Defining the baseline for river restoration: comparing carabid beetle diversity of natural and human-impacted riparian habitats

Claudia Sprößig · Sascha Buchholz · Frank Dziock

Received: 24 January 2020 / Accepted: 6 July 2020 / Published online: 15 July 2020 © The Author(s) 2020

Abstract
Near-natural rivers and riparian ecosystems can represent biodiversity hotspots harbouring many highly specialised, rare and endangered species. During the past centuries, these habitats have been heavily degraded by anthropogenic use, and therefore river restoration is one of the most striking fields of action that is legally defined by the European Union Water Framework Directive. Successful restoration depends on realistic and specified targets that should be defined beforehand and founded on status quo surveys. We present a comparison of carabid beetle communities in riparian habitats of natural and managed river sites of the Mulde River in the Biosphere Reserve Middle Elbe. This endeavour is part of a unique multi-level revitalisation project. Pitfall trapping in 2016 and 2017 yielded 111 carabid species with many species of conservation concern in natural and managed habitats. However, Simpson diversity and functional diversity were lower in the latter. Both habitats harboured specific species assemblages with characteristic indicator species. Additionally, the trap location on slip-off slopes or cut banks was a significant driver of species composition. Our results indicate high ecological development potentials for the Mulde River, but restoration should consider differences between slip-off slopes and cut-off banks. We postulate that future restoration will foster population increases as well as a wider distribution of rare and endangered riparian habitat specialists.

Keywords Carabidae · Functional diversity · Ground beetles · Lowland river ecosystem · Mulde river · Riparian habitat

Introduction
Rivers and adjacent ecosystems, including floodplains and riverbanks, are biodiversity hotspots (Naiman et al. 1993; Hauer et al. 2016) that harbour many highly specialised, rare and endangered species (Anderson and Hanssen 2005; Desender 2005; Denux et al. 2017). Due to flooding, these ecosystems are very dynamic, a feature that is an important driver for typical floodplain and rivershore species (Sienkiewicz and Zmihorski 2011; Fournier et al. 2015). River valleys also play a vital role as migration corridors for plants (Liu et al. 2006; Nobis et al. 2017) and animals (Cormier et al. 2013; Romanowski et al. 2013). Finally, river ecosystems provide multiple services that serve the needs of local (and more) residents, for example, carbon dioxide capture, flood retention, landscape aesthetics and recreation (Schindler et al. 2016).

During the past centuries, anthropogenic disturbances and modifications significantly reduced the amount of pristine river ecosystems due to river flow regulations, water pollution, intensified agriculture, urban development and recreation (Karthe et al. 2017). Consequently, more than 50% of European rivers lost their former habitat quality (EEA 2018). In Germany, almost all rivers are affected by human modifications (Hering et al. 2015). These modifications are further associated with adverse effects of global change (such as invasion of alien species) that negatively affect river ecosystems (Schirmel et al. 2016). Thus, preventing the degradation of river ecosystems and biodiversity loss as well as maintaining ecosystem functions and services are major goals in restoration ecology (Strayer and Dudgeon 2010; Schindler et al. 2016). In Europe, the implementation of the European Union (EU) Water Framework Directive has fostered biodiversity conservation and management policies and actions that make river restoration an overarching
issue. Therefore, river ecosystems have been increasingly subjected to hydromorphological restructuring, river bank restoration, dam removal and deconstruction of bank reinforcements (Rumm et al. 2016, 2018; Schindler et al. 2016; Schulz et al. 2016; Sneddon et al. 2017; Lorenz et al. 2018).

In central Germany, the Mulde River is in the focus of a comprehensive revitalisation project and a key issue for transregional river restoration efforts (Schulz-Zunkel et al. 2017). The river is part of the Biosphere Reserve Middle Elbe and the cross-border ‘Flusslandschaft Elbe’ Biosphere Reserve; due to remnant habitats and species as well as natural sections it has good conditions to regain a favourable ecological status of a near-natural river ecosystem and features area-wide habitat connectivity to floodplains and riparian forests (Reichhoff and Refior 1997; Schulz-Zunkel et al. 2017). The ‘Wilde Mulde’ revitalisation project pursues a multi-level approach, which is unique and has not yet been realised in other river ecosystems. In particular, it combines (a) increasing the amount of dead wood by exposition of logged trees into the river, (b) restoration of riparian habitats and embankment removals, (c) reconnection of the river with old branches and (d) reforestation of riparian forests. Although (a), (c) and (d) do not directly affect riparian habitats and their species communities, it is mandatory to evaluate—and if necessary optimise—the implemented restoration and revitalisation measures by studying the effects on riparian habitats and species communities in monitoring surveys. Furthermore, for successful restoration it is vital to first define realistic and specified targets for certain habitat types in a region. This endeavour could help to set the scene for subsequent restoration activities because it may rely on current environmental conditions and biodiversity patterns in local near-natural river habitats. This information may be related to modified sites under anthropogenic use to derive ecological development potentials and perspectives for the management of indicator species.

Therefore, the aim of the study was to compare riparian habitats with their species communities at natural and managed rivers sites. In particular, we assumed that (1) taxonomic diversity (in terms of number of species and individuals, Simpson diversity) as well as functional diversity is higher in natural sites, (2) importance for conservation (measured as the percentage of species of conservation concern) would be better in natural sites and (3) assemblage structure would be different with distinctive indicator species for different sites (natural/managed).

We referred to carabid beetles as model organisms, because they are proven to be an appropriate taxon for evaluating the ecological status of river ecosystems and studying effects of river restoration (e.g., Januschke et al. 2011, 2014; Januschke and Verdonschot 2016; Gruppe et al. 2017; Paillex et al. 2017; Bednarska et al. 2018). Carabid beetles quickly respond to environmental changes (Gerisch et al. 2006, 2012a; Lambeets et al. 2009), have specific habitat requirements (Günther and Assmann 2005; Kleinwächter and Rickfelder 2007; Paetzold et al. 2008) and comprise numerous well-adapted riparian species (Cartron et al. 2003; Lambeets et al. 2008a; Gerisch et al. 2012b). Therefore, a multi-year carabid beetle sampling was established in line with the restoration of the Mulde riverbanks.

Methods

Study area and study sites

We selected two study sites, one in a managed section and one in a natural section located along the Mulde river near Dessau in Saxony-Anhalt (Germany) (Fig. 1). The Mulde is a typical low-mountain-range river with periodic high-water levels in the spring, autumn and winter (Reichhoff and Refior 1997). With an average annual rainfall of 550 mm and a temperature amplitude of 18.6 °C (min: −0.1 °C; max: 18.5 °C), the study area is situated in the eastern part of the Central Germany dry region and touches the border of the subcontinental climate sphere (Warthemann and Wölfel 1997). The dominating substrates of the Mulde riverbed and banks are alluvial sand and gravel, which is covered by sandy loam in the floodplains (Puhlmann and Rast 1997). Semiaquatic Mulde areas are characterised by annual vegetation communities dominated by ruderal plants. On higher slopes, which are flooded only at mid-range high-water levels and enriched with nutrients, there are nitrophilous communities of tall forbs (Warthemann and Wölfel 1997). The bordering floodplain landscape is a patchwork of oxbow lakes and grassland crossed by flood channels as well as hardwood alluvial forests and (to a small extent) arable land. Watersport use is limited to only a couple of days of the year (Reichhoff and Refior 1997).

By the early 1990s, the Mulde was one of the most polluted European rivers due to mining and industrial and urban activity (Reichhoff and Refior 1997; Klemm et al. 2005). Between 1990 and 2000, its biological quality classification changed from “excessively” to “moderately” polluted, a change mainly caused by the reduction of waste water discharge from chemical industries and the inauguration of the Bitterfeld/Wolfen sewage plant (LAWA 1991, 2002). Nevertheless, floodplain sediments are highly polluted with organic and inorganic compounds (Bräuer and Herzog 1997; Schulz-Zunkel et al. 2017). Sediment loss in the riverbed is another severe problem of the Mulde. Nearly all sediments from upstream get caught in the water reservoir at Muldenstein. Additionally, the reinforcement of cut banks—as it was done in the study area in the 1970s and 1980s (Reichhoff and Refior 1997)—contributes to riverbed deepening. This phenomenon decreases the average water surface levels and
increases floodplain dryness. The removal of river embankments to initiate erosion processes can play an important role in attenuating this degradation (Puhlmann and Rast 1997).

Site types and treatments

Samples were taken from two site types, namely ‘natural’ and ‘managed’. We installed 12 transects with five pitfall traps for each transect per (Table 1) site type. Within site type we distinguished between slip-off slopes and cut banks with six transects each. This resulted in six replications (30 pitfall traps) for site types ‘natural/slip-off slope’, ‘natural/cut-off bank’, ‘managed/slip-off slope’ and ‘managed/cut-off bank’. The natural site type—lying near the core zone of the biosphere reserve—comprised a wide gravel bank and more downstream a cut bank, both sparsely overgrown with vegetation. Natural dynamic sedimentation and erosion processes characterised these sites. On managed sites cut banks were reinforced with blocks of stones and densely overgrown with grasses, herbs and shrubs. Slip-off slopes of
managed sites were not stabilised but also characterised by relatively stable conditions due to the lack of sediments from cut banks. Compared to the natural gravel bank unvegetated areas were very small.

Carabid sampling and species determination

Carabids were sampled using pitfall traps (200 ml volume, 7 cm top diameter) filled with a solution of 10% acetic acid and a splash of liquid detergent. Traps were placed along vertical transects (five traps per transect) at a distance between 0.5 and 1 m in height but at a maximum horizontal distance of 10 m. Traps were exposed during two sampling times for two weeks in the spring and autumn 2016 (17.05.2016–31.05.2016, 31.05.2016–14.06.2016, 07.09.2016–20.09.2016 and 20.09.2016–05.10.2016) and spring 2017 (10.05.2017–24.05.2017 and 24.05.2017–08.06.2017).

Carabid individuals were determined using the identification key of Müller-Motzfeld (2006). Endangerment data were taken from the Red List of Germany (Schmidt et al. 2016) and Saxony-Anhalt (Schnitter and Trost 2004). To assess whether a species is a regional habitat specialist for the Middle Elbe floodplain, we referred to Schnitter et al. (2001). Both endangered species and regional habitat specialists were defined as species of conservation concern for subsequent analyses. This means that a species was given conservation importance if it was on the Red List of Germany, the Red List of Saxony-Anhalt or if it is considered a regional habitat specialist. If more than one was the case, the species was only counted once. For functional analyses, we assigned the following traits: annual activity time, body size, dispersal ability, eye size, food specialisation, hibernation mode and trophic level (Table 2). These features are meaningful traits for functional analyses (Klaiber et al. 2017; Moretti et al. 2017). Body size responds to environmental stress and refers to the amount and composition of resources used in a community. Food specialisation and trophic level correspond to the position in the food web, while eye size reflects prey as well as predator recognition. This phenomenon in turn determines the quality of resources that influences species fitness. Dispersal ability refers to species potential to access new habitats and resources and to escape adverse environmental conditions. Finally, annual activity time and hibernation mode reflect the possibility of co-occurrences among species and the ability to cope with unfavourable environmental conditions with a resting stage (Rothenbücher and Schaefer 2006; Lambeets et al. 2008a; Gerisch et al. 2012a; Moretti et al. 2017).

Environmental variables

Besides site type (slip-off slope, cut bank) and treatment (natural, managed) as categorical variables we measured two further environmental variables to characterise our transects (Table 1). In a 1 × 1 m square around each pitfall trap, vegetation cover [%] was recorded in 2016 and 2017 to subsequently calculate mean values. Distance to river was recorded on an ordinal scale and refers to the rank order of the pitfall trap in a line transect, i.e., 1 is the trap closest to the water side and 5 is the trap farthest away from the water.

Data analysis

For all analyses (with the exception of the habitat models), one sample unit included the pooled data from all five pitfall traps per transect. For subsequent comparisons, we calculated number of species, number of individuals and

Table 1 Site types and treatments used in this study

Site type/treatment	Vegetation cover %	Distance to river
Nature slip-off slope	1 sqm plot around a trap	
Managed slip-off slope	Number of the pitfall trap, 1 (close the water) to 5 (far away from water)	
Nature cut bank		
Managed cut bank		

Table 2 Trait data taken for calculating functional diversity of carabid beetles

Trait	Categories	References
Annual activity time	Number of active months	Klaiber et al. (2017)
Body size	mm	Klaiber et al. (2017)
Dispersal ability	brachypter, macropter, dimorphic	Homburg et al. (2014)
Eye size	<10%, 10–25%, >25–50%	Homburg et al. (2014)
Food specialisation	Collembola, Gastropoda, Isopoda, no	Homburg et al. (2014)
Hibernation mode	Larva, Larva/Imago, Imago	Klaiber et al. (2017)
Trophic level	Herbivore, Omnivore, Predator	Homburg et al. (2014)
Simpson diversity per sample unit as measures for alpha-diversity. To evaluate the conservation value of our study sites, we calculated the percentage of species of conservation concern per site. Additionally, based on mentioned ground beetles traits (Table 2) we calculated functional dispersion (FDIs), functional evenness (FEve) and functional divergence (FDiv) to reflect functional diversity (Villéger et al. 2008; Laliberté and Legendre 2010) using R library FD (Laliberté et al. 2015). We interpreted FDIs as a measure for functional diversity, because it is an index of functional richness, which considers relative species abundances by estimating their dispersion in a multidimensional trait space. FDiv is high when the evenness of species relative abundances. The index is 1 if all species show an equal abundance and all the traits are evenly distributed in the trait space; it declines towards 0 with increasing unevenness in either factor. Finally, FDiv expresses the distance of the most abundant species from the assemblage centroid in the trait space. FDiv is high when the most abundant species show extreme trait values and can be interpreted as a measure of variance (Laliberté and Legendre 2010). Comparisons in number of species, number of individuals, amount of species of conservation concern, Simpson diversity and functional diversity indices between treatments ‘managed’ and ‘natural’ were performed using generalised linear models (GLMs) and subsequent analysis of variance (ANOVA) based on chi-squared statistics (R library car; Fox and Weisberg 2011). We referred to a quasi-Poisson distribution for count data (number of species and individuals) and a Gaussian distribution for percentages and indices (amount of species of conservation concern, Simpson diversity and functional diversity).

To test whether carabid beetle species composition was related to treatment and site type, we ran nonmetric multidimensional scaling (NMDS) analyses using R library vegan (Oksanen et al. 2019) and a permutational multivariate ANOVA (MANOVA; r function adonis) with 10,000 permutations. Species with less than ten individuals at a site were regarded as accidental species and were omitted from analyses. Deleting rare species is a useful way to reduce the statistical noise in the data set without losing much information (McCune and Grace 2002; Leyer and Wescue 2007). The abundances of 46 species were square-root transformed before being subjected to NMDS. We used the Bray–Curtis dissimilarity as a distance measure and a maximum of 100 random starts to identify the best stress value for three-dimensional models.

The fidelity and specificity of species within treatments ‘natural’ and ‘managed’ was explored using Indicator Value (IndVal) analysis (Dufrêne and Legendre 1997; Legendre and Legendre 1998) in R library labdsv (Roberts 2016). This approach calculates indicator values that range from 0 (no indication) to 100 (perfect indication). The latter value means that all individuals of a species are found in a single group (specificity), and, additionally, that the species occurs in all the sites of that group (fidelity). The statistical significance of the indicator values was tested using a Monte-Carlo randomisation procedure (10,000 runs) at a level of $P < 0.01$.

Finally, we calculated habitat models for the most abundant species (Amara luncicollis, Demetrias monostigma, Harpalus affinis, Harpalus latus, Lionychus quadrillum, Microlestes minutulus, Philorhizus sigma and Poecilus versicolor) and the identified indicator species (Abax parallellepipedus, Amara convexior, Elaphropus diabracys, Harpalus tardus and Poecilus cupreus) using Poisson GLMs. We treated the results of every single trap as one sampling unit.

Predictor variables in all models were site type (cut bank or slip-off slope), treatment (natural or managed), distance to river and herbal layer coverage. Since overdispersion was detected in all models by using ‘dispersiontest’ in R library aert (Kleiber and Zeileis 2018), we corrected the standard errors using quasi-Poisson GLMs. Model performance was verified visually using diagnostic plots following the protocol by Zuur et al. (2009). The significance of predictor variables were tested using subsequent ANOVA based on chi-squared statistics (R library car, Fox and Weisberg 2011). All statistical analyses were performed using the R software environment (version 3.4.4, R Core Team 2018).

Results

In total, 111 carabid beetle species from 36,932 individuals were identified (Appendix 1). The most abundant species by far was L. quadrillum (33,987 individuals). M. minutulus (630) and P. versicolor (449) were also frequent, followed by D. monostigma (163), H. latus (160), H. affinis (120), Amara luncicollis (117) and P. sigma (111). During the study, 24 species of conservation concern were collected (Appendix 2). Of them, Perileptus areolatus was considered regionally extinct. It is endangered in Germany, while Dyschirius intermedius is critically endangered in Saxony-Anhalt. Amara quenselii silvicola and Abax carinatus carinatus are endangered, while Badister sodalis, Blethisa multipunctata and Brachinus explodens are considered vulnerable.

For cut banks, natural sites harboured significantly more individuals (\bar{y} 332 vs 180 individuals; $t = 2.3, P = 0.04$; Fig. 2). Additionally, Simpson diversity (\bar{y} 0.85 vs 0.76; $t = 4.4, P = 0.001$) and functional dispersion (\bar{y} 0.32 vs 0.25) $t = 5.6, P < 0.001$; Fig. 3) were significantly higher for these sites, but there were no significant differences for number of species, amount of species of conservation concern, functional evenness or functional divergence. For slip-off slopes, the number of species was significantly higher in managed sites (\bar{y} 34 vs 23; $t = 2.9, P = 0.02$), while natural sites harboured significantly more individuals (\bar{y} 4229 vs 1415;
Differences in all functional diversity indices were significant, with higher functional dispersion (ϕ 0.32 vs 0.27; $t=3.1$, $P=0.01$) and functional evenness (ϕ 0.80 vs 0.70; $t=3.0$, $P=0.01$) in natural sites and lower functional divergence in managed ones (ϕ 0.87 vs 0.86; $t=3.1$, $P=0.01$; Fig. 3).

Site type ($F=25.8$, $P<0.001$, $R^2=0.48$, permutational MANOVA) and treatment ($F=7.0$, $P=0.001$, $R^2=0.13$, permutational MANOVA) significantly affected species composition (Fig. 4). Consequently, NMDS showed groupings—albeit rudimentary—among cut banks and slip-off slopes, and to a lesser extent among natural and managed sites (3 dimensions, stress = 0.12). Indicator species analysis revealed three species characteristic for nature sites (L. quadrillum: indicator value [IV] = 0.78, $P=0.02$; H. latus: IV = 0.78, $P=0.006$; E. diabroychys: IV = 0.46, $P=0.04$) and seven carabids typical for managed ones (A. convexior: IV = 0.87, $P=0.001$; P. versicolor: IV = 0.79, $P=0.001$; H. tardus: IV = 0.73, $P=0.008$; M. minutulus: IV = 0.72, $P=0.03$; A. parallelepipedus: IV = 0.71, $P=0.001$; A. lunccollis: IV = 0.70, $P=0.03$; P. cupreus: IV = 0.68, $P=0.005$).

Habitat models indicated specific preferences for most abundant and indicator species (summary in Fig. 5; for detailed results of all habitat models, see Appendix 3). Herbal layer coverage and amount of open soil did not significantly affect species distribution—apart from A. convexior.
that preferred mosaics of open soil and herbal layer—but distance to river, site type and treatment were significant: *L. quadrillum* was bound to the river near natural slip-off slopes, whereas *E. diabrachys* and *H. latus* occurred on both site types of natural river sections. While the latter species exhibited no preferences, *E. diabrachys* was related to river-banks near the waterline. *A. parallelepipedus, A. convexior, H. affinis, H. tardus* and *P. cupreus* were bound to managed sites with preferences for slip-off slopes (*A. convexior*), cut banks (*H. affinis* and *H. tardus*) or both (*A. parallelepipedus*), while distance to river had no effect. *A. lunicollis, D. monostigma* and *P. versicolor* preferably occurred in slip-off slopes independent of treatment; this feature was the same for *M. minutulus* at cut banks.

Discussion

The ‘Wilde Mulde’ revitalisation project is unique for a lowland river ecosystem because it combines riparian habitat restoration at the habitat level and large-scale reconnection with old river branches and riparian forests at the landscape level. We aimed to assess the status quo in the objective area before restoration by comparing natural and managed river habitats. Our results indicated that differences between both sites were less obvious than expected; carabid beetle taxonomic and functional diversity was not per se higher in natural sites. Consistently, natural sites had higher numbers of individuals and functional diversity in both site types. Therefore, our first expectation was only partially confirmed. Our data also indicated that study site location in either cut banks or slip-off slopes had much stronger effects. In contrast, Simpson diversity and functional evenness was higher in natural sites of cut banks, while in slip-off slopes, species number was higher in managed sites. These results are surprising, because number of carabid species normally decreases with increasing human impact at managed river-banks (Boscaini et al. 2000; Andersen and Hanssen 2005; Cavaillé et al. 2013), a phenomenon that leads to impoverished species assemblages with low numbers of stenotopic species (Bonn et al. 2002). Apart from this, the higher number of species could be explained by the fact that more eurytopic species can be found in managed sites whereas natural sites are more appropriate for stenotopic species. However, apart from species numbers, Simpson and functional...
diversity were higher at natural sites, a finding that may be explained by a higher habitat diversity, for example, due to river dynamics (Paillex et al. 2017; Lorenz et al. 2018). This phenomenon creates a mosaic of microhabitats (e.g., different substrate grain sizes, open sand or gravel patches, low and dense vegetated sites) that promote taxonomic and functional diverse carabid beetle assemblages (Jähnig et al. 2009; Januschke and Verdonschot 2016; Bednarska et al. 2018). Additionally, the higher number of individuals in natural sites is consistent with previous findings; carabids have a great capacity to increase their abundance in response to habitat dynamics (Bednarska et al. 2018).

Our second hypothesis addressed a higher importance for conservation in natural sites measured by a higher percentage of species of conservation concern. Both natural and managed sites harboured the same percentage of species of conservation concern, and there were no significant differences between location in cut bank or slip-off slope. The Mulde River generally harbours species of conservation concern, and the occurrence of Bembidion punctulatum, P. areolatus and D. intermedius should be highlighted. In particular, P. areolatus is a riparian specialist bound to river dynamics and flooding (Andersen and Hanssen 2005). It was considered regionally extinct and was only recently rediscovered in the study area (Thurow 2016). Furthermore, B. punctulatum is a riparian specialist indicative of open and less-vegetated natural riverbanks (Schnitter et al. 2001). Although not recorded during this study, Thurow (2016) also recorded the riparian specialists Bembidion decorum, Bembidion flaviatile and Elaphrus aureus by pitfall trapping and hand sampling in the study area. In light of future restoration plans, these results are very promising because it can be assumed that preconditions—for example, a local species pool of riparian habitat specialists—that are mandatory for a successful restoration are present. Future restoration can create more beneficial microhabitats even compared to natural sites, and these places can regularly be colonised rapidly by typical riparian carabids with high dispersal abilities (Günther and Assmann 2005; Bates et al. 2006; Bednarska et al. 2018). These beneficial microhabitats should comprise open pioneer habitats such as bare sand or gravel patches subjected to river dynamics (Sadler et al. 2004; Van Looy et al. 2005; Paillex et al. 2017; Lorenz et al. 2018). Increased river dynamics and flooding due to river widening can promote faster positive responses from riparian habitat specialists (Jähnig et al. 2009; Januschke et al. 2014; Januschke and Verdonschot 2016). While restoration will create appropriate conditions at the habitat level, the surrounding landscape composition and its permeability will significantly affect successful establishment of specialist populations (Stockan et al. 2014). This phenomenon is because restored sites are often islands in a vastly altered landscape exposed to anthropogenic use (Lorenz and Feld 2013).

Our third hypothesis was confirmed, because both natural and managed sites harboured specific species assemblages with characteristic indicator species. Lorenz et al. (2018) showed that carabid species turnover can reach up to 80% along naturality gradients. This phenomenon results from carabid beetles’ often quick response to habitat modifications in river ecosystems (Günther and Assmann 2005), namely due to their strong flight ability (Lambeets et al. 2008a). In particular, heterogenous habitats harbour diverse and distinct carabid assemblages where riparian habitat specialists—and
at the same time indicator species for successful restoration (such as *E. diabrachys* and *L. quadrillum*)—prefer gravel banks with flooding impact, hygrophytes (e.g., *P. cupreus* and *P. versicolor*) inhabit loamy river banks with vegetation cover and xerophiles (e.g., *A. lunicollis*, *H. latus* and *H. tardus*) occur on sandy banks that are rarely flooded (Lambeets et al. 2008b).

Conclusions

In general, our results show that carabid beetles are very good indicators for comparing human impact and naturalness in river ecosystems. This is due to the strong habitat preferences, especially of stenotopic riparian specialists, and fast and distinctive spatial turnover in species assemblages with associated indicator species. Setting the scene for future restoration, it is necessary to define specified targets and to adjust restoration activities and species action plans. Our results indicate high ecological development potentials for the Mulde River and principles for restoration:

1. There is a local species pool of riparian habitat specialists with *B. decorum*, *B. fluviatile*, *B. punctulatum*, *D. intermedius*, *E. aureus* and *P. areolatus* that even occur at managed sites (see Appendices 1 and 2). It can be assumed that future restoration will foster population increases as well as a wider distribution of these riparian habitat specialists.

2. Species richness was not per se higher in natural river habitats, and there were no differences regarding the abundance of species of conservation concern at any sites. These data might indicate favourable basic conditions even at managed sites. However, taxonomic (in terms of Simpson diversity) and functional diversity were lower in managed sites, findings that indicate natural sites present appropriate references for measuring positive restoration effects. Finally, the presence of slip-off slopes—which are a main sign of natural riparian zones—can support the development of population growth as more individuals were found here.

3. Restoration can cause different results depending on the location of riparian sites. Both slip-off slopes and cut off banks had distinct biodiversity patterns and species assemblages. For example, *A. lunicollis*, *D. monostigma* and *P. versicolor* were associated with slip-off slopes, while *M. minutulus* was related to cut banks. Keeping these differences in mind during restoration action should increase local diversity by creating a habitat mosaic and different habitat conditions for a broad spectrum of carabid species. Additionally, subsequent monitoring should consider restoration results in slip-off slopes and cut off banks separately to cope with these differences.

4. A pronounced species turnover in response to restoration can be expected. This effect will be associated with an increase in indicator species typical for nature sites, such as *E. diabrachys*, *H. latus* and *L. quadrillum*. At
the same time, species indicative for managed sites, including *A. parallelepipedus, A. convexior, H. affinis* and *H. tardus*, are predicted to disappear.

Acknowledgements Open Access funding provided by Projekt DEAL. We thank Alexander Drexler, Carolin Lenski and Julia Henschel for supporting the field work and the sorting of pitfall trap catches and Ingo Brunk for identifying carabid beetles. Additionally, we thank Peer Schnitter from the Landesamt für Umweltschutz Sachsen-Anhalt and the employees from the Environmental Agencies of the districts Anhalt-Bitterfeld and Dessau-Rosslau for giving us permission to enter the study sites and collect carabid beetles. Our special thanks go to Holger Gabriel from the Biosphere Reserve Middle Elbe for sharing his expertise to avoid conflicts with the regional breeding bird fauna. We thank all participants of the project “Wilde Mulde” for their continuous support and conceptual input. Finally, we thank two reviewers for valuable comments on our manuscript. This project was funded by the Bundesministerium für Bildung und Forschung (BMBF) and the Bundesamt für Naturschutz (BfN), with grants from the Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUB). This work is part of the research initiative for sustainable development (FONA, www.fona.de), WilMu – project; No. 01LC1322D.

Author contributions CS and FD conceived and designed the research; CS performed the field work; SB analysed the data; SB, CS, FD wrote and edited the manuscript.

Compliance with ethical standards

Conflict of interest The authors declare no conflict of interest.

Ethical approval The authors obtained all appropriate ethics and other approvals for the research. All necessary permits were obtained to perform carabid beetle samplings. No human participants were involved in the work.

Informed consent All authors consent to the submission of this manuscript.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix 1

See Table 3.
Species	Nature	Manage	Sum	
	Cut bank	Slip-off slope	Cut bank	Slip-off slope
Abax carinatus carinatus	1	0	0	0
Abax parallelepipedus parallelepipedus	0	1	16	4
Abax parallelepipedus parallelepipedus	0	1	0	0
Acupalpus exigus	0	0	3	0
Acupalpus flavicollis	1	0	3	1
Acupalpus meridianus	2	0	1	0
Agonum emarginatum	0	6	1	4
Agonum micans	0	0	1	0
Agonum exsanguismina	0	0	0	1
Amara aenea	2	0	73	0
Amara communis	15	2	9	25
Amara convexior	2	7	31	27
Amara euryota	0	2	0	2
Amara familiaris	5	1	2	2
Amara fulva	1	0	0	1
Amara lunicollis	25	10	34	48
Amara ovata	0	2	0	2
Amara plebeja	0	2	0	1
Amara quenseli quenseli	1	0	0	0
Amara similata	3	5	4	12
Anchomenus dorsalis	0	1	0	0
Anisodactylus hinoattus	4	1	5	3
Anthracus conspatus	0	0	1	0
Asaphidion flavipes	4	0	0	0
Asaphidion pallipes	1	0	0	0
Badister ballatus	5	2	0	1
Badister lacertosus	0	2	0	0
Badister sodalis	18	1	2	1
Bembidion biguttatum	0	0	0	1
Bembidion doris	2	0	0	0
Bembidion femoratum	0	1	0	0
Bembidion gilvipes	0	0	1	3
Bembidion guttula	2	0	0	1
Bembidion lampros	0	0	1	1
Bembidion lanulatum	0	0	1	0
Bembidion modestum	0	3	0	1
Bembidion properans	0	0	0	1
Bembidion punctulatum	4	15	0	30
Bembidion pygmaeum	3	0	0	1
Bembidion quadriracmaculatum	3	1	1	5
Bembidion tetracolium	3	0	1	14
Blethisa multipunctata	0	0	1	0
Calathus melanocephalus	7	0	0	5
Carabus granulatus granulatus	3	4	1	12
Carabus nemoralis	1	4	0	2
Chlaenius nigricornis	2	0	1	2
Cicindela hybrida	7	5	0	2
Clivina collaris	1	0	0	0
Clivina fosfor	5	6	4	20

Table 3 Species list and individual sums
Species	Nature	Manage	Sum		
	Cut bank	Slip-off slope	Cut bank	Slip-off slope	
Cychrus caraboides	1	1	0	0	2
Demetrias imperialis	1	0	0	1	2
Demetrias monostigma	39	20	10	94	163
Diachromus germanus	0	0	0	2	2
Dyschirius globosus	18	1	4	0	23
Dyschirius intermedius	0	0	1	0	1
Dyschirius thoracicus	9	0	0	2	11
Elaphropus diabraclys	7	5	0	1	13
Elaphropus parvulus	6	36	3	9	54
Elaphrus cupreus	0	1	0	0	1
Elaphrus riparius	0	1	1	15	17
Harpalus affinis	41	8	65	6	120
Harpalus anxius	2	1	5	0	8
Harpalus autumnalis	0	0	1	0	1
Harpalus distinguendus	1	1	1	0	3
Harpalus froelichii	1	0	0	1	2
Harpalus latus	100	24	21	15	160
Harpalus luteicornis	2	0	0	1	3
Harpalus piciperans	2	0	0	0	2
Harpalus pumilus	1	0	7	0	8
Harpalus rubripes	7	0	1	2	10
Harpalus rufipes	6	0	16	3	25
Harpalus tardus	4	1	27	8	40
Harpalus xanthopus	1	0	2	2	5
Leistus ferrugineus	10	3	0	5	18
Leistus rafomarginatus	0	0	0	1	1
Licinus depressus	0	0	0	1	1
Limodromus assimilis	4	1	0	13	18
Lionychus quadrillum	1283	25,086	10	7608	33,987
Loricera pilicornis	1	0	3	2	6
Microlestes minutulus	81	3	529	17	630
Nebria brevicollis	6	3	9	8	26
Notiophilus aequustus	0	1	0	3	4
Notiophilus biguttatus	1	1	1	1	4
Notiophilus palustris	2	0	0	0	2
Omophron limbatum	16	4	0	6	26
Oodes helopoides	1	0	0	1	2
Oxypselaphus obscurus	3	1	2	2	8
Panagaeus bipustulatus	1	1	0	3	5
Panagaeus cruxmajor	2	1	0	1	4
Paradromius linearis	0	0	1	0	1
Paranchus albipes	0	0	3	4	7
Patrobus aterufus	0	0	1	0	1
Perileptus areolatus	13	4	0	3	20
Philorhizus sigma	35	7	17	52	111
Poecilus cupreus	8	2	13	15	38
Poecilus versicolor	58	35	86	270	449
Pterostichus anthracinus	5	0	0	0	5
Pterostichus diligens	0	0	0	1	1
Table 3 (continued)

Species	Nature	Manage	Sum		
	Cut bank	Slip-off slope	Cut bank	Slip-off slope	
Pterostichus gracilis	1	0	0	0	1
Pterostichus melanarius	25	17	21	17	80
Pterostichus minor	0	1	0	0	1
Pterostichus niger	0	1	3	0	4
Pterostichus nigrita	3	0	0	1	4
Pterostichus oblongopunctatus	0	0	1	0	1
Pterostichus strenuus	24	6	2	41	73
Pterostichus vernalis	3	0	1	1	5
Stenolophus mixtus	8	5	9	9	31
Stenolophus trivittatus	13	3	3	1	20
Synchus vivalis	13	3	3	1	20
Trechus quadristriatus	1	3	0	0	4
Sum	1991	25,374	1078	8489	36,932

Appendix 2

See Table 4.

Table 4

Species of conservation concern: RL Ger = Red list Germany (Schmidt et al. 2016), RL S-A = Red List Saxony-Anhalt (Schnitter and Trost, 2004), habitat specialist = regional assessment according to Schnitter et al. (2001)

Species	RL Ger	RL S-A	Habitat specialist
Abax carinatus carinatus	V	2	Yes
Abax parallelus parallelus	V	Yes	
Acupalpus exigus	V	Yes	
Amara quenseli silvicola	3	2	Yes
Anthracus consputus	V	Yes	
Asaphidion pallipes	V	Yes	
Badister sodalis	V	3	
Bembidion doris	V	3	Yes
Bembidion modestum	V	3	Yes
Bembidion punctulatum	V	R	
Bembidion pygmaeum	V	R	
Blethisa multipunctata	3	3	Yes
Brachinus explodens	V	3	
Diachromus germanus	R		
Dyschirius intermedius	1	Yes	
Harpalus autumnalis	3		
Harpalus picipermis	3		
Harpalus xanthopus	V	R	
Licinus depressus	V		
Lionychus quadriillum	V		
Notiophilus aestivalis	V		
Omophron limbatum	V		
Perileptus areolatus	2	0	
Pterostichus gracilis	V	YES	

Categories of endangerment: R = rare, V = near threatened, 3 = vulnerable, 2 = endangered, 1 = critically endangered, 0 = regionally Extinct
Appendix 3

See Table 5.

Table 5 Statistical results of quasipoisson GLMs on responses of most abundant and indicator species to predictors ‘site type’ (slip-off slope/cut bank), ‘treatment’ (nature/ manage), ‘distance from river’ and ‘coverage of herbal layer’). Model for Poecilus cupreus did not fit due to low individual sums and was therefore excluded.

Species	Site type	Treatment	Distance	Vegetation	R²
Abax parallelepipedus	χ² = 1.9	χ² = 5.6	χ² = 2.3	χ² = 1.5	30.1
	P = 0.17	P = 0.02	P = 0.68	P = 0.23	
Amara convexor	χ² = 13.7	χ² = 4.8	χ² = 33.6	χ² = 6.0	50.7
	P < 0.001	P = 0.03	P < 0.001	P = 0.01	
Amara lunicollis	χ² = 5.0	χ² = 0.005	χ² = 16.4	χ² = 0.3	36.8
	P = 0.02	P = 0.95	P < 0.002	P = 0.58	
Demetrias monostigma	χ² = 7.8	χ² = 0.3	χ² = 17.7	χ² = 0.1	18.8
	P = 0.005	P = 0.61	P < 0.001	P = 0.71	
Elaphropus diabraclys	χ² = 0.2	χ² = 9.3	χ² = 21.5	χ² = 0.0	35.3
	P = 0.69	P = 0.002	P < 0.001	P = 1.0	
Harpalus affinis	χ² = 34.9	χ² = 8.0	χ² = 17.5	χ² = 0.1	30.5
	P < 0.001	P = 0.005	P = 0.001	P = 0.72	
Harpalus latus	χ² = 3.3	χ² = 22.5	χ² = 5.2	χ² = 0.1	35.0
	P = 0.06	P < 0.001	P = 0.27	P = 0.78	
Harpalus tardus	χ² = 8.8	χ² = 13.8	χ² = 8.3	χ² = 1.2	32.4
	P = 0.003	P < 0.001	P = 0.08	P = 0.28	
Lio mychus quadrillum	χ² = 436.4	χ² = 72.3	χ² = 47.4	χ² = 0.1	84.9
	P < 0.001	P < 0.001	P < 0.001	P = 0.80	
Microlestes minutulus	χ² = 72.2	χ² = 2.6	χ² = 36.8	χ² = 3.9	61.0
	P < 0.001	P = 0.11	P < 0.001	P = 0.05	
Philorhizus sigma	χ² = 0.1	χ² = 0.1	χ² = 8.8	χ² = 0.2	8.8
	P = 0.78	P = 0.75	P = 0.07	P = 0.69	
Poecilus versicolor	χ² = 18.6	χ² = 3.6	χ² = 8.6	χ² = 0.7	40.7
	P < 0.001	P = 0.05	P = 0.07	P = 0.41	

References

Anderson J, Hanssen O (2005) Riparian beetles, a unique, but vulnerable element in the fauna of Fennoscandia. Biodivers Conserv 14:3497–3524

Bates AJ, Sadler JP, Fowles AP (2006) Condition-dependent dispersal of a patchily distributed riparian beetle in response to disturbance. Oecologia 150:50–60

Bednarska AJ, Wyżga B, Mikus P, Kędzior R (2018) Ground beetle communities in a mountain river subjected to restoration: the Raba River, Polish Carpathians. Sci Total Environ 610–611:1180–1192

Bonn A, Hagen K, Wohlgemuth-von Reiche D (2002) The significance of flood regimes for carabid beetle and spider communities in riparian habitats: a comparison of three major rivers in Germany. River Res Appl 18:43–64

Boscaini A, Franceschini A, Maiolini B (2000) River ecotones: carabid beetles as a tool for quality assessment. Hydrobiologia 422(423):173–181

Bräuer G, Herzog M (1997) Landschaftsz wandel – Entwicklungsziele in der mit Schadstoffen belasteten Mulde. Nat Land Sachs Anhalt 34:47–49

Cartron J-LE, Molles MC, Schuetz JF, Crawford CS, Dahm CN (2003) Ground arthropods as potential indicators of flooding regime in the riparian forest of the Middle Rio Grande, New Mexico. Environ Entomol 32:1075–1084

Cavaillé P, Dommanget F, Daumoungue N, Loucoguaray G, Spigelberger T, Tabacchi E, Evette A (2013) Biodiversity assessment following a naturalness gradient of riverbank protection structures in French prealps rivers. Ecol Eng 53:22–30

Cormier RL, Gaidali T, Wood JK (2013) Assessing migratory stopover site quality for birds during fall migration along two California rivers. West N Am Nat 73:72–79

Denux O, Dauffy-Richard E, Mitchell EAD, Moretti M (2015) Functional responses of multitaxa communities to disturbance and stress gradients in a restored floodplain. J Appl Ecol 52:1364–1373

Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edn. Sage, Thousand Oaks

Gerisch M, Schanowski A, Figura W, Gerken B, Dziok F, Henle K (2006) Carabid beetles (Coleoptera, Carabidae) as indicators of...
hydrological site conditions in floodplain grasslands. Int Rev Hydrobiol 91:326–340

Gerisch M, Agostinelli V, Henke K, Dziack F (2012a) More species, but all do the same: contrasting effects of flood disturbance on ground beetle functional and species diversity. Oikos 121:508–515

Gerisch M, Dziack F, Schwanowski A, Ilg C, Henke K (2012b) Community resilience following extreme disturbances: the response of ground beetles to a severe summer flood in a central European lowland stream. River Res Appl 28:81–92

Gruppe A, Kilg M, Schopf R (2018) Restoration of a Danube floodplain forest: what happens to species richness of terrestrial beetles? Rest Ecol 26:729–739

Günther J, Assmann T (2005) Restoration ecology meets carabidology: effects of floodplain restoration on ground beetles (Coleoptera, Carabidae). Biodivers Conserv 14:1583–1606

Hauer FR, Locke H, Dreitz VJ, Hebblewhite M, Lowe WH, Muhlfeld CC, Nelson CR, Proctor MF, Rood SB (2016) Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes. Sci Adv 2:e1600026

Hering D, Arovita J, Baattrup-Pedersen A, Brabec K, Buijsse T, Ecke F, Friberg N, Gielczewski M, Januschke K, Köhler J, Kuplas B, Lorenz AW, Muhar S, Paillex A, Poppe M, Schmidt T, Schmutz S, Vermaat J, Verdonck PFM, Verdonck RM, Wolter C, Kail J (2015) Contrasting the roles of section length and instream habitat enhancement for river restoration success: a field study of 20 European restoration projects. J Appl Ecol 52:1518–1527

Homburg K, Homburg N, Schäfer F, Schultd A, Assmann T (2014) Carabids.org: a dynamic online database of ground beetle species traits (Coleoptera, Carabidae). Insect Conserv Divers 7:195–205

Jähnig SC, Brunzel S, Gacek S, Lorenz AW, Hering D (2009) Effects of re-braiding measures on hydromorphology, floodplain vegetation, ground beetles and benthic invertebrates in mountain rivers. J Appl Ecol 46:406–416

Januschke K, Verdonck RCM (2016) Effects of river restoration on riparian ground beetles (Coleoptera: Carabidae) in Europe. Hydrobiologia 769:93–104

Januschke K, Brunzel S, Haase P, Hering D (2011) Effects of stream restorations on riparian mesohabitats, vegetation and carabid beetles. Biodivers Conserv 20:3147–3164

Januschke K, Jähnig SC, Lorenz AW, Hering D (2014) Mountain river restoration measures and their success(on): effects on river morphology, local species pool, and functional composition of three organisation groups. Ecol Indic 38:243–255

Karthe D, Chiffard P, Cyffka B, Cyffka M, Kainz H, Raeder U, Sommerhäuser M, Weiler M (2017) Water research in Germany: from the reconstruction of the Roman Rhine to a risk assessment for aquatic neophytes. Environ Earth Sci 76:549

Klaiber J, Altermatt F, Birrer S, Chittaro Y, Dziack F, Gomnet Y, Hoess R, Keller D, Küchler D, Luka H, Manzke U, Müller A, Pfeifer MA, Roesti C, Schneider K, Schlegel J, Sonderegger P, Walter T, Holderegger R, Bergaminin A (2017) Fauna Indicativa. WSL Berichte 54:1–198

Kleiber C, Zeileis A (2018) AER: Applied Econometrics with R. R package version 1.2-6. https://cran.r-project.org/web/packages/AER/AER.pdf

Kleinwächter M, Rickfelder T (2007) Habitat models for a riparian carabid beetle: their validity and applicability in the evaluation of river bank management. Biodivers Conserv 16:3067–3081

Klemm W, Greif A, Broekaert JAC, Siemens V, Junge FW, van der Veen A, Schultze M, Duffek A (2005) A study on arsenic and the heavy metals in the Mulde River System. Acta Hydrochim Hydrobiol 33:475–491

Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305

Laliberté E, Legendre P, Shipley B (2015) Id: Measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. R package version 1.0-12. https://cran.r-project.org/web/packages/FD/FD.pdf

Lambeets K, Vandegehuette ML, Maelfait J-P, Bonte D (2008a) Understanding the impact of flooding on trait-displacements and shifts in assemblage structure of predatory arthropods on river banks. J Appl Ecol 71:1162–1174

Lambeets K, Hendrickx F, Vanacker S, Van Looy K, Maelfait J-P, Bonte D (2008b) Assemblage structure and conservation value of spiders and carabid beetles from restored lowland river banks. Biodivers Conserv 17:3133–3148

Lambeets K, Vandegehuette ML, Maelfait J-P, Bonte D (2009) Integrating environmental conditions and functional life-history traits for riparian arthropod conservation planning. Biodivers Conserv 14:625–637

Länderarbeitsgemeinschaft Wasser (Lawa) (1991) Die Gewässergütekarte der Bundesrepublik Deutschland 1990. Hagedornsitz, Berlin

Länderarbeitsgemeinschaft Wasser (Lawa) (2002) Gewässergüteatlas der Bundesrepublik Deutschland - Biologische Gewässergütekarte 2000 – Zustand der Gewässer in Deutschland. Kulturbuchverlag, Berlin

Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

Leyer I, Wesche K (2007) Multivariate Statistik in der Ökologie. Springer, Berlin

Liu Y, Wang Y, Huang H (2006) High interpopulation genetic differentiation and unidirectional linear migration patterns in Myricaria laxiflora (Tamaricaceae), an endemic riparian plant in the Three Gorges Valley of the Yangtze River. Am J Bot 93:206–215

Lorenz AW, Feld CK (2013) Upstream river morphology and riparian land use overrule local restoration effects on ecological status assessment. Hydrobiologia 704:489–501

Lorenz AW, Haase P, Januschke K, Sundermann A, Hering D (2018) Revisiting restored rivers reaches: assessing change of aquatic and riparian communities after five years. Sci Total Environ 613–614:1185–1195

McCune B, Grace JB (2002) Analysis of ecological communities. MJM Software Design, Gleneden Beach

Moretti M, Dias ATC, De Bello F, Altermatt F, Chown SL, Azcárate FM, Bell JR, Fournier B, Hedde M, Hortal J, Ibáñez S, Öckinger E, Sousa JP, Ellers J, Berg MP (2017) Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct Ecol 31:558–567

Müller-Motzfeld G (2006) Band 2, Adephaga 1: Carabidae (Laufkäfer). Springer, Berlin

Naiman RJ, Decamps H, Pollock M (1993) The role of riparian corridors in maintaining regional biodiversity. Ecol Appl 3:209–212

Noth C, Rola K, Węgrzyn M (2017) Detailed study of a river corridor in the Gorges Valley of the Yangtze River. Am J Bot 93:206–215

Noth C, Rola K, Węgrzyn M (2017) Detailed study of a river corridor in the Gorges Valley of the Yangtze River. Am J Bot 93:206–215

Oksanen J, Guillaume Blanchet F, Friendly M, Kindt R, Legendre P, McGlone D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2019) vegan: Community Ecology Package. R package version 2.5-4. https://CRAN.Rproject.org/package=vegan

Paetzold A, Yoshimura C, Tokekrn C (2008) Riparian arthropod responses to flow regulation and river channelization. J Appl Ecol 45:894–903

Paillex A, Schuwirth N, Lorenz AW, Januschke K, Peter A, Reichert P (2017) Integrating and extending ecological river assessment:
