N=2 Supersymmetric Kinks and real algebraic curves

†A. Alonso Izquierdo, †M.A. González León and ‡J. Mateos Guilarte
†Departamento de Matemática Aplicada, ‡Departamento de Física
Universidad de Salamanca, SPAIN

Abstract

The kinks of the (1+1)-dimensional Wess-Zumino model with polynomic superpotential are investigated and shown to be related to real algebraic curves.

PACS: 11.27.+d, 11.30.Pb, 12.60.Jv.

Keywords: (1+1)-dimensional Wess-Zumino model, N=2 Supersymmetry, BPS Kinks.

The dimensional reduction of the (3+1)-dimensional Wess-Zumino model, produces an interesting (1+1)-dimensional Bose-Fermi system; this field theory enjoys N=2 extended supersymmetry provided that the interactions are introduced via a real harmonic superpotential, see [1]. In a recent paper [2] Gibbons and Townsend have shown the existence of domain-wall intersections in the (3+1)D WZ model, the authors relying on the supersymmetry algebra of the (2+1)D dimensional reduction of the system. Although the domain-wall junctions are two-dimensional structures, their properties are reminiscent of the one-dimensional kinks from which they are made. In this letter we shall thus describe the kinks of the underlying (1+1)-dimensional system.

The basic fields of the theory are:

• Two real bosonic fields, \(\phi^a(x^\mu), a = 1, 2 \) that can be assembled in the complex field: \(\phi(x^\mu) = \phi^1(x^\mu) + i\phi^2(x^\mu) \in \text{Maps}(\mathbb{R}^{1,1}, \mathbb{C}). \) \(x^\mu = (x^0, x^1) \) are local coordinates in the \(\mathbb{R}^{1,1} \) Minkowski space, where we choose the metric \(g^{\mu\nu}; g^{00} = -g^{11} = 1, g^{12} = g^{21} = 0. \)

• Two Majorana spinor fields \(\psi^a(x^\mu), a = 1, 2. \) We work in a Majorana representation of the Clifford algebra \(\{ \gamma^\mu, \gamma^\nu \} = 2g^{\mu\nu}, \gamma^0 = \sigma^2, \gamma^1 = i\sigma^1, \gamma^5 = \gamma^0\gamma^1 = \sigma^3 \) where \(\sigma^1, \sigma^2, \sigma^3 \) are the Pauli matrices, such that \(\psi^a\psi^a = \psi^a. \) We also define the adjoint spinor as \(\bar{\psi}(x^\mu) = \psi^\dagger(x^\mu)\gamma^0 \) and consider Majorana-Weyl spinors: \(\psi_\pm^a(x^\mu) = \frac{1 \pm \gamma^5}{2}\psi^a(x^\mu) \) with only one non-zero component.

Interactions are introduced through the holomorphic superpotential: \(W(\phi) = \frac{i}{2} (W^1(\phi^1, \phi^2) + iW^2(\phi^1, \phi^2)). \) One could in principle start from the supercharges:

\[
\hat{Q}_{\pm}^{BC} = \int dx^1 \sum_{a,b} [f^B]^{ab} \left[(\partial_0 \phi^a \mp \partial_1 \phi^a)\psi^{b\pm} \right] \pm \sum_c [f^C]^{bc} \frac{\partial W^C}{\partial \phi^c} \psi^{ac}.
\]

where \(W^B, B = 1, 2, \) are respectively the real part if \(B = 1 \) and the imaginary part if \(B = 2 \) of \(W(\phi) \) and \([f^B] \) is either the identity or the complex structure endomorphism in \(\mathbb{R}^2 \; [3]: \)

\[
[f^{B=1}] = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad [f^{B=2}] = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.
\]
Nevertheless, the Cauchy-Riemann equations:

\[\frac{\partial W^1}{\partial \phi^1} = \frac{\partial W^2}{\partial \phi^2} \quad \frac{\partial W^1}{\partial \phi^2} = -\frac{\partial W^2}{\partial \phi^1}, \]

tell us that the theory is fully described by choosing either \(W^1 \) or \(W^2 \). We thus set \(W^C = W^1 \) and find the basic SUSY charges to be \(\hat{Q}^B_\pm = Q^B_\pm \):

\[Q^B_\pm = \int dx^1 \sum_{a,b} [f^B]^a_b \left[(\partial_0 \phi^a \mp \partial_1 \phi^a) \psi^b_\pm \mp \frac{\partial W^1}{\partial \phi^b} \psi^a_\pm \right] \]

From the canonical quantization rules

\[[\phi^a(x_1), \phi^b(y_1)] = i\delta^{ab} \delta(x_1 - y_1) = \{\psi^a_\pm(x_1), i\psi^b_\pm(y_1)\} \]

one checks that the \(N = 2 \) extended supersymmetric algebra

\[\{Q^B_\pm, Q^C_\pm\} = 2\delta^{BC} P_\pm \quad \{Q^B_+, Q^C_-\} = -(1)^B (\delta^{BC} 2T + \epsilon^{BC} 2\tilde{T}) \]

is closed by the four generators \(Q^B_{\pm}, \) defined in [3]. Here

\[P_\pm = \frac{1}{2} \int dx^1 \sum_a \left[(\partial_0 \phi^a \mp \partial_1 \phi^a) (\partial_0 \phi^a \pm \partial_1 \phi^a) \mp 2i\psi^a_\mp \partial_1 \psi^a_\mp \right] \]

\[+ \frac{1}{2} \int dx^1 \sum_a \left[\frac{\partial W^1}{\partial \phi^a} \frac{\partial W^1}{\partial \phi^a} - 2i \sum_b \frac{\partial^2 W^1}{\partial \phi^a \partial \phi^b} \psi^a_\mp \psi^b_\mp \right] \]

are the light-cone momenta and

\[T = \int dx^1 \left[\frac{\partial W^1}{\partial \phi^1} \frac{\partial W^1}{\partial x^1} + \frac{\partial W^1}{\partial \phi^2} \frac{\partial W^1}{\partial x^1} \right] = \int dW^1 = W^1(\infty) - W^1(-\infty) \]

\[\tilde{T} = \int dx^1 \left[\frac{\partial W^1}{\partial \phi^2} \frac{\partial W^1}{\partial x^1} - \frac{\partial W^1}{\partial \phi^1} \frac{\partial W^1}{\partial x^1} \right] = \int *dW^1 = W^2(\infty) - W^2(-\infty) \]

the central extensions.

2

From the SUSY algebra one deduces,

\[2P_0 = 2|T| + (Q^B_\pm \mp (-1)^B Q^B)^2 = 2|\tilde{T}| + (Q^B_{\pm} \mp (-1)^B \epsilon^{BC} Q^C_{\pm})^2, \]

see [4]. We thus define the charge operators on zero momentum states:

\[\hat{Q}^1_\pm = Q^1_\pm + Q^1 = -\int dx^1 \sum_a \left(\partial_1 \phi^a \mp \frac{\partial W^1}{\partial \phi^a} \right) \left(\psi^a_\pm \pm \psi^a \right) \]

\[\hat{Q}^2_\pm = Q^2_\pm + Q^2 = \mp \int dx^1 \sum_a \left(\partial_1 \phi^a \pm \sum_b [f^2]^a_b \frac{\partial W^1}{\partial \phi^b} \right) \left(\psi^a_\pm \mp \sum_c [f^2]^{ac}_b \psi^c \right) \]

Spatially extended coherent states built from the solutions of any of the two systems of first order equations, [4]:

\[\frac{d\phi^1}{dx^1} = \pm \frac{\partial W^1}{\partial \phi^1} \quad \frac{d\phi^2}{dx^1} = \mp \frac{\partial W^1}{\partial \phi^2} \]

\[\frac{d\phi^1}{dx^1} = \pm \frac{\partial W^1}{\partial \phi^2} \quad \frac{d\phi^2}{dx^1} = \mp \frac{\partial W^1}{\partial \phi^1} \]
that support the solutions of (5) are orthogonal to the curves related to the solutions of (6).

We focus on the case in which the potential is:

\[W(\phi) = 1 \]

The flow in \(\mathbb{R}^2 \) of the solutions of (5) or (6) and integrates.

\[\frac{d\phi^2}{d\phi^1} = \frac{\partial W^1}{\partial \phi^1} \left(\frac{\partial W^1}{\partial \phi^2} \right)^{-1} = \frac{\partial W^1}{\partial \phi^2} d\phi^1 - \frac{\partial W^1}{\partial \phi^1} d\phi^2 = dW^2 = 0 \]

If \(W(\phi) \) is polynomic in \(\phi \), the solutions of (5) live on the real algebraic curves determined by the equation:

\[W^2(\phi^1, \phi^2) = \gamma_\perp \]

where \(\gamma_\perp \) is a real constant. The solution flow of (6) in \(\mathbb{C} \),

\[\frac{d\phi^2}{d\phi^1} = -\frac{\partial W^1}{\partial \phi^1} \left(\frac{\partial W^1}{\partial \phi^2} \right)^{-1} = -\frac{\partial W^1}{\partial \phi^2} d\phi^1 + \frac{\partial W^1}{\partial \phi^1} d\phi^2 = dW^1 = 0 \]

runs on the real algebraic curves:

\[W^1(\phi^1, \phi^2) = \gamma \]

where \(\gamma \) is another real constant. There are two observations: (I) Solutions of system (5) live on curves for which \(W^2 = \text{constant} \) and solutions of (5) have support on curves for which \(W^1 = \text{constant} \). (II) The curves that support the solutions of (5) are orthogonal to the curves related to the solutions of (6).

Assume that \(W(\phi) \) has a discrete set of extrema, forming the vacuum orbit of the system: \(\frac{\partial W}{\partial \phi} |_{\psi(i)} = 0 \), \(i = 1, 2, \ldots, n \). Kinks are solutions of (5) and/or (6) such that they tend to \(\psi(i) \) when \(x_1 \) reaches \(\pm \infty \). \(\psi^{(i+)} \) and \(\psi^{(i-)} \) thus belong either to curves (5) or (6), which fixes the values of \(\gamma \) or \(\gamma_\perp \) for which the real algebraic curves support kinks. In Reference (3), a general proof based on singularity theory of the existence of these soliton solutions, that counts its number, is achieved. The energies of the states grown from kinks are\(\gamma_\perp \) that supports the solutions (5).

Therefore, the fermionic charges \(\hat{Q}_1^\perp \) and \(\hat{Q}_2^\perp \) are annihilated on coherent states \(|K_1^\perp \rangle \) and \(|K_2^\perp \rangle \) that correspond to the tensor product of the quantum antikink/kink, living respectively on curves \(W^2 = \text{constant} \) and \(W^1 = \text{constant} \), with its supersymmetric partners (the translational mode times a constant spinor). We find:

\[\hat{Q}_1^\perp |K_1^\perp \rangle = \int dx_1 \sum_a \left[\partial_1 \phi_{K_1^\perp}^a + \partial W^1 \right]_{\phi_{K_1^\perp}^a} \left[\frac{1}{2} + 1 \right] |K_1^\perp \rangle = 0 \]

\[\hat{Q}_2^\perp |K_2^\perp \rangle = \int dx_1 \sum_a \left[\partial_1 \phi_{K_2^\perp}^a + \sum_b e^{ab} \frac{\partial W^1}{\partial \phi^b} \phi_{K_2^\perp}^b \right] \left[\frac{1}{2} - \sum_c e^{ac} \partial_1 \phi_{K_2^\perp}^c \right] |K_2^\perp \rangle = 0 \]

on solutions of (7) and/or (8); the SUSY kinks are thus \(\frac{1}{2} \)-BPS states. The energy of these states does not receive quantum corrections \(\hat{Q}_1^\perp \) because \(N = 2 \) supersymmetry forbids any anomaly in the central charges.

3

We focus on the case in which the potential is:

\[U(\phi) = \frac{1}{2} \sum_a \frac{\partial W^1}{\partial \phi^a} \frac{\partial W^1}{\partial \phi^a} = \frac{1}{2} \left(1 - 2(\phi_1^2 + \phi_2^2) \right) \cos \left[(n - 1) \arctan \left(\phi_1^2 + \phi_2^2 \right) \right] \]

see (3) and (2). In polar variables in the \(\mathbb{R}^2 \) internal space,
\[\rho(x^\mu) = +\sqrt{[\phi^1(x^\mu)]^2 + [\phi^2(x^\mu)]^2}, \quad \chi(x^\mu) = \arctan \frac{\phi^2(x^\mu)}{\phi^1(x^\mu)} \]

the potential reads:
\[U(\rho, \chi) = \frac{1}{2} \left(1 - 2\rho^{n-1}\cos(n-1)\chi + \rho^{2(n-1)} \right) \] \hspace{1cm} (9)

There is symmetry under the \(D_{2(n-1)} \equiv \mathbb{Z}_2 \times \mathbb{Z}_{n-1} \) dihedral group: \(\chi' = -\chi, \chi' = \chi + \frac{2\pi j}{n}, j = 0, 1, 2, ..., n-2 \).

In Cartesian coordinates, these transformations form the \(D_{2(n-1)} \) sub-group of \(O(2) \) given by:

1. \(\phi'_2 = -\phi_2, \quad \phi'_1 = \phi_1 \)
2. \(\phi'^1 = \cos \frac{2\pi j}{n-1} \phi^1 - \sin \frac{2\pi j}{n-1} \phi^2, \quad \phi'^2 = \sin \frac{2\pi j}{n-1} \phi^1 + \cos \frac{2\pi j}{n-1} \phi^2 \)

The vacuum orbit is the set of \((n-1)\)-roots of unity:
\[\mathcal{M} = \left\{ v^{(k)} = e^{i\frac{2\pi j}{n}} \right\} = \frac{D_{2(n-1)}}{\mathbb{Z}_2} = \mathbb{Z}_{n-1}. \] \hspace{1cm} (10)

When the \(v^{(k)} \) vacuum is chosen to quantize the theory, the symmetry under the \(D_{2(n-1)} \) group is spontaneously broken to the \(\mathbb{Z}_2 \) sub-group generated by \(\chi' = -\chi - \frac{2\pi j}{n} \); this transformation leaves a fixed point, \(v^{(k)} \), if \(n \) is even and two fixed points, \(v^{(k)} \) and \(v^{(k+\frac{n-1}{2})} \), if \(n \) is odd.

The \(\mathbb{Z}_{n-1} \)-symmetry allows for the existence of \((n-1)\) harmonic superpotentials that are equivalent:
\[W^{(j)}(\phi) = \frac{1}{2} \left[\phi(j) - \frac{(\phi(j))^n}{n} \right], \quad \phi(j) = e^{i\frac{2\pi j}{n}} \phi, \text{ all of them leading to the same potential } U. \] \hspace{1cm} (11)

where \(\chi(j) = \chi + \frac{2\pi j}{n} \). There is room for closing the \(N = 2 \) supersymmetry algebra \(\{ \psi \} \) in \(n-1 \) equivalent forms: define the \(n-1 \) equivalent sets of SUSY charges:
\[Q^{(j)}_{\pm} = \int dx \sum_{a,b} \left[f^{(j)} \frac{\partial}{\partial \phi^{(j)a}} \psi^{(j)b}_{\pm} \right], \] \hspace{1cm} (12)

also in terms of the "rotated" fermionic fields \(\psi^{(j)a}_{\mp} \), and the corresponding central charges \(T^{(j)} \) and \(\tilde{T}^{(j)} \). Observe that the \(N = 2 \) supersymmetry is unbroken, while the choice of vacuum that spontaneously breaks the \(\mathbb{Z}_{n-1} \) symmetry does not affect the physics, which is the same for different values of \(j \).

The \(j \) pairs of first-order systems of equations:
\[\frac{d\rho}{dx_1} = \sin \chi(j) - \rho^{n-1} \sin n\chi(j), \quad \rho^2 \frac{d\chi}{dx_1} = \rho \cos \chi(j) - \rho^n \cos n\chi(j) \] \hspace{1cm} (11)
\[\frac{d\rho}{dx_1} = \cos \chi(j) - \rho^{n-1} \cos n\chi(j), \quad \rho^2 \frac{d\chi}{dx_1} = -\rho \sin \chi(j) + \rho^n \sin n\chi(j) \] \hspace{1cm} (12)

correspond to \[\{ \psi \} \] and \[\{ \tilde{\psi} \} \] for this particular case. The solutions lie respectively on the algebraic curves
\[\rho \sin \chi(j) - \frac{1}{n} \rho^n \sin n\chi(j) = \gamma_\perp \] \hspace{1cm} (13)
\[\rho \cos \chi(j) - \frac{1}{n} \rho^n \cos n\chi(j) = \gamma \] \hspace{1cm} (14)

which form two families of orthogonal lines in \(\mathbb{R}^2 \). In the family of curves \(\{ \gamma \} \) there are kinks joining the vacua \(v^{(k)} \) and \(v^{(k')} \) if and only if:
\[\sin \frac{2\pi (k+j)}{n-1} - \frac{1}{n} \sin \frac{2\pi (k+j)n}{n-1} = \sin \frac{2\pi (k'+j)}{n-1} - \frac{1}{n} \sin \frac{2\pi (k'+j)n}{n-1} = \gamma_\perp \] \hspace{1cm} (15)
This fixes the value of $\gamma_\perp = \gamma^K_\perp$ for which the algebraic curve supports a topological kink. Simili modo,

$$\cos \frac{2\pi(k + j)}{n - 1} - \frac{1}{n} \cos \frac{2\pi(k + j)n}{n - 1} = \cos \frac{2\pi(k' + j)}{n - 1} - \frac{1}{n} \cos \frac{2\pi(k' + j)n}{n - 1} = \gamma^K$$

is the value of the constant if the kink belong to the orthogonal family \([14]\). Solutions of \([13]\) and/or \([16]\) exist, respectively, if and only if

$$2(k + k' + 2j) = n - 1 \mod 2(n - 1)$$

and/or

$$k + k' + 2j = 0 \mod n - 1$$

Given the kink curves, the kink form factors are obtained in the following way:

One solves for χ in \([13]\) or \([14]\),

$$\chi + \frac{2\pi j}{n - 1} = h(\gamma^K, \rho), \quad \chi + \frac{2\pi j}{n - 1} = h(\gamma^K_\perp, \rho)$$

and plugs these expressions into the first equation of \([12]\) or \([11]\),

$$\frac{d\rho}{dx_1} = \sin h(\gamma^K, \rho) - \rho^{n-1} \sin[nh(\gamma^K, \rho)], \quad \frac{d\rho}{dx_1} = \cos h(\gamma^K_\perp, \rho) - \rho^{n-1} \cos[nh(\gamma^K_\perp, \rho)]$$

which are immediately integrated by quadratures: if a is an integration constant

$$\int \frac{d\rho}{\sin h(\gamma^K, \rho) - \rho^{n-1} \sin[nh(\gamma^K, \rho)])} = (x_1 + a)$$

$$\int \frac{d\rho}{\cos h(\gamma^K_\perp, \rho) - \rho^{n-1} \cos[nh(\gamma^K_\perp, \rho)])} = (x_1 + a)$$

4

We first consider the lower odd cases, only for $W(j=0)$. The other kinks are obtained by application of a \mathbb{Z}_{n-1} rotation.

- $n = 3$:
 - **Superpotential:** $W(\phi) = \frac{1}{2} \left(\phi - \phi^3 \right)$
 $$W^1 = \phi_1 - \frac{\phi_1^3}{3} + \phi_1 \phi_2^2 \quad W^2 = \phi_2 - \phi_1^2 \phi_2 + \frac{\phi_2^3}{3}$$
 - **Potential:** $U(\phi_1, \phi_2) = \frac{1}{2}[(\phi_1^4 - 1)^2 + 4\phi_2^4]$
 - **Vacuum orbit:** $M = \frac{\partial U}{\partial \phi} = \{v^0 = 1, v^1 = -1\}$
 - **Real algebraic curves:**
 $$\phi_1 - \frac{\phi_1^3}{3} + \phi_1 \phi_2^2 = \gamma; \quad \phi_2 - \phi_1^2 \phi_2 + \frac{\phi_2^3}{3} = \gamma_\perp$$
 - **Kink curve:** $\gamma_\perp = 0(\equiv W^2 = 0)$, tantamount to $\phi_2 = 0$.
 - **Kink form factor:**
 a) Solutions of $\frac{d\phi}{dx_1} = \pm(1 - \phi_1^2)$ on $\phi^2 = 0$: $\phi^K_1(x_1) = \pm \tanh(x_1 + a)$
 - **Kink energy:** $P_0[\phi^K_1] = |T| = |W^1(v^0) - W^1(v^1)| = \frac{4}{3}$
 - **Conserved SUSY charge:** $\hat{Q}_1^K = \frac{1}{4}$
• $n = 5$:

 – Superpotential: $W(\phi) = \frac{1}{2} \left(\phi - \frac{\phi^5}{\phi^4} \right)$

 \[W^1 = \phi_1 \left(1 - \frac{\phi_1^4}{5} + 2\phi_1^2\phi_2 - \phi_2^4 \right) \quad W^2 = \phi_2 \left(1 - \phi_1^4 + 2\phi_1^2\phi_2^2 - \frac{\phi_2^4}{5} \right) \]

 – Potential: $U(\phi_1, \phi_2) = \frac{1}{2} \left((\phi_1^* + 1)^2 - 4\phi_1^2 \right) \left((\phi_2^* + 1)^2 - 4\phi_2^2 \right)$

 – Vacuum orbit: $M = \frac{\phi_1}{\phi_2} = \{ v^0 = 1, v^1 = i, v^2 = -1, v^3 = -i \}$

 – Real algebraic curves:

 \[\phi_1 \left(1 - \frac{\phi_1^4}{5} + 2\phi_1^2\phi_2 - \phi_2^4 \right) = \gamma; \quad \phi_2 \left(1 - \phi_1^4 + 2\phi_1^2\phi_2^2 - \frac{\phi_2^4}{5} \right) = \gamma_\perp \]

 – Kink curves: a) $\gamma_\perp = 0 \equiv \phi_2 = 0$, b) $\gamma = 0 \equiv \phi_1 = 0$.

 – Kink form factor:

 a) Solutions of $\pm \frac{\phi_1}{\phi_1} = 1 - \phi_1^4$ on $\phi_2 = 0$: $\arctan \phi_1^K = \arctan \phi_1^K = \pm 2(x_1 + a)$

 b) Solutions of $\pm \frac{\phi_2}{\phi_2} = 1 - \phi_2^4$ on $\phi_1 = 0$: $\arctan \phi_2^K = \arctan \phi_2^K = \pm 2(x_1 + a)$

 – Kink energies:

 a) $P_0[\phi^K] = |T| = |W^1(v^0) - W^1(v^2)| = \frac{8}{7} \phi$

 b) $P_0[\phi^K] = |T| = |W^2(v^1) - W^2(v^3)| = \frac{8}{7}$

 – Conserved SUSY charges:

 a) $\tilde{Q}^1_\perp |K^1_\perp\rangle = 0$; b) $\tilde{Q}^2_\perp |K^2_\perp\rangle = 0$

• $n = 7$:

 – Superpotential: $W(\phi) = \frac{1}{2} \left(\phi - \frac{\phi^7}{\phi^6} \right)$

 \[W^1 = \phi_1 - \frac{\phi_1^7}{7} + 3\phi_1^5\phi_2 - 5\phi_1^3\phi_2^2 + 3\phi_1\phi_2^3 \quad W^2 = \phi_2 - \phi_1^6\phi_2 + 5\phi_1^4\phi_2^3 - 3\phi_1^2\phi_2^5 + \frac{\phi_2^7}{7} \]

 – Potential: $U(\phi_1, \phi_2) = \frac{1}{2} \left((\phi_1^* + 1)^2 - 2(\phi_1^2 - \phi_2^2) \right) \left((\phi_2^* + 1)^2 - 16\phi_1^2\phi_2^2 \right) + 1 \}

 – Vacuum orbit:

 $M = \frac{\phi_1}{\phi_2} = \{ v^0 = 1; v^1 = \frac{1}{2} + i\sqrt{3}; v^2 = -\frac{1}{2} + i\sqrt{3}; v^3 = -1; v^4 = -\frac{1}{2} - i\sqrt{3}; v^5 = \frac{1}{2} - i\sqrt{3} \}$

 – Real algebraic curves:

 \[\phi_1 - \frac{\phi_1^7}{7} + 3\phi_1^5\phi_2 - 5\phi_1^3\phi_2^2 + 3\phi_1\phi_2^3 = \gamma; \quad \phi_2 - \phi_1^6\phi_2 + 5\phi_1^4\phi_2^3 - 3\phi_1^2\phi_2^5 + \frac{\phi_2^7}{7} = \gamma_\perp \]

 – Kink curves: there are two choices of γ_\perp and three choices of γ for which one finds kink curves. The other kinks associated with the other superpotentials can be obtained by \mathbb{Z}_6 rotations.

 a) $\gamma_\perp = \frac{3\sqrt{3}}{7}$: kink curve joining v^1 with v^2

 b) $\gamma = \frac{\sqrt{2}}{2}$: kink curve joining v^4 with v^5

 c) $\gamma = 0$: kink curve joining v^0 with v^3

 – Kink energies:

 a) $P_0[\phi^K] = |T| = |W^1(v^k) - W^1(v^{k+1})| = \frac{6}{7}$

 b) $P_0[\phi^K] = |T| = |W^2(v^k) - W^2(v^{k+2})| = \frac{6\sqrt{7}}{7}$

 c) $P_0[\phi^K] = |T| = |W^2(v^k) - W^1(v^{k+3})| = \frac{12}{7}$

 – Conserved SUSY charges:

 a) $\tilde{Q}^1_\perp |K^1_\perp\rangle = 0$; (b) and (c) $\tilde{Q}^2_\perp |K^2_\perp\rangle = 0$
We now study two even cases.

- The first and most interesting model occurs for \(n = 4 \). Here, we find that the kink curves are straight lines in \(W \)-space (true for any \(n \)) and curved in \(\phi \)-space, in agreement with Reference [8]:

 - Superpotential: \(W[\phi] = \frac{1}{2} \left(\phi - \frac{\phi^4}{6} \right) \)

 \[W^1 = \phi_1 - \frac{\phi_1^4}{4} + \frac{3}{2} \phi_1^2 \phi_2^2 - \frac{\phi_2^4}{4}, \quad W^2 = \phi_2 \left(1 - \phi_1^3 + \phi_1 \phi_2^3 \right) \]

 - Potential: \(U(\phi_1, \phi_2) = \frac{1}{2} \left[(\phi \phi^*)^3 - 2 \phi_1 (\phi_1^2 - 3 \phi_2^2) + 1 \right] \)

 - Vacuum orbit: \(M = \frac{D\phi}{D\phi} = \{ v^0 = 1, v^1 = -\frac{1}{2} + i \frac{\sqrt{3}}{2}, v^2 = -\frac{1}{2} - i \frac{\sqrt{3}}{2} \} \)

 - Real algebraic curves:

 \[\phi_1 - \frac{\phi_1^4}{4} + \frac{3}{2} \phi_1^2 \phi_2^2 - \frac{\phi_2^4}{4} = \gamma; \quad \phi_2 \left(1 - \phi_1^3 + \phi_1 \phi_2^3 \right) = \gamma \]

 - Kink curve: \(\gamma = -\frac{3}{8} \)

 - Kink form factor: on the kink curve we find \(\phi_1^{K^2} = f^{-1}[\pm (x + a)] \) where

 \[
 f(\phi_1) = \frac{d\phi_1}{\sqrt{\frac{3}{2} + 4 \phi_1 + 8 \phi_1^4 \left(3 \phi_1^2 - \sqrt{\frac{3}{2} + 4 \phi_1 + 8 \phi_1^4} \right)}}
 \]

 - Kink energy: \(P_0[\phi^{K^2}] = |\tilde{T}| = |W^2(\nu^k) - W^2(\nu^{k+1})| = \frac{3\sqrt{3}}{4} \)

 - Conserved SUSY charge: \(\tilde{Q}_\pm^2 |K^2_\pm| = 0 \)

- \(n = 6 \):

 - Superpotential: \(W[\phi] = \frac{1}{2} \left(\phi - \frac{\phi^6}{6} \right) \)

 \[W^1 = \phi_1 - \frac{\phi_1^6}{6} + \frac{5}{2} \phi_1^2 \phi_2^2 - \frac{5}{2} \phi_1^2 \phi_2^4 + \frac{\phi_2^6}{6}, \quad W^2 = \phi_2 \left(1 - \phi_1^5 + \frac{10}{3} \phi_1^3 \phi_2^2 - \phi_1 \phi_2^4 \right) \]

 - Potential: \(U(\phi_1, \phi_2) = \frac{1}{7} \left[(\phi \phi^*)^5 - 2 \phi_1 (\phi_1^4 + 5 \phi_2^4 - 10 \phi_1^2 \phi_2^2) + 1 \right] \)

 - Vacuum orbit: \(M = \frac{D\phi}{D\phi} = \{ v^0 = 1, v^1 = e^{i\frac{2\pi}{6}}, v^2 = e^{i\frac{4\pi}{6}}, v^3 = e^{i\frac{6\pi}{6}}, v^4 = e^{i\frac{8\pi}{6}} \} \)

 - Real algebraic curves:

 \[\phi_1 - \frac{\phi_1^6}{6} + \frac{5}{2} \phi_1^2 \phi_2^2 - \frac{5}{2} \phi_1^2 \phi_2^4 + \frac{\phi_2^6}{6} = \gamma; \quad \phi_2 \left(1 - \phi_1^5 + \frac{10}{3} \phi_1^3 \phi_2^2 - \phi_1 \phi_2^4 \right) = \gamma \]

 - Kink curves: there are two values of \(\gamma \) giving kink curves: a) \(\gamma = -\frac{1}{4} (1 + \sqrt{5}) \): kink curve joining \(v^2 \) with \(v^3 \), b) \(\gamma = \frac{5}{24} (-1 + \sqrt{5}) \): kink curve joining \(v^1 \) with \(v^4 \). The other kink curves are obtained through \(Z_5 \) rotations.

 - Kink energies: a) \(P_0[\phi^{K^2}] = |\tilde{T}| = |W^2(\nu^k) - W^2(\nu^{k+1})| = \frac{5}{6} \sqrt{\frac{5 - \sqrt{5}}{2}} \)

 \[b) P_0[\phi^{K^2}] = |\tilde{T}| = |W^2(\nu^k) - W^2(\nu^{k+2})| = \frac{5}{6} \sqrt{\frac{5 + \sqrt{5}}{2}} \]

 - Conserved SUSY charges: (a) and (b) \(\tilde{Q}_\pm^2 |K^2_\pm| = 0 \)
References

[1] M. Shifman, A. Vainshtein and M. Voloshin, Phys.Rev. D59 (1999) 45016.
[2] G. Gibbons and P. Townsend, Phys. Rev. Lett. 83 (1999) 1727.
[3] P. Freund, “Introduction to Supersymmetry”, Cambridge University Press, 1986, New York.
[4] E. Witten, D. Olive, Phys. Lett. 78B (1978) 97
[5] D. Bazeia and F. Brito, Phys. Rev. Lett. 84 (2000) 1094
[6] S. Cecotti and C. Vafa, Com. Math. Phys. 158 (1993) 569
[7] P. Townsend, “Three Lectures on Supersymmetry and Extended Objects”, in NATO ASI Series C: Vol. 409, edited by L. Ibort and M.A. Rodriguez, Kluwer Academic Publisher, Dordrech, 1993.
[8] P. Saffin, Phys. Rev. Lett. 83 (1999) 4249 ; S. Carroll, S. Hellerman and M. Trodden, hep-th/9905217, Phys. Rev. D, to appear; D. Binosi and T. ter Veldhuis, hep-th/9912081, Phis. Lett. B, to appear.

Figure 1: Kink curves in the $n = 4$, $n = 5$, $n = 6$ and $n = 7$ models