Synthesis and in vitro assay of hydroxyxanthones as antioxidant and anticancer agents

Nela Fatmasari¹, Yehezkiel Steven Kurniawan¹, Jumina Jumina¹,², Chairil Anwar¹, Yoga Priastomo³, Harno Dwi Pranowo³, Abdul Karim Zulkarnain² & Eti Nurwening Sholikhah³

In the present work, three hydroxyxanthones were synthesized in 11.15–33.42% yield from 2,6-dihydroxybenzoic acid as the starting material. The chemical structures of prepared hydroxyxanthones have been elucidated by using spectroscopic techniques. Afterward, the hydroxyxanthones were evaluated as antioxidant agents through radical scavenging assay; and anticancer agents through in vitro assays against WiDr, MCF-7, and HeLa cancer cell lines. Hydroxyxanthone 3b was categorized as a strong antioxidant agent (IC₅₀ = 349 ± 68 µM), while the other compounds were categorized as moderate antioxidant agents (IC₅₀ > 500 µM). On the other hand, hydroxyxanthone 3a exhibited the highest anticancer activity (IC₅₀ = 184 ± 15 µM) and the highest selectivity (SI = 18.42) against MCF-7 cancer cells. From the molecular docking study, it was found that hydroxyxanthone 3a interacted with the active sites of Topoisomerase II protein through Hydrogen bonding with DG13 and π–π stacking interactions with DA12 and DC8. These findings revealed that hydroxyxanthones are potential candidates to be developed as antioxidant and anticancer agents in the future.

Oxidative stress diseases have been receiving great attention due to their harmful, severe, and unfavorable effects on the human body. Several fatal diseases such as cancer, arthritis, cardiovascular, and neurodegenerative diseases are generated by oxidative stress that damages human tissue and organs. Free radicals are reported as the main factor in the production of oxidative stress in the human body. Free radicals are very reactive; thus, they react rapidly with biomolecules such as DNA and affect cell metabolism. Additionally, free radicals are also responsible for cholesterol and atherosclerosis deposition inside the blood vessels. Therefore, researchers are making extensive efforts to prevent and deactivate the free radicals before damaging the cell function.

Usage of antioxidant agents is the most straightforward approach to deactivate the free radicals. Almost all antioxidant agents are composed of phenolic compounds because phenolic compounds are able to generate hydrogen donor and electron delocalization mechanisms to suppress the formation of oxidative stress. Several natural and synthetic antioxidant agents such as chalcone, indole-3-acetamide, cadmium-bismuth microsphere, indazole, and salicylhydrazidehydrazone derivatives have been evaluated; however, their chemical synthesis is not easy, and their antioxidant activity is still unsatisfactory.

Almost 80–95% of antioxidant and anticancer agents consist of a heterocyclic structure. Among the heterocyclic compounds, xanthone derivatives with a dibenzo-γ-pyrone skeleton exhibit unique physicochemical properties. Furthermore, xanthones display broad pharmacological activities, which are remarkable to be further developed for the drug research. Xanthone could be obtained from various plants, such as Symphonia globulifera and Garcinia mangostana. Nevertheless, the isolation process is very complicated to obtain the desired xanthone derivatives in high purity. Furthermore, the isolation and purification of xanthones require a large volume of organic solvents in a time-consuming process. Therefore, the synthesis of xanthone is much attractive to be developed to afford xanthone derivatives in a higher yield within a faster research period. Moreover, it is possible to obtain xanthone derivatives with specific functional groups at a certain position by using a synthesis reaction, which may not be found in natural sources.

¹Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia. ²Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia. ³Department of Pharmacology and Therapy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia. *email: jumina@ugm.ac.id
The synthesis of xanthone was firstly established in 1892 by Michael and Kostanecki by reacting phenol, acetic acid–o-hydroxybenzoate, and acetic anhydride. Unfortunately, this method generates an unfavorable side reaction; thus, the obtained yield was very low. Eaton’s reagent (a mixture of P₂O₅ and CH₃SO₃H) has recently been introduced to give a higher yield for xanthone derivatives. For example, Zhou et al. successfully synthesized 1,3-dihydroxyxanthone and 7-(2,4-diphenyl)-1,3-dihydroxyxanthone in up to 76% yield; however, their antioxidant activity was still lower compared to the commercial antioxidant agents. Because of that, synthesis and modification of other xanthone derivatives are important to find the active antioxidant agents to be used for commercial purposes.

Xanthone, benzyhydrazone, and quinoxaline derivatives have been reported to give remarkable anticancer activities. Hydroxyxanthones exhibit good anticancer activity against lung, breast, hepatoma, cervical, colorectal, and other cancer cell lines. Hydroxyxanthones could lead to cell apoptosis by stimulating the caspase enzyme. Furthermore, hydroxyxanthones are able to inhibit Topoisomerase II protein by intercalation mechanism on the DNA cleavage sites. This anticancer mechanism occurred as the hydroxyxanthones were constructed by three fused aromatic systems, which were reported as the essential pharmacophoric feature of Topoisomerase II inhibitors. Furthermore, the three fused aromatic structure of hydroxyxanthones is similar to doxorubicin and mitoxantrone as standard DNA intercalators. Therefore, hydroxyxanthones are potential to be further investigated as anticancer agents.

In our previous work, several hydroxanthone derivatives, i.e., 1,3-dihydroxyxanthone, 3,4-dihydroxyxanthone, 3,6-dihydroxyxanthone, 1,3,6-trihydroxyxanthone, and 3,4,6-trihydroxyxanthone have been synthesized and evaluated as the anticancer agent against WiDr cancer cell line. In continuation of our previous research, we synthesized other hydroxyxanthone derivatives to give a broader map of their antioxidant and anticancer activities through in vitro and molecular docking studies. In this work, three hydroxyxanthone derivatives, i.e., 1,3,8-trihydroxyxanthone, 1,6-dihydroxyxanthone, and 1,6,9-trihydroxyxanthone were prepared from 2,6-dihydroxybenzoic acid with phloroglucinol, resorcinol, and pyrogallol, respectively. The chemical structure of these hydroxyxanthones was elucidated using Fourier transform infrared (FTIR) spectrophotometer, mass spectrometry (MS), and nuclear magnetic resonance (NMR) spectrometers. These compounds were evaluated as antioxidant and anticancer agents through in vitro assay using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2’-diphenyldichloroethane (DDPH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) methods, respectively. The inhibition mechanism of the most active anticancer agent against Topoisomerase II protein was further studied through a molecular docking study.

Materials and methods

Materials. The chemicals used in the synthesis, i.e., 2,6-dihydroxybenzoic acid (C₇H₆O₄), phloroglucinol (C₆H₁₀O₂), resorcinol (C₆H₆O₂), pyrogallol (C₆H₆O₃), Eaton’s reagent (P₂O₅, CH₃SO₃H), DPPH (C₁₈H₁₂N₅O₆), n-hexane (C₆H₁₄), ethyl acetate (C₄H₈O₂), and methanol (CH₃OH) were purchased from Merck in pro analytical grade. In addition, butylated hydroxytoluene (BHT, C₁₅H₂₄O) and MTT (C₁₈H₁₇N₅S) were obtained from Aldrich in pro analytical grade.

Preparation of hydroxyxanthones. A mixture of 2,4-dihydroxybenzoic acid (3.66 g, 15.0 mmol), the substituted phenol (phloroglucinol, resorcinol, and pyrogallol) (15.0 mmol, 1 equiv.), and Eaton’s reagent (8.00 mL) was heated at 80–85 °C for 3 h. Then, the mixture was allowed to reach room temperature, and the mixture was poured with cooled water (50 mL). The resulting solid residue was collected by filtration, washed with water until neutral, dried, and then purified by preparative thin layer chromatography. In the preparative thin-layer chromatography, silica was used as the stationary phase, while a mixture of n-hexane and ethyl acetate 1:1 v/v was used as the mobile phase to afford the target compound. The products were then characterized using FTIR (Shimadzu-Prestige 21), MS (Shimadzu QP-2010S), 1H– and 13C–NMR (JEOL JNMECA 500 MHz) spectrometers.

1,3,8-trihydroxyxanthones (3a). The compound 3a was obtained as a yellow solid in 16.14% yield. m.p. 239–240 °C. FTIR (KBr) v/cm⁻¹: 3448 (O–H), 1612 (C = O), 1418 (C = C), 1296 (C–O–C). 1H–NMR (CD₃OD, 500 MHz) δ/ppm = 103.4 (C4), 107.8 (C8b), 109.4 (C2), 110.9 (C7), 113.2 (C8a), 116.6 (C8), 128.3 (C5), 137.0 (C3), 157.7 (C4a), 159.4 (C4b), 162.3 (C1), 164.2 (C6), 169.9 (C8), 185.1 (C9). MS m/z = 228 [M–16]+.

1,6-dihydroxyxanthones (3b). This compound was obtained as a yellow solid in 33.42% yield. m.p. 248–249 °C. FTIR (KBr) v/cm⁻¹: 3425 (O–H), 1612 (C = O), 1418 (C = C), 1296 (C–O–C). 1H–NMR (CD₃OD, 500 MHz) δ/ppm = 102.7 (C5), 107.3 (C4), 108.8 (C8b), 110.5 (C2), 115.9 (C4), 128.4 (C5), 137.6 (C3), 157.4 (C3), 159.3 (C4a), 159.4 (C4b), 162.3 (C6), 164.2 (C6), 169.9 (C8), 185.1 (C9). MS m/z = 244 [M]+.

1,3,5-trihydroxyxanthone (3c). This compound was obtained as a yellow solid in 33.42% yield. m.p. 248–249 °C. FTIR (KBr) v/cm⁻¹: 3425 (O–H), 1612 (C = O), 1418 (C = C), 1296 (C–O–C). 1H–NMR (CD₃OD, 500 MHz) δ/ppm = 6.67 (1H, d, J = 2.15 and 8.81 Hz, H7), 6.71 (1H, d, J = 2.15 Hz, H5), 6.81 (1H, dd, J = 8.31 and 2.23 Hz, H2), 6.85 (1H, dd, J = 8.31 and 2.23 Hz, H4), 7.49 (1H, t, J = 8.36 Hz, H3). 13C–NMR (CD₃OD, 125 MHz) δ/ppm = 95.8 (C7), 100.0 (C5), 107.9 (C8a), 111.4 (C8b), 115.9 (C4), 128.4 (C2), 137.6 (C3), 157.4 (C4a), 159.4 (C4b), 162.3 (C6), 164.2 (C6), 169.9 (C8), 185.1 (C9). MS m/z = 228 [M]+.

In vitro antioxidant assay. The antioxidant activity of hydroxyxanthones was evaluated by using a DPPH scavenging assay. Each hydroxyxanthone (3a-c) was dissolved in methanol at a concentration range from 10 to...
The synthesis scheme of hydroxyxanthone derivatives is shown in Fig. 1. All hydroxyxanthones (3a–c) were prepared through a cyclo-acylation reaction of 2,6-dihydroxybenzoic acid (1) with phenolic derivatives (2a–c). From the spectroscopic elucidation, the correct chemical structure of hydroxyxanthones 3a–c has been confirmed. The FTIR, MS, 1H–, and 13C–NMR spectra of hydroxyxanthones 3a–c are depicted in Figs. S1–S12. In general, the FTIR spectra of hydroxyxanthones showed the appearance of O–H hydroxyl groups at 3425–3448 cm⁻¹ while the C=O functional group appeared as a sharp signal at 1604–1612 cm⁻¹. On the other hand, the C=C aromatic and C–O–C heterocyclic moieties were observed at 1418–1465 and 1273–1296 cm⁻¹, respectively (Figs. S1, S5, and S9). Another evidence to prove the successful production of hydroxyxanthones was the presence of molecular ion fragments ([M]+) in their MS spectra (Figs. S2, S6, and S10). Hydroxyxanthones 3a and 3c showed five aromatic protons, while hydroxyxanthone 3b showed six aromatic protons in the range of 6.09–7.99 ppm in their 1H–NMR spectra (Figs. S3, S7, and S11). Meanwhile, the presence of carbon atoms of the carbonyl group of hydroxyxanthones 3a–c was found at 185.1, 181.9, and 182.3 ppm, respectively, in their 13C–NMR spectra (Figs. S4, S8, and S12). These spectroscopic data demonstrated that hydroxyxanthones had been successfully synthesized in this work.

In vitro anticancer activity of hydroxyxanthones. The in vitro anticancer assay for each sample was performed in three replications.

In vitro anticancer assay. The human Topoisomerase II with 4G0V as the protein code was retrieved from the Protein Data Bank. At first, the water molecules were removed from the Topoisomerase II protein structure. Then, the hydrogen atoms were added to build up the structure of the Topoisomerase II protein using AutoDock Tools software. The molecular docking process was performed by using AutoDock Vina software. The validity of the molecular docking study is represented by the root-mean-square deviation (RMSD) value less than 2.0 Å34. Finally, the formed interactions between hydroxyxanthone and the active site of Topoisomerase II protein were visualized by using Discovery Studio software.

Results and discussion

Synthesis of hydroxyxanthone derivatives. The synthesis scheme of hydroxyxanthone derivatives in this work is shown in Fig. 1. All hydroxyxanthones (3a–c) were prepared through a cyclo-acylation reaction of 2,6-dihydroxybenzoic acid (1) with phenolic derivatives (2a–c). From the spectroscopic elucidation, the correct chemical structure of hydroxyxanthones 3a–c has been confirmed. The FTIR, MS, 1H–, and 13C–NMR spectra of hydroxyxanthones 3a–c are depicted in Figs. S1–S12. In general, the FTIR spectra of hydroxyxanthones showed the appearance of O–H hydroxyl groups at 3425–3448 cm⁻¹ while the C=O functional group appeared as a sharp signal at 1604–1612 cm⁻¹. On the other hand, the C=C aromatic and C–O–C heterocyclic moieties were observed at 1418–1465 and 1273–1296 cm⁻¹, respectively (Figs. S1, S5, and S9). Another evidence to prove the successful production of hydroxyxanthones was the presence of molecular ion fragments ([M]+) in their MS spectra (Figs. S2, S6, and S10). Hydroxyxanthones 3a and 3c showed five aromatic protons, while hydroxyxanthone 3b showed six aromatic protons in the range of 6.09–7.99 ppm in their 1H–NMR spectra (Figs. S3, S7, and S11). Meanwhile, the presence of carbon atoms of the carbonyl group of hydroxyxanthones 3a–c was found at 185.1, 181.9, and 182.3 ppm, respectively, in their 13C–NMR spectra (Figs. S4, S8, and S12). These spectroscopic data demonstrated that hydroxyxanthones had been successfully synthesized in this work.

Antioxidant activity assay of hydroxyxanthones. Antioxidant activity assay of hydroxyxanthones 3a–c was performed by using DPPH free radicals method as the most common procedure. The antioxidant activity of hydroxyxanthones was shown in the term IC₅₀ value (Table 1). A lower IC₅₀ value means a higher...
antioxidant activity of hydroxyxanthones. Although all hydroxyxanthones gave a lower antioxidant activity than BHT as the positive control, the trihydroxyxanthones (compounds 3a and 3c) gave higher IC_{50} values than the dihydroxyxanthone 3b. It shows that a higher amount of hydroxyl groups on the xanthone structure gave a lower antioxidant activity due to a stronger hydrogen bonding among the hydroxyl groups as previously reported35,36. Dihydroxyxanthone 3b exhibited the strongest antioxidant activity (IC_{50} = 349 ± 68 µM). Since the hydroxyl groups were located far from each other, the DPPH free radicals could easily attack the hydroxyl groups of dihydroxyxanthone 3b, yielding a strong antioxidant activity. This phenomenon was in agreement with the previous report37. The plausible reaction mechanism of DPPH free radicals with dihydroxyxanthone 3b is shown in Fig. 2. This reaction mechanism generated a product with high resonance stability which could be responsible for the high antioxidant activity of dihydroxyxanthone 3b.

Table 1. In vitro antioxidant activity of hydroxyxanthone derivatives.

Compound	IC\textsubscript{50} (µM)
3a	653 ± 53
3b	349 ± 68
3c	524 ± 72
BHT	40 ± 4

Table 2. In vitro anticancer activity of hydroxyxanthone derivatives.

Compound	IC\textsubscript{50} (µM)	Veroa	MCF-7	WiDr	HeLa
3a	3395 ± 435	184 ± 15	254 ± 15	277 ± 9	
3b	308 ± 35	450 ± 17	355 ± 24	322 ± 4	
3c	224 ± 14	419 ± 27	269 ± 4	241 ± 13	
Doxorubicin	150 ± 3	71 ± 6	3 ± 0.2	–	
Cisplatin	–	–	–	142 ± 52	

Anticancer activity assay of hydroxyxanthones. Evaluation of the anticancer activity of hydroxyxanthones was conducted through the MTT assay. The anticancer activity of hydroxyxanthones was represented in the term of IC\textsubscript{50} value (see Table 2). A lower IC\textsubscript{50} value reflects a stronger anticancer activity of hydroxyxantho-
dihydroxyxantones (SI = 0.870–2.230), demonstrating that trihydroxyxanthones are more potential anticancer agents. The SI value of hydroxyxanthones – 3a (IC50 = 355–1255 µM) gave higher IC50 values than trihydroxyxanthones (IC50 = 38–384 µM). Among the dihydroxyxanthones against WiDr cancer cell line. Compared to the other hydroxyxanthone derivatives, dihydroxyxanthones and HeLa cancer cell lines among the other hydroxyxanthones in this work.

Compound	IC50 (µM)	SI	Reference
	WiDr		
1,3,6-trihydroxyxanthone	254 ± 15	13.39	This work
1,6-dihydroxyxanthone	355 ± 24	0.870	
1,5,6-trihydroxyxanthone	209 ± 4	1.072	
1,3-dihydroxyxanthone	836 ± 109	2.230	
3,4-dihydroxyxanthone	1255 ± 105	1.160	
3,6-dihydroxyxanthone	786 ± 146	1.630	
1,3,6-trihydroxyxanthone	384 ± 93	1.540	
3,4,6-trihydroxyxanthone	38 ± 11	66.39	

Table 3. Selectivity index of hydroxyxanthone derivatives as anticancer agent.

Table 4 compares the anticancer activity of hydroxyxanthone derivatives against WiDr cancer cell line.

Molecular docking study on the inhibition of topoisomerase II protein by hydroxyxanthones. The experimental in vitro assay found that hydroxyxanthone 3a was found as the best anticancer agent against the MCF-7 cell line (IC50 = 184 ± 15 µM) while hydroxyxanthone 3c was the most active anticancer agent against WiDr (IC50 = 209 ± 4 µM) and HeLa (IC50 = 241 ± 13 µM) cell lines. These results demonstrated that trihydroxyxanthones were more active as the anticancer agent than dihydroxyxanthone 3b. However, trihydroxyxanthone 3c was more toxic to normal Vero cell lines (IC50 = 224 ± 14 µM) rather than either MCF-7 (IC50 = 419 ± 27 µM) or HeLa (IC50 = 241 ± 13 µM) cell lines. In contrast, trihydroxyxanthone 3a was more toxic to MCF-7 (IC50 = 184 ± 15 µM), WiDr (IC50 = 254 ± 15 µM), and HeLa (IC50 = 277 ± 9 µM) cancer cell lines rather than normal Vero cell line (IC50 = 3395 ± 435 µM), which was remarkable.

Good anticancer drug candidates must be selective, i.e., toxic only to cancer cells but safe for normal cell lines. The selectivity index (SI) was a critical parameter to describe selective anticancer activity. The SI value was calculated by dividing the IC50 of Vero cell lines with IC50 of cancer cells of hydroxyxanthone 3a–c. A higher SI value describes a more selective anticancer agent. The SI value of hydroxyxanthones 3a–c is listed in Table 3. Compound 3a was found as the most selective anticancer agent due to its highest SI value against MCF-7, WiDr, and HeLa cancer cell lines among the other hydroxyxanthones in this work.

Table 4 compares the anticancer activity of hydroxyxanthones 3a–c and the previously reported hydroxyxanthones against WiDr cancer cell line. Compared to the other hydroxyxanthone derivatives, dihydroxyxanthones (IC50 = 355–1255 µM) gave higher IC50 values than trihydroxyxanthones (IC50 = 38–384 µM). Among the dihydroxyxanthones, the order of the anticancer activity against the WiDr cancer cell line was 1,6-dihydroxyxanthone > 3,6-dihydroxyxanthone > 1,3-dihydroxyxanthone > 3,4-dihydroxyxanthone. Meanwhile, the order of the anticancer activity of trihydroxyxanthones was 3,4,6-trihydroxyxanthone > 1,5,6-trihydroxyxanthone > 1,3,8-trihydroxyxanthone > 3,6-dihydroxyxanthone. From the reported quantitative structure–activity relationship (QSAR) study, we found that the IC50 value of hydroxyxanthone as the anticancer agent against WiDr cancer cell line depends on the net atomic charge on carbon atoms, dipole moment, and octanol/water partition coefficient. Furthermore, the SI values of trihydroxyxanthones against WiDr cells (SI = 1.072–66.39) are higher than the dihydroxyxanthones (SI = 0.870–2.230), demonstrating that trihydroxyxanthones are more potential anticancer drug candidates than dihydroxyxanthones.

Molecular docking study on the inhibition of topoisomerase II protein by hydroxyxanthones. The experimental in vitro assay found that hydroxyxanthone 3a exhibited the strongest and the most selective anticancer activity among the other hydroxyxanthones in this work. Therefore, a further investigation was conducted for hydroxyxanthone 3a through a molecular docking study to reveal the inhibition mechanism on the active site of Topoisomerase II protein. Topoisomerase II protein is selected as the target protein since Topoisomerase II serves a pivotal role in the DNA replication and transcription of cancer cells. Doxorubicin is an anticancer agent with strong inhibitory activity towards Topoisomerase II protein. Doxorubicin consists of two fused aromatics with a carbonyl structure, which is similar to the prepared hydroxyxanthone 3a. The formed interactions from the molecular docking study are displayed in Fig. 3. Several interactions were observed between hydroxyxanthone 3a with the DNA chains of Topoisomerase II, such as hydrogen bond with DG13, as well as π–π stacking with DA12 and DC8. These kinds of interactions have been reported to be critical for the inhibitory activity against Topoisomerase II protein. Etoposide, a standard Topoisomerase inhibitor, was
reported to generate hydrogen bond interactions with Asp463 and DG13 on the active site of Topoisomerase II40. On the other hand, the binding interaction of the anticancer agent with DG13 was reported as pivotal interaction as this interaction stimulates the formation of DNA damage that is toxic to cancer cells41. Similar binding modes with DA12 and DC8 through π–π stacking were also reported for the most active benzoxazole and olivacine derivatives as the anticancer agents40,42.

On the other side, doxorubicin interacted to the active site of Topoisomerase II through hydrogen bond (Ser480, DC8, Gln778), carbon-hydrogen bond (DG13), and π–π stacking (DG13, DA12, DC8) interactions. Compared to doxorubicin, hydroxyxanthone 3a generated no interaction with Ser480 and Gln778. Therefore, the theoretical binding energy and binding constant of hydroxyxanthone 3a were lower than doxorubicin. The binding energy and binding constant of hydroxyxanthone 3a with Topoisomerase II were −8.0 kcal mol−1 and 1.362 µM, respectively, which were weaker than doxorubicin (−8.9 kcal mol−1, 0.299 µM). Nevertheless, it is worthy to note that hydroxyxanthone 3a was able to disturb the function of Topoisomerase II protein, thus increasing the cell apoptosis, which led to the death of cell cancers as previously reported31.

Conclusions
Three hydroxyxanthones (3a–c) have been successfully synthesized from 2,6-dihydroxybenzoic acid and phenolic compounds through an acylation reaction using Eaton’s reagent. The chemical structures of hydroxyxanthones have been clearly elucidated by using FTIR, MS, 1H–, and 13C–NMR. The in vitro antioxidant assay showed that trihydroxyxanthones 3a and 3c gave higher IC50 values than dihydroxyxanthone 3b due to stronger hydrogen bonds. It was found that dihydroxyxanthone 3b exhibited the strongest antioxidant activity (IC50 = 349 ± 68 µM). On the other hand, trihydroxyxanthones gave higher anticancer activity than the dihydroxyxanthone one. Trihydroxyxanthone 3a exhibited higher toxicity against MCF-7 (IC50 = 184 ± 15 µM), WiDr (IC50 = 254 ± 15 µM), and HeLa (IC50 = 277 ± 9 µM) cancer cell lines rather than normal Vero cells (IC50 = 3395 ± 435 µM). Consequently, trihydroxyxanthone 3a yielded the highest selectivity index (12.25–18.42) among the prepared hydroxyxanthones in this work. The molecular docking study reveals that hydrogen bond and π–π stacking interactions were observed between trihydroxyxanthone 3a with the DNA chains of Topoisomerase II. The trihydroxyxanthone 3a was able to disturb the function of Topoisomerase II protein. These findings are important for the future development of anticancer agents based on hydroxyxanthone derivatives.

Data availability
The datasets generated during and/or analyzed in the current study are available from the corresponding author upon a reasonable request.

Received: 20 September 2021; Accepted: 14 January 2022
Published online: 27 January 2022

References
1. Liguori, I. et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 13, 757–772. https://doi.org/10.2147/CIA.S158513 (2018).
2. Gutteridge, J. M. C. & Halliwell, B. Mini-review: Oxidative stress, redox stress or redox success?. Biochem. Biophys. Res. Commun. 502, 183–186. https://doi.org/10.1016/j.bbrc.2018.05.045 (2018).
3. Phaniendra, A., Jestadi, D. B. & Periyasamy, L. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem. 30, 1–26. https://doi.org/10.1007/s12291-014-0446-0 (2015).
4. Estenbauer, H., Rothemeder, M. D. & Waeg, G. Role of vitamin E in preventing the oxidant of low density lipoprotein. Am. J. Clin. Nutr. 53, 314–321. https://doi.org/10.1093/ajcn/53.3.314S (1991).
6. Gulcin, I. Antioxidants and antioxidant methods: An updated overview. *Eur. J. Med. Chem.* 178, 687–704. https://doi.org/10.1016/j.ejmech.2019.06.010 (2019).

7. Sindhi, V. et al. Potential applications of antioxidants - A review. *J. Pharm. Res.* 7, 828–835. https://doi.org/10.1016/j.jphr.2013.10.001 (2013).

12. Jamil, W. et al. Syntheses, characterization, in vitro anti-inflammatory and DPPH radical scavenging activities of isation salicylhydrazide-dehydrazone and its Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) metal complexes. *Arab. J. Chem.* 12, 2262–2269. https://doi.org/10.1016/j.arabjc.2015.02.015 (2019).

14. Castanheiro, R. A. P., Silva, A. M. S., Campos, N. A. N., Nascimento, M. S. J. & Pinto, M. M. Antitumor activity of some pre-nylated xanthones. *Pharmaceuticals* 2, 33–43. https://doi.org/10.3390/20030033 (2009).

15. Kurniawan, Y. S. et al. Synthesis and characterization of cadmium-bismuth microspheres for the catalytic and photocatalytic degradation of organic pollutants, with antibacterial, antioxidant and cytotoxicity assay. *J. Photochem. Photobiol. B: Biol.* 202, 111723. https://doi.org/10.1016/j.jphotobiol.2019.111723 (2020).

17. Gunter, N. V. et al. Natural xanthones and skin inflammatory diseases: Multitargeting mechanisms of action and potential application. *Front. Pharmacol.* 11, 594202. https://doi.org/10.3389/fphar.2020.594202 (2020).

19. Zhang, H. et al. Anticancer activity of dietary xanthone α-mangostin against hepatocellular carcinoma by inhibition of STAT3 signaling via stabilization of SHP1. *Cell Death Dis.* 11, 63. https://doi.org/10.3389/fcdd.2019.00144 (2018).

20. Pinto, M. M. et al. From natural products to new synthetic small molecules: A journey through the world of xanthones. *Molecules* 26, 431. https://doi.org/10.3390/molecules26020431 (2021).

21. Franca, F. et al. A pyranoxanthone as a potent antimicrobial and sensitizer of cancer cells to low doses of paclitaxel. *Molecules* 25, 5845. https://doi.org/10.3390/molecules25245845 (2020).

22. Ngkengfack, E. A., Kouna, P. A., Fonmun, T. Z., Meyer, M. & Bodo, B. Glabixanthones A and B, two new cytotoxic xanthones with isoprenoid groups from the root bark of *Symphonia globulifera*. *J. Nat. Prod.* 65, 734–736. https://doi.org/10.1021/np010478w (2002).

23. Zareena, A. S. & Sankar, K. U. Supercritical carbon dioxide extraction of xanthones with antioxidant activity from *Garcinia mangostana*: Characterization by HPLC/LC-ESI-MS. *J. Supercrit. Fluids* 49, 330–337. https://doi.org/10.1016/j.supflu.2009.03.004 (2009).

24. Loureiro, D. R. P. et al. Structures, activities and drug-likeness of anti-infective xanthone derivatives isolated from the marine environment: A review. *Molecules* 24, 243. https://doi.org/10.3390/molecules24020243 (2019).

25. Sousa, M. E. & Pinto, M. M. Synthesis of xanthones: An overview. *Curr. Med. Chem.* 12, 2447–2479. https://doi.org/10.2174/09298670774370736 (2005).

26. Zhao, B. D. et al. Synthesis and antitumor, antityrosinase, and antioxidant activities of xanthone. *J. Asian Nat. Prod. Res.* 1, 1–10. https://doi.org/10.1080/102866020.2018.1454437 (2018).

27. Taha, M. et al. Synthesis, anticancer, molecular docking and QSAR studies of benzhydrazide. *J. Saudi Chem. Soc.* 23, 1168–1179. https://doi.org/10.1016/j.jscs.2019.07.007 (2019).

28. Abbass, E. M., Khalil, A. K., Mohamed, M. M., Eissa, I. H. & El-Naggar, A. M. Design, efficient synthesis, docking studies, and anticancer evaluation of new quinoxalines as potential intercalative topo II inhibitors and apoptosis inducers. *Bioorg. Chem.* 104, 104255. https://doi.org/10.1016/j.bioorg.2020.104255 (2020).

29. Ito, C. et al. Chemical constituents of *Garcinia fusca*: Characterization by HPLC/LC-ESI-MS, *J. Supercrit. Fluids* 49, 330–337. https://doi.org/10.1016/j.supflu.2009.03.004 (2009).

30. Loureiro, D. R. P. et al. Structures, activities and drug-likeness of anti-infective xanthone derivatives isolated from the marine environment: A review. *Molecules* 24, 243. https://doi.org/10.3390/molecules24020243 (2019).

31. Sousa, M. E. & Pinto, M. M. Synthesis of xanthones: An overview. *Curr. Med. Chem.* 12, 2447–2479. https://doi.org/10.2174/09298670774370736 (2005).

32. Franca, F. et al. A pyranoxanthone as a potent antimicrobial and sensitizer of cancer cells to low doses of paclitaxel. *Molecules* 25, 5845. https://doi.org/10.3390/molecules25245845 (2020).

33. Miladiyah, I., Jumina, J., Haryana, S. M. & Mustofa, M. Biological activity, quantitative structure-activity relationship analysis, and molecular docking of xanthone derivatives as anticancer drugs. *Drug Des. Dev. Ther.* 12, 149–158. https://doi.org/10.2147/DDDT.S149973 (2018).

34. Trond, O. & Olson, A. J. AutoDock Vina: Improving the speed and accuracy of docking with new scoring function, efficient optimization and multithreading. *J. Comput. Chem.* 31, 455–461. https://doi.org/10.1002/jcc.21334 (2010).

35. Freitas, V. L. S. & da Silva, M. D. C. M. R. Influence of hydroxyl functional group on the structure and stability of xanthone: A computational approach. *Molecules* 23, 2962. https://doi.org/10.3390/molecules23112962 (2018).

36. Jumina, J. et al. Development of C-arylacil [4]resorcinarenes and C-arylacil[4]pyrogallolarenes as antioxidant and UV-B protector. *Indones. J. Chem.* 19, 273–284. https://doi.org/10.22146/ijc.268668 (2019).

37. Trott, O. & Olson, A. J. AutoDock Vina: Improving the speed and accuracy of docking with new scoring function, efficient optimization and multithreading. *J. Comput. Chem.* 31, 455–461. https://doi.org/10.1002/jcc.21334 (2010).

38. Kurniawan, Y. S. et al. Syntheses, characterization, in vitro anti-inflammatory and DPPH radical scavenging activities of isation salicylhydrazide-dehydrazone and its Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) metal complexes. *Arab. J. Chem.* 12, 2262–2269. https://doi.org/10.1016/j.arabjc.2015.02.015 (2019).

39. Franca, F. et al. Evaluation of interactions of selected olivacine derivatives with DNA and topoisomerase II. *Int. J. Mol. Sci.* 22, 4942. https://doi.org/10.3390/ijms22164942 (2021).
41. Lemke, K. et al. Induction of unique structural changes in guanine-rich DNA regions by the triazoloacridone C-13, a topoisomerase II inhibitor with antitumor activities. *Nucleic Acids Res.* 33, 6034–6047. https://doi.org/10.1093/nar/gki904 (2005).

42. Oksuzoglu, E. et al. Antitumor activities on HL-60 human leukemia cell line, molecular docking, and quantum-chemical calculations of some sulfonamide-benzoxazoles. *Artif. Cells Nanomed. Biotechnol.* 45, 1388–1396. https://doi.org/10.1080/21691401.2016.1241796 (2016).

Acknowledgements

The financial support from KEMENDIKBUD-RISTEK through the World Class Research grant for the budget year 2021–2023 is greatly acknowledged.

Author contributions

Conception and design: J. Acquisition data: N.F., C.A., H.D.P., and E.N.S. Analysis and interpretation of data: N.F., Y.S.K. and Y.P. Drafting the article, review and editing, N.F. and Y.S.K. All authors have read and approved to the final version of the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-05573-5.

Correspondence and requests for materials should be addressed to J.J.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022