Review Article
The Janus Facet of Nanomaterials

Julianna Kardos,1 Katalin Jemnitz,1 István Jablonkai,1 Attila Bóta,2 Zoltán Varga,2 Júlia Visy,3 and László Héja1

1Group of Functional Pharmacology, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest 1117, Hungary
2Group of Biological Nanochemistry, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary
3Group of Chemical Biology, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary

Correspondence should be addressed to Julianna Kardos; julianna.kardos@ttk.mta.hu

Received 28 August 2014; Accepted 6 December 2014

Academic Editor: Mohammad Owais

Copyright © 2015 Julianna Kardos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Application of nanoscale materials (NMs) displays a rapidly increasing trend in electronics, optics, chemical catalysis, biotechnology, and medicine due to versatile nature of NMs and easily adjustable physical, physicochemical, and chemical properties. However, the increasing abundance of NMs also poses significant new and emerging health and environmental risks. Despite growing efforts, understanding toxicity of NMs does not seem to cope with the demand, because NMs usually act entirely different from those of conventional small molecule drugs. Currently, large-scale application of available safety assessment protocols, as well as their furthering through case-by-case practice, is advisable. We define a standard work-scheme for nanotoxicity evaluation of NMs, comprising thorough characterization of structural, physical, physicochemical, and chemical traits, followed by measuring biodistribution in live tissue and blood combined with investigation of organ-specific effects especially regarding the function of the brain and the liver. We propose a range of biochemical, cellular, and immunological processes to be explored in order to provide information on the early effects of NMs on some basic physiological functions and chemical defense mechanisms. Together, these contributions give an overview with important implications for the understanding of many aspects of nanotoxicity.

1. Safety Control of Nanoscale Materials
Necessitates Understanding of the Currently Unexplored Potential Toxic Effects

Generally characterized by 1–100 nm range in at least two dimensions [1], nanoscale materials (NMs) keep being progressively applied in many important fields including electronics, optics, chemical catalysis, solar fuel, agriculture, biotechnology, and medicine (e.g., see [2–6]). Built on and confirming earlier documents, SCENIHR emphasized that methodologies to assess exposure to manufactured NMs and the identification of potential hazards require further development. For lack of a general approach, SCENIHR maintains to perform risk assessment case by case for each NM in accordance with the practice of the Nanotechnology Characterization Laboratory at the National Cancer Institute (http://ncl.cancer.gov/assay_cascade.asp). The effects of NMs in biological systems are by now recognized to be entirely different from those of conventional chemicals or biological agents due primarily to their microscopic size [1]. Despite the major efforts worldwide, the scientific basis underlying these unprecedented effects allowing proper safety control of NMs does not seem to cope with the demand. In order to meet the requirements of a knowledge-based control of the environmental, especially the health-related effects of NMs, a new and synergistic strategy for research groups working in the areas of NM science and biology is much needed. The European Commission’s Framework Programmes (FPs) support and encourage research and development in nanotechnology, especially in the fields related to environment, health, and safety issues (nanoEHS). Key projects identified in this regard include knowledge transfer, standardisation, regulation, guidance, and public engagement, as well as the role of professional bodies. Among many
projects dealing with nanosafety, some of them are focusing on the measurement difficulties associated with NMs like the NanoChOp project (http://nanochop.lcgroup.com) founded by the European Association of National Metrology Institutes (EURAMET), while others aim at the stakeholder driven intelligent testing strategy in nanoEHS [8]. Although several projects have already been funded to investigate the potential nanoEHS issues of NMs within successive FPs, a knowledge-based understanding also supported by this BMRI thematic issue on nanotoxicity may significantly improve to identify and address the specific research aspects underlying biomedical applications of NMs.

2. Promoting Awareness on NMs through Novel Approaches and Techniques

We are well aware that understanding NM toxicity needs more comprehensive, complex, and novel multi- and interdisciplinary approaches [9–23]. These are driven in many cases by furthering imaging techniques through more specific labeling and detection of the cellular fate of NMs as illustrated by (i) in vitro/in vivo fluorescence ([22, 24]; Figure 1), synchrotron radiation-based (SR) Fourier transform infrared spectroscopy (FTIR) or X-ray fluorescence microscopy [25], or single photon emission computed tomography combined with X-ray computed tomography (SPECT-CT) imaging to study NM biodistribution at organ levels (Figure 2); (ii) small-angle X-ray (SAXS; Figure 3) or neutron scattering [26–28], freeze-fracture combined transmission electron microscopy (FF-TEM) and sum-frequency generation (SFG) vibrational spectroscopy for determination of structure or membrane interactions of NMs [13], and in situ high-resolution TEM [29]; (iii) application of new sets of methodologies built on basic instrumentation and related expertise in combination with NM surface modifications and toxicity assaying. For example, alterations of dendrimers combined with high-resolution NMR, capillary electrophoresis, electrophysiology and computer-assisted modeling of membrane interactions [11] or the adjustment of chitosan-based NM combined with Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM), flow cytometry and near-infrared (NIR) fluorescence spectroscopy in vivo [22] may also be critical to rigorously characterize NM traits and relate them to nanotoxicity parameters to be assessed.

3. Emerging Consensus

The papers referred to below, a mixture of reviews and research articles, are divided into three parts in line of emerging consensus. The first section conveys information on probably the best-known and most extensively studied biosimilar NMs applied in biotechnology and medicine such as liposomes, chitosan, and poly(lactic-co-glycolic acid) (PLGA) nanoparticles. These biocompatible and biodegradable NMs represent wide potential use in delivering a large variety of drugs and therapeutics including small molecules, herbal medicines, genes, proteins, miRNAs, and oligonucleotides ([30, 31] and references cited; [9, 14, 22, 25, 32–34]). The focus of the second section is on the possibility to conclude on trait-nanotoxicity relationships. Among polymeric NMs, that can encapsulate drug molecules and can be conjugated to targeting agents, dendrimers [11, 19, 31, 35–38] are the preferred test materials, due to their versatile surface functions allowing a wide variety of chemical modifications of properties. By reflecting preclinical studies using NMs for the delivery of therapeutics designed for neuroinflammation and neurodegeneration such as Alzheimer's and Parkinson's diseases, multiple sclerosis or amyotrophic lateral sclerosis (ALS), cerebral palsy, ischemia/stroke, traumatic brain injury, and epilepsy ([31] and references cited), the third section concerns the growing realization of the unique biodistribution of NMs. It necessitates the development of new model systems providing parameters predictive for NM action in various disorders and pathophysiological conditions. In the conclusion section we propose to set a “preclinical” work-scheme used for single nanotoxicity assessment of each NM considered in biomedical applications.

4. Furthering Evidence on Biocompatible and Biodegradable poly(lactic-co-glycolic acid) (PLGA), Liposome, and Chitosan NMs

Amongst first choice biodegradable and biocompatible polymers, PLGA has already been approved by United States Food and Drug Administration and European Medicine Agency for parenteral administration. PLGA serves as an effective NM for the delivery of therapeutics enabling organ, tissue, or cell-specific targeting [25, 30, 33, 39]. PLGA-based nanovector platform adaptable to formulate hydrophilic or hydrophobic small molecules or macromolecules gives rise to many possibilities including protection of drugs from degradation, sustained release, and easy surface-property modification enabling versatile, tunable, and more specific applications. For further understanding of specific characteristics utilized by PLGA-based NMs, we refer to a recent and comprehensive review [33]. By collecting a vast body of evidence, Danhier et al. argue for PLGA as the proper choice for planning drug delivery systems in various biotechnological and medical applications (vaccination, cancer, inflammation, etc.).

Together with other forms of self-organizing lipid-systems, liposomes (vesicles) have widely believed to provide the less harmful substrate for biomedical applications [5, 9, 31]. This concept derives from the fact that liposomes and the cell membrane have similar lipid bilayers. Moreover, the existence of natural intra- and extracellular vesicles provides the reality and perspective of lipid nanocarriers ([23] and references cited). The special structure of the liposomes, namely, the aqueous core surrounded by the phospholipid bilayer, enables the incorporation of both hydrophilic and hydrophobic drugs. The tailoring of liposomes by varying their lipid components makes the efficient encapsulation of drugs and labeling molecules (radiopharmaceuticals, dye molecules) possible with wide variety of different chemical characteristics. The first approved drug of this kind was the liposomal doxorubicin (Doxil/Caelyx), which was followed by many other liposomal products and currently hundreds of such drugs are under clinical trials [40]. The major
Figure 1: In vitro cellular uptake of fluorophore dye-conjugated anionic (G4.5-COONa) and cationic (G5-NH
2) polyamidoamine (PAMAM) dendrimers. Confocal laser microscope images were taken after 1h incubation of hepatocytes (a and c) and Kupffer cells (b) with PAMAM dendrimers. The anionic G4.5-COONa dendrimer was conjugated with 5(6)-TAMRA cadaverine HCl salt while the cationic G5-NH
2 dendrimer was coupled with 5(6)-TAMRA NHS ester as fluorescent dyes. Following 1h of incubation, the anionic dendrimer expanded in the cytoplasm of the Kupffer cells, while it was retained in the plasma membrane of the hepatocytes. The uptake of the cationic derivative by the hepatocytes was much more extensive compared to the anionic one.

Figure 2: In vivo biodistribution of liposomes labeled with 99m-Technetium. Single photon emission computed tomography combined X-ray computed tomography (SPECT-CT) data were recorded after 1.5 hours of the administration of labeled liposomes. The distribution reflects that of non-PEGylated liposomes and shows high uptake by the liver.

breakthrough in the biomedical application of vesicles was the development of sterically stabilized liposomes (SSLs: Figure 3) that have longer half-life in the circulation than conventional phospholipid liposomes. The former is achieved by coating the surface of vesicles by lipopolymers such as polyethylene glycol (PEG). Due to the important role of the PEG layer of SSLs, the detailed characterization is required for development of new liposomal products [27, 28, 38, 41]. The PEG surface, however, induces a pseudoallergic toxic effect [42] or tolerance-like innate immunity and spleen injury [18]; therefore the replacement of this polymer by other biocompatible macromolecules is intensively studied. Numerous studies are concerned about the more specific and more efficient delivery of therapeutics by applying specific combinations of biocompatible and biodegradable NMs ([33] and reference cited). For recent examples we may conjecture more efficient transfection of nucleic acid-based therapeutics based on the modification of chitosan combined g-stearic acid micelles by cis-aconitate [34] or more effective targeted delivery of osthole by N-succinyl-chitosan nanoparticles coupled with low-density lipoprotein [22].

Widespread natural polysaccharide chitosan has received increasing medical attention via encapsulating anticancer drugs such as 5-fluorouracil [43], doxorubicin [44, 45], paclitaxel [46], cisplatin and camptothecin [47], and osthole [22]. Abundant availability, unique mucoadhesivity, inherent pharmacological properties, and other beneficial biological properties such as biocompatibility, biodegradability, low toxicity, and low immunogenicity make chitosan an exceptionally attractive NM for targeting therapeutics [48, 49]. Chitosan, a linear amino polysaccharide composed of randomly distributed β-(1→4) linked D-glucosamine and N-acetyl-D-glucosamine units, can be obtained by the deacetylation of chitin isolated from the exoskeleton of crustaceans such as crab and shrimp [49]. The physicochemical and biological properties of chitosan are greatly influenced by its molecular weight and degree of deacetylation. Due to its reactive NH
2 groups, facile chemical modifications [50] make it possible to prepare a wide variety of chitosan-based NMs providing more appropriate targeted drug delivery. These NMs include, for example, cross-linked chitosan, chitosan-polyelectrolyte complex, self-assembled chitosan, or PEGylated chitosan [51]. Modifications made to chitosan, however, could make it more or less toxic and any residual reactants will affect
toxicological properties of the product. Therefore, care must be taken to ensure that the modified chitosan-based NMs will be free from contaminants such as proteins, metals, or the coupling agents which could potentially increase toxicity [52]. In vitro toxicity of chitosan was found to be related to the molecular weight and concentration at high degree of deacetylation, while at lower degree of deacetylation toxicity is less pronounced and less related to the molecular weight [53, 54]. Acute toxicity tests predicted no "significant toxic effects" in mice, as well as no eye or skin irritation in rabbits and guinea pigs, respectively. In addition, chitosan was not found pyrogenic [55]. One of the least studied characteristic of chitosan is its biodistribution, especially by administration methods other than intravenous. The biodistribution is both molecular weight- and formulation-dependent presenting relatively long circulation times [52]. The biodistribution is critically dependent on route of administration, dosage form, and chitosan characteristics. In the case of a nanoparticulate formulation, the kinetics and biodistribution will initially be controlled by the size and charge of the chitosan-based NM and not by chitosan traits. However, after NM particle decomposition to chitosan and free drug inside the cells or target tissue, free chitosan will distribute in the body and eliminate accordingly. Labeling techniques using amine-reactive fluorescent indicators (FITC, 9-anthraldehyde) or radionuclide-labeled chitosan derivatives were found to be reliable to follow kinetics of chitosan biodistribution [56, 57].

5. Listening to Dendrimers

NM polymers forming branching dendrimeric structure give opportunities for the targeted delivery of therapeutics that can alleviate various pathways implicated in the damage of the brain ([11, 19, 31, 35] and references cited). Reportedly, dendrimeric NMs give a chance for nanoformulation, enabling brain restoration and facilitating cellular growth under specific conditions such as cerebral palsy [31] or ischemia/stroke [58]. However, clinical use of dendrimers may be seriously compromised by PAMAM dendrimer-induced mitochondrial dysfunctioning or autophagy, partially mediated by intracellular ROS generation [19]. Lysosomal dysfunctioning may also be anticipated [19, 59]. Parameters indicating early appearance of nanotoxicity followed by cell death were found to be irreversible depolarization of neuronal and mitochondrial membranes, astroglia activation, and changing Ca²⁺ homeostasis [12]. Size, charge, and other surface characteristics of dendrimers were clearly identified as being critical for nanotoxicity predictions of dendrimers (Figure 1; [11, 35, 36]). Conjugation of surface amino groups of G5-NH₂ by β-D-glucopyranose units reduced functional neurotoxicity that may hold significant promise for biotechnology and medical applications.

Detection of early changes in membrane permeability of living neuronal cells identified giant membrane depolarization and subsequent cell death evoked by the protein-like PAMAM G5-NH₂ dendrimer. Structural changes observed by applying SFG, SAXS, transmission electron microscopy (TEM) techniques, and molecular dynamics calculations indicate interactions of G5-NH₂ with model membranes. These interactions suggest the hypothesis that G5-NH₂ inserts in the plasma membrane forming specific Na⁺ ion-permeable channels. In this way, we were able to attribute specific and irreversible action of PAMAM dendrimer G5-NH₂ to the formation of Na⁺ ion-permeable channels in neuronal plasma membrane [13]. The bright side of the facet may be some potential antibacterial propensity against resistant strains possibly ascribed to PAMAM G2-NH₂ [20] or G5-NH₂ dendrimer embedding into the bacterial cell envelope (wall and/or plasma membrane). The Na⁺ channel-forming tendency together with the observed obstructive effects of PAMAM dendrimer G5-NH₂ on E. coli proliferation but not on erythrocytes [13] together with the known
antibacterial effect of gramicidin and related peptides calls
the ion channel-forming predisposition into a common
antiresistant mechanism of action, constituting the future
for a postantibacterial era. Findings that resistance of Klebsiella
pneumoniae and Escherichia coli strains towards extended-
spectrum beta-lactams was partly due to the loss of the porin
OmpK35 [60] may be conjectured.

6. Unique Biodistribution of NMs and
Pertaining Model Systems to Study
Nanotoxicity

NMs have unique biodistribution due to their highly differ-
ent pharmacokinetic properties as compared to small drug
molecules [61–64]. In predicting toxicity of drug molecules,
well-tested and validated assays are available. Uncritical
applications of these assays to toxicity evaluation of NMs,
however, require caution due to distinguishable pharma-
cokinetics of NMs. NMs may possibly be transported in
the body via the lymphatic system that complicates their
pharmacokinetic analysis based on blood sampling and also
exposes lymphoid tissue to higher concentrations than would
be seen secondary to distribution from blood [38]. It has been
shown that, for NMs, decline in blood concentrations can be
related to the compound movement into tissues where fur-
ther excretion does not occur. This way NMs can be trapped
in reticuloendothelial system, bound to tissue proteins, or
show postdistributional aggregation. In these cases, blood
half-life may paradoxically be relatively short despite the
prolonged body persistence [65]. For example, a complete
lack of excretion of quantum dots has been demonstrated
28 days after their application [66]. Although plasma half-
life was short, there was a continued redistribution from
body sites to liver and kidney throughout 28 days [66].
For many NMs, liver has been proved to be one of the
final deposits amongst organ tissues. However, in contrast
to small organic molecules, NMs accumulated mostly in the
Kupffer cells but not in the hepatocytes ([67] and Figure 2).
It has also been shown that with a decrease in the blood
concentrations of some NMs, liver and spleen concentrations
significantly increased. These findings suggest that these NMs
were opsonized and cleared from the blood by circulating
phagocytes and tissue macrophages such as hepatic Kupffer
cells, neural microglia, and spleen macrophages [21, 61,
64, 68, 69]. It is to note that nanoinjection of drug
molecules or using NMs for their targeting might enhance
drug permeation across the blood-brain barrier changing
their biodistribution [70]. In a physiological environment
NMs are immediately coated by a dynamical layer of proteins,
leading to a protein “corona” [71]. Protein binding is one of
the key elements affecting biodistribution, biocompatibility,
and therapeutic efficacy of the NMs [72, 73]. These interac-
tions may alter protein conformations, as well. The plasma
protein adsorption on NMs, influencing its uptake into cells
from the bloodstream, strongly depends on the particle size
and physicochemical properties of the NM. Interaction of
various NMs with the most abundant human serum albumin
(HSA) has been investigated [74, 75]. Systematic studies on

the interaction of the main drug binding components of
human plasma HSA or alpha1-acid glycoprotein (AGP) with
NMs may possibly influence not only the free concentrations
of exogenous and endogenous ligands [76, 77], however, the
biodistribution of NMs as well.

6.1. Seven Layers of Nanotoxicity Understanding. In selecting
the most appropriate parameters for the assessment of poten-
tial toxic effects of NMs, we suggest to apply existing safety
assessment protocols (http://ncl.cancer.gov/assay_cascade
.asp) as well as exploring novel pertaining functional model
systems. Understanding nanotoxicity of NMs requires rami-
fying series of knowledge, including preparation, biodistribu-
tion, metabolism and pharmacokinetics, toxicological profile,
and immunological consequences [7]. Further nanotoxicity
research underlying biomedical applications could focus on:

(1) the rigorous examination of the physical, physico-
chemical, and chemical nanoscale characteristics fea-
turing a selected set of known “nontoxic” and “toxic”
standard NMs in order to establish “nanotraits” of
NMs under consideration (Figure 4, Block 1); beside
their pharmaceutical applications, liposomes can also
be used as in vitro model systems to predict the
toxic effects of other NMs. The complex structural,
morphological, and thermodynamic studies of both uni-
and multilamellar vesicles in the presence of
NMs (dendrimers, quantum dots, etc.) could be
able to conclude lipid bilayer interferences projecting
possible NM mechanisms of action on the cellular
plasma membrane;

(2) the establishment and characterization of biological
models of increasing complexity (cellular, tissue, and
organism levels), including human cell-based nonan-
imal in vitro models such as induced pluripotent stem
cells in order to establish biodistribution (Figure 4,
Block 2);

(3) the disclosure of the NM trait-related biological
properties and mechanisms of NM toxicity by using
and further developing model systems and comparing
“nontoxic” and “toxic” standard NMs (Figure 4, Block
3): researchers may want to further (i) monitoring
mitochondrial (dys)functions [15, 19, 78]; (ii) assaying
special organs with limited regeneration capacity, for
example, acute/cultured brain tissue slices to assess
short- and medium-term NM effects, asking for
proper functioning of neurons [11, 15, 35] and glia
[12, 15] or the blood-brain barrier (BBB: [79, 80]);
(iii) following activation/inactivation of microglia
subtypes, providing information on potential neu-
roinflammatory effects of NMs [81, 82] completed by
(iv) assaying hepatotoxic effect of NMs by measuring
basic hepatic functions, such as transport of bile salts
and bilirubin through the basolateral and canalic-
ular membranes via the SLCOs, SLC10A1, ABCC3,
ABCB11, and ABCC2 transporters, respectively, in
sandwich coculture of hepatocytes [83–85] with or
without of Kupffer cell subtypes [21, 62, 86], (see

BioMed Research International 5
Standard work-scheme for safety assessment of nanomaterials

(1) Characterization of nanomaterials

- Physical, physicochemical and chemical examination of NMs (e.g., PLGA, liposomes, dendrimers, and chitosan):
 - NMR
 - SAXS
 - TEM, FF-TEM
 - Dynamic light scattering
 - Molecular dynamics calculations
 - Etc.

(2) Bio-distribution of nanomaterials

- Organ level (e.g., PET, SPECT-CT, and near-infrared in vivo fluorescent imaging)
- Cellular level (e.g., in vivo/in vitro fluorescent imaging, synchrotron radiation-based FTIR, and X-ray)
- Subcellular level (e.g., FF-TEM, SFG, and in vitro fluorescent imaging)

(3) Functional toxicity platforms

- Mitochondrial function (oxidative stress)
- Brain cell function (neurons, astrocytes, microglia)
- Liver function (hepatocytes, Kupffer cells)
- Blood serum interactions
- Human multidrug transporters (chemodefense)
- Liposomes (membrane interactions)

(4) Validation, optimization

- Comparing standard and modified NMs
- Validation of nanotoxicity prediction by evaluation of modified NMs
- Release of a less toxic modified NM for further processing

(5) Validation and optimization of NMs

- Validating nanotoxicity prediction by evaluating modified NMs
- Release of a less toxic modified NM for further processing

(6) Comparing standard and modified NMs

- Comparing standard and modified NMs
- Validation of nanotoxicity prediction by evaluation of modified NMs
- Release of a less toxic modified NM for further processing

Figure 4: Suggested work-scheme for safety assessment of nanomaterials.

also Figures 1 and 2); (v) investigations of the altered bile acid regulation of the function of the human multidrug transporter expressed in model systems by the presence of NMs [87, 88]; (vi) investigating the interactions between NMs and blood serum or plasma [89, 90];

(4) the validation of nanotoxicity prediction through evaluation of NMs modified according to the new knowledge and understanding gained through in vivo studies (Figure 4, Block 4): after more than 250 different nanoparticle analyses, researchers of the Nanotechnology Characterization Laboratory at the National Cancer Institute have addressed issues of concerns, comprising sterility and endotoxin contamination, proper specification and purity, biocompatibility, uniformity of NM batches, and stability monitoring [7];

(5) the iterative establishment of standard work-scheme for the safety assessment of NMs (Figure 4, Blocks 1–4): the multidisciplinary approach involving physical, physicochemical, and chemical characterization of NMs, followed by determination of biodistribution on multiple levels of complexity and assessing the toxicity of the well-described NMs on functional nanotoxicity platforms is expected to generate deeper understanding of the interactions between NMs and biological environments. The gained knowledge may eventually lead to the release of less toxic modifications of NMs providing "proof-of-concept" of prediction;

(6) the establishment and running of publicly available information sources addressing nanotoxicity that provide in-depth experimental data for researchers and industrial players: it is also advisable to use this channel to inform the lay audience.

7. Future Outlook

Potential environmental toxicity of NMs may have a major impact on their further development and applications. To focus on the discovery of toxic effects of widely used NMs requires multidisciplinary research. NMs—applied in electronics, solar energy capturing, or chemistry to areas of biotechnology and medicine—are supposed to be thoroughly
characterized first. Next, examination of NM distribution in live tissue and the blood should be combined with the study of immediate organ-level effects especially regarding the function of the brain and the liver. We suggest a range of biochemical, cellular, and immunological processes to be explored in order to provide information on the early effects of NMs on some basic functions and chemical defense mechanisms. Understanding of long-term nanotoxicity is also supposed to be achieved by studying effects of NMs on the development, cell differentiation, metabolism, and genetic stability.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This work was supported by Grants ERA-Chemistry OTKA 102166 and KMR_12-1-2012-0112 TRANSRAT. Zoltán Varga thanks the Nanobiotechnology and In Vivo Imaging Center of the Semmelweis University and CROMed Ltd. for the help with the in vivo biodistribution studies.

References

[1] Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR), “European Commission Health & Consumer Protection Directorate-General Directorate C (2006)—Public Health and Risk Assessment C7—Risk assessment,” http://ec.europa.eu/health/scientific_committees/ emerging/index_en.htm.

[2] S. S. Mukhopadhyay, “Nanotechnology in agriculture: prospects and constraints,” Journal of Nanotechnology, Science and Applications, vol. 7, pp. 63–71, 2014.

[3] L. Liu, S. Ouyang, and J. Ye, “Gold-nanorod-photosensitized titanium dioxide with wide-range visible-light harvesting based on localized surface plasmon resonance,” Angewandte Chemie—International Edition, vol. 52, no. 26, pp. 6689–6693, 2013.

[4] S. Prasad, “Nanobiosensors: the future for diagnosis of disease?” Nanobiosensors in Disease Diagnosis, vol. 3, pp. 1–10, 2014.

[5] M. S. Singh and S. Bhaskar, “Nanocarrier-based immunotherapy in cancer management and research,” ImmunoTargets and Therapy, vol. 3, pp. 121–134, 2014.

[6] C. Wang, M. Osada, Y. Ebina et al., “All-nanosheet ultrathin capacitors assembled layer-by-layer via solution-based processes,” ACS Nano, vol. 8, no. 3, pp. 2658–2666, 2014.

[7] R. M. Crist, J. H. Grossman, A. K. Patri et al., “Common pitfalls in nanotechnology: lessons learned from NCI’s Nanotechnology Characterization Laboratory,” Integrative Biology, vol. 5, no. 1, pp. 66–73, 2013.

[8] V. Stone, S. Pozzi-Mucelli, L. Tran et al., “TTS-NANO—prioritising nanosafety research to develop a stakeholder driven intelligent testing strategy,” Particle and Fibre Toxicology, vol. 11, no. 1, article 9, 2014.

[9] R. Du, T. Zhong, W.-Q. Zhang et al., “Antitumor effect of iRGD-modified liposomes containing conjugated linoleic acid–paclitaxel (CLA-PTX) on B16-F10 melanoma,” International Journal of Nanomedicine, vol. 9, pp. 3091–3105, 2014.

[10] P. Johansson, R. Jimbo, P. Kjellin, F. Fredrik Currie, B. R. Chrzanovic, and A. Wennerberg, “Biomechanical evaluation and surface characterization of a nano-modified surface on PEEK implants: a study in the rabbit tibia,” International Journal of Nanomedicine, vol. 9, pp. 3903–3911, 2014.

[11] G. Nyitrai, O. Kékesi, I. Pál et al., “Assessing toxicity of polyamidoamine dendrimers by neuronal signaling functions,” Nanotoxicology, vol. 6, no. 6, pp. 576–586, 2012.

[12] G. Nyitrai, L. Héja, I. Jablonkai, I. Pál, J. Visy, and J. Kardos, “Polyamidoamine dendrimer impairs mitochondrial oxidation in brain tissue,” Journal of Nanobiotechnology, vol. 11, no. 1, article 9, 2013.

[13] G. Nyitrai, T. Keszthelyi, A. Bóta et al., “Sodium selective ion channel formation in living cell membranes by polyamidoamine dendrimer,” Biochimica et Biophysica Acta: Biomembranes, vol. 1828, no. 8, pp. 1873–1880, 2013.

[14] X. Rong, W. Yuan, Y. Lu, and X. Mo, “Safety evaluation of poly[lactic-co-glycolic acid]/poly-(lactic-acid) microspheres through intravitreal injection in rabbits,” International Journal of Nanomedicine, vol. 9, pp. 3057–3068, 2014.

[15] E. Sawosz, S. Jaworski, M. Kutwin et al., “Toxicity of pristine graphene in experiments in a chicken embryo model,” International Journal of Nanomedicine, vol. 9, pp. 3913–3922, 2014.

[16] E. Seydoux, B. Rothen-Rutishauser, I. M. Nita et al., “Size-dependent accumulation of particles in lysosomes modulates dendritic cell function through impaired antigen degradation,” International Journal of Nanomedicine, vol. 9, pp. 3885–3902, 2014.

[17] T. Shokuhfar, A. Hamlekhan, J.-Y. Chang, C. K. Choi, C. Sukotjo, and C. Friedrich, “Biophysical evaluation of cells on nanotubular surfaces: the effects of atomic ordering and chemistry,” International Journal of Nanomedicine, vol. 9, pp. 3737–3748, 2014.

[18] L. Wang, C. Wang, J. Jiao et al., “Tolerance-like innate immunity and spleen injury: a novel discovery via the weekly administrations and consecutive injections of PEGylated emulsions,” International Journal of Nanomedicine, vol. 9, pp. 3645–3657, 2014.

[19] S. Wang, Y. Li, J. Fan et al., “The role of autophagy in the neurotoxicity of cationic PAMAM dendrimers,” Biomaterials, vol. 35, pp. 7588–7597, 2014.

[20] X. Xue, X. Chen, X. Mao et al., “Amino-terminated generation 2 poly(amidoamine) dendrimer as a potential broad-spectrum, nonresistance-inducing antibacterial agent,” The AAPS Journal, vol. 15, no. 1, pp. 132–142, 2013.

[21] Y. Xue, Q. Chen, T. Ding, and J. Sun, “SiO$_2$ nanoparticle-induced impairment of mitochondrial energy metabolism in hepatocytes directly and through a Kupffer cell-mediated pathway in vitro,” International Journal of Nanomedicine, vol. 9, pp. 2891–2903, 2014.

[22] C. Zhang, Q. Zhu, Y. Zhou et al., “N-Succinyl-chitosan nanoparticles coupled with low-density lipoprotein for targeted ost-hole -loaded delivery to low-density lipoprotein receptor-rich tumors,” International Journal of Nanomedicine, vol. 9, pp. 2919–2932, 2014.

[23] E. van der Pol, A. N. Böing, P. Harrison, A. Sturk, and R. Nieuwland, “Classification, functions, and clinical relevance of
extracellular vesicles,” *Pharmacological Reviews*, vol. 64, no. 3, pp. 676–705, 2012.

[24] A. Danielyan, Y.-W. Wu, P.-Y. Shih, Y. Dembitskaya, and A. Semyanov, “Denoising of two-photon fluorescence images with Block-Matching 3D filtering,” *Methods*, vol. 68, no. 2, pp. 308–316, 2014.

[25] L. Pascolo, B. Bortot, N. Benseny-Cases et al., “Detection of PLGA-based nanoparticles at a single-cell level by synchrotron radiation FTIR spectromicroscopy and correlation with X-ray fluorescence microscopy,” *International Journal of Nanomedicine*, vol. 9, pp. 2791–2801, 2014.

[26] G. Goerigk and Z. Varga, “Comprehensive upgrade of the high-resolution small-angle neutron scattering instrument KWS-3 at FRM II,” *Journal of Applied Crystallography*, vol. 44, no. 2, pp. 337–342, 2011.

[27] Z. Varga, A. Wacha, U. Vainio, J. Gummel, and A. Bota, “Characterization of the PEG layer of sterically stabilized liposomes: a SAXS study,” *Chemistry and Physics of Lipids*, vol. 165, no. 4, pp. 387–392, 2012.

[28] Z. Varga, A. Wacha, and A. Bota, “Osmotic shrinkage of sterically stabilized liposomes as revealed by time-resolved small-angle X-ray scattering,” *Journal of Applied Crystallography*, vol. 47, part 1, pp. 35–40, 2014.

[29] D.-M. Tang, D.G. Krashnin, S. Najmaei et al., “Nanomechanical cleavage of molybdenum disulphide atomic layers,” *Nature Communications*, vol. 5, article 4631, 2014.

[30] S. Arora, S. K. Swaminathan, A. Kirtane et al., “Synthesis, characterization, and evaluation of poly (D,L-lactide-coglycolide)-based nanof ormulation of miRNA-150: potential implications for pancreatic cancer therapy,” *International Journal of Nanomedicine*, vol. 9, pp. 2933–2942, 2014.

[31] B. Balakrishnan, E. Nance, M. V. Johnston, R. Kannan, and S. Kannan, “Nanomedicine in cerebral palsy,” *International Journal of Nanomedicine*, vol. 8, pp. 4183–4195, 2013.

[32] B. V. Bonifácio, P. B. da Silva, M. A. dos Santos Ramos, K. M. N. Negri, T. M. Bauab, and M. Chorilli, “Nanotechnology-based drug delivery systems and herbal medicines: a review,” *International Journal of Nanomedicine*, vol. 9, no. 1, pp. 1–15, 2013.

[33] F. Danhier, E. Ansorena, J. M. Silva, R. Coco, A. Le Breton, and V. Preat, “PLGA-based nanoparticles: an overview of biomedical applications,” *Journal of Controlled Release*, vol. 161, no. 2, pp. 505–522, 2012.

[34] J.-J. Yao, Y.-Z. Du, J. You, H. Yuan, and F.-Q. Hu, “Efficient gene delivery system mediated by cis-,-conjugated chitosan-g-stearic acid micelles,” *International Journal of Nanomedicine*, vol. 9, no. 1, pp. 2993–3003, 2014.

[35] L. Albertazzi, L. Gherardini, M. Brondi et al., “In vivo distribution and toxicity of PAMAM dendrimers in the central nervous system depend on their surface chemistry,” *Molecular Pharmaceutics*, vol. 10, no. 1, pp. 249–260, 2013.

[36] E. Fröhlich, “The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles,” *International Journal of Nanomedicine*, vol. 7, pp. 5577–5591, 2012.

[37] J. B. Pryor, B. J. Harper, and S. L. Harper, “Comparative toxicological assessment of PAMAM and thio phosphoryl dendrimers using embryonic zebrafish,” *International Journal of Nanomedicine*, vol. 9, no. 1, pp. 1947–1956, 2014.

[38] G. M. Ryan, L. M. Kaminskas, J. B. Bulitta, M. P. McIntosh, D. J. Owen, and C. J. H. Porter, “PEGylated polylsine dendrimers increase lymphatic exposure to doxorubicin when compared to PEGylated liposomal and solution formulations of doxorubicin,” *Journal of Controlled Release*, vol. 172, no. 1, pp. 128–136, 2013.

[39] R. Langer and D. A. Tirrell, “Designing materials for biology and medicine,” *Nature*, vol. 428, no. 6982, pp. 487–492, 2004.

[40] H.-I. Chang and M.-K. Yeh, “Clinical development of liposomal drugs: formulation, characterization, and therapeutic efficacy,” *International Journal of Nanomedicine*, vol. 7, pp. 49–60, 2012.

[41] W. Jiang, R. Lionberger, and L. X. Yu, “*In vitro* and *in vivo* characterizations of PEGylated liposomal doxorubicin,” *Bioanalysis*, vol. 3, no. 3, pp. 333–344, 2011.

[42] J. Szebeni, “Complementary activation-related pseudosialoglycoprotein: a new class of drug-induced acute immune toxicity,” *Toxicology*, vol. 216, no. 2–3, pp. 106–121, 2005.

[43] Y. Ohya, M. Shiratani, H. Kobayashi, and T. Ouchi, “Release behavior of 5-fluorouracil from chitosan-gel nanospheres immobilizing 5-fluorouracil coated with polysaccharides and their cell specific cytotoxicity,” *Journal of Macromolecular Science Part A: Pure and Applied Chemistry*, vol. 31, no. 5, pp. 629–642, 1994.

[44] Y. Hu, Y. Ding, D. Ding et al., “Hollow chitosan/poly(acrylic acid) nanospheres as drug carriers,” *Biomacromolecules*, vol. 8, no. 4, pp. 1069–1076, 2007.

[45] J. Zhang, X. G. Chen, Y. Y. Li, and C. S. Liu, “Self-assembled nanoparticles based on hydrophobically modified chitosan as carriers for doxorubicin,” *Nanomedicine: Nanotechnology, Biology, and Medicine*, vol. 3, no. 4, pp. 258–265, 2007.

[46] Y.-S. Wang, Q. Jiang, R.-S. Li et al., “Self-assembled nanoparticles of cholesterol-modified O-carboxymethyl chitosan as a novel carrier for paclitaxel,” *Nanotechnology*, vol. 19, no. 14, Article ID 145101, 2008.

[47] K. H. Min, K. Park, Y.-S. Kim et al., “Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy,” *Journal of Controlled Release*, vol. 127, no. 3, pp. 208–218, 2008.

[48] L. Illum, “Chitosan and its use as a pharmaceutical excipient,” *Pharmaceutical Research*, vol. 15, no. 9, pp. 1326–1331, 1998.

[49] M. N. V. R. Kumar, R. A. A. Muzzarelli, C. Muzzarelli, H. Sashiwa, and A. J. Domb, “Chitosan chemistry and pharmaceutical perspectives,” *Chemical Reviews*, vol. 104, no. 12, pp. 6017–6084, 2004.

[50] R. P. McGeeary, I. Jablonkai, and I. Toth, “Carbohydrate-based templates for synthetic vaccines and drug delivery,” *Tetrahedron*, vol. 57, no. 41, pp. 8733–8742, 2001.

[51] J. H. Park, G. Saravanakumar, K. Kim, and I. C. Kwon, “Targeted delivery of low molecular drugs using chitosan and its derivatives,” *Advanced Drug Delivery Reviews*, vol. 62, no. 1, pp. 28–41, 2010.

[52] T. Kean and M. Thanou, “Biodegradation, biodistribution and toxicity of chitosan,” *Advanced Drug Delivery Reviews*, vol. 62, no. 1, pp. 3–11, 2010.

[53] N. G. M. Schipper, K. M. Vårum, and P. Artursson, “Chitosans as absorption enhancers for poorly absorbable drugs. 1: influence of molecular weight and degree of acetylation on drug release,” *Pharmaceutical Research*, vol. 13, no. 11, pp. 1686–1692, 1996.

[54] N. G. M. Schipper, K. M. Vårum, P. Stenberg, G. Ocklind, H. Lennermås, and P. Artursson, “Chitosans as absorption enhancers of poorly absorbable drugs. 3: influence of mucus on
absorption enhancement,” *European Journal of Pharmaceutical Sciences*, vol. 8, no. 4, pp. 335–343, 1999.

[55] S. B. Rao and C. P. Sharma, “Use of chitosan as a biomaterial: studies on its safety and hemostatic potential,” *Journal of Biomedical Materials Research*, vol. 34, no. 1, pp. 21–28, 1997.

[56] Y. Kato, H. Onishi, and Y. MacHida, “Evaluation of N-succinyl-chitosan as a systemic long-circulating polymer,” *Biomaterials*, vol. 21, no. 15, pp. 1579–1585, 2000.

[57] K. Temmeraas, S. P. Strand, W. Tian, L. Kenne, and K. M. Vårum, “Preparation and characterisation of fluorescent chitosans using 9-anthraldehyde as fluorophore,” *Carbohydrate Research*, vol. 336, no. 4, pp. 291–296, 2001.

[58] H. Karatas, Y. Aktas, Y. Gursoy-Ozdemir et al., “A nanomedicine transports a peptide caspase-3 inhibitor across the blood-brain barrier and provides neuroprotection,” *Journal of Neuroscience*, vol. 29, no. 44, pp. 13761–13769, 2009.

[59] S. Bayod, J. del Valle, C. Pelegri et al., “Macrophagocytic process was differentially modulated by long-term moderate exercise in rat brain and peripheral tissues,” *Journal of Physiology and Pharmacology*, vol. 65, no. 2, pp. 229–239, 2014.

[60] S. Palasubramaniam, S. Munianty, and P. Navaratnam, “Resistance to extended-spectrum β-lactams by the emergence of SHV-12 and the loss of OmpK35 in *Klebsiella pneumoniae* and *Escherichia coli* in Malaysia,” *Journal of Microbiology, Immunology and Infection*, vol. 42, no. 2, pp. 129–133, 2009.

[61] N. Bertrand and J.-C. Leroux, “The journey of a drug-carrier for targeting, imaging and diagnosis of neurodegenerative diseases,” *Pharmaceutical Research*, vol. 30, no. 10, pp. 2499–2511, 2013.

[62] I. Lynch and K. A. Dawson, “Protein-nanoparticle interactions,” *Nano Today*, vol. 3, no. 1-2, pp. 40–47, 2008.

[63] P. Aggarwal, J. B. Hall, C. B. McLeod, M. A. Dobrovolskaia, and S. E. McNeil, “Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy,” *Advanced Drug Delivery Reviews*, vol. 61, no. 6, pp. 428–437, 2009.

[64] S. Tenzer, D. Docter, I. Kuharev et al., “Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology,” *Nature Nanotechnology*, vol. 8, no. 10, pp. 772–781, 2013.

[65] E. Fröhlich, J. S. Mandeville, C. J. Jennings, R. Sedaghat-Herati, and H. A. Tajmir-Riahi, “Dendrimers bind human serum albumin,” *Journal of Physical Chemistry B*, vol. 113, no. 19, pp. 6986–6993, 2009.

[66] D. Shcharbin, B. Klijnert, V. Mazhul, and M. Bryszewska, “Dendrimer interactions with hydrophobic fluorescent probes and human serum albumin,” *Journal of Fluorescence*, vol. 15, no. 1, pp. 21–28, 2005.

[67] C. Domonkos, I. Fitos, J. Visy, and F. Zsila, “Fatty acid modulated human serum albumin binding of the β-carboline alkaloids norharmane and harmalane,” *Molecular Pharmaceutics*, vol. 10, no. 12, pp. 4706–4716, 2013.

[68] I. Fitos, A. Simon, F. Zsila et al., “Characterization of binding mode of imatinib to human α1-acid glycoprotein,” *International Journal of Biological Macromolecules*, vol. 50, no. 3, pp. 788–795, 2012.

[69] X. Pan, J. Liu, T. Nguyen et al., “The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter,” *Nature Cell Biology*, vol. 15, no. 12, pp. 1464–1472, 2013.

[70] R. Kovács, I. Papageorgiou, and U. Heinemann, “Slice cultures as a model to study neurovascular coupling and blood brain barrier in vitro,” *Cardiovascular Psychiatry and Neurology*, vol. 2011, Article ID 649698, 9 pages, 2011.

[71] J.-S. Liu, J.-H. Wang, J. Zhou et al., “Enhanced brain delivery of lamotrigine with Pluronic P123-based nanocarrier,” *International Journal of Nanomedicine*, vol. 9, pp. 3923–3935, 2014.

[72] O. Butovsky, M. P. Jedrychowski, C. S. Moore et al., “Identification of a unique TGF-β-dependent molecular and functional signature in microglia,” *Nature Neuroscience*, vol. 17, no. 1, pp. 131–143, 2014.

[73] S. M. C. Smith, G. S. Mitchell, S. A. Friedle, C. M. Sibigotro, S. Vinit, and J. J. Watters, “Hypoxia attenuates purinergic P2X receptor-induced inflammatory gene expression in brainstem microglia,” *Hypoxia*, vol. 1, pp. 1–11, 2013.

[74] M. Szabó, Z. Veres, A. Bátaí-Konczos et al., “Statins alter the hepatobiliary transport of unconjugated and conjugated bilirubin in sandwich-cultured rat hepatocytes,” *Toxicology in Vitro*, vol. 28, no. 6, pp. 1136–1143, 2014.

[75] K. Jemmritz, Z. Veres, R. Tugyi, and L. Verczckay, “Biliary efflux transporters involved in the clearance of rosuvastatin in sandwich culture of primary rat hepatocytes,” *Toxicology in Vitro*, vol. 24, no. 2, pp. 605–610, 2010.

[76] K. Jemmritz, Z. Veres, and L. Verczckay, “Contribution of high basolateral bile salt efflux to the lack of hepatotoxicity in rat in response to drugs inducing cholestasis in human,” *Toxicological Sciences*, vol. 115, no. 1, pp. 80–88, 2010.

[77] J. Wan, M. Benkdane, E. Teixeira-Clerc et al., “M2 Kupffer cells promote M1 Kupffer cell apoptosis: a protective mechanism
against alcoholic and nonalcoholic fatty liver disease,” *Hepatology*, vol. 59, no. 1, pp. 130–142, 2014.

[87] Z. Erdei, R. Lőrincz, K. Szebényi et al., “Expression pattern of the human ABC transporters in pluripotent embryonic stem cells and in their derivatives,” *Cytometry Part B: Clinical Cytometry*, vol. 86, no. 5, pp. 299–310, 2014.

[88] Á. Telbisz, C. Hegedűs, A. Váradi, B. Sarkadi, and C. Özyegy-Laczka, “Regulation of the function of the human ABCG2 multidrug transporter by cholesterol and bile acids: effects of mutations in potential substrate and steroid binding sites,” *Drug Metabolism and Disposition*, vol. 42, no. 4, pp. 575–585, 2014.

[89] M. Rahman, S. Laurent, N. Tawil, L. Yahia, and M. Mahmoudi, “Nanoparticle and protein corona. Chapter 2 in Protein-Nanoparticle Interactions,” in *Protein-Nanoparticle Interactions*, vol. 15 of *The Bio-Nano Interface, Springer Series in Biophysics*, pp. 21–44, Springer, Berlin, Germany, 2013.

[90] P. del Pino, B. Pelaz, Q. Zhang, P. Maffre, G. U. Nienhaus, and W. J. Parak, “Protein corona formation around nanoparticles—from the past to the future,” *Material Horizons*, vol. 1, no. 3, pp. 301–313, 2014.