Diverse ruthenium nitrides stabilized under pressure: a theoretical prediction

Yunkun Zhang1, Lailei Wu1, Biao Wan1,2, Yangzheng Lin1, Qingyang Hu2,3, Yan Zhao4, Rui Gao4, Zhiping Li4, Jingwu Zhang4 & Huiyang Gou1,4

First-principles calculations were performed to understand the structural stability, composition, mechanical and electronic properties of diverse ruthenium nitrides. RuN with a new I-4m2 symmetry stabilized by pressure is found to be energetically preferred over the experimental NaCl-type and ZnS-type ones. The Pnnm-RuN4 is found to be stable above 1.1 GPa, in agreement with the experimental results. Specifically, new stoichiometries like RuN3 and RuN4 are proposed firstly to be thermodynamically stable, and the dynamical and mechanical stabilities of the newly predicted structures have been verified by checking their phonon spectra and elastic constants. A phase transition from P4/mmm-RuN4 to C2/c-RuN4 is also uncovered at 23.0 GPa. Drawn from bonding and band structure analysis, P4/mmm-RuN4 exhibits semi-metal-like behavior and becomes a semiconductor for the high-pressure C2/c-RuN4 phase. Meanwhile the P21/c-RuN4 shows metallic feature. Highly directional covalent N-N and Ru-N bonds are formed and dominating in N-enriched Ru nitrides, making them promising hard materials.

The search of hard or superhard materials is of great interest due to the fundamental importance and technological applications1–4. Transition metal (TM) nitrides, because of the strong covalent bonding between TM and N atoms, are considered to be promising candidates for hard materials5–8. The inert nature of noble metals (e.g., Os, Ir, Pt, Ru, Rh and Pd) used to hamper the reaction with nitrogen; however, the discovery of platinum pernitrides overcomes the chemical barrier9–11. Later on, iridium, osmium and palladium were also found to form pernitrides under pressure12–15. Recently, marcasite-type rhodium and ruthenium pernitrides have been successfully synthesized as well16,17. Among these nitrides, IrN2 was found to have bulk modulus of 428 GPa12,18, higher than most of previously synthesized materials. PtN2 and OsN2 also possess greater incompressibility with bulk modulus of 372 GPa9,10 and 358 GPa12,18, respectively, comparable to the traditional superhard materials (e.g., diamond and c-BN). The synthesis of the noble metal nitrides is a milestone that has set the stage of paradigm of novel superhard materials.

Within the binary system of Ru and N, a cubic NaCl-type RuN with the lattice parameter of a = 4.445 Å was reported in the earlier study19. ZnS-type RuN thin films were also reported in the later studies20,21. Recently, RuN4 with marcasite-type structure and bulk modulus of 330 GPa was identified by Niwa et al.22. Despite of these efforts, the knowledge of basic structural type, mechanical and electronic properties of Ru nitrides is still lacking. Understanding this binary system requires comprehensive knowledge of their structural stability, composition changes, nitrogen bonding features and even pressure response. In this study, we are motivated to perform structural searching for stable phases in RuNx (x = 1–4) in the pressure range of 0–50 GPa. We also examine the stability range of reported Ru nitrides and their phase transition under pressure. For Ru mononitrides, two structures (I-4m2-RuN and R-3m-RuN) are found to be more energetically stable than the previously reported NaCl-type and ZnS-type phases. With regard to Ru pernitrides, the stability of Pnnm-RuN4 is confirmed by phonon analysis and its behaviors under pressure are described. Moreover, Ru trinitrides and tetranitrides that have not yet been

1Key Laboratory of Metastable Materials Science and Technology, College of Material Science and Engineering, Yanshan University, Qinhuaodao 066004, China. 2Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China. 3Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road NW, Washington, DC 20015, USA. 4Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuaodao 06604, China. Correspondence and requests for materials should be addressed to L.W. (email: wll@ysu.edu.cn) or J.Z. (email: zjw@ysu.edu.cn) or H.G. (email: huiyang.gou@gmail.com)
synthesized in laboratory were predicted with \(\text{P}_2/c\text{-RuN}_3 \), \(\text{P}_4/m\text{mmm-RuN}_4 \), \(\text{C}_2/c\text{-RuN}_4 \), and \(\text{Cmmm-RuN}_4 \) structures, guiding further experimental attempts to produce N-rich Ru nitrides.

Results and Discussion

The NaCl-type RuN\(_{x}\approx1\) (space group: \(\text{Fm}-3\text{m} \)) was suggested by Moreno-Armenta et al. using reactive pulsed laser ablation\(^{19}\), in which ruthenium target was laser ablated in N\(_2\) atmosphere in the pressure range of \(1 \times 10^{-9} \) to 0.16 Torr. Therefore, the NaCl-type RuN was initially chosen in our calculations. Interestingly, NaCl-type RuN is energetically unfavorable up to at least 50 GPa, as we can see from the convex hull of Ru-N system (Fig. 1) and relative formation enthalpies of RuN as a function of pressure (Fig. 2a). Furthermore, the calculated elastic constants (\(C_{ij} \)) also rule out the NaCl-type RuN due to the mechanical instability with a negative \(C_{44} \) value (\(-94 \text{ GPa}\)), according to the Born-Huang criterion\(^{22}\). Moreover, the phonon dispersion of NaCl-type RuN shows imaginary frequency in the Brillouin Zone (see Supplementary Fig. S1), indicating its dynamic instability. ZnS-type RuN was also reported to have been deposited by pulsed-DC magnetron sputtering at the pressure of 1 Pa and the temperature of about 50 °C\(^{20,21}\). Similar to NaCl-type RuN, we found that ZnS-type RuN is also mechanically unstable with a negative \(C_{44} \) value (\(-170 \text{ GPa}\)). All the results strongly motivate us to search a possible ground state structure for RuN. Two candidates, the \(\text{I}-4\text{m}2\text{-RuN} \) and the \(\text{R}-3\text{m}-\text{RuN} \), were survived in our structure searches. Interestingly, ZnS-type structure is relaxed to be an \(\text{I}-4\text{m}2\text{-RuN} \) symmetry, consistent with our structure searching results. Nevertheless, the formation enthalpy of \(\text{I}-4\text{m}2\text{-RuN} \) is positive below 0.17 GPa, as shown in Fig. 1. As the pressure increases, \(\text{I}-4\text{m}2\text{-RuN} \) becomes energetically favorable in the pressure range of 0.17 to 10.5 GPa, and then \(\text{R}-3\text{m}-\text{RuN} \) stands out up to 50 GPa (see Fig. 2a). Nevertheless, as shown in the convex hull, the predicted \(\text{I}-4\text{m}2\text{-RuN} \) has a very narrow stable range, and then both \(\text{I}-4\text{m}2\text{-RuN} \) and \(\text{R}-3\text{m}-\text{RuN} \) become metastable with the increasing pressure. In \(\text{I}-4\text{m}2\text{-RuN} \), as demonstrated in Fig. 3a, N atoms occupy the center and vertex positions of the tetragonal lattices. Ru and neighboring N atoms constitute a tetrahedron with Ru atom situated in the center, and the tetrahedrons are connected by sharing vertex. The bond length of Ru-N is found to be 1.968 Å, but the separation of N-N is relatively large, 3.068 Å, limiting its capability of forming polynitrogen. For \(\text{R}-3\text{m}-\text{RuN} \) (see Fig. 3b), Ru and N atoms constitute a puckered 2D graphene-like honeycomb structure paralling to the \(xy \) plane, in which the bond distance of Ru-N is 2.007 Å. The honeycomb structure was also observed in the IIB selenides and tellurides\(^{23}\). The puckered honeycomb sheets are connected by bridging N-N bonds forming a Ru-N-N-Ru layer, stacking along \(c \) axis. The N-N bond length in \(\text{R}-3\text{m}-\text{RuN} \) is 1.361 Å, shorter than the typical N-N single bond (1.45 Å in N\(_2\)H\(_4\)), but much longer than the double bond (1.21 Å for N\(_2\)F\(_2\)) and triple bond (1.09 Å for N\(_2\))\(^{24}\).

![Figure 1. Formation enthalpies (\(\Delta H \)) of the structures of N-rich Ru-N binary compounds at pressures of (a) 0 GPa, (b) 10 GPa, (c) 20 GPa and (d) 30 GPa. The convex hulls connecting stable phases (solid circles) are shown by solid lines. Unstable/metastable phases are shown by open circles.](image-url)
Recently, Pnnm-RuN2 was synthesized by direct chemical reaction between ruthenium and molecular nitrogen above the pressure of 32 GPa. The ground-state structure of RuN2 was confirmed by the formation enthalpy curves as a function of pressure (Fig. 2b), and its formation enthalpy turns negative above 1.1 GPa. The convex hull also shows that Pnnm-RuN2 is the most stable phase in Ru-N phase diagram above the pressure of 10 GPa.

In Pnnm-RuN2 (shown in Fig. 3c), Ru atoms are located in the center and vertex sites of the orthorhombic lattice. Each Ru atom is coordinated by six N atoms forming a RuN6 octahedron. The four equatorial and two axial Ru-N distances in RuN6 octahedron are 2.102 and 2.057 Å, respectively. The RuN6 octahedrons that situated in the center of the unit cell and the ones in the vertexes are connected by sharing corners and N2 dimers. The N2 dimer has a bond length of 1.375 Å, shorter than that in the OsN2 (~1.4 Å), IrN2 (1.42 Å) and PtN2 (1.41 Å), but larger than that in RhN2 (1.30 Å). The strong covalent N–N bonding in N2 dimer provides a strengthening effect on the elastic modulus.

It is known that IrP3, IrAs3, IrSb3, CoP3, and RhP3 with cubic skutterudite CoAs3-type structure were synthesized in experiments. The chemical related compounds, including the corresponding nitrides IrN3, CoN3, and RhN3 with the same type structure were also suggested by first-principles calculations. Besides, Imm2-TcN3, P4/mmm-TcN4, Imm2-TeN4, and Cmmm-ReN3 were also proposed by Zhao et al.29,30, together with ReN4, OsN4 and WN4 with ReP4-type structure by Aydin et al.31. To explore the possibility for Ru nitrides with higher nitrogen concentration, Ru trinitrides and tetranitrides were also searched in our calculations. Simultaneously, the calculated formation enthalpy-pressure curves with respect to Pnnm-RuN2 are given in Fig. 2c,d, respectively. For Ru trinitrides, a new P21/c type structure for RuN3 is found to be favored over RuN2 + 1/2N2 above 12.8 GPa and thermodynamically stable up to at least 50 GPa (see Fig. 2c). P21/c-RuN3 (Fig. 3d) contains two types of distorted RuN6 octahedrons and puckered S-shaped N6 units. In comparison with Pnnm-RuN2, P21/c-RuN3 shows a variety of Ru-N distances from 1.976 to 2.275 Å for distorted RuN6 octahedrons. Besides, different with the regular RuN6 octahedron in Pnnm-RuN2, the distorted RuN6 octahedrons in P21/c-RuN3 have the axis N–Ru–N angles of 166° and 170°, respectively. Moreover, in Pnnm-RuN2, there is only one unique N-N distance of 1.375 Å in N2 dimer, whereas the N-N distances in puckered N6 units in P21/c-RuN3 vary from 1.352 to 1.460 Å. Interestingly, the stacking of RuN6 octahedrons in P21/c-RuN3 becomes more packed than that in Pnnm-RuN2. Furthermore, N2 dimers (N6 units) in Pnnm-RuN2 (P21/c-RuN3) is paralleling to xy (yz) planes, which will be reflected on the great incompressibility along a and b axis (b and c axis) as expected.

With further increasing N concentration, a P4/mmm-RuN4 for Ru tetranitrides becomes energetically preferable relative to RuN2 + N2 at 13.6 GPa, and transforms to C2/c-RuN4 at 23 GPa (see Fig. 2d). For comparison, the relative enthalpy of Cmmm-RuN4 with respect to C2/c-RuN4 as a function of pressure is shown in Supplementary Fig. S2. The C2/c-RuN4 is thermodynamically favorable up to 101 GPa and transforms to Cmmm-RuN4, which is preferable at least up to 150 GPa. For P4/mmm-RuN4 (Fig. 3e), Ru atoms occupy the center of the top and bottom.
of the tetragonal unit cell and N₂ dimers locate in the center of the four sides of the lattice. In this structure, each Ru atom is surrounded by eight N atoms, forming RuN₈ cuboids. The intra-layer cuboids are connected by sharing edges, and the interlayer ones are connected by vertical N₂ dimers. The Ru-N bond length in RuN₈ cuboid is 2.197 Å and the N-N bond distances in the planar N∞ layers are 1.416 and 1.426 Å, close to the typical double bond (1.21 Å).

Similar to P2₁/c-RuN₂, C2/c-RuN₂ (shown in Fig. 3f) is also composed of distorted RuN₆ octahedrons and puckered S-shaped N∞ chains. The intra-layer RuN₆ octahedrons are connected by sharing edges and the interlayer ones by the puckered N∞ chains that extend infinitely in the crystal. The Ru-N bond lengths in the distorted RuN₆ octahedrons are between 1.993 to 2.203 Å, and the N-N bond lengths in the N∞ chains are 1.305, 1.449 and 1.473 Å, close to the 1.32, 1.39 and 1.43 Å in the spiral N∞ chains in C2/c-CsN₂.²¹ The transition from P4/mmm-RuN₂ to C2/c-RuN₂ accompanies a decrease of the coordination number of Ru atoms from 8 to 6. Resembling P4/mmm-RuN₂, RuN₄ cuboids are also formed in Cmmm-RuN₄ (Fig. 3g), but different with the intra-layer edge-sharing cuboids and N₂ dimers in P4/mmm-RuN₂, the intra-layer RuN₄ cuboids are face-sharing and the interlayer cuboids are connected by planar N∞ chains in Cmmm-RuN₄. The Ru-N bond length in the cuboids is 2.197 Å and the N-N bond distances in the planar N∞ chains are 1.416 and 1.426 Å, close to the typical N-N single bond length (1.45 Å). Also, the phase transition sequence of these Ru nitrides can also be reflected by the total energy-volume curves, which are given in Supplementary Fig. S3.

The calculated equilibrium lattice parameters of Ru nitrides with different stoichiometries and their formation enthalpies at 0 GPa are listed in Table 1 in comparison with available data. Our results agree well with the experimental lattice parameters within a maximum error of 1.0%, and also with the theoretical values, indicating the reliability of our calculations.

The mechanical stability of Ru nitrides is examined by calculating the individual elastic constants (see Table 2), all proposed phases are mechanically stable at 0 GPa with the satisfactions of Born-Huang stability criteria. To evaluate the mechanical performance of Ru nitrides, the calculated bulk modulus (B), shear modulus (G), B/G ratio, Young’s modulus (E), Poisson’s ratios (ν), and Vicker’s hardness (Hv) are also listed in Table 2. The Cmmm-RuN₄ has the highest C₁₁ (738 GPa), comparable with that of IrN₂ (739 GPa). C₁₂ of Pmmm-RuN₂ is 769 GPa, close to that of PtN₂ (798 GPa)⁴⁴. P4/mmm-RuN₂ has a C₁₁ value of 698 GPa, comparable to that of OsN₂ (683 GPa). The elastic constant, C₄₄, is another important parameter reflecting the hardness of material. Among these Ru-N compounds, Cmmm-RuN₄ has the lowest C₄₄ value (61 GPa), lower than that of RhN₂ (80 GPa)⁴⁵, but...
The difference is that

\[\text{Fermi level} \]

The difference is that

\[\Delta H \]

Table 1. Calculated equilibrium lattice parameters, \(a, b \) and \(c \) (Å), \(\beta \) (deg.), formation enthalpies \(\Delta H \) (eV/atom) of Ru nitrides at 0 GPa.

S. G. (No.)	\(a \)	\(b \)	\(c \)	\(\beta \)	\(\Delta H \)	Ref.
RuN	1-4m2(119)	3.068	4.929	0.008		
R-3m(166)	2.835	18.220	0.078			
RuN\(_2\)	\(Pnmm \)	4.115	4.910	2.689	0.062	
		4.073	4.888	2.707		Exp\(^{17} \)
		4.058	4.847	2.665		Cal\(^{18} \)
		4.098	4.919	2.696		Cal\(^{30} \)
RuN\(_3\)	\(P2_1/c(14) \)	11.925	4.070	13.032	154.12	0.211
RuN\(_4\)	\(P4/mmm(123) \)	3.6135	3.6137	0.263		
	\(C2/c(15) \)	3.834	8.888	5.720	117.83	0.355
	\(Cmmm(65) \)	7.629	3.669	2.867	0.646	

Table 2. Calculated elastic constants \(C_{ij} \) (GPa), bulk modulus \(B \) (GPa), shear modulus \(G \) (GPa), \(B/G \) ratio, Poisson's ratio \(\nu \), and Vickers hardness \(Hv \) (GPa) of Ru nitrides.

S. G. (No.)	\(C_{11} \)	\(C_{12} \)	\(C_{13} \)	\(C_{22} \)	\(C_{23} \)	\(C_{33} \)	\(B \)	\(G \)	\(B/G \)	\(\nu \)	\(Hv \)		
RuN	1-4m2	371	305	99	37	177	234	260	66	3.94	0.38		
R-3m	406	530	87	205	173		271	105	2.58	0.33			
RuN\(_2\)	\(Pnmm \)	615	769	464	106	269	132	152	218	71	298	0.25	20.1
RuN\(_3\)	\(P2_1/c \)	367	473	639	188	186	201	183	127	127	253	0.45	23.4
RuN\(_4\)	\(P4/mmm \)	283	698	104	129	112	38	174	128	1.36	0.20	20.9	
	\(C2/c \)	540	664	344	151	208	286	199	172	97	257	1.50	22.1
	\(Cmmm \)	738	496	374	61	73	257	132	184	81	269	1.96	12.3

Materials with high bulk modulus are expected to be strong in resisting uniform compression. As shown in Table 2, the calculated bulk modulus within GGA level is 298 GPa for \(Pnmm \)-RuN\(_2\), consistent with the previous theory 305.9 GPa\(^{35}\). This value is lower than the measured value 330 GPa\(^{33}\) and the calculated value 343 GPa\(^{18}\), caused by the difference between LDA and GGA methods\(^{36,38}\). The bulk modulus of \(Pnmm \)-RuN\(_2\) is higher than that of RhN\(_2\) (235 GPa)\(^{16}\), although lower than that of PtN\(_2\) (372 GPa)\(^{9,10}\), IrN\(_2\) (428 GPa)\(^{12}\), and OsN\(_2\) (358 GPa)\(^{12,18}\). Besides the highest bulk modulus, \(Pnmm \)-RuN\(_2\) also has the highest shear modulus (180 GPa), close to that of PtN\(_2\) (187 GPa)\(^{14}\), while \(I-4m2-RuN \) has the lowest \(G \) value (66 GPa). Except RuN and \(Cmmm-RuN_{4} \), the calculated hardness of the ground-state and high-pressure phases of Ru nitrides are between 20.1–23.4 GPa, belonging to the class of hard materials. Poisson's ratio is an important parameter of directionality of the covalent bonding, and low Poisson's ratio points to a high degree of covalency. For the \(Pnmm-RuN_{2} \), \(P2_1/c-RuN_{3} \), \(P4/mmm-RuN_{4} \), \(C2/c-RuN_{4} \), and \(Cmmm-RuN_{4} \), \(\nu \) values are between 0.20 and 0.29, indicating their covalent bonding. The \(B/G \) ratio represents the ductility of the materials. The high (low) \(B/G \) ratio means that the material is ductile (brittle), and the critical value is about 1.75\(^{39}\). From Table 2 we can see that \(I-4m2-RuN \), \(R-3m-RuN \), and \(Cmmm-RuN_{4} \) are ductile and the others are brittle.

The dynamical stability of the newly predicted phases, \(P2_1/c-RuN_{3} \), \(P4/mmm-RuN_{4} \), \(C2/c-RuN_{4} \), and \(Cmmm-RuN_{4} \), and metastable \(I-4m2-RuN \) and \(R-3m-RuN \), together with the synthesized \(Pnmm-RuN_{4} \), is checked by calculating the phonon spectra (see Supplementary Fig. S4). All these phases are dynamically stable at 0 GPa with no imaginary frequency found throughout the Brillouin zone.

The total and partial density of states (DOS and PDOS) of Ru nitrides are plotted in Fig. 4 to understand the electronic properties and bonding features. It can be seen that except Ru tetranitrides, all of the compounds exhibit the metal features because of the finite DOS at the Fermi level (\(\text{Fermi level} \)). Note that the significant hybridization at the Ru 4d and N 2p orbitals is observed from about \(-8 \) to \(-5 \) eV in \(I-4m2-RuN \), \(-10 \) to \(-5 \) eV in \(R-3m-RuN \). For \(Pnmm-RuN_{2} \), the states located between about \(-8.5 \) eV and \(-4 \) eV mainly originate from N-2p orbitals with some contributions from Ru-4d states, and in the region from \(-4 \) eV to \(2 \) eV, the Ru-4d states interact mainly with the N-2p states. Furthermore, the arrangement of RuN\(_{6}\) octahedrons may derive Ru 4d orbitals splitting into triply degenerate \(t_{2g} \) orbitals at lower energy and doubly degenerate \(e_{g} \) orbitals at higher energy. Moreover, the pseudogap near the Fermi level is observed, enhancing the stability. For \(P2_1/c-RuN_{3} \), in the range from \(-11.5 \) eV to \(-3 \) eV, the states are essentially dominated by N-2p orbitals due to the increase of N concentration, while from \(-3 \) eV to \(2 \) eV, the states are mainly contributed by Ru-4d orbitals with admixture of N-2p orbitals.

For Ru tetranitrides, Ru-4d orbitals and N-2p orbitals are hybridized in the region from about \(-3 \) eV to the Fermi level. The difference is that \(P4/mmm-RuN_{4} \) and \(Cmmm-RuN_{4} \) are semimetal-like while \(C2/c-RuN_{4} \) is semiconductor, which can be seen from their electronic band structure (Fig. 5). \(P4/mmm-RuN_{4} \) exhibits Dirac cones near the Fermi level in the \(A-M, M-F \) directions and at the R point of the Brillouin zone (BZ). \(Cmmm-RuN_{4} \)
has a bulk Dirac cone below the Fermi level in the $\Gamma - Z$ direction, giving rise to the small overlap of the valence band and the conduction band near the Γ point in the BZ. For $C2/c$-RuN$_4$, the bottom of the conduction band is located at the Γ point of BZ, and the top of the valence band at a point in the $Z-\Gamma$ direction, indicating semiconductor character with an indirect band gap of 0.84 eV. The band structures of the other Ru-N compounds are also computed and depicted in Supplementary Fig. S5, indicating their metallic character.

To gain deeper insights into the bonding nature in Ru-N compounds, we computed the distributions of valence electron density, as presented in Fig. 6. The Mulliken overlap populations (MOP) are also calculated to evaluate the relative bond strength. As we can see that for all these compounds, the nearly spherical charge distribution around Ru atoms indicates that the bonding between Ru and N atoms has partially ionic characteristic. As to $I4m2$-RuN, the valence electrons are mainly located in the centre of Ru and N atoms, forming a zig-zag chain along b axis. The MOP for Ru-N bonding is 0.38, reflecting the moderate covalent bonding characteristic. The N-N distance is 3.068 Å, too far to form a covalent bonding. Different from $I4m2$-RuN, a covalent bonding of N-N are present in $R3m$-RuN. The electron density at the N-N bond is higher with MOP of 0.83, indicating the strong N-N interactions along c axis. Compared with the N-N bonding, the Ru-N bonding is much weaker with a lower MOP value of 0.38, which is close to $I4m2$-RuN.

For $Pmmn$-RuN$_2$, the electron density is higher at the center of the N$_2$ dimer with the MOP value of 0.76, resulting in the highest bulk modulus. The interactions between the Ru and N atoms are much weaker, as can be reflected by the MOP values 0.33 and 0.50 for Ru-N bonding. With regard to $P2_1/c$-RuN$_3$, the strong N-N covalent bonding can be found in the puckered N$_2$ unit, with MOP values between 0.60 and 0.87. Due to the distortion and tilt of the RuN$_6$ octahedrons, the length and strength of Ru-N bonding are irregular compared with $Pmmn$-RuN$_2$ with MOP ranging from 0.28 to 0.47.

Similar to the $R-3m$-RuN and $Pmmn$-RuN$_2$, N-N dimer in the $P4/mmm$-RuN$_4$ is also characteristic of a covalent bond, which contributes to a largest MOP value of 1.23, indicating the strong interactions between the N

Figure 4. Calculated total and partial density of states for Ru nitrides. (a) $I4m2$-RuN; (b) $R3m$-RuN (c) $Pmmn$-RuN$_2$; (d) $P2_1/c$-RuN$_3$; (e) $P4/mmm$-RuN$_4$; (f) $C2/c$-RuN$_4$ and (g) $Cmmm$-RuN$_4$. The vertical dash line at zero is the Fermi energy level.
The largest G_{33} value comes from the contribution of strong directional covalent N-N bonding along c axis. While MOP for Ru-N bonding is 0.30, demonstrating weak interactions between Ru and N atoms. For C2/c-RuN$_4$ and Cmmm-RuN$_4$, the valence electrons are mainly located in the S-shaped N$_{\infty}$ chains. The difference is that Ru atoms are sandwiched in between two N$_{\infty}$ chains in C2/c-RuN$_4$, while the Ru atoms and N$_{\infty}$ chains are not in the same plane in Cmmm-RuN$_4$. The MOP is between 0.55 and 1.01 for N-N bonding, between 0.28 and 0.44 for Ru-N bonding in C2/c-RuN$_4$, while the electronic density is in a narrow range for Cmmm-RuN$_4$, with MOP values of 0.64 and 0.67 for N-N bonding, 0.27 for Ru-N bonding. Compared to C2/c-RuN$_4$, the strength of the N-N bonding and the distribution of Ru-N bonding are more homogeneous in Cmmm-RuN$_4$.

Nitrogen species in these compounds have various structural forms, such as single N atom, N$_2$ dimers, N$_6$ units and N$_{\infty}$ chains. Despite of the diverse features, the polynitrogens are in close correlation with the N-sp hybridization, characterized by σ covalent N-N bond. Mulliken charges analysis reveals a transferred charge of 0.55 e and 0.34 e from Ru to N atom for I-4m2-RuN and R-3m-RuN, respectively, 0.7 e from Ru to two N atoms for Pmmm-RuN$_2$, 0.75 e from Ru to three N atoms for P2/c-RuN$_3$, 0.9 e, 0.81 e, and 0.83 e from Ru to four N atoms for P4/mmm-RuN$_4$, C2/c-RuN$_4$, and Cmmm-RuN$_4$, respectively. The charge transfer also suggests the ionic feature of these compounds.

Figure 5. Band structure of (a) P4/mmm-RuN$_4$; (b) C2/c-RuN$_4$ and (c) Cmmm-RuN$_4$. The P4/mmm-RuN$_4$ and Cmmm-RuN$_4$ have semimetallic feature, and C2/c-RuN$_4$ is a semiconductor with an indirect band gap of 0.84 eV.

Figure 6. Calculated valence electron density distributions of Ru nitrides. (a) I-4m2-RuN in (100) plane; (b) R-3m-RuN in (110) plane; (c) Pmmm-RuN$_2$ in (001) plane; (d) P2/c-RuN$_3$ in (101) plane; (e) P4/mmm-RuN$_4$ in (010) plane; (f) C2/c-RuN$_4$ in (001) plane and (g) Cmmm-RuN$_4$ in (001) plane. The big orange and small purple spheres represent Ru and N atoms, respectively.
Conclusions
In summary, we have systematically investigated the structures and properties of Ru nitrides at pressures of 0–50 GPa based on the density functional theory. We found two structures (I-4m2-RuN and R-3m-RuN) energetically closer to the previously reported NaCl-type and ZnS-type RuN. Besides the experimentally synthesized Pmnn-RuN₂, new stoichiometries of P2₁/c-RuN₂, P4/mmm-RuN₄, and C2/c-RuN₄ are suggested for possible synthesis. The P2₁/c-RuN₂, P4/mmm-RuN₄, and C2/c-RuN₄ become stable at pressures above 12.8, 13.6, and 23 GPa, respectively. A new structure, Cmmm-RuN₄ is also predicted to be stable above 101 GPa. The Cmmm-RuN₂, Pmnn-RuN₂, and P4/mmm-RuN₄ possess the greatest incompressibility. The Pmnn-RuN₂, P2₁/c-RuN₂, P4/mmm-RuN₄, and C2/c-RuN₄ are potential hard materials with the Vickers hardness between 20.1 and 23.4 GPa. The P4/mmm-RuN₄ and Cmmm-RuN₄ exhibit semi-metal-like properties and C2/c-RuN₄ shows semiconductor features, while the Pmnn-RuN₂ and P2₁/c-RuN₂ exhibit electronic characteristics of metals. Except I-4m2-RuN, high directional covalent N-N bonds are presented in all the other nitrides. A charge transfer from Ru to N atoms is predicted to occur, crucial to the stability of the Ru-N bonding in these compounds. These results are expected to stimulate the exploration and discovery of the newly predicted Ru nitrides, which may have practical technology applications due to their interesting mechanical and electronic properties.

Methods
The stable structures of RuNₓ (x = 1, 2, 3 and 4) with up to six (x = 1, 2) and four (x = 3, 4) formula units (f. u.) were searched at the pressures of 0, 20, 50 and 100 GPa using the particle swarm optimization method as implemented in the CALYPSO code. Stable stoichiometries were determined by the construction of the convex hull: a compound is thermodynamically stable when its formation enthalpy falls on the line. The calculations of formation enthalpy and geometry optimizations presented in this study were carried out in the framework of density functional theory (DFT) with the Perdew-Burke-Ernzerhof (PBE) parameterization of the generalized gradient approximation (GGA) using CASTEP package. An energy cutoff of 500 eV and dense k-point grids within the Monkhorst-Pack scheme were adopted for the sampling Brillouin zone of different structures, yielding excellent convergence for total energies (within 1 meV/atom). When the individual elastic constants were derived, the bulk (\(B\)), Young's (\(E\)) and shear (\(G\)) moduli and Poisson's ratio (\(\nu\)) were obtained by using Voigt-Reuss-Hill approximation (VRH). The theoretical Vickers hardness was estimated by using the empirical model, \(H_v = 2.0(\sqrt{G} / \sqrt{B}) - 3.0\), where \(k = G/B\). The global stability of Ru nitrides can be quantified by constructing the thermodynamic convex hull within considered pressures, which is defined as the average atomic formation enthalpy of the most stable phases at each composition:

\[
\Delta H = \left[H(\text{RuN}_x) - H(\text{Ru}) - xH(N_2)/2 \right]/(1 + x)
\]

where \(H\) is the enthalpy of either a compound or a constituent element at a specific pressure. Here \(\alpha\)-N₂ and \(\varepsilon\)-N₂ are adopted as the reference structure at below 10 GPa and 10–50 GPa for nitrogen, respectively. Phonon spectra of new proposed phases were calculated by finite displacement methods to examine their dynamical stabilities. The structures were visualized by VESTA.
28. Wu, Z. & Meng, J. Ab initio study on the physical properties of CoN₃ and RhN₃ with skutterudite structure. Comput. Mater. Sci. 43, 495–500 (2008).
29. Zhao, Z. L. et al. Ideal stoichiometric technetium nitrides under pressure: A first-principles study. J. Superhard Mater. 36, 288–295 (2014).
30. Zhao, Z. et al. Nitrogen concentration driving the hardness of rhenium nitrides. Sci. Rep. 4, 4797 (2014).
31. Aydin, S., Çiftçi, Y. O. & Tatar, A. Superhard transition metal tetranitrides: XN₄ (X = Re, Os, W). J. Mater. Res. 27, 1705–1715 (2012).
32. Peng, F., Han, Y., Liu, H. & Yao, Y. Exotic stable cesium polynitrides at high pressure. Sci. Rep. 5, 16902 (2015).
33. Dong, B., Zhou, X.-L., Liu, K. & Chang, J. Theoretical calculations for structural, elastic, and thermodynamic properties of RuN₃ under high pressure. J. Appl. Phys. 116, 053511 (2014).
34. Gou, H. et al. Theoretical hardness of PtN₂ with pyrite structure. Appl. Phys. Lett. 89, 1910 (2006).
35. Chen, W., Tse, J. S. & Jiang, J. Z. An ab initio study of 5d noble metal nitrides: OsN₂, IrN₂, PtN₂ and AuN₂. Solid State Commun. 150, 181–186 (2010).
36. Jun, L., Xiao-Yu, K., Zhen-Hua, W. & Xiao-Fen, H. Pressure-induced structural transition and thermodynamic properties of RhN₂ and the effect of metallic bonding on its hardness. Chinese Phys. B 21, 086103 (2012).
37. Chen, W., Tse, J. S. & Jiang, J. Z. Stability, elastic and electronic properties of palladium nitride. J. Phys.: Condens. Matter. 22, 015404 (2010).
38. Yu, R., Zhan, Q. & Zhang, X.-F. Elastic stability and electronic structure of pyrite type PtN₂: A hard semiconductor. Appl. Phys. Lett. 88, 051913 (2006).
39. Pugh, S. F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823–843 (1954).
40. Wang, Y., Lv, J., Zhu, L. & Ma, Y. Crystal structure prediction via particle-swarm optimization. Phys. Rev. B 82, 094116 (2010).
41. Wang, Y., Lv, J., Zhu, L. & Ma, Y. CALYPSO: A method for crystal structure prediction. Comput. Phys. Commun. 183, 2063–2070 (2012).
42. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
43. Clark, S. J. et al. First principles methods using CASTEP. Z. Kristallogr. 220, 567–570 (2005).
44. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).
45. Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 65, 349 (1952).
46. Chen, X.-Q., Niu, H., Li, D. & Li, Y. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19, 1275–1281 (2011).
47. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC) under Grants No. 51201148 and U1530402. L. Wu thanks the foundation of Hebei Province Education Department under Grant No. QN2014114 and the Autonomic Research Project of Yanshan University under Grant No. 13LGB007. Z. Li thanks Hebei Natural Science Foundation (No. B2015203096) and the Autonomic Research Project of Yanshan University under Grant No. 14LGA017.

Author Contributions

H.G., L.W. and J.Z. initiated the project. L.W. prepared all figures. L.W., Yunkun Zhang, B.W., Y.L., Q.H., Yan Zhao, R.G. and Z.L. performed the first principles calculations. Yunkun Zhang and H.G. wrote the manuscript with the contributions of all authors.

Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Zhang, Y. et al. Diverse ruthenium nitrides stabilized under pressure: a theoretical prediction. Sci. Rep. 6, 33506; doi: 10.1038/srep33506 (2016).

© The Author(s) 2016