A High Content in Lipid-modified Peripheral Proteins and Integral Receptor Kinases Features in the *Arabidopsis* Plasma Membrane Proteome*§

Anne Marmagne‡§¶, Myriam Ferro§, Thierry Meinnel‡, Christophe Bruley||, Lauriane Kuhn||, Jéréme Garin||, Hélène Barbier-Brygoo‡, and Geneviève Ephritikhine‡**‡‡

The proteomics of plasma membrane has brought to date only scarce and partial information on the actual protein repertoire. In this work, the plant plasma membrane proteome of *Arabidopsis thaliana* was investigated. A highly purified plasma membrane fraction was washed by NaCl and Na₂CO₃ salts, and the insoluble fractions were further analyzed by nano-LC-MS/MS. With 446 proteins identified, we hereby describe the largest plasma membrane proteome diversity reported so far. Half of the proteins were predicted to display transmembrane domains and/or to be anchored to the membrane, validating *a posteriori* the pertinence of the approach. A fine analysis highlighted two main specific and novel features. First, the main functional category is represented by a majority of as yet unreported signaling proteins, including 11% receptor-like kinases. Second, 16% of the identified proteins are predicted to be lipid-modified, specifically involving double lipid linkage through N-terminal myristoylation, C-terminal prenylation, or glycosylphosphatidylinositol anchors. Thus, our approach led for the first time to the identification of a large number of peripheral proteins as part of the plasma membrane and allowed the functionality of the plasma membrane in the cell context to be reconsidered. *Molecular & Cellular Proteomics* 6:1980–1996, 2007.

The plasma membrane (PM) has a peculiar status among membrane systems as it is directly in connection with the extracellular environment. Consequently this membrane is an essential element for cell primary functions, such as cellular differentiation or proliferation, and a privileged target for abiotic and biotic factors. To achieve all these functions, a large variety of proteins is necessary, including transport proteins, receptor proteins, and also proteins involved in signaling or cellular traffic. Schematically two types of membrane proteins occur. Integral proteins span the membrane and strongly interact with it usually through at least one hydrophobic transmembrane α-helix or less frequently with a β-barrel structure. Insertion of integral proteins into the membrane often needs the so-called secretion pathway through the endoplasmic reticulum and involves the use of an N-terminal signal peptide. When uncleaved by signal peptidase, the hydrophobic composition of the signal peptide can also participate in membrane binding. Peripheral proteins represent the second class of membrane proteins. They do not have typical hydrophobic domains and interact with the membrane with only one domain. Such an interaction may involve amphipathic helices, hydrophobic loops, and covalent links to lipid anchors, electrostatic interactions with the lipids of the membrane, or even protein-protein interactions.

The investigation of a membrane proteome remains challenging with respect to both direct analyses (e.g. biochemical fractionation and proteomics analyses) and *in silico* approaches. Because of the existence of structural features such as the occurrence of a signal peptide or transmembrane (TM) α-helices, predictive analysis using bioinformatics has been a powerful means to predict membrane proteomes. For instance, 20–30% of the predicted ORFs of a typical animal or plant proteome are usually predicted to display at least one TM helix (1). A combination of various criteria, based on both the amino acid sequence of an ORF including prediction of endoplasmic targeting and the occurrence of TM helices, led to the proposal that as much as 25% of the ORFs of the plant factor; LRR, leucine-rich repeat; RLK, receptor-like kinase; SNARE, soluble N-ethylmaleimide-sensitive factor attachment protein receptor; HIR, hypersensitive induced reaction protein; ER, endoplasmic reticulum; CYP, cyclophilin; SEC, Sec protein export pathway; RAB, Ras related in brain.

From the ‡Institut des Sciences du Végétal, CNRS-UPR 2355, Bât 22, avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France, |Commissariat à l’Energie Atomique, Direction des Sciences du Vivant, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire d’Étude de la Dynamique des Protéomes, INSERM U880, and Université Joseph Fourier, F-38054 Grenoble, France, and *Unité de Formation et de Recherche Biologie Sciences de la Nature, Université Paris Diderot Paris 7, 2 place Jussieu, 75251 Paris cedex 05, France

Received, March 7, 2007, and in revised form, July 10, 2007

Published, MCP Papers in Press, July 20, 2007, DOI 10.1074/mcp.M700099-MCP200

1 The abbreviations used are: PM, plasma membrane; GPI, glycosylphosphatidylinositol; TM, transmembrane; TAIR, The Arabidopsis Information Resource; NCBI, National Center for Biotechnology Information; PPDB, Plastid Proteome Database; ARF, ADP-ribosylation.
Arabidopsis thaliana corresponded to potential integral membrane proteins (2). Prediction of the exact membrane or compartment where these proteins are targeted is a hard task as well and often leads to confusing or contradictive interpretations (3). Identification of the peripheral membrane proteins is a much more problematic issue. Whole genome predictions of lipid modification by N-myristoylation, prenylation, or glycosyl-phosphatidylinositol (GPI) anchors have been initiated as an attempt toward the identification of peripheral proteomes (4–7). The ratio of peripheral proteins modified by lipids is assessed to be less than 4%, and the issue of the exact membrane location is not yet solved. Because they do not have specific features in their amino acid sequence, other types of peripheral membrane proteins are difficult to identify through predictive approaches.

To make a decisive contribution to the remaining unanswered issues relative to membrane localization and identification of peripheral proteins, direct approaches involving membrane fractionation and protein characterization by proteomics investigation are needed. Such approaches are fully expected also to confirm the predictions. Due to their diversity of functions, the PM proteins display a wide variety of biochemical properties, and they are associated with lipid domains differing in composition. Consequently a combination of techniques that differentially fractionates proteins according to their physicochemical properties and/or their degree of their integration in the membrane is expected to allow a better overview of the PM proteome protein diversity. Early attempts have led to the identification of less than 300 proteins as part of the PM proteome, i.e., 1 order of magnitude less than the value expected from the aforementioned bioinformatics studies (8–11). More targeted plant plasma membrane analyses provided a more extensive coverage of the plasma membrane proteome including some GPI-anchored and lipid raft proteins (12–16). Collectively a set of about 500 PM proteins, identified via proteomics analyses, has been reported in the literature so far, indicating that a majority of PM proteins are still to be identified through such approaches.

In a previous study, about 100 putative proteins were identified as part of the hydrophobic plasma membrane proteome isolated from Arabidopsis cell suspensions, 95% of which were yet unidentified proteins (9). To increase the PM repertoire, a highly purified plasma membrane fraction was washed by NaCl and Na2CO3 salts; the insoluble fractions were analyzed by nano-LC-MS/MS mass spectrometry. From these two approaches, we identified around 450 proteins, among which more than 45% were predicted to possess transmembrane domains and/or to be anchored to the membrane. Moreover among these 450 proteins, we identified 289 proteins (65%) that had never been reported in other plant PM proteomics investigations. In the present report, we describe the largest plasma membrane proteome reported so far, allowing us to give a deeper insight into the plant PM and its role in the cell.

EXPERIMENTAL PROCEDURES

Cell Culture and Plasma Membrane Purification—The Arabidopsis cell culture condition, the plasma membrane purification procedure, and associated purity assessments were as described in Marmagne et al. (9, 17). Briefly 5-day-old suspension culture cells were collected, and a microsomal fraction was obtained after grinding and a series of differential centrifugations. A PM-enriched fraction was purified from microsomes by two-phase partitioning between polyethylene glycol and dextran (6.4%, w/w). To eliminate polyethylene glycol, a second partitioning was achieved with a 0.7 M KH2PO4 solution. The PM fraction recovered in the saline lower phase was ultracentrifuged (110,000 × g), and the resulting pellet was resuspended in 50 mM MOPS/NaOH (pH 7.8), 1 mM dithiothreitol. This yielded the purified PM fraction that was further analyzed.

Preparation of PM Protein Fractions and Trypsin Digestion—Preparations of NaCl- and Na2CO3-insoluble protein fractions were as described previously (17). PM protein fractions (0.2 mg) were suspended in 0.2 ml (final volume) of 1 M NaCl or 0.1 M Na2CO3. Each mixture was chilled for 15–30 min on ice and centrifuged for 20 min at 15,000 × g. Insoluble proteins were recovered as pellets and resuspended in denaturing gel electrophoresis buffer (8% SDS (v/v), 0.188 M Tris-HCl (pH 6.8), 0.1% bromphenol blue (v/v), 0.16 M dithiothreitol, 40% glycerol (v/v)). One-third of either the NaCl or Na2CO3 PM fraction was resolved by 12% SDS-PAGE. Sample migration was allowed for a length of 3.5 cm according to bromphenol blue stain. After Coomassie Blue staining of each salt fraction (NaCl and Na2CO3, respectively), the gel was cut into 11 discrete bands. In-gel digestion with trypsin (sequencing grade; Promega, Madison, WI) as proteolytic enzyme was carried out as described previously (9) with the following modification. After washing and drying, gel pieces were rehydrated in 100 μl of 7% H2O2 at room temperature for 15 min in the dark. This step led to cysteine oxidation and conversion of the methionine residues into sulfone (18). Gel pieces were then finally extracted with 5% (v/v) formic acid solution.

Mass Spectrometry and Protein Identification—Tryptic peptides were resuspended in 0.5% aqueous trifluoroacetic acid. The samples were injected into a CapLC (Waters) nano-LC system and first pre-concentrated on a 300-μm × 5-mm PepMap C18 precolumn. The peptides were then eluted onto a C18 column (75 μm × 150 mm). The chromatographic separation used a gradient from solution A (2% acetonitrile, 98% water, 0.1% formic acid) to solution B (80% acetonitrile, 20% water, 0.08% formic acid) over 60 min at a flow rate of 200 nl/min. The LC system was directly coupled to a Q-TOF Ultima mass spectrometer (Waters). MS and MS/MS data were acquired and processed automatically using MassLynx 4.0 software. Mascot was used for database searching, and proteins that were identified with at least two peptides both showing a score higher than 40 were automatically validated. The score threshold for automatic validation was fixed at 40 because (i) for both NaCl and Na2CO3 datasets, this value is just validated. The score threshold for automatic validation was fixed at 40 because (i) for both NaCl and Na2CO3 datasets, this value is just above the Mascot score above which there is identity or extensive homology for peptide assignment with a probability of at least 95% as quoted by the Mascot output and (ii) the false positive rate, as described by Peng et al. (19), was estimated to be 0.1 and 0% for the NaCl and the Na2CO3 datasets, respectively. Consequently we estimated that proteins identified by at least two peptides with a score higher than 40 were significantly present in our samples. For proteins identified by only one peptide having a score higher than 40, the peptide sequence was checked manually. Peptides with scores higher than 20 and lower than 40 were systematically checked and/or interpreted manually to confirm or cancel the Mascot suggestion. Such a validation and false positive rate assessment was achieved using a home-made validation software, which allowed protein redundancy to be eliminated on the basis of protein identification by the
same set or a subset of peptides (see Supplemental Table III) from both NaCl and Na$_2$CO$_3$ datasets.

Database searching was carried out using the Mascot 2.0 program (Matrix Science). Two databases were used: a home-made list of well known contaminants (keratins and trypsin; 21 entries) and an updated compilation of the A. thaliana protein database provided by TAIR (nuclear, mitochondrial, and chloroplastic genome; TAIR version 6.0; July 9, 2006; 30,899 entries). The variable modifications allowed were as follows: acetyl (protein), acetyl N terminus, methionine oxidation, methionine sulfone, cysteic acid, false mass assignment + 1, and false mass assignment + 2. Two missed trypsin cleavages were allowed.

Similarly to other plasma membrane proteomes, about 30 ribosomal proteins were identified (60 and 40 S) that likely originated from cytoskeleton-bound polysomes anchored to the plasma membrane via actin filaments (20, 21). A total of 446 proteins could eventually be retrieved.

Predictive Approaches—Protein names and/or associated functions were retrieved from NCBI (www.ncbi.nlm.nih.gov/entrez), PPDB (ppdb.tc.cornell.edu/), or TAIR (www.arabidopsis.org). GRAVY, molecular weight, pl, and TargetP (22) annotations were retrieved from PPDB (ppdb.tc.cornell.edu/) (23). Predictions of membrane-spanning regions (i.e. transmembrane domains) were collected from the ARAMEMNON database (2). The HMMTOP program (24) was also used for TM domain predictions. Post-translational modification predictions were performed on line using various dedicated programs. N-terminal myristoylation was first predicted by TermiNator (25) using relaxed criteria. Positive entries were next validated using the updated (December 2006) version of the Arabidopsis database of myristoylated proteins (25) using the software developed by Boisson et al. (5). S-Palmitoylation on vicinal cysteines next to the N terminus of N-myristoylated proteins was predicted with TermiNator (26). C-terminal prenylation was predicted by PrePS (27). Robust predictions of GPI anchors were retrieved from the ARAMEMNON database that complies three prediction programs (big-PI, DGPI, and GPI-SOM).

RESULTS AND DISCUSSION

A PM Proteome Derived from Salt Treatment-based Enrichment: Identification of Proteins Actually Located in the Plasma Membrane

PM enrichment and degree of purity were assessed as described in Marmagne et al. (9) on each new PM preparation by Western blots (data not shown). Considering previous biochemical and immunological tests, chloroplastic and mitochondrial contamination was estimated to be less than 5% each. Salt treatments (including NaCl and Na$_2$CO$_3$) of the membrane fraction are believed to abolish electrostatic interactions with integral membrane proteins or the polar head of lipids (28). Improperly or weakly linked membrane proteins are eliminated by such treatments, leading to an enrichment in genuine membrane proteins and to a lower sample complexity. Sodium chloride and sodium carbonate, which have been proven to be efficient in previous analyses (29, 30), were chosen to increase further our knowledge of the PM proteome.

Analyses of insoluble NaCl and Na$_2$CO$_3$ plasma membrane fractions led to the identification of 446 proteins (356 and 243, respectively) including only 153 common entries (34%). In this set, only 42 entries (9%) have already been identified in the hydrophobic PM proteome resulting from a chloroform/methanol solubilization or an alkaline washing of the PM fraction (9) demonstrating that the different treatments are complementary. To classify the 446 proteins (Supplemental Table I), we compiled (i) information about the proteomics data (number of peptides, etc.), (ii) results of predictions by bioinformatics tools (TM domains, cell localization, etc.), (iii) information (function, localization, etc.) retrieved from different protein databases (TAIR, NCBI, and ExPaSy), and (iv) appropriate literature as indicated in Supplemental Table I.

Table I shows that 286 of 446 proteins had no predicted subcellular targeting. 110 proteins were predicted as secreted proteins, strongly suggesting PM association (Table I). Indeed 85 of these 446 proteins have been experimentally shown to be localized in membranes in particular 61 in PM (Supplemental Table I). Among the 26 proteins targeted to mitochondria, 10 have already been identified in other PM proteomes, and three have been shown to be localized in the PM, suggesting an inaccurate targeting prediction, for at least part of them, unless these proteins have a dual targeting (Table I). For example, the small G-proteins ARFs were predicted to be mitochondrial, although they are known to be involved in the secretory pathway and cytoskeleton organization (31). The
occurrence of a PM receptor for GDP-bound Arf6 in mammal cells (32) is in agreement with a PM localization of ARFs. Likewise prediction of a mitochondrial location for V-ATPase subunits is likely to be wrong because the associated function is usually assigned to the tonoplast and/or the PM (33–35). Wrong predictions were also found among proteins predicted to be chloroplastic (Table I). This appears to be the case of newly identified plasma membrane proteins, such as CDPK7 (36), PHOT2 (37), or PDR8 (38). Such dubious chloroplastic predictions may involve at least five proteins that have been found in previous PM proteomes (Table I and Supplemental Table I). In this context, it is noteworthy that abundant mitochondrial and chloroplastic membrane proteins, such as the ATP synthase subunits (39) and the triose phosphate translocator (40), respectively, were not identified in the present PM proteome. On the other hand, the PM fraction was also slightly contaminated by proteins from other organelles or from the cytosol as evidenced by the presence of histones and ribosomal proteins.

Finally Table I shows that only 157 proteins have already been identified in other plasma membrane proteome studies (Supplemental Table I), consolidating their PM localization and further validating the present proteome. We concluded that our proteome displayed proteins that are known or are very likely to be located in the PM.

A PM Proteome Predicted to Include Both Integral and Lipid-modified Peripheral Proteins

According to the ARAMEMNON database, 136 proteins (30%) of the present proteome can be considered as integral as they are predicted to possess at least one TM domain (Fig. 1A). Other programs, including HMMTOP or TMHMM to a lesser extent, predicted a larger amount of proteins to display at least one TM domain (Supplemental Table I). For example, receptors LRR-receptor-like kinase (RLK) (At3g58690 and At5g22050) and Lys-M-RLK (At2g17120 and At1g21880), which are known to span the membrane, were not predicted to have any TM domain by ARAMEMNON, whereas HMMTOP predicted at least one TM domain for each of these four proteins.

Other sets of proteins need to be taken into account in a PM proteome if they are co- or post-translationally modified by lipid moieties (Supplemental Table I). In this respect, 10 proteins with one TM domain were predicted to display such a modification either with a GPI anchor (one protein) or via N-myristoylation (nine proteins; see Supplemental Table I). In addition, 71 proteins without predicted TM domains were also predicted to be lipid-anchored. This included 27 GPI anchors, 24 N-myristoylations, 19 C-prenylations, and one predicted with both myristoylation and prenylation (Supplemental Table I). This set of putatively lipid-modified proteins (16% of the proteome) must be considered as peripheral proteins as they (i) are not expected to be embedded in the PM unlike integral proteins, (ii) do not use the SEC pathway for membrane targeting, and (iii) usually do not have TM domains. GPI anchors are firmly bound to the membrane through double acylation involving both myristate and palmitate attachment linked via a phosphatidylinositol group to the C-terminal side of the target protein. To make membrane binding of prenylated or myristoylated proteins tighter, another binding motif is required. Such additional binding site includes S-palmitoylation, polar contacts to the lipids of the membranes via polybasic stretch(es), or protein-protein interaction domains (41, 42). Together with N-myristoylation, palmitoylation significantly increases the hydrophobicity of the targeted protein. Among N-myristoylated proteins, 13 (i.e. 54%) were predicted to display an additional S-palmitoylation site at their N terminus (Supplemental Table I). This ratio corresponds to a much increased value compared with 30%, the average percentage characterizing the complete N-myristoylated proteome (5). In contrast, none of the N-myristoylated proteins displayed a polybasic motif unlike in the myristoylated proteome. These data are fully in keeping with the surface modifications induced by salt treatments that are expected to inhibit the effects associated with electrostatic binding modes. This suggests that among N-myristoylated proteins salt treatment had led to loss of those using a polybasic stretch (such as the so-called MARCKS [myristoylated alanine-rich C-kinase sub-
Specific Features in Arabidopsis Plasma Membrane Proteome

TABLE II

Major proteins associated with the plasma membrane

AGI accession no.	Protein name	Protein family	Function	TM	Criterion I score (NaCl)	Criterion II score (Na2CO3)	Criterion III occurrence	
Class I	At4g30190	AHA2	P-type H+-ATPase	Transport	10	1079.00	886.40	5
At2g18960	AHA1	P-type H+-ATPase	Transport	10	845.28	946.13	5	
At4g12420	SKU5	Multicopper oxidase/pectinesterase	Cell structure	0	825.32	694.87	9	
At3g02880	None	RLK/Pelle, LRR-III	Cell signaling	1	501.51	343.57	5	
At4g01290	HIR	Hypersensitive induced reaction protein	Cell signaling	0	434.62	389.99	4	
Class II	At4g26690	GPDL2	Glycerophosphoryl diester phosphodiesterase	Metabolism	0	428.85	313.97	5
Class III	At5g62740	HIR	Hypersensitive induced response protein	Cell signaling	0	346.50	468.58	4
At1g78900	V-ATPase A	V-type H+-ATPase	Transport	0	419.46	441.21	5	
At4g20830	None	Reticulin oxidase-like protein	Metabolism	0	97.11	419.81	4	
At1g69840	HIR	Hypersensitive induced reaction protein	Cell signaling	0	411.45	413.69	3	
At4g12730	FLA2	Fasciclin-like arabinogalactan protein	Cell structure	0	60.93	381.54	4	
Class IV	At2g38940	PT2	Phosphate transporter	Transport	11	717.80	909.18	4
At3g04120	G3PDH C	Glyceraldehyde-3-phosphate dehydrogenase	Metabolism	0	538.95	515.78	1	
At2g01820	CYC18	RLK/Pelle, LRR-IX subfamily, cyclin	Cell signaling	1	474.01	726.87	0	
At4g31840	None	Early nodulin-like protein	Cell structure	0	464.95	444.54	4	

As a whole, 219 proteins (49%) were predicted to have either at least a TM domain or to be associated with the membrane by a lipid anchor (Fig. 1A). Among the remaining proteins, a number of them have already been identified in the plasma membrane. For instance, phospholipases PLC2 (At3g08510) (43) and PLD (At4g35790) (44), Developmentally Regulated Plasma Membrane Polypeptide proteins (At4g20260) (45), and annexin (At1g35720) (46) are known to be associated with the PM through protein-protein or lipid-protein interactions.

Differential Effects Are Associated with Either Salt Treatment for Retrieving Lipid-modified Protein

The Na2CO3 treatment led to the identification of a higher content of very hydrophobic proteins compared with the NaCl treatment. Indeed from the Na2CO3 and the NaCl treatments, 164 proteins of 356 (46%) and 138 proteins of 243 (39%), respectively, were predicted to have at least one TM domain (Fig. 1A). If the number of transmembrane segments is considered as a reliable probe of protein hydrophobicity, the Na2CO3 treatment appears therefore more appropriate compared with the NaCl treatment for retrieving integral plasma membrane proteins. It is also likely to more quickly remove soluble proteins that are weakly bound to the plasma membrane, such as peripheral proteins. Nevertheless protein fractionation by the two techniques had almost the same efficiency for extracting proteins displaying lipid modifications (65 with NaCl versus 63 with Na2CO3), although both treatments did not lead to the extraction of the same protein categories. Predicted N-myristoylated proteins were preferentially retrieved from the NaCl fraction (92%; Fig. 1B). In contrast, the Na2CO3 pellet contained all the predicted GPI-anchored proteins (27 proteins), among which only 19 were identified in the NaCl pellet (Fig. 1B). Finally the two procedures were equivalent for fishing out putative prenylated proteins (Fig. 1B). Together these data indicate how powerful salt treatments could be when dealing with the retrieval of specific types of putatively lipid-modified protein. For instance, NaCl should be preferred over Na2CO3 for N-myristoylation, and Na2CO3 should be preferred for GPI anchors.

Although the topic of the present work was not related to quantitative proteomics, it is tempting to determine the most abundant proteins associated with the PM by taking into account three criteria: the best scores after either NaCl (criterion I) or Na2CO3 (criterion II) washing and the highest number of identifications in other PM proteomes (criterion III). Table II shows 15 proteins displaying at least two of these
three criteria. Besides pumps, transporters, and receptors, it is surprising to find proteins involved in metabolism without any TM domains, suggesting strong interactions with the PM likely due to functional complexes. Among the last four proteins, only PT2 and G3PDH C were found in our studies and also in another proteomics work (see Criterion III occurrence column).

A Functional Proteome Fully in Keeping with Functions Expected from the Plasma Membrane

The functional classification of the 446 putative PM proteins is shown in Fig. 2. Based on both sequence homologies with known proteins and identification of predicted conserved domains, only 14% of the identified proteins were classified as unknown. This value is significantly lower than those reported previously and demonstrates the recent progress in Arabidopsis genome annotation. The proteins with predicted functions have been divided into seven functional classes: cell traffic, transport, cell structure, protein maturation, protein turnover, cell signaling, and metabolism. An eighth class contains two proteins involved in DNA structure that are likely to correspond to contaminants. Among the 446 identified proteins, 157 have already been identified in other PM proteomes, many of which belong to functional classes that are representative of well established PM functions (Supplemental Table I). This is illustrated by the identification of several members of the ATPase superfamily in the transport class (pump functional subclass; Supplemental Table I), such as P-type H+-ATPases and Ca++-ATPases (47, 48) and several V-type H+-ATPase subunits (49). Proteins from other large families, such as P-type H+-ATPases (47, 48) and several V-type H+-ATPase subunits (49), are also frequently found (Supplemental Table I). Among newly identified PM proteins, a similar proportion (110 of 289, i.e. 38%) has been classified also in the cell signaling category and is represented by the same subclasses except kinases (Table III and Fig. 3). A detailed analysis pointed out that detoxification and GTP binding classes are mainly represented by new proteins (83 and 96%, respectively; Table IV) and therefore constitute, with the phosphatases, three new subclasses specific to this proteome (Table IV). The identification of a series of enzymes in the detoxification group (Table III and Supplemental Table I), such as peroxiredoxins PRXII and PRXIII (At1g65980 and At1g60740) (66); glutathione transferases ERD13, GSTU5, GSTU19, and GSTF9 (At2g30870, At2g29450, At1g78380, and At2g30860) (67), three thioredoxins-h (At5g42980, TRXh3; and At3g08710, TRXh9) (68); two glutathione transferases ERD13, GSTU5, GSTU19, and GSTF9 (At2g30870, At2g29450, At1g78380, and At2g30860) (67), three thioredoxins-h (At5g42980, TRXh3; and At3g08710, TRXh9) (68); two glutathione dehydrogenases, DHAR1 and DHAR2 (At1g19570 and At1g75270) (69); or the glutathione peroxidases ATGPX6 and GPX5 (At4g11600 and At3g63080) (70), suggests a role of PM proteins in oxidative stress protection. At3g08710 and At3g63080 are predicted to be N-myristoylated proteins, which further ascertains their functional role at the PM.

New PM Proteins Further Highlight the Unique Role of PM in Cell Signaling

In addition to the 157 aforementioned proteins assigned to plasma membrane from previous proteomics studies, the remaining proteins (289) were newly identified in a PM proteome. A functional classification of these new PM proteins and their main physicochemical properties are reported in Table III. In this subset, a striking feature is that 39 proteins were predicted as lipid-anchored proteins, among which 18 (of 25) would be N-myristoylated and 18 (of 20) would be prenylated proteins. Thus, the present proteome was enriched in proteins likely involved in transient interactions with the PM, suggesting possible roles in signaling processes (see below). Indeed an outstanding characteristic of the proteins identified in the present PM proteome is that 38% belong to the signaling class with the more representative ones classified as detoxification enzymes, GTP-binding proteins, kinases, or receptors. Stress-response proteins such as "hypersensitive induced reaction" proteins (HfR) and remorins (64, 65) were also frequently found (Supplemental Table I). Among newly identified PM proteins, a similar proportion (110 of 289, i.e. 38%) has been classified also in the cell signaling category and is represented by the same subclasses except kinases (Table III and Fig. 3). A detailed analysis pointed out that detoxification and GTP binding classes are mainly represented by new proteins (83 and 96%, respectively; Table IV) and therefore constitute, with the phosphatases, three new subclasses specific to this proteome (Table IV). The identification of a series of enzymes in the detoxification group (Table III and Supplemental Table I), such as peroxiredoxins PRXII and PRXIII (At1g65980 and At1g60740) (66); glutathione transferases ERD13, GSTU5, GSTU19, and GSTF9 (At2g30870, At2g29450, At1g78380, and At2g30860) (67), three thioredoxins-h (At5g42980, TRXh3; and At3g08710, TRXh9) (68); two glutathione dehydrogenases, DHAR1 and DHAR2 (At1g19570 and At1g75270) (69); or the glutathione peroxidases ATGPX6 and GPX5 (At4g11600 and At3g63080) (70), suggests a role of PM proteins in oxidative stress protection. At3g08710 and At3g63080 are predicted to be N-myristoylated proteins, which further ascertains their functional role at the PM.
Table III

The main characteristics of the 289 new proteins identified in the plasma membrane proteome

LOC, protein localization according to TargetP (22). S, secreted; C, chloroplast; M, mitochondria; —, not predicted. TM, predicted number of transmembrane domains \(\alpha \)-helices or \(\beta \)-sheets when mentioned (2). The theoretical molecular mass in kDa and theoretical pl are given. AGI, Arabidopsis Gene Index; ABC, ATP-binding cassette; SNAP, synaptosome-associated protein; VAMP, vesicle-associated membrane protein; v-SNARE, vesicle SNARE; ACC, 1-aminocyclopropane-1-carboxylic; SERK, somatic embryogenesis receptor kinase.

AGI accession no.	Protein name	Protein family	LOC	TM	Molecular mass	pl
Transport						
Channel						
At5g15090	POR2	Outer mitochondrial membrane protein	—	14β	29.19	7.84
Pump						
At3g57330	ACA11	Ca\(^{2+}\)-ATPase	C	10	111.87	5.97
At4g02620	VATF	V-type H\(^+\)-ATPase	—	0	14.25	6.08
At1g75630	AVAP4	V-type H\(^+\)-ATPase	S	3	16.67	8.62
Transporter						
At1g67940	NAP3	ABC transporter	—	0	28.66	5.34
At3g47960	POT	Proton-dependent oligopeptide transport	—	12	67.32	8.94
At3g54700	PHT1-7	Phosphate transporter	S	7	47.27	8.21
At3g08580	AAC1	Mitochondrial ADP, ATP carrier	—	3	41.45	9.84
Cell structure						
Cell wall component						
At5g60490	FLA12	Fasciclin family	S	0	26.35	5.02
At2g02100	LCR69/PDF2.2	Cysteine-rich protein	S	0	8.52	9.37
At5g53870	PUP2	Early noduline-like protein	S	0	38.37	9.20
At4g31840	None	Early noduline-like protein	S	0	18.95	8.99
Cytoskeleton						
At1g64740	TUA1	Tubulin	—	0	49.77	4.92
At2g37620	ACT3	Actin	—	0	41.77	5.31
At4g29350	PRO2/PFN2	Profilin	—	0	13.99	4.91
At5g10470	TH65	Kinesin-related protein/microtubule motor	C	0	140.95	5.87
At2g19760	PRO1/PFN1	Profilin	—	0	14.26	4.70
At4g20890	TUB9	Tubulin	—	0	49.63	4.69
At5g62690	TUB2	Tubulin	—	0	50.70	4.70
At5g9880	ADF3	Actin-depolymerizing factor	—	0	15.91	5.94
Cell traffic						
Intracellular						
At2g14120	ADL2b	Dynamin-like protein	C	0	86.59	5.95
At3g56450	α-SNAP1	SNAP	M	0	43.85	7.87
At1g08560	SYP11/KOLLE	Syntaxin-related protein	—	1	35.25	5.82
At1g08820	VAP 27.2	VAMP/synaptobrevin-associated protein	—	1	43.24	6.53
At3g58170	BS14a/BET11	SNARE	—	1	13.96	6.30
At4g32150	VAMP711	v-SNARE synaptobrevin	S	1	25.02	9.25
At4g23460	None	\(\beta \)-Adaptin	—	0	99.03	4.91
At4g08520	None	Clathrin adaptor complex small chain	—	0	19.86	4.59
At4g21450	None	VAMP/synaptobrevin-associated protein	—	0	32.94	9.39
At1g04750	VAMP721	v-SNARE synaptobrevin	S	1	24.75	0.00
At1g11900	Sec22	25.3-kDa vesicle transport protein	—	1	25.32	9.07
At2g45140	VAP27.1	VAMP/synaptobrevin-associated protein	—	1	26.43	8.97
At3g60600	VAP27.1	VAMP/synaptobrevin-associated protein	—	1	28.45	8.59
At4g14600	None	Bet1-like protein	M	1	15.37	0.00
Secretion						
At3g10380	Sec8	Exocyst complex component	—	0	116.53	5.61
At1g29310	Sec	Transport protein	M	10	52.14	9.12
At2g01470	Sec12-2	Sec12-like protein	—	1	42.77	5.47
At3g52190	PHF1/Sec12-1	Sec12-like protein	C	1	43.74	7.03
At1g06800	PATL4	Transporter, SEC14-like protein	—	0	61.15	4.90
At1g71820	Sec6	Exocyst complex component	—	0	85.62	4.80
At1g76850	Sec5	Exocyst complex component	—	0	121.83	5.57
At4g02350	Sec15-like	Exocyst complex component	—	0	86.48	5.99
At5g12370	Sec10	Exocyst complex component	—	0	89.64	5.23
At1g07000	EXO70B2	Exocyst complex component	—	0	67.67	5.08
At5g03540	EXO70A1	Exocyst complex component	—	0	72.25	8.16
AGI accession no.	Protein name	Protein family	LOC	TM	Molecular mass	pI
------------------	--------------	---------------	-----	----	----------------	----
At3g51670	PATL6	Transporter, SEC14-like protein	—	0	46.48	8.41
At3g48570	SEC61γ	Transport protein	—	1	7.68	9.86
At1g56330	AtSARA1b	ADP-ribosylation factor	S	0	21.97	6.52

Metabolism

Cell wall synthesis
- At4g30270: MERI-5, Endotransglycosylase
- At2g30490: C4H, Cytochrome P450 family
- At1g12640: None, Acyltransferase
- At1g63000: None, Nucleotide-rhamnose synthase/epimerase-reductase
- At1g67120: ADH1, Alcohol dehydrogenase

Energetic metabolism
- At1g09780: None, Phosphoglycerate mutase
- At1g23190: PGM 1, Cytoplasmic phosphoglucosumutase
- At1g27450: PGM 2, Cytoplasmic phosphoglucosumutase
- At2g31390: SCRK1, Putative fructokinase
- At2g38740: None, β-Phosphoglucomutase
- At3g03250: UDPGP1, UTP-glucose-1-phosphate uridylyltransferase
- At3g52930: None, Fructose-bisphosphate aldolase
- At5g11670: None, Malate dehydrogenase
- At4g17260: LDH, l-Lactate dehydrogenase
- At5g16980: P2, NADP-dependent oxidoreductase
- At5g17310: UDPGP 1, UTP-glucose-1-phosphate uridylyltransferase
- At5g33300: MDHC2, Cytoplasmic malate dehydrogenase
- At2g42910: PRS4, Ribose-phosphate pyrophosphokinase
- At1g65930: None, Isocitrate dehydrogenase
- At2g36460: None, Fructose-bisphosphate aldolase
- At3g55440: CTIMC, Cytoplasmic triose-phosphate isomerase
- At5g35600: ATB5-A, Cytochrome b5

Secondary metabolism
- At1g33990: None, Hydrolase, α/β fold family protein
- At3g57030: None, Strictosidine synthase family protein
- At3g03330: None, Oxidoreductase
- At3g10700: None, Nucleotidytransferase
- At1g74020: SS2, Strictosidine synthase
- At3g03780: MS2, Methionine synthase
- At3g61220: None, Oxidoreductase
- At4g38800: None, Expressed protein
- At5g48230: None, Acetyl-CoA C-acetyltransferase
- At1g60690: None, Oxidoreductase
- At1g62360: None, ACC oxidase
- At3g14990: None, 4-Methyl-5(β-hydroxyethyl)-thiazole protein
- At3g26000: None, Dienelactone hydrolase
- At4g13930: SHM4, Serine hydroxymethyltransferase
- At4g55830: ACO1, Acylate hydratase
- At3g17820: GLN1;3/GSKB6, Glutamate-ammonia ligase
- At5g19550: ASP2, Aspartate aminotransferase
- At5g37600: GLN1;1, Glutamate-ammonia ligase

Cell signaling

Calcium binding
- At5g47100: CBL9, Calcineurin B-like protein
| AGI accession no. | Protein name | Protein family | LOC | TM | Molecular mass | pI | |
|---|---|---|---|---|---|---|---|
| At2g32450 | None | Calcium-binding EF-hand family protein | --- | 0 | 90.17 | 6.32 |
| At2g27030 | CAMS/TCH1 | Calmodulin | --- | 0 | 16.81 | 4.11 |
| At4g28600 | NPG2 | Calmodulin-binding protein | --- | 0 | 82.68 | 7.60 |
| At5g07300 | BONZAI 2 | Calcium-dependent membrane-binding | --- | 0 | 63.99 | 5.05 |
| At1g12310 | CML13 | Calmodulin-like | --- | 0 | 16.51 | 4.78 |
| Detoxification | At3g08710 | TRX-H2/ATH9 | | | 15.32 | 5.12 |
| At5g66110 | atf6-like | Metal ion transporter | --- | 0 | 16.64 | 9.65 |
| At1g19570 | DHAR1 | Glutathione dehydrogenase | --- | 0 | 23.63 | 5.56 |
| At1g45145 | TRX-H-5 | Thiorcalcine | | | 11.31 | 5.19 |
| At1g65980 | PRXII-B | Peroxiredoxin | --- | 0 | 17.42 | 5.17 |
| At1g75270 | DHAR2 | Glutathione dehydrogenase | --- | 0 | 23.39 | 5.79 |
| At1g77510 | PDIL1-2 | Thiorcalcine | --- | 0 | 36.33 | 4.90 |
| At1g78580 | GSTU19 | Glutathione-transferase | --- | 0 | 25.63 | 5.80 |
| At2g16060 | AHB1/GBL1 | Non-symbiotic hemoglobin | --- | 0 | 18.02 | 8.46 |
| At2g30860 | GSTF9 | Glutathione transferase | --- | 0 | 24.13 | 6.17 |
| At5g40370 | None | Glutaredoxin S | S | 0 | 11.75 | 6.71 |
| At1g60740 | PRXII-D/TPX2 | Peroxiredoxin | --- | 0 | 17.46 | 5.33 |
| At2g29450 | GSTU5/103-1A | Glutathione S-transferase | --- | 0 | 25.98 | 5.44 |
| At2g30870 | ERD13 | Glutathione transferase | S | 1 | 24.21 | 5.49 |
| At1g07890 | APX1 | l-Ascorbate peroxidase | --- | 0 | 27.54 | 5.72 |
| At1g75280 | None | Isoglucobrin redoxase | --- | 0 | 33.72 | 5.66 |
| At5g42980 | TRX-H-3 | Thiorcalcine | --- | 0 | 13.10 | 5.06 |
| At4g11600 | ATGPX6 | Glutathione peroxidase | C | 0 | 25.57 | 9.38 |
| At4g25100 | FSD1 | Superoxide dismutase | --- | 0 | 23.78 | 6.06 |
| At4g27270 | None | Quinone reductase | --- | 0 | 21.78 | 6.08 |
| GTP binding | At1g70490 | ARFA1d | ADP-riboseylation factor | M | 0 | 20.58 | 0.00 |
| At2g24765 | ARF3 | ADP-riboseylation factor | --- | 0 | 20.23 | 5.24 |
| At1g43890 | RABC1 | Small GTP-binding Rab | S | 0 | 23.52 | 5.69 |
| At1g28550 | RABA1i | Small GTP-binding Rab | --- | 0 | 24.26 | 5.64 |
| At1g43900 | RABG3e | Small GTP-binding Rab | M | 0 | 22.97 | 4.96 |
| At1g73640 | RABA6a | Small GTP-binding Rab | --- | 0 | 26.02 | 5.08 |
| At2g46600 | RABH1b | Small GTP-binding Rab | --- | 0 | 23.12 | 7.67 |
| At5g20010 | RAN1 | Small GTP-binding Ran | --- | 0 | 25.26 | 6.39 |
| At1g07410 | RABA2b | Small GTP-binding Rab | --- | 0 | 23.67 | 6.44 |
| At3g11730 | RABD1 | Small GTP-binding Rab | S | 0 | 22.71 | 5.15 |
| At3g63420 | AGG1 | Heterotrimeric G protein | --- | 0 | 10.94 | 4.49 |
| At4g02060 | SAR1c/Sar2 | ADP-riboseylation factor | S | 0 | 22.02 | 6.97 |
| At2g41330 | RABA5c | Small GTP-binding Rab | --- | 0 | 23.97 | 4.98 |
| At5g45750 | RABA1c | Small GTP-binding Rab | --- | 0 | 23.86 | 5.60 |
| At1g09630 | RABA2a | Small GTP-binding Rab | --- | 0 | 24.09 | 6.20 |
| At4g17170 | RABB1c | Small GTP-binding Rab | --- | 0 | 23.15 | 6.96 |
| At4g19640 | RABF2b | Small GTP-binding Rab | S | 0 | 21.86 | 0.00 |
| At3g49870 | ARLA1c | ADP-riboseylation factor | S | 0 | 20.39 | 0.00 |
| At3g46060 | RABE1c | Small GTP-binding Rab | --- | 0 | 22.73 | 8.65 |
| At3g18820 | RABG3f | Small GTP-binding Rab | M | 0 | 23.09 | 4.98 |
| At3g07410 | RABASb | Small GTP-binding Rab | --- | 0 | 24.31 | 4.74 |
| At4g17530 | RABD2c | Small GTP-binding Rab | S | 0 | 22.30 | 5.27 |
| Kinase activity | At5g59010 | None | Kinase (TKL; PTKL-I; PTKL-II) | --- | 0 | 54.82 | 5.74 |
| At1g07870 | RCK7 | Protein kinase | --- | 0 | 46.73 | 8.45 |
| At5g56460 | None | Kinase (PSK; RLPK; PK1) | --- | 0 | 45.84 | 7.14 |
| At5g55200 | DSK1-like | Protein kinase family protein | --- | 0 | 75.30 | 7.04 |
| At3g15890 | None | Kinase (PSK; RLPK; Pto-like) | --- | 0 | 40.93 | 5.36 |
| At3g59350 | None | Kinase (PSK; RLPK; PK1) | --- | 0 | 45.63 | 8.69 |
| At3g09820 | ADK1 | Adenosine kinase | --- | 0 | 37.81 | 5.29 |
| At5g03300 | ADK2 | Adenosine kinase | --- | 0 | 37.82 | 5.14 |
| At1g06700 | None | Putative kinase interactor | --- | 0 | 39.79 | 7.14 |
| At2g02800 | APK2b | Protein kinase (APK2b) | C | 0 | 46.26 | 9.67 |
| AGI accession no. | Protein name | Protein family | LOC | TM | Molecular mass | pI |
|-------------------|--------------------|-------------------------|-----|----|----------------|-----|
| Phosphatase activity | PP2C | Protein phosphatase | 0 | 30.83 | 8.80 | |
| | BSL2 | Serine/threonine-protein phosphatase | 0 | 108.51 | 5.47 | |
| | PP2A3 | Serine/threonine-protein phosphatase, regulatory | 0 | 65.47 | 4.94 | |
| | PP2A1/RCN1 | Serine/threonine-protein phosphatase, regulatory | 0 | 65.45 | 4.94 | |
| | PP2C | Protein phosphatase | 0 | 30.96 | 7.13 | |
| | PP2A1 | Dual specificity protein phosphatase | 0 | 17.30 | 5.76 | |
| | PP2A2 | Serine/threonine-protein phosphatase, catalytic | 0 | 35.49 | 4.72 | |
| | SAC1c/SAC7 | SAC1-like protein | 3 | 68.19 | 8.39 | |
| | PP2A1 | Protein phosphatase | 0 | 45.75 | 6.23 | |
| | VTC4 | myo-inositol monophosphatase | 0 | 21.90 | 6.09 | |
| | LPP3 | Phosphatidic phosphatase | 6 | 40.75 | 6.23 | |
| Protein interaction | CC-NBS-LRR | Disease resistance protein | 1 | 101.61 | 5.68 | |
| | None | Disease resistance-like protein | S | 29.97 | 5.20 | |
| | AIR9 | Leucine-rich repeat family protein | 0 | 133.60 | 6.00 | |
| | PIRLS | Leucine-rich repeat family protein | 0 | 64.60 | 5.52 | |
| Protein regulation | MSBP1/MP1 | Membrane steroid-binding protein | S | 24.39 | 5.39 | |
| | NTF2B | Nuclear transport factor | 0 | 27.75 | 5.20 | |
| | SPDSYN2 | Spermidine synthase 2 | 0 | 37.12 | 0.00 | |
| | grf7 | 14-3-3-like protein GF14 | 0 | 17.30 | 5.76 | |
| | CDC48a | Cell division control protein | 0 | 89.34 | 5.13 | |
| | PKCI | Protein kinase C inhibitor | S | 15.99 | 6.52 | |
| | grf3 | 14-3-3-like protein GF14 | 0 | 28.30 | 4.75 | |
| | GTF9 | 14-3-3-like protein GF14 | 0 | 29.50 | 4.86 | |
| | GRF5 | 14-3-3-like protein GF14 | 0 | 30.16 | 4.73 | |
| | NPH3 | Phototrophic responsive NPH3 family protein | 0 | 64.36 | 6.92 | |
| Signal reception | None | RLK/Pelle, extensin subfamily | S | 43.92 | 5.79 | |
| | SERK-like | Protein kinase | M | 35.28 | 5.19 | |
| | SERF1 | RLK/Pelle, LRR-VII-2 subfamily | S | 112.97 | 6.47 | |
| | None | RLK/Pelle, LRR-V subfamily/STRUBBELIG family | S | 84.77 | 6.71 | |
| | None | RLK/Pelle, CRLK1L-1 subfamily | S | 91.41 | 5.91 | |
| | None | RLK/Pelle, LRR-III subfamily | 1 | 108.72 | 5.91 | |
| | None | RLK/Pelle, S-domain-2b subfamily | S | 91.24 | 5.91 | |
| | SERK-like | RLK/Pelle | 0 | 39.84 | 5.71 | |
| | PHOT2 | Non-phototropic hypocotyl 1-like protein | 0 | 102.41 | 7.05 | |
| | SERK1 | RLK/Pelle, LRR-II subfamily | S | 68.98 | 0.00 | |
| | None | RLK/Pelle, LRR-III subfamily | S | 73.49 | 6.25 | |
| | None | RLK/Pelle, LRR-Villa subfamily | S | 123.59 | 5.99 | |
| | None | RLK/Pelle, LRR-III subfamily | S | 114.64 | 6.32 | |
| | None | RLK/Pelle, PERK subfamily | C | 72.34 | 6.94 | |
| | None | RLK/Pelle, S-domain-2b subfamily | S | 89.68 | 6.08 | |
| | None | RLK/Pelle, LRR-Xa subfamily | S | 69.10 | 7.02 | |
| Signal reception | None | RLK/Pelle, extensin subfamily | 2 | 79.00 | 6.91 | |
| | SRF3 | RLK/Pelle, LRR-V subfamily/STRUBBELIG | 2 | 84.67 | 5.74 | |
| | None | RLK/Pelle, LRR-IX subfamily | S | 132.82 | 6.58 | |
| | CRLK1L-1 subfamily | CRLK1L-1 subfamily | S | 120.91 | 5.99 | |
| | None | CRLK1L-1 subfamily | S | 91.26 | 6.13 | |
| | None | CRLK1L-1 subfamily | S | 128.74 | 5.53 | |
| | None | CRLK1L-1 subfamily | S | 93.24 | 5.70 | |
| | None | CRLK1L-1 subfamily | S | 68.72 | 5.36 | |
| Protein turnover | None | Caspase | 0 | 45.46 | 0.00 | |

Specific Features in Arabidopsis Plasma Membrane Proteome
AGI accession no.	Protein name	Protein family	LOC	TM	Molecular mass	pI
Ubiquitin-proteasome pathway						
At4g02075	PITCHOUN 1	RING protein/ubiquitin-protein ligase	—	1	25.30	5.50
At1g31340	RUB1/UBQ1	NEDD8-like protein precursor/ubiquitin	—	0	17.39	0.00
At1g76390	None	ARM repeat protein/ubiquitin-protein ligase	—	0	89.05	5.24
At2g22125	None	ARM repeat protein	—	0	230.56	5.21
At3g60820	PBF1	Threonine endopeptidase	—	0	24.63	6.95
At1g16890	None	Ubiquitin-conjugating enzyme E2	—	0	17.21	6.74
At1g20780	None	ARM repeat protein/ubiquitin-protein ligase	—	0	88.32	5.76
At1g64230	UBC9A	Ubiquitin-conjugating enzyme	—	0	16.50	7.22
At2g02560	CAND1	SCF complex	—	0	134.81	5.77
At1g22510	None	RING protein/ubiquitin-protein ligase	C	2	20.77	8.08

Protein maturation

Protein folding

AGI accession no.	Protein name	Protein family	LOC	TM	Molecular mass	pI
At3g55920	CYP21-2	Peptidyl-prolyl cis-trans isomerase	S	0	24.49	6.52
At2g24280	STICHEL/STI DNA polymerase III / subunit	C	0	135.22	9.06	
At2g21130	ROC6/CYP2 Peptidyl-prolyl cis-trans isomerase	—	0	18.45	8.32	
At4g2450	None	p23 co-chaperone	—	0	25.44	4.44
At4g24190	Hsp90-7/SHD Heat shock protein	S	0	94.15	4.94	
At5g56010	HSP81-3 (90-3) Heat shock protein	S	0	80.00	4.95	
At1g79920	None	Heat shock protein	—	0	81.73	8.76
At2g38730	CYP22-1 Peptidyl-prolyl cis-trans isomerase	—	0	21.48	8.47	
At5g02490	Hsc70.2 Heat shock protein	—	0	71.34	5.03	
At5g52640	HSP81-1 Heat shock protein	—	0	81.13	4.95	
At3g09440	Hsc70.3 Heat shock protein	—	0	71.10	4.97	
At4g34870	ROC5/CYP1 Peptidyl-prolyl cis-trans isomerase	—	0	18.37	8.90	

Protein modification

AGI accession no.	Protein name	Protein family	LOC	TM	Molecular mass	pI
At4g34640	SQS1	Squalene synthase 1	—	1	47.11	6.18
At3g15710	None	Putative signal peptide subunit	—	3	19.83	5.95
At4g33090	APM1	Aminopeptidase	—	0	98.12	5.34
At1g63770	None	M1 aminopeptidase	C	0	103.40	6.09

Translation

AGI accession no.	Protein name	Protein family	LOC	TM	Molecular mass	pI
At1g54270	EIF4A-2 ATP-dependent helicase	—	0	46.73	5.45	
At1g56070	EF-2/LOS1 Elongation factor	—	0	93.83	5.89	

DNA structure

AGI accession no.	Protein name	Protein family	LOC	TM	Molecular mass	pI
At4g13940	HOG1	Adenosylhomocysteinase	—	0	53.34	5.66
At1g07660	H4	Histone	—	0	11.40	11.48

Unknown

AGI accession no.	Protein name	Protein family	LOC	TM	Molecular mass	pI
At3g08600	None	Expressed protein	M	1	34.71	9.58
At3g01520	None	Unknown protein	—	0	19.56	5.61
At1g05960	None	Expressed protein	M	0	16.88	5.54
At5g25265	None	Expressed protein	S	0	40.65	8.67
At1g29790	None	Unknown protein	—	0	41.93	9.47
At3g60950	None	Unknown protein	M	0	66.72	7.10
At2g46150	None	Expressed protein	C	1	24.08	9.78
At5g20900	None	Expressed protein	—	0	12.43	9.34
At5g02000	None	Expressed protein	S	1	23.39	9.28
At2g46170	RTNLb5 Reticulon family protein	—	3	28.67	7.16	
At1g44960	None	Expressed protein	S	4	28.20	9.60
At2g25270	None	Expressed protein	S	5	59.87	6.18
At1g15270	None	Expressed protein	—	0	6.97	9.95
At1g47550	None	Expressed protein	—	0	100.00	5.57
At2g01540	None	Unknown protein	—	0	20.07	6.42
At2g17705	None	Expressed protein	—	0	14.36	8.67
At2g22660	None	Unknown protein	—	0	66.44	5.98
At2g44060	LEA Late embryogenesis abundant protein	—	0	36.01	4.69	
At2g46140	LEA type-2 Desiccation-related protein, related	—	0	17.84	4.53	
At3g16640	TCTP Transcriptionally controlled tumor protein	—	0	18.90	4.52	
New protein kinases were also identified in the PM proteome (Table III and Supplemental Table I), several of them featuring putative N-terminal myristoylation (CRK4, At5g24430; CPK7, At5g12480; and CPK13, At3g51850). Membrane targeting of CPK7 has been demonstrated (36). In this major category of proteins potentially modified by both N-myristoylation and S-palmitoylation (25, 71), the lipidic modification is essential for plasma membrane targeting. This was clearly demonstrated for CPK1 and CPK2 in Arabidopsis (36, 72). Another plant CPK1 from ice plant was shown to undergo a reversible modification in subcellular localization from the plasma membrane to the nucleus, endoplasmic reticulum, and actin microfilaments in response to reduction in humidity (73). In relation to bacterial defense responses, among new non-myristoylated kinases, the kinase Pto (At3g15890) and two Pto kinase interactors 1 (Pti1; At3g59350 and At1g06700) were identified in the PM proteome. Homologous genes in tomato are involved in a phosphorylation cascade initiated by recognition of the bacterial protein AvrPto at the cell surface (74), bringing further evidence for a role of these proteins at the PM.

A large number of small GTP-binding proteins newly identified in the present proteome correspond to RAB proteins (Table III, Fig. 3, and Supplemental Table I). These proteins are active in their GTP-bound form, which is membrane-associated following post-translational lipid modifications, i.e. prenylation, in A. thaliana. Half of them belong to the RABA subfamily, which might play a role in signaling pathways leading to the delivery of new cell wall components to the plasma membrane. The large number of RABA members in that subfamily would reflect the great diversity of cell wall material to be delivered to the plasma membrane, such as hemicellulose, integral cell wall proteins, or cellulose synthase complex. The two other RAB subfamilies well represented (Table III), RABF and RABG, would be involved in the regulation of endocytic trafficking pathway (31).

One of the most interesting classes of proteins found in this

AGI accession no.	Protein name	Protein family	LOC	TM	Molecular mass	pl
At3g17210	None	Putative Pop3 protein	—	0	12.18	5.42
At4g27450	None	Unknown protein	—	0	27.60	5.56
At5g02240	None	Expressed protein	—	0	27.09	6.20
At5g47210	None	Putative protein	—	0	37.98	8.75
At5g47710	None	Unknown protein	—	0	18.32	6.74
At4g24990	MUB3/GP4	Membrane-anchored ubiquitin-fold protein	—	0	12.83	9.17
At1g10590	None	Expressed protein	—	0	15.44	6.60
At1g23140	None	Expressed protein	M	0	18.56	4.48
At1g30070	None	Expressed protein	—	0	24.80	8.78
At2g01080	None	Expressed protein	—	0	24.75	9.18
At2g33470	None	Glycolipid transfer protein (GLTP)	—	0	22.73	6.95
At3g22850	None	Expressed protein	—	0	27.09	5.85
At5g11680	None	Expressed protein	—	0	23.09	6.35
At5g19140	None	Expressed protein	C	0	25.00	5.62
At1g78355	None	Expressed protein	—	1	17.09	5.93
At3g49720	None	Expressed protein	M	1	28.51	9.36
At5g58640	None	Selenoprotein-related	S	1	24.98	9.27
At4g11220	RTNLB2/BT12	Reticulon family protein	—	3	30.26	8.61
At3g03270	None	Unknown protein	—	0	22.59	5.53
At3g17020	None	Unknown protein	—	0	17.76	6.41
At5g49830	None	Expressed protein	—	0	82.70	5.21
At2g01410	None	Hypothetical protein	S	1	42.99	5.42
At4g23720	None	Hypothetical protein	S	1	35.17	8.55
At1g18180	None	Unknown protein	S	6	33.62	9.22
At5g39730	AIG2 protein-like	Avirulence induced gene protein	—	0	20.00	5.01
At2g30930	None	Hypothetical protein	C	0	16.93	4.92
At2g37970	None	Unknown protein	—	0	24.91	8.77
At1g73650	None	Unknown protein	S	6	32.94	9.14

![Cell signaling](https://www.mcponline.org)
PM proteome (Table III, Fig. 3, and Supplemental Table I) was the one of receptors especially because of their very large number. We focused on RLKs (signal reception subclass), which play important roles in many plant signal transduction pathways. RLKs are secreted proteins with part of the protein anchored within the plasma membrane as suggested by the occurrence of a single transmembrane domain, a cytoplasmic C-terminal kinase domain, and an extracellular N-terminal domain. This large family is represented by more than 600 genes in the Arabidopsis genome (75). To date 23 RLK proteins have been identified in former proteomes (10, 11, 16), and it is noteworthy that never more than 11 RLKs had been reported in the same proteome (11). In the present proteome, 49 RLKs were identified, including 26 new members, representative of different subfamilies, such as extensin, LRR, or CrRLK. Among the new RLKs, we identified the somatic embryogenesis receptor-like kinase, AtSERK1 (At1g71830), a well-characterized plasma membrane receptor (76) involved in the acquisition of embryogenic competence and in male sporogenesis (77, 78). Moreover a refined analysis of the list showed that the proteome contained the 14-3-3v (GRF7, At3g02520) and the CDC48A (At3g09840), two proteins participating with the co-receptor BRI1-associated receptor kinase 1, also in the present proteome (BAK1, At4g33430), in the SERK1 protein complex (79). Several other RLK proteins well known for their roles in defense responses against pathogen attacks are also present; this is the case for the flagellin-sensing 2 (FLS2, At5g46330) receptor that mediates innate response to bacterial pathogens (80) and the nuclear shuttle protein-interacting kinase (NIK1) involved in antiviral defense response (81). The protein AtPepR1 (At1g73080) is also present; this new RLK has been shown to amplify defense gene signaling for the innate immune response against pathogens (82). Proteins RKL1 (At1g48480) and RLK902 (At3g17840), involved in stress response (83, 84), were also identified. Identification of various subunits of functional PM complexes in the present proteome is further validation of the pertinence of our approach.

Newly Identified Proteins Further Exemplify the Tight Interactions Occurring between the PM and Other Cell Compartments

Analysis of the 289 proteins newly identified in the PM pointed out functional classes that were poorly or never observed in proteomics studies published so far (Tables III and IV, Fig. 3, and Supplemental Table I). These new proteins define different functional subclasses and to some extent assign new functions that emphasize the tight interaction occurring between plasma membrane and other cellular compartments.

PM and Endomembranes—Proteins participating in the sequential steps of endocellular trafficking and secretion were identified: (i) subunits Sec5, Sec6, Sec8, and Sec10 of the exocyst complex involved in polarized exocytosis at the PM (85), (ii) several SNARE proteins, such as VAMP721 and SYP111, involved in specific vesicle fusion with the PM, (iii) dynamin-like proteins (ADL2b and ADL3) that might be in-
volved in clathrin-mediated vesicle trafficking together with some of the new proteins also identified in the present proteome, such as clathrin small chain (At4g08520), β-adaptin (At4g23460), and clathrin heavy chain (At3g11130), and (iv) other proteins such as Sec12-2 and SARAI1B involved in vesicle formation from the ER to the Golgi compartments (54, 86). These data illustrate the interplay between PM and the various endomembrane systems of the cell.

PM and Cytoskeleton—Newly identified proteins belonging to large families, TH65 from kinesins and two profilins (PRO1 and PRO2), known to regulate cytoskeleton dynamics and play specific roles in cell elongation and cell division, were also identified. The presence of this protein category is another example of the close interactions between PM and cytoskeleton (87, 88).

PM and Cytosol/Cell Wall—Two cytosolic glutamine synthases, GLN1;1 and GLN1;3 (89), were identified in the PM proteome. This suggests that enzymes could be transiently targeted to the PM for facilitating interactions with PM proteins. GLN1;1 was demonstrated to interact with CRK3, a myristoylated protein kinase (71, 90). Likewise the cell wall glycin-rich protein GRP2 might interact with a PM wall associated kinase as it was shown in the case of GRP3 (91). A last feature to emphasize is the identification of metabolism enzymes, several participating in cell wall composition or in the biosynthesis of cell wall components such as cinnamyl alcohol dehydrogenase or nucleotide-rhamnose synthase/epimerase-reductase (3,5-epimerase) (92–94). Several of them, including the strictosidine synthase and the endotransglycosylase MERI-5, have been identified in the cell wall proteome (95) showing the faint barrier between PM and cell wall proteins. Functionally the presence in the same compartment of these enzymes and RABA G-proteins (see above) suggests that these processes are regulated at least partly at the plasma membrane level.

Emergence of New Protein Classes Confirms the Role of PM in Protein Processing and Turnover

The rest of the identified proteins (~25%) define functional classes (Fig. 3 and Table IV) that were as yet never associated with a PM. Interestingly the proteins belonging to the class “protein turnover” is composed almost exclusively (12 of 13) of proteins that were never identified in previous PM proteomics studies. These proteins are mainly soluble proteins, but their biological role may involve transient interaction with the PM. This was suggested in the caspase cascade, which could be activated from the cell surface (96). In agreement with this hypothesis, in mammals, signaling protein oligomerization transduction structures (SPOTS complex), which are known to be essential for Fas apoptosis signaling, are formed at the plasma membrane (97). As to the armadillo repeat-containing proteins, it was also shown in tobacco that the armadillo protein NtPUB4 interacts with the receptor like-kinase CHRK1 at the plasma membrane (98). Thus, the presence in the plasma membrane proteome of proteins involved in protein degradation processes is not unexpected because the apoptotic signaling pathway can be induced by many extracellular stimuli.

The PM proteome analysis revealed a second new class of PM proteins, the “protein maturation” class (Fig. 3 and Table IV). Among these proteins, cytosolic forms of chaperones (several Hsp proteins) and cyclophilins (several CYP proteins) were found. The interaction between proteins from these families and PM proteins have already been reported, Hsp90 with AtFKBP42 (99) and CYP20.1 with RCN1, a PP2A (100). We also identified several peptidases, such as APM1, an aminopeptidase bound to the PM (101).

Concluding Remarks

With a few exceptions, the 446 proteins identified in the course of this study represent the largest proteome for a plant plasma membrane reported so far because of the combination of two extraction procedures. Compared with a previous study based on CHCl3/MeOH extraction and NaOH washing (9), the PM repertoire was widened with respect to the physicochemical properties of the identified proteins and the functions associated with these proteins; some of them have never been pointed out in previous proteomics analyses of PM. Interestingly part of the plant PM proteome overlaps the proteome of lipid rafts (16). Lipid rafts are known as PM microdomains that have specific roles in stress response and signaling and are enriched in lipid-modified proteins. In the present PM proteome, we identified a large number of proteins displaying putative lipid modifications, suggesting that the PM proteome is enriched in peripheral proteins transiently interacting with the PM. Whether all or only parts of the putatively lipid-modified proteins of the PM proteome belong to lipid rafts is still unknown. In particular, predicted prenylated proteins were included in the new set of PM proteins. To our knowledge, such proteins had never been observed in former studies including lipid rafts.

Functional analysis of the newly identified proteins highlights three other remarkable characteristics of the present proteome. First, close interaction with other cell compartments, mainly cytosol, cytoskeleton, cell wall, and endomembrane systems, highlights the central role of PM. Proteins from the two subclasses, cell wall component and cell wall synthesis, might be extrinsic due to their location at the interface between the cell wall and the PM and have a function that depends on the two compartments. In other respects, evidence for functional interactions with the endomembranes is the identification of proteins involved in the intracellular cell traffic (Sec proteins, dynamins, and SNAREs) and GTP-binding proteins (RABs etc.) suggesting a close connection between the PM and the ER/Golgi apparatus. Second, the high enrichment in signaling proteins, in particular in receptor-like...
kinases, confirms the unique role of PM in signal perception and transduction processes. As already pointed out, several sets of proteins participating in functional complexes at the PM level were identified in the present PM proteome. Third, new functional classes were identified, further supporting previous evidence for a role of PM in protein processing, i.e., protein degradation via the ubiquitin-proteasome pathway and protein maturation. Altogether our data exemplify that the combined proteomics approach on a target membrane, the plasma membrane herein, is a powerful tool for retrieving specific types of putatively lipid-modified proteins and may also bring new insights toward a functional proteome.

* This work was supported by the CNRS and the Génopole program Grants Nouveau Outils 19993663 and Nouveau Outils 2001027 and Grant BCM5-275 from Fonds National de la Science, France. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

§ The on-line version of this article (available at http://www.mcponline.org) contains supplemental material.

¶ Present address: Unite Mixte de Recherche de Génétique, Végétale, Institut National de la Recherche Agronomique/Université Paris XI/CNRS/Institut National Agronomique Paris-Grignon, Ferme du Cety, France.

†† To whom correspondence should be addressed: CNRS-UPR 1994, Institut des Sciences du Végétal, Bâtiment 22, 91198 Gif sur Yvette, France.

REFERENCES

1. Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E. L. (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580

2. Schwacke, R., Schneider, A., van der Graaff, E., Fischer, K., Catoni, E., Desimone, M., Frommer, W. B., Flugge, U., and Kunze, R. (2003) ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol. 131, 16–26.

3. Heazlewood, J. L., Tonti-Filippini, J., Verboom, R. E., and Millar, A. H. (2005) Combining experimental and predicted datasets for determination of the subcellular location of proteins in Arabidopsis. Plant Physiol. 139, 598–609.

4. Maurer-Stroh, S., Eisenhaber, B., and Eisenhaber, F. (2002) N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence. J. Mol. Biol. 317, 541–557.

5. Boisson, B., Giglione, C., and Meinnel, T. (2003) Unexpected protein families including cell defense components feature in the N-myristoylome of a higher eukaryote. J. Biol. Chem. 278, 43418–43429.

6. Galichet, A., and Gruissem, W. (2003) Protein farnesylation in plants—functional classes were identified, further supporting previous evidence for a role of PM in protein processing, i.e., protein degradation via the ubiquitin-proteasome pathway and protein maturation. Altogether our data exemplify that the combined proteomics approach on a target membrane, the plasma membrane herein, is a powerful tool for retrieving specific types of putatively lipid-modified proteins and may also bring new insights toward a functional proteome.

10. Alexandersson, E., Saalbach, G., Larsson, C., and Kjellbom, P. (2004) Arabidopsis plasma membrane proteome identifies components of transport, signal transduction and membrane trafficking. Plant Cell Physiol. 45, 1543–1556.

11. Dunkley, T. P., Jr., Hester, S., Shadforth, I. P., Runions, J., Weimar, T., Hanton, S. L., Griffin, J. L., Bessant, C., Brandizzi, F., Hawes, C., Watson, R. B., Dupree, P., and Lilley, K. S. (2006) Mapping the Arabidopsis organelle proteome. Proc. Natl. Acad. Sci. U. S. A. 103, 6518–6523.

12. Borner, G. H., Sherrier, D. J., Weimar, T., Michaelson, L. V., Hawkins, N. D., Macaskill, A., Napier, J. A., Beale, M. H., Lilley, K. S., and Dupree, P. (2005) Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts. Plant Physiol. 137, 104–116.

13. Mongrand, S., Morel, J., Larocco, J., Claverol, S., Carde, J., Hartmann, M., Bonneau, M., Simon-Plas, F., Lessire, R., and Bessoule, J. (2004) Lipid rafts in higher plant cells: purification and characterization of Triton X-100-insoluble microdomains from tobacco plasma membrane. J. Biol. Chem. 279, 36277–36286.

14. Elortza, F., Mohammed, S., Bunkenberg, J., Foster, L. J., Nuhse, T. S., Brodbeck, U., Peck, S. C., and Jensen, O. N. (2006) Modification-specific proteomics of plasma membrane proteins: identification and characterization of glycosylphosphatidylinositol-anchored proteins released upon phospholipase D treatment. J. Proteome Res. 5, 933–943.

15. Elortza, F., Nuhse, T. S., Foster, L. J., Stenteballe, A., Peck, S. C., and Jensen, O. N. (2003) Proteomic analysis of glycosylphosphatidylinositol-anchored membrane proteins. Mol. Cell. Proteomics 2, 1261–1270.

16. Morel, J., Claverol, S., Mongrand, S., Furt, F., Fromentin, J., Bessoule, J., Blein, J., and Simon-Plas, F. (2006) Proteomics of plant detergent-resistant membranes. Mol. Cell. Proteomics 5, 1396–1411.

17. Marmagne, A., Salvi, D., Rolland, N., Ephritikhine, G., Joyard, J., and Barbier-Brygoo, H. (2006) Purification and fractionation of membranes for proteomic analyses. Methods Mol. Biol. 323, 403–420.

18. Jaquinod, M., Villiers, F., Kieffer-Jaquinod, S., Hugouvieux, V., Bruley, C., Garin, J., and Bourguignon, J. (2007) A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture. Mol. Cell. Proteomics 6, 394–412.

19. Peng, J., Elias, J. E., Thoreen, C. J., and Gygi, S. P. (2003) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/CL-MS/MS) for large-scale protein analysis: the yeast proteome. J. Proteome Res. 2, 43–50.

20. Hesketh, J. E. (1996) Sorting of messenger RNAs in the cytoplasm: mRNA localization and the cytoskeleton. Exp. Cell Res. 225, 219–236.

21. Medalia, O., Weber, I., Franakis, A. S., Nicastro, D., Gerisch, G., and Baumeister, W. (2002) Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 296, 1209–1213.

22. Emanuelsson, O., Nielsen, H., Brunak, S., and von Heijne, G. (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 300, 1095–1106.

23. Friso, G., Giacomelli, L., Vetter, A. J., Peltier, J., Rudella, A., Sun, Q., Wijk, K. J. V. (2004) In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database. Plant Cell 16, 478–499.

24. Tusnady, G. E., and Simon, I. (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17, 849–850.

25. Frotin, F., Martinez, A., Peynot, P., Mitra, S., Holt, R. C., Giglione, C., and Meinnel, T. (2006) The proteomics of N-terminal methionine cleavage. Mol. Cell. Proteomics 5, 2336–2349.

26. Meinnel, T., Peynot, P., and Giglione, C. (2005) Processed N-termini of mature proteins in higher eukaryotes and their major contribution to dynamic proteomics. Biochimie (Paris) 87, 701–712.

27. Maurer-Stroh, S., and Eisenhaber, F. (2005) Refinement and prediction of protein prenylation motifs. Genome Biol. 6, R55.

28. Ephritikhine, G., Ferro, M., and Rolland, N. (2004) Plant membrane proteomics. Plant Physiol. Biochem. 42, 943–962.

29. Santoni, V., Doumas, P., Rouque, D., Mansion, M., Rabilloud, T., and Rossignol, M. (1999) Large scale characterization of plant plasma membrane proteins. Biochimie (Paris) 81, 655–661.

30. Rolland, N., Ferro, M., Ephritikhine, G., Marmagne, A., Ramus, C., Bruigere, S., Salvi, D., Seigneurin-Berny, D., Bourguignon, J., Barbier-Brygoo, H., Joyard, J., and Garin, J. (2006) A versatile method for
deciphering plant membrane proteomes. J. Exp. Bot. 57, 1579–1589
31. Vernoud, V., Horton, A. C., Yang, Z., and Nielsen, E. (2003) Analysis of the small GT-pase gene superfamily of Arabidopsis. Plant Physiol. 131, 1191–1208
32. Klein, S., Franco, M., Chardin, P., and Luton, F. (2006) Role of the Dock180/GTP cycle and Arf6 GT-pase-activating proteins in actin remodeling and intracellular transport. J. Biol. Chem. 281, 12352–12361
33. Nishi, T., and Forgac, M. (2002) The vacuolar (H1)-ATPases—nature’s most versatile proton pumps. Nat. Rev. Mol. Cell Biol. 3, 94–103
34. RouQUI, D., Tournaye-Roux, C., Sponzaroni, W., Rossignol, M., and Doumas, P. (1998) Cloning of the V-ATPase subunit G in plant: functional expression and sub-cellular localization. FEBS Lett. 437, 287–292
35. Toyomura, T., Murata, Y., Yamamoto, A., Oka, T., Sun-Wada, G., Wada, Y., and Futai, M. (2003) From lysosomes to the plasma membrane: localization of vacuolar-type H1-ATPase with the a3 isoform during osteoclast differentiation. J. Biol. Chem. 278, 22023–2030
36. Dammann, C., Ichida, A., Hong, B., Romanowsky, S. M., Hrabak, E. M., Harmon, A. C., Pickard, B. G., and Harper, J. F. (2003) Subcellular targeting of nine calcium-dependent protein kinase isozymes from Arabidopsis. Plant Physiol. 132, 1640–1648
37. Kong, S., Suzuki, T., Tamura, K., Mochizuki, N., Hara-Nishimura, I., and Nagatani, A. (2002) Blue light-induced association of phototropin 2 with the Golgi apparatus. Plant J. 45, 994–1005
38. Kobae, Y., Sekino, T., Yoshioka, H., Nakagawa, T., Martinoia, E., and Maeshima, M. (2006) Loss of ATP1B8, a plasma membrane ABC transporter of Arabidopsis thaliana, causes hypersensitive cell death upon pathogen infection. Plant Cell Physiol. 47, 309–318
39. Brugiere, S., Kowalski, S., Ferro, M., Seigneurin-Berny, D., Miras, S., Salvi, D., Ravanat, S., d’Herin, P., Garin, J., Bourguignon, J., Joyard, J., and Rolland, N. (2004) The hydrophytic proteome of mitochondrial membranes from Arabidopsis cell suspensions. Phytochemistry 65, 1693–1707
40. Ferro, M., Salvi, D., Brugiere, S., Miras, S., Kowalski, S., Louwagie, M., Garin, J., Joyard, J., and Rolland, N. (2003) Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol. Cell. Proteomics. 2, 325–345
41. Rest, M. D. (2004) Membrane targeting of lipid modified signal transduction proteins. Subcell. Biochem. 37, 217–232
42. Thompson, G. A. J., and Okuyama, H. (2000) Lipid-linked proteins of plants. Prog. Lipid Res. 39, 19–39
43. Otterhag, J., Sommarin, M., and Pical, C. (2001) N-terminal EF-hand-like domain is required for phosphoinositide-specific phospholipase C activity in Arabidopsis thaliana. FEBS Lett. 497, 165–170
44. Wang, C., and Wang, X. (2001) A novel phospholipase D of Arabidopsis thaliana. FEBS Lett. 497, 1051–1062
45. Clark, G. B., Lee, D., Daubalder, M., and Roux, S. J. (2005) Immuno-localization and histochemical evidence for the association of two different Arabidopsis annexins with secretion during early seedling growth and development. Planta 220, 621–631
46. Morsomme, P., and Boutry, M. (2000) The plant plasma membrane H1-ATPase: structure, function and regulation. Biochim. Biophys. Acta 1465, 51–66
47. Geissler, M., Axelsen, K. B., Harper, J. F., and Palmgren, M. G. (2000) Molecular aspects of higher plant P-type Ca21-ATPases. Biochim. Biophys. Acta 1465, 52–78
48. Beyenbach, K. W., and Wielochek, H. (2006) The V-type H1-ATPase: molecular structure and function, physiological roles and regulation. J. Exp. Biol. 209, 577–589
49. Boursiac, Y., Chen, S., Liu, D., Sorieul, M., van den Dries, N., and Maurel, C. (2005) Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiol. 139, 790–805
50. Shin, H., Shin, H., Dewbre, G. R., and Harrison, M. J. (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J. 39, 629–642
51. Trternit, E., Schmid, J., Epplle, P., Illig, J., and Sauer, N. (1996) The sink-specific and stress-regulated Arabidopsis STP4 gene: enhanced expression of a gene encoding a monocarboxylate transporter by wounding, elicitors, and pathogen challenge. Plant Cell 8, 2169–2182
52. Nersissian, A. M., Immoos, C., Hill, M. G., Hart, P. J., Williams, G., Herrmann, R. G., and Valentine, J. S. (1998) Uclaycinas, stellacycinas, and plantacycinas are distinct subfamilies of phytoacycinas: plant-specific mononuclear blue copper proteins. Protein Sci. 7, 1915–1929
53. Zhen, X., and Li, Y. (2004) Ultrastructural changes and location of beta-1,3-glucanase in resistant and susceptible cotton callus cells in response to treatment with toxin of Verticillium dahliae and salicylic acid. J. Plant Physiol. 161, 1367–1377
54. Cheung, Y., Kim, C., Chun, H., Moon, B., Park, H., Kim, J., Lee, S., Han, C., Lee, S., and Cho, S. (2002) Cloning of a soybean class III beta-1,3-glucanase gene that is regulated both developmentally and in response to pathogen infection. Plant Sci. 154, 71–81
55. Micheli, F. (2001) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci. 6, 414–419
56. Li, Y., Mareck, A., Faleri, C., Moscatelli, A., Liu, Q., and Cresti, M. (2002) Detection and localization of pectin methylesterase isoforms in pollen tubes of Nicotiana tabacum L. Planta 214, 734–740
57. Bariola, P. A., Retelska, D., Stasiak, A., Kämmerer, R. A., Fleming, A., Hijri, M., Frank, S., and Farmer, E. E. (2004) Remorins form a novel family of coiled-coil-forming oligomeric and filamentous proteins associated with apical, vascular and embryonic tissues in plants. Plant Mol. Biol. 55, 579–594
58. Nadimpalli, R., Yalpani, N., Johal, G. S., and Simmons, C. R. (2000) Prohibitins, stomatin, and plant disease response genes compose a protein superfamily that controls cell proliferation, ion channel regulation, and death. J. Biol. Chem. 275, 29579–29586
59. Horling, F., Riemer, K., Konig, J., Finkemeier, I., Kandlbinder, A., Baier, M., and Dietz, K. (2003) Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis. Plant Physiol. 131, 317–325
60. Brov, C. (2003) The plant glutathione transferase family: genomic structure, functions, expression and evolution. Physiol. Plant. 119, 469–479
61. Vieira Dos Santos, C., and Rey, P. (2006) Plant thioredoxins are key actors in the oxidative stress response. Trends Plant Sci. 11, 329–334
62. Yoshida, S., Tamaoki, M., Shikano, T., Nakajima, N., Ogawa, D., Ioku, M., Aono, M., Kubo, A., Kamada, H., Inoue, Y., and Saji, H. (2006) Cytosolic dehydroascorbate reductase is important for ozone tolerance in Arabidopsis thaliana. Plant Cell Physiol. 47, 304–318
63. Herbert, S., Brunel, N., Prensier, G., Julien, J., Drevet, J. R., and Roeckele-Drevet, P. (2004) Immuno-localization of a plant glutathione peroxidase-like protein. Planta 219, 784–789
64. Hrabak, E. M., Chan, C. W. M., Gribkov, M., Harper, J. F., Choi, J. H., Haldorff, N., Kudla, J., Luan, S., Nimmo, H. G., Sussman, M. R., Thomas, M., Walker-Simmons, K., Zhu, J., and Harmon, A. C. (2003) The Arabi-
Specific Features in Arabidopsis Plasma Membrane Proteome

72. Lu, S. X., and Hrabak, E. M. (2002) An Arabidopsis calcium-dependent protein kinase is associated with the endoplasmic reticulum. *Plant Physiol.* **128**, 1008–1021.

73. Chehab, E. W., Patharkar, O. R., Hegeman, A. D., Taybi, T., and Cushman, J. O. (2004) Autophosphorylation and subcellular localization dynamics of a salt- and water deficit-induced calcium-dependent protein kinase from ice plant. *Plant Physiol.* **135**, 1430–1446.

74. Zhou, J., Loh, Y. T., Bressan, R. A., and Martin, G. B. (1995) The tomato gene Pto encodes a serine/threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. *Cell* **83**, 925–935.

75. Shiu, S. H., and Bleecker, A. B. (2003) Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. *Plant Physiol.* **132**, 530–543.

76. Shah, K., Gadella, T. W. J., van Erp, H., Hecht, V., and de Vries, S. C. (2001) Subcellular localization and oligomerization of the Arabidopsis thaliana somatic embryogenesis receptor kinase 1 protein. *J. Mol. Biol.* **309**, 641–655.

77. Hecht, V., Vielle-Calzada, J. P., Hartog, M. V., Schmidt, E. D., Boutillier, K., Grossniklaus, U., and de Vries, S. C. (2001) The Arabidopsis Somatic Embryogenesis Receptor-Like Kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. *Plant Physiol.* **127**, 803–816.

78. Albrecht, C., Russinova, E., Hecht, V., Baaijens, E., and de Vries, S. (2005) The Arabidopsis thaliana Somatic Embryogenesis Receptor-Like Kinase 1 and 2 control male sporogenesis. *Plant Cell* **17**, 3337–3349.

79. Karlova, R., Boeren, S., Russinova, E., Aker, J., Vervoort, J., and de Vries, S. (2006) The Arabidopsis Somatic Embryogenesis Receptor-Like Kinase 1 protein complex includes Brassinosteroid-Insensitive 1. *Plant Cell* **18**, 626–638.

80. Gomez-Gomez, L., Bauer, Z., and Bolier, T. (2001) Both the extracellular leucine-rich repeat domain and the kinase activity of FSL2 are required for flagellin binding and signaling in Arabidopsis. *Plant Cell* **13**, 1155–1163.

81. Fontes, E. P. B., Santos, A. A., Luz, D. F., Waclawovsky, A. J., and Chory, J. (2004) The geminivirus nuclear shuttle protein is a virulence factor that suppresses transmembrane receptor kinase activity. *Genes Dev.* **18**, 2545–2556.

82. Yamaguchi, Y., Pearce, G., and Ryan, C. A. (2003) The geminivirus nuclear shuttle protein is a virulence factor that suppresses transmembrane receptor kinase activity. *Genes Dev.* **18**, 2545–2556.

83. Tarutani, Y., Morimoto, T., Sasaki, A., Yasuda, M., Nakashita, H., Yoshida, S., Yamaguchi, I., and Suzuki, Y. (2004) Molecular characterization of two highly homologous receptor-like kinase genes, RLK902 and RLK11, in Arabidopsis thaliana. *Biosci. Biotechnol. Biochem.** 68, 1935–1941.

84. Tarutani, Y., Sasaki, A., Yasuda, M., Nakashita, H., Yoshida, S., Yamaguchi, I., and Suzuki, Y. (2004) Identification of three cloning which commonly interact with the kinase domains of highly homologous two receptor-like kinases, RLK902 and RLK11. *Biosci. Biotechnol. Biochem.** 68, 2581–2587.

85. Cole, R. A., Synek, L., Zarsky, V., and Fowler, J. E. (2005) SEC8, a subunit of the putative Arabidopsis exocyst complex, facilitates pollen germination and competitive pollen tube growth. *Plant Physiol.* **136**, 2005–2018.

86. Bar-Peled, M., and Raikhel, N. V. (1997) Characterization of AtSEC12 and AtSAR1. Proteins likely involved in endoplasmic reticulum and Golgi transport. *Plant Physiol.* **114**, 315–324.

87. Ramachandran, S., Christensen, H. E., Ishimaru, Y., Dong, C. H., Chao-Ming, W., Cleary, A. L., and Chua, N. H. (2000) Profilin plays a role in cell elongation, cell shape maintenance, and flowering in Arabidopsis. *Plant Physiol.* **124**, 1637–1647.

88. Lee, Y. J., and Liu, B. (2004) Cytoskeletal motors in Arabidopsis. Sixty-four kinesins and seventeen myosins. *Plant Physiol.* **136**, 3877–3883.

89. Ishiyama, K., Inoue, E., Watanabe-Takahashi, A., Obara, M., Yamaya, T., and Takahashi, H. (2004) Kinetic properties and ammonium-dependent regulation of cytosolic isoenzymes of glutamine synthetase in Arabidopsis. *J. Biol. Chem.* **279**, 16598–16605.

90. Leclercq, J., Rarty, B., Sanchez-Ballesta, M., Li, Z., Jones, B., Jaunee, A., Pech, J., Latche, A., Ranjeva, R., and Bouzayen, M. (2005) Molecular and biochemical characterization of LeCRK1, a ripping-associated tomato CDPK-related kinase. *J. Exp. Bot.* **56**, 25–35.

91. Park, A. R., Cho, S. K., Yun, U. J., Jin, M. Y., Lee, S. H., Sachetto-Martin, G., and Park, O. K. (2001) Interaction of the Arabidopsis receptor protein kinase WAK1 with a glycine-rich protein, AtGRP-3. *J. Biol. Chem.* **276**, 26688–26693.

92. Eudes, A., Pollet, B., Sibout, R., Do, C., Seguin, A., Lapiere, C., and Jouanin, L. (2006) Evidence for a role of AtCAD1 in lignification of elongating stems of Arabidopsis thaliana. *Planta* **225**, 23–39.

93. Gotfner, D., Van Doorselaere, J., Yahiaoui, N., Samaj, J., Grima-Pettenati, J., and Boudet, A. M. (1998) A novel aromatic alcohol dehydrogenase in higher plants: molecular cloning and expression. *Plant Mol. Biol.* **36**, 755–765.

94. Watt, G., Leoff, C., Harper, A. D., and Bar-Peled, M. (2004) A bifunctional 3,5-epimerase/4-keto reductase for nucleotide-rhamnose synthesis in Arabidopsis. *Plant Physiol.* **134**, 1337–1346.

95. Bayer, E. M., Bottrill, A. R., Walshaw, J., Vigouroux, M., Naldrett, M. J., Thomas, C. L., and Maule, A. J. (2006) Arabidopsis cell wall proteome defined using multidimensional protein identification technology. *Proteomics* **6**, 301–311.

96. Cho, S.-G., and Choi, E.-J. (2002) Apoptotic signaling pathways: caspases and stress-activated protein kinases. *J. Biochem. Mol. Biol.* **35**, 24–27.

97. Siegel, R. M., Muppidi, J. R., Sarker, M., Lobito, A., Jen, M., Martin, D., Strauss, S. E., and Lenardo, M. J. (2004) SPOTS: signaling protein oligomeric transduction structures are early mediators of death receptor-induced apoptosis at the plasma membrane. *J. Cell Biol.* **167**, 735–744.

98. Kim, M., Cho, H. S., Kim, D. M., Lee, J. H., and Pai, H. S. (2003) CHRK1, a chitinase-related receptor-like kinase, interacts with NtPUB4, an armadillo repeat protein, in tobacco. *Biochim. Biophys. Acta* **1651**, 50–59.

99. Kamphuesen, T., Fanghanel, J., Neumann, D., Schulz, B., and Rahfeld, J. (2002) Characterization of Arabidopsis thaliana AtPKB42 that is membrane-bound and interacts with HsP90. *Plant J.* **32**, 263–276.

100. Jackson, K., and Soll, D. (1999) Mutations in a new Arabidopsis cyclophilin disrupt its interaction with protein phosphatase 2A. *Mol. Gen. Genet.* **262**, 830–838.

101. Murphy, A. S., Hoogner, K. R., Peer, W. A., and Taiz, L. (2002) Identification, purification, and molecular cloning of N1-naphthylalkylation acid-binding plasma membrane-associated aminopeptidases from Arabidopsis. *Plant Physiol.* **128**, 935–950.