Deproteinization of Distillery Yeast Biomass Waste by Protease-producing \textit{Bacillus megaterium} PB 4

Rajasundari Kandaiaha and Murugesan Ramasamy

Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore-641 003, Tamilnadu, India

\textbf{Abstract}

The distillery yeast biomass (DYB), a waste by-product from distilleries is one of the under-utilized protein sources to be exploited for the production of protein hydrolysates. In this study, a neutral protease produced from \textit{Bacillus megaterium} PB4 isolated from agro wastes enriched soil exhibited significant deproteinization of distillery yeast biomass to yield protein hydrolysates. Among three protease producing strains isolated, the maximum protease production of 120.3 \pm 1.4 U mL-1 was exhibited by PB4 grown in Luria-Bertani (LB) broth supplemented with casein at pH 7.0 and 30\textdegree C. The minimal media supplemented with various carbon and nitrogen sources, glucose and peptone significantly improved the protease production in PB4. The effect of metal ions such as Zn2+, Mg2+, Mn2+, Cu2+ at 0.5 and 1.0 mM final concentration in the media on protease production indicated that Zn2+ (1.0 mM) was favorable in enhancing the protease production. The \(K_m\) and \(V_{\text{max}}\) of PB4 protease for casein substrate was 0.6 U ml-1 and 217.3 \mu M min-1 mg-1 protein, respectively. The deproteinization rate for distillery yeast biomass was 84 and 76.4\% using culture and crude enzyme extracted from PB4, respectively. To the best of our knowledge, deproteinization of distillery yeast biomass using proteolytic bacterial isolate has never been demonstrated before. The experimental results in the present study suggest that \textit{Bacillus megaterium} PB4, can be utilized for the eco-friendly, economical production of protein hydrolysates and may be considered as a potential candidate in various biotechnological applications.

\textbf{Keywords:} \textit{Bacillus megaterium}; Proteases; Distillery yeast biomass; Deproteinization

\textbf{Introduction}

Global demand for human and animal feed is ever increasing and will continue in future. Protein-rich food is considered as essential for the growth and development of animals including humans. Generally in plants, protein/amino acid deficiency results in decreased resistance against plant pathogens and pests which in turn affects the growth and yield [1]. On the other hand in animals, protein deficiency causes retarded growth, decreased appetite, weight loss, poor growth, depressed reproductive performance, and reduced milk production in farm animals and egg production in broilers [2]. Bridging the gap in protein-deficiency in plant and animal nutrition, protein rich wastes and by-products from the agro industries on further recycling and reprocesing results in the production of higher value products that can also be utilized as feed supplements [3,4]. Even without pre-treatments, a wide variety of protein rich by-products from agro industries are currently being supplemented as feed in the animal nutrition but in negligible quantity [5]. However, the direct ingestion of bulk protein rich products resulted in negative effect on the growth and development animals and human beings. Occasionally the consumption of protein rich material requires prolonged digestion that results in indigestion and aversion. Consequently the need for finding alternative protein rich feed sources has gained its momentum.

Protein hydrolysates, the amino acid rich component extracted from protein rich substrates can be very effective and efficient in facilitating the absorption of amino acids in the blood system ultimately improving the overall physiological performances of animals. The protein hydrolysates are previously reported to be used as feed supplement in poultry [6], piggery [7], and aquaculture [8] and also in direct application to plants [9]. Protein hydrolysates are derived by the proteolytic cleavage or deproteinization of protein rich substances. Deproteinization can be achieved by means of both chemical and biological methods. The chemical method of deproteinization is considered as an efficient way for separating the amino acids from protein-rich wastes. However this method of deproteinization results in the discharge of effluents which are highly acidic and alkaline [10]. Hence, biological deproteinization is considered as the efficient way of separating protein with the aid of proteases are widely used. Proteases are ubiquitous enzymes found in plants, animals and microorganisms. Plant-derived proteases such as papain, bromelain and keratinases and animal-derived protein such trypsin, chymotrypsin, pepsin and renins are well-known for their applications [11,12]. Applications involving protease enzymes derived from microorganisms are preferred over plant and animal derived proteases since microbial proteases possesses desirable characteristics for biotechnological application [13,14]. Microbes effectively utilize protein-rich substrates as the source of carbon and energy which indirectly facilitates the production of proteases which in turn cleaves protein into amino acids [15]. Moreover genetic manipulation of protease encoding gene(s) in microorganisms also improves the catalytic properties of proteases suitable for much wider applications [16].

Proteases are the class of enzymes that catalyze hydrolytic reactions in which protein molecules are degraded to smaller peptides and amino acids [17]. Proteases are used extensively in the pharmaceutical, leather, food and detergent industries. According to their activity in various pH ranges, proteases are classified as acidic, neutral and alkaline. Acidic

aCorresponding author: Rajasundari Kandaiah, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore-641 003, Tamilnadu, India, Tel: 0422 681 1200; E-mail: rajasundarkandaiah@gmail.com

Received September 28, 2015; Accepted October 28, 2015; Published October 30, 2015

Citation: Kandaiah R, Ramasamy M (2015) Deproteinization of Distillery Yeast Biomass Waste by Protease-producing \textit{Bacillus megaterium} PB 4. J Bioremed Biodeg 6: 319. doi:10.4172/2155-6199.1000319

Copyright: © 2015 Kandaiah R, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

*Corresponding author: Rajasundari Kandaiah, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore-641 003, Tamilnadu, India, Tel: 0422 681 1200; E-mail: rajasundarkandaiah@gmail.com

Received September 28, 2015; Accepted October 28, 2015; Published October 30, 2015

Citation: Kandaiah R, Ramasamy M (2015) Deproteinization of Distillery Yeast Biomass Waste by Protease-producing \textit{Bacillus megaterium} PB 4. J Bioremed Biodeg 6: 319. doi:10.4172/2155-6199.1000319

Copyright: © 2015 Kandaiah R, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

*Corresponding author: Rajasundari Kandaiah, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore-641 003, Tamilnadu, India, Tel: 0422 681 1200; E-mail: rajasundarkandaiah@gmail.com

Received September 28, 2015; Accepted October 28, 2015; Published October 30, 2015

Citation: Kandaiah R, Ramasamy M (2015) Deproteinization of Distillery Yeast Biomass Waste by Protease-producing \textit{Bacillus megaterium} PB 4. J Bioremed Biodeg 6: 319. doi:10.4172/2155-6199.1000319

Copyright: © 2015 Kandaiah R, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
proteases are produced by Mucor sp, Pencillium sp. and Aspergillus sp. Neutral proteases are produced by B. cereus, B. megaterium, B. steaothermophilus, B. thuringiensis, B. pumilus, B. polymyxa, B. licheniformis and B. amylo liquefaciens and also by Pseudomonas aeruginosa and Streptomyces griseus [15] and on the other hand, alkaline proteases are reported in Bacillus spp. Pseudomonas, Xanthomonas maltophilia, Vibrio alginolyticus etc., [18]. Over past few decades, the isolation and application of protease producing microorganisms and the enzymes were reported.

There is still paucity in research including the isolation of protease producing microorganisms from protein-rich waste material dumped soil. Hence, the objective of the present study was aimed in (I) isolation, characterization and screening of protease producing bacteria from various sources such as from dump sites of poultry waste, meat waste, fish waste, and distillery yeast biomass dump yard, (II) identification of efficient protease-producing bacterial strain by 16s rDNA gene sequencing, (III) proteolytic kinetics by crude enzyme isolated from B. megaterium PB4, and (IV) deproteinization of distillery yeast biomass by protease producing B. megaterium PB4.

Materials and Methods

Materials

Protein rich agro wastes namely distillery yeast biomass used in the experiment was purchased from, M/S Sakthi Sugars, Appakudal, Bhavani Taluk, Erode District, Tamilnadu, India and Amaravathi Co-Operative Sugar Mills Ltd, Krishnapuram, Udupalpet Taluk, Coimbatore District, Tamilnadu, India. All the reagents and chemicals used in this study were of analytical grade, obtained from Sigma Aldrich.

Isolation of proteolytic microorganisms

Soil samples collected from various agro waste dumpsites were used for the isolation of protease producing bacteria. Protease-producing bacteria was isolated by enrichment technique in Luria-Bertani (LB) broth supplemented with 1.0% (w/v) casein [19] by spread plate method. The plates were kept for incubation under aerobic condition in an incubation chamber at 30 ± 2°C for 2 days to determine the proteolytic activity. Based on the highest protease production, the bacterial isolate Bacillus megaterium PB4 was selected among three isolates and used for this study. The organisms were stored at −20°C in LB broth containing 20% (v/v) glycerol. The bacteria were subcultured twice in fresh LB medium before it was used.

Screening and characterization

For the morphological classification, bacteria were cultured on LB agar plates. Morphological characterization was carried out using light microscope [20]. The proteolytic bacterial cells were fixed and viewed under the scanning electron microscope (Philips 501) as per the procedure stated by Wagner and Stewart [21]. The isolate was subjected to various tests as per standard protocol for biochemical testing described elsewhere [22]. The ability to produce protease activities we used minimal medium agar plates containing skim milk 1.0%. Plates were incubated at 30 ± 2°C for 2 days, and clearing halos were determined.

PCR amplification of the 16s rRNA gene and sequence analysis

The genomic DNA of PB4 which exhibited higher K release from the insoluble minerals was isolated using the standard protocol of hexadecyl-trimethyl ammonium bromide (CTAB) method given by Melody [23] with slight modifications. Full-length 16s rDNA (1500 bp) were amplified from the PB4 isolates by PCR using the bacterial universal primers 27F (5′-AGA GTT TGA TCC TGG CTC TGG AG-3′) and 1492R (5′-GGA TTG CAT TTT CCG ACT T-3′) [24]. Sequencing reactions were performed using ABI prism terminator cycle sequencing ready reaction kit and electrophoresis of the products were carried out on an Applied Biosystems (Model 3100) automated sequencer. The cultures were identified at species level by performing a similarity search against the GenBank database (website: http://www.ncbi.nih.gov/BLAST). The phylogenetic tree was constructed with sequences of 16s rDNA from different eubacteria which was obtained from NCBI. Sequences were aligned using the CLUSTAL X software [25]. The evolutionary distances were calculated by neighbour-joining method [26] using MEGA 6.0 software [27].

Effects of pH, temperature, carbon, nitrogen and metal ions on protease production

Protease activity from B. megaterium PB4 in M9 minimal salt medium at various pH (4.0-9.0), temperature (20-60°C), carbon sources (glucose, fructose, lactose, maltose, and cellulose), nitrogen sources (peptone, yeast extract, tryptone, beef extract and casein), 1 mM metal ions (Na+, K+, Zn2+, Mg2+, Mn2+, Cu2+) using casein 1.0% (w/v) as a substrate. Protease activity was determined after 24 h of incubation at 37°C. Heat killed B. megaterium PB4 cells served as control. All the experiments were conducted in triplicate unless otherwise stated.

Proteolytic kinetics

Proteolytic activity of crude enzyme was assayed using casein as substrate [28]. The crude enzyme from B. megaterium PB4 was extracted by growing the cells in 1000 ml of TSY broth (pH 7.0). The log phase culture was centrifuged at 4000 rpm at 4°C for 30 minutes. The cell pellet was washed twice with 0.1 M phosphate buffered saline (PBS) (pH 7.0) and resuspended in 40 ml buffer. The protease inhibitor, phenyl methyl sulfonyl fluoride (PMSF) was added to the resuspended cells to a final concentration of 1.0 mM. The suspended cells were disrupted by sonication (Branson Digital Sonifier, USA) for 2 mins with 30 seconds interval in 20% amplitude. The lysate was centrifuged for 12,000 rpm for 30 mins at 4°C and the supernatant was used as crude enzyme. The protein concentration was measured by Bradford assay. Casin at various concentration was incubated with the crude enzyme at 37°C for 30 min. The reaction was stopped by the addition of 2.5 ml of 1.2 M trichloroacetic acid. Test and test blank solutions were then filtered through a Whatman No. 1 filter paper. For 2.5 ml of the filtrate 5 ml of 0.4 M Na2CO3 and 0.5 ml of 0.5 N Folin Ciocalteu reagent were added and mixed thoroughly. Tyrosine formed was measured at OD 660nm. One unit of enzyme activity is defined as the amount of enzyme required to liberate 1 µmol of tyrosine per min under the defined assay conditions. The Michaelis-Menten parameters for proteolysis were estimated by initial substrate concentrations and the rate of proteolysis. The kinetic parameters, V_{max} and K_m were calculated using Lineweaver-Burk plot.

Deproteinization of distillery yeast biomass by culture

The deproteinization process of each substrate was carried out in 5 L capacity fermentor with the volume of 3 L. Dried and powered distillery yeast biomass (5.0%) was taken and mixed in 3 L of media and sterilized at 121°C for 15 min. Then 10% of the inoculum was transferred into the fermentor aseptically. The fermentor temperature was maintained at room temperature. The drive motor was allowed to rotate continuously for uniform mixing of the medium to augment the
better growth of the bacterial culture. The deproteinization process was carried out up to 5 days. Periodically samples were withdrawn aseptically for the measurement of deproteinization rate and growth of PB4.

Enzymatic deproteinization of distillery yeast biomass

The crude enzyme was used for the deproteinization of distillery yeast biomass. About 10 g of distillery yeast biomass was mixed with water at a ratio of 1:3 (w/v) and the pH was adjusted to 7.0. Enzymatic deproteinization was carried out using different concentration of enzyme/substrate ratios (unit of enzyme/mg of protein) for various lengths of time. The reaction was stopped by heating the mixture at 90°C for 10 minutes to inactivate the enzyme. The mixture was centrifuged for 10 minutes at 8000 g. The pellet resulted from centrifugation was washed with deionized water and dried. The protein content was determined to determine the deproteinization rate.

Deproteinization (DP) was expressed as percentages and computed by the following equation as described by [29].

$$\text{DP} (\%) = \frac{(P_o - P_R)}{P_o} \times 100$$

Where, P_o and P_R are protein concentrations (percent) before and after hydrolysis; while, O and R represent the mass (g) of original sample and hydrolyzed residue in dry weight basis, respectively.

Results

Isolation and identification of protease producing bacterium

Three proteolytic bacterial isolates namely PB3, PB4 and PB9 were found to produce clearing zone in LB agar medium containing casein (1%) which varied protease production abilities were isolated (Figure 1). During the subsequent screening experiments, microbial colony formed large and clear halos on the LB-skim milk agar was selected for further experiment. Among the isolates, PB4 was found to produce significant level of protease in the liquid medium (Figure 2) ($120.3 \pm 1.4 \text{ U mL}^{-1}$). The isolate PB4 was subjected to taxonomic analysis as described in Bergey’s Manual of Systematic Bacteriology [22], and identified as a member of the genus Bacillus. The morphological characteristics of the isolate observed though light microscopy (Figure 3) and scanning electron microscope (SEM). The strain was Gram-positive, aerobic, spore forming (spore mean length 1.0 - 1.20 μm; diameter 980 nm, and rod-shaped) (Table 1 and Figure 4). Phylogenetic analysis revealed that the isolate PB4 is affiliated with the genus Bacillus and that it closely related to Bacillus megaterium (Figure 5).

Optimization of growth conditions for maximizing protease production

The effect of pH on PB4’s protease production with casein (1%) as substrate, was examined. At pH 7.0 (at 30°C), the proteolytic bacteria (PB4) exhibited maximum protease production (119.7 U mL^{-1}) (Figure 6). Further increase in pH decreased the protease production. The effect of temperature on the protease production in PB4 was examined at various temperature at pH 7.0. The protease production was found to be unaffected at temperature ranging from 20-40 °C, with an optimum at 30°C (Figure 7), whereas the production was rapidly reduced at higher temperature.

Protease producing ability of the strain PB4 was evaluated in batch experiments in mineral salts medium supplemented with various...
carbon (0.1 and 0.5%), nitrogen (0.1 and 0.5%) and metal ions (0.5 and 1.0 mM) (Table 2). Among carbon sources such as glucose, fructose, lactose, maltose, and cellulose, glucose supplementation at 0.1 and 0.5% resulted in the highest protease production of 103.5 ± 3.6 and 120.3 ± 3.3 U mL⁻¹, respectively. Whereas cellulose resulted in the lowest protease production (8.2 ± 1.7 and 10.1 ± 2.3 U mL⁻¹) at 0.1 and 0.5% when compared to control. On the other hand among the nitrogen sources, peptone facilitated the maximum protease production at both the test concentrations (0.1 and 0.5%) followed by yeast extract and casein supported the lowest protease production over control. Metal ions were also found to influence the protease production in PB4. Higher protease production (141.3 ± 4.7 U mL⁻¹) was observed with the addition of Zn²⁺ (1.0 mM) followed by Mg²⁺ and Mn²⁺.

Proteolytic kinetics

The kinetic parameters (K_m and V_max) were determined at 37°C and pH 7.0 for casein concentrations ranging between 0.5 and 2.5 mg ml⁻¹. The Michaelis–Menten’s constant (K_m) and maximum velocity (V_max) values of crude enzyme were 0.60 and 217.3 U ml⁻¹, respectively (Figure 8a and 8b). In the present study, the cell free extract of _B. megaterium_ PB4 showed higher affinity to casein was revealed by low K_m value.

Deproteinization of distillery yeast biomass

Biological deproteinization of distillery yeast biomass was carried out in batch fermentation with PB4 culture and crude enzyme extracted from PB4. Using PB4 cell culture the deproteinization efficiency of the distillery yeast biomass was found to be 83.5 ± 2.3% in 96 h (Figure 9). The results clearly indicated that deproteinization rate and the growth of PB4 increased with incubation time. However after 96 h of incubation both the deproteinization rate and growth of PB4 were found to decrease. From the results it is evident that PB4 strain was found to grow well in distillery yeast biomass with corresponding deproteinization indicate that the organism can satisfy its carbon and nitrogen requirement without an external source. On the other hand, deproteinization of distillery yeast biomass at different substrate and enzyme concentration was carried out. Enzyme/Substrate ratio (E/S ratio) of 0.1 and 15 (Unit of enzyme/mg of protein) were used for the comparison of deproteinization rate. In general the deproteinization rate increased with the increase in E/S ratio. As shown in the Figure 10.
the deproteinization rate was 14.2 and 76.4% at 0.1 and 15 E/S ratio, respectively. There were no significant increase in the deproteinization rate observed at E/S ratio beyond 5%.

Discussion

Protein hydrolysis from protein rich agro wastes is considered as a viable and cost effective technique for the production of short chain peptides and free amino acids [30]. Generally chemical and biological methods of deproteinization are widely practiced with former causing several environmental concerns, biological deproteinization using microorganisms and their enzymes proved to be effective and eco-friendly [18]. Among hydrolytic enzymes, protease catalyze the hydrolysis of peptide bond and also involves in a multitude of cellular processes as mediator of protein function. Protease production is an inherent capacity of all microorganisms; and large numbers of bacterial species are known to produce proteases. Among microorganisms, bacterial species belonging to the genus Bacillus have been extensively studied for their ability for the production of both neutral and alkaline proteases [31-33]. Among the bacterial group, interest in Bacilli gained much importance accounts for 35% of total microbial enzyme sale and it was widely used in the detergent formulation since 1960s [34,35]. Besides, protease enzyme isolated from Bacillus sp. used as additives in detergents to facilitate the release of proteinaceous materials in stains such as grime, blood, milk etc., [36].

Generally production of proteases by microorganisms requires optimization of carbon and nitrogen sources in the media which is vital in determining the cost involved in the selection of substrate and enzyme production [37]. In the present study, the effect of carbon and nitrogen sources revealed glucose and peptone favoured the increased protease activity by PB4. It is evident that glucose was not found to be a repressor of protease production as reported by [38] whereas some reports suggests that glucose plays role of catabolic repression in B. licheniformis and B. subtilis, B. korikoshii, B. nesterkonia sp. AL-20 [39-42]. All the other carbons sources had resulted in the reduction of protease production. Particularly the effect of lactose in affecting

Carbon source	0.1%	0.5%
Glucose	103.5 ± 3.6	120.3 ± 5.3
Fructose	57.1 ± 1.3	59.1 ± 4.7
Lactose	16.5 ± 2.6	15.9 ± 3.2
Maltose	16.9 ± 3.4	23.2 ± 5.1
Cellulose	8.2 ± 1.7	10.1 ± 2.3

Nitrogen source	0.1%	0.5%
Peptone	102.3 ± 5.3	116.4 ± 4.6
Yeast extract	96.3 ± 2.6	114.4 ± 2.8
Tryptone	62.3 ± 6.1	79.9 ± 3.3
Beef extract	28.9 ± 4.3	36.6 ± 4.1
Casein	5.7 ± 2.1	8.2 ± 2.2

Metal ions	0.5 mM	1.0 mM
Zn²⁺	128.3 ± 3.9	141.3 ± 4.7
Mg²⁺	96.1 ± 2.1	92.7 ± 2.9
Mn²⁺	84.5 ± 3.1	76.23 ± 3.4
Cu²⁺	50.7 ± 2.2	46.13 ± 2.7

Metal ions	0.5 mM	1.0 mM
Zn²⁺	128.3 ± 3.9	141.3 ± 4.7
Mg²⁺	96.1 ± 2.1	92.7 ± 2.9
Mn²⁺	84.5 ± 3.1	76.23 ± 3.4
Cu²⁺	50.7 ± 2.2	46.13 ± 2.7

Table 2: Effect of carbon, nitrogen and metal ions on protease production of B. megaterium PB-4.

![Figure 6: Effect of pH on protease production of Bacillus megaterium PB4.](image)

![Figure 7: Effect of temperature on protease production of Bacillus megaterium PB4.](image)

![Figure 8: Proteolytic assay kinetics of Bacillus megaterium PB4. (a) Casein hydrolysis rate as a function of initial casein concentration, and (b) Lineweaver-Burk plot of casein hydrolysis rate for determining Vₘₐₓ and Kₘ.](image)
Temperature will vary from one organism to another [14]. Temperature factor for protease activity that should be controlled and the optimal Bacillus cereus sp. PCSIR EA-3, [53-55]. Temperature is a critical Bacillus production [38,51,52]. In some bacterial species it was reported that at a range of temperature for maximum protease activity [58,59]. In the current study at 37°C, optimum growth for protease production was observed at which is in concordance with the earlier studies [60-62].

Metal ions play a vital role in the production of protease for its activity and stability. Proteases from B. megaterium and B. circulans were reported to be zinc-containing metalloenzymes [33,63]. However in Brevibacillus brevis the protease secretion were reported to have inhibited by Zn²⁺ [64]. In the present study, Zn²⁺ stimulated the protease activity of PB4 which suggests that Zn²⁺ performed a vital role in maintaining the active conformation [65]. On the other hand Mg²⁺, Mn²⁺ and Cu²⁺ were found to be inhibit the protease activity in PB4. The inhibitory effects of metal ions on protease production and activity is well documented in literature [66].

Most of the enzyme-catalyzed reactions, the K_m and V_{max} are considered as the important parameters [67]. In the present study, the cell free extract of PB4 exhibited lower K_m and higher V_{max} with casein as substrate which suggest that the crude enzyme was found to have higher affinity for casein. This results was similar to the kinetic constants documented in B. mojavensis [67]. Similarly in Brevibacterium linens and P. fluorescens RO98, the K_m values were found to be 1.3 mg mL⁻¹ and 14.28 µM, respectively with casein as substrate [68,69]. Proteolytic activity of Streptomyces sp. A6 showed highest affinity to chymotrypsin as substrate [70]. P. aeruginosa PseA strain isolated from soil capable of producing novel alkaline protease with K_m and V_{max} towards casein were found to be 2.7 mg mL⁻¹ and 3 µmol min⁻¹, respectively [71]. In P. aeruginosa MCM B-327, dehairing protease showed 2.78 mg mL⁻¹ and 830 U min⁻¹ of K_m and V_{max} respectively with casein as substrate [72].

Utilization of protease in the deproteinization of agro wastes have been previously reported. Generally the agro-waste residues with high amount of organic matter consists of 50-60% of total solid wastes which are being used as an alternative source for production of important compounds as these are valuable raw materials; rich in sources like energy and other nutrients (lignocellulosic, proteins, carbohydrates, lipids etc.,) [73]. Deproteinization of crustacean wastes by protease from Bacillus sp. TKU004, B. licheniformis RP1, B. subtilis Y-108, P. aeruginosa K-187 Streptomyces sp. Bacillus cereus SVI, Bacillus licheniformis MP1 and Zosterisessor ophiocephalus has been previously well studied and reported [74-80]. On the other hand solid and liquid wastes possessing high protein and nutrient generated from brewing industries should be given importance for the production of low cost protein products such as single cell proteins and also as feed additives [10]. In this study, deproteinization of distillery yeast biomass a second major by-product rich in nutrients and protein feed additives [10]. In this study, deproteinization of distillery yeast biomass was carried out with various microorganisms including Bacillus genus [48-50].

The pH in the growth media plays a vital role in the activity and production of protease because it strongly influences many enzymatic processes and transport of various components across the cell membranes, which in turn support the cell growth and product production [38,51,52]. In some bacterial species it was reported that at neutral pH protease activity was enhanced in Bacillus sp. VITP4, Bacillus sp. PCSIR EA-3, Bacillus cereus [53-55]. Temperature is a critical factor for protease activity that should be controlled and the optimal temperature will vary from one organism to another [14]. Temperature strongly affects the synthesis of protease, either non-specifically by influencing the rates of biochemical reactions or specifically by inducing or repressing their production [56]. Temperature also influences the secretion of extracellular enzymes possibly by changing the physical properties of the cell membrane [47]. At 30 and 37°C, Bacillus cereus and Bacillus licheniformis ATCC12759 showed the maximum neutral protease activity [57]. Bacteria belonging to Bacillus genus such as Bacillus sp. JB-99, Bacillus cereus SIU1 were reported to have a wide range of temperature for maximal protease activity [58-59]. In the current study at 37°C, optimum growth for protease production was observed at which is in concordance with the earlier studies [60-62].
Conclusion

The application of microorganisms or proteolytic enzymes for deproteinization of distillery yeast biomass is a current research trend in conversion of wastes into useful biomass. Distillery yeast biomass is an excellent and complex microbial substrate for the growth and protease production by *B. megaterium* PB4. Since distillery yeast biomass is an agro waste that can be obtained at low cost, its use as a carbon and nitrogen source instead of commercial substrates may considerably reduce the cost of protease production and could promote the growth of new industrial applications.

References

1. El-Aal SA, Shaheen AM, Ahmed AA, Mahmoud AR (2010) Effect of foliar application of urea and amino acids mixtures as antioxidants on growth, yield and characteristics of squash. Res J Agric Biol Sci 6: 583-588.
2. Pond WG, Barnes RH, Bradford RK, Kwong E, Krook L (1965) Effect of dietary energy intake on protein deficiency symptoms and body composition of baby pigs fed equalized but sub optimal amounts of protein. J Nutr 85: 65-69.
3. Robinson T, Nigam P (2003) Bioreactor design for protein enrichment of agricultural residues by solid state fermentation. Biochem Eng J 14: 1-23.
4. Graminha EBN, Goncalves AZL, Pirata RDPB, Balsalobre MA, Da Silva R, et al. (2007) Enzyme production by solid-state fermentation: Application to animal nutrition. Anim Feed Sci Technol 144: 1-23.
5. Martin AM (1991) Biocconversion of Waste Materials to Industrial Products, Elsevier Applied Science, London, UK.
6. Corzo A, Fritts CA, Kidd MT, Kerr BJ (2005) Response of broiler chicks to amino acid supplementation of low crude protein diets. Nutr Feed 31: 319-327.
7. Divakal AK, Chiba LI, Kamalakar RK, Rodning SP, Welles EJ, et al. (2009) Amino acid supplementation of hydrolyzed feather meal diets for finisher pigs. J Anim Sci 87: 1270-1281.
8. Wu HC, Chen HM, Shiao CY (2003) Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (*Scomber australasicus*). Food Res Int 36: 949-957.
9. Pasupuleti VK, Holmes C, Demain AL (2010) Applications of protein hydrolysates in biotechnology. In: Protein hydrolysates in biotechnology. Pasupuleti VK, Demain AL (Eds.). Springer, Netherlands. ISBN. 1-9
10. Ferreira IMPLVO, Pinheiro O, Vieira E, Tavarela JG (2010) Brewer's *Saccharomyces* yeast biomass: characterizations and potential applications. Trends Food Sci Technol 21: 77-84.
11. Ferid A, Ferid L (2008) Production of alkaline proteases by *Botrytis cinerea* using economic raw materials: Assay as biodetergent. Process Biochemistry 43:1202-1208.
12. Sawant R, Nagendran S (2014) Protease: an enzyme with multiple industrial applications. World J Pharm Pharm Sci 3: 568-579.
13. Vishalakshi N, Dayanand A (2009) Production of alkaline protease from *Streptomyces gulbargensis* and its application in removal of blood stain. Indian Journal of Biotechnology 8: 280-285
14. Shankar S, More SV, Seeta Laxman R (2010) Recovery of silver from waste *Streptomyces chrysogenum* using *Bacillus thuringiensis* strain. Open J Appl Sci 1: 246-249.
15. Sumantha A, Larroche C, Pandey A (2006) Microbiology and industrial biotechnology of food-grade proteases: A Perspective. Food Technol Biotechnol 44: 211-220.
16. Najafi MF, Deobagkar D (2005) Potential application of protease isolated from *Psuedomonas aeruginosa* PD100. Electronic J Biotechnol 8: 198-207.
17. Sandhya C, Sumantha A, Pandey A (2004) Proteases. In: Enzyme Technology. Pandey A, Webb C, Soccol CR, Larroche C (Eds.). Asiatech Publishers Inc., New Delhi, India 312-325.
18. Kumar CG, Takagi H (1999) Microbial alkaline proteases: from a bioindustrial viewpoint. Biotech Adv 17: 561-594.
19. Jo GH, Jung WJ, Kuk JH, Oh KT, Kim YJ, et al. (2008) Screening of protease-producing *Serratia marcescens* F5-3 and its application to deproteinization of crab shell waste for chitin extraction. Carbohydr Polym 74: 504-508.
20. Gerhardt PR, Murray G, Costello RN, Neter EW, Wood WA (1981) Manual Methods for General Bacteriology. Am Soc Microbiol 23: 400-450.
21. Wagner PR, Stewart GC (1991) Role and expression of the *Bacillus subtilis* rod C Operon. J Bacteriol 173: 4341-4346.
22. James GC Natalie S (1999) Microbiology: a laboratory manual, 4th ed., Addison-Wesley Longman Inc., http://faculty.washington.edu/korkishin/Class-486/MicrobioTechniques.pdf. Accessed 15 Jan 2015.
23. Melody SC (1997) Plant Molecular Biology-A laboratory manual. Springer-Verlag, New York.
24. Brandt MT, Quinones B, Lindow SE (2001) Heterogeneous transcription of an indoleacetic acid biosynthetic gene in *Erwinia herbicola* on plant surfaces. Proceedings of the National Academy of Sciences 98: 3454-3459.
25. Thompson JD, Gibson TJ, Plewniak F, Jeannotmougin F, Higgins DG (1997) The clustalx windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24: 4876-4882.
26. Saitou N, Nei, M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406-425.
27. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596-1599.
28. Meyers SP, Ahearn DG (1977) Extracellular proteolysis by Candida *lipolytica*. Mycologia 69: 648-651.
29. Rao MS, Munoz J, Stevens WF (2000) Critical factors in chitin production by fermentation of shrimp biowaste. Appl Microbiol Biotechnol 54: 808-813.
30. Rajasundari K, Murugesan R (2014) Effect of Feed Addition of Distillery Yeast Biomass Protein Hydrolysates in Common Carp (*Cyprinus carpio L.*) Fingerlings Diets. World J Fish Marine Sci 6: 524-531.
31. Keay L, Wildi BS (1970) Proteases of the genus *Bacillus*. I. Neutral proteases. Biotechnol Bioeng 12: 179-212.
32. Keay L, Feder J, Garrett LR, Moseley MH, Cirilus N (1971) *Bacillus megaterium* neutral protease, a zinc-containing metalloenzyme. Biochimica Biophysica Acta (BBA)-Protein Structure 229: 829-835.
33. Fuji M, Takagi M, Imanaka T, Alsa S (1983) Molecular cloning of a thermostable neutral protease gene from *Bacillus stearothermophilus* in a vector plasmid and its expression in *Bacillus stearothermophilus* and *Bacillus subtilis*. J Bacteriol 154(2): 831-837.
34. Kolln HM (1968) Microbial proteinases. Advances in Biochem Eng Biotechnol 36: 1-65.
35. Ottlupp H, Boyce COL (1990) Microbial proteinases and biotechnology. In: C. T. Fogarty & K.Kelly (Eds.). Microbial enz and biotechnology 227-254. London: Elsevier.
36. Jayakumar R, Jayashree S, Annampuma B, Seshadri S (2012) Characterization of thermostable serine alkaline protease from an alkaliphilic strain *Bacillus pumilus* MCAS8 and its applications. Appl Biochem biotechnol 168(7): 1849-1866.
37. Laxman RS, Sonawane AP, More SV, Rao BS, Rele MV, et al. (2005) Optimization and scale up of production of alkaline protease from *Conidiolobus coronatus*. Biores Tech 97: 3152-3158.
38. Prakasham RS, Rao CS, Sarma PN (2006) Green gram husk—an inexpensive substrate for alkaline protease production by *Bacillus sp.* in solid-state fermentation. Biore Tech 97: 1449-1454.
39. Frankena J, Koningstein CM, van Verseveld HW, Stoutanner AH (1988) Effect of different limitations in chemostat cultures on growth and production of exocellular protease by *Bacillus licheniformis*. Appl Microbiol Biotechnol 24: 105-112.
40. Kole MM, Draper I, Gerson DF (1988) Production of protease by *Bacillus subtilis* utilizing simultaneous control of glucose and ammonium concentrations. J Chem Technol Biotechnol 41:197-206.
41. Joo HS, Kuma CG, Park CG, Paik SR, Chang CS (2003) Oxidant and SDS stable alkaline protease from *Bacillus clausi* 1-52. Production and some properties. J Appl Microbiol 95: 265-272.
42. Gelessso A, Kabul RH, Gashe BA, Mattliasson B (2003) Novel alkaline
protease from alkalophilic bacteria grown on chicken feather. Enzyme Microbiol Technol 32: 519-524.

43. Chu WH (2007) Optimization of extracellular alkaline protease production from species of Bacillus. J Ind Microbiol Biotechnol 34: 241-245.

44. Uyar F, Porsuk I, Kızıl G, Yılmaz E (2011) Optimal conditions for production of extracellular protease from newly isolated Bacillus cereus strain CA15. EurAsian J BioSci Technol 32: 1-9.

45. Sánchez-Porro C, Mellado E, Bertoldo C, Antranikian G, Ventosa A (2003) Screening and characterization of the protease CP1 produced by the moderately halophilic bacterium Pseudoalteromonas sp. strain CP76. Extremophile 7: 221-228.

46. Shankar T, Prabhu D, Sankaraalingam S, Kaleeswari V, Harinathan B (2013) Production of haloalkaline protease by Pseudomonas aeruginosa isolated from the elephant dung sample of shenbagathoppu hills. Int J Biolo Pharma Res 4(12): 1229-1233.

47. Haddar A, Hmidet N, Ghorbel-Beliaj O, Fakih-Lahzouari N, Sellami-Kamoun A, et al. (2011) Alkaline proteases produced by Bacillus licheniformis RP1 grown on shrimp wastes: Application in chitin extraction, feather degradation and as a dehairing agent. Biotechnol Bioproc E 16: 669-678.

48. Fujinara W, Yarnamoto K (1987) Production of alkaline protease in a low cost medium by alkalophilic Bacillus sp. and properties of the enzyme. J Ferment Technol 65: 345-348.

49. Cheng SW, Hu HM, Shen SW, Takagi H, Asano M, et al. (1995) Production and characterization of keratinase of a feather degrading Bacillus licheniformis. Biosci Biotechnol Biochem 59: 2239-2243.

50. Pandey A, Socol CR, Nigam P, Brand D, Mohan R, Rousso S (2000) Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochem Eng J 6: 153-162.

51. Elaihia P, Srinivasulu B, Adinarayana K (2002) A review on microbial alkaline proteases. J. Sci Ind Res 61: 690-704.

52. Nisha NS, Divakaran J (2014) Optimization of alkaline protease production from Bacillus subtilis NS isolated from sea water. Adv J Biotechnol 13: 1707-1717.

53. Shivanand P, Jayaraman G (2009) Production of extracellular protease from halo-tolerant bacterium, Bacillus aquimaris strain VITP4 isolated from kumta coast. Process Biochem 44: 1088-1094.

54. Qadar SA, Erum S, Samira I, Abida A (2009) Optimization of protease production from newly isolated strain of Bacillus sp. PCSIR EA-3. Ind J Biotechnol 8: 286-290.

55. Kebabci O, Cihangir N (2011) Isolation of protease producing novel Bacillus licheniformis strain K. Bioresearch Technol 96: 429-436.

56. Akcan N (2012) Production of extracellular protease in submerged fermentation by Bacillus licheniformis ATCC 12759. Afr J Biotechnol 11: 1729-1735.

57. Jeevanwesan B, Naik GR (2001) Studies on production of thermostable alkaline protease from thermophilic and alkalophilic Bacillus sp. JB-99 in a chemically defined medium. Process Biochem 37: 139-144.

58. Singh SK, Tripathi VR, Jain RK, Vikram S, Garg SK (2010) An antibiofilm, heavy metal resistant and halotolerant Bacillus cereus SJU1 and its thermoalkaline protease. Microb Cell Fact 9: 59.

59. Jecouadi B, Ellouz-Chaabouni S, Ali MB, Messaoud EB, Nails B, et al. (2009) Excellent laundry detergent compatibility and high dehairing ability of the Bacillus pumilus CBS alkaline protease (SAPB). Biotechnol Bioproc Eng 14: 503-512.

60. Saeki K, Ozaki K, Kobayashi T, Ito S (2002) A novel species of alkalophilic Bacillus that produces an oxidatively stable alkaline serine protease. Extremophiles 6: 65-72.

61. Sivasubramanian S, Manohar BM, Rajaram A, Puvanakrishnan R (2008) Eco-friendly lime and sulfide free enzymatic dehairing of skins and hides using a bacterial alkaline protease. Chemosphere 70: 1015-1024.

62. Jaswal RK, Kocher GS (2007) Partial characterization of a crude alkaline protease from Bacillus circulans and its detergent compatibility. Internet J Microbiol 4: 1.