Abstract: The subject of this study is a preliminary risk analysis during travel by the low pressure railway Hyperloop. The main objective was to formulate recommendations related to the development of the project of the new transport mode. The main analysis was preceded by the identification of Man – Machine - Environment system. Undesirable events were identified for each of the specified steps of a ride. For each event, a risk assessment was performed using Risk Score based method. The causes, effects and preventive actions were also listed. Events with the highest risk score were indicated. The need to develop procedures for safety checks and emergency situations was pointed out. It was shown that the safety analysis of the transport system should be extended after a final project development of the railway system and the necessary infrastructure.

Keywords: transport, safety, low pressure railway, Hyperloop, risk analysis, Risk Score method

Streszczenie: Tematem niniejszej publikacji jest wstępna analiza ryzyka podczas podróży koleją niskociśnieniową Hyperloop. Głównym celem było sformułowanie zaleceń związanych z rozwojem projektu nowego środka transportu. Właściwą analizę poprzedzono identyfikacją systemu człowiek – technika – otoczenie, zidentyfikowano zdarzenia niepożądane dla każdego z wyszczególnionych etapów podróży. Dla każdego zdarzenia dokonano oceny ryzyka z wykorzystaniem metody zbliżonej do Risk Score. Wyszczególniono także przyczyny, skutki oraz działania zapobiegawcze. Wskazano zdarzenia o najwyższym wskaźniku ryzyka. Zwrócono uwagę na konieczność opracowania procedur dotyczących kontroli bezpieczeństwa oraz wystąpienia sytuacji awaryjnych. Wykazano, że analiza bezpieczeństwa omawianego systemu transportowego powinna być rozszerzona po opracowaniu szczegółowego projektu kolei i niezbędnej infrastruktury.

Słowa kluczowe: transport, bezpieczeństwo, kolej niskociśnieniowa, Hyperloop, analiza ryzyka, metoda Risk Score
1. Introduction

Safety activities concern many aspects of man life and his functioning in the Man-Machine-Environment (M-M-E) system. The development of safety science is related to the ability of better hazard identification, considering safety issues at the stage of designing technical devices and progress in counteracting threats by developing existing and proposing new methods of risk and reliability analysis [12].

One system whose concepts are being developed around the world is the “Hyperloop”. It is a mode of transport that can be classified between the aircraft and the train. It involves travelling at very high speed in a special prepared capsule inside a reduced pressure tunnel [10]. Although the concept of passing a vehicle inside a tube with reduced pressure has been considered for years, the author of the name and assumptions of the "Hyperloop" vehicle is the American entrepreneur and multi-billionaire Elon Musk. According to his idea, the vehicle is supposed to be, compared to other means of transport, safer, faster, cheaper, more comfortable, resistant to weather conditions and earthquakes, sustainable in terms of energy and collision-free [8]. It should be noted that in some countries - the USA and South Korea – studies and works are so advanced that test runs are already taking place. In Korea, test runs without passengers were conducted at speeds of about 700 and 1000 km/h [13]. In the USA, a test ride with two passengers was carried out on a 500 meters test track at a speed of 160 km/h, there was also a series of test runs at approx. 400 km/h without passengers. Ultimately, it is planned to exceed 1000 km/h over a longer distance [14]. In Poland tests have taken place in a mechanical and virtual low pressure railway simulator [15]. A description of the main principles of operation of the low-pressure railway of which the simulator was built can be found in the study [9].

In all projects about this new mode of transport, safety analyses play an important role. Due to the lack of relevant standards and regulations in this field, it is necessary to refer to universal standards for the safety of technical equipment [16], as well as regulations [17, 18] and standards (e.g. [19]) related to traditional railway. Normative acts on the principles of conducting safety checks in air transport [20, 21] may be useful, a possibility of using lightweight materials used in aviation should be considered. Original concepts and solutions related to risk analysis and management in transport [6, 11] are also important. Attempts are made to develop appropriate recommendations related to the “Hyperloop” technology also in the context of safety system management. It is realized on the basis of risk analyses with the use of: detailed description and assessment of individual properties, characteristics and components of the transport system [5], risk maps and SWIFT (Structured What If Technique) method [7], HAZOP (Hazard and Operability Study) based model [2]. In ongoing research, comparisons and references to existing transport systems can often be found. Issues related to the potential for technological development and commercialization of investments [4] and public acceptance of the new transport mode [1] are also considered.

The risk analysis to be carried out in this paper will address aspects related to the safety of use and ergonomics of the low pressure rail system using a qualitative indicator (scoring)
method similar to Risk Score [3, 12]. The economic or social issues associated with implementing the low pressure rail system will not be studied.

2. M-M-E system identification

Before starting the identification of hazards and searching for possible undesirable events, it will be important to identify the analyzed Man - Machine - Environment (M-M-E) system. The identification of individual system segments is presented in table 1.

Table 1

Man	Machine	Environment
• low pressure rail passengers;		
• persons responsible for the management of rail traffic;
• other staff of railway and station. | • "Hyperloop" low pressure railway consisting of three modules: passenger, safety and locomotion (transport). | • tube system located largely underground (pipe tunnels);
• necessary infrastructure in the form of stations, airlocks, cross conveyors, technical areas, emergency chambers. |

The concept of low pressure railway was developed within the framework of the implemented project. Its main assumption is its modularity. It is assumed that the vehicle is divided into the following modules: passenger/freight, safety and locomotion. The vehicle according to this concept would have one or both ends of the safety module opened, through which passenger or freight modules are inserted into its interior. This is shown in fig. 1.

Fig. 1. Modular concept of a vehicle

The main author of the railroad concept, detailed technical solutions and aerodynamic analyses carried out [9] is professor Janusz Piechna. The main design and maintenance assumptions are as follows:

• pressure in the tunnel: 1000 Pa, in the vehicle: atmospheric;
• maximum speed of the capsule: 720 km/h;
• maximum linear acceleration: 0.25 g (2.5 m/s²);
• separation between vehicles: 24 km (2 min);
• wheel unit: standard wheel system with rolling bearings;
• maximum number of passengers in one vehicle: 30 or 56.

The station concept assumes the separation of the following zones: safety control zone, platform hall, atmospheric pressure zone, low pressure zone. In addition, it is assumed to use special airlocks and cross conveyors to move the vehicle to the low pressure zone and then the appropriate tube (tunnel). During the rail ride, it was assumed that the acceleration and braking of the railroad will be carried out using linear motors and brakes. According to the developed concept, the vehicle will be accelerated to the maximum speed, then after the speed decreases to half of the maximum value, the vehicle will be accelerated using linear motors spaced every 300 km. Moreover, emergency chambers will be used in the event of a system failure. In contrast to the other concepts considered [10], very high speeds (above 0.6 Ma) are not assumed. In such a case, it will be possible to use a traditional locomotion system and there will be no significant problems in ensuring the stability of the capsule movement. This will significantly reduce the construction complexity and cost of the project. A detailed description of the station concept and the technical infrastructure used can be found in [9].

3. Hazard identification

Hazard identification is the recognition of undesirable events that may occur at the workplace or while conducting a project, study, experiment, or using technical devices. Relevant here will be events that may occur during a railway ride and activities immediately before and after travel.

To initially identify hazards, undesirable events that may occur during the various stages of a low pressure railway vehicle ride were determined:
• Steps 1 and 11: Moving around the station;
• Step 2: Passing the security check;
• Steps 3 and 9: Entering/exiting the vehicle (passenger module) and taking up/leaving seats;
• Steps 4 and 8: Passenger module insertion/ejection from the safety capsule, crossing the airlock and low pressure zone;
• Steps 5 and 7: Accelerating or braking the vehicle;
• Step 6: Rail travel.

Steps (tasks) were divided into activities in order to be able to more precisely select undesirable events.

Possible undesirable events for each step and activity were identified in table 2. For each event the probable causes, effects, and suggested actions to eliminate or reduce the negative effects of the specified event were listed in table 3.
Step / task	Activity / situation	Undesirable event (En)
Steps 1 and 11: Moving around the station	Walking on the stairs	E1. Fall from stairs
	Moving around the platform	E2. Falling on a flat surface
		E3. Falling under a vehicle
		E4. Contact with bacteria and viruses
		E5. Temperature too high, not enough fresh air
		E6. Fire
Step 2: Passing the security check	Passing through the gate	E7. Contact with sharp edges (suitcases, gates)
		E8. Impatience, weariness
Steps 3 and 9: Entering/exiting the vehicle (passenger module) and	Walking through the door (cover) of passenger module to take a seat	E9. Hitting
taking up/leaving seats	Closing / opening the door (cover) of passenger module	E10. Contact with sharp edges
	Loading luggage	E11. Slamming the door (cover) on hand
	Fastening/unfastening seat belts	E12. System failure
		E13. Tipping over of a suitcase
		E14. Contact with sharp edges
	Exit of the vehicle from the tunnel	E15. Hooking the hand, cutting a piece of skin with the seat belt buckle
Steps 4 and 8: Passenger module insertion/ejection from the safety	Ride in the low pressure zone	E16. Blocked entry to the station
capsule, crossing the airlock and low pressure zone		E17. Vehicle stopping
		E18. Moving in the wrong direction
		E19. Moving "against the flow"
Steps 5 and 7: Accelerating or braking the vehicle		E20. Falling out of the seat
		E21. Hitting
Step 6: Rail travel	Ride	E22. Contact with sharp edges
		Z23. Fire
		E24. Nausea, feeling of claustrophobia during travel
		E25. Feeling of boredom, weariness, irritability
		E26. Aggressive behavior / attack of a other passenger, terrorist attack
		E27. Contact with bacteria and viruses
		E28. Vehicle stopping
		E29. Loss of safety capsule containment
		E30. Tube damage
	Emergency braking	E31. Hitting
Analysis of causes and consequences of undesirable events

En	Causes	Likely consequences	Prevention / minimization activities
E1	inattention, high stair thresholds, slippery or wet surfaces	fractures, contusions, cuts, sprains	avoidance of high thresholds and stairs, appropriate surface
E2	passenger crowding, inattention, slippery or wet surfaces	contusions, abrasions, cuts, sprains	appropriate surface, signage and marking of station areas
E3	inattention, lack of protection	serious injuries	safety measures to prevent falling under the vehicle
E4	too many passengers	disease	signage and marking of station areas, ventilation, limiting the number of people, measuring passenger temperature
E5	too many passengers, insufficient air conditioning, long wait for checking	malaise, shortness of breath, fainting	appropriate ventilation and air-conditioning system for platforms, short waiting time for checking and travel
E6	fire started by a passenger	smoke inhalation, burns	appropriate monitoring, smoke detectors, fire protection
E7	presence of sharp edges, haste	cut (wound)	avoiding sharp edges, developing a safe security checking procedure
E8	waiting too long for checking	frustration	developing an efficient checking procedure
E9	passenger crowding, inattention	bruises, abrasions	supervising the entry of passengers
E10	failure to protect sharp edges, inattention	cuts, abrasions	avoiding sharp edges
E11	passenger inattention	hand injuries	attention behavior, voice information about door (cover) closing, sensors
E12	faulty operation of the door (cover) opening system	frustration	redundancy (emergency system) of door (cover) opening
E13	too much luggage, uncomfortable place to put luggage	abrasions	comfortable place to put luggage
E14	sharp edges	cut (wound)	avoiding sharp edges
E15	inattention	cut (wound)	safe belt system
E16	failure of another vehicle, conveyor failure of another vehicle	delays, need for evacuation, need to move the capsule	use of the safety buffer concept, a procedure in case of a conveyor failure in the low pressure zone (e.g. use of the technical crane to transfer the capsule)
E17	cross conveyor failure, vehicle failure	delays, need for evacuation, need to move the capsule	a procedure in case of a conveyor failure in the low pressure zone (e.g. use of the technical crane to transfer the capsule)
E18	system failure	delays, travel to another location	developed traffic management and vehicle tracking system
E19	system failure	collision with another vehicle, death	developed traffic management and vehicle tracking system
E20	failure to wear seat belts, excessive acceleration / braking, linear motor / brake failure	contusions, injuries of the head and whole body	voice messaging system for start/finish of a ride and seatbelt buckle up, low acceleration/ deceleration
E21	excessive acceleration/braking, linear motor/brake failure	contusions and head injuries	voice messaging system for start/finish of a ride and seatbelt buckle up, low acceleration / deceleration
-----	--	-----------------------------	---
E22	lack of suitable cabin interior finishing	cut (wound)	avoidance/securing of sharp edges, interior finishing with suitable fabrics / materials
E23	prohibited activities - e.g., smoking, use of lighters, etc., short circuit of electrical system	burns, poisoning by inhaled smoke, death	video/thermovision monitoring, smoke detectors, no lighters, smoking, etc., cabin equipped with fire extinguisher, ability to communicate with staff, avoid flammable materials, develop evacuation procedures
E24	insufficient ventilation / air conditioning, insufficient lighting, inappropriate interior design	vomits, discomfort during travel, symptoms of motion sickness	providing efficient ventilation/air conditioning system, choosing appropriate lighting, installing video display system during travel, arranging the interior in a way that minimizes the feeling of claustrophobia
E25	lack of appropriate activities during travel	discomfort, frustration	ensuring the possibility of using telephones (wi-fi or mobile network availability), installation of a system for displaying images during travelling (monitors)
E26	lack of appropriate passenger checking	cuts, injuries, travel interruption, evacuation, in case of a terrorist attack: serious injuries, death	passenger checking for dangerous objects, communication with staff, video monitoring system, evacuation procedures
E27	lack of appropriate passenger checking, lack of sufficient ventilation, lack of protective equipment, lack of disinfection	disease	checking of passenger's health condition (temperature measurement), ensuring proper ventilation/air-conditioning system, personal protective equipment for passengers, disinfecting the cabin after each ride
E28	bearing failure, failure of the low pressure maintenance system	delays, in extreme cases derailment and serious injury, need to use emergency vehicles and evacuation	use of double bearing or other technological solution minimizing the risk of failure, development of rescue and evacuation procedures, high reliability of the low pressure maintenance system
E29	design mistakes	discomfort due to pressure changes, need to stop traveling for repair and evacuation	ensuring that the capsule is highly sealed, equipping the vehicle with oxygen cylinders and masks in case of loss of containment, developing procedures for rescue and evacuation
E30	occurrence of earthquakes, tectonic plate movements, excavation work at the location of a tube system, large temperature fluctuations, terrorist attack	vehicle stopping, need to stop travelling and evacuation, in extreme cases damage to the capsule and injury to passengers	avoidance of earthquake-prone areas, proper protection of the site against unauthorized work / terrorist attack, proper construction (e.g., use of expansion joints), development of rescue and evacuation procedures
E31	failure of the vehicle in front	contusions and head injuries, in extreme cases damage to vehicles and more serious injuries	integrated vehicle tracking system, development of procedures for rescue and evacuation
Attention should be paid to events related to failure of vehicles or conveyors - primarily events E16, E17, E28. In case of event E16: *Blocked entry to the station*, two scenarios can be distinguished:

a) failure of another vehicle while still in the tunnel - in this case, the conception of "safety buffer" is developed;

b) failure of another vehicle in the low pressure zone or its conveyor – in this case, a solution must be devised to allow emergency transfer of the capsule to another cross conveyor (perhaps using a technical crane).

In the case of event E17: *Vehicle stopping while riding in the low pressure zone*, a scenario can be distinguished that coincides with scenario b for event E16.

In case of event E28: *Vehicle stopping during travel* (e.g. bearings failure, failure of the low pressure maintenance system) the concept of using emergency stations, emergency vehicles and carrying out evacuation is provided.

Event E29: *Loss of safety capsule containment* forces the vehicle to be equipped with oxygen cylinders and masks and actions as in the previous event. However, it can be assumed that with high care in the design and construction of this capsule, the probability of this event occurrence is negligible.

Similarly, for event E30: *Tube damage*, procedures for conducting rescue and evacuation should be refined. Geodynamic monitoring of the earth should also be undertaken and the area should be secured against any unauthorized excavation works and the occurrence of a terrorist attack.

4. Development of indicator method

In this study, a proprietary indicator method is developed to assess the risk of low pressure railway transport. The defined risk indicator was based on the Risk Score method.

Due to the fact that the analysis is conducted for one railway ride, the exposure factor was not considered (as opposed to the classical method). The risk score is as follows:

\[
R_n = P_n \cdot S_n
\]

(1)

where:

- \(n\) – undesirable event index (from 1 to 31);
- \(R_n\) – risk score for the \(n^{th}\) undesirable event;
- \(P_n\) – probability of occurrence factor for the \(n^{th}\) undesirable event occurring during a single ride, taking values from 1 to 100;
- \(S_n\) – consequences (injuries severity) factor with values from 1 to 100.

For all undesirable events the values of \(P_n\) and \(S_n\) were estimated by experts using the descriptive values provided in table 4. The estimates were performed independently by the authors of the paper and are presented in table 5.
Table 4

Probability factor P_n	Consequences factor S_n	Descriptive	Probability	S_n	Loss	Descriptive
100	100	Might well be expected	0.5	100	Catastrophe	many fatalities
60	40	Quite possibly	0.1	40	Disaster	multiple fatalities
30	15	Unusual, but possible	0.01	15	Very serious	a fatality
10	7	Only remotely possible	0.001	7	Serious	serious injury
5	3	Conceivable, but highly unlikely	0.0001	3	Important	disability
2	2	Practically impossible	0.00001	2	Noticeable	first aid may be needed
1	1	Virtually impossible	0.000001	1	Noticeable	first aid may be needed

Table 5

Event E_n	Probability factor P_n	Consequences factor S_n	Mean value (MV)	$R_n = P_{n,MV} \cdot S_{n,MV}$			
E1	2	3	8	5.0	3.0	15.0	
E2	1	2	6	3.5	1.5	5.3	
E3	1	3	3	3.5	2.0	6.5	13.0
E4	10	3	10	2.0	10.0	3.0	
E5	5	1	10	7.5	7.5	7.5	
E6	2	3	2	2.0	5.5	11.0	
E7	5	1	10	7.5	1.0	7.5	
E8	10	3	10	20.0	10.0	20.0	
E9	2	1	10	6.0	1.3	7.5	
E10	2	1	10	6.0	1.0	6.0	
E11	2	3	4	3.0	2.5	7.5	
E12	1	3	5	3.0	2.0	6.0	
E13	2	1	25	13.5	1.0	13.5	
E14	5	2	10	7.5	1.5	11.3	
E15	2	1	10	6.0	1.0	6.0	
E16	5	3	6	5.5	3.0	16.5	
E17	2	15	3	2.5	15.0	37.5	
E18	1	1	2	1.5	1.5	2.3	
E19	0.1	100	0.2	0.2	70.0	10.5	
E20	1	2	7	4.0	2.5	10.0	
E21	2	1	10	6.0	1.5	9.0	
E22	1	1	10	5.5	1.0	5.5	
E23	1	15	4	2.5	12.5	31.3	
E24	5	2	30	5.5	3.0	16.5	
E25	10	1	35	22.5	1.0	22.5	
E26	1	3	7	4.0	5.0	20.0	
E27	30	3	15	22.5	3.0	67.5	
E28	1	5	3	2.0	4.0	8.0	
E29	1	40	1	1.0	32.5	32.5	
E30	1	15	1	1.0	15.0	15.0	
E31	2	3	3	2.5	3.0	7.5	

No risk score was obtained for any event to conclude that it is high (significant) and drastic preventive action is required. The events that need special attention in the final
design of the railway transport system, the necessary infrastructure and their construction are the following:

- Contact with bacteria and viruses during rail travel;
- Vehicle stopping while riding in the low pressure zone\(^1\);
- Loss of safety capsule containment during rail travel;
- Fire during rail travel;
- Nausea, feeling of claustrophobia during rail travel;
- Contact with bacteria and viruses at the train station;
- Feeling of boredom, weariness, irritability during rail travel;
- Aggressive behavior / attack of a other passenger, terrorist attack;
- Impatience, weariness during the security check;

It can be noticed that the events with the highest risk score are usually associated with high potential consequences (loss of safety capsule containment, fire during travel, vehicle stopping while riding in the low pressure zone) or with high probability of occurrence (contact with viruses, fatigue, malaise). An exception is the event related to aggressive behavior of another passenger. In this case, the final score was evenly influenced by the probability and consequences factors. The experts showed a relatively high risk associated with the event involving contact with viruses and bacteria. This is mainly related to the epidemiological situation in Poland and in the world during the research work related to the Hyperloop project.

5. Recommendations related to the development of the railway project

Based on the conducted risk analysis, recommendations related to the development of the "Hyperloop" low pressure railway can be listed.

For the sake of ensuring an appropriate level of safety during the travel, it is necessary to provide appropriate systems and equipment components and take the following preventive measures:

- video/thermovision monitoring, use of appropriate smoke detectors and fire safety measures both at the station and in the vehicle;
- choosing appropriate materials for the seats (avoiding flammable materials);
- providing voice messages and an ability to communicate with staff;
- requiring staff and passengers to be equipped with personal protective equipment, installing hand disinfection dispensers at railway stations, frequent ventilation and disinfection of the station and vehicles;

\(^1\) The high risk score for this event is due to the need to develop procedures in the event of a vehicle locomotion system or conveyor failure in the low pressure zone.
• use of redundancy in the selection of mechanical systems, utmost care in the design of travel system and infrastructure;
• use of module tracking / traffic management system;
• equipping passenger modules with oxygen cylinders in case of loss of containment;
• developing procedures for conducting evacuation and rescue operations;
• developing a concept for transfer a vehicle in the event of a vehicle or conveyor failure in the low pressure zone;
• avoiding high steps and slippery surfaces in the station area, protecting against the possibility of falling under the vehicle;
• developing checking procedures.

In order to ensure an appropriate level of comfort during the use of the low pressure train in the context of minimizing the occurrence of fatigue, boredom, irritability or poor well-being, it is important to provide the following systems and equipment:

• ventilation and air conditioning system, ensuring fresh air supply and temperature comfort on the station and in the vehicle;
• selection of appropriate lighting inside the cabin;
• display system with monitors;
• mobile and/or Wi-Fi network ability;
• cabin interior layout to minimize the feeling of claustrophobia.

The above recommendations were developed primarily on the basis of the conducted detailed hazard identification. The conducted risk analysis showed the necessity to develop assumptions for proceeding in case of a failure of a vehicle locomotion system or a failure of a cross conveyor on which the vehicle is located in a low pressure zone.

6. Summary and conclusions

The analysis conducted was aimed at a preliminary risk assessment of the low pressure railway "Hyperloop", providing recommendations in the formation of the final design and construction of the railway system and the necessary infrastructure (stations, technical areas, tube system). The analysis to a significant extent was carried out in a classical way. It started with an analysis of the M-M-E system, identified undesirable events that could occur during moving around the station and during travel. Then, using a proprietary indicator method based on Risk Score, the potentially most dangerous events were selected. The events ranked with the highest risk score were: contact with viruses and bacteria during travel and at the station, loss of safety capsule containment, occurrence of fire, feeling of boredom, fatigue, irritability during the ride and security checks, aggressive behavior of another passenger, nausea, feeling of claustrophobia during the ride. It was also noticed that there is no concept of what to do in case of failure of the vehicle locomotion system or the conveyor on which the vehicle is located in the low pressure zone. Attention was drawn to the need for refinement of rescue and evacuation procedures in case of a failure during the ride.
The safety analysis of the "Hyperloop" system should be extended after developing the detailed project of the railway system and the necessary infrastructure. This project should take considering the recommendations developed in this study.

Acknowledgement
This research was funded by The National Centre for Research and Development in Poland (Narodowe Centrum Badan i Rozwoju); project title: “Potential for the development and implementation of vacuum tube high-speed train technology in Poland in the social, technical, economic and legal context” (“Potencjał rozwoju i wdrażania w Polsce technologii kolei próżniowej w kontekście społecznym, technicznym, ekonomicznym i prawnym”); grant number: Gospostrateg/387144/27/NCBR/2019.

7. References

1. Almujibah H., Kaduk S. I., Preston J.: Hyperloop – prediction of social and physiological costs. Transportation Systems and Technology 2020. 6(3): 43–59, DOI: 10.17816/transsyst20206343-59.
2. DaTian Z., Wei X., Ali H., Han W.: Study on Model based Hazard Identification for the Hyperloop System. Proceedings of the International Seminar on Computation, Communication and Control 2015, DOI:10.2991/is3c-15.2015.6.
3. Fine W.: Mathematical Evaluations for Controlling Hazards. Journal of Safety Research 1971.
4. Gkoumas K., Christou M.: A triple-helix approach for the assessment of hyperloop potential in Europe. Sustainability 2020, DOI:10.3390/SU12197868.
5. Hansen I. A.: Hyperloop transport technology assessment and system analysis. Transportation Planning and Technology 2020, DOI:10.1080/03081060.2020.1828935.
6. Jamroz K., Kadziński A., Chruzik K., et al.: Trans-Risk - An Integrated Method for Risk Management in Transport. Journal of Konbin 2010. 13(1): 209–220, DOI: 10.2478/v10040-008-0149-9.
7. Mateu J. M., Martínez Fernández P., Insa Franco R.: Setting safety foundations in the Hyperloop: A first approach to preliminary hazard analysis and safety assurance system. Safety Science 2021. 142: 105366, DOI: 10.1016/j.ssci.2021.105366.
8. Musk E.: Hyperloop Alpha. SpaceX/Tesla Motors 2013.
9. Piechna J.: Low Pressure Tube Transport - An Alternative to Ground Road Transport - Aerodynamic and Other Problems and Possible Solutions. Energies 2021. 14(13): 3766, DOI: 10.3390/en14133766.
10. Polak K.: Technologia Hyperloop i perspektywy jej zastosowania. Prace Instytutu Kolejnictwa 2017. 156: 28–32.
11. Sitarz M., Chruzik K., Wachnik R.: Aplication of RAMS and FMEA methods in safety management system of railway transport. Journal of Konbin 2012, DOI:10.2478/jok-2013-0061.
Preliminary risk analysis of low pressure railway transport

12. Szopa T.: Niezawodność i bezpieczeństwo. Edition 2. Oficyna Wydawnicza PW, Warszawa 2016.

13. Szymajda M.: Koreański hyperloop rozpadł się do ponad 1000 km/h. Rynek Kolejowy 2020. https://www.rynek-kolejowy.pl/wiadomosci/koreanski-hyperloop-rozpeldzil-sie-do-ponad-1000-kmh-99557.html, access date: 01.09.2021.

14. Szymajda M.: Hyperloop Virgin po raz pierwszy pojechał z pasażerami. Rynek Kolejowy 2020. https://www.rynek-kolejowy.pl/wiadomosci/hyperloop-po-raz-pierwszy-pojechal-z-pasazerami-film-99456.html, access date: 25.09.2021.

15. Badania socjologiczne w symulatorze kolei próżniowej Hyperloop. https://www.biuletyn.pw.edu.pl/Wspolpraca-uczelni/Badania-soczologiczne-w-symulatorze-kolei-prozniowej-Hyperloop, access date: 01.09.2021.

16. PN-EN ISO 12100:2012. Bezpieczeństwo maszyn - Ogólne zasady projektowania - Ocena ryzyka i zmniejszanie ryzyka.

17. Ustawa z dnia 28 marca 2003 r. o transporcie kolejowym (z późn. zm.), Dz.U.2020.1043 t.j.

18. Rozporządzenie Ministra Transportu i Gospodarki Morskiej z dnia 10 września 1998 r. w sprawie warunków technicznych, jakim powinny odpowiadać budowle kolejowe i ich usytuowanie (z późn. zm.), Dz.U.1998.151.987.

19. PN-EN 45545-2:2021-01. Kolejnictwo - Ochrona przeciwpożarowa w pojazdach szynowych - Część 2: Wymagania dla materiałów i elementów w zakresie właściwości ogniowych.

20. Ustawa z dnia 3 lipca 2002 r. Prawo lotnicze (z późn. zm.), Dz.U.2020.1970 t.j.

21. Rozporządzenie Parlamentu Europejskiego i Rady (WE) nr 300/2008 w zakresie specyfikacji dla krajowych programów kontroli jakości w dziedzinie ochrony lotnictwa cywilnego (z późn. zm.).
WSTĘPNA ANALIZA RYZYKA PODRÓŻY KOLEJĄ NISKOCIŚNIENIOWĄ

1. Wprowadzenie

Działania na rzecz bezpieczeństwa dotyczą wielu aspektów życia człowieka i jego funkcjonowania w systemie człowiek – technika – otoczenie (C-T-O). Rozwój nauki o bezpieczeństwie związany jest z umiejętnością lepszej identyfikacji zagrożeń, uwzględnianiem zagadnień związanych z bezpieczeństwem na etapie projektowania urządzeń technicznych oraz postępowaniem w zakresie przeciwdziałania zagrożeniom poprzez rozwijanie istniejących i proponowanie nowych metod analizy ryzyka i niezawodności [12].

Jednym z systemów, którego koncepcje są rozwijane na całym świecie, jest „Hyperloop”. Jest to sposób transportu, który można umieścić pomiędzy samolotem i pociągiem. Polega na przemieszczaniu się z bardzo dużą prędkością w specjalnie przygotowanej kapsule wewnątrz tunelu o obniżonym ciśnieniu [10]. Chociaż koncepcje przejazdu pojazdu wewnątrz rurociągu z obniżonym ciśnieniem były rozważane od lat, to za autora nazwy i założeń pojazdu „Hyperloop” uznaje się amerykańskiego przedsiębiorcę i multimiliardera Elona Muska. Zgodnie z jego ideą, pojazd ma być w porównaniu do innych środków transportu bezpieczniejszy, szybszy, tańszy, wygodniejszy, odporny na warunki atmosferyczne i trzęsienia ziemi, zrównoważony w kwestiach energetycznych oraz niekolizyjny [8]. Należy podkreślić, że w niektórych krajach – USA oraz Korei Południowej – prace są na tyle zaawansowane, że odbywają się już przejazdy testowe. W Korei przeprowadzono przejazdy testowe bez pasażerów z prędkościami ok. 700 oraz 1000 km/h [13]. W USA odbył się przejazd z dwójką pasażerów na torze testowym o długości 500 m z prędkością 160 km/h. Docelowo na dłuższym dystansie planowane jest przekroczenie prędkości 1000 km/h [14]. W Polsce odbyły się badania w mechanicznym i wirtualnym symulatorze kolei [15]. Opis głównych założeń dotyczących funkcjonowania kolei niskociśnieniowej, której symulator zbudowano, można znaleźć w opracowaniu [9].

We wszystkich projektach dotyczących nowego sposobu przemieszczania się istotną rolę odgrywają analizy bezpieczeństwa. Z uwagi na brak odpowiednich norm i regulacji w tym zakresie, niezbędne jest odwoływanie się do uniwersalnych norm dotyczących bezpieczeństwa urządzeń technicznych [16], a także przepisów [17, 18] i norm (np. [19]) związanych z tradycjąą koleją. Pomocne mogą być również akty normatywne dotyczące zasad prowadzenia kontroli bezpieczeństwa w transporcie lotniczym [20, 21], ponadto należy rozważyć możliwość wykorzystania lekkich materiałów stosowanych w lotnictwie.
Istotne mogą okazać się autorskie koncepcje i rozwiązania związane z analizą i zarządzaniem ryzykiem w transporcie [6, 11]. Podejmowane są próby wypracowania odpowiednich rekomendacji związanych z technologią „Hyperloop” także w kontekście zarządzania systemem bezpieczeństwa na podstawie prowadzonych analiz ryzyka z wykorzystaniem: szczegółowego opisu i oceny poszczególnych własności, cech i segmentów omawianego systemu transportowego [5], map ryzyka i metody SWIFT (Structured What If Technique, Co-Jeżeli) [7], modelu zbliżonego do metody HAZOP (Hazard and Operability Study, analiza zagrożeń i zdolności operacyjnych) [2].

W prowadzonych badaniach można często znaleźć porównania i odwołania do istniejących systemów transportowych. Rozpatrywane są także kwestie związane z potencjałem w zakresie rozwoju technologicznego i komercjalizacji inwestycji [4] oraz akceptacją społeczną nowego środka transportu [1].

Przeprowadzona w pracy analiza ryzyka dotyczyć będzie aspektów związanych z bezpieczeństwem użytkowania oraz ergonomią systemu kolej niskociśnieniowej z wykorzystaniem jakościowej metody wskaźnikowej zbliżonej do Risk Score [3, 12]. Nie będą poddane analizie kwestie ekonomiczne czy społeczne związane z wdrażaniem systemu kolej niskociśnieniowej.

2. Rozpoznanie systemu C-T-O

Przed rozpoczęciem identyfikacji zagrożeń i poszukiwaniem możliwych do wystąpienia zdarzeń niepożądanych, istotne będzie określenie analizowanego systemu człowiek – technika – otoczenie (C-T-O). Identyfikacja poszczególnych członów systemu została przedstawiona w tab. 1.

Tabela 1

Identyfikacja systemu C-T-O

Człowiek	Technika	Otoczenie
• pasażerowie kolei niskociśnieniowej	• kolej niskociśnieniowa składająca się z trzech modułów: pasażerskiego, bezpieczeństwa oraz jezdnego	• arteria rurowa znajdująca się w dużej części pod ziemią
• operatorzy – osoby odpowiedzialne za zarządzanie ruchem kolej		• niezbędna infrastruktura w postaci dworców, śluz, przenośników poprzecznych, obszarów technicznych, komór ratunkowych
• obsługa (kolei, dworca)		

Koncepcja kolei niskociśnieniowej została opracowana w ramach realizowanego projektu. Głównym jej założeniem jest jej modułowość, zakłada się podział pojazdu na moduły: pasażerski/towarowy, bezpieczeństwa i jezdny. Pojazd według tej koncepcji miałby otwierany jeden lub dwa końce modułu bezpieczeństwa, przez które do jego wnętrza wsuwane są moduły pasażerskie lub moduły towarowe. Zaprezentowano to na rys. 1.
Rys. 1. Modułowa koncepcja pojazdu

Autoorem koncepcji kolei, szczegółowych rozwiązań technicznych, a także przeprowadzonych analiz aerodynamicznych [9] jest profesor Janusz Piechna. Główne założenia konstrukcyjno-eksploatacyjne są następujące:

- ciśnienie w tunelu: 1000 Pa, wewnątrz pojazdu: atmosferyczne,
- maksymalna prędkość kapsuły: 720 km/h,
- maksymalne przyspieszenia liniowe: 0,25 g (2,5 m/s²),
- separacja pomiędzy pojazdami: 24 km (2 min),
- moduł jezdny: standardowy układ kół z lożyskami tocznymi,
- maksymalna liczba pasażerów w jednej kapsule: 30 lub 56.

Koncepcja dworca (stacji pośredniej) zakłada wydzielenie następujących stref: strefa kontroli bezpieczeństwa, hala peronów, strefa ciśnienia atmosferycznego, strefa niskiego ciśnienia. Ponadto zakłada się wykorzystanie specjalnych śluz i przewodów poprzecznych, w celu przeniesienia pojazdu do strefy niskiego ciśnienia, a następnie odpowiedniej arterii rurowej. Podczas przejazdu kolei założono, że przyspieszenie oraz hamowanie kolei będzie odbywać się z wykorzystaniem liniowych silników i hamulców. Zgodnie z opracowaną koncepcją pojazd będzie rozpędzony do prędkości maksymalnej, następnie po spadku prędkości (do połowy wartości maksymalnej) nastąpi przyspieszenie pojazdu z wykorzystaniem silowników liniowych rozmieszczonych co ok. 300 km. Na przewidywa się także odpowiednie rozmieszczenie komór ratunkowych na wypadek wystąpienia awarii systemu. W odróżnieniu od innych rozważanych koncepcji [10] nie zakłada się występowania bardzo wysokich prędkości (powyżej 0,6 Ma). W takim wypadku możliwe będzie zastosowanie tradycyjnego układu jezdnego oraz nie wystąpią znaczące problemy związane z zapewnieniem stabilności ruchu. Znacznie ograniczy to złożoność konstrukcji i koszty realizacji projektu. Szczegółowy opis koncepcji dworca oraz wykorzystywanej infrastruktury technicznej można znaleźć w [9].

3. Identyfikacja zagrożeń

Identyfikacja zagrożeń polega na określaniu zdarzeń niepożądanych, jakie mogą wystąpić na stanowisku pracy lub podczas prowadzenia projektu, badań, eksperymentu
bądź użytkowania urządzenia. W tym przypadku istotne będą zdarzenia, które mogą zajść w trakcie przejazdu koleją oraz czynności bezpośrednio przed i po przejeździe.

W celu wstępnej identyfikacji zagrożeń określono zdarzenia niepożądane mogące wystąpić podczas poszczególnych etapów przejazdu pojazdem kolei niskociśnieniowej:

- etapy 1 i 11: Przemieszczenia się po dworcu,
- etap 2: Przejście kontroli bezpieczeństwa,
- etapy 3 i 9: Wchodzenie/wychodzenie z kabiny i zajmowanie/opuszczenie miejsc,
- etapy 4 i 8: Wsuwanie/wysuwanie się kabiny z kapsuły, przejazd przez śluzę i strefę niskiego ciśnienia,
- etapy 5 i 7: Rozpędzanie lub hamowanie pojazdu,
- etap 6: Przejazd koleją.

Etapy (zadania) podzielono na czynności, w celu możliwości bardziej precyzyjnego wytypowania zdarzeń niepożądanych.

W tab. 2 określono możliwe zdarzenia niepożądane dla poszczególnych etapów i czynności. W tab. 3 dla każdego zdarzenia wyszczególniono przypuszczalne przyczyny, skutki oraz sugestie działań mających na celu wyeliminowanie lub ograniczenie negatywnych skutków określonego zdarzenia.

Tabela 2

Identyfikacja zdarzeń niepożądanych

Etap / zadanie	Czynność / sytuacja	Zdarzenia niepożądane (Zn)
Etap 1 i 11: Przemieszczanie się po dworcu	chodzenie po schodach	Z1. Upadek ze schodów
		Z2. Upadek na płaskiej powierzchni
		Z3. Wpadnięcie pod pojazd
		Z4. Kontakt z bakteriami i wirusami
		Z5. Zbyt wysoka temperatura, mała ilość świeżego powietrza
		Z6. Wystąpienie pożaru
Etap 2: Przejście kontroli bezpieczeństwa	przechodzenie przez bramkę	Z7. Kontakt z ostrymi krawędziami (walizki, bramki)
		Z8. Zniecierpienie, znużenie
Etapy 3 i 9: Wchodzenie/wychodzenie z kabiny pasażerskiej i zajmowanie/opuszczenie miejsc	przechodzenie przez drzwi (osłonę) kabiny w celu zajęcia miejsca	Z9. Uderzenie się
		Z10. Kontakt z ostrymi krawędziami
		Z11. Przytrzaśnięcie znaleźć ręki
		Z12. Awaria systemu
		Z13. Przewrócenie się walizki
		Z14. Kontakt z ostrymi krawędziami
		Z15. Zahaczenie dłoni, przycięcie fragmentu skóry klamrą pasów bezpieczeństwa
		Z16. Zablokowanie możliwości wjazdu na stację
Etapy 4 i 8: Wsuwanie/wysuwanie się kabiny z kapsuły, przejazd przez śluzę i strefę niskiego ciśnienia	wyjazd z tunelu	Z17. Zatrzymanie się
		Z18. Pojechanie w złym kierunku
		Z19. Pojechanie pod prąd
Analiza przyczyn i skutków zdarzeń niepożądanych

Zn	Przyczyny	Prawdopodobne skutki	Działania zapobiegające / minimalizujące
Z1	nieuwaga, wysokie progi, śliska lub mokra powierzchnia	złamania, stłuczenia, skaleczenia, skręcenia	unikanie wysokich progów i schodów, odpowiednia nawierzchnia
Z2	ścisłej wśród pasażerów, nieuwaga, śliska lub mokra powierzchnia	stłuczenia, otarcia, skaleczenia, skręcenia	odpowiednia nawierzchnia, odpowiednie oznakowanie i oznaczenie stref dworca
Z3	nieuwaga, brak zabezpieczeń	poważne obrażenia	zabezpieczenia uniemożliwiające wpadnięcie pod pojazd
Z4	zbyt duża liczba pasażerów	choroba	oznakowanie i oznaczenie stref dworca, wietrzenie, ograniczanie liczby osób, pomiar temperatury pasażerów
Z5	zbyt duży pasażerowie, nieodpowiednia klimatyzacja, długie oczekiwanie na kontrolę	złe samopoczucie, duszności, omładzenia, zasłabnięcia	odpowiedni system wentylacji i klimatyzacji peronów, niedługi czas oczekiwania na kontrolę i przejazd
Z6	wzniesienie ognia przez pasażera	wdychanie dymu, poparzenia	odpowiedni monitoring, czujniki dymu, zabezpieczenia antypożarowe
Z7	występowanie ostrych krawędzi, pośpiech	skaleczenie	unikanie ostrych krawędzi, opracowanie bezpiecznej procedury kontroli bezpieczeństwa
Z8.	zbyt długie oczekiwanie na kontrolę	frustracja	opracowanie sprawnej procedury kontroli
Z9	ścisłej wśród pasażerów, nieuwaga	stłuczenia, otarcia	nadzór nad wchodzącymi pasażerów
Z10	niezabezpieczenie ostrych krawędzi, nieuwaga	skaleczenia, otarcia	unikanie ostrych krawędzi
Z11	nieuwaga pasażera	urazy ręki	zachowanie uwagi, informacja głosowa o zamknięciu drzwi, czujnik
Z12	nieodpowiednie działanie systemu otwierania drzwi	frustracja	redundancja (system awaryjny) otwierania drzwi
Z13	zbyt duży bagaż, niewygodne miejsce do wkładania bagażu	otarcia	wygodne miejsce do włożenia bagażu
Z14	ostre krawędzie	skaleczenia	unikanie ostrych krawędzi
Z15	nieuwaga	skaleczenia	bezpieczny system pasów bezpieczeństwa
Z16	awaria innego pojazdu, awaria przenośnika innego pojazdu	opóźnienia, konieczność ewakuacji, konieczność przeniesienia kapsuły	zastosowanie koncepcji bufora awaryjnego, procedura na wypadek awarii przenośnika w strefie niskiego ciśnienia (np. wykorzystanie suwnicy do przeniesienia kapsuły)
Z17	awaria przenośnika poprzecznego, awaria pojazdu	opóźnienia, konieczność przeniesienia kapsuły, konieczność ewakuacji	procedura na wypadek awarii przenośnika w strefie niskiego ciśnienia (np. wykorzystanie suwnicy do przeniesienia kapsuły)
Z18	awaria systemu	w inne miejsce	opracowany system zarządzania ruchem i śledzenia pojazdów
Z19	awaria systemu	zderzenie z innym pojazdem, śmierć	opracowany system zarządzania ruchem i śledzenia pojazdów
Z20	niezapięcie pasów, zbyt gwałtowane rozpadanie/hamowanie, awaria silnika liniowego/hamulca	stłuczenia i urazy głowy oraz całego ciała	system komunikatów głosowych informujący o starcie/zakończeniu przejazdu i konieczności zapięcia pasów, nieduże przyspieszenie/ opóźnienie
Z21	zbyt gwałtowane rozpadanie/hamowanie, awaria silnika liniowego/hamulca	stłuczenia i urazy głowy	system komunikatów głosowych informujący o starcie/zakończeniu przejazdu i konieczności zapięcia pasów, nieduże przyspieszenie/ opóźnienie
Z22	brak odpowiedniego wykończenia wnętrza kabiny	skaleczenia	unikanie/zabezpieczenie ostrych krawędzi, wykończenie wnętrza odpowiednimi tkaninami/materiałami
Z23	czynności zakazane – np. palenie papierosów, używanie zapalniczek itd., zwarcie instalacji elektrycznej	poparzenia, zatrucia wydychanymi oparami, śmierć	monitoring wizyjny/termowizyjny, czujniki dymu, zakaz używania zapalniczek, palenia papierosów itd., wyposażenie kabiny w gaśnicę, możliwość komunikowania się z obsługą, unikanie materiałów łatwopalnych, opracowanie procedur ewakuacji
Z24	brak odpowiedniej wentylacji/klimatyzacji, nieodpowiednie oświetlenie, nieodpowiednia aranżacja wnętrza	wymioty, dyskomfort podczas przejazdu, objawy choroby lokomocjnej	zapewnienie wydajnego systemu wentylacji/ klimatyzacji, dobór odpowiedniego oświetlenia, zamontowanie układu wyświetlania obrazu podczas przejazdu, zaaranżowanie wnętrza w sposób minimalizujący uczucie klaustrofobii
Z25	brak odpowiednich zajęć podczas przejazdu	dyskomfort, frustracja	zapewnienie możliwości korzystania z telefonów (wi-fi lub dostępność sieci), zamontowanie układu wyświetlania obrazu podczas przejazdu (monitory)
Z26	brak odpowiedniej kontroli uczestników przejazdu	skaleczenia, urazy przerwanie jazdy, ewakuacja, w przypadku ataku terrorystycznego: poważne obrażenia, śmierć	kontrola pasażera pod kątem posiadania niebezpiecznych przedmiotów, zapewnienie możliwości komunikowania się z obsługą, system monitoringu wizyjnego, opracowanie procedur prowadzenia ewakuacji
Z27	brak odpowiedniej kontroli pasażerów	choroba	kontrola stanu zdrowia pasażera (pomiar temperatury), zapewnienie odpowiedniego systemu wentylacji/klimatyzacji, środki
Zdarzenie	Opis zdarzenia	Scenariusz a	Scenariusz b
-----------	----------------	--------------	--------------
Z28	Zatarcze lóžysk, awaria systemu utrzymania niskiego ciśnienia	Zablokowanie możliwości wjazdu na stację	Zablokowanie możliwości wjazdu na stację
Z29	Błędy projektowe	Dolegliwości związane ze zmianą ciśnienia, konieczność przerwania jazdy w celu naprawy i ewakuacji	Zapewnienie wysokiej szczelności kapsuły, pozyskanie pojazdu w butle z tlenem i maseczki na wypadek rozszczelinienia, opracowanie procedur prowadzenia akcji ratunkowej i ewakuacji
Z30	Wystąpienie trzęszenia ziemi, ruchów płyt tektonicznych, prowadzenie prac wydobywczych w miejscu znajdowania się arterii rurowej, duże wahania temperatury, atak terrorystyczny	Zatrzymanie się pojazdu, konieczność przerwania jazdy i ewakuacji, w skrajnym przypadku uszkodzenia kapsuły i obrażenia pasażerów	Unikanie terenów zagrożonych trzęsieniami ziemi, odpowiednie zabezpieczenie terenu przed wykonywaniem niedozwolonych robót / atakami terrorystycznymi, odpowiednia konstrukcja (np. zastosowanie szczelin dylatacyjnych), opracowanie procedur akcji ratunkowej i prowadzenia ewakuacji
Z31	Awaria pojazdu znajdującego się z przodu	Stłuczenia i urazy głowy, w skrajnym wypadku uszkodzenie pojazdów i poważniejsze obrażenia	Zintegrowany system śledzenia przemieszczania się pojazdów, opracowanie procedur prowadzenia akcji ratunkowej i ewakuacji

Należy zwrócić uwagę na zdarzenia związane z awarią pojazdów lub przenośników – przede wszystkim zdarzenia Z16, Z17, Z28. W przypadku zdarzenia Z16: **Zablokowanie możliwości wjazdu na stację** można wyróżnić dwa scenariusze:

a) awaria innego pojazdu jeszcze w tunelu – w tym wypadku opracowana jest koncepcja tzw. bufora awaryjnego;
b) awaria innego pojazdu znajdującego się w strefie niskiego ciśnienia lub jego przenośnika – w tym wypadku należy opracować rozwiązanie umożliwiające awaryjne przeniesienie kapsuły na inny przenośnik poprzeczny (być może z wykorzystaniem suwnicy technicznej).

W przypadku zdarzenia Z17: **Zatrzymanie się podczas przejazdu w strefie niskiego ciśnienia** można wyróżnić scenariusz zbieżny ze scenariuszem b dotyczącym zdarzenia Z16.

W przypadku zdarzenia Z28: **Zatrzymanie się podczas przejazdu** (np. zatarcze lóžysk, awaria systemu utrzymania niskiego ciśnienia) przewidziana jest koncepcja wykorzystania stacji awaryjnych, pojazdów ratunkowych oraz przeprowadzenia ewakuacji.

Zdarzenie Z29: **Rozszczelinienie kapsuły** wymusza wyposażenie pojazdu w butle z tlenem i maseczki oraz czynności takie jak w przypadku poprzedniego zdarzenia. Jednak
można założyć, że przy zachowaniu wysokiej staranności przy projekcie i wykonaniu takiej kapsuły, prawdopodobieństwo wystąpienia takiego zdarzenia jest znikome.

Podobnie dla zdarzenia Z30: Uszkodzenie arterii rurowej należy dopracować procedury prowadzenia akcji ratunkowej i ewakuacji. Należy także podjąć działania monitoringu geodynamicznego ziemi oraz zabezpieczyć teren przed prowadzeniem ewentualnych niedozwolonych robót i wystąpieniem ataku terrorystycznego.

4. Opracowanie metody wskaźnikowej

W niniejszej pracy opracowano autorską metodę wskaźnikową do oceny ryzyka przejazdu koleją. Zdefiniowany wskaźnik ryzyka wzorowano na metodzie Risk Score. Z uwagi na fakt, że analiza dotyczy jednego przejazdu koleją, nie uwzględniono wskaźnika związanego z ekspozycją (w odróżnieniu od klasycznego podejścia). Wskaźnik ryzyka jest więc następujący:

\[R_n = P_n \cdot S_n \] (1)

gdzie:
- \(n \) – indeks zdarzenia niepożądanego (od 1 do 31),
- \(R_n \) – wskaźnik ryzyka dla \(n \)-tego zdarzenia niepożądanego,
- \(P_n \) – wskaźnik prawdopodobieństwa wystąpienia \(n \)-tego zdarzenia niepożądanego podczas jednego przejazdu przyjmujący wartości od 1 do 100,
- \(S_n \) – wskaźnik ciężkości skutków przyjmujący wartości od 1 do 100.

Wartości wskaźników \(P_n \) oraz \(S_n \) zostały oszacowane dla zdarzeń niepożądanych przez ekspertów z wykorzystaniem wartości opisowych zamieszczonych w tab. 4. Oszacowania dokonali niezależnie autorzy pracy, przedstawia je tab. 5.

Tabela 4

Wskaźnik prawdopodobieństwa \(P_n \)	Wskaźnik skutków \(S_n \)				
Opis	Prawdop.	Strata	Opis		
100	bardzo prawdopodobne	0,5	100	poważna katastrofa	wiele ofiar śmiertelnych
60	całkiem możliwe	0,1	40	katastrofa	kilka ofiar śmiertelnych
30	mało prawdop., ale możliwe	0,01	15	bardzo duża	ośmiota śmierć
10	tylko sporadycznie możliwe	0,001	7	duża	ciężkie uszkodzenia ciała
5	możliwe do pomyślenia	0,0001	3	średnia	zwolnienie lekarskie
2	praktycznie niemożliwe	0,00001	1	mała	opatrzenie
1	tylko teoretycznie możliwe	0,000001			poszkodowanego
Tabela 5

Zdarzenie	Ekspert 1	Ekspert 2	Średnia	$R_n = P_{n,śr} \cdot S_{n,śr}$
Z1	2 3	8 3	5,0 3,0	15,0
Z2	1 1	6 2	3,5 1,5	5,0
Z3	1 3	3 10	2,0 6,5	13,0
Z4	10 3	10 3	10,0 3,0	30,0
Z5	5 1	10 1	7,5 1,0	7,5
Z6	2 3	2 8	2,0 5,5	11,0
Z7	5 1	10 1	7,5 1,0	7,5
Z8	10 1	30 1	20,0 1,0	20,0
Z9	2 1	10 1,5	6,0 1,3	7,5
Z10	2 1	10 1	6,0 1,0	6,0
Z11	2 3	4 2	3,0 2,5	7,5
Z12	1 3	5 1	3,0 2,0	6,0
Z13	2 1	25 1	13,5 1,0	13,5
Z14	5 2	10 1	7,5 1,5	11,3
Z15	2 1	10 1	6,0 1,0	6,0
Z16	5 3	6 3	5,5 3,0	16,5
Z17	2 15	3 15	2,5 15,0	37,5
Z18	1 1	2 2	1,5 1,5	2,5
Z19	0,1 100	0,2 40	0,2 70,0	10,5
Z20	1 2	7 3	4,0 2,5	10,0
Z21	2 1	10 2	6,0 1,5	9,0
Z22	1 1	10 1	5,5 1,0	5,5
Z23	1 15	4 10	2,5 12,5	31,3
Z24	5 2	30 1,5	17,5 1,8	30,6
Z25	10 1	35 1	22,5 1,0	22,5
Z26	1 3	7 7	4,0 5,0	20,0
Z27	30 3	15 3	22,5 3,0	67,5
Z28	1 5	3 3	2,0 4,0	8,0
Z29	1 40	1 25	1,0 32,5	32,5
Z30	1 15	1 15	1,0 15,0	15,0
Z31	2 3	3 3	2,5 3,0	7,5

Dla żadnego zdarzenia nie otrzymano wskaźnika ryzyka pozwalającego stwierdzić, że jest ono wysokie (istotne) i wymagane jest podjęcie drastycznych działań zapobiegawczych. Zdarzenia, na które należy zwrócić szczególną uwagę przy ostatecznym projekcie kolei, niezbędnej infrastruktury i ich budowie są następujące:

- kontakt z wirusami i bakteriami podczas przejazdu,
- zatrzymanie się podczas przejazdu przez strefę niskiego ciśnienia\(^1\),
- rozszczelnienie kapsuły podczas przejazdu,
- wystąpienie pożaru podczas przejazdu,
- mdłości, uczucie klaustrofobii podczas przejazdu,

\(^1\) Wysoki wskaźnik ryzyka dla tego zdarzenia wynika z konieczności opracowania procedur na wypadek awarii układu kołowego pojazdu lub przenośnika w strefie niskiego ciśnienia
Wstępna analiza ryzyka podróży koleją niskociśnieniową

- kontakt z bakteriami i wirusami na dworcu,
- poczucie nudy, znużenia, rozdrażnienia podczas przejazdu,
- agresywne zachowanie / atak współuczestnika przejazdu, atak terrorystyczny,
- zniecierpliwienie, znużenie podczas kontroli bezpieczeństwa.

Można zauważyć, że zdarzenia o najwyższym wskaźniku ryzyka wiążą się zazwyczaj z wysokimi potencjalnymi skutkami (rozszczelnienie kapsuły, wystąpienie pożaru podczas przejazdu, zatrzymanie się podczas przejazdu przez strefę niskiego ciśnienia) lub z wysokim prawdopodobieństwem ich wystąpienia (kontakt z wirusami, znużenie, złe samopoczucie). Wyjątkiem jest zdarzenie związane z agresywnym zachowaniem współuczestnika podróży. W tym przypadku na ostateczny wynik równomierny wpływ miały wskaźniki prawdopodobieństwa i skutków. Eksperci wykazali stosunki stosunkowe duże niebezpieczeństwo związane ze zdarzeniem polegającym na kontakcie z wirusami i bakteriami. Jest to związane głównie z sytuacją epidemiologiczną w Polsce i na świecie podczas prowadzenia prac badawczych związanych z projektem „Hyperloop”.

5. Rekomendacje związane z opracowaniem projektu kolei

Na podstawie przeprowadzonej analizy ryzyka można wymienić rekomendacje i zalecenia związane z budową kolei niskociśnieniowej „Hyperloop”.

Ze względu na zapewnienie odpowiedniego poziomu bezpieczeństwa podczas przejazdu jest niezbędne zapewnienie odpowiednich systemów oraz elementów wyposażenia oraz podjęcie następujących działań zapobiegawczych:

- kamery wizyjne/termowizyjne, zastosowanie odpowiednich czujników dymu i środków ochrony przeciwpożarowych zarówno na dworcu jak i w pojeździe;
- dobór odpowiedniego materiału do foteli (unikanie materiałów łatwopalnych);
- zapewnienie komunikacji głosowej i możliwość komunikowania się z obsługą;
- wymaganie od personelu i pasażerów zaopatrzenia w środki ochrony osobistej, zamontowanie na dworcach dozowników do dezynfekcji dłoni, częste wietrzenie i dezynfekowanie dworca oraz pojazdów;
- zastosowanie redundancji w zakresie doboru systemów mechanicznych, najwyższa staranność podczas projektowania konstrukcji i infrastruktury;
- zastosowanie systemu śledzenia / zarządzania ruchem modułów;
- wyposażenie modułów pasażerskich w butle z tlenem na wypadek rozszczelnienia;
- opracowanie procedur przeprowadzenia ewakuacji i akcji ratunkowej;
- opracowanie koncepcji przeniesienia modułu na wypadek awarii pojazdu lub przenośnika w strefie niskiego ciśnienia;
- unikanie wysokich stopni oraz śliskich powierzchni na terenie dworca, zabezpieczenie przed możliwością wpadnięcia pod pojazd;
- opracowanie procedur kontroli bezpieczeństwa.

Ze względu na zapewnienie odpowiedniego poziomu komfortu podczas użytkowania kolei niskociśnieniowej w kontekście minimalizacji wystąpienia znużenia, poczucia nudy,
rozdrażnienia czy złego samopoczucie jest istotne zapewnienie następujących systemów oraz elementów wyposażenia:
- układ wentylacji i klimatyzacji, zapewniający dopływ świeżego powietrza oraz komfort temperaturowy na dworcu i w pojeździe;
- dobór odpowiedniego oświetlenia wewnątrz kabiny;
- układ wyświetlania obrazów za pomocą monitorów;
- zapewnienie zasięgu sieci komórkowej i/lub sieci wifi;
- zaaranżowanie wnętrza kabiny w sposób minimalizujący uczucie klaustrofobii.

Powyższe rekomendacje zostały opracowane przede wszystkim na podstawie przeprowadzonej szczegółowej identyfikacji zagrożeń. Przeprowadzona analiza ryzyka wykazała konieczność opracowania założeń w zakresie postępowania w przypadku awarii zestawu kołowego pojazdu lub awarii przenośnika poprzecznego na którym znajduje się pojazd w strefie niskiego ciśnienia.

6. Podsumowanie i wnioski

Przeprowadzona analiza miała na celu wstępną ocenę ryzyka kolei niskociśnieniowej „Hyperloop”, dostarczając rekomendacji przy powstaniu ostatecznego projektu i budowie kolei oraz niezbędnej infrastruktury (dworce, obszary techniczne, arteria rurowa). Analiza w znaczącym zakresie została przeprowadzona w sposób klasyczny. Rozpoczęto od analizy systemu C-T-O, określono zdarzenia niepożądane mogące wystąpić podczas pobytu na dworcu oraz w trakcie przejazdu. Następnie, wykorzystując autorską metodę wskaźnikową wzorowaną na Risk Score, wytypowano potencjalnie najbardziej niebezpieczne zdarzenia. Jako zdarzenia klasyfikujące się największym wskaźnikiem ryzyka uznano: kontakt z wirusami i bakteriami podczas przejazdu oraz na dworcu, rozszczelnienie kapsuły podczas przejazdu, wystąpienie pożaru, poczucie nudy, znużenia, rozdrażnienia podczas przejazdu i kontroli bezpieczeństwa, agresywne zachowanie współczesnika przejazdu, mdłości, uczucie klaustrofobii podczas przejazdu. Dostrzeżono także brak koncepcji postępowania w przypadku wystąpienia awarii układu kołowego pojazdu lub przenośnika na którym znajduje się pojazd w strefie niskiego ciśnienia. Zwrócono uwagę na potrzebę dopracowania procedur akcji ratunkowej i ewakuacji w przypadku wystąpienia awarii podczas przejazdu.

Analiza bezpieczeństwa systemu „Hyperloop” powinna być rozszerzona po opracowaniu szczegółowego projektu kolei i niezbędnej infrastruktury, który powinien uwzględniać zalecenia opracowane w niniejszej pracy.

Podziękowanie
Badania były finansowane przez Narodowe Centrum Badan i Rozwoju; tytuł projektu: „Potencjał rozwoju i wdrażania w Polsce technologii kolei próżniowej w kontekście społecznym, technicznym, ekonomicznym i prawnym”; numer umowy: Gospostrateg/387144/27/NCBR/2019.
7. Literatura

1. Almujibah H., Kaduk S. I., Preston J.: Hyperloop – prediction of social and physiological costs. Transportation Systems and Technology 2020. 6(3): 43–59, DOI: 10.17816/transsyst20206343-59.
2. DaTian Z., Wei X., Ali H., Han W.: Study on Model based Hazard Identification for the Hyperloop System. Proceedings of the International Seminar on Computation, Communication and Control 2015, DOI:10.2991/is3c-15.2015.6.
3. Fine W.: Mathematical Evaluations for Controlling Hazards. Journal of Safety Research 1971.
4. Gkoumas K., Christou M.: A triple-helix approach for the assessment of hyperloop potential in Europe. Sustainability 2020, DOI:10.3390/SU12197868.
5. Hansen I. A.: Hyperloop transport technology assessment and system analysis. Transportation Planning and Technology 2020, DOI:10.1080/03081060.2020.1828935.
6. Jamroz K., Kadziński A., Chruzik K., et al.: Trans-Risk - An Integrated Method for Risk Management in Transport. Journal of Konbin 2010. 13(1): 209–220, DOI: 10.2478/v10040-008-0149-9.
7. Mateu J. M., Martínez Fernández P., Insa Franco R.: Setting safety foundations in the Hyperloop: A first approach to preliminary hazard analysis and safety assurance system. Safety Science 2021. 142: 105366, DOI: 10.1016/j.ssci.2021.105366.
8. Musk E.: Hyperloop Alpha. SpaceX/Tesla Motors 2013.
9. Piechna J.: Low Pressure Tube Transport - An Alternative to Ground Road Transport - Aerodynamic and Other Problems and Possible Solutions. Energies 2021. 14(13): 3766, DOI: 10.3390/en14133766.
10. Polak K.: Technologia Hyperloop i perspektywy jej zastosowania. Prace Instytutu Kolejnictwa 2017. Zeszyt 156: 28–32.
11. Sitarz M, Chruzik K, Wachnik R.: Aplication of RAMS and FMEA methods in safety management system of railway transport. Journal of Konbin 2012, DOI:10.2478/jok-2013-0061.
12. Szopa T.: Niezawodność i bezpieczeństwo. Edycja 2. Oficyna Wydawnicza PW, Warszawa 2016.
13. Szymajda M.: Koreański hyperloop rozpadł się do ponad 1000 km/h. Rynek Kolejowy 2020. https://www.rynek-kolejowy.pl/wiadomosci/koreanski-hyperloop-rozpzedzil-sie-do-ponad-1000-kmh-99557.html, data dostępu: 01.09.2021
14. Szymajda M.: Hyperloop Virgin po raz pierwszy pojechał z pasażerami. Rynek Kolejowy 2020. https://www.rynek-kolejowy.pl/wiadomosci/hyperloop-po-raz-pierwszy-pojechal-z-pasazerami-film-99456.html, data dostępu: 25.09.2021
15. Badania socjologiczne w symulatorze kolei próżniowej Hyperloop. https://www.biuletyn.pw.edu.pl/Wspolpraca-uczelnii/Badania-soczlogiczne-w-symulatorze-kolei-prozniowej-Hyperloop, data dostępu: 01.09.2021.
16. PN-EN ISO 12100:2012. Bezpieczeństwo maszyn - Ogólne zasady projektowania -
Ocena ryzyka i zmniejszanie ryzyka.

17. Ustawa z dnia 28 marca 2003 r. o transporcie kolejowym (z późn. zm.), Dz.U.2020.1043 t.j.

18. Rozporządzenie Ministra Transportu i Gospodarki Morskiej z dnia 10 września 1998 r. w sprawie warunków technicznych, jakim powinny odpowiadać budowle kolejowe i ich usytuowanie (z późn. zm.), Dz.U.1998.151.987.

19. PN-EN 45545-2:2021-01. Kolejnictwo - Ochrona przeciwpożarowa w pojazdach szynowych - Część 2: Wymagania dla materiałów i elementów w zakresie właściwości ogniowych.

20. Ustawa z dnia 3 lipca 2002 r. Prawo lotnicze (z późn. zm.), Dz.U.2020.1970 t.j.

21. Rozporządzenie Parlamentu Europejskiego i Rady (WE) nr 300/2008 w zakresie specyfikacji dla krajowych programów kontroli jakości w dziedzinie ochrony lotnictwa cywilnego (z późn. zm.).