Storage of ‘Oso Grande’ Strawberries in Controlled Atmosphere Containing Nitrous Oxide (N₂O)

Luis Carlos Cunha Júnior
Universidade de São Paulo (USP), Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Av. do Café s/n – Campus Universitário da USP, Ribeirão Preto, São Paulo, Brazil, CEP: 14.040-903

Angelo Pedro Jacomino and Marcos José Trevisan
Universidade de São Paulo (USP), Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Av. do Café s/n – Campus Universitário da USP, Ribeirão Preto, São Paulo, Brazil, CEP: 14.040-903

Gustavo Henrique de Almeida Teixeira¹
Universidade de São Paulo (USP), Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Av. do Café s/n – Campus Universitário da USP, Ribeirão Preto, São Paulo, Brazil, CEP: 14.040-903

¹To whom reprint request should be addressed; e-mail gustavo@fcfrp.usp.br.

Additional index words. Fragaria ×ananassa, postharvest decay, acetaldehyde, ethanol, N₂O, postharvest

Abstract. The objective of this study was to evaluate the quality of ‘Oso Grande’ strawberries during controlled atmosphere (CA) storage with different concentrations of nitrous oxide (N₂O). The strawberries were stored at 10 °C for 10 days in hermetic mini-chambers with a continuous flow of 2.5 10⁻⁶ m⁻¹ s⁻¹ of gaseous mixtures of N₂O at 10 kPa, 30 kPa, 60 kPa, and 80 kPa combined with 21 kPa O₂ balanced with nitrogen (N₂) or in 21 kPa O₂, 0.03 kPa CO₂, and 0 kPa N₂O (control). Strawberries stored in the atmospheres that contained N₂O exhibited a reduced incidence of decay and presented better quality than the control group. After 10 days of storage, 37.2% decay was observed in the control group, and 13.6% and 16.4% decay was observed in the fruit maintained at 60 kPa and 80 kPa N₂O, respectively. There was a significant reduction (P < 0.05) of 36% in the respiratory rate of the fruit maintained in the CA containing N₂O, and the levels of acetaldehyde (0.004 to 0.008 g·kg⁻¹) and ethanol (0.006 to 0.016 g·kg⁻¹) were unaffected by the treatments. The N₂O concentrations of 60 kPa and 80 kPa proved to be more adequate for storing the ‘Oso Grande’ strawberries because they reduce the incidence of decay, lowered the respiratory rate, and maintained the quality of the fruit.

The strawberry (Fragaria ×ananassa Duch.) is appreciated by consumers in various regions of the world as a result of its attractive characteristics such as red color and its characteristic aroma and flavor. However, this fruit has a reduced postharvest life and rapidly deteriorates after being harvested (Browne et al., 1984; Malgarim et al., 2006; Rosen and Kader, 1989). This deterioration is related to a high respiratory rate (Mitchell et al., 2005; Wills and Kim, 1995) although strawberry is a non-climacteric fruit. Furthermore, strawberry is highly susceptible to mechanical damage (Flores-Cantillano, 1998), the development of postharvest decay (Qadir and Hashinaga, 2001), and a high rate of water loss (Nunes et al., 1995).

One of the techniques used to extend the postharvest shelf life of strawberries is the storage in a CA in combination with refrigeration (Kader, 2003a; Mitchell, 1992; Nunes et al., 2002; Seymour et al., 1993). Because strawberries are highly susceptible to the development of postharvest decay, in particular Rhizopus sp. and Botrytis cinerea, they have been stored in CAs with high concentrations of carbon dioxide (CO₂) (10 kPa to 30 kPa) to reduce the development of pathogenic and to maintain the quality of the fruit (Ertan et al., 1990; Flores-Cantillano, 1998; Mitchell, 1992; Van der Steen et al., 2002). However, the use of atmospheres with high concentrations of CO₂, particularly above the tolerance limits can cause cellular disruption and lead to increased levels of acetaldehyde, ethanol, ethyl acetate, and ethyl lactate, which confer undesirable aromas to the fruit (Kader, 2003b).

In an attempt to reduce the risks caused by CAs with high levels of CO₂, other gases have been tested, and the following gases have shown particular promise: nitric oxide (Navarre et al., 2000), nitrous oxide (N₂O) (Palomer et al., 2005; Qadir and Hashinaga, 2001), and superatmospheric oxygen (Zheng et al., 2008). N₂O is a gas that is present in the atmosphere and is the product of denitrifying bacteria that are present in the soil. N₂O inhibits the action of ethylene and its synthesis in higher plants (Leshem and Wills, 1998). Another interesting characteristic of N₂O is its stable linear chemical structure, which confers similar physical properties to those of CO₂ such as relative stability and high solubility in water (Benkeblia and Varoquaux, 2003; Leshem and Wills, 1998). The biophysical similarity between N₂O and CO₂ suggests that N₂O has a beneficial effect on the conservation of fruit and vegetables (Leshem and Wills, 1998) with the added advantage that N₂O is not toxic to human beings (Benkeblia and Varoquaux, 2003).

Studies conducted with N₂O and climacteric products such as apples, persimmons (Qadir and Hashinaga, 2001), and bananas (Palomer et al., 2005) and non-climacteric fruit such as strawberries and tangerines (Qadir and Hashinaga, 2001) have shown promising results in the maintenance of quality and the reduction of postharvest decay. However, further studies on the use of N₂O with strawberries are needed because the physiological aspects of this treatment have not yet been evaluated. Thus, the objective of the present study was to evaluate the quality of ‘Oso Grande’ strawberries stored in CAs with different concentrations of N₂O.

Materials and Methods

Plant material. Strawberries of the Oso Grande cultivar were collected from a commercial fruit farm in the municipality of Valinhos in the state of São Paulo, Brazil. The strawberries were collected during the first hours of the day with 50% to 70% of the surface of the fruit presenting a bright red color according to the guidelines proposed by Flores-Cantillano (2005). After being collected, the fruit were selected and stored in a cold chamber at 10 ± 1 °C and 95% ± 2% relative humidity for 12 h. The fruit were then stored in hermetic mini-chambers with different CAs. The mini-chambers were 8.6 L translucent boxes (Sanremo® 960) and had the capacity to hold 1.2 kg of strawberries (110 fruit in a single layer ≈1.1 kg) at 10 ± 1 °C for 10 d. Four chambers were used (replicate) per gas mixture per day of analyses.

Treatment application: controlled atmosphere and application of nitrous oxide. Storage under CA was conducted using the following five gaseous mixtures: 10 kPa, 30 kPa, 60 kPa, and 80 kPa oxygen (O₂) balanced with nitrogen (N₂). The control group was stored under normal atmosphere (21 kPa O₂ + 0.03 kPa CO₂, and 0 kPa N₂O). “Flowboard” equipment was used to obtain the CA and was assembled according to Calbo (1989) with modification to the pressure regulator. The column water barostat was replaced...
by a differential valve (used in LPG domestic cylinders), which enabled the pressure to be regulated without wasting gas (Cerqueira et al., 2009). O₂, N₂O, and N₂ were supplied by individual cylinders with 99.99% purity. The gases, which were connected to individual feed lines, were humidified by passing them through a 9-L glass container containing distilled water. The desired flow rates were obtained using flexible copper capillaries, and the diameters were adjusted by compressing the capillaries in a mechanical vise. The gas flow of each capillary was calibrated using a standard 0.050-L bubble flow meter.

The gaseous mixtures were applied to the mini-chambers used for storage at a continuous flow of 2.5 10⁶ m³ s⁻¹, and the atmospheric gas composition was measured daily using a gas analyzer (Checkmate 9001 model; Dansensor, Denmark).

Results

Postharvest decay. The enrichment of the storage atmosphere with N₂O delayed the occurrence of postharvest decay. In addition, as the concentration of N₂O increased, a decrease in postharvest decay was observed (Table 1). The lowest concentration of N₂O (10 kPa) did not affect the postharvest decay incidence, indicating that this level did not differ from the control treatment, which showed similar percentages of decayed fruit at the end of the storage period. Conversely, decay only appeared on the eighth day of storage on the fruit maintained in atmospheres with 10 kPa, 30 kPa, 60 kPa, and 80 kPa N₂O (Table 1). At the end of the storage period, the 60-kPa and 80-kPa concentrations of N₂O produced the lowest percentages of fruit with decay (P < 0.05) compared with the other treatments (Table 1).

Respiratory activity. The presence of postharvest decay, particularly in the control group fruit and on the fruit maintained in the atmosphere containing 10 kPa N₂O, influenced the respiratory activity of the fruit (Fig. 1). The respiratory rate of the control group fruit increased during storage from 11.15 10⁻⁶ g kg⁻¹ s⁻¹ (Day 0) to 17.19 10⁻⁶ g kg⁻¹ s⁻¹ (Day 9). Conversely, the amount of CO₂ produced by the fruit maintained in N₂O-enriched atmosphere decreased by 36.30%. In addition, Figure 1 shows that the highest concentrations of N₂O (60 kPa and 80 kPa) produced lower respiratory rates.

Levels of acetaldehyde and ethanol. The enrichment of the storage atmosphere with N₂O did not affect ethanol production (P > 0.05), and levels of 0.006 to 0.016 g kg⁻¹ were observed throughout the storage period (Fig. 2). However, at the end of the storage period, the levels of acetaldehyde produced by the strawberries from the control group and those maintained in atmospheres with 10

Table 1. Decay incidence (%) on ‘Oso Grande’ strawberries stored in a controlled atmosphere containing different concentrations of N₂O at 10 °C and 95% relative humidity.

| Storage (d) | 0 kPa | 10 kPa | 30 kPa | 60 kPa | 80 kPa |
|------------|-------|--------|--------|--------|--------|
| 0          | 0.0   | 1.57 Aa | 0.0 | 1.57 Aa | 0.0 | 1.57 Aa | 0.0 | 1.57 Aa |
| 2          | 0.0   | 1.57 Aa | 0.0 | 1.57 Aa | 0.0 | 1.57 Aa | 0.0 | 1.57 Aa |
| 4          | 0.0   | 1.57 Aa | 0.0 | 1.57 Aa | 0.0 | 1.57 Aa | 0.0 | 1.57 Aa |
| 6          | 15.5  | 1.17 Bb | 0.0 | 1.57 Aa | 0.0 | 1.57 Aa | 0.0 | 1.57 Aa |
| 8          | 28.2  | 1.02 Cc | 19.1 | 1.12 Bb | 8.2 | 1.29 Ba | 5.5 | 1.33 Ba |
| 10         | 37.2  | 0.91 Dc | 33.6 | 0.95 Cc | 26.4 | 1.03 Cb | 13.6 | 1.19 Ca |

"Averaged 101 of average expressed in percentages.
"Transformed means (arcSin √ p) followed by at least one common uppercase letter in the column and a lowercase letter in the line do not differ according to Tukey’s test (P < 0.05).
N2O, and a decrease in firmness was only observed among the treatments (Table 2). Firmness was not influenced by the levels of N2O (Table 2). Lightness (L∗) decreased during the storage period and did not differ among treatments up to the tenth day of storage. A similar behavior was observed in kPa and 30 kPa N2O were greater (0.0059 g kg−1) than the levels of acetaldehyde produced by the strawberries maintained with 60 kPa and 80 kPa N2O (0.0034 g kg−1) (Fig. 3).

Quality evaluation (texture, color, and physicochemical analysis). Regarding the other quality parameters, no difference was observed among the treatments (Table 2). Firmness was not influenced by the levels of N2O, and a decrease in firmness was only observed throughout the storage period. The fruit color was unaffected by the levels of N2O (Table 2). Lightness (L∗) decreased during the storage period and did not differ among treatments up to the tenth day of storage. A similar behavior was observed in the hue angle (ºh), which decreased from 33.2º to 26.1º over the storage period. However, no significant differences among the treatment groups were observed (Table 2). The chromaticity increased during the first 4 to 6 d of storage and then decreased, but no treatment effect was observed.

Some differences were observed in the physicochemical parameters among the treatments (Table 2). The SSC decreased (0.52% Brix) during the storage period (Table 2). The levels of ascorbic acid also decreased during the storage period, and the fruit stored in the atmosphere containing 10 kPa N2O presented the lowest contents. The level of TA did not change throughout the storage period, and the differences observed between the treatments with N2O and the control were minimal and did not affect the quality of the fruit (Table 2).

Discussion

The decay control related to the presence of N2O in the storage atmosphere observed in the present study was also observed by other authors. For example, Qadir and Hashinaga (2001) observed a reduced incidence of Botrytis cinerea in strawberries treated with different concentrations of N2O (50 kPa and 80 kPa). The control of postharvest decay by N2O is related to its inhibitory effect on the development of pathogens and/or by activating the defense mechanisms of the fruit (Benkeblia and Varoquaux, 2003) because the action of N2O occurs through the interaction with the plant’s defense mechanism (Navarre et al., 2000). This interaction is likely the result of the action of molecules that are produced or released in the place where the pathogen attacks occur and the fact that these molecules can be transported by diffusion through the vascular system (Navarre et al., 2000). This mechanism is believed to be activated in response to atmospheric N2O. Considering the lowest percentage of decay present as the desired outcome, the storage life of the fruit exposed at 60 kPa and 80 kPa was longer (≥8 d) compared with the storage life of fruit exposed to other treatments (Table 1).

Although the postharvest decay affected the respiratory activity of the fruits from the control group and that of the fruit maintained in the atmosphere containing 10 kPa N2O (Fig. 1), the presence of N2O in the storage atmosphere may inhibit the respiratory activity because N2O does inhibit ethylene action and synthesis in higher plants (Palomer et al., 2005). The effect of N2O on the respiratory activity is partial and reversible because this gas regulates the activity of cytochrome c from the mitochondria, which are isolated from the seeds, leaves, and cellular suspensions (Sowa and Towill, 1991). Sowa et al. (1993) also reported that CAs with 80% N2O reduced respiration in seedlings of Phaseolus vulgaris L.

Unlike atmospheres with high concentrations of CO2, which can cause cellular disruption and lead to increased levels of acetaldehyde and ethanol (Kader, 2003b), the enrichment of the storage atmosphere with N2O did not contribute to the increase of these compounds (Figs. 2 and 3). Despite the observed differences, the levels of acetaldehyde and ethanol did not compromise the quality of the strawberries. Thus, the effect of N2O on the production of ethanol and acetaldehyde differs from that of CO2 when applied in a CA. High concentrations of CO2 (higher than 20 kPa) increase the production of acetaldehyde and ethanol throughout the storage period, which affects the aroma and flavor of the fruit (Ke et al., 1993). In the present study, this effect was not observed when a high concentration of N2O (60 kPa and 80 kPa) was used. Benkeblia and Varoquaux (2003) also observed that the action of N2O
differs from that of CO₂, as suggested by Qadir and Hashinaga (2001).

The enrichment of the storage atmosphere with N₂O did not affect the other quality parameters (Table 2). ‘Oso Grande’ strawberries are firmer than other strawberry cultivars even during storage (Nunes et al., 2006) and the absence of N₂O effect on firmness was also reported by other studies. N₂O (60 kPa) applied to cv. Dwarf Cavendish bananas stored under CA storage did not affect the firmness of the pulp (Palomer et al., 2005). Thus, the slight loss of firmness may have occurred as a natural consequence of senescence (Seymour et al., 1993) mainly as a result of loss of cell wall material (Koh and Melton, 2004).

The fruit color was unaffected by the levels of N₂O (Table 2). Pelayo et al. (2003) studied ‘Diamante’ and ‘Selva’ strawberries stored in CAs enriched with 20 kPa CO₂ and did not observe differences in the lightness and hue angle during the cold storage (5 °C). Brackmann et al. (2001) stored ‘Oso Grande’ strawberries in CA and found significant differences in color (red coating); however, the differences were slight and visually not noticeable. Additionally, Palomer et al. (2005) did not observe significant differences in the parameters that comprise color (L*, a*, and b*) of bananas stored in a CA with 60 kPa N₂O compared with those from the control group (ambient air).

The physicochemical parameters were unaffected by the levels of N₂O (Table 2). On the other hand, strawberries stored under 100 kPa N₂O at 10 to 20 °C showed a decrease in TA (Al-Jamali and Hani, 2007), but this trend might be related to the temperature abuse rather than N₂O effect. Additionally, Palomer et al. (2005) did not observe significant differences in the levels of SSC and TA in bananas treated with 60 kPa N₂O compared with those maintained in atmospheric air. According to Lavee and Nir (1986), changes in the SSC and TA as well as sugars and organic acids are minimal during the storage of non-climacteric fruit such as strawberries. A decrease in the levels of sugar is only observed during the final stage of senescence (Garcia et al., 1996).

In conclusion, ‘Oso Grande’ strawberries stored at 10 °C in CAs containing 60 kPa or 80 kPa N₂O had a storage life of 8 d based on the incidence of postharvest decay, which was lower than that of fruit exposed to other N₂O concentrations. N₂O levels also reduce the respiratory rate and did not promote increases in ethanol and acetaldehyde production commonly observed in atmospheres enriched with high levels of CO₂. Higher N₂O concentrations (60 kPa and 80 kPa) showed better results and proved to be more adequate for storing ‘Oso Grande’ strawberries.

Table 2. Contents of soluble solids (SSC), titratable acidity (TA), ascorbic acid (AA), and texture (Tx), lightness (L*), hue angle (h*), and chromaticity (chroma) in ‘Oso Grande’ strawberries in controlled atmospheres with different concentrations of N₂O with 21 kPa O₂ at 10 °C and 95% relative humidity. The vertical bars represent the SEM (N = 4).

| Parameters | SSC (°Brix) | TA (g·kg⁻¹) | AA (g·kg⁻¹) | Tx (N) | L* | h* | Chroma |
|------------|-------------|-------------|-------------|--------|----|----|--------|
| N₂O levels |             |             |             |        |    |    |        |
| 0 kPa N₂O  | 7.2 A       | 8.3 A       | 0.54 A      | 7.3 A  | 36.1 AB | 27.5 A | 28.9 A |
| 10 kPa N₂O | 7.2 A       | 8.0 B       | 0.53 AB     | 6.9 A  | 35.5 B  | 28.5 A | 29.4 A |
| 30 kPa N₂O | 7.3 A       | 8.1 AB      | 0.54 A      | 7.0 A  | 36.3 A  | 28.2 A | 28.5 A |
| 60 kPa N₂O | 7.3 A       | 8.2 AB      | 0.54 A      | 7.1 A  | 36.4 A  | 28.3 A | 29.2 A |
| 80 kPa N₂O | 7.1 A       | 8.1 AB      | 0.51 B      | 6.9 A  | 36.4 A  | 28.4 A | 29.0 A |
| MSD        | 0.2 NS      | 0.2*        | 0.022*      | 0.6 NS | 0.67*  | 1.26 NS | 1.0 NS |

Averages followed by at least one common letter in the column for each factor do not differ according to Tukey’s test (P < 0.05). NS = nonsignificant; *significant at P < 0.05. MSD = minimum significant difference.

### Literature Cited

Al-Jamali, A. and M.T.B. Hani. 2007. Improving postharvest strawberry fruit quality with carbon dioxide and nitrous oxide at high ambient temperatures. Acta Hortic. 741:181–188.

AOAC. 1997. Official methods of analysis of the Association of Official Analytical Chemists International. 16th Ed. Ig W. Horwitz, WA.

Benkebia, N. and P. Varoquaux. 2003. Effect of nitrous oxide (N₂O) on respiration rate, soluble sugars and quality attributes of onion bulbs *Allium cepa* cv. Rouge Amposta during storage. Postharvest Biol. Technol. 30:161–168.

Brackmann, A., M. Hunsche, A.J. Waclawowsky, and J. Donazzolo. 2001. Armazenamento de morangos cv. Oso Grande (*Fragaria Ananassa* L.) sob elevadas pressões parciais de CO₂. Rev. Bras. Agroc. 19:59–76.

Ertan, Ü., S. Özeli, F. Celikel, and K. Kepenek. 1990. The effects of precooling and increased atmospheric concentrations of CO₂ on fruit quality and postharvest life of strawberries. Bahce. 19:59–76.
Flores Cantillano, R.F. 2005. Colheita e pós-colheita. In: Pereira, D.P., D.L., Bandeira, and E.R.F. Da Quinozes (eds.). Sistema de produção do morango. Pelotas. Embrapa Clima Temperado. 10 Oct. 2010. <http://sistemadeproducao.cptnia.embrapa.br/FontesHTML/Morango/SistemaProducaoMorango/cap12.htm>.

Garcia, J.M., S. Herrera, and A. Morilla. 1996. Effects of postharvest dips in calcium chloride on strawberry. J. Agr. Food Chem. 44:30–33.

Kader, A.A. 2003a. Physiology of CA treated fruit and development. CRC Press, Boca Raton, FL.

McGuire, R.G. 1992. Reporting of objective color measurements. HortScience 27:1254–1255.

Mitcham, E.J., C.H. Crisosto, and A.A. Kader. 2004. Strawberry: Recommendations for maintaining postharvest quality. Davis, CA: University of California. 25 Feb. 2010. <http://rics.ucdavis.edu/postharvest2/produce/ProduceFacts/Fruit/strawberry.shtml>.

Mitchell, F.G. 1992. Postharvest handling system: Small fruit (table grapes, strawberries, kiwi-fruit), p. 223–231. In: Kader, A.A. (ed.). Postharvest technology of horticultural crops. 2nd Ed. Univ. of California Publ., CA.

Navarro, D.A., D. Wendehenne, J. Durner, R. Noad, and D.F. Klessig. 2000. Nitric oxide modulates the activity of tobacco aconitate. Plant Physiol. 122:573–582.

Nishijima, K.A., C.K. Miura, J.W. Armstrong, S.A. Brown, and B.K.S. Hu. 1992. Effect of forced, hot-air treatment of papaya fruit on fruit quality and incidence of postharvest diseases. Plant Dis. 76:723–727.

Nunes, M.C.N., J.K. Brecht, A.M.M.B. Morais, and S.A. Sargent. 1995. Quality of strawberries and raspberries. Postharvest Technol. 26:49–58.

Pelayo, C., S.E. Ebeler, and A.A. Kader. 2003. Postharvest life and flavor quality of three strawberry cultivars kept at 5 °C in air or air + 20 kPa CO2. Postharvest Biol. Technol. 27:171–183.

Qadir, A. and F. Hashinaga. 2001. Inhibition of postharvest decay of fruit by nitrous oxide. Postharvest Biol. Technol. 22:279–283.

Rosen, J.C. and A.A. Kader. 1989. Postharvest physiology and quality maintenance of sliced pear and strawberry fruit. J. Food Sci. 54:656–659.

Seymour, G.B., J.E. Taylor, and G.A. Tucker. 1993. Biochemistry of fruit ripening. Chapman & Hall, London, UK.

Shamaila, M.M., W.D. Powrie, and B.J. Skura. 1992. Sensory evaluation of strawberry fruit stored under modified atmosphere packaging (MAP) by quantitative descriptive analysis. J. Food Sci. 57:1168–1172.

Sowa, S., E.E. Roos, and W.S. Caughey. 1993. Effect molecules to probe cytochrome c oxidase activity in germinating Phaseolus vulgaris L. seeds. J. Plant Physiol. 141:647–653.

Sowa, S. and L.E. Towill. 1991. Effects of nitrous oxide on mitochondrial and cell respiration and growth in Distichlis spicata suspension cultures. Plant Cell Tissue Organ Cult. 27:97–201.

Strohecker, R.L. and H.M. Henning. 1967. Análisis de vitaminas: Métodos comprobados. Paz Montalvo, Madrid, Spain.

Van der Steen, C., L. Jaxsens, F. Devlieghere, and J. Debevere. 2002. Combining high oxygen atmospheres with low oxygen modified atmosphere packaging to improve the keeping quality of strawberries and raspberries. Postharvest Biol. Technol. 26:49–58.

Wills, R.B.H. and G.H. Kim. 1995. Effect of ethylene on postharvest life of strawberries. Postharvest Biol. Technol. 6:249–255.

Zheng, Y., Z. Yang, and X. Chen. 2008. Effect of high oxygen atmospheres on fruit decay and quality in chinese bayberries, strawberries and blueberries. Food Contr. 19:470–474.