Review on acute pancreatitis attributed to COVID-19 infection

Takumi Onoyama, Hiroki Koda, Wataru Hamamoto, Shiho Kawahara, Yuri Sakamoto, Taro Yamashita, Hiroki Kurumi, Soichiro Kawata, Yohei Takeda, Kazuya Matsumoto, Hajime Isomoto

Specialty type: Gastroenterology and hepatology

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report’s scientific quality classification
Grade A (Excellent): 0
Grade B (Very good): B, B
Grade C (Good): 0
Grade D (Fair): 0
Grade E (Poor): 0

P-Reviewer: Omar BJ, India; Sivanand N, India

Received: December 29, 2021
Peer-review started: January 4, 2022
First decision: March 10, 2022
Revised: March 20, 2022
Accepted: April 4, 2022
Article in press: April 4, 2022
Published online: May 21, 2022

Abstract

The coronavirus disease 2019 (COVID-19) is known to cause gastrointestinal symptoms. Recent studies have revealed COVID-19-attributed acute pancreatitis (AP). However, clinical characteristics of COVID-19-attributed AP remain unclear. We performed a narrative review to elucidate relation between COVID-19 and AP using the PubMed database. Some basic and pathological reports revealed expression of angiotensin-converting enzyme 2 and transmembrane protease serine 2, key proteins that aid in the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into the pancreas. The experimental and pathological evaluation suggested that SARS-CoV-2 infects human endocrine and exocrine pancreas cells, and thus, SARS-CoV-2 may have a direct involvement in pancreatic disorders. Additionally, systemic inflammation, especially in children, may cause AP. Levels of immune mediators associated with AP, including interleukin (IL)-1β, IL-10, interferon-γ, monocyte chemotactic protein 1, and tumor necrosis factor-α are higher in the plasma of patients with COVID-19, that suggests an indirect involvement of the pancreas. In real-world settings, some clinical features of AP complicate COVID-19, such as a high complication rate of pancreatic necrosis, severe AP, and high mortality. However, clinical features of COVID-19-attributed AP remain uncertain due to insufficient research on etiologies of AP. Therefore, high-quality clinical studies and case reports that specify methods for differential diagnoses of other etiologies of AP are needed.

Key Words: COVID-19; SARS-CoV-2; Pancreatitis; Revised atlanta classification; Prognosis; Etiology

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
INTRODUCTION
The novel coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), was declared a pandemic by the World Health Organization (WHO) on March 11, 2020. COVID-19 causes respiratory symptoms, such as cough, fever, sputum production, and shortness of breath, and also leads to gastrointestinal symptoms, such as nausea, vomiting, and diarrhea [1,2]. Some studies revealed that SARS-CoV-2 RNA can be detected in the gastrointestinal tract[3,4]. SARS-CoV-2 binds to angiotensin-converting enzyme 2 (ACE2) protein that serves as an entry point for the virus into epithelial cells[5]. SARS-CoV-2 also invades the gastrointestinal tract via ACE2, allowing development of gastrointestinal symptoms[2,6-9]. Recent studies suggest that SARS-CoV-2 infection might induce pancreatic injury or acute pancreatitis (AP)[10,11]. Schepis et al[12] identified SARS-CoV-2 RNA in a pancreatic pseudocyst sample collected from a patient with COVID-19[12]. Moreover, ACE2 expressed in the pancreas is associated with pancreatic injury[13]. In experimental system, SARS-CoV-2 infects human endocrine and exocrine cells of the pancreas, ex vivo and in vivo[14]. However, clinical features of COVID-19-attributed AP remain uncertain. Some systematic reviews have reported COVID-19-attributed pancreatic injury[15,16], but it remains uncertain whether the pancreatic injury is truly caused by SARS-CoV-2 due to insufficient search for the etiology of AP. Gallstones and alcoholism are two common etiological factors of AP[17-19]. Certain medications (valproic acid, azathioprine, and sulfonamides), metabolic disturbances (hypercalcemia and hypertriglyceridemia), and infections are also rare etiologies[19,20]. Trauma, iatrogenic considerations [e.g., endoscopic retrograde cholangiopancreatography (ERCP)], anatomy (e.g., pancreatic tumor or pancreatic divisum), ischemia/reperfusion, and genetic mutation are also reported as etiologies of AP[19,21-23]. Many studies have reported that bacterial, mycobacterial, helminthic, protozoan, and fungal infections are etiologies of AP[24,25]. Furthermore, hepatotropic virus, Coxackie virus, Echovirus, Cytomegalovirus, human immunodeficiency virus, Herpes simplex virus, mumps virus, measles virus, varicella-zoster virus, and other viruses may cause infectious AP[24-26]. Therefore, the COVID-19-attributed AP should be diagnosed by sufficient exclusion of other etiologies of AP. Additionally, the diagnostic criteria for COVID-19 is reverse transcription-polymerase chain reaction (RT-PCR) or serological test for SARS-CoV-2, and also clinical examinations, such as chest computed tomography (CT) and clinical history. Moreover, the diagnostic criteria for AP and severity of COVID-19 and AP are not unified across reports. Thus, it is required to sufficiently evaluate etiologies of AP, and clearly define diagnostic and severity criteria of COVID-19 and AP for reviewing COVID-19-attributed AP. A sufficient evaluation of etiologies of AP should be performed, especially in case studies.

This study aimed to perform a review of literature to reveal recent findings on the association between AP and SARS-CoV-2. The review also focusses on the real-world data of COVID-19-attributed AP, with surveillance for other etiologies of AP, and reveals some clinical features of COVID-19-attributed AP.

MECHANISMS OF AP WITH COVID-19
Direct association between the pancreas and SARS-CoV-2
Coronaviruses constantly circulate in human populations and usually cause mild respiratory symptoms. The gastrointestinal symptoms, although not as common as respiratory symptoms, have been observed in some patients with COVID-19[2]. The SARS-CoV-2 depends on ACE2, a protein that binds to viral spike (S) protein, to enter epithelial cells[5]. SARS-CoV-2 also invades the gastrointestinal tract via ACE2
Onoyama T et al. COVID-19 and acute pancreatitis

Figure 1 Direct and indirect pathways of pancreatic injury caused by severe acute respiratory syndrome coronavirus-2. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) disseminates through the bloodstream mainly to the pancreas. SARS-CoV-2 may be transported to the pancreas via the gastrointestinal tract. The pancreas expresses angiotensin converting enzyme-2 (ACE2) and the transmembrane protease serine 2 (TMPRSS2). SARS-CoV-2 binds to ACE2 after the viral spike (S) protein is primed by TMPRSS2 for cell entry. Therefore, SARS-CoV-2 may potentially cause direct pancreatic injury, including acute pancreatitis. However, indirect pancreatic injury may also be caused by systemic inflammatory responses from respiratory failure induced by SARS-CoV-2 infection. Levels of proinflammatory immune mediators associated with pancreatitis, including interleukin (IL)-1β, IL-6, IL-10, interferon-γ, monocyte chemotactic protein-1, and tumor necrosis factor-α are higher in the plasma of patients with coronavirus disease 2019. These mediators may indirectly cause pancreatic injury. An increase in lipase activity triggers lipolysis in the adipose tissues, and enhances levels of serum unsaturated fatty acids (UFA). UFA may cause an increase in levels of proinflammatory immune mediators that lead to systemic inflammation. SARS-CoV-2: Severe acute respiratory syndrome coronavirus-2; ACE2: Angiotensin converting enzyme-2; TMPRSS2: Transmembrane protease serine 2; IL: Interleukin, IFN-γ: Interferon-γ; MCP-1: Monocyte chemotactic protein-1; TNF-α: Tumor necrosis factor-α; UFA: Unsaturated fatty acids.

Pancreatic injury caused by SARS-CoV-2-induced cytokine storm

Recent studies reported that the rate of pancreatic enzyme elevation ranged between 12.1% and 17.3% in patients with COVID-19[10,34,35]. Wang et al[10] reported the first case series of COVID-19-attributed
pancreatic injury and suggested two pathophysiological theories of how pancreatic injury was caused by SARS-CoV-2[10]. First, viral infection causes direct pancreatic injury, as described above. Second, an indirect pancreatic injury is caused by systemic inflammatory responses to respiratory failure or by harmful systemic immune response induced by SARS-CoV-2 infection (Figure 1). Severe COVID-19, including acute respiratory distress syndrome (ARDS) and multiorgan failure is also known to be associated with cytokine storms in the host[36,37]. Levels of proinflammatory immune mediators associated with pancreatitis, including interleukin (IL)-1β, IL-6, IL-10, interferon-γ (IFN-γ), monocyte chemotactic protein-1 (MCP-1), and tumor necrosis factor-α (TNF-α) are higher in the plasma of patients with COVID-19 than those in healthy controls. Furthermore, in infected patients, levels of MCP-1 and TNF-α are significantly higher requiring admission to intensive care units (ICUs) than those in patients not being treated in ICUs[2,38,39]. Another study suggested that levels of IL-6, IL-10, and TNF-α were increased in patients with severe COVID-19 than in those with non-severe COVID-19[40]. Several points remain unclear in the relationship between proinflammatory immune mediators regulated by the viral effect and AP, but serum amylase and lipase elevation in patients with COVID-19 are associated with severity of COVID-19[41-44]. Additionally, AP is also more complicated in cases with severe COVID-19 than in patients with non-severe COVID-19[45]. These facts may support that cytokine storm caused by SARS-CoV-2 induces AP. In contrast, recent research suggests that the release of pancreatic lipase is associated with an increase in levels of unsaturated fatty acids[46]. It is hypothesized that the intestinal release of pancreatic lipase increases lipolysis and plasma levels of unsaturated fatty acids that may damage mitochondria and cause an increase in proinflammatory immune mediators[47]. This increase in cytokines can accelerate disease pathogenesis and lead to severe COVID-19[41,48]. Additional research and analyses are needed to validate this hypothesis, but it is uncertain whether severe COVID-19 causes AP or complicated AP is associated with increased severity of COVID-19 or both. Moreover, severe COVID-19 may complicate AP with other etiologies, including ischemia, hypercalcemia, and drugs[48]. Corticosteroid is known to induce pancreatitis; but, drug-induced AP is observed in < 5% of total AP cases, and corticosteroid accounts for only 2.8% of the drug-induced AP cases[19,49]. Tocilizumab, an antibody for IL-6 indicated for COVID-19, is also reported as an etiology for AP[50,51].
Further, multisystemic inflammatory syndrome in children (MIS-C)/pediatric inflammatory multisystem syndrome (PIMS), novel multisystem inflammatory conditions with some features similar to those of Kawasaki disease, and toxic shock syndrome leading to multiorgan failure and shock cause gastrointestinal symptoms in children[32-34]. Recent case studies also revealed that MIS-C/PIMS may complicate AP[35-38]. An international survey on children with co-occurrence of COVID-19 and AP showed that 2 of 22 patients had MIS-C/PIMS. The mechanisms of MIS-C/PIMS are unclear, but SARS-CoV-2 may cause AP via inflammatory immune mediators.

REAL-WORLD DATA ON COVID-19 AND AP

Cohort and case-control studies on COVID-19 and AP

In a prospective, cohort study in the Netherlands, Bulthuis et al[59] confirmed COVID-19 in 433 patients with RT-PCR and/or chest CT scores[59]. Eight of the 433 patients met the Revised Atlanta Classification of AP and all were teetotalers. Three of eight patients had other etiologies (two biliary and one post-ERCP); thus, five (1.2%) were suspected with COVID-19-attributed AP. The median age of the five cases was 60 (range, 47-71) years, and 80% were men. Necrotic changes were not observed in the pancreas of the five patients. All five had organ failures, and three (60%) succumbed to non-pancreatitis-related complications of COVID-19 although their AP was not severe. Vatansev et al[60] reported a retrospective cohort study comprising 150 patients, of which 29 had AP, and COVID-19 was confirmed with RT-PCR[60]. The mean age of 29 patients was 64.07 years, and 18 were men. In this study, AP was defined as abdominal pain, increased serum amylase and lipase levels (values not disclosed), and contrast-enhanced abdominal CT findings. Patients with some complications and history of habits, including gallstones, hypercalcemia, hypertriglyceridemia, alcohol consumption, and chronic pancreatitis were excluded from the study. All 29 patients had respiratory failures when diagnosed with AP. According to the Revised Atlanta Classification, the severity of AP was mild and moderate in 19 and 10 cases, respectively. The mortality was 8 of 29 patients (28%) died due to respiratory failure and multiple organ failure. These findings suggest a high mortality rate in patients with COVID-19-attributed AP. However, despite a strict investigation of etiologies of AP in the latter study, the number of patients suspected with COVID-19-attributed AP was higher, although a simple comparison was not possible due to differences in COVID-19 diagnostic criteria. Nevertheless, these studies failed to exclude other etiologies of AP, such as drugs, infections except SARS-CoV-2, and ischemia/reperfusion.

Akarsu et al[45] investigated the impact of AP on prognosis of COVID-19 in a prospective study[45]. They included 316 patients with COVID-19, of which 40 had complicated AP with various etiologies. AP was defined according to the Revised Atlanta Classification. The study showed a positive correlation between the severity of pneumonia and AP, and indicated that the frequency of AP increased with severity of pneumonia. Moreover, the mortality rate in patients with COVID-19-attributed AP was higher than that in patients with COVID-19 without AP (32.5% vs 7.97%, P < 0.0001). These studies showed that the incidence of COVID-19-attributed AP was rare, whereas comorbid COVID-19 was severe and had poor prognosis regardless of the severity of AP. This tendency was identified in suspected COVID-19-attributed AP and also AP with other etiologies. Furthermore, as described above, it is possible that severe conditions that needed treatment at ICU, induced AP in patients with COVID-19. Interestingly, Kumar et al[33] focused on the difference in the onset of AP in patients with COVID-19 in a retrospective study[33]. Lipase levels were measured and COVID-19 was confirmed with RT-PCR in 985 patients; of these, 17 cases were diagnosed with AP according to the Revised Atlanta Classification. Eight of these 17 presented with typical symptoms of AP on admission. The others developed AP after the onset of COVID-19 pneumonia and treatment with mechanical ventilation for ARDS. The number of patients were less, but the mortality rate in patients who were primarily admitted for AP was higher than that in patients who developed AP later (12.5% vs 33.3%). Several different clinical backgrounds should be considered as the reasons, etiologies of AP also seemed to be one of the causes, and it was not clear in the study. Ischemia/reperfusion and drugs were considered as etiologies of AP in patients who developed AP later, as they were treated with mechanical ventilation for ARDS.

There are several studies on AP and SARS-CoV-2 during the COVID-19 pandemic, and some of them focused on differences in the clinical course of AP, with or without comorbid COVID-19. Pandanaboyana et al[61] conducted a prospective, international, multicenter, large cohort study on patients with AP and coexistent SARS-CoV-2 infection[61]. The study, called the COVID PAN collaborative study, comprised 1777 patients with AP with various etiologies, of which 149 were SARS-CoV-2 positive. The study had some limitations, such as the diagnostic criteria of AP was uncertain, although the severity of AP was based on the Revised Atlanta Classification. The most important limitation was that the criteria for diagnosis of COVID-19 was RT-PCR for SARS-CoV-2 and also chest CT images and/or clinical course. The authors performed subgroup analysis to compare outcomes between patients negative for SARS-CoV-2 and those positive for SARS-CoV-2 confirmed by RT-PCR. After exclusion of patients from the subgroup analysis due to missing values, 82 of 909 patients with AP were positive for SARS-CoV-2. The 30-d mortality, rate of persistent organ failure, and acute pancreatic fluid collection were higher, and the length of hospital stay was longer in patients positive for SARS-CoV-2 than in those negative for
Table 1 Demographic characteristic of cases with suspected coronavirus disease 2019-attributed acute pancreatitis

Patient characteristics	Value
Age, median (range, yr)	42.0 (6-87)
Gender, male/female/NA	37/44/1
Comorbidities	
Hypertension	22
Diabetes	15
Dyslipidemia	4
Heart disease	3
Cerebrovascular	0
Respiratory disease	4
Renal dysfunction	5
Obesity	16
Pregnancy	2
Malignancy	2
History of abdominal surgery	13
Others	10
Alcohol consumption, none/low/heavy/NA	53/9/0/20
History of smoking, never/experience/current/NA	32/2/0/48
Severity of COVID-19	
Non-severe/severe/critical/NA	35/23/20/4
Symptoms	
Fever	49
Breath shortness	16
Cough	28
Dyspnea	18
Sore throat	18
Fatigue	9
Headache	7
Myalgia	10
Anorexia	13
Diarrhea	16
Abdominal pain	75
Nausea	39
Vomiting	48
Others	23
Blood test	
WBC, median (range, × 10^3/mm^3)	13.10 (3.40-230.00)
PLT, median (range, × 10^3/mm^3)	235.5 (52.0-502.0)
D-Dimer, median (range, μg/mL)	4.9 (0.3-17.7)
Amylase, median (range, U/L)	635 (47-4530)
Lipase, median (range, U/L)	895.5 (35.6-11920.0)
LDH, median (range, U/L)	366.0 (170-3553)
CRP, median (range, mg/dL) 8.5 (0.3-59.7)

Imaging findings (n = 75)

- Pancreatic enlargement 42
- Peripancreatic fluid collection 33
- Peripancreatic inflammatory change 48
- Pancreatic ischemic change 12
- No change of pancreas 6
- Not visualized 2

Severity of acute pancreatitis

Severity	Number
Mild/moderate	28
Severe	20
NA	28

Therapy for COVID-19

- Lopinavir/ritonavir 4
- Favipiravir 4
- Umifenovir 2
- Remdesivir 8
- Hydroxychloroquine 2
- Tocilizumab 2
- Corticosteroid (n = 53) 21
- Oxygen therapy (n = 69) 42
- Mechanical ventilation 19

Therapy for acute pancreatitis

- Conservative therapy/surgical drainage/NA 72/4/6
- Period of hospitalization, median (range, day) 7.5 (2-76)

Prognosis

- Alive/death/NA 69/10/3

RT-PCR: Reverse transcription polymerase chain reaction; IgM: Immunoglobulin M; IgG: Immunoglobulin G; WBC: White blood cell; PLT: Platelet; LDH: Lactate dehydrogenase; CRP: C-reactive protein; NA: Not available; SARS-CoV-2: Severe acute respiratory syndrome coronavirus-2; COVID-19: Coronavirus disease 2019.

SARS-CoV-2. Three retrospective cohort studies also reported results similar to those of the COVID PAN collaborative study[62-64]. Thus, concurrent AP and SARS-CoV-2 infection may lead to worse clinical outcomes, such as prolonged hospital stay, requirement of mechanical ventilation, high incidence of multiple organ failure, and high mortality than that with AP-alone. In contrast, two of three studies also revealed that the incidence of idiopathic AP in patients positive for SARS-CoV-2 was higher than that in patients negative for SARS-CoV-2[62,63]. Interestingly, the COVID PAN collaborative study also revealed that[65] SARS-CoV-2 infection may cause AP similar to other infections. Miró et al[66] conducted a retrospective case-control study, called the Unusual Manifestations of COVID-19 (UMC-19) study, comprising emergency units in Spain[66]. The diagnostic criteria for AP were according to the Revised Atlanta Classification. The diagnosis of COVID-19 was based on RT-PCR or antigen detection test, and also on chest image findings and clinical conditions. In 62 emergency departments, of the 1463693 patients tested for COVID-19, 74814 cases tested positive, and 54 of them (0.072%) developed AP. Furthermore, the frequency of non-COVID-19 patients with AP was 0.161% (2231/13888879). To compare outcomes between AP and COVID-19 groups, patients were randomly distributed into two groups-162 patients with AP without COVID-19 and 162 patients without AP with COVID-19. Patients with AP with COVID-19 showed severe clinical courses with high mortality than patients without AP with COVID-19. Moreover, there were no differences in the etiologies of AP with or without concurrent SARS-CoV-2 infections. Additionally, the incidence of AP in patients with COVID-19 was lower than that in patients with AP without COVID-19, consistent with results discussed above (0.072% vs 0.161%). In contrast, there were no differences between patients with COVID-19 with AP and those with COVID-19 without AP, except for the length of hospitalization. These results suggest that COVID-19 affects the prognosis of patients with concurrent AP and COVID-19 than those with AP-alone. A recent meta-
Table 2 Baseline characteristics of cases with coronavirus disease 2019 and acute pancreatitis coexistent

Case No.	Ref.	Age	Gender	Diagnostic evidence for SARS-CoV-2	Severity of COVID-19	Abdominal pain	Amylase/lipase (IU/L)	Abdominal image findings	Modality of image	Severity of acute pancreatitis	Treatment for pancreatitis	Prognosis
1	Anand et al[70]	59	Female	RT-PCR	Non-severe	Presence	NA/NA	Diffuse pancreatic enlargement	CT	Mild	Conservative	Alive
2	Hadi et al[71]	47	Female	RT-PCR	Critical	Absence	1500/NA	Diffuse pancreatic enlargement	AUS	Severe	NA	NA
3	Hadi et al[71]	68	Female	RT-PCR	Critical	Presence	934/NA	NA	NA	Severe	NA	NA
4	Aloysius et al[72]	36	Female	RT-PCR	Critical	Presence	325/627	No change	CT	Severe	Conservative	Alive
5	Miao et al[73]	26	Female	RT-PCR	Non-severe	Presence	NA/430	Diffuse pancreatic enlargement	CT	NA	NA	Alive
6	Szatmary et al[74]	29	Male	RT-PCR	Non-severe	Presence	77/NA	Diffuse pancreatic enlargement, peripancreatic inflammatory change, fluid collection	CT	Moderate	Conservative	Alive
7	Szatmary et al[74]	47	Male	RT-PCR	Non-severe	Presence	211/NA	Diffuse pancreatic enlargement, peripancreatic inflammatory change, fluid collection	CT	Moderate	Conservative	Alive
8	Rabice et al[75]	36	Female	RT-PCR	Severe	Presence	88/875	Not visualized	AUS	Mild	Conservative	Alive
9	Alloway et al[76]	7	Female	RT-PCR	Non-severe	Presence	NA/1672	Diffuse pancreatic enlargement	AUS and CT	Mild	Conservative	Alive
10	Karimzadeh et al[77]	65	Female	RT-PCR	Severe	Presence	285/294	No change	CT	Mild	Conservative	Alive
11	Gonzalo-Voltas et al[78]	76	Male	RT-PCR	Non-severe	Presence	3568/NA	Diffuse pancreatic enlargement	CT	Moderate	Conservative	Alive
12	Bokhari et al[79]	32	Male	RT-PCR	Non-severe	Presence	672/721	Diffuse pancreatic enlargement, peripancreatic inflammatory change, fluid collection	CT	Mild	Conservative	Alive
13	Mazrouei et al[80]	24	Male	RT-PCR	Non-severe	Presence	391/578	Enlargement of pancreatic tail, peripancreatic fluid collection	CT	Mild	Conservative	Alive
14	Ahmed et al[81]	47	Male	RT-PCR	Severe	Presence	349/NA	Peripancreatic inflammatory change	CT	Severe	NA	Alive
15	Brikman et al[82]	61	Male	RT-PCR	Severe	Presence	142/203	Peripancreatic inflammatory change	CT	Mild	Conservative	Alive
16	Kataria et al[83]	49	Female	RT-PCR	Severe	Presence	501/1541	Diffuse pancreatic enlargement, peripancreatic fluid collection	CT	Mild	Conservative	Alive
17	Cerda-Contreras et al[84]	72	Female	RT-PCR	Severe	Absence	1789/1247	Diffuse pancreatic enlargement, peripancreatic inflammatory change, fluid collection	CT	Severe	Conservative	Dead
Study References	Study Type	Sex	RT-PCR	Clinical Status	Presence	CT Findings	Treatment	Outcome				
------------------	------------	-----	--------	----------------	----------	-------------	-----------	---------				
Cheung et al.	Male		RT-PCR	Non-severe	NA/338.7	Acute pancreatitis	CT	Alive				
Kumaran et al.	Female		RT-PCR	Severe	1483/NA	Peripancreatic inflammatory change and fluid collection, non-enhancement of most of the head and proximal body	CT	Alive				
Purayil et al.	Male		RT-PCR	Non-severe	249/NA	Not visualized	AUS	Alive				
Dietrich et al.	Male		RT-PCR	Critical	NA/185	Normal pancreas	CT	NA				
Patnaik et al.	Male		RT-PCR	Non-severe	2861/1650	Diffuse pancreatic enlargement, peripancreatic fluid collection	CT	Alive				
Wang et al.	Male		RT-PCR	Critical	132/382	Pancreatic enlargement, peripancreatic fluid collection	CT	Conservative	Alive			
Wang et al.	Male		RT-PCR	Non-severe	NA/1042	Pancreatic enlargement, peripancreatic fluid collection	CT	Alive				
Alves et al.	Female		RT-PCR	Critical	544/2993	Diffuse pancreatic enlargement, peripancreatic inflammatory change	CT and MRI	Alive				
Kuricha et al.	Male		RT-PCR	Critical	252/263	Pancreatic enlargement, peripancreatic inflammatory change	CT	Conservative	Alive			
Lakshmanan and Malik	Male		RT-PCR	Non-severe	1030/2035	Peripancreatic inflammatory change	CT	Conservative	Alive			
Samies et al.	Male		RT-PCR	Non-severe	NA/233	Peripancreatic inflammatory change	CT	Moderate	Conservative	Alive		
Samies et al.	Male		RT-PCR	Non-severe	215/953	No change	CT	Mild	Conservative	Alive		
Samies et al.	Female		RT-PCR	Non-severe	NA/1909	Pancreatic enlargement	CT	Mild	Conservative	Alive		
Fernandes et al.	Female		RT-PCR	NA	710/640	Pancreatic enlargement, peripancreatic fluid collection	CT	Moderate	Conservative	Alive		
Stevens et al.	Female		Serological IgG	Severe	NA/1371	Peripancreatic inflammatory change	CT	Severe	Conservative	Alive		
Shinozuka et al.	Male		RT-PCR	Critical	795/NA	Diffuse pancreatic enlargement, peripancreatic inflammatory change	CT	Moderate	Conservative	Alive		
Meyers et al.	Male		RT-PCR	NA	NA/5295	Interstitial edematous pancreatitis, peripancreatic inflammatory change	CT	Moderate	NA	NA		
Ghosh et al.	Male		RT-PCR	Severe	58/412	Focal pancreatic enlargement, peripancreatic fluid collection	CT	NA	Conservative	Alive		
Tollard et al.	Female		RT-PCR	Critical	NA/321	Diffuse pancreatic enlargement, peripancreatic inflammatory change	CT	Severe	Conservative	Dead		
Kandasamy et al.	Female		RT-PCR	Severe	364/293	Diffuse pancreatic enlargement, peripancreatic inflammatory change and fluid collection	CT	Moderate	Conservative	Alive		
Study Reference	Age	Sex	Test Method	Severity	Presence	pancreatic enlargement necrotizing pancreatitis	AUS and CT	CT	Treatment	Note		
-----------------	-----	-----	-------------	----------	----------	---	------------	----	-----------	------		
Hassani et al.	78	Female	RT-PCR	Critical	Presence	1200/1450	Pancreatic enlargement necrotizing pancreatitis	AUS and CT	Severe	Conservative	Dead	
Suchman et al.	10	Female	RT-PCR	Non-severe	Presence	NA/365.7	NA	NA	Moderate	Conservative	Alive	
Suchman et al.	16	Male	RT-PCR	Critical	Presence	NA/233.3	NA	NA	Severe	Conservative	Alive	
Narang et al.	20	Female	RT-PCR	Severe	Presence	1168/916	Acute pancreatitis	MRI	Severe	Conservative	Alive	
Acheriya et al.	57	Female	RT-PCR	Severe	Presence	80/8352	Diffuse pancreatic enlargement, peripancreatic inflammatory change	CT	Moderate	Conservative	Alive	
Alwaeli et al.	30	Male	RT-PCR	Critical	Presence	151/1022	Diffuse pancreatic enlargement, peripancreatic inflammatory change	CT	Severe	Conservative	Alive	
Simou et al.	67	NA	RT-PCR	Severe	Absence	NA/576	Diffuse pancreatic enlargement, peripancreatic inflammatory change	CT	Severe	Conservative	Dead	
Jespersen Nizamic et al.	49	Female	RT-PCR	Non-severe	Presence	NA/2864	Peripancreatic inflammatory change, fluid collection	CT	Moderate	Conservative	Alive	
Abraham et al.	61	Female	RT-PCR	Non-severe	Presence	NA/1018	NA	NA	Mild	Conservative	Alive	
Abbinay et al.	13	Female	RT-PCR	NA	Presence	217/365	Peripancreatic inflammatory change, fluid collection	CT	Moderate	Conservative	Alive	
Bouali et al.	60	Female	RT-PCR	Critical	Presence	NA/627	Peripancreatic fluid collection	CT	Severe	Drainage of abdominal cavity, total gasterectomy	Dead	
Alharmi et al.	52	Female	RT-PCR	Non-severe	Presence	47/NA	Atrophic pancreas, peripancreatic inflammatory change, peripancreatic fluid collection	CT	Moderate	Conservative	Alive	
Abbas et al.	13	Female	RT-PCR	Critical	Presence	217.8/NA	Fluid collection	CT	Severe	Conservative	Alive	
Bineshfar et al.	14	Male	RT-PCR	Non-severe	Presence	1914/NA	Diffuse pancreatic enlargement, peripancreatic inflammatory change	CT	Mild	Conservative	Alive	
Paz et al.	14	Male	RT-PCR	Non-severe	Presence	196/247	Peripancreatic inflammatory change, fluid collection	MRI	Mild	Conservative	Alive	
Wifi et al.	72	Female	RT-PCR	Non-severe	Presence	1667/710	No change	CT	Mild	Conservative	Alive	
Sandhu et al.	25	Female	RT-PCR	Critical	Presence	350/35.6	Diffuse pancreatic enlargement	CT	Severe	Conservative	Dead	
Mohammadi Arbat et al.	28	Male	RT-PCR	Critical	Presence	1273/758	Peripancreatic inflammatory change, fluid collection, acute necrotic pancreatitis	CT	Severe	Conservative	Alive	
Amé et al.	42	Female	RT-PCR	NA	Presence	2263/2799	Pancreatic enlargement, peripancreatic inflammatory change, fluid collection	CT	NA	Conservative	Alive	
Gupta et al.	25	Female	RT-PCR	Severe	Presence	1814/11920	Diffuse pancreatic enlargement, fluid collection	CT	Severe	Conservative	Alive	
No.	Author(s)	Age	Sex	Test	Severity	Presence	Renal Function	Imaging	Treatment	Outcome		
-----	---------------------------------	-----	-----	------	----------	----------	----------------	---------	-----------	---------		
58	Muhammad Abrar Jeelani et al	24	Male	RT-PCR	Non-severe	Presence	NA/4174	CT	Moderate	Conservative	Alive	
59	Maalouf et al	62	Male	RT-PCR	Non-severe	Presence	NA/4361	MRI	Moderate	Conservative	Alive	
60	Sanchez et al	16	Male	RT-PCR	Severe	Presence	NA/961	CT	Moderate	Conservative	Alive	
61	Ehsan et al	13	Female	RT-PCR	Severe	Presence	598/2331	CT	Moderate	Conservative	Alive	
62	Hanif et al	30	Female	RT-PCR	Severe	Presence	820/626	CT	Severe	Conservative	Alive	
63	Chandra et al	53	Male	RT-PCR	Critical	Presence	NA/1200	CT	Severe	Conservative	Alive	
64	Alfishawy et al	17	Male	RT-PCR	Severe	Absence	285/273	CT	Moderate	Conservative	Alive	
65	Berrichi et al	36	Female	RT-PCR	Critical	Presence	NA/2570	CT	Severe	Conservative	Dead	
66	Kripalani et al	51	Female	RT-PCR	Severe	Presence	NA/676	CT	Mild	Conservative	Alive	
67	Narayan et al	28	Male	RT-PCR	Critical	Presence	Elevated/elevated	CT	Severe	Conservative	Dead	
68	Narayan et al	45	Female	RT-PCR	Severe	Presence	Elevated/elevated	CT	Mild	Conservative	Alive	
69	Eldaly et al	44	Male	RT-PCR	Non-severe	Presence	773/286	CT	Mild	Conservative	Alive	
70	Basukala et al	49	Female	RT-PCR	Non-severe	Presence	1563/568	CT	Severe	Gastrocolic ligament and followed by necrotic debridement, and drainage placement	Dead	
71	Schembri et al	63	Female	RT-PCR	Non-severe	Presence	1079/NA	CT	Mild	Conservative	Alive	
72	Schembri et al	87	Female	RT-PCR	Non-severe	Presence	499/NA	CT	Mild	Conservative	Alive	
73	Schembri et al	64	Female	RT-PCR	Non-severe	Presence	2141/NA	CT	Mild	Conservative	Alive	
Onoyama T et al. COVID-19 and acute pancreatitis

RT-PCR: Reverse transcription polymerase chain reaction; IgG: Immunoglobulin G; SARS-CoV-2: Severe acute respiratory syndrome coronavirus-2; COVID-19: Coronavirus disease 2019; AUS: Abdominal ultrasonography; CT: Computed tomography; MRI: Magnetic resonance imaging; NA: Not available.

Analysis suggested that patients with AP and COVID-19 were frequently men, had idiopathic etiology of AP, a high rate of pancreatic necrosis, higher severity of AP, and serious clinical courses, such as requirement of ICU admission and mechanical ventilation, and high mortality than patients with AP without COVID-19[67]. The prognoses in patients with COVID-19 with AP and those with COVID-19 without AP were different. It remains unclear whether SARS-CoV-2 infections increase AP, as the incidence of AP is rare, but its severity is high when concurrent with COVID-19. An online survey[68] including 22 children with AP and COVID-19 was reported. They were diagnosed as COVID-19 with RT-PCR or detection of SARS-CoV-2 IgG antibodies, while the diagnostic criteria for AP was unavailable. Children aged 10–14 years accounted for 54.5% of all participants in the study. Their clinical courses were serious-60% of them required treatment in the ICU, 45% had multi-organ involvement, 11% had complicated pancreatic necrosis, and 24% developed shock.

The association of AP with SARS-CoV-2 remains unclear, but patients with concurrent AP and COVID-19 show worse prognoses. The fact that some studies reported idiopathic AP during the COVID-19 pandemic indicates existence of COVID-19-attributed AP. Therefore, prospective cohort
studies focused on patients with COVID-19 with idiopathic AP, especially on how to exclude other etiologies of AP, are needed to clarify the COVID-19-attributed AP.

REVIEW OF CASE REPORTS CONTRIBUTED TO CONCURRENT COVID-19 AND AP

Literature search strategy
We identified relevant studies in the literature by searching the PubMed database. The review was restricted to articles published between December 2019 and October 2021, and selected case reports published in English. The search terms were as follows: COVID-19 pancreatitis AND "2019/01/01" (Date-Publication) to "2021/10/31" (Date-Publication) OR SARS-CoV-2 pancreatitis AND "2019/01/01" (Date-Publication) to "2021/10/31" (Date-Publication). We also screened reference lists of selected studies to manually identify relevant studies and include them in the narrative review.

Diagnosis and severity of AP
AP was defined according to diagnostic criteria of the Revised Atlanta Classification[17]. The presence of two out of three features, including abdominal pain consistent with AP, serum lipase activity (or amylase activity) at least three-times greater than the upper normal limit, and characteristic findings of AP on abdominal imaging, was required for the diagnosis of AP.

The severity (mild, moderately severe, and severe) of AP was also defined according to the Revised Atlanta Classification[17].

Diagnosis and severity of COVID-19
The diagnosis of COVID-19 was defined as a positive RT-PCR result or serological test for SARS-CoV-2. The other methods, such as medical history, or chest CT findings, were excluded.

The severity of COVID-19 (mild, moderate, severe, and critical), as classified by the WHO guidelines, was used to stratify patients in the study (https://www.who.int/publications/i/item/clinical-management-of-covid-19). Critical COVID-19 was defined based on the criteria for ARDS, sepsis, septic shock, or other conditions that would normally require life-sustaining therapies, such as mechanical ventilation (invasive or non-invasive) or vasopressor therapy. Severe COVID-19 was defined based on any of the following criteria: (1) Oxygen saturation < 90% on room air; (2) Respiratory rate > 30 breaths/min in adults and children aged > 5 years, ≥ 60 breaths/min in children aged < 2 mo, ≥ 50 in children aged 2-11 mo, and ≥ 40 in children aged 1-5 years; and (3) Signs of severe respiratory distress (accessory muscle use, inability to complete full sentences, and, in children, very severe chest-wall indrawing, grunting, central cyanosis, or presence of any other general danger signs). Non-severe COVID-19 was defined as the absence of any criteria for severe or critical COVID-19.

The data for some cases was insufficient to confirm the severity of COVID-19, but patients who received oxygen therapy were considered to have severe condition. Nevertheless, the indication for oxygen administration varied with institution. However, oxygen saturation < 90%, a criteria for severe COVID-19, was generally used as an indication for oxygen therapy. Additionally, patients who received oxygen therapy generally required hospitalization. Therefore, patients who received oxygen therapy were considered to have severe condition.

Reports included in the review
The literature search of the PubMed database identified 735 studies that met the criteria. We identified eight additional relevant articles in the references of these studies. We excluded 580 non-case study articles, a study in non-English language, three preprints, and an article that could not be reviewed. Of the remaining 158 case studies, 61 were without pancreatic injury or pancreatitis, and thus, were excluded. Moreover, 16 case reports on AP caused by other etiologies, such as biliary disease, alcohol, acute on chronic pancreatitis, hypertriglyceridemia, cytomegalovirus infection, methanol, lymphoma, and vaccination were excluded. In the remaining 81 case studies, six studies comprised eight cases that were not confirmed for AP based on the Revised Atlanta Classification. Two case studies did not include objective data for COVID-19 diagnosis. After removing these studies, 73 studies that included eight case series and 65 case reports were finally assessed in this review. In three of eight case series, one patient without pancreatitis (but with acute cholecystitis), two with negative RT-PCR test, and eight without RT-PCR test or serological IgG for SARS-CoV-2 were excluded. Eighty-two cases of suspected COVID-19-attributed AP were evaluated. Four of 82 cases were RT-PCR negative, but were serological IgG positive for SARS-CoV-2. However, these studies had a limitation that the etiological search for AP was insufficient in almost all cases. Therefore, we classified the potential of other etiologies for AP as-probable, improbable, and uncertain-for each case. The definition of “probable” for each etiology was as follows: Alcoholic AP, consuming ≥ 60 g of ethanol every day before AP onset; biliary AP, gallstones or biliary tract dilation on the abdominal image findings at AP onset (regarded as biliary AP when any serological hepatobiliary test results exceeded more than three-times the upper normal limit unless endoscopic ultrasonography or ERCP excluded any biliary diseases); hypertriglyceridemia, fasting...
triglycerides > 1000 mg/dL (11.3 mmol/L) at AP onset[19]; hypercalcemia, serological calcium > 10.4 mg/dL (2.60 mmol/L) at AP onset; drug-induced AP, new medication within one month before AP onset; acute aggravation on chronic pancreatitis, chronic pancreatitis existed, such as pancreatic calcification, before AP onset; infections, positive serological diagnosis for pathogens at AP onset; ischemia/reperfusion, episodes of hypoxic or hypovolemic status, i.e., cardiopulmonary arrest, shock, or mechanical ventilation, before pancreatitis onset; and trauma/anatomy, history of abdominal trauma or upper abdominal surgery with reconstruction of the gastrointestinal tract. In children, genetic AP was defined as existence of a family history of AP, i.e., ≥ 2 first-degree relatives (or ≥ 3 s-degree relatives) to have unexplained recurrent acute or chronic pancreatitis in ≥ 2 generations[69]. Moreover, in cases aged 0–19 years, MIS-C/PIMS-induced AP was also evaluated. The MIS-C/PIMS was defined according to the WHO definition (https://www.who.int/news-room/commentaries/detail/multisystem-inflammatory-syndrome-in-children-and-adolescents-with-covid-19). In case of insufficient etiological information, the probability of AP was regarded as uncertain.

Reports results

The characteristics of patients with COVID-19-attributed AP are shown in Tables 1-3. The probability of other etiologies for AP in included cases were as follows-alcohol: 0 probable, 64 improbable, and 18 uncertain; biliary AP: 8, 59, and 15; hypertriglyceridermia: 1, 54, and 27; hypercalcemia: 0, 40, and 42; drug-induced AP: 17, 58, and 17; acute aggravation on chronic pancreatitis: 1, 81, and 0; infections: 0, 7, and 75; ischemia/reperfusion: 10, 68, and 4; trauma/anatomy: 1, 79, and 2; genetic AP: 0, 7, and 11; and MIS-C/PIMS: 5, 10, and 3, respectively (Table 3 and Figure 2).

The median age at onset of COVID-19-attributed AP was 42.0 (range, 6–87) years. The men-to-women ratio of COVID-19-attributed AP was 37:44. The patient comorbidities were: Hypertension (22 cases), diabetes (15 cases), heart disease (3 cases), respiratory disease (4 cases), obesity (16 cases), renal dysfunction (5 cases), dyslipidemia (4 cases), hyper/hypothyroidism (4 cases), gastrointestinal reflux disease (2 cases), thrombophilia (1 case), thrombosis (1 case), osteoporosis (1 case), anxiety (2 cases), and malignant disease (2 cases). There were 13 patients with histories of abdominal surgeries, including cholecystectomy, hysterectomy, cesarean section, appendectomy, Whipple procedure, small bowel resection, and renal transplantation. Two pregnant women were also included. Almost all patients had no history of alcohol and cigarette abuse. Abdominal pain was the most frequent symptom (91.5%, 75/82), followed by fever (59.8%, 49/78), vomiting (58.5%, 48/79), nausea (47.6%, 39/66), and cough (34.1%, 28/78). None of the patients had any symptoms. The median levels of white blood cells, platelets, D-Dimer, amylase, lipase, lactate dehydrogenase, and C-reactive protein were 13100/μL (range, 2300–820000), 235500/μL (range, 52000–502000), 4.9 μg/mL (range, 0.3–17.7), 635 U/L (range, 3400–230000), 235500/μL (range, 52000–502000), 4.9 μg/mL (range, 0.3–17.7), 635 U/L (range, 47–4530), 895.5 U/L (range, 35.6–1920.0), 366 U/L (range, 170–3553), and 8.5 mg/dL (range, 0.3–59.7), respectively.

The study included 43 patients (55.8%, 43/77) with severe or critical COVID-19. Oxygen therapy for COVID-19 was required in 42 patients (51.2%, 42/69); of those, 19 were treated with mechanical ventilation. Seventeen patients received antiviral therapy with lopinavir/ritonavir, favipiravir, umifenovir, or remdesivir. One of them was treated with both lopinavir/ritonavir and favipiravir. Moreover, two patients received hydroxychloroquine, an antimalarial drug, for treatment of COVID-19. Two cases were treated with tocilizumab, an anti-IL-6 monoclonal antibody, for COVID-19. Corticosteroids were also administered for the treatment of COVID-19 in 21 patients (39.6%, 21/53).

Abdominal images were evaluated in 75 patients, except in two patients as the pancreases could not be visualized via abdominal ultrasonography. Two other patients underwent abdominal CT or magnetic resonance imaging, and the findings were consistent with those of pancreatitis-alone, without details. Of the remaining 71 patients, 48 showed peripancreatic inflammatory changes and 33 had peripancreatic fluid collections. Pancreatic enlargement occurred in 42 patients. Pancreatic ischemic changes, such as decreased contrast enhancement in pancreatic parenchyma on abdominal computed tomography was observed in 12 patients (16.9%, 12/71). However, no change was observed in the abdominal image findings in six patients.

In this review, 28 patients were classified as having severe AP (36.8%, 28/76). Almost all patients with AP received conservative therapy, except for four cases. These four patients underwent invasive treatment; of which, one patient with AP and gastric necrosis underwent drainage of the peripancreatic necrotic collections and total gastrectomy, but failed to recover. The other patient received gastrocolic ligament, necrotic debridement, and drainage placement for acute hemorrhagic necrotizing pancreatitis, and died two days after surgery.

The median period of hospitalization for recovering from COVID-19-attributed AP was 8.0 d (range, 2–76). Ten patients (12.7%, 10/79) died due to critical COVID-19 (median hospitalization, 7.0 d; range, 2–22 d).

In summary, patients suspected with COVID-19-attributed AP were relatively young (median age, 42 years), 36.8% of them had severe conditions, and had a high mortality rate (12.7%) similar to that reported in cohort studies and meta-analyses. However, it cannot be ignored that many AP cases reported in these studies may have occurred due to etiologies other than SARS-CoV-2.
Case No.	Alcohol	Biliary	Hypertriglyceridemia	Drug	Acute aggravation on chronic pancreatitis	Hypercalcemia	Infections	Ischemia/reperfusion	Trauma/anatomy	Genetics	MIS-C/PIMS			
1	N	?	Y	N	N	N	?	N	N	N	-			
2	N	N¹	N	N	N	N	N	Y	N	-	-			
3	?	?	N	N	N	N	?	Y	N	-	-			
4	N	N	N	N	N	N	N	N	N	-	-			
5	N	N	N	N	N	N	Y	N	N	-	-			
6	N	N	N	N	N	N	N	N	N	-	-			
7	N	N	N	N	N	N	?	N	N	-	-			
8	N	N	N	N	N	N	?	N	N	-	-			
9	N	?	N	N	N	N	?	N	N	?	N			
10	?	N	N	N	N	N	N	N	N	-	-			
11	N	N	?	Y	N	N	?	N	N	-	-			
12	N	N	N	N	N	N	N	N	N	-	-			
13	N	N	?	N	N	N	?	N	N	-	-			
14	?	Y	?	Y	N	N	?	N	N	-	-			
15	N	N	N	N	N	N	?	N	N	-	-			
16	N	N	N	N	N	N	N	N	N	-	-			
17	?	?	N	Y	N	N	N	Y	N	-	-			
18	N	N	N	N	N	N	?	N	N	-	-			
19	N	N	N	N	N	N	N	N	N	-	-			
20	N	N	?	N	N	N	N	N	N	-	-			
21	N	N	?	N	N	N	N	N	N	-	-			
22	N	N	N	N	N	N	N	N	N	-	-			
23	N	N	N	N	N	N	N	N	N	-	-			
24	N	N	N	N	N	N	N	N	N	-	-			
25	N	N	N	N	N	N	N	N	N	-	-			
26	?	N	N	Y	N	N	N	Y	N	-	-			
27	N	N	N	N	N	N	N	N	N	-	-			
28	N	?	N	N	N	N	N	N	N	N	-			
29	N	N	N	N	N	N	N	N	N	?	-			
30	N	Y	N	Y	?	N	N	N	N	N	-			
31	N	N¹	?	N	N	N	N	N	N	N	-			
32	N	Y	N	N	N	N	N	N	N	?	Y			
33	N	N	Y	N	N	Y	N	N	N	-	-			
34	N	N	N	N	N	N	N	N	N	-	-			
35	N	?	?	N	?	N	N	N	N	-	-			
36	N	Y	N	N	N	Y	N	N	N	-	-			
37	N	N	?	N	N	N	N	N	N	-	-			
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
38	N	N	N	N	N	N	?	N	N	-	-			
39	N	?	?	?	N	?	?	?	?	?	?	Y		
40	N	?	?	?	N	?	?	?	?	?	?	N		
41	N	N	N	Y	N	?	?	Y	N	-	-			
42	N	N	N	Y	N	N	?	N	N	-	-			
43	N	N	N	N	N	N	N²	N	N	-	-			
44	N	N	N	Y	N	N	N²	Y	N	-	-			
45	N	?	?	N	N	?	?	N	N	-	-			
46	?	?	?	N	N	N	?	N	N	-	-			
47	?	?	?	N	N	?	?	N	N	?	N			
48	?	?	?	N	N	?	?	N	N	-	-			
49	N	N	N	Y	N	N	?	N	N	-	-			
50	N	N	N	Y	N	?	N²	N	N	N	Y			
51	N	N	?	N	N	?	?	N	N	?	N			
52	?	N	N	N	N	?	?	N	N	N	N			
53	?	N	N	N	N	N	?	N	N	-	-			
54	N	Y	N	N	N	N	?	N	N	-	-			
55	N	N	N	N	N	N	?	N	N	-	-			
56	N	N	N	N	N	N	?	N	N	-	-			
57	N	N	N	?	N	N	?	N	N	-	-			
58	N	N	N	N	N	N	?	N	N	-	-			
59	N	N	N	N	N	?	?	N	N	-	-			
60	N	N	N	N	N	?	?	N	N	N	N			
61	N	N	N	N	N	?	?	N	N	?	?			
62	N	?	N	Y	N	N	N	Y	N	-	-			
63	N	N	N	N	N	?	?	N	N	-	-			
64	N	Y	Y	N	N	?	?	N	N	?	?			
65	?	N	?	N	N	?	?	N	N	-	-			
66	?	N	?	N	N	?	?	N	N	-	-			
67	N	N	?	N	N	?	?	N	N	-	-			
68	?	N	N	Y	N	?	?	N	N	-	-			
69	?	?	?	Y	N	?	?	Y	N	-	-			
70	N	N	N	N	N	N	?	N	N	-	-			
71	N	N	N	N	N	N	?	N	N	-	-			
72	N	N	?	N	N	?	?	N	Y	-	-			
73	?	N	N	N	N	?	?	N	N	-	-			
74	?	Y	?	N	N	?	?	N	N	-	-			
75	N	N	N	N	N	N	N	N	N	?	N			
76	N	N	?	N	N	N	?	N	N	?	Y			
77	N	Y	N	N	N	N	?	N	N	-	-			
78	?	N	?	?	N	N	?	N	N	-	-			
79	N	N	N	N	N	N	?	N	N	-	-			
80	N	N	N	N	N	N	?	N	N	N	N			
81	?	?	?	Y	N	?	N²	N	N	?	Y			
CONCLUSION

It remains controversial whether SARS-CoV-2 infections increase AP, but some basic and pathological approaches suggest mechanisms of direct and indirect involvement of the pancreas caused by SARS-CoV-2. Moreover, there are several clinical data to support existence of COVID-19-attributed AP. First, the incidence of idiopathic AP in patients positive for SARS-CoV-2 is higher than that in patients negative for SARS-CoV-2 in some cohorts with concurrent COVID-19 and AP. Second, SARS-CoV-2 infects pancreatic exocrine and endocrine cells as per the pathological evaluation of patients deceased due to COVID-19. Moreover, some clinical features of COVID-19-attributed AP, including various etiologies of AP, are revealed, such as a high rate of pancreatic necrosis, higher severity of AP, and serious clinical courses. However, clinical features of COVID-19-attributed AP remain uncertain. A sufficient investigation on etiologies of AP would improve understanding of the clinical features of COVID-19-attributed AP. High-quality clinical studies and case reports that specify the method for differential diagnoses of the other etiologies of AP, including alcohol, biliary, hypertriglyceridemia, hypercalcemia, drugs, ischemia/reperfusion, trauma, infections, and genetic associations need to be evaluated. The present review of case studies suggests criteria to classify the possibility of other etiologies for AP. The criteria may not be appropriate, but the review highlights the insufficient etiological workup of AP, especially for other infections and hypercalcemia. Moreover, in some cases, it is difficult to completely exclude drug-induced and biliary AP from the etiology of AP. These details may be informative for designing future clinical studies.

Several unsolved questions remain, such as the risk factors of AP in patients with COVID-19. It is also uncertain why some patients with COVID-19-attributed AP become severe while others do not. AP may be a rare complication of COVID-19, but some cases develop severe AP attributed to SARS-CoV-2 infection. Thus, the potential of COVID-19-attributed AP should be thoroughly investigated.

ACKNOWLEDGEMENTS

We thank our colleagues in the Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University (Tottori, Japan) for their support.

FOOTNOTES

Author contributions: Isomoto H and Onoyama T conceptualized and designed the review; all authors contributed to the conception and design of the study; Onoyama T, Koda H, Hamamoto W, Kawahara S, Sakamoto Y, Yamashita T, Kurumi H, Kawata S, Takeda Y, and Matsumoto K performed material preparation, data collection, and analysis; Onoyama T drafted the initial manuscript; all authors reviewed and approved the final manuscript as submitted.

Conflict-of-interest statement: The authors declare that they have no conflict of interest associated with the study.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Japan

ORCID number: Takumi Onoyama 0000-0003-0110-0720; Hiroki Koda 0000-0003-4000-6899; Wataru Hamamoto 0000-0003-2220-9916; Shiho Kawahara 0000-0001-8173-8207; Yuri Sakamoto 0000-0001-9682-6410; Taro Yamashita 0000-0003-2726-3356; Hiroki Kurumi 0000-0002-2372-1631; Soichiro Kawata 0000-0002-2194-0582; Yohei Takeda 0000-0003-1096-5909; Kazuya Matsumoto 0000-0002-5680-4791; Hajime Isomoto 0000-0001-8998-7865.

S-Editor: Fan JR
L-Editor: A
P-Editor: Fan JR
REFERENCES

1. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu J, Shan H, Lei CL, Hui DSC, Dubr D, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS; China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 2020; 382: 1708-1720 [PMID: 32109013 DOI: 10.1056/NEJMoa2002032]

2. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhou H, Chen R, Wei Y, Zeng T, Xie T, Tian Z, Yao L, Liu J, Wu Y, Xie X, Yin W, Li H, Liu M, Xiong X, Gu H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395: 497-506 [PMID: 31986264 DOI: 10.1016/S0140-6736(20)30131-4]

3. Cheung KS, Hung IFN, Chan PPy, Lung KC, Tso E, Liu R, Ng YY, Chu MY, Chung TWH, Tam AR, Yip CCY, Leung KH, Fung AY, Zhang RR, Lin Y, Cheng HM, Zhang AJX, To KKW, Chan KH, Yuen KY, Leung WK. Gastrointestinal Manifestations of SARS-CoV-2 Infection and Virus Load in Fecal Samples From a Hong Kong Cohort: Systematic Review and Meta-analysis. Gastroenterology 2020; 159: 81-95 [PMID: 32251668 DOI: 10.1053/j.gastro.2020.03.065]

4. Rokkas T. Gastrointestinal involvement in COVID-19: a systematic review and meta-analysis. Ann Gastroenterol 2020; 33: 355-365 [PMID: 32624655 DOI: 10.20524/aog.2020.0506]

5. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger T, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020; 181: 270-281 [PMID: 32142651 DOI: 10.1016/j.cell.2020.02.052]

6. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol 2020; 94 [PMID: 31996437 DOI: 10.1128/JVI.00127-20]

7. Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology 2020; 158: 1831-1833.e3 [PMID: 32427733 DOI: 10.1053/j.gastro.2020.02.055]

8. Parasa S, Desai M, Chakravarthy N, Mathur S, Thakker R, Nair B, Gupta R, Singh MP, Patnaik I, Kumar A, Kochhar R. Coronavirus disease 2019 and the pancreas. Pancreatology 2020; 20: 1011-1012 [PMID: 32498972 DOI: 10.1016/j.pan.2020.05.016]

9. Liu F, Long X, Zhang B, Zhang W, Chen X, Zhang Z. ACE2 Expression in Pancreas May Cause Pancreatic Damage After SARS-CoV-2 Infection. Clin Gastroenterol Hepatol 2020; 18: 2128-2130.e2 [PMID: 32334082 DOI: 10.1016/j.cgh.2020.04.040]

10. Müller JA, Groß R, Conzelmann C, Krüger J, Merle U, Sierschens T, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020; 181: 270-281 [PMID: 32142651 DOI: 10.1016/j.cell.2020.02.052]

11. Müller JA, Groß R, Conzelmann C, Krüger J, Merle U, Sierschens T, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020; 181: 270-281 [PMID: 32142651 DOI: 10.1016/j.cell.2020.02.052]

12. Muller JA, Gross R, Conzelmann C, Krueger J, Merle U, Sierschens T, Herrler G, Wu NH, Nitsche A, Muller MA, Drosten C, Pohlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020; 181: 270-281 [PMID: 32142651 DOI: 10.1016/j.cell.2020.02.052]

13. Müller JA, Gross R, Conzelmann C, Krueger J, Merle U, Sierschens T, Herrler G, Wu NH, Nitsche A, Muller MA, Drosten C, Pohlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020; 181: 270-281 [PMID: 32142651 DOI: 10.1016/j.cell.2020.02.052]
Onoyama T et al. COVID-19 and acute pancreatitis

2020; 20: 1312-1322 [PMID: 32983584 DOI: 10.1016/j.pan.2020.08.018]

Ravila P, Bandaru SS, Vellipuram AR. Review of Infectious Etiology of Acute Pancreatitis. Gastroenterology Res 2017; 10: 153-158 [PMID: 28725301 DOI: 10.14704/gr585v6]

Simons-Linares CR, Imam Z, Chahal P. Viral-Attributed Acute Pancreatitis: A Systematic Review. Dig Dis Sci 2021; 66: 2162-2172 [PMID: 32789532 DOI: 10.1007/s10620-020-06531-9]

Dong M, Zhang J, Ma X, Tan J, Chen L, Liu S, Xin Y, Zhuang L. ACE2, TMPRSS2 distribution and extrapulmonary organ injury in patients with COVID-19. Biomed Pharmacother 2020; 131: 110678 [PMID: 32861070 DOI: 10.1016/j.biopha.2020.110678]

Bourgonje AR, Abdulle AE, Timens W, Hillebrands JL, Navis GJ, Gjordijn SJ, Bolling MC, Dijkstra G, Voors AA, Osterhaus AD, van der Voort PH, Mulder DJ, van Goor H. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol 2020; 251: 228-248 [PMID: 32418199 DOI: 10.1002/path.5471]

Kerslake R, Hall M, Rendava HS, Spandidos DA, Chatha K, Kyrouri I, Karteris E. Coexpression of peripheral olfactory receptors with SARS-CoV-2 infection mediators: Potential implications beyond loss of smell as a COVID19 symptom. Int J Mol Med 2020; 46: 949-956 [PMID: 32705281 DOI: 10.3892/ijmm.2020.4646]

Coate KC, Cha J, Shrestha S, Wang W, Gonçalves LM, Almaça J, Kapp ME, Fasolin M, Morgan A, Dai C, Saunders DC, Bottino R, Aramandla R, Jenkins R, Stein R, Kaestner KH, Vahedi G; HPAP Consortium, Briossa M, Powers AC. SARS-CoV-2 Cell Entry Factors ACE2 and TMPRSS2 Are Expressed in the Microvasculature and Ducts of Human Pancreas but Are Not Enriched in β Cells. Cell Metab 2020; 32: 1028-1040.e4 [PMID: 33207245 DOI: 10.1016/j.cmet.2020.11.006]

Yang L, Han Y, Nilsson-Payant BE, Gupta V, Wang P, Duan X, Tang X, Zhu J, Zhao Z, Jaffri F, Zhang T, Kim TW, Hirschnot O, Redmond D, Houghton S, Liu C, Naji A, Cerier G, Guttikonda S, Brenn Y, Nguyen DT, Coiffé M, Chandar V, Hoagland DA, Huang Y, Xiang J, Wang H, Lyden D, Boreczuk A, Chen HJ, Studer L, Pan FC, Ho DD, tenOever BR, Evans T, Schwartz RE, Chen S. A Human Pluripotent Stem Cell-based Platform to Study SARS-CoV-2 Tropism and Model Virus Infection in Human Pancreatic and Organoid. Cell Stem Cell 2020; 27: 125-136.e7 [PMID: 32579880 DOI: 10.1016/j.stem.2020.06.015]

Shaharuddin SH, Wang V, Santos RS, Gross A, Wang Y, Jawanda H, Zhang Y, Hasan W, García G Jr, Arunagawasani V, Sareen D. Deleterious Effects of SARS-CoV-2 Infection on Human Pancreatic Cells. Front Cell Infect Microbiol 2021; 11: 678482 [PMID: 34282405 DOI: 10.3389/fcimb.2021.678482]

Kumar V, Barkoudah E, Souza DAT, Jin DX, McNabb-Baltar J. Clinical course and outcome among patients with acute pancreatitis and COVID-19. Eur J Gastroenterol Hepatol 2021; 33: 695-700 [PMID: 33787541 DOI: 10.1097/MEG.0000000000002169]

Barlass U, Williams B, Dhana K, Adnan D, Khan SR, Mahadvinia M, Biheshefari S. Marked Elevation of Lipase in COVID-19 Disease: A Cohort Study. Clin Transl Gastroenterol 2020; 11: e00215 [PMID: 32764201 DOI: 10.14309/ctg.0000000000000215]

McNabb-Baltar J, Jin DX, Grover AS, Redd WD, Zhou JC, Hathorn KE, McCarty TR, Bazarbashi AN, Shen L, Chen WW. Lipase Elevation in Patients With COVID-19. Am J Gastroenterol 2020; 115: 1286-1288 [PMID: 32496339 DOI: 10.14309/aug.0000000000000732]

Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Moller R, Jordan TX, Oishi K, Panis M, Sachs D, Wang TT, Schwartz RE, Lim JK, Albrecht RA, tenOever BR. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell 2020; 181: 1036-1045.e9 [PMID: 32416070 DOI: 10.1016/j.cell.2020.04.026]

Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev 2020; 53: 25-32 [PMID: 32446778 DOI: 10.1016/j.cytogfr.2020.05.003]

Watanabe T, Kudo M, Strober W. Immunopathogenesis of pancreatitis. Mucosal Immunol 2017; 10: 283-298 [PMID: 27848935 DOI: 10.1038/mi.2016.101]

Ding L, Yang Y, Li H, Wang H, Gao P. Circulating Lymphocyte Subsets Induce Secondary Infection in Acute Pancreatitis. Front Cell Infect Microbiol 2020; 10: 128 [PMID: 32296650 DOI: 10.3389/fcimb.2020.00128]

Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, Wang T, Zhang X, Chen H, Yu H, Zhang M, Wu S, Song J, Chen T, Han M, Li S, Luo X, Zhao J, Ning Q. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 2020; 130: 2620-2629 [PMID: 32217835 DOI: 10.1172/JCI137244]

Ramsay ML, Elmanzer BJ, Krishna SG. Serum Lipase Elevations in COVID-19 Patients Reflect Critical Illness and not Acute Pancreatitis. Clin Cytokine Res 2020; 19: 1892-1987 [PMID: 33882344 DOI: 10.1016/j.jcyr.2021.04.019]

Li G, Liu T, Jin G, Li T, Liang J, Chen Q, Chen L, Wang L, Wang Y, Song J, Liang H, Zhang C, Zhu P, Zhang W, Ding Z, Chen X, Zhang B. Multidisciplinary T. Serum amylose elevation is associated with adverse clinical outcomes in patients with coronavirus disease 2019. [cited 10 December 2021]. Available from: http://www.aging-us.com

Ahmed A, Fisher JC, Pochapin MB, Freedman SD, Kothari DJ, Shah PC, Sheth SG. Hyperlipaemia in absence of acute pancreatitis is associated with elevated D-dimer and adverse outcomes in COVID 19. Pancreatology 2020; 21: 698-703 [PMID: 33741267 DOI: 10.1016/j.pan.2021.02.021]

Troncone E, Salvatori S, Sena G, De Cristofaro E, Alfieri N, Marafini I, Paganelli C, Arigó R, Giannarelli D, Monteleone G, Del Vecchio Blanco G. Low Frequency of Acute Pancreatitis in Hospitalized COVID-19 Patients. Pancreas 2021; 50: 393-398 [PMID: 33835971 DOI: 10.1097/MPA.0000000000001770]

Akarsu C, Karabulut M, Aydin H, Sahbaz NA, Dural AC, Yegul D, Peker KD, Fahman S, Bulut S, Dönmez T, Asar S, Yasar K, Adas GT. Association between Acute Pancreatitis and COVID-19: Could Pancreatitis Be the Missing Piece of the Puzzle about Increased Mortality Rates? J Invest Surg 2022; 35: 119-125 [PMID: 33138658 DOI: 10.1080/08941939.2020.1833263]

El-Kurdi B, Khatua B, Rood C, Snozek C, Martin-Cebal R, Singh VP. Lipotoxicity in COVID-19 Study Group. Mortality From Coronavirus Disease 2019 Increases With Unsaturation of Fat and May Be Reduced by Early Calcium and Albumin Supplementation. Gastroenterology 2020; 159: 1015-1018.e4 [PMID: 32470338 DOI: 10.1053/j.gastro.2020.05.057]
Hegyi P, Szakács Z, Sahin-Töth M. Lipotoxicity and Cytokine Storm in Severe Acute Pancreatitis and COVID-19. *Gastroenterology* 2020; 159: 824-827 [PMID: 32682765 DOI: 10.1053/j.gastro.2020.07.014]

Muniraj T, Dang S, Pritchumoni CS. PANCREATITIS OR NOT? *J Crit Care* 2015; 30: 1370-1375 [PMID: 26411523 DOI: 10.1016/j.jcrc.2015.08.020]

Mezcker Á, Hanák L, Pánicekzy A, Szentesi A, Érös B, Hegyi P, Hungarian Pancreatic Study Group. Analysis of 1060 Cases of Drug-Induced Acute Pancreatitis. *Gastroenterology* 2020; 159: 1958-1961.e8 [PMID: 32687926 DOI: 10.1053/j.gastro.2020.07.016]

Salama C, Han J, Yau W, Reiss WG, Kramer B, Neihart JD, Criner GJ, Kaplan-Lewis E, Baden R, Pandit L, Cameron ML, Garcia-Diaz J, Chávez V, Mekebe-Reuter M, Lima de Menezes F, Shah R, González-Lara MF, Assman B, Freedman J, Mohan SV. Tocilizumab in Patients Hospitalized with Covid-19 Pneumonia. *N Engl J Med* 2021; 384: 20-30 [PMID: 33332279 DOI: 10.1056/NEJMoa2003640]

Flaig T, Douros A, Bronder E, Klinapel A, Kreutz R, Garbe E. Tocilizumab-induced pancreatitis: case report and review of data from the FDA Adverse Event Reporting System. *J Clin Pharmac Ther* 2016; 41: 718-721 [PMID: 27670839 DOI: 10.1111/jcpt.12456]

Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P. Hyperinflammatory shock in children during COVID-19 pandemic. *Lancet* 2020; 395: 1607-1608 [PMID: 32386565 DOI: 10.1016/S0140-6736(20)30941-9]

Deltiasi RL, Song X, Delaney M, Bell M, Smith K, Pershad J, Ansusinha E, Hahn A, Hamdy R, Harik N, Hanisch B, Jantausch B, Koay A, Steinhorn R, Newman K, Wessel D. Severe Coronavirus Disease-2019 in Children and Young Adults in the Washington, DC, Metropolitan Region. *J Pediatr* 2020; 223: 199-203.e1 [PMID: 32405091 DOI: 10.1016/j.jpeds.2020.05.007]

Whittaker E, Bamford A, Jenny J, Kafourou M, Jones CE, Shah P, Ramnaranayan P, Fraisse A, Miller O, Davies P, Kucera P, Brierley J, McDougall M, Carter M, Tremoulet A, Shimizu C, Herberg J, Burns JC, Lyall H, Levin M; PIMS-TS Study Group and EUCLIDS and PERFORM Consortia. Clinical Characteristics of 58 Children With a Pediatric Inflammatory Multisystem Syndrome Temporally Associated With SARS-CoV-2. *JAMA* 2020; 324: 259-269 [PMID: 32511692 DOI: 10.1001/jama.2020.10369]

Stevens JP, Brownell JN, Freeman AJ, Bashaw H. COVID-19-associated Multisystem Inflammatory Syndrome in Children Presenting as Acute Pancreatitis. *J Pediatr Gastroenterol Nutr* 2020; 71: 669-671 [PMID: 33093376 DOI: 10.1097/MGP.0000000000002860]

Suchman K, Raphael KL, Liu Y, Wee D, Trinidad AJ; Northwell COVID-19 Research Consortium. Acute pancreatitis in children hospitalized with COVID-19. *Pancreatology* 2021; 21: 31-33 [PMID: 33309015 DOI: 10.1016/j.pan.2020.12.005]

Abbas M, Törmäjäe CJ. Family Transmission of COVID-19 Including a Child with MIS-C and Acute Pancreatitis. *Int Med Case Rep* J 2021; 14: 55-65 [PMID: 33574714 DOI: 10.2147/IMCRJ.S824480]

Kareva L, Stavrik K, Mironksa K, Hasani A, Bojadzieva S, Shuntov NC. A Case of Multisystem Inflammatory Syndrome in Children Presenting as Acute Appendicitis and Pancreatitits. *Pril (Makedon Akad Nauk Umet Odd Med Nauki)* 2021; 42: 95-101 [PMID: 34699709 DOI: 10.2147/prl2021-0027]

Bulthuis MC, Boxhoorn L, Beudel M, Elbers PWG, Kop MPM, van Wanrooij RLJ, Besselink MG, Voermans RP. Acute pancreatitis in COVID-19 patients: true risk? *Scand J Gastroenterol* 2021; 56: 585-587 [PMID: 33715577 DOI: 10.1080/00365521.2021.1896776]

Vatansev H, Yıldırım MA, Kucukcetinkurt S, Karaselek MA, Kadiyoran C. Clinical Evaluation of Acute Pancreatitis Caused by SARS-CoV-2 Virus Infection. *Gastroenterol Res Pract* 2021; 2021: 5579795 [PMID: 34035804 DOI: 10.1155/2021/5579795]

Pandananobayona S, Moir J, Leeds JS, Oppong K, Kanwar A, Marzouk A, Belgaumkar A, Gupta A, Siriwatena AK, Haque AR, Aran A, Balakrishnan A, Rawashdeh A, Ivanov B, Parmar C, M Halloran C, Caruana C, Borg CM, Gomez D, Damaskos D, Karavias D, Finch G, Eibed H, K Pine J, R A Skipworth J, Milburn J, Latif J, Ratnam Apollos J, El Kafsi J, Windsor JS, Roberts K, Wang K, Ravi K, V Coats M, Hollyman M, Phillips M, Okocha M, SJ Wilson M, A Ameer N, Kumar N, Shah N, Lapolla S, Magee C, Al-Sairhe B, Lunevicus R, Benhmida R, Singhal R, Balachandrasas S, Demirli Atsci S, Jaanoo S, Dwerryhouse S, Boyce T, Charalampakis V, Kanakala V, Abbas Z, Nayar M; COVID PAN collaborative group. SARS-CoV-2 infection in acute pancreatitis increases disease severity and 30-day mortality: COVID PAN collaborative study. *Gut* 2021; 70: 1061-1069 [PMID: 33547182 DOI: 10.1136/gutjnl-2020-323364]

Dirweesh A, Li Y, Trikadanathan G, Mallery JS, Freeman ML, Amateau SK. Clinical Outcomes of Acute Pancreatitis in Patients With Coronavirus Disease 2019. *Gastroenterology* 2020; 159: 1972-1974 [PMID: 32721439 DOI: 10.1053/j.gastro.2020.07.038]

Inanadar S, Benias PC, Liu Y, Seipal DV, Satapathy SK, Trinidad AJ; Northwell COVID-19 Research Consortium. Prevalence, Risk Factors, and Outcomes of Hospitalized Patients With Coronavirus Disease 2019 Presenting as Acute Pancreatitis. *Gastroenterology* 2020; 159: 2226-2228.e2 [PMID: 32860787 DOI: 10.1053/j.gastro.2020.08.044]

Karaal R, Topal F. Evaluating the effect of SARS-CoV-2 infection on prognosis and mortality in patients with acute pancreatitis. *Am J Emerg Med* 2021; 49: 378-384 [PMID: 34246968 DOI: 10.1016/j.ajem.2021.06.045]

Nayar M, Varghese C, Kanwar A, Siriwatena AK, Haque AR, Aran A, Balakrishnan A, Rawashdeh A, Ivanov B, Parmar C, Halloran CM, Caruana C, Borg CM, Gomez D, Damaskos D, Karavias D, Finch G, Eibed H, Pine JK, Skipworth JRA, Milburn J, Latif J, Apollos J, El Kafsi J, Windsor JS, Roberts K, Wang K, Ravi K, V Coats M, Hollyman M, Phillips M, Okocha M, Wilson MS, Ameer NA, Kumar N, Shah N, Lapolla S, Magee C, Al-Sairhe B, Lunevicus R, Benhmida R, Singhal R, Balachandrasas S, Demirli Atsci S, Jaanoo S, Dwerryhouse S, Boyce T, Charalampakis V, Kanakala V, Abbas Z, Tewari N, Pandananobayona S: COVIDPAN Collaborative Group; COVID Pain Collaborative Group. SARS-CoV-2 infection is associated with an increased risk of idiopathic acute pancreatitis but not pancreatic exocrine insufficiency or diabetes: long-term results of the COVIDPAN study. *Gut* 2021 [PMID: 34764192 DOI: 10.1136/gutjnl-2021-326218]

Miro Ō, Llorens P, Jiménez S, Piñera P, Burillo-Putze G, Martin A, Martín-Sánchez FJ, Lambrechts J, Alquézar-Árbe A, Jacob J, Noceda J, Cano Cano MJ, Fortuny Bayarri MJ, Marin Porrino JM, Meléndez N, Pérez García C, Brasó Aznar JV,
Onoyama T et al. COVID-19 and acute pancreatitis

Ponce MC, Díaz Fernández E, Ejarque Martínez L, Peiró Gómez A, Tost J, Domínguez MJ, Teigell Muñoz FJ, González Del Castillo J; Spanish Investigators on Emergency Situations TeAm (SIESTA) network. A case-control emergency department-based analysis of acute pancreatitis in Covid-19: Results of the UMC-19-S, J Hepatobiliary Pancreat Sci 2021; 28: 953-966 [PMID: 33259695 DOI: 10.1002/jhbp.873]

Yang F, Huang Y, Li T, Fu Y, Sun C, Xu Y, Windsor J, Fu D. Prevalence and outcomes of acute pancreatitis in COVID-19: a meta-analysis. Gut 2021 [PMID: 34670809 DOI: 10.1136/gutjnl-2021-329441]

Slae M, Wilschanski M, Sanjines E, Abu-El-Haija M, Sellers ZM. International Survey on Severe Acute Respiratory Syndrome Coronavirus 2 and Acute Pancreatitis Co-occurrence in Children. pancreas 2021; 50: 1305-1309 [PMID: 3480816 DOI: 10.1097/MPA.0000000000001923]

Howes N, Lerch MM, Greenhalw W, Stocken DD, Ellis I, Simon P, Truninger K, Mannrn R, Cavallini G, Chargny RM, Uomo G, Delhaye M, Spicap J, Drumm B, Jansen M, Mountford R, Whitcomb DC, Neoptolomos JP; European Registry of Hereditary Pancreatitis and Pancreatic Cancer (EUROPAC). Clinical and genetic characteristics of hereditary pancreatitis in Europe. Clin Gastroenterol Hepatol 2004; 2: 252-261 [PMID: 15017610 DOI: 10.1016/s1542-3565(04)00013-8]

Anand ER, Major C, Pickering O, Nelson M. Acute pancreatitis in a COVID-19 patient. Br J Surg 2020; 107: e182 [PMID: 32339257 DOI: 10.1002/bjs.11657]

Hadi A, Werge M, Kristiansen K, Pedersen UG, Karstensen JG, Novovic S, Gluud L. Coronavirus Disease-19 (COVID-19) associated with severe acute pancreatitis: Case report on three family members. Pancreatology 2020; 20: 665-667 [PMID: 32387082 DOI: 10.1016/j.pan.2020.04.021]

Alosyus MM, Thatti A, Gupta A, Sharma N, Bansal P, Goyal H. COVID-19 presenting as acute pancreatitis. Pancreatology 2020; 20: 1026-1027 [PMID: 32444169 DOI: 10.1016/j.pan.2020.05.003]

Miao Y, Lidove O, Mauhin W. First case of acute pancreatitis related to SARS-CoV-2 infection. Br J Surg 2020; 107: e270 [PMID: 32492174 DOI: 10.1002/bjs.11741]

Szatmary P, Arora A, Thomas Raraty MG, Joseph Duffe DF, Baron RD, Halloran CM. Emerging Phenotype of Severe Acute Respiratory Syndrome Coronavirus-2-associated acute pancreatitis. Gastroenterology 2020; 159: 1551-1554 [PMID: 32497545 DOI: 10.1053/j.gastro.2020.05.069]

Rablic SR, Altshuler PC, Bovet C, Sullivan C, Gagnon AJ. COVID-19 infection presenting as pancreatitis in a pregnant woman: A case report. Case Rep Women Health 2020, 27: e00228 [PMID: 32337425 DOI: 10.1016/j.crwh.2020.e00228]

Valderrama SSE, Yanez CR, Mazzaccaro RJ, Villalobos T, Hardy SG. Suspected case of COVID-19-associated pancreatitis in a child. Radiol Case Rep 2020, 15: 1309-1312 [PMID: 32572339 DOI: 10.1016/j.radcr.2020.06.009]

Karimzadeh S, Manzuri A, Ebrahimi M, Huy NT. COVID-19 presenting as acute pancreatitis: Lessons from a patient in Iran. Pancreas 2020; 50: 1204-1205 [PMID: 32576441 DOI: 10.1097/MPA.0000000000001921]

Gonzalo-Volatas A, Uxia Fernández-Pérez-Torres C, Baena-Diez JM. Acute pancreatitis in a patient with COVID-19 infection. Med Clin (Engl Ed) 2020; 153: 183-184 [PMID: 32835111 DOI: 10.1016/j.medclne.2020.05.010]

Bokhari SMMA, Mahmood F. Novel Coronavirus-A Potential Cause of Acute Pancreatitis? Am J Trop Med Hyg 2020; 103: 1154-1155 [PMID: 32626399 DOI: 10.4269/ajtmh.20-0568]

Mazrouei SSA, Saeed GA, Al Helali AA. COVID-19-associated acute pancreatitis: a rare cause of acute abdomen. Radiol Case Rep 2020; 15: 1601-1603 [PMID: 32685078 DOI: 10.1016/j.radcr.2020.06.019]

Ahmed AOE, Mohamed SF, Saleh AO, Al-Shokri SD, Ahmed K, Mohamed MFH. Acute abdomen-like-presentation associated with SARS-CoV-2 infection. iCases 2020, 21: e00895 [PMID: 32691004 DOI: 10.1016/j.idcr.2020.e00895]

Briksman S, Denysova V, Menzal H, Dori G. Acute pancreatitis in a 61-year-old man with COVID-19. CMAJ 2020; 192: E858-E859 [PMID: 32719021 DOI: 10.1503/cmaj.201029]

Kataria S, Sharif A, Ur Rehman A, Ahmed Z, Hanan A. COVID-19 Induced Acute Pancreatitis: A Case Report and Literature Review. Cureus 2020; 12: e1969 [PMID: 328202606 DOI: 10.7759/cureus.9169]

Cerda-Contreras C, Nuzzolo-Shihadeh L, Camacho-Ortiz A, Perez-Alba E. Baricitinib as Treatment for Coronavirus Disease-19 (COVID-19) associated with acute necrotising pancreatitis (ANP). BMJ Case Rep 2020; 13: [PMID: 32900278 DOI: 10.1136/bcr-2020-237903]

Purayil N, Sirajudeen J, Va N, Mathew J. COVID-19 Presenting as Acute Abdominal Pain: A Case Report. Cureus 2020; 12: e9569 [PMID: 32923256 DOI: 10.7759/cureus.9659]

Dietrich CG, Hübner D, Marx G, Bickenbach J, Bootsveld A. Primary presentation of COVID-19 solely with gastrointestinal symptoms: a problem for the containment of the disease. Eur J Gastroenterol Hepatol 2020; 32: 1475-1478 [PMID: 32925503 DOI: 10.1097/MEG.0000000000001922]

Patnaik RNK, Gogia A, Kakar A. Acute pancreatic injury induced by COVID-19. iCases 2020; 22: e00959 [PMID: 32934906 DOI: 10.1016/j.idcr.2020.e00959]

Wang K, Luo J, Tan F, Liu J, Ni Z, Liu D, Tian P, Li W. Acute Pancreatitis as the Initial Manifestation in 2 Cases of COVID-19 in Wuhan, China. Open Forum Infect Dis 2020; 7: ofaa324 [PMID: 32959016 DOI: 10.1093/ofid/ofaa324]

Alves AM, Yamoto EY, Marzinotto MAN, Teixeira ACS, Carrilho FJ. SARS-CoV-2 leading to acute pancreatitis: an unusual presentation. Braz J Infect Dis 2020; 24: 561-564 [PMID: 32961108 DOI: 10.1016/j.bjid.2020.08.011]

Kurihara Y, Maruhashi T, Wada T, Osada M, Oi M, Yamaoka K, Asari Y. Pancreatitis in a Patient with Severe Coronavirus Disease Pneumonia Treated with Veno-venous Extracorporeal Membrane Oxygenation. Intern Med 2020; 59: 2903-2906 [PMID: 32963170 DOI: 10.2169/internalmedicine.5912-20]

Laksmanan S, Malik A. Acute Pancreatitis in Mild COVID-19 Infection. Cureus 2020; 12: e9886 [PMID: 32968552 DOI: 10.7759/cureus.9886]

Samies NL, Yarbrough A, Boppana S. Pancreatitis in Pediatric Patients With COVID-19. J Pediatric Infect Dis Soc 2020; 10: 57-59 [PMID: 33075134 DOI: 10.1093/jpids/piaa125]
Pancreatitis: A Case Report and Literature Review.
Chandra R31
Hanif M
Girl.
Ehsan P
Sanchez RE

128-129 [PMID: 33234760]

Pancreatitis.

128-129 [PMID: 33355431]

Acherjya GK, Rahman MM, Islam MT, Alam AS, Tafarikh K, Ali M, Deb SR. Acute pancreatitis in a COVID-19 patient: An unusual presentation. Clin Case Rep 2020; 8: 3400-3407 [PMID: 33363946]

DOI: 10.1002/ccr3.3412

Alwaeli H, Shabbir M, Khannissi Sobi M, Alwaeli K. A Case of Severe Acute Pancreatitis Secondary to COVID-19 Infection in a 30-Year-Old Male Patient. Cureus 2020; 12: e11718 [PMID: 33391949]

DOI: 10.7759/cureus.e11718

Simou EM, Louardi M, Khaoury I, Abidi MA, Mansour A, Louadghiri AE, Fahmaoui K, Ezzouine H, Charr A. Coronavirus disease-19 (COVID-19) associated with acute pancreatitis: Case report. Pan Afr Med J 2020; 37: 150 [PMID: 33425183]

DOI: 10.11604/pamj.2020.37.150.25873

Jesperesen Nizamic T, Huang Y, Alnimri M, Cheng M, Chen LJ, Jen KY. COVID-19 Manifesting as Renal Allograft Dysfunction, Acute Pancreatitis, and Thrombotic Microangiopathy: A Case Report. Transplant Proc 2021; 53: 1211-1214 [PMID: 33436168]

DOI: 10.1016/j.transproceed.2020.10.048

Abraham G, Rohit A, Mathew M, Parthasarathy R. Successful Automated Peritoneal Dialysis (APD) in a COVID-19 patient with acalculous pancreatitis with no detectable virus in the dialysate effluent. Indian J Med Microbiol 2021; 39: 128-129 [PMID: 33610245]

DOI: 10.1016/j.ijmmmb.2020.10.010

Abbinay A, Pradhap K, Singh A, Rao SK, Prasad R, Mishra OP. Corona Virus Disease-19 Presented with Acute Pancreatitis. Indian J Pediatr 2021; 88: 482-483 [PMID: 33447927]

DOI: 10.1007/s12098-020-03618-z

Bouali M, Ouchane M, Elbakouri A, Bensardi F, Elhattabi K, Fadil A. Total gastric necrosis following acute pancreatitis in a patient with COVID-19: Case report and literature review. Cureus Med Surg (Lond) 2021; 62: 362-364 [PMID: 33520227]

DOI: 10.17235/reed.2020.7481/2020

AliHarmi RAR, Fateel T, Sayed Adnan J, AlAwadhi K. Acute Pancreatitis in a Patient with COVID-19. BMJ Case Rep 2021; 14 [PMID: 33574045]

DOI: 10.1136/bcr-2020-239656

Bineshwar N, Mirahmadi A, Karbasian F, Pourkhaytaran E, Karimi A, Sarafi M. Acute Pancreatitis as a Possible Unusual Manifestation of COVID-19 in Children. Case Rep Pediatr 2021; 2021: 661621 [PMID: 33750535]

DOI: 10.1155/2021/6616211

Paz L, Eslava E, Ribes M, Mayer EF. Acute Pancreatitis in a Teenager With SARS-CoV-2 Infection. Pediatr Infect Dis J 2021; 40: e161-e162 [PMID: 33710983]

DOI: 10.1097/INF.0000000000003046

Witt MN, Nabil A, Awad A, Ettaway R. COVID-induced pancreatitis: case report. Egypt J Intern Med 2021; 33: 10 [PMID: 33716498]

DOI: 10.1186/s43162-021-00393-y

Sandhu H, Mallik D, Lokavarapu MJ, Huda F, Basu S. Acute Recurrent Pancreatitis and COVID-19 Infection: A Case Report with Literature Review. Cureus 2021; 13: e13490 [PMID: 33777577]

DOI: 10.7759/cureus.13490

Mohammadi Arbati M, Molseghi MH. COVID-19 Presenting as Acute Necrotizing Pancreatitis. J Invest Med High Impact Case Rep 2021; 9: 2324709621100939 [PMID: 33384715]

DOI: 10.1177/23247096211009393

Amé RM, Balderramo D. Is necessary to rule out Severe Acute Respiratory Syndrome Coronavirus 2 infection in every patient admitted for acute pancreatitis? Gastroenterol Hepatol 2021 [PMID: 34032480]

DOI: 10.1016/j.gastrohep.2021.02.021

Gupta A, Bansal DP, Rijhwani P, Singh V. A Case Report on Acute Pancreatitis in a Patient With Coronavirus Disease 2019 (COVID-19) Pneumonia. Cureus 2021; 13: e16428 [PMID: 34046267]

DOI: 10.7759/cureus.14628

Muhammad Abrar Jeelani H, Sheikh MM, Samuel SS, Omotosho YB, Shanko A, Albetar R. Acute Pancreatitis in a Patient With COVID-19 After the Resolution of Respiratory Symptoms. J Invest Med High Impact Case Rep 2021; 9: 232470962110024773 [PMID: 34130536]

DOI: 10.1177/232470962110024773

Maulouf RG, Kozhaya K, El Zakhem A. SARS-CoV-2 induced necrotizing pancreatitis. Med Clin (Barc) 2021; 156: 629-630 [PMID: 33618836]

DOI: 10.1016/j.medcli.2021.01.005

Sanchez RE, Flahive CB, Mezoff EA, Gariepy C, Hunt WG, Vaz KKH. Case Report: Acute Abdominal Pain as Presentation of Pneumonia and Acute Pancreatitis in a Pediatric Patient With COVID-19. JPGN Rep 2021; 2: e011 [PMID: 34192290]

DOI: 10.1097/PG9.0000000000000011

Nehsan P, Haseeb M, Khan Z, Rehan A, Singh R. Coronavirus Disease 2019 Pneumonia and Acute Pancreatitis in a Young Girl. Cureus 2021; 13: e15374 [PMID: 34249527]

DOI: 10.7759/cureus.15374

Hafif M, Khan AW, Ullah S, Sundas F, Khan SJ. Can COVID-19 Cause Pancreatitis? J Coll Physicians Surg Pak 2021; 31: S120-S122 [PMID: 32771008]

DOI: 10.29271/jcpsp.2021.Sup2.S120

Chandra R, Lazar NJ, Goldman S, Imam Z, Mansour R. Novel Coronavirus (COVID-19) Infection-Attributed Acute Pancreatitis: A Case Report and Literature Review. Cureus 2021; 13: e15725 [PMID: 34295577]

DOI:
Onoyama T et al. COVID-19 and acute pancreatitis

10.7759/cureus.15725

Alfishawy M, Nassar M, Mohamed M, Fatthy M, Elmessiery RM. New-onset Type 1 Diabetes Mellitus with Diabetic Ketoacidosis and Pancreatitis in a Patient with COVID-19. Sci Afr 2021; 13: e00915 [PMID: 34368517 DOI: 10.1016/j.sciaf.2021.e00915]

Berrichi S, Bouayed Z, Jbar K, Zaid I, Nasri S, Bkayar H, Skiker I, Housni B. Acute pancreatitis as an atypical manifestation of COVID-19: A report of 2 cases. Ann Med Surg (Lond) 2021; 68: 102693 [PMID: 34377453 DOI: 10.1016/j.amsu.2021.102693]

Kripalani Y, Houssein K, Shaikh A. Acute Necrotizing Pancreatitis with Cystic Lesion Concomitant with SARS-CoV-2. Eur J Case Rep Intern Med 2021; 8: 002712 [PMID: 34567518 DOI: 10.1093/jscr/rjab401]

Berrichi S, Bouayed Z, Jebar K, Zaid I, Nasri S, Bkayar H, Skiker I, Housni B. Acute pancreatitis associated with severe acute respiratory syndrome coronavirus-2 infection: a case report and review of the literature. J Med Case Rep 2021; 15: 461 [PMID: 34503570 DOI: 10.1186/s13256-021-03026-7]

Schembri Higgans J, Bowman S, Abela JE. COVID-19 associated pancreatitis: A mini case-series. Int J Surg Case Rep 2021; 87: 106429 [PMID: 34567954 DOI: 10.1016/j.ijscr.2021.106429]

Kopieczo N, Kwiatak-Sredzińska K, Usicinowicz M, Kowalczyk-Krystoń M, Lebensztejn DM. SARS-CoV-2 Infection as a Cause of Acute Pancreatitis in a Child: A Case Report. Pediatr Rep 2021; 13: 552-557 [PMID: 34598241 DOI: 10.3390/pediatric13040065]

da Costa Ferreira CP, Marques KR, de Mattos GHF, de Campos T. Acute pancreatitis in a COVID-19 patient in Brazil: a case report. J Med Case Rep 2021; 15: 541 [PMID: 34702363 DOI: 10.1186/s13256-021-02911-5]

Sánchez-Gollarte A, Jiménez-Alvarez L, Pérez-González M, Vera-Mansilla C, Blázquez-Martin A, Díez-Alonso M. Clostridium perfringens necrotizing pancreatitis: an unusual pathogen in pancreatic necrosis infection. Access Microbiol 2021; 3: 000261 [PMID: 34712906 DOI: 10.1099/acmi.0.000261]

Sudarsanam H, Ethiraj D, Govarthanan NK, Kalyanasundaram S, Chitra SA, Mohan S. COVID-19 Associated Acute Necrotizing Pancreatitis with Normal Serum Amylase and Lipase Levels: Report of an Unusual Finding. Oman Med J 2021; 36: e304 [PMID: 34733550 DOI: 10.5001/omj.2021.129]

Faghih Dinevari M, Rasoolimamesh M, Tarverdizadeh M, Riazi A, Abbasi S, Zeinolabedini A, Hassannezhad S. Acute pancreatitis in a young woman with COVID-19 infection: A case-report. Caspian J Intern Med 2021; 12: S474-S478 [PMID: 34760109 DOI: 10.22088/cjim.12.0.474]

Goldstein R, Kogan D, Fiorito TM, Glasser CL. Suspected Case of Multisystem Inflammatory Syndrome in Children Associated With SARS-CoV-2 Infection Presenting as Acute Pancreatitis in a Child With Leukemia. Infect Dis Clin Pract (Baltim Md) 2021; 29: e465-e467 [PMID: 34803353 DOI: 10.1097/IPC.0000000000001013]

Gadiparthi C, Mohapatra S, Kanna S, Vykuntam V, Chen W. Acute pancreatitis in a patient with COVID-19: a case report. Transl Gastroenterol Hepatol 2021; 6: 65 [PMID: 34805587 DOI: 10.21037/tgh-20-234]
