Localized and systemic bacterial infections in necrotizing pancreatitis submitted to surgical necrosectomy or percutaneous drainage of necrotic secretions

Bruno Cacopardo1*, Marilia Rita Pinzone1, Salvatore Berretta2, Rossella Fisichella2, Maria Di Vita2, Guido Zanghi2, Alessandro Cappellani2, Giuseppe Nunnari1, Antonio Zanghi2

From 26th National Congress of the Italian Society of Geriatric Surgery
Naples, Italy. 19-22 June 2013

Abstract

Background: Infectious complications are observed in 40-70% of all patients with severe acute pancreatitis. Infections are associated with a significant increase in mortality rates.

Methods: We evaluated the prevalence and characteristics of pancreatic and systemic infections in 46 patients with necrotizing pancreatitis submitted to surgical procedures during their hospital stay as well as the impact of such infectious complications on patient clinical outcome. Samples for microbiological cultures were taken at hospital admission from blood and bile and 2 days after invasive procedure from blood, drainage fluid, bile and necrotic tissues.

Results: 74% patients with necrotizing pancreatitis had a localized or systemic infection. At admission, 15% of subjects had positive blood cultures whereas 13% had evidence of bacterial growth from bile cultures. Two days after the invasive procedures for removal of necrotic materials and fluids, blood cultures became positive in 30% of patients in spite of antibiotic prophylaxis and bile cultures resulted positive in 22% of cases. Furthermore, bacterial growth from drainage fluids was found in 30% and from homogenized necrotic material in 44% of cases. As refers to bacterial isolates, all patients had a monomicrobial infection. Carbapenems were the drugs with the best sensitivity profile.

Mortality rate was significantly (p < 0.05) higher among patients with infection (17%) than subjects without infection (8%). Within the infected group, those subjects with evidence of systemic infection (positive blood cultures) developed more complications and demonstrated a higher (p < 0.05) mortality rate (28%) than those who had only a localized infection (10%).

Conclusions: Infectious complications significantly increase mortality in patients with necrotizing pancreatitis. In addition, subjects with systemic infections developed more complications and demonstrated a higher mortality rate in comparison with those having a localized infection. In our study, the sensitivity pattern of the isolated microorganisms suggests to consider carbapenems as the best option for empirical treatment in patients with necrotizing pancreatitis who develop a clear-cut evidence of systemic or localized bacterial infection.
Background
Infectious complications are observed in 40-70% of all patients with severe acute pancreatitis [1-3]. Mortality usually peaks within the first 7-10 days as a result of infectious complications, either limited to pancreatic necrotic areas or spread in the bloodstream [4,5]. Sterile pancreatic necrosis has a mortality rate of 20%, whereas it increases to more than 50% in the case of infected necrosis [6]. There is evidence that the involved bacteria originate from the gastrointestinal tract by transepithelial translocation [7].

These patients are often given prophylactic antibiotics, although the use of this strategy may result in the development of an infection with resistant bacteria. We conducted a study aimed at evaluating the prevalence and characteristics of pancreatic and systemic infections in patients with necrotizing pancreatitis submitted to surgical procedures during their hospital stay. We also evaluated the impact of such infectious complications on patient clinical outcome.

Patients and methods
46 patients affected with acute necrotizing pancreatitis were consecutively enrolled among those admitted over a five-year period (2006-2011) at the Department of Surgery, University Hospital of Catania. The diagnosis of acute pancreatitis was based on clinical features, elevated serum amylase and/or lipase levels (more than 4-fold the upper reference limit) and evidence of pancreatic abnormalities on contrast-enhanced computed tomography (CECT) of the abdomen. The most common etiologies were gallstones (21 cases), alcohol (14 cases) and pancreotoxic drugs (8 cases), whereas 3 cases originated from abdominal traumas. The CT Severity Index [8] was 10 in 22 cases, 9 in 14 patients and 8 in the remainder 10 patients. All patients were closely monitored with adequate amounts of intravenous fluids and pain management. Supportive measures such as enteral nutrition and antibiotic prophylaxis were adopted in all cases. All 46 cases were managed invasively: 16 cases underwent percutaneous catheter drainage of necrotic secretions, 15 cases received minimally invasive retroperitoneal necrosectomy. Seven of 46 patients (15%) died within 3 weeks from the onset of the disease.

Statistical analysis was carried out using the statistical software package SPSS version 17.0 (SPSS, Chicago, Illinois, USA). A two-tailed P value of less than 0.05 was considered significant. All quantitative variables were expressed as mean ± standard deviation (SD). The chi-square test and the Fisher’s exact test were adopted for statistical comparisons.

Results
In our study population, mean age was 63 ± 17 years, 24 (52%) were males. Comprehensively, in 34 of 46 (74%) patients with necrotizing pancreatitis cultures demonstrated the presence of a localized or systemic infection. In more detail, at hospital admission 7 of 46 patients (15%) already showed positive blood cultures whereas 6 (13%) had evidence of bacterial growth from bile cultures. Two days after the invasive procedures for removal of necrotic materials and fluids, blood cultures became positive in 14 of 46 patients (30%) in spite of antibiotic prophylaxis and bile cultures resulted positive in 10 patients (22%). Furthermore, bacterial growth from drainage fluids was found in 14 patients (30%) and from homogenized necrotic material in 20 (44%) cases. All those patients with positive bile or blood cultures also had infection of necrotic material.

As refers to bacterial isolates, all patients had a monomicrobial infection. Table 1 shows the cultured microorganisms with reference to the source sites. Table 2 shows the antibiotic resistance rates of the isolated strains.

Table 1 Number of isolated strains and site of isolation among 46 patients with necrotizing pancreatitis

N. isolated strains	Blood	Bile	Drainage	Necrotic material
Gram-negative bacteria				
Escherichia coli	4	4	7	10
Pseudomonas aeruginosa	2	2	1	3
Klebsiella pneumoniae	2	2	1	-
Proteus mirabilis	1	2	1	1
Acinetobacter baumannii	-	-	-	1
Gram-positive bacteria				
Coagulase negative Staphylococci (CNS)	6	2	1	1
Methicillin-resistant Staphylococcus aureus (MRSA)	1	-	1	2
Enterococcus faecium	3	2	1	1
Enterococcus faecalis	2	2	1	1
vs. 1 (8%), respectively. Within the infected group, those 14 subjects with evidence of systemic infection (positive blood cultures) developed more complications (Table 3) and demonstrated a higher (p < 0.05) mortality rate in comparison with those who had only a localized infection (limited to necrotic material, bile or drainage fluids): 4 (28%) vs. 2 (10%), respectively.

Discussion

In the present study, we examined pancreatic and systemic infections in patients with necrotizing pancreatitis. In keeping with previous studies, the prevalence of infections in this setting usually correlates with the extent of pancreatic necrosis [9,10].

In our experience, comprehensive rate of infection was 74%, with an overall prevalence of bloodstream infections of 30% and a rate of localized infections within pancreatic necrotic areas exceeding 40%. Noor et al. [11] observed pancreatic infections in 37.3% of patients and extrapancreatic infections in 62.7% of patients with severe acute pancreatitis.

In a study by Garg et al. [12], extrapancreatic bacterial infections were found in 31.7% of 63 patients. Bourgaux et al. [13] reported extrapancreatic infections in 25% of their patients. The most common sites of infection were the peritoneal fluid (26.8%) and blood (24.4%). Finally, in a recent study by Besselink et al. [14], bacteraemia was reported only in 13.4% of the enrolled cases.

Similarly to our data, in patients with pancreatic infections monomicrobial infections were reported to be more common than polymicrobial ones [11].

Infections with Gram-positive organisms could occur later due to noscomial bloodstream spread [11]. Actually, a progressive shift from Gram-negative to Gram-positive organisms might occur either associated to the increasing length of hospital stay or related to the administration of prophylactic antibiotics mainly targeting Gram-negative bacteria [14].

Infections with Gram-positive organisms could occur later due to noscomial bloodstream spread [11]. Actually, a progressive shift from Gram-negative to Gram-positive organisms might occur either associated to the increasing length of hospital stay or related to the administration of prophylactic antibiotics mainly targeting Gram-negative bacteria [14].

Table 2 Antibiotic resistance rates (%) of all the isolated bacteria among 46 patients with necrotizing pancreatitis

Antibiotic	E. coli	P. aeruginosa	K. pneumoniae	P. mirabilis	A. baumannii	E. faecium/faecalis	CNS	MRSA
Amoxi/Clavulanate	22	48	60	32	100	100	50	100
Amikacin	10	20	12	18	88	44	58	100
Ampi/Sulbactam	22	48	60	36	100	40	68	100
Cefotaxime	54	68	72	44	100	42	36	92
Ceftazidime	32	38	38	20	88	100	78	100
Ceftriaxone	40	60	44	42	100	100	56	92
Ciprofloxacin	24	82	62	26	92	42	22	78
Imipenem	2	12	8	0	24	-	-	-
Levofloxacin	24	82	52	16	100	40	20	56
Meroxenem	0	6	2	0	16	-	-	-
Piperacillin/Tazobactam	22	48	26	16	58	90	40	100
Linezolid	-	-	-	-	-	2	0	2
Vancomycin	-	-	-	-	-	2	0	2
Rifampicin	80	100	68	88	2	2	0	68
Cotrimoxazole	32	100	40	38	100	100	0	50

MRSA: Methicillin-resistant Staphylococcus aureus; CNS: Coagulase negative Staphylococci

Table 3 Complications developed among patients with evidence of systemic or localized infection

Infection	Bloodstream infection (N=14)	Infection of necrotic tissue/bile/drainage fluids (N=20)
Pleural effusion	4 (28%)	2 (10%)
Pericardial effusion	3 (21%)	1 (5%)
Pneumonia	3 (21%)	0
Cerebral abscess	1 (7%)	0
Septic shock	3 (21%)	1 (5%)
DIC	1 (7%)	0

DIC: Disseminated Intravascular Coagulation
rate. Differently from them, our study showed that bacte-
rimic infections throughout the course of necrotizing pan-
creatitis worsened the outcome of the disease much
more than localized infections either in terms of devel-
opment of complications or in terms of crude mortality
rate. Actually, in the study by Besselink et al. [14] the
highest mortality rates were found in those cases with
concomitant pancreatic and bacteremic infection.

The results of the sensitivity pattern of the isolated
microorganisms suggest that carbapenems should be
evaluated for empirical treatment in those patients with
necrotizing pancreatitis who develop a clear-cut evi-
dence of systemic or localized bacterial infection.

Competing interests
The authors declare that they have no competing inter-
ests.

Authors’ contributions
BC: conception and design, interpretation of data, statistical analysis, critical
revision, given final approval of the version to be published. MRP: acquisition
of data, drafting the manuscript, statistical analysis, given final approval of
the version to be published. SB: acquisition of data, given final approval of
the version to be published. SB: acquisition of data, given final approval of
the version to be published. RF: acquisition of data, given final approval of
the version to be published. MDV: acquisition of data, given final approval of
the version to be published. GZ: acquisition of data, given final approval of
the version to be published. AC: Associate Professor of Surgery at University of Catania
AZ: Associate Professor of Surgery at University of Catania
GN: acquisition of data, drafting the manuscript, given final approval of the version to be published.
A2: interpretation of data, critical revision, given final approval of the version to be published.

Authors’ information
BC. Associate Professor of Infectious Diseases at University of Catania
MRP: Resident in Infectious Diseases at University of Catania
SB: Full Professor of Surgery at University of Catania
RF: Resident in Surgery at University of Catania
MDV: Assistant Professor of Surgery at University of Catania
GZ: Associate Professor of Surgery at University of Catania
AC: Associate Professor of Surgery at University of Catania
AZ: Associate Professor of Surgery at University of Catania
GN: Assistant Professor of Infectious Diseases at University of Catania
AZ: Associate Professor of Surgery at University of Catania

Declarations
Publication of this article was funded by the Department of Clinical and
Molecular Biomedicine, University of Catania.
This article has been published as part of BMC Surgery Volume 13 Supplement 2, 2013: Proceedings from the 26th National Congress of the Italian Society of
Geriatric Surgery. The full contents of the supplement are available online at
http://www.biomedcentral.com/bmcsurg/supplements/13/S2

Authors’ details
1Department of Clinical and Molecular Biomedicine, Division of Infectious
Diseases, University of Catania, 95125 Catania, Italy. 2Department of Surgery,
General Surgery Unit, University of Catania, 95100 Catania, Italy.

Published: 8 October 2013

References
1. Gloor B, Muller CA, Worni M, Stahel PF, Redaelli C, Uhli W, Buchler MW:
Pancreatic infection in severe pancreatitis: the role of fungus and
multiresistant organisms. Arch Surg 2001, 136(5):592-596.
2. Beger HG, Bittner R, Block S, Buchler M: Bacterial contamination of
pancreatic necrosis: a prospective clinical study. Gastroenterology 1986,
91(2):433-438.
3. Schmidt SW, Uhli W, Friess H, Malfertheiner P, Buchler MW: The role of
infection in acute pancreatitis. Gut 1999, 45(2):311-316.
4. Isenmann R, Rau B, Beger HG: Bacterial infection and extent of necrosis
are determinants of organ failure in patients with acute necrotizing
pancreatitis. Br J Surg 1999, 86(8):1020-1024.
5. Genta RG, Banks PA, Robbins AH, Johnson WC, Spechler SJ, Wetzner SM,
Snyder JM, Lanegren RE, Jay ME: Early diagnosis of pancreatic infection by
computed tomography guided aspiration. Gastroenterology 1987, 93(6):1315-1320.
6. De Beaux AC, Palmer KR, Carter DC: Factors influencing morbidity and
mortality in acute pancreatitis: an analysis of 279 cases. Gut 1995,
37(1):121-126.
7. Capurso G, Zerboni G, Signoretti M, Valente R, Stigliano S, Picucchi M, Delle
Fave G: Role of the gut barrier in acute pancreatitis. J Clin Gastroenterol
2012, 46(suppl):S46-51.
8. Mir MA, Balí BS, Mir RA, Wani H: Assessment of the severity of acute
pancreatitis by contrast-enhanced computerized tomography in 350
patients. Ulus Travma Acil Cerrahi Derg 2013, 19(2):103-108.
9. Babu RK, Gupta R, Kang M, Bhasin DK, Rana SS, Singh R: Predictors of
surgery in patients with severe acute pancreatitis managed by the step-
up approach. Ann Surg 2013, 257(4):737-750.
10. Khan GM, Li JJ, Tenner S: Association of extent and infection of
pancreatic necrosis with organ failure and death in acute necrotizing
pancreatitis. Clin Gastroenterol Hepatol 2005, 3(8):829.
11. Noor MT, Radhakrishna Y, Kochhar R, Ray P, Wig JD, Sinha SK, Singh K:
Bacteriology of infection in severe acute pancreatitis. J Pancreas 2011,
12(1):19-25.
12. Garg PK, Khanna S, Bohidar NP, Kapil A, Tandon RK: Incidence, spectrum
and antibiotic sensitivity pattern of bacterial infections among patients
with acute pancreatitis. J Gastroenterol Hepatol 2001, 16(9):1055-1059.
13. Bourgaux JP, Defrez C, Muller L, Vivancos J, Prudhomme M, Narraux F,
Foudereux P, Sotto A: Infectious complications, prognostic factors and
assessment of antinfectious management of 212 consecutive patients
with acute pancreatitis. Gastroenterol Clin Biol 2007, 31(4):431-435.
14. Besselink MG, van Santvoort HC, Boermeester MA, Nieuwenhuis V, van
Goor H, Depong CH, Schaapherder AF, Goossen HG, Dutch Acute
Pancreatitis Study Group: Timing and impact of infections in acute
pancreatitis. Br J Surg 2009, 96(3):367-373.
15. Su MS, Lin M, Zhao Q, Liu Z, He H, Jia N: Clinical study of distribution and
drug resistance of pathogens in patients with severe acute pancreatitis.
Chin Med J 2012, 125(10):1772-1776.

doi:10.1186/1471-2482-13-52-S50
Cite this article as: Cacopardo et al.: Localized and systemic bacterial
infections in necrotizing pancreatitis submitted to surgical
necrosectomy or percutaneous drainage of necrotic secretions.
BMCSurgery 2013 13(Suppl 2):S50