A Pentagonal Shaped Microstrip Planar Antenna with Defected Ground Structure for Ultrawideband Applications

Saida Ibnyaich1 · Samira Chabaa2 · Layla Wakrim1 · Abdessalam El Yassini1 · Abdelouhab Zeroual1 · Moha M’rabet Hassani1

Accepted: 7 November 2021 / Published online: 17 November 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
A new compact pentagonal microstrip patch antenna with slotted ground plane structure, developed for use in ultrawideband applications, is studied in this article. The proposed antenna is mainly constituted by a pentagonal shaped patch antenna, a defected ground plane structure, two stubs, and four slots to improve the bandwidth. The designed antenna has an overall dimension of $30 \times 17.59 \times 1.6$ mm3, for WIMAX/WLAN/WiFi/HIPER-LAN-2/Bluetooth/LTE/5G applications with a very large bandwidth starting from 2.66 to 10.82 GHz ($S_{11} < -6$ dB). A parametric study of the ground plane structure was carried out to find the final and the optimal UWB antenna, and to confirm that the antenna has good performance and broader bandwidth. The proposed antenna prototype has been fabricated. The measured results indicate that the antenna has a good impedance matching. The antenna has an electrically small dimension with a good gain, a notable efficiency, and a wide impedance bandwidth, which makes this antenna an excellent candidate for ultrawideband wireless communication, microwave imaging, radar applications, and the major part of the mobile phone frequencies as well.

Keywords
Defected ground plane · Pentagonal shaped antenna · Ultrawideband (UWB) · Broadband antennas

1 Introduction
Ultrawideband communication systems gain more interest since 2002 because of its wide-band, low power consumption, high signal quality, and low profile [1]. Among the crucial components which determine the performance of the ultrawideband system is the antenna [2].
In the past decades, many antennas with various techniques of bandwidth enhancement have been proposed. Most of these techniques or antennas include entrenching different types of slots on the patch [2–5] or the ground plane [4, 6, 7]. Besides, other different techniques have been proposed to achieve UWB operations, including the use of diverse shapes such as elliptical [8], semielliptical [9], octagonal [10, 23], beveled rectangle [11], broken-heart [12], circular [13–15], or half-circle [16].

By embedding different elements to the antenna, one can also enhance the bandwidth of the conventional patch antenna such as the parasitic elements [5, 17], stubs [4], splint ring resonator (SRR) [15, 16, 22], steps [3] or additional patch [13].

The impedance bandwidth can be optimized by adjusting the feed gap and the plate width [18], by shifting from the center of the substrate the radiating plate and the feed line [19], or by using metamaterial (MTM) [20].

In this article, a new ultrawideband antenna for UWB applications is studied; the suggested antenna consists of a pentagonal shaped patch antenna, a microstrip feed line shifted from the center of the defected substrate, a defected ground plane structure, two stubs, and four slots to enhance the bandwidth.

With the assistance of the full-wave electromagnetic solver ANSYS HFSS (High Frequency Structure Simulator) the antenna was optimized [21]. Furthermore, a prototype of this antenna is fabricated and tested. The measured and simulated result of reflection coefficient S_{11} and the radiation pattern in the E and the H planes are presented and discussed. It is found that both results are to be in good agreement.

This article is organized as follows: Sect. 2 gives a detailed description of the geometry of the antenna, the design procedure, and the effect of the defected ground structure. Section 3 analyzes the different obtained results of the proposed antenna. Finlay, Sect. 4 concludes the paper.

2 Antenna Design and Analysis

2.1 Antenna Geometry

Figure 1 depicts the geometry layout of the suggested pentagonal shaped with defected ground plane patch antenna. The antenna uses the FR4 as substrate material having a dielectric constant of 4.4, a loss tangent of 0.02, and a thickness of 1.6 mm.

As illustrated in Fig. 1, the proposed antenna is composed of a radiating pentagonal shaped patch, a defected ground plane, two stubs etched in the ground, three identical slots in the top of the radiating patch, and an inverted L slot in the lower-left corner of the patch. The pentagonal patch antenna is located on the top of the substrate. While on the bottom, we found the defected ground structure (DGS). The overall dimension of the proposed antenna is 30×17.59 mm2. An extensive simulation was carried out to optimize the design parameters of current research work using the electromagnetic simulator HFSS. The optimized dimensions are listed in Table 1

2.2 Design Procedure

In this section, four design steps are used to describe in detail the design procedure of the proposed antenna. Figure 2 depicts the realization for current research work with the help
A Pentagonal Shaped Microstrip Planar Antenna with Defected...

Fig. 1 The proposed ultrawideband antenna. The geometry, (b) Front view and (c) Back view.

Table 1 Optimized dimensions of the proposed pentagonal shaped microstrip patch antenna

Parameter	W	L	lg1	lg2	lg3	lg4	lg5
Value (mm)	17.59	30	8	8	6	7.25	8.5
Parameter	lg6	lg7	wg1	wg2	wg3	wg4	lf
Value (mm)	3.5	3.4	16.5	6.9	5.2	4.4	8.47
Parameter	wf	P	S1	S2	S3	d1	d2
Value (mm)	2.5	5.84	3.81	2.5	1.2	1.59	1.5
of the four steps. The simulated reflection coefficient curve from the first step (Ant. 1) to the last one (Ant. 4) is presented in Fig. 3.

As illustrated in Fig. 2, in the first stage, a square radiating patch antenna [named Ant. 1] is designed. The length of the square is chosen approximately equal to half a wavelength at the resonant frequency and can be calculated using the equations below:

\[
f_s = \frac{C}{2L_s \sqrt{\varepsilon_{\text{reff}}}}
\]

(1)

\[
\varepsilon_{\text{reff}} \approx \frac{\varepsilon_r + 1}{2}
\]

(2)
A Pentagonal Shaped Microstrip Planar Antenna with Defected…

where C is the speed of light in vacuum, ε_r is the relative permittivity, $\varepsilon_{\text{reff}}$ is the effective relative permittivity, L_s the length of the square, and f_s is the fundamental resonant frequencies.

In the second stage, and for enhancing the antenna bandwidth, the square shape of the radiating patch is changed into a pentagonal shape where the number of straight lines is five, and the length is P [named Ant. 2]. It also provides additional resonance. In the third stage, and in order to improve the impedance matching and to provide a wider impedance bandwidth, an inverted L shaped slot was embedded in the radiating patch [named Ant. 3].

A broaden bandwidth range is obtained by adding three slots with the same dimension and different positions in the top of the pentagon radiating patch of Ant. 3 [named Ant. 4].

The obtained reflection coefficient for the optimized set of the different stages of the antenna is presented in Fig. 3. The simulated impedance bandwidths ($S_{11} < -6$ dB) are about 7.42 GHz for Ant.1 (from 2.67 to 10.09 GHz), 8.3 GHz for Ant.2 (from 2.5 to 11.08 GHz), and 8.4 GHz for the third antenna Ant.3 (from 2.6 to 10.08 GHz). Moreover, it is seen that Ant.4 has a broader bandwidth from 2.66 to 10.8 GHz with a total bandwidth of 8.14 GHz. One can conclude that the proposed antenna can cover in totality the required bandwidths of the FCC UWB standards.

2.3 Effect of the Defected Ground Structure

Knowing that the ground plane has an essential role in widening the bandwidth of antennas, in this section, and to display the advantage of the defected ground plane and to choose the most suitable ground structure to obtain an ultrawideband antenna; four design steps were carried out. Figure 4 illustrates the design procedure of the ground plane by using the four design stages with the same radiating pentagonal patch antenna with slots.

Figure 5 illustrates the reflection coefficient for the different ground plane steps (from Ant.a to Ant.d). It can be seen that the reflection coefficient for Ant.a by using a full ground plane only one resonant frequency is obtained. The resonance frequency is equal
to 7.97 GHz with a reflection coefficient of a -32 dB and a frequency band of 1.29 GHz ($S_{11} < -6$ dB).

In the second stage (Ant.b), other resonance frequencies are obtained by cutting a rectangle with a dimension of 16.5×14 mm2 from the ground plane. To enhance the bandwidth of the previous antenna, another rectangle with a dimension of 5.2×3.4 mm2 is removed from the ground plane; the obtained antenna (Ant.c) provides bandwidth from 2.52 to 10.91 GHz. Finally, to obtain the desired ultrawideband antenna (Ant.d), two rectangular stubs with a dimension of 6×1 mm2 and 3.5×1 mm2 are embedded in the higher left and the lower right of the first rectangular cut respectively.

2.4 Effect of Varying the DGS Dimensions

This segment is explained in order to investigate the response of the bandwidth by employing some critical parameters in the ground plane. The key parameters of the proposed
antenna are l_{g6}, l_{g3}, w_{g1}, w_{g3}, and l_{g7} considered to optimize values; the simulated reflection coefficient curve for different values of each parameter is shown in the figures below.

Figure 6 illustrates a parametric study of the defected ground plane of the proposed antenna. This study is built on the antennas structures presented in Fig. 1 and the values given in Table 1.

Figure 6a and b illustrates the effect of varying the lengths of the first and the second stubs l_{g6} and l_{g3}, respectively, on the reflection coefficient. It is seen that the increase in l_{g6} or l_{g3} affects the higher and medium frequency bands, while the lower frequency response is kept constant. Figure 6c shows the effects of the width of the first rectangular cut on the reflection coefficient when w_{g1} varies from 13.5 to 16.5 mm. From this figure, it can be seen that the decrease in w_{g1} increases the bandwidth on the higher frequency side for all the frequency bands. By varying the width and the length of the second rectangular cut w_{g3} and l_{g7} respectively, it can be concluded that by increasing the width w_{g3} the bandwidth decrease notably (Fig. 6d), and the variation of the length l_{g7} (Fig. 6e) affect only the third resonant frequency band that’s shifting towards the lower frequency while the other resonant frequencies bands are unchanged.

3 Results and Discussion

3.1 Reflection Coefficient

The reflection coefficient is measured with Rohde and Schwarz ZVB20 vector network analyzer, which has a frequency range limited to 20 GHz.

Figure 7 displays the simulated and measured reflection coefficients of the presented UWB antenna. We notice that the simulated result obtained by HFSS shows a bandwidth from 2.66 to 10.80 GHz (at −6 dB), whereas, the obtained measured bandwidth is from 2.66 to 10.45 GHz (at −6 dB). The reason for this difference between the simulated and measured results is due to the effect of SMA connector soldering and fabrication tolerance.
3.2 Surface Current Distribution

Figure 8 displays the surface current distributions on the whole proposed UWB antenna, including the defected ground plane at different resonant frequencies, in order to further demonstrate the ultrawideband operation mechanism.

One can observe that the current has different distributions along the surface of the antenna in different frequency bands. Figure 8a shows that at 3.8 GHz, the current is involuntarily flowing the pentagonal radiating patch and especially on the bottom. The current distributions at frequency 4.5 GHz (Fig. 8b) are found to be more concentrated in the two edges of the left and right ground plane near the first rectangular cut and the first stub. The current distributions in the case of the frequency 6.8 GHz (Fig. 8c) divulge that the surface current density is maximum near the second rectangular cut and the second stub. Concerning the last figure (Fig. 8d), it depicts the current distributions at the frequency 8 GHz, and it illustrates that the current distributions are more concentrated around the top slots.

Fig. 6 Simulated reflection coefficient for a different set of values of (a) lg6, (b) lg3, (c) wg1, (d) wg3, and (e) lg7
3.3 Radiation Patterns, Gain and Efficiency of the Antenna

The radiation patterns of the proposed antenna at different bands in E-plane (φ = 0°) and H-plane (φ = 90°) areas at different resonance frequencies are simulated, measured and illustrated in Fig. 9a-d respectively.

Figure 9a and b illustrates the radiation pattern of the antenna at 3.8 GHz and 4.5 GHz, respectively. It can be seen that the pattern is omnidirectional in these two frequencies. While, in Fig. 9c and d, which represents the radiation pattern at 6.8 GHz and 8 GHz, respectively, we remark a nearly omnidirectional radiation pattern since the high frequencies are more affected by variation in relative permittivity of the substrate.

Figure 10 illustrates the radiation efficiency and the gain of the proposed UWB antenna. From this figure, we notice that the efficiency varies between 89.21% and 99.96% in the whole frequency band, and the maximum obtained gain is 3.38 dB. A comparative study of the suggested antenna with other UWB antennas in terms of the totally occupied size, type of substrate, the frequency of operation, the peak gain, the maximum efficiency and the use of the DGS have been summarized in Table 2. From this comparative study table, it is evident that the proposed ultrawideband antenna occupies the smallest area, use an inexpensive substrate, and cover a large bandwidth, knowing that it has a simpler geometry compared to other cited designs.

4 Conclusion

This article proposed a new compact and miniature ultrawideband antenna. This antenna is fabricated using FR4 substrate with dimensions of 30×17.59×1.6 mm³. It has a compact size, a simple structure and it’s easy to fabricate due to its planar structure. Moreover, the simulated and measured results confirm that the antenna is appropriate to cover the all the ultrawideband wireless communication bandwidth. The presented antenna has a broader bandwidth from 2.66 to 10.88 GHz. The simulated results show that the defected ground plane, slots, and stubs are critical factors for improving the bandwidth of the proposed
Fig. 8 Simulated surface current distributions of the proposed antenna at (a) 3.8 GHz, (b) 4.5 GHz, (c) 6.8 GHz, and (d) 8 GHz
Fig. 9 Simulated and measured radiation patterns of the proposed UWB antenna at frequencies (a) 3.8 GHz, (b) 4.5 GHz, (c) 6.8 GHz, and (d) 8 GHz
antenna. The proposed antenna was designed, fabricated and tested. The measured reflection coefficient at – 6 dB is ranging from 2.66 à 10.45 GHz.

In conclusion, the antenna achieves a broad impedance bandwidth, small size, stable radiation patterns, and a higher radiation efficiency. It is demonstrated experimentally that the proposed antenna can cover all the UWB frequency band. Therefore, the proposed antenna can be the best candidate for WIMAX /WLAN/ WiFi/HIPERLAN-2 /Bluetooth /LTE /5G applications.

Fig. 10 Gain and radiation efficiency for the proposed antenna
Related works	Size (mm3)	Bandwidth (GHz)	Substrate	Peak Gain (dB)	Max Efficiency (%)	DGS (Yes/No)
[4]	40 × 40 × 1.9	3.18–11.50	Taconic RF-30($\varepsilon_r = 3, \tan\delta = 0.0014$)	8	–	Yes
[7]	50 × 50 × 1.6	3.00–10.50	FR4($\varepsilon_r = 4.4, \tan\delta = 0.02$)	3.8	91.15	Yes
[22]	24 × 30 × 1.6	2.86–12.2	FR4($\varepsilon_r = 4.3, \tan\delta = 0.02$)	5.45	–	Yes
[23]	19 × 30 × 0.8	3.1–10.6	FR4($\varepsilon_r = 4.5, \tan\delta = 0.02$)	2.91	90	No
Proposed Antenna	30 × 17.59 × 1.6	2.66–10.80	FR4($\varepsilon_r = 4.4, \tan\delta = 0.02$)	3.38	99.96	Yes

By convention italics is used for relative permittivity and the tangent of loss.
Acknowledgements The authors gratefully acknowledges the valuable support of all members of Electrical Electronics and Microwave Laboratory, specially professor Mohsine Khalladi, from Abdelmalek Essaadi University, Tetouan, Morocco.

Authors’ Contribution Not applicable for that section.

Funding Not applicable for that section.

Availability of Data and Material Not applicable for that section.

Code Availability Not applicable for that section.

Declarations

Conflict of interest Not applicable for that section.

References

1. Federal Communications Commission. Federal Communication Commission Revision of Part 15 of Commission’s Rules Regarding Ultra-wideband Transmission Systems. First Report and Order FCC, 02. V48, Washington, DC, USA, (2002).
2. Low, Z. N., Cheong, J. H., & Law, C. L. (2005). Low-cost PCB antenna for UWB applications. IEEE Antennas and Wireless Propagation Letters, 4, 237–239. https://doi.org/10.1109/LAWP.2005.852577
3. Choi, S. H., Park, J. K., Kim, S. K., et al. (2004). A new ultra-wideband antenna for UWB applications. Microwave and Optical Technology Letters, 40(5), 399–401. https://doi.org/10.1002/mop.11392
4. Hasan, M. N., Chu, S., & Bashir, S. (2019). A DGS monopole antenna loaded with U-shape stub for UWB MIMO applications. Microwave and Optical Technology Letters, 61(9), 2141–2149. https://doi.org/10.1002/mop.31877
5. Ojaroudi, N., & Ojaroudi, M. (2013). Novel design of dual band-notched monopole antenna with bandwidth enhancement for UWB applications. IEEE Antennas and Wireless Propagation Letters, 12, 698–701. https://doi.org/10.1109/LAWP.2013.2264713
6. Zhan, J., Tang, Z.-J., Wu, X.-F., & Liu, H.-L. (2013). CPW-fed printed antenna design with multislit patches for UWB communications. Microwave and Optical Technology Letters, 55(12), 3023–3025. https://doi.org/10.1002/mop.28008
7. Das, A., Acharjee, J., & Mandal, K. (2019). Compact UWB printed slot antenna with three extra bands and WiMAX rejection functionality. Radioengineering, 27(3), 544–551. https://doi.org/10.13164/re.2019.0544
8. Sarkar, D., Srivastava, K. V., & Saurav, K. (2014). A compact microstrip-fed triple band-notched UWB monopole antenna. IEEE Antennas and Wireless Propagation Letters, 13, 396–399. https://doi.org/10.1109/LAWP.2014.2306812
9. Kimouche, H., Abed, D., Atrouz, B., et al. (2010). AKSAS, bandwidth enhancement of rectangular monopole antenna using modified semielliptical ground plane and slots. Microwave and Optical Technology Letters, 52(1), 54–58. https://doi.org/10.1002/mop.24830
10. Sanyal, P., Sarkar, P. P., & Chowdhury, S. K. (2018). Miniaturized band-notched UWB antenna with improved fidelity factor and pattern stability. Radioengineering, 27(1), 39–46. https://doi.org/10.13164/re.2018.0039
11. Chu, Q.-X., & Yang, Y.-Y. (2008). A compact ultrawideband antenna with 3.4/5.5 GHz dual band-notched characteristics. IEEE Transactions on Antennas Propagation, 56(12), 3637–3644. https://doi.org/10.1109/TAP.2008.2007368
12. Rahman, N., Islam, M. T., Mahmud, Z., Samsuzzaman, M., et al. (2018). The broken-heart printed antenna for ultrawideband applications: design and characteristics analysis. IEEE Antennas Propagation Magazine, 60(6), 45–51. https://doi.org/10.1109/MAP.2018.2870664
13. Tang, Z., Wu, X., Zhan, J., Xi, Z., & Hu, S. (2018). A novel miniaturized antenna with multiple band-notched characteristics for UWB communication applications. Journal of Electromagnetic Waves and Applications, 32(15), 1961–1972. https://doi.org/10.1080/09205071.2018.1486235
14. Liang, J., Chiau, C. C., Chen, X., & Parini, C. G. (2005). Study of a printed circular disc monopole antenna for UWB systems. *IEEE Transactions on Antennas Propagation*, 53(11), 3500–3504. https://doi.org/10.1109/TAP.2005.858598
15. Zhang, Y., Hong, W., Yu, C., Kuai, Z.-Q., et al. (2008). Planar ultrawideband antennas with multiple notched bands based on etched slots on the patch and/or split ring resonators on the feed line. *IEEE Transactions on Antennas Propagation*, 56(9), 3063–3068. https://doi.org/10.1109/TAP.2008.928815
16. Kim, J., Cho, C. S., & Lee, J. W. (2006). 5.2 GHz notched ultra-wideband antenna using slot-type SRR. *Electronics letters*, 42(6), 2. https://doi.org/10.1049/el:20063713
17. Ibnyaich, S., Ghammaz, A., & Hassani, M. M. (2012). Planar inverted-F antenna with J-shaped slot and parasitic element for ultra-wide band application. *International Journal of Microwave Wireless Technologies*, 4(6), 613–621. https://doi.org/10.1017/S175907871200058X
18. John, M., & Ammann, M. J. (2005). Optimization of impedance bandwidth for the printed rectangular monopole antenna. *Microwave and Optical Technology Letters*, 47(2), 153–154. https://doi.org/10.1002/mop.21109
19. Azim, R., Aldhaheri, R. W., Sheikh, M. M., et al. (2016). An effective technique based on off-set fed patch to enhance the bandwidth of microstrip planar antenna. *Microwave and Optical Technology Letters*, 58(5), 1221–1226. https://doi.org/10.1002/mop.29772
20. Hamad, E. K. I., & Nady, G. (2019). Bandwidth extension of ultra-wideband microstrip antenna using metamaterial double-side planar periodic geometry. *Radioengineering*, 27(1), 25–32. https://doi.org/10.13164/re.2019.0025
21. http://www.ansoft.com/products/hf/hfss/.
22. Devana, V. K. R., & Rao, A. M. (2020). Compact UWB monopole antenna with quadruple band notched characteristics. *International Journal of Electronics*, 107, 175–196. https://doi.org/10.1080/00207217.2019.1636311
23. Kumar, A., Ansari, A. Q., Kanaujia, B. K., Kishor, J., & Kumar, S (2019). An ultra-compact two-port UWB-mimo antenna with dual band-notched characteristics. *AEU International Journal of Electronics and Communications*, 114, Article 152997, https://doi.org/10.1016/j.aeu.2019.152997.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Saida Ibnyaich is a Professor in the Department of Physics at the Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco. She received a technical University degree in 1998 from the Higher School of Technology, Oujda, Morocco. In 2002 she received a Bachelor’s degree in technical sciences from the Faculty of Sciences and Technology Gueliz, Marrakesh, Morocco. In 2005 she also received the M.A in Electrical Engineering, Power Electronics, and Industrial Control from the Faculty of Science Semlalia, Marrakech, Morocco. In 2013 she received the PhD degree in telecommunication and computing from the Faculty of Science Semlalia. Her research interest includes telecommunications, microwaves, signal processing, millimeter waves, and antennas.
Samira Chabaa is a Professor in the industrial department at the National School of Applied Sciences, Ibn Zohr University. She received the Bachelor of sciences in electronic engineering from Moulay Ismail University, Errachidia, Morocco. She received the M.A in Electrical Engineering, Power Electronics and Industrial Control, and the PhD. Degree in telecommunication and computing from the Faculty of Science Semlalia, Cadi Ayyad University; Marrakesh, Morocco, respectively, in 2005 and. 2011. Reviewer in many international journals. She is currently a co-supervisor of many research works. She has published more than 20 papers in international journals and more than 40 papers in international conferences. Her research interest includes communications and signal processing, time series analysis, linear and nonlinear system identification, artificial intelligence techniques.

Layla Wakrim was born in Morocco in 1985. She received the Bachelor of sciences in electrical engineering from Cadi Ayyad University, Marrakesh, Morocco. In 2010, she received a master’s degree in electronics from the faculty of sciences Semlalia Marrakesh Morocco. In 2018, she held the PhD degree in telecommunication and signal processing at the same University. Her main research interests in the antenna designs, telecommunication, and signal processing.

Abdessalam El Yassini was born in Morocco in 1992. He received BSc in Electronics and Industrial Computing from Cadi Ayyad University, Marrakesh, Morocco. In 2016, he received the master degree in Computer Control Industrial Signals and Systems from Cadi Ayyad University. He is currently working toward the PhD degree in Telecommunication and Informatique at the same University. His main research interests lie in the metamaterial antenna designs and RFID technology.
Abdelouhab Zeroual is a Professor in the Department of Physics at the Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco. He received the M. A and the PhD in Signal Processing from the Faculty of Science Semlalia, Cadi Ayyad University; Marrakesh—Morocco respectively in 1988 and 1995. Reviewer in many international journals, and he is currently a supervisor of several research works. He has published more than 60 papers in international journals and more than 200 papers in international conferences. His research interest includes statistical signal processing, modeling, linear and nonlinear system identification, blind equalization, and solar energy systems.

Moha M'rabet Hassani was born in Morocco in 1954. He received the Third Cycle Doctorate in automatic and signal processing from The University of Nice, France, in 1982, and the PhD degree in electrical engineering from the University of Sherbrooke, Canada, in 1992. He joined Cadi Ayyad University, Marrakesh, Morocco, in 1982 as an Assistant Professor. Since 1993, he has been a Professor at the Faculty of Sciences Semlalia, Marrakesh, Morocco. His research interests are mainly nonlinear process modelling and identification applied to telecommunication and solar energy fields.