The pathoanatomy and arthroscopic management of femoroacetabular impingement

L. M. Tibor, M. Leunig
From Hospital for Special Surgery, New York, United States, and Schulthess Clinic, Zurich, Switzerland

Femoroacetabular impingement (FAI) causes pain and chondrolabral damage via mechanical overload during movement of the hip. It is caused by many different types of pathoanatomy, including the cam ‘bump’, decreased head–neck offset, acetabular retroversion, global acetabular overcoverage, prominent anterior–inferior iliac spine, slipped capital femoral epiphysis, and the sequelae of childhood Perthes’ disease.

Both evolutionary and developmental factors may cause FAI. Prevalence studies show that anatomic variations that cause FAI are common in the asymptomatic population. Young athletes may be predisposed to FAI because of the stress on the physis during development. Other factors, including the soft tissues, may also influence symptoms and chondrolabral damage.

FAI and the resultant chondrolabral pathology are often treated arthroscopically. Although the results are favourable, morphologies can be complex, patient expectations are high and the surgery is challenging. The long-term outcomes of hip arthroscopy are still forthcoming and it is unknown if treatment of FAI will prevent arthrosis.

Keywords: Femoroacetabular impingement, FAI, Hip arthroscopy, Hip preservation, Hip development, Hip pain

Femoroacetabular impingement (FAI) and the general area of hip preservation surgery are currently two of the hottest topics in orthopaedics. The idea that bone-on-bone contact during movement of the hip, or ‘impingement’, causes pain, restricted range of movement, and degeneration of the joint was anecdotally mentioned before Reinhold Ganz’s work describing FAI in 2003. In 1936 Smith-Petersen described acetabular rim trimming and femoral neck osteoplasty for impingement of the acetabular rim on the femoral head or neck for cases of protrusio, healed slipped capital femoral epiphysis (SCFE) and osteoarthritis. Other authors recognised that impingement could occur secondary to healed SCFE and advocated osteoplasty of the femoral neck to alleviate pain and improve range of movement. However, it was Ganz et al in 1991 who began to resurrect these ideas, describing FAI occurring secondary to other hip pathology. In the decade that followed, the Bern group described impingement from callus formation or malunion after femoral neck fractures, impingement following periacetabular osteotomy and FAI as a cause of chondrolysis after healed SCFE. The description of a safe technique for surgical dislocation of the hip and MRI studies describing the alpha angle and decreased head-neck offset as potential causes of idiopathic impingement were also published prior to 2003, laying the foundation for this concept and its treatment.

The article published by Ganz et al in 2003 is widely cited by other authors as the introduction of the concept of FAI, and is now nearly ten years old. This article was the first conceptual description of FAI, and the first to propose FAI as a primary cause of idiopathic hip arthrosis. These ideas were substantiated by clinical and intra-operative observations made in a series of over 200 patients who underwent surgical hip dislocation for impingement. Although the ideal reason to treat FAI is to prevent further chondrolabral damage and future osteoarthrosis, the more immediate goals of treatment are to relieve pain, improve range of movement and allow a return to previous activity.

When considering the mechanical causes of hip pain, it is important to recognise that chondrolabral damage and arthrosis can be caused by static overload, dynamic motion, or both. Static overload of the cartilage and labrum most commonly occurs in the setting of dysplasia, but more recently has also been proposed as a cause of pain for patients with valgus neck-shaft angles. Intra-articular damage occurring as a result of hip
motion – dynamic mechanical arthrosis – can be due to impingement or from motion-induced instability, similar to that occurring when impingement on the acetabular rim induces levering of the femoral head.1,20–24

There are two distinct mechanical types of impingement.1 Cam impingement can also be described as an inclusion-type of injury,1,11,12 where a bony deformity at the femoral head–neck junction enters the acetabulum in hip flexion (curved arrow). This causes delamination of the cartilage and separation at the chondrolabral junction. Many different types of deformities can cause cam impingement, including a lack of femoral head-neck offset (b),26 a cam ‘bump’ (c),27 childhood Perthes’ disease (d) and both mild and remodelled slipped capital femoral epiphysis (SCFE) (e).26 (Reprinted with permission: a) Leunig et al. Femoroacetabular impingement: diagnosis and management, including open surgical technique. Oper Tech Sports Med 2007;15:178–188. b) Toogood et al. Proximal femoral anatomy in the normal human population. Clin Orthop Relat Res 2009;467:876–885. c) Siebenrock et al. Abnormal extension of the femoral head as a cause of cam impingement. Clin Orthop Relat Res 2004;418:54–60. e) Leunig et al. Slipped capital femoral epiphysis: early mechanical damage to the acetabular cartilage by a prominent femoral metaphysis. Acta Orthop Scand 2000;71:370–375).

Although this particular point is somewhat controversial, symptomatic patients most commonly have features of both cam/inclusion and pincer/impaction injury.29–33 Thinking about FAI in terms of mechanical forms of injury allows for the recognition that variations in anatomy can cause impingement, including the cam ‘bump’,1,14,15,31 lack of head-neck offset,14 increased acetabular depth or protrusio deformity,1,2,22 acetabular retroversion,1,34–38 and, at the extremes of this spectrum, slipped capital femoral epiphysis (SCFE)11,12 and the sequelae of childhood Perthes’ disease.39 This also explains why FAI can occur after a periacetabular osteotomy. Even if the acetabular correction is appropriate, the anterior femoral head in the dysplastic hip is characteristically flat,8,40 with a lack of head-neck offset that results in impingement when the acetabulum is rotated into a
more normal position. Finally, there is also the most recently recognised cause of pincer/impaction-type impingement: that which occurs when a prominent anterior-inferior iliac spine (AIIS) or sub-spine region impinges on the femoral neck in hip flexion.

Pathoanatomy

Evolutionary factors. Anthropological studies of the proximal femur give some clues as to the aetiology of the anatomy that causes impingement. In mammals, there are two distinct types of development and resulting shape of the proximal femur. When the femoral capital epiphysis is completely separate from the trochanteric apophysis, the femoral head is rounder and the neck is longer (Fig. 3). This is thought to be the result of an evolutionary need for more range of movement at the hip, and is the typical developmental pattern in the human hip. More commonly, however, the two physes are coalesced, resulting in a hip with a shorter, stouter neck and a smaller range of movement (Fig. 3). This type of hip has been called coxa recta, and is seen most commonly in ‘runners’; quadrupeds that require a stable hip without a large range of movement (such as horses). The counterpart to the coxa recta is the coxa rotunda, which is a hip with a round femoral head, relatively long femoral neck and higher head-neck offset circumferentially. This is seen in animals that are ‘climbers’ or ‘swimmers’; species that need a greater range of movement but bear less weight through the hip (such as chimpanzees or gorillas). After studying the spectrum of mammalian pelvis anatomy, Hogervorst et al proposed that evolutionary forces –

Fig. 2

Pincer impingement causes an impaction injury (a). Global or focal acetabular overcoverage causes the rim to contact the femoral head, metaphysis or neck when the hip is flexed (curved arrow). Anatomical deformities that can produce impaction-type injury include acetabular retroversion (b), global acetabular overcoverage (c), a large or prominent subspine (d) or severe slipped capital femoral epiphysis (SCFE) (e). (Reprinted with permission: a) *Leunig et al*. Femoroacetabular impingement: diagnosis and management, including open surgical technique. *Oper Tech Sports Med* 2007;15:178–188. d) *Larson et al*. Making a case for anterior inferior iliac spine/subspine hip impingement: three representative case reports and proposed concept. *Arthroscopy* 2011;27:1732–1737. e) *Leunig et al*. Slipped capital femoral epiphysis: early mechanical damage to the acetabular cartilage by a prominent femoral metaphysis. *Acta Orthop Scand* 2000;71:370–375.)
that the deformity is due to extension of the epiphysis. One study looked at the incidence of cam deformity in young male basketball players compared with non-athlete volunteers. The study included hips both before and after physeal closure, and specifically excluded control volunteers who participated in more than two hours of any vigorous activity per week. The basketball players with closed physes had larger mean alpha angles and a much higher incidence of cam deformity (89%) than the control population (9%). Thus, what remains hypothesised but as yet unproven, is that sports cause increased rotational or other mechanical stresses on the physis that are responsible for a change in the physeal growth or closure pattern, causing the stereotypical cam deformity. Specific patterns of physeal adaptation in response to repetitive sports during growth are well-recognised for the upper extremities. These adaptations can be beneficial; for example, asymmetric humeral and glenoid retroversion allowing baseball pitchers to have increased external rotation in the throwing arm. Alternatively, the load on the physis can cause significant problems, such as wrist pain and early physeal closure seen in many gymnasts. There is also good evidence that the relative position and growth of femoral capital epiphysis and trochanteric apophysis affects the shape and orientation of the proximal femur. The classic proximal femur shape that occurs as the sequelae of childhood Perthes’ disease is one example of this. In another example, bony bar formation between the two physes was observed to produce coxa valga with a horizontal physeal scar.

Prevalence of FAI. The bony anatomy that causes FAI is quite common, and the prevalence depends on the population being studied (Table I). In asymptomatic young males recruited for the Swiss military, the overall prevalence of the cam deformity was 24%. When recruits with limited internal rotation were selected out of the larger cohort, 50% had a cam deformity visible on MRI. A different study of this same cohort found that cam deformities were associated with a two- to threefold relative risk of damage to the labrum and cartilage, depending on the lesion. Others have also observed that the cam deformity is quite common, with a prevalence of between 14% and 35% in asymptomatic populations, and occurring more frequently in male compared with female hips. When regarding anatomical variations that contribute to FAI (such as acetabular retroversion or overcoverage), 33% of females and 52% of males were found to have at least one factor predisposing them to FAI. There may be some genetic influence to this as well, with an increased incidence of cam and pincer morphology in siblings of patients with FAI, with respective relative risk rates of 2.8 and 2.0, respectively, compared with controls. In comparison, there is a much stronger genetic component to hip dysplasia, with the relative risk in first-degree relatives of patients with dysplasia ranging from 3 to 12.

Developmental influences. The most common deformity causing cam impingement, the cam ‘bump’, may result from an abnormal extension of the epiphysis onto the anterior or anterosuperior neck. Initially, the decreased head–neck offset and the cam deformity were thought to occur following a subclinical SCFE. However, the morphology of the femoral head and the orientation of the physeal scar after a SCFE is substantially different from that occurring in idiopathic cam-type FAI. There is also evidence that, as the physis is closing, it extends further distally onto the femoral neck, supporting the hypothesis

![Image](image.png)

Fig. 3

Examples of separate and coalesced epiphyses during development of the proximal femur. At the end of growth, humans (A) have separation of the femoral capital epiphysis and the trochanteric apophysis, resulting in a rounder femoral head and longer femoral neck. Most quadripedal mammals (B) have coalescence at the proximal femur, resulting in a shorter, stouter femoral neck, which is more stable but with a smaller range of movement. (Reprinted with permission: Serrat et al. Variation in mammalian proximal femoral development: comparative analysis of two distinct ossification patterns. J Anat 2007;210:249–258.)
Lending further support to the hypothesis that stress on the developing physis causes FAI pathomorphology, the prevalence of FAI pathoanatomy appears to be more common in athletes. Pelvic radiographs of a cohort of American football players revealed that 61% had a crossover sign (evidence of acetabular retroversion or focal overcoverage) and 91% had at least some lack of femoral head-neck offset. In asymptomatic professional soccer players, 72% of males and 50% of females had at least one radiological abnormality predisposing them to FAI. MRIs of asymptomatic professional and collegiate hockey players revealed a 39% incidence of increased alpha angle and a 77% prevalence of hip or groin abnormalities, including labral tears, osteochondral lesions, or irregularities at the common adductor-rectus femoris tendon insertions.

Although FAI-type morphology is common, the prognosis and identification of those patients who ultimately develop arthritis is unclear (Table II). There is indirect evidence of the connection between FAI and hip arthritis. Several studies have found an increased prevalence of hip arthritis and total hip replacement in athletic patients compared with non-athletic controls. In 1971 Murray and Duncan found that athletes had higher rates of head-tilt deformity, which they interpreted as subclinical epiphysiodesis, in the era of FAI the same morphology would likely be interpreted as a cam deformity. They also proposed that the subclinical SCFE was the causative factor of the increased rates of hip arthritis seen in athletic patients. In other studies, elite athletes, dancers and those with high activity levels have at least twice the risk of hip arthritis compared with controls. In general, the rates of radiological progression of arthritis for patients with FAI morphology range from 18% to 73%. The evidence is limited, however, as these studies are Level III or IV evidence, and based on plain radiographs. In patients who do have hip pain or symptomatic labral tears, FAI morphology is very common, with a prevalence of around 90%.

Intra-articular patterns of damage. The intra-articular pattern of chondrolabral damage is specific for each particular type of impingement. The most frequent site of a cam deformity is between 1 and 3 o’clock on the femoral neck, but can extend from 12 o’clock (directly superior) to the ligamentum Teres at 6 o’clock. Cam or inclusion-type impingement causes shear and delamination injury to the cartilage. The labrum tears at the chondrolabral junction, but usually remains attached to the acetabular rim (Fig. 5). Pincer or impaction-type impingement causes a crush or bruising injury to the labrum, with less cartilage damage. Cartilage damage that does occur typically has a linear wear pattern (Fig. 6).

The impact to the acetabular rim causes microfractures, with resultant bone apposition at the rim and labral ossification. Frequently the impaction causes levering of the femoral head, with a contre-coup injury to the posterior cartilage, opposite to the site of impingement. Patients with acetabular protrusio will also have medial cartilage thinning. Patients with subspine (AlIS) impingement have focal synovitis and labral ecchymosis inferior to the AlIS and localised bony build-up at the anterior acetabular rim or calcific deposits within the rectus insertion.

It is also important to recognise the intra-articular pathology associated with instability. Static instability, which typically occurs in the setting of dysplasia, is associated with labral hypertrophy and ganglia. In contrast to the ‘outside-in’ damage that occurs with inclusion-type impingement, there is an inside-out avulsion of the labrum due to the lateral shear force of the subluxing femoral head. Often this piece of labrum has an attached piece of cartilage. Dynamic instability, or instability associated with motion and levering, can also cause the labrum to hypertrophy and develop ganglia. As mentioned earlier, instability that results from levering causes the posterior contre-coup injury to the cartilage. The extreme example of this is an anterior labral tear associated with a posterior subluxation or dislocation event (Fig. 7).
Exacerbating and mitigating factors. There are clear gender differences in FAI, some of which may actually be a consequence of gender differences in soft-tissue laxity. For example, it is well-recognised that women with symptomatic cam impingement have smaller deformities than men. A motion-analysis study of professional ballet dancers revealed that the repetitive motion of dance and relative soft-tissue laxity allowed the dancers to place their hips in impinging positions, despite not having any anatomic predisposition towards FAI. Similarly, because females typically have more soft-tissue laxity than males, they may become symptomatic or have impingement with more subtle deformities than males. The combination of soft-tissue laxity and a predisposition towards acetabular overcoverage also makes females more prone to dynamic instability and levering, with contre-coup cartilage injury. Looking at bony anatomy and the mechanical types of FAI, the prototypical patient with cam impingement is a young athletic male, whereas pincer impingement is more common in women. Further complicating the mechanical situation, symptomatic dysplasia is also more common in females and can
One study also found that women presented with worse pre-operative scores for pain and function than men. Post-operatively, however, there was no difference in outcomes between men and women, implying that the women had a more marked improvement than the men. There is increasing recognition that femoral version can exacerbate or mitigate the severity of FAI (Fig. 8). Specifically, femoral retroversion may exacerbate the effect of a cam deformity and is associated with decreased internal rotation and osteoarthrosis. Femoral retroversion was also recognised to be part of the pattern of malunion in

Author/s	Population	Number of cases	Imaging used	Level of evidence	Major finding
Allen et al	Patients < 55 yrs with symptomatic cam FAI (Canada)	113 (82M, 31F)	AP pelvis and lateral x-ray	Prognostic, III	88 patients with bilateral cam, but only 23 of these with bilateral symptoms
Audenaert et al	Patients < 65 yrs undergoing THR (Belgium)	121	AP pelvis and cross-table lateral x-ray	Prognostic, IV	Low correlation of radiological and activity variables with age at THR. Patients with primarily cam impingement were younger at THR than patients with primarily pincer impingement
Bardakos and Villar	Patients < 55 yrs with idiopathic OA with 10 years of radiological follow-up (UK)	43 hips (43 patients) (35M, 8F)	Supine AP pelvis x-ray	Prognostic, III	28 of 43 showed radiological progression of OA
Clohisy et al	Patients < 50 yrs undergoing THR (US)	604 (710 hips), (314M, 290F), 118 with FAI	AP pelvis and cross-table lateral x-ray	Prognostic, IV	High prevalence of FAI in patients previously diagnosed with "unknown causes of OA" (118 of 121), 70 FAI patients with radiographs at more than one timepoint all with bilateral findings, 73% progression of disease over time
Hartofilakidis	Contralateral hip of patients < 65 yrs treated for unilateral hip disease (Greece)	96 with FAI (31M, 65F)	AP pelvis x-ray	Prognostic, IV	17.7% progression of OA over 10 years, presence of "idiopathic OA" on contralateral side was the only predictor of progression

Arthroscopic image showing chondrolabral damage occurring as a result of cam impingement. The deformity at the head–neck junction causes a shearing, delamination injury to the cartilage (white arrow) with tearing at the chondrolabral junction (black arrowheads) (L, labrum; FH, femoral head).

Arthroscopic image showing chondrolabral damage occurring as a result of pincer impingement. The labrum (L) is bruised and hypertrophied, with adjacent synovitis (S). Cartilage damage occurs on the femoral side in a linear wear pattern (FH, femoral head; Ac, acetabulum).
An early radiological study of FAI found less femoral anteversion (i.e., retroversion) in a cohort of patients with cam-predominant FAI compared with a control group, but a more recent study did not observe a difference in femoral version between FAI patients and a control group. The proposed mechanism is that, in the retroverted femur, the femoral head is relatively rotated into the acetabulum, which decreases the clearance for flexion or flexion and internal rotation. Conversely, increased femoral anteversion may mitigate the effect of an anterior cam deformity, but is known to place increased stress on the psoas tendon. Patients with increased femoral anteversion who undergo psoas tenotomy are known to have worse results postoperatively, and it is thought that the psoas tendon is a dynamic anterior stabiliser in these patients. There has been one study that observed an association between increased femoral anteversion and pincer-type FAI.

Fluoroscopic images showing dynamic instability due to impingement. The patient has a large anterior cam deformity, seen here on a lateral view with the leg in flexion (a). As the leg is flexed further, the deformity contacts the rim and causes levering of the head (b).

Diagrams showing the proposed mechanism of the effect of femoral version. In the retroverted femur (left), the femoral head is already relatively rotated into the acetabulum, which decreases the clearance of any head-neck abnormality in flexion and exacerbates cam impingement. In an opposite manner, femoral anteversion (right) may mitigate the effect of an anterior cam deformity but could result in more impact on the posterior rim in external rotation. (Reprinted with permission: Sutter et al. Femoral antetorsion: comparing asymptomatic volunteers and patients with femoroacetabular impingement. Radiology 2012;263:475–483).
morphology,90 but on the whole the relationship between femoral and acetabular version is unclear, as both positive and negative or inverse relationships between the two have been observed.88,92

The effect of femoral neck-shaft angle is even less clear. A varus femur may be associated with symptomatic protrusio and pincer-type FAI,22 and varus malunion was also part of the pattern of post-traumatic FAI.3 A valgus femur can cause static acetabular overload19 and, in rare cases, can cause atypical patterns of impingement such as those occurring after valgus SCFE or valgus malunion of the femoral neck.4 On the whole, however, the mechanical effects of neck–shaft angle, femoral neck length, and femoral offset on FAI are unknown.

The athlete with asymptomatic FAI but limited hip motion may be at risk for additional soft-tissue injury or groin strain when trying to compensate for inadequate rotation.82 This may be especially common for sports requiring axial loading and rotation of the acetabulum over the femur. The ‘sports hip’ triad of labral tears, adductor strains, and rectus strain has been described in a cohort of American football players and provides some evidence for this.82 Other investigators have noted an association of athletic pubalgia and osteitis pubis with decreased hip range of movement.93 There is biomechanical evidence of increased movement at the pubic symphysis in the setting of a cam deformity,94 also providing some confirmation of the hypothesis that osteitis pubis is a compensatory injury secondary to decreased hip range of motion in FAI.

Arthroscopic management of FAI

A review article published on hip arthroscopy in 2003,95 the same year as Ganz et al’s description of FAI,1 lists the following indications for hip arthroscopy: labral tears, capsular laxity, chondral injury, ligamentum teres injuries, snapping hip, loose bodies and osteoarthritis. Although this review describes cheilectomy of the femoral neck for early osteoarthry,95 the first arthroscopic technique specifically for management of FAI was published in 2005.96 As the understanding of FAI has improved, arthroscopic treatment of FAI and associated labral tears has also evolved. With minor (and sometimes major) variations in technique, arthroscopic management of FAI is similar to open management and involves resecting the impinging bone on the femoral neck, acetabular rim, or subspine region and addressing the associated chondrolabral pathology with either debridement or refixation.26,97-104

Presently, there are seven systematic review articles examining the outcomes of treatment for FAI, all of which were published between 2008 and 2011.105-111 Although each examines a slightly different question, many of the conclusions are similar. Nonetheless, this collective assessment of the available evidence is useful and makes several important points:

1. The level of the published evidence for arthroscopic management of FAI is relatively low. By far, the majority of studies constitute Level IV evidence, describing the outcomes in retrospective cohorts of patients.105-110

2. However, in comparison to other indications for hip arthroscopy, management of FAI had the best grade of recommendation (B), meaning that there was fair evidence to support the use of hip arthroscopy for treating FAI.108

3. Overall, most patients show improvement after surgery, with good to excellent outcomes in 68% to 96% of patients at two years post-operatively.105,106,110

4. There is an observed ceiling effect to the outcomes scores. Many studies are published with outcomes scores that are not validated for, or responsive to, the hip arthroscopy population.111 Furthermore, non-blinded observers assessed many of the outcome measures, which is a potential source of bias in the evaluation.111

Several systematic reviews have compared open and arthroscopic management of FAI. When early open series were included in the analysis, there was a higher rate of conversion to arthroplasty with open management.107,110 However, when the analysis included only the later series with more selective indications for surgery, conversion rates between arthroscopic and open management were similar. Correspondingly, the rates of good to excellent outcomes are comparable between open and arthroscopic techniques,105,107,110 although reported complications may be slightly less with arthroscopy.109,110 It is important to keep in mind that all of these reports were from high-volume surgeons and that complications will occur more frequently in the hands of less-experienced surgeons. The speed and rate of return to play was initially touted to be faster with arthroscopy,109,110 although this conclusion is debatable due to cultural differences in rehabilitation protocol and incentives for early return to sport. Finally, no direct comparison of return-to-play rates or time to return has been made in an otherwise homogeneous population.109,110 Since these systematic reviews were published, four other studies describing return-to-play in elite athletes have been published, which may have narrowed the gap in time to return, especially as the rehabilitation after arthroscopy may take longer than that initially published.102-104,112

Lessons learned in a decade of treating FAI.

The past ten years of treating impingement though both arthroscopic and open techniques have produced important advances in the management of FAI. These advancements have served to refine the surgical indications, improved management of labral tears and helped to minimise complications. Treatment of FAI is, however, a ‘triple threat’: correct diagnosis of the impingement pathoanatomy can be difficult, the surgery itself is technically difficult, and the patients are typically young and active, with high expectations for their post-operative function. One study that assessed six-month post-operative outcomes found that, although patients demonstrated significant improvement in pain and function, “feeling better” (improvement) did not equate with...
“feeling good” (acceptability of the current status).89 Furthermore, for patients to consider their current state acceptable, the six-month outcome scores had to be 80% to 95% of the best achievable score for the given scale.89

A better understanding of the biomechanics of impingement, instability, and dysplasia facilitated the realisation that most labral tears are actually secondary to underlying bony abnormality.65,113 Thus, if the patient undergoes labral repair without addressing the underlying impingement or dysplasia, the repair is likely to fail.97,98,114,115 This concept was reinforced by the clinical experience treating patients with recurrent labral tears and hip pain following arthroscopic labral repair, but who had inadequate treatment of their impingement or dysplasia.97,98,114,115 Although the initial observations of the pathology associated with instability and impingement were made via open surgery, observations made during arthroscopy have helped to clarify these mechanisms and the subsequent damage. In particular, arthroscopists have validated the concept that the intra-articular location and pattern of damage correlates with the particular type of impingement or instability.1,20,23,24,28,81 Although the pre-operative clinical and radiological evaluation should guide the plan for addressing the pathoanatomy causing FAI, the intra-operative appearance of the joint and associated damage should be used as confirmatory evidence guiding treatment.

The early failures, complications, and poor outcomes that occurred despite performing a technically good surgery are also important to note. As the short and mid-term results of hip arthroscopy and the treatment of FAI were published, it became evident that chondral damage is the biggest predictor of outcome after surgery for FAI.107,116-118 As a result of this early experience, most authors now consider Tönnis grade 2 or greater arthritis on pre-operative radiographs a contraindication to surgical management. Heterotopic ossification can be a frequent complication after both open or arthroscopic femoral neck osteoplasty.99,100,119,120 This can be decreased or prevented entirely by giving non-steroidal anti-inflammatories post-operatively.100,120,121 Even prior to the introduction of the arthroscopic technique for managing FAI, it was recognised that traction-related complications are frequent in hip arthroscopy.117,122-127 Thus, inherent to the arthroscopic management of FAI is the importance of being efficient when addressing central compartment pathology and under traction.

Summary and conclusions

The field of preservation of the hip is currently the focus of intense interest, both within the orthopaedic community and among the general public. Correspondingly, this concentrated attention has produced tremendous advancements and change over the past decade. Some types of impingement pathoanatomy can now be treated with predictably good outcomes, for example, those patients with large cam deformities and minimal chondral damage. However, some mechanical hip pain is not yet fully understood. In particular, the intertwined effect of hyperlaxity and gender on both impingement and instability is only now being recognised. Similarly, the importance of femoral version to the mechanics of impingement is currently being worked out. Although femoral retroversion may exacerbate existing cam impingement, further biomechanical confirmation of this effect is necessary. The normal correlation between the acetabular and femoral version is unknown, as is whether a ‘mismatch’ in version can cause pincer impingement or instability.58,92 Finally, the potential contribution of extra-articular impingement and/or secondary instability to hip pain and pathology is beginning to be discussed among leaders in the field, but also remains unexamined. Valuable information about the pathoanatomy and biomechanics of impingement has been produced over the past decade. As a result, the treatment of FAI can relieve symptoms and help return patients to sports and activity. The latter has however be carefully balanced with the intra-articular damage; for some hips, return to sports might be ill-advised, and should not be considered as a measure for treatment success. It remains to be seen, however, if mid and long-term outcomes can be maintained and, ultimately, if this treatment will prevent hip arthrosis.

References

1. Ganz R, Parvizi J, Beck M, et al. Femoroacetabular impingement: a cause for osteoarthritis of the hip. *Clin Orthop Relat Res* 2003;417:112–120.

2. Smith-Petersen MN. The classic: Treatment of malum coxae senilis, old slipped upper femoral epiphysis, intrapelvic protrusion of the acetabulum, and coxa plana by means of acetabuloplasty. 1936. *Clin Orthop Relat Res* 2009;467:608–615.

3. Hernodon CH, Heyman CH, Bell DM. Treatment of slipped capital femoral epiphysis by epiphysodesis and osteoplasty of the femoral neck: a report of further experiences. *J Bone Joint Surg [Am]* 1963;45-A:999–1012.

4. Ganz R, Bamert P, Hausner P, Isler B, Vrcvc F. Cervico-acetabular impingement after femoral neck fracture. *Unfallchirurg* 1991;94:172–175 (in German).

5. Eijer H, Myers SR, Ganz R. Anterior femoroacetabular impingement after femoral neck fractures. *J Orthop Trauma* 2001;15:475–481.

6. Leunig M, Ganz R. The Bernese method of periacetabular osteotomy. *Orthopäde* 1998;27:743–750 (in German).

7. Russell WG, Rodriguez JA, Ganz R. Technical complications of the Bernese periacetabular osteotomy. *Clin Orthop Relat Res* 1999;363:81–92.

8. Myers SR, Eijer H, Ganz R. Anterior femoroacetabular impingement after periacetabular osteotomy. *Clin Orthop Relat Res* 1999;363:93–99.

9. Leunig M, Siebenrock KA, Ganz R. Rationale of periacetabular osteotomy and background work. *Instr Course Lect* 2001;50:229–283.

10. Siebenrock KA, Leunig M, Ganz R. Periacetabular osteotomy: the Bernese experience. *Instr Course Lect* 2001;50:229–245.

11. Rab GT. The geometry of slipped capital femoral epiphysis: implications for movement, impingement, and corrective osteotomy. *J Pediatr Orthop* 1999;19:419–424.

12. Leunig M, Casillas MM, Hamlet M, et al. Slipped capital femoral epiphysis: early mechanical damage to the acetabular cartilage by a prominent femoral metaphysis. *Acta Orthop Scand* 2000;71:370–375.

13. Ganz R, Gill TJ, Gautier E, et al. Surgical dislocation of the adult hip: a technique with full access to the femoral head and acetabulum without the risk of avascular necrosis. *J Bone Joint Surg [Br]* 2001;83-B:1119–1124.

14. Ito K, Minina MA, Leunig M, Werlen S, Ganz R. Femoroacetabular impingement and the cam-effect. A MRI-based quantitative anatomical study of the femoral head-neck offset. *J Bone Joint Surg [Br]* 2001;83-B:171–176.

15. Nötzli HP, Wyss TF, Stoecklin CH, et al. The contour of the femoral head-neck junction as a predictor for the risk of anterior impingement. *J Bone Joint Surg [Br]* 2002;84-B:558–560.
16. Klauke K, Durin CW, Ganz R. The acetabular rim syndrome: a clinical presentation of dysplasia of the hip. J Bone Joint Surg [Br] 1991;73-B:423–429.
17. Hipp JA, Sugano N, Millis MB, Murphy SB. Planning acetabular resection osteotomies based on joint contact pressures. Clin Orthop Relat Res 1999;364:134–143.
18. Zhao X, Chosa E, Totoribe K, Deng G. Effect of periacetabular osteotomy for acetabular dysplasia clarified by three-dimensional finite element analysis. J Orthop Sci 2010;15:632–640.
19. Birnbaum K, Pandorf T. Finite element model of the proximal femur under consideration of the hip centerizing forces of the iliotibial tract. Clin Biomech (Bristol, Avon) 2011;26:58–64.
20. Beck M, Kalhor M, Leunig M, Ganz R. Hip morphology influences the appearance of damage to the acetabular cartilage: femoroacetabular impingement as a cause of early osteoarthritides of the hip. J Bone Joint Surg [Br] 2005;87-B:1012–1018.
21. Pfirrmann CWA, Meningardi B, Dora C, et al. Cam and pincer femoroacetabular impingement: characteristic MR arthrographic findings in 50 patients. Radiology 2003;230:79–89.
22. Leunig M, Nho SJ, Tuchetto L, Ganz R. Protrusio acetabuli: new insights and experience with joint preservation. Clin Orthop Relat Res 2008;467:2241–2250.
23. Corten K, Ganz R, Chosa E, Leunig M. Bone apposition of the acetabular rim in deep hips: a distinct finding of global hip impingement. J Bone Joint Surg [Am] 2011;93-A(Suppl 2b):10–16.
24. Kohl S, Hoaklik HS, Mainil-Verlet P, et al. Histology of damaged acetabular cartilage in symptomatic femoroacetabular impingement: an observational analysis. Hip Int 2011;21:154–162.
25. Leunig M, Robertson WJ, Ganz R. Femoroacetabular impingement: diagnosis and management, including open surgical technique. Oper Tech Sports Med 2007;15:178–188.
26. Toogood PA, Skalak A, Cooperman DR. Proximal femoral anatomy in the normal human population. Clin Orthop Relat Res 2009;467:876–885.
27. Siebenrock KA, Wahab KH, Werlen S, et al. Abnormal extension of the femoral head as a cause of cam impingement. Clin Orthop Relat Res 2004;418:54–60.
28. Larson CM, Kelly BT, Stone RM. Making a case for anterior inferior iliac spine/subspine hip impingement: three representative cases and proposed concept. Arthroscopy 2011;27:1372–1373.
29. Sink EL, Graff J, Ryba A, Dayton M. Clinical presentation of femoroacetabular impingement in adolescents. J Pediatr Orthop 2008;28:866–811.
30. Anderson LA, Peters CL, Park BB, et al. Cartilage delamination in femoroacetabular impingement: risk factors and magnetic resonance imaging diagnosis. J Bone Joint Surg [Am] 2009;91-A:305–313.
31. Duda M, Albers C, Mamisch TC, Werlen S, Beck M. Do normal radiographs exclude asphericity of the femoral head-neck junction? Clin Orthop Relat Res 2009;467:651–659.
32. Cobb J, Logisshetty K, Davda K, Ikrongour F. Cam and pincer impingement are distinct, not mixed: the acetabular pathomorphology of femoroacetabular impingement. Clin Orthop Relat Res 2011;469:2143–2151.
33. Beck M. Letter to the editor: Cam and pincer impingement are distinct, not the acetabular pathomorphology of femoroacetabular impingement. Clin Orthop Relat Res 2011;469:1207.
34. Reynolds D, Lucas J, Klauke L. Retrospection of the acetabulum: a cause of hip pain. J Bone Joint Surg [Br] 1991;63-B:281–288.
35. Siebenrock KA, Schoeniger R, Ganz R. Anterior femoroacetabular impingement due to anatomical retroversion: treatment with peri-acetabular osteotomy. J Bone Joint Surg [Am] 2003;85-A:278–286.
36. Jamal AA, Mladenov K, Meyer DC, et al. Anteroposterior pelvic radiographs to assess acetabular retroversion: high validity of the “cross-over-sign”. J Orthop Res 2007;25:758–765.
37. Fuji H, Nakashima Y, Yamamoto T, et al. Acetabular retroversion in developmental dysplasia of the hip. J Bone Joint Surg [Am] 2010;92-A:895–903.
38. Paliobeis CP, Villar RN. The prevalence of dysplasia in femoroacetabular impingement. Hip Int 2011;21:141–145.
39. Eijer H, Podeszwa DA, Ganz R, Leunig M. Evaluation and treatment of young adults with femoroacetabular impingement secondary to Perthes’ disease. Hip Int 2008;18:273–280.
40. Steppacher SD, Tannast M, Werlen S, Siebenrock KA. Femoral morphology differs between deficient and excessive acetabular coverage. Clin Orthop Relat Res 2008;466:792–798.
41. Serrat MA, Renó PL, McColman MA, Meindl RS, Lovejoy CO. Variation in mammalian proximal femoral development: comparative analysis of two distinct ossification patterns. J Anat 2007;210:249–258.
42. Osborne D, Effman E, Broda K, Harrelson J. The development of the upper end of the femur, with special reference to its internal architecture. Radiology 1982;137:71–76.
43. Hogervorst T, Bouma H, de Boer SF, de Vos J. Human hip impingement morphology: an evolutionary explanation. J Bone Joint Surg [Br] 2011;93-B:769–776.
256 L. M. TIBOR, M. LEUNIG

70. Clohisy JC, Dobson MA, Robison JF, et al. Radiographic structural abnormalities associated with premature, natural hip joint failure. J Bone Joint Surg Am 2011;93-A(Suppl):213–9.

71. Hartofilakidis G, Bardakos NV, Babis GC, Georgiades G. An examination of the association between different morphotypes of femoroacetabular impingement in asymptomatic subjects and the development of osteoarthritis of the hip. J Bone Joint Surg Br 2011;93-B:580–586.

72. Andersson S,Nilsson B, Hessel T, et al. Degenerative joint disease in ballet dancers. Clin Orthop Relat Res 1989;236:223–236.

73. Lindberg H, Roos H, Gärdsell P. Prevalence of coxarthrosis in former soccer players: 286 players compared with matched controls. Acta Orthop Scand 1993;64:165–167.

74. Vingard E, Alfredsson L, Goldie I, Hogstedt C. Sports and osteoarthritis of the hip: an epidemiological study. Am J Sports Med 1993;21:195–200.

75. Vingard E, Alfredsson L, Malchau H. Osteoarthritis of the hip in women and its relationship to physical load from sports activities. Am J Sports Med 1989;17:78–82.

76. L'Hermette M, Polle G, Tourny-Chollet C, Dujardin F. Osteoarthrosis of the hip in women and its association with premenstrual syndrome and dysmenorrhea. Joint Surg [Br] 2005;87–92.

77. Tveit M, Rosengren BE, Nilsson JA, Karlsson MK. Former male elite athletes with hip pain. Arthroscopy 2009;25:2041–2052.

78. Murray RO, Duncan C. Hip injuries and labral tears in the athlete. Am J Sports Med 2009;37:1170–1181.

79. Rakhra KS, Sheikh AM, Allen D, Beaulé PE. Athletic activity in adolescence as an etiological factor in hip arthroscopy: a systematic review of outcomes with and without femoral osteoplasty. Am J Sports Med 2011;39(Suppl):145–155.

80. Bedi A, Chen N, Robertson W, Kelly BT. The management of labral tears and femoroacetabular impingement in the hip in the young, active patient. Arthroscopy 2008;24:1135–1145.

81. Clohisy JC, St John LC, Schutz AL. Surgical treatment of femoroacetabular impingement: a systematic review of the literature. Clin Orthop Relat Res 2010;468:555–564.

82. Nag Y, Aora N, Best TM, Pan X, Ellis T. Efficacy of surgery for femoroacetabular impingement: a systematic review. Am J Sports Med 2010;38:2337–2345.

83. Stevens MS, LeGay DA, Glazebrook MA, Amirault D. The evidence for hip arthroscopy: grading the current indications. Arthroscopy 2010;26:1370–1383.

84. Botser IB, Smith TW, Nasser R, Domb BG. Open surgical dislocation versus arthroscopic dislocation for femoroacetabular impingement: a comparison of clinical outcomes. Arthroscopy 2011;27:217–219.

85. Matsuda DK, Carlisle JC, Arthroscopy 2011;27:255–256.

86. Kemp JL, Collins NJ, Makdissi M, et al. Hip arthroscopy for intra-articular pathology: a systematic review of outcomes with and without femoral osteoplasty. Br J Sports Med 2011;45:632–643.

87. Naal FD, Miozzari HH, Wyss TF, Nötzli HP. Surgical hip labral tears rarely occur in the absence of bony abnormalities. Clin Orthop Relat Res 2004;428:145–150.

88. Parvizi J, Bican O, Bender B, et al. Arthroscopy for labral tears in patients with developmental dysplasia of the hip: a cautionary note. J Arthroplasty 2009;24:110–113.

89. Kain MS, Novais EN, Vallim C, Millis MB, Kim YJ. Percutaneous osteotomy after failed hip arthroscopy for labral tears in patients with acetabular dysplasia. J Bone Joint Surg Am 2011;93-A(Suppl 2):75–83.

90. Burd RE, Kendell KL, Miner MR, Trousdale RT. Acetabular labral tears rarely occur in the absence of bony abnormalities. Clin Orthop Relat Res 2004;428:145–150.

91. Byrd JW, Jones KS. Hip arthroscopy for labral pathology: prospective analysis with 10-year follow-up. Arthroscopy 2008;25:385–396.

92. Streich NA, Bottermann T, Barie A, Schmitt H. Prognostic value of chondral defects on the outcome of arthroscopic treatment of acetabular labral tears. Knee Surg Sports Traumatol Arthrosc 2005;13:1257–1263.

93. McCarthy JC, Jarrett BT, Ojello O, Lee JA, Bradgon CR. What factors influence long-term survivorship after hip arthroscopy? Clin Orthop Relat Res 2011;469:362–371.

94. Sink EL, Beaulé PE, Sucato D, et al. Multicenter study of complications following surgical dislocation of the hip. J Bone Joint Surg Am 2011;93-A:1132–1136.

95. Bedi A, Zbeda RM, Bueno VF, et al. The incidence of heterotopic ossification after hip arthroscopy. Am J Sports Med 2012;40:584–593.

96. Randelli F, Pierannunzi L, Banci L, et al. Heterotopic ossifications after arthroscopic management of femoroacetabular impingement: the role of NSAID prophylaxis. J Orthop Traumatol 2010;11:245–250.

97. Funke EL, Munzinger U. Complications in hip arthroscopy. Arthroscopy 1998;14:159–163.

98. Griffin DR, Villar RN. Complications of hip arthroscopy. Clin Orthop Relat Res 2011;469:604–608.

99. Clarke MT, Aora A, Villar RN. Hip arthroscopy complications in 1054 cases. Clin Orthop Relat Res 2003;410:84–88.

100. Souza BGS, Dani WS, Honda UK, et al. Do complications in hip arthroscopy change with experience? Arthroscopy 2010;26:1020–1085.

101. Nwachukwu BU, McFeely ED, Nasreddine AV, et al. Complications of hip arthroscopy in children and adolescents. J Pediatr Orthop 2011;31:223–231.
Funding statement:
This work received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Author contributions:
- L. M. Tibor: Contributed to paper concept, Wrote manuscript draft and revisions
- M. Leunig: Developed paper concept, Assisted with manuscript revisions

ICMJE Conflict of Interest:
- Dr. Leunig has the following potential conflicts of interest: consultant for Smith & Nephew; stock options in Pivot Medical. No payment or benefit of any kind was received related to this work.

©2012 British Editorial Society of Bone and Joint Surgery. This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, but not for commercial gain, provided the original author and source are credited.