Traditionally Used Medicinal Plants with Anticancer Effect: A Review

1 Satyajit Halder, 1Prema Modak, 1Bidduth Kumar Sarkar, 1Ananya Das, 2Arghya Prosun Sarkar, 4Anita Rani Chowdhury, 1Sukalyan Kumar Kundu

1Department of Pharmacy, Jahangirnagar University, Savar, Dhaka- 1342, Bangladesh.
2Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj, Bangladesh.
3Department of Pharmacy, Islamic University, Kushtia, Bangladesh.
4Department of Pharmacy, Jagannath University, Dhaka, Bangladesh.

*Corresponding author’s E-mail: satyajith27@gmail.com

Received: 14-08-2020; Revised: 18-10-2020; Accepted: 25-10-2020; Published on: 15-11-2020.

ABSTRACT

Cancer is the second major cause of death after cardiovascular diseases. It is a group of many closely related diseases. Several synthetic drugs are used to cure this disease but they have their toxicity and hence a number of research activities is going on to investigate the natural plant derived chemotherapeutic agents. More than 50% of modern drugs in clinical use are of natural agents. In recent years owing to the concern of side effects people prefer more and more use of natural plant products for cancer. For these reasons, World Health Organization (WHO) supports the use of traditional medicines which are efficacious and less toxic compared with conventional agents. The basic aim of this review is to highlight on the potential of newly discovered anticancer compounds from traditional medicinal plants to be used as leads for anticancer drug development. 85 different plant sources have been listed in the present review along with the phytoconstituents present in these plants possessing anticancer potential. The present paper is a comprehensive review of different literature sources. It will be helpful to explore the medicinal value of the herbal plants against the cancer and for the new drug discovery from them for the researchers and scientists around the world.

Keywords: Cancer, Side Effects, Anticancer Properties, Medicinal Plants, Phytoconstituents.

INTRODUCTION

Cancer is a general term which causes a series of malignant diseases that may affect different parts of the body. These diseases are characterized by a rapid and uncontrolled formation of abnormal cells. Cancer harms the body when damaged cells divide uncontrollably to form lumps or masses of tissue called tumors (except in the case of leukemia where cancer prohibits normal blood function by abnormal cell division in the blood stream). Tumors can eventually grow and interfere with the digestive, nervous, and circulatory systems and can release hormones that alter body function. Tumors that stay at one site and demonstrate limited growth are usually considered to be benign. When a tumor successfully spreads to other parts of the body and grows, invading and destroying other healthy tissues, it is said to be metastasized. Metastasis is the most lethal aspect of carcinogenesis.

Cancer is known to be the second most common cause of death. In 2012, there were 14.1 million new cancer cases, 8.2 million cancer deaths and 32.6 million people who live with cancer (within 5 years of diagnosis) reported by IARC worldwide. Treatment options, depending on the stage and type of cancer, include: Surgery, Radiation therapy, Chemotherapy, Biological therapy, Hormone therapy etc. Chemotherapy can sometimes cause side effect like fatigue, sleep disturbance, appetite loss, hair loss, sore mouth, changes in taste, fever and infection, anxiety, depression, nausea, and vomiting. Moreover, during the last decade, novel synthetic chemotherapeutic agents currently in use clinically have not succeeded to fulfill expectations despite the considerable cost of their development. Therefore, there remains a constant demand to develop new, effective, and affordable anticancer drugs.¹

In recent years there has been an increased trend in the use of medicinal plants in the developing countries because of their safety and less adverse effect especially when compared with synthetic conventional drugs. Till now NCI had investigated more than 35,000 plant species which resulted in the discovery of anticancer drugs such as Vincristine, Vinblastine, Taxol, Etoposide analogs, Indicine—N-oxide, Camptothecin and analogs and many others. With the knowledge of available traditional medicine, a new approach could be adopted which combine some or all of above methods.² Paclitaxel (Taxol TM) was originally isolated from Taxus brevifolia used in treatment of ovarian and breast cancers which

DOI: 10.47583/ijpsrr.2020.v6s1.001

DOI link: http://dx.doi.org/10.47583/ijpsrr.2020.v6s1.001

©Copyright protected. Unauthorised republication, reproduction, distribution, dissemination and copying of this document in whole or in part is strictly prohibited.
was assumed to bind the tubulin subunit of microtubules and stabilizes the microtubule to normal disassembly. Herbs these days are also being used as chemoprotectant against cytotoxicity that are caused by anticancer drugs. So, this present review aimed at exploring the potential anticancer compounds from the medicinal plants.

The Mechanism on Cancer Therapy:

1. Inhibiting cancer cell proliferation directly by stimulating macrophage phagocytosis and enhancing natural killer cell activity.

2. Promoting apoptosis of cancer cells by the increase of production of interferon, interleukin-2 immunoglobulin and complement in blood serum.

3. By enhancing the number of leukocytes and platelets by stimulating the hemopoietic function.

4. By enforcing the necrosis of tumor and inhibiting its translocation and spread by the blockage of blood source of tumor tissue.

5. Promoting reverse transformation of tumor cells into normal cells.

Advantages of Herbal Drugs Over Conventional Drugs

Folk medicines of natural origin have been used for centuries in every culture all over the world. Scientists and medical professionals have shown increased interest in this folk medicine area as they recognized the true health benefits of these remedies. A herb (also called a botanical) is a plant or part of plant used for its scent, flavor, and / or therapeutic properties. Products that are made from botanicals used to maintain or improve health have been called herbal supplements, botanicals, or phytomedicines.

Common reasons for use of herbal medicines include health promotion, disease prevention, poor outcomes and limited treatment options for a serious illness, exhaustion of conventional therapies, dissatisfaction with, or inefficacious conventional therapies, fatal side effects or risks associated with conventional medicine, belief that herbal and natural products are better or safer, preference for personal involvement in the decision making process, and cultural or spiritual preference. Whereas side effects of allopathic medications vary wildly from mild to severe and there are many. These may include insomnia, vomiting, fatigue, dry mouth, diarrhea, constipation, dizziness, suicidal thoughts, hostility, depression, mania, seizures, coma, anemia, hair loss, high blood sugar, shoplifting, swelling, impotency, panic attacks, confusion, fainting and death.

The increasing costs of conventional cancer treatments (chemotherapy and radiation) and the lack of effective drugs to cure solid tumors encouraged people from different countries to depend more on folk medicine which is rooted in medicinal plants use. Of over 2069 anti-cancer clinical trials recorded by the National Cancer Institute as being in progress as of July 2004, over 160 are drug combinations including these agents against a range of cancers.

In view of the complications of the therapies that are currently considered for cancer, high costs of conventional cancer therapies, and growing evidence of cancer in both developed and developing countries, it seems necessary to develop more novel approaches with higher efficiency so that the disease intensity could be declined. In this regard, there is considerable scientific and commercial interest in the development of new anticancer agents from natural sources and the research aimed to develop new anticancer drugs has been turned into a significant research area. In fact, naturally derived combinations have been considered under pharmacists' focus to synthesize new drugs and treat diseases due to availability, less frequent side effects and drug interactions, and cheapness. Herbal therapies although, still an unwritten science is well established in some cultures and tradition and have become a way of treatment in almost 80% of the people in rural areas, especially those in Asia, Latin America and Africa.

MEDICINAL PLANTS WITH ANTICANCER ACTIVITY

Plants are the chief source of natural products that are commonly and successfully used in medicine. Populations, who consume a high level of natural herbal products, generally have a declined incidence of cancer. There is lately great interest in screening for plants to be used in cancer prevention and treatment. The present study is focused to screen some traditionally used medicinal plants for available anticancer effect. Few types of plants species present are listed and detailed (common names, plant type, family, part used, active constituents, mechanism of action, type of cancer treated) below (Table 1).

CONCLUSION

From the present review, it can be concluded that herbal medicinal plants and their derivatives are active against various type of cancers like lymphomas, breast, ovarian, lung, liver, stomach, prostate and testicular cancers. The cheap herbal medicinal treatment which may highly be recommended to the rural and poor people especially of developing countries to treat effectively the cancers of different type is an ideal choice. The investigated traditional medicinal plants in this article could be a key to identify the compounds with anti-cancer effects; therefore, if their compounds are examined, they might help to develop new, more efficient drugs, in addition to contributing to identify the main mechanisms involved in cancer.
Table 1: Anticancer medicinal plants

Sr. No.	Scientific Name	Common name	Plant Type	Family	Part(s) Used	Important Compounds	Mechanisms	Types of Cancer treated
1.	*Ferula assa-foetida*	Asafoetida - Devil’s Dung	Herb	Apiaceae	Shoot, resin	Coumarin compounds (especially sesquicoumarins), sulfur-containing compounds, and b-sitosterol and oleic acid	Inhibition of mutagenesis, DNA destruction and cancer cells proliferation; increase of proteolytic enzymes activity	Liver cancer 9
2.	*Thymus vulgaris*	Thyme	Sub shrub	Lamiaceae	Shoot	Thymol and carvacrol	Cell cycle arrest	Prostate cancer 10, Head cancer 11
3.	*Thymbra spicata*	Mediterranean thyme	Shrub	Lamiaceae	Shoot	Thymol and carvacrol	Inhibition of DNA destruction	Lung cancer 12
4.	*Taverniera spartea*	Aelijaan	Shrub	Fabaceae	Shoot	Isoflavonoid compounds and saponins	Induction of necrosis and apoptosis	Breast and prostate cancer 13
5.	*Peganum harmala*	Harmel	Herb	Nitrariaceae	Seed	Alkaloids	Induction of apoptosis (by caspase activation and increase of proteolytic enzymes activity)	Breast cancer (Both in vitro and in vivo) 14, cervix cancer 15,16
6.	*Viola tricolor*	Heartsease	Herb	Violaceae	Shoot	Flavonoids (especially rutin and quercetin)	Cell cycle arrest	Cervix cancer 16
7.	*Achillea wilhelmsii*	Allheal, bloodwort	Herb	Asteraceae	Shoot	Phenolic compounds (especially flavonoids and monoterpenes such as 1,8-cineole and a-pinene)	Induction of apoptosis	Colon cancer 17
8.	*Mentha pulegium*	Pennyroyal, squawmint	Herb	Lamiaceae	Shoot	Pulegone, menthone, piperitone, limonene, isomenthone, octen-3-ol	Induction of apoptosis	Blood cells cancer 18
9.	*Ammi visnaga*	Bisnaga	Herb	Apiaceae	Shoot	Visnadine, cimifugin, khellol, b-sitosterol, kaempferol, quercetin	Cell cycle arrest	Breast cancer 19
10.	*Camellia sinensis*	Tea plant	Shrubs or small trees	Theaceae	Leaf	Epicatechin, epigallocatechin, epigallocatechin-gallate, epigallocatechin-3-gallate	Inhibition of cancer cells proliferation (by inhibit of 5-a reductase enzyme activity)	Lung, bladder, skin, prostate and breast cancer (Both in vitro and in vivo) 20
11.	*Avisennia marina*	Grey mangrove	Shrub or tree	Acanthaceae	Leaf	Flavonoids (especially naphthoquinoine compounds such as 3chlorodeoxylapachol)	Antioxidant effects; induction of apoptosis	Breast, larynx cancer 21,22
12.	*Silybum marianum*	Cardusmarianus	Herb	Asteraceae	Seed	Flavonoids (especially silymarin)	Antioxidant effects; cell cycle arrest	Colorectal cancer and colon cancer (Both in vitro and in vivo) 23, breast cancer 24
13.	*Artemisia absinthium*	Wormwood	Herb	Asteraceae	Root, Shoot	Artemisinin, quercetin, isorhamnetin, limonene, myrecene, linalool, a-pinene, b-pinene, artemesinate	Inhibition of cancer cells proliferation (decrease in response to nuclear receptors); inhibition of angiogenesis and cell migration; induction of apoptosis	Colon 25, blood cells cancer 26
14.	*Curcuma longa*	Turmeric	Herb	Zingiberaceae	Rhizome	Curcumin	Inhibition of cancer cells proliferation (by adjusting gene expression); inhibition of angiogenesis; induction of apoptosis	Leukemia, glioblastoma and colon cancer (In vitro) 31, Lung 28,29, Breast 28, prostate 30, cervix 13 and larynx 12 cancer

©Copyright protected. Unauthorised republication, reproduction, distribution, dissemination and copying of this document in whole or in part is strictly prohibited.
Sr. No.	Scientific Name	Common name	Plant Type	Family	Part(s) Used	Important Compounds	Mechanisms	Types of Cancer treated
15.	*Crocus sativus* L	Saffron crocus	Herb	Iridaceae	Stigma	Phenolic compounds (especially quercetin), Crocetin, picrocrocin, and safranal	Inhibition of cancer cells proliferation (inhibits DNA synthesis)	Sarcoma and oral cancer (Both *in vitro* and *in vivo*), breast, colon, liver cancer
16.	*Zingiber officinale*	Ginger	Herb	Zingiberaceae	Rhizome	Flavonoids (especially kaempferol, catechin, fisetin, and quercetin)	Induction of apoptosis	Ovary, cervix, colon, liver and urinary cancer (*in vitro* and *in vivo*), prostate cancer
17.	*Olea europaea*	Olive	Tree or Shrub	Oleaceae	Leaf, fruit	Oleic acid, pinoresinol, oleuropein, acidic triterpenes, oleanolic acid, maslinic acid	Inhibition of cancer cells proliferation (inhibition of HER2 gene expression); inhibition of angiogenesis; induction of apoptosis	Breast, colon cancer
18.	*Taxus baccata* L	Yew	Tree	Taxaceae	Leaf	Taxol, cabazitaxel, batatasaxetol	Cell cycle arrest	Prostate cancer (*in vivo*), Breast, bladder and pancreatic cancer (*in vivo*), cervix and blood cells cancer
19.	*Nigella sativa*	Black cumin	Herb	Ranunculaceae	Seed	Thymoquinone, dinitroquinone	Cell cycle arrest; induction of apoptosis	Colon, prostate, breast and pancreas cancer
20.	*Allium sativum* L	Garlic	Bulbous herb	Amaryllidaceae	Fruit	Allicin, ajene	Cell cycle arrest; induction of apoptosis	Lymphoma, cervix cancer (*in vivo*), breast, prostate, colon, larynx cancer
21.	*Lepidium sativum*	Cress	Herb	Brassicaceae	Shoot	Vitamins (A, B, C and E), isothiocyanate, alilnolenic acid, glucosinolates	Antioxidant effects; cell cycle arrest	Breast and blood cells cancer
22.	*Trigonella foenumgraceum* L	Fenugreek	Herb	Fabaceae	Shoot	Flavonoids and alkaloids (such as gingerol, cedrene, zingerone, vanillin, and eugenol)	Antioxidant effects; induction of apoptosis	Breast cancer
23.	*Glycyrrhiza glabra*	Liquorice	Herb	Fabaceae	Root	Glycyrrhizin	Inhibition of cancer cells proliferation (bcl-2 phosphorylation); morphological changes in cancer cells and induction of apoptosis	Prostate, breast, lung, stomach and kidney cancer (*in vivo*), breast, lung cancer
24.	*Physalis alkekengi* L	Bladder cherry	Herb	Solanaceae	Fruit	Physalins	Induction of apoptosis	Cervix cancer
25.	*Lagenaria siceraria* Stan dl	Bottle gourd	Herb	Cucurbitaceae	Shoot, fruit	Vitamins (B group and C), sapoins, cucurbitacin	Cell cycle arrest	Lung and breast cancer
26.	*Ferula gummosa*	Galbanum	Herb	Aplineae or Umbelliferae	Shoot	Sesquiterpenes and coumarins	Inhibition of cancer cells proliferation (distribution in the biosynthesis of nucleic acids and proteins); decrease of cells viability (increase of reactive oxygen species production); induction of apoptosis (by activation of caspases)	Lung, skin, stomach cancer
27.	*Urtica dioica* L	Common nettle	Herb	Urticaceae	Leaf	Phenolic compounds	Antioxidant effects; cell cycle arrest	Prostate cancer
28.	*Ammi majus*	Bishop’s weed	Herb	Aplineae	Shoot, seed	Coumarin compounds (especially psoralens)	Cell cycle arrest; induction of apoptosis	Breast cancer
Sr. No.	Scientific Name	Common name	Plant Type	Family	Part(s) Used	Important Compounds	Mechanisms	Types of Cancer treated
--------	-----------------------	---------------------	------------------	-------------------	-------------	---	--	--
29	Rosa damascene	Damask rose	Deciduous shrub	Rosaceae	Petal	Phenolic compounds (such as gallic acid, catechin, and epicatechin)	Antioxidant effects; DNA protection	Lung\(^64\), breast\(^64\), cervix\(^67\) cancer
30	Astragalus cystosus	Milkvetch	Herb or small shrub	Fabaceae	Shoot	Lectins, flavonoids and terpenoids	Cell cycle arrest; induction of apoptosis	Lung\(^68\) cancer
31	Myrtus communis	Common myrtle	Shrub	Myrtaceae	Leaf	Polyphenols, myrtycummuloine, semimyrtcummuloine, 1,8-cineole, a-pine, myrtenyl acetate, limonene, linalool, aterpinolene	Antioxidant effects, induction of apoptosis (DNA fragmentation and activation caspases)	Breast\(^63,70,71\), cervix\(^72\) cancer
32	Vinca rosea	Madagascar periwinkle	Herb	Apocynaceae	Shoot	Vincristine, vindoline, vinfunine, vinblastin, catharantin	Antioxidant effects; inhibition of cancer cells proliferation (effect on microtubules)	Breast and larynx cancer\(^70\)
33	Citrullus colocynthis	Bitter apple	Herb	Cucurbitaceae	Fruit	Cucurbitacin, quercetin, b-sitosterol	Cell cycle arrest; induction of apoptosis	Liver cancer\(^72\)
34	Polygonum aviculare	Common knotgrass	Herb	Polygonaceae	Shoot	Tannins, saponins, flavonoids and alkaloids	Antioxidant effects; cell cycle arrest; induction of apoptosis	Breast\(^73\), cervix\(^74,75\) cancer
35	Astroudaucus orientalis	-	Herb	Apiaceae	Root, shoot	a-pine, a-thujene, a-copaene, fenchylacetate, myrecene, sabine	Cell cycle arrest; induction of apoptosis	Breast\(^76\) cancer
36	Actinidia chinensis	Kiwi fruit, China gooseberry	Tree	Actinidiaceae	Root	Polyvaccharide known as “ACPSR”	Inhibition of prostaglandin E receptor 3 (EP3) expression\(^77\)	Hepatocellular carcinoma\(^77\)
37	Aegle marmelos	Bael	Tree	Rutaceae	Stem bark	Lupeol	Cell cycle arrest\(^78\)	Breast cancer, malignant lymphoma, malignant ascites, malignant melanoma, leukaemia
38	Agave americana	Century plant	Herb	Agavaceae	Leaf	Steroidal saponin, alkaloid, coumarin, isoflavonoid, hecogenin and Vitamins, (A, B, C)	Cytotoxic and antitumor activity	Cancerous tumor
39	Aloe vera	Aloe	Herb	Asphodelaceae	Leaf	Aloe-emodin	activates the macrophages, enhances activity of the immune cells against cancer\(^79\), inhibit metastases\(^80\)	Leukemia, stomach cancer (In vivo)\(^81\)
40	Alpinia galanga	Thai ginger	Herb	Zingiberaceae	Rhizome	Acetoxy-chavicol-acetate (ACA), Pinocembrin, Galangin	Arrests cell proliferation and induces apoptosis, possesses strong antioxidant, antimutagenic and anti-inflammatory properties	Breast, lung, stomach, colon, prostate cancer, multiple myeloma, leukaemia
41	Amoora rohituka	Rohituka tree	Tree	Meliaceae	Stem bark	Amooranin (a triterpene acid)	Arrests G2/M phase of the cell cycle and induces apoptosis	Breast and cervical cancers, colon cancer Lymphocytic leukemia (In vitro)\(^82\)
42	Andrographis paniculata	King of Bitters	Herb	Acanthaceae	Whole plant	Flavonoids and labdanediterpenoids, Andrographolid	Stimulates cytotoxic and potent immune stimulating activity	Colon cancer (Both in vitro and in vivo)\(^83\)
Sr. No.	Scientific Name	Common name	Plant Type	Family	Part(s) Used	Important Compounds	Mechanisms	Types of Cancer treated
--------	-------------------	-------------	------------	-------------	-------------------------------	---------------------	--	---
43	Annona muricata	Graviola	Tree	Annonaceae	Fruit, seeds, leaves, and bark	Acetogenins	Blocks production of adenosine triphosphate allowing chemotherapy to be more effective, inhibits NADH oxidase and blocks ATP production in mitochondria limiting the ability of cancer cells to grow.	Lung, solid human-breast cancer, tumor carcinoma, pancreatic carcinoma, prostatic adenocarcinoma, colonic adenocarcinoma, human lymphoma, liver cancer and multiple-drug resistant human-breast adenocarcinoma
44	Apis mellifera	European honey bee	Not applicable	Apideae	Not applicable	Protein	Stimulates tumor necrosis factor-alpha (TNF-α), inhibits of cell proliferation, induces of apoptosis, and cell cycle arrest.	Renal, lung, prostate, bladder, melanoma, osteosarcoma, mammary and lymphoid cancer.
45	Ananas comosus	Pineapple	Herb	Bromeliaceae	Stem	Bromelain	Enhances cytotoxic activity of the monocytes and the macrophages inhibiting growth of cancer, inhibits growth of cancer cells, induces caspase-dependent apoptosis and causes cleavage of p53, removal of MUC1, and attenuation of phospho-Akt and Bcl2.	Leukaemia, gastrointestinal carcinoma, Cholangiocarcinoma, tongue cancer.
46	Angelica sinensis	Female ginseng	Herb	Apiaceae	Root	Polysaccharide known as “AR-4”	Induction of interferon production, stimulation of the immune cell proliferation and enhancement of antitumour activity of the immune cell and cell cycle arrest and apoptosis.	Cervix cancer, brain tumor, colorectal carcinogenesis, Glioblastomatousmultiforme.
47	Annona species	Monkey species	Trees or shrubs	Annonaceae	Leaves	Acetogenins	Exhibit different level of cytotoxicity, show anti-metastatic features, induce apoptosis	Leukemia and sarcoma, nasopharyngeal carcinoma.
48	Arctium lappa	Greater burdock	Herb	Asteraceae	Seeds, root, fruit, leaves	Arctigenin, Lappaol F	Prevents mutations in the oncogenes, reduces the size of tumour, relieves the pain and prolongs the survival period, arrests cell cycle at G1 and G2 phases and induces apoptosis.	Malignant melanoma, lymphoma and cancers of the pancreas, breast, ovary, oesophagus, bladder, bile duct and the bone, lung, cervix, prostate cancer and leukemia, liver cancer.
49	Artemisia asiatica	Not specified	Hardy herb or shrub	Asteraceae	Aerial parts and leaves	Isoliquiritigenin	Restrains the cell cycle progression at G2/M phase, enhances the expression of p21CIP1/WAF1, a universal inhibitor of cyclin-dependent kinases (CDKs) and induces apoptosis.	Liver tumor, skin tumor, lung cancer.
50	Astragalus membranaceus	Astragalus	Herb	Fabaceae	Root	Swainsonine	Prevent metastases	Liver cancer, gastrointestinal cancers.
51	Azadirachta indica	Neem	Tree	Meliaceae	Leaves and flowers	Liminoids and Nimbolide	Inhibits growth and spread of various cancers by inducing apoptosis, prevents metastasis, effect activates tumour suppressor gene and inhibits VEGF and phosphoinositols PISK/Akt pathways, suppression of NF-κB signaling, and cyclooxygenase pathway.	Breast, lung, stomach, prostate and skin cancer, colon cancer, prostate cancer, malignant lymphoma, malignant melanoma and leukaemia.
Sr. No.	Scientific Name	Common name	Plant Type	Family	Part(s) Used	Important Compounds	Mechanisms	Types of Cancer treated
---------	----------------------	----------------------	------------	-------------------	--------------------------	---	---	
52.	Bauhinia variegata	Mountain ebony	Tree	Caesalpiniaeae	Flower, leaf, stem bark	Cyanidinglucoside, malvidinglucoside, peonjinglucoside and kaempferolgalactoside	Inhibit growth and spread of various cancers	Cancers of breast, lung, liver, oral cavity, melanoma, liver tumor, larynx cancer and human breast
53.	Berberis vulgaris	Common barberry	Shrub	Berberidaceae	Roots stem and bark	Berberine, berbamine, chelidonic acid, oxycaanthine and palmatine	Arrests cancer cell cycle in G1-phase and induces apoptosis increases the penetration of some chemotherapy drugs through the blood-brain barrier	Prostate cancer, liver cancer and leukaemia, intracranial tumours breast cancer, stomach and oral cavity cancers, colon cancer
54.	Betula alba	Birch	Tree	Betulaceae	Leaves	Betulinic Acid	Kill cancerous cells, induces antiproliferative effect, decreases cancer cell motility and induces apoptotic cell death, also decreases bc2 and cyclin D1 genes expression, and increased bax gene expression.	Prostate cancer, Human melanoma xenografts and leukemia (In vitro), neuroblastoma, rabdomyosarcoma, medulloblastoma, glioma, thyroid, breast, lung and colon carcinoma
55.	Betula utilis	Himalayan birch	Tree	Betulaceae	Bark	Betulin, ursolic acid (UA)	Apoptotic	Liver and the lung cancer, breast cancer, melanomas
56.	Bolbostemma paniculatum	Tu Bei Mu	Herb	Cucurbitaceae	Stem tuber	Tubeimoside-V	Apoptotics, exhibits promised cytotoxic activity which may be linked to the inhibition of DNA synthesis and may induce phenotypic reverse transformation of tumor cells.	Globlastoma cells
57.	Cannabis sativa	Marijuana	Herb	Cannabaceae	Leaf	Cannabinoids, stereo isomers ofcannabidiol	Anti-tumor activity by modulating key cell-signaling pathways	Breast cancer, brain tumors, Lung, pancreas, prostate and colorectal cancer (Both - in vitro and in vivo)
58.	Catharanthus roseus	Madagascar periwinkle	Herb or Sub shrub	Apocynaceae	Bark, leaves	Vinblastine, vincristine	Inhibits formation of mitotic spindle in the metaphase that arrests division of the cancerous cells	Hodgkin's disease, non- Hodgkin's lymphoma, pancreas, testis, breast, lung, bladder and the cervix cancer, acute lymphocytic leukaemia, Wilm's tumour, neuroblastoma, rhabdomyosarcoma, Ewing's sarcoma, lymphoma
59.	Cinnamomum cassia	Chinese cinnamon	Tree	Lauraceae	Bark	Coumarin	Decreases lipid peroxidation, inhibits of bacteria, such as Helicobacter pylori, that facilitate the invasion and progression of cancer, exhibits potent antiproliferative effect, modulates cancer cell survival pathways, reduces the levels and activities of NFkB and AP1 and their target genes such as Bcl-2 and Bcl-xL.	Promyelocytic leukaemia, liver cancer, prostate and breast cancer, cervical carcinoma, colorectal carcinoma, epitheloid cervix carcinoma, glioblastoma multiform tumor, lymphoblast lung, oral cancer, basal cell carcinoma.
60.	Colchicum luteum	Yellow colchicum	Herb	Liliaceae	Not specified	Colchicines	Shows antimitotic activity	Hodgkin lymphoma, myeloid leukemia and skin cancers
61.	Combretum caffrum	Cape bush-willow	Tree	Combretaceae	Bark, kernal and fruit	Combretastatin	Inhibits blood supply to the tumour,	Colon, and leukemia and lung cancer (In vivo)
Sr. No.	Scientific Name	Common name	Plant Type	Family	Part(s) Used	Important Compounds	Mechanisms	Types of Cancer treated
--------	----------------------	-------------	------------	--------------	--------------	--	--	--
62.	Coriandrum sativum	Coriander	Herb	Apiaceae	Root, leaves	Beta-carotene, quercetin and rutin	Helps to remove free radicals, antiproliferative activity and inhibition of metastasis	Breast adenocarcinoma, Colon Cancer
63.	Daphne mezereum	Mezereum	Shrub	Thymelaeeaceae	Leaves	Mezerein	Exhibits a potent antileukemic activity	Lymphocytic leukemia, Lung cancer
64.	Echinacea angustifolia	Herb	Astersaceae	Whole plant		Arabinogalactan	Activates the macrophages	Carcinoma of the oesophagus and thecolon
65.	Emblica officinalis	Amla	Herb	Phyllanthaceae	Fruit	Emblicanin A and B, quercetin	Inhibits mutations in genes, repairs chromosomal abnormalities, inhibits growth and spread of various cancers	Breast, uterus, pancreas, stomach, liver cancer and malignant ascies
66.	Fagopyrum esculentum	Buckwheat	Herb	Polygonaceae	Seeds	Amygdalin, rutin, Buckwheat inhibitor-1 protein	Produces cyanide that kills the cancerous cells	T-acute lymphoblastic leukemia (T-ALL) cells (in vitro)
67.	Ginkgo biloba	Kew tree	Tree	Ginkgoaceae	Leaves	Ginkgetin and Ginkgolides (A and B)	Induces apoptosis	Invasive oestrogen-receptor negative breast cancer, gliblastoma multiforme, and cancers of ovary, colon, prostate and liver
68.	Glycine max	Soybean	Herb	Fabaceae	Seeds	Genistein and daidzein	Inhibits of cancer cell proliferation, promotes cell differentiation and induces of apoptosis, blocks angiogenesis, acts as a tyrosine kinase inhibitor	Breast, uterus, cervix, lung, stomach, colon, pancreas, liver, kidney, prostate, testis, oral cavity, larynx, skin cancer, malignant lymphoma, rhabdomyosarcoma, nasopharyngeal carcinoma, malignant brain tumours and leukaemia
69.	Gossypium hirsutum	Upland cotton	Shrub, Subshrub, Tree	Malvaceae	Whole plant	Gossypol	Possesses antitumor properties on many cytosolic and mitochondrial enzyme systems that is fundamental for tumor cell growth	Colon, lung, prostate, breast, brain cancer, melanoma, endometrial, adrenocortical cancer
70.	Indigofera tinctoria	True indigo	Shrub	Fabaceae	Leaf	Flavonoids, saponins, tannins, phenols and anthroquinone	Antioxidant and cytotoxic activity, cell cycle arrest	Lung cancer
71.	Lentinus edodes	Shiitake	Fungus	Polyporaceae	Fruiting bodies	Lentinan, terpenoids and steroids	Stimulates increased production and activity of natural killer cells and macrophages, which destroy tumor cells possess hypolipidemic and antithrombotic activity	Lung carcinoma, Colon cancer
72.	Linum usitatissimum	Flax	Herb	Linaceae	Seeds	Lignans	Lignan metabolites bear a structural similarity to estrogens and can bind to estrogen receptors and inhibit the growth of estrogen-stimulated breast cancer	Breast cancer
73.	Nothapodytes foetida	Nothapodyes Tree	Tree	Icacinaceae	Barks and heartwood	Acetylcamptothecin, Camptothecin, ScoopoletinCamptothecin	Inhibits DNA topoisomerase found in cancerous cells, halts the process of mutation and development of the cancer cells	Colon cancer
Sr. No.	Scientific Name	Common Name	Plant Type	Family	Part(s) Used	Important Compounds	Mechanisms	Types of Cancer treated
-------	-----------------------	-----------------------	------------	----------------------	---------------------	---	---	-------------------------
74.	Ocrosia elliptica	Elliptic yellowwood	Tree	Apocynaceae	Leaves	Ellipticine and 9-methoxy ellipticine	Lipophilic derivatives of ellipticine act by binding to the DNA	Breast and the kidney cancer
75.	Ocimum sanctum	Tulsi	Herb	Lamiaceae	Leaves	Eugenol, orientin, cirsinole, Ursolic acid cismaritin, Caryophyllene, camphor	Blocks supply of oxygen and nutrients to the cancer cells and kills them by starving	Breast cancer, liver cancer, tissue-protective, fibrosarcoma, Sarcoma-180 solid tumor
76.	Oldenlandia diffusa	Snake-Needle Grass	Herb	Rubiaceae	Stem bark, leaves, fruit peel	Oldenlandosides, stigmasterol, usoric acid,	Works by a typical cytotoxic effect on cancer cells and by inducing apoptosis	Ovary, lung, uterus, stomach, liver, colon, rectum, brain and leukaemia
77.	Origanum vulgare	Oregano	Herb	Lamiaceae	Whole plant	Rosmarinic acid	Exerts a modulatory role on tissue lipid peroxidation, induced apoptosis by increasing BAX levels, decreasing BCL2 expression	Colon cancer, breast cancer, lung cancer, human skin cancer, liver cancer, stomach cancer
78.	Panax ginseng	Ginseng	Herb	Araliaceae	Root	Flavonoids, polysaccharides, and polyacetylenes	Inhibits growth of cancer by interfering with the DNA synthesis, regenerates the natural killer cells, stimulates the macrophages	Breast, cervical, bladder, and thyroid cancers, ovaries, larynx, pancreas, esophagus, and stomach cancer
79.	Pfaffia paniculata	Suma	Herb	Amaranthaceae	Roots	Presents cytotoxic substances	Shows degeneration of cytoplasmic components and profound morphological and nuclear alterations of cancer cells	Estrogen-positive breast cancer
80.	Picrorrhiza kurroa	Kutki	Herb	Plantaginaceae	Whole plant	Picrosides-I, II and III and kutkoside	Decreases levels of lipid peroxidases and hydroperoxidases, free radical producing agents, and helps to facilitate the recovery of a powerful antioxidant in the liver	Liver cancer
81.	Plumbago zeylanica	Ceylon leadwort	Herb	Plumbaginaceae	Roots	Plumbagin	Inhibits cancer cell proliferation	Breast cancer, liver cancer, fibrosarcoma, malignant ascites and leukaemia, skin cancer
82.	Podophyllum hexandrum	Himalayan May Apple	Herb	Berberidaceae	Leaves, Rhizome	Podophyllotoxin and podophyllin	Inhibits growth and spread of cancers	Breast, ovary, lung, liver, urinary bladder, testis, brain, neuroblastoma, Hodgkin’s disease, lymphoma and leukaemia
83.	Prunella vulgaris	Common self-heal	Herb	Lamiaceae	Whole plant	Ursolic acid and oleanolic acid	Inhibits growth and spread of cancers	Breast, cervix, lung, oral cavity, stomach, colon, thyroid cancer, anti-HIV
84.	Psoralea corylifolia	Babchi	Herb	Fabaceae	Seeds	Bavachinin, Psoralindencorylentin and pсорalen	Induces apoptosis in both androgen-responsive and androgen refractory prostate cancers	Lung cancer, liver cancer, osteosarcoma, fibrosarcoma, and leukaemia
85.	Viscum album	European mistletoe	Tree	Santalaceae	Sprouts, fruits	Lectins (such as viscumin), and phenolic compounds (such as digallic acid)	Induces apoptosis via activation of caspase cascades and anti-angiogenesis activity	Breast, cervix, ovary, lung, stomach, colon, rectum, kidney, testis cancer
REFERENCES

1. Coserii S: “Natural products and their analogues as efficient anticancer drugs,” Mini-Reviews in Medicinal Chemistry, 9(5), 2009, 560-571.

2. Kaur R, Kaur H. The antimicrobial activity of essential oil & plant extracts of Woodfordia fruticosa. Archives of Applied Sciences & Research, 2, 2010, 302-9.

3. Fan W, Johnson KR, Miller MC. In vitro evaluation of combination Chemotherapy against human tumor cells. Oncology Report, 5(5), 1998, 1035-1042.

4. Wamidh HT: Anticancer and Antimicrobial Potential of Plant-Derived Natural Products, Phytochemicals – Bioactivities and Impact on Health, 2011, 142-158.

5. Kinghorn AD, Farnsworth NR, Soejarto DD, et al. Novel strate-gies for the discovery of plant-derived anticancer agents. Pharm Biol., 41, 2003, 53-67.

6. Sakarkar DM, Deshmukh VN. Ethnopharmacological review of traditional medicinal plants for anticancer activity. Int J Pharm-Tech Res., 3, 2011, 298-308.

7. Nussbaumer S, Bonnabry P, Veuthey JL, Sandrine F. Analysis of Res.

8. Sadooghi SD, Nezhad-Shahrokhi-Abadi KH, Zafar Balanehzad S, Baharara J. Investigating the cytotoxic effects of ethanolic extract of Ferula assa-foetida resin on HepG2 cell line. Feyz., 17, 2013, 323-330.

9. Keramati K, Sanai K, Babakhani A, Raksham M, Vaezi Gh, Haeri A. Effect of hydroalcoholic extract Thymus vulgaris induced prostate cancer injection DMBA in Wistar rats. J Pazhu-hesh., 35, 2011, 135-140.

10. Sertel S, Eichhorn T, Plinkert PK, Efferth T. Cytotoxicity of Thy-mus vulgaris essential oil towards human oral cavity squamous cell carcinoma. Anticancer Res., 31, 2011, 81-87.

11. Sabzali S, Arman R, Panahi J, Havsian MR, Haghani K, Bakh- tiyari S. Investigation on the inhibitory effects of hydro-alcoholic extract of Thymbra spicata on the growth of lung cancer cell line SK-Mes-1. J Ilam Univ Med Sci., 22, 2014, 153-158.

12. Khalighi-Sigaroodi F, Jafar-Tehrani M, Alhavi M, et al. Cytotoxicity evaluation of Taverniera spartea on human cancer cell lines. J Med Plantes., 2, 2014, 114-128.

13. Ayooj I, Hazari YM, Lone SH, Khuroo MA, Fazili KM, Bhat KA, et al. Phytochemical and cytotoxic evaluation of peganum harmala: structure-activity relationship studies of har- mine. Chem Sel, 2(10), 2017, 2965-9.

14. Forouzandeh F, Salimi S, Naghsh N, Zamani N, Jahani S. Evaluation of anti-cancer effect of Peganum harmala L hydroalcoholic extract on human cervical carcinoma epithelial cell line. J Shah- rekarad Univ Med Sci., 16, 2014, 1-8.

15. Mortazavian SM, Ghorbani A, Ghorbani Hesari T. Effect of hydro-alcoholic extracts of Viola tricolor and its fractions on pro- liferation of cervix carcinoma cells. Iran J Obstet Gynecol Infer- til., 15, 2012, 9-16.

16. Dalali Isfahani L, Monajemi R, Amjad L. Cytotoxic effects of extract and essential oil leaves of Achillea wilhelmsii C. Koch on colon cancers cells. Exp Anim Biol., 1, 2013, 1-6.

17. Aslani E, Naghsh N, Ranjbar M. Cytotoxic effect of Mentha pule- gium plants before flowering on human chronic myelogenous leu- kemia K562 cancer category. J Arak Univ Med Sci., 16, 2014, 1-10.

18. Mohammed ZY, Nada SM, Al-Halbousiy MM, Abdulfattah SY, Abdul- Hameed B. Cytotoxic effects of Ammi visnaga volatile oil on some cancer cell lines. J Biotechnol Res Cent., 8, 2014, 5-7.

19. Kumari M, Pattnaik B, Rajan SY, Shrikant S, Surendra SU. EGCG-A Promis anti-cancer Phytochem, 3(2), 2017, 8-10.

20. Momtazi borjani A, Bebbabani M, Sadeghi-aliabadi H. Evalua- tion of cytotoxic effect of some extracts of Avicennia marina against MDA-MB231 human breast cancer cell line. Pharm Sci., 16, 2011, 229-238.

21. William PJ, Lobo-Echeverri T, Mi Q, et al. Antitumour activity of 3- clorodeoxylapachol, a naphthoquinone from Avicennia germi- nans collected from an experimental plot in southern Florida. J Pharm Pharmacol., 57, 2005, 1101-1108.

22. Ramasamy K, Agarwal R. Multitargeted therapy of cancer by silymarin. Cancer Lett, 269(2), 2008, 352-62.

23. Shariatzadeh SM, Hamta A, Soleimani M, Falah Huseini H, Samavat S. The cytotoxic effects of Silymarin on the 4T1 cell line derived from BALB/c mice mammary tumors. J Med Plants., 4, 2014, 55-65.

24. Chen HH, Zhou HJ, Fang X. Inhibition of human cancer cell line growth and human umbilical vein endothelial cell angiogenesis by artemisinin derivatives in vitro. Pharm. Res., 48, 2003, 231-236.

25. Zhou HJ, Wang WQ, Wu GD, Lee J, Li A. Artesunate inhibits angiogenesis and down regulates vascular endothelial growth fac- tor expression in chronic myeloid leukemia K562 cells. Vascul Pharmacol., 47, 2007, 131-138.

26. Ooko E, Kadioglu O, Greten HJ, Efferth T. Pharmacogenomic characterization and isobologram analysis of the combination of ascorbic acid and curcumin-two main metabolites of Curcuma longa-in cancer cells. Front. Pharmacol., 8, 2017, 38.

27. Ranjbari, A. Afzal Kh. et al. Effect of Curcuma longa extract on melanoma cell line. Afr. J. Biotechnol., 9, 2010, 912-919.

28. Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB. Curcumin and cancer: an “age old” disease with an “age old” solution. Cancer Let., 267, 2008, 133-164.

29. Mousavi M, Baharara J, Asadi M, Amin A, Javad R. The inhibitory effect of Curcuma longa extract on telomerase activity in A549 lung cancer cell line. Afr. J. Biotechnol., 3, 2014, 139-146.

30. Anand P, Sundaram C, Jurani S, Kunnunakkarra AB, Aggarwal BB. Curcumin and cancer: an “old-age” disease with an “age old” solution. Cancer Let., 267, 2008, 133-164.

31. Ayyadurai N, Valarmathy N, Kannan S, Jansiranni D, Alsenaidy A. Evaluation of cytotoxic properties of Curcuma longa and Tagetes erecta on cancer cell line (Hep2). Afr J Pharm Pharmacol., 7, 2013, 736-739.

32. Bakshi HA, Sam S, Anna F, Zrnab R, Ahmad SG, Sharma M, et al. Crocin from Kashmiri saffron (Crocus sativus) induces in vitro and in vivo xenograft growth inhibition of Dalton’s lymphoma (DLA) in mice. Asian Pac J Cancer Prev, 10, 2009, 887-90.

33. Moussavi M, Baharara J, Asadi-Samani M. Anti-angiogenesis effect of Crocus sativus L. extract on matrix metalloproteinase gene activities in human breast carcinoma cells. J HerbMed Phar- macol., 3, 2014, 101-105.

34. Aung HH, Wang CZ, Ni M, Fisherin A, Mehandele SR, Xie JT. Crocin from Crocus sativus possesses significant anti-proliferation effects on human colorectal cancer cells. Exp Oncol., 29, 2007, 175-180.

35. Nejad Shahrokhabadi Kh, Takavokk Ashfari J, Rakhshandeh H, Barouk A. Study of cytotoxicity effect of total saffron extract on hepatocarcinoma cell line (HepG2) [in Persian]. Med Sci J Islamic Azad Univ Tehran Med Branch., 19, 2009, 154-159.

36. Rahimi Fard N, Haji Mahdipour H, Hedayati MH, Esmailli M. Copyright protected. Unauthorised republication, reproduction, distribution, dissemination and copying of this document in whole or in part is strictly prohibited.
Evaluation of cytotoxic effects of aqueous-methanolic saffron extract on Vero, HeLa and Hep2 cell lines using MTT assay method. *Iran J Med Microbiol.*, 4(2), 2011, 59-65.

38. Rastogi N, Duggal S, Singh SK, Porwal K, Srivastava VK, Maurya R, et al. Proteasome inhibition mediates p53 reactivation and anticancer activity of 6-gingerol in cervical cancer cells. *Oncotarget*, 6(5), 2015, 43310-25.

39. Kurapati KR, Samikannu T, Kadiyala DB, et al. Combinatorial cytotoxic effects of *Curcuma longa* and Zingiber officinale on the PC-3M prostate cancer cell line. *J Basic Clin Physiol Pharmacol.*, 23, 2012, 139-146.

40. Hosain zadegan H, Ezzet por B, Abdollah por F, Motamedy M, Rashidipor M. Study of cytotoxic activity of olive and green tea extracts on breast tumor cell line. *J Ardabil Univ Med Sci.*, 10, 2010, 287-294.

41. Fini L, Hotchkiss E, Fogliano V, et al. Chemopreventive proper- ties of pineosinol-rich olive oil involve a selective activation of the ATM-p53 cascade in colon cancer cell lines. *Carcinogenesis.*, 29, 2008, 139-146.

42. de Bon J, Oudard S, Ozuguroglu M, Hansen S, Machiels JP, Kocak I, et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. *Lancet.*, 376, 2010, 1147-54.

43. Dieras V, Limentani S, Romieu G, Tubiana-Hulin M, Lortholary O, Kaufman P, et al. Phase II multicenter study of larotaxel (XRP9881), a novel taxoid, in patients with metastatic breast cancer who previously received taxane-based therapy. *Ann Oncol.*, 19(7), 2008, 1255-60.

44. Sadeghi-Alibadi H, Alavi M, Asghari Gh, Mirian M. Cytotoxic evaluation of different extracts of *Taxus baccata* against MDA-MB-468, HeLa and K562 cancer cell lines. *J Isfahan Med Sch.*, 31, 2013, 1508-1517.

45. Tu LY, Pi J, Jin H, Cai YJ, Deng SP. Synthesis, characterization and anticancer activity of kaempferol-zinc (II) complex. *Bioorg Med Chem Lett.*, 26(11), 2016, 2730-4.

46. Karmakar S, Roy Choudhury S, Banik N, Ray S. Molecular mechanisms of anti-cancer action of garlic compounds in neuroblastoma. *Anti Cancers Agents Med Chem.*, 11, 2011, 398-407.

47. Nakagawa H, Tsuta K, Kiuchi K, Senzaki H, Tanaka K, Tsubura A. Growth inhibitory effects of diallyl disulfide on human breast cancer cell lines. *Carcinogenesis.*, 22, 2001, 891-897.

48. Colic’ M, Vucevic’ D, Kilijarda V, Radicevic’ N, Savic’ M. Modulatory effects of garlic extracts on proliferation of T-lymphocytes in vitro stimulated with concanavalin A. *Phytomedicine.*, 9, 2002, 117-124.

49. Arun Kumar A, Vijayababu MR, Srinivasan N, Aruldhas MM, Arunakaran J. Garlic compound, diallyl disulfide induces cell cycle arrest in prostate cancer cell line PC-3. *Mol Cell Biochem.*, 288, 2006, 107-113.

50. Robert V, Mouille B, Mayeur C, Michaud M, Blachier F. Effects of the garlic compound diallyl disulfide on the metabolism, adherence and cell cycle of HT-29 colon cancer cells. *Carcinogenesis.*, 22, 2001, 1155-1161.

51. Hadjzadeh MAIR, Tavakol Afshari J, Ghorbani A, Shakeri MT. The effects of aqueous extract of garlic (*Allium sativum*) L.on lar- yngeal cancer cells (Hep-2) and L929 cells in vitro. *J Med Plants.*, 2(18), 2006, 41-48.

52. Mahassni SH, Al-Reemi RM. Apoptosis and necrosis of human breast cancer cells by an aqueous extract of garden cress (*Lepi- dium sativum*) seeds. *Saudi J Biol Sci.*, 20, 2013, 131-139.

53. Aslani E, Naghsh N, Ranbar M. Cytotoxic effects of hydro- alcoholic extracts of cress (*Lepidium sativum*)—made from dif- ferent stages of the plant—on k562 leukemia cell line. *Hormozgan Med J.*, 18, 2015, 411-419.

54. Amin A, Alikabi A, Al-Falasi S, Daoud SA. Chemopreventive activities of Trigonella foenum graecum (fenugreek) against breast cancer. *Cell Biol Int.*, 29, 2005, 687-694.

55. Zhang YY, Huang CT, Liu SM, Wang B, Guo J, Bai JQ, et al. Licoricealone A exerts antitumor activity in bladder cancer cell lines and mice models. *Trop J Pharm Res.*, 15(6), 2016, 1151-7.

56. Luo C-F, Kong J, Wang J, Liu H, Liu C, Chen C, Shao S-H. Ethanol extracts of Physalis alkekengi Linn induced the apoptosis of human esophageal carcinoma cells. *Chin J Clin Lab Sci.*, 12, 2012, 21.

57. Li X, Zhao J, Yang M, et al. Physalins and withanolides from the fruits of *Physalis alkekengi* L. var. franchetii (Mast.) Makino and the inhibitory activities against human tumor cells. *Phytochem Lett.*, 10, 2014, 95-100.

58. Shokrzadeh M, Parvareh A, Shahani S, Habibi E, Zalarz S. Cytotoxic effects of *Lagenaria siceraria* Standl. extract on can- cer cell line. *J Mazandaran Univ Med Sci.*, 23, 2013, 225-230.

59. Ghosh K, Chandra K, Ojha AK, Sarkar S, Islam SS. Structural identification and cytotoxic activity of a polysaccharide from the fruits of *Lagenaria siceraria* (Lau). *Carbohydr Res.*, 344, 2009, 693-698.

60. Valiahdhi SM, Iranshahi M, Sahebkar A. Cytotoxic activities of phytochemicals from Ferula species. *DARU.*, 21, 2013, 39-45.

61. Gharaei R, Akrami H, Heidari S, Asadi MH, Jalili A. The sup- pression effect of Ferula gummosa Boiss. extracts on cell prolif- eration through apoptosis induction in gastric cancer cell line. *Eur J Integr Med.*, 5, 2013, 241-247.

62. Durak I, Birli H, Devrim E, So¨zen S, Avci A. Aqueous extract of *Urtica dioica* makes significant inhibition on adenosine deami- nase activity in prostate tissue from patients with prostate cancer. *Cancer Biol Ther.*, 3,2004, 855-857.

63. Konrad L, Mu’iller HH, Lenz C, Laubinger H, Aumu¨ller G, Lichius JJ. Antiproliferative effect on human prostate cancer cells by a stinging nettle root (*Urtica dioica*) extract. *Planta Med.*, 66, 2000, 44-47.

64. Safarnejad MR. *Urtica dioica* for treatment of benign prostatic hyperplasia: a prospective, randomized, double-blind, placebo- controlled, crossover study. *J Herbal Pharmacother.*, 5, 2005, 1-11.

65. Nemati F, Eslami Jadidi B, Talebi Darabi M. Investigation cyto-toxic effects of *Anmm majus* extract on MCF-7and Hela cancer cell line (*in Persian*). *J Anim Biol.*, 5, 2013, 59-66.

66. Zu Y, Yu H, Liang L, et al. Activities of ten essential oils towards *Propionibacterium acnes* and PC-3, A-549 and MCF- 7 cancer cells. *Molecules.*, 15, 2010, 3200-3210.

67. Zamiri-Akhlaghi A, Rashidshandeh H, Tayaran-Najaran Z, Mou- savi SH. Study of cytotoxic properties of *Rosa damascena* extract in human cervix carcinoma cell line. *Avicenna J Phy- tomed.*, 1, 2011, 74-77.

68. Cassileth BR, Rivzi N, Deng G, et al. Safety and pharmacoki- netic trial of docetaxel plus an Astragalus-based herbal formula for non- small cell lung cancer patients. Cancer Chemother Phar- macol., 65, 2009, 67-71.

69. Ogur R. Studies with Myrtus communis L.: anticancer properties. *J Intercol Ethnopharmacol.*, 3, 2014, 135-137.

70. Sumbul S, Ahmad MA, Asif M, Akhtar M. *Myrtus communis* Linn— A review. *Indian J Nat Prod Resour.*, 2, 2011, 395-402.

71. Moothana RA, Kriegisch S, Harms M, Wende K, Lindequist U. Antimicrobial, anticancer, and antioxidant activities. *Pharmacogn Mag.*, 10, 2014, 95-100.

72. Rashidipor M. Study of cytotoxic activity of olive and green tea extracts on breast tumor cell line. *J Ardabil Univ Med Sci.*, 10, 2010, 287-294.
72. Ayyad S-EN, Abdel-Lateef A, Alarif WM, Patacchioli FR, Badria FA, Emzirly ST. In vitro and in vivo study of curcubetin-type triterpene glucoside from Citrusulus coloc- cynthus growing in Saudi Arabia against hepatocellular carci- moma. Environ Toxicol Pharmacol, 33, 2012, 245-251.

73. Habibi RM, Mohammadi RA, Delazar A, et al. Effects of Poly-gonum aviculare herbal extract on proliferation and apoptotic gene expression of MCF-7. DARU, 19, 2011, 326-331.

74. Banazadeh H, Delazar A, Habibi Roudkenar M, Rahmati Yam-chi M, Sadeghzadeh Oscou B, Mehdoupour A. Effects of knot- weet or polygonum aviculare herbal extract on proliferation of HeLa cell line. Med J Mashhad Univ Med Sci, 54, 2012, 238-241.

75. Mohammad R, Hossein B, Davood F, Farnaz T, Ali F, Yuse R. The apoptotic and cytotoxic effects of Polygonum aviculare extract on Hela-S cervical cancer cell line. Afr J Biochem Res., 5, 2011, 373-378.

76. Abdolmohammadi MH, Foueddall Sh, Shafiee A, Amin Gh, Ghaffari SM, Azizi E. Antiproliferative and apoptotic effect of Astradoxous orientalis (L.) drude on T47D human breast cancer cell line: potential mechanisms of action. J Biotechnol, 8, 2009, 4265-4276.

77. Tingting Fang, Jiayun Hou, Mingyang He, Lingyang Wang, Minghuan Zheng, Xiangdong Wang, Jinglin Xia. Actinidia chinensis Planch root extract (acrRoots) inhibits hepatocellular carcinoma progression by inhibiting EP3 expression. J Ethnopharmacol, 251, 2019, 112-129.

78. Manjeshwar Shrinath Baliga, Karadka Ramdas Thilakchand, Manoj Ponadka Rai, Aglee marmelos (L.) Correa (Bael) and Its Phytochemicals in the Treatment and Prevention of Cancer. Integr Cancer Ther, 12(3), 2013, 187-96.

79. Pecere T, Gazzola MV, Micigcat C, et al: Aloe-emodin is a new type of anticancer agent with selective activity against neuro-ectodermal tumors. Cancer Res, 60, 2000, 2800-2804.

80. Wasserman L, Avigad S, Beery E, Nordenberg J, Fenig E. The effect of aloe-emodin on the proliferation of a new merkel carcinoma cell line The American journal of dermatopathology, 24(1), 2002, 17-22.

81. Shalabi M, Khilo K, Zakaria MM, Elsebaei MG, Abdo W, Awadin W. Anticancer activity of Aloe vera and Calligonum comosum extracts separately on hepatocellular carcinoma cells. Asian Pac J Trop Biomed, 5(5),2015, 375-81.

82. Chan LL, George S, Ahmad I, Gosangari SL, Abbasi A, Cunningham BT, et al. Cytotoxicity effects of Amomor ohiuko and chitagona on breast and pancreatic cancer cells. Evid base Compl Altern Med, 2011, 2011: 860605, doi: 10.1155/2011/860605..

83. Osman NHA, Said UZ, El-Wassef AM, Ahmed ESA. Luteolin supplementation adjacent to aspirin treatment reduced dimethyl hydrazine-induced experimental colon carcinogenesis in rats. Tumour Biol, 36, 2015, 1179-90.

84. Aidy Imran Yajid, Husna Syakirah Ab Rahman, Michael Pak Kai Wong, and Wan Zainira Wan Zain. Potential Benefits of Annona muricata in Combating Cancer: A Review. Malays J Med Sci., 25(1), 2018, 5–15.

85. Pongsathorn Premaratnachai and Chanan Chanchao. Review of the antitumor activity of bee products. Asian Pac J Trop Biomed. 4(5), 2014, 337–344.

86. The wealth of India A dictionary of Indian raw materials and industrial products. Ind Med Gaz., 84(10), 1949, 476–477.

87. Afsihn Amini, Anahid Ehteda, Samir Masoumi Moghaddam, Javed Akhter, Krishna Pillai, and David Lawson Morris. Cytotoxic effects of bromelin in human gastrointestinal carcinoma cell lines (MM4N5, KATO-III, HT29-SF12, and HT29-SM21). Onco Targets Ther., 6, 2013, 403–409.

88. The wealth of India A dictionary of Indian raw materials and industrial products. Ind Med Gaz., 84(10), 1949, 476–477.

89. Tsai NM, Lin SZ, Lee CC, Chen SP, Su HC, Chang WL, Harn HJ. The antitumor effects of Angelica sinesis on malignant brain tumors in vitro and in vivo., 11(9), 2005, 3475-84.

90. Yu-Ling Lin,Wen-Lin Lai, Hong-yih Harn, Pei-Hsiu Hung,Ming-Chang Hsieh, K’ai-Fu Chang, Xiao-Fan Huang, Kuang-Wen Liao, Ming-Shih Lee and Nu-Man Tsai. The Methanol Extract of Angelica sinesis Induces Cell Apoptosis and Suppresses Tumor Growth in Human Malignant Brain Tumors. Evidence-Based Complementary and Alternative Medicine, 2013, 9, doi.org/10.1155/2013/594636.

91. The wealth of India, A dictionary of Indian raw materials and industrial products, I (A-B), 1985, 80.

92. The wealth of India, A dictionary of Indian raw materials and industrial products, II (A-B), 1985, 109.

93. Qing Sun, Kanglin Liu, Xiaoling Shen, Weixin Jin, Lingyan Jiang, M. Saeed Sheikh, Yingjie Hu and Ying Huang. Lappol F, a Novel Anticancer Agent Isolated from Plant Arctium Lappa L., Mol Cancer Ther., 13(1), 2014, 49-59.

94. Auyuek KK, Han QB, Ko JK. Astragalus membranaceus: A Review of its Protection against Inflammation and Gastrointestinal Cancers., 44(1), 2016, 1-22.

95. Mohammad A. Alzohairy, Therapeutics Role of Azadirachta indica (Neem) and Their Active Constituents in Diseases Prevention and Treatment., 2016, 2016: 7382506.

96. Ali Esmail Al-Snafi. The Pharmacological Importance of Bauhinia variegata. A Review. International Journal of Pharma Sciences and Research, 4 (12), 2013, 160-164.

97. Motaleb G, Hanachi P, Fauziah O and Asmahan R: Effect of Berberis vulgaris fruit extract on alpha-fetoprotein gene expression and chemical carcinogen metabolizing enzymes activities in hepatocarcinogenesis rats, Iranian Journal of Cancer Prevention, 1(1), 2008, 33-44.

98. De Bono J, Oudard S, Ozgueroğlu M, Hansen S, Machiels JP, Kokak I, et al. Predisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet, 376, 2010, 1147-54.

99. Cragg GM, Newman DJ. Plants as a source of anti-cancer agents. J Ethnopharmacol, 100, 2005, 72-9.

100. Ali Esmail Al-Snafi. The medical importance of Betula alba - An overview. Journal of pharmaceutical biology, 5(2), 2015, 99-103.

101. Mishra T, Arya RK, Meena S, Joshi P, Pal M, Meena B, Upreti DK, Rana TS, Datta D. Isolation, Characterization and Anticancer Potential of Cytotoxic Triterpenes from Betula utilis Bark., 11(7), 2016, 0159430.

102. Lee YJ, Kang SJ, Kim BM, Kim YJ, Woo HD and Chung HW: Cytotoxicity of honeybee (Apis mellifera) venom in normal human lymphocytes and HL-60 cells, Chemical Biology Interrelation., 169(3), 2007, 189.

103. Hamzaoglu I, Saribeyoglu K, Durak H, Karahasanoğlu T, Bayrak and Albug T. Protective covering of surgical wounds with honey impedes tumor implantation, Archives of Surgery, 135, 2002, 1414.

104. Appendino G, Chianese G, Tagliatela-Scaletta O. Cannabinoids: occurrence and medicinal chemistry. Curr Med Chem, 18, 2011, 1085-99.

105. Anindita Dutta and Anindita Chakraborty. Cinnamon in Anticancer Armamentarium: A Molecular Approach, 2018, Article ID 8978731, 8 pages.

106. Ho-Keun Kwon, Ji-Sun Hwang, Jae-Seon So, Choong-Gu Lee, Anupama Sahoo, Jae-Ha Ryu, Won Kyung Jeon, Byoung Seob Ko, Chang-Rok Im, Sun Haeng Lee, Zee Yong Park, and Sin-Hyeog Im. Cinnamon extract induces tumor cell death through inhibition of NFkB and AP1., 10, 2010, 392.
107. Herdwiani W, Soemardji A, Elfahmi, Tan Mi. A Review of Cinnamon as a Potent Anticancer Drug. Asian Journal of Pharmaceutical and Clinical Research, 9(3), 2016, 8-13.

108. Lauritano H, Andersen JH, Hansen E, Albrigtsen M, Escalera L, Esposit F, et al. Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities. Front Mar Sci, 3, 2016, 68.

109. Esther LH Tang, Jayakumar Rajarajeswaran, Shin Yee Fung and MS Kanthimathi. Antioxidant activity of Coriandrum sativum and protection against DNA damage and cancer cell migration. BMC Complement Altern Med, 13, 2013, 347.

110. T. G. Nithya, D. Sumalatha. Evaluation of In vitro Anti-Oxidant and Anticancer Activity of Coriandrum Sativum against Human Colon Cancer Ht- 29 Cell Lines. 07 Mar, 2014.

111. Miroslav M. Sovrlić and Nedeljko T. Manojlović. Plants from the Genus Daphne: A Review of its Traditional Uses, Phytochemistry, Biological and Pharmacological Activity. Serbian Journal of Experimental and Clinical Research, 18(1), 2017, 69-79.

112. Jean B. Pharmacognosy, phytochemistry medicinal plants, Lavoisier Publisher, France, 1993, 151.

113. Lim TK. In: Edible medicinal and non-medicinal plants. Netherlands: Springer, vol. 5, 2013., Fruits.

114. Gilbert NE, Reilly JE, Chang CJ, Lin YC and Brueggemeier RW: Antiproliferative activity of gossypol and gossypolone on human breast cancer cells, Life Sciences, 57, 1995, 61.

115. Ladanyi A, Timar J and Lapis K: Effect of lentinan on macrophage cytotoxicity against metastatic tumor cells. Cancer Immunol Immunother, 36, 1993, 123-6.

116. Mizuno T5: Lentinus edodes: functional properties for medicinal and food purposes. Food Rev Int, 11, 1995, 111-28.

117. Mizuno T, Saito H, Nishitoba T and Kawagishi H: Antitumor-active substances from mushrooms. Food Rev Int, 11, 1995, 23-61.

118. Serraino M and Thompson LU: The effect of flaxseed supplementation on early risk markers for mammmary carcinogenesis. Cancer Lett, 60, 1991, 135-42.

119. Lampe JW, Martini MC, Kurzer MS, Adlercreutz H and Slavin JL: Urinary lignan and isoflavonoid excretion in premenopausal women consuming flaxseed powder. Am J Clin Nutr, 50, 1994, 122-8.

120. Dixit S, Ali H. Anticancer activity of medicinal plant extract-a review. J Chem Sci, 1, 2010, 79-85.

121. Gupta S, Zhang D, Yi J and Shao J: Anticancer activities of Oldenlandia diffusa, J Herb Pharmacother, 4(1), 2004, 21-33.

122. Sri Renuka devi Balusamy Haribalan Perumalsamy Md. Amdad Huq Balamurali krishnan Balasubramanian. Anti-proliferative activity of Origanum vulgare inhibited lipogenesis and induced mitochondrial mediated apoptosis in human stomach cancer cell lines. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 108, 2018, 1835-1844.

123. Khwaja TA, Dias CB and Pentecost S: Recent studies on the anticancer activities of mistletoe (Viscum album) and its alkaloids, Oncology, 43(1), 1986, 42-50.

Source of Support: None declared.

Conflict of Interest: None declared.

For any question relates to this article, please reach us at: editor@globalresearchonline.net

New manuscripts for publication can be submitted at: submit@globalresearchonline.net and submit_ijpsrr@rediffmail.com