ABSTRACT

Objective: The objective of this study was to determine CYP2D6 phenotype in a Javanese and Sundanese healthy subject in Indonesia.

Methods: Ninety unrelated healthy Indonesian subjects from Java and Sunda were studied. Metoprolol was used as phenotyping substrate. A 100 mg oral tablet of metoprolol was administered to all the subjects. Urinary metoprolol and α-hydroxymetoprolol were determined to calculate metoprolol metabolic ratio (MR). Determination of metoprolol and α-hydroxymetoprolol was carried out by high performance liquid chromatography method.

Results: Metoprolol MR varied widely (from 0.08 to 72.75). One subject (1.11%) in the study was classified as poor metabolizer (PM), one subject (1.11%) as ultrarapid metabolizer, and the remaining 88 subjects (97.78%) were classified as extensive metabolizers.

Conclusion: The frequencies of PM for the CYP2D6 phenotype (1.11%) in the Javanese and Sundanese population are in concordance with most results of oxidation metabolizers in other Asian populations.

Keywords: CYP2D6, Javanese and Sundanese, Indonesia, Metoprolol, Phenotype.
Poor metabolizer

Phenotype Study of CYP2D6 using metoprolol

The subjects were not allowed to take any medication or consume alcoholic beverages and drinks/foods containing caffeine for 1 week before administration. The subjects received a single dose of metoprolol tartrate tablets (100 mg) orally with 200 mL of water after overnight fasting before administration of the drug. Urine was collected for 8 h from the time taking metoprolol tablets. Urine samples were stored at −40°C before analysis.

Liquid–liquid extraction was performed using dichloromethane solvent after the addition of sodium hydroxide into the urine. The reversed-phase HPLC method [9] was slightly modified and used for the determination of α-hydroxymetoprolol and metoprolol in urine samples. Separation was carried out in a Purospher® STAR RP-18e LiChroCart® (250×4.6 mm, 5 µm) column with a mobile phase consisting of a mixture of 0.1M KH₂PO₄ solution (pH was adjusted into 3 with orthophosphoric acid)-acetonitrile-methanol (70:15:15, v/v/v) with a flow rate of 1 mL/min and injection volume of 20 µL. The Ultraviolet detector was set at λ 234 nm. Quantification of α-hydroxymetoprolol and metoprolol was performed using internal standard caffeine.

Urinary metoprolol and α-hydroxymetoprolol were determined to calculate metoprolol MR. Based on the MR (or LogMR) value, the phenotype of the test subjects was classified as a PM with MR >12.6 (LogMR >1.1), IM and EM with 0.1<MR<12.6 (−1.0<LogMR<1.1), and UM with MR<0.1 (LogMR<−1.0).

Data analysis

CYP2D6 enzyme activity was determined by determining the ratio of the molar concentration of metoprolol/α-hydroxymetoprolol in the urine. The ratio of metoprolol and α-hydroxymetoprolol in the urine (MR) was calculated by the following equation:

\[
\text{MR} = \frac{[\text{metoprolol}]}{[\alpha\text{-hydroxymetoprolol}]}
\]

The phenotype was determined by the MR. Subjects with MR >12.6 were classified as PM, subjects with MR 0.1<12.6 were classified as IM and EM, and subjects with MR<0.1 were classified as UM [10].

Table 1: Characteristics of 90 subjects who participated in this study

Subject characteristics	Number/Value	Percentage (%)
Age (years)	19.58±1.47	
Gender		
Female	56	62.22
Male	34	37.78
Tribe		
Javanese	72	80
Sundanese	18	20
Weight (kg)		
Man	57.97±7.64	
Female	49.48±7.63	
Height (cm)		
Man	167.21±5.83	
Female	156.18±5.50	

Table 2: CYP2D6 phenotype data

Metabolic ratio metoprolol/α-hydroxymetoprolol	Phenotype	Number of subjects	Percentage (%)
MR<0.1	Ultra rapid metabolizer	1	1.11
0.1<MR<12.6	Extensive metabolizer	88	97.78
MR>12.6	Poor metabolizer	1	1.11
Total		90	100

MR: Metabolic ratio
The frequencies of PM for the CYP2D6 phenotype (1.11%) in this study are in concordance with most results of oxidation metabolizers in other Asian populations. The prevalence of PM in the Japanese population range from 0.3 to 0.5% in the Malaysian subjects amounted to 3.9% [15], in the Iran subject of at 2.5%. CYP2D6 phenotyping study has been reported using metoprolol substrate or other substrates such as dextromethorphan, debrisoquine, and sparteine with consistent results that the presence of PM is low in Asian populations such as Japan, China, Korea, Malaysia, and Iran. Using debrisoquine as a substrate, PM on Malaysia’s population is 3.9% [15]. Using metoprolol as the substrate, the frequency of PM population in Korea, Japan, and China was 0.5%, 0.7%, and 0%, respectively [16]. The existence of PMs individual in Indonesian subjects (1.11%) is lower than PMs in European and American countries (Gaussian individuals) such as the population of Britain (8.4%) [17], Czech (8.7%), and German (8.7%) [18]. Uruguay (7.3%) [19], and Mexico (10%) [20] and African countries such as Zimbabwe (5%) [21] and Nigeria (3.5%) [22].

The probit plot (Fig. 2) shows a multimodal distribution profile. The plot also clarifies the existence of three phenotypes of the hydroxylation capacity of metoprolol. Fig 1 shows that the mode value of the LogMR is −0.1. The mode values in this Indonesian subjects are shifted to the right when compared to Japanese subjects (mode: 0.7) [22]. This shows that the hydroxylation capacity of Indonesian subjects is stronger than Japanese subjects but is weaker than Chinese subjects.

This polymorphism of CYP2D6 among Javanese had similarity with the polymorphism of CYP2A6 among the same genetic ethnic of Javanese [23]. Genetically, CYP2A6*4 was found higher compared to the occurrence of CYP2A6*1 among smoking and non-smoking subject. The distribution of these allele frequencies was different among those two types of subjects.

The MR data in the CYP2D6 phenotyping study using dextromethorphan as the substrate in the Chinese population (120 people) showed a bimodal distribution and about 36% of subjects were classified as IM [24]. However, the MR value in this phenotyping study involving 90 subjects has not been able to distinguish the extensive and IM.

CONCLUSION

Indonesian healthy subjects have different capacities to metabolize metoprolol through CYP2D6. The frequency of PM of CYP2D6 phenotype (1.11%) in the Javanese and Sundanese is in conformity and comparable to other Asian populations. This study has not been able to identify IM. It needs the additional study using more subjects. Further study was needed to determine the CYP2D6 genotype in Javanese and Sundanese populations. The results of this study might be helpful in patient dose adjusting to achieve the therapeutic goals.

ACKNOWLEDGMENTS

The authors thank the Directorate General of Higher Education Ministry of Research and Higher Education of the Republic of Indonesia and all the participants who have been involved in this study.

CONFLICTS OF INTEREST

All authors have none to declare.

REFERENCES

1. Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): Clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J 2005;5:6-13.
2. Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP. Interindividual variations in human liver cytochrome P-450 enzymes studied in the oxidation of debrisoquine and a kinetic chemical. Studies with liver microsomes of 30 Japanese and 30 caucasians. J Pharmacol Exp Ther 1994;270:414-23.
3. Zanger UM, Raimundo S, Eichelbaum M. Cytochrome P450 2D6: Overview and update on pharmacology, genetics, biochemistry. Naunyn Schmiedebergs Arch Pharmacol 2004;369:23-37.
4. Ozdemir M, Crewe KH, Tucker GT, Rostami-Hodjegan A. Assessment of in vivo CYP2D6 activity: Differential sensitivity of commonly used probes to urine pH. J Clin Pharmacol 2004;44:1398-404.
5. Vittalrao AM, Thanusubramanian H, Kumari KM, Shaik AB. Pharmacotherapy of heart failure. Asian J Pharm Clin Res 2018;11:78-87.
6. Venkateswarlu P, Kumar BN, Seshaiha K, Prasad VV. Selective and sensitive method for the determination of metoprolol in human plasma using liquid chromatography coupled with tandem mass spectrometry. Acta Pharm 2010;60:177-84.
7. Fang J, Semple HA, Song J. Determination of metoprolol, and its four metabolites in dog plasma. J Chromatogr B Analyt Technol Biomed Sci 2004;809:9-14.
8. Vattipally M, Mahesh AK, Kodati D, Yellu NR. Population pharmacokinetics and clinical response of metoprolol in South Indian hypertensive patients. Asian J Pharm Clin Res 2014;7:140-3.
9. Li Q, Wang R. Simultaneous analysis of tramadol, metoprolol and their metabolites in human plasma and urine by high performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2004;831:33-40.
10. Meyer UA, Zanger UM. Molecular mechanisms of genetic polymorphisms of drug metabolism. Annu Rev Pharmacol Toxicol 1997;37:269-96.
11. Masirimembwa C, Hasler J, Bertilsson L, Johansson I, Ekberg O, Ingelman-Sundberg M. Metabolic pathways and genotype analysis of debrisoquine hydroxylase (CYP2D6) in a black Zimbabwean population. Reduced enzyme activity and evaluation of metabolic correlation of CYP2D6 probe drugs. Eur J Clin Pharmacol 1996;51:117-22.
12. Basci NE, Bozkurt A, Isimer A, Kayaalp SO. Correlation between the metabolic ratios of debrisoquine and metoprolol in Turkish subjects. Pharmacol Toxicol 1994;75:62-4.
13. Labbé L, Sirois C, Pilote S, Arseneault M, Robitaille NM, Turgeon J. Metoprolol oxidation polymorphism in a Korean population: CYP2D6 activity: Differential sensitivity of commonly used probes to urine pH. J Clin Pharmacol 2000;37:269-96.
14. Franconi F, Brunelleschi S, Steuardo C, Luomo V. Gender differences in drug responses. Pharmacol Res 2007;55:81-95.
15. Ismail R, Hussein A, Teh LK, Nizam Isa M. CYP2D6 phenotypes among malays in Malaysia. J Clin Pharm Ther 2000;25:379-83.
16. Sohn DR, Shin SG, Park CW, Kusaka M, Chiba K, Ishizaki T, et al. Metoprolol oxidation polymorphism in a Korean population: Comparison with native Japanese and Chinese populations. Br J Clin Pharmacol 1991;32:504-7.
17. McGourty JC, Silas JH, Lennard MS, Tucker GT, Woods HF. Metabolism of debrisoquine and CYP2D6: Metabolism and debrisoquine oxidation polymorphism – population and family studies. J Clin Pharmacol 1985;25:155-66.
18. Hadasová E, Franke G, Zschiesche M, Cesková E, Zelenková O, Sigmund W. Debrisoquine 4-hydroxylase and sulphamethazine N-acetylation in patients with schizophrenia and major depression. Br J Clin Pharmacol 1996;41:428-31.
19. Estevez F, Giusti M, Parrillo S, Oxandabarat J. Dextromethorphan O-demethylation polymorphism in the Uruguayan population. Eur J Clin Pharmacol 1997:52:417-8.
20. López M, Guerrero J, Jung-Cook H, Alonso ME. CYP2D6 genotype and phenotype determination in a Mexican Mestizo population. Eur J Clin Pharmacol 1993;42:9-13.
21. Ebeshi BU, Bolaji OO, Masimirembwa CM. Cytochrome P450 2D6 (CYP2D6) genotype and phenotype determination in the Nigerian populations. Asian J Pharm Health Sci 2011;1:47-54.

22. Horai Y, Nakano M, Ishizaki T, Ishikawa K, Zhou HH, Zhou BI, et al. Metoprolol and mephenytoin oxidation polymorphisms in far Eastern oriental subjects: Japanese versus mainland Chinese. Clin Pharmacol Ther 1989;46:198-207.

23. Patramurti C, Sugiyanto S, Nurrochmad A, Martono S. Polymorphism of cytochrome P450 2A6 (CYP2A6*1 and CYP2A6*4) among Javanese Indonesian smoker and non smoker. Ind J Pharm 2015;6:11-9.

24. Cai WM, Chen B, Liu YX, Chu X. Dextromethorphan metabolic phenotyping in a Chinese population. Zhongguo Yao Li Xue Bao 1997;18:441-4.