The effect of propolis administration on fetal development

Al Mukhlas Fikria, Ahmad Sulaemana,*, Ekowati Handharyani b, Sri Anna Marliyati a, Mokhamad Fahrudinc

a Department of Community Nutrition, Faculty of Human Ecology, Bogor Agricultural University, Bogor, Indonesia
b Department of Veterinary Clinic Reproduction and Pathology, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, Indonesia
c Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, Indonesia

ARTICLE INFO

Keywords:
Developmental biology
Toxicology
Natural product chemistry
Food science
Nutrition
Pharmaceutical science
Teratogenicity
Stingless bee propolis

ABSTRACT

Propolis is one of the bee products that widely used in health therapy. However, there has no study evaluating the developmental toxicity of propolis. This study was aimed to analyze the effect of propolis administration during pregnancy on fetal development. The pregnant mice were divided into five groups including control group (Tween 80 1%), low-dose (380 mg/kg b.wt.) and high-dose (1400 mg/kg b.wt.) of water extract of propolis from Banten (WEB), and low-dose (380 mg/kg b.wt.) and high-dose (1400 mg/kg b.wt.) of ethanol extract of propolis from South Sulawesi (EES). Propolis was administered for 18 days of gestation and then sacrificed to analyze the fetal development by examining external and skeletal abnormalities. The histopathological examination of placenta was also conducted. The result showed both low-dose groups did not inhibit fetal development. However, the high-dose of EES significantly reduced the weight, crown-rump of fetuses and increased the number of resorption (p < 0.05). Fetal weight was the only significantly reduced parameter of fetal growth in the high-dose group of WEB (p < 0.05). The histopathological examination of placenta showed a reduction of labyrinth development in both high-dose groups. Dose of 380 mg/kg dose of Indonesian propolis is relatively safe for consumption during pregnancy.

1. Introduction

The thalidomide case in the late 1950s and early 1960s which caused 8000 malformed babies leads to highly consider the safety evaluation of drug use during pregnancy (Tyl and Marr, 2016). However, the focus is currently not only on drugs but also natural products. Some natural products which are commonly consumed, including ginseng, ginger, and ginko biloba, reported to inhibit fetal growth (Mohammed et al., 2016). Another surprising study by Park et al. (2009) found the administration of green tea increased cyclophosphamide-induced teratogenesis in mice. In addition, fenugreek and asparagus also may retard fetal growth (Goel et al., 2006; Taloubi et al., 2013).

Propolis is a natural product widely used to support the treatment of some diseases. Propolis is produced by bees from resins and beeswax and plays an important role in colony-level immunity (Bankova et al., 2000). Propolis varies greatly in the chemical composition. About 300 chemical compounds have been reported contained in propolis (Huang et al., 2014). However, it is confirmed that propolis has broad spectrum biological activities, including antibacterial, antitumor, antiinflammatory, antifungal, citotoxic, immunomodulatory and antioxidant properties (Lotfy, 2006; Król et al., 2013; Kalsum et al., 2017).

Unfortunately, there has no study investigating the effect of propolis administration on fetal development, where its biological activities may affect. The antitumor activity of natural product could inhibit embryonic cells development (Mohammed et al., 2016), while propolis has been reported to possess that activity (Suzuki et al., 2002; Orsolic; Basic, 2003; Orsolic et al., 2005; Xuan et al., 2014). However, the chemical composition of propolis depends on location, season, bee species, and method of preparation (Salatino et al., 2005; Sun et al., 2015). Therefore, this study was aimed to investigate the effect of propolis administration during pregnancy on fetal development in mice for the first time. There were two types of propolis used in the present study, including water extract of propolis from Banten and ethanol extract of propolis from South Sulawesi, Indonesia.
2. Materials and method

2.1. Sample preparation

Raw samples were obtained from CV. Nutrima, Bogor, Indonesia and stored at -5°C until used. All samples were harvested in 2016. Propolis from Banten was Mangifera-type, and propolis from South Sulawesi was Calophyllum-type with triterpenes as the main constituent (unpublished data). Samples were prepared with ultrasound-assisted extraction (Trusheva et al., 2007; Fikri et al., 2018). Grounded samples were dissolved in the solvent (water, 75% ethanol) and treated in the ultrasound bath for 4 h. The extracts were filtered and evaporated to obtain dried extracts. The extraction produced water extract of propolis from Banten (WEB) and ethanol extract of propolis from South Sulawesi (EES). Both types of propolis were selected based on our previous result which showed the highest antiemetic activity and potential to use as antiemetic agent for pregnant women (Fikri et al., 2018). The extracts were redisolved in 1% Tween 80 as vehicle solution when administering propolis by oral gavage. This vehicle solution has been reported not to cause toxicity (Ramadan et al., 2012).

2.2. Experimental animals

All animal procedures have been approved by the Animal Care and Use Committee, Bogor Agricultural University (No. 64-2017 IPB) and were in accordance with the recommendations of the proper care and use of laboratory animals.

Mice were purchased from The Tropical Biopharmaca Research Centre, Bogor, aged 8–10 weeks and 25–30 g b.wt. The animals were fed with pellet and water ad libitum and caged under controlled laboratory condition. To ensure the effectiveness of breeding, estrous cycle was checked using the method of Caligioni (2009) and Byers et al. (2012). Male mice were mated with the female at proestrous and estrous stage on a one-to-one basis. The presence of a vaginal plug on the next day was

Parameters	Groups
	Control (n = 5)
	Low-dose of EES (n = 5)
	High-dose of EES (n = 5)
	Low-dose of WEB (n = 5)
	High-dose of WEB (n = 5)
Live fetuses	8.83 ± 0.95
Fetal weight (g)	1.30 ± 0.16
Crown-rump length (cm)	2.42 ± 0.13
Placental weight (g)	0.12 ± 0.02
Dead fetuses	0.00 ± 0.00
Late resorption	0.50 ± 0.55
Pre-implantation embryonic loss (%)	0.00 ± 0.00
Post-implantation embryonic loss (%)	6.68 ± 3.82

High-dose of EES significantly reduced fetal weight and crown-rump length, and increased the number of late resorption. High-dose of WEB significantly reduced only fetal weight. Both low-dose groups did not appear to inhibit fetal growth. Significant in relation to control at p < 0.05.

Fig. 1. The external examination of fetuses. A: control; B: low-dose of EES; C: high-dose of EES; D: low-dose of WEB; E: high-dose of WEB. Lower size was found in high-dose of EES group followed by high-dose of WEB group.
High-dose of EES significantly delayed the ossification of several bones, including metacarpal 2-3, proximal phalanx 2-3, 5 of forelimb, caudal 6, metatarsal 1-5, proximal phalanx 2-5 of hindlimb. High-dose of WEE showed relative inhibition of ossification but not statistically significant compared to control group. However, both low-dose groups did not show any alteration. * Significant in relation to control at p < 0.05; n = number of fetuses.
compared to the control group. There were no significant differences in the number of live fetuses, dead fetuses, pre and post-implantation embryonic loss, and placental weight among all groups.

The skeletal examination of fetuses is presented in Table 2, and illustrated in Fig. 2. Both low-dose groups did not decrease the thickness of the ossification centre. High dose of WEB showed relatively lower ossification than control, however, it was not statistically significant. In contrast, high dose of EES significantly decreased the thickness of several ossified bones, including metacarpal 2-4; proximal phalanx 2,3,5 of forelimb; metatarsal 1-5; proximal phalanx of hindlimb 2-5; caudal 6; compared to the control group. In addition, ossified supraoccipital bone showed a lower value than the control group, but not statistically significant. There is an interesting result, where the fetuses in low-dose of WEB group possessed relatively higher weight, crown-rump length, and thickness of ossification centre compared to the other groups.

The histopathological examination of placenta is depicted in Fig. 3. We found a shortened labyrinth of placenta along with the expansion of basal zone in both high-dose groups. Blood vessels formed a short, dense, and highly branched network. The hypertrophy of placenta was also found in several pregnant dams in both high-dose groups.

4. Discussion

The present study showed that low-dose of propolis did not cause any alterations in fetal development. However, high-dose of propolis might retard the development. We found decreased fetal weight and crown-rump at high-dose groups. Fetal weight is the main parameter to assess developmental toxicity (FDA, 2005; Hoberman and Lewis, 2017). Moreover, crown-rump is another parameter to examine fetal development and bone maturation (Kjar, 1974; Hoberman and Lewis, 2017). This indicates high-dose of propolis could inhibit fetal development.

In addition, high-dose of EES increased the number of late resorption. Mice prefer absorbing the imperfect conception to aborting (Telford et al., 1962). The immunomodulatory property of propolis could be the underlying mechanism. Propolis has been known to possess immunomodulatory property (Orsi et al. 2000, 2005; Chan et al., 2013; Kalsum et al., 2017). Resorption may occur due to the rejection via immune system pathway. Increased macrophage activity in the endometrium during pregnancy leads to increased production of NO and TNF-α, which are toxic to embryo development (Baines et al., 1997). Indeed, Tartakovsky (1989) found colony stimulating factor-1 (CSF-1) might increase resorption in pregnant mice. CSF-1 plays an important role in the differentiation of macrophage.

Anticancer activity of propolis was proposed to be the underlying mechanism of fetal growth retardation in both high-dose groups. It has been known that the anticancer agents are mostly teratogen and vice versa (Blattner et al., 1958; Sieber et al., 1978; Blagosklonny, 2005). Some natural products which have anticancer effects are also teratogens. Mohammed et al. (2016) found 6-gingerol (ginger), ginkgolide A, ginkgolide B (Gingko biloba) and gingsennoside Rg1 (ginseng) at high-dose showed teratogenic effects on chick embryonic heart micromass and mouse D3 embryonic stem cell. However, the compounds had no effect at a low dose and it was similar to the present study. Therefore, the teratogenic effect of the natural product might appear only at a high dose.

Anticancer activity of propolis has been extensively examined (Suzuki et al., 2002; Orsolic; Basic, 2003; Orsolic et al., 2005; Xuan et al., 2014). However, there were still few studies reported the anticancer activity of stingless bee propolis and its underlying mechanisms. Stingless bee propolis was reported active to against several cancer cells, including breast, colon, lung, gastric, liver, colorectal, skin, and bone cancer cell.

Fig. 2. The ossification of fetal bones after straining with Alizarin Red S. A: control; B: low-dose of EES; C: high-dose of EES; D: low-dose of WEB; E: high-dose of WEB. High dose of EES significantly reduced the thickness of ossified bones (white arrow), while high-dose of WEB gave moderate impact.
lines (Cinegaglia et al. 2013; Choudhari et al. 2013; Kustiawan et al. 2014). Propolis induces TNF-related apoptosis-inducing ligand (TRAIL) which mediates the programming of cell apoptosis (Orsolic et al., 2005). Propolis also activates caspase cascades and/or inhibit the production of bcl-2 and mitochondrial cytochrome c which lead to apoptosis (Sawicka et al., 2012).

It is interesting to discuss high-dose of WEB showed a moderate effect of inhibition compared to high dose of EES. However, we did not use raw propolis from the same origin, therefore we cannot compare its effect between the solvents. However, propolis works not as a single constituent but as a mixture (Watanabe et al., 2011). Regardless of propolis origin, pregnant mice were more tolerated to water extract than ethanol extract. Although there has no study comparing the anticancer activity of water and ethanol extract of propolis, some results of previous studies may help us to explain the findings. Water extraction produces more carbohydrates (sugar) but much less wax and resin than ethanol extract. Vitamins and amino acids coming from bee pollen could probably be extracted (Castaldo and Capasso, 2002; Najafi et al., 2007). This causes the phytochemical content of water extract of propolis less concentrated. It was confirmed by Sun et al. (2015) who compared the phytochemical profiles between water and ethanol extract of propolis. In addition, Do et al. (2014) found the major constituents of water extract of propolis were terpenes and carbohydrates. With respect to the theory that natural products induce teratogenic effect at high dose, it is reasonable that water extract was more tolerated than ethanol extract at high dose due to the less concentrated phytochemical composition. This might also explain why did only high-dose of EES increase the number of resorption.

Bone ossification generally reflects the maturity of fetal development (Hill, 1939; Gentili et al., 1984). This was confirmed by the present study which the fetuses of high-dose of EES group showed lower weight and crown-rump, and retarded bone ossification. Indeed, a high dose of WEB gave moderate effect on the weight and crown-rump length of fetuses and reflected moderate delayed bone ossification. The fetuses of high-dose of EES group seemed to be younger than 18 days of gestation. We found relatively shortened ossification of supraoccipital bone because it mostly had yet to be fused while the fusion should happen at 18 days of gestation (Tyl and Marr, 2016). In addition, high-dose of EES also decreased the thickness of ossification at caudal 6. We found the fetuses in this group mostly had the centre of caudal ossification only up to caudal 5. Moreover, metatarsal 2-4 which the centre of ossification that should appear at 17 days of gestation (Patton and Kaufman, 1995) seemed to be more sensitive in detecting delayed ossification. Instead, the bones which should appear later, including metacarpal 5 and some proximal phalanges tended to have higher variation thus difficult to show a significant result.

The delayed ossification in high-dose groups was not a specific response. Similarly, previous research on developmental toxicity also found the same manner (Schwetz et al., 1978; Marques et al., 2010; Alfi, 2017). The delay is due to general fetal growth retardation reflected by lower weight and crown-rump length. In addition, the retardation also followed the cephalocaudal manner, where the variations tend to be common on the hindlimb (Sucheston et al., 1986).

The inhibition of fetal growth in both high-dose groups might be caused by the disruption of placental development. The small labyrinth is commonly found in the failure of placental development due to the inadequate fabrication of vessels and trophoblast cells (Bolon, 2015). The trophoblast cells are the most common target by toxicity due to its rapid proliferation (Furukawa et al., 2011). The small labyrinth and thickening of the basal zone cause the inhibition of nutrient and gas transfer. The hypertrophy of placenta that found in several pregnant dams in both

Fig. 3. The histopathological examination of placenta. A: control; B: low-dose of EES; C: high-dose of EES; D: low-dose of WEB; E: high-dose of WEB. Small labyrinth along with expansion of basal zone (white arrow) were found in both high-dose groups (bar = 125 μm).
high-dose groups might be the compensatory response of intrauterine growth retardation (IUGR) (Furukawa et al. 2008, 2011).

5. Conclusion

This study concludes that Indonesian propolis at 380 mg/kg b.wt. does not inhibit fetal development. However, Indonesian propolis at 1400 mg/kg b.wt. did appear to inhibit fetal development. Non-observed adverse effect level that has been established (1400 mg/kg) cannot be used as the safety level in pregnant condition. Placenta might be the targeted organ of toxicity by propolis that causing the retardation of fetal growth.

Declarations

Author contribution statement

Al Mukhlas Fikri, Mokhamad Fahrudin: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Ahmad Sulaeman: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data.

Ekowati Handaryanti: Conceived and designed the experiments; Analyzed and interpreted the data.

Sri Anna Marliyati: Conceived and designed the experiments; Performed the experiments.

Funding statement

This work was supported by the Ministry of Research and Technology and Higher Education of the Republic of Indonesia.

Competing interest statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

Alifiah, E., 2017. The Safety of Ethanolic Extract of Tobongan Leaves (Coleus Ambibonicus Lour.) on Fetal Development. Thesis. Bogor Agricultural University.

Aliverti, V., Bonanomi, L., Giavini, E., Leone, V.G., Mariani, L., 1979. The extent of fetal ossification and growth retardation (IUGR) (Furukawa et al. 2008, 2011).

Baines, M.G., Duclos, A.J., Antecka, E., Haddad, E.K., 1997. Decidual infiltration and activation of macrophages leads to early embryo loss. Am. J. Reprod. Immunol. 37 (6), 471–477.

Bankova, V.S., de Castro, S.L., Marucci, M.C., 2000. Propolis: recent advances in chemistry and plant origin. Apidologie 31 (3), 1–15.

Balogosklonny, M.V., 2005. Teratogens as anticancer drugs. Cell Cycle 4 (11), 1518–1522.

Bhandare, S.L., Wiles, M.V., Dunn, S.L., Taft, R.A., 2012. Mouse estrous cycle identified by the expression of the estrogen receptor beta. J. Exp. Biol. Med. 207 (3), 265–279.

Bortolotti, M., 2010. Delayed ossification in Wistar rats induced by Morinda citrifolia L. exposure during pregnancy. J. Ethnopharmacol. 128 (1), 23–30.

Cesare, F., Clodoveo, M., Vahedy, F., Seyyedin, M., Jomehzadeh, H.R., Bozary, K., 2007. Effect of the emetic principles of water extract of Brazilian Propolis. Pharm. Biol. 43 (2), 184–188.

Choudhari, M.K., Haghniaz, R., Rajwade, J.M., Paknikar, K.M., 2013. Anticancer activity of Indian singletless bee propolis: an in vitro study. Evid. Based Complement Altern. Med. 2013, 6.

Cinegaălia, N.C., Bensano, P.R.O., Arañjo, M.I.M.A.M., Bautua, M.C., Sforcin, J.M., 2013. Anticancer effects of geopropolis produced by stingless bees on canine osteosarcoma cells in vitro. Evid. Based Complement Altern. Med. 2013.

Do, Q.D., Angkawijaya, A.E., Tran-Nguyen, P.L., Huyhn, L.H., Soetaredjo, F.E., Ismaili, S., Ju, Y.H., 2014. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 22 (3), 206–209.

Ela, M., Hayashi, Y., Kinoshita, K., Koyama, K., Takahashi, K., Akuta, K., 2005. Antithrombotic and anti-platelet effects of Morinda citrifolia L. leaf extract on experimental arterial thrombosis in rats. Thromb. Res. 117 (6), 615–620.

Ela, M., Hayashi, Y., Kinoshita, K., Koyama, K., Takahashi, K., Akuta, K., 2005. Antithrombotic and anti-platelet effects of Morinda citrifolia L. leaf extract on experimental arterial thrombosis in rats. Thromb. Res. 117 (6), 615–620.

Ela, M., Hayashi, Y., Kinoshita, K., Koyama, K., Takahashi, K., Akuta, K., 2005. Antithrombotic and anti-platelet effects of Morinda citrifolia L. leaf extract on experimental arterial thrombosis in rats. Thromb. Res. 117 (6), 615–620.

Ela, M., Hayashi, Y., Kinoshita, K., Koyama, K., Takahashi, K., Akuta, K., 2005. Antithrombotic and anti-platelet effects of Morinda citrifolia L. leaf extract on experimental arterial thrombosis in rats. Thromb. Res. 117 (6), 615–620.

Ela, M., Hayashi, Y., Kinoshita, K., Koyama, K., Takahashi, K., Akuta, K., 2005. Antithrombotic and anti-platelet effects of Morinda citrifolia L. leaf extract on experimental arterial thrombosis in rats. Thromb. Res. 117 (6), 615–620.

Ela, M., Hayashi, Y., Kinoshita, K., Koyama, K., Takahashi, K., Akuta, K., 2005. Antithrombotic and anti-platelet effects of Morinda citrifolia L. leaf extract on experimental arterial thrombosis in rats. Thromb. Res. 117 (6), 615–620.

Ela, M., Hayashi, Y., Kinoshita, K., Koyama, K., Takahashi, K., Akuta, K., 2005. Antithrombotic and anti-platelet effects of Morinda citrifolia L. leaf extract on experimental arterial thrombosis in rats. Thromb. Res. 117 (6), 615–620.

Ela, M., Hayashi, Y., Kinoshita, K., Koyama, K., Takahashi, K., Akuta, K., 2005. Antithrombotic and anti-platelet effects of Morinda citrifolia L. leaf extract on experimental arterial thrombosis in rats. Thromb. Res. 117 (6), 615–620.
Salatino, A., Teixeira, É.W., Negri, G., 2005. Origin and chemical variation of Brazilian propolis. Evid. Based Complement Altern. Med. 2 (1), 33–38.
Sawicka, D., Car, H., Bozowska, M.H., Nikielowski, J., 2012. The antitumor activity of propolis. Folia Histoch. Cytobiol. 50 (1), 25–37.
Schwetz, B.A., Smith, F.A., Staples, R.E., 1978. Teratogenic potential of ethanol in mice, rats and rabbits. Teratology 18 (3), 385–392.
Sieber, S.M., Whang-Peng, J., Botkin, C., Knutsen, T., 1978. Teratogenic and cytogenetic effects of some plant-derived antitumor agents (vincristine, colchicine, maytansine, VP-16-213 and VM-26) in mice. Teratology 18 (1), 31–47.
Sucheston, M.E., Hayes, T.G., Eluma, F.O., 1986. Relationship between ossification and body weight of the CD-1 mouse fetus exposed in utero to anticonvulsant drugs. Teratog. Carcinog. Mutagen. 6 (6), 537–546.
Sun, C., Wu, Z., Wang, Z., Zhang, H., 2015. Effect of ethanol/water solvents on phenolic profiles and antioxidant properties of Beijing propolis extracts. Evid. Based Complement Altern. Med. 2015.
Suzuki, I., Hayashi, I., Takaki, T., Groveman, D.S., Fujimiya, Y., 2002. Antitumor and anticytopenic effects of aqueous extracts of propolis in combination with chemotherapeutic agents. Cancer Biother. Radiopharm. 17 (5), 553–562.
Taloubi, L.M., Rhoula, H., Belabec, A., Smires, N., Thimou, A., Mdaghir, A.A., 2013. An overview of plants causing teratogenicity: fenugreek (Trigonella foenum graecum). Int. J. Pharm. Sci. Res. 4, 516–519.
Tartakovsky, B., 1989. CSF-1 induces resorption of embryos in mice. Immunol. Lett. 23 (1), 65–69.
Telford, L.R., Woodruff, C.S., Linford, R.H., 1962. Fetal resorption in the rat as influenced by certain antioxidants. Am. J. Anat. 110 (1), 29–36.
Truheva, B., Trunkova, D., Bankova, V., 2007. Different extraction methods of biologically active components from propolis: a preliminary study. Chem. Cent. J. 1 (1), 13.
Tyl, R.W., Marr, M.C., 2016. Developmental toxicity testing—Methodology. Developmental and Reproductive Toxicology. CRC Press, pp. 153–197.
Watanabe, M.A.E., Amarante, M.K., Conti, B.J., Sforcin, J.M., 2011. Cytotoxic constituents of propolis inducing anticancer effects: a review. J. Pharm. Pharmacol. 63 (11), 1378–1386.
Xuan, H., Li, Z., Yan, H., Sang, Q., Wang, K., He, Q., et al., 2014. Antitumor activity of Chinese propolis in human breast cancer MCF-7 and MDA-MB-231 cells. Evid. Based Complement Altern. Med. 2014.