Merkel Cell Spinal Metastasis: Management in the Setting of a Poor Prognosis

C. Rory Goodwin¹ Ankit I. Mehta¹ Owoicho Adogwa² Rachel Sarabia-Estrada¹ Daniel M. Sciubba¹

¹Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
²Division of Neurosurgery, Department of Surgery, Duke University, Durham, North Carolina, United States

Global Spine J 2015;5:e39–e43.

Address for correspondence Daniel M. Sciubba, MD, Department of Neurosurgery, The Johns Hopkins University, 600 North Wolfe Street, Meyer 7-109, Baltimore, MD 21287, United States (e-mail: jsciubb1@jhmi.edu).

Introduction

Merkel cell carcinoma (MCC) is a rare neuroendocrine malignancy of the skin, initially named after Friedrich Merkel in 1875. Although Merkel’s description of this tumor subtype was based on a description of moles,¹ the true pathologic diagnosis was ultimately defined as a “trabecular carcinoma of the skin” almost 100 years later by Cyril Toker in 1972.² The name is derived from the neurosecretory granules in the tumor cells that likely originate from the neural crest, derivative of Merkel cells.³ After Toker’s description, the number of MCC cases reported increased substantially, with an incidence of 44 per 100,000.⁴ MCC is more common in Caucasians (~94%), older populations (average age of ~72 years), and males (men are two times more likely to be diagnosed than women).⁵,⁶ The most common location in tumor diagnosis is the head and neck, followed by the trunk and extremities. Fifty-two percent of the patients have regional lymph node involvement at initial diagnosis, and 34% of this patient population presents with distant metastases.⁷ MCC has 5-year relative survival rates for localized, regional, and distant MCC of 75, 59, and 25%, respectively, with a
mortality rate of \(\sim 33\% \) (nearly twice that of metastatic melanoma).\(^5,8\)

There are currently six reports in the literature of MCC causing metastatic epidural spinal cord compression (MESCC) with four reports demonstrating survival of 1 to 4 months after surgical decompression and stabilization with or without chemotherapy and/or radiation.\(^9-14\) Here we review the literature on MCC causing MESCC, and we present the seventh case of MCC metastasis to the spine causing MESCC.

Case Report

Preoperative

A 76-year-old man was diagnosed with MCC after biopsy of a skin lesion on his left upper back over the scapula. He subsequently had a wide excision, and a sentinel lymph node biopsy 2 months later revealed a 2.8-cm tumor and 4/8 lymph nodes were positive. He underwent complete axillary dissection 3 months after the diagnosis, followed by adjuvant external radiation therapy over the left scapula with a total dose of 50 Gy in 200-cGy fractions, which ended 5 months after the diagnosis. He developed a recurrent tumor in the left axilla and the left anterior chest 10 months after the diagnosis. The patient underwent resection of these tumors 11 months after the diagnosis followed by 68 Gy of radiation therapy that was completed 14 months after the diagnosis. Prior to the admission for MESCC, the patient ambulated with a walker at baseline and used an ankle foot orthotic on his left side for residual hemiparesis from a stroke in 1989.

Hospital Course

The patient presented to the emergency room with right lower extremity weakness and difficulty with ambulation resulting in several falls over a 1- to 2-week period 16 months after initial diagnosis. He denied trauma, numbness, tingling, paresthesias, or urinary/bowel dysfunction. On neurologic exam, the patient’s left lower extremity motor strength was 1 to 2/5 throughout, and the right lower extremity was 4/5, with upgoing toes and hyperreflexia. An MRI demonstrated a T5 solitary epidural mass encasing and compressing the spinal cord that extended into the paraspinal muscles bilaterally, left greater than right, focused at the T5 vertebral body and extending from the midlevel of T4 with neural foraminal invasion to the middle of the T6 vertebral body (Fig. 1). The patient underwent a T5 transpedicular approach for an intralesional resection through a corpectomy with cage placement and a T3–T7 posterior spinal fusion because the bony destruction involved the entire vertebral body and posterior neural elements encasing the spinal cord (Fig. 2). Postoperatively, the patient’s motor exam improved to 3/5 in his left lower extremity (baseline from a previous stroke) and 5/5 strength in the right lower extremity, and he was able to ambulate with a walker again. Pathologic examination demonstrated a metastatic neuroendocrine tumor consistent with his prior diagnosis of MCC.

Postoperative

Three weeks postoperatively, as the patient was to begin postoperative radiation treatment, he developed new-onset weakness in his bilateral lower extremities. MRI of the thoracic spine revealed new sites of metastatic disease at T2–T3 and T6–T11 with epidural compression at the T8 vertebral body. After discussion with the family, the patient was admitted to hospice care 6 weeks after his surgery.

Discussion

MESCC is found in 5 to 10% of patients diagnosed with spinal column metastases and is associated with progressive disability secondary to the compression of the neural elements.

Fig. 1 (A) Sagittal and (B) axial magnetic resonance imaging demonstrating a metastatic Merkel cell carcinoma tumor involving the vertebral body and encasing the spinal cord.
Decompressive surgery combined with radiation is the standard treatment for the tumors that are not highly radiosensitive and is shown to increase the efficacy in preserving neurologic function and to improve ambulation when compared with radiation therapy alone.15,16 The factors associated with a longer survival in patients with MESCC were the ability to walk before and after therapy,17–19 a single site of epidural cord compression,20 a radiosensitive tumor histology,17,18 and no visceral or brain metastasis.21 Here we present a case of MCC metastatic to the thoracic spine that had several factors consistent with a favorable prognosis and prolonged ambulatory status including a single site of epidural cord compression on presentation, radiosensitive tumor histology, and no evidence of visceral or brain metastasis on presentation. Based on prior studies of metastatic disease to the spine, one could predict that the patient presented should have a more prolonged ambulatory status and possibly an improved prognosis; however, despite the favorable factors previously mentioned, the patient developed progressive lower extremity weakness secondary to metastatic progression of his primary tumor.

All of the prior cases of MCC metastasis to the spine demonstrated poor survival consistent with the study performed by Allen et al (9–14,22 in their review of 251 patients diagnosed with MCC, 14 of whom presented with distant metastasis, Allen et al found that the 2-year survival rate was 11\% with a 9-month median survival.22 The ability to predict the survival of patients with metastatic disease is critical in determining a management strategy. Certain groups advocate for a greater than 3-month prognosis before recommending operative therapy,23 although others recommend greater than 6 to 7 months.24,25 Although the \textit{“prognosis threshold”} varies within the literature, the primary tumor subtype appears to be the most paramount factor in determining the patient prognoses before an operative intervention should be considered.15,25 In the six prior reports of MCC metastasis to the spine, by the time the primary tumor was detected in the spine, the prognosis was 9 months or less with an average survival of 3.5 months (5 of 6 patients died within 4 months; 9–14 Given the dismal prognoses associated with rarer tumors such as MCC, further studies are needed to determine the most appropriate cutoff when operative intervention should be considered.

In conclusion, MESCC caused by MCC is rare with six reported cases in the literature.12–14 We report the seventh patient with MCC metastases to the spine and the fourth case showing neurologic decline in the setting of MESCC requiring decompressive surgery. This is the first case of MCC that encased the spinal cord causing both anterior and posterior bony destruction that necessitated corpectomy with cage placement and posterior stabilization. In ambulatory patients presenting with spinal metastasis, a metastatic workup with a needle biopsy is the first-line treatment. Acute neurosurgical decompression is the standard of care in patients presenting with a progressive decline in motor strength, ambulatory status, and/or bowel/bladder dysfunction. With such poor survival rates for patients diagnosed with MCC, although neurologic decline warrants aggressive treatment, the risks and benefits of a surgical intervention must be carefully considered. In certain tumor subtypes, the primary end point of ambulatory status may not be as useful in assessing whether surgical intervention is beneficial, and further studies are needed to determine the appropriate management paradigm for patients diagnosed with rarer metastatic primary tumors.

\textbf{Fig. 2} (A) Sagittal computed tomography scan and (B) thoracic spine radiograph demonstrating a T5 corpectomy and cage placement with T3–T7 posterior fusion.
Table 1 Case reports of Merkel cell metastases to the spine

Study	Case presentation	Tumor location	Surgical treatment	Adjunct therapy	Survival/time to hospice post-neurologic presentation
Chao et al9	23-y-old woman with upper back pain and bilateral lower extremity weakness	T3–T4	None	Steroids and radiation	4.5 mo (death from metastatic progression)
Moayed et al11	70-y-old man with back pain and right lower extremity radiculopathy	Right lumbosacral area	None	Radiation only	9 mo (death from metastatic progression)
Turgut et al13	63-y-old man with 1-mo left-sided L5 radiculopathy and dorsiflexion weakness	L5–S1	Laminectomy with subtotal tumor resection	Chemotherapy (cisplatin, doxorubicin, etoposide, bleomycin)	2 mo (death from metastatic progression)
Vijay et al14	57-y-old woman with 2-mo back pain, progressive lower extremity weakness to flaccid paraplegia, numbness, and bladder/bowel incontinence	T8, L4, S1	Laminectomy and debulking at T8, L4, S1	Chemotherapy (cisplatin, doxorubicin, etoposide) and radiotherapy	1 mo (death from metastatic progression)
Ng et al12	73-y-old man with 4-wk lower extremity numbness, weakness, and 3-d bowel/bladder incontinence	T5–T7	T5–T7 laminectomy with subtotal tumor resection and unilateral pedicle screw stabilization	None	1 mo (death from wound infection/pneumonia)
Madden et al10	55-y-old man with 3-wk thoracic back pain	T6–T8	T6–T8 laminectomy with subtotal tumor resection	Radiation only	4 mo (hospice secondary to metastatic progression)

Disclosures
C. Rory Goodwin, none
Ankit I. Mehta, none
Owoicho Adogwa, none
Rachel Sarabia-Estrada, none
Daniel M. Sciubba, none

References
1 Goessling W, McKee PH, Mayer RJ. Merkel cell carcinoma. J Clin Oncol 2002;20(2):588–598
2 Toker C. Trabecular carcinoma of the skin. Arch Dermatol 1972;105(1):107–110
3 Tang CK, Toker C. Trabecular carcinoma of the skin: an ultrastructural study. Cancer 1978;42(5):2311–2321
4 Hodgson NC. Merkel cell carcinoma: changing incidence trends. J Surg Oncol 2005;89(1):1–4
5 Agelli M, Clegg LX. Epidemiology of primary Merkel cell carcinoma in the United States. J Am Acad Dermatol 2003;49(5):832–841
6 Albores-Saavedra J, Batch K, Chable-Monterro F, Sagy N, Schwartz AM, Henson DE. Merkel cell carcinoma demographics, morphology, and survival based on 3870 cases: a population based study. J Cutan Pathol 2010;37(1):20–27
7 Akhtar S, Oza KK, Wright J. Merkel cell carcinoma: report of 10 cases and review of the literature. J Am Acad Dermatol 2000;43(5 Pt 1):755–767
8 Becker JC. Merkel cell carcinoma. Ann Oncol 2010;21(Suppl 7):vii81–vii85
9 Chao TC, Park JM, Rhee H, Greager JA. Merkel cell tumor of the back detected during pregnancy. Plast Reconstr Surg 1990;86(2):347–351
10 Madden NA, Thomas PA, Johnson PL, Anderson KK, Arnold PM. Thoracic spinal metastasis of Merkel cell carcinoma in an immunocompromised patient: case report. Evid Based Spine Care J 2013;4(1):54–58
11 Moayed S, Maljdian C, Adam R, Bonakdarpour A. Magnetic resonance imaging appearance of metastatic Merkel cell carcinoma to the sacrum and epidural space. Magn Reson Imaging 2000;18(8):1039–1042
12 Ng G, Lenehan B, Street J. Metastatic Merkel cell carcinoma of the spine. J Clin Neurosci 2010;17(8):1069–1071
13 Turgut M, Gökpınar D, Baruţaş S, Erkuş M. Lumbosacral metastatic extradural Merkel cell carcinoma causing nerve root compression —case report. Neurol Med Chir (Tokyo) 2002;42(2):78–80
14 Vijay K, Venkateswaran K, Shetty AP, Rajasekaran S. Spinal extradural metastasis from Merkel cell carcinoma: a rare cause of paraplegia. Eur Spine J 2008;17(Suppl 2):S267–S270
15 Chaichana KL, Woodworth GF, Sciubba DM, et al. Predictors of ambulatory function after decompressive surgery for metastatic...
epidural spinal cord compression. Neurosurgery 2008;62(3):683–692, discussion 683–692
16 Patchell RA, Tibbs PA, Regine WF, et al. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. Lancet 2005;366(9486):643–648
17 Rades D, Fehlauer F, Schulte R, et al. Prognostic factors for local control and survival after radiotherapy of metastatic spinal cord compression. J Clin Oncol 2006;24(21):3388–3393
18 Rades D, Veninga T, Stalpers Lj, et al. Prognostic factors predicting functional outcomes, recurrence-free survival, and overall survival after radiotherapy for metastatic spinal cord compression in breast cancer patients. Int J Radiat Oncol Biol Phys 2006;64(1):182–188
19 Sioutos PJ, Arbit E, Meshulam CF, Galicich JH. Spinal metastases from solid tumors. Analysis of factors affecting survival. Cancer 1995;76(8):1453–1459
20 Tang SG, Byfield JE, Sharp TR, Utley JF, Quinol L, Seagren SL. Prognostic factors in the management of metastatic epidural spinal cord compression. J Neurooncol 1983;1(1):21–28
21 Cole JS, Patchell RA. Metastatic epidural spinal cord compression. Lancet Neurol 2008;7(5):459–466
22 Allen PJ, Bowne WB, Jaques DP, Brennan MF, Busam K, Coit DG. Merkel cell carcinoma: prognosis and treatment of patients from a single institution. J Clin Oncol 2005;23(10):2300–2309
23 Walker MP, Yaszemski Mj, Kim CW, Talac R, Currier BL. Metastatic disease of the spine: evaluation and treatment. Clin Orthop Relat Res 2003;415, Suppl:S165–S175
24 Tokuhashi Y, Matsuzaki H, Oda H, Oshima M, Ryu J. A revised scoring system for preoperative evaluation of metastatic spine tumor prognosis. Spine (Phila Pa 1976) 2005;30(19):2186–2191
25 Tomita K, Kawahara N, Kobayashi T, Yoshida A, Murakami H, Akamaru T. Surgical strategy for spinal metastases. Spine (Phila Pa 1976) 2001;26(3):298–306