Perry, WB, Lindsay, E, Payne, CJ, Brodie, C and Kazlauskaite, R

The role of the gut microbiome in sustainable teleost aquaculture

http://researchonline.ljmu.ac.uk/id/eprint/14269/

Citation (please note it is advisable to refer to the publisher’s version if you intend to cite from this work)

Perry, WB, Lindsay, E, Payne, CJ, Brodie, C and Kazlauskaite, R (2020) The role of the gut microbiome in sustainable teleost aquaculture. Proceedings of the Royal Society B: Biological Sciences, 287 (1926). ISSN 0962-8452

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk
The role of the gut microbiome in sustainable teleost aquaculture

William Bernard Perry¹, Elle Lindsay², Christopher James Payne³, Christopher Brodie⁴,⁵ and Raminta Kazlauskaite²

¹Molecular Ecology and Fisheries Genetics Laboratory, Bangor University, Bangor, Gwynedd LL57 2UW, UK
²Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
³Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK
⁴Ecosystems and Environment Research Centre, University of Salford, Salford M5 4WT, UK
⁵School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 5UG, UK

WBP, 0000-0001-9596-3333; CJP, 0000-0001-8313-2292

As the most diverse vertebrate group and a major component of a growing global aquaculture industry, teleosts continue to attract significant scientific attention. The growth in global aquaculture, driven by declines in wild stocks, has provided additional empirical demand, and thus opportunities, to explore teleost diversity. Among key developments is the recent growth in microbiome exploration, facilitated by advances in high-throughput sequencing technologies. Here, we consider studies on teleost gut microbiomes in the context of sustainable aquaculture, which we have discussed in four themes: diet, immunity, artificial selection and closed-loop systems. We demonstrate the influence aquaculture has had on gut microbiome research, while also providing a road map for the main deterministic forces that influence the gut microbiome, with topical applications to aquaculture. Functional significance is considered within an aquaculture context with reference to impacts on nutrition and immunity. Finally, we identify key knowledge gaps, both methodological and conceptual, and propose promising applications of gut microbiome manipulation to aquaculture, and future priorities in microbiome research. These include insect-based feeds, vaccination, mechanism of pro- and prebiotics, artificial selection on the hologenome, in-water bacteriophages in recirculating aquaculture systems (RAS), physiochemical properties of water and dysbiosis as a biomarker.

1. Introduction

Since its conception in the 1980s describing soil ecology [1], the term microbiome has evolved into an intensely studied area of research. In recent decades, this area has begun expanding from an anthropocentric and medically dominated field, into a taxonomically broad field, examining research questions in non-model species, from trees [2] to frogs [3], and increasingly, fish. The diversification in microbiome studies has been driven by increased access to next generation sequencing (NGS), a tool that is not reliant upon culture-based techniques, which often require previous knowledge of target microbes.

Currently, gut bacterial communities have been assessed in over 145 species of teleosts from 111 genera, representing a diverse range of physiology and ecology (figure 1a), often with similarities in bacterial phyla composition between fish species, dominated by Bacteroidetes and Firmicutes [5,6]. Non-model taxa from an array of aquatic ecosystems have had their gut microbiomes sequenced using NGS, with studies extending beyond species identification, into hypothesis testing which was once only feasible in model systems. Examples of studies on non-model teleost gut microbiomes range from those demonstrating rapid gut microbiome restructuring after feeding in clownfish (Premnas biaculeatus) [7] to the effect of differing environmental conditions, such as dissolved oxygen content, on the gut microbial diversity of blind cave fish (Astyanax mexicanus) [8].

Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare.c.4938504.
Further information on search terms and filtering can be found in the electronic supplementary material. (Online version in colour.)

Although as shown in figure 3, there are numerous interacting ecological processes. More in-depth reviews focusing on these specific interactions are available, for example, interactions between the gut microbiome and the immune system [14], energy homeostasis [15] and physiology [16]. Understanding and manipulating microbial–host–environmental interactions (figure 3a) and associated functional capacity in these areas could contribute substantially towards achieving a more sustainable aquaculture industry. We identify potential for future research, both methodological and conceptual. Other microbiomes are known to impact host function, in particular, the skin microbiome and its relationship to immunity [17], however, due to their differing ecology [18] and aquaculture applications [19], the gut microbiome will remain our focus here.

2. Diet

The gut microbiome has long been linked with diet, yielding insights into the commensal relationship between certain microbes and host. It has been shown that the teleost gut microbiome produces a range of enzymes (carbohydrases, cellulases, phosphatases, esterases, lipases and proteases) which contribute to digestion [10,20]. More intimate relationships also exist, for example, anaerobic bacteria in the teleost gut have a role in supplying the host with volatile fatty acids [21], an end product of anaerobic fermentation that provides energy for intestinal epithelial cells [22]. Gut microbes also synthesize vitamins and amino acids in the gut of aquatic vertebrates [23,24]. For example, the amount of vitamin B₁₂ positively correlated with the abundance of anaerobic bacteria belonging to the genera *Bacteroides* and *Clostridium*, in Nile tilapia (*Oreochromis niloticus*) [25]. Here, we discuss this host–microbe relationship in the context of contemporary aquaculture, with a focus on two timely issues: fishmeal and starvation.

(a) Fishmeal

Fishmeal is an efficient energy source containing high-quality protein, as well as highly digestible essential amino and fatty acids [26], which is included in feed for a range of teleost species. Fish used in fishmeal production is, however,
predominantly sourced from capture fisheries, putting pressure on already overfished stocks [13]. Despite a global decrease in fishmeal production, from an average of 6.0 million tonnes between 2001 and 2005 to 4.9 million tonnes between 2006 and 2010 [27], and growth in plant-based substitutes (e.g. wheat gluten, soya bean protein and pea protein), some aquaculture species still require a proportion of fish-sourced amino acids and proteins [28].

As dietary changes can alter the fish gut microbiome [29], there has been a considerable rise in the number of studies investigating the influence of alternative plant-protein sources on host–microbe interactions. Plant-protein sources have been shown to disturb the gut microbiota of some fish, with the production of antinutritional factors (factors that reduce the availability of nutrients) and antigens, impeding host resilience to stress [30], metabolism [31] and immune functioning [32]. Fish fed plant-protein-based diets can exhibit alterations in their intestinal morphology including disruption to the lamina propria and mucosal folds [33], which may modify attachment sites for commensal bacteria [34], and can therefore impact microbial composition [32,35].

Insect meal is increasingly used in aquafeed as a protein source with a high nutritional value [36], and several studies have demonstrated its potential use in manipulating the gut microbiome in fish [37,38]. As insects are chitin rich, these diets have been associated with prebiotic effects, through increased representation of beneficial commensal bacteria such as _Pseudomonas_ sp. and _Lactobacillus_ sp., which in turn improves performance and health in some fish [37]. Despite this, however, the beneficial effects of chitin are species specific, with Atlantic cod (_Gadus morhua_) and several cyprinid species demonstrating increased growth rates on diets with varying levels of chitin, whereas tilapia hybrids (_O. niloticus × O. aureus_) and rainbow trout (_Oncorhynchus mykiss_) both display decreased growth rates [39]. Chitin can therefore not be described as a prebiotic for all species. The influence of insect meal on microbial-mediated functions also remains underexplored, with little known about the extent to which species-specific responses to a chitin-rich diet are microbioly mediated [40], offering scope for future research.

(b) Starvation

Starvation is common in the production of valuable species such as salmon [41], sea bream [42], halibut [43] and cod [44], prior to handling, transportation and harvest, but is also used as a method to improve fillet quality. However, starvation is likely to have a substantial impact on host–microbe interactions (figure 3b). Gut microbial communities of the Asian seabass (_Lates calcarifer_), for example, shifted markedly in response to an 8-day starvation period, causing enrichment of the phylum Bacteroidetes, but a reduction of Betaproteobacteria, resulting in transcriptional changes in both host and microbial genes [45]. Perturbation to the gut microbiome could lead to the opening of niches for other commensal or even pathogenic bacteria [46], especially if this is combined with the compromised immune system of a stressed host [47] (figure 3d). Even if all fish are terminated shortly after starvation, gut microbial community changes before termination could cause long-term impacts to the microbial composition of water and biofilters in closed recirculating aquaculture systems (RAS). RAS systems will be discussed in greater detail later in this review.

3. Immunity

Gut microbial communities have strong links to immunity [48], which is pertinent in fish as they are in constant contact with water, a source of pathogenic and opportunistic commensal microbes [49]. In addition to this, fish cultured intensively are often stocked at high densities, allowing for easier transmission of microbes. Therefore, a microbiobially diverse gut microbiome in aquaculture is important to prevent unfavourable microbial colonization [50], and although the mechanisms are not fully
understood, some key processes have been identified. For example, Bacillus and Lactobacillus, two common probiotic genera of bacteria used in aquaculture, are able to stimulate expression of inflammatory cytokines in the fish gut [51], increase the number of mucus layer producing goblet cells [52] and increase phagocytic activity [53]. Furthermore, comparison in gene expression between gnotobiotic zebrafish (Danio rerio) and conventionally reared zebrafish has shown bacteria induced expression of myeloperoxidase, an enzyme that allows neutrophil granulocytes to carry out antimicrobial activity [54]. Colonizing microbes can also modulate host gene expression to create favourable gut environments, thereby constraining invasion by pathogens [23], while also promoting expression of proinflammatory and antiviral mediators genes, leading to higher viral resistance [55]. Reducing viral and bacterial pathogens, such as Vibrio sp. and Aeromonas sp., is important for fish health in aquaculture, and will be discussed further in the context of closed-loop systems later in the review.

The interaction between the gut microbiome and the immune system is bilateral, for example, secretory immunoglobulins in fish recognize and coat intestinal bacteria to prevent them from invading the gut epithelium [36]. Similarly, in wild three-spined stickleback (Gasterosteus aculeatus), a causal chain (diet → immunity → microbiome) was discovered, demonstrating the impact of diet on fish immunity and thus the microbial composition of the gut [57]. Understanding microbial–host–environmental interactions like this are crucial for aquaculture, where, as previously discussed, diet is often manipulated.

(a) Antibiotics
As most antibiotics used in aquaculture display broad-spectrum activity, they can affect both pathogens and non-target commensal microbes [58]. Oxytetracycline is one of the most widely used veterinary antibiotics, with 1500 metric tonnes applied between 2000 and 2008 to salmon aquaculture in Chile [59]. However, oxytetracycline was seen to reduce gut microbial diversity in Atlantic salmon (Salmo salar), while enriching possible opportunistic pathogens belonging to the genus Aeromonas, and leading to a high prevalence of multiple tetracycline resistance-encoding bacterial genes [60]. Long-term exposure to oxytetracycline has also been reported to negatively affect growth, immunity and nutrient digestion/metabolism in Nile tilapia (O. niloticus) through antibiotic-induced disruption to the microbiota [61], causing considerable changes in the representation of Bacteroidetes and Firmicutes.

Vaccination has become a widespread prophylactic measure applied in aquaculture to improve immune functioning and disease resilience in farmed fish [62]. One study attempted to identify potential alterations in the microbiota structure and localized immune responses caused by a novel recombinant vaccine against Aeromonas hydrophila in grass carp (Ctenopharyngodon idella) [63]. Results from their study suggest that oral vaccines can target Aeromonas sp. through activation of innate and adaptive immune defences within the intestine without causing large disturbances in non-target microbiota populations. Given the importance of the immune response in regulating the gut microbiome [64], only a small number of studies have investigated the influence of vaccines on the resident microbiota composition and function in fish, providing grounds for future study.

(b) Pro- and prebiotic supplementation
In view of the challenges associated with antibiotics, studies have examined the impact of alternative, prophylactic measures such as pro- and prebiotics (figure 4a). As literature on the types of pro- and prebiotics used in aquaculture have been reviewed elsewhere [65,66], as well as their effectiveness [67,68], we focus here on the ability of these compounds to induce changes in host physiology and function through shifts in the gut

Figure 4. Schematic diagram of (a) feed inputs (green), (b) water processing (both RAS and BFT) (blue) and the (c) species being cultivated, along with its gut microbiome (red). (Online version in colour.)
4. Artificial selection

Within aquaculture, selection has been applied routinely to increase production by enhancing desirable traits such as growth and disease resilience [79,80]. Recent evidence suggests, however, that host genetics plays a fundamental role in determining the gut microbiota in fish [81]. The ‘hologenome’ concept proposes that the host organism, along with their commensal microbial community, form one unit of selection [82]. Host physiology, for example, is determined in part by the host’s genome and has the ability to shift gut microbiome composition, as demonstrated in zebrafish, whereby host neural activity and subsequent gut motility is able to destabilize microbial communities [46] (figure 3c). Although not described in teleosts, the reverse has also been seen, whereby microbial communities are able to regulate the host’s gut through: (i) serotonin signalling [83,84], (ii) macrophages and enteric neurons interactions [85], (iii) metabolism of bile salts [86] and possibly, (iv) metabolism of short-chain fatty acids such as butyrate [87]. The host–microbe relationship means that traits selected during breeding programmes may be traits from the hologenome. Pyrosequencing studies have also shown significant changes in the microbial community composition of genetically improved fish compared with domesticated individuals [88,89]. Artificial selection has also been demonstrated on single species of bacteria, with

5. Closed aquaculture systems

Many environmental problems plague current aquaculture practices. In addition to those already discussed, there are also issues with parasite transmission to wild fish [91], interactions between wild and escaped farmed fish [92], and release of faeces and excess feed into the environment [93]. One way to better control these problems is to remove aquaculture from ecosystems and bring it into a land-based setting [94].

(a) Manipulating environmental microbiota

RAS and biofloc technology (BFT) are forms of aquaculture which use microbial communities to minimize excess nutrients and pathogens in rearing water (figure 4). In these systems, microbial reconditioning of the rearing water is vital as fish are stocked at high densities, resulting in elevated levels of organic material, which can promote microbial growth [95]. Selection of competitive, slow-growing K-strategist bacteria shifts the community from autotrophy to heterotrophy activity. Such shifts allow for a microbial community which maintains both water quality, through nutrient recycling, and inhibits the growth of fast-growing, opportunistic r-strategists, which include many bacterial pathogens such as

Modified from [17,107,108]. Bacteriophages and probiotics have also been previously mentioned

Lactobacillus spp. and

Pediococcus spp., has become common practice in hatcheries, with beneficial effects on growth, mucosal immunity and stress tolerance of larvae [17,107,108]. Bacteriophages and probiotics have also been applied directly to tank water (figure 4b); probiotics such as Bacillus spp. preventing fish mortality from Vibrio spp. infections [109] and Flavobacterium columnare-infecting phages have been shown to persist in RAS for up to 21 days [110]. Far less is known about the application of probiotics directly to tank water when compared with feed application [111]; however, the use of bacteriophages is still in its infancy, providing potential for future research.
(b) Controlling environmental variables
Changes in abiotic conditions in the water column propagate into the gut, as seen with dissolved oxygen concentration [8]. Such parameters are hard to control within the natural environment, but closed-loop systems provide consistent abiotic conditions, and allow for other variables, such as hologenome (figure 4c), to be manipulated with greater ease. The effect of many important physicochemical water properties (e.g. nitrate, ammonia and phosphate) on the teleost gut microbiome has not been studied, however, let alone how these properties interact [112]. Salinity is another important physicochemical property for the gut microbiome in many aquaculture species. When Atlantic salmon transition from freshwater to saltwater, individuals can experience a 100-fold increase in gut bacteria, combined with a shift in dominant microbial taxa [113]. Increasing salinity in RAS systems can, however, negatively impact nitrate removal in bioreactors [114], highlighting the importance of understanding interacting physicochemical properties.

(c) Dysbiosis as a stress biomarker
The use of closed-loop systems is a progression to a more intensive method of aquaculture, mirroring the progression seen in animal agriculture, and a crucial element to sustainable intensification is welfare. It is possible to measure fish welfare through physiological and behavioural indicators, with a current focus on identifying stress. The microbiome has been identified as another potential biomarker [64] due to its interaction with the host immune system, and its responsive nature to stressors [112]. Therefore, identifying imbalances in the gut microbiome, or dysbiosis, could be a useful predictor of stress-related syndromes, which could ultimately lead to mortality. Using non-invasive faecal samples could complement other non-invasive stress biomarkers, such as water cortisol [117], allowing for the optimization of husbandry, alerting operators to chemical (e.g. poor water quality, diet composition imbalance, accumulation of wastes), biological (e.g. overcrowding, social dominance, pathogens), physical (e.g. temperature, light, sounds, dissolved gases) or procedural (e.g. handling, transportation, grading, disease treatment) stressors [118]. More research is needed, however, in assessing the reliability and accuracy of faecal microbiome sampling in identifying stress.

6. Conclusion and future applications
The teleost gut microbiome has a clear role in the future of aquaculture, and although research has come a long way in recent decades, there are still many areas of gut microbiome research that require further development. As highlighted in figure 1b, there are still key elements lacking from many studies, particularly those assessing metacommunity composition, with the lack of water samples being particularly glaring. The ability to sample the environmental metacommunity with ease is one of the strengths of using a teleost model. Another methodological problem that will hinder comparability, reproducibility and metanalysis of fish gut microbiome datasets is the varying degree of sequencing platforms and markers (figure 5). A solution to this problem would be to focus on one marker, and one sequencing platform, with many metabarcoding microbiome studies adopting the V3 and V4 regions, sequenced on Illumina platforms. It is noted, however, that different markers and sequencing platforms work better in some systems with no simple fit-all approach. Therefore, tools that incorporate differences in taxonomic
identification that arise through using different methodological approaches will be vital in comparing datasets.

Current findings, as summarized here, show that the telost gut microbiome plays an important role in aquaculture, however, the literature is dominated with studies performed on mammals, leading to limited data on functional capacity of fish gut microbiomes [64]. Furthermore, a knowledge gap exists between ascertaining the composition of the microbiome and understanding its function, partly due to the complexity and variability in the ecology of telost gastrointestinal tracts [119] and unknown bacterial taxa. More specifically, however, it has been caused by the lack of synthesis between multiple cutting-edge molecular techniques. Progression in telost gut microbiome research will depend on combining function (RNA sequencing), composition (metabarcoding and metagenomics) and spatial distribution (fluorescence *in situ* hybridization). Understanding host genetic diversity (population genomics) and expression (RNA sequencing) of that diversity, all while incorporating environmental variation, will also be vital.

Finally, there are many areas in which synergies between gut microbiomes and aquaculture can be made. These have been highlighted throughout the review, but, in summary, include a better understanding of the gut microbiome with respect to insect-based feeds, vaccination, mechanism of pro- and probiotics, artificial selection on the holobiongen, in-water bacteriophages in RAS/BFT, physiochemical properties of water and dysbiosis as a biomarker.

Data accessibility. All data collected in the systematic review can be found in the electronic supplementary material.

Authors’ contributions. W.B.P. organized the creation of the review and facilitated communications between authors. W.B.P., E.L., R.K., C.J.P. and C.B. contributed to the concept and writing of the review.

Competing interests. No competing interests.

Funding. This study was funded by Natural Environment Research Council.

Acknowledgements. Thanks to Professor Gary Carvalho and Dr Martin Llewellyn for providing feedback on the review. This work was supported by the Natural Environment Research Council.

References

1. Whipp J, Lewis K, Cooke R. 1987 *Fungi in biological control systems*. Manchester, UK: Manchester University Press.

2. Denman S et al. 2018 Microbiome and infectivity studies reveal complex polyphenol tree disease in Acute Oak Decline. *SMSE J.* 12, 386–399. (doi:10.1038/esmee.2017.170)

3. Köhl KD, Cary TL, Karasov WH, Dearingt MD. 2015 Larval exposure to polychlorinated biphenyl 126 (pcb-126) causes persistent alteration of the amphibian gut microbiota. *Environ. Toxicol. Chem.* 34, 1113–1118. (doi:10.1002/etc.2905)

4. Reuters T. 2012 Web of Science Service for UK Education. See https://wok.mimas.ac.uk.

5. Sullam KE, Essinger SD, Luzzozone CA, O’Connor MP, Rosen GL, Knight R, Kilham SS, Russell JA. 2012 Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. *Mol. Ecol.* 21, 3363–3378. (doi:10.1111/j.1365-294X.2012.05552.x)

6. Greens C, Ransom B, Bano N, Hollibaugh J. 2015 Comparison of the gut microbiomes of 12 bony fish and 3 shark species. *Mar. Ecol. Prog. Ser.* 518, 209–223. (doi:10.3354/meps11034)

7. Parais DJ, Morgan MM, Stewart FJ. 2019 Feeding rapidly alters microbiome composition and gene transcription in the clownfish gut. *Appl. Environ. Microbiol.* 85, e02479-18. (doi:10.1128/AEM.02479-18)

8. Ornelas-García P, Pajares S, Sosa-Jiménez VM, Rétaux S, Miranda-Gamboa RA. 2018 Microbiome differences between river-dwelling and cave-adapted populations of the fish *Astyanax mexicanus* (De Filippi, 1853). *PeerJ* 2018, e5906. (doi:10.7717/peerj.5906)

9. Ravi V, Venkatesh B. 2008 Rapidly evolving fish genomes and telost diversity. *Curr. Opin. Genet. Dev.* 18, 544–550. (doi:10.1016/GDE.2008.11.001)

10. Wu S, Ren Y, Peng C, Hao Y, Xiong F, Wang G, Li W, Zou H, Angert ER. 2015 Metatranscriptomic discovery of plant biomass-degrading capacity from grass carp intestinal microbiomes. *FEMS Microbiol. Ecol.* 91, fiv107. (doi:10.1093/femsec/fiv107)

11. Longo SB, Clark B, York R, Jorgenson AK. 2019 Aquaculture and the displacement of fisheries captures. *Conserv. Biol.* 33, cobi.13295. (doi:10.1111/cobi.13295)

12. Froese R, Pauly D (eds). 2000 *FishBase 2000: Concepts, design and data sources*. Laguna, Philippines: ICLARM.

13. Naylor RL et al. 2012 Effect of aquaculture on world fish supplies. *Nature* 455, 1017–1024. (doi:10.1038/35016500)

14. Kelly C, Salinas I. 2017 Under pressure: interactions between commensal microbiota and the telost immune system. *Front. Immunol.* 8, 559. (doi:10.3389/fimmu.2017.00559)

15. Butt RL, Volkoff H. 2019 Gut microbiota and energy homeostasis in fish. *Front. Endocrinol.* 10, 9. (doi:10.3389/fendo.2019.00009)

16. Yukgehnaish K, Kumar P, Sivachandran P, Marimuthu K, Arshad A, Paray BA, Arockiaraj J. In press. Gut microbiota metagenomics in aquaculture: factors influencing gut microbiome and its physiological role in fish. *Rev. Aquac.* (doi:10.1111/raq.12416)

17. Azimirad M, Meshkini S, Ahmadifard N, Hoseinand F. 2010 Effects of increasing replacement of dietary fish-oil supply: inputs, outputs and markets. *Aquac. Res.* 41, 1365-2109.2010.02546.x

18. Sylvain FÉ, Cheaib B, Llewellyn M, Gabriel Correia T, Rétaux S. 2018 Microbiome and infectivity in the clownfish gut. *PeerJ* 2018, fendo.2019.00009)

19. Llewellyn MS et al. 2017 Parasitism perturbs the mucosal microbiome of Atlantic Salmon. *Sci. Rep.* 7, 43465. (doi:10.1038/srep43465)

20. Ray AK, Ghosh K, Ringo E. 2012 Enzyme-producing bacteria isolated from fish gut: a review. *Aquac. Nutr.* 18, 465–492. (doi:10.1111/j.1365-2095.2012.00943.x)

21. Ramirez RF, Dixon BA. 2003 Enzyme production by obligate intestinal anaerobic bacteria isolated from oscars (*Astronotus ocellatus*), angelfish (*Pterophyllum scalare*) and southern flounder (*Paralichthys lethostigma*). *Aquaculture* 227, 417–426. (doi:10.1016/S0044-8486(03)00520-9)

22. Clements KD. 1997 Fermentation and gastrointestinal microorganisms in fishes. In *Gastrointestinal microbiology* (eds BI Mackie, BA White), pp. 156–198. Boston, MA: Springer.

23. Balcázar JL, de Blas I, Ruiz-Zarzuela I, Cunningham D, Vendrell D, Múzquiz JL. 2006 The role of probiotics in aquaculture. *Vet. Microbiol.* 113, 173–186. (doi:10.1016/j.vetmic.2006.01.009)

24. Nagay SK. 2010 Role of gastrointestinal microbiota in fish. *Aquac. Res.* 41, 1553–1573. (doi:10.1111/j.1365-1210.2010.02546.x)

25. Sugita H, Miyajima C, Deguchi Y. 1990 The vitamin B_{12}-producing ability of intestinal bacteria isolated from tilapia and channel catfish. *Nippon SUISAN GAKKAISHI* 56, 701. (doi:10.2331/suisan.56.701)

26. Cho JH, Kim HI. 2011 Fish meal: nutritive value. *J. Anim. Physiol. Animal. Nutr.* 95, 685–692. (doi:10.1111/j.1439-0396.2010.01109.x)

27. Shepherd CJ, Jackson AJ. 2013 Global fishmeal and fish oil production and trade. *Aquac. Res.* 44, 2161–2182. (doi:10.1111/j.1365-2109.2013.00538.x)

28. Pratoomyot J, Bendiksen EÅ, Bell JG, Tocher DR. 2015 Larval exposure to polychlorinated biphenyl 126 (pcb-126) causes persistent alteration of the larval intestinal microbiota. *Fish Shellfish Immunol.* 54, 516–522. (doi:10.1016/j.fishimmun.2015.05.001)

29. Sylvain FÉ, Cheaib B, Llewellyn M, Gabriel Correia T, Barros Fagundes D, Luís Val A, Derome N. 2016 PH drop impacts differentially skin and gut microbiota of the Amazonian fish tambaqui (*Colossoma macropomum*). *Sci. Rep.* 6, 32032. (doi:10.1038/srep32032)

30. Balcázar JL, de Blas I, Ruiz-Zarzuela I, Cunningham D, Vendrell D, Múzquiz JL. 2006 The role of probiotics in aquaculture. *Vet. Microbiol.* 113, 173–186. (doi:10.1016/j.vetmic.2006.01.009)
performance and body lipid composition of Atlantic salmon (Salmo salar L.). Aquaculture 305, 124–132. (doi:10.1016/j.aquaculture.2010.04.019)

29. Ingerslev HC, Strube ML, von Jørgensen LG, Dalsgaard J, Boye M, Madsen L. 2014 Diet type dictates the gut microbiota and the immune response against Yersinia ruckeri in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 40, 624–633. (doi:10.1016/j.fsi.2014.08.021)

30. Batista S, Ozório ROA, Kollins S, Danaharski AK, Lokes J, Kiron V, Valente LMP, Fernandes JMO. 2016 Changes in intestinal microbiota, immune- and stress-related transcript levels in Senegalese sole (Solea senegalensis) fed plant ingredient diets intercropped with probiotics or immunostimulants. Aquaculture 458, 149–157. (doi:10.1016/j.aquaculture.2016.03.002)

31. Gatesoupe FJ, Faouconneau B, Deborde C, Madji Houonoum B, Jacob D, Moing A, Conzaz G, Médale F. 2018 Intestinal microbiota in rainbow trout, Oncorhynchus mykiss, fed diets with different levels of fish-based and plant ingredients: a correlative approach with some plasma metabolites. Aquac. Nutr. 24, 1563–1576. (doi:10.1111/anu.12793)

32. Miao S, Zhao C, Zhu J, Hu J, Dong X, Sun L. 2018 Dietary soybean meal affects intestinal homeostasis by altering the microbiota, morphology and inflammatory cytokine gene expression in northern snakehead. Sci. Rep. 8, 1–10. (doi:10.1038/s41598-017-18430-7)

33. Wang J, Tao Q, Wang Z, Mai K, Xu W, Zhang Y, Ai Q. 2017 Effects of fish meal replacement by soybean meal with supplementation of functional compound additives on intestinal morphology and microbiome of Japanese seabass (Lateolabrus japonicus). Aquac. Res. 48, 2186–2197. (doi:10.1111/are.13055)

34. Ringo E, Gatesoupe F-J. 1998 Lactic acid bacteria in fish: a review. Aquaculture 160, 177–203. (doi:10.1016/S0044-8486(97)00299-8)

35. Desai AR, Links MG, Collins SA, Mansfield GS, Drew MD, Van Kessel AG, Hill JE. 2012 Effects of plant-based diets on the distal gut microbiome of rainbow trout (Oncorhynchus mykiss). Aquaculture 350–353, 134–142. (doi:10.1016/j.aquaculture.2012.04.005)

36. Magalhães R, Sánchez-López A, Leal RS, Martínez-Llorens S, Oliva-Teles A, Peres H. 2017 Black soldier fly (Hermetia illucens) pre-pupae meal as a fish meal replacement to improve growth performance and immunity against Aeromonas hydrophila and Streptococcus iniae in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 64, 59. (doi:10.1016/j.fsi.2018.10.059)

37. Bruni L, Pastorelli R, Viti C, Gasco L, Parisi G. 2018 Dietary soybean meal affects intestinal morphology and inflammatory cytokine gene expression in northern snakehead. Sci. Rep. 8, e42721. (doi:10.1038/s41598-017-03273)

38. Ginés R, Pálica M, Zamorano MJ, Argüello A, López JL, Alfonso JM. 2003 Starvation before slaughtering as a tool to keep freshness attributes in gillhead sea bream (Sparus aurata). Aquac. Int. 10, 379–389. (doi:10.1023/A:1023365025292)

39. Foss A, Imsland AK, Vikingstad E, Stefansson SO, Norberg B, Pedersen S, Sandvik T, Roth B. 2009 Compensatory growth in Atlantic halibut: effect of starvation and subsequent feeding on growth, maturation, feed utilization and flesh quality. Aquaculture 290, 304–310. (doi:10.1016/j.aquaculture.2009.02.021)

40. Bjørnevik M, Hansen H, Roth B, Foss A, Vikingstad E, Solberg C, Imsland AK. 2017 Effects of starvation, subsequent feeding and photoperiod on flesh quality in farmed cod (Gadus morhua). Aquac. Nutr. 23, 285–292. (doi:10.1111/anu.12291)

41. Xia J et al. 2014 The intestinal microbiome of fish under starvation. BMC Genomics 15, 266. (doi:10.1186/s12864-014-1965-6)

42. Williams TJ et al. 2016 Host gut motility promotes competitive exclusion within a model intestinal microbiota. PLoS Biol. 14, e1002517. (doi:10.1371/journal.pbio.1002517)

43. Ellison AR, Uren Webster TM, Rey O, García de Lapeyronie C, Decamp O, Vendrell D, Mascó N, Balcázar JL, Decamp O, Vendrell D, De Blas I, Galindo-Villegas J, Garcia-Moreno D, de Oliveira S, Berto LA, Polanski J, deLautour RJ, Henríquez LA, Ivanova L, Moy F, Godfrey HP, Cabello FC. 2012 Salmon aquaculture and antimicrobial resistance in the marine environment. PLoS ONE 7, e42724. (doi:10.1371/journal.pone.0042724)

44. Navarrete P, Mardones P, Opazo R, Espejo R, Romero J. 2008 Oxygenic phototrophic treatment reduces bacteriologic diversity of intestinal microbiota of Atlantic salmon. J. Aquat. Anim. Health. 20, 177–183. (doi:10.1577/H07-043.1)

45. Limbu SM, Zhou L, Sun S-X, Zhang M-L, Du Z-Y. 2018 Chronic exposure to low environmental concentrations and legal aquaculture doses of antibiotics cause systemic adverse effects in Nile tilapia and provoke differential human health risk. Environ. Int. 115, 205–219. (doi:10.1016/j.envint.2018.03.034)

46. Sudheesh PS, Cain KD. 2017 Prospects and challenges of developing and commercializing immersion vaccines for aquaculture. Int. Biol. Rev. 1, 1–20. (doi:10.18103/ibr.v1i1.11313)

47. Liu L, Gong Y-X, Zhu B, Liu G-L, Wang G-X, Ling F. 2015 Effect of a new recombinant Aeromonas}
hydrophilo vaccine on the grass carp intestinal microbiota and correlations with immunological responses. Fish Shellfish Immunol. 45, 175–183. (doi:10.1016/j.fsi.2015.03.043)

64. Llewellyn MS, Boutin S, Hoseinifar SH, Deome N. 2014 Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Front. Microbiol. 5, 207. (doi:10.3389/fmicb.2014.00207)

65. Hai NV. 2015 The use of probiotics in aquaculture. J. Appl. Microbiol. 119, 917–935. (doi:10.1111/jam.12886)

66. Dawood MAO, Koshio S. 2016 Recent advances in the role of probiotics and prebiotics in carp aquaculture: a review. Aquaculture 454, 245–251. (doi:10.1016/J.AQUACULTURE.2015.12.033)

67. Zarriezhara MJ, Delshad ST, Adel M, Tiwari R, Karthik K, Dhama K, Lazado CC. 2016 Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review. Vet. Q. 36, 228–241. (doi:10.1080/01652176.2016.1172332)

68. Hoseinifar SH, Sun YZ, Wang A, Zhou Z. 2018 Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Front. Microbiol. 9, 2429. (doi:10.3389/fmicb.2018.02429)

69. Elsabagh M, Mohamed R, Moura EM, Hamza A, Farrag F, Decamp O, Dawood MAO, Eltholth M. 2018 Assessing the impact of Bacillus strains mixture probiotic on water quality, growth performance, blood profile and intestinal morphology of Nile tilapia, Oreochromis niloticus. Aquac. Nutr. 24, 1613–1622. (doi:10.1111/anu.12797)

70. Falcielli S et al. 2015 Lactobacillus rhamnosus lowers zebrafish lipid content by changing gut microbiota and host transcription of genes involved in lipid metabolism. Sci. Rep. 5, 8–10. (doi:10.1038/srep09336)

71. Falcielli S, Rodilis A, Uniappan S, Picchietti S, Gioacchini G, Merrifield DL, Carnevali O. 2016 Probiotic treatment reduces appetite and glucose level in the zebrafish model. Proc. Natl. Acad. Sci. U.S.A. 113, 1 (doi:10.1073/pnas.1520523113)

72. Gioacchini G, Ciani E, Pessina A, Cecchini C, Silvi S, Rodilis A, Merrifield DL, Olivotto I, Carnevali O. 2018 Effects of Lactogen 13, a new probiotic supplement, on gut microbiota and endocrine signals controlling growth and appetite of Oreochromis niloticus juveniles. Microb. Ecol. 76, 1063–1074. (doi:10.1007/s00248-018-1194-0)

73. Borrelli L et al. 2016 Probiotic modulation of the microbiota-gut-brain axis and behaviour in zebrafish. Sci. Rep. 6, 1–9. (doi:10.1038/srep00406)

74. Zhang L et al. 2019 Dietary Lactobacillus plantarum ST-3 alleviates the toxic effects of trichloran on zebrafish (Danio rerio) via gut microbiota modulation. Fish Shellfish Immunol. 84, 1157–1169. (doi:10.1016/j.fsi.2019.01.007)

75. Mayer EA, Tillich K, Gupta A, Mayer EA, Tillich K, Gupta A. 2015 Gut-brain axis and the microbiota. J. Clin. Invest. 125, 926–938. (doi:10.1172/JCI76304) Several
