudes, and this was associated with a marked slowing of activation kinetics (Figure 1b and c). Inhibition of hKv1.5, and the associated slowing of kinetics, was seen throughout the range of activation test potentials employed (up to +80 mV; Figure 1d). A concentration–response relationship was constructed using time-series recordings as exemplified in Figure 1a, which yielded an IC₅₀ value of 23 µM for CORM-2 inhibition of hKv1.5 (Figure 1e).

CO can regulate ion channels via modulation of numerous signalling pathways.57 To investigate the mechanism of regulation of hKv1.5 by CO, we first explored the involvement of ROS. Figures 2a and b indicate that the ability of CORM-2 to inhibit hKv1.5 was significantly suppressed by a pretreatment of cells (1 h at 37 °C) with either the reducing agent diethiothreitol (DTT, 1 mM) or each of two superoxide dismutase (SOD) mimetics, 5, 10, 15, 20-tetrakis(1-methylpyridinium-4-yl)-21H, 23H porphyrin manganese (III) pentachloride (MnTMPyP; 50 µM), and manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (MnTBAP; 10 µM). All three of these agents significantly, but incompletely, reversed the inhibitory actions of CO, strongly suggesting that ROS contributed to CO-mediated inhibition of hKv1.5. To explore the source of ROS involved in CO-mediated inhibition of Kv1.5, cells were pretreated (1 h at 37 °C) with either diphenylene iodonium (DPI; 3 µM), a non-selective inhibitor of NADPH oxidases, or allopurinol (1 µM), a xanthine oxidase inhibitor. Neither agent altered the ability of CORM-2 to inhibit hKv1.5 (Figures 2c and d). By contrast, pretreatment of cells with mitoTEMPO (10 µM), a mitochondrially targeted antioxidant, almost fully reversed the inhibitory effects of CO (Figures 2c and d). Inhibition of hKv1.5 by CO was also significantly reduced following pretreatment with antimycin A, which inhibits...
complex III of the electron transport chain (Figures 2c and d). Thus mitochondria appear to be the source of ROS involved in CO-mediated inhibition of hKv1.5.

CO is also known to activate NOS and soluble guanylyl cyclase (sGC) in several cell types. Pretreatment of cells (1 h at 37 °C) with the NOS inhibitor L-NAME (1 mM) significantly attenuated the ability of CORM-2 to inhibit hKv1.5 (Figures 2e and f). Similarly, pretreatment of cells (1 h at 37 °C) with the membrane-permeable sGC inhibitor, Rp-8-Br-cGMPS (100 nM), significantly reduced the inhibitory effects of CORM-2 on hKv1.5 (Figures 2e and f). Pretreatment of cells with both agents similarly reduced the ability of CO to inhibit currents (Figures 2e and f). These data suggested that CO could stimulate NO formation and this was further confirmed by monitoring NO levels in hKv1.5-expressing HEK293 cells using the NO-sensitive fluorophore, DAF-2 (Figures 3a and b). Application of CORM-2 (30 μM) to DAF-2-loaded cells caused a significant rise in fluorescence, which was fully attenuated following preincubation of cells with 1 mM L-NAME (1 h, 37 °C). It is likely, therefore, that CO inhibits hKv1.5 in part via activation of NO formation, as a previous study has suggested that NO can inhibit Kv1.5.50 NO inhibition was shown by Nunez et al.20 to be mediated partly via PKG-dependent phosphorylation, as is the case for CO (Figure 3), and also by nitrosylation. To explore nitrosylation as a mechanism for CO-mediated inhibition of hKv1.5, we employed the biotin-switch technique and detected nitrosylation of hKv1.5 protein by CORM-2 but not by iCORM (Figure 3c), indicating that CO does indeed stimulate nitrosylation of hKv1.5.

The observation that CO raises ROS levels (presumably levels of superoxide), as SOD mimetics ameliorated the effects of CO; Figure 2), and also raises NO levels suggests the possibility that peroxynitrite (ONOO⁻⁻) formation occurs in the presence of CO, as we have previously suggested.5,8 In support of this idea, we found that CO increased the level of fluorescence in cells loaded with the ONOO⁻⁻ indicator, 2-[6-(4'-amino) phenoxyl-3H-xanthen-3-on-9-yl]benzoic acid (APF; Figure 4a). These rises were fully attenuated by both L-NAME and the ONOO⁻⁻ scavenger, FeTPPS (Figures 4a and b). Furthermore, pretreatment of cells with FeTPPS strongly attenuated the CO-mediated inhibition of hKv1.5 (Figure 4c).

Exploring the roles of C346 and C331. Based on structural modelling, it has previously been suggested (but not demonstrated) that two cysteine (C) residues within hKv1.5 might be nitrosylated by NO and thereby account for its inhibitory action on the channel.5,8 As much of the effects of CO, as reported here, are mediated by NO formation (Figures 2 and 3), we explored the potential involvement of these two residues, C331 and C346. To do this, we generated C → A (alanine) substitution mutants. As shown in Figure 5, CO was still able to inhibit the activity of the C331A (Figure 5a) and C346A mutant channels (Figure 5b). The degree of inhibition caused by 30 μM CORM-2 (44 ± 8.6%, mean ± S.E.M., n = 5, P < 0.001 for C331A and 47 ± 1.7%,
CO inhibition of Kv1.5K⁺ channels

MM Al-Owais et al

CO reverses H₂O₂ augmentation of Kv1.5. The activity of both native and recombinant Kv1.5 channels has been shown to be augmented by H₂O₂, and this has been proposed as a mechanism by which cardiac metabolism is linked to coronary blood flow. In agreement with these studies, we found that H₂O₂ (300 μM) augmented Kv1.5 activity. This effect was fully reversed by CORM-2 (30 μM), as exemplified in Figure 6a and quantified in Figure 6b. Given the partial prevention of the effects of CO by mitoTEMPO and SOD mimetics, this result suggests that H₂O₂ augmentation of Kv1.5 is an effect strikingly distinct from the formation of superoxide or ONOO⁻ that contribute to CO inhibition of the channel.

Effects of CO in HL-1 atrial cells. To examine the potential for modulation of native Kv1.5 by CO, we employed the atrial cell line, HL-1. Using a voltage protocol designed to isolate IKᵥ (which is attributable to Kv1.5 activity), step-depolarizations evoked outward K⁺ currents that were strongly reduced in amplitude by the Kv1.5 inhibitor DPO-1 (1 μM; Figure 7a). These currents were also inhibited by CORM-2 (Figure 7b), suggesting that CO could inhibit native Kv1.5 channels in HL-1 cells, as it does recombinant Kv1.5 channels. Indeed, 30 μM CORM-2 caused a 49.8 ± 5% (n = 9) inhibition of currents at +50 mV, an effect quantitatively similar to that observed for recombinant channels (Figure 1). Furthermore, CORM-2 also evoked a measurable rise in NO levels in HL-1 cells, an effect that was effectively inhibited by L-NAME (Figure 7c), thereby suggesting an important role for NO in the actions of CO not only in HL-1 cells but also in HEK293 cells expressing hKv1.5.

Under current-clamp conditions, we also recorded spontaneous action potentials in HL-1 cells. We found that CORM-2 (30 μM) significantly increased action potential amplitudes and also increased their duration (Figures 8a and c). Importantly, a similar effect was seen when HL-1 cells were exposed to DPO-1 (Figures 8b and c). Furthermore, in the presence of DPO-1, CORM-2 did not increase the amplitude or duration of currents further (Figures 8b and c), suggesting that both CO and DPO-1 acted at the same site, Kv1.5. These findings suggest that CO inhibition of Kv1.5 may be physiologically significant for atrial excitability.

Discussion

The present study demonstrates that both native and recombinant hKv1.5 K⁺ channels are inhibited by CO. This finding adds to the growing understanding of the complexity of CO signalling in cardiac and other tissues by describing a new ion channel target for regulation. Significantly, it also demonstrates, for the first time, a polymodal means of channel regulation by CO that is summarized in Figure 8d. Previously, we have shown that CO-mediated augmentation of the late cardiac Na⁺ current is NO dependent and involves channel nitrosylation. Peak inward Na⁺ current inhibition by CO is also NO dependent. Inhibition of the cardiac L-type Ca²⁺ current by CO is dependent on mitochondrial ROS production but independent of NO formation. Most recently, we have shown that cardiac ERG (Kv11.1) channels are also inhibited by CO, specifically via the formation of ONOO⁻. The present
study indicates that Kv1.5 is uniquely inhibited by CO acting via all of the aforementioned pathways as well as via cGMP formation, which presumably modifies channel activity via phosphorylation as suggested previously for the effects of NO.30

Each of these distinct means of Kv1.5 regulation by CO can be regarded as potentially important under varying physiological and pathological conditions, not only in the heart but also in the vasculature. Recent studies have provided evidence that H2O2 generated by cardiac myocytes couples cardiac metabolism to coronary flow by activating Kv1.5 channels in coronary VSMCs, which presumably leads to their relaxation (and hence vessel dilation) due to hyperpolarization and reduced Ca2+ influx.33-35 CO raises ROS levels, yet reverses augmentation of Kv1.5 by H2O2 (Figure 6). This finding would suggest that CO-mediated inhibition of Kv1.5 via other mechanisms (e.g., nitrosylation or the sGC/cGMP pathway) can override augmentation by H2O2. This in turn suggests that CO levels may physiologically regulate H2O2-mediated coupling of coronary blood flow to cardiac metabolism.

Figures 2 and 3 indicate that NO formation has an important role in Kv1.5 inhibition by CO. Our findings in this regard are consistent with the study of Nunez et al.30 who demonstrated that NO inhibited recombinant hKv1.5 via nitrosylation and a cGMP-dependent mechanism. The present study shows that CO also activates these pathways by stimulating a rise in NO levels. However, NO formation does not account for all of the effects of CO as detailed here. Although molecular modelling suggested C331 and C346 as candidate cysteine residues for nitrosylation,30 we found that both the C331A and C346A mutants remained sensitive to inhibition by CO (Figure 5). Furthermore, both mutant channels were nitrosylated by CO, suggesting that alternative cysteines in the Kv1.5 channel are preferentially targeted for nitrosylation. Physiologically, this
Figure 5. Mutation of C331 or C346 does not impede CO-mediated inhibition of hKv1.5. (a) Time-series plot (generated by repeated step-depolarizations from −80 to +50 mV (100 ms duration, 0.2 Hz)) obtained from a HEK293 cell stably expressing hKv1.5 containing the C331A mutation. Plot shows normalized peak current amplitudes. For the period indicated by the horizontal bar, the cell was exposed to 30 μM CORM-2. Inset shows example currents recorded before and during CORM-2 application, as indicated. (b) As in panel (a), except currents were recorded from a cell stably expressing hKv1.5 containing the C346A mutation. (c) Nitrosylation of WT and mutant hKv1.5 channels was detected using the biotin-switch assay. Note: nitrosylation of hKv1.5 was only detected in samples treated with CORM-2, not iCORM.

Figure 6. CO reverses H2O2-mediated augmentation of hKv1.5 activity. (a) Left, time-series plot, generated by repeated step-depolarizations from −80 to +50 mV (100 ms duration, 0.2 Hz), obtained from a HEK293 cell stably expressing hKv1.5. Plot shows normalized peak current amplitudes. For the period indicated by the lower horizontal bar, 30 μM CORM-2 was also present. Right, example currents evoked before and during H2O2 application alone or together with CORM-2, as indicated. (b) Bar graph indicating the mean (% ± S.E.M. (n = 5)) percentage change in current amplitude caused by H2O2 alone or together with CORM-2, as indicated. *p < 0.05.
increased AP amplitude and duration in a manner that was both mimicked and occluded by DPO-1. Thus CO regulation of Kv1.5 is potentially of physiological significance for regulating atrial excitability. It may also be of pathological significance, for example, in atrial fibrillation, which is associated with increased expression of HO-1.54,56

In summary, we have demonstrated that CO inhibits both native (mouse) and recombinant (human) Kv1.5 and does so via multiple signalling pathways. Tonic regulation of Kv1.5 by CO is likely to be of physiological relevance in cardiac atria as well as vascular smooth muscle, where it may regulate channel responses to other signalling factors (e.g., H2O2). The significance of Kv1.5 regulation by CO may increase under pathological conditions such as atrial fibrillation and vascular disease due to increased HO-1 expression.

Materials and Methods
Generation and culture of HEK293 cells expressing Kv1.5. Wild-type (WT) human Kv1.5 (KCNA5) cDNA was amplified from a human foetal brain cDNA library (Clontech, Wooburn Green, Buckinghamshire, UK) using the primers: 5′-TGGAATTCACCATGGAGATGCGCCTG-3′ and 5′-GACTCGAGTCACAAA TCTGTTTCCCGTTTCCCG-3′ (Sigma-Aldrich, Gillingham, Dorset, UK) in a touchdown PCR. The 1.7 kb product was cloned using the CloneJET Kit (Thermo Fisher Scientific, Loughborough, Leicestershire, UK) and then subcloned into pcDNA6 (Invitrogen, Loughborough, Leicestershire, UK) using EcoRI and XhoI restriction enzymes (New England Biolabs, Hitchin, Hertfordshire, UK). At each step, clones were confirmed by Sanger sequencing (Genewiz, Bishop’s Stortford, Hertfordshire, UK).

HEK293 cells were cultured in MEM with Earle’s salts and L-glutamine, supplemented with 9% (v/v) fetal calf serum (Globepharm, Esher, Surrey, UK), 1% (v/v) non-essential amino acids, 50 μg/ml gentamicin, 100 units/ml penicillin G, 100 μg/ml streptomycin and 0.25 μg/ml amphotericin in a humidified atmosphere of air/CO2 (19:1) at 37 °C. All cell culture reagents were purchased from Gibco-BRL (Thermo Fisher Scientific) unless otherwise stated. To generate stable HEK293/Kv1.5 cell lines, cells were transfected with either a pcDNA6/Kv1.5(WT) or pcDNA6/Kv1.5 (Mutant) construct using the PolyFect transfection reagent (Qiagen, Hybaid Ltd, Teddington, UK) according to the manufacturer’s instructions. Stable HEK293/Kv1.5 cell lines were achieved by antibiotic selection with blasticidin (5 μg/ml, ThermoFisher Scientific), added to the medium 3 days after transfection. Selection was applied for 4 weeks (media changed every 4–5 days), after which time individual colonies were picked and seeded in T25 flasks and allowed to reach confluence. They were then
CO inhibition of Kv1.5+ channels

MM Al-Owais et al.

The mechanism for the inhibition of Kv1.5 by CO. Data presented suggest CO increases there were no significant differences between the conditions. (Significant difference from control (no drug): ***

Figure 8 CO augments action potentials in HL-1 cells. (a) Spontaneous action potentials (APs) recorded in an example HL-1 cell before (control) and during application of 30 μM CORM-2. Note: CORM-2 increases the AP amplitude and duration. (b) As in panel (a), except that the cell was exposed to DPO-1 (1 μM), then CORM-2 (30 μM) in the continued presence of DPO-1. Note: DPO-1 augments APs and prevents further augmentation by CORM-2. (c) Mean (±S.E.M.) augmentation in AP amplitude (AP amp.; left) and APD50 (right) caused by CORM-2 alone (n = 10), DPO-1 (n = 9) alone or CORM-2 in the continued presence of DPO-1 (both; n = 8). Significant difference from control (no drug): ***P < 0.001, **P < 0.01, *P < 0.05.

There were no significant differences between the conditions. (d) Schematic mechanism for the inhibition of Kv1.5 by CO. Data presented suggest CO increases ROS (presumably superoxide, O2) formation from mitochondria, which may directly regulate Kv1.5, but can also combine with NO (levels of which increase in response to CO) to form peroxynitrite (ONOO-) to cause channel inhibition. Elevated NO levels also directly nitrosylate Kv1.5. CO can also stimulate sGC (an effect that is also promoted by elevated NO levels), which leads to channel phosphorylation.

transferred to T75 flasks for further culture and examination of K+ currents. Cells were harvested from culture flasks by trypsinization and plated onto coverslips 24–48 h before use in electrophysiological studies. Blasticidin selection was maintained throughout the entire cloning process at 5 μg/ml and then subsequently reduced to 2.5 μg/ml in all subsequent passages of cells once stable clones had been positively identified.

The C331A and C346A mutations were introduced into WT human Kv1.5 (hKv1.5, in pcDNA6) using the Quik-Change Site-Directed Mutagenesis Kit (Stratagene, Cheadle, UK) according to the manufacturer’s instructions. All constructs were verified by DNA sequence analysis before transfection.

Culture of HL-1 cells. HL-1 atrial cardiomyocytes were maintained in Clonetics basement (Sigma, UK) supplemented with batch-specific 10% FBS (Sigma, Gillingham), 1% penicillin/streptomycin (Invitrogen), 0.1 mM norepinephrine (Sigma) and 2 mM l-glutamine (Invitrogen). Cells were cultured in flasks, or on coverslips, pretreated with 0.02% Bacto gelatin (Fisher Scientific, Loughborough, UK) and 0.5% fibronectin (Invitrogen).

Exposure to CO. CO was applied to HEK293 cells and HL-1 cells via the CORM, CORM-2. CORM-2 was prepared no longer than 1 h before use by dissolving in dimethylsulphoxide (DMSO) at a stock concentration of 30 mM so that dilution into perfusate or other solutions in which cells were maintained (e.g., electrophysiology, imaging, biotin switch assay) usually resulted in DMSO levels of no more than 1:1000. iCORM, which served as a negative control, was prepared by dissolving CORM-2 identically and leaving in perfusate solution for 2 weeks prior to use, by which time all CO was released and lost from solution.

Electrophysiology. Coverslips with cultured cells were transferred from the incubator into a recording chamber mounted on the stage of an Olympus CK40 inverted microscope (Olympus, London, UK) and continually perfused with bath solution (2–4 ml/min) containing the following: 140 mM NaCl, 4 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 5 mM glucose, buffered with 10 mM HEPES, pH 7.4. Single cells were selected for whole-cell patch-clamp experiments at 22 ± 1 °C. Pipettes were filled with intracellular solution (140 mM KCl, 10 mM NaCl, 4 mM MgCl2, 20 mM EGTA, 10 mM HEPES, pH 7.2) and had a resistance of 4–6 MΩ. Whole-cell voltage-clamp or current-clamp experiments were recorded, digitized and stored with an Axopatch 200B amplifier, Digidata 1322A and pCLAMP 10 respectively (Molecular Devices, Union City, CA, USA).

Series resistance was compensated by 70–90%. If a significant increase in series resistance occurred (>20%), the experiment was terminated. Leak currents were subtracted using the P/4 protocol in the pCLAMP software and voltage-clamp signals were sampled at 50 kHz and low-pass filtered at 20 kHz. I–V relationships were measured by stepping from a holding potential of −90 mV to voltages between −60 and +80 mV in 10 mV increments for 500 ms. Time-series experiments were measured using one single pulse protocol stepping from −90 to +50 mV for 100 ms every 5 s.

HL-1 spontaneous APs were acquired in gap-free mode with no current injected. IKs was recorded as described previously** using 100 ms prepulse to +40 mV to inactivate Ikf, followed by a 150 ms test pulse from −50 to between −40 and +50, then to −30 mV.

Offline analysis was performed using the data analysis package Clampfit 10.0 (Molecular Devices, Foster City, CA, USA), and subsequent fitting and statistical analysis was undertaken using GraphPad Prism 7 (GraphPad Software, La Jolla, CA, USA). Results are presented as means ± S.E.M., with ’n’ representing the number of experiments performed. Statistical significance was evaluated using unpaired Student’s tests where differences were considered significant when the P-value was <0.05.

Biotin-switch assay. Detection of S-nitrosylated hKv1.5 was performed using the biotin-switch assay followed by western blotting as previously described. Briefly, HEK293 cells expressing WT or mutant (C331A or C346A) Kv1.5 were harvested and lysed in a non-denaturing solution (in mM: 50 Tris-HCl, 300 NaCl, 5 EDTA, and 1% Triton-X). Extracts were adjusted to 0.5 mg/ml and incubated with CORM-2 (30 μM) for 15 min at 37 °C; inactive CORM (iCORM, 30 μM) and DMSO were used as controls.

CORM-2 and iCORM were removed and buffered exchanged using desalting spin columns (Thermo Fisher Scientific). From this point, all procedures were carried out in the dark. Lysates were incubated in blocking buffer (in mM: 225 HEPES, 0.9 EDTA, 20 methyl methanethiosulfonate (MTTS), and 2.5% SDS, pH 7.4) for 20 min at 50 °C with agitation. Lysates were subjected to buffer exchange to remove MMTS and eluted in HENS buffer (in mM: 250 HEPES, 1 EDTA, and 1% SDS, pH 7.4) and incubated with 1/3 volume of N-(biotinamido)hexyl[3’-2’-pyridyldithio] propionamido (biotin-HPDP, Pierce, Loughborough, UK) and ascorbate (1 mM) for 1 h at room temperature, followed by buffer exchange to remove biotin-HPDP from the samples. Unless otherwise stated, all buffers were supplemented with protease inhibitor cocktail tablets (Roche, Welwyn Garden City, UK).
Biotinylated proteins were detected via western blotting as described previously.28

Fluorescence detection of nitric oxide (NO) and peroxynitrite (ONOO−). Cells were plated on coverslips and allowed to grow for 48 h at 37°C in a humidified atmosphere containing 95% air and 5% CO2 before being preincubated for 1 h with DAF-2 diacetate (5 μM; Invitrogen), prepared in the following extracellular solution: 140 mM NaCl, 4 mM KCl, 1.5 mM CaCl2, 2 mM MgCl2, 10 mM HEPES, 10 mM glucose, pH 7.4). Cells were then gently washed with extracellular solution and then left for at least 15 min in an incubator to allow the hydrolysis of DAF-2 diacetate into the free NO-sensitive free acid form (DAF-2).

Fragments of coverslip with attached cells were placed on a Zeiss (Oberkochen, Germany) laser scanning confocal microscope (LSM 510) fitted with a × 40 oil immersion lens (Zeiss Plan Neofluar, refractive index of 1.3) and continuously excited with the 488-nm line of a 20-mW diode laser (attenuated by an immersion lens (Zeiss Plan Neofluar, refractive index of 1.3) and continuously excited with the 488-nm line of a 20-mW diode laser (attenuated by an immersion lens). Experimental settings were identical in all test conditions and each experiment was repeated five times. Fluorescence intensity of isolated cells was analyzed using the Image software (by Laboratory for Optical and Computational Instrumentation, Madison, WI, USA) and data are presented as means ± S.E.M.

To detect ONOO−, cells grown on coverslips were incubated for 1 h at 37°C with APF (10 μM) dissolved in HEPES-buffered saline. For L-NAME or FeTPPS experiments, cells were preincubated with either drug at the same time as the APF treatment. Coverslips fragments with cells attached were placed in a chamber (as a single bath set-ups) filled with 200 μl of HEPES-buffered saline containing 10 μM APF. Changes in fluorescence intensity were measured over 10 min using a Zeiss (Oberkochen) laser-scanning confocal microscope (LSM 510). APF was excited at 488 nm and emission monitored at 510 nm, and images were obtained using the Zeiss AIM software. All settings were identical for control and test conditions.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgements

This work was supported by the British Heart Foundation.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1. Ravens U, Wettwer E. Ultra-rapid delayed rectifier channels: molecular basis and therapeutic implications. Cardiovasc Res 2011; 89: 776–785.
2. Chung YH, Shin C, Kim MJ, Lee BK, Cha CI. Immunohistochemical study on the distribution of six members of the Kv1 channel subunits in the rat cerebellum. Brain Res 2001; 895: 173–177.
3. Jou I, Pyo H, Chung S, Jung SY, Gwag BJ, Joe EH. Expression of Kv1.5 K+ channels in activated microglia in vivo. J Cell Physiol 1998; 24: 408–414.
4. Combes N, Bielianska J, Valea-Vargatu A, Serrano-Abarbas L, Marueto L, Gomez D et al. The voltage-dependent Kv1.5 channels and Kv1.5 in human cardiac. Front Physiol 2013; 4: 283.
5. Du JY, Yuan F, Zhao Y, Zhu J, Huang YY, Zhang GS et al. Suppression of Kv1.5 protects against endothelial apoptosis induced by palmitate and in type 2 diabetes mice. Life Sci 2017; 168: 28–37.
6. Zhang S, Liu D, Fan Z, Wang D, Liu Y, Li J et al. Targeted inhibition of survivin with YM155 promotes apoptosis of hypoxic human pulmonary arterial smooth muscle cells via the upregulation of voltage-dependent K+ channels. Mol Med Rep 2016; 13: 3415–3422.
7. Michelakis ED, Thebaud B, Weir EK, Archer SL. Hypoxic pulmonary vasodilation: redox regulation of O2-sensitive K+ channels by a mitochondrial O2-sensor in resistance artery smooth muscle cells. J Mol Cell Cardiol 2004; 37: 1119–1136.
8. Archer SL, Reeves HL, Michelakis E, Puttagunta L, Waite R, Nelson DP et al. O2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase. Proc Natl Acad Sci USA 1999; 96: 7944–7949.
38. Simon JH, Zbierka K, Casadei B. Compromised redox homeostasis, altered nitroso-redox balance and therapeutic possibilities in atrial fibrillation. Cardiovasc Res 2016; 109: 510–518.

39. Kraehling JR, Sessa WC. Contemporary approaches to modulating the nitric oxide-cGMP pathway in cardiovascular disease. Circ Res 2017; 120: 1174–1185.

40. Yoon JY, Zhang J, Zhang Y, Chen H, Liu D, Ping P et al. Oxidative stress in atrial fibrillation: an emerging role of NAJ. J Mol Cell Cardiol 2013; 62: 72–79.

41. Carricero R, Crabtree MJ, Sivakumar V, Casadei B, Kass DA. Nitric oxide synthases in heart failure. Antioxid Redox Signal 2013; 18: 1078–1099.

42. Pothenus DJ, Letier DJ. Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease. Circ Res 2014; 114: 730–737.

43. Andreaou I, Illoidrimitis EK, Rassaf T, Schulz R, Papapetropoulos A, Ferdinandy P. The role of gasotransmitters NO, H2S and CO in myocardial ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning and remote conditioning. Br J Pharmacol 2015; 172: 1587–1606.

44. Graser T, Vedernikov YP, Li DS. Study on the mechanism of carbon monoxide induced endothelium-independent relaxation in porcine coronary artery and vein. Biochem Biophys Acts 1990; 49: 233–296.

45. Johnson RA, Teran FJ, Durante W, Peyton KJ, Johnson FK. Enhanced heme oxygenase-mediated coronary vasodilation in Dahl salt-sensitive hypertension. Am J Hypertens 2004; 17: 25–30.

46. Leffler CW, Parfenova H, Jaggar JH, Wang R. Carbon monoxide and hydrogen sulfide: gaseous messengers in cerebrovascular circulation. J Appl Physiol 2006; 100: 1065–1076.

47. Ryter SW, Alam J, Choi AM. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 2006; 86: 583–650.

48. Chang T, Wu L, Wang R. Inhibition of vascular smooth muscle cell proliferation by chronic hemin treatment. Am J Physiol Heart Circ Physiol 2008; 295: H999–H1007.

49. Otterbein LE, Zuckermann BS, Haga M, Liu F, Song R, Usheva A et al. Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury. Nat Med 2003; 9: 183–190.

50. Durante W, Johnson RA. Role of carbon monoxide in cardiovascular function. J Cell Mol Med 2006; 10: 672–686.

51. Durante W. Heme oxygenase-1 in growth control and its clinical application to vascular disease. J Cell Physiol 2003; 195: 373–382.

52. Foresti R, Bani-Hani MG, Motterlini R. Use of carbon monoxide as a therapeutic agent: promises and challenges. Intensive Care Med 2008; 34: 649–659.

53. Motterlini R, Otterbein LE. The therapeutic potential of carbon monoxide. Nat Rev Drug Discov 2010; 9: 723–743.

54. Comardi D, Callegari S, Maestri R, Benussi S, Bosio S, De PG et al. Heme oxygenase-1 expression in the left atrial myocardium of patients with chronic atrial fibrillation related to mitral valve disease: its regional relationship with structural remodeling. Hum Pathol 2008; 39: 1162–1171.

55. Yeh YH, Kuo CT, Chang GJ, Chen YH, Lai YJ, Cheng ML et al. Rosuvastatin suppresses atrial tachycardia-induced cellular remodeling via Akt/Erk1/2/heme oxygenase-1 pathway. J Mol Cell Cardiol 2013; 62: 84–92.

56. Yeh YH, Hsu LA, Chen YH, Kuo CT, Chang GJ, Chen WJ. Protective role of heme oxygenase-1 in atrial remodeling. Basic Res Cardiol 2016; 111: 58.

57. Peers C, Boyle JP, Scragg JL, Dallas ML, Al-Owais MM, Hettiarachchi NT et al. Diverse mechanisms underlying the regulation of ion channels by carbon monoxide. Br J Pharmacol 2015; 172: 1546–1556.

58. Hettiarachchi NT, Boyle JP, Bauer CC, Dallas ML, Pearson HA, Hans S et al. Peroxynitrite mediates disruption of Ca(2+) homeostasis by carbon monoxide via Cal(2+) ATPase degradation. Antioxid Redox Signal 2012; 17: 744–755.

59. Claycomb WC, Lanson NA Jr., Stalworth BS, Egeland DB, Delcarpio JB, Bahinski A et al. HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci USA 1998; 95: 2979–2984.

60. Lagrutta A, Wang J, Fermini B, Novel Salata JJ. Potent inhibitors of human Kv1.5K+ channels and ultrarapidly activating delayed rectifier potassium current. J Pharmacol Exp Ther 2008; 327: 1054–1063.

61. Peers C, Steele DS. Carbon monoxide: a vital signalling molecule and potent toxin in the myocardium. J Mol Cell Cardiol 2012; 52: 359–369.

62. Peers C. Ion channels as target effectors for carbon monoxide. Exp Physiol 2011; 96: 836–839.

63. Dallas ML, Yang Z, Boyle JP, Boycott HE, Scragg JL, Milligan CJ et al. Carbon monoxide induces cardiac arrhythmia via induction of the late Na+ current. Am J Respir Crit Care Med 2012; 186: 648–656.

64. Eiles J, Dallas ML, Boyle JP, Scragg JL, Duke A, Steele DS et al. Inhibition of the cardiac Na(+) channel Nav1.5 by carbon monoxide. J Biol Chem 2014; 289: 16421–16429.

65. Scragg JL, Dallas ML, Wilkinson JA, Verardi G, Peers C. Carbon monoxide inhibits L-type Ca2+ channels via redox modulation of key cysteine residues by mitochondrial reactive oxygen species. J Biol Chem 2008; 283: 24412–24419.

66. Al-Owais MM, Hettiarachchi NT, Kintron HM, Hardy ME, Boyle JP, Scragg JL et al. A key role for peroxynitrite-mediated inhibition of cardiac ether-a-go-go-related gene (Kv11.1) K+ channels in carbon monoxide-induced arrhythmogenic early afterdepolarizations. FASEB J 2017; (doi:10.1096/fj.201700259R).

67. Carnes CA, Chung MK, Nakayama T, Nakayama H, Baliga RS, Piao S et al. Ascorbate attenuates atrial pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative atrial fibrillation. Circ Res 2001; 89: E32–E38.

68. Lenaerts I, Driessen RB, Hermida N, Holemans P, Heidbuchel H, Janssens S et al. Role of nitric oxide and oxidative stress in a sheep model of persistent atrial fibrillation. Europace 2013; 15: 754–760.

69. Zong H, Kwon DC, Fedda D, Kehl SJ. External K(+) relieves the block but not the gating shift caused by Zn(2+) in human Kv1.5 potassium channels. J Physiol 2001; 532: 343–358.

70. Gao Z, Lau CP, Chiu SW, Li GR. Inhibition of ultra-rapid delayed rectifier K+ current by verapamil in human atrial myocytes. J Mol Cell Cardiol 2004; 36: 257–263.

71. Forrester MT, Foster MW, Benihar M, Stantler JS. Detection of protein S-nitrosylation with the biotin-switch technique. Free Radic Biol Med 2009; 46: 119–126.

Cell Death and Disease is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The Author(s) 2017