Anti-inflammatory Effects of the Octapeptide NAP in Human Microbiota-Associated Mice Suffering from Subacute Ileitis

Ulrike Escher1, Eliezer Giladi2, Ildikó R. Dunay3, Stefan Bereswill1, Illana Gozes2 and Markus M. Heimesaat†

1Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Microbiology and Infection Immunology, Berlin, Germany
2Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
3Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany

Received: 17 March 2018; accepted: 11 April 2018

The octapeptide NAP is well known for its neuroprotective properties. We here investigated whether NAP treatment could alleviate pro-inflammatory immune responses during experimental subacute ileitis. To this address, mice with a human gut microbiota were perorally infected with one cyst of Toxoplasma gondii (day 0) and subjected to intraperitoneal synthetic NAP treatment from day 1 until day 8 postinfection (p.i.). Whereas placebo (PLC) control animals displayed subacute ileitis at day 9 p.i., NAP-treated mice exhibited less pronounced pro-inflammatory immune responses as indicated by lower numbers of intestinal mucosal T and B lymphocytes and lower interferon (IFN)-γ concentrations in mesenteric lymph nodes. The NAP-induced anti-inflammatory effects were not restricted to the intestinal tract but could also be observed in extra-intestinal including systemic compartments, given that pro-inflammatory cytokines were lower in liver, kidney, and lung following NAP as compared to PLC application, whereas at day 9 p.i., colonic and serum interleukin (IL)-10 concentrations were higher in the former as compared to the latter. Remarkably, probiotic commensal bifidobacterial loads were higher in the ileal lumen of NAP as compared to PLC-treated mice with ileitis. Our findings thus further support that NAP might be regarded as future treatment option directed against intestinal inflammation.

Keywords: octapeptide NAP, activity-dependent neuroprotective protein (ADNP), host-pathogen interactions, Toxoplasma gondii, subacute ileitis, host immunity, human gut microbiota, fecal microbiota transplantation, secondary abiotic (gnotobiotic) mice, intestinal, extra-intestinal and systemic immune responses

Introduction

The octapeptide NAP consists of eight amino acids (namely, NAPSVIPO) and was initially identified as a biologically active fragment of the activity-dependent neuroprotective protein (ADNP) [1]. Human ADNP is not only expressed within the central nervous system (CNS), but also in the spleen, in peripheral blood leukocytes, and in macrophages [2–4]. The neuroprotective effects of NAP have been shown in vitro and in several in vivo models of neuronal morbidities including Alzheimer's disease, stroke, closed head injury, fetal alcohol syndrome, and neonatal hypoxia [1, 5–9], as potential underlying mechanisms for the beneficial properties exerted by NAP immunomodulatory and anti-oxidative effects have been proposed [10]. Regardless, information regarding anti-inflammatory effects of NAP beyond the CNS is scarce.

In our previous mouse studies applying acute intestinal inflammation models within different anatomic compartments and with a fatal outcome within 1 week post induction, we were able to show that NAP application resulted in potent anti-inflammatory effects in both, acute small intestinal [11] and acute large intestinal inflammation [12]. Remarkably, the anti-inflammatory effects of NAP treatment were not restricted to the intestinal tract, given that extra-intestinal and even systemic collateral damages of inflammation could be alleviated [11, 12]. This prompted us to elucidate potential immune-modulatory actions of NAP in another gut inflammation model but of less acute severity. We therefore applied the very recently established subacute ileitis mouse model [13]. Within 9 days following peroral low-dose Toxoplasma gondii infection, susceptible mice harboring a human commensal gut microbiota develop subacute T cell driven ileitis that is characterized by increased gut epithelial apoptosis and pro-inflammatory cytokine secretion in intestinal and extra-intestinal compartments, whereas anti-inflammatory interleukin (IL)-10 cytokine expression and accelerated regenerative epithelial cell responses constitute counter-regulatory measures in order to limit immunopathological sequelae [13]. In the present study, we show that intraperitoneal application of synthetic NAP alleviated intestinal as well as extra-intestinal pro-inflammatory immune responses upon low-dose T. gondii infection, whereas intestinal and systemic anti-inflammatory IL-10 secretion was reinforced to counteract ileitis.

Materials and Methods

Generation of Human Microbiota-associated Mice.

Female C57BL/6j wildtype mice were bred and housed in the facilities of the “Forschungseinrichtungen für Experimentelle Medizin” (FEM, Charité — Universitätsmedizin, Berlin, Germany) under specific pathogen-free (SPF) conditions. With respect to their microbiota composition, “humanized” mice were generated as previously described [14–16]. In brief, the gut microbiota of female 8-week-old mice was virtually depleted following a 6-week course of quintuple broad-spectrum antibiotic treatment (ad libitum via autoclaved drinking water) [17]. Three days after cessation of the antibiotic cocktail (to assure antimicrobial washout), thus generated secondary abiotic mice were associated with human gut microbiota by peroral fecal

* Corresponding author: Markus M. Heimesaat; markus.heimesaat@charite.de
† Shared senior authorship.

Unauthenticated | Downloaded 10/24/20 01:11 AM UTC
microbiota transplantation (FMT) as described earlier [14–16].
To assure human commensal bacterial establishment within the
murine intestinal ecosystem, mice were kept for 2 weeks until ileitis
induction.

Induction of Subacute Ileitis and Treatment of Mice.
On day 0, subacute ileitis was induced by peroral low-dose
*T. gondii* ME49 strain infection of mice via gavage of only
one cyst in 0.3 mL brain suspension as reported earlier [13].
From day 1 until day 8 postinfection (p.i.), mice were either
treated intraperitoneally with synthetic NAP (1.0 mg per kg
body weight per day) or placebo (PLC; sterile phosphate-
buffered saline [PBS], Gibco, Life Technologies, UK) once
daily. A potential antimicrobial effect of the applied NAP
solution was excluded as reported earlier [11].

Sampling Procedures. Mice were sacrificed by isoflurane
 treatment (Abbott, Greifswald, Germany) at day (d) 9 p.i.
Cardiac blood, ileal luminal samples, and ex vivo biopsies
derived from liver, kidney, lung, mesenteric lymph nodes
(MLNs), ileum, and colon were taken under sterile conditions
and collected from each mouse in parallel for microbiological,
immunological, and immunohistochemical analyses.

Immunohistochemistry. Ex vivo biopsies derived from the
terminal ileum and colon were immediately fixed in 5% formalin
and embedded in paraffin. In situ immunohistochemical analyses
of 5 μm thin paraffin sections from small and large intestinal
ex vivo biopsies were performed as stated elsewhere [12, 18–20].
Primary antibodies against CD3 (no. IR50361-2, Dako, Santa
Clara, CA, USA; 1:5) and B220 (no. 14-0452-81, eBioscience;
1:200) were used. For each animal, the average numbers of
positively stained cells within at least six high power fields (HPF,
400× magnification) were determined microscopically by an independent investigator.

Cytokine Measurements. Ex vivo biopsies derived from
MLN, liver (approximately 1 cm²), kidney, and colon were homogenized in sterile PBS and analyzed in serial
dilutions on respective solid media as previously described [17, 18, 22]. In addition, cardiac blood was directly streaked onto
solid media. Bacteria were grown at 37 °C for at least 2 days
under aerobic, microaerobic, and anaerobic conditions.

Molecular Analysis of Gut Microbiota. Fresh ileal luminal
samples were immediately snap-frozen in liquid nitrogen and
stored at –80 °C until further processing. DNA was extracted
from intestinal luminal samples as reported earlier [17, 23].
In brief, DNA was quantified by using Quant-iT PicoGreen
reagent (Invitrogen, UK) and adjusted to 1 ng/μL. Then, the
main bacterial groups abundant in the murine intestinal
microbiota including enterobacteria, enterococci, lactobacilli,
bifidobacteria, *Bacteroides/Prevotella* spp., *Clostridium cocoides*
group, *Clostridium leptum* group, and total eubacterial loads
were determined by quantitative real-time polymerase chain
reaction (qRT-PCR) with species-, genera-, or group-specific 16S
rRNA gene primers (Tib MolBiol, Germany) as reported
previously [19, 24–27], and numbers of 16S rRNA gene copies
per nanogram DNA of each sample were assessed.

Statistical Analysis. Medians, means, standard deviations,
and significance levels using Mann–Whitney *U* test were

![Figure 1](image-url)

Figure 1. Intestinal immune cell responses upon NAP treatment of human microbiota-associated mice suffering from subacute ileitis. Subacute ileitis was induced in human microbiota-associated (hma) mice on day 0 by peroral low-dose *T. gondii* infection as described in Materials and Methods section. Hma mice were then treated with synthetic NAP (crossed circles) or placebo (PLC; black circles) from day 1 until day 8 postinfection (p.i.). At day 9 p.i., the average numbers of (A) ileal and (B) colonic T lymphocytes (positive for CD3) and of (C) colonic B lymphocytes (positive for B220) were determined microscopically in immunohistochemically stained intestinal paraffin sections from six high power fields (HPF, 400× magnification) per animal. Naive mice (i.e., without ileitis and without treatment; white circles) served as negative controls. Numbers of animals (in parentheses), means, and significance levels (*p* values) determined by Mann–Whitney *U* test are indicated. Data shown were pooled from four independent experiments.
Results

**NAP Treatment of Human Microbiota-associated Mice Suffering from Subacute Ileitis Results in Less Pronounced Pro-inflammatory Immune Responses in the Intestinal Tract.** In order to induce subacute ileitis, mice harboring a human commensal gut microbiota were perorally infected with a low dose of *T. gondii* on day 0 and subjected to intraperitoneal treatment with synthetic NAP or placebo from day 1 until day 8 p.i. At day 9 p.i., mice suffering from ileitis displayed increased numbers of T lymphocytes in their ileal as well as colonic mucosa and lamina propria (*p* < 0.005–0.001; Figure 1A, B). These increases were, however, far less pronounced upon NAP treatment (*p* < 0.05 vs. placebo), which also held true for colonic B lymphocyte counts at day 9 p.i. (*p* < 0.05 vs. placebo; Figure 1C). The reduced intestinal immune cell responses following daily NAP challenge were accompanied by lower IFN-γ concentrations in MLN of NAP as compared to placebo-treated mice at day of necropsy (*p* < 0.01; Figure 2).

**NAP Treatment of Human Microbiota-associated Mice Suffering from Subacute Ileitis Results in Less Pronounced Pro-inflammatory Immune Responses in Extra-intestinal Compartments.** We next addressed whether NAP could effectively exert anti-inflammatory properties beyond the intestinal tract. In fact, placebo-treated, but not NAP-treated, mice displayed increased secretion of pro-inflammatory cytokines.
such as MCP-1 and IL-6 in liver ex vivo biopsies at day 9 p.i. \( (p < 0.05; \) Figure 3), which was also true for IL-12p70 concentrations in kidneys \((p < 0.001; \) Figure 4). Furthermore, mice suffering from subacute ileitis displayed multi-fold increased INF-\(\gamma\) protein levels in their lungs \((p < 0.001; \) Figure 5), which were more than 50\% lower upon NAP as compared to placebo treatment \((p < 0.001; \) Figure 5). Of note, we were not able to detect any viable bacteria that had translocated from the intestinal tract to extra-intestinal including systemic compartments.

**NAP Treatment of Human Microbiota-associated Mice Suffering from Subacute Ileitis Results in More Distinct Intestinal as well as Systemic Anti-inflammatory Cytokine Secretion.** To further underline the anti-inflammatory properties of NAP, we additionally assessed intestinal as well as systemic IL-10 secretion. As compared to naive control animals, NAP-treated, but not placebo-treated, human microbiota-associated (hma) mice with subacute ileitis displayed higher IL-10 concentrations in colonic ex vivo biopsies \((p < 0.005; \) Figure 6A) as well as in serum samples \((p < 0.05; \) Figure 6B) taken at day 9 p.i.

Hence, NAP exerts anti-inflammatory properties during subacute ileitis of (with respect to their gut microbiota) “humanized” mice that are not restricted to the intestinal tract but can also be observed in extra-intestinal including systemic compartments.

**Bifidobacterial Loads are Higher Following NAP Treatment of Human Microbiota-associated Mice Suffering from Subacute Ileitis.** We finally surveyed changes in the small intestinal microbiota composition during subacute ileitis development in NAP-treated hma mice applying quantitative culture-independent 16S rRNA based analyses. At day 9 p.i., mice of either cohort displayed higher loads of commensal enterobacteria (including *Escherichia coli*; \( p < 0.05–0.01; \) Figure 7B) and of enterococci in their ileal lumen \((p < 0.005–0.001; \) Figure 7C), whereas small intestinal numbers of (potentially probiotic) bifidobacteria \((p < 0.05–0.001; \) Figure 7E) and of *Clostridium cocoides* group members \((p < 0.05–0.001; \) Figure 7G) were lower as compared to naive controls. Notably, decreases in ileal bifidobacterial counts were less pronounced upon NAP as compared to placebo treatment \((p < 0.05; \) Figure 7E). Furthermore, *Clostridium leptum* loads were slightly decreased in the small intestines of placebo, but not NAP-treated hma mice at day 9 p.i. \((p < 0.005 \text{ vs. naive}; \) Figure 7H).

Thus, anti-inflammatory effects exerted by NAP were accompanied by less distinct inflammation-induced decreases in ileal bifidobacteria during subacute ileitis in hma mice.

**Discussion**

Many in vitro and in vivo studies have shown that the octapeptide NAP exerts its neuroprotective effects via immunomodulatory and anti-oxidative mechanisms [10]. Very recently, our group showed for the first time that the beneficial actions of NAP were not restricted to the nervous system but could also be observed during inflammatory conditions of the intestinal tract [11, 12]. Given that either applied murine inflammation model (i.e., acute ileitis following peroral high-dose *T. gondii* infection and acute dextran sulfate sodium [DSS] induced colitis) was lethal within 1 week, the here presented results provide additional insights into the anti-inflammatory properties of NAP in a far less acute gut inflammation model. The applied subacute ileitis model following peroral low-dose *T. gondii* infection of (with respect to their gut microbiota) “humanized” mice
model has been very recently introduced to the scientific community [13] (within this issue) and provides valuable opportunities to elucidate the molecular mechanisms underlying the interplay between pathogen(s), the human commensal gut microbiota, and host immune responses during intestinal inflammation.

In the present study, we show that NAP exerts anti-inflammatory properties during subacute ileitis of "humanized" mice as indicated by (1) lower intestinal numbers of T and B lymphocytes; (2) less secretion of pro-inflammatory IFN-γ by mesenteric lymph nodes; (3) lower pro-inflammatory cytokine levels in extra-intestinal compartments including liver, kidney, and lung; (4) augmented colonic as well as systemic secretion of the anti-inflammatory cytokine IL-10; and (5) higher (probiotic) bifidobacterial loads in the ileal lumen following NAP as compared to placebo treatment.

The better outcome in NAP-treated mice was due to an alleviated Th1-type immune response as indicated by less pronounced small and large intestinal accumulation of T lymphocytes, the major driving forces of T. gondii-induced ileitis [28] and lower intestinal IFN-γ concentrations, which is in line with results obtained from our previous acute inflammation models with lethal outcome [11, 12]. In support, NAP was shown to suppress proliferation and activation of T cells in vitro leading to a dampened secretion of pro-inflammatory mediators including IFN-γ [10]. Remarkably, the anti-inflammatory properties of NAP were not restricted to the intestinal tract but were also effective in extra-intestinal including systemic compartments. Lower concentrations of pro-inflammatory cytokines in liver and kidney of NAP as compared to placebo-treated mice suffering from intestinal inflammation are supported by our previous studies [11, 12]. The anti-inflammatory effects of NAP were not only due to less distinct expression of pro-inflammatory mediators but also to increased intestinal as well as systemic secretion of the anti-inflammatory cytokine IL-10. Particularly, the pronounced systemic anti-inflammatory response observed in serum samples taken from NAP-treated mice in our present report is remarkable. ADNP is hypothesized to be a secreted protein [2, 29], and NAP, to exert its immunoregulatory properties in the circulation in a cytokine-like (apocrine or paracrine) manner, but without a defined surface receptor [3].

One might assume that the better outcome of mice following NAP treatment might be due to less induced small intestinal inflammation following T. gondii infection. Notably, we assured that NAP application did not interfere with T. gondii infection and hence the induction of small intestinal inflammation. First, to avoid direct NAP-parasite-interaction, synthetic NAP treatment was initiated 24 h after peroral T. gondii challenge; and second, comparable parasitic DNA loads were measured in the ilea of NAP and placebo-treated mice in our previous [11] and actual study (not shown).

Furthermore, we ruled out that NAP exerts any anti-bacterial effects in vitro, given that the distinct gut microbiota composition plays a critical role in initiation, perpetuation, and limitation of immunopathological conditions [11, 26, 27, 30–34]. Interestingly, subacute ileitis development was accompanied by profound shifts in gut microbiota composition that were characterized by higher loads of potentially pro-inflammatory enterobacteria such as E. coli and enterococci within the inflamed ileal lumen, whereas anaerobic bacterial groups such as C. coccoides and bifidobacteria were far less abundant as compared to naive mice. These results are supported by the small intestinal commensal bacterial changes observed in hyper-acute ileitis following high-dose T. gondii infection of both conventionally colonized and human microbiota-associated mice [17, 23, 33–37].

Remarkably, bifidobacterial loads were higher in the small intestines of NAP as compared to placebo-treated mice with...
subacute ileitis. This observation is well in line with results obtained from our recent study where NAP-treated mice were not only less suffering from acute colitis but also displayed higher fecal bifidobacterial loads [12]. Bifidobacteria belong to the phylum Actinobacteria and constitute anaerobic Gram-positive commensal bacteria fulfilling a multitude of metabolic functions such as production of fatty acids and vitamins, degradation of oxalate, and hydrolysis of bile salts, for instance [38]. Furthermore, bifidobacteria are known to exhibit probiotic (i.e., health-promoting) and particularly anti-inflammatory properties [38]. Until now, we cannot decipher, however, whether the higher bifidobacterial numbers in NAP-treated mice were due to a direct NAP effect or a bystander-effect during a less severe intestinal inflammatory process following NAP treatment, or both ("hen-and-egg-paradigm"). Nevertheless, very recently, a distinct *Bifidobacterium dentium* strain was shown to modulate visceral sensitivity in the intestines by production of the primary inhibitory neurotransmitter within the mammalian CNS, namely, γ-aminobutyric acid (GABA), thereby providing a direct link between bifidobacteria and neuromodulatory activities [39]. This study (in line with our previous [12] and present report) further emphasizes the (patho-)physiological importance of the gut–brain axis.

It is tempting to speculate whether the observed anti-inflammatory effects of NAP might have been even more pronounced upon increases in dosage and/or application frequencies of the synthetic compound or upon a prophylactic application regimen starting before induction of disease.

In summary, the octapeptide NAP exerts intestinal as well as extra-intestinal including systemic anti-inflammatory effects in “humanized” mice suffering from subacute ileitis. Beneficial effects of NAP treatment/prophylaxis further need to be addressed in chronic gut inflammation models.

We conclude that our findings further support that NAP might be regarded as future treatment option directed against intestinal inflammation.

**Funding Sources**

This work was supported by grants from the German Research Foundation (DFG) to S.B. (SFB633, TP A7), M.M.H. (SFB633, TP B6 and SFB TR84, TP A5), and U.F. (SFB633, TP B6) and from the German Federal Ministry of Education and Research (BMBF) to S.B. (TP1.1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the article.

**Authors’ Contributions**

Conceived and designed the experiments: SB IG MMH
Perform the experiments: UE MMH
Analyzed the data: MMH
Critically discussed the data: EG IRD SB IG
Wrote the paper: MMH
Co-edited the paper: SB IG
NAP in Humanized Mice with Subacute Ileitis

Conflicts of Interest

M.M.H., I.R.D., and S.B. are editorial board members.

Acknowledgments

The authors thank Alexandra Bittroff-Leben, Ines Puschendorf, Gernot Reifenberger, and the staff of the animal research facility of the Charité — University Medicine Berlin for excellent technical assistance and animal breeding.

References

1. Bassan M, Zamostiano R, Davidson A, Pinhasov A, Giladi E, Perl O, et al. Complete sequence of a novel protein containing a femtomolar-activity-dependent neuropeptidic peptide. J Neurochem. 1999;8:2833–93.

2. Zamostiano R, Pinhasov A, Gelber E, Steingart RA, Senussi E, Giladi E, et al. Cloning and characterization of the human activity-dependent neuropeptidic protein. J Biol Chem. 2001;276:708–14.

3. Gozes I, Divinsky I. The femtomolar-acting NAP interacts with microtubules: novel aspects of astrocyte protection. J Alzheimers Dis. 2006;6:587–41.

4. Quintana FJ, Zaltzman R, Fernandez-Montesinos R, Herrera JL, Gozes I, Cohen Y, et al. NAP, a peptide derived from the activity-dependent neuropeptidic protein, modulates macrophage function. Ann N Y Acad Sci. 2006;1070:500–6.

5. Benti-Adani L, Gozes I, Cohen Y, Assaf Y, Steingart RA, Bremnerman DE, et al. A peptide derived from activity-dependent neuropeptidic protein (ADNP) ameliorates injury response in closed head injury in mice. J Pharmacol Exp Ther. 2001;296:57–63.

6. Zemlyak I, Furman S, Bremnerman DE, Gozes I. A novel peptide prevents death in enured neuronal cultures. Regul Pept. 2000;96:39–49.

7. Ashur-Fabian O, Segal-Ruder Y, Skoltsky E, Bremnerman DE, Steingart RA, Giladi E, et al. The neuropeptidic peptide NAP inhibits the aggregation of the beta-amylloid peptide. Peptides. 2005;24:1413–23.

8. Rotstein M, Bassan H, Kariv N, Speiser Z, Harel S, Gozes I. NAP enhances neurodevelopment of newborn alploprotein E-deficient mice subjected to hypoxia. J Pharmacol Exp Ther. 2006;319:332–9.

9. Greggio S, de Paula S, de Oliveira IM, Trindade C, Rosa RM, Hripcsak JA, et al. NAP prevents acute cerebral oxidative stress and protects against long-term brain injury and cognitive impairment in a model of neonatal hypoxia-ischemia. Neurobiol Dis. 2011;44:152–9.

10. Bratich J, Kawabe K, Nyirenda M, Gilles LJ, Robins RA, Gran B, et al. Expression of activity-dependent neuropeptidic protein in the immune system: possible function and relevance to multiple sclerosis. Neuroimmunomodulation. 2010;17:120–5.

11. Heimesaat MM, Fischer A, Kuhl AA, Gobel UB, Gozes I, Bereswill S. Amyloid beta peptide 40 enhances neuroprotection of newborn rat pups against immune-mediated acute inflammatory sequelae of acute experimental colitis. Peptides. 2018;101:1–9.

12. Heimesaat MM, Escher U, Gran B, et al. The octapeptide NAP underlies intestinal and extra-intestinal sequelae of acute inflammatory bowel diseases. Sci Rep. 2016;6:24059.

13. Heimesaat MM, Escher U, Grunau A, Bereswill S, Gozes I. The octapeptide NAP underlies intestinal and extra-intestinal sequelae of acute inflammatory bowel diseases. Sci Rep. 2016;6:24059.

14. Bereswill S, Fischer A, Plickert R, Haag LM, Logemann E, Alutis M, et al. NAP, a human gut microbiota-associated mouse ileitis related to ileitis in mice harboring a human gut microbiota. PLoS One. 2014;9:e105120.

15. von Kiltzing E, Elmekkio I, Bereswill S, Heimesaat MM. Acute ileitis facilitates infection with multidrug resistant Pseudomonas aeruginosa in human microbiota-associated mice. Gut Pathog. 2017;9:4.

16. Bereswill S, Fischer A, Plickert R, Haag LM, Otto B, Kuhl AA, et al. Novel murine infection models provide deep insights into the “menage a trois” of Campylobacter jejuni, microbiota and host innate immunity. PLoS One. 2011;6:e20953.

17. Heimesaat MM, Fischer A, Kuhn AH, Logemann E, Alutis M, et al. Gram-negative bacteria aggravate murine small intestinal Th1-type immunopathology following oral infection with Toxoplasma gondii. J Immunol. 2006;177:3788–95.

18. Heimesaat MM, Fischer A, Jahn HK, Niebergall J, Freudenberg M, Blaut M, et al. Excavation of murine ileitis by Toll-like receptor 4 mediated sensing of lipopolysaccharide from commensal Escherichia coli. Gut. 2007;56:941–8.

19. Heimesaat MM, Nogai A, Bereswill S, Plickert R, Fischer A, Loddenkemper C, et al. MD88/TLR9 mediated immunopathology and gut microbiota dynamics in a novel murine model of intestinal graft-versus-host disease. Gut. 2010;59:1079–87.

20. Alaties ME, Grundmann U, Fischer A, Kuhl AA, Bereswill S, Heimesaat MM. Selective gelatinase inhibition reduces apoptosis and pro-inflammatory immune cell responses in Campylobacter jejuni-infected gnotobiotic IL-10 deficient mice. Eur J Microbiol Immunol. 2014;4:213–22.

21. Munoz M, Heimesaat MM, Danker K, Struck D, Lohnemann U, Plickert R, et al. Tolerofeakin (IL-23) mediates Toxoplasma gondii-induced immunopathology in the gut via matrixmetalloproteinase-2 and IL-22 but independent of IL-17. J Exp Med. 2009;206:3047–59.

22. Heimesaat MM, Fischer A, Siegmund B, Kupz A, Niebergall J, Fuchs D, et al. Shift towards pro-inflammatory intestinal bacteria aggravates acute murine colitis via Toll-like receptors 2 and 4. PLoS One. 2007;2:e662.

23. Bereswill S, Kuhl AA, Alutis M, Fischer A, Mohle L, Struck D, et al. The impact of Toll-like-receptor-9 on intestinal microbiota composition and extra-intestinal sequelae in experimental Toxoplasma gondii induced ileitis. Gut Pathog. 2014;6:19.

24. Heimesaat MM, Boeckle S, Fischer A, Haag LM, Loddenkemper C, Kuhl AA, et al. Comprehensive postmortem analyses of intestinal microbiota changes and bacterial translocation in human flora associated mice. PLoS One. 2012;7:e43758.

25. Rausch S, Held J, Fischer A, Heimesaat MM, Kuhl AA, Bereswill S, et al. Small intestinal nematode infection of mice is associated with increased enterobacterial loads alongside the intestinal tract. PLoS One. 2012;7:e47026.

26. Thoeoe-Reinke C, Fischer A, Friesie C, Briesemeister D, Gobel UB, Kammertoens T, et al. Composition of intestinal microbiota in immune-deficient mice is altered in three different housing conditions. PLoS One. 2014;9:e113406.

27. Heimesaat MM, Reifenberger G, Vicena V, Illes A, Harvath G, Tamas A, et al. Intestinal microbiota changes in mice lacking putative adenylyl cyclase activating polypeptide (PACAP) or NAP. PLoS One. 2012;7:e43758.

28. Munoz M, Liesenfeld O, Heimesaat MM. Immunology of Toxoplasma gondii. Immunol Rev. 2011;240:269–85.

29. Rennard R, Fatt P, Schollner S, Nierhaus K, Fuchs D, Ekmekciu I, Bereswill S, et al. Subcellular localization and secretion of activity-dependent neuropeptidic protein in astrocyes. Neuron Glia Biol. 2004;1:193–9.

30. Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterol. 2008;134:577–94.

31. Sartor RB. Genetics and environmental interactions shape the intestinal microbiome to promote inflammatory bowel disease versus mucosal host immunity. Gastroenterol. 2010;139:1816–9.