Somatic Mutations of TP53 Identified by Targeted Next-Generation Sequencing Are Poor Prognostic Factors for Primary Operable Breast Cancer: A Single-Center Study

Jung Ho Park, Mi Jung Kwon, Jinwon Seo, Ho Young Kim, Soo Kee Min, Lee Su Kim

Division of Breast and Endocrine Surgery, Hallym University Sacred Heart Hospital, Anyang, Korea
Department of Pathology, Hallym University Sacred Heart Hospital, Anyang, Korea
Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Korea
Department of Pathology, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong, Korea
Department of Surgery, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong, Korea

ABSTRACT

Few studies have reported on the clinical utility of targeted next-generation sequencing (NGS) for breast cancer in Korea. We retrospectively reviewed the targeted NGS data of 219 patients with breast cancer who underwent surgical resection between August 2018 and April 2021. Here, we described the mutational profiles of breast cancer and examined their prognostic implications. The most frequently mutated gene was PIK3CA (n = 97/219, 44.3%), followed by TP53 (n = 79/219, 36.1%), AKT1 (n = 23/219, 10.5%), and GATA3 (n = 20/219, 9.1%). TP53 mutations were associated with aggressive histologic features. We followed up for 31 (range, 1–39) months and observed 11 (5.0%) recurrences: nine were TP53 mutant and two were TP53 wild-type. Multivariable analysis revealed that TP53 mutation was an independent prognostic factor for recurrence (p = 0.012). Although no drug is currently available for TP53 mutations, it is valuable to know the mutational status of TP53 for the precise management of breast cancer.

Keywords: Breast Neoplasms; Disease-Free Survival; Genes, p53; High-Throughput Nucleotide Sequencing; Mutation

INTRODUCTION

Molecular studies have shown that breast cancer is a heterogeneous disease. Each breast cancer subtype has diverse biologic characteristics [1]. The development of next-generation sequencing (NGS) has reduced the time and cost of genomic analyses. Targeted NGS enables genomic analysis and is readily available in clinical settings. Several platforms for targeted NGS have been commercialized and used in clinical practice.

Since 2017, targeted NGS for solid cancers has been partially covered by the national health insurance in Korea [2]. However, the mutational profiles of Korean patients with breast cancer have been poorly characterized. Moreover, the clinical utility of targeted NGS for breast cancer in Korea remains underexplored. In this study, we described the mutational profiles of breast cancer and examined their prognostic implications.
primary operable breast cancer remains unclear [3]. To fill the gap between widespread clinical use and unproven clinical benefits, we aimed to describe our experience with targeted NGS for primary operable breast cancer.

METHODS

Patient selection and data acquisition

Targeted NGS was initiated at our institution in August 2018. We retrospectively reviewed the electronic medical records of patients with breast cancer who underwent surgical resection between August 2018 and April 2021. We included patients with stage I–III breast cancer and collected the available NGS data. Patients who underwent neoadjuvant chemotherapy and those with recurrent tumors, distant metastasis, and occult breast cancer were excluded from the study. We collected clinicopathological data, including age at diagnosis, menopausal status, body mass index, histologic subtype, nuclear grade, histologic grade, lymphovascular invasion, lymph node metastases, and immunohistochemical staining. Pathological data included estrogen receptor (ER), progesterone receptor, human epithelial growth factor receptor 2 (HER2), and Ki-67 index. According to the Saint Gallen consensus [4], we classified the patients into five subtypes: luminal A, luminal B/HER2-negative, luminal B/HER2-positive, HER2-enriched, and triple-negative breast cancers. We adopted a cut-off value of Ki-67 as 20% for distinguishing between the luminal A and luminal B/HER2-negative subtypes.

NGS protocol

All NGS procedures were performed in accordance with the institutional protocols. Formalin-fixed paraffin-embedded tissue blocks were dissected to 10-µm thickness. Tumor areas with high cellularity were selected and manually dissected for further analysis. The DNA was extracted and purified in a standard manner.

For sequencing, we used MiSeqDx (Illumina, San Diego, CA, USA), according to the manufacturer’s protocol. We selected 50 cancer-related genes and customized a pan-cancer panel. The genes included in the NGS panel were as follows: AKT1, ALK, APC, ARID1A, ATRX, BRAF, BRCAl, BRCa2, CDH1, CDK4, CDK6, CDKN2A, CTNNB1, EGFR, HER2, ERBB3, ERBB4, ESR1, FBXW7, FGFR1, FGFR2, FGFR3, FOXA1, GATA3, H3F3A, IDH1, IDH2, KIT, KRAS, MAP2K1, MET, MLH1, MTOR, MYC, MYCN, NRAS, PDGFA, PIK3CA, PTEN, RBI, RELA, RET, RHOA, RICTOR, ROS1, SMAD4, SMARCB1, SMO, STK11, and TP53. All coding exons of the genes were included in the panel.

Each variant was compared with known mutations stored in web-based databases, such as COSMIC (https://cancer.sanger.ac.uk/cosmic), ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/), and OncoKB (https://www.oncokb.org/). According to the guidelines [5], the variants were classified into three groups: tier 1, variants with strong clinical significance; tier 2, variants with potential clinical significance; and tier 3, variants with unknown clinical significance. The variants of tiers 1 and 2 were included in the analysis.

Statistical analysis

Comparisons between categorical variables were performed using the χ² test or Fisher’s exact test. Comparisons between continuous variables were performed using the Student’s t-test. Disease-free survival (DFS) was compared using the Kaplan-Meier product limit method and log-rank test. The Cox proportional hazards model was used for the multivariable analysis.
All statistical analyses were performed using SPSS (version 27.0; IBM Corporation, Armonk, NY, USA). Statistical significance was set at $p < 0.05$.

This study was reviewed and approved by the Institutional Review Board of Hallym University Sacred Heart Hospital (IRB number: 2019-05-009). The requirement for informed consent was waived due to the retrospective study design.

RESULTS

Clinicopathological characteristics

A total of 801 patients underwent surgery for breast cancer between August 2018 and April 2021. Among 258 patients who underwent NGS for breast cancer, 219 were included in the analysis (Supplementary Figure 1). \(TP53 \) mutations were significantly associated with aggressive histologic features, such as high nuclear grade, high histologic grade, and high Ki-67 index (Table 1). Adjuvant chemotherapy showed no significant differences between \(TP53 \) wild-type and mutant tumors (Supplementary Table 1).

Variables	\(TP53 \) wild-type (n = 140)	\(TP53 \) mutant (n = 79)	\(p \)
Age (yr)	55.09 ± 11.56	54.77 ± 12.82	0.857
Menopausal status			0.158
Premenopausal	66 (47.1)	30 (38.0)	
Postmenopausal	72 (51.4)	45 (57.0)	
Perimenopausal	2 (1.4)	4 (5.1)	
BMI (kg/m\(^2\))	24.49 ± 3.91	25.03 ± 4.52	0.375
Operation			0.501
BCS	100 (71.4)	53 (67.1)	
TM	40 (28.6)	26 (32.9)	
T stage			0.029
1	79 (56.4)	30 (38.0)	
2	49 (35.0)	42 (53.2)	
3	10 (7.1)	4 (5.1)	
4	2 (1.4)	3 (3.8)	
N stage			0.024
0	86 (61.4)	39 (49.4)	
1	27 (19.3)	14 (17.7)	
2	15 (10.7)	21 (26.6)	
3	12 (8.6)	5 (6.3)	
Nuclear grade			< 0.001
1	19 (13.9)	2 (2.5)	
2	78 (56.9)	17 (21.5)	
3	40 (29.2)	60 (75.9)	
Histologic grade			< 0.001
1	38 (27.9)	5 (6.3)	
2	72 (52.9)	21 (26.6)	
3	26 (19.1)	53 (67.1)	
Lymphovascular invasion			0.041
Absent	92 (67.2)	42 (53.2)	
Present	45 (32.8)	37 (46.8)	
Ki-67 index	20.06 ± 16.15	40.98 ± 16.69	< 0.001

Values are expressed as mean ± standard deviation or number (%). BMI = body mass index; BCS = breast conserving surgery; TM = total mastectomy.
The most commonly mutated gene was PIK3CA in 97 (44.3%) patients, followed by TP53 in 79 (36.1%), AKT1 in 23 (10.5%), and GATA3 in 20 (9.1%). The less commonly mutated genes included PTEN, CDH1, BRCA2, HER2, and BRCA1 mutations in 15 (6.8%), 11 (5.0%), 9 (4.1%), 5 (2.3%), and 4 (1.8%) patients, respectively.

Each breast cancer subtype exhibited different mutational characteristics (Table 2). PIK3CA mutations were more commonly found in the luminal A subtype (n = 55/83, 66.3%) than in the luminal B/HER2-negative (12/38, 31.6%), luminal B/HER2-positive (11/35, 31.4%), HER2-enriched (10/22, 45.5%), or triple-negative (9/41, 22.0%) subtypes (p < 0.001). TP53 mutations were more commonly found in the HER2-enriched (17/22, 77.3%) and triple-negative (9/41, 22.0%) subtypes than in the luminal B/HER2-positive (18/35, 51.4%), luminal B/HER2-negative (11/35, 31.4%), and luminal A (5/83, 6.0%) subtypes (p < 0.001). GATA3 mutations were exclusively found in luminal breast cancers (p = 0.023). BRCA1 mutations were more likely to be found in the triple-negative subtype (p = 0.024).

Survival analysis
We compared survival outcomes between wild-type and mutant tumors. Overall, there were 11 (5.0%) recurrences during 31 (range, 1–39) months of follow-up. TP53 mutations were significantly associated with worse short-term DFS (Figure 1). For the other genes, there were no significant differences in survival (Supplementary Figure 2).

Multivariable analysis was performed to further validate the prognostic implications of TP53 mutations (Supplementary Table 2). Univariable analysis revealed that high nodal stage, high nuclear grade, high histologic grade, ER negativity, and TP53 mutations were associated with recurrence. Multivariable analysis showed that TP53 mutations were independently associated with short-term DFS in breast cancer (hazard ratio, 7.23; 95% confidence interval, 1.55–33.77; p = 0.012).

DISCUSSION
We showed that somatic mutations of TP53, which can be identified by targeted NGS, are poor prognostic factors for breast cancer in a curative setting. Among the various genetic alterations, only TP53 mutations were associated with poor short-term DFS in patients with primary operable breast cancer. TP53 mutations are associated with poor prognostic factors,
such as high histologic grade, high Ki-67 index, and non-luminal subtype. Multivariable analysis showed that TP53 mutations were independent prognostic factors for recurrence.

TP53 mutations are driver mutations in various cancer types. TP53 mutations are closely related to aggressive histologic features and poor survival in breast cancer [6-8]. Paired analysis of primary breast tumors and metastatic samples showed that TP53 mutations were more commonly identified in metastatic samples [9,10]. However, it is unclear whether TP53 mutations are predictive factors. TP53 mutations were not predictive factors in a randomized controlled trial comparing taxane versus non-taxane neoadjuvant chemotherapy [11]. In hormone receptor-positive breast cancers, TP53 mutations were associated with resistance to hormonal treatment [12,13]. Another study suggested that tamoxifen is effective against breast cancer with wild-type TP53 [14]. There are no drugs available that target TP53 mutations; however, such drugs are currently under investigation [15-17].

The most commonly mutated gene in our study was PIK3CA. PIK3CA mutations were commonly identified in the luminal A subtype and were associated with indolent histologic features in our cohort. However, we were unable to demonstrate their prognostic value. In contrast to early breast cancer, PIK3CA mutations are poor prognostic factors for advanced breast cancer [12,18]. Drugs that target the PI3K/Akt/mTOR pathway are available for treating metastatic breast cancer [18-20]. Notably, alpelisib is an oral PI3Kα inhibitor that has recently been approved for hormone receptor-positive, HER2-negative metastatic breast cancers.

Although various genetic alterations can be identified through targeted NGS, there is insufficient evidence to guide treatment through NGS. All patients in our study received standard treatments. Only two genetic alterations, BRCA1 and BRCA2 mutations, can guide the surgical treatment of breast cancer. Mutations in BRCA1 or BRCA2 can cause hereditary breast and ovarian cancer syndromes. For patients with pathogenic germline mutations of BRCA1 or BRCA2, risk-reducing mastectomy may be recommended. We identified four (1.8%) BRCA1 and nine (4.1%) BRCA2 mutations. Among the three patients who underwent the germline BRCA test, two were confirmed to have germline BRCA mutations, and the other

Figure 1. Kaplan-Meier survival analysis of the study patients. TP53 mutations were associated with poor short-term DFS of primary operable breast cancer patients ($p = 0.001$). DFS = disease-free survival.
patient was confirmed to have a somatic mutation (Supplementary Table 3). The results of this study are consistent with those of a previous study that demonstrated that approximately one-third of BRCA mutations are of somatic origin [21]. Genetic counseling should be performed before initiating targeted NGS, and germline testing should be performed for all patients with BRCA mutations.

Some of the identified mutations have been associated with treatment resistance. We identified a patient with an ESR1 (p.Y537C) mutation located in the ligand-binding domain of ESR1 [22]. ESR1 mutations have rarely been identified in treatment-naive breast cancers. In metastatic cohorts, ESR1 mutations have been identified in up to 25% of cases [12,23,24]. Activating mutations in HER2 can be identified by NGS. HER2 mutations are not detectable by immunohistochemistry and are resistant to trastuzumab [25,26]. In our cohort, there were five cases of HER2 mutations. One case was a pleomorphic lobular carcinoma for which the pan-HER inhibitor neratinib could be applied [26].

Our study had several limitations. We only included patients with primary operable breast cancer for whom investigational drugs were not applicable. Due to the short observation period, we could not observe any late recurrences. Long-term follow-up is required to observe the recurrence of ER-positive breast cancer. Because our gene panel included only 50 genes, some important genetic alterations could not be identified. Despite these limitations, we demonstrated that TP53 mutations identified using targeted NGS can serve as independent prognostic markers for primary operable breast cancer. This study provides valuable real-world data on the genomic profiles of breast cancer in Korea.

In conclusion, targeted NGS can be used to identify genetic alterations that may serve as prognostic factors for primary operable breast cancer. Knowledge of the TP53 mutational status is valuable for the precise management of breast cancer and for designing clinical trials. Although there are no clinically available drugs that target TP53 mutations, such drugs are currently being investigated.

SUPPLEMENTARY MATERIALS

Supplementary Table 1
Adjuvant chemotherapeutic regimens recommended by the clinicians

Click here to view

Supplementary Table 2
Factors associated with the short-term DFS

Click here to view

Supplementary Table 3
Clinical characteristics of the patients with BRCA mutations

Click here to view
Supplementary Figure 1
Flow diagram of the study design.

Click here to view

Supplementary Figure 2
Kaplan-Meier survival analysis of the patients with mutations other than TP53. There are no significant differences in (A) PIK3CA mutations (n = 97), (B) AKT1 mutations (n = 23), (C) GATA3 mutations (n = 20), (D) PTEN mutations (n = 15), (E) CDH1 mutations (n = 11), and BRCA2 mutations (n = 9).

Click here to view

REFERENCES

1. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012;490:61-70.
PUBMED | CROSSREF
2. Yoon S, Kim M, Hong YS, Kim HS, Kim ST, Kim J, et al. Recommendations for the use of next-generation sequencing and the molecular tumor board for patients with advanced cancer: a report from KSMO and KC3G Precision Medicine Networking Group. Cancer Res Treat 2022;54:1-9.
PUBMED | CROSSREF
3. Mosele F, Remon J, Mateo J, Westphalen CB, Barlesi F, Lolkema MP, et al. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group. Ann Oncol 2020;31:1491-505.
PUBMED | CROSSREF
4. Goldhirsh A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thürlimann B, et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol 2013;24:2206-23.
PUBMED | CROSSREF
5. Li MM, Datto M, Duncaevage EL, Kulkarni S, Lindeman NI, Roy S, et al. Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn 2017;19:4-23.
PUBMED | CROSSREF
6. Weisman PS, Ng CK, Brogi E, Eisenberg RE, Won HH, Piscuoglio S, et al. Genetic alterations of triple negative breast cancer by targeted next-generation sequencing and correlation with tumor morphology. Mod Pathol 2016;29:476-88.
PUBMED | CROSSREF
7. Olivier M, Langerod A, Carrieri P, Bergh J, Klaar S, Eyfjord J, et al. The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin Cancer Res 2006;12:1157-67.
PUBMED | CROSSREF
8. Griffith OL, Spies NC, Anurag M, Griffith M, Luo J, Tu D, et al. The prognostic effects of somatic mutations in ER-positive breast cancer. Nat Commun 2018;9:3476.
PUBMED | CROSSREF
9. Bertucci F, Ng CK, Patsouris A, Droin N, Piscuoglio S, Carubba N, et al. Genomic characterization of metastatic breast cancers. Nature 2019;569:560-4.
PUBMED | CROSSREF
10. Roy-Chowdhuri S, de Melo Gagliato D, Routbort MJ, Patel KP, Singh RR, Broaddus R, et al. Multigene clinical mutational profiling of breast carcinoma using next-generation sequencing. Am J Clin Pathol 2015;144:713-21.
PUBMED | CROSSREF
11. Bonnefoi H, Piccart M, Bogaerts J, Mauriac L, Fumoleau P, Brain E, et al. TP53 status for prediction of sensitivity to taxane versus non-taxane neoadjuvant chemotherapy in breast cancer (EORTC 10994/BIG 1-00): a randomised phase 3 trial. Lancet Oncol 2011;12:527-39.
PUBMED | CROSSREF

https://ejbc.kr

https://doi.org/10.4048/jbc.2022.25.e41
12. Hagio K, Amano T, Hayashi H, Takeshita T, Oshino T, Kikuchi J, et al. Impact of clinical targeted sequencing on endocrine responsiveness in estrogen receptor-positive, HER2-negative metastatic breast cancer. Sci Rep 2021;11:8109.

13. Meric-Bernstam F, Zheng X, Shariati M, Damodaran S, Watthoo C, Brusco L, et al. Survival outcomes by TP53 mutation status in metastatic breast cancer. JCO Precis Oncol 2018;2018:PO.17.00245.

14. Ungerleider NA, Rao SG, Shahbandi A, Yee D, Niu T, Frey WD, et al. Breast cancer survival predicted by TP53 mutation status differs markedly depending on treatment. Breast Cancer Res 2018;20:115.

15. Na B, Xu Y, Withers T, Gilleran J, Yao M, Foo TK, et al. Therapeutic targeting of BRCA1 and TP53 mutant breast cancer through mutant p53 reactivation. NPJ Breast Cancer 2019;5:14.

16. Duffy MJ, Synnott NC, Crown J. Mutant p53 in breast cancer: potential as a therapeutic target and biomarker. Breast Cancer Res Treat 2018;170:213-9.

17. Bauman JE, Chung CH. CHK it out! Blocking WEE kinase routs TP53 mutant cancer. Clin Cancer Res 2014:20:4173-5.

18. Chang DY, Ma WL, Lu YS. Role of alpelisib in the treatment of PIK3CA-mutated breast cancer: patient selection and clinical perspectives. Ther Clin Risk Manag 2021;17:193-207.

19. Kim SB, Dent R, Im SA, Espié M, Blau S, Tan AR, et al. Ipatasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer (LOTUS): a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol 2017;18:1360-72.

20. Baselga J, Campone M, Piccart M, Burris HA 3rd, Rugo HS, Sahmoud T, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 2012;366:520-9.

21. Winter C, Nilsson MP, Olsson E, George AM, Chen Y, Kvist A, et al. Targeted sequencing of BRCA1 and BRCA2 across a large unselected breast cancer cohort suggests that one-third of mutations are somatic. Ann Oncol 2016;27:1532-8.

22. Toy W, Shen Y, Won H, Green B, Sakr RA, Will M, et al. ESR1 ligand-binding domain mutations in hormone-resistant advanced breast cancer. Nat Genet 2013;45:1439-45.

23. Lefebvre C, Bachelot T, Filleron T, Pedrozo M, Campone M, Soria JC, et al. Mutational profile of metastatic breast cancers: a retrospective analysis. PLoS Med 2016;13:e1002201.

24. Razavi P, Chang MT, Xu G, Bandlamudi C, Ross DS, Vasan N, et al. The genomic landscape of endocrine-resistant advanced breast cancers. Cancer Cell 2018;34:427-438.e6.

25. Ross JS, Gay LM, Wang K, Ali SM, Chumsri S, Elvin JA, et al. Nonamplification ERBB2 genomic alterations in 5605 cases of recurrent and metastatic breast cancer: an emerging opportunity for anti-HER2 targeted therapies. Cancer 2016;122:2654-62.

26. Cocco E, Javier Carmona F, Razavi P, Won HH, Cai Y, Rossi V, et al. Neratinib is effective in breast tumors bearing both amplification and mutation of ERBB2 (HER2). Sci Signal 2018;11:eaat9773.