Interpretable decision trees through MaxSAT

Josep Alòs1 · Carlos Ansótegui1 · Eduard Torres1

Accepted: 12 December 2022 / Published online: 27 December 2022 © The Author(s) 2022

Abstract
We present an approach to improve the accuracy-interpretability trade-off of Machine Learning (ML) Decision Trees (DTs). In particular, we apply Maximum Satisfiability technology to compute Minimum Pure DTs (MPDTs). We improve the runtime of previous approaches and, show that these MPDTs can outperform the accuracy of DTs generated with the ML framework sklearn.

Keywords Decision trees · MaxSAT · Explainable AI

1 Introduction

Recently, there has been a growing interest in creating synergies between Combinatorial Optimization (CO) and Machine Learning (ML), and vice-versa. This is a natural connection since ML algorithms can be seen in essence as optimization algorithms that try to minimize prediction error. In this paper, we focus on how CO techniques can be applied to improve the interpretability and accuracy of decision tree classifiers in ML.

A Decision Tree (DT) classifier is a supervised ML technique that builds a tree-structured classifier, where internal nodes represent the features of a dataset, branches represent the decision rules and each leaf node represents the outcome. In essence, every path from the root to a leaf is a classification rule that determines to which class belongs the input query.

ML research has been traditionally concerned with developing accurate classifiers, i.e., classifiers whose prediction error is as low as possible. However, lately, the research community is looking at the trade-off between accuracy and interpretability, where the latter refers to the human ability to understand how the classifier works. Interpretability

Josep Alòs, Carlos Ansótegui, and Eduard Torres have contributed equally to this work.

✉ Josep Alòs
josep.alos@udl.cat
✉ Carlos Ansótegui
carlos.ansotegui@udl.cat
✉ Eduard Torres
eduard.torres@udl.cat

1 Logic & Optimization Group (LOG), University of Lleida, Lleida, Spain
is fundamental in many senses: to explain ML models and understand their value and accuracy, to debug machine learning algorithms, to make more informed decisions, etc.

Among supervised learning techniques, decision tree classifiers are interpretable in itself, as long as they are small, i.e., as few rules as possible, and as short as possible. As stated in Bessiere et al. (2009), informally, this follows from the principle of Occam’s Razor that states that one should prefer simpler hypotheses. However, notice that this is just one of the diverse aspects that may have to do with interpretability at least from a human perspective.

CO approaches have been applied to compute small trees in the sense of building decision trees of minimum size (number of nodes) or minimum depth. Minimizing the size corresponds indirectly to minimizing the number of rules associated with the DT and minimizing the depth corresponds to minimizing the length of the rules. Among these approaches we find several contributions coming from Operation Research (OR) (Aglin et al. 2020; Verwer and Zhang 2019) and from Constraint Programming (CP) (Hu et al. 2019; Verhaeghe et al. 2019).

Another question is whether these DTs are pure (i.e., classify correctly the training dataset). To avoid overfitting on the training set, and therefore get lower accuracy on the test set, there is a rule of thumb that makes us prefer some impurity to get more generalization power. However, it is difficult to anticipate how much impurity we should allow.

In this paper, we first address the question of how to efficiently compute minimum pure DTs and discuss later how accurate they are. We focus on CP techniques where SATisfiability (SAT) (Biere et al. 2009) based approaches have been shown to be very effective. Particularly, we will work on the Maximum Satisfiability (MaxSAT) problem, which is the optimization version of the SAT problem.

We revisit the SAT approach in Narodytska et al. (2018) which encodes into SAT the decision query of whether there is a pure DT of exactly n nodes. Then, by performing a sequence of such SAT queries the optimum can be located. We extend this SAT approach to the MaxSAT case, i.e., we encode into MaxSAT the query representing which is the minimum number of nodes n for which such a pure DT exists.

Equipped with a MaxSAT encoding we can now leverage the power of current (and future) MaxSAT solvers. Notice that the MaxSAT formalism allows us to state explicitly that we are dealing with an optimization problem, while the original incremental SAT solving approach in Narodytska et al. (2018) is agnostic in this sense and the objective has to be managed by an ad hoc piece of code. Our experimental results show that our approach in practice is able to obtain minimal pure DTs on a wide variety of benchmarks faster than the original SAT incremental counterpart in Narodytska et al. (2018) even using the same underlying SAT solver. We also show that our approach provides comparable performance to other approaches (Janota and Morgado 2020) that exploit explicitly structural properties of the DT.

Secondly, and the main contribution of the paper, we show that by exploring the space of optimal solutions (minimal pure DTs) we can be indeed competitive with respect to DT classifiers generated with sklearn in terms of producing smaller trees but yet accurate enough.

In order to achieve the main goal of this paper, we solve yet another optimization problem that extracts multiple optimal solutions, maximizing their diversity, from the MaxSAT encoding that allows us to compute minimum pure DTs for the training set. Then, thanks to a validation process, we select among these multiple diverse solutions one that is expected to report better accuracy on the test set.
This is an interesting result since all the optimal solutions we consider are minimum pure DTs for the training set, yet they do not seem to suffer substantially from the overfitting phenomena. Notice that what makes them special is that they all are of minimum size, a feature that can not be exploited by current DT ML approaches.

Finding MPDTs is an NP-hard problem, and therefore a time-consuming process. Our goal is to provide a solution for applications where high interpretability and accuracy of DTs prevail over the training speed, such as the AI systems considered as “high-risk” in the proposed regulation (European Commission 2021). In particular, this solution is suitable for systems where a certain stability for the models (i.e. not re-training the model frequently) is desired. This would be the case of models used in administration selection processes, financial risk ratings, or patient screening. Also, having interpretable models in contraposition to black box models (such as neural networks) allows to extract knowledge from those models and analyze the model to detect potential biases.

2 Preliminaries

Definition 1 An example \(e \) is a set of pairs \((f_i, v)\) plus the class label \(c \), where \(f_i \) is a feature and \(v \) is the value assigned to the feature. A Decision Tree (DT) is a set of rules (namely paths) that are constructed by traversing a tree-like structure composed of questions (decision nodes) and answers until a terminal node with a label (leaf) is found. The depth of a node is the length of the path (i.e. count of nodes traversed) from the root to this node. The depth of the DT is the length of the largest path from the root to any leaf. A Complete Decision Tree (CDT) is a tree where all the leaves are located at the same depth. A Pure Decision Tree (PDT) for a set of examples \(\mathcal{E} \), \(\text{PDT}(\mathcal{E}) \), is a DT that classifies correctly all the examples (Hautaniemi et al. 2005). By definition, its accuracy on this set is 100%. A Minimum Pure Decision Tree (MPDT) for a set of examples \(\mathcal{E} \), \(\text{MPDT}(\mathcal{E}) \), is a DT that is proven to be the smallest PDT for \(\mathcal{E} \) in terms of size (i.e. the number of nodes in the DT). We denote the minimum size as \(|\text{MPDT}(\mathcal{E})|\).

Example 1 Table 1 shows the set of examples \(\mathcal{E} \) for the meteo dataset. Column \# shows the index of each example \(e \) and column classes their class label \(c \).

In Fig. 1 we can see a Minimum Pure Decision Tree (MPDT) for the set of examples in Table 1, where the decision nodes are drawn as ellipses and the leaves as rectangles. It has 5 paths and a depth of 3. In particular, the leaves of the MPDT define the following partition of the examples, from top to bottom and left to right, \(\{1, 4, 8, 9\}, \{11, 12, 14\}, \{5, 7\}, \{2, 3, 6\}, \{10, 13\} \). As we can see all the examples classified in a leave belong to the same class (Pure) and there is no other Pure tree with less nodes (Minimum).

Definition 2 A literal is a propositional variable \(x \) or a negated propositional variable \(\neg x \). A clause is a disjunction of literals. A Conjunctive Normal Form (CNF) is a conjunction of clauses. A weighted clause is a pair \((c, w)\), where \(c \) is a clause and \(w \), its weight, is a natural number or infinity. A clause is hard if its weight is infinity (or no weight is given); otherwise, it is soft. A Weighted Partial MaxSAT instance is a multiset of weighted clauses.
Definition 3 A truth assignment for an instance ϕ is a mapping that assigns to each propositional variable in ϕ either 0 (False) or 1 (True). A truth assignment is *partial* if the mapping is not defined for all the propositional variables in ϕ. A truth assignment I satisfies a literal x ($\neg x$) if I maps x to 1 (0); otherwise, it is falsified. A truth assignment I satisfies a clause if I satisfies at least one of its literals; otherwise, it is violated or falsified. The cost of a clause (c, w) under I is 0 if I satisfies the clause; otherwise, it is w. Given a partial truth assignment I, a literal or a clause is undefined if it is neither satisfied nor falsified. A clause c is a unit clause under I if c is not satisfied by I and contains exactly one undefined literal. The cost of a formula ϕ under a truth assignment I, $\text{cost}(I, \phi)$, is the aggregated cost of all its clauses under I.

Table 1 The *meteo* dataset

#	Outlook	Temperature	Humidity	Windy	Classes
1	overcast	hot	high	false	+
2	rain	mild	high	false	+
3	rain	cool	normal	false	+
4	overcast	cool	normal	true	+
5	sunny	cool	normal	false	+
6	rain	mild	normal	false	+
7	sunny	mild	normal	true	+
8	overcast	mild	high	true	+
9	overcast	hot	normal	false	+
10	rain	mild	high	true	-
11	sunny	hot	high	false	-
12	sunny	hot	high	true	-
13	rain	cool	normal	true	-
14	sunny	mild	high	false	-

Fig. 1 MPDT for the *meteo* dataset
Definition 4 The Weighted Partial MaxSAT problem for an instance ϕ is to find an assignment in which the sum of weights of the falsified soft clauses, $\text{cost}(\phi)$, is minimal and, the hard clauses are satisfied. The Partial MaxSAT problem is the Weighted Partial MaxSAT problem where all weights of soft clauses are equal. The SAT problem is the Partial MaxSAT problem when there are no soft clauses. An instance of Weighted Partial MaxSAT, or any of its variants, is unsatisfiable if its optimal cost is ∞. A SAT instance ϕ is satisfiable if there is a truth assignment I, called model, such that $\text{cost}(I, \phi) = 0$.

Definition 5 A pseudo-Boolean constraint (PB) is a Boolean function of the form $\sum_{i=1}^{n} q_i l_i \diamond k$, where k and the q_i are integer constants, l_i are literals, and $\diamond \in \{<, \leq, =, \geq, >\}$ is a comparison operator. An At Least K (AtLeastK) constraint is a PB of the form $\sum_{i=1}^{n} l_i \geq k$. An At Most K (AtMostK) constraint is a PB of the form $\sum_{i=1}^{n} l_i \leq k$.

3 Related work

In a pioneering work (Bessiere et al. 2009), the first SAT approach to compute MPDTs was presented. They encode into SAT the decision query of whether there exists a PDT of size n. They use as upper bound the solution from a CP model. Then, they perform a sequence of queries to a SAT solver (in the SAT4J package (Le Berre and Parrain 2010) where n is iteratively bounded by adding an AtLeastK constraint on the number of useless nodes that must be in the solution.

In Narodytska et al. (2018) a more efficient SAT encoding was provided to encode the decision query of whether there exists a PDT of size n. The authors also solve the problem through a sequence of SAT queries. In this case, the upper bound is computed with the algorithm ITI (Utgoff 1989). Then, at every iteration, they reencode the problem with the next possible value of n. We refer to this approach as MinDT.

In Avellaneda (2020) two methods are proposed. The Infer-depth approach iteratively decreases the depth of the tree, till it locates the minimum depth to build a complete PDT. The Infer-size approach computes the MPDT with the depth found with Infer-depth. While both approaches compute small PDTs, none of them guarantees to find MPDTs.

In Janota and Morgado (2020), one of the approaches, dtfinder, split the search space into the possible topologies (tree layouts) of the DT till a certain depth. At least one of these topologies is guaranteed to belong to an MPDT.

In Hu et al. (2020), DT(max), the approach answers to which is the best tree in terms of accuracy in the training set that can be obtained given an upper bound on the depth. Note that if the upper bound is smaller than the minimal depth of MPDT, their approach reports a tree with less than 100% of accuracy on the training set (i.e. impure tree). Additionally, an AdaBoost (Freund and Schapire 1997) approach based on MaxSAT is presented. We will not explore AdaBoost strategies in this paper, since they produce ensembles, which are composed of several DTs. Having more than one DT weakens the interpretability of the classifier.

Table 2 shows a summary, presenting the objective function, whether the approach returns a PDT and if it is minimum (MPDT). The only algorithms that are complete in the sense of certifying the minimum size of the PDTs are (Bessiere et al. 2009), MinDT (Narodytska et al. 2018) and dtfinder (Janota and Morgado 2020).
We will focus on comparing our approach MPDT (see Sect. 4) with MinDT in terms of computing efficiently MPDTs since other approaches build on MinDT. In terms of computing rather small trees with good accuracy, we will compare with DT(max) (Hu et al. 2020) which in contrast to the other approaches focuses also on maximizing the accuracy.

4 Computing MPDTs with MaxSAT

We extend the SAT encoding in Narodytska et al. (2018), MinDT, to a Partial MaxSAT (and its weighted variant) encoding that queries for an MPDT given an upper bound in size of n. Our approach is inspired by the MaxSAT encoding in Ansótegui et al. (2013) for constructing minimum covering arrays. Recent work in Hu et al. (2020) follows a similar approach with the m_i variable, which is used to relax all the constraints of the encoding. We selectively use the relevant variable only in the constraints that require it. For completeness and the aim of reproducibility, we describe in full detail the original SAT encoding and the extensions to the MaxSAT case, highlighting the changes from the original encoding.

We assume that: (1) the features are binary; (2) the root node is labeled as node 1 (the rest of them are labeled into breadth-first order); and (3) positive (negative) answers to

Algorithm	Objective	PDT	MPDT
Bessiere et al.	min. size	yes	yes
MinDT	min. size	yes	yes
Infer-depth	min. depth	yes	no
Infer-size	min. depth, size	yes	no
dtfinder	min. size	yes	yes
DT(max)	max. acc	no	no
MPDT	min. size	yes	yes

Table 3 Symbols and functions used in the MaxSAT encoding

Sym/fun	Definition
\mathcal{E}	The set of observations used to train the tree
$\mathcal{E}^+(-)$	The set of positive (negative) observations
n	The upper bound on the number of nodes
N	Range of nodes, starting at 1
N^e	Range of even-indexed nodes
N^o	Range of odd-indexed nodes
k	Number of features for each observation, starting at 0
F	Range of features for each observation, starting at 0
$lr(i)$	Set of potential left child nodes for node i
$rr(i)$	Set of potential right child nodes for node i
$\sigma(r, q)$	The value of the feature f_r at observation e_q
$\eta(i)$	Related variable η_i for the node i
decision nodes are assigned to the right (left) child. In Tables 3 and 4 we show the symbols, functions, and the propositional variables of the encoding.

We add a new variable \(\eta_i \) which represents if a node \(i \) is used. The encoding works on an upper-bounded number of nodes. If the upper bound is not optimal, some nodes will not be used. Since nodes are numbered in breadth-first order, two consecutive nodes with the same parent will be both in the solution or not. Therefore, we define function \(\eta(i) \) as:

\[
\eta(i) = \begin{cases}
\eta_{i+1} & \text{if } i \in N^e; \\
\eta_i & \text{if } i \in N^o
\end{cases}
\]

The soft clauses in the Partial MaxSAT encoding that describe the objective function of the MPDT problem are:

\[
\bigwedge_{i \in N^o} (\neg \eta_i, 1) \quad \text{ (SoftN)}
\]

Now, we describe the hard constraints. To encode PB constraints we use OptiLog (Ansótegui et al. 2021).

Node usage hard clauses:
- If an odd node is not used, then both himself and the previous one are not leaves.

\[
\bigwedge_{i \in N^o \mid i > 1} \neg \eta_i \rightarrow \neg \nu_i \land \neg \nu_{i-1} \quad (1)
\]

- If a node is used, the previous ones are used:

\[
\bigwedge_{i \in N^o \mid i > 1} \eta_i \rightarrow \eta_{i-2} \quad (2)
\]

- To enforce a lower bound \(lb \) (3 by default) we add the following clause.
Tree layout hard clauses:

- The root node is not a leaf.
 \[\neg v_1 \]

- (i) Leaves do not have a left child, and (ii) if node \(i \) is used in the DT, and has no left child candidates, then it is a leaf.
 \[
 \bigwedge_{i \in N} \left(\bigwedge_{j \in lr(i)} (v_i \rightarrow \neg l_{i,j}) \right) \quad \text{if } |lr(i)| \neq 0 \\
 \eta(i) \rightarrow v_i \quad \text{if } |lr(i)| = 0
 \]

- Node \(j \) is the left child of node \(i \) iff node \(j + 1 \) is the right child of node \(i \).
 \[
 \bigwedge_{i \in N} \bigwedge_{j \in lr(i)} (l_{i,j} \leftrightarrow r_{i,j+1})
 \]

- If a used node \(i \) is not a leaf, then it has exactly one left child.
 \[
 \bigwedge_{i \in N} \left(\neg v_i \land \eta(i) \rightarrow \left(\sum_{j \in lr(i)} l_{i,j} = 1 \right) \right)
 \]

- The symmetry equations on \(p_{j,i}, l_{i,j} \) and \(r_{i,j} \).
 \[
 \bigwedge_{i \in N} \bigwedge_{j \in lr(i)} (p_{j,i} \leftrightarrow l_{i,j}) \\
 \bigwedge_{i \in N} \bigwedge_{j \in rr(i)} (p_{j,i} \leftrightarrow r_{i,j})
 \]

Given a pair of \(i, j \) nodes, we have that \(j \in lr(i) \cup rr(i) \), and \(lr(i) \cap rr(i) = \emptyset \). This, combined with Constraint 8, sets an equivalence between the variable \(p_{j,i} \) and one of \(l_{i,j} \) or \(r_{i,j} \) depending on the value \(j \) being even or odd. Thus, in practice, we can perform a direct substitution of the variable \(p_{j,i} \) with the corresponding one of those two variables in the encoding, and remove the \(p_{j,i} \) variable and the Constraint 8 altogether. In this description, for clarity purposes, we kept the \(p_{j,i} \) variable in the encoding.

- If node \(j \) is used in the DT (and it is not the root) it will have exactly one parent.
 \[
 \bigwedge_{j \in N \mid j > 1} \left(\eta(j) \rightarrow \sum_{i=\lfloor \frac{j}{2} \rfloor}^{j-1} p_{j,i} = 1 \right)
 \]

Feature assignment hard clauses:

- Feature \(f_i \) with value 0 (1) is already discriminated by node \(j \) iff the feature \(f_i \) is attached to the parent of \(j \) and node \(j \) is the right (left) child or the feature \(f_i \) with value 0 (1) is already discriminated by the parent of \(j \).
• No feature is discriminated at the root node.

\[\bigwedge_{r \in F} \left(\neg d^0_{r,1} \land \neg d^1_{r,1} \right) \]

(12)

• If some feature \(f_i \) is already discriminated by node \(i \), then the feature can not be assigned to any of its children.

\[\bigwedge_{j \in N, r \in F} \bigwedge_{i=\lfloor \frac{j}{2} \rfloor}^{j-1} \left((u_{r,i} \land p_{j,i}) \rightarrow \neg a_{r,j} \right) \]

(13)

• Feature \(f_r \) is discriminated at node \(j \) iff \(f_r \) has been assigned to node \(j \) or it is already discriminated at the parent of \(j \).

\[\bigwedge_{j \in N, r \in F} \left(u_{r,j} \leftrightarrow \left(a_{r,j} \lor \bigvee_{i=\lfloor \frac{j}{2} \rfloor}^{j-1} (a_{r,i} \land p_{j,i}) \right) \right) \]

(14)

• If node \(j \) is not a leaf and it is in the DT, then it has exactly one feature assigned to it.

\[\bigwedge_{j \in N} \left(\neg v_j \land \eta(j) \rightarrow \sum_{r \in F} a_{r,j} = 1 \right) \]

(15)

• If node \(j \) is a leaf, then it has no feature assigned to it.

\[\bigwedge_{j \in N} \left(v_j \rightarrow \sum_{r \in F} a_{r,j} = 0 \right) \]

(16)

• For every positive (negative) example, if node \(j \) is a leaf and it is assigned to class 0 (1), then at least one feature is discriminated with the value in the example at node \(j \).

\[\bigwedge_{j \in N, e_q \in E^+} \left(v_j \land \neg c_j \rightarrow \bigvee_{r \in F} d^0_{r,j} \right) \]

(17)

\[\bigwedge_{j \in N, e_q \in E^-} \left(v_j \land c_j \rightarrow \bigvee_{r \in F} d^0_{r,j} \right) \]

(18)

Additional Pruning hard clauses: Depending on which nodes are decided to be leaves or not, the possible list of children for a given node may change. These constraints enforce
this simplification. We refer to the original description (Narodytska et al. 2018). We incorporate as in previous constraints the $\eta(i)$ variable to take into account in counters $\tau_{t,i}$ and $\lambda_{t,i}$ only the nodes that are used in the solution.

\[
\bigwedge_{i \in N} \lambda_{0,i} \land \tau_{0,i}
\]

(19)

\[
\bigwedge_{i \in N, j \in [1, \lfloor \frac{i}{2} \rfloor]} (\lambda_{t,i} \iff (\lambda_{t-1,i-1} \lor v_j \land \eta(i)))
\]

(20)

\[
\bigwedge_{i \in N, j \in [1, i]} (\tau_{t,i} \iff (\tau_{t-1,i} \lor \tau_{t-1,i-1} \land \neg v_j \land \eta(i)))
\]

(21)

\[
\bigwedge_{i \in N, j \in [1, \lfloor \frac{i}{2} \rfloor]} \lambda_{t,i} \rightarrow \neg l_{1,2(i-t+1)} \land \neg r_{1,2(i-t+1)+1}
\]

(22)

4.1 Multilabel encoding

We extend MinDT to support multilabels where $c_{k,j}$ variables now represent that the leaf j belongs to class $k \in \text{Cls}$.

\[
\bigwedge_{k \in \text{Cls}, j \in N, e \in E} \left((v_j \land c_{k,j}) \rightarrow \bigvee_{r \in K} d_{r,j}^{x(r,q)} \right)
\]

(24)

- A decision node has no class assigned:

\[
\bigwedge_{j \in N, k \in \text{Cls}} (\neg v_j \rightarrow \neg c_{k,j})
\]

(25)

- A leaf has only one label:

\[
\bigwedge_{j \in N} \left(v_j \rightarrow \sum_{k \in \text{Cls}} 1 \right)
\]

(26)

4.2 Partial MaxSAT encoding

We assume a dataset ε, an upper (ub) and lower (lb) bounds on the size of the tree. Then:

Proposition 1 Let $\text{PMSat}_{\text{PDT}}^{x,\text{ub},\text{lb}}$ be $\text{SoftN} \land (\text{eq.1}) \land \ldots \land (\text{eq.26}).$ The optimal cost of the Partial MaxSAT instance $\text{PMSat}_{\text{PDT}}^{x,\text{ub},\text{lb}}$ is $\left\lceil \frac{\text{MPDT}(\varepsilon)}{2} \right\rceil$.

\[\mathfrak{S} \text{ Springer}\]
5 The Linear MaxSAT algorithm

We present an slightly variation of the Linear SAT-based MaxSAT algorithm (Eén and Sörensson 2006; Berre and Parrain 2010) that we will use to solve the Partial MaxSAT encoding presented in Sect. 4.

Essentially, Algorithm 1 solves a (Weighted) Partial MaxSAT optimization problem through a sequence of SAT queries. It receives as input parameters a (Weighted) Partial MaxSAT formula \(\phi \) (a set of soft \(\phi_s \) and hard \(\phi_h \) clauses), an optional timeout \(t \), and an optional upper bound. First, we create an incremental SAT solver \(s \) (line 1). Then, we add all the hard clauses \(\phi_h \) and a copy of the soft clauses each extended with a new blocking variable \(b_i \) (line 2). Then, the upper bound \(ub \) of \(\phi \) is computed as the sum of the weights \(w_i \) in \(\phi_s \) plus one (line 3). An incremental PB encoder (an encoder which its \(k \) can be updated) is initialized in line 4. This PB encoder initially restricts the sum of the \(b_i \) variables and their associated weights \(w_i \) to be \(\leq \) \(ub \). In line 5, we use the PB encoder to translate into CNF the initial PB constraint. While this PB constraint in combination with the hard constraints is satisfiable, we extract the model, update the \(ub \) to the cost of this model and refine the PB constraint (lines 7–12). Finally, we return the upper bound \(ub \), the model \(m \), and a reference to the incremental SAT solver \(s \).

Algorithm 1 Linear MaxSAT algorithm (LMS)

Input: (Weighted) Partial MaxSAT formula \(\phi \equiv \phi_s \cup \phi_h \), Timeout \(t \) (defaults to \(\infty \))

Output: Best upper bound \(ub \), Best model \(m \), SAT solver \(s \)

1. \(s \leftarrow \text{SAT Solver}() \)
2. \(s.add_clauses(\phi_h \cup \{c_i \lor b_i \mid (c_i, w_i) \in \phi_s\}) \)
3. \(ub \leftarrow \sum_{(c_i, w_i) \in \phi_s} w_i + 1 \)
4. \(pb \leftarrow \sum_{(c_i, w_i) \in \phi_s} w_i \cdot b_i \leq ub \)
5. \(s.add_clauses(pb.to_cnf()) \)
6. \(is_sat, m \leftarrow True, \emptyset \)
7. **while** \(is_sat = True \) **and** \(ub > 0 \) **and** within timeout \(t \) **do**
8. \(s.add_clauses(pb.update(ub - 1)) \)
9. \(is_sat \leftarrow s.solve() \)
10. **if** \(is_sat = True \) **then**
11. \(m \leftarrow s.model() \)
12. \(ub \leftarrow \text{cost}(m) \)
13. **end if**
14. **end while**
15. **return** \(ub, m, s \)
6 Extracting multiple diverse solutions

We can obtain multiple solutions of a given optimal cost c by generating the SAT instance representing the query of whether there is a solution of cost c. Then, we execute a SAT solver in incremental mode on the SAT instance, and whenever we get a solution, we add its negation to the SAT solver and ask the solver to solve the augmented instance.

In our approach, we take advantage of the fact that the SAT instance representing the optimal solutions is already created during the execution of the Linear MaxSAT algorithm which may be also augmented by useful learned clauses added in previous calls to the SAT solver. In particular, it is the last satisfiable SAT instance seen by Linear MaxSAT.

To be able to access to the clauses of this last satisfiable instance we modify the Linear MaxSAT algorithms described in Algorithm 1 as follows. First, we move the statement of line 8 ($s.add_clauses(pb.update(ub - 1))$) inside the conditional block ($is_sat = True$) of line 10 and add as an assumption to the solver in line 9 the auxiliary variables that reify the clauses in $pb.update(ub - 1)$. At this point, the formula containing all the possible optimal solutions corresponds to $s.clauses()$. However, these solutions may be too similar. In our case, we expect that diverse solutions (diverse MPDTs) may help to get a more robust approach in terms of accuracy.

To enforce this diversity we will solve another MaxSAT problem. Algorithm MDSOL (Alg. 2) shows the pseudocode to extract multiple diverse solutions. As input we have the SAT formula that compiles the solutions, the number of solutions we want to extract, and the target vars on which we will enforce our diversity criterion.

\begin{algorithm}
\caption{Multiple Diverse Solutions (MDSOL)}
\begin{algorithmic}
\Statex \textbf{Input:} SAT instance φ, Num solutions k, target vars $vars$
\Statex \textbf{Output:} Set of solutions $sols$
\State $\phi_h, \phi_s, sols \leftarrow \varphi, \emptyset, \emptyset$
\While {$sols < k$}
\State $ub, m, i \leftarrow LMS(\phi_h \cup \phi_s)$
\If {$ub = \sum_{(c_i, w_i) \in \phi_s} w_i + 1$}
\State \Return $sols$
\EndIf
\State $sols \leftarrow sols \cup \{m\}$
\State $lits \leftarrow \{l \mid l \in m(vars)\}$
\State $\phi_h \leftarrow \phi_h \cup \{(\forall_{l \in lits} l, \infty)\}$
\State $\phi_s \leftarrow \phi_s \cup \{(-l, 1) \mid l \in lits\}$
\EndWhile
\State \Return $sols$
\end{algorithmic}
\end{algorithm}

The set of hard clauses of the MaxSAT formula we iteratively solve contains the clauses of the input SAT instance and the clauses discarding the solutions extracted so far (line 8) restricted to the target variables.

The soft clauses contain, as unit clauses of cost 1, the negation of the literals (restricted to the target variables) appearing in the solutions retrieved so far (line 10). This way we prefer solutions where the polarity of the target variables appears less in the previous retrieved solutions. Notice that eventually, this approach can return all the optimal solutions.

\footnote{If $pb.update(ub - 1)$ is a unit clause, we just add its literal as an assumption.}
Finally, algorithm MPDT (Alg.3) describes how we compute MPDTs for a given dataset. We split randomly the input dataset into training and selection datasets, where p is the percentage for examples to add to the training set (line 1).

In line 3 we perform a local search on the training dataset to find an upper bound on the tree size. In particular, we use ITI (Utgoff 1989) (see Sect. 9) to find a pure decision tree (that is not guaranteed to be minimum).

Then, we create the MaxSAT encoding for computing MPDTs, described in Sect. 4 (line 4), on the training set E_{tr} and the lower and upper bounds.

In line 5 we call the MaxSAT solver. We assume that as in the Linear MaxSAT pseudocode the MaxSAT solver returns a container for the SAT clauses compiling all the optimal solutions.

In line 6 we call MDSOL (Alg. 2) that extracts k multiple diverse MPDTs. We add as target vars the $a_{r,j}$ vars which represent that feature r is assigned to node j. Preliminary experiments showed that using this variable is central and that adding other variables such as $u_{r,j}$ or v_j does not lead to better results.

We consider also a variation, MPDT_lay, inspired on Janota and Morgado (2020). In short, we identify the k' tree layouts to a certain depth that can lead to an MPDT. Then, we compute for each of these k' layouts k/k' solutions through MDSOL algorithm.

Computing minimum pure decision trees

In order: the number of features for both the binary encoding and the OHE, the number of labels (2 for binary classification instances, more for multilabel), the total number of rows in the dataset, and the number of rows used as train, selection, and test.

#Columns	#Labels	#Rows					
Binary	OHE	Total	Train	Sel	Test		
append	22	56	2	105	67	17	21
audio	146	146	2	216	137	35	44
back	50	89	2	180	115	29	36
corrall	7	7	2	160	102	26	32
haber	11	28	2	266	169	43	54
hayes-r	9	16	3	120	76	20	24
hepa	58	321	2	155	99	25	31
h-votes	17	17	2	435	278	70	87
iris	13	32	3	150	96	24	30
irish	16	53	2	500	320	80	100
lympho	30	51	4	148	94	24	30
monks-1	11	16	2	556	355	89	112
monks-3	11	16	2	548	350	88	110
mushr	112	112	2	8124	5199	1300	1625
mux6	7	7	2	128	81	21	26
new-thy	16	39	3	212	135	34	43
spect	23	23	2	251	160	40	51
wine	47	263	3	178	113	29	36
zoo	26	122	7	101	64	16	21
From lines 8 to 10, we add to $best_{dts}$ the MPDTs such that their accuracy, evaluated on the selection set ε_{sel} is greater than or equal the best accuracy in $best_{dts}$ minus a deviation percentage δ (line 10). Finally, we return the set $best_{dts}$. In this paper, we just take randomly one of the MPDTs from $best_{dts}$ but other solutions combining more than one MPDT can be applied as other well-known approaches in machine learning (e.g. random forests).

Algorithm 3 Minimum Pure Decision Tree (MPDT)

Input: Dataset ε, MaxSAT solver $msat$, Split pctg p, Num solutions k, Accuracy deviation δ

Output: Best sample-based MPDTs $best_{dts}$

1. $\varepsilon_{tr}, \varepsilon_{sel} \leftarrow$ split ε randomly according to p
2. $best_{dts} \leftarrow \emptyset$
3. $ub, lb \leftarrow get_bounds(\varepsilon_{tr})$
4. $\phi \leftarrow encode(\varepsilon_{tr}, ub, lb)$
5. $s, s \leftarrow msat(\phi)$
6. $sols \leftarrow MDSOL(s.clauses, k, \{a_{r,j} | a_{r,j} \in vars(\phi)\})$
7. for $sol \in sols$ do
8. $dt \leftarrow decode(sol)$
9. $acc_{dt} \leftarrow evaluate(dt, \varepsilon_{sel})$
10. $best_{dts} \leftarrow update(best_{dts}, dt, acc_{dt}, \delta)$
11. end for
12. return $best_{dts}$

8 Preprocesing datasets

We use the $|KBinsDiscretizer|$ transformer from sklearn to convert the continuous variables into discrete values using 8 bins (intervals of values) with the uniform strategy (same amount of values for each range). Then, we convert all the non-binary features to binary using our custom binary encoding that applies a mapping from the original domain to a numeric domain. If the feature is ordinal, the order is kept. Then, those numeric values are represented in binary, and a new feature is created for each bit required to encode the entire domain for the original feature. Thus, for a feature with a domain D we replace it with $\log_2(|D|)$ new features. As described in Narodytska et al. (2018), the size of the encoding grows in $O(kn^2 + mnk)$, with k being the number of features. Note that the binary encoding should have a natural advantage in the encoding size compared to the typical one-hot encoding (OHE)2 for non-binary datasets (see Table 5).

Finally, for each dataset benchmark, we split (following the stratification strategy) the dataset into a 64% training set, 16% selection set, and 20% test set.

2 The OHE encoding leads to worse results.
Interpretable decision trees through MaxSAT

9 Experimental results

As benchmarks we use datasets (binary and non-binary) from the CP4IM repository (De Raedt et al. 2008), the UCI repository (Dua and Graff 2017), and the PennML repository (Romano et al. 2021; Olson et al. 2017). Table 5 shows their statistics. Our execution environment consists of a computer cluster with nodes equipped with two AMD 7403 processors (24 cores at 2.8 GHz) and 21 GB of RAM per core.

9.1 On MPDT runtime

The first question we address is whether the MPDT MaxSAT encoding described in Sect. 4 in combination with a MaxSAT solver allows us to compute faster MPDTs than the MinDT approach described in Narodytska et al. (2018).

For this, we adapted MinDT and the Linear algorithm (Algorithm 1) used to solve the MaxSAT encoding to report the intermediate results found during the search process. Both of them are set to use the SAT solver CaDiCaL (Biere 2019) as the SAT oracle. Then, we compare those approaches between them and against the best incomplete solvers on the unweighted track of the 2021 MaxSAT evaluation (Bacchus et al. 2021). In particular, we use the incomplete solvers SATLike-c (Lei et al. 2021), SATLike-ck (Lei et al. 2021), and TT-Open-WBO-Inc-21 (Nadel 2021).

Sample size	Timelimit	Solver	Encoding	# Best UB
40%	1h	satlike-ck	MaxSAT	528
40%	1h	MPDT	MaxSAT	505
40%	1h	satlike-c	MaxSAT	504
40%	1h	TT-Open-WBO-Inc-21	MaxSAT	489
40%	1h	MinDT	SAT	469
60%	1h	satlike-ck	MaxSAT	491
60%	1h	satlike-c	MaxSAT	426
60%	1h	MPDT	MaxSAT	421
60%	1h	TT-Open-WBO-Inc-21	MaxSAT	417
60%	1h	MinDT	SAT	404
80%	1h	satlike-ck	MaxSAT	422
80%	1h	satlike-c	MaxSAT	383
80%	1h	MPDT	MaxSAT	404
80%	1h	TT-Open-WBO-Inc-21	MaxSAT	382
80%	1h	MinDT	SAT	374
80%	10h	satlike-ck	MaxSAT	510
80%	10h	satlike-c	MaxSAT	405
80%	10h	MPDT	MaxSAT	425
80%	10h	TT-Open-WBO-Inc-21	MaxSAT	406
80%	10h	MinDT	SAT	400
We set a time limit of 1h and a memory limit of 20GB. We focused on large datasets (rows/features) and took 20 samples at each percentage $S_{\text{perc}} = \{40\%, 60\%, 80\%\}$, for a total of 580 instances for each size. This is a relevant experiment since if one wants to scale to large datasets as in Schidler and Szeider (2021) using a kind of Large Neighborhood Search approach, it needs to efficiently solve samples of the original dataset with a SAT-based approach. Given these limits, we are interested in which approach is able to report the best upper bound (i.e. the smallest pure tree) on the given instances. For completeness, we also run the same experiment on the 80% samples with a timeout of 10h.

The ub for each instance is computed using the same approach as Narodytska et al. (2018), i.e. the upper bound is the size of the computed $PDT(\epsilon_{\text{opt}})$ using ITI algorithm (Utgoff 1989). The lb is trivially set to 3.

Table 6 reports, for each sample size (column “Sample size”), the number of instances (column “# Best UB”) where each approach (column “Solver”) is able to report the best upper bound on the instance. Column “Encoding” indicates which encoding is used.

As we can see, the satlike-ck solver is the best solver, while MinDT performs the worst in this experiment. This indicates that using the MaxSAT encoding allows for a faster reduction of the bounds in the MPDT problem.

Notice that MaxSAT algorithms share learnt clauses during the entire optimization process, do not require generating the SAT query at each step, and can skip suboptimal bounds. This is not the case for SAT incremental approaches as MinDT, which can explain the differences that we observe in the results.

This experiment confirms it is useful to solve optimization problems as MaxSAT instances rather than with an agnostic SAT incremental approach provided memory requirements hold.

Notice anyway that the main goal of our paper is addressed in the next experiments, where most of the runtime is consumed on extracting multiple solutions rather than on computing the first MPDT.

9.2 On MPDT accuracy

The second question we want to address is how accurate can be the MPDT approach described in Sect. 6. We compare with the DecisionTreeClassifier model from sklearn (Scikit-learn developers 2020). For these experiments, we set a time limit of 1 day and 100GB of memory.

We recall that datasets are split into 64% training set, 16% selection set, and 20% test set. We try exactly 50 different random splits of the selection and test sets, select the best DT (from those returned by the particular approach) on the selection split and report the average accuracy on the test set.

For MPDT we evaluate $mptd-1$ that only generates one solution, and the variations that extract multiple solutions (with no diversity enforcement) ($mpdt-nd$), multiple diverse solutions ($mpdt$). Following Janota and Morgado (2020), we also adapted our algorithm to consider the explicit layouts for the decision trees, having $mpdt-lay-nd$ for the version that does not enforce diversity, and $mpdt-lay$ for the diverse solutions algorithm. This experiment considers the complete version of the MPDT algorithm.

For sklearn, we evaluate three variations on the training set with as many seeds as DTs returned by the MPDT version with more solutions. In pure sklearn (psk) we run sklearn till it achieves 100% accuracy. In limited sklearn (lsk) we restrict the DT size to the one reported by MPDT. Finally, in All sklearn (ask) we explore each possible DT size from 3
Table 7 Test accuracy score

Dataset	psk t.acc	lsk t.acc	ask t.acc	opt t.acc	mpdt-nd #sols	mpdt-lay-nd #sols	mpdt-1 #sols	mpdt #sols	mpdt-lay #sols				
	t.acc	t.acc	t.acc	t.acc	t.acc	t.acc	t.acc	t.acc	t.acc				
append	70.48	66.29	65.43	21	984	70.00	1167	70.00	592	94.27	71.05	984	70.00
audio	92.45	92.45	93.35	17	30000	93.95	30000	92.77	48	93.50	4685	93.36	
back	69.67	74.28	74.44	25	5714	70.50	880	70.44	8	72.00	39	71.61	
corral	100	87.38	100	13	20	99.25	20	99.25	100	99.25	20	99.25	
haber	80.26	77.33	79.51	47	624	79.00	1173	79.00	80.74	79.00	624	79.00	
hayes-r	79.33	77.00	77.08	35	1195	83.25	1722	83.25	78.08	82.92	1195	83.25	
hepa	60.84	60.84	64.83	23	1695	67.16	86	65.87	62.32	64.77	18	62.77	
h-votes	93.31	94.00	93.98	33	11522	94.34	21007	94.34	94.25	93.56	11085	94.34	
iris	94.53	94.53	91.46	25	30000	94.53	30000	94.53	92.80	94.53	28280	94.53	
irish	100	97.94	99.28	9	6	100	6	100	100	100	6	100	
lympho	72.93	70.87	71.07	27	4214	71.73	5213	71.73	70.07	71.80	4214	71.73	
monks-1	100	100	100	29	2368	100	2496	100	100	100	2368	100	
monks-3	98.25	98.22	99.45	41	29952	99.11	30000	99.11	97.44	99.11	9050	99.11	
mush	100	99.97	99.97	23	444	100	477	100	100	100	444	100	
mux6	90.85	58.69	88.53	15	2	100	2	100	100	2	100	2	
new-thy	92.60	92.60	92.14	29	30000	91.35	30000	91.35	89.58	91.35	18584	91.35	
spect	77.37	76.98	71.06	35	288	87.53	369	87.53	87.53	87.53	288	87.53	
wine	90.28	95.33	92.78	23	32	92.44	32	92.44	92.44	92.44	32	92.44	
zoo	91.24	91.24	91.24	17	9364	91.24	9885	91.24	89.76	91.24	9364	91.24	
mean	87.07	84.15	86.61	17	88.70	88.67	87.86	88.82	88.82	88.50	88.82	88.50	
median	91.24	91.24	91.46	17	94.76	9350	92.44	92.44	92.67	93.50	2	92.44	

Size of the best solution is shown for non-optimal methods
to the maximum size reached by the psk version. Notice that in ask we evaluate many more DTs than for the previous approaches. Notice that lsk and ask may not compute Pure DTs in contrast to MPDT and psk.

Table 7 shows the average accuracy for each benchmark. For psk and ask we show the size of the DT (which may not be optimal). Additionally, for each dataset, we highlight in bold the approach with the best accuracy (ties are broken by DT size).

As we can see, extracting multiple diverse solutions (mpdt) helps to improve the average accuracy of the MPDT approach. Moreover, with respect to sklearn, mpdt obtains an average improvement on accuracy of 1.75%, 4.7% and 2.2% with respect to psk, lsk and ask.

Therefore, on the same size mpdt shows a much better accuracy-interpretability tradeoff than sklearn. Moreover, it is remarkable that mpdt using much fewer DTs than ask, and using Pure DTs, it is yet able to get a better average result. It seems that minimizing the size of PDTs helps to mitigate the overfitting phenomena. In this sense, it is interesting to explore the interactions with other properties such as the robustness of DTs (Moshkovitz et al. 2021).

Additionally, it is clear that mpdt misses some good solutions, in particular, the first one used by mpdt-1. Therefore, we also studied, whether any approach was able to see a DT with better accuracy on the test set but was not chosen with the selection set. In particular, mpdt obtains an average of 91.31%, psk 89.31%, lsk 86.65% and ask 90.51%.

We also compare with DT(max) (Hu et al. 2020) which uses the incomplete MaxSAT solver Loandra (Berg et al. 2020). Although Loandra is (according to the results of the MaxSAT evaluation (Bacchus et al. 2021) superior to the Linear MaxSAT solver we use, our approach mpdt still reports better results than DT(max) using, as in the original paper, depth limits of 2, 3 and 4 (see Sect. 3). In particular, we find improvements of 7.86%, 4.37%, and 1.69% respect to DT(max) limited on depths 2, 3, and 4 respectively.

Finally, although in this paper we focus on the trade-off between interpretability versus accuracy we may wonder how is the performance in terms of accuracy of sklearn on the original datasets prior to discretizing the continuous features in the preprocessing step described in Sect. 8. We conducted this experiment as in Table 8 and we observed that although ask and psk improve their mean (88.10% and 88.4%, respectively) and median (92.56% and 93.31%) performance they do not beat the mpdt approach which additionally guarantees the minimum size of the DT. Certainly, as future work, a promising research line is to study how to discretize better the continuous parameters to improve both the size of the DT and its accuracy through the mpdt approaches.

10 Conclusions and future work

We have presented an efficient approach for computing MPDTs providing new insights on the accuracy-interpretability tradeoff. We have shown that by computing MPDTs for the training set, we can also get in practice accurate DTs on the test set compared to DT heuristic approaches in ML. This is a curious result since technically we overfit on the training set. As future work, we will explore further the relation of the size of the tree and its pureness on the training set in terms of prediction accuracy on the test set. We will also explore how to produce better multiple optimal solutions from our MaxSAT approach and combine them effectively to construct other predictors.

3 DT(max) is comparable to DL8.5 (Aglin et al. 2020) which improves (Verhaeghe et al. 2019).

4 lsk can not be applied since the optimal size for datasets with continuous parameters is not known.
Table 8 Test accuracy score compared to SKlearn using the binary encoding and no encoding at all vs. complete approaches with the binary encoding

Dataset	PSK	ASK	MPDT-nd	MPDT-lay-nd	MPDT-1	MPDT	MPDT-lay	Mean		
	No enc.	Bin	No enc.	Bin						
append	79.71	70.48	78.76	65.43	70.00	70.00	70.00	71.05	70.00	71.71
audio	92.45	92.45	93.27	93.35	93.95	92.77	94.27	93.50	93.36	93.26
back	66.89	69.67	78.00	74.44	70.50	70.44	69.83	72.00	71.61	71.52
corral	100	100	100	100	99.25	99.25	100	99.25	99.25	99.67
haber	78.25	80.26	77.30	79.51	79.00	79.00	80.74	79.00	79.00	78.95
hayes-r	83.41	79.33	79.08	77.08	83.25	83.25	78.08	82.92	83.25	81.14
hepa	67.61	60.84	74.26	64.83	67.16	65.87	62.32	64.77	62.77	65.68
h-votes	93.31	93.31	93.98	93.98	94.34	94.34	94.25	93.56	94.34	93.93
iris	94.67	94.53	96.07	91.46	94.53	94.53	92.80	94.53	94.53	94.03
irish	100	100	100	99.28	100	100	100	100	100	99.92
lympho	72.40	72.93	69.86	71.07	71.73	71.73	71.07	71.80	71.73	71.33
monks-1	100	100	100	100	100	100	100	100	100	100
monks-3	98.83	98.25	98.82	99.45	99.11	99.11	97.44	99.11	99.11	98.76
mush	100	100	100	99.97	100	100	100	100	100	99.99
mux6	90.85	90.85	88.54	88.53	100	100	100	100	100	95.42
new-thy	93.67	92.60	84.65	92.14	91.35	91.35	89.58	91.35	91.35	91.45
spect	77.37	77.37	71.06	71.06	87.53	87.53	87.53	87.53	87.53	81.61
wine	92.39	90.28	92.56	92.78	92.44	92.44	92.67	92.44	92.44	92.46
zoo	95.90	91.24	95.90	91.24	91.24	91.24	89.76	94.76	91.24	92.50
MEAN	88.30	87.86	88.00	86.61	88.70	88.57	87.86	88.82	88.50	88.50
MEDIAN	92.45	91.85	92.56	91.46	92.44	92.44	92.67	93.50	92.44	92.44
Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work was supported by MCIN/AEI/10.13039/501100011033 (Grant: PID2019-109137GB-C21); Agencia de Gestio d’Ajuts Universitaris i de Recerca (AGAUR), Departament d’Empresa i Coneixement de la Generalitat de Catalunya (Grant: PANDEMIES 2020); Crue-CSIC-SANTANDER (Grant: FONDO SUPERACOVID-19); Agencia de Gestio d’Ajuts Universitaris i de Recerca (AGAUR), Departament d’Empresa i Coneixement de la Generalitat de Catalunya (“Ajuts Joan Oró per a la contractació de personal investigador predoctoral en formació”), grant: 2022 FI_B 00010).

Material availability Data and software are available upon request.

Competing interests The authors have no competing interests to declare that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aglin G, Nijssen S, Schaus P (2020) Learning optimal decision trees using caching branch-and-bound search. In: AAAI 2020, IAAI 2020, EAAI 2020, New York, NY, USA, February 7–12, 2020. AAAI Press, pp 3146–3153, https://aaai.org/ojs/index.php/AAAI/article/view/5711
Ansótegui C, Ojeda J, Pacheco A et al (2021) Optilog: a framework for sat-based systems. In: SAT 2021, Cham, pp 1–10
Ansótegui C, Izquierdo I, Manyà F et al (2013) A max-sat-based approach to constructing optimal covering arrays. Front Artif Intell Appl 256:51–59
Avellaneda F (2020) Efficient inference of optimal decision trees. In: AAAI 2020, IAAI 2020, EAAI 2020, New York, NY, USA, February 7–12, 2020. AAAI Press, pp 3195–3202
Bacchus F, Berg J, Järvisalo M, et al (2021) Maxsat evaluation 2021: solver and benchmark descriptions.
Berg J, Demirovic E, Stuckey P (2020) Loandra in the 2020 maxsat evaluation. MaxSAT Evaluation 2020:10
Berre DL, Parrain A (2010) The sat4j library, release 2.2. J Satisf Boolean Model Comput 7(2-3):59–64
https://doi.org/10.3233/sat190055
Bessiere C, Hebrard E, O’Sullivan B (2009) Minimising decision tree size as combinatorial optimisation. In: CP 2009, Lisbon, Portugal, September 20–24, 2009, Proceedings, vol 5732. Springer, pp 173–187
Biere A (2019) CaDiCaL at the SAT Race 2019. In: Proc. of SAT Race 2019 – Solver and Benchmark Descriptions, Department of Computer Science Series of Publications B, vol B-2019-1. University of Helsinki, pp 8–9
Biere A, Heule M, van Maaren H et al (eds) (2009) Handbook of satisfiability, frontiers in artificial intelligence and applications, vol 185, IOS Press
De Raedt L, Guns T, Nijssen S (2008) Constraint programming for itemset mining. KDD 2008:204–212.
https://doi.org/10.1145/1401890.1401919
Dua D, Graff C (2017) UCI machine learning repository. http://archive.ics.uci.edu/ml
Eén N, Sörensson N (2006) Translating pseudo-boolean constraints into SAT. J Satisf Boolean Model Comput 2(1–4):1–26. https://doi.org/10.3233/sat190014
European Commission (2021) Proposal for a Regulation of the European Parliament and of the Council laying down harmonised rules on artificial intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206
Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119–139. https://doi.org/10.1006/jcss.1997.1504

Hautaniemi S, Kharaï S, Iwabu A et al (2005) Modeling of signal-response cascades using decision tree analysis. Bioinformatics 21(9):2027–2035. https://doi.org/10.1093/bioinformatics/bti278

Hu X, Rudin C, Seltzer MI (2019) Optimal sparse decision trees. In: NeurIPS 2019, December 8–14, 2019, Vancouver, BC, Canada, pp 7265–7273, https://proceedings.neurips.cc/paper/2019/hash/ac52c626af10d4075708ac4c778ddfc-Abstract.html

Hu H, Siala M, Hebrard E et al (2020) Learning optimal decision trees with maxsat and its integration in adaboost. In: IJCAI 2020. ijcai.org, pp 1170–1176, https://doi.org/10.24963/ijcai.2020/163

Janota M, Morgado A (2020) Sat-based encodings for optimal decision trees with explicit paths. In: SAT 2020, Alghero, Italy, July 3–10, 2020, Proceedings, Lecture notes in computer science, vol 12178. Springer, pp 501–518, https://doi.org/10.1007/978-3-030-51825-7_35

Le Berre D, Parrain A (2010) The sat4j library, release 2.2. J Satisf Boolean Model Comput 7:59–64. https://doi.org/10.3233/SAT190075

Lei Z, Cai S, Geng F et al (2021) Satlike-c: Solver description. MaxSAT Evaluation 2021:19

Moshkovitz M, Yang YY, Chaudhuri K (2021) Connecting interpretability and robustness in decision trees through separation. arXiv:2102.07048

Nadel A (2021) Ti-open-wbo-inc-21: an anytime maxsat solver entering mse’21. MaxSAT Evaluation 2021:21

Narodytska N, Ignatiev A, Pereira F et al (2018) Learning optimal decision trees with SAT. In: Lang J (ed) IJCAI 2018, July 13–19, 2018, Stockholm, Sweden. ijcai.org, pp 1362–1368

Olson RS, La Cava W, Orzechowski P et al (2017) Pmlb: a large benchmark suite for machine learning evaluation and comparison. BioData Min 10(1):36. https://doi.org/10.1186/s13040-017-0154-4

Romano JD, Le TT, La Cava W et al (2021) Pmlb v1.0: an open source dataset collection for benchmarking machine learning methods. arXiv preprint arXiv:2012.00058v2

Schidler A, Szeider S (2021) Sat-based decision tree learning for large data sets. In: AAAI Scikit-learn developers (2020) Decision Trees (Scikit documentation). https://scikit-learn.org/stable/modules/tree.html#tree-algorithms-id3-c4-5-c5-0-and-cart

Utgoff PE (1989) Incremental induction of decision trees. Mach Learn 4:161–186. https://doi.org/10.1023/A:102299900025

Verhaeghe H, Nijssen S, Pesant G, et al (2019) Learning optimal decision trees using constraint programming. In: BNAIC 2019, Benelearn 2019, Brussels, Belgium, November 6–8, 2019, CEUR workshop proceedings, vol 2491. CEUR-WS.org. http://ceur-ws.org/Vol-2491/abstract109.pdf

Verwer S, Zhang Y (2019) Learning optimal classification trees using a binary linear program formulation. In: AAAI 2019, IAAI 2019, EAAI 2019, Honolulu, Hawaii, USA, January 27–February 1, 2019. AAAI Press, pp 1625–1632, https://doi.org/10.1609/aaai.v33i01.33011624

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.