Medicinal Values of *Trichosanthes cucumerina* L. (Snake Gourd) - A Review

N. Deepa Devi*†

*†Department of Vegetable Crops, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore-641003, India.

Author’s contribution

The sole author designed, analyzed and interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/BJPR/2017/33575

Editor(s): (1) Shanfa Lu, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, China. (2) Rafik Karaman, Bioorganic Chemistry, College of Pharmacy, Al-Quds University, USA.

Reviewers: (1) João Carlos da Silva Dias, University of Lisbon, Portugal. (2) Viduranga Waisundara, Rajarata University of Sri Lanka, Sri Lanka.

Complete Peer review History: http://www.sciencedomain.org/review-history/19159

Received 21st April 2017
Accepted 15th May 2017
Published 22nd May 2017

ABSTRACT

Snake gourd is an annual climber and it’s commonly called as snake gourd, viper gourd, snake tomato or long tomato. The fruit is usually consumed as a vegetable due to its good nutritional value. The fruit is a good source of Vitamin A, Vitamin B and Vitamin C. It improves the appetite and acts as a tonic and stomachic and cures biliousness. This is one of the most genetically diverse groups of food plant in the plant kingdom and every part of this plant is used to treat various diseases. It is used in the treatment of head ache, alopecia, fever, abdominal tumors, bilious, boils, acute colic, diarrhea, haematuria and skin allergy. *T. curcumineria* is used as an abortifacient, vermifuge, stomachic, refrigerant, purgative, malaria, laxative, hydragogue, hemagglutinant, emetic, cathartic, bronchitis and anthelmintic. This review paper completed focus on the biosystematics, nutritional, chemical constituents and scientific medicinal uses of the plant.

Keywords: Snake gourd; *Trichosanthes cucumerina* L; Phytochemicals; chemical substance; medicinal uses.
1. INTRODUCTION

Snake gourd is scientifically called as Tricosanthes cucumerina is a well known plant, the fruit of which is mainly consumed as a vegetable. It is an annual climber belonging to the family Cucurbitaceae. It is commonly called as snake gourd, viper gourd, snake tomato or long tomato [1,2]. The fruit is usually consumed as a vegetable due to it is good nutritional value. The fruit is a good source of Vitamin A, Vitamin B and Vitamin C. It improves the appetite and acts as a tonic and stomachic and cures biliousness. The wild bitter forms are used in many ayurvedic preparations. The fruits of cultivated forms also have medicinal uses and are useful for people suffering from blood pressure, heart diseases, rheumatism and psoriasis. The plant is richly constituted with a series of chemical constituents like flavonoids, carotenoids, phenolic acids which makes the plant pharmacologically and therapeutically active. It has a prominent place in alternative systems of medicine like Ayurveda and Siddha due to it is various pharmacological activities like antidiabetic, hepatoprotective, cytotoxic, anti-inflammatory, larvicidal effects [3,4].

2. TAXONOMY

Cucurbitaceae is a plant family commonly known as melons, gourds or cucurbits and includes crops like cucumbers, squashes (including pumpkins), luffas, melons (including watermelons). The family is predominantly distributed around the tropics, where those with edible fruits were amongst the earliest cultivated plants in both the old and new world. Major genera under this family are Trichosanthes (100 species), Cayaponia (60 species), Momordica (47 species), Gurania (40 species), Sicyos (40 species) and Cucurbita (34species). This is one of the most genetically diverse groups of food plant in the plant kingdom [5,6].

3. BIOSYSTEMATICS

The genus Trichosanthes has two cultivated species Trichosanthes anguina L. and Trichosanthes dioica Roxb. And several wild species. The important wild species are Trichosanthes bracteata (Lam.) Voigt. (Syn. Trichosanthes palmata Roxb.), which is most widely distributed in India, Trichosanthes cucumerina L. having a large variability, Trichosanthes lobata, Trichosanthes wallichiana (syn. Trichosanthes multiloba Clarke), Trichosanthes nervolilia L., Trichosanthes cordata Roxb., Trichosanthes japonica and Trichosanthes shikokiana. The botanical name of snake gourd is sometimes known as Trichosanthes cucumerina L. but the most common is Trichosanthes anguina L. the species Trichosanthes celebica, Trichosanthes ovigera and Trichosanthes vilosa are minor vegetables. Trichosanthes cucumeroides, commonly known as the Japanese snake gourd is grown in Japan and China. The species Trichosanthes bracteata (Lam.) Voigt. var. tomentosa (Heyne ex Clarke) Chak. occurs in India in the peninsular region and north eastern zone. Trichosanthes bracteata var. bracteata is distributed all over the country but largely in eastern India, the Himalayas up to an elevation of 1500 m and extending southwards to the Andaman Islands. Trichosanthes cucumerina (L.), perhaps a wild form of Trichosanthes anguina occurs almost throughout India and Trichosanthes cordata (Roxb.) grows wild in peninsular India and North-Eastern plains and hills [6].

4. CYTOLOGY

All species of Trichosanthes have chromosomes, n=11 and 2n=22 except Trichosanthes bracteata and Trichosanthes cucumeroides in which n=22 and 2n=44. Tetraploids (2n=44) and hexaploids (2n=66) have been reported in Trichosanthes palmate. Induced polyploids in Trichosanthes anguina showed quadrivalents, trivalents, bivalents and univalents. Only two species, Trichosanthes anguina and Trichosanthes cucumerina are monoeocious while all others are dioecious. The species with 2n=22 chromosomes had metacentric to submetacentric medium – sized (5.74 mm to 1.48 mm) chromosomes. There were only three pairs of chromosomes with secondary constriction in Trichosanthes anguina and Trichosanthes cucumerina. The presence of XY sex chromosomes were recorded in Trichosanthes cucumeroides and Trichosanthes japonica at meiosis and in Trichosanthes multiloba at metaphase. The species, Trichosanthes anguina, Trichosanthes cucumerina and Trichosanthes lobata are crossable among themselves with fertile hybrids indicating their close relationship [6].

5. REGIONAL NAME

The genus Trichosanthes has two cultivated species Trichosanthes cucumerina L.
(synonyms: *Trichosanthes anguina* L.) and *Trichosanthes dioica* Roxb. The regional names of snake gourd or snake tomato is Chichinga/Chichinge (Bengali), Potlakaaya (Telugu), Pudalankaai (Tamil), Aduvalakaayi (Kannada), Padavalanga (Malayalam), Galartori (Punjabi), Padavali (Gujarathi), Schlangen – Haargurke and Chichinda (Hindi), Wang Gua (China), Trikosantes, Lang Tomat (Dan), Haarbloem (Dut), Courge Serpent, Serpent Vegetal, Serpent Japonais (France), Schlangengurke, Uri (Germany), Petola Ular (Mal), Karasu-uri-zoku, Hebi-Uri (Japan), Patola (Srilanka), Serpentona, Zucchetta cinese (Italy), Abóbora-Serpente, Patola (Portugal), Käärmekurkku (Finland), Buap Nguu Ma Noi (Thailand), Yilan Kabagi (Turkey), Anguina, Calabaza De Culebra, Culebrina, Serpiente Vegetal, Calabaza, Anguina (Spain) and Pakupis, Tabubok (Tal) [7].

6. ORIGIN AND DISTRIBUTION

Snake gourd is originated in India or in the Indian Archipelago. The genus *Trichosanthes* is native to Southern and Eastern Asia, Australia and Islands of the western Pacific. *Trichosanthes cucumerina* is found wild throughout these areas. It was probably domesticated in ancient times in India. It is grown as a minor vegetable in many countries of tropical Asia. It is locally grown as a vegetable in home gardens in Africa. Commercial growers around big cities in East Africa occasionally grow cultivars of snake gourd imported from India for people of Indian origin. It is also reported from India through Malaya to tropical Australia. *Trichosanthes cucumerina* is a newly introduced crop of increasing importance in several parts of Africa, including Ghana and Nigeria. The genus *Trichosanthes* comprises about 100 species, of which a few have been domesticated in Asia, snake gourd being the most important. Two varieties are distinguished within *Trichosanthes cucumerina*. They are the wild var. cucumerina occurring from India, Sri Lanka and China, through South-East Asia, to northern Australia, and the cultivated var. anguina (L.). Only traditional landraces of *Trichosanthes cucumerina* are used in West and Central Africa, whereas improved cultivars from India are grown in East Africa.6 It is distributed in temperate Asian regions like china, tropical regions of Bangladesh, India, Nepal, Pakistan Sri Lanka, Myanmar; Vietnam, Indonesia; Malaysia; Philippines, in Australia it is found in Northern Territory, Queens land and in Western Australia [8].

7. MORPHOLOGY

The plant of *Tricosanthes cucumerina* is a monoecious annual herb climbing by 2–3-branched tendrils up to 5 to 6 meters high or less. The stems are slender, green, 4-angled, somewhat hairy, and faintly disagreeable in odor. The roots are somewhat tuberous and whitish. The leaves are alternate, simple with no stipules. Leaves are scabrid hairy on both surfaces, rounded in outline, 7 to 14 centimeters long and broad, and 3 or 5-lobed, the lobes being broad, rounded or obtuse, and the sinuses broad or narrow and rounded. The base is broadly heart-shaped. The staminate inflorescences are long-peduncled and axillary, with six to fifteen flowers. Flowers are unisexual, regular, and white in colour with green and hairy calyx. Corolla is tubular in with lobes fringed and hair like outgrowths. The male flowers are many-flowered with axillary racemes on 10–30 cm long peduncles. They are with 3 stamens but the female flowers are solitary and sessile with inferior, single celled ovary, long and with hairy stigmas [9]. Fruits are very slender, long and cylindrical berry, often twisted, greenish-white when immature, dark red when mature. The seeds are half-ellipsoid, somewhat compressed, undulate, hard, rugose, nearly one centimeter long, greyish-brown, sculptured, margin undulate and imbedded in a soft footed with red pulp [10].

8. PHYTOCHEMICALS

8.1 Nutrients

Tricosanthes cucumerina is a rich source of nutrition. It is highly constituted with proteins, fat, fibre, carbohydrates, vitamin A and E. The total phenolics and flavonoids content is 46.8% and 78.0% respectively 7. The fruit is rich in Vitamin C and E. The crude protein content is 30.18%. The predominant mineral elements were potassium (121.60 mg 100-1 g) and phosphorus (135.0 mg 100-1 g). Other elements found in fairly high amounts are Sodium, Magnesium and Zinc [11].

9. TRITERPENES AND CHEMICAL SUBSTANCES

The triterpenes found are 23, 24-dihydrocucurbitacin D, 23,24-dihydrocucurbitacin B, cucurbitacin B, 3β-hydroxyolean- 13(18)-en-28-oic acid, 3-oxoolean-13(18)-en-30-oic acid and the sterol 3-O-β-D-glucopyranosyl-24β-ethylcholest-7,22-dien-3β-ol.10 The percentage
free fatty acid and acid values were low suggesting increased stability and usefulness in nutritional and industrial applications [12]. The chemical constituents present in *T. cucumerina* are cucurbitacin B, cucurbitacin E, isocucurbitacin B, 23,24-dihydroisocucurbitacin B, 23,24-dihydrocucurbitacin E, sterols 2 β-sitosterol stigmasterol 11. Low amount of chemical substances like oxalate, phytates and tannins are also present. Analysis showed that the seed of *Trichosanthes cucumerina* have high oil content up to 42.5±5%. The presence of common protein bands among the species may be an evidence of evolutionary origin and many protein bands found to be unique in the *Trichosanthes cucumerina* suggested that there is no genetic relationship with *Lycopersicon* [13,14,11].

A galactose-specific lectin and ribosome-inactivating protein named trichoanguin13 are present in aerial parts [15,14]. The bulk of carotenoids made of lutein is present in the concentration of 15.6 -18.4 mg/100g FW15. Circular dichroism spectroscopic studies reveal that TCSL contains about 28.4% beta-sheet, 10.6% beta-turns, 7% polyproline type 2 structure, with the remainder comprising unordered structure; the alpha-helix content is negligible.16,17 The α-carotene contents were 10.3 - 10.7 mg/100g FW and the β-carotene contents were found to be 2.4 - 2.8 mg/100g. The ascorbic acid content found was 24.8 – 25.7 mg/100g fresh weight and lycopene content was16.0 and 18.1 mg/100g FW [16,17,18,11].

10. CHEMICAL CONSTITUENTS AND ITS USES

Chemical modifications carried out with imidazole side chains of histidine residues with ethoxyformic anhydride on the galactose-specific lectin (SGSL) purified from snake gourd. Trichosanthes seeds indicated that the loss of activity upon modification was not due to changes in the overall conformation of the lecithin18, 19. A novel isoflavone glucoside, 5,6,6′-trimethoxy-3′,4′- ethylenedioxyisoflavone7-O-beta-D-(2′-O-p-coumaroylglucopyranoside) has been characterized from the seeds of *Trichosanthes*20. The positive effects of the plant are due to the carotenoids, flavonoids, lycopene, phenolics and β-carotene present in it [19,20,21, 22].

Tricosanthes cucumerina is used in the treatment of head ache, alopecia, fever, abdominal tumors, bilious, boils, acute colic, diarrhea, haematuria and skin allergy. *T. curcumineria* is used as an abortifacient, vermifuge, stomachic, refrigerant, purgative, malaria, laxative, hydragogue, hemagglutinant, emetic, cathartic, bronchitis and anthelmintic [15].

10.1 Root

Two ounces of root juice has a drastic purgative action. Roots are used for expelling worms. In China roots used for diabetes, skin swellings like boils and furuncles. Fresh root has anti-convulsant activity. Bulbous part of the root is used as a hydragogue and cathartic. Root is abortifacient, alexiteric, anthelmintic, anti-septic, astringent, diuretic and emetic [23].

10.2 Leaves

Leaf juice is rubbed over the whole body in remittent fevers. Dried leaf has anti-spasmodic property. An infusion of tender shoots and dried capsules is aperient, and the expressed juice of the leaves is emetic. The leaves and stems are used for bilious disorders and skin diseases and as an emmenagogue. Leaf is alexiteric, astringent, diuretic and emetic [23].

10.3 Fruits

The fruit is considered to be anthelmintic. The dried capsules are given in infusion or in decoction with sugar to assist digestion the fruit a very violent purgative and an efficient emetic [23].

10.4 Seeds

The seed is said to be cooling. The dried seeds are used for it is anthelmintic and anti-diarrhoeal properties. Seeds have anti-bacterial, anti-spasmodic, antiperiodic and insecticidal properties. It is used as abortifacient, acrid, aphrodisiac, astringent, bitter, febrifuge, purgative, toxic, trichogenous [23].

11. HEALTH BENEFITS

11.1 Detoxify the Body

It has been used as a diuretic in traditional medicine for many years, as it stimulates the liver and increases urination, thereby speeding up the elimination of toxins from the body. It also increases the creation of bodily fluids, which can
eliminate dryness and dehydration, which also helps in the normal functioning of the kidneys and bladder. Juice from the leaves can also stimulate vomiting in case something toxic has been consumed [24].

11.2 Digestive

Children with bowel problems have been given snake gourd to ease their discomfort, as it acts as a mild laxative. Furthermore, the high fiber content of snake gourd can help anyone with bowel disorders and can eliminate constipation, reduce cramping and bloating and optimize the nutrient absorption process in the body [24].

11.3 Fever Reduction

In many tropical countries, fever can be a major danger to public health, regardless of it is cause. Snake gourd can be turned into a decoction and given to people suffering from fever. Overnight, fevers tend to break and the natural healing process can begin [24].

11.4 Respiratory System

Snake gourd functions as an expectorant, loosening pus and phlegm in the sinuses and respiratory tracts so that they can be eliminated. These further benefits the immune system, as toxins and other foreign agents often get caught in phlegm and mucus to cause more serious conditions [24].

11.5 Hair Health

For people suffering from alopecia, snake gourd is said to stimulate the growth of new hair and protect weakening follicles from hair loss. This can be attributed to it is rich mineral and vitamin content, particularly it is high level of carotenes, which specifically care for the skin and hair. It is also claimed that snake gourd can reduce the frequency and intensity of dandruff [24].

11.6 Immune System

Snake gourd has antibiotic properties and when combined with the levels of antioxidant carotenes and vitamin C found in the vegetable, this helpful gourd can significantly boost overall health. The specifics of what conditions the antibiotic effects are most useful for is still a subject of research [24].

11.7 Fever

Snake gourd has been found to help reduce bilious fever. If you add a bit of chiretta and honey, the efficacy of snake gourd is increased and it will be able to treat bilious fever quickly and effectively. Many cases have been recorded where snake gourd is used along with coriander leaves, where this mixture was found to be more effective in treating bilious fever. This juice has been used as an emetic to induce vomiting. It has been found to be effective in treating malarial fever as well [24].

11.8 Diabetes

Snake gourd has been mooted to help lessen the effects of diabetes. Although Chinese therapy regularly includes snake gourd in the treatment of diabetes, the vegetable is generally a low-calorie food. This makes it the ideal food to help keep weight under control, yet provide the proper nutrition to people with Type-II diabetics [24].

11.9 Heart Problems

Snake gourd extract is one of the best remedies for arterial disorders like palpitation and other conditions like pain and stress on the heart. The extract has been known to help improve circulation, which in turn ensures that you suffer less from heart problems. To get the best results, have at least two cups of snake gourd extract every day [24].

11.10 Jaundice

Snake gourd leaves have been found to be effective in combating diseases like jaundice. You can ingest 30-60 gram doses of the leaves, crushed along with corianders seeds thrice every day to avail the benefits of snake gourd [24].

11.11 Purgative

Snake gourd juice is a strong purgative which helps flush toxins from the body. The vegetable can also be dried, but this method isn’t usually as good as juicing the snake gourd. It is a good digestive, which aids in the digestive process. The leaves act as an emetic, ridding the body of toxins and also help cleanse the bowels. You can ingest 1-2 teaspoons of snake gourd juice every morning to get the benefits of this vegetable. Snake gourd seeds are also used as a moistening agent for treating severe cases of dry constipation [24].
11.12 Cures Dandruff

One of the most popular uses of snake gourd is its effectiveness in dealing with dandruff. Not only can topical application help rid you of dandruff, the vegetable can also help reduce symptoms of the condition. Simply rub a healthy amount of this juice into your scalp
and let it remain for half an hour, before you wash it off. Snake gourd juice usually stimulates the body to boost fluid production and moisturizes the scalp. You can also consider using this extract topically, as the treatment will work on ingestion or topical application as well [24].

11.13 Low in Calories

Snake gourd is a low-calorie food. It provides most of the needed nutrients without adding any fat to the body. In fact, it is quite low in calories, so you can rest assured that you wouldn’t be putting on extra weight by gorging on this vegetable [24].

11.14 Alopecia

The extract from the snake gourd leaves is quite effective in dealing with the treatment of hair and scalp disorders like alopecia, which usually leads to partial and sometimes even complete hair loss. For this specific treatment, you need to apply the juice topically to the affected area [24].

11.15 Rich in Minerals

Snake gourd is one of the healthiest vegetables as it is rich in essential minerals like magnesium, calcium and phosphorous. These minerals improve bodily functions and promote stronger bones and teeth [24].

11.16 Cures Constipation

Snake gourd is rich in dietary fiber, which makes it one of the best cures for softening stools and reducing the effects of bloating and constipation.

Snake gourd has some of the most important health benefits include it is ability to improve the strength of the immune system, reduce fevers, detoxify the body, improve the digestive processes of the body, increase hydration in the body, treat diabetes, boost the strength and quality of the hair, and aid in weight loss [24].

12. SCIENTIFIC USES

12.1 Antibacterial Activity

The *Trichosanthes cucumerina* leaf ethyl acetate, chloroform and methanol extracts showed significant activity against the different strains of bacteria. These extracts can be used as an external antiseptic in prevention and treatment of bacterial infections. The incorporation of these extracts into the drug formulations is also recommended [25].

12.2 Anti-dandruff Activity

The snake gourd possess the considerable anti-dandruff activity [26].

12.3 Anti-diabetic Activity

Using hot water extract of aerial parts of *Trichosanthes cucurmerina* has noted to improve glucose tolerance and tissue glycogen in non insulin dependent diabetes mellitus induced rats. Study showed the drug possess antidiabetic activity with improvement in oral glucose tolerance and glucose uptake in peripheral tissues [27,28,29].

12.4 Anti-fertility Activity

The antiovulatory activity of ethanol extract of whole plant of *Trichosanthes cucumerina* L. var. *cucumerina* in female albino rats [30].

12.5 Anti-inflammatory

The hot aqueous extract of root tubers of *Trichosanthes cucumerina* have investigated against carrageenin induced mouse’s hind paw oedema and it exhibited significant anti-inflammatory activity [31].

12.6 Antioxidant Property

The increased concentration of plant extract will increase the antioxidant property. Antioxidant fights against free radicals and pilot in from various diseases. They exert their action either by scavenging the reactive oxygen species or protecting the oxidant defence mechanism [32].

The antioxidant properties of snake tomato which favourably compares with the other lycopersicon tomatoes (except CER), combined with it is stronger inhibition of α-glucosidase activity, but milder inhibition of α-amylase activities suggests that snake tomato could be an alternative or complement to the use of lycopersicon tomatoes [33].

12.7 Cytotoxic Activity

The root extract of *Trichosanthes cucumerina* L. and the fruit juice tested cytotoxicity against four
human breast cancer cell lines and lung cancer cell lines and one colon cancer cell line. The root extract inhibited more strongly than the fruit juice [34].

12.8 Free Radical Mediated Diseases

Trichosanthes cucumerina Linn. use of as diuretic agent and produced a potent anthelmintic activity against the Pheretima Posthuma. It is effective against free radical mediated diseases [35].

12.9 Gastroprotective Activity

The hot aqueous extract of *Trichosanthes cucumerina* exerts a significant protection against ethanol or indomethacin induced gastric damage. Increasing the protective mucus layer, as well as decreasing the acidity of the gastric juice and antihistamine activity are probable mechanisms by which the hot water extract mediates it is gastroprotective actions [36].

12.10 Hair Growth

Aqueous leaf extract on *Trichosanthes cucumerina* L. on hair growth promotion in Wistar albino rats [37].

12.11 Hypoglycaemic Activity

The crude ethanolic extract of *Tricosanthes cucumerina* showed significant blood glucose lowering activity in alloxan diabetic albino rats [38].

12.12 Hepatoprotective Activity

The methanolic extract of the whole plant of *Tricosanthes cucumerina* showed good hepatoprotective activity against carbon tetrachloride induced hepatotoxicity.

12.13 Larvicidal Efficacy

Using the acetone extract of leaves of tricosanthes cucumerina showed moderate larvicidal effects [39].

12.14 Diabetes

The vegetable bioactive compounds usually associated to the reduction or reversion of Type 2 diabetes are dietary fiber, resistant starch, vitamins C and E, carotenoids, flavonoids, thiosulfides, magnesium, selenium, chromium, and zinc. Besides non-sweet Cucubitaceae that have anti-diabetic properties are snake gourd (*Trichosanthes cucumerina*), ivy gourd (*Coccinia grandis*) and ridge gourd (*Luffa acutangula*). Snake gourd is also considered to be useful in treating Type 2 diabetes. Both starchy and non-starchy vegetables are important for our diet. Legumes are a good carbohydrate source due to their protein, dietary fiber and resistant starch content. Vegetable fruits rich in fiber and antioxidants are also excellent vegetables for diabetics if sugar levels are low. Some cucurbits like bitter gourd, ivy gourd, snake gourd, and ridge gourd are recommended and considered useful for Type 2 diabetes [40].

13. CONCLUSION

Trichosanthes cucumerina is commonly called as snake gourd, viper gourd, snake tomato or long tomato. The name is varied from region to region. The fruit is usually consumed as a vegetable due to it is good nutritional value. All the part of the snake gourd is used for curing some diseases viz., abortifacient, vermifuge, stomachic, refrigerant, purgative, malaria, laxative, hydragogue, hemagglutinant, emetic, cathartic, bronchitis and anthelmintic.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

COMPETING INTERESTS

Author has declared that no competing interests exist.

REFERENCES

1. Adebooye OC. Phytoconstituents and anti-oxidant activity of the pulp of snake tomato (*Tricosanthes cucumerina*). African Journal of Traditional, Complimentary and Alternative Medicines. 2008;5(2):173-179.
2. Ojiako OA, Igwe CU. The nutritive, anti-nutritive and hepatotoxic properties of *Trichosanthes anguina* (Snake Tomato) fruits from Nigeria. Pakistan Journal of Nutrition. 2008;7(1):85-89.
3. Kritikar KR, Basu BD. Indian medicinal plants. International book distributors, New Delhi. 2006;2:1112-1114.
4. Sathesh KS, Ravi KB, Krishna MG. Hepatoprotective effect of *Tricosanthes cucumerina* L on carbon tetra chloride induced liver damage in rats. J. Ethnopharmacol. 2009;123(2):347-350.

5. Gildemacher BH, GJ Jansen, K. Chayamarit. Plant Resources of South-East Asia No 8. Vegetables, *Tricosanthes cucumerina* L. In: Siemonsma JS, Kasem P, Pudoc Scientific Publishers, Wageningen, Netherlands. 1993:271–274.

6. Vishnu Swarup. Snake gourd. Ed. Vegetable Science and Technology in India. 2012;438-441.

7. Kays JS, Dias JCS. Cultivation of vegetables of the world (Latin Binomial, Common Names in 15 Languages, Edible Part and method of preparation). Economic Botany. 1995;49(2):115-152.

8. veeraragavathathanm D, Jawaharlal M, Seemanthini Ramadas. Snake Gourd. Ed.2. A Guide on vegetable Culture. 1994;36-39.

9. Hasanuzzaman M, Mian MAK, El-Taj HF, Huda S, Amin MR. Floral Biology of Snake Gourd. Pakistan Journal of Biology Science. 2004;7(4):525-528.

10. Chow LP, Chou MH, Ho CY, Chuang CC, Pan FM, Wu SH, Lin JY. Purification, characterization and molecular cloning of trichoanguin, a novel type I ribosome inactivating protein from the seeds of *Trichosanthes anguina*. Biochemical Journal. 1999;338:211–219.

11. Reddy LJ, Jose B, Anjana JC, Ruveena TN, Evaluation of antibacterial activity of *Trichosanthes cucumerina* L. and *Cassia didymobotrya* fres. Leaves. International Journal of Pharmacy and Pharmaceutical Sciences. 2010;2(4):153-155.

12. Arawwawala LD, MI Thabrew, LS Arambewela, Gastroprotective activity of *Tricosanthes cucumerina* in rats. J Ethnopharmacology; 2009.

13. Arawwawala M, Thabrew I, Arambewela L. Antidiabetic activity of *Tricosanthes cucumerina* in normal and streptozotocin–induced diabetic rats. International Journal of Biological and Chemical Sciences. 2009;3(2):56.
29. Kirana H, Srinivasan B. *Tricosanthes cucumerina* improves glucose tolerance and tissue glycogen in non insulin dependent diabetes mellitus induced rats. Indian Journal of Pharmacology. 2008;345-348.

30. Devendra N, Kage KB Vijay, Mala S. Effect of ethanol extract of whole plant of *Tricosanthes cucumerina* var. *Cucumerina* on gonadotropins, ovarian follicular kinetics and estrous cycle for screening of anti fertility activity in albino rats. Int J Morphol. 2009;27(1):173-182.

31. Kolte RM, Bisan VV, Jangde CR, Bhalerao AA. Anti-inflammatory activity of root tubers of *Tricosanthes cucumerina* (LINN) in mouse's hind paw oedema induced by carrageenin. Indian Journal of Indigenous Medicines. 1997;18(2):117-121.

32. Stellus S, Nair GA. Preliminary phytochemical analysis and anti-oxidant activity of *Trichosanthes cucumerina* L. (Cucurbitaceae). Journal of Pharmacy Research. 2015;9(2):101-104.

33. Ademosun AO, Oboh G, Adewumi TM, Akinyemi AJ, Olasehinde TA. Antioxidative properties and inhibition of key enzymes linked to type-2 diabetes by snake tomato (*Tricosanthes cucumerina*) and two tomato (*Lycopersicon esculentum*) varieties. African Journal of Pharmacy and Pharmacology. 2013;7(33):2358-2365.

34. Kongtun S, Jiratchariyakul W, Mongkarndi P, Theppaeang K, Sethajintan I, Jaridasem S, Frahm AW. Thai, Cytotoxic properties of root extract and fruit juice of *Tricosanthes cucumerina*. J. Phytopharm. 1999;6(2):1-9.

35. Murthy JR, Nataraj P, Meera R. Phytochemical investigation, diuretic activity and anthelmintic activity of *Trichosanthes cucumerina* Linn. International Journal of Institutional Pharmacy and Life Sciences. 2012;2(2):327-340.

36. Shweta SS, Priyanka T, Ganesh GT, Khadabadi SS. Distribution and ancient-recent medicinal uses of *Trichosanthes* species. International Journal of Phytopharmacy. 2012;2(4):91-97.

37. Sandhya S, Chandrasekar J, Inod KR, Balaji D. Potentiality of Aqueous leaf extract on *trichosanthus cucumerina* L. on hair growth promotion in Wistar albino rats. International Journal Natural Products and Resources. 2012;3(1):14-19.

38. Kar A, Choudhury BK, Bandyopadhyay NG. Comparative evaluation of hypoglycaemic activity of some Indian plants in alloxan diabetis rats. Journal of Ethnopharmacology. 2003;84(1):105-108.

39. Rahuman AA, Venkatesan P. Larvicidal efficacy of five cucurbitaceous plant leaf extracts against mosquito species. Parasitol Res. 2008;103(1):133-139.

40. Dias JCDS, Imai S. Vegetables consumption and its benefits on Diabetes. Journal of Nutritional Therapeutics. 2017;6(1):1-10. Ekam, V.S. 2003.