This is an Open Access-journal’s PDF published in

Brambilla, E., Djao, O.D.N., Daligault, H., Lapidus, A., Lucas, S., Hammon, N., Nolan, M., Tice, H., Cheng, J.-F., Han, C., Tapia, R., Goodwin, L., Pitluck, S., Liolios, K., Ivanova, N., Mavromatis, K., Mikhailova, N., Pati, A., Chen, A., Palaniappan, K., Land, M., Hauser, L., Chang, Y.-J., Jeffries, C.D., Rohde, M., Spring, S., Sikorski, J., Göker, M., Woyke, T., Bristow, J., Eisen, J.A., Markowitz, V., Hugenholtz, P., Kyrpides, N.C., Klenk, H.-P.

Complete genome sequence of Methanoplanus petrolearius type strain (SEBR 4847 T)

(2010) Standards in Genomic Sciences, 3 (2), pp. 203-211
Complete genome sequence of *Methanoplanus petrolearius* type strain (SEBR 4847T)

Evelyne Brambilla¹, Olivier Duplex Ngatchou Djao¹, Hajnalka Daligault³, Alla Lapidus⁴, Susan Lucas⁴, Nancy Hammon⁴, Matt Nolan⁴, Hope Tice⁴, Jan-Fang Cheng⁴, Cliff Han¹, Roxanne Tapia¹³⁴, Lynne Goodwin¹³⁴, Sam Pitluck⁴, Konstantinos Liolios⁴, Natalia Ivanova⁴, Konstantinos Mavromatis⁴, Natalia Mikhailova⁴, Amrita Pati⁴, Amy Chen⁴, Krishna Palaniappan², Miriam Land⁴⁸, Loren Hauser⁴⁸, Yun-Juan Chang⁴⁸, Cynthia D. Jeffries⁴⁸, Manfred Rohde², Stefan Spring¹, Johannes Sikorski¹, Markus Göker¹, Tanja Woyke⁴, James Bristow⁴, Jonathan A. Eisen⁵⁷, Victor Markowitz⁵, Philip Hugenholtz⁴, Nikos C. Kyrpides⁴, and Hans-Peter Klenk*¹

¹ DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
² HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany
³ Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
⁴ DOE Joint Genome Institute, Walnut Creek, California, USA
⁵ Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
⁶ Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
⁷ University of California Davis Genome Center, Davis, California, USA

*Corresponding author: Hans-Peter Klenk

Keywords: obligately anaerobic, mesophilic, hydrogen, methane, Gram-negative, Methanomicrobiaceae, Euryarchaeota, GEBA

Methanoplanus petrolearius Ollivier et al. 1998 is the type strain of the genus *Methanoplanus*. The strain was originally isolated from an offshore oil field from the Gulf of Guinea. Members of the genus *Methanoplanus* are of interest because they play an important role in the carbon cycle and also because of their significant contribution to the global warming by methane emission in the atmosphere. Like other archaea of the family *Methanomicrobiales*, the members of the genus *Methanoplanus* are able to use CO₂ and H₂ as a source of carbon and energy; acetate is required for growth and probably also serves as carbon source. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of a member of the family *Methanomicrobiaceae* and the sixth complete genome sequence from the order *Methanomicrobiales*. The 2,843,290 bp long genome with its 2,824 protein-coding and 57 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

Introduction

Strain SEBR 4847T (= DSM 11571 = OCM 486) is the type strain of *Methanoplanus petrolearius* [1]. This strain was isolated from an offshore oil-producing well in the Gulf of Guinea, Africa [1]. Currently, the genus *Methanoplanus* contains three species: *M. petrolearius*, the type species *M. limicola* (isolated from an Italian swamp containing drilling waste near Baia in the Naples Area), and *M. endosymbiosus* (isolated from the marine ciliate *Metopus contortus*) [1]. The genus name derived from the Latin word “methanum”, and the adjective “planus”, meaning a flat plate, which refers to its flat cell morphology [1,2]. *Methanoplanus* therefore means “methane (producing) plate”. The species epithet *petrolearius* derives from the Latin word “petra”, rock and the adjective “olearius”, which relates to vegetable oil [1]. “Petrolearius” means therefore related to mineral oil, referring to its origin of isolation [1]. No additional cultivated strains belonging to the species
Classification and features

The type strains of the two other species in the genus Methanoplanus share an average of 93.5% 16S rRNA gene sequence identity with strain SEBR 4847T [1,2]. The 16S rRNA gene sequence of the strain SEBR 4847T shows 99% identity with an uncultured environmental 16S rRNA gene sequence of the clone KO-Eth-A (AB236050) obtained from the marine sediment [3]. The 16S rRNA gene sequences similarities of the strain SEBR 4847T to metagenomic libraries (env_nt) were all 83% or less, (status August 2010), indicating that members of the species, genus and even family are poorly represented in the habitats screened thus far.

Figure 1 shows the phylogenetic neighborhood of M. petrolearius SEBR 4847T in a 16S rRNA based tree. The sequences of the two identical 16S rRNA gene copies in the genome do not differ from the previously published 16S rRNA sequence generated from DSM 11571 (U76631), which contained four ambiguous base calls.

The cells of strain SEBR 4847T stain Gram-negative, but archaea do not have a Gram-negative type of cell wall with an outer envelope. Cells occur singly or in pairs and are irregularly disc-shaped of 1 to 3 µm size (Figure 2 and Table 1). A similar shape was found for two other strains of the genus Methanoplanus [1,2,4]. Strain SEBR 4847T was originally described as non-motile [1],
however, in samples of this strain kept in the DSMZ culture collection motile cells were frequently detected in young cultures (H. Hippe, personal communication). The genome sequence of SEBR 4847T contains numerous genes encoding flagellins (Mpet_2052 - Mpet2054, Mpet_2057) and chemotaxis proteins (Mpet_2064 – Mpet_2069), which is in line with the observation of motility in this species. Round colonies of 1-2 mm are observed after three weeks of incubation on solid agar medium. The generation time of strain SEBR 4847T is about 10 hours under optimal conditions [1]. Strain SEBR 4847T grows optimally at 37°C, the temperature range for growth being 28-43°C. No growth was observed at 25°C or 45°C [1]. The optimum pH is 7.0; growth occurs from pH 5.3 to 8.4. The optimum NaCl concentration for growth is between 1 and 3% NaCl with growth occurring at NaCl concentrations ranging from 0 to 5% [1]. Substrates for growth of strain SEBR 4847T are H\textsubscript{2} + CO\textsubscript{2}, formate and CO\textsubscript{2} + 2-propanol [1]. Strain SEBR 4847T does not utilize methanol, trimethylamine, lactate, glucose, CO\textsubscript{2} + 1-propanol, CO\textsubscript{2} + 1-butanol and isobutyrate [1]. Acetate is required for growth as carbon source and yeast extract is stimulatory [1]. Addition of acetate reduces the lag time [25]. The addition of acetate slightly increases the amount of H\textsubscript{2} available, theoretically [26,27]. When H\textsubscript{2} is limiting and sulfate is in excess, sulfate reducers compete with methanogens and homoacetogens for the available H\textsubscript{2} [27]. The sulfate reducers can out-compete hydrogenotrophic methanogens, due to a higher affinity [28] and higher activity of hydrogenase and the energetically more favorable reduction of sulfate [29]. Similar features were observed for \textit{M. limicola} and \textit{M. endosymbiosus} [1,2,24].

Figure 2. Scanning electron micrograph of \textit{M. petrolearius} SEBR 4847T

Chemotaxonomy

At the time of writing, no reports have been published describing the composition of the cell envelope of the strain SEBR 4847T. However, for the two other species in the genus \textit{Methanoplanus}, \textit{M. limicola} and \textit{M. endosymbiosus}, several chemotaxonomic features have been reported [2,24]. Preparations of the cell envelope from \textit{M. limicola} and \textit{M. endosymbiosus} revealed the presence of a dominant band that appeared to be a glycoprotein when cells were disrupted in 2% SDS [2,24]. \textit{Methanoplanus} spp. possesses a mixture of C\textsubscript{20}C\textsubscript{20} and C\textsubscript{40}C\textsubscript{40} core ethers [30]. For comparison, similar mixtures were also detected in other members of the family \textit{Methanomicrobiaceae}: \textit{Methanogenium cariaci}, \textit{Methanogenium marisnigri} and \textit{Methanogenium thermophilicum}, while C\textsubscript{20}C\textsubscript{25} was absent in these species [30].
Methanoplanus petrolearius type strain (SEBR 4847)

Table 1. Classification and general features of *M. petrolearius* SEBR 4847 according to the MIGS recommendations [12].

MIGS ID	Property	Term	Evidence code
	Domain	Archaea	TAS [13]
	Phylum	Euryarchaeota	TAS [14,15]
	Class	Methanomicrobia	TAS [16]
	Order	Methanomicrobiales	TAS [17-19]
	Family	Methanomicrobiaceae	TAS [17,18]
	Genus	Methanoplanus	TAS [2,20]
	Species	*Methanoplanus petrolearius*	TAS [1,21]
	Type strain	SEBR 4847	TAS [1]
	Gram stain	negative	TAS [2]
	Cell shape	disc-shaped, irregular single or in pairs	TAS [1]
	Motility	motile	IDA
	Sporulation	not reported	NAS
	Temperature range	28-43°C	TAS [1]
	Optimum temperature	37°C	TAS [1]
	Salinity	1-3% NaCl	TAS [1]
MIGS-22	Oxygen requirement	anaerobic obligate	TAS [1]
	Carbon source	acetate, CO₂, formate	TAS [1]
	Energy source	H₂ + CO₂, formate and CO₂ + 2-propanol	TAS [1]
MIGS-6	Habitat	offshore oil field	TAS [1]
MIGS-15	Biotic relationship	not reported	NAS
MIGS-14	Pathogenicity	not reported	NAS
	Biosafety level	1	TAS [22]
	Isolation	subsurface ecosystem	TAS [1]
MIGS-4	Geographic location	offshore oil field, Gulf of Guinea, West Africa	TAS [1]
MIGS-5	Sample collection time	1997 or before	TAS [1]
MIGS-4.1	Latitude	not reported	NAS
MIGS-4.2	Longitude	not reported	NAS
MIGS-4.3	Depth	not reported	NAS
MIGS-4.4	Altitude	not reported	NAS

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from of the Gene Ontology project [23]. If the evidence code is IDA, then the property was directly observed by one of the authors or an expert mentioned in the acknowledgements.

Genome sequencing and annotation

Genome project history

This organism was selected for sequencing on the basis of its phylogenetic position [31], and is part of the *Genomic Encyclopedia of Bacteria and Archaea* project [32]. The genome project is deposited in the Genome OnLine Database [9] and the complete genome sequence is deposited in GenBank. Sequencing, finishing and annotation were performed by the DOE Joint Genome Institute (JGI). A summary of the project information is shown in Table 2.
Table 2. Genome sequencing project information

MIGS ID	Property	Term
MIGS-31	Finishing quality	Finished Tree genomic libraries: 454 pyrosequence standard library, paired end 454 library (9.5 kb insert size), Illumina GAii shotgun library
MIGS-28	Libraries used	Tree genomic libraries: 454 pyrosequence standard library, paired end 454 library (9.5 kb insert size), Illumina GAii shotgun library
MIGS-29	Sequencing platforms	454 GS FLX Titanium, Illumina GAii
MIGS-31.2	Sequencing coverage	67.9 × pyrosequence, 52.2 × Illumina
MIGS-30	Assemblers	Newbler version 2.3-PreRelease-09-14-2009, Velvet, phrap
MIGS-32	Gene calling method	Prodigal 1.4, GenePRIMP
	INSDC ID	CP002117
	Genbank Date of Release	September 17, 2010
	NCBI project ID	40773
	GOLD ID	Gc01372
	Database: IMG-GEBA	2503128011
MIGS-13	Source material identifier	DSM 11571
	Project relevance	Tree of Life, GEBA

Growth conditions and DNA isolation

M. petrolearius SEBR 4847, DSM 11571, was grown anaerobically in DSMZ medium 141 (Methanogenium medium) [33] at 37°C. DNA was isolated from 0.2 g of cell paste using a phenol/chloroform extraction after cell lysis with a mixture of lysozyme and mutanolysin.

Genome sequencing and assembly

The genome was sequenced using a combination of Illumina and 454 sequencing platforms. All general aspects of library construction and sequencing can be found at the JGI website. Pyrosequencing reads were assembled using the Newbler assembler Version 2.3 Pre-Release-09-14-2009 (Roche). The initial Newbler assembly consisted of 21 contigs in one scaffold that was converted into a phrap assembly by making fake reads from the consensus sequence. Illumina GAii sequencing data (148.5Mb) was assembled with Velvet [34] and the consensus sequences were shredded into 1.5 kb overlapped fake reads and assembled together with the 454 data. The draft assembly was based on 173.4 Mb of 454 data and all of the 454 paired end data. Newbler parameters are -consed -a 50 -l 350 -g -m -ml 20. The Phred/Phrap/Consed software package was used for sequence assembly and quality assessment of the genome sequence. After the shotgun stage, reads were assembled with parallel phrap (High Performance Software, LLC). Possible mis-assemblies were corrected with gapResolution, Dupfinisher, or sequencing cloned bridging PCR fragments with subcloning or transposon bombing (Epigenet Biotechnologies, Madison, WI) [35]. Gaps between contigs were closed by editing in Consed, by PCR and by Bubble PCR primer walks (J.-F.Chang, unpublished). A total of 139 additional reactions were necessary to close gaps and to raise the quality of the finished sequence. Illumina reads were also used to correct potential base errors and increase consensus quality using a software Polisher developed at JGI [36]. The error rate of the completed genome sequence is less than 1 in 100,000. Together, the combination of the Illumina and 454 sequencing platforms provided 120.1× coverage of the genome. The final assembly of the genome contains 590,575 pyrosequences and 4,125,153 Illumina reads.

Genome annotation

Genes were identified using Prodigal [37] as part of the Oak Ridge National Laboratory genome annotation pipeline, followed by a round of manual curation using the JGI GenePRIMP pipeline [38]. The predicted CDSs were translated and used to search the National Center for Biotechnology Information (NCBI) nonredundant database, UniProt, TIGRFam, Pfam, PRIAM, KEGG, COG, and InterPro databases. Additional gene prediction analysis and functional annotation was performed within the Integrated Microbial Genomes - Expert Review (IMG-ER) platform [39].

Genome properties

The genome consists of a 2,843,290 bp long chromosome with a 47.4% GC content (Table 3 and Figure 3). Of the 2,881 genes predicted, 2,825 were protein-coding genes, and 57 RNAs; thirty nine pseudogenes were also identified. The majority of the protein-coding genes (61.2%) were assigned a putative function while the remaining ones were annotated as hypothetical proteins. The distribution of genes into COGs functional categories is presented in Table 4.

http://standardsingenomics.org
Methanoplanus petrolearius type strain (SEBR 4847)

Table 3. Genome Statistics

Attribute	Value	% of Total
Genome size (bp)	2,843,290	100.00%
DNA coding region (bp)	2,501,893	87.99%
DNA G+C content (bp)	1,347,696	47.40%
Number of replicons	1	
Extrachromosomal elements	0	
Total genes	2,881	100.00%
RNA genes	57	1.98%
rRNA operons	2	
Protein-coding genes	2,824	98.02%
Pseudo genes	39	1.35%
Genes with function prediction	1,793	62.24%
Genes in paralog clusters	550	19.10%
Genes assigned to COGs	1,939	67.30%
Genes assigned Pfam domains	2,000	69.42%
Genes with signal peptides	492	17.10%
Genes with transmembrane helices	886	30.75%
CRISPR repeats	0	

Figure 3. Graphical circular map of the genome. From outside to the center: Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew.
Table 4. Number of genes associated with the general COG functional categories

Code	value	%age	Description
J	150	7.1	Translation, ribosomal structure and biogenesis
A	0	0.0	RNA processing and modification
K	106	5.0	Transcription
L	80	3.8	Replication, recombination and repair
B	2	0.1	Chromatin structure and dynamics
D	18	0.9	Cell cycle control, cell division, chromosome partitioning
Y	0	0.0	Nuclear structure
V	28	1.3	Defense mechanisms
T	136	6.5	Signal transduction mechanisms
M	67	3.2	Cell wall/membrane/envelope biogenesis
N	54	2.6	Cell motility
Z	1	0.0	Cytoskeleton
W	0	0.0	Extracellular structures
U	32	1.5	Intracellular trafficking and secretion, and vesicular transport
O	80	3.8	Posttranslational modification, protein turnover, chaperones
C	185	8.8	Energy production and conversion
G	70	3.3	Carbohydrate transport and metabolism
E	155	7.4	Amino acid transport and metabolism
F	61	2.9	Nucleotide transport and metabolism
H	162	7.7	Coenzyme transport and metabolism
I	22	1.1	Lipid transport and metabolism
P	143	6.8	Inorganic ion transport and metabolism
Q	7	0.3	Secondary metabolites biosynthesis, transport and catabolism
R	278	13.2	General function prediction only
S	267	12.7	Function unknown
-	942	32.7	Not in COGs

Acknowledgements

We would like to gratefully acknowledge the help of Maren Schröder (DSMZ) for growing cultures of *M. petrolearius*. This work was performed under the auspices of the US Department of Energy Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396, UT-Battelle and Oak Ridge National Laboratory under contract DE-AC05-00OR22725, as well as German Research Foundation (DFG) INST 599/1-2.

References

1. Ollivier B, Cayol JL, Patel BKC, Magot M, Fardeau ML, Garcia JL. *Methanoplanus petrolearius* sp. nov., a novel methanogenic bacterium from an oil-producing well. *FEMS Microbiol Lett* 1997; 147:51-56. PubMed doi:10.1111/j.1574-6968.1997.tb10219.x

2. Wildgruber G, Thomm M, König H, Ober K, Ricchiuto T, Stetter KO. *Methanoplanus limicola*, a plate-shaped methanogen representing a novel family, the *Methanoplanaceae*. *Arch Microbiol* 1982; 132:31-36. doi:10.1007/BF00690813
Methanoplanus petrolearius type strain (SEBR 4847)

3. Sakai S, Imachi H, Sekiguchi Y, Tseng IC, Ohashi A, Harada H, Kamagata Y. Cultivation of methanogens under low-hydrogen conditions by using the coculture method. Appl Environ Microbiol 2009; 75:4892-4896. PubMed doi:10.1128/AEM.02835-08

4. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540-552. PubMed

5. Lee C, Grasso C, Sharlow MF. Multiple sequence alignment using partial order graphs. Bioinformatics 2002; 18:452-464. PubMed doi:10.1093/bioinformatics/18.3.452

6. Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML Web Servers. Syst Biol 2008; 57:758-771. PubMed doi:10.1080/10635150802429642

7. Yarza P, Richter M, Peplies J, Ezeby J, Amann R, Schleifer KH, Ludwig W, Glöckner FO, Rosselló-Móra R. The all-species living tree project: A 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008; 31:241-250. PubMed doi:10.1016/j.syapm.2008.07.001

8. Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A. How many bootstrap replicates are necessary? Lect Notes Comput Sci 2009; 5541:184-200. doi:10.1007/978-3-642-02008-7_13

9. Liolios K, Mavromatis K, Tavernarakis N, Kyrpides NC. The genomes on line database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 2008; 36:D475-D479. PubMed doi:10.1093/nar/gkm884

10. Anderson II, Sieprawska-Lupa M, Lapidus A, Nolan M, Copeland A, Glavina del Río T, Tice H, Dalin E, Barry K, Saunders E, et al. Complete genome sequence of Methanoculleus marisnigrri Romesser et al. 1981 type strain JR1. Stand Genomic Sci 2009; 1:189-196. doi:10.4056/sigs.32535

11. Anderson II, Sieprawska-Lupa M, Goltsman E, Lapidus A, Copeland A, Glavina del Río T, Tice H, Dalin E, Barry K, Pitluck S, et al. Complete genome sequence of Methanocorpusculum labreanum type strain Z. Stand Genomic Sci 2009; 1:197-203. doi:10.4056/sigs.35575

12. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angioli SV, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 2008; 26:541-547. PubMed doi:10.1038/nbt1360

13. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 1990; 87:4576-4579. PubMed doi:10.1073/pnas.87.12.4576

14. List Editor. Validation List no. 85. Validation of publication of new names and new combinations previously effectively published outside the IJSEM. Int J Syst Evol Microbiol 2002; 52:685-690. PubMed doi:10.1099/ijs.0.02358-0

15. Garrity GM, Holt JG. The Road Map to the Manual. In: Garrity GM, Boone DR, Castenholz RW (eds), Bergey's Manual of Systematic Bacteriology, Second Edition, Volume 1, Springer, New York, 2001, p. 119-169.

16. Garrity GM, Bell JA, Lilburn T. Taxonomic Outline of the Procyrrocyotes., Bergey's Manual of Systematic Bacteriology, Second Edition. Release 4.0, Fourth Edition, Springer-Verlag, New York, 2003. p. 1-39.

17. List 6. Validation of the publication of new names and new combinations previously effectively published outside the IJSB. Int J Syst Bacteriol 1981; 31:215-218. doi:10.1099/00207713-31-2-215

18. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS. Methanogens: Reevaluation of a unique biological group. Microbiol Rev 1979; 43:260-296. PubMed

19. Judicial Commission of the International Committee on Systematics of Prokaryotes. The nomenclatural types of the orders Acholeplasmatales, Halanaerobiales, Halobacteriales, Methanobacteriales, Methanococcales, Methanomicrobiales, Planctomycetales, Prochlorales, Sulfolobales, Thermococcales, Thermoproteales and Verrucomicrobiales are the genera Acholeplasma, Halanaerobium, Halobacterium, Methanobacterium, Methanococcus, Methanomicrobium, Planctomyces, Prochloron, Sulfolobus, Thermococcus, Thermoproteus and Verrucomicrobium, respectively. Opinion 79. Int J Syst Evol Microbiol 2005; 55:517-518. PubMed doi:10.1099/ijs.0.63548-0

20. List 14. Validation of the publication of new names and new combinations previously effectively published outside the IJSB. Int J Syst Bacteriol 1984; 34:270-271. doi:10.1099/00207713-34-2-270

21. List Editor. Validation list 67. Validation of publication of new names and new combinations previously effectively published outside the IJSB. Int J
22. Classification of bacteria and archaea in risk groups. http://www.baua.de TRBA 466.

23. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene Ontology: tool for the unification of biology. Nat Genet 2000; 25:25-29. PubMed doi:10.1038/75556

24. Bruggen JJA, Zwart KB, Hermans JGF, VanHove EM, Stumm CK, Vogels GD. Isolation and characterization of Methanoplanus endosymbiosus sp. nov., an endosymbiont of the marine sapropelic ciliate Metopus contortus Quennerstedt. Arch Microbiol 1986; 144:367-374. doi:10.1007/BF00409886

25. Wu SY, Chen SC, Lai MC. Methanofollis formosanus sp. nov., isolated from a fish pond. Int J Syst Evol Microbiol 2005; 55:837-842. PubMed doi:10.1099/ijs.0.63475-0

26. He J, Sung Y, Dollhopf ME, Fatherpure BZ, VanHove EM, Tiedje JM, Löffler FE. Acetate versus hydrogen as direct electron donors to stimulate the microbial reductive dechlorination process at chloroethene-contaminated sites. Environ Sci Technol 2002; 36:3945-3952. PubMed doi:10.1021/es025528d

27. Weijma J, Gubbels F, Hulshoff LW, Stams AJM, Lens P, Lettinga G. Competition for H2 between sulfate reducers, methanogens and homoacetogens in a gas-lift reactor. Water Sci Technol 2002; 45:75-80. PubMed

28. Boone DR, Bryant MP. Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov., from methanogenic ecosystems. Appl Environ Microbiol 1980; 40:626-632. PubMed

29. Lupton FS, Zeikus JG. Physiological basis for sulfate-dependent hydrogen competition between sulfidogens and methanogens. Curr Microbiol 1984; 11:7-11. doi:10.1007/BF01567568

30. Grant WD, Pinch G, Harris JE, Rosa MD, Gambacorta A. Polar lipids in methanogen taxonomy. J Gen Microbiol 1985; 131:3277-3286.

31. Klenk HP, Göker M. En route to a genome-based classification of Archaea and Bacteria? Syst Appl Microbiol 2010; 33:175-182. PubMed doi:10.1016/j.syapm.2010.03.003

32. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, et al. A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 2009; 462:1056-1060. PubMed doi:10.1038/nature08656

33. List of growth media used at DSMZ: http://www.dsmz.de/microorganisms/media_list.php

34. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008; 18:821-829. PubMed doi:10.1101/gr.074492.107

35. Sims D, Brettin T, Detter J, Han C, Lapidus A, Copeland A, Glavina Del Rio T, Nolan M, Chen F, Lucas S, et al. Complete genome sequence of Kytococcus sedentarius type strain (541T). Stand Genomic Sci 2009; 1:12-20. doi:10.4056/sigs.761

36. Lapidus A, LaButti K, Foster B, Lowry S, Trong S, Golsman E. POLISHER: An effective tool for using ultra short reads in microbial genome assembly and finishing. AGBT, Marco Island, FL, 2008.

37. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal Prokaryotic Dynamic Programming Genefinding Algorithm. BMC Bioinformatics 2010; 11:119. PubMed doi:10.1186/1471-2105-11-119

38. Pati A, Ivanova N, Mikhailova N, Ovchinkova G, Hooper SD, Lykidis A, Kyrpides NC. GenePRIMP: A gene prediction improvement pipeline for microbial genomes. Nat Methods 2010; 7:455-457. PubMed doi:10.1038/nmeth.1457

39. Markowitz VM, Ivanova NN, Chen IMA, Chu K, Kyrpides NC. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 2009; 25:2271-2278. PubMed doi:10.1093/bioinformatics/btp393

http://standardsingenomics.org