ASYMPTOTIC PROPERTIES OF EIGENVALUES AND EIGENFUNCTIONS OF A STURM-LIOUVILLE PROBLEM WITH DISCONTINUOUS WEIGHT FUNCTION

ERDOĞAN ŞEN

ABSTRACT. In this paper, by using the similar methods of O. Sh. Mukhtarov and M. Kadakal, Some spectral properties of one Sturm-Liouville type problem with discontinuous weight, Siberian Mathematical Journal, 46 (2005) 681-694 we extend some spectral properties of regular Sturm-Liouville problems to those which consist of a Sturm-Liouville equation with discontinuous weight at two interior points together with spectral parameter-dependent boundary conditions. We give an operator-theoretic formulation for the considered problem and obtain asymptotic formulas for the eigenvalues and eigenfunctions.

2010 MATHEMATICS SUBJECT CLASSIFICATION. 34L20, 35R10.

KEYWORDS AND PHRASES. Sturm-Liouville problem; eigenparameter; transmission conditions; asymptotics of eigenvalues and eigenfunctions.

1. Introduction

Sturmian theory is one of the most extensively developing fields in theoretical and applied mathematics. The literature is voluminous and we refer to [1-14]. The theory of discontinuous Sturm-Liouville type problems mainly has been developed by Mukhtarov and his students (see [1-12]). Particularly, there has been an increasing interest in the spectral analysis of boundary-value problems with eigenvalue-dependent boundary conditions [1-12,15-18,21,23,24].

In this paper we consider the boundary value problem for the differential equation

\[(1.1) \quad \tau u := -u'' + q(x)u = \lambda \omega(x)u\]

for \(x \in [-1, h_1) \cup (h_1, h_2) \cup (h_2, 1]\) (i.e., \(x\) belongs to \([-1, 1]\) but the two inner points \(x = h_1\) and \(x = h_2\)), where \(q(x)\) is a real valued function, continuous in \([-1, h_1), (h_1, h_2)\) and \((h_2, 1]\) with the finite limits \(q(\pm h_1) = \lim_{x \rightarrow \pm h_1} q(x)\), \(q(\pm h_2) = \lim_{x \rightarrow \pm h_2} q(x)\); \(\omega(x)\) is a discontinuous weight function such that \(\omega(x) = \omega_1^2\) for \(x \in [-1, h_1), \omega(x) = \omega_2^2\) for \(x \in (h_1, h_2)\) and \(\omega(x) = \omega_3^2\) for \(x \in (h_2, 1]\), \(\omega > 0\) together with the standard boundary condition at \(x = -1\)

\[(1.2) \quad L_1 u := \cos \alpha u(-1) + \sin \alpha u'(-1) = 0,\]

the spectral parameter dependent boundary condition at \(x = 1\)

\[(1.3) \quad L_2 u := \lambda \left(\beta_1' u(1) - \beta_2' u'(1) \right) + \left(\beta_1 u(1) - \beta_2 u'(1) \right) = 0,\]
and the four transmission conditions at the points of discontinuity $x = h_1$ and $x = h_2$

\begin{align}
L_3 u := & \gamma_1 u (h_1 - 0) - \delta_1 u (h_1 + 0) = 0, \\
L_4 u := & \gamma_2 u' (h_1 - 0) - \delta_2 u' (h_1 + 0) = 0, \\
L_5 u := & \gamma_3 u (h_2 - 0) - \delta_3 u (h_2 + 0) = 0, \\
L_6 u := & \gamma_4 u' (h_2 - 0) - \delta_4 u' (h_2 + 0) = 0,
\end{align}

in the Hilbert space $L_2 (-1, h_1) \oplus L_2 (h_1, h_2) \oplus L_2 (h_2, 1)$ where $\lambda \in \mathbb{C}$ is a complex spectral parameter; and all coefficients of the boundary and transmission conditions are real constants. We assume naturally that $|\alpha_1| + |\alpha_2| \neq 0$, $|\beta'_1| + |\beta'_2| \neq 0$ and $|\beta_1| + |\beta_2| \neq 0$. Moreover, we will assume that $\rho := \beta'_1 \beta_2 - \beta_1 \beta'_2 > 0$. Some special cases of this problem arises after application of the method of separation of variables to the diverse assortment of physical problems, heat and mass transfer problems (for example, see [22]), vibrating string problems when the string loaded additionally with point masses (for example, see [22]).

2. Operator-Theoretic Formulation of the Problem

In the series of O. Sh. Mukhtarov and his students works are introduced direct sum of Hilbert spaces but with the usual inner products replaced by appropriate multiplies (see, for example, [1-3,5,6,10-12]. By employing the approach used in these words, we introduce a special inner product in the appropriate multiplies (see, for example, [1-3,5,6,10-12]. By employing the direct sum of Hilbert spaces but with the usual inner products replaced by

$$(F, G) := \omega_1 \int_{-1}^{h_1} f(x) g(x) \, dx + \omega_2 \int_{h_1}^{h_2} f(x) g(x) \, dx$$

for $F = \begin{pmatrix} f(x) \\ f_1 \end{pmatrix}$ and $G = \begin{pmatrix} g(x) \\ g_1 \end{pmatrix} \in H$. For convenience we will use the notations

$$R_1 (u) := \beta_1 u(1) - \beta_2 u'(1), \quad R_1' (u) := \beta'_1 u(1) - \beta'_2 u'(1).$$

In this Hilbert space we construct the operator $A : H \to H$ with domain

$$D(A) = \left\{ F = \begin{pmatrix} f(x) \\ f_1 \end{pmatrix} \mid f(x), f'(x) \text{ are absolutely continuous in } [1, h_1] \cup [h_1, h_2] \right\}$$

$\cup [h_2, 1]$; and has finite limits $f(h_1 \pm 0), f(h_2 \pm 0), f'(h_1 \pm 0), f'(h_2 \pm 0)$;

$$\tau f \in L_2 (-1, h_1) \oplus L_2 (h_1, h_2) \oplus L_2 (h_2, 1); \quad L_1 f = L_3 f = L_4 f = L_5 f = L_6 f = 0,$$

$$f_1 = R_1 (f)$$

(2.1)
SPECTRAL PROPERTIES OF A STURM-LIouvILLE PROBLEM

which acts by the rule

\[AF = \left(\frac{1}{\omega(x)} [-f'' + q(x)f] \right) \quad \text{with} \quad F = \left(\frac{f(x)}{R_1'(f)} \right) \in D(A). \]

Thus we can pose the boundary-value-transmission problem (1.1)-(1.7) in \(H \) as

\[AU = \lambda U, \quad U := \left(\frac{u(x)}{R_1'(u)} \right) \in D(A). \]

It is readily verified that the eigenvalues of \(A \) coincide with those of the problem (1.1)-(1.7).

Theorem 2.1. The operator \(A \) is symmetric.

Proof. Let \(F = \left(\frac{f(x)}{R_1'(f)} \right) \) and \(G = \left(\frac{g(x)}{R_1'(g)} \right) \) be arbitrary elements of \(D(A) \). Twice integrating by parts we find

\[
\langle AF, G \rangle_H = \langle F, AG \rangle_H = W(f, g; h_1 - 0) - W(f, g; h_2 - 0) + \frac{\delta_1 \delta_2}{\gamma_1 \gamma_2} (W(f, g; h_2 - 0) - W(f, g; h_1 + 0))
\]

\[
+ \frac{\delta_1 \delta_2 \delta_3 \delta_4}{\gamma_1 \gamma_2 \gamma_3 \gamma_4} (W(f, g; h_1 - 0) - W(f, g; h_2 + 0))
\]

\[
+ \frac{\delta_1 \delta_2 \delta_3 \delta_4}{\rho \gamma_1 \gamma_2 \gamma_3 \gamma_4} (R_1'(f) R_1(g) - R_1(f) R_1'(g))
\]

(2.4)

where, as usual, \(W(f, g; x) \) denotes the Wronskian of \(f \) and \(g \); i.e.,

\[
W(f, g; x) := f(x)g'(x) - f'(x)g(x).
\]

Since \(F, G \in D(A) \), the first components of these elements, i.e. \(f \) and \(g \) satisfy the boundary condition (1.2). From this fact we easily see that

\[W(f, g; -1) = 0, \]

since \(\cos \alpha \) and \(\sin \alpha \) are real. Further, as \(f \) and \(g \) also satisfy both transmission conditions, we obtain

\[W(f, g; h_1 - 0) = \frac{\delta_1 \delta_2}{\gamma_1 \gamma_2} W(f, g; h_1 + 0) \]

(2.5)

\[W(f, g; h_2 - 0) = \frac{\delta_1 \delta_2 \delta_3 \delta_4}{\gamma_1 \gamma_2 \gamma_3 \gamma_4} W(f, g; h_2 + 0) \]

(2.6)

Moreover, the direct calculations give

\[R_1'(f) R_1(g) - R_1(f) R_1'(g) = -\rho W(f, g; 1) \]

(2.7)

Now, inserting (2.5)-(2.8) in (2.4), we have

\[\langle AF, G \rangle_H = \langle F, AG \rangle_H \quad (F, G \in D(A)) \]

and so \(A \) is symmetric. \(\square \)

Recalling that the eigenvalues of (1.1)-(1.7) coincide with the eigenvalues of \(A \), we have the next corollary:

Corollary 2.2. All eigenvalues of (1.1)-(1.7) are real.
Since all eigenvalues are real it is enough to study only the real-valued eigenfunctions. Therefore we can now assume that all eigenfunctions of (1.1)-(1.7) are real-valued.

3. Asymptotic Formulas for Eigenvalues and Fundamental Solutions

Let us define fundamental solutions
\[
\phi(x, \lambda) = \begin{cases}
\phi_1(x, \lambda), & x \in [-1, h_1), \\
\phi_2(x, \lambda), & x \in (h_1, h_2), \\
\phi_3(x, \lambda), & x \in (h_2, 1]
\end{cases}
\]
and
\[
\chi(x, \lambda) = \begin{cases}
\chi_1(x, \lambda), & x \in [-1, h_1), \\
\chi_2(x, \lambda), & x \in (h_1, h_2), \\
\chi_3(x, \lambda), & x \in (h_2, 1]
\end{cases}
\]
of (1.1) by the following procedure. We first consider the next initial-value problem:
\[
- u'' + q(x) u = \lambda \omega_1^2 u, \quad x \in [-1, h_1] \\
u(-1) = \sin \alpha, \quad (3.2) \\
u'(-1) = - \cos \alpha \quad (3.3)
\]
By virtue of [14, Theorem 1.5] the problem (3.1)-(3.3) has a unique solution
\[
u(x, \lambda) = \phi_1(x, \lambda) \quad \text{which is an entire function of } \lambda \in \mathbb{C} \text{ for each fixed } x \in [-1, h_1].
\]
Similarly,
\[
- u'' + q(x) u = \lambda \omega_2^2 u, \quad x \in [h_1, h_2] \\
u(h_1) = \frac{\gamma_1}{\delta_1} \phi_1(h_1, \lambda), \quad (3.5) \\
u'(h_1) = \frac{\gamma_2}{\delta_2} \phi_1'(h_1, \lambda), \quad (3.6)
\]
has a unique solution
\[
u(x, \lambda) = \phi_2(x, \lambda) \quad \text{which is an entire function of } \lambda \in \mathbb{C} \text{ for each fixed } x \in [h_1, h_2].
\]
Continuing in this manner
\[
- u'' + q(x) u = \lambda \omega_3^2 u, \quad x \in [h_2, 1] \\
u(h_2) = \frac{\gamma_3}{\delta_3} \phi_2(h_2, \lambda), \quad (3.8) \\
u'(h_2) = \frac{\gamma_4}{\delta_4} \phi_2'(h_2, \lambda), \quad (3.9)
\]
has a unique solution
\[
u(x, \lambda) = \phi_3(x, \lambda) \quad \text{which is an entire function of } \lambda \in \mathbb{C} \text{ for each fixed } x \in [h_2, 1].
\]
Similarly,
\[
- u'' + q(x) u = \lambda \omega_3^2 u, \quad x \in [h_2, 1] \\
u(1) = \beta_2 \lambda + \beta_2, \quad (3.11) \\
u'(1) = \beta_1 \lambda + \beta_1 \quad (3.12)
\]
(3.10)-(3.13) has a unique solution
\[
u(x, \lambda) = \chi_3(x, \lambda) \quad \text{which is an entire function of spectral parameter } \lambda \in \mathbb{C} \text{ for each fixed } x \in [h_2, 1].
\]
(3.13)
\[-u'' + q(x)u = \lambda \omega_2^2 u, \quad x \in [h_1, h_2]\]

\begin{align*}
 u(h_2) &= \frac{\delta_3}{\gamma_3} \chi_3(h_2, \lambda), \\
 u'(h_2) &= \frac{\delta_4}{\gamma_4} \chi_3'(h_2, \lambda),
\end{align*}

(3.14)

has a unique solution \(u = \chi_2(x, \lambda) \) which is an entire function of \(\lambda \in \mathbb{C} \) for each fixed \(x \in [h_1, h_2] \). Continuing in this manner

(3.16)
\[-u'' + q(x)u = \lambda \omega_2^2 u, \quad x \in [-1, h_1]\]

\begin{align*}
 u(h_1) &= \frac{\delta_1}{\gamma_1} \chi_2(h_1, \lambda), \\
 u'(h_1) &= \frac{\delta_2}{\gamma_2} \chi_2'(h_1, \lambda),
\end{align*}

(3.17)

has a unique solution \(u = \chi_1(x, \lambda) \) which is an entire function of \(\lambda \in \mathbb{C} \) for each fixed \(x \in [-1, h_1] \).

By virtue of (3.2) and (3.3) the solution \(\phi(x, \lambda) \) satisfies the first boundary condition (1.2). Moreover, by (3.5), (3.6), (3.8) and (3.9), \(\phi(x, \lambda) \) satisfies also transmission conditions (1.4)-(1.7). Similarly, by (3.11), (3.12), (3.14), (3.15), (3.17) and (3.18) the other solution \(\chi(x, \lambda) \) satisfies the second boundary condition (1.3) and transmission conditions (1.4)-(1.7). It is well-known from the theory of ordinary differential equations that each of the Wronskians \(\Delta_1(\lambda) = W(\phi_1(x, \lambda), \chi_1(x, \lambda)) \), \(\Delta_2(\lambda) = W(\phi_2(x, \lambda), \chi_2(x, \lambda)) \) and \(\Delta_3(\lambda) = W(\phi_3(x, \lambda), \chi_3(x, \lambda)) \) are independent of \(x \) in \([-1, h_1] \), \([h_1, h_2] \) and \([h_2, 1] \) respectively.

Lemma 3.1. The equality \(\Delta_1(\lambda) = \frac{\delta_1\delta_2}{\gamma_1\gamma_2}\Delta_2(\lambda) = \frac{\delta_1\delta_2\delta_3\delta_4}{\gamma_1\gamma_2\gamma_3\gamma_4}\Delta_3(\lambda) \) holds for each \(\lambda \in \mathbb{C} \).

Proof. Since the above Wronskians are independent of \(x \), using (3.8), (3.9), (3.11), (3.12), (3.14), (3.15), (3.17) and (3.18) we find

\[
\Delta_1(\lambda) = \phi_1(h_1, \lambda) \chi_1'(h_1, \lambda) - \phi_1'(h_1, \lambda) \chi_1(h_1, \lambda)
\]

\[
= \left(\frac{\delta_1}{\gamma_1} \phi_2(h_1, \lambda) \right) \left(\frac{\delta_2}{\gamma_2} \chi_2(h_1, \lambda) \right) - \left(\frac{\delta_2}{\gamma_2} \phi_2'(h_1, \lambda) \right) \left(\frac{\delta_1}{\gamma_1} \chi_2(h_1, \lambda) \right)
\]

\[
= \frac{\delta_1\delta_2}{\gamma_1\gamma_2} \Delta_2(\lambda)
\]

\[
= \left(\frac{\delta_1\delta_2\delta_3}{\gamma_1\gamma_2\gamma_3} \phi_3(h_2, \lambda) \right) \left(\frac{\delta_2\delta_4}{\gamma_2\gamma_4} \chi_3(h_2, \lambda) \right) - \left(\frac{\delta_2\delta_4}{\gamma_2\gamma_4} \phi_3'(h_2, \lambda) \right) \left(\frac{\delta_1\delta_3}{\gamma_1\gamma_3} \chi_3(h_2, \lambda) \right)
\]

\[
= \frac{\delta_1\delta_2\delta_3\delta_4}{\gamma_1\gamma_2\gamma_3\gamma_4} \Delta_3(\lambda).
\]

\[\square\]

Corollary 3.2. The zeros of \(\Delta_1(\lambda), \Delta_2(\lambda) \) and \(\Delta_3(\lambda) \) coincide.

In view of Lemma 3.1 we denote \(\Delta_1(\lambda), \frac{\delta_1\delta_2}{\gamma_1\gamma_2}\Delta_2(\lambda) \) and \(\frac{\delta_1\delta_2\delta_3\delta_4}{\gamma_1\gamma_2\gamma_3\gamma_4}\Delta_3(\lambda) \) by \(\Delta(\lambda) \). Recalling the definitions of \(\phi_1(x, \lambda) \) and \(\chi_1(x, \lambda) \), we infer the next corollary.
Corollary 3.3. The function $\Delta(\lambda)$ is an entire function.

Theorem 3.4. The eigenvalues of (1.1)-(1.7) coincide with the zeros of $\Delta(\lambda)$.

Proof. Let $\Delta(\lambda_0) = 0$. Then $W(\phi_1(x, \lambda_0), \chi_1(x, \lambda_0)) = 0$ for all $x \in [-1, h_1]$. Consequently, the functions $\phi_1(x, \lambda_0)$ and $\chi_1(x, \lambda_0)$ are linearly dependent, i.e., $\chi_1(x, \lambda_0) = k\phi_1(x, \lambda_0)$, $x \in [-1, h_1]$, for some $k \neq 0$. By (3.2) and (3.3), from this equality, we have

\[
\cos \alpha \chi(-1, \lambda_0) + \sin \alpha \chi'(-1, \lambda_0) = \cos \alpha \chi_1(-1, \lambda_0) + \sin \alpha \chi_1'(-1, \lambda_0) = k(\cos \alpha \sin \alpha + \sin \alpha (- \cos \alpha)) = 0,
\]

and so $\chi(x, \lambda_0)$ satisfies the first boundary condition (1.2). Recalling that the solution $\chi(x, \lambda_0)$ also satisfies the other boundary condition (1.3) and transmission conditions (1.4)-(1.7). We conclude that $\chi(x, \lambda_0)$ is an eigenfunction of (1.1)-(1.7); i.e., λ_0 is an eigenvalue. Thus, each zero of $\Delta(\lambda)$ is an eigenvalue. Now let λ_0 be an eigenvalue and let $u_0(x)$ be an eigenfunction with this eigenvalue. Suppose that $\Delta(\lambda_0) \neq 0$. Whence $W(\phi_1(x, \lambda_0), \chi_1(x, \lambda_0)) \neq 0$, $W(\phi_2(x, \lambda_0), \chi_2(x, \lambda_0)) \neq 0$ and $W(\phi_3(x, \lambda_0), \chi_3(x, \lambda_0)) \neq 0$. From this, by virtue of the well-known properties of Wronskians, it follows that each of the pairs $\phi_1(x, \lambda_0), \chi_1(x, \lambda_0); \phi_2(x, \lambda_0), \chi_2(x, \lambda_0)$ and $\phi_3(x, \lambda_0), \chi_3(x, \lambda_0)$ is linearly independent. Therefore, the solution $u_0(x)$ of (1.1) may be represented as

\[
u_0(x) = \begin{cases} c_1 \phi_1(x, \lambda_0) + c_2 \chi_1(x, \lambda_0), & x \in [-1, h_1], \\ c_3 \phi_2(x, \lambda_0) + c_4 \chi_2(x, \lambda_0), & x \in (h_1, h_2], \\ c_5 \phi_3(x, \lambda_0) + c_6 \chi_3(x, \lambda_0), & x \in (h_2, 1], \end{cases}
\]

where at least one of the coefficients $c_i \ (i = 1, 6)$ is not zero. Considering the true equalities

\[(3.19) \quad L_{\nu_0}(u_0(x)) = 0, \quad \nu = 1, 6,
\]

as the homogenous system of linear equations in the variables $c_i \ (i = 1, 6)$ and taking (3.5), (3.6), (3.8), (3.9), (3.14), (3.15), (3.17) and (3.18) into account, we see that the determinant of this system is equal to $-\frac{(\delta_1 \delta_2 \delta_3 \delta_4)^2}{\gamma_1 \gamma_2 \gamma_3 \gamma_4} \Delta^4(\lambda_0)$ and so it does not vanish by assumption. Consequently the system (3.19) has the only trivial solution $c_i = 0 \ (i = 1, 6)$. We thus get at a contradiction, which completes the proof. \[\square\]

Theorem 3.5. Let $\lambda = \mu^2$ and $\text{Im} \mu = t$. Then the following asymptotic equalities hold as $|\lambda| \to \infty$:

(1) In case $\sin \alpha \neq 0$

\[(3.20) \quad \phi_k^{(\lambda)}(x, \lambda) = \sin \alpha \frac{d^k}{dx^k} \cos [\mu(\omega_1(x + 1)] + O \left(\frac{1}{|\mu|^{1-k}} \exp (|t| \omega_1(x + 1)) \right),
\]

\[
\phi_2^{(\lambda)}(x, \lambda) = \frac{\gamma_1}{\delta_1} \sin \alpha \frac{d^k}{dx^k} \cos [\mu(\omega_2 x + \omega_1 h_1 + \omega_1)]
\]

\[+ O \left(\frac{1}{|\mu|^{1-k}} \exp (|t| (\omega_2 x + \omega_1 h_1 + \omega_1)) \right), \quad (3.21)
\]
\[
\phi_{3}^{(k)}(x, \lambda) = \frac{\gamma_1 \gamma_3}{\delta_1 \delta_3} \sin \alpha \frac{d^k}{dx^k} \cos \left[\mu \left(\omega_3 x + \omega_2 h_2 + \omega_1 \right) \right] + O \left(\frac{1}{|\mu|^{1-k}} \exp \left(|t| \left(\omega_3 x + \omega_2 h_2 + \omega_1 \right) \right) \right). \tag{3.22}
\]

(1) In case \(\sin \alpha = 0 \)

\[
\phi_{1}^{(k)}(x, \lambda) = \frac{-1}{\mu \omega_1} \cos \alpha \frac{d^k}{dx^k} \sin \left[\mu \omega_1 (x + 1) \right] + O \left(\frac{1}{|\mu|^{1-k}} \exp \left(|t| \omega_1 (x + 1) \right) \right), \tag{3.24}
\]

\[
\phi_{2}^{(k)}(x, \lambda) = -\frac{\gamma_1}{\mu \delta_1} \cos \alpha \frac{d^k}{dx^k} \sin \left[\mu (\omega_2 x + \omega_1 h_1 + \omega_1) \right] + O \left(\frac{1}{|\mu|^{1-k}} \exp \left(|t| (\omega_2 x + \omega_1 h_1 + \omega_1) \right) \right), \tag{3.25}
\]

\[
\phi_{3}^{(k)}(x, \lambda) = -\frac{\gamma_1 \gamma_3}{\mu \delta_1 \delta_3} \cos \alpha \frac{d^k}{dx^k} \sin \left[\mu (\omega_3 x + \omega_2 h_2 + \omega_1) \right] + O \left(\frac{1}{|\mu|^{1-k}} \exp \left(|t| (\omega_3 x + \omega_2 h_2 + \omega_1) \right) \right). \tag{3.26}
\]

for \(k = 0 \) and \(k = 1 \). Moreover, each of these asymptotic equalities holds uniformly for \(x \).

\begin{proof}
Asymptotic formulas for \(\phi_{1}(x, \lambda) \) and \(\phi_{2}(x, \lambda) \) are found in [18, Lemma 1.7] and [12, Theorem 3.2] respectively. But the formulas for \(\phi_{3}(x, \lambda) \) need individual considerations, since this solution is defined by the initial condition with some special nonstandard form. The initial-value problem (3.7)-(3.9) can be transformed into the equivalent integral equation

\[
u(x) = \frac{\gamma_4}{\delta_4} \phi_{2}(h_2, \lambda) \cos \omega_3 x + \frac{\gamma_4}{\mu \omega_3 \delta_4} \phi_{2}^{(1)}(h_2, \lambda) \sin \omega_3 x \]

\[
+ \frac{\omega_3}{\mu} \int_{h_2}^{x} \sin \left[\mu \omega_3 (x - y) \right] q(y) u(y) \, dy. \tag{3.26}
\]

Let \(\sin \alpha \neq 0 \). Inserting (3.21) in (3.26) we have

\[
\phi_{3}(x, \lambda) = \frac{\gamma_1 \gamma_3}{\delta_1 \delta_3} \sin \alpha \cos \left[\mu \left(\omega_3 x + \omega_2 h_2 + \omega_1 \right) \right] + \frac{\omega_3}{\mu} \int_{h_2}^{x} \sin \left[\mu \omega_3 (x - y) \right] q(y) \phi_{3}(y, \lambda) \, dy + O \left(\frac{1}{|\mu|} \exp \left(|t| \left(\omega_3 x + \omega_2 h_2 + \omega_1 \right) \right) \right). \tag{3.27}
\]

Multiplying this by \(\exp \left(-|t| (\omega_3 x + \omega_2 h_2 + \omega_1) \right) \) and denoting \(F(x, \lambda) = \exp \left(-|t| (\omega_3 x + \omega_2 h_2 + \omega_1) \right) \phi_{3}(x, \lambda) \), we have the next "asymptotic integral equation"

\[
F(x, \lambda) = \frac{\gamma_1 \gamma_3}{\delta_1 \delta_3} \sin \alpha \exp \left(-|t| (\omega_3 x + \omega_2 h_2 + \omega_1) \right) \cos \left[\mu \left(\omega_3 x + \omega_2 h_2 + \omega_1 \right) \right]
\]

\[
+ \frac{\omega_3}{\mu} \int_{h_2}^{x} \sin \left[\mu \omega_3 (x - y) \right] \exp \left(-|t| \omega_3 (x - y) \right) q(y) F(y, \lambda) \, dy + O \left(\frac{1}{|\mu|} \right). \tag{3.27}
\]
Putting $M(\lambda) = \max_{x \in [h_2, 1]} |F(x, \lambda)|$, from the last equation we derive that

$$M(\lambda) \leq M_0 \left(\frac{\gamma_1 \gamma_3}{\delta_1 \delta_3} + \frac{1}{\mu} \right)$$

for some $M_0 > 0$. Consequently, $M(\lambda) = O(1)$ as $|\lambda| \to \infty$, and so $\phi_3(x, \lambda) = O(\exp(|t| (\omega_3 x + \omega_2 h_2 + \omega_1)))$ as $|\lambda| \to \infty$. Inserting the integral term of (3.27) yields (3.32) for $k = 0$. The case $k = 1$ of (3.22) follows at once on differentiating (3.21) and making the same procedure as in the case $k = 0$. The proof of (3.25) is similar to that of (3.22).

Theorem 3.6. Let $\lambda = \mu^2$, $\mu = \sigma + it$. Then the following asymptotic formulas hold for the eigenvalues of the boundary-value-transmission problem (1.1)-(1.7):

Case 1: $\beta'_2 \neq 0$, $\sin \alpha \neq 0$

(3.28) \[\mu_n = \frac{\pi (n - 1)}{\omega_3 + \omega_2 h_2 + \omega_1} + O \left(\frac{1}{n} \right), \]

Case 2: $\beta'_2 \neq 0$, $\sin \alpha = 0$

(3.29) \[\mu_n = \frac{\pi (n - \frac{3}{2})}{\omega_3 + \omega_2 h_2 + \omega_1} + O \left(\frac{1}{n} \right), \]

Case 3: $\beta'_2 = 0$, $\sin \alpha \neq 0$

(3.30) \[\mu_n = \frac{\pi (n - \frac{3}{2})}{\omega_3 + \omega_2 h_2 + \omega_1} + O \left(\frac{1}{n} \right), \]

Case 4: $\beta'_2 = 0$, $\sin \alpha = 0$

(3.31) \[\mu_n = \frac{\pi n}{\omega_3 + \omega_2 h_2 + \omega_1} + O \left(\frac{1}{n} \right), \]

Proof. Let us consider only the case 1. Putting $x = 1$ in $\Delta_3(\lambda) = \phi_3(x, \lambda) \chi_3'(x, \lambda) - \phi_3'(x, \lambda) \chi_3(x, \lambda)$ and inserting $\chi_3(1, \lambda) = \beta'_2 \lambda + \beta_2$, $\chi_3'(1, \lambda) = \beta'_1 \lambda + \beta_1$ we have the following representation for $\Delta_4(\lambda)$:

(3.32) \[\Delta_3(\lambda) = (\beta'_1 \lambda + \beta_1) \phi_3(1, \lambda) - (\beta'_2 \lambda + \beta_2) \phi_3'(1, \lambda). \]

Putting $x = 1$ in (3.22) and inserting the result in (3.32), we derive now that

$$\Delta_3(\lambda) = \frac{\delta_2 \delta_4}{\gamma_2} \omega_3 \beta'_2 (\sin \alpha) \mu^3 \sin [\mu (\omega_3 + \omega_2 h_2 + \omega_1)] + O \left(|\mu|^2 \exp \left(2 |t| (\omega + \omega_2 h + \omega_1) \right) \right).$$

By applying the well-known Rouché Theorem which asserts that if $f(z)$ and $g(z)$ are analytic inside and on a closed contour Γ, and $|g(z)| < |f(z)|$ on Γ then $f(z)$ and $f(z) + g(z)$ have the same number of zeros inside Γ provided that the zeros are counted with multiplicity on a sufficiently large contour, it follows that $\Delta_3(\lambda)$ has the same number of zeros inside the contour as the leading term in (3.33). Hence, if $\lambda_0 < \lambda_1 < \lambda_2 ...$ are the zeros of $\Delta_3(\lambda)$ and $\mu_2^2 = \lambda_n$, we have

(3.34) \[\frac{\pi (n - 1)}{\omega_3 + \omega_2 h_2 + \omega_1} + \delta_n \]
for sufficiently large \(n \), where \(|\delta_n| < \frac{\pi}{4(\omega_3 + \omega_2 h_2 + \omega_1)} \) for sufficiently large \(n \). By putting in (3.33) we have \(\delta_n = O \left(\frac{1}{n} \right) \), and the proof is completed in Case 1. The proofs for the other cases are similar.

\[\text{Theorem 3.7. The following asymptotic formulas hold for the eigenfunctions} \]

\[
\phi_{\lambda_n}(x) = \begin{cases}
\phi_1(x, \lambda_n), & x \in [-1, h_1), \\
\phi_2(x, \lambda_n), & x \in (h_1, h_2), \\
\phi_3(x, \lambda_n), & x \in (h_2, 1].
\end{cases}
\]

of (1.1)-(1.7):

Case 1: \(\beta'_2 \neq 0, \sin \alpha \neq 0 \)

\[
\phi_{\lambda_n}(x) = \begin{cases}
\sin \cos \left[\frac{\omega_1 \pi (n-1)(x+1)}{\omega_2 + \omega_1} \right] + O \left(\frac{1}{n} \right), & x \in [-1, h_1), \\
\frac{\gamma_1}{\delta_1} \sin \cos \left[\frac{(\omega x + \omega_1 h_1 + \omega_1) \pi (n-1)}{\omega_2 + \omega_1 h_1 + \omega_1} \right] + O \left(\frac{1}{n} \right), & x \in (h_1, h_2), \\
\frac{\gamma_1 \gamma_2}{\delta_1 h_3} \sin \cos \left[\frac{(\omega x + \omega_1 h_2 + \omega_1) \pi (n-1)}{\omega_3 + \omega_2 h_2 + \omega_1} \right] + O \left(\frac{1}{n} \right), & x \in (h_2, 1].
\end{cases}
\]

Case 2: \(\beta'_2 \neq 0, \sin \alpha = 0 \)

\[
\phi_{\lambda_n}(x) = \begin{cases}
\sin \cos \left[\frac{\omega_1 \pi (n-\frac{1}{2})(x+1)}{\omega_2 + \omega_1} \right] + O \left(\frac{1}{n} \right), & x \in [-1, h_1), \\
\frac{-\omega_1 + \omega_2}{\omega_1} \cos \left(\frac{\pi (n-\frac{1}{2})}{x-\gamma} \right) \sin \left[\frac{(\omega x + \omega_1 h_1 + \omega_1) \pi (n-\frac{1}{2})}{\omega_2 + \omega_1 h_1 + \omega_1} \right] + O \left(\frac{1}{n} \right), & x \in (h_1, h_2), \\
\frac{-\gamma_1 \gamma_2}{\delta_1 h_3} \sin \cos \left[\frac{(\omega x + \omega_1 h_2 + \omega_1) \pi (n-\frac{1}{2})}{\omega_3 + \omega_2 h_2 + \omega_1} \right] + O \left(\frac{1}{n} \right), & x \in (h_2, 1].
\end{cases}
\]

Case 3: \(\beta'_2 = 0, \sin \alpha \neq 0 \)

\[
\phi_{\lambda_n}(x) = \begin{cases}
\sin \cos \left[\frac{\omega_1 \pi (n-\frac{1}{2})(x+1)}{\omega_2 + \omega_1} \right] + O \left(\frac{1}{n} \right), & x \in [-1, h_1), \\
\frac{\gamma_1}{\delta_1} \sin \cos \left[\frac{(\omega x + \omega_1 h_1 + \omega_1) \pi (n-\frac{1}{2})}{\omega_2 + \omega_1 h_1 + \omega_1} \right] + O \left(\frac{1}{n} \right), & x \in (h_1, h_2), \\
\frac{\gamma_1 \gamma_2}{\delta_1 h_3} \sin \cos \left[\frac{(\omega x + \omega_1 h_2 + \omega_1) \pi (n-\frac{1}{2})}{\omega_3 + \omega_2 h_2 + \omega_1} \right] + O \left(\frac{1}{n} \right), & x \in (h_2, 1].
\end{cases}
\]

Case 4: \(\beta'_2 = 0, \sin \alpha = 0 \)

\[
\phi_{\lambda_n}(x) = \begin{cases}
\sin \cos \left[\frac{\omega_1 \pi (n+1)(x+1)}{\omega_2 + \omega_1} \right] + O \left(\frac{1}{n} \right), & x \in [-1, h_1), \\
\frac{-\omega_1 + \omega_2}{\omega_1} \cos \left(\frac{\pi (n-\frac{1}{2})}{x-\gamma} \right) \sin \left[\frac{(\omega x + \omega_1 h_1 + \omega_1) \pi (n+1)}{\omega_2 + \omega_1 h_1 + \omega_1} \right] + O \left(\frac{1}{n} \right), & x \in (h_1, h_2), \\
\frac{-\gamma_1 \gamma_2}{\delta_1 h_3} \sin \cos \left[\frac{(\omega x + \omega_1 h_2 + \omega_1) \pi (n+1)}{\omega_3 + \omega_2 h_2 + \omega_1} \right] + O \left(\frac{1}{n} \right), & x \in (h_2, 1].
\end{cases}
\]

All these asymptotic formulas hold uniformly for \(x \).

\[\text{Proof. Let us consider only the Case 1. Inserting (3.22) in the integral term of (3.27), we easily see that} \]

\[\int_{-1}^{x} \sin \left[\mu \omega_3 (x-y) \right] q(y) \phi_3(y, \lambda) \, dy = O \left(\exp \left(|t| \right) \right). \]
Inserting in (3.20) yields
\[\phi_3(x, \lambda) = \frac{\gamma_1 \gamma_3}{\delta_1 \delta_3} \sin \alpha \cos \left[\mu \left(\omega_3 x + \omega_2 h_2 + \omega_1 \right) \right] + O \left(\frac{1}{|\mu|} \right) \exp \left| t \right| \left(\omega_3 x + \omega_2 h_2 + \omega_1 \right). \] (3.35)

We already know that all eigenvalues are real. Furthermore, putting \(\lambda = -H, H > 0 \) in (3.33) we infer that \(\omega(-H) \to \infty \) as \(H \to +\infty \), and so \(\omega(-H) \neq 0 \) for sufficiently large \(R > 0 \). Consequently, the set of eigenvalues is bounded below. Letting \(\sqrt{\lambda_n} = \mu_n \) in (3.35) we now obtain
\[\phi_3(x, \lambda_n) = \frac{\gamma_1 \gamma_3}{\delta_1 \delta_3} \sin \alpha \cos \left[\mu_n \left(\omega_3 x + \omega_2 h_2 + \omega_1 \right) \right] + O \left(\frac{1}{\mu_n} \right) \]

since \(t_n = l m \mu_n \) for sufficiently large \(n \). After some calculation, we easily see that
\[\cos \left[\mu_n \left(\omega_3 x + \omega_2 h_2 + \omega_1 \right) \right] = \cos \left[\left(\omega_3 x + \omega_2 h_2 + \omega_1 \right) \pi \left(n - \frac{1}{2} \right) \right] + O \left(\frac{1}{n} \right). \]

Consequently,
\[\phi_3(x, \lambda_n) = \frac{\gamma_1 \gamma_3}{\delta_1 \delta_3} \sin \alpha \cos \left[\left(\omega_3 x + \omega_2 h_2 + \omega_1 \right) \pi \left(n - \frac{1}{2} \right) \right] + O \left(\frac{1}{n} \right). \]

In a similar method, we can deduce that
\[\phi_2(x, \lambda_n) = \frac{\gamma_1}{\delta_1} \sin \alpha \cos \left[\left(\omega_2 x + \omega_1 h_1 + \omega_1 \right) \pi \left(n - \frac{1}{2} \right) \right] + O \left(\frac{1}{n} \right), \]

and
\[\phi_1(x, \lambda_n) = \sin \alpha \cos \left[\omega_1 \pi \left(n - \frac{1}{2} \right) \left(x + \frac{1}{2} \right) \right] + O \left(\frac{1}{n} \right). \]

Thus the proof of the theorem completed in Case 1. The proofs for the other cases are similar. \(\square \)

References

[1] M. Demirci, Z. Akdoğan, O. Sh. Mukhtarov, Asymptotic behavior of eigenvalues and eigenfunctions of one discontinuous boundary-value problem, International Journal of Computational Cognition 2(3) (2004) 101–113.
[2] M. Kadakal, O. Sh. Mukhtarov, F. Ş. Muhtarov, Some spectral problems of Sturm–Liouville problem with transmission conditions, Iranian Journal of Science and Technology, 49(A2) (2005) 229-245.
[3] Z. Akdoğan, M. Demirci, O. Sh. Mukhtarov, Green function of discontinuous boundary-value problem with transmission conditions. Mathematical Models and Methods in Applied Sciences 30 (2007) 1719-1738.
[4] E. Tunc, O. Sh. Mukhtarov, Fundamental solutions and eigenvalues of one boundary-value problem with transmission conditions, Appl. Math. Comput. 157 (2004) 347–355.
[5] O. Sh. Mukhtarov, E. Tunc, Eigenvalue problems for Sturm–Liouville equations with transmission conditions, Israel J. Math. 144 (2004) 367–380.
[6] O. Sh. Mukhtarov, M. Kadakal, F. Ş. Muhtarov, Eigenvalues and normalized eigenfunctions of discontinuous Sturm–Liouville problem with transmission conditions, Rep. Math. Phys. 54 (2004) 41–56.
[7] O. Sh. Mukhtarov, M. Kandemir, N. Kuruoglu, Distribution of eigenvalues for the discontinuous boundary value problem with functional many point conditions, Israel J. Math. 129 (2002) 143–156.
SPECTRAL PROPERTIES OF A STURM-LIOUVILLE PROBLEM

[8] O. Sh. Mukhtarov, S. Yakubov, Problems for ordinary differential equations with transmission conditions, Appl. Anal. 81(5) (2002) 1033–1064.

[9] O. Sh. Mukhtarov, Discontinuous Boundary value problem with spectral parameter in boundary conditions, Turkish J. Math., 18 (2) (1994) 183-192.

[10] O. Sh. Mukhtarov and M. Kadakal, On a Sturm-Liouville type problem with discontinuous in two-points, Far East Journal of Applied Mathematics, 19 (3) (2005) 337–352.

[11] M. Kadakal, O. Sh. Mukhtarov, Sturm-Liouville problems with discontinuities at two points, Comput. Math. Appl., 54 (2007) 1367-1379.

[12] O. Sh. Mukhtarov and M. Kadakal, Some spectral properties of one Sturm-Liouville type problem with discontinuous weight, Siberian Mathematical Journal, 46 (2005) 681-694.

[13] R. P. Gilbert and H. C. Howard, On the singularities of Sturm-Liouville expansions: II, Applicable Analysis, 2 (1972) 269-282.

[14] E. C. Titchmarsh, Eigenfunctions Expansion Associated with Second Order Differential Equations. I, Oxford Univ. Press, London, 1962.

[15] J. Walter, Regular eigenvalue problems with eigenvalue parameter in the boundary conditions, Math. Z. 133 (1973) 301–312.

[16] D. B. Hinton, An expansion theorem for an eigenvalue problem with eigenvalue parameter in the boundary condition, Quarterly Journal of Mathematics, 30 (1979) 33–42.

[17] A. A. Shkalikov, Boundary value problems for ordinary differential equations with a parameter in boundary condition, Trudy Sem. Imeny I. G. Petrowsgo, 9 (1983) 190-229.

[18] C. T. Fulton, Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A 77 (1977) 293-308.

[19] S. Yakubov and Ya. Yakubov, Abel basis of root functions of regular boundary value problems, Math. Nachr. 197 (1999) 157–187.

[20] S. Yakubov and Ya. Yakubov, Differential-Operator Equations. Ordinary and Partial Differential Equations, Chapman and Hall/CRC, Boca Raton, 2000.

[21] E. Şen and A. Bayramov, Calculation of eigenvalues and eigenfunctions of a discontinuous boundary value problem with retarded argument which contains a spectral parameter in the boundary condition, Mathematical and Computer Modelling, 54 (2011) 3090-3097.

[22] A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics, Pergamon, Oxford; New York, 1963.

[23] P. A. Binding, P. J. Browne and B. A. Watson, Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter II, J. Comput. Appl. Math. 148 (2002) 147-169.

[24] Kh. R. Mamedov, On an inverse scattering problem for a discontinuous Sturm-Liouville equation with a spectral parameter in the boundary condition, Boundary Value Problems, 2010:171967 (2010) 17 pages.

[25] M. Rontó and A. M. Samoilenko, Numerical-Analytic Methods in Theory of Boundary-Value Problems, World Scientific, Singapore (2000), 455 p.

Department of Mathematics, Faculty of Arts and Science, Namik Kemal University, 59030, Tekirda˘g, Turkey and Department of Mathematics Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey

E-mail address: erdogan.math@gmail.com