Double Heteroatom Functionalization of Arenes Using Benzyne Three-Component Coupling**

José-Antonio García-López, Meliha Çetin, and Michael F. Greaney*

anie_201410751_sm_miscellaneous_information.pdf
Supporting Information

General Remarks S2
Experimental procedures and characterization of compounds S3 – S23
References S23
1H, 13C and 19F NMR spectra S24– S72
NMR assignments along with NOESY correlations for compounds 7m, $^m'$, 7n, $^n'$, 10k and 10l. S73-74
General Remarks

Nuclear Magnetic Resonance (NMR) spectra were recorded on a 500 or 400 MHz Bruker NMR spectrometers in CDCl$_3$ at 298 K (unless stated otherwise). All chemical shift values are reported in parts per million (ppm) with coupling constant (J) values reported in Hz. All spectra were referenced to CDCl$_3$ the residual solvent peak CHCl$_3$ (δ = 7.26 ppm) for 1H NMR and the CDCl$_3$ solvent peak (δ = 77.16 ppm) for 13C(1H) NMR. The notation of signals is: Proton: δ chemical shift in ppm (number of protons, multiplicity, J value(s), proton assignment). Carbon: δ chemical shift in ppm (carbon assignment). Fluorine: δ chemical shift in ppm (Fluorine assignment). Splitting patterns are assigned s = singlet, b = broad, d = doublet, td = triplet of doublet, dt = doublet of triplet, t = triplet, q = quartet. Catalytic reactions were carried out on a 1 mmol scale under N$_2$ using pre-dried glassware. THF was freshly distilled over sodium/benzophenone and stored under N$_2$. Other solvents, unless otherwise stated, were purchased in reagent grade or anhydrous quality and used as received. Dry ZnCl$_2$ (1M solution in THF) and PrMgCl (2 M solution in THF) were purchased from Sigma-Aldrich. PrMgCl was titrated with I$_2$ prior to use. TLC plates Alugram® Sil G/UV254. Detection under UV light at 254 nm. Chromatography: Separations were carried out on Silica gel (Sigma Aldrich, 40-63 μ, 60 Å). High Resolution Mass Spectrometry (HRMS) were recorded on Thermo Finnigan MAT95XP. Melting points were determined using a Buchi M565 melting point apparatus.
Synthesis of starting materials

All the O-benzoyl N-hydroxylamine derivatives were prepared from the corresponding commercially available amines and benzoyl peroxide following literature procedures. The aryne precursors 4a-e were prepared from the corresponding 2-iodo phenols according to previously reported methods. 4-Methyl 2-iodo-phenol and 1-iodo-2-naphthol were obtained by iodination of 4-methyl phenol and 2-naphthol.

Procedure A. Representative synthesis of O-benzoyl N-hydroxylamines. Benzoyl peroxide (3.88 g, 12 mmol, 1.00 equiv) and K$_2$HPO$_4$ (3.17 g, 18.0 mmol, 1.50 equiv) were suspended in N,N-dimethylformamide (30 mL). The mixture was cooled to 0 ºC and N,N-dimethylamine (commercially available 40% water solution) (1.22 mL, 14.4 mmol, 1.2 equiv) was added via syringe in one portion. After 5 min the cooling bath was removed and the mixture was stirred for 1.5 h at room temperature. Deionized water (200 mL) was added, and the contents were stirred vigorously for several minutes until all solids dissolved. The reaction mixture was extracted with 150 mL of ethyl acetate. The organic phase was collected and washed with two 100 mL portions of saturated aqueous NaHCO$_3$ solution. All the aqueous fractions were combined and extracted with three 100 mL portions of ethyl acetate. All the organic fractions were combined and washed with three 100 mL portions of deionized water and 100 mL of brine, dried over MgSO$_4$, and concentrated by rotatory evaporation. The resulting crude product was purified by flash column chromatography (eluent EtOAc/Pet. Ether 1:5) to afford O-benzoyl N,N-dimethyl hydroxylamine as a colorless oil (1.21 g, 7.33 mmol, 61%).

1H-NMR (400 MHz, CDCl$_3$): δ = 7.98 (d, $J = 7.8$ Hz, 2H), 7.54 (t, $J = 7.7$ Hz, 1 H), 7.41 (t, $J = 7.7$ Hz, 2 H), 2.88 (s, 6 H).

13C NMR (101 MHz, CDCl$_3$) δ 164.9 (C$_q$), 132.9 (CH), 129.3 (CH), 129.2 (C$_q$), 128.3 (CH), 48.5 (CH$_3$).

Chart of starting 2-idoaryl 4-chlorobenzenesulfonate derivatives (4).
Synthesis of 2-ido-3-methoxyphenol precursor for compound 4c. A) NaH (60% in mineral oil, 1440 mg, 36 mmol) was slowly added to a stirred solution of 3-methoxyphenol (1975 mg, 18 mmol) in dry THF (30 mL) and the mixture was stirred for 1.5 h. A solution of N,N-diethylcarbamoyl chloride (5.45 mL, 27 mmol) in THF (5 mL) was added and the resulting mixture was stirred overnight at room temperature. Water (50 mL) was added and subsequent extraction with CH$_2$Cl$_2$ (3 x 50 mL) was carried out. The organic layers were combined, dried over anhydrous Mg$_2$SO$_4$ and filtered. The crude was purified by column chromatography (eluent: Pet. Ether/EtOAc 1:1) to afford 3-methoxyphenyl N,N-diethyl carbamate as a pale yellow oil (2.29 g, 13.2 mmol, 73% yield).

1H-NMR (400 MHz, CDCl$_3$): δ = 7.30 (d, $J = 7.8$ Hz, 1H), 6.78 (m, 2 H), 6.73 (t, $J = 2.1$ Hz, 1 H), 3.84 (s, 3 H), 3.46 (m, 4 H), 1.27 (m, 6H).

13C NMR (101 MHz, CDCl$_3$) δ 160.3 (Cq), 154.1 (Cq), 152.5 (Cq), 129.5 (CH), 113.4 (CH), 111.1 (CH), 107.6 (CH), 55.3 (CH$_3$), 42.2 (CH$_2$), 41.8 (CH$_2$), 14.2 (CH$_3$), 13.4 (CH$_3$).

B) 11.3 mL of 1.17 M solution of n-BuLi in THF was added dropwise to a solution of 3-methoxyphenyl N,N-diethyl carbamate (2924 mg, 13 mmol) in dry THF (50 mL) at -78 ºC under N$_2$ atmosphere and the mixture was stirred at that temperature for 2 h. Then, a solution of I$_2$ (3960 mg, 15.7 mmol) in dry THF (30 mL) was added dropwise and the stirring continued at low temperature for further 30 min. The reaction mixture was then allowed to warm to room temperature followed by quenching with water (30 mL) and saturated Na$_2$S$_2$O$_3$ aqueous solution (25 mL). The mixture was extracted with EtOAc (3 x 50 mL), the organic layers were combined, dried over anhydrous MgSO$_4$ and filtered. The crude was purified by column chromatography (eluent: Pet. Ether/EtOAc 9:1) on silica gel to afford the desired 3-methoxy 2-iodo phenyl N,N-diethyl carbamate (1.7 g, 4.9 mmol, 37%). 1H-NMR (400 MHz, CDCl$_3$): δ = 7.29 (t, $J = 8.1$ Hz, 1H), 6.83 (dd, $J = 8.3$, 1.1 Hz, 1H), 6.67 (dd, $J = 8.3$, 1.1 Hz, 1H), 3.89 (s, 3 H, MeO), 3.54 (q, $J = 7.1$ Hz, 2 H, CH$_2$), 3.40 (q, $J = 7.1$ Hz, 2 H, CH$_2$), 1.33 (t, $J = 7.1$ Hz, 3 H, Me), 1.22 (t, $J = 7.1$ Hz, 3 H, Me). 13C NMR (101 MHz, CDCl$_3$) δ 159.4 (Cq), 153.08 (Cq), 153.01 (Cq), 129.5 (CH), 115.9 (CH), 107.7 (CH), 83.8 (Cq), 56.7 (CH$_3$), 42.2 (CH$_2$), 42.0 (CH$_2$), 14.4 (CH$_3$), 13.3 (CH$_3$).

C) 3-Methoxy 2-iodophenyl N,N-diethyl carbamate was dissolved in EtOH (50 mL) and excess of NaOH (1.3 g, 33 mmol) was added. The mixture was refluxed for 8 h. Most of the EtOH was evaporated under reduced pressure, Et$_2$O (50 mL) was added and the excess of NaOH was neutralized at 0 ºC using a 1M HCl solution. The aqueous solution was extracted with Et$_2$O (3 x 30 mL) and the combined organic phase was washed with brine, dried (anhydrous MgSO$_4$), and evaporated under reduced pressure. The crude was purified by column chromatography (eluent: hexane/EtOAc) to afford 3-methoxy 2-iodo phenol (960 mg, 3.84 mmol, 78% yield). 1H-NMR (400 MHz, CDCl$_3$): δ = 7.20 (t, $J = 8.1$ Hz, 1 H), 6.68 (dd, $J = 8.1$, 1.1 Hz, 1 H), 6.40 (dd, $J = 8.1$, 1.1 Hz,
1H), 5.51 (s, 1H, OH), 3.89 (s, 3H, MeO). 13C NMR (101 MHz, CDCl$_3$) δ 158.7 (C$_q$), 156.1 (C$_q$), 130.1 (CH), 107.9 (CH), 103.0 (CH), 78.07 (C$_q$), 56.5 (CH$_3$).

Synthesis of 5-iodo 6-quinolinol precursor for 4e. A 15% solution of iodine (8.27 mmol) in 20% aqueous KI (20 mL) was added dropwise to a stirred solution of 6-quinolinol (1.05 g, 6.9 mmol) in 2N NaOH (aq) (15 mL). The reaction was stirred for 3 h at room temperature and then was acidified with acetic acid to pH 3. The resulting suspension was filtered and the precipitate was washed with water, and dried under vacuum overnight to afford 5-iodo 6-quinolinol as a black solid (1.85 g, 99% yield). M.p: 168°C. 1H-NMR (400 MHz, CDCl$_3$): δ = 11.11 (s, 1H, OH), 8.74 (d, J = 3.5 Hz, 1H), 8.40 (d, J = 8.2 Hz, 1H), 7.94 (d, J = 9.0 Hz, 1H), 7.62 (dd, J = 8.4, 4.0 Hz, 1H), 7.5 (d, 9.0 Hz, 1H). 13C NMR (101 MHz, CDCl$_3$) δ 156.3 (C$_q$), 148.8 (CH), 142.0 (CH), 139.5 (C$_q$), 131.0 (CH), 129.4 (C$_q$), 123.2 (CH), 121.2 (CH), 82.9 (C$_q$). HR-MS (EI) m/z calcd for C$_{19}$H$_{13}$INO [M]$^+$ 270.9489, found 270.9489.

Procedure B. Representative synthesis of 2-iodoaryl 4-chlorobenzenesulfonate derivatives. A 100 mL round–bottom flask was charged with 1-iodonapthol (3.6 g, 13.3 mmol) and dry pyridine (15 mL) was added. 4-Chloro benzenesulfonyl chloride (3.3 g, 15.7 mmol) was added in portions and the reaction mixture was stirred at room temperature overnight. Pyridine was evaporated in vacuo and water (50 mL) was added to the residue. The mixture was extracted with CH$_2$Cl$_2$ (2 \times 100 mL). The organic layers were combined and washed with sat. aq. Na$_2$CO$_3$ (100 mL) and brine (100 mL), and then dried over anhydrous MgSO$_4$. After filtration, the solvent was evaporated in vacuo. Recrystallization from CH$_2$Cl$_2$ and ethanol yielded the aryne precursor 4d as a white solid (5.5 g, 12.3 mmol, 93% yield).

Spectroscopic data for novel starting materials (4).

Compound 4b. Prepared according to procedure B from 4-methyl 2-iodo phenol in 84% yield. White solid, m.p.: 108°C. 1H-NMR (400 MHz, CDCl$_3$): δ = 7.84 (d, J = 8.6 Hz, 2H), 7.57 (bs, 1H), 7.51 (d, J = 8.6 Hz, 2H), 7.21 (d, J = 8.3, 1H), 7.13 (dd, J = 8.3, 1.1 Hz, 1H), 2.29 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 147.5 (C$_q$), 141.2 (C$_q$), 140.4 (CH), 138.9 (C$_q$), 134.1 (C$_q$), 130.3 (2 CH), 129.5(CH), 122.6 (CH), 89.6 (C$_q$), 20.4 (CH$_3$). HR-MS (EI) m/z calcd for C$_{13}$H$_{10}$O$_3$ClIS [M]$^+$ 407.9078, found 407.9073.
Compound 4c. Prepared according to procedure B from 3-methoxy 2-iodo phenol in 82% yield.

White solid, m.p: 114 °C. \(^1\)H-NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.88\) (d, \(J = 8.6\) Hz, 2H), 7.51 (d, \(J = 8.6\) Hz, 2 H), 7.31 (t, \(J = 8.2\), 1H), 7.00 (d, \(J = 8.2\) Hz, 1H), 6.72 (d, \(J = 8.2\) Hz, 1H) 3.09 (s, 3H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 159.8 (C\(_q\)), 150.8 (C\(_q\)), 141.3 (C\(_q\)), 134.2 (C\(_q\)), 130.2 (CH), 129.9 (CH), 129.5 (CH), 115.2 (CH), 109.1 (CH), 83.0 (C\(_q\)), 56.8 (CH\(_3\)). HR-MS (+ESI) \(m/z\) calcd for C\(_{13}\)H\(_{10}\)O\(_4\)ClISNa [M+Na]\(^+\) 446.8931, found 446.8951.

Compound 4d. Prepared according to procedure B from 2 iodo-naphthol in 93% yield. White solid, m.p: 146 °C. \(^1\)H-NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.13\) (d, \(J = 8.4\) Hz, 1H), 7.91 (m, 2 H), 7.86 (d, \(J = 8.8\) Hz, 1 H), 7.82 (d, \(J = 7.7,\) 1H), 7.61 (td, \(J = 7.0,\) 1.4 Hz, 1H), 7.57-7.50 (m, 4 H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 148.6 (C\(_q\)), 141.4 (C\(_q\)), 135.4 (C\(_q\)), 134.4 (C\(_q\)), 132.7 (CH), 132.3 (C\(_q\)), 130.5 (CH), 130.3 (CH), 129.6 (CH), 128.6 (CH), 128.4 (CH), 127. (CH) 1, 120.9 (CH), 94.9 (C\(_q\)). HR-MS (EI) \(m/z\) calcd for C\(_{16}\)H\(_{16}\)ClO\(_3\)S [M]\(^+\) 443.9078, found 443.9069.

Compound 4e. Prepared according to procedure B from 5-iodo 6-quinolinol in 67% yield after purification by column chromatography (eluent: gradient Et\(_2\)O/Pet. Ether, 20 to 90%). Pale orange solid, m.p: 164 °C. \(^1\)H-NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.90\) (dd, \(J = 4.1, 1.4\) Hz, 1H), 8.41 (bd, \(J = 8.7\) Hz, 1 H), 8.12 (d, \(J = 9.1\) Hz, 1H), 7.91 (m, 2 H), 7.72 (d, \(J = 9.1\) Hz, 1H), 7.53 (m, 2 H), 7.50 (dd, 8.7, 4.2 Hz, 1 H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 151.4 (CH), 148.8 (C\(_q\)), 146.9 (C\(_q\)), 141.6 (C\(_q\)), 140.9 (CH), 132.2 (C\(_q\)), 131.9 (CH), 131.0 (C\(_q\)), 130.3 (CH), 129.7 (CH), 124.3 (CH), 123.4 (CH), 94.2 (C\(_q\)). HR-MS (EI) \(m/z\) calcd for C\(_{15}\)H\(_9\)ClINO\(_3\)S [M]\(^+\) 444.9031, found 444.9033.
Optimization study: Representative procedure for the synthesis of 1-(2-((4-(tert-butyl)phenyl)thio)phenyl)piperidine (7a).

An oven-dried 5 mL microwave glass vial was charged with p-tert-butyl-benzenethiol 5 (87 µL, 0.50 mmol, 1.00 equiv) and a teflon-coated stirrer bar. The vial was sealed with an aluminium crimp cap and vacuum/N₂ cycle was applied three times to the vial to ensure the removal of air from the reaction vessel. Dry THF (2 mL) was added and the solution was cooled to -78 °C for 5 min in an acetone/dry ice bath. iPrMgCl (2 M solution in THF) (mmol)\(^1\) was added via syringe, and the mixture was stirred at that temperature for 15 min before adding a solution of benzyne precursor 4a (mmol)\(^1\) in dry THF (2 mL) under N₂. The reaction mixture was stirred at -78 °C for 45 min. After that time, the vial was warmed to 0 °C in an ice bath and stirred for 15 min. The cooling bath was removed and the solution was taken out of the vial in a syringe and added dropwise (0.05 mmol/min) to a vigorously stirred and previously prepared mixture of Cu salt (mol%),\(^1\) ligand (mol%),\(^1\) and O-benzoyl N-hydroxyl piperidine (mmol)\(^1\) in dry THF (2 mL) under N₂ at 25-30 °C. After the addition was finished the mixture was stirred for additional 1 h and the solvent was taken to dryness. The crude was dissolved in CH₂Cl₂ (50 mL) and extracted with 10 % aq NH₃ (50 mL). The aqueous layer was extracted with CH₂Cl₂ (2 × 50 mL). All the organic layers were combined, dried with anhydrous MgSO₄, filtered and taken to dryness. The yield of the reaction was determined either by NMR using as internal standard 1,3,5-trimethoxybenzene or by column chromatography (silica, petroleum ether) to isolate the product 7a.

\(^1\)See the amounts in the optimization table below
Reactions were carried out using 0.5 mmol (1 equiv) of \(p \)-tert-butyl-benzenethiol, in dry THF as described above. \(a \): NMR yields. \(b \): isolated yield. \(c \): After addition of the intermediate Grignard to the piperidine-OBz solution, the mixture was heated at 50 °C for 8 h. \(d \): 3 mg of 60% NaH dispersion in mineral oil was added to remove any moisture present in the added copper salt or the 1,10-phenanthroline, CuTC: Copper(I) thiophen-2-carboxylate, phen: 1,10-phenanthroline, TMEDA: tetramethylethylenediamine, DTBPY: 4,4’-di-tert-butyl-2,2’-bipyridine. Diimine: (2E,3E)-N2,N3-dimesitylbutane-2,3-diimine.
Representative procedure C for the synthesis of ortho-thioaminated compounds 7a–j, 7m, 7o, 7p, and compounds 8a and 8b.

An oven-dried 20 mL microwave glass vial was charged with p-MeO-benzenethiol (123 µL, 1 mmol, 1.00 equiv) and a teflon-coated stirrer bar. The vial was sealed with an aluminium crimp cap and vacuum/N₂ cycle was applied three times to the vial to ensure the removal of air from the reaction vessel. Dry THF (4 mL) was added and the solution was cooled to -78 °C for 5 min in an acetone/dry ice bath. iPrMgCl (2 M solution in THF) (1.1 mL, 2.2 mmol, 2.2 equiv) was added dropwise via syringe and the mixture was stirred at that temperature for 15 min. A solution of benzyne precursor 4a (474 mg, 1.2 mmol, 1.2 equiv) in dry THF (4 mL) under N₂ atmosphere was added dropwise, while the mixture was vigorously stirred. The reaction mixture was stirred at -78 °C for 45 min. After that time, the vial was warmed to 0 °C in an ice bath and stirred for 15 min. The cooling bath was removed and the solution was taken out of the vial in a syringe and added dropwise using a syringe pump (0.05 mmol/min) to a vigorously stirred and previously prepared mixture of CuCl (10 mg, 10 mol%), 1,10-phenanthroline (18 mg, 10 mol%) NaH (60 % in mineral oil) (3 mg, 0.07 mmol) and O-benzoyl N-methyl N-benzyl hydroxylamine (362 mg, 1.5 mmol, 1.5 equiv) in dry THF (4 mL) under N₂ at 25-30 °C. After the addition was finished the mixture was stirred for additional 1 h and the solvent was taken to dryness. The crude was dissolved in CH₂Cl₂ (50 mL) and extracted with 10% aq NH₃ (50 mL). The aqueous layer was extracted with CH₂Cl₂ (2 × 50 mL). All the organic layers were combined, dried over anhydrous MgSO₄ and filtered. The filtrate was taken to dryness and the crude product was purified by column chromatography (silica, gradient from 100% Pet. Ether to 95% Pet. Ether/5% Et₂O) to afford the product 7e (250 mg, 0.75 mmol, 75% yield). In the cases where the O-benzoyl N-Boc N-hydroxyl piperazine was used (products 7n and 12), a slightly different protocol using ZnCl₂ as an additive was followed, see below the synthesis of vortioxetine.

The synthesis of compounds 8a and 8b was carried out starting form 0.5 mmol of thiol following the scaled-down first part of procedure C. After warming the reaction mixture to 0 °C in an ice bath for 15 min, it was added dropwise using a syringe pump (0.05 mmol/min) to a vigorously stirred and previously prepared mixture of CuCl and the corresponding electrophile reagent (see below).

Representative procedure D for the synthesis of ortho-thioaminated compounds containing N-Boc moiety (7n, 12) and secondary amines (7k, 7l). Synthesis of N-Boc-vortioxetine. An oven-dried 20 mL microwave glass vial was charged with 2,4-dimethyl benzenethiol (142 µL, 1 mmol, 1.00 equiv) and a teflon-coated stirrer bar. The vial was sealed with an aluminium crimp cap and vacuum/N₂ cycle was applied three times to the vial to ensure the removal of air from the reaction vessel. Dry THF (4 mL) was added and the solution was cooled to -78 °C for 5 min in an acetone/dry ice bath. iPrMgCl (2 M solution in THF) (1.1 mL, 2.2 mmol, 2.2 equiv) was added dropwise via syringe and the mixture was stirred at that temperature for 15 min. A solution of benzyne precursor 4a (474 mg, 1.2 mmol, 1.2 equiv) in dry THF (4 mL) under N₂ atmosphere was added dropwise, while the mixture was vigorously stirred. The reaction mixture was stirred at -78 °C for 45 min. After that time, the vial was warmed to 0 °C in an ice bath and stirred for 15 min. The cooling bath was removed and the solution was taken out of the vial in a syringe and added dropwise using a syringe pump (0.05 mmol/min) to a vigorously stirred and previously prepared mixture of CuCl (10 mg, 10 mol%), 1,10-phenanthroline (18 mg, 10 mol%) NaH (60 % in mineral oil) (3 mg, 0.07 mmol) and O-benzoyl N-methyl N-benzyl hydroxylamine (362 mg, 1.5 mmol, 1.5 equiv) in dry THF (4 mL) under N₂ at 25-30 °C. After the addition was finished the mixture was stirred for additional 1 h and the solvent was taken to dryness. The crude was dissolved in CH₂Cl₂ (50 mL) and extracted with 10% aq NH₃ (50 mL). The aqueous layer was extracted with CH₂Cl₂ (2 × 50 mL). All the organic layers were combined, dried over anhydrous MgSO₄ and filtered. The filtrate was taken to dryness and the crude product was purified by column chromatography (silica, gradient from 100% Pet. Ether to 95% Pet. Ether/5% Et₂O) to afford the product 7e (250 mg, 0.75 mmol, 75% yield). In the cases where the O-benzoyl N-Boc N-hydroxyl piperazine was used (products 7n and 12), a slightly different protocol using ZnCl₂ as an additive was followed, see below the synthesis of vortioxetine.

The synthesis of compounds 8a and 8b was carried out starting form 0.5 mmol of thiol following the scaled-down first part of procedure C. After warming the reaction mixture to 0 °C in an ice bath for 15 min, it was added dropwise using a syringe pump (0.05 mmol/min) to a vigorously stirred and previously prepared mixture of CuCl and the corresponding electrophile reagent (see below).
ice bath. iPrMgCl (2 M solution in THF) (1.1 mL, 2.2 mmol, 2.2 equiv) was added dropwise via syringe and the mixture was stirred at that temperature for 15 min. A solution of benzyne precursor 4a (474 mg, 1.2 mmol, 1.2 equiv) in dry THF (4 mL) under N₂ atmosphere was added dropwise, while the mixture was vigorously stirred. The reaction mixture was stirred at -78 °C for 45 min. After that time, the vial was warmed to 0 °C in an ice bath and stirred for 15 min. The cooling bath was removed and the solution was warmed to room temperature. Dry ZnCl₂ in THF solution (0.5 mL of a 1 M solution, 0.5 mmol, 0.5 equiv) was dropwise added and the solution was stirred at room temperature for 30 min. After this time, the solution was taken out of the vial in a syringe and added dropwise using a syringe pump (0.05 mmol/min) to a vigorously stirred and previously prepared mixture of CuCl (2.5 mg, 2.5 mol%) and O-benzoyl N-Boc N-hydroxyl piperazine (365 mg, 1.2 mmol, 1.2 equiv) in dry THF (4 mL) under N₂ at 25-30 °C. After the addition was finished the mixture was stirred for additional 1 h, the solvent was taken to dryness and the crude was purified by column chromatography (silica. Pet. Ether/ diethyl ether, 10:1) to afford N-Boc-vortioxetine 12 (310 mg, 0.78 mmol, 78% yield).

Representative procedure E for the synthesis of ortho-diaminated compounds 10a-f, 10k, 10l, and compounds 11a and 11b.

An oven-dried 20 mL microwave glass vial was charged with N-methyl aniline (109 µL, 1 mmol, 1.00 equiv) and a teflon-coated stirrer bar. The vial was sealed with an aluminium crimp cap and vacuum/N₂ cycle was applied three times to the vial to ensure the removal of air from the reaction vessel. Dry THF (4 mL) was added and the solution was cooled to approx. -15 °C in an ice/salt bath for 5 min. iPrMgCl (2 M solution in THF) (0.55 mL, 1.1 mmol, 1.1 equiv) was added dropwise via syringe and the mixture was stirred at that temperature for 30 min. The vial was then cooled to -78 °C and a second portion of iPrMgCl (0.55 mL, 1.1 mmol, 1.1 equiv) was added, followed by the dropwise additon of a solution of benzyne precursor 4a (474 mg, 1.2 mmol, 1.2 equiv) in dry THF (4 mL) under N₂ atmosphere, while the mixture was vigorously stirred. The reaction mixture was stirred at -78 °C for 45 min. After that time, the vial was warmed to 0 °C in an ice bath and stirred for 15 min. The cooling bath was removed and the solution was taken out of the vial in a syringe and added dropwise using a syringe pump (0.05 mmol/min) to a vigorously stirred and previously prepared mixture of CuCl (10 mg, 10 mol%), 1,10-phenanthroline (18 mg, 10 mol%), NaH (60 % in mineral oil) (3 mg, 0.07 mmol) and O-benzoyl N-morpholine hydroxylamine (362 mg, 1.5 mmol, 1.5 equiv) in dry THF (4 mL) under N₂ at 25-30 °C. After the addition was finished the mixture was stirred for additional 1 h and the solvent was taken to dryness. The crude was dissolved in CH₂Cl₂ (50 mL) and extracted with 10 % aq NH₃ (50 mL). The aqueous layer was extracted with CH₂Cl₂ (2 x 50 mL). All the organic layers were combined, dried over anhydrous MgSO₄ and filtered. The filtrate was taken
to dryness and the crude product was purified by column chromatography (silica, gradient from 100% Pet. Ether to 95% Pet. Ether/5% Et2O) to afford the product 10a (171 mg, 0.64 mmol, 64% yield).

The synthesis of compounds 11a and 11b was carried out starting from 0.5 mmol of thiol following the scaled-down first part of procedure E. After warming the reaction mixture to 0 °C in an ice bath for 15 min, it was added dropwise using a syringe pump (0.05 mmol/min) to a vigorously stirred and previously prepared mixture of CuCl and the corresponding electrophile reagent (see below).

Representative procedure F for the synthesis of ortho-diaminated compounds 10g-j. An oven-dried 20 mL microwave glass vial was charged with N-methyl aniline (109 µL, 1 mmol, 1.00 equiv) and a teflon-coated stirrer bar. The vial was sealed with an aluminium crimp cap and vacuum/N2 cycle was applied three times to the vial to ensure the removal of air from the reaction vessel. Dry THF (4 mL) was added and the solution was cooled to approx. -15 °C in an ice/salt bath for 5 min. iPrMgCl (2 M solution in THF) (0.55 mL, 1.1 mmol, 1.1 equiv) was added dropwise via syringe and the mixture was stirred at that temperature for 30 min. The vial was then cooled to -78 °C and a second portion of iPrMgCl (0.55 mL, 1.1 mmol, 1.1 equiv) was added, followed by the dropwise addition of a solution of benzyne precursor 4a (474 mg, 1.2 mmol, 1.2 equiv) in dry THF (4 mL) under N2 atmosphere, while the mixture was vigorously stirred. The reaction mixture was stirred at -78 °C for 45 min. After that time, the vial was warmed to 0 °C in an ice bath and stirred for 15 min. The cooling bath was removed and the solution and warmed to room temperature. Dry ZnCl2 in THF solution (0.5 mL of a 1 M solution, 0.5 mmol, 0.5 equiv) was dropwise added and the solution was stirred at room temperature for 30 min. After this time, the solution was taken out of the vial in a syringe and added dropwise using a syringe pump (0.05 mmol/min) to a vigorously stirred and previously prepared mixture of CuCl (2.5 mg, 2.5 mol%) and O-benzoyl N-Boc N-hydroxyl piperazine (365 mg, 1.2 mmol, 1.2 equiv) in dry THF (4 mL) under N2 at 25-30 °C. After the addition was finished the mixture was stirred for additional 1 h, the solvent was taken to dryness and the crude was purified by column chromatography (silica. Pet. Ether/ Et2O, 10:1) to afford compound 10h (265 mg, 0.72 mmol, 72% yield).
Spectroscopic data for compounds 7 and 8.

Compound 7a. Prepared according to procedure C (247 mg, 0.76 mmol, 76%). White solid, m.p.: 82 °C. \(^1\)H-NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.45-7.38\) (m, 4H), 7.12-7.04 (m, 2H), 6.90-6.86 (td, J=8.0, 1.6 Hz, 1H), 6.79 (dd, J=8.0, 1.2 Hz, 1H), 3.00-2.97 (m, 4H), 1.76-1.73 (m, 4H), 1.59-1.57 (m, 2H), 1.35 (s, 9H). \(^{13}\)C-NMR (100 MHz, CDCl\(_3\)): \(\delta = 151.32\) (C\(_q\)), 150.89 (C\(_q\)), 135.04 (C\(_q\)), 134.17 (CH), 129.77 (C\(_q\)), 127.45 (CH), 126.42 (CH), 125.79 (CH), 123.72 (CH), 119.77 (CH), 53.45 (CH\(_2\)), 34.69 (C\(_q\)), 31.32 (CH\(_3\)), 26.42 (CH\(_2\)), 24.35 (CH\(_2\)). HR-MS (+ESI) m/z calcd for C\(_{21}\)H\(_{28}\)NS [M+H]\(^+\) 326.1942, found 326.1953.

Compound 7b. Prepared according to procedure C (201 mg, 0.67 mmol, 67%). White solid, m.p.: 102 °C. \(^1\)H-NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.50-7.48\) (m, 2H), 7.07-7.04 (m, 2H), 6.96-6.94 (m, 2H), 6.89-6.85 (m, 1H), 6.64 (d, J=8.0 Hz, 1H), 3.85 (s, 3H), 3.01-2.98 (m, 4H), 1.81-1.75 (m, 4H), 1.62-1.58 (m, 2H). \(^{13}\)C-NMR (100 MHz, CDCl\(_3\)): \(\delta = 160.14\) (C\(_q\)), 150.17 (C\(_q\)), 137.15 (CH), 136.39 (C\(_q\)), 126.05 (CH), 125.30 (CH), 123.83 (CH), 123.09 (C\(_q\)), 119.70 (CH), 115.11 (CH), 55.37 (CH\(_3\)), 53.46 (CH\(_2\)), 26.49 (CH\(_2\)), 24.38 (CH\(_2\)). HR-MS (+ESI) m/z calcd for C\(_{18}\)H\(_{22}\)NOS [M+H]\(^+\) 300.1422, found 300.1429.

Compound 7c. Prepared according to procedure C (178 mg, 0.66 mmol, 66%). Dense pale yellow oil. \(^1\)H-NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.44\) (d, J=4.0 Hz, 1H), 7.47-7.44 (m, 2H), 7.32 (t, J=8.0 Hz, 1H), 7.09 (d, J=8.0 Hz, 1H), 7.03-6.99 (m, 2H), 6.92 (d, J=8.0 Hz, 1H), 2.95 (br m, 4H), 1.71 (br s, 2H), 1.52-1.46 (m, 4H). \(^{13}\)C-NMR (100 MHz, CDCl\(_3\)): \(\delta = 160.93\) (C\(_q\)), 155.08 (C\(_q\)), 149.28 (CH), 136.27 (CH), 135.32 (CH), 129.64 (CH), 127.30 (C\(_q\)), 123.40 (CH), 122.40 (CH), 120.64 (CH), 119.88 (CH), 55.27 (CH\(_2\)), 26.20 (CH\(_2\)), 24.19 (CH\(_2\)). HR-MS (+ESI) m/z calcd for C\(_{16}\)H\(_{19}\)N\(_2\)S [M+H]\(^+\) 271.1269, found 271.1260.

Compound 7d. Prepared according to procedure C (227 mg, 0.76 mmol, 76%). White solid, m.p.: 88 °C. \(^1\)H-NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.47-7.44\) (m, 2H), 7.16 (t, J=8.0 Hz, 1H), 7.11-7.07 (m, 3H), 6.96 (t, J=8.0 Hz, 1H), 6.77 (d, J=8.0 Hz, 1H), 3.87-3.84 (m, 4H), 3.07-3.05 (m, 4H). \(^{13}\)C-NMR (100 MHz, CDCl\(_3\)): \(\delta = 162.88\) (d, J\(_{C\beta}=247\) Hz, C\(_q\)), 149.30 (C\(_q\)), 136.17 (d, J\(_{C\beta}=8\) Hz, CH), 134.41 (C\(_q\)), 128.24 (d, J\(_{C\beta}=3\) Hz, C\(_q\)), 127.89 (CH), 126.48 (CH), 124.62 (CH), 120.03 (CH), 116.63 (d, J\(_{C\beta}=20\) Hz, CH),
Compound 7e. Prepared according to procedure C (252 mg, 0.75 mmol, 75%). Dense colorless oil.

1H-NMR (400 MHz, CDCl$_3$): $\delta = 7.51$-7.49 (m, 4H), 7.35 (t, J=8.0 Hz, 2H), 7.30-7.26 (m, 1H), 7.13-7.06 (m, 2H), 6.98 (d, J=12.0 Hz, 2H), 6.91 (td, J=8.0, 1.6 Hz, 1H), 6.70 (dd, J=8.0, 1.2 Hz, 1H), 4.17 (s, 2H), 3.86 (s, 3H), 2.68 (s, 3H).

13C NMR (100 MHz, CDCl$_3$): $\delta = 160.16$ (C$_q$), 149.54 (C$_q$), 138.71 (C$_q$), 137.05 (CH), 136.53 (C$_q$), 128.79 (CH), 128.22 (CH), 127.06 (CH), 126.57 (CH), 125.32 (CH), 124.35 (CH), 123.07 (C$_q$), 120.95 (CH), 115.15 (CH), 61.00 (CH$_2$), 55.39 (CH$_3$).

HR-MS (+ESI) m/z calcld for C$_{16}$H$_{17}$FNOS [M+H]$^+$ 290.1009, found 290.1011.

Compound 7f. Prepared according to procedure C (170 mg, 0.61 mmol, 61%). Pale yellow solid, m.p.: 103-104 ºC. 1H-NMR (500 MHz, CDCl$_3$): $\delta = 7.54$ (dd, J=5.4, 1.2 Hz, 1H), 7.30 (dd, J=3.4, 1.3 Hz, 1H), 7.14-7.07 (m, 3H), 6.98-6.95 (m, 1H), 6.72 (dd, J=8.0, 1.3 Hz, 1H), 3.91-3.89 (m, 4H), 3.06-3.04 (m, 4H).

13C NMR (126 MHz, CDCl$_3$): $\delta = 148.26$ (C$_q$), 137.10 (CH), 136.42 (C$_q$), 131.85 (CH), 129.96 (C$_q$), 128.22 (CH), 125.91 (CH), 125.62 (CH), 125.03 (CH), 119.94 (CH), 67.37 (CH$_2$), 52.27 (CH$_2$).

HR-MS (+ESI) m/z calcld for C$_{14}$H$_{16}$NOS$_2$ [M+H]$^+$ 278.0673, found 278.0685.

Compound 7g. Prepared according to procedure C (160 mg, 0.55 mmol, 55%). Pale yellow solid, m.p.: 86-87 ºC. 1H-NMR (500 MHz, CDCl$_3$): $\delta = 8.45$-8.44 (ddd, J=4.8, 1.9, 0.9 Hz, 1H), 7.48-7.44 (m, 2H), 7.34 (td, J=8.0, 1.8 Hz, 1H), 7.09-7.05 (m, 2H), 7.04-7.01 (m, 1H), 6.93 (dt, J=8.0, 1.1 Hz, 1H), 3.24 (m, 4H), 2.57-2.55 (m, 4H),

13C NMR (126 MHz, CDCl$_3$): $\delta = 160.41$ (C$_q$), 154.48 (C$_q$), 149.47 (CH), 136.32 (CH), 135.15 (CH), 129.73 (CH), 128.11 (C$_q$), 124.36 (CH), 122.42 (CH), 121.50 (CH), 120.11 (CH), 54.19 (CH$_2$), 28.08 (CH$_2$).

HR-MS (+ESI) m/z calcld for C$_{15}$H$_{17}$N$_2$S$_2$ [M+H]$^+$ 289.0833, found 289.0847.

Compound 7h. Prepared according to procedure C (201 mg, 0.70 mmol, 70%). White solid, m.p.: 48 ºC. 1H-NMR (400 MHz, CDCl$_3$): $\delta = 7.39$-7.36 (m, 2H), 6.98 (dt, J=7.8, 1.7 Hz, 2H), 6.87-6.85 (m, 2H), 6.81 (dd, J=7.8, 1.7 Hz, 1H), 6.66 (dd, J=8.0, 1.4 Hz, 1H), 3.76 (s, 3H), 3.02 (q, J=7.2 Hz, 4H), 0.99 (t, J=7.2 Hz, 6H), 13C NMR (100 MHz, CDCl$_3$): $\delta = 160.04$ (C$_q$), 146.99 (C$_q$), 139.21 (C$_q$), 137.03 (CH), 126.30 (CH), 124.80 (CH), 124.46 (CH), 123.76 (C$_q$), 122.75 (CH), 115.04 (CH), 55.35 (CH$_3$),
47.68 (CH₂), 12.43 (CH₃). HR-MS (+ESI) m/z calcld for C₁₇H₂₁NOS [M+H]⁺ 288.1432, found 288.1422.

Compound 7i. Prepared according to procedure C (179 mg, 0.51 mmol, 51%). White solid, m.p.: 114 °C. ¹H-NMR (400 MHz, CDCl₃): δ = 7.47-7.45 (m, 2H), 7.27-7.25 (m, 2H), 7.20 (td, J=8.0, 2.0 Hz, 1H), 7.08 (td, J=8.0, 2.0 Hz, 1H), 6.99-6.92 (m, 2H), 3.81-3.78 (m, 4H), 3.05-3.03 (m, 4H). ¹³C-NMR (100 MHz, CDCl₃): δ = 150.30 (C₂q), 134.24 (CH), 133.37 (C₂q), 132.45 (C₂q), 129.79 (CH), 127.38 (CH), 124.56 (CH), 121.78 (C₂q), 120.19 (CH), 67.28 (CH₂), 52.07 (CH₂). HR-MS (+ESI) m/z calcld for C₁₆H₁₇BrNOS [M+H]⁺ 350.0214, found 350.0216.

Compound 7j. Prepared according to procedure C (187 mg, 0.59 mmol, 59%). Pale yellow solid, m.p.: 48 °C. ¹H-NMR (400 MHz, CDCl₃): δ = 7.68 (dd, J=8.0, 1.6 Hz, 2H), 7.41-7.35 (m, 3H), 7.15-7.07 (m, 2H), 7.87 (td, J=8.0, 1.6 Hz, 1H), 6.77 (dd, J=8.0, 1.6 Hz, 1H), 2.97-2.94 (m, 4H), 1.79-1.74 (m, 4H), 1.60-1.56 (m, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ = 151.49 (C₂q), 136.92 (CH), 133.49 (C₂q), 129.49 (CH), 128.59 (C₂q), 128.48 (CH), 128.21 (CH), 126.24 (CH), 124.93 (CH), 120.61 (CH), 53.94 (CH₂), 26.59 (CH₂), 24.29 (CH₂). HR-MS (+ESI) m/z calcld for C₁₇H₂₀NSe [M+H]⁺ 318.0761, found 318.0750.

Compound 7k. Prepared according to procedure D (117 mg, 0.44 mmol, 44%). Dense colorless oil. ¹H-NMR (500 MHz, CDCl₃): δ = 7.45 (d, J=7.6 Hz, 1H), 7.29 (t, J=7.6 Hz, 1H), 7.07-7.04 (m, 2H), 6.92 (t, J=8.6 Hz, 2H), 6.68-6.63 (m, 2H), 4.67 (br s, 1H), 3.64 (br s, 1H), 1.11 (d, J=6.3 Hz, 6H). ¹³C-NMR (126 MHz, CDCl₃): δ = 161.14 (d, J=CF=245 Hz, C₂q), 148.49 (C₂q), 137.45 (CH), 131.87 (d, J=CF=3 Hz, C₂q), 131.33 (CH), 128.47 (d, J=CF=8 Hz, CH), 116.39 (CH), 115.45 (d, J=CF=20 Hz, CH), 114.38 (C₂q), 111.18 (CH), 43.92 (CH₂), 22.72 (CH₃). ¹⁹F-NMR (470 MHz, CDCl₃): δ = -117.32 (s). HR-MS (+ESI) m/z calcld for C₁₅H₁₇FNS [M+H]⁺ 262.1066, found 262.1071.

Compound 7l. Prepared according to procedure D (139 mg, 0.46 mmol, 46%). Dense colorless oil. ¹H-NMR (500 MHz, CDCl₃): δ = 7.45 (dd, J=7.5, 1.7 Hz, 1H), 7.29-7.26 (m, 1H), 7.07-7.04 (m, 2H), 6.94-6.90 (m, 2H), 6.68 (d, J=8.0 Hz, 1H), 6.63 (td, J=7.5, 1.4 Hz, 1H), 4.79 (br s, 1H), 3.28 (br s, 1H), 1.91-1.88 (m, 2H), 1.65-1.62 (m, 2H), 1.60-1.56 (m, 1H), 1.36-1.29 (m, 2H), 1.22-1.17 (m, 1H), 1.13-1.05 (m, 2H). ¹³C-NMR (126 MHz, CDCl₃): δ =160.65 (d, J=CF=254 Hz, C₂q), 148.31 (C₂q), 137.50 (CH), 131.87 (d, J=CF=4
Hz, Cq), 131.30 (CH), 128.47 (d, J_CF=8 Hz, CH), 116.21 (CH), 116.44 (d, J_CF=23 Hz, CH), 114.20 (Cq), 111.05 (CH), 50.98 (CH), 32.84 (CH₂), 25.75 (CH₂), 24.57 (CH₂).^{19}F-NMR (470 MHz, CDCl₃): δ = -117.34 (s). HR-MS (+ESI) m/z calcd for C₁₈H₂₁FNS [M+H]^+ 302.1379, found 302.1389.

Compound 7m. Procedure C afforded a 1:1 separable mixture of isomers 7m and 7m'. Data for compound 7m: (98 mg, 0.28 mmol, 28%). Pale orange solid, m.p.: 114 °C. ^1^H-NMR (400 MHz, CDCl₃): δ = 8.20 (d, J=8.0 Hz, 1H), 7.76 (d, J=8.0 Hz, 1H), 7.51-7.47 (m, 2H), 7.45-7.43 (m, 2H), 7.39 (td, J=8.0, 2.0 Hz, 1H), 6.96-6.94 (m, 2H), 6.88 (d, J=8.0 Hz, 1H), 4.04-3.94 (m, 4H), 3.85 (s, 3H), 3.55-3.49 (m, 2H), 3.39-3.34 (m, 2H). ^13^C-NMR (100 MHz, CDCl₃): δ = 159.96 (Cq), 142.07 (Cq), 137.40 (Cq), 136.17 (CH), 133.00 (Cq), 132.66 (Cq), 128.61 (CH), 126.88 (CH), 126.27 (CH), 125.53 (CH), 124.97 (CH), 124.34 (Cq), 123.48 (CH), 115.14 (CH), 68.24 (CH₂), 55.40 (CH₃), 50.36 (CH₂). HR-MS (+ESI) m/z calcd for C₂₁H₂₂O₂NS [M+H]^+ 352.1366, found 352.1361.

Compound 7m’. Procedure C afforded a 1:1 separable mixture of isomers 7m and 7m’. Data for compound 7m’: (98 mg, 0.28 mmol, 28%). Pale orange solid, m.p.: 66 °C. ^1^H-NMR (400 MHz, CDCl₃): δ = 8.48 (d, J=8.0 Hz, 1H), 7.89 (d, J=8.0 Hz, 1H), 7.80 (d, J=8.0 Hz, 1H), 7.47 (td, J=8.0, 1.2 Hz, 1H), 7.42-7.36 (m, 2H), 6.99-6.95 (m, 2H), 6.72-6.69 (m, 2H), 3.77-3.75 (m, 4H), 3.72 (s, 3H), 3.15-3.13 (m, 4H). ^13^C-NMR (100 MHz, CDCl₃): δ = 157.53 (Cq), 153.51 (Cq), 136.18 (Cq), 131.06 (Cq), 130.88 (CH), 129.41 (Cq), 128.34 (CH), 128.17 (CH), 127.23 (CH), 126.15 (CH), 124.77 (CH), 122.57 (Cq), 119.96 (CH), 114.41 (CH), 67.23 (CH₂), 55.31 (CH₃), 52.48 (CH₂). HR-MS (+ESI) m/z calcd for C₂₁H₂₂O₂NS [M+H]^+ 352.1366, found 352.1369.

Compound 7n. Procedure D afforded a 1:1 separable mixture of isomers 7n and 7n’. Data for compound 7n: (124 mg, 0.28 mmol, 28%). Dense yellow oil. ^1^H-NMR (400 MHz, CDCl₃): δ = 8.43 (dd, J=4.0, 1.2 Hz, 1H), 8.50 (d, J=8.0 Hz, 1H), 7.83 (d, J=12.0 Hz, 1H), 7.46-7.39 (m, 3H), 7.14 (d, J=8.0 Hz, 1H), 7.09 (t, J=8.0 Hz, 2H), 3.72-3.62 (m, 4H), 3.42-3.37 (m, 2H), 3.30-3.25 (m, 2H), 1.47 (s, 9H). ^13^C-NMR (100 MHz, CDCl₃): δ = 162.90 (d, J_CF=248 Hz, Cq), 154.97 (Cq), 149.44 (CH), 147.79 (Cq), 143.15 (Cq), 136.35 (Cq), 135.71 (d, J_CF=5 Hz, CH), 132.14 (CH), 129.88 (CH), 128.86 (d, J_CF=3 Hz, Cq), 128.18 (CH), 127.88 (Cq), 121.32 (CH), 116.81 (d, J_CF=22 Hz, CH), 79.87 (Cq), 50.36 (br s, CH₂), 45.45 (br s, CH₂), 44.42 (br s, CH₂),...
28.50 (CH₃). ¹⁹F-NMR (376 MHz, CDCl₃): δ = -112.56 (s). HR-MS (+ESI) m/z calcd for C₁₉H₁₈N₃FS [M-Boc+H]^+ 339.1200, found 339.1189.

Compound 7n. Procedure D afforded a 1:1 separable mixture of isomers 7n and 7n'. Data for compound 7n': (123 mg, 0.28 mmol, 28%). Yellow solid, m.p.: 126 °C. ¹H-NMR (400 MHz, CDCl₃): δ = 8.83 (dd, J=4.0, 1.6 Hz, 1H), 8.75 (d, J=8.0 Hz, 1H), 7.58 (d, J=8.0 Hz, 1H), 7.39 (dd, J=8.0, 4.0 Hz, 1H), 6.94-6.90 (m, 2H), 6.85 (t, J=8.0 Hz, 2H), 3.48-3.46 (m, 4H), 3.12-3.09 (m, 4H), 1.47 (s, 9H).

¹³C-NMR (100 MHz, CDCl₃): δ = 160.91 (d, J_CF=244 Hz, Cq), 154.80 (Cq), 154.11 (Cq), 148.94 (CH), 145.54 (Cq), 134.46 (CH), 132.88 (d, J_CF=3 Hz, Cq), 132.22 (CH), 131.55 (Cq), 128.16 (d, J_CF=8 Hz, CH), 123.75 (CH), 122.16 (CH), 121.41 (Cq), 116.09 (d, J_CF=22 Hz, CH), 79.90 (Cq), 51.96 (CH₂), 43.38 (br s, CH₂), 28.44 (CH₃). ¹⁹F-NMR (376 MHz, CDCl₃): δ = -117.09 (s). HR-MS (+ESI) m/z calcd for C₁₉H₁₈N₃FS [M-Boc+H]^+ 339.1200, found 339.1196.

Compound 7o. Prepared according to procedure C (187 mg, 0.56 mmol, 56%). White solid, m.p.: 147-148 °C. ¹H-NMR (500 MHz, CDCl₃): δ = 7.51-7.48 (m, 2H), 7.10 (t, J=10.0 Hz, 2H), 6.92 (t, J=10.0 Hz, 1H), 6.63 (dd, J=8.0, 1.2 Hz, 1H), 6.14 (dd, J=8.0, 1.2 Hz, 1H), 3.81 (s, 3H), 3.59-3.54 (m, 2H), 3.17-3.09 (m, 4H), 2.49-2.47 (m, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ = 163.03 (d, J_CF=248 Hz, Cq), 158.27 (Cq), 141.84 (Cq), 137.51 (d, J_CF=8 Hz, CH), 136.06 (Cq), 128.45 (d, J_CF=4 Hz, Cq), 126.70 (CH), 117.19 (CH), 116.65 (d, J_CF=22 Hz, CH), 108.38 (CH), 55.20 (CH₃), 51.89 (CH₂), 28.96 (CH₂). ¹⁹F-NMR (376 MHz, CDCl₃): δ = -112.64 (s). HR-MS (+ESI) m/z calcd for C₁₇H₁₉FNOS₂ [M+H]^+ 336.0892, found 336.0905.

Compound 7p. Prepared according to procedure C (219 mg, 0.66 mmol, 66%) as a 1:1 mixture of isomers. White solid. ¹H-NMR (400 MHz, CDCl₃): δ = 7.46 (m, 4H), 6.97-6.92 (m, 5H), 6.90-6.86 (m, 2H), 6.74 (d, J=8.0 Hz, 1H), 6.59 (d, J=8.0 Hz, 1H), 6.45 (s, 1H), 3.86 (s, 3H), 3.84 (s, 3H), 3.28-3.23 (m, 8H), 2.85-2.83 (m, 8H), 2.28 (s, 3H), 2.14 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ = 160.12 (Cq), 159.97 (Cq), 149.96 (Cq), 147.39 (Cq), 136.92 (CH), 136.45 (CH), 136.40 (Cq), 135.66 (Cq), 134.41 (Cq), 132.61 (Cq), 126.88 (CH), 126.68 (CH), 126.21 (CH), 125.34 (CH), 123.33 (Cq), 122.73 (Cq), 121.47 (CH), 120.46 (CH), 115.15 (CH), 115.09 (CH), 55.40 (2 Cq, OCH₃), 54.46
(CH₂), 54.37 (CH₂), 28.55 (CH₂), 28.49 (CH₂), 21.09 (CH₃), 21.05 (CH₃). HR-MS (+ESI) m/z calcd for C₁₈H₂₂NOS₂ [M+H]+ 332.1143, found 332.1127.

Compound 8a. The synthesis of compound 8a was carried out starting from 0.5 mmol of thiol following the scaled-down first part of procedure C. After warming the reaction mixture to 0 °C in an ice bath for 15 min, it was added dropwise using a syringe pump (0.05 mmol/min) to a vigorously stirred and previously prepared mixture of CuCl (1 mg, 2 mol%), PPh₂Cl (103 µL, 0.6 mmol, 1.2 equiv) in dry THF (2 mL) under N₂ at 25 °C. After the addition was finished the mixture was stirred for additional 2.5 h at 50 °C. The solvent was taken to dryness and the crude product was purified by column chromatography (silica, gradient from 100% Pet. Ether to 95% Pet. Ether/5% Et₂O) to afford the product 8a (147 mg, 0.367 mmol, 73% yield). Colorless solid, m.p.: 104-106 °C. ¹H-NMR (400 MHz, CDCl₃): δ = 7.36-7.30 (m, 12H), 7.17 (td, J=7.2, 1.0 Hz, 1H), 7.07-7.03 (m, 2H), 6.86-6.79 (m, 3H), 3.80 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ = 151.70 (C_q), 144.15 (d, J_CP = 27.9 Hz, C_q), 136.92 (d, J_CP = 10.52 Hz, C_q), 136.40 (d, J_CP = 10.40 Hz, C_q), 135.25 (CH), 134.02 (d, J_CP = 20.1 Hz, CH), 133.28 (CH), 129.42 (d, J_CP = 3.81 Hz, CH), 129.27 (CH), 128.75 (CH), 128.54 (d, J_CP = 6.54 Hz, CH), 126.0 (CH), 125.0 (d, J_CP = 7.7 Hz, C_q), 114.87 (CH), 55.30 (CH₃). ³¹P-NMR (162.29 MHz, CDCl₃): -13.46 ppm. HR-MS (+ESI) m/z calcd for C₂₅H₂₂OPS [M+H]+ 401.1129, found 401.1127.

Compound 8b. The synthesis of compound 8b was carried out starting from 0.5 mmol of thiol following the scaled-down first part of procedure C. After warming the reaction mixture to 0 °C in an ice bath for 15 min, it was added dropwise using a syringe pump (0.05 mmol/min) to a vigorously stirred and previously prepared mixture of CuCl (5 mg, 10 mol%), p-tolyl disulfide (148 mg, 0.6 mmol, 1.2 equiv) in dry THF (2 mL) under N₂ at 25 °C. After the addition was finished the mixture was stirred for additional 12 h at R.T. The crude was dissolved in CH₂Cl₂ (50 mL) and extracted with 10% aq NH₃ (50 mL). The aqueous layer was extracted with CH₂Cl₂ (2 × 50 mL). All the organic layers were combined, dried over anhydrous MgSO₄ and filtered. The filtrate was taken to dryness and the crude product was purified by column chromatography (silica, gradient from 100% Pet. Ether to 90% Pet. Ether/10% Et₂O) to afford the product 8b (104 mg, 0.31 mmol, 62% yield). Colorless solid, m.p.: 98-100 °C. ¹H-NMR (400 MHz, CDCl₃): δ = 7.45-7.42 (m, 2H), 7.32-7.29 (m, 2H), 7.17 (d, J=8.0, 2H), 7.13-7.11 (m, 1H), 7.09-7.01 (m, 2H), 6.95-6.91 (m, 3H), 3.84 (s, 3H), 2.37 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ = 159.91 (C_q), 139.95 (C_q), 137.46 (C_q), 135.62 (CH), 135.12 (C_q), 131.82 (CH), 131.15 (CH), 130.71 (C_q),
Spectroscopic data for compounds 10 and 11.

Compound 10a. Prepared according to procedure E (172 mg, 0.64 mmol, 64%). Dense colorless oil.

1H-NMR (400 MHz, CDCl$_3$): δ = 7.24-7.17 (m, 4H), 7.03-6.99 (m, 2H), 6.80-6.76 (m, 3H), 3.71-3.69 (m, 4H), 3.28 (s, 3H), 3.04-3.02 (m, 4H). 13C-NMR (100 MHz, CDCl$_3$): δ = 148.39 (C$_q$), 147.86 (C$_q$), 140.72 (C$_q$), 128.81 (CH, 2C), 126.14 (CH), 123.01 (CH), 118.98 (CH), 117.69 (CH), 114.29 (CH), 67.47 (CH$_2$), 50.49 (CH$_2$), 37.71 (CH$_3$). HR-MS (+ESI) m/z calcd for C$_{20}$H$_{18}$OS$_2$ [M+H]$^+$ 338.0794, found 338.0795.

Compound 10b. Prepared according to procedure E (excluding the addition of NaH) (95 mg, 0.42 mmol, 42%). Dense colorless oil.

1H-NMR (400 MHz, CDCl$_3$): δ = 7.22-7.17 (m, 2H), 7.14 (t, J=8.0 Hz, 2H), 7.00 (dd, J=8.0, 1.2 Hz, 1H), 6.89 (td, J=8.0, 1.2 Hz, 1H), 6.76-6.72 (m, 3H), 3.18 (s, 3H), 2.74 (s, 6H). 13C-NMR (100 MHz, CDCl$_3$): δ = 149.25 (C$_q$), 148.53 (C$_q$), 139.03 (C$_q$), 129.22 (CH), 128.81 (CH), 126.16 (CH), 121.18 (CH), 118.21 (CH), 117.00 (CH), 113.51 (CH), 42.23 (CH$_3$), 37.19 (CH$_2$). HR-MS (+ESI) m/z calcd for C$_{15}$H$_{19}$N$_2$ [M+H]$^+$ 227.1548, found 227.1547. The data are in agreement with those reported in the literature.5

Compound 10c. Prepared according to procedure E (132 mg, 0.40 mmol, 40%) (excluding the addition of NaH). Dense colorless oil. 1H-NMR (400 MHz, CDCl$_3$): δ = 7.36 (m, 7H), 7.17-7.06 (m, 4H), 6.94 (t, J=8.0 Hz, 1H), 6.75 (d, J=8.0 Hz, 2H), 5.00 (s, 2H), 3.12 (q, J=8.0 Hz, 4H), 1.00 (t, J=8.0 Hz, 6H). 13C-NMR (100 MHz, CDCl$_3$): δ = 148.56 (C$_q$), 146.61 (C$_q$), 139.95 (C$_q$), 139.67 (C$_q$), 131.04 (CH), 128.83 (CH), 128.36 (CH), 126.87 (CH), 126.38 (CH), 125.71 (CH), 122.44 (CH), 122.17 (CH), 117.11 (CH), 113.75 (CH), 52.41 (CH$_2$), 45.08 (CH$_2$), 11.97 (CH$_3$). HR-MS (+ESI) m/z calcd for C$_{23}$H$_{27}$N$_2$ [M+H]$^+$ 331.2174, found 331.2160.

Compound 10d. Prepared according to procedure E (excluding the addition of NaH). (129 mg, 0.46 mmol, 46%). Dense colorless oil. 1H-NMR (400 MHz, CDCl$_3$): δ = 7.18-7.11 (m, 4H), 7.04 (dd, J=8.0, 1.6 Hz, 1H), 6.91 (td, J=8.0, 1.6 Hz, 1H), 6.74-6.88 (m, 3H), 5.98-5.88 (m, 1H), 5.21 (dd, J=16.0, 1.6 Hz, 1H), 5.13 (dd, J=8.0, 1.6 Hz, 1H), 4.32-4.30 (m, 2H), 3.09 (q, J=8.0 Hz, 4H), 0.98 (t, J=8.0 Hz, 6H). 13C-NMR (100
MHz, CDCl$_3$): δ = 148.23 (C$_q$), 146.89 (C$_q$), 139.87 (C$_q$), 135.05 (CH), 130.63 (CH), 128.75 (CH), 125.67 (CH), 121.90 (CH), 116.95 (CH), 116.11 (CH$_2$), 114.01 (CH), 77.24 (CH), 51.48 (CH$_2$), 45.06 (CH$_2$), 12.05 (CH$_3$). HR-MS (+ESI) m/z calcd for C$_{19}$H$_{25}$N$_2$ [M+H]$^+$ 281.2018, found 228.2012.

Compound 10e. Prepared according to procedure E (124 mg, 0.35 mmol, 35%). Dense colorless oil.

1H-NMR (400 MHz, CDCl$_3$): δ = 7.32-7.28 (m, 3H), 7.24-7.17 (m, 2H), 7.12-7.06 (m, 4H), 7.01 (d, J=8.0 Hz, 1H), 6.92 (t, J=8.0 Hz, 1H), 6.73-6.67 (m, 3H), 5.74-5.64 (m, 2H), 5.10 (d, J=4.0 Hz, 2H), 5.05 (s, 2H), 4.99 (s, 2H), 3.65 (d, J=8.0 Hz, 4H).

13C-NMR (100 MHz, CDCl$_3$): δ = 148.26 (C$_q$), 146.64 (C$_q$), 139.68 (C$_q$), 139.18 (C$_q$), 134.74 (CH), 130.84 (CH), 128.88 (CH), 128.41 (CH), 126.87 (CH), 126.48 (CH), 125.79 (CH), 122.61 (CH), 122.57 (CH), 120.64 (CH), 117.68 (CH), 117.40 (CH$_2$), 113.97 (CH), 53.88 (CH$_2$), 52.58 (CH$_2$). HR-MS (+ESI) m/z calcd for C$_{25}$H$_{27}$N$_2$ [M+H]$^+$ 355.2169, found 355.2156.

Compound 10f. Prepared according to procedure E (excluding the addition of NaH) (112 mg, 0.42 mmol, 42%). Dense colorless oil.

1H-NMR (400 MHz, CDCl$_3$): δ = 7.37 (dd, J=8.0, 1.2 Hz, 1H), 7.14 (d, J=8.0 Hz, 1H), 7.08 (dd, J=8.0, 1.6 Hz, 1H), 7.05-6.98 (m, 2H), 6.94 (td, J=8.0, 1.6 Hz, 1H), 6.66 (td, J=8.0, 1.2 Hz, 1H), 6.55 (d, J=8.0 Hz, 1H), 3.91 (br s, 2H), 3.15-3.10 (m, 6H), 1.01 (t, J=8.0 Hz, 6H).

13C-NMR (100 MHz, CDCl$_3$): δ = 149.33 (C$_q$), 146.17 (C$_q$), 138.63 (C$_q$), 130.14 (C$_q$), 126.88 (CH), 124.77 (CH), 124.55 (CH), 124.15 (CH), 121.73 (CH), 121.40 (CH), 117.36 (CH), 108.25 (CH), 52.06 (CH$_2$), 45.15 (CH$_2$), 28.81 (CH$_2$), 12.17 (CH$_3$). HR-MS (+ESI) m/z calcd for C$_{18}$H$_{23}$N$_2$ [M+H]$^+$ 267.1861, found 267.1866.

Compound 10g. Prepared according to procedure F (178 mg, 0.67 mmol, 67%).

Procedure E afforded a 40% yield. Pale yellow solid, m.p.: 70 °C. 1H-NMR (400 MHz, CDCl$_3$): δ = 7.18 (t, J=8.0 Hz, 2H), 7.12 (d, J=8.0 Hz, 2H), 7.01 (d, J=8.0 Hz, 1H), 6.92 (td, J=8.0, 1.2 Hz, 1H), 6.76-6.31 (m, 3H), 3.25 (s, 3H), 2.94-2.92 (m, 4H), 1.56-1.53 (m, 4H), 1.49-1.47 (m, 2H).

13C-NMR (100 MHz, CDCl$_3$): δ = 149.52 (C$_q$), 148.63 (C$_q$), 140.79 (C$_q$), 128.66 (CH), 128.64 (CH), 125.90 (CH), 122.16 (CH), 119.56 (CH), 117.12 (CH), 114.00 (CH), 51.61 (CH$_2$), 37.51 (CH$_3$), 26.64 (CH$_2$), 24.47 (CH$_2$). HR-MS (+ESI) m/z calcd for C$_{18}$H$_{23}$N$_2$ [M+H]$^+$ 267.1861, found 267.1862.
Compound 10h. Prepared according to procedure F (268 mg, 0.73 mmol, 73%). Pale orange solid, m.p.: 72 °C. 1H-NMR (400 MHz, CDCl$_3$): $\delta = 7.20-7.13$ (m, 4H), 6.99 (t, J=8.0 Hz, 2H), 6.77-6.71 (m, 3H), 3.37 (br s, 4H), 3.25 (s, 3H), 2.94 (br s, 4H), 1.44 (s, 9H). 13C-NMR (100 MHz, CDCl$_3$): $\delta = 154.75$ (C$_q$), 148.36 (C$_q$), 147.99 (C$_q$), 140.96 (C$_q$), 128.75 (CH), 128.68 (CH), 126.07 (CH), 123.21 (CH), 119.42 (CH), 117.65 (CH), 114.24 (CH), 79.66 (C$_q$), 50.04 (br s, CH$_2$), 44.50 (br s, CH$_2$), 43.45 (br s, CH$_2$), 37.94 (CH$_3$), 28.43 (CH$_3$). HR-MS (+ESI) m/z calcd for C$_{17}$H$_{21}$N$_3$ [M-Boc +H]$^+$ 267.1730, found 267.1731.

Compound 10i. Prepared according to Procedure F (165 mg, 0.60 mmol, 60%). Procedure E afforded a 54% yield. Pale orange solid, m.p.: 78 °C. 1H-NMR (400 MHz, CDCl$_3$): $\delta = 7.39$ (d, J=8.0 Hz, 1H), 7.17-7.12 (m, 2H), 7.04-6.99 (m, 3H), 6.70 (t, J=8.0 Hz, 1H), 6.58 (d, J=8.0 Hz, 1H), 3.97 (br s, 2H), 3.75-3.73 (m, 4H), 3.14 (t, J=8.0 Hz, 2H), 3.07 (br s, 4H). 13C-NMR (100 MHz, CDCl$_3$): $\delta = 148.51$ (C$_q$), 147.07 (C$_q$), 137.73 (C$_q$), 130.26 (C$_q$), 126.83 (CH), 125.36 (CH), 124.65 (CH), 123.84 (CH), 122.81 (CH), 118.75 (CH), 117.96 (CH), 109.12 (CH), 67.40 (CH$_2$), 52.13 (CH$_2$), 50.49 (CH$_2$), 28.80 (CH$_2$). HR-MS (+ESI) m/z calcd for C$_{18}$H$_{21}$N$_2$O [M+H]$^+$ 281.1654, found 281.1640.

Compound 10j. Prepared according to procedure F (144 mg, 0.60 mmol, 60%), using 1.5 equiv of O-benzoyl N-isopropyl hydroxylamine. Dense colorless oil. 1H-NMR (400 MHz, CDCl$_3$): $\delta = 7.24-7.16$ (m, 3H), 7.01 (d, J=8.0 Hz, 1H), 6.81-6.76 (m, 2H), 6.70-6.67 (m, 3H), 4.12 (br s, 1H), 3.69 (sep, 1H), 3.16 (s, 3H), 1.18 (d, J=4.0 Hz, 6H). 13C-NMR (100 MHz, CDCl$_3$): $\delta = 149.49$ (C$_q$), 144.72 (C$_q$), 134.59 (C$_q$), 128.98 (CH), 127.81 (CH), 127.63 (CH), 117.66 (CH), 116.92 (CH), 113.83 (CH), 111.76 (CH), 43.94 (CH), 38.69 (CH$_3$), 23.04 (CH$_3$). HR-MS (+ESI) m/z calcd for C$_{16}$H$_{21}$N$_2$O [M+H]$^+$ 241.1705, found 241.1714.

Compound 10k. Prepared according to procedure E (177 mg, 0.53 mmol, 53%). Dense colorless liquid. 1H-NMR (400 MHz, CDCl$_3$): $\delta = 8.29$ (d, J=8.0 Hz, 1H), 7.83 (d, J=8.0 Hz, 1H), 7.65 (d, J=8.0 Hz, 1H), 7.56-7.48 (m, 2H), 7.19 (t, J=8.0 Hz, 2H), 7.13 (d, J=8.0 Hz, 1H), 6.75 (t, J=8.0 Hz, 1H), 6.60 (d, J=8.0 Hz, 2H), 3.43-3.40 (m, 4H), 3.27 (s, 3H), 3.15-3.08 (m, 2H), 2.48-2.45 (m, 2H). 13C-NMR (100 MHz, CDCl$_3$): $\delta = 149.37$ (C$_q$), 146.23 (C$_q$), 140.34 (C$_q$), 133.52 (C$_q$), 132.58 (C$_q$), 128.89 (CH), 128.25 (CH), 128.17 (CH), 126.63 (CH), 126.02 (CH), 125.93 (CH), 124.40 (CH),
Compound 10l. Prepared according to procedure E (94 mg, 0.30 mmol, 30%). White solid, m.p.:

108 °C. 1H-NMR (400 MHz, CDCl3): δ = 7.15 (t, J=8.0 Hz, 2H), 7.10 (t, J=8.0 Hz, 1H), 6.80 (t, J=8.0 Hz, 2H), 6.70 (t, J=8.0 Hz, 1H), 6.59 (d, J=8.0 Hz, 2H), 3.84 (s, 3H), 3.21 (s, 3H), 3.19 (br s, 4H), 2.41-2.39 (m, 4H).

13C-NMR (100 MHz, CDCl3): δ = 158.89 (Cq), 149.77 (Cq), 146.05 (Cq), 139.08 (Cq), 128.71 (CH), 125.85 (CH), 121.67 (CH), 116.88 (CH), 113.30 (CH), 109.76 (CH), 55.57 (CH3), 52.64 (CH2), 39.94 (CH3), 28.32 (CH2). HR-MS (+ESI) m/z calcd for C21H23N2S [M+H]+ 335.1582, found 335.1573.

Compound 11a. The synthesis of compound 11a was carried out starting from 0.5 mmol of N-methyl aniline following the scaled-down first part of procedure E. After warming the reaction mixture to 0 °C in an ice bath for 15 min, it was added dropwise using a syringe pump (0.05 mmol/min) to a vigorously stirred and previously prepared mixture of CuCl (1 mg, 2 mol%), PPh2Cl (103 µL, 0.6 mmol, 1.2 equiv) in dry THF (2 mL) under N2 at 25 °C. After the addition was finished the mixture was stirred for additional 2.5 h at 50 °C and the solvent was taken to dryness and the crude product was purified by column chromatography (silica, gradient from 100% Pet. Ether to 95% Pet. Ether/5% Et2O) to afford the product 11a (121 mg, 0.329 mmol, 66% yield). Pale yellow solid, m.p.: 70-72 °C. 1H-NMR (400 MHz, CDCl3): δ = 7.29 (td, J=7.6, 1.5 Hz, 1H), 7.21 (br m, 10H), 7.12 (t, J=7.5 Hz, 1H), 7.06-6.95 (m, 4H), 6.60 (t, J=7.4 Hz, 1H), 6.39 (d, J=8.1 Hz, 2H), 2.83 (s, 3H). 13C-NMR (100 MHz, CDCl3): δ = 152.54 (d, JCP= 23.3 Hz, Cq), 149.36 (Cq), 139.18 (d, JCP= 11.4 Hz, Cq), 137.05 (d, JCP= 12.3 Hz, Cq), 134.51 (CH), 133.97 (d, JCP= 20.4 Hz, CH), 130.82 (CH), 128.67 (d, JCP= 2.79 Hz, CH), 128.54 (CH), 128.50 (CH), 128.32 (d, JCP= 6.90 Hz, CH), 126.9 (CH), 117.3 (CH), 113.63 (CH), 39.92 (d, JCP= 3.93 Hz, CH3). 31P-NMR (162.29 MHz, CDCl3): -15.01 ppm. MS (+ESI) m/z calcd for C18H22N2OSNa [M+ Na]+ 337.1351, found 337.1348.

Compound 11b. The synthesis of compound 11b was carried out starting form 0.5 mmol of N-methyl aniline following the scaled-down first part of procedure E. After warming the reaction mixture to 0 °C in an ice bath for 15 min, it was added dropwise using a syringe pump (0.05 mmol/min) to a vigorously stirred and previously prepared mixture of CuCl (5 mg, 10 mol%), phenyl disulfide (148 mg, 0.6 mmol, 1.2 equiv) in
dry THF (2 mL) under N\textsubscript{2} at 25 °C. After the addition was finished the mixture was stirred for additional 12 h at R.T. The crude was diluted in CH\textsubscript{2}Cl\textsubscript{2} (50 mL) and extracted with 10 % aq NH\textsubscript{3} (50 mL). The aqueous layer was extracted with CH\textsubscript{2}Cl\textsubscript{2} (2 x 50 mL). All the organic layers were combined, dried over anhydrous MgSO\textsubscript{4} and filtered. The filtrate was taken to dryness and the crude product was purified by column chromatography (silica, gradient from 100% Pet. Ether to 95\% Pet. Ether/5\% Et\textsubscript{2}O) to afford the product 11b (103 mg, 0.354 mmol, 71\% yield). Colorless solid, m.p.:

38–40 °C. 1H-NMR (400 MHz, CDCl\textsubscript{3}): $\delta = 7.48-7.45$ (m, 2H), 7.38-7.33 (m, 3H), 7.24-7.18 (m, 4H), 7.15-7.11 (m, 1H), 7.02 (t, J=7.3, 1.0 Hz, 1H), 6.66-6.62 (m, 2H), 3.25 (s, 3H).

13C-NMR (100 MHz, CDCl\textsubscript{3}): $\delta = 148.83$ (C\textsubscript{q}), 145.83 (C\textsubscript{q}), 138.64 (C\textsubscript{q}), 133.93 (CH), 133.32 (C\textsubscript{q}), 129.33 (CH), 129.31 (CH), 128.85 (CH), 128.81 (CH), 128.08 (CH), 127.19 (CH), 127.03 (CH), 117.58 (CH), 113.51 (CH), 38.93 (CH\textsubscript{3}). MS (+ESI) m/z calcd for C\textsubscript{19}H\textsubscript{18}NS $[M+H]^+$ 292.1160, found 292.1174. This compound has been previously reported in the literature.

Spectroscopic data for compounds 12 and vortioxetine 13.

Compound 12. Prepared according to procedure D (311 mg, 0.78 mmol, 78\%). Procedure C afforded a 48\% isolated yield. Pale yellow solid, m.p.: 80 °C. 1H-NMR (400 MHz, CDCl\textsubscript{3}): $\delta = 7.37$ (d, J=8.0 Hz, 1H), 7.15 (s, 1H), 7.10-7.01 (m, 3H), 6.87 (t, J=8.0 Hz, 1H), 6.52 (d, J=8.0 Hz, 1H), 3.62-3.60 (m, 4H), 3.02-3.00 (m, 4H), 2.36 (s, 3H), 2.32 (s, 3H), 1.89 (br s, 9H). 13C-NMR (100 MHz, CDCl\textsubscript{3}): $\delta = 154.95$ (C\textsubscript{q}), 148.97 (C\textsubscript{q}), 142.39 (C\textsubscript{q}), 139.27 (C\textsubscript{q}), 136.16 (CH), 134.64 (C\textsubscript{q}), 131.71 (CH), 127.83 (CH), 127.79 (C\textsubscript{q}), 126.24 (CH), 125.50 (CH), 124.60 (CH), 119.88 (CH), 79.69 (C\textsubscript{q}), 51.62 (CH\textsubscript{2}), 43.77 (br s, CH\textsubscript{2}), 28.49 (CH\textsubscript{3}), 21.22 (CH\textsubscript{3}), 20.62 (CH\textsubscript{3}). HR-MS (+ESI) m/z calcd for C\textsubscript{18}H\textsubscript{22}N\textsubscript{2}S $[M-Boc +H]^+$ 298.1498, found 298.1496. This compound has been previously reported in the literature.

Synthesis of vortioxetine 13. A glass vial was charged with N-Boc vortioxetine 11 (91mg, 0.23 mmol) and a magnetic stirrer. Dry CH\textsubscript{2}Cl\textsubscript{2} (0.5 mL) and trifluoroacetic acid (0.5 mL) were added and the solution was stirred for 1h at room temperature. The solvent was removed, the residue was dissolved in CH\textsubscript{2}Cl\textsubscript{2} (20 mL) and extracted with sat. NaHCO\textsubscript{3}aq (20 mL). The aqueous layer was extracted with CH\textsubscript{2}Cl\textsubscript{2} (2 x 20 mL). The organic layers were combined, dried over anhydrous MgSO\textsubscript{4} and filtered. The solvent was removed in vacuo to afford vortioxetine (63 mg, 0.22 mmol, 95\%). Pale yellow solid, m.p: 100 °C. 1H-NMR (400 MHz, CDCl\textsubscript{3}): $\delta = 7.38$ (d, J=8.0 Hz, 1H), 7.15 (br s, 1H), 7.08-7.01 (m, 3H), 6.88-6.84 (m, 1H), 6.51 (d, J=8.0 Hz, 1H), 3.08-3.00 (m, 4H), 2.36 (s, 3H), 2.32 (s, 3H), 1.89 (br s, 1H). 13C-NMR (100 MHz, CDCl\textsubscript{3}): $\delta = 149.62$ (C\textsubscript{q}),
142.46 (C\(_\text{q}\)), 139.19 (C\(_\text{q}\)), 136.23 (CH), 134.65 (C\(_\text{q}\)), 131.67 (CH), 128.01 (C\(_\text{q}\)), 127.79 (CH), 126.10 (CH), 125.44 (CH), 124.29 (CH), 119.88 (CH), 53.05 (CH\(_2\)), 46.49 (CH\(_2\)), 21.22 (CH\(_3\)), 20.62 (CH\(_3\)).

MS (EI) \(m/z\) calcd for C\(_{18}\)H\(_{22}\)N\(_2\)S [M]+ 298.4, found 298.1. This compound has been previously reported in the literature.\(^7\)

References

(1) A. M. Berman, J. S. Johnson, J. Org. Chem. 2006, 71, 219-224.
(2) S. Yotphan, D. Beukeaw, V. Reutrakul, Tetrahedron, 2013, 69, 6627–6633.
(3) W. Lin, I. Sapountzis, P. Knochel, Angew. Chem. Int. Ed. 2005, 44, 4258–4261.
(4) P. Bovonsombat, J. Leykajarakul, C. Khan, K. Pla-on, M. M. Krause, P. Khanthapura, R. Ali, N. Doowa, Tetrahedron. Lett. 2009, 50, 2664–2667.
(5) J. P. Wolfe, S. L. Buchwald, J. Org. Chem. 2000, 65, 1144-1157.
(6) B. Bang-Andersen, T. Ruhland, M. Jørgensen, G. Smith, K. Frederiksen, K. G. Jensen, H. Zhong, S. M. Nielsen, S. Hogg, A. Mørk, T. B. Stensbøl, J. Med. Chem. 2011, 54, 3206–3221.
(7) B. Bang-Andersen, A Faldt, A. Moerk, H. Lopez De Diego, R. Holm, T. B. Stensboel, L. M. Ringgaard, M. J. Mealy, M. H. Rock, J. Brodersen. Patent. 2007-WO 2007144005.
(8) H. Mikio, T. Kataoka, H. Shimizu, N. Ueda. Tetrahedron Lett. 1981, 3071-3074.
1H and 13C NMR data of compound 4b (400 and 100 MHz respectively, CDCl$_3$).
1H and 13C NMR data of compound 4c (400 and 100 MHz respectively, CDCl$_3$).
1H and 13C NMR data of compound 4d (400 and 100 MHz respectively, CDCl$_3$).
1H and 13C NMR data of compound 4e (400 and 100 MHz respectively, CDCl$_3$).
1H and 13C NMR data of O-benzoyl N,N-dimethyl hydroxylamine (400 and 100 MHz respectively, CDCl$_3$).
^1H and ^{13}C NMR data of compound $7a$ (400 and 100 MHz respectively, CDCl$_3$).
1H and 13C NMR data of compound 7b (400 and 100 MHz respectively, CDCl$_3$).
1H and 13C NMR data of compound 7c (400 and 100 MHz respectively, CDCl$_3$).
1H, 13C NMR and 19F data of compound 7d (400, 100 and 376 MHz respectively, CDCl$_3$).
1H and 13C NMR data of compound 7e (400 and 100 MHz respectively, CDCl$_3$).
1H and 13C NMR data of compound 7f (500 and 126 MHz respectively, CDCl$_3$).
1H and 13C NMR data of compound 7g (500 and 126 MHz respectively, CDCl$_3$).
1H and 13C NMR data of compound 7h (400 and 100 MHz respectively, CDCl$_3$).
1H and 13C NMR data of compound 7i (400 and 100 MHz respectively, CDCl$_3$).
1H and 13C NMR data of compound 7j (400 and 100 MHz respectively, CDCl$_3$).
1H and 13C NMR and 19F data of compound 7k (500, 126 and 470 MHz respectively, CDCl$_3$).
1H and 13C NMR and 19F data of compound 71 (500, 126 and 470 MHz respectively, CDCl$_3$).
1H and 13C NMR data of compound 7m (400 and 100 MHz respectively, CDCl$_3$).
1H and 13C NMR data of compound 7m' (400 and 100 MHz respectively, CDCl$_3$).
1H, 13C NMR and 19F data of compound 7n (400, 100 and 376 MHz respectively, CDCl$_3$).
1H, 13C NMR and 19F data of compound 7n' (400, 100 and 376 MHz respectively, CDCl$_3$).
1H and 13C NMR and 19F data of compound 7o (500, 126 and 470 MHz respectively, CDCl$_3$).
1H and 13C NMR data of compound 7p as 1:1 mixture of isomers (400 and 100 MHz respectively, CDCl$_3$).
1H, 13C and 31P NMR data of compound 8a (400, 100 and 162.3 MHz respectively, CDCl$_3$).
1H and 13C-NMR data of compound 8b (400 and 100 MHz respectively, CDCl$_3$).
1H and 13C NMR data of compound 10a (400 and 100 MHz respectively, CDCl$_3$).
1H and 13C NMR data of compound 10b (400 and 100 MHz respectively, CDCl$_3$).
1H and 13C NMR data of compound 10c (400 and 100 MHz respectively, CDCl$_3$).
1H and 13C NMR data of compound 10d (400 and 100 MHz respectively, CDCl$_3$).
1H and 13C NMR data of compound 10e (400 and 100 MHz respectively, CDCl$_3$).
1H and 13C NMR data of compound 10f (400 and 100 MHz respectively, CDCl$_3$).
1H and 13C NMR data of compound 10g (400 and 100 MHz respectively, CDCl$_3$).
1H and 13C NMR data of compound 10h (400 and 100 MHz respectively, CDCl$_3$).
1H and 13C NMR data of compound 10i (400 and 100 MHz respectively, CDCl$_3$).

![NMR spectra](image-url)
1H and 13C NMR data of compound 10j (400 and 100 MHz respectively, CDCl$_3$).
1H and 13C NMR data of compound 10k (400 and 100 MHz respectively, CDCl$_3$).
1H and 13C NMR data of compound 10l (400 and 100 MHz respectively, CDCl$_3$).
1H, 13C and 31P NMR data of compound 11a (400, 100 and 162.3 MHz respectively, CDCl$_3$).
1H and 13C-NMR data of compound 11b (400 and 100 MHz respectively, CDCl$_3$).
1H and 13C NMR data of compound 12 (400 and 100 MHz respectively, CDCl$_3$).
1H and 13C NMR data of vortioxetine 13 (400 and 100 MHz respectively, CDCl$_3$).
NMR assignments for compounds 7m, m', 7n, n', 9k and 9l (red arrows show selected NOESY correlations).

Compounds 7m and 7m'

Compounds 7n and 7n'
Compound 9k and 9l