Unexpected transparency in the scattering of fragile ^6Li and ^6He Nuclei

F. Michel1 and S. Ohkubo2

1 Université de Mons-Hainaut, Place du Parc, 20, B-7000 Mons, Belgium
2 Department of Applied Science and Environment, Kochi Women’s University, Kochi 780-8515, Japan

Received: 10 August 2006 / Revised version: 20 August 2006

Abstract. It is found that the scattering of the fragile nucleus ^6Li from ^{12}C and ^{16}O is unexpectedly transparent. It is shown that the internal-wave contribution is significantly large in the scattering, which suggests that some transparency could persist in the scattering involving the fragile nucleus ^6He.

PACS. 25.60.Bx Elastic scattering – 24.10.Ht Optical and diffraction models – 25.60.-t Reactions induced by unstable nuclei

The nuclear rainbow and the Airy structure in elastic scattering are observed when absorption is incomplete. In the scattering involving magic nuclei like $^\alpha$ particle, ^{16}O and ^{40}Ca absorption is weak and nuclear rainbow has been typically observed in the ^{18}O, $^{16}\text{O}+^{40}\text{Ca}$ and $^{16}\text{O}+^{18}\text{O}$ systems [2]. For these systems nucleus-nucleus interaction potential has been determined up to the internal region, which made it possible to study the cluster structure of the composite systems ^{20}Ne, ^{44}Ti [1] and ^{32}S [3], respectively. For a fragile projectile absorption becomes much stronger. However we show that the Airy structure is observed in the scattering involving a fragile nucleus like ^6Li and absorption is incomplete.

$^6\text{Li} + ^{16}\text{O}$ elastic scattering shows Anomalous Large Angle Scattering (ALAS) [1] as shown in fig. 1. The experimental data are well reproduced by an optical potential with a squared Woods-Saxon form factor for real and imaginary potentials. This potential is deep similar to the α-cluster structure of the projectile nucleus and/or the barrier-wave components in the frame of the DWBA [5]. It is found that the contribution of the internal-wave behaviour, which is also similar to $\alpha+^{16}\text{O}$ scattering [1, 5].

The transparency of the $^6\text{Li} + ^{12}\text{C}$ system can be further confirmed by studying the inelastic scattering. In the coupled channel calculation of $^{12}\text{C}(^6\text{Li},^6\text{Li})^{12}\text{C}^*(J^\pi = 2^+, E_x = 4.44 \text{ MeV})$ inelastic scattering by using a collective form factor for ^{12}C the experimental angular distributions at $E_L=24$ and 30 MeV are well reproduced. By decomposing the inelastic scattering amplitude into internal-wave and barrier-wave components in the frame of the DWBA [5], it is found that the contribution of the internal-wave amplitude is very large and the rise of the cross sections beyond $\theta_{c.m.}=80^\circ$ comes entirely from the internal-wave contributions.

We have also investigated the angular distribution of elastic $^6\text{He} + ^{12}\text{C}$ scattering data at $E_L=18 \text{ MeV}$ [6]. Our potential obtained in the analysis of $^6\text{Li} + ^{12}\text{C}$ scattering at the corresponding energy can reproduce the observed angular distribution, which extends up to $\theta_{c.m.} \approx 85^\circ$.
The barrier-wave and internal-wave decomposition of the scattering amplitude shows that significantly large contribution to the backward angles comes from the internal waves, which suggests that transparency could persist in this system. From the similarity between the $^6\text{Li}+^{12}\text{C}$ system and the $^6\text{Li}+^{16}\text{O}$ system it is naturally expected that the scattering for the $^6\text{He}+^{12}\text{C}$ and $^6\text{He}+^{16}\text{O}$ systems would show a similar behaviour. Therefore it would highly desired to measure the angular distribution for $^6\text{He}+^{16}\text{O}$ scattering as well as $^6\text{He}+^{12}\text{C}$ scattering up to large angles in the energy range in fig. 2, which would ascertain whether transparency persists in the scattering of ^6He from ^{12}C and ^{16}O. In α particle scattering from ^{16}O, ^{15}N and ^{14}C, the angular distributions show almost similar behaviour under weak absorption. In fact, the α-nucleus potential for these nuclei is very similar each other and

can be reproduced by a double folding model. A similar situation may be expected for ^6He scattering from ^{16}O, ^{15}N and ^{14}C, which will make it possible to determine the ^6He-nucleus potential for these systems.

One of the authors (S.O.) has been supported by a Grant-in-Aid for Scientific Research of the Japan Society for Promotion of Science (No. 16540265) and the Yukawa Institute for Theoretical Physics.

References
1. F. Michel, S. Ohkubo, and G. Reidemeister, Prog. Theor. Phys. 132, (1998) 7.
2. Dao T. Khoa, *et al.*, A672, (2000) 387.
3. S. Ohkubo and K. Yamashita, Phys. Rev. C 66, (2002) 021301.
4. F. Michel, F. Brau, G. Reidemeister, and S. Ohkubo, Phys. Rev. Lett. 85, (2000) 1823.
5. F. Michel and S. Ohkubo, Phys. Rev. C 72, (2005) 054601.
6. M. Milin *et al.*, Nucl. Phys. A730, (2004) 285.
