The role of microRNAs in regulating neuronal connectivity

Hui Chiu†, Amel Alqadah and Chieh Chang*

Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH, USA

Edited by:
Tommaso Pizzorusso, Università degli Studi di Firenze, Italy

Reviewed by:
Jay Gilman, The University of Texas Southwestern Medical Center, USA

*Correspondence:
Chieh Chang, Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, 2421 Albert Salen Way, S3 419, Cincinnati, OH 45229-3039, USA
e-mail: chieh.chang1@gmail.com

†Present address:
Hui Chiu, Division of Biology and Biomedical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA

The assembly of functional neural circuits is critical for complex thoughts, behavior and general brain function. Precise construction of neural circuits requires orderly transition of sequential events from axon outgrowth, pathfinding, branching, to synaptogenesis. Each of these steps is required to be tightly regulated in order to achieve meticulous formation of neuronal connections. MicroRNAs (miRNAs), which silence gene expression post-transcriptionally via either inhibition of translation or destabilization of messenger RNAs, have emerged as key regulators of neuronal connectivity. The expression of miRNAs in neurons is often temporally and spatially regulated, providing critical timing and local mechanisms that prime neuronal growth cones for dynamic responses to extrinsic cues. Here we summarize recent findings of miRNA regulation of neuronal connectivity in a variety of experimental platforms.

Keywords: miRNAs, neuronal connectivity, axon pathfinding, axon branching, timing mechanisms, temporal regulation, heterochronic miRNAs, axon outgrowth

The diverse behaviors of organisms rely on fast information processing performed by the brain. Trillions of neurons comprising the brain form complex networks that enable animals to exhibit consciousness, accumulate memories, engage in learning, and adopt behaviors. The complexity of brain networks is greatly increased by the facts that one neuron can influence its target through multiple pathways (Gutierrez et al., 2013), and that common neurons shared by divergent circuits can modulate reciprocal inhibition between two mutually exclusive behaviors in response to environmental stimuli (Mann et al., 2013). The former case is achieved by the direct and indirect connections between two neurons via two or more synaptic routes and the latter depends on the appropriate information flow from sensory neurons to interneurons as well as from interneurons to motor neurons (Gutierrez et al., 2013; Mann et al., 2013). Both cases indicate the importance of precise connections between neurons for brain function. Precise neuronal connectivity is established through transition of sequential events from axon growth to synapse formation. Axons are attracted to targets, but upon arrival they must switch their responsiveness to guidance cues at the target such that they are no longer sensitive to those cues, in order to stop outgrowth and form synaptic contacts (Tessier-Lavigne and Goodman, 1996; Stein and Tessier-Lavigne, 2001; Dickinson, 2002; Chen et al., 2009). Miswiring of the nervous system can result in serious neurological deficits, such as autism, Parkinson’s, and Alzheimer’s diseases (Hoogland et al., 2003; Lesnick et al., 2007; Zikopoulos and Burbas, 2010). Thus, studying how neurons connect with each other to establish functional circuitry can help us better understand how animal behaviors go awry and may provide insights into potential therapeutic targets for neurological disorders.

NEURAL CIRCUIT ASSEMBLY

Neurons connect with targets through a series of events: axon initiation, axon pathfinding, axon branching, and synapse formation (Carmeliet and Tessier-Lavigne, 2005; Kolodkin and Tessier-Lavigne, 2011). A single axon grows out from the cell body, and forms a highly motile structure called the growth cone at its tip. The growth cone navigates along the stereotypical pathway via interactions with a variety of guidance cues present in the environment and travels a long distance to reach the target with remarkable precision. Upon reaching the target, the growth cone turns into a presynaptic terminal to form a connection with the target, and the axon starts branching extensively to establish an intricate pattern of connectivity. Each step of neuronal circuit assembly involves local protein synthesis (Campbell and Holt, 2001; Jung et al., 2012). Specific miRNAs are anterogradely transported from the cell body to the axon and to the growth cone to construct local transcriptomes (Zavala et al., 2010; Guarino et al., 2011; Willis et al., 2011; Cañadas et al., 2012). The expression of miRNAs is tightly controlled by many post-transcriptional regulatory mechanisms, of which microRNA (miRNA)-mediated gene repression is one of them (Bushati and Cohen, 2007; Deglincerti and Jaffrey, 2012; Jung et al., 2012). The fast and dynamic changes in the local proteome enable growth cones to respond rapidly to diverse environmental cues, resulting in elongation, turning, or collapse of growth cones (Campbell and Holt, 2001; Hengst et al., 2009; Andreassi et al.,...
that gene expression profiles may be controlled by the up- or down-regulation of certain miRNAs at each stage of brain development. Thus, the compartmentalized expression of miRNAs provides subcellular control of local gene expression for specific neuronal differentiation events while the temporal constraint of miRNA expression allows for the correct transition timing of sequential differentiation events.

CONTROL OF AXON OUTGROWTH BY miRNAs
The neural circuit assembly begins with axon outgrowth. In the early phase of neuronal development, a neuron first forms multiple naïve neurites around the soma. One of the neurites will be specified as an axon and extend further while the remaining become dendrites (Craig and Banker, 1994). Actin and microtubule dynamics are required for the neurite formation and elongation (Bradke and Dotti, 1999; Inagaki et al., 2001). Therefore, it is not surprising that miRNAs affect axon initiation or elongation by targeting regulators of the cytoskeleton (Table 1).

The miR-132, for example, induces neurite sprouting of cortical neurons. It does so by inhibiting the p250 GTPase-activating protein that acts upstream of small GTPases Cdc42 and RhoA, to regulate neuronal morphogenesis (Limagawa et al., 2003; Vo et al., 2005). miRNAs can also regulate axon outgrowth by modulating local protein synthesis. miR-9 locally represses the translation of the microtubule-associated protein 1b (Map1b) in axons to control axon elongation of mouse cortical neurons (Dajas-Bailador et al., 2012). Overexpression of miR-9 decreases the Map1b regulatory effects on axonal microtubules, resulting in the reduction of axon length (Dajas-Bailador et al., 2012; Tymanskyj et al., 2012). miR-19a, a major member of the miR-17-92 cluster, acts in axons to down-regulate the protein level of phosphatase and tension homolog (PTEN) and activate phosphorylated mammalian target of rapamycin (mTOR) pathway (Zhang et al., 2013). mTOR activity is known to be required for local protein synthesis in axonal development and regeneration (Campbell and Holt, 2001; Park et al., 2008). Thus, miR-17-92 cluster promotes axon outgrowth by activating local protein synthesis (Zhang et al., 2013). Although several miRNAs have been shown to affect axon development, few have been shown to play a role specifically in the axon compartment (Aschrafi et al., 2008; Dajas-Bailador et al., 2012; Zhang et al., 2013). In addition, miRNAs also contribute to the temporal regulation of axon outgrowth. In Caenorhabditis elegans, the hermaphrodite specific neuron (HSN) projects a single axon to the ventral nerve cord in the fourth larva (L4) stage (Adler et al., 2006). The heterochronic miRNA lin-4 acts cell-autonomously in HSN neurons to control the timing of axon formation (Olsson-Carter and Slack, 2010). No axon is extended at the L4 stage in lin-4 mutants while precocious axon outgrowth at the third larval stage occurs in animals over-expressing lin-4 in HSN neurons (Olsson-Carter and Slack, 2010). The targets of the lin-4 miRNA, lin-34 and lin-28, inhibit differentiation of HSN neurons. Thus, the lin-4 miRNA signals axon outgrowth only after HSN neuronal fate is committed (Olsson-Carter and Slack, 2010).

miRNA REGULATION OF AXON PATHFINDING
Axons are directed to their synaptic targets via the guidance of attractive or repellent cues presented in the environment.

Chang et al., 2004b; Hsieh et al., 2012; Zou et al., 2012, 2013; Chiu et al. microRNAs in neuronal connectivity

2010; Zviraj et al., 2010). The post-transcriptional regulators, therefore, play a pivotal role in the establishment of neuronal connections.

miRNAs AS VERSATILE AND REVERSIBLE REGULATORS OF GENE EXPRESSION IN NEURONS
MiRNA-mediated gene regulation is involved in many aspects of neuronal development and function (Kosik, 2006; Schratt, 2009; McNeill and Van Vactor, 2012). Recent studies have worked out a few molecular mechanisms of miRNA-mediated gene silencing (Fabian and Sonenberg, 2012). These small non-coding RNAs bind to the 3′UTR of target mRNAs and repress gene expression by interfering with stability or inhibiting translation of mRNAs (Bartel, 2009). The pleiotropy, speed, and reversibility are features that contribute to the unique regulatory niche of miRNA-based gene regulation in the nervous system (Hobert, 2008). First, individual miRNAs can target multiple genes at the same time to cause broad and significant changes in neuronal transcriptomes (Brennecke et al., 2005; Giraldes et al., 2006). On the other hand, each gene can be targeted by different miRNAs, and/or may contain more than one binding site of the same miRNA, allowing miRNAs to “fine-tune” the level of gene expression (Bartel and Chen, 2004; Hon and Zhang, 2007). Second, the effect of miRNA-mediated gene repression is instant because miRNAs can shut down protein synthesis of the target genes at ribosomes (Pillai et al., 2005). miRNA-mediated gene repression is instant because miRNAs can shut down protein synthesis of the target genes at ribosomes (Pillai et al., 2005). miRNA-mediated gene repression is instant because miRNAs can shut down protein synthesis of the target genes at ribosomes (Pillai et al., 2005). miRNA-mediated gene repression is instant because miRNAs can shut down protein synthesis of the target genes at ribosomes (Pillai et al., 2005). miRNA-mediated gene repression is instant because miRNAs can shut down protein synthesis of the target genes at ribosomes (Pillai et al., 2005). miRNA-mediated gene repression is instant because miRNAs can shut down protein synthesis of the target genes at ribosomes (Pillai et al., 2005). miRNA-mediated gene repression is instant because miRNAs can shut down protein synthesis of the target genes at ribosomes (Pillai et al., 2005). miRNA-mediated gene repression is instant because miRNAs can shut down protein synthesis of the target genes at ribosomes (Pillai et al., 2005).
Table 1 | Summary of miRNA functions in axon development.

miRNAs	Functions	Targets	Reference
miR-132	Promote axon outgrowth	p250 GTPase-activating protein	Vo et al. (2005)
miR-9	Inhibit axon outgrowth	Microtubule-associated protein 1b (Map1b)	Dajas-Bailador et al. (2012)
miR-17-92 cluster	Promote axon outgrowth	Phosphatase and tensin homolog (PTEN)	Zhang et al. (2013)
lin-4	Promote axon outgrowth	LIN-14 and LIN-28 transcription factors	Olsson-Carter and Slack (2010)
miR-124	Turn off the growth cone sensitivity to Netrin	LIN-14 transcription factor	Zou et al. (2012)
miR-124	Turn on the growth cone sensitivity to Sema3A	CoREST	Baudet et al. (2012, 2013)

Axon guidance

Netrin-4

Promote axon branching

Map1b

Dajas-Bailador et al. (2012)

Axon branching

miR-124

Promote axon branching

Small GTPase RhoG

Frankie et al. (2012)

Axon outgrowth

miR-132

Promote axon outgrowth

p250 GTPase-activating protein

Vo et al. (2005)

miR-9

Inhibit axon outgrowth

Microtubule-associated protein 1b (Map1b)

Dajas-Bailador et al. (2012)

miR-17-92 cluster

Promote axon outgrowth

Phosphatase and tensin homolog (PTEN)

Zhang et al. (2013)

lin-4

Promote axon outgrowth

LIN-14 and LIN-28 transcription factors

Olsson-Carter and Slack (2010)

Tessier-Lavigne and Goodman, 1996). The sensitivity of axons to guidance cues is determined by the expression of the corresponding receptors in growth cones (Dickson, 2002). To prevent the axon from stalling at intermediate targets or overshooting, the receptor expression needs to be tightly controlled in a timely manner (Zou et al., 2000; Stein and Tessier-Lavigne, 2001). Here we discuss the role of miRNAs in regulating the growth cone responsiveness to two prominent guidance molecules, netrins and semaphorins, during axon pathfinding.

Netrins are highly conserved guidance molecules that can function as both attractants and repellents in many stage-dependent biological events, such as axon guidance and motile cell migration (Hedgecock et al., 1990; Ishii et al., 1992; Chan et al., 1996; Kolodkin and Tessier-Lavigne, 2011), but the timing mechanism that controls the responsiveness of growth cones or migrating cells to Netrins at precise times is not fully understood. The axon of the C. elegans anterior ventral microtubule (AVM) sensory neurons is guided to the ventral midline through combined actions of Slit repulsion from the dorsal body wall muscles and netrin attraction to the ventral nerve cord (Chang et al., 2004a). Once reaching the ventral midline, the AVM axon projects anteriorly to the nerve ring where it stops outgrowth and forms synapses (Figure 1A).

An unexpected role was recently reported for the conserved heterochronic miRNA lin-4 and its target the LIN-14 transcription factor in AVM neuronal connectivity (Zou et al., 2012). Through genetic analysis of a well-characterized AVM axon ventral guidance event and a less characterized AVM synapse formation event, it was shown that lin-4 functions as a potent and specific negative regulator of netrin signaling in AVM neuronal connectivity by targeting the LIN-14 transcription factor to control the availability of the netrin receptor UNC-40/DCC (Deleted in Colorectal Cancer; Figure 1B; Zou et al., 2012). It was well known that heterochronic genes are used in timing mitotic cell development required for molting in worms and embryonic stem cells self-renewal in mice. These results show that these heterochronic genes are re-used in postmitotic neurons to time their differentiation events.

The Semaphorin family contains both secreted and transmembrane proteins that can function in long- or short-range guidance (Yazdani and Terman, 2006; Kolodkin and Tessier-Lavigne, 2011). Many Semaphorins bind the major receptor, Plexins, solely to mediate axonal repulsion. However, some of the secreted Semaphorins, such as Sema3A, bind to the co-receptor Neuropilins, instead (Kolodkin and Tessier-Lavigne, 2011). It has been shown that Sema3A is able to induce growth cone collapse at a specific stage of retinal ganglion cell (RGC) development in Xenopus (Campbell et al., 2001). The Sema3A responsiveness depends on the up-regulation of neuropilin-1 (NPR-1) receptor, which is indirectly controlled by the miRNA, miR-124, in a timely manner (Campbell et al., 2001; Baudet et al., 2012, 2013). The Repressor
likely that miRNAs may modulate Slit-mediated axon guidance though no evidence has been shown that the Slit signaling is subject to Slit repulsion from a distance (Kolodkin and Tessier-Lavigne, 2011).

 miR-124 acts as an intrinsic timer to turn on the responsiveness of RGC growth cone to Sema3A by up-regulating NPR-1.

 miRNAs have proven to be essential and efficient regulators at several steps of this integral process due to their spatiotemporal specificity, versatile targeting, speed of gene repression, and ease of reversibility. Further study on how miRNAs contribute to the formation of neural circuits will ultimately provide insights into how mis-wiring by miRNA mis-regulation can lead to diseases.

ACKNOWLEDGMENTS

This work was funded by grants from the Whitall Foundation, the March of Dimes Foundation, and by NSF grant IOS-1257023 to Chieh Chang.

REFERENCES

Acebes, A., and Ferrero, A. (2000). Cellular and molecular features of axon collaterals and dendrites. *Trends Neurosci.* 23, 557–565. doi:10.1016/S0166-2236(00)01665-3

 Adler, C. E., Fetter, R. D., and Bargmann, C. I. (2006). UNC-6/Netrin induces neuronal asymmetry and defines the site of axon formation. *Nat. Neurosci.* 9, 511–518. doi:10.1038/nn1660

 Andreadis, C., Zimmermann, C., Mitter, R., Fuen, S., De Vos, S., Saumit, A., et al. (2010). An NGF-responsive element targets myo-inositol monophosphatase-1 mRNA to sympathetic neuron axons. *Nat. Neurosci.* 13, 291–301. doi:10.1038/nn.2446

 Auchref, A., Schochetzer, A. D., Marmet, M. G., Nautrup, G., Gao, A. R., and Kaplan, B. B. (2008). MicroRNA-338 regulates local cytokine c-Jun kinase II mRNA levels and inhibitory phosphorylation in the axons of sympathetic neurons. *J. Neurosci.* 28, 12337–12339. doi:10.1523/JNEUROSC.3383.08-2008

 Baudet, M. L. (2013). MicroRNA target recognition and regulatory functions. *Cell Growth Differ.* 24, 146–155. doi:10.1111/cgd.12044

 Baudet, M. L., Bellon, A., and Holt, C. E. (2015). Role of microRNAs in Semaphorin neuron function and neural circuit formation. *Semin. Cell Biol.* 26. doi:10.1016/j.semcdb.2012.11.004

 Baudet, M. L., Zivkic, K. H., Abreu-Goisneder, C., Maldan, A., Armisen, J., Blenken, C., et al. (2012). miR-124 acts through CoREST to control onset of Semaphorin sensitivity in navigating retinal growth cones. *Nat. Neurosci.* 15, 29–38. doi:10.1038/nn.2779

 Bhattacharyya, S. N., Habemacher, M., Martine, U., Cluss, E. I., and Filippou, W. (2006). Relief of microRNA-mediated translational repression in human cells subjected to stress. *Cell 125*, 1113–1124. doi:10.1016/j.cell.2006.04.051

 Bradlee, P., and Dotta, C. G. (1999). The role of local axon instability in axon formation. *Science* 283, 1931–1934. doi:10.1126/science.283.5399.1931

 Bremecle, J., Stark, A., Banold, E. R., and Cohen, S. M. (2005). Principles of microRNA-target recognition. *PLoS Biol.* 3, e83. doi:10.1371/journal.pbio.0030285

 Bussard, N., and Cohen, S. M. (2007). MicroRNA functions. *Annu. Rev. Cell Dev. Biol.* 23, 175–205. doi:10.1146/annurev.cellbio.23.090506.122408

 Cagnac, J. J., Tribe, G., Wilt, J. T., Hum Dash, S., Fafun, N., and Schoen, E. M. (2012). The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. *Neuron* 75, 455–468. doi:10.1016/j.neuron.2012.02.016

 Campbell, D. S., and Holt, C. E. (2001). Chemospecific responses of retinal growth cones mediated by rapid local protein synthesis and degradation. *Nature* 412, 1031–1036. doi:10.1038/3508101a

 Campbell, D. S., Jegan, A. G., Lopez, L. S., Zamboni, D., Hirata, W. A., and Holt, C. E. (2001). Semaphorin 3A elicits stage-dependent collapse, turning, and branching in Xenopus retinal growth cones. *J. Neurosci.* 21, 8526–8547.

 Carmeliet, P., and Tessier-Lavigne, M. (2005). Common mechanisms of nerve and blood vessel wiring. *Nature* 490, 193–200. doi:10.1038/nature08787

 Chen, S. S., Zhang, H. R., Su, M. W., Walik, K., Kilien, M. T., Hediger, M. E., et al. (1996). UNC-40, a C. elegans homolog of DCC (Deleted in Colorectal Cancer), is required in motile cells responding to UNC-6 netrin cues. *Cell 87*, 187–198. doi:10.1016/S0092-8674(01)01357-9

 CONCLUDING REMARKS

The exquisite precision with which neural circuits are assembled is crucial for proper brain function, as inappropriate wiring in the nervous system results in various debilitating neurological diseases. Neurons are able to form appropriate connections using proce- cessor that involves spatial and temporal regulatory mechanisms which ensure rapid responses to diverse environmental cues and faithful transition of sequential events in neuronal connectivity.
Tynanisky, S. R., Scales, T. M., and Gordon-Weeks, P. R. (2012). MAP1B enhances microtubule-assembly rates and axon-extension rates in developing neurons. Mol. Cell. Neurosci. 48, 110–119. doi: 10.1016/j.mcn.2011.10.003

Vo, N., Klein, M. E., Varlamova, O., Keller, D. M., Yamamoto, T., Goodman, R. H., et al. (2005). A cAMP-responsive-element binding-protein-induced microRNA regulates neuronal morphogenesis. Proc. Natl. Acad. Sci. U.S.A. 102, 16426–16431. doi: 10.1073/pnas.0504481102

Wills, D. E., Yao, M., Domnith, C. I., Top, C., Knudlik, M., Ernster, H., et al. (2011). Axonal Localization of transgene mRNA in mature PNS and CNS neurons. J. Neurosci. 31, 14401–14407. doi: 10.1523/JNEUROSCI.2990-11.2011

Yanami, U., and Terman, J. R. (2006). The semaphorins. Genome Biol. 7, 211. doi: 10.1186/gb-2006-7-5-211

Zhang, Y., Ueno, Y., Liu, X. S., Baker, R., Wang, X., Chopp, M., et al. (2013). The microRNA-17-92 cluster enhances axonal outgrowth in embryonic cortical neurons. J. Neurosci. 33, 6885–6894. doi: 10.1523/JNEUROSCI.5180-12.2013

Zikopoulos, B., and Barbas, H. (2010). Changes in prefonsal axons may disrupt the network in autism. J. Neurovi. 30, 1493–1499. doi: 10.1523/JNEUROSCI.2257-10.2010

Zinovyeva, A., Ambros, V., Chuang, C. F., and Chang, C. (2012). The lin-4 microRNA targets the LIN-14 transcription factor to inhibit netrin-mediated axon attraction. Sci. Signal. 5, ra43. doi: 10.1126/scisignal.2002437

Zou, Y., Chiu, H., Zinovyeva, A., Ambros, V., Chuang, C. F., and Chang, C. (2013). Developmental decline in neuronal regeneration by the progressive change of two intrinsic timers. Science 340, 372–376. doi: 10.1126/science.1231321

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.