Mixing Times of Self-Organizing Lists and Biased Permutations

Prateek Bhakta ∗ Sarah Miracle † Dana Randall ‡ Amanda Pascoe Streib §

Abstract

Sampling permutations from S_n is a fundamental problem from probability theory. The nearest neighbor transposition chain M_{nn} is known to converge in time $\Theta(n^3 \log n)$ in the uniform case [18] and time $\Theta(n^2)$ in the constant bias case, in which we put adjacent elements in order with probability $p \neq 1/2$ and out of order with probability $1 - p$ [2]. Here we consider the variable bias case where the probability of putting an adjacent pair of elements in order depends on the two elements, and we put adjacent elements $x < y$ in order with probability $p_{x,y}$ and out of order with probability $1 - p_{x,y}$. The problem of bounding the mixing rate of M_{nn} was posed by Fill [8, 9] and was motivated by the Move-Ahead-One self-organizing list update algorithm. It was conjectured that the chain would always be rapidly mixing if $1/2 \leq p_{x,y} \leq 1$ for all $x < y$, but this was only known in the case of constant bias or when $p_{x,y}$ is equal to 1/2 or 1, a case that corresponds to sampling linear extensions of a partial order. We prove the chain is rapidly mixing for two classes: “Choose Your Weapon,” where we are given r_1, \ldots, r_{n-1} with $r_i \geq 1/2$ and $p_{x,y} = r_x$ for all $x < y$ (so the dominant player chooses the game, thus fixing his or her probability of winning), and “League Hierarchies,” where there are two leagues and players from the A-league have a fixed probability of beating players from the B-league, players within each league are similarly divided into sub-leagues with a possibly different fixed probability, and so forth recursively. Both of these classes include permutations with constant bias as a special case. Moreover, we also prove that the most general conjecture is false. We do so by constructing a counterexample where $1/2 \leq p_{x,y} \leq 1$ for all $x < y$, but for which the nearest neighbor transposition chain requires exponential time to converge.

∗College of Computing, Georgia Institute of Technology, Atlanta, GA 30332-0765. Supported in part by NSF CCF-0830367 and a Georgia Institute of Technology ARC Fellowship.
†College of Computing, Georgia Institute of Technology, Atlanta, GA 30332-0765. Supported in part by a DOE Office of Science Graduate Fellowship, NSF CCF-0830367 and a ARCS Scholar Award.
‡College of Computing, Georgia Institute of Technology, Atlanta, GA 30332-0765. Supported in part by NSF CCF-0830367 and CCF-0910584.
§School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0280. Supported in part by the National Physical Sciences Consortium Fellowship and NSF CCF-0910584.
1 Introduction

Sampling from the permutation group S_n is one of the most fundamental problems in probability theory. A natural Markov chain that has been studied extensively is a symmetric chain that makes nearest neighbor transpositions, M_{nn}. After a series of papers \cite{5, 6} Wilson \cite{18} showed a tight bound of $\Theta(n^3 \log n)$ on the mixing time, with upper and lower bounds within a factor of two. Subsequently Benjamini et al. \cite{2} considered a biased version of this Markov chain where we select a pair of adjacent elements at random and put them in order with probability $p > 1/2$ and out of order with probability $1 - p$. They relate this biased shuffling Markov chain to a chain on an asymmetric simple exclusion process (ASEP) and showed that they both converge in $\Theta(n^2)$ time. These bounds were matched by Greenberg et al. \cite{10} who also generalized the result on ASEP to sampling biased surfaces in two and higher dimensions in optimal $\Theta(n^d)$ time.

In this paper we consider a generalization where we are always at least as likely to put a pair of adjacent elements in increasing order as out of order, but where the bias can vary depending on the values of the two elements. More precisely, we are given input parameters $P = \{p_{i,j}\}$ for all $1 \leq i, j \leq n$. The Markov chain M_{nn} iteratively chooses a pair of adjacent elements uniformly, and if they are i and j we put i ahead of j with probability $p_{i,j}$ and we put j ahead of i with probability $p_{j,i} = 1 - p_{i,j}$. We are interested in understanding whether M_{nn} is efficient in this generalized context. We call the case where $1/2 \leq p_{i,j} \leq 1$ for all $i < j$ positively biased. In this case, the fully ordered permutation $1, 2, \ldots, n$ is at least as likely in stationarity as every other permutation. It is not difficult to see that M_{nn} can take exponential time without this condition.

The problem of bounding the mixing rate of M_{nn} in the variable bias setting was raised by Jim Fill \cite{8, 9} who considered it in the context of the Move-Ahead-One (MA1) self-organizing list update algorithm. In the MA1 protocol, elements are chosen according to some underlying distribution and they move up by one in a linked list after each request is serviced, if possible. Thus, the most frequently requested elements will move to the front of the list and will eventually require less access time. If we consider a pair of adjacent elements i and j, the probability of performing a transposition that moves i ahead of j is proportional to i’s request frequency, and similarly the probability of moving j ahead of i is proportional to j’s frequency, so the transposition rates vary depending on i and j and we are always more likely to put things in order (according to their request frequencies) than out of order. Fill conjectured that when the transposition probabilities P also satisfy a monotonicity condition whereby $p_{i,j} \leq p_{i,j+1}$ and $p_{i,j} \geq p_{i+1,j}$ for all $1 \leq i < j \leq n$, then the chain is always rapidly mixing. In fact, he conjectured that the spectral gap is always minimized when $p_{i,j} = 1/2$ for all i, j, a problem he refers to as the “gap problem.” He verified that the conjecture is true for $n = 4$ and gave experimental evidence for slightly larger n.

Although Fill posed the gap problem in a widely circulated manuscript ten years ago, there has been very little progress toward solving it. For general n, the chain has only been shown to be rapidly mixing in two settings. The first is the constant bias case for which Benjamini et al. \cite{2} showed a mixing time of $\theta(n^2)$ when $p_{i,j} = p > 1/2$ for all $i < j$. The second case has all of the $p_{i,j}$ with $i < j$ equal to $1/2$ or 1; in this context the nearest neighbor chain M_{nn} samples linear extensions of a partial order and was shown by Bubley and Dyer \cite{4} to mix in $O(n^3 \log n)$ time.

Our results: In this paper we show that the Markov chain M_{nn} is always rapidly mixing for two significantly larger classes of inputs which we call “Choose Your Weapon” and “League Hierarchies.” In the Choose Your Weapon class we are given a set of input parameters r_1, \ldots, r_{n-1} representing each player’s ability to win a duel with his or her weapon of choice. When a pair of neighboring players are chosen to compete, the dominant player gets to choose the weapon, thus determining his or her probability of winning the match. In other words, we set $p_{i,j} = r_i$ when
For the positive results, our strategy is to use various combinatorial representa-
tions of permutations and interpret the moves of M_{nn} in these new settings. In each case there is a natural Markov chain in the new setting including additional moves (also transpositions) that can be analyzed using simple arguments. We then reinterpret the new moves in terms of the original transpositions so that we can deduce bounds on the mixing rate of the nearest neighbor transposition chain as well. In each case the new Markov chain consists of a family of transpositions and are themselves interesting in the context of generating random permutations.

Techniques: For the positive results, our strategy is to use various combinatorial representations of permutations and interpret the moves of M_{nn} in these new settings. In each case there is a natural Markov chain in the new setting including additional moves (also transpositions) that can be analyzed using simple arguments. We then reinterpret the new moves in terms of the original permutations so that we can deduce bounds on the mixing rate of the nearest neighbor transposition chain as well. In each case the new Markov chain consists of a family of transpositions and are themselves interesting in the context of generating random permutations.

For the Choose Your Weapon class, we map permutations to Inversion Tables [12, 17] that, for each element i, record how many elements $j > i$ come before i in the permutation. We consider a Markov chain M_{inv} that simply increments or decrements a single element of the inversion table in each step; using the bijection with permutations this corresponds to adding additional transpositions of elements that are not necessarily nearest neighbors to the Markov chain M_{nn}. Remarkably, this allows M_{inv} to decompose into a product of simple one-dimensional random walks and bounding the convergence time is very straightforward. Finally, we use comparison techniques [7, 16] to bound the mixing time of the nearest neighbor permutation chain as well. This approach also gives new, far simpler proof of fast mixing in the case of uniform bias.

For the League Hierarchy class, we introduce a new combinatorial representation of the permutation that associates a bit string b_v to each node v of a binary tree with n leaves. Specifically, $b_v \in \{L, R\}^{\ell_v}$ where ℓ_v is the number of leaves in t_v, the subtree rooted at v, and for each element i of the sub-permutation corresponding to the leaves of t_v, $b_v(i)$ records whether i lies under the left or the right branch of v. The set of these bit strings is in bijection with the permutations. We consider a chain M_{tree} that allows transpositions exactly when they correspond to a nearest neighbor transposition in exactly one of the bit strings. Thus, the mixing time of M_{tree} decomposes into a product of $n-1$ ASEP chains and we can conclude that the chain M_{tree} is rapidly mixing using results in the uniform bias case [2, 10]. Again, we use comparison techniques to conclude that the nearest neighbor chain is also rapidly mixing when we have weak monotonicity, although
\(\mathcal{M}_{\text{tree}}\), which simply allows additional transpositions is always rapidly mixing.

For the negative result showing slow mixing, the choice of \(P\) was motivated by a related question arising in the context of biased staircase walks \([10]\). In that context, we are sampling ASEP configurations with \(n\) zeros and \(n\) ones, which map bijectively onto walks on the Cartesian lattice from \((0, n)\) to \((n, 0)\) that always go to the right or down. The probability of each walk \(w\) is proportional to \(\Pi_{xy<w} \lambda_{xy}\), where the bias \(\lambda_{xy} \geq 1/2\) is assigned to the square at \((x, y)\) and \(xy < w\) whenever the square at \((x, y)\) lies underneath the walk \(w\). We show that there are settings of the \(\{\lambda_{xy}\}\) which cause the chain to be slowly mixing from any starting configuration (or walk).

In particular, we show that at stationarity the most likely configurations will be concentrated near the diagonal from \((0, n)\) to \((n, 0)\) (the high entropy, low energy states) or they will extend close to the point \((n, n)\) (the high energy, low entropy states) but it will be unlikely to move between these sets of states because there is a bottleneck that has both low energy and low entropy. Finally, we use the reduction from biased permutations to biased lattice paths to produce a positively biased set of probabilities \(P\) for which \(\mathcal{M}_{nn}\) also requires exponential time to mix from any starting configuration.

2 Preliminaries

We begin by formalizing our model. Let \(\Omega = S_n\) be the set of all permutations \(\sigma = (\sigma(1), \sigma(2), \ldots, \sigma(n))\) of \(n\) integers. We consider Markov chains on \(\Omega\) whose transitions transpose two elements of the permutation. A permutation \(\sigma\) is represented as a list of elements, \(\sigma(1), \sigma(2), \ldots, \sigma(n)\). We are also given a set \(P\), consisting of \(p_{i,j} \in [0, 1]\) for each \(1 \leq i \neq j \leq n\), where for any \(i < j\), \(p_{i,j} \geq 1/2\) and \(p_{j,i} = 1 - p_{i,j}\). The Markov chain \(\mathcal{M}_{nn}\) will sample from \(\Omega\) using \(P\).

The Nearest Neighbor Markov chain \(\mathcal{M}_{nn}\)

Starting at any permutation \(\sigma_0\), iterate the following:

- At time \(t\), select an index \(i \in [n-1]\) uniformly at random (u.a.r).
 - Swap the elements \(\sigma_t(i), \sigma_t(i+1)\) with probability \(p_{\sigma_t(i+1),\sigma_t(i)}\) to obtain \(\sigma_{t+1}\).
 - Do nothing with probability \(p_{\sigma_t(i),\sigma_t(i+1)}\) so that \(\sigma_{t+1} = \sigma_t\).

The Markov chain \(\mathcal{M}_{nn}\) connects the state space, since every permutation \(\sigma\) can move to the ordered permutation \((1, 2, \ldots, n)\) (and back) using the bubble sort algorithm. Since \(\mathcal{M}_{nn}\) is also aperiodic, this implies that \(\mathcal{M}_{nn}\) is ergodic. For an ergodic Markov chain with transition probabilities \(P\), if some assignment of probabilities \(\pi\) satisfies the detailed balance condition \(\pi(\sigma)P(\sigma, \tau) = \pi(\tau)P(\tau, \sigma)\) for every \(\sigma, \tau \in \Omega\), then \(\pi\) is the stationary distribution of the Markov chain \([13]\). It is easy to see that for \(\mathcal{M}_{nn}\), the distribution \(\pi(\sigma) = \prod_{(i<j)} \frac{p_{\sigma(i),\sigma(j)}}{Z}\), where \(Z\) is the normalizing constant \(\sum_{\sigma \in \Omega} \prod_{(i<j)} \frac{p_{\sigma(i),\sigma(j)}}{Z}\), satisfies detailed balance, and is thus the stationary distribution.

The Markov chain \(\mathcal{M}_T\) can make any transposition at each step, while maintaining the stationary distribution \(\pi\). The transition probabilities of \(\mathcal{M}_T\) can be quite complicated, since swapping two distant elements in the permutation consists of many transitions of \(\mathcal{M}_{nn}\), each with different probabilities. In the following sections, we will introduce two other Markov chains whose transitions are a subset of those of \(\mathcal{M}_T\) for which we can describe the transition probabilities succinctly.

2.1 Convergence rates of Markov chains

Next, we present some background on Markov chains. The total variation distance between the stationary distribution \(\pi\) and the distribution of the Markov Chain at time \(t\) is \(\|P^t, \pi\|_{tv} = \)
max_{x \in \Omega} \frac{1}{2} \sum_{y \in \Omega} |P_t(x, y) - \pi(y)|$, where $P_t(x, y)$ is the t-step transition probability. The efficiency of a Markov chain \mathcal{M} is often measured by its mixing time $\tau(\epsilon)$. For all $\epsilon > 0$, we define $\tau(\epsilon) = \min\{t : \|P_t', \pi\|_{tv} \leq \epsilon, \forall t' \geq t\}$. We say that a Markov chain is rapidly mixing if there exists a polynomial p such that $\tau_\epsilon = O(p(n, \log(1/\epsilon)))$ where n is the size of each configuration in Ω.

In Section 5, we will use a standard technique called coupling. A coupling is a Markov chain $(X_t, Y_t)_{t=0}^\infty$ on $\Omega \times \Omega$ such that each of the processes X_t and Y_t is a faithful coupling of \mathcal{M}, and if $X_t = Y_t$, then $X_{t+1} = Y_{t+1}$. Given such a coupling, define the coupling time T as follows:

$$T = \max_{x,y} E[\min\{t : X_t = Y_t | X_0 = x, Y_0 = y\}].$$

Then the following theorem (see, e.g., [1]) relates the coupling time and the mixing time.

Theorem 2.1. $\tau(\epsilon) \leq T \epsilon[\ln \epsilon^{-1}]$.

In each of Sections 3 and 4, we introduce new Markov chains to sample from the same distribution as \mathcal{M}_{nn}. In order to obtain bounds on the mixing time of \mathcal{M}_{nn}, we will compare \mathcal{M}_{nn} with these auxiliary chains in Section 5. If P and P' are the transition matrices of two reversible Markov chains on the same state space Ω with the same stationary distribution π, the comparison method (see [7] and [16]) allows us to relate the mixing times of these two chains. Let $E(P) = \{(\sigma, \beta) : P(\sigma, \beta) > 0\}$ and $E(P') = \{(\sigma, \beta) : P'(\sigma, \beta) > 0\}$ denote the sets of edges of the two graphs, viewed as directed graphs. For each σ, β with $P'(\sigma, \beta) > 0$, define a path $\gamma_{\sigma \beta}$ using a sequence of states $\sigma = \sigma_0, \sigma_1, \ldots, \sigma_k = \beta$ with $P(\sigma_i, \sigma_{i+1}) > 0$, and let $|\gamma_{\sigma \beta}|$ denote the length of the path. Let $\Gamma(v, \omega) = \{(\sigma, \beta) \in E(P') : (v, \omega) \in \gamma_{\sigma \beta}\}$ be the set of paths that use the transition (v, ω) of P. Finally, let $\pi_* = \min_{\rho \in \Omega} \pi(\rho)$ and define

$$A = \max_{(v, \omega) \in E(P)} \frac{1}{\pi(v) P(v, \omega)} \sum_{\gamma_{\sigma \beta}} |\gamma_{\sigma \beta}| \pi(\sigma) P'(\sigma, \beta).$$

The following formulation of the comparison method is due to Randall and Tetali [16].

Theorem 2.2. With the above notation, for $0 < \epsilon < 1$, we have $\tau(\epsilon) \leq \frac{4 \log(1/(\epsilon \pi_*))}{\log(1/2\epsilon)} A \tau'(\epsilon)$.

3 Choose Your Weapon

In the Choose Your Weapon class, we are given $1/2 \leq r_1, r_2, \ldots, r_{n-1} \leq 1$ and a set P satisfying $p_{i,j} = r_i$ if $i < j$ and $p_{i,j} = 1 - p_{j,i}$ if $j < i$. We show that a new Markov chain \mathcal{M}_{inv} is rapidly mixing under these conditions, which will imply that \mathcal{M}_{nn} and \mathcal{M}_T are as well, as we show in Section 5. The Markov chain \mathcal{M}_{inv} acts on the inversion table of the permutation [12][17], which has an entry for each $i \in [n]$ counting the number of inversions involving i; that is, the number of values $j > i$ where j comes before i in the permutation (see Figure 1). It is easy to see that the ith element of the inversion table is an integer between 0 and $n - i$. In fact, the function I is a bijection between the set of permutations and the set \mathcal{I} of all possible inversion tables (all sequences $X = (x_1, x_2, \ldots, x_n)$ where $0 \leq x_i \leq n - i$ for all $i \in [n]$). To see this, we will construct a permutation from any inversion table $X \in I$. Place the element 1 in the $(x_1 + 1)$st position of the permutation. Next, there are $n - i$ slots remaining. Among these, place the element 2 in the $(x_2 + 1)$st position remaining (ignoring the slot already filled by 1). Continuing, after placing $i - 1$ elements into the permutation, there are $n - i + 1$ slots remaining, and we place the element i into the $(x_i + 1)$st position among the remaining slots. This proves that I is a bijection from S_n to \mathcal{I}.

\[\sigma = 8 \ 1 \ 5 \ 3 \ 7 \ 4 \ 6 \ 2 \]
\[I(\sigma) = 1 \ 7 \ 2 \ 3 \ 1 \ 2 \ 1 \ 0 \]

Figure 1: The inversion table for a permutation.

Given this bijection, a natural algorithm for sampling permutations is to perform the following local Markov chain on inversion tables: select a position \(i \in [n] \) and attempt to either add one or subtract one from \(x_i \), according to the appropriate probabilities. In terms of permutations, this amounts to adding or removing an inversion involving \(i \) without affecting the number of inversions involving any other integer, and is achieved by swapping the element \(i \) with an element \(j > i \) such that every element in between is smaller than both \(i \) and \(j \). If \(i \) moves ahead of \(j \), this move happens with probability \(p_{i,j} \), because for each \(k \) that \(i \) and \(j \) are swapped past, \(k < i, j \), so \(p_{k,i} = r_k = p_{k,j} \) (since each of these depend only on \(k \)) so the net effect on the distribution is neutral, and the detailed balance condition ensures that \(\pi \) is the correct stationary distribution. Formally, the Markov chain is defined as follows.

The Inversion Markov chain \(M_{inv} \)

Starting at any permutation \(\sigma_0 \), iterate the following:

- Select an element \(i \in [n] \) with probability \((n-i)/\binom{n}{2} \) and a bit \(b \in \{-1, +1\} \).
 - If \(b = +1 \), let \(j \) be the first element after element \(i \) in \(\sigma_t \) such that \(j > i \). With prob. \(p_{j,i}/2 = (1 - r_i)/2 \), obtain \(\sigma_{t+1} \) from \(\sigma_t \) by swapping \(i \) and \(j \).
 - If \(b = -1 \), let \(j \) be the last element before element \(i \) in \(\sigma_t \) such that \(j > i \). With prob. \(p_{i,j}/2 = r_i/2 \), obtain \(\sigma_{t+1} \) from \(\sigma_t \) by swapping \(i \) and \(j \).

- With prob. \(1/2 \), \(\sigma_{t+1} = \sigma_t \).

This Markov chain contains the moves of \(M_{inv} \) (and therefore also connects the state space). Although elements can jump across several elements, it is still fairly local compared with the general transposition chain \(M_T \) which has \(\binom{n}{2} \) choices at every step, since \(M_{inv} \) has at most \(2n \).

The Markov chain \(M_{inv} \) is essentially a product of \(n \) independent one-dimensional processes. The \(i \)th process is just a random walk bounded between 0 and \(n-i \), which moves up with probability \(1 - r_i \) and down with probability \(r_i \); hence its mixing time is \(O(n^2) \), unless \(r_i \) is bounded away from \(1/2 \), in which case its mixing time is \(O(n) \). However, each process is slowed down by a factor of \(n \) since we only update one process at each step. To make this argument formal, we will use Theorem 7.1 which bounds the mixing time of a product of independent Markov chains and whose elementary proof is deferred to Section 7.

Theorem 3.1. Let \(1/2 \leq r_1, r_2, \ldots, r_{n-1} < 1 \) be constants, and let \(r_{max} = \max_i r_i \). Assume that \(p_{i,j} = r_{\min \{i,j\}} \).

1. If each \(r_i > 1/2 \) then the mixing time of \(M_{inv} \) on biased permutations with these \(p_{i,j} \) values is \(O(n^2 \ln(n/\epsilon)) \).

2. Otherwise, the mixing time of \(M_{inv} \) is \(O(n^3 \ln(n/\epsilon)) \).

To prove this theorem, we need to analyze the one-dimensional process \(M(r,k) \), bounded between 0 and \(k \), which chooses to move up with probability \(r \geq 1/2 \) and down with probability \(1 - r \) at each step, if possible. This simple random walk is well-studied; we include the proof for completeness.
Lemma 3.2. Let $1/2 \leq r \leq 1$ be constant. Then the Markov chain $M(r,k)$ has mixing time

1. $\tau(\epsilon) = O(k \ln \epsilon^{-1})$ if r is a constant bigger than $1/2$, and

2. $\tau(\epsilon) = O(k^2 \ln \epsilon^{-1})$ if $r = 1/2$.

Proof. We use a variation on coupling. We use the trivial coupling, which chooses to move the same

Remark 3.3. The same proof also applies to the case where the probability of swapping X_i depends on the object with lower rank (i.e., we are given r_2, \ldots, r_n and we let $p_{i,j} = r_j$ for all $i < j$). This case is related to a variant of the MA1 list update algorithm, where if a record is requested, we try to move the associated record x ahead of its immediate predecessor in the list, if it exists. If it has higher rank than its predecessor, then it always succeeds, while if its rank is lower we move it ahead with probability $f_x = r_x/(1 + r_x) \leq 1$.
4 League Hierarchy

In this section, we turn to a second class of P that have what we call league structure. Let T be a proper rooted binary tree with n leaf nodes, labeled $1, \ldots, n$ in sorted order. Each non-leaf node v of this tree is labeled with a value $\frac{1}{2} \leq q_v \leq 1$. For $i, j \in [n]$, let $i \vee j$ be the lowest common ancestor of the leaves labeled i and j. We say that P has league structure T if for all $i < j$, $p_{i,j} = q_{i \vee j}$ and $p_{j,i} = 1 - p_{i,j}$. For example, Figure 2a shows a set P such that $p_{14} = .8$, $p_{49} = .9$, and $p_{58} = .7$.

![Figure 2: A set P with league structure, and the corresponding tree-encoding of the permutation 519386742.](image)

When T is a complete binary tree and $q_v = q_w$ for each v and w on the same level of the tree, this is precisely the representation of the winning probabilities for a tournament described in the introduction. We define the Markov chain $\mathcal{M}_{tree}(T)$ over permutations, given a set P with league structure T.

The Markov chain $\mathcal{M}_{tree}(T)$

Starting at any permutation σ_0, iterate the following:

- Select distinct $a, b \in [n]$ u.a.r. Assume $a < b$.
- If every number between a and b in the permutation σ_t is not a descendant in T of $a \vee_T b$, obtain σ_{t+1} from σ_t by placing a, b in order with probability $p_{a,b}$, and out of order with probability $1 - p_{a,b}$, leaving all elements between them fixed.
- Otherwise, $\sigma_{t+1} = \sigma_t$.

First, we show that this Markov chain samples from the same distribution as \mathcal{M}_{nn}. Swapping arbitrary non-adjacent elements a and b could potentially change the weight of the permutation dramatically. However, for any element c that is not a descendant in T of $a \vee_T b$, the relationship between a and c is the same as the relationship between b and c. Thus the league structure ensures that swapping a and b only changes the weight by a multiplicative factor of $\lambda_{a,b} = p_{a,b}/p_{b,a}$.

Lemma 4.1. The Markov chain $\mathcal{M}_{tree}(T)$ has the same stationary distribution as \mathcal{M}_{nn}.

Proof. Let π be the stationary distribution of \mathcal{M}_{nn}, and let (σ_1, σ_2) be a transition in $\mathcal{M}_{tree}(T)$. It suffices to show that the detailed balance condition holds for this transition with the stationary distribution π. Recall that we may express $\pi(\sigma) = \prod_{i,j|a < j} p_{i,j} / Z$ where $Z = \sum_{\sigma \in \Omega} \prod_{i,j|a < j} p_{i,j}$. The transition (σ_1, σ_2) transposes some two elements $a <_\sigma b$, where every element between a and b in σ_i is not a descendant of $a \vee b$ in T. Let x_1, \ldots, x_k be those elements. Thus, the path from a or b to x_i in T must pass through $a \vee b$ and go to another part of the tree. For every such element
Theorem 4.2. The mixing times of the symmetric and asymmetric simple exclusion processes have been well-studied [4, 18, 2, 10]. We will use the following bounds on the mixing time of each piece, slowed down by the inverse probability of selecting that piece.

\[
\pi(i_1) = \frac{p_{ab} \prod_{i \geq 1} p_{ax_i}}{p_{ba} \prod_{i \geq 1} p_{bx_i}} = \frac{p_{ab}}{p_{ba}}.
\]

This is exactly the ratio of the transition probabilities in \(\mathcal{M}_{\text{tree}}(T) \), thus \(\mathcal{M}_{\text{tree}}(T) \) also has stationary distribution \(\pi \).

The key to the proof that \(\mathcal{M}_{\text{tree}}(T) \) is rapidly mixing is again to decompose the chain into \(n - 1 \) independent Markov chains, \(\mathcal{M}_1, \mathcal{M}_2, \ldots, \mathcal{M}_{n-1} \), one for each non-leaf node of the tree \(T \). To this end, we introduce an alternate representation of a permutation as a set of binary strings arranged like the tree \(T \). For each non-leaf node \(v \) in the tree \(T \), let \(L(v) \) be its left descendants, and \(R(v) \) be its right descendants. We now do the following: Given the permutation \(\sigma \), list each descendant \(x \) of \(v \) in the order we encounter it in \(\sigma \); these are parenthesized in Figure 2a. Then for each listed element \(x \), write a 1 if \(x \in L(v) \) and a 0 if \(x \in R(v) \). This is the final binary encoding in Figure 2a.

We see that any \(\sigma \) will lead to an assignment of binary strings at each non-leaf node \(v \) with \(L(v) \) ones and \(R(v) \) zeroes. Next we verify that this is a bijection between the set of permutations and the set of assignments of such binary strings to the tree \(T \). Given any such assignment of binary strings, we can recursively reconstruct the permutation \(\sigma \) as follows. For each leaf node \(i \), let its string be the string “i”. For any node \(n \) with binary string \(b \), determine the strings of its two children. Call these \(s_1, s_0 \). Interleave the elements of \(s_1 \) with \(s_0 \), choosing an element of \(s_1 \) for each 1 in \(b \), and an element of \(s_0 \) for each 0. This yields a permutation \(\sigma \).

With this bijection, we first analyze \(\mathcal{M}_{\text{tree}}(T) \)’s behavior over tree representations and later extend this analysis to permutations. The Markov chain \(\mathcal{M}_{\text{tree}}(T) \), when proposing a swap of the elements \(a \) and \(b \), will only attempt to swap them if \(a, b \) correspond to some adjacent 0 and 1 in the string associated with \(a \lor b \). Swapping \(a \) and \(b \) does not affect any other string, so each non-leaf node \(v \) represents an independent exclusion process with \(L(v) \) ones and \(R(v) \) zeroes. These exclusion processes have been well-studied [4, 18, 2, 10]. We will use the following bounds on the mixing times of the symmetric and asymmetric simple exclusion processes.

Theorem 4.2. Let \(\mathcal{M} \) be the exclusion process with parameter \(p \) on \(k_1 \) ones and \(k_2 \) zeroes, where \(k = k_1 + k_2 \). Then

1. if \(p = 1/2 \), \(\tau(\epsilon) = O(k^3 \log(k_1 k_2 / \epsilon)) \). [4, 18]
2. if \(p > 1/2 \), then \(\tau(\epsilon) = O(k \min\{k_1, k_2\} + \log k) \log(\epsilon^{-1})) = O(k^2 \log(\epsilon^{-1})). \) [10]

The bounds in Theorem 4.2 refer to the exclusion process which selects a position at random and swaps the two elements in that position with the appropriate probability. However, our process selects arbitrary pairs \((i, j)\) consisting of a single one and a single zero. Since we only swap \((i, j)\) if they are neighboring, this may slow down the chain by a factor of at most \(k \).

Since each exclusion process operates independently, the overall mixing time will be roughly \(n \) times the mixing time of each piece, slowed down by the inverse probability of selecting that process. Next, we will use Theorems 7.1 and 4.2 to prove that \(\mathcal{M}_{\text{tree}}(T) \) is rapidly mixing.

Theorem 4.3. If \(P \) has league structure \(T \), then the mixing time of \(\mathcal{M}_{\text{tree}}(T) \) under \(P \) satisfies

\[
\tau_{\text{tree}}(\epsilon) = O(n^5 \log(n / \epsilon)).
\]

If \(P \) is such that each \(q_i > 1/2 \) is a constant, then \(\tau_{\text{tree}}(\epsilon) = O(n^3 \log n \log(n / \epsilon)). \)
Proof. In order to apply Theorem 7.1 to the Markov chain \(M_{tree}(T) \), we note that for a node with \(k_1 \) ones and \(k_2 \) zeroes \((k = k_1 + k_2)\), the probability of selecting that node is \(k! k_1! k_2! / \binom{n}{k} \). Since \(M = n - 1 \), Theorem 7.1 implies

\[
\tau(\epsilon) \leq \frac{n(n-1)}{k_1 k_2} k^4 \ln(2nk_1k_2/\epsilon) = O(n^5 \log(n/\epsilon)).
\]

Of course, if all of the chains have probabilities that are bounded away from 1/2, then we can use the second bound from Theorem 4.2 to obtain

\[
\tau(\epsilon) \leq \frac{n(n-1)k^2}{k_1 k_2} \left(1 + \frac{\log k}{\min\{k_1, k_2\}}\right) \log(2n/\epsilon).
\]

There are two cases to consider. Let \(0 < c < 1 \). If \(\min\{k_1, k_2\} \geq c \log k \) then

\[
\tau(\epsilon) \leq \frac{n(n-1)k^2}{k/2} (1 + c \log(2n/\epsilon)) = O(n^3 \log(n/\epsilon)).
\]

Otherwise, \(\max\{k_1, k_2\} > k - c \log k \), so since \(k \leq n \),

\[
\tau(\epsilon) \leq \frac{n(n-1)k^2}{k - c \log k} (1 + \log k) \log(2n/\epsilon)) = \frac{n(n-1)k}{1 - c \log k} (1 + \log k) \log(2n/\epsilon)) = O(n^3 \log n \log(n/\epsilon)).
\]

\[\Box\]

5 Bounding the mixing time of \(M_{nn} \) for both classes

Our goal now is to use the comparison method to obtain bounds on the mixing time of \(M_{nn} \) in the settings of Sections 3 and 4 from the bounds on the mixing times of \(M_{inv} \) and \(M_{tree}(T) \). When comparing the mixing times of \(M_{tree}(T) \) and \(M_{nn} \), for example, the goal is to show that a move \(e = (\sigma, \beta) \) of \(M_{tree}(T) \), which is allowed to transpose \(i \) and \(j \) that are not necessarily nearest neighbors, can be simulated with a sequence of moves of \(M_{nn} \). Moreover, we must ensure that our path does not go through transitions that are much smaller in weight than \(\min\{\pi(\sigma), \pi(\beta)\} \). This type of argument is straightforward for the moves of \(M_{inv} \), and gives some intuition for the more involved argument to compare \(M_{tree}(T) \) with \(M_{nn} \), which will follow in Section 5.2.

In the next two sections, we assume that each \(p_{i,j} \) is a constant less than 1; this is to ensure a good comparison between the spectral gap and the mixing time. If this condition is not satisfied, then the proofs still go through and will give a bound on the spectral gap, but will not provide a good bound on the mixing time.

5.1 Comparing \(M_{inv} \) with \(M_{nn} \)

First, we consider the setting of Section 3 where \(p_{i,j} \) depends on \(\min\{i, j\} \).

Theorem 5.1. Let \(1/2 \leq r_1, r_2, \ldots, r_{n-1} < 1 \) be constants. Assume \(P \) is defined by \(p_{i,j} = r_i \) for \(i < j \). Then the mixing time of \(M_{nn} \) on biased permutations under \(P \) is \(O(n^8 \log(n/\epsilon)) \).

Here we are using the bound from Theorem 3.1 part 2, and if each \(p_{i,j} \) is bounded away from 1/2 then we would get a better bound of \(O(n^7 \log(n/\epsilon)) \) using Theorem 3.1 part 1. Recall that for any \(a, b \in [n] \), we defined \(\lambda_{a,b} = p_{a,b}/p_{b,a} \).
Applying Theorem 2.2 proves that $\tau \log (1/A)$.

In either case, we have σ at a time, until it swaps with σ. This is easy to do; in the first stage, move σ to the left, one step at a time, until it reaches position i. This completes the move e, and at each step, we are adding back an inversion of the type $(\sigma(j), \sigma(k))$ for some $i < k < j$. Since $\sigma(k) = \min\{\sigma(j), \sigma(k)\} = \min\{\sigma(i), \sigma(k)\}$, we have $p_{\sigma(k), \sigma(i)} = p_{\sigma(k), \sigma(j)}$ for every $i < k < j$, so in this stage we restore all the inversions destroyed in the first stage, for a net change of λ.

Given a transition (v, ω) of \mathcal{M}_{nn} we must upper bound the number of canonical paths $\gamma_{\sigma \beta}$ that use this edge, which we do by bounding the amount of information needed in addition to (v, ω) to determine σ and β uniquely. For moves in the first stage, all we need to remember is $\sigma(j)$, because we know $\sigma(i)$ (it is the element moving forward). We also need to remember i (that is, the original location of $\sigma(i)$). Given this information along with v and ω we can uniquely recover (σ, β). Thus there are at most n^2 paths which use any edge (v, ω). Also, notice that the maximum length of any path is $2n$.

Next we bound the quantity A which is needed to apply Theorem 2.2. Recall that we have guaranteed that $\pi(\sigma) \leq \max\{\pi(v), \pi(\omega)\}$. Assume first that $\pi(\sigma) \leq \pi(v)$. Then

$$A = \max_{(v, \omega) \in E(P)} \left\{ \frac{1}{\pi(v)P(v, \omega)} \sum_{\Gamma(v, \omega)} |\gamma_{\sigma \beta}| \pi(\sigma) P'(\sigma, \beta) \right\}$$

$$\leq \max_{(v, \omega) \in E(P)} \sum_{\Gamma(v, \omega)} 2n P'(\sigma, \beta) P(v, \omega) \leq \max_{(v, \omega) \in E(P)} \sum_{\Gamma(v, \omega)} 2n \frac{1/(2n)}{(1+\lambda)(n-1)} = O(n^3).$$

If, on the other hand, $\pi(\sigma) \leq \pi(\omega)$, then we use detailed balance to obtain:

$$A = \max_{(v, \omega) \in E(P)} \left\{ \frac{1}{\pi(\omega)P(\omega, v)} \sum_{\Gamma(v, \omega)} |\gamma_{\sigma \beta}| \pi(\sigma) P'(\sigma, \beta) \right\}$$

$$\leq \max_{(v, \omega) \in E(P)} \sum_{\Gamma(v, \omega)} 2n P'(\sigma, \beta) P(\omega, v) \leq \max_{(v, \omega) \in E(P)} \sum_{\Gamma(v, \omega)} 2n \frac{1/(2n)}{(1+\lambda)(n-1)} = O(n^3).$$

In either case, we have $A = O(n^3)$. Let $\lambda = \min_{i<j} \lambda_{i,j}$. Then $\pi_* = \min_{\rho \in \Omega} \pi(\rho) \geq \lambda^{(n)} / n!$, so $\log(1/(\epsilon \pi_*)) = O(n^2 \log \epsilon^{-1})$, since each $p_{i,j}$ bounded away from 1 implies λ is a positive constant. Applying Theorem 2.2 proves that $\tau_{nn}(\epsilon) = O(n^8 \log(n/\epsilon))$. \qed
5.2 Comparing $\mathcal{M}_{\text{tree}}(T)$ with \mathcal{M}_{nn}

In this section we show that \mathcal{M}_{nn} is rapidly mixing when P has league structure and is weakly monotone:

Definition 5.1. The set P is weakly monotone if properties 1 and either 2 or 3 are satisfied.

1. $p_{i,j} \geq 1/2$ for all $1 \leq i < j \leq n$, and
2. $p_{i,j+1} \geq p_{i,j}$ for all $1 \leq i < j \leq n - 1$ or
3. $p_{i-1,j} \geq p_{i,j}$ for all $2 \leq i < j \leq n$.

We note that if P satisfies all three properties then it is monotone, as defined by Fill [9].

The comparison proof in this setting is similar to that of Section 5.1 except that there may be elements between $\sigma(i)$ and $\sigma(j)$ that are larger than both and elements that are smaller than both. This poses a problem, because we may not be able to move $\sigma(i)$ past all the elements between them without greatly decreasing the weight. However, when P is weakly monotone, we can introduce a trick to get around this problem. At a high level, we shift the elements between $\sigma(i)$ and $\sigma(j)$ that are smaller than $\sigma(i)$ and $\sigma(j)$ to the left in a special way, increasing the weight of the configuration in such a way that when we move $\sigma(i)$ to the right, the weight never goes below $\min\{\pi(\sigma), \pi(\beta)\}$. Specifically, we prove the following theorem.

Theorem 5.2. If P has league structure, is weakly monotone and is such that $p_{i,j}$ is a constant less than 1 for all i, j, then the mixing time of \mathcal{M}_{nn} satisfies $\tau_{nn}(\epsilon) = O(n^3 \log(n/\epsilon))$.

Again, we are assuming the worst case bound on the mixing time of $\mathcal{M}_{\text{tree}}(T)$ given in Theorem 1.3 and if each $p_{i,j}$ is bounded away from 1/2 then we would get a better bound.

Proof. Throughout this proof we assume that P satisfies properties 1 and 2 of the weakly monotone definition. If instead P satisfies property 3, then the proof is very similar. In order to apply Theorem 2.2 to relate the mixing time of \mathcal{M}_{nn} to the mixing time of $\mathcal{M}_{\text{tree}}(T)$ we need to define for each transition of $\mathcal{M}_{\text{tree}}(T)$ a canonical path using transitions of \mathcal{M}_{nn}. Let $e = (\sigma, \beta)$ be a transition of $\mathcal{M}_{\text{tree}}(T)$ which performs a transposition of elements $\sigma(i)$ and $\sigma(j)$ where $i < j$. If there are no elements between $\sigma(i)$ and $\sigma(j)$ then e is already a transition of \mathcal{M}_{nn} and we are done. Otherwise, σ contains the string $\sigma(i), \sigma(i+1), \ldots, \sigma(j-1), \sigma(j)$ and β contains $\sigma(j), \sigma(i+1), \ldots, \sigma(j-1), \sigma(i)$. From the definition of $\mathcal{M}_{\text{tree}}(T)$ we know that for each $\sigma(k)$, $k \in [i+1, j-1]$, either $\sigma(k) > \sigma(i), \sigma(j)$ or $\sigma(k) < \sigma(i), \sigma(j)$. Define $S = \{\sigma(k) : \sigma_k < \sigma(i), \sigma(j)\}$ and $B = \{\sigma(k) : \sigma_k > \sigma(i), \sigma(j)\}$. To obtain a good bound on the congestion along each edge we must ensure that the weight of the configurations on the path are not smaller than the weight of σ. To this end, we define three stages in our path from σ to β. In the first stage, we shift the elements of S to the left, removing an inversion with each element of B. In the second stage we move $\sigma(i)$ next to $\sigma(j)$ and in the third stage we move $\sigma(j)$ to $\sigma(i)$’s original location. Finally, we shift the elements of S to the right to return them to their original locations. See Figure 3.

Stage 1: In this stage, for each $b \in B$, we remove an inversion involving b by shifting an element of S to the left past b. More precisely, if $\sigma(j-1) \in B$, shift $\sigma(j)$ to the left until an element from S is immediately to the left of $\sigma(j)$. Next, starting at the right-most element in S and moving left, for each $\sigma(k) \in S$ such that $\sigma(k-1) \in B$, move $\sigma(k)$ to the left one swap at a time until $\sigma(k)$ has an element from S or $\sigma(i)$ on its immediate left (see Figure 4a). Notice that for each element $b \in B$ we have removed exactly one $(b, \sigma(k))$ inversion where $\sigma(k) \in S \cup \sigma(j)$.

Stage 2: Next perform a series of nearest neighbor swaps to move \(\sigma(i) \) to the right until it is in position \(j \) (the original position occupied by \(\sigma(j) \) in \(\sigma \), see Figure 4b). While we have created a \((b, \sigma(i))\) inversion for each element \(b \in B \), we claim that the weight has not decreased from the original weight by more than a factor of \(\lambda_{\sigma(j), \sigma(i)} \). This is because in Stage 1, for each element \(b \in B \), we removed a \((b, s)\) inversion for some \(s \in S \cup \sigma(j) \). Assume first that \(s \in S \). Then since \(b > \sigma(i) > s \), it follows that \(p_{b, \sigma(i)} \geq p_{b,s} \) for all \(s \in S \) since the \(P \) are weakly monotone; thus, for each \(b \) we introduce a multiplicative factor of \(\lambda_{b, \sigma(i)}/\lambda_{b,s} \geq 1 \). On the other hand, if \(s = \sigma(j) \) then recall \(p_{b, \sigma(j)} = p_{b, \sigma(i)} \) because \(b \) is not a descendant of \(\sigma(i) \lor \sigma(j) \) in the tree \(T \). Hence the current configuration has weight at least \(\lambda_{\sigma(j), \sigma(i)} \pi(\sigma) \). Since \(\lambda_{\sigma(j), \sigma(i)} \) is also the ratio of \(\pi(\sigma) \) and \(\pi(\beta) \), it follows that the weight at every step of Stage 2 does not go below \(\min \{ \pi(\sigma), \pi(\beta) \} \). For each \(\sigma(k) \in S \) we have also removed a \((\sigma(k), \sigma(j))\) inversion, which can only increase the weight of the configuration.

Stage 3: Perform a series of nearest neighbor swaps to move \(\sigma(j) \) to the left until it is in the same position \(\sigma(i) \) was originally. While we created an \((\sigma(k), \sigma(j))\) inversion for each \(\sigma(k) \in S \), these inversions have the same weight as the \((\sigma(i), \sigma(k))\) inversion we removed in Stage 2. In addition we have removed an \((\sigma(l), \sigma(j))\) inversion for each \(\sigma(l) \in B \).

Stage 4: Finally we want to return the elements in \(S \) and \(B \) to their original position. Starting with the left-most element in \(S \) that was moved in Stage 1, perform the nearest neighbor swaps to the right necessary to return it to its original position.

It’s clear from the definition of the stages that along any path the weight of a configuration never decreases below the weight of \(\min(\pi(\sigma), \pi(\beta)) \). Given a transition \((v, \omega)\) of \(M_{nm} \) we must upper bound the number of canonical paths \(\gamma_{\sigma \beta} \) that use this edge. Thus, we analyze the amount of information needed in addition to \((x, w)\) to determine \(\sigma \) and \(\beta \) uniquely. First we record whether \((\sigma, \beta)\) is already a nearest neighbor transition or which stage we are in. Next for any of the 4 stages we record the original location of \(\sigma(i) \) and \(\sigma(j) \). Given this information, along with \(v \) and \(\omega \), we can uniquely recover \((\sigma, \beta)\). Hence, there are at most \(4n^2 \) paths through any edge \((v, \omega)\). Also,
note that the maximum length of any path is $4n$.

Next we bound the quantity A which is needed to apply Theorem 2.2. Recall that for each transition (v, ω) of the path $\gamma_{\sigma, \beta}$, we have guaranteed that $\pi(v) \geq \min\{\pi(\sigma), \pi(\beta)\}$. Assume first that $\pi(v) \geq \pi(\sigma)$. Then

$$A = \max_{(v, \omega) \in E(P)} \left\{ \frac{1}{\pi(v)P(v, \omega)} \sum_{\Gamma(v, \omega)} |\gamma_{\sigma, \beta}|\pi(\sigma)P'(\sigma, \beta) \right\}$$

$$\leq \max_{(v, \omega) \in E(P)} \sum_{\Gamma(v, \omega)} 2n \frac{P'(\sigma, \beta)}{P(v, \omega)} \leq \max_{(v, \omega) \in E(P)} \sum_{\Gamma(v, \omega)} 2n \frac{1/(n^2)}{1 + \lambda(n-1)} = O(n^2).$$

If, on the other hand, $\pi(v) \geq \pi(\beta)$, then we use detailed balance to obtain:

$$A = \max_{(v, \omega) \in E(P)} \left\{ \frac{1}{\pi(v)P(v, \omega)} \sum_{\Gamma(v, \omega)} |\gamma_{\sigma, \beta}|\pi(\sigma)P'(\sigma, \beta) \right\}$$

$$= \max_{(v, \omega) \in E(P)} \left\{ \frac{1}{\pi(v)P(v, \omega)} \sum_{\Gamma(v, \omega)} |\gamma_{\sigma, \beta}|\pi(\beta)P'(\beta, \sigma) \right\}$$

$$\leq \max_{(v, \omega) \in E(P)} \sum_{\Gamma(v, \omega)} 2n \frac{P'(\beta, \sigma)}{P(v, \omega)}$$

$$\leq \max_{(v, \omega) \in E(P)} \sum_{\Gamma(v, \omega)} 2n \frac{1/(n^2)}{1 + \lambda(n-1)} = O(n^2).$$

In either case, we have $A = O(n^2)$. Let $\lambda = \min_{i<j} \lambda_{ij}$. Then $\pi_* = \min_{\rho \in \Omega} \pi(\rho) \geq \lambda^{\frac{n}{2}}/n!$, so $\log(1/(\epsilon \pi_*)) = O(n^2 \log \epsilon^{-1})$, as above. Applying Theorem 2.2 proves that $\tau_{nn}(\epsilon) = O(n^9 \log(n/\epsilon))$. \hfill \Box

Remark 5.3. By repeating Stage 1 of the path a constant number of times, it is possible to relax the weakly monotone condition slightly if we are satisfied with a polynomial bound on the mixing time.

6 Slow Mixing of \mathcal{M}_{nn}

We conclude by showing that while \mathcal{M}_{nn} is rapidly mixing for two large, interesting classes of inputs, this is not true in general. In particular, we show that there are positively biased permutations for which the chain \mathcal{M}_{nn} requires exponential time to converge to equilibrium. This disproves the conjecture that the chain will always be fast when P satisfies $p_{ij} \geq 1/2$ for all $i < j$.

Our example comes from sampling staircase walks with fluctuating bias, which were examined in [10] and [15]. Staircase walks are sequences of n ones and n zeros, which correspond to paths from $(0, n)$ to $(n, 0)$, where each 1 represents a step to the right and each 0 represents a step down (see Figure 5b). For ease of notation in the following proof, we replace the zeroes by negative ones. In [15], Randall and Streib examined the Markov chain which attempts to swap a neighboring $(1, -1)$ pair, which essentially adds or removes a unit square from the region below the walk, with probability depending on the position of that unit square. We will show that for our choice of P, permutations are equivalent to staircase walks, and hence the proof that the Markov chain on staircase walks is slow applies in our setting as well.
Suppose, for ease of notation, that we are sampling permutations with 2n entries (having an odd number of elements will not cause qualitatively different behavior). Let $M = n - \sqrt{n}$, $\epsilon = 1/(16n + 2)$, and $\frac{1}{65} < \delta < \frac{1}{2}$ be a constant to be defined later. For $i < j \leq n$ or $n < i < j$, $p_{i,j} = 1$, ensuring that once the elements $1, 2, \ldots, n$ get in order, they stay in order (and similarly for the elements $n + 1, n + 2, \ldots, 2n$). The $p_{i,j}$ values for $i \leq n < j$ are defined as follows (see Figure 5a):

$$p_{i,j} = \begin{cases} 1 - \delta & \text{if } i - j + 2n + 1 \geq n + M; \\ \frac{1}{2} + \epsilon & \text{otherwise.} \end{cases}$$

Since the smallest (largest) n elements of the biased permutation never change order once they get put into increasing order, permutations with these elements out of order have zero stationary probability. Hence we can represent the smallest n numbers as ones and the largest n numbers as negatives ones, assuming that within each class the elements are in increasing order. Given a permutation σ, let $f(\sigma)$ be the sequence of 1's and -1's such that $f(\sigma)_i = 1$ if $i \leq n$ and -1 otherwise. Then if σ is such that elements $1, 2, \ldots, n$ and elements $n + 1, n + 2, \ldots, 2n$ are each in order, $f(\sigma)$ maps σ uniquely to a staircase walk. For example, the permutation $\sigma = (5, 1, 7, 8, 4, 3, 6, 2)$ maps to $f(\sigma) = (-1, 1, -1, -1, 1, 1, -1)$. The probability that an adjacent 1 and -1 swap in \mathcal{M}_{nn} then depends on how many 1's and -1's occur before that point in the permutation. Specifically, if element i is -1 and element $i + 1$ is 1 then we swap them with probability $\frac{1}{2} + \epsilon$ if the number of 1's occurring before position i plus the number of -1's occurring after $i + 1$ is less than $n + M - 1$. Otherwise, they swap with probability $1 - \delta$. Equivalently, the probability of adding a unit square at position $v = (x, y)$, which is called the bias at $v = (x, y)$, is $\frac{1}{2} + \epsilon$ if $x + y \leq n + M$, and $1 - \delta$ otherwise; see Figure 5a. We will show that in this case, the Markov chain is slow. The idea is that in the stationary distribution, there is a good chance that the positive and negative ones will be well-mixed, since this is a high entropy situation. However, the identity permutation also has high weight, and the parameters are chosen so that the entropy of the well-mixed permutations balances with the energy of the maximum (identity) permutation, and that to get between them is not very likely (low entropy and low energy).

We identify sets S_1, S_2, S_3 such that $\pi(S_2)$ is exponentially smaller than both $\pi(S_1)$ and $\pi(S_3)$, but to get between S_1 and S_3, \mathcal{M}_{nn} and \mathcal{M}_T must pass through S_2, the cut. Then we use the conductance to prove \mathcal{M}_{nn} and \mathcal{M}_T are slowly mixing. For an ergodic Markov chain with stationary distribution π, the conductance is

$$\Phi = \min_{S \subseteq \mathcal{S}} \sum_{\pi(S) \leq 1/2} \pi(s_1)P(s_1, s_2)/\pi(S),$$

and we will show that the bad cut (S_1, S_2, S_3) defined in Section 6 implies that Φ is exponentially small. The following theorem relates the conductance and mixing time (see 11).

Theorem 6.1. For any Markov chain with conductance Φ, $\tau \geq (4\Phi)^{-1} - \frac{1}{2}$.

We are now ready to prove the main theorem from this section.

Theorem 6.2. There exists a set P for which \mathcal{M}_{nn} has mixing time $\tau(\epsilon) \geq e^{n/24}/4 - \frac{1}{2}$.

Proof. For a staircase walk σ consisting of a sequence of steps $\sigma_i \in \{\pm 1\}$, define the height of σ_i as $\sum_{j \leq i} \sigma_j$, and let $\max(\sigma)$ be the maximum height of σ_i over all $1 \leq i \leq 2n$. Let S_1 be the set of configurations σ such that $\max(\sigma) < n + M$, S_2 the set of configurations such that $\max(\sigma) = n + M$, and S_3 the set of configurations such that $\max(\sigma) > n + M$. That is, S_1 is the set of configurations...
that never reach the dark blue diagonal in Figure 5b, S_2 is the set whose maximum peak is on
the dark blue line, and S_3 is the set which crosses that line and contains squares in the light blue
triangle. Clearly to move from S_1 to S_3, the Markov chain must go through S_2.

Define $\gamma = (1/2 + \epsilon)/(1/2 - \epsilon)$, which is the ratio of two configurations that differ by swapping a
$(1, -1)$ pair with probability $1/2 + \epsilon$. By the definition of ϵ, we have $\gamma = 1 + 1/4n$. Let $\xi = (1-\delta)/\delta$, which
is the ratio of two configurations that differ by swapping a $(1, -1)$ pair with probability $1-\delta$. Finally,
let $b(\sigma)$ be the number of tiles below the diagonal M in σ and $a(\sigma)$ be the number of tiles above the
diagonal M in σ. Then by detailed balance, $\pi(S_1) = Z^{-1} \sum_{\sigma \in S_1} \gamma^{a(\sigma)}$, $\pi(S_2) = Z^{-1} \sum_{\sigma \in S_2} \gamma^{a(\sigma)}$, and
$\pi(S_3) = Z^{-1} \sum_{\sigma \in S_3} \gamma^{b(\sigma)} \xi^{a(\sigma)}$, where Z is a normalizing constant. We will show that there
exists a constant $1/n < \delta < 1/2$ such that $\pi(S_2)$ is exponentially smaller than both $\pi(S_1)$ and $\pi(S_3)$,
which will have equal weight.

First we show that $\pi(S_2)$ is exponentially smaller than $\pi(S_1)$ for all values of δ. Since there are
at most $n^2 - (n - M)^2/2 = n^2 - n/2$ tiles with weight γ in any $\sigma \in S_2$, we have

$$\pi(S_2) = Z^{-1} \sum_{\sigma \in S_2} \gamma^{a(\sigma)} \leq Z^{-1} \gamma^{n^2-n/2} |S_2| \leq Z^{-1} e^{|S_2|/4-1/8},$$

since $\gamma^{n^2-n/2} = (1 + 1/4n)^n \leq e^{n/4-1/8}$.

Next we will bound $|S_2 \cup S_3|$, which in turn provides an upper bound on $|S_2|$. The unbiased
Markov chain is equivalent to a simple random walk $W_{2n} = X_1 + X_2 + \cdots + X_{2n} = 0$, where
$X_i \in \{+1, -1\}$ and where $+1$ represents a step to the right and a -1 represents a step down. We
call this random walk tethered since it is required to end at 0 after $2n$ steps. Compare walk W_{2n}
with the untethered simple random walk $W_{2n}' = X_1' + X_2' + \cdots + X_{2n}'$.

$$P \left(\max_{1 \leq t \leq 2n} W_t \geq M \right) = P \left(\max_{1 \leq t \leq 2n} W_t' \geq M \mid W_{2n}' = 0 \right)$$

$$= \frac{P(\max_{1 \leq t \leq 2n} W_t' \geq M)}{P(W_{2n}' = 0)}$$

$$= \frac{2^{2n}}{(2n)^n} P \left(\max_{1 \leq t \leq 2n} W_t' \geq M \right)$$

$$\approx \sqrt{\pi n} \ P \left(\max_{1 \leq t \leq 2n} W_t' \geq M \right).$$

Since the $\{X_i'\}$ are independent, we can use Chernoff bounds to see that

$$P \left(\max_{1 \leq t \leq 2n} W_t' \geq M \right) \leq 2n P(W_{2n}' \geq M) \leq 2ne^{-M^2/2n}.$$
Notice that $M^2/(2n) = (n-\sqrt{n})^2/(2n) = (\sqrt{n} - 1)^2/2 \geq n/3$ for $n \geq 4$. Together these show that $P(\max_{1 \leq t \leq 2n} W_t \geq M) \leq \sqrt{\pi n^3/2} e^{-n/3}$. In particular,

$$|S_2 \cup S_3| \leq \left(\frac{2n}{n}\right) \sqrt{\pi n^3/2} e^{-n/3}.$$

Therefore we have

$$\frac{\pi(S_2)}{\pi(S_1)} \leq \frac{1}{Z} e^{n/4-1/8} |S_2 \cup S_3| \leq e^{n/4-1/8} \left(\frac{2n}{n} - |S_2 \cup S_3|\right) \leq e^{n/4-1/8} \left(\frac{2n}{n} - \left(\frac{2n}{n} \sqrt{\pi n^3/2} e^{-n/3}\right) - 1\right) \leq e^{n/4-1/8} \sqrt{\pi n^3/2} e^{-n/3} < e^{-n/24},$$

for large enough n. Therefore, $\pi(S_2)$ is exponentially smaller than $\pi(S_1)$ for every value of δ.

Our goal is to show that there exists a value of δ for which $\pi(S_3) = \pi(S_1)$, which will imply that $\pi(S_2)$ is also exponentially smaller than $\pi(S_3)$, and hence the set S_2 forms a bad cut, regardless of which state the Markov chain begins in. To find this value of δ, we will rely on the continuity of the function $f(\xi) = Z \pi(S_3) - Z \pi(S_1)$ with respect to $\xi = (1-\delta)/\delta$. Notice that $Z \pi(S_1)$ is constant with respect to ξ and $Z \pi(S_3) = \sum_{\sigma \in S_3} \gamma^b(\sigma) \xi^a(\sigma)$ is just a polynomial in ξ. Therefore $Z \pi(S_3)$ is continuous in ξ and hence $f(\xi)$ is also continuous with respect to ξ. Moreover, when $\xi = \gamma$, clearly $Z \pi(S_3) < Z \pi(S_1)$, so $f(\gamma) < 0$. We will show that $f(4e^2) > 0$, and so by continuity we will conclude that there exists a value of ξ satisfying $\gamma < \xi < 4e^2$ for which $f(\xi) = 0$. $Z \pi(S_3) = Z \pi(S_1)$. Clearly this implies that for this choice of ξ, $\pi(S_3) = \pi(S_1)$, as desired. To obtain the corresponding value of δ, we notice that $\delta = 1/(\xi + 1)$. In particular, δ is a constant satisfying $\frac{1}{65} < \delta < \frac{1}{2}$.

Thus it remains to show that $f(4e^2) > 0$. First we notice that since the maximal tiling is in S_3, $\pi(S_3) \geq Z^{-1} \gamma^{n^2 - \frac{(n-M)^2}{2}} \xi^{-\frac{(n-M)^2}{2}}$. Also,

$$\pi(S_1) = Z^{-1} \sum_{\sigma \in S_1} \gamma^a(\sigma) < Z^{-1} \left(\frac{2n}{n}\right) \gamma^{n^2 - \frac{(n-M)^2}{2}}.$$

Therefore

$$\pi(S_1)/\pi(S_3) \leq \frac{\left(\frac{2n}{n}\right)}{\xi^{-\frac{(n-M)^2}{2}}} \leq (2e)^n \xi^{-n/2} = 1$$

since $\xi = 4e^2$. Hence $f(4e^2) = Z \pi(S_3) - Z \pi(S_1) > Z \pi(S_3) - Z \pi(S_3) = 0$, as desired.

Thus, the conductance satisfies

$$\Phi \leq \frac{1}{\pi(S_1)} \sum_{x \in S_1} \pi(x) \sum_{y \in S_2} P(x,y) \leq \frac{1}{\pi(S_1)} \sum_{x \in S_1} \pi(x) \pi(S_2) \leq e^{-n/24}.$$

Hence, by Theorem 6.1, the mixing time satisfies

$$\tau \geq (4e^{-n/24})^{-1} - 1/2 \geq e^{n/24}/4 - 1/2.$$
In fact, this proof can be extended to the more general Markov chain where we can swap any 1 with any 0, as long as we maintain the correct stationary distribution. This is easy to see, because any move that swaps a single 1 with a single 0 can only change the maximum height by at most 2 (see Figure 6). If we expand S_2 to include all configurations with maximum height $n + M$ or $n + M + 1$, $\pi(S_2)$ is still exponentially smaller than $\pi(S_1)$ and $\pi(S_3)$. Hence the Markov chain over permutations that can make arbitrary transpositions can still take exponential time to converge.

![Figure 6: A move that swaps an arbitrary (1,0) pair.](image)

7 Analyzing a Product of Markov chains

For each of our positive results, we showed that the Markov chain in question can be decomposed into M independent Markov chains. Since each Markov chain M_i operates independently, the overall mixing time will be roughly M times the mixing time of each piece, slowed down by the inverse probability of selecting that process. Similar results have been proved before (e.g., see [2, 3]) in other settings. We include the proof for completeness.

Theorem 7.1. Suppose the Markov chain M is a product of M independent Markov chains M_1, M_2, \ldots, M_M, where M updates M_i with probability p_i, where $\sum_i p_i = 1$. If $\tau_i(\epsilon)$ is the mixing time for M_i and $\tau_i(\epsilon) \geq 4 \ln \epsilon$ for each i, then

$$\tau(\epsilon) \leq \max_{i=1,2,\ldots,M} \frac{2}{p_i} \tau_i\left(\frac{\epsilon}{2M}\right).$$

Proof. Suppose the Markov chain M has transition matrix P, and each M_i has transition matrix P_i and state space Ω_i. Let $B_i = p_i P_i + (1 - p_i) I$, where I is the identity matrix of the same size as P_i, be the transition matrix of M_i, slowed down by the probability p_i of selecting M_i. First we show that the total variation distance satisfies

$$1 + 2d_{tv}(P^t, \pi) \leq \prod_i (1 + 2d_{tv}(B_i^t, \pi_i)).$$

To show this, notice that for $x = (x_1, x_2, \ldots, x_M), y = (y_1, y_2, \ldots, y_M) \in \Omega$, $P^t(x, y) = \prod_i B_i^t(x_i, y_i)$. Let $\epsilon_i(x_i, y_i) = B_i^t(x_i, y_i) - \pi_i(y_i)$ and for any $x_i \in \Omega_i$,

$$\epsilon_i(x_i) = \sum_{y_i \in \Omega_i} |\epsilon_i(x_i, y_i)| \leq 2d_{tv}(B_i^t, \pi_i).$$

Then,
\[d_{tv}(P^t, \pi) = \max_{x \in \Omega} \frac{1}{2} \sum_{y \in \Omega} |P^t(x, y) - \pi(y)| \]

\[= \max_{x \in \Omega} \frac{1}{2} \sum_{y \in \Omega} \prod_i B_i^t(x_i, y_i) - \prod_i \pi_i(y_i) \]

\[= \max_{x \in \Omega} \frac{1}{2} \sum_{y \in \Omega} \prod_i (B_i^t(x_i, y_i) - \pi_i(y_i) + \pi_i(y_i)) - \prod_i \pi_i(y_i) \]

\[= \max_{x \in \Omega} \frac{1}{2} \sum_{y \in \Omega} \prod_i (\epsilon_i(x_i, y_i) + \pi_i(y_i)) - \prod_i \pi_i(y_i) \]

\[\leq \max_{x \in \Omega} \frac{1}{2} \sum_{y \in \Omega} \sum_{S \subseteq [M], S \neq \emptyset} \prod_{i \in S} \epsilon_i(x_i, y_i) \prod_{i \notin S} \pi_i(y_i) \]

\[= \max_{x \in \Omega} \frac{1}{2} \sum_{S \subseteq [M], S \neq \emptyset} \prod_{i \in S} \sum_{y_i \in \Omega_i} |\epsilon_i(x_i, y_i)| \prod_{i \notin S} \pi_i(y_i) \]

\[= \max_{x \in \Omega} \frac{1}{2} \prod_{i \in S} |1 + \epsilon_i(x_i)| - 1/2 \leq \frac{1}{2} \prod_i (1 + 2d_{tv}(B_i^t, \pi_i)) - 1/2, \]

as desired. Thus in order to get \(d_{tv}(P^t, \pi) \leq \epsilon \), it suffices to show \(d_{tv}(B_i^t, \pi_i) \leq \epsilon/(2M) \) for each \(i \), because then

\[1 + 2d_{tv}(P^t, \pi) \leq \prod_i (1 + 2d_{tv}(B_i^t, \pi_i)) \]

\[\leq \prod_i (1 + 2\epsilon/(2M)) \]

\[\leq e^\epsilon \leq 1 + 2\epsilon. \]

Hence it suffices to show \(d_{tv}(B_i^t, \pi_i) \leq \epsilon/(2M) \) for each \(i \).
Since $B_i^t = (p_iP_i + (1 - p_i)I)^t = \sum_{j=0}^{t} \binom{t}{j} p_i^j (1 - p_i)^{t-j} P_i^j I$, we have

\[
d_{tv}(B_i^t, \pi_i) = \max_{x_i \in \Omega_i} \frac{1}{2} \sum_{y_i \in \Omega_i} |B_i^t(x_i, y_i) - \pi_i(y_i)|
\]

\[
= \max_{x_i \in \Omega_i} \frac{1}{2} \sum_{y_i \in \Omega_i} \sum_{j=0}^{t} \binom{t}{j} p_i^j (1 - p_i)^{t-j} P_i^j(x_i, y_i) - \pi_i(y_i)\]

\[
\leq \max_{x_i \in \Omega_i} \frac{1}{2} \sum_{y_i \in \Omega_i} \sum_{j=0}^{t} \binom{t}{j} p_i^j (1 - p_i)^{t-j} \max_{x_i \in \Omega_i} \frac{1}{2} \sum_{y_i \in \Omega_i} |P_i^j(x_i, y_i) - \pi_i(y_i)|\]

\[
= \sum_{j=0}^{t} \binom{t}{j} p_i^j (1 - p_i)^{t-j} \max_{x_i \in \Omega_i} \frac{1}{2} \sum_{y_i \in \Omega_i} |P_i^j(x_i, y_i) - \pi_i(y_i)|\]

\[
= \sum_{j=0}^{t} \binom{t}{j} p_i^j (1 - p_i)^{t-j} d_{tv}(P_i^j, \pi_i).\]

Let $t_i = \pi_i(\epsilon/(4M))$. Now, for $j \geq t_i = \pi_i(\epsilon/(4M))$, we have that $d_{tv}(P_i^j, \pi_i) < \epsilon/(4M)$. For all j, we have $d_{tv}(P_i^j, \pi_i) \leq 2$, so if X is a binomial random variable with parameters t and p_i, we have

\[
d_{tv}(B_i^t, \pi_i) \leq \sum_{j=0}^{t} \binom{t}{j} p_i^j (1 - p_i)^{t-j} d_{tv}(P_i^j, \pi_i)
\]

\[
= \sum_{j=0}^{t_i-1} \binom{t}{j} p_i^j (1 - p_i)^{t-j} d_{tv}(P_i^j, \pi_i) + \sum_{j=t_i}^{t} \binom{t}{j} p_i^j (1 - p_i)^{t-j} d_{tv}(P_i^j, \pi_i)
\]

\[
< 2 \sum_{j=0}^{t_i-1} \binom{t}{j} p_i^j (1 - p_i)^{t-j} + \sum_{j=t_i}^{t} \binom{t}{j} p_i^j (1 - p_i)^{t-j} \epsilon/(2M)
\]

\[
= 2P(X < t_i) + \epsilon/(2M).
\]

By Chernoff bounds, $P(X < (1 - \delta)tp_i) \leq e^{-tp_i\delta^2/2}$. Setting $\delta = 1 - t_i/(tp_i)$, then for all $t > 2t_i/p_i$, $\delta^2 \geq 1/4$ and we have

\[
P(X < t_i) \leq e^{-tp_i\delta^2/2} \leq e^{-tp_i/8} \leq \epsilon/(8M),
\]

as long as $t \geq 8 \ln(\epsilon/(8M))/p_i$. Therefore for $t \geq \max\{8 \ln(\epsilon/(8M))/p_i, 2t_i/p_i\}$,

\[
d_{tv}(B_i^t, \pi_i) = 2P(X < t_i) + \epsilon/(4M)
\]

\[
\leq 2\epsilon/(8M) + \epsilon/(4M) = \epsilon/(2M).
\]

Hence by time t the total variation distance satisfies $d_{tv}(P^t, \pi) \leq \epsilon$. \hfill \Box

Acknowledgments. The authors are grateful to Jim Fill for introducing them to this problem and for several useful conversations about the problem.
References

[1] David Aldous. Random walk on finite groups and rapidly mixing markov chains. In *Séminaire de Probabilités XVII*, pages 243–297, 1983.

[2] Itai Benjamini, Noam Berger, Christopher Hoffman, and Elchanan Mossel. Mixing times of the biased card shuffling and the asymmetric exclusion process. *Trans. Amer. Math. Soc*, 2005.

[3] N. Bhatnagar and D. Randall. Torpid mixing of simulated tempering on the potts model. In *Proceedings of the 15th ACM/SIAM Symposium on Discrete Algorithms*, SODA ’04, pages 478–487, 2004.

[4] Russ Bubley and Martin Dyer. Faster random generation of linear extensions. In *Proceedings of the ninth annual ACM-SIAM symposium on Discrete algorithms*, SODA ’98, 1998.

[5] P. Diaconis and M. Shahshahani. Generating a random permutation with random transpositions. *Z. Wahrscheinlichkeitstheorie Verw. Gebiete*, 57:159–179, 1981.

[6] Persi Diaconis and Laurent Saloff-Coste. Comparison techniques for random walks on finite groups. *The Annals of Applied Probability*, 21:2131–2156, 1993.

[7] Persi Diaconis and Laurent Saloff-Coste. Comparison theorems for reversible markov chains. *The Annals of Applied Probability*, 3:696–730, 1993.

[8] Jim Fill. Background on the gap problem. *Unpublished manuscript*, 2003.

[9] Jim Fill. An interesting spectral gap problem. *Unpublished manuscript*, 2003.

[10] Sam Greenberg, Amanda Pascoe, and Dana Randall. Sampling biased lattice configurations using exponential metrics. In *Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms*, SODA ’09, 2009.

[11] Mark Jerrum and Alistair Sinclair. Approximate counting, uniform generation and rapidly mixing markov chains. *Information and Computation*, 82:93–133, 1989.

[12] Donald E. Knuth. *The Art of Computer Programming*, volume 3: Sorting and Searching. Addison Wesley, 1973.

[13] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. *Markov chains and mixing times*. American Mathematical Society, 2006.

[14] M. Luby, D. Randall, and A.J. Sinclair. Markov chains for planar lattice structures. *SIAM Journal on Computing*, 31:167–192, 2001.

[15] D. Randall and A.P. Streib. Slow mixing of monotonic surfaces with fluctuating bias. *In preparation*.

[16] Dana Randall and Prasad Tetali. Analyzing glauber dynamics by comparison of Markov chains. *Journal of Mathematical Physics*, 41:1598–1615, 2000.

[17] Silvio Turrini. Optimization in permutation spaces. *Western Research Laboratory Research Report*, 1996.

[18] David Wilson. Mixing times of lozenge tiling and card shuffling markov chains. *The Annals of Applied Probability*, 1:274–325, 2004.