Rounding-Based Heuristics for Nonconvex MINLPs

Giacomo Nannicini1, Pietro Belotti2

1 Tepper School of Business, Carnegie Mellon University, Pittsburgh, USA
2 Department of Industrial & Systems Engineering, Lehigh University, USA

April 12, 2010
Summary of Talk

1. Introduction

2. Basic Algorithmic Scheme
 - Feasibility heuristic
 - Improvement heuristic

3. Computational experiments
1 Introduction

2 Basic Algorithmic Scheme
 - Feasibility heuristic
 - Improvement heuristic

3 Computational experiments
The Problem

• We consider nonconvex Mixed-Integer Nonlinear Programs (MINLPs) of the form:

\[
\begin{align*}
\min & \quad f(x) \\
\forall j \in M & \quad g_j(x) \leq 0 \\
\forall i \in N & \quad x_i^L \leq x_i \leq x_i^U \\
\forall j \in N_I & \quad x_j \in \mathbb{Z},
\end{align*}
\]

with \(n = |N| \) variables and \(m = |M| \) constraints

• An exact solution method is the Branch-and-Bound algorithm, where lower bounds are obtained by linearizing the nonconvex continuous relaxation of each subproblem

• Good upper bounds are doubly important for this kind of algorithm:
 ◦ More pruning
 ◦ Bound tightening (through constraint propagation techniques), therefore better relaxations
1 Introduction

2 Basic Algorithmic Scheme
 - Feasibility heuristic
 - Improvement heuristic

3 Computational experiments
Some Definitions

- Let \mathcal{P} be the original problem, \mathcal{Q} its continuous relaxation.
- Let F be the feasible region of the linearization of \mathcal{P}.
- Given an integer feasible point x^I, we define $\mathcal{Q}(x^I)$ the NLP which is obtained from \mathcal{Q} by fixing the values of the integer variables in x^I.
- Let $NG(\tilde{x})$ be any constraint that cuts off a point \tilde{x}.
Basic Idea

1. Start with a constraint feasible point x' (i.e. satisfies the constraints) which is not integral feasible

2. Round x' subject to linear constraints:

$$x^I = \arg \min_{x \in F} \|x - x'\|_1$$

3. Solve $Q(x^I)$ to obtain x^*

4. If some termination condition is met, stop; otherwise, set $F \leftarrow F \cap NG(x^I)$ and return to step 2)
Basic Idea

1. Start with a constraint feasible point x' (i.e. satisfies the constraints) which is not integral feasible $\leftarrow (?)$

2. Round x' subject to linear constraints:

$$x^I = \arg \min_{x \in F} \|x - x'\|_1$$

3. Solve $Q(x^I)$ to obtain x^*

4. If some termination condition is met, stop; otherwise, set $F \leftarrow F \cap NG(x^I)$ and return to step 2) $\leftarrow (?)$
Comments

- Borrows some ideas from Tabu Search [Glover, 1989] and Feasibility Pump [Bonami et al., 2009]
- We get different heuristics depending on the way we choose x' and the linear constraints that define the MILP
- We do not need to solve the problems (NLP, MILP) to optimality – we just need feasibility
- Should work if x' can guide us towards the feasible region
Easy case: binary variables

- No-good cuts are an easy way to cut solutions:

\[
NG(\tilde{x}) : \sum_{i \in B: \tilde{x}_i = 1} (1 - x_i) + \sum_{i \in B: \tilde{x}_i = 0} x_i \geq 1
\]

where \(B\) is the set of binary variables

- Drawbacks:
 1. May be dense

- Advantages:
 1. \(\tilde{x}\) is the only point which is cut off\(^1\)
 2. Linear cut with integer coefficients
 3. Can be computed very quickly

\(^1\)This statement is actually not true (but please don’t pay attention to this comment).
General integer variables

- Observation: in practice, very often x^I has integer variables at one of their bounds.

- In this case, we can use a generalized no-good cut:

$$NG(\tilde{x}) : \sum_{i \in N_I: \tilde{x}_i = x_i^U} (x_i^U - x_i) + \sum_{i \in N_I: \tilde{x}_i = x_i^L} x_i \geq \lambda$$

- If the number of integer variables at one of their bounds is small, we “branch” on a random variable: choose $i \in N_I$ at random, then add the constraint $x_i \geq \tilde{x}_i + 1$ or the constraint $x_i \leq \tilde{x}_i - 1$

- Drawbacks:
 - May cut off a large number of feasible solutions

- Advantages:
 - Extremely fast (just a bound change!)
A Simple Feasibility Heuristic

- Scheme: find a point x' which is feasible to Q, and round subject to the linearization F of the feasible region
- If this does not work, we try different points x', computing them by maximizing their “feasibility”
- x' is obtained by:

\[
\begin{align*}
\min & \quad \mu f(x) + (1 - \mu) \left(\sum_{j \in M} g_j(x) \right) \\
\text{subject to:} & \quad g_j(x) \leq 0 \ \forall j \in M
\end{align*}
\]

- This is equivalent to requiring x' to be as much as possible in the interior of the feasible region, using μ to scale
- Idea: start with $\mu = 1$; if we cannot find a feasible solution, then iteratively decrease μ to obtain different points x' until $\mu = 0$
- We stop as soon as we find a feasible solution, or after a given number of iterations
- We call this heuristic Feasibility-based Iterative Rounding (F-IR)
Sketch of the Algorithm

1: **Input:** parameters $\mu, \text{MaxIter}$
2: **Output:** feasible solution x^*
3: Initialization: stop \leftarrow false, NumIter \leftarrow 0
4: Compute with a NLP solver:

$$x' = \arg\min_{\forall j \in M} \min_{g_j(x) \leq 0} \{ \mu f(x) + (1 - \mu) \sum_{j \in M} g_j(x) \}$$

5: Set $R \leftarrow F$
6: **while** ¬stop **do**
7: Compute $x^I = \arg\min_{x \in R} \|x - x'\|_1$ with a MILP solver
8: Solve $Q(x^I)$ with a NLP solver and obtain point x^*
9: **if** $(x^*$ feasible) \lor (NumIter \geq MaxIter) **then**
10: Set stop \leftarrow true
11: **else**
12: Set $R \leftarrow R \cap NG(x^*)$
13: Set NumIter \leftarrow NumIter + 1
14: **return** x^*
An improvement heuristic

- We assume that we have an incumbent \bar{x}, and want to find a better solution in a neighborhood $H(\bar{x})$ of \bar{x}

- Binary case: we let $H(\bar{x})$ be defined by a local branching constraint [Fischetti and Lodi, 2003]:
 $$\sum_{i \in B: \bar{x}_i = 1} (1 - x_i) + \sum_{i \in B: \bar{x}_i = 0} x_i \leq k$$
 with $k > 0$

- General integer case: if \bar{x} has a “sufficient” number of variables at one of their bounds, we still use a local branching constraint; otherwise, we use a small box centered at \bar{x}

- We obtain x' by solving $Q \cap H(\bar{x})$

- When rounding x', we add $H(\bar{x})$ to the linearization F of the feasible region:
 $$x^I = \arg \min_{x \in F \cap H(\bar{x})} \|x - x'\|_1$$

- We call this heuristic LocalBranching-based Iterative Rounding (LB-IR)
Sketch of the Algorithm

1. **Input**: incumbent \bar{x}, parameters k, $MaxIter$
2. **Output**: improved solution x^*
3. Initialization: $\text{stop} \leftarrow \text{false}$, $\text{NumIter} \leftarrow 0$
4. Solve $Q \cap H(\bar{x})$ with a NLP solver to obtain x'
5. Set $R \leftarrow F \cap H(\bar{x})$
6. **while** ¬stop **do**
7. Compute $x^I = \arg\min_{x \in R} \|x - x'\|_1$ with a MILP solver
8. Solve $Q(x^I)$ with a NLP solver and obtain point x^*
9. **if** $((x^\text{feasible} \land f(x^*) < f(\bar{x})) \lor (\text{NumIter} \geq MaxIter))$ **then**
10. Set $\text{stop} \leftarrow \text{true}$
11. **else**
12. Set $R \leftarrow R \cap NG(x^*)$
13. Set $\text{NumIter} \leftarrow \text{NumIter} + 1$
14. **return** x^*
1 Introduction

2 Basic Algorithmic Scheme
 - Feasibility heuristic
 - Improvement heuristic

3 Computational experiments
We implemented these heuristics within the open source Branch-and-Bound solver for nonconvex MINLPs Couenne [Belotti, 2009], using the linearization of the original problem computed at the root node.

We used Cplex 12.1 as MILP solver (with MIP_EMPHASIS = HIDDEN_FEAS, Feasibility Pump and Local Branching turned ON, max 50 nodes or 5 seconds CPU time), Ipopt as NLP solver.

We try at most 10 different roundings of x'.

The rhs of the local branching constraint is set to 15, and the rhs of the no-good cuts is set to be equal to the average value of $x_i^U - x_i^L$ for the variables which are in the cuts.
Instances

- We tested the heuristic on the full MINLPLib
- Results only for 87 difficult instances: those which are unsolved by Couenne after 30 minutes

beuster	fo7_ar5_1	netmod_dol1	nuclearva	oil	water4
contvar	fo7	netmod_dol2	nuclearvb	product2	waterz
csched2a	fo8_ar2_1	netmod_kar1	nuclearvc	qap	
csched2	fo8_ar25_1	netmod_kar2	nuclearvd	synheat	
deb6	fo8_ar3_1	no7_ar2_1	nuclearve	tln12	
deb7	fo8_ar4_1	no7_ar25_1	nuclearvf	tln5	
deb8	fo8_ar5_1	no7_ar3_1	nvs23	tln6	
deb9	fo8	no7_ar4_1	nvs24	tln7	
eg_all_s	fo9_ar2_1	no7_ar5_1	o7_2	tls12	
eg_int_s	fo9_ar25_1	nuclear10a	o7_ar2_1	tls4	
ex1233	fo9_ar3_1	nuclear14a	o7_ar25_1	tls5	
feedtray	fo9_ar4_1	nuclear14b	o7_ar3_1	tls6	
fo7_2	fo9_ar5_1	nuclear24a	o7_ar4_1	tls7	
fo7_ar2_1	fo9	nuclear24b	o7_ar5_1	uselinear	
fo7_ar25_1	gasnet	nuclear25a	o7	var_con10	
fo7_ar3_1	lop97ic	nuclear25b	o8_ar4_1	var_con5	
fo7_ar4_1	lop97icx	nuclear49a	o9_ar4_1	waste	
Feasibility-based Iterative Rounding

- Time limit of 300 seconds, we try to round at most 5 points
- Solutions found for 50 instances out of 87 (57.5%); on 36 instances, Couenne does not find any solution after 30 minutes, and we find a solution at the root for 11 of them (30.5%)
- Average time: 92.5 seconds
- Average time for successful runs: 23.1 seconds
- Average relative distance from the best known solutions: 54.4%
Feasibility-based Iterative Rounding

Instance	Obj.	Instance	Obj.	Instance	Obj.
contvar	811036	fo9_ar3.1	70.4345	o7_2	159.828
csched2a	-146327	fo9_ar4.1	45.9274	o7_ar2.1	168.324
ex1233	211571	fo9_ar5.1	60.0466	o7_ar25.1	173.34
fo7_2	28.9906	fo9	58.3746	o7_ar25.1	173.34
fo7_ar2.1	44.1149	lop97icx	4688.47	o7_ar3.1	201.461
fo7_ar25.1	48.8353	netmod_dol2	0.017267	o7_ar4.1	158.038
fo7_ar3.1	36.6557	netmod_kar1	-0.39045	o7_ar5.1	178.009
fo7_ar4.1	33.9258	netmod_kar2	-0.39045	o8_ar4.1	335.312
fo7_ar5.1	48.8451	no7_ar2.1	137.029	o9_ar4.1	348.934
fo7	34.0949	no7_ar25.1	123.965	synheat	196206
fo8_ar2.1	42.0356	no7_ar3.1	150.529	tln5	15.4
fo8_ar25.1	44.5491	no7_ar4.1	147.009	var_con10	444.214
fo8_ar3.1	43.9849	no7_ar5.1	133.696	var_con5	285.874
fo8_ar4.1	46.7868	nuclear14a	-1.12965	water4	1022.47
fo8_ar5.1	58.8946	nuclear24a	-1.12965		
fo8	59.1281	nuclear24b	-1.08866		
fo9_ar2.1	65.2216	nuclearvd	-1.0393		
fo9_ar25.1	47.1241	nuclearve	-1.02347		
Feasibility-based Iterative Rounding

![Bar chart showing the number of instances at different distances from the best known solution.]
Combined Heuristics: Evaluation criteria

- Main purpose of primal heuristic?
- How do we evaluate performance?
- Consider the time interval of 30 minutes
- Compare default Couenne and Couenne + Iterative Rounding by recording for how much time one algorithm has a **strictly better** incumbent
- Can be interpreted as the probability of having a better incumbent using that particular algorithm at a given time instant
Example: lop97icx
Summary of Results: F-IR + LB-IR

On the instances where a solution is found by at least one of the two methods (60 instances), on average:

- Couenne + Iterative Rounding has a better incumbent for 50.9% of the time
- Couenne has a better incumbent for 31.4% of the time

At the end of the solution process:

- Couenne + Iterative Rounding returns a better solution on 29 instances
- Couenne returns a better solution on 18 instances
- On the remaining 13 instances they return the same solution
Comparison: Couenne w/ and w/o Iterative Rounding

![Comparison bar graph showing number of instances versus distance from best known solution for Couenne with and without Iterative Rounding.](image)
Understanding the heuristic: part I

- This whole idea is based on rounding; so what about true rounding?
- Use same scheme: obtain a point x', round it, solve NLP while fixing integer variables; repeat as necessary with a different rounding
- Does this work?
This whole idea is based on rounding; so what about true rounding? Use same scheme: obtain a point \(x' \), round it, solve NLP while fixing integer variables; repeat as necessary with a different rounding.

Does this work?

Not very well!

On the 87 instances: F-IR with simple rounding finds solutions on 12 instances (rounding subject to linearization finds 50)

LB-IR with simple rounding improves a solution only 6 times (rounding subject to linearization improves 98 times)
Understanding the heuristic: part II

- The rounding phase consists in finding \(\min_{x \in F} \|x - x'\|_1 \)

- Does the norm-1 distance really matter?

- Experiment: apply the same heuristics, but take the first solution found by Cplex when solving the rounding MILP; call this \(\text{IR}^- \), and compare to \(\text{IR} \)

- Results:
 - \(\text{Couenne} + \text{IR} \) has a better incumbent for 34.6\% of the time
 - \(\text{Couenne} + \text{IR}^- \) has a better incumbent for 28.7\% of the time

- At the end of the solution process:
 - \(\text{Couenne} + \text{IR} \) returns a better solution on 23 instances
 - \(\text{Couenne} + \text{IR}^- \) returns a better solution on 15 instances
Conclusions

- Simple heuristics to quickly obtain good upper bounds
- Main ideas: start NLP search from integer points in the feasible region of the linearization (extremely important) which are near a constraint-feasible point (important, but to a smaller extent)
- This suggests that using a better linearization could greatly improve the results
- Available soon in Couenne!²

²Hopefully
Thank you!
Bibliography

Belotti, P. (2009).
Couenne: a user’s manual.
Technical report, Lehigh University.

Bonami, P., Cornuéjols, G., Lodi, A., and Margot, F. (2009).
A feasibility pump for Mixed Integer Nonlinear Programs.
Mathematical Programming, 119(2):331–352.

Fischetti, M. and Lodi, A. (2003).
Local branching.
Mathematical Programming, 98:23–37.

Glover, F. W. (1989).
Tabu search – part I.
ORSA Journal on Computing, 1(3):190–206.