The MIA Pathway: A Key Regulator of Mitochondrial Oxidative 
Protein Folding and Biogenesis

Amelia Mordas† and Kostas Tokatlidis*†

†Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom

CONSPECTUS: Mitochondria are fundamental intracellular organelles with key roles in important cellular processes like energy production, Fe/S cluster biogenesis, and homeostasis of lipids and inorganic ions. Mitochondrial dysfunction is consequently linked to many human pathologies (cancer, diabetes, neurodegeneration, stroke) and apoptosis. Mitochondrial biogenesis relies on protein import as most mitochondrial proteins (about 10−15% of the human proteome) are imported after their synthesis in the cytosol. Over the last several years many mitochondrial translocation pathways have been discovered. Among them, the import pathway that targets proteins to the intermembrane space (IMS) stands out as it is the only one that couples import to folding and oxidation and results in the covalent modification of the incoming precursor that adopt internal disulfide bonds in the process (the MIA pathway). The discovery of this pathway represented a significant paradigm shift as it challenged the prevailing dogma that the endoplasmic reticulum is the only compartment of eukaryotic cells where oxidative folding can occur.

The concept of the oxidative folding pathway was first proposed on the basis of folding and import data for the small Tim proteins that have conserved cysteine motifs and must adopt intramolecular disulfides after import so that they are retained in the organelle. The introduction of disulfides in the IMS is catalyzed by Mia40 that functions as a chaperone inducing their folding. The sulfhydryl oxidase Erv1 generates the disulfide pairs de novo using either molecular oxygen or, cytochrome c and other proteins as terminal electron acceptors that eventually link this folding process to respiration. The solution NMR structure of Mia40 (and supporting biochemical experiments) showed that Mia40 is a novel type of disulfide donor whose recognition capacity for its substrates relies on a hydrophobic binding cleft found adjacent to a thiol active CPC motif. Targeting of the substrates to this pathway is guided by a novel type of IMS targeting signal called ITS or MISS. This consists of only 9 amino acids, found upstream or downstream of a unique Cys that is primed for docking to Mia40 when the substrate is accommodated in the Mia40 binding cleft. Different routes exist to complete the folding of the substrates and their final maturation in the IMS. Identification of new Mia40 substrates (some even without the requirement of their cysteines) reveals an expanded chaperone-like activity of this protein in the IMS. New evidence on the targeting of redox active proteins like thioredoxin, glutaredoxin, and peroxiredoxin into the IMS suggests the presence of redox-dependent regulatory mechanisms of the protein folding and import process in mitochondria. Maintenance of redox balance in mitochondria is crucial for normal cell physiology and depends on the cross-talk between the various redox signaling processes and the mitochondrial oxidative folding pathway.

1. INTRODUCTION

Mitochondria are multifunctional, endosymbiotic organelles. Their biogenesis depends on sophisticated import machineries to correctly target, sort, and fold around 99% of cytosolically synthesized mitochondrial proteins into their destined sub-compartments. The common entry point for incoming precursors is the translocase of the outer membrane (TOM complex). Then, depending on their target destination, they continue through one of many different types of machinery. For insertion into the outer membrane, precursors follow the sorting and assembly machinery (SAM). For insertion into the inner membrane, they enter via the TIM22 or TIM23 complex, while entry into the matrix requires the TIM23 complex. Alternatively, proteins of the intermembrane space (IMS) follow different routes depending on their target presequences. IMS proteins with cysteine residues follow the mitochondrial IMS assembly (MIA) pathway for entrapment within the IMS by disulfide bond formation. IMS proteins without cysteines often contain bipartite targeting sequences that are cleaved after engaging with the TIM22 complex, resulting in their release into the IMS.1,2

The yeast mitochondrial proteome contains approximately 1000 proteins;3,4 5% of which reside in the smallest subcompartment, the IMS.5 Typically, IMS proteins have a size around 6–22 kDa. A subset of them, like the small Tims, possess internal, noncleavable mitochondrial IMS-targeting/sorting signals (ITS/MISS) harboring conserved cysteine motifs.6,7 The biogenesis of these proteins relies on Mia40, a redox-regulated IMS receptor that introduces disulfide bonds...
via a series of electron transfer reactions, trapping them within the IMS. Examples are the twin CX3C and twin CX9C motif-containing proteins, such as the small Tims or members of the cytochrome c oxidase (COX) family, respectively.1,8 In contrast to other mitochondrial proteins, IMS-targeted proteins do not require the inner membrane potential or matrix ATP hydrolysis to drive their import. This is the only mitochondrial import pathway that results in a covalent modification of the imported precursors.

The concept of oxidative folding in the IMS was first proposed in 20049 based on observations that (i) correct folding of the small Tims required disulfide bond formation after their import across the outer membrane and (ii) their oxidation in vitro occurred too slowly for the reaction to occur without protein-mediated catalysis.9 These results expanded the first evidence of formation of disulfides in small Tims that was presented by Curran et al.10 Subsequent studies identified the key components of this pathway, acknowledged as the MIA pathway/machinery, using Saccharomyces cerevisiae, a simple and highly amenable model organism. These components are the essential oxidoreductase Mia40 and the essential sulfhydryl oxidase Erv1. In this Account, we provide an overview of the MIA pathway from its original proposal 11 years ago to what is understood now, with a focus on the structural characterization, reconstitution, substrate specificity, and molecular recognition of substrates by Mia40. We will then discuss questions pertaining to the regulation of the pathway that remain unresolced and discuss the significance of the MIA pathway for human health and disease.

2. DISCOVERY OF THE KEY COMPONENTS OF THE MIA PATHWAY

The identification of Mia40 was reported almost simultaneously by three different groups.11−13 Naoe et al.12 carried out a reverse proteomic approach whereby essential proteins within the yeast proteomic database were systematically screened for localization to the mitochondria. Tim40 was identified (now denoted Mia40) residing on the inner membrane, facing the IMS. Analogous to this approach, Chacinska et al.12 identified Mia40 by screening the yeast mitochondrial proteome for essential proteins containing predicted IMS-targeting signals. Mia40 was predicted to possess an N-terminal bipartite targeting signal and a highly conserved C-terminus. Depletion of Mia40 from yeast cells resulted in the defective import of small Tims to the IMS, but import of matrix, inner membrane and outer membrane proteins was unaffected.11−13 Translocation intermediates were observed between Mia40 and the small Tims, before their assembly into larger complexes, obtained by analyzing radiolabeled Tim9 after import into mitochondria by BN-PAGE,13 use of chemical cross-linkers,12 or coimmunoprecipitation.13 In addition, chemical cross-linking identified an interaction between Mia40 and Cox17/19 which are also resident IMS proteins.12 Overall, these studies provided substantial evidence that Mia40 is a key mediator of the sorting and assembly of cysteine-containing IMS proteins.

After the discovery of Mia40, the next step was to determine its molecular mechanism in mediating the import of target IMS substrates. Less than a year later, the identification of Erv1 as a component of Mia40-mediated protein import was reported,
again, by three groups.\textsuperscript{14–16} Erv1 has a long history in the literature and is a well-known FAD-dependent essential sulfhydryl oxidase in the yeast IMS. Erv1 was originally identified in 1992 and \textit{erv1} conditional mutants of its gene displayed disrupted oxidative phosphorylation, a reduction in mitochondrial DNA transcripts, and severe growth defects, while its null mutant was inviable.\textsuperscript{17} In 2005, Erv1 was suggested to play a role in Mia40-dependent import of IMS proteins as yeast \textit{erv1} mutants resulted in a specific defect of import of small IMS proteins, and, a direct DTT-sensitive interaction with Mia40 was observed by coimmunoprecipitation.\textsuperscript{14–16} Finally it was shown that Erv1 reoxidizes reduced Mia40.\textsuperscript{14–16} Erv1 does not directly oxidize precursor proteins, as shown by thiol trapping assays.\textsuperscript{14} Instead, it functions as a recycler of Mia40 by accepting electrons from reduced Mia40; in this mechanism Erv1 binds to Mia40 after Mia40 has accepted electrons from incoming precursor proteins via disulfide bond formation.\textsuperscript{15} The electron acceptor of reduced Erv1 was found to be cytochrome \textit{c} (\textit{cyt c}),\textsuperscript{14} which shuttles electrons through the respiratory chain via cytochrome \textit{c} oxidase/complex IV,\textsuperscript{14} therefore establishing a link between IMS protein import and mitochondrial respiration. Molecular oxygen was identified as an alternative electron acceptor from Erv1, and, as a final electron acceptor of cytochrome \textit{c} along with cytochrome \textit{c} peroxidase.\textsuperscript{18,19} While it is not entirely known what specifies the electron acceptor that reduced Erv1 will transfer its electrons to in vivo, it is likely that the pathway changes under different physiological conditions (i.e., low vs high oxygen levels and respiratory chain activity). It is possible that there are further electron acceptors of reduced Erv1 and also of reduced Mia40 that have yet to be identified, especially those that are required in anaerobic conditions.

After the discovery of the key components, the focus was on characterizing the full MIA pathway by a combination of reconstitution experiments and detailed structural studies on Mia40 and Erv1. These studies provided initial information on the flow of electrons across the pathway, the interactions between these components, and how their domains guide their interactions.

3. INITIAL RECONSTITUTION OF THE MIA PATHWAY

In 2009, the full in vitro reconstituted MIA pathway was reported by the Koehler group using Tim13, as a twin CX\textsubscript{3}C substrate.\textsuperscript{20} Oxygen consumption assays were used to determine the midpoint potentials (\(E_m\)) of Mia40 and Tim13 throughout the reaction, which began by incubating reduced Tim13, Mia40, Erv1, and molecular oxygen. The resultant products were oxidized Tim13 and hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}), as expected. Importantly, the \(E_m\) values were more positive along the reaction (from Tim13 to Mia40 to Erv1 to oxygen), indicating that the electron transfer reaction was thermodynamically favorable.\textsuperscript{20} Further support came from a study using Cox19 as a twin CX\textsubscript{6}C substrate and cytochrome \textit{c} as the final electron acceptor\textsuperscript{21} showing a complete oxidation of Cox19. In this work, it was also reported that Erv1 functions as a noncovalently bound homodimer. Electrons from reduced Mia40 are shuttled to the N-terminus of one subunit of Erv1 and then onto the FAD domain of the C-terminus of the second subunit. These reconstitution assays in combination with detailed structural studies of Mia40 and Erv1 began to reveal the molecular interactions that result in electron transfer. A schematic depiction of the flow of electrons across the MIA pathway is shown in Figure 1.
nonmitochondrial protein can target the protein to the IMS.6 Substrates that contain a twin CX3C or CX2C motif require the formation of two disulfide bonds for their complete oxidation. Crucially, the import of the small TimS and Cox17 requires substrates to be in a reduced, unfolded state within the cytosol prior to their passage through the TOM complex.9,12 Within milliseconds upon entry to the IMS, substrates engage in dynamic hydrophobic interactions with Mia40.29,6 This rapid positioning allows the selection of the first of their N-terminal CX3C motif for “docking” in a mixed disulfide intermediate with the second cysteine of the CPC motif following a nucleophilic attack. This two-step mechanism was described as the sliding-docking model.6 The precursor binding is coupled to the Mia40-induced folding of the first substrate helix, creating a partially folded ITS.6 The substrate is then released from Mia40 as a result of a second nucleophilic attack, this time on the “docking” cysteine by the second resolving cysteine of the substrate C-terminal CX3C motif.26–28 After substrate release, the Mia40 CPC motif remains reduced and gets reoxidized by Erv1 back to its functional state as an IMS receptor.

5.2. Oxidation of the Second Disulfide Bond

Various mechanisms have been proposed for the formation of the second intramolecular disulfide bond in twin CX3C and CX2C substrates. One proposal is that the release of substrates from Mia40 with their partially folded ITS/MISS induces folding of the second coiled-coil helix and is coupled to the formation of an intramolecular disulfide bond between the inner two cysteine residues; catalyzed either by molecular oxygen, glutathione, or a yet to be identified oxidant60,68 (Figure 4A). Further evidence for this mechanism of induced folding coupled to oxidation was recently reported,39 as chemical induction of a structure resembling the coiled-coil helix was sufficient to accelerate oxidative unfolding in the absence of Mia40. The earlier reconstitution assays by Bien et al.21 support a similar mechanism, as the oxidation of both disulfides in Cox19 required only excess of oxidized Mia40 (bypassing the need for reoxidation of Mia40). This could either occur via the mechanism mentioned above (Figure 4A) or via repeat substrate binding to Mia40 (Figure 4B). However, in addition to the presence of completely oxidized Cox19, the reaction also produced long-lived mixed disulfide intermediates. Therefore, although complete oxidation can occur solely by Mia40, it may not represent the most efficient oxidation mechanism. A third possibility is that a ternary complex between Mia40, Erv1 and the substrate forms, thereby allowing Mia40 to introduce both disulfide bonds before substrate release31 (Figure 4C). Such a ternary complex has been observed both in organello31,32 and in vivo,32 most likely via noncovalent interactions between Mia40 and Erv1, but it is not known how electron shuttling through this complex occurs.

During the reviewing process of this manuscript, a new study from the Koecher lab suggests that Mia40 can act as an “electron sink” by accepting up to six electrons from substrates. This was based on reconstitution and gel shift assays indicating that Mia40 can be with all three of its cysteine pairs completely reduced—both in vitro and in vivo.33 As two electrons must be accepted by Mia40 per disulfide bond formed, Mia40 in this scenario can insert up to three disulfide bonds into substrates.

5.3. The Formation of Long-lived Intermediates Facilitates Proofreading of Non-Native Disulfides

How does Mia40 recognize that it has correctly introduced the native disulfide before releasing the substrate? A proofreading role by reduced glutathione (GSH) was suggested,33 as its addition to the in vitro assay (with oxidized Mia40 and Cox19) prevented the formation of long-lived intermediates and accelerated the oxidation of Cox19. However, as this study could not characterize which intermediates were present it is unclear whether GSH directly reduces wrong disulfides and a proofreading role of GSH in vivo is still unclear. A somewhat different scenario has recently been suggested proposing that Mia40 itself is involved in directing the native folding pathway and in the reshuffling of non-native disulfides acting concurrently as a disulfide isomerase.4,33 However, an isomerase function for Mia40 (or indeed any other protein of the IMS) in vivo is still unclear. Although the twin CX3C and CX2C substrates, used in all of the reconstitution studies to date, only require two disulfide bonds, other Mia40 substrates require many more. The folding pathway of more complex...
cysteine-containing substrates has yet to be completely characterized; it is conceivable that Mia40 can bind at more than one location along the substrate engaging in multiple rounds of substrate oxidation. Exactly how this might occur in vivo has yet to be determined.

6. THE EXPANDING REPERTOIRE OF TARGET SUBSTRATES

6.1. Twin CX₃C and CX₉C Substrates

The first recognized substrates of Mia40 contained twin CX₃C (i.e., the small Tims) or twin CX₉C motifs (i.e., Cox17/19) that share a coiled coil–helix1–coiled coil–helix 2 (CHCH) fold. The small Tims function as chaperones of the IMS and all possess highly conserved twin CX₃C motifs. Systematic studies were carried out in yeast to compile a comprehensive list of proteins containing (or predicted to contain) twin CX₃C motifs. Some of these were confirmed experimentally to be substrates of Mia40 (including Mdm35, Mic14/17, and Cmc2/3/4, among others). A genome-wide analysis revealed that most of these proteins elicit only a few different functional roles, mainly structural, within mitochondria.
Table 1. Known Substrates of Yeast Mia40

| Protein (yeast) | Size (kDa) | Cysteine motifs | Function | Ref |
|----------------|------------|-----------------|----------|-----|
| Small Tims (Tim8, Tim9, Tim10, Tim12, Tim13) | 10, 10, 10, 12, 11 | --CX₃C--CX₈C-- | Chaperones of mitochondrial protein import | 11–13 |
| Cox family (Cox17, Cox19) | 8, 11 | --CX₃C--CX₈C-- | Copper chaperones | 12, 13 |
| Mia40 | 44 | --CX₃C--CX₈C-- | Mitochondrial oxidative folding; IMS receptor | 42, 43 |
| Erv1 | 22 | --CX₃C--CX₈C--CX₈C-- | Fe/S cluster biogenesis and mitochondrial oxidative folding; reoxidises Mia40 | 8, 40, 41 |
| Dre2 | 39 | --CX₃C--CX₈C-- | Fe/S cluster biogenesis | 44 |
| Sod1 | 16 | --CX₈C-- | Superoxide dismutase | 39 |
| Ccs1 | 27 | --CX₃C--CX₈C--CX₈C--CX₈C-- | Copper chaperone for Sod1 | 39 |
| Cmc2, Cmc3, Cmc4 | 13, 17, 8 | --CX₃C--CX₈C-- | Respiratory chain assembly | 37 |
| Mlx14, Mlx17 | 14, 17 | --CX₃C--CX₈C-- | Mitochondrial respiration | 8 |
| Mdm35 | 10 | --CX₃C--CX₈C-- | Mitochondrial distribution and morphology | 8 |
| Tim22 | 22 | --CX₈C-- | Key component of the tim22 complex | 47 |
| Mrp10 | 11 | --CX₃C--CX₈C-- | Mitochondrial ribosomal protein | 48 |
| Atp23 | 32 | --CX₃C--CX₈C--CX₈C--CX₈C--CX₈C-- | Putative metalloprotease | 45 |

6.2. Substrates with Alternative Cysteine Motifs

Over time it became evident that Mia40 can mediate the import of a much wider subset of IMS proteins, including some with unconventional cysteine motifs that do not contain a CHCH domain and are larger. Examples are the 27 kDa copper chaperone Ccs1 which contains a CX₂CX₆CX₃₆CX₉₄C motif, Erv1 which contains a CX₃C motif and twin CX₉C motifs, and the Fe/S cluster protein human Anamorsin/yeast Dre2. The exact molecular recognition of these substrates is not yet well understood. The list of MIA-substrates continues to grow in unexpected ways revealing a much more extended role of Mia40 in the import and folding even of mitochondrial proteins outside the IMS. 

6.3. Novel Substrates Reveal Expanded Chaperone-like Activities of Mia40

Mia40 was first suggested to function as a molecular chaperone by Banci et al. Based on the observation that binding to Mia40 induces helical folding of their CHCH domains. This chaperone activity of Mia40 is largely dictated by the hydrophobic cleft of Mia40 that can accommodate unfolded segments of the substrates as these frequently exhibit hydrophobic patches. Novel substrates that were identified to rely on the chaperone activity of Mia40 were Atp23, Tim22, human ChChd3, and Mrp10. Moreover, these studies are rapidly revealing additional chaperone-like roles of Mia40 for substrates that simply pass through the IMS and that do not contain the typical ITS/MISS sequences. Mia40 likely acts as a chaperone for a subset of substrates that reside in multiple mitochondrial subcompartments of the IMS proteome from mitochondria and so it is expected that the MIA40 pathway is characterized; yeast substrates that have been characterized to date are listed in Table 1. 

7. REGULATION OF THE OXIDATIVE FOLDING PATHWAY

Redox homeostasis is crucial for the diverse functions of mitochondria and so it is expected that the MIA40 pathway is regulated to adapt to redox changes. The IMS proteome from yeast mitochondria led to the discovery that key antioxidant enzymes involved in reductive reactions like thioredoxin 1 (Trx1) and thioredoxin reductase (Trr1) as well as peroxiredoxin (Hyr1/Gpx3) reside in the IMS. Additionally, a glutaredoxin 2 (Grx2) activity that is thought to control the levels of GSH has also been reported for the IMS. The extent of the interactions of these redox balancing systems with the MIA machinery remain to be discovered and they may involve not just protein–protein interactions but also small molecule oxidants (H₂O₂, superoxide anion), and reductants (NADPH). The ramifications of these interactions are important for a full understanding of the regulation of the mitochondrial biogenesis process and also for the links between mitochondrial dysfunction and the cellular redox signaling pathways.

8. CONCLUDING REMARKS

The discovery of the mitochondrial oxidative folding pathway brought cellular redox chemistry mechanisms to the heart of mitochondrial protein biogenesis processes. The major components of the MIA pathway, their structures at atomic resolution, and the basic features of the underpinning
mechanism of oxidative folding are known to a good degree. However, future studies will have to address the mechanistic details of the key molecular interactions for an ever increasing spectrum of different substrates using biophysical and high-resolution structural techniques. There is increasing awareness of the important relevance of the oxidative folding MIA pathway for human pathology and biomedical conditions. These include hypoxic signaling in cancer where Mia40 can interact with p53 and affects the stabilization of HIF1α in Huntington’s disease where a mouse model for the disease displayed defects in mitochondrial oxidative folding, and amyotrophic lateral sclerosis where folding mutants of superoxide dismutase 1 (SOD1) linked to ALS reside in the IMS subject to interaction with the oxidative folding machinery. These conditions may represent different cellular responses to a variety of stress stimuli that affect the protein homeostasis process in the cell, and as a consequence normal cell physiology. Understanding the plasticity and dynamics of mitochondrial protein biogenesis in response to stress in molecular terms will be an exciting challenge for the future.

Author Information

Corresponding Author

*E-mail: kostas.tokatlidis@glasgow.ac.uk.

Notes

The authors declare no competing financial interest.

Biographies

Amelia Mordas was born in High Wycombe, U.K. in 1991. She received her MSci in Genetics from the University of Glasgow in 2014. During her undergraduate studies, she was involved in mitochondrial research in Prof. Howard Jacobs’ group, University of Tampere, and in Prof. Kostas Tokatlidis’ group where she currently continues her studies toward a PhD in Biochemistry working on redox regulation pathways of mitochondria biogenesis.

Kostas Tokatlidis was born in Veria, Greece in 1966. He received his undergraduate degree from the University of Thessaloniki and his PhD from the University of Delaware jointly with the Institut Pasteur in 1993. After a 5 year postdoc with Jeff Schatz at the Biozentrum in Basel he set up his group in 1998 at Manchester University. He moved to IMBB-Crete in 2003 where he was promoted to Professor in 2011. In 2013, he was elected EMBO member, Wolfson-Royal Society research merit Fellow and holds the Cathcart Chair of Biochemistry at the University of Glasgow.

Acknowledgments

Work in our lab was supported by the Biotechnology and Biological Sciences Research Council (BBSRC – doctoral training program grant to A.M.), and funds from the Scottish Universities Life Sciences Alliance (SULSA), the Royal Society (Wolfson research merit award), the Wellcome Trust ISSF, the European Union (European Social Fund – ESF), and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) – Research Funding Program: THALIS – UOC, “Mitochondrial dysfunction in neurodegenerative diseases” (Grant Code 377226) and Research Funding Program: ARISTEIA-IMBB “Mechanisms of mitochondrial oxidative protein folding in biogenesis, physiology and disease” (Grant Code 148) to K.T.

References

(1) Chacinska, A.; Koehler, C. M.; Milenkovic, D.; Lithgow, T.; Pfanner, N. Importing Mitochondrial Proteins: Machineries and Mechanisms. Cell 2009, 138, 628−644.

(2) Dudek, J.; Rehling, P.; van der Laan, M. Mitochondrial Protein Import: Common Principles and Physiological Networks. Biochim. Biophys. Acta, Mol. Cell Res. 2013, 1833, 274−285.

(3) Sickmann, A.; Reinders, J.; Wagner, Y.; Joppich, C.; Zahedi, R.; Meyer, H. E.; Schönisch, B.; Perschil, I.; Chacinska, A.; Guiard, B.; Rehling, P.; Pfanner, N.; Meisinger, C. The Proteome of Saccharomyces Cerevisiae Mitochondria. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 13207−13212.

(4) Reinders, J.; Zahedi, R. P.; Pfanner, N.; Meisinger, C.; Sickmann, A. Toward the Complete Yeast Mitochondrial Proteome: Multidimensional Separation Techniques for Mitochondrial Proteomics. J. Proteome Res. 2006, 5, 1543−1554.

(5) Voigtle, F.-N.; Burkhart, J. M.; Rao, S.; Gerbeth, C.; Hinrichs, J.; Martinou, J.-C.; Chacinska, A.; Sickmann, A.; Zahedi, R. P.; Meisinger, C. Intermembrane Space Proteome of Yeast Mitochondria. Mol. Cell. Proteomics 2012, 11, 1840−1852.

(6) Sideris, D. P.; Petrakis, N.; Katrakili, N.; Mikropoulou, D.; Gallo, A.; Ciofi-Baffoni, S.; Banci, L.; Bertini, I.; Tokatlidis, K. A Novel Intermembrane Space-Targeting Signal Dockates Cysteines onto Mia40 during Mitochondrial Oxidative Folding. J. Cell Biol. 2009, 187, 1007−1022.

(7) Milenkovic, D.; Ramming, T.; Muller, J. M.; Wenz, L.-S.; Gebert, N.; Schulze-Specking, A.; Stojanovski, D.; Rospert, S.; Chacinska, A. Identification of the Signal Directing Tim9 and Tim10 into the Intermembrane Space of Mitochondria. Mol. Biol. Cell 2009, 20, 2530−2539.

(8) Gabriel, K.; Milenkovic, D.; Chacinska, A.; Muller, J.; Guiard, B.; Pfanner, N.; Meisinger, C. Novel Mitochondrial Intermembrane Space Proteins as Substrates of the MIA Import Pathway. J. Mol. Biol. 2007, 365, 612−620.

(9) Lu, H.; Allen, S.; Wardleworth, L.; Savory, P.; Tokatlidis, K. Functional TIM10 Chaperone Assembly Is Redox-Regulated in Vivo. J. Biol. Chem. 2004, 279, 18952−18958.

(10) Curran, S. P.; Leuenberger, D.; Opplinger, W.; Koehler, C. M. The Tim9p-Tim10p Complex Bridges to the Transmembrane Domains of the ADP/ATP Carrier. EMBO J. 2002, 21, 942−953.

(11) Naöe, M.; Ohwa, Y.; Ishikawa, D.; Ohshima, C.; Nishikawa, S.; Yamamoto, H.; Endo, T. Identification of Tim40 That Mediates Protein Sorting to the Mitochondrial Intermembrane Space. J. Biol. Chem. 2004, 279, 47815−47821.

(12) Chacinska, A.; Pfannschmidt, S.; Wiedemann, N.; Kozjak, V.; Sanjaun Szklarz, L. K.; Schulze-Specking, A.; Truscott, K. N.; Guiard, B.; Meisinger, C.; Pfanner, N. Essential Role of Mia40 in Import and Assembly of Mitochondrial Intermembrane Space Proteins. EMBO J. 2004, 23, 3735−3746.

(13) Terziyska, N.; Lutz, T.; Kozany, C.; Mokranjac, D.; Mesecke, N.; Neupert, W.; Herrmann, J. M.; Hell, K. Mia40, a Novel Factor for Protein Import into the Intermembrane Space of Mitochondria Is Able to Bind Metal Ions. FEBS Lett. 2005, 579, 179−184.

(14) Allen, S.; Balabanidou, V.; Sideris, D. P.; Lisowsky, T.; Tokatlidis, K. Erv1Mediates the Mia40-Dependent Protein Import Pathway and Provides a Functional Link to the Respiratory Chain by Shuttling Electrons to Cytochrome c. Pathway and Provides a Functional Link to the Respiratory Chain by Shuttling Electrons to Cytochrome c. J. Mol. Biol. 2005, 353, 937−944.

(15) Mesecke, N.; Terziyska, N.; Kozany, C.; Baumann, F.; Neupert, W.; Hell, K.; Herrmann, J. M. A Disulphide Relay System in the Intermembrane Space of Mitochondria That Mediates Protein Import. Cell 2005, 121, 1059−1069.

(16) Bisler, M.; Wiedemann, N.; Pfannschmidt, S.; Gabriel, K.; Guiard, B.; Pfanner, N.; Chacinska, A. The Essential Mitochondrial Protein Erv1 Cooperates with Mia40 in Biogenesis of Intermembrane Space Proteins. J. Mol. Biol. 2005, 353, 485−492.

(17) Lisowsky, T. Dual Function of a New Nuclear Gene for Oxidative Phosphorylation and Vegetative Growth in Yeast. Mol. Gen. Genet. 1992, 232, 58−64.
Import.

Induced Folding Steps of the Substrate in Mitochondrial Protein Import.

Felli, I. C.; Gallo, A.; Gonnelli, L.; Luchinat, E.; Sideris, D.; Tokatlidis, K.; Ventura, S. The Mitochondrial Intermembrane Space Oxireductase That Catalyzes Oxidative Protein Folding in the Hydrophobic Environment to Direct Oxidative Protein Folding in the Nucleus.

Schulze-Specking, A.; Baker, M. J.; Ryan, M. T.; Guiard, B.; Pfanner, N.; Chacinska, A. Biogenesis of the Essential Tim9-Tim10 Complex-Containing Substrate of the Mia40-Dependent Mitochondrial Protein Trapping Machinery.

Mol. Biol. Cell 2013, 24, 543–554.

Longen, S.; Woelhaf, M.; Petrunagor, C.; Riemer, J.; Herrmann, J. The Disulphide Relay of the Intermembrane Space Oxidizes the Ribosomal Subunit Mrp10 on Its Transit into the Mitochondrial Matrix. Dev. Cell 2014, 28, 30–42.

Barchiesi, A.; Wasilewski, M.; Chacinska, A.; Tell, G.; Vaccotto, C. Mitochondrial Translocation of APE1 Relies on the MIA Pathway. Nucleic Acids Res. 2015, 43, 5451–5464.

Kozer, K.; Bien, M.; Gangel, H.; Morgan, B.; Dick, T. P.; Riemer, J. Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state. EMBO J. 2012, 31, 3169–3182.

Kozer, K.; Peleh, V.; Calabrese, G.; Herrmann, J. M.; Riemer, J. Kinetic control by limiting glutaredoxin amounts enables thiol oxidation in the reducing mitochondrial intermembrane space. Mol. Biol. Cell 2015, 26, 195–204.

Zhuang, J.; Wang, P. Y.; Huang, X.; Chen, X.; Kang, J. G.; Hwang, P. M. Mitochondrial disulphide relay mediates translocation of p53 and partitions its subcellular activity. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 17356–17361.

DOI: 10.1021/acs.accounts.0b00150

Archem. Res. 2015, 48, 2191–2199
(S3) Yang, J.; Staples, O.; Thomas, L. W.; Briston, T.; Robson, M.; Poon, E.; Simões, M. L.; El-Emir, E.; Buffa, F. M.; Ahmed, A.; Annear, N. P.; Shukla, D.; Pedley, B. R.; Maxwell, P. H.; Harris, A. L.; Ashcroft, M. Human CHCHD4 mitochondrial proteins regulate cellular oxygen consumption rate and metabolism and provide a critical role in hypoxia signaling and tumor progression. *J. Clin. Invest.* **2012**, *122*, 600–611.

(S4) Napoli, E.; Wong, S.; Hung, C.; Ross-Inta, C.; Bomdica, P.; Giulivi, C. Defective mitochondrial disulfide relay system, altered mitochondrial morphology and function in Huntington’s disease. *Hum. Mol. Genet.* **2013**, *22*, 989–1004.

(S5) Varabyova, A.; Topf, U.; Kwiatkowska, P.; Wrobel, L.; Kaus-Drobek, M.; Chacinska, A. Mia40 and MINOS act in parallel with Ccs1 in the biogenesis of mitochondrial Sod1. *FEBS J.* **2013**, *280*, 4943–4959.