Signaling Game-based Misbehavior Inspection in V2I-enabled Highway Operations

Manxi Wu, Li Jin, Saurabh Amin, and Patrick Jaillet *

March 23, 2018

Abstract

Vehicle-to-Infrastructure (V2I) communications are increasingly supporting highway operations such as electronic toll collection, carpooling, and vehicle platooning. In this paper we study the incentives of strategic misbehavior by individual vehicles who can exploit the security vulnerabilities in V2I communications and impact the highway operations. We consider a V2I-enabled highway segment facing two classes of vehicles (agent populations), each with an authorized access to one server (subset of lanes). Vehicles are strategic in that they can misreport their class (type) to the system operator and get unauthorized access to the server dedicated to the other class. This misbehavior causes a congestion externality on the compliant vehicles, and thus, needs to be deterred. We focus on an environment where the operator is able to inspect the vehicles for misbehavior based on their reported types. The inspection is costly and successful detection incurs a fine on the misbehaving vehicle. We formulate a signaling game to study the strategic interaction between the vehicle classes and the operator. Our equilibrium analysis provides conditions on the cost parameters that govern the vehicles’ incentive to misbehave, and determine the operator’s optimal inspection strategy.

Index terms: Cyber-physical Systems Security, Asymmetric Information Games, Smart Highway Systems, Crime Deterrence.

1 Introduction

Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communications are commonly regarded as an integral feature of smart highway systems [1,2]. With the projected...
growth of V2I and V2V capabilities, it is expected that they will support important operations such as safety-preserving maneuvers (overtaking), lane management, intersection control, etc., and also enable traffic management with connected/autonomous vehicles [3, 4, 5]. These applications typically require the presence of road-side units (RSUs) that are capable of receiving messages from the individual vehicles (i.e., their on-board units (OBUs)), authenticating these messages, and providing relevant information to the neighboring vehicles and/or actuators (e.g., traffic signals). This message exchange is typically supported by the Dedicated Short Range Communications (DSRC) technology, and it enables the RSU to gather information such as vehicle identifier, vehicle class, and safety-related data. In recent years, several security concerns have been identified in this context [6, 7, 8]. The prior work has focused on both the identification of cyber-security vulnerabilities and the design of defense solutions. However, an aspect that has received relatively little attention is the modeling of strategic misbehavior by vehicles that can directly impact the highway operations.

In this paper, we focus on a generic setting of lane management operation enabled by V2I communications, and develop a model of strategic misbehavior using a signaling game formulation. To better understand the setting, consider a highway segment with a downstream bottleneck; see Figure 1. The highway is equipped with a RSU and all incoming vehicles have OBUs. The highway section has two classes of lanes: the high-priority lanes are meant to serve the travelers with preferential access to the system (e.g., those who are willing to pay the toll), and the low-priority (or general purpose) lanes are meant to serve all other travelers. We consider the two sets of lanes as parallel servers. The RSU receives and authenticates the messages from the incoming vehicles. A vehicle is provided access to the high-priority server if the RSU is able to authenticate its message and adjudge it to be a vehicle belonging to the high-priority class. Due to the presence of congestion externalities, the travel cost incurred in accessing each server increases with the aggregate number of vehicles routed through that server. We assume that the priority classes are pre-established using well-known economic principles [9].

![Figure 1: A highway with V2I-based lane management operations.](image)

The main feature that we consider in the abovementioned setting is the ability of travelers to manipulate the communication between their vehicles OBU and the RSU, so that they can access the server that does not correspond to their vehicle class. Such an attack can be realized if the vehicles (henceforth referred to as “agents”) of certain traffic class can misreport their identity information to the RSU. We consider this type of attack as an instance of strategic misbehavior, which needs to be deterred by the system operator because it can result in additional congestion externalities on the other travelers. Technologically, deterrence can be facilitated by further inspecting the messages for their integrity, checking the identity information for example, using video cameras,
number plate recognition, or manual inspection, and imposing suitable fines on successful
detection, [10], [11]. To make our model realistic, we make the following assumptions: (i)
The operator has incomplete information about the priority class of incoming vehicles, in
that the true class of vehicle can be known only after inspection (which is costly); and
(ii) Each misbehaving agent incurs a technology cost for manipulating its message, and
is subject to a fine if inspected. These assumptions naturally lead us to pose our model
as a signaling game [12].

In our game, the agents are non-atomic and each agent has private information about
its type; i.e., each agent privately knows whether she is a high- or low-priority agent. The
operator has the technological capability of message collection (via the RSU), inspection,
and fine imposition. We say that an agent misbehaves if she sends a signal that is different
from her true type and is provided access to the server that does not correspond to her
true type. Intuitively, we can expect that a low-priority agent will have an incentive
to misreport her type in order to gain access to the high-priority server. For the sake
of generality, we also consider that high-priority agent can misbehave by sending a low-
priority signal. Furthermore, we impose a natural assumption that each low-priority
misbehaving agent incurs a strictly positive technological cost; however, a high-priority
agent can misbehave without incurring such a cost. All agents are subject to inspection
by the operator who observes the reported types, but does not know the true type of
an agent until she chooses to inspect the agent. On successful detection, a misbehaving
agent is charged a fine. In this game, each agent decides on the type-specific probability
of misbehavior; and based on the received signals, the operator chooses an inspection
rate (i.e., to inspect or not inspect an agent) on each server for detecting (and possibly
detering) the misbehavior.

The equilibrium concept that we use is the Perfect Bayesian Equilibrium (PBE) [13],
[14]. In the PBE (a) the players satisfy sequential rationality, and (b) the operator’s belief
is consistent with the prior distribution of agent types and the agents’ strategy according
to the Bayes’ rule. The specific features that distinguish our game from classical models
of signaling games are: non-atomic agent populations, and congestion externality imposed
by an agent on other agents accessing the same server. Under mild assumptions on the
cost functions of both servers, we provide a complete characterization of PBE for our
signaling game.

In particular, we show that in equilibrium (i) a high priority agent does not have
the incentive to misbehave for gaining access to the low-priority server; (ii) not every
low-priority agent misbehaves. Moreover, we distinguish two regimes based on how the
technological cost of misbehavior compares with the maximum gain from misbehavior
(evaluated as the difference in travel costs of two servers when no agent misbehaves). In
the first regime, the misbehavior is completely deterred as the technological cost is high
and the operator does not inspect any agent. In the second regime, the low-priority agents
misbehave with a positive probability. The inspection strategy of the operator in second
regime can be further distinguished by sub-regimes that correspond to zero, partial, and
complete inspection.

Our equilibrium analysis can be translated to study the effects of relative sizes of
agent populations in each priority class, the inspection cost, and the fine. To concretely
illustrate these effects, we consider the specific setting of Electronic Toll Collection (ETC). Here the two servers are modeled as M/M/1 queueing systems. The fraction of high-priority travelers (and the associated toll that they need to pay for priority access) is exogenously known. Our analysis provides three specific insights for this example: 1) For given technological cost of misbehavior and cost of inspection, the equilibrium misbehavior rate (and hence the rate of inspection) decreases as the fraction of high-priority agents increases; 2) Fine can be effective for decreasing misbehavior rate even when the inspection cost is high (relative to the cost of misbehavior), but may not achieve complete deterrence; 3) If the fine is sufficiently high, then there is no need to inspect all agents in equilibrium. These insights can be relevant for the design and deployment of inspection technologies to achieve higher security of V2I-enabled highway operations.

2 Modeling Misbehavior in V2I-based highway operations

In this section, we consider a simple model of lane management operations on a highway section equipped with vehicle-to-infrastructure (V2I) communications capability, and discuss the misbehavior that can arise in this setting.

Suppose that the highway system faces a fixed traffic demand comprised of two types of agent populations: a high priority type, denoted h, and a low priority type, denoted l. The fraction of type h agents is $\theta \in (0, 1)$, and the fraction of type l agents is $1 - \theta$. Throughout this article, we assume that θ is exogenous and independent of potential misbehavior; see Remark 1. There are two sets of lanes on the highway, H and L, which we model as two parallel servers; see Fig. 2. In the absence of any misbehavior, server H only serves type h agents, and server L only serves type l agents. The highway is equipped with an RSU, which collects messages from incoming agents to monitor the traffic and grants the access to each incoming agent based on the received message (i.e., reported type).

Figure 2: A highway with two servers (sets of lanes). Each server is accessed by an authorized agent population (solid arrows), and is also subject to potential misbehavior by the other population (dashed arrows).

Remark 1. Admittedly, this assumption precludes us from considering situations where the agent populations would choose their priority type (routing behavior) in anticipation of the potential misbehavior that they may face. Our analysis identifies the effect of the choice of priority type (i.e., θ) on the misbehavior rate.
Given any fraction of type h travelers, θ, the travel cost (or queueing delay) on the H (resp. L) server is denoted as c_{H}^{h} (resp. c_{L}^{h}). In general, c_{H}^{h} (resp. c_{L}^{h}) increases with the aggregate demand of agents using the server H (resp. L). In our setting, to reduce his/her travel cost, an agent may misreport its type to the RSU, which we consider as misbehavior; i.e. a misbehaving type l agent reports itself as having authorization for the sever H; similarly for a misbehaving type h agent. We use σ_{h}^{f} (resp. σ_{l}^{f}) to denote the fraction of l (resp. h) agents that misbehave. Let a generic misbehavior strategy $\sigma^{f} = (\sigma_{h}^{f}, \sigma_{l}^{f})$. Since the fraction of misbehaving agents impacts the demand of agents using each server, we can use the notations $c_{H}^{\sigma^{f}}$ (resp. $c_{L}^{\sigma^{f}}$) to denote the cost of server H (resp. L) under the strategy σ^{f}. Throughout this article, we make the following assumptions on the travel costs:

(A1) $c_{H}^{h}(0,0) < \infty$, $c_{L}^{h}(0,0) < \infty$, $c_{H}^{h}(0,0) < c_{L}^{h}(0,0)$, and $c_{H}^{h}(0,1) > c_{L}^{h}(0,1)$.

(A2) $c_{H}^{h}(\sigma_{h}^{f}, \sigma_{l}^{f})$ (resp. $c_{L}^{h}(\sigma_{h}^{f}, \sigma_{l}^{f})$) decreases in σ_{h}^{f} (resp. σ_{l}^{f}), and increases in σ_{l}^{f} (resp. σ_{h}^{f}).

(A1) ensures that if no agent misbehaves, then the travel costs on both servers are bounded, and the travel cost on the high-priority server H is smaller. However, if every type l agent misbehaves, then the travel cost on the high-priority server H is greater than that on the low-priority server L. (A2) implies that misbehaving agents impose a congestion externality and their impact of the cost of each server is determined by how they influence the aggregate demand of agents using that server. This congestion effect plays a crucial role in determining the equilibrium misbehavior fractions, and also governs the main tradeoff faced by the system operator in inspecting an agent (versus not); Sec. 4.

3 Signaling game for misbehavior inspection

In this section, we model the strategic interaction between the agent populations that are prone to misbehavior and the system operator who can decide to inspect them based on the received messages. We consider that the agents are capable of compromising the integrity of messages sent to the RSU in order to misreport their type, and obtain access to the server that does not correspond to their true type. The operator has incomplete information about the agents’ type, i.e. the true type of an agent cannot be known with certainty unless the agent’s message is inspected by the operator. This information asymmetry between the agents and the operator naturally leads to a signaling game formulation.

In the game, agents are modeled as a set of continuous players. The cost of misbehavior is non-negative for each type h agent, denoted $p_{h}^{l} \in \mathbb{R}_{\geq 0}$, and strictly positive for each type l agent, denoted $p_{l}^{l} \in \mathbb{R}_{>0}$, since the travel cost on server H is smaller than that on server L.

While this largely a technical assumption, it plays an important role in our equilibrium analysis. Note that the assumption is consistent with our model of the highway system, with server H as a high priority server. Naturally, the cost of getting unauthorized access to it (i.e., p_{l}^{l}) should be non-zero.
As mentioned before, the operator, denoted as \(d \), does not know the type of each agent, but can obtain the message (signal) sent by the agent to the RSU that the operator manages. The operator forms a belief of each type given the observed signal. The signal space is \(\{H, L\} \), and we say that a type \(l \) agent misbehaves if she sends a signal \(H \); similarly for the type \(h \) agents. We denote \(\beta(H) \overset{\Delta}{=} (\beta(h|H), \beta(l|H)) \) (resp. \(\beta(L) \overset{\Delta}{=} (\beta(h|L), \beta(l|L)) \)) as the operator’s belief given the signal \(H \) (resp. \(L \)), where \(\beta(h|H) \) and \(\beta(l|H) \) (resp. \(\beta(h|L) \) and \(\beta(l|L) \)) are the posterior probabilities that an agent sending the signal \(H \) (resp. \(L \)) is in fact a type \(h \) and \(l \) agent, respectively. Based on the signal and the belief, the operator chooses to inspect an agent’s message, denoted \(I \), or not to inspect, denoted \(N \). The inspection incurs a positive cost on the operator, denoted \(p_d \in \mathbb{R}_{>0} \). We denote \(\sigma^d_H \) (resp. \(\sigma^d_L \)) as the probability of inspecting an agent’s message given that the received signal is \(H \) (resp. \(L \)). The operator’s strategy is \(\sigma^d \overset{\Delta}{=} (\sigma^d_H, \sigma^d_L) \), and the strategy profile is \(\sigma \overset{\Delta}{=} (\sigma^t, \sigma^d) \). Furthermore, for simplicity, we assume that if an agent misbehaves, and if he is inspected, then the misbehavior is detected with probability 1. A fine \(F_h \in \mathbb{R}_{\geq 0} \) (resp. \(F_l \in \mathbb{R}_{\geq 0} \)) is charged to the type \(h \) (resp. \(l \)) agent if misbehavior is detected.

We are now ready to discuss the utility functions of the agents and the operator. The utility of each agent is the summation of three parts: (i) \(-c^t_H(\sigma^t)\) (resp. \(-c^t_L(\sigma^t)\)), which is the travel cost if the agent chooses to access the server \(H \) (resp. \(L \)); (ii) \(-p^t_h \) (resp. \(-p^t_l \)), which is the technology cost of misbehavior for a type \(h \) (resp. \(l \)) agent; (iii) \(-F_h \) (resp. \(-F_l \)), which is the fine if the misbehavior is detected upon inspection of a type \(h \) (resp. \(l \)) agent. The utility of the operator is the summation of two parts: (i) \(-p_d \), which is the inspection cost; (ii) \(F_h \) (resp. \(F_l \)), which is the gain from fine collection when the misbehavior of a type \(h \) (resp. \(l \)) agent is detected.

The game is played in three steps as follows (see Fig. 3): Firstly, the type of each agent is chosen by the fictitious player “Nature” according to the probability distribution \(\Pr(h) = \theta \) and \(\Pr(l) = 1 - \theta \). Secondly, agents send the signal according to strategy \(\sigma^t \) based on their type. Thirdly, the operator observes the signal. The belief \(\beta \) is updated based on observed signal. The operator then chooses to inspect or not according to \(\sigma^d \). All the game parameters are common knowledge, except that the each agent privately knows his type.

Figure 3: Game Tree with the agent’s utility (top) and the operator’s utility (bottom).

\(^2\)This is without loss of generality, since the inspection rate can be alternatively interpreted as the rate of successful detection.
Given strategy profile σ, we denote the expected utility of type h agents choosing the server H (resp. L) as $E_\sigma[U^t_h(H)]$ (resp. $E_\sigma[U^t_h(L)]$). The expected utility for type l agents are similarly denoted as $E_\sigma[U^t_l(H)]$ and $E_\sigma[U^t_l(L)]$, respectively. The expected utilities of agents can be written as follows:

$$
E_\sigma[U^t_h(H)] = -c^0_H(\sigma^t),
$$

$$
E_\sigma[U^t_h(L)] = -c^0_L(\sigma^t) - p^t_h - F_h\sigma^d_H,
$$

$$
E_\sigma[U^t_l(H)] = -c^0_H(\sigma^t) - p^t_l - F_l\sigma^d_H,
$$

$$
E_\sigma[U^t_l(L)] = -c^0_L(\sigma^t).
$$

Given any strategy profile σ and any belief β, the expected utility of the operator when observing signal H (resp. L) is denoted as $E_{\sigma^*}d[U^d_H|\beta]$ (resp. $E_{\sigma^*}d[U^d_L|\beta]$), which can be written as follows\(^3\)

$$
E_{\sigma^*}d[U^d_H|\beta] = (-p^d + F_l\beta(l|H)) \sigma^d_H,
$$

$$
E_{\sigma^*}d[U^d_L|\beta] = (-p^d + F_h\beta(h|H)) \sigma^d_L.
$$

The equilibrium concept in this game is the perfect Bayesian equilibrium (PBE) (see [13]).

Definition 1. A pair (σ^*, β^*) of a strategy profile σ^* and a belief assessment β^* is said to be a PBE if (σ^*, β^*) satisfies both sequential rationality and consistency:

- Sequential rationality: (i) The servers that are used by each type of agents incur the highest expected utility:

 $$
 \sigma^t_h > 0 \quad \Rightarrow \quad E_{\sigma^*}[U^t_h(L)] \geq E_{\sigma^*}[U^t_h(H)],
 $$

 $$
 \sigma^t_h < 1 \quad \Rightarrow \quad E_{\sigma^*}[U^t_h(L)] \leq E_{\sigma^*}[U^t_h(H)],
 $$

 $$
 \sigma^t_l > 0 \quad \Rightarrow \quad E_{\sigma^*}[U^t_l(H)] \geq E_{\sigma^*}[U^t_l(L)],
 $$

 $$
 \sigma^t_l < 1 \quad \Rightarrow \quad E_{\sigma^*}[U^t_l(H)] \leq E_{\sigma^*}[U^t_l(L)].
 $$

- (ii) The operator maximizes expected utility:

 $$
 \sigma^*_{H} = \arg \max_{\sigma^d_h \in [0,1]} E_{\sigma^*}[U^d_H|\beta^*], \quad \sigma^*_{L} = \arg \max_{\sigma^d_l \in [0,1]} E_{\sigma^*}[U^d_L|\beta^*]
 $$

- Consistency: β^* is updated according to the agent’s strategy σ^* and Bayes’ rule:

 $$
 \beta^*(h|H) = \frac{\theta (1 - \sigma^t_h)}{\theta (1 - \sigma^t_h) + (1 - \theta) \sigma^t_h},
 $$

 $$
 \beta^*(h|L) = \frac{\theta \sigma^t_h}{\theta \sigma^t_h + (1 - \theta) (1 - \sigma^t_h)},
 $$

and $\beta^*(l|H) = 1 - \beta^*(h|H)$, $\beta^*(l|L) = 1 - \beta^*(h|L)$.

\(^3\)Note that the expected utility function of the operator is only dependent on σ^d.

7
We offer two remarks to explain this definition. First, with regard to the Sequential rationality of agents (modeled as a continuous player set), the rationality constraints (3a) and (3c) ensure that if the agents of a given type misbehave with positive probability in equilibrium, then the expected utility in choosing to access the other server is no less than the expected utility in choosing to access the server corresponding to their own type. On the other hand, (3b) and (3d) constraints ensure that if agents use the server for their true type with positive probability in equilibrium, then the utility of choosing the other server is not strictly higher.

Secondly, the consistency of beliefs requires that the operator’s updated belief of each type given the received signal is consistent with the prior distribution and the agents’ strategy in accordance with the Bayes’ rule.

4 Equilibrium Characterization

In this section, we characterize the PBE of the signaling game. In Sec. 4.1, we show three properties of PBE that are crucial for equilibrium analysis given any game parameters. In Sec. 4.2, we focus on analyzing the equilibrium regimes, where the qualitative properties of PBE are distinguished.

4.1 General properties of PBE

From Assumption (A1), the costs of both servers are finite when no agent misbehaves. We now show that the costs of both servers are finite in equilibrium as well.

Lemma 1. In any PBE, $c_H^H(\sigma^{ts}) < \infty$ and $c_L^H(\sigma^{ts}) < \infty$.

Proof. We prove by contradiction. If $c_H^H(\sigma^{ts}) = \infty$, the aggregate amount of agents taking server H in equilibrium must be higher than that without misbehavior. Hence, the amount of agents on server L is lower than that without misbehavior, which ensures that $c_L^H(\sigma^{ts}) < \infty$. Given any operator’s strategy $\sigma^d \in [0,1]$, from (1), we must have $E_{\sigma}(U_h^H(L)) < E_{\sigma}(U_l^L(L))$ and $E_{\sigma}(U_l^H(H)) < E_{\sigma}(U_l^L(L))$. From (3b) and (3d), we know that $\sigma_h^{ts} = 1$ and $\sigma_l^{ts} = 0$, i.e. no agents use server H in equilibrium. This contradicts the claim that $c_H^H(\sigma^{ts}) = \infty$. We can analogously argue that $c_L^H(\sigma^{ts}) < \infty$. \qed

The next proposition shows that type h agents do not misbehave in equilibrium. Consequently, the operator does not inspect agents that choose to access the server L.

Proposition 1. In any PBE, (σ^*, β^*) satisfies:

$$\sigma_h^{ts} = 0, \quad \sigma_L^d = 0, \quad \beta^*(l|L) = 1, \quad \beta^*(h|L) = 0.$$

Proof. We first prove $\sigma_h^{ts} = 0$ by contradiction. Assume that there exists a PBE such that $\sigma_h^{ts} > 0$, i.e. there exists a fraction of type h agents using server L. From (1b) and (3b), we must have:

$$-c_L^H(\sigma^{ts}) - \gamma_h^L \geq E_{\sigma}(U_h^H(L)) \geq E_{\sigma}(U_l^H(H)) = -c_H^L(\sigma^{ts}).$$
Thus, $c^h_L(\sigma^{t*}) \leq c^h_H(\sigma^{t*}) - p^h_h$. Since $p^h_h \geq 0$, $c^h_L(\sigma^{t*}) \leq c^h_H(\sigma^{t*})$. From \([\ref{1d}]\), we have
\[
\mathbb{E}_{\sigma^*}[U^t_L(H)] - c^h_L(\sigma^{t*}) \geq -c^h_H(\sigma^{t*}) \geq \mathbb{E}_{\sigma^*}[U^t_L(H)].
\]
Hence, from \([\ref{3d}]\), we must have $\sigma^{t*}_l = 0$, i.e. no agents of type l take server H. Additionally, since $c^h_L(\sigma^t)$ is increasing in σ^h_h and decreasing in σ^t_l, when $\sigma^{t*}_h > 0$ and $\sigma^{t*}_l = 0$, we have $c^h_L(\sigma^{t*}) > c^h_L(0,0)$. Analogously, $c^h_H(\sigma^t)$ is increasing in σ^t_l and decreasing in σ^h_h, and thus $c^h_H(\sigma^{t*}) < c^h_L(0,0)$. Consequently,
\[
c^h_L(0,0) > c^h_H(\sigma^{t*}) \geq c^h_L(\sigma^{t*}) > c^h_L(0,0).
\]
However, this contradicts Assumption (A1). Therefore, we can conclude that $\sigma^{t*}_l = 0$.

Next, from \([\ref{5}]\), we can check that the belief updated by Bayes’ rule satisfies $\beta^*(l|L) = 1$ and $\beta^*(h|L) = 0$.

Finally, since $\beta^*(l|L) = 1$ implies that only type l agents take server H. From \([\ref{2b}]\), the action I is strictly dominated by the action N. Hence, $\sigma^{d*}_L = 0$. \qed

Moreover, the next proposition shows that not all type l agents misbehave in equilibrium.

Proposition 2. In any PBE, $\sigma^{t*}_l < 1$.

Proof. Again we can prove this claim by contradiction. Assume that $\sigma^{t*}_l = 1$, i.e. all the agents of type l uses server H. From Proposition 1, agents of type h do not use server L in equilibrium. Therefore, in PBE, no agents use server L. In such case, from Assumption (A1), we know that $\mathbb{E}_{\sigma^*}[U^t_L(L)] = -c^h_L(0,1) > -c^h_H(0,1) \geq \mathbb{E}_{\sigma^*}[U^t_L(H)]$, which contradicts the equilibrium condition in \([\ref{3d}]\). Consequently, $\sigma^{t*}_l < 1$. \qed

Proposition 1 and Proposition 2 together show that both servers are used in equilibrium

Consequently, we only need to further consider σ^{t*}_l, β^* and σ^{d*}_h. For simplicity, we abuse the notation, and henceforth use $c^h_L(\sigma^t_l)$ (resp. $c^h_L(\sigma^t_l)$) to denote the cost of server H (resp. L) when type l agents’ strategy is σ^t_l, and $\sigma^h_h = 0$. Additionally, we define $\Delta c^h(\sigma^t_l)$ as the cost difference between L and H when the strategy of type l agents is σ^t_l:
\[
\Delta c^h(\sigma^t_l) \triangleq c^h_L(\sigma^t_l) - c^h_H(\sigma^t_l).
\]
From Assumption (A2), we know that $\Delta c^h(\sigma^t_l)$ must be decreasing in σ^t_l. The function $\Delta c^h(\sigma^t_l)$ evaluates the incentive of a type l agent to misbehave given that the fraction of misbehaving type l agents is σ^t_l.

4This result implies that “pooling” equilibrium, in which agents of different types send identical signals, does not exist in our game due to the congestion nature in the cost functions.
4.2 Equilibrium regimes

We now focus on studying how does PBE changes with game parameters. In Sec. 4.1, we showed that type \(h \) agents do not misbehave (Proposition 1), and the probability of type \(l \) agents who misbehave is smaller than one (Proposition 2). Thus, in general, there are two possible cases in equilibrium: In the first case, no agents of type \(l \) take server \(H \), which means misbehavior is completely deterred; and in the other case, a fraction of type \(l \) agent population takes server \(H \). Indeed, we find that there exist two equilibrium regimes, each corresponding to one of the two cases. Furthermore, the second regime (i.e. a positive fraction of type \(l \) agents take server \(H \)), can be divided into three sub-regimes depending on whether the inspection rate of the operator on server \(H \) is zero, positive or one.

Before we characterize PBE, we first introduce the following “threshold” function of \(p_d \):

\[
\hat{\sigma}_t^l(p_d) \triangleq \frac{p_d \theta}{(1 - \theta)(F_l - p_d)}.
\] (6)

The next lemma provide the best response correspondence \(\sigma_{d^*}^H \) in equilibrium.

Lemma 2. Given any PBE:

- If \(\sigma_t^l < \hat{\sigma}_t^l(p_d) \), then \(\beta^*(l|H) < p_d/F_l \) and \(\sigma_{d^*}^H = 0 \).
- If \(\sigma_t^l = \hat{\sigma}_t^l(p_d) \), then \(\beta^*(l|H) = p_d/F_l \) and \(\sigma_{d^*}^H \in [0, 1] \).
- If \(\sigma_t^l > \hat{\sigma}_t^l(p_d) \), then \(\beta^*(l|H) > p_d/F_l \) and \(\sigma_{d^*}^H = 1 \).

Proof. From (5), we can check that if \(\sigma_t^l = \hat{\sigma}_t^l(p_d) \), then \(\beta^*(l|H) = p_d/F_l \). In this case, \(-p_d + F_l \beta^*(l|H) = 0\), and thus any \(\sigma_{d^*}^H \in [0, 1] \) maximizes \(E_{\sigma_d^H}[U_{d^*}^H|\beta^*] \) in (2b).

Additionally, since \(\beta^*(l|H) \) increases in \(\sigma_t^l \), if \(\sigma_t^l < \hat{\sigma}_t^l \), we must have \(\beta^*(l|H) < p_d/F_l \). Consequently, \(-p_d + F_l \beta^*(l|H) < 0\), and from (2b) and (4), \(\sigma_{d^*}^H = 0 \). The case for \(\sigma_t^l > \hat{\sigma}_t^l \) can be argued analogously.

Lemma 2 shows that according to Bayes’ rule in (5), \(\hat{\sigma}_t^l(p_d) \) leads to the belief \(\beta^*(l|H) = p_d/F_l \), which is the threshold belief such that the operator is indifferent between the action I and N in equilibrium. If \(\sigma_t^l \) is higher (resp. lower) than \(\hat{\sigma}_t^l(p_d) \), then the operator inspects the agents taking the server \(H \) with probability one (resp. zero).

We next introduce the equilibrium regimes as follows:

1. In regime \(A \), \(p_t^l \) satisfies:

\[
p_t^l > \Delta c^\theta(0).
\] (7)

2. In regime \(B \), \(p_t^l \) satisfies:

\[
p_t^l < \Delta c^\theta(0).
\] (8)

There are three sub-regimes of regime \(B \).

\[5\]We only discuss generic cases, where the game parameters are in the interior of each regime.
The interpretations of regime boundaries are more straightforward once we present the PBE in each regime, and thus will be discussed after Theorem 1. Note that these regime definitions are valid; however, \(B_3 \) can be empty. We will discuss the properties of regime boundaries in Sec. 5.

We are now ready to fully characterize the PBE.

Theorem 1. The PBE is unique in each regime, and can be written as follows:

(a) Regime A:

\[
\sigma_{t*}^l = 0, \quad \sigma_{d*}^H = 0, \quad \beta^*(h|H) = 1, \quad \beta^*(l|H) = 0.
\]

(b) Regime B:

1. Subregime \(B_1 \):

\[
\left\{ \begin{array}{c}
(p_t^l, p_t^d) \\
(p_t^l, p_t^d)
\end{array} \right| \begin{array}{c}
\max\{\Delta c^\theta(\hat{\sigma}_t^l(p_t^d)), 0\} < p_t^l < \Delta c^\theta(0), \\
\max\{\Delta c^\theta(\hat{\sigma}_t^l(p_t^d)) - F_t, 0\} < p_t^l < \max\{\Delta c^\theta(\hat{\sigma}_t^l(p_t^d)), 0\},
\end{array} \right\}
\]

\[
\left\{ \begin{array}{c}
(p_t^l, p_t^d) \\
(p_t^l, p_t^d)
\end{array} \right| \begin{array}{c}
p^d > 0. \\
p^d > 0.
\end{array} \right\}
\]

(c) Subregime \(B_3 \):

\[
\left\{ \begin{array}{c}
(p_t^l, p_t^d) \\
(p_t^l, p_t^d)
\end{array} \right| \begin{array}{c}
0 < p_t^l < \max\{\Delta c^\theta(\hat{\sigma}_t^l(p_t^d)) - F_t, 0\}, \\
p^d > 0.
\end{array} \right\}
\]

The interpretations of regime boundaries are more straightforward once we present the PBE in each regime, and thus will be discussed after Theorem 1. Note that these regime definitions are valid; however, \(B_3 \) can be empty. We will discuss the properties of regime boundaries in Sec. 5.

We are now ready to fully characterize the PBE.

Theorem 1. The PBE is unique in each regime, and can be written as follows:

(a) Regime A:

\[
\sigma_{t*}^l = 0, \quad \sigma_{d*}^H = 0, \quad \beta^*(h|H) = 1, \quad \beta^*(l|H) = 0.
\]

(b) Regime B:

1. Subregime \(B_1 \):

\[
\sigma_{t*}^l < \hat{\sigma}_t^l(p_t^d), \quad \sigma_{d*}^H = 0, \quad \beta^*(h|H) = \frac{\theta}{\theta + (1 - \theta)\sigma_{t*}^l}, \quad \beta^*(l|H) = \frac{(1 - \theta)\sigma_{t*}^l}{\theta + (1 - \theta)\sigma_{t*}^l}.
\]

Additionally, the unique \(\sigma_{t*}^l \) satisfies

\[
\Delta c^\theta(\sigma_{t*}^l) = p_t^l.
\]

2. Subregime \(B_2 \):

\[
\sigma_{t*}^l = \hat{\sigma}_t^l(p_t^d), \quad \sigma_{d*}^H = \frac{\Delta c^\theta(\hat{\sigma}_t^l(p_t^d)) - p_t^l}{F_t}, \quad \beta^*(h|H) = \frac{F_t - p_t^d}{F_t}, \quad \beta^*(l|H) = \frac{p_t^d}{F_t}.
\]
(3) Subregime \(B_3 \):

\[
\sigma^{t^*}_i > \tilde{\sigma}^t_i(p^d), \quad \sigma^{d^*}_H = 1, \quad (16a)
\]

\[
\beta^*(h|H) = \frac{\theta}{\theta + (1 - \theta)\sigma^{t^*}_i}, \quad \beta^*(l|H) = \frac{(1 - \theta)\sigma^{t^*}_i}{\theta + (1 - \theta)\sigma^{t^*}_i}. \quad (16b)
\]

Additionally, the unique \(\sigma^{t^*}_i \) satisfies

\[
\Delta c^\theta(\sigma^{t^*}_i) = p_t + F_l. \quad (17)
\]

Firstly, we interpret the regime boundaries:

(i) Regimes \(A \) and \(B \) are distinguished by the threshold \(\Delta c^\theta(0) \), which is the cost reduction that a type \(l \) agent enjoys by misbehaving given that all the remaining agents do not misbehave.

(ii) Regime \(B \) is distinguished into three sub-regimes by two thresholds: \(\Delta c^\theta(\tilde{\sigma}^t_i(p^d)) \) and \(\Delta c^\theta(\tilde{\sigma}^t_i(p^d)) - F_l \). For any \(p^d \), the threshold \(\Delta c^\theta(\tilde{\sigma}^t_i(p^d)) \) is the gain from misbehavior given that the misbehavior rate is \(\tilde{\sigma}^t_i(p^d) \) and the operator does not inspect at all. The threshold \(\Delta c^\theta(\tilde{\sigma}^t_i(p^d)) - F_l \) is the increase in utility from misbehavior given that the misbehavior rate is \(\tilde{\sigma}^t_i(p^d) \) and the operator inspects each agent requesting access to server \(H \). We say that the misbehavior cost \(p_t \) is relatively high compared to \(p^d \), if \(p_t > \Delta c^\theta(\tilde{\sigma}^t_i(p^d)) \); relatively medium if \(\Delta c^\theta(\tilde{\sigma}^t_i(p^d)) - F_l < p_t < \Delta c^\theta(\tilde{\sigma}^t_i(p^d)) \), and relatively low if \(p_t < \Delta c^\theta(\tilde{\sigma}^t_i(p^d)) - F_l \).

Secondly, we relate the PBE strategy profiles and the conditions determining the regime boundaries:

[Regime \(A \)]: Misbehavior cost \(p_t \) is higher than the incentive to misreport \(\Delta c^\theta(0) \), thus misbehavior is deterred, and no inspection is needed.

[Regime \(B \)]: Misbehavior cost \(p_t \) is lower than the incentive to misreport \(\Delta c^\theta(0) \), thus misbehavior occurs with positive probability.

- \(B_1 \): [Misbehavior cost is relatively high \(9 \).] Misbehavior rate is lower than the threshold \(\tilde{\sigma}^t_i(p^d) \), and the operator does not inspect.

- \(B_2 \): [Misbehavior cost is relatively medium \(10 \).] Misbehavior rate is equal to the threshold \(\tilde{\sigma}^t_i(p^d) \), and the operator inspects a positive fraction of agents.

- \(B_3 \): [Misbehavior cost is relatively low \(11 \).] Misbehavior rate is higher than the threshold \(\tilde{\sigma}^t_i(p^d) \), and the operator inspects all the agents.

Thirdly, we summarize how PBE changes with the misbehavior and inspection costs in table \(12 \).
Table 1: Qualitative properties of PBE

	\(A\)	\(B_1\)	\(B_2\)	\(B_3\)
\(p_t^l\) increases	\(\sigma_t^{*l}\)	\(\downarrow\)	\(\downarrow\)	\(\downarrow\)
\(\sigma_t^{d*}\)	\(\downarrow\)	\(\downarrow\)	\(\downarrow\)	\(\downarrow\)
\(p^d\) increases	\(\sigma_t^{*l}\)	\(\uparrow\)	\(\uparrow\)	\(\uparrow\)
\(\sigma_t^{d*}\)	\(\downarrow\)	\(\downarrow\)	\(\downarrow\)	\(\downarrow\)

Fourthly, we emphasize the following implications of PBE:

- The misbehavior is completely deterred only when the misbehavior cost is sufficiently high.

- In sub-regime \(B_2\), the belief \(\beta^*(H)\) does not depend on the \(\theta\). The intuition is that since in this sub-regime, both the agents and the operator use mixed strategies in equilibrium, the strategy \(\tilde{\sigma}_t^l(p^d)\) in (5) increases in \(\theta\) to ensure that the belief \(\beta^*(l|H)\) (resp. \(\beta^*(h|H)\)) is maintained at the threshold value \(p^d/F_l\) (resp. \(1 - p^d/F_l\)), which makes the operator indifferent between actions I and N.

- One can verify the intuitive property that the utility of the type \(l\) (resp. \(h\)) agents is non-increasing (resp. non-decreasing) in \(p_t^l\) and non-decreasing (resp. non-increasing) in \(p^d\). Similarly, the operator’s utility is non-decreasing in \(p_t^l\) and non-increasing in \(p^d\).

- In general, the misbehavior rate \(\sigma_t^{*l}\) is non-increasing in \(p_t^l\), and non-decreasing in \(p^d\). The inspection rate \(\sigma_t^{d*}\) is non-decreasing in \(p_t^l\), and non-increasing in \(p^d\).

Finally, we can analyze how the regime boundaries change with the fine \(F_l\) and the fraction of type \(h\) agents, \(\theta\). We note that the boundary between regimes \(A\) and \(B\), \(\Delta c^\theta(0)\), is a constant determined by the cost functions of the servers and the fraction of type \(h\) agents \(\theta\). Also, following Assumption (A1), the minimum \(p_t^l\) that deters misbehavior is positive, i.e. \(\Delta c^\theta(0) > 0\).

The boundaries among the sub-regimes are complex:

- The boundary between \(B_1\) and \(B_2\):
 When \(p^d = 0\) (costless inspection), from (6), \(\tilde{\sigma}_t^l(0) = 0\). Therefore, \(\Delta c^\theta(\tilde{\sigma}_t^l(0)) = \Delta c^\theta(0) > 0\). Moreover, as \(p^d\) increases, \(\Delta c^\theta(\tilde{\sigma}_t^l(p^d))\) decreases. This is because \(\tilde{\sigma}_t^l(p^d)\) increases in \(p^d\), and \(\Delta c^\theta(\tilde{\sigma}_t^l(p^d))\) decreases in \(\tilde{\sigma}_t^l\). Therefore, for a given \(p^d\), the set of \(p_t^l\) in sub-regime \(B_2\) a singleton \(\{\Delta c^\theta(0)\}\) when \(p^d = 0\), and the size of the set increases as \(p^d\) increases until a certain threshold of \(p^d\), where \(\Delta c^\theta(\tilde{\sigma}_t^l(p^d)) = 0\). Beyond the threshold, the set of \(p_t^l\) in \(B_2\) is \(0 < p_t^l < \Delta c^\theta(0)\), see (9).

- The boundary between \(B_2\) and \(B_3\):
 - From (10), if \(\Delta c^\theta(0) > F_l\), there exists another threshold of \(p^d\), below which the boundary \(\Delta c^\theta(\tilde{\sigma}_t^l(p^d)) - F_l\) is parallel to \(\Delta c^\theta(\tilde{\sigma}_t^l(p^d))\), and decreases in \(p^d\). For \(p^d\) higher than this threshold, the set of \(p_t^l\) in \(B_3\) is empty.
- If $\Delta c^\theta(0) < F_l$, then the sub-regime B_3 is empty.

Furthermore, from Assumption (A3), we know that $\Delta c^\theta(0)$ decreases in θ, and $\Delta c^\theta(\hat{\sigma}_l(p^d))$ also decreases in θ for any given p^d. Therefore, as θ increases, the sizes of regime A (no misbehavior, no inspection) and sub-regime B_1 (low misbehavior rate, no inspection) increase, and the sizes of the two other regimes decrease. This implies that the misbehavior rate is lower and the inspection is less needed when more agents are of type h.

Moreover, as F_l increases, the size of B_2 increases, and the size of B_3 decreases or becomes empty. However, F_l has no effect on A and B_1, where inspection is not needed. This observation implies that (i) Fine is effective to decrease the misbehavior rate when the inspection cost is relatively high compared to the misbehavior cost, but cannot deter misbehavior. (ii) If the fine is higher than $\Delta c^\theta(0)$, which is the maximum incentive to misbehave, then inspecting all agents is not needed (i.e. sub-regime B_3 is empty).

5 A Simple Example of Toll Evasion

In this section, we apply our equilibrium results to a specific example of Electronic Toll Collection (ETC) system. In the ETC setting, server H (resp. L) represents the tolled (resp. toll-free) lanes. Type h are the agents that are willing to pay the toll, and type l are the agents that are not willing to pay. The total arrival rate of both types of agents is $\lambda = 2400$ veh/hr. The fraction $\theta = 0.3$ is the fraction of type h agents. Therefore, the arrival rate of type h (resp. l) agents is $\theta \lambda$ (resp. $(1 - \theta) \lambda$). The toll is collected electronically, and the access is granted to the tolled lanes to the paying agents after the RSU obtains their reported identifier. Such an operation is technologically feasible; see e.g. the European DSRC Toll Collection systems [2].

We model the highway as two parallel $M/M/1$ queuing systems, one representing the tolled lanes (H), and the other representing the toll-free lanes (L); see Fig. 2 (For background on modeling highway traffic with stochastic queuing models, see [15, 16]). Both the tolled lanes and the toll-free lanes have a capacity (service rate) of 1700 veh/hr, i.e. $\mu_H = \mu_L = 1700$ veh/hr. For ease of presentation, we assume that the travel cost on a server is the product of the expected system time and the value of time $VoT = 50$ USD/hr. This assumption essentially means that the both lanes have the same nominal (free-flow) travel time. The fine is $F_l = 100$ USD. Following standard results in queuing theory (see e.g. [17]), the time-average queue lengths in both servers are given by:

\[
\begin{align*}
&c^\theta_H(\sigma) = \begin{cases}
\frac{VoT}{\mu_H - \theta \lambda (1 - \sigma_h^t) - (1 - \theta) \lambda \sigma_l^t}, & \theta \lambda (1 - \sigma_h^t) + (1 - \theta) \lambda \sigma_l^t < \mu_H, \\
\infty, & \text{o.w.}
\end{cases} \\
&c^\theta_L(\sigma) = \begin{cases}
\frac{VoT}{\mu_L - (1 - \theta) \lambda (1 - \sigma_l^t) - \theta \lambda \sigma_h^t}, & (1 - \theta) \lambda (1 - \sigma_l^t) + \theta \lambda \sigma_h^t < \mu_L, \\
\infty, & \text{o.w.}
\end{cases}
\end{align*}
\]

(18a) (18b)

It is not hard to check that with the given parameters, the cost functions satisfy Assumptions (A1) - (A2). Fig. 4 illustrates the regimes of PBE.
In this example, the minimum p_t^l that deters misbehavior is $p_t^l = \Delta c^\theta(0) = 2.35$ USD. Note that this is the technology cost per signal. A device that is used to manipulate the message sent to the RSU can be expensive, but if the device is repeatedly used, the average cost can be low. If the average cost is lower than 2.35 USD, misbehavior rate is positive.

Additionally, since the fine $F_l = 100 > \Delta c^\theta(0) = 2.35$, the sub-regime B_3 is empty. This implies that given any p_t^l and p_d^l, the misbehavior rate is no higher than $\hat{\sigma}_{t^l}^\ast$, and there is no need to inspect all agents. Given parameters in B_2, $p_t^l = 0.5$ USD and $p_d^l = 5$ USD, the equilibrium misbehavior rate is $\sigma_{t^l}^\ast = \hat{\sigma}_{t^l}^d(\hat{p}^d) = 2.15\%$, and the inspection rate is $\sigma_{d^l}^\ast H = 0.34\%$.

In practice, the fraction θ of agents that are willing to pay the toll decreases as the toll increases [18]. Our analysis in Sec. 4.2 shows that as θ decreases, $\Delta c^\theta(0)$ decreases, which means that misbehavior is more likely to happen. This dampens the advantage of agents that pay the high toll, and increases the need for inspection. How should toll be determined when misbehavior is considered is an interesting open question for further research.

Appendix A Proof of Theorem 1

(a) In regime A, since p_t^l satisfies (7), from (1c), we have:

$$\mathbb{E}_{\sigma^*}[U_t^H(H)] \leq -c_H^\theta(\sigma_{t^l}^\ast) - p_t^l < -c_L^\theta(\sigma_{t^l}^\ast) = \mathbb{E}_{\sigma^*}[U_t^L(L)].$$

Therefore, from (3c), we must have $\sigma_{t^l}^\ast = 0$. From (5), we can check that $\beta^*(h|H) = 1$ and $\beta^*(l|H) = 0$. Following from Lemma 2, $\sigma_{d^l}^\ast H = 0$. Thus, the PBE in (12) is the unique equilibrium.

(b) In regime B, we first prove by contradiction that $\sigma_{t^l}^\ast \in (0, 1)$. Assume that $\sigma_{t^l}^\ast = 0$, then from (4) and (5), β^* and $\sigma_{d^l}^\ast$ must be in (12). Then, from (1d), $\mathbb{E}_{\sigma^*}[U_t^L(L)] = -c_L^\theta(0)$. However, if type l agents deviate to choose H, the utility is $-c_H^\theta(0) - p_t^l$. Since in regime B, p_t^l satisfies (8), type l agents has incentive to deviate to H, which contradicts $\sigma_{l^l}^\ast = 0$. Additionally, from Proposition 2, $\sigma_{t^l}^\ast < 1$. Therefore, if p_t^l
satisfies (8), then $\sigma^i_t^e \in (0,1)$, i.e. type l agents take both servers in equilibrium, which implies the follows:

$$E_{\sigma^*}[U^i_1(L)] = E_{\sigma^*}[U^i_1(H)]. \quad (19)$$

Furthermore, there are three cases for $\sigma^H_l^d$: $\sigma^H_l^d = 0$, $\sigma^H_l^d \in (0,1)$ and $\sigma^H_l^d = 1$. It turns out that these three cases correspond to sub-regime B_1, B_2 and B_3, respectively.

$$(B_2) \quad \sigma^H_l^d \in (0,1):$$

In this case, from Lemma 2, we know that $\beta^*(l|H)$ must be p^d/F_i, and $\sigma^i_t^e = \hat{\sigma}^*_i$ in (6) is the unique equilibrium strategy. Additionally, from (19), the operator’s strategy $\sigma^H_l^d$ should satisfy:

$$-c^0_l(\sigma^i_t^e) = -c^0_l(\sigma^*_i) - p^i_l - F_i \sigma^H_l^d.$$

Thus, $\sigma^H_l^d$ is in (15a). Furthermore, it remains to be shown that $\sigma^i_t^e$ and $\sigma^H_l^d$ in (15a) are feasible strategies in this case, i.e. $0 < \sigma^i_t^e < 1$ and $0 \leq \sigma^H_l^d < 1$. We can check that these constraints are satisfied when p^d and p^i_l satisfy (10). Therefore, PBE in (15) is the unique equilibrium in regime B_2.

$$(B_1) \quad \sigma^H_l^d = 0:$$

In this case, $E_{\sigma^*}[U^i_1(H)] = -c^0_l(\sigma^i) - p^i_l$. From (19), we must have:

$$E_{\sigma^*}[U^i_1(H)] = -c^0_l(\sigma^i) - p^i_l = -c^0_l(\sigma^i) = E_{\sigma^*}[U^i_1(L)],$$

which leads to $\Delta c^0(\sigma^i) = p^i_l$. From (5), β^* is in (13b).

We now discuss the conditions on p^i_l and p^d, under which the strategy profile in (13a) is a PBE in this case. We have argued that (8) is needed to ensure that $\sigma^i_t^e \in (0,1)$. Additionally, we need to show that the operator has no incentive to deviate. From Lemma 2, as long as $\beta^*(l|H) < p^d/F_i$, the action N strictly dominates the action I. Therefore, we need $\sigma^i_t^e < \hat{\sigma}^*_i$. Since $\Delta c^0(\sigma^i) < 0$, and $\Delta c^0(\sigma^i) = p^i_l$, we must have $p^i_l = \Delta c^0(\sigma^i) > \Delta c^0(\hat{\sigma}^*_i)$, which leads to constraints in (9).

$$(B_3) \quad \sigma^H_l^d = 1:$$

In this case, from (19), we obtain:

$$E_{\sigma^*}[U^i_1(L)] = -c^0_l(\sigma^i) = -c^0_l(\sigma^i) - p^i_l - F_i = E_{\sigma^*}[U^i_1(H)],$$

Therefore, $\sigma^i_t^e$ satisfies (17). From (5), β^* is obtained from (16b). To ensure that the action I is a dominant strategy for the operator, from Lemma 2 we need $\beta^*(l|H) > p^d/F_i$, and $\sigma^i_t^e > \hat{\sigma}^*_i$. Besides, $\Delta c^0(\sigma^i) < 0$, and $\Delta c^0(\sigma^i) = p^i_l + F_i$, we can conclude that $p^i_l + F_i = \Delta c^0(\sigma^i) < \Delta c^0(\hat{\sigma}^*_i)$, i.e. p^i_l needs to satisfy (11).

Acknowledgments

This work was supported in part by the Singapore National Research Foundation through the Singapore MIT Alliance for Research and Technology (SMART) Center for Future Mobility (FM), and US National Science Foundation (NSF) grants.
References

[1] P. Varaiya, “Smart cars on smart roads: Problems of control,” *IEEE Transactions on Automatic Control*, vol. 38, no. 2, pp. 195–207, 1993.

[2] P. Papadimitratos, A. de La Fortelle, K. Evenssen, R. Brignolo, and S. Cosenza, “Vehicular communication systems: Enabling technologies, applications, and future outlook on intelligent transportation,” *IEEE communications magazine*, vol. 47, no. 11, 2009.

[3] A. A. Kurzhanskiy and P. Varaiya, “Traffic management: An outlook,” *Economics of transportation*, vol. 4, no. 3, pp. 135–146, 2015.

[4] C. Bergenhem, S. Shladover, E. Coelingh, C. Englund, and S. Tsugawa, “Overview of platooning systems,” in *Proceedings of the 19th ITS World Congress, Oct 22-26, Vienna, Austria (2012)*, 2012.

[5] L. Jin, M. Čičić, S. Amin, and K. H. Johansson, “Modeling impact of vehicle platooning on traffic: A fluid queueing approach,” in *Hybrid Systems: Computation and Control, 21st ACM International Conference on*, ACM, 2018.

[6] J. Petit, F. Schaub, M. Feiri, and F. Kargl, “Pseudonym schemes in vehicular networks: A survey,” *IEEE communications surveys & tutorials*, vol. 17, no. 1, pp. 228–255, 2015.

[7] N. Lawson, “Highway to hell: Hacking toll systems,” *Presentation at Blackhat*, 2008.

[8] J.-P. Hubaux, S. Capkun, and J. Luo, “The security and privacy of smart vehicles,” *IEEE Security & Privacy*, vol. 2, no. 3, pp. 49–55, 2004.

[9] A. de Palma and R. Lindsey, “Traffic congestion pricing methodologies and technologies,” *Transportation Research Part C: Emerging Technologies*, vol. 19, no. 6, pp. 1377–1399, 2011.

[10] R. Borndörfer, J. Buwaya, G. Sagnol, and E. Swarat, “Optimizing toll enforcement in transportation networks: a game-theoretic approach,” *Electronic Notes in Discrete Mathematics*, vol. 41, pp. 253–260, 2013.

[11] Z. Yin, A. X. Jiang, M. P. Johnson, C. Kiekintveld, K. Leyton-Brown, T. Sandholm, M. Tambe, and J. P. Sullivan, “TRUSTS: Scheduling randomized patrols for fare inspection in transit systems,” in *IAAI*, 2012.

[12] A. M. Spence, *Market signaling: Informational transfer in hiring and related screening processes*, vol. 143. Harvard Univ Pr, 1974.

[13] D. Fudenberg and J. Tirole, “Perfect bayesian equilibrium and sequential equilibrium,” *Journal of Economic Theory*, vol. 53, no. 2, pp. 236–260, 1991.
[14] I.-K. Cho and D. M. Kreps, “Signaling games and stable equilibria,” *The Quarterly Journal of Economics*, vol. 102, no. 2, pp. 179–221, 1987.

[15] M. Baykal-Gürsoy, W. Xiao, and K. Özbay, “Modeling traffic flow interrupted by incidents,” *European Journal of Operational Research*, vol. 195, no. 1, pp. 127–138, 2009.

[16] G. F. Newell, *Applications of Queueing Theory*, vol. 4. Springer Science & Business Media, 2013.

[17] R. G. Gallager, *Stochastic Processes: Theory for Applications*. Cambridge University Press, 2013.

[18] M. Ben-Akiva, A. De Palma, and P. Kanaroglou, “Dynamic model of peak period traffic congestion with elastic arrival rates,” *Transportation Science*, vol. 20, no. 3, pp. 164–181, 1986.