Research Article

Existence and Uniqueness of Positive Solutions for a Coupled System of Fractional Differential Equations

Hanying Feng and Xiaofeng Zhang

1 Department of Mathematics, Nantong Institute of Technology, Nantong 226002, Jiangsu, China
2 Department of Mathematics, Shijiazhuang Mechanical Engineering College, Shijiazhuang 050003, Hebei, China

Correspondence should be addressed to Hanying Feng; fhanying@126.com

Received 13 March 2022; Revised 11 May 2022; Accepted 10 June 2022; Published 20 September 2022

Copyright © 2022 Hanying Feng and Xiaofeng Zhang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this article, we investigate a boundary value problem for a coupled differential system of fractional order that the nonlinear term depends on the unknown functions as well as their lower order fractional derivatives. Firstly, we give Green’s functions and prove their properties; secondly, the existence and uniqueness of positive solutions are obtained by using some fixed point theorems. In addition, two examples are presented to demonstrate the application of our main results.

1. Introduction

Fractional differential equations have received considerable attention in recent years due to their wide applications in engineering, physics, economy, and control theory (see the monographs of Das [1], Kilbas et al. [2], and Podlubny [3]). There are a large number of papers dealing with the solvability of nonlinear fractional differential equations, such as [4–8] and references therein. The study of coupled differential systems of fractional order is very significant because this kind of system can often occur in applications. Recently, a series of investigations on boundary value problems for fractional differential equation systems with the nonlinearity depending on the fractional derivative have been presented. Most of them are devoted to the solvability of nonlinear fractional differential equation systems by using techniques of nonlinear analysis [9–15]. It is worth mentioning that the nonlinear terms in these papers are independent of the fractional derivative of the unknown functions. But the opposite case is more difficult and complicated, and this work attempts to deal exactly with this case.

In [16], the authors investigated a three-point boundary value problem for a coupled system of nonlinear fractional differential equations given by

\[
\begin{aligned}
D^\alpha u(t) + f(t, v(t), D^\nu v(t)) &= 0, \quad 0 < t < 1, \\
D^\beta v(t) + g(t, u(t), D^\beta u(t)) &= 0, \quad 0 < t < 1, \\
u(0) &= 0, \quad u(1) = v(0) = v(1) = 0,
\end{aligned}
\]

where \(1 < \alpha, \beta < 2, p, q, \gamma > 0, 0 < \eta < 1, \alpha - q \geq 1, \beta - p \geq 1, \gamma \eta^{a-1} < 1, \gamma \eta^{b-1} < 1, f, g : [0, 1] \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) are given continuous functions. The nonlinear terms in the coupled system involve the fractional derivatives of the unknown functions.

In [12], the author discussed the existence of solutions for a coupled differential system of fractional order:

\[
\begin{aligned}
D^\beta v(t) + g(t, u(t), D^\beta u(t)) &= 0, \quad 0 < t < 1, \\
u(0) &= u(1) = v(0) = v(1) = 0,
\end{aligned}
\]

where \(1 < \alpha, \beta < 2, \mu, \nu > 0, \alpha - \nu \geq 1, \beta - \mu \geq 1, f, g : (0, 1) \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) are given functions.

Motivated by the above work, in this paper, we consider the system of nonlinear fractional differential equations:
\[
\begin{aligned}
D^\alpha u(t) + f(t, v(t), D^\beta v(t)) &= 0, \quad 0 < t < 1 \\
D^\beta v(t) + g(t, u(t), D^\gamma u(t)) &= 0, \quad 0 < t < 1, \\
u(0) = u'(0) = 0, \quad u'(1) = \mu v'(\xi), \\
v(0) = v'(0) = 0, \quad v'(1) = \mu v'(\xi).
\end{aligned}
\]

(3)

where \(2 < \alpha, \beta, \gamma \leq 3\), and \(\alpha - \beta - \gamma \geq 1\). For \(\alpha = \beta = \gamma \geq 1\), \(0 < \xi < 1\), \(0 < \mu \xi^{\alpha-2} < 1\), \(0 < \mu \xi^{\beta-2} < 1\), \(\alpha > 1\), and \(\beta > 1\) are given by the Riemann–Liouville fractional derivatives and \(f, g: [0, 1] \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) are continuous functions and depend on the unknown functions as well as their lower order fractional derivatives. The properties of Green’s function are investigated and the existence and uniqueness results of positive solutions are obtained by applying Schauder fixed point theorem and contraction mapping principle.

\section*{2. Preliminaries}

For the convenience of the readers, we present here the necessary definitions from fractional calculus theory. These definitions can be found in the recent literature \([2–5, 7, 17]\).

\textbf{Definition 1} (see \([2, 3]\)). The Riemann–Liouville fractional integral of order \(\alpha > 0\) of a function \(f: (0, +\infty) \rightarrow \mathbb{R}\) is given by

\[
I^\alpha f(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} f(s)ds, \quad t > 0,
\]

(4)

provided the integral exists.

\textbf{Definition 2} (see \([2, 3]\)). The Riemann–Liouville fractional derivative of order \(\alpha > 0\) for a function \(f: (0, +\infty) \rightarrow \mathbb{R}\) is given by

\[
D^\alpha f(t) = \left(\frac{d}{dt}\right)^n \left(\int_0^t (t-s)^{\alpha-n-1} f(s)ds\right), \quad t > 0,
\]

(5)

where \(n = [\alpha] + 1\), in which \([\alpha]\) denotes the integer part of the number \(\alpha\).

\textbf{Lemma 1} (see \([2, 4]\)). Let \(\alpha > 0\). If we assume \(u \in C(0, 1) \cap L(0, 1)\), then the fractional differential equation

\[
D^\alpha u(t) = 0
\]

has solutions

\[
u(t) = C_1 t^{\alpha-1} + C_2 t^{\alpha-2} + \cdots + C_N t^{\alpha-N}, \quad C_i \in \mathbb{R}, i = 1, 2, \ldots, N,
\]

(6)

where \(N\) is the smallest integer greater than or equal to \(\alpha\).

\textbf{Lemma 2} (see \([2, 4]\)). Assume that \(u \in C(0, 1) \cap L(0, 1)\) with a fractional derivative of order \(\alpha (\alpha > 0)\) that belongs to \(C(0, 1) \cap L(0, 1)\), then

\[
I^\alpha D^\alpha u(t) = u(t) + C_1 t^{\alpha-1} + C_2 t^{\alpha-2} + \cdots + C_N t^{\alpha-N},
\]

(7)

for some \(C_i \in \mathbb{R}, i = 1, 2, \ldots, N\), where \(N\) is the smallest integer greater than or equal to \(\alpha\).

\textbf{Remark 1} (see \([2, 3]\)). The following properties are useful for our discussion:

\[
I^\alpha I^\beta f(t) = I^{\alpha+\beta} f(t), \quad D^\alpha D^\beta f(t) = I^{\alpha-\beta} f(t)
\]

(8)

provided that \(\alpha + \beta > 0\).

In the following, we present Green’s function of the fractional differential equation boundary value problem.

\textbf{Lemma 3}. Let \(h_1 \in C[0, 1]\) and \(2 < \alpha \leq 3\), the unique solution of problem

\[
D^\alpha u(t) + h_1(t) = 0, \quad 0 < t < 1,
\]

(9)

is

\[
u(0) = u'(0) = 0, \quad u'(1) = \mu u'(
\]

(10)

where

\[
G_1(t, s) = \begin{cases}
\frac{(1-s)^{\alpha-2} t^{\alpha-1} - \mu (\xi - s)^{\alpha-2} t^{\alpha-1} - (1-\mu)^{\alpha-2} (1-\mu t^{\alpha-2})}{\Gamma(\alpha)}, & 0 \leq s < t \leq 1, s \leq \xi, \\
\frac{(1-s)^{\alpha-2} t^{\alpha-1} - (1-\mu)^{\alpha-2} t^{\alpha-1}}{\Gamma(\alpha)}, & 0 < \xi < \mu t^{\alpha-2} < 1, \\
\frac{(1-s)^{\alpha-2} t^{\alpha-1} - \mu (\xi - s)^{\alpha-2} t^{\alpha-1}}{\Gamma(\alpha)}, & 0 \leq t < s \leq \xi < 1, \\
\frac{(1-s)^{\alpha-2} t^{\alpha-1}}{\Gamma(\alpha)}, & 0 \leq t < s \leq 1, \xi < s.
\end{cases}
\]

\[n \end{cases}
\]

(11)
Here, \(G_1(t, s) \) is called Green's function of BVP (9) and (10).

Proof. The function \(u(t) \) is said be a solution of BVP (9) and (10) if it satisfies the fractional differential equation (9) and boundary conditions (10) in the classical sense. We may apply Lemma 2 to reduce equation (9) to an equivalent integral equation

\[
u(t) = -t^\alpha h_1(t) + C_1 t^{\alpha-1} + C_2 t^{\alpha-2} + C_3 t^{\alpha-3}, \quad (12)
\]

for some \(C_1, C_2, C_3 \in \mathbb{R} \). Consequently, the general solution of equation (9) is

\[
u(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} h_1(s)ds + C_1 t^{\alpha-1} + C_2 t^{\alpha-2} + C_3 t^{\alpha-3}.
\]

(13)

By \(u(0) = u'(0) = 0 \), there are \(C_2 = C_3 = 0 \). On the other hand, \(u'(1) = \mu u'(\xi) \) combining with

\[
u'(1) = \frac{1}{\Gamma(\alpha)} \int_0^1 (1-s)^{\alpha-2} h_1(s)ds + (\alpha - 1)C_1,
\]

(14)

\[
u'(\xi) = \frac{1}{\Gamma(\alpha)} \int_0^\xi (\xi-s)^{\alpha-2} h_1(s)ds + (\alpha - 1)C_1 \xi^{\alpha-2},
\]

one has \(C_1 = (1/(1 - \mu \xi^{\alpha-2})) \int_0^1 (1-s)^{\alpha-2} h_1(s)/\Gamma(\alpha) \) ds. (15)

Therefore, the unique solution of problem (9) and (10) is

\[
u(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} h_1(s)ds + \frac{1}{1 - \mu \xi^{\alpha-2}} \left[\int_0^t (1-s)^{\alpha-2} t^{\alpha-1} h_1(s)ds \right.
\]

\[
- \frac{\mu}{1 - \mu \xi^{\alpha-2}} \int_0^\xi (\xi-s)^{\alpha-2} t^{\alpha-1} h_1(s)ds,
\]

(15)

For \(t \leq \xi < 1 \), one has

\[
u(t) = \int_0^t (t-s)^{\alpha-1} h_1(s)ds + \frac{1}{1 - \mu \xi^{\alpha-2}} \left[\int_0^t + \int_0^\xi + \int_0^1 (1-s)^{\alpha-2} t^{\alpha-1} h_1(s)ds \right.
\]

\[
- \frac{\mu}{1 - \mu \xi^{\alpha-2}} \left[\int_0^t + \int_0^\xi + \int_0^1 (1-s)^{\alpha-2} t^{\alpha-1} h_1(s)ds \right.
\]

\[
+ \int_0^t (1-s)^{\alpha-2} t^{\alpha-1} h_1(s)ds + \int_0^1 (1-s)^{\alpha-2} t^{\alpha-1} h_1(s)ds \]

\[
= \int_0^1 G_1(t,s) h_1(s) ds.
\]

(16)

For \(t \geq \xi \), one has

\[
u(t) = \left[\int_0^\xi + \int_0^t (t-s)^{\alpha-1} h_1(s)ds + \frac{1}{1 - \mu \xi^{\alpha-2}} \left[\int_0^\xi + \int_0^t + \int_0^1 (1-s)^{\alpha-2} t^{\alpha-1} h_1(s)ds \right.
\]

\[
- \frac{\mu}{1 - \mu \xi^{\alpha-2}} \int_0^\xi (\xi-s)^{\alpha-2} t^{\alpha-1} h_1(s)ds \]

(15)
Lemma 4. The function $G_1(t, s)$ defined by equation (11) possesses the following properties:

(1) $G_1(t, s) > 0$, for $t, s \in (0, 1)$;

Proof. Let

$$
\begin{align*}
g_1(t, s) &= (1-s)^{\alpha-2} t^{\alpha-1} - \mu (\xi - s)^{\alpha-2} t^{\alpha-1} - (t-s)^{\alpha-1} \left(1 - \mu \xi^{\alpha-2}\right), \\
g_2(t, s) &= (1-s)^{\alpha-2} t^{\alpha-1} - (t-s)^{\alpha-1} \left(1 - \mu \xi^{\alpha-2}\right), \\
g_3(t, s) &= (1-s)^{\alpha-2} t^{\alpha-1} - \mu (\xi - s)^{\alpha-2} t^{\alpha-1}, \\
g_4(t, s) &= (1-s)^{\alpha-2} t^{\alpha-1}.
\end{align*}
$$

(1) For $s \leq t, s \leq \xi$, let $\Delta = (1-s/\xi)^{\alpha-2} t^{\alpha-1} - (t-s)^{\alpha-1}$,

If $\Delta \geq 0$, by $2 < \alpha \leq 3, 0 < \mu \xi^{\alpha-2} < 1, 0 < \xi < 1$, there is

$$
\begin{align*}
g_1(t, s) &= (1-s)^{\alpha-2} t^{\alpha-1} - \mu (\xi - s)^{\alpha-2} t^{\alpha-1} - (t-s)^{\alpha-1} \left(1 - \mu \xi^{\alpha-2}\right) \\
&= \left[(1-s)^{\alpha-2} t^{\alpha-1} - (t-s)^{\alpha-1} \right] - \mu \xi^{\alpha-2} \left[\left(1 - \frac{s}{\xi}\right)^{\alpha-2} t^{\alpha-1} - (t-s)^{\alpha-1} \right] \\
&> (1-s)^{\alpha-2} t^{\alpha-1} - \left(1 - \frac{s}{\xi}\right)^{\alpha-2} t^{\alpha-1} \\
&= t^{\alpha-1} \left[(1-s)^{\alpha-2} - \left(1 - \frac{s}{\xi}\right)^{\alpha-2} \right] \geq 0,
\end{align*}
$$

If $\Delta < 0$, by $2 < \alpha \leq 3, 0 < \mu \xi^{\alpha-2} < 1, 0 < \xi < 1$, there is

$$
\begin{align*}
g_1(t, s) &= \left[(1-s)^{\alpha-2} t^{\alpha-1} - (t-s)^{\alpha-1} \right] - \mu \xi^{\alpha-2} \left[\left(1 - \frac{s}{\xi}\right)^{\alpha-2} t^{\alpha-1} - (t-s)^{\alpha-1} \right] \\
&= t^{\alpha-1} \left[(1-s)^{\alpha-2} - \left(1 - \frac{s}{\xi}\right)^{\alpha-2} \right] - \mu \xi^{\alpha-2} \left[\left(1 - \frac{s}{\xi}\right)^{\alpha-2} t^{\alpha-1} - (1-s)^{\alpha-1} \right] > 0.
\end{align*}
$$
For $\xi \leq s \leq t$, by $2 < \alpha \leq 3, 0 < \mu \zeta^{\alpha - 2} < 1, 0 < 1 - \mu \zeta^{\alpha - 2} < 1$, there is

\[
g_2(t, s) = (1 - s)^{\alpha - 2} t^{\alpha - 1} - (t - s)^{\alpha - 1}(1 - \mu \zeta^{\alpha - 2}) > (1 - s)^{\alpha - 1} t^{\alpha - 1} - (t - s)^{\alpha - 1}
\]
\[= (t - ts)^{\alpha - 1} - (t - s)^{\alpha - 1} \geq 0.
\]

For $t \leq s \leq \xi$, by $0 < \mu \zeta^{\alpha - 2} < 1, 0 < \xi < 1$, there is

\[
g_1(t, s) = \frac{(1 - s)^{\alpha - 2} t^{\alpha - 1} - \mu (\xi - s)^{\alpha - 2} t^{\alpha - 1}}{t^{\alpha - 1} - (1 - s)^{\alpha - 1} - (t - s)^{\alpha - 1}}
\]
\[> (1 - s)^{\alpha - 2} t^{\alpha - 1} - \left(1 - \frac{s}{\xi}\right)^{\alpha - 2} t^{\alpha - 1} = t^{\alpha - 1} \left[(1 - s)^{\alpha - 2} - \left(1 - \frac{s}{\xi}\right)^{\alpha - 2}\right] \geq 0.
\]

(2) In the following, we prove $g_i(t, s)$ ($i = 1, 2, 3, 4$) are monotone increasing functions for t. For $s \leq t, s \leq \xi$, if $t \leq \xi$, by $0 < \mu \zeta^{\alpha - 2} < 1, 0 < \xi < 1$, there is

\[
\frac{\partial g_1(t, s)}{\partial t} = (\alpha - 1)(1 - s)^{\alpha - 2} t^{\alpha - 2} - \mu (\alpha - 1)(\xi - s)^{\alpha - 2} t^{\alpha - 2} - (\alpha - 1)(t - s)^{\alpha - 2}(1 - \mu \zeta^{\alpha - 2})
\]
\[= (\alpha - 1)\left[(1 - s)^{\alpha - 2} t^{\alpha - 2} - (t - s)^{\alpha - 2}\right] - \mu \zeta^{\alpha - 2}\left[(1 - s)^{\alpha - 2} t^{\alpha - 2} - (t - s)^{\alpha - 2}\right]
\]
\[> (\alpha - 1)\left[(1 - s)^{\alpha - 2} t^{\alpha - 2} - \left(1 - \frac{s}{\xi}\right)^{\alpha - 2} t^{\alpha - 2}\right]
\]
\[= (\alpha - 1)t^{\alpha - 2}\left[(1 - s)^{\alpha - 2} - \left(1 - \frac{s}{\xi}\right)^{\alpha - 2}\right] \geq 0,
\]

if $t > \xi$, by $0 < \mu \zeta^{\alpha - 2} < 1, 0 < \xi < 1$, there is

\[
\frac{\partial g_1(t, s)}{\partial t} = (\alpha - 1)(1 - s)^{\alpha - 2} t^{\alpha - 2} - \mu (\alpha - 1)(\xi - s)^{\alpha - 2} t^{\alpha - 2} - (\alpha - 1)(t - s)^{\alpha - 2}(1 - \mu \zeta^{\alpha - 2})
\]
\[= (\alpha - 1)\left[(1 - s)^{\alpha - 2} t^{\alpha - 2} - (t - s)^{\alpha - 2}\right] - \mu \zeta^{\alpha - 2}\left[(1 - s)^{\alpha - 2} t^{\alpha - 2} - (t - s)^{\alpha - 2}\right]
\]
\[= (\alpha - 1)t^{\alpha - 2}\left[(1 - s)^{\alpha - 2} - \left(1 - \frac{s}{t}\right)^{\alpha - 2}\right] + \mu \zeta^{\alpha - 2}\left[(1 - s)^{\alpha - 2} - \left(1 - \frac{s}{t}\right)^{\alpha - 2}\right] > 0.
\]
For $\xi \leq s \leq t$, by $2 < \alpha \leq 3$, $0 < \mu \xi^{\alpha-2} < 1$, there is

\[
\frac{\partial g_2(t, s)}{\partial t} = (\alpha - 1)(1 - s)^{\alpha-2}t^{\alpha-2} - (\alpha - 1)(t - s)^{\alpha-2}(1 - \mu \xi^{\alpha-2})
\]
\[
> (\alpha - 1)[(1 - s)^{\alpha-2}t^{\alpha-2} - (t - s)^{\alpha-2}] > (\alpha - 1)[(t - ts)^{\alpha-1} - (t - s)^{\alpha-1}] \geq 0.
\]

For $t \leq s \leq \xi$, by $0 < \mu \xi^{\alpha-2} < 1$, $0 < \xi < 1$, there is

\[
\frac{\partial g_2(t, s)}{\partial t} = (\alpha - 1)(1 - s)^{\alpha-2}t^{\alpha-2} - \mu(\alpha - 1)(\xi - s)^{\alpha-2}t^{\alpha-2}
\]
\[
= (\alpha - 1)[(1 - s)^{\alpha-2}t^{\alpha-2} - \mu \xi^{\alpha-2}t^{\alpha-2}
\]
\[
> (\alpha - 1)t^{\alpha-2}[(1 - s)^{\alpha-2} - (1 - \frac{s}{\xi})] \geq 0.
\]

On the other hand, when $0 < s \leq t < 1$, $s \leq \xi$, we have $t^{\alpha-2} > 0$. So $G_1(t, s)$ is monotone increasing function for t. Therefore, $G_1(t, s) < G_1(1, s)$, for $t, s \in (0, 1)$.

\[
G_1(t, s) = \frac{t^{\alpha-1}}{(1 - \mu \xi^{\alpha-2}) \Gamma(\alpha)} \left[(1 - s)^{\alpha-2} - \mu(\xi - s)^{\alpha-2} - \left(1 - \frac{s}{t}\right)^{\alpha-1}(1 - \mu \xi^{\alpha-2}) \right]
\]
\[
\geq \frac{t^{\alpha-1}}{(1 - \mu \xi^{\alpha-2}) \Gamma(\alpha)} \left[(1 - s)^{\alpha-2} - \mu(\xi - s)^{\alpha-2} - (1 - s)^{\alpha-1}(1 - \mu \xi^{\alpha-2}) \right]
\]
\[
= t^{\alpha-1}G_1(1, s).
\]

When $0 < \xi \leq s \leq t < 1$, we obtain

\[
G_1(t, s) = \frac{t^{\alpha-1}}{(1 - \mu \xi^{\alpha-2}) \Gamma(\alpha)} \left[(1 - s)^{\alpha-2} - \left(1 - \frac{s}{t}\right)^{\alpha-1}(1 - \mu \xi^{\alpha-2}) \right]
\]
\[
\geq \frac{t^{\alpha-1}}{(1 - \mu \xi^{\alpha-2}) \Gamma(\alpha)} \left[(1 - s)^{\alpha-2} - (1 - s)^{\alpha-1}(1 - \mu \xi^{\alpha-2}) \right]
\]
\[
= t^{\alpha-1}G_1(1, s).
\]
In the similar discussion, we can deduce where
\[G_1(t, s) \geq t^{\alpha-1}G_1(1, s), \quad (29) \]

\[
G_1(1, s) = \begin{cases}
(1 - s)^{\alpha-2} - \mu(\xi - s)^{\alpha-2} - (1 - s)^{\alpha-1}(1 - \mu \xi^{\alpha-2}) \\ (1 - \mu \xi^{\alpha-2})\Gamma(\alpha) \end{cases}, \quad 0 \leq s \leq \xi, \\
(1 - s)^{\alpha-2} - (1 - s)^{\alpha-1}(1 - \mu \xi^{\alpha-2}) \\ (1 - \mu \xi^{\alpha-2})\Gamma(\alpha), \quad \xi \leq s \leq 1. \quad (30)
\]

The proof is finished.

Similarly, we can obtain \(G_2(t, s) \) if \(\alpha \) is replaced by \(\beta \).

The function \(G_2(t, s) \) defined by (31) has the same properties as \(G_1(t, s) \).

Lemma 5 (see [17]). If \(S \) is a closed, bounded and convex subset of a Banach space \(X \) and \(T: S \rightarrow S \) is completely continuous, then \(T \) has a fixed point in \(S \).

3. Main Results and Proof

In this section, we establish the existence and uniqueness of positive solutions for (3).

The vector \((u, v) \in X \times Y\) is said to be a positive solution of BVP (3) if \((u, v)\) satisfies (3) and \(u(t) > 0, v(t) > 0 \) for \(t \in (0, 1) \), where \(X = \{u(t) | u(t) \in C^1[0,1] \cap D^\delta u(t) \in C[0,1], 1 < \delta \leq 2 \} \) and \(Y = \{v(t) | v(t) \in C^1[0,1] \cap D^\delta v(t) \in C[0,1], 1 < \gamma \leq 2 \} \).

By using Green’s functions \(G_i(t, s) (i = 1, 2) \) from Section 2, problem (3) can be written equivalently as the following nonlinear system of integral equations:

\[
\begin{align*}
&u(t) = \int_0^1 G_1(t, s)f(s, v(s), D^\gamma v(s)) \, ds, 0 \leq t \leq 1, \\
v(t) = \int_0^1 G_2(t, s)g(s, u(s), D^\gamma u(s)) \, ds, 0 \leq t \leq 1.
\end{align*}
\quad (32)
\]

We define the space \(X = \{u(t) | u(t) \in C^1[0,1] \} \) and \(D^\delta u(t) \in C[0,1], 1 < \delta \leq 2 \) and the norm

\[
\|u\|_X = \|u\| + \|D^\delta u\| = \max_{0 \leq t \leq 1}|u(t)| + \max_{0 \leq t \leq 1}|D^\delta u(t)|.
\quad (33)
\]

Lemma 6. \((X, \| \cdot \|_X) \) is a Banach space.

Proof. Let \(\{u_n\}_{n=1}^{\infty} \) be a Cauchy sequence in the space \((X, \| \cdot \|_X)\); then clearly \(\{u_n|_{[0,1]}\}_{n=1}^{\infty} \) and \(\{D^\delta u_n|_{[0,1]}\}_{n=1}^{\infty} \) are Cauchy sequences in the space \(C[0,1] \). Therefore, \(\{u_n|_{[0,1]}\}_{n=1}^{\infty} \) and \(\{D^\delta u_n|_{[0,1]}\}_{n=1}^{\infty} \) converge to some \(v \) and \(w \) on \([0,1]\) uniformly and \(v, w \in C[0,1] \). We need to prove that \(w = D^\delta v \).

Note that
\[|f^\delta D^\delta u_n(t) - I^\delta w(t)| \leq \frac{1}{\Gamma(\delta)} \int_0^t (t - s)^{\delta - 1} |D^\delta u_n(s) - w(s)| \, ds \]
\[\leq \frac{1}{\Gamma(\delta + 1)} \max_{t \in [0,1]} |D^\delta u_n(t) - w(t)|. \]
(34)

By the convergence of \(\{D^n u_n\}_{n=1}^{\infty} \), we have \(\lim_{n \to \infty} I^\delta D^\delta u_n(t) = I^\delta w(t) \) uniformly for \(t \in [0,1] \). On the other hand, by Remark 1 one has \(I^\delta D^\delta u_n(t) = u_n(t) \). Hence, \(v(t) = I^\delta w(t) \), Remark 1 implies that it is equivalent to the relation \(w = D^\delta v \). This completes the proof.

Also we define the space \(Y = \{v(t)\}v(t) \in C^1[0,1] \) and \(D^\delta v(t) \in C[0,1], 1 < \gamma \leq 2 \) and the norm
\[\|v\|_Y = \|v\| + \|D^\delta v\| = \max_{0 \leq s \leq 1} |v(s)| + \max_{0 \leq s \leq 1} |D^\delta v(s)|. \]
(35)

Again \((Y, \| \cdot \|_Y) \) is a Banach space.

Obviously the product space \((X \times X, \cdot \| X \times X \) is a Banach space with norm
\[\|(u, v)\|_{X \times X} = \max \{\|u\|_X, \|v\|_Y \}, \]
(36)
for \((u, v) \in X \times Y \).

We define the operators \(T_1: Y \to X, T_2: X \to Y \) and \(T: X \times Y \to X \times Y \) by
\[T_1 v(t) = \int_0^t G_1(t, s) f(s, v(s), D^\delta v(s)) \, ds, 0 \leq t \leq 1, \]
\[T_2 u(t) = \int_0^t G_2(t, s) g(s, u(s), D^\delta u(s)) \, ds, 0 \leq t \leq 1, \]
(37)
and \(T(u, v) = (T_1 v, T_2 u), (u, v) \in X \times Y \). Thus, the solutions of our problem (3) are the fixed points of the operator \(T \).

Now, we give the main result of this work. For convenience, we introduce the following notations:
\[p = \left(1 - \mu \xi^{{a-2}}\right)^{-1}, \]
\[q = \left(1 - \mu \xi^{{b-2}}\right)^{-1}, \]
\[A = \frac{p}{(\alpha - 1)\Gamma(\alpha)} + \frac{1 + p + \mu p}{\Gamma(\alpha - \delta + 1)}, \]
\[B = \frac{q}{(\beta - 1)\Gamma(\beta)} + \frac{1 + q + \mu q}{\Gamma(\beta - \gamma + 1)}. \]
(38)

Theorem 1. If \(f, g: [0,1] \times \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}_+ \) are continuous functions and \(f(t, 0, 0), g(t, 0, 0) \) are not identically zero. Suppose that one of the following conditions is satisfied.

\((H_2) \) There are two nonnegative functions \(a(t), b(t) \in C[0,1] \) such that \(f(t, x, y) \leq a(t) + c_1 |x|^p + c_2 |y|^p \) and \(g(t, x, y) \leq b(t) + d_1 |x|^q + d_2 |y|^q \), where \(c_1, d_2 \geq 0, 0 < c_1, d_2 < 1 \) for \(i = 1, 2 \).

Then boundary value problem (3) has a positive solution \((u(t), v(t)), t \in [0,1] \).

Proof. First, let condition \((H_1) \) be valid. Define
\[S = \{(u, v)\} \ (u, v) \in X \times Y, u \geq 0, v \geq 0, (\|u\|_{X \times Y} \leq R, t \in [0,1]\), \]
(39)
where \(R \geq \max\{3A\xi_1^{1-\rho_1}, 3A\xi_2^{1-\rho_2}, 3B\xi_3^{1-\eta_1}, 3B\xi_4^{1-\eta_2}, 3k, 3l\} \), and

\[k = \int_0^1 G_1(1, s) a(s) \, ds + \frac{1 + p}{\Gamma(\alpha - \delta)} \int_0^1 (1 - s)^{\alpha - \delta - 1} a(1) \, ds + \frac{\mu p}{\Gamma(\alpha - \delta)} \int_0^\xi (\xi - s)^{\alpha - 2} a(\xi) \, ds, \]
\[l = \int_0^1 G_2(1, s) b(s) \, ds + \frac{1 + q}{\Gamma(\beta - \gamma)} \int_0^1 (1 - s)^{\beta - \gamma - 1} b(1) \, ds + \frac{\mu q}{\Gamma(\beta - \gamma)} \int_0^\xi (\xi - s)^{\beta - 2} b(\xi) \, ds. \]
(40)

Observe that \(S \) is a closed convex set of the Banach space \(X \times Y \).

Now we prove that \(T: S \to S \). For any \((u, v) \in S \), from the nonnegativity of \(f, g \) and Lemma 4, it is easy to know that \(T_1 v(t) \geq 0, T_2 u(t) \geq 0 \).

Again by Remark 1 and Lemma 4, we have
\[|T_1 v(t)| = \left| \int_0^t G_1(t, s) f(s, v(s), D^\delta v(s)) \, ds \right| \leq \int_0^t \left| G_1(t, s) a(s) \right| \, ds + (c_1 R^p + c_2 R^p) \int_0^1 G_1(t, s) \, ds \]
\[\leq \int_0^1 G_1(1, s) a(s) \, ds + (c_1 R^p + c_2 R^p) \int_0^1 G_1(1, s) \, ds \]
\[< \frac{1}{(\alpha - 1)\Gamma(\alpha)} \left(1 - \mu \xi^{{a-2}} \right). \]
(41)
\[D^\delta T_1 v(t) = \left[-\mu I^{\alpha-\delta} f (\cdot, v(\cdot), D^\delta v(\cdot)) + \frac{\Gamma (a-1) t^{a-\delta-1}}{\Gamma (a-\delta) (1-\mu t^{a-2})} \right] I^{\alpha-1} f (\cdot, v(\cdot), D^\delta v(\cdot)) (1) \]

In view of the continuity of \(G, f \), \(D^\delta T_1 v(t) \) and \(D^\delta T_2 u(t) \) are continuous on \([0,1]\). Thus, we have \(T: S \rightarrow S \).

Next, we prove \(TS \) is equicontinuous. We take
\[M = \max_{0 \leq t \leq 1} f (t, v(t), D^\delta v(t)), N = \max_{0 \leq t \leq 1} g (t, u(t), D^\delta u(t)) \]
for any \((u, v) \in S\), let \(t_1, t_2 \in [0,1] \) with \(t_1 < t_2 \), then we have

\[\| T_1 v(t_2) - T_1 v(t_1) \| \leq \frac{M}{\Gamma (a)} \int_0^{t_1} (t_2 - s)^{a-1} ds - \int_0^{t_1} (t_1 - s)^{a-1} ds \]

Therefore, we get \(\| T(u, v) \|_{X_Y} \leq R \). Notice that \(T_1 v(t), T_2 u(t), D^\delta T_1 v(t) \) and \(D^\delta T_2 u(t) \) are continuous on \([0,1]\). Thus, we have \(T: S \rightarrow S \).

Now we are in the position to let (H2) be satisfied. Choose

\[0 < R \leq \min \left\{ \frac{1}{(2A_1)^1-\rho_1}, \frac{1}{(2A_2)^1-\rho_2} \frac{1}{(2B_1)^1-\theta_1}, \frac{1}{(2B_2)^1-\theta_2} \right\} \quad (45) \]
we conclude that the boundary value problem (3) has at least one positive solution.

\[|D^\delta T_1 v(t_2) - D^\delta T_1 v(t_1)| \leq \left| f(t_2, v(t_2), D^\delta v(t_2)) - f(t_1, v(t_1), D^\delta v(t_1)) \right| \]

Similarly,

\[|D^\gamma T_2 u(t_2) - D^\gamma T_2 u(t_1)| \leq |g(t_2, y(t_2), D^\gamma u(t_2)) - g(t_1, y(t_1), D^\gamma u(t_1))| \]

for \(t \in [0, 1], x, \bar{x} \in \mathbb{R}_+ \), \(y, \bar{y} \in \mathbb{R} \). Then, the boundary value problem (3) has a unique positive solution if

\[m < \left(\frac{p}{(\alpha - 1)\Gamma(\alpha)} + \frac{2p}{\Gamma(\alpha - \delta + 1)} \right)^{-1} \]

and

\[n \left(\frac{q}{(\beta - 1)\Gamma(\beta)} + \frac{2q}{\Gamma(\beta - \gamma + 1)} \right)^{-1} \]

Theorem 2. Assume that \(f, g \) satisfy

\[|f(t, x, y) - f(t, \bar{x}, \bar{y})| < m(|x - \bar{x}| + |y - \bar{y}|), \]

\[|g(t, x, y) - g(t, \bar{x}, \bar{y})| < n(|x - \bar{x}| + |y - \bar{y}|), \]

Proof. We consider the operator \(T: S \rightarrow S \), by the definition of \(G_i(t, s)(i = 1, 2) \), for \((u_i, v_i) \in S(i = 1, 2) \), we have the estimate
Consider the following system of fractional differential equations:

\[D^\alpha T_1 v_1 (t) - D^\beta T_2 v_2 (t) \leq f (t, v_1 (t), D^\gamma v_1 (t) - f (t, v_2 (t), D^\beta v_2 (t)) \]

By using contraction mapping principle, we conclude that problem (3) has a unique positive solution.

4. Examples

Now, we present two examples to illustrate the main results.

Example 1. Consider the following system of fractional differential equations:

\[\begin{align*}
& D^{5/2} u(t) + \frac{e^t}{1 + e^t} \sin^2 \left(\frac{t}{2} \right) \left| v(t) \right|^{\alpha_1} + \left| D^{7/3} v(t) \right|^{\beta_1} = 0, \quad 0 < t < 1, \\
& D^{7/3} v(t) + \frac{t}{1 + t} \cos^2 \left(\frac{t}{4} \right) \left| u(t) \right|^{\alpha_3} + \left| D^{5/4} u(t) \right|^{\beta_3} = 0, \quad 0 < t < 1,
\end{align*} \]

where

\[u(0) = u'(0) = 0, \quad u'(1) = \mu u'(\xi), \]

\[v(0) = v'(0) = 0, \quad v'(1) = \nu v'(\xi). \]

In system (57), \(\alpha = 5/2, \beta = 7/3, \gamma = 7/6, \delta = 5/4, \mu = 3/4, \xi = 1/4. \) Let

\[f(t, v, D^{7/3} v(t)) = \frac{e^t}{1 + e^t} \sin^2 \left(\frac{t}{2} \right) \left| v(t) \right|^{\alpha_1} + \left| D^{5/4} u(t) \right|^{\beta_1}, \]

\[g(t, u, D^{5/4} u(t)) = \frac{t}{1 + t} \cos^2 \left(\frac{t}{4} \right) \left| u(t) \right|^{\alpha_3} + \left| D^{7/3} v(t) \right|^{\beta_3}. \]
\[f(t, x, y) \leq a(t) + c_1 |x|^\rho_1 + c_2 |y|^\rho_2, 0 < \rho_1, \rho_2 < 1, \]
\[g(t, x, y) \leq b(t) + d_1 |x|^\theta_1 + d_2 |y|^\theta_2, 0 < \theta_1, \theta_2 < 1. \]

(59)

where \(a(t) = e^t / (1 + e^t), b(t) = t / (1 + t), c_1 = c_2 = 1/2, d_1 = d_2 = 1/4. \)

Therefore, by Theorem 1, there exists one positive solution.

Example 2. Consider the following system of fractional differential equations:

\[
\begin{align*}
D^{5/2} u(t) + \frac{e^{-t}}{6} \left(t^2 + |v(t)| + |D^{7/6} v(t)| \right) &= 0, \quad 0 < t < 1, \\
D^{7/3} v(t) + \frac{\sin^2 t}{8} \left(t + |u(t)| + |D^{3/4} u(t)| \right) &= 0, \quad 0 < t < 1, \\
u(0) = u'(0) = 0, u'(1) = \mu u'(\xi), \\
v(0) = v'(0) = 0, v'(1) = \nu v'(\xi).
\end{align*}
\]

(60)

In system (60), \(\alpha = 5/2, \beta = 7/3, \gamma = 7/6, \delta = 5/4, \mu = 3/4, \xi = 1/4. \) We can easily get

\[
\left(\frac{p}{(a-1)\Gamma(a)} + \frac{2p}{\Gamma(a - \delta + 1)} \right)^{-1} = 0.2741,
\]
\[
\left(\frac{q}{(\beta-1)\Gamma(\beta)} + \frac{2q}{\Gamma(\beta - \gamma + 1)} \right)^{-1} = 0.2522.
\]

(61)

We deduce

\[
|f(t, x, y) - f(t, \bar{x}, \bar{y})| < \frac{1}{6} (|x - \bar{x}| + |y - \bar{y}|),
\]
\[
|g(t, x, y) - g(t, \bar{x}, \bar{y})| < \frac{1}{8} (|x - \bar{x}| + |y - \bar{y}|).
\]

(62)

where \(m = 1/6 < 0.2741, n = 1/8 < 0.2522. \) Therefore, by Theorem 2, there exists a unique positive solution.

5. Conclusion

The existence and uniqueness of positive solutions for a coupled differential system of fractional order with three-point boundary conditions are obtained. The main tools are some fixed point theorems in cones. It is worth mentioning that the nonlinear terms in the system are dependent on the fractional derivative of the unknown functions.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This study was supported by the NNSF of China (11371368) and NITNSF (201824).

References

[1] S. Das, *Functional Fractional Calculus for System Identification and Controls*, Springer, New York, 2008.

[2] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, *Theory and applications of fractional differential equations*, North-Holland Mathematics Studies, Vol. 204, Elsevier Science BV, Amsterdam, 2006.

[3] I. Podlubny, *Fractional Differential Equations*, Academic Press, SanDiego, 1999.

[4] Z. Bai and H. Lü, "Positive solutions for boundary value problem of nonlinear fractional differential equation," *Journal of Mathematical Analysis and Applications*, vol. 311, no. 2, pp. 495–505, 2005.

[5] Z. Bai, "On positive solutions of a nonlocal fractional boundary value problem," *Nonlinear Analysis: Theory, Methods and Applications*, vol. 72, no. 2, pp. 916–924, 2010.

[6] X. Shu, F. Xu, and Y. Shi, "S-asymptotically \(\omega \) -positive periodic solutions for a class of neutral fractional differential equations \(\omega \) -positive periodic solutions for a class of neutral fractional differential equations," *Applied Mathematics and Computation*, vol. 270, pp. 768–776, 2015.

[7] S. Zhang, "Positive solutions for boundary value problems of nonlinear fractional differential equations," *Electronic Journal of Differential Equations*, vol. 36, pp. 1–12, 2006.

[8] X. Zhang and Q. Zhang, "Multiple positive solutions for nonlinear boundary value problems of singular fractional differential equations," *Boundary Value Problems*, vol. 65, pp. 1–11, 2016.

[9] B. Ahmad, S. Nieto, and A. Alsaedi, "On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions," *Chaos, Solitons and Fractals*, vol. 83, pp. 234–241, 2016.

[10] J. Henderson and R. Luca, "Positive solutions for a system of coupled fractional boundary value problems," *Lithuanian Mathematical Journal*, vol. 58, no. 1, pp. 15–32, 2018.

[11] K. Shah, A. Ali, and R. Ali Khan, "Degree theory and existence of positive solutions to coupled systems of multi-point boundary value problems," *Boundary Value Problems*, vol. 43, pp. 1–12, 2016.

[12] X. Su, "Boundary value problem for a coupled system of nonlinear fractional differential equations," *Applied Mathematics Letters*, vol. 22, no. 1, pp. 64–69, 2009.

[13] H. Wang and L. Zhang, "Uniqueness methods for the higher-order coupled fractional differential systems with multi-point boundary conditions," *Bulletin des Sciences Mathematiques*, vol. 166, no. 2021, p. 102935, 2021.

[14] S. Xie, "Positive solutions for a system of higher-order singular nonlinear fractional differential equations with nonlocal boundary conditions," *Electronic Journal of Qualitative Theory of Differential Equations*, vol. 18, no. 18, pp. 1–17, 2015.
[15] Y. Zhao, S. Sun, Z. Han and W. Feng, “Positive solutions for a coupled system of nonlinear differential equations of mixed fractional orders,” *Advances in Difference Equations*, vol. 10, pp. 1–13, 2011.

[16] B. Ahmad and J. Nieto, “Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions,” *Computers and Mathematics with Applications*, vol. 58, no. 9, pp. 1838–1843, 2009.

[17] D. Guo and V. Lakshmikantham, *Nonlinear Problems in Abstract Cones*, Academic Press, Boston MA, 1988.