CASE REPORT

Autoimmune encephalitis with coexistent LGI1 and GABA_BR1 antibodies: case report

Yi Xie††, Jia Wen††, Zhihua Zhao†, Hongbo Liu† and Nanchang Xie*

Abstract

Background: Autoimmune encephalitis (AE) with multiple auto-antibodies is of great clinical significance because its complex clinical manifestations and atypical imaging increase the difficulty of diagnosis, differential diagnosis and treatment, which may aggravate the disease, increase the recurrence rate and mortality. The coexistence of anti-Leucinie-rich Glioma Inactivated 1 (LGI1) and anti-γ-aminobutyric acid-beta-receptor 1 (GABA_BR1) has not been published before.

Case presentation: We herein present the case of a 60-year-old man with slow response, behavioral changes, psychosis and sleep disorders. Laboratory test included serum hyponatremia, positive serum LGI1 and GABA_BR1 antibodies using transfected cell-based assays. Electroencephalogram exhibited moderate diffusion abnormality. The patient responded well to steroid impulse treatment and sodium supplement therapy, and did not recur during the follow-up.

Conclusions: Here we report the first AE characterized by positive LGI1 and GABA_BR1 antibodies, as well as summarizing AE with multiple auto-antibodies reported so far, hopefully to provide experience for clinical practice.

Keywords: Multiple auto-antibody, Autoimmune encephalitis, Anti-LGI1, Anti-GABA_BR1

Background

There are basically two kinds of auto-antibodies related to autoimmune encephalitis (AE). One is against neuron surface receptor, among which anti-N-methyl-D-aspartic acid receptor (anti-NMDAR) is the most common, others also including anti-γ-aminobutyric acid-beta-receptor (anti-GABA_BR), anti-contactin associated protein-like 2 (anti-CASPR2), anti-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (anti-AMPAR), anti-Leucinie-rich Glioma Inactivated 1 (anti-LGI1), etc. The other kind is against neuronal intracellular antigen, mainly referring to classic paraneoplastic neuropathy antibody, such as anti-Hu, etc. [1, 2]. The majority of AE patients have only one of the above auto-antibodies, and very few have multiple auto-antibodies.

Different types of auto-antibodies correspond to specific neurological syndrome, which has strong specificity or directivity for etiological diagnosis. Both LGI1 and GABA_BR1 are autoantigens of treatment-response limbic encephalitis, whose clinical manifestations include the rapid development of mood changes, depression, anxiety and dramatic loss of short-term memory [3]. LGI1-AE is characterized by confusion, cognitive impairment, sleep disorder, refractory hyponatremia, fascio-brachial dystonic seizures and high signal in medial temporal lobe and hippocampus [4]. The symptoms of GABA_BR1-AE include cognitive dysfunction, seizures and abnormal behavior [5]. The simultaneous occurrence of both antibodies has not been reported before. Herein we report a case of a 60-year-old man with positive anti-LGI1 and anti-GABA_BR who improved greatly after steroid therapy.
We aim to remind physicians of this rare AE case with multiple auto-antibodies in potential clinical context.

Case presentation
A 60-year-old Chinese male has developed slow response, abnormal behavior and sleep disorder for 1 month. At first, after admitted to the hospital in his hometown and given only sodium supplement and support treatment, his symptoms disappeared but quickly reoccurred. After that, his symptoms became more and more serious and he gradually developed seizures and irritability. He demonstrated confusion, memory loss, insomnia and abnormal behavior when transferred to our hospital in April 2020.

He had no particular previous medical history except for typhia 40 years ago and recovered with no sequel. Neurological exam revealed poor mental state, slow response and damaged memory, attention, calculation and orientation. Cranial nerves, cerebellar function, motor system, sensory system, deep tendon reflexes and pathological reflexes remained normal.

Serum sodium was 119 mmol/L (reference range: 135 ~ 153 mmol/mL) and chlorine was 81 mmol/L (reference range: 90 ~ 110 mmol/L) at first admission. Serum procalcitonin was 0.048 ng/mL (reference range: < 0.046 ng/mL), C reaction protein was 8.05 mg/L (reference range: < 5 mg/L). Cerebrospinal fluid (CSF) electrophoresis IgG index was 0.71 (reference range: 0.3 ~ 0.7). Intracranial pressure was 150 mmH2O. CSF routine biochemistry for protein content and glucose were normal and infectious test for virus, including herpes simplex virus, tuberculosis, fungal and Cryptococcus were negative. CSF cytology and cytometry were negative for malignant cells. Serum AE antibody spectrum demonstrated positive anti-LGI1 IgG and anti-GABAB1R1 IgG using cell-based assays, while other AE-related auto-antibody, such as anti-NMDAR, anti-AMPAR1, anti-AMPAR2, anti-CASPR2 were negative (Fig. 1). Mini mental state examination score was 15. Electroencephalogram (EEG) indicated moderate diffusion abnormality (Fig. 2A and B). Brain enhanced MRI scan was normal. Tests for screening malignancy, including tumor markers and an ultrasound of the liver, gallbladder, spleen, pancreas, kidney, testicle were normal. Chest enhanced CT scan revealed mild inflammation in left lower lobe.

For treatment of AE with coexistent anti-LGI1 and anti-GABAB1R1, he received 1 g and 0.5 g intravenous methylprednisolone separately, 3 days for each dosage, and then remained on an oral steroid taper for half year. After intravenous and oral sodium supplement, blood sodium and chlorine gradually increased to normal (Table 1). His symptoms improved greatly and EEG recovered to normal.

Discussion and conclusion
Here we report the first case of AE with coexistent serum anti-LGI1 and anti- GABAB1R1. The 60-year-old male, with subacute onset, mainly manifested cognitive decline, behavioral abnormality, insomnia, refractory hyponatremia, abnormal EEG, and positive anti-LGI1 and anti-GABAB1R1 in serum. According to research and clinical guidelines [6], the cognitive decline, behavioral abnormality and seizures of the patient are the common clinical manifestations of LGI1-AE and GABAB1R1-AE, but sleep disorder is more common in LGI1-AE, and hyponatremia is unique to LGI1-AE. So, the clinical characteristics of

![Fig. 1](image1)

Fig. 1 AE-related auto-antibodies in serum measured by cell-based assays. A NMDA; B AMPA1; C AMPA2; D CASPR2; E LGI1; F GABA R1. Anti-LGI1 and Anti-GABA_R1 were positive.
this case were more inclined to anti-LGI1 encephalitis. The patient responded well to glucocorticoid treatment, and we will continue to follow up the prognosis.

LGI1 is a secretory protein mainly expressed in the hippocampus and neocortex, that connects presynaptic epilepsy-related ADAM23 to postsynaptic ADAM22. Anti-LGI1 interrupts the inhibitory signal transmission from the presynaptic potassium channel to the postsynaptic AMPA receptors, thus increasing the excitability of nerve tissue and resulting epilepsy or encephalitis. LGI1-AE, mostly found in elderly men with subacute onset, can demonstrate cognitive impairment, behavioral change, personality abnormality, hyponatremia and frequent seizures, characterized by facio-brachial dystonic seizures, while the majority of patients does not present with generalized tonic-clonic seizures. Most patients have no related tumors, only about 10% had thymoma, while other tumors were rare. Up to 75% of cases have normal CSF routine analysis. EEG can show mild diffuse slow wave, and about half may have swelled medial temporal lobe with high T2/flair signal. The good news is the relatively low recurrence rate [7, 8]. GABA_B_R regulates

Table 1 Blood test for sodium and chlorine

Date/time	Blood sodium(mmol/L)	Blood chlorine(mmol/L)
2020-04-21 11:00	119.0	81.0
2020-04-21 20:00	121.9	82.0
2020-04-22	124.0	85.0
2020-04-23	129.0	92.0
2020-04-24	135.0	93.0
2020-04-26	138.0	92.0
2020-04-29	134.0	91.0
2020-04-30	135.0	91.0

Fig. 2 A EEG of the patient before treatment (2020-04-21): moderate diffusion abnormality, Wide range of slow waves occur in medium-high waves. B EEG of the patient after treatment (2020-04-29): normal
Table 2 Clinical data of AE cases with multiple auto-antibodies

N.	Sex, age	AE auto-Abs	Other Abs	Clinical manifestations	Brain MRI	tumor	prognosis	
		serum	CSF					
1	M,62	GABA\textsubscript{A}R	GABA\textsubscript{A}R	Hu	Memory loss, somnolence, concussion, cough, hoarseness	Normal	Lung cancer	Improve
2	M,61	GABA\textsubscript{A}R	GABA\textsubscript{A}R	Hu	Epilepsy, somnolence, memory loss	Normal	Lung cancer	Improve
3	M,59	GABA\textsubscript{A}R	GABA\textsubscript{A}R	Hu	Epilepsy, psychosis	Lesions of bilateral hippocampus	Lung cancer	Improve
4	M,58	GABA\textsubscript{A}R	GABA\textsubscript{A}R	Hu	Psychosis, memory loss, numbness of limbs	Lesions of bilateral hippocampus	Lung cancer	Improve
5	M,61	GABA\textsubscript{A}R	GABA\textsubscript{A}R NMDAR	Hu	Epilepsy, memory loss, coma	ND	Lung cancer	Improve
6	F,19	–	NMDAR AQP4	AQP4	Psychosis, memory loss, blepharoptosis	Lesions of bilateral basal ganglia, brainstem	No	Improve
7	F,40	LGI1 CASPR2	LGI1	–	Myalgia, fasciculation, epilepsy, insomnia	Normal	No	Improve
8	F,56	LGI1	LGI1	Yo	Memory loss, concussion, somnolence, polyphagia	Normal	Thymoma	Improve
9	F,50	AMPAR	AMPAR	CV2	Memory loss, psychosis	Lesions of bilateral cortex	Mediastinal occupying	Dead
10	F,51	AMPAR	AMPAR	Hu	Psychosis, dysphagia, dysdiapisia	–	No	Improve
11	M,44	ND	GABA\textsubscript{A}R NMDAR	–	Limbic encephalitis	Not mentioned	No	Complete improve
12	F,63	–	GABA\textsubscript{A}R	GAD65	Status epilepticus	Not mentioned	No	Dead
13	M,60	GABA\textsubscript{A}R	GABA\textsubscript{A}R	SOX1*	Limbic encephalitis	Not mentioned	SCLC	Partial recovery
14	M,62	GABA\textsubscript{A}R	GABA\textsubscript{A}R	Ri*	Limbic encephalitis	Not mentioned	SCLC	–
15	F,68	GABA\textsubscript{A}R	GABA\textsubscript{A}R	SOX1*	Limbic encephalitis	Not mentioned	SCLC	Partial recovery
16	M,74	GABA\textsubscript{A}R	ND	SOX1	Limbic encephalitis	Not mentioned	SCLC	Dead
17	M,77	GABA\textsubscript{A}R	GABA\textsubscript{A}R	Amphiphysin*	Limbic encephalitis	Not mentioned	SCLC	Unresponsive
18	F,57	LGI1 NMDAR	–	–	Faciobrachial dystonic seizure, hyponatremia, mental disorder	Lesions of bilateral cortex	No	Improve
19	M,66	GABA\textsubscript{A}R R	GAD*	–	Seizures, confusion	Normal	SCLC	Not available
20	M,47	GABA\textsubscript{A}R R	SOX1 VGKC	–	Seizures, behavior change, memory impairment	Bilateral temporal lesions	SCLC	Partial recovery
21	M,70	GABA\textsubscript{A}R R	GAD*	SOX1	Seizures, memory impairment, confusion	Normal	SCLC	Unrespon- sive, dead
N.	Sex, age	AE auto-Abs	Other Abs	Clinical manifestations	Brain MRI	tumor	prognosis	
----	----------	-------------	-----------	------------------------	-----------	-------	-----------	
		serum	CSF		serum	CSF		
22	M, 58	GABA_γR⁺	Hu⁺	Seizures, memory impairment	Bilateral temporal lesions	SCLC	Unresponsive, dead	
23	M, 61	GABA_γR⁺	BRSK2⁺	Memory impairment	Bilateral temporal lesions	SCLC	Unresponsive	
24	F, 57	GABA_γR⁺	GAD⁺	Subacute cerebellar ataxia	Normal	Carcinoid of thymus	Complete recovery	
25	F, 30	NMDAR	NMDAR	Epilepsy, psychosis, insomnia	Normal	No	Improve	
26	F, 43	LGI1	CASPR2	Seizures, weight loss, calculation/memory/speech disorder	Bilateral hippocampus/occipital/parietal lesions	No	Improve	
27	F, 67	LGI1	Hu	Memory loss, motor aphasia	Left frontal/temporal/occipital/parietal lobe	No	Improve	
28	F, 57	NMDAR	LGI1	Seizures, facio-brachial dystonic seizures, somnolence	Demyelination of white matter	Probable lung cancer, thyroid nodule	Improve	
29	F, 84	GABA_γR	Hu	Seizures, cognitive impairment, confusion, psychosis	Left hippocampus and temporal lobe	Probable lung cancer	Dead	
30	M, 55	NMDAR	Ma2	Sensory aphasia, memory loss	Left temporal/occipital lobe and hippocampus	No	Improve	
31	F, 60	GABA_γR	amphiphsin	Seizures, cognitive impairment, memory loss	Bilateral hippocampus, right temporal lobe	SCLC	Dead	
32	M, 67	LGI1	LGI1	Seizures, psychosis, memory loss, hand groping, hypotension	Unable to cooperate	No	Improve	
33	F, 43	NMDAR	Yo	Phychosis, seizures, memory loss	Bilateral hippocampus and temporal lobe	Myoma of uterus	Improve	
34	F, 82	GABA_γR	GABA_γR	amphiphsin	Memory loss, psychosis, disorientation	Left temporal lobe and hippocampus	Breast cancer	Unchanged
voltage-sensitive calcium channel and inward compensatory potassium channels through G protein. GABA$_{\beta}$R is widely spread in brain and spine and particularly abundant in the hippocampus, thalamus and cerebellum. Anti-GABA$_{\beta}$R is related to seizures, memory loss, anxiety and mood disorder. GABA$_{\beta}$R1-AE mostly presents limbic encephalitis symptoms, with temporal lobe epilepsy as the core symptomatology, and most of them are accompanied by cognitive function decline, personality change and mental behavior abnormality. About 50% of patients have small cell lung cancer or neuroendocrine tumor. It is suggested that anti-GABA$_{\beta}$R encephalitis should further take chest CT or PET examination [9].

The overlying of neuronal auto-antibodies may cause the superposition of clinical syndrome, but not a simple complete superposition, which needs to be analyzed according to the specific antibody type and clinical manifestation. According to Professor Guan Hongzhi's newly published review, it is necessary to distinguish whether the antibodies in patients belong to pathogenic markers or concomitant antibodies [10]. The main manifestations of this case are psychobehavioral abnormality and hyponatremia, more similar to clinical manifestations of anti-LGI1 AE.

The co-existence of multiple auto-antibody is rare (summarized in Table 2). Ren Haitao reported 531 cases of AE with auto-antibodies, and only 10 cases detected multiple anti-neuronal antibodies, among whom 5 cases were anti-GABA$_{\beta}$R/anti-Hu, 1 anti-NMDAR/APQ-4, 1 anti-LGI1/anti-CASPR2, 1 anti-LGI1/anti-Yo, 1 anti-AMPAR/anti-CV2 and 1 anti-AMPAR/anti-Hu [10]. In the 20 anti-GABA$_{\beta}$R-AE cases reported by Hoftberger, 7 detected multiple auto-antibodies, among whom 3 cases with anti-Sox1, 1 with anti-Ri, 1 with anti-ampiphysin, 1 with anti-GAD65 and 1 with anti-NMDAR [11]. Liu XY recently reported one case characterized by double positive of anti-LGI1 and anti-NMDAR [12]. Boronat reported a case of anti-GABA$_{\beta}$R combined with anti-GAD65, manifesting cerebellar ataxia and thyroid carcinoid [13]. Qi Hengchang reported two cases of AE with multiple auto-antibodies against neuron (one was anti-NMDAR/anti-GABA$_{\beta}$R, and the other anti-LGI1/anti-CASPR2. Both patients were adult women with acute onset. Their first symptom was epilepsy, and the treatment effect was good [14]. Wang XI retrospectively analyzed 255 AE patients from our hospital and found 7 cases with multiple autoantibodies [15]. Also, Qiu ZD reported 6 AE with coexistent autoantibodies out of 134 cases [16]. Chung recently described a patient with antibodies to GABAB and IgLON5, who presented with sleep disorders like our case [17].

The clinical significance of multiple auto-antibody has already raised attention of many neurologists and needs to be interpreted in combination with clinical practice. For example, anti-GABA$_{\beta}$R can be combined with anti-Hu. When anti-GABA$_{\beta}$R is positive, it is recommended to screen anti-Hu and carry out tumor screening at the same time, such as chest CT, tumor markers, etc., excluding the possibility of tumor as much as possible. In this case chest enhanced CT scan didn’t find tumor, but the patient was advised to take regular examination during follow-up. However, since it’s a single case report, it might be a coincidence despite its great significance.

Here we first report an AE case with co-existing anti-LGI1 and anti-GABA$_{\beta}$R1. The existence of concomitant autoantibodies should be considered when the patients

Table 2 (continued)
N.

35
36
37
38
39
40

Only serum was tested for auto-antibodies, and CSF was not detected
exhibit atypical and overlapping symptoms. Caution should be given because it’s a single-case report. With the discovery of more multiple auto-antibody positive cases of AE, it will provide evidence for further revealing the clinical characteristics, treatment and prognosis.

Abbreviations

LGI1: Leucine-rich Glioma Inactivated 1; GABABR1: γ-aminobutyric acid-beta-receptor; NMDAR: N-methyl-D-aspartic acid receptor; AMPAR: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, CSF: Cerebrospinal fluid; AE: Autoimmune encephalitis.

Acknowledgements

We would like to thank the patient and his daughter for their participation in this study.

Authors’ contributions

XY and WJ together collected disease history and radiological data and drafted this manuscript. XNC designed the manuscript. ZHZ and LHB performed data acquisition. All authors have read and approved the manuscript, and ensure that this is the case.

Funding

This study was funded by the Joint Construction Project of Henan Province and the First Affiliated Hospital of Zhengzhou University (No. 2018020114 and No. 2018020083) and National Natural Science Foundation of China (81971214). The above funding bodies played a role in the analysis and interpretation of data.

Availability of data and materials

There are no associated datasets for this manuscript. All data generated or analyzed during this study are included in this published article. Related queries can be directed to the corresponding author.

Declarations

Ethics approval and consent to participate

Protocols were established, according to the ethical guidelines of the Helsinki Declaration and was approved by the Independent Ethics committee, First Affiliated Hospital of Zhengzhou University. Written informed consent was obtained from the patient.

Consent for publication

Written informed consent regarding the submission and potential publication of this manuscript was obtained from the patient. Additionally, consent for treatment was likewise obtained in the usual fashion during the course of the patient’s hospitalization.

Competing interests

All authors claimed that there were no conflicts of interest. The above funding bodies played a role in the analysis and interpretation of data.

Author details

1 Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. 2 Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.

Received: 17 November 2020 Accepted: 22 October 2021
Published online: 27 November 2021

References

1. Lancaster E, Martinez-Hernandez E, Dalmau J. Encephalitis and antibodies to synaptic and neuronal cell surface proteins. Neurology. 2011;77(2):179–89.
2. Graus F, Delattre JY, Antoine JC, Dalmau J, Giometto B, Grisold W, et al. Recommended diagnostic criteria for paraneoplastic neurological syndromes. J Neurol Neurosurg Psychiatry. 2004;75(8):1135–40.
3. Dalmau J, Geis C, Graus F. Both LGI-1 and GABAB1R are autoantigens of treatment-response limbic encephalitis. Physical Rev. 2017;97(2):839–87.
4. Iriñó SR, Alexander S, Waters P, Kleopa KA, Pettingill P, Zulian L, et al. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan's syndrome and acquired neuromyotonia. Brain. 2010;133:2734–48.
5. Petit-Pedral M, Arangüe T, Peng X, Bataller L, Cellucci T, Davis R, et al. Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: a case series, characterization of the antigen, and analysis of the effects of antibodies. Lancet Neurol. 2014;13:276–86.
6. Chinese Society of Neurology. Consensus of Chinese experts in the diagnosis and treatment of autoimmune encephalitis. Chin J Neurol. 2017;50(2):91–8.
7. Griffith SP, Malpas CB, Alpítsis R, O'Brien TJ, Monif M. The neuropsychological spectrum of anti-LGI1 antibody mediated autoimmune encephalitis. J Neuroimmunol. 2020;345:577271.
8. Yang X, Li AN, Zhao XH, Liu KX, Wang SJ. Clinical features of patients with anti-Leuence-rich Glioma inactivated-1 protein associated encephalitis: a Chinese case series. Int J Neurosci. 2019;129(8):754–61.
9. Maureille A, Fenouil T, Joubert B, Picard G, Rogemond V, Pinto AL, et al. Isolated seizures are a common early feature of paraneoplastic anti-GABA receptor encephalitis. J Neurol. 2019;266(1):195–206.
10. Ren HT, Yang XZ, Guan HZ, Gao XY, Peng B, Zhu YC, et al. Clinical analysis of autoimmune encephalitis with co-existence of multiple anti-neuronal antibodies. Chin J Neurol. 2016;49(1):21–5.
11. Hoffberger R, Titulaer MJ, Sabater L, Dome B, Rózsás A, Hegedus B, et al. Encephalitis and GABAB receptor antibodies: novel findings in a new case series of 20 patients. Neurology. 2013;81(7):1500–6.
12. Liu XY, Chen Z, Wu GL, Peng T. A case of anti-LGI1 and anti-NMDAR autoimmune encephalitis. Natl Med J China. 2020;100(11):871–2.
13. Boronat A, Sabater L, Saiz A, Dalmau J, Graus F. GABA(B) receptor antibodies in limbic encephalitis and anti-GAD-associated neurolologic disorders. Neurology. 2011;76(8):795–800.
14. Qi HC. Multi-anti-neuronal antibody-positive autoimmune encephalitis: 2 case reports and review of literature [D]. Guangxi: Guangxi Medical University; 2018.
15. Wang XJ, Wang MH, Yu L, Peng T, Hu WT, Sun GF, et al. Clinical analysis of autoimmune encephalitis with multiple anti-neuronal antibodies. Chin J Prac Nerv Dis. 2020;236(6):491–6.
16. Qiu ZD, Liu Z, Liu DW, Song XD, Wang JS, Dong HQ. Clinical analysis of paraneoplastic neurological syndrome with co-existence of multiple anti-neuronal antibodies. Chin J Neuroimmunol Neurol. 2020;27(4):261–5.
17. Chung HY, Wickel J, Voss A, Ceanga M, Sell J, Witte OW, et al. Autoimmune encephalitis with anti-IgLON5 and anti-GABAB-receptor antibodies: a case report. Medicine (Baltimore). 2019;98(20):e15706.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.