QUARK COUNTING RULES:
OLD AND NEW APPROACHES

A. RADYUSHKIN
*
Physics Department, Old Dominion University, Norfolk, VA 23529, USA
and
Theory Center, Jefferson Lab, Newport News, VA 23606, USA

I discuss the subject of powerlike asymptotic behavior of hadronic form factors in pre-QCD analyses of soft (Feynman/Drell-Yan) and hard (West) mechanisms, and also recent derivation of $1/Q^2$ asymptotics of meson form factors in AdS/QCD. At the end, I briefly comment on “light-front holography” ansatz.

1. Hadronic form factors

Introduction. Experimental evidence that (exclusive) form factors of hadrons consisting of n_q quarks behave like $(1/Q^2)^{n_q-1}$ for large Q^2, provokes expectations that there is a fundamental and/or easily visible reason for such a phenomenon, scale invariance being the most natural suspect.1 Indeed, hard rescattering in a theory with spinor constituents and dimensionless coupling constant for their interaction with an intermediary boson field provides a specific dynamical mechanism2 that produces the $(1/Q^2)^{n_q-1}$ behavior. In this approach, $n_q - 1$ is just the number of hard exchanges. Another property apparently correlated with the number of quarks in the hadron is the $\sim (1-x)^{2n_q-3}$ behavior of the (inclusive) quark distributions functions in the $x \to 1$ region. This observation suggests to look for connection between these exclusive and inclusive observables. Below in this section we discuss scenarios which display two versions of exclusive-inclusive correlation. In subsequent sections, we discuss derivation of the $1/Q^2$ behavior for meson form factors in AdS/QCD.

Soft mechanism. Powerlike behavior of hadronic form factors due to

*Also at Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, Russian Federation
Feynman mechanism can be derived from the Drell-Yan formula
\[
F(Q^2) = \int_0^1 dx \int d^2k_\perp \Psi^*(x, k_\perp + (1-x)q_\perp)\Psi(x, k_\perp),
\]
which represents form factor in terms of the light-front wave function \(\Psi(x, k_\perp)\) and light-front variables \(x\) and \(k_\perp\). When the wave function \(\Psi(x, k_\perp)\) rapidly (say, exponentially) decreases for \(k_\perp \gtrsim \Lambda\), it is natural to consider the region where both \(\Psi(x, k_\perp)\) and \(\Psi^M(x, k_\perp + \bar{x}q_\perp)\) are maximal: \(i)\) \(k_\perp \lesssim \Lambda\) is small and \(ii)\) \(\bar{x} \equiv 1 - x\) is close to 0, so that \(|\bar{x}q_\perp| \lesssim \Lambda\).

If
\[
|\Psi(x, k_\perp)|^2 \sim (1 - x)^{2n - 3},
\]
then
\[
F(Q^2) \sim \int \frac{\Lambda}{Q^2} \frac{1}{x^{2n-3}} d\bar{x} \sim (1/Q^2)^{n_q - 1}.
\]
The parton distribution functions in this formalism are given by the integral of \(|\Psi(x, k_\perp)|^2\) over \(k_\perp\). The latter is dominated by \(k_\perp \lesssim \Lambda\), hence \(f(x) \sim (1 - x)^{2n_q - 3}\). Thus, changing the shape of \(f(x)\), one would change the result for form factor. In other words, there is a causal relation between the \(x \to 1\) shape of the distribution function \(f(x)\) and the \(Q^2 \to 1\) behavior of the form factor \(F(Q^2)\): form of \(f(x)\) determines \(F(Q^2)\).

Hard mechanism. For the Feynman/DY mechanism it was important that the fraction \(\bar{x} \equiv 1 - x\) vanishes in the \(Q^2 \to 0\) limit. Consider now the regions in DY formula (1), in which the fraction \(\bar{x}\) is finite, while the transverse momentum argument of one of the wave functions is small, e.g., the region \(|k_\perp| \ll \bar{x}|q_\perp|\), where \(\Psi(x, k_\perp)\) is maximal. Then
\[
F(Q^2) \sim \int \left|\Psi^*(x, \bar{x}q_\perp)\varphi(x)\right| dx,
\]
where
\[
\varphi(x) = \int \Psi(x, k_\perp) d^2k_\perp
\]
is the relevant distribution amplitude. In this scenario, the form factor repeats large-\(k_\perp\) behavior of the hadron wave function, e.g., if \(\Psi(x, k_\perp) \sim (1/k_\perp^2)^n\), then \(F(Q^2) \sim (1/Q^2)^n\). This mechanism was proposed by G.B. West, who used, in fact, a covariant Bethe-Salpeter (BS) formalism rather than light-front variables, writing the form factor as
\[
F(Q^2) \sim \int f(p) f(p + q) d^4p,
\]
where \(f(p)\) is treated as a function of the active parton virtuality \(t \equiv p^2\) and spectator mass \(M^2\). Assuming that \(f(t, M^2) \sim t^{-n}g(M^2)\) for large \(t\),
West concludes that $F(Q^2) \sim (1/Q^2)^n$: form factor repeats the large-Q^2 behavior of the BS wave function $f(p+q)$. For the deep inelastic structure function, West obtains

$$\nu W^2(x) \sim \int_{t_{\text{min}}}^{t_{\text{max}}} f^2(t, M^2) dt \sim (t_{\text{min}})^{-2n+1}, \quad (6)$$

where $t_{\text{min}} = (\frac{1-x}{1-x_N}) [M^2 - (1-x)M_N^2]$, M_N being the nucleon mass. As a result, $\nu W^2(x) \sim (1-x)^{2n-1}$.

DY vs West’s model. If $n = n_q - 1$, the power-law predictions of the two models formally coincide. However, these results were obtained from completely different assumptions. In DY picture, the active parton is “on-shell” both before and after the collision: both $|k_\perp|$ and $|k_\perp + \bar{x}q_\perp|$ are of order Λ, and form factor $F(Q^2)$ reflects the size of phase space region in which $1-x \sim \Lambda/Q$. On the other hand, in West’s model, the active parton is highly virtual either in initial or final state, and $F(Q^2)$ reflects the t-dependence of WF for large virtualities $t = p^2$. Still, though the two mechanisms are completely different, the connection $(1/Q^2)^n \Leftrightarrow (1-x)^{2n-1}$ (“Drell-Yan-West relation”) holds in both models! It should be also emphasized that in West’s model, $(1/Q^2)^n$ and $(1-x)^{2n-1}$ have the same cause (large-t behavior of $f(p)$), but they are not “causing” each other.

West’s hard mechanism & pQCD. In DY model, n is not necessarily integer. Integer values of n naturally appear in West’s hard scenario, where they are related to the number of hard propagators. In particular, hard exchange in a theory with a dimensionless coupling constant gives $n = n_q - 1$ [2], which is a consequence of scale invariance. In quantum chromodynamics, each hard gluon exchange is accompanied by effective coupling.

This is apparently why the two models are confused up to the point that Eq. (1) is often referred to as “Drell-Yan-West formula”, which is absolutely incorrect because its crucial feature is incorporation of light-front variables that West did not use.
constant α_s, i.e., $F_n(q^2) \sim (\alpha_s/Q^2)^{n_q-1}$. According to explicit calculation, the asymptotic prediction for the pion form factor in pQCD is $F_{\pi}(Q^2) \sim (2\alpha_s/\pi)s_0/Q^2$, where $s_0 = 4\pi^2 f_\pi^2 \approx 0.7 \text{GeV}^2 \sim m_\rho^2$. Compared to the VMD expectation $F_{\pi}(Q^2) \sim m_\rho^2/Q^2$, pQCD prediction is suppressed by $2\alpha_s/\pi$ factor. It is well known that the factor $\alpha_s/\pi \approx 0.1$ is penalty for an extra loop, which suggests that the hard one-gluon-exchange contribution is an $O(\alpha_s)$ correction to some $O(\alpha_s^0)$ term. The only candidate is the Feynman/DY soft contribution, which should be calculated in a nonperturbative way. In particular, in holographic AdS/QCD models considered in Refs. [8,9] one has $F_{\pi}(Q^2) \sim s_0/Q^2$, without a suppression factor.

2. Vector meson form factors in AdS/QCD

Models based on AdS/CFT correspondence are often claimed to provide nonperturbative explanation of quark counting rules for form factors that is based on conformal invariance and short-distance behavior of normalizable modes $\Phi(\zeta)$ playing the role of wave functions of initial and final hadrons. Namely, in the model of Polchinski and Strassler (that involves on the AdS side scalar fields only) one has

$$F(Q^2) = \int_0^{1/\Lambda} \Phi_P(z)J(Q,z)\Phi_P(z)\,dz/z^3, \quad (7)$$

where $J(Q,z) = zQK_1(zQ) \equiv K_1(zQ)$ is nonnormalizable mode describing the probing EM current, and normalizable modes for mesons are given by $\Phi(z) = Cz^2J_{L+1}(\beta_L k z \Lambda)$, with K_1 and J_{L+1} being standard Bessel functions. For large Q, one may approximate $K_1(zQ) \sim e^{-zQ}$, and it is clear that only small $z \lesssim 1/Q$ contribute. As a result, $F_{L=0}(Q^2) \to 1/Q^4$ for the ground state. But this is not the $1/Q^2$ power that one is longing to get! To bring the result of this AdS/CFT-based model in agreement with pQCD expectations, Brodsky and de Teramond proposed to modify the basic principle of AdS/CFT correspondence, requiring that the dimension of the operator on the AdS side should be equal to the twist of the corresponding current in the 4-dimensional theory rather than to its dimension. In our papers with H.R. Grigoryan we demonstrated that in more realistic AdS/QCD models of Refs.16,17 it is possible to get $F_{L=0}(Q^2) \to 1/Q^2$ for (leading) meson form factors without challenging the Maldacena correspondence principle.

Hard-wall model is formulated in 5-dimensional space $\{x^\mu, z\} \equiv X^M$ having AdS$_5$ metric $ds^2 = (\eta_{\mu\nu}dx^\mu dx^\nu - dz^2)/z^2$ with a hard wall: $0 \leq z \leq z_0 = 1/\Lambda$. The basic object is the 5-dimensional (5D) vector gauge
field \(A_M (X) \) \((M = \mu, z)\) which produces 4D field \(A_\mu (x) = A_\mu (x, z = 0)\). at the UV boundary of AdS space. The 5D gauge action for the vector field is given by

\[
S_{\text{AdS}} = -\frac{1}{4g_5^2} \int d^4x \, dz \, \sqrt{g} \, \text{Tr} \left(F_{MN} F^{MN} \right) ,
\]

(8)

where \(F_{MN} \) is the field-strength tensor. The coupling constant \(g_5^2 = \frac{6\pi^2}{N_c} \) is small in large-\(N_c \) limit. The free field satisfies

\[
\Box^5 A(X) = 0 \quad \text{or} \quad \Box^4 A(x, z) + z \partial_z \left(\frac{1}{z} \partial_z A(x, z) \right) = 0 .
\]

(9)

In 4D momentum representation this gives

\[
z \partial_z \left(\frac{1}{z} \partial_z \tilde{A}(p, z) \right) + p^2 \tilde{A}(p, z) = 0 .
\]

(10)

According to AdS/QCD correspondence

\[
\tilde{A}_\mu (p, z) = \frac{A_\mu (p) V(p, z)}{V(p, 0)} \equiv \tilde{A}_\mu (p) V(p, z) ,
\]

(11)

where the bulk-to-boundary propagator \(V(p, z) \) satisfies Eq.(10). The gauge-invariant boundary condition (b.c.) \(F_{\mu z}(x, z_0) = 0 \) on the infrared (IR) wall results in Neumann b.c. \(\partial_z V(p, z_0) = 0 \), with solution

\[
V(p, z) = P \left[Y_0 (P z_0) J_1 (P z) - J_0 (P z_0) Y_1 (P z) \right] .
\]

(12)

Using Kneser-Sommerfeld formula\(^{19}\) gives bound state expansion

\[
V(p, z) = -\sum_{n=1}^{\infty} \frac{g_5 f_n}{p^2 - M_n^2} \psi_n(z)
\]

(13)

with masses: \(M_n = \gamma_{0,n}/z_0 \) determined by zeros \(J_0 (\gamma_{0,n}) = 0 \) of Bessel functions, while the “coupling constants” \(f_n \) are given by

\[
f_n = \frac{\sqrt{2} M_n}{g_5 z_0 J_1 (\gamma_{0,n})} .
\]

(14)

They are accompanied by “\(\psi \)” wave functions

\[
\psi_n(z) = \frac{\sqrt{2}}{z_0 J_1 (\gamma_{0,n})} z J_1 (M_n z)
\]

(15)

coinciding with nonnormalizable modes of Polchinski-Strassler model.\(^{10,11}\)

These “\(\psi \)” wave functions (w.f.) obey equation of motion (10) with \(p^2 = M_n^2 \), satisfy \(\psi_n(0) = 0 \) at UV boundary, and \(\partial_z \psi_n(z_0) = 0 \) at IR boundary. They are normalized according to

\[
\int_0^{z_0} |\psi_n(z)|^2 \frac{dz}{z} = 1 .
\]

(16)
However, they do not look like bound state w.f. in quantum mechanics, see Fig. 2, left. To this end, it makes sense to introduce “φ” wave functions

\[
\phi_n(z) \equiv \frac{1}{M_n z} \partial_z \psi_n(z) = \frac{\sqrt{2}}{z_0 J_1(\gamma_0 n)} J_0(M_n z) .
\]

(17)

According to Sturm-Liouville equation (10), they are reciprocal to “ψ” w.f.:

\[
\psi_n(z) = -z \partial_z \phi_n(z) / M_n .
\]

(18)

The φ w.f. give couplings \(g_5 f_n / M_n \) as their values at the origin, they satisfy Dirichlet b. c. \(\phi_n(z_0) = 0 \) at confinement radius, and are normalized by

\[
\int_0^{z_0} |\phi_n(z)|^2 z dz = 1 .
\]

(19)

The “φ” w.f. (see Fig. 2, right) are thus analogous to bound state wave functions in quantum mechanics. The difference between the two types of AdS/QCD wave functions can be easily understood: ψ w.f. correspond to vector-potential \(A_M \), while φ w.f. correspond to field strength tensor \(F_{MN} \).

Three-point function should be introduced to study form factors. It has a “Mercedes-Benz” form

\[
W(p_1, p_2, q) = \int_0^{z_0} V(p_1, z) V(p_2, z) V(q, z) \frac{dz}{z} .
\]

(20)

For spacelike \(q \) (with \(q^2 = -Q^2 \)) we have \(V(iQ, z) \equiv J(Q, z) \) The form factors for diagonal \(n \to n \) transitions may be written

\[
F_{nn}(Q^2) = \int_0^{z_0} J(Q, z) |\psi_n(z)|^2 \frac{dz}{z} .
\]

(21)

either in terms of ψ functions or in terms of φ functions:

\[
F_{nn}(Q^2) = \frac{1}{1 + Q^2 / 2M_n^2} \int_0^{z_0} J(Q, z) |\phi_n(z)|^2 z dz .
\]

(22)
The overlap integral here is a direct analogue of form factors in quantum mechanics, so we define
\[\mathcal{F}_{nn}(Q^2) \equiv \int_0^\infty J(Q, z) |\phi_n(z)|^2 z \, dz. \] (23)

The hard-wall model calculation gives
\[\langle \rho^+(p_2, \epsilon') | J_{EM}^\mu(0) | \rho^+(p_1, \epsilon) \rangle = -\epsilon'_\beta \epsilon_\alpha \left[\eta_{\alpha\beta}(p_1 + p_2)_\mu + 2(\eta_{\alpha\mu} q_\beta - \eta_{\beta\mu} q_\alpha) \right] F_{nn}(Q^2). \] (24)

But it is well known that vector mesons have three form factors:
\[\langle \rho^+(p_2, \epsilon') | J_{EM}^\mu(0) | \rho^+(p_1, \epsilon) \rangle = -\epsilon'_\beta \epsilon_\alpha \left[\eta_{\alpha\beta}(p_1 + p_2)_\mu G_1(Q^2) + (\eta^{\mu\alpha} q^\beta - \eta^{\mu\beta} q^\alpha)(G_1(Q^2) + G_2(Q^2)) - \frac{1}{4M^2} \eta^{\nu\rho} q^{\alpha}(p_1^\nu + p_2^\nu) G_3(Q^2) \right], \] (25)
i.e.,
\[G_1(Q^2) = G_2(Q^2) = F_{nn}(Q^2) \text{ and } G_3(Q^2) = 0 \text{ [20].} \]

The form factor (23) is projected by taking the “+++” component of 3-point correlator,
\[\mathcal{F}(Q^2) = G_1(Q^2) + \frac{Q^2}{2M^2} G_2(Q^2) - \left(\frac{Q^2}{2M^2} \right)^2 G_3(Q^2). \] (26)

For \(\rho \)-meson, this combination coincides with the IMF “LL” transition having \(\sim \alpha_s/Q^2 \) behavior in pQCD.\(^{21}\) Taking the hard-wall model prediction (23) and using that \(z \sim 1/Q \) dominate in the large-\(Q \) limit because \(J(Q, z) \rightarrow zQ K_1(Q z) \sim e^{-Qz} \), we may substitute \(\phi(z) \) by \(\phi(0) \). Thus,
\[\mathcal{F}(Q^2) = -\frac{|\phi(0)|^2}{Q^2} \int_0^\infty d\chi \chi^2 K_1(\chi) = 2 \frac{|\phi(0)|^2}{Q^2}, \] (27)
and we get the same power of \(1/Q^2 \) as in pQCD, but without \(\alpha_s/\pi \) factor.

Soft-wall model\(^{17}\) corresponds to \(z^2 \) barrier, and bulk-to-boundary propagator \(\mathcal{V}(p, z) \) can be written \((a = -p^2/4\kappa^2) \) as\(^{14}\)
\[\mathcal{V}(p, z) = a \int_0^1 dx x^{a-1} \exp \left[-\frac{x}{1-x} \kappa^2 z^2 \right]. \] (28)

The propagator poles are located at \(p^2 = 4(n+1)\kappa^2 \equiv M_n^2 \) [17]:
\[\mathcal{V}(p, z) \equiv \kappa^2 z^2 \sum_{n=0}^\infty \frac{L_n(\kappa^2 z^2)}{a + n + 1} = \sum_{n=0}^\infty \frac{g_5 f_n}{M_n^2 - p^2} \psi_n(z). \] (29)

Just like in the hard-wall case, we deal with \(\psi \) wave functions and coupling constants \(g_5 f_n \) given by their derivatives at the origin
\[g_5 f_n = \frac{1}{z} e^{-\kappa^2 z^2} \partial_z \psi_n(z) \bigg|_{z=0} = \sqrt{8(n+1)\kappa^2}. \] (30)
Again, we can introduce the (Sturm-Liouville-) conjugate wave functions:

\[\phi_n(z) = \frac{1}{M_n} e^{-\kappa^2 z^2} \partial_z \psi_n(z) = \frac{2}{M_n} e^{-\kappa^2 z^2} L_n^0(\kappa^2 z^2). \] \hspace{1cm} (31)

Taking the diagonal form factor for the lowest state

\[F_{00}(Q^2) = 2 \int_0^\infty e^{-\kappa^2 z^2} f(Q, z) \, dz \] \hspace{1cm} (32)

and using representation (28) for \(f(Q, z) \) gives

\[F_{00}(Q^2) = \frac{1}{1 + Q^2 / M_0^2}, \]

i.e., exact vector meson dominance. Large-\(Q^2 \) behavior of \(F \) form factor is given by the same expression (27) as in hard-wall model, the only difference being in the value of w.f. at the origin. As a result, we have

\[F_H(\rho)(Q^2) \rightarrow 2 \frac{m_\rho^2}{Q^2}, \quad F_S(\rho)(Q^2) \rightarrow \frac{m_\rho^2}{Q^2}. \] \hspace{1cm} (33)

3. Pion Form Factors in AdS/QCD

The full action of hard-wall model is given by

\[S_{AdS}^B = \text{Tr} \int d^4x \int_0^{\infty} dz \left[\frac{1}{z^3} (D^M X)^\dagger (D_M X) + \frac{3}{z^3} X^\dagger X \right. \]

\[- \frac{1}{8g_5^2 z} \left(B_{(L)}^{MN} B_{(L)MN} + B_{(R)}^{MN} B_{(R)MN} \right) \] \hspace{1cm} (34)

where \(DX = \partial X - iB_{(L)} X + iX B_{(R)}, B_{(L,R)} = V \pm A \) and \(X(x, z) = v(z)U(x, z)/2 \) involves the chiral field: \(U(x, z) = \exp [i\sigma^a \pi^a(x, z)] \), with the pion field \(\pi^a(x, z) \). The chiral symmetry is broken by the term \(v(z) = (m_q z + \sigma z^3) \), with \(m_q \sim \text{quark mass} \) and \(\sigma \) playing the role of quark condensate. The longitudinal component of the axial field \(A^\parallel_M(x, z) = \partial_M \psi^a(x, z) \) gives another pion field \(\psi^a(x, z) \). The model satisfies Gell-Mann–Oakes–Renner relation \(m_\pi^2 \sim m_q \). In the chiral limit \(m_q = 0 \), it is possible to get the analytic result \(^8,22\) for \(\Psi(z) \equiv \psi(z) - \pi(z) \)

\[\Psi(z) = z \Gamma(2/3) \left(\alpha^2 \right)^{1/3} \left[I_{-1/3}(\alpha z^3) - I_{1/3}(\alpha z^3) \right], \] \hspace{1cm} (35)

where \(\alpha = g_5 \sigma / 3 \). \(\Psi(z) \) satisfies \(\Psi(0) = 1 \), Neumann b.c. \(\Psi'(z_0) = 0 \) and

\[f_2^i = - \frac{1}{g_5} \left(\frac{1}{z} \partial_z \Psi(z) \right)_{z = 0} \]

The conjugate wave function is given by

\[\Phi(z) = - \frac{1}{g_5 f_2^i} \left(\frac{1}{z} \partial_z \Psi(z) \right) = - \frac{2}{s_0} \left(\frac{1}{z} \partial_z \Psi(z) \right). \] \hspace{1cm} (36)
Fig. 3. Pion wave functions $\Psi(z) \rightarrow \psi(\zeta,a)$ and $\Phi(z) \rightarrow \phi(\zeta,a)$ as functions of $\zeta \equiv z/z_0$ and $a \equiv \alpha z_0^3$ for $a = 0, a = 1, a = 2.26, a = 5$ and $a = 10$.

where $s_0 = 4\pi f_\pi^2 \approx 0.67$ GeV2 is the usual characteristic scale for pion.

The function $\Phi(z)$ satisfies $\Phi(0) = 1$ and Dirichlet b.c. $\Phi(z_0) = 0$.

Pion EM form factor written in terms of $\Psi(z)$ looks like

$$F_\pi(Q^2) = \frac{1}{g_5 f_\pi^2} \int_0^{z_0} J(Q,z) \left[\frac{\partial \Psi}{\partial z} \right]^2 + \frac{g_5^2 f_\pi^2}{z^4} \Psi^2(z) \right] \ dz. \quad (37)$$

To analyze form factor at large Q^2, we write it in terms of $\Psi(z)$ and $\Phi(z)$:

$$F_\pi(Q^2) = \int_0^{z_0} J(Q,z) \left[g_5^2 f_\pi^2 \Phi^2(z) + \frac{9 \alpha_s^2 g_5^2 f_\pi^2}{Q^2} \right] \ dz. \quad (38)$$

For large Q, only $z \sim 1/Q$ part of $\Phi^2(z)$ term works, which gives

$$F_\pi(Q^2) \rightarrow \frac{2 g_5^2 f_\pi^2 \Phi^2(0)}{Q^2} = \frac{4\pi f_\pi^2}{Q^2} \equiv \frac{s_0}{Q^2}. \quad (39)$$

The curve we obtained from the AdS/QCD model (see Ref.[8]) goes above existing experimental data that give $Q^2 F_\pi(Q^2) \approx 0.4$ GeV2, which means that the pion in this model is too small.

We remind that pQCD result6,7 has $2\alpha_s/\pi$ factor

$$F_{\pi}^{P\text{QCD}}(Q^2) \rightarrow \frac{2\alpha_s}{\pi}, \frac{s_0}{Q^2} \sim 0.2 \ F_{\pi}^{\text{AdS/QCD}}(Q^2) \quad (40)$$

due to one-gluon exchange.

Anomalous amplitude of the $\gamma^* \gamma^* \pi^0$ transition is defined by

$$\int \langle \pi, p | T \{ J_{\text{EM}}^\mu(x) J_{\text{EM}}^\nu(0) \} | 0 \rangle e^{-iq_1 x} d^4 x$$

$$= e^{i\nu \alpha \beta} q_1 \alpha q_2 \beta \frac{N_c}{12\pi^2 f_\pi} K_{\gamma^* \gamma^* \pi^0}(Q_{1,2}^2), \quad (41)$$

where $p = q_1 + q_2$ and $q_{1,2}^2 = -Q_{1,2}^2$. Its value for real photons is fixed in QCD by axial anomaly: $K_{\gamma^* \gamma^* \pi^0}(0,0) = 1$. To consider this form factor, the AdS/QCD model should be extended. We need isoscalar fields,
which is achieved by gauging $U(2)_L \otimes U(2)_R$ and introducing the field $B_\mu = t^a B^a_\mu + \frac{1}{2} \eta_\mu$, and we also need the Chern-Simons term
\[
S^{(3)}_{CS}[B] = \frac{N_c}{24\pi^2} \epsilon^{\mu
u\rho\sigma} \text{Tr} \int d^4x dz \left(\partial_\mu B_\sigma + B_\nu \partial_\rho \sigma \right).
\] (42)

The anomalous form factor conforming to QCD anomaly is given by
\[
K(Q^2_1, Q^2_2) = \Psi(z_0) J(Q_1, z_0) J(Q_2, z_0) - \int_0^{z_0} J(Q_1, z) J(Q_2, z) \partial_z \Psi(z) dz.
\] (43)

For large Q_1 and/or Q_2 we may write
\[
K(Q^2_1, Q^2_2) \approx \frac{s_0}{2} \int_0^{z_0} J(Q_1, z) J(Q_2, z) \Phi(z) z dz.
\] (44)

If one of the photons is real, we have
\[
K(0, Q^2) \rightarrow \Phi(0) \int_0^\infty d\chi \chi^2 K_1(\chi) = \frac{s_0}{Q^2}.
\] (45)

For comparison, in pQCD $\gamma^* \gamma \pi^0$ form factor is given by
\[
K^{pQCD}(0, Q^2) = \frac{s_0}{3Q^2} \int_0^1 \frac{\varphi_\pi(x)}{x} dx = \frac{s_0}{3Q^2} I^\varphi.
\] (47)

The pQCD result agrees with AdS/QCD model if $I^\varphi = 3$, e.g., for $\varphi_\pi(x) = 6x(1-x)$ (asymptotic DA). Our model is very close to Brodsky-Lepage interpolation $K_{BL}(0, Q^2) = 1/(1 + Q^2/s_0)$ which goes above CLEO data. However, next-to-leading pQCD correction is negative which allows to fit CLEO data if one takes distribution amplitudes with $I^\varphi \approx 3$.

In case of large and equal photon virtualities, the AdS/QCD result is
\[
K(Q^2, Q^2) \rightarrow \Phi(0) \int_0^\infty d\chi \chi^3 [K_1(\chi)]^2 = \frac{s_0}{3Q^2}.
\] (46)

Note that pQCD result in this kinematics does not depend on pion DA
\[
K^{pQCD}(Q^2, Q^2) = \frac{s_0}{3} \int_0^1 \frac{\varphi_\pi(x)}{xQ^2 + (1-x)Q^2} dx = \frac{s_0}{3Q^2} I^\varphi
\] (47)

and coincides with AdS/QCD model!

For non-equal large photon virtualities, we write $Q^2_1 = (1 + \omega)Q^2$ and $Q^2_2 = (1 - \omega)Q^2$. The leading-order pQCD then gives
\[
K^{pQCD}(Q^2_1, Q^2_2) = \frac{s_0}{3Q^2} \int_0^1 \frac{\varphi_\pi(x)}{1 + \omega(2x - 1)} dx = \frac{s_0}{3Q^2} I^\varphi(\omega),
\] (48)
while the AdS/QCD model result reads

\[
K(Q_1^2, Q_2^2) \to \frac{\Phi(0)s_0}{2Q^2} \sqrt{1 - \omega^2} \int_0^\infty d\chi \chi^3 K_1(\chi \sqrt{1 + \omega}) K_1(\chi \sqrt{1 - \omega})
\]

\[
= \left(\frac{s_0}{3Q^2} \right) \left\{ \frac{3}{4\omega^2} \left[2\omega - (1 - \omega^2) \ln \left(\frac{1 - \omega}{1 + \omega} \right) \right] \right\} .
\]

(49)

Note, that the term enclosed in curly brackets coincides with pQCD $I_\phi(\omega)$ for $\phi(x) = 6x(1 - x)$. Indeed, using representation

\[
\chi K_1(\chi) = \int_0^\infty e^{-\chi^2/4u - u} du ,
\]

and integrating over χ we get

\[
K(Q_1^2, Q_2^2) \to \frac{s_0}{Q^2} \int_0^\infty \int_0^\infty \frac{u_1u_2 e^{-u_1-u_2} du_1du_2}{u_2(1 + \omega) + u_1(1 - \omega)} .
\]

(51)

Changing $u_2 = x\lambda$, $u_1 = (1 - x)\lambda$ and integrating over λ gives

\[
K(Q_1^2, Q_2^2) \to \frac{s_0}{3Q^2} \int_0^1 6x(1 - x) dx \frac{1 + \omega(2x - 1)}{\pi} .
\]

(52)

Comment on “Light-Front Holography”. The AdS/CFT form factor expression (7) has structure similar to that of DY light-front formula (1), especially when the latter is written in terms of the impact parameter space w.f. $\tilde{\Psi}(x, b_\perp)$. Brodsky and de Teramond12 noticed that, identifying z with $|b_\perp|\sqrt{x(1 - x)}$ and taking a special form of the light-front w.f.

\[
\tilde{\Psi}(x, b_\perp) = \frac{1}{\sqrt{2\pi}} \frac{\Phi(|b_\perp|\sqrt{x(1 - x)})}{b_\perp^2 \sqrt{x(1 - x)}} ,
\]

(53)

one can convert the 3D DY formula (1) into the 1D AdS/CFT integral (7). This observation is the basis of the “Light-Front Holography” approach.24 However, it is easy to check that if one would calculate the meson couplings f_n (14), (30) from the light-front w.f. fixed by this ansatz, the results would have an extra $\sqrt{6}\pi/8$ factor (see Eqs.(88),(89) of Ref.[23]) compared to exact AdS/QCD results (14), (30). Furthermore, this ansatz gives $8\sqrt{x(1 - x)/\pi}$ for meson distribution amplitude, while we demonstrated above that AdS/QCD results for $\gamma^*\gamma^* \to \pi^0$ form factor correspond to asymptotic $6x(1 - x)$ distribution amplitude. In general, the light-front holography ansatz12 is not consistent with AdS/QCD for any observable that depends linearly on the w.f. (rather than bilinearly as in DY formula).
4. Summary

Summarizing, we established that meson form factors in AdS/QCD are given by formulas similar to those in quantum mechanics. For large Q, there is only one mechanism $z \sim 1/Q$. For vector mesons, the leading (LL) IMF form factor $F(Q^2)$ indeed behaves like $1/Q^2$ for large Q^2. In soft-wall model, $F(Q^2)$ demonstrates exact ρ-dominance. For pion, large-Q^2 asymptotics is s_0/Q^2 vs. pQCD result $(2\alpha_s/\pi)s_0/Q^2$. We included the anomalous amplitude into the AdS/QCD analysis, extending it to $U(2)_L \otimes U(2)_R$ and adding the Chern-Simons term. Fixing normalization by conforming to QCD anomaly, we observed that large-Q^2 behavior coincides then with pQCD calculations for asymptotic pion DA, the result contradicting the claim of “light-front holography” approach that meson distribution amplitude is given by $8\sqrt{x(1-x)}/\pi$. In conclusion, AdS/QCD is an instructive model for what may happen with form factors in real-world QCD.

Acknowledgements

I am very grateful to Organizers for invitation to Workshop honoring 60th anniversary of M. Shifman and their hospitality. Happy birthday, Misha! I thank H.R. Grigoryan for collaboration on the studies of form factors in AdS/QCD.

This paper is authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

References

1. V. A. Matveev, R. M. Muradian and A. N. Tavkhelidze, Lett. Nuovo Cimento 7, 719 (1973)
2. S. J. Brodsky and G. R. Farrar, Phys. Rev. Lett. 31, 1153 (1973)
3. R. P. Feynman, “Photon-Hadron Interactions,” Reading, 282p (1972)
4. S. D. Drell and T. M. Yan, Phys. Rev. Lett. 24, 181 (1970)
5. G. B. West, Phys. Rev. Lett. 24, 1206 (1970)
6. A. V. Radyushkin, JINR-P2-10717 (1977); English translation: arXiv:hep-ph/0410276.
7. G. P. Lepage and S. J. Brodsky, Phys. Lett. B 87, 359 (1979)
8. H. R. Grigoryan and A. V. Radyushkin, Phys. Rev. D 76, 115007 (2007)
9. H. R. Grigoryan and A. V. Radyushkin, Phys. Rev. D 78, 115008 (2008)
10. J. Polchinski and M. J. Strassler, Phys. Rev. Lett. 88, 031601 (2002)
11. J. Polchinski and M. J. Strassler, JHEP 0305, 012 (2003)
12. S. J. Brodsky and G. F. de Teramond, Phys. Rev. Lett. 96, 201601 (2006)
13. H. R. Grigoryan and A. V. Radyushkin, Phys. Lett. B 650, 421 (2007)
14. H. R. Grigoryan and A. V. Radyushkin, Phys. Rev. D 76, 095007 (2007)
15. H. R. Grigoryan and A. V. Radyushkin, Phys. Rev. D 77, 115024 (2008)
16. J. Erlich, E. Katz, D. T. Son and M. A. Stephanov, Phys. Rev. Lett. 95, 261602 (2005)
17. A. Karch, E. Katz, D. T. Son and M. A. Stephanov, Phys. Rev. D 74, 015005 (2006)
18. J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998); Int. J. Theor. Phys. 38, 1113 (1999)
19. J.C.C.A. Kneser, Math. Ann. LXIII, 447 (1907); A.J.W. Sommerfeld, Jahresber. Deutsch. Mat. Ver., XXI, 309 (1912)
20. D. T. Son and M. A. Stephanov, Phys. Rev. D 69, 065020 (2004)
21. S. J. Brodsky and J. R. Hiller, Phys. Rev. D 46, 2141 (1992)
22. L. Da Rold and A. Pomarol, Nucl. Phys. B 721, 79 (2005); JHEP 0601, 157 (2006)
23. S. J. Brodsky and G. F. de Teramond, Phys. Rev. D 77, 056007 (2008)
24. G. F. de Teramond and S. J. Brodsky, Phys. Rev. Lett. 102, 081601 (2009)