Impact of smoking habit on surgical outcomes in non-B non-C patients with curative resection for hepatocellular carcinoma

Keita Kai, Hiroki Koga, Shinichi Aishima, Atsushi Kawaguchi, Koutaro Yamaji, Takao Ide, Junji Ueda, Hirokazu Noshiro

AIM

To analyze the correlation between smoking status and surgical outcomes in patients with non-B non-C hepatocellular carcinoma (NBNC-HCC), and we investigated the patients' clinicopathological characteristics according to smoking status.

METHODS

We retrospectively analyzed the consecutive cases of 83 NBNC-HCC patients who underwent curative surgical treatment for the primary lesion at Saga University Hospital.
University Hospital between 1984 and December 2012. We collected information about possibly carcinogenic factors such as alcohol abuse, diabetes mellitus, obesity and smoking habit from medical records. Smoking habits were subcategorized as never, ex- and current smoker at the time of surgery. The diagnosis of non-alcoholic steatohepatitis (NASH) was based on both clinical information and pathological confirmation.

RESULTS
Alcohol abuse, diabetes mellitus, obesity and NASH had no significant effect on the surgical outcomes. Current smoking status was strongly correlated with both overall survival \((P = 0.0058) \) and disease-specific survival \((P = 0.0105) \) by multivariate analyses. Subset analyses revealed that the current smokers were significantly younger at the time of surgery \((P = 0.0002) \) and more likely to abuse alcohol \((P = 0.0188) \) and to have multiple tumors \((P = 0.023) \).

CONCLUSION
Current smoking habit at the time of surgical treatment is a risk factor for poor long-term survival in NBNC-HCC patients. Current smokers tend to have multiple HCCs at a younger age than other patients.

Key words: Hepatocellular carcinoma; Non-B Non-C; Smoking; Surgery; Prognosis

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: We retrospectively analyzed the surgical outcomes and clinicopathological characteristics according to smoking habits in consecutive 83 cases with non-B non-C hepatocellular carcinoma (NBNC-HCC) patients who underwent curative surgical treatment for the primary lesion. Current smoking status was strongly correlated with both overall survival and disease-specific survival by multivariate analyses. Subset analyses revealed that current smokers tended to have multiple HCCs at a younger age than other patients. To our knowledge, this is the first report regarding surgical outcomes of NBNC-HCC patients in relation to their smoking status.

Kai K, Koga H, Aishima S, Kagawaschi A, Yamaji K, Ide T, Ueda J, Noshiro H. Impact of smoking habit on surgical outcomes in non-B non-C patients with curative resection for hepatocellular carcinoma. World J Gastroenterol 2017; 23(8): 1397-1405 Available from: URL: http://www.wjgnet.com/1007-9327/full/v23/i8/1397.htm DOI: http://dx.doi.org/10.3748/wjg.v23.i8.1397

INTRODUCTION
Infections with hepatitis B virus (HBV) and hepatitis C virus (HCV) are well known risk factors for the development of hepatocellular carcinoma (HCC). As more than 90% of countries around the world have now introduced the HBV vaccine into their national infant immunization schedules, the incidence of HBV-related HCC has been decreasing dramatically\(^{[1]}\). The development of antivirus therapy can also reduce the incidence of HCV-related HCC\(^{[2]}\). The number of HCC patients who are negative for both hepatitis B surface antigen (HBsAg) and hepatitis C antibody (HCVAb), i.e., those who have so-called "non-B non-C (NBNC) HCC" has rapidly increased in recent years. NBNC HCC patients were reported to account for 24.1% of all HCC patients in a 2010 Japanese survey\(^{[3]}\). It is thus very important, toward the prevention of HCC, to establish all of the etiologies of NBNC-HCC and to devise countermeasures for it.

The known etiologies of NBNC-HCC are alcoholic liver disease (ALD)\(^{[4]}\), non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH)\(^{[5,6]}\), hemochromatosis\(^{[7]}\), and Budd-Chiari syndrome\(^{[8]}\); other known etiologies include primary biliary cirrhosis, autoimmune hepatitis, metabolic disease, congestive disease, parasitic disease and unknown etiology\(^{[9]}\). Emerging epidemiologic data suggest that cigarette smoking may increase the risk of developing HCC\(^{[10-12]}\), but a smoking habit is generally less recognized as a risk factor of developing HCC compared to other etiologies such as ALD and NASH/NAFLD.

Surgery is one of the most important therapeutic measures for HCC. The correlations between surgical outcomes and each etiology of HCC are very important because knowing these correlations will provide the motivation and strategies for the prevention of each specific etiology. The clinicopathological characteristics and surgical outcomes of patients with HBV-HCC and HCV-HCC have been well investigated\(^{[13-15]}\). There are also many studies comparing the surgical outcomes or clinicopathological characteristics of patients with NBNC-HCC and those with viral-associated HCC or between each etiology of NBNC-HCC\(^{[16-29]}\). However, no study has addressed the impact of smoking habit on surgical outcomes or clinicopathological characteristics according to smoking habits in patients with NBNC-HCC, to our knowledge.

In the present study we analyzed the correlation between smoking status and surgical outcomes in patients with NBNC-HCC, and we investigated the patients’ clinicopathological characteristics according to smoking status.

MATERIALS AND METHODS

Patients
The study protocol was approved by the Ethics Committee of the Faculty of Medicine at Saga University (approval no. 28-23). The initial enrollees in the study were 477 consecutive patients with HCC who underwent curative surgical treatment for the primary lesion at Saga University Hospital between 1984 and
We used JMP ver. 12.2 software and SAS software ver. 9.4 (SAS Institute, Cary, NC, United States) for the statistical analyses. The comparisons of pairs of groups were performed using Student's t-test, the χ² test and Fisher's exact test, as appropriate. Disease-free survival (DFS) was determined as the length of time after surgery that the patient survived without new lesions of HCC. Overall survival (OS) was determined from the time of surgery to the time of death or the most recent follow-up. Disease-specific survival (DSS) was determined from the time of surgery to the time of cancer-related death or most recent follow-up.

Cox proportional hazards modeling was applied for uni- and multivariate analyses. The purpose of the multivariate analysis was to adjust potential covariates for the comparison of smoking status; then, age, gender, portal vein invasion, T factor and multiple tumors were always kept in the model and others were selected by the stepwise procedure with the P value threshold of 0.2. Postoperative survival curves were calculated using the Kaplan-Meier method. Differences in survival curves were compared using the log-rank test. Values of P < 0.05 were considered significant. All statistical analyses were supervised by the statistician co-author (Kawaguchi A).

RESULTS

Clinicopathological features and risk factors of NBNC-HCC

The clinicopathological features of the 83 cases of NBNC-HCC are summarized in Table 1. The patients were 66 men and 17 women with a mean age at the time of surgery of 66.4 years. Nine patients (22.9%) were etiologically categorized into the alcohol abuse group; 29 patients (34.9%) had diabetes mellitus, and 26 patients (31.3%) were judged to be obese. Ten patients (12.2%) were pathologically confirmed as having NASH. Thirty-six patients (43.4%) were categorized into the never-smoker group and 23 (27.7%) into the ex-smoker group and the remaining 24 patients (28.9%) were currently smoking at the time of their surgery. The smoking cessation periods of the ex-smokers were as follows: 1-5 years, two patients; 5-10 years, four patients; and > 10 years, 17 patients.

Table 1 Clinicopathologic features of the patients with non-B non-C hepatocellular carcinoma (n = 83)

Characteristic	n (%)
Age, yr (mean ± SD)	66.4 ± 11.6
Gender	66 (79.5)
Alcohol abuse	
(+)	19 (22.9)
(-)	44 (51.3)
Smoking habit	
Never	36 (43.4)
Ex	23 (27.7)
Current	24 (28.9)
Diabetes mellitus	
(+)	25 (29.9)
(-)	38 (45.7)
Obesity	
(+)	26 (31.3)
(-)	57 (68.7)
BMI (mean ± SD)	22.8 ± 4.50
Tumor size (mean ± SD mm)	65.2 ± 41.4
Solitary/Multiple	
Solitary	52 (62.7)
Multiple	31 (37.3)
Vp	
(+)	32 (38.6)
(-)	51 (61.4)
Background liver fibrosis¹	
F0	16 (19.5)
F1	21 (25.6)
F2	10 (12.2)
F3	18 (22.0)
F4	17 (20.7)
NASH¹	
(+)	10 (12.2)
(-)	72 (87.8)

¹Noncancerous liver tissue was not available in one case (n = 82). NASH: Non-alcoholic steatohepatitis. Vp: Portal vein invasion.

December 2012. Of these patients, we retrospectively examined the cases of the 83 patients who were both non-B (HBsAg-negative) and non-C (HCVAb-negative) in serological tests. One patient with Budd-Chiari syndrome and another patient with Dubin-Johnson syndrome were included. Written informed consent was obtained from all patients for the use of their clinical information.

Analyses of alcohol abuse, obesity, diabetes mellitus and smoking status

Alcohol abuse was defined as a daily ethanol intake > 40 g for men and > 20 g for women. Obesity was defined as a body mass index (BMI) > 25 kg/m² in both genders. Smoking status was categorized as never smoker, ex-smoker and current smoker at the time of surgery. A current smoker was defined as an individual who regularly smoked and continued to smoke within 1 year prior to the surgery. An ex-smoker was defined as an individual who quit smoking at least 1 year before his or her surgery. Only patients who were clinically diagnosed as having diabetes mellitus were categorized as being in the present diabetes mellitus group. All of this information was collected from medical records.

Histopathological analysis

The histopathological diagnosis and classification were performed by two pathologists (Kai K and Aishima S). The degree of fibrosis in noncancerous liver tissues was assessed according to the new Inuyama classification system which is widely used in Japan, as follows: F0, no fibrosis; F1, portal fibrosis widening; F2, portal fibrosis widening with bridging fibrosis; F3, bridging fibrosis plus lobular distortion; and F4, liver cirrhosis. In one case the fibrosis could not be assessed because of an insufficiency of noncancerous liver tissue. The diagnoses of NASH were based on both clinical information and pathological confirmation.
The factors significantly correlated with DFS were smoking (Ex vs current, \(P = 0.0349\)), smoking (current vs never, \(P = 0.0034\)), smoking (Ex + current vs never, \(P = 0.0436\)), portal vein invasion (Ex vs current, \(P = 0.0155\)), smoking (current vs never, \(P = 0.0092\)), portal vein invasion (current vs other; \(P = 0.0025\)), T factor (current vs other; \(P = 0.0364\)) and multiple tumors at the time of surgery (current vs other; \(P = 0.0061\)). The survival curves of DFS, OS and DSS according to smoking habit (never, Ex and current) or current smoking habit (current and other) are provided as Figure 1. The current-smoking group showed significantly poor survival curves compared to all other patient groups in each analysis of DFS, OS and DSS.

Multivariate analyses for DFS, OS and DSS
The results of the multivariate analyses for DFS, OS and DSS by Cox's proportional hazards model are summarized in Table 3. The only factor that was significantly correlated with DFS was portal vein invasion (\(P = 0.0022\)). The factors significantly correlated with OS were smoking (current vs other) and portal vein invasion (\(P = 0.0058\) and \(P = 0.0061\), respectively). The
The current smokers group had significantly greater incidences of alcohol abuse (*P* = 0.0188) and multiple tumors (*P* = 0.023). No significant difference was observed in gender, diabetes mellitus, obesity, indocyanine green retention rate at 15 min (ICG R15), tumor size, portal vein invasion, T factor, serum AFP level or liver fibrosis.

Thirteen of the 24 patients (54.2%) in the Current smoking group died of HCC, whereas 17 of the 59 patients (28.8%) in the Never + Ex patient group died of HCC (*P* = 0.0293). Five of the 24 patients (20.8%) in the Current smoking group died of other causes: cerebral hemorrhage, surgical complication for gastric cancer, pneumoniae (two cases) and sepsis due to pseudomembranous colitis.

In the Never + Ex group, 11 of the 59 patients (18.6%) died of other causes: other malignancy, four patients (two cases of bile duct cancer, prostatic cancer, malignant lymphoma); cerebral infarction, two patients; liver failure, two patients; pneumonia, one patient; sudden cardiac death, one patient and renal failure, one patient.

DISCUSSION

To determine the influence of etiological differences on the outcomes of the surgical treatment for HCC, many studies have compared surgical outcomes between patients with NBNC-HCC and those with viral-associated HCC, but the results are controversial. Some studies showed that surgical outcomes in patients with NBNC-HCC were not significantly different compared to those of patients with hepatitis virus-related HCC[17,20,23,29]. Other studies reported that NBNC-HCC patients had significantly better surgical outcomes than HCV-HCC patients[18,24,26]. In a recent Japanese nationwide study of 2738 NBNC-HCC patients, the factors significantly correlated with DSS were smoking (current vs other) and portal vein invasion (*P* = 0.0105 and *P* = 0.0313, respectively).

Subset analysis between the current smokers and the other patients

To clarify the characteristics of the current smokers, we further performed subset analyses regarding the clinicopathological factors, treatment and causes of death (Table 4). The current smokers were significantly younger than the Never + Ex patient group (mean age 59.4 year vs 69.3 year, *P* = 0.0002) at the time of surgery. The current smokers group had significantly greater incidences of alcohol abuse (*P* = 0.0188) and multiple tumors (*P* = 0.023). No significant difference was observed in gender, diabetes mellitus, obesity, indocyanine green retention rate at 15 min (ICG R15), tumor size, portal vein invasion, T factor, serum AFP level or liver fibrosis.

Table 2 Univariate analyses for disease-free survival, overall survival and disease-specific survival after hepatic resection

	DFS (95%CI)	OS (95%CI)	DSS (95%CI)
Age (< 70 yr)	0.777 (0.434-1.389)	0.959 (0.529-1.739)	0.797 (0.360-1.591)
Gender (male)	0.742 (0.382-1.443)	1.466 (0.653-3.291)	1.351 (0.515-3.545)
Occult HBV infection	1.052 (0.564-1.961)	1.184 (0.628-2.322)	1.328 (0.625-2.821)
Alcohol abuse	0.700 (0.326-1.503)	1.492 (0.749-2.969)	1.489 (0.631-3.514)
Smoking (Ex vs current)	0.405 (0.182-0.903)	0.451 (0.215-0.945)	0.299 (0.113-0.795)
Smoking (Ex vs never)	0.680 (0.319-1.453)	1.295 (0.597-2.807)	0.905 (0.328-2.501)
Smoking (current vs never)	1.680 (0.874-3.230)	2.869 (1.417-5.807)	3.026 (1.315-6.986)
Smoking (Ex + current vs never)	1.078 (0.606-1.920)	1.926 (1.019-3.640)	1.735 (0.804-3.745)
Smoking (current vs other)	1.926 (1.047-3.544)	2.569 (1.397-4.724)	3.144 (1.497-6.604)
Diabetes mellitus	0.894 (0.474-1.685)	1.715 (0.941-3.126)	1.414 (0.665-3.008)
Pathological NASH	1.222 (0.516-2.892)	1.076 (0.423-2.736)	1.342 (0.462-3.873)
Obesity	0.989 (0.535-1.828)	1.049 (0.536-1.981)	1.183 (0.549-2.549)
Fibrosis	1.163 (0.699-1.936)	1.004 (0.583-1.729)	1.407 (0.742-2.670)
Vp	2.428 (1.338-4.407)	1.892 (1.042-3.436)	1.918 (0.919-4.002)
T factor (T3/4 vs T1/2)	3.220 (1.680-6.169)	1.793 (0.984-3.268)	2.222 (1.052-4.693)
Multiple tumors	3.275 (1.784-6.014)	2.009 (1.110-3.636)	2.767 (1.329-5.761)

Table 3 Multivariate analyses for current smokers vs other (age, gender, Vp, T factor in, *P* = 0.2)

Type	Label	HR (95%CI)	*P* value
DFS	Smoking (current vs other)	1.897 (0.888-4.054)	0.0985
	Age (< 70 yr)	0.627 (0.330-1.191)	0.1535
	Gender (male)	0.611 (0.279-1.337)	0.2176
	Vp	2.656 (1.145-6.165)	0.0229
	T factor (T3/4 vs T1/2)	1.574 (0.537-4.609)	0.4083
	Multiple tumors	1.930 (0.807-4.614)	0.1394
	Alcohol abuse	0.547 (0.228-1.310)	0.1755
OS	Smoking (current vs other)	2.807 (1.349-5.840)	0.0058
	Age (< 70 yr)	1.189 (0.603-2.346)	0.6177
	Gender (male)	1.362 (0.555-3.343)	0.4999
	Vp	3.069 (1.377-6.839)	0.0061
	T factor (T3/4 vs T1/2)	0.532 (0.187-1.512)	0.2564
	Multiple tumors	1.830 (0.760-4.405)	0.1774
DSS	Smoking (current vs other)	3.133 (1.307-7.512)	0.0105
	Age (< 70 yr)	0.988 (0.424-2.302)	0.9775
	Gender (male)	1.406 (0.463-4.271)	0.5478
	Vp	2.756 (1.095-6.335)	0.0313
	T factor (T3/4 vs T1/2)	0.610 (0.167-2.233)	0.4555
	Multiple tumors	2.476 (0.797-7.693)	0.1169
	Pathological NASH	2.320 (0.689-7.811)	0.1741

DFS: Disease-free survival; DSS: Disease-specific survival; OS: Overall survival; Vp: Portal vein invasion.

In the Never + Ex group, 11 of the 59 patients (18.6%) died of other causes: other malignancy, four patients (two cases of bile duct cancer, prostatic cancer, malignant lymphoma); cerebral infarction, two patients; liver failure, two patients; pneumonia, one patient; sudden cardiac death, one patient and renal failure, one patient.
The major finding of the present study is the strong correlation between smoking habit and surgical outcomes. Although emerging epidemiologic data suggest that cigarette smoking may increase the risk of HCC [10-12], the influence of cigarette smoking on HCC survival has not been well documented. We were able to find 10 studies in the English literature that analyzed the correlation of smoking and HCC mortality [33-42]. Large cohort studies indicating an impact of smoking habit on HCC mortality have been reported from Japan [33,34], the United Kingdom [35], China [36] and Taiwan [37-39]. In contrast, several studies reported a negative correlation between HCC mortality and smoking habit, although those studies analyzed relatively small numbers of HCC cases (262-552 cases).

Most of the previous studies regarding HCC mortality and smoking habit did not focus on the surgical outcomes of HCC patients or distinguish surgical cases versus nonsurgical cases. We were able to identify only two reports from China that focused on surgical outcomes of HCC patients: Zhang et al [30] analyzed the outcomes of 302 patients with HBV infection who had undergone surgical resection for HCC, and their findings revealed a significant influence of smoking status on both recurrence and mortality. Lv et al [43] investigated the outcomes of 425 patients with a predominant population (74%) of HBV infection who were undergoing hepatectomy for HCC, and those authors’ analysis revealed that cigarette smoking is an independent risk factor for the development of liver-related and infectious complications. We were unable to find any other study reporting the surgical outcomes of NBNC-HCC patients in relation to their smoking status.

In the present study, the survival of the current smokers was significantly poorer than that of the never-smokers, and no significant difference in the survival of the ex-smokers and never-smokers was revealed. We speculate that the reason for the latter finding is due to the long cessation period (> 10 years) for most of the ex-smokers. Our subset analyses comparing the current smokers and the other patients revealed that the current smokers were significantly younger and were more likely to have multiple tumors at the time of surgery. These findings suggest that a smoking habit may affect multicentric liver carcinogenesis. The underlying mechanism of liver carcinogenesis induced by smoking is as yet unclear and should be investigated in further studies.

Generally, alcoholic abuse is known as a poor-prognosis risk factor in surgical treatment for HCC because of the poor liver function of individuals who abuse alcohol. Indeed, in the present study the proportion of alcohol-abusing patients was higher in the current smoking group, but no significant between-group difference was observed in liver function as represented by the ICG R15 or liver fibrosis. Notably, over half of our study’s current-smoker patients died of HCC, and only five of the current smokers died of other causes. Thus, the causes of death in the current-

Table 4 Comparison of current smoking status and clinicopathological factors (n = 83)

Current (n = 24)	Never + Ex (n = 59)	P value	
Age, yr (mean ± SD)	59.4 ± 12.0	69.3 ± 10.2	0.0002
Gender (male/female)	22/2	44/15	0.0803
Alcohol abuse (+/-)	10/14	9/50	0.0188
Diabetes mellitus (+/-)	8/16	21/38	0.6484
Obesity (+/-)	6/18	20/39	0.0624
ICG R15 (%)	11.7 ± 1.8	14.8 ± 1.2	0.1235
Tumor size (mean ± SD mm)	68.4 ± 44.0	63.9 ± 40.6	0.6724
Solitary/Multiple	10/14	42/17	0.023
Vp (+/-)	9/15	23/36	0.8998
T factor (T12/T34)	10/24	33/26	0.5329
AFP (mean ± SD)	4450 ± 14563.6	3255 ± 13042	0.6442
Fibrosis (F12/F34, n = 82)	11/13	36/22	0.2224
Recurrence (+/-)	16/8	32/27	0.3362
Therapy for recurrent tumor (+/-)	14/2	27/5	0.7724
TAE only	11	14	
Surgical resection	1	5	
Ablation	1	2	
Chemotherapy	1	3	
Multiple therapy	0	3	
Tumor-related death (%)	13 (54.2)	17 (28.8)	0.0293
Other cause of death (%)	5 (20.8)	11 (18.6)	0.8187

1 Comparison restricted in recurrent case; 2 Two cases of TAE + operation and one case of TAE + ablation. ICG R15: Indocyanine green retention rate at 15 min; TAE: Transcatheter arteriography embolization; Vp: Portal vein invasion.
smoker group were significantly different from those of the other patient groups.

Although current smoking was significantly correlated with DFS in our univariate analysis, no such significance was observed in the multivariate analyses, whereas current smoking showed significant correlations with the OS and DSS in the multivariate analyses. One possible reason for this is our study’s small sample size. Another possible reason is that the malignant potential of the recurrent tumors in the current-smoker group may be different from those of the other groups, because the survival after recurrence was significantly different despite the lack of a significant difference in the recurrence rate and the treatments for the recurrent tumors between the current-smoker group and the other groups.

The limitations of the present study are its retrospective design, the relatively small number of patients, and the long study period for enrollment. In addition, information about our patients’ post-surgery smoking status was not available, and thus the effects on survival of a smoking habit after surgery and a smoking habit after recurrence could not be examined. It remains quite regrettable that the previous large case series and multicenter studies did not investigate the HCC patients’ smoking status. We hope a larger prospective study verifies the precise influence of smoking on survival of patients with NBNC-HCC, as its results can be expected to provide further motivation for smoking cessation.

In conclusion, the results of our single-institute retrospective study indicate that current smoking habit is significantly correlated with the surgical outcomes of patients with NBNC-HCC. Our analyses also revealed that the current smokers were significantly younger than the other patient groups and had significantly greater incidences of alcohol abuse and multiple tumors at the time of surgery.

COMMENTS
Research frontiers
No previous study has addressed the impact of smoking habit on surgical outcomes or clinicopathological characteristics according to smoking habits in patients with non-B non-C hepatocellular carcinoma (NBNC-HCC).

Innovations and breakthroughs
The novel findings of this study are (1) current smoking habit at the time of surgical treatment is a risk factor for poor long-term survival in NBNC-HCC patients; and (2) current smokers tend to have multiple HCCs at a younger age than other patients.

Applications
The results of present study can be expected to provide further motivation for smoking cessation.

Terminology
NBNC-HCC is defined as hepatocellular carcinoma that has arisen in an individual who is negative for both hepatitis B surface antigen and hepatitis C antibody. Alcohol abuse was defined as a daily ethanol intake > 40 g for men and > 20 g for women. Obesity was defined as a body mass index > 25 kg/m² in both genders. A current smoker was defined as an individual who regularly smoked and continued to smoke within 1 year prior to the surgery. An ex-smoker was defined as an individual who quit smoking at least 1 year before his or her surgery.

Peer-review
An interesting paper about risk factors in patients with NBNC hepatocellular cancer. Results are adequate and conclusions are very clear.

REFERENCES
1 Bosetti C, Levi F, Boffetta P, Luccini F, Negri E, La Vecchia C. Trends in mortality from hepatocellular carcinoma in Europe, 1980-2004. Hepatology 2008; 48: 137-145 [PMID: 18537177 DOI: 10.1002/hep.22312]
2 Nishiguchi S, Kuroki T, Nakatani S, Morimoto H, Takeda T, Nakajima S, Shimoi S, Seki S, Kobayashi K, Otani S. Randomised trial of effects of interferon-alpha on incidence of hepatocellular carcinoma in chronic active hepatitis C with cirrhosis. Lancet 1995; 346: 1051-1055 [PMID: 7565764]
3 Tateishi R, Okanoue T, Fujiwara N, Okita K, Kiyosawa K, Onmata M, Kumada H, Hayashi N, Koike K. Clinical characteristics, treatment, and prognosis of non-B, non-C hepatocellular carcinoma: a large retrospective multicenter cohort study. J Gastroenterol 2015; 50: 350-360 [PMID: 24929638 DOI: 10.1007/s00535-014-0973-8]
4 Seef LB, Hooknagle JH. Epidemiology of hepatocellular carcinoma in areas of low hepatitis B and hepatitis C endemicity. Oncogene 2006; 25: 3771-3777 [PMID: 16799618 DOI: 10.1038/sj.onc.1209560]
5 Marrero JA, Fontana RJ, Su GL, Conjeevaram HS, Emick DM, Lok AS. NAFLD may be a common underlying liver disease in patients with hepatocellular carcinoma in the United States. Hepatology 2002; 36: 1349-1354 [PMID: 12447858]
6 Yasui K, Hashimoto E, Komorizono Y, Koike K, Arii S, Imai Y, Shimia T, Kanbara Y, Saibara T, Mori T, Kawata S, Uto H, Takami S, Sumida Y, Takamura T, Kawanaka M, Okanoue T. Characteristics of patients with nonalcoholic steatohepatitis who develop hepatocellular carcinoma. Clin Gastroenterol Hepatol 2011; 9: 428-433; quiz e50 [PMID: 21320639 DOI: 10.1016/j.cgh.2011.01.023]
7 Haddow JE, Palomaki GE, McClain M, Craig W. Hereditary haemochromatosis and hepatocellular carcinoma in males: a strategy for estimating the potential for primary prevention. J Med Screen 2003; 10: 11-13 [PMID: 12790309]
8 Moucar R, Rautou PE, Cazals-Hatem D, Gears A, Bureau C, Consigny Y, Francoz C, Denninger MH, Vilgrain V, Belfhiti J, Durand F, Valla D, Plessier A. Hepatocellular carcinoma in Budd-Chiari syndrome: characteristics and risk factors. Gut 2008; 57: 828-835 [PMID: 18218675 DOI: 10.1136/gut.2007.139477]
9 Suzuki Y, Ohtake T, Nishiguchi S, Hashimoto E, Aoyagi Y, Onji M, Kohgo Y. Survey of non-B, non-C liver cirrhosis in Japan. Hepatol Res 2013; 43: 1020-1031 [PMID: 23347437 DOI: 10.1111/hepr.12056]
10 Hara M, Tanaka K, Sakamoto T, Higaki Y, Mizuta T, Eguchi Y, Yasutake T, Ozaki I, Yamamoto K, Onohara S, Kawaoze S, Shigematsu H, Koizumi S. Case-control study on cigarette smoking and the risk of hepatocellular carcinoma among Japanese. Cancer Sci 2008; 99: 93-97 [PMID: 17956590]
11 Tanaka K, Tsuji J, Wakai K, Naguta C, Mizoue T, Inoue M, Tsugane S. Cigarette smoking and liver cancer risk: an evaluation based on a systematic review of epidemiologic evidence among Japanese. Jpn J Clin Oncol 2006; 36: 445-456 [PMID: 16782973 DOI: 10.1093/jjco/hyl040]
12 Koh WP, Robien K, Wang R, Govindarajan S, Yuan JM, Yu MC. Smoking as an independent risk factor for hepatocellular carcinoma: the Singapore Chinese Health Study. Br J Cancer 2011; 105: 1430-1435 [PMID: 21915129 DOI: 10.1038/bjc.2011.360]
13 Takenaka K, Yamamoto K, Taketomi A, Iasaka H, Adachi E, Shirabe K, Nishizaki T, Yanaga K, Sugimachi K. A comparison...
of the surgical results in patients with hepatitis B versus hepatitis C-related hepatocellular carcinoma. *Hepatology* 1995; 22: 20-24 [PMID: 7601413]

14 Sasaki Y, Yamada T, Tanaka H, Ohigashi H, Eguchi H, Yano M, Ishikawa O, Imaoka S. Risk of recurrence in a long-term follow-up study after surgery in 417 patients with hepatitis B- or hepatitis C-related hepatocellular carcinoma. *Ann Surg* 2006; 244: 771-780 [PMID: 17060771 DOI: 10.1097/01.sla.000021526.56483.b3]

15 Kao WY, Su CW, Chau GY, Lui WY, Wu CW, Wu JC. A comparison of prognosis between patients with hepatitis B and C virus-related hepatocellular carcinoma undergoing resection surgery. *World J Surg* 2011; 35: 858-867 [PMID: 21207029 DOI: 10.1007/s00268-010-9929-2]

16 Utsunomiya T, Shimada M, Kudo M, Ichiida T, Matsui O, Izumi N, Matsuayama Y, Sakamoto M, Nakashima O, K, Yu, Takayama T, Kokudo N. A comparison of the surgical outcomes among patients with HBV-positive, HCV-positive, and non-B non-C hepatocellular carcinoma: a nationwide study of 11,950 patients. *Ann Surg* 2015; 261: 513-520 [PMID: 25072437 DOI: 10.1097/01.sla.0000000000000821]

17 Yamashita Y, Imai D, Bekki Y, Kinura K, Matsumoto Y, Nakagawara H, Ikegami T, Yoshizumi T, Shirabe K, Aishima S, Maehara Y. Surgical Outcomes of Hepatic Resection for Hepatitis B Virus Surface Antigen-Negative and Hepatitis C Virus Antibody-Negative Hepatocellular Carcinoma. *Ann Surg Oncol* 2015; 22: 2279-2285 [PMID: 25472646 DOI: 10.1000/s10434-014-4261-x]

18 Kabori M, Ishizuki M, Matsui K, Kwon AH. Clinicopathologic characteristics of patients with non-B non-C hepatitis virus hepatocellular carcinoma after hepatectomy. *Am J Surg* 2012; 204: 300-307 [PMID: 22591698 DOI: 10.1016/j.amjsurg.2011.11.014]

19 Kaneda K, Kubo S, Tanaka H, Takemura S, Obha K, Uenishi T, Kodai S, Shinkawa H, Urata Y, Sakae M, Yamamoto T, Suehiro K. Features and outcome after liver resection for non-B non-C hepatocellular carcinoma. *Hepatogastroenterology* 2012; 59: 1889-1892 [PMID: 22819910 DOI: 10.5754/hep10778]

20 Li T, Qin LX, Gong X, Zhou J, Sun HC, Qu SJ, Ye QH, Wang L, Fan J. Hepatitis B virus surface antigen-negative and hepatitis C virus antibody-negative hepatocellular carcinoma: clinical characteristics, outcome, and risk factors for early and late intrahepatic recurrence after resection. *Cancer* 2013; 119: 126-135 [PMID: 22736338 DOI: 10.1002/cncr.27697]

21 Waki T, Shirai Y, Sakata J, Korita PV, Ajoka Y, Hatakeyama K. Surgical outcomes for hepatocellular carcinoma in nonalcoholic fatty liver disease. *J Gastrointest Surg* 2011; 15: 1450-1458 [PMID: 21512841 DOI: 10.1007/s11605-011-1540-8]

22 Reddy SK, Steel JL, Chen HW, DeMateo DJ, Cardinal J, Behari KC, Huang KC. The Relationship of Diabetes and Smoking on the Clinical Presentation, Outcomes, and Follow-up in Hepatocellular Carcinoma. *J Clin Gastroenterol* 2014; 30: 294-301 [DOI: 10.1097/MCG.0b013e3182a6ac35]

23 Pawlik TM, Poon RT, Abdalla EK, Sarmiento JM, Ikai I, Curley SA, Nagorney DM, Belgrade JS, Ng IO, Yamaoka Y, Lauwers GY, Vaubney JH. Hepatitis serology predicts tumor and liver-disease characteristics but not prognosis after resection of hepatocellular carcinoma. *Hepatology* 2004; 39: 691-701 [PMID: 15531232 DOI: 10.1002/hep.20128]

24 Li Q, Li H, Qin Y, Wang PP, Hao X. Comparison of surgical outcomes for small hepatocellular carcinoma patients in patients with hepatitis B versus hepatitis C: a Chinese experience. *J Gastroenterol Hepatol* 2007; 22: 1936-1941 [PMID: 17914973 DOI: 10.1111/j.1440-1746.2006.04619.x]

25 Nanashima A, Abo T, Sumida Y, Takeshita H, Hidaka S, Furukawa K, Sawai T, Yasutake T, Masuda J, Morisaki T, Nagayasa T. Clinicopathological characteristics of patients with hepatocellular carcinoma after hepatectomy: relationship with status of viral hepatitis. *J Surg Oncol* 2007; 96: 487-492 [PMID: 17657729 DOI: 10.1002/jso.20855]

26 Kondo K, Chijiwa K, Funagayama M, Kai M, Otani K, Ohuchida J. Differences in long-term outcome and prognostic factors according to viral status in patients with hepatocellular carcinoma treated by surgery. *J Gastrointest Surg* 2008; 12: 468-476 [PMID: 17999119 DOI: 10.1007/s11605-007-0402-x]

27 Cescutti M, Cucchiatti A, Grazi GL, Ferrero A, Viganò L, Ercolani G, Ravaioli M, Zanello M, Andreone P, Capussotti L, Pinna AD. Role of hepatitis B virus infection in the prognosis after hepatectomy for hepatocellular carcinoma in patients with cirrhosis: a Western dual-center experience. *Arch Surg* 2009; 144: 906-913 [PMID: 19841357 DOI: 10.1001/archsurg.2009.99]

28 Zhou Y, Si X, Wu L, Su X, Li B, Zhang Z. Influence of viral hepatitis status on prognosis in patients undergoing hepatic resection for hepatocellular carcinoma: a meta-analysis of observational studies. *World J Surg Oncol* 2011; 9: 108 [PMID: 21933440 DOI: 10.1186/1477-7827-9-108]

29 Nishikawa H, Arimoto A, Wakasa T, Kita R, Kinuma T, Osaki Y. Comparison of clinical characteristics and survival after surgery in patients with non-B and non-C hepatocellular carcinoma and hepatitis virus-related hepatocellular carcinoma. *J Cancer* 2013; 4: 502-513 [PMID: 23901350 DOI: 10.7150/jca.6503]

30 Zhang XF, Wei T, Liu XM, Liu C, Ly V. Impact of cigarette smoking on outcome of hepatocellular carcinoma after surgery in patients with hepatitis B. *Plast Reconstr Surg* 2014; 9; e85077 [PMID: 24457495 DOI: 10.1097/JSD.0000000000000258]

31 Cauchi F, Fukas D, Nomi T, Schwarz L, Barbier L, Dokmak S, Conner K, Wang S, Jacobson JS, Hershman DL, Si X, Wu L, Su X, Li B, Zhang Z. Influence of viral hepatitis status on prognosis in patients undergoing hepatic resection for hepatocellular carcinoma: a meta-analysis of observational studies. *World J Surg Oncol* 2011; 9: 108 [PMID: 21933440 DOI: 10.1186/1477-7827-9-108]

32 Ogimoto O, Shih WL, Chang HC, Lin YF, Lin SM, Lee SD, Chen PJ, Liu CJ, Lin CL, Yu MW. Influences of tobacco and alcohol use on hepatocellular carcinoma survival. *Int J Cancer* 2012; 130: 2612-2621 [PMID: 22362517 DOI: 10.1002/ijc.27508]

33 Tseng CH. Type 2 diabetes, smoking, insulin use, and mortality from hepatocellular carcinoma: a 12-year follow-up of a national cohort in Taiwan. *Hepatol Int* 2013; 7: 693-702 [PMID: 26201803 DOI: 10.1007/s12072-012-9405-0]

34 Chiang CH, Lu CW, Han HC, Hung SH, Lee YH, Yang KC, Huang KC. The Relationship of Diabetes and Smoking Status to Hepatocellular Carcinoma Mortality. *Medicine (Baltimore)* 2016; 95: e2699 [PMID: 26871803 DOI: 10.1097/MD.0000000000002699]

35 Wong LL, Lim WS, Tsai N, Severino R. Hepatitis B and alcohol affect survival of hepatocellular carcinoma patients. *World J Gastroenterol* 2005; 11: 3491-3497 [PMID: 15962361 DOI: 10.3748/wjg.v11.i23.3491]

36 Siegel AB, Conner K, Wang S, Jacobson JS, Hershman DL,
Hidalgo R, Verna EC, Halazun K, Brubaker W, Zaretsky J, Moniodis A, Delgado-Cruzata L, Dove L, Emond J, Kato T, Brown RS, Neugut AI. Smoking and hepatocellular carcinoma mortality. Exp Ther Med 2012; 3: 124-128 [PMID: 22969856 DOI: 10.3892/etm.2011.351]

Raffetti E, Portolani N, Molfino S, Baiocchi GL, Limina RM, Caccamo G, Lamera R, Donato F. Role of aetiology, diabetes, tobacco smoking and hypertension in hepatocellular carcinoma survival. Dig Liver Dis 2015; 47: 950-956 [PMID: 26276376 DOI: 10.1016/j.dld.2015.07.010]

Lv Y, Liu C, Wei T, Zhang JF, Liu XM, Zhang XF. Cigarette smoking increases risk of early morbidity after hepatic resection in patients with hepatocellular carcinoma. Eur J Surg Oncol 2015; 41: 513-519 [PMID: 25656703 DOI: 10.1016/j.ejso.2015.01.015]
