The Role of Non-Thermal Factors in the Control of Skin Blood Flow During Exercise

BODIL NIELSEN, Dr. phil.

August Krogh Institute, University of Copenhagen, Denmark

Received September 13, 1985

Arguments in favor of the importance of non-thermal factors in the control of skin circulation are presented. Such factors include exercise, posture, water and electrolyte balance, state of training, and acclimatization. The first three factors probably elicit their effects via high- and low-pressure baroreceptors, while the mechanisms involved for the remainder are unknown.

During exercise, the skin circulation is increased in response to the increasing core temperature. The magnitude of vasodilation is influenced by skin temperature, but core temperature is more important for reflex control of skin circulation. Furthermore, several non-thermal factors are determinants for skin blood flow in a given situation: exercise intensity, body posture during exercise, water and electrolyte balance, degree of acclimatization, and state of training. All of these factors will modify the forearm blood flow to core temperature relationship, FBF/Tc. This relationship has become the most common model for studying the stimuli for cutaneous vascular responses. Whether this model is appropriate will be considered after the discussion of non-thermal factors.

EXERCISE FACTORS, NEUROMUSCULAR REFLEXES INFLUENCING SKIN CIRCULATION

At the onset of exercise, the skin circulation is reduced. This fact was shown by Stewart [1], who demonstrated that heat elimination in a resting hand was reduced during exercise with the other hand. A problem for studies during exercise is that most current methods for measuring skin blood flow are very difficult to apply during work, due to motion artefacts. The most common method at present, venous occlusion plethysmography, can also be used during exercise. By such measurements on the finger, Christensen et al. [2] showed that at the onset of exercise an immediate reduction in finger blood flow was elicited (Fig. 1), which was more sustained the larger the exercise intensity. The initial fall was followed by an increase in finger blood flow if the exercise was continued for more than five to six minutes. These early observations have been also confirmed with other methods, for the forearm and hand as well as the finger blood flows (e.g., [3,4,5,6]). The differences between the innervation and control in proximal (forearm) and distal (hand, finger) skin areas have been pointed out [6] and summarized recently by Rowell [7]. It seems clear that at the onset of exercise non-thermal factors have an importance influence on skin circulation.

The crucial question is whether such exercise-related factors persist during continued exercise and in steady-state exercise. This question has been evaluated in experiments where different types of exercise have been studied and in which the

299
neuromuscular and metabolic conditions in the working muscle groups have been varied during exercise [8–11]. At comparable core and skin temperatures, work with the arms was compared with leg work, and positive (uphill, concentric) exercise was compared with negative (downhill, eccentric) exercise. In concentric contractions, the muscle is shortening and performing external work; in eccentric, the muscle is stretched by external forces (gravity) and heat is liberated in the muscle. Skin circulation in these studies has been calculated from the heat conductance of the peripheral tissues [12,13]. The results show that for the same esophageal temperature (T_{es}) and mean skin temperature (T_{sk}) conductance is higher during arm work than during leg work, and higher during negative work than during positive work at the same rate of oxygen uptake (V_{O_2}) (Fig. 2). In the conditions where conductance was higher, the heart rate was increased by some ten beats per minute, while cardiac output

![FIG. 1. Variations in finger blood flow ml x min$^{-1}$) with bicycle exercise and non-load bicycling. ■, no load; □, actual work [2].](image1)

![FIG. 2. Skin circulation expressed as conductance (W/m2 x °C) plotted against esophageal temperature during steady state of positive: ▲, and negative: △ O work. Symbols for two subjects. Unpublished data from [8].](image2)
per l V\textsubscript{O\textsubscript{2}} was the same in positive and negative work. From the conductance values, the minimal skin flow in l/minute can be estimated, assuming that the blood arrives at the skin with T\textsubscript{es} temperature and is cooled to skin surface temperature. It then appears that skin circulation is about six times higher in negative work at 20°C (0.6 versus 0.1 l/minute in positive work) (see Fig. 2) and more than double at 30°C (2.2 versus 0.9 l/minute) [11].

Most studies on skin perfusion have been made at high skin temperatures, where plethysmographic measurements of forearm blood flow (FBF) have been used to investigate the relationship between FBF and the assumed main stimulus for the skin vasodilation, the rise in core temperature. The core temperature can be raised by exercise, by heat stress (e.g., using a water-perfused suit), or by both. Johnson and co-workers [14] found that in exercise the slope of this relationship was reduced as compared to rest, probably through a vasoconstrictor drive to the skin. However, in later work by this group [15] no difference was found in the FBF/T\textsubscript{es} relationship with work intensities between 150 and 750 kpm/minute, nor did Roberts and Wenger [16] find effects of exercise at lower skin temperatures during short-lasting work bouts of three minutes' duration. Taylor et al. [5] again affirm that the vasoconstriction at the onset of exercise is independent of skin temperature but also that the effect of exercise is different at different local T\textsubscript{es} of the limb (forearm).

Hirata et al. [17] used a gradient-layer hand calorimeter to measure hand skin blood flow, calculated as hand heat loss divided by the temperature difference between esophagus and hand skin temperature (Fig. 3). Their results indicated a sustained vasoconstriction in response to increasing exercise loads. The authors argue that the constrictor reflex may be maximal at relatively low exercise intensities <50 percent of maximal aerobic power, V\textsubscript{O\textsubscript{2}} max, and this may be the reason for the failure of others (e.g., [16]) to find graded effects of exercise at 50 and 70 percent of V\textsubscript{O\textsubscript{2}} max, on finger blood flow.

CARDIOVASCULAR REFLEXES AND SKIN CIRCULATION

An upright body position must usually be maintained in order to perform physical exercise. Even under resting conditions, a change from the supine position to the
upright posture is associated with a shift of blood to vascular beds below heart level, resulting in an increased hydrostatic pressure and filtration of fluid from dependent capillary beds and a reduced filling of the heart [18,19]. These events elicit arterial and low-pressure baroreceptor reflexes which increase sympathetic tone and heart rate. Vasoconstriction in arterioles and veins is elicited, and, in addition, local reflexes constrict the veins [20]. Thus some or all influences on skin circulation during exercise may be ascribed to postural reflexes which maintain arterial blood pressure, rather than to exercise per se—i.e., the neuromuscular events during work. Influences of posture on skin circulation during exercise have been demonstrated in a large number of studies [14,21,22,23]. The results show that, for a given increase in core temperature, the FBF is reduced in upright compared to reclined or supine positions. Similar effects on FBF can be produced by experimental stimulation of baroreceptors by neck suction, lower body negative pressure, or positive pressure breathing [24,25,26]. In hypertensive patients, the baroreceptor influences also seem to be involved in their reduced FBF response to the thermal stimulus during exercise [27].

In addition, the plasma volume loss which occurs as a consequence of thermal sweating has effects on the FBF/T_core relationship during exercise. This result has been tested in a number of studies where hypo- or hyperhydration, with or without changes in plasma osmolality, have been produced. Plasma volume has been reduced by diuresis, bloodletting, and sweating, and plasma volume has been expanded by excess water intake, infusion of blood or volume expanders, and water immersion [4,28,29,30]. These investigations show that any decrease of volume in the vascular system or reductions in central venous filling lead to a decrease in skin circulation, most often described as a higher threshold for the vasodilation response to increased core temperature, a reduced slope of the FBF/T_core relationship, and a reduced maximum blood flow [29] (Fig. 4). The reflexes involved are probably the same as those which are activated by changes in posture.
"CHEMICAL" FACTORS: OSMOTIC AND IONIC EFFECTS ON SKIN CIRCULATION

Exercise and sweating lead to changes in the ionic composition as well as in the volume of the body fluids. A loss of hypotonic sweat leads to increased osmolality in the plasma. How changes in osmolality per se affect skin circulation is not clear. Injection of hyperosmotic NaCl into the ear vessels of rabbits [31] produced a vasoconstriction in the other ear, and a reduction in total heat loss. In humans, forearm and calf blood flow measured with impedance plethysmography did not change significantly after intake of hypertonic sodium solution but decreased after Ca$^{2+}$ intake [32]. Perfusion of denervated hind limbs of cats with hyperosmotic blood produced vasodilation [33]. It is possible that the unchanged FBF reported above [32] may be due to an increase in muscle blood flow while skin blood flow is decreased by hyperosmolality. Fortney et al. [34] compared the effects on FBF of dehydration caused by sweating to those of hyperosmolality alone. They infused 3 percent saline into dehydrated subjects, so that initial plasma volume was restored to a higher than normal level of plasma osmolality. In these two conditions, the response of forearm blood flow to increasing core temperature produced by exercise showed a higher threshold for vasodilation in the dehydrated than in the hypertonic states than in the normal condition (Fig. 4). The slope of the relationship did not differ between the control and the hypertonic test, but both were steeper than that after dehydration [34].

The mechanisms for the effects of hyperosmolality or hypernatremia on skin circulation are not clear. For the sweating mechanism, which is also affected by osmolality changes, the effect seems to be electrolyte-specific, the Na$^+$ ion having opposite effects from the Ca$^{2+}$ ion [35]. Whether the actions of osmolality and ions take place directly in the hypothalamic temperature center or on skin vessels, or whether the effects are brought about indirectly through the activation of hormones (e.g., antidiuretic hormone), is at present unknown.

OTHER NON-THERMAL FACTORS

A number of other "factors" may be listed which change sensitivity or threshold for skin circulation. They are not easily classified, and the physiological mechanism of their interference is not proved.

These factors may include, for example, exercise training which increases the slope, and acclimatization to heat, which correlate with a reduction in the threshold in the FBF/T$_{core}$ relationship [36]. A diurnal variation in FBF/T$_{core}$ has also been described [37].

METHODS FOR MEASURING SKIN BLOOD FLOW

No method is available today for quantitative measurements of the circulation through the skin. The premises on which studies of skin blood flow in humans are based are measurements of the heat transfer across the skin, on the assumption that blood is cooled from core temperature to average or local skin surface temperature [1,3,8--13,17,28].

Measurements of the arterial inflow to a segment of an extremity (venous occlusion plethysmography) can be applied on the assumption that the changes in flow in tissues other than the skin represented in the segment are negligible in the experimental situation. Plethysmography was used in most of the investigations discussed above [2,4--6,14--16,19,21--27,29,30,32,34,36].
The rate of removal of heat or of an intracutaneous depot of trace substance, e.g., \(^{133}\)Xenon, is also an index of the skin blood flow [20]. Furthermore, measurements of the velocity of blood corpuscles flowing in a small skin area (laser-doppler technique) have been used to estimate skin capillary blood flow.

The limitations and problems involved in some of the methods mentioned have been discussed [38] and have been recently reviewed [39]. Johnson et al. [40] have compared the laser-doppler technique to plethysmography in resting subjects and Sejrsen [41] has discussed the xenon washout method.

Some of the discrepancies found in the literature about the possible role of non-thermal factors in skin circulation may be due to the use of different methods, especially as innervation varies between proximal and distal skin areas [6,7]. Also of importance, however, is whether the variables which are supposed to represent the input to the temperature centers, e.g., \(T_{\text{core}}\), \(T_{\text{sk}}\), are true representatives of all the thermal stimuli to skin circulation [10].

CONCLUSION

The skin is a large organ with a great capacity for blood flow. In spite of this fact, measurements of skin circulation are based on indirect measurements or on extrapolations from local flow measurements. Studies of forearm blood flow have been extensively used for estimation of the importance of various stimuli. Such studies show that \(T_{\text{core}}\) is the most important stimulus for skin vasodilation, the influence being 10–20 times greater per degree C than that of \(T_{\text{sk}}\) [7]. The various non-thermal factors discussed, i.e., neuromuscular reflexes, cardiovascular reflexes in connection with posture and exercise, electrolyte composition, training, acclimatization, and so on, are claimed to be important because any changes in these may cause a two- to sixfold variation in FBF for a given combination of the thermal stimuli. The exact magnitude of the physiological stimulus, however, may be unknown and cannot be identified by stimulus-response curves.

REFERENCES

1. Stewart GN: Studies on the circulation in man. Heart 3:33–75, 1911
2. Christensen EH, Nielsen M, Hannisdahl B: Investigations of the circulation in the skin at the beginning of muscular work. Acta Physiol Scand 4:162–170, 1942
3. Bishop JM, Donald KW, Taylor SH, Wormald PN: The blood flow in the human arm during supine leg exercise. J Physiol (Lond) 137:294–308, 1957
4. Nadel ER, Fortney SM, Wenger CB: Effect of hydration state on circulatory and thermal regulations. J Appl Physiol Resp Envir Exercise Physiol 49:715–721, 1980
5. Taylor WF, Johnson JM, O'Leary DS, Park MK: Modification of the cutaneous vascular response to exercise by local skin temperature. J Appl Physiol Resp Envir Exercise Physiol 57:1878–1884, 1984
6. Bevegård BS, Shepherd JT: Reaction of resistance and capacity vessels to leg exercise. J Appl Physiol 21:121–132, 1966
7. Rowell LB: Cardiovascular aspects of human thermoregulation. Circ Res 52:367–379, 1983
8. Nielsen B: Regulation of body temperature and heat dissipation at different levels of energy- and heat production in man. Acta Physiol Scand 68:215–227, 1966
9. Nielsen B: Thermoregulatory responses to arm work, leg work and intermittent leg work. Acta Physiol Scand 72:25–32, 1968
10. Nielsen B: Thermoregulation in rest and exercise. Acta Physiol Scand (Suppl 323):1–74, 1969
11. Nielsen B, Nielsen SL, Bonde-Petersen F: Thermoregulation during positive and negative work at different environmental temperatures. Acta Physiol Scand 85:249–257, 1972
12. Burton AC: The application of the theory of heat flow to the study of energy metabolism. J Nutr 7:497–533, 1934
13. Hardy JD: The physical laws of heat loss from the human body. Proc Natl Acad Sci USA 23:631–637, 1937
NON-THERMAL FACTORS AND SKIN CIRCULATION

14. Johnson JM, Rowell LB, Brengelmann GL: Modification of the skin blood flow-body temperature relationship by upright exercise. J Appl Physiol 37:880–886, 1974
15. Johnson JM: Responses of forearm blood flow to graded leg exercise in man. J Appl Physiol Resp Envir Exercise Physiol 46:457–462, 1979
16. Roberts MF, Wenger CB: Control of skin blood flow during exercise: thermal and nonthermal factors. J Appl Physiol 46:780–786, 1979
17. Hirata K, Nagasaka T, Hirai A, Hirashita M, Takahata T: Peripheral vascular tone during heat load is modified by exercise intensity. Eur J Appl Physiol 51:7–15, 1983
18. Nielsen M, Herrington LP, Winslow C-EA: The effect of posture upon peripheral circulation. Am J Physiol 127:573–580, 1939
19. Mengesha YA, Bell GH: Forearm and finger blood flow responses to passive body tilts. J Appl Physiol Resp Envir Exercise Physiol 46:288–292, 1979
20. Henriksen O: Local sympathetic reflex mechanism in regulation of blood flow in human subcutaneous adipose tissue. Acta Physiol Scand 101 (Suppl 450):1–48, 1977
21. Roberts MF, Wenger CB: Control of skin blood flow during exercise by thermal reflexes and baroreflexes. J Appl Physiol Resp Envir Exercise Physiol 48:717–723, 1980
22. Johnson JM, Park MK: Effect of upright exercise on threshold for cutaneous vasodilation and sweating. J Appl Physiol Resp Envir Exercise Physiol 50:814–818, 1981
23. Nadel ER, Cafarelli E, Roberts MF, Wenger CB: Circulatory regulation during exercise in different ambient temperatures. J Appl Physiol Resp Envir Exercise Physiol 46:430–437, 1979
24. Tripathi A, Shi X, Wenger CB, Nadel ER: Effect of temperature and baroreceptor stimulation on reflex venomotor responses. J Appl Physiol Resp Envir Exercise Physiol 57:1384–1392, 1984
25. Bevégård S, Castenfors J, Lindblad LF: Effect of carotid sinus stimulation on cardiac output and peripheral vascular resistance during changes in blood volume distribution in man. Acta Physiol Scand 101:50–57, 1977
26. Kroman NB, Beckett WS, Permutt S, Fortney SM: Effect of positive-pressure breathing on cardiovascular and thermoregulatory responses to exercise. J Appl Physiol 58:876–881, 1985
27. Kenney WL, Kamon E, Buskirk ER: Effect of mild essential hypertension on control of forearm blood flow during exercise in the heat. J Appl Physiol Resp Envir Exercise Physiol 56:930–935, 1984
28. Claremont AD, Costill DL, Fink W, Van Handel P: Heat tolerance following diuretic induced dehydration. Med Sci Sport 8:239–243, 1976
29. Fortney SM, Nadel ER, Wenger CB, Bove JR: Effect of acute alterations of blood volume on circulatory performance in humans. J Appl Physiol Resp Envir Exercise Physiol 50:292–298, 1981
30. Nielsen B, Rowell LB, Bonde-Petersen F: Cardiovascular responses to heat stress and blood volume displacements during exercise in man. Eur J Appl Physiol 52:370–374, 1984
31. Nielsen B: Actions of intravenous Ca2+ and Na+ on body temperature in the rabbit. Acta Physiol Scand 90:445–450, 1974
32. Greenleaf JE, Brock PJ: Na+ and Ca2+ ingestion: plasma volume and electrolyte distribution at rest and exercise. J Appl Physiol Resp Envir Exercise Physiol 48:838–847, 1980
33. Lundvall J: Tissue hyperosmolality as a mediator of vasodilation and transcapillary flux in exercising skeletal muscle. Acta Physiol Scand (Suppl 379):1–142, 1972
34. Fortney SM, Wenger CB, Bove JR, Nadel ER: Effect of hyperosmolality on control of blood flow and sweating. J Appl Physiol Resp Envir Exercise Physiol 57:1688–1695, 1984
35. Nielsen B: Effect of changes in plasma Na+ and Ca2+ ion concentration on body temperature during exercise. Acta Physiol Scand 91:123–129, 1974
36. Roberts MF, Wenger CB, Stolwijk JAJ, Nadel ER: Skin blood flow and sweating changes following exercise training and heat acclimation. J Appl Physiol Resp Envir Exercise Physiol 43:133–137, 1977
37. Stephenson LA, Wenger CB, O'Donovan BH, Nadel ER: Circadian rhythm in sweating and cutaneous blood flow. Am J Physiol 246 (Regulatory Integrative Comp Physiol 15):R321–R324, 1984
38. Greenfield ADM, Whitney RJ, Mowbray JF: Peripheral circulation in man. Brit Med Bull 19:101–109, 1963
39. Rowell LB: Cardiovascular adjustments to thermal stress. In Handbook of Physiology, Sec II, Vol III, Part 2. Edited by JT Shepherd, FM Abboud. Washington DC, American Physiological Society, 1983, pp 967–1023
40. Johnson JM, Taylor WF, Shepherd AP, Park MK: Laser-doppler measurement of skin blood flow: comparison with plethysmography. J Appl Physiol Resp Envir Exercise Physiol 56:798–803, 1984
41. Sejrsen P: Measurements of cutaneous blood flow by freely diffusible radioactive isotopes. Danish Med Bull (Suppl 18):1–38, 1971