Determination of Sterane and Triterpane in the Tamsagbulag Oilfield

Erdenee Enkhtsetseg¹, Batdelger Byambagar¹, Dalantai Monkhoobor², Budeebazar Avid³*, Avirmed Tuvshinjargal⁴

¹Mongolian University of Science and Technology, Ulaanbaatar, Mongolia
²National University of Mongolia, Ulaanbaatar, Mongolia
³Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
⁴Petroleum authority of Mongolia, Ulaanbaatar, Mongolia
E-mail: *avidmas@gmail.com
Received March 9, 2011; revised April 15, 2011; accepted April 26, 2011

Abstract

Crude oils representing four different holes from the Tamsagbulag oilfield were analyzed by gas chromatography-mass spectrometry (GC/MS) spectroscopy. 52 biomarker compounds, 34 pentacyclic triterpanes and 18 steranes were identified and semi-quantitatively determined by selective ion monitoring (SIM) chromatography. Depending on the oil source, the variation in the pentacyclic triterpanes distribution is more significant than the variation in the sterane distribution. It is said that pregnane and honopregnane originated during the period of very salty sedimentary accumulation in the condition of diagenesis.

Keywords: Crude Oil, Biomarker, GC-MS, Tamsagbulag Oilfield

1. Introduction

Biomarkers are complex molecular fossils derived from once living organisms and it can provide information on the organic source materials, environmental conditions during its deposition, the thermal maturity experienced by a rock or oil, and the degree of biodegradation. Studies on identification and quantification of biomarker compounds have obtained great importance for recognition and classification of crude oil source. Sterane and hopane biomarkers have great potential in helping to identify and allocate hydrocarbon sources [1-9].

It is very important to study polyaromatic aliphatic hydrocarbons with carbon of C27 or higher hydrocarbon chain like steroid and triterpenoid for the geochemical investigation of crude oil and other caustobiolithes. The chemical type and relative content of biomarker compounds in specific oil is considered as its unique fingerprint. Among the various types of biomarkers, triterpanes and steranes are the best target molecules for identification and quantification. These molecules, with a molecular weight of about 250 - 400, possess a relative high concentration in crude oil and they are resistant to petrochemical and microbial degradation [4,5]. Therefore, they have found their use in tracing the oil source, its characteristics, degree of weathering and the fate of spilled oil in the environment [6,7]. Utilizing the GC and GC/MS technique made it possible to arrive at a clear characterization and classification of crude oils according to their sources [8]. Source specific parameters (viz. DBT/P, Pr/Ph, C29/C27 sterane and hopane/sterane ratios and tri- and tetra-cyclic terpane distributions) indicate that family oils derived from a marine shale deposited under sub-oxic conditions, whereas family oils derived from terrigenous source, contain n-alkanes that are less depleted in 13C, consistent with their derivation from a terrigenous source rock and their higher thermal maturity. The more negative n-alkane δ13C profiles of the family oils reflect their marine source [9]. The research demonstrated that the biomarker distribution and carbon isotopic composition could be used to differentiate oils derived from various lacustrine environments [10,11].

Recently several researchers have paid more attention on biomarker and geochemical investigation of the Mongolian crude oil. Composition of the hydrocarbons and structure of the heteroatom compounds with high molecular weight from the Zuunbayan, Tsagaan els and 19-3, 19-12, 19-13, 19-14, 19-17 wells of Tamsagbulag oilfields have been studied by Khongorzul. Based on the results, the author has estimated product properties of
crude oil fractions and proposed it’s suitable application and as well as refinery process [12]. Another investigation has been done on Toson Uul and Zuunbayan oilfields, specially it is focused on the effect of depths for the properties and geochemical study of crude oil and sedimentary rock [13]. The structure and compositions of the hydrocarbons from the Tamsagbulag and Zuunbayan oilfields are studied by Sainbayar [14]. The author has focused on the compositions of the light fractions, especially on normal and isoparapynic hydrocarbons and tried to characterize the geochemical classification.

The aim of this research is to study crude oils from four new holes from the Tamsagbulag oilfield by using chromatographic method.

2. Materials and Methods

The crude oil samples representing the 19-14, 19-28, 19-31 and 19-34 wells from the Tamsagbulag oilfield from Mongolia have been selected for investigation. The selected samples are separated into 3 different fractions like paraffin, naphtene and aromatics. GC/MS measurements were performed on a Thermo-Finnigan Trace DSQ mass spectrometer coupled to a Thermo Finnigan Trace GC with a split injector (1:20) and a 0.25 µm HP-5MS fused silica capillary column with a 60 m × 0.35 mm inner diameter. The temperature was held at 40°C for 3 min and then increased to 250°C at 5°C/min intervals, with helium flow rate of 3 ml/min. The EI-MS ionization voltage was 70 eV (electron impact ionization), and the ion source and interface temperature were both 250°C.

3. Results and Discussion

The two classes of biomaker, pentacyclic triterpanes and steranes were identified under the chosen MS condition. Together with steranes, terpanes, triterpanes belong to the most important petroleum hydrocarbons that retained the characteristic structure of the original biological compounds [2]. Tricyclics, tetracyclics, hopanes, and other compounds contribute to the sterane and terpane fingerprint mass chromatogram (m/z = 217 and 191) commonly used to relate oils and source rocks. GC-MS chromatograms of the crude oil from Tamsagbulag oilfield are shown in Figures 1-2, the assignments of the peaks are summarized in Tables 1-2.

Molecular ratios measured from these mass chromatograms help illustrate similarities in the distributions of these biomarker compounds.

The crude oil was characterized by measuring the normalized peak heights of 18 steranes and 34 pentacyclic triterpanes.

The sterane and terpane concentrations of the crude oil from 19-14, 19-28, 19-31 and 19-34 wells of the Tamsagbulag oilfield are shown in Tables 3-4.

Based on the results shown in above, the contents of the biosteranes, isosteranes and diasteranes and composition of the hydrocarbons from the hopane homologies were incorporated in Tables 5 and 6.

The tables show that the composition of petroleum from some holes of Tamsagbulag oil field contains biosteranes and isosteranes with hydrocarbon atoms of C_{27} - C_{30} and the ethylcholestanes with hydrocarbon atoms of C_{29} make up much of it. It means that major organic substances of this petroleum originated from oddments of upper plants on the Earth (Figure 1, Tables 3 and 5.)

Therefore pregnane (C_{21}) and honopregnane (C_{22}) which are the parts with small molecules of homologous alignment of sterane were found in the petroleum of the above mentioned oil field. It is said that pregnane and

Figure 1. Mass chromatograms of oil samples of 19-31 well of the Tamsagbulag oilfield for steranes (m/z 217).
honopregnane originated during the period of very salty sedimentary accumulation in the condition of diagenesis. In the petroleum from holes 19-14, 19-28 and 19-31 of Tamsagbulag, most of diasteranes which are the newly formed isomer of biosteranes are hydrocarbon compounds of C27 (7.5% - 9.5% relatively). The petroleum of the hole 19-34 contains relatively little amount of hydrocarbon compounds of C27 which is only 1.09%. In other words, C27 > C29 for diasteranes of petroleum of holes 19-14, 19-28 and 19-31 while C27 < C29 for hole 19-34. Diasteranes of petroleum are useful for determining component of sediment lithology comprised fundamental source and original substance of petroleum. The C29 norhopanes and C30 hopanes are the dominating biomarkers in all the crude oils which is characteristic for source rocks rich in terrestrial organic matter [15]. These hydrocarbons’ amount in the petroleum of holes 19-14, 19-28 and 19-31 is relatively more than in petroleum of hole 19-34 so it means that the origin of the petroleum of these 3 three holes except 19-34 is relevant with sedimentary rocks which are rich in aluminum silicate. Tricyclitertpane amounted of 3% - 15% was discovered from among class of hydrocarbons of terpane and contents of hopane and norhopane in the 4 holes of the petroleum were 44% - 47.5%, 6% - 8%, respectively. Homohopanes amount in hydrocarbons of terpane in the petroleum of the aforementioned 4 holes was accounted for 25% - 35%. There was a constant decrease of homohopanes with C32-C35 and each pair of epimers had plenty of (22-S)-epimers (Tables 2 and 4). Processing level of

Table 1. GC-MS peak identification for Figure 1.

Peak label	Compound	Elemental composition
3	20S-ááá-Diacholestane	C27H48
4	20R-ááá-Diacholestane	C27H48
5	20S-ááá-Cholestane	C27H48
6	20R-ááá-Cholestane	C27H48
7	20S-ááá-Cholestane	C27H48
8	20R-ááá-Cholestane	C27H48
9	20R-24-Ethyl-10α13β17á-diacholestane	C29H52
10	20S-24-Ethyl-10α13β18á-diacholestane	C29H52
11	20S-24-Methyl-ááá-cholestane	C28H50
12	20R-24-Methyl-ááá-cholestane	C28H50
13	20S-24-Methyl-ááá-cholestane	C28H50
14	20R-24-Methyl-ááá-cholestane	C28H50
15	20S-24-Ethyl-ááá-cholestane	C29H52
16	20R-24-Ethyl-ááá-cholestane	C29H52
17	20S-24-Ethyl-ááá-cholestane	C29H52
18	20R-24-Ethyl-ááá-cholestane	C29H52
Table 2. GC-MS peak identification for Figure 2.

Peak label	Compound	Elemental composition
1	C_{29}, 14α(methyl)-Tricycloterpane	C_{29}H_{50}
2	C_{20}, 13α(H), 14α(H)-Tricycloterpane	C_{29}H_{50}
3	C_{21}, 13α(H), 14α(H)-Tricycloterpane	C_{29}H_{50}
4	C_{21}, 13α(H), 14α(H)-Tricycloterpane	C_{29}H_{50}
5	C_{21}, 13α(H), 14α(H)-Tricycloterpane	C_{29}H_{50}
6	C_{24}, 13α(H), 14α(H)-Tricycloterpane	C_{29}H_{50}
7	C_{25}, 13α(H), 14α(H)-Tricycloterpane	C_{29}H_{50}
8	C_{26}, Tricycloterpane	C_{29}H_{50}
9	C_{26}, Tricycloterpane	C_{29}H_{50}
10	C_{26}, Tricycloterpane	C_{29}H_{50}
11	C_{26}, Tricycloterpane	C_{29}H_{50}
12	C_{26}, Tricycloterpane	C_{29}H_{50}
13	C_{26}, Tricycloterpane	C_{29}H_{50}
14	C_{26}, Tricycloterpane	C_{29}H_{50}
15	18αd, -22, 29, 30-Trisnorhopane(Ts)	C_{20}H_{36}
16	17αd, -22, 29, 30-Trisnorhopane(Tm)	C_{20}H_{36}
17	17αd, 21α-30-Norhopane	C_{20}H_{36}
18	C_{20}Ts	C_{20}H_{36}
19	18α(H)-Hopane	C_{20}H_{36}
20	17α(H), 21α(H)-Nornormoetane	C_{20}H_{36}
21	C_{20}, 17α(H), 21α(H)-Hopane	C_{20}H_{36}
22	17α(H), 21α(H)-Nornormoetane	C_{20}H_{36}
23	22S-17α(H), 21α(H)-Hopohopane	C_{20}H_{36}
24	C_{20}, 22S-17α(H), 21α(H)-Hopohopane	C_{20}H_{36}
25	Gammacamerane	C_{20}H_{36}
26	22R-17α(H), 21α(H)-Homohopane	C_{20}H_{36}
27	22R-17α(H), 21α(H)-Dihomohopane	C_{20}H_{36}
28	22R-17α(H), 21α(H)-Di-3homohopane	C_{20}H_{36}
29	22R-17α(H), 21α(H)-Trihomohopane	C_{20}H_{36}
30	22R-17α(H), 21α(H)-Tri-3homohopane	C_{20}H_{36}
31	22R-17α(H), 21α(H)-Tetrahomohopane	C_{20}H_{36}
32	22R-17α(H), 21α(H)-Tetrahomohopane	C_{20}H_{36}
33	22R-17α(H), 21α(H)-Pentahomohopane	C_{20}H_{36}
34	22R-17α(H), 21α(H)-Pentahomohopane	C_{20}H_{36}

Table 3. Sterane concentration in the crude oil from Tamsagbulag oilfield, wt%.

ID	Compound	Formula	Molecular weight	Oil wells			
				14	28	31	34
S1	5α(H), 14α(H)-Pregnane	C_{20}H_{40}	288	2.30	2.80	2.45	1.62
S2	C_{22} Honopregnane	C_{20}H_{40}	302	1.57	1.77	1.52	0.93
S3	20S-ααα-Diacholestane	C_{20}H_{40}	372	4.79	5.46	4.56	0.48
S4	20R-ααα-Diacholestane	C_{20}H_{40}	372	3.17	4.12	3.03	0.61
S11	20S-ααα-Cholestane	C_{20}H_{40}	372	5.05	4.48	4.69	6.64
S12	20R-ααα-Cholestane	C_{20}H_{40}	372	6.08	5.97	6.45	5.39
S13	20S-ααα-Cholestane	C_{20}H_{40}	372	6.28	7.07	6.07	5.49
S14	20R-ααα-Cholestane	C_{20}H_{40}	372	6.38	4.73	6.02	9.78
S15	20R-24-Ethyl-10α13α17α-diaccholestane	C_{20}H_{40}	400	3.41	2.99	3.25	3.39
S16	20S-24-Ethyl-10α13α18α-diaccholestane	C_{20}H_{40}	400	1.62	1.82	1.74	1.07
S17	20S-24-Methyl-ααα-cholestane	C_{20}H_{40}	386	2.88	3.71	3.12	2.56
S18	20R-24-Methyl-ααα-cholestane	C_{20}H_{40}	386	2.44	2.92	2.62	3.67
S19	20S-24-Methyl-ααα-cholestane	C_{20}H_{40}	386	4.83	4.99	4.96	5.96
S20	20R-24-Methyl-ααα-cholestane	C_{20}H_{40}	386	3.74	3.71	3.84	5.58
S21	20S-24-Ethyl-ααα-cholestane	C_{20}H_{40}	400	10.13	8.53	9.83	12.01
S22	20R-24-Ethyl-ααα-cholestane	C_{20}H_{40}	400	13.08	13.24	12.51	11.22
S23	20S-24-Ethyl-ααα-cholestane	C_{20}H_{40}	400	10.26	10.70	11.43	9.08
S24	20R-24-Ethyl-ααα-cholestane	C_{20}H_{40}	400	12.00	11.00	11.91	14.51
the petroleum of these 4 holes was considered as low because none of diaphanes was found in their component. Some gammaceranes (1.5% - 3%) were found in the petroleum of holes 19-14, 19-28, 19-31 and 19-34 of Tamsagbulag oil field and this evidence shows characteristic of highly marine depositional conditions in the environment of ocean, sea and marshy lake.

4. Conclusions

1) The composition of the sterane and terpane hydrocarbon derivatives of the Tamsagbulag crude oil well No. 14-19, 28, 31 and 34 has been determined by GC-MS.

2) Based on the contained biosteranes and isosteranes,
Table 6. The hydrocarbon compositions of hopane derivatives in the crude oil from some wells of the Tamsagbulag oilfield, wt%.

Compound	Oil wells			
	14	28	31	34
Tricycletterpane	3.64	4.15	3.49	15.27
Norhopane (Tn+ Ts)	8.14	8.28	7.34	6.33
Hopane	47.43	45.64	46.58	43.99
Moretane	4.7	4.95	4.7	4.13
Homohopane	33.26	34.13	34.35	24.85
Homomoretane	1.22	1.14	1.63	2.15
Gammacerane	1.63	1.72	1.89	3.28

the petroleum from some holes of Tamsagbulag oil field, originated from oddments of upper plants. The content of the gammacerane, pregnane and honopregnane found in the petroleum of the aforementioned oil field says that those are originated during the period of very salty sedimentary accumulation in the condition of diagenesis.

5. References

[1] G. D. Hobson and W. Pohl, “Modern Petroleum Technology,” Applied Science Publishers, London, 1973.
[2] J. M. Hunt, “Petroleum Geochemistry and Geology,” Freeman Company, New York, 1979.
[3] J. G. Speight, “The Chemistry and Technology of Petroleum,” Marcel Dekker, Inc., New York, 1991.
[4] D. R. Luellen and D. Shea, “Semipermeable Membrane Devices Accumulate Conserved Rations of Sterane and Hopane Petroleum Biomarkers,” Chemosphere, Vol. 53, No. 7, 2003, pp. 705-713. doi:10.1016/S0045-6535(03)00576-9
[5] A. Hauser, H. Dashti and Z. H. Khan, “Identification of Biomarker Compounds in Selected Kuwait Crude Oils,” Fuel, Vol. 78, No. 12, 1999, pp. 1483-1488. doi:10.1016/S0016-2361(99)00075-7
[6] J. Connan, J. Bourroulec, D. Dessort and P. Albrecht, “The Microbial Input in Carbonate-Anhydrite Facies of a Sabkha Palaeoenvironment from Guatemala: Molecular Approach,” Organic Geochemistry, Vol. 10, No. 1-3, 1986, pp. 29-50. doi:10.1016/0146-6380(86)90007-0
[7] A. A. Petrov, “Hydrocarbons of the Crude Oil,” Nauka, Moscow, 1984.
[8] M. I. Roushdy, M. M. El Nady, Y. M. Mostafa, et al., “Biomarkers Characteristics of Crude Oils from Some Oilfields in the Gulf of Suez, Egypt,” Journal of American Science, Vol. 6, No. 11, 2010, pp. 911-925.
[9] S. Aboglila, K. Grice, K. Trinajstic, et al., “Use of Biomarker Distributions and Compound Specific Isotopes of Carbon and Hydrogen to Delineate Hydrocarbon Characteristics in the East Sirte Basin (Libya),” Organic Geochemistry, Vol. 41, No. 12, 2010, pp. 1249-1258. doi:10.1016/j.orggeochem.2010.05.011
[10] R. P. Philp, J. G. Li and C. A. Lewis, “An Organic Geochemical Investigation of Crude Oils from Shanganning, Jianghan, Chaidamu and Zhunge Basins, China,” Organic Geochemistry, Vol. 14, No. 4, 1989, pp. 447-460. doi:10.1016/0146-6380(89)90010-7
[11] R. P. Philp, R. T. Simoneit and T. D. Gilbert, “Advances in Organic Geochemistry,” Wiley, Chichester, 1981, pp. 698-704.
[12] B. Khongorzul, “Features of the Hydrocarbon Composition and High Molecular Compounds of the High Paraffinic Oil from Mongolia,” Ph.D. Thesis, Tomsk, 2008, pp. 67-77.
[13] V. Alimaa, “Effect of the Depths on Crude Oil Properties,” Ph.D. Thesis, Mongolian University of Science and Technology, UB, 2008, p. 118.
[14] A. Sainbayar, “Study on Hydrocarbon’s Composition of Mongolian Petroleum,” Ph.D. Thesis, National University of Mongolia, Ulaanbaatar, 2006, p. 200.
[15] G. Demaison, A. J. Holck, R. W. Jones and G. T. Moore, “Predictive Source Bed Stratigraphy: A Guide to Regional Petroleum Occurrence,” Proceedings of the 11th World Petroleum Congress 2, PDI, Wiley, New York, 1984, pp. 17-29.