ON WELL-F-COVEREDNESS OF LEXICOGRAPHIC PRODUCTS OF GRAPHS

REZA JAFARPOUR-GOLZARI

Abstract. A simple graph G is said to be well-f-covered, whenever any two maximal induced forest in G be of the same order. In this note, well-f-coveredness of lexicographic product of two graphs in case where the first component is empty, is characterized. In cases where the second component is empty, and the second component is nonempty, a necessary condition is given, and in each one, by an example, it is shown that the given condition is not sufficient.

1. Introduction

In the sequel, we refer to [3] for any backgrounds in graph theory. Also all graphs are considered to be finite and simple.

A graph G is called well-f-covered, whenever all its maximal induced forests be of the same order. The concept of well-f-coveredness was introduced by the author for the first time, and some properties of well-f-covered graphs and their behavior under several graph operations was studied (see [1]).

In this paper, the well-f-coveredness of lexicographic product of two graphs in case where the first component is empty, is characterized (Theorems 3.1). In cases where the second component is empty, and the second component is nonempty, a necessary condition is given (Theorems 3.2 and 3.5) and in each one, by an example, it is shown that the given condition is not sufficient (Examples 3.4 and 3.7). The author hopes that the current study to be completed in the future with characterizing the

MSC(2010): Primary: 05C70; Secondary: 05C38, 05C76.

Keywords: Well-f-covered, Maximal forest, Lexicographic product, Well-covered.
well-f-coveredness of lexicographic product of graphs in general. Also it is hoped that this paper provides motivation to study well-coveredness of other types of product in graphs.

2. Preliminaries

Let G be a graph. For a subset X of $V(G)$, we denote the subgraph of G induced by X, by $G[X]$. For convenience, in the sequel, we will assume that subgraph means induced subgraph.

In the graph G, a subset X of $V(G)$ is called an independent vertex set, whenever no two vertices x and y in X be adjacent. The size of a maximum independent set in G is said to be the independence number of G and is denoted by $\alpha(G)$. The graph G is called well-covered, if all its maximal independent sets be of the same size \cite{2}.

A graph G is said to be a forest, whenever G does not contain any cycle. A leaf in a forest is any vertex of degree 1. Every nontrivial forest has at least two leaves.

The forest number of a graph G, denoted by $f(G)$, is the order of a maximum forest in G. A graph G is called well-f-covered, whenever all its maximal forests be of the same order $f(G)$ (see \cite{1}).

3. The main results

First of all, it can be seen that for every two empty graphs G and H, GoH is empty and therefore is well-f-covered.

The following theorem characterizes well-f-coveredness of the lexicographic product of two graphs where the first component is empty.

Theorem 3.1. Consider an empty graph G with m vertices. For any graph H, GoH is well-f-covered, if and only if H be well-f-covered, and anyway $f(GoH) = mf(H)$.

Proof. We use induction on m.

Base case: Suppose that $m = 1$. In this case, it is clear that $GoH \cong H$. Therefore GoH is well-f-covered, if and only if H be well-f-covered, and anyway $f(GoH) = 1f(H)$.

Induction step: Suppose that the statement holds for \(m \in \mathbb{N}\). Let \(G\) be an empty graph with \(m + 1\) vertices and \(H\) be any graph. Let the vertices of \(G\) be \(u_1, \ldots, u_m, u_{m+1}\) and let \(G_1\) and \(G_2\) be the empty graphs with vertex sets \(\{u_1, \ldots, u_m\}\) and \(\{u_{m+1}\}\), respectively. Since \(G\) is empty, \(G \circ H\) is the union of two disjoint graphs \(G_1 \circ H\) and \(G_2 \circ H\).

Now, if \(G \circ H\) be well-f-covered, by Theorem 6.1 in [1], \(G_1 \circ H\) and \(G_2 \circ H\) both are well-f-covered and \(f(G \circ H) = f(G_1 \circ H) + f(G_2 \circ H)\); Therefore \(H\) is well-f-covered and

\[
f(G_1 \circ H) = m f(G), \quad f(G_2 \circ H) = 1 f(H).
\]

Thus \(f(G \circ H)(m + 1) f(H)\). Conversely, if \(H\) be well-f-covered, \(G_1 \circ H\) and \(G_2 \circ H\) are well-f-covered and

\[
f(G_1 \circ H) = m f(G), \quad f(G_2 \circ H) = 1 f(H).
\]

Again by Theorem 6.1 in [1], \(G \circ H\) is well-f-covered and

\[
f(G \circ H) = f(G_1 \circ H) + f(G_2 \circ H) = m f(H) + 1 f(H) = (m + 1) f(H).
\]

\(\square\)

On the other hand, if \(H\) be a trivial graph, then for any graph \(G\), one has \(G \circ H \cong G\), and therefore \(G \circ H\) is well-f-covered, if and only if \(G\) be well-f-covered, and anyway \(f(G \circ H) = f(G)\).

The following theorem gives a necessary condition for well-f-coveredness of lexicographic product of two graphs in case where the second component is empty.

Theorem 3.2. Let \(G\) be a graph and \(H\) be an empty graph of order \(n\). If \(G \circ H\) be well-f-covered, then for every maximal forest \(F\) in \(G\),

\[
n(I(F) + K_2(F) + L(F)) + K_2(F) + L'(F) = f(G \circ H)
\]

where \(I(F)\) is the number of isolated vertices in \(F\), \(K_2(F)\) is the number of connected components of \(F\) which are \(K_2\), \(L(F)\) is the number of leaves in the other components of \(F\), and \(L'(F)\) is the number of vertices of degree at least 2 in \(F\).

Proof. Suppose that \(G \circ H\) be well-f-covered and consider an arbitrary maximal forest \(F\) in \(G\). Set:

\[
X := \{g \in V(G) | g \text{ is an isolated vertex of } F \text{ or a leaf in a component of } F \text{ which is not } K_2\},
\]

\[
Y := \{g \in V(G) | g \text{ is a vertex of degree at least 2 in } F\}.
\]
Also, take a vertex from any component of F which is K_2 and denote by Z, the set of these vertices, and also denote by T, the set of other vertices of such components. Set:

$$V^* := ((X \cup Z) \times V(H)) \cup ((Y \cup T) \times \{h\})$$

where h is a fixed vertex in H. We claim that $(GoH)[V^*]$ is a maximal forest of GoH. Therefore since GoH is well-f-covered,

$$f(GoH) = |V^*| = n(|X| + |Z|) + |Y| + |T|$$

$$= n(I(F) + L(F) + K_2(F)) + L'(F) + K_2(F).$$

Proof of the claim: Let $(GoH)[V^*]$ contains a cycle as:

$$(g_1, h_1)(g_2, h_2), \ldots, (g_{k-1}, h_{k-1})(g_k, h_k)(= (g_1, h_1)).$$

If g_1 be an isolated vertex in F, then $g_1 = g_2$ and h_1 and h_2 are adjacent in H, a contradiction. If g_1 be a leaf in a component of F which is not K_2, then $g_2 \in Y$ and therefore $h_2 = h$. Since g_1 is of degree 1 in F, $g_{k-1} = g_2$ and therefore $h_{k-1} = h$. Thus the vertex (g_2, h_2) is repeated in the cycle, a contradiction. If $g_1 \in Y$, no one of the vertices $g_2, \ldots, g_{k-1}, g_k$ can not be a leaf. Thus $h_2 = \cdots = h_{k-1} = h_k = h$ and therefore the vertices $g_i, 1 \leq i \leq k - 1,$ are distinct pairwise (note that the vertices (g_i, h_i) are distinct pairwise as vertices of GoH in the cycle). Therefore

$$g_1g_2 \cdots g_{k-1}g_k(= g_1)$$

is a cycle in F, a contradiction. Finally, if $g_1 \in T$, one have $g_3 = g_1$ and therefore (g_1, h) is repeated, a contradiction again. Thus $(GoH)[V^*]$ is a forest.

Let $(a, b) \in V(GoH)$ does not be in the forest $(GoH)[V^*]$. If $a \notin V(F)$, by maximality of F, the subgraph $G[V(F) \cup \{a\}]$ contains a cycle as:

$$(a =)a_1a_2 \cdots a_{l-1}a_l(= a_1)$$

and therefore

$$(a, b)(a_2, h), \ldots, (a_{l-1}, h)(a_l, h)(= (a, b))$$

is a cycle in $(GoH)[V^* \cup \{(a, b)\}]$, a contradiction. If $a \in V(F)$, then a is in $Y \cup T$ and also $b \neq h$. Now, if a be in Y, a is adjacent with two distinct vertices a' and a'' in F and

$$(a'', h)(a, b)(a', h)(a, h)(a'', h)$$
is a cycle in $(GoH)[V^* \cup \{(a,b)\}]$, and if $a \in T$, a adjacent with a leaf $a''' \in Z$ in F and

$$(a,b)(a''',h)(a,h)(a''',b)(a,b)$$

is a cycle, a contradiction. \[\square\]

Remark 3.3. In Theorem 3.2, if $n = 1$, the well-f-coveredness of GoH implies that for every maximal forest F in G,

$$f(GoH) = I(F) + K_2(F) + L(F) + K_2(F) + L'(F) = |V(F)|.$$

This means that G is well-f-covered and $f(G) = f(GoH)$, something we are already had as well.

The following example shows that the condition given in Theorem 3.2, is not a sufficient condition.

Example 3.4. Consider the graph P_4o2K_1. Every maximal forest F of P_4 is an induced P_3 and therefore

$$2(I(F) + K_2(F) + L(F)) + K_2(F) + L'(F) = 6 = f(P_4o2K_1).$$

But the composition is not well-f-covered.

Now we give a necessary condition in the case where the second component is not empty.

Theorem 3.5. For a nonempty graph G and a nonempty graph H, if GoH is well-f-covered, then

(1) G is well-covered, and if every maximal forest of G be without isolated vertex and H has a maximal independent set of size 1, then G is well-f-covered and $f(G) = f(GoH)$,

(2) H is well-f-covered, and if G has a maximal forest with at least one leaf, then H is well-covered,

(3) $f(GoH) = \alpha(G)f(H)$,

(4) If F be a maximal forest in G, then for any maximal independent set M_H in H,

$$f(H)I(F) + |M_H|(K_2(F) + L(F)) + K_2(F) + L'(F) = f(GoH),$$

where $I(F)$, $K_2(F)$, $L(F)$, and $L'(F)$ are on pair with Theorem 3.2.

Proof. Let GoH is well-f-covered. We show that (1), (2), (3), and (4) are satisfied.
Consider a fixed maximal forest F_H in H. Let M be any maximal independent set in G. Set:

$$V_M := M \times V(F_H).$$

If $(GoH)[V_M]$ has a cycle:

$$(x_1, y_1)(x_2, y_2)\ldots (x_{n-1}, y_{n-1})(x_n, y_n)(= (x_1, y_1)),$$

then $x_1 = x_2 = \ldots x_{n-1} = x_n$ and

$$y_1y_2\ldots y_{n-1}y_n$$

is a cycle in F, a contradiction. Thus $(GoH)[V_M]$ is a forest. We show that this forest is maximal in GoH. Let $(v, w) \notin V_M$ be a vertex of GoH. If $v \notin M$, then by maximality of M, there exists a vertex of M, say a, adjacent with v and therefore for two adjacent vertices w_1 and w_2 in F (note that such two vertices are exist because H is not empty),

$$(a, w_1)(v, w)(a, w_2)(a, w_1)$$

is a cycle in $(GoH)[V_M \cup \{(v, w)\}]$, and if $v \in M$, then $w \notin V(F_H)$ and therefore adding w to F_H forms a cycle in H as:

$$l_1l_2\ldots l_{k-1}l_k(= l_1)$$

and therefore

$$(v, l_1)(v, l_2)\ldots (v, l_{k-1})(v, l_k)(= (v, l_1))$$

is a cycle in $(GoH)[V_M \cup \{(v, w)\}]$. By well-f-coveredness of GoH, we have:

$$|M| = \frac{f(GoH)}{|V(F_H)|}.$$

Since $\frac{f(GoH)}{|V(F_H)|}$ is independent of M, G is well-covered.

Now, for any two maximal forests F_1H and F_2H in H,

$$|F_1H| = |F_2H| = \frac{f(GoH)}{\alpha(G)}$$

and therefore H is well-f-covered and

$$f(GoH) = \alpha(G)f(H).$$

Suppose that F be a maximal forest in G. Define X, Y, Z, and T the same as Theorem 3.2 and define X_1 to be the set of all isolated vertices of F, and $X_2 := X \setminus X_1$. Let M_H and F_H, be an independent set and a maximal forest in H, respectively. Set:

$$V^* := (X_1 \times V(F_H)) \cup ((X_2 \cup Z) \times M_H) \cup ((Y \cup T) \times \{h\})$$
where \(h \) is a fixed vertex in \(M_H \). We claim that \((GoH)[V^*] \) is a maximal forest in \(GoH \). Therefore since \(GoH \) is well-covered and \(X_1, X_2 \cup Z \), and \(Y \cup T \) are disjoint pairwise, the equality in (4) holds.

Proof of the claim: Let \((GoH)[V^*] \) contains a cycle as:

\[(g_1, h_1)(g_2, h_2), \ldots, (g_{p-1}, h_{p-1})(g_p, h_p) (= (g_1, h_1)).\]

If \(g_1 \) be an isolated vertex of \(F \), then \(g_1 = g_2 = \cdots g_{p-1} = g_p \), and therefore \(h_1h_2 \cdots h_{p-1}h_p (= h_1) \) is a cycle in \(F_H \), a contradiction. Thus \(g_1 \) is in \(X_2 \cup Y \cup Z \cup T \). Similarly \(g_2, \ldots, g_{p-1}, g_p \in X_2 \cup Y \cup Z \cup T \). Hence for every \(1 \leq j \leq p \), \(h_j \in M_H \). If for a \(1 \leq j \leq p-1 \), \(g_j = g_{j+1} \), then \(h_j \) and \(h_{j+1} \) are adjacent, something which is not possible; Therefore \(g_j \) and \(g_{j+1} \) are adjacent for every \(1 \leq j \leq p - 1 \), and

\[g_1g_2 \cdots g_p(= g_1)\]

is a closed path in \(F \). Now, in each one of the cases \(g_1 \in X_2, g_1 \in Y, g_1 \in Z \), and \(g_1 \in T \), similarly to what we saw in the proof of Theorem 3.2, a contradiction is revealed. Hence \((GoH)[V^*] \) is a forest.

Consider a vertex \((\alpha, \beta) \) in \(GoH \) such that \((\alpha, \beta) \notin V^* \). We show that \((GoH)[V^* \cup \{(\alpha, \beta)\}] \) contains a cycle. If \(\alpha \notin V(F) \), since \(F \) is maximal, there is a cycle as:

\[(\alpha =) u_1u_2 \cdots u_{t-1}u_t (= u_1)\]

in \(G[V(F) \cup \{\alpha\}] \); Therefore

\[((\alpha, \beta) =) (u_1, h)(u_2, h), \ldots, (u_{t-1}, h)(u_t, h) (= (u_1, h))\]

is a cycle in \((GoH)[V^* \cup \{(\alpha, \beta)\}] \). Let \(\alpha \in F \). If \(\alpha \in X_1 \), then \(\beta \notin V(F_H) \); By minimality of \(f_H \), there is a cycle in \(H[V(F) \cup \{\beta\}] \), and by adding the first component \(\alpha \) to each one of the vertices of this cycle, a cycle in \((GoH)[V^* \cup \{(\alpha, \beta)\}] \) is formed. If \(\alpha \in X_2 \), then \(\alpha \) is adjacent with a vertex in \(Y \), say \(\alpha' \); Since \((\alpha, \beta) \notin V^*, \beta \notin M_H \) and therefore \(\beta \) is adjacent with a vertex \(\beta' \in M_H \); Thus

\[(\alpha, \beta)(\alpha', h)(\alpha, \beta')(\alpha, \beta)\]

is a cycle. If \(\alpha \in Z \), then \(\alpha \) is adjacent with a leaf in \(T \), say \(\alpha'' \), and

\[(\alpha, \beta)(\alpha'', h)(\alpha, \beta')(\alpha, \beta)\]

is a cycle. Finally, if \(\alpha \in Y \cup T \), a cycle in \((GoH)[V^* \cup \{(\alpha, \beta)\}] \) exists by a reason similar to what was said in Theorem 3.2.
Let each maximal forest of G be without any isolated vertex, and H has a maximal independent set S of size 1. For any maximal forest F in G,

$$|S|(K_2(F) + L(F)) + K_2(F) + L'(F) = f(GoH)$$

and therefore we have $|V(F)| = f(GoH)$. Thus G is well-f-covered and $f(G) = f(GoH)$.

Now, let G contains a maximal forest F' with at least one leaf. For any two maximal independent sets M_1H and M_2H in H, we have:

$$f(H)I(F') + |M_1H|(K_2(F') + L(F')) + K_2(F') + L'(F') = f(GoH),$$

$$f(H)I(F') + |M_2H|(K_2(F') + L(F')) + K_2(F') + L'(F') = f(GoH).$$

Since $K_2(F') + L(F') \neq 0$, $|M_1H| = |M_2H|$ and therefore H is well-covered.

Example 3.6. As an application of Theorem 3.5, we show that for the graph G with representation:

![Figure 1](image)

the composition graph GoC_4 is not well-f-covered.

The graph G is well-covered and $G[\{a, b, c\}]$ is a maximal forest in G, with at least one leaf. The graph C_4 is well-f-covered and well-covered and has not any maximal independent set of size 1. Also,

$$f(GoC_4) = 6 = \alpha(G)f(C_4).$$

Thus the conditions (1), (2), and (3) in Theorem 3.5 hold. Now, consider two maximal forests:

$$F_1 := G[\{a, b, c\}], \quad F_2 := G[\{e, b, c, d\}]$$
in the graph G. We have:

$$f(H)I(F_1) + \alpha(H)(K_2(F_1) + L(F_1)) + K_2(F_1) + L'(F_1) = 5,$$

$$f(H)I(F_2) + \alpha(H)(K_2(F_2) + L(F_2)) + K_2(F_2) + L'(F_2) = 6$$

and therefore the condition (4) is not established; Hence by Theorem 3.5, G_0C_4 is not well-f-covered.

The following example shows that the inverse of Theorem 3.5, is not established.

Example 3.7. Consider the graphs C_5 and C_4. The graph C_5 is well-covered and contains a maximal forest with at least one leaf. C_4 is well-f-covered and well-covered. Also,

$$f(C_5 o C_4) = 6 = \alpha(C_5)f(C_4).$$

Let F be a maximal forest of C_5. Since F is an induces P_4, we have:

$$f(C_4)I(F) + \alpha(C_4)(K_2(F) + L(F)) + K_2(F) + L'(F) = 6 = f(C_5 o C_4).$$

Therefore the conditions (1), (2), (3), and (4) in Theorem 3.5 hold. But $C_5 o C_4$ is not well-f-covered because considering the representations:

![Figure 2](image)

the subgraphs $(C_5 o C_4)[\{(x_1,y_1), (x_1,y_3), (x_2,y_1), (x_3,y_1), (x_4,y_1), (x_4,y_3)\}]$ and $(C_5 o C_4)[\{(x_1,y_1), (x_1,y_3), (x_2,y_1), (x_3,y_1), (x_3,y_2)\}]$ are two maximal forests of $C_5 o C_4$, of orders 6 and 5, respectively.

References

[1] R. Jafarpour-Golzari, Graphs whose all maximal induced forests are of the same order, submitted, also available at arXiv:2105.14339v1.

[2] M. D. Plummer, Some covering concepts in graphs, *J. Combin. Theory* 8 (1970), 91-98.
[3] D. West, *Introduction to graph theory. 2nd Ed.*, Prentice Hall, Upper Saddle River, NJ, 2001.

Department of Mathematics, Payame Noor University, P.O. BOX 19395-3697 Tehran, Iran; Department of Mathematics, Institute for Advanced Studies in Basic Science (IASBS), P.O.Box 45195-1159, Zanjan, Iran

Email address: r.golzary@iasbs.ac.ir