Abstract. We have used a combination of classical genetic, molecular genetic, histological, biochemical, and biophysical techniques to identify and characterize a null mutation of the myosin light chain-2 (MLC-2) locus of Drosophila melanogaster. Mlc2^{E38} is a null mutation of the MLC-2 gene resulting from a nonsense mutation at the tenth codon position. Mlc2^{E38} confers dominant flightless behavior that is associated with reduced wing beat frequency. Mlc2^{E38} heterozygotes exhibit a 50% reduction of MLC-2 mRNA concentration in adult thoracic musculature, which results in a commensurate reduction of MLC-2 protein in the indirect flight muscles. Indirect flight muscle myofibrils from Mlc2^{E38} heterozygotes are aberrant, exhibiting myofibrils in disarray at the periphery. Calcium-activated Triton X-100-treated single fiber segments exhibit slower contraction kinetics than wild type. Introduction of a transformed copy of the wild type MLC-2 gene rescues the dominant flightless behavior of Mlc2^{E38} heterozygotes. Wing beat frequency and single fiber contraction kinetics of a representative rescued line are not significantly different from those of wild type. Together, these results indicate that wild type MLC-2 stoichiometry is required for normal indirect flight muscle assembly and function. Furthermore, these results suggest that the reduced wing beat frequency and possibly the flightless behavior conferred by Mlc2^{E38} is due in part to slower contraction kinetics of sarcomeric regions devoid or partly deficient in MLC-2.

FORCE production in virtually all types of muscle requires the formation of mechanically strained, elastic cross-bridges between myosin and actin-containing filaments. These cross-bridges are composed of the globular heads of the myosin heavy chain subunits and their associated light chains (the myosin alkali light chain and the myosin light chain-2 (MLC-2)), the regulatory light chain. The myosin cross-bridge projects out from the thick (myosin) filament and attaches to an adjacent thin (actin) filament, activating an actomyosin Mg2+-ATPase, which provides the chemical energy required for muscle contraction (Adelstein and Eisenberg, 1980). The cyclic making and breaking of these cross-bridges, together with a conformational change within the myosin molecule, causes the actin and myosin filaments to slide past each other enabling the muscle to shorten against an external load (Huxley, 1969).

Two independent systems regulate the actomyosin ATPase cycle and contraction: a thin filament control system regulated by the troponin–tropomyosin complex, and a thick filament control system modulated by MLC-2 (Lehman and Szent-Gyorgyi, 1975; Sweeney and Stull, 1990, and references therein). The sophisticated molecular and genetic manipulations possible in Drosophila provides a powerful approach with which to investigate the structure-function relationships of these regulatory proteins (Peckham et al., 1990; Fyrberg and Beall, 1990). Our efforts have been directed toward defining the role of the MLC-2 protein. Here, we report the effects that altered MLC-2 stoichiometry have on myofibrillar structure, assembly and contraction.

In Drosophila, sarcomeric MLC-2 is encoded by a single gene (Mlc2) which maps to polytene chromosome bands 99E1-3 (Parker et al., 1985; Toffenetti et al., 1987). Mlc2 encodes a single protein isoform which is expressed in all muscle types throughout development. An initial step has been to identify a MLC-2 null mutation which can be used to analyze the effects of altered MLC-2 stoichiometry and to serve as a host strain for future analyses of in vitro mutagenized genes. To this end, we previously reported the molecular and genetic analysis of the 99D3 to 99E2-3 interval of the third chromosome and the identification of a putative MLC-2 mutation, Ifm(3)99Eb^{E38} (Warmke et al., 1989).

Ifm(3)99Eb^{E38}, a recessive lethal mutation, was provi-
sionally deemed a hypomorphic allele of the MLC-2 gene for the following reasons: (1) Ifm(3)99EB E3s maps cytologically to the same region as the MLC-2 gene; (2) Ifm(3)99EB E3s defines the only dominant flightless complementation group (Ifm(3)99EB) uncovered by a deficiency lacking the MLC-2 gene; (3) the flightless behavior of Ifm(3)99EB E3s is rescued by a duplication carrying a wild-type copy of Ifm(3)99EB; (4) of 26 loci that are expressed at high concentration during myogenesis, only the MLC-2 gene is located in the 99D3 to 99E2-3 region (Falkenthal et al., 1984); and (5) MLC-2 gene expression is decreased in the thoracic musculature of adult Ifm(3)99EB E3s heterozygotes (Warmke et al., 1989).

Here we show the following: (1) Ifm(3)99EB E3s (denoted Mlc2 E3s) corresponds to the MLC-2 gene by rescuing the Mlc2 E3s mutant phenotypes and mapping the Mlc2 E3s lesion within the MLC-2 locus. (2) Mlc2 E3s heterozygotes exhibit a reduced concentration of MLC-2 protein in the indirect flight muscles (IFMs). (3) Myofibrils from Mlc2 E3s heterozygotes are composed of approximately the same number of filaments as wild type; however, all IFM myofibrils of Mlc2 E3s heterozygotes show peripheral disruption. (4) Mlc2 E3s heterozygotes are severely flight impaired, yet have the ability to beat their wings but at a frequency that is ~30% less than that of wild-type flies. (5) Single IFM fibers, skinned with detergent and activated with Ca2+, have maximum work outputs that occur at a lower oscillation frequency in Mlc2 E3s heterozygotes than in wild type flies. Together, these results suggest that the reduced wing beat frequency (and the corresponding flightless behavior) exhibited by Mlc2 E3s heterozygotes may be due at least in part to the slower contraction kinetics exhibited by their IFMs. We conclude that wild-type MLC-2 stoichiometry is required for normal indirect flight muscle assembly and function.

Materials and Methods

Fly Stocks and Culture Conditions

The Ifm(3)99EB E3s mutation was obtained in the laboratory of Dr. John Merriam (University of California at Los Angeles, Los Angeles, CA) from a screen for EMS-induced recessive lethal mutations as previously described (Warmke et al., 1989). Third chromosome balancers used are ln(3LR)TM3, rI p*$ sep su(Hv)2 Sb bx E3s e and ln(3LR)TM6B, Hu e Tb ca (Craymer, 1984), and will be referred to as TM3,SB and TM6B,Tb, respectively. Other mutations and balancers used are described in Lindsley and Grell (1968) and Lindsley and Zimm (1985, 1987). Unless otherwise indicated, all fly stocks and crosses were maintained at room temperature (22°C) on agar-cornmeal based medium (Lewis, 1960).

Flight and Wing Beat Testing

To determine flight indices, adult flies were collected within 24 h of eclosion, were aged for 2-4 d, and were tested individually using a graduated Benzer cylinder (Benzer, 1973). For the Benzer test, adult flies were dropped into a glass graduated cylinder coated with mineral oil. Gradations on the tube ranged from 8 at the top of the cylinder to 1 at the bottom. Flies that dropped straight through the cylinder were scored as 0. ~25-50 flies of a particular genotype were scored, and a flight index was determined by totaling the scores of each fly tested and dividing by the total number of flies tested.

For wing beat analysis, individual flies were flight tested then tethered and wing movement recorded by an optical device (modified from Unwin and Ellington, 1979). Frequency components were extracted using a spectrum analysis routine. For this analysis, the flight test consisted of simply determining whether the fly was capable of gaining elevation at least once in ten trials. Each fly was tapped out of a glass containment cylinder into the center of a lucite box. Flies that flew above the horizontal plane from which they were launched were scored U and were considered wild-type flies. Nonfliers and weak fliers cannot gain elevation and were scored D. Flies tested using this method could be recovered and tested for wing beat frequency and dissected for single muscle fiber experiments.

Construction of P Element Transformation Vectors, P Element Transformation, and Analysis of Transformed Lines

The P element transformation vector CasPeR was provided by Dr. Vincenzo Pirrotta (Baylor College of Medicine, Houston, TX) and was constructed by inserting the 4.1-kb white minigene from BmB-w (Pirrotta et al., 1985) into the polylinker of Carnegie 4 (Rubin and Spradling, 1983). The MLC-2 transformation vector pCaST1 was constructed by inserting a 3.4-kb EcoRI/HindIII fragment containing the entire MLC-2 transcription unit plus 700 bp of 5' flanking sequences and ~650 bp of 3' flanking sequences into CasPeR. Likewise, pCaST3 was constructed by inserting a 5.9-kb Bcl/HindIII fragment containing the entire MLC-2 transcription unit plus 3.2 kb of 5' flanking sequences and ~650 bp of 3' flanking sequences into CasPeR. The MLC-2 gene is the only transcription unit present in the sequences used to construct these transformation vectors (Parker et al., 1985; Toffenetti et al., 1987).

Microinjection and P element-mediated germline transformation were performed using a stable genomic source of P element transposase, Py" 22-3J (1998), as described previously (Robertson et al., 1988). Chromosome linkage was determined for a number of independent transformants, and either a balanced lethal or a homozygous stock for each transformed line was established using standard genetic techniques.

Cloning the Mlc2 E3s Allele

Because Mlc2 E3s is recessive lethal, it was necessary to clone the Mlc2 E3s allele from a library constructed from Mlc2 E3s heterozygotes. To facilitate identification of the Mlc2 E3s allele, it was necessary to identify a restriction site polymorphism between the Mlc2 E3s allele and a wild-type allele. Whole genomic Southern blot analysis of various wild-type and mutant stocks revealed that a PstI restriction site located approximately 950 bp 5' of the transcription start site of the wild-type MLC-2 allele (Mlc2 +) of Canton-S is absent in the Mlc2 E3s allele (data not shown; Warmke, 1990). Therefore, the absence of this site could be used to identify Mlc2 E3s clones from a genomic library constructed with DNA isolated from Mlc2 E3s/ Mlc2 heterozygotes. Such a library (6.4 × 10⁶ recombinants) was screened by plaque hybridization (Benton and Davis, 1978) using a 5.9-kb Bcl/HindIII restriction fragment that contains the entire MLC-2 transcription unit (Warmke, 1990) to isolate clones carrying MLC-2 sequences. Those carrying the Mlc2 E3s allele were identified by the PstI restriction site polymorphism. A 6.3-kb Sall/HindIII fragment of one clone (which contains the Mlc2 E3s allele) was subcloned into the Bluescript M13+ vector by using the Amersham Corp. La Jolla, CA) and referred to as pM13 99E. The Sequenase Version 2.0 DNA sequencing kit (United States Biochemical, Cleveland, OH) was used for all DNA sequencing reactions. Double stranded sequencing reactions were run essentially as described in the kit except that all termination reactions were done at 45°C. The products of all DNA sequencing reactions were displayed on 80 cm, 8 M urea-8 % polyacrylamide gels. pBSTEI (Mlc2 +) and pLP5734 (wild-type MLC-2 allele from Canton-S; Parker et al., 1985) were used as templates. The noncoding strand of each plasmid DNA template was sequenced using synthetic oligonucleotide primers derived from the wild-type Canton-S sequence (Parker et al., 1985). To sequence the coding strand, the 2.2-kb Psal/HindIII fragments from pBSTEl and pLP5734 were subcloned into Bluescript M13(+) and were denoted pBST-E/Psal.2 and pBSTC-Psas.2, respectively. The M13 universal primer was used to sequence pBST-E/Psas.2 and pBSTC-Psas.2.

Electron Microscopy

Thoraces from 2-day-old adult flies and stage P14 pupae (according to Bainbridge and Bownes, 1981) were isolated by dissection in fixation buffer (3% paraformaldehyde, 3% glutaraldehyde, 0.1 M sucrose, 0.1 M sodium phosphate, pH 7.2, 0.002 M EGTA). Pupae were removed from the pupal case by first teasing away the anterior end of the pupal case. Each pupa was pulled out of the pupal case with forceps by grasping onto the head of the animal. Thoraces were dissected by carefully removing the head, abdomen, and legs with forceps; special care was taken to avoid disrupting thoracic musculature when these tissues were removed. Following dissection, the
Thoraces were incubated in fixation buffer for 3 h at room temperature. Then the samples were washed three times for 10 min each with wash buffer (0.1 M sucrose, 0.1 M sodium phosphate, pH 7.2) and postfixed in 1% osmium tetroxide, 0.1 M sodium phosphate, pH 7.2 for 1/2 h at room temperature. The samples were washed three times for 10 min each with wash buffer then dehydrated in a graded series of aceton (10 min each in 30, 50, 70, 80, and 85%; two changes of 10 min each in 95%); two changes of 10 min each in 100%). The samples were embedded in Spurr low viscosity embedding medium (no. 21230; Polysciences, Inc., Warrington, PA) by incubating in 50% Spurr, 50% acetone overnight at room temperature; in 100% Spurr, two changes of 2 h each at room temperature; then transferred to gelatin capsules and polymerized at 60°C overnight. The blocks were trimmed and sectioned using a MT-2 Sorvall ultramicrotome (Sorvall Instruments, Newton, CT). Thick sections (~1 μm) were cut and stained with 1% Toluidine blue and observed by light microscopy to confirm the orientation of the sample within the block and determine the location of the section of dorsal longitudinal muscle fibers within the thorax. The appropriate gold sections (~100 Å) were collected and stained with 2% uranyl acetate for 15 min then lead citrate for 3 min. Sections were viewed and photographed using a Philips 300 electron microscope.

Single skinned fibers were fixed at room temperature in 2.5% glutaraldehyde, 10 mM MgCl2, 20 mM MOPS buffer (pH 6.8) for 15 min, then transferred to the same solution with 0.2% tannic acid for 30 min. The preparation was rinsed with 20 mM MOPS (pH 6.8) for 15 min and 0.1 M phosphate buffer for 15 min. Fibers were postfixed, dehydrated, embedded, sectioned, and photographed according to protocols similar to those above. The average number of thin filaments per myofibril was determined by counting the number of thin filaments per myofibril in at least three different adults for each stock.

Separation of Protein Fractions and Gel Electrophoresis

Single fibers of the dorsal longitudinal indirect flight muscle, representative of those used in the functional assays, were isolated from the thorax under water-saturated mineral oil in a glass-bottom dish. Oil temperature was maintained at 7 ± 1°C by a Peltier device (Cambion; Cambridge Thermionic Corp., Cambridge, MA). Widths and lengths of segments were measured under the oil using a filar micrometer (LaSiCo, Los Angeles, CA) and binocular dissecting microscope (M5, Wild Heerbrugg, Rockleigh, NJ). The relationship between MLC-2 gene dosage and expression in the IFM was examined by quantitative polyacrylamide gel electrophoresis. IFM protein separations were performed using a semi-dry transfer method. Protein standards were also run in a separate lane. For immunoblot analysis, proteins from SDS polyacrylamide gels were transferred to a nitrocellulose membrane and electroblotted using a Hoefer TE SemiPhor Transfer Unit. The membranes were stained with 1 mM DTT, 2 mM MgCl2, 0.5% w/v Triton X-100, pH 7.0. The stained membranes were transferred to a temperature controlled buffer containing relaxing solution (see above), and then attached to a force transducer (sensitivity, 0.6 μN/mV; natural frequency, 4 kHz) and a length controller (model 6000; Cambridge Tech.; Watertown, MA) via aluminum T-clips (Goldman and Simmons, 1984). Sinusoidal length perturbations of 0.25% fiber length (peak-to-peak) and 1-500 Hz were applied. Both length and force transients were monitored with an oscilloscope and digitized by an A/D system (model DT-2828; Data Translations, Marlboro, MA). Fiber dimensions were measured using an inverted compound microscope. To measure steady active tension levels and complex stiffness, resting strain was set to near zero (White et al., 1988). For the ATPase measurement, strain in the active fiber was adjusted to yield maximally work output based on complex stiffness measurements. To activate the skinned fibers, relaxing solution (pCa 8, [Ca2+] = 10-8 M) was replaced with activating solution (pCa 4, [Ca2+] = 10-4 M). Later, rigor was induced by replacing the activating solution with an ATP-free solution (similar to relaxing solution, except MgATP was omitted).

The relaxation time of substrate availability was tested under conditions in which the bathing solution was not stirred (10 μl fiber solution under oil). At 12°C, muscle stiffness, stretch activation kinetics, and isometric ATPase were independent of phosphoenolpyruvate (MEP-ATP) concentration above 15 mM (data not shown). Therefore, experiments were conducted at 12°C and 18 mM ATP to avoid or reduce the possibility of diffusion limitation of substrate. ATP hydrolysis was estimated from the resultant buildup of ADP in 10-μl drops of relaxing or activating solutions. To ensure that ADP production from each fiber was tightly linked with myosin ATP hydrolysis, a cocktail of inhibitors was added to the incubation solution: 10 μM sodium pentaphosphate to inhibit adenylate kinase (Leinhard and Seecemski, 1973), quercetin to inhibit sarcoplasmic reticular ATPase, azide and oligomycin to inhibit mitochondrial ATPase (Cross and Boyer, 1975). Fibers were incubated in the test drops for 10-20 min, after which the ADP concentration in each drop was measured using high performance liquid chromatography (model 6000A solvent delivery system and model 440 absorbance detector; Waters, Milford, MA).

AMP, ADP, and ATP were separated on a reverse phase column (BioPhase ODS, 5 μm, Bioanalytical Systems, West Lafayette, IN) as described by Victor et al. (1987). Two μl of experimental solution were mixed with 13 μl of running buffer and injected into a 20-μl sample loop (7125 sample injector, Rhodyne, Cotati, CA). Optical absorbance was measured at 254 nm, and all peaks were detected within 10 minutes of sample injection (pump speed, 3 ml/min, running buffer, pH 4.0). ATP/ADP concentration ratios were determined from the peak heights (after making a peak height adjustment to account for retention times). "No-fiber" control drops were also analyzed and any background hydrolysis subtracted. Fiber myosin subfragment 1 (SF) content was determined using an ATP-free solution (similar to relaxing solution, except MgATP was omitted).
Results

Identification of a Myosin Light Chain-2 Null Mutation

Ifm(3)99E^E3S confers a significant decrease in flight ability (Table I); in fact, Ifm(3)99E^E3S heterozygotes do not fly but can produce wing movements to break their fall. To test whether the flightless behavior of Ifm(3)99E^E3S heterozygotes is due to a mutation in the MLC-2 locus (Warmke et al., 1989), we introduced a transformed copy of the wild-type MLC-2 gene to see if the dominant flightless behavior and recessive lethality conferred by Ifm(3)99E^E3S could be rescued.

P element-mediated germline transformation was used to generate a series of independent lines carrying an additional copy of the wild-type MLC-2 gene (see Materials and Methods). 15 independent lines carrying a transformed copy of the wild-type MLC-2 gene (P[w' MLC-2']) were recovered and characterized (Table I). Each transformed line was crossed to Ifm(3)99E^E3S heterozygotes, as outlined in Fig. 1. The resulting Ifm(3)99E^E3S heterozygotes that carry a transformed copy of the wild type MLC-2 gene were collected, and their flight behavior was determined. Three of the four inserts generated from the transformation vector pCasJW3 and ten of the eleven inserts derived from pCasJW1 completely rescued the dominant flightless behavior of Ifm(3)99E^E3S heterozygotes (Table I).

In addition to conferring dominant flightless behavior, Ifm(3)99E^E3S exhibits a recessive lethal phenotype. The ability of a transformed copy of the wild-type MLC-2 gene to rescue this recessive lethality was assayed as outlined in Fig. 1. Three inserts derived from pCasJW3 all rescue the recessive lethality of Ifm(3)99E^E3S, and eight of 10 inserts derived from pCasJW1 rescue the recessive lethality of Ifm(3)99E^E3S to varying degrees, from 12 to 100% (Table I). From these results it is clear that the introduction of a transformed copy of the wild-type MLC-2 gene completely rescues the dominant flightless behavior and recessive lethality conferred by Ifm(3)99E^E3S, confirming that Ifm(3)99E_b corresponds to the MLC-2 gene. Therefore, the Ifm(3)99E_b complementation group will be referred to hereafter as Mlc2 and the Ifm(3)99E^E3S allele will be referred to as Mlc2^E3S.

Mlc2^E3S Molecular Defect

To determine the molecular defect responsible for the Mlc2^E3S mutation, we first examined genomic DNA from the Mlc2^E3S allele by Southern analysis to detect gross DNA rearrangements. No DNA rearrangement was found (data not shown; Warmke, 1990); however, this analysis identified a PstI restriction site polymorphism thereby simplifying the cloning of the Mlc2^E3S allele (see Materials and Methods). DNA sequencing revealed that the Mlc2^E3S allele contained 10 base pair changes within the MLC-2 transcription unit as compared to the wild-type Canton-S allele (data not shown; Warmke, 1990). The sequence of the MLC-2 gene obtained from a Canton-S chromosome was used for comparison, because the original ca stock used to generate the Mlc2^E3S mutation was not available. Therefore, we were not surprised to find as many as eight differences between the untranslated regions of the Mlc2^E3S and Canton-S alleles. More importantly, two base pair differences were identified within the MLC-2 transcription unit as compared to the wild-type Canton-S allele (Fig. 2). The first is an A to T transversion which results in an amber nonsense mutation at the 10th amino acid codon; the second is a C to T transversion which results in a serine residue for the 10th amino acid codon. Warmke et al. (1989) found that the ifm(3)99E^E3S mutation is a null allele of the MLC-2 gene resulting from a nonsense mutation at the 10th amino acid codon. Therefore, Mlc2^E3S is a null allele of the MLC-2 gene resulting from a nonsense mutation at the 10th amino acid codon.

MLC-2 Accumulation Is Reduced in Mlc2^E3S Heterozygotes

Because Mlc2^E3S is a null mutation, we expected that expression of MLC-2 in Mlc2^E3S heterozygotes would be reduced by ~50% and that accumulation of MLC-2 protein would be reduced to a similar extent (O'Brien and MacIntyre, 1978). We have previously shown that MLC-2 RNA accumulation is reduced by ~50% in thoraces of Mlc2^E3S heterozygotes (Warmke et al., 1989). In the present study, we...
used Triton X-100-treated (skinned) IFM fibers to assay contraction kinetics at the single fiber level; therefore, we measured the MLC-2 content in single skinned IFM fibers representative of those used in subsequent functional assays. Inevitably, some proteins diffuse out of the fiber during the skimming procedures. Proteins that diffuse readily include glycolytic enzymes (Fig. 3 a, lane 2), and those that diffuse out only after detergent treatment are primarily mitochondrial proteins (Fig. 3 a, lane 3) (D. Maughan and J. Hurley, unpublished results). Immunoblots confirm that MLC-2 is not among the diffusible proteins in either wild type, Mlc2 ms heterozygotes, or a representative rescued line (Fig. 3 b, lanes 2–4, 6–8, and 10–12, respectively); rather, MLC-2 is confined solely to the cytomatrix (nondiffusible) fraction.

Figure 2. Mlc2 E3s is a nonsense mutation at the tenth amino acid codon position. The sequencing reaction products from plasmids pBSTE-P/H2.2 (Mlc2 E3s) and pBSTC-P/H2.2 (Canton-S) were loaded so that the Mlc2 E3s (1) and Canton-S (2) sequences could be compared directly. The asterisks (*) denote base differences. The DNA sequence between the arrows is given for Canton-S and Mlc2 E3s, and the amino acid sequence for the wild-type Canton-S allele is presented above the corresponding DNA sequence, whereas the predicted amino acid sequence for the Mlc2 E3s allele is given below the corresponding DNA sequence. Note that the A to T transversion in the tenth amino acid codon results in an amber nonsense mutation in the Mlc2 E3s allele.

Line	Linkage group	Flight index	Viability index
Canton-S	-	7.4 ± 0.7	-
w; Ifm(3)99EbE3S/TM6B,Tb	-	2.5 ± 2.2	-
JW3-42.6	X	7.5 ± 0.8	73.6
JW3-50.5	TM6B,Tb	3.9 ± 3.0	NA
JW3-50.9	2	7.2 ± 1.0	97.4
JW3-50.26	X	7.6 ± 0.6	90.0
JW1-5.11		7.3 ± 0.8	88.6
JW1-5.25	2	6.7 ± 1.7	65.1
JW1-5.31	2	2.5 ± 2.7	<1.8
JW1-5.42	2	6.9 ± 1.4	42.0
JW1-16.2	2	7.7 ± 0.5	55.1
JW1-18.1	2	7.0 ± 0.9	40.0
JW1-31.2	X	7.5 ± 0.6	<3.3
JW1-40.1	2	7.5 ± 0.7	71.3
JW1-60.1*	TM3,Sb	7.8 ± 0.4	NA
JW1-62.5	2	7.2 ± 0.8	12.2
JW1-63.1	2	7.6 ± 0.6	100.0

* A balanced rescued stock, denoted JW60, was constructed using this insert: w; Ifm(3)99EbE3S/TM3,Sb,P[w+ MLC-2+].
† A flight index of 0 indicates that the adults are incapable of flying or gliding; whereas, a flight index greater than 7 indicates that the adults are fully competent for flight. Intermediate flight indices indicate that the individuals have impaired flight ability; they may not be able to gain altitude, but they can glide. The flight indices for Canton-S and w; Ifm(3)99EbE3S/TM6B,Tb adults is given followed by the results of the rescue experiments. For each transformed line, the flight index is of an Ifm(3)99EbE3S heterozygote carrying one copy of the transformed MLC-2 gene; w; P[w+ MLC-2+]/+; Ifm(3)99EbE3S/TM3,Sb or TM6B,Tb.
‡ The viability index is the percentage of expected progeny recovered.
§ Not applicable, because these inserts are on third chromosome balancers, they could not be introduced into a homozygous Ifm(3)99EbE3S genetic background.
Figure 3. MLC-2 protein analysis of dorsal longitudinal indirect flight muscle of Drosophila. (a) Muscle fiber proteins separated by a diffusion method into three fractions: cytomatrix (lane 1), containing the myofibrillar proteins; cytosol (lane 2), containing readily diffusible proteins; and organelle (lane 3), containing Triton X-100 extractable proteins (including those from mitochondria and sarcoplasmic reticulum). Lane 4 contains the combined rinses after the two extraction treatments. Protein samples were analyzed by electrophoresis using a 15% polyacrylamide slab gel, and the protein bands were silver stained. On this gel, 7% of the matrix (lane 1), 10% of the cytosol (lane 2), and 21% of the organelle (lane 3) was loaded. All of the proteins in the combined rinse were loaded in lane 4. Lane 5 contains molecular weight markers (Bio-Rad 161-0303 and 161-0304); molecular weights are indicated (in kD). (b) Immunoblot of IFM proteins reacted with rabbit anti-Drosophila MLC-2 and rat anti-actin sera. Samples from Canton-S (lanes 1-4), Mlc2E38 heterozygotes (lanes 5-8), and JW60 (lanes 9-12) were run on a 15% SDS-polyacrylamide gel and transferred to a nitrocellulose membrane for immune detection. Lanes 1, 5, and 9, cytomatrix; lanes 2, 6, and 10, cytosol; lanes 3, 7, and 11, organelle; lanes 4, 8, and 12, combined rinses after the two extraction treatments. Note the absence of MLC-2 and actin in cytosol and organelle fractions. 18% of the matrix in lane 1, 23% of the matrix in lane 5, and 22% of the matrix in lane 9 was loaded (the difference in MLC-2 concentration between these samples is not evident because the amount of MLC-2 in each sample is outside of the linear range of the HRP color development system). All other fractions were loaded at 100%. Lane 13 contains biotinylated standards (Bio-Rad 161-0306); molecular weights are indicated (in kD). (c) Cytomatrix proteins displayed on a two-dimensional gel (silver-stained). Left, Canton-S; right, Mlc2E38 heterozygote. Proteins were separated in the first dimension using ampholines of pH 5-7; in the second dimension, by SDS-PAGE (12%). Protein identification is according to the convention of Mogami et al. (1982). Spot 148 is unphosphorylated MLC-2, spot 149 is phosphorylated MLC-2, and spot 138 appears to be a MLC-2 isoform that is phosphorylated and is posttranslationally modified (M. Graham, R. Tohtong, M. Chun and S. Falkenthal, manuscript in preparation). In this example, densitometry of spots 138, 148, and 149 indicates that MLC-2 accumulation in the IFM fiber from this Mlc2E38 heterozygote is ~70% of that in Canton-S, taking into account differences in sample size (in this case, the Mlc2E38 loading is ~10% greater than that of Canton-S as determined by normalization to the actin concentration); on average MLC-2 accumulation in Mlc2E38 heterozygotes is ~59% of that in Canton-S (n = 6).
(lower two bands in Fig. 3 b, lanes 1, 5, and 9, respectively), as are actin and arthrin, a ubiquinated form of actin (upper two bands in the same lanes). Note that the silver-stained gel (Fig. 3 a) shows a prominent protein band (at ~31 kD) within the pair of bands corresponding to MLC-2 (at 30 and 33 kD). The presence of this and possibly other overlapping bands precluded quantification of MLC-2 on the basis of silver-stained gels.

In the present study, single IFM fibers were analyzed by two-dimensional electrophoresis to quantitate MLC-2 expression. Previous immunoblot analysis of two-dimensional gels of whole fly thoraces indicated that spots 138, 148, and 149 (nomenclature of Mogami et al., 1982) are different forms of MLC-2. These spots are easily resolved from the other proteins of the muscle fiber, and they all share common epitopes recognized by a rat anti-Drosophila MLC-2 antibody (M. Graham, R. Tohtong, M. Chun, and S. Falkenthal, in preparation). The amount of MLC-2 in each fiber was normalized to that of actin to correct for differences in fiber size. The densities of MLC-2 spots 138, 148, and 149 were summed (Fig. 3 c), and that sum divided by the sum of the spot densities of actin (spots 100 and 101). Fibers from Mlc2 E38 heterozygotes contained 0.59 ± 0.25 (mean ± SD, n = 6) of the amount of MLC-2 present in Canton-S (wild-type) fibers and 0.69 ± 0.16 (n = 6) of the amount of MLC-2 present in a balanced rescued line, JW60 (see Table I for a description of the JW60 line).

Development of the IFM Is Aberrant in Mlc2 E38 Heterozygotes

To characterize the effect of reduced MLC-2 synthesis on IFM ultrastructure and assembly, we compared electron micrographs of intact IFM myofibrils from Mlc2 E38 heterozygotes and Canton-S (Figs. 4 and 5). Longitudinal sections (Fig. 4) showed that the average sarcomere length in Mlc2 E38 heterozygotes (3.6 ± 0.2 μm, n = 25) was about the same as that of wild type (3.5 ± 0.1 μm, n = 25). In contrast, myofibrils from Mlc2 E38 heterozygotes appear swollen due to altered thick and thin filament packing. Most noticeably, filaments peel away from the periphery of the myofibril (large arrows, Fig. 4 b and c), frequently entering an adjacent myofibril. Z lines are not as straight as in wild type but appear wavy and are sometimes broken (small arrows, Fig. 4 b).

Also evident in cross-section is the aberrant spacing of thick and thin filaments at the periphery of the myofibrils from Mlc2 E38 heterozygotes (Fig. 5 b). Although the arrangement and stoichiometry of six thin filaments surrounding one thick filament is reasonably well preserved (Fig. 5 b, inset), thin and thick filaments at the periphery of the myofibril do not appear to be as tightly associated with each other as in wild type myofibrils. In particular, a loss of tight double hexagonal packing can be seen as gaps between bundles of myofilaments within the myofibril (arrows, Fig. 5 b).

We also examined the ultrastructure of intact IFM myofibrils from pupae heterozygous for Mlc2 E38. Longitudinal sections and cross-sections of myofibrils from stage P14 pupae exhibited the same abnormalities as those described above for adult Mlc2 E38 heterozygotes; that is, the ultrastructural defects observed in heterozygous Mlc2 E38 adults and pupae were indistinguishable (data not shown; Warmke, 1990).

The aberrant spacing and alignment of peripheral lattice filaments in Mlc2 E38 heterozygotes is seen clearly in electron micrographs of skinned IFM fibers from 3–5-day-old adults prepared for mechanical and biochemical studies (Fig. 6 d). Also apparent is a striking reduction in the number of thick filaments in myofibrils from skinned fibers prepared in relaxing solution containing Triton X-100 as compared to the number of intact fibers (compare Fig. 5 b with Fig. 6 c and d): 357 ± 31 (n = 16) thick filaments per myofibril in skinned fibers versus 828 ± 93 (n = 16) thick filaments per myofibril in intact fibers from Mlc2 E38 heterozygotes. A concomitant reduction in the number of thin filaments is also observed. Apparently, about half the myofilaments slough off the myofibrils from Mlc2 E38 heterozygotes during extended (1–3 h) Triton X-100 treatment.

The number of myofilaments that slough off is sharply reduced if fibers from Mlc2 E38 heterozygotes are skinned while in rigor (ATP depleted) rather than while relaxed: 569 ± 85 (n = 12) thick filaments per myofibril versus 357 ± 31 (n = 16) thick filaments per myofibril, respectively. In fibers from wild type flies, thick filaments also appear to dissociate from the periphery of myofibrils during Triton X-100 treatment, but to a far lesser extent: in relaxing solution, 780 ± 46 (n = 16) thick filaments per myofibril in skinned fibers versus 861 ± 81 (n = 16) thick filaments per myofibril in intact fibers. These results suggest that the peripheral region of myofibrils from Mlc2 E38 heterozygote IFMs are considerably more susceptible to diffusional loss of myofilaments than the corresponding regions of wild-type muscle. Rigor crossbridges appear to stabilize the lattice structure in Mlc2 E38 heterozygotes, sharply reducing the diffusional loss of filaments from the peripheral regions of the myofibrils presumably deficient in MLC-2.

Introducing a wild type copy of the MLC-2 gene rescues the IFM ultrastructural defects conferred by Mlc2 E38 (Figs. 4–6). The number of thick filaments per myofibril in intact flight muscle myofibrils from JW60 (881 ± 116, n = 16) is similar to that of Canton-S (861 ± 81, n = 16). Skinned muscle fibers from Canton-S and JW60, whether treated with Triton X-100 in relaxing or rigor solution, contain comparable numbers of thick filaments per myofibril to those in intact fibers. For example, in the skinned fibers shown in Fig. 6, the number of thick filaments per myofibril in Canton-S is 790 ± 14 (n = 4) and in JW60 is 993 ± 28 (n = 4).

Mlc2 E38 Confers Reduced Wing Beat Frequency and Flightless Behavior

Flight in Drosophila is produced by the oscillatory contractions of the IFMs which deform the cuticle, thereby powering wing movement (Nachtigall and Wilson, 1967; Levine, 1973). The decrease in MLC-2 expression in Mlc2 E38 heterozygotes disrupts IFM function as indicated by reduced wing beat frequency and impaired flight ability. Table II summarizes measurements of wing beat frequencies and simple flight test results (see Materials and Methods) for Canton-S, Mlc2 E38 heterozygotes and JW60 conducted at 22 and 12°C. Canton-S and JW60 have similar wing beat frequencies, but Mlc2 E38 heterozygotes exhibit wing beat frequencies that are 30% (22°C) and 14% (12°C) less than those of Canton-S and JW60. Whereas, Canton-S and JW60 can fly at 22°C, Mlc2 E38 heterozygotes are flight impaired. Note that all three strains are flight impaired at 12°C and that the wing
beat frequency at which Mlc2E38 heterozygotes exhibits flight impairment at 22°C is close to that at which Canton-S and JW60 exhibit flight impairment at 12°C.

IFM Single Fiber Kinetics Are Altered by Reduced Mlc-2 Stoichiometry

To investigate whether the reduced wing beat frequency conferred by Mlc2E38 is associated with reduced contraction kinetics at the single fiber level, we compared mechanical and actomyosin ATPase rate constants in skinned single IFM fibers from Canton-S and Mlc2E38 heterozygotes.

First, to establish the free Ca2+ concentration at which activation of the skinned IFM fibers is maximal, ATPase rates were measured in skinned fibers held isometrically while immersed in ATP-salt solutions at various Ca2+ concentrations. The free Ca2+ concentration required for half maximal activation (\(\sim\text{pCa} 6\)) was similar in Canton-S and Mlc2E38 heterozygotes (Fig. 7). Actomyosin ATPase activities of the fully activated isometrically held skinned IFM fibers of Mlc2E38 heterozygotes were not significantly different from those of Canton-S (Table III). Maximal steady state active tension levels of the isometrically held skinned fibers at pCa 4–5 varied considerably from fiber to fiber. The mean tension level of Mlc2E38 heterozygotes was 25% lower than that of Canton-S (Table III); however, the observed difference was not statistically significant (P > 0.3).

We next investigated the kinetic properties of the skinned fibers by measuring changes in force produced by the fibers in response to sinusoidal length perturbations. In particular, we focused on that part of the active response that corresponds to the phenomenon of stretch induced delayed tension rise, generally referred to as "stretch activation." Stretch activation, common to many types of muscle, is responsible for powering the oscillatory wing movement in insects (Jewell and Ruegg, 1966; Pringle, 1978). This effect can be studied by examining force responses to sinusoidal length perturbations (oscillatory changes in fiber length) applied at different frequencies (Kawai and Brandt, 1980; Thorson and White, 1983). A useful parameter that combines both force and length information is muscle stiffness. Muscle stiffness, the resistance of a muscle to stretch, is defined as the value of muscle force divided by the change in muscle length. Muscle stiffness can be converted into an intrinsic property (a stiffness modulus) by dividing the force changes by the cross-sectional area of the fiber and by dividing the length changes by the initial length of the fiber. For sinusoidal length changes, a convenient, concise format for presenting the stiffness data over a broad range of frequencies is the Nyquist plot (Kawai and Brandt, 1980). In a Nyquist plot (Fig. 8), the "elastic" stiffness modulus, corresponding to the component of force response in phase with the applied sinusoidal length change, is plotted along the x axis. The magnitude of the elastic stiffness modulus reflects the number of attached crossbridges. The "viscous" stiffness modulus, corresponding to the component of force response that is 90° out-of-phase with the applied length change (delayed tension), is plotted along the y axis. The negative viscous modulus represents that component of muscle stiffness that relates to actomyosin crossbridge cycling.

Nyquist plots for skinned fibers from Canton-S, Mlc2E38 heterozygotes and JW60 in relaxed, active, and rigor states are shown in Fig. 8. The relaxed state corresponds to quiescent muscle (low Ca2+, high ATP). The active state corresponds to contracting muscle (high Ca2+, high ATP), whereas the rigor state corresponds to the muscle in rigor (ATP depleted). An active, force-generating fiber exhibits a marked increase (more negative) in viscous stiffness compared to its relaxed or rigor state, indicating that the skinned muscle fiber is performing mechanical work on the apparatus driving the oscillatory length changes. In addition, an active or rigor fiber has a higher elastic stiffness than in the relaxed state. Rigor stiffness is higher than active stiffness, indicating that more cross-bridges are attached in rigor than during active contraction.

The frequency at which the lowest (largest negative) viscous stiffness modulus occurs is a measure of the rate at which the process responsible for driving the wing beat occurs in vivo. This frequency (the so-called "bottom" frequency) is also the frequency at which maximum work is performed. The bottom frequency of skinned IFM fibers from Mlc2E38 heterozygotes is ~15% lower than that of Canton-S (Table III); this reduction is significant at P of 0.5. Rescue of Mlc2E38 heterozygotes restores this frequency back to a value near that of Canton-S (Fig. 8 c).

Discussion

We previously reported the molecular and genetic analysis of the 99D3 to 99E2-3 interval of the third chromosome and the identification of a putative MLC-2 mutation, Ifm(3)99E2D3 (Warmke et al., 1989). In this paper, we have used P element mediated germ line transformation and DNA sequence analysis to show that Ifm(3)99E2D3 is indeed a MLC-2 mutation. DNA sequence analysis revealed that the Ifm(3)99E2D3 mutation is an A to T transversion, which results in a nonsense mutation at the tenth codon of the MLC-2.

Figure 4. Ultrastructure of the IFM of Canton-S and Mlc2E38 heterozygotes. (a) Longitudinal section of wild type Canton-S IFM shows that the myofibrils are surrounded by many large mitochondria (mc) and collections of glycogen granules (g). The average sarcomeric length is 3.5 ± 0.1 μm (n = 25). The inset shows an enlargement of a representative sarcomere. The Z lines (Z) are the most electron dense structure of the sarcomere appearing very straight and compact. The M lines (M) are straight and well defined showing electron dense material (glycogen particles) distributed along the entire width of the sarcomere. Bars, 2 μm; (a, inset) 1 μm. (b) Longitudinal section of the IFM from a Mlc2E38 heterozygote demonstrates that the average sarcomere length of 3.6 ± 0.2 μm (n = 25) is approximately the same as wild type. However, the M lines are not straight and are poorly defined at the periphery of the sarcomere. The Z lines are not as straight as in wild type but appear wavy and are sometimes broken (small arrows). The myofibrils appear swollen due to altered spatial arrangement of thick and thin filaments; filaments peel away from the periphery of the myofibril, and thick and thin filaments at the periphery of the myofibril form connections between adjacent myofibrils (large arrows). Bar, 2 μm. (c) A higher magnification view of a longitudinal section of the IFM from a Mlc2E38 heterozygote showing that thick and thin filaments are exchanged between adjacent myofibrils. Bar, 1 μm.
gene. Therefore, \textit{Ifm(3)99E} is a null mutation of the MLC-2 gene (\textit{Mic}2), and we have renamed the \textit{Ifm(3)99E} allele to \textit{Mic}2.

\textbf{MLC-2 Is Essential for Viability}

The MLC-2 gene encodes a single protein isoform that is expressed in all muscle types throughout development (Parker et al., 1985; Toffenetti et al., 1987). Our initial genetic screen for MLC-2 mutations was based on the assumption that the MLC-2 gene is required for viability because it encodes the only sarcomeric MLC-2 isoform. \textit{Mic}2 confers a recessive lethal phenotype which is rescued by the introduction of a wild type copy of the MLC-2 gene, thereby proving that expression of the MLC-2 gene is essential for viability. The lethal period for animals which lack MLC-2 is at the embryo-first instar larval boundary; that is, these embryos appear to undergo somewhat normal embryonic development but fail to hatch (data not shown; Warmke, 1990). Gastrulation, germ band extension and germ band shortening must be normal in homozygous \textit{Mic}2 embryos because the cuticle of these embryos is wild type. Therefore, we propose that it is aberrant differentiation of the embryonic musculature in \textit{Mic}2 embryos, a relatively late event in embryogenesis, that is responsible for their embryonic lethal phenotype. Analysis of the body wall muscles of homozygous \textit{Mic}2 embryos will provide the unique opportunity to analyze myofibrillar assembly in vivo in the complete absence of MLC-2.

\textbf{IFM Myofibrillar Assembly Requires Diploid Levels of MLC-2 Gene Expression}

The expression of MLC-2 in the IFM is gene dosage dependent. The relative amount of MLC-2 in single IFM fibers from \textit{Mic}2 heterozygotes, expressed as a ratio of MLC-2 to actin content, is 59% of that in wild type. After Triton X-100 treatment in relaxing solution, approximately half the peripheral myofibrillar filaments slough off the myofibrils from \textit{Mic}2 heterozygotes (Fig. 6). It is possible that these dissociated filaments lack (or have sharply reduced levels of) MLC-2. Immunoblots of triton X-100–treated skinned fibers showed little or no evidence of MLC-2 in the extracted protein fractions or wash solutions (Fig. 3b). However, the absence of actin in these extracted fractions, strongly suggests that the dissociated filaments remain in the interfibrillar spaces vacated by the solubilized mitochondria (and thus remain effectively part of the cytomatrix fraction).

Electron microscopic studies of the differentiation of IFM myofibrils in \textit{Drosophila} by Shafiq (1963) have revealed that early in myogenesis thick and thin filaments assemble into myofibrils composed of \textasciitilde{}20 thick filaments each surrounded by six thin filaments in the normal double hexagonal array. As development proceeds, the myofibrils grow in both diameter and length. The length of the myofibrils is increased by an increase in sarcomere length, whereas the increase in myofibrillar diameter is due to the addition of Z disc material, thick filaments, and thin filaments at the periphery of the myofibril (Shafiq, 1963; Crossley, 1978; Sanger et al., 1986). Thick filament assembly is independent of thin filament assembly; however, the assembly of both filament systems is required for the proper alignment and registry of Z bands (Mahaffey et al., 1985; Chun and Falkenthal, 1988; O'Donnell and Bernstein, 1988; Beall et al., 1989). It has been proposed that the interaction of thick and thin filaments via the myosin cross-bridge is responsible for the correct registration of the sarcomeres (O'Donnell and Bernstein, 1988; Beall et al., 1989). If so, a mutation that alters the ratio of thick to thin filaments or affects cross-bridge formation would also be expected to cause aberrant myofibrillar assembly. As expected, mutations in the genes encoding myosin heavy chain, troponin T and the IFM specific isoform of actin have been shown to result in aberrant myofibrillar assembly in heterozygotes (Mogami et al., 1981; Mahaffey et al., 1985; Chun and Falkenthal, 1988; O'Donnell and Bernstein, 1988; Beall et al., 1989; Fyrberg et al., 1990). Electron microscopy of IFMs from heterozygous troponin T and actin null mutants revealed that these mutations reduced the number of thin filaments by \textasciitilde{}50%, whereas heterozygous myosin heavy chain null mutants exhibit an \textasciitilde{}50% reduction in the number of thick filaments. The common ultrastructural defect conferred by these myofibrillar protein deficiencies is that the central core of the myofibril appears to assemble normally; however, the arrangement of myofilaments at the periphery of the myofibrils is aberrant due to the altered ratio of thick to thin filaments (Mogami et al., 1981; Chun and Falkenthal, 1988; Beall et al., 1989).

We have shown that the number of thick filaments is not reduced in the IFM of \textit{Mic}2 heterozygotes. What could cause the observed disruption of myofibrillar structure in the IFM of \textit{Mic}2 heterozygotes in which the ratio of thick to thin filaments is unaltered? The most likely causes are either that (1) the thick and thin filaments fail to associate in the proper hexagonal packing during myogenesis, or that (2) the proper hexagonal packing of the thick and thin filaments is disrupted during the initial contractions of the IFM following eclosion. The IFM do not contract until several hours posteclosion (Takahashi et al., 1990); consequently, we examined the IFM of stage P14 heterozygous \textit{Mic}2 pupae to determine if the thick and thin filaments assemble into their

Figure 5. Ultrastructure of the IFM of Canton-S and \textit{Mic}2 heterozygotes. (a) As seen in cross-section, wild-type Canton-S IFM myofibrils are cylindrical and are surrounded by many large mitochondria (mc) and collections of glycogen granules (g). Elements of the sarcoplasmic reticulum (sr) are visible around the exterior of the myofibrils. Within each myofibril, the myofilaments are arranged in a rigid double hexagonal array. (a, inset) Six thin filaments surround each thick filament, and the thick filaments are also arranged in a regular hexagonal array. Bars, (a) 0.5 \(\mu\)m; (a, inset) 0.25 \(\mu\)m. (b) Cross-section of a myofiber from a \textit{Mic}2 heterozygote reveals that the cylindrical aspect of the myofibrils is lost. Thick filaments and surrounding thin filaments are found randomly positioned instead of in tight hexagonal packing at the periphery of the myofibril (b, inset). Large gaps appear between bundles of myofilaments (arrows). Elements of the sarcoplasmic reticulum (sr) are found within the interior of the myofibril. (b, inset) The ordered double hexagonal packing of the thick and thin filaments at the periphery of the myofibril is disrupted, and gaps where thick filaments are missing can be seen (arrow). Bars, (b) 0.5 \(\mu\)m; (b, inset) 0.25 \(\mu\)m.

Warmke et al. \textit{Drosophila Myosin Light Chain-2 Mutation}
proper hexagonal array during myogenesis. Analysis of longitudinal sections and cross-sections of the IFM of these pupae revealed that the myofibrils are indistinguishable from those of heterozygous Mlc2Em adults. Therefore, we conclude that the structural defects observed in the IFM of Mlc2Em heterozygotes result from the absence of some key structural role MLC-2 plays during myofilament lattice formation.

MLC-2 is associated with the globular head of the myosin heavy chain and is believed to modulate the actin-activated-myosin-linked Mg2+-ATPase (Sweeney and Stull, 1990, and references therein). Because myosin molecules assemble into thick filaments via interactions between the rod portion of the myosin molecule, it is not surprising that a reduction in MLC-2 stoichiometry has no effect on thick filament assembly. However, MLC-2 has been implicated in stabilizing the neck region of the myosin molecule and in maintaining the ordered helical array of myosin heads on relaxed myosin filaments (Vibert and Craig, 1985). Furthermore, it has been proposed that MLC-2 may also play an important role in keeping the two heads of each individual myosin molecule apart from one another because myosin devoid of MLC-2 forms intermolecular aggregates with many myosin heads clumped together (Schaub et al., 1986). Therefore, if the ordered helical arrangement of each individual myosin head around the thick filament is responsible for establishing the regular hexagonal packing of six thin filaments around each thick filament during myofilament lattice formation, then the disordered arrangement of myosin heads due to the absence of MLC-2 would result in aberrant association of thick and thin filaments during sarcomere assembly.

Our results support the idea that the core of the myofibril is assembled early in myogenesis. During the initiation of myofibrillar assembly in Mlc2Em heterozygotes, it is likely that sufficient MLC-2 is synthesized from the single wild-type copy of the MLC-2 gene to assemble myosin hexamers with the correct MLC-21MHC stoichiometry, and this myosin forms the thick filaments at the core of the myofibrils. However, during later stages of myofibrillar assembly the available pool of MLC-2 becomes exhausted, resulting in thick filaments with little or no MLC-2, leading to lattice disorder at the periphery of the myofibril for reasons discussed above. A more complete understanding of how de-
both to the large variability in muscle stiffness and tension between considerably from fiber to fiber (within and between strains) due to the wing beat frequency when compared at the same temperature. At 12°C the wing beat frequency of Canton-S and JW60 were flight impaired with wing beat frequencies (145 and 144 Hz, respectively) close to that of flight impaired Mic2E38 heterozygotes at 22°C (149 Hz). This result suggests that wing movements in the lower range of 145–149 Hz do not provide sufficient power for flight.

Relationship of Flightlessness, Wing Beat Frequency, and Viscoelastic Properties of the IFM Fiber

The wing beat frequency of Drosophila is determined primarily by the load on the wings and the viscoelastic properties of the cuticle and flight muscle (Pringle, 1978). The wing beat frequency can be lowered by reducing the overall muscle fiber stiffness, which can be accomplished in three ways: (1) decreasing the expression of MLC-2 affects sarcomere structure requires quantitative immunofluorescence microscopy to determine the concentration of MLC-2 at the center and at the periphery of the myofibril.

Impaired Flight Behavior and Reduced Wing Beat Frequency Associated with Reduced MLC-2 Concentration

IFM function in Drosophila is very sensitive to gene dosage. Hemizygosity of the sarcomeric myosin heavy chain gene (Mhc36B) and the Act88F gene (which encodes the IFM-specific actin isoform) both result in dominant flightless behavior (Mogami et al., 1986; Hiromi and Hotta, 1985; Mahaffey et al., 1985). Likewise, mutations that block the expression of troponin I, troponin T, and the IFM-specific tropomyosin isoform also exhibit dominant flightless behavior (Karlik and Fyrberg, 1985; Tansey et al., 1987; Fyrberg et al., 1990; Barbas et al., 1991; Beall and Fyrberg, 1991). Mic2E38 heterozygotes are also flight impaired (flight index 2.5 ± 2.2 for Mic2E38 heterozygotes and 7.4 ± 0.7 for Canton-S; Table I). The flight impaired Mic2E38 heterozygotes beat their wings at a frequency 30% lower than that of Canton-S. Flight is fully rescued in JW60 (flight index 7.8 ± 0.4) and wing beat frequency is similar to wild type (Table II).

Flight tests are used extensively to screen for mutants that may have structural changes in their IFMs due to a mutation in a sarcomeric protein. However, wing beat analysis may provide a quantitative link to characterize the underlying structural defect. Because wing beat frequency is related to the kinetics of the flight muscle (Molloy et al., 1987), we examined the properties of single IFM fibers, focusing on their contraction kinetics.

Single fiber kinetic experiments were carried out at 12°C to avoid any possibility of diffusion limitation of substrate (see Materials and Methods). Thus, wing beat frequency measurements and simple flight tests were repeated at 12°C in order to correlate these three sets of data at the same temperature. At 12°C, the wing beat frequency of Mic2E38 heterozygotes was ~15% less than Canton-S and JW60. This difference is less than the difference observed at 22°C (~30%).

At 12°C, both Canton-S and JW60 were flight impaired with wing beat frequencies (145 and 144 Hz, respectively) close to that of flight impaired Mic2E38 heterozygotes at 22°C (149 Hz). This result suggests that wing movements in the lower range of 145–149 Hz do not provide sufficient power for flight.
ways: by (1) reducing the total number of myofilaments in the fiber, (2) reducing the stiffness of each cross-bridge in the active fiber, or (3) reducing resting fiber stiffness resulting in a reduction in overall muscle fiber stiffness.

Possibility (1) can be directly tested. Myofibrils of intact muscle fibers from \(\text{Mlc}^{E38} \) heterozygotes have as many myofilaments as those from Canton-S (Fig. 5). The density of myofibrils in the fibers also appears to be nearly equivalent. Thus, reduced wing beat frequency in \(\text{Mlc}^{E38} \) heterozygotes is not due simply to a reduction in the number of filaments per muscle fiber.

Separate changes in active (possibility 2) or resting (possibility 3) muscle stiffness as a result of the MLC-2 deficiency cannot be excluded. Notably, intact IFM fibers from Canton-S and \(\text{Mlc}^{E38} \) heterozygotes have the same density of myofibrils. However, skinned fibers from \(\text{Mlc}^{E38} \) heterozygotes contain as few as half the number of thick filaments per myofibril as those of Canton-S and JW60. It is tempting to speculate that MLC-2 deficient peripheral regions of myofibrils of \(\text{Mlc}^{E38} \) heterozygotes are structurally unstable and therefore unable to support force generation, in contrast to the normal myofibrillar core remaining in the skinned fibers. If so, this would result in a reduction in the overall active muscle stiffness, thereby leading to a reduced wing beat frequency (Molloy et al., 1992).

The question arises why, in light of the ultrastructural differences, the functional properties of skinned fibers from \(\text{Mlc}^{E38} \) heterozygotes are not more markedly different from those of wild type flies. Steady active force tends to be lower in \(\text{Mlc}^{E38} \) heterozygotes (compare means for each strain in Table III); however, the standard deviations are large and the observed differences in steady active force and ATPase are not statistically significant. The well-organized core of myofibrils remaining in the detergent-treated skinned fibers of \(\text{Mlc}^{E38} \) heterozygotes contribute most to the fiber cross-sectional area to which force and ATPase are normalized. Thus, it is not surprising that skinned fibers from \(\text{Mlc}^{E38} \) heterozygotes exhibit near wild type properties, arising from the core portion of the myofilament lattice that probably possesses wild-type MLC-2/myosin heavy chain stoichiometry.

However, close examination of the contraction kinetics indicate differences in stretch activation that are likely attributable to myofibrillar regions with reduced MLC-2/myosin heavy chain stoichiometry that remain within the sarcomere after detergent treatment. Sinusoidal analysis of skinned IFM fibers allowed us to examine that portion of the force response (negative stiffness viscous modulus: Kawai and Brandt, 1980) responsible for mechanical work output (delayed tension). Sinusoidal analysis shows that the frequency at which maximum work is obtained (i.e., the “bottom” frequency) in the isolated fiber is \(\sim 15\% \) lower in \(\text{Mlc}^{E38} \) heterozygotes than in Canton-S and JW60 at \(12^\circ C \) (Table III; Fig. 8). This 15\% difference between the bottom frequency of Canton-S and \(\text{Mlc}^{E38} \) heterozygotes is within the range of differences reported (5-40\%) in a preliminary study using pseudorandom white noise analysis (Yamakawa et al., 1991). Because wing beat frequency can also be lowered by reducing the bottom frequency and thus reducing the stiffness of the active muscle fiber, it is tempting to speculate that the reduced wing beat frequency of \(\text{Mlc}^{E38} \) heterozygotes ultimately derives from altered contraction kinetics of regions with no MLC-2 or with reduced MLC-2/myosin heavy chain ratio.

How could a deficiency of MLC-2 affect contraction kinetics? There are at least two possibilities: (1) At the molecular level, the presence of MLC-2 on the globular head of the myosin molecule may be required for optimum actomyosin interaction. In scallop myosin filaments, removal of the regulatory light chains (MLC-2) causes the helical arrangement of myosin heads to be disrupted (Vibert and Craig, 1985). If the light chains are responsible for maintaining the separation and orientation of the myosin heads that is optimum for interacting with actin (Schaub et al., 1986), then one would expect that in a MLC-2 deficient activated fiber the contraction kinetics would be slower. In fact, the kinetics of the force response to sinusoidal length perturbation have been shown to be correlated with the specific MLC-2 isoform in fast and slow muscle types in rabbit (Kawai and Schachat, 1984). Removal of one-third of the MLC-2 by chemical extraction has also been shown to produce a 50\% reduction in unloaded shortening velocity (Moss et al., 1982). A small reduction in mean peak tension (0.78 ± 0.12 of that measured before the light chain extraction) was also reported. Our results are consistent with these previous findings; that is, the IFM of \(\text{Mlc}^{E38} \) heterozygotes, which exhibit a 40\% reduction in MLC-2 accumulation, have slower contraction kinetics than wild type as indicated by the lower oscillation frequency at which maximum work output occurs (Table III). (2) At the level of the sarcomere, our results indicate that normal stoichiometry of MLC-2 is required for proper assembly of the myofilament lattice. It is possible that the observed changes in M and Z line structures (Figs. 4 and 5) reduce resting stiffness in \(\text{Mlc}^{E38} \) heterozygotes, thereby leading to a reduction in strain on the fiber. A reduction in stretch activation could be brought about by the reduced strain on a strain sensor in those peripheral filaments deficient in MLC-2. The strain sensor might be elastic connections between the thick filaments and the Z line (Auer and Couteaux, 1963; White, 1983; Nave and Weber, 1990) or troponin-H (Bullard et al., 1988).

Alternatively, sarcomeric disorder itself might reduce the rate of stretch activation. In asynchronous flight muscle, sarcomeric order (particularly the alignment of thick and thin filaments) appears to be critical for producing stretch activation (Wray, 1979; Tregear, 1983). Loss of thick and thin filament alignment in the peripheral regions of the myofibril may therefore contribute to reducing the overall rate of stretch activation.

Conclusions

We have shown that \(\text{Mlc}^{E38} \) is a null mutation of the MLC-2 gene and results in reduced accumulation of MLC-2 protein in the IFM. The analysis of \(\text{Mlc}^{E38} \) heterozygotes reveals that wild-type MLC-2 stoichiometry is required for normal myofilament lattice alignment during IFM myogenesis and for normal IFM function as assayed by flight behavior, wing beat frequency and single fiber mechanics. These analyses confirm that the IFM of *Drosophila* is a useful system for analyzing MLC-2 function in vivo. Furthermore, because \(\text{Mlc}^{E38} \) is a null mutation and the ultrastructural and functional defects conferred by \(\text{Mlc}^{E38} \) can be completely rescued by P-element mediated germline transformation, the \(\text{Mlc}^{E38} \) allele provides an ideal genetic background for the analysis of MLC-2 mutations generated in vitro in future studies of MLC-2 structure and function in vivo.
We regret that Scott Falkenthal passed away during the preparation of this manuscript. We therefore dedicate this paper to his memory.

We thank Janet Hurley, Richard Schauf, and Kevin Bickford for their assistance during the course of this work. We thank Melissa Graham for providing the anti-Drosophila MLC-2 sera. We also thank Miyoun Chung for her technical assistance and providing the electron micrographs of intact Canton-S IFM shown here.

We appreciate grant support for D. Maughan from the National Institutes of Health (ROI AR0234) and for S. Falkenthal from the National Institutes of Health (GM33270). J. E. Moly is a visiting North Atlantic Treaty Organization (NATO) fellow.

Received for publication 17 December 1991 and in revised form 5 August 1992.

References

Adelstein, R. S., and E. Eisenherg. 1980. Regulation and kinetics of the actin-myosin ATP interaction. Annu. Rev. Biochem. 49:921-956.

Auber, J., and R. Couteaux. 1961. Ultrastructure de la strie dans des muscles de dipiteres. J. Microsc. (Paris). 2:309-324.

Bainbridge, S. P., and M. Brownes. 1981. Staging the metamorphosis of Drosophila melanogaster. J. Embryol. Exp. Morphol. 66:57-80.

Barbas, J. A., J. Galceran, I. Kral-Jentgens, J. L. de la Pompa, I. Canal, O. Pongs, and A. Ferrus. 1991. Troponin I is encoded in the haplolethal region of the Shaker gene complex of Drosophila. Genes Dev. 5:132-140.

Beall, C. J., and E. Fyrberg. 1991. Muscle abnormalities in Drosophila melanogaster heladsp mutants are caused by missing or aberrant troponin-I forms. J. Cell Biol. 114:941-951.

Beall, C. J., M. A. Sepanski, and E. A. Fyrberg. 1989. Genetic dissection of Drosophila indirect flight muscle myofibril formation: effects of actin and myosin heavy chain null alleles. Genes Dev. 3:131-140.

Benton, W. D., and R. W. Davis. 1978. Screening Agt recombinant clones by hybridization to single plaques in situ. Science (Wash. DC). 196:180-182.

Brenner, S. 1973. Genetic dissection of behavior. Science (Wash. DC). 229:24-37.

Burrall, B., K. Leonard, A. Larkins, G. Butler, C. Karlitz, and E. Fyrberg. 1988. Troponin of asynchronous flight muscle. J. Mol. Biol. 204:621-637.

Craymer, L. 1984. Report. Drosophila Inform. Serv. 60:234-236.

Cross, R. L., and P. D. Boyer. 1975. The rapid labelling of adenosine triphosphate and specific proteins of Drosophila using a high-voltage vertical slab polyacrylamide gel system. J. Cell Biol. 66:1-30.

Kawai, M., and F. H. Schachat. 1984. Differences in the transient response of fast and slow skeletal muscle fibers. Correlations between complex modulus and myosin light chains. Biophys. J. 45:1145-1151.

Lehbauer, W., and A. G. Szczepaniak. 1975. Regulation of muscle contraction. Distribution of actin control and myosin control in the animal kingdom. J. Gen. Physiol. 66:1-30.

Leinhard, G. E., and I. I. Secemski. 1973. P, P-Diadenosine-5'-pentaphosphates, a potent multisubstrate inhibitor of adenylate kinase. J. Biol. Chem. 248:1121-1123.

Levine, J. 1973. Properties of the nervous system controlling flight in Drosophila melanogaster. J. Comp. Physiol. 85:129-166.

Lewis, E. B. 1960. A new standard food medium. Drosophila Inform. Serv. 34:117-118.

Lindley, D. L., and E. H. Grel. 1968. Genetic variations of Drosophila melanogaster. Carnegie Inst. Wauk. Publ. 627.

Lindley, D. L., and G. Zimm. 1985. The genome of Drosophila melanogaster, Part 1: genes A-K. Drosophila Inform. Serv. 62:1-227.

Lindley, D. L., and G. Zimm. 1987. The genome of Drosophila melanogaster, Part 3: rearrangements. Drosophila Inform. Serv. 65:1-224.

Mabey, J. W., M. D. Couteau, E. A. Fyrberg, and W. Inwood. 1985. The flightless Drosophila mutant raised has two distinct genetic lesions affecting accumulation of myofibrillar proteins in flight muscles. Cell. 40:101-110.

Mogami, K., Y. Nonomura, and Y. Hotta. 1981. Electron microscopic and electrophoretic studies of a Drosophila muscle mutant wings-up B. Jpn. J. Genet. 56:51-65.

Mogani, K., S. C. Fujita, and Y. Hotta. 1982. Identification of Drosophila indirect flight muscle myofibrillar proteins by means of two-dimensional electrophoresis. J. Biochem. 91:643-650.

Mogami, K., P. T. O'Donnell, S. I. Bernstein, T. R. F. Wright, and C. P. Emerson, Jr. 1986. Mutations of the Drosophila myosin heavy-chain gene: effects on transcription, myosin accumulation and muscle function. Proc. Natl. Acad. Sci. USA. 83:1393-1397.

Molloy, J. E., V. Kyratas, J. C. Sparrow, and D. C. S. White. 1987. Kinetics of flight muscles from insects with different wing beat frequencies. Nature (London). 328:449-451.

Moss, R. L., G. G. Giulian, and M. L. Greaser. 1982. Physiological effects accompanying the removal of myosin LC2 from skinned skeletal muscle fibers. J. Biol. Chem. 250:4007-4021.

Nachtigall, W., and D. M. Wilson. 1967. Neuromuscular control of Dipsarian flight. J. Exp. Biol. 47:77-79.

Nave, R., and K. Weber. 1990. A myofibrillar protein of insect muscle related to vertebrate titin connects Z band and A band: purification and molecular characterization of invertebrate mini-titin. J. Cell Sci. 95:535-544.

O'Brien, S. J., and R. J. MacIntyre. 1978. Genetics and biochemistry of enzymes and specific proteins of Drosophila. In The Genetics and Biology of Drosophila, Vol. 2a. M. Ashburner and T. R. F. Wright, editors. Academic Press, New York. 395-551.

O'Donnell, P. T., and S. I. Bernstein. 1988. Molecular and ultrastructural defects in a Drosophila myosin heavy chain mutant: differential effects on muscle function produced by similar thick filament abnormalities. J. Cell Biol. 107:261-2621.

Parker, V. S., S. Falkenthal, and N. Davidson. 1985. Characterization of the myosin light chain-2 gene of Drosophila melanogaster. Mol. Cell. Biol. 5:3058-3068.

Peckham, M., G. M. Rubin, and A. C. Spradling. 1983. Vectors for P element mediated gene transfer in Drosophila melanogaster. J. Cell Biol. 101:213-225.

Pierusch, V. H., Steller, and M. Bozetti. 1985. Multiple upstream regulatory elements control the expression of the Drosophila white gene. EMBO (Eur. Mol. Biol. Organ.) J. 4:3501-3508.

Pingle, J. W. S. 1978. The Cronian Lecture. 1977. Stretch activation of muscle: function and mechanism. Proc. R. Soc. Lond. Ser. B. 201:107-130.

Robertson, H. M., C. R. Preston, R. W. Phillips, D. M. Johnson-Schlitz, W. K. Benz, and W. R. Engels. 1988. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics. 118:461-470.

Rabin, G., M. A. H. Spradling, and A. C. Spradling. 1983. Vectors for P element mediated gene transfer in Drosophila. Nucl. Acids Res. 11:6341-6351.

Sanger, J. M., B. Miltal, M. B. Choppin, and J. W. Sanger. 1986. Myofilibrillogenesis in living cells microinjected with fluorescently labeled alpha-actinin. J. Cell Biol. 102:2093-2103.

Schaub, M. C., A. Jaff, D. A. Schuttey, and T. Wallinmann. 1986. Myosin light chain functions. Biomed. Biochim. Acta. 45:539-544.

Shalgi, S. A. 1963. Electron microscopic studies on the indirect flight muscles of Drosophila melanogaster II. Differentiation of myofibrils. J. Cell Biol. 17:363-373.

Sweeney, H. L., and T. Sull. 1990. Alteration of cross-bridge kinetics by myosin light chain phosphorylation in rabbit skeletal muscle: implications for regulation of actin-myosin interaction. Proc. Natl. Acad. Sci. USA. 87:414-418.

Takahashi, H., T. Takano-Ohnouru, and K. Maruyama. 1990. Regulation of Drosophila myosin ATPase activity by phosphorylation of myosin light chain-1 wild-type fly. Comp. Biochem. Physiol. 95B:179-181.

Tansey, T. M., D. M. Mukus, M. Dumoulin, and R. V. Storti. 1987. Transformation and rescue of a flightless Drosophila tropomyosin mutant. EMBO (Eur. J. Cell Biol. 119, 1992) 1538
Mol. Biol. Organ.) J. 6:1375-1385.

Thorson, J., and D. C. S. White. 1983. Role of cross-bridge distortion in the small-signal mechanical dynamics of insect and rabbit striated muscle. J. Physiol. (Lond.), 343:59-84.

Toffenetti, J., D. Mischke, and M. L. Pardue. 1987. Isolation and characterization of the gene for myosin light chain two of Drosophila melanogaster. J. Cell Biol. 104:19-28.

Tregear, R. T. 1983. Physiology of insect flight muscle. In Handbook of Physiology. Section 10: Skeletal Muscle. L. D. Peachey, R. H. Adrian, and S. R. Geiger, editors. American Physiological Society, Bethesda, MD. 487-506.

Unwin, D. M., and C. P. Ellington. 1979. An optical tachometer for measurement of the wing-beat frequency of free-flying insects. J. Exp. Biol. 82: 377-378.

Vibert, P., and R. Craig. 1985. Structural changes that occur in scallop myosin filaments upon activation. J. Cell Biol. 101:830-837.

Victor, T., A. M. Jordaan, A. J. Bester, and A. Lochner. 1987. A sensitive and rapid method for separating adenine nucleotides and creatine phosphate by ion-pair reversed high-performance liquid chromatography. J. Chromatogr. 389:339-344.

Warmke, J. W. 1990. Genetic analysis of myosin light chain-2 function in Drosophila melanogaster. Ph.D. dissertation. The Ohio State University, Columbus.

Warmke, J. W., A. J. Kreuz, and S. Falkenthal. 1989. Co-localization to chromosome bands 99E1-3 of the Drosophila melanogaster myosin light chain-2 gene and a haploinsufficient locus that affects flight behavior. Genetics. 122:139-151.

White, D. C. S. 1983. The elasticity of relaxed insect fibrillar flight muscle. J. Physiol. (Lond.). 343:31-57.

White, D. C. S., J. Lund, and M. R. Webb. 1988. Cross-bridge kinetics in asynchronous insect flight muscle. In Advances in Experimental Medicine and Biology. Vol. 226. Molecular Mechanism of Muscle Contraction. H. Sugi and G. H. Pollack, editors. Plenum Press, New York. 169-178.

Wray, J. S. 1979. Filament geometry and the activation of insect flight muscles. Nature (Lond.). 280:325-326.

Yamakawa, M., J. Warmke, S. Falkenthal, and D. Maughan. 1991. Frequency analysis of skinned indirect flight muscle from a myosin light chain-2 deficient mutant of Drosophila melanogaster with a reduced wing beat frequency. In Proceedings of the Sixth Annual Research Symposium: Regulation of Smooth Muscle Contraction. Plenum Press, New York. 455-460.