CONSTRUCTION OF HYPERBOLIC HYPERSURFACES OF LOW DEGREE IN $\mathbb{P}^n(\mathbb{C})$

Dinh Tuan HUYNH

Abstract

We construct families of hyperbolic hypersurfaces $X_d \subset \mathbb{P}^{n+1}(\mathbb{C})$ of degree $d \geq (\frac{n+3}{2})^2$.

Keywords: Kobayashi conjecture, hyperbolicity, Brody Lemma, Nevanlinna Theory

1 Introduction and the main result

It was conjectured by Kobayashi [12] in 1970 that a generic hypersurface $X_d \subset \mathbb{P}^{n+1}(\mathbb{C})$ of sufficiently high degree $d \geq d(n) \gg 1$ is hyperbolic. According to Zaidenberg [20], the optimal degree bound should be $d(n) = 2n + 1$.

This conjecture, with nonoptimal degree bound in the assumption, was proved, in the case of surface in $\mathbb{P}^3(\mathbb{C})$, by Demailly and El Goul [6], and later, by Păun [14] with a slight improvement of the degree bound, and in the case of three-fold in $\mathbb{P}^4(\mathbb{C})$ [15], [8]. For arbitrary n, it was proved in [7] that any entire curve in generic hypersurface $X_d \subset \mathbb{P}^{n+1}(\mathbb{C})$ of degree $d \geq 2n^5$ must be algebraically degenerate. An improvement of the effective degree bound in this result was given in [1]. Recently, for any dimension n, a positive answer for generic hypersurfaces of degree $d \geq d(n) \gg 1$ very high was proposed by Siu [18], and a strategy which is expected to give a confirmation of this conjecture for very generic hypersurfaces of degree $d \geq 2n + 2$ was announced by Demailly [3].

Another direction on this subject is to construct examples of hyperbolic hypersurfaces of low degree. In low dimensional case, several examples of hyperbolic hypersurfaces were given. The first example of a hyperbolic surface in $\mathbb{P}^3(\mathbb{C})$ was constructed by Brody and Green [2]. In $\mathbb{P}^3(\mathbb{C})$, Duval [4] gave an example of a hyperbolic surface of degree 6, which is the lowest degree found up to date. Later, Ciliberto and Zaidenberg [5] gave a new construction of hyperbolic surface of degree 6 and their method works for all degree $d \geq 6$ (hence, this is the first time when a hyperbolic surface of degree 7 was created). In [11], we constructed families of hyperbolic hypersurfaces of degree $d = d(n) = 2n + 2$ for $2 \leq n \leq 5$ (the method works for all $d \geq 2n + 2$). The first examples in any dimension $n \geq 4$ were discovered by Masuda and Noguchi [13], with high degree. Improving this result, examples of hyperbolic hypersurfaces of lower degree asymptotic were given by Siu and Yeung [16] with $d(n) = 16n^2$, and by Shiffman and Zaidenberg [19] with $d(n) = 4n^2$.

In this note, using the technique of [11], we improve the result of Shiffman and Zaidenberg [19] by proving that a small deformation of a union of $q \geq (\frac{n+3}{2})^2$ hyperplanes in general position in $\mathbb{P}^{n+1}(\mathbb{C})$ is hyperbolic.

A family of hyperplanes $\{H_i\}_{1 \leq i \leq q}$ with $q \geq n + 1$ in $\mathbb{P}^n(\mathbb{C})$ is said to be in general position if any $n + 1$ hyperplanes in this family have empty intersection, namely if

$$\cap_{i \in I} H_i = \emptyset, \quad \forall I \subset \{1, \ldots, q\}, |I| = n + 1.$$

Let $\{H_i\}_{1 \leq i \leq q}$ be a family of hyperplanes in general position in $\mathbb{P}^n(\mathbb{C})$. A hypersurface S in $\mathbb{P}^n(\mathbb{C})$ is said to be in general position with respect to $\{H_i\}_{1 \leq i \leq q}$ if it avoids all intersection points of n hyperplanes, namely if

$$S \cap (\cap_{i \in I} H_i) = \emptyset, \quad \forall I \subset \{1, \ldots, q\}, |I| = n.$$

Main Theorem. Let $\{H_i\}_{1 \leq i \leq q}$ be a family of $q \geq (\frac{n+3}{2})^2$ hyperplanes in general position in $\mathbb{P}^{n+1}(\mathbb{C})$, where $H_i = \{h_i = 0\}$. Then there exists a hypersurface $S = \{s = 0\}$ of degree q in general position with respect to $\{H_i\}_{1 \leq i \leq q}$ such that the hypersurface

$$\Sigma_c = \{cs + \prod_{i=1}^q h_i = 0\}$$
is hyperbolic for sufficiently small complex $\epsilon \neq 0$.

Acknowledgments

I would like to gratefully thank Julien Duval for turning my attention to this problem and for his inspiring discussions on the subject. I am specially thankful to Joël Merker for his encouragements and his comments that greatly improved the manuscript.

2 Preparations

2.1 Brody Lemma and its applications

Let X be a compact complex manifold equipped with a hermitian metric $\| \cdot \|$. An *entire curve* in X is a nonconstant holomorphic map $f : \mathbb{C} \to X$. Such an $f : \mathbb{C} \to X$ is called a *Brody curve* if its derivative $\| f' \|$ is bounded. The following result [1] is a useful tool for studying complex hyperbolicity.

Brody Lemma. Let $f_k : \mathbb{D} \to X$ be a sequence of holomorphic maps from the unit disk to a compact complex manifold X. If $\| f'_k(0) \| \to \infty$ as $k \to \infty$, then there exist a point $a \in \mathbb{D}$, a sequence (a_k) converging to a and a decreasing sequence (r_k) of positive real numbers converging to 0 such that the sequence of maps

$$z \to f_k(a_k + r_k z)$$

converges toward a Brody curve, after extracting a subsequence.

Consequently, we have a well-known characterization of Kobayashi hyperbolicity.

Brody Criterion. A compact complex manifold X is Kobayashi hyperbolic if and only if it contains no entire curve.

The following form of the Brody Lemma shall be repeatedly used in the proof of the Main Theorem.

Sequences of entire curves. Let X be a compact complex manifold and let (f_k) be a sequence of entire curves in X. Then there exist a sequence of reparameterizations $r_k : \mathbb{C} \to \mathbb{C}$ and a subsequence of $(f_k \circ r_k)$ which converges toward an entire curve.

2.2 Stability of intersections

We recall here the following known complex analysis fact.

Stability of intersections. Let X be a complex manifold and let $H \subset X$ be an analytic hypersurface. Suppose that a sequence (f_k) of entire curves in X converges toward an entire curve f. If $f(\mathbb{C})$ is not contained in H, then

$$f(\mathbb{C}) \cap H \subset \lim_{k \to \infty} f_k(\mathbb{C}) \cap H.$$

2.3 Hyperbolicity of the complement of $2n + 1$ hyperplanes in general position in $\mathbb{P}^n(\mathbb{C})$

We also need the classical generalization of Picard’s theorem (case $n = 1$) [10].

Theorem 2.1. The complement of a collection of $2n + 1$ hyperplanes in general position in $\mathbb{P}^n(\mathbb{C})$ is hyperbolic.
3 Proof of the Main Theorem

Given a hypersurface S of degree q in general position with respect to the family $\{H_i\}_{1 \leq i \leq q}$, we would like to determine what conditions S should satisfy for Σ to be hyperbolic. Suppose that Σ_{ε_k} is not hyperbolic for a sequence (ε_k) converging to 0. Then we can find entire curves $f_{\varepsilon_k} : \mathbb{C} \to \Sigma_{\varepsilon_k}$. By the Brody Lemma, after reparametrization and extraction, we may assume that the sequence (f_{ε_k}) converges to an entire curve $f : \mathbb{C} \to \bigcup_{i=1}^q H_i$. By uniqueness principle, the curve $f(\mathbb{C})$ lands in $\cap_{i \in I} H_i$, for some subset I of the index set $Q := \{1, \ldots, q\}$ and does not land in any H_j with $j \in Q \setminus I$.

Lemma 3.1. One has

$$|I| \leq n - 1.$$

Proof. If on the contrary $|I| = n$, then for all $j \in Q \setminus I$, by stability of intersections, one has

$$f(\mathbb{C}) \cap H_j \subset \lim f_{\varepsilon_k}(\mathbb{C}) \cap H_j \subset \lim \Sigma_{\varepsilon_k} \cap H_j \subset S \cap H_j.$$

Thus, $f(\mathbb{C}) \cap H_j \subset S \cap H_j \cap (\cap_{i \in I} H_i) = \emptyset$. Hence, $f(\mathbb{C}) \subset \cap_{i \in I} H_i \\setminus \{\cup_{j \in Q \setminus I} H_j\}$, which is a contradiction, since the complement of $q - |I| > 3$ points in a line is hyperbolic by Picard’s theorem.

By the above argument, $f(\mathbb{C}) \cap H_j$ is contained in S for all $j \in Q \setminus I$. Therefore, the curve $f(\mathbb{C})$ lands in

$$\cap_{i \in I} H_i \\setminus \{\cup_{j \in Q \setminus I} H_j \setminus S\}. \quad (3.1)$$

So, the problem reduces to finding a hypersurface S of degree q such that all complements of the form (3.1) are hyperbolic, where I is an arbitrary subset of Q having cardinality at most $n - 1$.

Such a hypersurface S will be constructed by using the deformation method of Zaidenberg and Shiffman [17].

Starting point of the deformation process. Let $\{H_i\}_{1 \leq i \leq q}$ be a family of hyperplanes in general position in $\mathbb{P}^n(\mathbb{C})$. For some integer $0 \leq k \leq n - 1$ and some subset $I_k = \{i_1, \ldots, i_{n-k}\}$ of the index set $\{1, \ldots, q\}$ having cardinality $n - k$, the linear subspace $P_{k,I_k} = \cap_{i \in I_k} H_i \cong \mathbb{P}^k(\mathbb{C})$ will be called a subspace of dimension k. We will denote by P^*_{k,I_k} the complement $P_{k,I_k} \\setminus \{\cup_{i \in I_k} H_i\}$, which we will call a star-subspace of dimension k. The process of constructing S by deformation will start with the following result, which is an application of Theorem 2.1.

Starting Lemma. Let $\{H_i\}_{1 \leq i \leq q}$ be a family of $q \geq \left(\frac{n+3}{2}\right)^2$ hyperplanes in general position in $\mathbb{P}^{n+1}(\mathbb{C})$. Let I and J be two disjoint subsets of the index set $\{1, \ldots, q\}$ such that $1 \leq |I| \leq n - 1$, and $|J| = q + m + 1 - 2|I|$ with some $0 \leq m \leq |I| - 1$. Then all complements of the form

$$\cap_{i \in I} H_i \\setminus \{\cup_{j \in J} H_j \setminus A_{m,n+1-|I|}\} \quad (3.2)$$

are hyperbolic, where $A_{m,n+1-|I|}$ is a set of at most m star-subspaces coming from the family of hyperplanes $\{\cap_{i \in I} H_i \cap H_j\}_{j \in J}$ in the $(n + 1 - |I|)-$dimensional projective space $\cap_{i \in I} H_i \cong \mathbb{P}^{n+1-|I|}(\mathbb{C})$.

Proof. Suppose on the contrary that there exists an entire curve $f : \mathbb{C} \to \cap_{i \in I} H_i \\setminus \{\cup_{j \in J} H_j \setminus A_{m,n+1-|I|}\}$. Since each star-subspace in $A_{m,n+1-|I|}$ is constructed from at most $n + 1 - |I|$ hyperplanes in the family $\{\cap_{i \in I} H_i \cap H_j\}_{j \in J}$, the curve f must avoid completely at least $|J| - m(n + 1 - |I|)$ hyperplanes in the projective space $\cap_{i \in I} H_i \cong \mathbb{P}^{n+1-|I|}(\mathbb{C})$. By the elementary estimate

$$|J| - m(n + 1 - |I|) = q + 1 - 2|I| - m(n - |I|)$$

$$\geq 2(n + 1 - |I|) + 1 + \left[\left(\frac{n+3}{2}\right)^2 - 2(n + 1) - (|I| - 1)(n - |I|)\right]$$

$$\geq 2(n + 1 - |I|) + 1,$$

and by using Theorem 2.1 we derive a contradiction.\]
Deformation lemma. For \(2 \leq l \leq n\), let \(\Delta_l\) be a finite collection of subspaces of dimension \(n + 1 - l\) coming from the family \(\{H_i\}_{1 \leq i \leq q}\) possibly with \(\Delta_l = \emptyset\), and let \(D_l \not\in \Delta_l\) be another subspace of dimension \(n + 1 - l\), defined as \(D_l = \cap_{i \in I_{D_l}} H_i\). For an arbitrary hypersurface \(S = \{s = 0\}\) in general position with respect to the family \(\{H_i\}_{1 \leq i \leq q}\) and for \(\epsilon \neq 0\), we set

\[
S_\epsilon = \{\epsilon s + \Pi_{i \not\in I_{D_l}} h_i^n = 0\},
\]

where \(n_i \geq 1\) are chosen (freely) so that \(\sum_{i \not\in I_{D_l}} n_i = q\). Then the hypersurface \(S_\epsilon\) is also in general position with respect to \(\{H_i\}_{1 \leq i \leq q}\). We denote by \(\Delta_l\) the family of all subspaces of dimension \(n + 1 - l\) \((2 \leq l \leq n + 1)\), with the convention \(\Delta_{n+1} = \emptyset\). We shall apply inductively the following lemma.

Lemma 3.2. Assume that all complements of the form

\[
\cap_{i \in I_l} H_i \setminus \left(\cup_{j \in J} H_j \setminus \left((\Delta_l \cup \mathbf{\Delta}_{l+1}) \cap S \cup A_{m,n+1-|l|} \right) \right)
\]

are hyperbolic where \(I\) and \(J\) are two disjoint subsets of the index set \(\{1, \ldots, q\}\) such that \(1 \leq |I| \leq n - 1\), and \(|J| = q + m + 1 - 2|I|\) with some \(0 \leq m \leq |I| - 1\), and where \(A_{m,n+1-|l|}\) is a set of at most \(m\) star-subspaces coming from the family of hyperplanes \(\cap_{i \in I_l} H_i \cap H_j \cap J \cap J\) in \(\cap_{i \in I_l} H_i \simeq \mathbb{P}^{n+1-|I|}(\mathbb{C})\).

Then all complements of the form

\[
\cap_{i \in I_l} H_i \setminus \left(\cup_{j \in J} H_j \setminus \left((\Delta_l \cup D_l \cup \mathbf{\Delta}_{l+1}) \cap S_\epsilon \cup A_{m,n+1-|l|} \right) \right)
\]

are also hyperbolic for sufficiently small \(\epsilon \neq 0\).

Proof. By the definition of \(S_\epsilon\), we see that \(S_\epsilon \cap (\cap_{m \in M} H_m) = S \cap (\cap_{m \in M} H_m)\) when \(M \cap (Q \setminus I_{D_l}) \neq \emptyset\), hence

\[
(\Delta_l \cup D_l \cup \mathbf{\Delta}_{l+1}) \cap S_\epsilon = ((\Delta_l \cup \mathbf{\Delta}_{l+1}) \cap S) \cup (D_l \cap S_\epsilon).
\]

When \(|I| \geq l\), using this, we observe that the two complements \((3.3), (3.4)\) coincide.

Assume therefore \(|I| \leq l - 1\). Suppose by contradiction that there exists a sequence of entire curves \(f_{\epsilon_k}(\mathbb{C})\), \(\epsilon_k \to 0\), contained in the complement \((3.3)\) for \(\epsilon = \epsilon_k\). By the Brody Lemma, we may assume that \((f_{\epsilon_k})\) converges to an entire curve \(f(\mathbb{C}) \subset \cap_{i \in I_l} H_i\). We are going to prove that the curve \(f(\mathbb{C})\) lands in some complement of the form \((3.3)\).

Let \(\cap_{i \in K} H_k\) be the smallest subspace containing \(f(\mathbb{C})\), so that \(I\) is a subset of \(K\). Take an index \(j\) in \(J \setminus K\). By stability of intersections, we have

\[
f(\mathbb{C}) \cap H_j \subset \lim f_{\epsilon_k}(\mathbb{C}) \cap H_j \\
\subset ((\Delta_l \cup \mathbf{\Delta}_{l+1}) \cap S) \cup A_{m,n+1-|l|} \cup \lim(D_l \cap S_\epsilon).
\]

If the index \(j\) does not belong to \(I_{D_l}\), then \(H_j \cap D_l \subset S_\epsilon \subset \mathbf{\Delta}_{l+1} \cap S\). It follows from \((3.5)\) that

\[
f(\mathbb{C}) \cap H_j \subset ((\Delta_l \cup \mathbf{\Delta}_{l+1}) \cap S) \cup A_{m,n+1-|l|}.
\]

If the index \(j\) belongs to \(I_{D_l}\), noting that \(\lim(D_l \cap S_\epsilon)\) is contained in \(D_l \cap (\cup_{i \not\in I_{D_l}} H_i)\), hence from \((3.5)\)

\[
f(\mathbb{C}) \cap H_j \subset ((\Delta_l \cup \mathbf{\Delta}_{l+1}) \cap S) \cup A_{m,n+1-|l|} \cup (D_l \cap (\cup_{i \not\in I_{D_l}} H_i)).
\]

Assume first that \(K = I\). We claim that \((3.7)\) also holds when the index \(j \in J \setminus I\) belongs to \(I_{D_l}\). Indeed, for the supplementary part in \((3.7)\), we have

\[
f(\mathbb{C}) \cap H_j \cap (D_l \cup \cup_{i \not\in I_{D_l}} H_i) \subset \cup_{i \not\in I_{D_l}} f(\mathbb{C}) \cap H_j \cap H_i,
\]

so that \((3.6)\) applies here to all \(i \not\in I_{D_l}\). Hence, the curve \(f(\mathbb{C})\) lands inside

\[
\cap_{i \in I_l} H_i \setminus \left(\cup_{j \in J} H_j \setminus \left(((\Delta_l \cup \mathbf{\Delta}_{l+1}) \cap S) \cup A_{m,n+1-|l|} \right) \right),
\]

contradicting the hypothesis.
Assume now that I is a proper subset of K. Let us set

$$A_{m,n+1-|I|,K} = \{X \cap (\cap_{k \in K} H_k) | X \in A_{m,n+1-|I|}\}.$$

This set consists of star-subspaces of $\cap_{k \in K} H_k \cong \mathbb{P}^{n+1-|K|}$. Let $B_{m,K}$ be the subset of $A_{m,n+1-|I|,K}$ containing all star-subspaces of dimension $n-|K|$ (i.e. of codimension 1 in $\cap_{k \in K} H_k$), and let $C_{m,K}$ be the remaining part. A star-subspace in $B_{m,K}$ is of the form $(\cap_{k \in K} H_k \cap H_j)^*$ for some index $j \in J \setminus K$. Let then R denote the set of such indices j, so that

$$|R| = |B_{m,K}|.$$

We consider two cases separately, depending on the dimension of the subspace $Y = \cap_{k \in K} H_k \cap D_I$.

Case 1: Y is a subspace of dimension $n - |K|$. In this case, Y is of the form $(\cap_{k \in K} H_k) \cap H_y$ for some index y in I_D. It follows from (3.3), (3.6), (3.7) that the curve $f(C)$ lands inside

$$\cap_{k \in K} H_k \setminus \left(\cup_{j \in (J \setminus K) \setminus (R \cup \{y\})} H_j \setminus ((\Delta_1 \cup \Delta_{+1}) \cap S) \cup C_{m,K} \right).$$

To conclude that this set is of the form (3.3), we need to show that

1. $|(J \setminus K) \setminus (R \cup \{y\})| = q + m' + 1 - 2|K|$ with $|C_{m,K}| \leq m' \leq |K| - 1$;
2. $|K| \leq n - 1$.

Consider (1). We need to verify the corresponding required inequality between cardinalities

$$|C_{m,K}| \leq |(J \setminus K) \setminus (R \cup \{y\})| - q + 2|K| - 1 \leq |K| - 1.$$

The right inequality is equivalent to

$$|(J \setminus K) \setminus (R \cup \{y\})| \leq |\{1, \ldots, q\} \setminus K|,$$

which is trivial. The left inequality follows from the elementary estimates

$$|(J \setminus K) \setminus (R \cup \{y\})| - q + 2|K| - 1 \geq |J \setminus K| - |B_{m,K}| - q + 2|K| - 2$$

$$= |J| - |J \cap K| - |B_{m,K}| - q + 2|K| - 2$$

$$= (m - |B_{m,K}|) + (2|K| - 2|I| - |J \cap K| - 1)$$

$$\geq |C_{m,K}|,$$

where the last inequality holds because I and J are two disjoint sets and I is a proper subset of K.

Consider (2). Suppose on the contrary that $|K| = n$. Since S is in general position with respect to $\{H_i\}_{1 \leq i \leq 2n+2}$, we see that

$$\cap_{k \in K} H_k \setminus \left(\cup_{j \in (J \setminus K) \setminus (R \cup \{y\})} H_j \right) \setminus ((\Delta_1 \cup \Delta_{+1}) \cap S) \cup C_{m,K} = \cap_{k \in K} H_k \setminus \left(\cup_{j \in (J \setminus K) \setminus (R \cup \{y\})} H_j \right) \setminus C_{m,K}.$$

Since $|(J \setminus K) \setminus (R \cup \{y\})| \geq q + 1 - 2n + |C_{m,K}| \geq 3 + |C_{m,K}|$, the curve f lands in a complement of at least 3 points in a line. By Picard’s Theorem, f is constant, which is a contradiction.

Case 2: Y is a subspace of dimension at most $n - |K| - 1$. In this case, the curve $f(C)$ lands inside

$$\cap_{k \in K} H_k \setminus \left(\cup_{j \in (J \setminus K) \setminus R} H_j \setminus ((\Delta_1 \cup \Delta_{+1}) \cap S) \cup C_{m,K} \cup Y^* \right),$$

which is also of the form (3.3), since

$$|(J \setminus K) \setminus R| \geq q - 2|K| + 1 + |C_{m,K} \cup Y^*|,$$

and since $|K| \leq n - 1$, by similar arguments as in Case 1.

The Lemma is thus proved. □
Inductive deformation process and end of the proof of the Main Theorem. We may begin by applying Lemma 3.2 for \(l = n \) (with \(\Delta_{n+1} = \emptyset \)), firstly with \(\Delta_{n} = \emptyset \), and with some \(D_{n} \in \Delta_{n} \), since \((\Delta_{n} \cup \Delta_{n+1}) \cap S = \emptyset \), hence the assumption of this lemma holds by the Starting Lemma. Next, we reapply Lemma 3.2 inductively until we exhaust all \(D_{n} \in \Delta_{n} \). We get at the end a hypersurface \(S_{1} \) such that all complements of the forms

\[
\cap_{i \in I} H_{i} \setminus \left(\cup_{j \in J} H_{j} \setminus \left(S_{1} \cup A_{m,n+1-|I|} \right) \right) \quad (|I| = n-1)
\]

\[
\cap_{i \in I} H_{i} \setminus \left(\cup_{j \in J} H_{j} \setminus \left((\Delta_{n} \cap S_{1}) \cup A_{m,n+1-|I|} \right) \right) \quad (|I| \leq n-2)
\]

are hyperbolic, since when \(|I| = n - 1 \), two components \(\cap_{i \in I} H_{i} \setminus \left(\cup_{j \in J} H_{j} \setminus \left((\Delta_{n} \cap S_{1}) \cup A_{m,n+1-|I|} \right) \right) \) and \(\cap_{i \in I} H_{i} \setminus \left(\cup_{j \in J} H_{j} \setminus \left(S_{1} \cup A_{m,n+1-|I|} \right) \right) \) are equal. Considering this as the starting point of the second step, we apply inductively Lemma 3.2 for \(l = n - 1 \) and receive at the end a hypersurface \(S_{2} \) such that all complements of the forms

\[
\cap_{i \in I} H_{i} \setminus \left(\cup_{j \in J} H_{j} \setminus \left(S_{2} \cup A_{m,n+1-|I|} \right) \right) \quad (n-2 \leq |I| \leq n-1)
\]

\[
\cap_{i \in I} H_{i} \setminus \left(\cup_{j \in J} H_{j} \setminus \left((\Delta_{n-1} \cap S_{2}) \cup A_{m,n+1-|I|} \right) \right) \quad (|I| \leq n-3)
\]

are hyperbolic, for the same reason as in above. Continuing this process, we get at the end of the \((n-1)^{th}\) step a hypersurface \(S = S_{n-1} \) such that all complements of the forms

\[
\cap_{i \in I} H_{i} \setminus \left(\cup_{j \in J} H_{j} \setminus \left(S_{n-1} \cup A_{m,n+1-|I|} \right) \right) \quad (1 \leq |I| \leq n-1)
\]

are hyperbolic. In particularly, by choosing \(m = |I| - 1 \), whence \(|J| = q - |I| \), and by choosing \(A_{m,n+1-|I|} = \emptyset \), all complements of the form (3.1) are hyperbolic for \(S = S_{n-1} \).

References

[1] Robert Brody. “Compact manifolds and hyperbolicity”. In: Trans. Amer. Math. Soc. 235 (1978), pp. 213–219. issn: 0002-9947.

[2] Robert Brody and Mark Green. “A family of smooth hyperbolic hypersurfaces in \(P_{3} \)”. In: Duke Math. J. 44.4 (1977), pp. 873–874. issn: 0012-7094.

[3] Ciro Ciliberto and Mikhail Zaidenberg. “Scrolls and hyperbolicity”. In: International Journal of Mathematics 24.04 (2013), p. 1350026. doi: 10.1142/S0129167X13500262.

[4] Lionel Darouiche. “On the Logarithmic GreenGriffiths Conjecture”. In: International Mathematics Research Notices 2016.6 (2016), pp. 1871–1923. doi: 10.1093/imrn/rnv078.

[5] Jean-Pierre Demailly. “Proof of the Kobayashi conjecture on the hyperbolicity of very general hypersurfaces”. In: Preprint arXiv:1501.07625 (2015).

[6] Jean-Pierre Demailly and Jawher El Goul. “Hyperbolicity of generic surfaces of high degree in projective 3-space”. In: Amer. J. Math. 122.3 (2000), pp. 515–546. issn: 0002-9327.

[7] Simone Diverio, Jöel Merker, and Erwan Rousseau. “Effective algebraic degeneracy”. English. In: Inventiones mathematicae 180 (2010), pp. 161–223.

[8] Simone Diverio and Stefano Trapani. “A remark on the codimension of the Green-Griffiths locus of generic projective hypersurfaces of high degree”. In: J. Reine Angew. Math. 649 (2010), pp. 55–61. issn: 0075-4102.

[9] Julien Duvall. “Une sextique hyperbolique dans \(P^{3}(\mathbb{C}) \)”. In: Math. Ann. 330.3 (2004), pp. 473–476. issn: 0025-5831.

[10] Hirotaka Fujimoto. “On holomorphic maps into a taut complex space”. In: Nagoya Math. J. 46 (1972), pp. 49–61. issn: 0027-7630.

[11] Dinh Tuan Huynh. “Examples of Hyperbolic Hypersurfaces of Low Degree in Projective Spaces”. In: International Mathematics Research Notices (2015). doi: 10.1093/imrn/rnv306.

[12] Shoshichi Kobayashi. Hyperbolic manifolds and holomorphic mappings. Vol. 2. Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 1970, pp. ix+148.
[13] Kazuo Masuda and Junjiro Noguchi. “A construction of hyperbolic hypersurface of $\mathbb{P}^n(\mathbb{C})$”. In: Math. Ann. 304.2 (1996), pp. 339–362. issn: 0025-5831.

[14] Mihai P˘ aun. “Vector fields on the total space of hypersurfaces in the projective space and hyperbolicity”. In: Math. Ann. 340.4 (2008), pp. 875–892. issn: 0025-5831.

[15] Erwan Rousseau. “Weak analytic hyperbolicity of generic hypersurfaces of high degree in \mathbb{P}^{2n}”. In: Ann. Fac. Sci. Toulouse Math. (6) 16.2 (2007), pp. 369–383. issn: 0240-2963.

[16] Bernard Shiffman and Mikhail Zaidenberg. “Hyperbolic hypersurfaces in \mathbb{P}^n of Fermat-Waring type”. In: Proc. Amer. Math. Soc. 130.7 (2002), pp. 2031–2035. issn: 0002-9939.

[17] Bernard Shiffman and Mikhail Zaidenberg. “New examples of Kobayashi hyperbolic surfaces in $\mathbb{C}P^3$”. In: Funct. Anal. Appl. 39.1 (2005), pp. 90–94. issn: 0374-1990.

[18] Yum-Tong Siu. “Hyperbolicity of generic high-degree hypersurfaces in complex projective space”. In: Invent. Math. 202.3 (2015), pp. 1069–1166. issn: 0020-9910.

[19] Yum-Tong Siu and Sai-Kee Yeung. “Defects for ample divisors of abelian varieties, Schwarz lemma, and hyperbolic hypersurfaces of low degrees”. In: Amer. J. Math. 119.5 (1997), pp. 1139–1172. issn: 0002-9327.

[20] Mikhail Zaidenberg. “The complement to a general hypersurface of degree $2n$ in $\mathbb{C}P^n$ is not hyperbolic”. In: Sibirsk. Mat. Zh. 28.3 (1987), pp. 91–100, 222. issn: 0037-4474.

Dinh Tuan Huynh, Laboratoire de Mathématiques d’Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France.
Department of Mathematics, College of Education, Hue University, 34 Le Loi St., Hue City, Vietnam.
E-mail address: dinh-tuan.huynh@math.u-psud.fr