Travelling on Graphs with Small Highway Dimension

Yann Disser1,*, Andreas Emil Feldmann2,†, Max Klimm3,‡, and Jochen Könemann4,§

1 TU Darmstadt, Germany, disser@mathematik.tu-darmstadt.de
2 Charles University in Prague, Czechia, feldmann.a.e@gmail.com
3 Humboldt-Universität zu Berlin, Germany, max.klimm@hu-berlin.de
4 University of Waterloo, Canada, jochen@uwaterloo.ca

Abstract We study the Travelling Salesperson (TSP) and the Steiner Tree problem (STP) in graphs of low highway dimension. This graph parameter was introduced by Abraham et al. [SODA 2010] as a model for transportation networks, on which TSP and STP naturally occur for various applications in logistics. It was previously shown [Feldmann et al. ICALP 2015] that these problems admit a quasi-polynomial time approximation scheme (QPTAS) on graphs of constant highway dimension. We demonstrate that a significant improvement is possible in the special case when the highway dimension is 1, for which we present a fully-polynomial time approximation scheme (FPTAS). We also prove that STP is weakly NP-hard for these restricted graphs. For TSP we show NP-hardness for graphs of highway dimension 6, which answers an open problem posed in [Feldmann et al. ICALP 2015].

1 Introduction

Two fundamental optimization problems already included in Karp’s initial list of 21 NP-complete problems [31] are the Travelling Salesperson problem (TSP) and the Steiner Tree problem (STP). Given an undirected graph $G = (V, E)$ with non-negative edge weights, the TSP asks to find the shortest closed walk in G visiting all nodes of V. Besides its fundamental role in computational complexity and combinatorial optimization, this problem has a variety of applications ranging from circuit manufacturing [29, 36] and scientific imaging [14] to vehicle routing problems [35] in transportation networks. For the STP, a subset $R \subseteq V$ of nodes is marked as terminals. The task is to find a weight-minimal connected subgraph of G containing the terminals. This problem has plenty of fundamental applications in network design, and is used in the design of telecommunication networks [37], computer vision [19], circuit design [30], and computation biology [21, 38]. It also lies at the heart of line planning in public transportation [16].

Both TSP and STP are APX-hard in general [6, 13, 20, 32, 34, 40] implying that, unless $P = NP$, none of these problems admits a polynomial-time approximation scheme (PTAS), i.e., an algorithm that computes a $(1 + \varepsilon)$-approximation in polynomial time for any given constant $\varepsilon > 0$. On the other hand, for restricted inputs PTASs do exist, e.g., for planar graphs [5, 17, 28, 33], Euclidean and Manhattan metrics [7, 39], and more generally low doubling metrics [8].

We study another class of graphs captured by the notion of highway dimension, which was proposed by Abraham et al. [3]. This graph parameter models transportation networks and is thus of particular importance in terms of applications for both TSP and STP. On a high level, the highway dimension is based on the empirical observation of Bast et al. [9, 10] that travelling from a point in a network to a sufficiently distant point on a shortest path always passes through a sparse set of “hubs”. The following formal definition is taken from [24] and is equivalent to the one used in [3] by Abraham et al. Here the ball $B_v(d)$ of radius d around a vertex v contains all vertices with distance at most d from v.

*Supported by the ‘Excellence Initiative’ of the German Federal and State Governments and the Graduate School CE at TU Darmstadt.
†Supported by the Czech Science Foundation GACR (grant #17-10090Y), and by the Center for Foundations of Modern Computer Science (Charles Univ. project UNCE/SCI/004).
‡Supported by the German Research Foundation (DFG) as part of Math$^+$ (project AA3-4).
§Supported by the Discovery Grant Program of the Natural Sciences and Engineering Research Council of Canada.
Definition 1 For a scale \(r \in \mathbb{R}_{>0} \), let \(\mathcal{P}_{(r,2r)} \) denote the set of all vertex sets of shortest paths with length in \((r,2r]\). A shortest path cover for scale \(r \) is a hitting set for \(\mathcal{P}_{(r,2r]} \), i.e., a set \(\text{SPC}(r) \subseteq V \) such that \(|\text{SPC}(r) \cap P| \neq 0 \) for all \(P \in \mathcal{P}_{(r,2r]} \). The vertices of \(\text{SPC}(r) \) are the hubs for scale \(r \). A shortest path cover \(\text{SPC}(r) \) is locally \(h \)-sparse, if \(|\text{SPC}(r) \cap B_{2r}(v)| \leq h \) for all vertices \(v \in V \). The highway dimension of \(G \) is the smallest integer \(h \) such that there is a locally \(h \)-sparse shortest path cover \(\text{SPC}(r) \) for every scale \(r \in \mathbb{R}_{>0} \) in \(G \).

The algorithmic consequences of this graph parameter were originally studied in the context of road networks [1, 2, 3], which are conjectured to have fairly small highway dimension. Road networks are generally non-planar due to overpasses and tunnels, and are also not Euclidean due to different driving or transmission speeds. This is even more pronounced in public transportation networks, where large stations have many incoming connections and plenty of crossing links, making Euclidean (or more generally low doubling) and planar metrics unsuitable as models. Here the highway dimension is better suited, since longer connections are serviced by larger and sparser stations (such as train stations and airports) that can act as hubs.

The main question posed in this paper is whether the structure of graphs with low highway dimension admits PTASs for problems such as TSP and STP, similar to Euclidean or planar instances. It was shown that quasi-polynomial time approximation schemes (QPTASs) exist for these problems [23], i.e., \((1+\varepsilon)\)-approximation algorithms with runtime \(2^{\text{polylog}(n)} \) assuming that \(\varepsilon \) and the highway dimension of the input graph are constants. However it was left open whether this can be improved to polynomial time.

1.1 Our results

Our main result concerns graphs of the smallest possible highway dimension, and shows that for these fully polynomial time approximation schemes (FPTASs) exist, i.e., a \((1+\varepsilon)\)-approximation can be computed in time polynomial in both the input size and \(1/\varepsilon \). Thus at least for this restricted case we obtain a significant improvement over the previously known QPTAS [23].

Theorem 2 Both Travelling Salesperson and Steiner Tree admit an FPTAS on graphs with highway dimension 1.

From an application point-of-view, so-called hub-and-spoke networks that can typically be seen in air traffic networks can be argued to have very small highway dimension close to 1: their star-like structure implies that hubs are needed at the center of stars only, where all shortest paths converge. From a more theoretical viewpoint however, one may ask if graphs of highway dimension 1 are already so restricted that computing optimum solutions to TSP and STP is trivial. We show that surprisingly this is not the case for STP as this problem is still NP-hard for such graphs. Interestingly, together with Theorem 2 this implies that STP is weakly NP-hard on graphs of highway dimension 1. This is in contrast to planar graphs or Euclidean metrics, for which the problem is strongly NP-hard.

Theorem 3 The Steiner Tree problem is NP-hard on graphs with highway dimension 1.

It was in fact left as an open problem in [23] to determine the hardness of STP and also TSP on graphs of constant highway dimension. Theorem 3 settles this question for STP. We also answer the question for TSP, but in this case we are not able to bring down the highway dimension to 1 so that the following theorem does not complement Theorem 2 tightly.

Theorem 4 The Travelling Salesperson problem is NP-hard on graphs with highway dimension 6.

1.2 Techniques

We present a step towards a better understanding of low highway dimension graphs by giving new structural insights on graphs of highway dimension 1. It is not hard to find examples of complete graphs with highway dimension 1 (cf. [23]), and thus such graphs are not minor-closed. Nevertheless, it was suggested in [23] that the treewidth of low highway dimension graphs might be bounded polylogarithmically in terms of the aspect...
ratio α. That is, if α is the maximum distance divided by the minimum distance between any two vertices of the input graph, then one may hope to prove that the treewidth of any graph of highway dimension h is, say, $O(h \log \alpha)$).

Definition 5 A tree decomposition of a graph $G = (V, E)$ is a tree D where each node v is labelled with a bag $X_v \subseteq V$ of vertices of G, such that the following holds: (a) $\bigcup_{v \in V(D)} X_v = V$, (b) for every edge $\{u, w\} \in E$ there is a node $v \in V(D)$ such that X_v contains both u and w, and (c) for every $v \in V$ the set $\{u \in V(D) \mid v \in X_u\}$ induces a connected subtree of D. The width of the tree decomposition is $\max\{|X_v| - 1 \mid v \in V(D)\}$. The treewidth of a graph G is the minimum width among all tree decompositions for G.

Our main structural insight on graphs of highway dimension 1 is that they have treewidth $O(\log \alpha)$. This implies FPTASs for TSP and STP, since we may reduce the aspect ratio to $O(n/\varepsilon)$ and then use algorithms by Bodlaender et al. [15] to compute optimum solutions to TSP and STP in graphs of treewidth t in time $2^{O(t)} n$. Since reducing the aspect ratio distorts the solution by a factor of $1 + \varepsilon$, this results in an approximation scheme. Although these are fairly standard techniques for metrics (cf. [23]), in our case we need to take special care, since we need to bound the treewidth of the graphs resulting from this reduction, which the standard techniques do not guarantee.

It remains an intriguing open problem to understand the complexity and structure of graphs of constant highway dimension larger than 1.

1.3 Related work

The Travelling Salesperson problem (TSP) is among Karp’s initial list of 21 NP-complete problems [31]. For general metric instances, the best known approximation algorithm is due to Christofides [22] and computes a solution with cost at most $3/2$ times the LP lower bound. For unweighted instances, the best known approximation guarantee is $7/5$ and is due to Seb and Vygen [43]. In general the problem is APX-hard [32, 34, 40]. For geometric instances where the nodes are points in \mathbb{R}^d and distances are given by some l_ν-norm, there exists a PTAS [4, 39] for d fixed. When $d = \log n$, the problem is APX-hard [44]. Grigni et al. [28] gave a PTAS for unweighted planar graphs which was later generalized by Arora et al. [5] to the weighted case. For improvements of the running time see Klein [33]. For planar graphs the problem also admits a PTAS [33].

The Steiner tree problem (STP) is contained in Karp’s list of NP-complete problems as well [31]. The best approximation algorithm for general metric instances is due to Byrka et al. [18] and computes a solution with cost at most $\ln(4) + \varepsilon < 1.39$ times that of an LP relaxation. Their algorithm improved upon previous results by, e.g., Robins and Zelikovsky [41] and S. Hougardy and Prmel [42]. Also the STP is APX-hard [20] in general. For Euclidean distances and nodes in \mathbb{R}^d with d constant there is a PTAS due to Arora [4]. For $d = \log |R| / \log \log |R|$, the problem is APX-hard [44]. For planar graphs, there is a PTAS for STP [17], and even for the more general Steiner Forest problem for graphs with bounded genus [11]. Note that STP remains NP-complete for planar graphs [26].

It is worth mentioning that alternate definitions of the highway dimension exist. In particular, in a follow-up paper to [3], Abraham et al. [1] define a version of the highway dimension, which implies that the graphs also have bounded doubling dimension. Hence for this definition, Bartal et al. [8] already provide a PTAS for TSP in metrics of low highway dimension. The more general definition used here (cf. Definition 1) on the other hand allows for metrics of large doubling dimension as noted by Abraham et al. [3]: a star has highway dimension 1 (by using the center vertex to hit all paths), but its doubling dimension is unbounded. While it may be reasonable to assume that road networks (which are the main concern in the works of Abraham et al. [1, 2, 3]) have low doubling dimension, there are metrics modelling transportation networks for which it can be argued that the doubling dimension is large, while the highway dimension should be small. These settings are better captured by Definition 1. For instance, the so-called hub-and-spoke networks that can typically be seen in air traffic networks are star-like networks and are unlikely to have small doubling

\[\text{See [23, Section 9] for a detailed discussion on different definitions of the highway dimension.} \]
dimension while still having very small highway dimension close to 1. Thus in these examples it is reasonable to assume that the doubling dimension is a lot larger than the highway dimension. At the same time these networks are also highly non-planar.

Feldmann et al. [23] showed that graphs with low highway dimension can be embedded into graphs with low treewidth. This embedding gives rise to a QPTAS for both TSP and STP but also other problems. However, the result in [23] is only valid for a less general definition of the highway dimension from [2], i.e., there are graphs which have constant highway dimension according to Definition 1 but for which the algorithm of [23] cannot be applied. For the less general definition from [2], Becker et al. [12] give a PTAS for Bounded-Capacity Vehicle Routing in graphs of bounded highway dimension. Also the k-Center problem has been studied on graphs of bounded of bounded highway dimension, both for the less general definition [12] and the more general one used here [24, 25].

2 Structure of graphs with highway dimension 1

In this section, we analyse the structure of graphs with highway dimension 1. To this end, let us fix a graph G with highway dimension 1 and a shortest path cover $spc(r)$ for each scale $r \in \mathbb{R}^+$. As a preprocessing, we scale the graph such that $\min_{e \in E} w(e) = 3$, and we remove edges that are longer than the shortest path between their endpoints, so that the triangle inequality holds.

We begin by analysing the structure of the graph $G_{<2r}$, which is spanned by all edges of the input graph G of length at most $2r$. If G has very small highway dimension, it exhibits the following key property.

Lemma 6 Let G be a metric graph with highway dimension 1, $r \in \mathbb{R}^+$ a scale, and $spc(r)$ a shortest path cover for scale r. Then, every connected component of $G_{<2r}$ contains at most one hub.

Proof. For the sake of contradiction, let $r \in \mathbb{R}^+$ and let $x, y \in spc(r)$ be a closest pair of distinct hubs in some component of $G_{<2r}$. Let further P be a shortest path in $G_{<2r}$ between x and y using only edges of length at most $2r$. (Note that P need not be a shortest path between x and y in G.) In particular, there is no other hub from $spc(r) \setminus \{x, y\}$ along P. This implies that every edge of P that is not incident to either x or y must be of length at most r, since otherwise the edge would be a shortest path of length $(r, 2r)$ between its endpoints (using that G is metric) contradicting the fact that $spc(r)$ is a shortest path cover for scale r.

Since the highway dimension of G is 1, any ball $B_p(2r)$ around a vertex $w \in V(P)$ contains at most one of the hubs $x, y \in spc(r)$. Let $x', y' \in P$ be the vertices incident to x and y along P, respectively. Since the length of the edge $\{x, x'\}$ is at most $2r$, the ball $B_{x'}(2r)$ must contain x and, by the observation above, it cannot contain y. Symmetrically, the ball $B_{y'}(2r)$ contains y but not x. Consequently, $x' \neq y'$ and neither of these two vertices can be a hub of scale r, i.e., the path P contains at least two vertices different from x and y.

Let $V_x = \{w \in V : \text{dist}(x, w) < \text{dist}(y, w)\}$ contain all vertices closer to x than to y, where $\text{dist}(\cdot, \cdot)$ refers to the distance in the original graph G. As all edge weights are strictly positive, we have that $\text{dist}(x, y) > 0$ and thus $y \notin V_x$. Since P starts with vertex $x \in V_x$ and ends with vertex $y \notin V_x$, we deduce that there is an edge $\{u, v\} \subset P$ such that $u \in V_x$ and $v \notin V_x$. In particular, $\text{dist}(x, u) < \text{dist}(y, u)$ and $\text{dist}(y, v) \leq \text{dist}(x, v)$. We must have $\{u, v\} \neq \{y', y\}$, since otherwise $\text{dist}(x, y') < \text{dist}(y, y') \leq 2r$ and hence $B_{y'}(2r)$ would contain x. Similarly, we have $\{u, v\} \neq \{x, x'\}$, since otherwise $B_{x'}(2r)$ would contain y. Note that, by definition, $u \neq y$ and $v \neq x$, and since $x, y \notin \{u, v\}$. Consequently, since every edge of P not incident to either x or y must have length at most r, we conclude that $\{u, v\}$ has length at most r.

Finally, consider the scale $r' \in \mathbb{R}^+$, defined such that $2r' = \text{dist}(x, u) + \text{dist}(u, v)$. Let Q and Q' denote the shortest paths between x, u and v, y in G, respectively. Then the ball $B_u(2r')$ around v contains Q by definition of r'. From $\text{dist}(y, v) \leq \text{dist}(x, v) \leq \text{dist}(x, u) + \text{dist}(u, v) = 2r'$ it follows that $B_u(2r')$ contains Q' as well. Also, $\text{dist}(y, v) \leq \text{dist}(x, v)$ means that $B_v(2r)$ cannot contain x, and hence $2r' = \text{dist}(x, u) + \text{dist}(u, v) \geq \text{dist}(x, v) > 2r$, which implies $r' > r$. W.l.o.g., assume that $\text{dist}(x, u) < \text{dist}(v, y)$ (otherwise consider scale $2r' = \text{dist}(y, v) + \text{dist}(u, v)$ and the ball $B_u(2r')$). Our earlier observation that $\text{dist}(u, v) \leq r$ with $r < r'$ then yields $\text{dist}(v, y) \geq \text{dist}(x, u) = 2r' - \text{dist}(u, v) > r'$. In other words, the lengths of both paths Q and Q' are in $(r', 2r')$, and so they both need to contain a hub of $spc(r')$. However, by definition of u, v, the paths Q
and Q' are vertex disjoint, which means that the ball $B_v(2r')$, which contains Q and Q', also contains at least two hubs from $\text{spc}(r')$. This in a contradiction with G having highway dimension 1.

Given a graph G, we now consider graphs $G_{<2r}$ for exponentially growing scales. In particular, for any integer $i \geq 0$ we define the scale $r_i = 2^i$ and call a connected component of $G_{<2r_i}$ a level-i component. Note that the level-i components partition the graph G, and that the level-i components are a refinement of the level-$(i+1)$ components, i.e., every level-i component is contained in some level-$(i+1)$ component. Since we scaled the shortest edge of G to length exactly 3, there are no edges on level 0, and every level-0 component is a singleton. Let $\alpha = \frac{\max_{u,v} \text{dist}(u,v)}{\min_{u,v} \text{dist}(u,v)} = \frac{\max_{u,v} \text{dist}(u,v)}{3}$ be the aspect ratio of G. Then there is exactly one level-$(1 + \lfloor \log_2(\alpha) \rfloor)$ component, and it contains all of G.

Since every edge is a shortest path between its endpoints, every edge $e = \{u,v\}$ that connects a vertex u of a level-i component C with a vertex v outside C is hit by a hub of $\text{spc}(r_j)$, where j is the level for which $w(e) \in [r_j, 2r_j]$. Moreover, since v lies outside C, we have $w(e) > 2r_i$ and, thus, $j \geq i + 1$. The following definition captures the set of the hubs through which edges can possibly leave C.

Definition 7 Let C be a level-i component of G. We define the set of interface points of C as $I_C := \bigcup_{j \geq i} \{ u \in \text{spc}(r_j) : \text{dist}_C(u) \leq 2r_j \}$, where $\text{dist}_C(u)$ denotes the minimum distance from u to a vertex in C (if $u \in C$, $\text{dist}_C(u) = 0$).

Note that, for technical reasons, we explicitly add every hub at level i of a component to its set of interface points as well, even if such a hub does not connect the component with any vertex outside at distance more than $2r_i$.

Observation 8 If G has highway dimension 1, then each interface I_C of a level-i component C contains at most one hub for each level $j \geq i$.

Proof. Assume that there are two hubs $u, v \in \text{spc}(r_j)$ in I_C. Then u and v must be contained in the same level-j component C', since u and v are connected to C with edges of length at most $2r_j$ (or are contained in C) and $C \subseteq C'$. This contradicts Lemma 6. \qed

Using level-i components and their interface points we can prove that the treewidth of a graph with highway dimension 1 is bounded in terms of the aspect ratio.

Lemma 9 If a graph G has highway dimension 1 and aspect ratio α, its treewidth is at most $1 + \lfloor \log_2(\alpha) \rfloor$.

Proof. The tree decomposition of G is given by the refinement property of level-i components. That is, let D be a tree that contains a node v_C for every level-i component C for all levels $0 \leq i \leq 1 + \lfloor \log_2(\alpha) \rfloor$. For every node v_C we add an edge in D to node v_C, if C is a level-i component, C' is a level-$(i+1)$ component, and $C \subseteq C'$. The bag X_C for node v_C contains the interface points I_C. For a level-0 component C the bag X_C additionally contains the single vertex u contained in C.

Clearly, the tree decomposition has Property a of Definition 5, since the level-0 components partition the vertices of G and every level of G is contained in a bag X_C corresponding to a level-0 component C. Also, Property b is given by the bags X_C for level-0 components C, since for every edge e of G one of its endpoints u is a hub of $\text{spc}(r_i)$ where r_i is such that interval $w(e) \in [r_i, 2r_{i-1}]$, and the other endpoint v is contained in a level-0 component C, for which X_C contains u and w.

For Property c, first consider a vertex u of G, which is not contained in any set of interface points for any level-i component and any $0 \leq i \leq \log_2(\alpha)$. Such a vertex only appears in the bag X_C for the level-0 component C containing u, and thus the node v_C for which the bag contains u trivially induces a connected subtree of D.

Any other vertex u of G is an interface point. Let i be the highest level for which $u \in I_C$ for some level-i component C. We claim that $u \in C$, which implies that C is the unique level-i component containing u in its interface. To show our claim, assume $u \notin C$. Then, by definition, I_C contains u because $u \in \text{spc}(r_j)$ for some $j \geq i$ and u has some neighbour at distance at most $2r_j$ in C. Since every edge is a shortest path between its endpoints, this means that there must be an edge $e = \{u,v\}$ with length $w(e) \in [r_j, 2r_j]$ and $v \in C$. Since
Lemma 9. Each set of interface points contains at most one hub of each level. Since all edges have length at most \(r/2 \), when reducing the aspect ratio. In particular, we need to reduce \(r/2 \) repeatedly remove edges of length at most \(r/2 \) until we obtain a shortest path of length at most \(r \), which again implies \(w = x \), since the edge must contain \(x \). In either case, \(\text{dist}(v, x) \leq 3r/2 \). This implies that every vertex in \(C \) is at distance at most \(3r/2 \) from \(x \), and thus the diameter of \(C \) is at most \(3r \).

To compute the \((r, 3r) \)-net, we greedily pick an arbitrary vertex of each connected component of \(G_{< r} \). As the distances between components of \(G_{< r} \) is greater than \(r \), and every vertex lies in some component containing a net point, we get the desired distance bounds. Clearly this net can be computed in polynomial time.

An additional property that we will exploit for our algorithms is the following. A \((\mu, \delta) \)-net \(N \subseteq V \) is a subset of vertices such that (a) the distance between any two distinct net points \(u, w \in N \) is more than \(\mu \), and (b) for every vertex \(v \in V \) there is some net point \(w \in N \) at distance at most \(\delta \). Note that such nets can be greedily computed for any graph (as long as \(\mu \leq \delta \)). For graphs of highway dimension 1 however, we can obtain nets with additional favourable properties, as the next lemma shows.

Lemma 10. For any graph \(G \) of highway dimension 1 and any \(r > 0 \), there is an \((r, 3r)\)-net such that every connected component of \(G_{\leq r} \) contains exactly one net point. Moreover this net can be computed in polynomial time.

Proof. We first derive an upper bound of \(3r \) for the diameter of any connected component of \(G_{\leq r} \). Lemma 6 implies that a connected component \(C \) contains at most one hub \(x \) of \(\text{spc}(r/2) \). By definition, any shortest path in \(C \) of length in \((r/2, r] \) must pass through \(x \). We also know that every edge of \(C \) has length at most \(r \). Consequently, every edge in \(C \) must have length at most \(r/2 \), since each edge constitutes a shortest path between its endpoints. This implies that any shortest path in \(C \) that is not hit by \(x \) must have length at most \(r/2 \). If \(C \) contains a shortest path \(P \) with length \(w(P) > r/2 \) not containing \(x \) we could repeatedly remove edges of length at most \(r/2 \) from \(P \) until we obtain a shortest path of length in \((r/2, r] \) not hit by \(x \), a contradiction. It remains to bound the length of all shortest paths in \(C \) that contain \(x \).

Consider a shortest path \(P \) in \(G \) of length \(w(P) > r/2 \) from some vertex \(v \in C \) to \(x \). (Note that this path may not be entirely contained in \(C \).) Let \(\{u, w\} \) be the unique edge of \(P \) such that \(\text{dist}(v, u) \leq r/2 \) and \(\text{dist}(v, w) > r/2 \). If the length of the edge \(\{u, w\} \) is at most \(r/2 \) then \(\text{dist}(v, w) \leq r \), and thus \(w = x \), since the part of the path from \(v \) to \(w \) is a shortest path of length in \((r/2, r] \) and thus needs to pass through \(x \). Otherwise the length of the edge \(\{u, w\} \) is in the interval \((r/2, r] \), which again implies \(w = x \), since the edge must contain \(x \). In either case, \(\text{dist}(v, x) \leq 3r/2 \). This implies that every vertex in \(C \) is at distance at most \(3r/2 \) from \(x \), and thus the diameter of \(C \) is at most \(3r \).

To compute the \((r, 3r) \)-net, we greedily pick an arbitrary vertex of each connected component of \(G_{\leq r} \). As the distances between components of \(G_{\leq r} \) is greater than \(r \), and every vertex lies in some component containing a net point, we get the desired distance bounds. Clearly this net can be computed in polynomial time.

3 Approximation schemes

In general the aspect ratio of a graph may be exponential in the input size. A key ingredient of our algorithms is to reduce the aspect ratio \(\alpha \) of the input graph \(G = (V, E) \) to a polynomial. For STP and TSP, standard techniques can be used to reduce the aspect ratio to \(O(n/\varepsilon) \) when aiming for a \((1 + \varepsilon)\)-approximation. This was also used in [23] for low highway dimension graphs, but here we need to take special care not to destroy the structural properties given by Lemma 9 when reducing the aspect ratio. In particular, we need to reduce the aspect ratio and maintain the fact that the treewidth is bounded.

6
Therefore, we reduce the aspect ratio of our graphs by the following preprocessing. Both metric TSP and STP admit constant factor approximations in polynomial time using well-known algorithms [18, 22]. We first compute a solution of cost c using a β-approximation algorithm for the problem at hand (TSP or STP). For TSP, the diameter of the graph G clearly is at most $c/2$. For STP we remove every vertex of V that is at distance more than c from any terminal, since such a vertex cannot be part of the optimum solution. After having removed all such vertices in this way, we obtain a graph G of diameter at most $3c$. Thus, in the following, we may assume that our graph G has diameter at most $3c$. We then set $r = \frac{3c}{5n}$ in Lemma 10 to obtain a $(3n, \frac{3c}{5n})$-net $N \subseteq V$. As a consequence the metric induced by N and the distances of G has aspect ratio at most $\frac{2c}{r(3c/5n)} = O(n/\varepsilon)$, since the minimum distance between any two net points of N is at least $\frac{2c}{5n}$ and the maximum distance is at most $3c$. We will exploit this property in the following.

By Lemma 10, each connected component of $G \leq \frac{3c}{5n}$ contains exactly one net point of N. Let $\eta : V \mapsto N$ map each vertex of G to the unique net point in the same connected component of $G \leq \frac{3c}{5n}$. We define a new graph G' with vertex set $N \subseteq V$ and edge set $\{(\eta(u), \eta(v)) : \{u, v\} \in E\}$. The length of each edge $\{w, w'\}$ of G' is the shortest path distance between w and w' in G. This new graph G' may not have bounded highway dimension, but we claim that it has treewidth $O(\log(n/\varepsilon))$.

Lemma 11 If G has highway dimension 1, the graph G' with vertex set N has treewidth $O(\log(n/\varepsilon))$. Moreover, a tree decomposition for G' of width $O(\log(n/\varepsilon))$ can be computed in polynomial time.

Proof. We construct a tree decomposition D' of G' as follows. Following Lemma 9 we can compute a tree decomposition D of width at most $1 + \lceil \log_2(\alpha) \rceil$, where α is the aspect ratio of G: for this we need to compute a locally 1-sparse shortest path cover $\text{SPC}(r_i)$ for each level i, which can be done in polynomial time via an XP algorithm [2]. We then find the level-i components and their interface points, from which the tree decomposition D and its bags can be constructed. Since there are $O(\log \alpha)$ levels and α is at most exponential in the input size, we can compute D in polynomial time.

We construct D' from D by replacing every bag X of D by a new bag $X' = \{\eta(v) : v \in X\}$ containing the net points for the vertices in X. It is not hard to see that Properties a and b of Definition 5 are fulfilled by D', since they are true for D. For Property c, note that for any edge $\{u, v\}$ of G, the set of all bags of D that contain u or v form a connected subtree of D. This is because the bags containing a form a connected subtree (Property c), the same is true for v, and both these subtrees share at least one node labelled by a bag containing the edge $\{u, v\}$ (Property b). Consequently, the set of all bags containing vertices of any connected subgraph of G form a connected subtree. In particular, for any connected component A of $G \leq \frac{3c}{5n}$, the set of bags of D containing at least one vertex of A form a connected subtree. This implies Property c for D'. Thus, D' is indeed a tree decomposition of G' according to Definition 5. Note that D' can be computed in polynomial time.

To bound the width of D', recall that a bag X of the tree decomposition D of G contains the interface points I_C of a level-i component C, in addition to one more vertex of C on the lowest level $i = 0$. Each interface point is a hub from $\text{SPC}(r_j)$ at some level $j \geq i$ and is at distance at most $2r_j$ from C. In particular, if $2r_i \leq \frac{3c}{5n}$ then C is a component of $G \leq 2r_i \subseteq G \leq \frac{3c}{5n}$, and all hubs of $I_C \cap \text{SPC}(r_j)$ for which $2r_j \leq \frac{3c}{5n}$ lie in the same connected component A of $G \leq \frac{3c}{5n}$ as C. These hubs are therefore all mapped to the same net point w in A by η. In addition to w, the bag $X' = \{\eta(v) : v \in X\}$ resulting from X and η contains at most one vertex for every level j such that $2r_j > \frac{3c}{5n}$. As $r_j = 2^j$, this condition is equivalent to $j > \log_2(\frac{3c}{5n}) - 1$. As there are $1 + \lceil \log_2(\alpha) \rceil$ levels in total, there are $O(\log(\frac{3c}{5n}))$ hubs in X'. This bound is obviously also valid in case $2r_i > \frac{3c}{5n}$. We preprocessed the graph G so that its diameter is at most $3c$ and its minimum distance is 3, which implies an aspect ratio α of at most c for G. This means that every bag X' contains $O(\log(n/\varepsilon))$ vertices, and thus the claimed treewidth bound for G' follows.

We are now ready to prove our main result.

Proof (of Theorem 2). To solve TSP or STP on G we first use the above reduction to obtain G' and its tree decomposition D', and then compute an optimum solution for G'. For TSP, G' is already a valid input instance, but for STP we need to define a terminal set, which simply is $R' = \{\eta(v) \mid v \in R\}$ if R is the terminal set of G. Bodlaender et al. [15] proved that for both TSP and STP there are deterministic
algorithms to solve these problems exactly in time \(2^{O(t)}n\), given a tree decomposition of the input graph of width \(t\). By Lemma 11 we can thus compute the optimum to \(G'\) in time \(2^{O(\log(n/\varepsilon))} \cdot n = (n/\varepsilon)^{O(1)}\). Afterwards, we convert the solution for \(G'\) back to a solution for \(G\), as follows.

For TSP we may greedily add vertices of \(V\) to the tour on \(N\) by connecting every vertex \(v \in V\) to the net point \(\eta(v)\). As the vertices \(N\) of \(G'\) form a \((\frac{5c}{3n}, \frac{5c}{n})\)-net of \(V\), this incurs an additional cost of at most \(\frac{2c}{n}\) per vertex, which sums up to at most \(2\varepsilon c\). Let \(\text{OPT}\) and \(\text{OPT}'\) denote the costs of the optimum tours in \(G\) and \(G'\), respectively. We know that \(c \leq \beta \cdot \text{OPT}\), since we used a \(\beta\)-approximation algorithm to compute \(c\). Furthermore, the optimum tour in \(G\) can be converted to a tour in \(G'\) of cost at most \(\text{OPT}'\) by short-cutting, due to the triangle inequality. Thus \(\text{OPT}' \leq \text{OPT}\), which means that the cost of the computed tour in \(G\) is at most \(\text{OPT}' + 2\varepsilon c \leq (1 + 2\beta \varepsilon)\text{OPT}\).

Similarly, for STP we may greedily connect a terminal \(v\) of \(G\) to the terminal \(\eta(v)\) of \(G'\) in the computed Steiner tree in \(G'\). This adds an additional cost of at most \(\frac{c}{n}\), which sums up to at most \(\varepsilon c\). Let now \(\text{OPT}\) and \(\text{OPT}'\) be the costs of the optimum Steiner trees in \(G\) and \(G'\), respectively. We may convert a Steiner tree \(T\) in \(G\) into a tree \(T'\) in \(G'\) by using edge \(\{\eta(u), \eta(v)\}\) for each edge \(\{u, v\}\) of \(T\). Note that the resulting tree \(T'\) contains all terminals of \(G'\), since \(R' = \{\eta(v) \mid v \in R\}\). As the vertices \(N\) of \(G'\) form a \((\frac{5c}{n}, \frac{5c}{n})\)-net of \(V\), the cost of \(T'\) is at most \(\text{OPT} + 2\varepsilon c\) if the cost of \(T\) is \(\text{OPT}\) (by the same argument as used for the proof of Lemma 11).

As before, we know that \(c \leq \beta \cdot \text{OPT}\), and thus the cost of the computed Steiner tree in \(G\) is at most \(\text{OPT}' + \varepsilon c \leq \text{OPT} + 3\varepsilon c \leq (1 + 3\beta \varepsilon)\text{OPT}\).

Hence we obtain FPTASs for both TSP and STP, which compute solutions that are arbitrarily close to the optimum in \((n/\varepsilon)^{O(1)}\) time (including the time needed to compute \(G'\) and \(D'\)). \(\Box\)

We prove next that STP is \(\text{NP}\)-hard on graphs of highway dimension 1, which means that the problem is weakly \(\text{NP}\)-hard for these inputs. Whether TSP is \(\text{NP}\)-hard for such small highway dimension remains open, but we prove that it is for highway dimension 6.

4 Hardness of Steiner Tree for highway dimension 1

We present a reduction from the \(\text{NP}\)-hard satisfiability problem (SAT) [27], in which a Boolean formula \(\varphi\) in conjunctive normal form is given, and a satisfying assignment of its variables needs to be found.

Proof (of Theorem 3). For a given SAT formula \(\varphi\) with \(k\) variables and \(\ell\) clauses we construct a graph \(G_\varphi\) as follows (cf. Fig. 1). For each variable \(x\) we introduce a path \(P_x = (t_x, u_x, f_x)\) with two edges of length 1 each. The vertex \(u_x\) is a terminal. Additionally we introduce a terminal \(v_0\), which we call the root, and add the edges \(\{v_0, t_x\}\) and \(\{v_0, f_x\}\) for every variable \(x\). Every edge incident to \(v_0\) has length 11. For each clause \(C_i\), where \(i \in \{1, \ldots, \ell\}\), we introduce a terminal \(v_i\) and add the edge \(\{v_i, t_x\}\) for each variable \(x\) such that \(C_i\) contains \(x\) as a positive literal, and we add the edge \(\{v_i, f_x\}\) for each \(x\) for which \(C_i\) contains \(x\) as a negative literal. Every edge incident to \(v_i\) has length \(11^{i+1}\). Note that the edges incident to the root \(v_0\) also have length \(11^{i+1}\) for \(i = 0\).

Lemma 12 The constructed graph \(G_\varphi\) has highway dimension 1.

Proof. Fix a scale \(r > 0\). If \(r \leq 5\) then the shortest path cover \(\text{SPC}(r)\) only needs to hit shortest paths of length at most \(2r \leq 10\). Since all edges incident to terminals \(v_j\) with \(j \in \{0, \ldots, \ell\}\) have length at least 11, any such path contains only edges of paths \(P_x\). Thus it suffices to include all vertices \(u_x\) in \(\text{SPC}(r)\). A ball \(B_u(2r)\) of radius \(2r \leq 10\) can also only contain some subset of vertices of a single path \(P_x\), or a single vertex \(v_j\). In the former case the ball contains at most the vertex \(u_x \in \text{SPC}(r)\), and in the latter none of \(\text{SPC}(r)\).

If \(r > 5\), let \(i = \lfloor \log_{11}(r/5) \rfloor \geq 0\) and \(\text{SPC}(r) = \{v_i\}\). Since there is only one hub, this shortest path cover is locally 1-sparse. Note that any edge incident to a vertex \(v_j\) with \(j \geq i + 1\) has length at least \(11^{i+2} \geq 11r/5 > 2r\). Also, all paths that do not use any \(v_j\) with \(j \geq i\) have length at most \(2 + \sum_{j=0}^{i-1}(2 \cdot 11^{j+1} + 2)\), since such a path can contain at most two edges incident to a vertex \(v_j\) with \(j \leq i - 1\) and the paths \(P_x\) of length 2 are connected only through edges incident to vertices \(v_j\). The length of such a path is thus shorter than

\[
2 + 2 \cdot \frac{11^{i+1}}{11 - 1} + 2i \leq 3 \cdot 11^i + 2 \cdot 11^i \leq 5 \cdot 11^i \leq r,
\]
where the first inequality holds since \(i + 1 \leq 11^i \) whenever \(i \geq 0 \). Hence the only paths that need to be hit by hubs on scale \(r \) are those passing through \(v_i \), which is a hub of \(\text{SPC}(r) \). \(\square \)

To finish the reduction, we claim that there is a satisfying assignment for \(\varphi \) if and only if there is a Steiner tree \(T \) for \(G_\varphi \) with cost at most \(12k + \sum_{i=1}^{t} 11^{i+1} \). If there is a satisfying assignment for \(\varphi \), then the tree \(T \) contains the edges \(\{u_x, t_x\} \) and \(\{v_0, t_x\} \) for variables \(x \) that are set to true, and the edges \(\{u_x, f_x\} \) and \(\{v_0, f_x\} \) for variables \(x \) that are set to false. This connects every terminal \(u_x \) with the root \(v_0 \), and the cost of these edges is \(12k \). For every terminal \(v_i \) where \(i \geq 1 \) we can now add the edge \(\{v_i, s_x\} \) for \(s_x \in \{t_x, f_x\} \) that corresponds to a literal of \(C_i \) that is true in the satisfying assignment. Since this Steiner vertex \(s_x \) is connected to the root \(v_0 \), we obtain a Steiner tree \(T \). The latter edges add another \(\sum_{i=1}^{t} 11^{i+1} \) to the solution cost, and thus the total cost is as claimed.

Conversely, consider a minimum cost Steiner tree \(T \) in \(G_\varphi \). Note that for any terminal \(u_x \) the tree must contain an incident edge of cost 1, while for any terminal \(v_i \) with \(i \geq 1 \) the tree must contain an incident edge of cost \(11^{i+1} \). This adds up to a cost of \(k + \sum_{i=1}^{t} 11^{i+1} \). Assume that there is some variable \(x \) such that \(T \) contains neither \(\{v_0, t_x\} \) nor \(\{v_0, f_x\} \). This means that in \(T \) the terminal \(u_x \) is connected to the root \(v_0 \) through an edge \(\{v_i, s_x\} \) for \(s_x \in \{t_x, f_x\} \) and some \(i \geq 1 \). The edge \(v_0s_x \) forms a fundamental cycle with the tree \(T \), which however has a shorter length of 11 compared to the edge \(\{v_i, s_x\} \), which has length \(11^{i+1} \). Thus removing \(\{v_0, s_x\} \) and adding \(\{v_i, s_x\} \) instead, would yield a cheaper Steiner tree. As this would contradict that \(T \) has minimum cost, \(T \) contains at least one of the edges \(\{v_0, t_x\} \) and \(\{v_0, f_x\} \) for every variable \(x \). This adds another \(11k \) to the cost, so that \(T \) costs at least \(12k + \sum_{i=1}^{t} 11^{i+1} \).

If we assume that \(12k + \sum_{i=1}^{t} 11^{i+1} \) is also an upper bound on the cost of \(T \), by the above observations the tree \(T \) contains exactly one edge incident to every terminal \(u_x \) and \(v_i \) for \(i \geq 1 \), and exactly \(k \) edges incident to \(v_0 \). Furthermore, for every variable \(x \) the latter edges contain exactly one of \(\{v_0, t_x\} \) and \(\{v_0, f_x\} \). Thus \(T \) encodes a satisfying assignment for \(\varphi \), as follows. For every edge \(v_0t_x \) we may set \(x \) to true, and for every edge \(\{v_0, f_x\} \) we may set \(x \) to false. For every clause \(C_i \) the corresponding terminal \(v_i \) connects through one of the Steiner vertices \(s_x \in \{t_x, f_x\} \) of a corresponding literal contained in \(C_i \). The only incident vertices to \(s_x \) in \(G_\varphi \) are some terminals \(v_j \), the terminal \(u_x \), and the root \(v_0 \). As each \(v_j \) and also \(u_x \) only has one incident edge contained in the tree \(T \), the tree must contain the edge \(\{v_0, s_x\} \) so that the root can be reached from \(s_x \) in \(T \). Hence \(s_x \) corresponds to a literal that is true in \(C_i \). Using Lemma 12, which bounds the highway dimension of \(G_\varphi \), we obtain Theorem 3. \(\square \)
5 Hardness of Travelling Salesperson for highway dimension 6

We now show hardness of TSP for graphs of bounded highway dimension. We first introduce a simple lemma that will allow us to easily bound the highway dimension of our construction by adding edges incrementally. In the following we denote the highway dimension of a graph G by $\text{hd}(G)$.

Definition 13 A cost $c^* \in \mathbb{R}$ is safe w.r.t. a (multi-)set of costs $C \subseteq \mathbb{R}$ if $c^* \geq 2 \sum_{c \in C} c$.

Lemma 14 Let $G = (V, E)$ be a graph, $E' \subseteq \binom{V}{2}$, and $G' = (V, E \cup E')$. If the edges in E' have safe costs w.r.t. the edge costs of G, then $\text{hd}(G') \leq \max\{\text{hd}(G), |E'\}\}$.

Proof. Let c^* be the smallest cost among the edges of E' and consider a fixed scale $r \in \mathbb{R}^+$. If $r < c^*/2$, then no path of length $l \in (r, 2r]$ in G' contains any of the edges in E'. By the definition of the highway dimension of G, there is a locally $\text{hd}(G)$-sparse shortest path cover $\text{spc}(r)$ of G' for this scale. Now if $r \geq c^*/2$, then every path of length $l \in (r, 2r]$ in G' must contain an edge of E', since the costs of all edges in E sum up to at most r. Therefore, we can find a shortest path cover $\text{spc}(r)$ of G' simply by taking a minimum vertex cover of E', which has size at most $|E'|$.

We are now ready to prove hardness.

Proof (of Theorem 4.) We reduce from $(\leq 3,3)$-Sat [27]. To that end, let a $(\leq 3,3)$-Sat formula be given, with variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m, where each literal appears at most twice (and each variable at most three times). We construct a graph G with edge costs taken from among the values $a \ll b \ll c_1 \ll \cdots \ll c_{n-1} \ll d \ll e \ll f_1 \ll \cdots \ll f_m$, where each cost value can be chosen arbitrarily such that it is safe with respect to the costs of all cheaper edges. For example, there will be $2n$ edges of cost a, hence we choose $b \geq 4an$. Let T^* be (any) TSP tour in G of minimum cost $|T^*|$. We consider T^* to be oriented arbitrarily in one of its two possible orientations.

For every variable x_i, we introduce a gadget with four vertices $v_{i1}, v_{i2}, v_{i3}, v_{i4}$ and the edges $\{v_{i1}, v_{i3}\}$ and $\{v_{i2}, v_{i4}\}$, both of cost a. We further add edges $\{v_{i1}, v_{i2}\}, \{v_{i2}, v_{i3}\}, \{v_{i3}, v_{i4}\}, \{v_{i4}, v_{i1}\}$ of cost b each (cf. Fig. 2). We will enforce that T^* uses both edges of cost a in every variable gadget, and we will interpret the variable as 'true', if the orientation of these edges along the tour is (v_{i1}, v_{i3}) and (v_{i4}, v_{i2}), or (v_{i3}, v_{i1}) and (v_{i2}, v_{i4}), and 'false' otherwise. Let G^b be the graph we have constructed so far. Each of the n components of G^b has highway dimension 2: For scales $r < a$, we can set $\text{spc}(r) = \bigcup_i \{v_{i1}, v_{i3}\}$, and for scales $r \geq a$, we can set $\text{spc}(r) = \bigcup_i \{v_{i1}, v_{i3}\}$. Hence, $\text{hd}(G^b) = 2$.

![Figure 2: Vertex gadgets.](image)

We connect the variable gadgets by adding edges $\{v_{ij}, v_{i(j+1)j}\}$ of cost c_i for all $i \in \{1, \ldots, n-1\}$ in this order. By definition, each new edge has a safe cost (w.r.t. all previous edges), and hence, by Lemma 14, the resulting graph G^c has highway dimension $\text{hd}(G^2) = 2$. We will enforce that T^* uses each of these edges exactly twice.

For each clause C_i, we introduce a clause gadget with six vertices $w_{j1}, w'_{j1}, w_{j2}, w'_{j2}, w_{j3}, w'_{j3}$ (cf. Fig. 3). We first add three edges $\{w'_{j1}, w_{j2}\}, \{w'_{j2}, w_{j3}\}, \{w'_{j3}, w_{j1}\}$ of cost d each. Since these edges are disconnected, the resulting graph G^d still has $\text{hd}(G^d) = 2$. Now, we add three edges $\{w_{j1}, w'_{j1}\}, \{w_{j2}, w'_{j2}\}, \{w_{j3}, w'_{j3}\}$ of
cost \(e \) each. In the resulting graph \(G^e \), clauses are still disconnected. Since we added three edges with safe costs for each clause, by Lemma 14, we have \(\text{hd}(G^e) \leq 3 \).

Finally, we connect each clause gadget for clause \(C_j \) to the three variable gadgets corresponding to the variables appearing in \(C_j \) (cf. Fig. 3). To this end, we add six edges per clause, step by step in the order of increasing clause indices. Let \(C_j = \lambda_{j1} \lor \lambda_{j2} \lor \lambda_{j3} \) and consider \(k \in \{1, 2, 3\} \). Assume \(\lambda_{jk} = x_i \), i.e., \(x_i \) appears as a positive literal in \(\lambda_{jk} \). Let \(\delta = 0 \) if \(\lambda_{jk} \) is the first clause containing the literal \(x_i \), i.e., \(x_i \notin C_{j'} \) for \(j' < j \), and \(\delta = 2 \) otherwise. We add the edges \(\{w_{jk}, v_{i(2+\delta)}\}, \{w_{jk}', v_{i(1+\delta)}\} \) of cost \(f_j \). Now assume \(\lambda_{jk} = \bar{x}_i \) and let again \(\delta = 0 \) if \(\bar{x}_i \notin C_{j'} \) for \(j' < j \), and \(\delta = 2 \) otherwise. We add the edges \(\{w_{jk}, v_{i(3-\delta)}\}, \{w_{jk}', v_{i(2+\delta)}\} \) of cost \(f_j \). Since we add six edges of safe costs in each step, by Lemma 14, the final graph \(G = G^f \) has \(\text{hd}(G) \leq 6 \).

![Figure 3: Clause gadget.](image)

Now let \(W = 2 \sum_{j=1}^{m} f_j + 2me + 3md + 2 \sum_{i=1}^{n-1} c_i + (2n - m)b + 2na \). We claim that \(|T^*| \leq W \) if and only if the \((\leq 3, 3)\)-SAT formula is satisfiable.

For the first part of the claim, assume the \((\leq 3, 3)\)-SAT formula is satisfiable, and, for all \(j \in \{1, \ldots, m\} \), let \(y_j \) be a unique variable that satisfies clause \(C_j \) in the corresponding assignment. We describe a tour of cost \(W \) by constructing a Eulerian graph consisting of edges of \(G \) (sometimes twice) that connect all vertices with a total cost of \(W \). We start by including the cycle of cost \(3e + 3d \) within each clause gadget, and each edge between different variable gadgets twice, for a total cost of \(3me + 3md + 2 \sum c_i \). For every variable \(x_i \) that is set to true, we include the cycle \(v_{i1}, v_{i3}, v_{i4}, v_{i2}, v_{i1} \) of cost \(2b + 2a \). For every variable \(x_i \) that is set to false, we include the cycle \(v_{i1}, v_{i3}, v_{i2}, v_{i4}, v_{i1} \) of cost \(2b + 2a \). The resulting graph \(T' \) is Eulerian, since we added only cycles, but not yet connected. Its cost is \(3me + 3md + 2 \sum c_i + 2nb + 2na \).

Now take a clause \(C_j \) that is satisfied by variable \(x_i = y_j \). We add the edges \(\{w_{jk}, v_{ir}\}, \{w_{jk}', v_{i(r+3 \mod 4)}\} \) that connect the corresponding clause and variable gadgets. Observe that the edge \(\{w_{jk}, w_{jk}'\} \) is in \(T' \) and so is the edge \(\{v_{ir}, v_{i(r+3 \mod 4)}\} \), because \(x_i \) satisfies \(C_j \). We can thus remove these two edges and obtain an Eulerian graph. This increases the cost of the graph by \(2f_j - e - b \). The final graph \(T \) is connected, Eulerian, and has cost \(W \) as claimed.

For the second part of the claim, consider any TSP tour \(T \) with \(|T| \leq W \). Observe that \(3f_m > W, 3f_{m-1} > W - 2f_m \), and so on. Since, for all \(j \in \{1, \ldots, m\} \), the edges of cost \(f_j \) form a cut of \(G \), we can conclude that \(T \) uses exactly \(2 \) edges of cost \(f_j \) (or one of them twice). Similarly, \((2m + 1)e > W - \sum_{j=1}^{n-1} f_j \), but \(T \) needs to use at least two edges of cost \(e \) (or one of them twice) to connect all vertices of a clause gadget.
for C_j to the two edges of cost f_j that are part of the tour. We can again conclude that T uses exactly two edges of cost e in each clause gadget. And again $(3m + 1)d > W - \sum_{j=1}^{n-1} f_j - 2me$, but T needs to use at least three times an edge of cost d to connect all vertices of a clause gadget, provided that it uses only two edges of cost e. We conclude that T uses exactly three edges of cost d in each clause gadget. Finally, observe that the only way to connect all vertices of a clause gadget with two edges of cost e and three edges of cost d needs that the two edges of cost f_j are distinct and connect to the same vertex gadget. We will rely on this observation in the following.

The first implication is that T needs to use every edge between vertex gadgets twice, since the vertex gadgets are not connected via clause gadgets. Our analysis so far implies that edges within variable gadgets that are used in T incur a cost of at most $W' = (2n - m)b + 2na$. Let $k \in \{0, \ldots, 4\}$ be the number of clause gadgets in T connected to the variable gadget of x_i. Clearly, T needs to use at least $4 - k$ edges within the variable gadget. The cost within a variable gadget depending on k is at least $2b + 2a$ (if $k = 0$), $b + 2a$ (if $k = 1$), $2a$ (if $k = 2$), a (if $k = 4$), or b (if $k = 4$). Since each variable appears in at most four clauses and each clause has at most 3 literals, we have $m \leq 4n/3 < 2n$. To obtain a cost of at most W', we must thus have $k \leq 2$ in each variable gadget, since $b > a$. Furthermore, if there are two clause gadgets connected to a variable gadget, they must connect to disjoint vertices of the clause to allow for a cost of at most $2a$ in the variable gadget. This means that the corresponding literals must either both be positive or both be negative. But if there is an assignment of clauses to variables such that at most two clauses are assigned to each variable and the corresponding literal of the assigned clauses must agree, this immediately yields a satisfying assignment of the $(\leq 3, 3)$-SAT-formula.

$$\square$$

References

[1] I. Abraham, D. Delling, A. Fiat, A. V. Goldberg and R. F. Werneck. “Highway dimension and provably efficient shortest path algorithms”. In: J. ACM 63.5 (2016).

[2] I. Abraham, D. Delling, A. Fiat, A. Goldberg and R. Werneck. “VC-dimension and shortest path algorithms”. In: ICALP. 2011, pp. 690–699.

[3] I. Abraham, A. Fiat, A. V. Goldberg and R. F. Werneck. “Highway dimension, shortest paths, and provably efficient algorithms”. In: SODA. 2010, pp. 782–793.

[4] S. Arora. “Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems”. In: J. ACM 45.5 (1998), pp. 753–782.

[5] S. Arora, M. Grigni, D. R. Karger, P. N. Klein and A. Woloszyn. “A polynomial-time approximation scheme for weighted planar graph TSP”. In: SODA. 1998, pp. 33–41.

[6] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. “Proof verification and hardness of approximation problems”. In: FOCS. 1992, pp. 14–23.

[7] S. Arora, P. Raghavan and S. Rao. “Approximation schemes for Euclidean k-medians and related problems”. In: STOC. 1998, pp. 106–113.

[8] Y. Bartal, L.-A. Gottlieb and R. Krauthgamer. “The traveling salesman problem: low-dimensionality implies a polynomial time approximation scheme”. In: STOC. 2012, pp. 663–672.

[9] H. Bast, S. Funke and D. Matijevic. “Ultrafast shortest-path queries via transit nodes”. In: The Shortest Path Problem: Ninth DIMACS Implementation Challenge 74 (2009), pp. 175–192.

[10] H. Bast, S. Funke, D. Matijevic, P. Sanders and D. Schultes. “In Transit to Constant Time Shortest-Path Queries in Road Networks”. In: ALENEX. 2007.

[11] M. Bateni, M. T. Hajiaghayi and D. Marx. “Approximation Schemes for Steiner Forest on Planar Graphs and Graphs of Bounded Treewidth”. In: J. ACM 58 (5 2011), 21:1–21:37.

[12] A. Becker, P. N. Klein and D. Saulpic. “Polynomial-Time Approximation Schemes for k-center, k-median, and Capacitated Vehicle Routing in Bounded Highway Dimension”. In: ESA. 2018, 8:1–8:15.

[13] M. Bern and P. Plassmann. “The Steiner problem with edge lengths 1 and 2”. In: Inform. Process. Lett. 32 (1989), pp. 171–176.

[14] R. Bland and D. Shallcross. “Large traveling salesman problems arising from experiments in X-ray crystallography: a preliminary report on computation”. In: Oper. Res. Lett. 8 (3 1989), pp. 125–128.
[15] H. L. Bodlaender, M. Cygan, S. Kratsch and J. Nederlof. “Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth”. In: ICALP. 2013, pp. 196–207.

[16] R. Borndorfer, M. Neumann and M. E. Pfetsch. “The line connectivity problem”. In: Operations Research Proceedings. 2009, pp. 557–562.

[17] G. Boros, C. P. Mathieu and P. Klein. “A Polynomial-time Approximation Scheme for Steiner Tree in Planar Graphs”. In: SODA. 2007, pp. 1285–1294.

[18] J. Byrka, F. Grandoni, T. Rothvo and L. Sanit. “An improved LP-based Approximation for Steiner Tree”. In: STOC. 2010, pp. 583–592.

[19] C. Y. Chen and K. Grauman. “Efficient Activity Detection in Untrimmed Video with Max-Subgraph Search”. In: IEEE Trans. Pattern Anal. Mach. Intell. 39 (5 2018), pp. 908–921.

[20] M. Chlebík and J. Chlebíková. “The Steiner tree problem on graphs: Inapproximability results”. In: Theor. Comput. Sci. 406 (3 2008), pp. 207–214.

[21] S. A. Chowdhury, S. E. Shackney, K. Heselmeyer-Haddad, T. Ried, A. A. Schiffer and R. Schwartz. “Phylogenetic analysis of multiprobe fluorescence in situ hybridization data from tumor cell populations”. In: Bioinformatics 29 (13 2013), pp. i189–i198.

[22] N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem. Technical Report 388. Graduate School of Industrial Administration, Carnegie Mellon University, 1976.

[23] A. E. Feldmann, W. S. Fung, J. Kneemann and I. Post. “A (1+ε)-Embedding of Low Highway Dimension Graphs into Bounded Treewidth Graphs”. In: SIAM J. Comput. 41 (4 2018), pp. 1667–1704.

[24] A. E. Feldmann. “Fixed Parameter Approximations for k-Center Problems in Low Highway Dimension Graphs”. In: Algorithmica (2018).

[25] A. E. Feldmann and D. Marx. “The Parameterized Hardness of the k-Center Problem in Transportation Networks”. In: SWAT. 2018, 19:1–19:13.

[26] M. R. Garey and D. S. Johnson. “The rectilinear Steiner tree problem is NP-complete”. In: SIAM J. Appl. Math. 32 (4 1977), pp. 826–834.

[27] M. Garey and D. Johnson. Computers and intractability. Vol. 29. Freeman, 2002.

[28] M. Grigni, E. Koutsoupias and C. H. Papadimitriou. “An approximation scheme for planar graph TSP”. In: FOCS. 1995, pp. 640–645.

[29] M. Grötschel and O. Holland. “Solution of large-scale symmetric travelling salesman problems”. In: Math. Program. 51 (1991), pp. 141–202.

[30] S. Held, B. Korte, D. Rautenbach and J. Vygen. “Combinatorial optimization in VLSI design”. In: Combinatorial Optimization: Methods and Applications. Ed. by V. Chvatal. Amsterdam: IOS Press, 2011, pp. 33–96.

[31] R. M. Karp. “Reducibility among Combinatorial Problems”. In: Complexity of Computer Computations (1972), pp. 85–103.

[32] M. Karpinski, M. Lampa and R. Schmied. “New inapproximability bounds for TSP”. In: J. Comput. Syst. Sci. 81 (8 2015), pp. 1665–1677.

[33] P. Klein. “A linear-time approximation scheme for TSP in undirected planar graphs with edge-weights”. In: SIAM J. Comput. 37.6 (2008), pp. 1926–1952.

[34] M. Lampis. “Improved Inapproximability for TSP”. In: Theory Comput. 10 (2014), pp. 217–236.

[35] G. Laporte, Y. Nobert and M. Desrochers. “Optimal routing under capacity and distance restrictions”. In: Oper. Res. 33 (5 1985), pp. 1050–1073.

[36] J. Lenstra and A. Rinnooy Kan. “Some simple applications of the traveling salesman problem”. In: Oper. Res. Quart. 26 (1975), pp. 717–733.

[37] I. Ljubic, R. Weiskircher, U. Pferschy, G. W. Klau, P. Mutzel and M. Fischetti. “An Algorithmic Framework for the Exact Solution of the Prize-Collecting Steiner Tree Problem”. In: Math. Program. 105 (2–3 2006), pp. 427–449.

[38] A. A. Loboda, M. N. Artyomov and A. A. Sergushichev. “Solving Generalized Maximum-Weight Connected Subgraph Problem for Network Enrichment Analysis”. In: WABI. Ed. by M. Frith and C. S. Pedersen. Vol. 9838. LNCS. 2016, pp. 210–221.
[39] J. S. B. Mitchell. “Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems”. In: SIAM J. Comput. 28.4 (1999), pp. 1298–1309.

[40] C. H. Papadimitriou and S. Vempala. “On The Approximability Of The Traveling Salesman Problem”. In: Combinatorica 26 (1 2006), pp. 101–120.

[41] G. Robins and A. Zelikovsky. “Tighter bounds for graph Steiner tree approximation”. In: SIAM J. Discrete Math. 19 (1 2005), pp. 122–134.

[42] S. Hougardy and H. J. Prmel. “A 1.598 approximation algorithm for the Steiner problem in graphs”. In: SODA. 1999, pp. 448–453.

[43] A. Seb and J. Vygen. “Shorter tours by nicer ears: 7/5-approximation for the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs”. In: Combinatorica (2014), pp. 1–34.

[44] L. Trevisan. “When Hamming Meets Euclid: The Approximability of Geometric TSP and Steiner Tree”. In: SIAM J. Comput. 30 (2 2000), pp. 475–485.