Absence of orbital-selective Mott transition in Ca$_{2-x}$Sr$_x$RuO$_4$

A. Liebsch

Institut für Festkörperforschung, Forschungszentrum Jülich, 52425 Jülich, Germany

(Dated: June 11, 2018)

Quasi-particle spectra of the layer perovskite Sr$_2$RuO$_4$ are calculated within Dynamical Mean Field Theory for increasing values of the on-site Coulomb energy U. At small U the planar geometry splits the t_{2g} bands near E_F into a wide, two-dimensional d_{xy} band and two narrow, nearly one-dimensional $d_{xz,yz}$ bands. At larger U, however, the spectral distribution of these states exhibit similar correlation features, suggesting a common metal-insulator transition for all t_{2g} bands at the same critical U.

Sr$_2$RuO$_4$ has attracted considerable interest during the recent years because of a variety of fascinating properties. It exhibits unconventional p-wave superconductivity $[1, 2]$ and is in fact the only known layered perovskite without copper that becomes superconducting in the absence of doping. The ground state is non-magnetic whereas the volume perovskite SrRuO$_3$ is a strong ferromagnet. Substitution of Sr by Ca makes Sr$_2$RuO$_4$ undergo a transition to an antiferromagnetic Mott insulator $[3, 4]$. In contrast, doping with La leads to a ferromagnetic instability accompanied by a breakdown of Fermi-liquid behavior $[3]$. Spin fluctuations in Sr$_2$RuO$_4$ are believed to have both ferromagnetic and antiferromagnetic components $[5]$. Moreover, inelastic neutron scattering data indicate a soft phonon mode associated with in-plane rotations of oxygen octahedra $[6]$. Clearly Sr$_2$RuO$_4$ is close to structural and magnetic instabilities. Substitution of Sr by the smaller Ca ions also causes a crystallographic distortion consisting of tilting and rotation of oxygen octahedra. These modifications reduce the effective hopping between Ru 4d orbitals via O 2p levels. The resulting narrowing of the 4d bands is believed to be the driving mechanism for the metal-insulator transition observed in Ca$_{2-x}$Sr$_x$RuO$_4$ for $x = 0.2$ $[3, 4, 7]$. The layer perovskite Sr$_2$RuO$_4$ can be regarded as a prototype of a strongly correlated, highly anisotropic multi-orbital transition metal oxide with coexisting wide and narrow bands near the Fermi level. Due to the planar crystal structure the partially filled t_{2g} bands separate into a two-dimensional d_{xy} band with a van Hove singularity (vHs) just above E_F $[8]$, and two nearly one-dimensional $d_{xz,yz}$ bands. In the single-particle picture these bands do not hybridize for symmetry reasons. Local electron-electron interactions in the Ru 4d shell, however, are strong and according to angle-resolved photoemission spectra $[9]$ the on-site Coulomb energy lies between the single-particle band widths of the $d_{xz,yz}$ and d_{xy} bands: $W_{xz,yz} < U < W_{xy}$ $[10]$. Thus, although correlations primarily affect the narrow $d_{xz,yz}$ bands, multi-orbital interactions also influence the wider d_{xy} bands, in particular its singularity above E_F $[11]$. Recent quasi-particle calculations $[11]$ based on the Quantum Monte Carlo (QMC) Dynamical Mean Field Theory (DMFT) $[12, 13, 14]$ showed that on-site correlations give rise to a charge transfer from the narrow bands to the wider d_{xy} band and to a red-shift of the van Hove singularity to within approximately 10 meV of E_F. Thus, doping with a few % La moves the Fermi level through the d_{xy} singularity, thereby causing deviations from Fermi liquid behavior $[8]$.

At the surface of Sr$_2$RuO$_4$, a $\sqrt{2} \times \sqrt{2}$ lattice reconstruction driven by a soft phonon mode involving rotations of O octahedra reduces the effective $d - d$ hopping $[15]$. As a result of the slightly narrower width of the d_{xy} band in the first layer the van Hove singularity is shifted below E_F, converting the γ sheet at the Fermi surface from electron-like to hole-like. Thus, photoemission spectra reveal a superposition of bulk bands with $E_{vHs} > E_F$ and surface bands with $E_{vHs} < E_F$ $[16]$. The bulk bands are then consistent with the Fermi surface derived from de Haas-van Alphen measurements $[17]$.

To investigate the metal-insulator transition induced by iso-electronic substitution of Sr with Ca, Anisimov et al. $[8]$ recently performed DMFT calculations for Sr$_2$RuO$_4$ for increasing values of the local Coulomb repulsion U. While in reality the transition is driven by a distortion of O octahedra, giving rise to a narrowing of the Ru 4d band without any significant increase in U, these authors argued that a qualitative understanding of the Mott transition can be achieved by increasing U and ignoring the modifications of the density of states due to the structural transition. This picture is very interesting from a conceptual point of view since in the anisotropic t_{2g} configuration U is comparable at first to $W_{xz,yz} \approx 1.3$ eV and subsequently to $W_{xy} \approx 3.5$ eV. A remarkable result of these calculations was two successive Mott transitions for the $d_{xz,yz}$ and d_{xy} bands, implying an intermediate region of U or, equivalently, of Ca concentration, where the narrow bands exhibit an excitation gap while the wide band is still metallic. Only at still larger U a gap appeared for the entire t_{2g} complex.

To study this unusual electronic structure in greater detail we have extended our previous DMFT calculations for Sr$_2$RuO$_4$ $[11]$ to larger values of the on-site Coulomb energy. Surprisingly, we find a behavior that differs fundamentally from the one reported in Ref. $[8]$. For small U, the d_{xy} and $d_{xz,yz}$ quasi-particle spectra indeed have quite different shapes owing to their predominantly two-versus one-dimensional electronic structure, respectively. As U increases, however, these spectral distributions begin to resemble one another, with only minor differences in the weight and shape of the coherent peak near E_F.
and of the lower and upper Hubbard bands. Our results therefore suggest that for sufficiently large U the correlated electronic structure within the t_{2g} shell dominates the one-electron hopping. As a consequence, one common metal-insulator transition exists at an intermediate critical value of U between those of the isolated $d_{xz,yz}$ and d_{xy} bands. The reason for the discrepancy between the two approaches is not clear at present, but could be related to the fact that in Ref. 8 the quantum impurity problem was treated within the non-crossing approximation (NCA) 18,19 whereas we use the more accurate Quantum Monte Carlo method 21.

Fig. 1 shows the tight-binding fit to the LDA band structure of Sr$_2$RuO$_4$ 3 in the vicinity of E_F and the density of states. In the bulk the d_{xy} vHs is about 50 meV above E_F. All three bands are approximately 2/3 filled. The non-symmetric shape of the two-dimensional $\rho_{xy}(\omega)$ is caused by second-neighbor Ru-Ru hopping terms. The $d_{xz,yz}$ densities are dominated by one-dimensional hopping along the Ru rows.

To take account of local Coulomb interactions we calculate the quasi-particle spectra within the multi-orbital QMC-DMFT approach 11,20. Since the d_{xy} and $d_{xz,yz}$ bands do not hybridize, the self-energy is diagonal in orbital space. In the DMFT the elements Σ_i $(i = xy, xz, yz)$ are functionals of the bath Green’s functions $G_i = G_i^{-1} + \Sigma_i$, where the local G_i is given by

$$G_i(i\omega_n) = \int_{-\infty}^{\infty} d\omega \frac{\rho_i(\omega)}{i\omega_n + \mu - \Sigma_i(i\omega_n) - \omega}$$

and μ is the chemical potential. Most QMC calculations were done for $\beta = 8$ with 64 time slices and several runs using 2×10^5 sweeps. In the low temperature calculations for $\beta = 40$ 128 time slices were used, with up to 5×10^4 sweeps. The quasi-particle density of states $N_i(\omega) = -\text{Im} G_i(\omega)/\pi$ is obtained via maximum entropy reconstruction 21.

As shown in Ref. 11, the angle-resolved photoemission spectra of Sr$_2$RuO$_4$ can qualitatively be represented by quasi-particle distributions for local Coulomb and exchange energies $U = 1.2$ eV, $J = 0.2$ eV. The d_{xy} and $d_{xz,yz}$ spectra then look like moderately deformed versions of their respective single-particle densities of states. For instance, the lower van Hove singularity of the $d_{xz,yz}$ bands near -1 eV is broadened and shifted to about -0.5 eV. Larger Coulomb energies would yield too small binding energies for this spectral feature. This result is consistent with the fact that on-site Coulomb energies for 4d transition metals are smaller than for 3d metals. The d_{xy} vHs is also shifted and lies only about 10 meV above E_F. Both bands show very low spectral weight in the energy region of the Hubbard peaks. The effective masses calculated within the QMC-DMFT for these Coulomb energies also agree with experiment.

We now increase the on-site Coulomb energy in order to explore the metal-insulator transition for this anisotropic multiband system. To illustrate the effect of the different widths of the t_{2g} subbands on the quasi-particle spectra we show first in Fig. 2 the results for hypothetical three-fold degenerate bands consisting either of d_{xy} or $d_{xz,yz}$ character. The total filling is 4 as in actual Sr$_2$RuO$_4$. For $U = 3.0$ eV the wide d_{xy} band is dominated by the strong quasi-particle peak at E_F. Since $U < W_{xy}$ it is only moderately affected by correlations and shows only weak shoulders in the range of the Hubbard bands. On the other hand, since $U >> W_{xz,yz}$ the narrow band derived from the $d_{xz,yz}$ density of states exhibits clear signs of a Mott transition. The upper and lower Hubbard peaks are the dominant spectral features. Because of the finite temperature used in the QMC-DMFT calculation, the remaining quasi-particle peak at E_F obscures the gap between the Hubbard bands. Nevertheless, according to the temperature dependence of similar features found in one-band systems 13,22 the value of U used in the spectra shown in Fig. 2 should be very close to the critical value for a metal-insulator transition within the $d_{xz,yz}$ bands.

The quasi-particle spectra for the actual t_{2g} bands of Sr$_2$RuO$_4$ are shown in Fig. 3 (a) for the same on-site energies. Evidently, as as result of the strong inter-orbital Coulomb and exchange interactions both d_{xy} and $d_{xz,yz}$ spectral distributions have nearly lost their original density of states character and look remarkably similar: with coherent peaks at E_F and upper and lower Hubbard
critical region it does not seem likely that upon lower-

\[\text{FIG. 2: Quasi-particle density of states } \mathcal{N}_i(\omega) \text{ of Sr}_{2}\text{RuO}_4 \]

derived from DMFT for \(T = 1450 \, \text{K} \), assuming independent three-fold degenerate (a) \(d_{xy} \) and (b) \(d_{xz,yz} \) bands (solid curves; see text). \(U = 3.0 \, \text{eV}, J = 0.2 \, \text{eV}; \) dashed curves: bare densities.

bands of about the same intensity, position and shape. These spectra suggest a common Mott transition for the \(t_{2g} \) bands at a value of \(U \) only slightly larger than 3 eV. We point out that the local correlations for \(U = 3 \, \text{eV} \) induce a charge transfer of about 0.05 electrons from the narrow \(d_{xz,yz} \) bands to the \(d_{xy} \) band. This would imply that the \(d_{xy} \) van Hove singularity has shifted below \(E_F \) and that the \(\gamma \) sheet of the Fermi surface is hole-like rather than electron-like as observed in de Haas-van Alphen measurements \cite{17}. This supports our previous choice of a smaller \(U \) for the actual \(\text{Sr}_{2}\text{RuO}_4 \) \(t_{2g} \) bands \cite{11}.

Fig. 3(b) illustrates the effect of increasing the exchange energy to \(J = 0.7 \, \text{eV} \). In order to keep the average Coulomb energy \(U \) unchanged \(U \) is increased to 4 eV. (For a \(t_{2g} \) complex \(U \) coincides with the inter-orbital Coulomb energy \(U' = U - 2J \).) Thus, \(U = 2.6 \, \text{eV} \) in Figs. 3(a) and (b).) Although the \(d_{xy} \) and \(d_{xz,yz} \) spectra are not quite as similar as in Fig. 3(a), they have coherent and incoherent peaks of about the same intensity. Only the positions of these features are shifted. Extrapolation to lower temperatures does not seem to be quite as straightforward as in the previous case. Nevertheless, qualitatively both \(d_{xy} \) and \(d_{xz,yz} \) spectra are equally correlated and therefore also suggest a common Mott transition.

Judging from the results discussed so far for \(U \) in the critical region it does not seem likely that upon lower-

\[\text{FIG. 3: Quasi-particle density of states } \mathcal{N}_i(\omega) \text{ of Sr}_{2}\text{RuO}_4 \]

derived from DMFT for \(T = 1450 \, \text{K} \). (a) \(U = 3.0 \, \text{eV}, J = 0.2 \, \text{eV}; \) (b) \(U = 4.0 \, \text{eV}, J = 0.7 \, \text{eV}. \) Solid curves: \(d_{xy} \) states; dashed curves: \(d_{xz,yz} \) states; dotted and dash-dotted curves: corresponding bare densities.

ing the temperature the \(d_{xy} \) and \(d_{xz,yz} \) spectra would begin to lose their similarity again and diverge towards two separate Mott transitions. To test this behavior we have performed multiband QMC-DMFT calculations at about 300 K which are computationally much more costly. Fig. 4 shows the \(d_{xy} \) and \(d_{xz,yz} \) quasi-particle distributions for \(U = 3.0 \, \text{eV}, J = 0.2 \, \text{eV} \). The peak near \(E_F \) exhibits a fine structure which is the remnant of the upper and lower edge singularities of the \(dx_{z,yz} \) bands. The \(d_{xy} \) spectrum also reveals this structure as a result of the strong orbital interactions. The important point is that both \(d_{xy} \) and \(dx_{z,yz} \) spectra are similarly correlated: the coherent peak has about the same weight and the upper Hubbard bands are almost identical. The main difference is that the lower Hubbard \(dx_{z,yz} \) satellite is split off from the main peak by a gap while the \(d_{xy} \) satellite lies in the lower tail of the \(d_{xy} \) density of states and therefore forms a continuum with the main peak. Leaving aside the uncertainties caused by the maximum entropy reconstruction, such a gap does not imply that the spectral weight at the Fermi level vanishes at a different \(U_{\text{crit}} \) or \(T_{\text{crit}} \) than in the case of the \(d_{xy} \) states. On the contrary, the comparable strength of the coherent peaks indicates that the \(d_{xy} \) and \(dx_{z,yz} \) bands undergo a common Mott transition.

The above results differ qualitatively from the ones obtained by Anisimov et al. \cite{8}. The NCA in principle should be applicable also to multiband materials. On the
FIG. 4: Quasi-particle density of states $N_i(\omega)$ of Sr$_2$RuO$_4$ derived from DMFT for $T = 300$ K, $U = 3.0$ eV, $J = 0.2$ eV. Solid curves: (a) d_{xy} states; (b) $d_{xz,yz}$ states; dashed curves: bare densities.

other hand, even in one-band cases it is known to be unreliable in certain situations and even violate Fermi-liquid behavior [13, 14, 20]. It would be desirable to perform numerical renormalization group calculations for this system at very low temperatures. Unfortunately, multiband calculations within this scheme are computationally not yet within reach.

In summary, we have used the QMC-DMFT to calculate quasi-particle spectra of Sr$_2$RuO$_4$ in the range of on-site electron-electron interactions appropriate for a possible metal-insulator transition. Qualitatively, increasing U might be a way to simulate the reduced t_{2g} band width caused by distortions of O octahedra when Sr is replaced by Ca. At low Coulomb energies, the spectral distributions of the d_{xy} and $d_{xz,yz}$ bands differ strongly because of the planar geometry of this perovskite material. Despite this anisotropy, at sufficiently large U these spectra resemble one another in the sense that they are equally strongly affected by local correlations. In particular, they exhibit similar upper and lower Hubbard bands and a coherent peak of similar strength. These results suggest that there is a common Mott transition for the t_{2g} complex, in contrast to the sequential orbital-selective Mott transitions found in Ref. [8]. Thus, in the critical region of U local Coulomb interactions appear to dominate the anisotropic one-electron hopping.

Acknowledgement: I like to thank A. Bringer, R. Bulla, O. Gunnarsson, A. Kampf, J. Keller, Th. Pruschke, and D. Vollhardt for useful discussions. I also thank A.I. Lichtenstein for the QMC-DMFT code.

[1] Y. Maeno et al., Nature (London) 372, 532 (1994).
[2] Y. Maeno, T.M. Rice and M. Sigrist, Physics Today 54, 42 (2001).
[3] S. Nakatsuji et al., J. Phys. Soc. Jpn. 66, 1868 (1997).
[4] G. Cao et al., Phys. Rev. B 56, R2916 (1997).
[5] N. Kikugawa and Y. Maeno, cond-mat/0211248 (2001).
[6] I.I. Mazin and D.J. Singh, Phys. Rev. Lett. 82, 4324 (1999).
[7] M. Braden et al., Phys. Rev. B 57, 1236 (1998).
[8] V.I. Anisimov, I.A. Nekrasov, D.E. Kondakov, T.M. Rice, and M. Sigrist, Euro. Phys. J. B 25, 191 (2002).
[9] T. Oguchi, Phys. Rev. B 51, 1385 (1995); D.J. Singh, Phys. Rev. B 52, 1358 (1995); I.I. Mazin and D.J. Singh, Phys. Rev. Lett. 79, 733 (1997).
[10] T. Yokoya et al., Phys. Rev. Lett. 78, 2271 (1997); K.M. Shen et al., Phys. Rev. B 64, 180502(R) (2001); Phys. Rev. Lett. 87, 229702 (2001).
[11] A. Liebsch and A. Lichtenstein, Phys. Rev. Lett. 84, 1591 (2000).
[12] D. Vollhardt, in Correlated Electron Systems, edited by V.J. Emery (World Scientific, Singapore, 1993), p. 57.
[13] A. Georges, G. Kotliar, W. Krauth, and M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).
[14] Th. Pruschke, M. Jarrell, and J.K. Freericks, Adv. in Phys. 44, 187 (1995).
[15] R. Matzdorf et al., Science, 289, 746 (2000); Phys. Rev. B 65, 085404 (2002).
[16] K.M. Shen et al., Phys. Rev. B 64, 180502(R) (2001); Phys. Rev. Lett. 87, 239702 (2001); A. Liebsch, Phys. Rev. Lett. 87, 239701 (2001); T. Yokoya et al., Phys. Rev. Lett. 78, 2271 (1997).
[17] A.P. Mackenzie et al., Phys. Rev. Lett. 78, 2272 (1997).
[18] H. Keiter and J.C. Kimball, Phys. Rev. Lett. 25, 672 (1970); N.E. Bickers, D.L. Cox and J.W. Wilkins Phys. Rev. B 36, 2036 (1987).
[19] M.B. Zöllf, Th. Pruschke, J. Keller, A.I. Poteryaev, I.A. Nekrasov, and V.I. Anisimov, Phys. Rev. B 61, 12810 (2000).
[20] K. Held et al., in Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, eds. J. Grotendorst, D. Marks, and A. Muramatsu, NIC Series 10, 175 (2002).
[21] M. Jarrell and J.E. Gubernatis, Phys. Rep. 269, 133 (1996).
[22] R. Bulla, T.A. Costi, and D. Vollhardt, Phys. Rev. B 64, 045103 (2001).