The Effect of Caffeine on Pregnancy-Fact or Myth?

Minyahil Alebachew Woldu

Department of Pharmacology and Clinical Pharmacy, College of Health Sciences, Addis Ababa University, Ethiopia

*Corresponding author: Minyahil Alebachew Woldu, Addis Ababa University, College of Health Sciences, School of Pharmacy, Department of Pharmacology and Clinical Pharmacy, Addis Ababa, Ethiopia, Tel: 251912648527; E-mail: minwoldu@gmail.com

Received date: May 13, 2017; Accepted date: June 05, 2017; Published date: June 10, 2017

Copyright: © 2017 Woldu MA. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Caffeine crosses the placenta and causes a number of complications. This study aims to review the effect of caffeine during pregnancy. Because of ion trapping weak bases that are non-ionized and lipophilic like caffeine diffuse across the placental barrier and become ionized in the more acidic fetal blood. A number of studies have reported the effect of caffeine on pregnancy. Some of the effects are diminishing fetal skeleton growth; risk of low birth weight (LBW); retardation of fetal development and/or intrauterine growth retardation (IUGR); adverse offspring metabolism reduced and cause increased serum level of the active metabolites including theophylline [17].

Caffeine crosses the placenta and has a prolonged metabolism in pregnant women (15.08 h half-life) compared with non-pregnant women (4.71 h half-life). The objective of this review is to overview the effect of caffeine during pregnancy; and thereby to forward the current information to the scientific community.

Introduction

Caffeine is the most widely consumed psychoactive substance in the world [1]. An easy access to products containing caffeine due to its presence in drugs, coffee, tea and chocolate makes it widely consumed by the general population, including pregnant women [2,3].

Caffeine is an alkaloid [3] that can block adenosine receptors [4]. The adenosine is one of the major endogenous neuromodulator that can inhibit the overactive excitatory neurotransmission [5] and therefore, the stimulatory effect of caffeine is mainly due to antagonism of adenosine actions [1].

Caffeine crosses the placenta and has a prolonged metabolism in pregnant women (15.08 h half-life) compared with non-pregnant women (4.71 h half-life). The objective of this review is to overview the effect of caffeine during pregnancy; and thereby to forward the current information to the scientific community.

Mechanism of Fetal Toxicity

One of the mechanisms that can lead to prolonged effects of drugs in the fetal compartment is via ion trapping. Ion trapping occurs because the fetal plasma pH is more acidic than the maternal plasma, causing weak bases (e.g. usually nonionized and lipophilic substances such as caffeine) to diffuse across the placental barrier and become ionized in the more acidic fetal blood [6], resulting the compound to pass to offspring through the placental barrier and to cause a number of complications [1]. Some of the complications of prenatal caffeine exposure (PCE) are reduction in the formation, growth, and mass of bone by targeting mesenchymal stem cells that are responsible for generating the entire fetal skeleton [3]; risk of low birth weight (LBW) [7]; retardation of fetal development [8] or intrauterine growth retardation (IUGR) [9]; adverse offspring childhood body fat distribution [10]; increased risk of obesity [11,12]; potentially abnormal glucose homeostasis to result in increased risk of type to diabetes mellitus (T2DM) in the offspring adulthood [13] and Increase the risk of pregnancy loss or abortion [14].

Threshold of Toxicity

Reducing the consumption of caffeinated coffee to 180 mg of caffeine, which is approximately equivalent to 2 cups per day after 16 weeks’ of gestation, has been reported to cause no effect on birth weight [15]. Some even reported that it is safer for the pregnancy at lower than this dose [16]. However, the metabolism of caffeine is greatly influenced by the stage of pregnancy and at third trimester, its metabolism reduced and cause increased serum level of the active metabolites including theophylline [17].

Consuming more than 300 mg of caffeine per day has been associated with a clinically trivial, and statistically insignificant (less than 1 ounce), reduction in birth weight, compared to women consumed no caffeine during pregnancy [15]. Higher maternal caffeine intake (>300 mg) has also associated with a higher risk of pregnancy loss [18]. Nursing mothers should also drink coffee sparingly and immediately and avoid coffee or caffeinated beverages for at least 4 h prior to breastfeeding to minimize the infant’s exposure to caffeine.

Benefits from PCE

PCE and early commencement of caffeine in preterm infant with bronchopulmonary dysplasia (BPD) has been associated with improved health circumstances and survival [19]. The frequency of severe intra ventricular hemorrhage and patent ductus arteriosus (PDA) was also lower and the length of hospitalization was shorter in infants receiving early caffeine therapy [20] (Table 1).
Estimate your daily caffeine intake

| Sr. No. | Coffee source                        | Volume in OZ | Strength in mg |
|---------|--------------------------------------|--------------|----------------|
| 1       | Starbucks Grande Coffee              | 16           | 400            |
| 2       | Starbucks House Blend Coffee         | 16           | 259            |
| 3       | Dr. Pepper                           | 12           | 37             |
| 4       | 7 Eleven Big Gulp Diet Coke          | 32           | 124            |
| 5       | 7 Eleven Big Gulp Coca-Cola          | 32           | 92             |
| 6       | Ben and Jerry’s Coffee Buzz Ice Cream| 8            | 72             |
| 7       | Baker’s chocolate                    | 1            | 26             |
| 8       | Green tea                            | 6            | 40             |
| 9       | Black tea                            | 6            | 45             |
| 10      | Excedrin                             | capsule      | 65             |

1 OZ=28.349 g=29.574 mL

Table 1: Showing description of coffee source type with its approximate caffeine strength.

Conclusion

A number of studies showed the effect of caffeine on pregnancy but with only a limited data of causal association. Hence, avoiding the consumption of coffee, chocolate and tea during pregnancy appears prudent until more reliable evidences are emerging.

Acknowledgement

MAW has conceptualized the paper, wrote the first draft, reviewed and added substantive edits to the paper.

References

1. Iglesias I, Albasanz JL, Martin M (2014) Effect of chronically consumed during pregnancy on adenosine a and a receptors signaling in both maternal and fetal heart from wistar rats. J Caffeine Res 4: 115-126.
2. Tomaszewski M, Burdan F, Olchowik G, Tomaszewska M (2016) The effects of caffeine administered at different temperatures on foetal development. Annals of Agricultural and Environmental Medicine 23: 148-152.
3. Reis AM, Nde MO, Boeloni JN, Gomes DA, Goes AM, et al. (2016) Inhibition of the osteogenic differentiation of mesenchymal stem cells derived from the offspring of rats treated with caffeine during pregnancy and lactation. Connect Tissue Res 57: 131-142.
4. Wesselink AK, Wise LA, Rothman KJ, Hahn KA, Mikkelson EM, et al. (2016) Caffeine and caffeinated beverage consumption and fecund ability in a preconception cohort. Reprod Toxicol 62: 39-45.
5. Gebicke-Haerter PJ, Christoffel F, Timmer J, Northoff H, Berger M, et al. (1996) Both adenosine A1 and A2-receptors are required to stimulate microglial proliferation. Neurochem Int 29: 37-42.
6. Koda-Kimble MA, Aldredge BK, Corelli RL, Ernst ME (2012) Koda-Kimble and Young’s applied therapeutics: The clinical use of drugs. Lippincott Williams & Wilkins.
7. Rhee J, Kim R, Kim Y, Tam M, Lai Y, et al. (2015) Maternal caffeine consumption during pregnancy and risk of low birth weight: A dose-response meta-analysis of observational studies. PloS ONE 10: e0132334.
8. Min H, Kawasaki I, Gong J, Shim YH (2015) Caffeine induces high expression of cyp-35A family genes and inhibits the early larval development in Caenorhabditis elegans. Mol Cells 38: 236-242.
9. Ao Y, Sun Z, Hu S, Zuo N, Li B, et al. (2015) Low functional programming of renal AT2R mediates the developmental origin of glomerulosclerosis in adult offspring induced by prenatal caffeine exposure. Toxicol Appl Pharmacol 287: 128-138.
10. Voerman E, Jaddoe VW, Gishti O, Hofman A, Franco OH, et al. (2016) Maternal caffeine intake during pregnancy, early growth and body fat distribution at school age. Obesity 24: 1170-1177.
11. Klebanoff MA, Keim SA (2015) Maternal caffeine intake during pregnancy and child cognition and behavior at 4 and 7 years of age. Am J Epidemiol 182: 1023-1032.
12. Li DK, Ferber JR, Okouli R (2015) Maternal caffeine intake during pregnancy and risk of obesity in offspring: A prospective cohort study. Int J Obes 39: 658-664.
13. Sun T, Guo J, Chen H, Zhang J, Zhang X, et al. (2014) Maternal caffeine exposure impairs insulin secretion by pancreatic beta-cells and increases the risk of type II diabetes mellitus in offspring. Cell Biol Int 38: 1183-1193.
14. Li J, Zhao H, Song JM, Zhang J, Tang YL, et al. (2015) A meta-analysis of risk of pregnancy loss and caffeine and coffee consumption during pregnancy. Int J Gynaecol Obstet 130: 116-122.
15. Adams T, Kelsberg G, Safranek S (2016) Clinical Inquiry: Does caffeine intake during pregnancy affect birth weight? J Fam Pract 65: 205-213.
16. Partosch F, Mielke H, Stahlmann R, Gundert-Remy U (2015) Caffeine intake in pregnancy: Relationship between internal intake and effect on birth weight. Food Chem Toxicol 86: 291-297.
17. Yu T, Campbell SC, Stockmann C, Tak C, Schoen K, et al. (2016) Pregnancy-induced changes in the pharmacokinetics of caffeine and its metabolites. J Clin Pharmacol 56: 590-596.
18. Chen L, Bell EM, Browne ML, Druschel CM, Romitti PA (2014) Exploring maternal patterns of dietary caffeine consumption before conception and during pregnancy. Matern Child Health J 18: 2446-2455.
19. Calvaresi V, Escuder D, Minutillo A, Bastons-Compta A, Garcia-Algar O, et al. (2016) Transfer of nicotine, cotinine and caffeine into breast milk in a smoker mother consuming caffeinated drinks. J Analyt Toxicol.
20. Taha D, Kirkby S, Nawab U, Dysart KC, Genen L, et al. (2014) Early caffeine therapy for prevention of bronchopulmonary dysplasia in preterm infants. Int Soc Perinatal Obstet 27: 1698-1702.