Table 1. Educational Objectives for Case 1 and 2

Case Description 1: Post-Craniotomy/ Cranectomy Surgical Site Infection (SSI)
1. Describe the preferred craniotomy/ craniecctomy incision site and shape to promote wound healing
2. List four risk factors for SSI after craniotomy or craniecctomy
3. Define a neurosurgical SSI
4. Classify a neurosurgical SSI as superficial or deep

Case Description 2: Cerebral Fluid (CSF) Shunt Infections
1. Describe the frontal and parieto-occipital approaches for CSF shunt placement
2. List three common pathogens in CSF shunt infections
3. List four risk factors for CSF shunt infections
4. Describe the two surgical approaches for CSF shunt removal and replacement (one stage removal and two stage removal)

Results. All sixteen learners (eight per case) completed the educational objective self-assessment surveys. The educational objectives were achieved with all questions reaching a mean response of 4 or greater indicating that the mean of learners agreed (4) or strongly agreed (5) that they were able to meet the outlined educational objectives after participating in the discussion session for Case 1 (Figure 2) and Case 2 (Figure 3).

Figure 2. Educational Objective Self-Assessment Scores for Case 1

Educational Objective	Pre-Educational Session Score	Post-Educational Session Score	Pre-test Score (Correct)
1. Identify risk factors for SSI	4 (4.0)	5 (5.0)	85%
2. Describe surgical techniques for CSF shunt placement	4 (4.0)	5 (5.0)	85%

Figure 3. Educational Objective Self-Assessment Scores for Case 2

Conclusion. Improved CD awareness among healthcare providers and reliable systematic screening protocols are important in at-risk populations. Through simple administration of a 1-hour educational session, we identified and improved several CD knowledge gaps. We noted significant improvement in providers’ confidence in their CD knowledge, specifically in epidemiology, transmission, and diagnostic and screening testing.

Disclosures. All Authors: No reported disclosures

958. A Required Infectious Diseases Rotation Improves Antimicrobial Stewardship Knowledge for Internal Medicine Interns

Lee S. Gottesdiener, MD1; Kate Stockelee, MD1; Angela Loo, PharmD2; Shawn Mazur, PharmD3; Kirana Gudi, MD1; Kristen Marks, MD1; Matthew Simon, MD, MS1; New York Presbyterian Hospital, New York, New York; Weill Cornell Medicine, New York, New York; Session: P-54. Infectious Diseases Medical Education

Background. Exposure to Infectious Diseases (ID) education is highly variable in post-graduate medical training. We report our experience with a required one-week ID consult rotation for Internal Medicine (IM) interns with a focus on antimicrobial stewardship education.

Methods. Since 2018 all IM interns at our institution have participated in a required one-week ID consult rotation. Antimicrobial stewardship is a core feature of this rotation, with educational resources on antibiotic spectrum and decision-making, and interdisciplinary rounding with ID pharmacists. Between March 2020 and May 2021 we piloted an 11-item pre-rotation and post-rotation quiz with distinct but paired questions on key stewardship topics. The quiz was administered anonymously in SurveyMonkey. Mean pre/post rotation scores were compared using a paired T-test and the McNemar test of paired proportions was used to compare the pre/post change in percentage of correct responses for each topic.

Results. Of 33 providers who took the pre-survey (16 faculty, 14 fellows, and 3 medical students), 27 (81.8%) completed all questions. Of 21 providers who took the post-survey (12 faculty, 6 fellows, and 3 medical students), 19 (90.5%) completed all questions. We identified the following CD knowledge gaps (i.e., questions initially answered incorrectly by >25% in the pre-educational session survey): CD transmission, regions of CD endemicity, CD risk factors, organ systems impacted by CD, CD in HIV and CD testing/follow-up procedures. In the post-educational session survey, we observed significant improvement in providers’ knowledge of CD epidemiology (correct selection of estimated number of people living with CD in the US improved from 26.7% to 90.5%, Fisher’s exact p<0.001), transmission (correct selection of ‘mother-to-child’ answer improved from 73.3% to 100%, p=0.0150), and selection of correct CD testing answers improved from 51.9% to 85%, p=0.0286.

Table 1. Comparison of healthcare provider knowledge of Chagas disease before and after a 1-hour educational session

Survey Question (alphabetical)	Pre-Educational Session Score (n=27)	Post-Educational Session Score (n=19)	Pre-test Score (Correct)
Correct identification of CD carriers	14 (4.9)	19 (5.5)	85%
Correct identification of CD transmission	16 (5.9)	21 (5.7)	85%
Correct identification of CD test used	15 (5.6)	20 (5.7)	85%
Correct identification of CD treatment option	16 (5.9)	21 (5.5)	85%

Abstracts • OFID 2021:8 (Suppl 1) • S571
Post-rotation quiz: 49% correct to mean post-test 79%. Table 1 displays the question topics and pre/post test change in percentage correct. The most difficult pre-test topics were ‘Recognition of AmpC-Expressing Organisms’ and ‘Antibiotics with activity against Pseudomonas aeruginosa’, which improved, from 31% to 81% correct (p=0.03) and 50% to 100% correct (p=0.01), respectively.

Figure 1. Mean score of interns on post-rotation quiz from March 2020 to May 2021 (n=16; p=0.01).

Table 1. Question topics and change in percentage correct on pre- and post-rotation quiz from March 2020 to May 2021 (n=16; p=0.01).

Question Topic	Pre-Test Percentage Correct	Post-Test Percentage Correct	p-value
Recognition of AmpC-expressing organisms and inactivable resistance to antibiotics	31%	81%	0.03
Antibiotics with activity against Pseudomonas aeruginosa	50%	100%	0.01
Tick-borne illnesses	56%	63%	1.00
Anaerobic spectrum of commonly prescribed antibiotics	56%	63%	1.00
Extended Spectrum Beta-lactamase (ESBL) bacteria recognition and antibiotic management	56%	75%	0.37
Vancomycin monitoring and trough level interpretation	56%	88%	0.18
Candidemia management and antifungal spectrum	63%	89%	0.22
Interpretation of Klebsiella pneumonia carabapenemase (KPC) resistance gene detected using a molecular assay in a blood culture	69%	31%	0.23
Indications for treatment of asymptomatic bacteremia	75%	69%	0.67
Duration of antibiotic therapy for community acquired pneumonia and hospital acquired pneumonia	75%	94%	0.37
Coverage of atypical organisms in community-acquired pneumonia	75%	100%	0.13

Question: A required one-week ID consult rotation for IM interns improved knowledge, competence and confidence measured as relative % change in correct responses pre/post education across the learning themes are reported. (i) 89% improvement/reinforcement among US ID specialists in knowledge/competence incorporating mAbs into patient care and 83% improvement among outside the US (OUS) ID specialists (P < .001). (ii) 70% improvement/reinforcement among US PCPs in knowledge/competence incorporating mAbs into patient care and 55% improvement among OUS PCPs (P < .001). (iii) 52% improvement/reinforcement in knowledge/competence among US ID specialists regarding clinical data for mAbs and 44% among OUS PCPs (P < .001). (iv) 42% of US ID specialists and 29% of OUS ID specialists had a measurable improvement in confidence in identifying patients who would benefit from mAbs (P < .001).

Conclusion. This series of online, CME-certified educational activities resulted in significant improvements in knowledge, competence, and confidence in identifying appropriate use of mAbs for SARS-CoV-2 in clinical practice. These results demonstrate the effectiveness of global curriculum-based education for clinicians designed to address specific gaps in care.

Disclosures. All Authors: No reported disclosures.

960. Creation of an Infection Prevention and Control (IPAC) Elective for Infectious Disease (ID) Fellows
John L. Kiley, MD; Alice E. Barsoumian, MD; Bernadette Thompson, RN; Elizabeth Markelz, MD; Brooke Army Medical Center, San Antonio, Texas

Session: P-54 Infectious Diseases Medical Education

Background: The incorporation of effective treatments is critical to improving patient care for COVID-19. We assessed the educational impact of a series of continuing medical education (CME) activities on knowledge, competence, and confidence changes in US and OUS physicians related to the use of monoclonal antibodies (mAbs) for COVID-19.

Methods. 10 online, CME-certified educational activities were delivered in multiple formats. For individual activities, educational effect was assessed with a repeated pairs pre-/post-assessment study including a 1 to 7-item, multiple choice, knowledge/competence questionnaire and one confidence assessment question. To assess changes in knowledge, competence, and confidence, data were aggregated across activities and stratified by learning theme. McNemar’s test or paired samples t-test (P<.05) assessed educational effect. The activities launched between November 2020 and May 2021; data were collected through May 2021.

Results. To date, the 10 activities have reached over 50,000 clinicians, including 24,627 physicians. Selected improvement/reinforcement in knowledge/competence was measured as relative % change in correct responses pre/post education across the learning themes. (i) 89% improvement/reinforcement among US ID specialists in knowledge/competence incorporating mAbs into patient care and 83% improvement among outside the US (OUS) ID specialists (P < .001). (ii) 70% improvement/reinforcement among US PCPs in knowledge/competence incorporating mAbs into patient care and 55% improvement among OUS PCPs (P < .001). (iii) 52% improvement/reinforcement in knowledge/competence among US ID specialists regarding clinical data for mAbs and 44% among OUS PCPs (P < .001). (iv) 42% of US ID specialists and 29% of OUS ID specialists had a measurable improvement in confidence in identifying patients who would benefit from mAbs (P < .001).

Conclusion. This series of online, CME-certified educational activities resulted in significant improvements in knowledge, competence, and confidence in identifying appropriate use of mAbs for SARS-CoV-2 in clinical practice. These results demonstrate the effectiveness of global curriculum-based education for clinicians designed to address specific gaps in care.

Disclosures. All Authors: No reported disclosures.

961. Experience, Lessons, and Strategies in Developing a High-Impact Real-Time Learning Network for Clinicians Caring for Patients with COVID-19 Infection
Ravina Kullar, PharmD, MPH, FIDSA; Payal K. Patel, MD, MPH; Marjorie Connolly, BA, MA; Coran Jailal, BS; Gayle Levy, MS; Varun Phadke, MD; Varun Phadke, MD; Ethel Werd, MD, PhD; William Werbel, MD, Andrea Weddle, MSW; Dana Wollins, DrPH; Natasha Chida, MD, MPH; Expert Stewardship Inc., LA, California; University of Michigan and the Ann Arbor VA Healthcare System, Ann Arbor, MI; Humboldt University of Berlin, Berlin, Brandenburg, Germany; TDSA, Arlington, Virginia; Emory University, Atlanta, GA; Johns Hopkins, Baltimore, Maryland; Johns Hopkins University School of Medicine, Baltimore, Maryland

Session: P-54 Infectious Diseases Medical Education

Background: The incorporation of effective treatments is critical to improving patient care for COVID-19. We assessed the educational impact of a series of continuing medical education (CME) activities on knowledge, competence, and confidence changes in US and OUS physicians related to the use of monoclonal antibodies (mAbs) for COVID-19.

Methods. 10 online, CME-certified educational activities were delivered in multiple formats. For individual activities, educational effect was assessed with a repeated pairs pre-/post-assessment study including a 1 to 7-item, multiple choice, knowledge/competence questionnaire and one confidence assessment question. To assess changes in knowledge, competence, and confidence, data were aggregated across activities and stratified by learning theme. McNemar’s test or paired samples t-test (P<.05) assessed educational effect. The activities launched between November 2020 and May 2021; data were collected through May 2021.

Results. To date, the 10 activities have reached over 50,000 clinicians, including 24,627 physicians. Selected improvement/reinforcement in knowledge/competence was measured as relative % change in correct responses pre/post education across the learning themes. (i) 89% improvement/reinforcement among US ID specialists in knowledge/competence incorporating mAbs into patient care and 83% improvement among outside the US (OUS) ID specialists (P < .001). (ii) 70% improvement/reinforcement among US PCPs in knowledge/competence incorporating mAbs into patient care and 55% improvement among OUS PCPs (P < .001). (iii) 52% improvement/reinforcement in knowledge/competence among US ID specialists regarding clinical data for mAbs and 44% among OUS PCPs (P < .001). (iv) 42% of US ID specialists and 29% of OUS ID specialists had a measurable improvement in confidence in identifying patients who would benefit from mAbs (P < .001).

Conclusion. This series of online, CME-certified educational activities resulted in significant improvements in knowledge, competence, and confidence in identifying appropriate use of mAbs for SARS-CoV-2 in clinical practice. These results demonstrate the effectiveness of global curriculum-based education for clinicians designed to address specific gaps in care.

Disclosures. All Authors: No reported disclosures.

962. Creation of an Infection Prevention and Control (IPAC) Elective for Infectious Disease (ID) Fellows
John L. Kiley, MD; Alice E. Barsoumian, MD; Bernadette Thompson, RN; Elizabeth Markelz, MD; Brooke Army Medical Center, San Antonio, Texas

Session: P-54 Infectious Diseases Medical Education

Background: The incorporation of effective treatments is critical to improving patient care for COVID-19. We assessed the educational impact of a series of continuing medical education (CME) activities on knowledge, competence, and confidence changes in US and OUS physicians related to the use of monoclonal antibodies (mAbs) for COVID-19.

Methods. 10 online, CME-certified educational activities were delivered in multiple formats. For individual activities, educational effect was assessed with a repeated pairs pre-/post-assessment study including a 1 to 7-item, multiple choice, knowledge/competence questionnaire and one confidence assessment question. To assess changes in knowledge, competence, and confidence, data were aggregated across activities and stratified by learning theme. McNemar’s test or paired samples t-test (P<.05) assessed educational effect. The activities launched between November 2020 and May 2021; data were collected through May 2021.

Results. To date, the 10 activities have reached over 50,000 clinicians, including 24,627 physicians. Selected improvement/reinforcement in knowledge/competence was measured as relative % change in correct responses pre/post education across the learning themes. (i) 89% improvement/reinforcement among US ID specialists in knowledge/competence incorporating mAbs into patient care and 83% improvement among outside the US (OUS) ID specialists (P < .001). (ii) 70% improvement/reinforcement among US PCPs in knowledge/competence incorporating mAbs into patient care and 55% improvement among OUS PCPs (P < .001). (iii) 52% improvement/reinforcement in knowledge/competence among US ID specialists regarding clinical data for mAbs and 44% among OUS PCPs (P < .001). (iv) 42% of US ID specialists and 29% of OUS ID specialists had a measurable improvement in confidence in identifying patients who would benefit from mAbs (P < .001).

Conclusion. This series of online, CME-certified educational activities resulted in significant improvements in knowledge, competence, and confidence in identifying appropriate use of mAbs for SARS-CoV-2 in clinical practice. These results demonstrate the effectiveness of global curriculum-based education for clinicians designed to address specific gaps in care.

Disclosures. All Authors: No reported disclosures.