Electronic structure near the 1/8-anomaly in La-based cuprates

J Chang1, Y Sassa1, S Guerrero2, M Månsson1,3, M Shi4, S Pailhés1, A Bendounan1, R Mottl1, T Claesson3, O Tjernberg3, L Patthey4, M Ido5, M Oda5, N Momono5,6, C Mudry2 and J Mesot1,7

1 Laboratory for Neutron Scattering, ETH Zurich and PSI Villigen, CH-5232 Villigen PSI, Switzerland
2 Condensed Matter Theory Group, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
3 Materials Physics, Royal Institute of Technology KTH, S-164 40 Kista, Sweden
4 Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
5 Department of Physics, Hokkaido University, Sapporo 060-0810, Japan
6 Department of Materials Science and Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan
7 Institut de la matière complexe, Ecole Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

E-mail: jchang@physique.usherbrooke.ca and joel.mesot@psi.ch

Abstract. We report an angle-resolved photoemission study of the electronic structure of the pseudogap state in La\textsubscript{1.48}Nd\textsubscript{0.4}Sr\textsubscript{0.12}CuO\textsubscript{4} (\textit{T}_c < 7 K). Two opposite dispersing Fermi arcs are the main result of this study. Several scenarios that can explain this observation are discussed.
1. Introduction

Deciphering the microscopic mechanism responsible for high-temperature (high-T_c) superconductivity has remained an elusive challenge for 20 years. Progress has been held back by the difficulty to characterize and understand all but conventional normal states from which high-T_c superconductivity emerges in the underdoped and optimally doped regimes, respectively. For example, the pseudogap state—the normal state of underdoped high-T_c superconductors—is characterized by two properties that are difficult to reconcile. Firstly, angular-resolved photoemission spectroscopy (ARPES) studies of the electronic structure in the pseudogap state have revealed the existence of hole-like arcs centered around the diagonal of the Brillouin zone supporting gapless quasiparticles [1]–[4]. Fermi arcs cannot be attributed to a Fermi liquid (FL): the Fermi surface of a FL can only terminate at the boundary of the Brillouin zone. Secondly, transport measurements in high-magnetic field have revealed the existence of quantum oscillations in the pseudogap state of YBa$_2$CuO$_{7+\delta}$ [5]–[8] (YBCO). Quantum oscillations come about when quasiparticles are orbiting around a closed Fermi surface. These and other hallmarks of the pseudogap state have lead to two conflicting interpretations; either the pseudogap state is a precursor to superconductivity or it is related to an order that competes with superconductivity [9]–[11].

Here, we show by ARPES that the electronic structure in the pseudogap state of La$_{1.48}$Nd$_{0.4}$Sr$_{0.12}$CuO$_4$ ($T_c < 7$ K) consists of two oppositely dispersing arcs. We present furthermore a systematic study of the normal state electronic structure of Nd-free La$_{2-x}$Sr$_x$CuO$_4$ near the 1/8-anomaly. The possible origins of the second arc are discussed and we show that it can be naively modeled by assuming the existence of a Fermi pocket.

2. Methods

Our La$_{1.48}$Nd$_{0.4}$Sr$_{0.12}$CuO$_4$ sample, grown by the traveling-solvent floating-zone method, has $T_c < 7$ K. Previous μSR and neutron diffraction experiments on the same sample have been published in [12, 13]. The ARPES experiments were performed at the SIS-beamline of the Swiss
Light Source (SLS) at the Paul Scherrer Institute (PSI) using 55 eV circular polarized light. The overall momentum resolution was 0.15° and the pseudogap was measured with an energy resolution of ~18 meV. The measurements were performed under ultra-high vacuum conditions and the samples were cleaved at the temperature $T = 15$ K. (The lowest accessible temperature on this instrument, $T \approx 10$ K, remains above T_c.) The ARPES data presented here were recorded in the second Brillouin zone but presented in the first zone for convenience. The Fermi level was determined from a spectrum recorded on polycrystalline copper on the sample holder.

3. Results

3.1. Nodal and anti-nodal spectrum

Figures 1(a) and (b) show two typical ARPES spectra collected close to the M–Y (zone boundary/anti-nodal) and Γ–Y (zone diagonal/nodal) directions (see inset) in an incommensurate antiferromagnetic and charge-ordered phase (the so-called stripe phase) of La$_{1.48}$Nd$_{0.4}$Sr$_{0.12}$CuO$_4$ (NdLSCO) at $T = 15$ K, i.e. well above the superconducting T_c. The ARPES intensity is displayed in a false color scale as a function of binding energy ω and momentum k as indicated in the inset. The spectra can be analyzed with the help of constant-momentum cuts called energy distribution curves (EDC) or constant-energy cuts called momentum distribution curves (MDC). The white points in figures 1(a) and (b) define MDC at the Fermi level E_F that can be fitted by (double) Lorentzian’s with a linear background. In doing so, the characteristic momenta k_F depicted by circles and stars in figure 2 can be identified. This set of k_F defines the underlying Fermi surface shown in figure 2.

In figure 1(c), we contrast the EDC at $k = k_F$ and $k = k_F^*$, i.e. for parts of the underlying Fermi surface close to the boundary and diagonal of the Brillouin zone, respectively. An intense spectral peak with the leading edge reaching E_F is observed along cut (b), whereas no spectral peak is visible in the spectrum of cut (a). Moreover, the leading edge along cut (a) is shifted away from E_F, thereby revealing the existence of a gap Δ consistent with the pseudogap observed in the normal state of underdoped cuprates. We used the so-called symmetrization method to factor out the Fermi distribution [1]. As in strongly underdoped Bi$_2$Sr$_2$CaCuO$_2$ (Bi2212) [14], our symmetrized EDC exhibit inflection points that can be used to extract the momentum dependence of the pseudogap Δ. This is shown in figure 1(d) that $\Delta(\pi, 0) \approx 30 \pm 5$ meV which is comparable with a recent ARPES report on La$_{2-x}$Ba$_x$CuO$_4$ at $x \approx 1/8$ [15]; another compound displaying a stripe phase. Upon moving toward the zone diagonal, figure 3(a) shows that the pseudogap remains approximately constant as a function of the underlying Fermi surface angle $0 < \phi < 15^\circ$ defined in figure 2. Moving closer to the diagonal direction, the pseudogap vanishes very fast and for $\phi > 30^\circ$ gapless quasiparticles with an enhanced lifetime are observed, in agreement with past studies of the pseudogap state [2, 3].

3.2. Secondary branch

Remarkably, a careful inspection of the spectra along cut (b) reveals the existence of a second weaker branch of the underlying Fermi surface in the form of a secondary peak in the MDC of figure 1(b). This second branch is not an artifact of a small minority grain since it has been observed on a handful of freshly cleaved surfaces. It is also not a consequence of chemical disorder introduced by Nd, since a similar secondary peak was observed in Nd-free
Figure 1. (a) and (b) ARPES intensity measured at $T = 15$ K as a function of binding energy ω and momentum \mathbf{k} along the red and blue cuts shown in the top inset of (b). The ratio of maximum intensity between (a) and (b) is $\sim 3/4$. White points are the MDC at $\omega = E_F$ and the solid lines are Lorentzian fits with a linear background. The double-peak structure stems from the cuts that are crossing two branches. (c) EDC at $\mathbf{k} = \mathbf{k}_F^a$ (red) and $\mathbf{k} = \mathbf{k}_F^b$ (blue) for the spectra shown in (a) and (b). (d) Symmetrized EDC for $\mathbf{k} = \mathbf{k}_F^a,a',b$. The solid black lines are guides to the eye. (e) MDC at $\omega = 0, 15, 30, 45$ and 60 meV for the spectra are shown in (b). To avoid overlapping of the primary branches, only the secondary branch is displayed when $\omega = 15$ and 45 meV. (f) MDC at $\omega = 3$ meV for four different cuts, showing the secondary branch as a function of the Fermi surface angle ϕ defined in figure 2. (g) Temperature dependence of the MDC at $\omega = E_F$ for cut (b). For both (f) and (g), the peak position of each primary branch is centered at zero momentum. The solid lines are Lorentzian fits to a double-peak structure, whereas the dashed lines show the shape of a single Lorentzian.

La$_{1.88}$Sr$_{0.12}$CuO$_4$ (see later). Instead, we believe that this branch is intrinsic and that it carries important information about the electronic structure of the pseudogap state.

3.2.1. Momentum dependence of the pseudogap and the MDC-linewidth. Figure 1(e) shows a set of MDC along cut (b) at different energies that reveal the opposite dispersion of the two branches. We find from figure 1(e) that the Fermi velocity of the primary ($v_F \approx 1.6 \pm 0.05$ eVÅ) and secondary ($v_F \approx -2.0 \pm 0.3$ eVÅ) branches are consistent with the universal Fermi velocity along the diagonal of hole-doped cuprates [16]. We have followed the evolution of \mathbf{k}_F and the MDC linewidth Γ_{MDC} (half width at half maximum (HWHM)) for both branches. The momentum dependence of the secondary branch, relative to that of the primary branch, is shown in figure 1(f). The peak separation between the two branches decreases as ϕ decreases from $\phi \approx 45^\circ$ to $\phi \approx 15^\circ$. Figure 3(b) shows the dependence of Γ_{MDC} as a function of ϕ. Along the Fermi arcs, we observe that the linewidth is approximately constant $\Gamma_{\text{MDC}} \approx 0.03 \pi/a$ and
The locations of the peaks in the MDC at E_F define the underlying Fermi surface and are denoted by circles and stars. Momenta along the underlying Fermi surface characterized by gapless quasiparticles are denoted by red circles and gray circles denote the part of the Fermi surface where the quasiparticles are suppressed by the pseudogap. The data have been symmetrized with respect to the tetragonal crystal structure. The solid black line stems from the Fermi surface derived from equation (4), while the blue- and pink-colored regions depict the hole and electron pockets predicted from equation (6). The dashed lines bound the reduced Brillouin zone.

$\hat{W}_{MDC} \approx 0.05 \pi/a$ for both the primary and secondary branches. However, once the pseudogap opens the linewidth increases gradually to $\hat{W}_{MDC} \approx 0.13 \pi/a$ for the primary branch at the zone boundary ($\phi = 0^\circ$). Here, $a \approx 3.8 \text{ Å}$ is the lattice spacing of the CuO square lattice. The simultaneous opening of the pseudogap and the broadening of the MDC linewidth make it practically impossible to resolve the secondary branch once it appears as a weak shoulder on the primary branch below $\phi \approx 15^\circ$, i.e. close to $(\pi, 0)$ (see gray circles in figure 1(f)).

The underlying Fermi surface defined by the positions of the MDC peaks at E_F is shown in figure 2. The circles identify the primary branch that can be followed all the way to the zone boundary. The red circles map out four primary Fermi arcs by the criterion that gapless quasiparticle peaks (see blue curve in figure 1(c)) are observed, whereas the gray points map out the segments of the underlying Fermi surface where the quasiparticle peaks are suppressed by the pseudogap. The gapless quasiparticles have a finite lifetime along the primary Fermi arcs. A more delicate analysis is needed to extract the quasiparticle lifetimes of the secondary branch as it requires a background subtraction in order to observe EDC peaks (see appendix A). Here, we only display the Fermi momenta of the secondary branch by the stars in figure 2.
3.2.2. Temperature dependence of the secondary branch and the pseudogap. We now turn to the temperature dependence of the secondary branch along cut (b). No significant change of the intensity of the secondary branch for $\omega = E_F$ is observed upon heating from $T = 15$ K to $T = 110$ K (see figure 1(f)). Figures 4(a1)–(a3) show the ARPES spectra recorded along cut (a) of figure 1 for $T = 15$, 40 and 80 K, whereas figures 4(b1)–(b3) show the spectra recorded along cut (b) for $T = 40$, 80 and 110 K. The white points in figures 4(a1)–(a3) and (b1)–(b3) are the MDC at $\omega = E_F$, whereas the solid lines are double Lorentzian fits with a linear background. For each MDC, the double Lorentzian fit allows to extract the MDC linewidth $\Gamma_{\text{MDC}}^\text{(cut)}$. The dependence on the temperature T of the MDC linewidths along cut (a), $\Gamma_{\text{MDC}}^\text{(a)}$, and along cut (b), $\Gamma_{\text{MDC}}^\text{(b)}$, is shown in figure 4(c) by the red and black circles, respectively. The temperature dependence can, to a first approximation, be described by

$$\Gamma_{\text{MDC}}^\text{(cut)}(T) = \alpha^{\text{(cut)}} + \beta^{\text{(cut)}} T.$$ \hspace{1cm} (1)

For cut (a) the linewidth is roughly temperature independent, thus

$$\alpha^{(a)} \approx 0.0106 \, \pi/a, \quad \beta^{(a)} \approx 0,$$

see the horizontal dashed line in figure 4(c). By contrast for cut (b) the linewidth exhibits a stronger temperature dependence and a least-square fit yields

$$\alpha^{(b)} = 0.0132 \, \pi/a, \quad \beta^{(b)} = 0.0006 \, \pi/(a K),$$

as shown by the solid red line in figure 4(c).
Figure 4. (a1)–(a3) Cut (a) of figure 1 with $T = 15, 40$ and $80\,K$, respectively. (b1)–(b3) are the spectrum along cut (b) of with $T = 40, 80$ and $110\,K$. White points are MDC at $\omega = E_F$ and the solid lines are double Lorentzian fits with a linear background. (c) The MDC linewidth at $\omega = E_F$ of cut (a) (red points) and cut (b) (black points) as a function of temperature. The solid red line is a linear fit. (d) The pseudogap Δ as a function of temperature; the red line is a guide to the eye. T^* is defined by the derivation away from the linear temperature dependence of the in-plane resistivity [19].

The evolution with temperature of the spectra shown in figures 4(b1)–(b3) demonstrates that both the pseudogap and the secondary Fermi arcs persist deep into the low-temperature orthorhombic (LTO) phase. Hence, neither the pseudogap nor the secondary Fermi arcs are directly related to the spin and charge long-range order (LRO) observed by neutron diffraction and μSR experiments, as static stripes appear only in the low-temperature tetragonal (LTT) phase [12, 17, 18].

4. Crystal structure and doping dependence

Now we turn to discussing the possible origin of the secondary band. Very early on the so-called shadow band was observed in Bi2212 [20]. The shadow band is essentially doping and temperature independent [21]. By use of high-quality untwined crystals and tunable light polarization [22], the shadow band was later shown to originate from the orthorhombic
distorted lattice structure. This shadow band is reminiscent of the secondary band that we have observed in La$_{1.41}$Nd$_{0.4}$Sr$_{0.12}$CuO$_4$ (NdLSCO). Our NdLSCO crystals are not fully untwined. For this reason, it is not possible to follow the experimental procedure of [22] to demonstrate whether the secondary branch in NdLSCO has its origin from a weak orthorhombic distortion.

Band structure calculations generically predict that weak orthorhombic distortions of a tetragonal lattice structure lead to a band folding with $Q = (\pi, \pi)$ in the tetragonal Brillouin zone [23]. Accordingly, one would expect to observe hole pockets for any weak orthorhombic distortion of a tetragonal lattice structure. Now, La$_{2-x}$Sr$_x$CuO$_4$ has an orthorhombic lattice structure at low temperatures for $x < 0.21$. So far there is, however, little experimental evidence for a shadow band in LSCO. Nakayama et al [24] observed a weak indication of a backfolded band in the superconducting state of La$_{1.85}$Sr$_{0.15}$CuO$_4$. Zhou et al [25] on the other hand observed the secondary band for $x = 0.06$ and 0.09 but not for $x = 0.15$. The latter study thus indicates a rather strong doping dependence of the secondary band that does not correlate with an orthorhombic phase of LSCO in an obvious way. We now present a systematic study of the normal state electronic structure in La$_{2-x}$Sr$_x$CuO$_4$ near the 1/8-anomaly. In figure 5 cuts (a)–(c), close to the zone diagonal, are shown for La$_{2-x}$Sr$_x$CuO$_4$ with $x = 0.105$, 0.12 and 0.145, respectively. Interestingly, we observe back folding only for $x = 0.12$, as shown in figure 5(b), but not for $x = 0.105$ and 0.145, as shown in figures 5(a) and (c). This strongly suggests that the band folding is enhanced near the so-called 1/8-anomaly (compounds with $x \approx 1/8$).

We now turn our attention to NdLSCO. The average crystal structure of NdLSCO is tetragonal for $T < 69$ K. However, locally each CuO$_2$-plane has orthorhombic distortions [26]. Such local distortions could lead to a back folding [27]. However, if the back folding is purely of structural origin, one would expect a significant effect when going from the LTO to the LTT lattice structure. We show in figure 1(g) that the intensity of the secondary branch displays essentially no change upon going through the LTO–LTT transition.

We have shown that the back folding is strongly enhanced near the so-called 1/8-anomaly and it appears independent of the (local and global) crystal structure. We are therefore lead to the preliminary conclusion that the secondary branch cannot be attributed solely to orthorhombic distortions of the tetragonal crystal structure.

5. Discussion

The observation of the secondary branch of excitations at the Fermi energy is the main result of this paper. Whether or not the secondary branch is an effect related to the crystal structure, the electronic structure can be modeled by the use of a tight-binding model. We are now going to argue by appealing to a simple two-dimensional9 fermiology model that the primary and secondary Fermi arcs are the remnants of two hidden Fermi pockets: a hole pocket centered at the diagonal and an electron pocket centered at the M-point. The black lines in figure 2 are the Fermi surface of the tight-binding dispersion

$$\varepsilon_k = \mu - 2t (\cos k_x a + \cos k_y a) - 4t' \cos k_x a \cos k_y a,$$

8 The structural transition from HTT to LTO structure was measured by neutron scattering for $x = 0.105$, 0.12 and 0.145. See [13].

9 Since the out-of-plane resistivity ρ_{ab} is three orders of magnitude larger than the in-plane resistivity ρ_{ab} in this compound [18] the Fermi surface must be predominantly two-dimensional. The herein applied fermiology model neglects electronic interactions beyond the existence of an energy gap and assumes translation invariance (no impurities).
where the nearest-neighbor amplitude $t = 240$ meV, while the chemical potential $\mu/t = 1$, and the next-nearest-neighbor hopping amplitude $t'/t = -0.325$ are fixed by the Fermi velocity along the diagonal and topology of the primary branch of the underlying Fermi surface, respectively. The Fermi surface centered around the Y-point has the area

$$A_{FS} = 2(1 + p)A \approx 2.242A,$$

where $A = (\pi/a)^2$. Notice that the number $p \approx 0.12$ of charge carriers counted from half filling is consistent with the nominal doping $x = 0.12 \pm 0.005$. Evidently, ε_k fails to account for the secondary Fermi arc shown in figure 2. We observe that k_F of the primary and secondary branches are approximately related by a reflection symmetry about the reduced zone boundary (see dashed line in figure 2). This is suggestive of a unit cell doubling. In a simple fermiology picture, such a unit cell doubling can occur with the onset of LRO in a particle–hole channel at the momentum $Q = (\pi, \pi)$ that causes the opening of a single-particle gap γ close to the

\[\text{Figure 5.} \ (a)–(c) \ ARPES \ intensity \ as \ function \ of \ binding \ energy \ and \ momentum \ (shown \ in \ right \ panel) \ for \ La_{2-x}Sr_xCuO_4 \ with \ x = 0.105, \ 0.12 \ and \ 0.145. \ The \ white \ points \ in \ (a)–(c) \ are \ MDC \ at \ \omega = E_F, \ and \ the \ solid \ lines \ are \ Lorentzian \ fits \ with \ linear \ background. \ (a1)–(c1) \ show \ the \ underlying \ Fermi \ surface \ for \ x = 0.105, \ 0.12 \ and \ 0.145. \ The \ blue \ lines \ indicate \ the \ momentum \ cuts \ along \ which \ the \ spectra \ shown \ in \ (a)–(c) \ are \ recorded.\]
hot spots—the crossings between the Fermi surface $\varepsilon_k = 0$ and the reduced zone boundary. This brings about the reconstruction of the Fermi surface $\varepsilon_k = 0$ according to [28]

$$0 = \varepsilon_{k,0}^\pm \equiv \frac{\varepsilon_k + \varepsilon_{k-Q}}{2} = \sqrt{\left(\frac{\varepsilon_k - \varepsilon_{k+Q}}{2}\right)^2 + \gamma^2}. \quad (6)$$

By choosing the constant single-particle gap $\gamma = 30$ meV the lower branch $\varepsilon_{k,0}^\pm \leq 0$ yields the hole pocket shown by the blue area in figure 2.10 There also exists a small electron pocket ($\varepsilon_{k,0}^\pm \leq 0$) centered around $(\pi, 0)$ as indicated by the pink shaded area in figure 2. Although we do not provide any direct signature of an electron pocket, our ARPES data are not inconsistent with an electron pocket. It is difficult to extract such information from the spectrum close to the zone boundary because (i) the intensity is strongly suppressed at E_F due to the pseudogap and (ii) Γ_{MDC} is comparable to the diameter of the predicted electron pocket. However, transport measurements on this material [29, 30] and other so-called stripe compounds [31, 32] have revealed the existence of a negative Hall coefficient at low temperatures; the usual fingerprint of an electron pocket. Assuming that the Luttinger sum rule [33] holds, it can be shown by simple geometrical considerations that p in equation (5) becomes

$$p = (A_{hp} - 0.5A_{ep})/A \approx 0.12, \quad (7)$$

where $A_{hp} = 0.155A = 10.6$ nm2 is the area of the hole pocket and $A_{ep} = 0.0644A = 4.4$ nm2 is the volume of the electron pocket in figure 2.11 The naive two-band structure, suggested in equation (6), is one way to reconcile the Hall-coefficient and ARPES experiments. So far there exist, however, little spectroscopy evidence for a two-band structure in hole-doped cuprates. For electron-doped cuprates there exist, however, several reports claiming the observation of a two-band structure for dopings slightly larger than $x \sim 1/8$ [34, 35].

The qualitative observation of a hole pocket is compatible with many theories. Band structure calculations have shown that pockets can form in orthorhombic crystal structures [23]. However, the fact that the secondary band is enhanced for $x \approx 0.12$ in orthorhombic La$_{2-x}$Sr$_x$CuO$_4$ suggests that orthorhombic lattice distortions cannot be the primary cause for the Fermi surface reconstruction that we observe. Models that invoke spin and charge separation of the electron quantum numbers [10], [36]–[38] or competing orders [28], [39]–[42] also predict a hole pocket in the pseudogap phase. Moreover, an electron pocket is predicted to coexist with a hole pocket as a result of competing orders [28], [39]–[41]. A clue favoring the scenario by which competing order is causing the Fermi-surface reconstruction seen by ARPES in NdLSCO and La$_{1.88}$Sr$_{0.12}$CuO$_4$ is the observation of a spin-density wave LRO in these materials [13]. However, the fact that the Fermi surface reconstruction is present above the onset temperature of the spin-density wave LRO suggests that this true LRO is not required for the formation of pockets [28, 39].

10 Notice that although $\gamma \approx \Delta(\pi, 0) \approx 30$ meV it is not clear how they are related. An upper bound on the dimensionless ratio $\gamma a/v_F \ll 1$ follows from the elongated shape of the ellipsoid enclosed by the primary and secondary Fermi arcs, i.e. while the choice of $\gamma = 60$ meV still fits the primary and secondary Fermi arcs, the choice $\gamma = 80$ meV does not. A lower bound on $\gamma a/v_F \ll 1$ follows from the measured ratio of the order 20% between the ARPES intensities along the secondary and primary Fermi arcs. The predicted ratio of ARPES intensities along the secondary and primary Fermi arcs is of the order 0.3% (1%) for $\gamma = 30$ meV ($\gamma = 60$ meV).

11 Notice that A_{ep} compares well with the volume of the electron pocket $A_{ep} = 5.1$ nm2 observed by quantum oscillations in YBCO [5].
6. Conclusions

In summary, our unambiguous observation of a secondary branch of gapless quasiparticles around the zone diagonal in the stripe-compound NdLSCO is consistent with a hole-like Fermi surface induced by a unit cell doubling with the characteristic momentum $\mathbf{Q} = (\pi, \pi)$. Such a secondary branch was also observed in underdoped LSCO ($0.03 < x < 0.06$) by Zhou et al [25]. Our results on Nd-free LSCO suggest that this secondary branch is enhanced near the so-called 1/8-anomaly. While the results around the 1/8-anomaly might suggest a connection to a spin-density wave effect, the non-monotonic doping dependence implies a nontrivial interplay of spin and lattice degrees of freedom.

Acknowledgments

This work was supported by the Swiss NSF (through NCCR, MaNEP, and grant Nr 200020-105151, PBEZP2-122855), the Ministry of Education and Science of Japan and the Swedish Research Council. This work was entirely performed at the Swiss Light Source of the Paul Scherrer Institute, Villigen PSI, Switzerland. We thank the beamline staff of X09LA for their support and we thank M R Norman, T M Rice and F C Zhang for discussions.

Appendix A. Quasiparticles on the secondary branch

It was shown in the present paper that gapless spectral peaks are visible along the primary Fermi arc centered around the zone diagonal. We are now going to examine more closely the

Figure A.1. (a) The same ARPES spectrum as shown in figure 1(b). (b) The blue and red points are the energy distribution curves at \mathbf{k}_F located at the primary and secondary Fermi arcs, respectively. The yellow points are a typical EDC that never crosses the primary and secondary dispersing branches seen in (a). (c) Difference between the red and yellow points in (b).
Figure B.1. The measured red points sample the MDC at $\omega = E_F$ and $T = 15$ K for the cut (b), whereas the black line is a double Lorentzian fit with a linear background. The blue and red curves are the extrapolated MDC at $T = 100$ and 155 K, respectively, assuming a double Lorentzian fit with a linear background whereby the maximum is taken to be temperature independent, whereas the linewidth increases according to equation (1).

spectral peaks in the EDC associated with the secondary Fermi arc. Figure A.1(a) shows the spectrum along cut (b) at $T = 15$ K. Figure A.1(b) shows the EDC at k_F (determined by the MDC at $\omega = E_F$ and indicated by the blue and red lines in figure A.1(a)) for both the primary and secondary Fermi arcs with blue and red points, respectively. The yellow points sample an EDC with k chosen sufficiently far from the detector edge but still not too close to the Fermi arcs so as not to cross either the primary or the secondary dispersing branches seen in (a). This EDC may therefore represent an average background intensity observed by ARPES. To better visualize the EDC at k_F for the secondary Fermi arc, we subtract in figure A.1(c) the yellow data points from the red data points in figure A.1(b). Although a peak remains, it is difficult to analyze it so as to extract a quasiparticle lifetime. We thus limit our conclusions to the fact that we observe a weak but significant spectral peak at k_F on the secondary branch.

Finally, we comment on the fate of the secondary branch in the superconducting state of NdLSCO. Since the onset temperature of superconductivity in our NdLSCO sample ($T_c \sim 7$ K) is below the lowest accessible temperature of the SIS instrument, we have not been able to study the secondary branch of NdLSCO in the superconducting state. The effect on the secondary branch upon cooling into the superconducting state of NdLSCO remains therefore an outstanding open problem. However, we were able to confirm that the secondary branch persists into the superconducting state of La$_{1.88}$Sr$_{0.12}$CuO$_4$ although the applied energy resolution did not permit the determination of a superconducting gap on the secondary branch.

Appendix B. Temperature dependence of the secondary branch

What could be the energy (temperature) scale that controls the existence of the secondary Fermi arcs? We have argued in the present paper on the basis of a simple fermiology model that the
pseudogap energy scale might be related to the existence of a hole-like Fermi pocket. If so, we would expect that the secondary Fermi arc should disappear with increasing temperature at the temperature \(T^* \approx 155 \) K, below which the pseudogap manifests itself (as measured from the deviation away from the linear temperature dependence of the in-plane resistivity \([19]\)). This expectation is consistent with the observation that the linear fits along cuts (a) and (b) in equation (1) intersect at the temperature \(T^* \approx 155 \) K as shown in figure 4(c). Unfortunately, the direct experimental verification of this educated guess is ambiguous due to the thermal broadening of the MDC along cut (b). This is illustrated in figure B.1 where we plot the double Lorentzian fits to the MDC along (b) at the Fermi energy with their temperature-dependent widths taken from figure 4(c), assuming a temperature independent peak amplitude. Whereas it is still possible to extract \(k_F \) and the linewidth of the secondary branch at \(T \approx 110 \) K this task becomes ambiguous at \(T \approx T^* \approx 155 \) K as the secondary Fermi arc is signaled by a small shoulder on the dominant peak induced by the primary Fermi arc (see figure B.1).

References

[1] Norman M R et al 1998 Destruction of the Fermi surface in underdoped high-\(T_c \) superconductors Nature 392 157–60
[2] Shen K M et al 2005 Nodal quasiparticles and antinodal charge ordering in \(\text{Ca}_2\text{−}_x\text{Na}_x\text{CuO}_2\text{Cl}_2 \) Science 307 901–4
[3] Kanigel A et al 2006 Evolution of the pseudogap from Fermi arcs to the nodal liquid Nat. Phys. 2 447–51
[4] Hossain M A et al 2008 Controlling the self-doping of \(\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta} \) polar surfaces: from Fermi surface to nodal Fermi arcs by ARPES Nat. Phys. 4 527
[5] Doi and Leyraud N et al 2007 Quantum oscillations and the Fermi surface in an underdoped high-\(T_c \) superconductor Nature 447 565–8
[6] Yelland E A et al 2008 Quantum oscillations in the underdoped cuprate \(\text{YBa}_2\text{Cu}_4\text{O}_8 \) Phys. Rev. Lett. 100 047003
[7] Bangura A F et al 2008 Small Fermi surface pockets in underdoped high temperature superconductors: observation of Shubnikov–de Haas oscillations in \(\text{YBa}_2\text{Cu}_4\text{O}_8 \) Phys. Rev. Lett. 100 187005
[8] Jaudet C et al 2008 de Haas-van Alphen oscillations in the underdoped cuprate \(\text{YBa}_2\text{Cu}_4\text{O}_8.5 \) Phys. Rev. Lett. 100 047004
[9] Norman M R, Pines D and Kallin C 2007 The pseudogap: friend or foe of the high \(T_c \)? Adv. Phys. 54 715–33
[10] Lee P A 2008 From high temperature superconductivity to quantum spin liquid: progress in strong correlation physics Rep. Prog. Phys. 71 012501
[11] Kivelson S A et al 2003 How to detect fluctuating stripes in high temperature superconductors Rev. Mod. Phys. 75 1201
[12] Christensen N B et al 2007 Nature of the magnetic order in the charge-ordered cuprate \(\text{La}_{1.48}\text{Nd}_{0.8}\text{Sr}_{0.12}\text{CuO}_4 \) Phys. Rev. Lett. 98 197003
[13] Chang J et al 2008 Tuning competing orders in \(\text{La}_{2−x}\text{Sr}_x\text{CuO}_4 \) cuprate superconductors by the application of an external magnetic field Phys. Rev. B at press (arXiv:0712.2181)
[14] Tanaka K et al 2006 Distinct Fermi-momentum-dependent energy gaps in deeply underdoped \(\text{Bi}_2\text{2212} \) Science 314 1910–3
[15] Valla T et al 2006 The ground state of the pseudogap in cuprate superconductors Science 314 1914–6
[16] Zhou X J et al 2003 High-temperature superconductors universal nodal Fermi velocity Nature 423 398–8
[17] Tranquada J M et al 1995 Evidence for stripe correlations of spins and holes in copper oxide superconductors Nature 375 561–3
[18] Tranquada J M et al 1996 Neutron-scattering study of stripe-phase order of holes and spins in \(\text{La}_{1.48}\text{Nd}_{0.8}\text{Sr}_{0.12}\text{CuO}_4 \) Phys. Rev. B 54 7489

New Journal of Physics 10 (2008) 103016 (http://www.njp.org/)
[19] Ichikawa N et al 2000 Evidence for stripe correlations of spins and holes in copper oxide superconductors Phys. Rev. Lett. 85 1738
[20] Aebi P et al 1994 Complete Fermi-surface mapping of Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$ (001)—coexistence of short-range antiferromagnetic correlations and metallicity in the same phase Phys. Rev. Lett. 72 2757
[21] Nakayama K et al 2007 Origin of shadow bands in single-layered Bi$_2$Sr$_2$CuO$_{6+δ}$ studied by high-resolution angle-resolved photoemission spectroscopy Physica C 460–462 931–3
[22] Mans A et al 2006 Experimental proof of a structural origin for the shadow Fermi surface of Bi$_2$Sr$_2$CaCu$_2$O$_{8+δ}$ Phys. Rev. Lett. 96 107007
[23] Picket W E 1989 Electronic structure of the high-temperature oxide superconductors Rev. Mod. Phys. 61 443
[24] Nakayama K et al 2006 Shadow bands in single-layered Bi$_2$Sr$_2$CuO$_{6+δ}$ studied by angle-resolved photoemission spectroscopy Phys. Rev. B 74 054505
[25] Zhou X J et al 2007 Angle-resolved photoemission spectroscopy on electronic structure and electron-phonon coupling in cuprate superconductors Handbook of High-Temperature Superconductivity: Theory and Experiment ed J R Schrieffer (Berlin: Springer) 87–144
[26] Axe J D and Crawford M K 1994 Structural instabilities in lanthanum cuprate superconductors J. Low Temp. Phys. 95 271
[27] Norman M R et al 2008 private communication.
[28] Harrison N et al 2007 Cuprate Fermi orbits and Fermi arcs: the effect of short-range antiferromagnetic order Phys. Rev. Lett. 99 206406
[29] Nakamura Y and Uchida S 1992 Anisotropic transport properties of single-crystal La$_{2−x}$Nd$_x$Sr$_x$CuO$_4$: effect of the structural phase transition Phys. Rev. B 46 5841–4
[30] Noda T et al 1999 Evidence for one-dimensional charge transport in La$_{2−x}$Nd$_x$Sr$_x$CuO$_4$ Science 286 265–8
[31] Adachi T et al 2001 Crystal growth, transport properties, and crystal structure of the single-crystal La$_2$−δBa CuO$_4$ (x = 0.11) Phys. Rev. B 64 144524
[32] LeBoeuf D et al 2007 Electron pockets in the Fermi surface of hole-doped high-Tc superconductors Nature 450 533–6
[33] Luttinger J M 1960 Fermi surface and some simple equilibrium properties of a system of interacting fermions Phys. Rev. 119 1153
[34] Matsui H et al 2005 Angle-resolved photoemission spectroscopy of the antiferromagnetic superconductor Nd$_{1.97}$Ce$_{0.13}$CuO$_4$: anisotropic spin-correlation gap, pseudogap, and the induced quasiparticle mass enhancement Phys. Rev. Lett. 94 047005
[35] Park S R et al 2007 Electronic structure of electron-doped Sm$_{1.86}$Ce$_{0.14}$CuO$_4$: strong pseudogap effect, nodeless gap, and signatures of short-range order Phys. Rev. B 75 060501
[36] Kaul R K et al 2007 Algebraic charge liquids Nat. Phys. 4 28–31
[37] Yang K-Y et al 2006 Phenomenological theory of the pseudogap state Phys. Rev. B 73 174501
[38] Chen W-Q et al 2008 Quantum oscillations in magnetic-field-induced antiferromagnetic phase of underdoped cuprates: application to ortho-II YBa$_2$Cu$_3$O$_{6.5}$ Europhys. Lett. 82 17004
[39] Senthil T 2008 Critical Fermi surfaces and non-Fermi liquid metals Phys. Rev. B 78 035103
[40] Millis A J and Norman M R 2007 Antiphase stripe order as the origin of electron pockets observed in 1/8-hole-doped cuprates Phys. Rev. B 76 220503
[41] Chakravarty S and Kee H-Y 2008 Fermi pockets and quantum oscillations of the Hall coefficient in high temperature superconductors Proc. Natl Acad. Sci. USA 105 8835
[42] Granath M 2008 Fermi momentum resolved charge order for spin-disordered stripes Phys. Rev. B 77 165128