L^2—interpolation with error and size of spectra

Alexander Olevskii and Alexander Ulanovskii

Abstract
Given a compact set S and a uniformly discrete sequence Λ, we show that "approximate interpolation" of delta–functions on Λ by a bounded sequence of L^2–functions with spectra in S implies an estimate on measure of S through the density of Λ.

1 Introduction

Suppose S is a bounded set on the real line \mathbb{R}. By PW_S we shall denote the corresponding Paley–Wiener space:

$$PW_S := \{ f \in L^2(\mathbb{R}); \hat{f} = 0 \text{ on } \mathbb{R} \setminus S \},$$

where

$$\hat{f}(t) := \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{itx} f(x) \, dx$$

denotes the Fourier transform. It is well–known that each function $f \in PW_S$ can be extended to the complex plane as an entire function of finite exponential type.

Given a discrete set $\Lambda = \{ \lambda_j, j \in \mathbb{Z} \} \subset \mathbb{R}$, one says that Λ is a uniformly discrete if

$$\inf_{j \neq k} |\lambda_j - \lambda_k| > 0.$$

This infimum is called the separation constant of Λ. The following inequality is well known (see [7], p. 82):

$$\|f\|_{L^2} \geq C \|f|_\Lambda\|_\ell^2,$$

for every $f \in PW_S$. (1)

Here $C > 0$ is a constant which depends only on the separation constant of Λ and S, $f|_\Lambda$ denotes the restriction of f on Λ, and

$$\|f\|_{L^2}^2 := \int_{\mathbb{R}} |f(x)|^2 \, dx, \quad \|f|_\Lambda\|_\ell^2 := \sum_{j \in \mathbb{Z}} |f(\lambda_j)|^2.$$
One can therefore regard the restriction $f|_\Lambda$ as an element of $l^2(\mathbb{Z})$, the $j-$th coordinate of $f|_\Lambda$ being $f(\lambda_j)$.

Definition. Λ is called a set of interpolation for PW_S, if for every data $c \in l^2(\mathbb{Z})$ there exists $f \in PW_S$ such that

$$f|_\Lambda = c.$$ \hfill (2)

A classical interpolation problem is to determine when Λ is a set of interpolation for PW_S.

The upper uniform density of a uniformly discrete set Λ is defined as

$$D^+(\Lambda) := \lim_{r \to \infty} \max_{a \in \mathbb{R}} \frac{\#(\Lambda \cap (a, a+r))}{r}.$$

A fundamental role of this quantity in the interpolation problem, in the case when S is a single interval, was found by A. Beurling and J-P. Kahane. Kahane proved in [2] that for Λ to be an interpolation set for PW_S it is necessary that

$$D^+(\Lambda) \leq \frac{1}{2\pi} \text{mes } S,$$ \hfill (3)

and it is sufficient that

$$D^+(\Lambda) < \frac{1}{2\pi} \text{mes } S.$$

Beurling ([1]) proved that the last inequality is necessary and sufficient for interpolation in the Bernstein space of all bounded on \mathbb{R} functions with spectrum on the interval S.

The situation becomes much more delicate for disconnected spectra, already when S is a union of two intervals. For the sufficiency part, not only the size but also the arithmetics of Λ is important. On the other hand, Landau [4] extended the necessity part to the general case:

Theorem A Let S be a bounded set. If a uniformly discrete set Λ is an interpolation set for PW_S then condition (3) is fulfilled.

2 Main result

Denote by $\{e_j, j \in \mathbb{Z}\}$ the standard orthogonal basis in $l^2(\mathbb{Z})$. When S is compact, it is shown in [6] that Theorem A remains true under
a weaker assumption that only $e_j, j \in \mathbb{Z}$, admit interpolation by functions from PW_S whose norms are uniformly bounded.

Let us say that δ—functions on Λ can be approximated with error d by functions from PW_S, if for every $j \in \mathbb{Z}$ there exists $f_j \in PW_S$ satisfying

$$\|f_j|_\Lambda - e_j\|_2 \leq d, \ j \in \mathbb{Z}. \quad (4)$$

The aim of this paper is to show that this ‘approximate’ interpolation of e_j already gives an estimate on the measure of S. The result below extends both Theorem A (for compact S) and the mentioned result from [6].

Theorem 1 Let S be a compact set, and Λ a uniformly discrete set. Suppose there exist functions $f_j \in PW_S$ satisfying (4) for some $0 < d < 1$ and

$$\sup_{j \in \mathbb{Z}}\|f_j\|_{L^2} < \infty. \quad (5)$$

Then

$$D^+(\Lambda) \leq \frac{1}{2\pi(1 - d^2)} \text{mes } S. \quad (6)$$

Bound (6) is sharp for every d.

This result was announced in [5].

Theorem 1 will be proved in sec. 4. A variant of this result holds also when the norms of f_j have a moderate growth, see sec. 5.

3 Lemmas

3.1. Concentration.

Definition: Given a number $c, 0 < c < 1$, we say that a linear subspace X of $L^2(\mathbb{R})$ is c-concentrated on a set Q if

$$\int_Q|f(x)|^2\,dx \geq c\|f\|_{L^2}^2, \ f \in X.$$

Lemma 1 Given sets $S, Q \subset \mathbb{R}$ of positive measure and a number $0 < c < 1$, let X be a linear subspace of PW_S which is c-concentrated on Q. Then

$$\dim X \leq \frac{(\text{mes } Q)(\text{mes } S)}{2\pi c}.$$
This lemma follows from H. Landau’s paper [4] (see statements (iii) and (iv) in Lemma 1, [4]).

3.2. A remark on Kolmogorov’s width estimate.

Lemma 2 Let $0 < d < 1$, and $\{u_j\}, 1 \leq j \leq n$, be an orthonormal basis in an n-dimensional complex Euclidean space U. Suppose that $\{v_j\}, 1 \leq j \leq n$, is a family of vectors in U satisfying

$$\|v_j - u_j\| \leq d, \ j = 1, \ldots, n.$$ \tag{7}

Then for any α, $1 < \alpha < 1/d$, one can find a linear subspace X in \mathbb{C}^n such that

(i) $\dim X > (1 - \alpha^2 d^2) n - 1$,

(ii) The estimate

$$\|\sum_{j=1}^{n} c_j v_j\|^2 \geq (1 - \frac{1}{\alpha}) \sum_{j=1}^{n} |c_j|^2,$$

holds for every vector $(c_1, ..., c_n) \in X$.

The classical equality for Kolmogorov’s width of “octahedron” (see [3]) implies that the dimension of the linear span of v_j is at least $(1 - d^2) n$. This means that there exists a linear space $X \subset \mathbb{C}^n$, $\dim X \geq (1 - d^2) n$ such that the quadratic form

$$\|\sum_{j=1}^{n} c_j v_j\|^2$$

is positive on the unite sphere of X. The lemma above shows that by a small relative reduction of the dimension, one can get an estimate of this form from below by a positive constant independent of n.

We are indebted to E. Gluskin for the following simple proof of this lemma.

Proof. Given an $n \times n$ matrix $T = (t_{k,l}), k, l = 1, ..., n$, denote by $s_1(T) \geq ... \geq s_n(T)$ the singular values of this matrix (=the positive square roots of the eigenvalues of TT^*).

The following properties are well-known:

(a) (Hilbert–Schmidt norm of T via singular values)

$$\sum_{j=1}^{n} s_j^2(T) = \sum_{k,l=1}^{n} |t_{k,l}|^2.$$
(b) (Minimax–principle for singular values)
\[s_k(T) = \max_{L_k} \min_{x \in L_k, \|x\| = 1} \|Tx\|, \]
where the maximum is taken over all linear subspaces \(L_k \subseteq \mathbb{C}^n \) of dimension \(k \).

(c) \(s_{k+j}(T_1 + T_2) \leq s_k(T_1) + s_j(T_2) \), for all \(k + j \leq n \).

Denote by \(T_1 \) the matrix, whose columns are the coordinates of \(v \) in the basis \(u_k \), and \(T_2 := I - T_1 \), where \(I \) is the identity matrix. Then property (a) and (7) imply:

\[\sum_{j=1}^{n} s_j^2(T_2) < d^2 n, \]
and hence:
\[s_j^2(T_2) \leq d^2 \frac{n}{j}, \quad 1 \leq j \leq n. \]

Now (c) gives:
\[s_k(T_1) \geq 1 - s_{n-k}(T_2) \geq 1 - d \sqrt{\frac{n}{n - k}}. \]

Taking the appropriate value of \(k \), one can obtain from (b) that there exists \(X \) satisfying conclusions of the lemma.

4 Proof of Theorem 1

1. Fix a small number \(\delta > 0 \) and set \(S(\delta) := S + [-\delta, \delta] \). Set
\[g_j(x) := f_j(x)\varphi(x - \lambda_j), \quad \varphi(x) := \left(\frac{\sin(\delta x/2)}{\delta x/2} \right)^2. \tag{8} \]
Clearly, \(\varphi \in PW_{[-\delta, \delta]} \), so that \(g_j \in PW_{S(\delta)} \). Also, since \(\varphi(0) = 0 \) and \(|\varphi(x)| \leq 1, x \in \mathbb{R} \), it follows from (4) that each \(g_j|_{\Lambda} \) approximates \(e_j \) with an \(l^2 \)-error \(\leq d \):
\[\|g_j|_{\Lambda} - e_j\|_{l^2} \leq d, \quad j \in \mathbb{Z}. \tag{9} \]

2. Given two numbers \(a \in \mathbb{R} \) and \(r > 0 \), set
\[\Lambda(a, r) := \Lambda \cap (a - r, a + r), \quad n(a, r) := \#\Lambda(a, r). \]
For simplicity of presentation, in what follows we assume that \(\Lambda(a, r) = \{ \lambda_1, \ldots, \lambda_{n(a, r)} \} \).

For every \(g \in PW_{S(\delta)} \), we regard the restriction \(g|_{\Lambda(a, r)} \) as a vector in \(\mathbb{C}^{n(a, r)} \). It follows from (9) that the vectors \(v_j := g_j|_{\Lambda(a, r)} \) satisfy (7), where \(\{ u_j, j = 1, \ldots, n(a, r) \} \) is the standard orthogonal basis in \(\mathbb{C}^{n(a, r)} \).

In the rest of this proof, we shall denote by \(C \) different positive constants which do not depend on \(r \) and \(a \).

Fix a number \(\alpha > 1 \). By Lemma 2, there exists a subspace \(X = X(a, r) \subset \mathbb{C}^{n(a, r)} \), \(\dim X \geq (1 - \alpha^2 d^2)n(a, r) - 1 \), such that

\[
\left\| \left(\sum_{j=1}^{n(a, r)} c_j g_j \right)|_{\Lambda(a, r)} \right\|_2^2 \geq (1 - \frac{1}{\alpha}) \sum_{j=1}^{n(a, r)} |c_j|^2, \ (c_1, \ldots, c_{n(a, r)}) \in X.
\]

By (1), this gives:

\[
\| \sum_{j=1}^{n(a, r)} c_j g_j \|_{L^2}^2 \geq C \sum_{j=1}^{n(a, r)} |c_j|^2, \ (c_1, \ldots, c_{n(a, r)}) \in X. \tag{10}
\]

3. By (5), we have

\[
|f_j(x)|^2 = \left| \frac{1}{\sqrt{2\pi}} \int_S e^{-itx} \hat{f}_j(t) \, dt \right|^2 \leq \frac{\text{mes } S}{2\pi} \| \hat{f}_j \|_{L^2}^2 \leq C, \ j \in \mathbb{Z}.
\]

Observe also that, since \(\Lambda \) is uniformly discrete, we have \(n(a, r) \leq Cr \), for every \(a \in \mathbb{R} \) and \(r > 1 \).

4. Since \(|x - \lambda_j| \geq \delta r \) whenever \(\lambda_j \in (a-r, a+r) \) and \(|x-a| \geq r+\delta r \), the inequalities in step 3 and (8) give

\[
\int_{|x-a| \geq r+\delta r} \left| \sum_{j=1}^{n(a, r)} c_j g_j(x) \right|^2 \, dx =
\]

\[
\int_{|x-a| \geq r+\delta r} \left(\sum_{j=1}^{n(a, r)} c_j f_j(x) \right)^2 \, dx \leq
\]

\[
Cr \left(\sum_{j=1}^{n(a, r)} |c_j|^2 \right) \int_{|x| > \delta r} \left(\frac{2}{\delta x} \right)^4 \, dx \leq \frac{C}{\delta^3 r^3} \left(\sum_{j=1}^{n(a, r)} |c_j|^2 \right).
\]
This and (10) show that for every \(\epsilon > 0 \) there exists \(r(\epsilon) \) such that the linear space of functions

\[
g(x) = \sum_{j=1}^{n(a,r)} c_j g_j(x), \ (c_1, \ldots, c_n(a,r)) \in X,
\]

is \((1 - \epsilon)\)–concentrated on \((a - r - \delta r, a + r + \delta r)\) for every \(r \geq r(\epsilon) \), and every \(a \in \mathbb{R} \).

5. Lemma 1 now implies

\[
\text{mes } S(\delta) \geq 2\pi (1 - \epsilon) \frac{\dim X}{\text{mes } (a - r - \delta r, a + r + \delta r)} \geq \frac{2\pi (1 - \epsilon) (1 - \alpha^2 d^2) \# (\Lambda \cap (a - r, a + r) - 1)}{1 + \delta}.
\]

Taking the limit as \(r \to \infty \), where \(a = a(r) \) is such that the relative number of points of \(\Lambda \) in \((a - r, a + r)\) tends to \(D^+(\Lambda) \), we get

\[
\text{mes } S(\delta) \geq \frac{2\pi (1 - \epsilon)}{1 + \delta} (1 - \alpha^2 d^2) D^+(\Lambda).
\]

Since this is true for every \(\epsilon > 0, \delta > 0 \) and \(\alpha > 1 \), we conclude that (6) is true.

Let us now check that estimate (6) in Theorem 1 is sharp.

Example. Pick up a number \(a, 0 < a < \pi \), and set \(S := [-a, a] \), \(\Lambda := \mathbb{Z} \) and

\[
f_j(x) := \frac{\sin a(x - j)}{\pi (x - j)} \in \text{PW}_S, \ j \in \mathbb{Z}.
\]

We have for every \(j \in \mathbb{Z} \) that

\[
\|f_j|_Z - e_j\|_2^2 = \|f_0|_Z - e_0\|_2^2 = \sum_{k \neq 0} \left(\frac{\sin a k}{\pi k} \right)^2 + \left(\frac{a}{\pi} - 1 \right)^2 = \frac{a}{\pi} - \frac{a^2}{\pi^2} + \left(\frac{a}{\pi} - 1 \right)^2 = 1 - \frac{a}{\pi}.
\]

Hence, the assumptions of Theorem 1 are fulfilled with \(d^2 = 1 - a/\pi \).

On the other hand, since \(D^+(\mathbb{Z}) = 1 \), we see that \(\text{mes } S = 2\pi (1 - d^2) D^+(\mathbb{Z}) \), so that estimate (6) is sharp.
5 Interpolation with moderate growth of norms

When the norms of functions satisfying (4) have a moderate growth
\[\|f_j\|_{L^2} \leq Ce^{|j|^\gamma}, \quad j \in \mathbb{Z}, \]
where \(C > 0 \) and \(0 < \gamma < 1 \), the statement of Theorem 1 remains true, provided the density \(D^+(\Lambda) \) is replaced by the upper density \(D^*(\Lambda) \),
\[D^*(\Lambda) := \limsup_{a \to \infty} \frac{\#(\Lambda \cap (-a, a))}{2a}. \]
Observe that \(D^*(\Lambda) \leq D^+(\Lambda) \).

Theorem 2 Let \(S \) be a compact set, and \(\Lambda \) a uniformly discrete set. Suppose there exist functions \(f_j \in PW_S \) satisfying (4) for some \(0 < d < 1 \) and (11). Then
\[D^*(\Lambda) \leq \frac{1}{2\pi(1 - d^2)} \text{mes } S. \]
(12)

The upper density in this theorem cannot be replaced with the upper uniform density, see Theorem 2.5 in [6]. The growth estimate (11) can be replaced with every ‘nonquasianalytic growth’. However, we do not know if it can be dropped.

Proof of Theorem 2. The proof is similar to the proof of Theorem 1.

1. Fix numbers \(\delta > 0 \) and \(\beta, \gamma < \beta < 1 \). There exists a function \(\psi \in PW_{(-\delta, \delta)} \) with the properties:
\[\psi(0) = 1, \quad |\psi(x)| \leq 1, \quad |\psi(x)| \leq Ce^{-|x|^\beta}, \quad x \in \mathbb{R}, \]
(13)
where \(C > 0 \) is some constant. Such a function can be constructed as a product of \(\sin(\delta_j x)/(\delta_j x) \) for certain sequence of \(\delta_j \) (see Lemma 2.3 in [6]).

Set
\[h_j(x) := f_j(x)\psi(x - \lambda_j), \quad j \in \mathbb{Z}. \]
Then each \(h_j|_{\Lambda} \) belongs to \(PW_{S(\delta)} \) and approximates \(e_j \) with an \(l^2 \)-error \(\leq d \).

2. Set
\[\Lambda_r := \Lambda \cap (-r, r), \]
and denote by C different positive constants independent on r.

The argument in step 2 of the previous proof shows that there exists a linear space $X = X(r)$ of dimension $\geq (1 - \alpha^2 d^2)\#\Lambda_r - 1$ such that

$$\| \sum_{j \in \Lambda_r} c_j h_j(x) \|_{L^2}^2 \geq C \sum_{j \in \Lambda_r} |c_j|^2,$$

for every vector $(c_j) \in X$.

3. Since Λ is uniformly discrete, we have $\# \Lambda_r \leq Cr$ and $\max \{|j|, j \in \Lambda_r\} \leq Cr, r > 1$. The latter estimate and (11) give:

$$|f_j(x)|^2 \leq \left(\frac{1}{\sqrt{2\pi}} \int_S |\hat{f}_j(t)| \, dt \right)^2 \leq \frac{\mes S}{2\pi} \|\hat{f}_j\|_{L^2}^2 \leq Ce^{Cr\gamma}, \quad j \in \mathbb{Z}.$$

4. Using the estimates in step 3 and (13), we obtain:

$$\int_{|x| \geq r + \delta r} \left| \sum_{j \in \Lambda_r} c_j h_j(x) \right|^2 \, dx =$$

$$\int_{|x| \geq r + \delta r} \left| \sum_{j \in \Lambda_r} c_j f_j(x)\psi(x - \lambda_j) \right|^2 \, dx \leq$$

$$\left(\sum_{j \in \Lambda_r} |c_j|^2 \right) \left(Cr e^{Cr\gamma} \int_{|x| > \delta r} e^{-2|x|^\beta} \, dx \right).$$

Since $\beta > \gamma$, the last factor tends to zero as $r \to \infty$. This and the estimate in step 2 show that for every $\epsilon > 0$ there exists $r(\epsilon)$ such that the linear space of functions

$$\sum_{j \in \Lambda_r} c_j h_j(x), \quad (c_j) \in X,$$

is $(1 - \epsilon)$-concentrated on $(-r - \delta r, r + \delta r)$, for all $r \geq r(\epsilon)$.

5. Now, by Lemma 1, we obtain:

$$\mes S(\delta) \geq \frac{2\pi (1 - \epsilon) (1 - \alpha^2 d^2) \# (\Lambda \cap (-r, r) - 1)}{1 + \delta}.$$

By taking the upper limit as $r \to \infty$, this gives

$$\mes S(\delta) \geq \frac{2\pi (1 - \epsilon)}{1 + \delta} (1 - \alpha^2 d^2) D^*(\Lambda).$$

Since this is true for every $\epsilon > 0, \delta > 0$ and $\alpha > 1$, we conclude that (12) is true.
References

[1] Beurling, A. Interpolation for an interval in \mathbb{R}^1. In: The collected Works of Arne Beurling, Vol.2, Harmonic Analysis. Birkhauser, Boston, 1989.

[2] Kahane, J.-P. Sur les fonctions moyenne-périodiques bornées. Ann. Inst. Fourier, 7, 1957, 293–314.

[3] Kolmogorov, A. N., Petrov, A. A. and Smirnov, Yu. M. A formula of Gauss in the theory of the method of least squares, Izv. Akad. Nauk SSSR Ser. Mat. 11 (1947), 561–566.

[4] Landau, H. J. Necessary density conditions for sampling and interpolation of certain entire functions. Acta Math. 117, 1967, 37–52.

[5] Olevskii, A., Ulanovskii, A. Interpolation by functions with small spectra. C. R. Math. Acad. Sci. Paris 345 (2007), no. 5, 261–264.

[6] Olevskii, A., Ulanovskii, A. Interpolation in Bernstein and Paley–Wiener spaces. Pre-print. Oberwolfach Preprints, OWP 2008-04. ISSN 1864-7596.

[7] Young, R.M. An introduction to Nonharmonic Fourier Series. Academic Press. 2001.