Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images

Long-Nhat Ho, Anh Tuan Tran, Quynh Phung, Minh Hoai

VinAI Research, VinUniversity, Stony Brook University
Motivation
Problem

Recover 3D structure (shape + texture) of an object of a known category in a single image

✘ Ill-posed problem
✔ Human is very good at this task via learning 3D shape prior
Problem

How to learn the 3D shape prior?

- **Supervised**
 - Require massive 3D data → hard to acquire

- **Unsupervised**
 - Observe 2D images of the same category
Previous approach – LeSym*

Only symmetric objects !!!

*S. Wu, C. Rupprecht, and A. Vedaldi. “Unsupervised learning of probably symmetric deformable 3d objects from images in the wild”. In CVPR 2020.
Our solution?

- Many datasets have *multiple images* for each *object instance*.
 - Cover symmetric objects

- Shape consistency
Learning from Multi-Image Datasets - LeMul
LeMul System
Recon.
image 1
Recon.
image 2

Input 1
Input 2

Decomposing
Network

Canon. Albedo1
Canon. Depth1

Canon. Albedo2
Canon. Depth2

View 1
Light 1

View 2
Light 2

Recon. image 1
Recon. image 2

Reconstruction loss

Cross-view consistency loss

*Note that we omit the confidence maps in this figure for simplicity
LeMul system

\[\mathbb{L}^{al}(I, a, d) = \frac{1}{|\Omega|} \sum_{p \in \Omega} \left\| \sum_{p_k \in N(p)} w_k^c w_k^d (a(p) - a(p_k)) \right\|^2 \]

Where:

- \(N(p) \): the neighbors of a pixel
- \(w_k^c \): the intensity weighting term
- \(w_k^d \): the depth weighting term
Results
Qualitative results

Input	LeSym	Ours
BFM	![BFM Images]	![BFM Images]
CelebA	![CelebA Images]	![CelebA Images]
CatFaces	![Cat Faces Images]	![Cat Faces Images]

single-image, symmetric objects
Qualitative results

	Input	LeSym	Ours
BFM	![BFM Image]	![LeSym Image]	![Ours Image]
CelebA	![CelebA Image]	![LeSym Image]	![Ours Image]
CatFaces	![CatFaces Image]	![LeSym Image]	![Ours Image]
MultiPIE	![MultiPIE Image]	![LeSym Image]	![Ours Image]

multi-view dataset
Qualitative results

Dataset	Input	LeSym	Ours
BFM	![BFM](image)	![LeSym BFM](image)	![Ours BFM](image)
CelebA	![CelebA](image)	![LeSym CelebA](image)	![Ours CelebA](image)
CatFaces	![CatFaces](image)	![LeSym CatFaces](image)	![Ours CatFaces](image)
MultiPIE	![MultiPIE](image)	![LeSym MultiPIE](image)	![Ours MultiPIE](image)
CASIA	![CASIA](image)	![LeSym CASIA](image)	![Ours CASIA](image)

image collection dataset
Qualitative results

Input	LeSym	Ours
BFM	![BFM Image](image1)	![Ours Image](image2)
CelebA	![LeSym Image](image3)	![Ours Image](image4)
CatFaces	![CatFaces-bfm](image5)	![CatFaces-ours](image6)
MultiPIE	![MultiPIE-bfm](image7)	![MultiPIE-ours](image8)
CASIA	![CASIA-bfm](image9)	![CASIA-ours](image10)
YTF	![YTF-bfm](image11)	![YTF-ours](image12)

video dataset
Cat Faces (single + symmetric)
Multi-PIE (multi-view)
CASIA-WebFace (image collection)
CASIA-WebFace (image collection)

In-the-wild

Input
LeSym (CelebA)
LeMul (CASIA)
Quantitative results

- Better surface reconstruction on BFM
- Better voted via user surveys on all datasets

No	Baseline	SIDE(x10^{-2})↓	MAD(deg.)↓
(1)	Supervised	0.410 ± 0.103	10.78 ± 1.01
(2)	Const. null depth	2.723 ± 0.371	43.34 ± 2.25
(3)	Average G.T. depth	1.990 ± 0.556	23.26 ± 2.85
(4)	LeSym	0.793±0.140	16.51 ± 1.56
(5)	LeMul (proposed)	0.834 ± 0.169	15.49±1.50

BFM results comparison with baselines.
THANK YOU
https://github.com/VinAIResearch/LeMul