A cross-sectional national survey to explore the relationship between smoking and political abstention: Evidence of social mistrust as a mediator

Shuo Zhou, PhD a,b,⇑, Yaqiang Li, PhD, MPH a, Arnold H. Levinson, PhD a,b

a Department of Community and Behavioral Health, Colorado School of Public Health, Aurora, CO, USA
b University of Colorado Cancer Center, Division of Cancer Prevention and Control, Aurora, CO, USA

ARTICLE INFO

Keywords:
Smoking
Voter registration
Social trust
Political participation

ABSTRACT

Rationale: Smoking prevalence is well known to vary socioeconomically but has been less studied in relation to political participation. Growing evidence suggests that health disparities and political nonparticipation are intertwined, but the underlying mechanism is unclear.

Objective: We investigated the relationship between smoking and voter registration, testing various forms of trust as possible mediators, in U.S. national survey data collected around the 2012 presidential election.

Methods: A random half (n = 9757) of adults who completed The Attitudes and Behaviors Survey on Health (TABS) in 2012 (response rate was 58.4% for landline and 24.3% for cell phone) also answered a section on voter registration, voting behavior, and trust in people and selected institutions. Multivariable logistic regression was used to examine the association between smoking and registering to vote and potential mediation by trust in people and various institutions, adjusted for covariates known to be associated with both. Analyses used design-based methods with weights to account for sampling probabilities, nonresponse, and calibration to the U.S. adult population in 2012.

Results: Compared with nonsmokers, daily smokers had significantly lower adjusted odds of being registered to vote (aOR: 0.33, 95% CI: 0.21–0.52) and higher adjusted odds of having low trust in people (aOR: 2.50, 95% CI: 1.29–4.83). Low trust in people predicted lower odds of registering to vote (aOR: 0.55, 95% CI: 0.36 to 0.84) and partially mediated the smoking-registration relationship.

Conclusion: Lower electoral participation among daily smokers is partly attributable to lower trust in people, a factor that could also affect willingness to use cessation support resources such as quitlines. Low trust and low political participation among daily smokers may have important political and public health consequences.

1. Introduction

Growing evidence suggests connections between health status and political participation (Rodgers et al., 2019). Poor physical and perceived health is consistently related to lower rates of voting at both the individual level (Burden et al., 2017; Pacheco & Fletcher, 2015) and the aggregate state level, both in the U.S. (Blakely et al., 2001) and worldwide (Denny & Doyle, 2007; Söderlund & Rapeli, 2015). At least one health risk behavior, smoking, is associated with political inactivity, e.g., not belonging to or attending activities in political parties and organizations (Lindström et al., 2003), and abstention from electoral democracy (Albright et al., 2015; Denny & Doyle, 2007; Kelleher et al., 2002). The mechanisms and public health implications have not been investigated. The current study examines the role of trust in the smoking-nonvoting relationship.

Generalized trust in people (“horizontal trust” or “cognitive social capital”) and trust in institutions (“vertical trust” in government, police, justice or healthcare systems, etc.) are associated with health-related behaviors, including smoking (Lindström & Janzon, 2007). Two Swedish studies found that daily smokers, compared to nonsmokers, tended to have lower levels of trust in government, people in general (Lindström, 2009), and the healthcare system (Lindström & Janzon, 2007). In a study among an Asian population, lower social trust was related to greater probability of smoking, particularly among women (Chuang, 2008). Being a smoker has also been associated with living in a community where residents report lower levels of trust and safety.

⇑ Corresponding author. Department of Community and Behavioral Health, Colorado School of Public Health, 13001 E. 17th Place, Mail Stop B119, Aurora, CO, 80045, USA.
E-mail address: shuo.zhou@cuanschutz.edu (S. Zhou).

https://doi.org/10.1016/j.ssmph.2021.100856
Received 31 January 2021; Received in revised form 22 June 2021; Accepted 24 June 2021
Available online 1 July 2021
2352-8273/© 2021 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
2. Methods

2.1. Participants and procedures

We used data from The Attitudes and Behaviors Survey on Health (TABS), which interviewed 14,998 Colorado adults and 3230 U.S. residents outside Colorado by phone between October 1, 2012 and February 11, 2013. Response rates were 58.4% (landline) and 24.3% (cell phone). The Colorado portion of the probability sample used a two-stage, stratified cluster design; the national sample used simple random sampling. The current study population comprises 9757 adults (2857 from outside Colorado, 6900 from Colorado) who were randomly selected to answer questions about voting and trust near the end of the interview.

2.2. Measures

The primary outcome variable was voter-registration status; actual voting behavior was also collected. Unregistered and nonvoting respondents were asked open-endedly for up to three main reasons for not having registered/voted. The primary independent variable was smoking status (daily, nondaily, or nonsmoker).

General trust in people, or social trust, was measured with a widely used binary item, whether “most people can be trusted” (coded as “1”, high trust) or “you can’t be too careful in dealing with people” (coded as “0”, low trust). Participants also rated their trust (“a great deal”, “a fair amount”, “not very much”, “no trust at all”) in government, police, the justice system, banks, major business, small business, and health systems. Responses were recoded into a binary variable for each institution. “A great deal” or “a fair amount” was coded as “1” representing high trust, whereas “not very much” or “no trust at all” was coded as “0” representing low trust.

Potential covariates were chosen a priori based on reported associations with smoking or voting (Albright et al., 2015; Barbeau et al., 2004; Hiscock et al., 2012; Lindström et al., 2000), which included sex, age, race/ethnicity, education, employment status, marital status, household income relative to the federal poverty level (FPL), self-reported general health status, and health insurance status.

2.3. Statistical analysis

We used multivariable logistic regression to examine associations between smoking and voter registration, controlling for the above covariates known to be associated with both variables. Mediation analysis was conducted using the SAS CAUSALMED procedure to estimate direct and indirect effects of smoking on voter registration and actual voting through trust variables. Analyses used design-based methods with weights to account for sampling probabilities, nonresponse, and calibration of the sample to the U.S. adult population in 2012. Item-missing values of six socioeconomic variables, including education (n = 1084, 6.0% missing), employment status (n = 832, 4.6% missing), marital status (n = 873, 4.8% missing), household income (n = 4342, 23.8% missing), health insurance status (n = 2063, 11.3% missing), and self-reported health status (n = 997; 5.5% missing), were imputed (PROC MI, SAS v. 9.4) using a fully conditional specification (FCS) method based on the conditional probability distributions. The predictors for imputation were age, sex, and ethnicity.

3. Results

Demographics of the survey respondents were summarized in Table 1. Because the majority of the respondents were from the state of Colorado, we weighted the sample to make it representative of the U.S. population. Daily smoking prevalence was 15.2% and nondaily smoking was 4.6%, which were comparable to the national rate of current adult tobacco users—20.8%. Large majorities of U.S. adults in 2012 expressed high trust in police (81.1%) and small businesses (89.9%), but nearly half or more expressed low trust in government (46.0%), major business (51.1%), and people in general (59.8%). About three-fourths (73.5%) of adults voted in the 2012 presidential election; 5.4% were registered but did not vote, 18.6% were not registered, and 2.6% had unknown voting status.

Non-registration was significantly associated with most demographic and health-related factors. Males were less likely than women to register to vote (aOR: 0.61, 95% CI: 0.45 to 0.83). Young adults (aged 18–24) were much less likely to register than people aged 45–64 (aOR: 3.03, 95% CI: 1.83 to 5.01) or 65 and older (aOR: 4.24, 95% CI: 2.32 to 7.75). Single participants were less likely than married participants to be registered to vote (aOR: 0.54, 95% CI: 0.37 to 0.80). Hispanics (aOR: 0.24, 95% CI: 0.15 to 0.37) and Asian Americans (aOR: 0.25, 95% CI: 0.13 to 0.48) were less likely to be registered than whites. Having less than high school education, being unemployed, having household income <100% of the federal poverty level, self-reporting fair or poor general health, and not having health insurance were less likely to register to vote compared to their counterparts (Table 2a). Non-registration was also associated with low trust in people, in police, in the justice system, and in small business.

In bivariate logistic regression, daily smokers (15.2% of adults) were about one-fourth as likely as nonsmokers (OR: 0.25, 95% CI: 0.17 to 0.36) to be registered to vote. Adjusted for covariates, daily smokers were one-third as likely as nonsmokers to be registered (aOR: 0.33, 95% CI: 0.21–0.52). Registration among nondaily smokers (4.6% of adults) did not differ significantly from that of nonsmokers (aOR: 1.04, 95% CI: 0.43–2.55).

In multivariate logistic regression models predicting each bivariate-significant trust factor (Table 3), daily smokers were more likely than nonsmokers to express low trust in people (aOR: 2.50, 95% CI: 1.29–4.83), the justice system (aOR: 1.88, 95% CI: 1.08–3.25), and healthcare systems (aOR: 1.79, 95% CI: 1.01–3.17). Nondaily smokers were more likely than nonsmokers to express low trust in police (aOR: 2.90, 95% CI: 1.89 to 4.44), the justice system (aOR: 1.99, 95% CI: 1.38 to 2.88), and government (aOR: 1.45, 95% CI: 1.02 to 2.07).

In mediation tests, general trust in people, but no other trust variable, was significantly associated with voter registration. Low trust in people was associated with lower adjusted odds of being registered (aOR: 0.65, 95% CI: 0.36 to 0.84). When trust in people was included in the multivariable model of daily smoking and non-registration (Table 2c), the smoking and non-registration aOR increased from 0.33 to 0.35, indicating that low social trust partially mediated the influence of smoking on voting behavior.
trolling for gender, ethnicity, age, education, and income, showed a significant indirect effect of smoking on being unregistered. The CAUSALMED procedure, controlling for 

Demographic characteristics, smoking status, trust attitudes, and electoral behaviors of U.S. adults (weighted %) in the 2012 national election, data collected between October 1, 2012 and February 11, 2013.

| Gender          | n   | %   |
|-----------------|-----|-----|
| Male            | 4278| 48.7|
| Female          | 6485| 51.3|
| Age             |     |     |
| 18-24           | 632 | 13.0|
| 25-44           | 2252| 34.4|
| 45-64           | 4417| 34.4|
| 65+             | 3462| 18.2|
| Marital Status  |     |     |
| Married/cohabiting | 5990 | 51.4|
| Divorced/widowed | 3154| 23.2|
| Single/never married | 1619| 25.3|
| Ethnicity       |     |     |
| White           | 8426| 66.0|
| Black           | 598 | 11.8|
| Hispanic        | 1200| 15.0|
| Asian           | 160 | 2.5 |
| Other           | 379 | 4.7 |
| Education       |     |     |
| <High school graduation, or GED | 1029 | 18.6|
| High school graduation | 1910 | 25.3|
| Some college, post-high school | 3408 | 30.2|
| >College graduation | 4416 | 26.0|
| Employment Status |    |     |
| Employed/self-employed | 5261 | 52.0|
| Homemaker       | 448 | 4.6 |
| Retired         | 3326| 18.7|
| Student         | 658 | 11.1|
| Unemployed      | 479 | 5.7 |
| Unable to work/disabled | 611 | 7.8|
| Income          |     |     |
| <100% FPL       | 1127| 19.7|
| 100% <200% FPL  | 2286| 24.9|
| >200% FPL       | 7350| 55.4|
| Perceived Health Status |     |     |
| Fair/poor       | 1955| 24.3|
| Excellent/very good/good | 8808 | 75.7|
| Have Health Insurance |     |     |
| No              | 1336| 20.1|
| Yes             | 9427| 79.9|
| Low Trust       |     |     |
| Low trust in people | 4753 | 59.8|
| Low trust in gov’t | 4383 | 46.0|
| Low trust in police | 1253 | 18.9|
| Low trust in justice system | 3193 | 38.1|
| Low trust in banks | 3229 | 34.3|
| Low trust in major business | 4724 | 51.1|
| Low trust in small business | 528 | 10.1|
| Low trust in healthcare | 2797 | 30.3|
| Smoking Status  |     |     |
| Nonsmoker       | 8937| 80.2|
| Nondaily smoker | 468 | 4.6 |
| Daily smoker    | 1315| 15.2|
| Registration and Voting Status |     |     |
| Not registered to vote | 936 | 18.6|
| Registered, voting status unknown | 241 | 2.6|
|Registered, did not vote | 237 | 5.4|
| Registered and voted | 8343 | 73.5|

The same modeling sequence for the relationship of smoking with actual voting produced similar results but without evidence of a trust mediation effect. Daily smokers had significantly lower adjusted odds of voting than nonsmokers (aOR: 0.27, 95% CI: 0.18 to 0.41). In contrast with registration, voting behavior was not associated with general trust in people and was associated with low trust in small business (aOR: 0.41, 95% CI: 0.21 to 0.78), which was not associated with smoking status. Other trust variables associated with smoking did not predict voting behavior. In post-hoc analysis, no trust measure significantly moderated the smoking relationship with either voter registration or actual voting.

An open-ended question about reasons for not registering to vote yielded largely divergent reasons between daily smokers and nonsmokers. Among nonsmokers, top reasons included “not being a citizen” (23.4%) and “not eligible to vote” (9.1%); among daily smokers, top reasons included “on probation” (16.2%), “don’t care” (14.4%), “make no difference” (8.7%), and “no confidence in government” (8.4%). Similar proportions of both groups cited “no time” as a reason for non-registration (20.3% vs. 20.7%).

4. Discussion

In the 2012 U.S. federal election, daily smokers were substantially and significantly less likely than nonsmokers to be registered to vote and to actually vote, adjusted for sex, age, race/ethnicity, education, employment status, marital status, household income, self-reported general health status, and health insurance status. A lack of generalized trust in people partly mediated the relationship of smoking with being unregistered to vote; no institutional trust variable mediated the association, and no trust variable moderated the association. Results suggest that the relationships between trust variables and registration/voting behaviors are complex. Lack of trust in people only slightly mediated smoking to nonregistration. Other mechanisms remain unclear. The absence of a relationship between voter registration and institutional trust might be because opposite ends of the institutional trust spectrum can theoretically be motivated to engage in elections for different reasons: People with higher levels of institutional trust might participate because they believe the institutions will respond to their wishes and needs, while people with low institutional trust might participate in hopes of changing the institutions.

About one-third of nonregistered nonsmokers cited reasons of inability for nonregistration, while about one-sixth of daily smokers cited political inefficacy, i.e., disbelief that voting matters and that government is trustworthy (Balch, 1974). Political participation and political efficacy are reciprocally influential (Finkel, 1985)—the more pessimistic smokers feel about government and elections, the more they withdraw from the system, excluding their voices from political decisions and compounding their lack of political efficacy. Where this downward spiral bottoms out is unclear.

4.1. Theoretical and practical implications

Disparities in voter registration and voting behavior disadvantage non-participating groups, including smokers, when policy and leadership decisions are being made. Considerable evidence demonstrates that health disparities and disparities in political participation are closely intertwined (Navarro & Shi, 2001). Associations between political participation and health behaviors have received less attention. The current study suggests that daily smokers are more likely to report trust barriers to electoral participation, in addition to structural barriers such as being on probation, inconvenience, and eligibility criteria.

Social withdrawal and isolation have public health consequences. Tobacco control campaigns have made smoking socially unacceptable in many nations, and disapproval tends to diffuse from the behavior to the individuals who smoke. This stigma may at least partly explain smokers’ low trust in people. More generally, perceptions of societal rejection or discrimination have been linked with negative self-evaluation, less sense of belonging and less political efficacy, leading in turn to withdrawal from political activities and not registering to vote (Oskooii, 2016). Disproportionate abstention of smokers from electoral decisions that affect health policy has unknown but presumably negative implications for policymaking by reducing representativeness. Public health
Table 2
Bivariate and adjusted odds of being registered to vote by demographic, smoking, and trust variables, United States, 2012, TABS on health.

| Variable | a. Bivariate Models | b. Multivariable Model | c. Multivariable Model (Adding trust in people) |
|----------|---------------------|------------------------|-----------------------------------------------|
|          | OR 95% CI           | OR 95% CI              | OR 95% CI                                     |
| Gender   |                     |                        |                                               |
| Female   | ref -               | ref -                  | ref -                                         |
| Male     | 0.61 (0.45, 0.83)   | 0.59 (0.41, 0.87)      | 0.58 (0.39, 0.84)                             |
| Age (years) |                    |                        |                                               |
| 18-24    | 1.26 (0.76, 2.07)   | 1.65 (0.76, 3.51)      | 1.69 (0.78, 3.64)                             |
| 25-44    | 3.03 (1.83, 5.01)   | 3.59 (1.50, 8.56)      | 3.43 (1.45, 8.11)                             |
| 45-64    | 4.24 (2.32, 7.75)   | 4.69 (1.62, 13.57)     | 4.49 (1.51, 13.34)                            |
| 65+      |                     |                        |                                               |
| Marital Status |                  |                        |                                               |
| Married/cohabiting | ref -             | ref -                  | ref -                                         |
| Divorced/widowed | 0.72 (0.49, 1.06) | 0.59 (0.38, 0.92)      | 0.60 (0.38, 0.94)                             |
| Single/never married | 0.54 (0.37, 0.80) | 1.21 (0.67, 2.19)      | 1.22 (0.68, 2.19)                             |
| Ethnicity |                      |                        |                                               |
| White    | ref -               | ref -                  | ref -                                         |
| Black    | 0.99 (0.53, 1.84)   | 1.45 (0.72, 2.90)      | 1.46 (0.75, 2.86)                             |
| Hispanic | 0.24 (0.15, 0.37)   | 0.36 (0.21, 0.62)      | 0.37 (0.22, 0.65)                             |
| Asian    | 0.25 (0.13, 0.48)   | 0.19 (0.09, 0.42)      | 0.19 (0.09, 0.43)                             |
| Other    | 0.72 (0.32, 1.63)   | 0.71 (0.33, 1.57)      | 0.73 (0.32, 1.67)                             |
| Education |                      |                        |                                               |
| <High school graduation GED | ref -             | ref -                  | ref -                                         |
| High school graduation | 2.23 (1.43, 3.46) | 1.85 (1.09, 3.14)      | 1.86 (1.09, 3.17)                             |
| Some college, post-high school | 4.13 (2.65, 6.45) | 3.63 (2.00, 6.56)      | 3.41 (1.87, 6.20)                             |
| <College graduation | 9.62 (6.04, 15.33) | 5.38 (2.93, 9.88)      | 4.79 (2.58, 8.90)                             |
| Employment Status |                  |                        |                                               |
| Employed/self-employed | ref -             | ref -                  | ref -                                         |
| Homemaker | 0.52 (0.29, 0.95)   | 0.58 (0.30, 1.13)      | 0.59 (0.3, 1.15)                              |
| Retired  | 2.03 (1.22, 3.36)   | 1.30 (0.69, 2.45)      | 1.32 (0.67, 2.61)                             |
| Student  | 0.93 (0.53, 1.63)   | 1.47 (0.65, 3.30)      | 1.40 (0.64, 3.05)                             |
| Unemployed | 0.42 (0.25, 0.73)   | 0.80 (0.40, 1.58)      | 0.84 (0.42, 1.68)                             |
| Unable to work/disabled | 0.80 (0.46, 1.40) | 2.07 (0.93, 4.58)      | 2.20 (0.98, 4.95)                             |
| Income   |                      |                        |                                               |
| <100% FPL | ref -               | ref -                  | ref -                                         |
| 100% < 200% FPL | 1.99 (1.30, 3.06) | 1.21 (0.7, 2.10)       | 1.26 (0.73, 2.16)                             |
| ≥200% FPL | 6.13 (4.07, 9.24)   | 1.85 (1.01, 3.39)      | 1.83 (1.00, 3.34)                             |
| Perceived Health Status |            |                        |                                               |
| Fair/very good | 2.36 (1.68, 3.32) | 1.53 (0.96, 2.43)      | 1.41 (0.89, 2.23)                             |
| Health Insurance |          |                        |                                               |
| High      | ref -               | ref -                  | ref -                                         |
| No        | 1.53 (1.06, 2.21)   | 1.58 (1.03, 2.41)      | 1.52 (1.00, 2.30)                             |
| Low       | 0.93 (0.60, 1.45)   | 1.15 (0.72, 1.84)      | 1.12 (0.70, 1.82)                             |
| Trust in People |                  |                        |                                               |
| High      | ref -               | ref -                  | ref -                                         |
| Low       | 0.33 (0.22, 0.47)   | 0.55 (0.36, 0.84)      |                                               |
| Trust in Government |                |                        |                                               |
| High      | ref -               | ref -                  | ref -                                         |
| Low       | 0.87 (0.62, 1.20)   | 1.18 (0.85, 1.63)      | 1.17 (0.85, 1.62)                             |
| Trust in Police |              |                        |                                               |
| High      | ref -               | ref -                  | ref -                                         |
| Low       | 0.43 (0.29, 0.63)   | 0.66 (0.42, 1.06)      | 0.63 (0.41, 0.98)                             |
| Trust in Justice System |            |                        |                                               |
| High      | ref -               | ref -                  | ref -                                         |
| Low       | 0.63 (0.45, 0.88)   | 1.00 (0.73, 1.35)      | 0.99 (0.72, 1.42)                             |
| Trust in Banks |                |                        |                                               |
| High      | ref -               | ref -                  | ref -                                         |
| Low       | 0.86 (0.62, 1.21)   | 1.25 (0.88, 1.78)      | 1.23 (0.87, 1.74)                             |
| Trust in Major Business |            |                        |                                               |
| High      | ref -               | ref -                  | ref -                                         |
| Low       | 0.33 (0.21, 0.53)   | 0.49 (0.31, 0.76)      | 0.48 (0.31, 0.77)                             |
| Trust in Small Business |            |                        |                                               |
| High      | ref -               | ref -                  | ref -                                         |
| Low       | 1.06 (0.75, 1.49)   | 1.31 (0.92, 1.85)      | 1.29 (0.90, 1.86)                             |
| Smoking Status |              |                        |                                               |
| Non-smokers | ref -              | ref -                  | ref -                                         |
| Non-daily smokers | 0.81 (0.37, 1.75) | 1.04 (0.43, 2.55)      | 1.13 (0.46, 2.73)                             |
| Daily smokers | 0.25 (0.17, 0.36)  | 0.33 (0.21, 0.52)      | 0.35 (0.22, 0.54)                             |
campaigns should seek better ways to continue denormalizing smoking behavior while reducing stigmatization and reactance among smokers.

Regarding cessation treatment, we wonder whether low social trust among smokers might partly explain challenges of reach and adherence. Engagement through a telephone Quitline, for example, requires sufficient trust in strangers to initiate the call and share personal information with an unseen person. Cessation treatment programs might seek ways to build trust and rapport through communications and initial engagement with smokers.

### 4.2. Strength and limitations

Eligible U.S. voters must register to vote (except in the State of North Dakota) before they are allowed to vote in federal and state elections. As a prerequisite to voting, registration is thus a critical indicator of political participation (Gill et al., 2018; Verba et al., 1995) and is more closely tied to demographic and motivational factors that influence political participation than voting is (Erikson, 1981). Previous studies of the association between smoking and civic engagement have focused on participation in social activities (Lindström et al., 2000, 2003) or voter turnout (Kellieher et al., 2002), mostly in European countries. To our knowledge, the current study is the first U.S. population-based public health study to begin unpacking the relationships among smoking status, generalized trust, and political participation.

The study also has several limitations. Cross-sectional data cannot generate evidence of causality, and our study cannot determine what causes smoking and electoral participation to correlate. We theorize five possible pathways (Fig. 1). Lack of trust might be responsible for both smoking and electoral non-participation (Model 1 in Fig. 1), possibly with individual moderating factors such as feelings of exclusion, other psychological stressors, or dispositional characteristics such as lack of patience for delayed gratification. Regarding the latter, smoking has been associated with delay-discounting (Reynolds et al., 2004), and nonvoters tend to overestimate the cost of voting and discount its future benefits (Fowler & Kam, 2006). Further research should theoretically identify and investigate potential factors that influence both smoking and voting behaviors.

A second possibility is that smoking causes electoral nonparticipation (the reverse direct sequence is implausible). Our study found that social trust partly mediated such a relationship (Model 2 in Fig. 1), but the effect was small, and other mechanisms are likely responsible if this model is accurate. A third possibility is that people with low interperson trust partly explain challenges of reach and adherence. Engagement through a telephone Quitline, for example, requires sufficient trust in strangers to initiate the call and share personal information with an unseen person. Cessation treatment programs might seek ways to build trust and rapport through communications and initial engagement with smokers.

### Table 3

| IVs | Low Trust in People | Low Trust in Police | Low Trust in Justice System | Low Trust in Healthcare System |
|-----|---------------------|---------------------|----------------------------|-------------------------------|
|     | OR      | 95% CI  |
| Age |
| 18-24 | ref | – | ref | – | ref | – | ref | – |
| 25-44 | 1.44 | 0.79 | 2.63 | 0.63 | 0.33 | 1.20 | 0.82 | 0.46 | 1.45 | 1.61 | 0.93 | 2.76 |
| 45-64 | 0.90 | 0.48 | 1.66 | 0.36 | 0.18 | 0.73 | 0.86 | 0.47 | 1.59 | 1.22 | 0.69 | 2.13 |
| 65+ | 0.84 | 0.41 | 1.73 | 0.23 | 0.09 | 0.56 | 0.86 | 0.43 | 1.70 | 0.90 | 0.45 | 1.80 |
| Marital Status |
| Married/cohabiting | ref | – | ref | – | ref | – | ref | – |
| Divorced/widowed | 1.18 | 0.87 | 1.59 | 1.50 | 0.99 | 2.28 | 1.46 | 1.10 | 1.93 | 1.06 | 0.78 | 1.43 |
| Single/never married | 1.19 | 0.82 | 1.70 | 1.38 | 0.88 | 2.19 | 1.29 | 0.87 | 1.91 | 0.92 | 0.64 | 1.34 |
| Ethnicity |
| White | ref | – | ref | – | ref | – | ref | – |
| Black | 1.92 | 1.18 | 3.13 | 3.28 | 2.09 | 5.14 | 1.43 | 0.96 | 2.13 | 0.41 | 0.25 | 0.68 |
| Hispanic | 1.67 | 1.02 | 2.73 | 2.31 | 1.34 | 4.01 | 1.87 | 1.18 | 2.95 | 0.89 | 0.56 | 1.41 |
| Asian | 1.24 | 0.68 | 2.26 | 1.39 | 0.61 | 3.19 | 0.75 | 0.38 | 1.49 | 0.99 | 0.50 | 1.95 |
| Other | 1.57 | 0.84 | 2.94 | 1.52 | 0.73 | 3.20 | 1.45 | 0.82 | 2.57 | 1.47 | 0.82 | 2.63 |
| Education |
| <High school graduation GED | ref | – | ref | – | ref | – | ref | – |
| High school graduation | 0.84 | 0.51 | 1.37 | 1.45 | 0.82 | 2.57 | 0.93 | 0.59 | 1.45 | 1.25 | 0.78 | 1.98 |
| Some college, post-high school | 0.48 | 0.30 | 0.79 | 0.94 | 0.53 | 1.68 | 1.04 | 0.67 | 1.60 | 1.65 | 1.05 | 2.60 |
| >College graduation | 0.40 | 0.25 | 0.65 | 0.87 | 0.48 | 1.56 | 0.96 | 0.61 | 1.50 | 1.49 | 0.93 | 2.39 |
| Employment Status |
| Employed/self-employed | ref | – | ref | – | ref | – | ref | – |
| Homemaker | 1.36 | 0.84 | 2.20 | 0.84 | 0.40 | 1.73 | 1.37 | 0.83 | 2.27 | 0.89 | 0.52 | 1.49 |
| Retired | 1.21 | 0.81 | 1.81 | 0.97 | 0.52 | 1.81 | 0.99 | 0.70 | 1.42 | 0.87 | 0.55 | 1.38 |
| Student | 0.97 | 0.54 | 1.73 | 0.75 | 0.37 | 1.54 | 0.85 | 0.49 | 1.46 | 0.99 | 0.58 | 1.67 |
| Unemployed | 1.51 | 1.07 | 2.61 | 0.87 | 0.46 | 1.64 | 1.37 | 0.81 | 2.30 | 1.22 | 0.77 | 2.13 |
| Unable to work/disabled | 2.03 | 1.16 | 3.58 | 0.81 | 0.40 | 1.62 | 0.87 | 0.52 | 1.44 | 1.38 | 0.82 | 2.33 |
| Income |
| <100% FPL | ref | – | ref | – | ref | – | ref | – |
| High school graduation | 0.86 | 0.54 | 1.36 | 0.94 | 0.54 | 1.64 | 0.90 | 0.59 | 1.39 | 1.01 | 0.65 | 1.59 |
| 100% - <200% FPL | 1.28 | 0.79 | 2.08 | 1.07 | 0.64 | 1.77 | 0.91 | 0.60 | 1.39 | 1.02 | 0.65 | 1.60 |
| ≥200% FPL | 0.52 | 0.37 | 0.73 | 0.54 | 0.36 | 0.83 | 0.75 | 0.53 | 1.04 | 0.84 | 0.60 | 1.17 |
| Perceived Health Status |
| Fair/poor | ref | – | ref | – | ref | – | ref | – |
| Excellent/very good/good | 0.52 | 0.37 | 0.73 | 0.54 | 0.36 | 0.83 | 0.75 | 0.53 | 1.04 | 0.84 | 0.60 | 1.17 |
| Health Insurance |
| Do not have health insurance | ref | – | ref | – | ref | – | ref | – |
| Have health insurance | 1.02 | 0.68 | 1.56 | 1.2 | 0.74 | 1.95 | 1.02 | 0.70 | 1.50 | 0.75 | 0.50 | 1.11 |
| Smoking Status |
| Nonsmokers | ref | – | ref | – | ref | – | ref | – |
| Non-daily smokers | 1.42 | 0.95 | 2.11 | 2.90 | 1.89 | 4.44 | 1.99 | 1.38 | 2.88 | 1.03 | 0.72 | 1.49 |
|Daily smokers | 2.50 | 1.29 | 4.83 | 1.58 | 0.76 | 3.30 | 1.88 | 1.08 | 3.25 | 1.79 | 1.01 | 3.17 |
worldwide (Hosseinpoor et al., 2011). Social trust is strongly related to female participants, although interactions between gender, ethnicity significant overall mediation effect was mainly driven by white and less than high school education, and perceived poorer health status were income and social class (Delhey gender, education level, and income determine smoking behavior Smoking is a socially mediated behavior (Lynch & Graham, 2002; Wothke, 2000) unless missingness is completely at random, which is unlikely. Third, imputations are created by drawing from iterated multivariate conditional models and can give us a better estimate of the underlying distribution of the data. Imputations are especially useful for large datasets with complex data structures and different patterns of missing. However, it assumes data are missing at random and can be biased if the assumption is violated. We compared results in imputed versus unimputed data and found the same pattern, i.e., a significant indirect effect of smoking on voter registration through trust in people (aOR: 0.93, 95% CI: 0.86 to 0.99). This finding suggests our findings are robust and unlikely to be a result of imputation strategy.

5. Conclusions

Daily smokers are less likely to register to vote and to vote. Low social trust partly explains the negative association. Further research should identify underlying mechanisms and potential interventions to reduce this inequity in political participation.

Statements of ethical approval

The research protocol has been approved by the Colorado Multiple Institutional Review Board (COMIRB): # 05-0785.

Funding resources

Data used in this study were collected under contract #13FLA45130 from the Colorado Department of Public Health and Environment.

Author contributions

S. Zhou conceptualized the study, developed the analytic plan and led the writing of the article. Y. Li performed the statistical analysis. A. Levinson contributed to the study design, interpretation of data, and editing of the article. All authors approved the final submitted article.

Declaration of competing interest

The authors have no conflicts of interest to report.

References

Albright, K., Hood, N., Ma, M., & Levinson, A. H. (2015). Smoking and (not) voting: The negative relationship between a health-risk behavior and political participation in Colorado. Nicotine & Tobacco Research, 18, 371–376.

Balch, G. I. (1974). Multiple indicators in survey research: The concept of political efficacy. Political Methodology, 1–43.

Barbeau, E. M., Krieger, N., & Soobader, M.-J. (2004). Working class matters: Socioeconomic disadvantage, race/ethnicity, gender, and smoking in NHIS 2000. American Journal of Public Health, 94, 269–278.

Blakely, T. A., Kennedy, B. P., & Kawachi, I. (2001). Socioeconomic inequality in voting participation and self-rated health. American Journal of Public Health, 91, 99–104.

Burden, B. C., Fletcher, J. M., Herd, P., Moynihan, D. P., & Jones, B. M. (2017). How different forms of health matter to political participation. The Journal of Politics, 79, 166–178.

Chuang, Y.-C., & Chuang, K.-Y. (2008). Gender differences in relationships between social capital and individual smoking and drinking behavior in Taiwan. Social Science & Medicine, 67, 1221–1330.
Delhey, J., & Newton, K. (2003). Who trusts?: The origins of social trust in seven societies. European Societies, 5(2), 93–137.

Denny, K. J., & Doyle, O. M. (2007). Take up thy bed, and vote: Measuring the relationship between voting behaviour and indicators of health. The European Journal of Public Health, 17, 400–401.

Eriksen, P. S. (2001). Why do people vote? Because they are registered. American Politics Quarterly, 9, 259–276.

Finkiel, S. E. (1985). Reciprocal effects of participation and political efficacy: A panel analysis. American Journal of Political Science, 29, 113–128.

Hiscock, R., Bauld, L., Amos, A., Fidler, J. A., & Munafò, M. (2003). Impact of different aspects of social capital, political trust and forms of political participation in Europe. European Societies, 15, 131–152.

Hosseinpoor, A. R., Parker, L. A., & O'Neill, M., Isacsson, S.-O., & Elmståhl, S. (2003). Impact of different aspects of social capital, political trust and daily smoking and smoking cessation: A population-based study in southern Sweden. Scandinavian Journal of Public Health, 30, 200–208.

Lindström, M., Isacsson, S.-O., & Elmståhl, S. (2003). Impact of different aspects of social participation and social capital on smoking cessation among daily smokers: A longitudinal study. Tobacco Control, 12, 274–281.

Lindström, M., & Janzon, E. (2007). Social capital, institutional (vertical) trust and smoking: A study of daily smoking and smoking cessation among ever smokers. Scandinavian Journal of Public Health, 35, 460–467.

Lodder, P. (2013). To impute or not impute: That’s the question. Advising on Research Methods: Selected Topics, 1–7.

Lynch, B. S., & Bonnie, R. J. (Eds.). (1994). Growing up tobacco free: Preventing nicotine addiction in children and youths. Washington, DC: National Academy Press.

Navarro, V., & Shi, L. (2001). The political context of social inequalities and health. International Journal of Health Services, 31, 1–21.

Oskoui, K. A. (2016). How discrimination impacts sociopolitical behavior: A multidimensional perspective. Political Psychology, 37, 613–640.

Pacheco, J., & Fletcher, J. (2015). Incorporating health into studies of political behavior: Evidence for turnout and partisanship. Political Research Quarterly, 68, 104–116.

Raaijmakers, Q. A. (1999). Effectiveness of different missing data treatments in surveys with likert-type data: Introducing the relative mean substitution approach. Educational and Psychological Measurement, 59(3), 725–748.

Reynolds, B., Richards, J. B., Horn, K., & Karraker, K. (2004). Delay discounting and probability discounting as related to cigarette smoking status in adults. Behavioural Processes, 65, 35–42.

Rodgers, J., Vanue, A. V., Hiswen, Y., & Subramanian, S. (2019). Social capital and physical health: An updated review of the literature for 2007–2018. Social Science & Medicine, 112260.

Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7(2), 147–177.

Siahpour, M., Borland, R., Taylor, J., Singh, G. K., Ansari, Z., & Serraglio, A. (2006). The association of smoking with perception of income inequality, relative material well-being, and social capital. Social Science & Medicine, 63, 2801–2812.

Söderlund, P., & Rapeli, L. (2015). Sick and in health: Personal health and political participation in the Nordic countries. Politics and the Life Sciences, 34, 28–43.

Verba, S., Schlesinger, K. L., & Brady, H. E. (1995). Voice and equality: Civic voluntarism in American politics. Harvard University Press.

Wothke, W. (2000). Longitudinal and multigroup modeling with missing data. In T. D. Little, K. U. Schnabel, & J. Baumert (Eds.), Modeling longitudinal and multilevel data: Practical issues, applied approaches, and specific examples (pp. 219–246). Lawrence Erlbaum Associates Publishers, 269–281.