Peripheral nerve demyelination and a leptin receptor mutation: The obese Zucker rat sciatic nerve demyelination occurs with a centripetal pattern defect

Jacques Gilloteaux 1,2*, Kritika Subramanian 1,3, Nadia Solomon 1 and Charles Nicaise 2

1 Department of Anatomical Sciences, St George’s University School of Medicine, K.B. Taylor Global Scholar’s Program at Northumbria University, Newcastle upon Tyne, UK
2 Unité de Recherche en Physiologie Moléculaire (URPhyM), Narilis, Département de Médecine, Université de Namur, Namur, Belgium
3 Department of Clinical and Epidemiological Virology, Rega Institute of Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium

Abstract

Young male Zucker rats with a leptin receptor mutation are obese, have a non-insulin-dependent diabetes mellitus (NIDDM), and other endocrinopathies. Fine structure aspects of the tibial branches of the sciatic nerve of lean (Fa/?) and obese (fa/fa) perfused rats were compared and revealed a progressive demyelination caused by Schwann cells (SCs). There, stacked myelin layers membranes and other adhering junctions were defective in many nerve fibers of the obese rats, including of the mesaxons of the smallest fibers. Additionally, the progressive myelin alterations caused by metabolomic alterations in membrane components sorted by the SCs may also have revealed a peculiar, centripetal mode of sorting and trafficking maintenance of the peripheral nerve myelin.

Introduction

Demyelination could be acute or chronic. However, the etiology of the degenerative process related to the nourishing layer of nerve fibers, either can involve the central [CNS] [1-3] or the peripheral nervous system [PNS] [2,4-6]. It is still poorly understood, especially in the case of diabetes [7]. In textbooks, PNS neuropathies, are topics brought along with neuromuscular anomalies [8] and the defects are classified either as (a) axonal neuropathies in which insults often consist in degeneration occurring distally and secondarily to damage to the myelin or (b) as demyelinating neuropathies characterized by Schwann cell (SC) alterations in which myelin would support abnormal conduction velocities. This latter type of insidious neural defect is apparently short-sized and can appear randomly to reduce the internode myelin sheaths while maintaining the axonal content. Changes occurring in the PNS endoneurium have been seldom investigated, contrarily of what is noted for the CNS [9-11]. Recent advances also call about cooperativity between SC basal lamina components and axon revealing paracrine and juxtacrine interactions with at least one of the neuregulins [12,13].

Diabetes is known since Antiquity [7,14] but the enormous literature dealing with myelin [15] and diabetes defects is mainly clinical and metabolic. If it does share ultrastructural aspects there are many controversies in the structure and diagnostic progress of the nerve defects because human myelin samples are illustrated without pinpointing to any or how some myelin component(s) that is (are) implicated in defects [16-24]. Recently, in a murine model, similar findings on demyelination damages could also claim that one may have unraveled a peculiar centripetal mode of myelin maintenance by SCs in PNS nerves which can be added to another found in CNS, likely originating from nodal zone, that is longitudinal, alongside its membrane’s extensions [30-32].

Materials and methods

The Institutional Animal Care and Use Committee of the Northeastern Ohio Universities College of Medicine (now Northeastern Ohio Universities College of Medicine, St George’s University School of Medicine, UNN - School of Health and Life Sciences, Drill Hall 013, Newcastle upon Tyne NE1 8ST, UK; and URPhyM-Narilis, Département de Médecine, Université de Namur, Rue de Bruxelles 61, Namur 5000, Belgium, E-mail: jgilloteaux@sgu.edu; jacques.gilloteaux@unamur.be.

Key words: leptin receptor, myelin, NIDDM, obesity, sciatic nerve, schwann cell, Zucker rat

Received: December 12, 2019; Accepted: December 16, 2019; Published: December 20, 2019
Ohio University, Rootstown, Ohio, USA have approved the procedures of animal care, anaesthesia, euthanasia, and tissue’s collection of this study and concomitant ones [29,33-35]. The collection of tissues of lean and obese Zucker young male rats have been described in detail in a recent publication, with free access [29]. These obese Zucker rats seemed to be with non-insulin dependent diabetes (NIDDM) which affliction becomes the most common and is increasing rapidly in many populations.

Results

In the previous publication, comparisons were made between light microscopy (1-µm thick epoxy sections, stained in toluidine blue) to select fields of investigations, and with those in ultrastructure of the myelin covering the nerve fibers of the sciatic tibial nerve branches [29,34]. Here, a small nerve fibre illustrated in Figure 1A of a normal rat is compared with that of an obese, i.e. diabetic one in Figure 1B. Noting the initial zone of myelin formation of the sciatic nerve branch with a SC makes an outer mesaxon with blemishes. Not only parts of the adaxonal membrane is disorganized instead of a distinct inner mesaxon structure but defects also occurred at the level of the outer mesaxon construction. Instead, a mesh of membrane fragments appeared amongst a space occupied by a wrap vacuolated of waxy deposits in the diabetic nerve fibre (Figure 1B).

In the large nerve fibers of the lean rat, typical nerve myelin displayed no blemishes and a clear inner adaxonal membrane (Figure 2A) while the defects viewed in obese Zucker NIDDM rats (Figure 2B-C) not only encompassed the similar inner myelin parts but also the concentric layers of myelin membranes that showed traversed by ‘funnels’ initiated in the SC’s Cajal zone, progressing as narrow to enlarged and intermembranous rifts of the outer to inner myelin layer, enlarging toward the adaxonal layer, thus in a centripetal diffusion pattern (Figure 2B-C). These blemishes could be caused by trans membraneous defect of macromolecules involved in adherence of myelin membranes, either as extracted or missing from SC’s sorting.

Discussion

Processing the obese nerve samples may either have extracted peculiar components located in the spaces between myelin layers or, more likely, these gaps filled with vacuoles and gunky sludge were already made by the NIDDM because the control and obese Zucker rat nerves were fixed a short time after perfusion fixation and processed simultaneously and in the same methodology.

The few micrographs exemplified here are added to the defects described in previous publications and again reveal that SCs, with their continuous maintenance of the myelin, most of the burden of metabolic changes causing this defective myelin [36-41]. The SCs are imposed complex endocrine influences through which expression and sorting of some components of the myelin can be altered [29,35]. Besides the phospholipids that seemed to organize in orderly way layers, the obese Zucker peripheral nerves showed disorders similar to those of the CNS missing a plasmalogen such as the myelin basic protein in the CNS [42]. Of course, in the PNS, such as in this case, any plasmalogen (i.e. P0 or peripheral myelin protein 22), ceramide, cadherin and perixalin along with connexin 32 that contribute to the architecture and adherence of the neuroplasm, could be involved [43-51]. The altered protective insulation and nerve conduction integrity could change by wrong SC expression and sorting of membrane components in the PNS [36,41,52-60] through direct or indirect endocrine influence. In these obese rat models like in some diabetic humans, leptin plethora without receptor severs the normal hypothalamo-pituitary (and pineal?) axis functions (thyroid, growth hormone, gonadotroph and corticotroph signalling defects, circadian rhythms, etc.). There, knock out mice models would provide further information as to whether some components sorting can influence the dysmyelination associated with NIDDM peripheral nerves. Out of human diabetes autopsies and other animal diabetes data, analyses of nerves from limb amputations [61,62] where cholesterol-phospholipid balance have been altered [36,44,63-71]. Others have investigated the endoplasmic reticulum and other plasmalogens and glycolipids, especially P0 protein [72-78]. Thus, the observations support that in obese Zucker rat nerves, similarly to other animal models and, possibly the human, translates as well into congenital obesity [79-82]. Out of this non-inflammatory PNS demyelination, one can again bring the hypothesis that associated proteins and proteoglycans to the myelin [83], not only can turn over rafts [84-86] similarly as in CNS along the Schmidt-Lantermann incisures toward internode membranes [31,32] with a sort of domino effect replacement with renewed adhesive trans membrane components sorting across an already poorly zipped membranes [73]. In our case, wrong accumulations or sorting of myelin components by SCs were also viewed as flawed by insulin disruption [60] including the tiny forming mesaxons as an initial and associated disorder in the architecture alignments of the normal wrapping without being caused by osmotic processing when compared with normal nerves [29,87] and, this throughout along the changed NIDDM myelin, having components with a centripetal insertion, viewed by the evidenced growing blemishes making sorts of trans membranous

Figure 1 A-B. Small nerve fibers of lean (A) and obese (B) Zucker rat. In B: flaws in initial myelin formation of the outer mesaxon (arrow). There, the SC’s Cajal band contains a space with a complex waxy deposit and the adaxonal membrane displaced develops a vacuolated space (*). Both damages accompany remains of membranes as shown in insert obtained out of another section of the same nerve fibre. Scales are 500 nm in A and B, insert ib B is 200 nm

Figure 2 A-C. Parts of cross sections of large diameter myelinated nerve fibers of a lean (A) and obese (B and C) Zucker rats where the adaxonal membranes are marked by an arrow in A-C. In A: the lean rat myelin displays a regular, typical myelin wrapping. In B: channel-like damages across the myelin with C illustrating some of the complex initial wide funnel-like pockets of demyelination noted in some nerve fibers, damages appearing as wrinkled membranes initiated in the Cajal band. Scales are all equal to 500 nm

Brain Nerves, 2019
doi: 10.15761/JBN.1000126
Volume 5: 2-4
passageways across the sort of liquid crystal-like phase between myelin strata could be created by a sort of Rayleigh-Taylor instability [88,89]. In this case, at first, accumulated molecular species passing throughs, appear by accumulations as a processing channel-like, with centripetal orientation, widen into sectors caused by the progressively changed myelin composition.

References
1. Mokrasch LC (1969) Myelin. In Chemical Architecture of the Nervous System. Springer, Boston, MA pp:171-193
2. Dyck P, Thomas PK (2005) Peripheral Neuropathy, Vols. 1-2. Philadelphia: Saunders-Elsevier Inc pp: 1-2992.
3. Raine CS (1984) The neuropathology of myelin diseases. In: Morell P, ed. Myelin. New York: Plenum Press pp. 259-310.
4. Babel J, Bischoff A, Spoedlin H (1970) Ultrastructure of the Peripheral Nervous System and Sense Organs. Atlas of Normal and Pathologic Anatomy. Bischoff A, ed. Stuttgart: Thieme Verlag 970: 100-110.
5. Hall SM (1978) The Schwann cell: a reappraisal of its role in the peripheral nervous system. Neuruphath Appl Neurobiol 4: 165-176. [Crossref]
6. Pannee E (2015) Neurocytology. Fine Structure of Neurons, Nerve Processes, and Neuroglial Cells. 2nd ed. Switzerland: Springer Verlag International pp: 1-319.
7. Thomas PK, Eliassen SG (1984) Diabetic neuropathy. In: Dyck PJ, Thomas PK, Lambert EH, Bunge R, eds. Peripheral Neuropathy. 2nd ed. Philadelphia: WB Saunders pp: 1773-1810.
8. Pytel P (2014) Peripheral nerves and muscles. In: Kumar V, Abbas AK, Aster JC (eds.), Robbins Basic Pathology, Vol. 21. 9th ed. Philadelphia: Elsevier pp: 797-809.
9. Zucker LM (1965) Hereditary obesity in the rat associated with hyperlipemia. J Neurosci Res 28: 372-377. [Crossref]
10. Fernyhough P, Calcutt NA (2016) An introduction to the history and controversies of diabetic neuropathy. Int Rev Neurobiol 187: 115-120.
11. Fernyhough P, Calcutt NA (2016) New directions in diabetic neuropathy: evolution or extinction? Int Rev Neurobiol 127: 229-234.
12. Hackett AR, Strickland A, Milbrandt J (2019) Disrupting insulin signalling in Schwann cells impairs myelination and induces a sensory neuropathy. Glia.
13. Artinano A, Castro M (2008) Zucker rats as an experimental model for the study of various diseases. Endocrinology Nutr 55: 217-222.
14. Arnessou M, Tahiri K, Chouvet G, Desbuquois B (2010) Experimental rat models to study the metabolic syndrome. Diabetes Metab 36: 120-128.
15. Zucker LM (1965) Hereditary obesity in the rat associated with hyperlipemia. Ann NY Acad Sci 131: 447-458. [Crossref]
16. Gilloteaux J, Subramaniam K, Solomon N, Nicaise C (2018) The leptin receptor mutation of the obese Zucker rat causes sciatric nerve demyelination with a centripetal pattern defect, Ultrastruct Pathol 42: 377-408.
17. Bakhiti M, Aggarwal S, Simons M (2014) Myelin architecture: zippering membranes tightly together. Cell Mol Life Sci 71: 1265-1277.
18. Snaidero N, Mobiis W, Czopka T, Hekking LH, Mathiesen C, et al. (2014) Myelin membrane wrapping of CNS axons by PI(3,4,5)P3-dependent polarized growth at the inner tongue. Cell 156: 277-290.
19. Snaidero N, Velte C, Myllskyoki M, Rausakka A, Ignatev A, et al. (2017) Antagonistic functions of MBP and CNP establish cytosolic channels in CNS myelin. Cell Report 18: 314-323.
20. Gilloteaux J, Finkelstein J (1985) Peripheral neuropathies in the obese Zucker rat skeletal muscles. Anat Rec 211: 69A.
21. Gilloteaux J, Pardhan D (2015) CIN reprophisis in thyroid follicular and parafollicular cells of male obese Zucker rat. Ultrastruct Pathol 39: 255-269.
22. Gilloteaux J, Subramaniam K, Solomon N (2017) Peripheral neuropathy and leptin receptor defect: demyelination of the sciatric nerve of the obese Zucker rat. Ultrastruct Pathol 41: 90-92.
23. Fernyhough P, Calcutt NA (2016) An introduction to the history and controversies of diabetic neuropathy. Int Rev Neurobiol 187: 115-120.
24. Fernyhough P, Calcutt NA (2016) New directions in diabetic neuropathy: evolution or extinction? Int Rev Neurobiol 127: 229-234.
25. Hackett AR, Strickland A, Milbrandt J (2019) Disrupting insulin signalling in Schwann cells impairs myelination and induces a sensory neuropathy. Glia.
26. Artinano A, Castro M (2008) Zucker rats as an experimental model for the study of various diseases. Endocrinology Nutr 55: 217-222.
27. Arnessou M, Tahiri K, Chouvet G, Desbuquois B (2010) Experimental rat models to study the metabolic syndrome. Diabetes Metab 36: 120-128.
28. Zucker LM (1965) Hereditary obesity in the rat associated with hyperlipemia. Ann NY Acad Sci 131: 447-458. [Crossref]
29. Gilloteaux J, Subramaniam K, Solomon N, Nicaise C (2018) The leptin receptor mutation of the obese Zucker rat causes sciatric nerve demyelination with a centripetal pattern defect, Ultrastruct Pathol 42: 377-408.
30. Bakhiti M, Aggarwal S, Simons M (2014) Myelin architecture: zippering membranes tightly together. Cell Mol Life Sci 71: 1265-1277.
31. Snaidero N, Mobiis W, Czopka T, Hekking LH, Mathiesen C, et al. (2014) Myelin membrane wrapping of CNS axons by PI(3,4,5)P3-dependent polarized growth at the inner tongue. Cell 156: 277-290.
32. Snaidero N, Velte C, Myllskyoki M, Rausakka A, Ignatev A, et al. (2017) Antagonistic functions of MBP and CNP establish cytosolic channels in CNS myelin. Cell Report 18: 314-323.
33. Gilloteaux J, Finkelstein J (1985) Peripheral neuropathies in the obese Zucker rat skeletal muscles. Anat Rec 211: 69A.
34. Gilloteaux J, Pardhan D (2015) CIN reprophisis in thyroid follicular and parafollicular cells of male obese Zucker rat. Ultrastruct Pathol 39: 255-269.
35. Gilloteaux J, Subramaniam K, Solomon N (2017) Peripheral neuropathy and leptin receptor defect: demyelination of the sciatric nerve of the obese Zucker rat. Ultrastruct Pathol 41: 90-92.
36. Spritz N, Singh-H, Mariban B (1975) Decrease in myelin content of rabbit sciatric nerve with aging and diabetes. Diabetes 24: 680-683. [Crossref]
37. Spritz N, Singh-H, Mariban B, Silberlicht I (1981) Effect of experimental diabetes on the susceptibility of myelin proteins to proteolysis. Diabetes 30: 292-295.
38. Clements RS Jr (1979) Diabetic neuropathy—new concepts of its etiology. Diabetes 28: 604-611. [Crossref]
39. Hirano A (1983) Reaction of the periaxonal space to some pathologic processes. In: Harry M Zimmerman ed. Progress in Neuropathology, Vol. 5. New York: Raven Press pp: 99-112.
40. Khedr E, Toony L, Tarkhan M, Abdalla G (2000) Peripheral and central nervous system alterations in hypothyroidism: electrophysiological findings. Neuropsychobiology 41: 88-94.
41. Thomas PK (2003) The Pathology of Diabetic Neuropathy. New York: J Wiley & Sons.
42. Weil MT, Mobiis W, Winkler A, Ruhwedel T, Wezso C, et al. (2016) Loss of myelin basic protein function triggers myelin breakdown in models of demyelinating diseases. Cell Rep 16: 314-322.
43. Brunden KR, Brown DT (1990) P0 mRNA expression in cultures of Schwann cells and neurons that lack basal lamina and myelin. J Neurosci Res 27: 159-168. [Crossref]
44. Mitchell LS, Griffiths IR, Morrison S, Barrie JA, Kirkham D, et al. (1990) Expression of myelin protein gene transcripts by Schwann cells of regenerating nerve. J Neurosci Res 27: 125-135.
45. Fernandez-Valle C, Fregien G, Wood PM, Bunge MB (1993) Expression of the protein zero myelin gene in axon related Schwann cells is linked to basal lamina formation. Dev Biol 162: 182-8.
46. Fernandez-Valle C, Fregien G, Wood PM, Bunge MB (1993) Expression of the protein zero myelin gene in axon related Schwann cells is linked to basal lamina formation. Dev Biol 162: 182-8.
47. Mitchell LS, Griffiths IR, Morrison S, Barrie JA, Kirkham D, et al. (1990) Expression of myelin protein gene transcripts by Schwann cells of regenerating nerve. J Neurosci Res 27: 125-135.
48. Spiryda LB (1998) Myelin protein zero and membrane adhesion. J Neurosci Res 54: 137-146. [Crossref]
Peripheral nerve demyelination and a leptin receptor mutation: The obese Zucker rat sciatic nerve demyelination occurs with a centripetal pattern defect

53. Trapp BD, Quarles RH (1982) Presence of the myelin-associated glycoprotein correlates with alterations in the periodicity of peripheral myelin. J Cell Biol 92: 877-882.

54. Boinor F, Spivack WD, Deshmukh DS, Gould RM (1993) Basis for phospholipid incorporation into peripheral nerve myelin. J Neurochem 60: 320-329.

55. Caremini S, Montag D, Cremer H, Schachner M, Martini R (1997) Absence of the myelin-associated glycoprotein (MAG) and the neural cell adhesion molecule (NCAM) interferes with the maintenance, but not with the formation of peripheral myelin. Cell Tissue Res 287: 3-9.

56. Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275: 17221-17224. [Crossref]

57. Menichella DM, Arroyo EJ, Awatramani R, Xu T, Baron P, et al. (2001) Protein zero is necessary for E-cadherin-mediated adherens junction formation in Schwann cells. Mol Cell Neurosci 27: 370-378. [Crossref]

58. Quarles RH (2002) Myelin sheaths: glycoproteins involved in their formation, maintenance and degeneration. Cell Mol Life Sci 59: 1851-1871.

59. Jahn O, Tenzer S, Werner HB (2009) Myelin proteomics: molecular anatomy of an evolving system. J Cell Biol Int 33: 16369-16386. [Crossref]

60. Margolis RU, Margolis RK (1977) Metabolism and function of glycoproteins and glycosaminoglycans in nervous tissue. Int J Biochem 9: 85-91.

61. Jordan WR, Randall LO (1936) Neuropathy in diabetes: lipid constituents of nerves. J Physiol London 86: 188-178.

62. Gould RM, Holshack J, Silverman W, Spivack WD (1987) Localization of phospholipid synthesis to Schwann cells and axons. J Neurochem 48: 1121-1131. [Crossref]

63. Gould RM, Connell F, Spivack W (1987) Phospholipid metabolism in mouse sciatic nerve in vivo. J Neurochem 48: 853-859.

64. van Dijck PW (1979) Non-enzymatically charged phospholipids and their position in the cholesterol affinity sequence. Biochim Biophys Acta 555: 89-101.

65. Brown MJ, Sumner AJ, Greene DA, Asbury AK (1980) Distal neuropathy in experimental diabetes mellitus. Ann Neurol 8: 168-178.

66. Gould RM, Holshock J, Silverman W, Spivack WD (1987) Localization of phospholipid synthesis to Schwann cells and axons. J Neurochem 48: 1121-1131. [Crossref]

67. Pasquari R, Anconetani B, Chattar R, Bissotti M, Spinnuci G, et al. (1996) Hypothalamic-pituitary-adrenal axis activity and its relationship to the autonomic nervous system in women with visceral and subcutaneous obesity: effects of the corticotropin-releasing factor/arginine-vasopressin test and of stress. Metabolism 45: 351-356.

68. Weissbach J, Friedman JM (1995) The human obese (OB) gene: RNA expression pattern and mapping on the physical, cytogenetic, and genetic maps of chromosome 7. Genome Res 5: 5-12.

69. Couche ME, Burguera B, Parisi JE, Jensen MD, Lloyd RV (1997) Localization of leptin receptor in the human brain. Neuroendocrinology 66: 145-150. [Crossref]

70. Hegyi K, Fülöp K, Kovács K, Tóth S, Falus A (2004) Leptin induced signal transduction pathways. Cell Biol Int 28: 159-169.

71. Takeda Y, Murakami Y, Asou H, Uyemura K (2001) The roles of cell adhesion molecules on the formation of peripheral myelin. Keio J Med 50: 240-248. [Crossref]

72. Kidd G, Trapp BD (2010) Molecular organization of the oligodendrocyte and myelin. In: Armati PJ, Mathey EK, eds. The Biology of Oligodendrocytes. Cambridge: Cambridge University Press pp: 64-102.

73. Simonis K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387: 569-572. [Crossref]

74. García Arribas AB, Alonso A, Gómez FM (2016) Cholesterol interactions with ceramide and sphingomyelin. Chem Phys Lipids 199: 26-34.

75. Robertson JD (1958) Structural alterations in nerve fibers produced by hypertonic and hypotonic solutions. J biophys biochem Cytol 4: 349-364.

76. Rayleigh JWS (1883) Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc Lond Math Soc 14: 170-177.

77. Taylor GI (1950) The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc Roy Soc Lond Series A, Math Phys Sci 201: 192-196.