Correlating $t \to cZ$ to the W Mass and B Physics with Vector-Like Quarks

Andreas Crivellin, Matthew Kirk, Toppei Kitahara, and Federico Mescia

1 Physik-Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
2 Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
3 Departament de Física Quàntica i Astrofísica (FQA), Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (UB), Spain
4 Institute for Advanced Research, Nagoya University, Nagoya 464–8601, Japan
5 Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464–8602, Japan
6 Theory Center, IPNS, High Energy Accelerator Research Organization (KEK), Tsukuba 305–0801, Japan

The rare flavour changing top quark decay $t \to cZ$ is experimentally very interesting due to the huge number of top quarks produced at the LHC. Furthermore, in the Standard Model the corresponding rate is suppressed, such that any observation of this process in the foreseeable future would prove the presence of new physics. However, there are few (viable) models which can generate a sizable branching ratio for $t \to cZ$ — in fact vector-like quarks seem to be the only realistic option. In this Letter, we investigate all three representations (under the Standard Model gauge group) of vector-like quarks (U, Q_1, Q_7) that can generate a sizable branching ratio for $t \to cZ$ without violating other bounds. Nonetheless, these vector-like quarks still give rise to loop-effects in B physics and electroweak precision observables which we calculate by matching the model on the Standard Model Effective Field Theory (at one-loop). Taking into account the resulting constraints, we find that $\text{Br}(t \to cZ)$ can be of the order of 10^{-6}, 10^{-5} and 10^{-4} for $U, Q_1,$ and Q_7, respectively. Note that these three vector-like quarks are also exactly the ones which can lead to a sizable positive shift in the prediction for W mass, via the couplings to the top quark also needed for a sizable $\text{Br}(t \to cZ)$, and therefore can reconcile theory with the recent measurement by the CDF collaboration.

I. INTRODUCTION

The Standard Model (SM) of particle physics contains three generations of chiral fermions, i.e. Dirac fields whose left and right-handed components transform differently under its gauge group. While a combination of LHC searches and flavour observables excludes a chiral 4^{th} generation [1, 2], vector-like fermions (VLFs) can be added consistently to the SM without generating gauge anomalies. In fact, VLFs appear in many extensions of the SM such as grand unified theories [3–5], composite models or models with extra dimensions [6, 7] and little Higgs models [8, 9] (including the option of top condensation [10–14]).

VLFs are not only interesting from the theoretical perspective, but also from the phenomenological point of view as they could be involved in an explanation of $b \to sl^-\ell^+$ data [15–19], the tension in $(g-2)_\mu$ [20–33] or account for the Cabibbo angle anomaly [34–42]. Furthermore, vector-like quarks (VLQs) can lead to tree-level effects in Z-t-c and h-t-c couplings after electroweak (EW) symmetry breaking, and therefore generate sizeable effects in the related flavour-changing neutral current (FCNC) decays of the top quark [41–45].

There are three VLFs (U, Q_1, Q_7) that generate a Z-t-c (and h-t-c) coupling but do not give rise to down-quark FCNCs at tree-level, such that the former can be sizable. However, even these VLQs affect e.g. B decays and the W mass at the loop-level. Therefore, it is important to calculate and include these effects in a phenomenological analysis in order to assess the possible size of $t \to Z(h)c$ and to evaluate if one can account for the recent measurement of the W mass by the CDF collaboration [46], which suggests that M_W is larger than the expected within the SM.

II. SETUP AND MATCHING CALCULATION

There are seven possible representations (under the SM gauge group $SU(3)_C \times SU(2)_L \times U(1)_Y$) of VLQs, given in Table I, defining them as heavy fermions which are triplets of $SU(3)_C$ and that can mix with the SM quarks after EW symmetry breaking, i.e. fermions which can have couplings to the SM Higgs and a SM quark. The kinetic and mass terms

$$\mathcal{L} = \sum_F \{ \bar{F} (i\slashed{D} - M_F) F \},$$

where $F = \{ U, D, Q_1, Q_5, Q_7, T_1, T_2 \}$ and

$$D_\mu = \partial_\mu + ig_1 Y_F B_\mu + ig_2 S^F W^F_\mu + ig_3 T^A G^A_\mu.$$

Note that mass terms such as $m_F^U \tilde{U}_u$ can always be removed by a field redefinition, such that the kinetic terms and the mass terms take the diagonal form shown in Eq. (II.1).
Table I. Representations of the Higgs, the SM quarks and of the VLQs under the SM gauge group. The three representations in bold are the ones relevant for our analysis as they generate flavour-changing top decays at tree level but down-quark FCNCs first appear at one-loop level.

Representation	u	d	q	H	U	D	Q₁	Q₂	Q₇	T₁	T₂
SU(3)ᶜ	3	3	3	1	3	3	3	3	3	3	3
SU(2)ˡ	1	1	2	2	1	1	2	2	2	3	3
U(1)ᵧ	µ⁻/µ⁺										

Here $T^A = \frac{1}{2} \lambda^A$ and $(S^I)_{jk}$ are 0, $\frac{1}{2} (\tau^I)_{jk}$, and $-i \epsilon_{ijk}$ for the SU(2)ˡ singlet, doublet, and triplet representations, respectively, and λ^A and τ^I are the Gell-Mann and the Pauli matrices. The (generalized) Yukawa couplings are encoded in the Lagrangian

$$\mathcal{L} = \mathcal{L}^H_{qq} + \mathcal{L}^H_{VLQ} + \mathcal{L}^{HLVLO}_{VLQ},$$

where the first term contains the SM Yukawa couplings

$$\mathcal{L}^H_{qq} = Y^{u}_{ij} \bar{u}_j H u_i + Y^{d}_{ij} \bar{d}_j H d_i + \text{h.c.},$$

and the second term the Higgs interactions with vector-like and SM quarks

$$\mathcal{L}^H_{VLQ} = \xi^{u}_{i} \bar{u}_j H \bar{u}_i + \xi^{d}_{i} \bar{d}_j H \bar{d}_i + \xi^{u}_{i} \bar{Q}_j H \bar{q}_i + \sum_{i,j} \tilde{\xi}^{u}_{i} \bar{u}_j \tilde{H} H \bar{q}_i + \text{h.c.},$$

and the last term defines the Higgs interactions with two VLQs (given in the supplementary material as they are not relevant for our analysis). Here $i,j = \{1,2,3\}$ are flavour indices and $\tau \cdot \bar{T} = \sum_{I} \tau^I \bar{T}^I$.

A. SMEFT and Matching

We write the SMEFT Lagrangian as

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_i C_i Q_i,$$

such that the Wilson coefficients have dimensions of inverse mass squared. Using the Warsaw basis [47], the operators generating modified gauge-boson couplings to quark are

$$Q_{Hq}^{(1)}$$ and the four-quark operators generating $\Delta F = 2$ processes read

$$Q_{qq}^{(1)}$$, $Q_{qq}^{(3)}$, Q_{uu}, Q_{dd}, $Q_{qg}^{(1)}$, $Q_{gq}^{(8)}$, $Q_{qg}^{(8)}$, Q_{qd}.

The explicit definitions of all these operators can be found in Ref. [47] and in the supplementary material. The dipole operators, responsible for radiative down-type quark decays after EW symmetry breaking, are Q_{dW} and Q_{dB}. In addition, we have the operator involving three Higgs fields, Q_{uH}, that generates modifications of the Higgs-up-quark coupling, including possibly flavour changing ones, after EW symmetry breaking. Finally we also need two bosonic operators that lead to a modification to the W-boson mass, Q_{HDG} and Q_{HWB}, with their contributions approximately given by

$$\delta M_W \approx -v^2 (29 C_{HHD} + 64 C_{HWB} + \cdots),$$

where $v \approx 246$ GeV and (\cdots) indicates SMEFT operators not relevant in our scenario with VLQs. An example diagram for the W mass correction is shown on the left in Fig. 1.

The tree-level matching of the operators generating modified Z-quark couplings is given by

$$C^{(1)ij}_{Hq} + C^{(3)ij}_{Hq} = -\frac{\xi_i^{u} \xi_j^{u}}{2M_D^2} - \frac{\xi_i^{d} \xi_j^{d}}{2M_D^2} - \frac{\xi_i^{T_1} \xi_j^{T_2}}{8M_{T_1}^2} + \frac{\xi_i^{T_2} \xi_j^{T_2}}{8M_{T_2}^2},$$

$$C^{(1)ij}_{Hq} - C^{(3)ij}_{Hq} = -\frac{\xi_i^{u} \xi_j^{u}}{2M_D^2} - \frac{\xi_i^{d} \xi_j^{d}}{2M_D^2} - \frac{\xi_i^{T_1} \xi_j^{T_2}}{8M_{T_1}^2} + \frac{\xi_i^{T_2} \xi_j^{T_2}}{8M_{T_2}^2},$$

for $Z-d_{1}^i-d_{1}^j$, $Z-d_{2}^i-d_{2}^j$, $Z-d_{1}^i-d_{2}^j$ and $Z-d_{2}^i-d_{1}^j$, respectively. From these equations, we can see that only the representations U, Q_1 with coupling ξ^{u}_1 and Q_2 (shown in bold in Table I) lead to effects in $t\rightarrow cZ$ while avoiding tree-level FCNCs in the down sector. An approximate formula for this branching ratio is

$$\text{Br}(t\rightarrow cZ) \approx \frac{v^4}{2} \left\{ \frac{C_{Hq}^{(1)23} - C_{Hq}^{(3)23}}{2} + \frac{C_{Hq}^{(23)23}}{2} \right\}. $$

Note that the SMEFT effects in the W mass are known fully at leading order [48, 49], but only partially at next-to-leading order (NLO) [50], since in that work flavour universality of the SMEFT coefficients is assumed. However we have checked that, after making some conservative assumptions about the flavour dependence, the NLO effects are small.
While this already constrains some beyond the SM scenarios, at the high-luminosity (HL)-LHC [56, 57] and the FCC-hh [58] one can expect to be sensitive to branching ratios the order of 10^{-5} and 10^{-6}, respectively [59]. For $t \to ch$, see Ref. [60] and references therein, sensitivities of the order of 10^{-4} and 10^{-5} for the HL-LHC [61] and FCC-hh [60, 62, 63] are estimated, respectively. A summary of the future prospects for these FCNC top decays is given in Table II.

For the numerical analysis we use the software package smelli [65, 66] (based on flavio [67] and wilsone [68]), with $\{\alpha, M_Z, G_F\}$ constituting the input scheme. Furthermore, we work in the down-basis such that CKM elements appear in transitions involving left-handed up-type quarks after EW symmetry breaking, meaning that Y^u is diagonal in unbroken $SU(2)_L$, while $Y^d \approx V^\dagger$, diag(0, 0, y_t), with V being the CKM matrix. Note that in our setup the determination of CKM elements is already modified at tree-level. The resulting effects are consistently accounted for in smelli using the method described in Ref. [69], but choosing $\Gamma(K^+ \to \mu^+\nu)/\Gamma(\pi^+ \to \mu^+\nu)$, $\text{Br}(B \to X_c\ell^\pm\nu)$, $\text{Br}(B^+ \to \tau^+\nu)$, and $\Delta M_{d}/\Delta M_{s}$ as observables (see supplementary material for details).

Concerning the EW fit, the long standing tension in the W mass, previously with a significance of $\approx 1.8\sigma$ [70–72], was recently increased by the measurement of the CDF collaboration [46]. By combining this with all existing measurements from the Tevatron [46], LEPI [73] with the LHC ones (ATLAS [74] and LHCb [75]), the new world average is [76]

$$M_{W}^{\exp} = 80413.3 \pm 8.0\text{ MeV}.$$ \hspace{1cm} (III.2)

This value is 5.5σ higher than the SM prediction $M_{W}^{\text{SM}} = 80358.7 \pm 6.0\text{ MeV}$ [71].

Concerning B physics, even though the hints for lepton flavour universality (LFU) violation in $b \to s\ell^+\ell^-$ data cannot be explained by our LFU effects, an additional LFU part [77–83], generated by $Z\cdot b-s$ penguins, can further increase the agreement with data. In addition, box diagrams, like the one shown on the right in Fig. 1 also generate $B_s - \overline{B}_s$ mixing (we use inputs from [84] for the SM prediction).

In all our analyses, we set the masses of the VLQs to 2 TeV. This is consistent the published model-independent bounds for third generation VLQs of $M_{VLQ} > 1.31\text{ TeV}$ limits from ATLAS [85] and recent conference reports [86, 87] which give slightly stronger limits. Let us now consider the three cases of U, Q_1, and Q_2 numerically:

U: In addition to the modified $Z\cdot t\cdot c$ coupling, this VLQ also generates relevant effects in $b \to s\ell^+\ell^-$ transitions via a Z penguin, resulting in an $C_9 \approx -C_{10}/4$ pattern. In fact, mainly due to the measurements of P^S_B [88] and $B_s \rightarrow \phi \mu^+\mu^-$ [89, 90] there is a preference for a non-zero contribution with such a structure. The bounds from $B_s - \overline{B}_s$ mixing turn out to be weakened due to a partial (accidental) cancellation between the one-loop matching and the renormalization group equation (RGE) effect. Similarly, the contribution to $b \rightarrow s\gamma$ suffers from a cancellation, but here between terms generated by the matching on the SMEFT and integrating out the W at the weak scale ($b \rightarrow s\gamma$ is included within the $b \rightarrow s\ell^+\ell^-$ region in Fig. 2). Concerning EWPOs, a shift in M_W is dominantly generated by top-loop effects within the SMEFT (left diagram in Fig. 1), bringing theory and experiment into total agreement. Meanwhile, the second generation coupling ξ_U^g is constrained by the total Z width. These finding are summarised in Fig. 2 (top-left) where one can see that $\text{Br}(t \to cZ)$ can be of the order of 2×10^{-6}, which could be probed by FCC-hh.

Q_1 with ξ_1^u: The VLQ Q_1 with the couplings ξ_1^u is found to be a very promising candidate for sizable rates of $t \to cZ$, since it has small effects in B physics as it generates at tree-level only right-handed corrections to Z-up-quark couplings. At the same time, we can get an improvement concerning the agreement between theory and experiment in M_W because C_{10}^H is induced through top loops in the SMEFT (thus favouring the
third generation coupling), while large couplings to charm quarks are ruled out by the total Z width, as shown in Fig. 2 (top-right). From there we see that an enhancement of $\text{Br}(t \to cZ)$ up to 1×10^{-5} is possible, which could be probed by the HE-LHC (albeit in an optimistic scenario with zero systematic errors). Note, however, that even in this quite unconstrained scenario $\text{Br}(t \to ch)$ can be at most 3×10^{-6}, which is still a factor of three smaller than the reach of even the most optimistic FCC-hh scenario.

Q₇: In case of the VLQ $Q₇$ (see Fig. 2 (bottom-left)), the preferred sign for the contribution in $b \to s\ell^+\ell^-$ processes is generated, but in order for its size to be relevant, quite large couplings are required. Furthermore, for small third generation couplings ($\xi_3^{Q_7} < 1$) an effect with the wrong sign arises in M_W, while for large couplings the sign reverses, which can be traced back to two different contributions, one proportional to $\xi_3^{Q_7}$ and the other involving $\xi_3^{Q_7} y_5^2$. Note that in the regime of such large couplings, small tensions with Higgs data arise in the $h \to ZZ, WW, \gamma\gamma$ partial widths, with tensions of 1.8, 1.5, and 1.2 σ, respectively. Concerning $\text{Br}(t \to cZ)$, again an enhancement of the branching ratio up to 1×10^{-5} is possible, which could be probed by the HE-LHC or FCC-hh. Given the large couplings allowed by data, $\text{Br}(t \to ch)$ can be enhanced up to 3×10^{-5}, therefore potentially visible at the FCC-hh if the systematic uncertainties are well controlled.

Figure 2. Preferred regions in the ξ_U,ξ_3 plane for the three representations of VLQ that generate $t \to cZ$ at tree-level but give rise to down-quark FCNCs only at the loop level: U (top-left), Q_3 (top-right), and Q_7 (bottom-left). The contour lines show the predicted size of $\text{Br}(t \to cZ) \times 10^5$. The region preferred by all data (the global fit region with using the new experimental average in Eq. (III.2)) is shown at the 1 σ and 2 σ level, while the others regions correspond to 1 σ. We also show in the preferred region from the EW fit without the inclusion of the new M_W result from CDF (red, dashed-dotted). Note that in the plot for Q_7 the hatched regions on the top-left and top-right are already excluded by the current LHC limits on $t \to cZ$.

$M_U = 2$ TeV

$M_{Q_3} = 2$ TeV

$M_{Q_7} = 2$ TeV

ΔM_s

$b \to s\ell\ell$

EWPO (with CDF M_W)

global

Higgs decays

$\text{Br}(t \to cZ) \times 10^5$

$\times \times t \to cZ$ (LHC excluded)
IV. CONCLUSIONS

In this Letter we examined the possibility of obtaining a sizable branching ratio for $t \rightarrow cZ$ within models containing VLQs. This is only feasible for representations which solely change Z couplings to the up-type quarks at tree-level while not generating down-type FCNCs at this perturbative order, i.e., U, Q_1 and Q_7. However, at the loop-level, B physics and electroweak observables are still affected. We therefore calculated the one-loop matching of these VLQs onto the SMEFT operators relevant for flavour and electroweak precision observables.

Using these results, we found in our phenomenological analysis that one can generate a sizable branching ratio for $t \rightarrow cZ$ of the order of 1×10^{-6}, 1×10^{-5} and 1×10^{-4}, for U, Q_1 and Q_7, respectively. Therefore, the parameter space of Q_7 is already constrained by LHC limits on $t \rightarrow cZ$, while Q_1 and U can be tested by the HL-LHC and the FCC-hh. Importantly, these three VLQ limits on the parameter space of t including VLQs. This is only feasible for representations within models containing VLQs, suggest intensified experimental searches for them and motivate efforts in model building for unified theories containing these beyond the SM particles.

showing that these observables are correlated. Furthermore, U and Q_7 lead to LFU effects in $b \rightarrow s \ell^+ \ell^-$ which cannot explain $R(K^{+*})$ but affect observables like P_6^b and $B_s \rightarrow \phi \mu^+ \mu^-$ and, in combination with LFU violating effects, can further improve the description of data. These findings significantly strengthen the case for new physics models containing VLQs, suggest intensified experimental searches for them and motivate efforts in model building for unified theories containing these beyond the SM particles.

ACKNOWLEDGMENTS

A. C. gratefully acknowledges financial support by the Swiss National Science Foundation (PP00P_2176884). T. K. is supported by the Grant-in-Aid for Early-Career Scientists (No.19K14706) and by the JSPS Core-to-Core Program (Grant No. JPJSCCA20200002) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan. M. K. and F. M. acknowledges financial support from the State Agency for Research of the Spanish Ministry of Science and Innovation through the “Unit of Excellence María de Maeztu 2020-2023” award to the Institute of Cosmos Sciences (CEX2019-000918-M) and from PID2019-105614GB-C21 and 2017-SGR-929 grants.

[1] O. Eberhardt, A. Lenz, A. Menzel, U. Nierste, and M. Wiebusch, “Status of the fourth fermion generation before ICHEP2012: Higgs data and electroweak precision observables,” Phys. Rev. D 86 (2012) 074014 [arXiv:1207.0438].
[2] O. Eberhardt, et al., “Impact of a Higgs boson at a mass of 126 GeV on the standard model with three and four fermion generations,” Phys. Rev. Lett. 109 (2012) 241802 [arXiv:1209.1101].
[3] J. L. Hewett and T. G. Rizzo, “Low-Energy Phenomenology of Superstring Inspired E(6) Models,” Phys. Rept. 183 (1989) 193.
[4] P. Langacker, “Grand Unified Theories and Proton Decay,” Phys. Rept. 72 (1981) 185.
[5] F. del Aguila and M. J. Bowick, “The Possibility of New Fermions With $\Delta I = 0$ Mass,” Nucl. Phys. B 224 (1983) 107.
[6] I. Antoniadis, “A Possible new dimension at a few TeV,” Phys. Lett. B 246 (1990) 377–384.
[7] N. Arkani-Hamed, S. Dimopoulos, and J. March-Russell, “Stabilization of submillimeter dimensions: The New guise of the hierarchy problem,” Phys. Rev. D 63 (2001) 064020 [hep-th/9809124].
[8] N. Arkani-Hamed, A. G. Cohen, E. Katz, and A. E. Nelson, “The Littlest Higgs,” JHEP 07 (2002) 034 [hep-ph/0206021].
[9] T. Han, H. E. Logan, B. McElrath, and L.-T. Wang, “Phenomenology of the little Higgs model,” Phys. Rev. D 67 (2003) 095004 [hep-ph/0301040].
[10] B. A. Dobrescu and C. T. Hill, “Electroweak symmetry breaking via top condensation seesaw,” Phys. Rev. Lett. 81 (1998) 2634–2637 [hep-ph/9712319].
[11] R. S. Chivukula, B. A. Dobrescu, H. Georgi, and C. T. Hill, “Top Quark Seesaw Theory of Electroweak Symmetry Breaking,” Phys. Rev. D 59 (1999) 075003 [hep-ph/9809470].
[12] H.-J. He, C. T. Hill, and T. M. P. Tait, “Top Quark Seesaw, Vacuum Structure and Electroweak Precision Constraints,” Phys. Rev. D 65 (2002) 055006 [hep-ph/0108041].
[13] C. T. Hill and E. H. Simmons, “Strong Dynamics and Electroweak Symmetry Breaking,” Phys. Rept. 381 (2003) 235–402 [hep-ph/0203079]. [Erratum: Phys.Rept. 390, 553–554 (2004)].
[14] C. Anastasiou, E. Furlan, and J. Santiago, “Realistic Composite Higgs Models,” Phys. Rev. D 79 (2009) 075003 [arXiv:0901.2117].
[15] W. Altmannshofer, S. Gori, M. Pospelov, and I. Yavin, “Quark flavor transitions in $L_\mu - L_\tau$ models,” Phys. Rev. D 89 (2014) 095033 [arXiv:1403.1269].
[16] B. Gripanos, M. Nardecchia, and S. A. Renner, “Linear flavour violation and anomalies in B physics,” JHEP 06 (2016) 083 [arXiv:1509.05020].
[17] P. Arnan, L. Hofer, F. Mescia, and A. Crivellin, “Loop effects of heavy new scalars and fermions in $b \rightarrow s \ell^+ \ell^-$,” JHEP 04 (2017) 043 [arXiv:1608.07832].
[18] P. Arnan, A. Crivellin, M. Fedele, and F. Mescia, “Generic Loop Effects of New Scalars and Fermions in $b \rightarrow s \ell^+ \ell^-$, $(g-2)_\mu$ and a Vector-like 4th Generation,” JHEP 06 (2019) 118 [arXiv:1904.05890].
[19] A. Crivellin, C. A. Manzari, M. Alguero, and J. Matias,
“Combined Explanation of the $Z \rightarrow b\bar{b}$
Forward-Backward Asymmetry, the Cabibbo Angle
Anomaly, and $\tau \rightarrow \mu \nu$ and $b \rightarrow s + \ell^\pm + \ell^-$ Data,” Phys. Rev. Lett. 127 (2021) 011801 [arXiv:2010.14504].

[20] A. Czarnecki and W. J. Marciano, “The Muon
anomalous magnetic moment: A Harbinger for ‘new
physics,'” Phys. Rev. D 64 (2001) 013014 [hep-ph/0102122].

[21] K. Kannike, M. Raidal, D. M. Straub, and A. Strumia,
“Anthropic solution to the magnetic muon anomaly: the
charged see-saw,” JHEP 02 (2012) 106 [arXiv:1111.2551]. [Erratum: JHEP 10, 136 (2012)].

[22] R. Dermisek and A. Raval, “Explanation of the Muon
g-2 Anomaly with Vectorlike Leptons and its
Implications for Higgs Decays,” Phys. Rev. D 88 (2013) 013017 [arXiv:1305.3522].

[23] A. Freitas, J. Lykken, S. Kell, and S. Westhoff, “Testing the Muon g-2 Anomaly at the LHC,” JHEP 05 (2014) 145 [arXiv:1402.7065]. [Erratum: JHEP 09, 155 (2014)].

[24] G. Bélanger, C. Delaunay, and S. Westhoff, “A Dark
Matter Relic From Muon Anomalies,” Phys. Rev. D 92 (2015) 055021 [arXiv:1507.06660].

[25] A. Aboubrahim, T. Ibrahim, and P. Nath, “Leptonic
g → 2 moments, CP phases and the Higgs boson mass
constraint,” Phys. Rev. D 94 (2016) 015002 [arXiv:1606.08336].

[26] K. Kowalska and E. M. Sessolo, “Expectations for the muon g-2 in simplified models with dark matter,” JHEP 09 (2017) 112 [arXiv:1707.00753].

[27] S. Raby and A. Trautner, “Vectorlike chiral fourth family
to explain muon anomalies,” Phys. Rev. D 97 (2018) 095006 [arXiv:1712.09360].

[28] A. Choudhury, L. Darmé, L. Roszkowski, E. M. Sessolo,
and S. Trojanowski, “Muon g – 2 and related
phenomenology in constrained vector-like extensions of
the MSSM,” JHEP 05 (2017) 072 [arXiv:1701.08778].

[29] L. Calibbi, R. Ziegler, and J. Zupan, “Minimal models
for dark matter and the muon g-2 anomaly,” JHEP 07 (2018) 046 [arXiv:1804.00009].

[30] R. Capdevilla, D. Curtin, Y. Kahn, and G. Krnjaic,
“Discovering the physics of $(g-2)_{\mu}$ at future muon
colliders,” Phys. Rev. D 103 (2021) 075028 [arXiv:2006.16277].

[31] R. Capdevilla, D. Curtin, Y. Kahn, and G. Krnjaic,
“No-lose theorem for discovering the new physics of
$(g-2)_{\mu}$ at muon colliders,” Phys. Rev. D 105 (2022) 015028 [arXiv:2101.10334].

[32] A. Crivellin and M. Hoferichter, “Consequences of
chirally enhanced explanations of $(g-2)_{\mu}$ for $h \rightarrow \mu \mu$
and $Z \rightarrow \mu \mu$,” JHEP 07 (2021) 135 [arXiv:2104.03202].

[33] P. Paradisi, O. Sumensari, and A. Valenti, “The
high-energy frontier of the muon g-2.”
arXiv:2203.06103.

[34] B. Belfatto, R. Beradze, and Z. Berezhiani, “The CKM
unitarity problem: A trace of new physics at the TeV
scale?” Eur. Phys. J. C 80 (2020) 149 [arXiv:1906.02714].

[35] Y. Grossman, E. Pasemann, and S. Schacht, “On the
Statistical Treatment of the Cabibbo Angle Anomaly,”
JHEP 07 (2020) 068 [arXiv:1911.07821].

[36] C.-Y. Seng, X. Feng, M. Gorchtein, and L.-C. Jin, “Joint
lattice QCD–dispersion theory analysis confirms the
quark-mixing top-row unitarity deficit,” Phys. Rev. D 101 (2020) 111301 [arXiv:2003.11264].

[37] A. M. Coutinho, A. Crivellin, and C. A. Manzari,
“Global Fit to Modified Neutrino Couplings and the
Cabibbo-Angle Anomaly,” Phys. Rev. Lett. 125 (2020) 071802 [arXiv:1912.08823].

[38] A. Crivellin and M. Hoferichter, “β Decays as Sensitive
Probes of Lepton Flavor Universality,” Phys. Rev. Lett. 125 (2020) 111801 [arXiv:2002.07184].

[39] M. Endo and S. Mishima, “Muon g − 2 and CKM
unitarity in extra lepton models,” JHEP 08 (2020) 004 [arXiv:2005.03933].

[40] M. Kirk, “Cabibbo anomaly versus electroweak precision
tests: An exploration of extensions of the Standard
Model,” Phys. Rev. D 103 (2021) 035004 [arXiv:2008.03261].

[41] B. Belfatto and Z. Berezhiani, “Are the CKM anomalies
induced by vector-like quarks? Limits from flavor changing and Standard Model precision tests,” JHEP 10 (2021) 079 [arXiv:2103.05849].

[42] G. C. Branco, J. T. Penedo, P. M. F. Pereira,
M. N. Rebelo, and J. I. Silva-Marcos, “Addressing the
CKM unitarity problem with a vector-like up quark,”
JHEP 07 (2021) 099 [arXiv:2103.13408].

[43] G. Cacciapaglia, et al., “Heavy Vector-like Top Partners
at the LHC and flavour constraints,” JHEP 03 (2012) 070 [arXiv:1108.6329].

[44] F. J. Botella, G. C. Branco, and M. Nebot, “The Hunt
for New Physics in the Flavour Sector with up vector-like
quarks,” JHEP 12 (2012) 040 [arXiv:1207.4440].

[45] Y. Okada and L. Panizzi, “LHC signatures of vector-like
quarks,” Adv. High Energy Phys. 2013 (2013) 364936 [arXiv:1207.5607].

[46] CDF Collaboration, “High-precision measurement of the
W boson mass with the CDF II detector,” Science 376
(2022) 170–176.

[47] B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek,
“Dimension-Six Terms in the Standard Model
Lagrangian,” JHEP 10 (2010) 085 [arXiv:1008.4884].

[48] L. Berthier and M. Trott, “Towards consistent
Electroweak Precision Data constraints in the SMEFT,”
JHEP 05 (2015) 024 [arXiv:1502.02570].

[49] M. Bjørn and M. Trott, “Interpreting W mass
measurements in the SMEFT,” Phys. Lett. B 762
(2016) 426–431.

[50] S. Dawson and P. G. Giardino, “Electroweak and QCD
corrections to Z and W pole observables in the standard
effect EFT,” Phys. Rev. D 101 (2020) 013001 [arXiv:1909.02000].

[51] A. Carmona, A. Lazopoulos, P. Oglos, and J. Santiago,
“Matchmakerft: automated tree-level and one-loop
matching.” arXiv:2112.10787.

[52] ATLAS Collaboration, “Search for flavour-changing neutral
current top-quark decays $t \rightarrow qZ$ in
proton-proton collisions at \sqrt{s} = 13 TeV with the ATLAS
detector,” JHEP 07 (2018) 176 [arXiv:1803.09923].

[53] ATLAS Collaboration, “Search for top-quark decays
t \rightarrow Hq with 36 fb⁻¹ of pp collision data at \sqrt{s} = 13 TeV
with the ATLAS detector,” JHEP 05 (2019) 123 [arXiv:1812.11568].

[54] ATLAS Collaboration, “Search for flavor-changing
neutral-current couplings between the top quark and the
Z boson with LHC Run2 proton-proton collisions at
\(\sqrt{s} = 13\,\text{TeV} \) with the ATLAS detector.".
http://cds.cern.ch/record/2781174.

[55] ATLAS Collaboration, “Searches of top FCNC interactions with the ATLAS detector,” 13 Mar. 2022.
https://cds.cern.ch/record/2804177. Moriond EW 2022.

[56] N. A. Graf, M. E. Peskin, and J. L. Rosner, eds., “Physics at a High-Luminosity LHC with ATLAS.”

[57] ATLAS Collaboration, “Sensitivity of searches for the flavour-changing neutral current decay \(t \to qZ \) using the upgraded ATLAS experiment at the High Luminosity LHC.”
http://cds.cern.ch/record/2653389.

[58] FCC Collaboration, “FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3,” Eur. Phys. J. ST 228 (2019) 755–1107.

[59] Y.-B. Liu and S. Moretti, “Probing tqZ anomalous couplings in the trilepton signal at the HL-LHC, HE-LHC and FCC-hh,” Chin. Phys. C 45 (2021) 043110 [arXiv:2010.06148].

[60] Y.-B. Liu and S. Moretti, “Probing the top-Higgs boson FCNC couplings via the \(b \to \gamma \gamma \) channel at the HE-LHC and FCC-hh,” Phys. Rev. D 101 (2020) 075029 [arXiv:2002.05311].

[61] ATLAS Collaboration, “Sensitivity of ATLAS at HL-LHC to flavour changing neutral currents in top quark decays \(t \to cH \), with \(H \to \gamma \gamma \).”

[62] H. Khanpour, “Probing top quark FCNC couplings in the triple-top signal at the high energy LHC and future circular collider,” Nucl. Phys. B 958 (2020) 115141 [arXiv:1909.03998].

[63] A. Papaefstathiou and G. Tetlalmatzi-Xolocotzi, “Rare top quark decays at a 100 TeV proton–proton collider: \(t \to bWZ \) and \(t \to hc \),” Eur. Phys. J. C 78 (2018) 214 [arXiv:1712.06332].

[64] FCC study Group Collaboration, “Prospect for top quark FCNC searches at the FCC-hh,” J. Phys. Conf. Ser. 1390 (2019) 012044 [arXiv:1812.00902].

[65] J. Aebischer, J. Kumar, P. Stangl, and D. M. Straub, “A Global Likelihood for Precision Constants and Flavour Anomalies,” Eur. Phys. J. C 79 (2019) 509 [arXiv:1810.07698].

[66] P. Stangl, “smelli – the SMEFT Likelihood,” PoS TOOLS2020 (2021) 035 [arXiv:2012.12211].

[67] D. M. Straub, “flavio: A Python package for flavour and precision phenomenology in the Standard Model and beyond,” arXiv:1810.08132.

[68] J. Aebischer, J. Kumar, and D. M. Straub, “Wilson: A Python package for the running and matching of Wilson coefficients above and below the electroweak scale,” Eur. Phys. J. C 78 (2018) 1026 [arXiv:1804.05033].

[69] S. Descotes-Genon, A. Falkowski, M. Fedele, M. Gonzalez-Alonso, and J. Virto, “The CKM parameters in the SMEFT,” JHEP 05 (2019) 172 [arXiv:1812.08163].

[70] Particle Data Group Collaboration, “Review of Particle Physics,” PTPE 2020 (2020) 083C01.

[71] M. Averrik, M. Czakon, A. Freitas, and G. Weiglein, “Precise prediction for the W boson mass in the standard model,” Phys. Rev. D 69 (2004) 053006 [hep-ph/0311148].

[72] J. de Blas, et al., “Global analysis of electroweak data in the Standard Model,” arXiv:2102.07274.

[73] ALEPH, CDF, D0, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, Tevatron Electroweak Working Group, SLD Electroweak, Heavy Flavour Groups Collaboration, “Precision Electroweak Measurements and Constraints on the Standard Model.” arXiv:1012.2367.

[74] ATLAS Collaboration, “Measurement of the W-boson mass in pp collisions at \(\sqrt{s} = 7\,\text{TeV} \) with the ATLAS detector,” Eur. Phys. J. C 78 (2018) 110 [arXiv:1701.07240]. [Erratum: Eur.Phys.J.C 78, 908 (2018)].

[75] LHCb Collaboration, “Measurement of the W boson mass,” JHEP 01 (2022) 036 [arXiv:2109.01113].

[76] J. de Blas, M. Pierini, L. Reina, and L. Silvestrini, “Impact of the recent measurements of the top-quark and W-boson masses on electroweak precision fits.” arXiv:2204.04204.

[77] L.-S. Geng, et al., “Towards the discovery of new physics with lepton-universality ratios of \(b \to s \ell \ell \) decays,” Phys. Rev. D 96 (2017) 093006 [arXiv:1704.05446].

[78] A. Crivellin, C. Greub, D. Müller, and F. Saturnino, “Importance of Loop Effects in Explaining the Accumulated Evidence for New Physics in B Decays with a Vector Leptoquark,” Phys. Rev. Lett. 122 (2019) 011805 [arXiv:1807.02068].

[79] M. Algueró, B. Capdevila, S. Descotes-Genon, P. Masjuan, and J. Matias, “Are we overlooking lepton flavour universal new physics in \(b \to s \ell \ell \)?” Phys. Rev. D 99 (2019) 075017 [arXiv:1809.08447].

[80] M. Algueró, et al., “Emerging patterns of New Physics with and without Lepton Flavour Universal contributions,” Eur. Phys. J. C 79 (2019) 714 [arXiv:1903.09578]. [Addendum: Eur.Phys.J.C 80, 511 (2020)].

[81] W. Altmanshofer and P. Stangl, “New physics in rare B decays after Moriond 2021,” Eur. Phys. J. C 81 (2021) 952 [arXiv:2103.13370].

[82] M. Algueró, B. Capdevila, S. Descotes-Genon, J. Matias, and M. Noova-Brunet 2021. arXiv:2104.08921.

[83] D. London and J. Matias, “\(B \) Flavour Anomalies: 2021 Theoretical Status Report.” arXiv:2110.13270.

[84] L. Di Luzio, M. Kirk, A. Lenz, and T. Rauh, “\(\Delta M_s \) theory precision confronts flavour anomalies,” JHEP 12 (2019) 009 [arXiv:1909.11087].

[85] ATLAS Collaboration, “Combination of the searches for pair-produced vector-like partners of the third-generation quarks at \(\sqrt{s} = 13\,\text{TeV} \) with the ATLAS detector,” Phys. Rev. Lett. 121 (2018) 211801 [arXiv:1808.02343].

[86] ATLAS Collaboration, “Search for pair-production of vector-like quarks in pp collision events at \(\sqrt{s} = 13\,\text{TeV} \) with at least one leptonically-decaying Z boson and a third-generation quark with the ATLAS detector.”.
http://cds.cern.ch/record/2773300.

[87] ATLAS Collaboration, “Search for single production of vector-like \(T \) quarks decaying to \(Ht \) or \(Zt \) in \(pp \) collisions at \(\sqrt{s} = 13\,\text{TeV} \) with the ATLAS detector.”.
http://cds.cern.ch/record/2779174.

[88] LHCb Collaboration, “Measurement of CP-Averaged Observables in the \(B^0 \to K^0 \mu^+ \mu^- \) Decay,” Phys. Rev. Lett. 125 (2020) 011802 [arXiv:2003.04831].

[89] LHCb Collaboration, “Angular analysis of the rare decay \(B^0_s \to \phi \mu^+ \mu^- \),” JHEP 11 (2021) 043 [arXiv:2107.13428].

[90] LHCb Collaboration, “Branching Fraction
Supplemental Material

1. SMEFT OPERATORS

Here we give the definitions of the SMEFT operators relevant for flavour and electroweak precision observables according to Ref. [47]. \(p, r, s \) and \(t \) are flavour indices, while color as well as \(SU(2)_L \) indices are contracted within the bi-linear terms and \(T^A \) stands for the generators of \(SU(3)_C \).

Modified gauge boson couplings: The operators generating modified gauge boson couplings to quarks after EW symmetry breaking are

\[
Q^{(1)}_{Hq} = (H^\dagger i \overleftrightarrow{D}_\mu H)(\bar{q}_i \gamma^\mu q_j), \\
Q^{(3)}_{Hq} = (H^\dagger i \overleftrightarrow{D}_\mu H)(\bar{q}_i \gamma^\mu \tau^I q_j), \\
Q^{ij}_{Hu} = (H^\dagger i \overleftrightarrow{D}_\mu H)(\bar{u}_i \gamma^\mu u_j), \\
Q^{ij}_{Hd} = (H^\dagger i \overleftrightarrow{D}_\mu H)(\bar{d}_i \gamma^\mu d_j),
\]

with the covariant derivative given in Eq. (II.2) and

\[
\overleftrightarrow{D}_\mu = (D_\mu - \overrightarrow{D}_\mu), \quad \overrightarrow{D}_\mu = (\tau^I D_\mu - \overrightarrow{D}_\mu \tau^I).
\]

It is useful to write explicitly the modifications of the \(W \) and \(Z \) couplings (after EW symmetry breaking) as a function of the SMEFT coefficients:

\[
\delta L_{W,Z} = -v^2 \frac{g}{\sqrt{2}} W^\pm \bar{u}_i \gamma^\mu \left[V \cdot C^{(3)}_{Hq} \right]_{ij} P_L + \frac{1}{2} [C_{Had}]_{ij} P_R d_j + \text{h.c.}\]
\[
- v^2 \frac{g}{2c_W} Z_\mu \bar{u}_i \gamma^\mu \left[V \cdot \left(C^{(3)}_{Hq} - C^{(1)}_{Hq} \right) \cdot V^\dagger \right]_{ij} P_L - [C_{Hd}]_{ij} P_R u_j \]
\[
- v^2 \frac{g}{2c_W} Z_\mu \bar{d}_i \gamma^\mu \left[C^{(3)}_{Hq} + C^{(1)}_{Hq} \right]_{ij} P_L + [C_{Hd}]_{ij} P_R d_j,
\]

where \(V \) is the CKM matrix and \(v \approx 246 \text{ GeV} \).

\(\Delta F = 2 \) processes: The operators giving rise to, e.g., \(B_s - \overline{B}_s \) mixing, read

\[
Q^{(1)}_{qq}^{prst} = (\bar{q}_p \gamma^\mu q_r) (\bar{q}_s \gamma^\mu q_t), \quad Q^{(3)}_{qq}^{prst} = (\bar{q}_p \gamma^\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t),
\]

\[
Q^{(1)}_{uu}^{prst} = (\bar{u}_p \gamma^\mu u_r) (\bar{u}_s \gamma^\mu u_t), \quad Q^{(3)}_{uu}^{prst} = (\bar{d}_p \gamma^\mu d_r) (\bar{d}_s \gamma^\mu d_t),
\]

\[
Q^{(1)}_{qu}^{prst} = (\bar{q}_p \gamma^\mu q_r) (\bar{u}_s \gamma^\mu u_t), \quad Q^{(3)}_{qu}^{prst} = (\bar{q}_p \gamma^\mu \tau^I q_r) (\bar{u}_s \gamma^\mu u_t),
\]

\[
Q^{(1)}_{qd}^{prst} = (\bar{q}_p \gamma^\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t), \quad Q^{(3)}_{qd}^{prst} = (\bar{q}_p \gamma^\mu \tau^I T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t).
\]

Down-quark magnetic dipoles: The operators generating \(b \to s \gamma \) after EW breaking are

\[
Q^{ij}_{dW} = (\bar{q}_i \sigma^{\mu\nu} d_j) \gamma^\nu H W^I_{\mu\nu}, \quad Q^{ij}_{dB} = (\bar{q}_i \sigma^{\mu\nu} d_j) H B^\mu_{\nu
\mu}.
\]

Modified Higgs couplings: Here we have

\[
Q^{ij}_{uH} = (H^\dagger H)(\bar{q}_i u_j \tilde{H}), \quad Q^{ij}_{dH} = (H^\dagger H)(\bar{q}_i d_j H).
\]

The W mass: The prediction for the \(W \)-boson mass is affected already at tree-level by

\[
Q_{HD} = (H^\dagger D_H H)^\gamma (H^\dagger D^H H), \quad Q_{HWB} = (H^\dagger \tau^I H) W^I_{\mu\nu} B^\mu_{\nu}.
\]
2. CKM TREATMENT

Since we modify W-quark couplings at tree-level, the determination of the “correct” CKM elements is non-trivial. In smeVli, the method of Ref. [69] is implemented which fixes the four inputs needed to determine the CKM using four observables, fully taking into account both the SM and new physics contributions, at each point in parameter space. These four observables are $\Gamma(K^+ \to \mu^+\nu)/\Gamma(\pi^+ \to \mu^+\nu)$, $\Br(B \to X_c e^+\nu)$, $\Br(B^+ \to \tau^+\nu)$, and $\Delta M_d/\Delta M_s$. Once the CKM matrix is fixed, it is then used as the input to all the other theory predictions, including the “SM” part. Note however that this means there is essentially a scheme dependence to which observables show discrepancies with data (since the four used to fix the CKM must agree with experiment, by construction), while only the global $\Delta \chi^2$ is physical.

3. VLQ TO SMEFT MATCHING COEFFICIENTS

The part of the Lagrangian detailing the interaction between the SM Higgs and two VLQs is given by

$$-\mathcal{L}_{\text{VLQSM}}^H = \lambda^{L,UQ} \tilde{U}^H \tilde{P}_L Q_1 + \lambda^{L,DQ} D^H \tilde{P}_L Q_1 + \lambda^{L,Q_2} D \tilde{Q}_5, \alpha \tilde{H} P_L D_\beta + \lambda^{L,Q_2 U} \tilde{Q}_7 H P_L U$$

where the IR-finite loop function is set to zero at the end of the calculation.

One-loop matching for $\Delta F = 2$ processes: The one-loop matchings onto the $\Delta F = 2$ operators are obtained from the diagrams in Fig. S.1. Among the three representations (U, Q_1 with ξ_{u1}, and Q_2), only U contributes to $B_s - \bar{B}_s$ mixing. The one-loop matching condition for U is

$$[C^{(1)}_{\xi}]_{ij} = -\frac{\xi_{i}^{u,U} \xi_{j}^{u,U} \xi_{j}^{u,U}}{256\pi^2 M_U^2} + \frac{\xi_{i}^{u,U} \xi_{j}^{u,U} (Y^{u,U})_{ij}}{128\pi^2} \tilde{F}(M_U),$$

$$[C^{(3)}_{\xi}]_{ij} = -\frac{\xi_{i}^{u,U} \xi_{j}^{u,U} \xi_{j}^{u,U}}{256\pi^2 M_U^2} + \frac{\xi_{i}^{u,U} \xi_{j}^{u,U} (Y^{u,U})_{ij}}{128\pi^2} \tilde{F}(M_U),$$

where the IR-finite loop function is

$$\tilde{F}(m) = \frac{1}{m^2} \left(\frac{3}{2} + \ln \frac{\mu^2}{m^2} \right),$$

and the renormalization scale μ should be $\mathcal{O}(M_{\text{VLQ}})$.

Note that, generalizing Ref. [91], the interaction between two VLQs and the SM Higgs can be different for the left-handed and right-handed components.

We give the coefficients relevant for our phenomenological study in the main text. At tree-level, in addition to those given in the main text (Eq. (II.10)), we also find for the Wilson coefficients of the three Higgs operator

$$C^{ij}_{\xi uH} = \frac{Y^{u,U}_{ij} \xi_{k}^{U,U} \xi_{k}^{U,U}}{2 M_U^2} + \frac{Y^{u,U}_{ij} \xi_{k}^{U,U} \xi_{k}^{U,U}}{2 M_Q^2} + \frac{Y^{u,U}_{ij} \xi_{k}^{U,U} \xi_{k}^{U,U}}{2 M_Q^2}.$$
One-loop matching for down-quark magnetic dipoles: Some partial work was done in Ref. [32] for the dipole operators, but note that we find our VLQ interactions are more general than those considered in that work, and additional diagrams contribute to the one-loop matching onto the dipole operators C_{db} and C_{dw}. Some typical diagrams are shown in Fig. S.2. Among the three representations, only U produces the one-loop matching condition,

$$[C_{db}]_{ij} = \frac{7g_1Y_k^d\epsilon^{U*}\epsilon_{k*}^{U*}}{1152\pi^2M_U^2}, \quad [C_{dw}]_{ij} = -\frac{5g_2Y_k^d\epsilon^{U*}\epsilon_{k*}^{U*}}{384\pi^2M_U^2}. \quad (S.3.6)$$

One-loop matching for modified gauge boson couplings: While the tree-level SMEFT operators, generated by the VLQs, can affect W and Z couplings, the low-energy Z coupling to up- and down-type quarks specifically depends on $C_{hq}^{(1)} - C_{hq}^{(3)}$, C_{Hq}, and $C_{hq}^{(1)} + C_{hq}^{(3)}$, C_{Hq}, respectively (see Eq. (II.10)). As we can see that this leads to some of the Z quark couplings remaining SM-like for certain VLQs (as summarised in Table S.1). Since these interactions are constrained by EWPO, and also contribute to many interesting processes such as $b \to s\ell\ell$, we also calculate the one-loop matching for the U, Q_1, Q_7 cases where they are not already present at tree level.

$$[C_{hq}^{(1)}]_{ij} = \frac{\epsilon^{U}_{sk}\epsilon^{U*}_{sl}Y_k^{l*}Y_{ik}^{u*}}{32\pi^2M_U^2}\left(1 + \ln\frac{\mu^2}{M_U^2}\right) + \frac{\epsilon^{U}_{sk}\epsilon^{U*}_{sl}Y_k^{l*}Y_{lj}^{u*}}{32\pi^2M_U^2}\left(1 + \ln\frac{\mu^2}{M_U^2}\right) - \frac{\epsilon^{U}_{sk}\epsilon^{U*}_{sl}Y_k^{l*}Y_{lj}^{u*}}{256\pi^2M_U^2}\left(17 + 14\ln\frac{\mu^2}{M_U^2}\right)$$

$$- \frac{Y_{ik}^{u*}Y_{lj}^{u*}\epsilon_{k*}^{U*}\epsilon_{l*}^{U*}}{384\pi^2M_Q^2}\left(1 + 6\ln\frac{\mu^2}{M_Q^2}\right) - \frac{Y_{ik}^{u*}Y_{lj}^{u*}\epsilon_{k*}^{U*}\epsilon_{l*}^{U*}}{64\pi^2M_Q^2}\left(13 + 6\ln\frac{\mu^2}{M_Q^2}\right). \quad (S.3.7)$$

$$[C_{hq}^{(3)}]_{ij} = \frac{\epsilon^{U}_{sk}\epsilon^{U*}_{sl}Y_k^{l*}Y_{ik}^{u*}}{256\pi^2M_U^2}\left(9 + 14\ln\frac{\mu^2}{M_U^2}\right) - \frac{\epsilon^{U}_{sk}\epsilon^{U*}_{sl}Y_k^{l*}Y_{lj}^{u*}}{96\pi^2M_Q^2}\left(5\epsilon_{k*}^{U*}\epsilon_{l*}^{U*}\epsilon_{l*}^{U*}\epsilon_{j*}^{U*}\right) - \frac{\epsilon^{U}_{sk}\epsilon^{U*}_{sl}Y_k^{l*}Y_{lj}^{u*}}{192\pi^2M_Q^2}. \quad (S.3.8)$$

One-loop matching for the W mass: The one-loop matching onto the operators Q_{HD} and Q_{HWB}, which modify the W-boson mass prediction, are obtained from the diagrams in Fig. S.3. The matching conditions for the three representation VLQs are

$$C_{HD} = -\frac{3\epsilon_{sk}^U\epsilon_{l*}^{U*}\epsilon_{l*}^{U*}\epsilon_{j*}^{U*}}{32\pi^2M_U^2} + \frac{3\epsilon_{sk}^U(Y_{ik}^{u*}Y_{lj}^{u*})_{ij}^{U*}\epsilon_{l*}^{U*}}{16\pi^2} - F_1(M_U)$$
Table S.1. Overview on modified Z-quark couplings (in broken \(SU(2)_L \) at tree level in the VLQ models.

\[
\begin{array}{ccccccc}
\text{Tree} & U & D & Q_1 & Q_5 & Q_7 & T_1 & T_2 \\
Z-u^i_L-u^i_L & \checkmark & \times & \times & \times & \checkmark & \checkmark & \checkmark \\
Z-u^i_R-u^i_R & \times & \times & \checkmark & \checkmark & \times & \times \\
Z-d^i_L-d^i_R & \checkmark & \times & \times & \checkmark & \checkmark & \checkmark & \checkmark \\
Z-d^i_R-d^i_R & \times & \times & \checkmark & \checkmark & \times & \checkmark & \times \\
\end{array}
\]

Figure S.3. Typical box diagrams giving rise to the \(W \) mass, where the internal fermions \(q \) represents any SM quark.

\[
\begin{align*}
\frac{\xi_i^{u^*_i} \xi_j \xi_i^{u_i} \xi_j^{u^*_j}}{8\pi^2 M_{Q_1}^2} + \frac{3\xi_i^{u^*_i} (Y^{u^*_i} Y^u)_{ij} \xi_j^{u^*_j}}{8\pi^2} F_2(M_{Q_1}) - \frac{\xi_i^{Q^*_i} \xi_j \xi_i^{Q^*_j} \xi_j^{Q^*_j}}{8\pi^2 M_{Q_7}^2} - \frac{3\xi_i^{Q^*_i} (Y^{Q^*_i} Y^Q)_{ij} \xi_j^{Q^*_j}}{8\pi^2} F_2(M_{Q_7}), \\
C_{HWB} &= - \frac{g_1 g_2 \xi_i^{u_i} \xi_j^{u^*_j}}{64\pi^2 M_W^2} - \frac{g_1 g_2 \xi_i^{Q^*_i} \xi_j^{Q^*_j}}{96\pi^2 M_{Q_1}^2} + \frac{g_1 g_2 \xi_i^{Q^*_i} \xi_j^{Q^*_j}}{96\pi^2 M_{Q_7}^2},
\end{align*}
\]

with

\[
F_1(m) = \frac{1}{m^2} \left(\frac{1}{2} + \ln \frac{\mu^2}{m^2} \right), \quad F_2(m) = \frac{1}{m^2} \left(\frac{3}{2} + \ln \frac{\mu^2}{m^2} \right).
\]

4. \(t \to cZ \) AND \(t \to ch \)

For \(t \to cZ \) [59], we take the branching ratio to the \(Z \) boson to be:

\[
\text{Br}(t \to cZ) \approx 0.47 |\lambda_{tcZ}|^2,
\]

with the couplings defined by the Lagrangian terms

\[
\mathcal{L} = \frac{g}{2c_W} \lambda_{tcZ} Z_\mu \bar{c}_L \gamma^\mu (\lambda_L P_L + \lambda_R P_R)t + \text{h.c.},
\]

with the normalisation \(\lambda_L^2 + \lambda_R^2 = 1 \). In Ref. [53], they give the simple formula for the FCNC Higgs branching ratio:

\[
\text{Br}(t \to ch) \approx 0.27 \left| \lambda_{tcZ}^2 + \lambda_{cLT}^2 \lambda_{L}^2 \right|,
\]

where the couplings are defined by the Lagrangian terms

\[
\mathcal{L} = \lambda_{tcZ} \bar{c}_L h + \lambda_{cLT} \lambda_{cLT} t h + \text{h.c.}.
\]

Comparing to the SMEFT Lagrangian, we see the correspondence:

\[
\lambda_{tcZ} \lambda_L = v^2 \left[V \cdot \left(C^{(3)}_{Hq} - C^{(1)}_{Hq} \right) V \right]_{23}, \quad \lambda_{tcZ} \lambda_R = v^2 \left[C_{Hq} \right]_{23}, \quad \lambda_{tcZ} \lambda_{cLT} = \frac{v^2}{\sqrt{2}} \left[C_{cLT} \right]_{23},
\]

For the estimation of the \(t \to cZ, h \) branching ratios, at the level of precision we are considering, we can take the CKM matrix to be the unit matrix.