Supplementary Information for “Direct evidence for metallic mercury causing photo-induced darkening of red cinnabar tempera paints”

Supplentary Fig.1. FESEM images of unaltered and UV-aged cinnabar pigment. a) unaltered cinnabar pigment grains, b) cinnabar pigment after 2 months of UV aging showing grains with extensive crack formation (arrows), c) UV-aged grains partially covered by schuetteite (arrows), and d) detail of the UV-exposed pigment surface showing HgSO₄·H₂O and schuetteite.
Supplementary Fig. 2. XRD patterns of unaltered and UV-exposed cinnabar paint. Gp = gypsum. Gth = goethite, ZS = zinc sulfate, and Cin = cinnabar (Mineral abbreviation, except zinc sulfate, according to Whitney and Evans (Am. Mineral. 95, 185-187 (2010)).

Supplementary Fig. 3. Contact angle measurement of a 3 µl mercury droplet on a polished cinnabar surface using the sessile drop method (OCA 15EC, DataPhysics Instruments, Germany).
Supplementary Fig. 4. UV-Vis spectrum of egg yolk revealing important absorption for $\lambda \leq 550$ nm.

Supplementary Table 1. Normalized elemental concentrations (wt%) based on μ-XRF mapping.

Sample	Hg	S	Mg	P	Ca	K	Na	Fe	Ba
Pigment	84.26	11.71	0.26	0	1.91	0.02	0	0.28	1.56
Paint	82.96	11.59	0.04	1.49	1.35	0.53	0.37	0.12	1.55

Supplementary Table 2. Crystallite size (nm) for different hkl Bragg peaks of cinnabar pigment before (control) and after UV aging (UV-exposed)

Sample	102	110	111	014	201	113
Control	51	37	35	38	33	33
UV-exposed	46	34	31	34	31	30