Measuring technical efficiency of dry bulk terminal performance using the frontier application of data envelopment analysis: A proposed framework

Khairul Rizuan Suliman¹,², Suzari Abdul Rahim², T Ramayah¹ and D Karunanithy Degeras⁴

¹Centre for Business and Management, Centre for Mathematical Sciences, Centre for Railway Infrastructure and Engineering, Centre for Learning and Teaching, Department of Physical and Mathematical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar Campus, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
²Graduate School of Business, Universiti Sains Malaysia, USM, 11800 George Town, Penang, Malaysia
³School of Management, Universiti Sains Malaysia, USM, 11800 Geogre Town, Penang, Malaysia
⁴Centre for Business and Management, Centre for Learning and Teaching, Department of Physical and Mathematical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar Campus, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia

E-mail: rizuans@utar.edu.my

Abstract. The usage of performance indicators in measuring seaport efficiency is undeniable especially towards increasing the port performance. There are numerous studies on applying data envelopment analysis (DEA) which demonstrates the relationship between technical efficiency and port performance. Conversely, there has been a significant problem of port inefficiency in terms of port performance. DEA application is being applied between the technical efficiency and port performance. It is important for indicators to be initiated on port efficiency which may lead to the increase of the port performance. However, the challenges to be implemented in the port as a whole will be difficult due to broad technical factors from various port activities. Implementation of DEA has been done commonly in container operations but not in dry bulk terminal area. Therefore, this conceptual paper discussed the potential of using the technical port indicators and DEA application specifically in dry bulk terminal.

1. Introduction
Seaport terminal performance are debatable issues and has widely been discussed regionally, nationally and internationally. Basically, port performance is a figure data that shows the indicator index between one port to another as to which port performs better than the other. A current report [1] indicated that more than 80% of the international trades are commuted through seaborne and this projects the efficiency of port terminal operations as important either inbound or outbound for the country. Another
report by Bank Negara Malaysia [2] reported that 54.4% of Gross Domestic Product (GDP) from services activity had contributed to the increase of Malaysia revenue.

Despite of the ports performance, technical performance found to be the most challenging issue among ports globally. The increase in containerization, development of new production system, distribution and different port markets has affected the overall port management and operation. In order for the ports to know their achievements, they need to measure their technical performance. This is to enable them to strategically address the needs of the port users that eventually will increase the competitiveness where it may also influence the decision making strategies at various levels of management and operational outcomes.

Currently in Malaysia, there are seven major federal ports namely Port Klang, Johor Port, Port of Tanjung Pelepas, Kuantan Port, Penang Port, Bintulu Port and Kemaman Port [3]. Majority of them are multipurpose ports where containerization is a main contributor of the business trade followed by bulk cargo. The privatization of port and the legislation Act in Malaysia had further elevated the competitiveness of some of the ports and had resulted towards a phenomenal growth of freight management in Malaysian ports. For example, according to the CEIC [4], in 2018, the total container throughput reported as at August reached 208,099.00 TEUs in Port Klang. It was also reported that dry bulk cargo throughput reached 10.624 ton mn in December 2017.

In spite of this, in Malaysia and many other seaports in the world, port operators use seaport throughput volume as a main indicator for their port performance. However, it does not provide a clear picture of the impact that it provides to the ancillary services surrounding the port area. This is due to the lack of seaport information relating to their operation activities. Furthermore, according to [5], it is targeted that by 2020, Malaysia can be the top 20 ranked globally in Logistics Performance Index (LPI). As such, there is an urgent call to the local ports in Malaysia to engage appropriate measurement tool in monitoring the port efficiency to enable them to achieve sustainability in a challenging logistics ecosystem.

Even though studies in seaports have been discussed extensively with great significance for container terminal operation, there is no direct measurement established so far to measure the efficiency of business for the dry bulk terminal. This is because the terminal operation does not know on how to operate the equipment, the infrastructure or facilities and the utilization of labours in dry bulk terminal which results in losing their competitive advantages. This resulted in customer dissatisfaction and the service level does not align with the logistics performances and LPI requirement.

This research seeks to address the potential conceptual measurement of dry bulk terminal performance based on port technical efficiency. Various studies have shown that the performance of any industries relies closely with the efficiency in utilizing the resources. Meanwhile, a comparable tool is necessary in order to achieve higher port performance.

2. Dry bulk terminal
Due to the importance with regards to the overall supply chain, the operational issues from seaport have attracted many scholars from logistics and transportation sector. As noted, the increase in seaborne trade has led the researchers to explore and investigate whether they are managed efficiently. The absence studies of dry bulk terminal are addressed by Balci et al. [6]. There are relatively few studies on dry bulk terminals and some studies on management performance [7], terminal capacity [8], stockyard size [9], berth scheduling [10] and port workers training [11]. However, no study has specifically focused on the efficiency and performance of dry bulk terminal. Therefore, this research warrant to prove the need of dry bulk terminal studies globally and in Malaysia specifically.
3. Data envelopment analysis (DEA)

Data envelopment analysis (DEA) is a multi-factor productivity analysis model used in measuring the relative efficiencies of a homogeneous set of decision making units (DMUs). It is a linear programming method developed by Charnes, Cooper and Rhodes [12] that computes the efficiency level within the numbers of organization or within the same organization. Unlike econometric models, non-parametric frontiers are the flexible techniques which allows for several alternative formulations. The non-parametric is used when the production process cannot be identified which does not require specific functional form.

3.1. Definition of technical efficiency and DEA

The initial technical efficiency measurement originally introduced in 1951 was by Koopmans [13]. He emphasized that the concept is technically efficient if and only if it is impossible to improve any input or output without worsening some other input or output. The concept was further refined by Debreu [14] and Shephard [15] which measures technical inefficiency as the radial distance of a producer from a frontier. Then, Farrell [16] extended their work by establishing the notion of relative efficiency in which the efficiency of a particular decision making unit (DMU) may be compared with another DMU. Technical efficiency is defined to the ability of a DMU to produce the maximum feasible output from a given number of inputs to produce a given level of output which previously referred to output-oriented technical efficiency. In order for DMU to be efficient, Farrell also proposed that the measurement should come from production function. Figure 1 illustrated the technical efficiency and dry bulk terminal performance measurement.

![Figure 1. Technical efficiency and dry bulk terminal performance measure.](image)

3.2. Previous studies in DEA

The DEA has been extensively used in evaluating efficiency for various industries and institutions. As shown in Table 1, the studies have covered various industries such as airports, ferry services, agriculture, hotels, hospitals, schools and banking sectors. From the studies denoted a positive result for each industry in improving their work performance.

At the same time, the DEA analysis also reveals the advantage of this approach to accommodate multiple input and output with regards to a specific source of efficiency. By doing so it identifies the amount of inefficiency factors that is required to be reduced or increased from inputs and outputs to become efficient. In fact, the dataset required does not have to be necessarily huge or voluminous as this prompts the DEA to be easily applicable and become a comparable toolkit.
Table 1. Summary of different studies with DEA.

Industry	Goal	Reference
Aviation	Analysis of airport operational efficiency and performance	Orkcü, H. Hasan et al. [17]
Ferry	Measures of cross efficiency and structural efficiency from subsidiary ferry to enhance the performance	Yu et al. [18]
Agriculture	Evaluation and benchmarking of water use efficiency in agricultural production	Geng et al. [19]
Tourism	Resources measurement of 7 hotels and subsidiary in Taiwan between period 2011-2015	Ang et al. [20]
Hospital	Assessing the health care resources spending and system	Du et al. [21]
School	Improvement program for public funded school in financial, resources and decision making	López-Torres and Prior [22]
Banking	Identifying the source of inefficiency in banking system	Wang et al. [23]

3.3. Current use of DEA in seaport

Port performance measurement is executed as a normal exercise in order to know the level of standing compared to competitors. Most of the research study is focused on efficiency of port operations as a measurement application. In 1976, the United Nations Conference on Trade and Development (UNCTAD) has developed port performance based on 18 indicators in which 7 indicators are from financial and 11 indicators as operational [24].

Although the DEA have been widely used in seaport studies, the exploration research should be extended in other contexts such as bulk, liquid as well as dry bulk terminal. Moreover, the development of DEA application for dry bulk terminal is relatively new and at infancy level.

In spite of the previous study of DEA in other sectors, DEA research also has been substantially done in container terminal sector [25, 7]. However, an important point that needs to be noted, there is no direct study conducted between DEA and dry bulk terminal in Malaysia. Furthermore, to the best of knowledge of the researchers, there is no attempt or studies have been initiated to relate all the possible factors of dry bulk terminal (e.g. equipment, infrastructure/facility and labour). As such, the study measuring dry bulk terminal with DEA application needs to be addressed for the achievement of competitive advantage of dry bulk terminal in Malaysia.

4. Conceptual framework of dry bulk terminal performance

4.1. Classical production theory

The efficiency and performance study is derived from the economic theory which is based on the idea of a production function. It represented the technological function for certain time period which indicates that the maximum output can be feasibly obtained from several set of the given factors. This shows a higher relationship between input and output factors towards the level of production. The concept will normally be interpreted as when the limit frontier being shifted, the changes towards production will be followed.

In this study, the proposed Production Function Theory has been applied because the input (e.g. terminal resources) has a significant impact towards output (e.g. cargo throughput). Without measuring the efficiency of resources used, the dry bulk terminal would be unable to measure their performances on particular aspect. Therefore, the reason to adopt this theory is due to the fact that it can estimate non
direct parameter that cannot be measured from accounts data. The concept can be simplified into a mathematical equation as follows:

\[T = f [E, I/F, L] \]

where,
T is an output for throughput produced
f is a functional relationship
E is equipment
I/F is an infrastructure/facility
L is a labour

4.2. Common port terminal efficiency indicator

Apart from that, the fundamental operational management of 5Ms elements (e.g. man, material, machine, methods and money) is a useful concept for this study whereas three of them (machine, money and manpower) has a direct significant relationship towards the dry bulk terminal efficiency and performance. These three inputs are proposed as in Figure 2 to portray that they are the major indicator and will significantly implicate the dry bulk terminal operations.

Furthermore, with the advent of digitalization and internet of things (IoT), industries exposed to the pressure of international competition, and there is a valid reason for services supplied to their particular industry to be competitive. In fact, there are many context of port performance studies with regards to the seaport operations and ports measurement indicators described in Table 2. However, perceived to these studies, none of them studied the ports measurement indicators in relation to dry bulk terminal.

Table 2. Summary of different ports measurement indicators.

Author	Data	Significant indicators	Method
UNCTAD	N/A	Financial (e.g. tonnage worked, berth occupancy revenue per ton, cargo handling revenue per ton, labour expenditure, capital equipment expenditure per ton), Operational (e.g. arrival time, waiting time, service time, turnaround time, tonnage per ship, fraction of time berth per ship per shift, tons per ship-hour in port, tons per ship-hour at berth)	N/A
Tongzon [26]	Annual report	Cargo throughput, ship working rate, land, labour, capital, number of berths, cranes, tugs, stevedoring, terminal area	DEA
Bichou [27]	Report 2004-2010	Terminal area, maximum draft, length of quay crane, crane move per hour, yard stacking index, no. of trucks & vehicles, gate cut-off time	DEA
De Oliveira et al. [28]	Report 2008-2011	Total length (m) of the berths, no. of cranes, port storage area (m2)	DEA & Order-α frontier SPF
Perez et al. [29]	Report 2000-2010	Quay crane, storage capacity, no. of cranes	SPF
Based on Table 2, majority of the seaport studies are relying on the operational and technical factor in measuring the port performance. This is due to the visibility factors that are available physically rather than obtaining a total economic efficiency. Since this study has adopting the Production Function Theory and employed three elements from 5Ms in operation management, Here, in Figure 2 below is the proposed framework associated with dry bulk port terminal where the technical efficiency are categorized into three variables according to existing literature known as equipment, infrastructure/facility and labour.

Study	Year	Data collected	Method(s)
Serebrisky et al. [30]	1999-2009	Cranes, berth length, terminal area	SFA
Suárez-Alemán, Sarriera, Serebrisky, & Trujillo [31]	2000-2010	Total terminal area, total length of berths, no. of mobile cranes and capacity, no. of ship-to-shore cranes	DEA & SFA
Sun et al. [32]	2013	Number of staff, operational costs, fixed assets	DEA
Wiegmans and Witte [33]	Terminal company websites	Design efficiency (e.g. terminal infrastructure), operational characteristics (e.g. labour, land, equipment)	SFA & DEA
López-Bermúdez et al. [34]	2008-2017	Frequency of calls, no. of cranes, draft (e.g. vessel sizes, location, port cluster, port infrastructure)	SFA

Figure 2. Proposed framework of port performance measurement.

The port terminal operation is a main aspect to be evaluated because it constitutes the largest component of total vessel turnaround time of loading and unloading activity. Generally, there are three approaches in measuring the performance according to economist including indexing, production function and input-output approach. In supporting, most of the researcher’s, for example [35, 36] suggested ports performance measurement should employ DEA which is on an input-output basis.

Generally, in port operations, four categories of cargoes that are managed include bulk, dry bulk, liquids and containerized shipments. However, in order to define the determinant of efficiency for dry bulk terminal, the micro performance indicators are usually related to time variables been accessed, for example, cargo handling speed and moves of crane per hour. This may draw an important operational efficiency measures about a detailed picture of port performance. In order to measure the performance of port terminal, several categories may be useful to assess in terms of physical, productivity, financial, resource utilization as well as service level. This is to enable a particular efficiency or parameter to be measured as time, number of equipment available and productivity of work that need to be considered.
5. Conclusion
The main insight of this research is to highlight the major technical efficiency of dry bulk terminal operations in Malaysia. This will eventually benefit various decision making strategies at various management level specifically in dry bulk terminal. At managerial level, port efficiency may indicate the current port procedure and labour proficiency which helps to identify the suitability for improvement or providing training. As for strategic level, this study may be useful for port infrastructure development in optimizing their operations whether resources are fully utilized or underutilized. Last but not least at operational level, it may assist the daily operations to monitor and control the output schedule and cost.

A conceptual framework of efficiency for dry bulk terminal has been proposed based on the existing literature research. The input being part of the resources i.e. equipment, infrastructure/facility, labour and output of cargo throughput is identified. The DEA model is developed to evaluate the efficiency score based on the assumption of CCR approach to address the problem of inefficiency of dry bulk terminal. The proposed conceptual framework can be used to implement as a new performance measurement for dry bulk terminal. However, further studies are required to prove the visibility and accuracy of this method. Future studies will be conducted for the implementation of the proposed framework.

Acknowledgments
The authors are thankful to Dr. Peter Yacob who provided valuable insights and recommendations for this paper. This research is supported by Universiti Tunku Abdul Rahman.

References
[1] UNCTAD 2017 Review of Maritime Transport 2017 UNCTAD/RMT/2017 (United Nations Conference on Trade and Development, New York, US)
[2] Bank Negara Malaysia 2018 Annual Report 2017 Kuala Lumpur Retrieved from http://www.bnm.gov.my/files/publication/ar/en/2017/ar2017_book.pdf
[3] Mot.gov.my 2018 Ports in Malaysia Available online: http://www.mot.gov.my/en/maritime/ports-in-malaysia (Accessed 26 Dec. 2018)
[4] Ceicdatacom 2019 Ceicdatacom Available online: https://www.ceicdata.com/en/malaysia/port-statistics-container-throughput (Accessed 24 Jan. 2019)
[5] Mit.gov.my 2019 Available online: http://www.miti.gov.my/miti/resources/MITI%20Report/MITI%20REPORT%202017.pdf (Accessed 24 Jan. 2019)
[6] Balci G, Cetin I B and Esmer S 2018 An evaluation of competition and selection criteria between dry bulk terminals in Izmir Journal of Transport Geography 69 294-304
[7] Güner S 2015 Investigating infrastructure, superstructure, operating and financial efficiency in the management of Turkish seaports using data envelopment analysis Transport Policy 40 36-48
[8] Bugaric U and Petrovic D 2007 Increasing the capacity of terminal for bulk cargo unloading Simulation Modelling Practice and Theory 15 1366-1381
[9] van Vianen T, Ottjes J and Lodewijks G 2014 Simulation-based determination of the required stockyard size for dry bulk terminals Simulation Modelling Practice and Theory 42 119-128
[10] de León A D, Lalla-Ruiz E, Melián-Batista B and Moreno-Vega J M 2017 A Machine Learning-based system for berth scheduling at bulk terminals Expert Systems with Applications 87 170-182
[11] Martin J, Bang H S and Martin S 2011 The development of generic training material for portworkers in the Dry Bulk Sector: Terminal structures and employment arrangements The Asian Journal of Shipping and Logistics 27 31-60
[12] Charnes A, Cooper W W and Rhodes E 1978 Measuring the efficiency of decision making units European journal of operational research 2 429-444
[13] Koopmans T C 1951 An analysis of production as an efficient combination of activities Activity
analysis of production and allocation

[14] Debreu G 1951 The coefficient of resource utilization Econometrica: Journal of the Econometric Society 273-292

[15] Shephard R W 1953 Cost and Production Functions (Princeton: Princeton University Press)

[16] Farrell M J 1957 The measurement of productive efficiency Journal of the Royal Statistical Society: Series A (General) 120 253-281

[17] Örkcü H H, Balıkçı C, Dogan M I and Genç A 2016 An evaluation of the operational efficiency of Turkish airports using data envelopment analysis and the Malmquist productivity index: 2009–2014 case Transport Policy 48 92-104

[18] Yu M M, Chen L H and Hsiao B 2018 A performance-based subsidy allocation of ferry transportation: A data envelopment approach Transport Policy 68 13-19

[19] Geng Q, Ren Q, Nolan R H, Wu P and Yu Q 2019 Assessing China’s agricultural water use efficiency in a green-blue water perspective: A study based on data envelopment analysis Ecological Indicators 96 329-335

[20] Ang S, Chen M and Yang F 2018 Group cross-efficiency evaluation in data envelopment analysis: An application to Taiwan hotels Computers & Industrial Engineering 125 190-199

[21] Du J, Wang J, Chen Y, Chou S Y and Zhu J 2014 Incorporating health outcomes in Pennsylvania hospital efficiency: an additive super-efficiency DEA approach Annals of Operations Research 221 161-172

[22] López-Torres L and Prior D 2016 Centralized allocation of human resources. An application to public schools Computers & Operations Research 73 104-114

[23] Wang K, Huang W, Wu J and Liu Y N 2014 Efficiency measures of the Chinese commercial banking system using an additive two-stage DEA Omega 44 5-20

[24] UNCTAD 1976 Port performance indicators TD/B/C.4/131/Supp.1/Rev.1 (United Nations Conference on Trade and Development, New York, US)

[25] Zheng X B and Park N K 2016 A study on the efficiency of container terminals in Korea and China The Asian Journal of Shipping and Logistics 32 213-220

[26] Tongzon J 2001 Efficiency measurement of selected Australian and other international ports using data envelopment analysis Transportation Research Part A: Policy and Practice 35 107-122

[27] Bichou K 2013 An empirical study of the impacts of operating and market conditions on container-port efficiency and benchmarking Research in Transportation Economics 42 28-37

[28] De Oliveira G F and Cariou P 2015 The impact of competition on container port (in) efficiency Transportation Research Part A: Policy and Practice 78 124-133

[29] Perez I, Trujillo L and González M M 2016 Efficiency determinants of container terminals in Latin American and the Caribbean Utilities Policy 41 1-14

[30] Serebrisky T, Sarriera J M, Suárez-Alemán A, Araya G, Briceño-Garmendia C and Schwartz J 2016 Exploring the drivers of port efficiency in Latin America and the Caribbean Transport Policy 45 31-45

[31] Suárez-Alemán A, Sarriera J M, Serebrisky T and Trujillo L 2016 When it comes to container port efficiency, are all developing regions equal? Transportation Research Part A: Policy and Practice 86 56-77

[32] Sun J, Yuan Y, Yang R, Ji X and Wu J 2017 Performance evaluation of Chinese port enterprises under significant environmental concerns: An extended DEA-based analysis Transport Policy 60 75-86

[33] Wiegmans B and Witte P 2017 Efficiency of inland waterway container terminals: Stochastic frontier and data envelopment analysis to analyze the capacity design-and throughput efficiency Transportation Research Part A: Policy and Practice 106 12-21

[34] López-Bermúdez B, Freire-Seoane M J and González-Laxe F 2019 Efficiency and productivity of container terminals in Brazilian ports (2008–2017) Utilities Policy 56 82-91

[35] Roll Y and Hayuth Y.E.H.U.D.A 1993 Port performance comparison applying data envelopment analysis (DEA) Maritime policy and Management 20 153-161
[36] Ayman Elsayed and Nabil Shabaan Khalil 2017 *IOP Conf. Ser.: Mater. Sci. Eng.* **245** 042033