Implications for the Hubble tension from the ages of the oldest astrophysical objects

Sunny Vagnozzia,*, Fabio Pacuccib,c, Abraham Loebb,c

aKavli Institute for Cosmology, University of Cambridge, Cambridge CB3 0HA, UK
bCenter for Astrophysics | Harvard & Smithsonian, Cambridge, MA 02138, USA
cBlack Hole Initiative, Harvard University, Cambridge, MA 02138, USA

Abstract

We use the ages of old astrophysical objects (OAO) in the redshift range \(0 \lesssim z \lesssim 8\) as stringent tests of the late-time cosmic expansion history. Since the age of the Universe at any redshift is inversely proportional to \(H_0\), requiring that the Universe be older than the oldest objects it contains at any redshift, provides an upper limit on \(H_0\). Using a combination of galaxies imaged from the CANDELS program and various high-\(z\) quasars, we construct an age-redshift diagram of \(\gtrsim 100\) OAO up to \(z \sim 8\). Assuming the \(\Lambda\)CDM model at late times, we find the 95\% confidence level upper limit \(H_0 < 73.2\) km/s/Mpc, in slight disagreement with a host of local \(H_0\) measurements. Taken at face value, and assuming that the OAO ages are reliable, this suggests that ultimately a combination of pre- and post-recombination (\(z \lesssim 10\)) new physics might be required to reconcile cosmic ages with early-time and local \(H_0\) measurements. In the context of the Hubble tension, our results motivate the study of either \(a\) combined global pre- and post-recombination modifications to \(\Lambda\)CDM, or \(b\) local new physics which only affects the local \(H_0\) measurements.

Keywords: Cosmology, Cosmological Parameters, Hubble Tension

1. Introduction

Historically, the ages of old astrophysical objects (OAO) played an important role in establishing the \(\Lambda\)CDM cosmological model. Since the 1950s, reports of OAO being ostensibly older than the Universe assuming the prevailing Einstein-de Sitter model \[1–3\] led to a long-lasting "age crisis" \[4–8\]. The discovery of cosmic acceleration through Type Ia Supernovae (SNeIa) \[9, 10\] eventually solved this crisis by indicating the need for a dark energy component.

Cosmology now faces another crisis: the Hubble tension, a \(\sim 5\sigma\) mismatch between several early-time and local measurements of the Hubble constant \(H_0\) \[11–15\]. While systematics cannot yet be excluded as explanation (see e.g. Refs. \[16–20\]), if new physics

*Corresponding author

Email addresses: sunny.vagnozzi@ast.cam.ac.uk (Sunny Vagnozzi), fabio.pacucci@cfa.harvard.edu (Fabio Pacucci), aloe@cfa.harvard.edu (Abraham Loeb)
is responsible for the Hubble tension (see e.g. Refs. [21–50]), the consensus is that it should operate prior to recombination and lower the sound horizon by $\sim 7\%$, to comply with constraints from Baryon Acoustic Oscillations (BAO) and high-z SNe Ia [51–60]. However, no compelling model addressing the Hubble tension while keeping a good fit to all available data has been constructed, with recent works casting doubts on the possibility of resolving the Hubble tension through early-time new physics alone [61–70].

With a few exceptions [71–80], OAO received less attention with the end of the “age crisis”. However, the possibility of shedding light on the Hubble tension via model-independent determinations of the age of the Universe from $z = 0$ OAO such as globular clusters and very-low-metallicity stars [67, 81–85], has recently been appreciated. Here, we pursue this line of investigation, considering OAO at higher redshifts, up to $z \sim 8$. These allow us to derive an upper limit on H_0, while providing a late-time consistency test for ΛCDM, shedding light on potential ingredients which may help in solving the Hubble tension.

The rest of this paper is then organized as follows. In Sec. 2 we explain how OAO can help in arbitrating the Hubble tension. In Sec. 3 we discuss how our OAO catalog is constructed. In Sec. 4 we review our analysis methodology, leading to our results which are presented in Sec. 5. A critical discussion of our results is presented in Sec. 6, and finally we draw concluding remarks in Sec. 7.

2. Ages of old astrophysical objects and the Hubble tension

The age-redshift relationship determining the age of the Universe as a function of redshift, $t_U(z)$, is given by:

$$t_U(z) = \int_z^\infty \frac{dz'}{(1+z')H(z')} ,$$

with $H(z)$ being the Hubble parameter. Eq. (1) shows that the age of the Universe at any redshift is inversely proportional to $H_0 \equiv H(z = 0)$, so requiring that the Universe be at least as old as high-z OAO at the appropriate redshifts will lead to upper limits on H_0 if H_0 is too high, one ends up in the paradoxical situation of the Universe being younger (at a given redshift) than the oldest objects it contains, as with the pre-1998 “age crisis”.

In Eq. (1), $t_U(z)$ picks up most of its contributions at late times ($z \lesssim 10$), and is insensitive to pre-recombination physics. Consistency between high-z upper limits on H_0 and local H_0 measurements thus provides a test of late-time and/or local new physics, potentially indicating the need for the latter to operate jointly with early-time new physics to fully solve the Hubble tension [84–86].

Different models can predict the same value for the present age of the Universe $t_U(0) \equiv t_U(z = 0)$, but a significantly different age-redshift relationship for $z > 0$. Therefore, limits on the age of the Universe at any redshift can in principle provide more stringent constraints than limits on the present age of the Universe $t_U(0)$, or at least help break degeneracies inherent to the latter (see also Refs. [87, 88] for further discussions).

At any redshift z_i, the age t_i of an OAO at z_i only sets a lower limit to $t_U(z_i) \geq t_i$, since t_i is the difference between the age of the Universe at z_i and when the object was formed at a redshift z_f. The reason why the relation between $t_U(z_i)$ and t_i is an
inequality is that no object formed at the Big Bang ($z_f \rightarrow \infty$). The difference between $t_U(z_i)$ and t_i, which we denote by τ_{in}, is sometimes referred to as “incubation time”, and accounts for the time elapsed between the Big Bang and z_f. We expect this to be of order $\mathcal{O}(0.1)$ Gyr, which is approximately the age of the Universe at $z \sim 20$, when halos of virial temperatures above 10000 K could form, allowing the gas to cool by atomic hydrogen transitions and fragment into long-lived stars, thereby allowing for the first generation of low-mass stars to form efficiently (for further discussions on these points, see for example Refs. [82, 89]).

3. Construction of OAO catalog and age-redshift diagram

We consider galaxies and quasars (QSOs) identified up to $z \approx 8$, with most of our galaxy data coming from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) observing program [90]. We consider the following observations (their designations in the legend are indicated in parenthesis):

- CANDELS GOODS-N [91], GOODS-S [92], EGS [93], UDS [92], and COSMOS [93] fields (with each specific catalog designated by the respective field name);
- 32 massive, early-time, passively evolving galaxies in the range $0.12 < z < 1.85$, with absolute ages determined by Ref. [94] ($S05$);
- 7446 QSOs from SDSS DR7, in the range $3 \lesssim z \lesssim 5$ [95] (SDSS QSOs);
- 50 QSOs discovered by the GNIRS spectrograph in the range $5.5 \lesssim z \lesssim 6.5$ [96] (Gemini QSOs);
- 15 QSOs discovered by Pan-STARRS1 in the range $6.5 \lesssim z \lesssim 7.0$ [97] (Pan-STARRS1 QSOs);
- 8 of the most distant QSOs ever detected, in the range $7.0 \lesssim z \lesssim 7.5$ [98–104], including J0313-1806, the most distant known QSO [105], at redshift $z = 7.642$ (high-z QSOs).

We apply severe quality cuts to the CANDELS galaxies, selecting only those with measured spectroscopic redshifts of secure quality. In the following, we only select QSOs with small relative errors on their mass, given the importance of this parameter in robustly inferring the QSOs ages.

The ages of the CANDELS galaxies have been estimated via a wide variety of methods through the conjoined efforts of 10 teams [91, 92]. The general methodology relies on fitting the photometric spectral energy distributions with spectral population synthesis models, with further assumptions on dust attenuation, star formation history, and galactic luminosities and colors [91]. While age estimates across different methods agree well with each other, for consistency we adopt the $6_{\alpha_{\text{NEB}}}$ method [106], one of the few to have included nebular emission and continuum in the model spectra, leading to more robust results. We conservatively estimate galaxy ages uncertainties via the standard deviation

3These cuts amount to only selecting those galaxies with flags Spec_z!=99.0 and Spec_z_dq==1 where applicable.
of the ages across different methods, finding that the relative uncertainties typically fall between 25% and 40%. For S05, we follow Ref. [94] and use 12% relative uncertainties.

To estimate QSOs ages and uncertainties, we employ the integration methods described in Sec. 3 of Ref. [107]. The target function to compute the age t_{obs} of the QSO at the observation redshift z_{obs} is:

$$t_{\text{obs}} = \frac{t_S}{Df_{\text{Edd}}} \frac{\epsilon}{1 - \epsilon} \ln \frac{M_*}{M_{\text{seed}}}$$

(2)

with $t_S \sim 0.45$ Gyr being the Salpeter time [108], D the duty cycle, f_{Edd} the Eddington ratio, ϵ the radiative efficiency, M_* and M_{seed} the observed mass and seed mass. We assume a bimodal prior for M_{seed} following Ref. [109], and a flat prior for $D \in [0; 1]$. For f_{Edd}, we assume a Gaussian prior based on observational determinations where available (conservatively setting the standard deviation to 0.5 if not available), or else a flat prior $f_{\text{Edd}} \in [0; 2]$. We assume $\epsilon \sim 6\%$, in agreement with simulations [110], and a seeding redshift $z_f \sim 20$ [111] (with our results being only weakly sensitive to this choice). For age determination purposes, our choices regarding ϵ and z_f are conservative. For each source, we compute 10^4 Monte Carlo realizations of the growth model and infer the QSOs ages and uncertainties from the resulting statistical distributions of these parameters.

We divide each catalog into redshift bins, and select only those objects which are among the oldest ones within each bin. The previous quality cut and this “age cut” leave us with 114 OAO, whose age-redshift diagram is given in Fig. 1. To the best of
our knowledge, it is the first time such an extensive high-z OAO catalog and associated age-redshift diagram have been compiled.

4. Analysis methodology

We consider a model described by 3 parameters: $\theta \equiv \{\Omega_m, H_0, \tau_\text{ini}\}$ (with Ω_m the matter density). We perform a Bayesian analysis to constrain these parameters against the OAO ages, making use of Markov Chain Monte Carlo methods, with chains generated via the MontePython3.3 [112, 113] sampler.

We assume that the late-time expansion history is described by ΛCDM, in such a way that the Hubble rate in Eq. (1) can be well approximated by $H(z) \approx H_0 \sqrt{\Omega_m (1 + z)^3 + (1 - \Omega_m)}$. This then allows for a valuable consistency test: if we trust the OAO ages, a disagreement between our upper limit on H_0 and the locally measured value(s) would be an indication for missing beyond-ΛCDM ingredients at least in the late-time expansion history. This conclusion would be independent of any assumption on the pre-recombination expansion, given its negligible contribution to $t_U(z)$.

Consider a data vector $d \equiv \{z_i, t_i, \sigma_{t_i}\}$, with the OAO ages at redshifts z_i being $t_i \pm \sigma_{t_i}$. The probability of observing d given a choice of parameters $\hat{\theta}$ is modelled through the following half-Gaussian (log-)likelihood:

$$\ln \mathcal{L}(\hat{\theta} | d) = -\frac{1}{2} \sum_i \begin{cases} \Delta_i^2(\hat{\theta}) / \sigma_{t_i}^2 & \text{if } \Delta_i(\hat{\theta}) < 0 \\ 0 & \text{if } \Delta_i(\hat{\theta}) \geq 0 \end{cases},$$

(3)

where $\Delta_i \equiv t_U(\hat{\theta}, z_i) - t_i - \tau_\text{ini}$. Considering the ith OAO, Eq. (3) is expressing the fact that: a) parameters for which the Universe is older than the OAO plus the incubation time (i.e. $\Delta_i(\hat{\theta}) \geq 0$) are equally likely, and cannot be distinguished based on the OAO age alone; b) parameters for which the Universe is younger than the OAO plus the incubation time (i.e. $\Delta_i(\hat{\theta}) < 0$) are (exponentially) unlikely, as the Universe clearly cannot be younger than its oldest inhabitants.

In our baseline analysis, we set flat priors on $H_0 \in [40; 100]$ km/s/Mpc and $\Omega_m \in [0.2; 0.4]$. We choose wide prior ranges for H_0 and Ω_m in order to be as conservative as possible, but have verified that our results are only weakly sensitive to the choice of prior boundaries (see also Ref. [87]).

We model τ_ini following Ref. [82], which derives a probability distribution for τ_ini from a set of reasonable empirical assumptions on the formation redshift of the oldest galaxies z_f. After marginalizing over H_0, Ω_m, and z_f, a prior peaked around $\tau_\text{ini} \approx 0.1 - 0.15$ Gyr is found. 2 We refer to this prior as J19 (from the initial of the first author of Ref. [82]), and use its fitting function provided in Appendix G of Ref. [83]. The J19 prior is very conservative in the sense that it identifies our OAO as being descendants of the oldest generation of galaxies. Assuming they instead descended from galaxies at lower redshifts would push the τ_ini distribution towards higher values. From Eqs. (1,3), this would clearly result in more stringent, yet less conservative, limits on H_0. For the QSOs, we fix $\tau_\text{ini} = t_U(z_f = 20)$, given our assumption of a seeding redshift $z_f \sim 20$.

2This reflects the time when halos of virial temperatures above 10^4 K formed, allowing gas to be cooled by atomic hydrogen transitions and fragment into long-lived stars, enabling the first generation of low-mass stars to form efficiently.
5. Results

The corner plot in Fig. 2 shows the joint H_0-Ω_m-τ_{in} posterior distributions obtained from our baseline analysis, with flat priors on H_0 and Ω_m, and the J19 prior on τ_{in}. The τ_{in} posterior unsurprisingly follows the J19 prior, whereas Ω_m is unconstrained, and we can set an upper limit on H_0 as expected. Our 95% confidence level (C.L.) upper limit is $h_0 < 0.732$ (hereafter, all quoted upper limits will be at 95% C.L.), with $h_0 \equiv H_0/(100 \text{ km/s/Mpc})$ being the reduced Hubble constant. We regard this upper limit as being the most balanced one in terms of equilibrium between conservative and aggressive assumptions.

The upper limit $h_0 < 0.732$ is only marginally consistent with various local measurements of H_0. For instance, the distance ladder constructed out of Cepheid-calibrated SNe Ia finds $h_0 = 0.7403 \pm 0.0142$ [114] (R19 hereafter). Using the full non-Gaussian
information from our H_0 posterior, we quantify the concordance/discordance between our inferred H_0 and R19 as being at the 2.3σ level. While falling in a grey zone which does not fully qualify as a tension, it is still a discrepancy worthy of attention.

We investigate how our results are affected by other choices of priors. To explore the impact of the J19 prior, we fix τ_m to 0.1 Gyr and 0 Gyr. In the former case we find $h_0 < 0.762$, which relaxes to $h_0 < 0.791$ in the latter, in both cases relaxing the discrepancy with the R19 measurement. However, both values are overly conservative, with the second being completely unrealistic as $\tau_m = 0$ Gyr amounts to the assumption that the OAO formed at the Big Bang.

We then set a Gaussian prior $\Omega_m = 0.315 \pm 0.007$, informed by the Planck 2018 constraints within the ΛCDM model [115], finding $h_0 < 0.674$, in 2.5σ tension with R19. We caution against over-interpreting this result, as it relies on a very tight external prior which assumes a specific cosmological model for both the late and, importantly, early Universe. A less aggressive approach could entail adopting a more generous (wider) prior on Ω_m. For example, setting a Gaussian prior $\Omega_m = 0.30 \pm 0.05$, we find an upper limit of $h_0 < 0.714$. This prior is not informed by any specific probe, but reflects the fact that a wide range of independent and robust late-time probes point towards $\Omega_m \approx 0.3$.

Finally, we set a Gaussian prior on $h_0 = 0.7403 \pm 0.0142$ for the R19 measurement, and find $\Omega_m < 0.29$. An upper limit on Ω_m is to be expected since, at fixed H_0, increasing Ω_m decreases $t(z)$ for all z: thus, increasing Ω_m sufficiently would make the Universe too young (at any z) to accommodate the OAO ages, explaining why we find an upper limit on Ω_m.

6. Discussion

Our baseline upper limit $h_0 < 0.732$ appears to indicate a discrepancy with a few local measurements, especially the R19 Cepheid-calibrated SNe Ia one [114]. Our limit hinges upon two assumptions: i) the reliability of the adopted OAO ages, and ii) the validity of the ΛCDM model at low redshifts. Concerning ii), we make no assumptions on the pre-recombination expansion history, nor would our results be sensitive to these, as they essentially only depend on the assumed expansion history for $z \lesssim 10$.

Taken at face value, this appears to indicate that while ΛCDM remains an excellent fit to late-time observations such as BAO [121–123] and high-z SNe Ia [124], a small but non-negligible amount of global late-time ($z \lesssim 10$) new physics might be required to improve the agreement between OAO ages and local H_0 measurements. At $z > 0$, this needs to go in the direction of lowering the expansion rate relative to ΛCDM to accommodate a higher H_0: an example is a phantom dark energy component (see for instance Refs. [125–139] for relevant discussions on phantom dark energy components in the context of the Hubble tension).

This conclusion does not contradict the earlier ones of Refs. [51–60], indicating that global late-time new physics alone cannot resolve the Hubble tension: if global new physics is responsible for the Hubble tension, the majority of it will unquestionably have to operate at early times. However, there still is room for early- and late-time new physics working in the same direction to potentially reduce the Hubble tension to a statistically acceptable level. These results are broadly in line with Refs. [61–70]
which, while approaching the problem from a wide range of different perspectives, also highlighted the difficulty in resolving the Hubble tension with early-time new physics alone.

It was recently pointed out that, if a high t_{U0} were measured reliably and to high precision, a combination of global pre- and post-recombination new physics, or local new physics, would be needed to reconcile all measurements and solve the Hubble tension [84, 86]. Our results, focusing on $t_U(z)$ rather than t_{U0} alone, may be the first hint of this situation. Related t_{U0}-based hints were also recently reported [67].

While BAO and high-z SNe Ia measurements set tight constraints on late-time deviations from ΛCDM, there is within the error bars still some wiggle room to accommodate late-time new physics to improve the agreement between OAO ages and local H_0 measurements. Combining Planck 2018 and BAO measurements constrains the dark energy equation of state to $w = -1.04^{+0.06}_{-0.05}$ [115], while Planck + Pantheon SNe Ia gives $w = -1.03 \pm 0.04$ [124], with looser limits obtained relaxing assumptions on curvature [140]. Within these limits there is most certainly still wiggle room in the $w < -1$ direction for new late-time physics operating together with new early-time physics to improve the agreement between OAO and local measurements of H_0, and reduce the Hubble tension.

Our results hinge upon the trustworthiness of the OAO ages. It is of course no easy task to estimate galaxies and QSOs ages at high-z, and these are subject to several systematic uncertainties [141]. Despite our conservative approach, we cannot exclude that the discrepancy between OAO ages and local H_0 measurements could be due to the former being overestimated (or the latter underestimated). The potential detection, with upcoming facilities [109, 142], of farther galaxies and QSOs would significantly improve our ability to estimate their ages. Detecting a QSO at $z \gtrsim 10$ would dramatically shrink the available growth parameters phase space, leading to a more accurate age estimate (see Ref. [143]).

7. Conclusions

We have shown the potential of the ages of high-z old astrophysical objects (OAO) to constrain the late-time expansion history and arbitrate the Hubble tension. This method’s strength rests upon its not making assumptions on the pre-recombination expansion history while providing an upper limit on H_0, since raising H_0 makes the Universe younger at any z, potentially bringing us into the paradoxical situation where the Universe is younger than these OAO – a few decades ago, a similar situation was indeed providing the first hints for the existence of dark energy [6, 7], and we have argued that the time may now be ripe for OAO to once again play an important role for cosmology in the context of the Hubble tension.

Compiling an age-redshift diagram of OAO up to $z \sim 8$ using galaxies and QSOs we find, assuming the validity of ΛCDM at late times, $H_0 < 73.2 \text{km/s/Mpc}$ at 95% C.L., discrepant with local H_0 measurements. This suggests at face value that a small but non-negligible amount of late-time ($z \lesssim 10$) new physics might be required to alleviate this discrepancy. This, in combination with early-time new physics lowering the sound horizon at recombination, could help bringing down the Hubble tension to an acceptable level. In addition, it is tempting to speculate that this same late-time new physics may
also play a role in alleviating the S_8 tension [144–146]: see for instance Refs. [147–156] for recent relevant discussions.

Our results indicate two important research directions. Firstly, improving the reliability of high-z astrophysical objects age determinations is an important priority [157], and the recent launch of JWST will allow for significant progress along these lines. Moreover, it is worth exploring the possibility of addressing the Hubble tension via a combination of global late-time and (mostly) early-time new physics, thus far mostly considered separately: our results suggest that a combination of the two might ultimately be necessary, broadly supporting recent findings [61–70]. Valid alternatives would be to invoke local new physics only affecting local H_0 measurements [158–164], or a breakdown of the FLRW framework [67, 69, 165–167]. Our overall message is that cosmic ages are an extremely valuable tool in the quest towards unraveling the Hubble tension (see also Refs. [87, 88]).

Acknowledgements

S.V. acknowledges very useful discussions with George Efstathiou, Raul Jiménez, and Michele Moresco. S.V. is supported by the Isaac Newton Trust and the Kavli Foundation through a Newton-Kavli Fellowship, and by a grant from the Foundation Blanchefor Boncompagni Ludovisi, née Bildt. S.V. acknowledges a College Research Associate-ship at Homerton College, University of Cambridge. F.P. acknowledges support from a Clay Fellowship administered by the Smithsonian Astrophysical Observatory. A.L. and F.P. are partially supported by the Black Hole Initiative at Harvard University, which is funded by grants from the John Templeton Foundation (JTF) and the Gordon and Betty Moore Foundation (GBMF). This work was performed using resources provided by the Cambridge Service for Data Driven Discovery (CSD3) operated by the University of Cambridge Research Computing Service (www.hpc.cam.ac.uk), provided by Dell EMC and Intel using Tier-2 funding from the Engineering and Physical Sciences Research Council (capital grant EP/P020259/1), and DiRAC funding from the Science and Technology Facilities Council (www.dirac.ac.uk).

References

[1] J. Dunlop, J. Peacock, H. Spinrad, A. Dey, R. Jimenez, D. Stern et al., A 3.5 - Gyr - old galaxy at redshift 1.55., Nature 381 (1996) 581.
[2] R. Jimenez, P. Thejll, U. Jorgensen, J. MacDonald and B. Pagel, Ages of globular clusters: a new approach, Mon. Not. Roy. Astron. Soc. 282 (1996) 926–942, [astro-ph/9602132].
[3] D. A. VandenBerg, M. Bolte and P. B. Stetson, The age of the galactic globular cluster system, Ann. Rev. Astron. Astrophys. 34 (1996) 461–510.
[4] A. H. Jaffe, H_0 and odds on cosmology, Astrophys. J. 471 (1996) 24, [astro-ph/9501070].
[5] M. Bolte and C. J. Hogan, Conflict over the age of the Universe, Nature 377 (Aug., 1995) 399–402.
[6] L. M. Krauss and M. S. Turner, The Cosmological constant is back, Gen. Rel. Grav. 27 (1995) 1137–1144, [astro-ph/9504003].
[7] J. P. Ostriker and P. J. Steinhardt, The Observational case for a low density universe with a nonzero cosmological constant, Nature 377 (1995) 600–602.
[8] J. S. Alcaniz and J. A. S. Lima, New limits on ω_m and ω_Λ from old galaxies at high redshift, Astrophys. J. Lett. 521 (1999) L87, [astro-ph/9902298].
[9] Supernova Search Team collaboration, A. G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, *Astron. J.* **116** (1998) 1009–1038, [astro-ph/9805201].

[10] Supernova Cosmology Project collaboration, S. Perlmutter et al., Measurements of Ω and Λ from 42 high redshift supernovae, *Astrophys. J.* **517** (1999) 565–586, [astro-ph/9812133].

[11] L. Verde, T. Treu and A. G. Riess, Tensions between the Early and the Late Universe, *Nature Astron.* **3** (7, 2019) 891, [1907.10625].

[12] E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri et al., In the realm of the Hubble tension—a review of solutions, *Class. Quant. Grav.* **38** (2021) 153001, [2103.01183].

[13] L. Perivolaropoulos and F. Skara, Challenges for $Λ$CDM: An update, *New Astron. Rev.* **95** (2022), [2105.05208].

[14] E. Abdalla et al., Did the Hubble tension turn around? a proposal to lessen cosmological tensions, *JHEAp* **34** (2022) 49–211, [2203.06142].

[15] G. Efstathiou, A Lockdown Perspective on the Hubble Tension (with comments from the SH0ES team), 2007.10716.

[16] E. Mortessl, A. Goobar, J. Johansson and S. Dhawan, Sensitivity of the Hubble Constant Determination to Cepheid Calibration, *Astrophys. J.* **933** (2022) 212, [2105.11461].

[17] E. Mortessl, A. Goobar, J. Johansson and S. Dhawan, The Hubble Tension Revisited: Additional Local Distance Ladder Uncertainties, 2106.09400.

[18] W. L. Freedman, Measurements of the Hubble Constant: Tensions in Perspective, *Astrophys. J.* **919** (2021) 16, [2106.15656].

[19] R. Wojtak and J. Hjorth, Intrinsic tension in the supernova sector of the local Hubble constant measurement and its implications, 2206.08160.

[20] E. Mortsell and S. Dhawan, Does the Hubble constant tension call for new physics?, *JCAP* **09** (2018) 025, [1801.07260].

[21] R. C. Nunes, Structure formation in f(T) gravity and a solution for H_0 tension, *JCAP* **05** (2018) 052, [1802.02261].

[22] F. Poulin, K. K. Bodiya, S. Bird and M. Kamionkowski, Implications of an extended dark energy cosmology with massive neutrinos for cosmological tensions, *Phys. Rev. D* **97** (2018) 123504, [1803.02474].

[23] A. Banhashemi, N. Khosravi and A. H. Shirazi, Phase transition in the dark sector as a proposal to lessen cosmological tensions, *Phys. Rev. D* **101** (2020) 123521, [1808.02472].

[24] R.-Y. Guo, J.-F. Zhang and X. Zhang, Can the H_0 tension be resolved in extensions to $Λ$CDM cosmology?, *JCAP* **02** (2019) 054, [1809.02340].

[25] V. Poulin, T. L. Smith, T. Karwal and M. Kamionkowski, Early Dark Energy Can Resolve The Hubble Tension, *Phys. Rev. Lett.* **122** (2019) 221301, [1811.04083].

[26] C. D. Kreisch, F.-Y. Cyr-Racine and O. Doré, Neutrino puzzle: Anomalies, interactions, and cosmological tensions, *Phys. Rev. D* **101** (2020) 123505, [1902.00534].

[27] K. Vattis, S. M. Koushiappas and A. Loeb, Dark matter decaying in the late Universe can relieve the H_0 tension, *Phys. Rev. D* **99** (2019) 121302, [1903.06220].

[28] M.-X. Lin, G. Benevento, W. Hu and M. Haveri, Acoustic Dark Energy: Potential Conversion of the Hubble Tension, *Phys. Rev. D* **100** (2019) 063542, [1905.12618].

[29] E. Di Valentino, R. Z. Ferreira, L. Visinelli and U. Danielsson, Late time transitions in the quintessence field and the H_0 tension, *Phys. Dark Univ.* **26** (2019) 100385, [1906.11255].

[30] S. Vagnozzi, New physics in light of the H_0 tension: An alternative view, *Phys. Rev. D* **102** (2020) 023518, [1907.07569].

[31] E. Di Valentino, A. Melchiorri, O. Mena and S. Vagnozzi, Interacting dark energy in the early 2020s: A promising solution to the H_0 and cosmic shear tensions, *Phys. Dark Univ.* **30** (2020) 100666, [1908.04281].

[32] J. Solà Paracuelas, A. Gomez-Valent, J. de Cruz Pérez and C. Moreno-Pulido, Brans–Dicke Gravity with a Cosmological Constant Smoothes Out $Λ$CDM Tensions, *Astrophys. J. Lett.* **886** (2019) 16, [1909.02554].

[33] M. Escudero and S. J. Witte, A CMB search for the neutrino mass mechanism and its relation to the Hubble tension, *Eur. Phys. J. C* **80** (2020) 294, [1909.04044].

[34] J. Salstein and M. Trodden, Early Dark Energy from Massive Neutrinos as a Natural Resolution of the Hubble Tension, *Phys. Rev. Lett.* **124** (2020) 161301, [1911.11760].
radiation and background cosmology in unitary Poincaré gauge theories with application to emergent dark D 102 063503, [Rev. D (2020) 063528, [Observational hints of a spontaneous sign switch in the cosmological constant theories of gravity, neutrino physics, and the Classiﬁcation Distance Ladder & Tension horizon?

The cosmic inverse distance ladder

Constant Discrepancy Elucidating as a remedy for the H0-tension

Phys. Rev. D 101 (2020) 043503, [2001.04307]

M. Lucca and D. C. Hooper, Shedding light on dark matter-dark energy interactions, Phys. Rev. D 102 (2020) 123502, [2002.06127]

W. E. V. Barker, A. N. Lasenby, M. P. Hobson and W. J. Handley, Systematic study of background cosmology in unitary Poincaré gauge theories with application to emergent dark radiation and H0 tension, Phys. Rev. D 102 (2020) 024048, [2003.02690]

J. C. Hill, E. McDonough, M. W. Toomey and S. Alexander, Early dark energy does not restore cosmological concordance, Phys. Rev. D 102 (2020) 043507, [2003.07355]

G. Ballesteros, A. Notari and F. Rompineve, The H0 tension: ΔG N vs. ΔNeff, JCAP 11 (2020) 024, [2004.05049]

M. Ballardini, M. Braglia, F. Finelli, D. Paoletti, A. A. Starobinsky and C. Umiltà, Scalar-tensor theories of gravity, neutrino physics, and the H0 tension, JCAP 10 (2020) 041, [2004.14349]

A. Gogoi, R. K. Sharma, P. Chanda and S. Das, Early Mass-varying Neutrino Dark Energy: Nugget Formation and Hubble Anomaly, Astrophys. J. 915 (2021) 132, [2005.11889]

G. D’Amico, L. Senatore, P. Zhang and H. Zheng, The Hubble Tension in Light of the Full-Shape Analysis of Large-Scale Structure Data, JCAP 05 (2021) 072, [2006.12420]

M. Gonzalez, M. P. Hertzberg and F. Rompineve, Ultralight Scalar Decay and the Hubble Tension, JCAP 10 (2020) 026, [2006.13959]

G. Ye, B. Hu and Y.-S. Piao, Implication of the Hubble tension for the primordial Universe in light of recent cosmological data, Phys. Rev. D 104 (2021) 063510, [2010.09729]

J.-Q. Jiang and Y.-S. Piao, Testing AdS early dark energy with Planck, SPTpol, and LSS data, Phys. Rev. D 104 (2021) 103524, [2010.07128]

K. Dialektoopoulos, J. L. Said, J. Milisud, J. Sultana and K. Z. Adami, Neural network reconstruction of late-time cosmology and null tests, JCAP 02 (2022) 023, [2011.11462]

S. Nojiri, S. D. Odintsov and V. K. Oikonomou, Integral F(R) gravity and saddle point condition as a remedy for the H0-tension, Nucl. Phys. B 980 (2022) 115850, [2022.11681]

J. L. Bernal, L. Verde and A. G. Riess, The trouble with H0, JCAP 10 (2016) 019, [1607.05617]

G. E. Addison, D. J. Watts, C. L. Bennett, M. Halpern, G. Hinshaw and J. L. Weiland, Elucidating ΛCDM: Impact of Baryon Acoustic Oscillation Measurements on the Hubble Constant Discrepancy, Astrophys. J. 853 (2018) 119, [1707.05647]

P. Lemos, E. Lee, G. Efstathiou and S. Gratton, Model independent H(z) reconstruction using the cosmic inverse distance ladder, Mon. Not. Roy. Astron. Soc. 483 (2019) 4803–4810, [1806.06781]

K. Aylor, M. Joy, L. Knox, M. Millea, S. Raghunathan and W. L. K. Wu, Sounds Discordant: Classical Distance Ladder & ΛCDM -based Determinations of the Cosmological Sound Horizon, Astrophys. J. 874 (2019) 4, [1811.06537]

L. Knox and M. Millea, Hubble constant hunter’s guide, Phys. Rev. D 101 (2020) 043533, [1908.03663]

N. Arendse et al., Cosmic dissonance: are new physics or systematics behind a short sound horizon?, Astron. Astrophys. 639 (2020) A57, [1909.07986]

G. Efstathiou, To H0 or not to H0?, Mon. Not. Roy. Astron. Soc. 505 (2021) 3866–3872, [2103.08723]

N. Schöneberg, G. Franco Abellán, A. Pérez Sánchez, S. J. Witte, V. Poulin and J. Lesgourgues, The H0 Olympics: A fair ranking of proposed models, 2107.12091

R.-G. Cai, Z.-K. Guo, S.-J. Wang, W.-W. Yu and Y. Zhou, No-go guide for the Hubble tension: Late-time solutions, Phys. Rev. D 105 (2022) L021301, [2107.13286]

R. E. Keeley and A. Shafieebo, Ruling Out New Physics at Low Redshift as a solution to the H0 Tension, 2206.08440

C. Krishnan, E. O. Colgáin, Ruchika, A. A. Sen, M. M. Sheikh-Jabbari and T. Yang, Is there an early Universe solution to Hubble tension?, Phys. Rev. D 102 (2020) 103525, [2002.06044]

O. H. E. Philcox, B. D. Sherwin, G. S. Farrer and E. J. Baxter, Determining the Hubble Constant without the Sound Horizon: Measurements from Galaxy Surveys, Phys. Rev. D 103
C. A. P. Bengaly, Jr., M. A. Dantas, J. C. Carvalho and J. S. Alcaniz, L. Verde, R. Jimenez and S. Feeney, M. A. Dantas, J. S. Alcaniz, D. Mania and B. Ratra, A. Rana, D. Jain, S. Mahajan and A. Mukherjee, S. Capozziello, V. F. Cardone, M. Funaro and S. Andreon, M. G. Dainotti, B. De Simone, T. Schiavone, G. Montani, E. Rinaldi and G. Lambiase, M. Boylan-Kolchin and D. R. Weisz, J. L. Bernal, L. Verde, R. Jimenez, M. Kamionkowski, D. Valcin and B. D. Wandelt, R. Jimenez, L. Verde, T. Treu and D. Stern, S. Vagnozzi, C. Krishnan, R. Mohayaee, E. O. Colgáin, M. M. Sheikh-Jabbari and L. Yin, D. Valcin, J. L. Bernal, R. Jimenez, L. Verde and B. D. Wandelt, J.-J. Wei and F. Melia, E. Di Valentino et al., R. Jimenez, A. Cimatti, L. Verde, M. Moresco and B. Wandelt, M. Trenti, P. Padoan and R. Jimenez, N. Borghi, M. Moresco and A. Cimatti, R. C. Nunes and F. Pacucci, M. G. Dainotti, B. De Simone, T. Schiavone, G. Montani, E. Rinaldi, G. Lambiase et al., W. Lin, X. Chen and K. J. Mack, B. S. Haridasu, M. Viel and N. Vittorio, K. Jedamzik, L. Pogosian and G.-B. Zhao, Constraints on Ωm and Implications for the Hubble Tension, Astrophys. J. 920 (2021) 159, [2102.05701].

Constraints on dark energy from supernovae, Phys. Rev. D 105 (2022) 063514, [2106.02532].

On the evolution of the Hubble Constant with the SNe Ia Pantheon sample and Baryon Acoustic Oscillations: A Feasibility Study for GRB-Cosmology in 2030, Galaxies 10 (2022) 24, 2201.09848.

Constraints on dark energy from the lookback time to galaxy clusters and the age of the Universe, Phys. Rev. D 70 (2004) 123501, [astro-ph/0410268].

Constraining dark energy models using the lookback time to galaxy clusters and the age of the Universe, Phys. Rev. D 59 (2004) 063524, [2105.10425].

Constraining cosmic curvature by using age of galaxies and gravitational lenses, JCAP 03 (2017) 028, [1611.07196].

Constraining cosmic curvature by using age of galaxies and gravitationlal lenses, JCAP 03 (2017) 028, [1611.07196].

Does Hubble parameter break down in FLRW cosmology?, Class. Quant. Grav. 38 (2021) 184001, [2105.09790].

Consistency tests of ΛCDM from the early integrated Sachs-Wolfe effect: Implications for early-time new physics and the Hubble tension, Phys. Rev. D 104 (2021) 063524, [2105.10425].

Constraints on the equation of state of dark energy and the Hubble constant from stellar ages and the CMB, Astrophys. J. 593 (2003) 622–629, [astro-ph/0302560].

Constraining dark energy models using the lookback time to galaxy clusters and the age of the Universe, Phys. Rev. D 70 (2004) 123501, [astro-ph/0410268].

Constraining the Hubble Constant from the SNe Ia Pantheon sample and Baryon Acoustic Oscillations: A Feasibility Study for GRB-Cosmology in 2030, Galaxies 10 (2022) 24, 2201.09848.

The importance of local measurements for cosmology, Phys. Dark Univ. 2 (2013) 65–71, [1303.5341].

Forecasting cosmological constraints from age of high-z galaxies, Astron. Astrophys. 561 (2014) A14, [1308.6230].

The Age-Redshift Relationship of Old Passive Galaxies, Astron. J. 150 (2015) 35, [1505.07671].

Constraining cosmic curvature by using age of galaxies and gravitational lenses, JCAP 03 (2017) 028, [1611.07196].

Effects of the Hubble Parameter on the Cosmic Growth of the First Quasars, Mon. Not. Roy. Astron. Soc. 496 (2020) 888–893, [2006.01839].

Toward a Better Understanding of Cosmic Chronometers: A New Measurement of H(z) at z ∼ 0.7, Astrophys. J. Lett. 928 (2022) L4, [2110.04304].

The Local and Distant Universe: Uncertain times: the redshift–time relation from cosmology and stars, Mon. Not. Roy. Astron. Soc. 505 (2021) 2764–2783, [2103.16826].

Exploring the Hubble Tension and Spatial Curvature from the Ages of
Old Astrophysical Objects, Astrophys. J. 928 (2022) 165, [2002.07865].
M. Moreasco et al., Unveiling the Universe with Emerging Cosmological Probes, 2201.07241.
S. Vagnozzi, A. Loeb and M. Moreasco, Eppur è piatto? The Cosmic Chronometers Take on Spatial Curvature and Cosmic Concordance, Astrophys. J. 908 (2021) 84, [2011.11645].
N. A. Grogin et al., CANDELS: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, Astrophys. J. Suppl. 197 (2011) 35, [1105.3753].
G. Barro et al., The CANDELS/SHARDS Multiswavelength Catalog in GOODS-N: Photometry, Photometric Redshifts, Stellar Masses, Emission-line Fluxes, and Star Formation Rates, Astrophys. J. Suppl. 243 (Aug., 2019) 22, [1908.00569].
P. Santini, H. C. Ferguson, A. Fontana, B. Mobasher, G. Barro, M. Castellano et al., Stellar Masses from the CANDELS Survey: The GOODS-South and UDS Fields, Astrophys. J. 801 (Mar., 2015) 97, [1412.5180].
H. Nayyeri et al., CANDELS Multiwavelength Catalogs: Source Identification and Photometry in the CANDELS COSMOS Survey Field, Astrophys. J. Suppl. 228 (Jan., 2017) 7, [1612.07356].
J. Simon, L. Verde and R. Jimenez, Constraints on the redshift dependence of the dark energy potential, Phys. Rev. D 71 (2005) 123001, [astro-ph/0412269].
Y. Shen et al., A Catalog of Quasar Properties from Sloan Digital Sky Survey Data Release 7, Astrophys. J. Suppl. 194 (June, 2011) 45, [1006.5178].
Y. Shen et al., Gemini GNIRS Near-infrared Spectroscopy of 50 Quasars at z ≥ 5.7, Astrophys. J. 873 (2019) 35, [1908.05584].
C. Mazzucchelli et al., Physical Properties of 15 Quasars at z ≥ 6.5, Astrophys. J. 849 (Nov., 2017) 91, [1710.01251].
E. Banados et al., An 800-million-solar-mass black hole in a significantly neutral Universe at redshift 7.5, Nature 553 (2018) 473-476, [1712.01860].
Y. Matsuoka et al., Discovery of the First Low-luminosity Quasar at z > 7, Astrophys. J. Lett. 872 (Feb., 2019) L2, [1901.10487].
D. J. Mortlock et al., A luminous quasar at a redshift of z = 7.085, Nature 474 (2011) 616, [1106.6088].
F. Wang et al., The Discovery of a Luminous Broad Absorption Line Quasar at a Redshift of 7.02, Astrophys. J. Lett. 869 (Dec., 2018) L9, [1810.11925].
J. Yang et al., Exploring Reionization-era Quasars. IV. Discovery of Six New z ≥ 6.5 Quasars with DES, VHS, and unWISE Photometry, Astron. J. 157 (June, 2019) 236, [1811.11915].
Y. Matsuoka et al., Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). X. Discovery of 35 Quasars and Luminous Galaxies at 5.7 ≤ z ≤ 7.0, Astrophys. J. 883 (Oct., 2019) 183, [1908.07910].
J. Yang et al., Pōniuʻena: A Luminous z = 7.5 Quasar Hosting a 1.5 Billion Solar Mass Black Hole, Astrophys. J. Lett. 897 (July, 2020) L14, [2006.13452].
F. Wang et al., A Luminous Quasar at Redshift 7.642, ApJL 907 (Jan., 2021) L1, [2101.03179].
A. Fontana et al., The Galaxy mass function up to z =4 in the GOODS-MUSIC sample: into the epoch of formation of massive galaxies, Astron. Astrophys. 459 (Dec., 2006) 745–757, [astro-ph/0609068].
F. Pacucci, P. Natarajan, M. Volonteri, N. Cappelluti and C. M. Urry, Conditions for Optimal Growth of Black Hole Seeds, Astrophys. J. Lett. 850 (2017) L42, [1710.00375].
E. E. Salpeter, Accretion of Interstellar Matter by Massive Objects, Astrophys. J. 140 (Aug., 1964) 796–800.
F. Pacucci et al., Detecting the Birth of Supermassive Black Holes Formed from Heavy Seeds, Bull. Am. Astron. Soc. 51 (May, 2019) 117, [1903.07623].
Y.-F. Jiang, J. M. Stone and S. W. Davis, Super-Eddington Accretion Disks around Supermassive Black Holes, ApJ 880 (Aug., 2019) 67, [1709.02848].
R. Barkana and A. Loeb, In the beginning: the first sources of light and the reionization of the universe, Physical Reports 349 (July, 2001) 125–238, [astro-ph/0010468].
B. Audren, J. Lesgourgues, K. Benabed and S. Prunet, Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code, JCAP 02 (2013) 001, [1210.7183].
T. Brinckmann and J. Lesgourgues, MontePython 3: boosted MCMC sampler and other features, Phys. Dark Univ. 24 (2019) 100260, [1804.07261].
A. G. Riess, S. Casertano, W. Yuan, L. M. Macri and D. Scolnic, Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM, Astrophys. J. 876 (2019) 85, [1903.07603].
[115] Planck collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6, [1807.06209].

[116] M. Moreeno, L. Pozzetti, A. Cimatti, R. Jimenez, C. Maraston, L. Verde et al., A 6% measurement of the Hubble parameter at \(z \approx 0.45 \): direct evidence of the epoch of cosmic re-acceleration, JCAP 05 (2016) 014, [1601.01701].

[117] S. Vagnozzi, E. Giusarma, O. Mena, K. Freese, M. Gerbino, S. Ho et al., Unveiling \(\nu \) secrets with cosmological data: neutrino masses and mass hierarchy, Phys. Rev. D 96 (2017) 123503, [1701.08172].

[118] DES collaboration, T. M. C. Abbott et al., Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing, Phys. Rev. D 98 (2018) 043526, [1708.01530].

[119] I. n. Zubeldia and A. Challinor, Cosmological constraints from Planck galaxy clusters with CMB lensing mass bias calibration, Mon. Not. Roy. Astron. Soc. 489 (2019) 401–419, [1904.07887].

[120] KiDS collaboration, M. Asgari et al., KiDS-1000 Cosmology: Cosmic shear constraints and comparison between two point statistics, Astron. Astrophys. 645 (2021) A104, [2007.15633].

[121] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, L. Campbell et al., The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant, Mon. Not. Roy. Astron. Soc. 416 (2011) 3017–3032, [1106.3396].

[122] A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden and M. Manera, The clustering of the SDSS DR7 main Galaxay sample – I. A 4 per cent distance measure at \(z = 0.15 \), Mon. Not. Roy. Astron. Soc. 449 (2015) 835–847, [1409.3242].

[123] eBOSS collaboration, S. Alam et al., Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory, Phys. Rev. D 103 (2021) 083533, [2007.08991].

[124] D. M. Scolnic et al., The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample, Astrophys. J. 850 (2018) 101, [1710.00845].

[125] J. Renk, M. Zumalacárregui, F. Montanari and A. Barreira, Galileon gravity in light of ISW, CMB, BAO and \(H_0 \) data, JCAP 10 (2017) 020, [1707.02263].

[126] S. Vagnozzi, S. Dwavan, M. Gerbino, K. Freese, A. Goobar and O. Mena, Constraints on the sum of the neutrino masses in dynamical dark energy models with \(w(z) \geq -1 \) are tighter than those obtained in \(\Lambda \) CDM, Phys. Rev. D 98 (2018) 083553, [1801.08553].

[127] W. Yang, S. Pan, E. Di Valentino, R. C. Nunes, S. Vagnozzi and D. F. Mota, Tale of stable interacting dark energy, observational signatures, and the \(H_0 \) tension, JCAP 09 (2018) 019, [1805.08252].

[128] X. Li and A. Shafieloo, A Simple Phenomenological Emergent Dark Energy Model can Resolve the Hubble Tension, Astrophys. J. Lett. 883 (2019) L3, [1906.08275].

[129] L. Visinelli, S. Vagnozzi and V. Danielsson, Revisiting a negative cosmological constant from low-redshift data, Symmetry 11 (2019) 1035, [1907.07963].

[130] S. Pan, W. Yang, E. Di Valentino, A. Shafieloo and S. Chakraborty, Reconciling \(H_0 \) tension in a six parameter space?, JCAP 06 (2020) 062, [1907.12551].

[131] E. Di Valentino, A. Melchiorri, O. Mena and S. Vagnozzi, Nonminimal dark sector physics and cosmological tensions, Phys. Rev. D 101 (2020) 063502, [1910.09895].

[132] M. Zumalacárregui, Gravity in the Era of Equality: Towards solutions to the Hubble problem without fine-tuned initial conditions, Phys. Rev. D 102 (2020) 023523, [2003.06396].

[133] G. Alestas, L. Kazantzidis and L. Perivolaropoulos, \(H_0 \) tension, phantom dark energy, and cosmological parameter degeneracies, Phys. Rev. D 101 (2020) 123516, [2004.08363].

[134] A. Banihashemi, N. Khosravi and A. Shafieloo, Dark energy as a critical phenomenon: a hint from Hubble tension, JCAP 06 (2021) 003, [2012.01407].

[135] S. Bag, V. Sahni, A. Shafieloo and Y. Shtanov, Phantom Brane-world and the Hubble Tension, Astrophys. J. 929 (2021) 212, [2107.03271].

[136] G. Alestas, D. Camarena, E. Di Valentino, L. Kazantzidis, V. Marra, S. Nesseris et al., Late-transition versus smooth \(H(z) \)-deformation models for the resolution of the Hubble crisis, Phys. Rev. D 105 (2022) 063538, [2110.04336].

[137] A. Chudaykin, D. Gorbunov and N. Nedelko, Exploring \(\Lambda \) CDM extensions with SPT-3G and Planck data: 4\(\sigma \) evidence for neutrino masses, full resolution of the Hubble crisis by dark energy with phantom crossing, and all that, 2203.03666.

[138] R. K. Sharma, K. L. Pandey and S. Das, Implications of an extended dark energy model with massive neutrinos, 2202.01749.
[139] R. C. Nunes, S. Vagnozzi, S. Kumar, E. Di Valentino and O. Mena, New tests of dark sector interactions from the full-shape galaxy power spectrum, Phys. Rev. D 105 (2022) 123506, [2203.08093].
[140] E. Di Valentino, A. Melchiorri and J. Silk, Investigating Cosmic Discordance, Astrophys. J. Lett. 908 (2021) L9, [2003.04935].
[141] D. Valcín, R. Jimenez, L. Verde, J. L. Bernal and B. D. Wandelt, The age of the Universe with globular clusters: reducing systematic uncertainties, JCAP 08 (2021) 017, [2102.04486].
[142] K. Inayoshi, E. Vishal and Z. Haiman, The Assembly of the First Massive Black Holes, Annu. Rev. Astron. Astrophys. 58 (Aug., 2020) 27–97, [1911.05791].
[143] F. Pacucci and A. Loeb, The search for the farthest quasar: consequences for black hole growth and seed models, Mon. Not. Roy. Astron. Soc. 509 (2021) 1885–1891, [2110.10176].
[144] E. Di Valentino and S. Bridle, Exploring the Tension between Current Cosmic Microwave Background and Cosmic Shear Data, Symmetry 10 (2018) 585.
[145] E. Di Valentino et al., Cosmology intertwined III: $f_{\sigma 8}$ and S_8, Astropart. Phys. 131 (2021) 102604, [2008.11285].
[146] R. C. Nunes and S. Vagnozzi, Arboritively the S8 discrepancy with growth rate measurements from redshift-space distortions, Mon. Not. Roy. Astron. Soc. 505 (2021) 5427–5437, [2106.01208].
[147] G. Alestas and L. Perivolaropoulos, Late-time approaches to the Hubble tension deforming $H(z)$, worsen the growth tension, Mon. Not. Roy. Astron. Soc. 504 (2021) 3956–3962, [2103.04045].
[148] I. J. Allali, M. P. Hertzberg and F. Rompineve, Dark sector to restore cosmological concordance, Phys. Rev. D 104 (2021) L081303, [2104.12798].
[149] G. Ye, J. Zhang and Y.-S. Piao, Resolving both H_0 and S_8 tensions with AdS early dark energy and ultralight axion, 2107.13991.
[150] L. A. Anchordoqui, E. Di Valentino, S. Pan and W. Yang, Dissecting the H_0 and S_8 tensions with Planck + BAO + supernova type Ia in multi-parameter cosmologies, JHEAp 32 (2021) 28–64, [2107.13932].
[151] N. Khosravi and M. Farhang, Phenomenological gravitational phase transition: Early and late modifications, Phys. Rev. D 105 (2022) 063505, [2109.10725].
[152] S. J. Clark, K. Vattis, J. Fan and S. M. Koushiappas, The H_0 and S_8 tensions necessitate early and late time changes to ΛCDM, 2110.09663.
[153] L. Heisenberg, H. Villarrubia-Rojo and J. Zosso, Simultaneously solving the H_0 and σ_8 tensions with late dark energy, 2201.11623.
[154] L. Heisenberg, H. Villarrubia-Rojo and J. Zosso, Can late-time extensions solve the H_0 and σ_8 tensions?, 2202.01202.
[155] Z. Davari and N. Khoosravi, Can decaying dark matter scenarios alleviate both H_0 and σ_8 tensions?, 2203.09439.
[156] A. Reeves, L. Herold, S. Vagnozzi, R. D. Sherwin and E. G. M. Ferreira, Restoring cosmological concordance with early dark energy and massive neutrinos?, 2207.01501.
[157] N. Borghi, M. Moreasco, A. Cimatti, A. Huchet, S. Quai and L. Pozzetti, Toward a Better Understanding of Cosmic Chronometers: Stellar Population Properties of Passive Galaxies at Intermediate Redshift, Astrophys. J. 927 (2022) 164, [2106.14894].
[158] L. Lombriser, Consistency of the local Hubble constant with the cosmic microwave background, Phys. Lett. B 803 (2020) 135303, [1906.12347].
[159] H. Desmond, B. Jain and J. Sakstein, Local resolution of the Hubble tension: The impact of screened fifth forces on the cosmic distance ladder, Phys. Rev. D 100 (2019) 043537, [1907.03778].
[160] Q. Ding, T. Nakama and Y. Wang, A gigaparsec-scale local void and the Hubble tension, Sci. China Phys. Mech. Astron. 63 (2020) 290403, [1912.12600].
[161] H. Desmond and J. Sakstein, Screened fifth forces lower the TRGB-calibrated Hubble constant too, Phys. Rev. D 102 (2020) 023007, [2003.12876].
[162] G. Alestas, L. Kazantzidis and L. Perivolaropoulos, $w - M$ phantom transition at $z_t < 0.1$ as a resolution of the Hubble tension, Phys. Rev. D 103 (2021) 083517, [2012.13932].
[163] R.-G. Cai, Z.-K. Guo, L. Li, S.-J. Wang and W.-W. Yu, Chameleon dark energy can resolve the Hubble tension, Phys. Rev. D 103 (2021) L121302, [2102.02020].
[164] V. Marra and L. Perivolaropoulos, Rapid transition of Geff at $z\simeq 0.01$ as a possible solution of the Hubble and growth tensions, Phys. Rev. D 104 (2021) L021303, [2102.06012].
[165] N. J. Secrest, S. von Hausegger, M. Rameez, R. Mohayaee, S. Sarkar and J. Colin, A Test of the Cosmological Principle with Quasars, Astrophys. J. Lett. 908 (2021) L51, [2009.14826].
[166] C. Krishnan, E. O. Colgán, M. M. Sheikh-Jabbari and T. Yang, *Running Hubble Tension and a H0 Diagnostic*, Phys. Rev. D 103 (2021) 103509, [2011.02858].

[167] P. K. Aluri et al., *Is the Observable Universe Consistent with the Cosmological Principle?*, 2207.05765.