Four identities related to third-order mock theta functions

Su-Ping Cui¹,² · Nancy S. S. Gu³ · Chen-Yang Su³

Received: 14 October 2019 / Accepted: 26 May 2020 / Published online: 28 July 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Ramanujan presented four identities for third-order mock theta functions in his Lost Notebook. In 2005, with the aid of complex analysis, Yesilyurt first proved these four identities. Recently, Andrews et al. proved these identities by using q-series. In this paper, using some identities for the universal mock theta function

\[ g(x; q) = x^{-1} \left( -1 + \sum_{n=0}^{\infty} \frac{q^n}{(x; q)_n (q x^{-1}; q)_n} \right), \]

we provide different proofs of these four identities.

Keywords Universal mock theta function · Theta function · Mock theta function · Appell–Lerch sum

Mathematics Subject Classification 11B65 · 11F27

This work was supported by the National Natural Science Foundation of China, the Fundamental Research Funds for the Central Universities (Nankai University), and the Foreign Youth Exchange Program of China Association of Science and Technology.

Nancy S. S. Gu
gu@nankai.edu.cn

Su-Ping Cui
jiayoucui@163.com

Chen-Yang Su
cyangsu@163.com

¹ School of Mathematics and Statistics, Qinghai Normal University, Xining 810008, Qinghai, People’s Republic of China

² Academy of Plateau Science and Sustainability, Xining 810008, Qinghai, People’s Republic of China

³ Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, People’s Republic of China
1 Introduction

Let $q$ denote a complex number with $|q| < 1$. Throughout this paper, we adopt the standard $q$-series notation [6]. For any positive integer $n$,

\[(a; q)_0 := 1, \quad (a; q)_n := \prod_{k=0}^{n-1} (1 -aq^k), \quad (a; q)_\infty := \prod_{k=0}^{\infty} (1 -aq^k),\]

\[j(x; q) := (x; q)_\infty (q/x; q)_\infty (q; q)_\infty.\] (1.1)

Letting $a$ and $m$ be integers with $m$ positive, we define

\[J_{a,m} := j(q^a; q^m), \quad \tilde{J}_{a,m} := j(-q^a; q^m), \quad J_m := J_{m,3m} = \prod_{k=1}^{\infty} (1 -q^{mk}).\]

Recall the Jacobi triple product identity [6, Eq. (1.6.1)]

\[\sum_{k=-\infty}^{\infty} (-1)^k q^{(k/2)} x^k = (x; q)_\infty (q/x; q)_\infty (q; q)_\infty.\]

Thus, Ramanujan’s theta functions $\varphi(q)$ and $\psi(q)$ are defined, respectively, as follows.

\[\varphi(q) := \sum_{n=-\infty}^{\infty} q^{n^2} = (-q; q^2)_\infty^2 (q^2; q^2)_\infty = \frac{J_5^2}{J_2^2 J_4^2},\] (1.2)

\[\psi(q) := \sum_{n=0}^{\infty} q^{(n+1)/2} = \frac{(q^2; q^2)_\infty}{(q; q^2)_\infty} = \frac{J_2}{J_1}.\] (1.3)

For any real number $a$, define

\[f_a(q) := \sum_{n=0}^{\infty} \frac{q^{n^2}}{(1 +aq +q^2)(1 +aq^2 +q^4) \cdots (1 +aq^n +q^{2n})}.\] (1.4)

Set

\[\tilde{\varphi}(q) := f_0(q) = \sum_{n=0}^{\infty} \frac{q^{n^2}}{(-q^2; q^2)_n},\] (1.5)

which is one of the third-order mock theta functions included in Ramanujan’s last letter to Hardy. Then, Ramanujan [11] stated the following four identities related to third-order mock theta functions in his Lost Notebook. For more on mock theta functions, see Andrews and Berndt’s book[2].
Entry 1.1 [11, p. 2] Suppose that a and b are real numbers such that \( a^2 + b^2 = 4 \). Recall that \( f_a(q) \) is defined by (1.4). Then

\[
\frac{b-a+2}{4} f_a(-q) + \frac{b+a+2}{4} f_{-a}(-q) - \frac{b}{2} f_b(q) = \left( \frac{q^4; q^4}{(-q; q^2)} \prod_{n=1}^{\infty} \frac{1-bq^n + q^{2n}}{1+(a^2b^2-2)q^{4n} + q^{8n}} \right). \tag{1.6}
\]

Entry 1.2 [11, p. 2] Let a and b be real numbers with \( a^2 + ab + b^2 = 3 \). Then, with \( f_a(q) \) defined by (1.4),

\[
(a+1) f_{-a}(q) + (b+1) f_{-b}(q) - (a+b-1) f_{a+b}(q) = \left( \frac{q^3; q^3}{(q; q)} \prod_{n=1}^{\infty} \frac{1}{1+ab(a+b)q^{3n} + q^{6n}} \right). \tag{1.7}
\]

Entry 1.3 [11, p. 17] Let \( \psi(q) \) and \( f_a(q) \) be defined by (1.3) and (1.4), respectively. Then

\[
\frac{1 + \sqrt{3}}{2} f_{-1}(-q) + \frac{3 + \sqrt{3}}{6} f_1(-q) = f_{\sqrt{3}}(q) - \frac{2}{\sqrt{3}} \psi(-q) \left( \frac{q^4; q^4}{(q^6; q^6)} \prod_{n=1}^{\infty} \frac{1}{1+\sqrt{3}q^n + q^{2n}} \right). \tag{1.8}
\]

Entry 1.4 [11, p. 17] Let \( \psi(q) \), \( f_a(q) \), and \( \tilde{\phi}(q) \) be defined by (1.3), (1.4), and (1.5), respectively. Then

\[
\frac{1}{2} \left( 1 + e^{\pi i/4} \right) \tilde{\phi}(iq) + \frac{1}{2} \left( 1 + e^{-\pi i/4} \right) \tilde{\phi}(-iq) = f_{\sqrt{2}}(q) = \left( \frac{1}{\sqrt{2}} \psi(-q)(-q^2; q^4) \prod_{n=1}^{\infty} \frac{1}{1+\sqrt{2}q^n + q^{2n}} \right). \tag{1.9}
\]

In 1944, Dyson [5] defined the rank of a partition to be the largest part minus the number of parts. Let \( N(m, n) \) denote the number of partitions of the positive integer \( n \) with rank \( m \). Then, he showed that the generating function for \( N(m, n) \) is given by

\[
\sum_{m=-\infty}^{\infty} \sum_{n=0}^{\infty} N(m, n) q^n x^m = \sum_{n=0}^{\infty} \frac{q^{n^2}}{(qx; q)_n(qx^{-1}; q)_n} =: G(x, q). \tag{1.8}
\]

From (1.4) and (1.8), it can be seen that

\[
f_a(q) = G \left( \frac{-a \pm \sqrt{a^2 - 4}}{2}, q \right). \]
The proofs of Entries 1.1–1.4 which were first provided by Yesilyurt [12] rely on the following lemma due to Atkin and Swinnerton–Dyer.

**Lemma 1.5** [4] Let \( q, |q| < 1 \), be fixed. Suppose that \( \vartheta(z) \) is an analytic function of \( z \), except for possibly a finite number of poles, in every region, \( 0 < z_1 \leq |z| \leq z_2 \). If

\[
\vartheta(zq) = A z^k \vartheta(z)
\]

for some integer \( k \) (positive, zero, or negative) and some constant \( A \), then either \( \vartheta(z) \) has \( k \) more poles than zeros in the region \( |q| < |z| \leq 1 \), or \( \vartheta(z) \) vanishes identically.

Recently, Andrews et al. [3] offered different proofs of these four identities by using \( q \)-series. The proofs of Entries 1.1–1.3 depend on a partial fraction expansion formula, and in the proof of Entry 1.4, two 2-dissections for two special cases of the rank generating function \( G(x, q) \) are the main tools.

The object of this paper is to present different proofs of these four identities by using the universal mock theta function,

\[
g(x; q) := x^{-1} \left( -1 + \sum_{n=0}^{\infty} \frac{q^{n^2}}{(x; q)_{n+1} (qx^{-1}; q)_n} \right).
\]

A transformation formula of \( g(x; q) \) given by Ramanujan [11] and an identity of \( g(x; q) \) due to Hickerson [7,8] play important roles in our proofs, see Propositions 2.2 and 2.3 in the next section. This paper is organized as follows. In Sect. 2, we show some preliminary results which are used in our proofs. In Sect. 3, we prove Entries 1.1–1.4.

## 2 Preliminaries

In this section, we present some preliminary results. For later use, we need the following identities:

\[
\overline{J}_{1,2} = \frac{J_5^2}{J_1 J_4^2}, \quad J_{1,2} = \frac{J_1^2}{J_2}, \quad J_{1,4} = \frac{J_1 J_4}{J_2}.
\]

In addition, the following general identities are frequently used in this paper.

\[
j(qx; q) = -x^{-1} j(x; q), \quad j(x; q) = j(qx^{-1}; q),
\]

\[
j(x^2; q^2) = j(x; q) j(-x; q) / J_{1,2},
\]

\[
j(x; q) = J_1 j(x; q^2) j(qx; q^2) / J_2^2,
\]

\[
j(x; q) = \sum_{k=0}^{m-1} (-1)^k q^{\binom{k}{2}} x^k j \left( (-1)^{m+1} q^{\binom{m}{2}} + mk x^m; q m^2 \right).
\]
Setting \( m = 2 \) in (2.5) yields that

\[
j(x; q) = j(-qx^2; q^4) - xj(-q^3x^2; q^4).
\]

(2.6)

Hickerson and Mortenson \[8\] defined Appell–Lerch sums as follows.

**Definition 2.1** Let \( x, z \in \mathbb{C}^* := \mathbb{C}\setminus\{0\} \) with neither \( z \) nor \( xz \) an integral power of \( q \). Then

\[
m(x, q, z) := \frac{1}{j(z; q)} \sum_{r = -\infty}^{\infty} \frac{(-1)^r q(r) z^r}{1 - q^{r-1}xz}.
\]

Following \[8\], the term “generic” means that the parameters do not cause poles in the Appell–Lerch sums or in the quotients of theta functions. The next proposition can be found in the Lost Notebook.

**Proposition 2.2** ([11, p. 32], \[1, Eq. (12.5.13)\]). For generic \( x \in \mathbb{C}^* \),

\[
g(x; q) = -x^{-1} + qx^{-3} g(-qx^{-2}; q^4) - qg(-qx^2; q^4) + \frac{J_2 J_2^4}{xj(x; q)j(-qx^2; q^2)}.
\]

The following proposition was first proved by Hickerson \[7\], and then Hickerson and Mortenson \[8\] rewrote the identity in terms of Appell–Lerch sums.

**Proposition 2.3** ([7, Theorem 2.2], \[8\]). For generic \( x, z \in \mathbb{C}^* \),

\[
g(x; q) = -x^{-2}m(qx^{-3}, q^3, x^3z) - x^{-1}m(q^2x^{-3}, q^3, x^3z) + \frac{J_2^2}{j(x; q)j(xz; q^3)}.
\]

(2.7)

Notice that a special case of (2.7) with \( z = 1 \) reads

\[
g(x; q) = -x^{-2}m(qx^{-3}, q^3, x^3) - x^{-1}m(q^2x^{-3}, q^3, x^3) + \frac{J_3^3}{J_1 j(x^3; q^3)}.
\]

(2.8)

In the proof of Entry 1.4, we apply the next two propositions to simplify theta function identities.

**Proposition 2.4** \[9, Proposition 3.4\] Let \( x \neq 0 \). Then

\[
j(q^2x; q^4) j(q^5x; q^8) + \frac{q}{x} \cdot j(x; q^4) j(qx; q^8) - \frac{J_1}{J_4} \cdot j(-q^3x; q^4) j(q^3x; q^8) = 0.
\]

**Proposition 2.5** \[10, Proposition 2.5\] Let \( x \neq 0 \). Then

\[
j(-x; q^4) j(-q^5x; q^8) - j(-q^2x; q^4) j(-qx; q^8)
- x \frac{J_1}{J_4} \cdot j(q^3x; q^4) j(-q^7x; q^8) = 0.
\]
Furthermore, in view of (1.8) and (1.9), we arrive at

\[ G(x, q) = (1 - x) (xg(x; q) + 1). \] (2.9)

### 3 Proofs of Entries 1.1–1.4

In this section, employing Propositions 2.2-2.5, we prove Entries 1.1–1.4.

**Proof of Entry 1.1** Set \( a = 2 \cos \theta, b = 2 \sin \theta, \) and \( t = e^{i \theta}. \) Then \( a = t + t^{-1} \) and \( b = -i(t - t^{-1}). \) So we have

\[
\begin{align*}
\frac{b - a + 2}{4} &= \frac{(i - 1)(1 - it)(1 - t)}{4t}, \\
\frac{b + a + 2}{4} &= \frac{(i + 1)(1 - it)(1 + t)}{4t}, \\
\frac{b}{2} &= \frac{i(1 - t^2)}{2t}, \quad a^2b^2 - 2 = -(t^4 + t^{-4}).
\end{align*}
\]

Moreover, according to (1.4) and (1.8), we obtain that

\[
\begin{align*}
f_a(q) &= G(-t, q), \quad f_{-a}(q) = G(t, q), \quad f_b(q) = G(it, q).
\end{align*}
\]

Thus, using the above relations, we rewrite (1.6) as

\[
\begin{align*}
\frac{(i - 1)(1 - it)(1 - t)}{4t} G(-t, -q) + \frac{(i + 1)(1 - it)(1 + t)}{4t} G(t, -q) - \frac{i(1 - t^2)}{2t} G(it, q) &= \frac{(q^4; q^4)_{\infty}(-iqt; q)_{\infty}(iqt^{-1}; q)_{\infty}}{(-q^2; q^2)_{\infty}(q^4t^4; q^4)_{\infty}(q^4t^{-4}; q^4)_{\infty}}. \quad (3.1)
\end{align*}
\]

Multiplying both sides of (3.1) by \( 4t(1 + it)/(i - 1)(1 - t^4)) \), we arrive at

\[
\frac{1}{1 + t} G(-t, -q) - \frac{i}{1 - t} G(t, -q) + \frac{i - 1}{1 - it} G(it, q) = -\frac{2(1 + it)J_3^3 j(-it; q)}{J_2^2 j(t^4; q^4)}. \quad (3.2)
\]

Hence, to prove Entry 1.1, it suffices to prove (3.2).

First, we consider the left-hand side of (3.2). Using (2.9) in the first equality and Proposition 2.2 in the third equality below, we have

\[
\begin{align*}
\frac{1}{1 + t} G(-t, -q) - \frac{i}{1 - t} G(t, -q) + \frac{i - 1}{1 - it} G(it, q) &= -tg(-t; -q) + 1 - itg(t; -q) + 1 + (i - 1)(itg(it; q) + 1) \\
&= -tg(-t; -q) - itg(t; -q) - (1 + i)tg(it; q)
\end{align*}
\]
Four identities related to third-order mock theta functions

\[ = -1 - qt^{-2}g(qt^{-2}; q^4) - qt g(qt^2; q^4) + \frac{J_2 J_{2,4}^2}{j(-t; -q) j(qt^2; q^2)} \]

\[ + i + iqt^{-2}g(qt^{-2}; q^4) - iqt g(qt^2; q^4) - \frac{i J_2 J_{2,4}^2}{j(t; -q) j(qt^2; q^2)} \]

\[ - i + 1 + (1 - i)qt^{-2}g(qt^{-2}; q^4) + (1 + i)qt g(qt^2; q^4) - \frac{(1 - i)J_2 J_{2,4}^2}{j(it; q) j(qt^2; q^2)} \]

\[ = (-1 + i + 1 - i)qt^{-2}g(qt^{-2}; q^4) - (1 + i - 1)qt g(qt^2; q^4) \]

\[ + \frac{J_2 J_{2,4}^2}{j(-t; -q) j(qt^2; q^2)} - \frac{i J_2 J_{2,4}^2}{j(t; -q) j(qt^2; q^2)} - \frac{(1 - i)J_2 J_{2,4}^2}{j(it; q) j(qt^2; q^2)} \]

\[ = \frac{J_2 J_{2,4}^2}{j(qt^2; q^2)} \left( \frac{1}{j(-t; -q)} - \frac{i}{j(t; -q)} - \frac{1 - i}{j(it; q)} \right). \quad (3.3) \]

Define

\[ A := \frac{1}{j(-t; -q)} - \frac{i}{j(t; -q)} - \frac{1 - i}{j(it; q)} \]

\[ = \frac{j(-t; -q) j(it; q) - ij(-t; -q) j(it; q) - (1 - i) j(-t; -q) j(t; -q)}{j(-t; -q) j(t; -q) j(it; q)}. \]

To evaluate \( A \), by (2.6), we deduce that

\[ j(-t; -q) = j(qt^2; q^4) + tj(q^3 t^2; q^4), \]

\[ j(t; -q) = j(qt^2; q^4) - tj(q^3 t^2; q^4), \]

\[ j(it; q) = j(qt^2; q^4) - itj(q^3 t^2; q^4). \]

Then by means of the above three identities, we find that

\[ j(t; -q) j(it; q) - ij(-t; -q) j(it; q) - (1 - i) j(-t; -q) j(t; -q) \]

\[ = \left( j(qt^2; q^4) - tj(q^3 t^2; q^4) \right) \left( j(qt^2; q^4) - itj(q^3 t^2; q^4) \right) \]

\[ - i \left( j(qt^2; q^4) + tj(q^3 t^2; q^4) \right) \left( j(qt^2; q^4) - itj(q^3 t^2; q^4) \right) \]

\[ - (1 - i) \left( j(qt^2; q^4) + tj(q^3 t^2; q^4) \right) \left( j(qt^2; q^4) - tj(q^3 t^2; q^4) \right) \]

\[ = -2(1 + i)tj(qt^2; q^4) j(q^3 t^2; q^4). \quad (3.4) \]

Hence, utilizing (2.3), (2.4), and (3.4), we obtain that

\[ A = \frac{-2(1 + i)tj(qt^2; q^4) j(q^3 t^2; q^4)}{j(-t; -q) j(t; -q) j(it; q) j(it; q)} \]

\[ = \frac{-2(1 + i)tJ_2^2 J_{2,4}^2}{J_2 j(-t; -q) j(t; -q) j(it; q) j(it; q)}. \]
Thus, the right-hand side of (3.3) becomes
\[
\frac{J_2 J_{2,4}^2}{j(q t^2; q^2)} \left( -\frac{2(1 + it) J_4^2 j(q t^2; q^2) j(-it; q)}{J_2 J_{1,2} j J_{2,4} j(t^4; q^4)} \right) = -\frac{2(1 + it) J_4^2 j(-it; q)}{J_2 J_{1} j(t^4; q^4)},
\]
which is the right-hand side of (3.2). Therefore, we complete the proof of Entry 1.1.

\[\square\]

**Proof of Entry 1.2** We parameterize \(a^2 + ab + b^2 = 3\) by \(a = 2 \cos(\theta + 2\pi/3)\), \(b = 2 \cos \theta\), and \(t = e^{i\theta}\). Let \(\omega = e^{i\pi/3}\). Then we have \(a = \omega t + (\omega t)^{-1}\) and \(b = t + t^{-1}\). So,

\[
a + b = -\omega^2 t - (w^2 t)^{-1}, \quad a + 1 = \frac{1 - t^3}{\omega t(1 - \omega t)}, \quad b + 1 = \frac{1 - t^3}{t(1 - t)},
\]

\[
a + b - 1 = -\frac{1 - t^3}{\omega^2 t(1 - \omega^2 t)}, \quad ab(a + b) = -t^3 - t^{-3},
\]

and

\[
f_{-a}(q) = G(\omega t, q), \quad f_{-b}(q) = G(t, q), \quad f_{a+b}(q) = G(\omega^2 t, q).
\]

Therefore, (1.7) is equivalent to the following identity:

\[
\frac{1 - t^3}{\omega t(1 - \omega t)} G(\omega t, q) + \frac{1 - t^3}{t(1 - t)} G(t, q) + \frac{1 - t^3}{\omega^2 t(1 - \omega^2 t)} G(\omega^2 t, q)
\]

\[
= \frac{3(q^3; q^3)_{\infty}^2}{(q; q)_{\infty}} \prod_{n=1}^{\infty} \frac{1}{1 - (t^3 + t^{-3}) q^{3n} + q^{6n}}.
\]

(3.5)

Observing that the right-hand side of (3.5) reduces to

\[
\frac{3 J_3^3(1 - t^3)}{J_1 j(t^3; q^3)},
\]

we are required to prove that

\[
\frac{G(\omega t, q)}{\omega t(1 - \omega t)} + \frac{G(t, q)}{t(1 - t)} + \frac{G(\omega^2 t, q)}{\omega^2 t(1 - \omega^2 t)} = \frac{3 J_3^3}{J_1 j(t^3; q^3)}.
\]
From (2.9), it can be seen that
\[
\frac{G(\omega t, q)}{\omega t(1 - \omega t)} + \frac{G(t, q)}{t(1 - t)} + \frac{G(\omega^2 t, q)}{\omega^2 t(1 - \omega^2 t)} = g(\omega t; q) + \frac{1}{\omega t} + g(t; q) + \frac{1}{t} + g(\omega^2 t; q) + \frac{1}{\omega^2 t} = g(t; q) + g(\omega t; q) + g(\omega^2 t; q).
\]
(3.6)

Then applying (2.8) to the right-hand side of (3.6) gives
\[
\frac{G(\omega t, q)}{\omega t(1 - \omega t)} + \frac{G(t, q)}{t(1 - t)} + \frac{G(\omega^2 t, q)}{\omega^2 t(1 - \omega^2 t)} = -t^{-2}m(qt^{-3}, q^3, t^3) - t^{-1}m(q^2t^{-3}, q^3, t^3) + \frac{J_3^3}{J_1 j(t^3; q^3)}
\]
\[
- \omega t^{-2}m(qt^{-3}, q^3, t^3) - \omega^2 t^{-1}m(q^2t^{-3}, q^3, t^3) + \frac{J_3^3}{J_1 j(t^3; q^3)}
\]
\[
- \omega^2 t^{-2}m(qt^{-3}, q^3, t^3) - \omega t^{-1}m(q^2t^{-3}, q^3, t^3) + \frac{J_3^3}{J_1 j(t^3; q^3)}
\]
\[
= -(1 + \omega + \omega^2) t^{-2}m(qt^{-3}, q^3, t^3) - (1 + \omega + \omega^2)t^{-1}m(q^2t^{-3}, q^3, t^3)
\]
\[
+ \frac{3J_3^3}{J_1 j(t^3; q^3)} = \frac{3J_3^3}{J_1 j(t^3; q^3)}.
\]

Therefore, we complete the proof of Entry 1.2.

It is easy to find that Entry 1.3 is a special case of Entry 1.1. One can refer to the proof in [12]. Here we omit it.

**Proof of Entry 1.4** Let \( \alpha = e^{\pi i/4} \). According to (1.4), (1.5), and (1.8), we have
\[
f_{\sqrt{2}}(q) = G(-\alpha, q), \quad \tilde{\phi}(q) = G(i, q).
\]

In view of the above two identities, we restate Entry 1.4 as
\[
\frac{1 + \alpha}{2} G(i, i q) + \frac{1 + \alpha^{-1}}{2} G(i, -i q) - G(-\alpha, q) = \frac{1}{\sqrt{2}} \psi(-q)(-q^2; q^4) \psi(q; q) \psi^{-1}(-q; q^4) \psi^{-1}(-q^{-1}; q^4).
\]

Dividing both sides of the above identity by \((1 + \alpha)/2\), we deduce that
\[
G(i, i q) + \alpha^{-1} G(i, -i q) - \frac{2}{1 + \alpha} G(-\alpha, q) = \sqrt{2} \frac{\psi(-q)(-q^2; q^4) \psi(q; q) \psi^{-1}(-q; q^4) \psi^{-1}(-q^{-1}; q^4)}{J(-\alpha; q)}.
\]
(3.7)
Replacing \( q \) by \( iq \) in (3.7) yields that

\[
G(i, -q) + \alpha^{-1}G(i, q) - \frac{2}{1 + \alpha}G(-\alpha, iq) = \sqrt{2}\frac{\psi(-iq)(q^2; q^4)}{j(-\alpha; iq)}\psi(-iq)(q^2; q^4).
\]

(3.8)

Therefore, to obtain Entry 1.4, it suffices to prove (3.8).

In the following, we first consider the left-hand side of (3.8). Using (2.9) and Proposition 2.2, we have

\[
G(i, q) = (i + 1)g(i; q) + 1 - i
\]

\[
= (i + 1)\left(i + (i - 1)qg(q; q^4) + \frac{J_2 J_2^2}{ij(i; q) j(q; q^2)}\right) + 1 - i
\]

\[
= -2qg(q; q^4) + (1 - i)\frac{J_2 J_2^2}{j(i; q) j(q; q^2)}.
\]

(3.9)

Similarly, by noticing that \( \alpha^2 = i \) and \( \alpha^3 = -\alpha^{-1} \), we arrive at

\[
G(i, -q) = 2qg(-q; q^4) + (1 - i)\frac{J_2 J_2^2}{j(i; -q) j(-q; q^2)}
\]

\[
- \frac{2}{1 + \alpha}G(-\alpha, q) = 2iqg(iq; q^4) - 2q\alpha g(-iq; q^4) - \frac{2J_2 J_2^2}{j(-\alpha; q) j(-iq; q^2)}.
\]

(3.10)

(3.11)

To evaluate the right-hand side of (3.11), using (1.1) and (2.3), we find that

\[
j(\alpha; q) j(-\alpha; q) = J_{1, 2}J(i; q^2) = (1 - i)\frac{J_1^2 J_8}{J_4},
\]

(3.12)

\[
j(-iq; q^2) = \frac{J_4^2}{J_8}.
\]

(3.13)

So, by (1.2), (3.12), and (3.13), we deduce that

\[
\frac{J_2 J_2^2}{j(-\alpha; q) j(-iq; q^2)} = \frac{J_2 J_2^2}{j(-\alpha; q) j(-iq; q^2)} \frac{j(\alpha; q)}{j(-\alpha; q) j(-iq; q^2)} \frac{j(\alpha; q)}{j(\alpha; q)} \frac{\varphi(q) j(\alpha; q)}{(1 - i) J_4 J_4}.
\]

Therefore, we restate (3.11) as

\[
- \frac{2}{1 + \alpha}G(-\alpha, q) = 2iqg(iq; q^4) - 2q\alpha g(-iq; q^4) - \frac{2\varphi(q) j(\alpha; q)}{(1 - i) J_4}.
\]
Four identities related to third-order mock theta functions

Then, substituting (3.9), (3.10), and (3.14) into the left-hand side of (3.8), we obtain

\[ G(i, -q) + \alpha^{-1}G(i, q) - \frac{2}{1 + \alpha}G(-\alpha, iq) \]

Substituting the above identity into (3.15), we have

\[ j(i; q) = j(q; q^4) - iq(j^3; q^4) = (1 - i)j(q; q^4). \]

To continue the evaluation from (3.15), we note that from (2.2) and (2.6),

\[ j(i; q) = j(q; q^4) - iq(j^3; q^4) = (1 - i)j(q; q^4). \]

Substituting the above identity into (3.15), we have

\[ G(i, -q) + \alpha^{-1}G(i, q) - \frac{2}{1 + \alpha}G(-\alpha, iq) \]

where we use (2.3) in the last equality.

Next, we give an alternative representation for the right-hand side of (3.8).

\[ \frac{\sqrt{2}\psi(-iq)(q^2; q^4)_{\infty}(iq; iq)_{\infty}}{j(-\alpha; iq)} = \frac{\sqrt{2}\psi(-iq)(q^2; q^4)_{\infty}(iq; iq)_{\infty}}{j(-\alpha; iq)} \cdot \frac{j(\alpha; iq)}{j(\alpha; iq)} \]

where we utilize (1.3) and (3.12). Therefore, combining (3.16) and (3.17), we only need to prove that

\[ (1 - i)\left(j(q; q^4)j(q; q^2) + \alpha^{-1}j(-q; q^4)j(-q; q^2)\right) - 2\varphi(iq)j(\alpha; iq) \]

\[ = \sqrt{2}j(q^2; q^4)j(\alpha; iq). \]
In view of (2.6), we have

\[
\begin{align*}
    j(q; q^4) &= j(-q^6; q^6) - qj(-q^{14}; q^{16}), \\
    j(q; q^2) &= j(-q^8; q^8) - qj(-q^6; q^8), \\
    \varphi(iq) &= j(-iq; -q^2) = j(-q^4; q^8) + iqj(-q^8; q^8).
\end{align*}
\]

(3.19)  
(3.20)  
(3.21)

Moreover, using (2.6) twice yields

\[
\begin{align*}
    j(\alpha; iq) &= j(q; q^4) - \alpha j(-q; q^4) \\
    &= j(-q^6; q^6) - qj(-q^{14}; q^{16}) - \alpha \left(j(-q^6; q^6) + qj(-q^{14}; q^{16})\right) \\
    &= (1 - \alpha)j(-q^6; q^6) - (1 + \alpha)qj(-q^{14}; q^{16}).
\end{align*}
\]

(3.22)

Then, substituting (1.3)–(3.22) into the left-hand side of (3.18), we find that

\[
\begin{align*}
    (1 - i) \left(j(q; q^4)j(q; q^2) + \alpha^{-1}j(-q; q^4)j(-q; q^2)\right) &= 2\varphi(iq) j(\alpha; iq) \\
    &= (1 - i) \left(j(-q^6; q^6) - qj(-q^{14}; q^{16})\right) \left(j(-q^4; q^8) - qj(-q^6; q^8)\right) \\
    &\quad + (1 - i)\alpha^{-1} \left(j(-q^6; q^6) + qj(-q^{14}; q^{16})\right) \left(j(-q^4; q^8) + qj(-q^6; q^8)\right) \\
    &\quad - 2 \left(j(-q^4; q^8) + iqj(-q^8; q^8)\right) \left((1 - \alpha)j(-q^6; q^6) - (1 + \alpha)qj(-q^{14}; q^{16})\right) \\
    &= (-1 + \sqrt{2} - i) \left(j(-q^4; q^8)j(-q^6; q^{16}) - q^2j(-q^8; q^8)j(-q^{14}; q^{16})\right) \\
    &\quad + (1 + \sqrt{2} + i)q \left(j(-q^4; q^8)j(-q^{14}; q^{16}) - j(-q^8; q^8)j(-q^6; q^{16})\right).
\end{align*}
\]

(3.23)

Furthermore, setting \( q \rightarrow q^2 \) and \( x = -1 \) in Proposition 2.4 and employing (2.2), we arrive at

\[
\begin{align*}
    j(-q^4; q^8)j(-q^6; q^{16}) - q^2j(-q^8; q^8)j(-q^{14}; q^{16}) &= j(q^2; q^4)j(-q^6; q^{16}).
\end{align*}
\]

(3.24)

Setting \( q \rightarrow q^2 \) and \( x = q^4 \) in Proposition 2.5 and applying (2.1) and (2.2), we obtain

\[
\begin{align*}
    j(-q^4; q^8)j(-q^{14}; q^{16}) - j(-q^8; q^8)j(-q^6; q^{16}) &= -j(q^2; q^4)j(-q^{14}; q^{16}).
\end{align*}
\]

(3.25)

Then substituting (3.24) and (3.25) into (3.23), we derive that

\[
\begin{align*}
    (1 - i) \left(j(q; q^4)j(q; q^2) + \alpha^{-1}j(-q; q^4)j(-q; q^2)\right) &= 2\varphi(iq) j(\alpha; iq) \\
    &= (1 + \sqrt{2} - i)q \left(j(q^2; q^4)j(-q^6; q^{16}) - \sqrt{2}(1 + \alpha)qj(q^2; q^4)j(-q^{14}; q^{16})\right).
\end{align*}
\]
\[
= \sqrt{2} j(q^2; q^4) j(\alpha; iq),
\]
where we use (3.22) to obtain the last equality. Now we complete the proof of Entry 1.4.

\[\square\]

References

1. Andrews, G.E., Berndt, B.C.: Ramanujan’s Lost Notebook, Part I. Springer, New York (2005)
2. Andrews, G.E., Berndt, B.C.: Ramanujan’s Lost Notebook Part V. Springer, New York (2018)
3. Andrews, G.E., Berndt, B.C., Chan, S.H., Kim, S., Malik, A.: Four identities for third order mock theta functions. Nagoya Math. J. (2018). https://doi.org/10.1017/nmj.2018.35
4. Atkin, A.O.L., Swinnerton-Dyer, P.: Some properties of partitions. Proc. Lond. Math. Soc. 4, 84–106 (1954)
5. Dyson, F.J.: Some guesses in the theory of partitions. Eureka 8, 10–15 (1944)
6. Gasper, G., Rahman, M.: Basic Hypergeometric Series, 2nd edn. Cambridge Univ. Press, Cambridge (2004)
7. Hickerson, D.: A proof of the mock theta conjectures. Invent. Math. 94, 639–660 (1988)
8. Hickerson, D., Mortenson, E.: Hecke-type double sums, Appell–Lerch sums, and mock theta functions, I. Proc. Lond. Math. Soc. 109, 382–442 (2014)
9. Mortenson, E.: On three third order mock theta functions and Hecke-type double sums. Ramanujan J. 30, 279–308 (2013)
10. Mortenson, E.: On ranks and cranks of partitions modulo 4 and 8. J. Comb. Theory. Ser. A 161, 51–80 (2019)
11. Ramanujan, S.: The Lost Notebook and Other Unpublished Papers. Narosa Publishing House, New Delhi (1988)
12. Yesilyurt, H.: Four identities related to third order mock theta functions in Ramanujan’s lost notebook. Adv. Math. 190, 278–299 (2005)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.