Detection of circulating IgG antibodies to apolipoprotein B\textsubscript{100} in acute myocardial infarction

Xueying Zhang\textsuperscript{a,b}, Xiaohong Zhang\textsuperscript{b}, Mingming Lei\textsuperscript{b}, Yingzi Lin\textsuperscript{b}, Ian L. Megson\textsuperscript{c}, Jun Wei\textsuperscript{c}, Bo Yu\textsuperscript{a,\textasciitilde}, Yuanzhe Jin\textsuperscript{b,\textasciitilde}

\textsuperscript{a}Department of Cardiovascular Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
\textsuperscript{b}Department of Cardiovascular Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
\textsuperscript{c}Department of Diabetes & Cardiovascular Science, University of the Highlands & Islands, Centre for Health Science, Inverness IV2 3JH, UK

Keywords: Acute myocardial infarction; ApoB\textsubscript{100}; oxLDL; Antibody; Atherosclerosis

Abstract

A number of studies have reported an association between increased levels of antibodies against oxidized low-density lipoprotein (oxLDL) and cardiovascular disease, but the anti-oxLDL antibody has not been confirmed to serve as an effective biomarker for prediction of acute myocardial infarction (AMI). Apolipoprotein B\textsubscript{100} (ApoB\textsubscript{100})-derived peptide fragments generated by proteolytic degradation and aldehyde modification are the major antigens in oxLDL, and so the present work was undertaken to detect circulating IgG for Apo-B\textsubscript{100}-derived peptide antigens. An in-house enzyme-linked immunosorbent assay (ELISA) was developed with eight ApoB\textsubscript{100}-derived peptide antigens (Ag1–Ag8) to detect circulating anti-ApoB\textsubscript{100} IgG levels in 267 patients with AMI and 201 control subjects. Binary logistic regression analysis revealed that circulating IgG for Ag1 was significantly higher in the patient group than the control group (\(P < 0.001\)) after adjustment for age, gender, smoking, hypertension, diabetes and circulating levels of cholesterol, HDL, ApoA and ApoB\textsubscript{100}. None of the other seven antigens detected an increase in IgG levels in AMI patients compared with control subjects. Spearman correlation analysis showed no correlation between IgG antibody for Ag1 and clinical characteristics. In conclusion, the linear peptide antigens derived from ApoB\textsubscript{100} may be suitable for the development of an ELISA antibody test for prediction of AMI, although further confirmation is still needed in large-scale clinical studies.

1. Introduction

Acute myocardial infarction (AMI) is defined as myocardial cell death due to prolonged ischemia [14], characterized mainly by rupture or erosion of coronary atherosclerotic plaque and subsequent complete or incomplete occlusive thrombosis. Patients can be diagnosed as having AMI when they have increased blood concentrations of sensitive and specific biomarkers, such as circulating troponin or the membrane-bound fraction of creatinine kinase [30]. AMI is the leading cause of death in coronary heart disease, but there are still no effective biomarkers available for prediction of AMI or identification of unstable coronary plaques. Atherosclerosis of coronary arteries is the main cause of AMI. Sub-endothelial retention of low-density lipoprotein (LDL) on account of accumulation of the oxidized form of LDL (oxLDL) in macrophages and formation of foam cells as a critical early event in atherogenesis [10,17]. Many immunocytochemical studies have identified both oxLDL epitopes and anti-oxLDL immunoglobulins within atherosclerotic lesions [36]. Normal levels of oxLDL are as low as 0.1 ng/\mu g LDL protein in healthy people [13], making measurement difficult. In addition, spot oxLDL measurements only provide a snap-shot of concentration at a particular moment and are likely to be susceptible to extraneous factors, including diet, smoking and exercise. However, the oxidative modification of LDL leads to the formation of immunogenic epitopes that can induce the secretion of specific antibodies against oxLDL [29,1]. Circulating antibodies against oxLDL represent a durable measure of lipid peroxidation [21].
Circulating anti-oxLDL antibodies are natural antibodies that can be detected almost in every individual, and the concentrations of anti-oxLDL antibodies often peak just before the onset of clinical disease [32]. There are numerous studies demonstrating the association between circulating anti-oxLDL antibodies and cardiovascular disease, but the results reported to date have been inconsistent. Some studies have determined a positive correlation between the levels of circulating anti-oxLDL antibodies and atherosclerotic diseases, whereas others have shown an opposite result [3,12,11,33,16,2,34]. The reasons for inconsistent findings may be due to the difficulties in standardizing the LDL antigens used for testing of antibodies to oxLDL, which can also be altered on account of oxidation ex vivo [11,20]. An approach to overcome the problem of standardization is to detect antibodies against specific native or MDA-modified ApoB100 peptide sequences [5,4,19].

ApoB100 is the only component permanently associated with formation of LDL in the body. Its peptide fragments generated by the proteolytic degradation and aldehyde-modification are the major antigens in oxLDL [25]. These antigens have the advantage of being specific to oxLDL for the unique amino acid sequence. The mature ApoB100 protein is composed of 4563 amino acids in a single polypeptide chain that may carry many human leukocyte antigen (HLA)-restricted epitopes. The present work was thus undertaken to develop an in-house enzyme-linked immunosorbent assay (ELISA) with ApoB100-derived linear peptide antigens to detect circulating IgG antibodies against these linear peptides in AMI.

2. Methods

2.1. Subjects

A total of 267 patients who were diagnosed with AMI between January 2012 and January 2014 were recruited by the Department of Cardiovascular Medicine, Fourth Affiliated Hospital of China Medical University, Shenyang, China. Of these 267 patients aged 60.89 ± 11.01 years, 200 were male and 67 were female. They were all diagnosed with spontaneous AMI (namely type 1) based on the Third Universal Definition of Myocardial Infarction published by the European Society of Cardiology [31], including both ST-elevation myocardial infarction and non-ST-elevation myocardial infarction, one of whom had atrial septal defect without any symptom and treatment. All patients who had coronary imaging data underwent assessment for the severity of coronary heart disease by calculating the Gensini score of the coronary lesions [7]. Blood samples were taken from each patient within 24 h of the onset of AMI. Two hundred and one healthy subjects aged 59.44 ± 5.43 years were also recruited as controls from local communities, of whom 136 were male and 65 were female. Clinical interview and biomarker detection were applied to rule out those subjects who had history of AMI and other atherosclerotic cardiovascular diseases. The subjects who had malignant tumor(s), rheumatic and connective tissue diseases, organ transplantation or were long-term recipients of immunosuppressive drugs were excluded from this study. The main clinical characteristics of these subjects are listed in Table 1. All subjects were of Chinese Han origin and all gave written consent to participate in this study as approved by the Ethics Committee of the Fourth Affiliated Hospital of China Medical University and conformed to the requirements of the Declaration of Helsinki.

2.2. Autoantibody testing

Eight human ApoB100-derived peptide antigens (hAgs) were designed, based on the computational prediction of HLA-II restricted epitopes, 6 of which have been used in our previous study [37]. A control antigen (cAg) was also designed based on a maize protein (NCBI accession 1BFA_A). Information of these 9 peptide antigens is detailed in Table 2. An in-house ELISA test for the detection of circulating IgG antibodies to ApoB100 was performed as described in our previous study [37]. In brief, Corning 96-Well Microtiter EIA Plates (ImmunoChemistry Technologies, USA) were half-coated in 0.1 ml/well of each hAg and half-coated in 0.1 ml/well cAg. After overnight incubation at 4 °C, antigen-coated plates were washed three times with wash buffer (PBS containing 0.1% Tween-20), 100 µl serum sample diluted 1:150 in assay buffer (DS9820, Life Technologies) was added to each sample well and 100 µl assay buffer was also added to the negative control (NC) wells. Following 1.5 h incubation at room temperature, the plate was washed three times and 100 µl peroxidase-conjugated goat antibody to human IgG (AB6676, Sigma–Aldrich) diluted 1:30,000 in wash buffer was added to each well. After incubation at room temperature for an hour, color development was initiated by adding 100 µl Stabilized Chromogen (SB02, Life Technologies) and terminated 20 min later by adding 50 µl of stop solution (SS04, Life Technologies). The measurement of optical density (OD) was performed on a microplate reader within 10 min at 450 nm with a reference wavelength of 620 nm. Each sample was tested in duplicate. To reduce the interference from a nonspecific signal produced by passive absorption of various IgG antibodies in serum to the surface of 96-well microplate, a specific binding index (SBI) was used to express the levels of circulating antibodies to these 8 hAgs. SBI was calculated as follows: SBI = (ODhAg − ODNC)/(ODcAg − ODNC).

| Table 1 | Clinical characteristics of patients with AMI and control subjects. |
|---------|---------------------------------------------------------------|
| Characteristics | AMI (n = 267) | Control (n = 201) | P value |
| Sex (Male) | 200 (74.9%) | 136 (67.7%) | 0.085 |
| Age (years) | 60.9 ± 11.0 | 59.4 ± 5.4 | 0.086 |
| Smoker (%) | 160 (59.9%) | 67 (34.1%) | <0.001 |
| Drinker (%) | 77 (28.8%) | 42 (21.1%) | 0.072 |
| Hypertension (%) | 138 (51.7) | 62 (21.4) | <0.001 |
| Diabetes (%) | 71 (26.6%) | 30 (15.1%) | 0.044 |
| Obesity (%) | 39 (13.7%) | 38 (19.0%) | 0.666 |
| SBP (mmHg) | 129.2 ± 22.9 | 130.9 ± 18.1 | 0.400 |
| DBP (mmHg) | 77.5 ± 14.5 | 80.0 ± 10.4 | 0.406 |
| Heart rate (ppm) | 73.2 ± 15.8 | 76.2 ± 11.6 | 0.021 |
| BMI | 24.7 ± 3.7 | 25.3 ± 3.1 | 0.083 |
| Cholesterol (mM) | 4.50 ± 1.09 | 5.27 ± 0.97 | <0.001 |
| Triglyceride (mM) | 1.09 ± 0.28 | 1.91 ± 0.92 | 0.153 |
| HDL (mM) | 1.01 ± 0.25 | 1.29 ± 0.33 | <0.001 |
| LDL (mM) | 3.02 ± 0.96 | 3.13 ± 0.81 | 0.242 |
| ApoA (mM) | 0.92 ± 0.43 | 1.34 ± 0.22 | <0.001 |
| ApoB (mM) | 0.73 ± 0.38 | 0.91 ± 0.18 | <0.001 |
| Gensini score | 55.2 ± 26.7 | 52.2 ± 26.7 | 0.472 |

Table 1: Characteristics of patients with AMI and control subjects.

| Table 2 | Apo-B derived peptide antigens used. |
|---------|-----------------------------------|
| Antigen | Sequence of antigen | Position of amino acid |
| Ag1 | H-DREFRTEGSLALIKGTRPLSTLIS-OH | 213–240 |
| Ag2 | H-LQLMRLKHANPILDFLDVYLYVAILPEPS-OH | 395–422 |
| Ag3 | H-TLFDOSAPGCDKLLAYMLMLRMSIPQA-OH | 547–572 |
| Ag4 | H-DVMDKFRSKRNYQKLYTSLPSIDP-OH | 626–650 |
| Ag5 | H-KIKGVSIPRQEAESELHASHWPAK-OH | 1119–1147 |
| Ag6 | H-DMDTRWYVSRLVFM33GQHP3GCLPSLY-OH | 1220–1247 |
| Ag7 | H-SCKLFRDIEQYVYKULIFSTSTNAT-UHC | 3760–3785 |
| Ag8 | H-FLYITELKLLQSTTVMNPMYKAPLCE-OH | 4531–4560 |
| cAg | H-HAc4GLRHDLPLCGFPRQGFGAATLVTNH-OH | |

| Abbreviation: Ag, antigen; cAg, control antigen from a maize protein. |
2.3. Data analysis

All antibody testing data were expressed as mean ± standard deviation (SD). Student’s t-test was initially applied to detect the differences in SBI between the patient group and the control group; binary logistic regression was then used to analyze the differences in antibody levels for an antigen of interest between the patient group and the control group, with adjustment for multiple potential confounders listed in Table 1. Spearman correlation analysis was used to test the correlation between the anti-ApoB100 IgG levels and clinical characteristics. Because eight antigens were used to develop the in-house antibody testing, the significance level was set at \( P = 0.006 \). To minimize intra-assay deviation, the ratio of the difference between duplicate sample OD values to their sum was used to assess the assay accuracy. If the ratio was found to be >15% for a given sample, the test for that sample was considered to be invalid and the test was repeated. The inter-assay deviation that represents the reproducibility of the in-house ELISA test was estimated using SBI tested with pooled serum samples, namely quality control (QC) samples that were randomly collected from 100 healthy subjects and tested on every 96-well plate. The coefficient of variation (CV) from the test of QC samples was then worked out based on their mean SBI and SD. The in-house ELISA test was considered as being repeatable when CV <20%.

3. Results

As shown in Table 1, there was no significant difference in gender, age, alcohol consumption, obesity, triglyceride levels or LDL between patients with AMI and control subjects. However, AMI patients were more likely to have high rates of smoking, hypertension and diabetes than controls, but lower heart rate, serum cholesterol, high density lipoprotein (HDL), ApoA and ApoB. Increased IgG levels were not detected for any of the other seven antigens in patients with AMI as compared with control subjects (Table 3).

Analysis of QC samples showed that the inter-assay deviation was less than 20% for all eight individual antibody tests (Table 4). Spearman correlation analysis showed no correlation between IgG antibody for Ag1 and clinical characteristics (Table 5).

4. Discussion

There are differences in many clinical characteristics between AMI patients and control subjects. For example, the incidence of smoking, hypertension and diabetes are significantly higher in the patient group than the control group, all of which have been recognized as traditional risk factors of AMI for several decades [38]. Heart rate, serum cholesterol, HDL, ApoA and ApoB are significantly lower in AMI patients than control subjects (Table 1), which may be caused by the characteristics of the disease and the administration of β-blockers and statins. However, no correlation between anti-ApoB100 IgG levels and clinical characteristics was found (Table 5), suggesting that the IgG antibody levels are independent of the clinical states.

Circulating antibodies to oxLDL and ApoB100 have been studied for many years in coronary heart disease and other atherosclerotic diseases [28,24,23,15,22,8]. The increased levels of circulating antibodies to oxLDL promote the formation of immune complexes with oxLDL, which could adhere to the artery intima and cause damages to the endothelium [35]. It has been shown that increased levels of circulating antibodies to oxLDL may be regarded as predictors of atherosclerosis and ACS [18], while the highest anti-oxLDL IgG levels were observed in patients with multi-vessel CAD [9]. In fact, increased anti-oxLDL antibody levels appear to be pathological and may damage the walls of blood vessels, leading to atherosclerotic changes [9] and instability of atherosclerotic plaques [16]. The association between anti-oxLDL antibodies and cardiovascular diseases has been found to be inconsistent across studies, most of which have used the whole molecule of oxLDL as antigens so that the outcome may not be accurate. Recently, some studies have primarily used the p45 (amino acids 661–680) and p210 (amino acids 3136–3155) ApoB100 peptides to explore the mechanism of immune response [28,24,23,15,22,8] and the development of immune-modulatory therapies [26]. An inverse association has been found between the levels of antibodies against these ApoB100 peptides and the severity of atherosclerosis. It has been reported that AMI patients had lower anti-ApoB antibody levels than control subjects matched for age and sex [6,27,4], but these studies were all for immune-modulatory therapies but not for diagnosis.

In this study, we found that only IgG antibodies to the Ag1 sequence derived from ApoB100 were significantly increased in patients with AMI (Table 3). Failure to show an increase in the levels of IgG antibodies to the other ApoB100-derived antigens sug-

| Table 4 | Inter-assay deviation between plates tested. |
|---------|------------------------------------------|
| Antigen | Number of plates | Mean ± SD | CV (%) |
| Ag1     | 38             | 0.738 ± 0.074 | 10.03  |
| Ag2     | 36             | 2.101 ± 0.279 | 13.28  |
| Ag3     | 38             | 0.879 ± 0.057 | 6.48   |
| Ag4     | 37             | 0.905 ± 0.082 | 9.06   |
| Ag5     | 37             | 0.884 ± 0.122 | 13.80  |
| Ag6     | 35             | 0.708 ± 0.115 | 16.24  |
| Ag7     | 38             | 0.889 ± 0.101 | 11.36  |
| Ag8     | 34             | 0.723 ± 0.052 | 7.19   |

| Table 5 | Spearman correlation between levels of IgG for Ag1 and clinical characteristics. |
|---------|-------------------------------------------------|
| Patients | N | r   | P  |
| Age     | 261 | -0.065 | 0.295 | 189 | 0.141 | 0.053 |
| SBP     | 261 | -0.072 | 0.246 | 171 | -0.104 | 0.177 |
| DBP     | 261 | -0.009 | 0.891 | 171 | -0.058 | 0.450 |
| BMI     | 221 | -0.118 | 0.081 | 171 | -0.068 | 0.377 |
| CHOL    | 249 | -0.067 | 0.294 | 171 | -0.064 | 0.409 |
| TG      | 249 | -0.102 | 0.107 | 171 | -0.048 | 0.53  |
| HDL     | 249 | -0.076 | 0.23  | 171 | -0.007 | 0.931 |
| LDL     | 249 | -0.029 | 0.645 | 170 | -0.096 | 0.212 |
| Apo-A   | 234 | -0.087 | 0.187 | 171 | 0.016  | 0.837 |
| Apo-B   | 234 | -0.075 | 0.251 | 170 | -0.107 | 0.165 |
| Gensini score | 226 | 0.032 | 0.629 |

| Table 3 | The levels of anti-Apo-B IgG antibodies in the circulation. |
|---------|-------------------------------------------------|
| Antigen | Patients (SBI) | Control (SBI) | P  |
| Ag1     | 0.800 ± 0.148 | 0.744 ± 0.140 | <0.001  |
| Ag2     | 2.164 ± 0.661 | 2.087 ± 0.691 | 0.231  |
| Ag3     | 0.944 ± 0.147 | 0.958 ± 0.218 | 0.526  |
| Ag4     | 0.923 ± 0.142 | 0.889 ± 0.133 | 0.034  |
| Ag5     | 0.889 ± 0.177 | 0.926 ± 0.215 | 0.064  |
| Ag6     | 0.702 ± 0.151 | 0.686 ± 0.166 | 0.345  |
| Ag7     | 0.913 ± 0.163 | 0.921 ± 0.174 | 0.639  |
| Ag8     | 0.702 ± 0.176 | 0.696 ± 0.124 | 0.768  |

Values are presented as mean ± SD in SBI.
* P < 0.001 after adjustment for age, gender, smoking, hypertension, diabetes and circulating levels of cholesterol, HDL, LDL, ApoA and ApoB.
gests that HLA-restriction may be involved in influencing the humoral immune response in AMI. Interestingly, the increased levels of anti-Ag1 IgG observed in AMI patients were not correlated with their clinical characteristics and the severity of coronary plaques characterized by the Gensini score (Table 5). Possibly, the linear peptide antigen derived from ApoB100 may be associated with less coronary artery calcification in patients with type 2 diabetes. J. Intern. Med. 271, 82–89.

Engelbertsen, D.A., Anand, D.V., Fredriksson, G.N., Hopkins, D., Corder, R., Shah, P.K., Lahriri, A., Nilsson, J. and Bengtsson, E. (2012) Associations between autoantibodies against apolipoprotein B-100 peptides and cardiovascular events: results from the epic-norfolk study. J. Lipid Res. 52, 1348–1358.

Tinafoni, F., Gibbons, R.J., Fox, K.A., Atar, D., Newby, L.K., Galvani, M., Hamm, C.W., Pinto, F., Dzau, V.J., Douglas, P., Jones, D., Miller, E.R., Benesinio, J., Tedgui, A., Witztum, J., Khaw, K.T. and Tsimikas, S. (2011) Relationship of IgG and IgM autoant(123,921),(178,932)(129,921),(183,932)(123,921),(175,932)(123,921),(178,932) antibodies to linear antigens derived from ApoB 100 and cardiovascular events: results from the epic-norfolk study. J. Lipid Res. 52, 1348–1358.

Steenbergen, P., Fredriksson, G.N., Samnegard, A., Ericsson, C.G., Obrecht, J., Fisher, R.M., Nilsson, J. and Hamsten, A. (2008) High plasma concentrations of autoantibodies against native peptide 210 of apoB-100 are related to less coronary atherosclerosis and lower risk of myocardial infarction. Eur. Heart J. 29, 2218–2226.

Soto, Y., Conde, H., Arroche, R., Brito, V., Luaces, P., Nafisbel, A., Obregon, A. and Vazquez-Lopez, A.M. (2009) Autoantibodies against oxidized low-density lipoprotein in relation with coronary artery disease. Hum. Antibodies 18, 109–117.

Steinerova, A., Raciok, J., Stozicky, Z., Zima, T., Fialova, L. and Lapin, A. (2001) Antibodies against oxidized LDL—theory and clinical use. Physiol. Res. 50, 131–141.

Thygesen, K., Alpert, J.S., White, H.D. and Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction (2007) Universal definition of myocardial infarction. Eur. Heart J. 28, 2525–2538.

Thygesen, K., Alpert, J.S., Jaffe, A.S., Simoons, M.L., Chaitman, B.R., White, H.D., Joint ESC/ACCF/AHA/WHF Task Force for Universal Definition of Myocardial Infarction, Henne, S., Katus, H.A., Apple, F.S., Lindahl, B., Morrow, D.A., Chaitman, B.R., Clemmensen, P.M., Johansson, P., Hord, H., Underwood, R., Bax, J.J., Bonow, J.J., Pinto, F., Gibbons, R.J., Fox, K.A., Atar, D., Newby, L.K., Galvani, M., Hannan, R., Vlcek, O., Steiger, P., Wijns, W., Coelingh, F., et al. (2012) Third universal definition of myocardial infarction. J. Am. Coll. Cardiol. 60, 1581–1598.

Tinafoni, F., Gomez-Zumaquero, J.M., Garrido-Sanchez, L., Garcia-Fuentes, E., Mitra, S., Goyal, T. and Mehta, J.L. (2011) Oxidized LDL, LOX-1 and autoantibodies against oxidized LDL in cerebral small vessel disease. Stroke 41, 2687–2691.

Sajost, J.P., Jones, M.K., De Loof, H. and Dabi, N. (2001) Structure of antibody to apolipoprotein B-100 in low density lipoproteins. J. Lipid Res. 42, 1348–1358.

Fredriksson, G.N., Samnegard, A., Ericsson, C.G., Obrecht, J., Fisher, R.M., Nilsson, J. and Hamsten, A. (2008) High plasma concentrations of autoantibodies against native peptide 210 of apoB-100 are related to less coronary atherosclerosis and lower risk of myocardial infarction. Eur. Heart J. 29, 2218–2226.

Soto, Y., Conde, H., Arroche, R., Brito, V., Luaces, P., Nafisbel, A., Obregon, A. and Vazquez-Lopez, A.M. (2009) Autoantibodies against oxidized low-density lipoprotein in relation with coronary artery disease. Hum. Antibodies 18, 109–117.

Steenbergen, P., Fredriksson, G.N., Samnegard, A., Ericsson, C.G., Obrecht, J., Fisher, R.M., Nilsson, J. and Hamsten, A. (2008) High plasma concentrations of autoantibodies against native peptide 210 of apoB-100 are related to less coronary atherosclerosis and lower risk of myocardial infarction. Eur. Heart J. 29, 2218–2226.
immunization with hypochlorite-oxLDL specific antibodies reduces plaque volume in LDL receptor-deficient mice. PLoS ONE 8, e68039.

[35] Virella, G. and Lopes-Virella, M.F. (2003) Lipoprotein autoantibodies: measurement and significance. Clin. Diagn. Lab. Immunol. 10, 499–505.

[36] Ylä-Herttuala, S., Palinski, W., Butler, S.W., Picard, S., Steinberg, D. and Witztum, J.L. (1994) Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL. Arterioscler. Thromb. 14, 32–40.

[37] Zhang, X., Yu, B., Jin, Y., Lei, M., Zhang, X., Duan, Z., Lin, Y., Megson, I.L. and Wei, J. (2015) A study of IgG antibodies to the apob protein in non-ST segment elevation acute coronary syndrome. Scand. Cardiovasc. J. 2, 1–6.

[38] Zeller, F.P. and Bauman, J.L. (1986) Current concepts in clinical therapeutics: acute myocardial infarction. Clin. Pharm. 5, 553–572.