Prevalence, awareness, treatment, and control of dyslipidemia and associated factors among adults in Jordan: Results of a national cross-sectional survey in 2019

Supa Pengpid a, Karl Peltzer b,c,*

a Department of Health Education and Behavioral Sciences, Faculty of Public Health, Mahidol University, Bangkok, Thailand
b Department of Psychology, University of the Free State, Bloemfontein, South Africa
c Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan

A R T I C L E I N F O

Keywords:
Lipid profile
Adults
Jordan

A B S T R A C T

Dyslipidemia is increasing with low awareness and treatment in low resourced countries. The aim of the study was to evaluate the prevalence, distribution, and correlates of dyslipidemia and its awareness, treatment, and control among people (18–69 years) in Jordan. In a national cross-sectional survey, a total of 3,132 individuals (mean age: 41.7 years) that took part in the Jordan cross-sectional STEPS survey in 2019 and had complete lipid measurements. Dyslipidemia was defined using the guidelines of the Adult Treatment Panel III. The prevalence of dyslipidemia was 81.6%, 74.0% low high-density lipoprotein cholesterol (HDL-C), 28.2% high triglyceride (TG), 10.1% high total cholesterol (TC) and 8.7% high low-density lipoprotein cholesterol (LDL-C). Among those with dyslipidemia, 9.3% were aware. Among those who knew, the proportion of lipid-lowering drug treatment was 50.3%, and among those taking lipid-lowering drugs, 25.4% had their dyslipidaemia controlled. In adjusted logistic regression, in both sexes, overweight (AOR: 2.14, 95% CI: 1.49–3.36), obesity (AOR: 2.47, 95% CI: 1.55–3.94), diabetes (AOR: 2.63, 95% CI: 1.30–5.34) were positively and moderate physical activity (AOR: 0.60, 95% CI: 0.37–0.95) was negatively associated with prevalence of dyslipidemia. Older age, overweight, obesity, hypertension, diabetes, and cardiovascular disease were positively associated, and moderate physical activity was negatively associated with awareness of dyslipidemia. Four out of five adults in Jordan had dyslipidaemia and less than one in ten were aware. Several factors associated with the prevalence, awareness, and treatment of dyslipidaemia were identified that can be used to target public health interventions.

1. Introduction

Dyslipidemia constitutes one or a combination of low high-density lipoprotein cholesterol (HDL-C), elevated triglyceride (TG), high low-density lipoprotein cholesterol (LDL-C), and elevated total cholesterol (TC) (Pirillo et al., 2021; Gebreegziabiher et al., 2021). Dyslipidaemias are associated with changes in the plasma lipid profile leading to major clinical conditions, such as cardiovascular disease (CVD), and the global burden has significantly increased over the past 30 years (Pirillo et al., 2021). CVDs contribute to 37% of mortality in 2018 in Jordan (World Health Organization (WHO), 2018). In a cohort study in Jordan, the main risk factors for ischemic stroke included hypertension, diabetes mellitus, hyperlipidaemia, and coronary artery disease (Alawneh et al., 2020). “Dyslipidemias can be genetically determined (primary or familial dyslipidemias) or secondary to other conditions (such as diabetes mellitus, obesity or an unhealthy lifestyle), the latter being more common” (Pirillo et al., 2021). Based on our review, we were unable to find national data on prevalence, awareness, treatment, and control of dyslipidemia in Jordan. A national prevalence study on the lipid profile in Jordan in 2017 found that the proportion of high TC was 44.3%, high TG 41.9%, high LDL-C 75.9%, and low HDL-C 59.5% (Abujbara et al., 2018), and in a cross-sectional study in Sarir in northern Jordan in 2006, 48.8% had high TC, 40.7% high LDL-C, 40.1% low HDL-C, 43.6% high TG, and 75.7% had at least one abnormal lipid level (Khader et al., 2010).

In 35 low- and middle-income countries (LMIC) (≥15 years), the...
prevalence of high TC (≥240 mg/dL) was 7.1%, and high LDL-C (≥160 mg/dL) 7.5%, ≥31% of them were aware of their diagnosis, ≥29% were treated, and ≥7% were controlled (Marcus et al., 2021). In China (>18 years), the prevalence of dyslipidaemia was 34.0% (Pan et al., 2016), and 31.0% were aware, 19.5% in treatment and 8.9% were controlled (Pan et al., 2016). In Northern Ethiopia (>20 years), the prevalence of dyslipidaemia was 66.7%, elevated TC 30.8%, elevated TG 40.2%, low HDL-C 16.5%, and high LDL-C 49.5% (Gebreegziabiher et al., 2021), in Turkey (>20 years), high LDL-C was 36.2%, high TG 35.7%, low HDL-C 41.5%, and high TC was 43%, and dyslipidaemia (at least one abnormal lipid value) ≥79% (Bayram et al., 2014), and in Pakistan (>20 years) high TC 39.3%, high TG 48.9%, high LDL-C 39.7%, and low HDL-C (87.4%) (Basit et al., 2020).

Sociodemographic factors associated with dyslipidaemia include increased age (Gebreegziabiher et al., 2021; Pan et al., 2016), male sex (Pan et al., 2016; Xi et al., 2020), ethnicity (Xi et al., 2020) and living in urban areas (Pan et al., 2016; Xi et al., 2020). Health risk factors associated with dyslipidaemia include obesity (Gebreegziabiher et al., 2021; Pan et al., 2016; Bayram et al., 2014; Zhang et al., 2017), central obesity (Xi et al., 2020), cardiovascular disease (Pan et al., 2016), diabetes (Pan et al., 2016; Bayram et al., 2014; Xi et al., 2020; Zhang et al., 2017; Tripathy et al., 2017), and hypertension (Pan et al., 2016; Bayram et al., 2014; Xi et al., 2020; Zhang et al., 2017; Tripathy et al., 2017). Risk factors for health behaviours associated with dyslipidaemia include smoking (Xi et al., 2020), physical inactivity (Gebreegziabiher et al., 2021), dietary pattern (grain-egg-nut complex diet (Liu et al., 2020) and red meat (Diarz et al., 2020), and fruit and vegetable intake lowered high TG (Kjøllesdal et al., 2016), and alcohol use had lower odds of dyslipidaemia (Abujbara et al., 2018).

Factors associated with high TC include older age (Huang et al., 2021), female sex (Huang et al., 2021), lower education (Basit et al., 2020; Huang et al., 2021; Erem et al., 2008), hypertension (Abujbara et al., 2018; Basit et al., 2020; Tripathy et al., 2017), diabetes (Abujbara et al., 2018; Basit et al., 2020; Tripathy et al., 2017; Huang et al., 2021), obesity (Abujbara et al., 2018; Basit et al., 2020) and smoking (Basit et al., 2020). Factors associated with high LDL-C include increasing age (Huang et al., 2021), female sex, hypertension, diabetes, and obesity (Basit et al., 2020). Factors associated with low HDL-C include decreased age (Huang et al., 2021), female sex (Basit et al., 2020), male sex (Huang et al., 2021), higher education (Huang et al., 2021), hypertension (Abujbara et al., 2018), diabetes (Abujbara et al., 2018; Basit et al., 2020; Huang et al., 2021), obesity (Abujbara et al., 2018; Basit et al., 2020), and smoking (Huang et al., 2021; Malta et al., 2019). Factors associated with high TG include male sex (Tripathy et al., 2017; Huang et al., 2021), higher education (Huang et al., 2021), hypertension (Abujbara et al., 2018; Tripathy et al., 2017; Huang et al., 2021), diabetes (Abujbara et al., 2018; Basit et al., 2020; Tripathy et al., 2017; Huang et al., 2021), obesity (Abujbara et al., 2018; Basit et al., 2020; Tripathy et al., 2017), physical inactivity (Huang et al., 2021), and smoking or current tobacco use (Abujbara et al., 2018; Tripathy et al., 2017; Huang et al., 2021).

Factors associated with awareness of dyslipidaemia diagnosis include older age (Marcus et al., 2021), living in urban areas (Huang et al., 2021), higher education (Huang et al., 2021), higher BMI (Marcus et al., 2021; Huang et al., 2021), comorbid diagnosis of diabetes (Marcus et al., 2021; Huang et al., 2021), hypertension (Marcus et al., 2021; Huang et al., 2021), and CVD (Huang et al., 2021). Factors associated with the treatment of dyslipidaemia or hypercholesterolemia include women (Basit et al., 2020), comorbid hypertension, diabetes (Marcus et al., 2021), and CVD (Huang et al., 2021). Factors positively associated with control of dyslipidaemia include women (Basit et al., 2020), urban residence (Basit et al., 2020), obesity (Basit et al., 2020), comorbid diabetes (Marcus et al., 2021), and CVD (Huang et al., 2021), and overweight/obesity and underweight (Rao et al., 2016), and physical inactivity were negatively associated with control of dyslipidaemia (Huang et al., 2021).

The aim of the study was to assess the prevalence, distribution, and correlates of dyslipidaemia its awareness, treatment and control among people aged 18 to 69 years in Jordan in 2019.

2. Methods

2.1. Participants and procedures

National cross-sectional data with complete lipid measurements from the Jordan STEPS 2019 survey (World Health Organization (WHO), 2018) were analyzed; Study response rates were 95% for Step 1, 93% for Step 2, and 63% for Step 3 (Ministry of Health, 2019). According to the STEPS survey procedures, “Socio-demographic and behavioural information was collected in Step 1. Physical measurements such as height, weight, and blood pressure were collected in Step 2. Biochemical measurements were collected to assess blood glucose and cholesterol levels in Step 3. A multi-stage stratified sampling process was carried out to randomly select participants from the target population of adult Jordanians and Syrians. One individual within the age range of the survey (18–69 years) was selected per household. Ethics approval was provided by the Jordan Ministry of Health Ethics Committee for Scientific Research, and written informed consent was obtained from all participants.” (World Health Organization (WHO), 2018; Ministry of Health and Survey, 2019)

Data collection followed the “WHO three STEPS methodology: Step 1 included the administration of a structured questionnaire (sociodemographics, medical history, medication use, and health risk behaviour); Step 2 consisted of blood pressure and anthropometric measurements, and Step 3 included biochemical tests (blood glucose and blood lipids).” (World Health Organization (WHO), 2018) Anthropometric measurements were taken using a “portable Seca stadiometer and a pre-calibrated portable digital weighing scale (Seca)” (Ministry of Health, 2019). Of the three blood pressure measurements using “Omrorn M3 devices” (Ministry of Health, 2019); the last two readings were averaged (World Health Organization (WHO), 2021). Cardiocheck PA devices were used to measure the blood-related measurements (glucose and lipids) (Ministry of Health, 2019). Blood samples were taken after overnight fasting (not to consume any food or drinks except water until the morning of the following day) early in the morning.

2.2. Measures

Dyslipidaemia was classified (NCEP, 2001) as:

-“Being on antilipidemic medication or having one or more of the following: elevated total cholesterol (TC): ≥5.17 mmol/l (200 mg/dl), high triglycerides (TG): ≥1.70 mmol/l (150 mg/dl), low HDL-C: female ≤1.29 mmol/l,≤ male 1.03 (<50 mg/dl in women, <40 mg/dl in men) and high LDL-C: ≥3.36 mmol/l (130 mg/dl).”

The awareness rate of dyslipidaemia was defined as:

-“Having been diagnosed by a health care provider as having high cholesterol among those with dyslipidaemia. The rate of dyslipidaemia treatment was defined as the self-reported use of lipid lowering drugs among participants who were aware of dyslipidaemia. The control rate for dyslipidaemia was classified as the proportion among those treated for dyslipidaemia who reach the lipid standard: TG < 1.70 mmol/l, TC < 5.18 mmol/l, HDL-C ≥ 1.04 mmol/l and LDL-C < 3.37 mmol/l.” (NCEP, 2001)

Being on antilipidemic medication was assessed with the question, “In the past two weeks, have you taken any oral treatment (medication) for raised total cholesterol prescribed by a doctor or other health worker?” (Yes/No).

Other biological measures included measured central obesity (waist

Preventive Medicine Reports 28 (2022) 101874
S. Pengpid and K. Peltzer
circumference ≥ 94 cm in men, ≥ 80 cm in women) (Harvard School of Public Health, 2020); measured Body Mass Index (BMI) (kg/m2): <18.5 kg/m2 underweight, 18.5–24.4 kg/m2 normal weight, 25–29.9 kg/m2 overweight, and ≥ 30 kg/m2 obesity (World Health Organization (WHO), 2022); Hypertension/raised blood pressure (BP): “systolic BP ≥ 140 mm Hg and/or diastolic BP ≥ 90 mm Hg or where the participant is currently on antihypertensive medication.” (Chobanian et al., 2003 Dec) Diabetes: “fasting plasma glucose levels ≥ 7.0 mmol/L (126 mg/dl); or using insulin or oral hypoglycaemic drugs” (World Health Organization (WHO), 2021).

Behavioural measures included current smoking, alcohol use, daily intake of fruits and vegetables, salt intake, and low, moderate, and high physical activity based on the “Global Physical Activity Questionnaire” (Armstrong and Bull, 2006). Sociodemographic variables included age (years), sex (male, female), education, monthly household income in the Jordanian Dinar (JD) (1st June 2019: 1 USD = JD 0.709), residence, nationality, and region (Ministry of Health, 2019).

History of CVDs included self-reported “Have you ever had a heart attack or chest pain from heart disease (angina) or a stroke (cerebro-vascular accident or incident)? (Yes, No)” (Ministry of Health, 2019).

Table 1
Sample description and prevalence of dyslipidemia and its subtypes in Jordan, 2019.

Variable	Subcategory	Sample	High TC	High TG	Low HDL-C	High LDL-C	Dyslipidemia
	N (%)						
Total	3132	10.1	28.2	74.0	8.7	81.6	
Age (years)							
18–29	674 (21.5)	4.3	14.3	69.7	3.8	75.4	
30–39	813 (26.0)	9.3	27.1	72.2	8.9	79.7	
40–49	712 (22.7)	14.7	37.9	80.2	11.9	86.7	
50–59	510 (16.3)	18.6	41.0	76.6	15.2	86.7	
60–69	423 (13.5)	10.5	38.9	75.1	8.9	88.5	
Gender							
Female	2085 (66.6)	13.1	25.8	73.4	9.8	82.3	
Male	1047 (33.4)	6.9	30.9	74.7	7.5	80.8	
Education (in years)							
0–6	976 (31.2)	9.8	35.4	75.0	6.9	83.8	
7–11	1101 (35.2)	10.8	29.5	77.5	8.7	84.4	
≥ 12	1055 (33.7)	9.8	25.2	71.2	9.2	78.9	
Monthly household income (in Jordanian Dinar)							
< 200	804 (27.9)	13.2	33.8	75.1	11.5	85.2	
$200–349$	1210 (42.0)	9.8	26.8	75.6	7.8	81.9	
≥ 350	865 (30.0)	10.1	27.9	72.5	9.3	80.5	
Nationality							
Syrian	1691 (54.0)	9.8	25.7	72.0	7.9	77.8	
Jordanian	1441 (46.0)	10.2	28.5	74.3	8.8	82.0	
Residence							
Rural	585 (18.7)	9.1	29.6	71.5	7.7	82.0	
Urban	2547 (81.3)	10.3	28.0	74.5	8.9	81.5	
Region							
Center	1730 (55.2)	10.5	25.6	72.7	9.2	80.8	
North	1264 (40.4)	9.4	31.7	75.4	8.2	82.8	
South	138 (4.4)	10.7	31.7	77.3	7.7	82.0	
Body Mass Index							
Normal	674 (23.0)	6.8	16.1	68.6	6.6	73.3	
Underweight	67 (2.3)	0.3	1.1	49.2	0.2	55.6	
Overweight	896 (30.6)	12.0	29.9	78.2	10.1	86.0	
Obesity	1295 (44.2)	11.1	38.5	79.8	9.9	87.4	
Central obesity							
No	868 (30.1)	6.3	16.6	67.0	6.0	73.1	
Yes	2013 (69.9)	11.8	34.7	79.3	10.2	86.5	
Hypertension							
No	2098 (68.4)	8.5	24.9	73.0	7.8	79.5	
Yes	969 (31.6)	14.2	37.2	77.3	10.9	87.6	
Diabetes							
No	2741 (90.4)	9.9	25.4	74.2	8.4	81.1	
Yes	290 (9.6)	14.7	59.3	83.0	11.6	93.7	
Cardiovascular disease							
No	2865 (91.5)	10.2	28.2	74.0	8.8	81.5	
Yes	267 (8.5)	9.1	29.1	74.6	7.9	82.2	
Physical activity							
Low	991 (32.3)	11.4	34.8	77.5	10.2	86.0	
Moderate	728 (23.7)	9.7	25.4	72.6	7.6	78.5	
High	1349 (44.0)	9.7	25.5	73.2	8.4	80.2	
Fruit/vegetable intake							
≥ 5 servings	323 (10.7)	11.8	33.7	70.2	9.5	81.4	
< 5 servings	2703 (89.3)	10.0	27.7	74.6	8.6	81.7	
Always/often salt with food							
No	2168 (69.2)	10.0	28.5	73.2	8.4	80.8	
Yes	963 (30.8)	10.4	27.5	75.8	9.5	83.3	
Always/often processed food high in salt							
No	2375 (75.9)	10.3	29.3	74.3	9.1	81.8	
Yes	753 (24.1)	9.9	25.8	73.5	7.9	81.2	
Current smoking							
No	2263 (72.3)	11.4	27.1	72.8	9.6	80.7	
Yes	869 (27.7)	8.3	30.0	75.9	7.4	82.9	
Ever alcohol use							
No	3053 (97.5)	10.3	27.8	73.8	8.9	81.2	
Yes	79 (2.5)	6.8	37.0	78.4	5.7	88.1	

*unweighted; †weighted.
The prevalence of dyslipidemia was 81.6%, 10.1% high TC, 28.2% high TG, 74.0% low HDL-C and 8.7% high LDL-C. Further sample characteristics are described in Table 1 (see Table 1).

Table 1.

3.2. Distribution of dyslipidemia awareness, treatment, and control

Among those with dyslipidemia, 9.3% were aware. Among those who knew, the proportion of lipid-lowering drug treatment was 50.3%, and among those taking lipid-lowering drugs, 25.4% had their dyslipidemia controlled (see Table 2).

3.3. Associations with prevalence of dyslipidemia

In adjusted logistic regression, in both sexes, overweight (AOR: 2.14, 95% CI:1.49–3.36), obesity (AOR: 2.47, 95% CI: 1.55–3.94), diabetes (AOR: 2.63, 95% CI: 1.30–5.34) were positively and moderate physical activity (AOR: 0.60, 95% CI: 0.37–0.95) was negatively associated with the prevalence of dyslipidemia (see Table 3).

3.4. Associations with prevalence of dyslipidemia subcategories

In the adjusted logistic regression analysis, older age was positively associated with high TC, high TG, and high LDL-C but not with low HDL-C. The male sex was negatively associated with high TC. Higher education was associated with high LDL-C. Living in the northern region was associated with high TG. Overweight and obesity were positively associated with high TG and low HDL-C. Diabetes increased the odds and moderate physical activity decreased the odds of high TG (see Table 4).

3.5. Associations with dyslipidemia awareness and treatment

In the adjusted logistic regression analysis, older age, overweight, obesity, hypertension, diabetes and cardiovascular disease were positively, and moderate physical activity was negatively associated with dyslipidemia awareness. Among those who were aware of their state of dyslipidemia, being Jordanian as opposed to Syrian, and diabetes was positively associated and overweight and obesity was negatively associated with the treatment of dyslipidemia (see Table 5).

4. Discussion

The study presents new national data on the prevalence, awareness, treatment, and control of dyslipidemia in people 18–69 years of age in Jordan in 2019. The proportion of dyslipidemia in Jordan (81.6%) was higher than in Saril in northern Jordan in 2006 (75.7%) (Khader et al., 2010), in China (>18 years, 34.0%) (Pan et al., 2016), Northern Ethiopia (>20 years, 66.7%) (Gebregeziabher et al., 2021), similar to Turkey (>20 years, >79%) (Bayram et al., 2014), and lower than in Pakistan (>20 years, 96%) (Basit et al., 2020). The most prevalent component of dyslipidemia was low HDL-C (74.0%), followed by high TG (28.2%), high TC (10.1%) and high LDL-C (8.7%). A similar order of prevalence of components of dyslipidemia was found in the, in the Sylhet region, Bangladesh (Kathak et al., 2022), in Pakistan (Basit et al., 2020), and China (Pan et al., 2016), with a low HDL-C having the highest prevalence. While in the two previous surveys in Jordan in 2006, high TC was the highest, followed by low HDL-C (Khader et al., 2010), and in 2017 high HDL was the highest, followed by low LDL (Abujbara et al., 2018). Abnormally low levels of low HDL-C are a risk factor for coronary heart disease (NCEP, 2001).

The prevalence of high TC (10.1%) in this study was lower than in the two surveys in Jordan (44.3% in 2017 and 48.8% in 2006) (Abujbara et al., 2018; Khader et al., 2010), lower than in Northern Ethiopia (>20 years, 30.8%) (Gebregeziabher et al., 2021), in Turkey (>20 years, 43%) (Bayram et al., 2014), and Pakistan (>20 years, 39.3%) (Basit et al., 2018; Khader et al., 2010), similar to Turkey (>20 years, 66.7%) (Gebregeziabher et al., 2021), and lower than in Pakistan (>20 years, 79%) (Bayram et al., 2021), and in China (>18 years, 34.0%) (Pan et al., 2016).

Table 2

Dyslipidemia awareness, treatment, and control in Jordan, 2019.

Variable	Subcategory	Awareness (N = 2978)	Treatment (N = 302)	Control (N = 129)
Gender	Female	194 (8.9)	87 (44.6)	23 (12.5)
	Male	108 (9.7)	62 (56.2)	9 (13.6)
Education (in years)	<0–6	124 (15.9)	60 (60.9)	12 (20.9)
	7–11	86 (8.1)	44 (49.4)	36 (66.7)
	≥12	92 (8.0)	45 (44.2)	6 (9.7)
Nationality	Syrian	118 (6.1)	51 (35.6)	12 (20.9)
	Jordanian	184 (9.6)	98 (51.3)	24 (40.7)
Residence	Rural	34 (5.4)	19 (35.3)	12 (21.3)
	Urban	268 (10.0)	130 (51.7)	28 (47.7)
Region	Center	189 (10.5)	95 (51.1)	21 (35.5)
	North	97 (7.4)	47 (51.6)	24 (42.2)
	South	16 (10.9)	7 (41.4)	10 (17.7)
Body Mass Index	Normal	20 (2.3)	11 (64.9)	3 (53.8)
	Underweight	1 (0.9)	1 (0.0)	2 (33.3)
	Overweight	73 (9.5)	37 (48.5)	10 (16.7)
	Obesity	197 (13.5)	95 (47.3)	21 (34.8)
Central obesity	No	30 (3.4)	14 (46.8)	28 (45.7)
	Yes	256 (12.1)	126 (51.0)	28 (45.7)
Hypertension	No	86 (3.9)	30 (38.6)	6 (24.8)
	Yes	209 (22.0)	115 (56.4)	26 (31.3)
Diabetes	No	202 (7.0)	81 (37.7)	17 (27.3)
	Yes	84 (28.3)	56 (70.8)	11 (18.2)
Cardiovascular disease	No	222 (7.8)	91 (45.5)	21 (33.0)
	Yes	80 (26.8)	58 (66.8)	12 (19.4)
Physical activity	Low	145 (14.6)	78 (54.6)	15 (22.2)
	Moderate	61 (7.1)	32 (55.5)	8 (12.8)
	High	93 (6.7)	37 (45.2)	9 (12.8)
Fruit/vegetable intake	≥5 servings	37 (11.5)	18 (42.0)	6 (25.9)
	<5 servings	260 (9.1)	126 (51.8)	26 (40.7)
Always/often salt with food	No	203 (9.1)	99 (51.2)	25 (40.0)
	Yes	99 (9.6)	50 (50.5)	24 (39.0)
Always/often processed food high in salt	No	239 (9.2)	118 (55.7)	28 (45.7)
	Yes	63 (9.3)	31 (38.3)	20 (31.8)
Current smoking	No	229 (10.0)	112 (49.5)	26 (42.8)
	Yes	73 (8.3)	37 (51.7)	27 (39.4)

(continued on next page)
et al., 2020) but similar to the 35 LMIC study (≥15 years, 7.1%) (Marcus et al., 2021). The prevalence of high TG (28.2%) in this study was lower than in the previous two surveys in Jordan (41.9% in 2017 and 43.6% in 2006) (Abujbara et al., 2018; Khader et al., 2010), and lower than in Turkey (35.7%) (Bayram et al., 2014), and lower than in northern Ethiopia (40.2%) (Gebreegziabiher et al., 2021) and Pakistan (48.9%) (Basit et al., 2020). The prevalence of high LDL-C (8.7%) in this study was lower than in the previous two surveys in Jordan (75.9% in 2017 and 40.7% in 2006) (Abujbara et al., 2018; Khader et al., 2010), lower than in Northern Ethiopia (49.5%) (Gebreegziabiher et al., 2021), Turkey (36.2%) (Bayram et al., 2014), and in Pakistan (39.7%) (Basit et al., 2020) but similar to in 35 LMICS (7.5%) (Marcus et al., 2021). The prevalence of low HDL-C (74.0%) in this survey was higher than in the previous two surveys in Jordan (59.5% in 2017 and 40.1% in 2006) (Abujbara et al., 2018; Khader et al., 2010), higher than in Turkey (41.5%) (Bayram et al., 2014) and the Yangon Region, Myanmar (53.4%) (Htet et al., 2017), but lower than in the Sylhet region, Bangladesh (78.8%) (Kathak et al., 2022), and in Pakistan (87.4%) (Basit et al., 2020). Some of these prevalence differences may be attributed to the use of different cut-off points.

According to previous research (Gebreegziabiher et al., 2021; Pan et al., 2016; Bayram et al., 2014; Xi et al., 2020; Zhang et al., 2017; Tripathy et al., 2017), overweight, obesity, and diabetes increased the odds, and moderate physical activity decreased the odds of dyslipidemia in both sexes. The tendency to have a higher prevalence of dyslipidaemia with higher levels of BMI can be attributed to “global metabolic effects of insulin resistance and an excess of visceral fat.” (Chan et al., 2016). A nutritional transition in Jordan (Mehio Sibai et al., 2010) may have led to the high prevalence of overweight or obesity (43.3%) found, increasing the risk of dyslipidaemia. Unlike some previous (Abujbara et al., 2018; Pan et al., 2016; Xi et al., 2020; Zhang et al., 2017; Tripathy et al., 2017; Liu et al., 2020; Dzari et al., 2020; Kjellsdal et al., 2016), we did not find associations between sex, age, residence status, hypertension, cardiovascular disease, smoking, alcohol use, dietary pattern and dyslipidaemia.

Factors associated with high TC in this study included older age, and female sex. In previous studies (Abujbara et al., 2018; Basit et al., 2020; Tripathy et al., 2017; Huang et al., 2021; Malta et al., 2019), older age, female sex, lower education, hypertension, diabetes, and obesity were associated with high TC. Factors associated with high TG in this study included older age, living in the Northern Region, overweight, obesity, diabetes, and physical inactivity. In previous studies (Abujbara et al., 2018; Basit et al., 2020; Tripathy et al., 2017; Huang et al., 2021), male sex, higher education, hypertension, diabetes, obesity, and smoking or current tobacco use were associated with high TG. Factors associated with low HDL-C in this study included overweight and obesity. In previous studies (Abujbara et al., 2018; Huang et al., 2021; Erem et al., 2009), increased age, hypertension, diabetes, obesity, and smoking were associated with low HDL-C. Factors associated with high LDL-C in this study included older age, and higher education. In previous studies (Abujbara et al., 2018; Huang et al., 2021), hypertension, diabetes, and obesity were associated with high LDL-C.

The prevalence of awareness of dyslipidemia (9.3%), treatment (50.3%), and control (25.4%) was lower in terms of awareness in the 35 LMIC study (31/36%) but higher in terms of treatment and control (29/
33%, and 7.19%, respectively) (Marcus et al., 2021). Awareness was also much lower than in China (31.0%), but treatment (19.5%) and control (8.9%) was higher than in China (Pan et al., 2016). In particular, the low awareness of dyslipidaemia may be attributed to lipids being part of weight management, yet overweight and obesity were negatively associated with increased awareness of dyslipidaemia in this study. The association between general obesity and awareness of dyslipidaemia may be attributed to lipids being part of weight management, yet overweight and obesity were negatively associated with dyslipidaemia treatment. Similar results were found for dyslipidaemia control in China, highlighting the greater difficulty of dyslipidaemia control among obese compared to people of normal weight (Opoku et al., 2021). Compared to Syrians, Jordanians had a higher rate of treatment, which emphasizes the need to increase treatment services for Jordanians.

In this study, overweight and obesity, having diabetes, and low physical activity were significantly associated with the increased risk of dyslipidaemia. Some variables were evaluated by self-report, which may have biased responses, and the cross-sectional design precludes causative conclusions between the evaluated variables. Familial hyperlipidemia and specific diet behaviors were not evaluated and should be included in future research. Due to the low prevalence of control of dyslipidaemia in this study, no determinants were estimated. A further limitation was that the response rate for Step 3 of the survey (which included lipid analysis) was low (63%), which may have further biased responses.

5. Conclusions

Four in five adults in Jordan had dyslipidaemia and less than one in ten were aware. Several factors, including sociodemographic and health factors, were identified for the prevalence, awareness, and treatment of dyslipidaemia. The high prevalence and low awareness of dyslipidaemia

Table 4

Associations with prevalence of dyslipidaemia subcategories.

Variable	Subcategory	High TC AOR (95% CI)	High TG AOR (95% CI)	Low HDL-C AOR (95% CI)	High LDL-C AOR (95% CI)
Age (years) 18–44	1 (Reference)				
Gender	Female	1 (Reference)	1 (Reference)	1 (Reference)	1 (Reference)
Education (in years) 0-6	1.26 (0.76, 2.10)	0.73 (0.50, 1.07)	0.87 (0.59, 1.30)	2.06 (1.23, 3.44)**	
Nationality Syrian	1 (Reference)				
Residence Rural	1 (Reference)				
Body Mass Index Normal/Underweight	1.36 (0.76, 2.45)	3.60 (2.36, 5.50)**	2.03 (1.37, 3.02)**	1.48 (0.80, 2.72)	
Hypertension No	1 (Reference)				
Physical activity Low	1.34 (0.59, 1.55)	1.02 (0.77, 1.33)	0.90 (0.63, 1.28)	1.05 (0.75, 1.47)	
Fruit/Vegetable intake ≥5 servings	1 (Reference)				
Always/often salt with food No	0.91 (0.62, 1.32)	1.11 (0.83, 1.49)	1.34 (1.00, 1.79)	1.02 (0.75, 1.40)	
Always/often processed food high in salt No	1 (Reference)				
Current smoking No	0.88 (0.57, 1.37)	0.92 (0.65, 1.48)	0.96 (0.69, 1.34)	0.86 (0.53, 1.40)	
Ever alcohol use No	1 (Reference)				

Note: All p-values were statistically significant at p < 0.05. Odds ratios (AOR) were estimated using logistic regression adjusted for age, gender, education, and body mass index. The 95% confidence intervals (CI) are presented.

*p < 0.001; **p < 0.01; *p < 0.05; COR = Crude Odds Ratio; AOR = Adjusted Odds Ratio; CI = Confidence Interval.*
in Jordan warrants enhanced public health interventions, including screening, better diagnosis, treatment, and control of dyslipidemia.

6. Data sharing statement

The data source is publicly available at the World Health Organization NCD Microdata Repository (URL: https://extranet.who.int/ncdmsd/micrdata/index.php/catalog).

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

“This paper uses data from the 2019 Jordan STEPS survey, implemented by the Ministry of Health and Centre for Strategic Studies of the University of Jordan with the support of the World Health Organization (WHO) Jordan: Noncommunicable Diseases (NCD) Country Profiles, 2018. URL: https://www.who.int/nmh/countries/jor_zh.pdf (accessed 2 Feb 2022).

References

Priollo, A., Casula, M., Olmastroni, E., Norata, G.D., Catapano, A.L., 2021. Global epidemiology of dyslipidemias. Nat. Rev. Cardiol. 18 (10), 689–700. https://doi.org/10.1038/s41569-021-00541-4.

Gebeegzelababeker, G., Belachew, T., Mehari, K., Tamiru, D., Spradley, F.T., 2021. Prevalence of dyslipidemia and associated risk factors among adult residents of Mekelle City, Northern Ethiopia. PLoS One 16 (2), e0243103.

World Health Organization (WHO) Jordan: Noncommunicable Diseases (NCD) Country Profiles, 2018. URL: https://www.who.int/nmh/countries/jor_zh.pdf (accessed 2 Feb 2022).

Alawneh, K.Z., Al Qawasmeh, M., Rafie, L.A., Abuazayb, B., Bani Hani, D.A., Abdalla, K.M., Al-Malayni, A.M., Fatafah, J., 2020. A snapshot of ischemic stroke risk factors, sub-types, and its epidemiology: Cohort study. Ann. Med. Surg. (Lond). 16 (59), 101–105. https://doi.org/10.1016/j.amsu.2020.09.016.

Abujbara, M., Batieha, A., Khader, Y., Jaddou, H., El-Khatreeb, M., Ajlouni, K., 2018. The prevalence of Dyslipidemia among Jordanians. J. Lipids 28 (2018), e298739.

Khader, Y.S., Batieha, A., El Khateeb, M., Al Omani, M., Ajlouni, K., 2010. Prevalence of dyslipidemia and its associated factors among Jordanian adults. J. Clin. Lipidol. 4 (1), 53–58.

Marcus, C.M., Ewert, C., Gelderblom, P., Thoelmann, M., Bica, B.W., Andall-Breeten, G., Bovet, P., Forzadett, F., Singh Gurung, M., Houbenau, C., Malekpour, M., Martins, J.S., Moghadss, S.S., Mohammadi, E., Norov, B., Knesel-Crooks, S., Wong-McClure, R., Davies, J.J., Hlatky, M.A., Atun, R., Barninghawen, T.R., Jakck, L.M., Manne-Goolch, J., Vollm, S., Deuslendal, M., Htet, A.S., Stigum, H., Hla, N.Y., Hlaing, H.H., Khaine, E.K., Khaing, W., Huang, X.B., 2021. Prevalence and related factors of dyslipidemia among urban and rural adults of the Yangon region of Myanmar: a cross-sectional study. BMJ Open 6 (8), e011649. https://doi.org/10.1136/bmjopen-2021-050436.

Pyone, Z.Z., Soe, Y.Y., Wai, M.M., Win, N., Bjertness, E., 2016. Consumption of fruits and vegetables among adults and its related factors in Myanmar: a cross sectional study. Asia Pac. J. Clin. Nutr. 25 (4), 403–408. https://doi.org/10.1016/S0228-4496(16)30036-3.

Khant, A.K., Khin, N.O., Mauk, K.K., Moe, E.E., Moe, H., Mon, K.K., Mya, K.S., Bonfoh, B., Mahande, M.J., Garikipati, V.N.S., 2020. Red meat consumption and its risk factors among adults aged ≥35 years in northern China: a cross-sectional study. BMC Public Health 20 (1), 1068. https://doi.org/10.1186/s12889-020-01952-2.

Zhang, F.L., Xing, Y.Q., Wu, Y.H., Liu, H.Y., Luo, Y., Sun, M.S., Guo, Z.N., Yang, Y., 2017. The prevalence, awareness, treatment, and control of dyslipidemia in northeast China: a population-based cross-sectional survey. Lipids Health Dis. 16 (1), 6. https://doi.org/10.1186/s12944-017-0453-2.

Tripathy, J.P., Thakur, J.S., Jeet, G., Chawla, S., Jain, S., Pal, A., Prasad, R., 2017. Burden and risk factors of dyslipidemia results from a STEPS survey in Punjab India. Diabetes Metab. Syndr. 11 (Suppl 1), S21–S27. https://doi.org/10.1016/j.dsx.2016.08.015.

Li, X., Liu, Y., Wang, Y., Zhang, Y., Qiao, D., Wang, B., Mao, Z., Yu, S., Wang, C., Li, W., Li, X., 2020. Association between dietary patterns and dyslipidemia in adults from the Henan Rural Cohort Study. Asia Pac. J. Clin. Nutr. 29 (2), 299–308. https://doi.org/10.1016/j.ajcn.2020.07.0013.

Diary, E.J., Leyaro, B.J., Kivoyo, S.I., Ngowi, B.J., Muusa, S.E., Mfumano, S.G., Bonfoh, B., Mahande, M.J., Garikipati, V.N.S., 2020. Red meat consumption and its association with hypertension and hyperlipidemia among adult Maasai pastoralists of Ngorongoro Conservation Arena, Tanzania. PLoS One 15 (6), e0235777.

Kjeldal, M., Het, A.S., Stigum, H., Ha, N.Y., Hlaing, H.H., Khan, I.K., Khan, A.K., Khan, N.O., Mauk, K.K., Moe, E.E., Moe, H., Mon, K.K., Mya, K.S., Myint, C.K., Myint, C.Y., Myint, M.M., Myint, O., New, A.A., Oo, I.S., Oo, K.S., Pyone, Z.Z., Soe, Y.Y., Wai, M.M., Win, N., Bjertness, E., 2016. Consumption of fruits and vegetables and associated factors for non-communicable diseases in the Yangon region of Myanmar: a cross-sectional study. BMJ Open 6 (8), e011649. https://doi.org/10.1136/bmjopen-2016-011649.

Huang, C., Zhang, W.Q., Tang, W.W., Liu, Y., Liu, J.X., Xu, R.H., Zhao, S.P., Wang, T.D., Huang, X.B., 2021. Prevalence and related factors of dyslipidemia among urban populations. J. Diabetes Metab. Disord. 19 (2), 1215. https://doi.org/10.1186/s12981-020-00838-x.
adults aged 35 to 79 years in Southwestern China. Sci. Rep. 11 (1), 17579. https://doi.org/10.1038/s41598-021-96664-w.

Erm, C., Hachisukanogu, A., Deger, O., Kocak, M., Topbas, M., 2008. Prevalence of dyslipidemia and associated risk factors among Turkish adults: Trabzon lipid study. Endocrine 34 (1–3), 36–51.

Malta DC, Szwarckopf CL, Machado ÉE, Pereira CA, Figuereido AW, Sá ACMGN, Velasquez-Melendez G, Santos FMD, Souza Junior PB, Stopa SR, Rosenfeld LG. Prevalence of altered total cholesterol and fractions in the Brazilian adult population: National Health Survey. Rev Bras Epidemiol. 2019 Oct 7;22(Suppl 02):E190005.SUL.P2. Portuguese. doi: 10.1590/1980-549720190005.supl.2.

Rao, W., Su, Y., Yang, G., Ma, Y., Liu, R., Zhang, S., Wang, S., Fu, Y., Kou, C., Yu, V., Yu, Q., 2016. Cross-Sectional Associations between Body Mass Index and Hyperlipidemia among Adults in Northeastern China. Int. J. Environ. Res. Public Health 13 (5), 516. https://doi.org/10.3390/ijerph13050516.

World Health Organization (WHO) (2018) STEPwise approach to surveillance (STEPS). URL: https://www.who.int/ncds/surveillance/steps/STEPS_Manual.pdf (accessed 10 October 2021).

Harvard School of Public Health. Abdominal obesity measurement guidelines for different ethnic groups, 2020. URL: https://www.hsph.harvard.edu/obesity-prevention-source/waist-circumference-guidelines-for-different-ethnic-groups/ (accessed 4 February 2022).

World Health Organization (WHO)-Europe. Body Mass Index. URL: https://www.euro.who.int/en/health-topics/disease-prevention/nutrition-and-physical-activity/body-mass-index-bmi (accessed 25 Jan 2022).

Chobanian, A.V., Bakris, G.L., Black, H.R., Cushman, W.C., Green, L.A., Izzo, J.L., et al., World Health Organization (WHO)- Europe. Body Mass Index. URL: https://www.euro.who.int/ncds/surveillance/steps/STEPS_Manual.pdf (accessed 10 October 2021).

Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA. 2001 May 16; 285(19):2486-97. doi: 10.1001/jama.285.19.2486.

Harvard School of Public Health. Abdominal obesity measurement guidelines for different ethnic groups, 2020. URL: https://www.hsph.harvard.edu/obesity-prevention-source/waist-circumference-guidelines-for-different-ethnic-grps/ (accessed 4 Feb 2022).

World Health Organization (WHO)-Europe. Body Mass Index. URL: https://www.euro.who.int/en/health-topics/disease-prevention/nutrition-and-physical-activity/body-mass-index-bmi (accessed 25 Jan 2022).

Armstrong, T., Bull, F., 2006. Development of the World Health Organization Global Physical Activity Questionnaire (GPAQ). J. Public Health 14, 66–70.

Kathr, R.R., Sumon, A.H., Molla, N.H., Hasan, M., Mirah, R., Tuba, H.R., Habib, A., Ali, N., 2022. The association between elevated lipid profile and liver enzymes: a study on Bangladeshi adults. Sci. Rep. 12 (1), 1711. https://doi.org/10.1038/s41598-022-05766-y.

Htet, A.S., Ekelidal, M.K., Aung, W.P., Moi Myint, A.N., Aye, W.T., Wai, M.M., Nu, T.T., Hla, E.M., Soe, P.P., Tun, N.W.Y., Angela, N., Khain, M.M., Htoo, A.K., Tun, S., Thitsar, P., Lwin, T., Wai, S.S., Aung, T.T., Thant, K.A., Aung Po, W.W., Gauzam, S., T., Naing, T.T., Tun, T.M., Myint, K.S., Oo, K.K., Mang, N.K.M., Naing, S.M., Zaw, K.K., Bjernes, M.B., Sherpa, L.Y., Oo, W.M., Stigum, H., Bjernes, E., 2017. Lipid profiles and determinants of total cholesterol and hypercholesterolaemia among 25-74-year-old urban and rural citizens of the Yangon Region, Myanmar: a cross-sectional study. BMJ Open 7 (11), e017465.

Chan, D.C., Pang, J., Watt, G.F., 2016. Dyslipidemia in Obesity. In: Ahima, R.S. (Ed.), Metabolic Syndrome. Springer International Publishing Switzerland, pp. 526-540. https://doi.org/10.1007/978-3-319-11251-0_30.

Mehio Sibai, A., Nasreddine, L., Mokdad, A.H., Adra, N., Tabet, M., Hwalla, N., 2010. Nutrition transition and cardiovascular disease risk factors in Middle East and North Africa countries: reviewing the evidence. Ann. Nutr. Metab. 57 (3–4), 193–203. https://doi.org/10.1159/000321527.

Opoku, S., Gan, Y., Yobo, E.A., Tenkorang-Twum, D., Yue, W., Wang, Z., Lu, Z., 2021. Awareness, treatment, control, and determinants of dyslipidemia among adults in China. Sci. Rep. 11 (1), 10056. https://doi.org/10.1038/s41598-021-89401-2.

Obsa, M.S., Ataro, G., Awoke, N., Jemal, B., Tilahun, T., Ayalew, N., Woldegeorgis, B.Z., Azeze, G.A., Haji, Y., 2022. Determinants of Dyslipidemia in Africa: a systematic review and meta-analysis. Front. Cardiovasc. Med. 8, 778891. https://doi.org/10.3389/fcvm.2021.778891.

Zhubi-Bukija, F., Bajraktari, G., Bitricic, I., Mikhalidis, D.P., Henein, M.Y., Lakotgviskis, G., Rexhaj, Z., Zhubi, E., Banach, M., Alooriu, F., Amar, F., Atanasov, A.G., Bajraktari, G., Banach, M., Bartlomieyczuk, M.A., Bjsaljovic, B., Bruckert, E., Cafferata, A., Ceska, R., Cicero, A.F.G., Collet, X., Descamps, O., Djuric, D., Durst, R., Ezov, M.V., Fras, Z., Gaita, D., Hernandez, A.V., Jones, S.R., Jozwiak, J., Kakauridze, N., Katiki, N., Khera, A., Kostner, K., Kuklitos, R., Lakotgviskis, G., Mancini, G.B.J., Marxus, A.D., Martin, S.S., Martino, J.A., Mazidi, M., Mikhailidis, D.P., Mirrakhiminov, E., Miserez, A.R., Mitchenko, O., Mioriarty, P.M., Nabavi, S.M., Nair, D., Panopatokos, D.B., Paragh, G., Pedla, P., Pemon, P.E., Petroulinizi, E., Pirro, M., Postadzhian, A., Puri, R., Reda, A., Reiner, Z., Riach, J., Richter, D., Rizzo, M., Ruscica, M., Sabekar, A., Sattar, N., Serhan, M.C., Shishah, A.M.A., Shek, A.B., Sirtori, C.R., Stefanuttii, C., Tomasik, T., Toth, P.P., Viigmiaa, M., Vinereanu D., Vohnout, B., von Haehling, S., Vstalv, M., Wond, N.D., Yeh, H.-L., Zhisheng, J., Zirlik, A., 2021. International Lipid Expert Panel (ILEP). The impact of type of dietary protein, animal versus vegetable, in modifying cardiometabolic risk factors: a position paper from the International Lipid Expert Panel (ILEP). Clin. Nutr. 40 (1), 255–276.

Soliman, G.A., 2019. Dietary fiber, atherosclerosis, and cardiovascular disease. Nutrients 11 (5), 1155. https://doi.org/10.3390/nu11051155.

Arnett, D.K., Blumenenthal, R.S., Albert, M.A., Buroker, A.B., Goldberger, Z.D., Hahn, E.J., Himmeldar, C.D., Khera, A., Lloyd-Jones, D., McEvoy, J.W., Michos, E.D., Miedema, M.D., Munoz, D., Smith Jr, S.C., Wirani, S.S., Williams Sr, K.A., Yeboah, J., Ziaiean, B., 2019. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: executive summary: a report of the American college of cardiology/American heart association task force on clinical practice guidelines. Circulation 140 (10), e565-e595. https://doi.org/10.1161/CIR.0000000000006777.