Protective effects of organic extracts of Alpinia oxyphylla against hydrogen peroxide-induced cytotoxicity in PC12 cells

Duan, Li-Hong; Li, Meng; Wang, Chun-Bao; Wang, Qing-Mei; Liu, Quan-Quan; Shang, Wan-Feng; Shen, Ya-Jin; Lin, Zhuo-Hua; Sun, Tong-Yang; Wu, Zheng-Zhi; Li, Ying-Hong; Wang, Yu-Long; Luo, Xun

Published in:
Neural Regeneration Research

Published: 01/04/2020

Document Version:
Final Published version, also known as Publisher's PDF, Publisher's Final version or Version of Record

License:
CC BY-NC-SA

Published version (DOI):
10.4103/1673-5374.266918

Publication details:
Duan, L-H., Li, M., Wang, C-B., Wang, Q-M., Liu, Q-Q., Shang, W-F., Shen, Y-J., Lin, Z-H., Sun, T-Y., Wu, Z-Z., Li, Y-H., Wang, Y-L., & Luo, X. (2020). Protective effects of organic extracts of Alpinia oxyphylla against hydrogen peroxide-induced cytotoxicity in PC12 cells. Neural Regeneration Research, 15(4), 682-689. https://doi.org/10.4103/1673-5374.266918

Citing this paper
Please note that where the full-text provided on CityU Scholars is the Post-print version (also known as Accepted Author Manuscript, Peer-reviewed or Author Final version), it may differ from the Final Published version. When citing, ensure that you check and use the publisher's definitive version for pagination and other details.

General rights
Copyright for the publications made accessible via the CityU Scholars portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Users may not further distribute the material or use it for any profit-making activity or commercial gain.

Publisher permission
Permission for previously published items are in accordance with publisher's copyright policies sourced from the SHERPA RoMEO database. Links to full text versions (either Published or Post-print) are only available if corresponding publishers allow open access.

Take down policy
Contact lbscholars@cityu.edu.hk if you believe that this document breaches copyright and provide us with details. We will remove access to the work immediately and investigate your claim.
Protective effects of organic extracts of *Alpinia oxyphylla* against hydrogen peroxide-induced cytotoxicity in PC12 cells

Li-Hong Duan1,2,3,4,5, #, Meng Li1,4, Chun-Bao Wang1,2,3,4,5,6,7,8, *, Qing-Mei Wang1,2,3, Quan-Quan Liu1,2,5,6,7,8, *, Wan-Feng Shang1,2,5, Ya-Jin Shen4, Zhuo-Hua Lin1, Tong-Yang Sun1, Zheng-Zhi Wu1,2,3, *, Ying-Hong Li1,2,1, Yu-Long Wang2,3, Xun Luo1
1 Shenzhen Institute of Geriatrics, Shenzhen, Guangdong Province, China
2 Department of Rehabilitation, the Second People’s Hospital of Shenzhen, Shenzhen, Guangdong Province, China
3 Stroke Recovery Laboratory, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA, USA
4 Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region, China
5 Department of Rehabilitation, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
6 School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong Province, China
7 School of Mechanical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region, China
8 Mingkai Smart Medical Robot Co., Ltd., Shenzhen, Guangdong Province, China
9 Curtain Rehabilitation Medicine Research Institute, Shenzhen, Guangdong Province, China

Funding: This work was financially supported by the National Natural Science Foundation of China, No. 81574038 (to ZZW); the Natural Science Foundation of Guangdong Province of China, No. 2017A030313842 (to LHD); the Science and Technology Foundation of Guangdong Province of China, No. 2017A050506007 (to YHL); the Technology Research Foundation of Basic Research Project of Shenzhen City of China, No. JCZY20170412161254416 (to ZZW).

Graphical Abstract

Neuroprotective effect of *Alpinia oxyphylla* extracts against H$_2$O$_2$-induced PC12 cell injury

Abstract

Alpinia oxyphylla, a traditional herb, is widely used for its neuroprotective, antioxidant and memory-improving effects. However, the neuroprotective mechanisms of action of its active ingredients are unclear. In this study, we investigated the neuroprotective effects of various organic extracts of *Alpinia oxyphylla* on PC12 cells exposed to hydrogen peroxide-induced oxidative injury in vitro. *Alpinia oxyphylla* was extracted three times with 95% ethanol (representing extracts 1–3). The third 95% ethanol extract was dried and resuspended in water, and then extracted successively with petroleum ether, ethyl acetate and n-butanol (representing extracts 4–6). The cell counting kit-8 assay and microscopy were used to evaluate cell viability and observe the morphology of PC12 cells. The protective effect of the three ethanol extracts (at tested concentrations of 50, 100 and 200 µg/mL) against cytotoxicity to PC12 cells increased in a concentration-dependent manner. The protective effect of the ethyl acetate extract was particularly significant.

Key Words: active ingredients; *Alpinia oxyphylla*; apoptosis; ethanol crude extract; fraction; hydrogen peroxide; nerve regeneration; neuroprotective agent; neuroprotective effects; PC12 cells; traditional herb

Chinese Library Classification No. R452; R363; R364
Introduction

Alpinia (A.) oxyphylla is commonly used in traditional Chinese medicine to treat dyspepsia, diarrhea (Zhang et al., 2013; Wang et al., 2015), abdominal pain (Song et al., 2014; Zhang et al., 2015a), poor memory (Shi et al., 2015; He et al., 2019), inflammatory conditions (He et al., 2010; Zhang et al., 2018; Qi et al., 2019) and cancer (Lin et al., 2013). Recently, the medicinal properties of *A. oxyphylla* and its pharmaceutical products have received considerable attention (Bian et al., 2013; Zhang et al., 2015b, 2018). The protective effects of *A. oxyphylla* extract in chronic kidney disease have been explored using metabolomics (Li et al., 2016). Various biomarkers, such as agmatine, CAMP and 7-methylguanine, are restored to control levels after treatment with *A. oxyphylla* extract, suggesting that it has protective effects. Wang et al. (2015) showed that the 95% ethanol extract and 90% ethanol-eluted fractions of *A. oxyphylla* have antidiarrheal activity. Some studies focusing on the effectiveness of *A. oxyphylla* extract ignored identifying the bioactive components. *A. oxyphylla* contains numerous potentially bioactive compounds, including flavonoids (Zhang et al., 2015b; Sun et al., 2016), tephene (Lv et al., 2011; Xie et al., 2014; Hou et al., 2015; Zhao et al., 2015), alkaloids (Zhou et al., 2013) and diphenylheptanes (Bian et al., 2013).

Peripheral nerve injuries, such as those caused by accidental trauma, birth injury, ischemia or iatrogenic injury, often result in temporary or life-long neurological dysfunctions, which can be devastating and severely impact the patient's quality of life (Cao et al., 2019; Han et al., 2019; Zhang et al., 2019). It is necessary to promote neural cell proliferation to restore the injured nerves in adults. A few studies have shown that protocatechuic acid modulates the MAPK (ERK1/2, JNK and p38)/PA (uPA, tPA)/MMP (MMP2, MMP9) regeneration and migration signaling pathways in Schwann cells (Ju et al., 2015a). Furthermore, protocatechuic acid promotes cell proliferation and survival via the insulin-like growth factor-I signaling pathway (Ju et al., 2015b). Li et al. (2016) reported that a novel lead compound, oxyphylla A, is a neuroprotective agent for Parkinson's disease.

In the present study, we investigated the neuroprotective effects of various organic extracts of *A. oxyphylla* on hydrogen peroxide (*H*₂*O*₂)-induced apoptosis in cultured PC12 cells. Our aim is to lay the foundation for the purification and identification of the bioactive components in *A. oxyphylla* for use in future clinical application.

Materials and Methods

Materials

Ethanol, petroleum ether, ethyl acetate and *n*-butanol were of analytical grade (Guangdong Guanghua Sci-Tech Co., Ltd., Guangzhou, China). Undifferentiated rat PC12 cells were from Procell Life Science & Technology Co., Ltd., Wuhan, China.

Sample extraction and fractionation

The air-dried fruits of *A. oxyphylla* (10.0 kg) were extracted three times for 1.5 hours each by refluxing in 95% ethanol (1:10, w/v) to obtain 95% ethanol extracts 1–3 (95% EE-1–3). A portion of 95% EE-3 was concentrated by vacuum evaporation and dried by water bath evaporation, and then resuspended and dissolved in ultrapure water by ultrasonication for 30 minutes, resulting in a brown-yellow suspension. The suspension was extracted with petroleum ether several times until the upper layer of the extract was colorless to obtain the petroleum ether fraction (PF). The residual extract was extracted with ethyl acetate until the upper layer of the extract was colorless to obtain the ethyl acetate fraction (EF). The final raffinate was extracted with *n*-butanol until the upper layer of the extract was colorless to obtain the *n*-butanol fraction (BF). All six extracts were concentrated by rotary evaporation and dried in a vacuum at 45°C.

Cell culture

PC12 cells were cultured in RPMI-1640 medium (Gibco, Grand Island, NY, USA) supplemented with 10% fetal bovine serum (Gibco), 100 U/mL penicillin (Gibco) and 100 μg/mL streptomycin (Gibco) in a water-saturated atmosphere of 5% CO₂ in 96-well plates at 37°C for 24 hours. Five wells each were treated with vehicle alone or different concentrations of the six *A. oxyphylla* extracts. The cultures were incubated for 24 hours. After culture for 48 hours, cell viability was analyzed with the cell counting kit-8 assay (Biosharp, Hefei, China), and morphology was observed on an inverted microscope (MZ16FA; Leica, Wetzlar, Hesse-Darmstadt, Germany).

Analysis of cell viability

The cell counting kit-8 assay was used to evaluate cell viability. PC12 cells were seeded into 96-well plates at a density of 4 × 10⁴ cells/well (100 μL/well) for 24 hours, and then pre-treated with vehicle alone or different concentrations of the various *A. oxyphylla* extracts for 24 hours. The supernatants were discarded, the wells were washed twice with phosphate-buffered saline, and 1 mL serum-free 1640 medium and 100 μL cell counting kit-8 solution were added, followed by incubation for 3 hours at 37°C. The optical density was determined at 450 nm. Five parallel experiments were done. The cell viability of the tested compounds was calculated using the following equation:

\[
\text{Cell viability} = \frac{(\text{cell viability of drug group} - \text{cell viability of model group})}{\text{cell viability of control group} - \text{cell viability of model group}} \times 100
\]

Cell viability was assessed with the cell counting kit-8 assay to identify the optimal H₂O₂ concentration (70 μM in this study). The cells were exposed to 70 μM H₂O₂ for 2 hours before supernatant removal to observe the protective effects of the different concentrations of the various *A. oxyphylla* extracts.

Statistical analysis

Each experiment was performed at least three times, and the results were expressed as the mean ± SD. The values followed a Gaussian distribution. Differences between means were analyzed using the Student's t-test.
Results

Effects of the different extracts of A. oxyphylla on cell viability

PC12 cells were treated with different concentrations of the various A. oxyphylla extracts for 24 hours. Each extract was tested using a different concentration range, based on pilot studies. The EF, 95% EE-1 and EE-3 extracts were tested at 0–400 μg/mL; 95% EE-2 was tested at 0–300 μg/mL; PF was tested at 0–100 μg/mL; BF was tested at 0–200 μg/mL.

As shown in Figure 1A, B and E, at concentrations of 100–200 μg/mL, 95% EE-1, 95% EE-2 and BF increased cell viability, without affecting cellular morphology. The 200 μg/mL concentration of these extracts increased cell viability to 136.4%, 164.3% and 159.9% of that in the control group, respectively. Figure 1C shows that 95% EE-3 slightly increased cell viability at concentrations of 50–200 μg/mL, with the 100 μg/mL concentration increasing cell viability to 118.0% of that in the control group. At concentrations of 25–75 μg/mL, PF markedly increased cell viability, with the 50 μg/mL concentration increasing viability to 163.8% of that in the control (Figure 1D). As shown in Figure 1F, at concentrations of 25–100 μg/mL, EF increased cell viability, with the 100 μg/mL concentration increasing it to 141.1% of that in the control.

Effects of different extracts of A. oxyphylla on the viability of H2O2-exposed PC12 cells

The pilot study revealed that H2O2 at 50–90 μM induced cell death in a dose-dependent manner (Figure 2). To evaluate the cytoprotective effects of the A. oxyphylla extracts, PC12 cells were pretreated with the extracts and a moderate concentration (70 μM) of H2O2. Cell viability was assessed with the cell counting kit-8 assay. As shown in Figure 3A–C, incubation with 70 μM H2O2 for 2 hours resulted in a cell viability rate of 36.2% compared with the control. However, viability increased to 48.4%, 66.8% and 73.9% in cells pretreated with 95% EE-1 (100, 150 and 200 μg/mL, respectively) for 24 hours. Cell viability rate increased to 74.4%, 82.0% and 83.4% in cells pretreated with 95% EE-2 (100, 150 and 200 μg/mL, respectively) for 24 hours. Cell viability increased to 56.1%, 61.3% and 65.6% in cells pretreated with 95% EE-3 (50, 100 and 200 μg/mL, respectively) for 24 hours. As shown in Figure 3D and E, incubation with 70 μM H2O2 for 2 hours resulted in a cell viability rate of 41.6% compared with the control. Viability increased to 62.4% in cells pretreated with 25 μg/mL. PF for 24 hours, but was only 24.9% in cells pretreated with 75 μg/mL. PF (Figure 3D). Cell viability rate increased dramatically to 85.4%, 108.5% and 99.2% in cells pretreated with EF (25, 50 and 100 μg/mL, respectively) for 24 hours (Figure 3E). Moreover, the cell viability rate increased slightly to 52.1%, 58.5% and 76.3% in cells pretreated with BF (100, 150 and 200 μg/mL, respectively) for 24 hours (Figure 3F). Together, these results suggest that extracts of A. oxyphylla are neuroprotective against H2O2-induced oxidative stress. The neuroprotective effect of the ethyl acetate extract was the most robust.

Under the optical microscope, PC12 cells were small and translucent immediately after passage in suspension. The cells were plump and formed a network after 48 hours (Figure 4A). After exposure to H2O2 for 2 hours, the cells in the model group were severely damaged (Figure 4B). The cells in the various extract treatment groups exhibited varying degrees of morphological changes (Figures 4C1, 2, 3–H1, 2, 3). The six extracts of A. oxyphylla effectively inhibited H2O2-induced cytotoxicity at the different concentrations. The cytoprotective effects of 95% EE-1, 95% EE-2 and 95% EE-3 increased with increasing concentration from 100–200 μg/mL. As shown in Figure 4C3, D3 and E3, morphology was good and axons grew well. The EF, PF and BF extracts had optimal effects on morphology at 25, 50 and 200 μg/mL, respectively. Thus, the EF extract had the best effect.

Discussion

H2O2 induces apoptosis in many different cell types, including PC12 cells, by initiating mitochondrial dysfunction (Jang et al, 2001; Huang et al, 2015; Chen et al., 2019). H2O2, an inducer of neuronal injury, is extensively used to explore the neuroprotective potential of new pharmacotherapies (Porres-Martínez et al., 2016; Liu et al., 2018; Chu et al., 2019). Exploration of natural compounds that support neurite outgrowth against the toxicity of H2O2 is critical for treating neurodegenerative diseases.

The H2O2 concentration that induces 50% PC12 cell lethality is around 70 μM, when incubated for 2 hours. Other researchers have found it to be around 150 μM for 24 hours of exposure and 750 μM for 6 hours of exposure (Tüsi et al., 2014; Cheong et al., 2016). The reasons for the discrepancies may include differences in experimental conditions, including reagent quality.

In recent years, an increasing number of studies have focused on natural substances isolated from Chinese herbal medicines, particularly as synthetic chemicals can have serious adverse effects (Wang et al., 2014; Hu and Sun, 2017; Liu et al., 2017; Ai et al., 2019; Dai et al., 2019). Huang et al. (2015) found that forsythiaside provides protective effects against H2O2-induced death of neurons. Divate et al. (2017) demonstrated the neuroprotective effects of Xylaria nigripes mycelia extracts on H2O2-induced cytotoxicity in PC12 cells.

In this study, we found that A. oxyphylla extracts had no negative effect on the proliferation of PC12 cells, even positively impacting proliferation within a certain range. Among the extracts, EF was particularly effective, closely followed by EE-2. Consistent with previous reports, A. oxyphylla extracts possessed significant neuroprotective activity. Wong et al. (2004) reported that the ethanol extract of A. oxyphylla fructus improves spatial learning by affecting the serum levels of cytokines. Studies suggest that neuroprotection is achieved via multiple mechanisms, including decreased Bax/Bcl-2 ratio (Peng et al., 2012; Ip et al., 2016; Phatak et al., 2016; Rivero-Segura et al., 2017; Lima et al., 2018), restored
Duan LH, Li M, Wang CB, Wang QM, Liu QQ, Shang WF, Shen YJ, Lin ZH, Sun TY, Li YH, Wang YL, Luo X (2020) Protective effects of organic extracts of Alpinia oxyphylla against hydrogen peroxide-induced cytotoxicity in PC12 cells. Neural Regen Res 15(4):682-689. doi:10.4103/1673-5374.266918

Figure 1 Effects of different concentrations of the organic extracts of Alpinia oxyphylla on the viability of PC12 cells. (A–F) Effects of 95% ethanol extracts 1–3 (95% EE-1, 95% EE-2, 95% EE-3), petroleum ether extract, ethyl acetate extract and n-butanol extract on cultured PC12 cell viability. Cells (4 × 10^4 cells/mL) were treated with different extracts for 24 hours at 37°C after normal culture for 24 hours. *P < 0.05, **P < 0.01, vs. control group (0 μg/mL). Data are expressed as the mean ± SD (n = 5; one-way analysis of variance followed by Dunnett’s post hoc test). EE: Ethanol extract.

Figure 2 Effects of H_2O_2 on PC12 cell viability. Cell counting kit-8 assay shows that H_2O_2 decreased cell viability in a concentration-dependent manner. #P < 0.01, vs. control group (0 μM H_2O_2). Data are expressed as the mean ± SD (n = 5; one-way analysis of variance followed by Dunnett’s post hoc test). Cell viability (%) = (cell viability of drug group – cell viability of model group)/(cell viability of control group – cell viability of model group) × 100.
Figure 3 Effects of the three sequential 95% ethanol extracts (EE-1–3), petroleum ether extract, ethyl acetate extract and n-butanol extract on H$_2$O$_2$-induced PC12 cell damage.

(A) EE-1; (B) EE-2; (C) EE-3; (D–F) Effects of petroleum ether, ethyl acetate and n-butanol extracts, respectively. PC12 cells (4×10^4 cells/mL) were treated with 70 μM H$_2$O$_2$ in the absence or presence of the extracts. Viability is calculated as the percentage of living cells in treated cultures compared with control cultures (CK). Data are expressed as the mean ± SD ($n=5$; one-way analysis of variance followed by Dunnett's post hoc test). ††$P<0.05$, vs. CK; §§$P<0.01$, vs. cells exposed to H$_2$O$_2$ alone. Cell viability (%) = (cell viability of drug group – cell viability of model group)/(cell viability of control group – cell viability of model group) × 100. EE: Ethanol extract.

Mitochondrial membrane potential (Chtourou et al., 2015; Chiang et al., 2016; Chen et al., 2018; Tian et al., 2018; Wang et al., 2019), and downregulated caspase-3 (Chen et al., 2016; Zhang et al., 2016; Zhou et al., 2016; Ding et al., 2017; Rivero-Segura et al., 2017; Lima et al., 2018). Furthermore, studies show that Xylaria nigripes mycelia extracts inhibit the release of lactate dehydrogenase and decrease DNA damage (Divate et al., 2017). Huang et al. (2015) found that forsythiaside decreased reactive oxygen species levels and lipid peroxidation. Thus, the neuroprotective effect of nat-
Figure 4 Morphology of PC12 cells pretreated with different concentrations of the various organic extracts of *Alpinia oxyphylla* and exposed to \(\text{H}_2\text{O}_2 \).

Control group (CK) (A); model group (CK + \(\text{H}_2\text{O}_2 \)) (B); 95% EE-1 + \(\text{H}_2\text{O}_2 \) (C1, 100 μg/mL; C2, 150 μg/mL; C3, 200 μg/mL); 95% EE-2 + \(\text{H}_2\text{O}_2 \) (D1, 100 μg/mL; D2, 150 μg/mL; D3, 200 μg/mL); 95% EE-3 + \(\text{H}_2\text{O}_2 \) (E1, 50 μg/mL; E2, 100 μg/mL; E3, 200 μg/mL); ethyl acetate fraction (EF) + \(\text{H}_2\text{O}_2 \) (F1, 25 μg/mL; F2, 50 μg/mL; F3, 75 μg/mL); petroleum ether fraction (PF) + \(\text{H}_2\text{O}_2 \) (G1, 25 μg/mL; G2, 50 μg/mL; G3, 100 μg/mL); \(n \)-butanol fraction (BF) + \(\text{H}_2\text{O}_2 \) (H1, 100 μg/mL; H2, 150 μg/mL; H3, 200 μg/mL). The cells were not stained. Original magnification: 20x. Scale bars: 100 μm.
ural substances have some common mechanisms as well as some unique ones. Therefore, the neuroprotection afforded by *A. oxyphylla* extracts against H$_2$O$_2$-induced apoptosis in PC12 cells may involve unique mechanisms. A shortcomings of this study is that the underlying neuroprotective mechanisms were not investigated. In future studies, we will focus on identifying the bioactive components in the EF extract and on elucidating the cell and molecular pathways involved in neuroprotection.

In summary, we investigated the neuroprotective effects of six organic extracts of *A. oxyphylla* on apoptosis in PC12 cells induced by H$_2$O$_2$. The EF extract had the best neuroprotective effect. In a following study, we will aim to isolate the bioactive components in this extract and clarify their mechanisms of action. Despite the shortcomings of this study, our findings provide substantial insight into the neuroprotective action of *A. oxyphylla* and its therapeutic potential for the treatment of neurodegenerative disorders.

Author contributions: Experimental implementation, paper writing, and revision: LHuD, ML; study design: CBW, ZZW; technical supports: QMW, YHL; data collection: QQL, WFS, YJS; data analysis: ZHL, TYS. All authors approved the final version of the paper.

Conflicts of interest: The authors declare that there are no conflicts of interest associated with this manuscript.

Financial support: This work was financially supported by the National Natural Science Foundation of China, No. 81574038 (to ZZW); the Natural Science Foundation of Guangdong Province of China, No. 2017A030313842 (to LHD); the Science and Technology Foundation of Guangdong Province of China, No. 2017A050506007 (to YHL); the Technology Research Foundation of Basic Research Project of Shenzhen City of China, No. JCYJ20170412161254416 (to ZZW). The funding sources had no role in study conception and design, data analysis or interpretation, paper writing or deciding to submit this paper for publication.

Copyright license agreement: The Copyright License Agreement has been signed by all authors before publication.

Data sharing statement: Datasets analyzed during the current study are available from the corresponding author on reasonable request.

Plagiarism check: Checked twice by iThenticate. Peer review: Externally peer reviewed.

Open access statement: This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non-Commercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

References

Al S, Tang W, Guo RL, Li JQ, Yang W, He ZG (2019) Research progress on Chinese herbal medicine fermentation and profile of active substances derived. Zhongguo Zhong Yao Za Zhi 44:1110-1118.

Bian QY, Wang SY, Xu L J, Chan CO, Mok DK, Chen SB (2013) Two new antio-zidant diarylheptanoids from the fruits of Alpinia oxyphylla. J Asian Nat Prod Res 15:1094-1099.

Cao LZ, Feng NB, Wang J, Chen JF (2019) Mesenchymal stem cells: present status and prospect for its application in peripheral nerve injury. Zhongguo Zhaihi Gongcheng Yanjiu 23:5385-5391.

Chen L, Zheng B, Shan S, Zhao X (2016) Neuroprotective effects of vexitoxin against isofuran-induced neurotoxicity by targeting the TRPV1 and NRB2 signaling pathways. Mol Med Rep 14:5607-5613.

Cheong CU, Yeh CS, Hsieh YW, Lee YR, Lin MY, Chen CY, Lee CH (2016) Protective effects of costunolide against hydrogen peroxide-induced injury in PC12 cells. Molecules 21:888.

Chen Y, Chen J, Sun X, Shi X, Wang L, Huang L, Zhou W (2018) Evaluation of the neuroprotective effect of EGCG: a potential mechanism of mitochondrial dysfunction and mitochondrial dynamics after subarachnoid hemorrhage. Food Funct 9:6349-6359.

Chiang MC, Cheng YC, Chen SJ, Yen CH, Huang RN (2016) Metaformin activation of AMPK-dependent pathways is neuroprotective in human neural stem cells against amyloid-beta-induced mitochondrial dysfunction. Exp Cell Res 347:322-331.

Chitourou Y, Slima AB, Gdoura R, Fetoui H (2015) Naringenin mitigates iron-induced anxiety-like behavioral impairment, mitochondrial dysfunctions, ectonucleotidases and acetylcholinesterase alteration activities in rat hippocampus. Neurochem Res 40:1563-1575.

Chu Q, Yu L, Zheng Z, Chen M, Hua Z, Hang M, Li Y, Li X, Liu Y, Yang Y, Zheng X (2019) Apios americana Medik flowers extract protects PC12 cells against H$_2$O$_2$ induced neurotoxicity via regulating autophagy. Food Chem Toxicol 124:231-238.

Dai ZR, Ning J, Sun GB, Wang P, Zhang F, Ma HY, Zou LW, Hou J, Wu JJ, Ge GB, Sun XB, Yang I. (2019) Cytochrome P450 3A enzymes are key contributors for hepatic metabolism of bufotalin, a natural constituent in Chinese Medicine Chansu. Front Pharmacol 10:52.

Ding H, Fu YJ, Zheng LR, Chen J, Shi XQ (2017) Neuroprotection mechanism of lidocaine in rabbits with early brain injury resulted from subarachnoid hemorrhage. Sichuan Da Xue Xue Bao Yi Xue Ban 48:230-233.

Divate RD, Wang PM, Wang CC, Chou ST, Chang CT, Chung YC (2017) Protective effect of medicinal fungus Xylariia nigripes mycelia extracts against hydrogen peroxide-induced apoptosis in PC12 cells. Int J Immunopharmacol Pharmacol 30:105-112.

Han GH, Peng J, Liu P, Ding X, Wei S, Lu S, Wang Y (2019) Therapeutic strategies for peripheral nerve injury: decellularized nerve conduits and Schwann cell transplantation. Neural Regen Res 14:1343-1351.

He B, Xu F, Yan T, Xiao F, Wu B, Wang Y, Bi K, Ja Y (2019) Tectochrysin from Alpinia Oxyphylla Miq. alleviates Aβ2-42 induced learning and memory impairments in mice. Eur J Pharmacol 842:365-372.

He ZH, Ge W, Yue GG, Lau CBS, He MF, But PPH (2010) Anti-anxietyogenic effects of the fruit of Alpinia oxyphylla. J Ethnopharmacol 132:443-449.

Hou L, Ding G, Guo B, Huang W, Zhang X, Sun Z, Shi X (2015) New sesquiterpenoids and a diterpenoid from Alpinia oxyphylla. Molecules 20:1551-1559.

Hu RF, Sun XB (2017) Design of new traditional Chinese medicine herbal formulae for treatment of type 2 diabetes mellitus based on network pharmacology. Chin J Nat Med 15:436-441.

Huang C, Lin Y, Su H, Ye D (2015) Forsythiaside protects against hydrogen peroxide-induced oxidative stress and apoptosis in PC12 Cell. Neurochem Res 40:27-35.

Ip FC, Zhao YM, Chan KW, Cheng EY, Tong EP, Chandrashekar O, Fu GM, Zhao ZZ, Ip NY (2016) Neuroprotective effect of a novel Chinese herbal decoction on cultured neurons and cerebral ischemic rats. BMC Complement Altern Med 16:437.

Jang J H, Surh Y J. (2001) Protective effects of resveratrol on hydrogen peroxide-induced apoptosis in rat pheochromocytoma (PC12) cells. Mutat Res 496:181-190.

Ju DT, Liao HE, Shibu MA, Ho TJ, Padma VV, Tsai FJ, Chung LC, Day CH, Lin CC, Huang CY (2015a) Nerve regeneration potential of protocatechuic acid in rsc96 Schwann cells by induction of cellular proliferation and migration through IGF-PI3K-Akt signaling. Chin J Physiol 58:412-419.
Ju DT, Kuo WW, Ho TJ, Paul CR, Kuo CH, Viswanadha VP, Lin CC, Chen YS, Chang YM, Huang CY (2015b) Protecatocholic acid from Alpinia oxyphylla induces Schwann cell migration via ERK1/2, JNK and p38 activation. Am J Chin Med 43:653-665.

Li G, Zhang Z, Quan Q, Jiang R, Szeto SS, Yuan S, Wong WT, Lam HH, Lee SM, Chu IK (2016) Discovery, synthesis, and functional characterization of a novel neuroprotective natural product from the fruit of Alpinia oxyphylla for use in Parkinson’s disease through LC/MS-based multivariate data analysis-guided fractionation. J Proteome Res 15:2595-2606.

Li YH, Tan YF, Cai HD, Zhang JQ (2016) Metabonomic study of the fruits of Alpinia oxyphylla as an effective treatment for chronic renal injury in rats. J Pharm Biomed Anal 124:236-245.

Lima LKF, Pereira SKS, Junior RDSS, Santos FPDS, Nascimento AS, Li YH, Tan YF, Cai HD, Zhang JQ (2016) A brief review on the neuroprotective mechanisms of vitexin. Biomed Int Res 47:485089.

Lin RJ, Yen CM, Chen YH, Huang TW, Wang HC, Chan LP, Ding HY, Liang CH (2013) Antioxidant, anti-adipocyte differentiation, antitumor activity and anthenmistic activities against anisakis simplex and hymenolepis nana of yakuchinone A from Alpinia oxyphylla. BMC Complement Altern Med 13:237.

Liu J, Zhang L, Liu D, Li B, Zhang M (2018) Neuroprotective effects of extracts from the radix curcuma aromatica on H2O2-induced damage in PC12 cells. Comb Chem High Throughput Screen 21:571-582.

Liu Q, Zhu L, Cheng C, Hu YY, Feng Q (2017) Natural active compounds from plant food and Chinese herbal medicine for nonalcoholic fatty liver disease. Curr Pharm Des 23:5136-5162.

Lv XQ, Luo JG, Wang XB, Wang JS, Luo J, Kong, L.Y (2011) Four new sesquiterpenoids from the fruits of Alpinia oxyphylla. Chem Inform 59:402-406.

Peng Y, Jiang B, Wu H, Dai R, Tan L (2012) Effects of genistein on neuronal apoptosis, and expression of Bcl-2 and Bax proteins in the hippocampus of ovariectomized rats. Neural Regen Res 7:2874-2881.

Phatak NR, Stanikowska DL, Krishnamoorthy RR (2016b) Bcl-2, Bcl-xl, and p-AKT are involved in neuroprotective effects of transcription factor Bm3b in an ocular hypertension rat model of glaucoma. Mol Vis 22:1048-1061.

Porres-Martínez M, González-Burgos E, Carretero ME, Gómez-Serrallanes MP (2016) In vitro neuroprotective potential of the monoterpenes α-pinene and 1,8-cineole against H2O2-induced oxidative stress in PC12 cells. Z Naturforsch C, 71:191-199.

Qi Y, Cheng X, Jing H, Yan T, Xiao F, Wu B, Bi K, Jia Y (2019) Effect of Alpinia oxyphylla-Schisandra chinensis herb pair on inflammation and apoptosis in Alzheimer’s disease mice model. J Ethnopharmacol 237:28-38.

Rivero-Segura NA, Flores-Soto E, Garcia de la Cadena S, Coronado-Mares I, Gomez-Verjan JC, Ferreiga DA, Cabrera-Reyes EA, Lopes LV, Massieu L, Cerbón M (2017) Prolactin-induced neuroprotection against glutaflame excitotoxicity is mediated by the reduction of [Ca2+]i overload and NF-kB activation. PLoS One 12:e0176910.

Shi SH, Zhao X, Liu AJ, B Liu, Li H, Wu B, Bi KS, Jia Y (2015) Protective effect of n-butanol extract from Alpinia oxyphylla on learning and memory impairments. Physiol Behav 159:13-20.

Song W, Li Y, Wang J, Li Z, Zhang J (2014) Characterization of nucleosides and nucleosides in the fruit of Alpinia oxyphylla collected from different cultivation regions. Drug Test Anal 6:239-245.

Sun Z, Kong X, Zuo L, Kang J, Hou L, Zhang X (2016) Rapid extraction and determination of 25 bioactive constituents in Alpinia oxyphylla using microwave extraction with ultra high performance liquid chromatography with tandem mass spectrometry. J Sep Sci 39:603-610.

Tian T, Zeng J, Zhao G, Zhao W, Gao S, Liu L (2018) Neuroprotective effects of orientin on oxygen-glucose deprivation/reperfusion-induced cell injury in primary culture of rat cortical neurons. Exp Biol Med (Maywood) 243:78-86.

Tusi S K, Khodagholi F (2014) Salvia macilenta exhibits antiglycating activity and protects PC12 cells against H2O2-induced apoptosis. Cytotechnology 66:169-179.

Wang S, Zhao Y, Zhang JQ, Huang XX, Wang YF, Xu TT, Zheng B, Zhou X, Tian HJ, Liu L, Mei QB (2015) Antidiarrheal effect of Alpinia oxyphylla Miq. (Zingiberaceae) in experimental mice and its possible mechanism of action. J Ethnopharmacol 168:182-190.

Wang Y, Liu Y, Liu Y, Liu B, Wu P, Xu S, Shi H (2019) Protective effects of astaxanthin on subarachnoid hemorrhage-induced early brain injury: Reduction of cerebral vasospasm and improvement of neuron survival and mitochondrial function. Acta Histochem 121:56-63.

Wang YF, Que HF, Wang YJ, Cui XJ (2014) Chinese herbal medicines for treating skin and soft-tissue infections. Cochrane Database Syst Rev doi: 10.1002/14651858.CD010619.pub2.

Wong KK, Wan CC, Shaw PC (2004) P4-427 Ethanol extract of Alpinia oxyphylla fructus, shows inhibition of tau protein phosphorylation in cell culture. Neurobiol Aging 25:1387-1394.

Xie BB, Hou L, Guo BL, Huang WH, Yu JG (2014) The compounds from n-butanol fraction of Alpinia oxyphylla. Yao Xue Xue Bao 49:1569-1573.

Zhang J, Wang S, Li Y, Xu P, Chen F, Tan Y, Duan J (2013) Anti-diarrheal constituents of Alpinia oxyphylla. Fitoterapia 89:149-156.

Zhang LQ, Xu CG, Li ZY, Yao F, Zha XW, Qi L, Jeng YH (2019) Low-frequency pulsed electromagnetic field promotes neurologic function recovery after delayed repair of peripherial nerve injury in rats. Zhongguo Zuzhi Gongcheng Yantjui 23:1711-1716.

Zhang Q, Cui C, Chen CQ, Hu XL, Liu YH, Fan YH, Meng WH, Zhao QC (2015a) Anti-proliferative and pro-apoptotic activities of Alpinia oxyphylla on HepG2 cells through ROS-mediated signaling pathway. J Ethnopharmacol 169:99-108.

Zhang Q, Zheng Y, Hu X, Hu X, Lv W, Lv D, Chen J, Wu M, Song Q, Shentu J (2018) Ethnopharmacological uses, phytochemistry, biological activities, and therapeutic applications of Alpinia oxyphylla Miquel: a review. J Ethnopharmacol 224:149-168.

Zhang X, Xue X, Xian L, Guo Z, Ito Y, Sun W (2016) Potential neuroprotection of protodioscin against cerebral ischemia-reperfusion injury in rats through intervening inflammation and apoptosis. Steroids 113:52-63.

Zhang Z, Li G, Szeto SS,Chong CM, Quan Q, Huang C, Cui W, Guo BJ, Wang YQ, Han YF, Siu KWM, Lee SMY, Chu IK (2015b) Examining the neuroprotective effects of protocatechac acid and chryson in vitro and in vivo models of Parkinson’s disease. Free Radical Biol Med 84:331-343.

Zhao H, Ji ZH, Liu C, Yu XY (2015) Neuroprotective mechanisms of 9-hydroxy epinoottokal against glutamate-induced neuronal apoptosis in primary neuron culture. J Mol Neurosci 56:808-814.

Zhou H, Yang Y, Zhang J, Peng T, Zhao L, Xu X, Ding Z (2013) Alkaloids from an endophytic streptomyces sp. YIM66017. Nat Prod Commun 8:1393-1396.

Zhou JM, Gu SS, Mei WH, Zhou J, Wang ZZ, Xiao W (2016) Ginkgolides and bilobalide protect BV2 microglia cells against OGD/reoxygenation injury by inhibiting TLR2/4 signaling pathways. Cell Stress Chaperones 21:1037-1055.