Abstract

DNA repair systems play a critical role in maintaining the integrity and stability of the genome, which mainly include base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR) and double-strand break repair (DSBR). The polymorphisms in different DNA repair genes that are mainly represented by single-nucleotide polymorphisms (SNPs) can potentially modulate the individual DNA repair capacity and therefore exert an impact on individual genetic susceptibility to cancer. Sporadic colorectal cancer arises from the colorectum without known contribution from germline causes or significant family history of cancer or inflammatory bowel disease. In recent years, emerging studies have investigated the association between polymorphisms of DNA repair system genes and sporadic CRC. Here, we review recent insights into the polymorphisms of DNA repair pathway genes, not only individual gene polymorphism but also gene-gene and gene-environment interactions, in sporadic colorectal carcinogenesis.

Key words: DNA repair, polymorphism, colorectal cancer, carcinogenesis

Introduction

DNA repair is an orchestrated system of defenses evolved to protect the genomic integrity and involved in the process preventing carcinogenesis. DNA repair systems play a critical role in maintaining the integrity and stability of the genome, which mainly include base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR) and double-strand break repair (DSBR)[1]. Interindividual differences in DNA repair capacities are important determinants of susceptibility to cancer. Cellular DNA is constantly under damage from endogenous and exogenous stimuli, leading to a dynamic cellular balance between damage and repair[2]. Defects in human DNA repair system would increase the instability of genome, and un repaired DNA damage may thereby enhance genetic susceptibility to cancer and give rise to carcinogenesis. The polymorphisms in different DNA repair genes that are mainly represented by single-nucleotide polymorphisms (SNPs) can potentially modulate the individual DNA repair capacity and therefore exert an impact on individual genetic susceptibility to cancer.

Colorectal cancer (CRC) is the third most common cancer in men and the second in women worldwide[3]. Among them, Sporadic colorectal cancer is the overwhelming majority, which arises from the colorectum without known contribution from germline causes or significant family history of cancer or inflammatory bowel disease[4]. In recent years, emerging studies have investigated the association between polymorphisms of DNA repair system genes and sporadic CRC. Here, we review recent insights into the polymorphisms of DNA repair pathway genes in sporadic colorectal carcinogenesis by searching different combinations of “DNA repair”, “polymorphism/variant” and “colorectal cancer/
BER pathway gene polymorphisms and sporadic CRC susceptibility

Base excision repair (BER) corrects small base errors which do not significantly alter the DNA helix structure. These damages mainly arise from oxidation, deamination and alklylation[5]. Upon DNA base damage, BER is initiated and four core steps are involved in this process: (1) damaged DNA base removal; (2) incision of the subsequent abasic site; (3) DNA ends processing; (4) ligation of the remaining nick in the DNA backbone[6]. From the beginning of the third step, BER diverges into two sub-pathways of short-patch (only one defective base) and long-patch (more than one defective base) according to the number of defective bases, and each sub-pathway requires unique functional proteins[7]. OGG1 and MYH are involved in the first step of BER while APE1 and PARP1 participate in the incision of abasic site[8, 9]. Short-patch sub-pathway contains polβ, LIG3 and XRCC1 while FEN1, PCNA and LIG1 contribute to the long-patch sub-pathway[10].

Recognition related BER polymorphisms

OGG1

The OGG1 gene located at chromosome 3p26.2, consisting of seven exons and encodes a glycosylase including 345 amino acids. OGG1 protein repairs 8-hydroxyguanine (8-oxoG), a frequently mutagenic lesion among base modification[11].

As the most common OGG1 polymorphism, the rs1052133 polymorphism results in an amino acid substitution from serine to cysteine in codon 326 at exon 7 [12]. The GG genotype of rs1052133 polymorphism was first linked to increased CRC risk by Moreno, V. et al.’s study in Spanish population[13]. Subsequently, Canbay, E. et al. revealed in Turkish people that G allele was associated with higher risk of CRC compared with C allele[12]. And CG genotype was found to increase susceptibility to CRC according to Przybylowska, K. et al. in Polish population[14]. However, several investigations did not demonstrate similar significance[15-23]. Additionally, one research in Taiwanese found that the CG genotype of rs1052133 polymorphism was related with increased CRC risk but no significant association was demonstrated for 11657A/G polymorphism[24]. It is worth noting that significant interaction was observed between rs1052133 polymorphism and smoking: smokers with variant homozygous GG genotype showed an increased risk of CRC[25].

MYH

MYH, also known as MUTYH, is mapped to chromosome 1p34.1 and encodes a glycosylase. This glycosylase initiates the BER pathway by catalyzing the removal of adenine bases of DNA which is inapropriately paired with guanine, cytosine, or 8-oxo-7,8-dihydroguanine[6].

 Altogether three studies detected the role of MYH polymorphisms in colorectal carcinogenesis. Tao, H. et al. investigated four MYH SNPs of IVS1+11C>T(rs2275602), IVS6+35G>A(rs3219487), IVS10-2A>G and 972G>C(rs3219489) for an association with altered CRC risk in Japanese[26]. They suggested that (CT+TT) genotype carriers of rs2275602 polymorphism demonstrated increased risk of CRC compared with individuals carrying CC genotype, while no significant relation was identified in the other three polymorphisms. Kasahara, M. et al. found in Japanese that dominant genetic model of rs3219489 polymorphism was associated with increased CRC risk[20]. Similar significant association was subsequently detected by Przybylowska, K. et al. in a research based on Polish population[14].

Incision related BER polymorphisms

APE1

APE1 consists of five exons and four introns spanning 2.21 kb on chromosome 14q11.2 and encodes a protein of 317 amino acids. APE1 deletes abasic sites formed by OGG1 as well as MUTYH and assembles DNA polymerase β and DNA ligase III in BER[27].

Zhang, S. H. et al. found significant interaction of rs1760944 polymorphism with BMI: a protective effect of the T/G genotype was revealed on the development of CRC among subjects with a BMI < 25 kg/m², although no significant association was detected between this polymorphism and CRC risk[15]. For APE1 rs2307486 polymorphism in exon 3, carriers of AG genotype demonstrated increased risk of CRC compared with GG genotype in Turkish people[16]. In addition, several investigations have reported significant association between APE1 rs1130409 G/T polymorphism and altered risk of CRC: four studies found that G allele was the risk allele[15, 20, 29] while Jelonek, K. suggested that T allele significantly increased CRC risk in Polish population[30]. Another study indicated that GG genotype carriers of rs1130409 polymorphism demonstrated significantly lower APE1 mRNA expression than TT genotype carriers, which might be an evidence for the risk role of G allele[31]. Two teams found on significant relation of rs1130409 polymorphism with CRC risk in Chinese[32] and Czech[25], respectively. Ching-Y. et
al. studied two APE1 polymorphisms (Asp148Glu and T-656G) in Taiwanese but no significant result was found[24].

PARP1

PARP1 gene is mapped to chromosome 1q41-q42, encoding a chromatin-associated poly (ADP-ribosyl) transferase which can detect single-strand breaks and contribute to BER through its interaction with the XRCC1[33].

One study in Singapore Chinese revealed a positive association between the PARP1 codon 940 Lys/Arg genotype and CRC risk [22]. However, no significant relation was found between Val762Ala polymorphism and CRC risk in this study. Another study by Li, Y. et al. suggested that AlaAla genotype of Val762Ala polymorphism significantly increased CRC risk in both homozygous and recessive model in Chinese [32]. For rs8679 polymorphism in 3'UTR region, Alhadheq, A. M. et al. showed no significant association between the polymorphism and risk of CRC in Saudis population[34].

End processing related BER polymorphisms

POLB

POLB (DNA polymerase beta) gene is located at chromosome 8p11.2, which has 16 exons and 15 introns. Polβ is the major DNA polymerase implicated in the initiation of both short-patch and long-patch BER[35].

Only one POLB SNP, rs3136797 (P242R) polymorphism, has been reported. Moreno, V. et al. investigated 28 SNPs of 15 DNA repair genes including POLB and indicated that POLB P242R polymorphism was significantly associated with a reduced risk of CRC[13]. However, the minor allele is very rare and only a few heterozygous individuals were observed, which still required future investigations to confirm.

FEN1

FEN1 (flap structure-specific endonuclease 1), mapped to chromosome 11q12, is essential in efficient 5' flap removal during long-patch base excision repair and the maturation of Okazaki fragments in DNA replication[36].

Until now, only one study by Liu L. et al. detected -69G>A and 4150G>T polymorphisms of FEN1 in cancers of digestive tract including hepatocellular carcinoma, esophageal cancer, gastric cancer and colorectal cancer (126 cases) in Chinese population[37]. However, the results suggested no significant relation of these two variants with CRC risk.
DNA damage recognition[58]. NER consists of four steps: damage recognition, damage demarcation and unwinding, damage incision and new strand ligation. Each step requires indispensable functional proteins, and over 30 factors participate in this precise process[59]. XPA and XPC participate in the first step of NER while XPD together with RPA2 and GTF2H1 play an important role in the damage demarcation and unwinding. Damage incision mainly involves three core proteins of ERCC1, XPF and XPG[60].

DNA damage recognition related NER polymorphisms

XPA

XPA, located at 9q22.33, contains 10 exons and encodes a zinc finger protein which participates in DNA damage recognition of NER. Interacting with DNA and a number of NER proteins, XPA assembles the NER incision complex to the domain where DNA damage occurs[61].

Table 1. Significant association of BER pathway gene polymorphisms with sporadic CRC susceptibility.

Variables	Location	Author	Year	Population	Case	Control	Genotypes	OR(95%CI)	Interaction
XRCC1	19q13.2	Dai, Q.	2015	Chinese	438	438	CT vs. CC	1.19(0.90-1.57)	N.A.
							TT vs. CC	1.43(2.0-2.24)	N.A.
		Nissar, S.	2015	Kashmiri	100	100	CT vs. CC	2.01(1.03-3.94)	N.A.
							TT vs. CC	5.21(1.42-19.5)	N.A.
		Li, Y.	2013	Chinese	451	631	CT vs. CC	1.45(1.11-1.89)	N.A.
							TT vs. CC	1.48(0.91-2.39)	N.A.
		Stern, M. C.	2007	Chinese	310	1176	CT vs. CC	0.90(1.7-1.2)	Interaction with smoking
							TT vs. CC	0.8(0.5-1.3)	None with smoking, alcohol
OGG1	3p26.2	rs1052133	2016	Taiwanese	727	736	GG vs. CC	1.51(1.1-2.05)	N.A.
	Exon 7	Zhang, S. H.	2014	Chinese	247	300	GG vs. CC	1.23(0.90-1.69)	N.A.
		Przybylowska	2013	Polish	182	245	GG vs. CC	0.96(0.75-1.23)	N.A.
		Canbay, E.	2011	Turkish	79	247	(G+C) vs. C allele	2.57(1.40-4.5)	N.A.
		Pardini, B.	2008	Czech	532	532	(G+C) vs. C allele	1.04(0.23-4.8)	N.A.
		Moreno, V.	2006	Spanish	377	329	GG vs. CC	2.31(1.05-5.09)	N.A.
		Hansen, R.	2005	Norwegian	166	397	GG vs. CC	0.56(0.32-0.97)	N.A.
		Ching-Yu Lai	2016	Taiwanese	727	736	GG vs. CC	0.57(0.17-1.83)	N.A.

Variables	Location	Author	Year	Population	Case	Control	Genotypes	OR(95%CI)	Interaction
							(AG+AA) vs. GG	2.00(1.15-3.47)	N.A.
							AA vs. GG	0.73(0.55-0.95)	N.A.
							AA vs. GG	1.13(0.85-2.34)	N.A.
							AG vs. GG	3.92(1.40-11.20)	N.A.
							AA vs. GG	4.20(0.63-34.90)	N.A.

http://www.jcancer.org
Variables	Location	Author	Year	Population	Case	Control	Genotypes	OR(95%CI)	Interaction
APE1	14q11.2	Zhang, S. H.	2014	Chinese	247	300	(CG+GG) vs. CC	1.38 (1.03-1.85)	None with smoking, alcohol or BMI
		Li, Y.	2013	Chinese	451	631	GT vs. TT	0.94 (0.64-1.38)	
							GG vs. TT	2.41 (1.50-3.89)	
							GG vs. TT	1.10 (0.83-1.49)	N.A.
							GG vs. TT	1.13 (0.77-1.66)	
		Canbay, E.	2011	Turkish	79	247	G allele vs. T allele	3.43 (1.76-6.7)	N.A.
		Jelonek, K.	2010	Polish	113	153	T allele vs. G allele	2.00 (1.39-2.87)	N.A.
		Kasahara, M.	2008	Japanese	68	121	(GT+GG) vs. TT	2.33 (1.21-4.48)	N.A.
		Berndt, S. I.	2011	American	767	773	GT vs. TT	1.33 (1.04-1.69)	
	rs2307486	Kabzinski, J.	2015	Polish	150	150	AG vs. GG	2.07 (1.21-3.55)	N.A.
	rs176044	Zhang, S. H.	2014	Chinese	247	300	TG vs. TT	0.75 (0.51-1.10)	Interaction with BMI
							GG vs. TT	0.78 (0.49-1.25)	
PARP1	1q41-q42	Li, Y.	2013	Chinese	451	631	ValAla vs. ValVal	1.19 (0.89-1.59)	N.A.
							AlaAla vs. ValVal	1.75 (1.20-2.57)	
							AlaAla vs. (ValAla+ValVal)	1.57 (1.12-2.20)	
	rs3219145	Stern, M. C.	2007	Chinese	310	1176	(CT+CC) vs. TT	0.584 (0.387-0.881)	
MUTYH	1p34.1	Tao, H.	2008	Japanese	685	778	(CT+TT) vs. CC	1.46 (1.02-2.07)	N.A.
rs2275602	Exon 1	Tao, H.	2008	Japanese	685	778	AG vs. GG	1.14 (0.88-1.49)	
rs3219487	Intron 1	Tao, H.	2008	Japanese	685	778	AA vs. GG	0.97 (0.32-2.93)	
IVS10-2A/G		Tao, H.	2008	Japanese	685	778	(AG+GG) vs. AA	0.67 (0.39-1.14)	N.A.
rs3219489	Exon 12	Przybylowska	2013	Polish	182	245	CG vs. CC	2.69 (1.47-4.94)	N.A.
rs3136797	Exon 9	Moreno, V.	2006	Spanish	377	329	(*/- vs. */+)	0.23 (0.05-0.99)	N.A.

Figure 1. BER pathway gene polymorphisms and sporadic CRC susceptibility.
Only XPA rs1800975 polymorphism in 5’UTR has been investigated by two studies. Joshi, A. D. et al. explored 301 CRC cases and 362 controls of American population but found no significant relation of this polymorphism with CRC risk[62]. Similarly, Hansen, R. D. et al. found no significant association in 397 CRC cases and 800 controls in Denmark[63].

XPC

XPC, mapped to chromosome 3p25.1, consists of 18 exons and is one of the eight core genes in NER system. XPC contributes to damage sensing as well as single-stranded DNA binding during NER process[64].

Polymorphism of rs2228001 (Lys939Gln) in exon 16 has been studied in relation with CRC susceptibility in Malaysian[65], Chinese[66, 67], Turkish[17], Czech[25] and Denmark[63]. Liu, D. et al.’s research in Chinese revealed that AC and (AC+CC) genotype of rs2228001 polymorphism were both related with increased CRC risk compared with wild-type AA genotype[66]. Ahmad Aizat, A. A. et al. found that CC genotype significantly increased the risk of CRC in Malaysian population[65]. Similar correlation was confirmed by Mucha, B. et al.’s study in Polish, which also found significant increased CRC risk of CC genotype[68]. Although no significant relation was found between rs2228001 polymorphism and CRC risk, significant interaction of this polymorphism with red meat was found to increase CRC risk by Hansen, R. D. et al.[63]. For rs2279017 A/C polymorphism at intron 11, Gil, J. et al. suggested increased CRC risk of AC genotype in Polish[69] while another study in American did not find any significant result[62]. The results of rs2228000 C/T polymorphism were still inconclusive: Sun, K. et al.’s study in Chinese[70] and Paszkowska-Szczur, K. et al.’s study in Polish[71] suggested that C allele was the risk allele. However, Steck, S. E. et al. [72] revealed that T allele was the risk allele. In addition, Rui-Xi Hua et al. did not find significant association between rs2228000 polymorphism and CRC risk[67].

DNA damage unwinding related NER polymorphisms

XPD (ERCC2)

XPD, located at 19q13.32, contains 24 exons and encodes a protein which participates in transcription-coupled repair of NER. XPD contributes to the DNA unwinding as well as the damaged DNA fragments excision[61].

Two most frequently studied XPD SNPs are polymorphisms of rs1799793 A/G in exon 10 and rs13181 A/C in exon 22. For rs1799793 polymorphism, Paszkowska-Szczur, K. suggested that both AG genotype and AA genotype were associated with increased risk of CRC compared with wild-type GG genotype in Polish[71]. However, several other investigations did not found similar results in populations of Polish[73], Chinese[22, 74, 75], American[62] or Denmark[63]. Controversies still exist concerning the role of rs13181 polymorphism in relation to CRC susceptibility. Two researches indicated that CC genotype of rs13181 polymorphism was associated with increased risk of CRC compared with the AA genotype in Polish[73] and Romanian[45], respectively. However, Rezaei, H. et al. [76] and Stern, M. C. et al.[77] obtained the opposite conclusion that CC genotype was related with decreased CRC risk in American as well as Iranian. In addition, Stern, M. C. et al. found significant interaction of AC and AA genotype of rs13181 polymorphism with alcohol intake in increasing susceptibility of CRC. In addition, Gil, J. et al. found that the (AC+AA) genotype was associated with decreased CRC susceptibility in polish[69]. Although many other studies investigated the relation between the rs13181 polymorphism and CRC risk in multiple populations[17, 22, 25, 41, 54-56, 62, 63, 74, 75, 78, 79], no significance was found. For rs3810366 polymorphism in promoter, only one team explored the association of this SNP with CRC susceptibility but observed no significance in Chinese [75].

RPA2 and GTF2H1

RPA2 is located at chromosome 1p35.3, encoding a subunit of the heterotrimeric complex RPA which protects single-stranded DNA from nucleases. This heterotrimeric complex binds to single-stranded DNA and contributes to the formation of nucleoprotein complex which plays a key role in DNA unwinding[80]. GTF2H1 is mapped to chromosome 11p15.1, comprising 17 exons and 16 introns. GTF2H1 encodes a member of core-TFIH basal transcription factor which is involved in transcription initiation and NER pathway[81].

Naccarati, A. et al. found that GG and CG carriers of GTF2H1 rs4596 polymorphism was associated with 0.79 fold decreased CRC risk compared with CC genotype carriers in Czechs [81]. They also observed that the GG genotype of RPA2 rs7356 in 3’UTR region was associated with increased risk of CRC compared with AG and AA genotype. Importantly, RPA2 protein was widely expressed in CRC and miRNA reduced RPA2 expression by preferentially binding to variant G allele of rs7356 polymorphism. These findings partially explained the reason why rs7356 G allele was associated with decreased CRC susceptibility.
DNA damage incision related NER polymorphisms

ERCC1

ERCC1, located at 19q13.32, contains 14 exons and the protein encoded by this gene assembles XPF to form a heterodimer. The heterodimer endonuclease promotes the 5' incision in repairing DNA lesion as well as contributes to DNA recombination repair and inter-strand crosslinks repair[82].

For *ERCC1* rs2298881 A/C polymorphism in intron 1, Yang, H. et al.[83] suggested that the CC genotype was related with increased CRC risk compared with AA genotype in Chinese. They found no significant relation of rs11615 C/T polymorphism in exon 4 with CRC susceptibility in Chinese while another team obtained different result. Te-Cheng Yueh. et al.[84] found that the TT genotype of rs11615 C/T polymorphism was associated with 1.86-fold increased CRC risk compared with CC genotype in Chinese. Significant relation between AA genotype of rs3212986 A/C polymorphism in 3'UTR region and increased CRC risk was observed compared with CC genotype[74, 85] in Chinese and Norwegian population[74, 82-84, 86].

XPF (ERCC4)

XPF, located at 16p13.12, contains 13 exons and 12 introns, spanning approximately 28.2 kb. Its encoding protein XPF forms a complex with ERCC1, which is responsible for the 5' incision of DNA damage repair[82].

For polymorphisms of *XPF* rs2276466 C/G in 3'UTR and rs6498486 A/C in promoter, Hou, R. et al.[82] explored their relationships with CRC risk in Chinese population but indicated no significant association. Another team[83] found no significant association between the rs2276466 C/G polymorphism and risk of CRC. Additionally, no significant association between rs180067 polymorphism and CRC susceptibility was observed by Joshi, A. D. et al.[62] in American. The synonymous substitution of rs1799801 at exon 13 has been investigated by Kabzinski, J. et al.[87], the result of which indicated that CT genotype correlated with decreased susceptibility of CRC compared with the CC genotype.

XPG (ERCC5)

XPG is mapped to chromosome 13q33, encoding a structure-specific endonuclease XPG which is composed of 1186 amino acids. XPG contributes to the 3' incision of DNA damage and enables DNA repair complex to stabilize to the domain of damage DNA[61].

For polymorphism of *XPG* rs17655 C/G in exon 15, Du, H. et al.[88] found that the variation from G allele to C allele was associated with increased risk of CRC in Chinese. Additionally, another team observed that CG genotype of rs17655 polymorphism was related with 1.33-fold increased CRC susceptibility in Chinese compared with GG genotype[66]. In 1901 cases and 1976 controls, rs2094258, rs751402, rs2296147, rs1047768 and rs873601 polymorphisms of *ERCC1* were studied by Rui-Xi Hua et al.[89] in relation with CRC risk and most of the results demonstrated significance. In this research, they observed that four SNPs (rs2094258C/T in promoter, rs751402C/T in 5' UTR, rs1047768 C/T in exon 2 and rs873601 in 3'UTR) were associated with increased CRC risk, three of which (rs2094258, rs751402 and rs873601) also correlated with *XPG* mRNA expression. Other three studies suggested no significant association between rs17655 C/G polymorphism and risk of CRC in Chinese[70], American[62] or Czech[25]. For *XPG* 1558His/Asp polymorphism, Kabzinski, J. et al. failed to show significant association with susceptibility of CRC in Polish[73].

MMR pathway gene polymorphisms and sporadic CRC susceptibility

DNA mismatch repair (MMR) is a highly conserved biological pathway that is involved in maintaining genomic stability[90]. MMR recognizes and corrects the biosynthetic errors aroused during DNA replication as well as the mispaired bases which is generated in DNA recombination or caused by oxidative DNA damage[91]. MMR decreases 100–1000 folds DNA errors and protects them from mutations during cellular proliferation[92]. Human MMR process is classified into four steps: (1) the mismatch recognition by MutS homologs (MSH2, MSH3 and MSH6) and recruitment of MutL homologs (MLH1, MLH3, PMS1 and PMS2); (2) strand discrimination to mark the erroneous DNA strand; (3) strand removal by unwinding and excision reactions (EXO1); (4) DNA-re-synthesis and ligation to complete the repair reaction[93].
Table 2. Significant association of NER pathway gene polymorphisms with sporadic CRC susceptibility.

Variables	Location	Author	Year	Population	Case	Control	Genotypes	OR(95%CI)	Interaction
XPC	rs2282001	Ahmad Aizat	2013	Malaysian	255	255	AC vs. AA	1.27(0.87-1.84)	N.A.
		Liu, D.	2012	Chinese	1028	1085	CC vs. AA	1.88(1.05-3.38)	N.A.
							AC vs. AA	1.40(1.16-1.69)	N.A.
							CC vs. AA	1.93(0.84-1.13)	N.A.
		Hansen, R. D.	2007	Dane	397	800	AC vs. AA	1.08(0.83-1.42)	N.A.
		Mucha, B.	2018	Polish	221	270	CC vs. AA	1.07(0.65-1.76)	N.A.
							CC vs. AA	1.82(1.08-3.06)	N.A.
rs2279017	Exon 11	Gil, J.	2012	Polish	133	100	AC vs. CC	2.07(1.44-3.87)	N.A.
rs2260000	Exon 9	Sun, K.	2015	Chinese	890	910	CT vs. TT	1.06(0.57-1.97)	N.A.
		Paszewska	2015	Polish	758	1841	CT vs. CC	2.19(1.60-3.01)	N.A.
							TT vs. CC	0.90(0.49-1.72)	N.A.
		Steck, S. E.	2014	African American	244	331	CT vs. CC	1.70(1.12-2.56)	N.A.
rs1799793	Exon 10	Paszewska	2015	Polish	758	1841	TG vs. TG	N.A.	
							TT vs. GG	N.A.	
rs13181	Exon 22	Kabzinski, J.	2015	Polish	235	240	AC vs. AA	0.60(0.35-1.02)	N.A.
		Rezaei, H.	2013	Iranian	88	88	CC vs. AA	14(6.31-31.05)	N.A.
		Procopciu	2013	Romanian	150	162	CC vs. AA	1.33(0.68-2.62)	N.A.
							CC vs. AA	1.49(0.91-2.44)	N.A.
							CC vs. AA	3.02(1.15-8.25)	N.A.
rs2298881	Exon 15	Kabzinski, J.	2015	Polish	146	149	CT vs. CC	0.57(0.34-0.98)	N.A.
rs17655	Exon 15	Liu, D.	2012	Chinese	1028	1085	CC vs. AA	1.22(0.60-2.47)	N.A.
rs2094258	Promoter	Rui-Xi Hua	2016	Chinese	190	1976	TT vs. CC	N.A.	
rs751402	5’UTR	Rui-Xi Hua	2016	Chinese	190	1976	TT vs. CC	1.75(1.01-3.00)	N.A.
rs1047768	Exon 2	Rui-Xi Hua	2016	Chinese	190	1976	TT vs. CC	N.A.	
rs853601	3’UTR	Rui-Xi Hua	2016	Chinese	190	1976	TT vs. CC	1.39(1.01-1.87)	N.A.
ERCC1	Intronic 1	Yang, H.	2015	Chinese	279	316	AC vs. AA	1.75(0.91-1.92)	N.A.
rs2298881	Intronic 1	Hou, R.	2014	Chinese	204	204	CC vs. AA	2.68(1.47-7.57)	N.A.
							AC vs. AA	1.78(0.71-1.74)	N.A.
							CC vs. AA	1.45(0.64-3.46)	N.A.
rs11615	Exon 4	Te-Cheng Y.	2017	Chinese	362	362	CT vs. CC	1.06(0.67-1.46)	N.A.
							TT vs. CC	1.86(1.02-3.37)	N.A.
rs3212986	3’UTR	Ni, M.	2014	Chinese	213	240	AC vs. CC	N.A.	
							AA vs. GG	2.50(1.01-5.70)	N.A.
							TT vs. GG	1.26(0.81-2.03)	N.A.
							AA vs. CC	1.93(0.86-3.94)	N.A.
							AA vs. CC	1.20(0.79-1.81)	N.A.
							AA vs. GG	2.53(1.14-5.60)	N.A.
							AA vs. GG	1.34(0.88-2.25)	N.A.
							AA vs. GG	1.46(1.14-2.34)	N.A.
r2336219	3’UTR	Dai, Q.	2015	Chinese	438	438	AC vs. CC	1.77(0.99-2.88)	None with smoking or drinking
							AA vs. CC	1.76(0.84-3.68)	None with smoking or drinking
RPA2	3’UTR	Naccarati	2012	Czech	1098	1469	GG vs. (AG+AA)	1.33(1.01-1.75)	N.A.
rs7556	3’UTR	Naccarati	2012	Czech	1098	1469	(CG+GG) vs. CC	0.79(0.64-0.99)	N.A.
Figure 2. NER pathway gene polymorphisms and sporadic CRC susceptibility.

MutS homologs related MMR polymorphisms

MSH2

MSH2 is located at chromosome 2p21-p16.3, consisting of 21 exons and 20 introns. *MSH2* participates in the formation of two heterodimeric complexes of MutSα and MutSβ which are involved in insertion-deletion loops in DSBR[94].

In Chinese population, Li, G. et al.[95] found that CT genotype of *MSH2* IVS15-214 polymorphism was associated with decreased risk of CRC compared with TT genotype. They observed that the AG genotype of IVS11+107 polymorphism were related with decreased CRC susceptibility compared with AA genotype. Importantly, significant gene–environment interactions were detected of both C allele of IVS15-214 polymorphism and GG genotype of IVS11+107 polymorphism with cereals intake in decreasing CRC susceptibility. In addition, TT genotype of rs1981928 polymorphism was correlated with 0.78 fold reduced CRC risk in English[96]. For rs4987188 polymorphism, several researches showed no significant association with CRC risk in American[62], Canadian[97] or Polish[98]. No significant relationship was observed of another two SNPs of -118 T/C[99] and IVS12-6 T/C[97] polymorphisms with CRC risk in Canadian population.

MSH3

MSH3, also known as DUP, FAP4 and MRPL, is located at 5q14.1 and consists of 24 exons. *MSH3* cooperates with *MSH2* to form a heterodimer MutSα which binds to a mismatch and activates the MMR pathway[93].

Only one study by Koessler, T. et al.[96] explored the association between *MSH3* rs1979005 C/T polymorphism and CRC risk and found that the TT genotype was associated with decreased risk of CRC compared with CC genotype in English. They observed that the GG genotype of rs26279 A/G polymorphism in exon 23 correlated with 1.31 folds increased risk of CRC compared with wild-type AA genotype.

MSH6

MSH6 is mapped to chromosome 2p16.3 and encodes a MutS family protein which contributes to the mismatched nucleotides recognition before repair. Together with *MSH2*, *MSH6* forms a mismatch recognition heterodimeric complex which adjusts the function of MMR by exchanging ATP and ADP when DNA mismatches are bound and divided[94].

For *MSH6* rs1042821 G/A polymorphism in exon 1, significant association was found of the AG
genotype with increased CRC risk compared with GG genotype in Polish [100] but another team failed to observed significance in mixed population[101]. However, Tulupova, E. et al. found that GA and AA genotype of the same rs1042821 polymorphism in promoter correlated with decreased CRC susceptibility compared with GG genotype in Czech population, the reason of which might be that rs1042821 played different roles in variant transcripts. They also observed that T-allele carriers of MSH6 rs3136228 polymorphism in promoter were associated with increased risk of CRC in Czechs compared with carriers of GG genotype [102]. For MSH6 -159C/T promoter polymorphism, Mrkonjic, M. et al. showed no significance in Canadians[99].

MutL homologs related MMR polymorphisms

MLH1 and PMS2

MLH1, located at 3p22.2, contains 21 exons and PMS2 is mapped to 7p22.1, consisting of 16 exons and 15 introns. MLH1 and PMS2 form a MutL-alpha heterodimer which manages the activity of endonuclease involved in mismatches recognition and loops insertion or deletion[103]. In addition, MutL-alpha heterodimer also plays a key role in mismatched DNA removal[103].

For MLH1 rs1800734 A/G polymorphism in promoter, A allele was found to significantly reduce the risk of CRC compared with G allele in Polish[98], Spanish[104] and Mexican population[51]. However, Nizam, Z. M. suggested that AG genotype was associated with 3.71 folds increased CRC risk compared with GG genotype in Malaysian[105]. Other two researches also investigated the relation of rs1800734 polymorphism with CRC risk but no significance was shown in American[101] and Canadian[97]. For MLH1 rs1799977 polymorphism in exon 8, Nejda, N. et al. observed that both AG and GG genotype were associated with increased risk of CRC compared with AA genotype in Spanish [106]. But other teams failed to find significance in Mexican[51], American[62, 101] or Canadians[97]. Only Raptis, S. et al. studied MLH1 IVS14-19A>G polymorphism but did not obtain significant result[97]. Although H.X. Peng et al. studied the relation of V384D, R217C and rs1799977 polymorphisms with CRC risk, the samples of each genotypes were insufficient to draw reliable conclusion[107]. For PMS2 rs63750451 polymorphism in exon 9, one team explored its relation with CRC risk but show no significance in Polish[100].

DNA nicking related MMR polymorphisms

EXO1

EXO1, mapped to 1q42-q43, consists of 17 exons and encodes a protein with 5’ to 3’ exonuclease activity and RNase H activity, which participates in DNA nicking of MMR. Additionally, EXO1 is the only known active nuclease in human cells MMR[93].

For EXO1 rs9350 polymorphism in exon 14, Haghighi, M. M. et al. found that CT genotype was associated with 0.17-fold decreased CRC susceptibility compared with CC genotype in Iranian [108]. Another team observed that C allele of rs9350 significantly increased the risk of CRC compared with T allele in American[109]. Importantly, they showed a significant interaction between C allele of rs9350 polymorphism and cigarette smoking in increasing CRC risk.

DSBR pathway gene polymorphisms and sporadic CRC susceptibility

DNA double-strand breaks (DSBs) are highly toxic lesions which result in genetic instability[110]. To preserve genome integrity, a number of DSBR reactions exist in organisms, of which non-homologous end-joining (NHEJ) and homologous recombination (HR) are the two most widely used systems[111]. NHEJ is regarded as an error-prone manner and utilizes limited or no homologous DNA for end joining. Bound to the damaged DNA ends to initiate NHEJ, the Ku70/80 heterodimer recruits and triggers the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) which facilitates the downstream repair processes. Then, scaffold proteins XRCC4 and XLF move to the defect domain and combine with DNA Ligase 4 for repairing the lesions[111, 112]. In contrast, HR is largely error free and requires extensive homology for the repair of DNA DSBs. After the recognition of DSBs in HR, the resection of DSBs is completed by the MRE11/RAD50/NBS1 complex which then generates a 3’ ssDNA overhang. BRCA2, RAD51 as well as RAD51 paralogous (Rad51C, Rad51D, XRCC2, XRCC3) bind to the ssDNA tails and form a presynaptic filament. Subsequently, the formation of D loop in strand invasion is initialized and DSBs were repaired by structure-specific nucleases[113].

Homologous recombination (HR)

End resection related DSBR polymorphisms

MRE11 and NBS1

MRE11 , located at chromosome 11q21, contains 22 exons and encodes a protein with 3’ to 5’ exonuclease and endonuclease activity. NBS1 is mapped to 8q21.3 and consists of 19 exons and 18 introns. Together with MRE11 and RAD50, NBS1 forms a complex involved in DNA ends resection, which generates 3’ single-stranded tails in HR[114].
Table 3. Significant association of MMR pathway gene polymorphisms with sporadic CRC susceptibility.

Variables	Location	Author	Year	Population	Case	Control	Genotypes	OR(95%CI)	Interaction
MLH1	3p22.2	Nizam	2013	Malaysian	52	104	AG vs. GG	3.71(1.42-9.74)	N.A.
		Michal Mik	2017	Polish	144	151	AA vs. GG	2.36(0.88-6.31)	
		Martinez	2013	Spanish	183	236	GG vs AA	1.09 (0.58-2.05)	
rs1799977	Exon 8	Nejda, N.	2009	Spanish	140	125	AG vs. AA	0.58(0.39-0.86)	N.A.
V384ID		H.X. Peng	2016	Chinese	156	311	AA	0.03 (0-0.24)	
							AT	28.18 (3.81-∞)	
							TT	∞ (0-∞)	
MSH2	2p21-p16.3	Li, G.	2015	Chinese	451	630	CT vs. TT	0.89(0.62-1.26)	N.A.
IVS15-214T>C		Li, G.	2015	Chinese	451	630	AG vs. AA	0.61(0.42-0.88)	N.A.
rs1981928	Intron 7	Koessler, T.	2008	English	2299	2284	AT vs. AA	1.05(0.93-1.18)	N.A.
MSH3	5q14.1	Koessler, T.	2008	English	2299	2284	TT vs. AA	0.78(0.62-0.99)	N.A.
rs26279	Intron 20	Koessler, T.	2008	English	2299	2284	AG vs. AA	1.04(0.92-1.17)	N.A.
MSH6	2p16.3	Piotr Zelga	2017	Polish	200	200	CT vs. CC	0.90(0.76-1.06)	N.A.
rs1042821	Exon 1	Piotr Zelga	2017	Polish	200	200	TT vs. CC	0.41(0.18-0.94)	N.A.
rs3136228	Promoter	Tulupova	2008	Czech	614	614	CT vs. GG	1.09(0.80-1.62)	N.A.
rs1042821	Promoter	Tulupova	2008	Czech	614	614	TT vs. CC	0.76(0.60-0.98)	N.A.
rs9350	Exon 14	Haghighi	2010	Iranian	90	98	CT vs. CC	0.17(0.03-0.82)	N.A.
Gao, Y.	2011	American	1338	1503			TT vs.CC	0.69(0.37-1.28)	

Figure 3. MMR pathway gene polymorphisms and sporadic CRC susceptibility.

http://www.jcancer.org
Naccarati, A. et al. found that CC genotype of MRE11 rs2155209 polymorphism was associated with decreased risk of CRC compared with TT genotype in Italian[115]. However, they did not find significant relation between CT genotype of NBS1 rs14448 polymorphism and CRC risk. For NBS1 rs2735383 polymorphism, Li, J. T. et al. observed that CC genotype correlated with increased CRC susceptibility compared with GG genotype in Chinese[116]. In addition, no significant association was found in NBS1 rs1805794 polymorphism in exon 5 with CRC susceptibility in Czech population[25].

Strand invasion and exchange related DSBR polymorphisms

XRCC2

XRCC2 is located at chromosome 7q36.1 and comprises three exons and two introns. XRCC2 protein improves the activity of RAD51 which is involved in strand invasion and exchange reactions in HR[117].

Li, X. B. et al. demonstrated significant association of XRCC2 rs718282 polymorphism with increased CRC risk in Chinese but no significance was found for rs3218384 polymorphism[117]. For XRCC2 rs3218499 polymorphism, Curtin, K. observed that CC genotype correlated with increased CRC risk compared with CG and GG genotypes in the mixed population of English and American[118]. Additionally, two researches failed to find significant relationship between rs3218536 polymorphism in exon 3 and CRC susceptibility in Polish [119] and American[120].

XRCC3

XRCC3, also known as CMM6, is located at chromosome 14q32.3 and contains 10 exons. XRCC3 encodes a member of Rad51-related proteins which function in the maintenance of chromosome stability and initiation of homologous sequence strand invasion[121].

Controversial results were found for the association between XRCC3 rs861539 C/T polymorphism and CRC risk. Zhao, Y. et al. observed that T allele was a risk factor for CRC in Chinese[44] but C allele indicated higher CRC risk according to Mort, R. et al.’s study in English[122]. Other two teams suggested that CT genotype was related with increased CRC risk compared with CC genotype in Kashmirian[123] and Chinese[121], respectively. However, Mucha, B. et al. suggested that CT genotype significantly decreased CRC risk in Polish[124]. Krupa, R. et al. found that CT genotype significantly decreased risk of CRC but TT genotype correlated with increased susceptibility of CRC in Polish[48]. In addition, some other researches failed to indicate significant association of rs861539 polymorphism with CRC risk in Algerian[78], Polish[119], Indian[54], Czech[25], Chinese[55], Norwegian[41] or American[47, 120]. For rs1799794 and rs1799796 polymorphisms of XRCC3, no significant relation was observed in American[120].

RAD51

RAD51, located at chromosome 15q15.1, contains 14 exons and encodes RAD51 which interacts with BRCA1 and BRCA2 in response to the DNA damage in DSBR. RAD51 also cooperates with RAD51 paralogues to handle the strand transfer of DNA in HR[112].

For RAD51 rs1801320 polymorphism, Krupa, R. et al. found that CC genotype was related with decreased CRC risk compared with GG genotype in Polish[119] but another team obtained an opposite conclusion in the same population[125]. Nissar, S. et al. suggested that CG genotype was a risk genotype of CRC in Kashmiri[126]. No significant association was found in Yadzapanah, N. et al.’s study of RAD51 rs1801320 polymorphism in Iranian[127]. One research investigated the relationship between RAD51 rs1727/G polymorphism and CRC risk in polish but no significance was found[125]. Mucha, B. et al. indicated that AG genotype of rs5030789 promoter polymorphism was associated with increased CRC susceptibility [128] but no significant association was observed for rs2619679 [128] or rs1801320 polymorphism[129].

RAD52

RAD52 is located at chromosome 12p13.33 and contains 17 exons and 16 introns. RAD52 works as a mediator alone in HR or interacts with RAD51 to participate in the strand invasion and exchange in human cells[112].

Although the relation was studied between several RAD52 SNPs and CRC risk, only Naccarati, A. et al. found that AA genotype of RAD52 rs1051669 polymorphism significantly increased CRC risk compared with GG genotype in Italian [130]. For rs11571378, rs7963551, rs6489769 and rs10774474 polymorphisms, no significance was found in relation with CRC susceptibility[130, 131].

Non-homologous end-joining (NHEJ)

End ligation related DSBR polymorphisms

XRCC4

XRCC4, also known as SSMED, is mapped to chromosome 5q14.2 and consists of 13 exons and 12 introns. Together with XLF, scaffold protein XRCC4 binds DNA ligase IV in order to seal the breaks in NHEJ[112]. Emami, N. studied the relationship of XRCC4 rs8669366 and rs28360071 polymorphisms with CRC risk in Iranian population but demonstrated no significance[132].
Figure 4. DSBR pathway gene polymorphisms and sporadic CRC susceptibility.

Table 4. Significant association of DSBR pathway gene polymorphisms with sporadic CRC susceptibility.

Variables	Location	Author	Year	Population	Case	Control	Genotypes	OR(95%CI)	Interaction
XRCC2	7q36.1	Li, X. B.	2014	Chinese	246	262	(CT+TT) vs. CC	1.65(1.13-2.40)	N.A.
		Curtin, K.	2009	U.K./U.S.	1252	1422	CC vs. (CG+GG)	1.6(1.1-2.2)	N.A.
XRCC3	14q32.3	Nissar, S.	2014	Kashmirian	120	150	CT vs. CC	2.53(1.37-4.66)	N.A.
		Zhao, Y.	2012	Chinese	485	970	CT vs. CC	2.98(0.96-5.40)	N.A.
		Jin, M. J.	2005	Chinese	140	280	CT vs. CC	0.57(0.37-0.87)	N.A.
		Mort, R.	2003	English	246	256	TT vs. CC	0.82(0.44-1.55)	N.A.
		Romanowicz	2012	Polish	320	320	CC vs. (CG+GG)	3.84(3.84-7.20)	N.A.
RAD51	15q15.1	Nissar, S.	2014	Kashmiri	100	120	CC vs. (GG)	1.82(0.85-3.38)	N.A.
	5' UTR	Naccarati, A.	2016	Italian	1111	1469	CC vs. (GG)	3.0(1.6-5.3)	
NBS1	8q21.3	Li, J. T.	2015	Chinese	1076	1263	CC vs. GG	1.13(0.97-1.41)	N.A.
	3' UTR	Naccarati, A.	2016	Italian	1111	1469	CC vs. (GG)	1.68(1.31-2.13)	N.A.
		Krupa, R.	2011	Polish	100	100	CC vs. GG	1.55(1.27-1.94)	N.A.
		Mucha, B.	2015	Polish	115	118	CC vs. GG	0.78(0.51-1.19)	N.A.
		Romanowicz	2012	Polish	320	320	CC vs. GG	3.8(3.76-9.09)	N.A.
		Krupa, R.	2011	Polish	100	100	CC vs. GG	0.60(0.38-0.96)	N.A.
		Mucha, B.	2015	Polish	115	118	AG vs. GG	0.60(0.33-1.12)	N.A.
RAD52	12p13.33	Naccarati, A.	2016	Italian	1111	1469	GA vs. GG	1.21(0.47-3.12)	N.A.
		Mucha, B.	2015	Polish	115	118	AA vs. GG	1.19(0.86-1.37)	
As essential members of DSBR pathway, demonstrated significant associations with CRC risk. Polymorphisms showed involvement in the prevention as well as their underlying mechanisms of DNA repair pathways might be applied in clinical surveillance, prevention and treatment strategies of sporadic CRC. In addition, polymorphisms in BER, NER, MMR and DSBR pathway core genes with sporadic CRC risk suggested an extensive implication of genetic polymorphisms of DNA repair pathways in colorectal carcinogenesis. The promising values of these polymorphisms in CRC prediction and prevention as well as their underlying mechanisms are of great importance. In this review, we summarized the genetic architecture of colorectal carcinogenesis as well as discussed the future directions of how genetic insights improve clinical surveillance, prevention and treatment strategies of sporadic CRC.

Previously, polymorphisms of BER core genes including XRCC1, OGG1, APE1, PARP1, MUTYH and POLB have been linked to altered CRC risk by multiple studies. Important genes involved in NER pathway of XPC, XPD, XPF, XPG and ERCC1 all possess certain polymorphisms which significantly influence CRC susceptibility. For MMR system, key genes of MLH1, MSH2, MSH3, MSH6 and EXO1 demonstrated significant associations with CRC risk. As essential members of DSBR pathway, XRCC2, XRCC3, NBS1, RAD51, RAD52 and MRE11A polymorphisms showed involvement in the determination of CRC susceptibility. The observed significant associations of polymorphisms in BER, NER, MMR and DSBR pathway core genes with sporadic CRC risk suggested an extensive implication of genetic polymorphisms of DNA repair pathways in colorectal carcinogenesis. The promising values of these polymorphisms in CRC prediction and prevention as well as their underlying mechanisms are of great importance. In addition, polymorphisms of DNA repair pathways might be applied in clinical outcomes to guide management of CRC patients. For example, ERCC1 and XRCC1 polymorphisms may influence the clinical outcome of colorectal cancer patients treated with mFOLFOX6 adjuvant chemotherapy[133]. Genetic polymorphisms of MLH3 rs175057 as well as MSH2 rs3771273, rs10188090 and rs10191478 may predict prognosis in patients with locally advanced rectal cancer who received preoperative chemoradiotherapy [134]. XRCC3 Thr241Met polymorphism was associated with time-to-metastasis of CRC[135]. The specific role of the summarized polymorphisms of our review in clinical application and underlying mechanisms required further studies to elucidate.

Summary and Future Directions

Genetic polymorphisms in DNA repair genes may modulate DNA repair efficiency thereby influencing the development of sporadic CRC. In recent years, substantial progress has been made towards uncovering the genetic architecture of CRC, which offer great opportunity to benefit the understanding of sporadic CRC development. In this review, we summarized the genetic architecture of DNA repair genes involved in sporadic colorectal carcinogenesis as well as discussed the future directions of how genetic insights improve clinical surveillance, prevention and treatment strategies of sporadic CRC.

Competing Interests

The authors have declared that no competing interest exists.

References

1. Roos WP, Thomas AD, Kaina B: DNA damage and the balance between survival and death in cancer biology. Nature reviews Cancer 2016, 16(1):20-33.
2. Decordier I, Lock K V, Kirsch-Volders M: Phenotyping for DNA repair capacity. Mutat Res 2010, 705(2):107-129.
3. Siegel RL, Miller KD, Jemal A: Cancer statistics, 2015. CA: a cancer journal for clinicians 2015, 65(1):5-29.
4. Schreuders EH, Ruco A, Rabeneck L, Schoen RE, Sung JI, Young GP, Kuipers EJ: Colorectal cancer screening: a global overview of existing programmes. Gut 2015, 64(10):1637-1649.
5. Wallace SS: Base excision repair: a critical player in many games. DNA Repair (Amst) 2014, 19:14-26.
6. Dianov GL, Hubscher U: Mammalian base excision repair genes: Breast cancer risk and individual radiosensitivity. World journal of clinical oncology 2014, 5(5):874-882.
7. Dianov GL, Hubscher U: Mammalian base excision repair: the forgotten capacity. Mutat Res 2016, 758:61-81.
8. Patrono C, Sterpone S, Testa A, Cozzi R: Polymorphisms in base excision repair genes: Breast cancer risk and individual radiosensitivity. Nature reviews Cancer 2010, 705(2):107-129.
9. Krokan HE, Bjoras M: Base Excision Repair. Mol Aspects Med 2015, 64(10):1637-1649.
10. Sharma RA, Dianov GL: Targeting base excision repair to improve cancer therapies. Mol Aspects Med 2007, 28(3-4):345-374.
11. Liu Y, Wilson SH: DNA base excision repair: a mechanism of trinucleotide repeat expansion. Trends in biochemical sciences 2012, 37(4):162-172.
12. Canbay E, Cakmakoglu B, Zeybek U, Sozen S, Cacina C, Guilloguig M, Balik E, Bulut T, Yamaner S, Bugra D: Association of APE1 and hOGG1 polymorphisms with colorectal cancer risk in a Turkish population. Curr Med Res Opin 2011, 27(7):1295-1302.
13. Moreno V, Gemignani F, Landi S, Gioia-Patricola L, Chabrier A, Blanco I, Gonzalez S, Guine E, Capella G, Canzian F: Polymorphisms in genes of nucleotides and base excision repair: risk and prognosis of colorectal cancer. Clin Cancer Res 2006, 12(7 Pt 1):2101-2108.
14. Pyrzylowska K, Kaczynski I, Szygut A, Dziki I, Dziki A, Majsterek I: An association selected polymorphisms of XRCC1, OGG1 and MUTYH gene and the level of efficiency oxidative DNA damage repair with a risk of colorectal cancer. Mutat Res, 2013, 745-746:6-15.
15. Zhang SH, Wang LA, Li Z, Peng Y, Cun YP, Dai N, Cheng Y, Xiao H, Xiong YL, Wang D: APE1 polymorphisms are associated with colorectal cancer susceptibility in Chinese Hans. World J Gastroenterol 2014, 20(26):8700-8708.
16. Sameer AS, Nissar S, Abdullah S, Chowdri NA, Siddiqi MA: DNA repair gene -8-oxoguanine DNA glycosylase Ser236Cys polymorphism and colorectal cancer risk in a Kashmiri population. DNA Cell Biol 2012, 31(4):541-546.
17. Engin AB, Karahall B, Engin A, Karakaya AE: Oxidative stress, Helicobacter pylori, and OGG1 Ser236Cys, XPC Lys939Gln, and XPD Lys751Gln

http://www.jcancer.org
polymorphisms in a Turkish population with colorectal carcinoma. *Genet Test Mol Biomarkers* 2010, 14(4):599-604.

18. Curtin K, Samowitz WS, Wolf RT, Ulrich CM, Caan BJ, Potter JD, Slattery ML: Relationships between smoking and colorectal cancer. *Int J Cancer* 2004, 111(1):64-71.

19. Skjelbred CF, Saebo M, Wallin H, Nexo B, Hagen PC, Lothe IM et al: Association of XRCC1 and XPC polymorphisms with colorectal cancer risk. *Eur J Cancer* 2010, 46:1285-1291.

20. Nyström S, Sameer AS, Rasool R, Chowdri NA, Rashid F: Polymorphism of the XRCC1 gene and colorectal cancer risk. *Cancer Res Clin Oncol* 2015, 14(1):25-32.

21. Ahamed RA, Rahman SZ, Soliman RK, Bondy ML, Omar S, El-Badawy SA, Khaleed M, Seifeldin L, Levin B: Inheritance of the 194Trp and 395Gln variant alleles of the DNA repair gene XRCC1 are associated with increased risk of early-onset colorectal cancer in Egypt. *Cancer Lett* 2000, 159(1):79-86.

22. Zhou Y, Dang X, Wang Z, Wang Q, Liu Y: Genetic polymorphisms of DNA repair genes and colorectal cancer risk and risk of colorectal cancer in China. *Asian Pac J Cancer Prev* 2012, 13(11):665-669.

23. Procopciuc LM, Osian G: Lys751Gln XPD and Arg399Gln XRCC1 in Romanian association with sporadic colorectal cancer risk and different stages of carcinomas. *Chirurgia (Bucur)* 2013, 108(7):711-718.

24. Pomposkhawoen K, Pranom T, Suwanungruang K, Choipitit P, Songserm N, Wisangson S: XRCC1 gene polymorphism, diet and risk of colorectal cancer in Thailand. *Asian Pac J Cancer Prev* 2014, 15(7):7479-7482.

25. Stern MC, Siegfried KD, R. Haile R: XRCC1 and XPC polymorphisms and their role as effect modifiers of unsaturated fatty acids and antioxidant intake on colorectal risk and risk of colorectal cancer: a case-control study in Jiangsu Province of China. *Asian Pac J Cancer Prev* 2014, 14(11):6613-6618.

26. Khan NP, Pandith AA, Yousaf A, Khan NS, Khan MS, Bhat IA, Nazir ZW, Wani KA, Hussain MU, Maqsood S: The XRCC1 Arg194Trp marker is associated with increased risk of colorectal cancer: a study in Kashmir. *Asian Pac J Cancer Prev* 2013, 14(7):6799-6872.

27. Sliwinski T, Krupa R, Wisniewska-Jarosinska M, Lech J, Morawiec Z, et al: Polymorphisms in genes of APE1, PARP1, and XRCC1: risk and prognosis of colorectal cancer in Romanians. *Cancer Epidemiol Biomarkers Prev* 2010, 19(6):1512-1519.

28. Curtin K, Samowitz WS, Wolff RK, Ulrich CM, Caan BJ, Potter JD, Slattery ML: Effect of APE1 T2197G (Asp148Glu) polymorphism on APE1, XRCC1, and XPD genes and risk of colorectal adenoma and carcinoma, in a Norwegian cohort. *Exp Ther Med* 2016, 6:667-671.

29. Ahamed RA, Rahman SZ, Soliman RK, Bondy ML, Omar S, El-Badawy SA, Khaleed M, Seifeldin L, Levin B: Inheritance of the 194Trp and 395Gln variant alleles of the DNA repair gene XRCC1 are associated with increased risk of early-onset colorectal cancer in Egypt. *Cancer Lett* 2000, 159(1):79-86.

30. Zhou Y, Dang X, Wang Z, Wang Q, Liu Y: Genetic polymorphisms of DNA repair genes and colorectal cancer risk and risk of colorectal cancer in China. *Asian Pac J Cancer Prev* 2012, 13(11):665-669.

31. Santos JC, Funck A, Silva-Fernandes IJ, Rabenhorst SH, Martinez CA, Ribeiro MMR et al: Polymorphisms in the nucleotide excision repair and mismatch repair genes XPC, XRCC1, and XRCC3 and risk of colorectal cancer. *Przegl Chir* 2011, 83(1):25-30.

32. Hans森 RSA, Biddulph T, Skinner F, et al: Low-penetration alleles predisposing to sporadic colorectal cancers: A French case-controlled genetic association study. *BMC Cancer* 2008, 8:326.

33. Stern MC, Conti DV, Siegfried KD, Corral R, Yuan JM, Koh WP, Yu MC: DNA repair single-nucleotide polymorphisms in colorectal cancer and their role as modifiers of the effect of cigarette smoking and alcohol in the Singapore Chinese Health Study. *Cancer Epidemiol Biomarkers Prev* 2007, 16(11):2363-2372.

34. Sliwinski T, Krupa R, Wisniewska-Jarosinska M, Lech J, Morawiec Z, et al: Polymorphisms in genes of APE1, PARP1, and XRCC1: risk and prognosis of colorectal cancer in Romanians. *Cancer Epidemiol Biomarkers Prev* 2010, 19(6):1512-1519.

35. Kaufman BA, Van Houten B: POLB: A new role of DNA polymerase beta in colorectal cancer risk among Saudi cohort. *Appl Genet* 2020, 65(4):383-391.

36. Dehe PM, Gaillard PH: Control of structure-specific endonucleases to DNA Repair (Amst) 2017, 20(1):553-564.

37. Berndt SI, Huang WY, Fallin MD, Helzlsouer KJ, Platz EA, Weissfeld JL, et al: Polymorphisms in the nucleotide excision repair and mismatch repair genes XPC, XRCC1, and XRCC3: role of unsaturated fatty acids and antioxidant intake on colorectal risk and risk of colorectal cancer in China. *Asian Pac J Cancer Prev* 2012, 13(11):665-669.
65. Ahmad Aizat AA, Siti Nurfatimah MS, Aminudin MM, Ankathil R: XPC Lys939Gln polymorphism, smoking and risk of sporadic colorectal cancer among Malaysians. *World J Gastroenterol* 2013, 19(23):3623-3628.

66. Liu D, Wu HJ, Yang CY, Xu J, Song G, Yue WW, Zhan J, Yang Y, Li J, Jian M, Yu J, Zhi J, Zhao L et al: DNA repair genes XPC, XPF: polymorphisms: relation to the risk of colorectal carcinoma and therapeutic outcome with Oxaliplatin-based adjuvant chemotherapy. *Mol Carcinog* 2012, 51 Suppl 1:E63-93.

67. Hsiao CL, Yen ST, Wu CY, Su M, Wang YL, Yu H, Lin CH, Liu Y, Lin W, Chang M, Hsiao J, Chang YF, Chang PE, Ho J, Hsiai WH: Association of XPC Gene Polymorphisms with Colorectal Cancer Risk in a Southern Chinese Population: A Case-Control Study and Meta-Analysis. *Genes* 2016, 7(10):73.

68. Martinez-Uruena N, Macias L, Perez-Cabornero L, Infante M, Lastra E, Cruz J, Jia WH: Association of XPC Gene Polymorphisms with Colorectal Cancer Risk in a Chinese population. *Mol Carcinog* 2015, 54(11):413-423.

69. Ni M, Zhang WZ, Qiu JR, Liu F, Li M, Zhang YJ, Liu Q, Bai J: Association of ERCC1 and ERCC2 polymorphisms with colorectal cancer risk in a Chinese population. *Cancer Biomarkers* 2015, 14(3):107-111.

70. Paszkowska-Szczur K, Scott RJ, Gorski B, Cybulski C, Kurzawski G, Dymerska M, Leszczynski P, Grzebieniak Z, Sasiadek MM: The C/A polymorphism in intron 11 of the XPC gene plays a crucial role in the modulation of an individual’s susceptibility to sporadic colorectal cancer. *Mol Biol Rep* 2012, 39(1):18-24.

71. Sun K, Gong A, Liang P: Predictive impact of genetic polymorphisms in DNA repair genes on susceptibility and therapeutic outcomes to colorectal cancer patients. *Tumour Biol* 2015, 36(3):1549-1559.

72. Pazoukiova-Scezur K, Scott RJ, Gorski B, Czybulski C, Kurzawski G, Dyemera D, Kopecky S, van Wetering T, Maas M, Bashaw A et al: Polymorphisms in nucleotide excision repair genes and susceptibility to colorectal cancer in the Polish population. *Mol Biol Rep* 2015, 42(3):755-764.

73. Steck SE, Butler LM, Koku T, Antwi N, Galango J, Sander SS, Hu JF: Nucleotide excision repair polymorphisms, meat intake and colon cancer risk. *Mutat Res* 2014, 76(2):24-31.

74. Kabzinski J, Przybylowska K, Drzik I, Majsterek I: Association of selected ERCC2 and ERCC3 genes polymorphisms, the level of oxidative DNA damage and its repair efficiency with a risk of colorectal cancer in Polish population. *Cancer Biomarkers* 2015, 14(3):413-423.

75. Ni M, Zhang WZ, Qiu JR, Liu F, Li M, Zhang YJ, Liu Q, Bai J: Association of ERCC1 and ERCC2 polymorphisms with colorectal cancer risk in a Chinese population. *Cancer Biomarkers* 2015, 14(3):107-111.

76. Chang WS, Yeh TC, Tsai CW, Ji HH, Wu CN, Wang SC, Lai YL, Hsu HS, Hsieh MH, Hsiao CL, et al: Contribution of DNA Repair Xeroderma Pigmentosum Group D Genotypes to Colorectal Cancer Risk in Taiwan. *Asian Cancer Research* 2016, 4(4):1657-1663.

77. Rezai H, Motovoli-Bashi M, Khodadad K, Elahi A, Emami H, Naddaffnia H: Population association of MLH3 and ERCC1 polymorphisms with colorectal cancer risk in a non-familial colon cancer - a case-control study. *Genet Test Mol Biomarkers* 2016, 20(10):1036-1045.

78. Tchirkov A, Vodickova L, Novotny J, Halamkova J: Polymorphism of MSH2 Gly322Asp and MLH1 -93G>A in non-familial colon cancer - a case-control study. *Cancer Genet* 2015, 2010(12):967-970.

79. Kim D, Kim K, Kim K, Cho M, Jeong J, Kim J, Chang JH: Exonuclease 1- dependent and independent mismatch repair. *Mol Biol Rep* 2015, 42(3):755-764.

80. Mrkonjic M, Raptis S, Green RC, Pethe VV, Monga N, Chan YM, Daftary D, Dickies E, Youngshub HB, Parfrey PS, Gallinagh JS, McLaughlin JR et al: MSH2 1187C>T and MSH6 1950G>T polymorphisms and the risk of colorectal cancer. *Carcinogenesis* 2007, 28(12):2577-2580.

81. Chapman JR, Taylor MR, Boulton SJ: Playing the end game: DNA double-strand break repair pathway choice. *Mol Biol Rep* 2015, 22(1):17-29.

82. Goessler T, Oestergaard MZ, Song H, Tjerik, Perin D, Bunning AM, Easton DF, Pharaoh PDS: Common variants in mismatch repair genes and risk of colorectal cancer. *Cancer Dis* 2018, 4(5):1097-1109.

83. Raptis S, Morkonic M, Green RC, McLaughlin JS, Monga N, Daftary D, Dickies E, Youngshub HB, Parfrey PS, Gallinagh JS, McLaughlin JR et al: MSH2 1187C>T and MSH6 1950G>T polymorphisms and the risk of microsatellite-unstable colorectal cancer. *J Natl Cancer Inst* 2015, 107(16):1119-1127.

84. Nizam ZM, Abdul Aziz AA, Kaur G, Abu Hassan MR, Mohd Sidek AS, Yeh LY, Mazuwin M, Ankathil R: Contribution of the MLH1 -93G>A promoter polymorphism in modular susceptibility risk in Malaysian colorectal cancer patients. *Asian Pac J Cancer Prev* 2013, 14(9):619-624.

85. Nejda N, Igdias D, Moreno Acosta M, Medina Arana V, Gonzalez-Aguilera JJ, Fernandez-Peralta AM: A MHL1 polymorphism that increases cancer risk is associated with better outcome in sporadic colorectal cancer. *Cancer Genet* 2009, 193(2):71-77.

86. de Barros AC, Takeda AA, Dreyer TR, Velazquez-Campoy A, Kobe B, Fontes MRM: DNA mismatch repair proteins MLH1 and PMS2 are imported to the nucleus by a nuclear complex import pathway. *Biotechnology* 2018, 14(6):96-97.

87. Martinez-Uruena N, Macias L, Perez-Cabornero L, Infante M, Lastra E, Cruz JJ: NLRP3, NOD2, and MUC14 Regulate Mismatch Repair Protein Stability in Human Colon Tissues. *Cancer Sci* 2020, 111(5):1123-1132.

88. Martinez-Uruena N, Macias L, Perez-Cabornero L, Infante M, Lastra E, Cruz JJ, Minn C, Gonzalez R, Duran M: Incidence of -93 MLH1 polymorphism in familial and sporadic colorectal cancer. *Colorectal Dis* 2013, 15(3):e118-123.

89. Nizam ZM, Abdul Aziz AA, Kaur G, Hussain MR, Mohd Sidek AS, Yeh LY, Mazuwin M, Ankathil R: Contribution of the MLH1 -93G>A promoter polymorphism in modulating susceptibility risk in Malaysian colorectal cancer patients. *Asian Pac J Cancer Prev* 2013, 14(12):619-624.

90. Nejda N, Igdias D, Moreno Acosta M, Medina Arana V, Gonzalez-Aguilera JJ, Fernandez-Peralta AM: A MHL1 polymorphism that increases cancer risk is associated with better outcome in sporadic colorectal cancer. *Cancer Genet* 2009, 193(2):71-77.

91. Le Greni T, Ragu S, Guirouillou-Barbat I, Lopez B: Role of the double-strand break repair pathway in the maintenance of genomic stability. *Molecular & cellular oncology* 2015, 2(1):968023.

92. Goay A, Hayes RB, Huang WC, Caporaso NE, Burdette L, Yeager M, Chanock SJ, Berndt SN: DNA repair gene polymorphisms and tobacco smoking in the risk for colorectal cancer. *Carcinogenesis* 2011, 32(6):882-887.

93. De Barros AC, Takeda AA, Dreyer TR, Velazquez-Campoy A, Kobe B, Fontes MRM: DNA mismatch repair proteins MLH1 and PMS2 are imported to the nucleus by a nuclear complex import pathway. *Biotechnology* 2018, 14(6):96-97.
replication and repair. *Progress in Biophysics and Molecular Biology* 2015, 117(2-3):182-193.

115. Naccarati A, Rosa F, Vymetalkova V, Barone E, Jiraskova K, Di Gaetano C, Novotny J, Levy M, Vodickova L, Geminignani F et al: Double-strand break repair and colorectal cancer: gene variants within 3’ UTRs and microRNAs binding as modulators of cancer risk and clinical outcome. *OncoTARGET* 2016, 7(17):23156-23169.

116. Li JT, Zhong BY, Xu HH, Qiao SY, Wang G, Huang J, Fan HZ, Zhao HC: Associations between NBS1 Polymorphisms and Colorectal Cancer in Chinese Population. *PLoS ONE* 2015, 10(7):e0132332.

117. Li XB, Luo H, Huang J, Zhang JD, Yang ZX, Sun XW: XRCC2 gene polymorphisms and its protein are associated with colorectal cancer susceptibility in Chinese Han population. *Med Oncol* 2014, 31(11):245.

118. Curtin K, Lin WY, George R, Katory M, Shorto J, Cannon-Albright LA, Smith G, Bishop DT, Cox A, Camp NJ: Genetic variants in XRCC2: new insights into colorectal cancer tumorigenesis. *Cancer Epidemiol Biomarkers Prev* 2009, 18(9):2476-2484.

119. Krupa R, Slivinska, Wisniewska-Jarosinska M, Chojnacki J, Wasylecka M, Dziki L: Polymorphism within the distal RAD51 gene promoter is associated with risk of colorectal cancer in a Polish population. *Pol J Pathol* 2012, 63(3):193–198.

120. Mort R, Mo L, McEwan C, Melton DW: Lack of involvement of nucleotide excision repair gene polymorphisms in colorectal cancer. *Br J Cancer* 2003, 89(2):333-337.

121. Nissar S, Sameer AS, Lone TA, Chowdri NA, Rasool R: XRCC3 Thr241Met polymorphism and risk of colorectal adenoma. *Asian Pac J Cancer Prev* 2014, 15(22):9621-9625.

122. Mucha B, Przybylowska-Sygut K, Dziki AJ, Dziki L, Sygut A, Majsterek I: Lack of association between NBS1 Polymorphisms and Colorectal Cancer in Polish population. *Pol J Pathol* 2015, 64(3):185-190.

123. Romanowicz-Makowska H, Samulak D, Michalska M, Sporny S, Langner E, Dziki A, Szychowski R, Smolarz B: RAD51 gene polymorphisms and sporadic colorectal cancer risk in Poland. *Pol J Pathol* 2012, 63(3):193–198.

124. Nissar S, Baha SM, Akhtar T, Rasool R, Shah ZA, Sameer AS: RAD51 G135C gene polymorphism and risk of colorectal cancer in Karachi. *Eur J Cancer Prev* 2014, 23(4):264-268.

125. Tazzalanparati N, Salehi R, Kamali S: RAD51 135G>C polymorphism and risk of sporadic colorectal cancer in Iranian population. *Journal of cancer research and therapeutics* 2018, 14(3):614-618.

126. Mucha B, Kabzinski J, Dziki A, Przybylowska-Sygut K, Sygut A, Majsterek I: Lack of association between NBS1 Polymorphisms and Colorectal Cancer. *J Exp Clin Cancer Res* 2015, 34(1):116.

127. Nissar S, Sameer AS, Lone TA, Chowdri NA, Rasool R: XRCC3 Thr241Met polymorphism and risk of colorectal cancer in Kashmir: a case control study. *Asian Pac J Cancer Prev* 2014, 15(22):9621-9625.

128. Mucha B, Przybylowska-Sygut K, Dziki AJ, Dziki L, Sygut A, Majsterek I: Lack of association between the 135G/C RAD51 gene polymorphism and the risk of colorectal cancer in a Polish population. *Pol J Pathol* 2013, 64(3):185-190.

129. Mucha B, Przybylowska-Sygut K, Dziki AJ, Dziki L, Sygut A, Majsterek I: Lack of association between the 135G/C RAD51 gene polymorphism and the risk of colorectal cancer among Polish women. *Pol J Pathol* 2012, 63(3):185-190.

130. Mucha B, Przybylowska-Sygut K, Dziki AJ, Dziki L, Sygut A, Majsterek I: Lack of association between the 135G/C RAD51 gene polymorphism and the risk of colorectal cancer. *Pol J Pathol* 2013, 64(3):185-190.

131. Nissar S, Baha SM, Akhtar T, Rasool R, Shah ZA, Sameer AS: RAD51 G135C gene polymorphism and risk of colorectal cancer in Kashmir. *Eur J Cancer Prev* 2014, 23(4):264-268.

132. Yazzalanparati N, Salehi R, Kamali S: RAD51 135G>C polymorphism and risk of sporadic colorectal cancer in Iranian population. *Journal of cancer research and therapeutics* 2018, 14(3):614-618.

133. Mucha B, Kabzinski J, Dziki A, Przybylowska-Sygut K, Sygut A, Majsterek I: Polymorphism within the distal RAD51 gene promoter is associated with colorectal cancer in a Polish population. *Int J Clin Exp Pathol* 2015, 8(9):11601-11607.

134. Yang J, Wang X, Zou SM, Li HM, Xiao Q, Feng YR, Huang Y, Feng T, Chen JN, Lin DX et al: Genetic variations in MLH3 and MSH2 genes are associated with the sensitivity and prognosis in locally advanced rectal cancer patients receiving preoperative chemoradiotherapy. *Zhonghua Zhong Liu Za Zhi* 2018, 40(6):433-440.

135. He Y, Penney ME, Negandhi AA, Parfrey PS, Savas S, Yilmaz YE: XRCC3 Thr241Met and TYMS variable number tandem repeat polymorphisms are associated with time-to-metastasis in colorectal cancer. *PLoS One* 2018, 13(2):e0192316.