The Role of Attachment Style, Adverse Childhood Experiences and Dissociation in Migraine

Iain Mays BA Int, MSc, MSc, PG Cert, D Psych Sc1, Jack Flynn BA, MSc1, Brian McGuire B.A. (Hons), MA Clinical Psychology, GradDipCrim, PhD Psych, AFBPSsl2, and Jonathan Egan BA, MA, MPsyhcSc (Clin Spec), PsyD, PGCTLHE1

1Department of Psychology, National University of Ireland Galway, Galway, Ireland; 2School of Psychology & Centre for Pain Research, National University of Ireland, Galway, Ireland

ABSTRACT
Migraine and chronic migraine are caused by a combination of modifiable and non-modifiable genetic, social, behavioral and environmental risk factors. Further research of possible modifiable risk factors for this headache disorder is merited, given its role as one of the leading causes of years lived with disability per year. The first aim of this online cross-sectional study was to investigate the psychosocial risk factors that predicted chronic migraine and severe migraine-related disability in 507 Irish and UK participants, focusing specifically on childhood maltreatment, attachment and tendency to dissociate, or experience depressed mood and/or anxiety. Additionally, this study aimed to examine variables that mediated the relationships between these psychosocial risk factors and migraine chronicity or severe migraine-related disability. Adjusted binary logistic regression revealed that shutdown dissociation (Odds Ratio [OR] 4.57, 95% Confidence Interval [CI] 2.66–7.85) and severe physical abuse (OR 4.30, 95% CI 1.44–12.83) had significant odds of predicting migraine chronicity, while depression (OR 3.28, 95% CI 1.86–5.77) significantly predicted severe migraine-related disability. Mediation analyses indicated that shutdown dissociation mediated the relationship between seven predictor variables and both chronicity and severe disability including possible predisposing factors emotional abuse, physical neglect, avoidant attachment and anxious attachment. These findings suggest that early life stressors (such as childhood trauma and avoidant attachment style), shutdown dissociation and depression may impact on migraine trajectory. To investigate whether these psychosocial factors are risk factors for migraine chronicity or disability, prospective research should be conducted in this area to account for fluctuations in migraine chronicity over time.

CONTACT Iain Mays. iainmays@hotmail.com Clinical Psychology Programme, School of Psychology, National University of Ireland, Galway, Ireland

© 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Introduction

The burden of migraine

Despite 30 years of global research documenting the burden of headache disorders, they have remained one of the leading causes of years lived with disability worldwide (Feigin et al., 2019; James et al., 2018). Migraine and headache disorders are highlighted as an area of focus for reducing global disability (Saylor & Steiner, 2018; World Health Organization [WHO], 2011) and have been undiagnosed, underestimated and undertreated across healthcare systems (Buse et al., 2009; Lipton et al., 1992; Wang et al., 2000). Chronic migraine, affecting roughly 2–3% of the global population (Buse et al., 2012; Natoli et al., 2010), has been associated with changes in brain structure (Planchuelo-Gomez et al., 2020), increased economic burden (Blumenfeld et al., 2011; Munakata et al., 2009), psychiatric comorbidity (Chen et al., 2012), medication overuse (Lipton et al., 2019), headache-related disability (Adams et al., 2015) and risk of further health problems including respiratory (Buse et al., 2010; Chen et al., 2012) and cardiovascular disorders (Buse et al., 2020; Schurks et al., 2009).

Risk factors for chronic migraine

Progression from episodic to chronic migraine originates from a combination of genetic, social, behavioral and environmental risk factors (Breslau & Rasmussen, 2001; Lipton & Bigal, 2005; Probyn et al., 2017). Research on risk factors for chronic migraine progression demonstrated strongest evidence for headache frequency, depression and medication overuse, but called for further investigation into modifiable risks; including psychosocial factors (Buse et al., 2019; Xu et al., 2020). Depression is the only significant psychosocial risk factor identified thus far, with anxiety and stress mentioned as having an insufficient number of prospective or case-control studies (Buse et al., 2019; Xu et al., 2020).

Predisposing psychosocial risk factors in migraine

Despite these findings, exposure to repeated stress has been implicated in contributing to allostatic load and causing lasting structural and functional changes in the brain (Borsook et al., 2012). Psychosocial constructs measuring early stress such as childhood trauma and insecure attachment styles could offer additional insight into mechanisms that explain the association between stress and migraine (Ehrlich & Cassidy, 2019). Retrospective research into childhood maltreatment has demonstrated significant odds ratios for migraine, identifying emotional abuse as having the greatest impact on migraine above all other forms of trauma (Tietjen, 2016; Tietjen et al.,
2010a, 2015, 2017) even after adjusting for anxiety and depression (Tietjen et al., 2015, 2017). However, such research has not compared emotional, physical and sexual adverse experiences using one validated measure, in episodic and chronic migraine. The attachment system has been described as a hardwired biological system arising from the threat or fear system, which can foster adequate careseeking and caregiving behavior (McCluskey & O’Toole, 2019). Insecure attachment has been identified as more prevalent in migraine groups across five studies (Esposito et al., 2013; Savi et al., 2005; Tarantino et al., 2017a, 2018; Williams et al., 2017). Anxious attachment and not avoidant attachment is more associated with increased headache intensity and frequency in child and adult samples (Berry & Drummond, 2014; Tarantino et al., 2017a), however, there is a need for additional research comparing both dimensions using larger samples.

Perpetuating psychosocial risk factors in migraine

Investigating the interplay of historical predisposing risk factors in migraine, such as ACE and insecure attachment, with current, perpetuating factors in migraine such as dissociation and psychiatric comorbidity could help better explain the onset and chronification of this disorder. For instance, a history of childhood trauma (Tietjen et al., 2007, 2010a) and insecure attachment (Mula et al., 2016; Rossi et al., 2005; Tarantino et al., 2017a; Williams et al., 2017) has been associated with comorbid anxiety and depression in migraineurs, highlighting a possible explanatory role in impacting migraine. However, these findings merit clarification both with mediation analyses and adjusted regression models using migraine characteristics such as chronicity and disability as outcomes. Similarly, dissociation has been implicated in explaining the relationship between ACE or trauma and migraine, including psychoform dissociative symptoms (e.g., amnesia, depersonalization, derealization and absorption) and somatoform dissociative symptoms (e.g., anesthesia, analgesia, pain symptoms). However, research has generally been limited in analyses and requires further investigation using adjusted regression or mediation analyses to (Arik et al., 2008; Kucukgoncu et al., 2014; Özsoy & Taşci, 2021; Saçmacı et al., 2020).

Theories integrating biopsychosocial factors to explain the impact of recent or historical stress on intense emotions or defense mechanisms such as dissociation merit consideration, particularly with physiological (Steppacher et al., 2016; Szabó et al., 2019) and psychological (Galli et al., 2017; R. A. Nicholson et al., 2007) differences documented in how migraineurs manage emotion. There remains a lack of consensus in defining dissociation, given the purported range of related phenomena and etiological causes (Van der Hart,
However, research has offered insight into the biopsychosocial determinants of dissociation resulting from recent or historical trauma (Lanius et al., 2012; Nijenhuis et al., 2002; Schauer & Elbert, 2010; Van Dijke et al., 2015).

One such construct known as the defense cascade model provides insight into six behavioral reactions to danger and sympathetic and parasympathetic responses of the autonomic nervous system (ANS) including shutdown dissociation which is considered a progression on this model that enhances survival (Schalinski et al., 2015; Schauer & Elbert, 2010). Shutdown dissociation is considered a neurobiological response to stress associated with a shutting down of motor sensory and speech systems and parasympathetic dominance of the ANS (Schauer & Elbert, 2010). Given the impact of dissociation and the ANS in migraine (Miglis, 2018), measuring shutdown dissociation may offer additional insight into the psychosocial risk factors of this headache disorder.

Study aims

Research has argued for continued work into understanding and reducing the burden of chronic migraine (May & Schulte, 2016; Steiner et al., 2018). Limited research has investigated the impact of psychosocial risk factors across episodic and chronic migraine groups, opting instead for control or mixed headache groups. This study had two aims, the first of which was to investigate whether psychosocial risk factors such as childhood maltreatment, attachment and having a tendency to dissociate, or experience depressed mood and/or anxiety predicted chronic migraine or severe migraine-related disability. The second aim was to examine what variables mediated the relationships between psychosocial risk factors and migraine chronicity or severe migraine-related disability.

Method

Participants

Participants were recruited to take part in a cross-sectional online study involving nine self-report questionnaires. Participants were excluded if they did not attend a health professional for migraine, reported having a different headache disorder and not migraine, or confounding health problems, such as space-occupying tumors. Participants were included if they were age 18 or older, living in Ireland or the UK, experienced migraine and had attended a health professional regarding migraine. Participants were classified as having episodic or chronic migraine and little, mild, moderate or severe disability respectively.
Measures

Demographic questionnaire
A 14-item demographic questionnaire was developed and included age, sex, occupation and working hours per week, and health-related information such as headache diagnosis, and health professional attended.

Chronic migraine
The Identify Chronic Migraine (ID-CM; Lipton et al., 2016) is a 12-item screening tool for chronic migraine, measuring headache frequency, headache symptoms, medication use and the impact of headache on activities and making plans. Six items relating to symptoms and making plans use four-point Likert scales and six items are open-ended questions for migraine frequency, medication and activity. This measure has a sensitivity of 80.6%, a specificity of 88.6%, a negative predictive value of 75.0% and a positive predictive value of 91.5%.

Migraine-related disability
The Migraine-Related Disability Assessment Questionnaire (MIDAS; Stewart et al., 2001) is a five-item questionnaire that measures missed days off work or school, household and family or social activities and reduced productivity in work or school and house activities in the last 3 months (Stewart et al., 2001). It classifies participants into four grades, Grade 1: Little or no disability (0–5), Grade 2: Mild disability (6–10), Grade 3: Moderate disability (11–20) and Grade 4: Severe disability (21+). The MIDAS has demonstrated acceptable internal consistency (Stewart, Lipton, Kolodner et al., 1999; Stewart, Lipton, Whyte et al., 1999) and validity in comparison to a diary-based assessment tool (Stewart et al., 2000).

Childhood trauma questionnaire-short form
The Childhood Trauma Questionnaire-Short Form (CTQ-SF; Bernstein et al., 2003) is a 28-item retrospective measure of five areas of maltreatment: physical, sexual and emotional abuse and emotional and physical neglect. It has demonstrated good internal consistency and criterion-related validity (Bernstein et al., 2003). Responses for each item are given on a 5-point Likert scale. Levels of maltreatment were quantified as “None or Minimal,” “Low to Moderate,” “Moderate to Severe” and “Severe to Extreme” using cut off scores from Bernstein et al. (2003). Cronbach’s alpha scores for emotional abuse, physical abuse, sexual abuse, emotional neglect and physical neglect were of .890, .861, .954, .935 and .715 respectively.
Attachment

The Experiences in Close Relationships – Relationship Structures Questionnaire (ECR-RS; Fraley et al., 2011) incorporates nine items that measure current attachment anxiety and avoidance in close relationships in general on a seven-point Likert scale. Using continuous scales that measure avoidant and anxious attachment dimensions gives a more precise representation of adult attachment than the four categories of attachment (e.g., secure, or preoccupied attachment; Brennan et al., 1998). This is particularly the case given that true attachment typology is uncertain and instead categories are considered regions in a two-dimensional space (Fraley & Waller, 1998). One month test-retest reliability of the individual scales has been found to be approximately 0.65 for romantic relationships and 0.80 for parental relationships (Fraley et al., 2011). Higher average scores suggest increased levels of anxious and avoidant attachment with suggested cut offs based on a normative sample of over 17,000 online participants. A Cronbach’s alpha of .872 was found for the ECR-RS in this sample.

Dissociation

The Dissociative Experiences Scale-II (DES-II; Carlson & Putnam, 1993) is a 28-item screen for psychoform dissociative symptoms namely amnesia, de-personalization or derealization and absorption. Participants rate each item according to what percentage of the time these symptoms happen to them using an 11-point Likert scale from 0 to 100. The DES-II has been used in a range of mental health populations (Lyssenko et al., 2018). A cut off score of 30 or more is considered in the severe dissociative range and indicative of a need for follow up with structured clinical assessment. Good internal reliability and construct validity have been demonstrated for this measure (Carlson & Putnam, 1993; Zingrone & Alvarado, 2001). A Cronbach’s alpha of .930 was found for this measure in the present study.

The Shutdown Dissociation Scale (Shut-D; Schalinski et al., 2015) is a 13-item measure of dissociative experiences in the last six months. Responses were recorded on a four-point Likert scale and summed scores range from 0 to 39. Originally this questionnaire was used as an interview to be applicable in resource-poor settings, but has been used as a self-report questionnaire in this study for large scale data collection. Shut-D has been shown to have good psychometric characteristics, demonstrating good internal consistency, excellent retest reliability and high convergent validity and satisfactory predictive validity (Schalinski et al., 2015). Notably, its high convergent validity was documented with significant associations with all subscales of the Dissociative Experiences Scale (DES; Bernstein & Putnam, 1986). A Cronbach’s alpha of .837 was found for the SHUT-D in this study.
Depression
The Patient Health Questionnaire-8 (PHQ-8; Kroenke & Spitzer, 2002) measures eight of nine criteria for depressive disorders (American Psychiatric Association [APA], 2013; Kroenke et al., 2009). It omits the 9th criteria relating to suicidal or self-injurious thoughts to account for the use of online anonymous questionnaires in this survey with no opportunity for follow-up. Participants rate symptoms experienced over the last 2 weeks using a four-point Likert scale. Items are summed and range from 0 to 24. The PHQ-8 has minimally reduced sensitivity but similar specificity and cut offs for depression severity as the Patient Health Questionnaire-9 (PHQ-9; Kroenke & Spitzer, 2002; Wu et al., 2019). A Cronbach’s alpha of .894 was found for the PHQ-8 in this study.

Anxiety
The General Anxiety Disorder-7 (GAD-7; Spitzer et al., 2006) measures seven anxiety symptoms experienced over the last 2 weeks. Participants rate symptoms experienced over the last 2 weeks using a four-point Likert scale with responses summed and ranging from 0 to 21. Cut off scores of five, 10 and 15 have been considered for mild, moderate and severe symptoms, with 10 being a reasonable score indicative of GAD. The GAD-7 is reported to have excellent internal consistency and good test–retest reliability (Spitzer et al., 2006). A Cronbach’s alpha of .918 was found for the GAD-7 in this sample. Procedure
Ethical approval was granted by the National University of Ireland, Galway Research Ethics Committee. Participants were invited to take part in an online study via press release, social media and organization mailing lists such as The Migraine Association of Ireland. The online survey was accessed in LimeSurvey (Schmitz, 2012) and took approximately 30 minutes to complete. Participants gave informed consent prior to beginning this survey. Data were inputted into SPSS Statistics version 26 (IBM Corp, 2019) for analysis.

Data analysis
A priori analyses were conducted on G*Power for regression models depending on best fit (Faul et al., 2009). For instance, for a two-tailed binomial logistic regression, the minimum required sample size of 325 participants was determined using the input parameters: effect size OR = 2; α = 0.05; 1-β = 0.95. Data were first explored using descriptive statistics reviewing demographic and psychological variables such as gender and CTQ respectively. Bivariate correlations, t-tests, one-way analyses of variance (ANOVA) were then conducted, followed by adjusted binary logistic regression to assess relationships between predictor variables and the outcome variables: migraine chronicity and migraine-related disability. Alternative outcome variables were each included as predictors in adjusted regression models, in accordance with past research
Mediation analyses using PROCESS version 3.4 (Hayes, 2019) were conducted to assess indirect effects between outcome and predictor variables.

Results

Preliminary analysis

A total 1461 individuals took part in the online survey, of which 507 were eligible for analysis. The other 954 participants did not begin (424), or complete (493) the survey, or met exclusion criteria (37). Demographic and outcome variables of participants, are presented in Table 1. Participants meeting criteria for episodic migraine and chronic migraine were 339 and 168 respectively; while 64, 64, 75 and 299 participants were categorized as having little, mild, moderate and severe disability]. Five participants provided invalid responses for all questions in the MIDAS regarding the number of days they were impacted by their migraine and as such were excluded from analysis of migraine-related disability.

Significant between group differences between episodic and chronic groups were noted in key demographic data in Tables 2 and 3, such as gender, $\chi^2 (1, 507) = 11.69, p = .001$, work hours per week, $t(284.70) = -4.00, p < .001$ and number of health professionals seen, $t(301.28) = -5.64, p < .001$. As per Table 3, mean scores for chronic migraine were significantly higher in all psychosocial variables except for CTQ scales sexual abuse, $t(505) = -0.96, p = .339$, emotional neglect, $t(505) = -1.24, p = .215$ and physical neglect, $t(505) = -1.58 p = .115$. The most notable differences among psychosocial variables were shut down dissociation, $t(269.66) = -8.17, p < .001$, and depression $t (294.33) = -7.46, p = <.001$ with significant effect sizes ($d = 0.81; d = 0.72$) respectively.

As shown in Tables 4 and 5, significant differences were noted between disability categories 1–3 (little/mild/moderate) and category 4 (severe) in key demographic data such as gender, $\chi^2 (1, 502) = 22.97 p < .001$, migraine chronicity, $\chi^2 (1, 502) = 88.98 p < .001$ and number of health professionals seen $t(479.01) = 6.26, p < .001$. Participants with severe disability endorsed having increased migraine chronicity, working less and seeing more health professionals. Furthermore, as per Table 5, mean differences in 13 of 16 psychological variables were significantly different when comparing both category groups. Notable differences were depression $t(491.09) = -8.91, p = <.001$, anxiety $t(469.72) = -5.04, p = <.001$ and shutdown $t(500) = -5.70, p = <.001$ with notable effect sizes ($d = 0.74; d = 0.46; d = 0.42$) respectively.
Two hierarchical logistic regression analyses were performed to determine which variables independently predicted headache chronicity and disability, using episodic headache and little/no-moderate disability as reference categories. Collinearity diagnostics were conducted using the mean VIF of the logit for each model; there was no evidence of multicollinearity (mean VIF of 1.52 for both outcomes respectively). The logit linearity assumption was determined by multiplying continuous predictors by their respective log
Table 2. Descriptive statistics for categorical variables by chronicity.

Variable	Episodic	Chronic	χ²	p
Gender	Frequency (%)	Frequency (%)		
Male	45 (8.9%)	6 (1.1%)	11.69	.001**
Female	294 (58.0%)	162 (32.0%)		
Nationality				
Irish	232 (45.8%)	97 (19.1%)	11.36	.003**
British	82 (16.2%)	64 (12.6%)		
Other	25 (4.9%)	7 (1.4%)		
Residence				
Ireland	255 (50.3%)	103 (20.3%)	10.47	.001**
United Kingdom	84 (16.6%)	65 (12.8%)		
Reported Diagnosis				
Migraine	268 (52.9%)	115 (22.7%)	21.15	<.001**
Have not received a diagnosis	27 (5.3%)	5 (1.0%)		
Migraine and comorbidity	44 (8.7%)	48 (9.5%)		
MIDAS Categories				
I Little/No Disability	58 (11.6%)	6 (1.2%)	89.83	<.001**
II Mild Disability	61 (12.2%)	3 (0.6%)		
III Moderate Disability	66 (13.1%)	9 (1.8%)		
IV Severe Disability	152 (30.3%)	147 (29.3%)		

MIDAS = Migraine Disability Assessment Test
*p < .05. **p < .01

Table 3. Descriptive statistics for continuous variables by chronicity.

Variable	Episodic	Chronic	t	p	Cohen’s d
MIDAS Total Score	M SD	M SD			
20.96 (20.79)	69.62 (55.03)	-13.90	<.001**	1.35	
Age	39.78 (10.06)	39.39 (10.18)	0.86	.390	0.04
Work Hours per Week	35.15 (11.21)	31.50 (12.14)	-4.00	<.001**	0.32
Sleep	7.02 (.96)	7.16 (1.23)	-1.57	.117	0.13
Unprescribed Drug use (days)	8.65 (19.44)	16.53 (26.52)	-1.36	.176	0.36
No. of Health Professionals seen	1.59 (.92)	1.96 (.91)	-5.64	<.001**	0.40
CTQ Emotional Abuse	9.22 (4.63)	11.92 (6.17)	-2.71	.007**	0.52
CTQ Physical Abuse	6.35 (2.51)	7.19 (3.94)	-2.41	.017*	0.28
CTQ Sexual Abuse	6.44 (3.90)	7.31 (5.39)	-0.96	.339	0.20
CTQ Emotional Neglect	10.38 (4.92)	12.60 (6.01)	-1.24	.215	0.42
CTQ Physical Neglect	7.22 (3.01)	8.13 (3.20)	-1.58	.115	0.30
ECR-RS Avoidance	3.45 (1.38)	3.60 (1.20)	-2.01	.045*	0.11
ECR-RS Anxiety	3.54 (1.78)	4.29 (1.84)	-3.49	.001**	0.42
DES-II	11.89 (9.95)	17.03 (14.30)	-4.07	<.001**	0.44
Shut D	6.39 (4.26)	10.30 (5.78)	-8.17	<.001**	0.81
PHQ-8	6.80 (4.85)	10.50 (5.64)	-7.46	<.001**	0.72
GAD-7	7.12 (5.17)	8.80 (5.41)	-3.18	.002**	0.32

MIDAS = Migraine Disability Assessment Test, CTQ = Childhood Trauma Questionnaire, ECR-RS = Experiences in Close Relationships-Relationship Structures Questionnaire, DES-II = Dissociative Experiences Scale-II, Shut D = Shutdown Dissociation Scale, PHQ-8 = Patient Health Questionnaire-8, GAD-7 = General Anxiety Disorder-7
*p < .05. **p < .01

Transformations, with significant interactions indicating a violation of linearity (Stoltzfus, 2011). There was evidence of log linearity violations for all continuous variables other than participant age. Therefore, other than age, all continuous variables with established cut off thresholds (CTQ, PHQ-8, GAD-7, ECR-RS) were categorized accordingly. However, continuous variables with no standardized cut offs (DESII, SHUT D) were dichotomized based on the empirical optimal cut off point, whereby a threshold with the maximum
Table 4. Descriptive statistics for categorical variables according to level of disability.

Variable	MIDAS I II III	MIDAS IV	\(\chi^2\)	p
Gender				
Male	36 (7.2%)	14 (2.8%)	22.97	<.001**
Female	167 (33.3%)	285 (56.8%)		
Nationality				
Irish	152 (30.3%)	174 (34.7%)	15.25	<.001**
British	40 (8.0%)	104 (20.7%)		
Other	11 (2.2%)	21 (4.2%)		
Residence				
Ireland	161 (32.1%)	194 (38.6%)	12.15	<.001**
United Kingdom	42 (8.4%)	105 (20.9%)		
Reported Diagnosis				
Migraine	160 (31.9%)	219 (43.6%)	12.74	.002**
Have not received a diagnosis	19 (3.8%)	13 (2.6%)		
Migraine and comorbidity	24 (4.8%)	67 (13.3%)		
ID-CM Migraine Chronicity				
Episodic	185 (36.%)	152 (30.3%)	88.98	<.001**
Chronic	18 (3.6%)	147 (29.3%)		

MIDAS I II III IV = Migraine Disability Assessment Test Categories Little (I), Mild (II), Moderate (III), and Severe (IV), ID-CM = Identify Chronic Migraine

*\(p < .05\). **\(p < .01\)

Table 5. Descriptive statistics for continuous variables according to level of disability.

Variable	MIDAS I II and III	MIDAS IV	t	p	Cohen’s d
M SD	40.06 (9.68)	39.49 (10.37)	1.41	.160	0.06
Work Hours per Week	35.99 (10.80)	32.41 (12.07)	2.324	.021*	0.31
Sleep	6.99 (.92)	7.10 (1.14)	−6.10	.542	0.10
Unprescribed Drug use (days)	8.82 (20.66)	12.71 (22.94)	−8.20	.412	0.18
No. of Health Professionals Seen	1.44 (.65)	1.93 (1.07)	−6.26	<.001**	0.53
CTQ Emotional Abuse	8.80 (4.51)	11.03 (5.62)	−3.93	<.001**	0.43
CTQ Physical Abuse	6.35 (2.78)	6.78 (3.16)	−1.95	.052	0.14
CTQ Sexual Abuse	6.28 (3.84)	7.04 (4.78)	−1.46	.145	0.17
CTQ Emotional Neglect	9.84 (4.88)	12.04 (5.54)	−3.19	.002*	0.42
CTQ Physical Neglect	7.10 (3.18)	7.81 (2.96)	−2.50	.013*	0.23
ECR-RS Avoidance	3.56 (1.41)	3.42 (1.26)	−0.401	.689	0.11
ECR-RS Anxiety	3.36 (1.73)	4.10 (1.86)	−4.05	<.001**	0.41
DES-II	11.14 (9.91)	15.27 (12.35)	−3.73	<.001**	0.36
Shut D	6.35 (4.32)	8.47 (5.42)	−5.70	<.001**	0.42
PHQ-8	6.05 (4.59)	9.43 (4.59)	−8.91	<.001**	0.74
GAD-7	6.35 (5.08)	8.71 (5.22)	−5.04	<.001**	0.46

MIDAS I II III IV = Migraine Disability Assessment Test Categories Little (I), Mild (II), Moderate (III), and Severe (IV), CTQ = Childhood Trauma Questionnaire, ECR-RS = Experiences in Close Relationships-Relationship Structures Questionnaire, DES-II = Dissociative Experiences Scale-II, Shut D = Shutdown Dissociation Scale, PHQ-8 = Patient Health Questionnaire-8, GAD-7 = General Anxiety Disorder-7

*\(p < .05\). **\(p < .01\)

discriminatory capability based on the area under the receiver operating characteristic (ROC) curve was used (Habibzadeh et al., 2016; Unal, 2017). Although categorizing continuous predictors necessitates larger samples, the number of events in both regressions (203 and 168 for the disability and chronicity outcomes respectively) should be sufficient to avoid over-fitting in accordance with the events-per-variable criteria (Vittinghoff & McCulloch,
2007). Significant predictor variables were determined after adjusting for age, gender, anxiety, depression and headache features (ID-CM, MIDAS), as per Tables 9 and 13.

Migraine chronicity logistic regression

Unadjusted and adjusted logistic regression models for migraine chronicity are presented in Tables 7–9 and for migraine disability in Tables 11–13. Each model significantly contributed to the variance based on log likelihood as shown in Tables 6 and 10. Physical abuse and shutdown independently predicted chronic migraine, after adjusting for disability and psychological and demographic variables such as depression, anxiety, gender and age. As per Table 9, disability was the strongest predictor of chronicity (OR 8.67, 95% CI 4.74–15.87), followed by shutdown dissociation (OR 4.57, 95% CI 2.66–7.85).

Table 6. Binary logistic regression of migraine chronicity.

Model	Pseudo R²	Log Likelihood	χ²	df	p
Step 1 Unadjusted Logistic Regression with 5 CTQ Variables	0.04	-327.47	27.65	15	.024**
Step 2 Unadjusted Logistic Regression with 11 variables	0.10	-267.62	108.79	21	<.001**
Step 3 Adjusted Logistic Regression with 16 variables	0.29	228.33	187.37	26	<.001**

CTQ = Childhood Trauma Questionnaire

*p < .05. **p < .01

Table 7. Step 1 unadjusted binary logistic regression of migraine chronicity.

Variable	Odds Ratio	95% CI	p
Constant	0.45	0.33–0.61	<.001**
CTQ Emotional Abuse			
None-Minimal (reference category)			
Slight-Moderate	1.44	0.87–2.40	.158
Moderate-Severe	1.18	0.55–2.53	.663
Severe-Extreme	3.40	1.54–7.52	.003**
CTQ Physical Abuse			
None-Minimal (reference category)			
Slight-Moderate	0.59	0.26–1.34	.204
Moderate-Severe	1.23	0.44–3.45	.695
Severe-Extreme	2.41	0.96–6.06	.061
CTQ Emotional Neglect			
None-Minimal (reference category)			
Slight-Moderate	0.74	0.44–1.24	.255
Moderate-Severe	1.08	0.51–2.31	.837
Severe-Extreme	0.29	0.12–0.73	.009**
CTQ Physical Neglect			
None-Minimal (reference category)			
Slight-Moderate	0.96	0.53–1.75	.901
Moderate-Severe	0.80	0.43–1.49	.486
Severe-Extreme	1.97	0.81–4.79	.133
CTQ Sexual Abuse			
None-Minimal (reference category)			
Slight-Moderate	0.72	0.30–1.75	.467
Moderate-Severe	1.18	0.49–2.86	.709
Severe-Extreme	0.88	0.43–1.81	.724

CTQ = Childhood Trauma Questionnaire

*p < .05. **p < .01
and severe physical abuse (OR 4.30, 95% CI 1.44–12.83). In contrast, severe emotional neglect was found to significantly predict episodic migraine (OR 0.20, 95% CI 0.06–0.63).

Migraine disability logistic regression

Emotional abuse (OR 2.90, 95% CI 1.19–7.06) and shutdown dissociation (OR 2.60, 95% CI 1.70–3.98) were noted for predicting severe disability in the unadjusted binary logistic regression (Table 12), however only chronicity (OR 8.37, 95% CI 4.61–15.20) gender (OR 3.37, 95% CI 1.56–7.30) and depression (OR 3.28, 95% CI 1.86–5.77) predicted severe disability in the adjusted model as per Table 13.

Mediation analyses

Parallel multiple mediation analyses using PROCESS (Hayes, 2019) were conducted to investigate the relationship between psychosocial predictors and migraine chronicity and disability. Dichotomous variables such as
migraine disability and gender, could not be included as mediators, however, available continuous variables such as MIDAS total scores were incorporated into mediation analyses. Exploratory models were conducted using a maximum of seven mediators, however, given the number of variables available, only mediators with significant indirect effects, or approaching significance, were included. Including multiple mediators in a model allows for the analysis of specific indirect effects of a predictor variable (X) on an outcome variable.
(Y) while holding constant other mediators, however this comes at a cost of decreased power and increased sampling variance (Hayes, 2017). Therefore, these analyses focused on indirect effects of individual mediators rather than total effects for two reasons. Firstly, as outcome variables were dichotomous standardized effect sizes could not be calculated, therefore indirect effects were examined using bootstrapping (BCa) with 5000 bootstrapped samples. Secondly, measuring total effect in mediation is not considered a requirement given its purpose is to test for indirect effects (Agler & De Boeck, 2017) and that competing direct and indirect effects can suppress their effects and result in near-zero total effects (MacKinnon et al., 2000). Bootstrapped samples were considered significant (p < .05) if 95% confidence intervals (CIs) did not cross zero. A path model conceptualizing a parallel multiple mediation analyses with three mediators is presented in Figure 1.

Mediation analyses for predictors of migraine chronicity

Mediation models for significant indirect effects of psychosocial variables on migraine chronicity are presented in Tables 14–17 respectively. Shutdown dissociation mediated the relationship between seven predictor variables and ID-CM, namely emotional abuse, $b = .20$, Bootstrap 95% Bias Corrected Confidence Interval (BC CI) .01–.04, physical neglect, $b = .25$ 95% Bootstrap

| Table 11. Step 1 unadjusted binary logistic regression of migraine disability. |
|------------------|------------------|------------------|------------------|
| Variable | Odds Ratio | 95% CI | p |
| Constant | 1.01 | 0.76–1.34 | .949 |
| CTQ Emotional Abuse | | | |
| None-Minimal (reference category) | | | |
| Slight-Moderate | 1.66 | 1.03–2.68 | .038* |
| Moderate-Severe | 2.53 | 1.22–5.25 | .013* |
| Severe-Extreme | 4.44 | 1.91–10.33 | .001** |
| CTQ Physical Abuse | | | |
| None-Minimal (reference category) | | | |
| Slight-Moderate | 0.62 | 0.31–1.24 | .173 |
| Moderate-Severe | 0.45 | 0.16–1.27 | .134 |
| Severe-Extreme | 0.82 | 0.30–2.26 | .699 |
| CTQ Emotional Neglect | | | |
| None-Minimal (reference category) | | | |
| Slight-Moderate | 1.14 | 0.71–1.86 | .585 |
| Moderate-Severe | 1.10 | 0.51–2.35 | .809 |
| Severe-Extreme | 0.76 | 0.33–1.73 | .514 |
| CTQ Physical Neglect | | | |
| None-Minimal (reference category) | | | |
| Slight-Moderate | 0.88 | 0.50–1.55 | .665 |
| Moderate-Severe | 1.37 | 0.76–2.47 | .295 |
| Severe-Extreme | 0.83 | 0.35–1.99 | .674 |
| CTQ Sexual Abuse | | | |
| None-Minimal (reference category) | | | |
| Slight-Moderate | 1.35 | 0.59–3.08 | .482 |
| Moderate-Severe | 1.08 | 0.45–2.61 | .864 |
| Severe-Extreme | 1.02 | 0.51–2.06 | .947 |

CTQ = Childhood Trauma Questionnaire

*p < .05. **p < .01
Table 12. Step 2 unadjusted binary logistic regression of migraine disability.

Variable	Odds Ratio	95% CI	p
Constant	0.61	0.40–0.92	.018
CTQ Emotional Abuse			
None-Minimal (reference category)			
Slight-Moderate	1.30	0.79–2.16	.305
Moderate-Severe	2.10	0.99–4.45	.054
Severe-Extreme	2.90	1.19–7.06	.019*
CTQ Physical Abuse			
None-Minimal (reference category)			
Slight-Moderate	0.56	0.27–1.16	.119
Moderate-Severe	0.56	0.19–1.66	.298
Severe-Extreme	0.78	0.29–2.15	.637
CTQ Emotional Neglect			
None-Minimal (reference category)			
Slight-Moderate	1.25	0.75–2.08	.394
Moderate-Severe	1.32	0.59–2.94	.503
Severe-Extreme	1.02	0.42–2.47	.959
CTQ Physical Neglect			
None-Minimal (reference category)			
Slight-Moderate	0.88	0.49–1.59	.672
Moderate-Severe	1.16	0.62–2.15	.642
Severe-Extreme	0.60	0.24–1.50	.276
CTQ Sexual Abuse			
None-Minimal (reference category)			
Slight-Moderate	1.49	0.63–3.50	.361
Moderate-Severe	1.37	0.55–3.46	.500
Severe-Extreme	0.90	0.43–1.88	.778
ECR-RS Anxiety	1.30	0.84–1.96	.247
ECR-RS Avoidance	2.10	0.50–1.19	.232
DES-II	2.90	0.97–2.30	.066
Shut-D	2.60	1.70–3.98	<.001**

CTQ = Childhood Trauma Questionnaire, ECR-RS = Experiences in Close Relationships-Relationship Structures, DES-II = Dissociative Experiences Scale-II, Shut D = Shutdown Dissociation Scale
*p < .05. **p < .01

BC CI .01-.05, avoidant attachment (b = .06 95% Bootstrap BC CI .22-.12), anxious attachment (b = .06 95% Bootstrap BC CI .03-.12), psychoform dissociation (b = .03 95% Bootstrap BC CI .01-.05), depression (b = .05 95% Bootstrap BC CI .02-.07) and anxiety (b = .04 95% Bootstrap BC CI .02-.06). Physical abuse mediated the relationship between emotional abuse (b = .03 95% Bootstrap BC CI <.01-.07) and psychoform dissociation (b = <.01 95% Bootstrap BC CI <.01-.01) and chronic migraine; while depression mediated the relationship between anxiety and chronic migraine (b = .04 95% Bootstrap BC CI .01-.09).

Mediation analyses for predictors of migraine disability

Mediation models for significant indirect effects of psychosocial variables on migraine disability are presented in Tables 18–21. Depression mediated nine predictor variables and severe disability specifically, emotional neglect (b = .03 95% Bootstrap BC CI .01-.05), emotional abuse (b = .03 95% Bootstrap BC CI .01-.05), physical neglect (b = .04 95% Bootstrap BC CI .02-.07), sexual abuse (b = .02 95% Bootstrap BC CI <.01-.05), avoidant attachment (b = .21 95%
Bootstrap BC CI .13-.31), anxious attachment ($b = .18$ 95% Bootstrap BC CI .11-.27), shutdown ($b = .06$ 95% Bootstrap BC CI .04-.09), psychoform dissociation ($b = .03$ 95% Bootstrap BC CI .02-.04) and anxiety ($b = .09$ 95% Bootstrap BC CI .05-.13).

Shutdown mediated seven predictor variables and severe disability: emotional abuse ($b = .01$ 95% Bootstrap BC CI <.01-.03), physical neglect ($b = .02$ 95% Bootstrap BC CI <.01-.03), avoidant attachment ($b = .04$ 95% Bootstrap BC CI <.01-.08), anxious attachment ($b = .04$ 95% Bootstrap BC CI .01-.08), psychoform dissociation ($b = .02$ 95% Bootstrap BC CI <.01-.03), depression ($b = .03$ 95% Bootstrap BC CI <.01-.05), and anxiety ($b = .02$ 95% Bootstrap BC CI <.01-.04). Lastly, emotional abuse mediated sexual abuse ($b = .02$ 95% Bootstrap BC CI <.01-.04) and avoidant attachment ($b = .08$ 95% Bootstrap BC CI .02-.15) and severe disability respectively.

Variable	Odds Ratio	95% CI	p
Constant	0.05	0.01–0.29	.001**
Age	1.00	0.98–1.02	.999
Gender	3.37	1.56–7.30	<.001**
ID-CM	8.37	4.61–15.20	<.001**
CTQ Emotional Abuse			
None-Minimal (reference category)			
Slight-Moderate	1.11	0.62–1.97	.725
Moderate-Severe	2.17	0.94–4.99	.069
Severe-Extreme	1.77	0.67–4.68	.253
CTQ Physical Abuse			
None-Minimal (reference category)			
Slight-Moderate	0.70	0.31–1.57	.385
Moderate-Severe	0.48	0.13–1.72	.260
Severe-Extreme	0.68	0.22–2.08	.496
CTQ Emotional Neglect			
None-Minimal (reference category)			
Slight-Moderate	1.43	0.80–2.54	.225
Moderate-Severe	1.32	0.54–3.26	.542
Severe-Extreme	1.45	0.55–3.85	.454
CTQ Physical Neglect			
None-Minimal (reference category)			
Slight-Moderate	0.88	0.46–1.70	.704
Moderate-Severe	1.55	0.78–3.12	.214
Severe-Extreme	0.49	0.18–1.36	.168
CTQ Sexual Abuse			
None-Minimal (reference category)			
Slight-Moderate	1.79	0.72–4.44	.209
Moderate-Severe	1.12	0.39–3.23	.835
Severe-Extreme	1.05	0.46–2.40	.912
ECR-RS Anxiety	0.84	0.50–1.40	.495
ECR-RS Avoidance	0.63	0.39–1.04	.073
Dissociative Experiences Scale-II	1.58	0.95–2.64	.079
Shutdown Dissociation Scale	1.10	0.67–1.83	.700
PHQ-8	3.28	1.86–5.77	<.001**
GAD-7	1.02	0.58–1.79	.949

ID-CM = Identify Chronic Migraine, CTQ = Childhood Trauma Questionnaire, ECR-RS = Experiences in Close Relationships-Relationship Structures, DES-II = The Dissociative Experiences Scale-II, Shut D = The Shutdown Dissociation Scale, PHQ-8 = Patient Health Questionnaire-8, GAD-7 = General Anxiety Disorder-7

*p < .05. **p < .01
Figure 1. Path model demonstrating (A) total effect of predictor variable (X) on outcome variable (Y) and (B) direct effect (c') between predictor (X) and outcome variable (Y) and indirect effects (a_i, b_i) of mediators (M_i) between predictor (X) and outcome variable (Y).

Table 14. Indirect effects of childhood trauma questionnaire on migraine chronicity.

Indirect Effect	Product of Coefficients	Bootstrap 95% BC CI		
	Estimate	SE	LL	UL
CTQ Emotional Abuse Total	.1101	.0292	.0609	.1752
CTQ Emotional Abuse MIDAS	.0506	.0180	.0221	.0920
CTQ Emotional Abuse Shut D	.0200	.0079	.0071	.0380
CTQ Physical Abuse Total	.0341	.0180	.0014	.0723
CTQ Physical Abuse PHQ8	.0055	.0058	−.0052	.0181
CTQ Physical Abuse MIDAS	.0341	.0180	.0014	.0723
CTQ Physical Abuse Shut D	.0200	.0079	.0071	.0380
CTQ Physical Neglect Total	.0759	.0311	.0231	.1480
CTQ Physical Neglect MIDAS	.0425	.0273	−.0019	.1059
CTQ Physical Neglect PHQ-8	.0080	.0090	−.0085	.0274

BC' CI = Bias Corrected Confidence Interval, 5000 bootstrap sample, CTQ = Childhood Trauma Questionnaire, MIDAS = Migraine Disability Assessment Test, Shut D = Shutdown Dissociation Scale, PHQ-8 = Patient Health Questionnaire-8
Table 15. Indirect effects of experiences in close relationships-relationship structures on migraine chronicity.

Indirect Effect	Product of Coefficients	Bootstrap 95% BC' CI		
	Estimate	SE	LL	UL
ECR-RS Avoidant Attachment Total	.1646	.0738	.0237	.3145
Shutter	.0626	.0256	.0218	.1193
CTQ Physical Abuse	.0270	.0174	-.0056	.0639
PHQ-8	.0276	.0373	-.0439	.0129
MIDAS	.0475	.0512	-.0497	.1530
ECR-RS Anxious Attachment Total	.2752	.0605	.1701	.4069
Shutter	.0629	.0223	.0262	.1126
MIDAS	.1515	.0456	.0785	.2588
CTQ Physical Abuse	.0226	.0133	-.0022	.0512
PHQ-8	.0382	.0389	-.0386	.1150

BC' CI = Bias Corrected Confidence Interval, 5000 bootstrap sample, Shut = Shutdown Dissociation Scale, MIDAS = Migraine Disability Assessment Test, PHQ-8 = Patient Health Questionnaire-8, CTQ = Childhood Trauma Questionnaire, ECR-RS = Experiences in Close Relationships-Relationship Structures

Table 16. Indirect effects of dissociation on migraine chronicity.

Indirect Effect	Product of Coefficients	Bootstrap 95% BC' CI		
	Estimate	SE	LL	UL
Dissociative Experiences Scale II Total	.0653	.0134	.0433	.0953
Shutter	.0283	.0080	.0144	.0465
MIDAS	.0264	.0081	.0135	.0446
CTQ Physical Abuse	.0037	.0022	.0002	.0086
PHQ-8	.0069	.0057	-.0038	.0186
Shutdown Dissociation Total	.1218	.0251	.0797	.1789
MIDAS	.1081	.0229	.0706	.1608
CTQ Physical Abuse	.0022	.0025	-.0011	.0086
PHQ-8	.0115	.0130	-.0136	.0379

BC' CI = Bias Corrected Confidence Interval, 5000 bootstrap sample, Shut = Shutdown Dissociation Scale, MIDAS = Migraine Disability Assessment Test, PHQ-8 = Patient Health Questionnaire-8, CTQ = Childhood Trauma Questionnaire, ECR-RS = Experiences in Close Relationships-Relationship Structures

Table 17. Indirect effects of depression and anxiety on migraine chronicity.

Indirect Effect	Product of Coefficients	Bootstrap 95% BC' CI		
	Estimate	SE	LL	UL
Depression Total	.1522	.0251	.1125	.2095
MIDAS	.1043	.0214	.0708	.1547
Shutter	.0456	.0137	.0206	.0743
CTQ Physical Abuse	.0023	.0023	-.0010	.0078
Anxiety Total	.1365	.0254	.0928	.1930
MIDAS	.0579	.0150	.0336	.0923
Shutter	.0347	.0112	.0148	.0586
PHQ-8	.0425	.0201	.0050	.0847
CTQ Physical Abuse	.0014	.0019	-.0017	.0060

BC' CI = Bias Corrected Confidence Interval, 5000 bootstrap sample, PHQ-8 = Patient Health Questionnaire-8, MIDAS = Migraine Disability Assessment Test, Shut = Shutdown Dissociation Scale, CTQ = Childhood Trauma Questionnaire, ECR-RS = Experiences in Close Relationships-Relationship Structures
The aims of this study were to investigate the predictive nature of psychosocial factors in chronic migraine and severe migraine-related disability and examine indirect effects between these variables. There are several significant findings from this research, the first of which indicated psychosocial difficulties were generally more prevalent in chronic than episodic migraine and in severe than in less severe migraine-related disability. Adjusted binary logistic regression revealed that physical abuse, shutdown dissociation and migraine-related disability had significant odds of predicting migraine chronicity, while chronicity and depression significantly predicted severe disability. Not surprisingly,
disability was the highest predictor of chronicity and vice versa given their association and that MIDAS was one of the measures used in developing the ID-CM (Lipton et al., 2016; Manack et al., 2011; Scher et al., 2019). Similarly, while migraine-related disability is considered a secondary outcome, both outcome variables in this study were associated with a range of direct and indirect effects, highlighting the role of this construct in offering additional insight into the impact of migraine alongside chronicity (Andrasik et al., 2005; D’Amico et al., 2013; Leonardi & Raggi, 2013).

Interestingly, physical abuse was the only childhood trauma to predict either outcomes after controlling for confounding variables. Previous research to date has suggested that emotional maltreatment was more prevalent in migraine compared with physical or sexual abuse (Tietjen et al., 2010b, 2016, 2015, 2017). Only one study to date had compared childhood maltreatment between episodic and chronic migraine, documenting emotional abuse as being the highest predictor for chronic migraine and for those that had recently progressed from episodic to chronic, while physical abuse was the

Table 20. Indirect effects of dissociation on migraine disability.

Indirect Effect	Product of Coefficients	Bootstrap 95% BC CI
Shutdown Dissociation Total	.0695	.0145
PHQ-8	.0628	.0134
CTQ Emotional Neglect	.0001	.0024
CTQ Emotional Abuse	.0066	.0060
Dissociative Experiences Scale II Total	.0509	.0086
PHQ-8	.0266	.0057
Shut D	.0185	.0065
CTQ Emotional Abuse	.0052	.0041
CTQ Emotional Neglect	.0006	.0031

BC CI = Bias Corrected Confidence Interval, 5000 bootstrap sample, PHQ-8 = Patient Health Questionnaire-8, CTQ = Childhood Trauma Questionnaire, Shut D = Shutdown Dissociation Scale

Table 21. Indirect effects of depression on migraine disability.

Indirect Effect	Product of Coefficients	Bootstrap 95% BC CI
Depression Total	.0313	.0146
Shut D	.0293	.0110
CTQ Emotional Abuse	.0078	.0046
ECR-RS Anxiety	−.0057	.0097
Anxiety Total	.1173	.0205
PHQ-8	.0895	.0205
Shut D	.0219	.0082
CTQ Emotional Abuse	.0060	.0039

BC CI = Bias Corrected Confidence Interval, 5000 bootstrap sample, Shut D = Shutdown Dissociation Scale, CTQ = Childhood Trauma Questionnaire, ECR-RS = Experiences in Close Relationships-Relationship Structures, PHQ-8 = Patient Health Questionnaire-8, Shut D = Shutdown Dissociation Scale
second strongest predictor (Tietjen et al., 2010b). In contrast, this study highlights physical abuse as being a markedly better predictor of chronicity than both emotional neglect and abuse, with notable differences in odds ratios.

Depression was the only predictor of severe disability after migraine chronicity and gender, a finding which is not surprising given its high prevalence in migraine (Minen et al., 2016). Previous research using the Hospital Anxiety and Depression scale demonstrated that migraineurs with both depression and anxiety, but not anxiety or depression alone, have demonstrated increased disability (Lanteri-Minet et al., 2005; Peterlin et al., 2009). However, this study found that increased depression as measured with the PHQ-8 predicted severe disability, consistent with the findings of Seo and Park (2015). Depression, can be argued as being a possible by-product of a natural trajectory. However, at the very least it highlights a complex relationship with migraine, especially given the role depression plays in mediating nine individual relationships between predictor variables and disability including possible predisposing risk factors such as emotional neglect, emotional abuse, physical neglect, sexual abuse, avoidant attachment and anxious attachment. In a similar vein, previous research has documented that depressive symptoms and insecure attachment were the most significant predictors of disability in episodic and chronic migraine (Rossi et al., 2005). Heretofore, psychosocial difficulties in migraine were most commonly assessed under the auspices of psychiatric comorbidity. While assessing mental health in migraine is important, it is not enough. Research has argued that modern classification systems fail to capture other psychosocial variables prevalent in migraine such as DSM-5 (Cosci et al., 2020).

Shutdown dissociation and not psychoform dissociation predicted chronic migraine which can be considered a noteworthy finding, requiring further investigation. This is especially the case as it mediated seven predictor variables and chronicity and seven predictor variables and severe disability. Importantly, this indicates that these predisposing factors are related to increased chronicity if migraineurs engage in shutdown dissociation, which is a novel finding in the migraine field. Higher rates of childhood neglect and somatoform and psychoform dissociation have been documented in chronic headache samples (Arik et al., 2008; Yücel et al., 2002), but this research has grouped together multiple forms of neglect. Another study demonstrated significantly higher levels of emotional abuse and somatoform dissociation in migraine than in healthy controls, but did not investigate this finding further than between group analysis (Kucukgoncu et al., 2014).

The SHUT-D is argued to be distinct from other measures of dissociation such as DES-II in that it was constructed based on a theoretical model that includes the biological and the neural system and not based on clinical heuristic observations. This model therefore provides an opportunity for additional integrated biopsychosocial research into dissociation and migraine.
For instance, left-side migraineurs are identified as having predominant parasympathetic activation in response to pain compared to right-side migraineurs (Avnon et al., 2004). Given the role of the parasympathetic system in dissociation, future research could examine shutdown dissociation, the autonomic nervous system and migraine location.

Incorporating biopsychosocial constructs, such as shutdown dissociation, into migraine treatment offers new strategies in reducing the risk of chronicification and disability in migraine. For instance, measuring ANS functioning through the vagus nerve, an important connection between body and brain could offer additional insight in assessment of stress, trauma and migraine pain (Porges & Dana, 2018; Yuan & Silberstein, 2016). Similarly, growing evidence concerning neurofeedback in PTSD samples has demonstrated changes in amygdala connectivity and emotion regulation regions of the brain (Nicholson et al., 2020b, 2020a). In a therapy setting this could include psychoeducation of possible physiological responses in shutdown, comparing sensory similarities between the trauma context and a therapeutic setting, promoting activation such as applied muscle tension and not relaxation to maintain arousal and prevent immobility, and importantly not terminating exposure to the trauma before integration with contextual cues such as time and location of danger (Hembree & Cahill, 2007; Schauer & Elbert, 2010; Schauer et al., 2011).

Limitations and considerations for future research

This research employed an online cross-sectional design and offers only a brief snapshot of a migraineur’s experience. Recall bias using the retrospective CTQ, is therefore a probable source of bias arising from this design. Under- or over-reporting are also possible limitations associated with the CTQ owing to the sensitivity of this area. Furthermore, given this cross-sectional design these findings cannot demonstrate causality for the direct or indirect role of psychosocial factors on chronic migraine or severe disability. This is especially important given that the purported limitations in screening tools for chronic migraine (Potter et al., 2019) and the diagnostic boundary of chronic migraine being created by consensus rather than empirical investigation with fluctuations documented in participant criteria for chronic migraine (Buse et al., 2019; Caronna et al., 2020; Serrano et al., 2017). Not having access to migraine diagnoses could have impacted on analysis and interpretation of results. One important example of this is the possibility of symptoms relating to migraine with aura confounding the high rates of shutdown dissociation, predicting chronic migraine.

Undercoverage and self-selection bias are other important limitations to consider with the use of an online survey, given that they only capture data of those with internet access or adequate computer literacy and may not meet the
principles of probability sampling (Bethlehem, 2010; Couper, 2000; Wright, 2005). This bias may partially explain the proportionally higher rates of chronic and severely disabled migraine participants in this study given that these participants have a more active presence online for the management of migraine.

The limitations of this study point to the need for further research into psychosocial variables using prospective designs from multiple recruitment pathways including online and clinic or GP based pathways. Studying biopsychosocial risk factors for chronic migraine has been proposed to offer targets for further understanding of and intervention for this condition (Buse et al., 2019). Doing so could help stem the onset of chronic migraine progression or improve remission to episodic migraine (May & Schulte, 2016). However, research into psychological intervention is constrained by a lack of high-quality research and insufficient efficacy in improving the primary outcome of migraine frequency (Sharpe et al., 2019), a finding reminiscent of early pharmacological interventions in headache (Tfelt-Hansen et al., 2000). An important caveat to consider with psychosocial factors in this condition is that migraineurs may also not adhere to psychological interventions (Gewirtz & Minen, 2019; Minen et al., 2020), nor consider them a high priority compared to fast-acting medication (R. A. Nicholson et al., 2007). Continued research is ongoing (Klan et al., 2019; Mansueto et al., 2018), however, furthering this area requires systematic evaluation of interventions targeting modifiable risk factors in episodic migraine over sufficient time to discern whether they can adequately reduce progression to chronic migraine status (Buse et al., 2019).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The author(s) reported there is no funding associated with the work featured in this article.

ORCID

Brian McGuire B.A. (Hons), MA Clinical Psychology, GradDipCrim, PhD Psych, AFBPSsI http://orcid.org/0000-0002-3540-6639

Jonathan Egan BA, MA, MPsychSc (Clin Spec), PsyD, PGCTLHE http://orcid.org/0000-0002-7205-0862
Grant/commercial support

Research completed in fulfillment of the requirement for the degree of D Psych Sc (Clin Psych).

References

Adams, A. M., Serrano, D., Buse, D. C., Reed, M. L., Marske, V., Fanning, K. M., & Lipton, R. B. (2015). The impact of chronic migraine: The Chronic Migraine Epidemiology and Outcomes (CaMEO) study methods and baseline results. *Cephalalgia*, 35(7), 563–578. https://doi.org/10.1177/0333102414552532

Agler, R., & De Boeck, P. (2017). On the interpretation and use of mediation: Multiple perspectives on mediation analysis. *Frontiers in Psychology*, 8(1944). https://doi.org/10.3389/fpsyg.2017.01984

American Psychiatric Association. (2013). *Diagnostic and statistical manual of mental disorders* (5th ed.).

Andrasik, F., Lipchik, G. L., McCrory, D. C., & Wittrock, D. A. (2005). Outcome measurement in behavioral headache research: Headache parameters and psychosocial outcomes. *Headache: The Journal of Head and Face Pain*, 45(5), 429–437. https://doi.org/10.1111/j.1526-4610.2005.05094.x

Arik, D., Akdeniz, F., Polat, F., Cetin, B., Tanriverdi, Z., Koskderelioglu, A., Gokcay, F., & Sirin, H. (2008). Defining the dissociative disorders and childhood trauma among outpatients at Ege university, neurology headache unit. *European Psychiatry*, 23(S2), S364. https://doi.org/10.1016/j.eurpsy.2008.01.1260

Avnon, Y., Nitzan, M., Sprecher, E., Rogowski, Z., & Yarnitsky, D. (2004). Autonomic asymmetry in migraine: Augmented parasympathetic activation in left unilateral migraines. *Brain*, 127(Pt 9), 2099–2108. https://doi.org/10.1093/brain/awh236

Bernstein, D. P., Stein, J. A., Newcomb, M. D., Walker, E., Pogge, D., Ahluvalia, T., Stokes, J., Handelsman, L., Medrano, M., Desmond, D., & Zule, W. (2003). Development and validation of a brief screening version of the Childhood Trauma Questionnaire. *Child Abuse & Neglect*, 27(2), 169–190. https://doi.org/10.1016/s0145-2134(02)00541-0

Bernstein, E. M., & Putnam, F. W. (1986). Development, reliability, and validity of a dissociation scale. *The Journal of Nervous and Mental Disorders*, 174(12), 727–735. https://doi.org/10.1097/00005053-198612000-00004

Berry, J. K., & Drummond, P. D. (2014). Does attachment anxiety increase vulnerability to headache? *Journal of Psychosomatic Research*, 76(2), 113–120. https://doi.org/10.1016/j.jpsychores.2013.11.018

Bethlehem, J. (2010). Selection bias in web surveys. *International Statistical Review*, 78(2), 161–188. https://doi.org/10.1111/j.1751-5823.2010.00112.x

Blumenfeld, A. M., Varon, S. F., Wilcox, T. K., Buse, D. C., Kawata, A. K., Manack, A., Goadsby, P. J., & Lipton, R. B. (2011). Disability, HRQoL and resource use among chronic and episodic migraineurs: Results from the international burden of migraine study (IBMS). *Cephalalgia*, 31(3), 301–315. https://doi.org/10.1177/0333102410381145

Borsook, D., Maleki, N., Becerra, L., & McEwen, B. (2012). Understanding migraine through the lens of maladaptive stress responses: A model disease of allostatic load. *Neuron*, 73(2), 219–234. https://doi.org/10.1016/j.neuron.2012.01.001

Brennan, K. A., Clark, C. L., & Shaver, P. R. (1998). Self-report measurement of adult romantic attachment: An integrative overview. In J. A. Simpson & W. S. Rholes (Eds.), *Attachment theory and close relationships* (pp. 46–76). Guilford Press.
Breslau, N., & Rasmussen, B. K. (2001). The impact of migraine: Epidemiology, risk factors, and co-morbidities. Neurology, 56(6 Suppl 1), S4–12. https://doi.org/10.1212/wnl.56.suppl_1.s4

Buse, D. C., Greisman, J. D., Baigi, K., & Lipton, R. B. (2019). Migraine progression: A systematic review. Headache: The Journal of Head and Face Pain, 59(3), 306–338. https://doi.org/10.1111/head.13459

Buse, D. C., Manack, A. N., Fanning, K. M., Serrano, D., Reed, M. L., Turkel, C. C., & Lipton, R. B. (2012). Chronic migraine prevalence, disability, and sociodemographic factors: Results from the American migraine prevalence and prevention study. Headache: The Journal of Head and Face Pain, 52(10), 1456–1470. https://doi.org/10.1111/j.1526-4610.2012.02223.x

Buse, D. C., Manack, A., Serrano, D., Turkel, C., & Lipton, R. B. (2010). Sociodemographic and comorbidity profiles of chronic migraine and episodic migraine sufferers. Journal of Neurology Neurosurgery and Psychiatry, 81(4), 428–432. https://doi.org/10.1136/jnnp.2009.192492

Buse, D. C., Reed, M. L., Fanning, K. M., Bostic, R., Dodick, D. W., Schwedt, T. J., Munjal, S., Singh, P., & Lipton, R. B. (2020). Comorbid and co-occurring conditions in migraine and associated risk of increasing headache pain intensity and headache frequency: Results of the migraine in America Symptoms and Treatment (MAST) study. Journal of Headache and Pain, 21(1), 23. https://doi.org/10.1186/s10194-020-1084-y

Buse, D. C., Rupnow, M. F., & Lipton, R. B. (2009). Assessing and managing all aspects of migraine: Migraine attacks, migraine-related functional impairment, common comorbidities, and quality of life. Mayo Clinic Proceedings, 84(5), 422–435. https://doi.org/10.1016/s0025-6196(11)60561-2

Carlson, E. B., & Putnam, F. W. (1993). An update on the dissociative experiences scale. Dissociation, 6(1), 16–27. http://hdl.handle.net/1794/1539

Caronna, E., Gallardo, V. J., Fonseca, E., Gómez-Galván, J. B., Alpuente, A., Torres-Ferrus, M., & Pozo-Rosich, P. (2020). How does migraine change after 10 years? A clinical cohort follow-up analysis. Headache: The Journal of Head and Face Pain, 60(5), 916–928. https://doi.org/10.1111/head.13774

Chen, Y. C., Tang, C. H., Ng, K., & Wang, S. J. (2012). Comorbidity profiles of chronic migraine sufferers in a national database in Taiwan. Journal of Headache and Pain, 13(4), 311–319. https://doi.org/10.1007/s10194-012-0447-4

Cosci, F., Svicher, A., Romanazzo, S., Maggini, L., De Cesaris, F., Benemei, S., & Geppetti, P. (2020). Criterion-related validity in a sample of migraine outpatients: The diagnostic criteria for psychosomatic research. CNS Spectrums, 25(4), 1–7. https://doi.org/10.1017/S1092852919001536

Couper, M. P. (2000). Web surveys: A review of issues and approaches. The Public Opinion Quarterly, 64(4), 464–494. https://doi.org/10.1086/318641

D’Amico, D., Grazzi, L., Usai, S., Leonardi, M., & Raggi, A. (2013). Disability and quality of life in headache: Where we are now and where we are heading. Neurological Sciences, 34(Suppl 1), S1–5. https://doi.org/10.1007/s10072-013-1378-9

Dodick, D. W., Loder, E. W., Manack Adams, A., Buse, D. C., Fanning, K. M., Reed, M. L., & Lipton, R. B. (2016). Assessing barriers to chronic migraine consultation, diagnosis, and treatment: Results From the Chronic Migraine Epidemiology and Outcomes (CaMEO) study. Headache: The Journal of Head and Face Pain, 56(5), 821–834. https://doi.org/10.1111/head.12774

Ehrlich, K. B., & Cassidy, J. (2019). Attachment and physical health: Introduction to the special issue. Attachment & Human Development, 21(1), 1–4. https://doi.org/10.1080/14616734.2018.1541512
Esposito, M., Parisi, L., Gallai, B., Marotta, R., Di Dona, A., Lavano, S. M.,… Carotenuto, M. (2013). Attachment styles in children affected by migraine without aura. *Neuropsychiatric Disease and Treatment*, 9, 1513–1519. https://doi.org/10.2147/ndt.S52716

Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. *Behaviour Research Methods*, 41(4), 1149–1160. https://doi.org/10.3758/brm.41.4.1149

Feigin, V. L., Nichols, E., Alam, T., Bannick, M. S., Beghi, E., Blake, N., Ellenbogen, R. G., Elbaz, A., Ellenbogen, R. G., Fisher, J. L., Fitzmaurice, C., Giussani, G., Glennie, L., James, S. L., Johnson, C. O., Kassebaum, N. J., Logroscino, G., Marin, B., Mountjoy-Venning, W. C., Vos, T., & Culpepper, W. J. (2019). Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the global burden of disease study 2016. *The Lancet Neurology*, 18(5), 459–480. https://doi.org/10.1016/s1474-4422(18)30499-x

Fraley, R. C., Heffernan, M. E., Vicary, A. M., & Brumbaugh, C. C. (2011). The experiences in close relationships-relationship structures questionnaire: A method for assessing attachment orientations across relationships. *Psychological Assessment*, 23(3), 615–625. https://doi.org/10.1037/a0022898

Fraley, R. C., & Waller, N. G. (1998). Adult attachment patterns: A test of the typological model. In J. A. Simpson & W. S. Rholes (Eds.), *Attachment theory and close relationships* (pp. 77–114). Guilford Press.

Galli, F., Caputi, M., Sances, G., Vegni, E., Bottiroli, S., Nappi, G., & Tassorelli, C. (2017). Alexithymia in chronic and episodic migraine: A comparative study. *Journal of Mental Health*, 26(3), 192–196. https://doi.org/10.3109/09638237.2015.1124404

Gewirtz, A., & Minen, M. (2019). Adherence to behavioral therapy for migraine: Knowledge to date, mechanisms for assessing adherence, and methods for improving adherence. *Current Pain and Headache Reports*, 23(1), 3. https://doi.org/10.1007/s11916-019-0739-3

Habibzadeh, F., Habibzadeh, P., & Yadollahie, M. (2016). On determining the most appropriate test cut-off value: The case of tests with continuous results. *Biochimia Medica (Zagreb)*, 26(3), 297–307. https://doi.org/10.11613/bm.2016.034

Hayes, A. F. (2019). PROCESS v3.4. http://processmacro.org/download.html

Hayes, A. F. (2017). *Introduction to mediation, moderation, and conditional process analysis Second Edition: A regression-based approach*. The Guilford Press.

Hembree, E. A., & Cahill, S. P. (2007). Chapter 17 - Obstacles to successful implementation of exposure therapy. In D. C. S. Richard & D. Lauterbach (Eds.), *Handbook of exposure therapies* (pp. 389–408). Academic Press.

IBM Corp. (2019). *SPSS statistics version 26*. IBM SPSS Corp.

James, S. L., Abate, D., Abate, K. H., Abay, S. M., Abbafati, C., Abbasi, N., Abdollahpour, I., & Abdelalim, A. (2018). Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries in 195 countries and territories, 1990–2017: A systematic analysis for the global burden of disease study 2017. *The Lancet*, 392(10159), 1789–1858. https://doi.org/10.1016/S0140-6736(18)32279-7

Klan, T., Liesering-Latta, E., Gaul, C., Martin, P. R., & Witthoft, M. (2019). An integrative cognitive behavioral therapy program for adults with migraine: A feasibility study. *Headache: The Journal of Head and Face Pain*, 59(5), 741–755. https://doi.org/10.1111/head.13532

Kroenke, K., & Spitzer, R. L. (2002). The PHQ-9: A new depression diagnostic and severity measure. *Psychiatric Annals*, 32(9), 509–515. https://doi.org/10.3928/0048-5713-20020901-06

Kroenke, K., Strine, T. W., Spitzer, R. L., Williams, J. B., Berry, J. T., & Mokdad, A. H. (2009). The PHQ-8 as a measure of current depression in the general population. *Journal of Affective Disorders*, 114(1–3), 163–173. https://doi.org/10.1016/j.jad.2008.06.026
Kucukgoncu, S., Yildirim Ornek, F., Cabalar, M., Bestepe, E., & Yayla, V. (2014). Childhood trauma and dissociation in tertiary care patients with migraine and tension type headache: A controlled study. *Journal of Psychosomatic Research*, 77(1), 40–44. https://doi.org/10.1016/j.jpsychores.2014.04.007

Lanius, R. A., Brand, B., Vermetten, E., Frewen, P., & Spiegel, D. (2012). The dissociative subtype of posttraumatic stress disorder: Rationale, clinical and neurobiological evidence, and implications. *Depression and Anxiety*, 29(8), 701–708. https://doi.org/10.1002(da.21889

Lanteri-Minet, M., Radat, F., Chautard, M. H., & Lucas, C. (2005). Anxiety and depression associated with migraine: Influence on migraine subjects’ disability and quality of life, and acute migraine management. *Pain*, 118(3), 319–326. https://doi.org/10.1016/j.pain.2005.09.010

Leonardi, M., & Raggi, A. (2013). Burden of migraine: International perspectives. *Neurological Sciences*, 34(Suppl 1), S117–118. https://doi.org/10.1007/s10072-013-1387-8

Lipton, R. B., & Bigal, M. E. (2005). Migraine: Epidemiology, impact, and risk factors for progression. *Headache: The Journal of Head and Face Pain*, 45(Suppl 1), S3–S13. https://doi.org/10.1111/j.1526-4610.2005.4501001.x

Lipton, R. B., Fanning, K. M., Buse, D. C., Martin, V. T., Hohaia, L. B., Adams, A. M., Reed, M. L., & Goadsby, P. J. (2019). Migraine progression in subgroups of migraine based on comorbidities: Results of the CaMEO study. *Neurology*, 93(24), e2224–e2236. https://doi.org/10.1212/WNL.0000000000008589

Lipton, R. B., Serrano, D., Buse, D. C., Pavlovic, J. M., Blumenfeld, A. M., Dodick, D. W., Aurora, S. K., Becker, W. J., Diener, H.-C., Wang, S.-J., Vincent, M. B., Hindiyeh, N. A., Starling, A. J., Gillard, P. J., Varon, S. F., & Reed, M. L. (2016). Improving the detection of chronic migraine: Development and validation of Identify Chronic Migraine (ID-CM). *Cephalalgia*, 36(3), 203–215. https://doi.org/10.1177/0333102415583982

Lipton, R. B., Stewart, W. F., Celentano, D. D., & Reed, M. L. (1992). Undiagnosed migraine headaches. A comparison of symptom-based and reported physician diagnosis. *Archives of Internal Medicine*, 152(6), 1273–1278. https://doi.org/10.1001/archinte.152.6.1273

Lyssenko, L., Schmahl, C., Bockhacker, L., Vonderlin, R., Bohus, M., & Kleindienst, N. (2018). Dissociation in psychiatric disorders: A meta-analysis of studies using the dissociative experiences scale. *American Journal of Psychiatry*, 175(1), 37–46. https://doi.org/10.1176/appi.ajp.2017.17010025

MacKinnon, D. P., Krull, J. L., & Lockwood, C. M. (2000). Equivalence of the mediation, confounding and suppression effect. *Prevention Science*, 1(4), 173–181. https://doi.org/10.1023/a:1026595011371

Manack, A., Buse, D. C., Serrano, D., Turkel, C. C., & Lipton, R. B. (2011). Rates, predictors, and consequences of remission from chronic migraine to episodic migraine. *Neurology*, 76(8), 711–718. https://doi.org/10.1212/WNL.0b013e31820d8af2

Mansuetu, G., De Cesaris, F., Geppetti, P., & Cosci, F. (2018). Protocol and methods for testing the efficacy of well-being therapy in chronic migraine patients: A randomized controlled trial. *Trials*, 19(1), 561. https://doi.org/10.1186/s13063-018-2944-5

May, A., & Schulte, L. H. (2016). Chronic migraine: Risk factors, mechanisms and treatment. *Nature Reviews Neurology*, 12(8), 455–464. https://doi.org/10.1038/nrneuro.2016.93

McCluskey, U., & O’Toole, M. (2019). *Transference and countertransference from an attachment perspective: A guide for professional caregivers*. Routledge.

Miglis, M. G. (2018). Migraine and autonomic dysfunction: which is the horse and which is the Jockey? *Current Pain and Headache Reports*, 22(3), 19. https://doi.org/10.1007/s11916-018-0671-y
Minen, M. T., Loder, E., Tishler, L., & Silbersweig, D. (2016). Migraine diagnosis and treatment: A knowledge and needs assessment among primary care providers. Cephalalgia, 36(4), 358–370. https://doi.org/10.1177/0333102415593086

Minen, M. T., Sahyoun, G., Gopal, A., Levitan, V., Pirraglia, E., Simon, N. M., & Halpern, A. (2020). A pilot randomized controlled trial to assess the impact of motivational interviewing on initiating behavioral therapy for migraine. Headache: The Journal of Head and Face Pain, 60(2), 441–456. https://doi.org/10.1111/head.13738

Mula, M., Danquah-Boateng, D., Cock, H. R., Khan, U., Lozsadi, D. A., & Nirmalananthan, N. (2016). Different attachment styles correlate with mood disorders in adults with epilepsy or migraine. Epilepsy & Behaviour, 54, 110–114. https://doi.org/10.1016/j.yebeh.2015.11.023

Munakata, J., Hazard, E., Serrano, D., Klingman, D., Rupnow, M. F., Tierce, J., Reed, M., & Lipton, R. B. (2009). Economic burden of transformed migraine: Results from the American Migraine Prevalence and Prevention (AMPP) study. Headache: The Journal of Head and Face Pain, 49(4), 498–508. https://doi.org/10.1111/j.1526-4610.2009.01369.x

Natoli, J. L., Manack, A., Dean, B., Butler, Q., Turkel, C. C., Stovner, L., & Lipton, R. B. (2010). Global prevalence of chronic migraine: A systematic review. Cephalalgia, 30(5), 599–609. https://doi.org/10.1177/1468-2982.2009.01941.x

Nicholson, A. A., Ros, T., Densmore, M., Frewen, P. A., Neufeld, R. W., Théberge, J., Jetly, R., & Lanius, R. A. (2020b). A randomized, controlled trial of alpha-rhythm EEG neurofeedback in posttraumatic stress disorder: A preliminary investigation showing evidence of decreased PTSD symptoms and restored default mode and salience network connectivity using fMRI. NeuroImage: Clinical, 28, 102490. https://doi.org/10.1016/j.nic.2020.102490

Nicholson, A. A., Ros, T., Jetly, R., & Lanius, R. A. (2020a). Regulating posttraumatic stress disorder symptoms with neurofeedback: Regaining control of the mind. Journal of Military, Veteran and Family Health, 6(S1), 3–15. https://doi.org/10.3138/jmvfh.2019-0032

Nicholson, R. A., Houle, T. T., Rhudy, J. L., & Norton, P. J. (2007). Psychological risk factors in headache. Headache, 47(3), 413–426. https://doi.org/10.1111/j.1526-4610.2006.00716.x

Nijenhuis, E. R. S., Van Der Hart, O., & Steele, K. (2002). The emerging psychobiology of trauma-related dissociation and dissociative disorders. In D. D’Haenen, J. A. Den Boer, & P. Willner (Eds.), Biological psychiatry (pp. 1079–1098). Wiley.

Özsoy, F., & Taşci, İ. (2021). Defense mechanisms, dissociation, alexithymia and childhood traumas in chronic migraine patients. Journal of Rational-Emotive & Cognitive-Behavior Therapy, 39(1), 1–13. https://doi.org/10.1007/s10942-020-00357-0

Peterlin, B. L., Katsnelson, M. J., & Calhoun, A. H. (2009). The associations between migraine, unipolar psychiatric comorbidities, and stress-related disorders and the role of estrogen. Current Pain and Headache Reports, 13(5), 404–412. https://doi.org/10.1007/s11916-009-0066-1

Planchuelo-Gomez, Á., Garcia-Azorin, D., Guerrero, Á. L., Aja-Fernandez, S., Rodriguez, M., & De Luis-garcia, R. (2020). White matter changes in chronic and episodic migraine: A diffusion tensor imaging study. Journal of Headache and Pain, 21(1), 1. https://doi.org/10.1186/s10194-019-1071-3

Porger, S. W., & Dana, D. A. (2018). Clinical applications of the polyvagal theory: The emergence of polyvagal-informed therapies (Norton series on interpersonal neurobiology). WW Norton & Company.

Potter, R., Probyn, K., Bernstein, C., Pincus, T., Underwood, M., & Matharu, M. (2019). Diagnostic and classification tools for chronic headache disorders: A systematic review. Cephalalgia, 39(6), 761–784. https://doi.org/10.1177/0333102418806864

Probyn, K., Bowers, H., Caldwell, F., Mistry, D., Underwood, M., Matharu, M., Pincus, T., & Team, C. (2017). Prognostic factors for chronic headache: A systematic review. Neurology, 89(3), 291–301. https://doi.org/10.1212/WNL.0000000000004112
Rossi, P., Di Lorenzo, G., Malpezi, M. G., Di Lorenzo, C., Cesarino, F., Faroni, J., Siracusano, A., & Troisi, A. (2005). Depressive symptoms and insecure attachment as predictors of disability in a clinical population of patients with episodic and chronic migraine. *Headache: The Journal of Head and Face Pain, 45*(5), 561–570. https://doi.org/10.1111/j.1526-4610.2005.05110.x

Saatçaci, H., Cengiz, G. F., & Aktürk, T. (2020). Impact of dissociative experiences in migraine and its close relationship with osmophobia. *Neurological Research, 42*(7), 529–536. https://doi.org/10.1080/01616412.2020.1753417

Savi, L., Buccheri, R., Tambornini, A., De Martino, P., Albasi, C., & Pinessi, L. (2005). Attachment styles and headache. *Journal of Headache and Pain, 6*(4), 254–257. https://doi.org/10.1007/s10194-005-0200-3

Saylor, D., & Steiner, T. J. (2018). The global burden of headache. *Seminars in Neurology, 38*(2), 182–190. https://doi.org/10.1055/s-0038-1646946

Schalinski, I., Schauer, M., & Elbert, T. (2015). The shutdown dissociation scale (shut-d). *European Journal of Psychotraumatology, 6*(1), 25652. https://doi.org/10.3402/ejpt.v6.25652

Schauer, M., & Elbert, T. (2010). Dissociation following traumatic stress. *Zeitschrift Für Psychologie/Journal of Psychology, 218*(2), 109–127. https://doi.org/10.1027/0044-3409/a000018

Schauer, M., Schauer, M., Neuner, F., & Elbert, T. (2011). *Narrative exposure therapy: A short-term treatment for traumatic stress disorders*. Hogrefe Publishing.

Scher, A. I., Buse, D. C., Fanning, K. M., Kelly, A. M., Franznick, D. A., Adams, A. M., & Lipton, R. B. (2017). Comorbid pain and migraine chronicity: The chronic migraine epidemiology and outcomes study. *Neurology, 89*(5), 461–468. https://doi.org/10.1212/WNL.0000000000004177

Scher, A. I., Wang, S. J., Katsarava, Z., Buse, D. C., Fanning, K. M., Adams, A. M., & Lipton, R. B. (2019). Epidemiology of migraine in men: Results from the Chronic Migraine Epidemiology and Outcomes (CaMEO) Study. *Cephalalgia, 39*(2), 296–305. https://doi.org/10.1177/0333102418786266

Schmitz, C. (2012). *LimeSurvey: An open source survey tool*. LimeSurvey Project Hamburg. http://www.limesurvey.org

Schurks, M., Rist, P. M., Bigal, M. E., Buring, J. E., Lipton, R. B., & Kurth, T. (2009). Migraine and cardiovascular disease: Systematic review and meta-analysis. *BMJ, 339*(oct27 1), b3914. https://doi.org/10.1136/bmj.b3914

Seo, J. G., & Park, S. P. (2015). Validation of the Patient Health Questionnaire-9 (PHQ-9) and PHQ-2 in patients with migraine. *Journal of Headache and Pain, 16*(1), 65. https://doi.org/10.1186/s10194-015-0552-2

Serrano, D., Lipton, R. B., Scher, A. I., Reed, M. L., Stewart, W. B. F., Adams, A. M., & Buse, D. C. (2017). Fluctuations in episodic and chronic migraine status over the course of 1 year: Implications for diagnosis, treatment and clinical trial design. *Journal of Headache and Pain, 18*(1), 101. https://doi.org/10.1186/s10194-017-0787-1

Sharpe, L., Dudeney, J., Williams, A. C. C., Nicholas, M., McPhee, I., Baillie, A., Welgampola, M., & McGuire, B. (2019). Psychological therapies for the prevention of migraine in adults. *Cochrane Database of Systematic Reviews, 7*(7), Cd012295. https://doi.org/10.1002/14651858.CD012295.pub2

Spitzer, R. L., Kroenke, K., Williams, J. B., & Lowe, B. (2006). A brief measure for assessing generalized anxiety disorder: The GAD-7. *Archives of Internal Medicine, 166*(10), 1092–1097. https://doi.org/10.1001/archinte.166.10.1092

Steiner, T. J., Stovner, L. J., Vos, T., Jensen, R., & Katsarava, Z. (2018). Migraine is first cause of disability in under 50s: Will health politicians now take notice? *Journal of Headache and Pain, 19*(1), 17. https://doi.org/10.1186/s10194-018-0846-2
Steppacher, I., Schindler, S., & Kissler, J. (2016). Higher, faster, worse? An event-related potentials study of affective picture processing in migraine. Cephalalgia, 36(3), 249–257. https://doi.org/10.1177/0333102415587705

Stewart, W. F., Lipton, R. B., Dowson, A. J., & Sawyer, J. (2001). Development and testing of the Migraine Disability Assessment (MIDAS) questionnaire to assess headache-related disability. Neurology, 56(6 Suppl 1), S20–28. https://doi.org/10.1212/wnl.56.suppl_1.s20

Stewart, W. F., Lipton, R. B., Kolodner, K. B., Sawyer, J., Lee, C., & Liberman, J. N. (2000). Validity of the Migraine Disability Assessment (MIDAS) score in comparison to a diary-based measure in a population sample of migraine sufferers. Pain, 88(1), 41–52. https://doi.org/10.1016/s0304-3959(00)00305-5

Stewart, W. F., Lipton, R. B., Kolodner, K., Liberman, J., & Sawyer, J. (1999). Reliability of the migraine disability assessment score in a population-based sample of headache sufferers. Cephalalgia, 19(2), 107–114; discussion 174. https://doi.org/10.1046/j.1468-2982.1999.019002107.x

Stewart, W. F., Lipton, R. B., Whyte, J., Dowson, A., Kolodner, K., Liberman, J. N., & Sawyer, J. (1999). An international study to assess reliability of the Migraine Disability Assessment (MIDAS) score. Neurology, 53(5), 988–994. https://doi.org/10.1212/wnl.53.5.988

Stoltzfus, J. C. (2011). Logistic regression: A brief primer. Academic Emergency Medicine, 18 (10), 1099–1104. https://doi.org/10.1111/j.1553-2712.2011.01185.x

Szabó, E., Galambos, A., Kocsel, N., Edes, A. E., Pap, D., Zsomóbók, T., Kozák, L. R., Bagdy, G., Kőkönyei, G., & Juhász, G. (2019). Association between migraine frequency and neural response to emotional faces: An fMRI study. NeuroImage: Clinical, 22, 101790. https://doi.org/10.1016/j.nic.2019.101790

Tarantino, S., De Ranieri, C., Dionisi, C., Gagliardi, V., Paniccia, M. F., Capuano, A., Frusciante, R., Balestri, M., Vigevano, F., Gentile, S., & Valeriani, M. (2017a). Role of the attachment style in determining the association between headache features and psychological symptoms in migraine children and adolescents. An analytical observational case-control study. Headache: The Journal of Head and Face Pain, 57(2), 266–275. https://doi.org/10.1111/head.13007

Tarantino, S., Papetti, L., De Ranieri, C., Boldrini, F., Rocco, A. M., D’Ambrosio, M., Valeriano, V., Battan, B., Paniccia, M. F., Vigevano, F., Gentile, S., & Valeriani, M. (2018). Maternal alexithymia and attachment style: Which relationship with their children’s headache features and psychological profile? Frontiers in Neurology, 8(751), 751. https://doi.org/10.3389/fneur.2017.00751

Tfelt-Hansen, P., Block, G., Dahlöf, C., Diener, H., Ferrari, M., Guidetti, V., Jones, B., Lipton, R. B., Massiou, H., Meinert, C., Sandrini, G., Steiner, T., Winter, P., & Goadsby, R., & International Headache Society Clinical Trials Subcommittee. (2000). Guidelines for controlled trials of drugs in migraine: Second Edition. Cephalalgia, 20(9), 765–786. https://doi.org/10.1080/0333102415587705

Tietjen, G. E., Brandes, J. L., Digre, K. B., Baggaley, S., Martin, V. T., Recober, A., Geweke, L. O., Hafeez, F., Aurora, S. K., Herial, N. A., Utley, C., & Khuder, S. A. (2007). History of childhood maltreatment is associated with comorbid depression in women with migraine. Neurology, 69(10), 959–968. https://doi.org/10.1212/01.wnl.0000271383.60376.67

Tietjen, G. E., Brandes, J. L., Peterlin, B. L., Eloff, A., Dafer, R. M., Stein, M. R., Drexler, E., Martin, V. T., Hutchinson, S., Aurora, S. K., Recober, A., Herial, N. A., Utley, C., White, L., & Khuder, S. A. (2010a). Childhood maltreatment and migraine (part I). Prevalence and adult revictimization: A multicenter headache clinic survey. Headache: The Journal of Head and Face Pain, 50(1), 20–31. https://doi.org/10.1111/j.1526-4610.2009.01556.x
Tietjen, G. E., Brandes, J. L., Peterlin, B. L., Eloff, A., Dafer, R. M., Stein, M. R., Drexler, E., Martin, V. T., Hutchinson, S., Aurora, S. K., Recober, A., Herial, N. A., Utley, C., White, L., & Khuder, S. A. (2005). Childhood maltreatment and migraine (part II). Emotional abuse as a risk factor for headache chronification. *Headache: The Journal of Head and Face Pain*, 50(1), 32–41. https://doi.org/10.1111/j.1526-4610.2009.01557.x

Tietjen, G. E., Buse, D. C., & Collins, S. A. (2016). Childhood maltreatment in the migraine patient. *Current Treatment Options in Neurology*, 18(7), 31. https://doi.org/10.1007/s11940-016-0415-4

Tietjen, G. E., Buse, D. C., Fanning, K. M., Serrano, D., Reed, M. L., & Lipton, R. B. (2015). Recalled maltreatment, migraine, and tension-type headache: Results of the AMPP study. *Neurology*, 84(2), 132–140. https://doi.org/10.1212/WNL.0000000000001120

Tietjen, G. E., Karmakar, M., & Amialchuk, A. A. (2017). Emotional abuse history and migraine among young adults: A retrospective cross-sectional analysis of the add health dataset. *Headache: The Journal of Head and Face Pain*, 57(1), 45–59. https://doi.org/10.1111/head.12994

Tietjen, G. E. (2016). Childhood maltreatment and headache disorders. *Current Pain and Headache Reports*, 20(4), 26. https://doi.org/10.1007/s11916-016-0554-z

Unal, I. (2017). Defining an optimal cut-point value in ROC analysis: An Alternative Approach. *Computational and Mathematical Methods in Medicine*, 2017, 3762651. https://doi.org/10.1155/2017/3762651

Van der Hart, O. (2021). Trauma-related dissociation: An analysis of two conflicting models. *European Journal of Trauma & Dissociation*, 5(4), 100210. https://doi.org/10.1016/j.ejtd.2021.100210

Van Dijke, A., Ford, J. D., Frank, L. E., & Van der Hart, O. (2015). Association of childhood complex trauma and dissociation with complex posttraumatic stress disorder symptoms in adulthood. *Journal of Trauma & Dissociation: The Official Journal of the International Society for the Study of Dissociation (ISSD)*, 16(4), 428–441. https://doi.org/10.1080/15299732.2015.1016253

Vittinghoff, E., & McCulloch, C. E. (2007). Relaxing the rule of ten events per variable in logistic and Cox regression. *American Journal of Epidemiology*, 165(6), 710–718. https://doi.org/10.1093/aje/kwk052

Wang, S. J., Fuh, J. L., Young, Y. H., Lu, S. R., & Shia, B. C. (2000). Prevalence of migraine in Taipei, Taiwan: A population-based survey. *Cephalalgia*, 20(6), 566–572. https://doi.org/10.1046/j.1468-2982.2000.0085x

Williams, R., Leone, L., Faedda, N., Natalucci, G., Bellini, B., Salvi, E., Verdecchia, P., Cerutti, R., Arruda, M., & Guidetti, V. (2017). The role of attachment insecurity in the emergence of anxiety symptoms in children and adolescents with migraine: An empirical study. *Journal of Headache and Pain*, 18(1), 62. https://doi.org/10.1186/s10194-017-0769-3

World Health Organization. (2011). *Atlas of headache disorders and resources in the world 2011*. Geneva: World Health Organisation. https://www.who.int/mental_health/management/atlas_headache_disorders/en/

Wright, K. B. (2005). Researching Internet-based populations: Advantages and disadvantages of online survey research, online questionnaire authoring software packages, and Web survey services. *Journal of Computer-Mediated Communication*, 10(3). https://doi.org/10.1111/j.1083-6101.2005.tb00259.x

Wu, Y., Levis, B., Riehm, K. E., Saadat, N., Levis, A. W., Azar, M., . . ., and Thombs, B. D. (2019). Equivalency of the diagnostic accuracy of the PHQ-8 and PHQ-9: A systematic review and individual participant data meta-analysis. *Psychological Medicine*, 50(8), 1–13. https://doi.org/10.1017/s0033291719001314
Xu, J., Kong, F., & Buse, D. C. (2020). Predictors of episodic migraine transformation to chronic migraine: A systematic review and meta-analysis of observational cohort studies. *Cephalalgia, 40*(5), 503–516. https://doi.org/10.1177/0333102419883355

Yuan, H., & Silberstein, S. D. (2016). Vagus nerve and vagus nerve stimulation, a comprehensive review: Part II. *Headache: The Journal of Head and Face Pain, 56*(2), 259–266. https://doi.org/10.1111/head.12650

Yücel, B., Özyalcin, S., Sertel, H. Ö., Çamlica, H., Ketenci, A., & Talu, G. K. (2002). Childhood traumatic events and dissociative experiences in patients with chronic headache and low back pain. *The Clinical Journal of Pain, 18*(6), 394–401. https://doi.org/10.1097/00002508-200211000-00008

Zingrone, N. L., & Alvarado, C. S. (2001). The dissociative experiences scale-II: Descriptive statistics, factor analysis, and frequency of experiences. *Imagination, Cognition and Personality, 21*(2), 145–157. https://doi.org/10.2190/k48d-xaw3-b2kc-ubb7
Appendix. Cut Off Thresholds for Outcome Variables in Binary Logistic Regression

Variable	Migraine Chronicity	Migraine Disability
	Cut Off Threshold	Cut Off Threshold
CTQ Emotional Abuse		
None-Minimal	5–8	5–8
Slight-Moderate	9–12	9–12
Moderate-Severe	13–15	13–15
Severe-Extreme	16–25	16–25
CTQ Physical Abuse		
None-Minimal	5–7	5–7
Slight-Moderate	8–9	8–9
Moderate-Severe	10–12	10–12
Severe-Extreme	13–25	13–25
CTQ Emotional Neglect		
None-Minimal	5–9	5–9
Slight-Moderate	10–14	10–14
Moderate-Severe	15–17	15–17
Severe-Extreme	18–25	18–25
CTQ Physical Neglect		
None-Minimal	5–7	5–7
Slight-Moderate	8–9	8–9
Moderate-Severe	10–12	10–12
Severe-Extreme	13–25	13–25
CTQ Sexual Abuse		
None-Minimal	5	5
Slight-Moderate	6–7	6–7
Moderate-Severe	8–12	8–12
Severe-Extreme	13–25	13–25
ECR-RS Anxiety	3.56	3.56
ECR-RS Avoidance	2.92	2.92
TAS20	51	51
DES-II	10.89 (ROC)	14.39 (ROC)
Shut D	7.5 (ROC)	8.36 (ROC)
APT	70	70
PHQ-8	10	10
GAD-7	10	10

CTQ = Childhood Trauma Questionnaire, ECR-RS = Experiences in Close Relationships-Relationship Structures, TAS-20 = Toronto Alexithymia Scale 20-item, DES-II = The Dissociative Experiences Scale-II, Shut D = The Shutdown Dissociation Scale, APT = The Affect Phobia Test, PHQ-8 = Patient Health Questionnaire-8, GAD-7 = General Anxiety Disorder-7

ROC = Score under receiver operating characteristic curve employed