The Glueball Spectrum from Constituent Models

V. Mathieua, F. Buissereta, C. Semaya and B. Silvestre-Bracb

a Université de Mons-Hainaut, Académie universitaire Wallonie-Bruxelles
b LPSC Université Joseph Fourier, Grenoble 1
CNRS/IN2P3, Institut Polytechnique de Grenoble, 53 Avenue des Martyrs, FR-38026
Grenoble-Cedex, France

Abstract

We present a model for odd-C (negative charge parity) glueballs with three constituent gluons. The model is an extension of a previous study of two-gluon glueballs. We show that, even if spin-1 gluons seem to reproduce properly the lattice QCD spectrum for $C = +$ states, the extension for $C = -$ cannot match with the lattice results. Resorting to the helicity formalism, we show how transverse gluons fit in better agreement the lattice QCD spectrum.

1 Constituent models for two-gluon glueballs

Quantum Chromodynamics (QCD) allows the self-coupling of the gauge bosons, the gluons. Therefore, states with no valence quarks, the glueballs, are a beautiful consequence and prediction of QCD. Recently, a comprehensive review was devoted to the glueballs \cite{1}.

Their observation, however, remains difficult. Probably because the lightest glueball, the scalar 0^{++}, should mix with mesons \cite{2}. Some experimental glueball candidates are currently known, such as the $f_0(980)$, $f_0(1500)$, $f_0(1710)$, \ldots but no definitive conclusions can be drawn concerning the nature of these states.

On the other hand, pure gauge QCD has been investigated by lattice QCD for many years, leading to a well established glueball spectrum below 4 GeV \cite{3, 4, 5}. Our aim is to reproduce this hierarchy with the most simple models with constituent gluons. Since two gluons can only bind into positive-C, we have to consider three-gluon glueballs for the existence of negative-C states.

In ref. \cite{6}, the authors provide a relevant model of two-gluon glueballs. Assuming Casimir scaling for the string tension of the flux tube, the Hamiltonian, endowed with one-gluon exchange (OGE) potentials, reads

$$H_{gg} = 2\sqrt{p^2 + m^2} + \frac{9}{4}\sigma r + V_{oge}(r; \alpha_S, \mu; \mathbf{S}, \mathbf{L}).$$

(1)

Although they use a bare mass $m = 0$ in the kinetic term, their gluons have longitudinal components and are spin-1 particles. Therefore, many states are degenerate and the authors resorted to spin-dependent potentials coming from the OGE to lift these degeneracies. The corrections are of order μ^{-2}, where $\mu = \langle p^2 \rangle$ is an effective constituent mass. The parameters were fitted on the low-lying states and the final spectrum is displayed in Fig. 1 (left).
All states (squares) fall into lattice error bars. However, we noticed some spurious states (circles) not found by any lattice study. \(J = 1 \) states are forbidden by Yang’s theorem and should not be present. The appearance of such states is induced by the longitudinal components of gluons and should disappear when considering transverse gluons.

2 Odd-\(C\) glueballs

Let us forget about the spurious states for the moment and let us generalize the model for three-gluon glueballs. We used a generalisation of the flux tube for the confinement. In heavy baryons, the confinement has a Y-shape, but in our case, we replaced it by a center-of-mass junction. The Hamiltonian is supplemented by the potential coming from the OGE and reads

\[
H_{ggg} = \sum_i \sqrt{p_i^2} + \frac{9}{4} f \sigma |r_i - R_{cm}| + \sum_{i<j} V_{oge}(r_{ij}; \alpha_S, \mu; L_{ij}, S_{ij}).
\]

We refer the reader to the ref. [7] for further details concerning the Hamiltonian.

We impose the symmetric colour function \(d_{abc} A^a_\mu A^b_\nu A^c_\rho \), which ensures a negative \(C\)-parity, then the spin symmetry determines the symmetry of the space. Since \(1 \otimes 1 \otimes 1 = 3_s \oplus 2_m \oplus 1_s \oplus 0_a \), \(2^{--} \) has a mixed symmetry and cannot lie in the same mass range as \(1^{--} \) and \(3^{--} \), as was already noticed in ref. [8]. Moreover, a positive parity requires an odd angular momentum. Then, all \((0,1,2,3)^{++}\) are degenerate with a large component \(L = 1 \) in the wave function. But the lattice QCD exhibits a gap around 2 GeV between the highest \(0^{+-} \) and the lowest \(1^{+-} \). The spectrum, shown in Fig. 1 (right), is nearly in complete disagreement with lattice QCD. The symmetry arguments are Hamiltonian-independent and we can therefore conclude that models with longitudinal gluons are not appropriate to reproduce the lattice pure gauge spectrum.

Figure 1: Left: Spectrum of Hamiltonian (1) with longitudinal gluons. Right: Spectrum of Hamiltonian (2) with longitudinal gluons.
3 Transverse gluons

In order to solve the problems encountered (spurious states, hierarchy in the $PC = +-$ sector), we implemented a formalism developed by Jacob and Wick [9]. This formalism allows us to handle transverse particles. When applying it to two-gluon glueballs, we remarked that the Bose symmetry (and the parity) implies selection rules. Three families were identified [10]: $(2k)^{++}, (2k + 3)^{++}, (2k + 2)^{--}$ with $k \in N$. One easily checks that no spurious $J = 1$ states appear. Moreover, with this special construction, all states are now expressed through a given linear combination of spectroscopic states $|^{2S+1}L_J\rangle$. The degeneracies occurring in ref. [6] are naturally split by the wave function. One does not need to use complicated spin-dependent potentials.

We tested the wave functions with a simple Hamiltonian:

$$H_{gg} = 2\sqrt{\mathbf{p}^2} + \frac{9}{4}\sigma r - 3\frac{\alpha_s}{r}.$$ \hspace{1cm} (3)

The resulting spectrum, displayed in Fig. 2 is in good agreement with the lattice QCD data without the inclusion of spin-dependent potentials. But instanton-induced interactions were needed for $J = 0$ states. In addition, all states are present with no spurious state.

The next step is to implement this formalism for three-gluon glueballs. This work is under construction. However, we have some indications that the lowest odd-C are spin 1 and 3 [11]. Symmetry arguments are also in favour of a four-gluon interpretation for 0^{+-}.

Acknowledgement

V. Mathieu thanks the organizers the invitation to the conference and the Dubna Joint Institute for nuclear research for its hospitality.

References

[1] V. Mathieu, N. Kochelev and V. Vento, arXiv:0810.4453 [hep-ph].
[2] E. Klempt and A. Zaitsev, Phys. Rept. 454, 1 (2007).
[3] C. J. Morningstar and M. Peardon, Phys. Rev. D 60, 034509 (1999).
[4] Y. Chen et al., Phys. Rev. D 73, 014516 (2006).
[5] H. B. Meyer and M. J. Teper, Phys. Lett. B 605, 344 (2005).
[6] F. Brau and C. Semay, Phys. Rev. D 70, 014017 (2004).
[7] V. Mathieu, C. Semay and B. Silvestre-Brac, Phys. Rev. D 77, 094009 (2008).
[8] V. Mathieu, C. Semay and B. Silvestre-Brac, Phys. Rev. D 74, 054002 (2006).
[9] M. Jacob and G. C. Wick, Ann. Phys. 7, 404 (1959).
[10] V. Mathieu, F. Buisseret and C. Semay, Phys. Rev. D 77, 114022 (2008).
[11] N. Boulanger, F. Buisseret, V. Mathieu and C. Semay, arXiv:0806.3174 [hep-ph].