Research Paper

Effect of Oral Methylphenidate on the Experimental Epileptiform Activity in Male Rats

*Yousef Panahi1, Davood Kiani Fard1, Fatemeh Feyzi1

1. Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.

Citation: Panahi Y, Kiani Fard D, Feyzi F. [Effect of Oral Methylphenidate on the Experimental Epileptiform Activity in Male Rats (JAMS). 2020; 22(6):252-261. https://doi.org/10.32598/JAMS.22.6.5959.1

Abstract

Background and Aim: The purpose of this study was to investigate the stimulatory and protective effects of Methylphenidate (MPD) on the experimental epilepsy induced by intraperitoneal injection of Pentyl-enetetrazole (PTZ) in adult male rats.

Methods & Material: In this study, 15 male rats (weight, 200-250 gr) divided into one control group (n=5) received normal saline and two treatment groups; the first group (n=5) received MPD with a dose of 2.5 mg/kg and the second group (n=5) received MPD with a dose of 5 mg/kg by gavage. After anesthesia with ketamine-xylazin combination and animal skull surgery, the recorded electrodes were inserted into the cranium in the stratum striatum layer of the CA1 region of the hippocampus, and epileptic activity was induced by intraperitoneal injection of PTZ (80 mg/kg) and the epileptiform activity was evaluated in terms of the number of spikes per time unit and their amplitudes by eTrace software.

Ethical Considerations: This study with an ethics code of FVMT.REC.1397.67 was approved by the Research Ethics Committee of the Faculty of Veterinary Medicine at University of Tabriz.

Results: Oral MPD at 2.5 and 5 mg/kg doses increased the number of spikes up to 576 and 613, respectively, compared to the control group (330 spikes), which were statistically significant. Amplitude of PTZ-induced epileptic activity after treatment with 2.5 and 5 mg/kg MPD reached 1254 and 1085 respectively compared to control group (1051), which were not statistically significant.

Conclusion: The doses of oral MPD used in this study potentiate seizure activity. Therefore, the use of this drug in people with a background of seizure or suffering from some types of seizure should be cautious, and the evaluation of its effect in these patients need further studies.

Key words: Methylphenidate, Rat, Epilepsy, Pentyl-enetetrazole

Journal of Arak University of Medical Sciences

Research Paper

Effect of Oral Methylphenidate on the Experimental Epileptiform Activity in Male Rats

*Yousef Panahi1, Davood Kiani Fard1, Fatemeh Feyzi1

1. Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.

Citation: Panahi Y, Kiani Fard D, Feyzi F [Effect of Oral Methylphenidate on the Experimental Epileptiform Activity in Male Rats (JAMS). 2020; 22(6):252-261. https://doi.org/10.32598/JAMS.22.6.5959.1

Abstract

Background and Aim: The purpose of this study was to investigate the stimulatory and protective effects of Methylphenidate (MPD) on the experimental epilepsy induced by intraperitoneal injection of Pentyl-enetetrazole (PTZ) in adult male rats.

Methods & Material: In this study, 15 male rats (weight, 200-250 gr) divided into one control group (n=5) received normal saline and two treatment groups; the first group (n=5) received MPD with a dose of 2.5 mg/kg and the second group (n=5) received MPD with a dose of 5 mg/kg by gavage. After anesthesia with ketamine-xylazin combination and animal skull surgery, the recorded electrodes were inserted into the cranium in the stratum striatum layer of the CA1 region of the hippocampus, and epileptic activity was induced by intraperitoneal injection of PTZ (80 mg/kg) and the epileptiform activity was evaluated in terms of the number of spikes per time unit and their amplitudes by eTrace software.

Ethical Considerations: This study with an ethics code of FVMT.REC.1397.67 was approved by the Research Ethics Committee of the Faculty of Veterinary Medicine at University of Tabriz.

Results: Oral MPD at 2.5 and 5 mg/kg doses increased the number of spikes up to 576 and 613, respectively, compared to the control group (330 spikes), which were statistically significant. Amplitude of PTZ-induced epileptic activity after treatment with 2.5 and 5 mg/kg MPD reached 1254 and 1085 respectively compared to control group (1051), which were not statistically significant.

Conclusion: The doses of oral MPD used in this study potentiate seizure activity. Therefore, the use of this drug in people with a background of seizure or suffering from some types of seizure should be cautious, and the evaluation of its effect in these patients need further studies.

Key words: Methylphenidate, Rat, Epilepsy, Pentyl-enetetrazole

Extended Abstract

Introduction

The surgical extraction of third molars is the most frequent surgical procedure in oral surgery. Complications may occur despite the skill and experience of surgeon. Subcutaneous emphysema is an uncommon clinical condition caused by forceful injection of air into the loose connective tissue below the dermal layer, and mostly is the result of using a high-speed air-driven hand piece during surgical tooth extraction. The aim of this article is to report a case of the subcutaneous emphysema created molar tooth extraction in a patient and its treatment.

* Corresponding Author:
Yousef Panahi, Ph.D.
Address: Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
Tel: +98 (914) 4919516
E-mail: y.panahi@tabrizu.ac.ir
Methods and Materials

The surgical extraction of third molars is the most frequent surgical procedure in oral surgery. Complications may occur despite the skill and experience of surgeon. Subcutaneous emphysema is an uncommon clinical condition caused by forceful injection of air into the loose connective tissue below the dermal layer, and mostly is the result of using a high-speed air-driven hand piece during surgical tooth extraction. The aim of this article is to report a case of the subcutaneous emphysema created molar tooth extraction in a patient and its treatment.

Results

In the clinical examination of crepitation and sensitivity in the right side of the face, the right carotid triangle extended to the right clavicle was observed. Trismus was present with maximum opening of about 30 mm (Figure 1, 2, and 3), and no signs of dysphagia and dyspnea were reported. The patient's blood pressure was 125.65, heart rate 73 and body temperature 37.3. Arterial oxygen saturation was reported 94%. Patient was administered 4 million units of penicillin Intravenous (IV) every 4 hours, metronidazole 500 mg IV every 8 hours solved in 100 cc normal saline infused slowly, and rinsing mouth with 0.2% chlorhexidine every 8 hours. On CT, it was observed that emphysema was spread to the right subcutaneous areas, lower eyelid, buccal, submandibular salivary glands lie under the side of the jaw, the back of the neck around the carotid sheath, chest wall and mediastinum (Figure 1, 2, and 3). The patient was hospitalized for 36 hours and treated with antibiotic regimen and monitored with no respiratory distress or pain. Following a decrease in swelling, maximal opening of the mouth by more than 30 mm became possible. Then, she was followed up for day 5 until complete resolution of swelling, maximum opening up to 50 mm, and lack of crepitation.

Figure 1. Number of spikes during 10 min in each study groups

![Figure 1](image1.png)

Figure 2. Amplitude of spikes during 10 min in each study groups

![Figure 2](image2.png)
No other local, systemic and infectious complications occurred.

Discussion

Subcutaneous emphysema is seen mostly in the third and fifth decade of life and in the right mandibular wisdom tooth extraction surgery site. Emphysema can spread to deep spaces such as infratemporal, pterygomandibular, massteric, lateral or retropharyngeal or mediastinum [6]. Differential diagnoses in this case may include allergic reactions to drugs, hematoma, angioedema, and infection [4, 9, 10]. Emphysema is an uncommon condition in oral health and mostly is the result of using a high-speed air-driven handpiece during surgical tooth extraction [11, 12]. A review of studies in which 32 cases of subcutaneous emphysema were investigated showed that half of the cases involved the use of air-driven handpieces [12]. The retropharyngeal space, also called the potential space, has the ability to transmit air to the dorsal mediastinum. The involvement of the lateral and pharyngeal spaces may block the airway, so their careful monitoring is necessary. In some cases, the orbital space is compressed by the air and subsequently the optic nerve is injured [4]. In most cases, subcutaneous emphysema begins after days 3 to 5, and is then fully managed within 7 to 10 days [12]. It is important to advise patients to avoid increasing pressure inside the mouth, for example, by heavily nose blowing or playing wind instruments [16]. Emphysema can be prevented by following routine surgical procedures. The height of the periosteal mucosal flap should be minimal and should not extend to the alveolar lingual segment of the third mandibular molar. Moreover, the duration of the use of air-driven high-speed handpieces should not be excessive, or even be replaced by the multiplier contra-angle 1:5 handpieces, which does not use high-speed airflow for movement.

Ethical Considerations

Compliance with ethical guidelines

This study was approved by the Research Ethics Committee of the Faculty of Veterinary Medicine, University of Tabriz, with Code: FVMT.REC.1397.67.

Funding

This study received a financial support from the University of Tabriz.

Authors’ contributions

Conceptualization, Methodology, Investigation, Original Draft Preparation, Writing, Funding Acquisition, Resources, Supervision: Yousef Panahi; Review & Editing: Davood Kianifard [B]; Experiments: Fatemeh Feyzi.

Conflicts of interest

The authors declare no conflict of interest.

Acknowledgements

The authors would like to thank the University of Tabriz for their support.
اثر میتیل فنیدات خوراکی بر فعالیت‌های شبه صرعی تجربی در موش صحرایی نر

*یوسف پناهی، فاطمه فیضی، داود کیانی فرد

1. گروه طراحی مطالعه: مطالعه حذفی
2. دوره: 1398
3. سال: بهمن و اسفند

نام نویسنده: یوسف پناهی
پست الکترونیک: y.panahi@tabrizu.ac.ir
شماره تماس: +989144919516
نشانی: تبریز، دانشگاه تبریز، دانشکده دامپزشکی، گروه علوم پایه.

هدف از انجام این پژوهش بررسی اثر تحریکی و حفاظتی متیل فنیدات بر فعالیت‌های شبه صرع تجربی القا شده توسط تزریق داخل بیهوشی با ترکیب کتامین زایلاژین و جراحی ناحیه جمجمه است. به این صورت که بعد از بیهوشی با ترکیب کتامین زایلاژین و جراحی ناحیه جمجمه الکترود ثبت در داخل جمجمه در لایه استریاتوم شناسایی صرفه قرار داده شد و فعالیت‌های صرعی ایجاد شده از لحاظ تعداد اسپایک‌ها در واحد زمان و دامنه آن‌ها توسط نرم‌افزار eTrace ارزیابی شدند.

نتیجه‌گیری

نتیجه‌گیری این تحقیق نشان داد که متیل فنیدات خوراکی با دوز 2 میلی‌گرم بر کیلوگرم تعداد پتانسیل عملیاتی و 5 و 2/5 دامنه اسپایک و 613 و 576 اسپایک به ترتیب به ترتیب 330 نیزه ای را در مقایسه با گروه کنترل و پنج میلی‌گرم بر کیلوگرم در مقایسه با گروه کنترل 2/5 فعالیت‌های صرعی ناشی از پنتیلن تترازول به دنبال استفاده از متیل فنیدات می‌رسند که از لحاظ آماری این تغییرات هم معنی‌دار نیستند.

مقدمة

صرع یک اختلال عصبی است که حدود یک درصد جمعیت جهان از آن رنج می‌برند و مشخصه آن تشنج‌های جمعیتی مکرر است. علل متعددی برای وقوع انواع مختلفی از تشنج والصرع ارائه شده است و تلاش و بودجه فراوانی برای توضیح مکانیسم پاتوفیزیولوژی مولکولی و سلولی آن صرف شده است، اما با توجه به محدودیت کمیتی اندازه‌گیری‌ها برای تحقیق درمیان بیماران، حل مشکلات به طوری که بر سرعت و کاهش داروهای ضد صرع و تغییرات آن‌ها باعث بهبود مشکلات را برقرار نمی‌کند، و در برخی موارد این مشکلات را بیشتر افزایش می‌دهد.

کلیدواژه‌ها:
متیل فنیدات، موش صحرایی، صرع، پنتیلن تترازول
یوسف پناهی و همکاران. اثر متیل فنیدات خوراکی بر فعالیت‌های شبه صرع تجربی در موش صحرایی نر

فیلترها

یافته‌ها

برای اندازه‌گیری حیوانات گروه کنترل با دزهای متیل فنیدات، در صحرایی‌های درمان شده با متیل فنیدات در مناطق مربوط به سیستم دیپتوپنسی، اختلالات متابولیکی داشته‌اند و مشاهده گردید که در میزان مقدار انتقال مولکولی به‌طور گسترده و به‌طور کلی، در میان انواع خوشه‌ها، مواردی با دزهای متیل فنیدات، مشاهده می‌شود. این امر باعث افزایش میزان تعداد پتانسیل‌های خروجی و باعث افزایش تعداد پتانسیل‌های ورودی می‌شود.

پژوهش‌های آینده

این پژوهش با استفاده از نسخه 22 نرم‌افزار SPSS برای Yersinia تولیدات بیومیکروگرافی کنترل و درمان‌های از آن‌ها و بررسی سطح دوپامین و بیان c-fos سیگما تهیه شد، تا با وجود سطح دوپامین و بیان c-fos در سطح دوپامین و بیان c-fos سیگما تهیه شد. برای بررسی سطح دوپامین و بیان c-fos سیگما، به دو گروه درمان داده شد. در میان گروه‌ها، مقدار میانگین تعداد پتانسیل‌های خروجی و تعداد پتانسیل‌های ورودی داده شد.

نتایج حاصل از این مطالعه نشان می‌دهد که میزان مقدار انتقال مولکولی به‌طور گسترده و به‌طور کلی، در میان انواع خوشه‌ها، مواردی با دزهای متیل فنیدات، مشاهده می‌شود. این امر باعث افزایش میزان تعداد پتانسیل‌های خروجی و باعث افزایش تعداد پتانسیل‌های ورودی می‌شود.
مشابهندگی شده است؛ به طوری که در مطالعات انجام شده هم اثرات حفاظت کننده و هم اثرات تشدید کننده از این دارو در فعالیت های مورد نظر مشاهده می‌شود. مطالعات زیادی نشان دهنده اثرات حفاظتی متیل فنیدات در فعالیت‌های صرعی هستند [11] و در بعضی از مطالعات مشخص می‌شود که متیل فنیدات در کودکانی که صرع کنترل نشده‌اند، قابل استفاده است و در آیود میلی‌گرم به طور مایلی گرم بر کیلوگرم؛ متیل فنیدات با دوز پنج میلی‌گرم بر کیلوگرم نسبت به داروهای ضد صرع موجود فعالیت‌های بیشتری کنترل می‌کند [12, 13]. در ضمن، مطالعه‌هایی که روی موش‌های صحرایی دچار جهش در ژن Snca توسط هایپرترمی را به دنبال متیل فنیدات با دوز پنج میلی‌گرم بر کیلوگرم به طور مایلی گرم بر کیلوگرم کنترل می‌کند [14].

تصویر ۱. تعداد پتانسیل فعل نیزه‌ای در مدت زمان ۱۰ دقیقه کمتری که درین پتانسیل فعل نیزه‌ای به دلیل تزریق نیزه‌ای بدون متیل فنیدات و مدت زمان ۱۰ دقیقه کمتری که درین پتانسیل فعل نیزه‌ای به دلیل تزریق نیزه‌ای بدون متیل فنیدات با دوز پنج میلی‌گرم بر کیلوگرم می‌شود. مطالعه‌های شده‌اند که درین پتانسیل فعل نیزه‌ای به دلیل تزریق نیزه‌ای بدون متیل فنیدات با دوز پنج میلی‌گرم بر کیلوگرم می‌شود.

یوسف پناهی و همکاران. اثر متیل فنیدات خوراکی بر فعالیت‌های شبه‌صرع تجربی در موش صحرایی نر
شماره 22. دوره 1398 بهمن و اسفند

معنی‌داری طول دوره تشنج را کاهش داده و دز بالاتر از دو میلی‌گرم بر کیلوگرم باعث افزایش آستانه تشنج می‌شود. این نتایج با گزارش ما از اثر متیل فنیدات در فعالیت‌های مطالعه مطابقت ندارند و تأییدکننده مطالعه حاضر نیست. جهت تلاش ما نشان دهنده اثر تشدید کننده‌ای فعالیت‌های مورد نظر در کودکان است. ممکن است تشنج‌های صرعی در افراد بیش فعال مبتلا به صرع را تشدید کنند. با اینکه ممکن است در بیماران مبتلا به بیش فعالیت با عدم تمرکز و سرعت، پرучینی فعالیت‌های تأثیر منفی داشته.

این باور قدیمی که متیل فنیدات می‌تواند آستانه تشنج را در بیماران مستعد کاهش دهد، در هیچ مطالعه‌ای کنترل‌شده نشده است. اما در مطالعه‌های قابل اعتماد، متیل فنیدات به یک میلی‌گرم بر کیلوگرم به صورت خوراکی قبل از آغاز نقش‌آفرینی‌های صرعی مصرف شده است. هرچند این آثار از لحاظ آماری معنی‌دار نیستند (تصویر شماره 1). از طرفی استفاده از متیل فنیدات و سایر محور‌های می‌تواند به صورت مصرف از دیگر داروها و کمبود موجود از برای درمان اختلال بیش فعالی کاهش یابد. این آثار ممکن است اثرات جانبی کاهش آستانه تشنج را داشته باشد.

این گزارش هم‌اکنون با تاثیر حاصل از مطالعه حاضر وجود دارد که طبق آنها متیل فنیدات ممکن است در بیمارانی که سابقه تشنج کودکانی را دارند، باعث کاهش اختلالات غیرحدارکننده می‌شود. این آثار ممکن است اثرات جانبی کاهش آستانه تشنج را داشته باشد.

این گزارش هم‌اکنون با تاثیر حاصل از مطالعه حاضر وجود دارد که طبق آنها متیل فنیدات ممکن است در بیمارانی که سابقه تشنج کودکانی را دارند، باعث کاهش اختلالات غیرحدارکننده می‌شود. این آثار ممکن است اثرات جانبی کاهش آستانه تشنج را داشته باشد.

این گزارش هم‌اکنون با تاثیر حاصل از مطالعه حاضر وجود دارد که طبق آنها متیل فنیدات ممکن است در بیمارانی که سابقه تشنج کودکانی را دارند، باعث کاهش اختلالات غیرحدارکننده می‌شود. این آثار ممکن است اثرات جانبی کاهش آستانه تشنج را داشته باشد.

این گزارش هم‌اکنون با تاثیر حاصل از مطالعه حاضر وجود دارد که طبق آنها متیل فنیدات ممکن است در بیمارانی که سابقه تشنج کودکانی را دارند، باعث کاهش اختلالات غیرحدارکننده می‌شود. این آثار ممکن است اثرات جانبی کاهش آستانه تشنج را داشته باشد.

این گزارش هم‌اکنون با تاثیر حاصل از مطالعه حاضر وجود دارد که طبق آنها متیل فنیدات ممکن است در بیمارانی که سابقه تشنج کودکانی را دارند، باعث کاهش اختلالات غیرحدارکننده می‌شود. این آثار ممکن است اثرات جانبی کاهش آستانه تشنج را داشته باشد.

این گزارش هم‌اکنون با تاثیر حاصل از مطالعه حاضر وجود دارد که طبق آنها متیل فنیدات ممکن است در بیمارانی که سابقه تشنج کودکانی را دارند، باعث کاهش اختلالات غیرحدارکننده می‌شود. این آثار ممکن است اثرات جانبی کاهش آستانه تشنج را داشته باشد.

این گزارش هم‌اکنون با تاثیر حاصل از مطالعه حاضر وجود دارد که طبق آنها متیل فنیدات ممکن است در بیمارانی که سابقه تشنج کودکانی را دارند، باعث کاهش اختلالات غیرحدارکننده Mالی‌یابی شده است. این آثار Mمکن است اثرات جانبی کاهش آستانه تشنج را Dاشته باشد.
مطالعات انجامشده در ارتباط با متیل فنیدات ایمنی و تأییدکننده آن در کودکان مبتلا به بیش فعالی با عدم تمرکز و صرع را تا زمان مدتی به طوری که در مطالعات بالینی مشخص شده است متیل فنیدات با اثرات قابل توجه حملات تشنجی ارتباطی ندارد. در ضمن متیل فنیدات ایمنتر رهس و ممکن است یک دروی ایمن و موثر در درمان اختلالات شناختی در افراد بزرگسال مبتلا به صرع بیشتر باشد. 

با توجه با عناصر قابل توجه پیش می‌گردد که متیل فنیدات در کودکان مبتلا به صرع باعث افزایش قابل توجه حملات تشنجی در افراد بزرگسال مبتلا به صرع می‌شود. این پدیده مشابه به این مطالعه اشاره کرده است که متیل فنیدات با افزایش حملات تشنجی می‌شود. در مطالعات بالینی نیز مشاهده گردیده است که متیل فنیدات با افزایش حملات تشنجی می‌شود. بنابراین استفاده از متیل فنیدات در درمان اختلالات شناختی در افراد بزرگسال مبتلا به صرع باید با توجه به نتایج متناقض در مورد اثرات متیل فنیدات استفاده از آن در شرایط مختلف و بیماران با مشکلات سیستم عصبی خاص، نیازمند انجام مطالعات بیشتری است.

نتیجه‌گیری

طبق نتایج به دست آمده از مطالعه حاضر، متیل فنیدات خوراکی با دوز 11 و 25 میلی گرم بر کیلوگرم، تعداد پتانسیل عمل و دامنه افزایش می‌شود. بنابراین استفاده از آن توصیه می‌شود. ا_PASS

ملاحظات اخلاقی

پژوهشی از اصول اخلاق پژوهش

این تحقیق در کمیته اخلاق پژوهشی دانشگاه تبریز با کد FVMT.REC.6397.67 تصویب شده است.

حفاظتی مالی

این پژوهش از طرف دانشگاه تبریز حمایت مالی شده است.

مشارکت‌نوبه‌شماران

تمامی نویسندگان معیارهای استاندارد نویسندگان بر اساس پیشنهادات کمیته بین‌المللی ناشنال مجلا پزشکی را دارا پوشش دارند.

تعارض منافع

بدین وسیله نویسندگان تصمیم می‌کنند که هیچ‌گونه تعارض منافعی وجود ندارد.
References

[1] Panahi Y, Saboory E, Rassouli A, Sadeghi-Hashjin G, Roshan-Milani S, Derashpour L, et al. The effect of selective opioid receptor agonists and antagonists on epileptiform activity in morphine-dependent infant mice hippocampal slices. Int J Dev Neurosci. 2017; 60:56-62.

[2] Panahi Y, Saboory E, Rasouli A, Sadeghi HG, Roshanmilani S, Derashpouri L. Morphine and Naloxone Effects on Seizure in Brain Slice of Morphone-Dependent Infant Mice. Arak Med Uni J. 2017, 20 (118):1-13.

[3] Koneski JA, Casella EB, Agerott F, Ferreira MG. Efficacy and safety of methylphenidate in treating ADHD symptoms in children and adolescents with uncontrolled seizures: a Brazilian sample study and literature review. Epilepsy Behav. 2011; 21(3):228-32.

[4] Bolea-Alamanac BM, Green A, Verma G, Maxwell P, Davies SJ. Methylphenidate use in pregnancy and lactation: a systematic review of evidence. Br J Clin Pharmacol. 2014; 77(1):96-101.

[5] Gattey SJ, Pan D, Chen R, Chaturvedi G, Ding Y-S. Affinities of methylphenidate, amphetamine and serotoninn transporters. Life Sci. 1996; 58(12):P231-P19.

[6] Wijns TE. Effects of methylphenidate on the catecholaminergic system in attention-deficit/hyperactivity disorder. J Clin Psychopharmacol. 2008; 28(3):S46-S53.

[7] Olson L, Seiger Å, Fuxe K. Heterogeneity of striatal and limbic dopamine innervation: highly fluorescent islands in developing and adult rats. Brain Res. 1972; 44(1):283-8.

[8] Leppel tiers F-X, Tauber C, Nicolas C, Solinas M, Castel nau P, Belzung C, et al. Prenatal exposure to methylphenidate affects the dopamine system and the reactivity to natural reward in adulthood in rats. Int J Neuropsychopharmacol. 2015; 18(4):pyu044.

[9] Van LP. Ketamine and xylazine for surgical anesthesia in rats. J Am Vet Med Assoc. 1977; 171(9):842-4.

[10] Beth Levant, Troy J. Zarcone, Paul F. Davis, Marlies K. Ozias, Stephen C. Fowler. Differences in Methylphenidate Dose Response between Periodic and Adult Rats in the Familiar Arena-Novel Alcove Task. J Pharmacol Exp Ther. 2011; 337(1):83-91.

[11] Wu Q, Wang H. The spatiotemporal expression changes of CB2R in the hippocampus of rats following pilocarpine-induced status epilepticus. Epilepsy Res. 2018; 148:8-16.

[12] Feldman HS, Arthur GR, Covino BG. Comparative systemic toxicity of convulsant and superconvulsant doses of intravenous ropivacaine, bupivacaine, and lidocaine in the conscious dog. Anesth Analg. 1989; 69(6):794-801.

[13] Semrud-Clikeman M, Wical B. Components of attention in children with complex partial seizures with and without ADHD. Epilepsia. 1999; 40(2):211-5.

[14] Wroblewski BA, Leary JM, Phelan AM, Whyte J, Manning K. Methylphenidate and seizure frequency in brain injured patients with seizure disorders. Neurology. 2017; 88(5):470-476.

[15] Cepeda C, Li Z, Cromwell H, Altemus K, Crawford C, Nansen E, et al. Electrophysiological and morphological analyses of cortical neurons obtained from children with catastrophic epilepsy: dopamine receptor modulation of glutamatergic responses. Dev Neurosci. 1999; 21(3-4):223-35.

[16] Didriksen D, Pottegård A, Hallas J, Aagaard L, Damkier P. First trimester in utero exposure to methylphenidate. Basic Clin Pharmacol Toxicol. 2013; 112(2):73-8.

[17] Pottegård A, dePont Christensen R, Houj A, Christiansen CB, Paulsen MS, Thomesen JL, et al. Primary non-adherence in general practice: a Danish register study. Eur J Clin Pharmacol. 2014; 70(6):757-63.

[18] Ohmori I, Kawakami N, Liu S, Wang H, Miyazaki I, Asanuma M, et al. Methylphenidate improves learning impairments and hyperthermia-induced seizures caused by an S cn1a mutation. Epilepsia. 2014; 55(10):1558-67.

[19] Barnhart E. Physicians Desk Reference, Oradell, NJ: Medical Economics Co. Inc. 1988.

[20] Kaufmann RK, Ullman B. Oil prices, speculation, and fundamentals: Interpreting causal relations among spot and futures prices. Energy Econ. 2009; 31(4):550-8.

[21] Torres AR, Whitney J, Gonzalez-Heydrich J. Attention-deficit/hyperactivity disorder in pediatric patients with epilepsy: review of pharmacological treatment. Epilepsy Behav. 2008; 12(2):217-33.

[22] Wernicke JF, Holdridge KC, Jin L, Edison T, Zhang S, Bangs ME, et al. Seizure risk in patients with attention-deficit-hyperactivity disorder treated with atomoxetine. Dev Med & Child Neurol. 2007; 49(7):498-502.

[23] Baptista-Neto L, Dodds A, Rao S, Whitney J, Torres A, Gonzalez-Heydrich J. An expert opinion on methylphenidate treatment for attention deficit hyperactivity disorder in pediatric patients with epilepsy. Expert Opin Investig Drugs. 2008; 17(1):77-84.

[24] Adams J, Alipio-Jocson V, Inoyama K, Bartlett V, Sandhu S, Oso J, et al. Methylphenidate, cognition, and epilepsy: a double-blind, placebo-controlled, single-dose study. Neurology. 2017; 88(5):470-6.

[25] Tavakoli SA, Gleason OC. Seizures associated with venlafaxine, methylphenidate, and zolpidem. Psychosomatics. 2003; 44(3):262.

[26] Gucuyener K, Erdemoglu AK, Senol S, Serdaroglu A, Soysal S, Kockar I. Use of methylphenidate for attention-deficit hyperactivity disorder in patients with epilepsy or electroencephalographic abnormalities.J Child Neurol. 2003; 18(2):109-12.

[27] Van der Feltz-Cornelis C, Aldenkamp A. Effectiveness and safety of methylphenidate in adult attention deficit hyperactivity disorder in patients with epilepsy: An open trial treatment trial. Epilepsy Behav. 2006;8(3):659-62.

[28] Beth Levant, Troy J. Zarcone, Paul F. Davis, Marlies K. Ozias, Stephen C. Fowler. Differences in Methylphenidate Dose Response between Periodic and Adult Rats in the Familiar Arena-Novel Alcove Task. J Pharmacol Exp Ther. 2011; 337(1):83-91.
This Page Intentionally Left Blank