INTRODUCTION

Medicinal plants are the richest bioresources for many types of medicinal practices such as modern medicines, Allopathy, Homeopathy, Naturopathy, Unani, Acupuncture, Ayurveda, nutraceuticals, and traditional medicines, synthetic drugs and pharmaceuticals, intermediate, food supplements [1].

Indian subcontinent is a vast repository of medicinal plants that are used in traditional medical treatments which also forms a rich source of knowledge [2]. India is one of the megadiversity centers in the planet having a diverse medicinal plant species which is unexplored most of them are endemic. India shares approximately 13% of world’s biodiversity, one among 17 megadiversity centers. Among the 34 hotspots in the world, India has 4 hotspots, namely, Eastern Himalaya, Indo-Burma, Western Ghats, Andaman and Nicobar Island. The various indigenous systems use several plant species to treat different ailments [3]. In India, around 20,000 medicinal plant species have been recorded recently, but more than 500 traditional communities use about 800 plant species for curing different diseases [4].

Western Ghats is a mountain range that runs parallel to the western coast of the Indian peninsula, located entirely in India. The range starts near the border of Gujarat and Maharashtra, runs approximately 1600 km through the states of Maharashtra, Goa, Karnataka, Kerala, and Tamil Nadu ending at Kanyakumari, at the southern tip of India [5].

Experimental medicinal plant and description:
Pavetta crassicaulis Bremek. Scientific classification:

Kingdom: Plantae
Division: Magnoliophyta
Class: Magnoliopsida
Subclass: Asteridae
Family: Rubiaceae
Order: Rubiales
Genus: Pavetta
Species: P. crassicaulis Bremek.

P. crassicaulis Bremek. is an important ethnomedicinal shrub or small tree belonging to the family Rubiaceae, grows up to 4 m tall, the plant is endemic to peninsular India. The leaves are often membranous with dark bacterial nodules, has small, white, tubular flowers, sometimes saiviform or funnel-shaped with 4 spreading petal lobes. The flowers are carried on terminal corymbs or cymes, the leaves are elliptical-oblong to elliptic-lanceolate, 6–15 cm long, and pointed at both ends. The flowers are white, rather fragrant, and borne in considerable number in hairy terminal panicle which is 6–10 cm long. The sepals are small and toothed. The flowers tube is slender and about 1.5 cm long, with obust pedals above half the length of the tube. The fruits are black when they dry, somewhat rounded and about 6 mm in diameter [6].

P. crassicaulis Bremek. endemic to peninsular India and distributed in many places such as Mizoram, Gujrat, Uttara Pradesh, Chhattisgarh, Orissa Maharashtra, and Karnataka [7-10].

P. crassicaulis Bremek. has medicinal properties which is used in many parts of India, Pavetta plant parts used in the treatment of arthritis, boils and itches, hemorrhoidal pains, visceral problems, dropsy [11], epilepsy, hemorrhoids [12], skin diseases [13], anticephalagic, fat burner, aphrodisiac [14], urinary complaints and fruits used as anthelmintic and flowers are eaten fried [15].

The preliminary qualitative phytochemical analysis of P. crassicaulis Bremek. methanolic crude extract revealed the presence of...
alkaloids, steroids, and terpenoid with moderate antimicrobial activity [16,17].

The present study focused on the anti-inflammatory properties of *P. crassicaulis* Bremek. plant parts.

METHODS

Plant collection and authentication

The bark and leaf materials of *P. crassicaulis* Bremek. were collected from Shringeri taluk, Karnataka in April 2014 (13.4198° N, 75.2567° E) (Fig. 1). The plant was identified by Prof. K G Bhat, Udupi, and a voucher specimen was conserved under the reference number KU/AB/RN/AS/001.

Plant preparation and extraction

The samples were dried in the shade for 20–25 days, mechanically powdered, and subjected to Soxhlet extraction using petroleum ether, chloroform, and ethanol [18]. The crude extracts were collected in air-tight plastic containers and stored in cool condition.

Preliminary phytochemical screening

Air-dried and powdered leaf materials and also all crude extracts were screened for the presence of tannins, alkaloids, saponin, glycosides, flavonoids, steroids/sterols, and phenols using standard methods [19-21].

Gas chromatography and mass spectroscopy (GC-MS) analysis

Pavetta crassicaulis Bremek leaf and flower ethanolic extracts were subjected to GC-MS analysis and obtained spectra was analysed. GC model: Thermo Trace GC Ultra, MS Model: Thermo DSQ II, Ionization: Electron impact ionization (EI), chemical ionization (CI), mass range: 1–1074 m/z.

Isolation of pure compound

The stationary phase in column chromatography is silica gel and the mobile phase or eluent is the mixture of different immiscible solvents [22]. 5 g of residue is dissolve in ethanol and it will adsorbed on to the silica gel powder and of 1.50 g is loaded to column. The column was eluted with n-hexane 100%, flowed by n-hexane and ethyl acetate in different ratios (99:1, 90:10, 80:20, 60:40, 50:50) and followed by ethyl acetate 100% and the with mixture of ethyl acetate:ethanol (99:1, 98:2, 95:5, 90:10, 80:20). Simultaneously, the same elution is monitored by thin-layer chromatography (TLC) (silica gel and for visualization, mixture of vanillin: Sulfuric acid heated at 110°C). Each time, 5 ml were collected and TLC monitored same elute was concentrate to 5 ml stored in the refrigerator.

Rat maintenance

Rats (120–170 g) of either sex kept at the laboratory Animal home of the Faculty of Pharmacy, SCS College of Pharmacy, Harapanahalli, Davanagere, were used. The animals were maintained under standard environmental conditions and had free access to standard diet and water. Plant extracts were administered orally by gavage in distilled water at different dose levels. All experiments were carried out according to the Institutional Animal Ethics Committee Guidelines (Re: SCSCP/IAEC/11/12/2016-17).

Anti-inflammatory activity by carrageenin-induced rat hind paw edema method (in vivo model)

Anti-inflammatory activity was measured using carrageenan-induced rat paw edema assay [23,24]. Groups of 5 rats of both sexes (pregnant females excluded) were given a dose of the extract. After 1 h, 0.1 ml 1% carrageenan suspension in 0.9% NaCl solution was injected into the subplantar tissue of the right hind paw. Paw volume was measured plethysmometrically at 0 h and 3 h after carrageenin injection [25]. Two groups of drug-treated rats and one control group were used each test day, the mean paw edema value for the test group being compared with its mean value for the control group for that day. The test compounds (50 mg/kg) were administered orally; standard group was treated with diclofenac (50 mg/kg) orally 1 h. before by injection and control group received only vehicle. Mean difference in paw volume was measured and percentage inhibition was calculated by following formula.

\[
\text{% inhibition of edema} = \left(\frac{V_c - V_t}{V_c} \right) \times 100
\]

Where Vt = mean paw volume of test group, Vc = mean paw volume of control group.

Anti-inflammatory activity [26] was measured as the percentage reduction in edema level when drug was present, relative to control.

Statistical analysis

All data were validated with the help of statistical software PRISM and MINITAB; the values were expressed as mean ± standard error of the mean and results were statistically analyzed by one-way analysis of variance (ANOVA) followed by Dunnet’s t-test. Symbols represent statistical significance:*p<0.05, **p<0.01, ***<0.0001 ns - not significant, as compared to control group.

RESULTS

Extract yield and preliminary phytochemical analysis

The Soxhlet extraction of *P. crassicaulis* Bremek. leaf (750 g) with petroleum ether gives 12.32 g, with chloroform gives 19.99 g and with ethanol gives 75.35 g yield. The results of preliminary qualitative phytochemical screening of different extracts of *P. crassicaulis* Bremek. leaf indicate the presence of saponins, tannins, flavonoids, steroids/sterols, glycosides, and phenols in ethanolic crude extract and chloroform extract confirms the presence of phenols and sterols and petroleum extracts negative results for all the phytochemical tests.

The Soxhlet extraction of *P. crassicaulis* Bremek. flower (750 g) with petroleum ether gives 20.34 g, with chloroform gives 18.64 g and with ethanol gives 45.38 g yield. The results of phytochemical screening of *P. crassicaulis* Bremek. flower extracts indicate the presence of alkaloids, saponins, flavonoids, steroids/sterols, glycosides, and phenols in...
ethanol crude extract, the chloroform crude extracts shows positive results for flavonoids. However, the petroleum ether crude extract gave negative results for all these compounds (Table 1).

GC-MS analysis of ethanolic crude extract

Leaf ethanolic extract

In GC-MS analysis of medicinal *P. crassicaulis* Bremek, ethanolic leaf extract revealed the presence 34 compounds, in that major percentage of compounds present was 2-tert-butyl-4,6-bis(3,5-di-tert-butyl-4-hydroxybenzyl)phenol (38.84%), cyclo{tetra[(5-t-butyl-2-hydroxy-1,3-phenylene)methylene]} (15.72%), 4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- (9.34%), bicyclo[3.3.1]nona-3,7-diene-2,9-dione (6.25%), and methyl ester of bicyclo[4.3.0]non-1(6)-en-4,7-dione-8-carboxylic acid (5.6%). The major compound 2-tert-butyl-4,6-bis(3,5-di-tert-butyl-4-hydroxybenzyl)phenol (37.44%) have antioxidant properties and also used as ultraviolet stabilizer. Cyclo{tetra[(5-t-butyl-2-hydroxy-1,3-phenylene)methylene]} (15.72%), 4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- (9.34%) has antioxidant properties (Table 2 and Figs. 2-4).

Flower ethanolic extract

The GC-MS analysis of *P. crassicaulis* Bremek. flower ethanolic extract revealed the presence of 39 compounds, in that, 4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- (13.82%), benzaldehyde, 2-methyl- (7.25%), benzaldehyde, 2-hydroxy-6-methyl- (6.52%), 2-furancarboxaldehyde, and 5-(hydroxymethyl)-(6.30%) in major percentage. and campesterol also (0.80%), stigmasterol (0.62%), β-Sitosterol (3.10%) in meagre percentage (Figs. 5-7 and Table 3).

Column chromatography of ethanolic leaf and flower extract

Leaf ethanolic extract

Elution carried out with n-hexane in 100% concentration eluted compound 1 in small quantity and with n-hexane:ethyl acetate at the ratio 80:20 gives compound 2, but its yield is too less. Ethyl acetate was eluted mixture of many compounds and ethyl acetate: ethanol at 80:20 yielded large quantity of compound 3. The gradient of other residues was yielded mixture of compound which is confirmed by TLC therefore not subjected to further process.

Compound 3L was yielded more so, we took only compound 3L for further structural analysis.

The pure compound 3L was crystaline transparent grayish color. Further, the pure compound subjected to cNMR, hNMR, infrared (IR), mass spectral analysis, and the molecular formula was C_{40}H_{58}O_{3}, molecular weight 586.887 g/mol. From all these details, the compound name was found to be tert-butyl-4,6-bis(3,5-di-tert-butyl-4-hydroxybenzyl)phenol (Figs. 8-11).

Table 1: Preliminary phytochemical analysis of different extract of *P. crassicaulis* Bremek. leaf and flower

Secondary metabolites	Type of tests	Petroleum ether crude extract	Chloroform crude extract	Ethanol crude extract			
		Leaf	Flower	Leaf	Flower	Leaf	Flower
Alkaloids	Mayer’s test	–	–	–	–	–	–
Saponins	Wagner’s test	–	–	–	–	–	–
Tannins	Foam test	–	–	–	–	–	–
Flavonoids	Shinda test	–	–	–	+	–	+
	Zinc-HCl reduction test	–	–	–	+	+	+
	Alkaline reagent test	–	–	–	–	+	+
	Lead acetate test	–	–	–	+	+	+
Steroids	Salkowski’s test	–	–	–	–	+	+
Glycosides	Keller-Killiani’s test	–	–	–	+	+	+
	Brown water test	–	–	–	–	+	+
	Legal test	–	–	–	–	+	+
Phenols	Ferric chloride test	–	–	–	–	+	+
	Acetic acid test	–	–	–	–	+	+
Sterols	Liebermann-Burchad test	–	–	–	–	+	+

−: Negative result, +: positive result. *P. crassicaulis: Pavetta crassicaulis*

Fig. 2: Gas chromatography and mass spectroscopy chromatogram of leaf ethanolic extract of *Pavetta crassicaulis* Bremek.
Table 2: Presence of metabolites in GC-MS analysis of crude ethanolic extract of *P. crassicaulis* Bremek leaf collected from Western Ghats Karnataka

Sl. No	Chemical compound present	Average percentage	Properties of the compound
1	2,4-dihydroxy-2,5-dimethyl-3 (2H)-furan-3-one	0.53	Food-grade flavor ingredients [30]
2	2,5-dimethyl-4-hydroxy-3 (2H)-furanone	0.52	Flavor and perfume industry [31]
3	2-hexanone, 3-methyl-4-methylene-	1.45	Paint and paint thinner [32]
4	4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-	9.34	Mutagen, antimicrobial, anti-inflammatory, and antioxidant capacity [47-29]
5	4-[4-chlorophenyl]-N-[2-[1-methyl-2-pyroridinyl]ethyl]-6-[trichloromethyl]-2-pyrimidine	1.14	Unknown
6	2,3-dihydro-benzo-furan -	1.35	Entactogen drug of the phenethylamine and amphetamine classes, cytotoxic [33]
7	2-furan-carboxaldehyde, 5-(hyroxymethyl)-	0.66	Food additives, antimicrobial, preservative, flavoring agents [34,35]
8	1,2,3-propanetriol, 1-acetate	1.46	Unknown
9	6-oxoheptanoic acid	1.53	6-oxoheptanoic acid is a reagent to synthesize new penicillin containing keto acids as side chains. It is also used to study the various metabolic pathways of 4-hydroxypentanoate and levulinate [36]
10	Benzaldehyde, 4-hydroxy-	0.47	Flavor and fragrance agents [37]
11	2-Methoxy-4-vinylphenol	1.14	Flavoring agent, antibacterial activity, anti-inflammatory effect [38,39]
12	Phenol, 2-methoxy-4-(2-propenyl)-	0.39	Flavoring agent used in the manufacture of vanillin, antitectorv agents, antioxidant [40,41]
13	2,4-dimethyl-3-nitro-bicycle[3.2.1]octan-8-one	0.78	Oils obtained from myrrh and frankincense and parthenium weed have little percentage [42,43]
14	rac-2,4-dimethyl-3-nitro-bicycle[3.2.1]octan-8-one	0.96	Unknown
15	Benzaldehyde, 2-hydroxy-6-methyl-	0.98	Pheronome of the acrid mate *Typhagus perniciosus* and grain mate *Aleuroglyphus ovatus* [44,45]
16	2 (3H)-naphthalene, 4,4a, 5,6-tetrahydro-1,5-diazocine, octahydro-1,5-dinitro-	0.77	Unknown
17	Methyl ester Olf bicyclo[4.3.0] non-1 (6)-en-4,7-dione-8-carboxylic acid	0.40	Unknown
18	Acetic acid, (2-isopropenyl cyclopentylidene)-methyl ester	0.83	Unknown
19	Bicyclo[3.3.1]nona-3,7-diene-2,9-dione, methyl ester	5.66	Unknown
20	4-[(1E)-3-hydroxy-1-propenyl]-2-methoxyphenol	6.25	Unknown
21	2-methyl-5-(4-methylphenyl) tetrazole	1.32	Antimicrobial, antioxidant, anti-inflammatory, analgesic [34]
22	2-hexadecen-1-ol, 3,7,11,15-tetramethyl-[R-[R*, R*: (E)]]-	0.71	Unknown
23	Hexadecanoic acid, methyl ester	1.12	Antimicrobial, anticancer, antiinflammatory, diuretic, cytotoxic, flavoring agents, used in the preparation of vitamins E and K1. It is also a decomposition product of chlorophyll, used in the treatment of arthritis [28,46,47]
24	Hexadecanoic acid, methyl ester	0.29	Perfumes and cosmetics [48]
25	Hexadecanoic acid	2.04	Perfumes, cosmetics, enzyme inhibitors, surfactants, flavoring agents, adhesives and sealant chemicals, agricultural chemicals (non-pestical), fillers, finishing agents, intermediates, lubricants and lubricant additives, surface active agents, antianedrogen flavor, hemolytic, 5-alpha reductase inhibitor [49,50]
26	Octanal, 7-methoxy-3,7-dimethyl-	0.37	Antibacterial, Anti-inflammatory, hypocholesterolemic, cancer preventive, hepatoprotective, nematocide, insectifuge, antihistaminic, anticezemic, antiacne, 5-alpha reductase inhibitor, antianedrogenic, anti-artrhritic, anti coronary, insectifuge [28]
27	9,12,15-octadecatrienoic acid, methyl ester, (Z, Z, Z)-	0.28	Wound healing activity, hemolytic, pesticide, flavor, antioxidant [51]
28	Hexadecanoic acid, 2-hydroxy-1-(hyroxymethyl) ethyl ester	0.62	Hypocholesterolemic, nematocide, anti-arthritis, hepatoprotective, antianedrogenic, hypcholesterolemic, nematocide, 5-alpha reductase inhibitor, anti-histaminic, antianedrogenic insectifuge, anti-eczemic, anti-acne [52]
29	9,12-Octadecadienoic acid (Z, Z)-, 2-hydroxy-1-(hyroxymethyl) ethyl ester	0.30	(Contd...)
Flower ethanolic extract

Elution carried out with n-hexane in 100% concentration eluted nil compound and with n-hexane:ethyl acetate at the ratio 90:10 gives compound 1, but its yield is too less. Ethyl acetate was eluted compound 2 and ethyl acetate:ethanol at 90:10 yielded large quantity of compound 3. The gradient of other residues was yielded mixture of compound which is confirmed by TLC therefore not subjected to further process.

Compound 3F was yielded higher quantity so we took only compound 3F for further structural analysis.

The pure compound 3F was crystalline light brown colored and shiny surface. Further, it was subjected to cNMR, hNMR, IR, and mass spectral analysis and the molecular formula was found to be C_{6}H_{8}O_{4}, molecular weight 144.1253 g/mol, from all these details the compound name was found to be 4H-pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-methyl- (Fig. 3).

Ant-inflammatory activity of different extract of P. crassicaulis

The extracts were tested at three different dose levels to know if they were dose-dependent. From the results obtained, it is revealed

Sl. No	Chemical compound present	Average percentage	Properties of the compound
30	2,6,10,14,18,22-Tetracosahexaene, 2,6,10,15,19,23-hexamethyl-	0.52	Bactericide, antifungal, cytotoxic, antibacterial, antioxidant, antitumor, cancer preventive, immunostimulant, chemopreventive, lipoxygenase-inhibitor, perfumery, pesticide, and sunscreen [53]
31	2-tert-butyl-4,6-bis (3,5-di-tert-butyl-4-hydroxybenzyl) phenol	38.84	Unknown
32	Cyc[tetra[(5-t-butyl-2-hydroxy-1,3-phenylene)methylene]]	15.72	Unknown
33	Stigmast-5-en-3-ol, (3.beta.,24S)-	0.95	Antimicrobial antioxidant, Anti-inflammatory anti-arthritic, anti-asthma, diuretic [54]

GC-MS: Gas chromatography and mass spectroscopy, P. crassicaulis: Pavetta crassicaulis

![Flower ethanolic extract](image)

![Anti-inflammatory activity of different extract of P. crassicaulis](image)
that petroleum ether and chloroform extract did not showed any anti-inflammatory activity against carrageenin-induced rat hind paw edema in all concentrations compared with the control. Leaf ethanolic extract showed appreciable anti-inflammatory in all the concentrations (100, 150, 200, 250, and 500 mg/kg concentration) by ANOVA statistical analysis obtained values were validated, which revealed that the leaf ethanolic extract of *P. crassicaulis* Bremek. was highly significant against carrageenin-induced rat hind paw edema in all concentrations in all the interval time. The leaf ethanolic extract of *P. crassicaulis* Bremek. excellent in reducing edema induced by carrageenan in all the phases. Therefore, leaf ethanolic extract of *P. crassicaulis* Bremek. crude extract definitely possess anti-
Sl. No	Chemical compound present	Average percentage	Properties of the compound
1	2,4-dihydroxy-2,5-dimethyl-3-(2H)-furan-3-one	1.40	Food-grade flavor ingredients [30]
2	1-butanamine, 2-methyl-N-(2-methylbutylidene)-	0.48	Unknown
3	N,N’-Dimethylpiperazine	0.60	Anthelmintics, antiallergen, antibacterial, antihistimic, antiemetic and antimigraine agents, insecticides, accelerators for rubber, urethane catalysts, and antioxidants [55]
4	2,5-dimethyl-4-hydroxy-3 (2H)-furanone	1.99	Food-grade flavor ingredients [31]
5	Acetic acid, 1-(2-methyltetrazol-5-yI) ethenyl ester	2.15	Antiarrhythmia agents, antifungal agents, carminative, antispasmodic, flavoring agents, adhesives, paint additives [56]
6	Butanedioic acid, monomethyl ester	0.90	Beverage industry, primarily as an acidity regulator [57]
7	2-acetyl-2-hydroxy-γ-methylbutanol	0.73	Unknown
8	4H-pyrano-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-	13.82	Mutagen antimicrobial, anti-inflammatory and antioxidant capacity [27-29]
9	Benzonic acid, ammonium salt	1.62	Industrial preservative for paper wrappers, agent for reducing curing time in vulcanization of rubber, expander used for chronic bronchitis, analytical reagent for various elements, urinary anti-infective [58]
10	1,2-Benzenediol	4.33	Flavoring agents, pharmaceuticals and cosmetics, antioxidant, antibacterial [59,60]
11	Benzo(a)anthracene, 2,3-dihydro-	3.50	Toxic [61]
12	2-Furan-carboxaldehyde, 6-(hydroxymethyl)-	6.30	Food industry as flavoring agent [62]
13	1,2,3-Propanetriol, diacetate	3.00	As a sweetener; in the manufacture of dynamite, cosmetics, liquid soaps, candy, liqueurs, inks, and lubricants; to keep fabrics pliable; as a component of antifreeze mixtures; as a source of nutrients for fermentation cultures in the production of antibiotics and in medicine [63]
14	Benzaldehyde, 4-hydroxy-	2.30	Flavor and fragrance agents [37]
15	2-Methoxy-4-vinylphenol	2.58	Flavoring agent, antibacterial activity, anti-inflammatory effect [38, 39, 64]
16	2,4-Dimethyl-3-nitrophenol	0.85	Oils obtained from myrrh and frankincense and parthenium weed have little percentage [42,43]
17	Benzaldehyde, 2-hydroxy-6-methyl-	6.52	Pheromone of the acrid mite Tyrophagus perniciosus and grain mite Aleuroglyphus ovatus [44,45]
18	2-(3H)-naphthalenol, 1,4a, 5,6-tetrahydro-	0.62	Unknown
19	Methyl Ester Of Bicyclo[4.3.0]Non-1 (6)- En-4,7-Diene-8-Carboxylic Acid	4.77	Perfection, flavoring agents [65]
20	Tricyclo[7.1.0.0[1,3]]decan-2-carboxaldehyde	0.88	Causes skin irritation, serious eye irritation, respiratory irritation, herbicides, neuropathic pain [66]
21	Benzaldehyde, 2-methyl-	7.25	Known
22	2,6-dimethyl-4-hydroxybenzaldehyde	2.73	Known
23	4-((1E)-3-Hydroxy-1-propenyl)-2-methoxyphenol	2.47	Antimicrobial, antioxidant, anti-inflammatory, analgesic [34]
24	Neophytadiene	0.62	As additive for liquid cigarette can improve aroma and evaporation rate [67]
25	Hexadecanoic acid, methyl ester	1.11	Antioxidant, hypocholesterolemic, nematicide, pesticide, anti-androgenic flavor, hemolytic, 5-alpha reductase inhibitor, surface active agents, laundry, and dishwashing products [52]
26	N-hexadecanoic acid	3.11	Anti-inflammatory, psychotropic drug, anti-oxidant, hypocholesterolemic, nematicide, pesticide, lubricant, anti-androgenic flavor, hemolytic 5-alpha reductase inhibitor [68]
27	9,12-octadecadienoic acid, methyl ester	1.29	Anti-inflammatory, nematicide, insecticide, hypocholesterolemic, cancer preventive, hepatoprotective, antihistaminic, anti-acne, anti-arithmetic, anti-eczemic, 5-alpha reductase inhibitor, antiantiandrogenic, anticonvulsant [68,69]

(Contd...)
inflammatory secondary metabolites which was reducing the paw edema significantly (Table 4, Figs. 16 and 17).

Anti-inflammatory activity of flower crude extracts

Like leaf ethanolic extract, the flower ethanolic extract also showed appreciated effect in suppressing inflammation. Here, also petroleum ether and chloroform showed nil effect on the tested animals in suppressing inflammation. The activity is dose dependent and in all the concentrations (100, 150, 200, 250, and 500 mg/kg concentration), the ethanolic flower extract showed excellent activity which is revealed statistically through one-way ANOVA. By this, it is proved that ethanolic leaves extract having some metabolite responsible for its anti-inflammatory activity (Table 5, Figs. 18 and 19).

Percentage of inflammation inhibition of all leaf extracts

The percentage of inflammation inhibition of the petroleum ether and chloroform leaf crude extracts were initially showed negative values (0–1 h) after the initial hours (2–4 h), these extracts also showed positive results with little inflammation inhibition at final hour (6 h).

The ethanolic crude extract showed excellent results in all the time intervals, in all the concentrations (100, 150, 200, 250, and 500 mg/kg). In all the crude extracts, ethanolic extract has excellent inflammation inhibition activity, much higher than other extracts.

Table 3: (Continued)

Sl. No	Chemical compound present	Average percentage	Properties of the compound
28	9,12,15-octadecatrienoic acid, methyl ester, (Z, Z, Z)-	2.38	Anti-inflammatory, insectifuge, hypocholesterolemic, cancer preventive, nematicide, hepatoprotective, insectifuge, anti-histaminic, anti-eczemic, anti-acne, 5-alpha reductase inhibitor, anti-androgenic, anti-arthritic, anti-coronary [68]
29	Alpha-D-glucopyranose, 4-O-, beta-D-galactopyranosyl	3.95	Indicator carbohydrate for intestinal permeability in Crohn’s disease and malabsorption syndrome [70]
30	2,2-Dimethyl-3-[3-methyl-5-(phenylthio)pent-3-enyl] oxirane	1.06	Unknown
31	Benzoyl beta-D-glucoside	2.13	Unknown
32	Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester	2.57	Wound healing activity, hemolytic, pesticide, flavor, antioxidant [51]
33	9,12-octadecadienoic acid (Z, Z)-, 2-hydroxy-1-(hydroxymethyl) ethyl ester	2.75	Component of cigarette smoke, hypocholesterolemic, nematicide, anti-arthritic, hepatoprotective, anti-androgenic, hypocholesterolemic 5-alpha reductase inhibitor, anti-histaminic, anticonamy, insectifuge, anti-eczemic, anti-acne [53]
34	cis, cis, cis-7,10,13-hexadecatrienal	1.34	Bactericde, antifungal, cytotoxic, antibacterial, antioxidant, antitumor, cancer preventive, immunostimulant, chemopreventive, lipoxygenase inhibitor, perfumery, pesticide, and sunscreen [53]
35	2,6,10,14,18,22-tetracosahexaene, 2,6,10,15,19,23-hexamethyl-	0.56	Drug delivery mediums for topical and oral pharmaceuticals, organic application mediums for cosmetics, cleaning materials for art conservation, as delivery mediums and/or nutrients in nutraceuticals (vitamins and supplements), particles in personal care products (shampoo, conditioner, soap, toothpaste, etc., as a crystalline fat alternative in food processing [71]
36	Hexatriacontane	0.80	Campesterol is also sometimes used to treat some specific prostate conditions, used in nutrient medicines such as nutrients, body building supplements, and food additive [72]
37	Campesterol	0.80	Drug delivery mediums for topical and oral pharmaceuticals, organic application mediums for cosmetics, cleaning materials for art conservation, as delivery mediums and/or nutrients in nutraceuticals (vitamins and supplements), particles in personal care products (shampoo, conditioner, soap, toothpaste, etc., as a crystalline fat alternative in food processing [71]
38	Stignasterol	0.62	Drug delivery mediums for topical and oral pharmaceuticals, organic application mediums for cosmetics, cleaning materials for art conservation, as delivery mediums and/or nutrients in nutraceuticals (vitamins and supplements), particles in personal care products (shampoo, conditioner, soap, toothpaste, etc., as a crystalline fat alternative in food processing [71]
39	Beta-Sitosterol	3.10	Drug delivery mediums for topical and oral pharmaceuticals, organic application mediums for cosmetics, cleaning materials for art conservation, as delivery mediums and/or nutrients in nutraceuticals (vitamins and supplements), particles in personal care products (shampoo, conditioner, soap, toothpaste, etc., as a crystalline fat alternative in food processing [71]
suppression activity and rest of the extracts has negligible inflammation suppression (Table 6, Figs. 20 and 21).

Percentage of inflammation inhibition of all flower extracts

For initial hours, petroleum ether and chloroform flower extracts were showed negative values (0–1 h) after that (2–4 h) petroleum ether and chloroform extracts also showed positive results with little inflammation inhibition. The flower ethanolic extract showed appreciable inflammation suppression activity in all the time intervals, in all the concentrations (100, 150, 200, 250, and 500 mg/kg) (Table 7, Figs. 22 and 23).

Anti-inflammatory activity of pure compound 2-tert-butyl-4,6-bis(3,5-di-tert-butyl-4-hydroxybenzyl)phenol

The pure compound “2-tert-butyl-4,6-bis(3,5-di-tert-butyl-4-hydroxybenzyl)phenol” (10 mg/kg) which is extracted from ethanolic leaf crude extract of *P. crassicaulis* Bremek. has excellent anti-inflammatory activity which is almost equal to the standard diclofenac (10 mg/kg) used in all the intervals of time. By statistical tool ANOVA, it is revealed that the activity showed by the pure compound which is equivalent to the standard used (Table 4 and Figs. 17, 20, 21).
Fig. 11: 2-tert-butyl-4,6-bis(3,5-di-tert-butyl-4-hydroxybenzyl)phenol – mass spectrum

Fig. 12: 4H-pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-methyl-\(^1\)HNMR spectrum

Fig. 13: 4H-pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-methyl-\(^13\)C NMR spectrum

Fig. 14: 4H-pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-methyl- infrared spectrum
Fig. 15: 4H-pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-methyl- mass spectrum

Table 4: Anti-inflammatory activity of different solvent extracts of P. crassicaulis Bremek leaf and its pure compound at different time intervals

Extracts/pure compound/standard drug/control	Dose mg/kg	Time in hours/paw volume (ml)				
		0 h	1 h	2 h	4 h	6 h
Petroleum ether						
100	2.95±0.05	2.64±0.01	2.5±0.07	2.38±0.01	2.37±0.01	
150	2.86±0.03	2.59±0.07	2.47±0.01	2.25±0.04	2.23±0.04	
200	2.78±0.02	2.55±0.05	2.43±0.04	2.17±0.01	2.17±0.01	
250	2.75±0.05	2.48±0.06	2.4±0	2.02±0.02	2.06±0.01	
500	2.71±0.04	2.38±0.06	2.38±0.01	1.98±0	1.95±0.04	
Chloroform						
100	2.77±0.05	2.57±0.04	2.52±0.02	2.4±0.05	2.52±0.05	
150	2.74±0.05	2.46±0.09	2.47±0.01	2.46±0	2.46±0	
200	2.62±0.01	2.44±0.04	2.43±0.02	2.44±0.04	2.42±0.05	
250	2.58±0.05	2.42±0.01	2.40±0.03	2.42±0.01	2.34±0.02	
500	2.49±0.09	2.33±0.04	2.38±0	2.4±0.02	2.3±0.09	
Ethanolic extract						
100	1.11±0.08***	1.49±0.09***	1.23±0.01***	1.13±0.01***	1.12±0.03***	
150	0.85±0.03***	1.06±0.04***	1.02±0.05***	0.99±0.01***	1.07±0.02***	
200	0.71±0.03***	0.95±0.05***	0.97±0.01***	0.83±0.03***	0.92±0.05***	
250	0.59±0.05***	0.85±0.02***	0.80±0.06***	0.69±0.01***	0.86±0.04***	
500	0.5±0.09***	0.7±0.08***	0.75±0.04***	0.62±0.02***	0.72±0.02***	
Standard diclofenac sodium	10	0.46±0.02***	0.65±0.03***	0.62±0.03***	0.65±0.03***	0.55±0.03***
2-tert-butyl-4,6-bis	10	0.39±0.005***	0.67±0.02***	0.67±0.02***	0.67±0.02***	0.59±0.07***
(3,5-di-tert- butyl-4-hydroxybenzyl) phenol						
Control	-	2.15±0.02	2.33±0.02	2.65±0.01	2.68±0.06	2.55±0.1

The data are presented as mean±SEM, n=6. Statistical analysis were performed using one-way analysis of variance (ANOVA), followed by Dunnet’s multiple comparison test. Levels of significance: *p=0.05, **p<0.01, ***p<0.001 compared to control group. SEM: Standard error of the mean, P. crassicaulis: Pavetta crassicaulis

Table 5: Anti-inflammatory activity of different solvent extracts of P. crassicaulis Bremek flower and its pure compound at different time intervals

Extracts/pure compound/standard drug/control	Dose mg/kg	Time in hours/paw volume (ml)				
		0 h	1 h	2 h	4 h	6 h
Petroleum ether						
100	2.6±0	2.58±0.01	2.45±0.01	2.38±0.01	2.32±0.01	
150	2.54±0.02	2.51±0	2.39±0.01	2.31±0.01	2.26±0.01	
200	2.42±0	2.46±0.01	2.32±0.01	2.24±0.02	2.19±0	
250	2.34±0.01	2.39±0	2.26±0	2.19±0	2.07±0.01	
500	2.27±0	2.36±0	2.2±0	2.05±0.03	1.97±0.01	
Chloroform						
100	2.64±0.01	2.54±0.01	2.46±0	2.34±0.02	2.28±0.01	
150	2.54±0	2.47±0.01	2.39±0	2.25±0	2.16±0.01	
200	2.46±0	2.41±0	2.34±0	2.16±0.02	2.08±0	
250	2.35±0	2.38±0	2.27±0	2.04±0.01	1.94±0.01	
500	2.27±0	2.31±0	2.21±0	1.99±0	1.83±0.02	
Ethanolic extract						
100	1.87±0.01***	1.66±0.02***	1.37±0.01***	1.22±0.01***	1.11±0.01***	
150	1.75±0.01***	1.46±0.02***	1.27±0.01***	1.1±0.00***	1.04±0.03***	
200	1.67±0.01***	1.40±0.33***	1.19±0.01***	0.93±0.02***	0.88±0.05***	
250	1.53±0.34***	1.33±0.33***	0.86±0.06***	0.85±0.02***	0.8±0.05***	
500	1.46±0.01***	1.24±0.35***	0.86±0.01***	0.72±0.01***	0.71±0.03***	
Standard diclofenac sodium	10	0.76±0.01***	0.65±0.02***	0.56±0.01***	0.55±0.01***	0.52±0.06***
2-tert-butyl-4,6-bis	10	0.80±0.04***	0.67±0.01***	0.62±0.03***	0.59±0.03***	0.6±0.06***
Control	-	2.15±0.01	2.33±0.01	2.65±0	2.68±0.03	2.55±0.06

The data are presented as mean±SEM, n=6. Statistical analysis were performed using one-way analysis of variance (ANOVA), followed by Dunnet's multiple comparison test. Levels of significance: *p=0.05, **p<0.01, ***p<0.001 compared to control group. SEM: Standard error of the mean, P. crassicaulis: Pavetta crassicaulis
Table 6: Percentage of edema inhibition of different solvent extracts of *P. crassicaulis* Bremek. leaf and its pure compound at different time intervals

Extracts/pure compound/standard drug/control	Dose mg/kg	Time in hours/percentage of inhibition of paw edema				
	0 h	1 h	2 h	4 h	6 h	
Petroleum ether	100	-37.2	-13.3	4.94	11.19	7.05
	150	-33.02	-11.15	6.08	16.04	12.54
	200	-29.3	-9.44	7.6	19.02	14.9
	250	-27.9	-6.43	8.74	24.25	19.21
	500	-26.04	-2.14	9.5	26.11	23.52
Chloroform	100	-28.83	-10.3	4.18	7.46	1.17
	150	-27.44	-5.57	6.08	8.2	3.52
	200	-21.86	-4.72	7.6	8.95	5.09
	250	-20	-3.86	8.74	9.7	8.23
	500	-15.81	0	9.5	10.44	9.8
Ethanolic extract	100	48.37	36.05	53.23	57.83	56.07
	150	60.46	54.5	61.21	63.05	58.03
	200	66.97	59.22	63.11	69.02	63.92
	250	72.55	63.51	69.58	74.25	66.27
	500	76.74	69.52	71.48	76.86	71.76
Standard diclofenac sodium	10	78.6	72.1	76.42	75.74	78.43
2-tert-butyl-4,6-bis (3,5-di-tert-butyl-4-hydroxybenzyl) phenol	10	81.86	71.24	74.52	75	76.86
Control	-	0	0	0	0	0

Percentage of inhibition was calculated [25] with the formula \(\%\) inhibition of edema = \((Vc-Vt)/Vc\times100\). Vc=mean paw volume of test group. Vt=mean paw volume of control group. *P. crassicaulis*: Pavetta crassicaulis

Fig. 16: (a-e) Anti-inflammatory activity of different solvent extracts of *Pavetta crassicaulis* Bremek. leaf compared with the control at different time intervals

Fig. 17: (a-b) Anti-inflammatory activity of *Pavetta crassicaulis* Bremek. leaf ethanolic extracts and its pure compound compared with standard and control at different time intervals
Fig. 18: (a-e) Anti-inflammatory activity of different solvent extracts of *Pavetta crassicaulis* Bremek. flower compared with the control at different time intervals.

Fig. 19: (a-b) Anti-inflammatory activity of *Pavetta crassicaulis* Bremek. flower ethanolic extracts and its pure compound compared with standard and control at different time intervals.

Fig. 20: Inflammation suppression in rats after treating leaf ethanolic extracts and its pure compound at different time intervals at different concentrations.
The pure compound 2-tert-butyl-4,6-bis(3,5-di-tert-butyl-4-hydroxybenzyl)phenol (10 mg/kg) has showed excellent percentage of inflammation inhibition almost equal to the standard diclofenac (10 mg/kg) used in all the intervals of time (Table 6 and Figs. 17, 20, 21).

The pure compound 4H-pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-methyl- (10 mg/kg) which is extracted from ethanolic flower crude extract of *P. crassicaulis* Bremek. has excellent anti-inflammatory activity equal to the standard diclofenac (10 mg/kg) used in all the intervals of time. By statistical tool ANOVA, it is revealed that the activity showed by the pure compound which is equivalent to the standard used. The results obtained once again withstand the positive activity of the pure compound which was previously tested for its anti-inflammatory activity [27-29] (Table 5 and Figs. 19, 22, 23).

DISCUSSION

Preliminary quantitative phytochemical analysis of *P. crassicaulis* Bremek. leaf petroleum ether, chloroform crude extracts showed negative results for all the tested phytochemicals aqueous extract gives positive results for saponins and glycosides, but the ethanolic crude extract gives positive confirmation test for saponins, tannins, flavanoids, steroids/sterols, glycosides, and phenols.

Preliminary quantitative phytochemical analysis of *P. crassicaulis* Bremek. flower petroleum ether, chloroform crude extracts showed negative results for all the tested phytochemicals aqueous extract.
Asian J Pharm Clin Res, Vol 11, Issue 9, 2018, 72-90
Ashwathanarayana and Naika

Table 7: Percentage of edema inhibition of different solvent extracts of *P. crassicaulis* Bremek. flower and its pure compound at different time intervals

Extracts/pure compound/standard drug/control	Dose mg/kg	Time in hours/percentage of inhibition of paw edema				
	0 h	1 h	2 h	4 h	6 h	
Petroleum ether	100	-21.39	-10.72	7.54	9.01	11.19
	150	-18.13	-7.72	9.81	11.37	13.8
	200	-12.55	-5.57	12.45	14.11	16.41
	250	-8.83	-2.57	14.71	18.82	18.28
	500	-5.58	-1.28	16.98	22.74	23.45
Chloroform	100	-22.79	-9.01	7.16	10.58	12.68
	150	-18.13	-6	9.81	15.29	16.04
	200	-14.41	-3.43	11.69	18.43	19.4
	250	-9.3	-2.14	14.33	23.92	23.88
	500	-5.58	0.85	16.6	28.23	25.74
Ethanolic extract	100	13.02	28.75	48.3	56.47	54.47
	150	18.6	37.33	52.07	59.21	58.95
	200	22.32	68.66	55.09	65.49	65.29
	250	28.83	42.91	67.54	68.62	68.28
	500	32.09	46.78	67.54	72.15	73.13
Standard diclofenac sodium	10	64.65	72.1	78.76	79.76	79.47
4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-	10	59.06	71.24	76.6	76.47	77.98
Control	-	0	0	0	0	0

Percentage of inhibition was calculated [25] with the formula % inhibition of edema = (Vc–Vt)/Vc×100. Vt=mean paw volume of test group. Vc=mean paw volume of control group.

Leaf ethanolic crude extract was subjected to GC-MS revealed the presence of 33 compounds (Table 2 and Fig. 2) Among all the confirmed phytochemicals, 21 compounds reported for many medicinal and pharmacological properties and 12 compounds activity was not reported. All the other phyto compounds such as Bicyclo[3.3.1]nona-3,7-diene-2,9-dione (6.22%), Methyl Ester Of Bicyclo[4.3.0]Non-1(6)-En-4,7-Diene-6-[trichloromethyl]-2-pyrimidine (1.14%), 2-Methoxy-4-vinylphenol (1.14%), 2-(3H)-Naphthalenone, 4,4a,5,6-tetrahydro- [0.77%], 2,4-Dimethyl-3-nitrobicyclo[3.2.1]octan-8-one (0.96%), Stigmast-5-en-3-ol, (3.beta.,24S)- (0.95%), 2-Hexadecanol, 2-hydroxy-1-(hydroxymethyl)ethyl ester (0.62%), 2,5-dimethyl-
4-hydroxy-3(2H)-furanone (0.52%), 2,6,10,15,19,23-hexamethyl-2,6,10,15,19,23-hexamethylen-1,5-dinitro- (0.4%), Phenol, 2-methoxy-4-(2-propenyl)- (0.39%), Octanal, 7-methoxy-3,7-dimethyl- (0.37%), 9,12-Octadecadienoic acid (ZZ)-, 2-hydroxy-1-(0.3%), Hexadecanoic acid, methyl ester (0.29%), 9,12,15-Octadecatrienoic acid, methyl ester, (Z,Z,Z)- (0.28%) were present in a meager percentage have reported for many medical as well as pharmacological properties (Table 2 and Fig. 2).

Flower ethanolic crude extract was subjected to GC-MS revealed the presence of 39 compounds (Table 3 and Fig. 5). Among all the confirmed phytochemicals, 31 compounds reported for many medicinal and pharmacological properties and 8 compounds activity was not reported.

Among the phytochemicals present in the flower ethanolic extract, 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- (13.82%), Benzaldehyde, 2-methyl- (7.25%), Benzaldehyde, 2-methyl-6 hydroxy (6.52%), 2-Furancarboxaldehyde, 5-(hydroxymethyl)- (6.3%) were the major compounds. The major compound 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-was previously report for its antioxidant and other pharmacological properties [27-29]. Benzaldehyde, 2-methyl-, Benzaldehyde, 2-methyl- 6 hydroxy, 2-Furancarboxaldehyde, 5-(hydroxymethyl)- were commonly used in food and perfume industry as a flavoring agent [44,45,62].

The rest of the compound present in the GC-MS analysis of flower ethanolic extract was Methyl Ester Of Bicyclo[4.3.0]Non-1(6)-En-4,7-Dione-8- (4.77%), 1,2-Benzenedioli (4.33%), Alpha-D-Glucopyranose, 4-O-beta-D-galactopyranosyl (3.95%), Benzofuran, 2,3-dihydro- (3.5%), N-Hexadecanoic Acid (3.11%), Beta-Sitosterol (3.1%), 1,2,3-Propanetriol, diacetate (3%), 9,12-Octadecadienoic acid (ZZ)-, 2-hydroxy-1- (2.75%), 2,6-Dimethyl-4-hydroxybenzaldehyde (2.73%), 2-Methoxy-4-vinylphenol (2.58%), Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester (2.57%), 4-((1E)-3-Hydroxy-1-propenyl)-2-methoxyphenol (2.57%), 9,12,15-Octadecatrienoic acid, methyl ester, (Z,Z,Z)- (2.38%), Benzaldehyde, 4-hydroxy- (2.3%), Acetic acid, 1-(2-methylytetrazol-5-yl)ethyl ester (2.15%), Benzoyl beta-D-glucoside (2.13%), 2,5-Dimethyl-4-Hydroxy-3(2H)-furanone (1.99%), Benzoic acid, ammonium salt (1.62%), 2,4-Dihydroxy-2,5-dimethyl-3(2H)-furan-3-one (1.4%), cis,cis,cis-7,10,13-Hexadecatrienal (1.34%), 9,12-Octadecadienoic acid, methyl ester (1.29%), Hexadecanoic acid, methyl ester (1.11%), 2,2-Dimethyl-3-[3-methyl-5-(phenylthio)pent-3-yl]oxirane (1.06%), Butanedioic acid, monomethyl ester (0.9%), Tricyclo[7.1.0.0[1,3]]decane-2-carboxaldehyde...
The pure compounds showed excellent inflammation suppression activity in that, 2-tert-butyl-4,6-bis(3,5-di-tert-butyl-4-hydroxybenzyl)phenol showed 75.88% average edema suppression and 4H-Pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-methyl- showed excellent anti-inflammation activity which is almost equal to the 75.94% average edema suppression.

Some of the researchers used different methods of anti-inflammatory activity such as croton oil-induced ear edema in rats [80,81], protein denaturation bioassay [82-86], membrane stabilization assay using human red blood cell [87,88], but most of the researchers followed carrageenan-induced rat paw edema [89-93] to evaluated anti-inflammatory activity.

The results obtained from the above experiments, the ethanolic leaf and flower extracts of *P. crassicaulis* Bremek. showed excellent inflammation suppression activity, in that leaf ethanolic extract showed good inflammation suppression compared with the flower ethanolic extract. GC-MS analysis of both ethanolic crude extracts revealed the presence of 33 compounds, respectively, in that major compounds were 2-Tert-Butyl-4,6-Bis(3,5-Di-Tert-Butyl-4-Hydroxybenzyl)Phenol (38.84%) and 4H-Pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-methyl- (13.82%) respectively.

The pure compound 2-tert-butyl-4,6-bis(3,5-di-tert-butyl-4-hydroxybenzyl)phenol and 4H-pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-methyl- showed excellent anti-inflammation activity almost comparable to the standard diclofenac employed.

The pure compound extracted from flower ethanolic extract 4H-pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-methyl- was previously confirmed for its positive inflammation suppression activity and the pure compound extracted from leaf ethanolic extract 2-tert-butyl-4,6-bis(3,5-di-tert-butyl-4-hydroxybenzyl)phenol is the new report in anti-inflammatory activity.

2-tert-butyl-4,6-bis(3,5-di-tert-butyl-4-hydroxybenzyl)phenol isolated from leaf is excellent inflammation suppressor in compared with the 4H-pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-methyl- extracted from flower ethanolic extract and the crude extracts were also showed the same activity which was also influence by the quantity of compound present in both ethanolic extracts (2-tert-butyl-4,6-bis(3,5-di-tert-butyl-4-hydroxybenzyl)phenol - 38.84%) and 4H-pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-methyl- (13.82%) in GC-MS analysis.

In the crude extracts minor compound in little quantity may also influence the activity. If major compound confirms the positive effect, then its influence is more in the activity. In our experiments, both the extracted pure compound showed positive effect in suppressing inflammation.

After administration of crude extracts in tested animals were showed effective in suppressing the inflammation from 0 h and in next successive hours, these extracts maintain its effectiveness till the last testing hour (6 h).

CONCLUSION

The present study shows that the leaf and flower ethanolic crude extracts have remarkable anti-inflammatory activity compared to both petroleum ether and chloroform extracts. The pure compound 2-tert-butyl-4,6-bis(3,5-di-tert-butyl-4-hydroxybenzyl)phenol extracted from leaf ethanolic crude extract and 4H-pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-methyl- extracted from flower ethanolic extract has excellent anti-inflammatory activity which is almost equal to the standards diclofenac sodium used. These results confirm positive activity of the plant as therapeutic agent in tribal medicine. Thus, *P. crassicaulis* Bremek. leaf and flower parts could be exploited as a valuable source of anti-inflammatory agent for the pharmaceutical industry.

ACKNOWLEDGMENT

The authors would like to thank Prof. Shannmukh I, HOD, Department of Pharmacy, SCS College of Pharmacy, Harapanahalli, Davanagere, Karnataka, for providing facilities to conduct our experimental work.

AUTHOR’S CONTRIBUTIONS

Ashwathanarayana R has collected the data, conducted the experiment, and drafted the article. Dr. Raja Naika, professor, has supervised the experiment and reviewed the article.

CONFLICT OF INTEREST

None.

REFERENCES

1. Mhaskar KS, Blatter E, Caius JF. In: Kirtikar and Basu’s Illustrated Indian Medicinal Plants Their Usage in Ayurveda and Unani Medicine. Vol. 3. Delhi: Shri Satguru Publication; 2000. p. 656-9.
2. Chopra RN, Nayar SL, Chopra IC. Glossary of Indian Medicinal Plants (Publication and Information Directorate: New Delhi: Council of Scientific and Industrial Research; 1956. p. 256-7.
3. Rabe T, Staden JV. Antibacterial activity of South African plants used for medicinal purposes. J Ethnopharmacol 1997;56:81-7.
4. Kamboj VP. Herbal medicine. Curr Sci 2000;78:10.
5. Wikipedia-Western Ghats. Available from: https://en.wikipedia.org/wiki/Western_Ghats.
6. Manikandan R, Lakshminarasimhan P. Flowering plants of Rajiv Gandhi (Nagarahole) national park, Karnataka, India. Check List 2012;8:1052-84.
7. Jayant K, Mehta P. A study of status, distribution, and dynamics of private and community forests in Sahyadri-Konkan corridor of Maharashtra Western ghats. Technical Report Submitted to CEFP-ATREE. Pune: Wildlife Research and Conservation Society; 2013. p. 161-3.
8. Bhise MR, Rahangdale SS, Rahangdale SR, Kambhar SV. Floristic study of kalbhairavanatha sacred grove, Terungan, Ambegaon Taluka, Pune. Res Rev J Bot 2013;2:17-24.
9. Roy PS, Kushwaha SP, Murthy MS, Kushwaha D, Reddy CS, Behera MD, et al. Biodiversity Characterization at Landscape Level: National Assessment. Dehradun, India: Indian Institute of Remote Sensing (IRS); 2012. p. 140.
10. Faude U. Human Induced Fragment Formation and Vascular Plants Species Diversity: A Case Study of Satkosia Gorge Wildlife Sanctuary and its Surroundings, Orissa, India, Department of Geography of the Rheinische Friedrich-Wilhelms-University. Bonn, Germany: Foundation for Ecological Security; 2008. p. 52-64.
11. Trivedi PC. Medicinal plants utilization and conservation. In: Silori CS, Dixit, AM, Gupta L, Mistry N, editors. Observations on Medicinal Plant Richness and Associated Conservation Issues in District Kachchh, Gujarat. 2nd ed. Jaipur, India: Aavishkar Publishers; 2009. p. 165.
12. Singh P, Ali SJ. Ethno medicinal plants of family Rubiaceae of eastern Uttar Pradesh. Indian J Life Sci 2012;1:83-6.
13. Mishra MK. Biodiversity, traditional knowledge and village ecosystem sustainability. Ecoscan 2013;3:235-40.
14. Ayurvedic Plants Database of Chhattisgarh, India. Available from: http://www.pankajoudhia.com/mpd.pdf.
15. Kar A, Bora D, Borthakur SK, Goswami NK, Saharia, D. Wild edible plant resources used by the Mizos of Mizoram, India. Kathmandu Univ J Sci Eng Technol 2013;9:106-26.
16. Kantamreddi VS, Lakshmi VN, Kasapu VV. Preliminary phytochemical analysis of some important Indian plant species. Int J Pharm BioSci 2010;1:351-8.
17. Ashwathanarayana R, Naika R. Preliminary phytochemical and antimicrobial properties of Pavetta crassicaulis Bremek. flower extracts collected from Western Ghats, Karnataka, India. J Pharmacogn Phytochem 2016;5:236-62.

18. De Castro MD, García-Ayuso LE. Soxhlet extraction of solid materials: An outdated technique with a promising innovative future. Anal Chim Acta 1998;369:1.

19. Ajayeebo EO. Phytochemical and antimicrobial studies of Gynandropsis gynandra and Buchholzia coriacea extracts. Afr J Biomed Res 2000;3:161-5.

20. Harborne JB. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. 3rd ed. New York: Chapman and Hall Co.; 1998. p. 1-302.

21. Harborne JB. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. London: Chapman and Hall Ltd.; 1973. p. 49-188.

22. Tsweet M. Adsorption analysis and chromatographic method. Application to the chemistry of chlorophyll. Ber Deutsch Botanischen Ges 1906;24:384-93.

23. Winter CA, Risley EA, Nuss GW. Carrageenan-induced oedema in the hind paw of rat as an assay for anti-inflammatory activity. Prog Exp Biol Ther 1962;111:544-7.

24. Adeyemi OO, Okpo SO, Ogunti OO. Analgesic and anti-inflammatory effect of the aqueous extract of leaves of Persea americana Mill (Lauraceae). Fittopatia 2002;73:375-80.

25. Bamgbose SO, Noaransi BK. Studies on cryptopine II: Inhibition of carrageenan induced oedema by cryptopine. Planta Med 1981;41:392-6.

26. Duffy JC, Dearden JC, Rostron C. Design, synthesis and biological testing of a novel series of anti-inflammatory drugs. J Pharm Pharmacol 2001;53:1505-14.

27. Hiramoto K, Nasahara A, Michikoshi K, Kato T, Kikugawa K. DNA strand-breaking activity and mutagenicity of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP), a Maillard reaction product of glucose and glycine. Mutat Res Genet Toxicol Environ Mutagen 1997;395:47-56.

28. Kumar PP, Kumaravel S, Lalitha C. Screening of antioxidant activity, and potential anticaancer activities of essential oils obtained from myrrh and frankincense. Oncol Lett 2013;6:1140-6.

29. Hussain N, Abbasi T, Abbasi SA. Transformation of the perrinicos and toxic weed parthenium into an organic fertilizer by vermicomposting. Int J Environ Stud 2017;73:615-45.

30. Leal WS, Nakano Y, Kusumahara Y, Nakao H, Suzuki T. Pheromone study of acarid mites XVII: Identification of 2-hydroxy-6-methyl benzaldehyde as the alarm pheromone of the acarid mite Tyrophagus putrescinos (Acarina: Acaridae), and its distribution among related mites. Appl Entomol Zool 1988;23:422-7.

31. Kusumahara Y, Sato M, Koshi T, Suzuki T. Chemical ecology of astigmatid mites XXXII. 2-hydroxy-6-methyl-benzaldehyde, the sex pheromone of the brown-legged grain mite Aegyptius ovatus (TROPEEAU (Acarina: Acaridae). Appl Entomol Zool 1992;27:253-60.

32. Pubchem - A Database of Chemicalmolecules and their Activities against Biological Assays, Maintained by the National Center for Biotechnology Information (NCBI): Home Page - Compound Name and Search Page - Hexadecanoic Acid. Available from: https://www.pubchem.ncbi.nlm.nih.gov/compound/hexadecanoic_acid.

33. Olofsson P, Holmberg J, Tordsson J, Liu S, Åkerström B, Holmdahl R. Positional identification of Ncf1 as a gene that regulates arthritis severity in rats. Nat Genet 2003;33:25-32.

34. Pubchem - A Database of Chemicalmolecules and their Activities against Biological Assays, Maintained by the National Center for Biotechnology Information (NCBI): Home Page - Compound Name and Search Page - 2-Butanone. Available from: https://www.pubchem.ncbi.nlm.nih.gov/compound/2-butanone.

35. Gopalakrishnan S, Vadivel E. GC-MS analysis of some bioactive constituents of Massandra frondosa Linnt. Int J Pharm Sci Techonol 2015;4:1-9.

36. Pubchem - A Database of Chemicalmolecules and their Activities against Biological Assays, Maintained by the National Center for Biotechnology Information (NCBI): Home Page - Compound Name and Search Page - 2,3-Dihydrobenzozenfurzan. Available from: https://www.pubchem.ncbi.nlm.nih.gov/compound/2,3-dihydrobenzozenfurzan.

37. Gopakumar R, Panicker R, Ramamurthi S, Murali TV. GC-MS analysis of some bioactive compounds from Aesculus indica Linn. J Ethnopharmacol 2002;79:181-7.

38. Pubchem - A Database of Chemicalmolecules and their Activities against Biological Assays, Maintained by the National Center for Biotechnology Information (NCBI): Home Page - Compound Name and Search Page - 2-Methyl-4-vinylphenol. Available from: http://www.pubchem.ncbi.nlm.nih.gov/compound/2-methyl-4-vinylphenol.

39. Jeong JB, Hong SC, Jeong HJ, Koo JS. Anti-inflammatory effect of 2-methoxy-4-vinylphenol via the suppression of NF-κB and MAPK activation, and acetylation of histone H3. Arch Pharm Res 2011;34:2109.

40. Silici S, Kultica S. Chemical composition and antibacterial activity of propolis collected by three different races of honeybees in the same region. J Ethnopharmacol 2005;99:69-73.

41. Pubchem - A Database of Chemicalmolecules and their Activities against Biological Assays, Maintained by the National Center for Biotechnology Information (NCBI): Home Page - Compound Name and Search Page - 2-Octyloxybenzoic Acid. Available from: https://www.pubchem.ncbi.nlm.nih.gov/compound/2-octyloxybenzoic_acid.

42. Kabuto H, Tada MM, Kohno M. Eugenol [2-methoxy-4-(2-propenyl) phenol] prevents 6-hydroxydopamine- induced dopamine depression and lipid peroxidation inactivity in mouse striatum. Biol Pharm Bull 2007;30:423-7.

43. Chen Y, Zhou C, Ge Z, Liu Y, Lu Y, Feng W, et al. Composition and potential anticaancer activities of essential oils obtained from myrrh and frankincense. Oncol Lett 2013;6:1140-6.

44. Hussain N, Abbasi T, Abbasi SA. Transformation of the perrinicos and toxic weed parthenium into an organic fertilizer by vermicomposting. Int J Environ Stud 2017;73:615-45.

45. Leal WS, Nakano Y, Kusumahara Y, Nakao H, Suzuki T. Pheromone study of acarid mites XVII: Identification of 2-hydroxy-6-methyl benzaldehyde as the alarm pheromone of the acarid mite Tyrophagus putrescinos (Acarina: Acaridae), and its distribution among related mites. Appl Entomol Zool 1988;23:422-7.

46. Kusumahara Y, Sato M, Koshi T, Suzuki T. Chemical ecology of astigmatid mites XXXII. 2-hydroxy-6-methyl-benzaldehyde, the sex pheromone of the brown-legged grain mite Aegyptius ovatus (TROPEEAU (Acarina: Acaridae). Appl Entomol Zool 1992;27:253-60.

47. Pubchem - A Database of Chemicalmolecules and their Activities against Biological Assays, Maintained by the National Center for Biotechnology Information (NCBI): Home Page - Compound Name and Search Page - 2-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, [R-[R*,R*]-] (E)-. Available from: https://www.pubchem.ncbi.nlm.nih.gov/compound/5366244.

48. Hofbauer H, Tordsson J, Liu S, Åkerström B, Holmdahl R. Positional identification of Ncf1 as a gene that regulates arthritis severity in rats. Nat Genet 2003;33:25-32.

49. Pubchem - A Database of Chemicalmolecules and their Activities against Biological Assays, Maintained by the National Center for Biotechnology Information (NCBI): Home Page - Compound Name and Search Page - 2,3-Dihydrobenzozenfurzan. Available from: https://www.pubchem.ncbi.nlm.nih.gov/compound/2,3-dihydrobenzozenfurzan.

50. Gopakumar R, Panicker R, Ramamurthi S, Murali TV. GC-MS analysis of some bioactive compounds from Aesculus indica Linn. J Ethnopharmacol 2002;79:181-7.

51. Jananie RK, Priya V, Vijayalakshmi K. Determination of bioactive compounds of Cyanodon dactylon by GC-MS analysis. N Y Sci J 2011;14:16-20.

52. Sudha T, Chidambarampillai S, Mohan VR. GC-MS analysis of bioactive components of aerial parts of Fluggea leucopyrus. J Sci Eng Technol 2015;4:20-20.

53. Mukherjee B, Bajpai P, Pathak N. Phytochemical evaluation, antimicrobial activity and determination of bioactive components from leaves of Baliospermum montanum (Wild.) Muell. Arg. Int J Innov Res Sci Eng Technol 2015;4:1-9.

54. Pubchem - A Database of Chemicalmolecules and their Activities against Biological Assays, Maintained by the National Center for Biotechnology Information (NCBI): Home Page - Compound Name and Search Page - 2-Octyloxybenzoic Acid. Available from: https://www.pubchem.ncbi.nlm.nih.gov/compound/2-octyloxybenzoic_acid.

55. Yff BT, Lindseya KL, Taylor MB, Erasmus DG, Jäger AK. The pharmacological screening of Pentanisia prunelloides and the isolation of the antibacterial compound palmitic acid. J Ethnopharmacol 2002;79:101-7.

56. Granavel V, Sara AM. GC-MS analysis of petroleum ether and ethanol leaf extracts from Abrus precatorius LINN. Int J Pharm BioSci 2013;4:37-44.

57. Ashwathanarayana and Naika Asian J Pharm Clin Res, Vol 11, Issue 9, 2018, 72-90
Biototechnology Information (NCBI): Home Page - Compound Name and Search Page - Acetic Acid, 1-(2-methyltetrazol-5-yl) Ethyl Ester. Available from: https://www.pubchem.ncbi.nlm.nih.gov/compound/ethyl_acetate.

58. Pubchem - A Database of Chemical Molecules and their Activities against Biological Assays, Maintained by the National Center for Biototechnology Information (NCBI): Home Page - Compound Name and Search Page - Butanedioic Acid, Monomethyl Ester. Available from: https://www.pubchem.ncbi.nlm.nih.gov/compound/2-Methylbenzaldehyde.

59. Pubchem - A Database of Chemical Molecules and their Activities against Biological Assays, Maintained by the National Center for Biototechnology Information (NCBI): Home Page - Compound Name and Search Page - Benzoic Acid, Ammonium Salt. Available from: https://www.pubchem.ncbi.nlm.nih.gov/compound/2-Methylbenzaldehyde.

60. Pubchem - A Database of Chemical Molecules and their Activities against Biological Assays, Maintained by the National Center for Biototechnology Information (NCBI): Home Page - Compound Name and Search Page - 1,2-Benzenediol. Available from: https://www.pubchem.ncbi.nlm.nih.gov/compound/10920587.

61. Xu N, Fan X, Yan X, Li X, Niu R, Tseng CK. Antibacterial bromophenols from tobacco smoke carcinogenesis. Environ Lett 1975;10:265-73.

62. Pubchem - A Database of Chemical Molecules and their Activities against Biological Assays, Maintained by the National Center for Biototechnology Information (NCBI): Home Page - Compound Name and Search Page - 2,6-Dimethyl-4-hydroxybenzaldehyde. Available from: https://www.pubchem.ncbi.nlm.nih.gov/compound/2_6-Dimethyl-4-hydroxybenzaldehyde.

63. Guerin MR, Olerich G. Gas chromatographic determination of neophytadiene as a measure of the terpenoid contribution to experimental tobacco smoke carcinogenesis. Environ Lett 1975;10:265-73.

64. Serrakanni M, Thangapandian V. GC-MS Analysis of Cassia italica neophytadiene as a measure of the terpenoid contribution to experimental tobacco smoke carcinogenesis. Environ Lett 1975;10:265-73.

65. Muratore G, Licciardello F, Restuccia C, Puglisi ML, Giudici P. Role of different factors affecting the formation of 5-hydroxymethyl-2-furancarboxaldehyde in heated grape must. J Agric Food Chem 2006;54:860-3.

66. Pubchem - A Database of Chemical Molecules and their Activities against Biological Assays, Maintained by the National Center for Biototechnology Information (NCBI): Home Page - Compound Name and Search Page - 1,2,3-Propanetriol, Diacetate. Available from: https://www.pubchem.ncbi.nlm.nih.gov/compound/1,2,3-Propanetriol,Diacetate.

67. Pubchem - A Database of Chemical Molecules and their Activities against Biological Assays, Maintained by the National Center for Biototechnology Information (NCBI): Home Page - Compound Name and Search Page - Benzylalcohol. Available from: https://www.pubchem.ncbi.nlm.nih.gov/compound/10920587.

68. Pubchem - A Database of Chemical Molecules and their Activities against Biological Assays, Maintained by the National Center for Biototechnology Information (NCBI): Home Page - Compound Name and Search Page - 2,6-Dimethyl-4-hydroxybenzaldehyde. Available from: https://www.pubchem.ncbi.nlm.nih.gov/compound/2_6-Dimethyl-4-hydroxybenzaldehyde.

69. Guerin MR, Olerich G. Gas chromatographic determination of neophytadiene as a measure of the terpenoid contribution to experimental tobacco smoke carcinogenesis. Environ Lett 1975;10:265-73.

70. Pubchem - A Database of Chemical Molecules and their Activities against Biological Assays, Maintained by the National Center for Biototechnology Information (NCBI): Home Page - Compound Name and Search Page - Glucopyranose, 4-O-beta-D-galactopyranosyl. Available from: https://www.pubchem.ncbi.nlm.nih.gov/compound/D-xglucopyranose.

71. Ahlback DJ, Schirch SA, Weiss RG. Hexatriacontane organogels. The first determination of the conformation and molecular packing of a low-molecular-mass organogelator in its gelled state. Langmuir 2000;16:7558-61.

72. Pubchem - A Database of Chemical Molecules and their Activities against Biological Assays, Maintained by the National Center for Biototechnology Information (NCBI): Home Page - Compound Name and Search Page - Campesterol. Available from: https://www.pubchem.ncbi.nlm.nih.gov/compound/campesterol.

73. Villaseñor IM, Angelada J, Canals AP, Echegeoyen D. Bioactivity studies on β-sitosterol and its glucoside. Phytother Res 2002;16:417-21.

74. Loizou S, Lekakis I, Chrousos GP, Moutsatsou P. β-Sitosterol exhibits anti-inflammatory activity in human aortic endothelial cells. Mol Nutr Food Rev 2010;54:551-8.

75. Awada AB, Chinnam M, Finka CS. Bradford PG. β-Sitosterol activates fas signaling in human breast cancer cells. Phytomedicine 2007;14:747-54.

76. Gupta R, Sharma AK, Dobhal MP, Sharma MC, Gupta RS. Antidiabetic and antioxidant potential of β-sitosterol in streptozotocin-induced experimental hyperglycemia. J Diabetes 2011;3:29-37.

77. Grundy SM, Ahrens EH Jr, Salen G. Dietary β-sitosterol as an internal standard to correct for cholesterol losses in sterol balance studies. J Lipid Res 1986;9:374-87.

78. Gupta MB, Nath R, Srivastava N, Shanker K, Bhargava KP. Anti-inflammatory and antipruritic activities of β-sitosterol. Planta Med 1980;59:157-63.

79. Duke’s Phytochemical and Ethnobotanical Databases. U.S. Department of Agriculture, Agricultural Research Service; 1992-2016. Available from: http://www.phytochem.nal.usda.gov.

80. Cabral A, Dri P, Delbello G, Zilli C, Delia Loggia R. The croton oil standard to correct for cholesterol losses in sterol balance studies. J Pharm Pharmacol 1986;20:169-73.

81. Pubchem - A Database of Chemical Molecules and their Activities against Biological Assays, Maintained by the National Center for Biototechnology Information (NCBI): Home Page - Compound Name and Search Page - 2-Methylbenzaldehyde. Available from: https://www.pubchem.ncbi.nlm.nih.gov/compound/2-Methylbenzaldehyde.

82. Pubchem - A Database of Chemical Molecules and their Activities against Biological Assays, Maintained by the National Center for Biototechnology Information (NCBI): Home Page - Compound Name and Search Page - 1,2-Benzenediol. Available from: https://www.pubchem.ncbi.nlm.nih.gov/compound/1,2-Benzenediol.

83. Sutrisno E, Adnyana IK, Sukandar EY, Fidrianny I, Aligita W. Anti-inflammatory and anti-microbial activities of methanolic extracts of Cassia italica leaves and its combinations using human red blood cell-membrane inflammatory study of Lactococcus delbrueckii subsp. lactis. J Med Plants Res 2016;10:4910-15.

84. Iswariya S, Uma TS. Evaluation of in vitro anti-inflammatory and antimicrobial activity of methanolic extract of Ocimum tenuiflorum Linn. Int J Pharm Pharm Sci 2010;2(1):118-23.

85. Tamiljothi E, Ravichandiran V, Chandrasekar N, Suba V. Pharmacognostic and preliminary phytochemical screening of leaves of Gardenia coronaria. Asian J Pharm Clin Res 2017;10:154-55.

86. Chowdhury A, Azam S, Janul MA, Faruq KO, Islam A. Antibacterial activity and in vitro anti-inflammatory activity of methanol extracts of Azadirachta indica (neem) and Lawsonia inermis (henna). Asian Pharm Clin Res 2016:9:256-8.

87. Suresh E, Adyantha JK, Sukandar EY, Fidrianny I, Aligita W. Anti-inflammatory activity of methanol extract of Ocimum tenuiflorum Linn. Int J Pharm Pharm Sci 2017;1:59-62.

88. Sutrisno E, Adnyana IK, Sukandar EY, Fidrianny I, Aligita W. Anti-inflammatory and antipyretic activities of β-sitosterol. Planta Med 1980;39:157-63.

89. Singh A, Malhotra S, Subba V. Pharmacognostic and preliminary phytochemical screening of leaves of Azadirachta indica. Int J Pharm Pharm Sci 2017;9:29-33.

90. Singh A, Malhotra S, Subba V. Pharmacognostic and preliminary phytochemical screening of leaves of Tecomaria capensis. Asian J Plant Sci Res 2011;1:34-40.

91. Suresh E, Adyantha JK, Sukandar EY, Fidrianny I, Aligita W. Anti-inflammatory activity of methanol extract of Ocimum tenuiflorum Linn. Int J Pharm Pharm Sci 2017;1:59-62.

92. Suresh E, Adyantha JK, Sukandar EY, Fidrianny I, Aligita W. Anti-inflammatory activity of methanol extract of Ocimum tenuiflorum Linn. Int J Pharm Pharm Sci 2017;1:59-62.

93. Suresh E, Adyantha JK, Sukandar EY, Fidrianny I, Aligita W. Anti-inflammatory activity of methanol extract of Ocimum tenuiflorum Linn. Int J Pharm Pharm Sci 2017;1:59-62.