The Hedgehog signalling pathway in bone formation

Jing Yang1,2, Philipp Andre2, Ling Ye1 and Ying-Zi Yang2,3

The Hedgehog (Hh) signalling pathway plays many important roles in development, homeostasis and tumorigenesis. The critical function of Hh signalling in bone formation has been identified in the past two decades. Here, we review the evolutionarily conserved Hh signalling mechanisms with an emphasis on the functions of the Hh signalling pathway in bone development, homeostasis and diseases. In the early stages of embryonic limb development, Sonic Hedgehog (Shh) acts as a major morphogen in patterning the limb buds. Indian Hedgehog (Ihh) has an essential function in endochondral ossification and induces osteoblast differentiation in the perichondrium. Hh signalling is also involved intramembrane ossification. Interactions between Hh and Wnt signalling regulate cartilage development, endochondral bone formation and synovial joint formation. Hh also plays an important role in bone homeostasis, and reducing Hh signalling protects against age-related bone loss. Disruption of Hh signalling regulation leads to multiple bone diseases, such as progressive osseous heteroplasia. Therefore, understanding the signalling mechanisms and functions of Hh signalling in bone development, homeostasis and diseases will provide important insights into bone disease prevention, diagnoses and therapeutics.

International Journal of Oral Science (2015) 7, 73–79; doi:10.1038/ijos.2015.14; published 29 May 2015

Keywords: bone development; bone disease; endochondral ossification; hedgehog; homeostasis; joint formation; patterning

HEDGEHOG SIGNAL TRANSDUCTION

The Hedgehog (Hh) signalling pathway is evolutionarily conserved and plays critical roles in development and homeostasis. Disruption of Hh signalling leads to tumour formation and other diseases.1–5 The Hh gene was first identified in Drosophila melanogaster and was named according to the phenotypes of the Drosophila mutant embryo, which displayed disorganised bristles that resembled Hh spines.6

Hh protein maturation

The Hh protein undergoes several steps of processing, including proteolytic cleavage, glycosylation and lipid modification. Newly synthesised Hh protein is first translocated to the endoplasmic reticulum (ER) and is autoproteolytically cleaved into C-terminal Hh (Hh-C) and N-terminal Hh (Hh-N). During this process, Hh-N is dually modified by the addition of palmitate and cholesterol to the N- and C-termini, respectively.7–8 Although Hh-C is critical for catalysing the autoproteolytic cleavage, it is rapidly degraded thereafter in the proteasome.9 The dually lipid-modified Hh-N is secreted and associates with the lipid bilayer of the plasma membrane. With the assistance of Dispatched (Disp), a transmembrane transporter-like protein, Hh protein is released from Hh-producing cells and exerts its effect up to a distance of 300 μm in the vertebrate limb bud.10–12

Hh receptor complex and regulation of the Hh pathway in Drosophila

Patched (Ptc) is a transmembrane protein and was the first identified Hh-binding protein that inhibits Hh signalling in the absence of Hh protein binding.13–15 Ptc suppresses the activity of the seven transmembrane protein Smoothened (Smo) by triggering its degradation and/or intracellular vesicle trafficking16–18 (Figure 1a). The intracellular Hh signalling components include an important complex composed of Costal 2 (Cos2), Fused (Fu), Suppressor of Fused (SuFu) and Cubitus interruptus (Ci). When the Hh ligand binds to Ptc, the inhibition of Smo by Ptc is relieved.19–21 Smo is then stabilised on the plasma membrane and activated. Phosphorylation of Smo by casein kinase 1 (CK1), casein kinase 2 (CK2), G protein-coupled receptor (Gpcr) Kinase 2 (Gprk2) and protein kinase A (PKA) plays a critical role in Smo activation. The cytoplasmic tail of Smo can recruit Cos2, a kinasin-like protein. Cos2 is critical because it associates with Ci, the transcriptional effector of Hh signalling; regulates Ci’s processing; and anchors Ci in the cytoplasm.22–24 In the absence of Hh, Ci is phosphorylated by PKA, CK1 and glycogen synthase kinase-3β (Gsk3β) in the Cos2 complex, partially degraded by a Slimb (Slmb)-regulated ubiquitination pathway and the proteasome to be converted into its repressor form CiR (Figure 1a). However, in the presence of Hh ligand, Cos2 is recruited to Smo, released from Ci and phosphorylated by Fu. In this case, Ci is activated and not cleaved. The full-length Ci
then translocates into the nucleus and activates the transcription of Hh target genes25–26 (Figure 1b).

Hh pathway in mammals

In mammals, the Hh signalling pathway is mostly conserved. However, this pathway requires more components and, most importantly, the mammalian Hh signal transduction requires a distinct cell organelle, the cilium.27–29 Approximately 800 cilium proteins have been found in mammals.30–31 The relationship between cilium and Hh signalling is best understood among cilium-transduced signalling pathways.29,32 The Hh homologous proteins in mammals are Sonic hedgehog (Shh), Indian hedgehog (Ihh) and Desert hedgehog (Dhh).33–35 In the absence of Hh ligands, protein Ptc homologues 1 and 2 (Ptc1 and Ptc2), the mammalian homologues of Ptc, are enriched on and around cilium.36 Smo, the mammalian counterpart of *Drosophila* Smo, is kept outside of the cilium and inactive (Figure 1c). When Hh ligands bind to Ptc1, Ptc1 exits the cilium and Smo is translocated to the cilium. The repressor form of the Gli (GliR), Sufu and Kif7 complex travels from the base of the cilium to the top via intraflagellar transport (IFT). Kif7 blocks the function of Sufu at the top of the cilium. Gli is not processed and is maintained its active form (GliA). Activated Gli travels from the top of the cilium to the cytoplasm via IFT and translocates to the nucleus to transcript target genes thereby activating Hh signalling.

![Figure 1 The Hedgehog signalling pathway in *Drosophila* and vertebrates.](image)

(a) In *Drosophila*, Ptc inhibits Smo activity by suppressing the membrane stabilisation of Smo in the absence of Hh ligand. The Cos2, Ci, Fu and Sufu complex recruits kinases, such as PKA, CK1, Gsk3β, and promotes the cleavage of full-length Ci to become its repressor form (CiR) in a Slmb-dependent manner. Hh signalling transduction is blocked. (b) In *Drosophila*, Smo inhibition by Ptc is removed in the presence of Hh ligand. Smo is relocated to the plasma membrane and activated by several kinases, such as CK1, CK2, Gprk2 and PKA. The Fu-Cos2 complex is recruited to Smo and releases Ci. The released Ci is not cleaved and remains in its active form (CiA), CiA translocates into the nucleus and activates Hh downstream gene expression. (c) In vertebrates, Ptc1 is located in the cilium, whereas Smo is kept outside of cilium in the absence of Hh ligands. Gli is phosphorylated by kinases, such as PKA, CK1 and Gsk3β, which promote the processing of the repressor form (GliR) in a β-Trcp-dependent manner. Hh signalling is blocked. (d) In vertebrates, when Hh ligands bind to Ptc1, Smo inhibition is relieved. Ptc1 exits from the cilium, whereas Smo is translocated to cilium. The repressor form of the Gli (GliR), Sufu and Kif7 complex travels from the base of the cilium to the top via intraflagellar transport (IFT). Kif7 blocks the function of Sufu at the top of the cilium. Gli is not processed and is maintained its active form (GliA). Activated Gli travels from the top of the cilium to the cytoplasm via IFT and translocates to the nucleus to transcript target genes thereby activating Hh signalling.
duction and gradient establishment.39 Suppressor of fused homologue (Sufu) and kinesin family member 7 (Kif7), the mammalian homologues of \textit{Drosophila} SuFu and Cos2,40 are both located in the primary cilium and act as dynamic regulators of Hh signal transduction.41–46 Kif7 plays a dual role, as it does in \textit{Drosophila}. Glioma-associated oncogene family members (Glii/2/3) are the mammalian homologues of Ci. In the absence of Hh protein, Kif7 and PKA convert Gli3, and to a lesser extent Gli2, to their repressor forms via proteolytic processing at the base of the cilium and Hh signal transduction is blocked43–44 (Figure 1c). In the presence of Hh ligands, Smo is relocated to the cilium and is phosphorylated, which abolishes PKA function and allows for the movement of Kif7 and the Gli2/3-SuFu complex from the base of the cilium to the top.37–48 In this process, Kif7 plays a role in facilitating protein trafficking and disassociating binding between Gli and SuFu,48–49 which leads to Gli2/3 activation as active forms that relocate to the nucleus to activate the expression of Hh target genes, such as \textit{Pchtl}, Gli1 and \textit{Hhip1}.	extsuperscript{50–51} Pchtl itself is a transcriptional target of Hh signalling; therefore, it forms a negative feedback system in \textit{H}h signalling.40 Interestingly, Stk36, the mammalian homologue of Fused, becomes a component that is required in ciliogenesis rather than a key regulator of Hh signalling in \textit{Drosophila}.52 In some situations, Hh signalling is not transduced through Gli, which is referred to as non-canonical Hh signalling.39,53–54 However, more studies are necessary to understand how the cilyon controls specific roles of each component in Hh signalling and trafficking in the cilium.

HH SIGNALLING AND BONE DEVELOPMENT

There are two processes of bone development in vertebrates: intramembranous ossification in most craniofacial bones and endochondral ossification in other parts of the skeletal system. During endochondral ossification, mesenchymal progenitor cells condense and differentiate into chondrocytes first. These chondrocytes go through a tightly regulated developmental programme of proliferation, prehypertrophy, hypertrophy and apoptosis and are eventually replaced by osteoblasts in the ossification centre.55 Perichondral cells, the cell sheath surrounding chondrocytes, differentiate into osteoblasts and migrate to the ossification centre together with blood vessels to form the trabecular bones. In contrast, during intramembranous ossification, condensed mesenchymal progenitor cells differentiate into osteoblasts and form bone directly.

In general, Shh acts at early stages of development to regulate patterning and growth.56 Ihh acts later in the process of endochondral bone formation in limb development.57

Hh and limb patterning

During early limb development, \textit{Shh} is expressed in the posterior margin of the limb bud called the zone of polarising activity (ZPA).58 The limb bud is the primordium of the future limb. Shh acts as an important morphogen that patterns the anteroposterior axis of the future limb.59 Ectopic \textit{Shh} expression in the anterior limb bud leads to mirror image digit duplication.60 Gli3 is expressed in an anterior to posterior gradient60 and can be downregulated by Hand2, which is expressed in the posterior region, where Shh signalling is high.61 Hh mutations can lead to either abnormal digit number or changes in digit identity.62–64 Towers \textit{et al.} recently reported that Shh expression in the chick limb bud is regulated by an intrinsic cell cycle clock.65 According to that model, the periodic expression of Shh regulated by cell cycle progression can be reset, whereas anterior-posterior position cannot be changed.65

Hh and endochondral ossification

Ihh is expressed in the prehypertrophic chondrocytes adjacent to the proliferation zone. Parathyroid hormone-related peptide (PTHrP), which resembles parathyroid hormone (PTH), is expressed by periarticular cells during endochondral ossification.66 Ihh and PTHrP form a feedback loop to regulate growth plate and long bone development.18,67 Ihh stimulates PTHrP expression in perichondrocytes.57,68–69 PTHrP diffuses into the growth plate region to promote the proliferation of chondrocytes. Chondrocytes exit the cell cycle and undergo hypertrophy when PTHrP expression drops below a critical level.70 In the absence of Ihh, the expression of PTHrP is reduced,67 leading to an accelerated hypertrophy of chondrocytes.69,71–72 Loss of endochondral ossification due to abolished osteoblast differentiation is also observed in the absence of Ihh signalling.67,73 Bone morphogenetic proteins (BMPs), fibroblastic growth factors (FGFs) and mechanical loading may have effects on this feedback system.72

Jemtland \textit{et al.} demonstrated that Ihh is also expressed in osteoblasts postnatally in rats and mice.74–75 Gli2 and Gli3 are essential for mouse skeletal development, whereas Gli1 is not critical in this process.2,76–77 Gli1 acts synergistically with Gli2 and Gli3 in osteogenesis.78 Removing Gli3 rescues the Ihh null mice phenotype in chondrocyte hypertrophy.39,79–80 whereas removing Gli3 and activating Gli2 at the same time restore Runx 2 expression in the absence of Ihh.80–81 Therefore, the function of Ihh is mainly to suppress the Gli3 repressor function in regulating chondrocyte hypertrophy during cartilage development, whereas osteoblast differentiation requires Hh signalling to activate Gli2 activator activity. Our lab has shown that Wnt/\textit{β}-catenin signalling is required downstream of Ihh signalling in regulating osteoblast differentiation during endochondral bone development by establishing double mutant mice.82 In this model, Hh signalling is activated and Wnt/\textit{β}-catenin is inactivated by generating a chondrocyte-specific deletion of \textit{Pchtl} and \textit{β}-catenin in mouse. By examining the expression of the Ihh signalling target genes \textit{Hip} and \textit{Gli} and the Ihh downstream gene \textit{Pthp}, strong activation was found in \textit{Pchtl} single mutant and \textit{Pchtl}, \textit{β}-catenin double mutant mice. This study demonstrates that \textit{β}-catenin is not required in Ihh signalling. Bone formation was blocked in \textit{β}-catenin single mutants and \textit{Pchtl}, \textit{β}-catenin double mutant mice, which indicates that Wnt/\textit{β}-catenin is required for bone formation and acts downstream of Ihh signalling.83,84 Recent studies have also demonstrated that Ihh induces collagen type X (Col10\textit{α}1) expression through the direct regulation of the Col10\textit{α}1 promoter via Gli1 or Gli2 or indirect interaction with the Runx2/smads pathway.85 The Bmp pathway also interacts with the Hh pathway during endochondral ossification. It has been reported that BMP signalling acts downstream of the Hh pathway and regulates osteoblast cell differentiation from perichondrial cells.84

Hh and intramembranous ossification

In intramembranous or dermal bone formation, Hh signalling is also required. \textit{Ihh} -/- mice are observed to have smaller calvaria with reduced expanse, thickness and mineralization and widened sutures.67,85–86 Lenton \textit{et al.} further studied the mechanism underlying this phenotype. They found that \textit{Ihh}, which is expressed at the osteogenic edge of growing cranial bones, promotes bone formation by regulating osteogenic differentiation rather than proliferation. Loss of \textit{Ihh} leads to a reduction of BMP2/4, suggesting that BMP2/4 is downstream of \textit{Ihh} in the intramembrane ossification process.86
Rice et al. and Jenkins et al. found that deletion of Gli3 or RAB23, the repressors of Hh signalling, results in an increased ossification of the calvarial bone, causing craniostenosis.87-88 In zebrafish, Huycke et al. demonstrated that in the craniofacial bone oPCR (OP), a dermal bone model, Hh signalling mediates early morphogenesis in intramembranous bone formation and that Ihh is expressed in active osteoblasts along the growing OP in the second phase of morphogenesis.39 In addition, Shh expression is found in cranial bones.90 Taken together, these findings show that Hh serves as a positive regulator in intramembranous ossification.

Hh and joint formation

During synovial joint formation, ectopic Hh signalling in the cartilage leads to joint fusion. Overexpression of Shh in the cartilage caused joint fusion.81 Mak et al. further demonstrated that Ihh and Wnt signalling interact with each other in regulating synovial joint formation in developing cartilage by upregulating Ihh signalling and inactivating Wnt signalling in a mouse model simultaneously.82,91-92 Ihh in the joint must be kept at a low level to prevent joint fusion.

HH signalling and bone homeostasis

Bone remodelling is a lifelong process that regulates bone mass and quality. During this process, osteoblasts of mesenchymal stem cell origin are responsible for bone formation, whereas osteoclasts derived from monocytes are responsible for bone resorption. These two cell types maintain the balance of bone formation and resorption during bone homeostasis through a coupling and feedback mechanism. Osteoblasts secrete the receptor activator of NF-kB ligand (RANKL) and Osteoprotegerin (OPG). The former binds to the receptor activator of NF-kB (RANK) on monocytes to stimulate osteoclast differentiation in the presence of monocyte colony stimulating factor (M-CSF). The latter is a decoy receptor of Rankl and blocks osteoclast induction by competing with Rankl to bind Rank.

Ihh is expressed in growth plate chondrocytes in postnatal humans and rodents as well as osteoblasts in postnatal human and mice.98,73,93 The growth plate is composed of chondrocytes undergoing constant mitosis at the end of each long bone and elongates the long bones by pushing the old chondrocytes into the middle shaft. The chondrocytes in growth plates exhibit increased apoptosis under the control of oestrogen levels in puberty.94 Increased bone mass is observed in Ptc1-deficient mice and patients. An \textit{in vitro} study showed that Ptc1-deficient osteoblast precursor cells differentiate into osteoblasts at an accelerated rate as a result of an enhanced response to runt-related transcription factor 2 (Runx2) and reducing the generation at an accelerated rate as a result of an enhanced response to runt-related transcription factor 2 (Runx2) and reducing the generation 95. Consistent with this result, Gli1-haploinsufficient mice exhibit reduced bone mass with impaired osteoblast differentiation and increased osteoclastogenesis.96 Furthermore, Kingston et al. found that Hh signalling plays an important role in mature osteoblasts. Activated Hh signalling in mature osteoblasts in adult mice leads to fragile long bones with significantly reduced bone density. The authors demonstrated that the reduced bone mass is due to enhanced bone resorption by osteoclasts. They further showed, at the cellular and molecular levels that increased Hh signalling in mature osteoblasts promoted RANKL expression by upregulatingPTHPr expression. PTHPr then acts through PKA and its target transcription factor CREB to regulate Rankl expression. Thus, Hh signalling indirectly induces osteoclast maturation and promotes bone resorption.97 Another \textit{in vitro} study showed that Shh upregulates Oss expression in osteoblast cell lines,98 increases osteoblast production and indirectly upregulates osteoclast activity, resulting in more bone resorption and less bone strength.97,99 Furthermore, Ihh and Ptc1 are upregulated during the initial stage of fracture repair100-102 and Shh is activated in osteoblasts at the remodelling site of fractures to regulate osteoblast proliferation, differentiation and osteoclast formation as well as vascularization.103-105 Tissue engineering experiments using implanted Ihh/MSCs/scaffold complexes showed increased bone repair ability.106 The latest study by Benjamin’s group showed that Gli11 cells are located in the perivascular region and act as mesenchymal stem cells to contribute to organ fibrosis, especially after kidney, lung, liver and heart injury.107 Zhao et al. demonstrated that Gli11 cells in mouse incisors expressed MSCs surface markers and contributed to dentin tubules after tooth injury.108 However, whether stem cells mediate the effects of Hh signalling in bone repair remains unknown. Taken together, these findings show that the Hh signalling pathway plays a critical role in bone homeostasis.

HH signalling and bone disease

Hh signalling is a key factor in regulating bone development, homeostasis and repair. Abnormalities of the Hh pathway result in various bone diseases. Gao et al. showed that mutations in Ihh resulting human brachydyactyly type A1 (BDA1), which is characterised by shortened or missing middle phalanges.109-110 One of the mutations was knocked into the mouse Ihh gene to establish the DBA1 mouse model. It was found that a BDA1 mutation (E95K) affects the range and capacity of Ihh signalling via its interaction with Hh co-receptors, such as Ptc1 and Hip1.111 A Gli3 mutation is reported to cause GrieHchepalopolysyndactyly, Pallister–Hall syndrome or postaxial polydactyly type 3, which are characterised by various bone anomalies, such as syndactyly, polydactyly, abnormality of limbs or skull or hip dislocations.112-114 VACTERL Syndrome, which involves vertebral defects and limb abnormalities, is also related to Gli2 or Gli3 mutations.115 Shh mutations are observed in patients with Smith–LeDili–Opitz syndrome (SLOS), which is characterised by syndactyly and polydactyly in bone abnormalities.116 \textit{PTCH1} mutations cause Gorlin syndrome, which is also known as nevoid basal cell carcinoma syndrome, in which bone abnormalities include polydactyly, rib anomalies, ectopic ossification, spina bifida and others.117-119 Genome-wide association studies (GWAS) have shown that Hh signalling is an important regulator of human height.120 GWAS have also revealed Shh as an important regulating gene for polydactyly.121 Jean et al. found that Hh signalling is upregulated in patients with progressive osseous heteroplasia (POH).122 POH was previously found to be caused by a null mutation of \textit{GNAS}, which encodes \(G_{\alpha}\text{sr}\), which encodes \(G_{\alpha}\text{sr}\). \(G_{\alpha}\text{sr}\) transduces signals from G protein-coupled receptors (GPCRs). The main symptom of POH is progressive ankylosis and growth retardation caused by ectopic ossification from mesenchymal progenitor cells.122-123 In \textit{Prx1-1-crc}, \textit{Gnas}106-107, \textit{Prx1-1-crc} and \textit{Gnas}107 mice, Jean et al. studied the underlying mechanism of POH. The authors demonstrated that Hh signalling activation is sufficient and necessary to cause heterogeneous ossification and that \(G_{\alpha}\text{sr}\) inhibits Hh signalling through CAMP and PKA.92 In normal soft tissues, Hh signalling must be rigorously suppressed by \(G_{\alpha}\text{sr}\) to prevent bone formation. Xuelian He et al. also indicated that \(G_{\alpha}\text{sr}\) inhibits Hh signalling to prevent medulloblastoma,126 which shows that understanding the mechanisms underlying bone diseases has a broad impact in other fields such as brain tumour formation. Tiet and Alman identified that disruption of the Ihh/PTHrP feedback loop and upregulating Hh signalling results in cartilaginous neoplasms such as enchondromas and osteochondromas during childhood.127 In addition, Hh signalling has been reported to play a role in promoting osteoblast differentiation128-132 and
proliferation89 and to inhibit adipocyte differentiation,133 which implies that Hh signalling can regulate bone density and might become a target for the treatment of patients with osteoporosis. Given the multiple important roles of Hh signalling in bone development and homeostasis, it is not surprising that disruption of Hh signalling causes many bone diseases.

SUMMARY

The Hh signalling pathway is critical for embryonic bone development as well as bone remodelling throughout postnatal life. Disruption of Hh signalling causes severe bone diseases. Enhancing Hh signalling in bone fracture patients may improve the bone repair process. Applying Hh inhibitors may have a promising effect in treating POH. In addition, due to the genetic relationship between Hh and Wnt/\beta-catelin signalling, maintaining the appropriate level of Hh and Wnt/\beta-catelin signalling is critical in bone formation. Extreme expression of Hh and Wnt/\beta-catelin signalling results in either insufficient bone formation in skeleton-like osteoporosis or ectopic ossification in soft tissues. Furthermore, given that Hh is downregulated in postnatal bones,134 it may be associated with age-related bone diseases. Therefore, a better understanding of the functional mechanisms of Hh signalling in bone might have an important clinical impact.

ACKNOWLEDGEMENTS

This work is supported by an intramural research programme, NHGRI, National Institutes of Health (NIH); the National Science Foundation for Excellent Young Scholars of China (grant no. 813229170); the Innovative Team of Sichuan Province (2015TD001); and the China Scholarship Council.

1. Zhang Y, Kalderon D. Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. *Nature* 2001; 410:6828: 599–604.
2. Hui CC, Joyner AL. A mouse model of greig cephalopolysyndactyly syndrome: the extra-toes mutation contains an intragenic deletion of the Gli3 gene. *Nat Genet* 1993; 3(3):241–245.
3. Thayer SP, di Magliano MP, Heiser PW et al. Hedgehog signalling causes many bone diseases. *Exp Cell Res* 2001; 262:400–4010.
4. Alcedo J, Ayzenzon M, Von Ohlen T et al. Hedgehog signalling causes many bone diseases. *Exp Cell Res* 2001; 262:400–4010.
5. Chen CH, von Kessler DP, Park W et al. Nuclear trafficking of Cubitus interruptus in the transcriptional regulation of Hedgehog target gene expression. *Cell* 1999; 98(3): 305–316.
6. Wang G, Amarni K, Wang B et al. Interactions with Costal2 and suppressor of fused regulate nuclear translation and activity of cubitus interruptus. *Genes Dev* 2000; 14(22): 2893–2905.
7. Møthi N, Basler K. Suppressor of fused opposes hedgehog signal transduction by impeding nuclear accumulation of the activator form of Cubitus interruptus. *Development* 2000; 127(18): 4001–4010.
8. Price MA, Kalderon D. Proteolysis of the Hedgehog signalling effector Cubitus interruptus requires phosphorylation by glycogen synthase kinase 3 and casein kinase 1. *Cell* 2002; 108(6): 823–835.
9. Jia J, Amarni K, Wang G et al. Shaggy/GSK3 antagonizes Hedgehog signalling by regulating Cubitus interruptus. *Cell Reports* 2012; 1(5): 416–429.
10. Lum L, Yao S, Mozer B et al. Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. *Science* 2003; 299(5615): 2039–2045.
11. Robbins DJ, Nybakken KE, Kobayashi R et al. Hedgehog elicits signal transduction by means of a large complex containing the kinesin-related protein Costal2. *Cell* 1997; 90(2): 225–234.
12. Blau JE, van den Heuvel M, Ingham PW. Smoothened encodes a receptor-like serpentine protein required for hedgehog signalling. *Nature* 1996; 382(6591): 547–551.
The Hedgehog signalling pathway in bone formation

J Yang et al

50 Li ZJ, Nieuwenhuis E, Nien W et al. Kif7 regulates Glis3 through Sufu-dependent and independent functions during skin development and tumorigenesis. Development 2012; 139(22): 4152–4161.

51 Barnfield PC, Zhang X, Thanabalasingham V et al. Negative regulation of Glis1 and Glis2 activation function by Suppressor of fused through multiple mechanisms. Differentiation 2005; 73(8): 397–405.

52 Wilson CW, Nguyen CT, Chen MH et al. Fused has evolved divergent roles in vertebrate Hedgehog signalling and mobile ciliogenesis. Nature 2009; 459(7243): 98–102.

53 Brennan D, Chen X, Cheng L et al. Noncanonical Hedgehog signalling. Vitam Horm 2012; 88: 55–72.

54 Jenkins D. Hedgehog signalling: emerging evidence for non-canonical pathways. Cell Signal 2009; 21(7): 1023–1034.

55 Bitgood MJ, McMahon AP. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Development 1999; 126: 126–138.

56 Suzuki T. How is digit identity determined during limb development? J Exp Embryo Morphol 1975; 33(3): 581–606.

57 Kronenberg HM. Developmental regulation of the growth plate. Nature 2003; 423(6937): 332–336.

58 Wang B, Fallon JF, Beachy PA. Hedgehog-regulated processing of Glis3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell 2000; 100(4): 423–434.

59 Kicheva A, Cohen M, Briscoe J. Developmental pattern formation: insights from physics and biology. Science 2013; 343(6164): 210–212.

60 Wada N, Kawakami Y, Nohno T. Sonic hedgehog signalling during digit duplication and expansion after application of recombinant protein and expressing cells. Dev Growth Differ 1999; 41(5): 567–574.

61 teWelscher P, Fernandez-Teran M, Ros MA et al. Mutant genetic antagonism involving Glis3 and dHAND preprograms the vertebrate limb bud mesenchyme prior to SHH signal transduction. Development 2002; 129(16): 421–426.

62 Suzuki T. How is digit identity determined during limb development? Dev Growth Differ 2013; 55(1): 130–138.

63 Towers M, Mahood R, Yin Y et al. Integration of growth and specification in chick wing digit-patterning. Nature 2008; 452(7189): 882–886.

64 Day TF, Yang Y. Wnt and hedgehog signalling pathways in bone development. J Bone Joint Surg Am 2008; 90(Suppl 1): 19–24.

65 Chinnaiya K, Tickle C, Towers M. Sonic hedgehog-expressing cells in the developing limb measure time by an intrinsic cell cycle clock. Nat Commun 2014; 5: 4230.

66 Bitgood MJ, McMahon AP. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev Biol 1995; 172(1): 126–138.

67 St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signalling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 1999; 13(16): 2072–2086.

68 Kindblom JM, Nilsson O, Hurme T et al. Expression and localization of Indian hedgehog (ihh) and parathyroid hormone related protein (PThPr) in the human growth plate during perinatal development. J Endocrinol 2002; 174(2): R1–R6.

69 Vortkamp A, Lee K, Lanske B et al. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 1999; 276(5753): 633–632.

70 Zhao Q, Brauer PR, Xiao L et al. Expression of parathyroid hormone-related peptide (PThPr) and its receptor (PTHrP)R during the histogenesis of cartilage and bone in the chick embryo. J Anat 2003; 203(1): 137–151.

71 Karpener M, Lansen P, de Laat SW et al. Parathyroid hormone related peptide mRNA expression during murine postimplantation development: evidence for involvement in multiple differentiation processes. Int J Dev Biol 1996; 40(3): 599–608.

72 Long F, Linsenmayer TF. Regulation of growth region cartilage proliferation and expansion of the developing limb bud. Dev Biol 1998; 196(2): 1678–1688.

73 Long F, Omitz DM. Development of the endochondral skeleton. Cold Spring Harb Perspect Biol 2013; 5(1): a008334.

74 Murakami S, Noda M. Expression of Indian hedgehog in osteoblasts and its posttranscriptional regulation by transforming growth factor-beta. Endocrinology 1997; 138(5): 1972–1978.

75 Zhong M, Carney DH, Boyan BD et al. 17-Estradiol regulates rat growth plate chondrocyte apoptosis through a mitochondrial pathway involving nitric oxide or MAPKs. Endocrinology 2011; 152(1): 82–92.

76 Ohba S, Kawaguchi H, Kugiumyt F et al. Patched1 haploinsufficiency increases adult bone mass and modulates Glis3 repressor activity. Dev Cell 2008; 14(6): 699–699.

77 Kitaura Y, Hojo H, Komiya Y et al. Glil haploinsufficiency leads to decreased bone mass with an uncoupling of bone metabolism in adult mice. PLoS One 2014; 9(10): e109597.

78 Mak KK, Bi Y, Wan C et al. Hedgehog signalling in mature osteoblasts regulates bone formation and resorption by controlling PThPr and RANKL expression. Dev Cell 2008; 14(5): 674–688.

79 Tian Y, Xu Y, Fu G et al. Osterix is required for Sonic hedgehog-induced osteoblastic MCT33-E1 cell differentiation. Cell Biochem Biophys 2012; 64(3): 169–176.

80 Kim JJ, Rice DP, Kettunen PJ et al. FGF - BMP- and Shh-mediated signalling pathways in the architecture and mechanical properties of trabecular bone. J Bone Miner Res 2009; 24(9): 1598–1607.

81 Ichihara H, Akino K, Shimogori H et al. Hedgehog signalling molecules in bone marrow cells at the initial stage of fracture repair. Biochem Biophys Res Commun 1999; 262(2): 485–493.

82 Miyaji T, Nakata K, Iwasaki M et al. Hedgehog signaling molecules in bone marrow cells induce bone formation in vivo: implication for postnatal bone repair. Am J Pathol 2010; 177(6): 3100–3111.

83 Horikiri Y, Shimo T, Kurio N et al. Sonic hedgehog regulates osteoblast function by focal adhesion kinase signaling in the process of fracture healing. PLoS One 2013; 8(10): e76785.

84 Fuchs S, Dohle E, Kirkpatrick CJ. Sonic Hedgehog-mediated synergistic effects guiding angiogenesis and osteogenesis. Vitam Horm 2012; 88: 491–506.

85 Petrosa R, Joyner AL. Roles for Hedgehog signaling in adult organ homeostasis and repair. Development 2014; 141(18): 3445–3457.

86 Mesenchymal stem cells overexpressing Ihh promote bone repair. J Orthop Surg Res 2014; 9(1): 102.

87 Kramm M, Schneider RK, DiRocco DP et al. Parvicalcical Gl1113” progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 2015; 16(1): 51–66.

88 Zhao H, Feng J, Seidel K et al. Secretion of sh by a vascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor. Cell Stem Cell 2014; 14(2): 160–173.

89 Gao B, Guo J, She C et al. Mutations in IHH, encoding Indian hedgehog, cause dachydyctyloty phalangeal dystrophy Type A-1. Nat Genet 2001; 28(4): 386–388.

90 Gao B, He L. Answering a century old riddle: brachydactyly type A1. Nat Genet 2001; 28(4): 386–388.

91 Ito H, Akiyama H, Shigeno C et al. Hedgehog signalling molecules in bone marrow cells at the initial stage of fracture repair. Biochem Biophys Res Commun 1999; 262(2): 485–493.

92 Miyaji T, Nakata K, Iwasaki M et al. Hedgehog signaling molecules in bone marrow cells induce bone formation in vivo: implication for postnatal bone repair. Am J Pathol 2010; 177(6): 3100–3111.

93 Horikiri Y, Shimo T, Kurio N et al. Sonic hedgehog regulates osteoblast function by focal adhesion kinase signaling in the process of fracture healing. PLoS One 2013; 8(10): e76785.
115 Rittler M, Paz JE, Castilla EE. VACTERL association, epidemiologic definition and delineation. Am J Med Genet 1996; 63(4): 529–536.
116 Shefer S, Salen G, Batta AK et al. Markedly inhibited 7-dehydrocholesterol-delta 7-reductase activity in liver microsomes from Smith-Lemli-Opitz homozygotes. J Clin Invest 1995; 96(4): 1779–1785.
117 Bale SJ, Amos CI, Parry DM et al. Relationship between head circumference and height in normal adults and in the nevoid basal cell carcinoma syndrome and neurofibromatosis type I. Am J Med Genet 1996; 63(4): 206–210.
118 Gorlin RJ. Nevoid basal cell carcinoma syndrome. Dermatol Clin 1995; 13(1): 113–125.
119 Kimonis VE, Goldstein AM, Pastakia B et al. Clinical manifestations in 105 persons with nevoid basal cell carcinoma syndrome. Am J Med Genet 1997; 69(3): 299–308.
120 Lettre G, Jackson AU, Gieger C et al. Identification of ten loci associated with height highlights new biological pathways in human growth. Nat Genet 2008; 40(5): 584–591.
121 Sun Y, Liu R, Zhao G et al. Genome-wide linkage analysis and association study identifies loci associated with height highlights new biological pathways in human growth. Nat Genet 2008; 40(5): 584–591.
122 Kaplan FS, Hahn GV, Zasloff MA. Heterotopic ossification: two rare forms and what they can teach us. J Am Acad Orthop Surg 1994; 2(5): 288–296.
123 Shore EM, Ahn J, Jan de Beur SM, Yandow SM et al. Deficiency of the alpha-subunit of the stimulatory G protein and severe extraskeletal ossification. J Bone Miner Res 2000; 15(11): 2074–2083.
124 Eddy MC, Jan De Beur SM, Yandow SM et al. Deficiency of the alpha-subunit of the stimulatory G protein and severe extraskeletal ossification. J Bone Miner Res 2000; 15(11): 2074–2083.
125 Plagge A, Kelsey G, Germain-Lee EL. Physiological functions of the imprinted Gnas locus and its protein variants Galpha(s) and XLalpha(s) in human and mouse. J Endocrinol 2008; 196(2): 193–214.
126 He X, Zhang L, Chen Y et al. The G protein α-subunit Gαs is a tumor suppressor in Sonic hedgehog-driven medulloblastoma. Nat Med 2014; 20(9): 1035–1042.
127 Tiet TD, Alman BA. Developmental pathways in musculoskeletal neoplasia: involvement of the Indian Hedgehog-parathyroid hormone-related protein pathway. Pediatr Res 2003; 53(4): 539–543.
128 Wang W, Niu N, Ma Y et al. Chondrocytic Atf4 regulates osteoblast differentiation and function via Iih. Development 2012; 139(3): 601–611.
129 Fehl K, Croucher P, Roehl HH. Hedgehog signalling is required for perichondrial osteoblast differentiation in zebrafish. Mech Dev 2011; 128(1/2): 141–152.
130 Shimoyama A, Wada M, Ikeda F et al. Ihh/Gli2 signaling promotes osteoblast differentiation by regulating Runx2 expression and function. Mol Biol Cell 2007; 18(7): 2411–2418.
131 Oliveira FS, Bellesini LS, Defino HL et al. Hedgehog signaling and osteoblast gene expression are regulated by purmorphamidine in human mesenchymal stem cells. J Cell Biochem 2012; 113(1): 204–208.
132 Liu TM, Lee EH. Transcriptional regulatory cascades in Runx2-dependent bone development. Tissue Eng Part B Rev 2013; 19(3): 254–263.
133 Cai J, Deng L. Regulations of Hedgehog signaling pathway on mesenchymal stem cells. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2010; 24(8): 993–996.
134 Maeda Y, Nakamura E, Nguyen MT et al. Indian Hedgehog produced by postnatal chondrocytes is essential for maintaining a growth plate and trabecular bone. Proc Natl Acad Sci U S A 2007; 104(15): 6382–6387.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/