Replication of the pharmacogenetic effect of rs678849 on buprenorphine efficacy in African–Americans with opioid use disorder

Richard C. Crist1 ▪ Karran A. Phillips2 ▪ Melody A. Furnari2 ▪ Landhing M. Moran2 ▪ Glenn A. Doyle1 ▪ Laura F. McNicholas3 ▪ James W. Cornish3,4 ▪ Kyle M. Kampman3,4 ▪ Kenzie L. Preston2 ▪ Wade H. Berrettini1

Received: 27 March 2018 / Revised: 24 August 2018 / Accepted: 27 September 2018 / Published online: 27 October 2018 © Springer Nature Limited 2018

Abstract

Many patients with opioid use disorder do not have successful outcomes during treatment but the underlying reasons are not well understood. An OPRD1 variant (rs678849) was previously associated with methadone and buprenorphine efficacy in African–Americans with opioid use disorder. The objective of this study was to determine if the effect of rs678849 on opioid use disorder treatment outcome could be replicated in an independent population. Participants were recruited from African–American patients who had participated in previous studies of methadone or buprenorphine treatment at the outpatient treatment research clinic of the NIDA Intramural Research Program in Baltimore, MD, USA between 2000 and 2017. Rs678849 was genotyped retrospectively, and genotypes were compared with urine drug screen results from the previous studies for opioids other than the one prescribed for treatment. Genotypes were available for 24 methadone patients and 55 buprenorphine patients. After controlling for demographics, the effect of rs678849 genotype was significant in the buprenorphine treatment group (RR = 1.69, 95% confidence interval (CI) 1.59–1.79, p = 0.021). Buprenorphine patients with the C/C genotype were more likely to have opioid-positive drug screens than individuals with the C/T or T/T genotypes, replicating the original pharmacogenetic finding. The effect of genotype was not significant in the methadone group (p = 0.087). Thus, the genotype at rs678849 is associated with buprenorphine efficacy in African–Americans being treated for opioid use disorder. This replication suggests that rs678849 genotype may be a valuable pharmacogenetic marker for deciding which opioid use disorder medication to prescribe in this population.

Introduction

Opioid use disorder (OUD) includes dependence on heroin and prescription opioid analgesics. The disorder affects millions of people worldwide and has grown into an epidemic in the United States, where the National Survey on Drug Use and Health suggested that ~2.6 million people were suffering from OUD in 2015 [1]. Society pays a significant price for this ongoing problem in the forms of health-care costs, missed work, criminal activity, and premature mortality. Overdose deaths in the United States have reached historically high rates; more than 50,000 Americans died of opioid overdoses in 2016 according to the Centers for Disease Control and Prevention.

Opioids of abuse are primarily agonists of the mu-opioid receptor (MOR). Methadone, a MOR agonist, and buprenorphine, a MOR partial agonist and kappa-opioid receptor antagonist, are FDA approved for OUD treatment. Both medications have been repeatedly proven to be effective at
Reducing illicit opioid use when compared with placebo [2]. However, individual patients may have varying levels of OUD treatment success and many people will not reduce illicit opioid use on methadone or buprenorphine [2].

Variation in treatment efficacy is affected by genetic factors specific to individual patients (i.e., pharmacogenetics). Pharmacogenetic findings have been described for therapies for alcohol and tobacco use disorders [3–6]. However, similar findings are limited with regard to OUD and often focus on dose or serum levels rather than treatment outcome (reviewed in ref. [7]). The cytochrome P450 family of genes encodes enzymes that metabolize a large number of molecules, including methadone and buprenorphine [8–10]. Pharmacokinetic status of family members, such as CYP2B6 and CYP3A4, have been associated with plasma concentrations of methadone but connections to dose requirements have been more equivocal [7, 11–14]. Genotypes at ABCB1, a gene encoding a transmembrane efflux pump, have also been linked to methadone serum levels and dose [15–17]. As with the CYP genes, a number of studies have failed to replicate the ABCB1 associations with dose (reviewed in ref. [7]). Recent genome-wide association studies (GWAS) have implicated other genes potentially relevant to dose or serum levels of methadone, including SPON1 and GSG1L [18] and the region upstream of OPRM1 [19].

Pharmacogenetic effects on OUD treatment efficacy have also been identified, although confirmation in additional studies has not occurred. Polymorphisms in ARRB2, DRD2, and BDNF have all been associated with methadone outcome when patients are classified as responders or non-responders [20–22]. A small study found patients with the ultra-rapid metabolizer phenotype for CYP2D6 to have a lower rate of successful methadone treatment than those with the poor metabolizer phenotype [23].

Our group has previously studied pharmacogenetics in the Starting Treatment with Agonist Replacement Therapy (START) trial, which was a randomized, open-label trial of OUD treatment funded by the National Institute on Drug Abuse (NIDA) in response to a report of liver toxicity problems with buprenorphine [24]. Patients were randomized to either methadone or buprenorphine for a 24-week course of treatment. In addition to a liver enzyme analysis, blood samples were collected to study the pharmacogenetics of the two medications. In this sample set, a 3′ untranslated region variant in the mu-opioid receptor gene (OPRM1) predicted methadone efficacy in European–Americans and a polymorphism in the delta-opioid receptor gene (OPRD1) was associated with buprenorphine efficacy in woman of that ethnic group [25, 26]. The most significant finding, however, was rs678849 in OPRD1 [27]. This SNP was originally chosen for study due to its presence in a haplotype previously associated with opioid dependence [28]. This intronic variant was associated with both methadone and buprenorphine efficacy in African–Americans, and had potential clinical significance due to the large size of the pharmacogenetic effect. Patients with the C/C genotype at rs678849 did worse on buprenorphine than those with the C/T or T/T genotypes. The opposite pharmacogenetic effect was observed in patients receiving methadone.

Like the other pharmacogenetic associations described above, replication of the rs678849 finding is necessary before the variant can be used to guide treatment decisions in a clinical setting. In this study, we attempted to replicate the effect of the SNP in an independent population of African–Americans in Baltimore who had received either methadone or buprenorphine as part of OUD treatment studies. A combined analysis of the replication sample and the START trial population was also performed.

Materials and methods

Participants and sample collection

Replication cohort (Baltimore)

Individuals were recruited for one of four OUD treatment studies at the outpatient treatment research clinic at the NIDA Intramural Research Program (NIDA IRP) (Baltimore, MD, USA) between 2000 and 2017: Protocol 326—Combined Behavioral and Pharmacologic Treatment of Polydrug Abuse—Arms Methadone (020-MTD) and Buprenorphine (020-BUP), and Office-based Buprenorphine (020-OBOT)). Methodologies for studies 326-1, 326-2, 385, 407, 020-MTD, and 020-BUP have been previously published [29–33]. Methodology for study 020-OBOT is provided in the Supplementary material. All patients were at least 18 years of age and had physical dependence on opioids. Cocaine and opioid-positive urine samples were also required for inclusion in studies 326-1, 326-2, and 385. Patients were excluded for any of the following reasons: (1) Axis 1 psychiatric disorders (e.g., schizophrenia, bipolar disorder, etc.); (2) alcohol or sedative dependence; (3) severe medical illness; (4) any condition that would interfere with urine collection; (5) severe cognitive impairment that would prevent informed consent. Ethnicity was self-reported. Treatment consisted of open-label methadone or buprenorphine/naloxone in combination with weekly...
individual counseling. Urine drug screens were performed three times per week (020-OBOT two times per week). Summarized details for the individual studies are presented in Table 1. For the pharmacogenetic replication study, individuals were re-recruited between 2015 and 2017 and provided a venous blood sample. In total, genotypes were available for 24 methadone patients and 55 buprenorphine patients. The institutional review board for the NIDA Intramural Research Program approved all protocols for the original trials and the protocol of the pharmacogenetic study. All subjects provided written informed consent for the original study and the pharmacogenetic study.

Discovery cohort (START)

START was a 24-week, randomized, open-label trial of methadone and buprenorphine/naloxone. Methodology and primary outcomes for the trial have been described [24]. Recruitment at federally licensed OUD treatment programs in the United States took place between May 2006 and October 2009. All patients met DSM-IV-TR criteria for opioid dependence. Patients were excluded for any of the following reasons: <18 years of age, cardiomyopathy, liver disease, acute psychosis, blood levels of alanine amino transferase or aspartate amino transferase greater than five times the maximum normal level, or poor venous access. Institutional review boards at participating sites approved the study. Oversight was provided by the NIDA Clinical Trials Network Data Safety and Monitoring Board. All patients provided written informed consent.

Genotyping

DNA was extracted from 2 μL of whole blood using the DNA Extract All Reagents Kit (ThermoFisher). Genotyping of rs678849 was performed on an ABI 7900 Thermocycler using a Taqman SNP Genotyping Assay (ThermoFisher) as previously described [34].

Statistical analysis

Rs678849 was in Hardy–Weinberg equilibrium in the replication cohort, as determined by chi-square analysis (p > 0.05). The effect of rs678849 genotype on treatment outcome, as defined by all available urine drug screens for opioids other than the one prescribed during treatment (buprenorphine or methadone), was analyzed using a generalized estimating equation (GEE), which can be used for repeated binary measures. The GEE was performed independently for both treatment groups in the replication cohort to analyze the main effects of rs678849 genotype on treatment outcome. To maintain consistency with the original rs678849 pharmacogenetic analysis, individuals with T/T
Table 2 Demographic information and treatment outcomes for African–American patients treated with methadone or buprenorphine/naloxone for opioid dependence by rs678849 genotype

Treatment	START Methadone	Buprenorphine	Replication Methadone	Buprenorphine	Combined Buprenorphine
rs678849	C/C	C/T+T/T	C/C	C/T+T/T	C/C
Number (% male)	21 (66.7%)	15 (80.0%)	24 (62.5%)	17 (70.1%)	13 (46.2%)
Mean age ± SD	48.6 ± 7.9	46.5 ± 9.6	49.6 ± 8.8	44.3 ± 10.3	48.9 ± 10.3
Mean maximal dose ± SD	86.0 ± 27.5	69.7 ± 21.8	22.0 ± 7.2	23.3 ± 6.3	16.6 ± 3.8
Mean % opioid-positive UDS ± SD	42.7 ± 64.2 ± 60.1 ± 30.0%	36.1%	37.2%	30.7 ± 32.3	38.8 ± 36.8%

UDS urine drug screens, SD standard deviation

Results

Participants and demographics

Table 2 contains information on mean age, mean maximal dose, the percentage of men, and the mean percentage of opioid-positive urine drug screens for methadone and buprenorphine patients in the original START trial, the replication cohort, and the combined sample. In the replication cohort, the buprenorphine treatment group had a higher percentage of males than the methadone treatment group (83.6% vs. 54.2%, p = 0.006) and had significantly more opioid-positive urine drug screens (53.3 ± 37.5% vs. 34.8 ± 27.7%, p = 0.035). Buprenorphine patients in the replication sample also had significantly lower maximal doses than buprenorphine patients in the START trial (16.9 ± 3.3% vs. 22.5 ± 6.9%, p < 0.001). In contrast, methadone patients in the replication sample had significantly higher maximal doses than patients in the START trial (97.3 ± 16.1 vs. 79.2 ± 26.5, p = 0.005).

Replication analysis

A GEE was used to analyze the effect of rs678849 genotype on urinalysis data for each treatment group separately, as well as for a genotype x treatment analysis comparing the genotypic effects in the two medication groups, while accounting for the effects of age, sex, time, dose, study, and cocaine dependence status. Missing tests were excluded from the analysis. As in the START trial, the effect of rs678849 genotype was significant in the buprenorphine treatment group (RR = 1.69, 95% confidence interval (CI) 1.59–1.79, p = 0.021). Buprenorphine patients with the C/C genotype were more likely to have opioid-positive drug screens than the individuals with C/T or T/T genotypes, replicating the original pharmacogenetic finding in the START cohort (Fig. 1). The effect of genotype was not significant in the methadone group (p = 0.087), although the direction of the effect matched that observed in the
START trial. There was also no significant interaction between genotype and treatment group in the gene x environment analysis ($p = 0.076$).

Combined analysis

The START trial and replication datasets were combined to analyze urine drug screen results for weeks 17–24, because that time period represents the last 2 months of treatment in the START trial. In that 8-week period, African–American buprenorphine patients with the C/C genotype at rs678849 had opioid-positive urine samples 56.3% of the time, compared with 30.7% for patients in the combined C/T and T/T genotypes group ($p < 0.0001$). Patients were also grouped as either “responders” or “non-responders” for further analysis. Nonresponders were either not retained in treatment until at least week 17 or submitted ≥50% opioid-positive urines in weeks 17–24 of treatment. Only 28.1% (16/57) of African–American buprenorphine patients with the C/C genotype met responder criteria, compared with 61.5% (24/39) for patients in the combined C/T and T/T genotypes group ($p = 0.001$). The number needed to treat (NNT) was three.

Discussion

The choice of prescribing methadone or buprenorphine to an individual patient is rarely an evidence-driven decision based on which medication is most likely to provide the better outcome. This situation arises from a lack of knowledge about the factors affecting treatment outcome; there is currently no FDA-approved pharmacogenetic marker for selecting an OUD medication. In this study, we replicated a pharmacogenetic association between an intronic variant in *OPRD1* (rs678849) and the efficacy of buprenorphine in treating African–Americans with OUD. This is the first successful replication of a pharmacogenetic effect in OUD treatment to our knowledge and rs678849 has the potential to improve treatment outcomes if used as a biomarker for guiding clinical prescribing practices.

OUD is a strong candidate for the use of pharmacogenetic markers due to two factors. The first is that the available treatments for the disorder work well in reducing or preventing illicit opioid use for many people but are ineffective in a subset of the population. While there are environmental factors that affect patient response to substance use disorder therapies (e.g., psychiatric co-morbidities, personal relationships, and support networks) [35], there is also a role for genetic background in altering treatment efficacy through pharmacokinetic or pharmacodynamic mechanisms. Identification of variants associated with treatment outcome could be used to stratify patients based on predicted treatment efficacy.

The second important factor is that OUD has more than one FDA-approved pharmacotherapy. Therefore, patients for whom one medication is predicted to be ineffective can be prescribed an alternate option. Patients are often not prescribed the most efficacious medication as a first-line therapy and there are significant repercussions to the poor treatment outcomes that result from this issue. Continued use of illicit opioids leads to reduced quality of life, as well as increased risks of disease and overdose. Ineffective OUD treatment also creates monetary burdens for the patients, the health-care system, and society in general. OUD costs the United States billions of dollars annually in the form of health care and lost productivity [36]. The C/C genotype has a frequency of ~54% among African–Americans. Since

![Fig. 1 Average percentage of opioid-positive urine drug screens for African–Americans based on rs678849 genotype for the first 24 weeks of treatment. Patients were treated for opioid dependence with methadone (a) or buprenorphine (b) as part of four studies at the NIDA Intramural Research Program. The mean percentage of opioid-positive during each week is provided for individuals with either the C/C genotype or the C/T and T/T genotypes. Error bars represent S.E.M.](image)
African–American patients with the C/C genotype at rs678849 have poor outcomes with buprenorphine, they may be better served by the prescription of methadone or naltrexone. Similarly, patients carrying the T allele at the variant might have better outcomes if prescribed buprenorphine rather than other medications. Selecting the medication with the best chance of a successful outcome using a pharmacogenetic biomarker such as rs678849 could help minimize the time between the start of medication and reduced opioid use, improve patient quality of life, and reduce the costs associated with OUD.

Several unanswered questions remain about the underlying mechanism of this pharmacogenetic effect. First, the direct functional consequences of rs678849 genotype have yet to be established. The variant has been associated with opioid dependence [28, 37] and cocaine dependence [34] in the past, along with the pharmacogenetic effect replicated in this study. Genotype at rs678849 was also associated with regional brain volume in individuals of European descent [38], further suggesting that the variant is relevant to human phenotypes. The location of the SNP in intron 1 of OPRD1 might suggest a role in expression or splicing of the gene. ChIP-seq data from the Roadmap Epigenomics Consortium found the rs678849 locus to be associated with epigenetic markers of active enhancers, including H3K4me1 in dorsolateral prefrontal cortex and spleen and H3K27ac in dorsolateral prefrontal cortex and inferior temporal lobe [39, 40]. However, to date, rs678849 has only been shown to be an expression quantitative trait locus (eQTL) for PHACTR4 and ATPIF1, genes located >300 kb upstream of OPRD1 (GTEx Portal), and none of these associations have been found in the brain or spleen [41]. Additional ChIP analysis for markers of promoters and/or transcription start sites (i.e., H3K4me3 and H3K9ac) also identified the rs678849 region in several tissues, including the inferior temporal lobe, anterior caudate, and spleen [39, 40]. Although splice variants of OPRD1 have recently been found in the human brain, none of the newly identified exons in intron 1 were in the vicinity of rs678849 [42]. Additional studies will be necessary to determine the functional consequences of rs678849 genotype with regard to OPRD1, PHACTR4, and ATPIF1 and what, if any, role epigenetics may play in this mechanism.

Another issue is that it is unclear why a variant in OPRD1 would affect buprenorphine efficacy, since the medication is thought to function through the mu-opioid and kappa-opioid receptors (MOR and KOR) rather than the delta-opioid receptor (DOR). However, some connections between buprenorphine and DOR have been published. Although buprenorphine has no efficacy at DOR, it does have affinity for the receptor [43, 44], which could allow DOR to act as a sink for the drug. Belcheva et al. also demonstrated that DOR, specifically the delta-2 subtype, was upregulated in the frontal and parietal cortices of rats treated with buprenorphine [45, 46]. Further, the effect of this SNP could be related to the formation of MOR–DOR heterodimers, which have been described in the central nervous system [47]. The differences in pharmacogenetic effects on buprenorphine and methadone may also be informative in regard to mechanism. Methadone patients demonstrated an opposite effect of rs678849 genotype on efficacy in the original START trial compared with buprenorphine patients. Although this effect was not significant in the current study, the direction of the effect was the same. Chronic treatment of cells with methadone, unlike morphine, results in desensitization of DOR [48]. If rs678849 genotype affects OUD treatment outcomes by causing differential expression of DOR, then desensitization of the receptor in methadone would mitigate this effect and might explain the differences in pharmacogenetic effects between the two treatment groups.

Finally, the specificity of the rs678849 effect on buprenorphine to the African–American population has yet to be explained. Variations in OPRD1 haplotype structure between African–Americans and European–Americans could also be relevant if rs678849 is not the causative variant. Other differences in genetic background might result in population-specific epistasis, masking the effects of rs678849 in patients of European descent. Environmental and socioeconomic factors, such as employment and stable housing, vary between ethnic groups and can have significant bearing on treatment outcomes [35, 49]. Some studies have also found that European–Americans are more likely to be retained in treatment compared with minority patients [50, 51], although other studies have not found an effect of ethnicity [49]. Gene x gene and gene x environment interactions that differ between populations are therefore likely to exist, further emphasizing the need for more detailed analyses of rs678849 in the context of race and socioeconomic status.

There are some limitations of this study that should be noted. First, both the initial analysis and the replication analysis were retrospective. The trials of methadone and buprenorphine from which subjects were recruited were not designed to identify genetic markers of treatment outcome, but for other clinical purposes. Therefore, there is a possibility that the rs678849 effect we have observed is a false positive caused by unknown confounding variables being unequally distributed between the genotype groups. While the replication of the effect in an independent cohort significantly reduces the likelihood of this possibility, a prospective clinical trial will be a necessary next step to verify the suitability of this finding to clinical care. Such a trial would be designed to specifically test the effect of rs678849 genotype on buprenorphine outcome in African–Americans and randomization would be stratified by genotype and
structured to minimize the unequal distribution of confounding variables.

Another limitation of the replication study is the relatively small number of methadone patients who were successfully re-consented for pharmacogenetic analysis. This could potentially explain the inability to replicate the original effect of rs678849 genotype on methadone outcome because we were underpowered to detect it. Other differences between the discovery and replication cohorts could also have affected the methadone replication. The original START study was a nationwide trial run through the NIDA Clinical Trials Network, while the replication samples are exclusively from the Baltimore area. Socioeconomic factors in Baltimore could differ from some or all of the recruitment areas in START and affect the outcome. Regional genetic variation in the African–American community could also play an unforeseen role. There are methodological differences between the discovery and replication studies as well. Polydrug abuse and alcohol dependence are both common in opioid-dependent patients but patients with alcohol or sedative dependence were excluded from all of the trials represented in the replication cohort. In contrast, there was no such exclusion in the START trial. Finally, the START trial collected only one urine sample per week compared with three in the Baltimore studies, possibly making the replication data a better estimate of illicit opioid use during treatment. While the variations between studies might contribute to the lack of significance in the methadone arm of the replication analysis, the replication of the buprenorphine finding despite these differences suggests that this pharmacogenetic effect for buprenorphine is quite robust.

Successful replication of the effect of rs678849 genotype on buprenorphine efficacy in African–Americans suggests that the SNP may be an important biomarker of OUD treatment outcome in this population. Prescreening African–American OUD patients for rs678849 genotype prior to the start of medication could have significant benefits. However, more information on the variant and the pharmacogenetic effect is necessary to apply the marker to clinical care. A prospective clinical trial of rs678849 in a population of OUD patients randomized to methadone or buprenorphine will be needed. The goal of such a trial would be to move rs678849 toward FDA approval as a pharmacogenetic marker for selecting an OUD medication. There is also currently minimal information on the functional consequences of rs678849 genotype and how those consequences directly or indirectly affect buprenorphine efficacy. Understanding these biological mechanisms may provide other intermediate phenotypes that predict the outcome in buprenorphine treatment or identify additional pharmaceutical targets that are relevant to OUD.

Acknowledgements START study funding came from the National Institute on Drug Abuse (NIDA) through the Clinical Trials Network (CTN) through a series of grants provided to each participating node: the Pacific Northwest Node (U10 DA01714), the Oregon Hawaii Node (U10 DA013036), the California/Arizona Node (U10 DA015815), the New England Node (U10 DA13038), the Delaware Valley Node (U10 DA13043), the Pacific Region Node (U10 DA13045), and the New York Node (U10 DA013046). Protocol 326, Protocol 385, Protocol 407, and Protocol 020 were supported by the Intramural Research Program of the NIH NIDA. Dr. Berrettini was supported by the Delaware Valley Node of the CTN (U10 DA13043) and by NIDA grant R21 DA036808. Dr. Crist was supported by NIDA grant K01 DA036751. Drs. Crist, Berrettini, and Doyle were supported by NIDA grant R01 DA044015. The funders had no role in design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Compliance with ethical standards

Conflict of interest KMK has received consulting fees from Alkermes and Opiant Pharmaceuticals. He has also received grant funding from Alkermes, Opiant Pharmaceuticals, and Indivior. WHB has received consulting fees from Mundipharma and Geisinger Health Systems and grant support from Saniona. The remaining authors declare no conflict of interests.

References

1. 2015 National Survey on Drug Use and Health: Detailed Tables. Substance Abuse and Mental Health Services Administration, Rockville, MD.
2. Mattick RP, Breen C, Kimber J, Davoli M. Buprenorphine maintenance versus placebo or methadone maintenance for opioid dependence. Cochrane Database Syst Rev 2014;CD002207.
3. Kranzler HR, Covault J, Feinn R, Armeli S, Tennen H, Arias AJ, et al. Topiramate treatment for heavy drinkers: moderation by a GRIK1 polymorphism. Am J Psychiatry. 2014;171:445–52.
4. Lerman C, Wileyto EP, Patterson F, Rukstalis M, Aubrain-McGovern J, Restine S, et al. The functional mu opioid receptor (OPRM1) Asn40Asp variant predicts short-term response to nicotine replacement therapy in a clinical trial. Pharm J. 2004;4:184–92.
5. Anton RF, Oroszi G, O’Malley S, Couper D, Swift R, Pettinati H, et al. An evaluation of mu-opioid receptor (OPRM1) Asn40Asp variant predicts short-term response to naltrexone response in the treatment of alcohol dependence: results from the combined pharmacotherapies and behavioral interventions for alcohol dependence (COMBINE) study. Arch Gen Psychiatry. 2008;65:135–44.
6. Chamorro AJ, Marcos M, Miron-Canelo JA, Pastor I, Gonzalez-Sarmiento R, Laso FJ. Association of micro-opioid receptor (OPRM1) gene polymorphism with response to naltrexone in alcohol dependence: a systematic review and meta-analysis. Addict Biol. 2012;17:505–12.
7. Dennis BB, Bawor M, Thabane L, Sohani Z, Samaan Z. Impact of ABCB1 and CYP2B6 genetic polymorphisms on methadone metabolism, dose and treatment response in patients with opioid addiction: a systematic review and meta-analysis. PLoS ONE. 2014;9:e86114.
8. Kharasch ED, Stubbert K. Role of cytochrome P4502B6 in methadone metabolism and clearance. J Clin Pharmacol. 2013;53:305–13.
9. Iriarte C, Picart D, Dreano Y, Bail JP, Berthou F. Involvement of cytochrome P450 3A4 in N-dealkylation of buprenorphine in human liver microsomes. Life Sci. 1997;60:1953–64.

10. Kobayashi K, Yamamoto T, Chiba K, Tani M, Shimada N, Ishizaki T, et al. Human buprenorphine N-dealkylation is catalyzed by cytochrome P450 3A4. Drug Metab Dispos. 1998;26:818–21.

11. Totah RA, Sheffels P, Roberts T, Whittington D, Thummel K, Kharasch ED. Role of CYP2B6 in stereoselective human metha- done metabolism. Anesthesiology. 2008;108:363–74.

12. Shiran MR, Lennard MS, Iqbal MZ, Lagundoye O, Seievright N, Tucker GT, et al. Pharmacokinetic-pharmacodynamic modeling of mood and withdrawal symptoms in relation to plasma concentrations of methadone in patients undergoing methadone maintenance treatment. J Clin Psychopharmacol. 2012;32:666–71.

13. Tsai HH, Wang SC, Liu SW, Ho IK, Chang YS, Tsai YT, et al. Assessment of CYP450 genetic variability effect on methadone dose and tolerance. Pharmacogenomics. 2014;15:977–86.

14. Levraro O, Pales E, Hamon S, Randesi M, Adelson M, Kreek MJ. CYP2B6 SNPs are associated with methadone dose required for effective treatment of opioid addiction. Addict Biol. 2013;18:709–16.

15. Levraro O, O’Hara K, Pales E, Li D, Barral S, Ray B, et al. ABCB1 (MDR1) genetic variants are associated with methadone doses required for effective treatment of heroin dependence. Hum Mol Genet. 2008;17:2219–27.

16. Barratt DT, Coller JK, Hallinan R, Byrne A, White JM, Foster DJ, et al. ABCB1 haplotype and OPRM1 118A > G genotype interaction in methadone maintenance treatment pharmacogenetics. Pharmacogenomics Pers Med. 2012;5:53–62.

17. Lee HY, Li JH, Sheu YL, Tang HP, Chang WC, Tang TC, et al. Moving toward personalized medicine in the methadone maintenance treatment program: a pilot study on the evaluation of treatment responses in Taiwan. Biomed Res Int. 2013;2013:741403.

18. Yang HC, Chu SK, Huang CL, Kuo HW, Wang SC, Liu SW, et al. Genome-wide pharmacogenomic study on methadone maintenance treatment identifies SNP rs17180299 and multiple haplotypes on CYP2B6, SP01N, and GSG1L associated with plasma concentrations of methadone R- and S-enantiomers in heroin-dependent patients. PLoS Genet. 2016;12:e1005910.

19. Smith AH, Jensen KP, Li J, Nuney Y, Farrer LA, Hakonarson H, et al. Genome-wide association study of therapeutic opioid dosing identifies a novel locus upstream of OPRM1. Mol Psychiatry. 2017;22:346–52.

20. Oneda B, Crettol S, Bochud M, Besson J, Croquette-Krokar M, Hammig R, et al. Beta-Arrestin2 influences the response to methadone in opioid-dependent patients. Pharm J. 2011;11:258–66.

21. Crettol S, Besson J, Croquette-Krokar M, Hammig R, Goethue J, Monnat M, et al. Association of dopamine and opioid receptor genetic polymorphisms with response to methadone maintenance treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:1722–7.

22. de Cid R, Fonseca F, Gratasoc M, Gutierrez F, Martin-Santos R, Estivill X, et al. BDNF variability in opioid addicts and response to methadone treatment: preliminary findings. Genes Brain Behav. 2008;7:515–22.

23. Eap CB, Broly F, Mino A, Hammig R, Deglon JJ, Uehlinger C, et al. Cytochrome P450 2D6 genotype and methadone steady-state concentrations. J Clin Psychopharmacol. 2001;21:229–34.

24. Saxton AJ, Ling W, Hillhouse M, Thomas C, Hassan A, Ang A, et al. Buprenorphine/Naloxone and methadone effects on laboratory indices of liver health: a randomized trial. Drug Alcohol Depend. 2013;128:71–76.

25. Clarke TK, Crist RC, Ang A, Ambrose-Lanci LM, Lohoff FW, Saxton AJ, et al. Genetic variation in OPRD1 and the response to treatment for opioid dependence with buprenorphine in European-American females. Pharm J. 2014;14:303–8.

26. Crist RC, Doyle GA, Nelson EC, Degenhardt L, Martin NG, Montgomery GW, et al. A polymorphism in the OPRM1 3′-untranslated region is associated with methadone efficacy in treating opioid dependence. Pharmacogenomics J. 2018;18:173–9.

27. Crist RC, Clarke TK, Ang A, Ambrose-Lanci LM, Lohoff FW, Saxton AJ, et al. An invariant variant in OPRD1 predicts treatment outcome for opioid dependence in African-Americans. Neuropsychopharmacology. 2013;38:2003–10.

28. Zhang H, Kranzler HR, Yang BZ, Luo X, Gelernter J. The OPRD1 and OPRK1 loci in alcohol or drug dependence: OPRD1 variation modulates substance dependence risk. Mol Psychiatry. 2008;13:531–43.

29. Epstein DH, Schmittner J, Umbricht A, Schroeder JR, Moolchan ET, Preston KL. Promoting abstinence from cocaine and heroin with a methadone dose increase and a novel contingency. Drug Alcohol Depend. 2009;101:92–100.

30. Epstein DH, Willner-Reid J, Vahabzadeh M, Mezghanni M, Lin JL, Preston KL. Real-time electronic diary reports of cue exposure and mood in the hours before cocaine and heroin craving and use. Arch Gen Psychiatry. 2009;66:88–94.

31. Kowalczyk WJ, Phillips KA, Jobs ML, Kennedy AP, Ghita UE, Agage DA, et al. Clonidine maintenance prolongs opioid abstinence and decouples stress from craving in daily life: a randomized controlled trial with ecological momentary assessment. Am J Psychiatry. 2015;172:760–7.

32. Preston KL, Ghita UE, Schmittner JP, Schroeder JR, Epstein DH. Randomized trial comparing two treatment strategies using prize-based reinforcement of abstinence in cocaine and opiate users. J Appl Behav Anal. 2008;41:551–63.

33. Preston KL, Kowalczyk WJ, Phillips KA, Jobs ML, Vahabzadeh M, Lin JL, et al. Context and craving during stressful events in the daily lives of drug-dependent patients. Psychopharmacology (Berl). 2017;234:2631-42.

34. Crist RC, Ambrose-Lanci LM, Vassani M, Clarke TK, Zeng A, Yuan C, et al. Case-control association analysis of polymorphisms in the delta-opioid receptor, OPRD1, with cocaine and opioid addicted populations. Drug Alcohol Depend. 2013;127:122–8.

35. Brewer DD, Catalano RF, Haggerty K, Gainey RR, Fleming CB. A meta-analysis of predictors of continued drug use during and after treatment for opiate addiction. Addiction. 1998;93:73–92.

36. Birbaum HG, White AG, Schiller M, Waldman T, Cleveland JM, Rolan CL. Societal costs of prescription opioid abuse, dependence, and misuse in the United States. Pain Med. 2011;12:657–67.

37. Sharafshah A, Fazel H, Albonaim A, Omarmeli V, Rezaei S, Mirzajani E, et al. Association of OPRD1 gene variants with opioid dependence in addicted male individuals undergoing methadone treatment in the north of Iran. J Psychoacut Drugs. 2017;49:242–51.

38. Roussotte FF, Jahanshad N, Balya IR, Sowell ER, Kohannim O, Chadwick LH. The NIH Roadmap Epigenomics Program data resource. Epigenomics. 2012;4:317–24.

39. Ward LD, Kellis M, HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res. 2016;44(D1):D877–81.

40. The GTEx Consortium. Human genomics. The Genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348:648–60.
42. Piltonen M, Parisien M, Gregoire S, Chabot-Dore AJ, Jafarnejad SM, Berube P, et al. Alternative Splicing of the delta-opioid receptor gene suggests existence of new functional isoforms. Mol Neurobiol 2018 https://doi.org/10.1007/s12035-018-1253-z.

43. Negus SS, Bidlack JM, Mello NK, Furness MS, Rice KC, Brandt MR. Delta opioid antagonist effects of buprenorphine in rhesus monkeys. Behav Pharmacol. 2002;13:557–70.

44. Kong H, Raynor K, Yasuda K, Moe ST, Portoghese PS, Bell GI, et al. A single residue, aspartic acid 95, in the delta opioid receptor specifies selective high affinity agonist binding. J Biol Chem. 1993;268:23055–8.

45. Belcheva MM, Barg J, McHale RJ, Dawn S, Ho MT, Ignatova E, et al. Differential down- and up-regulation of rat brain opioid receptor types and subtypes by buprenorphine. Mol Pharmacol. 1993;44:173–9.

46. Belcheva MM, Ho MT, Ignatova EG, Jefcoat LB, Barg J, Vogel Z, et al. Buprenorphine differentially alters opioid receptor adaptation in rat brain regions. J Pharmacol Exp Ther. 1996;277:1322–7.

47. Law PY, Erickson-Herbrandson LJ, Zha QQ, Solberg J, Chu J, Sarre A, et al. Heterodimerization of mu- and delta-opioid receptors occurs at the cell surface only and requires receptor-G protein interactions. J Biol Chem. 2005;280:11152–64.

48. Liu JG, Liao XP, Gong ZH, Qin BY. Methadone-induced desensitization of the delta-opioid receptor is mediated by uncoupling of receptor from G protein. Eur J Pharmacol. 1999;374:301–8.

49. Damian AJ, Mendelson T, Agus D. Predictors of buprenorphine treatment success of opioid dependence in two Baltimore City grassroots recovery programs. Addict Behav. 2017;73:129–32.

50. Mertens JR, Weisner CM. Predictors of substance abuse treatment retention among women and men in an HMO. Alcohol Clin Exp Res. 2000;24:1525–33.

51. McCaul ME, Svikis DS, Moore RD. Predictors of outpatient treatment retention: patient versus substance use characteristics. Drug Alcohol Depend. 2001;62:9–17.