Abstract

Motivation

A comprehensive characterization of the humoral response towards a specific antigen requires quantification of the B-cell receptor repertoire (BCR-Seq) by next generation sequencing, as well as the analysis of serum antibodies against this antigen, using proteomics. The proteomic analysis is challenging since it necessitates the mapping of antigen-specific peptides to individual B-cell clones.

Results

The PASA web server provides a robust computational platform for the analysis and integration of data obtained from proteomics of serum antibodies. PASA maps peptides derived from antibodies raised against a specific antigen to corresponding antibody sequences. It then analyzes and integrates proteomics and BCR-Seq data, thus providing a comprehensive characterization of the humoral response. The PASA web server is freely available at https://pasa.tau.ac.il and open to all users without a login requirement.

Author summary

The proteomics of serum antibodies (Ig-Seq) is based on a two-arm foundation: the generation of BCR-Seq (using next generation sequencing of B cells) and high-resolution mass-spectrometry (LC-MS/MS) of serum antibodies. The BCR-Seq data are used for the interpretation of mass-spectra and result in the identification of antibody derived peptides thus, the identification of V genes of the serum antibodies. To provide accessibility to non-expert users we introduce the PASA (Proteomic Analysis of Serum Antibodies) web server that provides a robust computational platform for the analysis and integration of data obtained from proteomics of serum antibodies and enables its integration with BCR-Seq data as obtained from ASAP (that provides bioinformatics support for BCR-Seq analysis and also provides as output a reference database that can be used in proteomic analysis of serum antibodies. ASAP is available at http://asap.tau.ac.il). PASA has a
user-friendly interface, while it keeps the ability of expert users to tune their computations towards their special needs. We provide a GALLERY section that demonstrates selected outputs of PASA and example data to allow a quick ramp up for new users. Our graphical outputs promote quantitative analyses and visualization of the immune repertoires.

This is a PLOS Computational Biology Software paper.

Introduction

The hallmark of the adaptive immune response is based on its ability to generate an enormous diversity of different monoclonal antibodies mainly by chromosomal rearrangement, somatic hypermutation (SHM), and class-switch recombination. Antibody diversity occurs within the variable regions of the heavy and light chains (V\textsubscript{H} and V\textsubscript{L}, respectively), with the highest diversity in the complementary determining region 3 of the heavy chain (CDRH3) [1,2]. CDRH3 is often used as a unique identifier to determine antibody clonality [3,4]. Next generation sequencing (NGS) of B cell receptors (BCR-Seq) revolutionized our ability to capture the diversity of antibodies at the highest resolution and helped address important immunological questions related to the development of the adaptive immune response in health and disease [4,5]. We and others have previously developed computational tools for analyzing the massive NGS data [6,7] that are now accumulated in the The Adaptive Immune Receptor Repertoire (AIRR) distributed repository for public use [8]. However, BCR-Seq alone does not reveal the identity, relative concentration, and clonality of antigen-specific antibodies in the blood and/or secretions. Such data are highly important in order to address fundamental immunological questions and to institute a comprehensive immunome map [9]. This knowledge gap can be approached by using high-resolution shotgun tandem mass-spectrometry (LC-MS/MS, Ig-Seq) [2,10,11]. Since its establishment [2], Ig-Seq has opened new research avenues that yielded invaluable insights regarding the development of the immune response during disease and following vaccination [12–17]. The proteomic deconvolution of serum antibodies is challenging due to the extensive antibody diversification resulting from chromosomal rearrangements and SHM, which makes the mapping of obtained antibody-derived peptides to antibody germline sequences irrelevant. Therefore, obtaining the reference BCR-Seq database for each individual is a prerequisite for analyzing LC-MS/MS antibody datasets. Here, we developed PASA, an integrative approach that combines NGS with serum-antibody proteomics (derived from either human or murine), which allows mapping, analysis, and integration of peptides data with reference to individual specific BCR-Seq data.

Design and implantation

The PASA web server is schematically illustrated in Fig 1. The input of PASA is: (1) BCR-Seq data, as obtained from ASAP [6]; (2) The raw mass spectrometry data files as obtained from LC-MS/MS [11,15]; (3) As part of the advanced options, the user can specify the digestion enzyme used to proteolytically cleave the antibodies (by default, Trypsin). Instead of (2), the user can provide a file of derived peptides obtained using MaxQuant [18,19]. As part of the proteomics experiments, antigen-specific antibodies are enriched by affinity chromatography against a given antigen. The enriched fraction is called “elution” and the depleted fraction is

written in Python and is available at https://github.com/orennavram/PASA.

Funding: Y.W. funded by Israel Science Foundation (ISF) #1282/17 Yariv Wine, isf.org.il O.A. was supported in part by the Dalia and Eli Hurvits foundation and by a fellowship from the Edmond J. Safra Center for Bioinformatics at Tel Aviv University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.
called “flow-through”. Peptides that are enriched in the elution fraction compared to the flow-through are considered antigen-specific. In order to use label-free quantification (LFQ) as implemented in MaxQuant, PASA requires at least two replicates for each affinity chromatography fraction. Example input files are provided in the web server. PASA’s running time may vary as it depends on the number of replicates and databases used. For instance, the analysis of the example input files (elution and flow-through triplicates, each triplicate of size ~6GB, together with three V gene sequence database, each of size 35 MB) took less than three hrs. If a user runs MaxQuant as stand-alone (i.e., not via PASA) and submits to PASA the output peptides list (instead of the raw mass spectrometry data files), the running time is dramatically reduced to no more than a few minutes (using the example V gene sequence database).

Results

The first step of PASA concerns the analysis of peptides derived from proteomics of serum antibodies. Specifically, PASA provides: (1) a list of peptides and their intensities for each fraction (elution and flow-through), as identified by MaxQuant; (2) The list of peptides that are enriched in the elution relative to the flow-through (by default, over five-fold relative intensity). These peptides correspond to antibodies that are antigen-specific; (3) The mapping of each antigen-specific peptide to the BCR-Seq database. This mapping provides a correspondence between a serum antibody and an antibody clone as found in the BCR-Seq data. Specifically, for some peptides no mapping is found, some map to more than one antibody clone, and some, which we call informative peptides, are mapped uniquely to a single antibody clone.

Informative antigen-specific peptides can be mapped to CDRH3 or to other V gene regions. Peptides that are antigen-specific, informative, and are mapped to CDRH3 are of high interest since they provide a clear link between a secreted antibody to its corresponding antibody clone as found in BCR-Seq data. In the second step of PASA the antibody clones found in the first
step are characterized. Specifically, PASA provides the following information: Isotype distribution (pie chart); CDR3 length distribution (bar plot); V, D, J gene usage (bar plots); VD, VJ, DJ, VDJ combined usage (bar plots); Proteomics intensity with respect to each antibody sequence frequency as observed in the BCR-seq database. For the sake of convenience, the web server includes Gallery and Overview sections, together with a running example.

Availability and future directions
PASA is freely available for noncommercial users as a web server at https://pasa.tau.ac.il and as a command line application as well. The source code of PASA is written in Python and is available at https://github.com/orenavram/PASA. Joint analysis of Ig-Seq and BCR-Seq provides invaluable insights regarding serum antibody dynamics against a specific antigen. For example, it allows analyzing longitudinal changes in antibody dynamics, studying the affinity maturation of an antibody clone towards a specific antigen, and provides an overall comprehensive map of the humoral immune response following vaccine, disease, or at health. PASA is a user-friendly platform that provides expert and non-expert users with the ability to tune their computations towards their special experimental needs. In the follow-up developments we plan to add advance analysis tools including the ability to analyze experimental data derived from other species and various V gene sequence database.

Author Contributions
Conceptualization: Oren Avram, Aya Kigel, Tal Pupko, Yariv Wine.
Data curation: Oren Avram, Aya Kigel, Sharon Kligsberg, Yariv Wine.
Formal analysis: Oren Avram, Aya Kigel, Anna Vaisman-Mentesh, Yariv Wine.
Funding acquisition: Yariv Wine.
Investigation: Oren Avram, Aya Kigel, Anna Vaisman-Mentesh, Shai Rosenstein, Yael Dror, Tal Pupko, Yariv Wine.
Methodology: Oren Avram, Sharon Kligsberg, Tal Pupko, Yariv Wine.
Project administration: Yariv Wine.
Resources: Yariv Wine.
Software: Oren Avram, Sharon Kligsberg.
Supervision: Tal Pupko, Yariv Wine.
Validation: Oren Avram, Aya Kigel, Yariv Wine.
Visualization: Oren Avram.
Writing – original draft: Oren Avram, Tal Pupko, Yariv Wine.
Writing – review & editing: Oren Avram, Tal Pupko, Yariv Wine.

References
1. Xu JL, Davis MM. Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities. Immunity. 2000; 13(1):37–45. https://doi.org/10.1016/s1074-7613(00)00006-6 PMID: 10933393.
2. Wine Y, Boutil DR, Lavender JJ, Miklos AE, Hughes RA, Hoi KH, et al. Molecular deconvolution of the monoclonal antibodies that comprise the polyclonal serum response. Proceedings of the National Academy of Sciences. 2013; 110(8):2993–8. https://doi.org/10.1073/pnas.1213737110 PMID: 23382245.
3. Kunik V, Peters B, Ofran Y. Structural consensus among antibodies defines the antigen binding site. PLoS Computational Biology. 2012; 8(2):e1002388. https://doi.org/10.1371/journal.pcbi.1002388 PMID: 22383868.

4. Greiff V, Menzel U, Haessler U, Cook SC, Friedensohn S, Khan TA, et al. Quantitative assessment of the robustness of next-generation sequencing of antibody variable gene repertoires from immunized mice. BMC immunology. 2014; 15(1):40. https://doi.org/10.1186/s12865-014-0046-5 PMID: 25318652.

5. Georgiou G, Ippolito GC, Beausang J, Busse CE, Wardemann H, Quake SR. The promise and challenge of high-throughput sequencing of the antibody repertoire. Nature biotechnology. 2014; 32(2):158–68. https://doi.org/10.1038/nbt.2782 PMID: 24444747.

6. Avram O, Vaisman-Mentesh A, Yehekel D, Ashkenazy H, Pupko T, Wine Y. ASAP, A Webserver for Immunoglobulin-Sequenceing Analysis Pipeline. Frontiers in Immunology. 2018; 9. https://doi.org/10.3389/fimmu.2018.01686 PMID: 30105017.

7. Smakaj E, Babarak L, Ohlin M, Shugay M, Briney B, Tosoni D, et al. Benchmarking immunoinformatic tools for the analysis of antibody repertoire sequences. Bioinformatics. 2020; 36(6):1731–9. https://doi.org/10.1093/bioinformatics/btz845 PMID: 29163494.

8. Breden F, Luning Prak ET, Peters B, Rubelt F, Schramm CA, Busse CE, et al. Reproducibility and Reuse of Adaptive Immune Receptor Repertoire Data. Frontiers in Immunology. 2017; 8:1418. https://doi.org/10.3389/fimmu.2017.01418 PMID: 26172290.

9. Vaisman-Mentesh A, Rosenstein S, Yavzori M, Dror Y, Fudim E, Ungar B, et al. Molecular Landscape of Anti-Drug Antibodies Reveals the Mechanism of the Immune Response Following Treatment With TNFalpha Antagonists. Front Immunol. 2019; 10:2921. https://doi.org/10.3389/fimmu.2019.02921 PMID: 31216462.

10. Lindestad LC, McDaniels JR, Changela A, Verardi R, Kerr SA, Costantini V, et al. Sera Antibody Repertoire Analyses Reveal Mechanisms of Broad and Pandemic Strain Neutralizing Responses after Human Norovirus Vaccination. Immunity. 2019; 50(6):1530–41.e8. https://doi.org/10.1016/j.immuni.2019.05.007 PMID: 31216462.

11. Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Molecular & cellular proteomics: MCP. 2014; 13(9):2513–26. https://doi.org/10.1074/mcp.M113.031591 PMID: 24942700.

12. Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature biotechnology. 2008; 26(12):1367–72. https://doi.org/10.1038/nbt.1511 PMID: 19029910.