Dynamic 5-HT_{2C} Receptor Editing in a Mouse Model of Obesity

Harriët Schellekens^{1,5}, Gerard Clarke^{2,3}, Ian B. Jeffery⁶, Timothy G. Dinan^{1,2,3}, John F. Cryan^{1,2,4}

¹Food for Health Ireland, University College Cork, Cork, Ireland, ²Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland, ³Department of Psychiatry, University College Cork, Cork, Ireland, ⁴Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland, ⁵School of Pharmacy, University College Cork, Cork, Ireland, ⁶Department of Microbiology, University College Cork, Cork, Ireland

Abstract

The central serotonergic signalling system has been shown to play an important role in appetite control and the regulation of food intake. Serotonin exerts its anorectic effects mainly through the 5-HT_{1B}, 5-HT_{2C} and 5-HT₆ receptors and these are therefore receiving increasing attention as principal pharmacotherapeutic targets for the treatment of obesity. The 5-HT_{2C} receptor has the distinctive ability to be modified by posttranscriptional RNA editing on 5 nucleotide positions (A, B, C, D, E), having an overall decreased receptor function. Recently, it has been shown that feeding behaviour and fat mass are altered when the 5-HT_{2C} receptor RNA is fully edited, suggesting a potential role for 5-HT_{2C} editing in obesity. The present studies investigate the expression of serotonin receptors involved in central regulation of food intake, appetite and energy expenditure, with particular focus on the level of 5-HT_{2C} receptor editing. Using a leptin-deficient mouse model of obesity (ob/ob), we show increased hypothalamic 5-HT_{1A} receptor expression as well as increased hippocampal 5-HT_{1A}, 5-HT_{1B} and 5-HT₆ receptor mRNA expression in obese mice compared to lean control mice. An increase in full-length 5-HT_{2C} expression, depending on time of day, as well as differences in 5-HT_{2C} receptor editing were found, independent of changes in total 5-HT_{2C} receptor mRNA expression. This suggests that a dynamic regulation exists of the appetite-suppressing effects of the 5-HT_{2C} receptor, depending on the time of day, as well as differences in 5-HT_{2C} receptor editing were found, independent of changes in total 5-HT_{2C} receptor expression and altered 5-HT_{2C} receptor editing profile reported here is poised to have important consequences for the development of novel anti-obesity therapies.

Introduction

Obesity is rapidly increasing in prevalence in developed countries [1,2]. Thus, there is increasing medical and societal needs for novel treatments, which induce appetite suppression and weight loss. Satiety and appetite control pathways have been studied extensively both in animals and humans but the exact underlying molecular mechanisms remain unclear [3,4,5,6]. It is well established that increased serotonin (5-hydroxytryptamine, 5-HT) neurotransmission in the brain regulates food intake [7,8,9]. In particular, 5-HT_{1B}, 5-HT_{2C} and 5-HT₆ receptors have received attention as promising anti-obesity therapeutic targets [10,11,12, 13,14,15]. Centrally acting serotonergic agents, including sibutramine, m-chlorophenylpiperazine (mCPP) and fenfluramine, act as potent appetite suppressants [16,17,18]. However, these compounds are pharmacologically promiscuous, showing activity across multiple 5-HT and non-5-HT pathways and receptors, and accordingly exert many unwanted side effects. A better understanding of the mechanisms by which serotonergic receptors regulate appetite and energy homeostasis may lead to the development of novel effective anti-obesity drugs.

Within the serotonergic system, the 5-HT_{2C} receptor requires special attention due to its distinctive ability to be modified by post-transcriptional RNA editing [19]. The 5-HT_{2C} receptor pre-RNA can be enzymatically edited on 5 specific nucleotide positions (A, B, C, D, E) converting an adenosine to inosine residues, causing amino acid sequence changes. Selective editing can generate up to 32 different mRNA isoforms translating into 24 predicted protein sequences, all with unique signalling features (Figure 1). Even though not all 5-HT_{2C} isoforms have been tested to date, it is accepted that increased RNA editing reduces receptor constitutive activity and decreases agonist potency and G-protein coupling, resulting in an overall decreased receptor function [19,20,21,22, 23,24,25]. In addition, distribution of edited 5-HT_{2C} isoforms has been shown to be different across brain regions [26]. Therefore, differential editing of the 5-HT_{2C} receptors in the CNS may have important consequences for the functional properties of the receptor in vivo. Recently, it has been shown that feeding behaviour and fat mass are altered when studying mice engineered to express a fully edited 5-HT_{2C} receptor isoform in the brain, suggesting a potential role for 5-HT_{2C} receptor editing in obesity [24,27,28]. In addition, 5-HT_{2C} RNA editing status has been implicated in psychiatric and...
stress-related disorders and has been shown to be a dynamic process, demonstrating changes in response to either stress or pharmacotherapeutic drug across in vitro and in vivo studies [26,29,30,31,32,33,34,35]. The 5-HT2C receptor RNA editing profile within obesity phenotypes and its impact on feeding has so far, to our knowledge not been investigated. The ob/ob mouse, a leptin protein deficient strain, is one of the most widely used mouse model of obesity and is characterized by several metabolic and neuroendocrine abnormalities, including a prominent hyperphagia leading to obesity [36,37,38,39]. This study aims to analyse central mRNA expression levels of 5-HT receptors related to feeding (5-HT1A, 5-HT1B, 5-HT6, 5-HT2C) within this mouse model of obesity and is characterised by several metabolic and neuroendocrine abnormalities, including a prominent hyperphagia leading to obesity [36,37,38,39].

Materials and Methods

Animals

Animals, male ob/ob mice (n = 8–10 per cohort) and lean littermate controls (n = 8–10 per cohort), generated on a C57BL/6 background, were purchased from Harlan, UK. The sample size is based on a power calculation aimed at detecting differences at the 0.05 level. Mice were received at the facility when they were 5 to 6 weeks old. Groups of four mice were housed in standard holding cages in a light-controlled (12-hour light/dark cycle; lights on at 7.45 am), temperature-controlled (21°C ± 1) and humidity-controlled (55 ± 10%) environment. Water was available ad libitum throughout the study and 10 g pre-weighed standard lab chow (2018S Teklad Global 18% Protein Rodent Diet) was given per mouse each day. Mice were weighed each day between 9am and 10am and the amount of daily food intake was calculated. Animals were sacrificed at ages between 8 and 9 weeks using cervical dislocation. The hypothalamus and hippocampus were the two regions where most of the analysis is carried out. The brains were removed from the skull and placed with ventral side up on an ice-cold Petri dish. For dissection, the coordinates of the brain regions were selected according to the “The Mouse Brain in Stereotaxic Coordinates, 3rd Edition” [40].

Neurotransmitter concentrations

Neurotransmitter concentrations were determined in ob/ob mice and control littermates, using a modification of a previously described procedure [41]. Briefly, brain tissue was sonicated in 500 µl of chilled mobile phase spiked with 4 ng/40 ul of N-Methyl-5-HT (Sigma Chemical Co., UK) as internal standard. The mobile phase contained 0.1 M citric acid, 5.6 mM octane-1-sulphonic acid (Sigma), 0.1 M sodium dihydrogen phosphate, 0.01 mM EDTA (Alkem/Reagecon), and was adjusted to pH 2.8 using 4N sodium hydroxide (Alkem/Reagecon). Homogenates were then centrifuged for 15 minutes at 14,000 rpm at 4°C and 40 µl of the supernatant injected onto the HPLC system which consisted of a SCL 10-Avp system controller, LECD 6A electrochemical detector (Shimadzu), a 4.6 mm, Phenomenex) maintained at 30°C, a reverse-phase column (Kinetex 2.6 u C18 100×4.6 mm, Phenomenex) maintained at 30°C was employed in the separation (Flow rate 0.9 ml/min). The glassy carbon working electrode combined with an Ag/AgCL reference electrode.

Figure 1. Serotonin 2C receptor gene structure. A) The human full-length 5-HT2C gene, located on the X chromosome and processed from mRNA encoded from exon 3 to exon 6 after splicing out intronic sequence is depicted (not including 3'- or 5'- untranslated regions and not according to scale). B) The 5-HT2C gene is translated into a seven-transmembrane G-protein coupled receptor. The editing cassette is located in the second intracellular loop. C) The nucleotide sequence of the 5-HT2C editing cassette is depicted including the five nucleotide positions prone to adenosine to inosine editing.
(Shimadzu) was operated at a +0.8 V and the chromatograms generated were analysed using Class-VP 5 software (Shimadzu). The neurotransmitters were identified by their characteristic retention times as determined by standard injections, which were run at regular intervals during the sample analysis. The ratios of peak heights of analyte versus internal standard were measured and compared with standard injection. Results were expressed as ng of neurotransmitter per g fresh weight of tissue.

Sample preparation
Total RNA was isolated using the Absolutely RNA® Miniprep kit (Stratagene, La Jolla, USA) according to manufacturer’s instructions. Briefly, brain tissues were homogenized using a Polytron PT2100 in RNA lysis buffer and nucleic acids were extracted using a buffer and spin column protocol. The nucleic acids were subsequently washed and separated using an elution column. DNase treatment was carried out using the Ambion Turbo DNase kit (Ambion, Warrington, UK) according to manufacturer’s instructions. RNA quality and RNA integrity number (RIN) were determined using the Agilent™ Bioanalyzer (Agilent, Stockport, UK). RNA samples that satisfied criteria (RIN value >7) were reverse transcribed to cDNA using the High Capacity cDNA kit (Applied Biosystem, Warrington, UK) according to manufacturer’s protocol. Briefly, Multiscribe Reverse Transcriptase (50 U/L) was added as part of the RT master mix, incubated at 25°C for 10 minutes, at 37°C for 2 hours, at 85°C for 5 minutes and stored at 4°C.

Real-time quantitative RT-PCR
Quantitative PCR (Q-PCR) was carried out using 6 carboxy fluorescein (FAM™) dye-labeled TaqMan® MGB probes supplied by Applied Biosystems™ to mouse specific 5-HT1A, 5-HT1B, total 5-HT2C, full-length 5-HT2C, 5-HT6, ADAR1 and ADAR2 while using β-Actin as an endogenous control [Mm00434106_s1; Mm00439577_s1; Mm00434127_m1; Mm00664865_m1; Mm0045320_m1; Mm00439579_m1; Mm00557717_m1; Mm00508001_m1; Mm00504621_m1; Mm00607999_s1]. Custom made probes to detect differentially edited 5-HT2C isoforms (Table 1), were also supplied by Applied Biosystems and designed according to a recently described method [42]: 5-HT2C associates (non edited form), probe = [Fam]tagaatactgatctcagttcagg [MGB/NFQ]; 5-HT2C[V/N] (ABD edited form), probe = [Fam]tagaactgatctcagttcag [MGB/NFQ]; 5-HT2C[V/NV] (ABC edited form), probe = [Fam]tagaactgatctcagttcag [MGB/NFQ]; 5-HT2C[V/GV] (ABECD edited form), probe = [Fam]tagaactgatctcagttcag [MGB/NFQ]; 5-HT2C[AGC] (AGC edited form), probe = [Fam]tagaactgatctcagttcag [MGB/NFQ]. Reaction mix was prepared using TaqMan® Universal PCR Master Mix (Applied Biosystems, Warrington, UK). Q-PCR was carried out on the ABI7300 Real Time PCR machine (Applied Biosystems, Warrington, UK). Samples were heated to 95°C for 10 minutes, and then subjected to 50 cycles of amplification by melting at 95°C and annealing at 60°C for 1 minute. Experimental samples were run in triplicate with 1 μL cDNA per reaction. No template controls were included in each run in triplicate to check for amplicon contamination. Cycle threshold (Ct) values were normalised using β-Actin and transformed using the 2−ΔΔCt method [43]. Fold change of relative gene expression level compared to control animals was calculated.

Sequence analysis
Direct sequencing of 5-HT2C receptor transcripts was performed after amplification of the editing cassette of the 5-HT2C receptor. The editing cassette was amplified with PCR using the following primer sets: Editing cassette sense; 5’-TGCTGCTATGCTGGTGGACT-3’, Editing cassette antisense; 5’-TGCTCCTGAGCTCAATCCAGCAG-3’. PCR products were run on a 2% agarose gel to reduce background on sequencing chromatogram. Expected bands (~300 bp) were isolated and purified using Purelink gel extraction kit (Invitrogen) according to manufacturer’s instructions. Purified amplicons were eluted in 20 μl elution buffer and sent to Eurofins MWG operon for custom DNA sequencing using primer Editing sequence antisense; 5’-GATATTGCCCAAACGATGTCG-3’. Sequencing chromatograms were aligned using Clustal W and raw relative peak amplitude data for each sample was analyzed. Editing frequency was quantified comparing the height of the adenosine and guanosine peaks on the sequencing chromatogram. Gross editing frequency was calculated using the following formula: X = G height/ (A height + G height). The real editing frequency was calculated following the calibration quotient: A site: Y = 1.114X, B site: 1.009X. Pyrosequencing analysis of the 5-HT2C receptor RNA editing profiles were performed using next generation 454-sequencing. Briefly, the 5-HT2C editing cassette was PCR purified using similar primers as described above with the addition of an adaptor, designated adaptor A (5’-CGTATTCGCCCTGGTCGCTGGCCGATCAC-3’) in forward primer as well as barcode 1 for lean control animals (ACGAGTGCGT) and barcode 2 for ob/ob animals (ACGCTGCAGA). In addition, a reverse primer, similar as above, was used including an adaptor, B (5’-CTATCGGCGTCGAGCAGGGGTCTAG-3’). Bands of correct size (~300 bp) were isolated and purified using Purelink gel extraction kit (Invitrogen) according to manufacturer’s instructions. Following gel purification, PCR products were precipitated with sodium acetate to remove chaotropic salts. PCR products from ob/ob (n=8) and lean control (n=8) were pooled, respectively, and PCR product was sent on dry ice to Roche (Branford CT USA) for 454-sequencing on a Roche 454 GS-FLX using Titanium chemistry.

Statistical Analysis
Results for body weight and food intake are expressed as mean ± SEM. A two-way repeated measures ANOVA was used where appropriate with planned comparisons. Analysis of mRNA expression levels is depicted as fold change compared to control. Gene expression data are presented as the mean values ± SEM. Two-tailed unpaired Student’s t-test were used to compare baseline values in obese and lean animals with a correction for multiple tests. The statistical significance was indicated as follows: * indicates p<0.05; ** indicates p<0.01 and *** indicates p<0.001. For the pyrosequencing dataset, the sequenced cDNA amplicons were quality filtered using Lucy software with the defaults for maximum acceptable average probability of error (0.025) and the maximum probability of error that is allowed for the 2 bases at each end (0.02). Sequences were aligned with MUSCLE (version 3.8.31) [44]. Identification of differentially associated RNA editing sites was carried out by assigning sequences based on the associated barcode, using the barcode identifiers. Frequencies of each base at the sites of interest were analysed using the Fisher’s exact test with Bonferroni correction.

Results
Food intake and body weight
In our experiments, the leptin-deficient ob/ob mice were hyperphagic, consuming 50% more food compared to their controls during ad libitum conditions, and displayed significantly
5-HT_{2C} Isoform	DNA Sequence (AnB-nnn-ECn-nn-Dnn)	Nr sequences	% Relative occurrence	Nr sequences	% Relative occurrence	Total nr sequences	% Relative occurrence
5HT2C (VNV) ABD edited form	GnG-nnn-AAn-nnn-Gnn	3607	17.20	3429	16.37	7036	33.58
5HT2C (VNV) AD edited form	GnA-nnn-AAn-nnn-Gnn	283	1.40	253	1.21	536	2.56
5HT2C (VNI) AB edited form	GnG-nnn-AAn-nnn-Ann	1871	8.90	2175	10.38	4046	19.31
5HT2C (VNI) A edited form	GnA-nnn-AAn-nnn-Ann	857	4.10	962	4.59	1819	8.68
5HT2C (VSV) ABCD edited form	GnG-nnn-AGn-nnn-Gnn	1278	6.10	1094	5.22	2372	11.32
5HT2C (VSV) ACD edited form	GnA-nnn-AGn-nnn-Gnn	60	0.30	63	0.30	123	0.59
5HT2C (INI) UNEDITED AnA-nnn-AAn-nnn-Ann	720	3.40	588	2.81	1308	6.24	
5HT2C (VGV) ABECD edited form	GnG-nnn-GGn-nnn-Gnn	374	1.70	303	1.46	677	3.26
5HT2C (VSI) ABC edited form	GnG-nnn-AGn-nnn-Ann	850	4.10	997	4.76	1847	8.78
5HT2C (VSI) AC edited form	GnA-nnn-AGn-nnn-Ann	119	0.60	114	0.54	233	1.11
5HT2C (MNI) B edited form	AnG-nnn-AAn-nnn-Ann	45	0.20	48	0.23	93	0.44
5HT2C (IDI) E edited form	AnA-nnn-GAn-nnn-Ann	19	0.10	20	0.09	39	0.18
5HT2C (ISI) C edited form	AnA-nnn-AGn-nnn-Ann	67	0.30	61	0.29	128	0.61
5HT2C (INV) D edited form	AnA-nnn-AAn-nnn-Ann	354	1.70	354	1.67	708	3.37
5HT2C (VDV) ABEC edited form	GnG-nnn-GAn-nnn-Gnn	26	0.10	21	0.10	47	0.22
5HT2C (VDV) AED edited form	GnA-nnn-GAn-nnn-Gnn	16	0.08	18	0.09	34	0.16
5HT2C (ISV) CD edited form	AnA-nnn-AGn-nnn-Gnn	6	0.00	9	0.04	15	0.07
5HT2C (MNV) BD edited form	AnG-nnn-AAn-nnn-Gnn	54	0.26	40	0.19	94	0.44
5HT2C (VGI) ABEC edited form	GnG-nnn-GGn-nnn-Ann	30	0.10	26	0.12	56	0.27
5HT2C (VGI) AEC edited form	GnA-nnn-GGn-nnn-Ann	31	0.10	27	0.12	58	0.27
5HT2C (IGV) ECD edited form	AnA-nnn-GGn-nnn-Gnn	1	0.00	10	0.05	11	0.05
5HT2C (MSI) BC edited form	AnG-nnn-AGn-nnn-Ann	6	0.00	6	0.03	12	0.06
5HT2C (IGI) EC edited form	AnA-nnn-GGn-nnn-Ann	6	0.00	7	0.03	13	0.06
5HT2C (IDV) ED edited form	AnA-nnn-GAn-nnn-Gnn	14	0.07	13	0.06	27	0.13
5HT2C (MDI) BE edited form	AnG-nnn-GAn-nnn-Ann	0	0.00	0	0.00	0	0.00
5HT2C (MDI) BEC edited form	AnG-nnn-GGn-nnn-Ann	0	0.00	0	0.00	0	0.00
5HT2C (MDV) BCD edited form	AnG-nnn-AGn-nnn-Gnn	0	0.00	0	0.00	0	0.00
5HT2C (MSV) BCD edited form	AnG-nnn-AGn-nnn-Gnn	0	0.00	0	0.00	0	0.00
5HT2C (MGV) BECD edited form	AnG-nnn-GGn-nnn-Gnn	0	0.00	0	0.00	0	0.00

Table 1. Major mouse hypothalamic 5-HT_{2C} mRNA isoforms analysed using pyrosequencing.
higher body weights characteristic of the obesity phenotype (Figure 2A and B). When analysing body weight, repeated measures ANOVA showed significant main effect of genotype; $F(1;14) = 66.421; p < 0.001$, as well as a significant interaction of day and genotype; $F(1.938;27.135) = 33.589; p < 0.001$, and a significant main effect of day: $F(1.938;27.135) = 420.308; p < 0.001$. In addition, food intake analysed using repeated measures ANOVA showed a significant main effect of genotype; $F(1;2) = 52.333; p < 0.001$, as well as a significant interaction of day and genotype; $F(17.904;35.808) = 5.993; p < 0.001$, and a significant main effect of day: $F(17.904;35.808) = 5.081; p < 0.001$.

Serotonin turnover

Serotonin levels and serotonin metabolites were analysed in a different cohort of animals in the hypothalamus and hippocampus (Figure 3). No changes in 5-HT levels could be detected in ob/ob mice compared to control (data not shown). However, an overall decrease in the 5HIAA levels was observed (data not shown) leading to significant decrease in 5HIAA/5HT ratio in ob/ob mice in hippocampus ($p < 0.001$) and hypothalamus ($p < 0.01$) compared to lean control littermates. The hypothalamus is the main processor and integrator of peripheral metabolic information controlling food intake and plays a key role in the homeostatic regulation of appetite and energy metabolism [3,45]. The hippocampus, a brain structure involved in learning and memory function, has recently been linked with food intake control [46].

Serotonergic receptor mRNA expression

To determine central serotonergic receptor expression in relation to the obesity phenotype, hypothalamic serotonin receptor mRNA expression was analysed using quantitative real-time PCR together with mRNA levels in the hippocampus and amygdala. The hippocampal 5-HT1A ($p < 0.001$), 5-HT1B ($p < 0.001$) and 5-HT6 ($p < 0.01$) were significantly increased in obese, leptin-deficient mice compared to their lean counterpart control (Figure 4A, B and C). On the hypothalamic level, only the 5-HT1A receptor of 5-HT receptors analysed demonstrated a significant ($p = 0.042$) increased expression in obese mice compared to lean control (Figure 4A). Total 5-HT2C mRNA expression was analysed using a probe spanning the exon 3 and 4 boundary of translated mRNA, detecting the full-length 5-HT2C receptor expression as well as expression of all splice variants. No differential expression of total 5-HT2C receptor mRNA expression was observed between ob/ob and control groups in all regions assessed (Figure 4D). However, when analysing 5-HT2C receptor mRNA expression levels using a probe spanning the exon 5 and 6 boundary which solely detects full-length 5-HT2C receptor mRNA, a significant ($p = 0.004$) increase in expression of full-length 5-HT2C mRNA was observed in the hypothalamus of obese mice relative to the lean mice (Figure 5A). No difference in full-length 5-HT2C mRNA expression was observed in the hippocampus or amygdala (data not shown).

Hippocampal 5-HT2C receptor editing

Editing of the 5-HT2C receptor relative to total 5-HT2C mRNA levels in the hippocampus was analysed by a recently described real-time PCR method using a 5-HT2C probes specific for several edited 5-HT2C isoforms, all expressed in mouse brain [26,42]. Specific significantly increased expression of the 5-HT2C-VNV isoform (ABD edited), indicative of increased editing, was observed in the hippocampus ($p = 0.003$) of ob/ob mice compared to lean control (Figure 6B). A numerical decrease in mRNA levels of the unedited 5-HT2C-INI isoform was noted in ob/ob mice compared to control.
to control, but this effect was not statistically significant (Figure 6A).
No difference was observed when analysing mRNA expression
with the 5-HT$_{2C}$-VSV (ABCD edited) or the 5-HT$_{2C}$-VGV
(ABECD edited) probe (Figure 6C and 6D). No differential editing
of 5-HT2C receptor in amygdala was found (data not shown). In
addition, the 5-HT2C receptor editing frequency was analysed
using a direct sequencing method, pinpointing the change in 5-
HT2C editing to position A and B of the editing cassette (Figure 7),
which corresponds to the isoform detected with the 5-HT2C-VNV
(ABD edited) probe.

Hypothalamic 5-HT$_{2C}$ receptor editing

In the hypothalamus, using quantitative real-time PCR, a
significant increase in 5-HT$_{2C}$ mRNA editing in \textit{ob/ob} mice
compared to control was shown for all edited 5-HT$_{2C}$ isoforms
tested (Figure 8). However, no difference in editing could
be observed for the 5-HT$_{2C}$ receptor using direct sequencing (data
not shown). This apparent contradiction between sequencing
results and quantitative real-time PCR outcome may be explained
by the observed increased mRNA levels of full-length 5-HT$_{2C}$
(Figure 5A). Full-length 5-HT$_{2C}$ can be edited and therefore an
increase of all major 5-HT$_{2C}$ isoforms, including the low abundant
isoforms, may merely reflect an increase of full-length 5-HT$_{2C}$
receptor. This concept is reinforced by the observed lack of an
increase in full-length 5-HT$_{2C}$ mRNA levels observed in the
evening (Figure 5B) coupled with unchanged mRNA levels of 5-
HT$_{2C}$ isoforms (data not shown). To more precisely pinpoint if
hypothalamic 5-HT$_{2C}$ receptor editing is affected in obese versus
lean mice, samples were analysed using pyrosequencing, which is a
more sensitive and quantitative method of sequencing. In
pyrosequencing, approximately equal amounts of cDNA ampli-
cons from \textit{ob/ob} mice (14763) compared to lean control (14958)
were sequenced, with a combined total of 29721 reads. After
sequence validation and filtering, a total of 20951 sequences,
comprising both lean control and \textit{ob/ob} 5-HT$_{2C}$ editing cassette
sequences were passed and aligned accordingly. Pyrosequencing
demonstrated the 5-HT$_{2C}$–VNV (ABD/AD edited), 5-HT$_{2C}$–VNI
(AB/A edited) and the 5-HT$_{2C}$–VSV (ABCD/ACD edited)
isoforms to be indeed the major isoforms, in decreasing order of
occurrence (Table 1). The fully edited isoform, 5-HT$_{2C}$–VGV
(ABECD/AECD edited) was one of the least abundantly expressed
isoforms. Specific 5-HT$_{2C}$ RNA residues in the pooled \textit{ob/ob} group

Figure 4. Central serotonin (5-HT) receptor mRNA expression. A) 5-HT$_{1A}$ mRNA is increased in \textit{ob/ob} mice in hippocampus and
hypothalamus. B) 5-HT$_{1B}$ mRNA is increased in \textit{ob/ob} mice in hippocampus. C) 5-HT$_{6}$ mRNA is increased in \textit{ob/ob} mice in hippocampus. D) No change
in mRNA levels of total 5-HT$_{2C}$ mRNA measured using qRT-PCR relative to \textit{b}-actin expression. Fold changes depicted compared to hippocampus in
control group. Unpaired, two-tailed T-test; statistical significance is notated as *** p<0.001, ** p<0.01, * p<0.05 compared to lean control; n = 7–8
per genotype.
doi:10.1371/journal.pone.0032266.g004
Figure 5. Daytime and nighttime full-length 5-HT$_{2C}$ receptor mRNA expression in the hypothalamus. A) Significantly increased expression of the full-length 5-HT$_{2C}$ receptor in hypothalamus of ob/ob mice was observed in daytime. B) No change in expression of the full-length 5-HT$_{2C}$ receptor was observed in animals culled in nighttime. mRNA measured using qRT-PCR relative to β-actin expression. Unpaired, two-tailed T-test; statistical significance is noted as ** p < 0.01, compared to lean control; n = 7–10 per genotype.

doi:10.1371/journal.pone.0032266.g005

Figure 6. 5-HT$_{2C}$ receptor editing in the hippocampus. Expression of 5-HT$_{2C}$ receptor isoforms in order of fully unedited isoform to fully edited 5-HT$_{2C}$ receptor isoform. A) Decreased expression of the unedited 5-HT$_{2C}$-INI isoform in hippocampus of ob/ob mice, but not statistically significant. B) Significantly increased expression of the edited 5-HT$_{2C}$-VNV (ABD edited) isoform in hippocampus of ob/ob mice. C) No change in mRNA levels of 5-HT$_{2C}$-VSV (ABCD edited) isoform. D) No change in mRNA levels of the 5-HT$_{2C}$-VGV (ABECD edited) isoform. All mRNA measured using qRT-PCR relative to β-actin expression and depicted as fold change compared to lean control littermates. Unpaired, two-tailed T-test; statistical significance is noted as ** p < 0.01, compared to lean control; n = 7–8 per genotype.

doi:10.1371/journal.pone.0032266.g006
were compared to the pooled lean control group and pinpointed an increase in editing on position A ($p = 2.07 \times 10^{-28}$) and a decrease in editing on position D ($p = 4.47 \times 10^{-21}$) in ob/ob mice compared to control (Table 2). This small but significant change of editing corresponds to an increase of the 5-HT$_{2C}$-VNI isoform in ob/ob mice compared to lean counterpart (Table 1). The 5-HT$_{2C}$

Figure 7. 5-HT$_{2C}$ receptor editing in the hippocampus. Editing of hippocampal the 5-HT$_{2C}$ receptor was pinpointed to nucleotide position A and B using direct sequencing. A) Column scatter plot of editing frequencies on site A and B of the editing cassette. B) A typical reverse complement chromatogram trace of an ob/ob mouse is depicted. Specific editing positions A to E are indicated by arrows. C) A typical control chromatogram is depicted. Unpaired, two-tailed T-test; statistical significance is notated as * $p<0.05$, compared to lean control; $n=5$ per genotype.

doi:10.1371/journal.pone.0032266.g007

Figure 8. 5-HT$_{2C}$ receptor editing in the hypothalamus. Expression of 5-HT$_{2C}$ receptor isoforms in order of fully unedited isoform to fully edited 5-HT$_{2C}$ receptor isoform. A) No change in expression of the unedited 5-HT$_{2C}$-INI isoform. B) Significantly increased expression of the edited 5-HT$_{2C}$-VNI (AB edited) isoform in hypothalamus of ob/ob mice. C) Significantly increased expression of the edited 5-HT$_{2C}$-VNV (ABD edited) isoform in hypothalamus of ob/ob mice. D) Significant increase in expression of mRNA levels of 5-HT$_{2C}$-VSV (ABCD edited) in ob/ob mice compared to control. E) Significant increase in expression of mRNA levels of 5-HT$_{2C}$-VGV (ABECD edited) isoform. All mRNA measured using qRT-PCR relative to β-actin expression and depicted as fold change compared to lean control littermates. Unpaired, two-tailed T-test; statistical significance is notated as ** $p<0.01$, * $p<0.05$ compared to lean control; $n=7$–8 per genotype.

doi:10.1371/journal.pone.0032266.g008
receptors are widely expressed in the hypothalamus, well beyond the pro-opiomelanocortin (POMC) expressing neurons of the arcuate nucleus regulating feeding behaviour, and this small increase in 5-HT2C-VNI isoform may well be diluted by other 5-HT2C receptor expressing nuclei in the hypothalamus.

Hypothalamic adenosine deaminase mRNA levels and effect of time

In samples harvested during the daytime, no significant alterations in adenosine deaminase acting on RNA (ADAR1 and ADAR2), the enzymes responsible for editing, were observed in either hippocampus or hypothalamus (Figure 9 A to D). However, a decrease of ADAR1 mRNA expression was observed in hippocampal tissue of ob/ob mice compared to lean control, but

Table 2. Site-specific hypothalamic 5-HT2C mRNA editing in ob/ob mice compared to control.

Edit site percentage (%)	A	B	E	C	D
Lean Control (n=8)	87.58	75.23	3.67	24.39	55.18
ob/ob (n=8)	90.01	76.67	3.01	23.7	50.65
Δ (%)	↑ 2.43	↑ 1.44	↓ 0.66	↓ 0.69	↓ 4.5
P-value	2.07*10^-8	-	-	-	4.47*10^-11

Hippocampal deaminase (ADAR) mRNA expression. No significantly increased expression of the adenosine deaminase, ADAR1 (A) or ADAR2 (B) in the hippocampus. No significantly increased expression of the hypothalamic adenosine deaminase, ADAR1 (C) or ADAR2 (D) in hypothalamus during the day. No significantly increased expression of the hypothalamic adenosine deaminase, ADAR1 (E) at nighttime. However, ADAR2 mRNA levels at nighttime are significantly reduced in hypothalamus of ob/ob mice (F). All mRNA is measured using qRT-PCR relative to β-actin expression. Unpaired, two-tailed T-test; statistical significance is notated as * p<0.05 compared to lean control; n = 7–10 per genotype.

do:10.1371/journal.pone.0032266.t002

do:10.1371/journal.pone.0032266.g009

Figure 9. Adenosine deaminase (ADAR) mRNA expression. No significantly increased expression of the adenosine deaminase, ADAR1 (A) or ADAR2 (B) in the hippocampus. No significantly increased expression of the hypothalamic adenosine deaminase, ADAR1 (C) or ADAR2 (D) in hypothalamus during the day. No significantly increased expression of the hypothalamic adenosine deaminase, ADAR1 (E) at nighttime. However, ADAR2 mRNA levels at nighttime are significantly reduced in hypothalamus of ob/ob mice (F). All mRNA is measured using qRT-PCR relative to β-actin expression. Unpaired, two-tailed T-test; statistical significance is notated as * p<0.05 compared to lean control; n = 7–10 per genotype.

do:10.1371/journal.pone.0032266.t002

do:10.1371/journal.pone.0032266.g009
Moreover, editing of the 5-HT2C receptor on specific nucleotide leptin-deficient obese mouse model. The increased hypothalamic full-length 5-HT2C receptor curb the phenotypical associated hyperphagia.

full-length 5-HT 2C receptor expression was observed. The samples taken at the onset of the dark phase (nighttime) no altered after the active phase of the animals (daytime samples), while in expression in obese mice was observed only in samples harvested intake and appetite. Previously, it has been shown that 5-HT2C hypothalamic full-length 5-HT2C in the nighttime is the active phase of the mouse where baseline food important to investigate whether 5-HT2C receptor editing was as well as in hypothalamic tissue. In conclusion, we suggest that 5-HT2C receptor mRNA expression changes and 5-HT2C receptor editing may play a key role in the observed hyperphagic phenotype in the leptin-deficient obese mouse model.

Serotonin 2C receptor mRNA expression

Hypothalamic full-length 5-HT2C receptor mRNA levels were increased in obese mice relative to lean controls, which reinforce the key role of the 5-HT2C receptor in the regulation of food intake and appetite. Previously, it has been shown that 5-HT2C receptor mutants are hyperphagic leading to an obese phenotype and impaired glucose tolerance [48]. In addition, hyperphagia in A/y mice with increased expression levels of the agouti peptide has been associated with increased hypothalamic 5-HT2C expression [49]. The increased hypothalamic full-length 5-HT2C receptor expression in obese mice was observed only in samples harvested after the active phase of the animals (daytime samples), while in samples taken at the onset of the dark phase (nighttime) no altered full-length 5-HT2C receptor expression was observed. The nighttime is the active phase of the mouse where baseline food intake is greater. We therefore hypothesize that the increase in hypothalamic full-length 5-HT2C in the ob/ob mouse may occur as a compensatory mechanism during the active phase of food intake in an attempt to increase the 5-HT2C mediated satiety signalling and curb the phenotypical associated hyperphagia.

Serotonin 2C receptor editing

Considering recent data, demonstrating that that feeding behaviour and fat mass are altered in mice engineered to express a fully edited 5-HT2C receptor isoform [24,27,28], we found it important to investigate whether 5-HT2C receptor editing was affected in a physiological model of obesity. We therefore set out to determine the expression of specific edited isoforms of the 5-HT2C receptor using specific probes detecting the major editing variants of the 5-HT2C receptor in the hippocampus and hypothalamus. In addition, we employed direct sequencing to pinpoint the exact editing position. Noteworthy, the employment of direct sequencing to quantify RNA editing has its limitations as the height of peaks depicting the same nucleotide can differ within a chromatogram, although we found nucleotide height to be consistent based on position. Therefore, this technique requires careful interpretation and should be used in support of other methods, such as the qRT-PCR employed here. This study demonstrated altered 5-HT2C receptor editing in both the hippocampus and the hypothalamus of the obese mouse model. Increased 5-HT2C editing in the hippocampus could be pinpointed to position A and B of the 5-HT2C receptor editing cassette. A recent study showed that hippocampal leptin signalling reduced food intake and that ventral hippocampal leptin signalling contributes to the inhibition of food-related memories elicited by contextual stimuli [46] indicating a key role for hippocampal mediated regulation of food intake. The absence of hippocampal leptin signalling in the leptin deficient ob/ob mice may suggest abnormal food-related memory processing to be involved in the hyperphagic phenotype (but see [50]). Our findings suggest that differential 5-HT2C isoform expression potentially also plays a key role in the hippocampal mediated regulation of food intake and food-related memory processing. This hypothesis is reinforced by studies demonstrating the involvement of the 5-HT2C receptor in memory function and consolidation [51,52,53]. However, the hippocampus is mainly involved in learning and memory and involvement of 5-HT2C receptor editing within this domain of hippocampal function and particularly within psychological disorders, such as schizophrenia and seizure disorders such as epilepsy, remains to be investigated. Analysis of the editing profile of the 5-HT2C receptor in the hypothalamus demonstrated a significant increase in editing on position A but a significantly decreased editing on position D, corresponding to an increased expression of the partially edited 5-HT2C-VNI isoform. It is tempting to speculate on the functional consequences of selective 5-HT2C receptor mRNA editing in specific regions of the brain. Individual 5-HT2C isoforms have shown to demonstrate differential constitutive activity, affinity, potency and a different ability to couple to G-proteins [19,20,21,22,23,24,25]. An increased 5-HT2C receptor editing profile renders the 5-HT2C receptor less functional. Thus, the increased expression of the VNI edited 5-HT2C receptor isoform may point to a reduced cellular function. This supports the premise of decreased 5-HT2C receptor function in reducing appetite-suppression in the ob/ob mouse model. However, we cannot exclude that different hypothalamic nuclei express different 5-HT2C receptor editing isoforms.

Additionally, expression levels of the adenosine deaminases enzymes (ADAR1 and ADAR2), the enzymes responsible for RNA editing, were investigated. It has been shown that expression levels of both the enzymes ADAR1 and ADAR2 directly affect the RNA editing level of 5-HT2C [25,26,54,55,56]. ADAR1 selectively edits the A and B sites of the 5-HT2C receptor, whereas ADAR2 edits exclusively D site of the 5-HT2C receptor. No differential ADAR expression were found in the hippocampus (Figure 8A and 8B) or hypothalamus (Figure 8C and 8D) of the obese mice in the daytime experiments. This may suggest that the increased 5-HT2C editing in obese mice is not a consequence of altered ADAR expression but may potentially be due to other molecular mechanism, such as 5-HT2C receptor splicing or degradation. Interestingly, a significant decrease in ADAR2 mRNA levels, in hypothalamic ob/ob mice relative to the lean control mice, in samples taken in the evening was observed (Figure 8F). Reduced ADAR2 expression may lead to a subsequent decrease in editing on position D of the hypothalamic 5-HT2C editing cassette, as observed after pyrosequencing of hypothalamic 5-HT2C receptor during the daytime. In conclusion, altered 5-HT2C receptor editing in combination with changes in ADAR expression in ob/ob mice suggest a dynamic regulation in the appetite-suppressing activity of the 5-HT2C receptor through receptor editing.

Serotonin 1A, serotonin 1B and serotonin 6 receptor expression

We also showed significant increased hypothalamic 5-HT1A mRNA expression levels and increases in 5-HT1A, 5-HT1B and 5-
HT₆ receptor expression in the hippocampus of obese mice (ob/ob). Previously, exposure to 5-HT₁₃ receptor agonists have shown to increase food intake, which would be in line with the altered 5-HT₁₃ receptor expression [57,58,59]. The 5-HT₁₃A and 5-HT₁₃B receptors have also been shown to regulate 5-HT release by a negative feedback mechanism as presynaptic autoreceptors by exerting direct inhibitory effects [59]. In addition, down-regulation of neuropeptide release involved in food intake has also been demonstrated via serotonin-mediated activation of post-synaptic 5-HT₁₃A receptors in both AgRP/NPY and POMC/CART containing neurons of the arcuate nucleus [60]. Therefore, the increased post-synaptic 5-HT₁₃A and 5-HT₁₃B expression in hypothalamus and hippocampus may lead to a decrease in terminal serotonin release and may consequently reduce serotonergic activation of anorectic pathways as previously suggested [14]. Indeed, decreased 5HIAA levels and a decreased 5HIAA/5HT ratio were observed in obese, lep-tin deficient mice compared to lean control littermates, indicating decreased 5HT turnover, which is supported in a previous study by Rowland and colleagues [61]. However, 5-HT₁₃A has not been a major focus as a therapeutic target in obesity research and is implicated stronger in mice compared to lean control mice [50] which warrants further investigation. The 5-HT₆ receptor has also been implicated to play a role in the regulation of satiety and energy homeostasis. However, an effect on body weight is usually associated with antagonism of this receptor [64,65,66]. Overall, increased central 5-HT₁₃A, 5-HT₁₃B and 5-HT₆ receptor gene expression may contribute to the obesity phenotype by decreasing serotonergic tone leading to a decreased sensitivity towards satiety signals in the leptin-deficient ob/ob mice.

Together, these studies demonstrate aberrant mRNA expression changes in the 5-HT receptors studied in leptin deficient obese mice. Most interestingly, our findings suggest a diurnal hypothalamic 5-HT₂C receptor expression and increases in 5-HT₂C receptor editing in the ob/ob mouse model of obesity, which may have important physiological consequences to either the regulation of feeding behaviour through the modulation of 5-HT₂C receptor mediated appetite-suppressing effects or compensatory responses to the absence of leptin. The increase in 5-HT₂C receptor editing in the ob/ob mouse model would suggest the 5-HT₂C receptor editing to occur as a consequence of leptin-deficiency or as a compensatory mechanism to the phenotypical-associated weight gain or hyperphagia. However, significant reduced leptin levels have previously been associated with 5-HT₂C editing in mice genetically engineered to only express the 5-HT₂C-VGV isoform, the fully edited variant of the 5-HT₂C receptor [27]. These mice were also hyperphagic but had reduced fat mass due to increased energy expenditure. This may suggest, a bidirectional relationship between leptin and 5-HT₂C receptor editing independent of body weight but directly correlating to hyperphagia. It would be interesting to investigate if 5-HT₂C receptor editing would still occur in absence of weight gain in the ob/ob leptin-deficient mouse model. In addition, it would be interesting to see if 5-HT₂C receptor editing profiles are dynamically regulated such the observed diurnal change in full-length 5-HT₂C receptor mRNA expression in this study and the time-of day dependent ghrelin receptor mRNA expression observed in our previous studies [67]. In addition, these results warrant further investigation into corresponding 5-HT₂C receptor protein expression following the phenotype-associated 5-HT₂C receptor editing. Concomitant changes in 5-HT₂C receptor protein expression and receptor functioning could potentially support the conclusion that 5-HT₂C receptor editing is associated with obesity.

Acknowledgments

We would like to thank Caroline A. Browne, Daniela Felice and Beate Finger for technical assistance and Dr. Cedric Mombereau for advice on editing.

Author Contributions

Conceived and designed the experiments: HS JFC TGD. Performed the experiments: HS GC. Analyzed the data: HS IJ. Contributed reagents/materials/analysis tools: HS GC IJ. Wrote the paper: HS.

References

1. Bloom SR, Kuhajda FP, Laher I, Pi-Sunyer X, Ronnett GV, et al. (2008) The obesity epidemic: physiological challenges. Mol Interv 8: 2–98.
2. Schellekens H, Dinan TG, Cryan JF (2009) Lean mean fat reducing “ghrelin” machine: hypothalamic ghrelin and ghrelin receptors as therapeutic targets in obesity. Neuropharmacology 58: 2–16.
3. Simpson KA, Martin NM, Bloom SR (2009) Hypothalamic regulation of food intake and clinical therapeutic applications. Anq Bras Endocrinol Metabol 53: 120–131.
4. Simpson KA, Martin NM, Bloom SR (2008) Hypothalamic regulation of appetite. http://www.expert-review.com/ba/een 3: 577–592.
5. Ahina RS, Antwi DA (2008) Brain regulation of appetite and satiety. Endocrinol Metab Clin North Am 37: 811–823.
6. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwarz MW (2006) Central nervous system control of food intake and body weight. Nature 443: 289–295.
7. Teotoc LH, Sun LM, Alaan SF, Strack AM, Lowenstein DH, et al. (1995) Eating disorder and epilepsy in mice lacking 5-HT₂C serotonin receptors. Nature 374: 542–546.
8. Saller CF, Stricker EM (1976) Hyperphagia and increased growth in rats after intraventricular injection of 5,7-dihydroxytryptamine. Science 192: 385–387.
9. Teotoc LH (2007) Serotonin and the orchestration of energy balance. Cell Metab 6: 352–361.
10. Somerville EM, Herwood JM, Lee MD, Kennett GA, Clifton PG (2007) 5-HT(2C) receptor activation inhibits appetitive and consummatory components of feeding and increases brain c-fos immunoactivity in mice. Eur J Neurosci 25: 3115–3124.
11. Dutton AC, Barnes NM (2006) Anti-obesity pharmacotherapy: Future perspectives utilizing 5-HT₂C receptor agonists. Drug Discovery Today: Therapeutic Strategies 3: 577–583.
12. Garfield AS, Heider JK (2009) Pharmacological targeting of the serotonergic system for the treatment of obesity. J Physiol 587: 49–60.
13. Halford JC, Harrold JA, Boyland EJ, Lawton CL, Blundell JE (2007) Serotonergic drugs: effects on appetite expression and use for the treatment of obesity. Drugs 67: 27–55.
14. Lam DD, Heider JK (2007) Serotonin and energy balance: molecular mechanisms and implications for type 2 diabetes. Expert Rev Mol Med 9: 1–24.
15. Miller KJ (2003) Serotonin 5-htr2a receptor agonists: potential for the treatment of obesity. Mol Interv 3: 282–291.
16. Dalton GL, Lee MD, Kennett GA, Dourish CT, Clifton PG (2004) mCPP-induced hyperactivity in 5-HT2C receptor mutant mice is mediated by activation of multiple 5-HT receptor subtypes. Neuropharmacology 46: 663–671.
17. Dalton GL, Lee MD, Kennett GA, Dourish CT, Clifton PG (2006) Serotonin 1B and 2C receptor interactions in the modulation of feeding behaviour in the mouse. Psychopharmacology (Berlin) 183: 45–57.
18. Vickers SP, Clifton PG, Dourish CT, Teotoc LH (1999) Reduced satiating effect of d-fenfluramine in serotonin 5-HT(2C) receptor mutant mice. Psychopharmacology (Berl) 143: 309–314.
19. Burns CM, Chu H, Ruetter SM, Hutchinson LK, Canton H, et al. (1997) Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 397: 303–308.
20. Berg KA, Clarke WP, Cunningham KA, Spampinato U (2008) Fine-tuning serotonin2C receptor function in the brain: molecular and functional implications. Neuropharmacology 55: 969–976.
21. Berg KA, Cooper JD, Niouynder GM, Sanders-Bush E, Edmonson RB, et al. (2001) RNA-editing of the 5-HT(2C) receptor alters agonist-receptor-effector coupling specificity. Br J Pharmacol 134: 386–392.
22. Herrick-Davis K, Grinde E, Niswender CM (1999) Serotonin 5-HT2C receptor RNA editing alters receptor basal activity: implications for serotoninergic signal transduction. J Neurochem 73: 1711–1717.

23. Niswender CM, Copeland SC, Herrick-Davis K, Emerson RB, Sanders-Bush E (1999) RNA editing of the happylama2 gene in mice: effects on the hypothalamus. Proc Natl Acad Sci USA 96: 1395–1399.

24. O’Brian PJ, Chen CY, Cho DS, Murray JM, et al. (2010) Altered G protein-coupling functions of RNA editing isoform and splicing variant serotonin2C receptors. J Neurochem 74: 1290–1300.

25. Wang Q, O’Brien PJ, Chen CY, Cho DS, Murray JM, et al. (2000) Altered serotonin 5HT2C receptor and its effects on cell signalling, pharmacology and brain function. Pharmacol Ther 119: 7–23.

26. Kawahara Y, Grimmel A, Teegarden S, Momomura C, Liu S, et al. (2008) Dysregulated editing of serotonin 2C receptor mRNAs results in energy dissipation and loss of fat mass. J Neurosci 28: 12834–12844.

27. Morabito MV, Abbas AI, Hood JL, Kesterson RA, Jacobs MM, et al. (2010) Mice with altered serotonin 2C receptor RNA editing display characteristics of Prader-Willi syndrome. Neurobiol Dis 39: 169–180.

28. Doe CM, Relkovic D, Garfield AS, Dalley JW, Theobald DE, et al. (2009) Loss of the imprinted smnoRNA msi-52 leads to increased 5ht2c pre-RNA editing and altered 5HT2CR-mediated behaviour. Hum Mol Genet 18: 2140–2148.

29. Walker EA, Fleyl JJ (2010) Acquisition session length modulates consolidation effects produced by 5-HT2C ligands in a mouse autoshaping-operant procedure. Behav Pharmacol 21: 83–89.

30. Feng Y, Sansam CL, Singh M, Emerson RB (2006) Altered RNA editing in mice lacking ADAR2 autoregulation. Mol Cell Biol 26: 480–488.

31. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, et al. (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269: 540–543.

32. Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P (1995) Recombinant mouse-OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269: 546–549.

33. Werry TD, Loiacono R, Sexton PM, Christopoulos A (2008) RNA editing of the serotonin 5-hydroxytryptamine 2C receptor gene for embryonic erythropoiesis. Science 290: 645–651.

34. Gardner D, K. Du Y (2006) Ato-t edging of the 5HT2C receptor and behaviour. Brief Funct Genomic Proteomic 5: 57–62.

35. Kanoski SE, Hayes MR, Greenwald HS, Fortin SM, Giannetti CA, et al. (2011) Hippocampal L-Arginine Signaling Reduces Food Intake and Modulates Food-Related Memory Processing. Neuropsychopharmacology.

36. Gurevich I, Tamir H, Arango V, De配套设施 AJ, Mann JJ, et al. (2002) Altered RNA editing of serotonin 2C receptor pre-mRNA in the prefrontal cortex of depressed suicide victims. Neuron 34: 349–356.

37. Iwamoto K, Bundo M, Kato T (2009) Serotonin 2C receptor 2C and mental disorders: genetic, expression and RNA editing studies. RNA Biol 6: 240–253.

38. Iwamoto K, Kato T (2005) Altered RNA editing of serotonin 2C receptor pre-mRNA in the prefrontal cortex of depressed suicide victims. Neuron 34: 349–356.

39. Walkley EA, Fleyl JJ (2010) Acquisition session length modulates consolidation effects produced by 5-HT2C ligands in a mouse autoshaping-operant procedure. Behav Pharmacol 21: 83–89.

40. Feng Y, Sansam CL, Singh M, Emerson RB (2006) Altered RNA editing in mice lacking ADAR2 autoregulation. Mol Cell Biol 26: 480–488.

41. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, et al. (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269: 540–543.

42. Walker EA, Fleyl JJ (2010) Acquisition session length modulates consolidation effects produced by 5-HT2C ligands in a mouse autoshaping-operant procedure. Behav Pharmacol 21: 83–89.

43. Feng Y, Sansam CL, Singh M, Emerson RB (2006) Altered RNA editing in mice lacking ADAR2 autoregulation. Mol Cell Biol 26: 480–488.

44. Iwamoto K, Kato T (2005) Altered RNA editing of serotonin 2C receptor pre-mRNA in the prefrontal cortex of depressed suicide victims. Neuron 34: 349–356.

45. Suzuki K, Simpson KA, Minion JS, Shillito JC, Bloom SR (2010) The role of gut hormones and the hypothalamus in appetite regulation. Endocr J 57: 359–372.

46. Kanoski SE, Hayes MR, Greenwald HS, Fortin SM, Giannetti CA, et al. (2011) Hippocampal L-Arginine Signaling Reduces Food Intake and Modulates Food-Related Memory Processing. Neuropsychopharmacology.

47. Clifton PG, Kemnett GA (2006) Monoamine receptors in the regulation of feeding behaviour and energy balance. CNS Neurod Drug Targets 5: 291–312.

48. Nonogaki K, Nonoe K, Oka Y (2006) Hyperphagia alters expression of hypothalamic 5-HT2C and 5-HT1B receptor genes and plasma des-acyl ghrelin levels in Ay mice. Endocrinology 147: 5893–5900.

49. Rogers BC, Duan TG, Cryan JF (2010) Leptin-deficient mice retain normal appetitive spatial learning yet exhibit marked increases in anxiety-related behaviours. Psychopharmacology (Berl) 210: 559–568.

50. Meneses A (1999) Are 5-HT(1B/1D) and 5-HT(2A/2B/2C) receptors involved in learning and memory processes? IBrugs 2: 796–801.

51. Nonogaki K, Nonoe K, Oka Y (2006) Hyperphagia alters expression of hypothalamic 5-HT2C and 5-HT1B receptor genes and plasma des-acyl ghrelin levels in Ay mice. Endocrinology 147: 5893–5900.

52. Walker EA, Fleyl JJ (2010) Acquisition session length modulates consolidation effects produced by 5-HT2C ligands in a mouse autoshaping-operant procedure. Behav Pharmacol 21: 83–89.

53. Feng Y, Sansam CL, Singh M, Emerson RB (2006) Altered RNA editing in mice lacking ADAR2 autoregulation. Mol Cell Biol 26: 480–488.

54. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, et al. (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269: 540–543.

55. Walkley EA, Fleyl JJ (2010) Acquisition session length modulates consolidation effects produced by 5-HT2C ligands in a mouse autoshaping-operant procedure. Behav Pharmacol 21: 83–89.

56. Feng Y, Sansam CL, Singh M, Emerson RB (2006) Altered RNA editing in mice lacking ADAR2 autoregulation. Mol Cell Biol 26: 480–488.

57. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, et al. (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269: 540–543.

58. Walkley EA, Fleyl JJ (2010) Acquisition session length modulates consolidation effects produced by 5-HT2C ligands in a mouse autoshaping-operant procedure. Behav Pharmacol 21: 83–89.

59. Feng Y, Sansam CL, Singh M, Emerson RB (2006) Altered RNA editing in mice lacking ADAR2 autoregulation. Mol Cell Biol 26: 480–488.

60. Feng Y, Sansam CL, Singh M, Emerson RB (2006) Altered RNA editing in mice lacking ADAR2 autoregulation. Mol Cell Biol 26: 480–488.

61. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, et al. (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269: 540–543.