ON THE VIOLATION OF THURSTON-BENNEQUIN INEQUALITY FOR A CERTAIN NON-CONVEX HYPERSURFACE

ATSUHIDE MORI

Abstract. We show that any open subset of a contact manifold of dimension greater than three contains a certain hypersurface Σ which violates the Thurston-Bennequin inequality. We also show that no convex hypersurface smoothly approximates Σ. These results contrasts with the 3-dimensional case, where any surface in a small ball satisfies the inequality (Bennequin[1]) and is smoothly approximated by a convex one (Giroux[5]).

1. Introduction and preliminaries

Tightness is a fundamental notion in 3-dimensional contact topology. It is characterized by the Thurston-Bennequin inequality (see §1.1). Roughly, for a Seifert (hyper)surface Σ in a contact manifold, this inequality compares the contact structure along Σ with the tangent bundle of Σ by means of relative euler number. An overtwisted disk is a 2-disk equipped with a certain germ of 3-dimensional contact structure, for which the inequality fails. A contact manifold is said to be tight if it contains no embedded overtwisted disks. Then the inequality automatically holds for any Σ (Eliashberg[3]). The 1-jet space $J^1(\mathbb{R}, \mathbb{R})$ for a function $f : \mathbb{R} \to \mathbb{R}$ is tight (Bennequin[1]). Thus all contact 3-manifolds, which are modelled on $J^1(\mathbb{R}, \mathbb{R})$, are locally tight.

Giroux[5] smoothly approximated a given compact surface in a contact 3-manifold by a surface with certain transverse monotonicity, i.e., a convex surface (see §1.2 for the precise definition). Thus, in 3-dimensional case, we may easily consider that the above inequality is only for convex surfaces. Contrastingly, in higher dimension, we show the following theorem.

Theorem. In the case where $n > 1$, any open subset of the 1-jet space $J^1(\mathbb{R}^n, \mathbb{R})$, which is the model space for contact $(2n+1)$-manifolds, contains a hypersurface Σ such that

1. Σ violates the Thurston-Bennequin inequality, and
2. no convex hypersurface smoothly approximates Σ.

This leads us to seriously restrict the inequality to convex hypersurfaces (see [7] for a sequel).

1.1. Thurston-Bennequin inequality. Let Σ be a compact oriented hypersurface embedded in a positive contact manifold (M^{2n+1}, α) ($\alpha \land (d\alpha)^n > 0$) which tangents to the contact structure $\ker \alpha$ at finite number of interior points. Let $S_+(\Sigma)$ (resp. $S_-(\Sigma)$) denote the set of positive (resp. negative) tangent points. With respect to the symplectic structure $d\alpha|_{\ker \alpha}$, the symplectic orthogonal of $T\Sigma \cap \ker \alpha$ defines a singular line field $L \subset T\Sigma$. The integral foliation F_{Σ} of L on Σ is called the characteristic foliation. The singularity of L coincides with $S_+(\Sigma) \cup S_-(\Sigma)$. The restriction $\gamma = \alpha|_{T\Sigma}$ defines a holonomy invariant transverse contact structure of F_{Σ} and determines the orientation of L (i.e., $X \in L_{\gamma} \iff \iota_X(\partial/d\alpha)^n = \gamma \land (d\gamma)^n \iff \gamma \land L_X \gamma = 0$). We define the index $\text{Ind} p = \text{Ind}_L p$ of each tangent point $p \in S_\pm(\Sigma)$ by regarding it as a singular point of L. Assume that the boundary of each connected component of Σ is non-empty and L is outwards transverse to $\partial \Sigma$. Then the boundary $\partial \Sigma$ is said to be contact-type.

The unit 2-disk D^2 equipped with the germ of contact structure $\ker \{(2r^2 - 1)dz + r^2(v^2 - 1)d\theta\}$ is called an (the) overtwisted disk, where (r, θ, z) is the cylindrical coordinates of $D^2 \times \mathbb{R}$. Slightly extending D^2, we obtain a disk with contact-type boundary such that the singularity of the characteristic foliation is a single negative sink point. A contact 3-manifold is said to be overtwisted.

2000 Mathematics Subject Classification. Primary 57R17, 57R20, secondary 57R30.

Key words and phrases. Contact structure, characteristic class, convex contact geometry.
or tight depending on whether it contains an embedded overtwisted disk (with the same germ as above) or not. Let Σ be any surface with contact-type boundary embedded in the 1-jet space $J^1(\mathbb{R}, \mathbb{R})(\approx \mathbb{R}^3)$ equipped with the canonical contact form. Then Bennequin [1] proved the following inequality which immediately implies the tightness of $J^1(\mathbb{R}, \mathbb{R})$:

\textbf{Thurston-Bennequin inequality.} \[\sum_{p \in S_-(\Sigma)} \text{Ind} \ p \leq 0. \]

Eliashberg proved the same inequality for symplectically fillable contact 3-manifolds ([2]), and finally for all tight contact 3-manifolds ([3]). The inequality can be written in terms of relative euler number. Let X be the above vector field on a hypersurface $\Sigma \subset (M^{2n+1}, \alpha)$ with contact-type boundary. Then, since $X \in T\Sigma \cap \ker \alpha$, we can regard X as a section of $\ker \alpha|\Sigma$ which is canonical near the boundary $\partial \Sigma$. Thus we can define the relative euler number of $\ker \alpha|\Sigma$ by

\[\langle e(\ker \alpha), [\Sigma, \partial \Sigma] \rangle = \sum_{p \in S_+(\Sigma)} \text{Ind} \ p - \sum_{p \in S_-(\Sigma)} \text{Ind} \ p. \]

Then the Thurston-Bennequin inequality may be expressed as

\[-\langle e(\ker \alpha), [\Sigma, \partial \Sigma] \rangle \leq -\chi(\Sigma). \]

There is also an absolute version of the Thurston-Bennequin inequality which is expressed as $|\langle e(\ker \alpha), [\Sigma] \rangle| \leq -\chi(\Sigma)$, or equivalently

\[\sum_{p \in S_-(\Sigma)} \text{Ind} \ p \leq 0 \quad \text{and} \quad \sum_{p \in S_+(\Sigma)} \text{Ind} \ p \leq 0 \]

for any closed hypersurface Σ with $\chi(\Sigma) \leq 0$. This holds if the euler class $e(\ker \alpha)$ is a torsion, especially if $H^{2n}(M; \mathbb{R}) = 0$. Note that the inequality and its absolute version can be defined for any oriented plane field on M^3 (see Eliashberg-Thurston [4]). They are originally proved for codimension 1 foliations on M^3 without Reeb components by Thurston (see [9]).

\begin{enumerate}
\item \textbf{1.2. Convex hypersurfaces.} A vector field X on (M^{2n+1}, α) is said to be contact if the Lie derivative $\mathcal{L}_X \alpha$ vanishes on $\ker \alpha$. Let \mathcal{V} denote the space of contact vector fields on (M^{2n+1}, α). We can see that the linear map $\alpha(\cdot) : \mathcal{V} \to C^\infty(M^{2n+1})$ is an isomorphism. The function $\alpha(X)$ is called the contact Hamiltonian function of X. A closed oriented hypersurface $\Sigma \subset (M^{2n+1}, \alpha)$ is said to be convex if there exists a contact vector field Y on a neighbourhood $\Sigma \times (-\varepsilon, \varepsilon)$ of Σ for $\varepsilon > 0$ with $Y = \partial / \partial z$ ($z \in (-\varepsilon, \varepsilon)$), i.e., Y is positively transverse to Σ (Giroux [2]). By perturbing the contact Hamiltonian function if necessary, we may assume that $\Gamma = \{ \alpha(Y) = 0 \}$ is a hypersurface transverse to Σ. Then Γ separates Σ into the \textit{positive region} $\Sigma_+ = \{ \alpha(Y) \geq 0 \}$ and the \textit{negative region} $\Sigma_- = \{ \alpha(Y) \leq 0 \}$ so that $\Sigma = \Sigma_+ \cup (-\Sigma_-)$. Each interior int Σ_\pm has the positive exact symplectic form $\omega = \pm \alpha(Y) \alpha$. We can modify the function $\frac{1}{\alpha(Y)}$ near $\Sigma \times (-\varepsilon, \varepsilon) \to \mathbb{R}_{>0} \cup \{ \infty \}$ near Γ to obtain a function $f : \Sigma \times (-\varepsilon, \varepsilon) \to \mathbb{R}_{>0}$ such that $d(f \alpha)|\text{int} \Sigma_\pm$ are symplectic and $f \alpha$ is \mathbb{R}-invariant. (This is the “transverse monotonicity” of Σ.) Note that the dividing set $\Gamma \cap \Sigma$ is then the convex ends of the exact symplectic manifolds int Σ_\pm.

A \textit{convex hypersurface with contact-type boundary} is a connected hypersurface Σ which admits a transverse contact vector field X such that, for the associated decomposition $\Sigma = \Sigma_+ \cup (-\Sigma_-)$, int Σ_\pm are also convex exact symplectic manifolds, and the contact-type boundary $\partial \Sigma_\pm = \partial \Sigma_+ \cup \partial \Sigma_-$ is non-empty. (Changing X if necessary, we can assume moreover that the dividing set $\Gamma \cap \Sigma$ contains $\partial \Sigma_\pm$.) Then the Thurston-Bennequin inequality can be expressed as follows.

\textbf{Thurston-Bennequin inequality for convex hypersurfaces.} $\chi(\Sigma_-) \leq 0$.

Slightly extending the overtwisted disk D^2, we obtain a convex disk Σ which is the union $\Sigma_+ \cup (-\Sigma_-)$ of a disk Σ_- and an annulus Σ_+ surrounding Σ_-. Then Σ violates the Thurston-Bennequin inequality ($\chi(\Sigma_-) = 1 > 0$), and is called a convex overtwisted disk. A possible higher dimensional overtwisted convex hypersurface would also satisfy $\chi(\Sigma_-) > 0$ and $\partial \Sigma_+ \setminus \partial \Sigma_- \neq \emptyset$. Particularly $\partial \Sigma_+$ would have to be disconnected (see [7]).
2. Proof of Theorem

We show the following Proposition.

Proposition. Let \((M^3, \alpha)\) be an overtwisted contact 3-manifold and \(B^2_{\epsilon}\) the \(\epsilon\)-ball in \(\mathbb{R}^{2n-2}\) \((0 < \epsilon \ll 1)\). Then there exist a closed hypersurface \(\Sigma\) and a hypersurface \(\tilde{\Sigma}\) with contact-type boundary in the product contact \((2n+1)\)-manifold

\[
\left(M^3 \times B^2_{\epsilon} \right) \ni (p, (x_1, y_1, \ldots , x_{n-1}, y_{n-1})) \Rightarrow \beta = \pi^* \alpha + \sum_{i=1}^{n-1} (x_i dy_i - y_i dx_i)
\]

such that \(\tilde{\Sigma}\) and \(\Sigma\) are not convex, \(\Sigma \subset \tilde{\Sigma}\), and \(\Sigma\) violates the Thurston-Bennequin inequality, where \(\pi\) denotes the natural projection to \(M^3\).

Proof. Let \((r, \theta, z)\) be the cylindrical coordinates of \(\mathbb{R}^3\), and consider the functions

\[
\lambda(r) = 2r^2 - 1 \quad \text{and} \quad \mu(r) = r^2(r^2 - 1).
\]

Then we see that the contact structure on \(\mathbb{R}^3\) defined by the contact form

\[
\alpha' = \lambda(r) dz + \mu(r) d\theta
\]

is overtwisted. An overtwisted disk in \((M^3, \alpha)\) has a neighbourhood which is contactomorphic to \(U = \{\epsilon^{-2}z^2 + r^2 < 1 + 2\epsilon\} \subset (\mathbb{R}^3, \alpha')\). Thus, by using the formula

\[
f^2 \sum_{i=1}^{n-1} (x_i dy_i - y_i dx_i) = \sum_{i=1}^{n-1} (f x_i d(f y_i) - f y_i d(f x_i)) \quad (\forall f \in C^\infty (M^3 \times \mathbb{R}^{2n-1}))
\]

we can replace \((M^3, \alpha)\) in Proposition with \((U, \alpha'|U)\). Then we take the hypersurface

\[
\tilde{\Sigma} = \left\{ (z, r, \theta, x_1, y_1, \ldots, x_{n-1}, y_{n-1}) \mid r^2 + \epsilon^{-2} \left(z^2 + \sum_{i=1}^{n-1} (x_i^2 + y_i^2) \right) = 1 + \epsilon \right\}
\]

and its subset

\[
\Sigma = \left\{ (z, r, \theta, x_1, y_1, \ldots, x_{n-1}, y_{n-1}) \in \tilde{\Sigma} \mid r - z \leq 1 \right\}.
\]

We orient \(\tilde{\Sigma}\) so that the characteristic foliation \(\mathcal{F}_{\tilde{\Sigma}}\) is presented by the vector field

\[
X = \epsilon^{-2} r (r^2 - 1) z \partial_r + (1 + 2\epsilon - \epsilon^{-2}z^2) \partial_\theta + \left\{ (r^2 - 1)^2 + (2r^2 - 1)(\epsilon^{-2}z^2 - \epsilon) \right\} \partial_z
\]

\[
+ \epsilon^{-2} (2r^2 - 1) z \sum_{i=1}^{n-1} (x_i \partial_{x_i} + y_i \partial_{y_i}) + \epsilon^{-2} (2r^4 - 2r^2 + 1) \sum_{i=1}^{n-1} (-y_i \partial_{x_i} + x_i \partial_{y_i}).
\]

Indeed the following calculations shows that the vector field \(X\) satisfies \(X \in T\tilde{\Sigma}\), \(\beta(T\tilde{\Sigma})(X) = 0\), and \(\mathcal{L}_X (\beta|T\tilde{\Sigma}) = 2\epsilon^{-2}(2r^2 - 1)z\beta|T\tilde{\Sigma}\).

\[
\left\{ 2rdr + \epsilon^{-2} \left(2zdz + 2 \sum_{i=1}^{n-1} (x_i dx_i + y_i dy_i) \right) \right\} (X)
\]

\[
= 2\epsilon^{-2}(2r^2 - 1)z \left\{ r^2 + \epsilon^{-2} \left(z^2 + \sum_{i=1}^{n-1} (x_i^2 + y_i^2) \right) - 1 - \epsilon \right\},
\]

\[
\beta = (2r^2 - 1)dz + r^2(r^2 - 1)d\theta + \sum_{i=1}^{n-1} (x_i dy_i - y_i dx_i),
\]

\[
\beta(X) = (2r^2 - 1) \left\{ (r^2 - 1)^2 + (2r^2 - 1)(\epsilon^{-2}z^2 - \epsilon) \right\}
\]

\[
+ r^2(r^2 - 1)(1 - 2(\epsilon^{-2}z^2 - \epsilon)) + \epsilon^{-2} (2r^4 - 2r^2 + 1) \sum_{i=1}^{n-1} (x_i^2 + y_i^2)
\]

\[
= (2r^4 - 2r^2 + 1) \left\{ r^2 + \epsilon^{-2} \left(z^2 + \sum_{i=1}^{n-1} (x_i^2 + y_i^2) \right) - 1 - \epsilon \right\},
\]
The assumption implies that the singularity consists of the following five points; two (quarter-) elliptic points of the hyperbolic singular point of \(\Sigma \) with attention to the vector field which is the self-intersection of the leaf corresponding to \(C \). They are respectively a source point and a sink point (see Figure 1). Since the indices of these points are equal to 1, the hypersurface \(\Sigma \) violates the Thurston-Bennequin inequality.

Precisely, Figure 1 depicts (the fourfold covering of) the well-defined push-forward \(\mathcal{F}_\Sigma \) of \(X \) under the natural projection \(p \) from \(\Sigma \) to the quarter-sphere

\[
\Sigma' = \left\{ (z, r, |(x, y)|) \mid r^2 + \varepsilon^{-2}(z^2 + |(x, y)|^2) = 1 + \varepsilon \right\} \quad (r \geq 0, \ |(x, y)| \geq 0).
\]

The vector field \(X' \) defines the singular foliation \(\mathcal{F}' = \{ \varepsilon^{-2}z^2 = (Cr^2 - 1)(r^2 - 1) + \varepsilon \}_{-\infty \leq C \leq +\infty} \). The singularity consists of the following five points; two (quarter-)elliptic points \(\pm \varepsilon \sqrt{1 + \varepsilon}, 0, 0 \) whose preimages under \(p \) are the above singular points; other two (half-)elliptic points \(\pm \varepsilon \sqrt{1 + \varepsilon}, 1, 0 \) whose preimages are the periodic orbits \(P_\pm = \{ \pm \varepsilon \sqrt{1 + \varepsilon} \times S^1(1) \times \{ 0 \} \subset \Sigma \subset \mathbb{R} \times \mathbb{R}^2 \times \mathbb{R}^{2n-2} \} \) of \(X \) \((P_+ \subset \Sigma, P_- \subset \Sigma - \Sigma)\); and a hyperbolic point \(\left(0, r_0 = \sqrt{1 + \varepsilon - \sqrt{\varepsilon(1 + \varepsilon)}}, n_0 = \sqrt{\varepsilon^2 \sqrt{\varepsilon(1 + \varepsilon)}} \right) \), which is the self-intersection of the leaf corresponding to \(C = 1 + 2\varepsilon + 2\sqrt{\varepsilon(1 + \varepsilon)} \). Slightly changing \(\varepsilon \) if necessary, we may assume that the preimage \(H = p^{-1}\left(\{ (0, r_0, n_0) \} \right) = \{ 0 \} \times S^1(r_0) \times S^{2n-1}(n_0) \) of the hyperbolic singular point of \(X' \) is a union of periodic orbits of \(X \).

Now we assume that \(\Sigma \) is (approximately) convex in order to prove Proposition by contradiction. The assumption implies

\[
S_i(\Sigma), \ P_i \subset \tilde{\Sigma}_i \quad (i = +, -) \quad \text{and} \quad \Gamma \cap H = \emptyset
\]
where $\tilde{\Sigma}_\pm$ are the \pm regions of the convex surface $\tilde{\Sigma}$ divided by the transverse intersection with the level set Γ of the contact Hamiltonian function described in §1.2. Then we can see that the intersection $\Gamma \cap \tilde{\Sigma}$ contain a spherical component. However the Eliashberg-Floer-McDuff theorem implies that $S^{2n-1} \bigsqcup$ (other components) can not be realized as the boundary of a connected convex symplectic manifold (see McDuff[6]). This contradiction proves Proposition. Here we omit a similar proof of the non-convexity of the Seifert hypersurface Σ.

Theorem in §1 is deduced from Proposition and the following easy lemma (see [8] for a proof).

Lemma. There exists an embedded overtwisted contact S^3 topologically unknotted in $J^1(\mathbb{R}^2, \mathbb{R})$.

References

[1] D. Bennequin: *Entrelacements et équations de Pfaff*, Astérisque, **107-108** (1983), 83–161.
[2] Y. Eliashberg: *Filling by holomorphic discs and its applications*, Geometry of low-dimensional manifolds 2, London Math. Soc. Lect. Note Ser. **151**(1990), 45–72.
[3] Y. Eliashberg: *Contact 3-manifolds twenty years since J. Martinet’s work*, Ann. Inst. Fourier, Grenoble, **42** (1991), 165–192.
[4] Y. Eliashberg and W. Thurston: *Confoliations*, A.M.S. University Lecture Series, **13** (1998).
[5] E. Giroux: *Convoexité en topologie de contact*, Comm. Math. Helv. **66** (1991), 637–677.
[6] D. McDuff: *Symplectic manifolds with contact type boundaries*, Invent. Math. **103**(1991), 651–671.
[7] A. Mori: *Reeb foliations on S^3 and contact 5-manifolds violating the Thurston-Bennequin inequality*, preprint (2009), [arXiv:0906.3237](https://arxiv.org/abs/0906.3237).
[8] A. Mori: *The Reeb foliation arises as a family of Legendrian submanifolds at the end of a deformation of the standard S^3 in S^5*, preprint (2011).
[9] W. Thurston: *Norm on the homology of 3-manifolds*, Memoirs of the AMS, **339** (1986), 99–130.

Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

E-mail address: ka-mori@ares.eonet.ne.jp