Abstract: Plant endophytic fungi spend all or part of their lives inside host tissues without causing disease symptoms. They can colonize the plant to protect against predators, pathogens and abiotic stresses generated by drought, salinity, high concentrations of heavy metals, UV radiation and temperature fluctuations. They can also promote plant growth through the biosynthesis of phytohormones and nutrient acquisition. In recent years, the study of endophytic fungi for biological control of plant diseases and pests has been intensified to try to reduce the ecological and public health impacts due the use of chemicals and the emergence of fungicide resistance. In this review, we examine 185 patents related to endophytic fungi (from January 1988 to December 2019) and discuss their applicability for abiotic stress tolerance and growth promotion of plants, as agents for biocontrol of herbivores and plant pathogens and bio- and phytoremediation applications.

Keywords: endophytic fungi; patent; abiotic stress tolerance; biocontrol; bioremediation; phytoremediation

1. Introduction

An endophytic fungus is any organism inhabiting plant organs that, at certain point in its lifetime, can colonize tissues without causing apparent harm [1]. Endophytic fungi have been a proven source of secondary metabolites with potential uses as anticancer, antibiotics, antivirals, anti-inflammatory, antioxidants, neuroprotective agents, insecticides and antifungals, and have multiple applications in biotechnological developments in pharmaceutical, agriculture, cosmetic, food industry and environmental processes [2]. In the last decades, studies of endophytic fungi have resulted in a number of patents linked to the production of biologically active secondary metabolites and in biotransformation processes [3].

Moreover, interaction between fungi and their hosts drives changes in the host metabolism, altering the response to environmental stress and predator attack. Additionally, this interaction leads to the production of secondary metabolites by both the fungi and the host, which further enhance the capability to respond to the environment [4–7].

The use of endophytic fungi for environmental applications such as growth promotion, relief of abiotic stress, biocontrol of pest and plant pathogens and bio/phytoremediation has gained important attention in recent years due to the concern about global climate change and contamination in soils and natural sources that increases stress in crops, limiting and reducing the production [8–11]. Furthermore, basic and applied research has been conducted to develop processes, methodologies and technologies that resulted in a considerable number of patents with new proposals to overcome some of these...
challenges. Therefore, in this review, we cover patents on endophytic fungi applications related to (a) abiotic stress tolerance and growth promotion of plants; (b) biocontrol of herbivores and plant pathogens; (c) bio- or phytoremediation.

The highlighted topics in each of the patents, cited here, could inspire other researchers to take their investigation to the next level and contribute to overcome, in a more efficient way, some of the principal challenges of humanity today.

2. Materials and Methods

The present review was conducted mainly through searches in the Scifinder® and Google Patents databases. The search was initially conducted in Scifinder® using the terms “endophytic fungi” and “patents” covering the period from 1988 to 2019. 12,315 references were found. After removing duplicates (those describing the same patent/endophyte), we selected those related to the aim of this review, resulting in 185 documents. The patents covered in this study are described in five tables below.

3. Results

The description and analysis of patents was divided, considering the main objective of each one, into four sections; those associated to: (Section 3.1) abiotic stress tolerance and growth promotion of plants; (Section 3.2) biocontrol of herbivores and plant pathogens, and (Section 3.3) bio- and phytoremediation applications; (Section 3.4) patents where the endophyte has multiple applications. The information in tables describe the fungi, the host plant where they were isolated, and the main application of the patent. All endophytes, listed in the tables, have beneficial effects on plants, even though some of them could be considered as pathogens in previous reports.

3.1. Abiotic Stress Tolerance and Growth Promotion of Plants

The principal abiotic stress factors in plants include drought, salinity, high heavy metal concentrations, UV radiation and temperature fluctuations [12]. Abiotic stress affects the cellular pathways of plants, resulting in negative changes to their physiology and morphology [12]. Endophytic fungi have been shown to help their host plant to overcome abiotic stress and promote plant growth through the biosynthesis of phytohormones (indole-3-acetic-acid, gibberellins, cytokinins, ethylene, acetoin, 2, 3-butanediol) and nutrient absorption and uptake [12–14].

Plant endophytic fungi have been patented based on their ability to improve the following in plants: (a) root and seed development; (b) nutrient uptake or absorption; (c) photosynthesis promotion; (d) growth of biomass; (e) increase chlorophyll content; and (f) abiotic stress resistance. Numerous genera have been used for such purposes, including *Acremonium*, *Alternaria*, *Aspergillus*, *Chaetomium*, *Fusarium*, *Penicillium*, and others (Tables 1 and 2). A specific area of application for which endophytic fungi have been widely used is in the growth promotion of medicinal plants; this includes such species as *Acanthopanax senticosus* [15], *Salvia miltiorrhiza* [16], *Rumex gmelinii* Turcz. [17], *Acacia confusa* [18], *Coix lacryma-jobi* [19], *Cynanchum acuminate* [20], *Huperzia serrata* [21], *Anoectochilus roxburghii* [22], *Arnebia* sp. [23], *Saussurea* sp. [24], *Rhizoma bletillae* [25], *Salvia miltiorrhiza* [26,27], and *Eucalyptus* sp. [28–30]. Additionally, some endophytic fungi have been patented due to their capability to promote the growth of crop plants such as corn, tomato, soybean, rice, wheat, potato, and barley [31–37] as well as other useful plants such as *Casuarina equisetifolia* [38–41], fir [42–45], *Aleurites montana* [46–51], *Dendrobium* sp. [52–54], tobacco [55–58], *Schima superba* [59–61], *Bletilla striata* [62,63], and *Paphiopedilum* sp. [64].
Table 1. Endophytic fungi applied to enhance the abiotic stress tolerance of plants.

Patent No.	Endophyte	Host 1	Patent Application	Ref.
CN104762216A	Arthrinium sp.	Salicornia bigelovii	Plant anti-salt stress.	[65]
WO200400017A2	Curvularia sp.	Dichanthelium languinimum	Conferring stress tolerance to inoculated plants (monocots and dicots).	[66]
WO2009012480A2	Fusarium sp.	Leymus mollis	Conferring stress tolerance to inoculated plants (monocots and dicots).	[67]
CN105296359A	Lecanicillium sp.	Tobacco	Reducing the absorption of heavy metals in tobacco.	[58]
CN101314760A	Neotyphodium chiosum	Festuca arundinacea	Improving the stress tolerance to drought and diseases.	[68]
CN104004665A	Papulospora sp.	Fir roots	Relieving phosphorus stress in fir.	[43]
CN105002099A	Paraconiothyrium cyclothyroides	Myricaria root	Reducing heavy metal pollution in plants.	[69]
CN101974437A	Penicillium sp.	Eucalyptus	Relieving aluminum toxicity in Eucalyptus.	[30]
CN102002463A	Penicillium sp.	Eucalyptus roots, stems, and leaves	Improving the cold resistance of Eucalyptus.	[28]
CN103865806A	Phialophora oryzae	Not disclosed	Reducing the absorption of heavy metals in tobacco	[57]
CN107926549A	Piriformospora indica	Not disclosed	Improving the resistance of plants to the herbicide bensulfuron-methyl.	[70]
CN103834578A	Pyrenoacheta sp.	Tobacco	Promoting plant growth and reducing the heavy metal content in tobacco.	[55]
CN105316240A	Rhizopus sp.	Tobacco	Reducing the absorption of heavy metals in tobacco.	[56]
US20150366217A1	Group of several fungi 2	Roots of Triticum turgidum L.	Improving seed vitality, biotic and abiotic stress resistance, and plant health and yield under both stressed and unstressed environmental conditions.	[71]

1 Some patents just provided a common name for the host organism. 2 A list of the group of fungi is in Table S1.
Table 2. Endophytic fungi applied for the growth promotion of plants.

Patent No.	Endophyte	Host ¹	Patent Application	Ref.
CN105907648A	Acremonium sp.	Panax notoginseng	Root and seed development of different plants including *Radix Ginseng, Oryza sativa L., Semen Maydis, Semen Tritici aestivi, Rhizoma Paridis, Rhizoma Solani tuberosi*, etc.	[34]
CN108513990A	Alternaria alternata	Acanthopanax senticosus	Seedling-stage growth of *A. senticosus*.	[15]
CN104911108A	Alternaria sp.	Hippophae sp.	Drought resistance on turf grass.	[72]
CN104818218A	Alternaria sp.	Aleurites montana	Phosphorus uptake in *A. montana*.	[47]
CN102086439A	Alternaria tenuissima	Panax ginseng	Growth of corn plant.	[31]
CN103173362A	Aspergillus sp.	Casuarina sp. rhizosphere	Photosynthesis in *C. equisetifolia*.	[38]
CN103173361A	Aspergillus sp.	Casuarina sp. rhizosphere	Nutrient element absorption in *Casuarina*.	[39]
CN103173364A	Aspergillus sp.	Casuarina sp. rhizosphere	Casuarina biomass growth.	[41]
CN110343619A	Botryosphaeria sp.	Root of Schima superba	Schima superba seedling height and ground diameter under a low-phosphorus environment.	[61]
CN109456902A	Byssochlamys spectabilis	Rhizoma bletillae	The growth of *R. bletillae*.	[25]
CN106929436A	Cercospora Sacc.	Rumex gmelinii Turcz.	Growth in *R. gmelini* Turcz.	[17]
CN106801014A	Chaetomium globosum	Salvia miltiorrhiza	Radix root biomass, plant height, crown diameter in *S. miltiorrhiza*.	[73]
CN109628322A	Chaetomium nigricolor	Bletilla striata	The growth of *B. striata*.	[62]
CN110438011A	Cladosporium tenuissimum	Salvia miltiorrhiza	Synthesis of effective components (tanshinone and salvianolic acid substances) in the root system of *Salvia miltiorrhiza*.	[26]
CN104630073A	Claviceps sp.	Dendrobium officinale	Growth and yield in *D. officinale*.	[74]
CN104004664A	Colletotrichum sp.	Abies sp. roots	Photosynthesis of cedar.	[45]
CN106085872A	Colletotrichum sp./Fusarium sp.	Acacia sp.	Nutrient absorption in *A. confusa*.	[18]
CN104805019A	Coniothyrium sp.	Aleurites sp.	Nutrient element absorption in wood oil tree.	[75]
CN104004666A	Cylindrocarpon sp.	fir plant	Growth of fir.	[42]
CN110250210A	Darksidea sp.	Stipa capillata root	Rooting and growth of maize.	[36]
Table 2. Cont.

Patent No.	Endophyte	Host ¹	Patent Application	Ref.
CN109504611A	Diaporthe spectabilis	Bletilla striata	Growth of B. striata.	[63]
CN103733829A	Emericella foeniculicola	Salvia miltiorrhizae	Growth of S. miltiorrhizae.	[76]
CN105624047A	Epichloë bromicola	Coix lacryma-jobi	Growth of Coix lacryma-jobi, Arabidopsis thaliana and other graminaceous plants.	[19]
CN105861334A	Filobasidium sp.	Acacia sp.	Taiwan Acacia biomass.	[77]
CN105861335A	Filobasidium sp.	Acacia sp.	Nutrient element absorption in Taiwan Acacia in a low-phosphorous environment.	[78]
CN106085873A	Filobasidium sp./Penicillium sp.	Acacia sp.	Phosphorous uptake in A. confusa under a low-phosphorus environment.	[79]
CN107432135A	Fusarium redolens	Not disclosed	Germination of Cynanchum acuminata seeds.	[20]
CN103173360A	Fusarium sp.	Casuarina equisetifolia	Chlorophyll content of C. eqisetifolia.	[80]
CN110257259A	Fusarium sp.	Schima superba stems	Photosynthesis of Schima superba.	[59]
CN103114044A	Heterodera oryzae	rice	Plant growth regulation and/or plant pathogenicity.	[81]
CN103798293A	Hypha sp.	Salvia miltiorrhiza	The growth and improvement of S. miltiorrhiza hairy root tanshinone content.	[82]
CN1961631A	Mycocentrospora sp./Leptodontidium sp.	Saussurea involucrata	Saussurea sp. growth.	[24]
CN104593274A	Nectria sp.	Dendrobium officinale	Yield in Dendrobium artificial planting.	[83]
US20130104263A1	Neotyphodium sp.	perennial ryegrass	Beneficial properties (phenotype) for plant.	[84]
CN104004667A	Paecilomyces sp.	Not disclosed	Phosphorus absorption in fir.	[44]
CN106010984A	Penicillium sp.	Acacia confusa	Plant biomass growth of Taiwan Acacia plant under low-phosphorus environment.	[85]
CN101974438A	Penicillium sp.	Eucalyptus	Phosphorus absorption in Eucalyptus.	[29]
CN104818219A	Penicillium sp.	Aleurites montana	Root growth of A. montana in a low-phosphorous environment.	[51]
Table 2. Cont.

Patent No.	Endophyte	Host 1	Patent Application	Ref.
CN104789481A	Penicillium sp.	Aleurites montana	Growth and photosynthesis enhancement of *A. montana* in a low-phosphorus environment.	[48]
CN104762219A	Penicillium sp.	Aleurites montana	Biomass growth of *A. montana* in a low-phosphorus environment.	[49]
CN110257258A	Penicillium sp.	Schima superba leaves	Phosphorus absorption of *Schima superba*.	[60]
WO2016210238A1	Penicillium sp.	Not disclosed	Cultivation of agricultural plants, such as soybean and maize.	[33]
CN104818217A	Pestalotia sp.	Not disclosed	Biomass growth of *A. montana*.	[50]
CN105886405A	Pestalotiopsis sp.	Dendrobium officinale	Growth of *D. officinale* and change in metabolic components.	[54]
CN109706084A	Pezicula ericae	wild blueberry root	Growth effects.	[86]
CN104593273A	Phyllachora sp.	Dendrobium officinale	Dendrobium yield.	[87]
CN103173363A	Phyllosticta sp.	Casuarina sp.	Photosynthesis of *C. equisetifolia*.	[40]
ES2500790A1	Pochonia chlamydosporia	Not disclosed	Flowering and fruiting and increased yield in crops such as tomatoes.	[32]
WO2016038234A1	Pochonia chlamydosporia	Meloidogyne spp.	Culture yield and reduction in flowering and fructification times.	[88]
CN105039172A	Pythium sp.	Huperzia serrata	Improved transplant survival rate of *H. serrata*.	[21]
CN108041078A	Rhizopyrenis sp.	tobacco	Rice growth.	[89]
WO2019113255A1	Serendipita vermifera ssp. bescii	Australian orchid	Enhancement of plant performance in combination with phosphite as a phosphorous source.	[90]
CN105420119A	Schizophyllum commune	Ginseng	Host tissue culture hairy root biomass and ingredients of ginseng saponins.	[91]
CN104774771A	Thermomyces sp.	Not disclosed	Photosynthesis of *A. montana* under a low-phosphorus environment.	[46]
CN10704965A	Trichoderma sp.	Anoectochilus formosanus	Seedling adaptation cultivation.	[92]
Table 2. Cont.

Patent No.	Endophyte	Host ¹	Patent Application	Ref.
CN104745482A	*Trichoderma* sp.	*Arnebia euchroma*	Growth of *Arnebia* hairy roots and improved shikonin component content in hairy roots.	[23]
CN105969672A	*Trichoderma* sp. *Fusarium* sp.	*Acacia* sp.	Increase in the height and ground diameter of *A. confusa* seedlings.	[93]
CN110408551A	*Tulasnella calospora*	Roots of *Paphiopedilum*	Growth of aseptic seedlings of *Paphiopedilum*.	[64]
CN102876584A	*Xylaria striata*	*Oryza meyeriana*	Plant growth.	[94]
CN107460133A	*Zasmidium* sp.	mangrove	Growth and development of *D. officinale*.	[95]
WO2016179047A1	Group of fungi	Not disclosed	Agronomic traits in plants.	[96]
CZ306950B6	Group of fungi	*Miscanthus* sp.	Growth, especially of graminaceous and *Miscanthus* plants.	[97]
WO2017134664A1	*Acremonium sclerotigenum* / *Sarocladium implicatum*	Set of grass relatives of wheat	Nutrient uptake.	[98]
US20150373993A1	Group of several ² fungi	A diverse type of wild relatives or ancestral landraces of maize, wheat, rice, and other seeds	Agronomic traits.	[99]
WO2018102733A1	Group of several ² fungi	Agricultural plants	Modulation of the nutritional quality traits in seeds	[100]

¹ Some patents just provided a common name for the host organism. ² A list of the group of fungi is in Table S1.
3.2. Biocontrol of Herbivores and Plant Pathogens

Crop plant diseases represent a major threat in agriculture [101]. The number of chemicals that can be effectively used to control pathogens has been reduced due to the emergence of fungicide resistance along with an increased awareness of the negative associated ecological and public health impacts [101]. Due to these problems, study of the biological control of plant diseases with endophytes has intensified in recent years [101]. Endophytes have been shown to protect their hosts against diseases, reducing infection levels and inhibiting the growth of pathogens [102,103]. The proposed mechanisms used by endophytes are the production of antimicrobial and structural compounds, niche competition, and the induction of plant immunity [104].

Several patents describe the biocontrol of herbivores and plant pathogens using endophytic fungi (Table 3). Species of the genus *Acremonium* have been described to control *Verticillium* wilt [105]; Argentine stem weevil (*Listronotus bonariensis*) [106]; plant diseases caused by banana root nematode and different pathogenic microbes such as *Bipolaris oryzae*, *Colletotrichum falcum*, *Colletotrichum gloeosporioides*, *Corynespora cassiicola*, *Corynespora* sp., *Drechslera* sp., *Fusarium oxysporum*, *Gloeosporium musarum*, and *Magnaporthe grisea* [107]; and to prevent fleece toxicosis [108]. Species of *Alternaria* can control the growth of different pathogens such as *Rhizoctonia solani*, *Fusarium oxysporum*, *Botrytis cinerea*, *Phytophthora capsici*, *Pseudomonas aeruginosa*, *Proteus hauseri*, and *Plasmopara viticola* [109–115]. Members of the genus *Aspergillus* have been applied to limit the growth of nematodes in soil [116]; the plant pathogenic fungi *Sclerotinia sclerotiorum*, *Rhizoctonia solani*, and *Thanatephorus cucumeris* [52,117,118]; as well as grass fungi [119]. Several strains of the genus *Chaetomium* have been reported to enhance plant disease resistance in *Anoectochilus roxburghii* cultivation [16], to control different plant pathogenic fungi [120–122], to inhibit *Erwinia* causing soft rot and *Ralstonia solanacearum* causing bacterial wilt [123], to inhibit anthracnose apple pathogens [124], in the preparation of an anti-plant pathogen fermentation liquid broth [125], and in the production of chaetoglobosin A with antagonistic activity against *Exserohilum turcicum*, *Coniothyrium diploidiella*, and *Rhizopus stolonifer* [126]. Species of *Fusarium* can prevent and treat black spot and fungal diseases in *Panax notoginseng* [127,128], control five plant pathogenic fungi (*Fusarium oxysporum*, *Cytospora mandshurica*, *Colletotrichum gloeosporioides*, *Venturia pyrina*, and *Fusarium graminearum*) [129], and control rice blast disease [130,131] and bacterial wilt of ginger [132]. Species of *Neotyphodium* can decrease the mildewing rate of *Elymus sibiricus* seeds at the germination stage [133] and improve fungicide and pest resistance in plants [134,135]. Species of *Penicillium* can restrain the effects of *Panax notoginseng* anthracnose, root rot [136–138], and *Alternaria panax* [139]; control different harmful pathogenic fungi [140,141] and litchi downy blight [142]; and prevent plant diseases such as *Sclerotinia* rot of colza and tobacco blackleg [53]. Species of *Rhexocercosporidium* can control the fungal pathogens *Colletotrichum gloeosporioides*, *Fusarium solani*, and *Alternaria panax* Whetzel on *Panax notoginseng* [143–145].

Endophytic fungi of different genera such as * Beauveria, Cladosporium, Metarhizium, Muscodor, Trichoderma*, and others have also been described in patents to control pests or different plant diseases (Table 3).
Table 3. Endophytic fungi applied as biocontrol agents of herbivores and plant pathogens.

Patent No.	Endophyte	Host 1	Patent Application	Ref.
CN103897992A	Acremonium alternatum	cotton	Verticillium wilt.	[105]
US93951A0	Acremonium coenophilum	Not disclosed	Fescue toxicosis.	[108]
AU639084B2	Acremonium lolii	French perennial ryegrass ecotype	Argentine stem weevil (*Listronotus bonariensis*) by production of compound peramine.	[106]
CN101235355A	Acremonium strictum	Brachiaria brizantha	Banana root-knot nematode and different pathogenic microbes.	[107]
WO2012174585A1	Acremonium sp.	Brachiaria/Urochloa	Fungal plant diseases.	[146]
CN108192832A	Acrocalymma sp.	Sinomenium acutum	Plant diseases caused by pathogenic bacteria.	[147]
CN108085259A	Arcopilus aureus	Dendrobium sp.	The plant pathogenic fungus *Botrytis cinerea*.	[148]
CN102204570A	Alternaria alternata	Cinnamomum camphora	*Rhizoctonia solani*, *Fusarium oxysporum*, and *Botrytis cinerea*.	[111]
CN102191184A	Alternaria alternata	Cinnamomum camphora	Plant pathogenic fungi such as *Rhizoctonia solani*, *Fusarium oxysporum*, and *Botrytis cinerea*.	[110]
CN110373331A	Alternaria alternata	Huperzia serrata	Gray mold of crops.	[115]
ES2696982A1	Alternaria alternata and	Artemisia thussula and	Plant pathogenic fungi with the production of antifungal compounds.	[114]
	Fusarium acuminatum	Austrian Artemisia		
CN103232942A	Alternaria sp.	Spiraea sp.	The plant pathogenic fungus *Phytophthora capsici*.	[112]
CN106520572A	Alternaria mali	Toona sinensis	The pathogens *Pseudomonas aeruginosa* or *Proteus hauseri*.	[113]
WO2008007251A2	Alternaria alternata	Not disclosed	*Plasmopara viticola*.	[109]
CN108441426A	Aspergillus niger	Aquatic plant	Plant parasitic nematodes in soil.	[116]
CN104560735A	Aspergillus oryzae	Tephrosia purpurea	Plant pathogenic fungi such as *Sclerotinia* rot of colza and tobacco black shank disease.	[52]
CN102191185A	Aspergillus restrictus	Allium sativum	Plant pathogenic fungi such as *Rhizoctonia solani* and *Thanatephorus cucumeris*.	[117]
CN109504610A	Aspergillus sp.	Epiphyte	The pathogenic fungus *Rhizoctonia solani*.	[118]
CN108342328A	Aspergillus versicolor	seaweed	Grass fungi.	[119]

1. Host 1 is the host of the endophytic fungus.
Table 3. Cont.

Patent No.	Endophyte	Host ¹	Patent Application Ref.	Ref.
US8709399B2	Beauveria bassiana	maize stem borer Busseola fusca	Herbivorous insects and/or plant pathogens.	[149]
CN105462892A	Burkholderia sp.	Sophora tonkinensis	Panax notoginseng black spot.	[150]
CN105838613A	Chaetomium globosum	Cajanus cajan	Fungal plant diseases with the production of flavipin.	[151]
CN107475123A	Chaetomium globosum	Anoectochilus roxburghii	Plant disease in Anoectochilus roxburghii cultivation.	[16]
CN102742605A	Chaetomium globosum	Ginkgo biloba	Plant pathogenic fungi.	[122]
CN102690759A	Chaetomium globosum	Solidago canadensis	Plant pathogenic fungi propagation	[121]
CN101280320A	Chaetomium globosum	Not disclosed	Plant fungal diseases with the production of antibiotic substances	[120]
CN106754396A	Chaetomium globosum	Toona sinensis	Erwinia andRalstonia solanacearum	[123]
CN104877919A	Chaetomium globosum	Phellopterus littoralis	Anthracnose pathogens of apples and certain inhibitory actions against other plant pathogens	[124]
CN103255065A	Chaetomium globosum	Camptotheca acuminata	Plant pathogens with broth culture of the endophytic fungi	[125]
CN102754652A	Chaetomium globosum	Ginkgo biloba	Exserohilum turcicum, Coniothyrium diplodiella, and Rhizopus stolonifer	[126]
CN105368720A	Chaetomium sp.	Healthy cotton plant	Cotton Verticillium wilt.	[152]
CN109749938A	Cladosporium tenuissimum	Healthy Panax notoginseng	Panax notoginseng rot.	[153]
CN110172408A	Clonostachys rosea	Podophyllum hexandrum	Diseases and pests of Podophyllum hexandrum.	[154]
CN110272829A	Colletotrichum boninense	Huperzia serrata	Sclerotinia sclerotiorum of crops.	[155]
WO2014136070A1	Epichloë	Elymus mutabilis	Pests on Secale spp. plants.	[156]
CN105483022A	Fusarium solani	Sophora tonkinensis	Panax notoginseng black spot.	[127]
CN105483021A	Fusarium solani	Sophora tonkinensis	Panax notoginseng fungal diseases.	[128]
CN103194490A	Fusarium solani	Ginkgo biloba	Five plant pathogenic fungi.	[129]
CN105087386A	Fusarium sp.	Yinchuan Phragmites communis	Rice blast disease.	[130]
CN108624527A	Fusarium sp.	Ginkgo sp.	Bacterial wilt in ginger.	[132]
Table 3. Cont.

Patent No.	Endophyte	Host 1	Patent Application	Ref.
CN110558337A	Fusarium oxysporum	Ginkgo biloba	Rice blast disease.	[131]
CN102174416A	Fusella sp.	Angelica sinensis	Plant pathogenic bacteria.	[157]
WO2016034751A	Guignardia mangifera	Persea indica	Phytopathogens and plant pests.	[158]
WO2013081448A2	Hendersonia sp.	Not disclosed	Basal stem rot disease and Ganoderma disease in oil palms.	[159]
CN109536390A	Hypoxylon sp. nov	Midvein of citrus leaves	Citrus black spot disease.	[160]
CN10364704A	Leptosphaeria sp.	cotton	Cotton Verticillium wilt.	[161]
CN103289906A	Metarhizium sp.	Gentiana manshurica	G. manshurica leaf blight.	[162]
CN110229758A	Mortierella elongata	Atractylodes macrocephala	Atractylodes macrocephala root rot.	[163]
CN101691541A	Muscodor sp.	Not disclosed	Pathogenic fungi.	[164]
US20040141955A1	Muscodor albus and Muscodor roseus	Not disclosed	Organisms such as microbes, insects, and nematodes with volatile compounds.	[165]
WO2002082898A1	Muscodor albus and Muscodor roseus	Not disclosed	Plant pathogens, bacteria, nematodes, and insects with volatile antibiotics.	[166]
WO2010115156A2	Muscodor strobeli	Not disclosed	Pests and pathogenic microbes, including Ganoderma boninense.	[167]
WO2004034785A2	Muscodor vitigenus	Paullinia paliniioides	Insects with the production of repellents by a novel endophytic fungus.	[168]
CN106893678A	Myrothecium verrucaria	grapes	Grape gray mold.	[169]
CN104774768A	Nectria laematococca	Fritillaria waruensis	Bacteria such as S. aureus and P. aeruginosa and pathogenic fungi.	[170]
CN106538108A	Neotyphodium sp.	gramineous plants	Mildewing rate of Elymus sibiricus seeds in the germination stage.	[133]
WO2007021200A1	Neotyphodium sp.	Not disclosed	Plant pathogenic fungi.	[134]
CA2319847C	Neotyphodium sp.	Festuca arundinacea	Pests and reduce ergopeptine alkaloid levels.	[135]
CN102191186A	Nigrospora oryzae	Allium sativum	Plant pathogenic fungi such as Rhizoctonia solani, Colletotrichum lindemuthianum, and Botrytis cinerea.	[171]
CN104789482A	Nigrospora sp.	Magnolia officinalis	Wheat disease.	[172]
Patent No.	Endophyte	Host 1	Patent Application	Ref.
-------------	-------------------------------	----------------------	---	------
CN110178857A	Paecilomyces variotii	Hippophae rhamnoides	Plant virus. Induces plant endogenous salicylic acid accumulation and enhances the RNA silencing efficiency.	[173]
CN105462854A	Penicillium citrinum	Sophora tonkinensis	Panax notoginseng anthracnose.	[136]
CN105462850A	Penicillium citrinum	Sophora tonkinensis	Panax notoginseng root rot.	[137]
CN105462855A	Penicillium citrinum	Sophora tonkinensis	Gagnep Alternaria panax.	[139]
CN104531543A	Penicillium griseofulvum	Tephrosia purpurea	Plant diseases such as Sclerotinia rot of colza, tobacco blackleg, and others with a fermentation product.	[53]
CN105255742A	Penicillium sp.	Malus hupehensis	Harmful pathogens such as Fusarium solani, F. proliferatum, F. moniliforme, and F. oxysporum.	[140]
CN108546651A	Penicillium sp.	Kandelia candel	Plant pathogenic fungi such as Fusarium graminearum, Phytophthora sojae, and Colletotrichum musae with a fermentation product.	[141]
CN109112069A	Penicillium sp.	Panax notoginseng	Panax notoginseng root rot.	[138]
CN103773699A	Penicillium purpurogenum	Litchi	Litchi downy blight.	[142]
CN103627643A	Penicillium simplicissimum	Healthy cotton plant	Cotton Verticillium wilt.	[174]
CN104161049A	Pestalotiopsis uvicola	Artemisia japonica	Kiwifruit Sclerotinia sclerotiorum, Phytophthora capsici, and other plant pathogenic fungi with a fermentation product.	[175]
CN110511878A	Pezicula neosporulosa	Fir	The pathogenic fungus Fusarium oxysporum.	[176]
CN109769535A	Phialophora oryzae	Wild rice root	Bacterial blight of rice.	[177]
CN102154116A	Phomopsis wenchengensis	Not disclosed	Plant pathogenic fungi by antifungal compounds.	[178]
CN105462853A	Rhexocercosporidium sp.	Sophora tonkinensis	Colletotrichum gloeosporioides on Panax notoginseng.	[143]
CN105462851A	Rhexocercosporidium sp.	Sophora tonkinensis	Fusarium solani on Panax notoginseng.	[144]
CN105462848A	Rhexocercosporidium sp.	Sophora tonkinensis	Alternaria panax Whetzel on Panax notoginseng.	[145]
CN102234618A	Rhizopus and Trichoderma	Not disclosed	Soft rot disease of the orchid family Dendrobium plants.	[179]
CN110452290A	Sarocladium brachiariae	Brachiaria brizantha	Plant disease and pests.	[180]

Table 3. Cont.
Table 3. Cont.

Patent No.	Endophyte	Host ¹	Patent Application	Ref.
CN110468057A	Seimatosporium sp.	Rosa multiflora	Tobacco powdery mildew caused by Erysiphe cichoracearum.	[181]
CN106167767A	Schizothecium sp.	Not disclosed	Banana wilt.	[182]
CN110558336A	Spirillum roseum	Not disclosed	Lettuce sclerotinia rot.	[183]
CN103834580A	Talaromyces flavus	Not disclosed	Cotton Verticillium wilt	[184]
CN106119134A	Talaromyces flavus	Not disclosed	Fruit rot	[185]
CN109593658A	Talaromyces sp.	Fructus corni	Fungal diseases of wheat	[186]
CN105211105A	Trichothecium roseum	strawberries	Powdery mildew of wheat	[187]
US20120108425A1	Trichoderma atroviride	healthy tea leaves	Foliar disease in tea plantations caused by Cercospora theae	[188]
CN108179115A	Zopfiella sp.	Chrysanthemum morifolium	Plant pathogens such as Fusarium moniliforme, E. oxysporum, Curvularia lunata, and Pythium	[189]
WO2018119419A1	Group of several ²fungi	cotton	Nematodes, aphids, flea hopper, lygus bug, stink bug, soy looper, cabbage looper, or fungi	[190]
US9469836B2	Not disclosed	Pinus strobus	Pests in Pinus strobus	[191]

¹ Some patents just provided a common name for the host organism. ² A list of the group of fungi is in Table S1.
3.3. Bio- and Phytoremediation

Bioresmediation is a process that uses microorganisms, plants or enzymes to detoxify contamination in natural sources. In phytoremediation, plants and their own metabolic system can extract toxic chemicals from water, soil and air. This chemicals or contaminants include metals and metalloid pollutants, carcinogenic agents, industrial organic waste material, inorganic pesticides and herbicides, chlorinated products, excess nutrients and radionuclides [10,11,192].

Endophytic fungi have the capability to degrade small and large organic compounds by enzymatic reactions, decompose environmental contaminants, and improve the soil microenvironment [193]. They can also increase the ability of host plants to remove contaminants from soil, water, sediment, and air [194], and to modulate morphological and physiological functions in the host plant improving its resistance to metals and providing different detoxification routes such as extracellular scavenging and complexation, compartmentalization and volatilization [14,195]. Figure 1 shows different bioremediation techniques involving endophytic fungi.

Some patents describe the use of endophytic fungi for bioremediation and phytoremediation (Table 4). Strains of the genus *Fusarium* have been reported to induce phytoremediation in heavy metal-contaminated soil [196], repair uranium-polluted water bodies [197], and decontaminate and decompose human and animal waste [198]. Additionally, the endophytic fungi Y2R14 and RWDL4-1 can be used to treat wastewater polluted by cadmium [199]. Heavy metals such as mercury, cadmium, arsenic, chromium, and lead are toxic at low concentrations. They can be accumulated in the ecosystem inside living organisms and are capable of entering the food chain [200]. The functions of several organs of the human body can be affected by heavy metals, and some of these substances can cause cancer by long-term exposure [200]. Uranium is a radioactive substance and is also harmful for the environment and human beings [197]. The use of microorganisms to repair large areas of farmland pollution can reduce costs, the use of large amounts of chemicals, and secondary pollution [196].

Species of *Phomopsis* and *Xylaria* have been reported to degrade the herbicide MCPA (2-methyl-4-chlorophenoxyacetic acid) in water and soil [201,202]. Additionally, several genera of fungi can be used to produce high-laccase content for soil bioremediation [203].

3.4. Patents that Claim Multiple Applications

A small number of patents comprised more than one possible application (Table 5); this is the case of the applications for *Neotyphodium uncinatum* to induce insect resistant and drought tolerance in plants [204]; *Phoma* sp. can improve salt stress resistance, promote the growth and increase biomass in crop plants such as wheat and rice [205]; *Clonostachys rosea* promotes plant growth, stress resistance and reduces dependency on chemical pesticides [206,207]; *Fusarium* sp. stimulates plant growth and reduces heavy metal absorption in tobacco [208], and *Rhizoctonia* sp. fosters plant growth and stress resistance in *Anoectochilus roxburghii* [22].
Table 4. Endophytic fungi applied in bioremediation and phytoremediation.

Patent No.	Endophyte	Host ¹	Patent Application	Ref.
CN105733958A	*Fusarium oxysporum*	Not disclosed	Phytoremediation of heavy metal-contaminated soil	[196]
CN106340337A	*Fusarium* sp.	mangrove	Repair of uranium-polluted water body	[197]
WO2005116272A2	*Fusarium culmorum* and *Muscodor albus*	Not disclosed	Decontamination and decomposition of human and animal waste	[198]
CN106947697A	*Phomopsis* sp.	Not disclosed	Degradation of the herbicide MCPA (2-methyl-4-chlorophenoxyacetic acid) in water or soil	[201]
CN107177511A	*Xylaria* sp.	Not disclosed	Degradation of the herbicide MCPA in water and soil	[202]
CN107900098A	Group of several fungi ²	Not disclosed	Production and application of a high-laccase content soil remediation agent	[203]
CN108751424A		wild soybean	Treatment of wastewater polluted by the heavy metal cadmium	[199]

¹ Some patents just provided a common name for the host organism. ² A list of the group of fungi is in Table S1.

Table 5. Patents that claim multiple applications.

Patent No.	Endophyte	Host ¹	Patent Application	Ref.
WO2000062600A1	*Neotyphodium uncinatum*	meadow fescue	Import desired traits: include no adverse effects on herbivore, insect resistance, drought tolerance and improved persistence in the plants.	[204]
CN104293681A	*Phoma* sp.	Not disclosed	Improving salt stress resistance in rice and wheat.	[205]
			Promotion of growth in rice seedling, delaying salt damage of wheat in saline and alkaline land.	
			Increasing biomass accumulation in wheat.	
US20160007613A1	*Clonostachys rosea*	Not disclosed	Promotion of plant vigor, health, growth, yield, and resistance to competitive stress.	[206]
WO2007107000A1	*Clonostachys rosea*	Not disclosed	Enhanced plant vigor, health, growth, yield, reducing environmental stress and reduction of dependency on chemical pesticides for pest control.	[207]
CN103849572A	*Fusarium* sp.	Not disclosed	Promoting plant growth and reduction of heavy metal absorption in tobacco.	[208]
CN101953261A	*Rhizoctonia* sp.	*Anoectochilus roxburghii*	Growth of *A. roxburghii*, improved the reproductive rate, survival rate and stress resistance.	[22]
WO2019115582A1	Group of several fungi ²	*Hordeum murinum*	Increased yield and biomass in cereal crops, and promotes biotic and abiotic stress resistance in cereal crops	[37]
WO2016030535A1	Group of several fungi ²	*Hordeum murinum subsp. murinum*	Improving dry shoot weight, mean dry grain weight and suppression of seed-borne infection in a cereal crop.	[35]

¹ Some patents just provided a common name for the host organism. ² A list of the group of fungi is in Table S1.
We found two patents, whose applications implicated the use a plural number of fungi (genus/species); one of them claims the capability to increase biomass and promote biotic and abiotic stress resistance in cereal crops [37], the other claims to improve dry shoot weight, mean dry grain weight and suppression of seed-borne in cereal crops [35].

4. Discussion

In the present review, we highlight a wide number of endophytic fungi that have been patented for developing processes, methodologies, or new techniques in applications that include but are not restricted to (a) alternatives to overcome biotic and abiotic stress and to reduce the use of chemicals associated with environmental toxicity in agricultural practices, (b) the degradation of harmful compounds, and (c) improvement in the ability of plants to remove contaminants from soil, water, and air. Abiotic stress tolerance and growth promotion of plants, and biocontrol of herbivores and plant pathogens, were the most patentable applications of endophytic fungi with 88 and 90 patents, respectively; concerning bio- and phytoremediation, 7 patents were recorded for the period 1988–2019 (Figure 2). The most representative genera of these applications belong to Alternaria, Aspergillus, Chaetomium, Fusarium, Penicillium and Muscodor.

![Figure 2. Total number of patents for area of application in the period 1988 to 2019.](image_url)

Studies of endophytic fungi ecology have allowed the understanding of the multiple interactions they develop with their host, other endophytes, as well with herbivores and pathogens that put the host under abiotic stress. Nonetheless, it is evident that one individual or group of endophytes can be used for mitigation stresses from different origins. Due to the concerns about global climate change and its implications in food security, there are an increased interest to develop applications for the use of endophytic fungi in abiotic stress tolerance and growth promotion of important food crops [209], as well as the use for biocontrol of herbivores and plant pathogens. This increment can be noted since 2011 as shown in Figure 3. The loss of growing areas due to contamination and the recovery of spaces contaminated by heavy metals, organic and inorganic compounds will lead the focus of research on endophytic fungi for bio- and phytoremediation applications.
Considering the abundance of endophytic fungi under study, the development of patentable applications like those reviewed here, and other applications still unexplored like fungal pigments [210], has become a prominent research area for this class of microorganisms.

Future Perspectives

The use of endophytic fungi to improve the nutrients absorption in plants can change the optimum usage of organic and inorganic fertilizers [211]. The capability of endophytic fungi to increase biotic and abiotic stress tolerance in plant hosts is an unexplored area for agricultural purposes; the control of pests and diseases under climate change conditions [211]; studies in fungal species related to develop resistance to changes in their environment could lead their application in food production in limited resources areas and as an important alternative for crop production for human sustainability. Many endophytes are now often recognized as symbionts with unique and intimate interactions with the plant host [10]. The genetic engineering of fungi is an easier process than in plants. The genetic modification of endophytic fungi with useful genes could contribute, with new traits, to the inoculation of plants [212].

The use of endophytic fungi on remediation of contaminated ecosystems is an interesting prospect for further studies. Fungi that could increase the capacity of CO$_2$ absorption by plants, degradation and biotransformation of waste, enhance food production without altering its quality or those that provided drought resistance/nutrient absorption capability to plant species related to human or animal feeding could be areas of significance to develop new applications and patents. The investigations applied in these fields are forwarded by the advance in the techniques used for the characterization of endophytic fungi and also by the technological advances in analytical techniques for carrying out studies of chemical processes at the cellular level.

![Figure 3. Patents of endophytic fungi for agricultural purposes and bio/phytoremediation registered from 1988 to 2019.](attachment:image.png)
Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/8/1237/s1, Table S1: List of patents grounded in the use of several endophytic fungi to develop applications.

Author Contributions: H.E.O. and D.T.-M. performed the data search and organized and analyzed the data, visualized and wrote the manuscript; L.C.-R. conceptualized, visualized, supervised, wrote and reviewed the manuscript. All authors read and approved the final manuscript.

Funding: This project was supported by the National System of Research (SNI) and the National Secretariat for Science and Technology of Panama (SENACYT).

Acknowledgments: The authors want to thank University of Sao Paulo, Brazil, for granted access to “Portal de PERIODICOS CAPES/MEC” and to Phyllis D. Coley for critical review of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References
1. Petrini, O. Fungal Endophytes of Tree Leaves. In Microbial Ecology of Leaves; Andrews, J.H., Hirano, S.S., Eds.; Springer: New York, NY, USA, 1991; pp. 179–197. [CrossRef]
2. Tan, R.X.; Zou, W.X. Endophytes: A Rich Source of Functional Metabolites. Nat. Prod. Rep. 2001, 18, 448–459. [CrossRef] [PubMed]
3. Torres-Mendoza, D.; Ortega, H.E.; Cubilla-Rios, L. Patents on Endophytic Fungi Related to Secondary Metabolites and Biotransformation Applications. J. Fungi 2020, 6, 58. [CrossRef] [PubMed]
4. Carroll, G. Fungal Endophytes in Stems and Leaves: From Latent Pathogen to Mutualistic Symbiont. Ecology 1988, 69, 2–9. [CrossRef]
5. Hallmann, J.; Sikora, R.A. Toxicity of Fungal Endophyte Secondary Metabolites to Plant Parasitic Nematodes and Soil-Borne Plant Pathogenic Fungi. Eur. J. Plant Pathol. 1996, 102, 155–162. [CrossRef]
6. Sturz, A.; Nowak, J. Endophytic Communities of Rhizobacteria and the Strategies Required to Create Yield Enhancing Associations with Crops. Appl. Soil Ecol. 2000, 15, 183–190. [CrossRef]
7. Azevedo, J.L.; Araujo, W.L. Diversity and Applications of Endophytic Fungi Isolated from Tropical Plants. In Fungi: Multifaceted Microbes; Ganguli, B.N., Deshmukh, S.K., Eds.; CRC Press: New Delhi, India, 2007; pp. 189–207.
8. Bamisile, B.S.; Dash, C.K.; Akutse, K.S.; Keppanan, R.; Afolabi, O.G.; Hussain, M.; Qasim, M.; Wang, L. Prospects of Endophytic Fungal Entomopathogens as Biocontrol and Plant Growth Promoting Agents: An Insight on How Artificial Inoculation Methods Affect Endophytic Colonization of Host Plants. Microbiol. Res. 2018, 217, 34–50. [CrossRef]
9. Bilal, S.; Shahzad, R.; Imran, M.; Jan, R.; Kim, K.M.; Lee, I.J. Synergistic Association of Endophytic Fungi Enhances Glycine max L. Resilience to Combined Abiotic Stresses: Heavy Metals, High Temperature and Drought Stress. Ind. Crops Prod. 2020, 143, 111931. [CrossRef]
10. Deng, Z.; Cao, L. Fungal Endophytes and Their Interactions with Plants in Phytoremediation: A Review. Chemosphere 2017, 168, 1100–1106. [CrossRef]
11. Nandy, S.; Das, T.; Tudu, C.K.; Pandey, D.K.; Dey, A.; Ray, P. Fungal Endophytes: Futuristic Tool in Recent Research Area of Phytoremediation. S. Afr. J. Bot. 2020. [CrossRef]
12. Yan, L.; Zhu, J.; Zhao, X.; Shi, J.; Jiang, C.; Shao, D. Beneficial Effects of Endophytic Fungi Colonization on Plants. Appl. Microbiol. Biotechnol. 2019, 103, 3327–3340. [CrossRef]
13. Ripa, F.A.; Cao, W.; Tong, S.; Sun, J. Assessment of Plant Growth Promoting and Abiotic Stress Tolerance Properties of Wheat Endophytic Fungi. Biomed. Res. Int. 2019, 2019, 1–12. [CrossRef] [PubMed]
14. He, W.; Megharaj, M.; Wu, C.Y.; Subashchandrabose, S.R.; Dai, C.C. Endophyte-Assisted Phytoremediation: Mechanisms and Current Application Strategies for Soil Mixed Pollutants. Crit. Rev. Biotechnol. 2020, 40, 31–45. [CrossRef]
15. Wang, Z.; Liu, Y.; Wang, Q.; Wang, C.; Shen, H. A Kind of Method for Promoting the Growth of Manyprickle Acanthopanax Root at Seedling Stage. CN 108513990 A, 11 September 2018.
16. Zheng, C.; Wu, J.; Wu, Y.; Qin, L.; Ye, B.; Zhai, X.; Han, T.; Xin, H. Anoectochilus Endophytic Fungi and Its Application. CN 107475123 A, 15 December 2017.
17. Ding, C.; Wang, Q.; Wang, Z.; Li, J.; Zhang, S. Can Promote Hair Pulse Acid Mold Growth of Endophytic Fungi and Its Application. CN 106929436 A, 7 July 2017.
18. Lin, H.; Fan, H.; Hong, T.; Zhou, Y.; Wu, C.; Chen, C. Mixed Endophyte Fungi Capable of Promoting Nutrient Absorption of Acacia confusa. CN 106085872 A, 9 November 2016.

19. Qin, L.; Jia, M.; Yang, Y.; Han, T.; Xin, H.; Zhang, Q.; Li, Y.; Kong, Z. Coix laryma-jobi Seed Endophytic Fungi and Its Application. CN 105624047 A, 1 January 2016.

20. Cui, J.; Zhang, Y. By Fungi for Promoting Seed Germination Method for Cynomorii Herba. CN 105039172 A, 11 November 2015.

21. Guo, B.; He, M.; Chen, X.; He, W.; Wei, Y. One Kind of Lycoperdum serratrum Endophytic Pythium and Its Application. CN 105039172 A, 11 November 2015.

22. Fang, X.; Jiang, Q.; Zheng, G. Application of Endophytic Fungus Rhizoctonia in Raising Seedlings of A. roxburghii. CN 101953261 A, 26 January 2011.

23. Han, T.; Qin, L.; Jia, X.; Zheng, C.; Jia, M. A Lithospermum euchromum Endophytic Fungus and Its Application. CN 104754882 A, 1 July 2015.

24. Guo, S.; Wu, L.; Chen, X.; Wang, C.; Meng, Z.; Xiao, P. Application of Dark Septate Endophyte in Culture of Salvia miltiorrhiza. CN 109456902 A, 12 March 2019.

25. Li, L.; Chen, J.; Huang, R. A Rhizoma bletillae Endophytic Fungus 1-N2 and Application Thereof. CN 101953261 A, 1 June 2015.

26. Hong, W.; Wu, C.; Xie, A. Endophytic Fungus Penicillium sp. Strain 1 Capable of Improving Cold Resistance of Eucalyptus and Its Application. CN 102086439 A, 8 June 2011.

27. Hong, W.; Wu, C.; Xie, A. Penicillium sp. Strain 1 as Endophytic Fungus of Eucalyptus and Its Application in Increasing Low-Phosphorus Stress Tolerance and Promoting Phosphorus Absorption of Eucalyptus. CN 101974438 A, 16 February 2011.

28. Hong, W.; Wu, C.; Xie, A. Penicillium sp. Strain 2 as Endophytic Fungus of Eucalyptus, and Preparation Method of Its Microbial Solution and Its Application in Alleviating Aluminum Poisoning. CN 101974437 A, 16 February 2011.

29. Lopez Llorca, L.V.; Zavala Gonzalez, E.A.; Ramirez Lepe, M. Use of Pochonia chlamydosporia to Promote Flowering and Fruiting in Cultivated Crops. ES 2500790 A1, 30 September 2014.

30. Djonovic, S.; McKenzie, E.A.; Toledo, G.V.; Sadowski, C.; Von Maltzahn, G.; Ambrose, K.V.; Zhang, X.; Johnston, D.M.; Gulick, T.A. Penicillium Endophyte Compositions and Methods for Improved Agronomic Traits in Plants. WO 2016210238 A1, 29 December 2016.

31. Du, Y. Preparation Method and Application of Panax pseudoginseng and/or Panax notoginseng Endophytic Fungus Acremonium strictum. CN 105907648 A, 31 August 2016.

32. Murphy, B.; Hodkinson, T.; Doohan, F. Fungal Endophytes for Improving the Mean Dry Shoot Weight, Mean Dry Grain Weight, and Suppressing Seed-Borne Infection in Barley. WO 2016030535 A1, 3 March 2016.

33. Bi, Y.; Xue, Z.; Quan, W. Optimal Dse Strain for Promoting Corn Seed Soaking Rooting. CN 110250210 A, 20 September 2019.
42. Lin, H.; Xu, C.; Hong, W.; Wu, C.; Xie, A.; Li, J. Endophytic Fungus Capable of Promoting Growth of Fir. CN 104004666 A, 27 August 2014.
43. Wu, C.; Xie, A.; Xu, C.; Hong, W.; Lin, Y. Endophytic Fungus for Reliving Phosphorus Stress in Fir. CN 104004665 A, 27 August 2014.
44. Xie, A.; Hong, W.; Wu, C.; Xu, C.; Fan, H. Endophytic Fungus Capable of Promoting Phosphorus Absorption of Fir. CN 104004667 A, 27 August 2014.
45. Xu, C.; Wu, C.; Xie, A.; Hong, W.; Hong, T. Endophytic Fungus Capable of Promoting Photosynthesis of Fir. CN 104004664 A, 27 August 2014.
46. Hong, T.; Liu, J.; Wu, C.; Lin, H.; Xie, A.; Hong, C. A Strain of Endophyte Fungi for Promoting Millennium Tong Photosynthesis under Low Phosphorus Environment. CN 104774771 A, 15 July 2015.
47. Hong, C.; Gong, H.; Lin, H.; Zhang, G.; Hong, T.; Wu, C. An Endophytic Fungus for Promoting Phosphorus Uptake of *Aleurites montana*. CN 104818218 A, 5 August 2015.
48. Hong, C.; Lin, H.; Xie, A.; Hong, T.; Wu, C.; Hong, W. Endophyte Fungi That Promotes *Aleurites montana* Growth and Photosynthesis at Low Phosphorus Environment. CN 104789481 A, 22 July 2015.
49. Lin, H.; Chen, J.; Hong, T.; Hong, C.; Xie, A.; Wu, C. An Endophytic Fungus Strain for Promoting *Aleurites montana* Biomass Growth in Low-p Environment. CN 104762219 A, 8 July 2015.
50. Lin, H.; Hong, C.; Hong, T.; Su, S.; Wu, C.; Xie, A. Endophyte That Can Promote the Growth of Biomass in Millennium Tong. CN 104818217 A, 5 August 2015.
51. Xie, A.; Hong, T.; Hong, C.; Lin, H.; Li, J.; Wu, C. An Endophytic Fungus for Promoting the Growth of *Aleurites montana* Root System under Low Phosphorus Environment. CN 104818219 A, 5 August 2015.
52. Li, Y.; Luo, Z.; Ding, W. *Tephrosia purpurea* Endophytic Fungi Tpl35 and Its Application in Preventing and Controlling Plant Diseases. CN 104560735 A, 29 April 2015.
53. Li, Y.; Luo, Z.; Ding, W.; Zou, K. *Herba Tephrosiae purpureae* Endophytic Fungi Tpl25 and Its Application in Preventing and Controlling Plant Diseases. CN 104531543 A, 22 April 2015.
54. Wu, L.; Si, J.; Dong, H.; Han, T.; Zhu, B. *Dendrobium officinale* Endophytic Fungi and Its Application. CN 105886405 A, 24 August 2016.
55. Xia, C.; Xu, Q.; Zhou, G.; Jin, H.; Zhang, Y.; Wu, J.; Li, Y.; Zhang, C.; Lin, F.; Liu, H.; et al. Endophytic Fungi Strain Ycef193 and Its Use. CN 103834578 A, 4 June 2014.
56. Xia, C.; Xu, Q.; Chen, C.; Jin, H.; Liu, H.; Zhang, Y.; Li, Y.; Zhang, L.; Li, X.; Zhang, C.; et al. An Endogenous Fungal Strain Nyn8g01 and Its Applications. CN 105316240 A, 10 February 2016.
57. Zhang, C.; Lin, F.; Liu, H.; Feng, X. Endophytic Fungal Strain RS-6-1 Application. CN 103865806 A, 18 June 2014.
58. Jin, H.; Li, X.; Zhang, C.; Feng, X.; Liu, H.; Lin, F.; Xu, Q.; Cheng, C.; Xiang, B.; Li, D.; et al. An Endogenous Fungal Strain Nyn771c06 and Its Applications. CN 105296359 A, 3 February 2016.
59. Li, J.; Xu, H.; Wu, C.; Lin, Y.; Hong, T.; Lin, H. Endophytic Fungus Capable of Improving Photosynthesis of *Schima superba*. CN 110257259 A, 20 September 2019.
60. Li, J.; Xu, H.; Wu, C.; Lin, Y.; Hong, T.; Lin, H. Endophytic Fungus Capable of Promoting Phosphorus Absorption of *Schima superba*. CN 110257258 A, 20 September 2019.
61. Li, J.; Xu, H.; Wu, C.; Lin, Y.; Lin, H.; Hong, T. Endophytic Fungus Capable of Promoting Growth of *Schima superba* Seedling Height and Ground Diameter under Low-Phosphorus Environment. CN 110343619 A, 18 October 2019.
62. Huang, R.; Tian, P.; Li, L. *Bletilla striata* Endophytic Fungus 3-C2 and Application Thereof. CN 109628322 A, 16 April 2019.
63. Li, L.; Tian, P.; Huang, R. A *Bletilla striata* Endophytic Fungi Strain 1-G1 and Application Thereof. CN 109504611 A, 22 March 2019.
64. Huang, J.; Zhang, S.; Zhu, X.; Qin, J.; Hu, H. *Tulasnella calospora* Qs104, Application Thereof and Method for Promoting Growth of Aseptic Seedling of *Paphiopedilum*. CN 110408551 A, 5 November 2019.
65. Zhou, F.; Huo, G.; Gu, Z.; Hua, C. One Kind of Anti-Salt Stress Fungal Strain and Breeding Methods and Their Application. CN 104762216 A, 8 July 2015.
66. Henson, J.M.; Sheehan, K.B.; Rodriguez, R.J.; Redman, R.S. The Use of Endophytic Fungi to Treat Plants. WO 200400017 A2, 31 December 2003.
67. Redman, R.S.; Rodriguez, R.J. Fungal Isolates and Their Use to Confer Salinity and Drought Tolerance in Plants. WO 2009012480 A2, 22 January 2009.
68. Ren, A.; Gao, Y.; Chen, L.; Zhao, N.; Wang, Y.; Xie, F. Method for Transferring Fungal Endophyte of Wild Grasses to Turf Grasses for Improving Stress Tolerances to Drought and Diseases. CN 101314760 A, 3 December 2008.

69. An, H.; Luo, X.; Dong, J. Heavy Metal-Resistant Endophytic Fungi *Paraconiothyrium cyclothyrioides* Mr2-1 and Application Thereof. CN 105020299 A, 28 October 2015.

70. Lv, M.; Zhou, W.; Wang, J.; Li, L.; Xu, L.; Bai, Q.; Song, W.; Zhu, J. Method for Improving Crop Resistance to Herbicide Bensulfuron-Methyl Using *Periformospora indica*. CN 107926549 A, 20 April 2018.

71. Vujanovic, V.; Germida, J.J. Endophytic Microbial Symbionts in Plant Prenatal Care. US 20150366217 A1, 24 December 2015.

72. Zhao, Y.; Xiao, J.; Ma, X.; Wang, H.; Chen, X.; Yang, T.; Yang, Z.; Wang, Y.; Ren, Z. Seabuckthorn Endogenous Fungi and Their Extracts for Use to Promote Drought Resistance of Lawn Grass. CN 104911108 A, 16 September 2015.

73. Zheng, C.; Qin, L.; Zhai, X.; Li, X.; Han, T.; Zhang, Q.; Jiang, Y.; Jia, M. Improving *Salvia miltiorrhiza radix* Yield and Effective Ingredient of Endophytic Fungi and Its Application. CN 106801014 A, 6 June 2017.

74. Li, W.; Wang, L.; Ma, Z.; Tang, C.; Zhang, C.; Hu, Z.; Wang, Z. *Dendrobium officinale* Endophytic Fungi Strains Nt66g01 and Its Applications. CN 104630073 A, 20 May 2015.

75. Wu, C.; Hong, C.; Hong, T.; Xiao, Y.; Lin, H.; Chen, C. An Endophytic Fungi for Promoting Nutrient Absorption of Millennium Tung. CN 104805019 A, 29 July 2015.

76. Wei, X.; Wang, F.; Ma, C.; Wan, S.; Jing, M.; Liu, Y.; Wang, Z. Method for Artificially Planting *Salvia miltiorrhiza*. CN 104805019 A, 29 July 2015.

77. Li, J.; Lin, H.; Zhou, Y.; Chen, C.; Xie, A.; Fan, H. Can Promote the Growth of Taiwan *Acacia* Biomass Endophytic Fungi. CN 105861334 A, 17 August 2016.

78. Hong, T.; Lin, Y.; Lin, H.; Zhou, Y.; Han, T.; Zhang, C.; Chen, A. Under Low Phosphorus Environment Promoting *Taiwan Acacia* Nutrient Absorption of Endophytic Fungi. CN 105861335 A, 17 August 2016.

79. Wu, C.; Lin, H.; Zhou, Y.; Chen, C.; Xie, A.; Li, J. Mixed Endophytic Fungi for Promoting *Acacia confusa* Phosphorus Uptake under Low Phosphorus Environment. CN 106085873 A, 9 November 2016.

80. Wu, C.; Hong, W.; Xie, A.; Lin, Y.; Fan, H. One Endophytic Fungus Capable of Increasing the Chlorophyll Content of *Casuarina*. CN 103173360 A, 23 April 2014.

81. Zhang, C.; Feng, X.; Su, Z.; Lin, F. Endophytic Fungi Strain RR21 and Its Application in Plant Growth Regulation and/or Plant Pathogenicity. CN 103114044 A, 22 May 2013.

82. Ming, Q.; Qin, L.; Han, T.; Zhang, Q.; Zheng, C.; Zhang, H.; Jia, M. Preparation and Application of Water-Soluble Extract of Endophytic Fungi *Hypha* in *Salvia miltiorrhiza* and Part of the Extract. CN 103978293 A, 21 May 2014.

83. Li, W.; Wang, L.; Ma, Z.; Tang, C.; Zhang, C.; Hu, Z.; Wang, Z. *Dendrobium officinale* Endophytic Fungi Strain Nt04y01 and Its Application. CN 104593274 A, 6 May 2015.

84. Spangenberg, G.C.; Guthridge, K.M.; Forster, J.W.; Sawbridge, T.I.; Ludlow, E.J.I.; Kaur, J.; Rochfort, S.J.; Rabinovich, M.A.; Ekanayake, P. *Neotyphodium* Endophytes of Perrenial Ryegrass and Tall Fescue with Beneficial Properties for Plant Growth. US 20130104263 A1, 25 April 2013.

85. Xie, A.; Chen, C.; Lin, H.; Wu, C.; Hong, T.; Zhou, Y. A Under Low Phosphorus Environment for Promoting Growth of Taiwan *Acacia* Biomass Endophytic Fungi. CN 106010984 A, 12 October 2016.

86. Yao, Q.; Chen, M.; Zhou, Y.; Zhu, H. Blueberry Endogenetic Fungus Strain with Growth-Promoting Function and Application Thereof. CN 107988087 A, 4 May 2018.

87. Li, W.; Wang, L.; Ma, Z.; Tang, C.; Zhang, C.; Hu, Z.; Wang, Z. *Dendrobium officinale* Endophytic Fungi Strain Nt04y01 and Its Application. CN 104593274 A, 6 May 2015.

88. Lopez Llorca, L.V.; Zavala Gonzalez, E.; Ramirez Lepe, M. Use of *Pochonia chlamydosporia* to Promote Flowering and Fruiting in Cultivated Crops. WO 2016038234 A1, 17 March 2016.

89. Mao, L.; Zhang, C.; Lin, F.; Feng, X. Application of Endophytic Fungus Strain NYN8G01 in Promoting Rice Growth. CN 108041078 A, 18 May 2018.

90. Craven, K.; Ray, P. A Symbiont *Serendipita vermifera bescii* for Enhancement of Plant Performance. WO 2019113255 A1, 13 June 2019.

91. Han, T.; Chen, L.; Qin, L.; Xin, H.; Zheng, C.; Jia, M.; Zhai, X.; Shen, H.; Yang, Y. *Radix ginseng* Endophytic Fungi and Its Application. CN 105420119 A, 23 March 2016.

92. Zhang, L. *Anoectochilus formosanus* Seedling Adaptation Cultivation Method. CN 107046965 A, 18 August 2017.
93. Zhou, Y.; Lin, H.; Chen, C.; Lin, Y.; Hong, T.; Wu, C. Mixed Endophytic Fungi for Promoting Growth of Height and Ground Diameter of *Acacia confusa* Seedling. CN 105969672 A, 28 September 2016.

94. Zhang, C.; Lin, F.; Feng, X.; Li, Y. *Xylaria striata* for Promoting Plant Growth and Increasing Plant Biomass. CN 102876584 A, 16 January 2013.

95. Lan, T.; Xie, L.; Zhang, Y.; Chen, Y.; Zhang, W.; Su, Q.; Qin, L.; Huang, C.; Lu, J. Dark with Spacer Endophytic Fungi Hs40 Thereof in Herba Dendrobii Herba Production Application. CN 107460133 A, 12 December 2017.

96. Ambrose, K.V.; Boghigian, B.A.; Djonovic, S.; Gray, P.A.; Toledo, G.V.; Marquez, L.M.; Pelaez, J.N.; Von Maltzahn, G. Designed Complex Endophyte Compositions and Methods for Improved Plant Traits. WO 2016179047 A1, 10 November 2016.

97. Mrnka, L.; Schmidt, C.S.; Frantik, T.; Vosatka, M.; Jandejsek, Z.; Fulin, T.; Kastanek, P.; Kronusova, O.; Lovecka, P.; Demmerova, K. A Mixture of Endophytic Fungi for Increasing the Production of Biomass, the Method of Its Preparation and Its Use. CZ 306950 B6, 4 October 2017.

98. Sharon, A.; Gur, Y.; Ofek-Lalzar, M.; Llorens, E.; Sharon, O. Fungal Endophyte Species for Agrochemical Uses. WO 2017134664 A1, 10 August 2017.

99. Von Maltzahn, G.; Flavell, R.B.; Toledo, G.V.; Leff, J.W.; Samayoa, P.; Marquez, L.M.; Johnston, D.M.; Djonovic, S.; Millet, Y.A.; Sadowski, C.; et al. Endophytes, Associated Compositions, and Methods of Use Thereof. US 20150373993 A1, 31 December 2015.

100. Riley, R.; Djonovic, S.; Vosnidou, N.; Bitas, V. Novel Endophytic Microbes for Modulation of the Nutritional Quality Traits in Seeds. WO 2018102733 A1, 7 June 2018.

101. Latz, M.A.C.; Jensen, B.; Collinge, D.B.; Jørgensen, H.J.L. Endophytic Fungi as Biocontrol Agents: Elucidating Mechanisms in Disease Suppression. *Plant Ecol. Divers.* 2018, 11, 555–567. [CrossRef]

102. Calvo-Polanco, M.; Sánchez-Romero, B.; Aroca, R. Arbuscular mycorrhizal fungi and the tolerance of plants to drought and salinity. In *Symbiotic Endophytes*; Aroca, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 271–288.

103. Bacon, C.W.; White, J.F. Functions, Mechanisms and Regulation of Endophytic and Epiphytic Microbial Communities of Plants. *Symbiosis* 2016, 68, 87–98. [CrossRef]

104. Pandey, P.K.; Samanta, R.; Yadav, R.N.S. Inside the Plant: Addressing Bacterial Endophytes in Biotic Stress Alleviation. *Arch. Microbiol.* 2019, 201, 415–429. [CrossRef] [PubMed]

105. Feng, Z.; Zhu, H.; Li, Z.; Huang, D.; Wang, L.; Shi, Y.; Zhao, L. A Kind of Endophytic Fungi Cef-193 of Cotton and Application Thereof. CN 103897992 A, 2 July 2014.

106. Latch, G.C.M.; Fletcher, L.R.; Rolston, M.P.; Easton, H.S.; Popay, A.J.; Tapper, B.A.; Rowan, D.D.; Christensen, M.J. Endophytic Fungi: *Acremonium lolii*. AU 639084 B2, 15 July 1993.

107. Huang, G.; Guo, Z.; Cai, J.; Shi, T.; Liu, X. *Acremonium strictum* HND5 Isolated from Leaf of *Brachiaria* sp. and Its Application in Biocontrol of Plant Diseases. CN 101235355 A, 6 August 2008.

108. Lipham, L.B.; Stuedemann, J.A.; Thompson, F.N., Jr. Method and Compositions for Prevention and Treatment of Fescue Toxicosis Using Dopamine Antagonists Specific for D2 Receptors. US 93951 A0, 1 March 1988.

109. Musetti, R.; Borselli, S.; D’Ambrosio, M. Antifungal Compositions Containing the Endophyte Fungus *Alternaria alternata* and/or Its Metabolites Belonging to the Family of Diketopiperazines, as Antagonist Agents of *Plasmopara viticola*. WO 2008007251 A2, 17 January 2008.

110. Shentu, X.; Yu, X.; Dong, S.; Hao, P.; Bian, Y.; Ma, Z. Strain of *Alternaria alternata* 31 as Biocontrol Fungus. CN 102191184 A, 21 September 2011.

111. Yu, X.; Shentu, X.; Dong, S.; Hao, P.; Bian, Y.; Ma, Z. Strain of *Alternaria alternata* 31 as Biocontrol Fungus. CN 102204570 A, 5 October 2011.

112. Hua, R.; Xu, Q.; Bai, Y.; Zeng, X.; Cao, H.; Wu, X. Endophytic Fungus of Spiraea for Biocontrol of Plant Pathogens. CN 10323942 A, 7 August 2013.

113. Wang, Z.; Wang, X.; Zhao, H.; Shi, G.; Zhao, S.; Yang, H.; Zhang, Y. *Toona sinensis* Endophytic Fungus 56-50 (*Alternaria mali*). Its Secondary Metabolite, Preparation Method and Application in Degrading *Pseudomonas aeruginosa* or *Proteus*. CN 106520572 A, 22 March 2017.

114. Cosoveanu, A.; Cabrera Perez, R. Extracts Obtained from Endophytic Fungi HTF58 *Alternaria alternata* and HRC08 *Fusarium acuminatum* of Artemisa thucusula and *Austrian artemis* as Antifungals for Agricultural Use. ES 2696982 A1, 21 January 2019.
115. Shu, S.; Cui, L.; Yan, L. An Endophytic Fungus of *Huperzia serrata* Resistant to Gray Mold and Application Thereof. CN 110373331 A, 25 October 2019.

116. Yu, Z.; Qiao, M. A Kind of Endophytic Bacterial for Preventing and Treating Plant Nematodes. CN 108441426 A, 24 August 2018.

117. Shentu, X.; Yu, X.; Dong, S.; Hao, P.; Bian, Y.; Ma, Z. Strain of *Aspergillus restrictus* 28 as Biocontrol Fungus. CN 102191185 A, 21 September 2011.

118. Wang, J.; Zhang, P.; Wu, P.; Wang, G.; Wang, C. Plant Endophytic Fungus *Aspergillus* sp. Mbl1612 Extract and Application Thereof. CN 109504610 A, 22 March 2019.

119. Han, X.; Ji, J.; Zhao, J.; Zhao, D.; Liu, M.; Zhang, C.; Peng, Y.; Li, Y.; Liu, J.; Zhang, Z.; et al. Herbicidal Fungus Screened from Seaweed and Its Extracts and Application in Weed Control of Farmland. CN 108342328 A, 31 July 2018.

120. Gao, K.; Liu, X.; He, B.; Li, C. Method for Producing Antibiotic Substance from Plant Endophytic Fungus *Chaetomium globosum* ND35. CN 101280320 A, 8 October 2008.

121. Guo, Z.; Hua, R.; Bai, Y.; Cao, H.; Wu, X.; Li, X.; Tang, J. Separating and Purifying Endogenous Endophytic Fungus of *Solidago canadensis* for Control of Phytopathogenic Fungi. CN 102690759 A, 26 September 2012.

122. Liu, J.; Zhang, G.; Pan, H.; Qin, J.; Qu, X.; Mo, H.; Zhang, J.; Zhang, Y. Application of *Chaetomium globosum* NO.04 for Preventing and Treating Plant Pathogenic Fungi. CN 102742605 A, 24 October 2012.

123. Wang, Z.; Wang, X.; Zhang, Y.; Shi, G.; Zhao, S.; Zhao, H.; Yang, H. *Toona sinensis* Endophytic Fungus TS8 and Its Secondary Metabolites, Preparation Method and Application Thereof. CN 106754396 A, 31 May 2017.

124. Zhang, P.; Mao, Z.; Cheng, S. *Chaetomium globosum* and Its Application. CN 104877919 A, 2 September 2015.

125. Hua, R.; Zeng, X.; Bai, Y.; Cao, H.; Wu, X.; Li, X.; Tang, J. Separating and Purifying Endogenous Endophytic Fungus of *Camptotheca acuminata* for Biocontrol of Phytopathogenic Fungi. CN 103255065 A, 21 August 2013.

126. Qin, J.; Zhang, G.; Pan, H.; Li, X.; Zhang, Y.; Mo, H.; Tian, Y.; Cheng, H. Application of Chaetoglobosin A in Preparing Microbial Pesticide for Control of Northern Leaf Blight of Corn, Grape White Rot and Tomato *Rhizopus* Fruit Rot. CN 102754652 A, 31 October 2012.

127. Zhang, P.; Li, L.; Huang, R.; Yao, Y. Sophora Tonkinensis Gagnep. Endogenous Fungus TRXY-34-1 and Preparation Method of Metabolite Thereof for Preventing and Treating Black Spot of *Radix notoginseng*. CN 105483022 A, 13 April 2016.

128. Huang, R.; Lan, F.; Yao, Y.; Li, L. *Sophora tonkinensis gagnep*. Endogenous Fungus TRXY-34-1 and Preparation Method of Metabolite Thereof for Preventing and Treating Anthracnose of *Radix notoginseng*. CN 105483021 A, 13 April 2016.

129. Hua, R.; Bai, Y.; Cao, H.; Wu, X.; Xu, Q.; Zeng, X. Method for Preparing *Ginkgo biloba* Endophytic Fungi Fermentation Broth as Fungicide against Plant Pathogen. CN 103194490 A, 10 July 2013.

130. Xiao, J.; Chen, X.; Wang, H.; Zhao, Y.; Gong, N.; Yang, T.; Yang, Z.; Li, H. Endophytic Fungus of *Phragmites communis*, Preparation of Its Extract for Control of Rice Disease. CN 105087386 A, 25 November 2015.

131. He, F.; Yuan, Z.; Zhang, B.; Liu, X.; Zhang, Z. Biocontrol Preparation for Preventing and Controlling Rice Blast and Preparation Method Thereof. CN 110558337 A, 13 December 2019.

132. Yuan, Z.; He, F.; Zhang, B.; Liu, X.; Zhang, Z.; Zhao, Z.; Pu, X. Preventing Ginger Bacterial Wilt of *Ginkgo* Source Growth-Promoting Preparation. CN 108624527 A, 9 October 2018.

133. Li, X.; Li, C.; Wei, X.; Liu, J. A Method for Reducing the Old of e.Sibiricus Seed Germination Period Rate Method for Mildew. CN 106538108 A, 29 March 2017.

134. Rolston, M.P.; Simpson, W.R. Grass Endophyte with Enhanced Fungicide Resistance. WO 2007021200 A1, 22 February 2007.

135. Latch, G.C.M.; Christensen, M.J.; Tapper, B.A.; Easton, H.S.; Hume, D.E.; Fletcher, L.R. Tall Fescue Endophytes Which Enhance Pest Resistance and Reduce Ergopeptine Alkaloid Levels. CA 2319847 C, 10 April 2012.

136. Huang, R.; Yao, Y.; Lan, F.; Li, L. Application of *Sophora tonkinensis* Endophytic Fungi SDTE-P in Preventing and Controlling Anthracnose of *Panax notoginseng*. CN 105462854 A, 6 April 2016.

137. Huang, R.; Yao, Y.; Lan, F.; Li, L. Application of *Sophora tonkinensis* Endophytic Fungi SDTE-P in Controlling *Pseudo-Ginseng* Root Rot. CN 105462850 A, 6 April 2016.

138. Zhang, Y.; Zhang, M.; Zhang, T.; Xie, J.; Hou, S. A Biocontrol Endophytic Fungus and Application Thereof. CN 10912069 A, 1 January 2019.

139. Li, L.; Yao, Y.; Huang, R.; Lu, X. Application of *Sophora tonkinensis gagnep*. Endophytic Fungi SDTE-P in Controlling *Alternaria panax* Control. CN 105462855 A, 6 April 2016.
140. Yin, C.; Xiang, L.; Mao, Z.; Zhang, X.; Wang, G.; Chen, X. An Endophytic Fungus Resisting Four Kind of Fusarium Fungus and the Application Thereof. CN 105255742 A, 20 January 2016.

141. Ye, Y.; Dong, G.; Huang, H.; Fang, Y. Kandelia Candel Endophytic Fungus Penicillium sp. 2cpe-1, Fermentation Broth and Application Thereof. CN 108546651 A, 18 September 2018.

142. Xi, P.; Jiang, L.; Xu, D.; Jiang, Z.; Xu, Z.; Chen, J.; Li, M.; Huang, L.; Zhong, J. Penicillium purpurogenum Strain and Its Biological Preparation and Application in Controlling Litchy Downy Blight. CN 103773699 A, 7 May 2014.

143. Li, L.; Yao, Y.; Huang, R.; Lu, X. Application of Rhexocercosporidium sp. TRXY-59-2 as Sophora tonkinensis Endophytic Fungi in Preventing and Controlling Panax notoginseng Anthracnose. CN 105462853 A, 6 April 2016.

144. Wei, J.; Yao, Y.; Huang, R.; Li, L. Application of Sophora tonkinensis Endophytic Fungi TRXY-59-2 in Preventing and Treating Root Rot of Panax notoginseng. CN 105462851 A, 6 April 2016.

145. Yao, Y.; Huang, R.; Wu, X.; Li, L. Application of Sophora tonkinensis gagnep Endophytic Fungus TRXY-59-2 to Prevent and Control Alternaria panax whetz. CN 105462848 A, 6 April 2016.

146. Spangenberg, G.C.; Guthridge, K.M. Novel Fungal Endophytes from Brachiaria and Urochloa for Use in Resistance to Fungal Plant Diseases. WO 2012174585 A1, 27 December 2012.

147. Zu, L.; Xiao, J. A New Strain of Endophytic Fungi Qty from Caulis sinomenii and Application in Biological Control Thereof. CN 108192832 A, 22 June 2018.

148. Zhang, C.; Zhang, J.; Dai, D.; Liu, Y. Biocontrol Plant Endophytic Fungi and Application Thereof in Preventing Gray Mold of Cash Crop. CN 108085259 A, 29 May 2018.

149. Vidal, S.; Tefera, T. Bio-Pesticide and Method for Pest Control. US 8709399 B2, 29 April 2014.

150. Li, L.; Yao, Y.; Lu, X.; Huang, R. Application of Sophora tonkinensis Endophytic Fungus B21 in Preventing and Treating Panax notoginseng Black Spot. CN 105462892 A, 6 April 2016.

151. Fu, Y.; Yao, M.; Gao, C.; Sun, J.; Wang, W.; Zhao, C.; Gu, C. A Pigeonpea Endophytic Fungi for High Yielding of Flavipin and Its Application. CN 105838613 A, 10 August 2016.

152. Zhu, H.; Zhang, Y.; Feng, Z.; Feng, H.; Li, Z.; Shi, Y.; Zhao, L. The Cotton Endophytic Fungi Cef-082 and Its Application in the Cotton Verticillium Wilt. CN 105368720 A, 2 March 2016.

153. Zhang, Y.; Zhang, T.; Zhang, M. Endophytic Fungus for Reducing the Incidence of Panax notoginseng Rot and Microbial Inoculum Thereof. CN 109749938 A, 14 May 2019.

154. Yang, T.; Wang, Z.; Wei, Y.; Li, S.; Li, X.; Fang, Y. Endophytic Fungus of Podophyllum hexandrum and Application Thereof. CN 110172408 A, 17 August 2019.

155. Shu, S.; Cui, L.; Yan, L. Sclerotinia sclerotiorum Resistant Huperzia serrata Endophytic Fungus and Application Thereof. CN 110272829 A, 24 September 2019.

156. Hume, D.E.; Johnson, R.D.; Simpson, W.R.; Card, S.D. Improved Fungal Endophytes for Improved Pest Protection of Secale spp. Plant Host. WO 201436070 A1, 12 September 2014.

157. Jiang, S.; Duan, J.; Qian, D.; Tao, J. Fusella DG09 Having Activity in Resisting Plant Pathogens, and Its Fermentation Broth and Application. CN 102174416 A, 7 September 2011.

158. Gonzalez Coloma, A.; Diaz Hernandez, C.E.; Andres Yeves, M.; Fraga Gonzalez, B.M.; Bolanos Gonzalez, P.; Cabrera Perez, R.; Gimenez Marino, C. Fungal Biocidal Products and Their Use for Control of Phytopathogens and Plant Pests. WO 2016034751 A1, 10 March 2016.

159. Seman, I.A.; Kushairi Din, A.; Moslim, R.; Ramli, N.R.; Ahmad Zairun, M.; Sebran, N.H. Compositions for Controlling Ganoderma Disease in Plants and Method Thereof by Using Endophytic Fungus, Hendersonia gano EFl. WO 2013081448 A2, 6 June 2013.

160. Zhang, L.A. Citrus Endophytic Fungi and Application Thereof. CN 109536390 A, 29 March 2019.

161. Zhu, H.; Feng, Z.; Li, Z.; Wang, L.; Zhao, L.; Shi, Y.; Zheng, H. Cotton Endophytic Fungi Cef-714 and Its Application in Control of Cotton Verticillium Wilt. CN 103642704 A, 19 March 2014.

162. Du, X.; Zhou, Y.; Shang, X.; Liu, D. An Endophytic Fungus Strain of Gentiana manshurica and Application Thereof. CN 103289906 A, 11 September 2013.

163. Zhu, B.; Qin, L.; Zhang, Q.; Yang, K.; Zhang, W.; Wu, W.; Lu, J.; Dong, S. Atractylodes macrocephala Endophytic Fungus and Application Thereof in Preventing and Treating Root Rot of Atractylodes macrocephala. CN 110229758 A, 13 September 2019.

164. Lin, F.; Wang, G.; Zhang, C.; Mao, L.; Zhou, Z. Plant Endophytic Fungus Muscodor sp. ZJLQ024, Application Thereof, and Antimicrobial Agent. CN 101691541 A, 7 April 2010.

165. Strobel, G.A.; Manker, D.C.; Mercier, J.; Jimenez, J.; Lin, J.; Thurston, J.; Kersting, B. Biopesticidal Muscodor albus Formulations. US 20040141955 A1, 22 July 2004.
166. Strobel, G.A.; Manker, D.C. Endophytic Fungi of the Genus *Muscodor* and Their Volatiles as Pesticides. WO 2002082988 A1, 24 October 2002.

167. Green, W.A.; Herrgard, M.J.; Kerovuo, J.S.; Lomelin, D.; Mathur, E.J.; Richardson, T.H.; Schwartz, A.S.; Strobel, G.A. Endophytic Fungi *Muscodor strobelli* and Its Nucleic Acid and Polypeptide Sequences and Uses for Killing or Inhibiting Plant Pests or Pathogens. WO 2010115156 A2, 7 October 2010.

168. Strobel, G.A.; Daisy, B. Naphthalene Insect Repellent from *Muscodor vitigenus*. WO 2004034785 A2, 29 April 2004.

169. Li, Z.; Wang, X. A Kind of Grape Endophytic Fungi and Its Application for Preventing and Treating Grape Gray Mold. CN 106893678 A, 27 June 2017.

170. Wu, W.; Su, X.; Pan, F.; Chen, A.; Tang, X. A *Fritillaria wabuensis* Endophytic Fungi Wbs003 and Its Application. CN 104774768 A, 15 July 2015.

171. Yu, X.; Shentu, X.; Dong, S.; Hao, P.; Bian, Y.; Ma, Z. Strain of *Nigrospora oryzae* 46 as Biocontrol Fungus. CN 102191186 A, 21 September 2011.

172. Jiang, H. Cortex *Magnolia officinalis* Endophytic Fungi Hpif3 and Its Application in Preventing Wheat Take-All Disease. CN 104789482 A, 22 July 2015.

173. Zhu, C.; Peng, C.; Wang, Q.; Wang, H.; Geng, Q.; Kong, B.; Zhang, A. *Hippophae fructus* Endophytic Fungi Strain 5J1 Fermentation Extract for Use. CN 110178857 A, 30 August 2019.

174. Zhu, H.; Li, Z.; Feng, Z.; Wang, L.; Zheng, H.; Shi, Y.; Zhao, L. Cotton Endophytic Fungi Cef-818 and the Application in Cotton *Verticillium* Wilt Control Thereof. CN 103627643 A, 12 March 2014.

175. Qian, Y.; Kang, J.; Geng, K. Application of *Pestalotiopsis uvicola* Metabolite in Prevention and Treatment of *Kiwi Monilinia fructicola*. CN 104161049 A, 26 November 2014.

176. Yang, Y.; Yuan, Z.; Wang, X. *Pezicula neosporulosa* with Bacteriostasis and Lignocellulose Degradation Activity and Application Thereof. CN 103834580 A, 4 June 2014.

177. Xie, L.; Nong, Q.; Zhang, W.; Su, Q.; Chen, Y.; Lan, T.; Zhang, Y.; Qin, L. Controlling Banana Blight Disease of Endophytic Fungi 1—14 and Application Thereof. CN 106167767 A, 30 November 2016.

178. Yuan, Z.; Zhang, B.; Liu, X.; He, F.; Zhang, Z. Biocontrol Preparation for Preventing and Treating Lettuce *Sclerotinia* and Preparation and Use Method Thereof. CN 110558336 A, 13 December 2019.

179. Guo, S.; Li, X.; Chen, X.; Wang, H. Endophytic Fungi *Rhizopus Dhs96* and *Trichoderma DF188* Capable of Preventing *Dendrobium* Soft Rot. CN 102234618 A, 9 November 2011.

180. Yu, D.; Gong, S.; Xiang, L.; Yang, L. Pink Trichothecenes and Its Fermented Products Used in the Control of Wheat Powdery Mildew. CN 105211105 A, 6 January 2016.

181. Gnanamangai, B.M., Jr.; Ponnusamy, P.P., Sr. Biosynthesis of Gold and Silver Nanoparticles for Stability and Extended Shelf-Life of Antagonistic Activities. US 20120108425 A1, 3 May 2012.

182. Sword, G.A. Fungal Endophytes for Improved Crop Yields and Protection from Pests. WO 2018119419 A1, 28 June 2018.

183. Miller, J.D.; Adams, G.W.; Sumarah, M. Antifungal Metabolites from Fungal Endophytes of *Pinus strobus*. US 9469836 B2, 28 July 2012.
192. Pietro-Souza, W.; de Campos Pereira, F.; Mello, I.S.; Stachack, F.F.F.; Terezo, A.J.; da Cunha, C.N.; White, J.F.; Li, H.; Soares, M.A. Mercury Resistance and Bioremediation Mediated by Endophytic Fungi. *Chemosphere* 2020, 240, 124874. [CrossRef]

193. Krishnamurthy, Y.L.; Naik, B.S. Endophytic Fungi Bioremediation. In *Endophytes: Crop Productivity and Protection*; Maheshwari, D.K., Annapurna, K., Eds.; Springer: Cham, Switzerland, 2017; Volume 2, pp. 47–60. [CrossRef]

194. Li, H.-Y.; Wei, D.-Q.; Shen, M.; Zhou, Z.-P. Endophytes and Their Role in Phytoremediation. *Fungal Divers.* 2012, 54, 11–18. [CrossRef]

195. Fomina, M.A.; Alexander, I.J.; Colpaert, J.V.; Gadd, G.M. Solubilization of Toxic Metal Minerals and Metal Tolerance of Mycorrhizal Fungi. *Soil Biol. Biochem.* 2005, 37, 851–866. [CrossRef]

196. Peng, K.; Wen, T.; Xiong, R.; Tian, S.; Chen, C.; Zhong, Z.; Jiang, P.; Peng, Y.; Wan, Y. *Fusarium Oxysporum* and Its Application in Phytoremediation of Heavy Metal Contaminated Soil. CN 105733958 A, 6 July 2016.

197. Tan, N.; Hou, D.; Liao, S.; Yang, X.; Gao, Y.; Wang, J.; Nie, C.; Yan, X.; Wu, Y.; Jiang, M.; et al. A Method for Repairing Uranium-Polluted Water Body with Imprinted Material Prepared by Facultative Marine Fungi as Basal Body and Phytic Acid as Functional Monomer. CN 106340337 A, 18 January 2017.

198. Strobel, G.A.; Dirkse, E.; Ezra, D.; Castillo, U.; Phillips, B. A Method of Using Endophytic Fungi to Decontaminate and Decompose Human and Animal Wastes. WO 2005116272 A2, 8 December 2005.

199. Xiao, J.; Zhang, Q.; Yin, J.; Sun, J.; Zhang, L.; Zhang, Y.; Yang, H.; Kong, Q. A Method for by Use of Wild Soybean Endophytic Fungi Adsorption Water Body in Heavy Metal Cadmium Pollution. CN 108751424 A, 6 November 2018.

200. Verma, S.; Kuila, A. Bioremediation of Heavy Metals by Microbial Process. *Environ. Technol. Innov.* 2019, 14, 100369. [CrossRef]

201. Wang, Y.; Zeng, D.; Feng, G.; Tang, W.; Li, H. One Kind of Stem Point Enzyme E41 Metal Fungal Strain and Application Thereof. CN 106947697 A, 14 July 2017.

202. Wang, Y.; Feng, G.; Li, H.; Zeng, D.; Tang, W. One Kind of Carbon Angle Bacterial Genus E68 Fungal Strain and Application Thereof. CN 107177511 A, 19 September 2017.

203. Dai, C.; Zhou, J.; Jia, Y. Laccase-Containing Soil Remediation Agent, and Its Production Method and Application. CN 107900098 A, 13 April 2018.

204. Hignight, K.W.; Rush, D.L. Enhancing Endophyte in Grass. WO 2000062600 A1, 26 October 2000.

205. Wang, H.; Chen, Y.; Lin, F. Phoma Endophytic Fungi and Its Application. CN 104293681 A, 21 January 2015.

206. Brown, W.G. *Clonostachys rosea* Inoculated Plant Materials with Fungicides and Adjuvants. US 20160007613 A1, 14 January 2016.

207. Stewart, J.F.; Brown, W.G. The Production and Use of Endophytes as Novel Inoculants for Promoting Enhanced Plant Vigor, Health, Growth, Yield Reducing Environmental Stress and for Reducing Dependency on Chemical Pesticides for Pest Control. WO 2007107000 A1, 27 September 2007.

208. Xu, Q.; Xia, C.; Cheng, C.; Jin, H.; Xie, Y.; Liu, H.; Liao, F.; Zhang, C.; Lin, F.; Liu, H.; et al. Endophytic Fungal Strain Ycef005 and Its Use. CN 103849572 A, 11 June 2014.

209. Chakraborty, S.; Newton, A.C. Climate Change, Plant Diseases and Food Security: An Overview. *Plant. Pathol.* 2011, 60, 2–14. [CrossRef]

210. Venil, C.K.; Velmurugan, P.; Dufossé, L.; Devi, P.R.; Ravi, A.V. Fungal Pigments: Potential Coloring Compounds for Wide Ranging Applications in Textile Dyeing. *J. Fungi* 2020, 6, 68. [CrossRef] [PubMed]

211. Bamisile, B.S.; Dash, C.K.; Akutse, K.S.; Keppanan, R.; Wang, L. Fungal Endophytes: Beyond Herbivore Management. *Front. Microbiol.* 2018, 9, 544. [CrossRef] [PubMed]

212. Mei, C.; Flinn, B. The Use of Beneficial Microbial Endophytes for Plant Biomass and Stress Tolerance Improvement. *Recent Pat. Biotechnol.* 2010, 4, 81–95. [CrossRef] [PubMed]