The murine Cl/HCO3(-) exchanger Ae3 (Slc4a3) is not required for acid-base balance but is involved in magnesium handling by the kidney

Kampik, Nicole B; Gehring, Nicole; Schnitzbauer, Udo; Hennings, J Christopher; Hübner, Christian A; Wagner, Carsten A

Abstract: Background: The Slc4 family of bicarbonate transporters consists of several members, many of which are highly expressed in the kidney and play an important role in acid-base homeostasis. Among them are Ae1 (Slc4a1) and Ae2 (Slc4a2). Another member, Ae3 (Slc4a3), is suggested to be expressed in the kidney, however, its localization and impact on renal function is still unknown. Ae3 has also been implicated in the central control of breathing. Aims: Here, we analyzed the expression of Ae3 transcripts in isolated nephron segments and investigated systemic and renal acid-base homeostasis and renal electrolyte handling in the absence of Ae3, using a knock out mouse model. Methods: qPCR was used to localize Ae3 transcripts in the murine nephron, metabolic studies and whole body plethysmography to assess the role of Ae3 in renal functions. Results: Two Ae3 transcripts, the brain variant bAe3 and the cardiac variant cAe3, are expressed at low levels in the murine kidney. Although differentially distributed, they localize mostly to the distal nephron and renal collecting duct system. At baseline and after an acid challenge, mice deficient for Ae3 did not show major disturbances in renal acid-base excretion. Respiratory responses in whole body plethysmography to acid loading and CO2 and O2 challenges were normal. No major differences in renal electrolyte handling were discovered except for small changes in magnesium, potassium and sodium excretion after 7 days of acid loading. We therefore challenged mice with diets with high and low magnesium diets and found no differences in renal magnesium excretion but elevated expression of the Trpm6 magnesium channel in Ae3 KO mice. In conclusion, Ae3 is expressed in murine kidney at very low levels. Conclusions: Ae3 plays no role in systemic acid-base homeostasis but may modify renal magnesium handling inducing a higher expression of Trpm6.

DOI: https://doi.org/10.1159/000366360

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-101136
Journal Article
Published Version

The following work is licensed under a Creative Commons: Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) License.

Originally published at:
Kampik, Nicole B; Gehring, Nicole; Schnitzbauer, Udo; Hennings, J Christopher; Hübner, Christian A; Wagner, Carsten A (2014). The murine Cl/HCO3(-) exchanger Ae3 (Slc4a3) is not required for acid-base
balance but is involved in magnesium handling by the kidney. Cellular Physiology and Biochemistry, 34(5):1566-1577.
DOI: https://doi.org/10.1159/000366360
The Murine Cl⁻/HCO₃⁻ Exchanger Ae3 (Slc4a3) is Not Required for Acid-Base Balance but is Involved in Magnesium Handling by the Kidney

Nicole B. Kampik a, Nicole Gehring a, Udo Schnitzbauer a, J. Christopher Hennings b, Christian A. Hübner b, Carsten A. Wagner a

a Institute of Physiology and the Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland, b Institute of Human Genetics, Jena University Hospital, Jena, Germany

Key Words
Kidney • Acid-base physiology • Anion exchanger • Slc4a3 • Mouse model

Abstract
Background: The Slc4 family of bicarbonate transporters consists of several members, many of which are highly expressed in the kidney and play an important role in acid-base homeostasis. Among them are Ae1 (Slc4a1) and Ae2 (Slc4a2). Another member, Ae3 (Slc4a3), is suggested to be expressed in the kidney, however, its localization and impact on renal function is still unknown. Ae3 has also been implicated in the central control of breathing.

Aims: Here, we analyzed the expression of Ae3 transcripts in isolated nephron segments and investigated systemic and renal acid-base homeostasis and renal electrolyte handling in the absence of Ae3, using a knock out mouse model.

Methods: qPCR was used to localize Ae3 transcripts in the murine nephron, metabolic studies and whole body plethysmography to assess the role of Ae3 in renal functions.

Results: Two Ae3 transcripts, the brain variant bAe3 and the cardiac variant cAe3, are expressed at low levels in the murine kidney. Although differentially distributed, they localize mostly to the distal nephron and renal collecting duct system. At baseline and after an acid challenge, mice deficient for Ae3 did not show major disturbances in renal acid-base excretion. Respiratory responses in whole body plethysmography to acid loading and CO2 and O2 challenges were normal. No major differences in renal electrolyte handling were discovered except for small changes in magnesium, potassium and sodium excretion after 7 days of acid loading. We therefore challenged mice with diets with high and low magnesium diets and found no differences in renal magnesium excretion but elevated expression of the Trpm6 magnesium channel in Ae3 KO mice. In conclusion, Ae3 is expressed in murine kidney at very low levels.

Conclusions: Ae3 plays no role in systemic acid-base homeostasis but may modify renal magnesium handling inducing a higher expression of Trpm6.
Introduction

The mammalian kidney serves different functions such as the regulation of blood pressure, the excretion of waste products, and the maintenance of water, electrolyte, mineral and acid-base homeostasis within a very narrow range. The renal reabsorption and secretion of acid and base equivalents is achieved by the sequential expression of different transporters and channels along the nephron [1-3]. Among them are several members of the Slc4 family of bicarbonate transporters and the Slc26 family of anion transporters and channels [4, 5]. At present, ten members of the Slc4 gene family have been described and clustered into three major clades of which Ae1, Ae2 and Ae3 belong to the electroneutral and sodium independent Cl\(-\)/HCO\(_3\)\(-\) exchangers [6, 7]. While Ae2 is widely expressed in epithelial and non-epithelial cells, Ae1 is mostly restricted to red blood cells, cardiomyocytes, renal podocytes and type A intercalated cells of the renal collecting ducts (CD) [8-10]. In contrast, Ae3 is predominantly found in excitable tissues, such as the central nervous system, retina and heart, where it contributes to the control of intracellular pH and intracellular [Cl\(-\)] [11, 12]. Several Ae3 mRNA variants have been proposed, but up to date, only two tissue specific polypeptide variants of Ae3 were identified, the full length brain Ae3 (bAe3) isoform and the shorter N-terminal variant cardiac Ae3 (cAe3) [13, 14].

In humans, AE3 mutations are not directly linked to diseases as it is the case for AE1. However, the human AE3 A867D polymorphism was found to be associated with the development of idiopathic generalized epilepsy (IGE) [15] and displays a reduced transport activity when transiently expressed in HEK 293 cells [16]. Similarly, a reduced seizure threshold upon epileptogenetic drug application was described in one Ae3 deficient mouse model [17]. Furthermore, a reduced respiratory rate in awake and anesthetized animals was found in the same mouse model [18]. However, another mouse model with homozygous disruption of Ae3, displays functional and morphological defects of the inner retina, with late onset photoreceptor death resulting in blindness at the age of 4-6 months [19].

At present, only little is known about Ae3 expression and function in other epithelial tissues, such as the gut or kidney [4, 20]. Renal Ae3 mRNA expression has been described in several studies [4, 20, 21]. In one study Ae3 mRNA expression was reported in isolated medullary thick ascending limbs of mouse kidney [22]. Another study described protein expression of the cardiac Ae3 isoform in arterial smooth muscle of rat and mouse kidney, but not in renal tubular structures [23]. However, more detailed data on the localization and function of Ae3 in the kidney are still missing.

Here we address the question of the epithelial Ae3 localization and function in murine kidney. We performed semi-quantitative RT-PCR on hand-dissected isolated renal tubules. Furthermore, we analyzed renal function with emphasis on acid-base and electrolyte handling in an Ae3 deficient mouse model. Our data show, that renal function under physiologic conditions was not affected in the absence of Ae3, despite a differential expression of both Ae3 transcripts along the nephron and renal collecting ducts. However, Ae3 deficient mice showed changes in magnesium homeostasis and changes in the expression of renal key molecules involved in magnesium transport suggesting a role of Ae3 in magnesium handling by the kidney.

Materials and Methods

Animals

Ae3 (Slc4a3) targeted knockout mice have been previously described [17]. Animal studies were approved by the local veterinary authority (Veterinäramt Kanton Zürich) and performed in accordance with the Swiss animal welfare law. 10-12 weeks old Ae3 WT (Ae3\(^{+/+}\)) and KO (Ae3\(^{-/-}\)) male littermates bred from heterozygote matings were placed into metabolic cages (Tecniplast, Italy) with powdered standard rodent chow GLP 3433 (Kliba Nafag, Switzerland) for basal conditions and tap water ad libitum. The animals were
allowed to adapt to the new environment for 3 days before assessment of metabolic parameters. 24 hour urine was collected under mineral oil (Sigma, Buchs, Switzerland). 24 hour oral acid-load was carried out by addition of 150 ml of 0.33M HCl to 100 g of powdered standard rodent chow with tap water ad libitum [24]. Mice that received dietary magnesium challenges were primarily adapted for 7 days to a standard powder diet from SAFE (Scientific Animal Food and Engineering, France) containing standard (0.1%) Mg\(^{2+}\) in normal cages. Afterwards, the animals were fed a high (0.6%) Mg\(^{2+}\) diet for a total of 7 days and then switched to a low (0.01%) Mg\(^{2+}\) diet for 7 days. The Ca\(^{2+}\) content in all types of Mg\(^{2+}\) diets was kept constant at 0.76%. Also, all other components were kept constant in the various diets. In order to assess metabolic parameters and 24h urine samples, the mice were alternately placed in normal or metabolic cages due to the restriction by the Swiss Animal welfare law on the maximum duration of metabolic cage experiments. In a separate set of experiments, adult C57Bl/6 wildtype male mice were fed powdered standard rodent chow supplemented with NaHCO\(_3\) (0.28M) for 7 days in normal cages to induce chronic metabolic alkalosis. Since the alkali loaded diet goes along with an increased sodium uptake, two groups of control animals were included in this experiment. One control group was fed a powdered standard rodent chow alone and a second group received powdered rodent chow supplemented with equimolar amounts of NaCl (0.28M) for 7 days. During the alkali loading experiments, animals were housed in normal cages.

At the end of dietary or metabolic cage experiments, mice were anesthetized with 1.5% Isoflurane/pressurized air and 500 \(\mu\)l venous blood was taken with a heparinised syringe from the V. cava caudalis for subsequent blood gas analysis (ABL505 or ABL800, Radiometer, Copenhagen). The remaining blood was centrifuged at 5000 rpm (4°C) for 5 minutes and the plasma was rapidly frozen until further analysis. Animals were perfused with PBS through the left ventricle to remove residual blood and kidneys were snap frozen and stored at -80°C until further use.

Plasma and urine analysis

Urinary creatinine was measured according to Jaffe`s method [25]. Urinary ammonium was measured following Berthelot`s protocol [26]. Plasma and urinary urea levels were measured using the diacetyl monoxime method [27] and inorganic phosphate was determined using the acid ammonium molybdate method [28]. Urinary Na\(^+\) and K\(^+\) were quantified by ionchromatography, whereas plasma and urinary Mg\(^{2+}\) and Ca\(^{2+}\) were determined with commercially available magnesium and calcium assay kits (Quantichrom DIMG-250, DICA-500), respectively. Urinary electrolytes were normalized to creatinine and presented as mean ± SEM.

RNA analysis

mRNA extraction of organs and hand-dissected isolated nephron segments with subsequent quantitative real time RT-PCR was performed as described previously [29, 30]. Purity of the hand-dissected nephron segment preparation was ensured, by testing each sample for the most dominantly expressed segment specific mRNA transcripts.

Plethysmography

Respiratory function was assessed in awake and unrestrained mice using a whole body plethysmograph (Buxco, United Kingdom). In total, 5 WT and 5 Ae3 KO male littermates were investigated. Animals were placed in separate chambers and allowed to adapt to their new environment for 30 minutes. Respiratory parameters of each condition were followed over a period of 10 minutes with averaged recordings for every minute. Baseline and recovery periods were measured at normal atmosphere. Hypercapnia was induced with controlled inflation of 5% CO\(_2\) to the chambers. Hypoxia was induced by lowering the oxygen concentration to 12% and 8% in the chamber air supply. In these experiments oxygen was replaced by nitrogen. Respiratory function under hypercapnia was measured under standard dietary conditions and after an acute (24h) acid load with HCl supplemented food. In between the experiments, animals were allowed to recover for one week. Data are represented as mean ± SEM.

Statistical analysis

Statistical analysis was performed with GraphPad Prism software and Student`s t-test or ANOVA were performed where appropriate. Results with \(p \leq 0.05\) were considered statistically significant.
Results

We confirmed mRNA expression of both Ae3 isoforms in total mouse kidney consistent with earlier reports [20, 21, 31] (Fig. 1). Moreover, bAe3 and cAE3 are differentially expressed throughout the renal tubular segments tested. While bAe3 expression is mostly found in the loop of Henle until the inner medullary collecting duct (IMCD), cAe3 expression peaks in the medullary thick ascending limb of loop of Henle (mTAL) and the outer and inner medullary collecting ducts (OMCD, IMCD). Transcripts of both isoforms were almost undetectable in the glomerulum and proximal tubule segments. In order to confirm these findings using a different method we also tried chromogenic in-situ hybridization, but failed to detect a specific signal in wildtype kidneys using Ae3 KO kidneys as control for specificity (data not shown), which might be due to the relatively low mRNA expression levels as indicated by the qPCR experiments. However, the localization of control genes with known renal distribution, including Slc5a2 (Sglt2) and Slc12a1 (Nkcc2) yielded the expected localization confirming that the procedure worked (data not shown). We were unable to confirm the localization of bAe3 or cAe3 on protein level, since several antibodies raised against Ae3 did not give specific signals in mouse kidneys used for indirect immunofluorescence, immunohistochemistry or immunoblotting (data not shown). However, specific signals were obtained with several of these antibodies in brain and heart from WT and Ae3 KO mice (data not shown) most likely reflecting a very low abundance of Ae3 protein in murine kidney.
Next, we examined the impact of the absence of Ae3 on renal acid-base and electrolyte handling by using an Ae3 deficient mouse model. First, we compared baseline blood and urine parameters of Ae3+/+ and Ae3−/− male littermates at the age of 12 weeks adapted to metabolic cages and fed a standard rodent chow with access to water ad libitum (Table 1). Despite a mildly but significantly lower blood lactate level in Ae3 deficient mice, other differences between the genotypes were not detected. No respiratory alterations were observed as assessed by venous blood gas analysis and whole body plethysmography (Fig. 2 A-D). Venous blood gas analysis performed at baseline without any dietary or respiratory challenges showed similar blood pH, pCO$_2$ and pO$_2$ in both genotypes (Table 1). Respiratory analysis at baseline demonstrated similar respiratory frequency, and tidal volume (Fig. 2 A-D). When Ae3+/+ and Ae3−/− were challenged with 5% CO$_2$, both genotypes responded with a transient increase in respiratory frequency and a profound increase in tidal volume, but no difference was observed between both groups. Similarly, when both groups of mice were exposed to reduced oxygen content (12% and 8%), tidal volume was increased to a similar extent. In a last set of experiment, mice were given 1 day of HCl in the food to induce metabolic acidosis and then challenged with inspiratory hypercapnia (5% CO$_2$), but both groups of mice showed a similar response. Thus, absence of Ae3 in this mouse model does not alter the respiratory response to changes in ambient O$_2$ or CO$_2$, as well as to short term metabolic acidosis. Therefore, we continued with renal phenotyping of Ae3 KO mice with dietary challenges targeting acid-base homeostasis.

Wildtype and Ae3 KO mice received oral acid challenges for 1 to 7 days. Mice with a deficiency for the Cl⁻/HCO$_3$- exchanger Ae3 did not show any significant differences in blood and urinary pH, CO$_2$, or HCO$_3$- compared to their wildtype littermates, when subjected to an acute or chronic dietary acid load for 24 hours or 7 days, respectively (Table 2 and 3). There were no differences in blood and urinary electrolyte concentrations of Ae3 WT and KO mice after acute dietary acid challenges except for plasma sodium after 7 days of acid challenge (Table 2). As expected, a transient reduction of blood Pi levels following acute dietary acid loads was observed for both genotypes (Tables 2 and 3). Urinary phosphate excretion increased in both genotypes with the acid challenge as expected. Metabolic acidosis in mice inhibits the function of the renal NaPi-IIa cotransporter and thereby increases urinary excretion of phosphate [32]. However, a significant increase in the anion gap in blood of Ae3 KO mice with acute acid load was detected, which was even more pronounced after a chronic 7 days acid load (Table 3). Moreover, a chronic dietary acid load revealed additional significant differences in blood and urine of Ae3 KO mice compared to Ae3 WT littermates (Table 3). As previously shown, induction of metabolic acidosis leads to an increase in urinary aldosterone and Na⁺ excretion in mice and rats [29]. Ae3 KO mice did not increase
urinary Na⁺ excretion and showed mildly elevated Na⁺ concentrations in the blood, as compared to Ae3 WT. Additionally, urinary K⁺ and Mg²⁺ levels were significantly reduced in Ae3 KO mice exposed to chronic dietary acid loads. In order to identify transport proteins that are involved in renal handling of calcium and magnesium and that may be modulated by the absence of Ae3, we performed qPCR. Assessment of renal Ae1 Cl⁻/HCO₃⁻ exchanger and the Na⁺/K⁺/2Cl⁻ cotransporter Nkcc2 mRNA expression [32, 33] did not show any altered expression (Table 6).

The reduced urinary Mg²⁺ excretion in the presence of a chronic dietary acid load of Ae3 KO mice (Table 3) and the expression of Ae3 mRNA in nephron segments involved in magnesium handling (Fig. 1 C) suggested a link of Ae3 to magnesium homeostasis. Hence, mice were challenged with high (0.6%) and low (0.01%) Mg²⁺ diets for 7 days. As listed in Tables 4 and 5, the adaptation of electrolyte and acid-base parameters in blood and urine of Ae3 WT and Ae3 KO littermates to chronic dietary Mg²⁺ challenges was similar. However,
renal mRNA expression of the apical Mg\(^{2+}\) and Ca\(^{2+}\) channels Trpm6 and Trpv5 [34, 35] was significantly increased in Ae3 deficient mice compared to WT after 7 days of low Mg\(^{2+}\) diet, while claudin 16 (Cldn16) [36, 37] mRNA was significantly down regulated (Table 6). Neither claudin 19 (Cldn19), nor basolaterally expressed cyclin M2 (Cnnm2), involved in renal Mg\(^{2+}\) handling, were altered [36-38] (Table 6).

Finally, transcript levels of bAe3 and cAe3 were assessed in Ae3\(^{+/+}\) mice following standard diet, 24 hour acute acid load, 7 days low Mg\(^{2+}\) diet and 7 days chronic alkali load (Fig. 3). Both Ae3 isoforms were downregulated upon dietary induced metabolic acidosis (Fig. 3 A, B). However, a regulation of Ae3 mRNA was not observed in kidneys of C57Bl/6 mice after a chronic dietary alkali load (Fig. 3 C, D). Also, low Mg\(^{2+}\) diet for 7 days downregulated bAe3 but not cAe3 mRNA (Fig. 3 A).

Discussion

Expression of bAe3 and cAe3 transcripts in mouse kidney has been previously shown [4, 20, 21]. However, localization to a specific nephron or collecting duct segment was still missing. We confirm expression of both Ae3 variants in mouse kidney and demonstrate that both isoforms are differentially distributed within the kidney, with bAe3 being the dominant isoform expressed in total kidney. While bAe3 is found at similar levels from the loop of Henle
until the IMCD, cAe3 seems to be restricted to the mTAL, OMCD and IMCD. However, presence of the respective proteins could not be confirmed, due to unavailability of specific antibodies and possibly low abundance of the protein.

Based on the chloride/bicarbonate exchanger function of Ae3 one may expect a contribution of Ae3 to renal acid-base and electrolyte handling [6, 7]. Testing this hypothesis the acid-base status of Ae3 WT and KO mice was analyzed under standard conditions and after short and longer acid challenges. Apart from a modest but significantly reduced blood lactate concentration, acid-base and electrolyte values in blood and urine of Ae3 deficient mice appeared normal (Table 1). Since bodyweight, blood pH, pCO₂ and pO₂ were not altered, the origin of the mildly reduced blood lactate is not clear. Small changes in energy metabolism or tissue oxygenation cannot be ruled out. However, blood lactate levels were not affected by acute dietary acid loads (Table 2). Additionally, the breathing pattern of 12 week old, male, conscious and unrestrained Ae3+/+ and Ae3–/– littermates was analyzed by whole body plethysmography during standard conditions (standard rodent chow, normoxia), hypoxia and hypercapnia, as well as after an acute dietary acid load in the setting of normoxia and hypercapnia. In contrast to previous findings [18], we could not observe significant differences in the breathing pattern and breathing parameters of Ae3 deficient mice compared to Ae3 WT littermates in any condition (Fig. 2). However, our observation of normal respiratory responses to hypercapnia and hypoxia is in line with the finding of normal blood gases throughout all metabolic cage experiments that were performed in this study. Of note, the previous study reporting differences between wildtype and Ae3 knockout mice did not use littermates and used mice of different age and sex, which may have introduced a bias into the experiments [18].

Challenging Ae3 deficient mice with acute or chronic dietary acid load did also not reveal major alterations in renal acid-base or electrolyte handling (Tables 2 and 3). Again, blood and urinary pH, pCO₂ and HCO₃⁻ were not significantly different between the genotypes. Surprisingly, blood anion gap was

Table 4. Urine parameters of Ae3+/+ and Ae3–/– mice with 7 days high Mg²⁺ diet. Food and water intake as well as urine and feces output were monitored in metabolic cages after 7 days of high magnesium diet (0.6% Mg²⁺) added to food. 24 hrs urine was collected and analyzed. n = 7 Ae3+/+ and 9 Ae3–/– mice
Urine
Bodyweight (g)
H₂O Intake (g/g BW)
Food Intake (g/g BW)
Urine (g/g BW)
Creatinine (mg/dl)
pH
Na⁺ (mM)/Creatinine (mg/dl)
K⁺ (mM)/Creatinine (mg/dl)
Ca²⁺ (mM)/Creatinine (mg/dl)
Mg²⁺ (mM)/Creatinine (mg/dl)

Table 5. Blood and urine parameters of Ae3+/+ and Ae3–/– mice with 7 days low Mg²⁺ diet. Food and water intake as well as urine and feces output were monitored in metabolic cages after 7 days of low magnesium diet (0.01% Mg²⁺) added to food. Venous blood and 24 hrs urine were collected and analyzed. n = 7 Ae3+/+ and 9 Ae3–/– mice
Blood
Bodyweight (g)
H₂O Intake (g/g BW)
Food Intake (g/g BW)
Urine (g/g BW)
pH
pCO₂ (mmHg)
pO₂ (mmHg)
HCO₃⁻ (mM)
Na⁺ (mM)
K⁺ (mM)
Cl⁻ (mM)
Lactate (mM)
Anion Gap
Hematocrit (%)
Plasma
Mg²⁺ (mM)
Ca²⁺ (mM)
Creatinine (mg/dl)
pH
Na⁺ (mM)/Creatinine (mg/dl)
K⁺ (mM)/Creatinine (mg/dl)
Ca²⁺ (mM)/Creatinine (mg/dl)
Mg²⁺ (mM)/Creatinine (mg/dl)
significantly increased in Ae3 KO mice subjected to acute and chronic dietary acid loads. While the ions determining the anion gap were not significantly altered after an acute dietary acid load in Ae3 WT mice, blood and urinary Na⁺, as well urinary K⁺ and Mg²⁺ became significantly altered in Ae3 KO animals with a chronic induced metabolic acidosis (Table 3). However, the difference in anion gap is small and apparently did not affect acid-base homeostasis as judged from venous blood pH, pCO₂ and bicarbonate levels.

Table 6. Relative mRNA expression of genes involved in renal calcium and magnesium handling under different dietary conditions. Semi-quantitative RT-PCR was performed in total kidneys from Ae3+/- and Ae3-/- mice receiving either standard diet (n = 9 Ae3+/- and 7 Ae3-/- mice), acid challenges (1 day acid load, n = 5 Ae3+/- and 5 Ae3-/- mice; 7 days acid load, n = 5 Ae3+/- and 8 Ae3-/- mice), or low magnesium diet (n = 7 Ae3+/- and 9 Ae3-/- mice). n.d. = not determined; *p < 0.05; **p < 0.01

% mRNA abundance	Baseline	1 day acid load	7 days acid load	7 days low Mg²⁺ diet
AE1	100.0 ± 27.1	96.1 ± 34.7	100.0 ± 10.8	n.d.
Cnmm2	100.0 ± 7.6	106.2 ± 19.5	107.5 ± 7.3	100.0 ± 4.2
Trpm6	100.0 ± 22.7	77.5 ± 19.3	100.0 ± 8.8	96.0 ± 8.7
Tryp5	100.0 ± 17.2	94.7 ± 17.3	100.0 ± 6.8	125.8 ± 10.6
Gldn16	n.d.	n.d.	115.6 ± 12.1	116.0 ± 5.1
Gldn19	n.d.	n.d.	118.4 ± 16.6	82.1 ± 4.6
Ncx	n.d.	n.d.	113.8 ± 20.5	89.8 ± 5.1
Nkcc2	n.d.	n.d.	108.4 ± 12.6	89.3 ± 4.1

Fig. 3. Regulation of Ae3 transcripts upon dietary acid or magnesium challenge. The mRNA abundance of bAe3 (A, C) and cAe3 (B, D) was assessed in Ae3+/- kidneys after acute dietary acid load for 24 hours (1d HCl) and 7 days low Mg²⁺ diet (7d low Mg²⁺) (A, B) or challenged with chronic metabolic alkali loads (7d NaHCO₃) (C, D). * = p < 0.05; ** = p < 0.01; *** = p < 0.001; n.s. = not significant.
Mice lacking Ae3 showed dysregulation of the renal Ca\(^{2+}\) and Mg\(^{2+}\)-channels Trpv5 and Trpm6 as well as of Cldn16 which was most obvious during the low Mg\(^{2+}\) diet. Cldn16 is required for renal calcium and magnesium reabsorption as evident from patients with rare mutations in claudin 16 [39-41]. Thus, in theory, loss of Ae3 in the TAL may affect Cldn16 expression and function and stimulate the expression of Trpv5 and Trpm6 expression and function in the late distal convoluted tubule and connecting tubule. Whether claudins in kidney are regulated by local or systemic pH changes has not been systematically investigated. Similarly, Ae3 mediated Cl\(^{-}/\)HCO\(^{3-}\) exchange and Nkcc1 (Slc12a1) mediated Na\(^{+}/K^{+}/2Cl^{-}\) cotransport in cardiomyocytes affect Ca\(^{2+}\) transport by the Na\(^{+}/Ca^{2+}\) exchanger Ncx and phospholamban (Pln), as well as the performance of the regulator phosphatases PP1 and PP2A [42]. Notably, another member of the Slc12 family, Nkcc2 (Slc12a1) and Ncx are also expressed in the kidney and involved in renal Na\(^{+}\) and Ca\(^{2+}\) handling [43]. While Nkcc2 is expressed in the thick ascending limb (TAL), Ncx localizes to the DCT and CNT [43]. As illustrated in Fig. 1, both Ae3 transcripts are present in the loop of Henle, the site of Nkcc2 expression, with cAe3 being predominantly in the mTAL. Furthermore, bAe3 mRNA is detected in the DCT and CCD (including CNT) meeting the localization of renal Ncx. Furthermore, renal Na\(^{+}\) and Mg\(^{2+}\) handling is altered in Ae3 deficient mice subjected to chronic dietary acid loads (Table 3). However, renal Ncx and Nkcc2 mRNA expression was not altered in dietary challenged Ae3 deficient mice compared to WT (Table 6). Unfortunately, protein abundance of Cldn16, Trpm6 and Trpv5 could not be determined due to lack of specific antibodies suitable for immunoblotting (data not shown). However, adaptation of acid-base and electrolyte concentrations in blood and urine to either high Mg\(^{2+}\) diet (Table 4) or low Mg\(^{2+}\) diet (Table 5) was similar in Ae3 WT and Ae3 KO animals. Finally, a comparison of Ae3 mRNA expression in Ae3 WT mice shows only a mild reduction of bAe3 and cAe3 transcripts upon dietary Mg\(^{2+}\) restriction, while both isoforms are strongly regulated in response to acute dietary acid loads (Fig. 3).

In summary, our data show that the both variants of Ae3, bAe3 and cAe3, are expressed at low levels in murine kidney and localize mostly to segments involved in the fine tuning of electrolyte, acid-base and mineral excretion. No obvious alteration in the renal excretion of acid and the control of systemic acid-base balance was found in mice lacking Ae3. Moreover, handling of electrolytes showed also no major disturbances and only a mild difference in the renal excretion of magnesium under acid-loading prompted us to test high and low magnesium diets. Also under these diets, Ae3 KO mice displayed no difference in plasma and urine magnesium levels but may require different levels of expression of Cldn16, Trpv5 and Trpm6 to maintain magnesium homeostasis during low magnesium challenges. Whether the upregulation of Trpv5 and Trpm6 is a direct consequence of reduced Cldn16 expression and activity or directly linked to absence of Ae3 remains speculative. Nevertheless, our experiments demonstrate that Ae3 plays no major role in renal acid-base, electrolyte and mineral handling.

Acknowledgements

We thank Alessandro Genini for sharing renal specimens from mice challenged with dietary alkali loads. The use of the Zurich Integrative Rodent Physiology (ZIRP) Core Facility is gratefully acknowledged. This work was supported by a grant from the Swiss National Science Foundation (31003A-138143/1) to C. A. Wagner.

References

1. Boron WF: Acid-Base Transport by the Renal Proximal Tubule. J Am Soc Nephrol 2006;17:2368-2382.
2. de Mello-Aires M, Malnic G: Distal tubule bicarbonate transport. J Nephrol 2002;15:S97-111.
Kampik et al.: The Role of Ae3 in Kidney Cellular Physiology and Biochemistry

1576

3 Wagner CA, Geibel JP: Acid-base transport in the collecting duct. J Nephrol 2002;15:5112-127.

4 Alper SL, Chernova MN, Stewart AK: Regulation of Na⁺-independent Cl⁻/HCO₃⁻ exchangers by pH. J Physiol 2001;2:171-175.

5 Alper SL: Genetic diseases of acid-base transporters. Annu Rev Physiol 2002;64:899-923.

6 Alper SL, Darman RB, Chernova MN, Dahl NR: The AE gene family of Cl⁻/HCO₃⁻ exchangers. J Nephrol 2002;15:S41-53.

7 Romero MF, Fulton CM, Boron WF: The SLC4 family of HCO₃⁻ transporters. Pfugers Arch 2004;447:495-509.

8 Alper SL: Molecular physiology of SLC4 anion exchangers. Exp Physiol 2006;91:153-161.

9 Wu F, Saleem MA, Kampik NB, Satchwell TJ, Williamon RC, Blattner SM, Ni L, Toth T, White G, Young MT, Parker MD, Alper SL, Wagner CA, Toye AM: Anion exchanger 1 interacts with nephrin in podocytes. J Am Soc Nephrol 2010;21:1456-1467.

10 Wu F, Satchwell TJ, Toye AM: Anion exchanger 1 in red blood cells and kidney: Band 3’s in a pod. Biochem Biophy Biol 2011;89:106-114.

11 Kobayashi S, Morgans CW, Casey JR, Kopito RR: AE3 anion exchanger isoforms in the vertebrate retina: Developmental regulation and differential expression in neurons and glia. J Neurosci 1994;14:6266-6279.

12 Al Moamen NJ, Prasad V, Bodi I, Miller ML, Neiman ML, Lasko VM, Alper SL, Wieczorek DF, Lorenz JN, Shull GE: Loss of the AE3 anion exchanger in a hypertrophic cardiomyopathy model causes rapid decompensation and heart failure. J Mol Cell Cardiol 2011;50:137-146.

13 Kopito RR: Molecular biology of the anion exchanger gene family. Int Rev Cytol 1990;123:177-199.

14 Su YR, Klanke CA, Houseal TW, Linn SC, Burk SE, Varvil TS, Otterud BE, Shull GE, Leppert MF, Menon AG: Molecular Cloning and Physical and Genetic Mapping of the Human Anion Exchanger Isoform 3 (SLC2C) Gene to Chromosome 2q36. Genomics 1994;22:605-609.

15 Sander T, Toliat MR, Heils A, Leschik G, Becker C, Ruschendorf F, Rohde K, Mundlos S, Nurnberg P: Association of the 867Asp variant of the human anion exchanger 3 gene with common subtypes of idiopathic generalized epilepsy. Epilepsy Res 2010;2:51-255.

16 Vilas GL, Johnson DE, Freund P, Casey JR: Characterization of an epilepsy-associated variant of the human Cl⁻/HCO₃⁻ exchanger AE3. Am J Physiol - Cell Physiol 2009;297:C526-C536.

17 Hentschke M, Wiemann M, Hentschke S, Kurth I, Herrmann-Borgmeyer I, Seidenbecher T, Jentsch TJ, Gal A, Hubner CA: Mice with a targeted disruption of the Cl⁻/HCO₃⁻ exchanger AE3 display a reduced seizure threshold. Mol Cell Biol 2006;26:182-191.

18 Meier S, Hubner CA, Groeben H, Peters J, Bingmann D, Wiemann M: Expression of anion exchanger 3 influences respiratory rate in awake and isoflurane anesthetized mice. J Physiol Pharmacol 2007;58:371-378.

19 Alvarez BV, Gilmour GS, Mema SC, Martin BT, Shull GE, Casey JR, Sauve Y: Blindness caused by deficiency in AE3 chloride/bicarbonate exchanger. PLoS ONE 2007;2:e839.

20 Kudrycki KE, Newman PR, Shull GE: cDNA cloning and tissue distribution of mRNAs for two proteins that are related to the band Cl⁻/HCO₃⁻ exchanger. J Biol Chem 1990;265:462-471.

21 Stehberger PA, Shmukler BE, Stuart-Tilley AK, Peters LL, Alper SL, Wagner CA: Distal renal tubular acidosis in mice lacking the AE1 (band3) Cl⁻/HCO₃⁻ exchanger (slc4a1). J Am Soc Nephrol 2007;18:1408-1418.

22 Sun AM: Expression of Cl⁻/HCO₃⁻ exchanger in the basolateral membrane of mouse medullary thick ascending limb. J Physiol 1998;514:F358-364.

23 Brosius FC, 3rd, Pisoni RL, Cao X, Deshmukh G, Yannoulakos D, Stuart-Tilley AK, Halle C, Alper SL: AE anion exchanger mRNA and protein expression in vascular smooth muscle cells, aorta, and renal microvessels. Am J Physiol 1997;273:F1039-1047.

24 Bourgeois S, Bounoure L, Christensen EI, Ramakrishnan SK, Houllier P, Devuyst O, Wagner CA: Haploinsufficiency of the Ammonia Transporter Rhcg Predisposes to Chronic Acidosis: Rhcg is critical for apical and basolateral ammonia transport in the mouse collecting duct. J Biol Chem 2013;288:5518-5529.

25 Seaton B, Ali A: Simplified manual high performance clinical chemistry methods for developing countries. Med Lab Sci 1984;41:327-336.

26 Berthelot M: Violet d’aniline. Rep Chim App 1859;1:284.

27 Wybenga DR, Di Giorgio J, Pileggi VJ: Manual and automated methods for urea nitrogen measurement in whole serum. Clin Chem 1971;17:891-895.
28 Taussky HH, Shorr E: A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem 1953;202:675-685.
29 Nowik M, Lecca MR, Velic A, Rehrauer H, Brandli AW, Wagner CA: Genome-wide gene expression profiling reveals renal genes regulated during metabolic acidosis. Physiol Genomics 2008;32:322-334.
30 Wagner CA, Lukevile U, Valles P, Breton S, Brown D, Giebisch GH, Geibel JP: A rapid enzymatic method for the isolation of defined kidney tubule fragments from mouse. Pflugers Arch 2003;446:623-632.
31 Kopito RR, Lee BS, Simmons DM, Lindsey AE, Morgans CW, Schneider K: Regulation of intracellular pH by a neuronal homolog of the erythrocyte anion exchanger. Cell 1989;59:927-937.
32 Nowik M, Picard N, Stange G, Capuano P, Tenenhouse HS, Biber J, Murer H, Wagner CA: Renal phosphaturia during metabolic acidosis revisited: molecular mechanisms for decreased renal phosphate reabsorption. Pflugers Arch 2008;457:539-549.
33 Knepper MA, Brooks HL: Regulation of the sodium transporters NHE3, NKCC2 and NCC in the kidney. Curr Opin Nephrol Hypertens 2001;10:655-659.
34 Ferre S, Hoenderop JG, Bindels RJ: Insight into renal Mg2+ transporters. Curr Opin Nephrol Hypertens 2011;20:169-176.
35 Dimke H, Hoenderop JG, Bindels RJ: Molecular basis of epithelial Ca2+ and Mg2+ transport: insights from the TRP channel family. J Physiol 2011;589:1535-1542.
36 Hou J, Goodenough DA: Claudin-16 and claudin-19 function in the thick ascending limb. Curr Opin Nephrol Hypertens 2010;19:483-488.
37 Hou J, Rajagopal M, Yu AS: Claudins and the kidney. Annu Rev Physiol 2013;75:479-501.
38 Stuiver M, Lainez S, Will C, Terryn S, Gunzel D, Debaix H, Sommer K, Kopplin K, Thumfart J, Kampik NB, Querfeld U, Willnow TE, Nemeck V, Wagner CA, Hoenderop JG, Devuyst O, Knoers NV, Bindels RJ, Meij IC, Muller D: CNNM2, encoding a basolateral protein required for renal Mg2+ handling, is mutated in dominant hypomagnesemia. Am J Hum Genet 2011;88:333-343.
39 Guran T, Akcay T, Bereket A, Atay Z, Turan S, Haisch L, Konrad M, Schlingmann KP: Clinical and molecular characterization of Turkish patients with familial hypomagnesaemia: novel mutations in TRPM6 and CLDN16 genes. Nephrol Dial Transplant 2012;27:667-673.
40 Kasapkara CS, Tumer L, Okur I, Hasanoglu A: A novel mutation of the claudin 16 gene in familial hypomagnesaemia with hypercalciuria and nephrocalcinosis mimicking rickets. Genet Couns 2011;22:187-192.
41 Nadarajah L, Khosravi M, Dumitriu S, Klootwijk E, Kleta R, Yaqoob MM, Walsh SB: A novel claudin-16 mutation, severe bone disease, and nephrocalcinosis. Lancet 2014;383:98.
42 Prasad V, Bodi I, Meyer JW, Wang Y, Ashraf M, Engle SJ, Doetschman T, Sisco K, Nieman ML, Miller ML, Lorenz JN, Shull GE: Impaired cardiac contractility in mice lacking both the AE3 Cl/HCO\textsubscript{3}-exchanger and the NKCC1 Na+-K+-2Cl- cotransporter: effects on Ca2+ handling and protein phosphatases. J Biol Chem 2008;283:31303-31314.
43 Loffing J, Loffing-Cueni D, Valderrabano V, Klausli L, Hebert SC, Rossier BC, Hoenderop JG, Bindels RJ, Kaissling B: Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron. Am J Physiol Renal Physiol 2001;281:F1021-1027.