Bio-Based Polymer Electrolytes for Electrochemical Devices: Insight into the Ionic Conductivity Performance

Marwah Rayung 1, Min Min Aung 1,2,* , Shah Christiran Azhar 2, Luqman Chuah Abdullah 3, Mohd Sukor Su’ait 4, Azizan Ahmad 4,5 and Siti Nurul Ain Md Jamil 2

1 Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400, Malaysia; marwahrayung@yahoo.com
2 Unit Chemistry, Center of Foundation Studies and Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Malaysia; christiran@upm.edu.my (S.C.A.); ctnurulain@upm.edu.my (S.N.A.M.J.)
3 Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia; chuah@upm.edu.my
4 Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; mohdsukor@ukm.edu.my (M.S.S); azizan@ukm.edu.my (A.A.)
5 School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
* Correspondence: minmin_aung@upm.edu.my

Received: 10 October 2019; Accepted: 4 December 2019; Published: 12 February 2020

Abstract: With the continuing efforts to explore alternatives to petrochemical-based polymers and the escalating demand to minimize environmental impact, bio-based polymers have gained a massive amount of attention over the last few decades. The potential uses of these bio-based polymers are varied, from household goods to high end and advanced applications. To some extent, they can solve the depletion and sustainability issues of conventional polymers. As such, this article reviews the trends and developments of bio-based polymers for the preparation of polymer electrolytes that are intended for use in electrochemical device applications. A range of bio-based polymers are presented by focusing on the source, the general method of preparation, and the properties of the polymer electrolyte system, specifically with reference to the ionic conductivity. Some major applications of bio-based polymer electrolytes are discussed. This review examines the past studies and future prospects of these materials in the polymer electrolyte field.

Keywords: bio-based polymer; polymer electrolyte; ionic conductivity; electrochemical devices

1. Introduction to Bio-Based Polymers

Bio-based polymers are growing in importance over the past few decades due to their potential as replacements or alternatives to conventional polymers. They are the key feature to solve many international issues such as global warming, price fluctuations, the shortage of petroleum resources, pollution, and other economic and ecological issues. In general, bio-based polymers refer to a type of polymer that is produced naturally by living organisms [1]. In other words, it is also called a natural polymer. This type of polymer has the following characteristics: Using natural raw materials as base materials, non-toxic, biodegradable, and sustainable.

Bio-based polymers can be classified into three main categories based on their synthesis and origin of source. The first refers to polymers directly extracted from biomass, such as starch, cellulose, chitosan, and alginites. They are the most abundant and a major resource of bio-based polymers. The second category concerns polymers synthesized from bio-derived monomers, and the third includes polymers synthesized by microorganisms/bacteria. Figure 1 illustrates the classification of bio-based polymers with examples [2].
An electrolyte also functions as an electronic insulator when the devices fail to work. It is essential to have an electrolyte with a sufficiently high value of ionic conductivity, preferably much higher than 10^{-4} S/cm [4]. The electrolyte can be a liquid, a gel, or in a solid form. Although the liquid electrolyte still dominates in many applications, it has several limitations such as flammability issues, leaking, reaction with the electrodes, and corrosion. A polymer electrolyte (PE) offers desirable properties to overcome the problems due to the all solid state condition. It is also inherently safer, as there is no flow and corrosion after damage, it has a wider electrochemical and thermal stability range, it is light weight, and has ease of application to electrochemical devices [5]. In fact, continuous efforts are being taken on polymer electrolytes as they have a great potential to be applied in a wide range of electrochemical devices. Figure 2 shows the use of a conventional electrolyte and polymer electrolyte in a typical electrochemical cell [6].

2. Insights to the Polymer Electrolyte

An electrolyte is a significant element in developing electrochemical devices. In general, an electrolyte functions as a medium that allows the flow of ions between a cathode and an anode. An electrolyte also functions as an electronic insulator when the devices fail to work. It is essential to have an electrolyte with a sufficiently high value of ionic conductivity, preferably much higher than 10^{-4} S/cm [4]. The electrolyte can be a liquid, a gel, or in a solid form. Although the liquid electrolyte still dominates in many applications, it has several limitations such as flammability issues, leaking, reaction with the electrodes, and corrosion. A polymer electrolyte (PE) offers desirable properties to overcome the problems due to the all solid state condition. It is also inherently safer, as there is no flow and corrosion after damage, it has a wider electrochemical and thermal stability range, it is light weight, and has ease of application to electrochemical devices [5]. In fact, continuous efforts are being taken on polymer electrolytes as they have a great potential to be applied in a wide range of electrochemical devices. Figure 2 shows the use of a conventional electrolyte and polymer electrolyte in a typical electrochemical cell [6].
Polymer electrolytes (PEs) are a highly specialized multidisciplinary field that cuts across the disciplines of electrochemistry, polymer science, organic chemistry, and inorganic chemistry. In principle, a PE is made up of inorganic salt(s) dispersed in a polymer matrix forming a conducting solid system. The inorganic salt dissociates into ions and contributes to the conductivity. The first discovery of a polymer electrolyte was reported on poly(ethylene oxide) as the polymer host doped with alkali metal ions back in 1973 [7]. The results of the extensive characterization of electrolytes based on poly(ethylene oxide) (PEO), or hosts with similar chemical structures and a great variety of guest salt species, confirmed that many factors, including the choice of electrolyte components, preparative conditions, and thermal history, determine the electrochemical, thermal, and mechanical properties of the electrolyte system. The performance of polymer electrolytes is primarily evaluated based on their ionic conductivity and ion transport properties, which depend on many factors such as the mobility of the polymer chains, the dielectric constant of the polymer host, the degree of salt dissociation and its concentration, as well as the degree of ion aggregation [6].

As for the construction of polymer electrolytes, several factors should be taken into consideration, including the choice of polymer host, the salts/acid dopants (the source of ions), the solvents, and other additives. The polymer host should possess certain characteristics such as good chemical, electrochemical, and photochemical stability, as well as good thermal and mechanical properties. Further, host polymers with a high concentration of polar groups (containing electron donors: O, NH, CN, F) are preferred. It is important to develop host polymers which have few crystalline phases and a relatively low glass transition temperature. In the amorphous state, greater ionic diffusivity may occur, as ions can move freely due to the low energy barrier. In addition, an amorphous polymer exhibits a flexible backbone that can increase local chain mobility. As a result, the segmental motion of a polymer can enhance the transportation property of the electrolyte [8]. Figure 3 shows the chemical structure of some polar polymers that are widely used as polymer hosts [9].
Another crucial aspect is the selection of salts. Salts provide the charge carriers for transportation that generate the conductivity \[10\]. The most commonly used salts are the salts of alkali metals, alkaline earth metals, and transition metals. The metal cations coordinate with the polar group from the polymer host. The segmental motion of the polymer chains creates free volume into which the ions will migrate and hence create the conductivity. The salts affect the ionic conductivity via several aspects, including complex formation, intramolecular cross-linking of the polymer chains, and the degree of salt dissociation. Apart from a polymer doped with metal salts, several studies of proton conducting electrolytes have been reported. Typically, a polymer is swollen with a solution of proton donors in a polar solvent containing redox sites \[11\]. As for the electrolyte solvent, it should first satisfy certain criteria. An ideal solvent should be able to dissolve salts to a sufficient concentration, with a high dielectric constant, low vapor pressure, low viscosity so that ion transport can occur, and to be inert to the electrodes.

More than two decades after the introduction of the polymer electrolyte concept, researchers have begun exploring alternatives to conventional polymer hosts derived from petroleum by utilizing bio-based materials as the polymer host. Even though most of the polymer electrolyte theories developed to date are based on synthetic materials, they hold true for bio-based polymers as well. Different types of bio-based polymers, thus, have been explored, such as chitosan, starch, carrageenan, gum, gelatin, natural rubber, and vegetable oil-based polymers. In addition, various electrolyte systems have been investigated with different types of salts, plasticizers, fillers, and ionic liquids. The priority remains the same, which is to produce a polymer electrolyte with a high conductivity, along with good thermal and mechanical properties. The types and characteristics of bio-based polymers, along with the outcomes, are discussed and summarized in the following section.

3. Bio-Based Polymers Used as Electrolytes

3.1. Polymers Extracted from Biomass

The first category of bio-based polymers is those directly extracted from biomass resources, including polysaccharides, proteins, lipids, and natural rubber. Based on the literature, polymers belonging to the polysaccharide group are the most studied in the polymer electrolyte field. They are easily accessible, widely available, and abundant. It is a fact that plants are the most important producers of polysaccharides. This section discusses the polysaccharides, proteins, and natural rubber-based polymer electrolytes.

3.1.1. Starch

Extensive studies have probed starch on account of its rich variety, biodegradability, availability, and abundance in nature. Starch is the end-product of photosynthesis in plants. It is a natural carbohydrate-based polymer that is mainly harvested from corn, potato, wheat, tapioca, and rice \[10\]. The application of starch does not stop in major food products, but has been extended to various diversified areas. Starch is used in other applications as binders, adhesives, absorbents, and encapsulants \[12\]. Natural starch is a mixture of linear amylase or poly(\(\alpha\)-1,4-\(\beta\)-glucopyranose) and \(\alpha\)-1,6-branched amylopectin, wherein their components might varied depending on the plant sources \[12,13\]. Figure 4 illustrates the structures of amylase and amylopectin. Since these two compounds contain hydroxyl groups, the starch-based polymer emerges as a viable option to be used as a polymer host for electrolyte purposes.

Various types of starch have been investigated for polymer electrolyte studies, such as corn starch, cassava starch, arrowroot starch, sago starch, potato starch, rice starch, and tapioca starch. The starch has also been blended with other polymers such as PEO, chitosan, poly(styrene sulphonate acid), PVA, and methyl cellulose. The initial study concerning starch-based electrolyte was reported by Pawlicka et al. in 2002 for a corn starch/LiClO\(_4\)/glycerol system \[14\]. Aside from glycerol, other types of plasticizers have been used, such as glucose, sorbitol, urea, formamide, glutaraldehyde, and ethylene
carbonate. Additionally, various types of salts have been used as well. The effect of ionic liquid inclusion on the ionic conductivity of a polymer electrolyte has also been investigated. Inorganic fillers, such as silicon dioxide, barium titanate, and graphene oxide, have been studied.

![Starch Units](image1.png)

Figure 4. Representative units of starch (a) amylose and (b) amylpectin.

3.1.2. Cellulose and Cellulose Derivatives

Cellulose is by far the most abundant and highly important renewable material on earth. It is the basic component of plant cell walls that has structural and skeletal functions. Cellulose has a high molecular weight and contains a linear homopolysaccharide polymer that consists of \(\beta\)-\(D\)-glucopyranose units in the \(4\,C_1\) confirmation joined by (1→4) glycosidic linkage. The repeating element is made up by two anhydroglucose units. Cellulose exists in the form of microfibrils with a helical organization that contains crystalline and amorphous regions. The proportion of these regions varies depending on the microscopic level of the fiber assembly [15]. Cellulose derivatives can be formed by partially or totally reacting the three hydroxyl groups present in the anhydroglucose unit with various reagents. In fact, many types of cellulose derivatives have been studied, such as methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, cellulose acetate, cellulose triacetate, cellulose acetate butyrate, hydroxypropyl methyl cellulose, and carboxymethyl cellulose. Figure 5 shows the structures of general cellulose and cellulose derivatives.

Cellulose and cellulose derivatives have been widely applied in numerous applications. They are used as membranes for separation, as binders for drugs, a film coating agent, barrier films, textile applications, and many others [2]. The function of cellulose and cellulose derivatives as hosts in a polymer electrolyte system has been reported by many researchers. By far, cellulose and its derivatives, as presented in Figure 5, have been studied with respect to polymer electrolyte. The initial study was reported in 2001 for hydroxyethyl cellulose. Following that, research was actively conducted by incorporating various types of cellulose derivatives, along with the addition of salts, ionic liquids, plasticizers, and inorganic fillers.
3.1.3. Chitosan

Chitosan has received considerable attention in the polymer field. It shows many interesting properties, such as being non-toxic, biodegradable, and biocompatible. Chitosan consists of 1,4 linked-2-deoxy-2-aminoglucose, which is generated from the deacetylation reaction of chitin. Chitin refers to a natural polysaccharide that can be found in various fungi and the exoskeleton of arthropods [16] such as shrimps, crabs, and lobsters. Figure 6 shows the molecular structure segment of chitin and chitin deacetylation to generate chitosan [17].

The application of chitosan has been investigated in the medical field [18], water treatment studies [19], and in food packaging materials [20], to name a few. Interestingly, this polymer can also be applied in polymer electrolyte applications. Chitosan has several polar groups, such as hydroxyl and amino groups, that can act as donors and form complexes with inorganic salts [16]. Chitosan is an amorphous polymer and its glass transition temperature is reported to be ~200 °C [21]. Owing to these criteria, chitosan may serve as a polymer host for salt solvation. In fact, chitosan is the first biopolymer
that has been studied for polymer electrolyte applications, reported in 1995. By far, chitosan is also the most widely studied biopolymer for this purpose. The literature portrays that the conductivity of native chitosan without salt is obtained at approximately \(10^{-9} \text{S/cm}\) [22]. Other types of modified chitosan that have been studied are acetylated chitosan, chitosan acetate, oxipropylated chitosan, hexanoyl chitosan, carboxymethyl chitosan, N-phthaloyl chitosan, sulfonated chitosan, lauroyl chitosan, phosphorylated chitosan, and N-Succinyl chitosan. A wide variety of salts and acid dopants have been applied to improvise the ionic conductivity of the electrolyte system. The incorporation of ionic liquids began in 2010 and many more following that. Several studies have investigated the conductivity of chitosan doped with different types of salts, ionic liquids, plasticizers, and fillers.

3.1.4. Gum

Gums are materials classified under polysaccharides with high commercial importance. They are present in many plant, animal, marine, and microbial sources [23]. Gums are available as raw powders. Table 2 lists the sources of common gums and their overall structure. The physiochemical properties of gums are determined by the chemical nature and the molecule shapes. All gums have one common similarity, which is the ability to thicken water and aqueous systems, though the rheological properties of the systems might vary depending on the types of gums being used [24]. Gums have gained many applications in various fields. For instance, in the food industry, gums are used as thickeners, emulsifying, and gelling agents. In addition, they have also been applied as adhesives, binders, flocculants, and clarification aids [3]. In this section, gums that originate from marine algae and higher plants are discussed, while gums obtained from microorganisms are described in the latter part of this review.

Source	Gum	Structure	
Marine algae	Agar, alginites, carrageenan	Linear, un-branched molecules	
Higher plants	Exudates	Pectin	Linear, un-branched molecules
	Seeds	Guar gum	Linear molecules with short branches
	Exudates	Gum Arabic	Branch-on-branch molecules
Microorganism	Gellan, Xanthan	Linear molecules with short branches	

Agar

Agar is a hydrocolloid material that is naturally obtained from the extraction of red seaweed, made up of a mixture of two polysaccharides, which are agarose and agaropectin. Agarose is a linear polymer and the predominant component of agar that makes up 70% of the mixture composed of the agarobiose repeating unit. Agaroobiase refers to a disaccharide made up of D-galactose and 3,6-anhydro-L-galactopyranose [25]. Although both compounds share a similar galactose-based backbone, agaropectin contains acidic side groups, such as sulphate and pyruvate, whereas agarose has a neutral charge [26]. Figure 7 shows the representative structures of agarose and agaropectin [25]. The presence of numerous oxygen atoms in the agar structure satisfies the requirement of being a polymer host for an electrolyte, as it can be the possible site for complexation to take place.

![Figure 7. Representative structure of agarose and agaropectin.](image-url)
The early use of agar in electrochemical studies was limited to the preparation of salt bridges in developing a reference electrode. In 2005, Kasem et al. looked into the suitability of agar as a polymer electrolyte host. The study investigated the electrochemical behavior of the electron redox system by using an agar/KCl gel electrolyte [27]. Since then, a few studies have examined agar-based electrolytes, which were prepared either in solid or gel form. Although agar is not as extensively studied as compared to cellulose or chitosan, various types of salts as an ion conductor and weak acids as a proton conductor have been investigated. The inclusion of ionic liquids, plasticizers, and nanoparticle fillers has been evaluated as well. So far, the highest room temperature ionic conductivity was achieved at 10^{-3} S/cm for an agar-based electrolyte, which is comparable to a liquid electrolyte. The performance of the agar-based electrolyte has been tested for DSSC, ECD, and fuel cell applications.

Carrageenan

Carrageenan is a linear sulphated polysaccharide polymer extracted from a type of marine red seaweed called *Rhodophyceae*. It can be classified into three main types: (a) Kappa (κ)-carrageenan that possesses one sulphate per disaccharide, (b) iota (ι)-carrageenan with two sulphates per disaccharide, and (c) lambda (λ)-carrageenan with three sulphates per disaccharide. It has galactose repeating units and 3,6-anhydrogalactose, both sulphated and non-sulphated, amalgamated by alternating α-(1,3) and β-(1,4) glycosidic links. Figure 8 portrays the representative units of carrageenan [28]. This polymer has been used extensively in the food, cosmetic, and pharmaceutical industries [22]. Studies pertaining to PE have, so far, looked into kappa and iota carrageenan, while none have researched lambda carrageenan.

The initial study concerning the potential of carrageenan in the polymer electrolyte field was reported by Mobarak et al. in 2012 [29]. The team prepared κ-carrageenan and a carboxymethyl (CMC) κ-carrageenan-based electrolyte via a solution casting method with a 1% (v/v) aqueous acetic acid solution. The room temperature ionic conductivity of 5.34×10^{-7} S/cm was achieved for κ-carrageenan. Interestingly, upon the modification to CMC κ-carrageenan, the conductivity increased three magnitudes to 2.02×10^{-4} S/cm. This enhancement was attributed to the fact that modification increased the amount of oxygen in the system, hence providing greater vacancies for protons or cations to coordinate. Another study was conducted by the same team utilizing CMC κ-carrageenan and i-carrageenan with different ratios of lithium nitrate (LiNO$_3$) salts (5–30 wt%). The highest ionic conductivity for CMC κ-carrageenan was obtained at 30 wt% LiNO$_3$ salt with 5.85×10^{-3} S/cm, while the best conductivity of i-carrageenan was recorded at 5.51×10^{-3} S/cm at 20 wt% of salt [22]. Another study concerning
κ-carrageenan was conducted by Rudziah et al. In their study, carboxymethyl κ-carrageenan (CMKC) was blended with carboxymethyl cellulose (CMC). The cellulose was extracted from kenaf fiber and modified to produce CMC. The films of CMKC/CMC blend were prepared via the solution casting method with various ratios. They explained that the increase in conductivity was related with the increase in segmental motion and the fraction of the amorphous region \[30\]. The carrageenan-based electrolyte has been tested for various applications, such as DSSC, ECD, super-capacitors, and fuel cells.

Pectin

Pectin is one type of polymer that is not widely explored in the polymer electrolyte field. It is a natural polymer, present naturally in the cell walls of terrestrial plants, and is abundant in vegetables and fruits. Citrus fruits, such as oranges and limes, contain substantial amounts of pectin. At present, the major sources are citrus peels and apple pomace, which are the by-products from the extraction of citrus and apple juices \[31\]. Typically, pectin is used in food products as it has beneficial effects upon the health of the consumer. Commercial pectin exists as a white to light brown powder. Pectin is usually applied as a gelling agent for food production. Chemically, pectin is a complex polysaccharide that is composed mainly of D-galacturonic acid resides in α-(1-4) chain (65 wt%). Pectin is also a group of substances which forms gel when dissolved in water under suitable conditions \[32\]. Figure 9 shows the representative unit of pectin \[33\].

![Figure 9. Representative unit of pectin.](image)

The study of pectin-based polymer electrolytes was initiated in 2009 by Andrande et al. Pectin was doped with a fixed amount of LiClO$_4$ and plasticized with glycerol for 0–70 wt%. The outcome reflected a good transparency feature with the pectin-based electrolyte film, which would be hardly achievable by a solid electrolyte. The best ionic conductivity value of 4.7×10^{-4} S/cm was obtained for the sample plasticized with 68 wt% of glycerol \[33\].

Guar gum and Gum Arabic

Guar gum is processed from the endosperm of seeds from the cluster bean, Cyamopsis tetragonolobus, which belongs to the Leguminosae family. It contains a complex of polysaccharides called galactomannan, which is made up of D-galactose and D-mannose \[34\]. Figure 10 illustrates the representative unit of Guar gum \[35\]. This polymer contains an abundance of hydroxyl groups and tends to form hydrogen bonds when added to water. It is mainly used as an additive in food, pharmaceuticals, paper, textiles, and the cosmetics industry \[36\]. The application of guar gum as a polymer electrolyte began in 2014 initiated by Sudhakar et al. They prepared a solid polymer electrolyte of Guar gum/LiClO$_4$/glycerol system and obtained a high room temperature ionic conductivity of 2.2×10^{-3} S/cm \[37\]. Meanwhile, the effects of the addition of ionic liquid and filler were studied by other researchers \[35,38\].

Gum Arabic, which is also known as Acacia gum, refers to the tree gum exudate of the Acacia tree. It is a highly branched polysaccharide and contains glycoprotein components. Gum Arabic is abundantly available and primarily used as an emulsifier, stabilizer, and thickening agent. The study of gum Arabic was performed by Khalid and Hartono for a supercapacitor application. They prepared a gel-like electrolyte by mixing gum Arabic with ortho-phosphoric acid. The gel electrolyte demonstrated excellent conductivity and supercapacitive performance.
3.1.5. Gelatin

Gelatin is a soluble protein substance derived from collagen, a natural protein present in bonds, cartilage, and skin. The main source of gelatin is from bovine and porcine animals, but it also can be extracted from fish and poultry. Gelatin properties are influenced by several factors, such as the source, animal age, and collagen type. It has widespread applications, for example, emulsifiers, foaming agents, biodegradable packaging materials, and colloid stabilizers [39]. Gelatin is a polydisperse protein that is composed of a mixture of different chain types with varying molecular weights [40]. Figure 11 shows a representative unit of gelatin [41]. The study of gelatin-based polymer electrolytes started way back in 2007 by Diogo F et al [42]. The solid polymer electrolyte system was made up of gelatin/glycerol/acetic acid with the best room temperature ionic conductivity achieved at 10^{-5} S/cm. Subsequently, various types of salts have been investigated. The electrolyte system has also been tested for EDC and DSSC.

3.1.6. Natural Rubber

Natural rubber is an elastic polymer obtained from the latex of rubber trees, made up of thousands of repeating isoprene units ($\text{C}_5\text{H}_8)_n$. Natural rubber is produced from thousands of different plant species. In industrial applications, the most important source of natural rubber derives from the Hevea brasiliensis tree, which is mostly planted in the South-East Asia and Western Africa regions. Natural rubber has several distinctive properties, such as a low glass transition temperature, as well as good elasticity and adhesion characteristics. It has been widely applied in various applications, from household goods to the high end automotive industries [43]. Nonetheless, in a polymer electrolyte system, the natural rubber itself does not have any polar group in the structure to facilitate the ion mobility. Thus, modified natural rubber such as epoxidized natural rubber (ENR), ENR-25 and ENR-50...
different plant species. In industrial applications, the most...corn, potato, wheat, rice, or agricultural wastes. Figure 13 presents the general structure of poly(lactic acid).

Figure 13. General structure of polylactic acid.

Several studies...polyol was reacted with 4,4'-diphenylmethane diisocyanate (MDI) to produce PU. The electrolyte was prepared by mixing wheat, rice, or agricultural wastes. Figure 13 presents the general structure of poly(lactic acid).

The study of natural rubber-based polymer electrolytes was initiated by Yoshizawa et al. [44] in the year 2000. They blended natural rubber with polyethylene oxide via a solution casting method to produce a solid film electrolyte. The room temperature ionic conductivity obtained was 10^{-6} S/cm. Consequently, the focus shifted to natural rubber derivatives such as MG-30, MG-49, ENR-25, and ENR-50. Derivatives MG-30 and MG-49 were prepared by polymerizing a methyl methacrylate monomer in latex so that the polymer chains become attached to the rubber molecules. Meanwhile, ENR can be chemically modified from natural rubber, wherein some of the unsaturated group is converted into epoxide groups and randomly distributed [45]. Apart from being used as a single polymer host, natural rubber and its derivatives are blended with other polymers to enhance the properties of the electrolyte system.

3.2. Polymers Chemically Synthesized from Bio-Derived Monomers

The second type of bio-based polymer refers to polymers that are chemically synthesized from naturally-derived monomers. It is practically possible to produce tailor-made polymers with highly versatile properties using monomers. Nevertheless, studies pertaining to this type of polymer are only limited to poly(lactic acid) and some vegetable oil-based polyurethanes.

3.2.1. Poly(lactic acid)

Poly(lactic acid) (PLA) is a linear aliphatic thermoplastic biodegradable polyester derived from two major pathways, namely, ring opening of lactide or direct polycondensation of lactic acid, a monomeric precursor obtained from renewable resources. The monomer is produced by a fermentation process of sugar feedstock, such as dextrose or chemical synthesis. Sugar feedstock can be obtained either directly from sources (sugar cane, sugar beet) or through conversion of starch from corn, potato, wheat, rice, or agricultural wastes. Figure 13 presents the general structure of poly(lactic acid).

Figure 13. General structure of polylactic acid.
Several studies have elaborately reported on PLA electrolytes. In a study, a PLA-based electrolyte was prepared via the solution casting method [46]. The outcomes showed that the conductivity of pure PLA at room temperature was 9.46×10^{-12} S/cm. Ethylene carbonate was added as the plasticizing agent. The incorporation of LiClO$_4$ salt as the main ion carrier into the PLA/EC system enhanced the conductivity to 1.44×10^{-6} S/cm. The addition of SiO$_2$ as a ceramic filler further enhanced the conductivity of the PLA electrolyte system to 1.29×10^{-5} S/cm. Subsequently, Chew [47] improvised a PLA-based electrolyte by incorporating aluminum oxide (Al$_2$O$_3$) as another type of ceramic filler. A similar composition was prepared as the previous PLA/EC/LiClO$_4$ system and looked into various fillers. Based on the output, the inclusion of 4% Al$_2$O$_3$ displayed the highest conductivity at 2.07×10^{-5} S/cm. Osinska-Broniarz et al. [48] investigated the performance of PLA blended with poly 3-hydroxybutyrate (PHB) as a gel polymer electrolyte. The PLA/PHB blend polymer was prepared via the electrospinning method. The PLA/PHB membrane was then soaked in an electrolyte that consisted of lithium hexafluorophosphate (LiPF$_6$) in a mixture of ethylene carbonate and dimethyl carbonate. A maximum room temperature ionic conductivity of 1.5×10^{-5} S/cm was obtained at a 70:30 weight ratio of PLA to PHB. In another study, a ternary polymer electrolyte based on PLA, an ionic liquid (Pyr$_{14}$TFSI), and LiTFSI salt was prepared by Osada et al. [49] The materials were mixed by using the hot-pressed technique and melted together without including any solvents. The PLA/Pyr$_{14}$TFSI/LiTFSI system achieved a conductivity of 2.1×10^{-4} S/cm at 60 °C.

3.2.2. Vegetable Oil-Based Polyurethane

Vegetable oils are an excellent alternative to petrochemical feedstock. They can be used as a reliable starting material to produce new polymers. Vegetable oils are derived from plant sources, thus they are natural, abundant, and renewable. They can be classified into edible and non-edible oils. The most common vegetable oils include soybean oil, palm oil, sunflower oil, rapeseed oil, jatropha oil, and castor oil, to name a few. Vegetable oils are made up of long carbon chains and the main constituent is known as triglycerides. Some oils contain carbon-to-carbon double bonds (unsaturation site) that can be converted into the desired functional groups through chemical synthesis. For the polymer electrolyte purpose, palm oil, jatropha oil, and castor oil have been used as the raw material to prepare polyurethane (PU). Figure 14 shows the reaction of a vegetable oil-based polyol with the isocyanate group to produce polyurethane [50].

Su’aït et al. prepared palm oil-based polyurethane as a solid polymer electrolyte. In their study, palm kernel oil polyol (PKO-p) was reacted with 2,4’-methylene diphenyl diisocyanate (2,4’MDI) to produce PU. The electrolyte was prepared via the solution casting method with the inclusion of lithium iodide as the dopant salt at 10–30 wt% concentration, with ethylene carbonate as the plasticizing agent at a fixed amount of 20 wt%. The best room temperature ionic conductivity of 7.6×10^{-4} S/cm was obtained at 25 wt% LiI salt [51]. Another study of palm-based PU electrolyte was conducted by
Daud et al., in which PKO-p was mixed with 2,4′-MDI in acetone at room temperature. The effect of various concentrations of LiCF$_3$SO$_3$ salt was evaluated. The highest room temperature conductivity was 1.6×10^{-5} S/cm obtained at 30 wt% LiCF$_3$SO$_3$ [8].

Castor oil-based polyurethane was synthesized by Salmiah et al. Castor oil is a great alternative to be used in generating PU as it is a non-edible oil. In their study, castor oil polyol was reacted with 4,4′-diphenylmethane diisocyanate (MDI) to produce PU. The electrolyte was prepared by mixing PU with lithium iodide (LiI) and sodium iodide (NaI) salt from 0–40 wt% salt concentration. The maximum ionic conductivity at room temperature was recorded at 30 wt% for both salts, with values 1.78×10^{-6} and 4.28×10^{-7} S/cm for LiI and NaI, respectively. They suggested that the PU/LiI system exhibited higher conductivity, when compared to PU/NaI due to the smaller cation size of Li$^+$ than Na$^+$. The sizes of Li$^+$ and Na$^+$ cations were 0.76 and 1.02 Å, respectively. Theoretically, a smaller cation size generates higher conductivity due to the higher mobility of the cation [52].

Jatropha oil is another example of a non-edible oil that has been used to prepare polyol for polyurethane production. Mustapa et al. prepared a solid polymer electrolyte from jatropha oil-based polyurethane doped with LiClO$_4$ and ethylene carbonate. The highest conductivity of 1.29×10^{-4} S/cm was achieved at 25 wt% of LiClO$_4$ salt.

3.3. Polymers Produced by Microorganisms

The direct production of bio-based polymers can be achieved by using microorganisms or genetically modified bacteria. In fact, a wide range of bio-based polymers with material properties suitable for industrial applications can and have been synthesized. This section will discuss some of the polymers that have been investigated as a host polymer electrolyte.

3.3.1. Bacterial Cellulose

Bacterial cellulose is mainly used in the food industry, as well as in biomedical and cosmeceutical applications. It is produced by acetic acid bacteria in synthetic and non-synthetic media via oxidative fermentation [53]. Some cellulose-producing bacteria are Acetobacter, Rhizobium, Agrobacterium, and Sarcina. One important cellulose-producing bacterium is Acetobacter xylinum, which is the most efficient synthesizer of bacterial cellulose. The chemical structure of bacterial cellulose is similar to that of plant cellulose, except for the physical and chemical properties [54]. Bacteria cellulose possesses unique characteristics over plant cellulose, such as (1) absence of lignin and hemicellulose, (2) high degree of polymerization, and (3) extremely high water-holding capacity and excellent biodegradability. Despite this, the current price of this bacterial cellulose is still considered as too high for certain applications. The study of bacterial cellulose polymer electrolytes only started in 2015, and since then, only two studies have been reported [55,56]. Both studies successfully recorded high ionic conductivity similar to that of liquid electrolytes.

3.3.2. Gellan Gum and Xanthan Gum

Gellan gum is an extracellular, anionic polysaccharide made up of tetrasaccharides that consist of two glucose, namely, one glucuronic acid and one rhamnose ring. It is produced from the fermentation of Sphingomonas elodea (ATCC 31461) by inoculating a fermentation medium with the microorganism. It is available in two forms, specifically high acyl (native gellan) and low acyl [57]. While the low acyl gellan is a firm, brittle, and non-elastic gel, the high acyl gellan on the other hand is a soft, elastic, and non-brittle gel. The gellan gum is mainly studied in the ophthalmology field for lenses with drug delivery properties [58]. One important property of gellan gum is the high thermal stability that can reach up to 120 °C and its thermal reversibility [59]. Figure 15 illustrates the representative units of gellan gum [58]. Gellan gum has been investigated as a polymer host doped with various types of salts and acid dopants. The initial study, undertaken in 2012, looked into applications for electrochemical devices.
Xanthan gum is a high molecular weight polysaccharide produced via the microbiological fermentation of sugar cane/corn by the microorganism Xanthomonas campestris. Xanthan gum has excellent thermal stability, as well as good solubility and stability, thus it is suitable for use in the food, cosmetic, and pharmaceutical industries. Xanthan is an acidic polymer with the shape of a five-fold helix, made up of pentasaccharide subunits to form a cellulose backbone with trisaccharide side-chains composed of mannose (β-1,4) glucuronic acid, (β-1,2) mannose attached to alternate glucose residues in the backbone by α-1,3 linkages [23,60]. Figure 16 portrays the representative units of xanthan gum [61]. Only two studies have been reported regarding xanthan gum-based electrolytes. This particular electrolyte system displayed exceptional conductivity after being tested for dye sensitized solar cell and supercapacitor applications [23,61].

3.4. Development of Bio-Based Polymer Electrolyte

The use of bio-based polymers in the polymer electrolyte field is not a new concept. In fact, they have been used for a long time; however, only in the past three decades have they been extensively investigated in this field. Generally, each of the bio-based polymer hosts studied has its advantages and limitations. The advantages of these polymers are obvious, including the renewability, availability,
and environmentally friendly nature. In spite of that, they have some shortcomings in terms of economic and technical aspects. The cost of said materials are relatively higher than the conventional petroleum-based polymers. Some technical issues like hydrophilic character and poor mechanical properties have hampered their applications. Thus, the properties must be improved in order for such electrolytes to be applied commercially. The main challenge is to produce an electrolyte system with high conductivity, whilst maintaining the electrochemical, thermal, and mechanical properties. Efforts have been taken to achieve this objective via several approaches, such as blending the polymer with other compatible polymers, the incorporation of fillers and the addition of plasticizers. Blending techniques aim to obtain new and unique materials with additional properties without sacrificing their original properties [62]. In general, polymer blend refers to mixture of at least two substances, polymers or copolymers, where the ingredient content is above 2 wt%. This method is applied because of its simple preparation and its ease of control over physical properties by compositional change [63].

Meanwhile, the addition of a plasticizer could improve the conductivity of a polymer electrolyte by reducing the glass transition temperature that facilitates the mobility of ions within the medium and dissociating ion aggregates [16]. Further, a high value of the dielectric constant of a plasticizer could solvate more salt, thereby increasing the number of free mobile ions [64]. The incorporation of organic/inorganic fillers could reduce the crystallinity and enhance both the mechanical and electrochemical properties. It has been discovered that the conductivity is strongly dependent on the particle size and concentration of the filler. Small-sized particles at low quantities are favorable and promote an enhanced conductivity [65]. In addition, room temperature ionic liquids (RTIL) have garnered interest as a substitute to organic solvents. RTIL is a molten salt containing bulky and asymmetric organic cations and contains highly delocalized charge inorganic anions. RTIL has some interesting features, such as excellent thermal and chemical stabilities, relatively high ionic conductivity, non-volatile, non-flammable, and wider electrochemical potential window [10].

The collective data of prior finding on bio-based polymer electrolytes using different types of bio-based polymer are shown in Table 3. The result was classified based on their source, origin, application, physical, and electrochemical properties. Various systems have been investigated by introducing different types of polymer hosts, salts, plasticizers, fillers, and ionic liquids. By far, starch, cellulose, and chitosan are the most widely studied and reported bio-based material in the polymer electrolyte field. The trend shows that the choice of salt used commonly depends on the intended end-use application. Different types of plasticizer have been used to enhance the ionic conductivity, such as glycerol, glucose, sorbitol, urea, formamide, glutaraldehyde, ethylene carbonate, propylene carbonate, and so on. Nano-oxide materials are a common choice to be used as fillers. Meanwhile, a wide variety of ionic liquids has been explored. From the findings, it is possible for the bio-based polymer electrolyte to achieve a room temperature ionic conductivity of 10^{-2} to 10^{-3} S cm$^{-1}$, which is similar to the conductivity of the liquid electrolyte. Besides, gel electrolytes show better performance in comparison to the solid type. For a deep understanding, a complete test on electrochemical, thermal, and physical properties of the electrolyte is necessary to conduct in order to improve their performance in actual applications. Therefore, for the purpose of reliable electrochemical device applications, the bio-based polymer electrolytes should possess these characteristics: (1) Ionic conductivity ($\geq 10^{-4}$ S cm$^{-1}$); (2) high ionic transference number ($t_{ion} \sim 1$); (3) high chemical, thermal, and electrochemical stability; (4) good mechanical strength; and (5) good compatibility with the electrodes.
Table 3. Summary of prior study on bio-based polymer electrolytes.

Polymer System	State	Electrical Properties	Physical Properties	Device Type	Ref.					
		σ (S/cm)	L-TN	E_a (eV)	T_m (°C)	Structural				
Corn starch–LiClO₄–glycerol	Solid	7.9 x 10^{-3}	–	–	–85	Amorph	–	[14]		
Corn starch–LiClO₄–glycerol	Solid	5.0 x 10^{-5}	–	–	–	–	–	[66]		
Corn starch–LiClO₄–glycerol	Gel	10^{-4}	–	–	0.35 eV	–	–	[67]		
Corn starch–NaCl–glycerol	–	–	–	–	–	–	–	–		
Corn starch–NaCl–glycerol	Solid	–	–	–	–	–	–	–		
Corn starch–NaCl–glycerol	Solid	–	–	–	–	–	–	–		
Corn starch–NaCl–glycerol	Solid	–	–	–	–	–	–	–		
Corn starch–NaCl–glycerol	Solid	–	–	–	–	–	–	–		
Corn starch–NaCl–glycerol	Solid	10^{-3}	–	–	–	–	–	–		
Corn starch–LiClO₄–glycerol	Solid	6.1 x 10^{-3}	–	–	–	–	–	[69]		
Cassava starch–LiClO₄–glycerol	Solid	8.4 x 10^{-3}	–	–	–	–	–	–		
Starch–NH₄NO₃	Solid	2.8 x 10^{-3}	–	–	0.41 eV	–	–	[12]		
Corn starch–LiClO₄–glycerol	Solid	1.1 x 10^{-4}	–	–	–75	–	–	[70]		
Corn starch–LiClO₄–glycerol	Solid	4.2 x 10^{-4}	–	–	–	–	–	[71]		
Corn starch–LiClO₄–glycerol	Solid	1.5 x 10^{-4}	–	–	–	–	–	[72]		
Arrowroot starch–NaCl–glutaraldehyde	Solid	6.7 x 10^{-3}	0.95	–	–	–	–	[73]		
Tapioca starch–PEO–NH₄NO₃	Solid	2.8 x 10^{-3}	–	–	–	Semi-cr	–	[63]		
Corn starch–LiPF₆–[Bemdm][PF₆]	Solid	6.0 x 10^{-3}	–	–	0.01 eV	–29	Amorph	–	[74]	
Sago starch–NH₄Br	Solid	6.9 x 10^{-3}	–	–	0.07 eV	–	–	[75]		
Corn starch–LiClO₄–SO₃	Solid	0.99 x 10^{-4}	–	–	–87.1	–	–	[76]		
Corn starch–LiClO₄–glycerol	Solid	5.7 x 10^{-3}	–	–	4.8 kJ/mol	–	–	[77]		
Corn starch–LiClO₄–glycerol	Solid	1.0 x 10^{-3}	–	–	–	–	–	[78]		
Potato starch–NH₄I	Solid	2.4 x 10^{-4}	0.95	–	–	–	–	[13]		
Starch–chitosan–LiClO₄–glycerol	Solid	3.7 x 10^{-4}	–	–	0.52 eV	–	–	[79]		
Corn starch–AgNO₃	Solid	–	–	–	0.71 eV	–	–	[80]		
Corn starch–LiClO₄–glycerol	Solid	9.6 x 10^{-4}	–	–	0.16 eV	–	Amorph	–	[81]	
Corn starch–LiClO₄–glycerol	Solid	1.0 x 10^{-4}	–	–	–	–	–	[82]		
Rice starch–LiClO₄–glycerol	Solid	4.7 x 10^{-5}	–	–	0.41 eV	–	–	[83]		
Poly(ecrylne sulphonic acid)/starch–LiClO₄–glycerol	Solid	5.7 x 10^{-3}	–	–	–	–	–	[84]		
Potato starch–NaCl–glutaraldehyde–PEG	Solid	1.8 x 10^{-3}	0.99	–	–	75	–	[85]		
Corn starch–LiOAc–glycerol	Solid	1.0 x 10^{-3}	–	2.1	0.14 eV	–	Amorph	–	[86]	
Sago starch–KL-I₂	Solid	3.4 x 10^{-4}	–	–	–	–	–	[87]		
Rice starch–Li–MPI–TiO₂	Solid	3.6 x 10^{-4}	–	–	0.22 eV	–	Amorph	DSSC	[88]	
Corn starch–LiPF₆–[Bemdm][PF₆]	Solid	1.5 x 10^{-4}	–	–	2.9	–	–	–	[89]	
Corn starch–Li–MPI–TiO₂	Solid	3.2 x 10^{-4}	–	–	3.1	–	–	–	[90]	
Corn starch–LiClO₄–glycerol	Solid	1.6 x 10^{-4}	–	–	0.64 eV	64	–	–	[91]	
Corn starch–Li–MPI–TiO₂	Solid	1.3 x 10^{-3}	0.99	1.9	0.18 eV	–	–	–	[92]	
Starch–chitosan–NH₄I	Solid	3.6 x 10^{-3}	–	–	0.20 eV	–	Amorph	–	[93]	
Starch–chitosan–NH₄I–glycerol	Solid	5.1 x 10^{-4}	–	–	0.19 eV	–0.37	–	–	[94]	
Starch–chitosan–NH₄Br–EC	Solid	1.4 x 10^{-3}	0.92	1.8	0.17 eV	–	Amorph	EDLC	[95]	
Corn starch–LiClO₄–glycerol	Solid	1.2 x 10^{-3}	–	3.0	0.25 eV	–	Amorph	EDLC	[96]	
Rice starch–Li–I₂	Solid	4.7 x 10^{-5}	–	–	–	–	–	–	[97]	
Rice starch–NaI	Solid	1.4 x 10^{-4}	–	–	–	–	–	Amorph	DSSC	[98]
Rice starch–NaI	Solid	4.8 x 10^{-5}	–	–	–	–	–	Amorph	DSSC	[99]
Rice starch–NaI–MPI	Solid	1.2 x 10^{-5}	–	–	–	–	–	–	[100]	
Corn starch–NaI–glycerol	Solid	1.8 x 10^{-3}	0.98	1.6	0.11 eV	–	Amorph	–	[101]	
Corn starch–LiPF₆–[Bemdm][PF₆]	Solid	2.0 x 10^{-4}	–	–	2.9	–	–	Amorph	–	[102]
Potato starch–PVAc–KCl–glycerol	Solid	5.4 x 10^{-3}	–	0.97	0.12 eV	–	Amorph	–	[103]	
Polymer	Electrolyte System	State	Electrochemical Properties	Physical Properties	Device	Ref.				
--	---	-----------	---------------------------	---------------------	------------	--------				
Potato starch/chitosan-LiCF₃SO₃	Solid	7.1 × 10⁻²	–	0.11 eV	Amorph	[101]				
Potato starch/chitosan-LiCF₃SO₃-glycerol	Solid	1.3 × 10⁻³	–	3.1	Amorph	[102]				
Corn starch-LiClO₄-ButOH	Solid	1.8 × 10⁻⁴	–	17.2	Battery	[103]				
Corn starch-LiTFSI	Solid	3.4 × 10⁻⁴	–	–	–	[104]				
Potato starch-Mg(C₂H₃O₂)₂-[BmIm][Cl]	Solid	1.1 × 10⁻⁴	0.92	–	–	[105]				
Potato starch/Poly(vinyl alcohol)-LiBr-glycerol	Solid	10⁻³	–	–	–	[106]				
Potato starch/methylcellulose-LiClO₄	Solid	4.3 × 10⁻⁴	–	–	–	[107]				
Starch/PVA-FeCl₃	Solid	1.3 × 10⁻³	–	–	Amorph	[108]				
Tapioca starch/chitosan-NH₄NO₃-[EmIm][NO₃]	Solid	7.4 × 10⁻³	–	–	Amorph	[109]				
Starch-PC	Gel	6.2 × 10⁻⁴	–	–	–	[110]				
Corn starch-LiClO₄-glycerol	Solid	9.0 × 10⁻⁴	–	–	Amorph	[111]				
Potato starch-LiCF₃SO₃-[BmIm][Cl]-GO	Solid	4.8 × 10⁻⁴	–	–	Amorph	[112]				
Corn starch-NaClO₄-glutaraldehyde	Solid	10⁻⁵	2.4	–	–	[113]				
Potato starch-NADES	Solid	2.9 × 10⁻³	–	–	Amorph	[114]				
Potato starch/methylcellulose-NH₄NO₃	Solid	1.3 × 10⁻³	0.98	1.8	–27.5 Amorph	EDLC	[115,116]			

HEC/DPEO- LiClO₄ | Solid | 2.1 × 10⁻⁵ | – | 0.17 eV | – | – |
HEC-LiClO₄- glycerol | Solid | 9.5 × 10⁻⁵ | – | – | Amorph | [117] |
Cellulose/PPO- LiClO₄-SO₂ | Solid | 10⁻⁷ | – | 53 kJ/mol | – | [118] |
HPC/TPEO- LiClO₄-PC | Gel | 10⁻³ | – | 16 kJ/mol | – | [119] |
EO-EP/nano-cellulose-LiClO₄ | Solid | 1.6 × 10⁻³ | – | – | – | [120] |
POE/nano-cellulose-LiTFSI-TEGDME | Solid | 10⁻⁸ | – | – | – | [121] |
HPC/joamime-LiClO₄ | Solid | 1.3 × 10⁻⁴ | – | – | – | [122] |
POE/nano-cellulose-LiTFSI | Solid | 10⁻⁴ | – | – | – | [123] |
Cellulose acetate-LiClO₄ | Solid | 4.9 × 10⁻⁵ | – | – | – | [124] |
Ethyl cellulose-LiClO₄-PC | Gel | 6.5 × 10⁻⁴ | – | 0.18 eV | – | [125] |
PVDF-HFP/cellulose/LiPF₆-EC/DMC | Gel | 8.3 × 10⁻⁶ | 4.8 | – | Semi-cr | – |
Cellulose acetate-NH₄BF₄-SiO₂ | Gel | 7.9 × 10⁻⁵ | – | – | – | [126] |
Cellulose triacteate-LiTFSI-PyIm/TFSI | Gel | 10⁻⁴ | – | – | Battery | [127] |
Cellulose-acrylic acid-[BmIm][I] | Gel | 7.3 × 10⁻⁵ | – | – | – | [128] |
Cellulose acetate-NH₄I-PC | Gel | 1.2 × 10⁻⁵ | – | – | – | [129] |
Cellulose acetate-NH₄BF₄-TO₂ | Gel | 1.4 × 10⁻⁵ | – | – | Battery | [130] |
Cellulose acetate-NH₄BF₄-PEG | Gel | 1.4 × 10⁻⁵ | – | – | – | [131] |
CMC-DTA | Solid | 7.7 × 10⁻⁴ | 0.92 | 0.09 eV | Amorph | [137] |
PBO/network cellulose-LiClO₄ | Gel | 10⁻⁴ | 4.7 | – | Amorph | [138] |
CN-HPC-LiI-LiMHI | Gel | 2.5 × 10⁻⁴ | – | – | Amorph | [139] |
Cellulose acetate-LiTFSI-DES | Gel | 2.6 × 10⁻³ | – | 4.23 kJ/mol | – | [140] |
Cellulose acetate-LiTFSI-[EmIm][Cl] | Solid | 1.8 × 10⁻³ | – | – | Amorph | [141] |
Methyl cellulose-LiClO₄-SO₂ | Solid | 2.1 × 10⁻⁵ | – | – | Amorph | [142] |
Methyl cellulose-PEG-NH₄NO₃ | Solid | 10⁻⁶ | 2.4 | – | Amorph | [143] |
Methyl cellulose-KOH-DMC | Solid | 10⁻⁶ | – | – | EDLC | [144] |
PBO/PVDF/Ceullulose acetate butyrate-LiPF₆-EC/EMC | Gel | 2.5 × 10⁻⁴ | – | – | Battery | [145] |
PBO/PVDF/Ceullulose acetate butyrate-LiPF₆-EC/EMC | Gel | 2.5 × 10⁻⁴ | – | – | Battery | [146] |
Cellulose acetate-LiClO₄-SO₂ | Gel | 3.0 × 10⁻⁴ | 4.7 | – | – | [147] |
Polymer nanocellulose-LiClO₄ | Gel | 8.0 × 10⁻⁵ | 5.0 | – | Semi-cr | [148] |
PVOF/HPC/LiMHI | Gel | 3.8 × 10⁻⁴ | 5.0 | – | Amorph | [149] |
Table 3. Cont.

Polymer	Electrolyte System	State	σ (s/cm)	L-TN	Stability (V)	E_a (kJ/mo)	T_g (°C)	Structural	Device	Ref.	
Cellulose acetate–LiClO_4–PC	Gel	–	–	–	–	–	–	–	–	–	
MC–LiIBO	Solid	–	–	–	–	–	–	–	–	–	
MFC/HEMA/PEGMA–NaI–I_2	Gel	–	–	–	–	Amorph	–	–	DSSC	[154]	
PVDF/Methyl cellulose–LiPF_6–EMC	Gel	2.0 × 10^{-4}	–	–	–	–	–	–	Battery	[155]	
CMC–Citric acid	Solid	4.4 × 10^{-2}	0.89	–	–	–	–	Amorph	–	[156]	
MG-49/CMC–LiF_2SO_3	Solid	3.5 × 10^{-2}	–	–	–	Amorph	–	–	–	[157]	
Methyl cellulose–NaI	Solid	2.7 × 10^{-2}	–	–	–	–	–	–	– [158,159]		
MC–NWF–LiBF_4–EMC/TEGDME	Gel	2.9 × 10^{-4}	–	–	–	–	–	–	Battery	[160]	
Cellulose acetate/PVDF–LiTFSI–TEGDME	Gel	5.5 × 10^{-4}	–	4.7	–	–	–	–	Battery	[161]	
Cellulose acetate–NH_4SCN	Solid	3.3 × 10^{-3}	–	0.99	0.15 eV	113.7	–	Amorph	Battery	[170]	
CMC–NH_4I–CO_3	Solid	7.7 × 10^{-3}	–	–	–	Amorph	–	–	–	[171]	
CMC–NH_4F	Solid	–	–	–	–	–	–	Semi-cr	–	[172]	
HPMC–Mg(CF_3SO_3)_2–[BmIm][Tf]	Gel	2.4 × 10^{-4}	–	1.28 eV	27.5	Amorph	–	–	–	[174]	
CMC–(NH_4)_2CO_3	Solid	1.4 × 10^{-3}	–	–	–	–	–	–	–	[173]	
Cellulose acetate–LiClO_4–PC	Gel	5.6 × 10^{-4}	–	–	–	–	–	Amorph	– [163]		
Cellulose acetate–LiTFSI	Solid	4.7 × 10^{-2}	–	–	1.25 kJ/mol	–	–	–	– [165]		
Cellulose acetate–LiNO_3	Solid	1.9 × 10^{-3}	–	4.1	0.16 eV	Amorph	–	ECD	– [178]		
Cellulose acetate–NaI–SCN	Solid	3.3 × 10^{-3}	0.99	–	0.15 eV	113.7	Amorph	Battery	–	[179]	
Cellulose acetate–LiTFSI–BDG	Gel	2.9 × 10^{-3}	–	3.8	–	Amorph	–	–	– [180]		
Lignocellulose/potato starch–LiPF_6–EMC/TEGDME	Gel	1.3 × 10^{-3}	12.7 kJ/mol	–	–	–	–	–	– [181]		
Lignocellulose–PEG	Gel	3.2 × 10^{-3}	–	–	–	–	–	–	– [182]		
PVA/chitosan/CNC–Acetic acid	Solid	6.4 × 10^{-3}	–	–	–	–	–	–	Fuel cell	[183]	
HEC–LiIO_3–glycerol	Solid	4.6 × 10^{-3}	–	–	–	Amorph	–	–	– [184]		
Cellulose acetate–NH_4NO_3	Solid	1.0 × 10^{-3}	0.97	4.3	0.05 eV	111.6	Amorph	ECD	– [185]		
CMC–(NH_4)_2CO_3	Solid	7.7 × 10^{-3}	0.98	0.21 eV	–	–	–	–	– [186]		
Acetylated chitosan–LiNO_3	Solid	10^{-4}	–	–	–	–	–	Amorph	Battery	[187]	
Polymer	Electrolyte System	State	α (s/cm)	L-TN	Stability (V)	E_P	T_g (°C)	Structural	Device	Ref.	
-------------------------------	-------------------------	---------	----------	------	---------------	-----	----------	--------------	-------------------------	-------	
Chitosan acetate–NaI	Solid	4.9 × 10⁻³	0.38 eV	Amorph	[203]				Fuel cell		
Chitosan–NaClO₄	Solid	4.6 × 10⁻²	0.02 eV	Amorph	[212]				Fuel cell		
Oxypropylated chitosan/polyether–LiTFSI	Solid	3.4 × 10⁻⁴	0.64 eV	0.10 eV	–	–	0.44 eV	Amorph	Fuel cell	[207]	
Chitosan acetate–LiClO₄–EC	Solid	3.4 × 10⁻⁴	0.64 eV	0.10 eV	–	–	0.44 eV	Amorph	Fuel cell	[207]	
Chitosan–KCI	Solid	1.3 × 10⁻³		–	–	5.5	0.60 V	Amorph	Battery	[204,205]	
Chitosan acetate-LiClO₄–EC	Solid	5.5 × 10⁻⁴	0.29 eV	–	–	5.5	0.45 V	Amorph	Battery	[209]	
Chitosan–LiOAc–olic acid	Solid	2.7 × 10⁻⁴	0.10 eV	–	–	2.7	0.38 eV	Amorph	Battery	[209]	
Chitosan acetate–LiClO₄–EC	Solid	3.4 × 10⁻⁴	0.10 eV	–	–	3.4	0.49 eV	Amorph	Battery	[209]	
Chitosan–KOH	Solid	10⁻²	–	–	–	10⁻²	–	–	Fuel cell	[209]	
Chitosan acetate–NH₄NO₃–Al₂SiO₃	Solid	3.2 × 10⁻⁴	0.24 eV	–	–	3.2	0.46 eV	Amorph	Fuel cell	[207]	
Hexanoyl chitosan–LiClO₄–EC	Solid	1.1 × 10⁻⁴	0.02 eV	–	–	1.1	0.32 eV	Amorph	Battery	[214]	
Chitosan acetate–LiClO₄–EC	Solid	1.3 × 10⁻⁴	0.29 eV	–	–	1.3	0.45 eV	Amorph	Battery	[209]	
Chitosan–LiOAc–olic acid	Solid	1.2 × 10⁻⁴	0.10 eV	–	–	1.2	0.38 eV	Amorph	Battery	[209]	
Chitosan–LiClO₄–EC–Al₂PO₄	Solid	2.2 × 10⁻⁴	0.16 eV	–	–	2.2	0.49 eV	Amorph	Battery	[209]	
Chitosan–KOH	Solid	1.7 × 10⁻⁴	0.02 eV	–	–	1.7	0.38 eV	Amorph	Battery	[209]	
Chitosan acetate–NH₄NO₃–EC	Solid	3.4 × 10⁻⁴	0.10 eV	–	–	3.4	0.49 eV	Amorph	Battery	[209]	
Chitosan acetate–LiClO₄–EC	Solid	3.4 × 10⁻⁴	0.10 eV	–	–	3.4	0.49 eV	Amorph	Battery	[209]	
Chitosan–KOH	Solid	1.8 × 10⁻⁴	0.02 eV	–	–	1.8	0.38 eV	Amorph	Battery	[209]	
Chitosan acetate–LiClO₄–EC	Solid	3.2 × 10⁻⁴	0.24 eV	–	–	3.2	0.46 eV	Amorph	Battery	[214]	
Chitosan–KOH	Solid	1.3 × 10⁻⁴	0.29 eV	–	–	1.3	0.45 eV	Amorph	Battery	[209]	
Chitosan acetate–LiClO₄–EC	Solid	1.2 × 10⁻⁴	0.10 eV	–	–	1.2	0.38 eV	Amorph	Battery	[209]	
Chitosan–KOH	Solid	3.4 × 10⁻⁴	0.10 eV	–	–	3.4	0.49 eV	Amorph	Battery	[209]	
Chitosan acetate–LiClO₄–EC	Solid	3.4 × 10⁻⁴	0.10 eV	–	–	3.4	0.49 eV	Amorph	Battery	[209]	
Chitosan–KOH	Solid	1.8 × 10⁻⁴	0.02 eV	–	–	1.8	0.38 eV	Amorph	Battery	[209]	
Chitosan acetate–LiClO₄–EC	Solid	3.2 × 10⁻⁴	0.24 eV	–	–	3.2	0.46 eV	Amorph	Battery	[214]	
Chitosan acetate–LiClO₄–EC	Solid	1.3 × 10⁻⁴	0.29 eV	–	–	1.3	0.45 eV	Amorph	Battery	[209]	
Chitosan–KOH	Solid	1.2 × 10⁻⁴	0.10 eV	–	–	1.2	0.38 eV	Amorph	Battery	[209]	
Chitosan acetate–LiClO₄–EC	Solid	3.4 × 10⁻⁴	0.10 eV	–	–	3.4	0.49 eV	Amorph	Battery	[209]	
Polymer	Electrolyte System	State	\(\sigma \) (s/cm)	L-TN	Stability (V)	\(E_g \)	\(T_g (°C) \)	Structural	Device	Ref.	
---------	-----------------	-------	-----------------	-----	--------------	-----	-------------	-----------	-------	------	
Chitosan acetate/PEO-NH\(_4\)NO\(_3\)	Solid	1.0 x 10\(^{-4}\)	–	–	–	–	Semi-cr	–	[234]		
PVA/Chitosan-NH\(_4\)NO\(_3\)-EC	Solid	1.6 x 10\(^{-3}\)	–	1.7	–	–	–	EDLC	[235]		
Chitosan-LiClO\(_4\)-SO\(_3\)-EC/PC-SiO\(_2\)	Solid	4.4 x 10\(^{-8}\)	–	–	0.26 eV	–	–	–	[236]		
Chitosan-PVA-NH\(_4\)I	Solid	1.8 x 10\(^{-5}\)	–	–	0.38 eV	–	Amorph	–	[237]		
Chitosan acetate-glycerol	Solid	1.1 x 10\(^{-5}\)	–	–	–	–	–	[238]			
Phthaloyl chitosan-NH\(_3\)SCN	Solid	2.4 x 10\(^{-3}\)	–	2.1	0.08 eV	–	Amorph	–	[239]		
Chitosan-[CBIm][Cl]-I\(_2\)	Solid	9.1 x 10\(^{-3}\)	–	–	–	–	–	[240]			
Hexanoyl chitosan-LiClO\(_4\)	Solid	4.2 x 10\(^{-7}\)	–	–	–	–	–	[241]			
Hexanoyl chitosan-LiCF\(_3\)SO\(_3\)	Solid	4.1 x 10\(^{-8}\)	–	–	0.29 eV	–	–	–	[242,243]		
Chitosan-PEO-NH\(_4\)NO\(_3\)	Solid	–	–	–	–	–	Semi-cr	–	[244]		
PEO/Chitosan-NH\(_4\)-I\(_2\)	Solid	1.2 x 10\(^{-3}\)	–	–	–	–	–	DSSC	[245]		
CMCh-CI-CH\(_2\)-COOH	Solid	2 x 10\(^{-5}\)	–	–	–	–	–	–	[246,247]		
Chitosan/PEO-LiClO\(_4\)	Solid	1.1 x 10\(^{-4}\)	–	–	0.12 eV	–	–	Super-capacitor	[248]		
Hexanoyl chitosan-LiCF\(_3\)SO\(_3\)-EC-Al\(_2\)O\(_3\)	Solid	–	–	–	–	–	–	–	[249]		
Chitosan-NH\(_4\)Br-glycerol	Solid	2.2 x 10\(^{-4}\)	–	–	0.20 eV	–	Amorph	–	[250]		
Chitosan-NH\(_4\)SCN-Al\(_2\)O\(_3\)	Solid	2.1 x 10\(^{-1}\)	–	–	–	–	Amorph	–	[251]		
Chitosan-PEO-NH\(_4\)NO\(_3\)-EC	Solid	2.1 x 10\(^{-3}\)	–	1.75	0.18 eV	–	Amorph	EDLC	[252]		
Methyl cellulose/chitosan-NH\(_4\)CF\(_3\)SO\(_3\)	Solid	5.0 x 10\(^{-6}\)	–	–	–	–	–	[253]			
CMCh-NH\(_4\)CF\(_3\)SO\(_3\)	Solid	8.9 x 10\(^{-8}\)	–	0.8	–	–	–	[254]			
Chitosan-[EmIm][C\(_6\)SO\(_3\)]-glycerol	Solid	7.8 x 10\(^{-3}\)	–	–	12.1 kJ/mol	–	–	–	[255]		
Chitosan-[EmIm][C\(_6\)SO\(_3\)]-glycerol	Solid	4.2 x 10\(^{-3}\)	–	–	14.3 kJ/mol	–	–	–	[256]		
Chitosan-[EmIm][C\(_6\)SO\(_4\)]-glycerol	Solid	1.5 x 10\(^{-4}\)	–	–	16.7 kJ/mol	–	–	–	[257]		
Hexanoyl chitosan-LiClO\(_4\)-TiO\(_2\)	Solid	3.1 x 10\(^{-4}\)	–	–	0.09 eV	–	–	–	[258]		
Hexanoyl chitosan-LiClO\(_4\)-SiO\(_2\)	Solid	2.0 x 10\(^{-4}\)	–	–	0.12 eV	–	–	–	[259]		
Chitosan-p-P(MMA-LiCF\(_3\)SO\(_3\))-EC	Solid	2.2 x 10\(^{-4}\)	–	–	–	–	–	[260]			
Chitosan-LiTFSI-succinonitrile	Solid	0.4 x 10\(^{-3}\)	–	4.7	–	–	Amorph	Battery	[261]		
CMCh/chitosan-NH\(_4\)Br	Solid	1.2 x 10\(^{-3}\)	–	–	–	–	–	–	[252]		
Hexanoyl chitosan/polyethylene-LiCF\(_3\)SO\(_3\)-TiO\(_2\)	Solid	2.8 x 10\(^{-4}\)	–	–	–	–	Amorph	–	[253,254]		
PVA/chitosan-NH\(_4\)Br	Solid	7.7 x 10\(^{-4}\)	–	1.6	0.15 eV	–	Amorph	–	[255]		
Corn starch/chitosan-NH\(_4\)I	Solid	3.0 x 10\(^{-4}\)	–	–	0.20 eV	–	Amorph	–	[256]		
Chitosan/gold-LiClO\(_4\)	Solid	7.2 x 10\(^{-3}\)	–	–	–	–	Amorph	–	[257]		
Phosphorylated chitosan-LiClO\(_4\)	Solid	1.4 x 10\(^{-3}\)	–	–	–	–	Amorph	[258]			
Chitosan-Oxalic acid	Solid	5.0 x 10\(^{-3}\)	–	–	0.61 eV	–	–	–	[259]		
N-Succinyl chitosan-LiClO\(_4\)	Solid	8.0 x 10\(^{-3}\)	–	–	–	–	Amorph	–	[260]		
Hexanoyl chitosan-LiClO\(_4\)-DMC	Solid	10\(^{-3}\)	–	–	0.06 eV	–	–	–	[261]		
Hexanoyl chitosan-LiClO\(_4\)-DMC-TiO\(_2\)	Solid	4.3 x 10\(^{-3}\)	–	–	–	–	–	–	[262]		
Lauryltrimethylammonium/PMMA-LiCF\(_3\)SO\(_3\)-EC	Solid	7.6 x 10\(^{-4}\)	–	–	–	–	–	–	[263]		
N-SB-Chitosan-NMPS-GO	Solid	8.9 x 10\(^{-2}\)	–	–	4.57 kJ/mol	–	–	–	[264]		
Methyl cellulose/chitosan-NH\(_4\)CF\(_3\)SO\(_3\)-[BmIm][TFSI]	Solid	4.0 x 10\(^{-4}\)	–	–	–	–	–	–	[265]		
Starch/chitosan-NH\(_4\)Cl-glycerol	Solid	5.1 x 10\(^{-3}\)	0.97	1.65	–	–	Amorph	Battery	[266]		
Chitosan acetate-LiCl	Gel	2.9 x 10\(^{-3}\)	–	–	0.20 eV	–	–	–	[267]		
Chitosan-[BmIm][OAc]	Solid	2.4 x 10\(^{-3}\)	0.75	3.4	0.29 eV	35	Amorph	–	[268]		
Hexanoyl chitosan-LiClO\(_4\)-TiO\(_2\)	Solid	3.0 x 10\(^{-4}\)	–	–	–	–	–	–	[269]		
PVA/chitosan-[BmIm][Br]	Solid	4.2 x 10\(^{-3}\)	0.65	–	–	–	–	–	[270]		
Chitosan/chitosan-[EmIm][Cl]	Solid	5.5 x 10\(^{-2}\)	0.70	–	–	–	–	–	[271]		
Polymer	Electrolyte System	State	σ (s/cm)	L-TN	Stability (V)	E_g	T_g (°C)	Structural	Device	Ref.	
---------	-------------------	-------	----------	-------	---------------	----------	-------------	-------------	--------	-----	
Chitosan–NaCl	SO₄–Al₂O₃	Solid	–	–	–	–	–	Amorph	–	[279]	
CMch–DTAB	Solid	1.9 × 10^{−4}	–	–	–	–	–	–	–	[280]	
Chitosan–PEO–NH₄Cl	Solid	3.7 × 10^{−4}	0.85	–	–	–	Amorph	DSSC	[281]		
Chitosan–LiClO₄–ZnO₃	Solid	3.6 × 10^{−4}	0.55	–	–	–	Amorph	–	[282]		
Chitosan–perchloric acid	Solid	5.9 × 10^{−4}	–	–	–	–	–	–	[283]		
N-phthaloyl chitosan–TPA–Li–EC	Solid	5.5 × 10^{−3}	–	–	0.11 eV	–	Amorph	DSSC	[284]		
Chitosan–oniacid	Solid	4.1 × 10^{−5}	–	–	–	–	–	–	[285]		
Sulfonated chitosan–sulfonated GO	Solid	7.2 × 10^{−4}	–	–	–	–	–	–	[286]		
Chitosan–LiClO₄–Al₂O₃	Solid	10^{−3}	–	–	–	–	–	Amorph	–	[287]	
Chitosan–CeCl₃–glycerol	Solid	1.7 × 10^{−3}	–	–	–	–	–	Amorph	–	[288]	
Chitosan–EuCl₃–glycerol	Solid	1.5 × 10^{−3}	–	–	–	–	–	Amorph	–	[289]	
Chitosan–NaClO₄	Solid	2.4 × 10^{−4}	–	–	0.3 eV	–	Amorph	–	[290]		
Chitosan–p-benzoquinone–Cl₂	Solid	2.4 × 10^{−3}	–	–	–	–	–	–	[291]		
Chitosan–MgCl₂–[EmIm][CF₃SO₃]	Solid	3.6 × 10^{−4}	0.98	4.15	0.22 eV	–	–	–	[292]		
Hexamethylene diamine–chitosan–NaCl	Solid	1.8 × 10^{−4}	–	–	–	–	–	24	Amorph	–	[293]
Lauric chitosan–NaCl	Solid	1.1 × 10^{−4}	–	–	–	–	–	10	Amorph	–	[294]
Chitosan–AgClO₄–Al₂O₃	Solid	–	–	–	–	–	–	–	–	[286]	
Chitosan–NaClO₄–glycerol	Solid	10^{−3}	–	–	–	–	–	Amorph	ECD	[295]	
Chitosan–[EmIm][Eu(SCN)₄]	Solid	1.3 × 10^{−3}	–	–	–	–	–	Semi-cr	–	[296]	
Chitosan–[EmIm][Eu(SCN)₄]	Solid	1.6 × 10^{−3}	–	4.0	–	–	–	Amorph	–	[297,298]	
Agar–Acetoic acid	Solid	1.3 × 10^{−3}	–	–	33.5 kJ/mol	–	Amorph	–	[11]		
Agar–Li₂–TiO₂	Gel	5.1 × 10^{−4}	–	–	–	–	–	DSSC	–	[299]	
Agar–Li₂–TiO₂	Gel	4.0 × 10^{−4}	–	–	–	–	–	DSSC	–	[300]	
Agar–Et[Cl₂–glycerol	Solid	1.6 × 10^{−3}	–	–	–	–	–	Amorph	ECD	–	[301]
Agar–LiClO₄–glycerol	Gel	6.5 × 10^{−3}	–	–	–	–	–	Amorph	ECD	–	[26]
Agar–[EmIm][OTf]–glycerol	–	–	–	–	–	–	–	–	–	[285]	
Agar–[EmIm][OTf]–glycerol	Solid	2.4 × 10^{−3}	–	–	24.3 kJ/mol	–	Amorph	ECD	–	[302]	
Agar–[Cl][OTf]–glycerol	–	–	–	–	–	–	–	Amorph	–	[284]	
Agar–Li₂–NO₂	Gel	–	–	–	–	–	–	DSSC	–	[303]	
Agar–Li₂–FeCl₃–PEG	Gel	2.9 × 10^{−3}	–	–	–	–	–	DSSC	–	[304]	
Agar–Li₂–FeCl₃–SDS	Gel	–	–	–	–	–	–	–	–	[305]	
Agar–Li₂–Fe₂–PVP	Gel	–	–	–	–	–	–	–	–	[283]	
Agar–Li₂–Fe₂–Al₂O₃	Gel	3.0 × 10^{−3}	–	–	–	–	–	–	–	–	[284]
Bacto agar–NaF–I₃	Gel	1.2 × 10^{−3}	–	2.0	–	–	–	Amorph	–	[306]	
Agar–NaClO₄–glycerol	Solid	1.0 × 10^{−3}	–	–	–	–	–	Amorph	ECD	–	[307]
Agar–Li₂–TiO₂	Gel	2.7 × 10^{−3}	–	–	–	–	–	DSSC	–	[308]	
Agar–Li₂–Co₃O₄	Gel	4.4 × 10^{−3}	–	–	–	–	–	–	–	[285]	
Agar–Li₂–NO₂	Solid	3.5 × 10^{−3}	–	–	–	–	–	Amorph	–	[65]	
Agar–LiClO₄–glycerol	Solid	6.5 × 10^{−4}	–	–	0.1 eV	–	Amorph	–	[25]		
Agar–LiClO₄–glycerol	Solid	9.1 × 10^{−4}	–	–	0.1 eV	–	Amorph	–	[282]		
Agar–Acetic acid–glycerol	Solid	3.5 × 10^{−4}	–	–	0.1 eV	–	Amorph	–	[287]		
Agar–Lactic acid–glycerol	Solid	2.2 × 10^{−3}	–	–	0.1 eV	–	Amorph	–	[287]		
Agar–NH₄NO₃	Solid	6.6 × 10^{−3}	0.99	–	0.12 eV	–	Amorph	Fuel cell	–	[309]	
Agar–Na[S₂]–glycerol	Gel	1.8 × 10^{−3}	–	–	–	–	–	DSSC	–	[310]	
Agar–NH₄SCN	Solid	1.0 × 10^{−3}	0.97	–	0.25 eV	55	Amorph	–	[311]		
Agar–NH₄I	Solid	1.1 × 10^{−3}	–	–	0.43 eV	–	Amorph	–	[312]		
Polymer	Electrolyte System	State	Electrochemical Properties	Physical Properties	Device	Ref.					
---------	--------------------	-------	---------------------------	---------------------	--------	------					
			σ (s/cm)	L-TN	Stability (V)	I_T	T_g (°C)	Structural			
Agar-KI-MPIL	Gel	1.5 × 10^{-3}	–	–	–	–	–	Amorph	DSSC	[312]	
Carboxymethyl k-carrageenan-acetic acid	Solid	2.0 × 10^{-4}	–	–	–	–	–	–	–	[29]	
κ-carrageenan-[BmIm][Cl]	Solid	2.4 × 10^{-3}	–	–	–	–	Amorph	–	–	[314]	
Carboxymethyl k-carrageenan-acetic acid	Solid	4.9 × 10^{-4}	–	–	–	–	–	Amorph	–	[313]	
Carboxymethyl κ-carrageenan/CMC-NH₂	Solid	2.4 × 10^{-4}	0.99	2.0	0.01 eV	–	–	DSSC	–	[316]	
Carboxymethyl κ-carrageenan-TBAI-I₂·TiO₂	–	–	–	–	–	–	–	–	–	[317]	
Pectin–[Nικ-carrageenan	Solid	–	–	–	–	–	–	–	–	[30]	
Carboxymethyl κ-carrageenan–CMC-acetic acid	Solid	3.3 × 10^{-4}	–	2.75	–	–	–	DSSC	–	[318]	
Carboxymethyl κ-carrageenan–LiNO₂	Solid	5.9 × 10^{-3}	–	3.1	0.18 eV	–	Amorph	Fuel cell	[319]		
Carboxymethyl κ-carrageenan–LiClO₄	Solid	5.5 × 10^{-3}	–	3.0	0.28 eV	–	Amorph	–	[320]		
Carboxymethyl κ-carrageenan/CMC–LiI–I₂	Solid	3.9 × 10^{-3}	–	–	0.01 eV	–	–	DSSC	–	[318]	
κ-carrageenan–NH₃Br	Solid	1.1 × 10^{-3}	–	2.1	0.18 eV	Amorph	–	–	[321]		
k-carrageenan/PEDOT–PANI	Gel	–	–	–	–	–	Super-capacitor	[322]			
κ-carrageenan–NH₃NO₃	Solid	1.5 × 10^{-3}	0.95	2.46	0.14 eV	64	–	–	[323]		
Pectin	Pectin–LiClO₄	Solid	4.7 × 10^{-4}	–	–	–	–	Amorph	–	[33]	
Pectin–HCl-glutaraldehyde	Solid	2.5 × 10^{-2}	–	–	–	–	–	Amorph	–	[32]	
Pectin–KI–glycerol	Solid	1.3 × 10^{-3}	–	–	–	–	–	Amorph	–	[323]	
Pectin–KI-Br	Solid	5.4 × 10^{-4}	–	–	–	–	Amorph	–	[324]		
Pectin–NH₃Cl	Solid	4.5 × 10^{-4}	–	–	–	–	–	Amorph	–	[325]	
Pectin–NH₃Br	Solid	1.1 × 10^{-3}	–	–	–	–	Amorph	–	–	[326]	
Pectin–[Ni(1,10-phen)][NTf₂]-glycerol	Solid	1.4 × 10^{-4}	–	–	–	–	–	Amorph	–	[327]	
Guar gum	Guar gum–LiClO₄–glycerol	Solid	2.2 × 10^{-3}	–	–	0.18 eV	–	–	–	[37]	
Carboxymethyl k-carrageenan–LiClO₄–glycerol	Gel	10^{-2}	–	–	–	–	–	–	–	[37]	
Carboxymethyl k-carrageenan–LiClO₄–glycerol	Gel	10^{-4}	–	–	–	–	–	–	–	[37]	
Gelatin–glycerol	Gel	1.8 × 10^{-2}	–	–	–	–	–	Super-capacitor	–	[328]	
Gelatin–LiClO₄–glycerol	Solid	4.5 × 10^{-3}	–	–	32.6 kJ/mol	–	–	–	[42]		
Gelatin–LiClO₄–glycerol	Solid	10^{-4}	–	–	0.35 eV	–	–	–	[327]		
Gelatin–LiBF₄–glycerol	Gel	2.3 × 10^{-4}	–	–	–	–	–	–	–	[41]	
Gelatin–LiClO₄–glycerol	Gel	3.2 × 10^{-3}	–	–	–	–	–	–	–	[328]	
Gelatin–LiClO₄–glycerol	Gel	5.4 × 10^{-3}	–	–	–	–	–	–	–	[328]	
Gelatin–LiClO₄–glycerol	Gel	8.7 × 10^{-4}	–	–	–	–	–	–	–	[328]	
Gelatin–LiClO₄–EC/PC	Solid	2.0 × 10^{-3}	–	–	–	–	–	–	–	[328]	
Gelatin–LiClO₄–EC	Solid	–	–	–	–	–	–	–	–	[328]	
Poly(acrylic acid-g-gelatin)	Gel	1.4 × 10^{-2}	–	–	10.3 kJ/mol	–	–	DSSC	–	[330]	
Gelatin–Acetic acid-g-glycerol	Gel	2 × 10^{-5}	–	–	0.22 eV	–	–	–	–	[331]	
Gelatin–LiBF₄–glycerol	Gel	1.5 × 10^{-4}	–	–	43.1 kJ/mol	Amorph	–	–	–	[332]	
Gelatin–LiBF₄–glycerol	Solid	–	–	–	–	–	–	Amorph	ECD	[333]	
Gelatin–LiBF₄–glycerol	Solid	–	–	–	23 kJ/mol	–	–	–	–	[334]	
Gelatin–LiClO₄–glycerol	Solid	1.2 × 10^{-4}	–	–	16.7 kJ/mol	–	Amorph	–	–	[335]	
Gelatin–LiClO₄–glycerol	Solid	5.5 × 10^{-3}	–	–	8 kJ/mol	–	–	ECD	–	[336]	
Gelatin–LiClO₄–glycerol	Solid	10^{-3}	–	–	–	–	–	–	–	[337,338]	
Gelatin–Glycerol	Sol	9.1 × 10^{-3}	–	–	–	–	–	Amorph	–	[339]	
Gelatin–Zr(ClF₅SO₂)₉	Solid	3.1 × 10^{-3}	–	–	–	–	Amorph	–	–	[340]	
Gelatin–LiClO₄–glycerol	Solid	1.3 × 10^{-4}	–	–	9.37 kJ/mol	–	–	Amorph	–	[341]	
Polymer	Electrolyte System	State	σ (cΩcm)	L-TN	Stability (V)	E_{g}	T_{s} (°C)	Structural	Device	Ref.	
---------	-------------------	-------	-----------	------	--------------	---------	-------------	------------	--------	------	
Gelatin-LiC1-glycerol	Solid	2.0×10^{-4}	–	–	6.31 kJ/mol	–	–	Amorph	–	[39]	
Gelatin-Mg(CF$_3$SO$_2$)$_2$-glycerol	Solid	3.8×10^{-10}	–	–	49.0 kJ/mol	–	–	Amorph	–	[44]	
Gelatin/Au-LiF	Gel	2.2×10^{-14}	–	–	–	77	–	DSSC	–	[359]	
Gelatin-[EmIm][N(CN)$_2$]-glycerol	Solid	2.4×10^{-3}	–	–	–	–	–	Amorph	ECD	[352]	
Gelatin-NaCl	Solid	8.5×10^{-2}	–	–	–	–	–	–	[110]		
NR/PO-EO-LiBF$_4$-POEO	Solid	10^{-6}	–	–	–	–	–	–	[44]		
ENR-25-LiClF$_3$-SO$_3$-EC	Solid	2.9×10^{-4}	–	–	–	–	–	–	[344]		
ENR-50-LiClF$_3$-SO$_3$-EC	Solid	1.3×10^{-4}	–	–	–	–	–	–	[344]		
Mg-49-LiClF$_3$-SO$_3$-EC	Solid	4.3×10^{-4}	–	–	–	–	–	–	[344]		
Mg-49-LiClF$_3$-SO$_3$-EC	Solid	10^{-4}	–	–	–	–	–	–	[344]		
Mg-30-LiClF$_3$-SO$_3$-EC = Al$_2$SiO$_3$	Solid	–	–	–	–	–	–	–	[346]		
PVC/ENR-50-LiClF$_3$SO$_3$	Solid	3.6×10^{-5}	–	–	–	–	–	–	[347]		
PMMA/ENR-50-LiClF$_3$SO$_3$	Solid	5.1×10^{-5}	–	–	–	–	–	–	[347]		
Mg-30-LiClF$_3$SO$_3$	Solid	8.4×10^{-4}	4.3	–	–	–	–	–	[348]		
Mg-30-LiClF$_3$SO$_3$-EC	Gel	–	–	–	–	–	–	–	[348]		
PMMA/ENR-50-LiClF$_3$SO$_3$-EC	–	–	–	–	–	–	–	–	[349]		
Mg-49-NH$_4$CF$_3$SO$_3$-EC	Gel	3.3×10^{-2}	–	–	–	–	Battery	–	[350]		
Mg-49-LiBF$_4$	Solid	2.3×10^{-2}	–	–	–	–	–	Amorph	–	[350]	
Mg-49-LiClO$_4$	Solid	4.0×10^{-3}	–	–	–	–	–	Amorph	–	[351]	
Mg-49-LiClO$_4$-EC-TiO$_2$	Solid	1.1×10^{-3}	–	–	–	–	–	–	[352]		
Mg-49-NH$_4$CF$_3$SO$_3$-SO$_3$	Gel	7.6×10^{-3}	–	–	–	–	–	–	[353]		
PMMA/Mg-49-LiBF$_4$	Solid	8.3×10^{-5}	–	–	–	–	–	Amorph	–	[354]	
Mg-49-NH$_4$CF$_3$SO$_3$-EC	Gel	2.9×10^{-4}	–	–	–	–	–	Amorph	–	[355]	
Mg-30-NH$_4$CF$_3$SO$_3$-EC	Solid	10^{-4}	–	–	–	–	–	Amorph	–	[356]	
PVC/ENR-50-LiClO$_3$	Solid	2.3×10^{-4}	–	–	–	–	–	Amorph	–	[357]	
ENR-50-Li$_3$N	Solid	3.5×10^{-5}	–	–	–	–	–	Amorph	–	[358]	
Mg-30-CeIbolute-LiClF$_3$SO$_3$	Solid	5.3×10^{-7}	–	–	–	–	–	Amorph	–	[359]	
Mg-30-LiClF$_3$SO$_3$-EC	Gel	9.0×10^{-3}	–	4.2	0.14 eV	–77.2	–	Battery	–	[360]	
PVDF-HFP/Mg-49-LiClF$_3$SO$_3$	Solid	2.0×10^{-5}	–	3.0	0.14 eV	–	–	Semi-cr	–	[361]	
ENR-50-LiN(SO$_2$CF$_2$)$_2$-EC	Solid	2.6×10^{-6}	–	–	–	–	–	–	[362]		
PVDF/Mg-49-NH$_4$CF$_3$SO$_3$	Solid	6.3×10^{-5}	–	4.0	–	–	–	Semi-cr	–	[363]	
Mg-49-CMC-LiClF$_3$SO$_3$	Solid	3.3×10^{-7}	–	–	–	–	–	–	[364]		
Mg-49-LiClF$_3$SO$_3$-ZrO$_2$	Solid	1.2×10^{-5}	–	–	0.10 eV	–	–	Battery	[357]		
Mg-30-LiClF$_3$SO$_3$	Solid	5.6×10^{-3}	–	–	–	–	–	–	[368]		
ENR-50-LiClO$_4$	Solid	10^{-5}	–	–	–	–	–	–	[369]		
ENR-50-LiClO$_4$	Solid	1.3×10^{-5}	–	–	–	–	–	–	[370]		

Table 3. Cont.
Polymer	Electrolyte System	State	Electrochemical Properties	Physical Properties	Device	Ref.				
Vegetable oil-based polyurethane	Palm-based PU–LiCF_3SO_3	Solid	σ (s/cm)	I-TN	Stability (V)	E_a (V)	T_g (°C)	Structural	Device	Ref.
	Palm-based PU–LiI–I–EC	Solid	1.6 × 10^{-3}	–	–	–	–	Amorph	–	[8]
	Castor oil-based PU–LiI	Solid	7.6 × 10^{-4}	–	–	0.11 eV	–	Amorph	DSSC	[51]
	Castor oil-based PU–NaI	Solid	1.4 × 10^{-5}	0.99	2.0	0.13 eV	–27.5	–	–	[52]
	Jatropha oil-based PU–LiClO_4–EC	Solid	4.5 × 10^{-7}	0.98	1.8	0.22 eV	–26.1	–	–	[50]
Bacterial cellulose	Vegetable oil-based polyurethane	Solid	1.3 × 10^{-4}	0.85	4.8	2.8 meV	–	Amorph	–	[50]
Bacterial cellulose–Nafion	Solid	5.6 × 10^{-7}	–	–	–	–	–	–	Fuel cell	[55]
Bacterial cellulose/PSSA–HCl	Solid	10^{-3}	–	–	–	–	–	–	Fuel cell	[56]
Gellan and Xanthan gum	Gellan–LiCF_3SO_3	Solid	5.4 × 10^{-4}	–	5.4	14.6 kJ/mol	–	Semi-cr	–	[58]
	Gellan–LiI–Glycerol	Solid	1.5 × 10^{-3}	–	–	2.4 kJ/mol	–	–	–	[59]
	Gellan–[N_{1112}(OH)]_{2}[NTf_2]–Er(CF_3SO_3)_3	Solid	5.2 × 10^{-4}	–	3.5	–	–	Semi-cr	ECD	[377]
	Gellan–Kl–I_2	Solid	2.5 × 10^{-2}	–	–	0.24 eV	–	Amorph	DSSC	[374]
	Gellan–OH_3PO_4	Solid	5.1 × 10^{-3}	–	–	0.14 meV	–	–	–	–
	Gellan–HCl	Gel	1.5 × 10^{-3}	–	–	0.17 meV	–	–	–	–
	Xanthan–PMII–I–TBP–GSCN	Gel	3.7 × 10^{-4}	–	–	0.19 meV	–	–	–	–
	Xanthan–LiClO_4–glycerol	Gel	2.6 × 10^{-3}	–	–	–	–	–	DSSC	[61]
	Xanthan–LiClO_4–glycerol	Gel	2.7 × 10^{-2}	–	–	–	–	–	Super-capacitor	[23]

(I-TN: Ionic transference number; E_a: Activation energy, T_g: Glass transition temperature; Amorph: Amorphous; Semi-cr: Semi-crystalline).
3.5. Application of Bio-Based Polymer Electrolytes

Bio-based polymer electrolytes have been tested in various electrochemical devices. This review focuses on the use of these electrolytes in batteries and DSSCs applications. Batteries have been widely used as energy supplies for portable devices, wearable electronics, and electric vehicles. Conventional batteries are made up of a cathode and anode, a separator to prevent physical contact between the two electrodes, and an electrolyte system. The most common anode materials used in batteries are titanium oxide, graphite, alloys, metal oxides, pure metal foils, etc. Meanwhile, the cathode materials used are vanadium oxide, molybdenum oxide, manganese oxide, silicates, LiCoO$_2$, LiFePO$_4$, LiMn$_2$O$_4$, etc. [376]. The electrolyte used in batteries’ construction is typically organic liquid electrolytes. The electrolyte is one of the key components that determine the battery’s performance which is related to the charging/discharging capacity, cycling performance, and current density [48]. In principle, when a battery is being charged, the ion moves from the cathode to the anode through the electrolyte, and during discharge, the ion will move back from the anode to the cathode. As discussed in the previous section, liquid electrolytes have a fundamental limitation for long-term operation due to their safety issues on evaporation and leakage, environmental concern, and restricted battery design. Hence, the best path is by replacing the conventional liquid electrolyte with all solid-state polymer electrolytes. Based on the literature, several studies on bio-based polymer electrolytes for lithium-ion batteries have been documented. The polymer systems include cellulose [146,155,160,161,165,169,177,181,182], chitosan [200,257], and natural rubber [360,367]. Despite the excellent performance, lithium-ion batteries rely on ultimately scarce and expensive resources. A sodium-ion battery is rather an interesting alternative as it is available abundantly at a very cheap cost. However, the use of bio-based polymer electrolytes in sodium-ion batteries is still in the early stage compared to lithium-ion batteries. A study on cellulose-based electrolyte on sodium-ion batteries was conducted by Colò and co-workers. The system shows good thermal stability and a wide electrochemical stability window [162]. Proton battery is another alternative to the lithium-ion battery that has been progressively studied. The electrochemical window for a proton battery is generally low, within the range of 1 to 2 V. Despite that, the availability of low-cost proton conductors has made proton batteries a good alternative. Some studies on bio-based polymer electrolytes for proton batteries have been reported on cellulose [129,133,179], chitosan [206,229,275], and natural rubber-based systems [350].

DSSC is the third generation of solar cells invented in 1991 by a team led by Gratzel [377]. Similarly to the previous generation of solar cells, DSSC converts sunlight energy directly into electrical energy through photovoltaic effects. DSSCs are interesting in regard to their remarkable advantages, such as low-cost production, robustness, colorful appearance, and possible flexibility. A typical DSSC consists of four components, which are a photoanode, a dye sensitizer, an electrolyte, and a counter electrode. The photoanode consists of a dye-coated nanocrystalline semiconductor oxide on a conducting substrate. It acts as a roadway for the electrons coursing through the cell. The counter electrode is usually a film of graphite or platinum. An electrolyte containing a redox couple fills the gap between the electrodes. The redox mediator is usually an organic solvent containing a redox system, such as an iodide/triiodide (I$^-$/I$^3^-$) couple [378,379]. The use of a bio-based polymer electrolyte in place of the conventional organic solvent electrolyte could solve the leakage, corrosion, and stability issues often caused by the liquid-type electrolyte. Based on the literature, the I$^-$/I$^3^-$ is the most efficient and widely used redox couple for bio-based polymer electrolyte in DSSC. Various iodide salts have been tested, such as LiI, NaI, KI, NH$_4$I, etc. Some past study of bio-based polymer on DSSC is tabulated in Table 4. By far, the highest power conversion efficiency was achieved for cellulose-based electrolyte at 7.55% [139]. Despite this achievement, there are still some gaps that hinder the commercialization of bio-based polymer electrolytes in commercial application. Challenges that need to be addressed include the stability performance of the electrolyte overtime usage and the suitability of said materials in the selected application.
Table 4. The photovoltaic performance of DSSC observed in bio-based polymers–salt matrix.

Polymer	Electrolyte System	State	J_{SC} (mA/cm²)	V_{OC} (V)	FF	η (%)	Ref.
Starch	Rice starch–Li₂–MPSI–TiO₂	Solid	3.6 × 10⁻⁴	0.49	0.45	0.75	[85]
	Rice starch–Li₂	Gel	4.7 × 10⁻⁵	--	--	--	
	Rice starch–NH₃I	Solid	1.4 × 10⁻⁴	--	--	--	
	Rice starch–NaI	Solid	4.5 × 10⁻⁴	2.40	0.48	0.67	0.78
	Rice starch–NaI–MPSI	Solid	1.2 × 10⁻³	4.78	0.57	0.76	2.09
Cellulose	Cellulose + acrylic acid–[Bmim][B][I]	Gel	7.3 × 10⁻³	12.65	0.71	0.61	5.51
	CN–HPC–Li₂–MHSII	Gel	2.5 × 10⁻³	14.40	0.76	0.70	7.35
	PEO/CMC–NaI–Li₂–MPSI	Gel	10.03	0.75	0.69	5.18	[147]
	MFC/BEAMA/PEGMA–NaI–I	Gel	0.52	0.76	0.61	7.03	[154]
Chitosan	Chitosan/PEO–NH₃I	Solid	3.7 × 10⁻⁶	2.71	0.58	0.50	0.78
	N-phthaloylchitosan–TPAI–I–EC	Solid	5.5 × 10⁻³	12.72	0.60	0.66	5.00
Agar	Agar–Li₂–TiO₂	Gel	10.96	0.54	0.57	381	
	Agar–NH₄I–Glycerol	Gel	0.007	0.29	--	--	
	Agar–Li₂–NiO	Gel	--	--	--	--	
	Agar–Li₂–MPSI	Gel	11.71	0.70	0.65	5.45	
	Agar–Agar–PC–GuSCN–NMBI–I–I	Gel	11.53	0.70	0.62	4.97	
	Agar–Agar–PC–GuSCN–NMBI–I–I	Gel	11.84	0.70	0.60	4.96	
	Agar–Agar–PC–GuSCN–NMBI–I–I	Gel	3.18	0.66	0.62	1.29	
	Agar–Agar–PC–GuSCN–NMBI–I–I	Gel	3.00	0.67	0.59	1.19	
	Agar–Agar–PC–GuSCN–NMBI–I–I	Gel	5.00	0.70	0.53	1.83	
	Agar–Agar–PC–GuSCN–NMBI–I–I	Gel	3.27	0.67	0.24	0.54	
	Agar–Agar–PC–GuSCN–NMBI–I–I	Gel	5.28	0.61	0.55	1.71	
	Agar–Agar–PC–GuSCN–NMBI–I–I	Gel	7.24	0.63	0.46	2.11	
	Agar–Agar–PC–GuSCN–NMBI–I–I	Gel	1.83	0.39	0.70	0.56	
	Agar–Agar–PC–GuSCN–NMBI–I–I	Gel	1.39	0.39	0.70	0.56	
	Agar–Agar–PC–GuSCN–NMBI–I–I	Gel	3.95	0.40	0.49	0.57	0.11
	Carboxymethyl x-carrageenan/CMC–NH₃I	Solid	2.4 × 10⁻³	0.49	0.60	0.64	0.13
	x-carrageenan–TBAI–I–Fe₂O₃	Solid	1.83	0.75	0.55	0.76	
	x-carrageenan–TBAI–I–Fe₂O₃	Solid	0.36	0.58	0.20	0.37	
	x-carrageenan–TBAI–I–halloysite clay	Solid	1.39	0.74	0.50	0.51	
	Carboxymethyl x-carrageenan/CMC–Li₂	Solid	3.9 × 10⁻³	0.49	0.49	0.57	
Gelatine	Poly(acrylic acid–gelatine)/poly(acryl gelatine)	Gel	1.4 × 10⁻⁵	2.76	0.66	0.70	1.28
	Gelatine/Au–Li₂	Gel	2.2 × 10⁻²	4.94	0.65	0.60	1.97
Vegetable	Palm–Li–I₂–EC	Solid	7.6 × 10⁻⁴	0.06	0.14	--	
oil-based polymers	Castor oil–Li–NaI	Solid	4.3 × 10⁻⁷	1.30	0.49	0.46	0.80
	Palm–Li–MPSI	Gel	9.1 × 10⁻⁴	3.30	0.71	0.36	1.00
Gellan and	Gellan–KI–I₂	Solid	2.5 × 10⁻²	3.20	0.57	0.90	1.47
Xanthan gum	Xanthan–PMII–I–TBP–GSCN	Gel	--	--	--	--	

(σ: Conductivity; J_{SC}: Short-circuit current density; V_{OC}: Open circuit potential; FF: Fill factor; η: Efficiency)
4. Summary and Outlook

Based on the literature available to date, a variety of bio-polymers have been explored by researchers, and the number of studies keeps on expanding, particularly over the last few decades. Similar to conventional petrochemical-based polymer electrolytes, bio-based polymers also suffer from low ionic conductivity when compared to liquid electrolytes. In fact, many studies have attempted to address this limitation. Researchers have suggested a number of ways to tackle this shortcoming by introducing fillers, plasticizers, and polymer blending methods. Nevertheless, the literature is still lacking in terms of the evaluation of the shelf life performance of bio-based electrolytes. This is another point of view that demands further investigation. As for applications, some of the bio-based polymer electrolytes have been tested in dye-sensitized solar cells, super-capacitors, and batteries. Despite the various types of bio-based materials that have been investigated as polymer electrolytes, they have yet to attain the status of commercial viability. Hence, extensive studies are still required to develop a system to achieve a level of performance that is comparable to the conventional liquid electrolytes. One interesting approach is to use computational and molecular modeling to understand the fundamental aspects of the materials. Such tools will provide important information, especially on the conduction mechanism, and can be used to assist and support the interpretation of experiments. Future work in this area will be very interesting as it will provide an in-depth understanding of the theoretical principle of the polymer electrolyte. From the preceding review, proper designs based on carefully selected materials and methods are expected to improve the bio-based polymer electrolyte performance.

Author Contributions: Conceptualization, M.M.A., M.R., L.C.A., M.S.S., A.A., and S.N.A.M.J., writing—review and editing, M.M.A., M.R., S.C.A., and M.S.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the MyBrain Scholarship, MOHE and the UPM Grant Putra-IPS (9493600).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

Abbreviation	Description
AEII	1-allyl-3-ethylimidadolium iodide
AgNO₃	Silver nitrate
Al₂O₃	Aluminium oxide
Al₂SiO₅	Aluminium silicate
[AmIm][Cl]	1-allyl-3-methylimidazolium chloride
APII	1-allyl-3-propylimidazolium iodide
BaTiO₃	Barium titanate
BDG	Diethylene glycol dibutylether
BEMA	Bisphenol A ethoxylate dimethacrylate
BMATFSI	Butyl-trimethyl ammonium bis(trifluoromethylsulfonyl)imide
[BmIm][Cl]	1-butyl-3-methylimidazolium chloride
[BmIm][I]	1-butyl-3-methylimidazolium iodide
[BmIm][OAc]	1-butyl-3-methylimidazoliumacetate
[BmIm][PF₆]	1-butyl-3-methylimidazolium hexafluorophosphate
[BmIm][TF]	1-butyl-3-methylimidazolium trifluoromethanesulfonate
[BmIm][TFSI]	1-butyl-3-methylimidazolium trifluoromethanesulfonyl imide
Bu₄NBF₄	Tetrabutylammonium tetrafluoroborat
Ce(CF₃SO₂)₃	Cerium triflate
[Ch][OAc]	Trimethyl-ethanolammonium acetate
CH₃COONH₄	Ammonium acetate
CMC	Carboxymethyl cellulose
CMCh	Carboxymethyl chitosan
CNC	Cellulose nanocrystals
CN-HPC	Cyanoethylated hydroxypropyl cellulose
Co$_3$O$_4$ Cobalt oxide	
DAII 1-3-diallylimidazolium iodide	
DES Deep eutectic solvent	
DMC Dimethyl carbonate	
DPEO Poly(ethylene oxide) diisocyanate	
DSSC Dye sensitized solar cell	
DTAB Dodecyltrimethyl ammonium bromide	
EC Ethylene carbonate	
ECD Electrochromic device	
EDLC Electrical double layer capacitor	
EMC Ethyl methyl carbonate	
[EmIm][Br] 1-butyl-3-methylimidazolium bromide	
[EmIm][Cl] 1-ethyl-3-methylimidazolium chloride	
[EmIm][CF$_3$SO$_3$] 2-ethyl-3-methylimidazolium trifluoromethanesulfonate	
[EmIm][C$_2$SO$_3$] 1-ethyl-3-methylimidazolium methylsulfonate	
[EmIm][C$_2$SO$_3$] 1-ethyl-3-methylimidazolium ethylsulfonate	
[EmIm][C$_3$SO$_3$] 1-ethyl-3-methylimidazolium butylsulfonate	
[EmIm][C$_4$SO$_3$] 1-ethyl-3-methylimidazolium ethylsulfate	
[EmIm][Eu(SCN)$_4$] 1-ethyl-3-methylimidazolium europium(III) tetra-thiocyanate	
[EmIm][OAc] 1-ethyl-3-methylimidazolium acetate	
[EmIm][N(CN)$_2$] 1-ethyl-3-methylimidazolium dicyanamide	
[EmIm][NO$_3$] 1-ethyl-3-methylimidazolium nitrate	
[EmIm][SCN] 1-ethyl-3-methylimidazolium thiocyanate	
[EmIm][TFSI] 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfon)imide	
ENR-25 25% epoxidized natural rubber	
ENR-50 50% epoxidized natural rubber	
EO-EPI Ethylene oxide-epichlorohydrin	
Er(CF$_3$SO$_3$)$_3$ Erbium triflate	
ES Ethylene sulphite	
EtC Ethyl carbonate	
[Eu(pic)$_3$] Europium picrate	
Eu(CF$_3$SO$_3$)$_3$ Europium triflate	
Fe$_2$O$_3$ Iron (III) oxide	
Fe$_3$O$_4$ Iron (II,III) oxide	
GBL γ-butyrolactone	
GO Graphene oxide	
GSCN Guanidinium thiocyanate	
H$_2$SO$_4$ Sulphuric acid	
HCF Hexacyanoferrate	
HCl Hydrochloric acid	
HEC Hydroxyethyl cellulose	
HPC Hydroxypropyl cellulose	
HPMC Hydroxypropyl methyl cellulose	
I$_2$ Iodine	
KCl Potassium chloride	
KI Potassium iodide	
LENR-50 Liquid 50% epoxidized natural rubber	
Li$_2$B$_4$O$_7$ Lithium tetraborate	
LiBF$_4$ Lithium tetrafluoroborate	
LiBOB Lithium bis(oxalato) borate	
LiBs lithium benzenesulfonate	
LiCF$_3$SO$_3$ Lithium trifluoromethanesulfonate	
LiCl Lithium chloride	
LiClO$_4$ Lithium perchlorate	
LiI	Lithium iodide
---	---
LiN(CF₃SO₂)₂	Lithium trifluoromethane sulfonimide/lithium imide
LiNO₃	Lithium nitrate
LiOAc	Lithium acetate
LiPF₆	Lithium hexafluorophosphate
LiTFSI	Lithium bis(trifluoromethane sulfonimide)
MFC	Microfibrillated cellulose
MG-30	30% methyl methacrylate grafted natural rubber
MG-49	49% methyl methacrylate grafted natural rubber
Mg(C₂H₃O₂)₂	Magnesium acetate
Mg(CF₃SO₃)₂	Magnesium triflate
MHII	1-methyl-3-hexylimidazolium iodide
MPII	1-methyl-3-propylimidazolium iodide
[N₁₁₁₂(OH)]₂[NTf₂]	N,N,N-trimethyl-N-(2-hydroxyethyl)ammonium bis(trifluoromethylsulfonyl)imide
NaCl	Sodium chloride
NaClO₄	Sodium perchlorate
NADES	Ternary natural deep eutectic solvent (NADES)
NaI	Sodium iodide
Na₂S/S	Poly sulphide solution
NH₄BF₄	Ammonium tetrafluoroborate
NH₄Br	Ammonium bromide
NH₄CF₃SO₃	Ammonium triflate
NH₄Cl	Ammonium chloride
(NH₄)₂CO₃	Ammonium carbonate
NH₄I	Ammonium iodide
NH₄NO₃	Ammonium nitrate
NH₄SCN	Ammonium thiocyanate
NiO	Nickel oxide
NMBI	N-methylbenzimidazole
NMPS	N,N-dimethylene phosphonic acid propylsilane
NR	Natural rubber
NSB-Chitosan	N-α-sulphonic acid benzyl chitosan
NWF	Nonwoven fabric
α-H₃PO₄	Ortho-phosphoric acid
PMMA	poly(methyl methacrylate)
PAN	Poly(acrylonitrile)
PANI	Polyaniline
pAPS	Poly(aminopropyltriethoxysilane)
PC	Propylene carbonate
PE	Polyethylene
PEDOT	Poly(3,4-ethylenedioxythiophene)
PEG	Poly(ethylene glycol)
PEGMA	Poly(ethylene glycol) methyl ether methacrylate
PEO	Poly(ethylene oxide)
PHB	Poly(3-hydroxybutyrate)
PLA	Poly(lactic acid)
PLGA	Poly(lactic-co-glycolic acid)
PMII	Propyl-methyl-imidazolium iodide
PMMA	Poly(methyl methacrylate)
P(AEMIBr)	Poly(1-[2-acryloyloxyethyl]-3-methylimidazolium bromide)
POE	Poly(oxyethylene)
PSSA	Poly(4-styrene sulfonic acid) (PSSA)
PVA	Poly(vinyl alcohol)
PVC	Poly(vinyl chloride)
Materials 2020, 13, 838	

PVDF	Poly(vinylidene fluoride)
PVDF-HFP	Poly(vinylidene fluoride-hexafluoro propylene)
PVP	Poly(vinylpyrrolidone)
PVPA	Poly(vinylphosphonic acid)
Pyr extsubscript{14}TFSI	N-butyl-N-methylpyrrrolidinium bis(trifluoromethane-sulfonyl) imide
SDS	Sodium dodecyl sulphate
SiO extsubscript{2}	Silicon dioxide
SY	Super yellow
TBABF extsubscript{4}	Tetrabutylammonium tetrafluorborate
TBAI	Tetrabutylammonium iodide
TBP	4-tert-butylpyridine
TEGDME	Tetra(ethylene) glycol dimethyl ether
TiO extsubscript{2}	Titanium dioxide
Tm(CF extsubscript{3}SO extsubscript{3}) extsubscript{3}	Thulium triflate
TPAI	Tetrapropylammonium iodide
TW-80	Polysorbate 80
Zn(CF extsubscript{3}SO extsubscript{3}) extsubscript{2}	Zinc triflate

References

1. Tanase, E.E.; Rapa, M.; Popa, S. Biopolymers based on renewable resources—A review. Sci. Bull. Ser. F Biotechnol. 2014, 18, 188–195.
2. Malhotra, B.; Keshwani, A.; Kharkwal, H. Natural polymer based cling films for food packaging. Int. J. Pharm. Pharm. Sci. 2015, 7, 10–18.
3. Imam, S.H.; Bilbao-Sainz, C.; Chiuo, B.; Glenn, G.M.; Orts, W.J. Biobased adhesives, gums, emulsions and binders: Current trends and future prospects. J. Adhes. Sci. Technol. 2012, 27, 1–26. [CrossRef]
4. Kucharski, M.; Łukaszewicz, T.; Mrozek, P. New electrolyte for electrochromic devices. Opto-Electron. Rev. 2004, 12, 175–180.
5. Hallinan, D.T., Jr.; Balsara, N.P. Polymer electrolytes. Annu. Rev. Mater Res 2013, 43, 503–525. [CrossRef]
6. Varshney, P.K.; Gupta, S. Natural polymer-based electrolytes for electrochemical devices: A review. Ionics 2011, 17, 479–483. [CrossRef]
7. Fenton, D.E.; Parker, J.M.; Wright, P.V. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 1973, 14, 589. [CrossRef]
8. Daud, F.N.; Ahmad, A.; Badri, K.H. An investigation on the properties of palm-based polyurethane solid polymer electrolyte. Int. J. Polym. Sci. 2014, 2014, 1–5. [CrossRef]
9. Aziz, S.B.; Woo, T.J.; Kadir, M.F.Z.; Ahmed, H.M. A conceptual review on polymer electrolytes and ion transport models. J. Sci. Adv. Mater. Devices 2018, 3, 1–17. [CrossRef]
10. Liew, C.W.; Ramesh, S. Studies on ionic liquid-based corn starch biopolymer electrolytes coupling with high ionic transport number. Cellulose 2013, 20, 3227–3237. [CrossRef]
11. Raphael, E.; Avellaneda, C.O.; Manzolli, B.; Pawlicka, A. Agar-based films for application as polymer electrolytes. Electrochim. Acta 2010, 55, 1455–1459. [CrossRef]
12. Khiar, A.S.A.; Arof, A.K. Conductivity studies of starch-based polymer electrolytes. Ionics 2010, 16, 123–129. [CrossRef]
13. Kumar, M.; Tiwari, T.; Srisvastava, N. Electrical transport behaviour of bio-polymer electrolyte system: Potato starch + ammonium iodide. Carbohydr. Polym. 2012, 88, 54–60. [CrossRef]
14. Pawlicka, A.; Machado, G.O.; Guimaraes, K.V.; Dragunski, D.C. Solid polymeric electrolytes obtained from modified natural polymers. Proc. SPIE Int. Soc. Opt. Eng. 2002, 5136, 274–279.
15. Gandini, A.; Lacerda, T.M. From monomers to polymers from renewable resources: Recent advances. Prog. Polym. Sci. 2015, 48, 1–39. [CrossRef]
16. Yahya, M.Z.A.; Arof, A.K. Effect of oleic acid plasticizer on chitosan–lithium acetate solid polymer electrolytes. Eur. Polym. J. 2003, 39, 897–902. [CrossRef]
17. Majid, S.R.; Arof, A.K. Proton-conducting polymer electrolyte films based on chitosan acetate complexed with NH	extsubscript{4}NO	extsubscript{3} salt. Phys. B Condens. Matter 2005, 355, 78–82. [CrossRef]
18. Buraidah, M.H.; Teo, L.P.; Majid, S.R.; Arof, A.K. Ionic conductivity by correlated barrier hopping in NH₄I doped chitosan solid electrolyte. Phys. B Condens. Matter 2009, 404, 1373–1379. [CrossRef]

19. Nomanbhay, S.M.; Palanisamy, K. Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electron. J. Biotechnol. 2005, 8, 43–53. [CrossRef]

20. Tripathi, S.; Mehrotra, G.K.; Dutta, P.K. Physicochemical and bioactivity of cross-linked chitosan-PVA film for food packaging applications. Int. J. Biol. Macromol. 2009, 45, 372–376. [CrossRef]

21. Osman, Z.; Ibrahim, Z.A.; Arof, A.K. Conductivity enhancement due to ion dissociation in plasticized chitosan based polymer electrolytes. Carbohydr. Polym. 2001, 44, 167–173. [CrossRef]

22. Mobarak, N.N.; Jumaah, F.N.; Ghani, M.A.; Abdullah, M.P.; Ahmad, A. Carboxymethyl carrageenan based biopolymer electrolytes. Electrochim. Acta 2015, 175, 224–231. [CrossRef]

23. Sudhakar, Y.N.; Selvakumar, M.; Krishna Bhat, D. Lithium salts doped biodegradable gel polymer electrolytes for supercapacitor application. J. Mater. Environ. Sci. 2015, 6, 1218–1227.

24. BeMiller, J.N. Gums and related polysaccharides. In Glycoscience: Chemistry and Chemical Biology, 2nd ed.; Fraser-Reid, B.O., Tatsuta, K., Thiém, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1514–1533.

25. Nwanya, A.C.; Amaechi, C.I.; Udounwa, A.E.; Osuji, R.U.; Maaza, M.; Ezema, F.I. Complex impedance and conductivity of agar-based ion-conducting polymer electrolytes. Appl. Phys. A 2015, 119, 387–396. [CrossRef]

26. Raphael, E.; Avellaneda, C.O.; Aegerter, M.A.; Silva, M.M. Agar-based gel electrolyte for electrochromic device application. Mol. Cryst. Liq. Cryst. 2012, 554, 264–272. [CrossRef]

27. Kasem, K.K. Electrochemical behavior of some redox systems pendant in agar gel. J. New Mater. Electrochem. Syst. 2005, 8, 189–195.

28. Rudhziah, S.; Ahmad, A.; Ahmad, I.; Mohamed, N.S. Biopolymer electrolytes based on blend of kappa-carrageenan and cellulose derivatives for potential application in dye sensitized solar cell. Electrochim. Acta 2015, 175, 162–168. [CrossRef]

29. Mobarak, N.N.; Ramli, N.; Ahmad, A.; Rahman, M.Y.A. Chemical interaction and conductivity of carboxymethyl κ-carrageenan based green polymer electrolyte. Solid State Ion. 2012, 224, 51–57. [CrossRef]

30. Rudhziah, S.; Rani, M.S.A.; Ahmad, A.; Mohamed, N.S.; Kaddami, H. Potential of blend of κ-carrageenan and cellulose derivatives for green polymer electrolyte application. Ind. Crop. Prod. 2015, 72, 133–141. [CrossRef]

31. Endreû, H.; Neuenbu, F.K.G.P.; Christensen, S.H.; Aps, C.P.K. Pectins. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Phillips, G.O., Williams, P.A., Eds.; Woodhead Publishing Limited: Sawston, UK, 2009; pp. 274–297.

32. Smith, D. Jams and preserves. Methods of manufacture. In Handbook of Hyrdocolloids; Caballero, B., Ed.; Academic Press: Cambridge, MA, USA, 2003; pp. 3409–3415.

33. Andrade, J.R.; Raphael, E.; Pawlicka, A. Plasticized pectin-based gel electrolytes. Electrochim. Acta 2009, 54, 6479–6483. [CrossRef]

34. Thombare, N.; Jha, U.; Mishra, S.; Siddiqui, M.Z. Guar gum as a promising starting material for diverse applications: A review. Int. J. Biol. Macromol. 2016, 88, 361–372. [CrossRef] [PubMed]

35. Del Agua, I.; Mantione, D.; Casado, N.; Sanchez-Sanchez, A.; Malliaras, G.G.; Mecerreyes, D. Conducting polymer iongels based on PEDOT and guar gum. ACS Macro Lett. 2017, 6, 473–478. [CrossRef]

36. Mudgil, D.; Barak, S.; Khatak, B.S. Guar gum: Processing, properties and food applications—A review. J. Food Sci. Technol. 2014, 51, 409–418. [CrossRef]

37. Sudhakar, Y.N.; Selvakumar, M.; Bhat, D.K. Tubular array, dielectric, conductivity and electrochemical properties of biodegradable gel polymer electrolyte. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2014, 180, 12–19. [CrossRef]

38. Zhang, B.; Sudre, G.; Quintard, G.; Serghei, A.; David, L.; Bernard, J.; Fleury, E.; Charlot, A. Guar gum as biosourced building block to generate highly conductive and elastic ionogels with poly(ionic liquid) and ionic liquid. Carbohydr. Polym. 2017, 157, 586–595. [CrossRef]

39. Alves, R.; Silva, M.M. The influence of glycerol and formaldehyde in gelatin-based polymer electrolytes. Mol. Cryst. Liq. Cryst. 2014, 591, 64–73. [CrossRef]

40. Haug, I.J.; Draget, K.L. Gelatin. In Handbook of Hyrdocolloidsal, 2nd ed.; Phillips, G.O., Williams, P.A., Eds.; Woodhead Publishing: Sawston, UK, 2009; pp. 142–163.

41. Pawlicka, A.; Firmino, A.; Vieira, D.; Sentanin, F.; Grote, J.G.; Kajzar, F. Gelatin- and DNA-based ionic conducting membranes for electrochromic devices. Proc. SPIE 2009, 7487, 1–12.

42. Vieira, D.F.; Avellaneda, O.; Pawlicka, A. Conductivity study of a gelatin-based polymer electrolyte. Electrochim. Acta 2007, 53, 1404–1408. [CrossRef]
43. Kurian, T.; Mathew, N.M. Natural rubber: Production, properties and applications. In *Biopolymers: Biomedical and Environmental Applications*; Kalia, S., Avérous, L., Eds.; Scrivener Publishing: Beverly, MA, USA, 2011; pp. 403–436.

44. Yoshizawa, M.; Marwanta, E.; Ohno, H. Preparation and characteristics of natural rubber/poly(ethylene oxide) salt hybrid mixtures as novel polymer electrolytes. *Polymer 2000*, 41, 9049–9053. [CrossRef]

45. Ahmad, H.A.; Ismail, H.; Rashid, A.A. ENR-50 Compatibilized natural rubber/recycled acrylonitrile-butadiene rubber blends. *Sains Malays.* 2015, 44, 835–842. [CrossRef]

46. Chew, K.W.; Ng, T.C.; How, Z.H. Conductivity and microstructure study of PLA-based polymer electrolyte salted with lithium perchloride, LiClO₄. *Int. J. Electrochem. Sci.* 2013, 8, 6354–6364.

47. Chew, K.W. Development of novel bio-degradable electrolyte based on polylactide (PLA) for lithium rechargeable battery. *Adv. Mater. Res.* 2013, 853, 270–275. [CrossRef]

48. Osinska-Broniarz, M.; Gieparda, W.; Wesole, D.; Martyna, A.; Przekop, R.; Sierczynska, A. Preparation and characterization of gel polymer electrolytes based on electrospun PLA/PHB membranes for lithium-ion batteries. *ECS Trans.* 2015, 70, 79–88. [CrossRef]

49. Osada, I.; Hosseini, S.M.; Jeong, S.; Passerini, S. Novel ternary polymer electrolytes based on poly(lactic acid) from sustainable sources. *ChemElectroChem* 2017, 4, 463–467. [CrossRef]

50. Mustapa, S.R.; Aung, M.M.; Ahmad, A.; Mansor, A.; TianKhoon, L. Preparation and characterization of jatropha oil-based polyurethane as non-aqueous solid polymer electrolyte for electrochemical devices. *Electrochim. Acta* 2016, 222, 293–302. [CrossRef]

51. Su’aït, M.S.; Ahmad, A.; Badri, K.H.; Mohamed, N.S.; Rahman, M.Y.A.; Azanza Ricardo, C.L.; Scardi, P. The potential of polyurethane bio-based solid polymer electrolyte for photoelectrochemical cell application. *Int. J. Hydrogen Energy* 2014, 39, 3005–3017. [CrossRef]

52. Ibrahim, S.; Ahmad, A.; Mohamed, N.S. Characterization of novel castor oil-based polyurethane polymer electrolytes. *Polymers* 2015, 7, 747–759. [CrossRef]

53. Esa, F.; Tasirin, S.M.; Rahman, N.A. Overview of bacterial cellulose production and application. *Agric. Sci. Procedia* 2014, 2, 113–119. [CrossRef]

54. Park, J.K.; Jung, J.Y.; Khan, T. *Bacterial Cellulose*; Woodhead Publishing Limited: Sawston, UK, 2009.

55. Jiang, G.P.; Zhang, J.; Qiao, J.L.; Jiang, Y.M.; Zarrin, H.; Chen, Z.; Hong, F. Bacterial nanocellulose. *Bacterial Cellulose* 2013, 8, 6354–6364. [CrossRef]

56. Gadim, T.D.O.; Loureiro, F.J.A.; Vilela, C.; Rosero-Navarro, N.; Silvestre, A.J.D.; Freire, C.S.R.; Figueiredo, F.M.L. Protonic conductivity and fuel cell tests of nanocomposite membranes based on bacterial cellulose. *Electrochim. Acta* 2017, 233, 52–61. [CrossRef]

57. Sworn, G. Gellan gum. In *Handbook of Hyrdocolloids*, 2nd ed.; Phillips, G.O., Williams, P.A., Eds.; Woodhead Publishing: Sawston, UK, 2009; pp. 204–227.

58. Noor, I.S.M.; Majid, S.R.; Arof, A.K.; Djurado, D.; Claro Neto, S.; Pawlicka, A. Characteristics of gellan gum–LiClO₄ polymer electrolytes. *Solid State Ion.* 2012, 225, 649–653. [CrossRef]

59. Halim, N.F.A.; Majid, S.R.; Arof, A.K.; Kajzar, F.; Pawlicka, A. Gellan gum–LiI gel polymer electrolytes. *Mol. Cryst. Liq. Cryst.* 2012, 554, 232–238. [CrossRef]

60. Sworn, G. Xanthan gum. In *Handbook of Hyrdocolloids*, 2nd ed.; Phillips, G.O., Williams, P.A., Eds.; Woodhead Publishing: Sawston, UK, 2009; pp. 186–203.

61. Park, S.J.; Yoo, K.; Kim, J.-Y.; Kim, J.Y.; Lee, D.-K.; Kim, B.; Kim, H.; Kim, J.H.; Cho, J.; Ko, M.J. Water-based thixotropic polymer gel electrolyte for dye-sensitized solar cells. *ACS Nano* 2013, 7, 4050–4056. [CrossRef] [PubMed]

62. Gaikwad, U.V.; Pande, S.A. A review of biopolymer chitosan blends in polymer system. *Int. Res. J. Sci. Eng.* 2013, 1, 13–16.

63. Ramly, K.; Isa, M.I.N.; Khiar, A.S.A. Conductivity and dielectric behaviour studies of starch/PEO + x wt-%NH₄NO₃ polymer electrolyte. *Mater. Res. Innov.* 2011, 15, 82–85. [CrossRef]

64. Shukur, M.F.; Ithnin, R.; Illias, H.A.; Kadir, M.F.Z. Proton conducting polymer electrolyte based on plasticized chitosan–PEO blend and application in electrochemical devices. *Opt. Mater.* 2013, 35, 1834–1841. [CrossRef]

65. Abdullah, D.J.S.A.; Alciar, J.B.; Barbosa, C.V.; Carreño, N.L.V.; Avellaneda, C.S.O. Influence of the NiO nanoparticles on the ionic conductivity of the agar-based electrolyte. *Ciência e Tecnologia* 2014, 24, 8–12.
66. Lopes, L.V.S.; Dragunski, D.C.; Pawlicka, A.; Donoso, J.P. Nuclear magnetic resonance and conductivity study of starch based polymer electrolytes. *Electrochim. Acta* **2003**, *48*, 2021–2027. [CrossRef]

67. Mattos, R.I.; Pawlicka, A.; Tambelli, C.E.; Donoso, J.P. NMR and conductivity study of strach-based polymer electrolytes. *Mol. Cryst. Liq. Cryst.* **2006**, *447*, 55–64. [CrossRef]

68. Ma, X.; Yu, J.; He, K.; Wang, N. The effects of different plasticizers on the properties of thermoplastic starch as solid polymer electrolytes. *Macromol. Mater. Eng.* **2007**, *292*, 503–510. [CrossRef]

69. Pawlicka, A.; Sabadini, A.; Raphael, E.; Dragunski, D. Ionic conductivity thermogravimetry measurements of starch-based polymeric electrolytes. *Mol. Cryst. Liq. Cryst.* **2008**, *485*, 804–816. [CrossRef]

70. Marcondes, R.F.M.S.; D’Agostini, P.S.; Ferreira, J.; Girotto, E.M.; Pawlicka, A.; Dragunski, D.C. Amylopectin-rich starch plasticized with glycerol for polymer electrolyte application. *Solid State Ion.* **2010**, *181*, 586–591. [CrossRef]

71. Ramesh, S.; Shanti, R.; Morris, E.; Durairaj, R. Utilisation of corn starch in production of ‘green’ polymer electrolytes. *Mater. Res. Innov.* **2011**, *15*, 8–13. [CrossRef]

72. Ramesh, S.; Liew, C.-W.; Arof, A.K. Ion conducting corn starch biopolymer electrolytes doped with ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. *J. Non. Cryst. Solids* **2011**, *357*, 3654–3660. [CrossRef]

73. Tiwari, T.; Pandey, K.; Srivastava, N.; Srivastava, P.C. Effects of glutaraldehyde on electrical properties of arrowroot starch + NaI electrolyte system. *Polym. Polym. Compos.* **2011**, *121*, 1–7.

74. Liew, C.-W.; Ramesh, S.; Ramesh, K.; Arof, A.K. Preparation and characterization of lithium ion conducting ionic liquid-based biodegradable corn starch polymer electrolytes. *J. Solid State Electrochem.* **2012**, *16*, 1869–1875. [CrossRef]

75. Samsudin, A.S.; Aziz, M.I.A.; Isa, M.I.N. Natural polymer electrolyte system based on sago: Structural and transport behavior characteristics. *Int. J. Polym. Anal. Charact.* **2012**, *17*, 600–607. [CrossRef]

76. Teoh, K.H.; Ramesh, S.; Arof, A.K. Investigation on the effect of nanosilica towards corn starch-lithium perchlorate-based polymer electrolytes. *J. Solid State Electrochem.* **2012**, *16*, 3165–3170. [CrossRef]

77. Ramesh, S.; Shanti, R.; Morris, E. Studies on the thermal behavior of CS:LiTFSI:[Amim] Cl polymer electrolytes exerted by different [Amim] Cl content. *Solid State Sci.* **2012**, *14*, 182–186. [CrossRef]

78. Ramesh, S.; Shanti, R.; Morris, E. Studies on the plasticization efficiency of deep eutectic solvent in suppressing the crystallinity of corn starch based polymer electrolytes. *Carbohydr. Polym.* **2012**, *87*, 701–706. [CrossRef]

79. Sudhakar, Y.N.; Selvakumar, M. Lithium perchlorate doped plasticized chitosan and starch blend as biodegradable polymer electrolyte for supercapacitors. *Electrochim. Acta* **2012**, *78*, 398–405. [CrossRef]

80. Shukur, M.F.; Ithnin, R.; Sonsudin, F.; Yahya, R.; Ahmad, Z.; Kadir, M.F.Z. Conduction mechanism and dielectric properties of solid biopolymer electrolyte incorporated with silver nitrate. *Adv. Mater. Res.* **2013**, *701*, 115–119. [CrossRef]

81. Shukur, M.F.; Ibrahim, F.M.; Majid, N.A.; Ithnin, R.; Kadir, M.F.Z. Electrical analysis of amorphous corn starch-based polymer electrolyte membranes doped with Lil. *Phys. Scr.* **2013**, *88*, 1–9. [CrossRef]

82. Shukur, M.F.; Sonsudin, F.; Yahya, R.; Ahmad, Z.; Ithnin, R. Electrical properties of starch based silver ion conducting solid biopolymer electrolyte. *Adv. Mater. Res.* **2013**, *701*, 120–124. [CrossRef]

83. Khammirzaei, M.H.; Ramesh, S. Ionic transport and FTIR properties of lithium iodide doped biodegradable rice starch based polymer electrolytes. *Int. J. Electrochem. Sci.* **2013**, *8*, 9977–9991.

84. Sudhakar, Y.N.; Selvakumar, M. Ionic conductivity studies and dielectric studies of poly(styrene sulfophonic acid)/starch blend polymer electrolyte containing LiClO4. *J. Appl. Electrochem.* **2013**, *43*, 21–29. [CrossRef]

85. Tiwari, T.; Kumar, M.; Srivastava, N.; Srivastava, P.C. Electrical transport study of potato starch-based electrolyte system-II. *Mater. Sci. Eng. B Solid-State Mater. Adv. Technol.* **2014**, *182*, 6–13. [CrossRef]

86. Shukur, M.F.; Ithnin, R.; Kadir, M.F.Z. Electrical characterization of corn starch-LiOAc electrolytes and application in electrochemical double layer capacitor. *Electrochim. Acta* **2014**, *136*, 204–216. [CrossRef]

87. Singh, R.; Baghel, J.; Shukla, S.; Bhattacharya, B.; Rhee, H.-W.; Singh, P.K. Detailed electrical measurements on sago starch biopolymer solid electrolyte. *Phase Transi.* **2014**, *87*, 1237–1245. [CrossRef]

88. Khammirzaei, M.H.; Ramesh, S. Nanocomposite polymer electrolyte based on rice starch/ionic liquid/TiO2 nanoparticles for solar cell application. *Measurement* **2014**, *58*, 68–72. [CrossRef]

89. Liew, C.-W.; Ramesh, S. Comparing triflate and hexafluorophosphate anions of ionic liquids in polymer electrolytes for supercapacitor applications. *Materials* **2014**, *7*, 4019–4033. [CrossRef]
90. Teoh, K.H.; Lim, C.-S.; Ramesh, S. Lithium ion conduction in corn starch based solid polymer electrolytes. Measurement 2014, 48, 87–95. [CrossRef]
91. Yusof, Y.M.; Majid, N.A.; Kasmani, R.M.; Illias, H.A.; Kadir, M.F.Z. The effect of plasticization on conductivity and other properties of starch/chitosan blend biopolymer electrolyte incorporated with ammonium iodide. Mol. Cryst. Liq. Cryst. 2014, 603, 73–88. [CrossRef]
92. Yusof, Y.M.; Shukur, M.F.; Illias, H.A.; Kadir, M.F.Z. Conductivity and electrical properties of corn starch-chitosan blend biopolymer electrolyte incorporated with ammonium iodide. Phys. Scr. 2014, 89, 1–11. [CrossRef]
93. Shukur, M.F.; Ithnin, R.; Kadir, M.F.Z. Ionic conductivity and dielectric properties of potato starch-magnesium acetate biopolymer electrolytes: The effect of diiodide salts on ionic conductivity and structural and thermal behavior of rice-starch-based polymer electrolytes for dye-sensitized solar cell application. Ionics 2015, 21, 2383–2391. [CrossRef]
94. Shukur, M.F.; Ithnin, R.; Kadir, M.F.Z. Protonic transport analysis of starch-chitosan blend based electrolytes and application in electrochemical device. Mol. Cryst. Liq. Cryst. 2014, 603, 52–65. [CrossRef]
95. Yusof, Y.M.; Majid, N.A.; Kasmani, R.M.; Illias, H.A.; Kadir, M.F.Z. Electrical, structural, thermal and electrochemical properties of corn starch-based solid polymer electrolytes. Mater. Des. 2015, 85, 833–837. [CrossRef]
96. Chatterjee, B.; Kulshrestha, N.; Gupta, P.N. Electrical properties of starch-PVA biodegradable polymer blend. Phys. Scr. 2015, 90, 1–9. [CrossRef]
97. Teoh, K.H.; Lim, C.-S.; Liew, C.W.; Ramesh, S. Electric double-layer capacitors with corn starch-based biopolymer electrolytes incorporating silica as filler. Ionics 2015, 21, 2061–2068. [CrossRef]
98. Khammirzaei, M.H.; Ramesh, S.; Ramesh, K. Effect of different iodide salts on ionic conductivity and structural and thermal behavior of rice-starch-based polymer electrolytes for dye-sensitized solar cell application. Ionics 2015, 21, 2383–2391. [CrossRef]
99. Navaratnam, S.; Sanusi, A.; Ahmad, A.H.; Ramesh, S.; Ramesh, K.; Othman, N. Conductivity studies of biopolymer electrolyte based on potato starch/chitosan blend doped with LiCF$_3$SO$_3$. J. Teknol. 2015, 7, 1–5. [CrossRef]
100. Chatterjee, B.; Kulshrestha, N.; Gupta, P.N. Nano composite solid polymer electrolytes based on biodegradable polymers starch and poly vinyl alcohol. Mater. Sci. Forum 2016, 82, 490–499. [CrossRef]
101. Lin, Y.; Li, J.; Liu, K.; Liu, Y.; Liu, J.; Wang, X. Unique starch polymer electrolyte for high capacity all-solid-state lithium sulfur battery. Green Chem. 2016, 18, 3796–3803. [CrossRef]
102. Amran, N.N.A.; Manan, N.S.A.; Kadir, M.F.Z. The effect of LiCF$_3$SO$_3$ on the complexation with potato starch-chitosan blend polymer electrolytes. Ionics 2016, 22, 1647–1658. [CrossRef]
103. Teoh, K.H.; Lim, C.S.; Liew, C.W.; Ramesh, S. Preparation and performance analysis of barium titanate incorporated in corn starch-based polymer electrolytes for electric double layer capacitor application. J. Appl. Polym. Sci. 2016, 133, 1–8. [CrossRef]
104. Lin, Y.; Li, J.; Liu, K.; Liu, Y.; Liu, J.; Wang, X. Unique starch polymer electrolyte for high capacity all-solid-state lithium sulfur battery. Green Chem. 2016, 18, 3796–3803. [CrossRef]
105. Shukur, M.F.; Ithnin, R.; Kadir, M.F.Z. Ionic conductivity and dielectric properties of potato starch-magnesium acetate biopolymer electrolytes: The effect of glycerol and 1-butyl-3-methylimidazolium chloride. Ionics 2016, 22, 1113–1123. [CrossRef]
106. Chatterjee, B.; Kulshrestha, N.; Gupta, P.N. Nano composite solid polymer electrolytes based on biodegradable polymers starch and poly vinyl alcohol. Measurement 2016, 82, 490–499. [CrossRef]
107. Yusof, Y.M.; Kadir, M.F.Z. Electrochemical characterizations and the effect of glycerol in biopolymer electrolytes based on methyl cellulose-potato starch blend. Mol. Cryst. Liq. Cryst. 2016, 627, 220–233. [CrossRef]
108. Shukur, M.F.; Ithnin, R.; Kadir, M.F.Z. Electrical properties of proton conducting solid biopolymer electrolytes based on starch-chitosan blend. Ionics 2014, 20, 977–999. [CrossRef]
109. Teoh, K.H.; Lim, C.-S.; Liew, C.-W.; Ramesh, S. Electric double-layer capacitors with corn starch-based biopolymer electrolytes incorporating silica as filler. Ionics 2014, 20, 603, 52–65. [CrossRef]
110. Kulshrestha, N.; Gupta, P.N. Structural and electrical characterizations of 50:50 PVA:starch blend complexed with ammonium thioycanate. Ionics 2016, 22, 671–681. [CrossRef]
111. Vernom-Carter, E.J.; Alvarez-Ramirez, J.; Bello-Perez, L.A.; Roldan-Cruz, C.; Garcia-Hernandez, A.; Huerta, L. The order of addition of corn starch/lithium perchlorate/glycerol affects the optical, mechanical, electrical properties of a solid polymer electrolyte. Ionics 2017, 23, 1–13. [CrossRef]
112. Azli, A.A.; Manan, N.S.A.; Kadir, M.F.Z. The development of Li+ conducting polymer electrolyte based on potato starch/graphene oxide blend. *Ionics* **2017**, *23*, 411–425. [CrossRef]

113. Chauhan, J.K.; Kumar, M.; Yadav, M.; Tiwari, T.; Srivastava, N. Effect of NaClO4 concentration on electrolytic behaviour of corn starch film for supercapacitor application. *Ionics* **2017**, *23*, 2943–2949. [CrossRef]

114. Selvakumar, M.; Bhat, D.K. LiClO4 doped cellulose acetate as biodegradable polymer electrolyte for supercapacitors. *J. Appl. Polym. Sci.* **2008**, *110*, 594–602. [CrossRef]

115. Lin, S.-Y.; Wang, C.-M.; Hsieh, P.-T.; Chen, Y.-C.; Liu, C.-C.; Shih, S.-C. A novel gel polymer electrolyte based on lithium salt with an ethyl cellulose. *Colloid Polym. Sci.* **2009**, *287*, 1355–1358. [CrossRef]

116. Yue, Z.; McEwen, I.J.; Cowie, J.M.G. Ion conducting behaviour and morphology of solid polymer electrolytes reinforced with cellulose whiskers. *Electrochim. Acta* **2005**, *50*, 3897–3903. [CrossRef]

117. Regiani, A.M.; Mateos, A.M.; Alloin, F.; Sanchez, J.Y.; Dufresne, A. Plasticized nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose whiskers. *Electrochim. Acta* **2004**, *49*, 4667–4677. [CrossRef]

118. Schroers, M.; Kokil, A.; Weder, C. Solid polymer electrolytes based on nanocomposites of ethylene oxide-epichlorohydrin copolymers and cellulose whiskers. *J. Appl. Polym. Sci.* **2004**, *93*, 2883–2888. [CrossRef]

119. Regiani, A.M.; De Oliveira-Machado, G.; LeNest, J.F.; Gandini, A.; Pawlicka, A. Cellulose derivatives as solid electrolyte matrixes. *Macromol. Symp.* **2001**, *175*, 45–53. [CrossRef]

120. Yue, Z.; McEwen, I.J.; Cowie, J.M.G. Ion conducting behaviour and morphology of solid polymer electrolytes based on a regioselectively substituted cellulose ether with PEO side chains. *J. Mater. Chem.* **2002**, *12*, 2281–2285. [CrossRef]

121. Lin, S.-Y.; Wang, C.-M.; Hsieh, P.-T.; Chen, Y.-C.; Liu, C.-C.; Shih, S.-C. A novel gel polymer electrolyte based on an ethyl cellulose–ammonium iodide based polymer electrolyte. *Electrochim. Acta* **2009**, *54*, 1888–1892. [CrossRef]

122. Azli, A.A.; Manan, N.S.A.; Kadir, M.F.Z. The effect of NH4NO3 towards the conductivity enhancement and electrical behavior in methyl cellulose-starch blend based ionic conductors. *Ionics* **2017**, *23*, 1137–1154. [CrossRef]

123. Schroers, M.; Kokil, A.; Weder, C. Solid polymer electrolytes based on nanocomposites of ethylene oxide-epichlorohydrin copolymers and cellulose whiskers. *Electrochim. Acta* **2005**, *50*, 3897–3903. [CrossRef]

124. Johari, N.A.; Kudin, T.I.T.; Ali, A.M.M.; Yahya, M.Z.A. The development of Li+ conducting polymer electrolyte based on potato starch/graphene oxide blend. *I onics* **2017**, *23*, 411–425. [CrossRef]

125. Azli, A.A.; Manan, N.S.A.; Kadir, M.F.Z. The effect of NH4NO3 towards the conductivity enhancement and electrical behavior in methyl cellulose-starch blend based ionic conductors. *Ionics* **2017**, *23*, 1137–1154. [CrossRef]

126. Azli, A.A.; Manan, N.S.A.; Kadir, M.F.Z. The effect of NH4NO3 towards the conductivity enhancement and electrical behavior in methyl cellulose-starch blend based ionic conductors. *Ionics* **2017**, *23*, 1137–1154. [CrossRef]
134. Harun, N.I.; Ali, R.M.; Ali, A.M.M.; Yahya, M.Z.A. Conductivity studies on cellulose acetate-tetrafluoroborate based polymer electrolytes. *Mater. Res. Innov.* 2011, 15, 39–42. [CrossRef]

135. Harun, N.I.; Ali, R.M.; Ali, A.M.M.; Yahya, M.Z.A. Dielectric behaviour of cellulose acetate-based polymer electrolytes. *Ionics* 2011, 18, 599–606. [CrossRef]

136. Harun, N.I.; Md Ali, R.; Ali, A.M.M.; Yahya, M.Z.A. Effects of ammonium tetrafluoroborate on conductivity and thermal studies on cellulose acetate based polymer electrolytes. *Adv. Mater. Res.* 2013, 667, 150–154. [CrossRef]

137. Samsudin, A.S.; Khairul, W.M.; Isa, M.I.N. Characterization on the potential of carboxy methylcellulose for application as proton conducting biopolymer electrolytes. *J. Non. Cryst. Solids* 2012, 358, 1104–1112. [CrossRef]

138. Asghar, A.; Abdul Samad, Y.; Singh Lalia, B.; Hashaikeh, R. PEG based quasi-solid polymer electrolyte: Mechanically supported by networked cellulose. *J. Membr. Sci.* 2012, 421–422, 85–90. [CrossRef]

139. Huang, X.; Liu, Y.; Deng, J.; Yi, B.; Yu, X.; Shen, P.; Tan, S. A novel polymer gel electrolyte based on cyanoethylated cellulose for dye-sensitized solar cells. *Electrochim. Acta* 2012, 80, 219–226. [CrossRef]

140. Ramesh, S.; Shanti, R.; Morris, E. Discussion on the influence of DES content in CA-based polymer electrolytes. *J. Mater. Sci.* 2012, 47, 1787–1793. [CrossRef]

141. Ramesh, S.; Shanti, R.; Morris, E. Characterization of conducting cellulose acetate based polymer electrolytes doped with ‘green’ ionic mixture. *Carbohydr. Polym.* 2013, 91, 14–21. [CrossRef] [PubMed]

142. Ramesh, S.; Shanti, R.; Morris, E. Plasticizing effect of 1-allyl-3-methylimidazolium chloride in cellulose acetate based polymer electrolytes. *Carbohydr. Polym.* 2012, 87, 2624–2629. [CrossRef]

143. Bella, F.; Nair, J.R.; Meligrana, G.; Bongiovanni, R.; Gerbaldi, C. Structure-performance correlation of nanocellulose-based polymer electrolytes. *Cellulose* 2013, 20, 1377–1389. [CrossRef]

144. Chiang, P.; Bellur, P.; Yeung, D.; Noor, I.M. A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. *Phys. Chem. Chem. Phys.* 2014, 16, 1856–1867. [CrossRef]

145. Chiappone, A.; Bella, F.; Nair, J.R.; Meligrana, G.; Bongiovanni, R.; Gerbaldi, C. Structure-performance correlation of nanocellulose-based polymer electrolytes for efficient quasi-solid DSSCs. *ChemElectroChem* 2014, 1, 1350–1358. [CrossRef]

146. Xiao, S.Y.; Wang, F.X.; Chang, Z.; Wu, Y.P. An environmentally friendly and economic membrane based on cellulose as a gel polymer electrolyte for lithium ion batteries. *J. Power Sources* 2014, 270, 53–58. [CrossRef]
156. Ng, W.F.; Chai, M.N.; Isa, M.I.N. Proton conducting carboxy methyl cellulose solid polymer electrolytes doped with citric acid. *Adv. Mater. Res.* **2014**, *895*, 130–133. [CrossRef]

157. Jafirin, S.; Ahmad, I.; Ahmad, A. Composite polymer electrolyte based on MG-49 and carboxymethyl cellulose from kenaf. *AIP Conf. Proc.* **2014**, *1571*, 822–828.

158. Abiddin, J.F.Z.; Ahmad, A.H. Fourier transform infrared spectroscopy and electrical characterization of methylcellulose based solid polymer electrolyte doped with sodium iodide. *Jurnal Teknologi* **2015**, *3*, 41–45.

159. Abiddin, J.F.Z.; Ahmad, A.H. Conductivity study and fourier transform infrared (FTIR) characterization of methyl cellulose solid polymer electrolyte with sodium iodide conducting ion. *AIP Conf. Proc.* **2015**, *1674*, 1–6.

160. Li, M.; Wang, X.; Wang, Y.; Chen, B.; Wu, Y.; Holze, R. A gel polymer electrolyte based on composite of nonwoven fabric and methyl cellulose with good performance for lithium ion batteries. *RSC Adv.* **2015**, *5*, 52382–52387. [CrossRef]

161. Leng, L.; Zeng, X.; Chen, P.; Shu, T.; Song, H.; Fu, Z.; Wang, H.; Liao, S. A novel stability-enhanced lithium-oxygen battery with cellulose-based composite polymer gel as the electrolyte. *Electrochim. Acta* **2015**, *176*, 1108–1115. [CrossRef]

162. Colo, F.; Bella, F.; Nair, J.R.; Destro, M.; Gerbaldi, C. Cellulose-based novel hybrid polymer electrolytes for green and efficient Na-ion batteries. *Electrochim. Acta* **2015**, *174*, 185–190. [CrossRef]

163. Razali, S.M.M.; Sheikh Mohd Saaid, S.I.Y.; Marwan Ali, A.M.; Hassan, O.H.; Yahya, M.Z.A. Cellulose acetate-lithium bis(trifluoromethanesulfonyl)imide solid polymer electrolyte: ATR-FTIR and ionic conductivity behavior. *Funct. Mater. Lett.* **2015**, *8*, 1–4.

164. Sudhakar, Y.N.; Selvakumar, M.; Bhat, D.K. Preparation and characterization of phosphoric acid-doped hydroxyethyl cellulose electrolyte for use in supercapacitor. *Mater. Renew. Sustain. Energy* **2015**, *4*, 1–9. [CrossRef]

165. Zhu, Y.S.; Xiao, S.Y.; Li, M.X.; Chang, Z.; Wang, F.X.; Gao, J.; Wu, Y.P. Natural macromolecule based carboxymethyl cellulose as a gel polymer electrolyte with adjustable porosity for lithium ion batteries. *J. Power Sources* **2015**, *288*, 368–375. [CrossRef]

166. Ledwon, P.; Andrade, J.R.; Lapkowski, M.; Pawlicka, A. Hydroxypropyl cellulose-based gel electrolyte for electrochromic devices. *Electrochim. Acta* **2015**, *159*, 227–233. [CrossRef]

167. Samsi, N.S.; Zakaria, R.; Hassan, O.H.; Yahya, M.Z.A.; Ali, A.M.M. Optical behavior of NH$_4$I doped cellulose acetate membrane for dye sensitized solar cell. *Malays. J. Anal. Sci.* **2015**, *19*, 760–765.

168. Rani, M.S.A.; Dzulkurnain, N.A.; Ahmad, A.; Mohamed, N.S. Conductivity and dielectric behavior studies of carboxymethyl cellulose from kenaf bast fiber incorporated with ammonium acetate-BMATFSI biopolymer electrolytes. *Int. J. Polym. Anal. Charact.* **2015**, *20*, 250–260. [CrossRef]

169. Li, M.X.; Wang, X.W.; Yang, Y.Q.; Chang, Z.; Wu, Y.P.; Holze, R. A dense cellulose-based membrane as a renewable host for gel polymer electrolyte of lithium ion batteries. *J. Memb. Sci.* **2015**, *476*, 112–118. [CrossRef]

170. Sohaimy, M.I.H.; Isa, M.I.N. Efect of ammonium carbonate salt concentration on structural and ionic conductivity of cellulose based solid polymer electrolytes. *Fibers Polym.* **2015**, *16*, 1031–1034. [CrossRef] [PubMed]

171. Ahmard, N.H.B.; Isa, M.I.N. Proton conducting solid polymer electrolytes based carboxymethyl cellulose doped ammonium chloride: Ionic conductivity and transport studies. *Int. J. Plast. Technol.* **2015**, *19*, 47–55. [CrossRef]

172. Ramli, M.A.; Isa, M.I.N. Structural and ionic transport properties of protonic conducting solid biopolymer electrolytes based on carboxymethyl cellulose doped with ammonium fluoride. *J. Phys. Chem. B* **2016**, *120*, 11567–11573. [CrossRef] [PubMed]

173. Chong, M.Y.; Liew, C.W.; Numan, A.; Yugal, K.; Ramesh, K.; Ng, H.M.; Chong, T.V.; Ramesh, S. Effects of ionic liquid on the hydroxypropylmethyl cellulose (HPMC) solid polymer electrolyte. *Ionics* **2016**, *22*, 2421–2430. [CrossRef]

174. Chai, M.N.; Isa, M.I.N. Novel proton conducting solid bio-polymer electrolytes based on carboxymethyl cellulose doped with oleic acid and plasticized with glycerol. *Sci. Rep.* **2016**, *6*, 1–7. [CrossRef]

175. Ngamaroonchote, A.; Chotsuwan, C. Performance and reliability of cellulose acetate-based gel electrolyte for electrochromic devices. *J. Appl. Electrochem.* **2016**, *46*, 575–582. [CrossRef]
176. Samsi, N.S.; Zakaria, R.; Hassan, O.H.; Azhan Yahya, M.Z.; Ali, A.M.M. X-ray diffraction and infrared studies on plasticized cellulose acetate complexes with ammonium iodide for solid polymer electrolyte. *Mater. Sci. Forum*. **2016**, *846*, 523–527. [CrossRef]

177. Zhao, M.; Zuo, X.; Wang, C.; Xiao, X.; Liu, J.; Nan, J. Preparation and performance of the polyethylene-supported polyvinylidenefluoride-cellulose acetate butyrate/nano-SiO2 particles blended gel polymer electrolyte. *Ionics* **2016**, *22*, 2123–2132. [CrossRef]

178. Monisha, S.; Mathavan, T.; Selvasekarapandian, S.; Benial, A.M.F.; Latha, M.P. Preparation and characterization of cellulose acetate and lithium nitrate for advanced electrochemical devices. *Ionics* **2016**, *23*, 1–10. [CrossRef]

179. Monisha, S.; Selvasekarapandian, S.; Mathavan, T.; Milton Franklin Benial, A.; Manoharan, S.; Karthikeyan, S. Preparation and characterization of biopolymer electrolyte based on cellulose acetate for potential applications in energy storage devices. *J. Mater. Sci. Mater. Electron.* **2016**, *27*, 9314–9324. [CrossRef]

180. Razalli, S.M.M.; Saaid, S.I.Y.S.M.; Kudin, T.I.T.; Yahya, M.Z.A.; Hassan, O.H.; Ali, A.M.M. Electrochemical properties of glyme based plasticizer on gel polymer electrolytes doped with lithium bis(trifluoromethanesulfonyl)imide. *Mater. Sci. Forum*. **2016**, *846*, 534–538. [CrossRef]

181. Song, A.; Huang, Y.; Zhong, X.; Cao, H.; Liu, B.; Lin, H.; Wang, M.; Li, X. Gel polymer electrolyte with high performances based on pure natural polymer matrix of potato starch composite lignocellulose. *Electrochim. Acta* **2017**, *245*, 981–992. [CrossRef]

182. Song, A.; Huang, Y.; Liu, B.; Cao, H.; Zhong, X.; Lin, Y.; Wang, M.; Li, X.; Zhong, W. Gel polymer electrolyte based on polyethylene glycol composite lignocellulose matrix with higher comprehensive performances. *Electrochim. Acta* **2017**, *247*, 505–515. [CrossRef]

183. Gaur, S.S.; Dhar, P.; Sonowal, A.; Sharma, A.; Kumar, A.; Katiyar, V. Thermo-mechanically stable sustainable polymer based solid electrolyte membranes for direct methanol fuel cell applications. *J. Memb. Sci.* **2017**, *526*, 348–354. [CrossRef]

184. Gupta, S.; Varshney, P.K. Effect of plasticizer concentration on structural and electrical properties of hydroxyethyl cellulose (HEC)-based polymer electrolyte. *Ionics* **2017**, *23*, 1613–1617. [CrossRef]

185. Monisha, S.; Mathavan, T.; Selvasekarapandian, S.; Benial, A.M.F.; Aristatil, G.; Mani, N.; Premalatha, M.; Pandi, D.V. Investigation of bio polymer electrolyte based on cellulose acetate-ammonium nitrate for potential use in electrochemical devices. *Carbohydr. Polym.* **2017**, *157*, 38–47. [CrossRef]

186. Samsi, N.S.; Zakaria, R.; Hassan, O.H.; Azhan Yahya, M.Z.; Ali, A.M.M. X-ray diffraction and infrared studies on plasticized cellulose acetate complexes with ammonium iodide for solid polymer electrolyte. *Mater. Sci. Forum*. **2016**, *846*, 523–527. [CrossRef]

187. Mohamed, N.S.; Subban, R.H.Y.; Arof, A.K. Polymer batteries fabricated from lithium complexed acetylated chitosan. *J. Power Sources* **2016**, *274*, 153–156. [CrossRef]

188. Subban, R.H.Y.; Arof, A.K. Sodium iodide added chitosan electrolyte film for polymer batteries. *Phys. Scr.* **1996**, *53*, 382. [CrossRef]

189. Subban, R.H.Y.; Arof, A.K.; Radhakrishna, S. Polymer batteries with chitosan electrolyte mixed with sodium perchlorate. *Mater. Sci. Eng. B* **1996**, *38*, 156–160. [CrossRef]

190. Velazquez-Morales, P.; Le Nest, J.-F.; Gandini, A. Polymer electrolytes derived from chitosan/polyether networks. *Electrochim. Acta* **1998**, *43*, 1275–1279. [CrossRef]

191. Osman, Z.; Arof, A.K. FTIR studies of chitosan acetate based polymer electrolytes. *Electrochim. Acta* **2003**, *48*, 993–999. [CrossRef]

192. De Vasconcelos, C.L.; Rocha, A.N.L.; Pereira, M.R.; Fonseca, J.L.C. Electrolyte diffusion in a chitosan membrane. *Polym. Int.* **2001**, *50*, 309–312. [CrossRef]

193. Kamarulzaman, N.; Osman, Z.; Muhamad, M.R.; Ibrahimm, Z.A. Performance characteristics of LiMn2O4/polymer/carbon electrochemical cells. *J. Power Sources* **2001**, *97–98*, 722–725. [CrossRef]

194. Yahya, M.Z.A.; Arof, A.K. Characteristics of chitosan-lithium acetate-palmitic acid complexes. *J. New Mater. Electrochem. Syst.* **2002**, *5*, 123–128.

195. Yahya, M.Z.A.; Arof, A.K. Studies on lithium acetate doped chitosan conducting polymer system. *Eur. Polym. J.* **2002**, *38*, 1191–1197. [CrossRef]

196. Yahya, M.Z.A.; Arof, A.K. Conductivity and X-ray photoelectron studies on lithium acetate doped chitosan films. *Carbohydr. Polym.* **2004**, *55*, 95–100. [CrossRef]
197. Ali, A.M.M.; Yahya, M.Z.A.; Mustaffa, M.; Ahmad, A.H.; Subban, R.H.Y.; Harun, M.K.; Mohamad, A.A. Electrical properties of plasticized chitosan-lithium imide with oleic acid-based polymer electrolytes for lithium rechargeable batteries. *Ionics* 2005, **11**, 460–463. [CrossRef]

198. Wan, Y.; Creber, K.A.M.; Peppley, B.; Tam Bui, V.; Halliop, E. New solid polymer electrolyte membranes for alkaline fuel cells. *Polym. Int.* 2005, **54**, 5–10. [CrossRef]

199. Majid, S.R.; Idris, N.H.; Hassan, M.F.; Winie, T.; Khair, A.S.A.; Arof, A.K. Transport studies on filler-doped chitosan based polymer electrolyte. *Ionics* 2005, **11**, 451–455. [CrossRef]

200. Winie, T.; Majid, S.R.; Hassan, M.F.; Arof, A.K. Characterization of plasticized hexanoyl chitosan-based polymer electrolytes and application in LiCoO2/MCMB cells. *Mater. Sci. Forum* 2006, **517**, 85–88. [CrossRef]

201. Winie, T.; Arof, A.K. FT-IR studies on interactions among components in hexanoyl chitosan-based polymer electrolytes. *Spectrochim. Acta A Mol. Biomol. Spectrosc.* 2006, **63**, 677–684. [CrossRef] [PubMed]

202. Khair, A.S.A.; Majid, S.R.; Idris, N.H.; Hassan, M.F.; Puteh, R.; Arof, A.K. Ionic hopping transport in chitosan-based polymer electrolytes. *Mater. Sci. Forum* 2006, **517**, 237–241. [CrossRef]

203. Yahya, M.Z.A.; Ali, A.M.M.; Mohammat, M.F.; Hanafiah, M.A.K.M.; Mustaffa, M.; Ibrahim, S.C.; Darus, Z.M.; Harun, M.K. Ionic conduction model in salted chitosan membranes plasticized with fatty acid. *J. Appl. Sci.* 2006, **6**, 1287–1291.

204. Winie, T.; Majid, S.R.; Khiar, A.S.A.; Arof, A.K. Ionic conductivity of chitosan membranes and application for electrochemical devices. *Polym. Adv. Technol.* 2006, **17**, 523–527. [CrossRef]

205. Wan, Y.; Peppley, B.; Creber, K.A.M.; Bui, V.T.; Halliop, E. Preliminary evaluation of an alkaline chitosan-based membrane fuel cell. *J. Power Sources* 2006, **162**, 105–113. [CrossRef]

206. Ng, L.S.; Mohamad, A.A. Protonic battery based on a plasticized chitosan-NH4NO3 solid polymer electrolyte. *J. Power Sources* 2006, **163**, 382–385. [CrossRef]

207. Winie, T.; Arof, A.K. Transport properties of hexanoyl chitosan-based gel electrolyte. *Ionics* 2006, **12**, 149–152. [CrossRef]

208. Idris, N.H.; Senin, H.B.; Arof, A.K. Dielectric spectra of LiTFSI-doped chitosan/PEO blends. *Ionics* 2007, **13**, 213–217. [CrossRef]

209. Majid, S.R.; Arof, A.K. Mobility and density of ions in chitosan-orthophosphoric acid-ammonium nitrate electrolytes. *Phys. Status Solidi Appl. Mater. Sci.* 2007, **204**, 2396–2401. [CrossRef]

210. Mohamad, S.A.; Ali, M.H.; Yahya, R.; Ibrahim, Z.A.; Arof, A.K. Photovoltaic activity in a ZnSe/PEO-chitosan blend electrolyte junction. *Ionics* 2007, **13**, 235–240. [CrossRef]

211. Fuentes, S.; Retuert, P.J.; Gonzalez, G. Lithium ion conductivity of molecularly compatibilized chitosan-poly(aminopropyltriethoxysilane)-poly(ethylene oxide) nanocomposites. *Electrochim. Acta* 2007, **53**, 1417–1421. [CrossRef]

212. Pawlicka, A.; Danczuk, M.; Wieczorek, W.; Zygdal-Monikowska, E. Influence of plasticizer type on the properties of polymer electrolytes based on chitosan. *J. Phys. Chem. A* 2008, **112**, 8888–8895. [CrossRef] [PubMed]

213. Göktepe, F.; Çelik, S.U.; Bozkurt, A. Preparation and the proton conductivity of chitosan/poly(vinyl phosphonic acid) complex polymer electrolytes. *J. Non-Cryst. Solids* 2008, **354**, 3637–3642.

214. Ng, L.S.; Mohamad, A.A. Effect of temperature on the performance of proton batteries based on chitosan-NH4NO3-EC membrane. *J. Membr. Sci.* 2008, **325**, 653–657. [CrossRef]

215. Idris, N.K.; Aziz, N.A.N.; Zambr, M.S.M.; Zakaria, N.A.; Isa, M.I.N. Ionic conductivity studies of chitosan-based polymer electrolytes doped with adipic acid. *Ionics* 2009, **15**, 643–646. [CrossRef]

216. Majid, S.R.; Arof, A.K. Conductivity studies and performance of chitosan based polymer electrolytes in H2-air fuel cell. *Polym. Adv. Technol.* 2009, **20**, 524–528. [CrossRef]

217. Kadir, M.F.Z.A.; Teo, L.P.; Majid, S.R.; Arof, A.K. Conductivity studies on plasticised PEO/chitosan proton conducting polymer electrolyte. *Mater. Res. Innov.* 2009, **13**, 259–262. [CrossRef]

218. Du, J.F.; Bai, Y.; Pan, D.A.; Chu, W.Y.; Qiao, L.J. Characteristics of proton conducting polymer electrolyte based on chitosan acetate complexed with CH3COONH4. *J. Polym. Sci. Part B Polym. Phys.* 2009, **47**, 549–554. [CrossRef]

219. Muhammad, F.H.; Subban, R.H.Y.; Majid, S.R.; Winie, T.; Arof, A.K. Characterisation of Al2O3 doped hexanoyl chitosan–Li2Cf2SO4–EC polymer electrolytes. *Mater. Res. Innov.* 2009, **13**, 249–251. [CrossRef]

220. Muhammad, F.H.; Subban, R.H.Y.; Winie, T. Electrical studies on hexanoyl chitosan-based nanocomposite polymer electrolytes. *AIP Conf. Proc.* 2009, **1136**, 61–65.
221. Rosli, N.H.A.; Muhammad, F.H.; Subban, R.H.Y.; Winie, T. Structural and electrical studies of hexanoyl chitosan based electrolyte system. *Mater. Res. Innov.* 2011, 15, 1–4. [CrossRef]

222. Winie, T.; Ramesh, S.; Arof, A.K. Studies on the structure and transport properties of hexanoyl chitosan-based polymer electrolytes. *Phys. B Condens. Matter* 2009, 404, 4308–4311. [CrossRef]

223. Kumar, M.S.; Bhat, D.K. LiClO₄-doped plasticized chitosan as biodegradable polymer gel electrolyte for supercapacitors. *J. Appl. Polym. Sci.* 2009, 114, 2445–2454. [CrossRef]

224. Arof, A.K.; Buraidah, M.H.; Teo, L.P.; Majid, S.R.; Yahya, R.; Taha, R.M. Characterizations of chitosan-based polymer electrolyte photovoltaic cells. *Int. J. Photoenergy* 2010, 2010, 1–7.

225. Buraidah, M.H.; Teo, L.P.; Majid, S.R.; Arof, A.K. Characteristics of TiO₂/solid electrolyte junction solar cells with redox couple. *Opt. Mater.* 2010, 32, 723–728. [CrossRef]

226. Arof, A.K.; Buraidah, M.H.; Teo, L.P.; Majid, S.R.; Yahya, R.; Taha, R.M. Characteristics of chitosan-based polymer electrolytes with nanofillers. *Polym. Adv. Technol.* 2012, 23, 3261–3266. [CrossRef]

227. Aziz, N.A.; Majid, S.R.; Arof, A.K. Conductivity, structure, thermal properties of chitosan-based polymer electrolytes with nanofilbers. *Polym. Adv. Technol.* 2011, 22, 1345–1348. [CrossRef]

228. Singh, P.K.; Bhattacharya, B.; Nagarale, R.K.; Kim, K.-W.; Rhee, H.-W. Synthesis, characterization and application of biopolymer-ionic liquid composite membranes. *Synth. Met.* 2010, 160, 139–142. [CrossRef]

229. Kadir, M.F.Z.; Arof, A.K. Plasticized chitosan–PVA blend polymer electrolyte based proton battery. *Electrochim. Acta* 2010, 55, 1475–1482. [CrossRef]

230. Jaafar, N.K.; Lepit, A.; Aini, N.A.; Saat, A.; Ali, A.M.M.; Yahya, M.Z.A. Effects of lithium salt on chitosan-g-PMMA based polymer electrolytes. *Mater. Res. Innov.* 2011, 15, 202–205. [CrossRef]

231. Buraidah, M.H.; Teo, L.P.; Yusuf, S.N.F.; Noor, M.M.; Kufian, M.Z.; Careem, M.A.; Majid, S.R.; Taha, R.M.; Arof, A.K. TiO₂/chitosan-NH₄I+(+I₂)-BMII-based dye-sensitized solar cells with anthocyanin dyes extracted from black rice and red cabbage. *Int. J. Photoenergy* 2011, 2011, 1–11. [CrossRef]

232. Aziz, N.A.; Majid, S.R.; Yahya, R.; Arof, A.K. Conductivity, structure, thermal properties of chitosan-based polymer electrolytes with nanofilbers. *Polym. Adv. Technol.* 2011, 22, 1345–1348. [CrossRef]

233. Winie, T.; Han, C.C.; Subban, R.H.Y. Ac conductivity and dielectric properties of hexanoyl chitosan-LiClO₄-TiO₂ composite polymer electrolytes. *Adv. Mater. Res.* 2011, 335–336, 873–880. [CrossRef]

234. Kadir, M.F.Z.; Aspanut, Z.; Yahya, R.; Arof, A.K. Chitosan–PEO proton conducting polymer electrolyte membrane doped with NH₄NO₃. *Mater. Res. Innov.* 2011, 15, 164–167. [CrossRef]

235. Kadir, M.F.Z.; Arof, A.K. Application of PVA-chitosan blend polymer electrolyte membrane in electrical double layer capacitor. *Mater. Res. Innov.* 2011, 15, 217–220. [CrossRef]

236. Navaratnam, S.; Ramesh, K.; Basirun, W.J. Investigation of ion conducting behaviour of composite chitosan based polymer electrolytes. *Mater. Res. Innov.* 2011, 15, 184–186. [CrossRef]

237. Buraidah, M.H.; Arof, A.K. Characterization of chitosan/PVA blended electrolyte doped with NH₄I. *J. Non. Cryst. Solids* 2011, 357, 3261–3266. [CrossRef]

238. Mattos, R.I.; Raphael, E.; Majid, S.R.; Arof, A.K.; Pawlicka, A. Enhancement of electrical conductivity in plasticized chitosan based membranes. *Mol. Cryst. Liq. Cryst.* 2012, 554, 150–159. [CrossRef]

239. Aziz, N.A.; Majid, S.R.; Arof, A.K. Synthesis and characterizations of phthaloyl chitosan-based polymer electrolytes. *J. Non. Cryst. Solids* 2012, 358, 1581–1590. [CrossRef]

240. Xiong, Y.; Wang, H.; Wu, C.; Wang, R. Preparation and characterization of conductive chitosan-ionic liquid composite membranes. *Polym. Adv. Technol.* 2012, 23, 1429–1434. [CrossRef]

241. Winie, T.; Muhammad, F.H.; Rosli, N.H.A. Effect of anion size on the conductivity behaviour of hexanoyl chitosan-based polymer electrolytes. *Adv. Mater. Res.* 2012, 545, 317–320. [CrossRef]

242. Shukur, M.F; Kadir, M.F.Z.; Ahmad, Z.; Ithnin, R. Dielectric studies of proton conducting polymer electrolyte based on chitosan/PEO blend doped with NH₄NO₃. *Adv. Mater. Res.* 2012, 488–489, 583–587. [CrossRef]

243. Shukur, M.F; Kadir, M.F.Z.; Ahmad, Z.; Ithnin, R. Transport properties of chitosan/PEO blend based proton conducting polymer electrolyte. *Adv. Mater. Res.* 2012, 488–489, 114–117. [CrossRef]

244. Karuppasamy, K.; Thanikaikarasan, S.; Antony, R.; Balakumar, S.; Shajan, X.S. Effect of nanochitosan on electrochemical, interfacial and thermal properties of composite solid polymer electrolytes. *I onics* 2012, 18, 737–745. [CrossRef]

245. Alaei, I.; Al-Bat’hi, S.A.M. TiO₂/solid state polymer junction for photovoltaic application. *Adv. Mater. Res.* 2012, 576, 623–625. [CrossRef]
246. Mobarak, N.N.; Ramli, N.; Ahmad, A.; Abdullah, M.P. Development of carboxymethyl chitosan based green polymer electrolyte. J. Biobased Mater. Bioenergy 2013, 7, 267–268. [CrossRef]

247. Mobarak, N.N.; Ahmad, A.; Abdullah, M.P.; Ramli, N.; Rahman, M.Y.A. Conductivity enhancement via chemical modification of chitosan based green polymer electrolyte. Electrochim. Acta 2013, 92, 161–167. [CrossRef]

248. Sudhakar, Y.N.; Selvakumar, M.; Bhat, D.K. LiClO4-doped plasticized chitosan and poly(ethylene glycol) blend as biodegradable polymer electrolyte for supercapacitors. Ionics 2013, 19, 277–285. [CrossRef]

249. Winie, T.; Hanif, N.S.M.; Rosli, N.H.A.; Subban, R.H.Y. Ac conductivity study of hexanoyl chitosan-LiCF3SO3-EC-Al2O3 nanocomposite polymer electrolytes. Adv. Mater. Res. 2013, 667, 93–98. [CrossRef]

250. Shukur, M.F.; Azmi, M.S.; Illias, H.A.; Kadir, M.F.Z. Conductivity studies of chitosan-NH4Br incorporated with PVA and CuO in polymer electrolyte membranes. Ionics 2014, 20, 58–61. [CrossRef]

251. Hassan, F.; Woo, H.J.; Aziz, N.A.; Kufian, M.Z.; Majid, S.R. Synthesis of Al2TiO5 and its effect on the properties of chitosan-NH4SCN polymer electrolytes. Ionics 2013, 19, 483–489. [CrossRef]

252. Hamdan, K.Z.; Khiar, A.S.A. Conductivity and dielectric studies of methylcellulose. Key Eng. Mater. 2014, 594–595, 818–822.

253. Mobarak, N.N.; Ramli, N.; Ahmad, A.; Abdullah, M.P. Spectroscopic studies of carboxymethyl chitosan-ammonium triflate (NH4CF3SO3) based solid polymer electrolytes. AIP Conf. Proc. 2014, 1571, 843–849.

254. Jaafar, N.K.; Lepit, A.; Aini, N.A.; Ali, A.M.M.; Saat, A.; Yahya, M.Z.A. Structural and electrical properties of plasticized radiation induced chitosan grafted poly(methylmethacrylate) polymer electrolytes. Int. J. Electrochem. Sci. 2014, 9, 821–829.

255. Rosli, N.H.A.; Muhammad, F.H.; Han, C.; Winie, T. Effect of filler type on the electrical properties of hexanoyl chitosan-based polymer electrolytes. Adv. Mater. Res. 2014, 832, 224–227. [CrossRef]

256. Leones, R.; Sentanin, F.; Esperança, J.M.S.S.; Pawlicka, A.; De Zea Bermudez, V.; Silva, M.M. Chitosan and ionic liquid based solid polymer electrolytes: The anion alkyl chain length effect. ECS Trans. 2014, 61, 51–59. [CrossRef]

257. Taib, N.U.; Idris, N.H. Plastic crystal-solid biopolymer electrolytes for rechargeable lithium batteries. J. Membr. Sci. 2014, 468, 149–154. [CrossRef]

258. Hafiza, M.N.; Bashirah, A.N.A.; Bakar, N.Y.; Isa, M.I.N. Electrical properties of carboxyl methylcellulose/chitosan dual-blend green polymer doped with ammonium bromide. Int. J. Polym. Anal. Charact. 2014, 19, 151–158. [CrossRef]

259. Winie, T.; Jamal, A.; Hanif, N.S.M.; Shahri, N.S.M. Hexanoyl chitosan-poly(styrene) blend based composite polymer electrolyte with surface treated TiO2 fillers. Key Eng. Mater. 2014, 594–595, 656–660.

260. Winie, T.; Hanif, N.S.M.; Chan, C.H.; Arof, A.K. Effect of the surface treatment of the TiO2 fillers on the properties of hexanoyl chitosan/poly(styrene) blend-based composite polymer electrolytes. Ionics 2014, 20, 347–352. [CrossRef]

261. Winie, T.; Mohd Shahri, N.S. Conductivity enhancement by controlled percolation of inorganic salt in multiphase hexanoyl chitosan/poly(styrene) polymer blends. Front. Mater. Sci. 2015, 9, 132–140. [CrossRef]

262. Yusof, Y.M.; Illias, H.A.; Kadir, M.F.Z. Incorporation of NH4Br in PVA-chitosan blend-based polymer electrolyte and its effect on the conductivity and other electrical properties. Ionics 2014, 20, 1235–1245. [CrossRef]

263. Begum, S.N.S.; Pandian, R.; Aswal, V.K.; Ramasamy, R.P. Chitosan–gold–lithium nanocomposites as solid polymer electrolyte. J. Nanosci. Nanotechnol. 2014, 14, 5761–5773. [CrossRef]

264. Fauzi, I.; Arcana, I.M. Solid polymer electrolyte from phosphorylated chitosan. AIP Conf. Proc. 2014, 1589, 154–158.

265. Fadzallah, I.A.; Majid, S.R.; Careem, M.A.; Arof, A.K. Relaxation process in chitosan-oxalic acid solid polymer electrolytes. Ionics 2014, 20, 969–975. [CrossRef]

266. Fadzallah, I.A.; Majid, S.R.; Careem, M.A.; Arof, A.K. A study on ionic interactions in chitosan-oxalic acid polymer electrolyte membranes. J. Membr. Sci. 2014, 463, 65–72. [CrossRef]

267. Fauzi, I.; Arcana, I.M.; Wahyuningsrum, D. Synthesis and characterization of solid polymer electrolyte from N-succinyl chitosan and lithium perchlorate. Adv. Mater. Res. 2014, 896, 58–61. [CrossRef]
Materials 2020, 13, 838

268. Fauzi, I.; Wahyuningrum, D.; Arcana, I.M. The influence of succinyl groups and lithium perchlorate on chitosan membranes as electrolyte polymers. *Macromol. Symp.* 2015, 353, 185–190. [CrossRef]

269. Muhammad, F.H.; Fadzil, A.F.M.; Tan, W. FTIR and electrical studies of hexanoyl chitosan-based nanocomposite polymer electrolytes. *Adv. Mater. Res.* 2014, 1043, 36–39. [CrossRef]

270. Muhammad, F.H.; Subban, R.H.Y.; Winie, T. Structural and electrical characterization of hexanoyl chitosan-LiClO\(_4\)-TiO\(_2\)-DMC polymer electrolytes. *Key Eng. Mater.* 2014, 594–595, 608–612.

271. Khiar, A.S.A.; Radzi, S.M.; Razak, N.A. Effect of LiCF\(_3\)SO\(_3\) on L-chitosan/PMMA blend polymer electrolytes. *Mol. Cryst. Liq. Cryst.* 2014, 603, 66–72. [CrossRef]

272. Pandey, R.P.; Shahi, V.K. A N-o-sulphonic acid benzyl chitosan (NSBC) and N,N-dimethylene phosphonic acid propylsilane graphene oxide (NMPSGO) based multi-functional polymer electrolyte membrane with enhanced water retention and conductivity. *RSC Adv.* 2014, 4, 57200–57209. [CrossRef]

273. Arifin, N.A.; Khiar, A.S.A. Effect of BMITFSI to the electrical properties of methycellulose/chitosan/NH\(_4\)TF-based polymer electrolyte. *Proc. SPIE Int. Soc. Opt. Eng.* 2015, 9668, 1–7.

274. Shukur, M.F.; Kadir, M.F.Z. Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices. *Electrochim. Acta* 2015, 158, 152–165. [CrossRef]

275. Chupp, J.; Shellikeri, A.; Palui, G.; Chatterjee, J. Chitosan-based gel film electrolytes containing ionic liquid and lithium salt for energy storage applications. *J. Appl. Polym. Sci.* 2015, 132, 1–8. [CrossRef]

276. Shamsudin, I.J.; Ahmad, A.; Hassan, N.H.; Kaddami, H. Bifunctional ionic liquid in conductive biopolymer based on chitosan for electrochemical devices application. *Solid State Ion.* 2015, 278, 11–19. [CrossRef]

277. Muhammad, F.H.; Azmar, A.; Winie, T. Transport properties of hexanoyl chitosan-LiClO\(_4\)-TiO\(_2\) composite electrolyte. *AIP Conf. Proc.* 2015, 1674, 1–6.

278. Datta, R.S.; Said, S.M.; Shahrir, S.R.; Abdullah, N.; Sabri, M.F.M.; Balamurugan, S.; Miyazaki, Y.; Hayashi, K.; Hashim, N.A.; Habiba, U.; et al. Ionic liquid entrapment by electrospun polymer nanofibre matrix as a high conductivity polymer electrolyte. *RSC Adv.* 2015, 5, 48217–48223. [CrossRef]

279. Aziz, S.B.; Abidin, Z.H.Z. Ion-transport study in nanocomposite solid polymer electrolytes based on chitosan: Electrical and dielectric analysis. *J. Appl. Polym. Sci.* 2015, 132, 1–10. [CrossRef]

280. Abu Bakar, N.Y.; Muhamaruesa, N.H.M.; Aniskari, N.A.B.; Isa, M.I.N.M. Electrical studies of carboxy methycellulose-chitosan blend biopolymer doped dodecyltrimethyl ammonium bromide solid electrolytes. *Am. J. Appl. Sci.* 2015, 12, 40–46. [CrossRef]

281. Buraidah, M.H.; Teo, L.P.; Au Yong, C.M.; Shah, S.; Arof, A.K. Performance of polymer electrolyte based on chitosan blended with poly(ethylene oxide) for plasmic dye-sensitized solar cell. *Opt. Mater.* 2016, 57, 202–211. [CrossRef]

282. Sudaryanto; Yulianti, E.; Patimatuuzzohrah. Structure and properties of solid polymer electrolyte based on chitosan and ZrO\(_2\) nanoparticle for lithium ion battery. *AIP Conf. Proc.* 2016, 1710, 1–10.

283. Kalaiselvimary, J.; Pradeepa, P.; Sowmya, G.; Edwinraj, S.; Ramesh Prabhu, M. Electrical characterization of proton conducting polymer electrolyte based on bio polymer with acid dopant. *AIP Conf. Proc.* 2016, 1728, 1–4.

284. Yusuf, S.N.F.; Azzahari, A.D.; Yahya, R.; Majid, S.R.; Careem, M.A.; Arof, A.K. From crab shell to solar cell: A gel polymer electrolyte based on N-phthaloylchitosan and its application in dye-sensitized solar cells. *RSC Adv.* 2016, 6, 27714–27724. [CrossRef]

285. Fadzallah, I.A.; Noor, I.M.; Careem, M.A.; Arof, A.K. Investigation of transport properties of chitosan-based electrolytes utilizing impedance spectroscopy. *Ionics* 2016, 22, 1635–1645. [CrossRef]

286. Shirdast, A.; Sharif, A.; Abdollahi, M. Effect of the incorporation of sulfonated chitosan/sulfonated graphene oxide on the proton conductivity of chitosan membranes. *J. Power Sources* 2016, 306, 541–551. [CrossRef]

287. Aziz, S. Role of dielectric constant on ion transport: Reformulated Arrhenius equation. *Adv. Mater. Sci. Eng.* 2016, 2016, 1–11. [CrossRef]

288. Alves, R.; Sentanin, F.; Sabadini, R.C.; Pawlicka, A.; Silva, M.M. Influence of cerium triflate and glycerol on electrochemical performance of chitosan electrolytes for electrochromic devices. *Electrochim. Acta* 2016, 217, 108–116. [CrossRef]

289. Alves, R.; Donoso, J.P.; Magon, C.J.; Silva, I.D.A.; Pawlicka, A.; Silva, M.M. Solid polymer electrolytes based on chitosan and containing europium triflate. *J. Rare Earths* 2016, 432, 307–312.
290. Aziz, S.; Abdullah, O.G.; Rasheed, M.A.; Ahmed, H.M. Effect of high salt concentration (HSC) on structural, morphological, electrical characteristics of chitosan based solid polymer electrolytes. Polymers 2017, 9, 187. [CrossRef] [PubMed]

291. Pasini Cabello, S.D.; Ochoa, N.A.; Takara, E.A.; Mollá, S.; Compañ, V. Influence of pectin as a green polymer electrolyte on the transport properties of chitosan-pectin membranes. Carbohydr. Polym. 2017, 157, 1759–1768. [CrossRef] [PubMed]

292. Wang, J.; Song, S.; Gao, S.; Ravi, M.; Liu, R.; Ma, Q. Mg-ion conducting gel polymer electrolyte membranes containing biodegradable chitosan: Preparation, structural, electrical and electrochemical properties. Polym. Test. 2017, 62, 278–286. [CrossRef]

293. Muhammad, F.H.; Jamal, A.; Winie, T. Study on factors governing the conductivity performance of acylated chitosan-NaI electrolyte system. Ionics 2017, 23, 3045–3056. [CrossRef]

294. Alves, R.D.; Rodrigues, L.C.; Andrade, J.R.; Pawlicka, A.; Pereira, L.; Martins, R.; Fortunato, E.; Silva, M.M. Innovative electrolytes based on chitosan and thulium for solid state applications: Synthesis, structural, thermal characterization. J. Electroanal. Chem. 2017, 788, 156–164. [CrossRef]

295. Leones, R.; Sentanin, F.; Sabadini, R.C.; Rodrigues, L.C.; Marrucho, I.M.; Esperanca, J.M.S.S.; Pawlicka, A.; et al. A luminescent europium liquid ion to improve the performance of chitosan polymer electrolytes. Electrochim. Acta 2017, 240, 474–485. [CrossRef]

296. Leones, R.; Sabadini, R.C.; Esperança, J.M.S.S.; Pawlicka, A.; Silva, M.M. Effect of storage time on the ionic conductivity of chitosan-solid polymer electrolytes incorporating cyan-based ionic liquids. Electrochim. Acta 2017, 232, 22–29. [CrossRef]

297. Lima, E.; Raphael, E.; Sentanin, F.; Rodrigues, L.C.; Carlos, L.D.; Silva, M.M.; Pawlicka, A.; Silva, I.D.A.; Camargo, A.S.S.D.; Donoso, J.P.; Magon, C.J.; et al. Study and characterization of a novel polymer electrolyte based on agar doped with magnesium triflate. Polym. Test. 2017, 65, 278–286. [CrossRef]

298. Wang, W.; Guo, X.; Yang, Y.; Hu, H.; Zhou, C.H.; Xu, S.; Sebo, B.; Zhao, X.Z. Novel agarose polymer electrolyte for quasi-solid state dye-sensitized solar cell. J. Power Sources 2011, 196, 2410–2415. [CrossRef]

299. Wang, W.; Guo, X.; Yang, Y. Lithium iodide effect on the electrochemical behavior of agarose based polymer electrolyte for dye-sensitized solar cell. Electrochim. Acta 2011, 56, 7347–7351. [CrossRef]

300. Lima, E.; Raphael, E.; Sentanin, F.; Rodrigues, L.C.; Ferreira, R.A.S.; Carlos, L.D.; Silva, M.M.; Pawlicka, A. Photoluminescent polymer electrolyte based on agar and containing europium picate for electrochemical devices. Mater. Sci. Eng. B 2012, 177, 488–493. [CrossRef]

301. Leones, R.; Sentanin, F.; Rodrigues, L.C.; Marrucho, I.M.; Esperanca, J.M.S.S.; Pawlicka, A.; Silva, M.M. Investigation of polymer electrolytes based on agar and agar liquids. Express Polym. Lett. 2012, 6, 1007–1016. [CrossRef]

302. Yang, X.; Yi, P.; Zhou, C.; Cui, J.; Zheng, X.; Xiao, S.; Guo, X.; Wang, W. Magnetic field processed solid-state dye-sensitized solar cells with nickel oxide modified agarose electrolyte. J. Power Sources 2013, 243, 919–924. [CrossRef]

303. Guo, X.Y.; Yi, P.F.; Wang, W.J.; Xiao, S.; Yang, Y. Effects of polyethylene glycol on agarose-based magnetic polymer electrolyte for dye-sensitized solar cell. Adv. Mater. Res. 2013, 652–654, 860–864. [CrossRef]

304. Guo, X.; Yi, P.; Yang, Y.; Cui, J.; Xiao, S.; Wang, W. Effects of surfactants on agarose-based magnetic polymer electrolyte for dye-sensitized solar cells. Electrochim. Acta 2013, 90, 524–529. [CrossRef]

305. Koh, J.C.H.; Ahmad, Z.A.; Mohamad, A.A. Bacto agar-based gel polymer electrolyte. Ionics 2012, 18, 359–364. [CrossRef]

306. Alves, R.D.; Rodrigues, L.C.; Andrade, J.R.; Pawlicka, A.; Pereira, L.; Martins, R.; Fortunato, E.; Silva, M.M. Study and characterization of a novel polymer electrolyte based on agar doped with magnesium triflate. Mol. Cryst. Liq. Cryst. 2013, 570, 1–11. [CrossRef]

307. Yang, X.; Cui, J.; Yi, P.; Zheng, X.; Guo, X.; Wang, W. Effects of nanoparticle additives on the properties of agarose polymer electrolytes. J. Power Sources 2014, 248, 988–993. [CrossRef]

308. Boopathi, G.; Pugalendhi, S.; Selvasekarapandian, S.; Premalatha, M.; Monisha, S.; Aristatil, G. Development of proton conducting biopolymer membrane based on agar-agar for fuel cell. Ionics 2016, 23, 1–10. [CrossRef]
310. Raphael, E.; Jara, D.H.; Schiavon, M.A. Optimizing photovoltaic performance in CuInS₂ and CdS quantum dot-sensitized solar cells by using an agar-based gel polymer electrolyte. *RSC Adv.* 2017, 7, 6492–6500. [CrossRef]

311. Selvalakshmi, S.; Vijaya, N.; Selvasekarapandian, S.; Premalatha, M. Biopolymer agar-agar doped with NH₄SCN as solid polymer electrolyte for electrochemical cell application. *J. Appl. Polym. Sci.* 2017, 134, 1–10. [CrossRef]

312. Selvalakshmi, S.; Mathavan, T.; Selvasekarapandian, S.; Premalatha, M. Study on NH₄I composition effect in agar-agar-based biopolymer electrolyte. *Ionomics* 2017, 23, 1–7. [CrossRef]

313. Nadia, S.R.; Khanmirzaei, M.H.; Ramesh, S.; Ramesh, K. Quasi-solid-state agar-based polymer electrolytes for dye-sensitized solar cell applications using imidazolium-based ionic liquid. *Ionomics* 2017, 23, 1585–1590. [CrossRef]

314. Shamsudin, I.J.; Ahmad, A.; Hassan, N.H.; Kaddami, H. Solid biopolymer electrolyte based on κ-Carrageenan for electrochemical devices application. *Asian J. Chem.* 2016, 28, 77–80. [CrossRef]

315. Jumaah, F.N.; Mobarak, N.N.; Ahmad, A.; Ghani, M.A.; Rahman, M.Y.A. Derivative of iota-carrageenan as gel electrolyte in flexible quasi-solid-state dye-sensitized solar cell. *Electrochim. Acta* 2015, 175, 1–7. [CrossRef]

316. Chan, S.; Bantang, J.P.; Camacho, D. Influence of nanomaterial fillers in biopolymer electrolyte system for squaraine-based dye-sensitized solar cells. *Int. J. Electrochem. Sci.* 2015, 10, 7696–7706.

317. Rudhziah, S.; Ahmad, A.; Mohamed, N.S. The effect of lithium iodide to the properties of carboxymethyl κ-carrageenan/carboxymethyl cellulose polymer electrolyte and dye-sensitized solar cell performance. *Polymers* 2016, 8, 1–10.

318. Karthikeyan, S.; Selvasekarapandian, S.; Premalatha, M.; Monisha, S.; Boopathi, G.; Aristatil, G.; Arun, A.; Madeswaran, S. Proton-conducting I-Carrageenan-based biopolymer electrolyte for fuel cell application. *Ionomics* 2016, 23, 1–6. [CrossRef]

319. Pérez-Madrigal, M.M.; Estrany, F.; Armelin, E.; Díaz, D.D.; Alemán, C. Towards sustainable solid-state supercapacitors: Electroactive conducting polymers combined with biohydrogels. *J. Mater. Chem. A* 2016, 4, 1792–1805. [CrossRef]

320. Mishra, R.K.; Datt, M.; Banthia, A.K.; Majeed, A.B.A. Development of novel pectin based membranes as proton conducting material. *Int. J. Plast. Technol.* 2012, 16, 80–88. [CrossRef]

321. Leones, R.; Botelho, M.B.S.; Sentanin, F.; Cesario, I.; Pawlicka, A.; Camargo, A.S.S.; Silva, M.M. Pectin-based polymer electrolytes with Ir(III) complexes. *Mol. Cryst. Liq. Cryst.* 2014, 604, 117–125. [CrossRef]

322. Vijaya, N.; Selvasekarapandian, S.; Sornalatha, M.; Sujithra, K.S.; Monisha, S. Proton-conducting biopolymer electrolytes based on pectin doped with NH₄X (X = Cl, Br). *Ionomics* 2016, 23, 1–10. [CrossRef]

323. Mendes, J.P.; Esperança, J.M.S.S.; Medeiros, M.J.; Pawlicka, A.; Silva, M.M. Structural, morphological, ionic conductivity, thermal properties of pectin-based polymer electrolytes. *Mol. Cryst. Liq. Cryst.* 2017, 643, 266–273. [CrossRef]

324. Khalid, M.; Hartono, A.M.B. Ionically conducting and environmentally safe gum Arabic as a high-performance gel-like electrolyte for solid-state supercapacitors. *J. Solid State Electrochem.* 2017, 21, 2443–2447. [CrossRef]

325. Mattos, R.I.; Pawlicka, A.; Tambelli, C.E.; Donoso, J.P. NMR and conductivity study of gelatin-based polymer electrolytes. *Mol. Cryst. Liq. Cryst.* 2008, 483, 120–129. [CrossRef]

326. Silva, M.M.; Barbosa, P.C.; Rodrigues, L.C. New developments in conducting polymers based on commercial gelatin. *ECS Trans.* 2009, 16, 413–419.

327. Li, Q.; Wu, J.; Tang, Z.; Xiao, Y.; Huang, M.; Lin, J. Application of poly(acrylic acid-g-gelatin)/polypyrrole gel electrolyte in flexible quasi-solid-state dye-sensitized solar cell. *Electrochim. Acta* 2010, 55, 2777–2781. [CrossRef]
331. Mattos, R.I.; Pawlicka, A.; Lima, J.F.; Tambelli, C.E.; Magon, C.J.; Donoso, J.P. Magnetic resonance and conductivity study of gelatin-based proton conductor polymer electrolytes. *Electrochim. Acta* 2010, 55, 1396–1400. [CrossRef]

332. Vieira, D.F.; Pawlicka, A. Optimization of performances of gelatin/LiBF₄-based polymer electrolytes by plasticizing effects. *Electrochim. Acta* 2010, 55, 1489–1494. [CrossRef]

333. Lima, E.; Mattos, R.; Sentanin, F.; Rodrigues, L.C.; Silva, M.M.; Ferreira, R.A.S.; Carlos, L.D.; Pawlicka, A. Functional novel polymer electrolytes containing europium picrate. *Mater. Res. Innov.* 2011, 15, 1–6. [CrossRef]

334. Basu, T.; Middya, T.R.; Tarafdar, S. Ion-conductivity study and anomalous diffusion analysis of a gelatin-based polymer gel electrolyte. *Electrochim. Acta* 2011, 57, 187–191. [CrossRef]

335. Basu, T.; Giri, A.; Tarafdar, S.; Das, S. Electrical impedance response of gamma irradiated gelatin based solid polymer electrolytes analyzed using a generalized calculus formalism. *J. Electroanal. Chem.* 2015, 755, 52–62. [CrossRef]

336. Ponez, L.; Sentanin, F.C.; Majid, S.R.; Arof, A.K.; Pawlicka, A. Ion-conducting membranes based on gelatin and containing LiI/Li₂ for electrochromic devices. *Mol. Cryst. Liq. Cryst.* 2012, 554, 239–251. [CrossRef]

337. Basu, T.; Goswami, M.M.; Middya, T.R.; Tarafdar, S. Morphology and ion-conductivity of gelatin-LiClO₄ films: Fractional diffusion analysis. *J. Phys. Chem. B* 2012, 116, 11362–11369. [CrossRef]

338. Basu, T.; Giri, A.; Tarafdar, S.; Das, S. Electrical impedance response of gamma irradiated gelatin based solid polymer electrolytes analyzed using a generalized calculus formalism. *J. Electroanal. Chem.* 2015, 755, 52–62. [CrossRef]

339. Mattos, R.I.; Pawlicka, A.; Lima, J.F.; Tambelli, C.E.; Magon, C.J.; Donoso, J.P. Magnetic resonance and conductivity study of gelatin-based proton conductor polymer electrolytes analyzed using a generalized calculus formalism. *J. Electroanal. Chem.* 2013, 130, 3018–3024. [CrossRef]

340. Alves, R.D.; Rodrigues, L.C.; Andrade, J.R.; Fernandes, M.; Pinto, J.V.; Pereira, L.; Pawlicka, A.; Martins, R.; Fortunato, E.; Bermudez, V.D.Z.; et al. Gelatin/Zn(CF₃SO₃)₂ polymer electrolytes for electrochromic devices. *Electroanalysis* 2013, 25, 1483–1490. [CrossRef]

341. Ramadan, R.; Kamal, H.; Hashem, H.M.; Abdel-Hady, K. Gelatin-based solid electrolyte releasing Li⁺ for smart window applications. *Sol. Energy Mater. Sol. Cells* 2014, 127, 147–156. [CrossRef]

342. Sharma, S.; Khannam, M.; Boruah, M.; Nath, B.C.; Dolui, S.K. Development of dye-sensitized solar cells based on gold/gelatin gel electrolyte: Effect of different aspect ratio of gold nanocrystals. *IEEE J. Photovolt.* 2015, 5, 1665–1673. [CrossRef]

343. Leones, R.; Sabadini, R.C.; Sentanin, F.C.; Esperança, J.M.S.S.; Pawlicka, A.; Silva, M.M. Polymer electrolytes for electrochromic devices from solvent casting and sol–gel routes. *Sol. Energy Mater. Sol. Cells* 2017, 169, 98–106. [CrossRef]

344. Idris, R.; Glassé, M.D.; Latham, R.J.; Linford, R.G.; Schindlein, W.S. Polymer electrolytes based on modified natural rubber for used in rechargeable lithium batteries. *J. Power Sources* 2001, 94, 206–211. [CrossRef]

345. Glassé, M.D.; Idris, R.; Latham, R.J.; Linford, R.G.; Schindlein, W.S. Polymer electrolytes based on modified natural rubber. *Solid State Ion.* 2002, 147, 289–294. [CrossRef]

346. Kumutha, K.; Alias, Y.; Said, R. FTIR and thermal studies of modified natural rubber based polymer electrolytes. *Ionics* 2005, 11, 472–476. [CrossRef]

347. Aziz, M.; Latif, F.; Chew, C.L.; Katun, N. The impedance spectroscopy studies of PVC/ENR 50/LiCF₃SO₃. *Solid State Phenom.* 2006, 111, 67–70. [CrossRef]

348. Ali, A.M.M.; Yahya, M.Z.A.; Bahron, H.; Subban, R.H.Y. Electrochemical studies on polymer electrolytes based on poly(methyl methacrylate)-grafted natural rubber for lithium polymer battery. *Ionics* 2006, 12, 303–307. [CrossRef]

349. Latif, F.; Aziz, M.; Ali, A.M.M.; Yahya, M.Z.A. The coagulation impact of 50% epoxidised natural rubber chain in ethylene carbonate-plasticized solid electrolytes. *Macromol. Symp.* 2009, 277, 62–68. [CrossRef]

350. Kamisan, A.S.; Kudin, T.I.T.; Ali, A.M.M.; Yahya, M.Z.A. Gel polymer electrolyte based on methyl-grafted natural rubber for proton batteries. *Mater. Res. Innov.* 2009, 13, 263–265. [CrossRef]

351. Su’aït, M.S.; Ahmad, A.; Hamzah, H.; Rahman, M.Y.A. Preparation and characterization of PMMA-MG49-LiClO₄ solid polymeric electrolyte. *J. Phys. D. Appl. Phys.* 2009, 42, 1–5.

352. Low, S.P.; Ahmad, A.; Rahman, M.Y.A. Effect of ethylene carbonate plasticizer and TiO₂ nanoparticles on 49% poly(methyl methacrylate) grafted natural rubber-based polymer electrolyte. *Ionics* 2010, 16, 821–826. [CrossRef]
Materials 2020, 13, 838

353. Kamisan, A.S.; Kudin, T.I.T.; Ali, A.M.M.; Yahya, M.Z.A. Electrical and physical studies on 49% methyl-grafted natural rubber-based composite polymer gel electrolytes. *Electrochim. Acta* 2011, 57, 207–211. [CrossRef]

354. Ahmad, A.; Rahman, M.Y.A.; Su’ait, M.S.; Hamzah, H. Study of MG49-PMMA based solid polymer electrolyte. *Open Mater. Sci.* J. 2011, 5, 170–177. [CrossRef]

355. Kamisan, A.S.; Kudin, T.I.T.; Ali, A.M.M.; Yahya, M.Z.A. Polymer gel electrolytes based on 49% methyl-grafted natural rubber. *Sains Malays.* 2011, 40, 49–54.

356. Zaki, N.H.M.; Mahmud, Z.S.; Adam, N.I.; Ahmad, A.H.; Ali, A.M.M.; Yahya, M.Z.A. Characterization of plasticized grafted natural rubber-30% poly(methyl methacrylate) (MG30) based polymer electrolytes. In Proceedings of the 2012 IEEE Symposium on Business, Engineering and Industrial Applications, Bandung, Indonesia, 23–26 September 2012; pp. 705–708.

357. Rahman, M.Y.A.; Ahmad, A.; Lee, T.K.; Farina, Y.; Dahlan, H.M. LiClO4 salt concentration effect on the properties of PVC-modified low molecular weight LENR50-based solid polymer electrolyte. *Polym. Polym. Compos.* 2012, 124, 2227–2233. [CrossRef]

358. Zainal, N.; Mohamed, N.S.; Idris, R. Properties of ENR-50 based electrolyte system. *Sains Malays.* 2013, 42, 481–485.

359. Jafirin, S.; Ahmad, I.; Ahmad, A. Potential use of cellulose from kenaf in polymer electrolytes based on MG49 rubber composites. *BioResources* 2013, 8, 5947–5964. [CrossRef]

360. Ali, A.M.M.; Subban, R.H.Y.; Bahron, H.; Yahya, M.Z.A.; Kamisan, A.S. Investigation on modified natural rubber gel polymer electrolytes for lithium polymer battery. *J. Power Sources* 2013, 244, 636–640. [CrossRef]

361. Ataollahi, N.; Ahmad, A.; Hamzah, H.; Rahman, M.Y.; Mohamed, N.S. Effects of LiCF3SO3 on PVDF-HFP/MG49 (70/30) based blend polymer electrolyte. *Appl. Mech. Mater.* 2013, 313–314, 117–120. [CrossRef]

362. Ataollahi, N.; Ahmad, A.; Hamzah, H.; Rahman, M.Y.A.; Mohamed, N.S. Ionic conduction of blend poly(vinylidene fluoride-hexafluoro propylene) and poly(methyl methacrylate)-grafted natural rubber based solid polymer electrolyte. *Int. J. Electrochem. Sci.* 2013, 8, 7875–7884.

363. TianKhoon, L.; Ataollahi, N.; Hassan, N.H.; Ahmad, A. Studies of porous solid polymeric electrolytes based on poly(vinylidene fluoride) and poly(methyl methacrylate) grafted natural rubber for applications in electrochemical devices. *J. Solid State Electrochem.* 2016, 20, 203–213. [CrossRef]

364. Idris, R.; Bujang, N.H. Epoxidised natural rubber based polymer electrolyte systems for electrochemical device applications. *Adv. Mater. Res.* 2014, 896, 62–65. [CrossRef]

365. Ataollahi, N.; Ahmad, A.; Lee, T.K.; Abdullah, A.R.; Rahman, M.Y.A. Preparation and characterization of PVDF-MG49-NH4CF3SO3 based solid polymer electrolyte. *e-Polymers* 2014, 14, 115–120. [CrossRef]

366. Jafirin, S.; Ahmad, I.; Ahmad, A. Carboxymethyl cellulose from kenaf reinforced composite polymer electrolytes based 49% poly(methyl methacrylate) -grafted natural rubber. *Malays. J. Anal. Sci.* 2014, 18, 376–384.

367. Tiankhoon, L.; Hassan, N.H.; Rahman, M.Y.A.; Vedarajan, R.; Matsumi, N.; Ahmad, A. One-pot synthesis of nano-hybrid ZrO2-TiO2 fillers in 49% poly(methyl methacrylate) grafted natural rubber (MG49) based nano-composite polymer electrolyte for lithium ion battery application. *Solid State Ion.* 2015, 267, 72–79. [CrossRef]

368. Nazir, K.; Aziz, A.F.; Adam, N.I.; Yahya, M.Z.A.; Ali, A.M.M. Effect of epoxidation on 30% poly(methyl methacrylate)-grafted natural rubber polymer electrolytes. *AIP Conf. Proc.* 2015, 1674, 1–6.

369. Chan, C.H.; Kamber, H.W. Impedance spectroscopy of polymer electrolytes based on epoxidized natural rubber with 50 mol% epoxide content. *Polym. Eng. Sci.* 2015, 55, 2250–2255. [CrossRef]

370. Jamal, A.; Muhammad, F.H.; Ali, A.M.M.; Winie, T. Blends of hexanoyl chitosan/epoxidized natural rubber doped with EMImTFSI. *Ionics* 2017, 23, 357–366. [CrossRef]

371. Chan, C.H.; Kamber, H.W. Impedance spectra of polymer electrolytes. *Ionics* 2017, 23, 2327–2337. [CrossRef]

372. Zimmermann, J.; Jürgensen, N.; Morfa, A.J.; Wang, B.; Tekoglu, S.; Hernandez-Sosa, G. Poly(lactic-co-glycolic acid) (PLGA) as ion-conducting polymer for biodegradable light-emitting electrochemical cells. *ACS Sustain. Chem. Eng.* 2016, 4, 7050–7055. [CrossRef]

373. Neto, M.J.; Sentanin, F.; Esperanca, J.M.S.S.; Medeiros, M.J.; Pawlicka, A.; Bermudez, V.D.Z.; Silva, M.M. Gellan gum—Ionic liquid membranes for electrochromic device application. *Solid State Ion.* 2015, 274, 64–70. [CrossRef]
374. Singh, R.; Bhattacharya, B.; Rhee, H.W.; Singh, P.K. Solid gellan gum polymer electrolyte for energy application. *Int. J. Hydrogen Energy* 2015, 40, 9365–9372. [CrossRef]

375. Sudhakar, Y.N.; Selvakumar, M.; Krishna Bhat, D. Effect of acid dopants in biodegradable gel polymer electrolyte and the performance in an electrochemical double layer capacitor. *Phys. Scr.* 2015, 90, 1–12. [CrossRef]

376. Singh, R.; Polu, A.R.; Bhattacharya, B.; Rhee, H.W.; Varlikli, C.; Singh, P.K. Perspectives for solid biopolymer electrolytes in dye sensitized solar cell and battery application. *Renew. Sustain. Energy Rev.* 2016, 65, 1098–1117. [CrossRef]

377. O’Regan, B.; Gratzel, M. A low-cost, high-efficiency solar cell based on dye sensitized colloidal TiO$_2$ films. *Nature* 1991, 353, 737–740. [CrossRef]

378. Wu, J.; Lan, Z.; Hao, S.; Li, P.; Lin, J.; Huang, M.; Fang, L.; Huang, Y. Progress on the electrolytes for dye-sensitized solar cells. *Pure Appl. Chem.* 2008, 80, 2241–2258. [CrossRef]

379. Adedokun, O.; Titilope, K.; Awodugba, A.O. Review on natural dye-sensitized solar cells (DSSCs). *Int. J. Eng. Technol.* 2016, 2, 34–41. [CrossRef]

380. Alias, S.S.; Mohamad, A.A. Effect of NH$_4$I and I$_2$ concentration on agar gel polymer electrolyte properties for a dye-sensitized solar cell. *Ionics* 2013, 19, 1185–1194. [CrossRef]

381. Hsu, H.L.; Tien, C.F.; Yang, Y.T.; Leu, J. Dye-sensitized solar cells based on agarose gel electrolytes using allylimidazolium iodides and environmentally benign solvents. *Electrochim. Acta* 2013, 91, 208–213. [CrossRef]

382. Singh, R.; Jadhav, N.A.; Majumder, S.; Bhattacharya, B.; Singh, P.K. Novel biopolymer gel electrolyte for dye-sensitized solar cell application. *Carbohydr. Polym.* 2013, 91, 682–685. [CrossRef] [PubMed]

383. Ibrahim, S.; Ahmad, A.; Mohamed, N.S. Comprehensive studies on polymer electrolyte and dye-sensitized solar cell developed using castor oil-based polyurethane. *J. Solid State Electrochem.* 2018, 22, 461–470. [CrossRef]

384. Su’ait, M.S.; Jumaah, F.N.; Faizzi, H.M.; Mamat, S.; Ludin, N.A.; Farhan, W.A.; Haron, A.; Atifah, N.; Latif, M.N.; Badri, K.H.; et al. Palm-based polyurethane-ionic liquid gel polymer electrolyte for quasi-solid state dye sensitized solar cell. *Ind. Crop. Prod.* 2018, 113, 406–413. [CrossRef]