Analysis of Associations between Behavioral Traits and Four Types of Aggression in Shiba Inu

Fumihiro KANEKO1), Sayaka ARATA1), Yukari TAKEUCHI1)* and Yuji MORI1)

1)Laboratory of Veterinary Ethology, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan

(Received 14 February 2013/Accepted 14 May 2013/Published online in J-STAGE 30 May 2013)

ABSTRACT. Canine aggression is one of the behavioral problems for which veterinary behaviorists are most frequently consulted. Despite this, the classification of canine aggression is controversial, and there are several classification methodologies. While the etiology of canine aggression differs among the types of aggression, the behavioral background underlying aggression is not well understood. Behavior trait-based evaluation of canine aggression would improve the effectiveness and efficiency of managing canine aggression problems. We developed a questionnaire addressing 14 behavioral items and items related to four types of canine aggression (owner-, child-, stranger- and dog-directed aggression) in order to examine the associations between behavioral traits and aggression in Shiba Inu. A total of 400 Shiba Inu owners recruited through dog events (n=134) and veterinary hospitals (n=266) completed the questionnaire. Factor analysis sorted the behavioral items from both the event and clinic samples into four factors: “sociability with humans,” “reactivity to stimuli,” “chase proneness” and “fear of sounds.” While “reactivity to stimuli” correlated significantly positively with all of the four types of aggression (P<0.007 to <0.001), “sociability with humans” correlated significantly negatively with child- and stranger-directed aggression (P<0.001). These results suggest that the behavioral traits involved in canine aggression differ among the types of aggression and that specific behavioral traits are frequently simultaneously involved in several types of aggression.

KEYWORDS: aggression, behavior, canine, questionnaire.

doi: 10.1292/jvms.13-0082; J. Vet. Med. Sci. 75(10): 1297–1301, 2013

Canine aggression is a topic of widespread concern, as it may result in serious injuries and have significant social impact. For example, in the United States, it is estimated that more than 4.3 million people are bitten by dogs annually [7], and over 1,000 people visit hospital emergency departments for dog bites each day [6]. Canine aggression is one of the behavioral problems most frequently referred to major veterinary behavior centers at universities in the United States [1] and Spain [5], making it one of the most urgent issues confronting veterinary behavior clinics.

In order to address canine aggression, veterinary behaviorists must determine the appropriate diagnoses and treatments. However, the classification of canine aggression is controversial, and canine aggression may be classified not only according to the dog’s motivation (e.g., territorial- or fear-related aggression) but also with respect to its target (e.g., stranger- or owner-directed aggression) [9]. Short consultations with owners do not always allow identification of the factors that elicit aggression. In addition, behavioral problems accompanied by aggression may involve multiple diagnoses [5], further complicating the attempts of those involved in canine behavioral problems (i.e., veterinary consultants and dog owners) to deal with them properly.

Dog breeds differ in their severities of aggression and propensities to behave aggressively in certain situations, i.e., aggression toward specific targets, such as owners, strangers or other dogs [4]. These breed characteristics are conserved regardless of the cultural or regional identities of the owners [14]. In addition, breeds that tend to direct aggressive behavior toward some targets do not necessarily behave aggressively toward others [4], implying that the etiologies of these aggressive behaviors differ. Determining whether certain behavioral traits are associated with specific types of aggression could increase practitioners’ confidence in diagnosing canine aggression and might also facilitate treatment of the problem.

In this study, we developed a questionnaire concerning behavioral traits seen in ordinary situations that are thought to be involved in canine aggression. Elucidating the behavioral traits associated with different types of aggression may allow us to manage canine aggressive behavior more efficiently and safely. As several behaviors are reported to be associated with aggression in some way, we focused on sociability, fear and reactivity as candidate traits: sociability because it is correlated with aggression in several breeds [13], fear because it can motivate aggressive behavior in many situations, resulting in several classifications of aggression related to fear [1] and reactivity because some reactions to stimuli are associated with aggression [12]. To evaluate the association between those behavioral traits and aggression, we used the Shiba Inu, an indigenous dog breed in Japan, which has been kept as a hunting dog or a watchdog and reported to show a higher tendency to display aggression toward people and dogs relative to other breeds [14]. These
Development of the questionnaire: The questionnaire solicited general information (age, sexual status and housing condition) and responses concerning 14 behavioral items and four items related to aggression towards the owners, children, strangers and other dogs (Table 1). The aggression-related items were listed on a separate page from the behavioral items. Owners were asked to score their dogs’ responses within the last three months using 5-point frequency scales [5=always (100%), 4=often (99–61%), 3=sometimes (60–40%), 2=occasionally (39–1%), 1=never (0%)] or as “unknown.” “Reactivity to feet” was excluded from the factor analysis, because of the low response rates (94.8% and 83.8% in the event and clinic samples, respectively).

Table 1. The 18 items included in the questionnaire

Item	Description
Behavioral trait	
Sociability with men	Does the dog willingly approach unfamiliar men while out on a walk?
Sociability with women	Does the dog willingly approach unfamiliar women while out on a walk?
Sociability with children	Does the dog willingly approach unfamiliar children while out on a walk?
Fear of heavy traffic	Does the dog show any behaviors such as bending lower, flattening his/her ears, trembling, or trying to get behind in heavy traffic?
Fear of thunder	Does the dog show any behaviors such as bending lower, flattening his/her ears, trembling, or trying to get behind during thunderstorms, firework displays, or similar events?
Fear of engine noises	Does the dog show any behaviors such as bending lower, flattening his/her ears, trembling, or trying to get behind in response to sudden or loud engine noises from automobiles or motorcycles?
Chase proneness to cats	Does the dog pounce on or chase cats?
Chase proneness to birds	Does the dog pounce on or chase pigeons, crows, or other birds?
Chase proneness to other creatures	Does the dog pounce on or chase worms, lizards, frogs, or other moving small animals?
Chase proneness to falling leaves	Does the dog pounce on or chase leaves or other wind-blown objects?
Reactivity to hands	Does the dog pounce on or stare at movements such as passing by or moving hands in front of it while it is resting?
Reactivity to feet	Does the dog pounce on or stare at movements such as swinging feet under the table?
Reactivity to clattering dishes	Does the dog bark or come to investigate in response to sudden or loud noises of dishes, pans, or pots being dropped?
Reactivity to phone ringing	Does the dog bark or come to investigate when the telephone rings?
Aggression	
Owner-directed aggression	Does the dog growl aggressively at or bite household members?
Child-directed aggression	Does the dog growl aggressively at or bite children outside of the household?
Stranger-directed aggression	Does the dog growl aggressively at or bite unfamiliar men/women?
Dog-directed aggression	Does the dog growl aggressively at or bite unfamiliar dogs?

The questionnaire items are listed in the order in which they appeared on the actual questionnaire sheet. The aggression items were on a separate sheet from the behavioral trait items. The questions were answered using a frequency scale [5=always (100%), 4=often (99–61%), 3=sometimes (60–40%), 2=occasionally (39–1%), 1=never (0%)] or as “unknown.” “Reactivity to feet” was excluded from the factor analysis, because of the low response rates (94.8% and 83.8% in the event and clinic samples, respectively).

F. KANEKO, S. ARATA, Y. TAKEUCHI AND Y. MORI

CHARACTERISTICS OF SHIBA INU DOGS

Shiba Inu dogs are characterized by their alertness, intelligence, and affection for their owners. They are known for their loyalty and strong bond with their human companions. Shiba Inu dogs require a lot of exercise and mental stimulation to stay healthy and happy. They are also known for their friendly and obedient nature, making them excellent companions for families. Shiba Inu dogs are also known for their strong sense of smell, which helps them in tracking game and other activities. They are also known for their excellent hunting skills, which are a result of their being bred for centuries for hunting small animals.

MATERIALS AND METHODS

The questionnaire included a range of behavioral items and questions related to aggression, sociability, and reactivity towards various stimuli. The survey included questions about the dog’s behavior in different situations, such as when encountering strangers, other dogs, and specific environmental stimuli. The questionnaire was administered to dog owners to gather data on their dogs’ behavior in various contexts.

Data collection: The survey was distributed to dog owners in Japan to gather information on their dogs’ behavior. A total of 400 questionnaires were distributed, and 266 were returned, with a response rate of 66.5%. The sample included 134 event samples and 266 clinic samples.

Data analysis: The data were analyzed using statistical methods to identify patterns and trends in the dog owners’ responses. The analysis included descriptive statistics, frequency distributions, and factor analysis.

The questionnaire items are listed in the order in which they appeared on the actual questionnaire sheet. The aggression items were on a separate sheet from the behavioral trait items. The questions were answered using a frequency scale [5=always (100%), 4=often (99–61%), 3=sometimes (60–40%), 2=occasionally (39–1%), 1=never (0%)] or as “unknown.” “Reactivity to feet” was excluded from the factor analysis, because of the low response rates (94.8% and 83.8% in the event and clinic samples, respectively).

The questionnaire items are listed in the order in which they appeared on the actual questionnaire sheet. The aggression items were on a separate sheet from the behavioral trait items. The questions were answered using a frequency scale [5=always (100%), 4=often (99–61%), 3=sometimes (60–40%), 2=occasionally (39–1%), 1=never (0%)] or as “unknown.” “Reactivity to feet” was excluded from the factor analysis, because of the low response rates (94.8% and 83.8% in the event and clinic samples, respectively).
Because of its inconsistent contribution to the factors in the two groups. The items constituting each factor are shown in boldface and the numbers of dogs in parentheses. a) This item was excluded from further analysis.

Table 2. Factor loading of each questionnaire item

Questionnaire item	Event (n=106)	Clinic (n=196)							
	Sociability with humans	Chase proneness	Reactivity to stimuli	Fear of sounds	Sociability with humans	Chase proneness	Reactivity to stimuli	Fear of sounds	
Sociability with women	0.919	0.058	–0.055	–0.015	0.061	0.922	0.126	–0.022	0.018
Sociability with men	0.912	0.093	–0.065	–0.058	–0.065	0.918	0.116	–0.001	0.012
Sociability with children	0.841	0.077	0.048	–0.139	0.046	0.856	0.118	0.013	–0.071
Chase proneness to cats	–0.028	0.834	–0.052	0.070	–0.003	0.095	0.826	–0.174	0.082
Chaseproneness to other creatures	0.081	0.788	0.130	0.144	0.190	0.091	0.777	0.219	–0.059
Chase proneness to birds	0.040	0.673	0.242	0.019	–0.311	0.102	0.826	0.050	–0.024
Chaseproneness to falling leaves	0.324	0.584	0.247	–0.108	0.031	0.156	0.641	0.397	–0.074
Reactivity to phone ringing	0.021	0.131	0.758	0.279	–0.017	–0.178	0.167	0.609	–0.101
Reactivity to clattering dishes	–0.015	0.079	0.750	0.015	–0.105	0.070	0.148	0.739	0.160
Reactivity to hands	–0.083	0.161	0.723	–0.144	0.320	0.060	0.065	0.673	0.172
Fear of heavy traffic	–0.040	0.060	0.045	0.888	–0.105	0.041	–0.113	0.221	0.765
Fear of engine noises	–0.234	0.085	0.098	0.711	0.390	–0.007	–0.063	0.202	0.876
Fear of thunder a)	–0.021	–0.016	0.039	0.068	0.897	–0.070	0.098	–0.160	0.774
Eigenvalue	2.964	2.639	1.318	1.291	1.045	1.983	3.223	1.321	2.265
Contribution ratio	22.80%	20.30%	10.10%	9.90%	8.00%	15.30%	24.80%	10.20%	17.40%
Cronbach’s α	0.886	0.730	0.645	0.599	–	0.897	0.800	0.518	0.727

The items constituting each factor are shown in boldface and the numbers of dogs in parentheses. a) This item was excluded from further analysis, because of its inconsistent contribution to the factors in the two groups.

The coefficients of correlation between the behavioral traits and types of aggression are summarized in Table 4. While “sociability with humans” correlated significantly negatively with child- and stranger-directed aggression (P<0.001), “reactivity to stimuli” correlated significantly positively with all four types of aggression (P=0.007 to <0.001).

RESULTS

Data analysis: Factor analysis of the 13 behavioral items resulted in the extraction of five and four factors each in the event and clinic samples, respectively, which accounted for 71.1 and 67.7% of the respective common variance values (Table 2). The factor structures were identical in both samples, except for the fear-related factors; although the questionnaire items “fear of engine noises,” “fear of thunder” and “fear of heavy traffic” were sorted into a single factor in the clinic samples, “fear of thunder” was separated from the other two items in the event samples. Therefore, the questionnaire item “fear of thunder” was excluded from further analysis. We named the four common factors according to the questionnaire items categorized, i.e., “sociability with humans,” “chase proneness,” “reactivity to stimuli” and “fear of sounds.” The Cronbach’s α coefficients ranged from 0.518 to 0.897 (Table 2). “Sociability with humans” and “chase proneness” exceeded the generally accepted threshold of reliability (Cronbach’s α≥0.7) in both samples [3].

As sexual status, housing conditions and sampling source did not significantly affect any of the behavioral factors as investigated using the 2-tailed Kruskal-Wallis H test or the Mann-Whitney U test (Table 3), these subgroup data were combined into a single group for the correlation analysis.

The coefficients of correlation between the behavioral traits and types of aggression are summarized in Table 4.

While “sociability with humans” correlated significantly negatively with child- and stranger-directed aggression (P<0.001), “reactivity to stimuli” correlated significantly positively with all four types of aggression (P=0.007 to <0.001).

DISCUSSION

This study used a questionnaire to investigate the associations between four behavioral trait factors and four types of aggression in Shiba Inu. Of the four behavioral traits, “sociability with humans” correlated significantly with child- and stranger-directed aggression, whereas “reactivity to stimuli” correlated significantly with all four types of aggression. These results suggest that the behavioral traits involved in canine aggression differ among the types of aggression and that specific behavioral traits are frequently simultaneously involved in several types of aggression.

The negative correlation between “sociability with humans” and child/stranger-directed aggression is consistent with the results of a study reported by Duffy et al. [4], in which stranger-directed fear was shown to correlate positively with stranger-directed aggression using the Canine Behavioral Assessment and Research Questionnaire (C-BARQ) on several breeds. Svartberg [13] conducted a behavior test, the “dog mentality assessment” (DMA), on various breeds in conjunction with the C-BARQ and found sociability as measured by the DMA to correlate negatively with stranger-directed aggression as assessed by the C-BARQ. As fear aggression is a normal and instinctive behavior in dogs and the Shiba Inu has historically been used as a watchdog as well as a hunting dog [15], it seems reasonable that the less-sociable dogs are more aggressive toward unfamiliar people.

In contrast, the correlation between “reactivity to stimuli”...
Table 3. Aggression scores or behavioral trait points according to sexual status, housing condition and sampling source

Sexual status	Owner-directed aggression	Child-directed aggression	Stranger-directed aggression	Dog-directed aggression	Sociability with humans	Chase proneness	Reactivity to stimuli	Fear of sounds
Male	1.57 ± 0.10	1.46 ± 0.10	1.67 ± 0.12	2.35 ± 0.14	2.56 ± 0.12	3.08 ± 0.12	1.95 ± 0.10	1.63 ± 0.09
Castrated male	1.72 ± 0.10	1.53 ± 0.11	1.85 ± 0.14	2.26 ± 0.15	2.25 ± 0.11	3.11 ± 0.12	1.79 ± 0.09	1.68 ± 0.10
Female	1.51 ± 0.09	1.58 ± 0.10	1.79 ± 0.11	2.03 ± 0.11	2.48 ± 0.11	3.10 ± 0.10	1.89 ± 0.08	1.74 ± 0.09
Spayed female	1.52 ± 0.07	1.43 ± 0.08	1.54 ± 0.09	2.23 ± 0.10	2.45 ± 0.10	3.17 ± 0.09	1.88 ± 0.08	1.88 ± 0.10
P-value a)	0.111	0.598	0.226	0.277	0.351	0.910	0.754	0.670
Inside	1.57 ± 0.07	1.44 ± 0.07	1.59 ± 0.07	2.08 ± 0.09	2.44 ± 0.08	3.05 ± 0.08	1.87 ± 0.06	1.77 ± 0.07
Both	1.62 ± 0.14	1.46 ± 0.17	1.97 ± 0.21	2.61 ± 0.21	2.32 ± 0.15	3.24 ± 0.17	1.88 ± 0.13	1.80 ± 0.07
Outside	1.43 ± 0.10	1.73 ± 0.16	1.88 ± 0.17	2.25 ± 0.17	2.41 ± 0.15	3.12 ± 0.16	1.80 ± 0.11	1.68 ± 0.13
P-value a)	0.482	0.211	0.145	0.043	0.802	0.685	0.811	0.479
Event	1.65 ± 0.08	1.62 ± 0.09	1.78 ± 0.10	2.08 ± 0.11	2.48 ± 0.09	3.21 ± 0.09	1.99 ± 0.08	1.78 ± 0.07
Clinic	1.51 ± 0.05	1.43 ± 0.06	1.65 ± 0.07	2.26 ± 0.07	2.42 ± 0.07	3.07 ± 0.06	1.83 ± 0.05	1.73 ± 0.06
P-value a)	0.125	0.077	0.295	0.061	0.569	0.222	0.203	0.116

Values are the mean ± SE, and the numbers of animals are shown in parentheses. a) P-values were calculated using the two-tailed Kruskal–Wallis H test or the Mann–Whitney U test. The level of significance was set at P<0.05/4=0.0125.
Table 4. Analysis of Spearman correlation between aggression and behavioral traits

	Rho	P-value	n
Owner-directed aggression			
Sociability with humans	0.026	0.614	392
Chase proneness	0.098	0.554	393
Reactivity to stimuli	0.217	<0.001*	391
Fear of sounds	−0.045	0.373	391
Child-directed aggression			
Sociability with humans	−0.166	0.001*	375
Chase proneness	−0.030	0.556	376
Reactivity to stimuli	0.173	0.001*	373
Fear of sounds	−0.002	0.968	365
Stranger-directed aggression			
Sociability with humans	−0.279	<0.001*	377
Chase proneness	−0.018	0.727	378
Reactivity to stimuli	0.211	<0.001*	376
Fear of sounds	0.002	0.963	377
Dog-directed aggression			
Sociability with humans	−0.122	0.017	387
Chase proneness	0.043	0.401	388
Reactivity to stimuli	0.137	0.007*	385
Fear of sounds	−0.015	0.770	386

n: The number of dogs. *The P-value reached the level of significance after the Bonferroni correction (P<0.0125).

ACKNOWLEDGMENTS. We thank the veterinarians and the staff of their veterinary hospitals who participated in this survey for their cooperation in administering the questionnaires to the dog owners. We also appreciate the assistance of Drs. Akiko Goto and Junko Norota in conducting the questionnaire surveys. This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (21380172).

REFERENCES

1. Bamberger, M. and Houpt, K. A. 2006. Signalment factors, comorbidity, and trends in behavior diagnoses in dogs: 1,644 cases (1991–2001). *J. Am. Vet. Med. Assoc.* 229: 1591–1601. [Medline] [CrossRef]
2. Bland, J. M. and Altman, D. G. 1995. Multiple significance tests: the Bonferroni method. *Br. Med. J.* 310: 170. [Medline] [CrossRef]
3. Bland, J. M. and Altman, D. G. 1997. Statistics notes: Cronbach’s alpha. *Br. Med. J.* 314: 572. [CrossRef]
4. Duffy, D. L., Hsu, Y. and Serpell, J. A. 2008. Breed differences in canine aggression. *Appl. Anim. Behav. Sci.* 114: 441–460. [CrossRef]
5. Fatjo, J., Amat, M., Mariotti, V. M., de la Torre, J. L. R. and Manteca, X. 2007. Analysis of 1040 cases of canine aggression in a referral practice in Spain. *J. Vet. Behav.* 2: 158–165. [CrossRef]
6. Gilchrist, J., Gotsch, K., Annest, J. and Ryan, G. 2003. Nonfatal dog bite-related injuries treated in hospital emergency departments—United States, 2001. *Morb. Mortal. Wkly. Rep.* 52: 605–610.
7. Gilchrist, J., Sacks, J., White, D. and Kresnow, M. 2008. Dog bites: still a problem? *Inj. Prev.* 14: 296–301. [Medline] [CrossRef]
8. Goodloe, L. P. and Borchelt, P. L. 1998. Companion dog temperament traits. *J. Appl. Anim. Welf. Sci.* 1: 303–338. [Medline] [CrossRef]
9. Houpt, K. A. 2006. Terminology think tank: terminology of aggressive behavior. *J. Vet. Behav.* 1: 39–41. [CrossRef]
10. Hsu, Y. and Serpell, J. A. 2003. Development and validation of a questionnaire for measuring behavior and temperament traits in pet dogs. *J. Am. Vet. Med. Assoc.* 223: 1293–1300. [Medline] [CrossRef]
11. Parker, H. G., Kim, L. V., Sutter, N. B., Carlson, S., Lorentzen, T. D., Malek, T. B., Johnson, G. S., DeFrance, H. B., Ostrander, E. A. and Kruglyak, L. 2004. Genetic structure of the purebread domestic dog. *Science* 304: 1160–1164. [Medline] [CrossRef]
12. Podberscek, A. L. and Serpell, J. A. 1997. Environmental influences on the expression of aggressive behaviour in English Cockerspaniels. *Appl. Anim. Behav. Sci.* 52: 215–227. [CrossRef]
13. Svartberg, K. 2005. A comparison of behaviour in test and in everyday life: evidence of three consistent boldness-related personality traits in dogs. *Appl. Anim. Behav. Sci.* 91: 103–128. [CrossRef]
14. Takeuchi, Y. and Mori, Y. 2006. A comparison of the behavioral profiles of purebred dogs in Japan to profiles of those in the United States and the United Kingdom. *J. Vet. Med. Sci.* 68: 789–796. [Medline] [CrossRef]
15. Takeuchi, Y., Kaneko, F., Hashizume, C., Masuda, K., Ogata, N., Maki, T., Inoue-Murayama, M., Hart, B. L. and Mori, Y. 2009. Association analysis between canine behavioural traits and genetic polymorphisms in the Shiba Inu breed. *Anim. Genet.* 40: 616–622. [Medline] [CrossRef]

and all four types of aggression seems to be the new information. While the different types of aggression are expected to reflect different motivations [9], retrospective studies in animal behavior practices have reported comorbidity of several types of aggression [1, 5], implying the presence of common underlying factors among the diagnostic categories of canine aggression. “Reactivity to stimuli” in this study indicates the tendency to exhibit active behavior in response to sudden movements or sounds (the specific traits constituting the factor), and it correlated positively to similar extents with all four types of aggression. One possible hypothesis is that “reactivity to stimuli” is one of the behavioral traits that predisposes to aggressive behavior and that highly reactive dogs are readier to express aggression in various situations.

The breed used in this study, the Shiba Inu, is genetically closer to wolves than are most western dogs [11], and the dog expert survey classified it as “high aggression, high reactivity and medium trainability” [14]. In behavior clinical practice, we have been often encountered Shiba Inu that show aggression triggered by sudden movement or sound. Given these characteristics of Shiba Inu, we cannot necessarily extrapolate the correlations shown in this study, especially those between “reactivity to stimuli” and the four types of aggression, to other breeds. Therefore, the questionnaire developed in this study appears to be useful for conducting similar studies with other dog breeds, and thereby to examine whether the association found between behavioral traits and aggression is common in dogs or rather specific to Shiba Inu breed. The information of behavioral traits associated with aggression would provide more accurate description of and thereby more feasible ways of treatment for each individual in various cases of aggressive behavior problems in dogs.