ON KAWAI THEOREM FOR ORBIFOLD RIEMANN SURFACES

LEON A. TAKHTAJAN

Abstract. We prove a generalization of Kawai theorem for the case of orbifold Riemann surface. The computation is based on a formula for the differential of a holomorphic map from the cotangent bundle of the Teichmüller space to the PSL(2, C)-character variety, which allows to evaluate explicitly the pullback of Goldman symplectic form in the spirit of Riemann bilinear relations. As a corollary, we obtain a generalization of Goldman's theorem that the pullback of Goldman symplectic form on the PSL(2, R)-character variety is a symplectic form of the Weil-Petersson metric on the Teichmüller space.

1. Introduction

The deformation space of complex projective structures on a closed oriented genus $g \geq 2$ surface is a holomorphic affine bundle over the corresponding Teichmüller space. The choice of a Bers section identifies the deformation space with the holomorphic cotangent bundle of the Teichmüller space, a complex manifold with a complex symplectic form. Kawai's theorem [14] asserts that symplectic form on the cotangent bundle is a pullback under the monodromy map of Goldman's complex symplectic form on the corresponding PSL(2, C)-character variety.

However, Kawai’s proof is not very insightful. In fact, he does not use Goldman symplectic form as defined in [5], but rather uses a symplectic form on the moduli space of special rank 2 vector bundles on a Riemann surface associated with projective structures, as it is defined in [7]. The computation is highly technical and algebraic topology nature of the result gets obscured. Recently a shorter proof, relying on theorems of other authors, was given in [16]. Also in paper [3] it is proved, using special homological coordinates, that canonical Poisson structure on the cotangent bundle of the Teichmüller space induces the Goldman bracket on the character variety.

Here we prove a generalization of Kawai theorem for the case of orbifold Riemann surface. The computation is based on a formula for the differential of a holomorphic map from the cotangent bundle to the PSL(2, C)-character variety, which allows to evaluate explicitly the pullback of Goldman symplectic form in the spirit of Riemann bilinear relations. As a corollary, we obtain a generalization of Goldman’s theorem that the pullback of Goldman symplectic form on PSL(2, R)-character variety is a symplectic form of the Weil-Petersson metric on the Teichmüller space.
The paper is organized as follows. In Sect. 2.1 we recall basic facts from the complex-analytic theory of Teichmüller space \(T = T(\Gamma) \), where \(\Gamma \) is a Fuchsian group of the first kind, and in Sect. 2.2 we define the holomorphic symplectic form \(\omega \) on the cotangent bundle \(\mathcal{M} = T^* \mathcal{T} \). In Sect. 2.3 we introduce the \(\text{PSL}(2, \mathbb{C}) \)-character variety \(\mathcal{K} \) associated with the Fuchsian group \(\Gamma \), and its holomorphic tangent space at \([\rho] \in \mathcal{K}\), the parabolic Eichler cohomology group \(\mathcal{H}^1_{\text{par}}(\Gamma, \mathfrak{g}_{\text{Ad}_\rho}) \). The Goldman symplectic form \(\omega_G \) on \(\mathcal{K} \) is introduced in Sect. 2.4, and the holomorphic mapping \(Q : \mathcal{M} \to \mathcal{K} \), as well as the map \(F : T \to \mathcal{K}_R \), are defined in Sect. 2.5. In Section 3 we explicitly compute the differential of the map \(Q \) in the fiber over the origin in \(T \). Lemma 1 neatly summarizes variational theory of the developing map in terms of the so-called \(\Lambda \)-operator, the classical third-order linear differential operator

\[
\Lambda = \frac{d^3}{dz^3} + 2q(z) \frac{d}{dz} + q'(z),
\]

associated with the second-order differential equation

\[
\frac{d^2 \psi}{dz^2} + \frac{1}{2} q(z) \psi = 0,
\]

where \(q \) is a cusp form of weight 4 for \(\Gamma \). Its properties are presented in \(\Lambda 1 - \Lambda 5 \) (see also \(B1 - B3 \)).

The main result, Theorem 1,

\[
\omega = -\sqrt{-1} Q^* (\omega_G),
\]

is proved in Section 4. The proof uses Proposition 1 and explicit description of a canonical fundamental domain for \(\Gamma \) in Sect. 4.1. From here we obtain (see Corollary 3)

\[
\omega_{WP} = F^* (\omega_G),
\]

which is a generalization of Goldman theorem for orbifold Riemann surfaces.

Acknowledgements. I am grateful to Indranil Biswas for drawing my attention to Kawai theorem and its generalization to orbifold case. Also I am thankful to Bill Goldman for the reference [3].

2. The basic facts

2.1. Teichmüller space of a Fuchsian group. Here we recall the necessary basic facts from the complex-analytic theory of Teichmüller spaces (see classic paper [1] and book [2], and also [17, 21]).

2.1.1. Let \(\Gamma \) be, in classical terminology, a Fuchsian group of the first kind with signature \((g; n, e_1, \ldots, e_m)\), satisfying

\[
2g - 2 + n + \sum_{i=1}^{m} \left(1 - \frac{1}{e_i} \right) > 0.
\]
By definition, Γ is a finitely generated cofinite discrete subgroup of $\text{PSL}(2, \mathbb{R})$, acting on the Lobachevsky (hyperbolic) plane, the upper half-plane

$$\mathbb{H} = \{z = x + \sqrt{-1}y : y > 0\}.$$

The group Γ has a standard presentation with $2g$ hyperbolic generators $a_1, b_1, \ldots, a_g, b_g$, m elliptic generators c_1, \ldots, c_m of orders e_1, \ldots, e_m, and n parabolic generators c_{m+1}, \ldots, c_{m+n} satisfying the relation

$$a_1 b_1 a_1^{-1} b_1^{-1} \cdots a_g b_g a_g^{-1} b_g^{-1} c_1 \cdots c_{m+n} = 1.$$

The group Γ can be thought of as a fundamental group of the corresponding orbifold Riemann surface $X \simeq \Gamma \backslash \mathbb{H}$.

2.1.2. Let $A^{-1,1}(\mathbb{H}, \Gamma)$ be the space of Beltrami differentials for Γ — a complex Banach space of $\mu \in L^\infty(\mathbb{H})$ satisfying

$$\mu(\gamma z) \frac{\gamma'(z)}{\gamma'(z)} = \mu(z) \quad \text{for all} \quad \gamma \in \Gamma,$$

with the norm

$$\|\mu\|_\infty = \sup_{z \in \mathbb{R}} |\mu(z)|.$$

For a Beltrami coefficient for Γ, $\mu \in A^{-1,1}(\mathbb{H}, \Gamma)$ with $\|\mu\|_\infty < 1$, denote by w^μ the solution of the Beltrami equation

$$w^\mu z = \mu w^\mu z, \quad z \in \mathbb{H},$$

$$w^\mu = 0, \quad z \in \mathbb{H}^*,$$

that fixes $0, 1, \infty$, and put $\mathbb{H}^\mu = w^\mu(\mathbb{H})$, $\Gamma^\mu = w^\mu \circ \Gamma \circ (w^\mu)^{-1}$. The Teichmüller space $T(\Gamma)$ of a Fuchsian group Γ is defined by

$$T(\Gamma) = \{\mu \in A^{-1,1}(\mathbb{H}, \Gamma) : \|\mu\|_\infty < 1\}/\sim,$$

where $\mu \sim \nu$ if and only if $w^\mu|_\mathbb{R} = w^\nu|_\mathbb{R}$. Equivalently, $\mu \sim \nu$ if and only if $w^\mu|_\mathbb{R} = w^\nu|_\mathbb{R}$, where w^μ is a q.c. homeomorphism of \mathbb{H} satisfying the Beltrami equation

$$(w^\mu)_z = \mu(w^\mu)_z, \quad z \in \mathbb{H}.$$

We denote by $[\mu]$ the equivalence class of a Beltrami coefficient μ.

Teichmüller space $T(\Gamma)$ is a complex manifold of complex dimension

$$d = 3g - 3 + m + n.$$

The holomorphic tangent and cotangent spaces of $T_0 T(\Gamma)$ and $T_0^* T(\Gamma)$ at the base point, the origin $[0] \in T(\Gamma)$, are identified, respectively, with $\Omega^{-1,1}(\mathbb{H}, \Gamma)$ — the vector space of harmonic Beltrami differentials for Γ, and with $\Omega^2(\mathbb{H}, \Gamma)$ — the vector space of cusp forms of weight 4 for Γ. The corresponding pairing $T_0 T(\Gamma) \otimes T_0 T(\Gamma) \to \mathbb{C}$ is given by the absolutely convergent integral

$$\int\int_F \mu(z) q(z) dx dy,$$
where F is a fundamental domain for Γ. There is a complex anti-linear isomorphism $\Omega^2(\mathbb{H}, \Gamma) \xrightarrow{\sim} \Omega^{-1,1}(\mathbb{H}, \Gamma)$ given by $q(z) \mapsto \mu(z) = y^2 q(z)$. Together with the pairing, it defines the Petersson inner product in $T_0 T(\Gamma)$,

$$(\mu_1, \mu_2)_{WP} = \iint_F \mu_1(z)\overline{\mu_2(z)}y^{-2}dxdy.$$

There is a natural isomorphism between the Teichmüller spaces $T(\Gamma)$ and $T(\Gamma_\mu)$, where $\Gamma_\mu = w_\mu \circ \Gamma \circ w_\mu^{-1}$ is a Fuchsian group. For every $[\mu] \in T(\Gamma)$ it allows to identify $T_{[\mu]} T(\Gamma)$ with $\Omega^{-1,1}(\mathbb{H}, \Gamma_\mu)$ and $T_{[\mu]}^* T(\Gamma)$ with $\Omega^{2,0}(\mathbb{H}, \Gamma_\mu)$. The conformal mapping

$$h_\mu = w_\mu \circ (w^\mu)^{-1} : \mathbb{H}^\mu \rightarrow \mathbb{H}$$

establishes natural isomorphisms

$$\Omega^{-1,1}(\mathbb{H}, \Gamma_\mu) \xrightarrow{\sim} \Omega^{-1,1}(\mathbb{H}^\mu, \Gamma^\mu) \quad \text{and} \quad \Omega^{2,0}(\mathbb{H}, \Gamma_\mu) \xrightarrow{\sim} \Omega^{2,0}(\mathbb{H}^\mu, \Gamma^\mu).$$

According to the isomorphism $T(\Gamma) \simeq T(\Gamma_\mu)$, the choice of a base point is inessential and we will use the notation T for $T(\Gamma)$.

The Petersson inner product in the tangent spaces determines the Weil-Petersson Kähler metric on T. Its Kähler $(1,1)$-form is a symplectic form ω_{WP} on T,

$$(1) \quad \omega_{WP}(\mu_1, \bar{\mu}_2) = \frac{\sqrt{-1}}{2} \iint_F \left(\mu_1(z)\overline{\mu_2(z)} - \overline{\mu_1(z)}\mu_2(z) \right) y^{-2}dxdy,$$

where $\mu_1, \mu_2 \in T_0 T$.

2.1.3. Explicitly the complex structure on T is described as follows. Let μ_1, \ldots, μ_d be a basis of $\Omega^{-1,1}(\mathbb{H}, \Gamma)$. Bers’ coordinates $(\varepsilon_1, \ldots, \varepsilon_d)$ in the neighborhood U of the origin in T are defined by $\|\mu\|_\infty < 1$, where $\mu = \varepsilon_1 \mu_1 + \cdots + \varepsilon_d \mu_d$. For the corresponding vector fields we have

$$\frac{\partial}{\partial \varepsilon_i} \bigg|_\mu = P_{-1,1} \left(\frac{\mu_i}{1 - |\mu|^2} \frac{w_\mu^i}{w^\mu} \right) \circ (w^\mu)^{-1} \in \Omega^{-1,1}(\mathbb{H}^\mu, \Gamma^\mu),$$

where $P_{-1,1}$ is a projection on the subspace of harmonic Beltrami differentials. Let p_1, \ldots, p_d be the basis in $\Omega^2(\mathbb{H}, \Gamma)$, dual to the basis μ_1, \ldots, μ_d for $\Omega^{-1,1}(\mathbb{H}, \Gamma)$. For the holomorphic 1-forms $d\varepsilon_i$, dual to the vector fields $\frac{\partial}{\partial \varepsilon_i}$ on U, we have $d\varepsilon_i|_\mu = p_\mu^i$, where the basis p_1^μ, \ldots, p_d^μ in $\Omega^2(\mathbb{H}^\mu, \Gamma^\mu)$ has the property

$$P_2 \left(p_\mu^i \circ w^\mu(w^\mu)^2 \right) = p_i,$$

with P_2 being a projection on $\Omega^2(\mathbb{H}, \Gamma)$.
2.2. Holomorphic symplectic form. Let \(\mathcal{M} = T^* \mathcal{T} \) be the holomorphic cotangent bundle of \(\mathcal{T} \) with the canonical projection \(\pi: \mathcal{M} \to \mathcal{T} \). It is a complex symplectic manifold with canonical \((2,0)\) holomorphic symplectic form \(\omega = d\vartheta \), where \(\vartheta \) is the Liouville 1-form: at a point \((q, [\mu]) \in \mathcal{M}\),

\[
\vartheta(v) = q(\pi_* v), \quad v \in T_{(q,[\mu])} \mathcal{M}.
\]

For the points in the fiber \(\pi^{-1}(0) \) the symplectic form \(\omega \) is given explicitly by

\[
\omega((q_1, \mu_1), (q_2, \mu_2)) = \int_F (q_1(z)\mu_2(z) - q_2(z)\mu_1(z)) dxdy,
\]

where \((q_1, \mu_1), (q_2, \mu_2) \in T_{(q,0)} \mathcal{M} \simeq T_0^* \mathcal{T} \oplus T_0 \mathcal{T}.

2.2.1. Let \(\theta(t) \) be a smooth curve in \(\mathcal{M} \) starting at \((q,0) \in \mathcal{M}\) and lying in \(T^* U \), where \(U \) is a Bers neighborhood of the origin in \(\mathcal{T} \). Correspondingly, \(\mu(t) = p(\theta(t)) \) is a smooth curve in \(U \) satisfying \(\mu(0) = 0 \), and without changing the tangent vector to \(\theta(t) \) at \(t = 0 \) we can assume that \(\mu(t) = t\mu \) for some \(\mu \in \Omega^{-1,1}(\mathbb{H}, \Gamma) \). We have

\[
\theta(t) = \sum_{i=1}^d u^i(t) d\varepsilon_i |_{t\mu},
\]

for small \(t \) and

\[
\theta(0) = \sum_{i=1}^d u^i(0)p_i = q \in \Omega^2(\mathbb{H}, \Gamma).
\]

The tangent vector to \(\theta(t) \) at \(t = 0 \) is \((\dot{\theta}, \mu) \in T_{(q,0)} \mathcal{M} \), where

\[
\dot{\theta} = \sum_{i=1}^d u^i(0)p_i, \quad \text{where} \quad \dot{u}^i(t) = \left. \frac{du^i(t)}{dt} \right|_{t=0}, \quad i = 1, \ldots, d.
\]

On the other hand, the curve \(\theta(t) \) is given by the smooth family \(q^t \in \Omega^2(\mathbb{H}^\mu, \Gamma^{t\mu}) \) with \(q^0 = q \), and so

\[
u^i(t) = \left(q^t, \frac{\partial}{\partial \varepsilon_i |_{t\mu}} \right) = \int_F q(t) \mu_i dxdy,
\]

where

\[
q(t) = q^t \circ w^{t\mu} (w^{t\mu}_c)^2
\]

is a pull-back of the cusp form \(q^t \) on \(\mathbb{H}^{t\mu} \) to \(\mathbb{H} \) by the map \(w^{t\mu} \). Denoting by \(\dot{q} \) the Lie derivative of the family \(q^t \) at \(t = 0 \),

\[
\dot{q} = \left. \frac{dq(t)}{dt} \right|_{t=0},
\]

we obtain

\[
\dot{u}^i(0) = \int_F \dot{q} \mu_i dxdy, \quad i = 1, \ldots, d,
\]
so that
\[\dot{\theta} = P_2(\dot{q}). \]

2.2.2. To summarize, the value symplectic form \((2)\) on tangent vectors \((\dot{\theta}_1, \mu_1)\) and \((\dot{\theta}_2, \mu_2)\) to the curves \(\theta_1(t)\) and \(\theta_2(t)\) at \(t = 0\), is given by the following expression

\[\omega((\dot{\theta}_1, \mu_1), (\dot{\theta}_2, \mu_2)) = \iint_F (\dot{q}_1 \mu_2 - \dot{q}_2 \mu_1) dxdy. \]

Remark 1. Though \(\dot{q}\) is a non-holomorphic form of weight 4 for \(\Gamma\), it decays exponentially at the cusps. Indeed, by conjugation it is sufficient to consider the cusp \(\infty\). Since
\[
 q(t)(z) = \sum_{n=1}^{\infty} a_n(t)e^{2\pi\sqrt{-1}nw/z}w(t)^{n-1},
\]
where \(a_n(t)\) are corresponding Fourier coefficients of \(q(t)\). Therefore
\[
 \dot{q}(z) = \sum_{n=1}^{\infty} \dot{a}_n e^{2\pi\sqrt{-1}nz} + 2q(z)\dot{w} + q'(z)(\dot{w}^2 - \dot{c}),
\]
where
\[
\dot{w}(z) = \frac{\partial w}{\partial t} \bigg|_{t=0}, \quad \dot{a}_n = \frac{da_n(t)}{dt} \bigg|_{t=0}, \quad \text{and} \quad \dot{c} = \frac{dc(t)}{dt} \bigg|_{t=0},
\]
which shows that
\[
 \dot{q}(z) = O(e^{-\pi y}) \quad \text{as} \quad y \to \infty.
\]

2.3. **The character variety.** Here we recall necessary basic facts on the PSL(2, \(\mathbb{C}\))-character variety for the fundamental group of the orbifold Riemann surface \(X \simeq \Gamma \setminus \mathbb{H}\).

2.3.1. Let \(G\) be a Lie group PSL(2, \(\mathbb{C}\)) and \(g = \mathfrak{sl}(2, \mathbb{C})\) be its Lie algebra, which we identify with the Lie algebra of vector fields \(P(z)\frac{\partial}{\partial z}\) on \(\mathbb{H}\), where \(P(z) \in \mathcal{P}_2\) is a quadratic polynomial. Explicitly,
\[
 g \ni \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \mapsto (cz^2 - 2az - b)\frac{\partial}{\partial z} \in \mathcal{P}_2 \frac{\partial}{\partial z}.
\]
Let \(\langle , \rangle\) denote 1/4 of the Killing form\(^1\) of \(g\). In terms of the standard basis \(\{z^2, z, 1\}\) of \(\mathcal{P}_2\) the Killing form \(\langle , \rangle\) is given by the matrix
\[
 C = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1/2 & 0 \\ -1 & 0 & 0 \end{pmatrix},
\]
where \(C_{ij} = \langle z^{i-1}, z^{j-1}\rangle\), \(i, j = 1, 2, 3\). In general, for \(P_1, P_2 \in \mathcal{P}_2\)
\[
 \langle P_1, P_2 \rangle = -\frac{1}{2}B_0[P_1, P_2](z),
\]
\(^1\)Representing \(g\) by 2 \(\times\) 2 traceless matrices over \(\mathbb{C}\) gives \(\langle x, y \rangle = tr xy\).
where for arbitrary smooth functions F and G,
\begin{equation}
B_0[F,G] = F_{zz}G + FG_{zz} - F_zG_z.
\end{equation}
Note that the right hand side of (5) does not depend on z.

2.3.2. As in [5, 6], let \mathcal{X} be the G-character variety of an orbifold Riemann surface X,
\[\mathcal{X} = \text{Hom}_0(\Gamma, G)/G, \]
which consists of irreducible homomorphisms $\rho : \Gamma \to G$, modulo conjugation, that preserve traces of parabolic and elliptic generators of Γ. The character variety \mathcal{X} is a complex manifold of complex dimension $2d = 6g - 6 + 2m + 2n$, and the holomorphic tangent space $T_{[\rho]} \mathcal{X}$ at $[\rho]$ is naturally identified with the parabolic Eichler cohomology group
\[H^1_{\text{par}}(\Gamma, g_{\text{Ad}\rho}) / B^1(\Gamma, g_{\text{Ad}\rho}). \]
Here g is understood as a left Γ-module with respect to the action $\text{Ad}\rho$, and a 1-cocycle $\chi \in Z^1(\Gamma, g_{\text{Ad}\rho})$ is a map $\chi : \Gamma \to \mathcal{P}_2$ satisfying
\begin{equation}
\chi(\gamma_1\gamma_2) = \chi(\gamma_1) + \rho(\gamma_1) \cdot \chi(\gamma_2), \quad \gamma_1, \gamma_2 \in \Gamma,
\end{equation}
where dot stands for the adjoint action of G on $g \simeq \mathcal{P}_2 \frac{\partial}{\partial z}$,
\begin{equation}
(g \cdot P)(z) = \frac{P(g^{-1}(z))}{(g^{-1})'(z)}, \quad g \in G, \ P \in \mathcal{P}_2.
\end{equation}
The parabolic condition, introduced in [19], means that the restriction of a 1-cocycle $\chi \in Z^1(\Gamma, g_{\text{Ad}\rho})$ to a parabolic subgroup Γ_α of Γ — the stabilizer of a cusp α for Γ — is a coboundary: there is $P_\alpha(z) \in \mathcal{P}_2$ such that
\[\chi(\gamma) = \rho(\gamma) \cdot P_\alpha - P_\alpha, \quad \gamma \in \Gamma_\alpha. \]

Remark 2. It is well-known (see [19]) that the restriction of χ to a finite cyclic subgroup of Γ is a coboundary. Indeed, if $\gamma^n = 1$, then it follows from (7) that
\begin{equation}
0 = \chi(\gamma^n) = (1 + \rho(\gamma) + \cdots + \rho(\gamma^{n-1})) \cdot \chi(\gamma).
\end{equation}
Using the unit disk model of the Lobachevsky plane, we can assume that $\gamma(u) = \zeta u$, where $\zeta^n = 1$ and $|u| < 1$. It follows from (8) and (9) that
\[\chi(\gamma)(u) = au^2 + b, \]
and there is $P \in \mathcal{P}_2$ with the property
\[\chi(\gamma)(u) = \zeta P(u/\zeta) - P(u). \]

2.4. The Goldman symplectic form.
2.4.1. In case $X \cong \Gamma \backslash \mathbb{H}$ is a compact Riemann surface (the case $m = n = 0$), Goldman [5] introduced a complex symplectic form on the character variety \mathcal{X}. At a point $[\rho] \in \mathcal{X}$ it is defined as

$$\omega_G(\chi_1, \chi_2) = \langle \chi_1 \cup \chi_2([X]), \chi_1, \chi_2 \in T_{[\rho]} \mathcal{X} \rangle,$$

Here $[X]$ is the fundamental class of X under the isomorphism $H_2(X, \mathbb{Z}) \cong H_2(\Gamma, \mathbb{Z})$, and $\langle \chi_1 \cup \chi_2 \rangle \in H_2(\Gamma, \mathbb{R})$ is a composition of the cup product in cohomology and of the Killing form, given explicitly by

$$\langle \chi_1 \cup \chi_2 \rangle = \langle \chi_1(\gamma_1), \text{Ad}_\rho(\gamma_1) \cdot \chi(\gamma_2) \rangle.$$

According to [5, Proposition 3.9], the fundamental class $[X]$ in terms of the group homology is realized by the following 2-cycle

$$c = \sum_{k=1}^{g} \left\{ \left(\frac{\partial R}{\partial a_k}, a_k \right) + \left(\frac{\partial R}{\partial b_k}, b_k \right) \right\} \in H_2(\Gamma, \mathbb{Z}),$$

where $R = R_g,$

$$R_k = \prod_{i=1}^{k} a_i b_i a_i^{-1} b_i^{-1}, \quad k = 1, \ldots, g,$$

and by the Fox free differential calculus

$$\frac{\partial R}{\partial a_k} = R_{k-1} - R_k b_k, \quad \frac{\partial R}{\partial b_k} = R_{k-1} a_k - R_k.$$

In these notations (10) takes the form

$$\omega_G(\chi_1, \chi_2) = -\sum_{k=1}^{g} \left\langle \chi_1 \left(\# \frac{\partial R}{\partial a_k}, \chi_2(a_k) \right) \right\rangle + \left\langle \chi_1 \left(\# \frac{\partial R}{\partial b_k}, \chi_2(b_k) \right) \right\rangle,$$

where $\#$ is the natural anti-involution on the group ring $\mathbb{Z}[\Gamma],$

$$\# \left(\sum n_j \gamma_j \right) = \sum n_j \gamma_j^{-1}.$$

2.4.2. In case $m + n > 0$, we define $R_k, k = 1, \ldots, g$, as before and put

$$R_{g+i} = R_g c_1 \cdots c_i, \quad i = 1, \ldots, m + n; \quad R = R_{g+m+n}.$$

According to [9, 10, 13, 15], Goldman symplectic form ω_G on the character variety \mathcal{X} associated with the fundamental group of an orbifold Riemann surface is defined as follows

$$\omega_G(\chi_1, \chi_2) = -\sum_{k=1}^{g} \left\langle \chi_1 \left(\# \frac{\partial R}{\partial a_k}, \chi_2(a_k) \right) \right\rangle + \left\langle \chi_1 \left(\# \frac{\partial R}{\partial b_k}, \chi_2(b_k) \right) \right\rangle$$

$$- \sum_{i=1}^{m+n} \left\langle \chi_1 \left(\# \frac{\partial R}{\partial c_i}, \chi_2(c_i) \right) \right\rangle - \sum_{i=1}^{m+n} \langle \chi_1(c_i^{-1}), P_{2i} \rangle,$$

\[\text{See also exercises 4(b) and 4(c) on p. 46 in [4].}\]
where
\[
(15) \quad \frac{\partial R}{\partial c_i} = R_{g+i-1},
\]
and \(P_{2i} \in \mathcal{P}_2\) are given by
\[
\chi_2(\gamma) = \rho(\gamma) \cdot P_{2i} - P_{2i}, \quad \gamma \in \Gamma_i = \langle c_i \rangle, \quad i = 1, \ldots, m + n.
\]
For details and the proof that (14) defines a symplectic form on \(\mathcal{K}\) we refer to [9, 10, 13, 15].

2.5. The holomorphic map \(Q : \mathcal{M} \to \mathcal{K}\). The holomorphic map \(Q : \mathcal{M} \to \mathcal{K}\) is defined as follows. Let \((q, [\mu]) \in \mathcal{M}\), where \(q \in \Omega^2(\mathbb{H}^\mu, \Gamma^\mu)\). On \(\mathbb{H}^\mu = w^\mu(\mathbb{H})\) consider the Schwarz equation
\[
\mathcal{S}(f) = q,
\]
where \(\mathcal{S}\) stands for the Schwarzian derivative,
\[
\mathcal{S}(f) = \frac{f'''}{f'} - \frac{3}{2} \left(\frac{f''}{f'} \right)^2.
\]
Its solution, the developing map \(f : \mathbb{H}^\mu \to \mathbb{C}\), satisfies
\[
f \circ \gamma^\mu = \rho(\gamma) \circ f \quad \text{for all} \quad \gamma^\mu = w^\mu \circ \gamma \circ (w^\mu)^{-1} \in \Gamma^\mu,
\]
and determines \([\rho] \in \text{Hom}_0(\Gamma, G)/G\).

Indeed, \(f\) can be obtained as a ratio of two linearly independent solutions of the equation
\[
(16) \quad \psi'' + \frac{1}{2} q(z) \psi = 0.
\]
Since \(q\) is a cusp form of weight 4 for \(\Gamma^\mu\), application of Frobenius method to (16) at cusps and elliptic fixed points shows that \(\rho\) preserves traces of parabolic and elliptic generators of \(\Gamma\). Moreover, the representation \(\rho\) is irreducible [8, 18].

The holomorphic map \(Q\) is defined by
\[
\mathcal{M} \ni (q, [\mu]) \mapsto Q(q, [\mu]) = [\rho] \in \mathcal{K}.
\]

Remark 3. Besides the holomorphic embedding \(\mathcal{T} \hookrightarrow \mathcal{M}\) given by the zero section, there is a smooth non-holomorphic embedding \(\iota : \mathcal{T} \to \mathcal{M}\), given by
\[
\mathcal{T} \ni [\mu] \mapsto (\mathcal{S}(h_\mu), [\mu]) \in \mathcal{M}.
\]
The image of the smooth curve \(\{[\mu]\}\) in \(\mathcal{T}\) under the map \(\mathcal{F} = Q \circ \iota\) — the curve \(\{\Gamma_\mu\}\) in \(\mathcal{K}\) — lies in the real subvariety \(\mathcal{K}_R\) of \(\mathcal{K}\), the character variety for \(G_R = \text{PSL}(2, \mathbb{R})\).
3. Differential of the map \(Q \)

3.1. The set-up. Consider a smooth curve \(\theta(t) \) on \(\mathcal{M} \) defined by the family \(q^t \in \Omega^2(\mathbb{H}^{\mu}, \Gamma^{\mu}) \), where \(q^0 = q \in \Omega^2(\mathbb{H}, \Gamma) \), \(\mu \in \Omega^{-1,1}(\mathbb{H}, \Gamma) \) and \(0 \leq t < 1/\|\mu\|_{\infty} \). Its image under the map \(Q \) is a smooth curve on \(\mathcal{K} \) given by the family \(\{ \rho^t \} \), where \(\rho^0 = \rho = Q(q, 0) \in \mathcal{K} \). According to Sect. 2.5,

\[
\rho^t(\gamma) = f^t \circ \gamma^{\mu} \circ (f^t)^{-1} \quad \text{for all} \quad \gamma^{\mu} \in \Gamma^{\mu}.
\]

The maps \(f^t : \mathbb{H}^{\mu} \rightarrow \mathbb{C} \) are defined by

\[
\mathcal{I}(f^t) = q^t,
\]

where \(f^0 = f : \mathbb{H} \rightarrow \mathbb{C} \) satisfies

\[
\mathcal{I}(f) = q
\]

and

\[
f \circ \gamma = \rho(\gamma) \circ f \quad \text{for all} \quad \gamma \in \Gamma.
\]

Put \(g^t = f^t \circ w^{t\mu} : \mathbb{H} \rightarrow \mathbb{C} \). It follows from (17) that

\[
\mathcal{I}(g^t) = \mathcal{I}(f^t) \circ w^{t\mu}(w^{t\mu})^2 + \mathcal{I}(w^{t\mu}) = q(t) + \mathcal{I}(w^{t\mu}),
\]

where \(q(t) \) is a non-holomorphic form of weight 4 for \(\Gamma \), given by (3). It follows from the equation

\[
g^t \circ \gamma = \rho^t(\gamma) \circ g^t
\]

that

\[
\dot{g} \circ \gamma = \dot{\rho}(\gamma) \circ f + \rho(\gamma)' \circ f \dot{g},
\]

where

\[
\dot{g} = \frac{dg^t}{dt} \bigg|_{t=0} \quad \text{and} \quad \dot{\rho}(\gamma) = \frac{d\rho^t(\gamma)}{dt} \bigg|_{t=0}.
\]

Using

\[
\rho(\gamma)' \circ f f' = f' \circ \gamma \gamma'
\]

we obtain

\[
\frac{1}{\gamma'} \frac{\dot{g}}{f'} \circ \gamma = \frac{\dot{g}}{f'} + \frac{1}{f'} \frac{\dot{\rho}(\gamma)}{\rho(\gamma)'} \circ f.
\]

For the corresponding tangent vector \(\chi \in T_{[\rho]} \mathcal{K} \) we have

\[
\chi(\gamma) = \dot{\rho}(\gamma) \circ \rho(\gamma)^{-1} = -\frac{\dot{\rho}(\gamma)^{-1}}{(\rho(\gamma)^{-1})'},
\]

so that

\[
\frac{1}{f'} \chi(\gamma^{-1}) \circ f = \frac{\dot{g}}{f'} - \frac{1}{\gamma'} \frac{\dot{g}}{f'} \circ \gamma.
\]

It immediately follows from (19) that \(\chi \in Z^1(\Gamma, \mathfrak{g}_{Ad\rho}) \). To show that \(\chi \) is a parabolic cocycle, it is sufficient to check it for the subgroup \(\Gamma_{\infty} \) generated by \(\tau = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \), which corresponds to the cusp at \(\infty \). We can assume that the maps \(f^t \) fix \(\infty \), so that \(g^t = f^t \circ w^{t\mu} \) also have this property,

\[
g^t(z + 1) = g^t(z) + c(t).
\]
Thus \(\dot{g}(z + 1) = \dot{g}(z) + \dot{c} \) and \(\chi(\tau) = \dot{c}. \) Whence there is \(P \in \mathcal{P}_2 \) such that \(\chi(\tau) = P \circ \tau - P. \)

3.2. **Differential equation and the \(\Lambda \)-operator.** From (18) it is easy to obtain a differential equation for \(\dot{g}. \) Namely, differentiate equation (18) with respect to \(t \) at \(t = 0. \) Using \(g^0 = f \) and \(\dot{w}_{zzz}^\mu = 0 \) for \(\mu \in \Omega^{-1,1} (\mathbb{H}, \Gamma), \) which follows from classic Ahlfors’ formula in [1], we get

\[
\dot{q} = \frac{d}{dt} \bigg|_{t=0} \mathcal{J}(g') = \frac{\dot{g}_{zzz}}{f'} - 3 \frac{f''}{f'^2} \dot{g}_z + \left(3 \frac{f'^2}{f'^3} - \frac{f''}{f'^2} \right) \dot{g}_z.
\]

Since \(q = \mathcal{J}(f), \) a simple computation shows that this equation can be written neatly as follows

\[
\Lambda \left(\frac{\dot{g}}{f'} \right) = \dot{q},
\]

where \(\Lambda \) is the following linear differential operator of the third order,

\[
\Lambda(F)(z) = F_{zzz} + 2q(z)F_z + q'(z)F.
\]

The \(\Lambda \)-operator is classical and goes back to Appell (see [20, Example 10 in §14.7]). Its basic properties are summarized below.

A1. If \(\psi_1 \) and \(\psi_2 \) are solutions of the ordinary differential equation (16), then

\[
\Lambda(\psi_1 \psi_2) = 0.
\]

Since one can always choose \(\psi_1 = \frac{1}{\sqrt{f'}} \) and \(\psi_2 = \frac{f}{\sqrt{f'}}, \)

\[
\Lambda \left(\frac{P \circ f}{f'} \right) = 0
\]

for every \(P \in \mathcal{P}_2. \)

A2. If a function \(h \) satisfies \(h_{zzz} = p \) and \(f \) is holomorphic and locally schlicht, then \(H = \frac{h \circ f}{f'} \) satisfies

\[
\Lambda(H) = H_{zzz} + 2q(z)H_z + q'(z)H = P,
\]

where \(P = p \circ f(f')^2 \) and \(q = \mathcal{J}(f). \)

A3. If \(q \circ \gamma (\gamma')^2 = q \) for some \(\gamma \in \text{PSL}(2, \mathbb{C}), \) then

\[
\Lambda \left(\frac{F \circ \gamma}{\gamma'} \right) = \Lambda(F) \circ \gamma (\gamma')^2.
\]

A4. The general solution of the equation

\[
G_{zzz} + 2q(z)G_z + q'(z)G = Q,
\]

where \(Q \) is holomorphic on \(\mathbb{H} \) and \(q = \mathcal{J}(f), \) is given by

\[
G(z) = \frac{1}{2} \int_{z_0}^{z} \frac{(f(z) - f(u))^2}{f'(z)f'(u)} Q(u) du + \frac{1}{f'(z)}(af(z)^2 + bf(z) + c),
\]

where \(a, b, c \) are arbitrary anti-holomorphic functions of \(z. \)
A5.

\[\Lambda(F)G + F\Lambda(G) = (B[F, G])_z, \]

where the bilinear form \(B \) is given by

\[B[F, G] = F_{zz}G + FG_{zz} - F_zG_z + 2q(z)FG. \]

All these properties are well-known and can be verified by direct computation. In particular, property A4, according to A2, follows from case \(q = 0 \), when the equation \(G_{zzz} = Q \) is readily solved by

\[G(z) = \frac{1}{2} \int_{z_0}^z (z - u)^2 Q(u)du + az^2 + bz + c. \]

Bilinear form \(B \), introduced in A5, will play an important role in our approach. It has the following properties.

B1. Explicitly denoting the \(q \)-dependence in \(B \) by \(B_q \), we have

\[B_q \left[\frac{F \circ f}{f'}, \frac{G \circ f}{f'} \right] = B_0[F, G] \circ f, \]

where \(q = \mathcal{A}(f) \). In general,

\[(B_{\mathcal{A}(f_1)}[F, G]) \circ f_2 = B_{\mathcal{A}(f_1 \circ f_2)} \left[\frac{F \circ f_2}{f'_2}, \frac{G \circ f_2}{f'_2} \right]. \]

B2. If \(q \circ \gamma (\gamma')^2 = q \) for some \(\gamma \in \text{PSL}(2, \mathbb{C}) \), then

\[B[F, G] \circ \gamma = B \left[\frac{F \circ \gamma}{\gamma'}, \frac{G \circ \gamma}{\gamma'} \right]. \]

B3. If \((F \circ \gamma) \gamma' = F \) for some \(\gamma \in \text{PSL}(2, \mathbb{C}) \), then

\[B[F, G] - B[F, G] \circ \gamma \bar{\gamma'} = B[F, H], \quad \text{where} \quad H = G - \frac{G \circ \gamma}{\gamma'}. \]

3.3. The differential. We summarize the obtained results in the following statement.

Lemma 1. Let \((\dot{\theta}, \mu) \in T_{(q,0)}\mathcal{M} \), where \(\dot{\theta} = P_2(\dot{q}) \), be a tangent vector corresponding to a curve \(\{q^t\} \). For

\[\chi = dQ|_{(q,0)} (\dot{\theta}, \mu) \in H^1_{\text{par}}(\Gamma, \mathfrak{g}_{\text{Ad}_\rho}), \]

we have

\[\frac{1}{f'} \chi(\gamma^{-1}) \circ f = \frac{\dot{q}}{f'} - \frac{1}{\gamma'} \frac{\dot{\gamma}}{f'} \circ \gamma, \]

where \(\frac{\dot{q}}{f'} \) satisfies

\[\Lambda \left(\frac{\dot{q}}{f'} \right) = \dot{q}, \quad \frac{\partial}{\partial z} \left(\frac{\dot{q}}{f'} \right) = \mu. \]
Proof. It remains only to check the last equation. Since $g^t = f^t \circ w^t$, it follows from the Beltrami equation for w^t that on \mathbb{H} the function g^t satisfies

$$g^t = t\mu g^t,$$

and therefore

$$\dot{g}_z = \mu f',$$

i.e.

$$\partial_{\bar{z}} \left(\frac{\dot{g}}{f'} \right) = \mu. \quad \Box$$

(21)

Remark 4. We have

$$\Lambda(\mu) = \dot{q}_z,$$

which is a compatibility condition of equations (20) and (21). It can be also verified directly by differentiating the equation

$$\left(\partial_{\bar{z}} - t\mu \frac{\partial}{\partial z} - 2t\mu z \right) q(t) = 0$$

at $t = 0$,

$$\dot{q}_z = 2q\mu z + q' \mu = \Lambda(\mu).$$

Corollary 1. The function $\frac{\dot{g}}{f'}$ is given by the following formula

$$\frac{\dot{g}(z)}{f'(z)} = \dot{w}(z) + \frac{1}{2} \int_{z_0}^z \left(\frac{f(z) - f(u)}{f'(z)f'(u)} \right) \dot{q}(u) du + \frac{P(f(z))}{f'(z)},$$

where $P \in \mathcal{P}_2$ and \(\dot{q} = \dot{q} - \Lambda(\dot{w}) = \dot{q} - 2q\dot{w}_z - q'\dot{w}. \)

Proof. It follows from properties \(A1 \) and \(A4 \), since the holomorphic function $\frac{\dot{g}}{f'} - \dot{w}$ satisfies

$$\Lambda \left(\frac{\dot{g}}{f'} - \dot{w} \right) = \dot{q}. \quad \Box$$

Remark 5. Similarly to Wolpert’s formulas [22] for Bers and Eichler-Shimura cocycles, from Corollary 1 one can obtain an explicit formula for the parabolic cocycle $\chi \in H^1_{\text{par}}(\Gamma, g_{\text{Adp}})$.

Corollary 2. For every cusp α for Γ there is $P_\alpha \in \mathcal{P}_2$ such that

$$\frac{\dot{g}(z)}{f'(z)} = \frac{P_\alpha(f(z))}{f'(z)} + O(e^{-c_\alpha \text{Im} \sigma_\alpha z}) \quad \text{as} \quad \text{Im} \sigma_\alpha z \to \infty,$$

where $\sigma_\alpha \in \text{PSL}(2, \mathbb{R})$ is such that $\sigma_\alpha(\alpha) = \infty$ and $c_\alpha > 0$.

Proof. It follows from Remark 1 and Lemma 1 (or from Corollary 1). \(\Box \)
Remark 6. For the family \(q^t = s(t) \), introduced in Remark 3, we have \(g^t = w_{t\mu} \) and \(\dot{q} = \dot{g}_{zzz} \). It follows from classic Ahlfors’ formula in \([1]\) that
\[
\dot{q} = \frac{1}{2}q, \quad \text{where} \quad \mu = y^2 \dot{q}.
\]
Thus
\[
d_{\partial F_0}(\mu) = (\frac{-1}{2}q, \mu) \in T_0 \mathcal{M},
\]
and it follows from (1) that
\[
i^*(\omega) = \sqrt{-1} \omega_{WP}.
\]

4. Computation of the symplectic form

4.1. The fundamental domain. Here we recall the definition of a canonical fundamental domain for the Fuchsian group \(\Gamma \) (see \([12]\) and references therein).

4.1.1. In case \(m = n = 0 \) choose \(z_0 \in \mathbb{H} \) and standard generators \(a_k, b_k, k = 1, \ldots, g \). The oriented canonical fundamental domain \(F \) with the base point \(z_0 \) is a topological \(4g \)-gon whose ordered vertices are given by the consecutive quadruples
\[
(R_k z_0, R_k a_k z_0, R_k a_k b_k z_0, R_k a_k b_k a_k^{-1} z_0), \quad k = 0, \ldots, g - 1.
\]
Corresponding \(A \) and \(B \) edges of \(F \) are analytic arcs \(A_k = (R_{k+1} z_0, R_k a_k z_0) \) and \(B_k = (R_k z_0, R_k b_k z_0), \quad k = 1, \ldots, g \), and corresponding dual edges are \(A_k' = (R_k b_k z_0, R_k b_k a_k z_0) \) and \(B_k' = (R_{k-1} z_0, R_k b_k a_k z_0) \). We have
\[
\partial F = \sum_{k=1}^{g} (A_k - B_k - A_k' + B_k').
\]
Here
\[
A_k = \alpha_k(A_k') \quad \text{and} \quad B_k = \beta_k(B_k'),
\]
where \(\alpha_k = R_{k-1} b_k^{-1} R_k^{-1} \) and \(\beta_k = R_k a_k^{-1} R_k^{-1} \). They satisfy
\[
[\alpha_k, \beta_k] = R_{k-1} R_k^{-1},
\]
so that
\[
R_k = \prod_{i=1}^{k} [\alpha_i, \beta_i] = R_k^{-1} \quad \text{and} \quad \prod_{k=1}^{g} \alpha_k \beta_k \alpha_k^{-1} \beta_k^{-1} = 1.
\]
The generators \(\alpha_k, \beta_k, k = 1, \ldots, g \), are dual generators of \(\Gamma \), introduced by A. Weil \([19]\) (see also \([11]\)), and
\[
a_k^{-1} = R_k \beta_k R_k^{-1}, \quad b_k^{-1} = R_{k-1} \alpha_k R_k^{-1}.
\]
We have \(A_k = (R_{k-1} z_0, \beta_k^{-1} R_k^{-1} z_0), B_k = (R_k^{-1} z_0, \alpha_k^{-1} R_{k-1}^{-1} z_0) \) and
\[
\partial F = \sum_{i=1}^{2g} (S_i - \lambda_i(S_i)),
\]
where $S_k = A_k, S_{k+g} = -B_k$ and $\lambda_k = \alpha_k^{-1}, \lambda_{k+g} = \beta_k^{-1}, k = 1, \ldots, g$.

Remark 7. The ordering of vertices of F for the dual generators corresponds to the opposite orientation, so that (cf. (11))

$$c = -\sum_{k=1}^{g} \left\{ \left(\frac{\partial R}{\partial \alpha_k}, \alpha_k \right) + \left(\frac{\partial R}{\partial \beta_k}, \beta_k \right) \right\}.$$

4.1.2. In general case $m + n > 0$, oriented canonical fundamental domain F with the base point z_0 is a $(4g + 2m + 2n)$-gon whose ordered vertices are given by the consecutive quadruples

$$(R_k z_0, R_k a_{k+1} z_0, R_k a_{k+1} b_{k+1} z_0, R_k a_{k+1} b_{k+1} a_{k+1}^{-1} z_0), \quad k = 0, \ldots, g - 1,$$

followed by the consecutive triples $(R_{g+i-1} z_0, z_i, R_{g+i} z_0), \quad i = 1, \ldots, m + n.$

Here $z_i \in \mathbb{H}, i = 1, \ldots, m$, are fixed points of the elliptic elements

$$\gamma_i = R_{g+i-1} c_i^{-1} R_{g+i-1}^{-1},$$

and $z_{m+j} \in \mathbb{R}, j = 1, \ldots, n$, are fixed points of the parabolic elements

$$\gamma_{m+j} = R_{g+m+j-1} c_{m+j} R_{g+m+j-1}^{-1}.$$

We have

$$\partial F = \sum_{k=1}^{g} (A_k - B_k - A_k' + B_k') + \sum_{i=1}^{m+n} (C_i - C_i'),$$

where

$$C_i = (R_{g+i-1} z_0, z_i), \quad C_i' = (R_{g+i} z_0, z_i), \quad C_i = \gamma_i C_i', \quad i = 1, \ldots, m + n.$$

The generators $\alpha_k, \beta_k, k = 1, \ldots, g$, and $\gamma_i, i = 1, \ldots, m + n$, are dual generators of Γ satisfying

$$R_g \gamma_1 \cdots \gamma_{m+n} = 1.$$

We have $C_i = (R_{g+i-1}^{-1} z_0, z_i)$ and

$$\partial F = \sum_{k=1}^{N} (S_k - \lambda_k(S_k)), \quad N = 2g + m + n,$$

where $S_{2g+i} = C_i, \lambda_{2g+i} = \gamma_i^{-1}, i = 1, \ldots, m + n.$

4.2. **The main formula.** Here we obtain another representation for the symplectic form ω. Put $F^Y = \{ z \in F : \text{Im}(\sigma_j^{-1}) \leq Y, j = 1, \ldots, n \}$, where $\sigma_j^{-1}(x_j) = \infty$, and denote by $H_j(Y)$ corresponding horocycles in F. We have

$$\omega((\hat{\theta}_1, \mu_1), (\hat{\theta}_2, \mu_2)) = \frac{\sqrt{-1}}{2} \lim_{Y \to \infty} \int_{F^Y} (\hat{q}_1 \mu_2 - \hat{q}_2 \mu_1) dz \wedge d\bar{z}.$$
Lemma 2. The symplectic form ω, evaluated on two tangent vectors $(\dot{\theta}_1, \mu_1)$ and $(\dot{\theta}_2, \mu_2)$ corresponding to the curves $\theta_1(t)$ and $\theta_2(t)$, is given by

$$\omega((\dot{\theta}_1, \mu_1), (\dot{\theta}_2, \mu_2)) = \frac{\sqrt{-1}}{4} \int_{\partial F} \left\{ \left(\dot{q}_2 \frac{\dot{g}_1}{f} - \dot{q}_1 \frac{\dot{g}_2}{f} \right) dz + \left(B \left[\mu_2, \frac{\dot{g}_1}{f} \right] - B \left[\mu_1, \frac{\dot{g}_2}{f} \right] \right) d\bar{z} \right\}.$$

Proof. Denote the 1-form under the integral by ϑ. We have, using Lemma 1,

$$d\vartheta = \left(\dot{q}_2 \dot{g}_1 f^2 + \dot{q}_2 \frac{\dot{g}_1}{f} - \dot{q}_1 \dot{g}_2 f^2 - \dot{q}_1 \frac{\dot{g}_2}{f} \right) dz \wedge d\bar{z} + \left(\Lambda(\mu_2) \frac{\dot{g}_1}{f} + \mu_2 \Lambda \left(\frac{\dot{g}_1}{f} \right) - \Lambda(\mu_1) \frac{\dot{g}_2}{f} - \mu_1 \Lambda \left(\frac{\dot{g}_2}{f} \right) \right) dz \wedge d\bar{z}$$

$$= \left(\dot{q}_2 \dot{g}_1 f^2 + \dot{q}_2 \mu_1 - \dot{q}_1 \dot{g}_2 f^2 - \dot{q}_1 \mu_2 \right) dz \wedge d\bar{z} + \left(\dot{q}_2 \dot{g}_1 f^2 + \mu_2 \dot{q}_1 - \dot{q}_1 \dot{g}_2 f^2 - \mu_1 \dot{q}_2 \right) dz \wedge d\bar{z}$$

$$= 2(\dot{q}_1 \mu_2 - \dot{q}_2 \mu_1) dz \wedge d\bar{z}.$$

Since due to exponential decay of \dot{q}_1, \dot{q}_2 and μ_1, μ_2 at the cusps the integrals over horocycles $H_j(Y)$ tend to 0 as $Y \to \infty$, by Stokes' theorem we get (4). \hfill \square

The line integral in Lemma 2 can be evaluated explicitly.

Proposition 1. We have

$$\omega((\dot{\theta}_1, \mu_1), (\dot{\theta}_2, \mu_2)) = \frac{\sqrt{-1}}{4} \sum_{i=1}^{N} \left(B \left[\frac{\dot{g}_2}{f}, \frac{1}{f} \chi_1(\lambda_i^{-1}) \circ f \right] - B \left[\frac{\dot{g}_1}{f}, \frac{1}{f} \chi_2(\lambda_i^{-1}) \circ f \right] \right) \frac{\partial S_i(1)}{\partial S_i(0)}.$$

Proof. Using Lemma 2, formula (22), Lemma 1 and property B3, we get

$$\frac{4}{\sqrt{-1}} \omega((\dot{\theta}_1, \mu_1), (\dot{\theta}_2, \mu_2))$$

$$= \sum_{i=1}^{N} \left(\int_{S_i} - \int_{\lambda_i(S_i)} \right) \left\{ \left(\dot{q}_2 \frac{\dot{g}_1}{f} - \dot{q}_1 \frac{\dot{g}_2}{f} \right) dz + \left(B \left[\mu_2, \frac{\dot{g}_1}{f} \right] - B \left[\mu_1, \frac{\dot{g}_2}{f} \right] \right) d\bar{z} \right\}$$

$$= \sum_{i=1}^{N} \int_{S_i} \left\{ \left(\dot{q}_2 \frac{1}{f} \chi_1(\lambda_i^{-1}) \circ f - \dot{q}_1 \frac{1}{f} \chi_2(\lambda_i^{-1}) \circ f \right) dz + \left(B \left[\mu_2, \frac{1}{f} \chi_1(\lambda_i^{-1}) \circ f \right] - B \left[\mu_1, \frac{1}{f} \chi_2(\lambda_i^{-1}) \circ f \right] \right) d\bar{z} \right\}.$$
Using Lemma 1 and properties A1 and A5, we obtain
\[B \left[\mu, \frac{1}{f^i} \chi(\lambda_i^{-1}) \circ f \right] = \frac{\partial}{\partial \bar{z}} B \left[\frac{\dot{g}}{f^i}, \frac{1}{f^i} \chi(\lambda_i^{-1}) \circ f \right] \]
and
\[\frac{\partial}{\partial \bar{z}} B \left[\frac{\dot{g}}{f^i}, \frac{1}{f^i} \chi(\lambda_i^{-1}) \circ f \right] = \Lambda \left(\frac{\dot{g}}{f^i} \right) \frac{1}{f^i} \chi(\lambda_i^{-1}) \circ f = \dot{q} \frac{1}{f^i} \chi(\lambda_i^{-1}) \circ f. \]

Since
\[\Phi_{\pm} dz = d\Phi - \Phi_{\pm} dz, \]
we finally get (note how the signs match)
\[\frac{4}{\sqrt{-1}} \omega((\dot{\theta}_1, \mu_1), (\dot{\theta}_2, \mu_2)) \]
\[= \sum_{i=1}^{N} \int_{S_i} \left(dB \left[\frac{\dot{q}_2}{f^i} \frac{1}{f^i} \chi_1(\lambda_i^{-1}) \circ f \right] - dB \left[\frac{\dot{q}_1}{f^i} \frac{1}{f^i} \chi_2(\lambda_i^{-1}) \circ f \right] \right) \]
\[= \sum_{i=1}^{N} \left(B \left[\frac{\dot{q}_2}{f^i}, \frac{1}{f^i} \chi_1(\lambda_i^{-1}) \circ f \right] - B \left[\frac{\dot{q}_1}{f^i}, \frac{1}{f^i} \chi_2(\lambda_i^{-1}) \circ f \right] \right) \Big|_{\partial S_i(1)} \Big|_{\partial S_i(0)}. \]

According to Corollary 2, \(B \left[\frac{\dot{q}}{f^i}, \frac{1}{f^i} \chi(\lambda_i^{-1}) \circ f \right] (z) \) has a limit as \(z \) approaches the cusps for \(\Gamma \).

\[\square \]

4.3. Main result.

Theorem 1. The pull-back of the Goldman symplectic form on \(\mathcal{X} \) by the map \(Q \) is \(\sqrt{-1} \) times canonical symplectic form on \(\mathcal{M} \),
\[\omega = -\sqrt{-1} Q^* (\omega_G). \]

Proof. Since the choice of a base point for \(T \) is inessential (see Sect. 2.1.2), it is sufficient to compute the pullback only for the points in \(Q(q, 0) \). For the convenience of the reader, consider first the case \(m = n = 0 \), when \(N = 2g \). Using property B2 and equations (7)-(8), we have for arbitrary \(\alpha, \beta \in \Gamma \),
\[B \left[\frac{\dot{q}_1}{f^i}, \frac{1}{f^i} \chi_2(\alpha) \circ f \right] (\beta z_0) = B \left[\frac{1}{\beta^i} \left(\frac{\dot{q}_1}{f^i} \right) \circ \beta, \frac{1}{\beta^i} \left(\frac{1}{f^i} \chi_2(\alpha) \circ f \right) \circ \beta \right] (z_0) \]
\[= B \left[\frac{\dot{q}_1}{f^i} - \frac{1}{f^i} \chi_1(\beta^{-1}) \circ f, \frac{1}{f^i} \chi_2(\beta^{-1} \alpha) \circ f - \frac{1}{f^i} \chi_2(\beta^{-1}) \circ f \right] (z_0) \]
\[= B \left[\frac{\dot{q}_1}{f^i}, \frac{1}{f^i} (\chi_2(\beta^{-1} \alpha) - \chi_2(\beta^{-1})) \circ f \right] (z_0) \]
\[+ B_0 [\chi_1(\beta^{-1}), \chi_2(\beta^{-1}) - \chi_2(\beta^{-1} \alpha)](z_0). \]

Using (5), (7) and \(\text{Ad} \rho \) invariance of the Killing form, we obtain
\[B_0 [\chi_1(\beta^{-1}), \chi_2(\beta^{-1} \alpha) - \chi_2(\beta^{-1} \alpha)](z_0) = 2(\chi_1(\beta^{-1}), \rho(\beta^{-1}) \chi_2(\alpha) \circ f) \]
\[= -2(\chi_1(\beta), \chi_2(\alpha)), \]
so that

\[B \left[\frac{\dot{g}_1}{f'}, \frac{1}{f'} \chi_2(\alpha) \circ f \right] (\beta z_0) \]

(23) \quad = B \left[\frac{\dot{g}_1}{f'}, \frac{1}{f'} \left(\chi_2(\beta^{-1} \alpha) - \chi_2(\beta^{-1}) \right) \circ f \right] (z_0) - 2\langle \chi_1(\beta), \chi_2(\alpha) \rangle.

Now for \(i = k \) using (23) for \(\alpha = \alpha_k, \beta = \beta_k^{-1} R_k^{-1} \) and \(\alpha = \alpha_k, \beta = R_k^{-1} \), we obtain

\[B \left[\frac{\dot{g}_1}{f'}, \frac{1}{f'} \chi_2(\lambda_k^{-1}) \circ f \right] \frac{\partial S_{i+k}(1)}{\partial S_{i+k}(0)} \]

(24) \quad = B \left[\frac{\dot{g}_1}{f'}, \frac{1}{f'} \left(\chi_2(R_k \beta_k \alpha_k) - \chi_2(R_k \beta_k) - \chi_2(R_k \beta_k \alpha_k) + \chi_2(R_k \alpha_k) \right) \circ f \right] (z_0)

\[- 2\langle \chi_1(\beta_k^{-1} R_k^{-1}) - \chi_1(R_k^{-1}), \chi_2(\alpha_k) \rangle. \]

For \(i = k + g \) we use \(\alpha = \beta_k, \beta = R_k^{-1} \) and \(\alpha = \beta_k, \beta = \alpha_k^{-1} R_k^{-1} \) to compute

\[B \left[\frac{\dot{g}_1}{f'}, \frac{1}{f'} \chi_2(\lambda_k^{-1}) \circ f \right] \frac{\partial S_{i+k}(1)}{\partial S_{i+k}(0)} \]

(25) \quad = B \left[\frac{\dot{g}_1}{f'}, \frac{1}{f'} \left(\chi_2(R_k \beta_k) - \chi_2(R_k) - \chi_2(R_k \beta_k \alpha_k) + \chi_2(R_k^{-1} \alpha_k) \right) \circ f \right] (z_0)

\[- 2\langle \chi_1(\beta_k^{-1} R_k^{-1}) - \chi_1(\alpha_k^{-1} R_k^{-1}), \chi_2(\beta_k) \rangle. \]

Since \(R_k^{-1} \alpha_k \beta_k = R_k \beta_k \alpha_k \) and \(R_g = 1 \), we see that the sum over \(k \) of terms in the second lines in equations (24)–(25) vanishes. Using (12)–(13) and Remark 7, we get

\[\sum_{i=1}^{2g} B \left[\frac{\dot{g}_1}{f'}, \frac{1}{f'} \chi_2(\lambda_k^{-1}) \circ f \right] \frac{\partial S_{i}(1)}{\partial S_{i}(0)} \]

\[= 2 \sum_{k=1}^{g} \left(\langle \chi_1(R_k^{-1}) - \chi_1(\beta_k^{-1} R_k^{-1}), \chi_2(\alpha_k) \rangle + \langle \chi_1(\alpha_k^{-1} R_k^{-1} - \chi_1(\beta_k^{-1} R_k^{-1}), \chi_2(\beta_k) \rangle \right) \]

\[= 2 \omega_G(\chi_1, \chi_2). \]

Similarly,

\[\sum_{i=1}^{2g} B \left[\frac{\dot{g}_2}{f'}, \frac{1}{f'} \chi_1(\lambda_k^{-1}) \circ f \right] \frac{\partial S_{i}(1)}{\partial S_{i}(0)} \]

\[= -2 \omega_G(\chi_2, \chi_1) \]

and we finally obtain

\[\omega((\dot{\theta}_1, \mu_1), (\dot{\theta}_2, \mu_2)) = -\sqrt{-1} \omega_G(\chi_1, \chi_2). \]
In general, assume that \(m + n > 0 \). In this case

\[
(26) \quad \sum_{i=1}^{2g} B \left[\frac{\hat{g}_i}{f'}, \frac{1}{f'} \chi_2(\chi_i^{-1}) \circ f \right] = -B \left[\frac{\hat{g}_1}{f'}, \frac{1}{f'} \chi_2(R_g) \circ f \right] (z_0)
\]

\[
+ 2 \sum_{k=1}^{g} \left((\chi_1(R_{k-1}) - \chi_1(\beta_k^{-1} R_{k-1}^{-1}), \chi_2(\alpha_k)) + (\chi_1(\alpha_k^{-1} R_{k-1}^{-1}) - \chi_1(R_k^{-1}), \chi_2(\beta_k)) \right)
\]

and we need to compute

\[
\sum_{i=1}^{m+n} B \left[\frac{\hat{g}_i}{f'}, \frac{1}{f'} \chi_2(\gamma_i) \circ f \right] |_{R_{g+i-1}^{-1} z_0}^{z_i}.
\]

Using (23) with \(\alpha = \gamma_i \) and \(\beta = R_{g+i-1}^{-1} \), we get

\[
B \left[\frac{\hat{g}_1}{f'}, \frac{1}{f'} \chi_2(\gamma_i) \circ f \right] (R_{g+i-1}^{-1} z_0)
\]

\[
= B \left[\frac{\hat{g}_1}{f'}, \frac{1}{f'} \chi_2(R_{g+i}) - \chi_2(R_{g+i-1}) \circ f \right] (z_0) + 2(\chi_1(R_{g+i-1}^{-1}), \chi_2(\gamma_i)).
\]

Since restriction of \(\chi_2 \) to the stabilizer \(\Gamma_i = \langle \gamma_i \rangle \) of a fixed point \(z_i \) is a coboundary, there is \(P_{2i} \in \mathcal{S}_2 \) such that

\[
\chi_2(\gamma_i) = \rho(\gamma_i) P_{2i} - P_{2i}.
\]

Using property B2, \(\gamma_i z_i = z_i \) and (5), we get

\[
B \left[\frac{\hat{g}_1}{f'}, \frac{1}{f'} \chi_2(\gamma_i) \circ f \right] (z_i) = B \left[\frac{\hat{g}_1}{f'}, \frac{1}{f'} (\frac{1}{f'} P_{2i} \circ f) \circ \gamma_i^{-1} - \frac{1}{f'} P_{2i} \circ f \right] (z_i)
\]

\[
= -B_0(\chi_1(\gamma_i^{-1}), P_{2i})(z_i) = 2(\chi_1(\gamma_i^{-1}), P_{2i}).
\]

Thus using \(R_{g+m+n} = 1 \) we obtain

\[
(27) \quad \sum_{i=1}^{m+n} B \left[\frac{\hat{g}_i}{f'}, \frac{1}{f'} \chi_2(\gamma_i) \circ f \right] |_{R_{g+i-1}^{-1} z_0}^{z_i}
\]

\[
= B \left[\frac{\hat{g}_1}{f'}, \frac{1}{f'} \chi_2(R_g) \circ f \right] (z_0) + 2 \sum_{i=1}^{m+n} \left((\chi_1(R_{g+i-1}^{-1}), \chi_2(\gamma_i)) + (\chi_1(\gamma_i^{-1}), P_{2i}) \right).
\]

Putting together formulas (26)–(27) and using (14)–(15), we finally obtain

\[
\omega((\hat{\theta}_1, \mu_1), (\hat{\theta}_2, \mu_2)) = -\sqrt{-1} \omega_G(\chi_1, \chi_2).
\]

Remark 8. The above computation is a non-abelian analog of Riemann bilinear relations, which arise from the isomorphism

\[
\mathcal{H}^1(X, \mathbb{C})/\mathcal{H}^1(X, \mathbb{Z}) \cong \mathcal{H}_{ab},
\]
where $\mathcal{H}^1(X, \mathbb{C})$ is the complex vector space of harmonic 1-forms on X and $\mathcal{K}_G = (\mathbb{C}^*)^{2g}$ is the complex torus — a character variety for the abelian group $G = \mathbb{C}^*$.

Combing Theorem 1 and Remark 6, we get a a generalization of Goldman’s theorem [5, §2.5] for the case of orbifold Riemann surfaces.

Corollary 3. The pullback of Goldman symplectic form on the character variety \mathcal{K}_G by the map F is a symplectic form of the Weil-Petersson metric on \mathcal{T},

$$\omega_{WP} = F^*(\omega_G).$$

References

[1] L.V. Ahlfors, *Some remarks on Teichmüller’s space of Riemann surfaces*, Ann. of Math. 74 (1961), 171–191.
[2] L.V. Ahlfors, *Lectures on Quasiconformal Mappings*, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 1987, with the assistance of Clifford J. Earle Jr. Reprint of the 1966 original.
[3] Marco Bertola, Dmitry Korotkin and Chaya Norton, *Symplectic geometry of the moduli space of projective structures in homological coordinates*, Invent. Math., Published online: 24 June 2017.
[4] Kenneth S. Brown, *Cohomology of Groups*, Springer-Verlag New York, 1982.
[5] William M. Goldman, *The symplectic nature of fundamental groups of surfaces*, Advances in Math. 54 (1984), 200–225.
[6] William M. Goldman. *The complex-symplectic geometry of $\text{SL}(2; \mathbb{C})$-characters over surfaces*, In: Algebraic groups and arithmetic, 375–407; Tata Inst. Fund. Res., Mumbai, 2004.
[7] R.C. Gunning, *Lectures on Vector Bundles over Riemann Surfaces*. Math. Notes 6, Princeton University Press, Princeton, NJ, 1967.
[8] R.C. Gunning, *Special coordinate coverings of Riemann surfaces*, Math. Annalen 170 (1967), 67–86.
[9] K. Guruprasad and C.S. Rajan, *Group cohomology and the symplectic structure of the moduli space of representations*, Duke J., 91:1 (1998), 137–149.
[10] K. Guruprasad, J. Huebschmann, L. Jefferey and A. Weinstein, *Group systems, groupoids and moduli spaces of parabolic bundles*, Duke Math. J. 89 (1997), 377–412.
[11] K. Guruprasad, *Some remarks on the symplectic pairing on the moduli space of representations of the fundamental group of surfaces*, Publ. RIMS, Kyoto Univ. 34 (1998), 19–25.
[12] D. Hejhal, *The Selberg Trace Formula for PSL(2, R) vol. 2*, Lect. Notes in Math. 1001, Springer-Verlag, Berlin Heidelberg, 1983.
[13] J. Huebschmann, *Symplectic and Poisson structures of certain moduli spaces, II: Projective representations of cocompact planar discrete groups*, Duke Math. J. 80 (1995), 757–770.
[14] Shingo Kawai, *The symplectic nature of the space of projective connections on Riemann surfaces*, Math. Ann., 305:1 (1996), 161–182.
[15] H.C. Kim, *The symplectic global coordinates on the moduli space of real projective structures*, J. Diff. Geom. 53 (1999), 359–401.
[16] Brice Loustau, *The complex symplectic geometry of the deformation space of complex projective structures*, Geom. Topol. 19 (2015) 1737–1775.
[17] S. Nag, *The Complex Analytic Theory of Teichmüller Spaces*, John Wiley, New York, 1988.
[18] A.N. Tyurin, *On periods of quadratic differentials*, Uspekhi Mat. Nauk, **33**:6 (204) (1978), 149–195 (in Russian); English translation in Russian Math. Surveys, **33**:6 (1978), 169–221.

[19] A. Weil, *Remarks on the cohomology of groups*, Ann. of Math. **80** (1964), 149-157.

[20] E.T. Whittaker and G.N. Watson, *A course in modern analysis*, Cambridge U. Press, 1927.

[21] Scott A. Wolpert, *Chern forms and the Riemann tensor for the moduli space of curves*, Invent. Math. **85** (1) (1986) 119–145.

[22] Scott A. Wolpert, *Geodesic length functions and the Nielsen problem*, J. Diff. Geom., **25** (1987), 275–296.

Department of Mathematics, Stony Brook University, Stony Brook, NY 11794 USA; Euler International Mathematical Institute, Pesochnaya Nab. 10, Saint Petersburg 197022 Russia