Non-universal ordering of spin and charge in stripe phases

Frank Krüger and Stefan Scheidl
Institut für Theoretische Physik, Universität zu Köln, Zülpicher Str. 77, D-50937 Köln, Germany
(Dated: January 9, 2022)

We study the interplay of topological excitations in stripe phases: charge dislocations, charge loops, and spin vortices. In two dimensions these defects interact logarithmically on large distances. Using a renormalization-group analysis in the Coulomb gas representation of these defects, we calculate the phase diagram and the critical properties of the transitions. Depending on the interaction parameters, spin and charge order can disappear at a single transition or in a sequence of two transitions (spin-charge separation). These transitions are non-universal with continuously varying critical exponents. We also determine the nature of the points where three phases coexist.

PACS numbers: 64.60.-i, 74.72.-h, 75.10.-b

High-T_c compounds fascinate not only because of superconductivity but also because of a variety of concurring orders. In particular, theoretical [1] and experimental [2] evidence has been found for stripes. Holes which are induced by doping condense into arrays of parallel rivers in the CuO$_2$ layers. Within a layer, each river acts as a boundary between antiferromagnetic domains with opposite sublattice magnetization. Thus, stripes are a combined charge- and spin-density wave.

Based on charge density and magnetization as order parameters, it is instructive to analyze the interplay of orders in the framework of a Landau theory [3]. However, in low dimensional structures fluctuations can be crucial for the nature of phases and of phase transitions. In particular, fluctuations play a central role (i) for spin-charge separation, i.e., the phenomenon that charge order emerges at higher temperatures than spin order (as observed in cuprates [4] as well as in nickelates [5]) and (ii) for the anomalous properties of the cuprates near optimum doping [4]. To account for collective low-energy excitations of the electronic system, continuous deformations of perfect stripe order (spin waves or smooth stripe displacements) as well as topological defects (such as dislocations, vortices, or skyrmions) must be considered. The latter were found to induce transitions between various liquid-crystal like electronic phases [7]. Besides transitions which are related to a degradation of the charge and spin structure factors, Zaanen et al. [8] have suggested a further transition characterized by a less accessible, intrinsically topological order.

In this Letter we present a paradigmatic model which is amenable to a largely analytical analysis of the interplay between charge and spin orders. Motivated by the weakly coupled layered structure of the materials, we restrict our analysis to two dimensions. Since the relevant materials typically have a planar spin anisotropy, the out-of-plane component of the spins is neglected. Assuming quantum fluctuations to be weak in comparison to thermal fluctuations we treat all degrees of freedom as classical. In the framework of a renormalization-group approach we establish the phase diagram and the nature of the phase transitions. The latter are driven by three classes of topological defects (cf. Fig. 1): mixed defects combining a dislocation in the charge-density wave with a half-vortex, charge loops (with a Burger’s vector of two stripe spacings) and entire vortices [8].

We identify four different phases (cf. Fig. 2), depending on which types of topological defects proliferate. In phase I there are no free defects. In phase II only vortices, in phase III only charge loops and in phase IV all types of defects are present. We characterize these phases by the range of charge order (CO), spin order (SO) and collinear order (LO). The phases are separated by transition lines along which the correlation functions decay with non-universal, continuously varying exponents. Slightly above the temperature T_1 of the transition out of phase I, the short-ranged orders have a correlation length $\xi \sim \exp\{c(T - T_1)^{-\nu}\}$ with $\nu = \frac{2}{3}$ except for the triple points $P_{1,2}$ (cf. Fig. 2) with $\nu = \frac{2}{5}$.

To be specific, we assume that the stripes are parallel to the y direction with a spacing a. In the ground state, the charge density is modulated with a wave vector $\mathbf{q} = (2\pi/a, 0)$. In the absence of dislocations, the stripe conformations can be described by a single-valued displacement field \mathbf{u} (u, 0) and the domains between the stripes can be labeled by the function $\theta(\mathbf{r}) \equiv \mathbf{q} \cdot (\mathbf{r} - \mathbf{u}) + \sum_{m \neq 0} \frac{1}{|m|} e^{i m \theta(\mathbf{r} - \mathbf{u})}$ which increases by 2π across a stripe. The charge density is located at the domain boundary and can be expressed as $\rho(\mathbf{r}) = \frac{1}{4\pi} \partial_x \theta(\mathbf{r})$.
tions are wave-like and governed by the Hamiltonian

\[S \sim \sin \Phi(r) \]

with spin and charge stiffness constants \(J_\alpha \) (with \(\alpha = s, c \), respectively). The structure factors \(S_p(r - r') \equiv \langle \sigma(r) \cdot \sigma(r') \rangle \) and \(S_s(r - r') \equiv \langle \delta(r) \cdot \delta(r') \rangle \) decay algebraically, \(S_p(r) \sim r^{-\eta_p} \) with \(\eta_p = 1/(2\pi K_s) \) and \(S_s(r) \sim \cos[(Q + \frac{1}{2}) \cdot r] r^{-\eta_s} \) with \(\eta_s = 1/(2\pi K_c) + 1/(8\pi K_s) \). We define the reduced stiffness constants \(K_{s,c} = J_\alpha / T \).

In analogy to the Kosterlitz-Thouless (KT) transition \([11, 12]\), the presence of topological defects affects a screening of the stiffness constants. If neutral defect clusters unbind, these constants are renormalized to zero. For suitable values of the stiffness constants charge-loop pairs unbind as only type of defects (phase III). Then both \(S_p \) and \(S_s \) decay exponentially. To distinguish this phase from phase IV where all defects are free, an additional correlation function is necessary. For this purpose, Zaanen et al. \([3, 4]\) have suggested a highly nonlocal correlation function involving spin and charge. As a simpler and probably more physical alternative, we propose

\[C_{s,c}(r - r') \equiv 2 \langle (\vec{\sigma} \cdot \vec{\sigma}')^2 \rangle - 1 \]

which measures the spin collinearity and has the advantage of being local and being defined entirely in terms of spin variables. Collinearity is insensitive to continuous stripe displacements and to loops since the spin ground state remains collinear in the presence of such excitations. In the absence of topological defects in the spin sector (in phase I and III), spin waves lead to an algebraic decay of collinear order (LO), \(C_{s,c}(r) \sim r^{-\eta_{s,c}} \) with \(\eta_{s,c} = 2/(\pi K_{s,c}) \).

We now calculate the mutual screening of the defects which, in two dimensions, interact logarithmically on large distances. Therefore, their interactions can be captured by a Coulomb-gas formulation

\[H_{\text{top}} = \sum_{i \neq j} \sum_{\alpha = s,c} \pi J_{\alpha} m_{i\alpha} m_{j\alpha} \ln \frac{|r_i - r_j|}{a}, \]

for topological vector charges \((m_s, m_c)\) at positions \(r_i \). Additional core energies of such vector charges give rise to bare fugacities \(y_i = \exp(-\pi C(K_s m_s^2 + K_c m_c^2)) \). \(C \) is a constant of order unity \([1] \). Vortices have a vector charge \((m_s, m_c) = (\pm 1, 0)\) and a fugacity \(y_v = \exp(-\pi C K_s) \), and loops are characterized by \((m_s, m_c) = (0, \pm 2)\) and \(y_l = \exp(-4\pi C K_c) \). Dislocations have vector charges \(|m_c| = 1\) and \(|m_s| = \frac{1}{2}\) and fugacities \(y_d = \exp(-\pi C(K_c + K_s/4)) \). Defects of higher charges are negligible for the critical aspects of the phase diagram.

We follow the renormalization approach developed by Kosterlitz \([1] \) for the usual scalar Coulomb gas and generalized to vector gases in different contexts \([2, 3]\). The charges are assigned a hard-core cutoff \(a \) which is increased to \(\bar{a} = ae^{dl} \) under an infinitesimal coarse graining. Thereby, pairs of vector charges at a distance \(a \) annihilate each other if they have opposite charges; otherwise they recombine to a single non-vanishing vector charge. This coarse graining procedure leads to scale dependent stiffness constants and fugacities, for which we obtain the flow equations

\[\frac{dK_{s,c}}{dl} = 2 \pi^2 (y_s^2 + y_c^2), \]

\[\frac{dK_s}{dl} = 8 \pi^3 (y_s^2 + y_c^2), \]

\[\frac{dy_v}{dl} = (2 - \pi K_s) y_v + 2 \pi y_v^2, \]

\[\frac{dy_l}{dl} = (2 - 4 \pi K_c) y_l + 2 \pi y_l^2, \]

\[\frac{dy_d}{dl} = \left(2 - \frac{\pi}{4} (K_s + 4 K_c)\right) y_d + 2 \pi (y_v + y_l) y_d. \]

They are invariant under the mapping \((K_c, K_s, y_v, y_l) \rightarrow (K_s, 4 K_c, y_v, y_l)\). A qualitative

FIG. 2: Phase diagram. Thin dashed lines show where defects would become relevant for vanishing fugacities. For finite bare fugacities \([4] \), the transitions are located at the bold lines. Phase I has no free defects and therefore \(\text{CO, SO, and LO} \) exist. In phase II, vortices proliferate and destroy \(\text{SO} \). In phase III, free loops are present, destroying \(\text{CO} \) and \(\text{SO} \). Eventually, all orders are absent in phase IV.

\[\pi J_s(0)/T \]

\[\pi J_s(0)/T \]
understanding of the phase diagram can be obtained from the rescaling contributions linear in the fugacities to the flow equations. Vortices proliferate for $\pi K_\sigma < 2$ and loops for $4\pi K_c < 2$. Furthermore, for $\frac{\pi}{4}(K_\sigma + 4K_c) < 2$ dislocations become relevant. The corresponding borders are shown in figure Fig. 2 as dashed lines.

In order to include the terms quadratic in the fugacities, the flow equations have to be integrated numerically. In phase I all fugacities tend to zero as $l \to \infty$ and K_σ and K_c are renormalized to finite values $K_\sigma(\infty)$ and $K_c(\infty)$ smaller than the initial ones. The defects can be considered as being bound in local clusters of vanishing total charge. Their fluctuations enhance the wave excitations such that CO, SO, and LO are quasi-long ranged: S_ρ, S_σ, and C_\parallel decay algebraically like in the absence of defects. The exponents η are given by the expressions given after Eq. (1) if the bare stiffness constants are replaced by the renormalized ones. Since the boundary of phase I flows to a line of fixed points (dashed lines in Fig. 2 for zero fugacities) with continuously varying values of the renormalized stiffness constants, the transition in non-universal with exponents given in Tab. [I].

CO	SO	LO	ν
$\eta_\sigma \leq \frac{1}{4}$	$\eta_\sigma \leq \frac{1}{4}$	$\eta_\sigma = 1$	$\eta_\sigma = 1$
$\eta_1 = 1$	$\eta_2 = \frac{1}{4}$	$\eta_\sigma = \frac{1}{4}$	
$\eta_\sigma \leq \frac{1}{4}$	$\eta_\sigma = \infty$	$\eta_\sigma = \infty$	
$\eta_1 = \frac{1}{4}$	$\eta_2 = \frac{1}{4}$	$\eta_\sigma = \frac{1}{4}$	
$\eta_1 = \infty$	$\eta_2 = \infty$	$\eta_\sigma = \frac{1}{4}$	

TABLE I: Values of the exponents η, ν at the phase transitions. Orders that become short-ranged at a transition line (η jumps to infinity) are marked by an asterisk.

Outside phase I, at least one fugacity increases with the scale. Since our flow equations are valid only for small fugacities, they can be evaluated outside the ordered phase only up to a finite scale l^* where some fugacity becomes of the order of unity. The divergence of a fugacity drives one or both stiffness constants to zero. A divergence of the renormalized exponent η then signals short-ranged order with a finite correlation length, which scales like $\xi \sim a e^\eta$ sufficiently close to phase I. Although the divergence of fugacities hints at the nature of the phases II, III, and IV, the precise shape of these phases is determined by strong coupling (large fugacity) regimes beyond the validity of Eqs. (1).

In phase II, vortices proliferate and the spin stiffness K_c is renormalized to zero. This leads to a destruction of the spin and the collinear order, since the exponents η_σ and η_\parallel are infinite. The corresponding correlation functions decay exponentially, $S_\sigma \sim C_\parallel \sim \exp(-r/\xi)$. Since K_c is renormalized to zero, the interaction in the spin sector effectively breaks down. Nevertheless, dislocations and loops are still coupled in the charge sector and can remain bound for sufficiently large K_c. Then also charge order remains quasi-long ranged with finite η_ρ.

In phase III loop pairs unbind and the charge stiffness K_c is renormalized to zero, leading to $\eta_\rho = \eta_\sigma = \infty$ and therefore to a short ranged spin and charge order. The spin order is destroyed by the arbitrarily large fluctuations of the domain walls. Since K_s is screened only by bound vortices and dislocations, η_s remains finite and quasi-long ranged collinear order is preserved.

In phase IV the proliferating dislocations obviously render all correlations short ranged, $S_\sigma \sim S_\rho \sim C_\parallel \sim \exp(-r/\xi)$.

As pointed out above the precise location of the transitions between phases II and IV and phases III and IV cannot be obtained by the weak coupling (low fugacity) flow equations. Nevertheless, we now present qualitative arguments for their location, focusing on the example of the transition II/IV. In the limit $K_s(0) = 0$ the interaction in the charge sector is simply switched off. Nevertheless, loops and dislocations interact in the charge sector; the former stronger than the latter. Therefore, the transition (point Q_1 with $K_s(\infty) = 2/\pi$) is driven by the unbinding of the dislocations. At this point loops are irrelevant and the transition belongs to the KT universality class. When the bare K_s is increased, it is renormalized to zero by free vortices and the transition occurs practically at the same value of K_c as long as $K_s \lesssim 2/\pi$. When K_s increases to the value where vortices start to bind, the transition line II/IV reaches the point P_1 at a smaller value of K_c since dislocations start to be stabilized by the additional interaction in the spin sector. The situation for the transition line between the phases III and IV is similar, in this case the interaction of the charge components of the mixed defects is screened by the proliferating charge loops.

At the triple points $P_{1,2}$ the critical properties are governed by the balanced competition between two types of defects which can recombine into each other. Therefore, these points do not belong to the universality class of the KT transition. Due to the symmetry of the flow equations we concentrate on point P_2. There one can neglect y_s to a good approximation and the conditions $y_1 = y_d$ and $K_s = 12K_c$ (thin dotted line in Fig. 3 top) are conserved under the flow. In this case the flow equations for $Y := 2\pi\sqrt{\rho y_d}$ and the small variable $x := \frac{1}{2\pi\rho} - 2$ read $\frac{dx}{dy} = Y^2$ and $\frac{dy}{dy} = 2Y + \frac{1}{8}\sqrt{6}Y^2$. Following Refs. [13], these differential equations can be solved analytically and result in a critical exponent $\nu = \frac{2}{3}$.

Thus, the exponent ν is discontinuous along the border of phase I. While this discontinuity describes the divergence of ξ in the thermodynamic limit, it is unlikely to be seen in samples of finite size. For large but finite systems sizes, ξ appears to diverge with an effective exponent ν_{eff} which appears to vary continuously in the range
0.4 ≲ νeff ≲ 0.5. We have analyzed the divergence of ξ from a numerical integration of the flow equations up to lmax = 10^3 which corresponds to astronomically large scales. The resulting νeff (cf. Fig. 3) shows a notch of a relatively small width which can become substantially larger for smaller values of lmax.

From the phase diagram of our model several scenarios of spin-charge separation are possible. At low temperatures the stripe phase I is realized. (i) For Jc > 3/4 Js, there occur two distinct transitions with increasing temperature: first into phase II (loss of SO and LO), then into phase IV (loss of CO). This scenario is observed in experiments [1, 2]. (ii) For 1/12 Js < Jc < 3/4 Js there is a single transition from phase I to phase IV where all orders disappear simultaneously. (iii) For Jc < 1/12 Js, CO and SO disappear at the same temperature of the phase transition I/III while LO disappears only at an even higher temperature at the transition III/IV. The relation between Js and Jc – which determines the scenario – can be tuned by doping. With increasing doping, the shrinking stripe distance should lead to a significant increase of Jc, whereas Js should change only weakly since it is essentially determined by the antiferromagnetic exchange coupling. Therefore, in principle, the last scenario could be realized and the transition III/IV should be detectable for example by polarized neutron scattering.

In conclusion, we have examined a model for coupled spin and charge order in stripe phases. We have shown that the transition between the various phases are non-universal. We have identified collinearity as a physical quantity that allows to discriminate between phases III and IV. Several interesting questions invite to future investigations, in particular the properties of related quantum critical points at zero temperature and the influence of disorder (see also [16] on the nature of ordering.

The authors benefited from stimulating discussions with D. E. Feldman and thank S. Bogner for a critical reading of the manuscript. This work was supported by Deutsche Forschungsgemeinschaft SFB 608.

[1] H. J. Schulz, J. Physique 50, 2833 (1989); J. Zaanen and O. Gunnarsson, Phys. Rev. B 40, 7391 (1989); V. J. Emery, S. A. Kivelson, and H.-Q. Lin, Phys. Rev. Lett. 64, 475 (1990).
[2] S.-W. Cheong, G. Aeppli, T. E. Mason, H. Mook, S. M. Hayden, P. C. Canfield, Z. Fisk, K. N. Clausen, and J. L. Martinez, Phys. Rev. Lett. 67, 1791 (1991); T. E. Mason, G. Aeppli, and H. A. Mook, Phys. Rev. Lett. 68, 1414 (1992); S. M. Hayden, G. H. Lander, J. Zaretsky, P. J. Brown, C. Stassis, P. Metcalf, and J. M. Honig, Phys. Rev. Lett. 68, 1061 (1992); C. H. Chen, S.-W. Cheong, and A. S. Cooper, Phys. Rev. Lett. 71, 2461 (1993).
[3] O. Zachar, S. A. Kivelson, and V. J. Emery, Phys. Rev. B 57, 1422 (1998).
[4] J. M. Tranquada, B. J. Sternlieb, J. D. Ahe, Y. Nakamura, and S. Uchida, Nature (London) 375, 561 (1995); T. Niemöller, N. Ichikawa, T. Frello, H. Hünefeld, N. H. Andersen, S. Uchida, J. R. Schneider, and J. M. Tranquada, Eur. Phys. J. B 12, 509 (1999).
[5] J. M. Tranquada, D. J. Buttrey, and V. Sachan, Phys. Rev. B 54, 12318 (1996); S.-H. Lee and S.-W. Cheong, Phys. Rev. Lett. 79, 2514 (1997).
[6] T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999).
[7] S. A. Kivelson, E. Fradkin, and V. J. Emery, Nature (London) 393, 550 (1998).
[8] J. Zaanen, O. Y. Osman, H. V. Krius, Z. Nussinov, and J. Tworzydlo, Phil. Mag. B 81, 1485 (2001).
[9] In our numerical calculations, we use bare fugacities with $C = \frac{1}{\ln(8e^{2\gamma})}$ with Euler’s constant γ, corresponding to a representation of the model on a square lattice [1].
[10] J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1811 (1973).
[11] J. M. Kosterlitz, Physica C 7, 1046 (1974).
[12] J. Zaanen and W. van Saarloos, Physica C 282, 178 (1997).
[13] D. R. Nelson, Phys. Rev. B 18, 2318 (1978); B. I. Halperin and D. R. Nelson, Phys. Rev. Lett. 41, 121 (1978); A. P. Young, Phys. Rev. B 19, 1855 (1979).
[14] J. L. Cardy and S. Ostlund, Phys. Rev. B 25, 6899 (1982).
[15] In phase II, very close to phase I, the flow equations [8] show that y_c becomes of order 1 first. On larger scales, the flow equations are no longer reliable. They would suggest that the divergence of y_c entails the divergence of y_D and thus the destruction of all orders. On physical grounds one expects that the strong coupling limit should be described by $K_0 = 0$ where the coupling of y_c to the other defects becomes meaningless.
[16] O. Zachar, Phys. Rev. B 62, 13836 (2000); S. Bogner and S. Scheidl, Phys. Rev. B 64, 054517 (2001).