Abstract

As a gamete, oocyte needs to maintain its genomic integrity and passes this haploid genome to the next generation. However, fully-grown mouse oocyte cannot respond to DNA double-strand breaks (DSBs) effectively and it is also unable to repair them before the meiosis resumption. To compensate for this disadvantage and control the DNA repair events, oocyte needs the cooperation with its surrounding cumulus cells. Recently, evidences have shown that nuclear actin filament formation plays roles in cellular DNA DSB repair. To explore whether these nuclear actin filaments are formed in the DNA-damaged oocytes, here, we labeled the filament actins in denuded oocytes (DOs) and cumulus-enclosed oocytes (CEOs). We observed that the nuclear actin filaments were formed only in the DNA-damaged CEOs, but not in DOs. Formation of actin filaments in the nucleus was an event downstream to the DNA damage response. Our data also showed that the removal of cumulus cells led to a reduction in the nuclear actin filaments in oocytes. Knocking down of the Adcy1 gene in cumulus cells did not affect the formation of nuclear actin filaments in oocytes. Notably, we also observed that the nuclear actin filaments in CEOs could be induced by inhibition of gap junctions. From our results, it was confirmed that DNA DSBs induce the nuclear actin filament formation in oocyte and which is controlled by the cumulus cells.

Introduction

The oocytes of mammalian females are arrested at the diplotene stage of first meiosis before or after their birth [1, 2]. The arrested oocyte, with its surrounding granulosa cells, forms the primordial follicle. This follicle may last for several months in case of mice and up to 10 years in humans [3]. By puberty, a part of the primordial follicles are activated and the granulosa-
enclosed oocytes begin to grow. The follicle development takes about 3 weeks in mice and more than 10 months in humans [4]. When the follicles developed to the large antral follicle stage, the cumulus cell enclosed oocytes (CEOs) grow to the maximum size [5]. Under the stimulation of luteinizing hormone (LH), oocytes resume their first meiosis and are released from the ovary [6]. As a gamete, the genome integrity is essential for oocyte pass its genome to the newly formed embryo, however, some recent evidences had shown that denuded oocytes are less sensitive to the DNA double-strand breaks (DSBs) during the first meiosis resumption [7–9].

In somatic cells, DNA DSBs are firstly sensed by the Mre11/Rad50/Nbs1 (MRN) complex, and the MRN complex recruit and activate the ATM enzyme [10]. The activated ATM further phosphorylates the Serine139 of histone H2A.X to γH2A.X, which formed foci at the DSBs sites [11]. In addition, ATM also phosphorylates the DNA damage checkpoint protein Chek2 and pChek2 blocks the cell cycle and activates a serious of DNA repaired proteins [12]. If somatic cell DNA damage could not be repaired or be correctly repaired, it can lead to large scope aberrations in the genome and result in cell cycle arrest or the cell apoptosis [13]. However, for denuded oocytes (DO), slight DSBs are unable to activate the DNA damage repair pathway, and the oocytes with partial DSBs could be fertilized when the oocyte developed to the metaphase of the second meiosis [14–16]. In our previous study, we found the DNA damage response of oocytes was regulated by their surrounding cumulus cells, however, the mechanism details still haven’t been deep investigated [17].

In the cytoplasm, actin filaments mainly function as cytoskeleton to maintain cell shape and support cargo transportation. However, actin is also present in the nucleus, it plays more important roles that has been associated with many processes including gene expression, the regulation of transcription and nucleo-cytoplasmic trafficking [8, 11, 18]. Recently, a study has shown that DNA DSBs induced actin filament formation in the nucleus, which is essential for DNA damage repair [19]. For oocyte, cytoplasmic actin filaments serve as one of the main cytoskeletal systems, they could regulate various events during oocyte meiotic maturation and polarity [13]. By now, there is still no evidences showed whether the actin filament exist in the nucleus of DNA damaged oocytes. The primary focus of the present study is to analyze the nuclear actin filaments in oocyte nucleus and their association with the DNA DSBs.

Materials and Methods

Ethics statement

This study has been approved by the Animal Care and Ethics Committee of Qingdao Agricultural University. All animal manipulations were carried out according to the guidelines of the Animal Care and Ethics Committee. About 5–8-weeks old ICR strain mice were purchased from the Wenbo experimental animal breeding center at Qingdao city. Cervical dislocation method was used for mouse euthanasia.

Isolation and culture of oocytes and cumulus cells

CEOs were isolated from ovaries of female ICR outbred mice 48 h post pregnant mare serum gonadotropin (PMSG) (10 IU) injection. DOs were isolated from ovaries of female ICR mice without PMSG injection. All oocyte manipulations were carried out in M2 medium (Sigma Aldrich, USA). For all the experiments, we used 2.5 μM milrinone (AmyJet Scientific, China) to block the CEOs or DOs at the germinal vesicle (GV) stage. Cumulus cells removed from the cumulus-oocyte complex (COCs) were cultured in the DMEM (Sangon) medium with 10% FBS (Sangon).
Treatment of oocytes with drugs

In our experiments, we treated CEOs and DOs with 10 μM or 40 μM bleomycin (Selleck) to induce DNA DSBs [14]. We used the checkpoint kinase inhibitor, AZD7762 (10 nM; Med-ChemExpress, China), to inhibit the activity of DNA-damage checkpoint protein, Chek1/2 [20]. In addition, for blocking the gap-junctions in COC, 200 μM carbenoxolone (CBX; Sigma Aldrich, USA) was used.

RNA-interference (RNAi)-mediated knock-down of Adcy1

The sequence of siRNAs used to knock-down Adcy1 in cumulus cells was 5’- GCUGGUGAAACUGCUAAUTT-3’; and the sequence of siRNA used as negative control was 5’- UUCUCCGAAACGUGUCACGUTT-3’. The COCs were blocked in milrinone and cultured in 24-well plates. Lipofectamine 2000 (Thermo Fisher Scientific, USA) was used to transfect the siRNAs into cumulus cells, according to the manufacturer’s instructions. After 48 h, the COCs were either used for qRT-PCR or treated with BLM. To assess the rate of RNAi through qRT-PCR, total mRNA extraction was carried out from COCs, using the RNeasy Micro Kit (Qiagen Inc, Germany), followed by cDNA synthesis using TansScript One-step gRNA Removal and cDNA Synthesis Supermix (TransGen Biotech, China). qRT-PCR was performed on the LightCycler 480 II system (Roche Biotech, Switzerland), using SGExcel UltraSYBR mixture (Sangon Biotech, China). The primers used for qRT-PCR were: Gapdh forward, 5’-GTCATTGAGAGCAATGCCAG-3’; Gapdh reverse, 5’-GTGTTCCTACCCCCAATGTG-3’; Adcy1 forward, 5’-GTGGTGGCTGCCTCGCACTT-3’; and Adcy1 reverse, 5’-AGCAGGGCATTGGCACCGAG-3’.

Immunostaining

To label the antibodies in oocytes, COCs and DOs were fixed in paraformaldehyde [4% solution in phosphate-buffered saline (PBS)] for 40 min, followed by permeabilization using Triton X-100 (0.1% solution in PBS) for 20–40 min. Thereafter, the oocytes were blocked with PBS containing 1% BSA for 1 h at room temperature. This was followed by incubation of oocytes with γH2A.X polyclonal antibody (1:500, Bioworld Technology, USA) overnight at 4˚C. Next, the oocytes were washed with PBST buffer 3 times and incubated with secondary antibody (Anti-Rabbit IgG FITC polyclonal antibody; Sigma Aldrich, USA). This was followed by washing with PBST five times. To label the actin, oocytes were stained with tetramethylrhodamine-conjugated Phalloidin stain (AAT Bioquest, USA) for 20 min, and washed five times with PBST. Hoechst stain was used to label the nuclear DNA. Finally, the oocytes were mounted on slides and examined under a confocal laser scanning microscope (Leica, TCS SP5, Leica Microsystems).

Western blot

The cultured mouse cumulus cell were sufficiently dissolved in 30 μL of RIPA buffer and incubated on the ice for 30 min, then added into 10 μL of 5 x SDS-PAGE (Beyotime) to centrifuge for 5 min and heated boiled water for 5 min. After that the electrophoresis, the protein were transferred to a PVDF membrane using the wet blotting system. Then the membrane was washed 3 times in TBST and blocked in 5% BSA at 4˚C for 4 hours. Next, the membrane was washed in TBST for three times and incubated the Adcy1 antibody (Sigma) with dilution 1:500 at 4˚C overnight. The membrane was washed in TBST for three times and the incubation of secondary antibody at room temperature for 2 h. After washing 3 times, the membranes were scanned with FluorChem FC3 and analyzed with AlphaView SA software (ProteinSimple, USA).
Statistical analysis

Student’s t-test and Fisher’s exact test were performed for assessment of significance of differences. Significant differences (0.01 < p < 0.05) were marked with single asterisk (*), and extremely significant differences (p < 0.01) were marked with double asterisks (**).

Results

DNA DSBs induced formation of actin filaments in oocyte nucleus

DOs were treated with or without BLM (10 μM and 40 μM) for 1 h to induce DNA DSBs. Then the actin filaments in oocytes were labeled with phalloidin. As a result, actin filaments were not observed in the GVs of both control oocytes and the DNA damaged oocytes (Fig 1). However, phalloidin staining of the COCs upon induction of DNA DSBs by the same method revealed the formation of nuclear actin filaments in GVs of DNA damaged CEOs (Fig 2). The results obtained also showed that with an increase in the extent of DNA damage, there was an increase in the number and length of nuclear actin filaments (Fig 2). When COCs were treated with BLM for varying time durations, nuclear actin filament formation was detected in the 1h- and 2h-treated groups, but not in the 0.5h-treated group, indicating that the nuclear actin filaments do not form immediately after the induction of DNA DSBs (Fig 3).

Subsequently, AZD7762 was used to inhibit the activity of Chek1/2 protein, a conductor of the DNA damage signals [12]. When the COCs were treated with BLM and AZD7762, it was
Fig 2. Formation of nuclear actin filaments in DNA-damaged CEOs. Treatment of CEOs with BLM for 1 h led to actin filament formation in oocyte nuclei (marked by white asterisks in the zoom-in images from last panel).

doi:10.1371/journal.pone.0170308.g002

Fig 3. Nuclear actin filament formation upon treatment of CEOs with BLM for different time points. The nuclear actin filaments could be detected in the CEOs that were treated with BLM for 1 h or 2 h, but not in the ones treated with BLM for 0.5 h.

doi:10.1371/journal.pone.0170308.g003
observed that AZD7762 inhibited the nuclear actin filament formation induced by the DNA DSBs (Fig 4).

Maintenance of nuclear actin filaments in oocytes relied on the cumulus cells

To analyze whether cumulus cells are essential for nuclear actin filament formation, the cumulus cells were removed from the DNA-damaged COCs (induced by 10 μM BLM), followed by labeling of actin in DOs either immediately or after 4 h of incubation. A significant reduction in the number of nuclear actin filaments was obtained when the cumulus cells were removed after 4 h of incubation, with nuclear actin filaments found only in 4 out of 16 oocytes. However, in case of the DOs, in which actin was labeled immediately after the cumulus cells were removed, the number of nuclear actin filaments was found in 13 out of 16 oocytes (p < 0.01 by Fisher’s exact test) (Fig 5).

Adcy1 knock-down in cumulus cells did not affect the nuclear actin filament formation

In our previous study, we have demonstrated earlier that the DNA DSBs led to up-regulation of Adcy1 in cumulus cells [17]. To analyze the effect of Adcy1 up-regulation on oocyte nuclear actin filament formation, RNAi-mediated knock-down of Adcy1 expression in cumulus cells

![Fig 4. Inhibition of nuclear actin filament formation by Chek1/2 inhibitor, AZD7762 (AZD). No nuclear actin filament formation was observed upon treatment of CEOs with AZD alone. Treatment of CEOs with both BLM and AZD didn’t induce nuclear actin filament formation in oocyte nucleus.](image)

doi:10.1371/journal.pone.0170308.g004
was carried out. Transfection of Adcy1 siRNAs led to about 68% reduction in Adcy1 mRNA expression as compared to the control group (Fig 6A). To confirm the RNAi efficiency of Adcy1 knocking-down in cumulus cells, we transfected the Adcy1 siRNAs and NC siRNAs into the cultured cumulus cells, and we found the Adcy1 protein level was decreased obviously.

Fig 5. Effect of removal of cumulus cells on nuclear actin filament formation. When the cumulus cells of DNA-damaged COCs were removed and actin was stained immediately, nuclear actin filament formation (marked by white asterisk in zoom-in image in last panel) was detected. However, when the cumulus cells were removed after 4 h of incubation, majority of the nuclear actin filaments disappeared.

doi:10.1371/journal.pone.0170308.g005

Fig 6. Effect of knock-down of Adcy1 in cumulus cells on nuclear actin filament formation. (A) Efficiency of RNAi by Adcy1 siRNA. (B) Adcy1 siRNA transfection induced the decreasing of Adcy1 protein in cultured cumulus cells. (C) Upon knock-down of Adcy1 mRNAs, there was no obvious change in the nuclear actin filament formation.

doi:10.1371/journal.pone.0170308.g006
by the RNAi experiment (Fig 6B). However, despite the down-regulation of Adcy1 in cumulus cells, there was no significant change in the nuclear actin filaments in the DNA-damaged CEOs (Fig 6C).

Relationship between gap junctions and oocyte nuclear actin filaments

To analyze whether the cumulus cells control oocyte nuclear actin filament formation through gap junctions, oocytes were treated with CBX to block the gap junctions between oocytes and cumulus cells. Notably, it was observed that the nuclear actin filaments were formed in the CBX-treated CEOs, even though there were no DNA DSBs in oocytes or cumulus cells. Upon simultaneous treatment of the CEOs with BLM and CBX, the actin filaments were also observed in the oocyte nucleus (Fig 7). From these results, it was confirmed that the nuclear actin filaments can be formed in the CEOs without BLM-induced DNA DSBs. This explains why CBX could not block the BLM-induced nuclear actin filament formation in CEOs.

Discussion

Our results showed the actin filaments can form in the oocyte nucleus, but the oocyte is not able to regulate the nuclear actin filament formation by itself, and the formation and maintenance of nuclear actin filaments in the oocyte relies on cumulus cells. As the DNA damage checkpoint inhibitor could suppress the formation of actin filaments in DNA damaged CEOs, it indicated that the oocyte nuclear actin filament formation is regulated by the cumulus cells.

Fig 7. Blocking of gap junctions could induce nuclear actin filament formation in CEOs. When the CEOs were treated with the gap-junction inhibitor carbenoxolone (CBX), nuclear actin filaments formation was observed in oocytes. Corresponding to this, BLM-induced nuclear actin filaments were not inhibited by CBX.

doi:10.1371/journal.pone.0170308.g007
as a downstream event of DNA damage checkpoint. Our results also showed Adcy1 knock-
down in cumulus cells did not affect the nuclear actin filament formation in the DNA-dam-
age CEOs, which suggests the Adcy1 protein level in cumulus cells has no obvious effects on
the nuclear filament actin formation. Interestingly, we found blocking of gap junctions could
induce the nuclear actin filament formation in the DNA-damaged CEOs, indicating the oocyte
cumulus communication may involved in the nuclear actin filaments formation in oocytes.

Our previous data showed the meiosis resumption of DOs are less sensitive to DNA DSBs
but DNA damaged CEOs were mostly blocked at the GV stage [17]. From this new study, we
revealed the different response of DO and CEO on the DNA damage. As the nuclear actin fila-
ments take roles on the DNA damage repair of cells [19], the formation of actin filaments in
DNA damaged CEOs may indicate the exist of DNA repair events in CEOs but not DOs.
Although the actin filaments were observed in the DNA damaged CEOs, whether they are the
causes or the results of the cell cycle block of CEOs is still not well known.

Conclusions
From the present study, it was concluded that actin filaments form in the nucleus of DNA-
damaged oocytes only when the oocytes are surrounded by cumulus cells. The cumulus cells
also play key role in the maintenance of nuclear actin filaments of oocytes. In addition, the
study also revealed the important role played by gap junctions on the oocyte nuclear actin fil-
ament formation. Since blocking of gap junctions induces nuclear actin filament formation in
normal CEOs, it is likely that there are certain factors that are transmitted through the gap
junctions for inhibition of actin filament formation in oocytes. However, further analysis is
required to decipher the factors that affect the nuclear actin filament formation.

Acknowledgments
The authors gratefully acknowledge the members of Prof. Shen’s laboratory for their inputs.
The authors would also like to acknowledge the staff at the Central Laboratory of Qingdao
Agricultural University for their technical assistance with laser scanning confocal microscope.

Author Contributions
Conceptualization: JYM MHS.
Data curation: JYM SY WS.
Formal analysis: MHS JYM.
Funding acquisition: JYM.
Investigation: MHS JYM FYX WW LLZ.
Methodology: MHS JYM FYX WW LLZ.
Project administration: WS SY JYM.
Resources: WS JYM.
Supervision: JYM.
Writing – original draft: JYM MHS.
Writing – review & editing: JYM MHS MY.
References

1. Lei L, Spradling AC. Mouse primordial germ cells produce cysts that partially fragment prior to meiosis. Development. 2013; 140(10):2075–81. doi: 10.1242/dev.093864 PMID: 23578925

2. Lei L, Spradling AC. Mouse oocytes differentiate through organelle enrichment from sister cyst germ cells. Science. 2016; 352(6281):95–9. doi: 10.1126/science.aad2156 PMID: 26917595

3. Qiao J, Wang ZB, Feng HL, Miao YL, Wang Q, Yu Y, et al. The root of reduced fertility in aged women and possible therapeutic options: current status and future perspectives. Molecular aspects of medicine. 2014; 38:54–85. doi: 10.1016/j.mam.2013.06.001 PMID: 23796757

4. Gougeon A. Dynamics of follicular growth in the human: a model from preliminary results. Human reproduction. 1986; 1(2):81–7. PMID: 3558758

5. Griffin J, Emery BR, Huang I, Peterson CM, Carrell DT. Comparative analysis of follicle morphology and oocyte diameter in four mammalian species (mouse, hamster, pig, and human). Journal of experimental & clinical assisted reproduction. 2006; 3:2.

6. Rimon-Dahari N, Yerushalmi-Heinemann L, Alyagor L, Dekel N. Ovarian Folliculogenesis. Results and problems in cell differentiation. 2016; 58:167–90. doi: 10.1007/978-3-319-31973-5_7 PMID: 27300179

7. Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Molecular cell. 2010; 40(2):179–204. doi: 10.1016/j.molcel.2010.09.019 PMID: 20965415

8. Collins JK, Lane SJ, Merriman JA, Jones KT. DNA damage induces a meiotic arrest in mouse oocytes mediated by the spindle assembly checkpoint. Nature communications. 2015; 6:8553. doi: 10.1038/ncomms9553 PMID: 26522232

9. Marango P, Stevenson M, Naika K, Lagoudaki M, Nabi I, Jessberger R, et al. DNA damage-induced metaphase I arrest is mediated by the spindle assembly checkpoint and maternal age. Nature communications. 2015; 6:8706. doi: 10.1038/ncomms9706 PMID: 26522734

10. Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y. Requirement of the MRN complex for ATM activation by DNA damage. The EMBO journal. 2003; 22(20):5612–21. doi: 10.1093/emboj/cdg541 PMID: 14532133

11. Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. The Journal of biological chemistry. 2001; 276(45):42462–7. doi: 10.1074/jbc.C100466200 PMID: 11571274

12. Smith J, Tho LM, Xu N, Gillespie DA. The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Advances in cancer research. 2010; 108:73–112. doi: 10.1016/B978-0-12-380888-2.00003-0 PMID: 21034966

13. Yi K, Li R. Actin cytoskeleton in cell polarity and asymmetric division during mouse oocyte maturation. Cytoskeleton. 2012; 69(10):727–37. doi: 10.1002/cm.21048 PMID: 22753278

14. Ma JY, Ou Yang YC, Wang ZW, Wang ZB, Jiang ZZ, Luo SM, et al. The effects of DNA double-strand breaks on mouse oocyte meiotic maturation. Cell cycle. 2013; 12(8):1233–41. doi: 10.4161/cc.24311 PMID: 23518501

15. Yuen WS, Merriman JA, O'Bryan MK, Jones KT. DNA double-strand breaks but not interstrand cross-links prevent progress through meiosis in fully grown mouse oocytes. PloS one. 2012; 7(8):e43875. doi: 10.1371/journal.pone.0043875 PMID: 22982046

16. Marango P, Carroll J. Oocytes progress beyond prophase in the presence of DNA damage. Current biology: CB. 2012; 22(11):989–94. doi: 10.1016/j.cub.2012.03.063 PMID: 22578416

17. Sun MH, Zheng J, Xie FY, Shen W, Yin S, Ma JY. Cumulus Cells Block Oocyte Meiotic Resumption via Gap Junctions in Cumulus Oocyte Complexes Subjected to DNA Double-Strand Breaks. PloS one. 2015; 10(11):e0143223. doi: 10.1371/journal.pone.0143223 PMID: 26575642

18. Bettigter BT, Gilbert DM, Amberg DC. Actin up in the nucleus. Nature reviews Molecular cell biology. 2004; 5(5):410–5. doi: 10.1038/nrm1370 PMID: 15122354

19. Belin BJ, Lee T, Mullins RD. DNA damage induces nuclear actin filament assembly by Formin-2 and Spire-(1-2) that promotes efficient DNA repair. [corrected]. eLife. 2015; 4:e07735. doi: 10.7554/eLife.07735 PMID: 26287480

20. Morgan MA, Parsels LA, Zhao L, Parsels JD, Davis MA, Hassan MC, et al. Mechanism of radiosensitization by the Chk1/2 inhibitor AZD7762 involves abrogation of the G2 checkpoint and inhibition of homologous recombinational DNA repair. Cancer research. 2010; 70(12):4972–81. doi: 10.1158/0008-5472.CAN-09-3573 PMID: 20501833