Molecular comparison of pure ovarian fibroma with serous benign ovarian tumours

Sally M. Hunter1, Genevieve V. Dall1, Maria A. Doyle2, Richard Lupat2, Jason Li2, Prue Allan3, Simone M. Rowley1, David Bowtell1,4,5, On behalf of AOCS, Ian G. Campbell1,4,5† and Kylie L. Gorringe1,4,5,6*†

Abstract

Objective: Ovarian fibromas and adenofibromas are rare ovarian tumours. They are benign tumours composed of spindle-like stromal cells (pure fibroma) or a mixture of fibroblast and epithelial components (adenofibroma). We have previously shown that 40% of benign serous ovarian tumours are likely primary fibromas due to the neoplastic alterations being restricted to the stromal compartment of these tumours. We further explore this finding by comparing benign serous tumours to pure fibromas.

Results: Performing copy number aberration (CNA) analysis on the stromal component of 45 benign serous tumours and 8 pure fibromas, we have again shown that trisomy of chromosome 12 is the most common aberration in ovarian fibromas. CNAs were more frequent in the pure fibromas than the benign serous tumours (88% vs 33%), however pure fibromas more frequently harboured more than one CNA event compared with benign serous tumours. As these extra CNA events observed in the pure fibromas were unique to this subset our data indicates a unique tumour evolution. Gene expression analysis on the two cohorts was unable to show gene expression changes that differed based on tumour subtype. Exome analysis did not reveal any recurrently mutated genes.

Keywords: Ovarian fibroma, Adenofibroma, Cystadenomas, Cystadenofibroma, Copy number aberrations, Gene expression, Exome sequencing, Microarrays

Introduction

Ovarian fibromas and adenofibromas form part of the sex-cord stromal family of tumours and are relatively uncommon, accounting for approximately 8% of all diagnosed ovarian tumours [1]. These tumours are benign entities composed in significant part of fibroblasts (pure fibroma), or as compound tumours composed of a mix of fibroblast and epithelial (adenofibroma) or sex-cord (granulosa-stromal tumours) components. Tumours with a cystic epithelial component are termed cystadenomas or cystadenofibromas.

Due to their relative rarity and benign nature these tumours have not been well molecularly characterised, with the majority of studies focussing on immunohistochemistry and cytogenetics. Ovarian fibromas differ from fibromas arising in other organs in that they frequently express hormone receptors (e.g. ER-β, PR, AR) and are typically negative for the characteristic markers of other cells derived from a fibroblast/myofibroblastic origin (e.g. SMA, CD34, CD117, S-100) [1, 2].

Genomic aberrations involving trisomy and tetrasomy of chromosome 12 appear to be particularly prevalent in tumours arising in the female genitourinary tract, including uterine leiomyomas [3, 4], thecomas [5–7], fibromas [7–10] and granulosa cell tumours [11, 12]. The underlying biological driver for this recurrent event has yet to be established. Other genomic aberrations that arise less frequently may be more cell type-specific. Imbalances...
involving chromosomes 4 and 9 are also common in the fibroma-thecoma subgroup, with chromosome 9 aberrations potentially being associated with cellular fibromas [13].

We previously reported that around 40% of benign serous cystadenomas and cystadenofibromas show copy number aberrations (CNA) exclusively in the stroma [14] and are thus likely misdiagnosed primary fibromas with epithelial inclusion. To investigate this further we undertook molecular characterisation of these epithelial-stromal tumours in comparison to pure fibromas.

Main text

Materials and methods

Tissue samples

Fresh frozen tissue samples were used for copy number, exome and expression analyses. All samples were collected with the patient’s informed consent and the study was approved by the Human Research Ethics Committees at the Peter MacCallum Cancer Centre. Patients with ovarian tumors were identified through hospitals in the Wessex Region, UK (n = 25) [15] and the Australian Ovarian Cancer Study (AOCS) (n = 31) [16, 17]. Pathology review was conducted on cryosections adjacent to the tissue from which DNA was extracted (PA). Microdissections and DNA/RNA extractions were performed as previously described [18]. Samples were selected for inclusion based on availability of tissue for DNA and RNA extraction.

Copy number data

The Affymetrix SNP6.0 Human Mapping (1.8 M probe set) array was utilised for ultra-high resolution allele-specific copy number analysis. Arrays were performed as recommended by the manufacturer with the exception that the input was reduced from the recommended 500 ng to 250 ng by reducing reaction volumes by half for all processes prior to the SNP6.0 PCR step. Reduction in DNA input does not result in any loss in the quality of the data. Copy number analysis was performed as previously described [18], using Partek Genomics Suite v 6.5. Copy number and allele-specific copy number was generated paired (when matching normal available) or unpaired and circular binary segmentation was performed to identify regions of copy number and loss of heterozygosity. Thresholds were >2.3 for gains, <1.7 for losses and <0.75 for homozygous deletions. All SNP data has been made publicly available through Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/ - GSE67189).

Exome sequencing

For each case 500 ng–1 µg of microdissected tumour DNA and matched lymphocyte DNA when available was sheared to <1000 bp using a Covaris® ultra-sonicator (Covaris®), libraries prepared using the Illumina TruSeq DNA Sample Preparation procedure (Illumina), and enriched for exome sequencing using the SeqCap EZ Human Exome Library v2.0 (Roche NimbleGen). Exomes were sequenced with 100 bp PE reads in pools of three per lane on a HiSeq 2000 (Illumina).

Sequence reads were aligned to the human genome (GRCh37/hg19) using BWA-MEM (v0.7.7-r441) [19, 20]; duplicates marked using Picard (v1.77); local indel realignment and base quality recalibration performed using GATK (v2.7-2-g6bda569) [21, 22]; indel detection performed using GATK Unified Genotyper (v2.7-2-g6bda569), Indel Genotyper, Pindel (v0.2.5a3) [23], and VarScan2 (v2.2.4) [24]; SNV prediction performed using GATK Unified Genotyper, MuTect (v2.7-1-g42d771f) [25], SomaticSniper [26], JointSNVMix2 (v0.8-b2) [27], and VarScan2 (v2.2.4); and variants annotated using Ensembl variant effect predictor v73. Exome bam files are available from the Sequence Read Archive Accession number PRJNA631561 (https://www.ncbi.nlm.nih.gov/sra/PRJNA631561).

Variants were enriched for genuine somatic events by filtering for those called by >=2 variant callers, with the exception of MuTect, which is capable of detecting variants at lower frequencies and therefore all MuTect variants were included; germline allele frequency <=0.01 and tumour allele frequency >=0.05, with >=0.1 difference in allele frequency between tumour and germline; variant observed in <=3 of 250 in-house germ-line exomes. All variants with a tumour allele frequency >=0.1 were taken forward for Sanger sequencing validation.

Expression data

Expression data was generated using the Affymetrix Human Gene 1.0 ST array according to the manufacturer’s recommendations. An input of 300 ng of total RNA was used, as quantified by Nanodrop spectrophotometer. RIN values were determined using the Agilent Bioanalyzer RNA 6000 Nano assay, the average RIN value for the 25 samples was 4.7 (range 1–7.9). Analysis of the data was performed using the Partek Gene Expression workflow. CEL files were processed using RMA normalisation and batch correction. All Gene 1.0 ST data has been made publicly available through Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/ - GSE67223).

Results

The clinical features of the ovarian cohort are presented in Table 1. Women with ovarian fibromas compared to benign serous ovarian tumours had very similar median ages and ranges (64, range 35–80 and 61, range 27–80 respectively). Interestingly, there appeared to be a strong
preponderance for both fibromas and benign serous tumours to be bilateral or detected on the right ovary (Binomial test for left vs right P = 0.02).

Copy number aberrations

Genome-wide copy number analysis was performed for eight unselected pure fibromas, and compared to copy number data from the stroma of 27 serous cystadenofibromas and 18 serous cystadenomas (collectively referred to as benign serous tumours). CNAs were detectable in 7/8 (88%) of the pure fibromas, with gain of chromosome 12 being the most recurrently observed aberration in five of eight (63%) cases (Additional file 1: Table S1). Other recurrent CNAs in the fibromas were gain of chromosomes 9 or 9q (50% cases), 18 and 21 (20% cases each). CNAs were detected in the stroma of 33% of benign serous tumours. Recurrent gain of chromosome 12 was also observed in 31% of serous cystadenofibromas (8/27) and 17% of serous cystadenomas (3/18), gain of 9q was only observed in single serous cystadenofibroma case, while loss of chromosome 22 was detected in 11% of cystadenofibromas (3/27). No CNAs were detected in the stroma of the normal ovaries.

Expression analysis

Gene expression arrays were used to compare the stromal RNA of three normal ovaries against eight pure fibromas (seven with CNAs), seven cystadenomas (two with CNAs), and seven cystadenofibromas (four with CNAs). Comparing normal ovary to benign serous tumours or fibromas did not identify any differentially expressed genes following multiple testing correction. Comparison of benign serous tumours to fibromas also did not

Table 1 Clinical features of cohort

Sample ID	Age	Laterality	CN	Gene expression	Exome
Pure Fibromas					
IC33	80	Bilateral (same)	Y	Y	
IC4	n/a	Bilateral (same)	Y	Y	
IC269	59	Right	Y	Y	
IC425	49	Left	Y	Y	
IC458	35	Right	Y	Y	
IC494	53	Bilateral (same)	Y	Y	
IC181	65	Right	Y	Y	
IC137	64	Bilateral (other)	Y	Y	
Cystadenofibroma					
IC149	66	Bilateral (same)	Y	Y	
IC10	59	Right	Y	Y	
IC164	72	Left	Ya	Y	
IC158	82	Bilateral (same)	Ya	Y	
IC5	81	Left	Ya	Y	
IC103	56	Bilateral (same)	Ya	Y	
IC467	52	Right	Ya	Y	
IC120	74	Right	Y	Y	
A4	74	Right	Ya	Y	
A3	61	Bilateral (same)	Ya	Y	
A2	63	Bilateral (same)	Ya	Y	
A5	66	Right	Ya	Y	
A6	75	Bilateral (same)	Ya	Y	
A8	48	Bilateral (same)	Y		
A9	66	Left	Ya		
A10	54	Bilateral (same)	Ya		
A25	61	Right	Ya		
A11	72	Bilateral (same)	Ya		
A12	76	Bilateral (same)	Ya		
A61	68	Right	Y		
A29	57	Bilateral (same)	Ya		
A22	51	Bilateral (same)	Ya		
A13	50	Right	Ya		
A14	62	Bilateral (same)	Ya		
A15	45	Left	Ya		
A7	69	Right	Ya		
Adenofibroma					
IC450	27	Right (other)	Ya	Y	
Cystadenoma					
IC148	67	Bilateral (other)	Ya	Y	
IC24	77	Bilateral (same)	Y	Y	
IC196	46	Unilateral (unspecified)	Y	Y	
IC7	79	Right	Ya	Y	
IC591	48	Right	Y	Y	
A17	35	Bilateral (same)	Ya	Y	
A16	50	Right	Ya		
A18	73	Bilateral (same)	Ya		
A19	46	Right	Ya		
A20	65	Right	Ya		

Table 1 (continued)

Sample ID	Age	Laterality	CN	Gene expression	Exome
A23	58	Bilateral (same)	Y		
A21	64	Bilateral (same)	Y		
A26	55	Bilateral (same)	Y		
A27	59	Left	Y		
A62	68	Bilateral (same)	Y		
A63	43	Right	Y		
A64	55	Bilateral (same)	Y		
A24	58	Bilateral (same)	Y		
Normal					
IC79	60	n/a	Y		
IC236	n/a	n/a	Y		
IC369	40	n/a	Y		

Same = same diagnosis both ovaries. Other = different diagnosis in contralateral ovary. n/a, information not available. Y, included in this manuscript

* in Hunter et al. 2011
identify any differentially expressed genes. Comparison
of samples based on the presence or absence of CNA, or
the presence of specific CNA compared to an absence of
genomic aberrations (with and without tumour subty-
ping), did not identify differentially expressed genes that
remained significant following multiple testing correc-
tion. As these samples are difficult to enrich for neoplas-
tic cells due to a mixture of cell types in the stroma the
expression signal from the tumour cells will be diluted,
therefore a less stringent approach was taken to iden-
tify candidate genes by taking the most significantly
altered genes $p < 0.001$ with a fold change > 2.0. Through
this approach 17 genes were found to be differentially
expressed based on the presence of specific CNA (gain
9q and 12, loss of 16q) compared to samples with no
genomic CNAs (Table 2).

Exome data

Exome sequencing was performed on the stromal DNA of
seven cystadenofibromas, one adenofibroma and one cys-
tadenoma (all with CNAs), and two cystadenofibromas
and one cystadenoma with no CNAs. Exome sequencing
identified 83 putative somatic variants, with an average of
7 mutations per case (range 2–20). It is difficult to enrich
for the subpopulation of neoplastic fibroblasts in the
stroma, as indicated by the low variant allele frequency of
the majority of the variants (Additional file 2: Table S2),
and subsequently difficult to validate findings by Sanger
sequencing. We undertook Sanger validation of a sub-
set of variants for each case. No recurrent mutations or
recurrently mutated genes were identified that went on to
validate. In total, 20 somatic variants were able to be vali-
dated by Sanger sequencing (Table 3). Of the validated
variants, a single nonsense mutation was identified in the
DMD gene. The remaining 19 validated variants were all
missense variants, the functional impacts of which were
assessed using transFIC (Transformed Functional
Impact for Cancer) (Table 3). No variants from the three
tumours with no CNAs validated by Sanger sequencing.

The ability to detect variants may be confounded by
normal DNA contamination. There was a positive corre-
lation between the number of variants detected (before

Gene	Cytoband	Fold-change	P value	Function								
9q genes gain vs no gain												
HAPLN1	5q14.3	+5.2	0.000008	ECM protein and ERK signalling; overexpressed in metastatic melanoma and mesotheliomas								
PRAME	22q11.22	+3.6	0.000342	Repressor of retinoic acid receptor. Overexpressed in multiple neoplasms (including melanoma)								
SLC17A3	6p22.2	+3.3	0.000081	Voltage-driven transporter. Affects serum uric acid levels								
CKB2	9q22.2	+3.3	0.000232	CDC28 protein kinase regulatory subunit 2. Overexpressed in numerous neoplasms, overrides the intra-S-phase DNA damage checkpoint								
ANOS1	Xp22.31	+2.8	0.000297	ECM protein. Putative cell adhesion molecule, upregulated in some tumour types								
RNF182	6p23	+2.5	0.000110	E3 ubiquitin ligase. Overexpressed in Alzheimers								
SLC17A1	6p22.2	+2.3	0.000711	Sodium-dependent phosphate transporter. Affects uric acid levels								
CRB1	1q31.3	+2.1	0.000466	Photoreceptor protein								
SYT14	1q32.2	+2.1	0.000601	Family of proteins involved in synaptic transmission								
C6orf115	6q24.1	+2.0	0.000848	Uncharacterised protein								
APOD	3q29	−2.6	0.000762	Putative lipoprotein metabolism. Inverse correlation between expression and colorectal tumour progression. Associated with neurodegeneration								
CLU	8p21.1	−2.4	0.000751	Secreted anti-apoptotic chaperone protein. Overexpressed in many tumour types and associated with neurodegeneration								
SLFN11	17q12	−2.3	0.000237	Putative DNA/RNA helicase. Expression of other family members inhibits growth of fibroblasts and thymocytes. Sensitises cancer cells to DNA damaging agents								
chr12 genes gain vs no gain												
NDST3	4q26	+2.9	0.000814	N-deacetylase/N-sulfotransferase 3. Golgi apparatus protein, associated with schizophrenia and bipolar disorder								
PRELP	1q32.1	−2.2	0.000646	Connective tissue ECM protein. Abnormally expressed in chronic lymphocytic leukaemia cells								
16q genes loss vs no loss												
PRAME	22q11.22	+6.4	0.000347	Repressor of retinoic acid receptor. Overexpressed in multiple neoplasms (including melanoma).								
GLRA2	Xp22.2	+2.7	0.000412	Glycine receptor alpha 2, neutrophil and p38 MAPK associated								
GABRA5	15q12	+2.5	0.000136	GABA receptor alpha 5, associated with schizophrenia and bipolar I disorder								
SLFN11	17q12	−3.6	0.000336	Putative DNA/RNA helicase. Expression of other family members inhibits growth of fibroblasts and thymocytes. Sensitises cancer cells to DNA damaging agents								
Sample	CHR	POS	REF	ALT	Consequence	Gene	Amino acids	Condel	PolyPhen	SIFT	SiftTranfsicLabel	Validation
--------	-----	-------	-----	-----	-------------	-------	-------------	------------------	------------------	--------------	-------------------	------------
A42	11	821679	T	G	MS	PNPLA2	F/C	Deleterious (0.702)	Prob_damaging (0.984)	Tolerated (0.11)	Low_impact	Somatic
A42	19	897480	G	A	MS	R3HDM4	P/L	Deleterious (0.481)	Prob_damaging (0.996)	Tolerated (0.37)	Low_impact	Somatic
A4	2	197090514	T	C	MS	HECW2	Y/C	Deleterious (0.935)	Prob_damaging (0.999)	Deleterious (0)	High_impact	Somatic
A4	5	35068332	C	A	MS	PRLR	A/S	Neutral (0.019)	Benign (0.026)	Tolerated (0.38)	Medium_impact	Somatic
A4	16	9943623	C	T	MS	GRIN2A	V/I	Neutral (0.000)	Benign (0.002)	Tolerated (1)	Low_impact	Somatic
A4	19	4448308	C	G	SRV	UBXN6
A4	19	38692604	G	C	MS	SIPA1L3	G/A	Neutral (0.001)	Benign (0.002)	Tolerated (0.82)	Low_impact	Somatic
A17	X	31222107	C	A	NS	DMD	E/*
IC158	3	47127761	T	C	MS	SETD2	H/R	Deleterious (0.808)	Prob_damaging (0.96)	Deleterious (0.01)	Medium_impact	Somatic
IC158	1	44156598	C	T	MS	KDM4A	P/L	Deleterious (0.881)	Prob_damaging (0.987)	Deleterious (0)	High_impact	Somatic
IC158	7	96639132	C	T	MS	DLX6	R/C	Deleterious (0.877)	Prob_damaging (0.985)	Deleterious (0)	High_impact	Somatic
IC158	7	100484701	G	A	MS	SRRT	V/M	Deleterious (0.892)	Prob_damaging (0.992)	Deleterious (0)	Medium_impact	Somatic
IC158	14	102504858	G	T	MS	DYNC1H1	G/V	Deleterious (0.886)	Prob_damaging (0.99)	Deleterious (0)	High_impact	Somatic
IC158	16	21726339	G	A	MS	OTOA	A/T	Neutral (0.021)	Benign (0.042)	Tolerated (0.37)	Low_impact	Somatic
IC467	12	49422612	T	C	MS	KMT2D	K/R	Deleterious (0.543)	Prob_damaging (0.994)	Deleterious (0)	NA	Somatic
IC467	17	11603150	A	G	MS	DMAH9	K/E	Deleterious (0.832)	Prob_damaging (0.942)	Deleterious (0)	Medium_impact	Somatic
IC467	19	51582924	C	A	MS	KLK14	R/M	Neutral (0.346)	Benign (0.231)	Tolerated (0.06)	Medium_impact	Somatic
IC467	19	54313656	C	A	MS	NLRP12	E/D	Neutral (0.028)	Benign (0.113)	Tolerated (0.37)	Low_impact	Somatic
IC467	X	58111262	C	T	MS	NLGN4X	A/T	Neutral (0.199)	Poss_damaging (0.47)	Tolerated (0.21)	Low_impact	Somatic
IC467	X	77112855	T	C	MS	MAGT1	N/S	Neutral (0.002)	Benign (0.014)	Tolerated (0.76)	Low_impact	Somatic

MS Misense, NS nonsense, SRV splice receptor variant
validation) and the average allele frequency (Spearman’s $r = 0.76$, $P = 0.01$, Additional file 3: Figure S1). The mean sequencing depth was 121.3 reads (88.6–186.8) for germline samples and 122.7 reads (72.8–163.6) for somatic samples, therefore the detection of low frequency variants is not substantially compromised by limited depth of coverage.

Discussion

The findings of this study are consistent with previous karyotyping and FISH studies that identified trisomy 12 as the most common chromosomal abnormality identifiable in ovarian fibromas [8–10]. Pure ovarian fibromas were found to harbour chromosomal abnormalities more frequently than benign serous ovarian tumours (88% vs. 33%), further supporting our hypothesis that a subset of benign serous tumours are actually fibromas that coincidentally have an associated epithelial cyst. However, benign serous tumours more frequently harboured trisomy 12 as the sole aberration (47% of tumours with aberrations) compared to fibromas (30% of tumours with aberrations). Fibromas also more frequently harboured CNA that were rarely detected in the benign serous tumours such as 9q gain (50% cases), potentially indicating unique underlying biological drivers.

Expression analysis provided some interesting candidates that have previously been associated with neoplasms or fibroblast growth for further investigation. Genes with increased expression in tumours with CNAs compared to those without CNAs included the extracellular matrix (ECM) and signalling molecules HAPLN1 and ANOS1, the antigen and repressor of retinoic acid signalling molecule PRAME, and the cell cycle regulator CKS2. All of these genes have been previously associated with overexpression in other types of neoplasm [28–34], and PRAME and CKS2 expression have been proposed as markers of poor prognosis in high-grade serous ovarian carcinoma [33, 35].

Genes with decreased expression in tumours with CNAs compared to those without CNAs included the putative DNA/RNA helicase SLFN11, the ECM protein PRELP, the high density lipoprotein component APOD, and the secreted chaperone CLU. Although these have all been linked with altered expression in other neoplasms before, this has typically been upregulation and potentially linked to neoplastic progression [36–40], including in ovarian cancer for APOD and CLU [41, 42]. Data is inconsistent for CLU, as expression was also linked to improved prognosis in high-grade serous ovarian carcinoma [33]. Low expression of SLFN11 has been associated with resistance to chemotherapy in ovarian cancer other cancers due to its role in the DNA damage response [43].

No genes were found to be recurrently mutated, however, two tumours had mutations in histone methyltransferases (SETD2 and KMT2D) and one also had a mutation in a demethylase (KDM4A), all previously associated with neoplasia and all mutations predicted to be deleterious. Other mutated genes have also been associated with neoplasia, such as HECW2, SRRT and KLK14, with predicted medium to high deleterious impact.

Limitations

- Use of Affymetrix Human Gene 1.0 ST array is limited to the probes on the array at the time.
- Insufficient power to detect differentially expressed genes due to $n=3$ normal ovaries.
- Limited ability to detect mutations due to normal contamination.

Supplementary information

Supplementary information accompanies this paper at https://doi.org/10.1186/s13104-020-05194-z.

Acknowledgements

The AOCS acknowledges the cooperation of the participating institutions in Australia and acknowledges the contribution of the study nurses, research assistants and all clinical and scientific collaborators to the study. The complete AOCS Study Group can be found at www.aocsstudy.org. We would like to thank all the women who participated in these research programs.

Authors’ contributions

Study design: KLG and IGC; Experiments: SMH and SMR; Data analysis: SMH, GVD, KLG, MAD, RL, JL; Preparation of tables and figures: KLG, GVD, SMH; Pathology review: PA; Collection of samples: DDLB; Drafting of manuscript: SMH, GVD, KLG and IGC. All authors reviewed and revised the manuscript. All authors read and approved the final manuscript.

Funding

This study was supported by the Victorian Breast Cancer Research Consortium (VBCRC) and the National Health & Medical Research Council of Australia (NHMRC, ID 628630) and the Emer Casey Foundation. The Australian Ovarian Cancer Study Group was supported by the U.S. Army Medical Research and Materiel Command under DAMD17-01-1-0729, The Cancer Council Victoria, Queensland Cancer Fund, The Cancer Council New South Wales, The Cancer Council South Australia, The Cancer Council Tasmania and The Cancer Foundation of Western Australia (Multi-State Applications 191, 211 and 182) and the National Health and Medical Research Council of Australia (NHMRC, ID400413 and ID400281). The Australian Ovarian Cancer Study gratefully acknowledges additional support from Ovarian Cancer Australia and the Peter MacCallum Foundation.

Availability of data and materials

Gene Expression Omnibus GSE67189—Molecular characterization of ovarian serous cystadenomas and fibromas [Copy number], GSE67223—Molecular characterization of ovarian serous cystadenomas and fibromas [Expression]
References
1. He H, Luthringer DJ, Hui P, Lau SK, Weiss LM, Chu PG. Expression of CD56 in ovarian serous and ovarian stromal tumors. Am J Surgical Pathol. 2008;32(6):884–90.
2. Deavers MT, Malpica A, Liu J, Broadus R, Silva EG. Ovarian sex cord-stromal tumors: an immunohistochemical study including a comparison of calretinin and inhibin. Modern pathology: an official journal of the United States and Canadian Academy of Pathology, Inc 2003, 16(6):584–590.
3. Kiechle-Schwarz M, Pfeiderer A, Sreekantaiah C, Berger CS, Medchill MT, Sandberg AA. Cluster of trisomy 12 to tumors of the female genitourinary tract. Cancer Genet Cytogenet. 1991;54(2):273–5.
4. Pandis N, Heim S, Sardi G, Pledger LM, Willen H, Mandal H, Mitel-Moerman P, De Wever I, Van den Berghe H. Numerical chromosomal abnormalities in ovarian stromal tumors: an immunohistochemical study including a comparison of calretinin and inhibin. Modern pathology: an official journal of the United States and Canadian Academy of Pathology, Inc 2003, 16(6):584–590.
5. Dal Cin P, Moerman P, De Wever I, Van den Berghe H. Numerical chromosome aberrations in fibrothecoma. Tumori. 1992;78(2):140–2.
6. Izutsu T, Kudo T, Miura F, Nishiya I. Numerical and structural chromosome abnormalities in an ovarian fibrothecoma. Cancer Genet Cytogenet. 1992;58(1):84–6.
7. Micci F, Haugom L, Abelar VM, Trope CG, Danielsen HE, Heim S. Consistent numerical chromosome aberrations in thecofibromas of the ovary. Virchows Arch. 2008;452(3):269–76.
8. Leung WY, Schwartz PE, Ng HT, Yang-Feng TL. Trisomy 12 in benign fibroma and granulosa cell tumor of the ovary: Gynecol Oncol 1990;38(1):26–31.
9. Liang SB, Sonobe H, Taguchi T, Takeuchi T, Furihata M, Yuri K, Ohtsuki Y. Histone H3 gene rearrangements in ovarian stromal tumors: evidence for translocation of the H3 gene to chromosome 12. Cancer Genet Cytogenet. 1990;50(2):119–24.
10. Persons DL, Hartmann LC, Herath JF, Keeney GL, Jenkins RB. Fluorescence in situ hybridization analysis of trisomy 12 in ovarian tumors. Am J Clin Pathol. 1994;102(6):775–9.
11. Fletcher JA, Gibas Z, Donovan K, Perez-Atayde A, Genest D, Morton CC, Lage JM. Ovarian granulosa-stromal cell tumors characterized by trisomy 12. Am J Pathol. 1991;138(5):515–20.
12. Schofield DE, Fletcher JA. Trisomy 12 in pediatric granulosa-stromal cell tumors. Demonstration by a modified method of fluorescence in situ hybridization on paraffin-embedded material. Am J Pathol. 1992;141(6):1265–9.
13. Streblow RC, Daffner AJ, Nelson M, Fletcher M, West WW, Stevens RK, Gatalica Z, Novak D, Bridge JA. Imbalances of chromosomes 4, 9, and 12 are recurrent in the thecoma-fibroma group of ovarian stromal tumors. Cancer Genet Cytogenet. 2007;178(2):135–40.
14. Hunter SM, Anglesio MS, Sharma R, Giles CB, Melnyk N, Chiew YE, deFazio A, Australian Ovarian Cancer Study G, Longacre TA, Huntsman DG, et al. Copy number aberrations in benign serous ovarian tumors: a case for reclassification. Clin Cancer Res. 2011;17(23):7273–82.
15. Bryan EJ, Watson RH, Davis M, Hitchcock A, Foulkes WD, Campbell IG. Localization of an ovarian cancer tumor suppressor gene to a 0.5–Chr region between D22S284 and CYPZ2D7, on chromosome 22q. Cancer Genet Cytogenet. 1996;65(4):719–21.
16. Anglesio MS, Arnold JM, George J, Tinkler AV, Tothill R, Waddell N, Simms L, Locandro B, Fereday S, Traffante N, et al. Mutation of ERBB2 provides a novel alternative mechanism for the ubiquitous activation of RAS-MAPK in ovarian serous low malignant potential tumors. Mol Cancer Res. 2008;6(11):1679–90.
17. Tothill RW, Tinker AV, George J, Brown R, Fox SB, Lade S, Johnson DS, Trivett MK, Etemadmoghadam D, Locandro B, et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin Cancer Res. 2008;14(16):5198–208.
18. Hunter SM, Gorrin GE, Christie M, Rowley SM, Bovett DD. Australian Ovarian Cancer Study G, Campbell IG. Pre-invasive ovarian mucinous tumors are characterized by CDKN2A and RAS pathway aberrations. Clin Cancer Res. 2012;18(19):5267–77.
19. Li H, Durbin R. Fast and accurate long-read assembly using Burrows-Wheeler transform. Bioinformatics. 2010;26(5):898–9.
20. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Quantitative Biology − Genomics 2013.
21. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garmella K, Altshuler D, Gabriel S, Daly M, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.
22. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, Jordan T, Shahrar K, Roazen D, Thibault J, et al. From FastQ to Data to High-Confidence Variant Calling: The Genome Analysis Toolkit Best Practices Pipeline. In: Current Protocols in Bioinformatics. John Wiley & Sons, Inc.; 2002.
23. Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics. 2009;25(21):2865–71.
24. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding L, Wilson RK. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22(3):568–76.
25. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Fafouine A, Gabriel S, Meyerson M, Lander ES, Getz G. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol. 2013;31(3):213–9.
26. Larson DE, Harris CC, Chen K, Koboldt DC, Abbott TE, Dooling DJ, Ley TJ, Mardis ER, Wilson RK, Ding L. SomaticSniper: identification of somatic point mutations in whole genome sequencing data. Bioinformatics. 2012;28(3):311–7.
27. Roth A, Ding L, Morin R, Cissan A, Ha G, Giuliani R, Bashashati A, Hirst M, Turashvili G, Oluomi A, et al. JointSNVMix: a probabilistic model for accurate detection of somatic mutations in normal/tumour paired next-generation sequencing data. Bioinformatics. 2012;28(7):907–13.
28. Lan Y, Zhang Y, Wang J, Lin C, Ittmann MM, Wang F. Aberrant expression of CK1 and CK2 contributes to prostate tumorigenesis by promoting proliferation and inhibiting programmed cell death. Int J Cancer. 2008;123(3):543–51.
29. Liu SY, Ding L, Morin R, Cissan A, Ha G, Giuliani R, Bashashati A, Hirst M, Turashvili G, Oluomi A, et al. JointSNVMix: a probabilistic model for accurate detection of somatic mutations in normal/tumour paired next-generation sequencing data. Bioinformatics. 2012;28(7):907–13.
30. Lan Y, Zhang Y, Wang J, Lin C, Ittmann MM, Wang F. Aberrant expression of CK1 and CK2 contributes to prostate tumorigenesis by promoting proliferation and inhibiting programmed cell death. Int J Cancer. 2008;123(3):543–51.
31. Bollinger L, Schlenk RE, Gotz M, Botzenhardt U, Hofmann S, Russ AC, Babiak A, Zhang L, Schneider V, Dohner K, et al. PRAME-induced inhibition of retinoic acid receptor signaling-mediated differentiation—a
possible target for ATRA response in AML without t(15;17). Clin Cancer Res. 2013;19(9):2562–71.
32. Doolan P, Clynes M, Kennedy S, Mehta JP, Crown J, O’Driscoll L. Prevalence and prognostic and predictive relevance of PRAME in breast cancer. Breast Cancer Res Treat. 2008;109(2):559–65.
33. Partheen K, Levan K, Osterberg L, Claesson I, Fallenius G, Sundfeldt K, Hovath G. Four potential biomarkers as prognostic factors in stage III serous ovarian adenocarcinomas. Int J Cancer. 2008;123(9):2130–7.
34. Haqq C, Nosrati M, Sudilovsky D, Crothers J, Khodakakhsh D, Pulliam BL, Federman S, Miller JR 3rd, Allen RE, Singer M, et al. The gene expression signatures of melanoma progression. Proc Natl Acad Sci U S A. 2005;102(17):6092–7.
35. Xu JH, Wang Y, Xu D. CKS2 promotes tumor progression and metastasis and is an independent predictor of poor prognosis in epithelial ovarian cancer. Eur Rev Med Pharmacol Sci. 2019;23(8):3225–34.
36. Wang X, Luo L, Dong D, Yu Q, Zhao K. Clusterin plays an important role in clear renal cell cancer metastasis. Urol Int. 2014;92(1):95–103.
37. Fu Y, Lai Y, Wang Q, Liu X, He W, Zhang H, Fan C, Yang G. Overexpression of clusterin promotes angiogenesis via the vascular endothelial growth factor in primary ovarian cancer. Mol Med Rep. 2013;7(6):1726–32.
38. Sandim V, Pereira Dde A, Kalume DE, Oliveira-Carvalho AL, Ornellas AA, Soares MR, Alves G, Zingali RB. Proteomic analysis reveals differentially secreted proteins in the urine from patients with clear cell renal cell carcinoma. Urol Oncol. 2016;34(1):e11-25.
39. Murai J, Thomas A, Miettinen M, Pommier Y. Schlafen 11 (SLFN11), a restriction factor for replicative stress induced by DNA-targeting anticancer therapies. Pharmacol Ther. 2019;201:94–102.
40. Mikaelsson E, Osterborg A, Jeddi-Tehrani M, Kokhadi F, Ostadkaram-pour M, Hadiavi R, Gholamin M, Akhondi M, Shokri F, Rabbani H, et al. A proline/arginine-rich end leucine-rich repeat protein (PRELP) variant is uniquely expressed in chronic lymphocytic leukemia cells. PLoS ONE. 2013;8(6):e67601.
41. Vazquez J, Gonzalez L, Merino A, Vizoso F. Expression and clinical significance of apolipoprotein D in epithelial ovarian carcinomas. Gynecol Oncol. 2000;76(3):340–7.
42. Hassan MK, Watari H, Han Y, Mitamura T, Hosaka M, Wang L, Tanaka S, Sakurai N. Clusterin is a potential molecular predictor for ovarian cancer patient’s survival: targeting clusterin improves response to paclitaxel. J Exp Clin Cancer Res. 2011;30:113.
43. Ballestriero A, Bedognetti D, Ferraioli D, Franceschelli P, Labidi-Galy S, Leo E, Mursai J, Pommier Y, Tsantoulis P, Vellone VG, et al. Report on the first SLFN11 monothematic workshop: from function to role as a biomarker in cancer. J Transl Med. 2017;15(1):199.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Hunter, SM; Dall, GV; Doyle, MA; Lupat, R; Li, J; Allan, P; Rowley, SM; Bowtell, D; Campbell, IG; Gorringe, KL

Title:
Molecular comparison of pure ovarian fibroma with serous benign ovarian tumours

Date:
2020-07-22

Citation:
Hunter, S. M., Dall, G. V., Doyle, M. A., Lupat, R., Li, J., Allan, P., Rowley, S. M., Bowtell, D., Campbell, I. G. & Gorringe, K. L. (2020). Molecular comparison of pure ovarian fibroma with serous benign ovarian tumours. BMC RESEARCH NOTES, 13 (1), https://doi.org/10.1186/s13104-020-05194-z.

Persistent Link:
http://hdl.handle.net/11343/245084

File Description:
published version

License:
CC BY