Theoretical Study on Coexistence of Ferromagnetism and Superconductivity

Hirono Kaneyasu¹* and Kosaku Yamada²

¹Department of Material Science, University of Hyogo, Kamigori, Akou, Hyogo 678-1297, Japan
²Department of Physics, Kyoto University, Kyoto 606-8502, Japan

On the basis of a two-dimensional t-t’ Hubbard model in ferromagnetic and paramagnetic states, the triplet superconducting mechanism is investigated by the third-order perturbation theory with respect to the on-site Coulomb interaction U. In general, the superconducting state is more stable in the paramagnetic state than in the ferromagnetic state. As a special case, the dominant ferromagnetic superconductivity is obtained by the electron-electron correlation between the electronlike majority and holelike minority bands. Furthermore, it is pointed out that in some cases the two bands play an essential role for the coexistence of superconductivity and ferromagnetism.

KEYWORDS: superconductivity, ferromagnetism, Hubbard model, UGe₂

The experimental discoveries of uranium compounds have attracted interest in the relation between ferromagnetism (FM) and superconductivity (SC). Generally, SC does not favorably coexist with FM since the FM moment gives rise to an internal magnetic field, which breaks the pairing state. However, SC favorably coexists with FM since the effective interaction vanishes between the two materials in the paramagnetic (PM) phase. Such a coexistence is rarely found in a few materials belonging to a strongly correlated system. Therefore, the coexistence may be realized only under certain specific conditions in the strongly correlated system. To understand optimum conditions for the coexistence, we investigate certain microscopic mechanisms between the coexistence and incompatibility in this paper. Here, that of SC in the FM state is similar to the situation of SC in the magnetic field. Arita et al. 4 studied the triplet SC induced in the magnetic field on the basis of the fluctuation exchange approximation. Their study is related to this investigation, although the methods and lattice structures are different.

We focus our study on the possibility of the triplet pairing originating from the electron-electron correlation. The behavior of SC in PM and FM is studied in a quasi-two-dimensional (2D) system. For this purpose, we adopt the 2D t-t’ Hubbard model with the majority and minority bands in the FM state. The on-site Coulomb correlation U works between the majority and minority bands. The effective interaction for the triplet pairing is studied on the basis of the perturbation theory with respect to the on-site Coulomb repulsion U. The triplet SC in PM was analyzed by the third-order perturbation theory (TOPT). ⁵ We extend the theory to SC in the FM state. The dependence of SC on the magnetization is studied using the Eliashberg equation in the FM state.

In this model, SC is not induced in the complete FM state corresponding to the empty in the minority bands, since the effective interaction vanishes between the two bands. With decreasing FM moment, the effective interaction has the momentum dependence due to U between the majority and minority bands. The momentum dependence is sensitive to changes in the two bands. The value of magnetization corresponds to the difference between filling numbers in the two bands. Thus, the change in magnetization leads to the changes in both Fermi surfaces (FS) and the density of states (DOS) in the two bands. In the above consideration, we study the relation between SC and the change of bands from PM to FM.

The formulation is as follows. The 2D t-t’ Hubbard Hamiltonian with the two bands is given by

\[\mathcal{H} = t_\sigma \sum_{\mathbf{i},\mathbf{s}} c^\dagger_{\mathbf{i},\sigma} c_{\mathbf{i}+\mathbf{a},\sigma} + t'_\sigma \sum_{\mathbf{i},\mathbf{b},\mathbf{s}} c^\dagger_{\mathbf{i},\sigma} c_{\mathbf{i}+\mathbf{b},\sigma} + U \sum_{\mathbf{i}} n_{\mathbf{i},\sigma} n_{\mathbf{i},-\sigma}, \]

where \(c_{\mathbf{i},\sigma} \) is an annihilation operator for a quasi particle with spin \(\sigma \) at site \(\mathbf{i} \). \(a \) and \(b \) are, respectively, the vectors connecting nearest-neighbor and next-nearest-neighbor sites in a square lattice. The indices \(s \) with \(\uparrow \) and \(\downarrow \) indicate majority and minority bands, respectively. The transfer integrals \(t_\sigma \) and \(t'_\sigma \) denote nearest-neighbor and next-nearest-neighbor hopping integrals, respectively. \(U \) is the on-site Coulomb interaction between majority and minority electrons, and \(n_{\mathbf{i},\sigma} = c^\dagger_{\mathbf{i},\sigma} c_{\mathbf{i},\sigma} \). We assume the dispersion \(E_{\mathbf{k},\sigma} \) so as to produce the 2D cylindrical majority FS and minority FS in the square lattice, leading to

\[E_{\mathbf{k},\sigma} = 2t_\sigma (\cos k_x + \cos k_y) + 4t'_\sigma \cos k_x \cos k_y. \]

Then, we obtain the bare Green’s function as \(G_{0,\sigma}(\mathbf{k}) = 1/\left[\omega_n - (E_{\mathbf{k},\sigma} - \mu_{0,\sigma}) \right] \), where \(k \) is the short-hand notation defined as \(k = (\mathbf{k}, \omega_n) \), \(\mathbf{k} \) is the momentum and \(\omega_n = \pi T(2n + 1) \) is the fermion Matsubara frequency with temperature \(T \). Note that the chemical potential \(\mu_{0,\sigma} \) for the noninteraction case is determined by the electron number \(n_{\sigma} \) (per site and spin) as \(n_{\sigma} = \sum_k G_{0,\sigma}(k) \), where \(\sum_k = (T/N) \sum_k \sum_{\sigma} \) and \(N \) is the number of sites. The difference between filling numbers in majority and minority bands corresponds to the value of magnetization. The filling numbers are changed from PM to FM by the shifts of the chemical potential \(\mu_{0,\uparrow} \) and \(\mu_{0,\downarrow} \) with the constant value of the total electron number \(n_{\uparrow} + n_{\downarrow} \).

For the triplet pairing, the effective interactions \(V \) for the two bands are based on the TOPT extended from...
Fig. 1. Dependence of λ on n_\uparrow and n_\downarrow in case (1). $n_{PM} = n_\uparrow = n_\downarrow$ in PM equals the half-filling and 0.33 far from the half-filling, corresponding to (1-A) and (1-B), respectively. λ values of majority and minority bands correspond to the right- and left-hand side of the figure, respectively.

PM to FM, and they are given by

$$V_s^{TOPT}(k,k') = U^2 \chi_{0,-s,-s}(k-k')$$

$$+ 2U^3 \text{Re} \sum_{k''} G_{0,-s}(k+k''-k') (\chi_{0,s,-s}(k+k'')$$

$$+ \phi_{0,s,-s}(k+k'')) G_{0,-s}(k''),$$

(3)

with

$$\chi_{0,s,s}(q) = - \sum_k G_{0,s}(k) G_{0,s}(q+k),$$

(4)

$$\phi_{0,s,s}(q) = - \sum_k G_{0,s}(k) G_{0,s}(q-k).$$

(5)

An effective pairing interaction V_s^{TOPT} between particles is evaluated using TOPT. To clarify in detail the effect of the perturbation term, we also study SC on the basis of the second-order perturbation theory (SOPT). An anomalous self-energy $\Sigma_{A,s}$ is expressed using $V_s(k,k')$ and an anomalous Green's function $F(k)$ as $\Sigma_{A,s}(k) = - \Sigma V_s(k,k') F_s(k')$. At the SC transition temperature T_{SC}, the linearized Eliashberg equation is reduced to the eigenvalue equation,

$$\lambda_s \Sigma_{A,s}^s(k) = - \sum_{k'} V_s(k,k') G_s(k') \Sigma_{A,s}^\dagger(k'),$$

(6)

We take $|t_s| = 1.0$ as the unit of energy. The large λ value indicates that T_{SC} becomes high. An effective pairing interaction V_s is also evaluated on the basis of TOPT. Although the origin of SC is investigated using the total terms in V_s, in order to analyze the role of V_s in detail, it is convenient to divide it into two parts, namely, V_s^{TOPT} and V_s^{SOPT}. V_s^{SOPT} and V_s^{TOPT} represent the effective interaction obtained on the basis of SOPT and TOPT, respectively. We solve the equation with the assumption that $\Sigma_{A,s}^s$ has a triplet symmetry. In the numerical calculation, we divide the first Brillouin zone (BZ) into 128×128 momentum meshes and take $N_f = 1024$ for Matsubara frequency ω_n. The bandwidth W ($W \sim 8t$) is a necessary range of ω_n for reliable calculations. The range is covered under the condition $|W| < \pi TN_f$. To satisfy this condition, we calculate λ in the region with $T > 0.004$.

First, the behavior of λ is investigated for the following case, where FS ((1),(2)) and the filling number ((A),(B)) in PM and FM are assumed as follows.

(1) Electronlike majority FS and electronlike minority FS (Transfer integrals t_s and t'_s have the same signs between the majority and minority bands.)

(2) Electronlike majority FS and holelike minority FS (Transfer integrals have the opposite signs between the two bands.)

Here, we take $t'_\uparrow = -1.0$ and we choose the absolute values of t_s and t'_s to be identical between the two bands for simplification.

(A) Half-filling in PM (Filling number in PM: $n_{PM} = (n_\uparrow + n_\downarrow)/2 = n_\uparrow = n_\downarrow = 0.5$)

(B) Filling number far from half-filling in PM ($n_{PM} = 0.33$)

The filling numbers of the two bands are changed from PM to FM, starting from the filling number in PM. Here, PM indicates that the filling number agrees between the majority and minority bands. PM in case (1) is the general PM state with the same FS in the two bands. On the other hand, PM in case (2) is not the general PM and possesses a different FS for the two bands.

As the results, for cases (1-A), (1-B), (2-A) and (2-B),
the behavior of λ obtained on the basis of TOPT is shown in Figs. 1 and 2. λ in PM has identical values between (1-A) and (2-A) due to the agreement of FS in the two bands. The large λ for (1-A) is given in PM, as shown in the data for $t_1' = 0$. (1-B) has a small λ value in both PM and FM, thus the case is inappropriate for the realization of SC. λ for (2-A) takes a large value at $t_1' = -0.4$ in FM.

Fig. 3. FS in BZ and DOS.

The majority band is dominant in SC in Figs. 1 and 2. However, the minority band is dominant in SC in the case of $n_{PM} = 0.45$. Corresponding to this, at the same $|t_1'|$ value in case (2-A), both the majority and minority bands have a large DOS value at the Fermi level, as shown in Fig. 3(2-B). The large DOS value is due to the location of the van Hove singularity at the Fermi level. The large DOS value at the Fermi surface is also essential to the mechanism of FM-SC, as well as that of PM-SC.

Next, we explain the effect of the momentum dependence in the effective interaction, which originates from the features of FS. The FS features are shown in Fig. 3. In the combination of electronlike FS and electronlike FS, which does not lead to the larger value of λ in FM than in PM, the momentum dependence suitable for the triplet pairing is induced by the identical FS features of the two bands in PM. However, the discrepancy of the two bands in FM does not induce the momentum dependence suitable to the triplet pairing. On the other hand, in the combination of electronlike FS and holelike FS, the large λ value is obtained in FM. To clarify the effect of the momentum dependence, the comparison be-
The origin from FS is important for FM-SC. This finding indicates that the momentum dependence does not accord with the large DOS value at the Fermi level. These behaviors do not accord with the filling number far from the half-filling. These findings explain that the coexistence of FM and SC happens due to the specific features of the two bands. Therefore, these findings explain that the coexistence of FM and SC is a rare phenomenon.

Here, we comment on FM-SC in UGe₂ in the strongly correlated systems. Recently, the band calculation in PM indicates the two bands with the filling number far from the half-filling.6,8,9 The effective combination of the two bands is the electronlike FS and hololelike FS, which possess the almost 2D features in PM. We assume the following situation in FM. In the FM phase, the electronlike FS in PM may split into the majority electronlike FS and minority electronlike FS. As well as this, the holelike FS in PM may split into the majority holelike FS and minority holelike FS. Under this assumption, we should compare the eigenvalues between the four bands in FM and the two bands in PM. The majority FS and minority FS in PM are not identical in case (2), and the results in (2) is insufficient for SC in PM. In adding to this, both center points of the two FS features in PM locate at the center of BZ of our model, and these are different from those located near the center and edge of BZ obtained by band calculation. Therefore, the result may change in the model with different center points. This problem is our further investigation.7 However, in the region of FM states, the result of (IV) may suggest the following explanation. The triplet SC in FM is mainly induced by the electron correlation between the majority and minority bands on FM-SC in the other filling numbers and hopping integrals. The importance of the effects is general over wide regions of the parameters. In this paper, we show the representative behaviors at the parameters of the four cases. Finally, we mention the pairing symmetry obtained in Σ₄,↑. In the parameter with the largest λ value for (2-B), the momentum dependence of the pairing symmetry indicates the pₓ-wave symmetry in FM.

As the summary, we conclude that the mechanism of FM-SC depends on the features of both majority and minority bands. (I) The band with the largest DOS at the Fermi level gives the dominant effect on the rise of Tₜ in FM. The location of the large DOS at the Fermi surface gives rise to the strong correlation in FM. (II) The momentum dependence of FS of the two bands in FM is important for the momentum dependence of the effective interaction to induce the attractive interaction for SC. (III) The existence of both majority and minority spins is essential for the origin of FM-SC. FM-SC is not induced in the absence of the minority spins corresponding to the full magnetized state, because of the absence of the electron-electron correlation between the majority and minority bands. (IV) SC is more favorable in FM rather than in PM in the combination of electronlike majority FS and hololelike minority FS. The possibility of SC coexisting with FM is strong in a specific situation with the combination of electronlike FS and hololelike FS, which have the filling number far from half-filling in PM. On the other hand, the realization of FM-SC is difficult in the combination of electronlike FS and electronlike FS or under the condition near half-filling in PM. These findings indicate that the coexistence of FM and SC happens due to the specific features of the two bands. Therefore, these findings explain that the coexistence of FM and SC is a rare phenomenon.
bands rather than by that between the majority electronlike (holelike) and minority electronlike (holelike) bands. Since we have holelike and electronlike Fermi surfaces, we can expect that the mechanism (IV) is effective. Experimentally, the markable mass enhancement is observed in the region of the pressure-induced SC, and the mass enhancement indicates the effect of the strong correlation for the origin of SC in FM.

From our results in this simple model, the electron correlation is expected to be strong by the large DOS value at the Fermi level, which is obtained by the markable change of the magnetization, in addition to the momentum dependence including the FM spin fluctuation. Therefore, as in the system, the change of FS of the two bands in FM is related to the mechanism of FM-SC. The existence of the minority spin is essential for the appearance of FM-SC. We suggest the possibility of the p-wave triplet FM-SC in UGe$_2$ on the basis of the electron-electron correlation between the majority and minority spins.

The authors thank Professor. T. Yamagami, Professor. K. Makoshi and Dr. H. Ikeda for valuable discussions.

1) S. S. Saxena, P. Agarwal, K. Ahilan, F. M. Grosche, R. K. W. Hasselwimmer, M. J. Steiner, E. Pugh, I. R. Walker, S. R. Julian, P. Monthoux, G. G. Lonzarich, A. Huxley, I. Sheikin, D. Braithwaite, and J. Flouquet: Nature 406 (2000) 1705.
2) A. Huxley, I. Sheikin, E. Ressouche, N. Kernavanois, D. Braithwaite, R. Calemczuk, and J. Flouquet: Phys. Rev. B 63 (2001) 144519.
3) D. Aoki, A. Huxley, E. Ressouche, D. Braithwaite, J. Flouquet, J.-P. Brison, E. Lhotel, and C. Paulse: Nature 413 (2001) 613.
4) R. Arita, K. Kuroki, and H. Aoki: J. Phys. Soc. Jpn. 73 (2004) 533.
5) T. Nomura and K. Yamada: J. Phys. Soc. Jpn. 69 (2000) 3078.
6) M. Biasini and R. Troc: Phys. Rev. B 68 (2003) 245118.
7) We had investigated the problem in the structure of zigzag-chain. The result supports the conclusions (I)-(IV) of our this paper.
8) R. Settai, M. Nakashima, S. Araki, T.C. Kobayashi, N. Tateiwa, H. Yamagami, and Y. Onuki: J. Phys.: Condens. Matter 14 (2002) L 29.
9) A. B. Shick and W. E. Pickett: Phys. Rev. Lett. 86 (2001) 300.