Source Rocks Characterization of Agbada and Akata Formations in the Niger Delta, Nigeria

Kouadio K. Eugene, Abrakasa Selegha, Ikiensikimama S. Sunday, Botwe Takyi

ABSTRACT

The geochemical analysis was performed on twelve (12) core samples from 6 wells of different formations (Akata, Agbada, and Akata/Agbada) of the onshore Niger Delta Basin. The study was essentially based on the results of the Rock-Eval 6 Pyrolysis to evaluate organic matter abundance, quality, and thermal maturity. The Total Organic Carbon (TOC) varies between 0.6 and 3.06 wt% and the Hydrogen Index (HI) of the studied samples ranges from 38 to 202 mg HC/g TOC, indicating predominantly Type III (gas prone) and mixed type I/III (gas and oil-prone) kerogen. This suggests terrigenous and a mixture of marine and terrigenous organic matter deposited in a paralic marine setting. The organic matter is immature to early mature according to the thermal maturity parameter (414°<Tmax<432°). The well Isan 9 from Agbada (6760 ft) and Agbada/Akata (8680 ft) shows petroleum generation potential of fair (2.5 < S2 < 5 mg HC/g rock) to good (5 < S2 < 10 mg HC/g rock) and poor for the other wells. The maturation of the kerogen indicates a very early stage of maturation (Tmax = 432°C). The results indicate that the shales from Agbada and the transition zone between the upper and lower parts of the Akata Shales are more shaly and perhaps the more mature part of the Agbada formation can be the potential source rocks of Niger Delta Basin.

Keywords: Characterization, Niger Delta Basin, Rock-Eval, source rocks.

I. INTRODUCTION

Whatever the twist and turn of the global energy context are, our needs for hydrocarbons are constantly increasing and will continue to grow at a sustained rate for many years due to the dynamism of economic growth, which allows the populations of emerging countries to equip with energy-consuming goods. As the cost of oil exploration becomes increasingly expensive, the petroleum industry is looking at consuming goods. As the cost of oil exploration becomes consuming goods.

According to [2], the key element from a petroleum geochemistry point of view is the source rocks, rocks from which petroleum has been generated, or is capable of being generated. Incomplete, inconsistent, and sometimes controversial results from Niger Delta basin studies do not assure the quality, maturity, and true petroleum potential of source rocks. This study aims to re-evaluate the source rocks of Agbada and Akata formations by Rock-Eval 6 analysis.

II. STUDY AREA

The Niger Delta is one of the most prolific petroleum provinces in the world, it is located in the Southern Nigeria margin of the Gulf of Guinea, with latitude 4°49’ N and...
longitude 6°0' E [7]. The Niger Delta sedimentary basin covers an area of about 256,000 km² [8]. It is bounded to the south by the Gulf of Guinea and the north by older tectonic elements (Cretaceous) including the Anambra Basin, the Abakaliki uprising and the Afikpo syncline, and to the east and west by the Cameroon volcanic line and the Dahomey basin respectively (Fig. 1). The Niger Delta basin began to form in the Cretaceous when the African plate separated from the South American plate; the basin is delimited by rift faults on its northwest and northeast edges [9].

After the rifting, gravity tectonics became the main deformation process [4]. Pre- and syn-sedimentary tectonics described by [10]-[11] characterised the evolution of the Niger Delta basin. The regressive clastic sequence in the Niger Delta began to form in the Paleocene and has since formed sediments which now reach a thickness of 12,000 m [10]. The Niger Delta Basin (Fig. 2) consists of three main lithostratigraphic units of Cretaceous to Holocene origin. These units represent the prograding depositional environments which are distinguished mainly based on shale-sand ratios and are continental, transitional, and marine environment [12]. This Tertiary sequence in the Niger Delta consists of the three formations that are locally designated in ascending order (from the bottom) the Akata Formation, Agbada Formation, and Benin Formation [4]-[13].

At the base of the system is the Akata Formation, a sequence of planktonic foraminifera-rich non-compacted transgressive Paleocene-to-Holocene marine shale, clays, and silt. The Akata formation at the base of the delta is of marine origin and consists of sequences of thick shale (potential source rock), turbiditic sand (potential deepwater reservoirs), and small amounts of clay and silt. The Paleocene and the recent Akata formations were formed during the lowlands when terrestrial organic matter and clays were transported to deep water areas characterized by low energy conditions and a deficiency in oxygen [14]. It is estimated that the formation can reach 7,000 meters thick [7]. The Akata Formation is covered by more than 4,000 m of alternating sandstones and shales of paralic facies [13]-[15]. This interstratified unit of sandstone and shale is called the Agbada Formation (Recent Eocene). The Agbada Formation represents the delta system (delta front, fluvo-deltaic facies) of the sedimentary sequence [4]. The Agbada Formation is overlain by the third formation, the Benin Formation, a last continental deposit from the Eocene to Recent alluvial and upper coastal plains sums up to 2000 m thick [15].

This study is based on six (6) different wells located in the onshore part of the Niger Delta basin (Fig. 3).

III. MATERIALS AND METHODS

Twelve (12) core samples were recovered from six (6) exploration wells located in the onshore part of the Niger Delta Basin. The sample locations are shown in Fig. 3. The samples geological formation provenance and depth details are summarized in Table I. The samples were analysed at the PETROCI Analysis and Research Center in Abidjan (Côte d’Ivoire). Approximately 50–100 g of the core sample was collected. Then, the samples were ground into a fine powder for Rock-Eval analysis. The analyses were performed on the 12 samples by using Rock-Eval 6 instrument, according to the procedure of Espitalié et al. [16]. The method consisted in estimating petroleum potential of rock samples by pyrolysis according to a programmed temperature pattern (300°C<T<650°C). Released hydrocarbons are monitored by a FID (Flame ionization Detector), forming the peaks S1 (thermo-vaporized free hydrocarbons) and S2 (hydrocarbons from cracking of organic matter). In addition, CO and CO₂ released during pyrolysis is monitored in real time by mean
of an IR cell, giving information on the oxidation state of organic matter. The method is completed by oxidation of the rock sample according to a programmed temperature pattern (300°C<T<850°C). Released CO and CO2 are monitored in real time by means of an IR cell. This complementary stage allows determination of Total Organic Carbon and Mineral Carbon content of samples.

![Fig. 3. Location map of Niger Delta Basin showing the six (6) exploratory wells.](image)

TABLE I: TABLE SHOWING THE SAMPLE DETAILS

Wells	Formations	Depth (ft)
Akata 2	Agbada	6541
Akata 2	Agbada/Akata	7460
Akata 2	Akata	8062
Afam I	Agbada	6830
Afam I	Akata	10200
Akata 7	Agbada	7100
Akata 7	Agbada/Akata	7690
Isan 9	Agbada	6760
Isan 9	Agbada/Akata	8680
Elele I	Akata	8760
Olobiri 1	Agbada	7170
Olobiri 1	Akata	10600

During the analysis, ion fluxes are emitted during the temperature rise. These flows are recovered and quantified. Four parameters can thus be determined:

- **S1**: characterizes the amount of free hydrocarbon (in the form of gas or oil) contained in the sample. It is expressed in mgHC/g rock. The amount of free hydrocarbon is generally significant and of interest when S1 > 1 mgHC/g of rock;
- **S2**: hydrocarbon produced during the cracking of non-extractable organic matter (kerogen). This parameter is therefore an evaluation of the quantity of gas and oil likely to be produced during the evolution of this rock. It is expressed in mgHC/g rock;
- **S3**: amount of CO2 resulting from the cracking of kerogen, which is expressed in mgCO2/g rock;
- **T_{max}**: maximum temperature of hydrocarbon production (top of peak S2). It characterizes the thermal maturity of the rock. It depends on the nature of the kerogen (and therefore on the type of Organic Matter) and on its degree of diagenetic evolution. This parameter is only credible if S2 is greater than 0.2 mgHC/g rock [17].

These determined parameters make it possible to calculate five (5) additional parameters which are:

- **TOC** (Total Organic Carbon): expressed as a percentage by weight of the total rock (% by weight), it allows the petroleum potential of the source rock to be determined. Tissot and Welte [18] defined the minimum quantity of TOC that carbonates and shales must contain to be qualified as source rock. These quantities are respectively 0.3% and 0.5% by weight. The S2 is more realistic than the TOC for the estimation of petroleum potential because the TOC includes inert carbons which are incapable of generating hydrocarbons [19];
- **IH** (Hydrogen Index): it corresponds to the degree of aliphaticity of organic matter, expressed in mgHC/g TOC (S2 x 100 / TOC). It allows to determine the type of organic matter present;
- **IO** (Oxygen Index): it corresponds to the degree of oxidation of organic matter and is expressed in mgCO2/g TOC (S3 x 100 / TOC). The S3 is not too reliable like the...
other parameters of the Rock-Eval 6 because of the presence of carbonate minerals or kerogens oxidized as a result of spraying the samples [19]. It is therefore advisable to use the IH-T\textsubscript{max} diagram from Espitalié et al. [16] for the graphical determination of the type of organic matter. Plot of HI versus OI can be used to deduce the type of organic matter present in the source rock [20]. The IH and IO indices are respectively a good approximation of the H/C and O/C ratios of the Organic Matter. They can be classified in the Van Krevelen diagrams used to characterize the origin of organic matter. The Rock-Eval 6 interpretation software (Rock int) automatically plots the IH-T\textsubscript{max} diagram.

- IP = S2 / (S1 + S2): it corresponds to the production index which characterizes the evolution of organic matter. The Tmax and IP parameters are used to characterize thermal maturity;

- PP = S1 + S2: is the genetic potential of the source rock. The genetic potential of the source rock is defined as the total amount of oil and gas that unit quantity of the source rock could produce if the rock were buried deep enough and long enough. According to their classification scheme, rocks with PP of less than 2 mg HC/ g rock correspond to gas-prone rocks or non-generative ones, rocks with PP between 2 and 6 mgHC/g rock are moderate source rocks with fair gas/oil potential, and those with PP greater than 6 mgHC/ g rock are good source rocks [18].

To better characterize the Niger Delta source rocks and complete the objectives assigned to this study, we have treated the raw geochemical data, based on the following criteria [21]:

- if S2 < 0.2: IP and T\textsubscript{max} are not significant;
- if COT < 0.3: all the parameters are not significant;
- if TOC < 0.5: IO is not significant.

For the evaluation of source rock according to the standards of IFP and other companies, the data filtering is done, imposing a minimum limit of 0.5% for the TOC (Total Organic Carbon) and 0.2 mgHC/g rock for Hydrocarbon products resulting from the cracking of kerogen (S2).

Table II show the guideline for source rocks interpretation developed by Peters and Cassa [22]. The pyrolysis data of the collected samples are confined in Table III.

IV. RESULTS AND DISCUSSION

A. Source Rock Richness and Generation Potential

The Total Organic Carbon (TOC) expressed as a percentage by weight of the total rock (% by weight), it allows the petroleum potential of the source rock to be determined. Tissot and Welte [18] defined the minimum quantity of TOC that carbonates and shales must contain to be qualified as source rock. The S2 is hydrocarbon produced during the cracking of non-extractable organic matter (kerogen). This parameter is therefore an evaluation of the quantity of gas and oil likely to be produced during the evolution of this rock. It is expressed in mgHC/g rock.

Based on the criteria developed by Peters and Cassa [22], the TOC (wt%) of the samples collected in the six (6) wells of the Niger delta basin varies between 0.6 and 3.06 wt% (Table III). All the samples have a TOC greater than 0.5 wt%, This suggests that these samples correspond to potential source rocks with a richness in organic matter varying from fair to very good. The well Isan 9 samples from the Agbada and Akata/Agbada formations appear to have the best qualities of source rocks, with TOC of 1.81 and 3.6 wt% respectively. The S2 values of most of the samples analyzed are less than 2.5 mgHC/g rock (Fig. 4). This shows the poor petroleum potential of these samples. On the other hand, the samples from the well Isan 9 have a petroleum potential varying from fair (3.75 mgHC/g rock for Agbada) to good (6.19 mgHC/g rock for Akata / Agbada). The cross plot of S2 versus TOC (Fig. 5) shows that the pyrolysis S2 yields lie in a range of 0.23 to 6.19 mgHC/g rock. Therefore, based on pyrolysis S2 yields and TOC, the analyzed sediments can be
considered as poor to good potential source rocks for the generation of hydrocarbon. Agbada and Akata/Agbada facies from well Isan 9 can be considered as potential source rocks for the hydrocarbon generation in the Niger Delta Basin.

B. Type of Organic Matter

Determination of the type of organic matter is necessary. It allows to have a general idea on the petroleum potential of the source rock on the one hand and its origin on the other hand, for this we mainly use, the IH-IO and IH-Tmax diagrams established from the indexes of hydrogen (IH) and oxygen (IO), and the values of Tmax [23]. IH (Hydrogen Index) corresponds to the degree of aliphaticity of organic matter, expressed in mgHC/g TOC (S2 x 100 / TOC). It allows to determine the type of organic matter present. The Rock-Eval 6 interpretation software (Rock int) automatically plots the IH-Tmax diagram. Oxygen Index (IO) corresponds to the degree of oxidation of organic matter and is expressed in mg CO2 / g TOC (S3 x 100 / TOC).

The hydrogen index (IH) values of the samples studied are between 38 et 202 mgHC/g TOC (Table 3). Most of the samples analysed have HI values of 50 – 200 mgHC/g TOC, which indicate gas prone kerogen Type III. Two (2) samples from well Isan 9 show the mixed kerogen Type II/III which has the potential to yield oil and/or gas. The modified Van Krevelen diagram (HI versus OI) (Fig. 5) shows that almost all the samples from the three (3) exploratory wells consist predominantly of Types III and II/III kerogens, which are capable of generating gas and gas-oil respectively at a suitable temperature at depth. The Type II/III describes a transitional composition between types II and III that represents a mixture of marine and terrigenous organic matter deposited in a paralic marine setting and Type III Kerogen originates from terrigenous plants. The samples from well Akata 2 (7 460 ft), Akata 7 (7 690 ft) from Akata/Agbada formation, and Olobiri (10 600 ft) from Akata formation, indicate Type IV kerogen which generates neither oil nor gas.

The same results have been obtained by several authors such as Nwachukwu and Chukwura [23]; Ekweozor and Daukoru [2]; Magoon and Valin [24]; Asadu et al. [25].

C. Thermal maturation

As a rock containing kerogen and is progressively buried in a subsiding basin, it is subjected to increasing pressure and temperature. A source rock is defined as mature when it is reached to generate hydrocarbons. A rock that does not reach to the level of generation of hydrocarbons is defined as an immature source, and that which passed the time of significant generation and expulsion, it is considered as overmature source rock. The pyrolysis Tmax is the maximum temperature of hydrocarbon production (top of peak S2). It characterizes the thermal maturity of the rock. It depends on the nature of the kerogen (and therefore on the type of Organic Matter) and on its degree of diagenetic evolution. This parameter is only credible if S2 is greater than 0.2 mgHC/g rock [17].

The maturity of the twelve (12) samples of Niger Delta Formations has been investigated by plotting the results in HI versus Tmax diagram (Fig. 6). The pyrolysis Tmax values for the most of studied samples range from 420°C to 430°C, indicating an Immature organic matter. Only Afam 1 sample from Akata formation and Isan 9 samples with Agbada and Akata/Agbada facies show respectively 430°C and 432°C as Tmax values. These values indicate early mature source rocks. The recent studies of Ogbesejana et al. [26] confirm these results.
D. Hydrocarbon generative potential and production index

The studied samples have a fair to good generative potential, with two (2) samples (well Isan 9) showing Very good generative potential (Fig. 7). This is supported by the presence of Type II/III and type III kerogens even though few Type IV kerogens are present. The good to very good generative potential of samples in Well Isan 9 is supported by the presence of type II/III with oil and gas prone. Most of samples show poor Petroleum Potential PP < 2 mgHC/g rock. Only the samples from the well Isan 9 (Agbada and Akata/Agbada formations) show the values ranging between 2 <PP< 6 mgHC/g rock. This range of values indicates Fair to Good petroleum genetic potential (Fig. 8). Figure 9 shows the cross plot of the Production index (PI) versus Tmax. Most of the samples in studied wells have Tmax < 435°C and PI < 0.1. Thereby making them thermally immature and indigenous. Most of the samples have 0.1<PI<0.4, indicating early mature source rocks (oil windows). Most of the samples are non-indigenous except for two samples from Well Isan 9 which fall within the hydrocarbon generation zone. It has been strongly suggested that the most probable source material is located in the transition zone between the upper and lower parts of the Akata Shales as well as the more shaly, and maybe more mature part of the Agbada Formation. It is noteworthy that the characteristics of the Akata and those of the Agbada Shales from the transitional zone (Agbada/Akata) do not differ significantly. The results of this study support the findings of Adegoke et al. [8].

![Fig. 7. Plot of hydrogen index (HI) versus TOC.](image)

![Fig. 8. Plot of Petroleum potential (PP) versus TOC.](image)

![Fig. 9. Plot of Production index (PI) versus Tmax.](image)

V. CONCLUSION

Most of the analysed samples have poor petroleum generative potential despite the good values of TOC (Fair to Very Good) except for two samples from the Well Isan 9. The studied samples define Type III and Type II/III kerogens for the Niger Delta Basin. Most of the samples studied are thermally immature except for three (3) samples, one (1) from well Afam 1 (Akata/10200 ft) and two (2) from well Isan 9 (Akata/Agbada, Agbada) which show early maturity and fall within the hydrocarbon generation zone. Based on this study, the shales from Agbada and the transition zone between the upper and lower parts of the Akata and the more shaly, and perhaps more mature part of the Agbada Formation (Agbada/Akata) can be the potential source rocks of Niger Delta Basin. Visual kerogen and biomarkers analysis are recommended to confirm the maturity and source input of the organic matter.

ACKNOWLEDGMENT

The authors are grateful to Dr Pascal KOUADIO for his valuable support in my studies, to PETROCI Analysis and Research Center in Abidjan (Côte d’Ivoire), especially to Mrs
Laure ATSE for the analysis of the samples. We also thank the General Director of Institit National Polytechnique Felix Houpouhet-Boigny, Yamoussoukro (Côte d’Ivoire) and the African Centre of Excellence, Centre for Oilfield Chemicals Research, University of Port Harcourt, Nigeria for the research support.

REFERENCES

[1] Knop, G.J., and Omatosa, E.M. (1989). Development of the Cenozoic Niger Delta in terms of the ‘Escalator Regression’ model and impact on hydrocarbon distribution. In: van der Linden, W., Cloething, S.A.P.L., Kaasschieter, P.K., vander Graaff, W.J.E., Vandenberghe, J. & van der Gun, J.A.M. (eds.), proceedings of the KNGMG Symposium on Coastal Lowlands, Geology and Geotechnetology, Kluwer Academic Publishers, Amsterdam, pp. 181-202.

[2] Ekweozor, C.M., and Daukoru, E.M. (1994). Northern delta depobelt portion of the Akata-Agbada petroleum system, Niger Delta, Nigeria. In: Magoon, B., Dow, W.G. (Eds.), The Petroleum System—from Source to Trap, vol. 60. American Association of Petroleum Geologists Memoir, pp. 599-614.

[3] Ekweozor, C.M., and Okoye, N.V. (1980). Petroleum source-bed evaluation of the Tertiary Niger Delta: American Association of Petroleum Geologists Bulletin, v. 64, 1251-1259.

[4] Tuttle, M.L.W., Charpentier, R.R., and Brownfield, M.E. (1999).Tertiary Niger Delta (Akata-Agbada) Petroleum System (No. 71/701), Niger Delta Province, Nigeria, Cameroon, and Equatorial Guinea, Africa. A U.S. Geological Survey World Ener Assessment Project.http://greenwood.cr.usgs.gov/energy/WorldEnergy/IP99594CH319A.htm #TOP. Date accessed: 20/11/2005.

[5] Eneogwe, C., and Ekundayo, O. (2003). Geochemical correlation of crude oils in the NW Niger Delta, Nigeria. Journal of Petroleum Geology 26, 95–103.

[6] Dembicki Jr., H. (2017). Practical petroleum geochemistry for exploration and productions Elsevier, 341pp. https://doi.org/10.1016/j.jhsb.2016.10.005

[7] Doust, B., and Omatosa, E. (1990). Niger Delta, in, Edwards, J. D., and Santogrossi, P.A., eds., Divergent/passive Margin Basins., AAPG Memoir 48 : Tulsa, American Association of Petroleum Geologists. 239-248.

[8] Adegoke, O.S., Oyebamiji, A.S., Edet, J.J., Osterloff, P.L., and Ula, O.K. (2017). Cenozoic Foraminifera and Calcareous Nannofossil Biostratigraphy of the Niger Delta. Elsevier, 592.

[9] Whiteman, A. J. (1982). Nigeria: Its petroleum geology, resources and potentials. (1) 176, (2) 238.Graham and Trotman, London, U.K.

[10] Eneva, B.D., Haremmerou, J., Kamerling, P., Knaap, W.A., Molloy, F.A., and Rowlans P. B. (1978). Hydrocarbon habitat of Tertiary Niger Delta. American Association of Petroleum Geologists Bulletin. v. 62.

[11] Knop, G.J., and Omatosa, E.M. (1989). Development of the Cenozoic Niger Delta in terms of the ‘Escalator Regression’ model and impact on hydrocarbon distribution. In: van der Linden, W., Cloething, S.A.P.L., Kaasschieter, J.P.K., van der Graaff, W.J.E., Vandenberghe, J., van der Gun, J.A.M. (Eds.), Proceedings KNGMG Symposia on Coastal Lowlands, Geology and Geotechnetology, Kluwer Academic Publishers, Amsterdam, pp. 181-202.

[12] Corredor, A., Lessenger, M.A., Capentino, P. (2005) Comparative source rock evaluation of opuama channel complex and adjacent producing areas of Niger Delta, Am. Assoc. Pet. Geol. Bull. 2 (6) 10–27.

[13] Short, K. C., and Stauble, A. J. (1967). Outline of geology of Niger Delta, AAPG Bull 51: 761-779.

[14] Stacher, P. (1995). Present Understanding of the Niger Delta hydrocarbon habitat. In: Oti, M.N. and Postma, G.(eds.), Geology of Delta, Rotterdam .A.A.Balkema., pp. 257-267.

[15] Artsobo, A. A. (1978). Tertiary Litho-stratigraphy of Niger Delta. American Association of Petroleum Geologists Bulletin, 62, 295-300.

[16] Espitalié, J., Laporte, J. L., Madec, M., Marquis, F., Leplat, P., Paulet, J. and Bouteufe, F. (1977) Méthode rapide de caractérisation des roches mères, de leur potentiel pétrolier et de leur degré d’évolution. Rev. Inst. Français du Pétrole, 32, 23-42.

[17] Peters, K.E. (1986). Guidelines for evaluating petroleum source rocks using programmed pyrolysis. AAPG Bull., 70, 329.

[18] Tissot, B.P.and Welte, D.H. (1984) : Petroleum Formation and Occurrence. Springer-Verlag, New York, 699.

[19] Durand, B. (1980). Kérogène insoluble organique matier from sedimentary rocks. IFP, Paris.

[20] Peters, K.E., Moldowan, J.N. (1993). The Biomarker Guide: Interpreting Molecular fossils in Petroleum and Ancient sediments prentice Hall. Englewood cliffs, New Jersey.

[21] Deroo, G., Espitalie, J., Marquis, F. (1986). La pyrolyse ROCK EVAL et ses applications, IPF, Paris.

[22] Peters, K.E., and Cussa, M.R. 1994. “Applied Source Rock Geochemistry in Magoon, L. B., and W. G. Dow, eds., 1994, The petroleum system—from source to trap: AAPG Memoir 60.

[23] Nwachukwu, J.I., Chukwura, P.I. (1986). Organic matter of Agbada Formation, Niger Delta, Nigeria. American Association of Petroleum Geologists Bulletin 70, 48–55.

[24] Magoon, L. B. and Valin, Z. C. (1994). Overview of petroleum system case studies. In: The Petroleum System – From Source to Trap (L. B. Magoon and W. G. Dow, eds.), American Association of Petroleum Geologists, Tulsa, OK, pp. 329–38.

[25] Asadia, A. N., Omo-Ivorh, O.O., and Ibe, K. A. (2015). Source Rock Characterisation of AGBADA Formation in Well Z, Offshore Niger Delta, Nigeria. International journal for research in emerging science and technology. Vol. 2, 92-100.

[26] Ogbesesan, A.B., Bello, O.M., Udoma, A.U. (2018). Characterization of Source Rocks from Off-shore Niger Delta Basin. J. Appl. Sci. Environ. Manage. Vol. 22 (3), 356–361.

Kouadio Koffi Eugene is from Bongouanou (Cote d’Ivoire) born on 18th July 1980. He holds Engineer degree in Petroleum Engineering from St Petersburg State Mining Institute, Russia. He also holds MSc in Petroleum Geosciences and Reservoir Engineering from Institut National Polytechnique de Lorraine, Nancy, France.

He is currently a PhD student in Petroleum Geosciences at the World Bank African Centre of Excellence, Centre for Oilfield Chemicals Research (ACE-CEFR), University of Port Harcourt, Nigeria. He works as Lecturer-Researcher in the department of Earth Science and Mineral Resources at Institut National Polytechnique Felix Houpouhet-Boigny of Yamoussoukro (INP-HB), Cote d’Ivoire.