Agrobiodiversity and its Conservation in Nepal

Bal Krishna Joshi¹, Neena Amaty Gorkhali², Neeta Pradhan³, Krishna Hari Ghimire⁴, Tek Prasad Gotame⁴, Prenil KC⁵, Ram Prasad Mainali⁶, Ajaya Karkee⁷ and Ram Babu Paneru⁸

¹National Agriculture Genetic Resources Center (National Genebank), NARC, Khumaltar, Nepal; @: joshibalak@yahoo.com, ORCID: http://orcid.org/0000-0002-7848-5824; KG: krishnahari.ghimire@yahoo.com; RPM: mainalism.rp@gmail.com; AK: ajayakarkee@gmail.com;
²Animal Breeding Division, NARC, Khumaltar; neenagorkhali@hotmail.com
³Fisheries Research Division, NARC, Godawari; pradhannita@yahoo.com
⁴Horticulture Research Division, NARC, Khumaltar; gotame@gmail.com
⁵Pasture and Fodder Research Division, NARC, Khumaltar; prenilkc9@gmail.com
⁶Entomology Division, NARC, Khumaltar; rbpuneru10@gmail.com

Received 25 July 2019, Revised 07 Nov 2019, Accepted 15 Jan 2020, Published 17 March 2020

Scientific Editors: Madan R. Bhatta, Ppushpati Chaudhari, Hari K. Upreti, Krishna Timsina
Copyright © 2020 NARC. Permits unrestricted use, distribution and reproduction in any medium provided the original work is properly cited. The authors declare that there is no conflict of interest.

ABSTRACT

Nepal is a part of the world’s biodiversity hotspot and ranks the 49th in the world for biodiversity. Agrobiodiversity and its conservation status were studied through literature review, field survey, key informant survey and focus group discussion. Results of field implementation of some good practices and action research were also documented. Among 24,300 total species in the country, 28% are agricultural genetic resources (AGRs), termed as agrobiodiversity. Agrobiodiversity has six components (crops, forages, livestock, aquatic, insects and microorganisms) and four sub-components (domesticated, semi-domesticated, wild relatives and wild edible) in Nepal. Agrobiodiversity on each component exists at agroeocosystem, species, variety/breed/biotype/race/strain, genotype and allele levels, within an altitude range from 60 to 5,000 masl. There are 12 agroeocosystems supporting 1,026 species under crop component, 510 under forage, 35 under livestock, 250 under the aquatic animal, 17 under aquatic plant, 3,500 under insect and 800 under microorganism. An estimated loss of agrobiodiversity is 40%, however, farmers have reported up to 100% loss of AGRs in some areas for a particular species. Conservation of agrobiodiversity has been initiated since 1986. Four strategies namely ex-situ, on-farm, in-situ and breeding have been adopted for conservation and sustainable utilization of AGRs. Eighty good practices including process, methods and actions for managing agrobiodiversity have been in practice and these practices come under five conservation components (sensitization, method and approach, accelerator, value and enabling environment). Within the country, 18,765 accessions of AGRs have been conserved in different kinds of banks. A total of 24,683 accessions of Nepalese crops, forages and microbes have been conserved in different international and foreign genebanks. Some collections are conserved as safety duplication and safety backup in different CGIARs’ banks and World Seed Vault, Korea. Two global databases (GENESYS and EURISCO) have maintained 19,200 Nepalese accessions. Geographical Information System, Climate Analog Tool and biotechnological tools have been applied for better managing AGRs. Many stakeholders need to further concentrate on the conservation and utilization of AGRs. Global marketing of some native AGRs is necessary for sustaining agriculture and attracting young generations as well as conserving them through use.

Keywords: Agrobiodiversity, aquatic resource, conservation, crop, forage, good practices, insect, livestock, microorganism
INTRODUCTION

Total estimated species of living being on earth is 8.7 million, of which 1.3 million have been identified (Sweetlove 2011, Zimmer 2011). Nepal is part of world’s biodiversity hotspot (https://www.cbd.int/countries/profile/?country=NP). She ranks the 49th position in the world on biodiversity with 0.17 BioD index, the 31st and the 10th in flowering plant diversity in the world and Asia respectively. Brazil is the first country with 0.85 BioD index (https://news.mongabay.com/2016/05/top-10-biodiverse-countries/). On the basis of per unit area, Nepal ranks the 27th position with 1.16 BioD index per land area and Brunei comes 1st with 18.68 BioD index per land area. The country occupies 0.03% of the global area but harbors over 3% and 1% of the world’s known flora and fauna, respectively. There are 118 types of ecosystems with 75 vegetation types, 35 forest types and 5 rangeland ecosystems (MoFSC 2014).

Nepal is a mountainous agricultural country where 65% populations are involved in agriculture, with only 21% (3,091,000 ha) cultivated land. A large number of landraces exist in the country, but up to now, only 37 local landraces of 19 crops have been utilized in breeding to develop 41 crop varieties (Joshi 2017a). In 2019 only, Nepal has imported 5,741 genotypes (accessions) of 31 crops for utilization in breeding for the CGIAR system (Joshi et al 2017a). Crop cultivation ranges from 60 m (in Kechana Kalan, Jhapa, where rice is grown) to 4,700 m (in Khumbu, Solukhumbu, where potato is grown) altitude (Joshi et al 2017a). However, just three crops, rice, wheat and maize cover 83% of the total cultivated land of the country (Joshi et al 2019), indicating vulnerable to loss of crop diversity and climate change.

Agrobiodiversity is the most important subset of biodiversity. It is further divided into six components (crops, forages, livestock, aquatic, insects and microorganisms) and four sub-components (domesticated, semi-domesticated, wild relatives and wild edible) in Nepal. Crop component includes agronomic (cereals, pseudo-cereals, millets, pulses, oilseeds, sugar and starch, and fiber), horticultural (vegetable, spices, beverage, fruit, ornamental and domesticated medicinal) crops. Forage species cover grasses, trees and shrubs growing either in farming land or forest areas. Wild edible forages are found in aquatic areas. Insect and microbe components cover only beneficial and economic species. Insect genetic resources
are moths, butterflies, and other insects, and also included spiders and worms, whereas microbial genetic resources include fungi, lichens, algae, bacteria and others. Beneficial insects and microorganisms mean those that have an indirect positive value, and economic organisms are those that have direct value to human mankind. Wild edible insect and microorganism cover both beneficial and food values organisms.

Conservation has got priority after the CBD 1992 in the world. Total genebank in the world is now 1,750 conserving 7.5 million accessions, most of which are orthodox crops and forages (FAO 2010). Altogether 5,515,066 accessions of different crop and forage species are available through the multilateral system (MLS) of the International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA) (https://mls.planttreaty.org/itt/index.php?r=stats/pubStats). In Nepal, protected areas and National Genebank are the major milestones for the conservation of biodiversity and agrobiodiversity respectively. Twenty protected areas in Nepal cover 23% (34,193 km²) areas of the country (MoFSC 2014). Diversity in crop component is also supported by informal and non-formal seed supply systems, which accounts for about 85 to 100% in Nepal depending on crop species. Enabling the environment has been created through becoming members of different international agreements and developing national legal documents. Nepal became a member of the Convention on Biological Diversity (CBD) in 1992 and of ITPGRFA in 2009. Nepal is also a party of The Cartagena Protocol on Bio-safety-2000 since 2001, of Nagoya Protocol-2014 since 2019 and have Agrobiodiversity Policy (2007) revised 2014, Seed Act 1988 (Amend 2008), National Seed Vision 2013-25, National Seed Policy 1999, NBSAP 2014-2020, IPR Policy 2017 and IMISAP 2018-2025 for conservation of biodiversity including agrobiodiversity.

This paper has analyzed the status and initiatives for the management of agrobiodiversity in Nepal, with the objective of making conservation options, process, methods and good practices available, to develop the baseline and to make common understanding on agrobiodiversity and conservation.

METHODOLOGY

This paper is based on literature review, field survey, key informant survey (KIS) and focus group discussion. Results of field implementation of some good practices, processes, methods and action research were compiled. Agrobiodiversity conservation has been initiated since 1986 in Nepal. A number of publications are available since then. This study reviewed those publications along with relevant websites and electronic literature. Information was collected by visiting more than 50 different kinds of fields, eg farmer fields, protected areas, research stations, farming communities, etc. KIS was conducted with more than 50 experts, 25 focus group discussions (FGDs) were held and 100 farmers were consulted for information collection and validations. Interviews were either face to face interaction, email or telephone conversations. NAGRC, LI-BIRD, MoALD and Biodiversity International have jointly implemented more than 25 agrobiodiversity conservation (ABC) projects across the country since 1997. Different methods and approaches have been adopted and these activities were directly implemented in the fields; labs and research stations. Outputs of these activities implemented in these sites were analyzed and summarized. A checklist on different perspectives of agrobiodiversity was used to collect information from 2015 to 2019. Species were grouped under different agrobiodiversity components considering their principal use.

RESULTS AND DISCUSSION

Agrobiodiversity in Nepal

A total of 24,300 biological species are reported in Nepal (Figure 1). Among them, 28% (ie 6,618 species) are agricultural species excluding 27 exotic ornamental fish species. The species richness of agricultural fauna (3,785 species) is higher than agricultural flora (2,833 species). The number of agricultural species is the highest in insect component (3,500), followed by crop component (1,026 species) and microorganism component (800 species). Species richness of livestock component is the least among six components of agrobiodiversity. The numbers of each component and sub-component of agrobiodiversity are given in Table 1 along with the estimated loss percentage. The number of wild edible species is higher in all components except forage and livestock components. Due to the high
level of eco-geographic and climatic variation in Nepal, a total of 1,506 species of agricultural crop and forage genetic resources have been reported (Upadhyay and Joshi 2003, MoAD 2017, Joshi et al 2017). Out of these, 93 introduced species, 670 wild edible plants, 224 crop wild relatives, 35 semi-domesticated and 484 cultivated native species exist. Among 484 native cultivated species, 64 are agronomic, 145 are horticultural and 275 are forages species.

Table 1. Number of species and estimated loss percentage (in parenthesis) of agricultural genetic resources in Nepal

Agrobiodiversity Component	A. Domesticated [exotic]	B. Semi-domesticated	C. Wild relatives	D. Wild edible	Total (Average)
1. Crop genetic resources	252 [ex.43] (60)	30 (45)	214 (45)	500 (50)	996 (50)
2. Forage genetic resources	325 [ex.50] (40)	5 (35)	170 (45)	510 (40)	
3. Livestock genetic resources	17 [ex.4] (45)	3 (35)	11 (50)	35 (40)	
4. Aquatic genetic resources (animal+plant)	28 [ex.16] (40) + 2 [ex.0] (40)	5 (30) + 2 (30)	217 (35) + 13 (35)	250 (30) + 17 (35)	
5. Insect genetic resources	18 [ex.11] (15)	5 (10)	3467* (45)	3500 (20)	
6. Microbial genetic resources	24 [ex.8] (15)	10 (10)	760* (35)	800 (20)	
Total	658 [ex.124] (36)	60 (28)	244 (30)	5146 (45)	6108 (35)

Cultivated ornamental plant species include 100 exotic and 200 natives (Anil Acharya, Personal Comm. 2019). Among 700 medicinal plant species, 120 native species are under cultivation and 60 species are exotic (Sharma 2007). Existing crop genotypes are landraces, modern, released, registered, de-notified, hybrid, inbred, open pollinated variety (OPV), exotic, native, bulk, mixture, partial hybrid, breeding line, mutant, organ transplant organism (OTO), multilane, near isogenic line (NIL), double haploid (DH), synthetic, clonal, and genetically modified organism (GMO). However, in other agrobiodiversity components, there is very low intra-specific diversity (different genotypes). Forage species and rangeland are found from 60 m to 5000 m (Abington 1992). There are total of 510 forage species including 50 exotic.
Livestock is reared at an altitude range of 60 m to 5,000 m (Abington 1992). Among the 35 agricultural animal species, 17 are domesticated which consist of 13 native and four exotic livestock species. Four semi-domesticated animals are Dhorel sheep, wild yak, pigeon (rock dove, parewa) and quail bird (battaa charaa). Four wild relatives of livestock species are wild boar (Badel), Arna (buffalo), red jungle fowl (chicken) and gaur. There are about 11 wild edible animal species (though they are not killed for this purpose from the forest). They are Kaalij Pheasant, Wild Rabbit (Hispid hare), Mountain goat (Jharaal), Deer (harin), Himalayan Thar (Wild Goat, Hemitragus tahr), Bharal or blue sheep, Mountain quail or partridge (Titraa), Dove (Dhukur), Bat (chamero), Dumsi and Swan (rraajhaas). Three common pet animals are dog, cat and parrot.

Aquatic agricultural genetic resources (aquatic agrobiodiversity) include aquatic plants and animal species. There are 17 aquatic agricultural plant species and 250 aquatic agricultural animal species (MoFSC 2014, Gurung 2017, Joshi et al 2019, Ajaya Chaudhary, Personal Comm. 2019). Fish species are reported from wide range of altitudes (i.e. 60 to 4000 m) (Shrestha 1999, http://www.fao.org/3/x2614e/x2614e03.htm). Among the total 232 fin fish, 16 are exotic and 216 indigenous including 15 ornamental fish species (Gurung 2017, Husen 2019). All fish species are edible and 28 species (16 exotic and 12 native) are under cultivation. Fish species richness is assessed from many areas but diversity below species levels, mainly at strain level has not been studied.

Insect genetic resources include beneficial insects that have been used in biological control, pollination or industrial purposes such as predators and parasitoids, and economic insect eg honeybees, stingless bees and lac insects. The number of native insect species is 10004, of which 3500 are estimated as beneficial and economic insect species (Thapa 1997, MoFSC 2014). About 18 species are domesticated including eleven exotic species. Here domestication represents at least mass rearing of an insect for humankind. Exotic species are either imported by a government body (7 species) or unintentionally arrived in Nepal after their successful release in India (4 species). The widely domesticated indigenous insect species is Asian honeybee (Apis cerana), however European honeybee (A. mellifera) is widely domesticated exotic species. Other exotic species include five parasitoids, one predator, one species of silk moth, and four insect species for biological control of the weed. Most of the insect species are imported from a different origin other than Nepal as a means of classical biological control insect pests or weeds. Insect diversity at species level has been studied. However, diversity at strain and genotype levels needs to be assessed.

Among the 3,754 microbial species, 800 are reported to be beneficial and economic species. There are very limited studies on the diversity of microorganisms at species and strain levels. Twenty four species including 16 mushroom species are under cultivation. Eight cultivated microbial species are reported to be exotic. Diversity richness has been assessed in mushroom species. There are 136 wild edible mushrooms, 73 medicinal mushroom and 11 mushroom species are found both in wild and domestic land (Raut 2014, HC Bastola, Personal comm. 2019). Nepal is also a suitable living place for many beneficial micro-organisms that can kill insect pests by causing diseases on them called insect pathogens. Native Nucleopolyhedrosis viruses, granulosis viruses, green muscardine fungus, Paecilomyces fungus, white muscardine fungus, entomopathogenic nematodes including Steinernema and Heterorhabditis and Bt have been reported from Nepal (Joshi 2016).
Diversity on crop genetic resources is higher at all five levels (agroecosystem, species, variety, genotype and allele) (Table 2). There are 12 agroecosystems, namely upland mountain agriculture, irrigated mountain agriculture, upland temperate agriculture, irrigated temperate agriculture, upland tropical agriculture, irrigated tropical agriculture, mountain wetland, temperate wetland, tropical wetland, mountain rangeland, temperate rangeland and tropical rangeland (Joshi et al 2017). All components are relatively high in species richness, however, there is low diversity at varietal/breed/strain/biotype/race, genotype and allele levels in all components except crop genetic resources. This might be because of a lack of sufficient data or research on these components.

Table 2. Relative diversity assessment on each component over five levels of agrobiodiversity

Agrobiodiversity Component	Agroecosystem diversity	Species diversity	Variety/breed/race/strain/biotype diversity	Genotype diversity	Allele diversity
1. Crop genetic resources	High	High	High	High	High
2. Forage genetic resources	High	High	Low	Low	Low
3. Livestock genetic resources	Medium	Medium	Medium	Low	Low
4. Aquatic genetic resources	High	High	Low	Low	Low
5. Insect genetic resources	High	High	Low	Low	Low
6. Microbial genetic resources	Medium	Medium	Low	Low	Low

There are many site specific landraces of crops, forages, livestock, aquatic animal and plant, insect and microorganisms (Regmi 1982, Paudel and Tiwari 1992, Upadhyay et al 1995, Smith et al 1996, Wilson 1997, Yami et al 2003, Christensen et al 2008, Niroula and Sing 2011, Gotame et al 2014, Aryal et al 2015, Wilson 2017, Subba et al 2017, Joshi et al 2017b, Joshi et al 2018, Limbu et al 2019). But there is very limited information on diversity below species levels in all components of agrobiodiversity. In some extent, diversity below the species level is measured on crops and livestock components. Some of them are listed in Annex 1. They are potential for getting geographical indication right, however, many of them are endangered and demand immediate attention for conservation and improvement.

Genetic Erosion and its Drivers

Estimated losses of each agrobiodiversity component are given in Table 1. On average, 40% of AGRs are lost in the country. The highest degree of loss is reported on crop genetic resources and the least on insect and microorganism diversity. Farmers in some areas have reported a loss of native AGRs up to 100%. FAO (1999) had reported a loss of more than 75% of global crop diversity over the 20th century. Many landraces are becoming rare and endangered (Upadhyay and Joshi 2003, Chaudhary et al 2004). The main reasons for genetic erosion are replacement by modern varieties, very limited use of local landraces in breeding, non-profit agricultural business, etc. Other drivers of change of agrobiodiversity are wide distribution of modern variety, natural and human-made disasters, epidemics of diseases and insect pests, changes in land use pattern and leaving land fallow or habitat loss, changes in occupation, war or insurgency, very old trees/orchards of which progeny has not been generated, rapid commercialization of agriculture; mono-genotyping, migration of farmers and land abandonment and over-exploitation eg loss of species caused by over-grazing or by uncontrolled harvesting of the wild genetic resources. There is a global debate on the decline of insect species over time (Møller 2019, Seibold et al 2019). The indiscriminate uses of pesticides are reported as the major cause. However, there is a lack of data at a global level too.

Conservation

The first collection and evaluation of indigenous plant materials were started in 1940 (Genebank 2016). Medium term seed house was established in 1986 and the first community seed bank was constructed in 1994 (Joshi 2017). The red listing system was developed in 2003 to prioritize the landraces for conservation (Joshi et al 2004). Since 2010, National Genebank with modern facilities has started working on the conservation of AGRs at a wider scale. Agrobiodiversity, though most important for food and nutrition security, relatively got less attention for conservation in comparison with forest genetic resources. Within AGRs, conservation is more focused on orthodox crop species.
This may be due to the availability of easy technology to conserve such crop species. Conservation good practices including process, methods and actions, and working strategies are given below.

Banking Principles

The main principle is facilitated access to all agricultural genetic resources through long term secured conservation and making maximum interaction with biotic and abiotic stresses with germplasm to accelerate the evolutionary process. Germplasm are being managed with the facility of tracing back and forward of any accession. Germplasm is for all at free of cost and forever. Anyone can deposit collections safely for a long period of time. The black box system of storage has been created for researchers and farmers to store their materials for future use. All kinds of AGRs are banked and have been accelerated for utilization through maintaining an electronic database. A common understanding is to collect, conserve and maintain as much diversity as possible in a minimum sample. The working principle is that each diversity has a value and considers diversity at agroecosystem, species, variety/breed/strain/biotype/race, genotype and allele levels.

Conservation Components and Good Practices

Conservation needs varied actions and multidisciplinary approaches. Conservation actions in Nepal can broadly be grouped into five components (Figure 2). Within each component, there are a number of good practices, process, methods and actions that support conservation and sustainable use of agrobiodiversity. First action is sensitization and understanding agrobiodiversity at all levels to all people. After understanding of agrobiodiversity, different methods and approaches can easily be implemented. Method and approach can be accelerated through the use of different other tools and techniques. The other two components are enabling environment and conservation values for secured long term conservation. In Nepal, 80 practices (process, methods, actions and good practices) are found implemented for conservation and utilization of native AGRs (Figure 3, Box 1) (Sthapit et al 2006, Joshi et al 2016a, Joshi et al 2017a, Joshi et al 2018, Joshi et al 2019). These practices are selected based on the location and types of AGRs. Among the five conservation components, only two are described below.

Figure 2. Agrobiodiversity conservation components with examples.

Conservation strategy: Four strategies have been widely used for the management of agrobiodiversity. They are ex-situ, on-farm, in-situ and breeding (Figure 3). Technical differences among these strategies are explained by Joshi and Upadhaya (2019). Breeding strategies have considered evolutionary, diversity and site-specific rather than non-evolutionary, uniformity and wide adaptation approach.
Conservation methods and approaches: About forty-four different methods for the management of all kinds of AGRs have been developed and adopted in Nepal (Figure 3). Some of them are described in other publications (Shapit et al 2006, Joshi et al 2016a, Joshi et al 2017a, Joshi and Gauchan 2017, Joshi and Updhaya 2019). The main methods are seed bank for orthodox crops and field genebank for recalcitrant and vegetatively propagated crops, aqua pond genebank for aquatic agricultural animal and plant species, livestock farm genebank for livestock. For insects, mass rearing chamber or automated room can be considered as a method of ex-situ conservation, from where users can get beneficial organisms, usually predators and parasitoids upon formal request. Like insects, pure culture has been widely used to conserve and maintain microbes. At the on-farm level, community seed bank (CSB) and community field genebank (CFGB) are the main methods, which are systems of conservation and utilization of local genetic resources, operated at local levels and run by the community. Among 144 community seed banks in Nepal, 40 are active, six are passive (dormant), 95 are transmuted (transformed) and three are collapsed (Joshi et al 2018). Through 40 CSBs and CFGBs, 2045 accessions are being conserved and they represent from one to 47 different crop species. Conservation related banks are given their names with the prefix of the location followed by the type of bank, for example, Khumal Field Genebank, Khajura Aqua Pond Genebank, Dalchowki Community Seed Bank, Khumal Livestock Farm Genebank, etc.

Some of the notable good practices are red zoning and red listing, diversity fair, germplasm rescue, product diversification, school field genebank, office garden, and temple garden, etc. One of the noteworthy good practice adopted by Entomology Division of NARC is beneficial ex-situ field gene bank for conserving Aphelinus mali (Haldeman), a parasitoid of apple wooly aphid where host insect pests are maintained in an apple orchard in order to make year-round availability of food sources for parasitoids (Mainali et al 2016). Potential conservation methods that are still not established in Nepal are pollen bank, community river, insect park, conservation village, agrobiodiversity trail, and microbial field genebank. Recently, the agro gene sanctuary was established in Khumaltar, Kathmandu. After domestication, agricultural crops never return to nature. Seeds of such crops are kept carefully in manmade houses making sure they do not get chance to interact with nature. The natural evolutionary process is arrested and selection pressure favor to develop one-directional population. Agro Gene Sanctuary is therefore established in Khumaltar to let different crops grow together in more or less natural condition and let their seeds and other parts remain in the same field. It is the field where agricultural plant genetic resources are grown together and allowed to complete their life cycle in the same place over time. Technically it is the method of conservation of cultivated crops and their wild relatives together creating the in-situ condition. Interaction among crops, wild relatives and nature with less human interference may evolve better-adopted genotypes that can be used for research, production, and study. Such a complex gene pool in a single plot may provide genetic resources for researchers and could be a site for evolutionary study. Such an evolutionary field may be the key to developing suitable genotypes in the context of climate change.

Conservation methods and approaches are seed bank, tissue bank, field genebank, community seed bank, community field genebank for crops and forages species; aqua pond genebank and restocking for aquatic agricultural animal and plant species; cryobank and livestock farm genebank for livestock; insect genebank and insect field genebank for insect species, and microbial genebank and microbial field genebank for microorganisms. There are many other such methods and approaches listed in Figure 3 and Box 1.
Figure 3. Four agrobiodiversity conservation strategies and 44 methods and approaches.

Source: Sthapit et al 2006, Genebank 2016, Joshi et al 2016a, Joshi et al 2017a, Joshi et al 2019

Box 1. Additional process, methods, actions and good practices used for conservation and sustainable utilization of AGRs

Number	Description
1	Accessioning and naming system
2	Agro-plantation
3	Agrobiodiversity rich farmers
4	Incentive and award
5	Black box and safety duplication and backup
6	Pre breeding & domestication
7	GIS + CAT
8	Restocking
9	Image bank
10	Seed and crop herbaria and agro museum
11	Red zoning and red listing
12	Germplasm rescue
13	Agro haat bazaar
14	Site specific staple crop
15	Diversity fair/ seed fair
16	Food fair & Himalayan super foods (PQTHN)
17	Local food shop
18	Diversity kit
19	Diversity rich solution
20	Enhancing ecological services
21	Global and national gene pools
22	Each household as shop
23	Participatory seed exchange
24	Product diversification
25	Value addition
26	Multi- stakeholder and disciplinary approaches
27	Agrobio education
28	Landraces catalog, ownership documentation, CBR and registration
29	Local media for community sensitization
30	On-farm agrobiodiversity measurement
31	Diversity field school
32	Simplifying the traditional tech
33	Home stay and market linkage
34	Agrobio poetry and folk song
35	Sharingshop, writeshop and virtual workshop
36	Traveling seminar

Conservation accelerator: Conservation accelerators are any practices or tools that accelerate the conservation of native AGRs. Some of them are diversity fairs, restocking, marketing, use of modern sciences, etc. Advanced tools such as geographical information system (GIS), climate analog tool (CAT) and biotechnology have been used for better management and utilization of APGRs in Nepal (Chaudhary et al 2016, Joshi et al 2017c, Mainali 2018). GIS is basically applied for collection map, gap analysis, information verification, and diversity analysis. CAT is used to identify analog sites for possible distribution of crops, introduction and repatriation of crop cultivars. NAGRC has developed DNA bank, Tissue bank and DNA fingerprint of some crop landraces (Table 3).
Conservation Status at National and International Levels
Details of the conservation status of Nepalese AGRs are given in Table 3. Within the country, a total of 18,765 accessions of AGRs have been conserved in 17 different kinds of banks (Joshi et al. 2017a, Genebank 2018). A total of 264 agricultural species (ie 4%) are conserved in different banks. The highest number of conserved species and accessions are of orthodox crops. Conservation of lower plant species, aquatic plants, insects and microorganisms are very low in number. Two tissue banks have conserved 120 accessions of three species (potato, sweet potato and large cardamom). There are 15 field genebanks across the country and 650 accessions of 30 crops are being maintained. DNA bank has maintained 550 accessions of 10 species (rice, cardamom, sugarcane, chayote, pea, garlic, broad leaf mustard, wheat, mango and maize). Thirty accessions of 9 forage species are conserved in Seed Bank. More than 50 species are conserved in different field genebank (Khumal, Bandipur, Lumle and Pakhriras Forage Field Genebank).

There are twenty five domestic animal breeds of eight species identified so far in Nepal. Nineteen accessions of eight livestock species are conserved in Khumal livestock farm genebank. Other existing livestock farm genebanks are Doti for Achhami cattle; Jumla for Baruwal and Bhyanglung sheep, and Sinhal goat; Lumle for Lime and Parkote buffalo, Sinhal goat, and Baruwal and Bhyanglung sheep; Parwanipur for Sakini, Pwankh Ulte and Ghanti Khuile chicken; Tarahara for Nagpuri and Hurrah; Pakhriras for Pakhriras black pig, and Khari goat; Nepalgunj for Tarai goat, and Lampuchhre sheep, and Bandipur for Khari goat (Genebank 2018). Semen of three livestock breeds (Lulu cattle, Achhami cattle and Khari goat) are conserved in cryo bank in Animal Breeding Division (ABD). Conservation of fish species is promoted through restocking of 13 native fish species in Kali Gandaki and five species in Pokhara valley. There are five aqua pond genebanks in Nepal. Khajura aqua pond genebank is conserving four species along with some plant species (lotus, water chestnut, water spinach). Beltari aqua pond genebank has conserved seven species. Pokhara has conserved nine species, Parwanipur aqua pond genebank has conserved six species along with some plant species (fox nut, lotus, water chestnut) and Godawari aqua pond genebank has conserved one native species.

Insect park might be very importance for conservation as well as study. However, only insect field genebank exits where parasitoids are being conserved. Water hyacinth weevil, Neochetina bruchi Hustache, Neochetina eichhorniae Warner, both unintentionally introduced species (from India) and imported species (from USA) are being conserved on the special outdoor structure/chamber in Entomology Division, NARC. Further, isolated insect pathogens are conserved as a means of pure culture. Predators and parasitoids such as Coccinella septempunctata L, Chrysoperla carnea Stephens, Trichogramma chilonis Ishii, Copidosoma koehleri Blanchard, Orgilus lepidus Muesebeck, Neochetina bruchi Hustache, Neochetina eichhorniae Warner, Zygogramma bicolorata Pallister is cultured (mass reared) successfully by Entomology Division, NARC, most of which are exotic in nature. Sixteen species of mushrooms and 8 other microbial species are conserved in microbial genebank (Genebank 2018). Twenty Nepalese accessions of microbes are stored in Japan.

The global genepool is created only of crops and forages species. Safety mechanism has been adopted only in crops and forages species through storing safety backup of 2,045 accessions of eight crops in seven different CGIAR’s banks and safety duplicate of 69 accessions of barley in World Seed Vault, Koreas. A total of 24,683 accessions of Nepalese crops, forages and microbes have been conserved in different international and foreign genebanks. Two global databases have maintained 19,200 Nepalese accessions (https://www.genesys-pgr.org/, https://eurisco.ipk-gatersleben.de/apex/f?p=103:1:::). Indigenous Nepalese fish species Tor putitora (Sahar) was reported in Pakistan and Schizothorax richardsonii (buchhe asala) was reported in Papua New Guinea and Oncorhynchus mykiss (rainbow trout) was reported in Papua New Guinea and Thailand. Two insects, Spenorala rutilans and Lilioceris impressa (F) were exported from Nepal to USA and they successfully mass-reared these species to control skunk vine (Paderia Foetida L.) and air potato (Dioscorea bulbifera L.), respectively (Schmitz 2009).
Table 3. Nepalese accessions of agricultural genetic resources (crops, forages, livestock, aquatic plant and animal, microorganisms and insects) conserved in National and International Genebanks

SN	Type of bank	Total banks, n	Species conserved, n	Accession conserved, n	Agrobiodiversity component	Initiated date
1	Seed bank	1	105	14500	Orthodox crops	1986
2	Forage seed bank	1	9	30	Orthodox forages	2010
3	Field genebank	15	30	650	Non-orthodox crops	
4	Tissue bank	2	3	120	Non-orthodox crops	2013
5	DNA bank	1	10	550	Crops	2013
6	Forage field genebank	3	50	50	Non-orthodox forages	2014
7	Crop specific park	6	10	450	Non-orthodox crops	2012
8	Aqua pond genebank	5	27	30	Fishes and aquatic plants	2016
9	Cryo bank	1	3	3	Livestock	
10	Livestock farm genebank	10	8	38	Livestock	2016
11	Agro gene sanctuary	1	10	25	Crops	2018
12	Microbial genebank	1	24	24	Micro organisms	2018
13	Insect field genebank	1	11	11	Insects	2018
14	Community seed bank	40	50	2045	Crops	1994
15	Community field genebank	8	15	113	Non-orthodox crops	2012
16	School field genebank	7	15	122	Non-orthodox crops	2014
17	Protected area (in-situ bank)	10	4	4	Crop wild relatives	2018
18	World Seed Vault, Korea	1	1	69	Barley	2014
19	AVRDC, Taiwan	1	NK	930	Vegetables	NK
20	NIAS, Japan	1	NK	4136	Crops	NK
21	NIAS, Japan	1	NK	20	Microbes	NK
22	USDA, USA	1	NK	2781	Crops	NK
23	NBPGR, India	1	NK	3000	Crops	NK
24	CGIAR Banks	11	NK	11702	Crops and forages	NK
25	Safety backup (CGIAR Banks)	7	8	2045	Crops	2013
26	MLS-ITPGFRA	1	20	614	Crops and forages	2017

Nepalese accessions at global database

SN	Type of bank	Total banks, n	Species conserved, n	Accession conserved, n	Agrobiodiversity component	Initiated date
27	GENESYS	1	NK	15511	Crops and forages	NK
28	EURISCO	1	NK	3689	Crops and forages	NK

NK, Not known.

Sources: Joshi 2017, Joshi et al 2017a, Joshi et al 2018, Genebank 2018, Joshi and Upadhyaya 2019.

Challenges and Issues

Nepal is an agrobiodiversity rich country but native genetic resources never got priority in research, education and development, resulted in genetic erosion. Major challenges are to stop genetic erosion, to make native AGRs competitive, to decrease the current 95-100% dependency (Joshi et al 2017d) on foreign germplasm, to secure food and nutrition conserving existing agrobiodiversity, to replace foreign agriculture products and germplasm by native AGRs and their products, to identify global potential native AGRs and market globally, to develop site-specific different products, to create...
enabling environment for favoring diversity rich varieties, breeds and strains to accelerate the evolutionary population to capture diversity from wide range of agricultural areas, etc.

There is a need of extensive characterization, evaluation, and tagging of economically important traits. Adulteration by foreign germplasm needs to be minimized and education system should be revised to improve the traditional technologies rather than replacing native technologies including native AGRs. Alternative of many large scale production of monogenotyped variety or breed should be identified for sustainable agriculture and to diversify the products. Documents related to ownership of the landraces needs to be developed. Evidence of association of landraces with geography and cultural value need to be explored. An online database should be established to facilitate access to germplasm. Mountain areas are good for producing Himalayan super foods that are better in terms of purity, quality, taste, health and nutrition. Many potential wild AGRs exist in the country and research is necessary for domestication and commercialization.

CONCLUSION

Mainly because of neglected and underutilization of 85% native AGRs, 40% of diversity has been lost. Conservation work, therefore, should get priority. About 5-15% of native AGRs, depending on specific AGR, has been used in research and development. Priority for conservation and utilization should be given to native AGRs focusing on developing site-specific staple AGRs, marketing globally by involving all relevant stakeholders. Eighty process, methods, actions and good practices need to be scaled up widely for effectively conserving AGRs. Only 4% of total agricultural species have been conserved that demand to accelerate the conservation works in the country. To prioritize the AGRs for conservation, diversity should be assessed at all five levels ie agroecosystem, species, variety/breed/strain, genotype and allele. Agricultural science needs to advance on native AGRs.

ACKNOWLEDGEMENTS

A large number of farmers and experts have been involved in generating information and implementing different actions including good practices and they all are highly acknowledged. Special thanks go to Bhola Shrestha, Tek Bahadur Gurung, Ajaya Chaudhary, Harish Chandra Bastola, Anil Acharya, Bidya Pandey, Hari Bahadur KC, Suraj Baidya, Shree Prasad Vista and Prem Nidhi Sharma. Some good practices and actions were implemented with the financial support from NARC, LI-BIRD, Bioversity International, MoAD, IUCN, MoFSC, IAAS, Parivartan Nepal and DoA.

REFERENCES

Abington JB, ed. 1992. Sustainable Livestock Production in the Mountain Agro-ecosystem of Nepal. Animal Production and Health Paper 105. FAO, Rome.

Acharya LN and PN Atreya. 2012. Fruit development in Nepal: Past, efforts, present status and future needs/way forward. In: Proc. 8th national horticultural seminar on horticultural development towards the pace of national economic growth (SM Sakhiya, KP Paudel, BB Khatri, BK Paudel, IR Pandey, eds). Nepal Horticulture Society, Lalitpur.

Arjyal C, BN Dahal and B Khadka. 2004. Microbial quality of milk available in Kathmandu valley. Journal of Nepal Medical Association, 43:137-140. DOI: https://doi.org/10.31729/jnma.475

Aryl S, G Karki and S Pandey. 2015. Microbial diversity in freshwater and marine environment. Nepal J. Biotecnol. 3:68–70

Banwart GJ. 1989. Useful Microorganisms. In: Basic Food Microbiology. Springer, Boston, MA; pp.433-504.

Bhattarai A, B Bhattarai and S Pandey. 2015. Variation of soil microbial population in different soil horizons. J Microbiol Exp. 2(2):75-78. DOI: https://doi.org/10.15406/jmen.2015.02.00044

Chaudhary P, BK Joshi, K Thapa, R Devkota, KH Ghimire, K Khadka, D Upadhyya and R Vernooy. 2016. Interdependence on plant genetic resources in light of climate change. In: Implementing the International Treaty on Plant Genetic Resources for Food and Agriculture in Nepal: Achievements and Challenges (BK Joshi, P Chaudhary, D Upadhyya and R Vernooy, eds). LIBIRD, Pokhara; NARC, MoAD, Kathmandu and Bioversity International, Rome; Nepal, pp.65-80.

Chaudhary P, D Gauchan, RB Rana, BR Sthapat and DJ Jarvis. 2004. Potential Loss of Rice Landraces from A Terai Community in Nepal: A Case Study from Kachorwa, Bara. Plant Genetic Resources Newsletter 137:1–18.
Christensen M, S Devkota, S Bhattarai and HO Larsen. 2008. Collection and use of wild edible fungi in Nepal. Econ Bot 62:12–23.

FAO. 1999. Women: Users, preservers and managers of agrobiodiversity. http://www.fao.org/3/x0171e/x0171e03.htm

FAO. 2010. The Second Report on the State of the World’s Plant Genetic Resources for Food and Agriculture. Rome

FAO. 2019. The State of the World’s Aquatic Genetic Resources for Food and Agriculture. FAO Commission on Genetic Resources for Food and Agriculture assessments. Rome

Genebank. 2016. Annual Report 2072/73 (2015/16). National Agriculture Genetic Resources Centre, NARC, Khumaltar, Lalitpur, Nepal.

Genebank. 2018. Annual Report 2074/75 (2017/18). National Agriculture Genetic Resources Centre, NARC, Khumaltar, Lalitpur, Nepal.

Ghimire KH and BK Joshi. 2019. Crop groups based on conservation strategy. In: Working groups of agricultural plant genetic resources (APGRs) in Nepal (BK Joshi and R Shrestha, eds). Proceedings of a National Workshop, 21-22 June 2018, Kathmandu; pp.174-183.

Gotame TP, KP Paudyal and PP Khatiwada. 2014. Status of fruit and nut Genetic Resources in Nepal. Horticulture Research Division. NARC, Khumaltar.

Gurung TB. 2017. Chapter III. Aquatic biodiversity for food and agriculture in Nepal. In: The state of Nepal’s biodiversity for food and agriculture (BK Joshi, AK Acharya, D Gauchan and P Chaudhary, eds). Ministry of Agricultural Development, Kathmandu, Nepal; pp.37-48. http://moad.gov.np/public/uploads/974648021-SoNBFA_Nepal.pdf

Husen A. 2019. Status of ornamental fish import, research and scope in Nepal. Research Journal of Animal, Veterinary and Fishery Science, 7(1):6-9.

Joshi BK and D Gauchan. 2017. Germplasm Rescue: Why and How? In: Rebuilding Local Seed System of Native Crops in Earthquake Affected Areas of Nepal (BK Joshi and D Gauchan, eds). Proceedings of a National Sharing workshop, 18 Dec 2017, Kathmandu; NAGRC, Bioversity International and Crop Trust; Kathmandu, Nepal; pp.41-50. https://www.bioversityinternational.org/e-library/publications/detail/rebuilding-local-seed-system-of-native-crops-in-earthquake-affected-areas-of-nepal/

Joshi BK and D Upadhaya. 2019. On-farm Conservation Approaches for Agricultural Biodiversity in Nepal. Journal of Agriculture and Natural Resources 2: 14-35. DOI: https://doi.org/10.3126/janr.v2i1.26012

Joshi BK, AK Acharya, D Gauchan and MR Bhatta. 2017a. Agrobiodiversity status and conservation options and methods. In: Conservation and Utilization of Agricultural Plant Genetic Resources in Nepal (BK Joshi, HB KC and AK Acharya, eds). Proceedings of 2nd National Workshop, 22-23 May 2017, Dhalukhel; NAGRC, FDD, DoA and MoAD; Kathmandu, Nepal; pp. 21-38. http://moad.gov.np/public/uploads/855517450-Plant%20Genetic%20Resources_CUAPGR_Nepal-min.pdf

Joshi BK, AK Acharya, D Gauchan, D Singh, KH Ghimire and BR Sthapit. 2017b. Geographical indication: A tool for supporting on-farm conservation of crop landraces and for rural development. In: Conservation and Utilization of Agricultural Plant Genetic Resources in Nepal (BK Joshi, HB KC and AK Acharya, eds). Proceedings of 2nd National Workshop, 22-23 May 2017, Dhalukhel; NAGRC, FDD, DoA and MoAD; Kathmandu, Nepal; pp.50-62. http://moad.gov.np/public/uploads/855517450-Plant%20Genetic%20Resources_CUAPGR_Nepal-min.pdf

Joshi BK, D Singh, P Chaudhary, KH Ghimire and M Kahanal. 2017c. Biotechnology, geographical information system and climate analog tool for management of APGRs. In: Conservation and Utilization of Agricultural Plant Genetic Resources in Nepal (BK Joshi, HB KC and AK Acharya, eds). Proceedings of 2nd National Workshop, 22-23 May 2017, Dhalukhel; NAGRC, FDD, DoA and MoAD; Kathmandu, Nepal; pp.156-169. http://moad.gov.np/public/uploads/855517450-Plant%20Genetic%20Resources_CUAPGR_Nepal-min.pdf

Joshi BK, KH Ghimire and D Singh. 2016a. Conservation options, methods and programs for agricultural plant genetic resources in Nepal. National Agriculture Genetic Resources Center, Khumaltar.

Joshi BK, KH Ghimire and D Singh. 2018. The National Genebank’s Promotion of Community Seed Banks: Status and Strategy. In: Community Seed Banks in Nepal (BK Joshi, P Shrestha, D Gauchan and R Vernoo, eds). 2nd National Workshop Proceedings, 3-5 May 2018, Kathmandu Nepal; NAGRC, LI-BIRD and Bioversity International; Kathmandu, Nepal; pp. 21-44

Joshi BK, MP Upadhay D Gauchan, BR Sthapit and KD Joshi. 2004. Red listing of agricultural crop species, varieties and landraces. Nepal Agric. Res. J. 5:73-80.

Joshi BK, R Shrestha, IP Gautam, AP Poudel and TP Gotame. 2019. Neglected and Underutilized Species (NUS), and Future Smart Food (FSF) in Nepal. National Agriculture Genetic Resources Center (NAGRC, National Genebank), NARC, Khumaltar, Kathmandu, Nepal.

Joshi BK, R Vernoo and P Chaudhary. 2017d. Crop Interdependence, Adaptation to Climate Change and the
Multilateral Systems of Access and Benefit Sharing: The Case of Nepal. Indian Journal of Plant genetic Resources 30(3):210-217. DOI: https://doi.org/10.5958/0976-1926.2017.00026.2

Joshi BK. 2017a. Plant Breeding in Nepal: Past, Present and Future. Journal of Agriculture and Forestry University 1:1-33.

http://afu.edu.np/sites/default/files/Plant_breeding_in_Nepal_Past_Present_and_Future_BK_Joshi.pdf

Joshi BK. 2017b. Conservation and utilization of agro-biodiversity advanced from 1937 to 2017 in Nepal. In: Krishi Sanchar Samrika (F Devkota, ed). Agricultural Information and Communication Center (AICC), MoAD, Kathmandu; pp.181-208. https://www.researchgate.net/publication/318316609_Conervation_and_Utilization_of_Agro-Biodiversity_Advanced_from_1937_to_2017_in_Nepal

Joshi SL, RB Thapa and S Bista, eds. 2016b. Proceedings of Workshop on Review and Strategy Development of Entomological Research Works in Nepal (Volume 1), 4–6 March 2012, Entomology Division, Kathmandur, Lalitpur, Nepal.

Joshi SL, RB Thapa and S Bista, eds. 2016c. Proceedings of Workshop on Review and Strategy Development of Entomological Research Works in Nepal (Volume 1), 4–6 March 2012, Entomology Division, Kathmandur, Lalitpur, Nepal.

Joshi SL. 2016. Biological control of agricultural insect pests in Nepal: Present status and future prospects. In: Proceedings of Workshop on Review and Strategy Development of Entomological Research Works in Nepal (Volume 1) (SL Joshi, RB Thapa and S Bista, eds). 4–6 March 2012, Entomology Division, Kathmandur, Lalitpur, Nepal.

Limbu JH, N Chapagain, SK Gupta and S Sunuwar. 2019. Review on fish diversity of eastern Nepal. International Journal of Fisheries and Aquatic Studies 7(3):177-181.

Mainali RP, SB Pradha and ASR Bajracharya. 2016. Entomological research on fruit crop in Nepal: A review. Proceedings of Workshop on Review and Strategy Development of Entomological Research Works in Nepal, 4–6 March 2012, Entomology Division, Kathmandur, Nepal; pp.191-198.

Mainali RP. 2018. Setting conservation priorities for crop wild relatives of important food crops of Nepal. MS Thesis. Wageningen University and Research, Wageningen, the Netherlands.

MoA. 2004. Country Report on Animal Genetic Resources of Nepal. Ministry of Agriculture and Cooperatives, Singha Durbar, Kathmandu, Nepal.

MoFSC. 2014. Nepal Biodiversity Strategy and Action Plan 2014-2020. Government of Nepal, Ministry of Forests and Soil Conservation, Kathmandu, Nepal.

Møller AP. 2019. Parallel declines in abundance of insects and insectivorous birds in Denmark over 22 years. Ecology and Evolution 9: 6581–6587. DOI: https://doi.org/10.1002/ece3.5236

Niroula B and KLB Singh. 2011. Aquatic plant resources of Betana Wetland, Morang, Nepal. Our Nature 9: 146–155.

Paudel KC and BN Tiwari. 1992. Chapter 7. Fodder and Forage Production. In: Sustainable Livestock Production in the Mountain Agro-ecosystem of Nepal (JB Abington, ed). Animal Production and Health Paper 105. FAO, Rome.

Paudel LN. 2017. Chapter II. Animal Biodiversity for Food and Agriculture in Nepal. In: The state of Nepal’s biodiversity for food and agriculture (BK Joshi, AK Acharya, D Gauchan and P Chaudhary, eds). Ministry of Agricultural Development, Kathmandu, Nepal; pp.25-36. http://moad.gov.np/public/uploads/974648021-SoNBFA_Nepal.pdf

Raut JK. 2014. The proceedings of the seminar on mushroom consumption and poisoning risk. 14 January 2014; Nepal Academy of Science and Technology, Kathmandur, Lalitpur

Regmi PP. 1982. An Introduction to Nepalese Foods Plants. Royal Nepal Academy, Kathmandu, Nepal

Schmitz DC. 2009. Upland Plants: Air Potato. Research Program Newsletter, Division of Habitat and Species Conservation. Florida Fish and Wildlife Conservation Commission, Invasive Plant Management Section, Conservation, Blvd., MS 705, Tallahassee, FL 32399.

Seibold S, MM Gossner, NK Simons et al. 2019. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574: 671–674. DOI: https://doi.org/10.1038/s41586-019-1684-3.

Sharma U. 2007. Medicinal and Aromatic Plants: a Growing Commercial Sector of Nepal. The Initiation 1:4–8.

Shimada T and BMS Basnet. 2015. A list of cultivated and edible wild plants in Nepal. Lochan Gyawali, Jagadamba Press, Lalitpur.

Shrestha J. 1999. Cold water fish and fisheries in Nepal. In: Fish and fisheries at higher altitudes: Asia (T Pedr, ed). FAO Fisheries Technical Paper. No. 385. FAO, Rome, FAO; pp.13-40.

Shrestha R and B Shrestha, eds. 1999. Wild Relatives of Cultivated Plants in Nepal. Proc. National Conference, June 2-4, 1999 Kathmandu, GEM-Nepal.

Smith BD, B Bhandari and K Sapkota. 1996. Aquatic biodiversity in the Karnali and Narayani river basins Nepal. IUCN Nepal, Kathmandu.
Sthapit BR, P Shrestha and MP Upadhyay, eds. 2006. On-farm Management of Agricultural Biodiversity in Nepal: Good Practices. NARC/LI-BIRD/Bioversity International, Nepal.

Strain D. 2011. 8.7 million: A new estimate for all the complex species on Earth. Science 333 (6046), pp. 1083. DOI: https://doi.org/10.1126/science.333.6046.1083.

Subba BR, N Pokharel and MR Pandey. 2017. Ichthyofaunal diversity of Morang district, Nepal. Our Nature 15(1-2):55-67. DOI: https://doi.org/10.3126/on.v15i1-2.18794.

Sweetlove L. 2011. Number of species on Earth tagged at 8.7 million. Nature. DOI: https://doi.org/10.1038/news.2011.498.

Takeda K, Satoh M, Neopane SP, Kuwar BS, Joshi HD, Shrestha NP, Fujise H, Tasai M, Tagami T, Hanada H. 2004. Mitochondrial DNA analysis of Nepalese domestic dwarf cattle Lulu. Anim. Sci. J. 75:103–110.

Thapa VK. 1997. An inventory of Nepal’s insects. Vol 1. IUCN Nepal, Kathmandu

Upadhyay MP and BK Joshi. 2003. Plant Genetic Resources in SAARC Countries: Their Conservation and Management: Nepal Chapter. SAARC Agriculture Information Center, pp.297-422.

Upadhyay MP, HK Saiju, BK Baniya and MS Bista, eds. 1995. Plant Genetic Resources: Nepalese Perspective. Proc. National Workshop PGR Conservation, Use and Management, 28 Nov–1 Dec 1994, Kathmandu. NARC, IPGRI.

Van Huis A, JV Itterbeeck, H Klunder, E Mertens, A Halloran, G Muirand P Vantomme. 2013. Edible insects: Future prospects for food and feed security. FAO Forestry Paper 171. FAO, Rome.

Wilson RT. 1997. Animal genetic resources and domestic animal diversity in Nepal. Biodiversity and Conservation 6: 233-251.

Wilson RT. 2017. Domestic livestock in Nepal: Production systems, genetic resources, research and the way forward. International Journal of Agricultural Management 6 (2): 50-61. DOI: https://doi.org/10.5836/ijam/2017-06-50

Yami KD, S Bhattarai and S Adhikari. 2003. Vermicomposting and Micro Flora Analysis of Vermicompost, Vermicast and Gut of Red Earthworm. Nepal Journal of Science and Technology 5: 121-126.
Annex I. Some important indigenous genotypes of agronomic crops, horticultural crops, forage species, livestock species, aquatic agricultural species, insects and microorganisms

SN	English name	Nepali name	Scientific name	Most important landraces
Agronomic crops				
1.	Amaranth	Latte	Amaranthus spp	Kalo, Seto, Jhule, Rato, Hariyop
2.	Barley	Jau	Hordeum vulgare L	Chawali, Lekali, Taakullo, Tude
3.	Bean	Simi	Phaseolus spp	Hiude Simi, Seto Simi, Gahate Simi, Taati Simi, Jire Simi
4.	Black gram	Maas	Vigna mungo (L.) Hepper Wild	Kaalo, Khairo, Saano, Thulo
5.	Broad bean	Bakulaa	Vicia faba L.	Saano, Thulo
6.	Buckwheat	Faapar	Fagopyrus spp	Tite Faper, Mithe, Bhte, Bharule
7.	Cowpea	Bodi	Vigna unguiculata (L.) Walp.	Tane Bodi, Kattike Bodi, Gaajale Bodhi, Makai Bodi, Fokse Bodi, Seto Bodhi
8.	Finger millet	Kodo	Eleusine coracana (L.) Gaertn.	Dalle, Mudke, Samdhi, Nagre, Padure, Seto Kodo
9.	Foxtail millet	Kaguno	Setaria italica (L.) Beauv.	Raato, Aule, Kaalo, Pahenlo, Saano, Seto
10.	Groundnut, peanut	Badaam	Arachis hypogaea L.	Thuli, Saano
11.	Horsegram	Gahat	Macrotyloma uniflorum (Lam.) Verdc.	Khairo, Raato, Saano
12.	Indian Mustard	Rayo, rai, raichi, tora, barsale	Brassica juncea (L.) Czern. & Coss.	Raayo, Gujmuje, Kaade, Thulo Paate, Kaalo, Raato
13.	Lentil	Musuro	Lens culinaris Medikus	Kaalo Musuro, Khairo Musuro, Saano, Thulo
14.	Maize	Makai	Zea mays L.	Sathiya, Murali, Thulo Pahelo, Seto
15.	Pea	Matar kerai	Pisum sativum L.	Saano, Thulo, Hariyop, Lahare
16.	Pigeonpea	Rahar	Cajanus cajan (L.) Millsp.	Raato, Seto, Chanki, Pjawa, Chaite, Lalkaa, Baisalaki
17.	Proso millet	Chino	Panicum miliaceum L.	Dudhe, Haade, Raato, Kaptade
18.	Rapeseed	Tori	Brassica rapa L.	Kala, Pliaa
19.	Rice	Dhaan	Orzya sativa L.	Jumli Maarshi, Kalanamak, Ekle, Bhaati, Jethobudo, Anadi, Aajpjupe, Ghaiya, Gurdii, Jhnuwaa, Lalka Basmati, Samundraophi, Pahela, Nakhisaro, Giupuri, Titik, Krishnahbog
20.	Soybean	Bhatmas	Glycine max (L.) Merrl.	Seto, Kaanchi, Thulo, Kaalo, Saano, Khairo
21.	Wheat	Gahu	Triticum aestivum L.	Nanal, Mudule, Hansaa, Saadbi, Pawai, Saano, Raani, Jhsse, Bhtoe, Duddhe
Fruit crops				
22.	Apple	Shyau	Malus pumila Mill.	Dolpa Local, Helambu Local, Marpha Shyau, Jumla Shyau
23.	Apricot	Khurpaani	Prunus armeniaca Linn.	Humla Local, Jumla Local, kakani Local
24.	Banana	Keraa	Musa paradisiaca L.	Mungre Kera, Local Maalbhog Kera, Jhaapali Maalbhog, Ghiu Keraa
25.	Guava	Aamba, belauti	Psidium guajava L.	Dhunibeshi Ko Aamba
26.	Jack fruit	Katahar	Artocarpus heterophyllus	Tarai Local
27.	Lemon	Nibuwa	Citrus limon (L.) Osbeck	Hill Lemon, Nepali Oblong
28.	Mandari Orange	Suntalaa	Citrus reticulata Blanco	Manakamana Local, Dhankuta Local, Ramjattar Local
29.	Mango	Aap	Mangifera indica L.	Siraha Local, Bhadaure, Supare
30.	Pear	Naashpati	Pyrus pyrifolia	Pharping Local
31.	Pomegranate	Darim	Punica granatum	Nepali Darim
32.	Sugar apple, custard apple	Raam phal or sarifa	Annona squamosa Linn.	Sarifa
33.	Sweet orange	Junaar	Citrus sinensis (L.) Osbeck	Sindhuli Local, Dadelledhura Local
34.	Walnut	Okhar	Juglans regia L.	Hard Shelled Okhar
Vegetable crops				
35.	Bean	Simi	Vicia faba L.	Jumla Local, Mustang Local, Humla
SN	English name	Nepali name	Scientific name	Most important landraces
----	-------------	-------------	----------------	-------------------------
36.	Brinjal	Bhentaa, bajian	Solanum melongena L.	Birgunj Local
37.	Chilli	Khursaani	Capsicum frutescens L.	Jhyannma Thalle Khursani, Akabare Khursani, Jire Khursani
38.	Cucumber	Kaaakra	Cucumis sativus L.	Madale Kakro
39.	Garlic	Lasun	Allium sativum L.)	Kirtipur Local, Bhaktapur Local, Bhote Lasun, Sthaniya Bose, Tarai Lasun
40.	Ginger	Adhuwa	Zingiber officinale Roscoe	Bose Adhuwa
41.	Large Cardamom	Achi	Amomum subulatum Roxb	Jirmale, Bharlange, Salakpure, Saaune
42.	Lettuce	Latte ko saag	Lactuca sativa	Ramechhap Hariyo
43.	Potato	Aalu	Solanum tuberosum	Mude Local, Tharu Aalu, Helambu Local, Sidhuwa Local, Dhorpatan Local
44.	Radish	Mula	Raphanus sativus L.	Pyuthane Local, Choto
45.	Sponge Gourd	Ghiraula	Luffa cylindrica	Basaune Ghiraula
46.	Taro	Pidaalu	Colocasia esculenta (L.) Schott	Thado Mukhe, Hatti Paaile, Sath Mukhe, Gante Pancha Mukhi, Chatre, Dudhe Pidalu, Khari Pidalu, Gandaki Hattipau

Forage genetic resources

SN	English name	Nepali name	Scientific name	Most important landraces
48.	Barro	Barro	Terminalia bellirica	Barro
49.	Bermuda	Dubo	Cynodon dactylon L. pres.	Dubo
50.	Black Siris	Kalo Siris	Albizia lebbek	Kalo Siris
51.	Broom Grass	Amrisho	Thysanolaena maxima	Amrisho
52.	Chuletro	Chuletro	Brassiopsis hainla	Chuletro
53.	Coral Tree	Faledo	Erythrina strica/varigata	Faledo
54.	Cutch tree	Khayar	Acacia catechu (L.f.) Wild.	Khayar
55.	Dudhilo	Dudhilo	Ficus semicordata Buch.	Dudhilo
56.	Dunri	Dunri	Ficus racemosa	Dunri
57.	Elephant fig	Kabro	Ficus lacon Buch.-Ham	Kabro
58.	Fodder fig	Khanaayo	Ficus semicordata Buch.-Ham ex Sm.	Khanaayo
59.	Gogan	Gogan	Saurauia nepaulensis DC.	Gogan
60.	Harro	Harro	Terminalia chebula	Harro
61.	Kans	Kans	Saccharum spontaneum	Kans
62.	Khasreto	Khasreto	Ficus hispida	Khasreto, Gelido
63.	Khasru	Khasru	Quercus semecarpifolia	Khasru
64.	Leucaena/ Ipil-Ipil	Ipil-Ipil	Leucaena leucocephala	Ipil-Ipil
65.	Litsea	Kutmero	Litsea monopetala (Roxb.) Pers.	Kutmero, Kutmiro
66.	Monkey Jack	Badahar	Artocarpus lakoocha Wall. ex Roxb.	Badahar
67.	Mountain ebony	Koiralo	Bauhinia variegate L.	Koiralo
68.	Mulberry	Kimbu	Morus alba	Kimbu
69.	Nevaro	Nevaro	Ficus rosendergii	Nevaro, Nimaro
70.	Oat	Jai	Avena sativa L.	Jai
71.	Pakhauri	Pakhauri	Ficus glaberrima	Pakhauri
72.	Pink bauhinia, Ebony	Taanke	Bauhinia purpurea L.	Taanke
73.	Premna	Ginderi	Premna integrifolia	Ginderi
74.	Red clover	Rato clover	Trifolium pretense L.	Rato clover
75.	Sacrificial grass	Kush	Desmostachys bipinnata (L.) Stapf	Kush
76.	Siru	Siru	Imperata cylindrica	Siru
77.	Tatelo	Tatelo	Oroxylum indicum (L.) Kurz	Tatelo
78.	Weeping willow	Bains	Salix babylonica L.	Bains
79.	White clover, Pyauli	Pyauli	Trifolium repens L.	Pyauli, Beuli Jhar
SN	English name	Nepali name	Scientific name	Most important landraces
-----	------------------------------	-------------	--	----------------------------------
	Ladino			
80	Wild sugarcane grass, thatch grass	Kaans	Saccharum spontaneum L.	Kaans
81	Wodier	Dabdabe	Lannea coromandelica (Houtt.) Merr.	Dabdabe
	Livestock genetic resources			
82	Buffalo	Bhainsi	Bubalus bubalis	Lime, Parkote, Gaddi, Tarai
83	Cattle	Gai	Bos indicus	Siri, Achhami, Khaila, Pahadi, Tarai
84	Cattle	Gai	Bos taurus	Lulu
85	Chicken (fowl)	Kukhura	Gallus domesticus	Sakini, Pwankh Ulte, Ghanti Khule
86	Donkey, ass	Gadhaa	Equus asinus	Gadhha
87	Duck	Haans	Anas platyrhynchos	Haans
88	Goat	Bakhra	Capra hircus	Chyangera, Sinhal, Khari, Tarai
89	Guinea fowl	Laukaat	Numida meleagris	Laukaat
90	Horse	Ghonda	Equus caballus	Jumli Ghoda
91	Mule	Khachhar	Horse x donkey	Khachhar
92	Pig	Sungur	Sus scrofa domesticus	Chwanche, Bampudke, Hurrah, Nagpuri
93	Pony	Tattu	Equus ferus caballus	Tattu
94	Sheep	Bhaianda	Ovis aries	Bhyanglung, Baruwal, Kage, Lampuchre
95	Yak	Yak	Bos gruniens	Yak, Nak
96	Yak hybrid	Chauri	Yak x cow	Chauri
	Aquatic agricultural animal genetic resources			
97	Apple snail	Ghungi	Bellamya bengalensis	Ghungi
98	Catla	Bhakur	Catla catla	Bhakur
99	Chaguni	Rewa, Kasree, kubre	Chagunius chagunio	Rewa, Kasree, kubre
100	Gangetic mud eel, Cuchia	Andho bam	Ampipnus cuchia	Andho bam
101	Garua bacha	Jalkapoor, Baikha	Clupisoma garua	Jalkapoor, Baikha
102	Giant Mottled Eel, Mottled Eel	Raja bam	Anguila bengalensis	Raja bam
103	Goonch	Goonch	Bagarius yarrellii	Goonch
104	Hill trout, Snow trout	Chuche Asala,	Schizothorax plagiostomus	Chuche Asala,
105	Kalabans	Gardi	Labeo dero	Gardi
106	Katli, Chocolate Mahseer, Copper mahseer	Katle	Neolissochilus hexagonolepis	Katle
107	Kuncho River prawn	Guraicha or kunchochingri	Macrobrachium lamarrei	Jhinge machha, Sano jhinge, Thulo jhinge
108	Mahseer	Falame sahar	Tor tor	Falame sahar
109	Mrigal	Naini	Cirrhinus mirgala	Naini
110	Mussel	Situ (Seepi)	Lamellidens marginalis	Situ (Seepi)
111	Putitor mahseer, Golden mahseer, thick-lipped Mahseer,	Sahar, Mahseer, Pahele mahseer, Tor putitora	Sahar, Mahseer, Pahele mahseer,	
112	Rohu	Rohu	Labeo rohita	Rohu
113	Spotted snow trout, Alwan Snow trout	Buchhe asala, Blunt snout asala, Soal asala	Schizothorax richardsonii	Buchhe asala, Blunt snout asala, Soal asala
114	Walking	Mungrri	Clarias batrachus	Mungrri
SN	English name	Nepali name	Scientific name	Most important landraces
----	---------------------------	------------------	--------------------------	-------------------------------
115	Wallago, Freshwater shark	Padni/ bohari	Wallago attu	Padni/ bohari
116	Zebra fish	Chithari, pothi	Danio rerio	Chithari, pothi

Aquatic agricultural plant genetic resources

SN	English name	Nepali name	Scientific name	Most important landraces
117	Deep water rice	Bhaati Dhaan	Oryza sativa L.	Bhaati Dhaan
118	Gorgon nut, Prickly water Lily, Fox nut	Makhan, Makhana	Euryale ferox Salisb.	Makhan, Makhana
119	Lotus	Komal	Nelumbo nucifera Gaertn	Komal
120	Taro	Karkale	Colocasia esculenta (L.) Schott.	Karkale
121	Toothed dock, Aegean dock	Ban Palungo	Rumex dentatus L.	Ban Palungo
122	Water chestnut	Singhara, Singada	Trapa bispinosa Roxb	Singhara, Singada
123	Water spinach	Karmi Saag	Ipomoea aquatica Forssk.	Karmi Saag
124	Watercress	Sim Saag	Nasturtium microphyllum (Boenn.) Rchb.	Sim Saag

Insect genetic resources

SN	English name	Nepali name	Scientific name	Most important landraces
125	Asiatic hive bees	Yasian mahuri	Apis cerana Fab. Ecotypes - Apis cerana cerana, Apis cerana indica, Apis cerana himalaya	Yasian mahuri
126	Bumble bees	Bhamara	Bombus spp.	Bhamara
127	Cotesia	Bareule kira	Cotesia flavipes Cameron (=Apanteles flavipes Szepligeti)	Bareule kira
128	Green lace wing	Jalidar pakeheta bhayeko kira	Chrysoperla carnea Stephens	Jalidar pakeheta bhayeko kira
129	Himalayan giant honey bee	Jangali mahuri	Apis dorsata Fabricius	Jangali mahuri
130	Lac insets	Laha kira	Kerria lacca (Kerr)	Laha kira
131	Ladybird beetle	Stri swabhakho khapate	Coccinella spp.	Stri swabhakho khapate
132	Leptobatopsis	Bareule kira	Leptobatopsis indica (Cameron)	Bareule kira
133	Little/small bee	Sano mahuri	Apis florea Fabricius	Sano mahuri
134	Rock or cliff honey bees	Bhir mahuri	Apis laboriosa Smith	Bhir mahuri
135	Stingless bees	Nachilne mahuri (putka)	Mellipona spp, Trigona spp.	Nachilne mahuri (putka)
136	Tachinid fly	Tyakinid kira	Exorista japonica Townsend	Tyakinid kira
137	Tamarixia	Bareule kira	Tamarixia radiata (Waterston)	Bareule kira
138	Telenomus	Bareule kira	Telenomus sp.	Bareule kira
139	Trichogramma	Bareule kira	Trichogramma chilonis Ishii,	Bareule kira

Microbial genetic resources

SN	English name	Nepali name	Scientific name	Most important landraces
140	Termitomyces	Kalo dungu chayu	Termitomyces spp	Kalo dungu chayu
141	Azotobacter	Azotobacter	Azotobacter spp	Azotobacter
142	Black Forest Mushroom, Shiitake	Mruge Chyau	Lentinula edodes	Mruge Chyau
143	Bt	Biti	Bacillus thuringiensis	Biti
144	Clustered coral/	Thakre Chyau	Ramaria botrytis	Thakre Chyau

32
SN	English name	Nepali name	Scientific name	Most important landraces
145	Green muscardine fungus	Hariyo dhusi	Metarhizium anisopliae	Hariyo dhusi
146	Milky Mushroom	Dudhe Chyau	Calocybe indica	Dudhe Chyau
147	Morel	Guchhi Chyau	Morchella esculenta Fr.	Guchhi Chyau
148	Puffball	Padke chayu	Clavatia spp	Padke chayu
149	Rhizobium	Rhizobium spp	Rhizobium	Rhizobium
150	Shaggy Ink Cap/ Shaggy Mane	Kalo Masi Chyau	Coprinus comatus	Kalo Masi Chyau
151	Straw Mushroom	Parale Chyau	Volvariella volvacea	Parale Chyau
152	Super Natural/Red Mushroom	Rato Chyau	Ganoderma spp	Rato Chyau
153	Trichoderma	Trichoderma spp	Trichoderma spp	Trichoderma
154	White-muscantine fungus	Seto Dhusi	Beauveria bassiana	Seto Dhusi
155	Yarsha-gumba	Yarshaguumba	Cordyceps sinensis	Yarshaguumba
156	Yeast	Dhahi jimaanu	Lactobacillus spp	Dhahi jimaanu
157	Yeast	Dhahi jimaanu	Streptococcus	Dhahi jimaanu
158	Yeast	Marcha jimaanu	Saccharomyces cerevisiae	Marcha jimaanu

Sources: Regmi 1982, Banwart 1989, Paudel and Tiwari 1992, Upadhyay et al 1995, Smith et al 1996, Wilson 1997, Shrestha and Shrestha 1999, Yamii et al 2003, Arjyal et al 2004, MoAC 2004, Takeda et al 2004, Christensen et al 2008, Niroula and Sing 2011, Acharya and Atreaya 2012, Gotame et al 2014, Aryal et al 2015, Bhattarai et al 2015, Shimada and Basnet 2015, Paudel 2017, Subba et al 2017, Wilson 2017, Limbu et al 2019, FAO 2019.