Synthesis and Investigations of Antimicrobial, Antioxidant Activities of Novel Di-[2-(3-alkyl/aryl-4,5-dihydro-1H-1,2,4-triazol-5-one-4-yl)-azomethinephenyl] Isophthalates and Mannich Base Derivatives

Haydar Yüksek1, Gül Özdemir1, Sevda Manap1, Yonca Yılmaz1, Gül Kotan2*, Özlem Gürsoy-Kol1, Muzaffer Alkan3

1 Kafkas University, Department of Chemistry, Chemistry, Kars, Turkey
2 Kafkas University, Kars Vocational School, Chemistry, Kars, Turkey
3 Kafkas University, Faculty of Education, Mathematics and Science Education, Kars, Turkey

ABSTRACT

In this study, the synthesis of di-[2-(3-alkyl/aryl-4,5-dihydro-1H-1,2,4-triazol-5-one-4-yl)-azomethinephenyl] isophthalates (2a-g) from the reactions of 3-alkyl/aryl-4-amino-4,5-dihydro-1H-1,2,4-triazol-5-ones (1a-g) with di-(2-formylphenyl) isophthalate is described. Then, the compounds 2 were treated with morpholine in the presence of formaldehyde to synthesize di-{2-[1-(morpholine-4-yl-methyl)-3-alkyl(aryl)-4,5-dihydro-1H-1,2,4-triazol-5-one-4-yl]-azomethinephenyl} isophthalates (3a-g). The newly synthesized compounds were characterized using IR, 1H-NMR and 13C-NMR spectral data. In addition, the compounds synthesized were screened for their antimicrobial activities. Furthermore, the antioxidant properties of the newly synthesized compounds were analysed for their in-vitro potential antioxidant activities in three different methods (reducing power, free radical scavenging and metal chelating activity). These antioxidant activities were compared to those from standard antioxidants, such as BHA, BHT, EDTA and α-tocopherol.

Keywords: Schiff base, Mannich base, Antimicrobial activity, Antioxidant activity.
INTRODUCTION

A large number of heterocyclic compounds containing the 1,2,4-triazole ring, are associated with diverse biological properties such as antioxidant, anti-inflammatory, antimicrobial and anti-viral activity. Mannich bases have applications in the field of medicinal chemistry, the product synthetic polymers, the petroleum industry, as products used in water treatment, cosmetics, the dyes industry, etc. In addition, Mannich bases have biological activity such as anticancer, antibacterial, antimycobacterial, anti-inflammatory, antifungal, antitumor, namely the 1-aryl-2-dimethylaminomethyl-2-propen-1-one hydrochlorides 1a-e and 1-aryl-3-dimethylamino-2-hydroxymethyl-1-propanone hydrochlorides 2a-e. A number of these compounds possess marked cytotoxic potencies (IC50, antiviral, antidepressant, antiulcer, anticonvulsant, antimalarial and antioxidant activities).

Antioxidants were defended organisms and cells from damage induced by oxidative stress. Thus, significant research has been ruled to investigate this feature. Scientists have dealt with the new compounds in recent years. Natural sources provide the effective components forestall or decrease the influence of oxidative stress on cells have been used. Exogenous chemicals and endogenous metabolic steps in human body or in food system might produce highly reactive free radicals, particularly oxygen provided radicals, which are capable of oxidizing biomolecules, resulting in cell death and issue damage. Oxidative damages play a considerable pathological role in human diseases. It has been an important pathological effect of oxidative damage in human disease. For example, cancer, emphysema, cirrhosis, atherosclerosis and arthritis have all been correlated with oxidative injury. In addition to, excessive generation of ROS (reactive oxygen species) induced by various stimuli and which exceeds the antioxidant capacity of the organism leads to a diversity of pathophysiological processes such as inflammation, diabetes, genotoxicity and cancer.

In this paper, in order to define antioxidant activity of the synthesized Mannich Bases were researched different antioxidant method; iron binding effect, reducing power and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical scavenging activity. Furthermore, the antimicrobial activities of novel Mannich bases were investigated with agar well diffusion method. In the present paper, the starting materials (1a-g) were synthesized from the reactions of the corresponding ester ethoxycarbonylhydrazones with an aqueous solution of hydrazine hydrate and di-[2-(3-alkyl/aryl-4,5-dihydro-1H-1,2,4-triazol-5-one-4-yl)-azomethinephenyl] isophtalates (2a-g) were obtained by the reactions of compounds (1a-g) with di-(2-formylphenyl) isophtalate. Then, the
compounds 2 reacted with formaldehyde and morpholine to afford di-{2-[1-(morpholine-4-yl-methyl)-3-alkyl(aryl)-4,5-dihydro-1H-1,2,4-triazol-5-one-4-yl]-azomethinephenyl} isophtalates (3a-g) (Scheme 1).

Scheme 1. The synthetic pathway of the compounds 2 and 3.

METHODOLOGY

Synthesis

Preparation of Compounds 2a-g: 3-Alkyl/Aryl-4-amino-4,5-dihydro-1H-1,2,4-triazol-5-one (1) (0.01 mol) was dissolved in acetic acid (20 mL) and treated with di-(2-formylphenyl) isophtalate (0.01 mol). The mixture was refluxed for 1.5 hours and then evaporated at 50-55°C in vacuo. Several recrystallizations of the residue from ethanol gave pure compound di-[2-(3-alkyl/aryl-4,5-dihydro-1H-1,2,4-triazol-5-one-4-yl]-azomethinephenyl] isophtalate (2) as white colour crystals.

Preparation of Compounds 3a-g: Compound 2 (5 mmol) was dissolved absolute ethanol and to this solution were added to formaldehyde (% 37, 10 mmol) and morpholine (6 mmol). The reaction mixture was refluxed for 4 hours and filtered. The crude product was recrystallized from ethanol.

Physical data of the new compounds (2a-g and 3a-g) are presented in Table 1. IR, ¹H-NMR and ¹³C-NMR spectral data are given in Tables 2-6.
Table 1. Physical data of the compounds 2 and 3

Compounds	2a	2b	2c	2d	2e	2f	2g	3a	3b	3c	3d	3e	3f	3g
% Yield	99	98	90	96	97	96	90	92	91	91	94	90	92	90
Melting Point (°C)	271	233	226	273	260	243	251	224	183	165	176	158	155	206

Table 2. IR data of the compounds 2 and 3 (cm⁻¹).

Compounds	n₁₄-disubstituted benzenoid ring	n₁₃-disubstituted benzenoid ring	n₁₂-disubstituted benzenoid ring	n₁-monosubstituted benzenoid ring
2a	1744, 1713	1604	1208	871 and 789
2b	1739, 1705	1598	1203	902 and 800
2c	1710	1598	1207	902 and 824
2d	1709	1596	1202	904 and 819
				752 and 694
2e	1745, 1705	1598	1200	903 and 796
			829	
2f	1740, 1705	1598	1201	903 and 792
			821	749
2g	1705	1603	1203	905 and 802
				756
3a	-	1742, 1704	1597	1215
				856 and 768
3b	-	1742, 1700	1593	1204
				897 and 765
3c	-	1744, 1700	1591	1205
				897 and 765
3d	-	1742, 1700	1590	1207
				904 and 762
3e	-	1746, 1701	1596	1206
				904 and 790
Table 3. 1H-NMR data of the compounds 2 (DMSO-d_6, δ/ppm)

Compounds	2CH_3	2CH_2	2PhCH_3	2CH_2	Aromatic H	$2\text{N}=\text{CH}$	2NH
2a	2.10 (s)	-	-	-	7.48-7.53 (m, 4H), 7.66 (dd, $2\text{H}_J=8.00,1.60$ Hz), 7.90 (t, $1\text{H}_J=8.80$ Hz), 8.04 (dd, $2\text{H}_J=8.00,1.60$ Hz), 8.54 (dd, $2\text{H}_J=8.00,1.60$ Hz), 8.84 (t, $1\text{H}_J=1.60$ Hz)	9.93 (s)	11.75 (s)
2b	1.09 (t, $J=7.60$ Hz)	-	-	2.47 (q, $J=7.60$ Hz)	7.49-7.53 (m, 4H), 7.67 (t, $2\text{H}_J=8.00$ Hz), 7.91 (t, $1\text{H}_J=8.00$ Hz), 8.02 (dd, $2\text{H}_J=8.00,1.20$ Hz), 8.55 (dd, $2\text{H}_J=8.00,1.60$ Hz), 8.85 (s, 1H)	9.93 (s)	11.75 (s)
2c	0.85 (t, $J=7.20$ Hz)	1.57 (sext, $J=7.20$ Hz)	-	2.43 (t, $J=7.20$ Hz)	7.19-7.31 (m, 10H), 7.47-7.50 (m, 4H), 7.65 (dd, $2\text{H}_J=8.00,1.60$ Hz), 7.86 (t, $1\text{H}_J=8.00$ Hz), 7.99 (d, $2\text{H}_J=8.00$ Hz), 8.51 (dd, $2\text{H}_J=8.00,1.60$ Hz), 8.82 (s, 1H)	9.91 (s)	11.91 (s)
2d	-	-	-	3.92 (s)	7.08 (d, $4\text{H}_J=8.00$ Hz), 7.46-7.51 (m, 4H), 7.65 (t, $2\text{H}_J=8.00,1.60$ Hz), 7.86 (t, $1\text{H}_J=8.00$ Hz), 8.00 (dd, $2\text{H}_J=6.00,1.20$ Hz), 8.51 (dd, $2\text{H}_J=8.00,1.60$ Hz), 8.83 (s, 1H)	9.90 (s)	12.00 (s)
2e	-	-	-	2.23 (s)	7.27 (d, $4\text{H}_J=8.40$ Hz), 7.35 (d, $4\text{H}_J=8.40$ Hz), 7.47-7.51 (m, 4H), 7.66 (t, $2\text{H}_J=8.00$ Hz)	9.92 (s)	11.93 (s)
2f	-	-	-	3.93 (s)	7.86 (t, $1\text{H}_J=8.00$ Hz), 7.99 (d, $2\text{H}_J=7.60$ Hz), 8.51 (dd, $2\text{H}_J=8.00,1.60$ Hz), 8.82 (s, 1H)	9.88 (s)	12.32 (s)
2g	-	-	-	-	7.48-7.55 (m, 10H), 7.67-7.82 (m, 4H), 7.99 (d, $2\text{H}_J=8.00,1.20$ Hz), 8.40 (dd, $2\text{H}_J=7.60,1.60$ Hz), 8.68 (s, 1H)	-	-
Table 4. 13C-NMR data of the compounds 2 (DMSO-d_6, δ/ppm)

Comp.	2COO δ/ppm	2Triazole δ/ppm	2N=CH δ/ppm	2Triazole δ/ppm	Aromatic C	C3-Aromatik C	Aliphatic C
2a	163.54	149.51	148.91	144.09	123.64(2CH), 126.01(2C), 126.95(2CH), 127.70(2CH), 129.42(2C), 130.16(2CH), 131.00(2CH), 132.54(2CH), 135.22(2CH), 151.16(2C), 123.66(2CH), 126.03(2C), 126.98(2CH), 127.86(2CH), 123.64(2CH), 126.03(2C), 127.00(2CH), 127.87(2CH), 129.44(2C), 130.19(2CH), 131.02(2CH), 132.54(2CH), 135.21(2CH), 151.30(2C)	-	10.85(2CH$_2$)
2b	163.54	149.46	149.09	147.86	123.64(2CH), 126.03(2C), 126.98(2CH), 127.86(2CH), 123.64(2CH), 126.03(2C), 127.00(2CH), 127.87(2CH), 129.44(2C), 130.19(2CH), 131.02(2CH), 132.54(2CH), 135.21(2CH), 151.30(2C)	-	9.87(2CH$_2$CH$_3$), 18.31(2CH$_2$CH$_3$)
2c	163.53	149.45	149.23	146.71	123.54(2CH), 126.97(2C), 126.67(2CH), 127.12(2CH), 129.32(2C), 130.13(2CH), 131.03(2CH), 132.59(2CH), 135.20(2CH), 151.23(2C)	-	13.31(2CH$_2$CH$_2$CH$_3$), 18.65(2CH$_2$CH$_2$CH$_3$)
2d	163.51	149.68	148.46	146.09	123.52(2CH), 125.98(2C), 126.93(2CH), 127.14(2CH), 129.32(2C), 130.11(2CH), 131.03(2CH), 132.56(2CH), 135.18(2CH), 151.17(2C)	126.94(2CH), 128.37(4CH), 128.72(4CH), 135.58(2C)	30.82(2CH$_3$Ph)
2e	163.50	149.66	148.43	146.23	123.52(2CH), 125.98(2C), 126.93(2CH), 127.14(2CH), 129.32(2C), 130.11(2CH), 131.03(2CH), 132.56(2CH), 135.18(2CH), 151.17(2C)	128.58(4CH), 128.94(4CH), 132.46(2CH), 135.74(2C)	20.55(2PhCH$_3$), 30.43(2CH$_2$Ph)
Table 5. 1H-NMR data of the compounds 3 (DMSO-d_6, δ/ppm)

Comp.	2CH$_3$	2CH$_2$	2CH$_2$	2CH$_2$NCH$_2$	2CH$_2$OCH$_2$	2NCH$_2$N	Aromatic H	2N=CH
3a	2.11(s)	-	-	2.54(m)	3.48(m)	4.38(s)	7.49-7.53(m,4H), 7.67(td,2H, J=8.40,1.60 Hz), 8.05(d,2H, J=7.60 Hz), 8.54(dd,2H, J=8.00,1.60 Hz), 8.87(s,1H)	9.93(s)
3b	1.09(t, J=7.60 Hz)	2.50(q, J=7.60 Hz)	-	2.55(m)	3.49(m)	4.40(s)	7.49-7.53(m,4H), 7.67(t,2H, J=8.00 Hz), 8.03(d, 2H, J = 7.60 Hz), 8.55 (d,2H, J =7.60 Hz), 8.87(s,1H)	9.92(s)
3c	0.85(t, J=7.20 Hz)	1.57(5, J=7.20 Hz)	2.48(t, J=7.20 Hz)	2.55(m)	3.49(t, J = 4.40 Hz)	4.41(s)	7.50-7.53(m,4H), 7.65-7.68(m,2H), 7.92(t,1H, J=8.00 Hz), 8.00-8.05(m,2H), 8.54(dd,2H, J=8.00,1.60 Hz), 8.87(d,1H, J=1.60 Hz)	9.92(s)
3d	-	-	3.95(s)	2.48(t, J = 4.40 Hz)	3.47 (m)	4.42(s)	7.85(t,1H, J=8.00 Hz), 7.99(d,2H, J=7.60 Hz), 8.49(d,2H, J=7.60,1.60 Hz), 8.83(s,1H)	9.89(s)
3e 2.22 (s) - 3.90(s) 2.46(t, J = 4.40 Hz) 3.47(t, J = 4.40 Hz) 4.41(s) 7.07-7.14(m, 8H),
 7.46-7.51(m, 4H),
 7.66(td, 2H, J = 7.60,1.60 Hz),
 7.85(t, 1H, J = 7.60 Hz),
 8.00(dd, 2H, J = 8.00,1.60 Hz),
 8.49(dd, 2H, J = 8.00,1.60 Hz),
 8.83(s, 1H)

3f - - 3.96(s) 2.46(t, J = 4.40 Hz) 3.47(t, J = 4.40 Hz) 4.41(s) 7.27(d, 2H, J = 8.40 Hz),
 7.35(d, 2H, J = 8.40 Hz),
 7.47-7.49(m, 4H),
 7.64-7.69(m, 2H),
 7.85(t, 1H, J = 8.00 Hz),
 7.97-8.01(m, 2H),
 8.49(dd, 2H, J = 7.60, 1.60 Hz),
 8.83(s, 1H)

3g - - - 2.54(m) 3.49(t, J = 4.40 Hz) 4.52(s) 7.47-7.55(m, 12H),
 7.70(td, 2H, J = 8.40, 1.60 Hz),
 7.76-7.82(m, 3H),
 7.99(dd, 2H, J = 8.00, 1.60 Hz),
 8.38(dd, 2H, J = 8.00, 1.60 Hz),
 8.71(s, 1H)

Table 6. 13C-NMR data of the compounds 3 (DMSO-d6, δ/ppm)

Comp.	2COO	2N=CH	Aromatic C	C3-Aromatic C	Aliphatic C									
3a	163.53 149.53 149.18 142.97	-	123.66(2CH), 125.84(2C), 126.97(2CH), 127.90(2CH), 129.48(2C), 130.23(2CH), 130.97(2CH), 132.67(2CH), 135.29(2CH), 150.15(2C)	65.96 65.79 49.86 10.81 (2CH3)										
3b	163.53 149.50 149.35 146.68	-	123.67(2CH), 125.86(2C), 127.00(2CH), 127.99(2CH), 129.48(2C), 130.21(2CH), 130.97(2CH), 132.67(2CH), 135.28(2CH), 150.28(2C)	65.96 65.82 49.88 9.88 (2CH3,CH3), 18.20 (2CH2CH3)										
	163.52	149.48	149.40	145.47	-	65.97	65.77	49.88	13.30					
---	---	---	---	---	---	---	---	---	---					
a)	123.66(2CH), 125.85(2C), 127.02(2CH), 127.97(2CH), 129.49(2C), 130.25(2CH), 130.98(4CH), 132.68(2CH), 135.28(2CH), 150.22(2C)				18.67(2CH,CH,CH,)	26.25 (2CH,CH,CH,)								
3c	123.56(2CH), 125.81(2C), 126.75(2CH), 127.25(2CH), 129.36(2C), 130.19(2CH), 130.96(2CH), 132.72(2CH), 135.25(2CH), 150.16(2C)				126.96(2CH), 128.44(4CH), 128.68(2CH), 135.44(2C)	65.96	65.96	49.88	30.61 (2CH,Ph)					
3d	123.55(2CH), 125.97(2C), 126.96(2CH), 127.16(2CH), 129.36(2C), 130.18(2CH), 130.96(2CH), 132.56(2CH), 135.14(2CH), 150.15(2C)				128.55(4CH), 129.01(4CH), 132.30(2CH), 135.83(2C)	65.95	65.89	49.88	20.55 (2PhCH,3), 30.37 (2CH,Ph)					
3e	123.57(2CH), 125.76(2C), 126.97(2CH), 127.34(2CH), 129.36 (2C), 130.18(2CH), 130.98(2CH), 132.76(2CH), 135.24(2CH), 150.15(2C)				128.38(4CH), 130.62(4CH), 131.49(2CH), 134.39(2C)	65.95	65.95	49.85	30.09 (2CH,Ph)					
3f	123.69(2CH), 125.69(2C), 127.01(2CH), 127.51(2CH), 129.30(2C), 129.86(4CH), 130.99(2CH), 132.88(2CH), 134.98(2CH), 150.36(2C)				125.90(2C), 127.87(4CH), 128.46(4CH), 130.03(2CH)	66.29	65.97	49.86	-					
3g	163.54	151.72	149.64	143.31	163.53	149.70	148.88	144.50	163.54	151.72	149.64	143.31	a)	2Triazole C_a, b) 2Triazole C_b, c) 2CH₂OCH₂, d) 2NCH₂N, e) 2CH₂NCH₂
Biological Methods

Antioxidant Activity

Trichloroacetic acid (TCA), α-tocopherol, butylated hydroxyanisole (BHA), ethylenediaminetetraacetic acid (EDTA), butylated hydroxytoluene (BHT), 1,1-diphenyl-2-picryl-hydrazyl (DPPH), 3-(2-pyridyl)-5,6-bis(phenylsulfonic acid)-1,2,4-triazine (ferrozine) and ferrous chloride, were acquired from E. Merck. and Sigma–Aldrich.

Reducing Power

The reducing power of the compounds 2a-g and 3a-g were determined using the method of Oyaizu35 as explained in the literature31 and were shown in Table 8.

\textbf{Table 7.} The reducing power method

Reagents	S\textsubscript{1}	S\textsubscript{2}	S\textsubscript{3}	N\textsubscript{1}	N\textsubscript{2}	N\textsubscript{3}	Blank
Compound	-	-	-	100\textmu L	250\textmu L	500\textmu L	-
Standard	100\mu L	250\mu L	500\mu L	-	-	-	-
Phosphate Buffer	2.4 mL	2.25 mL	2.0 mL	2.4 mL	2.25 mL	2.0 mL	-
K\textsubscript{3}Fe(CN)\textsubscript{6}	2.5 mL	-					
Ethyl Alcohol	2.95 mL	2.90 mL	2.85 mL	2.95 mL	2.90 mL	2.85 mL	3 mL

Free Radical Scavenging Activity

Free radical scavenging effect of the compounds 2a-g and 3a-g were estimated by DPPH1, by the method of Blois36 as explained in the literature31 and were summarized in Table 8.

\textbf{Table 8.} The free radical scavenging effect method

Reagents	S\textsubscript{1}	S\textsubscript{2}	S\textsubscript{3}	N\textsubscript{1}	N\textsubscript{2}	N\textsubscript{3}	Blank	Control
Compound	-	-	-	50\textmu L	100\textmu L	150\textmu L	-	-
Standard	50\mu L	100\mu L	150\mu L	-	-	-	-	-
Ethyl Alcohol	2.95 mL	2.90 mL	2.85 mL	2.95 mL	2.90 mL	2.85 mL	-	3 mL
DPPH	1 mL	4 mL	1 mL					

Metal Chelating Activity

The chelating of ferrous ions by the compounds 2a-g and 3a-g and references were measured according to the method of Dinis et al.37 as explained in the literature31 (Table 9).
Table 9. The metal chelating activity method

Reagents	S₁	S₂	S₃	N₁	N₂	N₃	Blank	Control
Compound	-	-	-	-	-	-	-	-
Standard	30μL	60μL	90μL	-	-	-	-	-
Ethyl Alcohol	3.75 mL	-	-					
FeCl₂4H₂O	0.05 mL							
Ferrozine	0.2 mL							

Antimicrobial Activity

Antimicrobial activities of 2a-g and 3a-g compounds were investigated simple susceptibility screening test using agar-well diffusion method as adapted earlier. All microorganisms present in the test were provided from the Microbiologic Environmental Protection Laboratories Company in France. These microorganisms: Klebsiella pneumoniae ATCC4352, Pseudomonas aeruginosa ATCC27853, Escherichia coli ATCC259222, Staphylococcus aureus ATCC6538, Bacillus subtilis ATCC11774, Bacillus cereus ATCC11778.

RESULTS AND DISCUSSION

The synthesized seven new Schiff bases and seven new Mannich bases were identified using IR, ¹H-NMR, ¹³C-NMR spectral data.

Antioxidant Activity

In vitro antioxidant activities of fourteen new compounds 2a-g and 3a-g were investigated. Antioxidant activities were determined by the methods showed below.

Total reductive capability using the potassium ferricyanide reduction method

The reducing power of the compounds 2a-g and 3a-g was determined as described in. All compounds in different amounts showed lower absorption rates in this study than the standard compounds. Consequently, no activity was observed with respect to the reduction of metal ion complexes to their lower oxidation states or their involvement in an electron transfer reaction. In summary, synthesized compounds were not involved in reductive activities as seen in Figures 1 and 2.
Figure 1. Total reductive potential of different concentrations of the compounds 2, BHT, BHA and α-tocopherol.

Figure 2. Total reductive potential of different concentrations of the compounds 3, BHT, BHA and α-tocopherol.
DPPH radical scavenging activity

The scavenging effect of compounds 2a-g and 3a-g was estimated by DPPH as explained in 41-43. The DPPH method was used to determine the antiradical activity of compounds and standard antioxidants such as BHA, BHT and α-tocopherol in the study. It has been found that recently synthesized compounds have no activity as radical scavengers as shown in Figures 3 and 4.

Figure 3. Scavenging effect of the compounds 2, BHT, BHA and α-tocopherol at different concentrations (12.5–25–37.5 μg/mL).

Figure 4. Scavenging effect of the compounds 3, BHT, BHA and α-tocopherol at different concentrations (12.5–25–37.5 μg/mL).
Ferrous ion chelating activity

The chelation effect against iron ions by the compounds and standards was determined. Ferrozin can form complexes quantitatively with Fe$^{2+}$. In the presence of chelating agents, the complex formation is disturbed, so that the red colour of the complex decreases. The measurement of colour reduction thus allows the estimation of the chelating activity of the coexisting chelator. Iron ion chelating activities of the compounds 2, 3, EDTA and α-tocopherol are shown in Figures 5 and 6, respectively.

Figure 5. Metal chelating effect of different amount of the compounds 2, EDTA and α-tocopherol on ferrous ions.

Figure 6. Metal chelating effect of different amount of the compounds 3, EDTA and α-tocopherol on ferrous ions.
The high metal-chelating activity refers to a low absorption level at 562 nm. From the data in Figure 3, it can be deduced that the metal-chelating effects of compounds are concentration-dependent. As a result, compounds with significant iron-binding capacities can prove that their action as peroxidation inhibitors stems from their iron-binding capacities. The order of metal chelation of compounds and standards decreases when EDTA > 3g > 3a > 3d > 3b ≈ 3c > 3e > 3f > α-tocopherol. Despite the low solubility rate for free iron, chelated iron complexes are known to have higher solubility rates in solutions that can be readily attributed to the ligand. Due to their potential involvement in iron-catalysed reactions, compound iron complexes could also be active.

Antimicrobial Activity

The antimicrobial activity of the compounds 2 and 3 were investigated. The results are shown in Table 10 and 11.

Table 10. Zone diameters for antimicrobial activity of the 2,3 and Standart compounds

Compound	Microorganisms and Inhibition Zone (mm)					
	K.p.	Pa.	E.c.	S.a.	B.s.	B.c.
2a	-	-	-	-	-	-
2b	-	-	-	-	-	-
2c	-	-	-	-	-	-
2d	-	-	-	-	-	-
2e	-	-	-	-	-	-
2f	-	-	-	-	-	-
2g	-	-	-	-	-	-
3a	12	16	19	10	-	-
3b	13	17	13	12	-	-
3c	17	14	17	17	-	-
3d	15	13	17	15	-	-
3e	15	12	16	14	-	-
3f	12	11	15	11	-	-
3g	23	21	22	24	-	-
Ampicillin (X3261)	35	36	34	37	33	36
Neomycin (X3385)	16	17	16	13	17	17
Steptomycin (X3385)	11	12	10	21	12	12
Table 11. Screening for antimicrobial activity of the compounds 2 and 3.

Compound	Microorganisms and Inhibition Zone (mm)					
	K.p.	P.a.	E.c.	S.a.	B.s.	B.c.
2a	-	-	-	-	-	-
2b	-	-	-	-	-	-
2c	-	-	-	-	-	-
2d	-	-	-	-	-	-
2e	-	-	-	-	-	-
2f	-	-	-	-	-	-
2g	-	-	-	-	-	-
3a	++	++	+++	+	-	-
3b	++	+++	++	+	-	-
3c	+++	++	+++	+++	-	-
3d	++	++	+++	++	-	-
3e	++	++	++	++	-	-
3f	++	++	++	++	-	-
3g	+++	+++	+++	+++	-	-

The inhibition zone: (–): <5.5 mm; (+): 5.5–10 mm; (++): 11–16 mm; (+++): ≥17 mm.

K.p.: Klebsiella pneumoniae (ATCC4352), P.a.: Pseudomonas aeruginosa (ATCC27853), E.c.: Escherichia coli (ATCC25922). S.a.: Staphylococcus aureus (ATCC6538), B.s.: Bacillus subtilis (ATCC11774), B.c.: Bacillus cereus (ATCC11778).

All of the Schiff Bases (2a-g) showed no effect against six bacteria. All of the Mannich Bases (3a-g) showed no effect against B. Subtilis ATCC11774 and B. cereus ATCC11778 bacteria strains. The antimicrobial activity of 3a-g compounds against K. pneumoniae, P. Aeruginos, E. coli, S. aureus is lower than Ampicillin and higher than Neomycin and Streptomycin standards and listed in Table 10. While compounds 3b, 3g showed high activity against P. Aeruginosa ATCC27853, compounds 3a, 3c, 3d, 3e and 3f showed moderate activity to this strain. On the other hand, different results were obtained from K. pneumoniae ATCC4352 strain. While compounds 3c, 3g showed high activity against K. pneumoniae ATCC4352, Staphylococcus aureus (ATCC6538) and Escherichia coli (ATCC25922) compounds 3a, 3b, 3d, 3e and 3f showed moderate activity to this strain. The compound 3a, 3c, 3d, 3g showed high activity against Escherichia coli (ATCC25922) but, compound 3b, 3e, 3f showed moderate activity against same bacteria. Compound 3g showed high activity against first four bacteria and summarized in Table 10, 11.

The synthesis and in-vitro antioxidant valuation of fourteen new compounds...
are explained. Antioxidant activity (the metal chelate activity) and anti-microbial activity of Mannich bases (3a-g) were higher than Schiff base compounds (2a-g). Synthesis of these new Mannich Bases can play especially a safety role in modern medicinal chemistry. These results may also ensure some lead for the improving of Mannich Bases curative aim.
REFERENCES

1. Tramontini, M.; Angiolini, L. Mannich Bases. Chemistry and Uses. CRC Press. 1994, 289.

2. Savariz, F. C.; Formagio, A. S. N.; Barbosa, V. A.; Foglio, M. A.; Carvalho, J. E. De.; Duarte, M. C. T. Synthesis, antitumor and antimicrobial activity of novel 1-substituted phenyl-3-[3-alkylamino(methyl)-2-thioxo-1,3,4-oxadiazol-5-yl] β-carboline derivatives. J. Braz Chem Soc. 2010, 21, 288–98.

3. Chen, Y.; Wang, G.; Duan, N.; Cao, T.; Wen, X.; Yin, J. Synthesis and Antitumor Activity of Fluoroquinolone C3-Isostere Derivatives: Oxadiazole Mannich Base Derivatives. Chinese J. Appl. Chem. 2012, 29, 1246–1250.

4. Bandgar, B. P.; Patil, S. A.; Korbad, B. L.; Biradar, S. C.; Nile, S. N.; Khobragade, C. N. Synthesis and biological evaluation of a novel series of 2,2-bisaminomethylated aurone analogues as anti inflammatory and antimicrobial agents. Eur. J. Med. Chem. 2010, 45, 3223–3227.

5. El-Emam, A. A.; Al-Tamimi, A-M. S.; Al-Omar, M. A.; Alrashood, K. A.; Habib, E. E. Synthesis and antimicrobial activity of novel 5-(1-adamantyl)-2-aminomethyl-4-substituted-1,2,4-triazoline-3-thiones. Eur. J. Med. Chem. 2013, 68, 96–102.

6. Maddila, S.; Jonnalagadda, S. B. New Class of Triazole Derivatives and Their Antimicrobial Activity. Lett. Drug. Des. Discov. 2012, 9, 687-693.

7. Das, S.; Das, U.; Bandy, B.; Gorecki, D. K. J.; Dimmock, J. R. 2-{4-[4-Methoxyphenylcar-bonyloxy]benzylimide]-6-dimethylaminomethyl cyclohexanone hydrochloride: a Mannich base which inhibits the growth of some drug-resistant strains of Mycobacterium tuberculosis. Pharmazie, 2010, 65, 849–850.

8. Sriram, D.; Yogeeswari, P.; Gopal, G. Synthesis, anti-HIV and antitubercular activities of lamivudine prodrugs. Vol. 40. Eur. J. Med. Chem. 2005, 40, 1373-1376.

9. Ceylan, S.; Bektas, H.; Bayrak, H.; Demirbas, N.; Alpay-Karaoglu, S.; Ülker, S. Syntheses and Biological Activities of New Hybrid Molecules Containing Different Heterocyclic Moieties. Arch. Pharm. (Weinheim). 2013, 346, 743–756.

10. Liu, D.; Yu, W.; Li, J.; Pang, C.; Zhao, L. Novel 2-(E)-substituted benzyldiene-6-(N-substituted aminomethyl)cyclohexanones and cyclohexanols as analgesic and anti inflammatory agents. Med. Chem. Res. Springer-Verlag. 2013, 22, 3779–3786.

11. Bandgar, B. P.; Patil, S. A.; Totre, J. V.; Korbad, B. L.; Gacche, R. N.; Hote, B. S. Synthesis and biological evaluation of nitrogen-containing benzophenone analogues as TNF-α and IL-6 inhibitors with antioxidant activity. Bioorg. Med. Chem. Lett. 2010, 20, 2292-2296.

12. Köksal, M.; Gökhan, N.; Küpeli, E.; Yesilada, E.; Erdoğan, H. Synthesis, analgesic and anti inflammatory properties of certain 5-/6-acyl-3-(4-substituted-1-piperazinylmethyl)-2-benzoazolinones derivatives. Arch. Pharm. (Weinheim). 2005, 338, 117–125.

13. Nithinchandra.; Kalluraya, B.; Aamir, S.; Shabaraya, AR. Regioselective reaction: Synthesis, characterization and pharmacological activity of some new Mannich and Schiff bases containing sydnone. Eur. J. Med. Chem. 2012, 54, 597–604.

14. Manjunatha, K.; Poojary, B.; Lobo, P. L.; Fernandes, J.; Kumari, N.S. Synthesis and biological evaluation of some 1,3,4-oxadiazole derivatives. Eur. J. Med. Chem. 2010, 45, 5225–5233.

15. Ozkan-Daguyan, I.; Sahin, F.; Koksal, M. Synthesis, Characterization and Antimicrobial Activity of Novel 3,5-Disubstituted-1,3,4-oxadiazole-2-ones. Rev. Chim. Orig. Ed. 2013, 64, 534–539.

16. Frank, P. V.; Manjunatha Poojary, M.; Damodara, N.; Chikkanna, C. Synthesis and anti-
microbial studies of some Mannich bases carrying imidazole moiety. *Acta Pharm.* **2013**, *63*, 231–239.

17. Pati, H. N.; Das, U.; Kawase, M.; Sakagami, H.; Balzarini, J.; De Clercq, E. 1-Aryl-2-dimethylaminomethyl-2-propen-1-one hydrochlorides and related adducts: A quest for selective cytotoxicity for malignant cells. *Bioorg. Med. Chem.* **2008**, *16*, 5747–5753.

18. Pau, A.; Murineddu, G.; Asproni, B.; Murruzzu, C.; Grella, G. E.; Pinna, G. Synthesis and cytotoxicity of novel hexahydrothienocycloheptapyridazinone derivatives. *Molecules* **2009**, *14*, 3494–3508.

19. Jia, W.; Zhao, Y.; Li, R.; Wu, Y.; Li, Z.; Gong, P. Synthesis and In-Vitro Anti-Hepatitis-B Virus Activity of 6H-[1]Benzothiopyrano[4,3-b] quinolin-10-ols. *Arch. Pharm (Weinheim)*. **2009**, *342*, 507–512.

20. Jia, W.; Liu, Y.; Li, W.; Liu, Y.; Zhang, D.; Zhang, P. Synthesis and in vitro anti-hepatitis B virus activity of 6H-[1]benzothiopyrano[4,3-b]quinolin-9-ols. *Bioorg. Med. Chem.* **2009**, *17*, 4569–4574.

21. Chen, D.; Zhai, X.; Yuan, Q. H.; Luo, J.; Xie, S. C.; Gong, P. Synthesis and in vitro anti-hepatitis B virus activity of 1H-benzimidazol-5-ol derivatives. *Chin Chem Lett.* **2010**, *21*, 1326–1329.

22. Köksal, M.; Bilge, S. S. Synthesis and Antidepressant-Like Profile of Novel 1-Aryl-3-[(4-benzyl)piperidine-1-yl]propane Derivatives. *Arch Pharm (Weinheim).* **2007**, *340*, 299–303.

23. Dyubchenko, O. I.; Nikulina, V. V.; Markov, A. F.; Kandalintseva, N. V.; Prosenko, A. E.; Khoshchenko, O. M. Synthesis and hepatoprotector activity of water-soluble derivatives of aminoxalkylphenols. *Pharm. Chem. J.* **2006**, *40*, 243–247.

24. Kodhati, V.; Vanga, M. R.; Yellu, N. R. Synthesis and Anti Bacterial and Anti-ulcer Evaluation of New S-mannich Bases of 4,6-diaryl-3,4-dihydropyrimidin-2(1H)-thiones. *J. Korean Chem. Soc.* **2013**, *57*, 234–240.

25. Rajasekaran, A.; Rajamanickam, V.; Darlinquine, S. Synthesis of some new thiooxoquinazolinone derivatives and a study on their anticonvulsant and antimicrobial activities. *Eur. Rev. Med. Pharmacol Sci.* **2013**, *17*, 95–104.

26. Görötz, K.; Kramer, C.; Meyer, H.; Walter, R. D.; Jomaa, H.; Wiesner, J. Pyrido [3,2-b] indol-4-yl-amine-Synthese und Prufung auf Wirksamkeit gegen Malaria. *Pharmazie.* **2004**, *59*, 243–250.

27. Görötz, K.; Meyer, H.; Walter, R. D.; Jomaa, H.; Wiesner, J. [1] Benzothieno[3,2-b]pyri din-4-yl-amine-Synthese und Prufung auf Wirk-samkeit gegen Malaria. *Pharmazie.* **2004**, *59*, 506–512.

28. Hamama, W. S.; Zoorob, H. H.; Gouda, M. A.; Afsah, E.M. Synthesis and antimicrobial and antioxidant activities of simple saccharin derivatives with N-basic side chains. *Pharm. Chem. J.* **2011**, *45*, 18–24.

29. Hussain, H. H.; Babic, G.; Durst, T.; Wright, J. S.; Flueraru, M.; Chichirau, A. et al. Development of novel antioxidants: design, synthesis, and reactivity. *J. Org. Chem.* **2003**, *68*, 7023–7032.

30. McClements, D.; Decker, E. Lipid oxidation in oil-in-water emulsions: Impact of molecular environment on chemical reactions in heterogeneous food systems. *J. Food Sci.* **2000**, *65*, 1270–1282.

31. Gürsoy-Kol, Ö.; Yuksek, H. Synthesis and In Vitro Antioxidant Evaluation of Some. *E-Journal Chem.* **2010**, *7*, 123-136.
32. Perez, C.; Pauli, M.; Bazerque, P. An antibiotic assay by agar-well diffusion method. *Acta Biol. Med. Exp.* **1990**, *15*, 113-115.

33. Ikizler, A.; Yüksek, H. Acetylation of 4-amino-4,5-dihydro-1H-1,2,4-triazol-5-ones. *Org. Prep. Proced Int.* **1993**, *25*, 99-105.

34. Ikizler, A.; Un, R. Reactions of ester ethoxycarbonylhydrazones with some amine type compounds. *Chim. Acta Turcica.* **1979**, *7*, 269–290.

35. Oyaizu, M. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. *Japanese J. Nutr Diet.* **1986**, *44*, 307–315.

36. Blois, M. Antioxidant Determinations by the Use of a Stable Free Radical. *Nature.* **1958**, *181*, 1199-1200.

37. Dinis, T. C. P.; Madeira, V. M. C.; Almeida, L. M. Action of Phenolic Derivatives (Acetaminophen, Salicylate, and 5-Aminosalicylate) as Inhibitors of Membrane Lipid Peroxidation and as Peroxyl Radical Scavengers. *Arch. Biochem Biophys.* **1994**, *315*, 161-169.

38. Ahmad, I.; Mehmood, Z.; Mohammad, F. Screening of some Indian medicinal plants for their antimicrobial properties. *J. Ethnopharmacol.* **1998**, *62*, 183-193.

39. Meir, S.; Kanner, J.; Akiri, B. Philosphhadas S, Rk. Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. *J. Agirc. Food Chem.* **1995**, *43*, 1813-1819.

40. Yildirim, A.; Mavi, A.; Kara, A. A. Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. *J. Agric. Food Chem.* **2001**, *49*, 4083-4089.

41. Baumann, J.; Wurn, G.; Bruchlausen, V. Prostaglandin synthetase inhibiting O2- Radical scavenging properties of some flavonoids and related phenolic compounds. *Naunyn-Schmiedebergs Arch. Pharmacol.* **1979**, *308*, R27.

42. Soares, J. R.; Dinis, T. C. P.; Cunha, A. P.; Almeida, L. M. Antioxidant activities of some extracts of Thymus zygis. *Free Radic Res.* **1997**, *26*, 469-478.

43. Duh, P.; Tu, Y.; Yen, G. Antioxidant activity of water extract of harn jyur (Chrysanthemum morifolium Ramat). *Leb Wissen Technol.* **1990**, *32*, 269-277.

44. Yamaguchi, F.; Ariga, T.; Yoshimura, Y.; Nakazawa, H. Antioxidative and anti-glycation activity of garcinol from Garcinia indica fruit rind. *J. Agric. Food Chem.* **2000**, *48*, 180-185