Astronomy 3.0 Style

Alberto Accomazzi

Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA

Abstract. Over the next decade we will witness the development of a new infrastructure in support of data-intensive scientific research, which includes Astronomy. This new networked environment will offer both challenges and opportunities to our community and has the potential to transform the way data are described, curated and preserved. Based on the lessons learned during the development and management of the ADS, a case is made for adopting the emerging technologies and practices of the Semantic Web to support the way Astronomy research will be conducted. Examples of how small, incremental steps can, in the aggregate, make a significant difference in the provision and repurposing of astronomical data are provided.

1. Introduction

A coming era of networked, data-driven scientific investigation has been predicted for over a decade now (Szalay & Brunner 1998). Spurred by a stunning increase in the amount of digital data generated by the current generation of detectors being built or planned (e.g. Pan-STARRS, LSST, ALMA), scientists find themselves in the situation of having to gain skills and master technologies which have traditionally been the expertise of computer scientists and engineers. It has been argued that the coming deluge of data will generate a paradigm shift in the way scientific research is carried out (Hey, Tansley & Tolle 2009). Science will require an infrastructure of distributed computational resources acting upon data scattered on different archives and databases, and taking advantage of grid or cloud computing resources. The term cyberinfrastructure has been proposed to describe this new digital networked environment, while the term e-Science has been adopted to describe the research activity associated with it.

In Astronomy, the need for a new framework supporting this type of data-intensive research is becoming an urgent matter. In order for Astronomy as a discipline to thrive over the next decade, our research community needs to adopt the cyberinfrastructure framework, in addition to making sure that today’s graduate students acquire the skills necessary to take advantage of this environment. In (partial) response to the first need, the community has created, and is vigorously funding, Virtual Observatory efforts worldwide. In response to the latter need, scientists and archivists are now calling for the creation of the research fields of Astrostatistics (Feigelson 2010) and Astroinformatics (Borne et al. 2009), aiming to bridge the gap between astronomers and researchers in the field of statistics, data mining, and semantic computing.

The paradigm shift which is taking place across most scientific disciplines will be heavily influenced by the evolution of the Web, which has become the architecture upon which scientific research is today being conducted. We are now in the third
decade of the development of the Web, and the term Web 3.0 has been used to indicate
the mix of technologies and practices that are going to shape its evolution in the coming
years. While there is no unanimity as to what the Web 3.0 will look like, most people
agree that it will draw heavily on the technologies underpinning the so-called Seman-
tic Web (Berners-Lee, Hendler & Lassila 2001), facilitating the creation of applications
enabling intelligent searches, streamlined workflows, and highly personalized services.
Astronomy 3.0 is the term we use in this paper to describe the research activity that
astronomers will carry out in this environment during the next decade. It will involve
the use of an ecosystem of interacting web-based resources, including the infrastruc-
ture provided by the Virtual Observatory, data provisioning services from Astronomy
archives, a variety of analysis services such as Astrometry.net, notification services
such as skyalert.org, and visualization services such as CDS’s Aladin and Microsoft’s
WorldWideTelescope.

In this paper we discuss the current status and possible evolution of the cyber-
infrastructure supporting Astronomy 3.0. Rather than attempting to describe an all-
embracing view of what the field may look like over the next decade, we focus
on those aspects and technologies that directly affect the way resources are described,
metadata is exchanged, and applications are built. We offer examples of how seemingly
small steps in the curation and exposure of metadata can provide great improvements
in the way data are accessed and repurposed. While much of the scenarios and exam-
pies described here draw upon our experience in the development and maintenance of
ADS services, we believe that the general principles underlying our approach can be
fruitfully applied to a vast number of projects in Astronomy.

2. The Astronomy Research Lifecycle

Because scientific research requires repeatability, it is crucial that all the (digital) as-
pects of the scientific lifecycle be properly identified, annotated, made accessible, and
properly linked to each other. This includes data, claims on data, processes, and re-
results. Each of these items should be properly modeled and annotated with the relevant
metadata, be it of technical nature (e.g. information about the detector used to obtain
an image) or otherwise (e.g. information about the program requesting the observation
being taken).

Pepe et al. (2009) describe a framework which can be used to represent the sci-
entific lifecycle in the era of e-Science. Recognizing that all artifacts used in current
research are now in digital form and are often available on the web, they propose a web-
based model which attempts to formalize the relationships between these digital assets
and capture them as resource aggregations. According to this model, one has to first
identify the components of the scientific lifecycle, document and curate their metadata,
and then create the proper connections across them. The model advocates performing
this activity end-to-end, starting from the planning phases, through the data collection
and reduction process, and ending with the publication of results.

In the case of Astronomy, the research lifecycle can be modeled as consisting of
three main phases: science planning, data acquisition and analysis, and publication of
results. The science planning phase typically consists of the formulation of a research
goal, the creation of a science case for it, and possibly the request for resources such
as observing time on a telescope through the submittal of one or more proposals. The
activity of writing a proposal or project plan requesting the allocation of resources is the
time when the project goals, hypothesis and dependencies are described in great detail, as well as the venue in which technical considerations about the observing instruments must be taken into account. It is not unusual for scientists to run simulations at this stage in order to be able to predict the expected outcome of observations based on the observational constraints. One should note that research per se does not necessarily require the observation of new data, and it is quite possible that a project may involve the repurposing and analysis of existing datasets already available from the Virtual Observatory. It is, in fact, likely that data re-use will become the norm rather than the exception in the future. As a point in case, White et al. (2009) have recently shown that the current use of archival data from the Hubble Space Telescope exceeds the use of new data observed by the telescope.

The data acquisition phase involves the traditional process of obtaining digital data from a (virtual or physical) telescope. This is followed by a data reduction and analysis step during which data are processed, normalized, merged with other data sources, and analyzed for the purpose of exposing their characteristics as they relate to the research project goals. This activity may involve a great deal of expertise and decision-making on the part of the researcher, and which can be particularly hard to document and quantify in an unambiguous way. However, it is crucial for scientists to be able to reproduce the results of their research, which is dependent on the proper documentation of the process followed in this phase.

Finally, the research process usually culminates with the publication of the results of this activity. This typically involves writing reports, creating high-level data products synthesizing the characteristics of the dataset under study, and publishing one or more scientific papers detailing purpose, methodology, and findings of the study. While the electronic publishing process has made it easier for users to locate articles of interest, much of the remaining results created during the research process have traditionally not been easily discoverable. High-level data products published as tables and images within the articles are often difficult to locate as digital objects because they are not usually tagged and indexed with the electronic paper in an efficient way.

In the case of Astronomy, there are now a number of well-established projects focusing on the curation of different aspects of this lifecycle. The main players today are the publishers and ADS (for bibliographies), NED and SIMBAD (for object metadata), Vizier (for electronic catalogs), and a number of distributed archives (for primary data products such as images and spectra). Virtual Observatory projects provide the tools and protocols to easily access the data and metadata available from all these different archives in a consistent way. However, it is still the case that only a fraction of the data and metadata generated by a research project is captured and made available on the web today. Some of this content ends up being interlinked with the rest of the resources related to it (e.g. the way the record for a paper is linked to the objects mentioned in it), but since the creation of links is an activity requiring expert curation, it depends entirely on the efforts of several distributed projects. Even less of this on-line content today is linked in a way that provides us with an efficient way for applications to take advantage of it. In the next section we will review the status of this infrastructure and offer a vision of how it should be improved in order to take advantage of the Web 3.0 environment.
3. The Web of Astronomy Links

Astronomy was one of the first disciplines to take advantage of the early developments of the web (Accomazzi et al. 1994). As early as 1993 it became possible to perform a literature search in ADS in conjunction with an object query in SIMBAD, as the result of a collaboration between the two projects. Article records in ADS were linked to object records in SIMBAD, and vice-versa, allowing users to seamlessly move across the two databases and explore the relationships between their data holdings. In 1997 links were created between ADS records and observational data available from the main NASA archives as well as ESO. Thus, authors could easily access observations which had been studied in a paper, and conversely, access all publications which referenced a particular dataset.

The fact that agreements allowing the creation of these links were established so quickly highlights the desire of the community to fully exploit the technological advantages offered by the web in the early 1990s. An agreement between the data centers codifying a system to uniquely identify bibliographic records (Schmitz et al. 1995) allowed all interested parties to unambiguously compute such identifiers based on their metadata, as well as create links between them and other resources. The introduction of such identifiers (bibcodes) took place ten years before publishers agreed on a system to uniquely identify articles via the DOI (Digital Object Identifier) system, which shows that interoperability within a particular community can be achieved quickly and successfully when necessary. Of course, interoperability between bibcode identifiers and the DOI system is now maintained by projects such as ADS in a transparent way, so that one does not need to choose one system over the other.

The adoption and mutual exchange of these links has benefited the astronomical community at large, starting from end-users who can now click their way through this network of research data, and including the archives themselves, which have seen a significant rise of use due to their greater interconnectedness (as an example, in 2009, the ADS recorded over 100,000 clicks from its bibliographic records to data products hosted by external archives). Beginning in the late 1990s, libraries began playing an important role in maintaining links between bibliographies and data products. Several institutions today use ADS as a search tool to keep lists of bibliographies related to their missions and share some of this metadata back with ADS. This allows the possibility of searching the literature with a filter limiting results to the contributions of a particular institution. Thanks to this synergy, metadata that librarians have started collecting for the main purpose of generating reports and maintaining metrics can now be used by ADS to enhance literature searches in different ways. For instance, due to the contributions of the librarian from the Space Telescope Science Institute and the archivist from the Chandra X-ray observatory, one can now use ADS to find papers on a particular topic (e.g. “globular clusters”) that have optical data from the HST and X-ray data from Chandra. This example shows how the creation, use, and repurposing of links between metadata records held by different projects on different web sites can enable new discoveries when the proper connections between them are made explicit.

The amount of current links, or connections, between pieces of metadata describing online astronomical resources today is quite impressive. The figures in Table 1 describe a subset of the number of links existing between ADS bibliographic records and other ADS records (internal links), or resources available from other archives (external links) as of April 2010. Considering that the total current number of records in the ADS databases is approximately 8 million, one can see that the number of connec-
tions between them and other resources is one order of magnitude larger. Harnessing these connections can provide new ways to view and interpret the network of linked resources. For instance, ADS uses its citation and co-readership network to generate recommendations to individual readers, both on an article-by-article basis and in the aggregate, through its myADS notification service (Kurtz et al. 2003).

Table 1. ADS Link Statistics: a selected list of the links between bibliographic records and other resources. Units are millions (M) or thousands (K). Links are categorized as either being internal (i.e. pointing to other ADS records) or external (i.e. pointing to resources on other websites).

Link	Count	Type
citations	40M	internal
co-readership	18M	internal
fulltext	5M	internal & external
astronomical objects	250K	external
data products	130K	external
bibliographic groups	200K	internal

Kurtz et al. (2009) and Henneken & Kurtz (2010) have been exploring the use of these networks to build a recommender system based on citation and co-readership data. Such a system would be similar in scope to what some commercial websites now offer to their clients. For example, by analyzing purchase histories and user access to product information, Amazon is able to suggest products that might be of interest to a shopper. In the world of scholarly literature, connections based on co-authorship, citations, keyword co-occurrence, readership, links to similar data products, etc. provide the basis for recommendations. In the remainder of this paper we will present a framework that can be used to model the metadata underlying such a system and we suggest ways in which we, as a community, can begin to adopt some of its practices in an incremental way.

4. The Semantic Web

While it is relatively simple for projects to exploit the connections between resources under their own control in order to create new applications, making use of the links between resources maintained on different sites is a more complex matter. For the most part, the task of interpreting the connections found in the distributed network of Astronomy resources has so far been left to the end-users. Therefore, the knowledge that is embedded in this network and that could be gained through the analysis of its topography has so far remained untapped.

Tim Berners-Lee, the inventor of the World Wide Web, has long been advocating for the creation of the Semantic Web (Berners-Lee, Hendler & Lassila 2001), a networked environment in which meaning is attached to resources available on the web so that both humans and machines can make use of it. Two fundamental components of the Semantic Web are its use of ontologies to represent concepts and the relationships
between them and its reliance on a linked data model. The Linked Data effort is based on a few simple principles: (1) resources are named via HTTP URIs; (2) metadata is open and in a standard format (RDF); (3) resources are interlinked and their links are typed. Taken as a whole, these guidelines describe how exposing metadata and links between them can be used today to build a global graph of resources built on the architecture of the web. This means, among other things, that it becomes simple for both people and applications to use the metadata and links in order to transverse, analyze, and compute over this graph.

The use of a linked-data approach to describe and connect resources imposes some requirements on information providers but offers several major advantages to the community. Primarily, it requires discipline on the part of data archives and forces them to identify the important pieces of data holdings that they serve. Once these resources have been identified, they need to be uniquely named (via URIs), and their metadata must be exposed in a machine readable format (RDF). Mappings between identifiers can be formally expressed when necessary (for instance, to indicate that a particular DOI and bibcode correspond to the same article), and allow applications to unambiguously gather information about resources. Finally, relationships between different resources should be included in the form of typed links (for example, linking an article to the set of observations available in an online archive). We believe that the advantages this approach can provide to the community greatly outweigh the amount of effort involved. In the next section we explore some of the applications that will be enabled by this model.

5. Semantic Astronomy Applications

In the long term, emerging technologies and practices adopted in the creation and evolution of the Semantic Web will likely underpin the scientific cyberinfrastructure of Astronomy 3.0. However, even before such a unified “web of data” linked together by relationships described by well-defined ontologies emerges, much work can be accomplished by incrementally exposing well-structured metadata from existing repositories. As an example of what archives and libraries can do today to enhance the repurposing and increase the use of their holdings by adopting best practices advocated by the semantic web proponents, consider providing enhanced records containing machine-readable metadata. The ADS has been supporting this effort by adopting best practices emerging from the Digital Library world as well as from the field of Astronomy. For instance, since 2009, all the ADS HTML abstract pages now contain machine-readable metadata describing the record in question (see figure 1). This is in addition to the existing metadata output formats that ADS has been providing since 2002 (various flavors of XML, including Dublin Core, EndNote, and RIS).

While the inclusion of these tags in the HTML header does not change the look of the page to the end user, it provides a mechanism for crawlers and software agents to programmatically extract and use resource metadata from a normal-looking HTML page. Having a single URI uniquely identify a resource and providing actionable metadata to both users and machines is not only a convenient way to expose information about the contents of a database, but it is also considered a good design choice since

\(^1\)http://www.linkeddata.org
A listing of the metadata embedded in a traditional HTML page for an ADS bibliographic record, as displayed by Firefox 3.

it is based on the very architecture of the web. One of the immediate advantages of following such a practice is that it greatly facilitates the work of crawlers. A tangible result of the embedding of metadata in our HTML pages has been the efficient indexing of ADS records in the major search engines and Google Scholar, which now account for over half of all accesses to our databases.

Similarly, small, incremental steps taken by individual data providers can, in the aggregate, make a significant difference in the provision and repurposing of data and metadata. Astronomy librarians, in their role of maintainers of bibliographic collections and metrics related to their institutes’ data products, have a significant role to play in this effort. By sharing more of the metadata that they currently collect as part of their institutional bibliography collection, they can provide ADS and similar projects valuable observational metadata required to create applications that make use of metadata integrated from different archives (optical, X-ray, radio, etc.) and that describe different resources (bibliographies, observations, objects, etc.).

As an example, consider the prototype interface recently developed by the ADS which makes use of a literature search combined with a search on astronomical object metadata. A researcher may wish to know which astronomical objects are most often referenced in review papers about “weak gravitational lensing.” This question can be answered by creating views, or “facets,” of the literature in question based on astro-
nomical objects. Figure 2 shows the interface that ADS has recently implemented by combining the traditional ADS topic search with a ranked list of objects appearing in the list of results as returned by the SIMBAD database. This ranked list provides a set of facets that can be used to filter or further select and rank the search results. Using this additional information, the researcher can quickly identify which objects are most relevant to the topic of interest and access information about the objects or retrieve the papers that mention them.

Figure 2. A prototype application implementing object-based facets as a view into search results. The original search requested review articles about “weak gravitational lensing.” The list of names displayed on the left bar represent the most referenced objects mentioned in the literature on the subject.

It is easy to imagine a variety of similar scenarios in which bibliographic or observational properties are used to create similar facets. For example, when manipulating a list of papers, facets could be built on the sets of keywords that are shared amongst them, or the type of data products associated with them. While not all facets may make sense in all cases, there are certainly several scenarios in which they provide insightful views into the data. We plan to investigate the usefulness and impact of such interfaces to enable more advanced views of the metadata describing astronomical resources. For instance, one may want to ask “what are the most cited papers discussing objects in this spectral band and in this area of the sky.” Answering this type of question requires connecting pieces of metadata which currently exists but which are not linked in an efficient, machine-readable way.
Conclusions

Particularly in this era of data-intensive research, integrating and manipulating pieces of information from different sources can provide a new context for the analysis and evaluation of the phenomena behind them. Important aspects of this information may become apparent after crucial connections are made and new views based on them are created, exposing evidence which might have otherwise been missed in the sheer volume of data. In this paper we have outlined a model for describing the lifecycle of astronomy research in the era of the Web 3.0. This model advocates for the preservation of all artifacts and workflows generated during the research activity. We have argued for the adoption of emerging technologies in use in the Semantic Web to formally describe these resources, their aggregations and relationships. This model is particularly appropriate for our field due to the distributed nature of the curation activities which take place during the research lifecycle in Astronomy.

However, technology alone will not provide solutions to problems requiring community buy-in and changes in policies at the institutional level. Accomazzi, Kurtz & Murray (2010) have recently advocated for community support of such an effort. In order for it to be successful, broad participation is required from all the stakeholders involved in the curation and preservation of research data in Astronomy. This includes data archivists, librarians, publishers, and scientists. Observatories, institutes, and projects which have adopted an open-sky policy for their data holdings should now consider embracing an open-metadata policy to allow Astronomy 3.0 to develop and deliver its full potential to the community.

Acknowledgments. This work was supported by the Astrophysics Data System project which is funded by NASA grant NNX09AB39G. The author thanks Michael Kurtz for his comments and suggestions and the Editors for their patience.

References

Accomazzi, A., Grant, C., Eichhorn, G., Kurtz, M., & Murray, S. 1994, Bulletin of the American Astronomical Society, 26, 1370
Accomazzi, A., Kurtz, M., J. & Murray, S. S. 2010, arXiv:1005.1886
Berners-Lee, T., Hendler, J., Lassila, O. 2001, Scientific American, 284(5), 34
Borne, K., et al. 2009, astro2010: The Astronomy and Astrophysics Decadal Survey, 2010, position paper #6
Feigelson, E. D. 2010, arXiv:1004.4148
Henneken, E., & Kurtz, M. 2010, APS Meeting Abstracts, 1244
Hey, T., Tansley, S., Tolle, K. 2009, “The 4th paradigm: data-intensive scientific discovery” Microsoft Research, Redmond, WA.
Kurtz, M. J., Eichhorn, G., Accomazzi, A., Grant, C. S., Henneken, E. A., Thompson, D. M., Bohlen, E. H., & Murray, S. S. 2003, Bulletin of the American Astronomical Society, 35, 1241
Kurtz, M. J., Accomazzi, A., Henneken, E., Di Milia, G., & Grant, C. S. 2009, arXiv:0912.5235
Pepe, A., Mayernik, M., Borgman, C. L., & Van de Sompel, H. 2009, arXiv:0906.2549
Szalay, A. S., & Brunner, R. J. 1998, New Horizons from Multi-Wavelength Sky Surveys, 179, 455
Schmitz, M., Helou, G., Lague, C., Madore, B., Corwin, G. G., Jr., Dubois, P., & Lesteven, S. 1995, Vistas in Astronomy, 39, 272
White, R. L., et al. 2009, astro2010: The Astronomy and Astrophysics Decadal Survey, 2010, position paper #64