Hypertension is extremely common in people receiving hemodialysis (HD) for end-stage renal disease, with prevalence estimates of between 72% and 88%. Epidemiological data in the general population demonstrate a positive linear association between systolic blood pressure (SBP) and adverse outcomes including coronary artery disease, stroke, and heart failure, and randomized studies consistently demonstrate that intensively lowering BP (ie, targeting <120/80 vs 140/90 mm Hg) delivers reductions in important clinical endpoints in the majority of sub-populations. In contrast, observational studies in HD populations show a very different relationship between BP and patient outcomes, and data from interventional trials are sparse. Several recent articles have reviewed the accumulated observational data in prevalent and incident HD patient cohorts. In brief, studies drawing on peri-dialytic measurements have consistently shown a "U"- or "J"-shaped relationship with mortality where lowest and, sometimes, highest levels of BP are associated with greatest risk of death. For example, Robinson et al analyzed data from the Dialysis Outcomes and Practice Patterns Study (DOPPS) at both facility and individual patient level and found lowest mortality in those with a pre-HD SBP of 130-159 mm Hg (facility level) and <130 mm Hg (individual patient level). Importantly, the facility-level analysis compensates for unmeasured confounding, albeit in an imperfect manner as the authors acknowledge. In a similar vein, the CRIC Investigators report a pre-HD SBP of 138-166 mm Hg to be associated with lowest risk of cardiovascular events.

Various explanations have been put forward to account for the contrast between BP-mortality associations in the HD and general populations. Firstly, it should be acknowledged that routinely collected peri-dialytic BP measurements are often performed under suboptimal conditions and may, therefore, be unreliable as a means to predict risk of cardiovascular events, diagnose hypertension, and guide treatment. A recent survey conducted across 92 predominantly European HD centers supports this assertion.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2020 The Authors. Seminars in Dialysis published by Wiley Periodicals LLC.
Usual BP measurement practice fell significantly below recommended standards, with only 20% of HD units achieving at least 80% of standards. The reasons for sub-optimal BP measurement were not explored but, intuitively, patient-related factors are likely to exert a significant influence on measurement practice and/or BP readings themselves. For example a desire to start and finish HD without undue delay results in a reluctance to remove sufficient clothing and to "rest" adequately before BP measurements. Additionally, anticipation anxiety relating to needling, frustration related to transportation delays and other factors will inevitably augment the white-coat effect in some HD patients. Although standardized BP measurements are more reliable than routinely collected BP readings, particularly when taken postdialysis, there are practical constraints, for example patient reluctance to add further delays to the dialysis process and health professional time, that would in our opinion make implementation in routine care rather challenging.

Secondly, there is a confounding influence of comorbidities (heart failure, malnutrition) that present with or are associated with lower BP and are more directly and causally linked to mortality than BP itself. On the other hand, the absence of heart failure significantly modifies the "J"-shaped association between low predialysis SBP and mortality. Reinforcing this latter hypothesis is the observation that dialysis vintage also modifies the BP-mortality relationship. In a study of incident HD patients those with low predialysis BP had increased mortality over the subsequent 2 years, whereas in those who survived beyond 3 years, a mortality benefit was observed with low predialysis BP. In other words, patients who were destined not to survive from preexisting comorbid conditions were more likely to have low BP at inception of dialysis, whereas those without comorbidity had better survival which was then associated with—either causally or otherwise—lower BP.

Thirdly, extracellular water (ECW) and, probably, a range of uremic toxins vary considerably over the interdialytic period with most marked changes from pre- to postdialysis, all of which will exert a considerable influence on BP. To an extent this and measurement-related confounders may be ameliorated by BP measurements obtained outside of dialysis facilities. Indeed, various studies in HD populations have demonstrated more consistently linear associations between Home BP monitoring (HBPM) and ambulatory blood pressure monitoring (ABPM) and both intermediate (left ventricular (LV) hypertrophy, LVH) and hard (mortality) endpoints. Forty-four-hour interdialytic ambulatory BP monitoring (ABPM) is considered the gold standard for determining BP and predicts LVH and mortality. A prospective study that enrolled 326 predominantly black American HD patients found increased risk for all-cause mortality with increasing quartiles of both ABPM and HBPM. More recently, Meyer & colleagues, using ABPM in 344 European HD patients found a "U"-shaped relationship. However, when separately analyzed by the presence or absence of atrial fibrillation or heart failure, which accounted for approximately one third of the population studied, a negative relationship existed between SBP and pulse pressure and all-cause and cardiovascular mortality, whereas in those without these comorbidities the opposite relationship was found. However, ABPM has low patient acceptability, is expensive and complex to utilize in routine practice.

HBPM is similar to ABPM at predicting LVH and outcomes, with prognostic accuracy depending more on temporal relationship to the dialysis episode than the number of BP readings taken. Relatively small number of HBPM readings taken over a short time period, usually two to three times per day for 4 days following the mid-week HD session, has comparable accuracy to ABPM. HBPM is widely available, relatively inexpensive, considered user-friendly, and frequently recommended in consensus guidelines. Self-management algorithms utilizing HBPM deliver superior BP control compared to standard care, including in higher-risk populations, for example, chronic kidney disease and these effects may relate to patient involvement and empowerment. However, and while HBPM outperforms other techniques when compared to the gold standard of ABPM, we question whether this method can easily be adopted into routine practice for all HD patients. The recently published BP in Dialysis (BID) study showed surprisingly high attrition rates in performance of HBPM among a presumably highly motivated population who were being regularly prompted by study personnel: at 12 months follow-up, only 22% of participants achieved at least four HBPM readings per month.

A fourth explanation for the "U"- or "J"-shaped relationship worthy of consideration is that active attempts to lower BP to levels considered desirable other populations may actually be deleterious in HD patients. Intradialytic hypotension (IDH) affects up to one third of HD sessions and is independently associated with significant morbidity and mortality. Lowering BP by reducing ECW through "probing" for a lower target weight is effective in reducing BP but at the expense of an approximate doubling in incidence of hypotensive episodes (24.8% vs 12.7% in intervention and control arms, at 6 to 8 weeks, in the DRIP study). Burton and colleagues elegantly demonstrated how IDH and ultrafiltration (UF) volumes are independent predictors of myocardial stunning which, in turn, is predictive of LV systolic dysfunction, myocardial fibrosis, and mortality. In BID, a feasibility and safety study, HD patients were randomized to either a "standard" BP target range of 155-165 mm Hg or an "intensive" target range of 110-140 mm Hg. Although not powered to deliver definitive conclusions, a number of safety signals emerged to support the hypothesis that "lower might not be better" in the HD population. Those in the intensive arm experienced a threefold higher incidence, albeit not quite reaching statistical significance, of vascular access thrombosis (incidence rate ratio [IRR] or 3.09, 95% confidence interval [CI] 0.96-8.78). Additionally, IRR for hospitalizations was 1.61 in the intensive arm (95% CI 0.87-2.97).

In an ideal world we would have at our disposal data from a well-conducted prospective randomized trial, that provides for adequate individualization of target BP depending on age, frailty, and comorbidity, and examines impacts on outcomes of importance to dialysis patients, such as vascular access patency and recovery time after dialysis as well as more conventional endpoints of cardiovascular events and all-cause mortality. Until we get to this point...
TABLE 1 Summary of pragmatic advice regarding BP management based on current available evidence (most relevant references provided where applicable)

Encourage adherence amongst patients and dialysis staff with recording of BP measurements on the dialysis unit according to recommendations from the AHA, ERA-EDTA/ESH, NICE, or other guideline group on BP measurement.2

Meticulous fluid volume management is of utmost importance.83 Prolonged or more frequent dialysis may be required for patients with high interdialytic weight gains or frequent intradialytic hypotension.116 Periodic extra ultrafiltration sessions may be required to achieve and maintain euvoeemia in those unwilling to perform prolonged or more frequent treatments on a regular basis.

Counsel patients to take a low sodium diet of <2.5 g/d (approximates to <6 g NaCl/d).47

Avoid dialysate Na >140 mEq/L; lowering dialysate Na can be tried in patients without intradialytic hypotension, although is of uncertain benefit, and should not be continued in a patient with intradialytic hypotension.66

Insufficient evidence exists to make firm recommendations about choice of antihypertensive medication. Beta-blockers, angiotensin receptor blockers or, possibly, ACE inhibitors, and dihydropyridine calcium channel blockers are all reasonable choices. For HD patients with questionable medication compliance, beta-blockers such as atenolol given three times a week following dialysis may be useful.121–123

In the majority of patients, aim for a pre-HD BP between 130/60 and 159/99 mm Hg and post-HD BP between 120/70 and 139/99 mm Hg so long as it is tolerated.35 If patient experiences intradialytic hypotension, raise the goal BP.

In younger patients (eg, <30-40 y old) without significant comorbidity, consider aiming for a pre-HD SBP of <140 mm Hg, but not <125 mm Hg.35

In patients who are motivated to undertake home BP measurements, or where ABPM is utilized, aim for an average home or ambulatory SBP between 120 and 130 mm Hg.16

Abbreviations: ABPM, Ambulatory Blood Pressure Monitoring; AHA, American Heart Association; BP, Blood Pressure; ERA-EDTA, European Renal Association-European Dialysis and Transplant Association; ESH, European Society of Hypertension; HD, hemodialysis; NICE, National Institute for Health and Care Excellence; SBP, Systolic Blood Pressure. It should be noted that these recommendations are based on studies with limited numbers of participants.

we recommend a pragmatic approach, the rationale for which is presented here and summarized in Table 1.

The reality is that, in the majority of HD units internationally, routinely collected BP measurements will continue to guide our interventions for the foreseeable future. It is, therefore, essential for nephrologists to ensure routinely collected HD unit BP readings are measured in accordance with recommended guidelines through healthcare professional and patient education. Although individual studies point toward slight differences in BP thresholds associated with lowest risk of all-cause or cardiovascular mortality, a range of routine pre-HD systolic BP broadly between 130-140 and 160-170 mm Hg appears to be associated with lowest mortality. Although intuitively younger, less frail patients without comorbidities, particularly diabetes, heart failure, or atherosclerotic cardiovascular disease, and those expected to survive 3 or more years on dialysis, may benefit from lower goal BPs, there is currently a paucity of evidence to directly support this approach in the majority of HD patients. For example, in a recent Korean study of 2299 HD patients followed for 4.5 years, all-cause mortality was increased with pre-HD SBP <110 and >170 mm Hg.34 When separately analyzed by age (above or below 65 years) and the presence or absence of a variety of comorbidities, the threshold at which hazard ratios significantly increased remained at 170 mm Hg. Similarly, Myers found that a "U"-shaped relationship persisted in all age groups, with the exception of those aged under 30 in whom a more conventional linear relationship between mortality risk and SBP emerged above a threshold of 140 mm Hg.35 It is difficult to make firm recommendations for target BP in patients undergoing HBPM or ABPM owing to the very small numbers of patients evaluated using these methodologies, for example with 326 patients in the largest study of HBPM to date.16 In this study an average home systolic BP of 120-130 mm Hg appeared to be associated with all-cause mortality.

2 | HOW TO LOWER BLOOD PRESSURE IN HEMODIALYSIS PATIENTS

2.1 | Dietary salt reduction and dialysate sodium concentration

Volume expansion by salt and water excess is a major cause of hypertension in dialysis patients 36,37 but it is just one aspect of the complex pathophysiology that contributes to hypertension in this cohort. Higher dietary sodium intake is independently associated with greater mortality in HD patients.38 Reduction in salt intake results in lower BP in the general population, in hypertensives of all ethnicities, in diabetics and non-diabetics, and in patients with chronic kidney disease (CKD).39–43

A low salt diet may be particularly beneficial in people with CKD on dialysis because they are dependent on the dialysis process to remove excess sodium and water. A number of studies in the 1990s explored dietary salt reduction together with reduction in dialysate sodium or longer HD sessions to achieve optimal dry weight and BP control.44–46 However, the relative importance of altered salt intake per se remains uncertain since the majority of studies of salt reduction in dialysis patients are heterogeneous, poorly controlled, and underpowered to show a BP difference following intervention. However, a recent meta-analysis of randomized controlled trials in 91 dialysis patients showed that a mean difference in salt intake of 5 g/day was associated with a reduction in blood pressure of 8/4 mm Hg.47 This meta-analysis is limited by the lack of robust and adequately powered studies with the authors suggesting that dietary salt reduction may reduce BP in dialysis patients, but there is insufficient evidence to be able to inform on the effects of salt reduction on other dialysis parameters such as ultrafiltration volume, HD access survival, and mortality.

High sodium and incremental sodium dialysate prescriptions, that employ high dialysate sodium at the outset of the HD process,
were popular for many decades of dialysis delivery with a plethora of studies that appeared to show improved intradialytic hemodynamic stability in HD populations. Increased interdialytic fluid gain was the downside of these regimens, but no other major apparent adverse effects were widely reported.\(^{48-51}\) However, more recently these HD regimens, particularly sodium profiling, have been found to increase the burden of interdialytic symptoms including thirst, fatigue, and weight gain together with reports of sustained hypertension and increased mortality.\(^{52-54}\)

An acute alteration in dialysate sodium concentration leads to changes in plasma sodium concentration. A small but well-controlled intervention study found that a reduction in dialysate sodium concentration caused a fall in plasma sodium and a rapid simultaneous fall in blood pressure in HD patients, suggesting that there is a direct link between plasma sodium and BP.\(^{55}\) Further observational studies have described an association between predialysis plasma sodium and predialysis SBP and diastolic blood pressure (DBP).\(^{56}\) Maneuvers that alter plasma sodium are, however, contentious as lower plasma sodium has been found to be associated with increased mortality in dialysis populations.\(^{57,58}\) and most likely has a "U"-shaped curve in the general population, with the lowest mortality in the range between 141 and 143 mmol/L.\(^{59}\) There have now been several studies, with observational, parallel, and cross-over designs, observing the effects of lower dialysate sodium (<138 mmol/L) vs neutral (138-140 mmol/L) or high (>140 mmol/L) dialysate sodium for maintenance HD patients.\(^{60-62}\) These have been reviewed by Basile who found mixed outcomes.\(^{63}\) A recent DOPPS analysis reported that predialysis SBP was 0.9 mm Hg higher per 2 mmol/L higher dialysate sodium.\(^{64}\) Intervention studies have shown improved predialysis SBP and DBP outcomes with low sodium dialysate.\(^{65,66}\) In one study, dialysate sodium reduction from an average of 138-133 mmol/L had a beneficial effect on inter-dialytic 48-hour ABPM in chronic stable HD patients, with no reported profound hyponatremia and a fall in the measured BP outcome from 141/83 to 133/78 mm Hg (\(P < .01\)).\(^{65}\) Another study showed improved endothelial function and a significant reduction in mean 24-hour ambulatory BP outcomes (128/78 mm Hg vs 132/81 mm Hg) with a reduction in dialysate sodium.\(^{66}\) In the majority of studies there was a reduction in interdialytic weight gain with lower sodium dialysate, but even with this improved outcome there was still an increased frequency of IDH episodes.\(^{63}\) The most informative synthesis of these data is a Cochrane review of 12 of these interventional studies randomizing 310 patients, with data available for 266 patients after dropout.\(^{66}\) This review found reasonable evidence that lower dialysate sodium reduces interdialytic weight gain and probably reduces BP but at the expense of probably reducing serum sodium and increasing IDH events, both of which are associated with adverse outcomes.

2.2 Optimization of extracellular water

Although hypertension in dialysis patients is multifactorial, volume overload plays a major role in its pathogenesis.\(^{67-72}\) Several observational studies and an RCT have demonstrated that adequate fluid removal improves BP control in these patients.\(^{71-73}\) However, accurate assessment of fluid volume is challenging. Traditionally, fluid volume status is determined by clinical assessment which is a "guesstimate" based on parameters including pre- and postdialysis BP, interdialytic weight gain, the presence or absence of edema, assessment of jugular venous pressure, auscultation of lung bases, and assessment of postural BP. The reliability of these clinical signs in accurately estimating fluid volume has been questioned.\(^{74,75}\) Probing for dry weight, progressive removal of fluid by means of UF over a few HD sessions until the patient becomes symptomatic, has been demonstrated to be effective in achieving normovolemia and BP control,\(^{71}\) but is not always easy to execute and is associated with a higher risk of intradialytic hypotension, loss of residual renal function, hospitalization for cardiovascular complications, and vascular access thrombosis.\(^{74,77}\)

Apart from helping BP control, accurate assessment of fluid volume status is crucial in improving cardiovascular morbidities and mortality in dialysis patients. There is a good body of evidence to suggest inadequate fluid volume management is associated with adverse patient outcomes.\(^{54,81-86}\) A number of technologies are now available to aid objective assessment of fluid volume in dialysis patients but not all have been properly validated or supported by patient outcome data. These include serum Brain Natriuretic Peptide,\(^{87,88}\) continuous blood volume monitoring,\(^{89,90}\) inferior vena caval diameter measurement,\(^{91}\) ultrasound lung water measurement,\(^{92}\) and bio-impedance devices.\(^{93}\)

Of these technologies, bioimpedance spectroscopy (BIS) has been most widely studied.\(^{81,83,85,86,94-98}\) Whole-body (wrist-to-ankle) BIS measurements can be used to determine ECW, intracellular, and total body water volumes.\(^{95}\) The addition of a three-compartment body model to distinguish excess extracellular fluid from lean and adipose tissue allows an objective assessment of excess fluid or "overhydration" (OH).\(^{94}\) The BIS fluid volume model and the body model are integrated into the Body Composition Monitor (BCM, Fresenius AG, Bad Homburg), which appears to be the best-validated bio-impedance device and it provides a numerical value for fluid overload that is easy to follow.\(^{93,94,97,98}\) A recent systematic review of 46 studies suggests bio-impedance defined overhydration predicts mortality in dialysis patients independent of the influence of comorbidity.\(^{99}\) An observational study from over a decade ago suggested poor correlation between predialysis SBP and BIS measured volume status.\(^{100}\) However, more recently, two small randomized trials have demonstrated that BIS directed fluid volume management reduces blood pressure (secondary outcome) in addition to reduction in left ventricular mass, left atrial volume and arterial stiffness in hemodialysis patients,\(^{101,102}\) which has been supported by a systematic review and meta-analysis.\(^{103}\) An adequately powered RCT, currently underway in the United Kingdom, will further inform the benefit of fluid volume management using BIS.\(^{104}\) Although BIS is easy to use and takes only a few minutes to assess fluid
volume status, cost of the device (and of the electrodes in case of BCM) may hinder widespread routine use of BIS in the dialysis unit.

Lung ultrasound is a novel technique that objectively assesses fluid excess in the lung.105,106 It has been validated in patients undergoing hemodialysis, demonstrating that the number of US-B lines, an ultrasonographic sign of excess water in the lung, correlates with left ventricular mass and function, and is associated with cardiovascular events and mortality.107,108 An ongoing randomized controlled trial, Lung Water by Ultrasound Guided Treatment to Prevent Death and Cardiovascular Complications in High Risk End-Stage Renal Disease Patients with Cardiomyopathy (LUST), is investigating whether lung ultrasound-guided fluid removal is effective in lowering major cardiovascular events and death.109 A recently published sub-study of LUST, involving 71 clinically euolemic hypertensive patients, showed that lung ultrasound-guided “dry-weight probing” was effective in reducing 48-hour ambulatory BP compared with standard care with an average intergroup difference in BP of 5.9/3.3 mm Hg at 8 weeks. There was only a modest decrease in dry weight (mean ± SD of −0.71 ± 1.39 vs 0.51 ± 0.98 kg, \(P < .001\)) in the active group with no significant increase in hypotensive episodes or vascular access thrombosis.110 However, despite the putative benefit of this technology in managing fluid volume, the radiological expertise required to carry out lung ultrasound and the time required to perform the study (15 minutes in trained personnel) may preclude its routine use for the assessment of fluid volume status in dialysis patients.

Of the other currently available biomarkers and technologies, Brain Natriuretic Peptide and ultrasound measurement of inferior vena cava diameter have been found to be impractical for routine use and inaccurate in assessing fluid volume overload.77 Relative blood volume monitoring, integrated into hemodialysis machines, is convenient and used mostly to assess fluid volume depletion during ultrafiltration.89,90 Although it is useful for qualitative assessment of fluid volume status, the sensitivity is low for the assessment of mild to moderate fluid overload.111,112 Furthermore, both observational and trial data suggest that fluid volume management guided by online blood volume monitoring is associated with increased risks of hospitalization and mortality.54,112

Despite the compelling evidence for the importance of adequate fluid volume management in improving outcomes in hemodialysis patients, the practice is widely variable. A survey of hemodialysis centers in the United Kingdom found that only 22% of centers had a policy for fluid volume management and 56% routinely assessed patients’ fluid status.113 Data from the international DOPPS study show that only 25% of the 273 centers across 12 countries had a protocol in their dialysis unit that specified how often to assess dry weight in most patients. In the others, dry weight was assessed only as clinically indicated. Interestingly, having a protocol for fluid management was associated with a 22% lower risk of all-cause mortality and 28% lower risk of cardiovascular mortality,54 providing further evidence for the benefit of meticulous fluid volume management.

2.3 | Extended dialysis time

Increasing the duration of dialysis time, either by longer sessional hours or increased sessions, may be a consideration for individuals who fail to achieve target BP or ideal volume status during standard HD prescription hours. There is good rationale for adopting this approach, but the economic ramifications would be profound for universal provision. In 2011 the Long Dialysis Study Group found that longer HD sessions (8 hours of nocturnal HD vs conventional 4 hour HD thrice weekly) were associated with a 72% risk reduction for all-cause mortality (hazard ratio 0.28, 95% CI 0.09-0.85, \(P = .02\)).114 Subsequently, the Frequent Hemodialysis Network (FHN) Daily Trial randomized 245 patients to receive six (frequent) or three (conventional) in-center HD sessions per week for 12 months and found significantly reduced long-term mortality in the frequent HD group, with relative mortality hazard for frequent vs conventional HD of 0.54 (95% confidence interval, 0.31-0.93).115 The same group had previously demonstrated that 2 months of this frequent HD regimen lowered predialysis SBP by 7.7 mm Hg (95% CI −11.9 to −3.5) and DBP by 3.9 mm Hg (95% CI −6.5 to −1.3).116 The landmark FHN Nocturnal Trial randomized 87 patients to thrice weekly conventional HD or nocturnal HD six times per week, all with single-use high-flux dialyzers. It was underpowered for mortality outcomes but it reported a systolic BP reduction from baseline of 7.9 ± 18.4 mm Hg in the nocturnal cohort by 12 months.117 Another randomized controlled trial of short daily HD vs conventional HD reported similar BP levels but with significantly less antihypertensive medications in the group receiving short daily HD.118 In the FHN studies short daily and nocturnal schedules reduced the per-session probability of IDH by 20% and 68% respectively, compared to three sessions per week and other interventional and cross-sectional studies suggest that intensive HD regimes may also improve patient wellbeing and recovery times post-HD sessions.119,120 The observed reduction in adverse symptoms and mortality in the extended hours HD studies is most likely mediated through a combination of optimizing sodium and volume status together with improved BP control, but there may be other beneficial effects of enhanced solute clearance that are not immediately apparent.

2.4 | Antihypertensive medication

Use of antihypertensive medication in dialysis patients was previously the subject of two meta-analyses published in 2009.121,122 These meta-analyses overlapped considerably in terms of the original reports selected and there was considerable heterogeneity of inclusion criteria, with both HD and peritoneal dialysis populations included, several different antihypertensive drug classes evaluated, no requirement for a diagnosis of hypertension and three trials recruiting participants with heart failure.121,122 Cardiovascular events and all-cause mortality were significantly reduced by 31% and 21% respectively across five trials121 and by 29% and 20% across eight trials.122 Restricting the analysis to only those trials recruiting
TABLE 2 Design, intervention, participant characteristics, BP data, and key results from randomized controlled trials with cardiovascular outcomes assessing antihypertensive medications in hypertensive HD patients

Author and publication year	Inclusion criteria	Active treatment	Comparator treatment	Main outcomes
Takahashi (2006)	≥35 y; stable dry weight for 3 mo; post-HD cardiothoracic ratio on chest X-ray <50% (males) or <55% (females)	Candesartan 4-8 mg/d	“Nothing”	Composite of sudden death, fatal or nonfatal MI, unstable angina, HF admission or severe arrhythmia
Suzuki (2008)	30-80 y; HD for 12-60 mo; SBP >160 mm Hg or >150 mm Hg or taking antihypertensive drugs	Candesartan 12 mg/d, losartan 100 mg/d or valsartan 160 mg/d	“Other” antihypertensive not including ARB or ACEi	(i) Primary: Composite of CV mortality, nonfatal stroke or MI, revascularization and HF admission (ii) All-cause mortality
Tepel (2008)	≥18 y; BP ≥140/90 mm Hg or taking antihypertensive drugs; on hemodialysis for ≥3 mo	Amlodipine 10 mg daily	Placebo	(i) Primary: all-cause mortality (ii) Time to composite of mortality of CV event (MI, revascularization, stroke, PVD events)
Iseki (2013)	20-79 y; average pre-HD BP 140-199/90-99 mm Hg	Olmesartan 10-40 mg/day	“Other” antihypertensive not including ACEi or ARB	(i) Primary: Composite of CV mortality, nonfatal stroke or MI, unstable angina, HF admission (ii) All-cause mortality
Agarwal (2014)	44 h ABPM average ≥135/85 mm Hg following drug washout; LVH	Atenolol 25-100 mg 3x/week post-HD	Lisinopril 10-40 mg 3x/wk post-HD	Between group difference in LVMI from baseline to 12 mo

Abbreviations: ABPM, ambulatory blood pressure monitor; ACEi, ACE inhibitor; ARB, angiotensin receptor blocker; BP, blood pressure; CI, confidence interval; CV, cardiovascular; DM, diabetes mellitus; HBP, home blood pressure; HD, hemodialysis; HF, heart failure; K+, plasma potassium; LVH, left ventricular hypertrophy; LVMI, left ventricular mass index; PVD, peripheral vascular disease; SBP, systolic blood pressure.

*Location (clinic, dialysis unit etc) and timing of BP measurement in relation to dialysis (pre-HD or post-HD etc) is not specified in study reports.

Hypertensive participants, however, appeared to increase the beneficial effect of antihypertensive medication (the angiotensin receptor blocker [ARB] candesartan in two trials and calcium channel blocker [CCB] amlodipine in one trial): for cardiovascular events RR was 0.49, 95% CI 0.35-0.69 in Agarwal & Sinha and RR was 0.51, 95% CI 0.43-0.74 in Heerspink et al.

Since 2009 a further four trials have been published in which dialysis patients have been randomized to receive medications that lower BP, including two trials of ARBs vs placebo, one of spironolactone vs placebo and one of amlodipine vs lisinopril. Only two of these trials were conducted specifically in hypertensive populations. We have summarized in Table 2 the main findings from the five randomized trials in 1366 hypertensive HD patients published to date. Three trials had per protocol titration of additional antihypertensives to achieve prespecified BP targets (home BP in one study, not specified in two studies) of <140-150 mm Hg and unsurprisingly achieved BP did not differ between randomized groups in the major studies, with the exception of Tepel et al, in which patients randomized to amlodipine vs placebo achieved 9 mm Hg lower SBP during follow-up (change in BP from baseline was −10 mm Hg (P < .01) in amlodipine arm vs −1 mm Hg (P > .05) in placebo arm). Of the three trials of an ARB as the intervention, two trials (n = 446) showed benefit whereas one other (n = 469) did not. It is, therefore, difficult to conclude that there is a definite beneficial effect of prescribing an ARB in hypertensive HD patients without heart failure. For the single trial of CCBs, it is difficult to determine whether the apparent benefit of amlodipine was driven by the choice of antihypertensive or by the substantially lower BP (by design) in the intervention arm. The fifth study of 200 predominantly (86%) African-American HD patients, confirmed to be hypertensive on 44-hour intradialytic ABPM following antihypertensive medication withdrawal, randomized participants to postdialysis thrice-weekly open-label amlodipine or lisinopril with per-protocol titration of other antihypertensives to achieve home BP <140/90 mm Hg. The authors reported a relative risk of 2.36 (95% CI 1.36-4.23) for cardiovascular events in those allocated to lisinopril compared to amlodipine. BP during follow-up was numerically but non-significantly lower by 3.6/3 mm Hg in the amlodipine arm vs lisinopril.
Hypertension is also very common in the peritoneal dialysis (PD) population with reported prevalence of over 80% and as many as 79% of treated hypertensives having poorly controlled BP according to one report.130,131 A retrospective analysis elegantly outlined the natural course of hypertension in PD patients. Hypertension improved at the initiation of PD, reached a nadir between 6 and 12 months, and was followed by a steady decline in BP control over the next 5 years. Age, duration of hypertension, and loss of residual renal function were independently associated with inadequate BP control.132

A "U"-shaped association between BP and mortality has also been observed in the PD population.133,134 An analysis of data on 2770 incident PD patients from the UK Renal Registry showed that while higher SBP, DBP, mean arterial pressure, and pulse pressure were associated with a reduced risk of all-cause mortality over the first year after starting dialysis; SBP and pulse pressure were associated with increased mortality in the later years, indicating dialysis vintage alters the association of BP with mortality.134 As in the HD population, confounding comorbidities influence the association of lower BP and mortality. In a cohort study of 77 patients on PD, the inverse association of lower BP and mortality was mitigated following adjustment for severity of heart failure.135 A linear relationship between higher pulse pressure, a marker of arterial stiffness, and all-cause mortality has been reported suggesting that this should perhaps be a target of antihypertensive therapy.134,136

Whereas studies in the HD population have consistently found HBP measurements to have better prognostic performance than clinic based readings, evidence in PD is less clear cut. The International Society of Peritoneal Dialysis (ISPD) guidelines recommend that BP should be recorded at home at least once-weekly and at each visit to the PD unit, although this is not strongly supported by evidence.137 Studies comparing the diagnostic accuracy of BP monitoring techniques, albeit limited by small sample size, suggest a superiority of standardized clinic BP over home BP measurements in approximating

Participants (n)	DM (%)	Baseline BP (mm Hg)	BP during follow-up (mm Hg)	BP difference (active vs comparator, mm Hg)	Main results
80	33	153/82	152/85	153/83 vs 149/80	"BP was not different between groups and no changes were noted in follow-up"
366	52	154/81	156/82	140/80 vs 140/78	"SBP did not differ significantly"
251	29	140/80	141/80	130/NA vs 140/78	-9/NA (P < .01 for BP change from baseline in atenolone arm, P > .05 in placebo arm)
469	32	159/80	160/81	152/78 vs 153/78	1/0
200	NS	152/87	"Similar to atenolone arm"	-21/-13 vs baseline -18/-10 vs baseline -4/-3 (difference between arms was not statistically significant)	(i) LVMI −21.5 g/m² in atenolone arm vs −15.1 g/m² in lisinopril arm (difference 6.4 g/ms, p = ns) (ii) Cardiovascular events: RR 2.36 (95% CI 1.36-4.23, P = .001) in lisinopril vs atenolone arms

Design, intervention, participant characteristics, BP data, and key results from randomized controlled trials with cardiovascular outcomes	Author and year of publication	Inclusion criteria	Active treatment	Comparator	Main outcomes		
44 h ABPM average	Agarwal (2014)	≥135/85 mm Hg following ≥18 yrs	Candesartan 4-8 mg/d	Placebo (i) Primary: all-cause mortality (ii) Time to composite of CV mortality, nonfatal MI, unstable angina, HF admission or severe arrhythmia	(i) Primary composite endpoint: 49% RR reduction (95% CI 0.33-0.79, P = .002) (ii) All-cause mortality: 36% RR reduction (0.39-1.06, P = .1)		
20-79 y; average pre-HD BP	Iseki (2013)	≥35 y; stable dry weight	Olmesartan 100 mg/d or valsartan 160 mg/d	"Nothing" Composite of sudden death, fatal or nonfatal MI, stroke or MI, unstable angina, HF admission or severe arrhythmia	(i) Primary: Composite of CV mortality, nonfatal MI, stroke or MI, unstable angina, HF admission or severe arrhythmia	(ii) All-cause mortality: HR 0.65 (95% CI 0.34-1.23, P = .19) (ii) Composite endpoint: HR 0.55 (0.31-0.93, P = .03)	
≥140-199/90-99 mm Hg	Tepel (2008)	≥3 mo	Candesartan	"Other"	(i) Composite of CV mortality, nonfatal MI, stroke or MI, unstable angina, HF admission or severe arrhythmia	(i) Primary: Composite of CV mortality, nonfatal MI, stroke or MI, unstable angina, HF admission or severe arrhythmia	(ii) All-cause mortality: HR 1.00 (95% CI 0.71-1.4, P = .99) (ii) All-cause mortality: HR 0.97 (0.62-1.52, P = .91)
30-80 y; HD for 12-60 mo; post-HD	Suzuki (2008)	chest X-ray <50% (males) or <60% (females)	Atenolol 25-100 mg	"Other"	(i) Primary: Composite of CV mortality, nonfatal MI, stroke or MI, unstable angina, HF admission or severe arrhythmia	(i) Primary: Composite of CV mortality, nonfatal MI, stroke or MI, unstable angina, HF admission or severe arrhythmia	(ii) All-cause mortality: HR 0.97 (0.62-1.52, P = .91)

| Age, duration of hypertension, and loss of residual renal function were independently associated with inadequate BP control. |
ambulatory BP in this population. However, a recent study of 81 PD patients, has shown that home BP readings, taken as an average over 1 week may be as accurate as standardized clinic BP measurement, in diagnosing hypertension confirmed by ambulatory monitoring. Both methods, however, overestimated systolic ambulatory BP by about 4 to 5 mm Hg. Further studies are needed to define the optimum method of BP measurement in PD patients.

The ISPD guidelines recommend a BP target of <140/90 mm Hg. However, this recommendation has been extrapolated from studies involving general and CKD populations. Until data from randomized controlled trials, evaluating hard clinical end points to define optimal BP targets in PD patients, are available, we suggest that the ISPD BP target for self-measured home BP measurements should be followed in day-to-day clinical practice.

As in the HD population, volume expansion plays an important role in the causation of hypertension in PD patients. Subclinical hypervolemia is higher in the PD population, and has been implicated in the maintenance of hypertension and cardiovascular alterations. Interestingly, the use of antihypertensive agents may paradoxically raise BP measurements by hindering dry weight control. In the EuroBCM study, involving 639 PD patients in 28 centers across 6 countries, 60% of patients were hypervolemic and there was poor correlation between fluid volume status assessed by BIS and BP. In a Chinese cohort of 307 PD patients subclinical hypervolemia was detected in 57% of participants. Further evidence for the role of subclinical fluid volume overload comes from a small study of 17 patients demonstrating that the intensification of volume reduction in patients on PD, without clinical evidence of hypervolemia, was associated with a significant reduction in body weight, ECW, and inferior vena caval diameter; these changes were accompanied by a significant reduction in BP, decreased LV end-systolic diameter, and need for antihypertensive medication. Taken together the evidence suggests that subclinical hypervolemia needs to be taken into account while treating hypertension in these patients.

The other factors that need to be considered are residual renal function, peritoneal membrane transporter status, and sodium excreting capacity. Preservation of residual renal function in maintaining sodium excreting and ultrafiltration capacity is essential for maintenance of euvolemia and thereby control of hypertension. A post hoc analysis of a randomized trial of 82 patients showed greater BP control with the use of a sodium-reduced PD fluid compared to standard PD fluid in those with reduced or absent residual renal function. Adaptation of the PD regimen to the peritoneal membrane characteristics and efforts to limit peritoneal injury are also crucial to achieving optimal volume and BP control. Observational studies have demonstrated that fast transporters are associated with a higher 24 hour BP, LV mass index, and mortality, possibly due to sodium and water reabsorption through the use of long dwells with glucose-containing solutions. Conversely, shorter dwells in those with slow transporter status can limit sodium removal due to sodium sieving. The use of icodextrin, a starch-derived glucose polymer, has been shown to be beneficial in BP control in small randomized trials, when used during the long overnight dwell in continuous ambulatory PD or during the long daytime dwell in automated PD as compared to glucose-containing solutions.

Renin-angiotensin-aldosterone system (RAAS) blocking agents have been shown to be beneficial in managing hypertension in PD patients. ACEi and ARB treatment was associated with a 62% reduced risk in all-cause mortality in a cohort of 306 patients on PD. Pilot randomized controlled trials suggest a beneficial effect of RAAS blockade on short-term BP variability, LV hypertrophy, and arterial stiffness. A meta-analysis of six randomized trials shows that ACEi and ARB therapy is associated with a slower decline in residual renal function in patients on PD when used for longer than 12 months. No significant difference in preservation of residual renal function was demonstrated between the two classes. More recently, in an observational cohort study of 4879 patients initiating PD, the use of ACEi or ARB was associated with a lower risk of fatal CV outcomes (HR 0.74, 95% CI 0.63-0.87). No significant differences were demonstrated in all-cause and CV death in subgroup analysis of 1892 patients when comparing ACEi and ARB therapy. Furthermore, pilot randomized trials have suggested that mineralocorticoid receptor antagonist add-on therapy, in patients on PD, is associated with an improvement in a number of surrogate markers such as LV mass index and ejection fraction, without a rise in the incidence of hyperkalemia. Therefore, limited evidence suggests that antihypertensive treatment with RAAS blocking agents may be beneficial in PD patients in terms of protecting residual renal function and improving patient outcomes. Adequately powered randomized controlled trials are needed to confirm this and to evaluate hard clinical outcomes.

4 | HOW DO WE DEAL WITH THE UNCERTAINTIES?

There are several uncertainties in the management of hypertension in dialysis patients, most applicable to both HD and PD patients. For a start, which BP measurement should be used to diagnose and guide therapy? Forty-four hour ABPM is considered gold standard, predicts outcomes, but is resource intensive, impractical and not liked by patients. Interdialytic HBPM is close to ABPM in predicting outcomes, but has high attrition rate for long-term monitoring. The use of standardized peri-dialytic BP measurements would be most pragmatic, which underscores the importance of standardized BP measurement in the dialysis unit.

What is the target BP for HD patients? Observational evidence suggests predialysis SBP between 130 and 160-170 mm Hg is associated with best outcome. An adequately powered hard endpoint RCT using ABPM and/or HBPM is required to answer the question, but this may not be practicable for complexity and cost reasons, and this view is supported by the BID trial experience (personal
communication). Should the nephrology community be looking to set up a pragmatic trial using standardized peri-dialytic BP measurements instead? Observational studies using comprehensive, large HD database and more sophisticated modeling techniques may inform design of such a trial.

What is the best approach to controlling BP? “Volume first” approach is supported by most, but clinical assessment of volume status is unreliable. Some of the currently available technologies to aid volume assessment are promising but routine use may not be feasible in all healthcare settings. Two large RCTs currently underway may inform future practice.

What antihypertensive medications should we use? Although the use of antihypertensives appears to be beneficial in dialysis patients, considerable uncertainty remains about choice of antihypertensive agents. Low-quality evidence suggests angiotensin receptor antagonists, calcium channel blockers and beta-blockers might be beneficial. Large hard outcome trials comparing different agents head-to-head are required to answer this, but we wonder whether this would be possible for the reasons already alluded to. Pragmatically, supervised administration of a thrice weekly long-acting beta-blocker such as atenolol could be a useful first-line option, especially where medication adherence is questioned.

Based on the current evidence, and taking into account the practical issues discussed above, we have come up with some suggestions that are captured in Table 1, which we hope the reader will find useful in the day-to-day management of these patients.

ORCID

Timothy W. R. Doulton
Indranil Dasgupta

REFERENCES

1. Sarafidis PA, Persu A, Agarwal R, et al. Hypertension in dialysis patients: a consensus document by the European Renal and Cardiovascular Medicine (EURECA-m) working group of the European Renal Association - European Dialysis and Transplant Association (ERA-EDTA) and the Hypertension and the Kidney working group of the European Society of Hypertension (ESH). J Hypertens. 2017;35(4):657-676.
2. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39(33):3021-3104.
3. Georgiannos PI, Agarwal R. Blood pressure and mortality in long-term hemodialysis-time to move forward. Am J Hypertens. 2017;30(3):211-222.
4. Miskulin DC, Weiner DE. Blood pressure management in hemodialysis patients: what we know and what questions remain. Semin Dial. 2017;30(3):203-212.
5. Turner JM, Peixoto AJ. Blood pressure targets for hemodialysis patients. Kidney Int. 2017;92(4):816-823.
6. Robinson BM, Tong L, Zhang J, et al. Blood pressure levels and mortality risk among hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study. Kidney Int. 2012;82(5):570-580.
7. Bansal N, McCulloch CE, Lin F, et al. Blood Pressure and risk of cardiovascular events in patients on chronic hemodialysis: the CRIC study (Chronic Renal Insufficiency Cohort). Hypertension. 2017;70(2):435-443.
8. Pappacogli M, Labriola L, Van der Niepen P, et al. Is blood pressure measured correctly in dialysis centres? Physicians’ and patients’ views. Nephrol Dial Transplant. 2019;34(9):1612-1615.
9. Agarwal R, Andersen MJ, Bishu K, Saha C. Home blood pressure monitoring improves the diagnosis of hypertension in hemodialysis patients. Kidney Int. 2006;69(5):900-906.
10. Foley RN, Parfrey PS. Cardiovascular disease and mortality in ESRD. J Nephrol. 1998;11(5):239-245.
11. Iseki K, Miyasato F, Tokuyama K, et al. Low diastolic blood pressure, hypoaalbuminemia, and risk of death in a cohort of chronic hemodialysis patients. Kidney Int. 1997;51(4):1212-1217.
12. Port FK, Hulbert-Shearon TE, Wolfe RA, et al. Predialysis blood pressure and mortality risk in a national sample of maintenance hemodialysis patients. Am J Kidney Dis. 1999;33(3):507-517.
13. Stidley CA, Hunt WC, Tentori F, et al. Changing relationship of blood pressure with mortality over time among hemodialysis patients. J Am Soc Nephrol. 2006;17(2):513-520.
14. Moriya H, Ohtake T, Kobayashi S. Aortic stiffness, left ventricular hypertrophy and weekly averaged blood pressure (WAB) in patients on haemodialysis. Nephrol Dial Transplant. 2007;22(4):1198-1204.
15. Parati G, Ochoa JE, Bilo G, et al. Hypertension in chronic kidney disease part 1: out-of-office blood pressure monitoring: methods, thresholds, and patterns. Hypertension. 2016;67(6):1093-1101.
16. Agarwal R. Blood pressure and mortality among hemodialysis patients. Hypertension. 2010;55(3):762-768.
17. Agarwal R, Brim NJ, Mahenthiran J, Andersen MJ, Saha C. Out-of-hemodialysis-unit blood pressure is a superior determinant of left ventricular hypertrophy. Hypertension. 2006;47(1):62-68.
18. Mayer CC, Matschkal J, Sarafidis PA, et al. Association of ambulatory blood pressure with all-cause and cardiovascular mortality in hemodialysis patients: effects of heart failure and atrial fibrillation. J Am Soc Nephrol. 2018;29(9):2409-2417.
19. Jardine AG. Con: ambulatory blood pressure measurement in patients receiving haemodialysis: a sore arm and a waste of time? Nephrol Dial Transplant. 2015;30(9):1438-1441.
20. Alborzi P, Patel N, Agarwal R. Home blood pressures are of greater prognostic value than hemodialysis unit recordings. Clin J Am Soc Nephrol. 2007;2(6):1228-1234.
21. Bansal N, McCulloch CE, Rahman M, et al. Blood pressure and risk of all-cause mortality in advanced chronic kidney disease and hemodialysis: the chronic renal insufficiency cohort study. Hypertension. 2015;65(1):93-100.
22. Agarwal R, Andersen MJ, Light RP. Location not quantity of blood pressure measurements predicts mortality in hemodialysis patients. J Am Nephrol. 2008;28(2):210-217.
23. McManus RJ, Mant J, Haque MS, et al. Effect of self-monitoring and medication self-titration on systolic blood pressure in hypertensive patients at high risk of cardiovascular disease: the TASMIN-SR randomized clinical trial. JAMA. 2014;312(8):799-808.
24. Fletcher BR, Hinton L, Hartmann-Boice J, Roberts NW, Bobrovitz N, McManus RJ. Self-monitoring blood pressure in hypertension, patient and provider perspectives: a systematic review and thematic synthesis. Patient Educ Couns. 2016;99(2):210-219.
25. Miskulin DC, Gassman J, Schrader R, et al. BP in dialysis: results of a pilot study. J Am Soc Nephrol. 2018;29(1):307-316.
26. Shoji T, Tsubakihara Y, Fuji M, Imai E. Hemodialysis-associated hypertension: an independent risk factor for two-year mortality in hemodialysis patients. Kidney Int. 2004;66(3):1212-1220.
27. Flythe JE, Xue H, Lynch KE, Curhan GC, Brunelli SM. Association of mortality risk with various definitions of intradialytic hypotension. J Am Soc Nephrol. 2015;26(3):724-734.
28. McIntyre CW, Burton JO, Selby NM, et al. Hemodialysis-induced cardiac dysfunction is associated with an acute reduction in global and segmental myocardial blood flow. Clin J Am Soc Nephrol. 2008;3(1):19-26.

29. Nakatani T, Naganuma T, Uchida J, et al. Silent cerebral infarction in hemodialysis patients. Am J Nephrol. 2003;23(2):86-90.

30. Rocha A, Sousa C, Teles P, Coelho A, Xavier E. Frequency of intradialytic hypotensive episodes; old problem, new insights. J Am Soc Hypertens. 2015;9(10):763-768.

31. Agarwal R, Alborzi P, Satyan S, Light RP. Dry-weight reduction in hemodialysis patients (DRIP): a randomized, controlled trial. Hypertension. 2009;53(3):500-507.

32. Burton JO, Jefferies HJ, Selby NM, McIntyre CW. Hemodialysis-induced cardiac injury: determinants and associated outcomes. Clin J Am Soc Nephrol. 2009;4(5):914-920.

33. Collaborators S-H. http://songinitiative.org/hd-core-outcomes/. Accessed December 1, 2019.

34. Jhee JH, Park J, Kim H, et al. The optimal blood pressure target in different dialysis populations. Sci Rep. 2018;8(1):14123.

35. Myers OB, Adams C, Rohrscheib MR, et al. Blood pressure, and mortality among hemodialysis. Patients. 2010;21(11):1970-1978.

36. Argilés À, Lorho R, Service M-F, Teles P, Coelho A, Xavier E. Frequency of intradialytic hypotensive episodes; old problem, new insights. J Am Soc Hypertens. 2015;9(10):763-768.

37. Nongnuch A, Campbell N, Stern E, El-Kateb S, Fuentes L, Myers OB, Adams C, Rohrscheib MR, et al. Blood pressure, and mortality among hemodialysis. Patients. 2010;21(11):1970-1978.

38. Mc Causland FR, Waikar SS, Brunelli SM. Increased dietary sodium is independently associated with greater mortality among prevalent hemodialysis patients. Kidney Int. 2004;65(5):1795-1801.

39. Nongnuch A, Campbell N, Stern E, El-Kateb S, Fuentes L, Davenport A. Increased postdialysis systolic blood pressure is associated with extracellular overhydration in hemodialysis outpatients. Kidney Int. 2015;87(2):452-457.

40. Myers OB, Adams C, Rohrscheib MR, et al. Blood pressure, and mortality among hemodialysis. Patients. 2010;21(11):1970-1978.

41. Argilés À, Lorho R, Servel M-F, Chong G, Kerr PG, Mourad G. Seasonal modifications in blood pressure are mainly related to interdialytic body weight gain in dialysis patients. Kidney Int. 2004;65(5):1795-1801.

42. Suckling RJ, He FJ, Markandu ND, MacGregor GA. Altering sodium and potassium concentration on the interdialytic weight gain. Am J Nephrol. 2009;30(4):319-326.

43. Davenport A. Increased postdialysis systolic blood pressure is associated with extracellular overhydration in hemodialysis outpatients. Kidney Int. 2015;87(2):452-457.

44. Sacks FM, Svetkey LP, Vollmer WM, et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med. 2001;344(1):3-10.

45. Suckling RJ, He FJ, Macgregor GA. Altered dietary salt intake for preventing and treating diabetic kidney disease. Cochrane Database Syst Rev. 2013;4:CD004937.

46. McMahon EJ, Campbell KL, Bauer JD, Mudge DW. Altered dietary salt intake for people with chronic kidney disease. Cochrane Database Syst Rev. 2015;2:CD010070.

47. Sacks FM, Svetkey LP, Vollmer WM, et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med. 2001;344(1):3-10.

48. Swift PA, Markandu ND, Sagnella GA, He FJ, MacGregor GA. Modest salt reduction reduces blood pressure and urine protein excretion in black hypertensives: a randomized control trial. Hypertension. 2005;46(2):308-312.

49. Chazot C, Charra B, Laurent G, et al. Interdialysis blood pressure control by long haemodialysis sessions. Nephrol Dial Transplant. 1995;10(6):831-837.

50. Krautzig S, Janssen U, Koch K, Granolleras C, Shaldon S. Dietary salt restriction and reduction of dialysate sodium to control hypertension in maintenance haemodialysis patients. Nephrol Dial Transplant. 1998;13(3):552-553.

51. Ozkahya M, Ok E, Cirit M, et al. Regression of left ventricular hypertrophy in haemodialysis patients by ultrafiltration and reduced salt intake without antihypertensive drugs. Nephrol Dial Transplant. 1998;13(6):1489-1493.

52. Cole NI, Swift PA, He FJ, MacGregor GA, Suckling RJ. The effect of dietary salt on blood pressure in individuals receiving chronic dialysis: a systematic review and meta-analysis of randomised controlled trials. J Hum Hypertens. 2019;33(4):319-326.

53. Barre PE, Brunelle G, Gascon-Barre M. A randomized double blind trial of dialysate sodium of 145 mEq/L, 150 mEq/L, and 155 mEq/L. ASAIO Trans. 1988;34(3):338-341.

54. Cybulsky AV, Matni A, Hollomboy DJ. Effects of high sodium dialysate during maintenance hemodialysis. Nephron. 1985;41(1):57-61.

55. Davenport A. Increased postdialysis systolic blood pressure is associated with extracellular overhydration in hemodialysis outpatients. Kidney Int. 2015;87(2):452-457.

56. He FJ, Fan S, Macgregor GA, Yaqoob MM. Plasma sodium and blood pressure in individuals on haemodialysis. J Hum Hypertens. 2013;27(2):85-89.

57. He FJ, Fan S, Macgregor GA, Yaqoob MM. Plasma sodium and blood pressure in individuals on haemodialysis. J Hum Hypertens. 2013;27(2):85-89.

58. He FJ, Fan S, Macgregor GA, Yaqoob MM. Plasma sodium and blood pressure in individuals on haemodialysis. J Hum Hypertens. 2013;27(2):85-89.

59. He FJ, Fan S, Macgregor GA, Yaqoob MM. Plasma sodium and blood pressure in individuals on haemodialysis. J Hum Hypertens. 2013;27(2):85-89.

60. He FJ, Fan S, Macgregor GA, Yaqoob MM. Plasma sodium and blood pressure in individuals on haemodialysis. J Hum Hypertens. 2013;27(2):85-89.

61. He FJ, Fan S, Macgregor GA, Yaqoob MM. Plasma sodium and blood pressure in individuals on haemodialysis. J Hum Hypertens. 2013;27(2):85-89.

62. He FJ, Fan S, Macgregor GA, Yaqoob MM. Plasma sodium and blood pressure in individuals on haemodialysis. J Hum Hypertens. 2013;27(2):85-89.

63. He FJ, Fan S, Macgregor GA, Yaqoob MM. Plasma sodium and blood pressure in individuals on haemodialysis. J Hum Hypertens. 2013;27(2):85-89.

64. He FJ, Fan S, Macgregor GA, Yaqoob MM. Plasma sodium and blood pressure in individuals on haemodialysis. J Hum Hypertens. 2013;27(2):85-89.
68. Fagugli RM, Pasini P, Quintaliani G, et al. Association between extracellular water, left ventricular mass and hypertension in haemodialysis patients. Nephrol Dial Transplant. 2003;18(11):2332-2338.

69. Lins RL, Elseviers M, Rogiers P, et al. Importance of volume factors in dialysis related hypertension. Clin Nephrol. 1997;48(1):29-33.

70. Mee EJ. Volaeamia and blood pressure in renal failure: have old truths been forgotten? Nephrol Dial Transplant. 1995;10(8):1297-1298.

71. Sanders PW. Assessment and treatment of hypertension in dialysis: the case for salt restriction. Semin Dial. 2007;20(5):408-411.

72. Wilson J, Shah T, Nissenson AR. Role of sodium and volume in the pathogenesis of hypertension in hemodialysis. Semin Dial. 2004;17(4):260-264.

73. Charra B, Calemand E, Ruffet M, et al. Survival as an index of adequacy of dialysis. Kidney Int. 1992;41(5):1286-1291.

74. Cirit M, Akcicek F, Terzioglu E, et al. 'Paradoxical' rise in blood pressure during ultrafiltration in dialysis patients. Nephrol Dial Transplant. 1995;10(8):1417-1420.

75. Kayikcioglu M, Tumuklu M, Ozkahya M, et al. The benefit of salt restriction in the treatment of end-stage renal disease by haemodialysis. Nephrol Dial Transplant. 2009;24(3):956-962.

76. Ozkahya M, Toz H, Zerkan F, et al. Impact of volume control on left ventricular hypertrophy in dialysis patients. J Nephrol. 2002;15(6):655-660.

77. Agarwal R, Andersen MJ, Pratt JH. On the importance of pedal edema in hemodialysis patients. Clin J Am Soc Nephrol. 2008;3(1):153-158.

78. Torino C, Gargani L, Sicari R, et al. The agreement between auscultation and lung ultrasound in hemodialysis patients: the LUST study. Clin J Am Soc Nephrol. 2016;11(11):2005-2011.

79. Agarwal R, Flynn J, Pogue V, Rahman M, Reisin E, Weir MR. Assessment and management of hypertension in patients on dialysis. J Am Soc Nephrol. 2014;25(8):1630-1646.

80. Curatola G, Bolignano D, Rastelli S, et al. Ultrafiltration intensification in hemodialysis patients improves hypertension but increases AV fistula complications and cardio-vascular events. J Nephrol. 2011;24(4):465-473.

81. Chazot C, Wabel P, Chamney P, Moissl U, Wieskotten S, Wizemann V. Importance of normohydration for the long-term survival of haemodialysis patients. Nephrol Dial Transplant. 2012;27(6):2404-2410.

82. Hecking M, Karaboyas A, Antlanger M, et al. Significance of interdialytic weight gain versus chronic volume overload: consensus opinion. Am J Nephrol. 2013;38(1):78-90.

83. Hecking M, Moissl U, Genser B, et al. Greater fluid overload and lower interdialytic weight gain are independently associated with mortality in a large international hemodialysis population. Nephrol Dial Transplant. 2018;33(10):1832-1842.

84. Weiner DE, Brunelli SM, Hunt A, et al. Improving clinical outcomes among hemodialysis patients: a proposal for a "volume first" approach from the chief medical officers of US dialysis providers. Am J Kidney Dis. 2014;64(5):685-695.

85. Wizemann V, Wabel P, Chamney P, et al. The mortality risk of overhydration in haemodialysis patients. Nephrol Dial Transplant. 2009;24(5):1574-1579.

86. Zoccali C, Moissl U, Chazot C, et al. Chronic fluid overload and mortality in ESRD. J Am Soc Nephrol. 2017;28(8):2491-2497.

87. Chazot C, Vo-Van C, Zouaui E, et al. Fluid overload correction and cardiac history influence brain natriuretic peptide evolution in incident haemodialysis patients. Nephrol Dial Transplant. 2011;26(8):2630-2634.

88. Ishibe S, Peixoto J. Methods of assessment of volume status and intercompartmental fluid shifts in hemodialysis patients: implications in clinical practice. Semin Dial. 2004;17(1):37-43.

89. Lopot F, Kotyk P, Blaha J, Forejt J. Use of continuous blood volume monitoring to detect inadequately high dry weight. Int J Artif Organs. 1996;19(7):411-414.
110. Loutradis C, Sarafidis PA, Ekrt R, et al. The effect of dry-weight reduction guided by lung ultrasound on ambulatory blood pressure in hemodialysis patients: a randomized controlled trial. Kidney Int. 2019;95(6):1505-1513.

111. Agarwal R, Kelley K, Light RP. Diagnostic utility of blood volume monitoring in hemodialysis patients. Am J Kidney Dis. 2008;51(2):242-254.

112. Reddan DN, Szczep LA, Hasselblad V, et al. Intradialytic blood volume monitoring in ambulatory hemodialysis patients: a randomized trial. J Am Soc Nephrol. 2005;16(7):2162-2169.

113. Dasgupta I, Farrington K, Davies SJ, Davenport A, Mitra S, UK national survey of practice patterns of fluid volume management in haemodialysis patients: a need for evidence. Blood Purif. 2016;41(4):324-331.

114. Ok E, Duman S, Asci G, et al. Comparison of 4- and 8-h dialysis sessions in thrice-weekly in-centre haemodialysis: a prospective, case-controlled study. Nephrol Dial Transplant. 2011;26(4):1287-1296.

115. Chertow GM, Levin NW, Beck GJ, et al. Long-term effects of frequent in-center hemodialysis. J Am Soc Nephrol. 2016;27(6):1830-1836.

116. Kotanko P, Garg AX, Depner T, et al. Effects of frequent hemodialysis on blood pressure: Results from the randomized frequent hemodialysis network trials. Hemodial Int. 2015;19(3):386-401.

117. Rocco MV, Lockridge RS, Beck GJ, et al. The effects of frequent nocturnal home hemodialysis: the Frequent Hemodialysis Network Nocturnal Trial. Kidney Int. 2011;80(10):1080-1091.

118. Zimmerman DL, Ruzicka M, Hebert P, Fergusson D, Touyz RM, Burns KD. Short daily versus conventional hemodialysis for hypertensive patients: a randomized cross-over study. PLoS ONE. 2014;9(5):e97135.

119. Jaber BL, Lee Y, Collins AJ, et al. Effect of daily hemodialysis on depressive symptoms and postdialysis recovery time: interim report from the FREEDOM (Following Rehabilitation, Economics and Everyday-Dialysis Outcome Measurements) Study. Am J Kidney Dis. 2010;56(3):531-539.

120. Lindsay RM, Heidenheim PA, Nesrallah G, Garg AX, Suri R. Minutes to recovery after a hemodialysis session: a simple health-related quality of life question that is reliable, valid, and sensitive to change. Clin J Am Soc Nephrol. 2006;1(5):952-959.

121. Agarwal R, Sinha AD. Cardiovascular protection with antihypertensive drugs in dialysis patients: systematic review and meta-analysis. Hypertension. 2009;53(5):860-866.

122. Heerspink HJL, Nimmoiya T, Zoungas S, et al. Effect of lowering blood pressure on cardiovascular events and mortality in patients on dialysis: a systematic review and meta-analysis of randomised controlled trials. Lancet. 2009;373(9668):1009-1015.

123. Agarwal R, Sinha AD, Pappas MK, Abraham TN, Tegegne GG. Hypertension in hemodialysis patients treated with atenolol or losinopril: a randomized controlled trial. Nephrol Dial Transplant. 2014;29(3):672-681.

124. Cice G, Di Benedetto A, D’isa S, et al. Effects of telmisartan added to Angiotensin-converting enzyme inhibitors on mortality and morbidity in hemodialysis patients with chronic heart failure a double-blind, placebo-controlled trial. J Am Coll Cardiol. 2010;56(21):1701-1708.

125. Iseki K, Arima H, Kohagura K, et al. Effects of angiotensin receptor blockade (ARB) on mortality and cardiovascular outcomes in patients with long-term haemodialysis: a randomized controlled trial. Nephrol Dial Transplant. 2013;28(6):1579-1589.

126. Matsumoto Y, Mori Y, Kageyama S, et al. Spiironolactone reduces cardiovascular and cerebrovascular morbidity and mortality in hemodialysis patients. J Am Coll Cardiol. 2014;63(6):528-536.

127. Suzuki H, Kanno Y, Sugahara S, et al. Effect of angiotensin receptor blockers on cardiovascular events in patients undergoing hemodialysis: an open-label randomized controlled trial. Am J Kidney Dis. 2008;52(3):501-506.

128. Takahashi A, Takase H, Toriyama T, et al. Candesartan, an angiotensin II type-1 receptor blocker, reduces cardiovascular events in patients on chronic haemodialysis—a randomized study. Nephrol Dial Transplant. 2006;21(9):2507-2512.

129. Tepel M, Hopfenmueller W, Scholze A, Maier A, Zidek W. Effect of amldopine on cardiovascular events in hypertensive haemodialysis patients. Nephrol Dial Transplant. 2008;23(11):3605-3612.

130. Cocchi R, Degli Esposti E, Fabbri A, et al. Prevalence of hypertension in patients on peritoneal dialysis: results of an Italian multicentre study. Nephrol Dial Transplant. 1999;14(6):1536-1540.

131. Koc M, Toprak A, Tezcan H, et al. Uncontrolled hypertension due to volume overload contributes to higher left ventricular mass index in CAPD patients. Nephrol Dial Transplant. 2002;17(9):1661-1666.

132. Menon MK, Naimark DM, Bargman JM, Vas SI, Oreopoulos DG. Long-term blood pressure control in a cohort of peritoneal dialysis patients and its association with residual renal function. Nephrol Dial Transplant. 2001;16(11):2207-2213.

133. Goldfarb-Rumyantzev AS, Baird BC, Leyboldt JK, Cheung AK. The association between BP and mortality in patients on chronic peritoneal dialysis. Nephrol Dial Transplant. 2005;20(8):1693-1701.

134. Udayaraj UP, Steenkamp R, Caskey FJ, et al. Blood pressure and mortality risk on peritoneal dialysis. Am J Kidney Dis. 2009;53(1):70-78.

135. Afshinnia F, Zaky ZS, Metireddy M, Segal JH. Reverse epidemiology of blood pressure in peritoneal dialysis associated with dynamic deterioration of left ventricular function. Perit Dial Int. 2016;36(2):154-162.

136. Fang W, Yang X, Bargman JM, Oreopoulos DG. Association between pulse pressure and mortality in patients undergoing peritoneal dialysis. Perit Dial Int. 2009;29(2):163-170.

137. Wang AYM, Brimble KS, Brunier G, et al. ISPD Cardiovascular and metabolic guidelines in adult peritoneal dialysis patients part I - assessment and management of various cardiovascular risk factors. Perit Dial Int. 2015;35(4):379-387.

138. O’Shaughnessy MM, Durcan M, Kinsella SM, Griffin MD, Reddan DN, Lappin DW. Blood pressure measurement in peritoneal dialysis: which method is best? Perit Dial Int. 2013;33(5):544-551.

139. Wang MC, Tseng CC, Tsai WC, Huang JJ. Blood pressure and left ventricular hypertrophy in patients on different peritoneal dialysis regimens. Perit Dial Int. 2001;21(1):36-42.

140. Vaios V, Georgianos PI, Vareta G, et al. Clinic and home blood pressure monitoring for the detection of ambulatory hypertensive patients among patients on peritoneal dialysis. Hypertension. 2019;74(4):998-1004.

141. Enia G, Mallamaci F, Benedetto FA, et al. Long-term CAPD patients are volume expanded and display more severe left ventricular hypertrophy than haemodialysis patients. Nephrol Dial Transplant. 2001;16(7):1459-1464.

142. Konings CJAM, Kooman JP, Schonck M, et al. Effect of icodextrin on volume status, blood pressure and echocardiographic parameters: a randomized study. Kidney Int. 2003;63(4):1556-1563.

143. Van Biesen W, Williams JD, Covic AC, et al. Fluid status in peritoneal dialysis patients: the European Body Composition Monitoring (EuroBCM) study cohort. PLoS ONE. 2011;6(2):e17148.

144. Guo Q, Yi C, Li J, Wu X, Yang X, Yu X. Prevalence and risk factors of fluid overload in Southern Chinese continuous ambulatory peritoneal dialysis patients. PLoS ONE. 2013;8(1):e53294.

145. Castro Júnior JRD, Fernandes N, Lacet TBdP, et al. Total body water reduction in subjects with chronic kidney disease on peritoneal dialysis. Perit Dial Int. 2009;28(6):1579-1589.
and technique failure in peritoneal dialysis. J Am Soc Nephrol. 2006;17(9):2591-2598.

147. Rutkowski B, Tam P, van der Sande FM, et al. Residual renal function and effect of low-sodium solution on blood pressure in peritoneal dialysis patients. Perit Dial Int. 2019;39(4):335-343.

148. Tonbul Z, Altintepe L, Sözlü Ç, Yeksan M, Yıldız A, Türk S. The association of peritoneal transport properties with 24-hour blood pressure levels in CAPD patients. Perit Dial Int. 2003;23(1):46-52.

149. Vaios V, Georgianos PI, Liakopoulos V, Agarwal R. Assessment and management of hypertension among patients on peritoneal dialysis. Clin J Am Soc Nephrol. 2019;14(2):297-305.

150. Vongsanim S, Davenport A. Factors associated with systolic hypertension in peritoneal dialysis patients. J Nephrol. 2019.

151. Davies SJ, Woodrow G, Donovan K, et al. Icodextrin improves the fluid status of peritoneal dialysis patients: results of a double-blind randomized controlled trial. J Am Soc Nephrol. 2003;14(9):2338-2344.

152. Paniagua R, Orihuela O, Ventura MD, et al. Echocardiographic, electrocardiographic and blood pressure changes induced by icodextrin solution in diabetic patients on peritoneal dialysis. Kidney Int Suppl. 2008;108:S125-130.

153. Plum J, Gentile S, Verger C, et al. Efficacy and safety of a 7.5% icodextrin peritoneal dialysis solution in patients treated with automated peritoneal dialysis. Am J Kidney Dis. 2002;39(4):862-871.

154. Woodrow G, Oldroyd B, Stables G, Gibson J, Turney JH, Brownjohn AM. Effects of icodextrin in automated peritoneal dialysis on blood pressure and bioelectrical impedance analysis. Nephrol Dial Transplant. 2000;15(6):862-866.

155. Fang W, Oreopoulos DG, Bargman JM. Use of ACE inhibitors or angiotensin receptor blockers and survival in patients on peritoneal dialysis. Nephrol Dial Transplant. 2008;23(11):3704-3710.

156. Li P-T, Chow K-M, Wong T-H, Leung C-B, Szeto C-C. Effects of an angiotensin-converting enzyme inhibitor on residual renal function in patients receiving peritoneal dialysis. A randomized, controlled study. Ann Intern Med. 2003;139(2):105-112.

157. Shigenaga A-I, Tamura K, Dejima T, et al. Effects of angiotensin II type 1 receptor blocker on blood pressure variability and cardiovascular remodeling in hypertensive patients on chronic peritoneal dialysis. Nephron Clin Pract. 2009;112(1):c31-40.

158. Suzuki H, Kanno Y, Sugahara S, Okada H, Nakamoto H. Effects of an angiotensin II receptor blocker, valsartan, on residual renal function in patients on CAPD. Am J Kidney Dis. 2004;43(6):1056-1064.

159. Suzuki H, Nakamoto H, Okada H, Sugahara S, Kanno Y. A selective angiotensin receptor antagonist, Valsartan, produced regression of left ventricular hypertrophy associated with a reduction of arterial stiffness. Adv Perit Dial. 2003;19:59-66.

160. Zhang L, Zeng X, Fu P, Wu HM. Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers for preserving residual kidney function in peritoneal dialysis patients. Cochrane Database Syst Rev. 2014;6:Cd009120.

161. Shen JI, Saxena AB, Montez-Rath ME, Chang TI, Winkelmayer WC. Angiotensin-converting enzyme inhibitor/angiotensin receptor blocker use and cardiovascular outcomes in patients initiating peritoneal dialysis. Nephrol Dial Transplant. 2017;32(5):862-869.

162. Shen JI, Saxena AB, Montez-Rath ME, Leng L, Chang TI, Winkelmayer WC. Comparative effectiveness of angiotensin receptor blockers vs. angiotensin-converting enzyme inhibitors on cardiovascular outcomes in patients initiating peritoneal dialysis. J Nephrol. 2017;30(2):281-288.

163. Ito Y, Mizuno M, Suzuki Y, et al. Long-term effects of spironolactone in peritoneal dialysis patients. J Am Soc Nephrol. 2014;25(5):1094-1102.

164. Lin C, Zhang Q, Zhang H, Lin A. Long-term effects of low-dose spironolactone on chronic dialysis patients: a randomized placebo-controlled study. J Clin Hypertens (Greenwich). 2016;18(2):121-128.

165. Taheiri S, Mortazavi M, Pourmoghadas A, Seyrafian S, Alipour Z, Karimi S. A prospective double-blind randomized placebo-controlled clinical trial to evaluate the safety and efficacy of spironolactone in patients with advanced congestive heart failure on continuous ambulatory peritoneal dialysis. Saudi J Kidney Dis Transpl. 2012;23(3):507-512.

How to cite this article: Doulton TWR, Swift PA, Murtaza A, Dasgupta I. Uncertainties in BP management in dialysis patients. Semin Dial. 2020;33:223–235. https://doi.org/10.1111/sdi.12880