TITLE:
Transcriptional repression and DNA hypermethylation of a small set of ES cell marker genes in male germline stem cells

AUTHOR(S):
Imamura, Masanori

CITATION:
Imamura, Masanori. Transcriptional repression and DNA hypermethylation of a small set of ES cell marker genes in male germline stem cells. 京都大学, 2009, 博士(医学)

ISSUE DATE:
2009-03-23

URL:
http://hdl.handle.net/2433/124313

RIGHT:
京都大学

博士（医学）

氏名 今村 公紀

論文題目

Transcriptional repression and DNA hypermethylation of a small set of ES cell marker genes in male germline stem cells

（雄の生殖幹細胞における一部の ES 細胞マーカー遺伝子の転写抑制と DNA の高メチル化）

（論文内容の要旨）

胚性幹（ES）細胞は自己複製能と分化多能性を有する細胞株であり、その細胞特性はOct4やSox2等の ES 細胞特異的に発現する遺伝子によって支持されている。

当研究室では ES 細胞特異的に発現する遺伝子群を同定し、ECATと命名した。

ECATがES細胞特異的に発現するためには、二通りの制御が考えられる。一つはES細胞特異的な転写因子による制御であり、Oct4とSox2は協調的に多くの遺伝子の発現に関与している。もう一つはゲノムのエピジェネティック修飾であり、DNA 酵素の欠損した ES 細胞が分化抵抗性を示すことなどからその重要性が示されている。

生殖細胞は分化多能性を有していないうち、受精によって次世代に全能性を伝達する能力を秘めている。雄の生殖幹細胞である精子幹細胞は、精子にのみ分化可能な単能性の幹細胞である。ところが、多能性的ES細胞と単能性の精子幹細胞は多くのECATの発現を共有している。精子幹細胞がES細胞類似の遺伝子発現を示すにも関わらず、単能性幹細胞として存在する機構は不明であった。

以上の背景のもと、本論文ではES細胞と精子幹細胞株であるGS細胞におけるECATの発現とDNAメチル化状態のプロファイリングを行った。

① GS 細胞における ECAT の発現と DNA の低メチル化

ESTデータベースから予想された通り、GS細胞においても多くのECATの発現が確認された。これらのECATの転写制御領域において、DNAメチル化状態は体細胞系統では高いものの、生殖細胞と ES 細胞では共に低メチル化状態にあった。

② GS 細胞における Oct4 と Sox2 の標的遺伝子の転写抑制と DNA の高メチル化

大部分のECATは異なる、また、Nano子の一部のECATがGS細胞において発現していないかった。これらのECATは共通してOct4とSox2の標的遺伝子であったが、Oct4とSox2自体はGS細胞においても低メチル化状態にあった。そこで、標的遺伝子のDNAメチル化を調べたところ、Oct4/Sox2転写領域が高メチル化されていたことが判明した。この高メチル化状態は雄の生殖幹細胞特異的に生じており、体細胞系統以上であった。また、Oct4/Sox2転写領域以外の転写制御領域や、ECAT以外のOct4/Sox2の標的遺伝子では高メチル化は認められず、極めて領域特異的であった。

③ GS 細胞における Oct4 と Sox2 の転写後制御

GS細胞におけるOct4とSox2のタンパク質のDNA結合状態を調べたところ、高メチル化状態のECATにおいて結合は認められなかった。ところが、発現が認められる低メチル化状態のECATにおいても同様に結合が確認されなかった。そこでOct4とSox2のタンパク質発現を調べたところ、Oct4はmRNA発現に比べてタンパク質が1/3程度少なく、Sox2に至ってはタンパク質が一切検出されなかった。

Oct4とSox2はES細胞におけるECATの発現制御、及び多能性維持のマスターレギュレータ遺伝子である。本論文の結果、雄の生殖細胞においてOct4とSox2はタンパク質レベルで抑制されており、かつその標的遺伝子はエピジェネティックに不活性化状態にあることが明らかとなった。このことは、Oct4とSox2の機能を多段階にわたって制限することが、生殖細胞の多能性獲得、すなわち奇形腫形成の抑制に重要であることを示唆している。一方、精子幹細胞の起源である始原生殖細胞は潜在的に分化多能性を有することから、本論文は生殖細胞の運命決定における潜在的分化多能性の喪失機構においても新たな知見をもたらすものとなった。

（論文審査の結果の要旨）

多能性幹細胞であるES細胞の特性の維持には、ES細胞特異的遺伝子群(ECAT)の発現が関与している。生殖細胞は受精を介することで全能性を獲得し得るが、生殖細胞自体は配偶子にのみ分化可能な単能性の幹細胞である。ES細胞と生殖細胞の細胞形質は互いに著しく異なるにも関わらず、ECATの多くが両共に発現している。本研究では、ECAT発現の相似性と細胞形質の相違性という矛盾の原因を解明するため、ES細胞と生殖細胞におけるECATの発現とDNAメチル化状態の比較解析を行った。

精子幹細胞株のGS細胞では多くのECATが発現しており、それらの転写制御領域はES細胞同様に低メチル化状態であった。一方、Oct4とSox2の標的遺伝子の一部はGS細胞では発現しておらず、ゲノム上のOct4/Sox2転写領域は雄性生殖細胞特異的に高メチル化状態を示した。また、Oct4とSox2個体もGS細胞において低レベルで抑制されていた。

以上の結果から、ES細胞と生殖細胞は確かに多くのECATの発現を共有するものの、Oct4とSox2が両者を区別する鍵であることが明らかとなった。また、Oct4とSox2の多段階にわたる機能抑制が生殖細胞の多能性の再獲得・腫瘍化を抑制し、適切な配偶子形成をもたらすことが示唆された。

本研究は、生殖細胞の配偶子形成細胞としての運動決定機構の解明に大きく寄与したものである。したがって、本論文は博士(医学)の学位論文として価値のあるものと認める。

なお、本学位授与申請者は、平成22年9月24日実施の論文内容とそれに関連した試験を受け、合格と認められたものである。