INTRODUCTION
Enhanced recovery after surgery (ERAS) protocols utilize multi-modal approaches perioperatively, with the goal of decreasing patient morbidity, narcotic usage, and hospital length of stay to result in an improved patient experience.1,2 ERAS protocols typically begin preoperatively with the deliverance of medications aimed at reducing postoperative nausea, emesis, and pain, as these factors have shown to increase the length of stay and negatively impact patient satisfaction.3-8 Intraoperative interventions include the use of gabapentin and local anesthetic, as the utilization of a multimodal analgesia cocktail has been shown to decrease postoperative nausea, vomiting, drowsiness, and impaired sleep.1,7-13 Although widely adopted in other fields of surgery, there have been minimal reports of ERAS implementation in plastic surgery 4,5,14-19 and there are few published reports analyzing the outcomes of these pathways in craniofacial surgery.

Craniosynostosis is commonly treated with 1 of the 2 main surgical approaches (strip craniectomy or cranial vault remodeling) that aim to treat the skull deformity and the negative effects of the growth restriction on development.10-12 Amongst cranial vault remodeling, there have been minimal reports of ERAS implementation in plastic surgery 4,5,14-19 and there are few published reports analyzing the outcomes of these pathways in craniofacial surgery.

Craniosynostosis is commonly treated with 1 of the 2 main surgical approaches (strip craniectomy or cranial vault remodeling) that aim to treat the skull deformity and the negative effects of the growth restriction on development.10-12 Amongst cranial vault remodeling, there have been minimal reports of ERAS implementation in plastic surgery 4,5,14-19 and there are few published reports analyzing the outcomes of these pathways in craniofacial surgery.

Background: Enhanced recovery after surgery (ERAS) protocols utilize multi-modal approaches to decrease morbidity, narcotic usage, and length of stay. In 2013, we made several changes to our perioperative approach to children undergoing complex craniofacial procedures. The goal of this study was to analyze our protocol for children undergoing fronto-orbital advancement (FOA) for craniosynostosis.

Methods: A retrospective chart review was performed after IRB approval, for children who underwent fronto-orbital advancement for craniosynostosis from 2010 to 2018. The ERAS protocol, initiated in December 2013, involves hemoglobin optimization, cell-saver technology, tranexamic acid, specific postoperative fluid titration, and a transfusion algorithm. The analgesic regimen focuses on narcotic reduction through the utilization of scheduled acetaminophen, ibuprofen, or ketorolac, and a dexmedetomidine infusion with opioids only for breakthrough pain.

Results: Fifty-five ERAS protocol children and 23 control children were analyzed. ERAS children had a decreased rate (13/53 versus 23/23, P < 0.0001) and volume of intraoperative transfusion (183.4 mL versus 339.8 mL, P = 0.05). Fewer ERAS children required morphine/dilaudid (12/55 versus 22/23, P < 0.0001) and for children who required morphine, fewer doses were required (2.8 versus 11, P = 0.02). For ERAS protocol children who required PO narcotics, fewer doses were required (3.2 versus 5.3, P = 0.02). ERAS children had a decreased length of stay (2.3 versus 3.6 nights, P < 0.0001). No patients were re-admitted due to poor oral intake, pain, hemodynamic, or pulmonary concerns.

Conclusions: Our ERAS protocol demonstrated a reduction in the overall and intraoperative allogenic blood transfusion rate, narcotic use, and hospital length of stay. This is a safe and effective multimodal approach to managing complex craniofacial surgical recovery. (Plast Reconstr Surg Glob Open 2020;8:e3205; doi: 10.1097/GOX.0000000000003205; Published online 28 October 2020.)

Disclosure: The authors have no financial interest to declare in relation to the content of this article.
procedures, fronto-orbital advancement (FOA) has been associated with an increased rate of blood transfusions and a prolonged hospital length of stay. There has yet to be a detailed report of management for complex craniofacial children from an anesthesia or intensive care perspective. Additionally, most postoperative protocols rely on direct patient examination by a provider that may only occur at certain time points, such as morning rounds, which can delay decision-making and the advancement of a child’s recovery. However, protocols and order sets that allow for decisions to be increasingly made by the bedside nursing team can allow for expedited changes based on the child’s evolving recovery.

In 2013, our division made several changes to our perioperative approach for children undergoing complex craniofacial procedures. Our perioperative pathway and postoperative order set was analyzed with a focus on outcomes including rate and volume of blood transfusions, narcotic pain medication requirements, and hospital length of stay. The goal of this study was to analyze our experience in utilizing this protocol for children with craniosynostosis undergoing FOA.

METHODS

Chart Review

A retrospective chart review was performed after IRB approval for all children who underwent FOA for craniosynostosis from 2010 to 2018, with all staff surgeons. Charts were reviewed for patient demographics, preoperative hemodynamic optimization, operative course, intra- and postoperative resuscitation, postoperative pain medication requirements, length of stay, and perioperative hemoglobin levels. For continuous independent variables (eg, age), a non-parametric correlation analysis was performed. For discrete independent variables, either a chi-square or Kruskall-Wallis test was performed to assess for differences between cohorts.

Pre-enhanced Recovery after Surgery

The Enhanced Recovery after Surgery protocol was initiated in December 2013. Before ERAS introduction, preoperatively, patients did not receive iron supplementation or erythropoietin. Intraoperatively, cell saver (CS) was not utilized, there was not as much focus on maintaining a warm environment, and tranexamic acid (TXA) was not used. Postoperatively, acetaminophen and ibuprofen were not scheduled, dexmedetomidine was not used, and fluids were not titrated down rapidly based on high urine output (UOP). Additionally, there was no agreed upon transfusion threshold amongst the various team members involved in the care (plastic surgeons, neurosurgeons, anesthesiologists, and intensivists). This group of consecutive patients served as the control cohort.

Enhanced Recovery after Surgery Preoperative

At a preoperative clinic visit, around 6 months of age, a baseline hemoglobin is obtained, and all children less than 18 months of age are offered recombinant EPO to increase red cell mass. After obtaining informed consent, recombinant EPO (600 units/kg) is initiated 3 weeks before surgery, and on average, requires 2–3 weekly doses. Hemoglobin level is checked before each injection, and EPO is held when the level is ≥15g/dL. Baseline laboratory values, a complete blood count, coagulation panel, and basic metabolic panel are obtained preoperatively. In preparation for surgery, 20 mL/kg of packed red blood cells are prepared and divided into smaller aliquots (10 mL/kg per aliquot) to avoid over transfusion and waste, as well as to reduce donor exposures.

Intraoperative

Our team consists of 2 plastic surgeons and 2 neurosurgeons who work together routinely. Once the patient is under anesthesia, at least two proportionally large size peripheral IV catheters (≥22 gauge) are obtained to allow for volume resuscitation. Central venous access is not routinely secured unless adequate peripheral intravenous access cannot be obtained, as central venous pressure monitoring has not demonstrated any reduction in the frequency or duration of hypotension during cranial vault remodeling, is consistently a poor predictor of fluid responsiveness in children, and can be associated with significant complications. An arterial line is inserted, typically utilizing the radial artery. Cefazolin at 50 mg/kg is used for surgical site infection prevention before incision and re-dosed every 3 hours. If the patient is allergic to penicillin/cephalosporin, clindamycin 10 mg/kg is chosen and re-dosed every 6 hours.

Care is exercised to ensure that the operating room is warmed to around 72°F. A radiant heater is utilized for infants during the induction period and line placement. The distance between the patient and the radiant heater is adjusted per manufacturer’s recommendation to avoid over heating or skin burns. All children are positioned on an under-body forced air-warming mattress upon arrival to the operating room. An intravenous fluid/blood warmer is also used.

Cell-saver technology is utilized to recycle blood that is lost during the procedure. Additionally, CS allows for an objective measurement of blood loss with the understanding that not all blood can be captured by the machine, and thus, it is an underestimation. At one-fourth total blood volume loss, banked blood is brought to the operating room in a cooler even if it is not to be given. At one-third total blood volume loss, due to blood loss and dilution, and coagulation factors are checked. The final decision to transfuse is based on multiple factors, such as hematocrit, hemodynamics, UOP, stage of procedure, and the availability of CS. Factors contributing to this decision include hemoglobin < 6.5 g/dL and profuse and persistent bleeding. In addition, attempts are made to stay within 10%–15% of the preoperative vital signs. CS blood is always utilized preferentially over allogenic transfusions. UOP is also monitored and maintained at 1 mL/kg per hour at minimum. We utilize TXA at a loading dose of a 25 mg/kg infusion over 15 min, followed by an infusion of 5 mg/kg per hour until closure. A dexmedetomidine drip is initiated at closing and continued postoperatively. Postoperatively, the drip is titrated to effect and maintained until the first postoperative morning.
Postoperative Approach

Children typically spend 1 night in the pediatric intensive care unit (PICU), during which, continuous cardiorespiratory and pulse oximetry are monitored. Fluids are titrated by UOP, and maintenance fluids are discontinued for most patients by the morning after surgery before morning rounds. Perioperative antibiotics are continued for two postoperative doses. Scheduled acetaminophen is delivered at 15 mg/kg intravenously every 6 hours. Ketorolac or ibuprofen are given every 6 hours. The decision to give one over the other is at nursing discretion, as there is not a concern for postoperative hemorrhage. Oxycodone and morphine are available and are given as needed at nursing discretion. Decision on which pain medication to utilize is nurse-driven and based on protocol parameters. The algorithm is summarized in Figure 1 and presented in Table 1.

RESULTS

Fifty-five children treated with the ERAS protocol, and 23 control children were analyzed. There was no difference between the cohorts in regard to sex, age, and weight at the time of surgery. All ERAS protocol children aged less than 18 months received EPO and 40 received TXA intraoperatively ($P < 0.0001$). There were no observed side effects to EPO ERAS protocol children received more crystalloid intraoperatively both volume and volume/kg ($P < 0.0001$). There was no difference in colloid resuscitation between the cohorts. Of the 55 ERAS protocol children, 54 received CS during surgery. There was no difference in estimated blood loss (EBL) between the cohorts. Fewer ERAS protocol children required blood transfusion intraoperatively, and those that did require transfusion required a lesser volume (13/55 versus 23/23, 183.4 mL versus 339.8 mL, $P < 0.0001$ and $P = 0.05$, respectively). There was no difference between the cohorts in regard to postoperative transfusion incidence or volume. ERAS protocol children had a higher preoperative hemoglobin (13.5 g/dL versus 12.5 g/dL, $P < 0.0001$), a lower postoperative hemoglobin (9.6 g/dL versus 11.7 g/dL, $P < 0.0001$), a lower nadir hemoglobin (8.7 g/dL versus 10.3 g/dL, $P < 0.0001$), and lower hemoglobin at discharge (9 g/dL versus 11.4 g/dL, $P < 0.0001$). No patients were re-admitted due to poor oral intake, pain, and hemodynamic or pulmonary concerns. Patient results and demographics are presented in Table 2.

Fig. 1. Overview of the ERAS protocol.
POD	Location	Monitoring	Respiratory Status	Urine Output	Incision Care	Diet	Labs	Fluids	Medication	Expectations	Other
0	PICU	Continuous cardio-respiratory, pulse ox	FiO2: 40% via face shield for SAT <93%.	Foley catheter Make changes to IVF every 2 h; if less than 1 mL/kg/h, consider increasing IVF. If less than 2 mL/kg/h, decrease by half and then half again. If still >2 mL/kg/h, saline lock.	Clean with saline twice daily and cover with bacitracin/mupirocin.	Ad lib	CBC/BMP starting at 1800 mL/h. If Hg < 6.5, evaluate for diluted blood sample and repeat CBC. If not dilute, transfuse.	D5LR at maintenance rate	Ancef 30 mg/kg/dose for 2 doses q8h. Acetaminophen 15 mg/kg IV q6h. Ketorolac/ibuprofen: ketorolac 0.25 mg/kg IV q6h or ibuprofen 10 mg/kg PO q6h. Ativan 0.05 mg/kg IV up to 0.5 mg q6h for pain/anxiety if no dexmedetomidine. Oxycodeone 0.05 mg/kg PO q6h pm. Morphine 0.05 mg/kg q6h pm, max 2–4 mg. Zofran 0.15 mg/kg IV q8h pm up to 4 mg. May add Phenergan 12.5 mg/kg IV.	Intermittent tachycardia without hypotension. UOP > 1 mg/kg/h. Purposeful movement of all extremities. Eyes unlikely to open completely. Significant edema/ecchymosis expected. Emetis not uncommon. No need to hold PO. Fevers not uncommon. No workup needed.	Head of bed at 30 degrees. Parents may hold when cleared by PICU staff.
1	PICU/transitional care	Continuous cardio-respiratory, pulse ox	FiO2: 40% via face shield for SAT <93%.	⏰ Discontinue foley. ❗️	Clean with saline twice daily and cover with bacitracin/mupirocin.	Ad lib	CBC/BMP 0600. If Hg < 6.5, evaluate for diluted blood sample and repeat CBC. If not dilute, transfuse.	Saline lock	Acetaminophen 15 mg/kg PO q6h pm. Ketorolac/ibuprofen: ketorolac 0.25 mg/kg IV q6h or ibuprofen 10 mg/kg PO q6h. Try to stagger acetaminophen and ketorolac/ibuprofen every 3 h. Ativan 0.05 mg/kg IV up to 0.5 mg q6h for pain/anxiety if no dexmedetomidine. Oxycodeone 0.05 mg/kg PO q6h pm. Zofran 0.15 mg/kg IV q8h pm up to 4 mg. May add Phenergan 12.5 mg/kg IV.	Intermittent tachycardia without hypotension. UOP > 1 mg/kg/h. Purposeful movement of all extremities. Eyes unlikely to open easily. Significant edema/ecchymosis expected. Emetis not uncommon. No need to hold PO. Fevers not uncommon. No workup needed.	Head of bed at 30 degrees. Parents may hold. Remove arterial line, extra IVs. Ok to transfer if no concerns and Hg > 6.5
2	Transitional care	Continuous cardio-respiratory, pulse ox	FiO2: 40% via face shield for SAT <93%.	Foley out Shampoo lightly, do not comb	Ad lib	Not typically obtained	Saline lock	Acetaminophen 15 mg/kg PO q6h pm. Ketorolac/ibuprofen: ketorolac 0.25 mg/kg IV q6h or ibuprofen 10 mg/kg PO q6h. Oxycodeone 0.05 mg/kg PO q6h pm. Zofran 0.15 mg/kg IV q8h pm up to 4 mg. May add Phenergan 12.5 mg/kg IV.	Intermittent tachycardia without hypotension. UOP > 1 mg/kg/h. Purposeful movement of all extremities. Eyes unlikely to open. Peak edema/ecchymosis. Emetis not uncommon. No need to hold PO. Fevers not uncommon. No workup needed.	Discharge today if goals met (ie, pain controlled, vital signs stable, tolerating PO intake, parents amenable and ready)	
Table 2. Patient Demographic and Results

Metric	ERAS (n = 55)	Control (n = 23)
	(mean, range, SD)	(mean, range)
	P	
Men/Women	24 (43.6%)/21 (38.2%)	10 (43.5%)/13 (56.5%)
Age at surgery (years)	2.8, 0.6–16.7	1.5, 0.3–6.14
Weight at surgery (kg)	14.9, 6.3–67.13	10.6, 6.1–27.14
Patients receiving EPO	35 (63.6%)	0 (0%)
Patients receiving TxA	40 (77.3%)	0 (0%)
Patients receiving crystalloid	55 (100%)	23 (100%)
Crystalloid (mL)	1178.1, 370–3800, 691.1	519.8, 190–2100, 392.8
Crystalloid (mL/kg)	91.4, 17.1–147.7, 26.6	49.4, 12.3–107.3, 26.1
Patients receiving colloid	22 (40%)	10 (43.5%)
Colloid (mL)	185.9, 20–1000, 165.6	146.9, 30–500, 92.2
Colloid (mL/kg)	13.5, 1.9–26.9, 6.4	12.4, 5.9–27.6, 5.7
Patients receiving cell saver	34 (98.2%)	0 (0%)
Cell saver (mL)	115.6, 14–386, 113.7	0
Cell saver (mL/kg)	8.5, 1.8–37.7, 5.9	0
EBL	322.7, 75–1400, 271.1	341.7, 100–1800, 345.7
EBL (mL/kg)	24.9, 5.3–77.3, 14.3	35, 11.5–147.3, 27.3
Patients receiving intraoperative transfusion	13 (23.6%)	23 (100%)
Intraoperative transfusion (mL)	183.4, 80–300, 67.8	339.8, 75–1400, 268.3
Patients receiving postoperative transfusion	2 (3.6%)	4 (17.4%)
Postoperative transfusion (mL)	100, 70–130, 30	221.3, 115–500, 161.5
Patients receiving any transfusion	15 (27.2%)	23 (100%)
Preoperative Hg	13.5, 10.9–15.7, 1.1	12.5, 10.9–13.8, 0.7
Postoperative Hg immediate	9.6, 6.3–15.1, 1.7	11.7, 9.4–13.6, 1.2
Lowest Hg	8.7, 6.3–14.2, 1.7	10.5, 5.7–13.5, 2.1
Discharge Hg	9.6, 6.4–14.2, 1.6	11.4, 8.1–13.5, 1.3
Patients receiving ketorolac	22 (40%)	22 (95.7%)
Patients receiving ibuprofen	55 (100%)	14 (60.9%)
Ibuprofen doses	5.4, 1–17, 3.2	6.9, 1–19, 5.2
Patients receiving morphine/dilaudid	12 (21.8%)	22 (95.7%)
Morphine/dilaudid doses	2.8, 1–8, 1.8	11.2, 4–11, 9.9
Patients receiving PO narcotics	36 (65.5%)	17 (73.9%)
PO narcotic doses	3.2, 1–12, 2.3	5.3, 1–15, 4.1
LOS	2.3, 1–7, 0.8	3.6, 2–17, 3.2
PICU stay	1.1, 1–4, 0.5	1.7, 1–14, 2.6

* P < 0.05

ERAS protocol children had a higher incidence of ketorolac and ibuprofen utilization (P < 0.0001), but for children who received ibuprofen, there was no difference in dosing. Fewer ERAS protocol children required morphine/dilaudid (12/55 versus 22/23, P < 0.0001), and for children who received morphine, fewer doses were required (2.8 versus 11, P = 0.02). There was no difference in the number of children who required PO narcotics, but for ERAS protocol children who required PO narcotics, fewer doses were required (3.2 versus 5.3, P = 0.02). ERAS protocol children had a decreased overall length of stay (2.3 versus 3.6 nights, P < 0.0001), but there was no difference in length of PICU stay (1.1 versus 1.7, P = 0.1). Patient results and demographics are presented in Table 2.

Subgroup analysis was performed between ERAS protocol children who did and did not require perioperative transfusion. There was no difference in age or weight at time of surgery between the cohorts. A similar number of children received EPO preoperatively. There was no difference in intraoperative resuscitation between the cohorts. EBL was higher in the cohort requiring transfusion (470 mL versus 287.5 mL, P = 0.03, 22 mL/kg versus 34.4 mL/kg, P = 0.006). Children who did not receive a transfusion trended toward a lower nadir hemoglobin (8.4 g/dL versus 9.4 g/dL, P = 0.06) and discharge hemoglobin was higher in children who received a transfusion (10.1 g/dL versus 8.7 g/dL, P = 0.005). Results are presented in Table 3.

To eliminate outliers in regard to age and patients undergoing secondary surgery, a subgroup analysis was also performed for children less than 18 months at the time of surgery. Thirty-five ERAS protocol children and 15 control children were analyzed. There was no difference between the cohorts in regard to sex, age, and weight at the time of surgery.

All ERAS protocol children received EPO and CS during surgery. There was no difference in EBL between the cohorts. Fewer ERAS protocol children required intraoperative blood transfusion (10/35 versus 15/15, P < 0.0001), and those that did require transfusion required a lesser volume (170 mL versus 282.3 mL, P = 0.01). There was no difference between the cohorts in regard to postoperative transfusion incidence or volume (2 children per cohort and 100 mL versus 135 mL, P = 0.6 and 0.3, respectively). For ERAS protocol children who required morphine or PO narcotics, fewer doses were required (3.1 versus 5.3, P = 0.0005 and 3.3 versus 6.4, P = 0.007, respectively). ERAS protocol children had a decreased overall length of stay (2.2 versus 3.7 nights, P = 0.02) but there was no difference in PICU stay (1.1 versus 1.9, P = 0.2). Subgroup analysis of children aged less than 18 months at the time of surgery is presented in Table 4.

DISCUSSION

Pediatric cranial vault remodeling is associated with numerous potential postoperative complications,
including infection, bleeding, CSF leak, and death. 29–32 There have yet to be detailed reports of management for complex craniofacial children, beginning with preoperative assessment and optimization to anesthesia, intraoperative management, and intensive care recovery. 22,23 As cranial vault remodeling can be associated with significant morbidity and a prolonged length of stay, analyzing surgical techniques and approaches is critical to improving and optimizing recovery. In this study, we chose to analyze only children undergoing FOA, as this complex surgical approach has been associated with a historically high rate of transfusion requirement and hospital length of stay, even within cranial vault remodeling. 20,21 As recently as 2018, the average EBL in surgery for craniosynostosis has been reported as high as 77% of the circulating volume with 90% of patients requiring transfusions. 33

Our protocol to optimize hemodynamic outcomes begins with preoperative assessment of hemoglobin. The majority of children (35/55) in our ERAS protocol met the inclusion criteria for EPO and were given it

Table 3. Subgroup Analysis of Patients Requiring Transfusion
Metric
Men/Women
Age at surgery (years)
Weight at surgery (kg)
Patients receiving EPO
Patients receiving TXA
Patients receiving crystalloid
Crystalloid (mL)
Crystalloid (mL/kg)
Patients receiving colloid
Colloid (mL)
Colloid (mL/kg)
Patients receiving cell saver
Cell saver (mL)
Cell saver (mL/kg)
EBL
EBL (mL/kg)
Postoperative Hg
Lowest Hg
Discharge Hg

*P < 0.05.

Table 4. Subgroup Analysis of Patients 18 Months and Younger at the Time of Surgery
Metric
Men/Women
Age at surgery (years)
Weight at surgery (kg)
Patients receiving EPO
Patients receiving TXA
Patients receiving crystalloid
Crystalloid (mL)
Crystalloid (mL/kg)
Patients receiving colloid
Colloid (mL)
Colloid (mL/kg)
Patients receiving cell saver
Cell saver (mL)
Cell saver (mL/kg)
EBL
EBL (mL/kg)
Patients receiving intraoperative transfusion
Intraoperative transfusion (mL)
Patients receiving postoperative transfusion
Postoperative transfusion (mL)
Preoperative Hg
Postoperative Hg immediate
Lowest Hg
Discharge Hg
Patients receiving ketorolac
Patients receiving ibuprofen
Ibuprofen doses
Patients receiving morphine/dihydrocodeine
Morphine/dihydrocodeine doses
Patients receiving PO narcotics
PO narcotic doses
LOS

*P < 0.05.
preoperatively (32/35). EPO is one of the most widely studied approaches to blood conservation in craniofacial surgery. However, EPO is expensive and requires multiple preoperative visits. Fearon et al. performed a randomized control trial (RCT) in which children received either EPO at 600U/kg for 3 weeks preoperatively plus iron at 4 mg/kg per day or just iron. Children who received EPO had a lower rate of transfusion than those who did not receive EPO. Krayerwski et al. utilized the combination of EPO at 600 U/kg for 3 weeks preoperatively in combination with cell-saver in an RCT. Patients treated in this manner demonstrated lower transfusion rates despite EBL comparable to the control arm. Additionally, of the 80% of the patients with intervention arm that received CS blood at the end of the case, approximately 31% would have required allogeneic transfusion if recycled blood was not available. These positive results have been demonstrated in other retrospective studies, as well. Our children tolerated EPO well and this is similar to the experience of others, as demonstrated in a multi-center review of 369 children.

Intraoperatively, blood loss is minimized with the utilization of TXA, an anti-fibrinolytic agent that competitively blocks the conversion of plasminogen to plasmin. By doing so, it inhibits the proteolytic action of plasmin on fibrin clot and platelet receptors to inhibit fibrinolysis at the surgical wound. A meta-analysis performed in 2013 analyzed 4 studies in 3 articles with 138 children, where the role of TXA in reducing packed red blood cells’ transfusion and blood loss during pediatric craniosynostosis surgery was investigated. This study demonstrated that intraoperative administration of TXA could significantly reduce blood loss and the need for packed red blood cell transfusion. However, the subgroup analysis on randomized controlled trials showed that TXA did not significantly reduce blood loss during surgery compared with the placebo. Forty of our ERAS children received TXA, which was correlated with a reduction in EBL compared with that of control children. However, as ERAS children had a completely different perioperative approach compared with control children, one of which was TXA, it is difficult to determine the impact that TXA directly had on EBL or transfusion rates. Blood loss is recycled with the use of a CS machine that allows for autologous blood donation. Of the various techniques to minimize allogeneic blood exposure, intraoperative CS was one of the earliest adopted and is the most widely used and reviewed. However, this technique can be expensive and some have cited that it is inefficient in infants and small children. Somewhat confounding the evidence is the different type of CS machines available and investigated. Even though EBL was similar between our cohorts, children treated with a CS had a lower incidence and volume of intraoperative transfusion requirements, likely due to blood volume autotransfused. Jimenez et al. performed an RCT on children treated with CS in addition to hemostatic approaches and found that children treated with this combination had a decreased transfusion volume. Krayerwski et al. utilized the combination of EPO at 600U/kg for 3 weeks preoperatively in combination with CS in an RCT. Children treated in this manner demonstrated lower transfusion rates despite EBL comparable to the control arm. Fearon et al. performed a prospective, non-controlled study on children treated with CS in conjunction with EPO and found that only 18/60 children required allogeneic blood. Thus, CS appears to be an effective means by which to reduce allogeneic blood requirements.

Transfusions are associated with risks such as metabolic acidosis, bacterial or viral contamination, fluid overload, acute lung injury and transfusion reactions, and should not be driven solely by laboratory values if a patient is hemodynamically stable. Others have proposed protocols to reduce transfusion incidence after cranial vault remodeling by instituting transfusion thresholds. Stricker et al. implemented a protocol that included projected drain output and specific transfusion thresholds and was able to demonstrate that this reduced the prevalence of postoperative transfusion despite similar hematocrits and drain outputs to historical controls. Nguyen et al. instituted an algorithm that dictated when to send labs based on operative results, as well as how the results should guide resuscitation. This approach, along with intraoperative aminocaproic acid (ACA), resulted in a decrease in EBL and transfusion volume of packed red blood cells and fresh frozen plasma (FFP). Haas et al. utilized a patient blood management protocol that was created in collaboration with the anesthesia and hematology teams. Using this protocol, while there was no reduction in the amount of transfused blood required, there was a total avoidance of FFP and a reduction in platelets versus children treated off protocol. This also led to a reduction in cost of 7.1% per patient. Similarly, in our cohort, no children treated with the ERAS protocol required fresh frozen plasma or platelets. In our cohort, while there was no difference in colloidal resuscitation between ERAS and control children, children treated with the ERAS protocol received more crystalloid, partly explaining the lower postoperative hemoglobin. Additionally, it may have assisted with lowering the transfusion rate, as hemodynamics were maintained by this additional resuscitation fluid.

Children treated with the ERAS protocol were placed on a dexmedetomidine drip postoperatively to increase comfort and decrease pain medication requirements. Almost half of children treated in the ERAS protocol received ketorolac at the nurse’s discretion. As we have demonstrated previously, ketorolac is a safe medication in this population, and does not increase risk of bleeding or blood transfusions, and reduces the need for opioids. Children treated with the ERAS protocol required less morphine/dilaudid and oral narcotics. Thus, this demonstrates the success of our perioperative protocol to provide opioid-sparing pain control.

It has been previously demonstrated that implementation of a preoperative clinical pathway for children undergoing surgery for non-syndromic single-suture craniosynostosis resulted in a decreased ICU stay without an increase in morbidity. However, this study largely assessed postoperative strategies such as when to perform
neurological examinations, draw labs, and thresholds for transfusion.26 In our study, while the length of stay in the PICU was not decreased, the overall length of stay was decreased in the ERAS cohort. Our study was not powered to detect a difference in PICU length of stay, as this duration is typically only 1–2 nights. Thus, a further reduction would likely only be possible if some children were not admitted to the ICU after FOA, which, at this time, is not a protocol that our institution has adopted.

To eliminate outliers in regard to age and patients undergoing secondary surgery, a subgroup analysis was performed on children aged less than 18 months at the time of surgery. Similar findings were demonstrated in this analysis with decreased transfusion rates, opioid requirements, and length of stay, indicating that this protocol can be applied to even our most vulnerable subgroup of children undergoing FOA.

In conclusion, analysis of our ERAS pathway for patients undergoing FOA demonstrated that this approach led to a reduction in overall and intraoperative allogenic blood transfusion rate, reduction in narcotic use, and hospital length of stay. We will continue to use and improve upon this protocol for children undergoing FOA, as well as other complex craniofacial procedures. We hope this report encourages other institutions to adopt a comprehensive perioperative pathway to enable safe and effective expedited recovery for these children.

Niyant Patel, MD
Akron Children’s Hospital Craniofacial Center
Akron Considine Professional Building
215 West Bowery Street, Suite 3300
Akron, OH 44308-1062
E-mail: npatel2@akronchildrens.org

REFERENCES
1. Kehlet H, Wilmore DW. Multimodal strategies to improve surgical outcome. Am J Surg. 2002;183:630–641.
2. Ansari D, Gianotti L, Schröder J, et al. Fast-track surgery: procedure-specific aspects and future direction. Langenbecks Arch Surg. 2015;398:29–37.
3. Varadhan KK, Neal KR, Dejong CH, et al. The enhanced recovery after surgery (ERAS) pathway for patients undergoing major elective open colorectal surgery: a meta-analysis of randomized controlled trials. Clin Nutr. 2010;29:434–440.
4. Batdorf NJ, Lemaine V, Lovel J, et al. Enhanced recovery after surgery in microvascular breast reconstruction. J Plast Reconstr Aesthet Surg. 2015;68:395–402.
5. Bonde C, Khorasani H, Eriksen K, et al. Introducing the fast track surgery principles in children undergoing craniofacial procedures. J Plast Reconstr Hand Surg. 2015;49:367–371.
6. Vallejo MC, Phelps AL, Ibinson JW, et al. Aprepitant plus ondansetron compared with ondansetron alone in reducing postoperative nausea and vomiting in ambulatory patients undergoing plastic surgery. Plast Reconstr Surg. 2012;129:519–526.
7. Avazani-Zadeh R, ElFadl D, Yassin N, et al. Evidence-based review of enhancing postoperative recovery after breast surgery. Br J Surg. 2011;98:181–196.
8. Chung F, Mezei G. Factors contributing to a prolonged stay after ambulatory surgery. Anesth Analg. 1999;89:1352–1359.
9. Power I, Barratt S. Analgesic agents for the postoperative period. Nonopioids. Surg Clin North Am. 1999;79:275–295.
10. Petterson N, Perbeck L, Hahn RG. Efficacy of subcutaneous and topical local anaesthesia for pain relief after resection of malignant breast tumours. Eur J Surg. 2001;167:825–830.
11. Männiche S, Mikkelsen S, Wetterson J, et al. A qualitative systematic review of incisional local anaesthesia for postoperative pain relief after abdominal operations. Br J Anaesth. 1998;81:377–383.
12. Fassoulaki A, Triga A, Melemeni A, et al. Multimodal analgesia with gabapentin and local anesthetics prevents acute and chronic pain after breast surgery for cancer. Anesth Analg. 2005;101:1427–1432.
13. Bhatti N, Bala I, Narayan V, et al. Effect of gabapentin pre-treatment on propofol consumption, hemodynamic variables, and postoperative pain relief in breast cancer surgery. Acta Anaesthesiol Taiwana. 2013;51:10–13.
14. Dumestre DO, Webb CE, Temple-Oberle C. Improved recovery experience achieved for women undergoing implant-based breast reconstruction using an enhanced recovery after surgery model. Plast Reconstr Surg. 2017;139:550–559.
15. Davidge KM, Brown M, Morgan P, et al. Processes of care in autogenous breast reconstruction with pedicled TRAM flaps: expediting postoperative discharge in an ambulatory setting. Plast Reconstr Surg. 2013;132:339S–344E.
16. Weber WP, Barry M, Junqueira MJ, et al. Initial experiences with a multidisciplinary approach to decreasing the length of hospital stay for patients undergoing unilateral mastectomy. Eur J Surg Oncol. 2011;37:944–949.
17. Mertz BG, Kroman N, Williams H, et al. Fast-track surgery for breast cancer is possible. Dan Med J. 2013;60:A4615.
18. Bonde CT, Khorasani H, Elberg J, et al. Perioperative optimization of autologous breast reconstruction. Plast Reconstr Surg. 2016;137:411–414.
19. Astanehe A, Temple-Oberle C, Nielsen M, et al. An enhanced recovery after surgery pathway for microvascular breast reconstruction is safe and effective. Plast Reconstr Surg Glob Open. 2018;6:e1634.
20. Seruya M, Sauerhammer TM, Basci D, et al. Analysis of routine intensive care unit admission following fronto-orbital advancement for craniosynostosis. Plast Reconstr Surg. 2013;131:582e–588e.
21. Seruya M, Oh AK, Rogers GF, et al. Factors related to blood loss during fronto-orbital advancement. J Craniofac Surg. 2012;23:358–362.
22. Fernandez A, M., Reddy, S. K., Gordish-Dressman, H., et al. Perioperative outcomes and surgical case volume in pediatric complex cranial vault reconstruction: a multicenter observational study from the Pediatric Craniofacial Collaborative Group. Anesth Analg 2018;129:1069–1078.
23. Wolfsinkel EM, Howell LK, Fahradyan A, et al. Is postoperative intensive care unit care necessary following cranial vault remodeling for sagittal synostosis? Plast Reconstr Surg. 2017;140:1235–1239.
24. Aljaaly HA, Aldekhayel SA, Diaz-Abele J, et al. Effect of erythropoietin on transfusion requirements for craniosynostosis surgery in children. J Craniofac Surg. 2017;28:1315–1319.
25. Stricker PA, Lin EE, Fiadjo JE, et al. Evaluation of central venous pressure monitoring in children undergoing craniofacial reconstruction surgery. Anesth Analg. 2013;116:411–419.
26. Gan H, Cannesson M, Chandler JR, et al. Predicting fluid responsiveness in children: a systematic review. Anesth Analg. 2013;117:1380–1392.
27. Bhananker SM, Ramamoorthy C, Geiduschek JM, et al. Anesthesia-related cardiac arrest in children: update from the Pediatric Perioperative Cardiac Arrest Registry. Anesth Analg. 2007;105:344–350.
28. Tuncer F, Knackstedt R, Murthy A, et al. Postoperative ketorolac administration is not associated with hemorrhage in cranial vault remodeling for craniosynostosis. Plast Reconstr Surg Glob Open. 2019;7:e2401.
29. Seruya M, Oh AK, Boyajian MJ, et al. Long-term outcomes of primary craniofacial reconstruction for craniosynostosis: a 12-year experience. Plast Reconstr Surg. 2011;127:2397–2406.
30. Tahiri Y, Paliga JT, Wes AM, et al. Perioperative complications associated with intracranial procedures in patients with nonsyndromic single-suture craniosynostosis. J Craniofac Surg. 2015;26:118–123.
31. Goobie SM, Zurakowski D, Proctor MR, et al. Predictors of clinically significant postoperative events after open craniosynostosis surgery. Anesthesiology. 2015;122:1021–1032.
32. Whitaker LA, Munro IR, Salyer KE, et al. Combined report of problems and complications in 793 craniofacial operations. Plast Reconstr Surg. 1979;64:198–203.
33. Park C, Wormald J, Miranda BH, et al. Perioperative blood loss and transfusion in craniosynostosis surgery. J Craniofac Surg. 2018;29:112–115.
34. Naran S, Cladis F, Fearon J, et al. Safety of preoperative erythropoietin in surgical calvarial remodeling: an 8-year retrospective review and analysis. Plast Reconstr Surg. 2012;130:306e–310e.
35. Feldman JM, Roth JV, Bjoraker DG. Maximum blood savings by acute normovolemic hemodilution. Anesth Analg. 1995;80:108–113.
36. Fearon JA, Weinfeld J. The use of recombinant erythropoietin in the reduction of blood transfusion rates in craniosynostosis repair in infants and children. Plast Reconstr Surg. 2002;109:2190–2196.
37. Krajewski K, Ashley RK, Pung N, et al. Successful blood conservation during craniosynostotic correction with dual therapy using procrit and cell saver. J Craniofac Surg. 2008;19:101–105.
38. Meara JG, Smith EM, Harshbarger RJ, et al. Blood conservation techniques in craniofacial surgery. Ann Plast Surg. 2005;54:525–529.
39. Meneghini L, Zadra N, Aneloni V, et al. Erythropoietin therapy and acute preoperative normovolemic haemodilution in infants undergoing craniosynostosis surgery. Paediatr Anaesth. 2003;13:392–396.
40. Reddy SK, Swink JM, Rogers GF, et al. Transfusion-free calvarial vault reconstruction using multimodal blood conservation strategies in two pediatric Jehovah’s Witness patients with craniosynostosis. A A Case Rep. 2016;7:33–36.
41. Vega RA, Lyon C, Kierce JE, et al. Minimizing transfusion requirements for children undergoing craniosynostosis repair: the CHoR protocol. J Neurosurg Pediatr. 2014;14:190–195.
42. Velardi F, Di Chirico A, Di Rocco C, et al. “No allogeneic blood transfusion” protocol for the surgical correction of craniosynostoses. II. Clinical application. Childs Nerv Syst. 1998;14:732–9; discussion 740.
43. McCormack PL. Tranexamic acid: a review of its use in the treatment of hyperfibrinolysis. Drugs. 2012;72:585–617.
44. Slaughter TF, Greenberg CS. Antifibrinolytic drugs and perioperative hemostasis. Am J Hematol. 1997;56:32–36.
45. Dunn CJ, Goa KL. Tranexamic acid: a review of its use in surgery and other indications. Drugs. 1999;57:1005–1032.
46. Song G, Yang P, Zhu S, et al. Tranexamic acid reducing blood transfusion in children undergoing craniosynostosis surgery. J Craniofac Surg. 2013;24:299–303.
47. Carless, PA, Henry, DA, Mosey, AJ, et al. Cell salvage for minimizing perioperative allogeneic blood transfusion. Cochrane Database Syst Rev. 2010:CD001888.
48. Carrier M, Denault A, Lavoie J, et al. Randomized controlled trial of pericardial blood processing with a cell-saving device on neurologic markers in elderly patients undergoing coronary artery bypass graft surgery. Ann Thorac Surg. 2006;82:51–55.
49. Jimenez DF, Barone CM. Intraoperative autologous blood transfusion in the surgical correction of craniosynostosis. Neurosurgery. 1995;37:1075–1079.
50. Fearon JA. Reducing allogeneic blood transfusions during pediatric cranial vault surgical procedures: a prospective analysis of blood recycling. Plast Reconstr Surg. 2004;113:1120–1130.
51. Czerwinski M, Hopper RA, Gruss J, et al. Major morbidity and mortality rates in craniofacial surgery: an analysis of 8101 major procedures. Plast Reconstr Surg. 2010;126:181–186.
52. Vamvakas EC. Long-term survival rate of pediatric patients after blood transfusion. Transfusion. 2008;48:2478–2480.
53. Faberowski LW, Black S, Mickle JP. Blood loss and transfusion practice in the perioperative management of craniosynostosis repair. J Neurosurg Anesthesiol. 1999;11:167–172.
54. Koh JL, Gries H. Perioperative management of pediatric patients with craniosynostosis. Anesthesiol Clin. 2007;25:465–481, viii.
55. Phillips RJ, Mulliken JB. Venous air embolism during a craniofacial procedure. Plast Reconstr Surg. 1988;82:155–159.
56. Stricker PA, Shaw TL, Desouza DG, et al. Blood loss, replacement, and associated morbidity in infants and children undergoing craniofacial surgery. Paediatr Anaesth. 2010;20:150–159.
57. Stricker PA, Fiadjoe JE, Kilbaugh TJ, et al. Effect of transfusion guidelines on postoperative transfusion in children undergoing craniofacial reconstruction surgery. Pediatr Crit Care Med. 2012;13:e557–e562.
58. Nguyen TT, Hill S, Austin TM, et al. Use of blood-sparing surgical techniques and transfusion algorithms: association with decreased blood administration in children undergoing primary open craniosynostosis repair. J Neurosurg Pediatr. 2015;16:556–563.
59. Haas T, Goobie S, Spielmann N, et al. Improvements in patient blood management for pediatric craniosynostosis surgery using a ROTEM®-assisted strategy-feasibility and costs. Paediatr Anaesth. 2014;24:774–780.
60. Lin LO, McKenna RA, Zhang RS, et al. A standardized perioperative clinical pathway for uncomplicated craniosynostosis repair is associated with reduced hospital resource utilization. J Craniofac Surg. 2019;30:105–109.