SIGNED WORDS AND PERMUTATIONS, IV; FIXED AND PIXED POINTS

Dominique Foata and Guo-Niu Han

Von Jacobs hat er die Statur,
Des Rechnens ernstes Führen,
Von Lottärchen die Frohnatur
und Lust zu diskretieren.

To Volker Strehl, a dedication à la Goethe,
on the occasion of his sixtieth birthday.

Abstract

The flag-major index “fmaj” and the classical length function “ℓ” are used to construct two \(q \)-analogs of the generating polynomial for the hyperoctahedral group \(B_n \) by number of positive and negative fixed points (resp. pixed points). Specializations of those \(q \)-analogs are also derived dealing with signed derangements and desarrangements, as well as several classical results that were previously proved for the symmetric group.

1. Introduction

The statistical study of the hyperoctahedral group \(B_n \), initiated by Reiner ([Re93a], [Re93b], [Re93c], [Re95a], [Re95b]), has been rejuvenated by Adin and Roichman [AR01] with their introduction of the flag-major index, which was shown [ABR01] to be equidistributed with the length function. See also their recent papers on the subject [ABR05], [ReRo05]. It then appeared natural to extend the numerous results obtained for the symmetric group \(\mathfrak{S}_n \) to the group \(B_n \). Furthermore, flag-major index and length function become the true \(q \)-analog makers needed for calculating various multivariable distributions on \(B_n \).

In the present paper we start with a generating polynomial for \(B_n \) by a three-variable statistic involving the number of fixed points (see formula (1.3)) and show that there are two ways of \(q \)-analogizing it, by using the flag-major index on the one hand, and the length function, on the other hand. As will be indicated, the introduction of an extra variable \(Z \) makes it possible to specialize all our results to the symmetric group. Let us first give the necessary notations.

Let \(B_n \) be the hyperoctahedral group of all signed permutations of order \(n \). The elements of \(B_n \) may be viewed as words \(w = x_1x_2 \cdots x_n \),

2000 Mathematics Subject Classification. Primary 05A15, 05A30, 05E15.

Key words and phrases. Hyperoctahedral group, length function, flag-major index, signed permutations, fixed points, pixed points, derangements, desarrangements, pixed factorization.
where each \(x_i \) belongs to \(\{-n, \ldots, -1, 1, \ldots, n\} \) and \(|x_1| |x_2| \cdots |x_n| \) is a permutation of \(12 \ldots n \). The set (resp. the number) of negative letters among the \(x_i \)'s is denoted by \(\text{Neg} w \) (resp. \(\text{neg} w \)). A positive fixed point of the signed permutation \(w = x_1 x_2 \cdots x_n \) is a (positive) integer \(i \) such that \(x_i = i \). It is convenient to write \(\overline{i} := -i \) for each integer \(i \). Also, when \(A \) is a set of integers, let \(\overline{A} := \{ \overline{i} : i \in A \} \). If \(x_i = \overline{i} \) with \(i \) positive, we say that \(\overline{i} \) is a negative fixed point of \(w \). The set of all positive (resp. negative) fixed points of \(w \) is denoted by \(\text{Fix}^+ w \) (resp. \(\text{Fix}^- w \)). Notice that \(\text{Fix}^- w \subset \text{Neg} w \). Also let

\[
(1.1) \quad \text{fix}^+ w := \# \text{Fix}^+ w; \quad \text{fix}^- w := \# \text{Fix}^- w.
\]

There are \(2^n n! \) signed permutations of order \(n \). The symmetric group \(S_n \) may be considered as the subset of all \(w \) from \(B_n \) such that \(\text{Neg} w = \emptyset \).

The purpose of this paper is to provide two \(q \)-analog for the polynomials \(B_n(Y_0, Y_1, Z) \) defined by the identity

\[
(1.2) \quad \sum_{n \geq 0} \frac{u^n}{n!} B_n(Y_0, Y_1, Z) = (1 - u(1 + Z))^{-1} \times \frac{\exp(u(Y_0 + Y_1 Z))}{\exp(u(1 + Z))}.
\]

When \(Z = 0 \), the right-hand side becomes \((1 - u)^{-1} \exp(uY_0)/\exp(u) \), which is the exponential generating function for the generating polynomials for the groups \(S_n \) by number of fixed points (see [Ri58], chap. 4). Also, by identification, \(B_n(1, 1, 1) = 2^n n! \) and it is easy to show (see Theorem 1.1) that \(B_n(Y_0, Y_1, Z) \) is in fact the generating polynomial for the group \(B_n \) by the three-variable statistic \((\text{fix}^+, \text{fix}^-, \text{neg}) \), that is,

\[
(1.3) \quad B_n(Y_0, Y_1, Z) = \sum_{w \in B_n} Y_0^{\text{fix}^+ w} Y_1^{\text{fix}^- w} Z^{\text{neg} w}.
\]

Recall the traditional notations for the \(q \)-ascending factorials

\[
(1.4) \quad (a; q)_n := \begin{cases}
1, & \text{if } n = 0; \\
(1 - a)(1 - aq) \cdots (1 - aq^{n-1}), & \text{if } n \geq 1;
\end{cases}

(a; q)_\infty := \prod_{n \geq 1} (1 - aq^{n-1});
\]

for the \(q \)-multinomial coefficients

\[
(1.5) \quad \left[\begin{array}{c} n \\ m_1, \ldots, m_k \end{array} \right]_q := \frac{(q; q)_n}{(q; q)_{m_1} \cdots (q; q)_{m_k}} \quad (m_1 + \cdots + m_k = n);
\]

and for the two \(q \)-exponentials (see [GaRa90, chap. 1])

\[
(1.6) \quad e_q(u) = \sum_{n \geq 0} \frac{u^n}{(q; q)_n} = \frac{1}{(u; q)_\infty}; \quad E_q(u) = \sum_{n \geq 0} \frac{q^{(n)} u^n}{(q; q)_n} = (-u; q)_\infty.
\]
Our two q-analogs, denoted by $\text{I}B_n(q, Y_0, Y_1, Z)$ and $B_n(q, Y_0, Y_1, Z)$, are respectively defined by the identities:

$$(1.7) \quad \sum_{n \geq 0} \frac{u^n}{(-Zq; q)_n} \text{I}B_n(q, Y_0, Y_1, Z) = \left(1 - \frac{u}{1-q}\right)^{-1} \times \left(u; q\right)_{\infty} \sum_{n \geq 0} \frac{(-qY_0^{-1}Y_1Z; q)_n (uY_0)^n}{(-Zq; q)_n (q; q)_n};$$

$$(1.8) \quad \sum_{n \geq 0} \frac{u^n}{(q^2; q^2)_n} B_n(q, Y_0, Y_1, Z) = \left(1 - \frac{1 + qZ}{1-q^2}\right)^{-1} \times \left(u; q^2\right)_{\infty} \frac{(-uqY_1Z; q^2)_{\infty}}{(uY_0; q^2)_{\infty}}.$$

Those two identities can be shown to yield (1.2) when $q = 1$.

There is also a graded form of (1.8) in the sense that an extra variable t can be added to form a new polynomial $B_n(t, q, Y_0, Y_1, Z)$ with nonnegative integral coefficients that specializes into $B_n(q, Y_0, Y_1, Z)$ for $t = 1$. Those polynomials are defined by the identity

$$(1.9) \quad \sum_{n \geq 0} (1 + t)B_n(t, q, Y_0, Y_1, Z) \frac{u^n}{(t^2; q^2)_{n+1}} = \sum_{s \geq 0} t^s \left(1 - u \sum_{i=0}^{s} q^i Z^{\chi(i \text{ odd})}\right)^{-1} \times \left(u; q^2\right)_{[s/2]+1} \frac{(-uqY_1Z; q^2)_{[(s+1)/2]}}{(uY_0; q^2)_{[s/2]+1}} \frac{(-uqZ; q^2)_{[(s+1)/2]}}{(-uqZ; q^2)_{[(s+1)/2]}},$$

where for each statement A we let $\chi(A) = 1$ or 0 depending on whether A is true or not. The importance of identity (1.9) lies in its numerous specializations, as can be seen in Fig. 1.

The two q-extensions $\text{I}B_n(q, Y_0, Y_1, Z)$ and $B_n(t, q, Y_0, Y_1, Z)$ being now defined, the program is to derive appropriate combinatorial interpretations for them. Before doing so we need have a second combinatorial interpretation for the polynomial $B_n(Y_0, Y_1, Z)$ besides the one mentioned in (1.3). Let $w = x_1x_2 \cdots x_n$ be a word, all letters of which are integers without any repetitions. Say that w is a desarrangement if $x_1 > x_2 > \cdots > x_{2k}$ and $x_{2k} < x_{2k+1}$ for some $k \geq 1$. By convention, $x_{n+1} = \infty$. We could also say that the leftmost trough of w occurs at an even position. This notion was introduced by Désarménien [De84] and elegantly used in a subsequent paper [DeWa88]. Notice that there is no one-letter desarrangement. By convention, the empty word e is also a desarrangement.

Now let $w = x_1x_2 \cdots x_n$ be a signed permutation. Unless w is increasing, there is always a nonempty right factor of w which is a desarrangement. It then makes sense to define w^d as the longest such a right factor. Hence, w admits a unique factorization $w = w^-w^+w^d$, called its pixed.$^{(1)}$

$^{(1)}$“Pix,” of course, must not be taken here for the abbreviated form of “pictures.”
factorization, where \(w^- \) and \(w^+ \) are both increasing, the letters of \(w^- \) being negative, those of \(w^+ \) positive and where \(w^d \) is the longest right factor of \(w \) which is a desarrangement.

For example, the pixed factorizations of the following signed permutations are materialized by vertical bars: \(w = 52f | e | 3411 \); \(w = 5f | e | 2314 \); \(w = 53f | 14 | e \); \(w = 53 | 142 \); \(w = 53 | e | 412 \).

Let \(w = w^-w^w^d \) be the pixed factorization of \(w = x_1x_2\cdots x_n \).
If \(w^- = x_1\cdots x_k, \ w^+ = x_{k+1}\cdots x_{k+l}, \) define \(\text{Pix}^- \ w := \{x_1, \ldots, x_k\}, \)
\(\text{Pix}^+ \ w := \{x_{k+1}, \ldots, x_{k+l}\}, \) \(\text{pix}^- \ w := \# \text{Pix}^- \ w, \) \(\text{pix}^+ \ w := \# \text{Pix}^+ \ w. \)

Theorem 1.1. The polynomial \(B_n(Y_0, Y_1, Z) \) defined by (1.2) admits the following two combinatorial interpretations:

\[
B_n(Y_0, Y_1, Z) = \sum_{w \in B_n} Y_1^{\text{fix}^- \ w} Y_2^{\text{fix}^+ \ w} Z^{\text{neg} \ w} = \sum_{w \in B_n} Y_1^{\text{pix}^- \ w} Y_2^{\text{pix}^+ \ w} Z^{\text{neg} \ w}.
\]

Theorem 1.1 is proved in section 2. A bijection \(\phi \) of \(B_n \) onto itself will be constructed that satisfies \((\text{Fix}^-, \text{Fix}^+, \text{Neg}) \ w = (\text{Pix}^-, \text{Pix}^+, \text{Neg}) \ \phi(\ w). \)

Let “\(\ell \)" be the length function of \(B_n \) (see [Bo68, p. 7], [Hu90, p. 12] or the working definition given in (3.1)). As seen in Theorem 1.2, “\(\ell \)" is to be added to the three-variable statistic \((\text{pix}^+, \text{pix}^-, \text{neg}) \) (and not to \((\text{fix}^+, \text{fix}^-, \text{neg}) \)) for deriving the combinatorial interpretation of \({}^tB_n(q, Y_0, Y_1, Z) \). This theorem is proved in section 3.

Theorem 1.2. For each \(n \geq 0 \) let \({}^tB_n(q, Y_0, Y_1, Z) \) be the polynomial defined in (1.7). Then

\[
{}^tB_n(q, Y_0, Y_1, Z) = \sum_{w \in B_n} q^{\ell(\ w)} Y_0^{\text{pix}^+ \ w} Y_1^{\text{pix}^- \ w} Z^{\text{neg} \ w}.
\]

The variables \(t \) and \(q \) which are added to interpret our second extension \(B_n(t, q, Y_0, Y_1, Z) \) will carry the flag-descent number “\(\text{fdes} \)" and the flag-major index “\(\text{fmaj} \).” For each signed permutation \(w = x_1x_2\cdots x_n \) the usual number of descents “\(\text{des} \)" is defined by \(\text{des} \ w := \sum_{i=1}^{n-1} \chi(x_i > x_{i+1}), \) the major index “\(\text{maj} \)" by \(\text{maj} \ w := \sum_{i=1}^{n-1} i \chi(x_i > x_{i+1}), \) the flag descent number “\(\text{fdes} \)" and the flag-major index “\(\text{fmaj} \)" by

\[
\text{fdes} \ w := 2 \text{des} \ w + \chi(x_1 < 0); \quad \text{fmaj} \ w := 2 \text{maj} \ w + \text{neg} \ w. \]

Theorem 1.3. For each \(n \geq 0 \) let \(B_n(t, q, Y_0, Y_1, Z) \) be the polynomial defined in (1.9). Then

\[
B_n(t, q, Y_0, Y_1, Z) = \sum_{w \in B_n} t^{\text{fdes} \ w} q^{\text{fmaj} \ w} Y_0^{\text{fix}^+ \ w} Y_1^{\text{fix}^- \ w} Z^{\text{neg} \ w}.
\]
Theorem 1.3 is proved in Section 5 after discussing the combinatorics of the so-called weighted signed permutations in Section 4. Section 6 deals with numerous specializations of Theorem 1.2 and 1.3 obtained by taking numerical values, essentially 0 or 1, for certain variables. Those specializations are illustrated by the following diagram (Fig. 1). When $Z = 0$, the statistic “neg” plays no role and the signed permutations become plain permutations; the second column of the diagram is then mapped on the third one that only involves generating polynomials for S_n or subsets of that group.

The first (resp. fourth) column refers to specific subsets of B_n (resp. of S_n):

\[
D_n := \{ w \in B_n : \text{Fix}^+ w = \text{Neg} w = \emptyset \};
\]
\[
K_n := \{ w \in B_n : \text{Pix}^+ w = \text{Neg} w = \emptyset \};
\]
\[
D_B^n := \{ w \in B_n : \text{Fix}^+ w = \emptyset \};
\]
\[
K_B^n := \{ w \in B_n : \text{Pix}^+ w = \emptyset \}.
\]

The elements of D_n are the classical derangements and provide the most natural combinatorial interpretations of the derangement numbers $d_n = \#D_n$ (see [Co70], p. 9–12). By analogy, the elements of D_B^n are called signed derangements. They have been studied by Chow [Ch06] in a recent note. The elements of K_n (resp. of K_B^n) are called desarrangements (resp.
signed desarrangements) of order \(n \). When \(Y_0 = 0 \), the statistic \(\text{fix}^+ \) (resp. \(\text{pix}^+ \)) plays no role. We can then calculate generating functions for signed (resp. plain) derangements or desarrangements, as shown in the first two and last rows. The initial polynomial, together with its two \(q \)-analogs are reproduced in boldface.

2. Proof of Theorem 1.1

As can be found in ([Co70], p. 9–12)), the generating function for the derangement numbers \(d_n \) \((n \geq 0)\) is given by

\[
\sum_{n \geq 0} d_n \frac{u^n}{n!} = (1 - u)^{-1} e^{-u}.
\]

An easy calculation then shows that the polynomials \(B_n(Y_0, Y_1, Z) \), introduced in (1.2), can also be defined by the identity

\[
B_n(Y_0, Y_1, Z) = \sum_{i+j+k+l=n} \binom{n}{i,j,k,l} Y_0^i Y_1^j Z^{j+k} d_{k+l} \quad (n \geq 0).
\]

For each signed permutation \(w = x_1 x_2 \cdots x_n \) let \(A := \text{Fix}^+ w, B := \text{Fix}^- w, C := \text{Neg} w \setminus \text{Fix}^- w, D := [n] \setminus (A \cup B \cup C) \). Then \((A, B, C, D)\) is a sequence of disjoint subsets of integers, whose union is the interval \([n] := \{1, 2, \ldots, n\}\). Also the mapping \(\tau \) defined by \(\tau(j) = x_j \) if \(j \in C \) and \(\tau(j) = x_j \) if \(j \in D \) is a derangement of the set \(C + D \). Hence, \(w \) is completely characterized by the sequence \((A, B, C, D, \tau)\). The generating polynomial for \(B_n \) by the statistic \((\text{fix}^+, \text{fix}^-, \text{neg})\) is then equal to the right-hand side of (2.2). This proves the first identity of Theorem 1.1.

Each signed permutation \(w = x_1 x_2 \cdots x_n \) can be characterized, either by the four-term sequence \((\text{Fix}^+ w, \text{Fix}^- w, \text{Neg} w, \tau)\), as just described, or by \((\text{Pix}^+ w, \text{Pix}^- w, \text{Neg} w, w^d)\), where \(w^d \) is the desarrangement occurring as the third factor in its pixed factorization. To construct a bijection \(\phi \) of \(B_n \) onto \(B_n \) such that \((\text{fix}^-, \text{fix}^+, \text{neg}) w = (\text{pix}^-, \text{pix}^+, \text{neg}) \phi(w)\) and accordingly prove the second identity of Theorem 1.1, we only need a bijection \(\tau \mapsto f(\tau) \), that maps each derangement \(\tau \) onto a desarrangement \(f(\tau) \) by rearranging the letters of \(\tau \). But such a bijection already exists. It is due to Désarménien \((\text{op. cit.})\). We describe it by means of an example.

Start with a derangement \(\tau = \left(\begin{matrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 9 & 7 & 4 & 3 & 8 & 2 & 6 & 5 & 1 \end{matrix} \right) \) and express it as a product of its disjoint cycles: \(\tau = (19)(276)(34)(58) \). In each cycle, write the minimum in second position: \(\tau = (91)(627)(43)(85) \). Then, reorder the cycles in such a way that the sequence of those minima, when reading from left to right, is decreasing: \(\tau = (85)(43)(627)(91) \). The desarrangement \(f(\tau) \) is derived from the latter expression by removing the parentheses: \(f(\tau) = 854362791 \).
FIXED AND PIXED POINTS

Let \((Fix^+ w, Fix^- w, Neg w, \tau)\) be the sequence associated with the signed permutation \(w\) and let \(v^-\) (resp. \(v^-\)) be the increasing sequence of the elements of \(Fix^- w\) (resp. of \(Fix^+ w\)). Then, \(v^- | v^- | f(\tau)\) is the pixed factorization of \(v^- v^+ f(\tau)\) and we may define \(\phi(w)\) by

\[
\phi(w) := v^- v^+ f(\tau).
\]

This defines a bijection of \(B_n\) onto itself, which has the further property:

\[
(2.4) \quad (Fix^-, Fix^+, Neg) w = (Pix^-, Pix^+, Neg) \phi(w).
\]

For instance, with \(w = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 2 & 8 & 4 & 5 & 1 & 9 & 6 & 7 \end{pmatrix}\) we have \(v^+ = 45\), \(v^- = \overline{2}\), \(\tau = \begin{pmatrix} 1 & 3 & 6 & 7 & 8 & 9 \\ 3 & 8 & 1 & 9 & 6 & 7 \end{pmatrix} = (97)(861)\) and \(f(\tau) = 978\overline{6}T3\). Hence, the pixed factorization of \(\phi(w)\) reads \(\overline{2} | 45 | 978\overline{6}T3\) and \(\phi(w) = \overline{2} 45 978\overline{6}T3\).

3. Proof of Theorem 1.2

The length function “\(\ell\)” for \(B_n\) is expressed in many ways. We shall use the following expression derived by Brenti [Br94]. Let \(w = x_1 x_2 \cdots x_n\) be a signed permutation; its length \(\ell(w)\) is defined by

\[
\ell(w) := \text{inv} w + \sum_i |x_i| \chi(x_i < 0),
\]

where “\(\text{inv}\)” designates the usual number of inversions for words:

\[
\text{inv} w := \sum_{1 \leq i < j \leq n} \chi(x_i > x_j).
\]

The generating polynomial for \(K_n\) (as defined in (1.13)) by “\(\text{inv}\)” (resp. for \(D_n\) by “\(\text{maj}\)”\) is denoted by \(K_n(q)\) (resp. \(D_n(q)\)). As was proved in [DeWa93] we have:

\[
(3.2) \quad K_n(q) = D_n(q).
\]

Also

\[
(3.3) \quad \sum_{n \geq 0} \frac{u^n}{(q; q)_n} D_n(q) = \left(1 - \frac{u}{1 - q}\right)^{-1} \times (u; q)_\infty,
\]

as shown by Wachs [Wa90] in an equivalent form. Another expression for \(D_n(q)\) will be derived in section 6, Proposition 6.2.

If \(A\) is a finite set of positive integers, let \(\text{tot} A\) denote the sum \(\sum a\) \((a \in A)\). For the proof of Theorem 1.2 we make use of the following classical result, namely that \(q^{|N(N+1)/2|} [n]_q\) is equal to the sum \(\sum q^{\text{tot} A}\), where the sum is over all subsets \(A\) of cardinality \(N\) of the set \([n]\).
Remember that each signed permutation \(w = x_1x_2\ldots x_n \) is characterized by a sequence \((A, B, C, D, \tau)\), where \(A = \operatorname{Pix}^+ w \), \(B = \operatorname{Pix}^- w \), \(C = \operatorname{Neg} w \setminus B \), \(D = [n] \setminus (A \cup B \cup C) \) and \(\tau \) is a desarrangement of the set \(C + D \). Let \(\text{inv}(B, C) \) be the number of pairs of integers \((i, j)\) such that \(i \in B, j \in C \) and \(i > j \). As \(\text{inv}(B, C) = \text{inv}(C, B) \), we have \(\text{inv}(B, C) = \text{inv}(A, D) + \#A \times \#C + \text{inv} \tau \). From (3.1) it follows that

\[
\ell(w) = \text{inv} w + \sum_{x_i < 0} |x_i| = \text{inv} w + \text{tot} B + \text{tot} C
\]

\[
= \text{tot} B + \text{tot} C + \text{inv}(C, B) + \text{inv}(A, D) + \#A \times \#C + \text{inv} \tau.
\]

Denote the right-hand side of (1.10) by \(G_n := G_n(q, Y_0, Y_1, Z) \).

We will calculate \(G_n(q, Y_0, Y_1, Z) \) by first summing over all sequences \((A, B, C, D, \tau)\) such that \(\#A = i, \#B = j, \#C = k, \#D = l \). Accordingly, \(\tau \) is a desarrangement of a set of cardinality \(k + l \). We may write:

\[
G_n = \sum_{i+j+k+l=n} \sum_{(A, B, C, D)} q^{\text{tot} B + \text{tot} C + \text{inv}(C, B) + \text{inv}(A, D) + i-k} \times Y_0^i Y_1^j Z^k \sum_{\tau \in K_{k+l}} q^{\text{inv} \tau}
\]

\[
= \sum_{m+p=n} \sum_{j+k=m} \sum_{i+l=p} q^{\text{tot} E + \text{inv}(C, B) + \text{inv}(A, D) + i-k} \times Y_0^i Y_1^j Z^k \sum_{\tau \in \mathcal{K}_{k+l}} q^{\text{inv} \tau}
\]

\[
= \sum_{m+p=n} \sum_{j+k=m, i+l=p} Y_0^i(Y_1 Z)^j (Z q^i)^k D_{k+l}(q)
\]

\[
\times q^{\text{inv}(C, B) + \text{inv}(A, D) + \text{inv} \tau}
\]

\[
= \sum_{m+p=n} \sum_{j+k=m, i+l=p} Y_0^i(Y_1 Z)^j (Z q^i)^k D_{k+l}(q)
\]

\[
\times q^{m(m+1)/2} \begin{bmatrix} n \\ m \\ j, k, l \end{bmatrix} q^{i,j,k,l}.
\]

Thus

\[
G_n = \sum_{i+j+k+l=n} \left[\begin{array}{c} n \\ i, j, k, l \end{array} \right] q^{(j+k+l)/2} Y_0^i(Y_1 Z)^j (Z q^i)^k D_{k+l}(q).
\]

Now form the factorial generating function

\[
G(q, Y_0, Y_1, Z; u) := \sum_{n \geq 0} \frac{u^n}{(-Z q; q)_n (q; q)_n} G_n(q, Y_0, Y_1, Z).
\]
It follows from (3.4) that
\[
G(q, Y_0, Y_1, Z; u) = \sum_{n \geq 0} \frac{1}{(-Zq; q)_n} \sum_{i+j+k+l=n} q^{(j+k+1)\ell_2} \frac{(u Y_0)^i (u Y_1 Z)^j}{(q; q)_i (q; q)_j} \times u^{n-i-j} D_{k+l}(q)(Zq^i)^k (q; q)_k q^{k(\ell_2)}.
\]

But \((j+k+1)\ell_2 = (j+1)k + \binom{k}{2}\). Hence
\[
G(q, Y_0, Y_1, Z; u) = \sum_{n \geq 0} \frac{1}{(-Zq; q)_n} \sum_{m=0}^n \sum_{i+j=m} q^{(j+1)\ell_2} \frac{(u Y_0)^i (u Y_1 Z)^j}{(q; q)_i (q; q)_j} \times u^{n-m} D_{n-m}(q) \sum_{k+l=n-m} \left[\begin{array}{c} n-m \\ k, l \end{array} \right] (Zq^{m+1})^k q^{k(\ell_2)}.
\]

Now
\[
(-Zq^{m+1}; q)_{n-m} = \sum_{k+l=n-m} \left[\begin{array}{c} n-m \\ k, l \end{array} \right] (Zq^{m+1})^k q^{k(\ell_2)},
\]
and
\[
(-Zq; q)_n = (-Zq; q)_m (-Zq^{m+1}; q)_{n-m}.
\]

Hence
\[
G(q, Y_0, Y_1, Z; u) = \sum_{n \geq 0} \sum_{m=0}^n \sum_{i+j=m} \frac{1}{(-Zq; q)_m} \sum_{i+j=k+l} \frac{(u Y_0)^i (u Y_1 Z)^j}{(q; q)_i (q; q)_j} \times u^{n-m} D_{n-m}(q)
\]
\[
= \left(\sum_{n \geq 0} \frac{a_n u^n}{(-Zq; q)_n (q; q)_n} \right) \left(\sum_{n \geq 0} \frac{u^n}{(q; q)_n} D_n(q) \right),
\]

with
\[
a_n = \sum_{i+j=n} \left[\begin{array}{c} n \\ i, j \end{array} \right] Y_0^i q^{(i)2} (qY_1 Z)^j
\]
\[
= Y_0^n \sum_{i+j=n} \left[\begin{array}{c} n \\ i, j \end{array} \right] (qY_0^{-1}Y_1 Z)^j q^{(i)2}
\]
\[
= Y_0^n (-qY_0^{-1}Y_1 Z; q)_n.
\]

By taking (3.3) into account this shows that \(G(q, Y_0, Y_1, Z; u)\) is equal to the right-hand side of (1.7) and then \(G_n(q, Y_0, Y_1, Z) = \ell B_n(q, Y_0, Y_1, Z)\) holds for every \(n \geq 0\). The proof of Theorem 1.2 is completed. By (3.4) we also conclude that the identity
\[
(3.5) \ell B_n(q, Y_0, Y_1, Z) = \sum_{i+j+k+l=n} \left[\begin{array}{c} n \\ i, j, k, l \end{array} \right] q^{(i+j+k+1)\ell_2} Y_0^i (Y_1 Z)^j (Zq^i)^k D_{k+l}(q)
\]
is equivalent to (1.7). As its right-hand side tends to the right-hand side of (2.2) when \(q \to 1 \), we can then assert that (1.7) specializes into (1.2) for \(q = 1 \).

4. Weighted signed permutations

We use the following notations: if \(c = c_1 c_2 \cdots c_n \) is a word, whose letters are nonnegative integers, let \(\lambda(c) := n \) be the length of \(c \), \(\text{tot} \; c := c_1 + c_2 + \cdots + c_n \) the sum of its letters and \(\text{odd} \; c \) the number of its odd letters. Furthermore, \(\text{NIW}_n \) (resp. \(\text{NIW}_n(s) \)) designates the set of all nonincreasing words of length \(n \), whose letters are nonnegative integers (resp. nonnegative integers at most equal to \(s \)). Also let \(\text{NIW}_{n}^{e}(s) \) (resp. \(\text{DW}_{n}^{o}(s) \)) be the subset of \(\text{NIW}_n \) (resp. of \(\text{NIW}_n(s) \)) of the nonincreasing (resp. strictly decreasing) words all letters of which are even (resp. odd).

Next, each pair \((c, w)\) is called a weighted signed permutation of order \(n \) if the four properties \((wsp1)– (wsp4)\) hold:

\(w \) is a signed permutation \(x_1 x_2 \cdots x_n \) from \(B_n \);
\(c_k = c_{k+1} \Rightarrow x_k < x_{k+1} \) for all \(k = 1, 2, \ldots, n-1 \);
\(w \) is positive (resp. negative) whenever \(c_k \) is even (resp. odd).

When \(w \) has no fixed points, either negative or positive, we say that \((c, w)\) is a weighted signed derangement. The set of weighted signed permutations (resp. derangements) \((c, w) = (c_1 c_2 \cdots c_n, x_1 x_2 \cdots x_n)\) of order \(n \) is denoted by \(\text{WSP}_n \) (resp. by \(\text{WSD}_n \)). The subset of all those weighted signed permutations (resp. derangements) such that \(c_1 \leq s \) is denoted by \(\text{WSP}_n(s) \) (resp. by \(\text{WSD}_n(s) \)).

For example, the following pair \((c, w) = \left(\begin{array}{cccccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 10 & 10 & 9 & 7 & 7 & 7 & 4 & 4 & 4 & 3 \\ 1 & 2 & 7 & 6 & 5 & 5 & 3 & 8 & 9 & 10 \\ 12 & 13 & 11 & 13 & 10 \end{array} \right)\)

is a weighted signed permutation of order 13. It has four positive fixed points \((1, 2, 8, 9)\) and two negative fixed points \((5, 10)\).

Proposition 4.1. With each weighted signed permutation \((c, w)\) from the set \(\text{WSP}_n(s) \) can be associated a unique sequence \((i, j, k, (c', w'), v^e, v^o)\) such that

\(\lambda(c) \), \(\lambda(w) \) are nonnegative integers of sum \(n \);
\((c, w) \) is a weighted signed derangement from the set \(\text{WSD}_i(s) \);
\(v^e \) is a nonincreasing word with even letters from the set \(\text{NIW}^e_j(s) \);
\(v^o \) is a decreasing word with odd letters from the set \(\text{DW}^o_k(s) \);

having the following properties:

\[
\begin{align*}
\text{tot} \; c &= \text{tot} \; c' + \text{tot} \; v^e + \text{tot} \; v^o; \\
\text{neg} \; w &= \text{neg} \; w' + \lambda(v^o); \\
\text{fix}^+ \; w &= \lambda(v^e); \\
\text{fix}^- \; w &= \lambda(v^o).
\end{align*}
\]
The bijection \((c_w) \mapsto (c'_w, v^e, v^o)\) is quite natural to define. Only its reverse requires some attention. To get the latter three-term sequence from \((c_w)\) proceed as follows:

(a) let \(l_1, \ldots, l_\alpha \) (resp. \(m_1, \ldots, m_\beta \)) be the increasing sequence of the integers \(l_i\) (resp. \(m_i\)) such that \(x_{l_i}\) (resp. \(x_{m_i}\)) is a positive (resp. negative) fixed point of \(w\);

(b) define: \(v^e := c_{l_1} \cdots c_{l_\alpha}\) and \(v^o := c_{m_1} \cdots c_{m_\beta}\);

(c) remove all the columns \((c_{l_1}x_{l_1}), \ldots, (c_{l_\alpha}x_{l_\alpha}), (c_{m_1}x_{m_1}), \ldots, (c_{m_\beta}x_{m_\beta})\) from \((c_w)\) and let \(c'\) be the nonincreasing word derived from \(c\) after the removal;

(d) once the letters \(x_{l_1}, \ldots, x_{l_\alpha}, x_{m_1}, \ldots, x_{m_\beta}\) have been removed from the signed permutation \(w\) the remaining ones form a signed permutation of a subset \(A\) of \([n]\), of cardinality \(n - \alpha - \beta\). Using the unique increasing bijection \(\phi\) of \(A\) onto the interval \([n - \alpha - \beta]\) replace each remaining letter \(x_i\) by \(\phi(x_i)\) if \(x_i > 0\) or by \(-\phi(-x_i)\) if \(x_i < 0\). Let \(w'\) be the signed derangement of order \(n - \alpha - \beta\) thereby obtained.

For instance, with the above weighted signed permutation we have: \(v^e = 10, 10, 4, 4\) and \(v^o = 7, 3\). After removing the fixed point columns we obtain:

\[
\begin{pmatrix}
 3 & 4 & 6 & 7 & 11 & 12 & 13 \\
 9 & 7 & 7 & 4 & 2 & 2 & 1 \\
 7 & 6 & 3 & 12 & 13 & 11 & 7
\end{pmatrix}
\quad\text{and then}\quad
\begin{pmatrix}
 c' \\
 w'
\end{pmatrix} = \begin{pmatrix}
 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
 9 & 7 & 4 & 2 & 2 & 1 & 3 \\
 4 & 1 & 6 & 7 & 5
\end{pmatrix}.
\]

There is no difficulty verifying that the properties listed in (4.1) hold. For reconstructing \((c_w)\) from the sequence \((c'_w, v^e, v^o)\) consider the nonincreasing rearrangement of the juxtaposition product \(v^e v^o\) in the form \(b_1^{h_1} \cdots b_m^{h_m}\), where \(b_1 > \cdots > b_m\) and \(h_i \geq 1\) (resp. \(h_i = 1\)) if \(b_i\) is even (resp. odd). The pair \((c'_w)\) being decomposed into matrix blocks, as shown in the example, each letter \(b_i\) indicates where the \(h_i\) fixed point columns are to be inserted. We do not give more details and simply illustrate the construction with the running example.

With the previous example \(b_1^{h_1} \cdots b_m^{h_m} = 10^2 7 4^2 3\). First, implement \(10^2\):

\[
\begin{pmatrix}
 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
 10 & 10 & 9 & 7 & 7 & 4 & 2 & 2 & 1 \\
 1 & 2 & 6 & 5 & 4 & 3 & 8 & 9 & 7
\end{pmatrix};
\]

then \(7\):

\[
\begin{pmatrix}
 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
 10 & 10 & 9 & 7 & 7 & 7 & 4 & 2 & 2 & 1 \\
 1 & 2 & 7 & 6 & 5 & 4 & 3 & 9 & 10 & 8
\end{pmatrix};
\]

notice that because of condition (wsp3) the letter \(7\) is to be inserted in second position in the third block;
then insert 4^2:

\[
\begin{pmatrix}
 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
 10 & 10 & 9 & 7 & 7 & 7 & 4 & 4 & 4 & 2 & 2 & 1 \\
 1 & 2 & 7 & 6 & 3 & 7 & 3 & 8 & 9 & 11 & 12 & 10
\end{pmatrix}.
\]

The implementation of 3 gives back the original weighted signed permutation \({c \choose w} \).

5. Proof of Theorem 1.3

It is \(q \)-routine (see, e.g., [An76, chap. 3]) to prove the following identities, where \(v_1 \) is the first letter of \(v \):

\[
\frac{1}{(u; q)_N} = \sum_{n \geq 0} \left[\begin{array}{c} N + n - 1 \\ n \end{array} \right] u^n; \quad \left[\begin{array}{c} N + n \\ n \end{array} \right] q = \sum_{v \in NIW_n(N)} q^{\text{tot } v};
\]

\[
\frac{1}{(u; q)_{N+1}} = \sum_{n \geq 0} u^n \sum_{v \in NIW_n(N)} q^{\text{tot } v} = \frac{1}{1 - u} \sum_{v \in NIW_n} q^{\text{tot } v} v_1;
\]

\[
\frac{1}{(u; q^2)_{\lfloor s/2 \rfloor + 1}} = \sum_{n \geq 0} u^n \sum_{v^e \in NIW_n^e(s)} q^{\text{tot } v^e};
\]

\[
(-uq; q^2)_{\lfloor (s+1)/2 \rfloor} = \sum_{n \geq 0} u^n \sum_{v^o \in DW_n^o(s)} q^{\text{tot } v^o}.
\]

The last two formulas and Proposition 4.1 are now used to calculate the generating function for the weighted signed permutations. The symbols \(NIW^e(s) \), \(DW^o(s) \), \(WSP(s) \), \(WSD(s) \) designate the unions for \(n \geq 0 \) of the corresponding symbols with an \(n \)-subscript.

Proposition 5.2. The following identity holds:

\[
\sum_{n \geq 0} u^n \sum_{(\frac{c}{w}) \in WSP_n(s)} q^{\text{tot } c Y_0^{\text{fix}^+} w Y_1^{\text{fix}^-} w Z^{\text{neg } w}}
\]

\[
= \frac{(u; q^2)_{\lfloor s/2 \rfloor + 1} \left(-uqY_1 Z; q^2 \right)_{\lfloor (s+1)/2 \rfloor}}{(uY_0; q^2)_{\lfloor s/2 \rfloor + 1} \left(-uqZ; q^2 \right)_{\lfloor (s+1)/2 \rfloor}} \times \sum_{n \geq 0} u^n \sum_{c \in WSP_n(s)} q^{\text{tot } c Z^{\text{neg } w}}.
\]

Proof. First, summing over \((w^e, w^o, (\frac{c}{w})) \in NIW(s) \times DW(s) \times WSP(s) \), we have

\[
\sum_{w^e, w^o, (\frac{c}{w})} u^{\lambda(w^e)} q^{\text{tot } w^e} \times (uZ)^{\lambda(w^o)} q^{\text{tot } w^o} \times u^{\lambda(c)} q^{\text{tot } c Y_0^{\text{fix}^+} w Y_1^{\text{fix}^-} w Z^{\text{neg } w}}
\]

\[
= \frac{(-uqZ; q^2)_{\lfloor (s+1)/2 \rfloor}}{(u; q^2)_{\lfloor s/2 \rfloor + 1}} \times \sum_{(\frac{c}{w})} u^{\lambda(c)} q^{\text{tot } c Y_0^{\text{fix}^+} w Y_1^{\text{fix}^-} w Z^{\text{neg } w}}
\]
FIXED AND PIXED POINTS

by (5.1) and (5.2). Now, Proposition 4.1 implies that the initial expression can also be summed over five-term sequences \(((c',w'), v^e, v^o, w^e, w^o)\) from \(\text{WSD}(s) \times \text{NIW}^e(s) \times \text{DW}^o(s) \times \text{NIW}^e(s) \times \text{DW}^o(s)\) in the form

\[
\sum_{(c',w'), v^e, v^o, w^e, w^o} u^{\lambda(c')} q^{\text{tot } c'} Z^{\text{neg } w'} \times (uY_0)^{\lambda(v^e)} q^{\text{tot } v^e} \times (uY_1 Z)^{\lambda(v^o)} q^{\text{tot } v^o} \\
\times u^{\lambda(w^e)} q^{\text{tot } w^e} \times (uZ)^{\lambda(w^o)} q^{\text{tot } w^o}.
\]

The first summation can be evaluated by (5.1) and (5.2), while by Proposition 4.1 again the second sum can be expressed as a sum over weighted signed permutations \((c,w) \in \text{WSP}(s)\). Therefore, the initial sum is also equal to

\[
(5.5) \quad \frac{(-uqY_1 Z; q^2)_{[(s+1)/2]}}{(uY_0; q^2)_{[s/2]+1}} \times \sum_{(c,w) \in \text{WSP}(s)} u^{\lambda(c)} q^{\text{tot } c} Z^{\text{neg } w}.
\]

Identity (5.3) follows by equating (5.4) with (5.5).

Proposition 5.3. The following identity holds:

\[
(5.6) \quad \sum_{n \geq 0} u^n \sum_{(c,w) \in \text{WSP}_n(s)} q^{\text{tot } c} Z^{\text{neg } w} = \left(1 - u \sum_{i=0}^{s} q^i Z^{\chi(i \text{ odd})} \right)^{-1}.
\]

Proof. For proving the equivalent identity

\[
(5.7) \quad \sum_{(c,w) \in \text{WSP}_n(s)} q^{\text{tot } c} Z^{\text{neg } w} = \left(\sum_{i=0}^{s} q^i Z^{\chi(i \text{ odd})} \right)^n \quad (n \geq 0)
\]

it suffices to construct a bijection \((c,w) \mapsto d\) of \(\text{WSP}_n(s)\) onto \(\{0, 1, \ldots, s\}^n\) such that \(\text{tot } c = \text{tot } d\) and \(\text{neg } w = \text{odd } d\). This bijection is one of the main ingredients of the MacMahon Verfahren for signed permutations that has been fully described in [FoHa05, § 4]. We simply recall the construction of the bijection by means of an example.

Start with \(\begin{pmatrix} c \\ w \end{pmatrix} = \begin{pmatrix} 1097442211 \\ 143256897 \end{pmatrix}\). Then, form the two-matrix

\(\begin{pmatrix} 1097442211 \\ 143256897 \end{pmatrix}\), where the negative integers on the bottom row have
As proved in [FoHa05, §4] to each \((c_1 \ldots c_n)\) \(\in\) WSP\(_n(s)\) there corresponds a unique \(b = b_1 \ldots b_n \in\) NIW\(_n\) such that \(2b_1 + \text{fdes} w = c_1\) and

\[
\frac{1 + t}{(t^2; q^2)_{n+1}} \sum_{\substack{r \geq 0 \\cap b \in \text{NIW}_n, \\text{fdes} w \leq r \\text{and} \\text{maj} w \leq n, \\text{fdes} w \leq r}} t^r q^{2 \text{tot} b} Z^{\text{maj} w} Y^{\text{maj} w} Z^{\text{maj} w}.
\]

As proved in [FoHa05, §4] to each \((c_1 \ldots c_n)\) \(\in\) WSP\(_n(s)\) there corresponds a unique \(b = b_1 \ldots b_n \in\) NIW\(_n\) such that \(2b_1 + \text{fdes} w = c_1\) and

\[
\frac{1 + t}{(t^2; q^2)_{n+1}} G_n = \sum_{r \geq 0} t^r \sum_{\substack{r \geq 0 \\cap b \in \text{NIW}_n, \\text{fdes} w \leq r \\text{and} \\text{maj} w \leq n, \\text{fdes} w \leq r}} t^r q^{2 \text{tot} b} Z^{\text{maj} w} Y^{\text{maj} w} Z^{\text{maj} w}.
\]
2 \text{tot } b + \text{fmaj } w = \text{tot } c. Moreover, the mapping $\binom{c}{w} \mapsto (b, w)$ is a bijection of $\text{WSP}_n(s)$ onto the set of all pairs (b, w) such that $b = b_1 \cdots b_n \in \text{NIW}_n$ and $w \in B_n$ with the property that $2b_1 + \text{fdes } w \leq s$.

The word b is determined as follows: write the signed permutation w as a linear word $w = x_1 x_2 \cdots x_n$ and for each $k = 1, 2, \ldots, n$ let z_k be the number of descents ($x_i > x_{i+1}$) in the right factor $x_k x_{k+1} \cdots x_n$ and let ϵ_k be equal to 0 or 1 depending on whether x_k is positive or negative. Also for each $k = 1, 2, \ldots, n$ define $a_k := (c_k - \epsilon_k)/2$, $b_k := (a_k - z_k)$ and form the word $b = b_1 \cdots b_n$.

For example,

$\text{Id} = 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10$
$c = 9 \ 7 \ 7 \ 4 \ 4 \ 4 \ 2 \ 2 \ 1 \ 1$
$w = 4 \ 3 \ 2 \ 1 \ 5 \ 6 \ 8 \ 9 \ 10 \ 7$
$z = 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0$
$\epsilon = 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1$
$a = 4 \ 3 \ 3 \ 2 \ 2 \ 2 \ 1 \ 1 \ 0 \ 0$
$b = 3 \ 2 \ 2 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0$

Pursuing the above calculation we get (5.8).

We can complete the proof of Theorem 1.3:

$$\sum_{n \geq 0} (1 + t)G_n(t, q, Y_0, Y_1, Z) \frac{u^n}{(t^2; q^2)_{n+1}}$$

$$= \sum_{s \geq 0} t^s \sum_{n \geq 0} u^n \sum_{\binom{c}{w} \in \text{WSP}_n(s)} q^{\text{tot } c} Y_0^{\text{fix}^+} w Y_1^{\text{fix}^-} w Z^{\text{neg } w} \quad \text{[by (5.8)]}$$

$$= \sum_{s \geq 0} t^s \frac{(u; q^2)_{[s/2]+1}}{(uY_0; q^2)_{[s/2]+1}} \frac{(-uqY_1 Z; q^2)_{[(s+1)/2]}}{(-uqZ; q^2)_{[(s+1)/2]}}$$

$$\times \sum_{n \geq 0} u^n \sum_{\binom{c}{w} \in \text{WSP}_n(s)} q^{\text{tot } c} Z^{\text{neg } w} \quad \text{[by (5.3)]}$$

$$= \sum_{s \geq 0} t^s \left(1 - u \sum_{i=0}^{s} q^i Z^{\chi(i \text{ odd})}\right)^{-1}$$

$$\times \frac{(u; q^2)_{[s/2]+1}}{(uY_0; q^2)_{[s/2]+1}} \frac{(-uqY_1 Z; q^2)_{[(s+1)/2]}}{(-uqZ; q^2)_{[(s+1)/2]}} \quad \text{[by (5.6)].}$$

Hence, $G_n(t, q, Y_0, Y_1, Z) = B_n(t, q, Y_0, Y_1, Z)$ for all $n \geq 0$. □

6. Specializations

For deriving the specializations of the polynomials $^tB_n(q, Y_0, Y_1, Z)$ and $B_n(t, q, Y_0, Y_1, Z)$ with their combinatorial interpretations we refer
to the diagram displayed in Fig. 1. Those two polynomials are now regarded as generating polynomials for B_n by the multivariable statistics $(\ell, \pix^+, \pix^-, \text{neg})$ and $(\text{fdes}, \text{fmaj}, \fix^+, \fix^-, \text{neg})$, their factorial generating functions being given by (1.7) and (1.9), respectively.

First, identity (1.8) is deduced from (1.9) by the traditional token that consists of multiplying (1.9) by $1 - t$ and making $t = 1$. Accordingly, $B_n(q, Y_0, Y_1, Z)$ occurring in (1.8) is the generating polynomial for the group B_n by the statistic $(\text{fmaj}, \fix^+, \fix^-, \text{neg})$.

Now, let

$$B(q, Y_0, Y_1, Z; u) := \sum_{n \geq 0} \frac{u^n}{(q^2; q^2)_n} B_n(q, Y_0, Y_1, Z).$$

The involution of B_n defined by $w = x_1 x_2 \cdots x_n \mapsto \overline{w} := \overline{x_1} \overline{x_2} \cdots \overline{x_n}$ has the following properties:

$$\text{fmaj } w + \text{fmaj } \overline{w} = n^2; \quad \text{neg } w + \text{neg } \overline{w} = n;$$

$$\text{fix}^+ w = \text{fix}^- \overline{w}; \quad \text{fix}^- w = \text{fix}^+ \overline{w}.$$

Consequently, the duality between positive and negative fixed points must be reflected in the expression of $B(q, Y_0, Y_1, Z; u)$ itself, as shown next.

Proposition 6.1. We have:

$$B(q, Y_0, Y_1, Z; u) = B(q^{-1}, Y_1, Y_0, Z^{-1}; -uq^{-1}Z).$$

Proof. The combinatorial proof consists of using the relations written in (6.2), (6.3) and easily derive the identity

$$B_n(q, Y_0, Y_1, Z) = q^{n^2} Z^n B_n(q^{-1}, Y_1, Y_0, Z^{-1}).$$

With this new expression for the generating polynomial identity (6.1) becomes

$$B(q, Y_0, Y_1, Z; u) = \sum_{n \geq 0} (-uq^{-1}Z)^n \frac{(q^2; q^{-2})_n}{(q^2; q^2)_n} B_n(q^{-1}, Y_1, Y_0, Z^{-1}),$$

which implies (6.4).

The analytical proof consists of showing that the right-hand side of identity (1.8) is invariant under the transformation

$$(q, Y_0, Y_1, Z, u) \mapsto (q^{-1}, Y_1, Y_0, Z^{-1}, -uq^{-1}Z).$$

The factor $1 - u(1 + qZ)/(1 - q^2)$ is clearly invariant. As for the other two factors it suffices to expand them by means of the q-binomial theorem ([GaRa90], p. 7) and observe that they are simply permuted when the transformation is applied. \[\square\]
The polynomial $D_n^B(t, q, Y_1, Z) := B_n(t, q, 0, Y_1, Z)$ (resp. $D_n^B(q, Y_1, Z) := B_n(q, 0, Y_1, Z)$) is the generating polynomial for the set D_n^B of the signed derangements by the statistic $(\text{des}, \text{maj}, \text{fix}^-, \text{neg})$ (resp. $(\text{maj}, \text{fix}^-, \text{neg})$). Their factorial generating functions are obtained by letting $Y_0 = 0$ in (1.9) and (1.8), respectively.

Let $Y_0 = 0$, $Y_1 = 1$ in (1.8). We then obtain the factorial generating function for the polynomials $D_n^B(q, Z) := \sum_{w} q^{\text{maj} w} Z^{|w|} \ (w \in D_n^B)$ in the form

$$\sum_{n \geq 0} \frac{u^n}{(q^2; q^2)_n} D_n^B(q, Z) = \left(1 - u \frac{1 + qZ}{1 - q^2} \right)^{-1} \times (u; q^2)_\infty. \quad (6.6)$$

It is worth writing the equivalent forms of that identity:

$$\frac{(q^2; q^2)_n}{(1 - q^2)^n} (1 + qZ)^n = \sum_{k=0}^{n} \left[\frac{n}{k} \right]_q D_k^B(q, Z) \quad (n \geq 0); \quad (6.7)$$

$$D_n^B(q, Z) = \sum_{k=0}^{n} \left[\frac{n}{k} \right]_q (-1)^k q^{k(k-1)/2} \frac{(q^2; q^2)_n - q}{(1 - q^2)^n - q} (1 + qZ)^{n-k} \quad (n \geq 0); \quad (6.8)$$

$$D_0^B(q, Z) = 1, \quad \text{and for } n \geq 0$$

$$D_{n+1}^B(q, Z) = (1 + qZ) \frac{1 - q^{2n+2}}{1 - q^2} D_n^B(q, Z) + (-1)^{n+1} q^{n(n+1)}. \quad (6.9)$$

$$D_0^B(q, Z) = 1, \quad D_1^B(q, Z) = Zq, \quad \text{and for } n \geq 1$$

$$D_{n+1}^B(q, Z) = \left(\frac{1 - q^{2n}}{1 - q^2} + qZ \frac{1 - q^{2n+2}}{1 - q^2} \right) D_n^B(q, Z)$$

$$+ (1 + qZ) q^{2n} \frac{1 - q^{2n}}{1 - q^2} D_{n-1}^B(q, Z). \quad (6.10)$$

Note that (6.8) is derived from (6.6) by taking the coefficients of u^n on both sides. Next, multiply both sides of (6.6) by the second q^2-exponential $E_{q^2}(-u)$ and look for the coefficients of u^n on both sides. This yields (6.7). Now, write (6.6) in the form

$$E_{q^2}(-u) = \left(1 - u \frac{1 + qZ}{1 - q^2} \right) \sum_{n \geq 0} \frac{u^n}{(q^2; q^2)_n} D_n^B(q, Z) \quad (6.11)$$

and take the coefficients of u^n on both sides. This yields (6.9). Finally, (6.10) is a simple consequence of (6.9).

When $Z = 1$, formulas (6.6), (6.8), (6.9) have been proved by Chow [Ch06] with $D_n^B(q) = \sum_{w} q^{\text{maj} w} \ (w \in D_n^B)$. 17
Now the polynomial $K^B_n(q, Y_1, Z) := \ell B_n(q, 0, Y_1, Z)$ is the generating polynomial for the set K_n^B of the signed desarrangements by the statistic $(\ell, \text{pix}^-, \text{neg})$. From (1.7) we get
\begin{equation}
\sum_{n \geq 0} \frac{u^n}{(-Zq; q)_n (q; q)_n} K^B_n(q, Y_1, Z) = \left(1 - \frac{u}{1-q}\right)^{-1} (u; q)_{\infty} \left(\sum_{n \geq 0} \frac{q^{(n+1)}}{(-Zq; q)_n (q; q)_n} Y_1 Z u^n\right).
\end{equation}

When the variable Z is given the zero value, the polynomials in the second column of Fig. 1 are mapped on generating polynomials for the symmetric group, listed in the third column. Also the variable Y_1 vanishes. Let $A_n(t, q, Y_0) := B_n(t^{1/2}, q^{1/2}, Y_0, 0, 0)$. Then
\begin{equation}
A_n(t, q, Y_0) = \sum_{\sigma \in \mathfrak{S}_n} t^{\text{des}} q^{\text{maj}} \sigma Y_0^{\text{fix} \sigma} \quad (\text{fix} := \text{fix}^+).
\end{equation}
Identity (1.9) specializes into
\begin{equation}
\sum_{n \geq 0} A_n(t, q, Y_0) \frac{u^n}{(t; q)_{n+1}} = \sum_{s \geq 0} t^s \left(1 - \frac{u}{1-q}\right)^{-1} \frac{(u; q)_{s+1}}{(uY_0; q)_{s+1}},
\end{equation}
an identity derived by Gessel and Reutenauer ([GeRe93], Theorem 8.4) by means of a quasi-symmetric function technique. Note that they wrote their formula for “1 + des” and not for “des.”

Multiply (6.14) by $(1-t)$ and let $t := 1$, or let $Z := 0$ and q^2 be replaced by q in (1.8). Also, let $A_n(q, Y_0) := \sum_{\sigma \in \mathfrak{S}_n} q^{\text{maj}} \sigma Y_0^{\text{fix} \sigma} \quad (\sigma \in \mathfrak{S}_n)$; we get
\begin{equation}
\sum_{n \geq 0} \frac{u^n}{(q; q)_n} A_n(q, Y_0) = \left(1 - \frac{u}{1-q}\right)^{-1} \frac{(u; q)_{\infty}}{(uY_0; q)_{\infty}},
\end{equation}
an identity derived by Gessel and Reutenauer [GeRe93] and also by Clarke et al. [ChHaZe97] by means of a q-Seidel matrix approach.

We do not write the specialization of (6.14) when $Y_0 := 0$ to obtain the generating function for the polynomials $D_n(t, q) := \sum_{\sigma \in D_n} t^{\text{des}} q^{\text{maj}} \sigma$. As for the polynomial $D_n(q) := \sum_{\sigma \in D_n} q^{\text{maj}} \sigma$, it has several analytical expressions, which can all be derived from (6.7)–(6.10) by letting $Z := 0$ and q^2 being replaced by q. We only write the identity which corresponds to (6.7)
\begin{equation}
D_0(q) = 1 \quad \text{and} \quad \frac{(q; q)_n}{(1-q)^n} = \sum_{k=0}^{n} \binom{n}{k}_q D_k(q) \quad \text{for } n \geq 1,
\end{equation}
which is then equivalent to the identity
\begin{equation}
e_q(u) \sum_{n \geq 0} \frac{u^n}{(q; q)_n} D_n(q) = \left(1 - \frac{u}{1-q}\right)^{-1}.
\end{equation}
The specialization of (6.8) for $Z := 0$ and q^2 replaced by q was originally proved by Wachs [Wa98] and again recently by Chen and Xu [ChXu 06]. Those two authors make use of the now classical MacMahon Verfahren, that has been exploited in several papers and further extended to the case of signed permutation, as described in our previous paper [FoHa05].

In the next proposition we show that $D_n(q)$ can be expressed as a polynomial in q with positive integral coefficients. In the same manner, the usual derangement number d_n is an explicit sum of positive integers. To the best of the authors’ knowledge those formulas have not appeared elsewhere.

Proposition 6.2. The following expressions hold:

(6.18) $D_n(q) = \sum_{2 \leq 2k \leq n-1} \frac{1 - q^{2k}}{1 - q} \frac{(q^{2k+2}; q)_{n-2k-1}}{(1-q)_{n-2k-1}} q^{2k} \chi(n \text{ even}),$

(6.19) $d_n = \sum_{2 \leq 2k \leq n-1} (2k)(2k+2)_{n-2k-1} + \chi(n \text{ even}).$

Proof. When $q = 1$, then (6.18) is transformed into (6.19). As for (6.18), an easy q-calculation shows that its right-hand side satisfies (6.9) when $Z = 0$ and q replaced by $q^{1/2}$. \[\square\]

Now, let $\text{inv}_A n(q, Y_0) := \ell B_n(q, Y_0, 0, 0)$. Then

(6.20) $\text{inv}_A n(q, Y_0) = \sum_{\sigma \in S_n} q^{\text{maj} \, \sigma} Y_0^{\text{pix} \, \sigma} \quad \text{(pix := pix$^+$)}.$

Formula (1.7) specializes into

(6.21) $\sum_{n \geq 0} \frac{u^n}{(q; q)_n} \text{inv}_A n(q, Y_0) = \left(1 - \frac{u}{1-q}\right)^{-1} \frac{(u; q)_{\infty}}{(uY_0; q)_{\infty}}$.

In view of (6.15) we conclude that

(6.22) $A_n(q, Y_0) = \text{inv}_A n(q, Y_0).$

For each permutation $\sigma = \sigma(1) \cdots \sigma(n)$ let the ligne of route of σ be defined by $\text{Ligne} \, \sigma := \{i : \sigma(i) > \sigma(i+1)\}$ and the inverse ligne of route by $\text{Iligne} \, \sigma := \text{Ligne} \, \sigma^{-1}$. Notice that $\text{maj} \, \sigma = \sum_i i \, \chi(i \in \text{Ligne} \, \sigma)$; we also let $\text{imaj} \, \sigma := \sum_i i \, \chi(i \in \text{Iligne} \, \sigma)$. Furthermore, let $i : \sigma \mapsto \sigma^{-1}$. If Φ designates the second fundamental transformation described in [Fo68], [FoSc78], it is known that the bijection $\Psi := i \Phi i$ of S_n onto itself has the following property: $(\text{Ligne}, \text{imaj}) \, \sigma = (\text{Ligne}, \text{inv}) \, \Psi(\sigma)$. Hence,

(6.23) $(\text{pix}, \text{imaj}) \, \sigma = (\text{pix}, \text{inv}) \, \Psi(\sigma)$

and then $A_n(q, Y_0)$ has the other interpretation:

(6.24) $A_n(q, Y_0) = \sum_{\sigma \in S_n} q^{\text{imaj} \, \sigma} Y_0^{\text{pix} \, \sigma}.$
Finally, let $K_n(q) := \sum_{\sigma \in K_n} q^{\text{inv} \sigma}$. Then, with $Y_0 := 0$ in (6.22) we have:

(6.25) \[K_n(q) = \text{inv} A_n(q,0) = A_n(q,0) = D_n(q). \]

However, it can be shown directly that $K_n(q)$ is equal to the right-hand side of (6.18), because the sum occurring in (6.18) reflects the geometry of the desarrangements. The running term is nothing but the generating polynomial for the desarrangements of order n whose leftmost trough is at position $2k$ by the number of inversions “inv.”

The bijection Ψ also sends K_n onto itself, so that

(6.26) \[\sum_{\sigma \in K_n} q^{\text{inv} \sigma} = \sum_{\sigma \in K_n} q^{\text{imaj} \sigma}, \]

a result obtained in this way by Désarménien and Wachs [DeWa90, 93], who also proved that for every subset $E \subset [n-1]$ we have

(6.27) \[\#\{\sigma \in D_n : \text{Ligne} \sigma = E\} = \#\{\sigma \in K_n : \text{Iligne} \sigma = E\}. \]

References

[ABR01] Ron M. Adin, Francesco Brenti and Yuval Roichman. Descant Numbers and Major Indices for the Hyperoctahedral Group, Adv. in Appl. Math., vol. 27, 2001, p. 210–224.

[ABR05] Ron M. Adin, Francesco Brenti and Yuval Roichman. Equi-distribution over Descent Classes of the Hyperoctahedral Group, to appear in J. Comb. Theory, Ser. A., 2005.

[AR01] Ron M. Adin, Yuval Roichman. The flag major index and group actions on polynomial rings, Europ. J. Combin., vol. 22, 2001, p. 431–46.

[An76] George E. Andrews. The Theory of Partitions. Addison-Wesley, Reading MA, 1976 (Encyclopedia of Math.and its Appl., 2).

[Bo68] N. Bourbaki. Groupes et algèbres de Lie, chap. 4, 5, 6. Hermann, Paris, 1968.

[Br94] Francesco Brenti. q-Eulerian Polynomials Arising from Coxeter Groups, Europ. J. Combin., vol. 15, 1994, p. 417–441.

[CIHaZe97] Robert J. Clarke, Guo-Niu Han, Jiang Zeng. A Combinatorial Interpretation of the Seidel Generation of q-derangement Numbers, Annals of Combin., vol. 1, 1997, p. 313–327.

[Ch06] Chak-On Chow. On derangement polynomials of type B, Sém. Lothar. Combin., B55b 2006, 6 p.

[ChXu06] William Y. C. Chen, Deheng Xu. Labeled Partitions and the q-Derangement Numbers, [arXiv:math.CO/0606484] v1 20 Jun 2006, 6 p.

[Co70] Louis Comtet. Analyse Combinatoire, vol. 2. Presses Universitaires de France, Paris, 1970.

[De84] Jacques Désarménien. Une autre interprétation du nombre des dérangements, Sém. Lothar. Combin., B08b, 1982, 6 pp. (Publ. I.R.M.A. Strasbour, 1984, 229/S-08, p. 11-16).

[DeWa88] Jacques Désarménien, Michelle L. Wachs. Descentes des dérangements et mots circulaires, Sém. Lothar. Combin., B19a, 1988, 9 pp. (Publ. I.R.M.A. Strasbour, 1988, 361/S-19, p. 13-21).
[DeWa93] Jacques Désarménien, Michelle L. Wachs. Descent Classes of Permutations with a Given Number of Fixed Points, J. Combin. Theory, Ser. A, vol. 64, 1993, p. 311–328.

[Fo68] Dominique Foata. On the Netto inversion number of a sequence, Proc. Amer. Math. Soc., vol. 19, 1968, p. 236–240.

[FoHa05] Dominique Foata, Guo-Niu Han. Signed words and permutations, II: the Euler-Mahonian Polynomials, Electronic J. Combin., vol. 11(2), 2005, #R22, 18 p. (The Stanley Festschrift).

[FoSc78] Dominique Foata, Marcel-Paul Schützenberger. Major index and inversion number of permutations, Math. Nachr., vol. 83, 1978, p. 143–159.

[GaRa90] George Gasper, Mizan Rahman. Basic Hypergeometric Series. London, Cambridge Univ. Press, 1990 (Encyclopedia of Math. and Its Appl., 35).

[GeRe93] Ira M. Gessel, Christophe Reutenauer. Counting Permutations with Given Cycle Structure and Descent Set, J. Combin. Theory, Ser. A, vol. 64, 1993, p. 189–215.

[Hu90] James E. Humphreys. Reflection Groups and Coxeter Groups. Cambridge Univ. Press, Cambridge (Cambridge Studies in Adv. Math., 29), 1990.

[Re93a] V. Reiner. Signed permutation statistics, Europ. J. Combinatorics, vol. 14, 1993, p. 553–567.

[Re93b] V. Reiner. Signed permutation statistics and cycle type, Europ. J. Combinatorics, vol. 14, 1993, p. 569–579.

[Re93c] V. Reiner. Upper binomial posets and signed permutation statistics, Europ. J. Combinatorics, vol. 14, 1993, p. 581–588.

[Re95a] V. Reiner. Descents and one-dimensional characters for classical Weyl groups, Discrete Math., vol. 140, 1995, p. 129–140.

[Re95b] V. Reiner. The distribution of descents and length in a Coxeter group, Electronic J. Combinatorics, vol. 2, 1995, # R25.

[ReRo05] Amitai Regev, Yuval Roichman. Statistics on Wreath Products and Generalized Binomial-Stirling Numbers, to appear in Israel J. Math., 2005.

[Ri58] John Riordan. An Introduction to Combinatorial Analysis. New York, John Wiley & Sons, 1958.

[Wa89] Michelle L. Wachs. On q-derangement numbers, Proc. Amer. Math. Soc., vol. 106, 1989, p. 273–278.

Dominique Foata
Institut Lothaire
1, rue Murner
F-67000 Strasbourg, France
foata@math.u-strasbg.fr

Guo-Niu Han
I.R.M.A. UMR 7501
Université Louis Pasteur et CNRS
7, rue René-Descartes
F-67084 Strasbourg, France
guoniu@math.u-strasbg.fr