Systematic implicit solvent coarse-graining of bilayer membranes: lipid and phase transferability of the force field

Zun-Jing Wang1 and Markus Deserno1
Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
E-mail: zwang@cmu.edu and deserno@andrew.cmu.edu

New Journal of Physics 12 (2010) 095004 (25pp)
Received 5 June 2010
Published 8 September 2010
Online at http://www.njp.org/
doi:10.1088/1367-2630/12/9/095004

Abstract. We study the lipid and phase transferability of our recently developed systematically coarse-grained solvent-free membrane model. The force field was explicitly parameterized to describe a fluid 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayer at 310 K with correct structure and area per lipid, while gaining at least three orders of magnitude in computational efficiency (see Wang and Deserno 2010 J. Phys. Chem. B 114 11207–20). Here, we show that exchanging CG tails, without any subsequent re-parameterization, creates reliable models of 1,2-dioleoylphosphatidylcholine (DOPC) and 1,2-dipalmitoylphosphatidylcholine (DPPC) lipids in terms of structure and area per lipid. Furthermore, all CG lipids undergo a liquid–gel transition upon cooling, with characteristics like those observed in experiments and all-atom simulations during phase transformation. These studies suggest a promising transferability of our force field parameters to different lipid species and thermodynamic state points, properties that are a prerequisite for even more complex systems, such as mixtures.

1 Authors to whom any correspondence should be addressed.
1. Introduction

Single-component fluid lipid membranes (i.e. in their L\textsubscript{α} phase) are often used as the simplest model system for biological membranes \[2, 3\] and have been extensively studied in experiments \[4]–\[12\] and simulations \[13, 14\]. Biological membranes in nature are, however, complex multicomponent structures, within which even different phases might coexist \[15]–\[18\] and whose lateral organization is believed to play important roles in signal transduction, sorting and interactions with a variety of pathogens and toxins \[19\].

The collective behavior of membrane domains at large length and time scales ultimately follows from their local structural and mechanical characteristics \[14, 20, 21\], rendering this problem intrinsically multi-scale in nature. Since several of the local observables are hard to probe in experiment, all-atom (AA) simulations have traditionally served as a welcome substitute \[22]–\[27\], but it is extremely difficult to study mixed systems owing to the enormous equilibration times required. Systematically coarse-grained (CG) models that retain both computational efficiency and sufficient local chemical and structural details can potentially overcome this impasse \[28]–\[39\], provided that their force fields display sufficient transferability to permit the changes of thermodynamic state points required for studying such more complex mixtures.

Recently, we presented a systematic CG solvent-free model for quantitative phospholipid bilayer simulations \[1\]. Its implicit solvent character improves the computational efficiency for membrane simulations on large length and time scales, especially if the membrane bends substantially. The reduced molecular friction and more efficient integration combine with an overall speed-up of at least three orders of magnitude compared to AA bilayer simulations, but despite this the model preserves much chemical specificity and quantitative accuracy. The CG force field has been parameterized to represent a 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) lipid membrane at 310 K in the fluid L\textsubscript{α} phase. The aim of this paper is to probe whether
Figure 1. Molecular structures with the mapping from AA to CG. The left, middle and right panels show DPPC, POPC and DOPC lipid molecules, respectively.

changes of lipid topology or temperature—without further re-parameterization—result in lipid membranes with satisfactory physical properties, thus making headway towards the ultimate goal of studying complex membranes using efficient CG force fields. We will argue that this aim indeed seems achievable.

2. Coarse-grained (CG) model and force field

Each 1,2-dipalmitoylphosphatidylcholine (DPPC), POPC and 1,2-dioleoylphosphatidylcholine (DOPC) lipid molecule is mapped onto a structure consisting of 15, 16 and 17 CG sites, respectively. This requires eight different bead types for characteristic chemical moieties (see figure 1), which we denote as follows: CH for the choline entity of the head group; PH for the phosphate group; GL for the glycerol backbone; E1 and E2 for the ester groups of the sn-1 and sn-2 tails of the lipid, respectively; AS, AD and AE for the hydrocarbon groups \(-\text{CH}_2-\text{CH}_2-\text{CH}_2\)-, \(-\text{CH}_2=\text{CH}_2\)- and \(-\text{CH}_3-\text{CH}_3\)-, respectively. It is important to distinguish between the unsaturated alkyl groups AD and the saturated AS groups, because lipid chain orientational order and bilayer phase behavior are sensitive to the position and number of alkyl unsaturated bonds [7, 40], as we will also see in the remainder of the paper.

The CG model for POPC has been parameterized via systematic structure-based coarse-graining, as explained in detail in [1]. Briefly, the bonded and non-bonded interactions, together with the effective cohesion mimicking the hydrophobic effect, have been derived by matching the structural properties of a POPC bilayer from experiments and AA bilayer simulations. In the present paper, we transfer the parameters of this CG force field to the topologically different lipids DOPC and DPPC without any additional modification.

3. Simulation details

3.1. All-atom (AA) simulations

Our AA simulations were performed with the parallel Molecular Dynamics (MD) program NAMD [41]. All systems were simulated using the fully atomistic CHARMM27 [42] parameters to describe the lipid interactions. The visualizations were performed with VMD [43].
Periodic boundary conditions were applied and a constant temperature was maintained using a Langevin thermostat with a damping coefficient of 0.5 ps^{-1} ($T = 310 \text{ K}$ for both POPC and DOPC membranes and $T = 323 \text{ K}$ for the DPPC membrane). Constant pressure ($P_{zz} = 1 \text{ atm}$) in the simulations was obtained using a Langevin-piston barostat with a piston period of 2 ps, a damping time of 2 ps and a fully anisotropic pressure coupling [44, 45]. The long-range electrostatic interactions were computed every time step with the Particle Mesh Ewald (PME) algorithm [46], employing a real-space cutoff of 12 Å. The integration time step was 1 fs.

The smallest square membrane system consisted of 72 lipids fully hydrated with approximately 4000 water molecules and equilibrated for approximately 30 ns in the $NP_{zz}AT$ ensemble, with the pressure normal to the membrane $P_{zz} = 1 \text{ atm}$ and the projected membrane area $A = L_x \times L_y$ corresponding to an area per lipid of 68.3 Å^2 for a POPC membrane, 72.4 Å^2 for a DOPC membrane and 64.3 Å^2 for a DPPC membrane, which are the saturated areas measured in experiment [10, 47]. Some of the initial configurations of the small membranes were obtained from previous publications [48]–[50]. A larger membrane system with 288 lipids was then created from this base system by replicating it along both the x- and y-direction.

3.2. CG simulations

The CG MD simulations were performed in both the NVT and the $N\Sigma T$ ensembles, where Σ is the lateral bilayer tension. The CG simulation units are $\varsigma = 1 \text{ Å}$ (length), $\varepsilon = k_B T \approx 4.28 \times 10^{-21} \text{ J} \approx 2.58 \text{ kJ mol}^{-1} \approx 0.617 \text{ kcal mol}^{-1}$ (energy) at $T = 310 \text{ K}$, $m = 1 \text{ Da}$ (mass) and $\tau = \varsigma \sqrt{m/\varepsilon} \approx 0.062 \text{ ps}$ (bare time corresponding to instantaneous dynamics such as the kinetic energy). The reduced molecular friction in the CG system implies a different time mapping at longer time scales. Using the asymptotic lipid diffusion as the basis of mapping, one finds an approximate scaling of the order of $\tau \approx 0.6–3.2 \text{ ps}$. We employed a CG integration time step of $\delta t = 0.1 \tau$.

The constant temperature in all the CG simulations was achieved via a Langevin thermostat [51] using a friction constant $\Gamma = 0.2 \tau^{-1}$. Constant-area simulations were implemented using a quadratic ($L_x = L_y$) cross-sectional area in the bilayer xy-plane. In the $N\Sigma T$ ensemble the tension Σ was controlled via a modified Andersen barostat [52], allowing for box resizing only in x- and y-direction (with a box fiction $\Gamma_{ box} = 4 \times 10^{-5} \tau^{-1}$ and a box mass $Q = 10^{-5}$–10^{-4} m). Periodic boundary conditions were applied in all three directions. All CG simulations were performed using ESPResSo [53].

4. Lipid transferability

Compared to top-down CG bilayer models [54]–[64], our systematic solvent-free CG bilayer model not only possesses an improved computational efficiency, but also preserves much of the chemical specificity and structural accuracy [1]. As in other bottom-up CG models [28]–[39], this enables its application to a specific rather than a generic problem, though the ability to transfer parameters from one lipid or thermodynamic state point to another then becomes crucial. The reason is not just that otherwise the costly parameterization work would need to be repeated for every new system—even more crucially, when simulating mixtures the system might phase separate into regions of varying composition, thus requiring a force field that gives a fair description of all the coexisting phases simultaneously.

New Journal of Physics 12 (2010) 095004 (http://www.njp.org/)
Figure 2. Comparison of the radial distribution functions \(g(r) \) (which include both inter- and intra-molecular contributions) between AA (red solid line) and CG (blue dashed line) simulations of a DOPC bilayer membrane at \(T = 310 \) K among all CG types. Both the AA and CG results and error bars were computed from block averages of simulations of a bilayer with 288 lipids.

4.1. Radial distribution functions (RDFs)

Figures 2 and 3 show a detailed comparison of RDFs among all CG types between AA and CG simulations of the DOPC bilayer at \(T = 310 \) K and the DPPC bilayer at \(T = 323 \) K, respectively. The higher temperature in the DPPC case was chosen because the membrane would otherwise be in the gel phase (see below), while with the present choice both DOPC and DPPC are in the fluid \(L_\alpha \) phase, consistent with experiment [10].

The comparison between AA and CG RDFs in figures 2 and 3 shows that all pair distributions (36 for the DOPC bilayer with eight types of CG beads in figure 2 and 28 for
the DPPC bilayer with seven types of CG beads in figure 3) obtained from AA simulations are quantitatively reproduced by the CG force field. The differences in RDFs between AA and CG simulations for DOPC and DPPC bilayers are quantitatively comparable with those for a POPC bilayer (see [1]), even in the worst-converging case with the largest difference in RDF (see figures 2 and 3 for CH-E1). This indicates that although the CG force field was derived to match structures of a fluid POPC bilayer at \(T = 310 \) K, a good structural transferability is achieved for the fluid DOPC and DPPC lipid bilayers.

Figure 4 compares the RDFs between the DOPC bilayer at \(T = 310 \) K and the DPPC bilayer at \(T = 323 \) K. These pair distributions are based on the same set of interaction potentials, but they do not coincide due to the different macroscopic bilayer characteristics that emerge from the change in lipid (one additional double-bond bead ‘AD’ in each tail of DOPC) and the slightly different temperature. The biggest effect is probably the change in area per lipid, combined with the increased orientational order in the tail beads for DPPC.

4.2. Saturated area per lipid

The saturated area per lipid is a central quantity measuring the lateral organization of bilayers. We have previously shown that our CG model yields a saturated area per lipid of \(A = (69.8 \pm 0.5) \) Å\(^2\) at \(T = 310 \) K for a tensionless POPC bilayer, which is consistent with the experimental
Figure 3. Comparison of the radial distribution functions $g(r)$ (which include both inter- and intra-molecular contributions) between AA (red solid line) and CG (blue dashed line) simulations of a DPPC bilayer membrane at $T = 323$ K among all CG types. Both the AA and CG results and error bars were computed from block averages of simulations of a bilayer with 288 lipids.
Figure 4. Comparison of the radial distribution functions \(g(r) \) (which include both inter- and intra-molecular contributions) between DOPC at \(T = 310 \) K (green line) and DPPC membranes at \(T = 323 \) K (blue line) among selected CG types.

value \(A = (68.3 \pm 1.5) \, \text{Å}^2 \) at \(T = 303.15 \) K [10]. The area per lipid was calculated from the cross-sectional area of the simulation box (the \(xy \)-plane of the bilayer) divided by the number of lipids per leaflet (144 lipids in our simulations). Without modification of the CG force field, our model yields a saturated area per lipid of \(A = (79.7 \pm 0.8) \, \text{Å}^2 \) at \(T = 310 \) K for a DOPC bilayer and \(A = (65.9 \pm 0.6) \, \text{Å}^2 \) at \(T = 323 \) K for a DPPC bilayer (see figure 5). Table 1 illustrates how these values compare to experimental results (also taking into account the thermal area expansivity of bilayers) [6, 10, 47, 65, 66]. The thermal area expansivity of the DOPC bilayer membrane was obtained from [47]. To the best of our knowledge, experimental values for the thermal area expansivity of POPC are not available. In table 1, as a reasonable estimate [67], the thermal area expansivity of POPC is taken as the average of DMPC [65] and DOPC [47]. We see that the value for DPPC is almost exactly matched (2.5% error), even though both the lipid and the temperature have been changed. In the case of DOPC, the agreement is fair but not as good (8% error).

Given that these results are obtained without any re-parameterization of our force field, we consider them to be a rather encouraging illustration of the fact that transferability can
Figure 5. Projected area per lipid as a function of time from $N(\Sigma = 0)T$ CG simulations of a bilayer with 288 lipids for three types of lipids: POPC (red), DOPC (green) and DPPC (blue) membranes at $T = 310$, 310 and 323 K, respectively. The straight lines show the averages of the measured areas for three types of lipids.

Table 1. Area per lipid from experiment and our CG simulation.

Lipid	Experiment	Area expansivity	Rescaled experiment	Simulation	Error (%)
DPPC	64.3 Å2 at 323 K	–	64.3 Å2 at 323 K	65.9 Å2 at 323 K	2.5
POPC	68.3 Å2 at 303 K	0.0037 K$^{-1}$	69.7 Å2 at 310 K	70.0 Å2 at 310 K	2.5
DOPC	72.4 Å2 at 303 K	0.0029 K$^{-1}$	73.8 Å2 at 310 K	79.7 Å2 at 310 K	8

be obtained. This is by no means trivial: the saturated area per lipid emerges as a balance of tensile forces in the interfacial region between heads and tails of lipids and the pressure of the compacted tails and head groups, until the integral across the bilayer over the difference between tangential and normal stress vanishes. In our case, this implies a balance of bonded and nonbonded interactions, together with the phenomenological cohesion mimicking the hydrophobic effect. But even if we can, in principle, capture density changes in the tail region fairly well, the same is not necessarily true for the head group region: here the CG interactions have an implicit water contribution parameterized in, and since the hydration of the head groups changes with area per lipid, the water contribution to this interaction might change, an effect one cannot expect to be included in our potentials. That the DPPC and DOPC cases are nevertheless remarkably well captured is thus unexpected but gratifying.

4.3. P_2 order parameter

The orientational order parameter of each lipid bond, P_2, is usually defined as a measure of the lipid alignment with the bilayer average normal [7]:

$$S_{\text{bond}} = \frac{1}{2} \langle 3 \cos^2 \theta - 1 \rangle = \langle P_2(\cos \theta) \rangle,$$

(1)
Figure 6. Comparison of the orientational order parameter P_2 (see equation (1)) of intra-molecular bonds between AA (red) and CG (blue) simulations for DOPC (a) and DPPC (b) bilayer membranes. The bond numbers listed on the horizontal axis are indexed in the schematic diagram. The DOPC bilayer with one unsaturated aliphatic AD group per tail shows a significantly lower bond order in its tail than the DPPC bilayer with two fully saturated hydrocarbon tails.

where θ is the angle between the unit vector along some particular CG bond and the average bilayer normal. For a completely aligned bond, $S_{\text{bond}} = 1$; for a completely random (isotropic) bond, $S_{\text{bond}} = 0$; and for a bond perfectly perpendicular to the bilayer normal, $S_{\text{bond}} = -\frac{1}{2}$.

In figure 6, we compare the P_2 order parameter between CG and AA simulations for DOPC (figure 6(a)) and DPPC (figure 6(b)). The orientational order of lipids for the unsaturated...
hydrocarbon tails is seen to drop compared to fully saturated chains, and this is captured in the
CG model. Similar to the result of POPC (see [1]), the comparison of the \(P_2 \) order parameter
shows good overall agreement for all lipid bonds between CG and AA simulations. Although
the CG force field leads to a slight underestimation of the tail order, it reproduces important
structural features corresponding to the lipid bond order from AA simulations.

A comparison of the \(P_2 \) order parameter for all three types of bilayer membranes is shown
in figure 7. At the same temperature, there is no pronounced difference in the \(P_2 \) order of the
unsaturated sn-2 hydrocarbon tails between DOPC and POPC. However, comparing DPPC with
POPC, we find that even though DPPC is at a higher temperature \((323 \text{ K}) \) than POPC \((310 \text{ K}) \),
the saturated sn-1 hydrocarbon tail of POPC is less ordered than the equally saturated sn-1 tail
of DPPC. Evidently, the unsaturated sn-2 tail in POPC and its impact on the overall bilayer state
also lower the degree of order in the saturated sn-1 tail.

4.4. Line tension

The line tension of a bilayer is the excess free energy of an open edge. To avoid exposing the
hydrophobic tail region to the aqueous solvent, lipids curve around the edge, and the balance
between core exposure and lipid deformation away from the flat bilayer state increases the free
energy [57], [68]–[70]. The resulting structure of the membrane edge has been studied both with
experiments and AA simulations [70]–[75]. If a bilayer is put under lateral stress, the opening of
a pore constitutes a balance between the strain energy in the bulk membrane and the line energy
of the open pore, which implies that the line tension also affects the bilayer rupture tension,
even though in an unusual area-dependent way [57, 61], [68]–[70].

In our CG model, the hydrophobic effect of the aqueous environment is implicitly
accounted for by a phenomenological cohesion between non-headgroup beads, which is
optimized to reproduce the neat bilayer state, but not an open edge. Hence, both the line tension
and, as a consequence, the overall stability of the bilayer could be adversely affected. To test

Figure 7. Comparison of the orientational order parameter \(P_2 \) of intra-molecular
bonds of CG simulations among POPC (red line), DOPC (green line) and DPPC
(blue line) bilayer membranes.
whether the membrane is overstabilized by the cohesion and to evaluate the transferability of the cohesion in other lipids, we computed the line tension for POPC, DOPC and DPPC membranes.

The line tension can, in principle, be determined from the stress–strain relation of a bilayer all the way up to the regime where a pore opens. The balance of the line tension and the area tension gives rise to a characteristic curve that can be fitted by a simple (ground state) theory [61, 69]. Here, we use a simpler method. By spanning a membrane across the x-direction of a periodic box that is not large enough to also span the y-direction, two stable linear open edges appear (see [1]). These edges will exert a force equal to twice the line tension along the x-direction. Note that since the width of the membrane can relax by choosing the distance between the two open edges appropriately, no additional force due to surface tension exists. Hence, the line tension γ is given by the simple formula

$$\gamma = -\frac{1}{2} (\sigma_{xx}) L_y L_z,$$

where σ_{xx} is the xx-component of the stress tensor, and L_y and L_z are the side lengths of the simulation box in the y- and z-direction, respectively. The integration time step chosen was five times smaller than the usual 0.1τ, since the forces are very small and subject to stronger time-step discretization artifacts than structural observables. This has also been observed previously when estimating the bending modulus from a measurement of the small axial forces in cylindrical membrane tethers [76]. After warm-up and an additional equilibration time of $2 \times 10^5 \tau$, averages were obtained by simulating up to $10^7 \tau$ and measuring the stress σ_{xx} every 2τ (after which the stress auto-correlation has essentially decayed to zero). The measured values of γ are: at $T = 310 \text{ K}$, $\gamma = (22 \pm 5) \text{ pN}$ for POPC and $\gamma = (18 \pm 4) \text{ pN}$ for DOPC bilayer membranes; at $T = 323 \text{ K}$, $\gamma = (19 \pm 4) \text{ pN}$ for DPPC, $\gamma = (17 \pm 4) \text{ pN}$ for POPC and $\gamma = (14 \pm 4) \text{ pN}$ for DOPC bilayer membranes.

Typical experimental line tensions for a phosphatidylcholine (PC) bilayer membrane have been reported in the range of 6.5–30 pN [71]–[74]. AA simulations found (12 ± 9)–(35 ± 10) pN for a DMPC membrane [75]. While measurements of the line tension show a considerable spread, preventing a more accurate comparison, it is certainly true that our values are well within the range of both experiments and AA simulations of PC membranes, thus showing that we have not overstabilized the bilayer phase.

It appears that, if same-temperature pairs are compared, the line tension for POPC is larger than that for DOPC, while it is smaller than that for DPPC, suggesting that unsaturated tails provide more flexibility for the hydrocarbon chains to rearrange at the edge of the membrane and more efficiently reduce the excess free energy. Moreover, the line tension of POPC appears to drop with an increase of temperature, again in agreement with the expectation that a greater tail flexibility will lower the edge free energy.

5. Phase transformations

5.1. Self-assembly

We followed the self-assembly of a system of 288 POPC lipids randomly dispersed in a box of size $(99.17 \text{ Å})^3$. The box size was chosen since $(99.17 \text{ Å})^2/144$ is the saturated area per lipid at 310 K. The initial configuration was generated by choosing both the position and orientation of every lipid randomly (of course without mutual overlap). Parallel tempering was implemented with exchanges between eight replicas at the temperatures 279, 294.5, 310, 325.5,
Figure 8. Self-assembly of 288 POPC lipids into a bilayer inside a cubic box with $L = 99.17$ Å starting from a random dispersion at $T = 310$ K (a) and $T = 279$ K (b) captured from a parallel tempering simulation. At $T = 310$ K (a), from left to right, the snapshots are at times $t/\tau = 0$, 16 000, 50 000, 64 000 and 64 000, and the last snapshot is a top view of the second to last. At $T = 279$ K (b), from left to right, the bottom line, the snapshots are at times $t/\tau = 0$, 1000, 38 000, 167 000 and 167 000, and the last snapshot is again a top view of the second to last. The lipids self-assemble to a disordered liquid–crystalline bilayer at $T = 310$ K. At $T = 279$ K, an ordered–disordered mixed domain formed instead. Due to the smaller area per lipid, the bilayer now exhibits a pore.

At $T = 310$ K or higher, the POPC lipids self-assembled into a disordered liquid–crystalline (L_α) bilayer, see figure 8(a). At the two colder temperatures 279 and 294.5 K, the lipids self-assembled into bilayers that showed a gel–fluid coexistence or even a pore, as seen for 279 K in figure 8(b). The pore defect is a straightforward consequence of the mismatch between the actual box size and the size that would correspond to the reduced area per lipid. This suggests that even though our CG force field has been derived to represent a POPC bilayer in the fluid phase, it might be transferable to the simulations of a bilayer in a gel phase.

5.2. Annealing

To further test the transformation of a fluid into a gel phase, we studied the temperature-induced phase transformation of DOPC, POPC and DPPC bilayers, i.e. we perform temperature scans (both cooling and heating) over the region in which the actual transition is expected to occur and monitor the evolution of observables characterizing the bilayer phase. We point out that this is different from a study of the actual phase transition [26, 27], because the phase transformation process includes kinetic aspects, e.g. the evolution of intermediates and growth of nuclei in a mother phase, etc. In consequence, hysteresis is usually observed during a phase

New Journal of Physics 12 (2010) 095004 (http://www.njp.org/)
transformation [77], while phase transition only refers to an equilibrium phase diagram, where an accurate phase transition temperature is usually obtained via an equilibrium free-energy computation [21, 78].

We performed a series of annealing simulations (cooling and subsequent re-heating) for DOPC, POPC and DPPC membranes in the $N(\Sigma = 0)T$ ensemble. For each type of lipid membrane, more than ten different initial configurations were chosen from a pre-equilibrated system at a high temperature (344 K for DOPC, 366 K for POPC and 350 K for DPPC). The system was first cooled from this high temperature to about 250 K, followed by a re-heating from the low to the high temperature. The rates used were in both cases 1.86 K per 20 000τ, i.e. 1.5 K ns$^{-1}$ in unscaled time units or about 75 mK ns$^{-1}$ if the speed-up factor is included.

Hysteresis curves were traced in both area per lipid and tail order (the average of S_{bond} from equation (1) over all hydrocarbon bonds) for DOPC (see figures 9(a) and (b)), POPC
Figure 10. Area per lipid (a) and P_2 order parameter (b) of a POPC bilayer during cooling and heating scans.

(see figures 10(a) and (b)) and DPPC membranes (see figures 11(a) and (b)). We encountered a more pronounced hysteresis during heating simulations than has been observed in AA simulations [26, 27] (see the curves upon heating in figures 9–11). This is, however, consistent with previous findings from explicit solvent CG simulations and was explained as a system size effect [77]. Briefly, a small bilayer size under periodic boundary condition tends to stabilize the gel phase, leading to a stronger hysteresis upon heating, while the effect is weaker on the phase transformation during cooling. Consider that heating a quite rigid gel phase can lead to an increase in box size only if the entire system melts in one go (as indeed observed in our simulation), whereas upon cooling a fluid phase, more than one nucleus might form and thus give rise to domain boundaries that ultimately need to anneal, but these would not substantially affect the overall area or the value of the order parameter.

With our CG model, the phase transformation happens over the range of 265–295 K for a DOPC membrane, 280–310 K for a POPC membrane and 300–330 K for a DPPC membrane. The DPPC interval contains the experimental values of the actual phase transition temperature as
Figure 11. Area per lipid (a) and P_2 order parameter (b) of a DPPC bilayer during cooling and heating scans.

obtained in experiments (315 K, see [79]), whereas the experimental transition temperatures for DOPC and POPC are slightly below our bracketed intervals (about 253 K for DOPC, see [80]; and about 270 K for POPC, see [81]). Concerning the effect of an unsaturated bond on the melting temperature, the right trend is achieved with our CG model: from DPPC to POPC to DOPC, the phase transition temperature drops substantially.

The phase transformation of a lipid bilayer from the liquid–crystalline to a gel phase implies many structural changes. The evolution of the bilayer structure during cooling and heating is shown in figures 12–14. Note that the bilayer size we used, 288 lipids, is not large enough to form a ripple phase [25]. Rather, when cooled, our bilayer displays a coexistence of ordered and disordered domains.

For a DPPC bilayer, the mixed domains were shown at $T = 308$ and 250 K in cooling and 304 and 332 K in heating (see figure 12). We did not find a tilted lipid arrangement in the ordered domain in the range of our simulated temperatures. The ordered domain consists of lipids that are fully stretched with no overlap between lipid tails between two leaflets (untitled
Figure 12. Structure evolution with temperature of a DPPC bilayer during the annealing process, viewed along the z (a), y (b) and x (c) directions. The left column shows, from top to bottom, snapshots taken at the temperatures 332, 308 and 250 K during cooling. The right column shows, from top to bottom, snapshots taken at the temperatures 304, 332 and 337 K during heating.

ordered domain, L_{β}). Overlapping sections of lipid tails between two leaflets can only be seen in disordered domains. For a POPC bilayer, we observed both tilted (L_{β}') and untilted (L_{β}) lipid arrangements in the ordered domains (see figure 13). At $T = 289$ and 274 K in cooling and $T = 260, 267$ and 315 K in heating, the ordered domains were identified as untilted...
Figure 12. Continued.

Figure 13. Structure evolution with temperature of a POPC bilayer during the annealing process, viewed along the z (a), y (b) and x (c) directions. The left column shows, from top to bottom, snapshots taken at the temperatures 310, 289, 274 and 267 K during cooling. The right column shows, from top to bottom, snapshots taken at the temperatures 260, 267, 315 and 344 K during heating.
non-overlapping sections. At a lower temperature $T = 267$ K in cooling, a tilt arrangement was observed with little or no interdigitation between two leaflets. These structures of DPPC and POPC at the molecular level have all been previously observed in AA simulations [26, 27]. For a DOPC bilayer, we observed that a disordered L_α phase transforms to an ordered phase with all double-bond kinks aligned upon cooling (see figure 14(b)), at the temperature 250 K during cooling and at the temperature 270 K during heating.

Fitting the slopes in figure 9(a) from 295 to 340 K, we obtain an area change of $(0.52 \pm 0.05) \text{ Å}^2 \text{ K}^{-1}$ for a DOPC bilayer in the L_α phase, which at 310 K and $A = 73.8 \text{ Å}^2$ translates to a thermal expansivity of 0.0070 K$^{-1}$. Doing the same for the POPC membrane and fitting the
Figure 14. Structure evolution with temperature of a DOPC bilayer during the annealing process, viewed along the z (a), y (b) and x (c) directions. The left column shows, from top to bottom, snapshots taken at the temperatures 308, 259 and 250 K during cooling. The right column shows, from top to bottom, snapshots taken at the temperatures 270, 294 and 306 K during heating.

The slope between 310 and 340 K in figure 10(a) leads to an area change of $(0.54 \pm 0.05) \, \text{Å}^2 \, \text{K}^{-1}$, which at 310 K and thus $69.8 \, \text{Å}^2$ translates to $0.0077 \, \text{K}^{-1}$. For the DPPC membrane, fitting the slope between 325 and 350 K in figure 11(a) leads to an area change of $(0.62 \pm 0.09) \, \text{Å}^2 \, \text{K}^{-1}$, which at 323 K and thus $65.9 \, \text{Å}^2$ translates to $0.0094 \, \text{K}^{-1}$. These values are of the right order of magnitude, but about a factor of two larger than expected from experiments [47, 65, 66]. Note, however, that their relative ordering comes out correctly: with increasing saturation, the expansivity becomes larger.
6. Conclusions

Aiming to perform mesoscopic quantitative bilayer simulations, we previously presented a solvent-free CG lipid model with efforts to preserve both computational efficiency and local structural and chemical information. The force field of the CG model was systematically parameterized to represent the L\(_{\alpha}\) phase of a fully hydrated POPC bilayer at 310 K. Since a reliable performance of any CG model away from its point of parameterization, or the usage of the same interaction potentials for different molecular topologies, is never guaranteed, we investigated the lipid and phase transferability of this solvent-free CG lipid model.

Concerning lipid transferability, we simulated bilayers consisting of either DOPC or DPPC lipids, which were generated from the original POPC lipid by merely switching the tails. A comparison of bilayer properties such as RDFs, \(P_2\) order, saturated area per lipid, and line tensions between CG simulations and experiments, together with AA simulations, suggested a very good force field transferability.

Concerning phase transferability, self-assembly of POPC from parallel tempering CG simulations with eight different temperatures showed that the CG force field drives a random lipid dispersion into disordered liquid–crystalline bilayers at 310 K (or warmer), whereas lipids formed bilayers with gel–fluid coexistence at temperatures below about 294.5 K. We further performed a series of annealing simulations between 250 and 360 K for DOPC, POPC and DPPC bilayer membranes. Hysteresis curves of area per lipid and \(P_2\) order of hydrocarbon bonds showed that the phase transformation temperatures lie in the range of 265–295 K for DOPC, 280–310 K for POPC and 300–330 K for DPPC bilayer membranes. Fitting the temperature behavior of the area per lipid during the cooling scan, we found values for the thermal area expansivity that are approximately a factor of two larger than typical experimental values, but in the expected relative ordering (expansivity drops with increasing unsaturation). The temperature-induced change in structure of DOPC, POPC and DPPC bilayers (288 lipids) was recorded during cooling and heating scans. We observed the same lipid structures of mixed order–disorder domains as in AA simulations at a similar bilayer size. Taken together, these results indicate that good force field transferability can be achieved in systematically structure-based CG lipid models.
Acknowledgments

The work was financially supported by an NIH grant (P01 AG032131). The computations were supported in part by the National Science Foundation through TeraGrid resources provided by the Pittsburgh Supercomputing Center and the National Center for Supercomputing Applications (NCSA).

References

[1] Wang Z-J and Deserno M 2010 A systematically coarse-grained solvent-free model for quantitative phospholipid bilayer simulations J. Phys. Chem. B 114 11207–20
[2] Lipowsky R and Sackmann E (ed) 1995 Structure and Dynamics of Membranes from Cells to Vesicles vol 1 1st edn (Amsterdam: Elsevier)
[3] Heimburg T 2007 Thermal Biophysics of Membranes (Weinheim: Wiley)
[4] Rawicz W, Olbrich K C, McIntosh T, Needham D and Evans E 2000 Effect of chain length and unsaturation on elasticity of lipid bilayers Biophys. J. 79 328–39
[5] Petrache H I, Dodd S W and Brown M F 2000 Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by H-2 NMR spectroscopy Biophys. J. 79 3172–92
[6] Nagle J F and Tristram-Nagle S 2000 Structure of lipid bilayers Biochim. Biophys. Acta 1469 159–95
[7] Petrache H I, Salmon A and Brown M F 2001 Structural properties of docosahexaenoyl phospholipid bilayers investigated by solid-state H-2 NMR spectroscopy J. Am. Chem. Soc. 123 12611–22
[8] Evans E, Heinrich V, Ludwig F and Rawicz W 2003 Dynamic tension spectroscopy and strength of biomembranes Biophys. J. 85 2342–50
[9] Veatch S L, Polozov I V, Gawrisch K and Keller S L 2004 Liquid domains in vesicles investigated by NMR and fluorescence microscopy Biophys. J. 86 2910–22
[10] Kučerka N, Tristram-Nagle S and Nagle J F 2006 Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains J. Membr. Biol. 208 193–202
[11] McGillivray D J, Valincius G, Vanderah D J, Febo-Ayala W, Woodward J T, Heinrich F, Kasianowicz J J and Lösche M 2007 Molecular-scale structural and functional characterization of sparsely tethered bilayer lipid membranes Biointerphases 2 21–33
[12] Miller C E, Majewski J, Watkins E B, Mulder D J, Gog T and Kuhl T L 2008 Probing the local order of single phospholipid membranes using grazing incidence x-ray diffraction Phys. Rev. Lett. 100 058103
[13] Tieleman D P, Marrink S J and Berendsen H J C 1997 A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems Biochim. Biophys. Acta 1331 235–70
[14] Feller S E (ed) 2008 Computational Modeling of Membrane Bilayers 1st edn (London: Academic)
[15] Brown D A and London E 1998 Functions of lipid rafts in biological membranes Annu. Rev. Cell Dev. Biol. 14 111–36
[16] Alberts B, Johnson A, Lewis L, Raff M, Roberts K and Walter P 2002 Molecular Biology of the Cell 4th edn (New York: Garland Science)
[17] Karp G 2007 Cell and Molecular Biology: Concepts and Experiments 5th edn (Hoboken, NJ: Wiley)
[18] Jacobson K, Mouritsen O G and Anderson R G W 2007 Lipid rafts: at a crossroad between cell biology and physics Nat. Cell Biol. 9 7–14
[19] Simons K and Ikonen E 1997 Functional rafts in cell membranes Nature 387 569–72
[20] Yeagle P L 2005 The Structure of Biological Membranes 2nd edn (Boca Raton, FL: CRC Press)
[21] Ferrario M, Ciccotti G and Binder K (ed) 2006 Computer Simulations in Condensed Matter: From materials to Chemical Biology 1st edn (Lecture Notes in Physics) (Berlin and Heidelberg: Springer)
[22] Heller H, Schaefer M and Schulten K 1993 Molecular-dynamics simulation of a bilayer of 200 lipids in the gel and in the liquid–crystal phases J. Phys. Chem. 97 8343–60

New Journal of Physics 12 (2010) 095004 (http://www.njp.org/)
[23] Venable R M, Zhang Y H, Hardy B J and Pastor R W 1993 Molecular-dynamics simulations of a lipid bilayer and of hexadecane—an investigation of membrane fluidity Science 262 223–6
[24] Berger O, Edholm O and Jahnel F 1997 Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature Biophys. J. 72 2002–13
[25] de Vries A H, Yefimov S, Mark A E and Marrink S J 2005 Molecular structure of the lecithin ripple phase Proc. Natl Acad. Sci. USA 102 5392–6
[26] Leekumjorn S and Sum A K 2006 Molecular characterization of gel and liquid–crystalline structures of fully hydrated POPC and POPE bilayers J. Phys. Chem. B 111 6026–33
[27] Leekumjorn S and Sum A K 2007 Molecular studies of the gel to liquid–crystalline phase transition for fully hydrated DPPC and DPPE bilayers Biochim. Biophys. Acta 1768 354–65
[28] Venturoli M and Smit B 1999 Simulating the self-assembly of model membranes Phys. Chem. Commun. 2 45–9
[29] Shelley J C, Shelley M Y, Reeder R C, Bandyopadhyay S and Klein M L 2001 A coarse grain model for phospholipid simulations J. Phys. Chem. B 105 4464–70
[30] Rekvig L, Kranenburg M, Vreede J, Hafskjold B and Smit B 2003 Investigation of surfactant efficiency using dissipative particle dynamics Langmuir 19 8195–205
[31] Marrink S-J, de Vries A H and Mark A E 2004 Coarse grained model for semiquantitative lipid simulations J. Phys. Chem. B 108 750–60
[32] Lyubartsev A P 2005 Multiscale modeling of lipids and lipid bilayers Eur. Biophys. J. 35 53–61
[33] Izvekov S and Voth G A 2005 A multiscale coarse-graining method for biomolecular systems J. Phys. Chem. B 109 2469–73
[34] Marrink S-J, Risselada H J, Yefimov S, Tieleman D P and de Vries A H 2007 The MARTINI force field: coarse grained model for biomolecular simulations J. Phys. Chem. B 111 7812–24
[35] Murtola T, Falck E, Karttunen M and Vattulainen I 2007 Coarse-grained model for phospholipid/cholesterol bilayer employing inverse Monte Carlo with thermodynamic constraints J. Chem. Phys. 126 075101
[36] Izvekov S and Voth G A 2009 Solvent-free lipid bilayer model using multiscale coarse-graining J. Phys. Chem. B 113 4443–55
[37] Lu L and Voth G A 2009 Systematic coarse-graining of a multicomponent lipid bilayer J. Phys. Chem. B 113 1501–10
[38] Sodt A J and Head-Gordon T 2010 An implicit solvent coarse-grained lipid model with correct stress profile J. Chem. Phys. 132 205103
[39] Shinoda W, DeVane R and Klein M L 2010 Zwitterionic lipid assemblies: molecular dynamics studies of monolayers, bilayers and vesicles using a new coarse grained force field J. Phys. Chem. B 114 6836–49
[40] Coolbear K P and Keough K M W 1983 Lipid oxidation and gel to liquid–crystalline transition-temperatures of synthetic poly-unsaturated mixed-acid phosphatidylcholines Biochim. Biophys. Acta 732 531–40
[41] Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R D, Kale L and Schulten K 2005 Scalable molecular dynamics with NAMD J. Comput. Chem. 26 1781–802
[42] MacKerell A D, Banavali N and Foloppe N 2000 Development and current status of the CHARMM force field for nucleic acids Biopolymers 56 257–65
[43] Humphrey W, Dalke A and Schulten K 1996 VMD: visual molecular dynamics J. Mol. Graph. 14 33–9
[44] Feller S E, Zhang Y H, Pastor R W and Brooks B R 1995 Constant-pressure molecular-dynamics simulation—the Langevin piston method J. Chem. Phys. 103 4613–21
[45] Feller S E and MacKerell A D 2000 An improved empirical potential energy function for molecular simulations of phospholipids J. Phys. Chem. B 104 7510–15
[46] Essmann U, Perera L, Berkowitz M L, Darden T, Lee H and Pedersen L G 1995 A smooth particle mesh Ewald method J. Chem. Phys. 103 8577–93
[47] Pan J, Tristram-Nagle S, Kučerka N and Nagle J F 2008 Temperature dependence of structure, bending rigidity, and bilayer interactions of dioleoylphosphatidylcholine bilayers Biophys. J. 94 117–24
[48] Feller S E, Venable R M and Pastor R W 1997 Computer simulation of a DPPC phospholipid bilayer: structural changes as a function of molecular surface area Langmuir 13 6555–61
[49] Feller S E, Yin D X, Pastor R W and MacKerell A D 1997 Molecular dynamics simulation of unsaturated lipid bilayers at low hydration: parameterization and comparison with diffraction studies Biophys. J. 73 2269–79
[50] Feller S E and Pastor R W 1999 Constant surface tension simulations of lipid bilayers: The sensitivity of surface areas and compressibilities J. Chem. Phys. 111 1281–7
[51] Grest G S and Kremer K 1986 Molecular-dynamics simulation for polymers in the presence of a heat bath Phys. Rev. A 33 3628–31
[52] Kolb A and Dunweg B 1999 Optimized constant pressure stochastic dynamics J. Chem. Phys 111 4453–9
[53] Limbach H-J, Arnold A, Mann B A and Holm C 2006 ESPResSo—an extensible simulation package for research on soft matter systems Comput. Phys. Commun. 174 704–27
[54] Goetz R and Lipowsky R 1998 Computer simulations of bilayer membranes: self-assembly and interfacial tension J. Chem. Phys. 108 7397–409
[55] Drouffe J M, Maggs A C and Leibler S 1991 Computer-simulations of self-assembled membranes Science 254 1353–6
[56] Noguchi H and Takasu M 2001 Self-assembly of amphiphiles into vesicles: a Brownian dynamics simulation Phys. Rev. E 64 041913
[57] Brannigan G and Brown F L H 2004 Solvent-free simulations of fluid membrane bilayers J. Chem. Phys. 120 1059–71
[58] Brannigan G, Philips P F and Brown F L H 2005 Flexible lipid bilayers in implicit solvent Phys. Rev. E 72 011915
[59] Wang Z-J and Frenkel D 2005 Modeling flexible amphiphilic bilayers: a solvent-free off-lattice Monte Carlo study J. Chem. Phys. 122 234711
[60] Cooke I R and Deserno M 2005 Solvent-free model for self-assembling fluid bilayer membranes: stabilization of the fluid phase based on broad attractive tail potentials J. Chem. Phys. 123 224710
[61] Cooke I R, Kremer K and Deserno M 2005 Tunable generic model for fluid bilayer membranes Phys. Rev. E 72 011506
[62] Müller M, Katsov K and Schick M 2006 Biological and synthetic membranes: what can be learned from a coarse-grained description? Phys. Rep. 434 113–76
[63] Hömberg M and Müller M 2010 Main phase transition in lipid bilayers: phase coexistence and line tension in a soft, solvent-free, coarse-grained model J. Chem. Phys. 132 155104
[64] Petracek H I, Dodd S W and Brown M F 2000 Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by H-2 NMR spectroscopy Biophys. J. 79 3172–92
[65] Costigan S C, Booth P J and Templer R H 2000 Estimations of lipid bilayer geometry in fluid lamellar phases Biochim. Biophys. Acta 1468 41–54
[66] Tristram-Nagle S 2010 personal comunication
[67] Wang Z-J and Frenkel D 2005 Pore nucleation in mechanically stretched bilayer membranes J. Chem. Phys. 123 154701
[68] Tolpekina T V, den Otter W K and Briels W J 2004 Nucleation free energy of pore formation in an amphiphilic bilayer studied by molecular dynamics simulations J. Chem. Phys. 121 12060–6
[69] Wohler J, den Otter W K, Edholm O and Briels W J 2006 Free energy of a trans-membrane pore calculated from atomistic molecular dynamics simulations J. Chem. Phys. 124 154905
[70] Taupin C, Dvolaitzky M and Sauterey C 1975 Osmotic-pressure induced pores in phospholipid vesicles Biochemistry 14 4771–5
[71] Genco I, Gliozzi A, Relini A, Robello M and Scalas E 1993 Electroporation in symmetric and asymmetric membranes Biochim. Biophys. Acta 1149 10–18
[72] Zhelev D V and Needham D 1993 Tension-stabilized pores in giant vesicles—determination of pore-size and pore line tension Biochim. Biophys. Acta 1147 89–104

New Journal of Physics 12 (2010) 095004 (http://www.njp.org/)
[74] Karatekin E, Sandre O, Guitouni H, Borghi N, Puech P H and Brochard-Wyart F 2003 Cascades of transient pores in giant vesicles: line tension and transport Biophys. J. 84 1734–49
[75] Jiang F Y, Bouret Y and Kindt J T 2004 Molecular dynamics simulations of the lipid bilayer edge Biophys. J. 87 182–92
[76] Harmandaris V A and Deserno M 2006 A novel method for measuring the bending rigidity of model lipid membranes by simulating tethers J. Chem. Phys. 125 204905
[77] Marrink S J, Risselada J and Mark A E 2005 Simulation of gel phase formation and melting in lipid bilayers using a coarse grained model Chem. Phys. Lipids 135 223–44
[78] Frenkel D and Smit B 2002 Understanding Molecular Simulation: From Algorithms to Applications 2nd edn (Boston, MA: Academic)
[79] Janiak M J, Small D M and Shipley G G 1976 Nature of thermal pre-transition of synthetic phospholipids—dipalmitoyllecithin and dipalmitoyllecithin Biochemistry 15 4575–80
[80] Johansson L B A, Kalman B, Wikander G, Fransson A, Fontell K, Bergenstahl B and Lindblom G 1993 Phase-equilibria and formation of vesicles of dioleoylphosphatidylcholine in glycerol water mixtures Biochim. Biophys. Acta 1149 285–91
[81] Litman B J, Lewis E N and Levin I W 1991 Packing characteristics of highly unsaturated bilayer lipids–Raman-spectroscopic studies of multilamellar phosphatidylcholine dispersions Biochemistry 30 313–9