Phylogenetic Tests of Models of Viral Transmission

Robert M. Zink1,2,3*, Kenedi Holck2 and Grant L. Morgan2

1 School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, United States, 2 School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States, 3 Nebraska State Museum, University of Nebraska-Lincoln, Lincoln, NE, United States

The hunt for the immediate non-human host of SARS-CoV-2 has centered on bats of the genus Rhinolophus. We explored the phylogenetic predictions of two models of viral transmission, the Spillover Model and the Circulation Model and suggest that the Spillover Model can be eliminated. The Circulation Model suggests that viral transmission occurs among susceptible hosts irrespective of their phylogenetic relationships. Susceptibility could be mediated by the ACE2 gene (important for viral docking) and we constructed a phylogeny of this gene for 159 mammal species, finding a phylogenetic pattern consistent with established mammalian relationships. The tree indicates that viral transfer occurs over large evolutionary distances. Although lacking consensus, some studies identify a virus from a particular R. affinis individual (RaTG13) as being most closely related phylogenetically to human SARS-CoV-2. However, other R. affinis harbor viruses that are relatively unrelated to human viruses, and viruses found in this species exhibit sequence differences of up to 20%, suggesting multiple transfers over time. There is little correspondence between viral and host (bat) species limits or phylogenetic relationships. An ACE2 phylogeny for Rhinolophus followed species limits, unlike the pattern in the viral phylogeny indicating that phylogenetic similarity of ACE2 is not a predictor of viral transmission at the bat species level. The Circulation Model could be modified to apply to any individual of any species of Rhinolophus; more individuals and species must be examined.

Keywords: phylogenetics, Spillover Model, species barriers, viral transmission, Circulation model

INTRODUCTION

Numerous publications have employed phylogenetic analyses of viral sequences and the mammalian host species in which they were found to identify the most likely source of the SARS-CoV-2 virus that led to the COVID-19 pandemic. Most studies suggest either bats of the genus Rhinolophus or pangolins as the source of the virus that invaded humans [e.g., (1–5)], although some suggest it is premature to rule out a laboratory origin (6, 7). Wenzel (8) pointed out that many phylogenetic studies of routes of viral transmission were inadequate, being based on small samples or flawed analytical methods [e.g., (9); Raza et al. 2021]. Machado et al. (10) used a comprehensive phylogenetic analysis to confirm that viruses carried by bats are more closely related to viruses currently circulating in humans than to those that currently occurring in pangolins, a result consistent with most other studies (4, 5, 11–13).

Few studies have considered the phylogenetic predictions for models of routes of viral transmission. The implicit assumption in most studies is that whatever bat species harbors...
a virus whose sequence is most closely related phylogenetically
to those circulating in humans is the likely source of the human
COVID-19 pandemic. However, there is no consensus on which
species of Rhinolophus harbors a virus most closely related to
SARS-CoV-2 in humans. In the Spike protein gene tree of
Frutos et al. (4), the viral sequence from Rhinolophus affinis
(intermediate horseshoe bat) was closest to those recovered
from eight humans. In the RdRp gene tree (4), the closest
sequence to humans came from a virus found in Rhinolophus
malayanus (Malayan horseshoe bat), with the next taxon being
R. affinis (same individual for both proteins). However, there
was insignificant (54%) bootstrap support for the grouping of
R. malayanus with humans in their RdRp gene tree. Of course,
bootstrap values provide a measure of character agreement and not
necessarily phylogenetic certainty. In Wacharapluesadee et al.
(11) R. affinis was closest to humans in a RdRp gene tree.
Comparing three recombinant segments, Temman et al. (12)
produced trees that show R. affinis as the sister to humans, a
cluster of R. marshalli, R. pusillus, and R. malayanus as sister to
humans, and a mixture of Rhinolophus as sister to humans. In
Zhou et al. (13) the sister clade to human SARS-CoV-2 included
R. malayanus, R. pusillus, R. affinis and R. shameli. Latinne et al.
(5) show a sister-group relationship between R. malayanus and
human SARS-CoV-2. Thus, there is relatively little phylogenetic
consistency across studies in terms of the species of Rhinolophus
that harbors the virus lineage most closely related to that found
in humans.

The inconsistent phylogenetic results could be a function of
limited sampling of individuals per species and genes. For example,
the four pangolins (Manis javanica) used by Frutos et al. (4) were
apparently collected in 2017 and the spike protein sequences exhibit 14 variable sites (out of 4,718 bp) of which 13 are
singletons. For the RdRp gene, the four pangolins exhibited
no base substitutions (out of 385 bp). It is possible that these
four pangolins were a family group or close relatives and might
therefore be pseudo replicates. In fact, Zhou et al. (13) discovered
two non-sister clades of viral sequences in pangolins, neither of
which were sister to viral sequences found in humans. Thus,
results for pangolins are influenced by number of individuals
used in phylogenetic analyses, although it appears pangolins can
be ruled out as the source for human SARS-CoV-2. Sampling
concerns also exist for viral sequences derived from humans.
In the 385 bp for RdRp there were no variable sites, and for the
spike protein there were 0, 1, or 2 pairwise substitutions out of
the 4,718 bp (4). These samples provide insufficient diversity for
phylogenetic analysis.

The Hunt for the Donor of SARS-CoV-2 to
Humans

Most studies in which R. affinis was shown as sister to humans
used a sequence from the same individual bat, RaTG13 (Genbank
MN996532), which was collected on July 24, 2013. Many
studies have used the same publicly available sequences, often
collected before the pandemic, and given the rapid rate of
viral evolution the age of the specimens could be a concern.
Sampling other individual R. affinis has shown that their viral
sequences do not form a clade (4, 13) and viral lineages
from this host exhibit considerable diversity; the spike proteins
from R. affinis average 21% sequence divergence (n = 7),
although two of the pairwise differences are 1.1% and 4.1%.
There is as much sequence divergence between viruses from
different individuals of R. affinis as there is between viruses
from different bat species, which explains why several individuals
of R. affinis and R. sinicus (Chinese rufus horseshoe bat) are
in well supported clades separated on the tree from other
conspecífics (13). The existence of closely and distantly related
viral strains in R. affinis suggests recent as well as older viral
transmission events, assuming that sequence divergence reflects
time since colonization of a new host. The genetic distances
from viral sequences (spike protein) recovered from R. affinis
to human viruses is slightly greater (ca. 25%) than within-affinis
comparisons, suggesting novel mutations during the colonization
of humans (from whatever source). However, one cannot claim
that R. affinis is “the” species that produced the viral strain
that jumped to humans, because other members of the same
species harbor viruses that are not most closely related to those
circulating in humans. Rhinolophus includes at least 75 species
(14) split between Africa and Southeast Asia, whereas no study
included more than about 13 species (13). Machado et al. (10)
suggested that viral transmission might be common throughout
the Orthocoronavirinae, providing a phylogenetically testable
hypothesis for future studies. Thus, many bat species (with
multiple individuals from multiple localities) remain unsampled,
and thus the actual distribution of SARS-CoV-2 is unclear.

Other species harbor SARS-CoV-2. Chandler et al. (15)
reported that variants of SARS-CoV-2 occurring in white-tailed
deer (Odocoileus virginianus) are the same as those found in
humans from the local area (Iowa, USA), suggesting recent
transfer without as yet subsequent mutations (or reverse transfer
from deer to humans). Deer mice can be experimentally infected
with SARS-CoV-2 (16). Mink also harbor the virus (17, 18).
Hence, the search for species that could become reservoirs for
the virus should be phylogenetically diverse.

VIRAL LINEAGES, NOMENCLATURE, AND
TRANSMISSION MODELS

Frutos et al. (19) considered the mode of viral transmission
and provided a discussion of the virus species concept stating
“A virus is not spreading based on species and species barriers
but simply based on its ability to recognize a receptor and
circumvent the host immune defenses. This occurs regardless of
the “species” status given by humans using classification criteria.
There is no distinction between “animal hosts,” “human hosts,”
hence there is no such thing as the crossing of the species
barrier.” This caricature is puzzling given that many papers used
a phylogeny of viral sequences to determine which host species
harbored viruses that were most closely related to viruses in
humans and therefore crossed the species barrier. However, it
is fair to say that there has not been a rigorous comparison of
host and viral phylogenies. Bat systematists classify species of
bats by congruence of morphological, molecular, and behavioral
The model predicts that viruses circulate through local populations on the basis of receptor-recognition compatibility of local hosts, irrespective of species barriers. That is, host compatibility and proximity create a “metapopulation” (19) of viruses within hosts of co-existing species. For instance, a Sarbecovirus population might be composed of multiple viral quasispecies within local populations of bats, rodents, humans, and boar. The virus is continually passed to and from compatible hosts in the area, irrespective of taxonomic boundaries, and each quasi-species experiences different host-specific selective pressures.

The Circulation Model proposes that a human epidemic is precipitated by intra-human evolution of a quasi-species “individual” that adapts this viral genotype to greater transmissibility within humans. According to Frutos et al. (19), this is termed the “Stochastic” Phase, or Latency Phase. At this point the activity of the host organism creates the conditions for epidemic transmission, termed the “amplification loop” (19). This “loop” is facilitated by activities such as gatherings, celebrations, and markets where infected individuals are in close physical proximity. Once an outbreak threshold is reached an epidemic results and viral transmission attains a polynomial rate. This aligns with work showing that population density is positively correlated with the spread of COVID-19 infections (27).

PHYLOGENETIC PREDICTIONS OF TWO POSSIBLE TRANSMISSION MODELS

If phylogenetic hypotheses are to be used to make inferences about pathways of viral transmission, it is useful to determine if the Spillover and Circulation models make mutually exclusive phylogenetic predictions. In the Spillover model (19); Figure 1A, one would expect a sister-group relationship between the intermediate species and the final host species. A spillover process could occur contemporaneously in multiple host and viral lineages and provide a more complicated phylogenetic pattern in which we would observe independent instances of human viral sequences dispersed on the phylogeny each sister to a different or same *Rhinolophus* bat species. However, a consistent pattern in the phylogenetic trees involving SARS-CoV-2 [e.g., (4, 13)] is the absence of multiple examples of viral and human sister-group relationships, instead, the viral sequences from the sampled humans cluster together, with some species or group of species of *Rhinolophus* as its sister taxon. Thus, the Spillover Model as envisioned by Frutos et al. (19) fails to meet phylogenetic predictions for single or multiple spillover events, which agrees with these authors’ conclusion.

According to the Circulation Model (Figure 1B), viruses need a host with a susceptible ACE2 genotype (12) and spread among species occurs irrespective of host phylogenetic boundaries, but should reflect pathways of compatibility. Their Circulation Model included bats, pigs, humans, antelope, deer, and rodents (and omitted pangolins), a broad sampling of mammalian taxa, unlike the phylogeny in Frutos et al. (4), which depicts humans, bats and pangolins. The Circulation Model (Figure 1B)
predicts an evolutionary tree with no phylogenetic structure. In other words, the viral phylogeny would not reflect the host phylogenetic relationships, but as formulated, does not in dictate whether viral transmission would be coincident with host species limits.

ACE2 and the Circulation Model

The ACE2 gene is involved in viral docking and is thought to play a role in viral transmission of SARS-CoV-2 among species (12, 28–30). To explain the predicted phylogenetic outcome, the Circulation Model would have to assume that compatible ACE2 genotypes are phylogenetically randomly distributed among species. We examined this assumption by constructing a phylogenetic tree for the ACE2 gene for 159 mammal species (aligned amino acid sequences downloaded from Genbank; https://www.ncbi.nlm.nih.gov/gene/59272/ortholog/?scope = 40,674), finding that the gene tree is consistent with mammalian phylogeny (Supplementary Figure 1)—closely related mammal species have phylogenetically closely related ACE2 sequences irrespective of their viral lineages. This tree has implications for several aspects of the relationship between ACE2 and the occurrence of SARS-CoV-2. Palmer et al. (31) stated that the ACE2 of deer and humans “share a high degree of similarity” and suggest this could account for the recent transmission of SARS-CoV-2 from humans to deer (32). Fenollar et al. (17) stated “The mink’s receptor for SARS-CoV-2 is very similar to that of humans.” However, Palmer et al. (31) and Fenollar et al. (17) confuse similarity with phylogenetic relationships, and the ACE2 genes from humans, mink, and deer are far apart phylogenetically (Supplementary Figure 1). In addition, bats, pangolins and humans are also phylogenetically distant, meaning that bat-human viral transmission occurs over relatively great evolutionary distances [as do transmissible spongiform encephalopathies; (33)]. This observation could be considered consistent with a Circulation Model, in that it appears to support phylogenetically random viral transmission among species albeit at higher taxonomic levels.

To explore further the relationship between viral phylogeny and the bat ACE2 gene tree, we constructed a phylogenetic hypothesis for species of Rhinolophus (Figure 2); most available sequences come from two species (R. affinis, R. sinicus) often implicated as candidates for transmission to humans (5). The ACE2 gene tree strongly reflects bat species limits. Individuals identified as R. affinis formed a clade (23 individuals; 19 distinct sequences; average number of base pair and amino acid differences 3.9, 1.2) as did those identified as R. sinicus (26 individuals; 26 distinct sequences; average number of base pair and amino acid differences 13.1, 7.2). If viral transmission is mediated by ACE2, viral lineages from species such as R. affinis and R. sinicus ought to form clades (given the low ACE2 intraspecific diversity in bats), which is not the case (13). That is, most closely related bats, even from the same species, do not

FIGURE 2 | Maximum likelihood phylogeny of the ACE2 gene for bats of the genus Rhinolophus [see also (34)]. Numbers on branches are bootstrap values. Note that all 26 specimens of R. sinicus and all 23 specimens of R. affinis are reciprocally monophyletic. If ACE2 relationships indicate pathways for viral transmission, one would expect the viral phylogeny to be similarly structured but it is not (13).
harbor most closely related viruses, although closely related bats possess closely related ACE2 genotypes. It is difficult to reconcile ACE2 compatibility with viral phylogeny under the Circulation Model at the species level in bats.

One might ask why all R. affinis do not share the same viral sequence given their similar ACE2 genotypes? Perhaps other R. affinis are susceptible to SARS-CoV-2 but simply not exposed to the same viral lineage as that found in RaTG13. If all viruses need are hosts with compatible ACE2 genotypes, and the latter are phylogenetically structured, the mismatch between viral phylogeny and bat species limits suggests viral transmission is not phylogenetically random among species, a condition of the Circulation Model.

A valid test of the Circulation Model would be to sample vertebrate host populations from phylogenetically unrelated sympatric lineages and compare their circulating viruses and phylogenetic similarities in ACE2 to verify phylogenetic predictions (Figure 1B). For instance, we should (hypothetically) observe viral sister-lineages in pigs and rodents, bats and deer, humans and antelope, and be able to identify what in their ACE2 genotype makes them compatible. To date, most studies use three major taxa, bats, humans and pangolins, which precludes a valid phylogenetic test of the Circulation Model. At present, it would be necessary to reformulate the Circulation Model to a taxonomic level below species, namely individuals, for it to have explanatory power. Latinne et al. (5) suggest that cross-species transfer is common in the genus Rhinolophus, but it goes beyond species of bats to seemingly random transmission among groups of individuals within the same species.

CONCLUSIONS AND RECOMMENDATIONS

If a phylogenetic hypothesis is to provide a test of competing models of viral transmission, several factors merit consideration. A large number of individuals per species and species per genus from phylogenetically diverse lineages are needed to evaluate routes of viral transmission, but as of yet this has not accomplished in any single study. Phylogenetic analyses should meet stringent criteria (10). Published phylogenetic hypotheses of viral sequences do not support a Spillover Model, and only support a Circulation Model if it is modified to function at the level of individual bats, irrespective of species limits, in the genus Rhinolophus (5). That is, viral transmission does not track bat species boundaries or phylogenetic relationships, and hence, any particular species of bat is not the unit of transmission. Although transmission occurs among compatible hosts, the role of ACE2 in viral transmission is not phylogenetically straightforward, as bat species are reciprocally monophyletic on the ACE2 gene tree, whereas their viral lineages are not.

To facilitate assessment of ACE2 role in viral transmission, researchers should collect and preserve bat specimens from which they obtain virus samples and deposit them (study skins and tissue samples) in natural history collections. Guo et al. (30) stated "Bats were released after anal swabs [sic] sampling." This practice precludes definitive identification of the bat by museum specialists, and without voucher specimens (tissue, study skin) one cannot compare ACE2 sequences or morphological characteristics from the same individual bat for which the viral genome was sequenced (35, 36). Given the many unanswered issues, we advocate the One Health approach to understanding the relationship between "people, animals, plants and their shared environment" (https://www.cdc.gov/onehealth/basics/index.html).

AUTHOR CONTRIBUTIONS

RZ analyzed data and wrote the manuscript. KH and GM wrote sections on models of viral transmission, approved, and edited the manuscript. All authors contributed to the article and approved the submitted version.

ACKNOWLEDGMENTS

We thank R. Frutos, H. Vázquez-Miranda, and John Wenzel for discussion.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fviro.2022.832466/full#supplementary-material

REFERENCES

1. Forster P, Forster L, Renfrew C, Forster M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc Nat Acad Sci. (2020) 117:9241–3. doi: 10.1073/pnas.2004999117
2. MAVIAN C, Pond SK, Marini S, Magalis BR, Vandamme A-M, Dellicou S, et al. Sampling bias and incorrect rooting make phylogenetic network tracing of SARS-CoV-2 infections unreliable. Proc Nat Acad Sci. (2020) 117:12522–3. doi: 10.1073/pnas.2007295117
3. Zhang T, Wu Q, Zhang Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr Biol. (2020) 30:1346–51. doi: 10.1016/j.cub.2020.03.022
4. Frutos R, Serra-Cobo J, Chen T, Devaux CA. COVID-19: time to exonerate the pangolin from the transmission of SARS-CoV-2 to
