Bottomonium spectrum in the relativistic flux tube model

Bing Chen1,∗, Ailin Zhang2,† and Jin He1‡
1School of Electrical and Electronic Engineering, Anhui Science and Technology University, Bengyang 233100, China
2Department of Physics, Shanghai University, Shanghai 200444, China
(Dated: October 22, 2019)

The bottomonium spectrum is far from being established. The structures of higher vector states, including the \(\Upsilon(10580), \Upsilon(10860)\), and \(\Upsilon(11020)\) states, are still in dispute. In addition, whether the \(\Upsilon(10750)\) signal which was recently observed by the Belle Collaboration is a normal \(b\bar{b}\) state or not should be examined. Faced with such situation, we carried out a systematic investigation of the bottomonium spectrum in the scheme of the relativistic flux tube (RFT) model. A Chew-Frautschi like formula was derived analytically for the spin average mass of bottomonium states. We further incorporated the spin-dependent interactions and obtained a complete bottomonium spectrum. We found that the most established bottomonium states can be explained in the RFT scheme. The \(\Upsilon(10750), \Upsilon(10860),\) and \(\Upsilon(11020)\) could be predominantly the \(3^3D_1, 5^1S_1,\) and \(4^4D_1\) states, respectively. Our predicted masses of \(1^1F\) and \(1^1G\) \(b\bar{b}\) states are in agreement with the results given by the method of lattice QCD, which can be tested by experiments in future.

PACS numbers: 12.39.-x,12.40.Yx

I. INTRODUCTION

The toponium system \((t\bar{t})\) can hardly exist in the nature due the very short lifetime of top quark \((\approx 0.5\times 10^{-24}\text{ s})\) [1]. Then the bottomonium is the heaviest meson system which have been researched by experiments for many years. This fact makes the bottomonium family occupy an important position in the hadron zoo and play a special role in the study of the strong interactions. A prominent feature of the bottomonium spectrum is that many excited states are below the threshold \(BB\), which provides a good platform to test the different kinds of effective theories and phenomenological models.

Comparing with the theoretical expectations, however, the complete bottomonium spectrum is far from being established. The first three bottomonium states, namely \(\Upsilon(1S), \Upsilon(2S),\) and \(\Upsilon(3S)\), were observed by the E288 Collaboration at Fermilab in 1977 [2, 3]. Since then nearly twenty bottomonium states have been established [4]. The experimental history of the \(b\bar{b}\) states has been reviewed in Ref. [5]. Here, we just briefly review some important measurements of bottomonium in the past fifteen years.

As shown in Fig. 1, after the discovery of \(\Upsilon(4S), \Upsilon(10860),\) and \(\Upsilon(11020)\) states [6, 7], no progress has been made in searching for the excited \(b\bar{b}\) states for a long time until the CLEO Collaboration observed a \(1^3D_2\) candidate in the cascade process, \(\Upsilon(3S) \rightarrow \gamma \chi_{b}(2P) \rightarrow \gamma \Upsilon(1^3D_2) \rightarrow \gamma\gamma\chi_{b}(1P) \rightarrow \gamma\gamma\Upsilon(1S)\), in 2004 [8]. This \(1D\) state was later confirmed by BABAR through the \(\Upsilon(1^3D_2) \rightarrow \pi^{+}\pi^{-}\Upsilon(1S)\) decay mode [9]. Furthermore, the BABAR sample may contain the \(\Upsilon(1^3D_2)\) and \(\Upsilon(1^3D_2)\) events though the significances of these two states were very low [9].

The spin singlet states of \(S\)- and \(P\)-wave \(b\bar{b}\) mesons, i.e., \(\eta_b(1S), \eta_b(2S), h_0(1P),\) and \(h_0(2P)\), have also been found by experiments in the recent years. As a long-sought state, the \(\eta_b(1S)\) state was first observed by BABAR in the decay channel \(\Upsilon(3S) \rightarrow \gamma \eta_b(1S)\) [10], and subsequently confirmed in the decay channel \(\Upsilon(2S) \rightarrow \gamma \eta_b(1S)\) [11]. The \(\eta_b(1S)\) has also been observed by the CLEO Collaboration in the channel \(\Upsilon(3S) \rightarrow \gamma \eta_b(1S)\) [12], and by the Belle Collaboration in the channels \(h_0(nP) \rightarrow \gamma \eta_b(1S)\) \((n=1,2)\) [13, 14].

The first probable signal of the \(\eta_b(2S)\) state was detected by the BABAR Collaboration [15] although their result was largely inconclusive. A clear evidence of \(\eta_b(2S)\) was achieved by the Belle Collaboration in the processes \(e^{+}e^{-} \rightarrow \Upsilon(5S) \rightarrow h_0(2P)\pi^{+}\pi^{-} \rightarrow \gamma \eta_b(2S)\pi^{+}\pi^{-}\) [13]. There the mass of \(\eta_b(2S)\) was measured by Belle as 9999.0 ± 3.5^{+2.8}_{-1.9} \text{ MeV}.\footnote{Dobbs et al. analysed \((9.32 \pm 0.19) \times 10^{6} \Upsilon(2S)\) recorded with the CLEO III detector and announced the observation of \(\eta_b(2S)\) in the reaction \(\Upsilon(2S) \rightarrow \gamma \eta_b(2S)\) [16]. However, their result was not confirmed by Belle with a larger sample of \(\Upsilon(2S)\) decays [17].}

The first evidence of spin-singlet state \(h_0(1P)\) was reported by BABAR in the sequential decays \(\Upsilon(3S) \rightarrow \pi^{+}\pi^{-}h_0(1P)\) →
There the mass value of $h_b(1P)$ was measured as $9902 \pm 4 \pm 1$ MeV though the effective signal significance was only 3.0σ. The significant signal of $h_b(1P)$ was achieved by Belle [13, 19] in the $π^+π^−$ missing spectrum of the reaction $e^+e^− \to Υ(5S) \to h_b(1P)π^+π^−$. Meanwhile, the radial excited $h_b(2P)$ was also observed in this measurements. The $h_b(1P)$ state was also found in the transition $Υ(4S) \to η h_b(1P)$ [14].

A $χ_b(3P)$ state was first discovered by the ATLAS Collaboration in the radiative decay modes of $χ_b(3P) \to Υ(1S,2S)γ$ [21], and subsequently confirmed by the D0 [22] and LHCb Collaborations [23, 24]. However, their measured masses were a little different from each other (see Table I).

Very recently, the Belle Collaboration discovered a new candidate of the upsilon resonance in the shape of cross sections of $e^+e^− \to Υ(nS)π^+π^− (n = 1, 2, 3)$ [25]. Belle denoted this state as the $Υ(10750)$ and determined the mass and width as

$$M = 10752.7 \pm 5.9^{+0.7}_{−1.1}$ MeV, \quad \Gamma = 35.5^{+17.6}_{−11.3}^{+3.9}_{−3.3}$ MeV, \quad (1)$$

respectively, by the Breit-Wigner parameterization. Surely, more experimental confirmations are required for the $Υ(10750)$ state.

Obviously, it is not an easy task to establish the bottomonium spectrum completely because even many $b\bar{b}$ states below the $B\bar{B}$ threshold have not been discovered. However, the situation may be changed especially because of the running of Belle II [26]. It is expected that more excited bottomonium states will be detected in the near future. So it is time to investigate the spectrum of $b\bar{b}$ by different approaches which incorporate the spirits of QCD.

So far, different types of quark potential model have been applied in studying the bottomonium spectrum, including the nonrelativistic [5, 27–30], the semirelativistic [31, 32], the relativized [33–35], and the relativistic [36, 37] versions. The bottomonium spectrum also has been studied by the Bethe-Salpeter equation [38], the coupled channel model [39–42], the QCD sum rule [43, 44], the Regge phenomenology [45–48], the lattice QCD [49–51], and other method [52].

In this work, we will explore bottomonium spectrum in the scheme of the RFT model which can be rigorously derived from the Wilson area law in QCD [53]. The investigation of $b\bar{b}$ spectrum here by the RFT model could be regarded as an extension of our previous work [54]. There we have shown that the RFT model can describe the masses of single heavy baryons well. Especially, the predicted mass of $1D\Lambda_b^+$ and $Λ_b^0$ states in Ref. [54] are in good agreement with the later measurements by the LHCb Collaboration [55, 56].

The manuscript is organized as follows. The RFT model is introduced in Sec. II where a spin average mass formula of the heavy quarkonia is derived. In Sec. III, we test the mass formula by the well measured $b\bar{b}$ states. In Sec. IV, the spin-dependent interactions are incorporated and the complete bottomonium spectrum is presented. Finally, the paper ends with the discussion and conclusion.

II. Spin Average Mass Formula of the Heavy Quarkonia in the RFT Model

The idea of RFT model stemmed from the Nambu-Goto QCD string model [57–59]. Different aspects of the RFT model have been investigated by Olsson and the collaborators [60–65]. The deep relationship between the RFT model and QCD has been verified in Refs. [53, 66]. The basic assumption of the RFT model is that the gluon field connecting the largely separated quarks in the QCD dynamical ground state could be regarded as a rigid straight tube-like color flux configuration. Thus the angular momentum of gluon field is taken into account by the RFT model, which is qualitatively different from the usual quark potential models. The RFT model has been applied to study the masses of heavy-light mesons [67–69], charmonium states [70], single heavy baryons [54, 71], glueballs [72], and other exotic hadrons [73].

As shown in Fig. 2, the Lagrangian of a $q_1\bar{q}_2$ meson in the RFT model is written as [74]

$$\mathcal{L}(r, \hat{\theta}) = -\sum_{i=1}^{2} \left[m_i \sqrt{1 - (r_i \hat{\theta})^2} + \int_{0}^{r_i} \tau \sqrt{1 - (\rho \hat{\theta})^2} d\rho \right], \quad (2)$$

where m_i and r_i denote the mass of i ($i = 1, 2$) quark and its distance from the center of gravity (see Fig. 2). τ represents the string (flux tube) tension. Here, we only consider the transverse velocity of the quark and antiquark, i.e., $\hat{r}_i = 0$. from the Wilson area law in QCD [53]. The investigation of $b\bar{b}$ spectrum here by the RFT model could be regarded as an extension of our previous work [54]. There we have shown that the RFT model can describe the masses of single heavy baryons well. Especially, the predicted mass of $1D\Lambda_b^+$ and $Λ_b^0$ states in Ref. [54] are in good agreement with the later measurements by the LHCb Collaboration [55, 56].

The manuscript is organized as follows. The RFT model is introduced in Sec. II where a spin average mass formula of the heavy quarkonia is derived. In Sec. III, we test the mass formula by the well measured $b\bar{b}$ states. In Sec. IV, the spin-dependent interactions are incorporated and the complete bottomonium spectrum is presented. Finally, the paper ends with the discussion and conclusion.

II. Spin Average Mass Formula of the Heavy Quarkonia in the RFT Model

The idea of RFT model stemmed from the Nambu-Goto QCD string model [57–59]. Different aspects of the RFT model have been investigated by Olsson and the collaborators [60–65]. The deep relationship between the RFT model and QCD has been verified in Refs. [53, 66]. The basic assumption of the RFT model is that the gluon field connecting the largely separated quarks in the QCD dynamical ground state could be regarded as a rigid straight tube-like color flux configuration. Thus the angular momentum of gluon field is taken into account by the RFT model, which is qualitatively different from the usual quark potential models. The RFT model has been applied to study the masses of heavy-light mesons [67–69], charmonium states [70], single heavy baryons [54, 71], glueballs [72], and other exotic hadrons [73].

As shown in Fig. 2, the Lagrangian of a $q_1\bar{q}_2$ meson in the RFT model is written as [74]
Then the total orbital angular momentum \(L \) is defined by
\[
L = \frac{\partial L}{\partial \theta} = \sum_{i=1}^{2} \left[\frac{m_i \rho_i^2 \theta}{\sqrt{1 - (r_i \theta)^2}} + \int_0^{\tau} \frac{\tau \rho_i^2 \theta}{\sqrt{1 - (\rho_i^2)^2}} d\rho_i \right].
\] (3)

The Hamiltonian of \(q_1 \bar{q}_2 \) meson is given by
\[
H = \hat{\theta}L - L = \sum_{i=1}^{2} \left[\frac{m_i}{\sqrt{1 - u_i^2}} + \int_0^{\tau} \frac{\tau}{\sqrt{1 - (\rho_i^2)^2}} d\rho_i \right].
\] (4)

When we set \(r_i = r \theta \), the energy and orbital angular momentum can be written as
\[
\epsilon = \sum_{i=1}^{2} \left[\frac{m_i}{\sqrt{1 - u_i^2}} + \frac{\tau}{\omega} \int_0^{\lambda} \frac{d\nu}{\sqrt{1 - v^2}} \right],
\] (5)
and
\[
L = \sum_{i=1}^{2} \left[\frac{m_i \mu_i^2}{\omega} \frac{1}{\sqrt{1 - u_i^2}} + \frac{\tau}{\omega} \int_0^{\lambda} \frac{\nu^2 d\nu}{\sqrt{1 - v^2}} \right].
\] (6)

We have set \(\epsilon = 1 \) in natural unit for simplicity. Eqs. (5) and (6) have also been obtained by the Wilson area law [53]. With Eqs. (5) and (6), a mass formula for the heavy-light hadrons has been derived analytically in our previous work [54].

For the bottomonium system, the masses of \(b \) and \(\bar{b} \) quarks are denoted as \(m \). Then Eqs. (5) and (6) become as
\[
\epsilon = \frac{2m}{\sqrt{1 - u^2}} + \frac{2\tau}{\omega} \arcsin u,
\] (7)
and
\[
L = \frac{2m \mu^2}{\omega} \frac{1}{\sqrt{1 - u^2}} + \frac{\tau}{\omega^2} \left[\arcsin u - u \sqrt{1 - u^2} \right].
\] (8)

Combing with the following relationship in the RFT model
\[
\frac{\tau}{\omega} = \frac{\mu}{1 - u^2},
\] (9)
we have
\[
\epsilon = \frac{2m}{\sqrt{1 - u^2}} + \frac{2m \mu}{1 - u^2} \arcsin u,
\] (10)
and
\[
\tau L = \frac{2m^2 \mu^2}{(1 - u^2)^{3/2}} + \frac{m^2 \mu^2}{(1 - u^2)^2} \left[\arcsin u - u \sqrt{1 - u^2} \right].
\] (11)

Since the Eqs. (7) and (8) can be derived from the QCD [53], the \(m \) in the above equations could be regarded as the “current quark masses” of bottom quark. In practice, the constituent quark mass is more suitable for the phenomenological analysis. To this end, we assume
\[
m_b = \frac{m}{\sqrt{1 - u^2}}
\] (12)

From Eqs. (7)–(11), we have
\[
\epsilon = 2m_b (1 + f_1(u)); \quad \tau L = 2m_b^2 f_2(u).
\] (13)

In above equations, we set the following functions
\[
f_1(u) = \frac{u}{\sqrt{1 - u^2}} \arcsin u,
\] (14)
and
\[
f_2(u) = \frac{u^3}{\sqrt{1 - u^2}} + \frac{u^2}{2(1 - u^2)} \left[\arcsin u - u \sqrt{1 - u^2} \right].
\] (15)

Since \(m_b \) has included the relativistic effect, we may treat it as the constituent quark mass of \(b \) quark. In this way, the value of \(m_b \) can be fixed by the experimental data, directly. The treatment of \(m_b \) which includes the relativistic effect is different from the work [70] where the RFT model has been applied to investigate the assignment of \(X(3872) \). As shown later, the velocity of bottom quark in the \(b \bar{b} \) meson is no more than 0.50. The Eqs. (13) can be expanded as
\[
\epsilon - \frac{2m_b}{2m_b} = f_1(u) = u^3 + O(u^4) + \cdots,
\] (16)
\[
\tau L = \frac{2m_b^2}{2m_b} = f_2(u) = u^3 + O(u^4) + \cdots.
\]

If we ignore the higher order of \(u \), the following relationship can be obtained
\[
\epsilon_L = 2m_b + \left(\frac{2}{m_b} \right)^{1/3} (\tau L)^{2/3}.
\] (17)

We replace the string tension \(\tau \) by the parameter \(\sigma \) with the relationship \(\sigma \equiv 2\pi \tau \). As done in Ref. [54], we further extend Eq. (17) to include the radial excited \(b \bar{b} \) states,
\[
\epsilon_{Lr} = 2m_b + \left(\frac{\sigma^2}{2\pi^2 m_b} \right)^{1/3} (\lambda n + L)^{2/3}.
\] (18)

The coefficient \(\lambda \) will also be determined by the experimental data. Eq. (18) is a Chew-Frautschi like formula of the mass of \(b \bar{b} \) states. When the distance between the \(b \) and \(\bar{b} \) quarks in a \(b \bar{b} \) meson is denoted as \(r \), we have the relationship: \(r = 2u/\omega \). Combing with Eq. (9), we get
\[
r = \frac{4\pi m_b}{\sigma} \frac{u^2}{\sqrt{1 - u^2}}.
\] (19)

In the region of \(u \in 0.3c \sim 0.6c, \) we find \(u^2/\sqrt{1 - u^2} \approx (0.95 \pm 0.02) \times f_1(u) \). With equations (13) and (18), we obtain the expression of \(r \) as
\[
r = \left(\frac{10.8}{\sigma m_b} \right)^{1/3} (\lambda n + L)^{2/3}.
\] (20)

In next Section, we shall test the Eq. (18) by the measured masses of \(b \bar{b} \) states. In Section IV, we will incorporate the spin-dependent interactions and present a complete bottomonium spectrum.

3 One can check that the error arising from the neglect of higher order is no more than 3\%.
III. TESTING EQ. (18) BY THE MEASURED MASSES OF BOTTOMONIUM STATES

Three parameters in Eq. (18), namely the mass of bottom quark m_b, the string tension σ, and the dimensionless λ, should be fixed by the experimental data. We will used the spin average masses of the $1S$, $2S$, and $1P$ $b\bar{b}$ states to fix the m_b, σ, and λ. The spin average mass of $1S$ $b\bar{b}$ is

$$\bar{M}(1S) = \frac{9398.7 + 9460.3 \times 3}{4} = 9444.9\,\text{MeV},$$

and the averaged mass of $2S$ $b\bar{b}$ is

$$\bar{M}(2S) = \frac{9999 + 10023.3 \times 3}{4} = 10017.2\,\text{MeV}. \quad (22)$$

Here, the masses of $1S$ and $2S$ $b\bar{b}$ states are taken from the latest “Review of Particle Physics” (RPP) [4] by the Particle Data Group (PDG). Since the average mass of 1^3P_0, 1^3P_1, and 1^3P_2 $b\bar{b}$ states is quite close to the 1^1P_1 state (see Ref. [75] for more discussions), we take the mass of $h_b(1P)$ as the average mass of $1P$ $b\bar{b}$ states. Specifically, the world average mass of $h_b(1P)$ state, i.e., 9899.3 MeV [4], is used to fix the parameters in Eq. (18). With the masses of $\bar{M}(1S)$, $\bar{M}(2S)$, and $h_b(1P)$, the parameters are fixed as

$$m_b = 4.7224\,\text{GeV}, \quad \sigma = 2.96\,\text{GeV}^2, \quad \lambda = 1.41. \quad (23)$$

Comparing the value of m_b with the current mass of b quark, i.e., $4.18_{-0.02}^{+0.03}$ GeV [4], the velocity of b quark is estimated to be 0.46 ± 0.01. With the values of m_b, σ, and λ, the center of gravity of other $n^3S^1 \ell_J$ multiplet can be calculated directly. At present, the masses of $\Upsilon(3S)$, $h_\ell(2P)$ and $\Upsilon_2(1D)$ have been well measured by different experiments [4]. A comparison of the predictions by Eq. (18) with the measured results is given in the Table II.

$n\ell$	State	Measured mass	Prediction
$1D$	$\Upsilon(1D)$	10163.7 ± 1.4	10166
$2P$	$h\ell(2P)$	10259.8 ± 1.2	10262
$3S$	$\Upsilon(3S)$	10355.2 ± 0.5	10352

The mass of $h\ell(2P)$ is predicted to be 10262 MeV which is consistent with the experimental result. The $\eta_b(3S)$ state has not been discovered by experiment. Nevertheless, the spin average mass of the $2S$ bottomonium states is about 6 MeV below the $\Upsilon(2S)$ state (see Eq. (22)). So one could reasonably expect the average mass of $3S$ states to be about 10350 MeV which is also close to our prediction. As argued in Ref. [15], two D-wave $b\bar{b}$ states, namely the $\Upsilon(10152)$ and $\Upsilon_3(10173)$, may have been detected in the experimental data by the CLEO [8] and BABAR [9] Collaborations. Although the measured masses of these two states need more confirmations, the average mass of the $\Upsilon(10152)$, $\Upsilon_2(10164)$, and $\Upsilon_3(10173)$ states

$$\frac{10152 \times 3 + 10163.7 \times 5 + 10173 \times 7}{15} = 10165.7\,\text{MeV}, \quad (24)$$

is quite consistent with our result (see Table II).

As shown above, the predicted average masses of $\Upsilon(3S)$, $h\ell(2P)$ and $\Upsilon_2(1D)$ multiplets are well comparable with the experimental results. For completeness, we will incorporate the spin-dependent interactions and give a whole bottomonium spectrum in the next section.

IV. THE COMPLETE BOTTOMONIUM SPECTRUM BY INCORPORATING THE SPIN-DEPENDENT INTERACTIONS

For simplicity, we consider the color hyperfine interaction

$$H_{hyp} = \frac{4\alpha_s}{3m_b^2} \left(\frac{8\pi}{3} \delta^3(\mathbf{r})s_b \cdot s_b + \frac{1}{r} \hat{S}_{b\bar{b}} \right), \quad (25)$$

which arises from the one gluon exchange (OGE) forces, and the following spin-orbit term

$$H_{so} = \frac{1}{m_b} \left(\frac{2\alpha_s}{r} - \frac{b}{2r} \right) \mathbf{S} \cdot \mathbf{L}, \quad (26)$$

which includes the OGE spin-orbit and the longer-ranged spin-orbit terms. This type of spin-dependent interactions has been used to study the mass spectrum of cc spectrum [76]. The $\hat{S}_{b\bar{b}}$ denotes the tensor operator. The “$\delta^3(\mathbf{r})$” function which comes from a contact hyperfine interaction can be simulated by the different smearing functions [33, 77]. In our calculations, we take the following smearing function

$$f(r) = \frac{4}{\pi^{1/2} r_0} e^{-\sqrt{27}\pi r_0}, \quad (27)$$

to reproduce the mass splitting of nS ($n \geq 2$). Here, we take the r_0 as 0.94 GeV$^{-1}$. Due to the heavy masses, the distance between b and \bar{b} quarks in the low-lying bottomonium states is much small. Therefore, one should treat the running coupling constant α_s in Eqs. (25) and (26) seriously. We use the following

$$\alpha_s(r) = \alpha_0 \text{Erf}\left(\left(\frac{m_b r}{0.72\pi^2} \right)^{1/2} \right), \quad (28)$$

to simulate the running coupling constant, where the Erf$[\cdot]$ refers to the error function. In our calculations, the running coupling constant is assumed to saturate at 0.68, i.e., $\alpha_0 = 0.68$. To reduce the free parameters, we take the value of b
TABLE III: The mass splitting of n^2S_1 and n^1S_0 states (in MeV).

$\Delta M(nS)$	$n = 2$	$n = 3$	$n = 4$	$n = 5$	$n = 6$
Our	23.9	20.7	13.2	9.3	7.0
Ref. [34]	27	18	12	9	5
Ref. [27]	25	17	13	11	9

in Eq. (26) as the string tension τ in the RFT model, i.e., $b = \sigma r^2/2 \pi = 0.471$ GeV2. With Eqs. (20), (25), (27), and (28), the splitting masses of n^1S_1 and n^1S_0 states ($n \geq 2$) are presented in Table III.

Obviously, our results are comparable with these from Refs. [27, 34]. As shown later, the masses of observed excited $b\bar{b}$ states will be well reproduced though our method is quite phenomenological.

A. nS ($n \geq 2$) states

With the predicted splitting masses in Table III, the masses of n^1S_0 and n^1S_1 bottomonium states ($n \geq 2$) are predicted in Table IV where the experimental data [4] and the results from other works [29, 34, 41] are also listed for comparison.

TABLE IV: The masses of the nS ($n \geq 2$) $b\bar{b}$ states (in MeV).

States	Expt. [4]	Our	Ref. [34]	Ref. [29]	Ref. [41]
$0^-(2S)$	9999±4	9999	9976	9955	10005
$1^-(2S)$	10023.3±0.3	10023	10003	9979	10026
$0^+(3S)$	10337	10336	10338	10338	
$1^+(3S)$	10355.2±0.5	10357	10354	10359	10352
$0^-(4S)$	10627	10623	10663	10593	
$1^-(4S)$	10579.4±1.2	10637	10635	10683	10603
$0^+(5S)$	10878	10869	10956	10813	
$1^+(5S)$	10889.9±3.2	10887	10878	10975	10820
$0^+(6S)$	11111	11097	11226	11008	
$1^-(6S)$	10992.9±10.0	11118	11102	11243	11023

As shown in Table IV, the well measured masses of $\eta_b(2S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$ are reproduced in our scheme. The predicted mass of unknown $\eta_b(3S)$ state is 10337 MeV which is comparable with these results from Refs. [29, 34, 41].

The masses of the $\Upsilon(4S)$, $\Upsilon(5S)$, and $\Upsilon(6S)$ obtained by the RFT model are quite close to the results given by the Godfrey-Isgur model [34]. Our results favor the $\Upsilon(10860)$ as a predominantly 5^3S_1 state. Interestingly, a recent work based on the lattice QCD also suggested the $\Upsilon(10860)$ as a 5^3S_1 state [78]. The mass of $\Upsilon(4S)$ predicted by the RFT model is about 60 MeV higher than the measured mass of $\Upsilon(10580)$ (see Table IV). The mass of $\Upsilon(4S)$ state predicted in Refs. [5, 27–29, 34, 41] was also larger than the $\Upsilon(10580)$ state. In the quark potential models, the mass gap between the 3^3S_1 and 4^3S_1 $b\bar{b}$ states is expected to be larger than the gap between the 4^3S_1 and 5^3S_1 states. However, the experimental measurement is contrary to the expectation, i.e.,

$$\Delta M(\Upsilon(10580) - \Upsilon(10355)) = 224.2 \text{ MeV},$$

which is smaller than

$$\Delta M(\Upsilon(10860) - \Upsilon(10580)) = 310.5 \text{ MeV}.$$ (30)

It indicates that the mass of $\Upsilon(4S)$ shifts down about 40–50 MeV due to a particular mechanism. This anomalously mass gaps of “$\Upsilon(4S) - \Upsilon(3S)$” and “$\Upsilon(5S) - \Upsilon(4S)$” cannot be simply solved by the naïve quark model. Törnqvist proposed a solution to this puzzle. Specifically, it may be disentangled by considering the coupled-channel effects [40]. More importantly, the masses of $\Upsilon(5S)$ and $\Upsilon(6S)$ were well predicted in the scheme of coupled-channel model [40] before the observations of candidates $\Upsilon(10860)$ and $\Upsilon(11020)$ [6, 7]. The scheme suggested by Törnqvist was supported by the recent work [42].

As a pure 6^3S_1 $b\bar{b}$ state, the measured mass of $\Upsilon(11020)$ is about 100–200 MeV lower than the predictions by the RFT model and other methods [29, 34, 41, 79]. These results indicate that the $\Upsilon(11020)$ is not a pure $6S$' epsilon resonance. This conclusion is partially supported by the analysis of its dielectron widths [79] (see subsection IV C).

B. nP states

The masses of nP ($n = 1 \sim 5$) states which are predicted by the RFT model are listed in Table V with the experimental data [4] and other theoretical results from Refs. [29, 34, 36]. Up to now, the $1P$ and $2P$ bottomonium states are well established [4]. Obviously, the masses of these states are well reproduced by the RFT model.

The candidates of $3P$ bottomonium states have been detected by the ATLAS [21], D0 [22], and LHCb [23, 24] collaborations (see Table I). The masses of the $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ collected by the PDG are listed in Table V. The experimental results are about 20–40 MeV smaller than the theoretical results. One notices that the predicted masses $3P$ $b\bar{b}$ states are about 30–100 MeV above the thresholds of BB, $BB^* + B^*B$, and B^*B decay channels. So the coupled-channel channel effect may affect the properties of $3P$ bottomonium states including their masses. More theoretical and experimental efforts are desirable for the $3P$ $b\bar{b}$ states in future.

The $4P$ and $5P$ bottomonium states are predicted around 10800 MeV and 11050 MeV, respectively, which means these states locate above the open-bottom thresholds. Then the Okubo-Zweig-Iizuka (OZI) allowed decays are probable for these states. In Ref. [34], the investigation of strong decays by the $3P_0$ model indicated that the $\chi_{b0}(4P)$ state mainly decays through the BB and B^*B channels while the $BB^* + B^*B$ is

5 However, the practical calculations in Ref. [80] did not support this conjecture. There the $\chi_b(3P)$ state was suggested to be the (almost) pure bottomonium.
the largest decay channel for the $\chi_{bc}(4P), \chi_{bc}(2P)$, and $h_{bc}(4P)$ states. Different from the $4P$ bottomonium states, the largest decay channel of $5P$ states is the $B^+\bar{B}^−$. The total decay widths of $4P$ and $5P$ bottomonium states were predicted to be $30\sim70$ MeV. The decays predicted in Ref. [35] were slight different from these results in Ref. [34]. Of course, discovery of these high P-wave bottomonium states is a great challenge for present experiments.

C. nD states

So far only one D-wave $b\bar{b}$ state, namely $\Upsilon_2(1D)$, was listed in the summary table of PDG [4]. Its measured mass, i.e., 10163.7 ± 1.7 MeV, is quite in agreement with our prediction (see Table VI). The visible evidence of the 1^3D_1 and 1^3D_3 bottomonium states at 10152 MeV and 10173 MeV [8, 9], respectively, was pointed out in Ref. [15]. Our predictions in Table VI are comparable with these preliminary results. Our results are also consistent with the predicted masses of $1D b\bar{b}$ states by Lattice QCD [49].

None of the $2D b\bar{b}$ states have been announced by any experiments. Nevertheless, Beveren and Rupp found the $\Upsilon(2D)$ signal with 10.7 standard deviations [81] by reanalyzing the BABAR data [82]. There the mass of $\Upsilon(2D)$ was fitted to be 10495 ± 5 MeV, which is a bit larger than the predictions in Table VI.

As mentioned before, a $1^{−}\!−\!$ structure $\Upsilon(10750)$ which was discovered by the Belle collaboration [25] is still unclear. Since the $3^3D_1 b\bar{b}$ state is expected to has the masse around 10740 MeV, the $\Upsilon(10750)$ could be a good $3D$ candidate. Due to the significant mixing between the $(n + 1)^3S_1$ and n^3D_1 states ($n \geq 3$), the magnitude of dielectron widths of the mixed $\tilde{\Upsilon}(n^3D_1)$ resonances ($n = 3, 4, 5$) can increase by 2 orders [79]. For the $\tilde{\Upsilon}(3D)$ state, the dielectron width was obtained to be $0.095^{+0.028}_{−0.025}$ keV. The result shows that the predominantly $3^3D_1 b\bar{b}$ state can be produced in the $e^+e^−$ annihilation process with the high statistics data. Furthermore, the decay width of the $3^3D_1 b\bar{b}$ state was obtained as 54.1 MeV [35] which is comparable with the measurement by the Belle Collaboration [25] (see Eq. (1)). So the $\Upsilon(10750)$ could be predominantly a 3^3D_1 b\bar{b} state in our scheme. However, the other explanations suggested in Refs. [83, 84] are also possible for the $\Upsilon(10750)$ state. For revealing the inner structure of $\Upsilon(10750)$, more precise measurements including the dielectron width and the branching ratios of $\Gamma(B\bar{B}) : \Gamma(B\bar{B}^+ + B^−\bar{B}) : \Gamma(B^+\bar{B}^-)$ are needed in future.

TABLE VI: The masses of the $nD b\bar{b}$ states (in MeV).

States	Expt. [4]	Our Ref. [34]	Ref. [36]	Ref. [29]	
$1^{−}(1D)$	10136	10138	10154	10074	
$2^{−}(1D)$	10163.7±1.7	10164	10147	10161	10075
$2^{−}(1D)$	10167	10148	10163	10074	
$3^{−}(1D)$	10183	10155	10166	10073	
$1^{−}(2D)$	10467	10441	10435	10423	
$2^{−}(2D)$	10476	10449	10443	10424	
$3^{−}(2D)$	10475	10450	10445	10424	
$1^{−}(3D)$	10742	10708	10704	10731	
$2^{−}(3D)$	10744	10705	10711	10733	
$3^{−}(3D)$	10742	10706	10713	10733	
$1^{−}(4D)$	10987	10928	10949	11013	
$2^{−}(4D)$	10986	10934	10957	11016	
$2^{−}(4D)$	10984	10935	10959	11015	
$3^{−}(4D)$	10981	10939	10963	11015	

According to the predicted masses by the RFT model and other methods [29, 34, 36], the $4D b\bar{b}$ states should have the masses around the 10950 MeV. The controversial $\Upsilon(11020)$ state might have a significant 4^3D_1 component since its mass is quite close to the prediction of 4^3D_1 state. Furthermore, the dielectron width of pure $6S \Upsilon$ state was given about 0.274 KeV [79], which is about two times larger than the experimental measurement of $\Upsilon(11020)$. This result also indicates that the S-D mixing effect should be significant for the $\Upsilon(11020)$ state.

D. High orbital excited states

Up to now, none of the high orbital excited $b\bar{b}$ mesons including F-, G-, and H-wave states have been announced by any experiments. Obviously, it is a challenge for experiments to discover these states. However, the situation may change while the SuperKEKB facility has run last year [26].
the event numbers about $2 \times 10^6 \ \Upsilon(2^3D_1)$ states produced at Belle II in future, the observation of F-wave $b\bar{b}$ state could be accessible [26].

Table VII: The masses of high orbital excited $b\bar{b}$ states (in MeV).

States	Our	Ref. [34]	Ref. [35]	Ref. [36]	Ref. [5]
$2^+(1F)$	10376	10350	10362	10343	10315
$3^+(1F)$	10391	10355	10366	10346	10321
$3^+(1F)$	10391	10355	10366	10347	10322
$4^+(1F)$	10400	10358	10369	10349	–
$2^+(2F)$	10668	10615	10605	10610	10569
$3^+(2F)$	10670	10619	10609	10614	10573
$3^+(2F)$	10668	10619	10609	10615	10573
$4^+(2F)$	10667	10622	10612	10617	–
$2^+(3F)$	10920	10850	10809	–	10782
$3^+(3F)$	10918	10853	10812	–	10785
$3^+(3F)$	10916	10853	10812	–	10785
$4^+(3F)$	10912	10856	10815	–	–
$3^+(1G)$	10588	10529	10533	10511	10506
$4^+(1G)$	10592	10531	10535	10512	–
$4^+(1G)$	10591	10530	10534	10513	–
$5^+(1G)$	10592	10532	10536	10514	–
$3^+(2G)$	10851	10769	10745	10712	10712
$4^+(2G)$	10848	10770	10747	–	–
$4^+(2G)$	10846	10770	10747	–	–
$5^+(2G)$	10842	10772	10748	–	–
$4^+(1H)$	10778	–	–	10670	–
$5^+(1H)$	10776	–	–	10671	–
$5^+(1H)$	10774	–	–	10671	–
$6^+(1H)$	10769	–	–	10672	–

The masses of the $1F \ b\bar{b}$ states are predicted in the region around 10400 MeV, which is comparable with the results given by the lattice nonrelativistic QCD [50]. The $1G \ b\bar{b}$ masses are predicted around 10590 MeV which are slightly above the $B\bar{B}$ threshold at 10.56 GeV. Our predicted masses of $1G \ b\bar{b}$ states seem to be larger than the results obtained by the quark potential models [5, 34–36], but very close to the results from the lattice QCD [50], where the masses of 4^+ and $4^− \ b\bar{b}$ states were predicted as

$$M(1^G_{D_1}) = 10581 \pm 17 \text{ MeV},$$
$$M(2^G_{D_1}) = 10587 \pm 18 \text{ MeV}.$$ (31)

V. DISCUSSION AND CONCLUSION

We have carried out a systematical study of the bottomonium spectrum for the first time by the relativistic flux tube (RFT) model. We derived a Chew-Frautschi like formula which can give an intuitive description of the spin average mass of the heavy quarkonium systems. With the measured masses of $1S$, $2S$, and $1P \ b\bar{b}$ states, we fixed the three parameters in the Chew-Frautschi like formula, namely the mass of b quark, the string tension σ, and the dimensionless parameter A. Then we tested the mass formula by comparing the predicted the spin average masses of $3S$, $2P$, and $1D$ states with the experimental results. The comparison implied that the Chew-Frautschi like formula could describe the spin average masses of high excited $b\bar{b}$ states well.

Inspired by a good description of the spin average mass, we further incorporate the spin-dependent interactions which include the one gluon exchange (OGE) forces and the longer-ranged inverted spin-orbit term. As shown in the Tables IV and V, the measured masses of the nS ($2 \leq n \leq 6$) and nP ($n = 1$ and 2) states were well reproduced. The predicted masses of nD and other high bottomonium states in Tables VI and VII could be tested in future.

According to our results, the main conclusions are listed as follows:

1. The $\Upsilon(10860)$ could be explained as a predominant $5S$ state since its measured mass is very close to the predictions (see Table IV). The $\Upsilon(10580)$ and $\Upsilon(11020)$ can not be regarded as the pure $4S$ and $6S$ states, respectively, since the predicted masses are much larger than the measurements.

2. The newly discovered $\Upsilon(10750)$ could be regarded as a good candidate of the predominant 3^2D_1 state since the measured mass is in good agreement with our prediction.

3. The measured masses of $3P \ b\bar{b}$ states seems to be about 20–30 MeV smaller than the theoretical results.

4. Our predicted mass of the $1^2D_2 \ b\bar{b}$ state is consistent with the experimental value. The predicted masses of 1^3D_1 and 1^2D_1 states are also comparable with the signals detected by the CLEO [8] and BABAR [9] Collaborations.

In summary, the bottomonium spectrum has been systematically studied by the RFT model, which could be regarded as an important supplement to the available investigations of the bottomonium spectrum. Since the relativistic color flux tube carries both energy and momentum, the RFT model present a different dynamics picture for the heavy quarkonia system. The larger predicted masses of the high orbital excited states by the RFT model can be tested by the experiments in future.

Acknowledgments

We thank Prof. Xiang Liu for the helpful suggestions and A. Bondar for telling us the discovery history of $\eta_b(2S)$ state. This research was supported in part by the National Natural Science Foundation of China under Grant No. 11305003 and No. 11975146.
[1] I. I. Y. Bigi, Y. L. Dokshitzer, V. A. Khoze, J. H. Kuhn and P. M. Zerwas, Production and Decay Properties of Ultraheavy Quarks, Phys. Lett. B 181, 157 (1986).

[2] S. W. Herb et al., Observation of a Dimuon Resonance at 9.5 GeV in 400-GeV Proton-Nucleus Collisions, Phys. Rev. Lett. 39, 252 (1977).

[3] W. R. Innes et al., Observation of Structure in the Υ Region, Phys. Rev. Lett. 39, 1240 (1977), Erratum: [Phys. Rev. Lett. 39, 1640 (1977)].

[4] M. Tanabashi et al. [Particle Data Group], Review of Particle Physics, Phys. Rev. D 98, 030001 (2018).

[5] J. Segovia, P. G. Ortega, D. R. Entem and F. Fernández, Bottomonium spectrum revisited, Phys. Rev. D 93, 074027 (2016).

[6] D. Besson et al. [CLEO Collaboration], Observation of New Structure in the e+e− Annihilation Cross-Section above the Υ(4S), Phys. Rev. Lett. 54, 381 (1985).

[7] D. M. J. LoveLock et al., Masses, Widths, And Leptonic Widths Of The Higher Upsilon Resonances, Phys. Rev. D 37, 377 (1985).

[8] G. Bonvicini et al. [CLEO Collaboration], First observation of a Υ(1D) state, Phys. Rev. D 70, 032001 (2006).

[9] P. del Amo Sanchez et al. [BaBar Collaboration], Observation of the Υ(1D0) Bottomonium State through Decays to π+π−Υ(1S), Phys. Rev. D 82, 111102 (2010).

[10] B. Aubert et al. [BaBar Collaboration], Observation of the bottomonium ground state in the decay Υ(3S) → γηb, Phys. Rev. Lett. 101, 071801 (2008), Erratum: [Phys. Rev. Lett. 102, 029901 (2009)].

[11] B. Aubert et al. [BaBar Collaboration], Evidence for the ηb(1S) Meson in Radiative Υ(2S) Decay, Phys. Rev. Lett. 103, 161801 (2009).

[12] G. Bonvicini et al. [CLEO Collaboration], Measurement of the ηb(1S) mass and the branching fraction for Υ(3S) → γηb, Phys. Rev. D 81, 031104 (2010).

[13] R. Mizuk et al. [Belle Collaboration], Evidence for the ηb(2S) and observation of h_b(1P) → η_b(1S)γ and h_b(2P) → η_b(1S)γ, Phys. Rev. Lett. 109, 232002 (2012).

[14] U. Tamponi et al. [Belle Collaboration], First observation of the hadronic transition Υ(4S) → η_b(1P) and new measurement of the h_b(1P) and η_b(1S) parameters, Phys. Rev. Lett. 115, 142001 (2015).

[15] J. P. Lees et al. [BaBar Collaboration], Study of radiative bottomonium transitions using converted photons, Phys. Rev. D 84, 072002 (2011).

[16] S. Dobbs, Z. Metreveli, K. K. Seth, A. Tomaradze and T. Xiao, Observation of ηb(2S) in Υ(2S) → γηb(2S), ηb(2S) → hadrons, and Confirmation of ηb(1S), Phys. Rev. Lett. 109, 082001 (2012).

[17] S. Sandilya et al. [Belle Collaboration], Search for Bottomonium States in Exclusive Radiative Υ(2S) Decays, Phys. Rev. Lett. 111, 112001 (2013).

[18] J. P. Lees et al. [BaBar Collaboration], Evidence for the h_b(1P) meson in the decay Υ(3S) → π±h_b(1P), Phys. Rev. D 84, 091101 (2011).

[19] I. Adachi et al. [Belle Collaboration], First observation of the P-wave spin-singlet bottomonium states h_b(1P) and h_b(2P), Phys. Rev. Lett. 108, 032001 (2012).

[20] A. E. Bondar, R. V. Mizuk and M. B. Voloshin, Bottomonium-like states: Physics case for energy scan above the Bb threshold at Belle-II, Mod. Phys. Lett. A 32, 1750025 (2017).

[21] G. Aad et al. [ATLAS Collaboration], Observation of a new χb state in radiative transitions to Υ(1S) and Υ(2S) at ATLAS, Phys. Rev. Lett. 108, 152001 (2012).

[22] V. M. Abazov et al. [D0 Collaboration], Observation of a narrow mass state decaying into Υ(1S) + γ in p+p collisions at √s = 1.96 TeV, Phys. Rev. D 86, 031103 (2012).

[23] R. Aaij et al. [LHCb Collaboration], Study of χ_b meson production in pp collisions at √s = 7 and 8 TeV and observation of the decay χ_b(3P) → Υ(3S)γ, Eur. Phys. J. C 74, 3092 (2014).

[24] R. Aaij et al. [LHCb Collaboration], Measurement of the χ_b(3P) mass and of the relative rate of χ_b(1P) and χ_b(1P) production, J. High Energy Phys. 1410, 088 (2014).

[25] A. Abdesselam et al. [Belle Collaboration], Observation of a new structure near 10.75 GeV in the energy dependence of the e+e− → Υ(nS)π+π− (n = 1,2,3) cross sections, [arXiv:1905.05521 [hep-ex]].

[26] E. Kou et al. [Belle-II Collaboration], The Belle-II Physics Book, arXiv:1808.10567 [hep-ex].

[27] W. J. Deng, H. Liu, L. C. Gui and X. H. Zhong, Spectrum and electromagnetic transitions of bottomonium, Phys. Rev. D 95, 074002 (2017).

[28] B. Q. Li and K. T. Chao, Bottomonium Spectrum with Screened Potential, Commun. Theor. Phys. 52, 653 (2009).

[29] N. R. Soni, B. R. Joshi, R. P. Shah, H. R. Chauhan and J. N. Pandya, QQ (Q ∈ [b,c]) spectroscopy using the Cornell potential, Eur. Phys. J. C 78, 592 (2018).

[30] M. Shah, A. Parmar and P. C. Vinodkumar, Leptonic and Digamma decay Properties of S-wave quarkonia states, Phys. Rev. D 86, 034015 (2012).

[31] S. N. Gupta, D. S. Radford and W. W. Repko, Semirelativistic Potential Model for Heavy Quarkonia, Phys. Rev. D 34, 201 (1986).

[32] A. M. Badalian, A. I. Veselov and B. L. G. Bakker, Restriction on the strong coupling constant in the IR region from the 1D-1P splitting in bottomonium, Phys. Rev. D 70, 016007 (2004).

[33] S. Godfrey and N. Isgur, Mesons in a Relativized Quark Model with Chromodynamics, Phys. Rev. D 32, 189 (1985).

[34] S. Godfrey and K. Moats, Bottomonium Mesons and Strategies for their Observation, Phys. Rev. D 92, 054034 (2015).

[35] J. Z. Wang, Z. F. Sun, X. Liu and T. Matsuki, Higher bottomonium zoo, Eur. Phys. J. C 78, 915 (2018).

[36] D. Ebert, R. N. Faustov and V. O. Galkin, Spectroscopy and Regge trajectories of heavy quarkonia and B, mesons, Eur. Phys. J. C 71, 1825 (2011).

[37] M. Bhat, A. P. Monteiro and K. B. Vijaya Kumar, Properties of bottomonium in a relativistic quark model, arXiv:1702.06774 [hep-ph].

[38] C. S. Fischer, S. Kubrak and R. Williams, Spectra of heavy mesons in the Bete-Salpeter approach, Eur. Phys. J. A 51, 10 (2015).

[39] E. van Beveren, G. Rupp, T. A. Rijken and C. Dullemond, Radial Spectra and Hadronic Decay Widths of Light and Heavy Mesons, Phys. Rev. D 27, 1527 (1983).

[40] N. A. Tornqvist, The Υ(5S) Mass and e+e− → BB̅, B′B̅′, B̅B′ as Sensitive Tests to the Unitarized Quark Model, Phys. Rev. Lett. 53, 878 (1984).

[41] J. F. Liu and G. J. Ding, Bottomonium Spectrum with Coupled-Channel Effects, Eur. Phys. J. C 72, 1981 (2012).

[42] Y. Lu, M. N. Anwar and B. S. Zou, Coupled-Channel Effects for the Bottomonium with Realistic Wave Functions, Phys. Rev. D 94, 034021 (2016).

[43] Z. G. Wang, Analysis of the heavy quarkonium states h_b and h_b̅.
with QCD sum rules, Eur. Phys. J. C 73, 2533 (2013).
[44] K. Azizi and J. Y. Sng, On the mass and decay constant of the P-wave ground and radially excited h_1 and h_0 axial-vector mesons, J. Phys. G 46, 035001 (2019).
[45] D. M. Li, B. Ma, Y. X. Li, Q. K. Yao and H. Yu, Meson spectrum in Regge phenomenology, Eur. Phys. J. C 37, 323 (2004).
[46] S. S. Gerstein, A. K. Likhoded and A. V. Luchinsky, Systematics of heavy quarkonia from Regge trajectories on (n, M^2) and (M^2, J) planes, Phys. Rev. D 74, 016002 (2006).
[47] K. W. Wei and X. H. Guo, Mass spectra of doubly heavy mesons in Regge phenomenology, Phys. Rev. D 81, 076005 (2010).
[48] A. M. Badalian and B. L. G. Bakker, Radial and orbital Regge trajectories in heavy quarkonia, Phys. Rev. D 100, 054036 (2019).
[49] J. O. Daldrop et al. [HPQCD Collaboration], Prediction of the bottomonium D-wave spectrum from full lattice QCD, Phys. Rev. Lett. 108, 102003 (2012).
[50] R. Lewis and R. M. Woloshyn, Higher angular momentum states of bottomonium in lattice NRQCD, Phys. Rev. D 85, 114509 (2012).
[51] M. Wurtz, R. Lewis and R. M. Woloshyn, Free-form smearing for bottomonium and B meson spectroscopy, Phys. Rev. D 92, 054504 (2015).
[52] Y. Kiyoshi and Y. Sumino, Perturbative heavy quarkonium spectrum at next-to-next-to-next-to-leading order, Phys. Lett. B 730, 76 (2014).
[53] N. Brambilla, G. M. Prosperi and A. Vairo, Three body relativistic flux tube model from QCD Wilson loop approach, Phys. Lett. B 362, 113 (1995).
[54] B. Chen, K. W. Wei and A. Zhang, Assignments of Λ_Q and Ξ_Q baryons in the heavy quark-light diquark picture, Eur. Phys. J. A 51, 82 (2015).
[55] R. Aaij et al. [LHCb Collaboration], Study of the $D_s^0 p$ amplitude in $\Lambda_b^0 \rightarrow D^0 p\pi^-\pi^+$ decays, J. High Energy Phys. 1705, 030 (2017).
[56] R. Aaij et al. [LHCb Collaboration], Observation of new resonances in the $\Lambda_b^0\pi^+\pi^-$ system, Phys. Rev. Lett. 123, 152001 (2019).
[57] Y. Nambu, Quark model and the factorization of the Veneziano amplitude, In Detroit 1969, Proceedings, Conference On Symmetries.
[58] L. Susskind, Dual-symmetric theory of hadrons, Nuovo Cim. A 69, 457 (1970).
[59] T. Goto, Relativistic quantum mechanics of one-dimensional mechanical continuum and subsidiary condition of dual resonance model, Prog. Theor. Phys. 46, 1560 (1971).
[60] D. LaCourse and M. G. Olsson, The String Potential Model: Spinless Quarks, Phys. Rev. D 39, 2751 (1989).
[61] C. Olson, M. G. Olsson and K. Williams, QCD: Relativistic flux tubes and potential models, Phys. Rev. D 45, 4307 (1992).
[62] M. G. Olsson and K. Williams, QCD and the relativistic flux tube with fermionic ends, Phys. Rev. D 48, 417 (1993).
[63] C. Olson, M. G. Olsson and D. LaCourse, The Quantized relativistic flux tube, Phys. Rev. D 49, 4675 (1994).
[64] M. G. Olsson and S. Veseli, The Asymmetric flux tube, Phys. Rev. D 51, 3578 (1995).
[65] M. G. Olsson, S. Veseli and K. Williams, Fermion confinement by a relativistic flux tube, Phys. Rev. D 53, 4006 (1996).
[66] N. Brambilla and G. M. Prosperi, Flux-tube model, quark-antiquark potential, and Bethe-Salpeter kernel, Phys. Rev. D 47, 2107 (1993).
[67] H. Y. Shan and A. Zhang, D and D_s in mass loaded flux tube, Chin. Phys. C 34, 16 (2010).
[68] B. Chen, D. X. Wang and A. Zhang, Interpretation of $D_s(2632)^+$, $D_s(2700)^+$, $D_s^*(2860)^+$ and $D_s(3040)^+$, Phys. Rev. D 80, 071502 (2009).
[69] D. Jia and W. C. Dong, Regge-like spectra of excited singly heavy mesons, Eur. Phys. J. Plus 134, 123 (2019).
[70] T. J. Burns, F. Piccinini, A. D. Polosa and C. Sabelli, The 2^+ assignment for the $X(3872)$, Phys. Rev. D 82, 074003 (2010).
[71] D. Jia, W. N. Liu and A. Hosaka, Regge Behaviors in Low-lying Singly Charmed and Bottom Baryons, arXiv:1907.04958 [hep-ph].
[72] M. Iwasaki, S. I. Nawa, T. Sanada and F. Takagi, A Flux tube model for glueballs, Phys. Rev. D 68, 074007 (2003).
[73] H. Nandan and A. Ranjan, Regge trajectories of exotic hadrons in the flux tube model, Int. J. Mod. Phys. A 31, 1650007 (2016).
[74] M. Iwasaki and F. Takagi, Mass spectra and decay widths of hadrons in the relativistic string model, Phys. Rev. D 59, 094024 (1999).
[75] T. J. Burns, How the small hyperfine splitting of P-wave mesons evades large loop corrections, Phys. Rev. D 84, 034021 (2011).
[76] T. Barnes, S. Godfrey and E. S. Swanson, Higher charmonia, Phys. Rev. D 72, 054026 (2005).
[77] J. Vijande, F. Fernandez and A. Valcarce, Constituent quark model study of the meson spectra, J. Phys. G 31, 481 (2005).
[78] P. Bicudo, M. Cardoso, N. Cardoso and M. Wagner, Bottomonium resonances with $l = 0$ from lattice QCD correlation functions with static and light quarks, arXiv:1910.04827 [hep-lat].
[79] A. M. Badalian, B. L. G. Bakker and I. V. Danilkin, On the possibility to observe higher nD bottomonium states in the e^+e^- processes, Phys. Rev. D 79, 037505 (2009).
[80] J. Ferretti and E. Santopinto, Threshold corrections of $\chi_c(2P)$ and $\psi(3P)$ states and J/ψ and $J/\psi\omega$ transitions of the $\chi_c(3872)$ in a coupled-channel model, Phys. Lett. B 789, 550 (2019).
[81] E. van Beveren and G. Rupp, Observation of the $\Upsilon(21D_1)$ and indication of the $\Upsilon(1S_D_1)$, arXiv:1009.4097 [hep-ph].
[82] B. Aubert et al. [BaBar Collaboration], Study of hadronic transitions between Υ states and observation of $\Upsilon(4S') \rightarrow \eta'\Upsilon(1S')$ decay, Phys. Rev. D 78, 112002 (2008).
[83] Z. G. Wang, Vector hidden-bottom tetraquark candidate: $\Upsilon(10750)$, arXiv:1905.06610 [hep-ph].
[84] Q. Li, M. S. Liu, Q. F. Li, L. C. Gui and X. H. Zhong, Canonical interpretation of $\Upsilon(10750)$ and $\Upsilon(10860)$ in the Υ family, arXiv:1905.10344 [hep-ph].