Hyperoxia does not directly affect vascular tone in isolated arteries from mice

B. Smit1*, Y. M. Smulders2, M. C. de Waard1, H. M. Oudemans–van Straaten1, A. R. J. Girbes3, E. C. Eringa3☯, A. M. E. Spoelstra - de Man1☯

1Department of Intensive Care, VU University Medical Center, Amsterdam, the Netherlands, 2Department of Internal Medicine, VU University Medical Center, Amsterdam, the Netherlands, 3Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands

☯ These authors contributed equally to this work.

*b.smit@vumc.nl

Abstract

Hospitalized patients often receive oxygen supplementation, which can lead to a supraphysiological oxygen tension (hyperoxia). Hyperoxia can have hemodynamic effects, including an increase in systemic vascular resistance. This increase suggests hyperoxia-induced vasoconstriction, yet reported direct effects of hyperoxia on vessel tone have been inconsistent. Furthermore, hyperoxia-induced changes in vessel diameter have not been studied in mice, currently the most used mammal model of disease. In this study we set out to develop a pressure-myograph model using isolated vessels from mice for investigation of pathways involved in hyperoxic vasoconstriction. Isolated conduit and resistance arteries (femoral artery and gracilis arteriole, respectively) from C57BL/6 mice were exposed to normoxia (PO2 of 80 mmHg) and three levels of hyperoxia (PO2 of 215, 375 and 665 mmHg) in a no-flow pressure myograph setup. Under the different PO2 levels, dose-response agonist induced endothelium-dependent vasodilation (acetylcholine, arachidonic acid), endothelium-independent vasodilation (s-nitroprusside), as well as vasoconstriction (norepinephrine, prostaglandin F2α) were examined. The investigated arteries did not respond to oxygen by a change in vascular tone. In the dose-response studies, maximal responses and EC50 values to any of the aforementioned agonists were not affected by hyperoxia either. We conclude that arteries and arterioles from healthy mice are not intrinsically sensitive to hyperoxic conditions. The present ex-vivo model is therefore not suitable for further research into mechanisms of hyperoxic vasoconstriction.

Introduction

Oxygen supplementation is frequently applied in modern day hospital care[1]. Superfluous administration of oxygen will lead to a supraphysiological oxygen tension in arterial blood (hyperoxia). Studies in healthy volunteers and hospitalized patients have shown that hyperoxia can influence the cardiovascular system by reducing cardiac output and increasing systemic vascular resistance[2–4]. Outside the haemoglobin compartment, dissolved oxygen hardly
contributes to the oxygen delivering capacity of blood. The diminished flow due to reduced cardiac output and vasoconstriction may be disproportionate to the small increase in blood oxygen content, effectively impairing oxygen delivery to organs [5]. Additionally, increased oxidative stress may occur due to the abundance of molecular oxygen [6–8]. Both factors may be harmful for patients, which is corroborated by retrospective studies showing a correlation between high oxygen tensions and mortality in ICU patients [9–13]. Two small prospective ICU studies also showed increased mortality in patients with hyperoxia [14,15].

The increase in systemic vascular resistance is thought to reflect systemic vasoconstriction. Hyperoxic vasoconstriction has been investigated in preclinical studies using a variety of animal models (e.g. dogs [16–19], pigs [20–27], cats [20,28,29], rats [30–39], rabbits [40], sheep [41], hamsters [42–51] and mice [52–54]) using intravital microscopy and isolated vessel myography. However, despite decades of research, the mechanisms of hyperoxic vasoconstriction remain elusive [55]. Although the majority of studies suggest constriction, some show no direct effect of hyperoxia on vascular tone [27,29,34,38], while others even show dilatation [16,18,23,41].

A mouse model for hyperoxic vasoconstriction, utilizing vessel myography, would be highly valuable due to the possibility of using genetically modified animals. Vessel myography is an excellent tool to explore vascular pathways because systemic variables that influence blood vessel tone (like blood pressure, sympathetic activation, blood components) can be excluded. However, no isolated vessels from mice have been used in either a wire or pressure myography setup to study the effects of hyperoxia.

In this study, we aimed to design a pressure myography model for direct effects of hyperoxia on artery diameter using isolated arteries from healthy mice, to enable use of gene-knockout mouse strains, for future investigation of the pathway(s) involved in hyperoxic vasoconstriction.

Methods

Animals

In all experiments we used 10–12 week old male C57BL/6 mice, maintained on standard chow and water, ad libitum. Animals were housed in the Amsterdam Animal Research Centre until used for the experiments described below. All protocols were reviewed and approved by the Animal Experiments Committee of the VU University, Amsterdam.

Isolation of vessels

Mice were killed by cervical dislocation. The femoral artery and its first order arteriole feeding the gracilis muscle (gracilis arteriole) were isolated from both hind legs immediately. During the procedure, the area was kept cold and moist by intermittent dripping with ice-cold MOPS buffered physiological salt solution (PSS) containing (in mM): 145 NaCl; 4.5 KCl; 2.5 CaCl$_2$; 1.2 MgSO$_4$; 1.2 H$_2$NaPO$_4$; 0.025 EDTA; sodium pyruvate; 11 glucose; MOPS. All isolated vessels were stored on ice until cannulation.

Cannulation of vessels

Vessels were transferred to a pressure myography adapted for direct administration of gases to blood vessels, filled with 10 ml of Krebs-Henseleit buffer (KHB) containing (in mM): 119.0 NaCl; 4.7 KCl; 2.5 CaCl$_2$; 1.2 MgSO$_4$; 20.0 NaHCO$_3$; 1.2 KH$_2$PO$_4$; 0.025 EDTA; 11 glucose. The buffer was warmed to 37°C and gassed with a mixture of 10% O$_2$, 5% CO$_2$, balance N$_2$ to obtain a pH of 7.4 and PO$_2$ of ~80 mmHg. Oxygen tension of the buffer surrounding the vessel was measured with a Fibox 4 oxygen meter (PreSens, Regensburg, Germany). Vessels were
mounted on glass cannulas on either side, secured with a single suture and stretched slightly in
the longitudinal direction. Intravascular pressure was raised to 80 mmHg and the vessel seg-
ment was studied without intraluminal flow.

Experimental protocol

Vessels were allowed to rest for 20–30 minutes before starting the experiments. After this
period, diameters were stable. Vessels that did not develop spontaneous myogenic tone were
constricted to 40–50% of their initial diameter with norepinephrine \(10^{-6.5}\) M (Centrafarm BV,
Etten-Leur, the Netherlands). Vessels exhibiting spasms were discarded. When a stable con-
striction was obtained, endothelial integrity was tested using \(10^{-7}\) M Acetylcholine. Vessels
had to respond with a stable dilation of at least 10% and were discarded otherwise.

The buffer in the vessel chamber was then replaced with fresh KHB and gassed with either
10, 30, 50% or 90% O\(_2\) / 5% CO\(_2\) / balance N\(_2\) to reach a PO\(_2\) of approximately 80, 220, 350 or
660 mmHg. After endothelial integrity was verified, 10, 30 or 50% oxygen was applied ran-
domly and each acted vessel as its own control. Experiments with 90% O\(_2\) were performed in a
later stage. For clarity, the different groups in this manuscript will be named according to the
percentage of oxygen used.

Semi-log cumulative dose-response curves were established for Acetylcholine \((10^{-9}–
10^{-5.5})\) M to test the eNOS pathway, S-nitroprusside \((10^{-9}–10^{-5.5})\) M for vascular smooth mus-
cle sensitivity to Nitric Oxide and Arachidonic Acid \((10^{-9}–10^{-5})\) to study cyclooxygenase
dependent dilation. Norepinephrine \((10^{-9}–10^{-5.5})\) M and Prostaglandin F2\(\alpha\) \((10^{-9}–10^{-5})\) M
were applied to test sensitivity to naturally circulating constrictors. Maximal diameters were
obtained with application of \(10^{-4}\) M Papaverine. All chemicals, except for norepinephrine
(Centrafarm BV, Etten-Leur, the Netherlands) were purchased from Sigma-Aldrich (Zwijn-
drecht, the Netherlands).

Statistical analysis

At each dose, dilation or constriction was calculated as a percentage of the maximal response
margin [56,57]. If multiple vessels were used from one animal for the same agonist and oxygen
tension, the results were averaged. Therefore, numbers reported refer to animals used, rather
than individual vessels. Using GraphPad prism, a non-linear four parameter fit of the data was
performed for calculation of the EC\(_{50}\) variable. Maximal responses and EC\(_{50}\) values where
compared with one-way ANOVA and Dunnett’s post-hoc correction for multiple comparisons
where appropriate. Values are presented as mean (standard deviation) unless otherwise
specified.

Results

A total of 48 mice were used to obtain the results described below. On average, the mice
weighed 25 gr (3).

The oxygen tensions measured during the experiments when gassing with either 10, 30, 50
or 90% O\(_2\) were 78 mmHg (4), 215 (6), 375(26) and 667(5), respectively. The femoral arteries
used in the experiments had a maximal diameter of 293 \(\mu\)m (30). Gracilis arterioles were
129 \(\mu\)m (20) wide.

Femoral arteries did not develop spontaneous tone. For dilation studies (Acetylcholine,
S-Nitroprusside and Arachidonic Acid), the femoral arteries were therefore constricted to 46%
(12) with norepinephrine. The average tone for gracilis arteries was 42% (15).
We found no effect of oxygen on the baseline vessel diameter. For the gracilis arterioles, the degree of tone was therefore similar between the different oxygen tensions; 40% (16), 40 (14), 43 (15) and 40 (18) at a PO$_2$ of 80, 215, 375 and 665 mmHg respectively (P = 0.72).

The dilation of the femoral artery or gracilis arteriole induced by application of acetylcholine, which activates eNOS to produce NO, was not affected by oxygen tension (Fig 1A; Femoralis, 1B; Gracilis). The curve statistics are summarized in Table 1. The sensitivity of the vascular smooth muscle of either vessel to the NO donor SNP was not altered by hyperoxia (Fig 2A and 2B, Table 1). Similarly, endothelium dependent dilation with arachidonic acid did not differ between oxygen tensions (Table 1 and Fig 3).

Constriction of vessels with increasing doses of norepinephrine (Table 2 and Fig 4) or Prostaglandin F2alpha (Table 2 and Fig 5) gave identical results under different PO$_2$ levels.

We found no effect of oxygen on the baseline vessel diameter. For the gracilis arterioles, the degree of tone was therefore similar between the different oxygen tensions; 40% (16), 40 (14), 43 (15) and 40 (18) at a PO$_2$ of 80, 215, 375 and 665 mmHg respectively (P = 0.72).

The dilation of the femoral artery or gracilis arteriole induced by application of acetylcholine, which activates eNOS to produce NO, was not affected by oxygen tension (Fig 1A; Femoralis, 1B; Gracilis). The curve statistics are summarized in Table 1. The sensitivity of the vascular smooth muscle of either vessel to the NO donor SNP was not altered by hyperoxia (Fig 2A and 2B, Table 1). Similarly, endothelium dependent dilation with arachidonic acid did not differ between oxygen tensions (Table 1 and Fig 3).

Constriction of vessels with increasing doses of norepinephrine (Table 2 and Fig 4) or Prostaglandin F2alpha (Table 2 and Fig 5) gave identical results under different PO$_2$ levels.

Table 1. Vasodilation statistics.

	Maximal response (% dilation)	logEC$_{50}$ (10$^{-4}$ M)									
	N	10%	30%	50%	90%	P	10%	30%	50%	90%	P
Acetylcholine											
Femoralis	7,7,6,5	91 (13)	90 (6)	86 (15)	93 (6)	0.74	-7.0 (.18)	-6.9 (.16)	-6.9 (.27)	-6.9 (.11)	0.70
Gracilis	4,6,5,5	98 (3)	98 (2)	97 (5)	97 (2)	0.86	-7.6 (.05)	-7.5 (.07)	-7.5 (.17)	-7.5 (.05)	0.21
SNP											
Femoralis	5,5,5	91 (10)	87 (13)	92 (8)	-	0.77	-5.5 (.32)	-5.4 (.68)	-5.5 (.30)	-	0.77
Gracilis	5,5,6	76 (14)	68 (17)	73 (14)	-	0.68	-5.4 (.62)	-5.5 (.48)	-5.5 (.37)	-	0.88
Arachidonic Acid											
Femoralis	6,5,6	81 (19)	75 (14)	83 (11)	-	0.68	-7.5 (.20)	-7.1 (.23)	-7.1 (.17)	-	0.17
Gracilis	5,5,5,5	83 (20)	86 (9)	89 (10)	82(15)	0.81	-6.9 (.31)	-6.6 (.13)	-6.9 (.22)	-5.3 (.54)	0.84

Maximal values are the responses measured at the highest agonist concentration. LogEC50 values are derived from a non-linear four parameter fit. n denotes the number of animals per group. Values are reported as mean(SD).

https://doi.org/10.1371/journal.pone.0182637.t001
Discussion

In the present study, we have found that hyperoxia does not directly impair endothelium dependent and -independent vasodilation or vasoconstriction in isolated femoral arteries and gracilis arterioles from healthy C57BL/6 mice.

We found that different concentrations of oxygen did not change basal tone, endothelial or smooth muscle function in any of the arteries and arterioles studied. An inconsistent response of vessels to oxygen has been described previously in different setups and species, but no other data exists of isolated vessels from mice. In rats, arterioles from the cremaster muscle were...
found to be sensitive to oxygen in one study[30], but insensitive in another two[58,59], despite using the same species and a practical identical methodology. In vivo, increasing oxygen within the cremaster bed of mice induced vasoconstriction in response to elevated oxygen tensions in 60% (99 of 165 mice)[53]. Similarly, an elegant ex-vivo study on hamster cheek pouch arterioles showed that from the 28 arteries studied, only nine constricted in response to oxygen supplementation (32%)[42]. The authors could not find a specific factor that was responsible for the loss of oxygen reactivity in the remaining vessels. In particular, they ruled out damage to vessels as a cause due to similar myogenic tone and norepinephrine sensitivity between responding and non-responding vessels. All arteries and arterioles used in our study exhibited normal endothelium and smooth muscle function and therefore vessel damage is highly unlikely to be a factor explaining our results. Thus, while in the aforementioned experiments a proportion of arterioles responded to hyperoxia, none of the arteries/arterioles in our study did.

Table 2. Vasoconstriction statistics.

	Maximal response (%)	logEC50 (10^x M)
	n 10% 30% 50% 90% P	10% 30% 50% 90% P
Norepinephrin		
Femoralis	5,6,5,5 79 (6) 76 (4) 74 (6) 83 (3) 0.35*	-6.8 (.20) -6.5 (.21) -6.6 (.25) -6.8 (.19) 0.11
Gracilis	5,5,5,5 57 (8) 57 (7) 58 (6) 62 (12) 0.69	-5.7 (1.6) -6.4 (.55) -5.7 (2.5) -6.2 (.74) 0.86
Prostaglandin F2α		
Femoralis	6,6,5,5 54 (14) 57 (13) 60 (3) 50 (9) 0.58	-5.7 (.68) -5.6 (1.6) -5.6 (1.5) -5.7 (.40) 0.99
Gracilis	6,6,5,5 63 (15) 58 (17) 56 (10) 50 (5) 0.46	-6.1 (.93) -6.2 (.45) -6.2 (67) -6.2 (.33) 0.98

Maximal values are the responses measured at the highest agonist concentration. LogEC50 values are derived from a non-linear four parameter fit. n denotes the number of animals per group. Values are reported as mean(SD).

*P value after Dunnet’s correction for multiple testing (base P value 0.04).

https://doi.org/10.1371/journal.pone.0182637.t002

Fig 4. Effect of oxygen on norepinephrine induced constriction. Constriction through interaction with α and β adrenergic receptors was not modulated by hyperoxia in the Femoralis (A) or Gracilis (B).

https://doi.org/10.1371/journal.pone.0182637.g004
The lack of effect on vascular tone in our study strongly suggests that mouse arteries and arterioles are intrinsically insensitive to oxygen. Several explanations for this insensitivity can be hypothesized. For instance, mice could be insensitive to hyperoxia in general. This is likely not the case however, because in vivo, the cremaster muscle of mice has been suffused with hyperoxic buffer to induce vasoconstriction[52–54,60], suggesting that vessels from mice are capable of constricting to elevated oxygen tensions when the surrounding tissue is present.

The absence of cross-talk between tissue and the vessel wall is an obvious and intended factor in isolated vessel studies. Suggested extravascular cells that may influence vascular tone include mast cells, erythrocytes, striated muscle and perivascular adipose tissue (PVAT). Mast cells were found to adhere to the external side of the vessel wall of cheek pouch arterioles where they may produce constricting leukotrienes [55]. During the isolation of vessels, some or all mast cells may be removed or damaged, which could be an explanation for why in one study, only a portion of the studied vessels reacted to oxygen [42]. Perfusion of vessels from the brain with erythrocytes restored reactivity to oxygen [61], but they were found to be unimportant in cheek pouch [43] and cremaster preparations [53]. The Cytochrome P-450 ω-hydroxylase enzyme, which produces the vasoconstrictor 20-HETE under elevated oxygen tensions, is highly expressed in the rat cremaster muscle and the inhibition of the enzyme markedly reduced arteriolar sensitivity to oxygen [39]. Perivascular adipose tissue is a well-recognized modifier of vascular tone, releasing a plethora of vasoactive substances under healthy and inflammatory circumstances [62] and was found to modulate the sensitivity of isolated murine mesenteric arteries to hypoxia [63].

Vessel-order could be an important factor, because the vessels studied in vivo were considerably smaller than the smallest arterioles in our setup (~20 μm vs ~140 μm, respectively). Hence, it is possible that oxygen-dependent changes in vascular tone primarily occurs in higher-order arterioles. However, equally sized isolated vessels from rat have been reported to constrict to elevated oxygen tensions[30,32]. Also, ex-vivo, hyperoxic constriction was shown in large systemic arteries like the femoral artery[16], carotid artery[17], and abdominal[20,31] and thoracic aorta[20,31]. Hyperoxic vasoconstriction has also been shown in a plethora of resistance arteries originating from the gracilis[32], cremaster[30] and coronaries[19–22,24–27,64], although none of these were of mouse origin.

Another in vivo factor absent in our setup is intraluminal flow. Although flow induced shear stress is an important activator of the endothelium that causes a rise of intracellular

Fig 5. Effect of oxygen on Prostaglandin F2α induced constriction. The constrictor PGF2α caused similar levels of constriction under hyperoxic conditions in both the Femoralis (A) and Gracilis (B).

https://doi.org/10.1371/journal.pone.0182637.g005
calcium and a subsequent change in basal activity of phospholipase A2, cyclooxygenase and nitric oxide synthase [65], it is important to emphasize that hyperoxic vasoconstriction has been shown extensively in wire-myograph setups in which intraluminal flow is absent [17,20–22,25,26,31,64]. Also, out of the three pressure myography studies that used flow to investigate oxygen sensitivity, two did not add anything to the perfusate that increased the viscosity of the buffer (e.g. albumin or dextran), making actual shear stresses very low[30,32]. In our experiments, the most prominently involved pathways in shear induced dilation were tested with the addition of acetylcholine (NOS) and arachidonic acid (COX, PLA2). Taken together, it is unlikely that the absence of flow is a crucial factor in our experiments. Taken together, we are confident to state that femoral arteries and gracilis arterioles of mice are intrinsically not sensitive to oxygen. However, we want to express caution to extrapolate these results to other species and other vessels, considering that there appears to exist great heterogeneity in responsiveness to oxygen between species and vascular beds [55]. This also means that there is a possibility that currently established animal models for hyperoxia do not necessarily represent human physiology. Using human vessels is therefore perhaps a better option for future studies into hyperoxic vasoconstriction, which to our knowledge has been done only once [64].

A limitation to be considered is that we used only 4–7 animals per oxygen condition. However, we reduced measurement variation by using multiple vessels per mouse and averaging the responses. Since the overall variation was small, we do not think that the use of more animals would give different results.

Finally, there is a possibility of publication bias. From the dozens of papers on hyperoxic vasoconstriction, only two reported on the considerable oxygen-related difficulties experienced throughout the study [42,53]. Given the attention for cardiovascular effects of oxygen and the common use of resistance vessels from mice in myography experiments, it is unlikely that this was the first attempt to study hyperoxia in murine vessels. We strongly feel that it is important to report on models that give different results than expected. By publishing these data, future researchers are spared from fruitlessly spending effort and resources on this model for hyperoxia induced vasoconstriction.

Conclusion

We conclude that arteries and arterioles from healthy mice are not intrinsically sensitive to hyperoxic conditions. The present ex-vivo model is therefore not suitable for further research into mechanisms of hyperoxic vasoconstriction.

Author Contributions

Conceptualization: B. Smit, Y. M. Smulders, M. C. de Waard, H. M. Oudemans–van Straaten, E. C. Eringa, A. M. E. Spoelstra - de Man.

Data curation: B. Smit.

Formal analysis: B. Smit.

Funding acquisition: Y. M. Smulders, H. M. Oudemans–van Straaten, A. M. E. Spoelstra - de Man.

Investigation: B. Smit.

Methodology: B. Smit, E. C. Eringa.

Project administration: B. Smit.

Resources: A. R. J. Girbes, E. C. Eringa.
Supervision: Y. M. Smulders, M. C. de Waard, E. C. Eringa, A. M. E. Spoelstra - de Man.

Validation: E. C. Eringa.

Writing – original draft: B. Smit, A. M. E. Spoelstra - de Man.

Writing – review & editing: B. Smit, Y. M. Smulders, M. C. de Waard, H. M. Oudemans–van Straaten, A. R. J. Girbes, E. C. Eringa, A. M. E. Spoelstra - de Man.

References

1. Suzuki S, Eastwood GM, Peck L, Glassford NJ, Bellomo R. Current oxygen management in mechanically ventilated patients: A prospective observational cohort study. J Crit Care. Elsevier Inc.; 2013; 28: 647–654. https://doi.org/10.1016/j.jcrc.2013.03.010 PMID: 23683560

2. Anderson KJ, Harten JM, Booth MG, Kinsella J. The cardiovascular effects of inspired oxygen fraction in anaesthetized patients. Eur J Anaesthesiol. 2005; 22: 420–5. https://doi.org/10.1017/S0265021505000712 PMID: 15991503

3. Bak Z, Sjoberg F, Rousseau A, Steinvall I, Janerot-Sjoberg B, Sjöberg F, et al. Human cardiovascular dose-response to supplemental oxygen. Acta Physiol. 2007; 191: 15–24. https://doi.org/10.1111/j.1748-1716.2007.01710.x PMID: 17506865

4. Eggers GWN, Warren J V, Paley HW, Leonard JJ. Hemodynamic Responses to Oxygen Breathing in Man. J Appl Physiol. 1962; 17: 0–75.

5. Rossi P, Tazuin L, Weiss M, Rostain J-C, Sainty J-M, Boussuges A. Could hyperoxic ventilation impair oxygen delivery in septic patients? Clin Physiol Funct Imaging. 2007; 27: 180–4. https://doi.org/10.1111/j.1475-097X.2007.00732.x PMID: 17445069

6. Sjöberg F, Singer M. The medical use of oxygen: a time for critical reappraisal. J Intern Med. 2013; 274: 505–28. https://doi.org/10.1111/jim.12139 PMID: 24206183

7. Cornet AD, Kooter AJ, Peters MJ, Smulders YM. The potential harm of oxygen therapy in medical emergencies. Crit Care. 2013; 17: 313. https://doi.org/10.1186/cc12554 PMID: 23630282

8. Jamieson D, Chance B, Cadenas E, Boveris A. The relation of free radical production to hyperoxia. Annu Rev Physiol. 1986; 48: 703–19. https://doi.org/10.1146/annurev.ph.48.030186.003415 PMID: 30108371

9. Janz DR, Hollemenbeck RD, Pollock JS, McPherson J a., Rice TW. Hyperoxia is associated with increased mortality in patients treated with mild therapeutic hypothermia after sudden cardiac arrest. Crit Care Med. 2012; 40: 3135–9. https://doi.org/10.1097/CCM.0b013e318265f976 PMID: 22971589

10. Kilgannon JH, Jones AE, Shapiro NI, Angelos MJ, Milcarek B, Hunter K, et al. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA. 2010; 303: 2165–71. https://doi.org/10.1001/jama.2010.707 PMID: 20516417

11. Rincon F, Kang J, Vibbert M, Urtecho J, Athar MK, Jallo J. Significance of arterial hyperoxia and relationship with case fatality in traumatic brain injury: a multicentre cohort study. J Neurol Neurosurg Psychiatry. 2014; 85: 799–805. https://doi.org/10.1136/jnnp-2013-305505 PMID: 23794718

12. Wang C-H, Chang W-T, Huang C-H, Tsai M-S, Yu P-H, Wang A-Y, et al. The effect of hyperoxia on survival following adult cardiac arrest: a systematic review and meta-analysis of observational studies. Resuscitation. European Resuscitation Council, American Heart Association, Inc., and International Liaison Committee on Resuscitation.—Published by Elsevier Ireland Ltd; 2014; 85: 1142–8. https://doi.org/10.1016/j.resuscitation.2014.05.021 PMID: 24892265

13. de Jonge E, Peelen L, Keijzers PJ, Joore H, de Lange D, van der Voort PHJ, et al. Association between administered oxygen, arterial partial oxygen pressure and mortality in mechanically ventilated intensive care unit patients. Crit Care. 2008; 12: R156. https://doi.org/10.1186/cc7150 PMID: 19077208

14. Girardin S, Busani S, Damiani E, Donati A, Rinaldi L, Marudi A, et al. Effect of Conservative vs Conventional Oxygen Therapy on Mortality Among Patients in an Intensive Care Unit: The Oxygen-ICU Randomized Clinical Trial. JAMA. 2016; https://doi.org/10.1001/jama.2016.11993 PMID: 27706466

15. Panwar R, Hardie M, Bellomo R, Barrot L, Eastwood GM, Young PJ, et al. Conservative versus Liberal Oxygenation Targets for Mechanically Ventilated Patients. A Pilot Multicenter Randomized Controlled Trial. Am J Respir Crit Care Med. 2016; 193: 43–51. https://doi.org/10.1164/rccm.201505-1019OC PMID: 26334785

16. Rubanyi GM, Vanhoutte PM. Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am J Physiol. 1986; 250: H822–7. Available: http://www.ncbi.nlm.nih.gov/pubmed/3010744 PMID: 3010744
17. Siegel G, Grote J, Schnaake F, Zimmer K. The significance of the endothelium for hypoxic vasodilatation. Z Kardiol. 1989; 78 Suppl 6: 124–31. Available: http://www.ncbi.nlm.nih.gov/pubmed/2618129

18. Eskinder H, Harder DR, Lombard JH. Role of the vascular endothelium in regulating the response of small arteries of the dog kidney to transmural pressure elevation and reduced PO2. Circ Res. 1990; 66: 1427–35. Available: http://www.ncbi.nlm.nih.gov/pubmed/2335035 PMID: 2335035

19. Myers PR, Muller JM, Tanner MA. Effects of oxygen tension on endothelium dependent responses in canine coronary microvessels. Cardiovasc Res. 1991; 25: 885–94. Available: http://www.ncbi.nlm.nih.gov/pubmed/1813116 PMID: 1813116

20. Smith DJ, Vane JR. Effects of oxygen tension on vascular and other smooth muscle. J Physiol. 1966; 186: 284–94. Available: http://www.ncbi.nlm.nih.gov/pubmed/4382029 PMID: 4382029

21. Pittman RN, Duling BR. Oxygen sensitivity of vascular smooth muscle. I. In vitro studies. Microvasc Res. 1973; 6: 202–11. Available: http://www.ncbi.nlm.nih.gov/pubmed/4748020 PMID: 4748020

22. Kalsner S. Intrinsic prostaglandin release. A mediator of anoxia-induced relaxation in an isolated coronary artery preparation. Blood Vessels. 1976; 13: 155–66. Available: http://www.ncbi.nlm.nih.gov/pubmed/938754 PMID: 938754

23. Rubanyi G, Paul RJ. Two distinct effects of oxygen on vascular tone in isolated porcine coronary arteries. Circ Res. 1985; 56: 1–10. Available: http://www.ncbi.nlm.nih.gov/pubmed/2981644 PMID: 2981644

24. Jimenez AH, Tanner MA, Caldwell WM, Myers PR. Effects of oxygen tension on flow-induced vasodilation in porcine coronary resistance arterioles. Microvasc Res. 1996; 51: 365–77. https://doi.org/10.1006/mvre.1996.0033 PMID: 8992234

25. Pasgaard T, Stankevicius E, Jørgensen MM, Østergaard L, Simonsen U, Frøbert O. Hyperoxia reduces basal release of nitric oxide and contracts porcine coronary arteries. Acta Physiol (Oxf). 2007; 191: 285–96. https://doi.org/10.1111/j.1748-1716.2007.01745.x PMID: 17784906

26. Hedegaard ER, Stankevicius E, Simonsen U, Frøbert O, Frøbert O. Non-endothelial endothelin counteracts hypoxic vasodilation in porcine large coronary arteries. BMC Physiol. 2011; 11: 8. https://doi.org/10.1186/1472-6793-11-8 PMID: 21575165

27. Wong PS, Roberts RE, Randall MD. Hyperoxic gassing with Tiron enhances bradykinin-induced endothelium-dependent and EDH-type relaxation through generation of hydrogen peroxide. Pharmacol Res. Elsevier Ltd; 2015; 91: 29–35. https://doi.org/10.1016/j.phrs.2014.11.001 PMID: 25450247

28. Sullivan SM, Johnson PC. Effect of oxygen on arteriolar dimensions and blood flow in cat sartorius muscle. Am J Physiol. 1981; 241: H547–56. Available: http://www.ncbi.nlm.nih.gov/pubmed/7315979 PMID: 7315979

29. Lang DJ, Johnson PC. Elevated ambient oxygen does not affect autoregulation in cat mesentery. Am J Physiol. 1988; 255: H131–7. Available: NS - PMID: 3394815

30. Messina EJ, Sun D, Koller A, Wolin MS, Kaley G. Increases in oxygen tension evoke arteriolar constriction by inhibiting endothelial prostaglandin synthesis. Microvasc Res. 1994; 48: 151–60. https://doi.org/10.1006/mvre.1994.0033 PMID: 8992234

31. Vallet B, Winn MJ, Asante NK, Cain SM. Influence of oxygen on endothelial-derived relaxing factor/ nitric oxide and K(+)-dependent regulation of vascular tone. J Cardiovasc Pharmacol. 1994; 24: 595–602. Available: http://www.ncbi.nlm.nih.gov/pubmed/7528842 PMID: 7528842

32. Frisbee JC, Krishna UM, Falck JR, Lombard JH. Role of prostanoids and 20-HETE in mediating oxygen-induced constriction of skeletal muscle resistance arteries. Microvasc Res. 2001; 62: 271–83. https://doi.org/10.1006/mvre.2001.2341 PMID: 11678630

33. Jackson WF. Prostaglandins do not mediate arteriolar oxygen reactivity. Am J Physiol. 1986; 250: H1102–8. Available: http://www.ncbi.nlm.nih.gov/pubmed/3087220 PMID: 3087220

34. Van den Bos GC, Westerhof N, Hoogenverf N, Sicking AH. Arteriolar and venular reactivity to superfused pO2 in tissues with different metabolic capacity. A study in skeletal muscle and mesentery of the rat. Int J Microcirc Clin Exp. 1991; 10: 303–16. Available: NS - PMID: 1778676

35. Pries AR, Heide J, Ley K, Klotz KF, Gaethgens P. Effect of oxygen tension on regulation of arteriolar diameter in skeletal muscle in situ. Microvasc Res. 1995; 49: 283–99. https://doi.org/10.1006/mvre.1995.1025 PMID: 7643750

36. Harder DR, Narayanan J, Birks EK, Liard JF, Imig JD, Lombard JH, et al. Identification of a putative microvascular oxygen sensor. Circ Res. 1996; 79: 54–61. Available: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=retrieve&db={pubmed}dopt=abstract&list_uids=8925569 PMID: 8925569

37. Frisbee JC, Lombard JH. Elevated oxygen tension inhibits flow-induced dilation of skeletal muscle arterioles. Microvasc Res. 1999; 58: 99–107. https://doi.org/10.1006/mvre.1999.2169 PMID: 10458925

38. Sauls BA, Boegehold MA. Arteriolar wall pO(2) and nitric oxide release during sympathetic vasoconstriction in the rat intestine. Am J Physiol Heart Circ Physiol. 2000; 279: H484–91. Available: NS - PMID: 10924045
39. Kunert MP, Roman RJ, Alonso-Galicia M, Falck JR, Lombard JH. Cytochrome P-450 omega-hydroxylase: a potent O(2) sensor in rat arterioles and skeletal muscle cells. Am J Physiol Heart Circ Physiol. 2001; 280: H1840–5. Available: http://www.ncbi.nlm.nih.gov/pubmed/11247799 PMID: 11247799

40. Komori M, Takada K, Ozaki M. Effects of inspired oxygen concentration on peripheral microcirculation studied by the rabbit ear chamber method. In Vivo. 2001; 15: 303–8. Available: http://www.ncbi.nlm.nih.gov/pubmed/11695222 PMID: 11695222

41. Kwan YW, Wadsworth RM, Kane KA. Effects of hypoxia on the pharmacological responsiveness of isolated coronary artery rings from the sheep. Br J Pharmacol. 1989; 96: 849–56. Available: http://www.ncbi.nlm.nih.gov/pubmed/2743080 PMID: 2743080

42. Jackson WF, Duling BR. The oxygen sensitivity of hamster cheek pouch arterioles. In vitro and in situ studies. Circ Res. 1983; 53: 515–525. https://doi.org/10.1161/01.RES.53.4.515 PMID: 6627610

43. Jackson WF. Arteriolar oxygen reactivity: where is the sensor? Am J Physiol. 1987; 253: H1120–H1126. Available: http://www.ncbi.nlm.nih.gov/pubmed/3318502 PMID: 3318502

44. Jackson WF. Lipoxygenase inhibitors block O2 responses of hamster cheek pouch arterioles. Am J Physiol. 1988; 255: H711–6. Available: NS - PMID: 3140676

45. Jackson WF. Arteriolar oxygen reactivity is inhibited by leukotriene antagonists. Am J Physiol. 1989; 257: H1565–72. Available: http://www.ncbi.nlm.nih.gov/pubmed/2511767 PMID: 2511767

46. Jackson WF. Nitric oxide does not mediate arteriolar oxygen reactivity. Microcirc Endothelium Lymphatics. 1991; 7: 199–215. Available: http://www.ncbi.nlm.nih.gov/pubmed/1815105 PMID: 1815105

47. Jackson WF. Regional differences in mechanism of action of oxygen on hamster arterioles. Am J Physiol. 1993; 265: H599–603. Available: http://www.ncbi.nlm.nih.gov/pubmed/8396348 PMID: 8396348

48. Walsh DG, Jackson WF, Segal SS. Oxygen induces electromechanical coupling in arteriolar smooth muscle cells: a role for L-type Ca2+ channels. Am J Physiol. 1998; 274: H2018–24. Available: http://www.ncbi.nlm.nih.gov/pubmed/9841528 PMID: 9841528

49. Lombard JH, Kunert MP, Roman RJ, Falck JR, Harder DR, Jackson WF. Cytochrome P-450 omega-hydroxylase senses O2 in hamster muscle, but not cheek pouch epithelium, microcirculation. Am J Physiol. 1999; 276: H503–8. Available: NS - PMID: 9950851

50. Tsai AG, Cabralès P, Winslow RM, Intaglietta M. Microvascular oxygen distribution in awake hamster window chamber model during hyperoxia. Am J Physiol Heart Circ Physiol. 2003; 285: H1537–45. https://doi.org/10.1152/ajpheart.01762.2003 PMID: 12805029

51. Cabralès P, Tsai AG, Intaglietta M. Nitric oxide regulation of microvascular oxygen exchange during hypoxia and hyperoxia. J Appl Physiol. 2006; 100: 1181–7. https://doi.org/10.1152/japplphysiol.01105.2005 PMID: 16357070

52. Riemann M, Rai A, Ngo AT, Dziegieł MH, Holstein-Rathlou NH, Torp-Pedersen C. Oxygen-dependent vasomotor responses are conducted upstream in the mouse cremaster microcirculation. J Vasc Res. 2010; 48: 79–89. https://doi.org/10.1159/000318777 PMID: 20639650

53. Ngo AT, Jensen LJ, Riemann M, Holstein-Rathlou N-H, Torp-Pedersen C. Oxygen sensing and conducted vasomotor responses in mouse cremaster arterioles in situ. Pfugers Arch. 2010; 460: 41–53. https://doi.org/10.1007/s00424-010-0837-x PMID: 20383716

54. Ngo AT, Riemann M, Holstein-Rathlou N-H, Torp-Pedersen C, Jensen LJ. Significance of K(ATP) channels, L-type Ca2+ channels and CYP450-4A enzymes in oxygen sensing in mouse cremaster muscle arteries in vivo. BMC Physiol. 2013; 13: 8. https://doi.org/10.1186/1472-6933-13-8 PMID: 23663730

55. Jackson WF. Arteriolar oxygen reactivity: where is the sensor and what is the mechanism of action? J Physiol. 2016; 594: 5055–77. https://doi.org/10.1113/JP270192 PMID: 27324312

56. Jadeja RN, Rachakonda V, Bagi Z, Khurana S. Assessing Myogenic Response and Vasoactivity In Resistant Mesenteric Arteries Using Pressure Myography. J Vis Exp. 2015; e50997. https://doi.org/10.3791/50997 PMID: 26168315

57. Bakker W, Sipkema P, Stehouwer CD a, Serne EH, Smulders YM, van Hinsbergh VWM, et al. Protein kinase C theta activation induces insulin-mediated constriction of muscle resistance arteries. Diabetes. 2008; 57: 706–713. https://doi.org/10.2337/db07-0792 PMID: 18086904

58. Kerkhof CJ, Bakker EN, Sipkema P. Role of cytochrome P-450 4A in oxygen sensing and NO production in rat cremaster resistance arteries. Am J Physiol. 1999; 277: H1546–H1552. PMID: 10516194

59. Tateishi J, Faber JE. Inhibition of arteriole alpha 2- but not alpha 1-adrenoceptor constriction by acidosis and hypoxia in vitro. Am J Physiol. 1995; 268: H2068–76. Available: http://www.ncbi.nlm.nih.gov/pubmed/7771557 PMID: 7771557
60. Hungerford JE, Sessa WC, Segal SS. Vasomotor control in arterioles of the mouse cremaster muscle. FASEB J. 2000; 14: 197–207. Available: http://www.ncbi.nlm.nih.gov/pubmed/10627294 PMID: 10627294

61. Dietrich HH, Ellsworth ML, Sprague RS, Dacey RG. Red blood cell regulation of microvascular tone through adenosine triphosphate. Am J Physiol Heart Circ Physiol. 2000; 278: H1294–8. Available: http://www.ncbi.nlm.nih.gov/pubmed/10749727 PMID: 10749727

62. Szasz T, Bomfim GF, Webb RC. The influence of perivascular adipose tissue on vascular homeostasis. Vasc Health Risk Manag. 2013; 9: 105–116. https://doi.org/10.2147/VHRM.S33760 PMID: 23576873

63. Withers SB, Simpson L, Fattah S, Werner ME, Heagerty AM. CGMP-dependent protein kinase (PKG) mediates the anticontractile capacity of perivascular adipose tissue. Cardiovasc Res. 2014; 101: 130–137. https://doi.org/10.1093/cvr/cvt229 PMID: 24095868

64. Siegel G, Rückborn K, Schnalke F, Grote J. Membrane physiological reactions of human arteriosclerotic coronary arteries to hypoxia. J Cardiovasc Pharmacol. 1992; 20 Suppl 1: S217–20. Available: http://www.ncbi.nlm.nih.gov/pubmed/1282975

65. Durand MJ, Gutterman DD. Diversity in mechanisms of endothelium-dependent vasodilation in health and disease. Microcirculation. 2013; 20: 239–47. https://doi.org/10.1111/micc.12040 PMID: 23311975