Abstract: This Letter reports a search for a narrow resonant state decaying into two W bosons and
two b quarks where one W boson decays leptonically and the other decays into a quark-antiquark pair.
The search is particularly sensitive to top-antitop resonant production. We use the full data sample of
proton-antiproton collisions at a center-of-mass energy of 1.96 TeV collected by the CDF II detector at
the Fermilab Tevatron, corresponding to an integrated luminosity of 9.45 fb−1. No evidence for resonant
production is found, and upper limits on the production cross section times branching ratio for a narrow
resonant state are extracted. Within a specific benchmark model, we exclude a Z boson with mass, MZ ,
below 915 GeV/c2 decaying into a top-antitop pair at the 95% credibility level assuming a Z boson decay
width of ΓZ =0.012MZ . This is the most sensitive search for a narrow qq̅-initiated tt̅ resonance in the
mass region below 750 GeV/c2.

DOI: https://doi.org/10.1103/PhysRevLett.110.121802

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-92109
Journal Article
Accepted Version

Originally published at:
CDF Collaboration; et al; Canelli, F; Kilminster, B (2013). Search for Resonant Top-Antitop Production
in the Lepton Plus Jets Decay Mode Using the Full CDF Data Set. Physical Review Letters,
110(12):121802.
DOI: https://doi.org/10.1103/PhysRevLett.110.121802
Search for Resonant Top-antitop Production in the Semi-leptonic Decay Mode Using the Full CDF Data Set

T. Aaltonen,1 S. Amerio,20 D. Amidei,32 A. Anastassov,15 A. Annovi,17 J. Antos,12 G. Apollinari,15 J.A. Appel,15 T. Arisawa,53 A. Artikov,13 J. Asaadi,48 W. Ashmanskas,15 B. Auerbach,2 A. Aurisano,48 F. Azfar,39 W. Badgett,15 T. Bae,25 A. Barbaro-Galtieri,26 V.E. Barnes,44 B.A. Barnett,23 P. Barria,42 P. Bartos,12 M. Bause,40 F. Bedeschi,42 S. Behari,15 G. Bellettini,49 J. Bellinger,35 D. Benjamin,14 A. Beretvas,15 A. Bhati,46 K.R. Bland,5 B. Blumenfeld,23 A. Bocci,14 A. Bodek,45 D. Bortoletto,44 J. Boudreau,43 A. Boveia,11 L. Bridigiani,6 C. Bromberg,33 E. Brucken,21 J. Budagov,13 H.S. Budd,45 K. Burkett,15 G. Busetto,40 P. Bussey,19 P. Butt,42 A. Buzatu,19 A. Calamba,10 S. Camarda,4 M. Campanelli,28 F. Canelli,11,13 B. Carls,22 D. Carlsmith,55 R. Carosi,42 S. Carrillo,16 B. Casal,9 M. Casarsa,49 A. Castro,6 P. Catastini,20 D. Cauz,49 V. Cavaliere,22 M. Cavalli-Sforza,4 A. Cerri,26 L. Cerri,28 Y.C. Chen,1 M. Chertok,7 G. Chiarelli,42 G. Chlachidze,15 K. Cho,25 D. Chokheli,13 A. Clark,18 C. Clarke,54 M.E. Convery,15 J. Conway,7 M. Corbo,15 M. Cordelli,17 C.A. Cox,7 D.J. Cox,7 M. Cremonesi,42 D. Cruz,48 J. Cuevas,9 R. Culbertson,15 N. d'Ascanzio,15 M. Datta,95,15 P. DeBarbieri,15 L. Demortier,46 M. Denino,6 F. Devoto,21 M. D'Errico,40 A. Di Canto,92 B. Di Ruza,9,15 J.R. Dittmann,5 M. D'Onofrio,27 S. Donati,42 M. Dorigo,49 A. Driutti,49 K. Ebina,53 R. Edgar,32 A. Elgin,48 R. Erbacher,7 S. Errede,22 B. Esham,22 R. Eusebi,48 S. Farringon,39 J.P. Fernández Ramos,29 R. Field,16 G. Flanagan,15 R. Forrest,7 M. Franklin,20 J.C. Freeman,15 H. Frisch,11 Y. Funakoshi,53 A.F. Garfinkle,44 P. Garosi,45 H. Gerberich,22 E. Gerchtein,15 S. Giagu,47 V. Giakoumipoloulou,7 K. Gibson,43 C.M. Ginsburg,15 N. Giokaris,7 P. Giromini,17 G. Giorgi,23 V. Glagolev,13 D. Glenzinski,15 M. Gold,35 D. Goldin,48 A. Golossanov,15 G. Gomez,9 G. Gomez-Ceballos,30 M. Goncharov,30 O. González López,29 I. Gorelov,35 A.T. Goshaw,14 K. Goulianos,46 E. Gramellini,6 S. Grinstein,4 C. Grosso-Pilcher,11 R.C. Group,52 J. Guimaraes da Costa,20 S.R. Hahn,15 J.Y. Han,45 F. Happacher,17 K. Hara,50 R.F. Harr,54 T. Harrington-Taber,15 K. Hatakeyama,5 C. Hays,39 J. Heinrich,41 M. Herndon,55 A. Hocker,15 Z. Hong,48 W. Hopkins,15 S. Hou,1 R.E. Hughes,36 U. Husemann,56 J. Huston,33 G. Introzzi,42 M. Iori,47 A. Ivanov,7 E. James,15 D. Jang,10 B. Jayatilaka,15 E.J. Jeon,25 S. Jindariani,15 M. Jones,44 K.K. Joo,25 S.Y. Jun,10 T.R. Junk,15 M. Kambeitz,24 T. Kamon,25,48 P.E. Karchin,54 A. Kasmi,5 Y. Kato,38 W. Ketchum,11 J. Keung,41 B. Kilminster,15 D.H. Kim,15 H.S. Kim,25 J.E. Kim,25 M.J. Kim,17 S.B. Kim,25 S.H. Kim,50 Y.K. Kim,11 Y.J. Kim,25 N. Kinbara,53 M. Kirby,15 K. Knoepfel,15 K. Kondo,53 D.J. Kong,25 J. Königsberg,16 A.V. Kotwal,14 M. Krepš,24 J. Kroll,41 M. Kruse,14 T. Kuhr,24 M. Kurata,50 A.T. Laasanen,44 S. Lammel,15 M. Lancaster,28 K. Lannon,30 G. Latino,42 H.S. Lee,25 J.S. Lee,25 S. Leone,42 J.D. Lewis,15 A. Limosani,14 E. Lipeles,41 H. Liu,52 Q. Liu,44 T. Liu,15 S. Lockwitz,56 A. Logino,56 D. Lucchesi,40 J. Lucek,24 P. Lujan,26 P. Lukens,15 G. Lungu,46 J. Lys,26 R. Lysak,12 R. Madrak,15 P. Maestro,54,42 S. Malik,46 G. Manca,27 A. Manousakis-Katsikakis,3 F. Maragoli,47 P. Marino,42 M. Martínez,4 K. Matera,22 M.E. Mattson,54 A. Mazzacane,15 P. Mazzanti,9 R. McNulty,27 A. Mehta,27 P. Mehtala,21 C. Mesropian,42 T. Miao,15 D. Mietlicki,32 A. Mitra,1 H. Miyake,50 S. Moed,15 N. Moggi,6 C.S. Moon,20 R. Moore,15 M.J. Morley,42 A. Mukherjee,15 Th. Muller,24 P. Murat,15 M. Mussini,6 J. Nachtman,15 Y. Nagai,50 J. Nagano,53 I. Nakano,37 A. Napier,51 J. Nett,48 C. Neu,52 T. Nigmanov,43 L. Nodulman,2 S.Y. Noh,25 O. Norniea,22 L. Oakes,39 S.H. Oh,14 Y.D. Oh,25 I. Oksuzian,52 T. Okusawa,38 R. Orava,21 L. Ortolan,4 C. Pagliarone,15 F. Palencia,9 P. Palni,35 V. Papadimitriou,15 W. Parker,55 G. Paulletta,49 M. Paulini,10 C. Paus,30 T.J. Phillips,14 G. Piacentino,14 E. Pianori,41 J. Pilot,36 K. Pitts,22 C. Plager,8 L. Pondrom,15 S. Poproki,15 K. Potamianos,26 F. Prokoshin,13 A. Pranko,26 F. Ptohos,17 G. Punzi,42 N. Ranjan,44 I. Redondo Fernández,29 P. Renton,39 M. Rescigno,47 T. Riddick,28 F. Rimondi,6 L. Ristori,42,15 A. Robson,19 T. Rodriguez,41 S. Rolli,15 M. Ronzan,49,42 R. Roser,15 J.L. Rosner,11 F. Ruffini,42,15 A. Ruiz,9 J. Russ,10 V. Rusu,15 A. Safonov,48 W.K. Sakumoto,45 Y. Sakurai,53 L. Santi,49 K. Sato,50 V. Savelyev,15 A. Savoy-Navarro,15 P. Schlabach,15 E.E. Schmidt,15 T. Schwarz,32 L. Scodeller,9 S. Seidel,35 Y. Seiya,38 A. Semenov,13 F. Sforza,42 S.Z. Shalhout,7 T. Shears,27 P.F. Shepard,43 M. Shimojima,50 M. Schochet,19 J. Shreyber-Tecker,34 A. Simonenko,13 P. Sinervo,31 K. Sliwa,51 J.R. Smith,7 F.D. Snider,15 V. Sorin,4 H. Song,43 M. Stancari,13 R. St. Denis,19 B. Stelzer,31 O. Stelzer-Chilton,31 D. Stentz,15 J. Strologas,35 Y. Sudo,50 A. Sukhanov,15 I. Suslov,13 K. Takemasa,50 Y. Takeuchi,50 J. Tang,11 M. Tecchio,32 P.K. Teng,1 J. Thom,15 E. Thomson,41 V. Thnkaral,48 D. Toback,48 S. Tokar,12 K. Tollefson,33 T. Tomura,50 D. Tonelli,15 S. Torre,17 D. Torretta,15 P. Totaro,40 M. Trovato,12 F. Ukegawa,50 S. Uozumi,25 F. Vázquez,16 G. Velev,15 C. Velidis,15
This Letter reports a search for a narrow resonant state decaying into two W bosons and a bottom-antibottom quark pair where one W boson decays leptonically and the other decays into a quark-antiquark pair. The search is particularly sensitive to top-antitop resonant production. We use the full data sample of proton-antiproton collisions at a center-of-mass energy of 1.96 TeV collected by the CDF II detector at the Fermilab Tevatron, corresponding to an integrated luminosity of 9.45 fb$^{-1}$. No evidence for resonant production is found and upper limits on the production cross section times branching ratio for a narrow resonant state are extracted. Within a specific benchmark model, we exclude a Z' boson with mass below 915 GeV/c2 decaying into a top-antitop pair at the 95% credibility level assuming a Z' boson decay width of $\Gamma_{Z'} = 0.012 M_{Z'}$. This is the most sensitive search for a narrow qq-initiated tt resonance in the mass region below 750 GeV/c2.

PACS numbers: 13.85.Rm, 14.65.Ha, 14.70.Pw, 14.80.Tt

The large mass of the top quark, compared to that of the other fundamental particles, gives it a special position within the standard model (SM). Since its discovery, the top quark has played an important role in theoretical extensions beyond the standard model (BSM). Recently, renewed interest has been directed toward searches including top quark final states for BSM physics due to discrepancies reported in the tt forward-backward asymmetry. Moreover, the most recent search for resonant tt production from D0 reports an approximately 2σ excess of events at resonant-mass values around 950 GeV/c2. Many BSM theories predict heavy resonances that add a resonant component to the SM tt production mechanism.

Top quarks decay via the weak interaction, nearly always into a W boson and a b quark. The W bosons then decay into lighter fermion-antifermion pairs. A leptonic decay into a charged lepton and a neutrino occurs 32% of the time while a hadronic decay into an up-type quark and a down-type quark occurs the remaining 68% of the time. We search for resonant production of top quark pairs followed by decays into a final state with one lepton and multiple jets, where one of the W bosons decays leptonically (to either an electron or a muon plus a neutrino) and the other W boson decays hadronically. This semi-lepton channel features a dis
tinctive final state due to the presence of a charged lepton and has a branching ratio of 29%.

Unlike previous searches at CDF [12–15], we do not apply constraints based on the presence of top quarks in the event. While we focus the discussion on $t\bar{t}$ resonances, we construct the top-antitop mass $M_{t\bar{t}}$ used as a final search discriminant by taking the invariant mass of all objects (lepton, jets, and missing E_T) in the event including those that may not originate from top quark production. Other than the event selection defined below, which provides a sample primarily composed of $t\bar{t}$ events, there are no requirements that the event be consistent with $t\bar{t}$ production. This results in a more general search that is sensitive not only to $t\bar{t}$, but also to any heavy narrow resonance decaying into a final state with a W boson and three or more jets with one or two jets originating from a b quark.

As a benchmark model, we consider a specific SM extension, topcolor-assisted technicolor [16]. This model explains the large mass of the top quark through the introduction of new strong dynamics and also predicts a vector particle (Z' boson), which couples primarily to the third generation of quarks and has no significant couplings to leptons. The existence of a narrow-width Z' boson resonance ($\Gamma_{Z'} = 0.012 \, M_{Z'}$) decaying to $t\bar{t}$ pairs, using the leptophobic topcolor model [17], has been searched for by both the CDF [12,13] and D0 [5,18,19] experiments at the Tevatron, and also by the ATLAS [20] and CMS [21,22] experiments at the LHC. For resonance searches at the highest masses, the LHC experiments have superior sensitivity to the Tevatron due to the higher center-of-mass energy. However, in the lower mass regions ($m_{Z'} < 750$ GeV/c^2) the Tevatron experiments have competitive sensitivity in searches for particles produced in $q\bar{q}$-initiated states, such as the Z' boson. While the production rate for the main background from SM $t\bar{t}$ production is approximately 25 times larger, no valence antiquarks are available in the LHC pp collisions, so the signal production rate increases by a smaller factor relative to the pp collisions of the Tevatron (between four and eight depending on the signal mass hypothesis).

The collision events discussed in this Letter were produced at the Tevatron pp collider at a center-of-mass energy of 1.96 TeV and were recorded by the CDF II detector [23]. The data sample corresponds to the full data set of the Tevatron, which comes from an integrated luminosity of 9.45 fb$^{-1}$. The CDF II detector consists of high-precision tracking systems for vertex and charged-particle track reconstruction, surrounded by electromagnetic and hadronic calorimeters for energy measurement, and muon subsystems outside the calorimeter for muon detection. CDF II uses a cylindrical coordinate system with azimuthal angle ϕ, polar angle θ measured with respect to the positive z direction along the proton beam, and the distance r measured from the beamline. The pseudorapidity, transverse energy, and transverse momentum are defined as $\eta = -\ln \left[\tan \left(\frac{\theta}{2} \right) \right]$, $E_T = E \sin \theta$, and $p_T = p \sin \theta$, respectively, where E and p are the energy and momentum of an outgoing particle. The missing transverse energy \vec{E}_T is defined by $\vec{E}_T = -\sum_i E_i \hat{n}_i$, where \hat{n}_i is a unit vector perpendicular to the beam axis that points to the ith calorimeter tower ($\vec{E}_T = |\vec{E}_T|$).

The event selection and background estimation methods summarized below closely follow those that were employed in the observation of single top quark production [24] and in the search for the Higgs boson in the $WH \rightarrow t\bar{v}bb$ final state [25]. The main difference with respect to the current search is the jet multiplicity requirement.

The data were collected using online event selections (triggers) requiring one of the following energetic-lepton signatures: a high transverse momentum (p_T) electron candidate, a high-$$p_T$$ muon candidate, or large E_T. Significant E_T can be produced when the neutrino from a leptonic W boson decay escapes detection.

Candidate events are selected by requiring a lepton candidate with $p_T > 20$ GeV/c, $E_T > 20$ GeV, and three or more jets with $|\eta| < 2.0$ and $E_T > 20$ GeV after correcting the jet energies for instrumental effects [26,27]. One or two jets must be identified as being likely to have originated from a b quark according to the secvtx algorithm. This algorithm searches in the jet for a secondary vertex which results from the displaced decay of a hadron. Events are rejected if more than one identified lepton is reconstructed, or if they are kinematically inconsistent with leptonic W boson decays [28]. Events with severely misreconstructed jets or leptons are removed based on angular correlations between the jet or lepton candidate and the \vec{E}_T.

Models for background processes are derived from a mixture of simulation and data-driven techniques [24]. Important backgrounds in this final state include SM $t\bar{t}$ production and other processes that include a W or Z boson in association with three or more jets. The events can include true b-quark jets, as in W boson + $b\bar{b}jj$ events, or jets that have been misidentified as b-quark jets, such as in W boson + $c\bar{c}jj$ and W boson + $jjjj$ events, where j refers to jets not originating from heavy-flavor quarks. Multijet events without W bosons also contribute to the sample composition. Additional small background contributions come from Z boson production with additional jets, diboson production, and single top quark production.

The expected rate for the SM $t\bar{t}$ background is taken to be 7.04 ± 0.50 pb [30] as calculated at next-to-next-to-leading order using MSTW 2008 parton distribution functions [31]. In order to predict the acceptance for non-resonant SM $t\bar{t}$ events and their kinematic distributions, we use a sample of Monte Carlo (MC) events generated using POWHEG [32] and assuming a top quark mass of 172.5 GeV/c^2 [33] with parton showering provided by PYTHIA v6.2 [34] followed by simulation of the CDF II
The transverse momentum of the lepton and the neutrino. The transverse momentum of the event to discriminate between SM background and contributions. The sensitivity of the search benefits from this. The channels used to search for a resonance in the and applying this rate to the multijet data \[28\] for lepton identification, trigger efficiencies, and uncertainties include statistical and systematic contributions. The longitudinal component of the neutrino momentum \((p_z)\) is determined by solving \(M_W^2 = (p^l + p^\nu)^2\), where \(M_W\), \(p^l\), and \(p^\nu\) are the \(W\) boson mass, the lepton momentum, and the neutrino momentum, respectively. The smaller solution of the resulting quadratic equation is chosen for the \(p_z\) of the neutrino. If there is no real solution we set neutrino \(p_z = 0\). This approach is found to select the correct \(p_z\) of the neutrino in about 70% of simulated \(t\bar{t}\) events.

Process	3-jet events	≥ 4-jet events
\(t\bar{t}\)	1925 ± 204	2565 ± 271
\(W/Z\) boson + jets	2281 ± 607	569 ± 189
Multijets	147 ± 60	126 ± 104
Total background	4354 ± 872	3260 ± 563
Observed	4254	3049

TABLE I: Summary of the background prediction and observed data for three-jet and four-or-more-jet events. The uncertainties include statistical and systematic contributions.

The background predictions are summarized in Table II. In this table and the following figures we have divided the sample into events that include three jets and events that include four or more jets. For the statistical interpretation of the data we further subdivide the events based on the number of \(b\)-tagged jets (one or two \(b\) tags) and based on the lepton type (lepton types that can be directly identified by the trigger, or leptons in events selected with the \(E_T\)-based trigger), yielding eight independent channels used to search for a resonance in the \(M_{t\bar{t}}\) distributions. The sensitivity of the search benefits from this subdivision because the search subchannels have different background compositions, signal-to-background ratios, and invariant mass resolutions.

We use the invariant mass of all reconstructed objects in the event to discriminate between SM background and \(Z'\) boson signal events. For each event we calculate \(M_{t\bar{t}}\) using the momenta of the three or more jets, the charged lepton, and the neutrino. The transverse momentum of the neutrino is estimated from the \(E_T\). However, because the \(z\)-component of the momenta of the scattering partons from the \(p\bar{p}\) collision is unknown, the final-state reconstructed energy need not be balanced in the \(z\) direction. The longitudinal component of the neutrino momentum \((p_z)\) is determined by solving \(M_W^2 = (p^l + p^\nu)^2\), where \(M_W\), \(p^l\), and \(p^\nu\) are the \(W\) boson mass, the lepton momentum, and the neutrino momentum, respectively. The smaller solution of the resulting quadratic equation is chosen for the \(p_z\) of the neutrino. If there is no real solution we set neutrino \(p_z = 0\). This approach is found to select the correct \(p_z\) of the neutrino in about 70% of simulated \(t\bar{t}\) events.

For the benchmark model, the \(Z'\) boson cross sections times branching fraction are based on leading-order predictions from Ref. \[28\] with an additional scaling factor of 1.3 applied to account for next-to-leading-order (NLO) effects \[29\]. Signal \(Z'\) boson events are modeled with simulated events generated by PYTHIA in order to study the signal acceptance and to predict the \(M_{t\bar{t}}\) distributions. Table II shows the selection efficiencies and cross sections for \(Z'\) boson events after the final event selection for each mass hypothesis considered in the analysis.

A total of 4254 (3049) events survive the selection criteria for the three-jet (four-or-more-jet) category. The SM \(t\bar{t}\) contribution is estimated to be 43% (78%) for three-jet (four-or-more-jet) events. The remaining events are contributed primarily from the \(W\) boson + jet and QCD multijet processes plus a potential signal contribu-
In this expression, the first product is over the number of bins containing n scale while the high-mass tail in the inset is drawn on a logarithmic scale. The background expectation is normalized to the M_j histogram bin s pendence of c onant signal, b and θ of Gaussian priors are assumed for the sources of signal and background in different channels.

We calculate a Bayesian credibility level (C.L.) limit on resonant $t\bar{t}$ production for each mass hypothesis based on the binned observed $M_{t\bar{t}}$ spectrum using the combined likelihood which includes the priors, $\pi(\theta)$, on the systematic uncertainties, $\vec{\theta}$:

$$
\mathcal{L}(R, \vec{s}, \vec{b}| \vec{n}, \vec{\theta}) \times \pi(\vec{\theta}) = \prod_{i=1}^{N_c} \prod_{j=1}^{N_{obs}} \mu_{ij} \cdot \frac{e^{-\mu_{ij}}}{n_{ij}!} \times \prod_{k=1}^{n_{sys}} e^{-\theta_k^2/2}.
$$

In this expression, the first product is over the number of channels N_C, and the second product is over histogram bins containing n_{ij} events. The predictions for the bin contents are $\mu_{ij} = R \times s_{ij}(\vec{\theta}) + b_{ij}(\vec{\theta})$ for channel i and histogram bin j, where s_{ij} represents the potential resonant signal, b_{ij} is the expected background in the bin, and R is a scaling factor applied to the signal.

Systematic uncertainties are parametrized by the dependence of s_{ij} and b_{ij} on $\vec{\theta}$. Each of the n_{sys} components of $\vec{\theta}$, θ_k, corresponds to a single independent source of systematic uncertainty. We account for correlations by allowing each parameter to have an impact on several sources of signal and background in different channels. Gaussian priors are assumed for the θ_k, which are truncated so that no prediction is negative. The likelihood function, multiplied by the θ_k priors, $\pi(\theta_k)$, is then integrated over θ_k including correlations [11]:

$$
\mathcal{L}'(R) = \int \mathcal{L}(R, \vec{s}, \vec{b}| \vec{n}, \vec{\theta}) \pi(\vec{\theta}) d\vec{\theta}.
$$

We assume a uniform prior in R to obtain its posterior distribution. The observed 95% C.L. upper limit on R, R_{obs}, satisfies $0.95 = \int_{R_{obs}}^{\infty} \mathcal{L}'(R) dR$. The expected distribution of R_{obs} is computed in an ensemble of pseudoexperiments generated without signal. In each pseudoexperiment, values of the nuisance parameters are drawn from their priors. The median expected value of R_{obs} in this ensemble is quoted as the expected limit. This statistical procedure is repeated for each resonance-mass hypothesis from 350 GeV/c^2 to 1200 GeV/c^2.

We consider uncertainties that affect the normalization as well as uncertainties that affect the $M_{t\bar{t}}$ distributions. The same set of uncertainties on the dominant background ($\text{SM} t\bar{t}$ production) and the resonant signal are considered: they arise from the uncertainty in the jet energy scale (JES) [27], the b-tagging efficiency, the luminosity measurement [40], the lepton identification and trigger efficiency (2–6%), and the rate of initial-and final-state (IFSR) radiation from the parton shower model. The JES, b-tag, and IFSR variations also affect the shape of the $M_{t\bar{t}}$ distributions. The rate of production for events with a W boson and heavy-flavor jet (b or c) is assigned an uncertainty of 30% due to limitations in the calibration of the fraction of heavy-flavor jets in the
sample. Uncertainties on the renormalization and factorization scale used in the ALPGEN sample affect the shape of the $M_{t\bar{t}}$ distributions from W boson + jets. The QCD multijet background normalization is assigned a 40% uncertainty due to statistical limitations from the fitting procedure and the definition of the multijet model [24].

The resulting 95% C.L. upper limits on $\sigma(p\bar{p} \rightarrow Z')BR(Z' \rightarrow t\bar{t})$ as a function of $M_{t\bar{t}}$ are shown in Fig. 2 and Table III together with expected limits derived from pseudoexperiments that include the SM background hypothesis only. A benchmark leptophobic topcolor model is excluded at 95% C.L. for Z' boson masses smaller than 915 GeV/c^2 assuming the width of the resonance is $\Gamma_{Z'} = 0.012 M_{Z'}$. In addition, the limits reported here can be applied to any resonance producing the same final state as long as the decay width is significantly smaller than the reconstruction mass resolution ($\Gamma_{Z'} \ll 0.15 M_{Z'}$), and the difference in the acceptance with respect to the values quoted in Table II is taken into account.

For a specific benchmark model (leptophobic topcolor), we exclude Z' bosons with masses up to 915 GeV/c^2. For masses smaller than approximately 750 GeV/c^2, this search yields the most constraining limits to date on $q\bar{q}$-produced narrow $t\bar{t}$ resonant states in the semi-leptonic decay mode.

Acknowledgments

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; and the Australian Research Council (ARC).
[1] F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 74, 2626 (1995); S. Abachi et al. (D0 Collaboration), ibid 74, 2632 (1995).
[2] C. T. Hill and S. J. Parke, Phys. Rev. D 49, 4454 (1994).
[3] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 83, 112003 (2011).
[4] J. F. Kamenik, J. Shu, and J. Zupan, Eur. Phys. J. C 72, 2102 (2012).
[5] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. D 85, 051101 (2012).
[6] J. F. Kamenik, J. Shu, and J. Zupan, Eur. Phys. J. C 72, 2102 (2012).
[7] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. D 83, 112003 (2011).
[8] J. F. Kamenik, J. Shu, and J. Zupan, Eur. Phys. J. C 72, 2102 (2012).
[9] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. D 85, 051101 (2012).
[10] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 92, 221801 (2004).
[11] V. M. Abazov et al. (D0 Collaboration), Phys. Lett. B 668, 98 (2008).
[12] G. Aad et al. (ATLAS Collaboration), J. High Energy Phys. 07 (2012) 041.
[13] S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 07 (2012) 029.
[14] S. Chatrchyan et al. (CMS Collaboration), arXiv:hep-ex/1209.4397.
[15] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 032001 (2005).
[16] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 82, 112005 (2010).
[17] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 86, 032011 (2012).
[18] F. Abe et al. (CDF Collaboration), Phys. Rev. D 45, 1448 (1992).
[19] A. Bhatti et al. (CDF Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 566, 2 (2006).
[20] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 052003 (2005).
[21] F. Sforza, V. Lippi, and G. Chiarelli, J. Phys. Conf. Ser. 331, 032045 (2011).
[22] U. Langenfeld, S. Moch, and P. Uwer, Phys. Rev. D 80, 054009 (2009).
[23] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C 63, 189 (2009).
[24] S. Frixione, P. Nason, and C. Oleari, J. High Energy Phys. 11 (2007) 070.
[25] T. Aaltonen et. al. (CDF and D0 Collaborations), Phys. Rev. D 86, 092003 (2012).
[26] T. Aaltonen et. al. (CDF and D0 Collaborations), Phys. Rev. D 86, 092003 (2012).
[27] Torbörn Sjöstrand, Patrik Eden, Christer Friberg, Leif Lönnblad, Gabriela Miu, Stephen Mrenna, and Emanuel Norrbom, Comput. Phys. Commun. 135 (2001) 238.
[28] R. Brun, F. Bruyant, M. Maire, A. C. McPherson, and P. Zanarini, CERN Report No. CERN-DD-EE/84-1 (1987) 01.
[29] G. Grindhammer, M. Rudowicz, and S. Peters, Nucl. Instrum. Methods A 290, 469 (1990).
[30] M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau, and A. D. Polosa, J. High Energy Phys. 07 (2003) 001.
[31] R. M. Harris and S. Jain, Eur. Phys. J. C 72, 2072 (2012), and private communication with the authors.
[32] J. Gao, C. S. Li, B. H. Li, C.-P. Yuan, and H. X. Zhu, Phys. Rev. D 82, 014020 (2010), and private communication with the authors.
[33] S. Klimenko, J. Konigsberg, and T. M. Liss, FERMILAB-FN-0741 (2003).