

In the scenario with Z mediated flavor changing neutral current occurring at the tree level due to the addition of a vector-like isosinglet down-type quark d' to the SM particle spectrum, we perform a χ^2 fit using the flavor physics data and obtain the best fit value along with errors of the tree level $Z\bar{b}s$ coupling, U_{sb}. The fit indicates that the new physics coupling is constrained to be small: we obtain $|U_{sb}| \leq 3.40 \times 10^{-4}$ at 3σ. Still this does allow for the possibility of new physics signals in some of the observables such as semileptonic CP asymmetry in B_s decays.
I. INTRODUCTION

The Standard Model (SM) of the electroweak interactions successfully explains most of the experimental data to date. However in recent years, there have been quite a few measurements of quantities in B decays which differ from the predictions of the SM. For example, in $B \rightarrow \pi K$, the SM has some difficulty in accounting for all the experimental measurements [1]. The measured indirect (mixing-induced) CP asymmetry in some $b \rightarrow s$ penguin decays is found not to be identical to that in $B \rightarrow J/\psi K_s$ [23], counter to the expectations of the SM. The measurement of indirect CP asymmetry in $B_s \rightarrow J/\psi\phi$ by the CDF and DØ collaborations shows a deviation from the SM prediction [5,7]. 1.

The observation of the anomalous dimuon charge asymmetry by the DØ collaboration [9–11] also points towards some CP asymmetry in $\bar{B}_s \rightarrow \psi\phi$, where $\psi\phi$ is a 2π state. The recent LHCb update does not confirm this result [18]. Their measurement of the A_{FB} distribution is consistent with the SM prediction, except in the high-q^2 region.

The Standard Model (SM) of the electroweak interactions successfully explains most of the experimental data to date. However in recent years, there have been quite a few measurements of quantities in B decays which differ from the predictions of the SM. For example, in $B \rightarrow \pi K$, the SM has some difficulty in accounting for all the experimental measurements [1]. The measured indirect (mixing-induced) CP asymmetry in some $b \rightarrow s$ penguin decays is found not to be identical to that in $B \rightarrow J/\psi K_s$ [23], counter to the expectations of the SM. The measurement of indirect CP asymmetry in $B_s \rightarrow J/\psi\phi$ by the CDF and DØ collaborations shows a deviation from the SM prediction [5,7]. 1.

The observation of the anomalous dimuon charge asymmetry by the DØ collaboration [9–11] also points towards some CP asymmetry in $\bar{B}_s \rightarrow \psi\phi$, where $\psi\phi$ is a 2π state. The recent LHCb update does not confirm this result [18]. Their measurement of the A_{FB} distribution is consistent with the SM prediction, except in the high-q^2 region.

A minimal extension of SM can be obtained by adding a vector-like isosinglet up-type or down-type quark to the SM particle spectrum [19–34]. Such exotic fermions can appear in grand unified theories as well in models with large extra dimensions. Here we consider the extension of SM by adding a vector like down-type quark d'.

The ordinary $Q_{em} = −1/3$ quarks mix with the d'.

Because the d' has a different I_{3L} from d_L, s_L, and b_L, Z-mediated FCNC’s (ZFCNC) appear at tree level in the left-handed sector. In particular, a Zbs coupling can be generated:

$$Z_{FCNC}^2 = -\frac{g}{2\cos\theta_W} U_{sb} \bar{s} \gamma^\mu P_L b Z_\mu + h.c. \quad (1)$$

This coupling leads to a new physics contribution to $b \rightarrow s$ transition (such as $B_s - \bar{B}_s$ mixing, $b \rightarrow s \mu^+ \mu^-$ & $b \rightarrow s \nu \bar{\nu}$ decays, etc) at the tree level. This tree level coupling U_{sb} can be constrained by various measurements in the $b \rightarrow s$ sector.

In this paper we consider observables such as $B_s - \bar{B}_s$ mixing, branching ratios of $B \rightarrow X_s \mu^+ \mu^-$, $\bar{B}_s \rightarrow \mu^+ \mu^-$ and $B \rightarrow X_s \nu \bar{\nu}$ to constrain the new physics coupling U_{sb}. Instead of obtaining the usual scatter plot which shows the allowed ranges of the U_{sb} parameter space, we perform a χ^2 fit which provides us the best fit value of U_{sb} along with the errors. We then study the effect of tree level Zbs coupling on the indirect CP asymmetry in $B_s \rightarrow \psi\phi$, anomalous dimuon charge asymmetry a_{sl}^s, forward-backward (FB) asymmetry in $B \rightarrow X_s \mu^+ \mu^-$ and the branching ratio of $B_s \rightarrow \tau^+ \tau^-$. We show that the various measurements in the $b \rightarrow s$ sector put strong constraint on the allowed values of U_{sb}. However it is still possible to have new physics signals in some $b \rightarrow s$ observables.

The paper is organized as follows. In Sec. [II] we discuss the methodology for the fit. In Sec. [III] we present the results of the fit. In Sec. [IV] we obtain predictions for various $b \rightarrow s$ observables. Finally in Sec. [V] we present our conclusions.

II. METHOD

As U_{sb} denotes the Zbs coupling generated in the ZFCNC model, the parameters of the model are therefore the magnitude and the phase of this coupling, $|U_{sb}|$ and $\phi_{sb} \equiv \arg U_{sb}$.

In order to obtain constraints on the new physics coupling U_{sb}, we perform a χ^2 fit using the CERN minimization code MINUIT [35]. The fit includes observables that have relatively small hadronic uncertainties: (i) the branching ratio of $B \rightarrow X_s \mu^+ \mu^-$ in the low- and high-q^2 regions, (ii) the branching ratio of $B_s \rightarrow \mu^+ \mu^-$, (iii) the ratio of the branching ratio of $B_s \rightarrow \mu^+ \mu^-$ and the mass difference in B_s system, (iv) the branching ratio of $B \rightarrow X_s \nu \bar{\nu}$. We include both experimental errors and theoretical uncertainties in the fit. In the following subsections, we discuss various observables used as a constraint.

1 The recent LHCb update does not confirm this result [18]. Their measurement is consistent with the SM prediction

2 The recent LHCb update does not confirm this result [18]. Their measurement of the A_{FB} distribution is consistent with the SM prediction, except in the high-q^2 region.
A. $\bar{B} \to X_s \mu^+ \mu^-$

The effective Hamiltonian for the quark-level transition $b \to s \mu^+ \mu^-$ in the SM can be written as

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \sum_{i=1}^{10} C_i(\mu) O_i(\mu),$$

where the form of the operators O_i and the expressions for calculating the coefficients C_i are given in Ref. [36]. The operator O_i, $i = 1, 6$ can contribute indirectly to $b \to s \mu^+ \mu^-$ and their effects are included in the effective Wilson coefficients C_9 and C_7 [36, 37].

The Zbs coupling generated in the ZFCNC model changes the values of the Wilson coefficients $C_{9,10}$. The Wilson coefficients $C_{9,10}^{\text{tot}}$ in the ZFCNC model can be written as

$$C_9^{\text{tot}} = C_9^{\text{eff}} - \pi \frac{U_{sb}}{V_{ts}^* V_{tb}} (4 \sin^2 \theta_W - 1),$$

$$C_{10}^{\text{tot}} = C_{10} - \pi \frac{U_{sb}}{V_{ts}^* V_{tb}}.$$

Here $V_{ts}^* V_{tb} \simeq -0.0403 e^{-i\pi^*}$. We use the SM Wilson coefficients as given in Ref. [37].

The calculation of branching ratio gives

$$\text{BR}(\bar{B} \to X_s \mu^+ \mu^-) = \frac{\alpha^2 \text{BR}(\bar{B} \to X_c e\bar{\nu}) |V_{ts}^* V_{tb}|^2}{4\pi^2 f(m_c^2) \kappa(m_c)} \frac{1}{|V_{cb}|^2} \int D(z) dz,$$

where

$$D(z) = (1-z)^2 \left[(1+2z) \left(|C_9^{\text{tot}}|^2 + |C_{10}^{\text{tot}}|^2 \right) + 4 \left(1 + \frac{2z}{z} \right) |C_7^{\text{eff}}|^2 + 12 \text{Re}(C_7^{\text{eff}} C_9^{\text{tot*}}) \right] .$$

Here $z \equiv q^2/m_b^2 \equiv (p_{\mu^+} + p_{\mu^-})^2/m_b^2$ and $m_{\ell q} = m_q/m_b$ for all quarks q. The expressions for the phase-space factor $f(m_c)$ and the 1-loop QCD correction factor $\kappa(m_c)$ are given in [38].

The theoretical prediction for the branching ratio of $\bar{B} \to X_s \mu^+ \mu^-$ in the intermediate q^2 region ($7 \text{GeV}^2 \leq q^2 \leq 12 \text{GeV}^2$) is rather uncertain due to the nearby charmed resonances. The predictions are relatively cleaner in the low-q^2 ($1 \text{GeV}^2 \leq q^2 \leq 6 \text{GeV}^2$) and the high-$q^2$ ($14.4 \text{GeV}^2 \leq q^2 \leq m_{\pi}^2$) regions. We therefore consider both low-q^2 high-q^2 region in the fit.

We define χ^2 as

$$\chi^2_{\bar{B} \to X_s \mu^+ \mu^-: \text{low}} = \frac{(D_{\text{low}} - 5.69947)^2}{1.82522},$$

$$\chi^2_{\bar{B} \to X_s \mu^+ \mu^-: \text{high}} = \frac{(D_{\text{high}} - 1.56735)^2}{0.635465},$$

where

$$D_{\text{low}} = \int_{\frac{m_b}{2\sqrt{s}}} \frac{m_c}{\sqrt{s}} D(z) dz = \frac{4\pi^2 f(m_c^2) \kappa(m_c)}{\alpha^2 \text{BR}(\bar{B} \to X_c e\bar{\nu}) |V_{ts}^* V_{tb}|^2} |V_{cb}|^2 = 5.69947 \pm 1.82522,$$

$$D_{\text{high}} = \int_{\frac{m_b}{2\sqrt{s}}} \frac{m_c}{\sqrt{s}} \frac{1}{m_c^2} D(z) dz = \frac{4\pi^2 f(m_c^2) \kappa(m_c)}{\alpha^2 \text{BR}(\bar{B} \to X_c e\bar{\nu}) |V_{ts}^* V_{tb}|^2} |V_{cb}|^2 = 1.56735 \pm 0.635465 .$$

Here we have added an overall corrections of 30% to the theoretical prediction of $\text{BR}(\bar{B} \to X_s \mu^+ \mu^-)$, which includes the non-perturbative corrections.

B. $\bar{B}_s \to \mu^+ \mu^-$

The purely leptonic decay $\bar{B}_s \to \mu^+ \mu^-$ is chirally suppressed within the SM. The SM prediction for the branching ratio is $(3.35 \pm 0.32) \times 10^{-9}$ [48]. Recently LHCb collaboration reported a very strong upper bound on the branching ratio of $\bar{B}_s \to \mu^+ \mu^-$, which is 3.8×10^{-9} at 90% C.L. [49].
The branching ratio of $B_s \rightarrow \mu^+ \mu^-$ in the ZFCNC model is given by

$$BR(B_s \rightarrow \mu^+ \mu^-) = \frac{G_F^2 \alpha^2 M_{B_s} m_{\mu}^2 f_{B_s}^2 |V_{ts}^* V_{tb}|^2}{16 \pi^3} \sqrt{1 - \frac{4 m_{\mu}^2}{M_{B_s}^2}} |C_{10}^{tot}|^2 .$$

(11)

We define χ^2 as

$$\chi^2_{B_s \rightarrow \mu^+ \mu^-} = \left(\frac{|C_{10}^{tot}|^2 - 0.0}{13.5408} \right) ^2 ,$$

(12)

with

$$|C_{10}^{tot}|^2 = \frac{16 \pi^3 \cdot BR(B_s \rightarrow \mu^+ \mu^-)}{G_F^2 \alpha^2 M_{B_s} m_{\mu}^2 f_{B_s}^2 |V_{ts}^* V_{tb}|^2 \sqrt{1 - \frac{4 m_{\mu}^2}{M_{B_s}^2}}} = 0.0 \pm 13.5408 .$$

(13)

C. Ratio of BR($B_s \rightarrow \mu^+ \mu^-$) and the mass difference in the B_s system

The mass difference ΔM_s is given by

$$\Delta M_s = 2 |M_{12}^{SM}| .$$

(14)

The SM contribution to M_{12}^{SM} is

$$M_{12}^{SM} = \frac{G_F^2}{12 \pi^2} (V_{ts}^* V_{tb})^2 M_W^2 M_{B_s} \eta_B f_{B_s}^2 B_B E(x_t) ,$$

(15)

where $x_t = m_t^2 / M_W^2$ and η_B is the QCD correction. The loop function $E(x_t)$ is given by

$$E(x_t) = \frac{-4 x_t + 11 x_t^2 - x_t^3}{4(1 - x_t)^2} + \frac{3 x_t^4 \ln x_t}{2(1 - x_t)^3} .$$

(16)

The mass difference ΔM_s in the ZFCNC model is given by

$$\Delta M_s = \frac{G_F^2}{6 \pi^2} |V_{ts}^* V_{tb}|^2 M_W^2 M_{B_s} \eta_B f_{B_s}^2 B_B E(x_t) |\Delta s| .$$

(17)

Δs is given by

$$\Delta s = 1 + a \left(\frac{U_{sb}}{V_{ts}^* V_{tb}} \right) - b \left(\frac{U_{sb}}{V_{ts}^* V_{tb}} \right)^2 ,$$

(18)

where

$$a = \frac{4 C(x_t)}{E(x_t)} , \quad b = \frac{2 \sqrt{2} \pi^2}{G_F M_W^2 E(x_t)} .$$

(19)
The loop function $C(x_t)$ is given by \[C(x_t) = \frac{x_t}{4} \left[4 - x_t + \frac{3x_t \ln x_t}{1 - x_t} \right]. \] (20)

The term in Eq. (17) proportional to a is obtained from a diagram with both SM and new physics Z vertices; that proportional to b corresponds to the diagram with two new physics Z vertices.

Dividing Eq. (14) by Eq. (17), we get

$$\frac{\text{BR}(\bar{B}_s \to \mu^+\mu^-)}{\Delta M_s} = \frac{3\alpha^2\tau_{B_s}m_\mu^2}{8\pi M_{W_s}^2\eta_{B_s}|E(x_t)|}\sqrt{1 - \frac{4m_\mu^2}{M_{B_s}^2}\frac{|C_{10}^\text{tot}|^2}{|\Delta_s|}}.$$ (21)

We define χ^2 as

$$\chi^2_{\text{BR mix}} = \left(\frac{|C_{10}^\text{tot}|^2}{13.6328} - 0.0 \right)^2,$$ (22)

with

$$\frac{|C_{10}^\text{tot}|^2}{|\Delta_s|} = \frac{\text{BR}(\bar{B}_s \to \mu^+\mu^-) 8\pi M_{W_s}^2\eta_{B_s}|E(x_t)|}{\Delta M_s\sqrt{1 - \frac{4m_\mu^2}{M_{B_s}^2}}} = 0.0 \pm 13.6328.$$ (23)

D. $\bar{B} \to X_s\nu\bar{\nu}$

The effective Hamiltonian for the decay $\bar{B} \to X_s\nu\bar{\nu}$ is given by

$$H_{eff} = \frac{G_F}{\sqrt{2}} \frac{\alpha}{2\pi \sin^2 \theta_W} V_{ts}^* V_{tb} X_0(x_t)(\bar{s}b)_{V - A} (\bar{\nu}\nu)_{V - A} + \text{h.c.},$$ (24)

with

$$X_0(x_t) = \frac{x_t}{8} \left[\frac{2 + x_t}{x_t - 1} + \frac{3x_t - 6}{(x_t - 1)^2}\ln x_t \right].$$ (25)

The presence of tree level Zbs coupling changes the value of the structure function $X_0(x_t)$. The structure function within the ZFCNC model can be written as

$$X_0'(x_t) = X_0(x_t) + \left(\frac{\pi \sin^2 \theta_W}{\alpha V_{ts}^* V_{tb}} \right) U_{sb}.$$ (26)

The branching ratio of $\bar{B} \to X_s\nu\bar{\nu}$ is given by \[\frac{\tilde{C}^2}{\tilde{\eta}} \] (27)

where \tilde{C}^2 is given by

$$\tilde{C}^2 = \frac{\alpha^2}{2\pi^2 \sin^2 \theta_W} |V_{ts}^* V_{tb} X_0' (x_t)|^2.$$ (28)

We define χ^2 as

$$\chi^2_{\bar{B} \to X_s\nu\bar{\nu}} = \left(\frac{|V_{ts}^* V_{tb} X_0'(x_t)|^2 - 0.0}{0.069157} \right)^2,$$ (29)

with

$$|V_{ts}^* V_{tb} X_0'(x_t)|^2 = \frac{\text{BR}(\bar{B} \to X_s\nu\bar{\nu}) 2\pi^2 \sin^4 \theta_W |V_{tb}|^2 f(\hat{m}_c)\kappa(\hat{m}_c)}{\tilde{\eta} \tilde{\alpha^2}} = 0.0 \pm 0.069157.$$ (30)

Here we have used the present upper bound $\text{BR}(\bar{B} \to X_s\nu\bar{\nu}) < 64 \times 10^{-5}$ at 90% C.L. \[46 \] which can be written as $(0.0 \pm 40) \times 10^{-5}$.

Therefore the total χ^2 can be written as

$$\chi^2_{\text{total}} = \chi^2_{\bar{B} \to X_s\mu^+\mu^- : \text{low}} + \chi^2_{\bar{B} \to X_s\mu^+\mu^- : \text{high}} + \chi^2_{\bar{B} \to \mu^+\mu^-} + \chi^2_{\text{BR mix}} + \chi^2_{\bar{B} \to X_s\nu\bar{\nu}}.$$ (31)
Parameter	Value		
$	U_{sb}	$	$0.90 \pm 0.83 \times 10^{-3}$
ϕ_{sb}	$(0.00 \pm 181.34)^0$		
$\chi^2/d.o.f.$	1.72/3		

TABLE II: The results of the fit to the parameters of ZFCNC model.

Observables	Predictions			
	SM	ZFCNC		
ϕ_s^a (rad)	0	(0.00 ± 0.03)		
$	\Delta_s	$	1	1.01 ± 0.01
$a_{sl}^s \times 10^7$	(1.92 ± 0.67)	(1.98 ± 13.88)		
$\text{Br}(B_s \rightarrow \tau^+ \tau^-) \times 10^7$	5.74 ± 0.27	3.34 ± 1.92		
$(q^2)_{\text{incl}}^\text{max} \text{ GeV}^2$	3.33 ± 0.25	3.38 ± 0.26		

TABLE III: ZFCNC predictions for potential observables.

III. RESULTS OF THE FIT

The results of these fits are presented in Table II. It may be observed that the χ^2 per degree of freedom is small, indicating that the fit is good. We observe that the present flavor data put strong constraint on $Z\bar{b} s$ coupling. At 3σ, we obtain $|U_{sb}| \leq 3.40 \times 10^{-4}$.

IV. PREDICTIONS

A. Semileptonic asymmetry a_{sl}^s

The expression for the semileptonic asymmetry a_{sl}^s is given by

$$a_{sl}^s = \frac{|\Gamma_{12}^s|}{|M_{12}^s|} \sin \phi_s = \frac{|\Gamma_{12}^s|}{|M_{12}^{s,SM}|} \sin \phi_s,$$

where the CP violating phase ϕ_s is defined by the following equation,

$$\phi_s \equiv \text{Arg} \left(-\frac{M_{12}^s}{\Gamma_{12}^s} \right).$$

The parameter Δ_s takes into account the new physics effects in mixing and is defined as

$$M_{12}^s = M_{12}^{s,SM} (1 + \frac{M_{12}^{s,NP}}{M_{12}^{s,SM}}) = M_{12}^{s,SM} \Delta_s = M_{12}^{s,SM} |\Delta_s| e^{i\phi_s^\Delta}.$$

Thus ϕ_s can be written as

$$\phi_s = \phi_s^\Delta + \phi_s^\text{SM},$$

where $\phi_s^\text{SM} = (3.84 \pm 1.05) \times 10^{-3}$ [51]. Also, one has [52, 53]

$$\frac{|\Gamma_{12}^s|}{|M_{12}^{s,SM}|} = (5.0 \pm 1.1) \times 10^{-3}.$$

The predictions for ϕ_s^Δ, $|\Delta_s|$ and a_{sl}^s in ZFCNC model are given in Table III. We see that it is possible to have large deviations in ϕ_s (and hence a_{sl}^s) from its SM predictions.
B. Zero of Forward-Backward asymmetry

The FB asymmetry of muons in $\bar{B} \to X_s \mu^+ \mu^-$ is obtained by integrating the double differential branching ratio $\frac{d^2BR}{dz d \cos \theta}$ with respect to the angular variable $\cos \theta$,

$$A_{FB}(z) = \frac{\int_0^1 d \cos \theta \frac{d^2BR}{dz d \cos \theta} - \int_{-1}^0 d \cos \theta \frac{d^2BR}{dz d \cos \theta}}{\int_0^1 d \cos \theta \frac{d^2BR}{dz d \cos \theta} + \int_{-1}^0 d \cos \theta \frac{d^2BR}{dz d \cos \theta}},$$

(37)

where θ is the angle between the momentum of the \bar{B}-meson and that of μ^+ in the dimuon center-of-mass frame.

Within the ZFCNC model, the FB asymmetry in $\bar{B} \to X_s \mu^+ \mu^-$ is given by

$$A_{FB}(z) = -\frac{3}{8} E(z) D(z),$$

(38)

where $D(z)$ is given in Eq. 6 and $E(z)$ by

$$E(z) = \text{Re}(C_9^{\text{tot}} C_{10}^{\text{tot}*}) z + 2 \text{Re}(C_7^{\text{eff}} C_{10}^{\text{tot}*}) \sqrt{1 - 4m_{\tau}^2/M_{\bar{B}_s}^2 |\Delta_{s}|} \Delta M_s,$$

(39)

Zero of $A_{FB}(z)$ is determined by

$$E(z) = \text{Re}(C_9^{\text{tot}} C_{10}^{\text{tot}*}) z + 2 \text{Re}(C_7^{\text{eff}} C_{10}^{\text{tot}*}) = 0.$$

(40)

The prediction for $(q^2)^{\text{incl}}$ in ZFCNC model is given in Table III. One can see that large deviations from SM prediction is not possible.

C. $\mathcal{B}(\bar{B}_s \to \tau^+ \tau^-)$

The branching ratio of $\bar{B}_s \to \tau^+ \tau^-$ in the ZFCNC model is given by

$$\mathcal{B}(\bar{B}_s \to \tau^+ \tau^-) = \frac{3\alpha^2 \tau_{\bar{B}_s} m_{\tau}^2}{8\pi M_{\bar{B}_s}^2 \eta_{\bar{B}_s} \mathcal{B}(\bar{B}_s \to E(x_t))} \sqrt{1 - \frac{4m_{\tau}^2}{M_{\bar{B}_s}^2} |\Delta_{s}|} \Delta M_s,$$

(41)

The prediction for $\mathcal{B}(\bar{B}_s \to \tau^+ \tau^-)$ in ZFCNC model is given in Table III. We see that it is possible to have large suppression in $\mathcal{B}(\bar{B}_s \to \tau^+ \tau^-)$ as compared to its SM prediction.

V. CONCLUSION

In this paper, we consider a minimal extension of the SM by adding a vector-like isosinglet down-type quark d' to the SM particle spectrum. As a consequence, Z-mediated FCNC’s appear at tree level in the left-handed sector. In particular, we are interested in Zbs coupling which leads to a new physics contribution to $b \to s$ transition such as $B_s-\bar{B}_s$ mixing, $b \to s\mu^+ \mu^-$, $b \to s\nu \bar{\nu}$ decays, etc at the tree level. Using inputs from several observables in flavor physics, we perform a χ^2 fit to constrain the tree level Zbs coupling, U_{sb}. The fit takes into account both the theoretical as well as the experimental uncertainties.

We conclude the following:

- χ^2 per degree of freedom is small, indicating that the fit is good. This is expected as the SM itself is in good agreement with the data.
- The present data put strong constraint on the Zbs coupling. At 3σ, $|U_{sb}| \leq 3.40 \times 10^{-4}$.
- Despite the strong constraint on the Zbs coupling, it is possible to have new physics signals in some $b \to s$ observables such as semileptonic CP asymmetry in B_s decays.
Acknowledgments

We thank Soumitra Nandi for helpful collaboration on several parts of this analysis. The work of S. G. is supported by DFG Emmy Noether grant TA 867/1-1.

[1] In the latest update of the πK puzzle, it was seen that, although NP was hinted at in $B \to \pi K$ decays, it could be argued that the SM can explain the data, see S. Baek, C.-W. Chiang, D. London, Phys. Lett. B 675, 59-63 (2009). arXiv:0903.3080 [hep-ph].

[2] H.-Y. Cheng, C.-K. Chua, A. Soni, Phys. Rev. D 72, 094003 (2005). hep-ph/0506268.

[3] G. Buchalla, G. Hiller, Y. Nir, G. Raz, JHEP 0509, 074 (2005). hep-ph/0503151.

[4] E. Lunghi, A. Soni, JHEP 0908, 051 (2009). arXiv:0906.2059 [hep-ph].

[5] T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 100, 161802 (2008). arXiv:0812.2397 [hep-ex].

[6] T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 100, 121803 (2008). arXiv:0712.2348 [hep-ex]; D0 Collaboration, Conference Note 5933-CNF, May 28, 2009, http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/B/B58/B58.pdf

[7] D. Asner et al. [Heavy Flavor Averaging Group Collaboration], arXiv:1010.1589 [hep-ex].

[8] "Combination of ϕ, measurements from $B^0 \to J/\psi \phi$ and $B^0 \to J/\psi f_{2}(980)^{\ast}$", LHCb-CONF-2011-056; "Tagged time-dependent angular analysis of $B^0 \to J/\psi f_{2}$ decays at LHCb", LHCb-CONF-2012-002.

[9] V. M. Abazov et al. [D0 Collaboration], Phys. Rev. D 82, 032001 (2010) arXiv:1005.2757 [hep-ex].

[10] V. M. Abazov et al. [D0 Collaboration], Phys. Rev. Lett. 105, 081801 (2010). arXiv:1007.0395 [hep-ex].

[11] V. M. Abazov et al. [D0 Collaboration], arXiv:1106.6398 [hep-ex].

[12] A. Dighe, A. Kundu, S. Nandi, Phys. Rev. D 76, 054005 (2007). arXiv:0705.3447 [hep-ph].

[13] A. Dighe, A. Kundu, S. Nandi, Phys. Rev. D 82, 031502 (2010). arXiv:1005.4051 [hep-ph].

[14] J. T. Wei et al. [BELLE Collaboration], Phys. Rev. Lett. 103, 171801 (2009) arXiv:0904.0770 [hep-ex].

[15] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 79, 031102 (2009) arXiv:0804.4412 [hep-ex].

[16] T. Aaltonen et al. [CDF Collaboration], arXiv:1108.0695 [hep-ex].

[17] A. K. Alok, A. Dighe, D. Ghosh, D. London, J. Matias, M. Nagashima, A. Szynkman, JHEP 1002, 053 (2010). arXiv:0912.1382 [hep-ph]; A. K. Alok, A. Datta, A. Dighe, M. Duraisamy, D. Ghosh and D. London, JHEP 1111, 121 (2011) arXiv:1008.2367 [hep-ph].

[18] Differential branching fraction and angular analysis of the $B \to K^{(*)} \mu^{+} \mu^{-}$ decay, LHCb-CONF-2012-008.

[19] F. del Aguila and J. Cortes, Phys. Lett. B 156, 243 (1985).

[20] G. C. Branco and L. Lavoura, Nucl. Phys. B 278, 738 (1986).

[21] F. del Aguila, M. K. Chase and J. Cortes, Nucl. Phys. B 271, 61 (1986).

[22] Y. Nir and D. J. Silverman, Phys. Rev. D 42, 1477 (1990).

[23] G. C. Branco, T. Morozumi, P. A. Parada and M. N. Rebelo, Phys. Rev. D 48, 1167 (1993).

[24] V. D. Barger, M. S. Berger and R. J. N. Phillips, Phys. Rev. D 52, 1663 (1995) arXiv:hep-ph/9503204.

[25] D. Silverman, Int. J. Mod. Phys. A 11, 2253 (1996) arXiv:hep-ph/9504387.

[26] L. Lavoura and J. P. Silva, Phys. Rev. D 47, 1117 (1993).

[27] D. Silverman, Phys. Rev. D 45, 1800 (1992).

[28] G. Barenboim and F. J. Botella, Phys. Lett. B 433, 385 (1998) arXiv:hep-ph/9708209.

[29] G. Barenboim, F. J. Botella and O. Vives, Phys. Rev. D 64, 015007 (2001) arXiv:hep-ph/0012197.

[30] G. Barenboim, F. J. Botella and O. Vives, Nucl. Phys. B 613, 285 (2001) arXiv:hep-ph/0105306.

[31] C. H. Chen, C. Q. Geng and W. Wang, JHEP 1011, 089 (2010) arXiv:1006.5216 [hep-ph].

[32] A. K. Alok, S. Baek and D. London, JHEP 1107, 111 (2011) arXiv:1101.1333 [hep-ph].

[33] F. J. Botella, G. C. Branco and M. Nebot, arXiv:1207.4440 [hep-ph].

[34] Y. Okada and L. Panizzi, arXiv:1207.5607 [hep-ph].

[35] F. James and M. Roos, Comput. Phys. Commun. 10, 343 (1975).

[36] A. J. Buras and M. Münz, Phys. Rev. D 52, 186 (1995) arXiv:hep-ph/9501281.

[37] W. Altmanshofer, P. Ball, A. Bharucha, A. J. Buras, D. M. Straub and M. Wick, JHEP 0901, 019 (2009) arXiv:0811.1213 [hep-ph].

[38] Y. Nir, Phys. Lett. B 221, 184 (1989).

[39] A. J. Buras, M. Jamin and P. H. Weisz, Nucl. Phys. B 347, 491 (1990).

[40] R. Aaij et al. [LHCb Collaboration], arXiv:1203.1493 [hep-ex].

[41] Updates and numerical results of: The CKMfitter Group (J. Charles et al.), Eur. Phys. J. C 41, 1 (2005) arXiv:hep-ph/0406184, available on the CKMfitter group web site: http://ckmfitter.in2p3.fr/

[42] A. Lenz, U. Nierste, J. Charles, S. Descotes-Genon, H. Lackner, S. Monteil, V. Niess and S. T’Jampens, arXiv:1203.0238 [hep-ph].

[43] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 93, 081802 (2004) arXiv:hep-ex/0404006.

[44] M. Iwasaki et al. [Belle Collaboration], Phys. Rev. D 72, 092005 (2005) arXiv:hep-ex/0503044.

[45] D. Asner et al. [Heavy Flavor Averaging Group], arXiv:1010.1589 [hep-ex].
[46] R. Barate et al. [ALEPH Collaboration], Eur. Phys. J. C 19, 213 (2001) [arXiv:hep-ex/0010022].
[47] K. Nakamura et al. [Particle Data Group], J. Phys. G 37, 075021 (2010).
[48] M. Blanke, A. J. Buras, D. Guadagnoli and C. Tarantino, JHEP 0610, 003 (2006) [arXiv:hep-ph/0604057].
[49] Y. Grossman, Z. Ligeti and E. Nardi, Nucl. Phys. B 465, 369 (1996) [Erratum-ibid. B 480, 753 (1996)] [arXiv:hep-ph/9510378].
[50] A. J. Buras and R. Fleischer, Adv. Ser. Direct. High Energy Phys. 15, 65 (1998) [arXiv:hep-ph/9704376].
[51] A. Lenz, U. Nierste, JHEP 0706, 072 (2007), [hep-ph/0612167].
[52] A. Lenz, U. Nierste, [arXiv:1102.4274 [hep-ph]].
[53] A. Lenz, [arXiv:1205.1444 [hep-ph]].
[54] A. Ali, T. Mannel and T. Morozumi, Phys. Lett. B 273, 505 (1991).