Bioinks for 3D Bioprinting: A Scientometric Analysis of Two Decades of Progress

Sara Cristina Pedroza-González1,2, Marisela Rodriguez-Salvador3, Baruc Emet Pérez-Benítez3, Mario Moisés Alvarez1,4,*, Grissel Trujillo-de Santiago1,2,*

1Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, Mexico
2Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL, 64849, Mexico
3Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, NL, 64849, Mexico
4Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL, Mexico 64849

Abstract: This scientometric analysis of 393 original papers published from January 2000 to June 2019 describes the development and use of bioinks for 3D bioprinting. The main trends for bioink applications and the primary considerations guiding the selection and design of current bioink components (i.e., cell types, hydrogels, and additives) were reviewed. The cost, availability, practicality, and basic biological considerations (e.g., cytocompatibility and cell attachment) are the most popular parameters guiding bioink use and development. Today, extrusion bioprinting is the most widely used bioprinting technique. The most reported use of bioinks is the generic characterization of bioink formulations or bioprinting technologies (32%), followed by cartilage bioprinting applications (16%). Similarly, the cell-type choice is mostly generic, as cells are typically used as models to assess bioink formulations or new bioprinting methodologies rather than to fabricate specific tissues. The cell-binding motif arginine-glycine-aspartate is the most common bioink additive. Many articles reported the development of advanced functional bioinks for specific biomedical applications; however, most bioinks remain the basic compositions that meet the simple criteria: Manufacturability and essential biological performance. Alginate and gelatin methacryloyl are the most popular hydrogels that meet these criteria. Our analysis suggests that present-day bioinks still represent a stage of emergence of bioprinting technology.

Keywords: Bioinks; Bioprinting; Scientometrics; Tissue engineering; Organ

1. Introduction

Bioprinting is a growing technology1,2 that promises a future in which patients in need will have access to 3D-printed tissues and organs that can substitute those lost or damaged3,4. Bioprinting has already enabled the fabrication of small units of tissues and organs that recapitulate some functions of their native counterparts5,6. These mini-tissues and organoids have also proven useful as in vitro models for basic research and as testing platforms for drug screening, drug development, and personalized therapies5,7. The goal of 3D bioprinting is to manufacture living volumetric constructs by depositing a material containing living cells (i.e., a bioink) in a layer-by-layer fashion6,8,9. A bioink is composed of living cells that may contain other elements, such as a water-rich polymer network and functional additives (i.e., molecules or particles) associated with the intended application10. The bioink is so central to the concept of bioprinting that it is the
defining element that differentiates “bioprinting” from “3D printing.” The success of generating functional tissues relies heavily on the quality of the bioink.

Research groups around the globe have devoted their efforts to developing protocols and bioink-related technologies that are bringing us closer to the ambitious goal of bioprinting fully functional tissues and organs.

In this work, we describe the present landscape of bioink use and development, as reported in 393 original research papers published from January 2000 to June 2019. We also discuss the trends revealed by this scientometric analysis from a technical perspective. We start by presenting and discussing the most frequently reported applications in bioprinting and the most commonly used bioprinting techniques. We then describe the trends related to the three main components of the bioinks: Cells, hydrogels, and functional additives.

2. Information search methodology

We conducted document search using the Scopus database. Figure 1 presents the terms and search criteria used. We considered words used in the literature as synonyms of bioink and excluded terms that could lead to the inclusion of documents not related to bioprinting.

From this query, we obtained 529 manuscripts that include 457 original articles and 72 conference papers. We conducted a de-duplication process (i.e., discarding replicate items) followed by a one-by-one validation of these documents to confirm that all of them were related to bioprinting and contained information on the bioinks used. This process yielded 393 original articles which were analyzed in this study (Supplementary File 1). The articles were examined to find the trends in the intended applications, the bioprinting technologies used and the design/composition of the bioinks employed (cell types, hydrogels, and functional additives).

3. Applications

Figure 2 shows the most reported applications revealed in the final pool of selected articles. The outcome of our analysis reveals the two main reasons that motivate the research and use of bioinks: (i) The development of bioprinting technology (generic) and (ii) clinical needs. Approximately one third of the analyzed papers focused on the development of new materials to formulate bioinks or the introduction of novel bioprinting strategies. This observation was expected as bioprinting is an innovative technology currently transitioning through an early development stage.

The development of bioprinting strategies[11,12] and bioprinters with novel features has become a frequent endeavor of engineers in academia and industry[13]. The portfolio of bioprinting methods and bioprinters has greatly evolved in the last two decades. The original devices were less complex[14-16] and adapted to perform proof-of-principle experiments and demonstrate the deposition of drops containing living cells in a single layer (and their short-term survival). These have now evolved into sophisticated designs that enable multi-material and multi-cell type fabrication of multi-layered constructs in the size range of ~ cm³ at resolutions of ~ 10 µm[17].

The development of bioprinting devices and bioink formulations has also advanced in a parallel fashion during the past 20 years. A vast number of published papers about bioprinting have focused more on the development and characterization of bioink formulations[18,19] than on the use of bioprinting for a particular application aligned to clinical needs. Bioink characterization frequently involves an analysis of rheology, because rheology strongly influences the printability[20] of the bioink under different printing conditions (e.g., flow rates, printhead linear speed, temperature, and printing pressure)[18,21]. For instance, the interplay between the ink rheology and the printing parameters determines the fidelity and resolution of extrusion-based bioprinting[12,20,21]. In addition, an assessment of the biological performance of the bioink is practically mandatory in papers related to the development of bioinks. The evaluation of biological performance includes the determination of cell viability immediately after printing and over time, as well as the assessment of indicators of metabolic activity, proliferation, gene or protein expression, and/or differentiation[18].

When it comes to clinical needs, the most frequently reported bioprinted tissues are cartilage[22-24] and bone[25-27], representing 16% and 11% of the analyzed documents, respectively (Figure 2). The statistics reveal...
that bone- and cartilage-related medical interventions are indeed in great demand. Every year, around 500,000 bone graft procedures are performed in the United States, making bone second only to blood as the most transplanted tissue in that country.[28] More than 7500 cartilage repair interventions were reported to the American Board of Orthopedic Surgery from 2003 to 2015.[29] Moreover, the demand is expected to increase in upcoming years due to the growing prevalence of osteoarthritis disorders in the population.[30]

Cartilage bioprinting has experienced great progress during the last decade (Figure 3A).[31,32] The recapitulation of the mechanical properties of cartilage is a highly challenging task because cartilage is a load-bearing tissue that is exposed to continuous and repeated friction and compression. The use of bioprinting approaches that employ multi-materials[33,34], multi-cell types[31], and multi-stages[34,35] has enabled the substantial progress in this particular front. Today, relatively complex and large (~ 1–10 cm³) bioprinted constructs of cartilage have been implanted in large animal models[33,35] with excellent results in terms of both integration and mechanical performance.

Bone tissue engineering has also greatly benefited from bioprinting.[36] Different bioprinting strategies have been explored to fabricate small vascularized bone-like fragments[37] (Figure 3B). Experimental evidence has shown that relatively large bone defects (Figure 3C) can be repaired in situ using osteoinductive bioinks and relatively portable extrusion bioprinters[38].

After bone and cartilage, vasculature bioprinting[39-41] follows closely, at 9% of the applications. This is hardly a surprise, as vasculature fabrication is critical for developing any tissue or organ larger than 400 µm in size[42,43]. Often, the rationale behind bioprinting vasculature is to provide an artificial blood-vessel network within a bioprinted construct to enable the perfusion of nutrients and gases and the removal of waste products[44].

Ultimately, the aim of bioprinted vasculature is to extend the survival and enable the proper functioning of thick bioprinted tissues[45,46]. The progress made on the front of vascularization fabrication using bioprinting has been spectacular in the last decade. Today, the fabrication of vascular networks is possible by combining permanent and fugitive inks, and several successful strategies have been well-documented in the literature[47,48]. The removal of the fugitive component yields a network of void conduits that can be endothelialized (i.e., cell-lined with endothelial cell monolayers) to develop perfusable and stable vascularization in cell-laden constructs[48] (Figure 4A). Furthermore, bioinks can be engineered with protease-degradable cross-linkers to allow cell remodeling. Therefore, the endothelial cells covering the main vascular channels may undergo angiogenic sprouting, guided by gradients of angiogenic factors (e.g., vascular endothelial growth factor [VEGF], phorbol-12-myristate-13-acetate, and sphingosine-1-phosphate) to form capillary vessels[49] (Figure 4B).

Skin[50,51] and muscle[52,53] bioprinting have been addressed in 4% and 3% of the total manuscripts, respectively. These tissues and organs are relatively simple in architecture and composition, and yet they present substantial challenges to the current state-of-the-art bioprinting platforms. Skin is a multi-layered tissue with different cell types accomplishing distinct tasks at each layer[54]. By contrast, muscle tissue has a fiber-like multi-scale structure[55], with cell alignment an additional characteristic that is vital for functional skeletal muscle. Some of these papers have presented simplified skin[56-58]...
or muscle models59-61, with the aim of recreating only the most relevant features of these tissues.

Recent studies took steps forward and fabricated thick skin constructs that closely recapitulate the multi-layered architecture of human skin and demonstrated the importance of including endothelial cells and pericytes (in addition to keratinocytes and fibroblasts) to achieve integration and vascularization after implantation in animal models62 (Figure 4C). Pigmented human skin has also been successfully bioprinted in proof-of-concept experiments63. Some outstanding challenges remain on this front; for example, the use of bioprinting to fabricate human skin with functional hair follicles remains to be demonstrated. However, the technological basis to develop skin capable of producing hair \textit{de novo} is at hand64. Furthermore, recent reports have shown the feasibility of mimicking this multi-scale structure and alignment of muscle-like fibers using emerging bioprinting techniques12,65-67.

In terms of social impact and clinical demands, the bioprinting of fully functional organs would solve the
critical situation faced by one million patients worldwide each year, as estimated by the outage management system\cite{68}. In the USA alone, 103,655 patients will be waiting for an organ by 2020; these include 91,790 patients in need of a kidney, 12,521 needing a liver, and 3504 needing a heart\cite{69}. These are all highly complex organs, not only in terms of their architecture and cell type composition but also because of their size and function. Major organ fabrication through bioprinting (or through any other fabrication technique) remains a major unsolved challenge\cite{70,71}. A recent contribution demonstrates the feasibility of 3D printing a full-size human heart made entirely of alginate (not yet including cells). To do this, the authors used Freeform Reversible Embedding of Suspended Hydrogels (FRESH), an emerging extrusion-based technique that enables the printing of practically any shape by injecting a hydrogel into a thermo-reversible support bath. However, FRESH (and any currently available bioprinting technique) has its limitation in its ability to fabricate full-size functional tissues. For example, printing this non-cellularized and non-structured heart took 4 days\cite{71}.

![Figure 4](image-url)
Kidney is the most in-demand organ, but it is also a very defiant organ to mimic due to its sophisticated physiological architecture of multiple different cell types. In addition, this organ is solid (not hollow), making the task of bioprinting an artificial kidney very challenging. Not surprisingly, only 1% of the retrieved articles addressed the bioprinting of kidney tissues.

4. Bioinks for different bioprinting technologies

Scientists and engineers continue to develop bioprinting technologies with enhanced capabilities. Today, the most frequently reported bioprinting technologies are extrusion, droplet, and laser assisted bioprinting (Figure 5A). Extrusion-based bioprinting ejects the bioink by a pneumatic, piston, microfluidic, or screw mechanism to deposit filaments. Droplet bioprinting deposits drops of the bioink under the control of a piezoelectric or thermal system. Laser-assisted bioprinting involves a laser sensitive-substrate that contains the bioink at the bottom. Patterns of the bioink are transferred to a receiving surface underneath, assisted by laser pulses aimed onto the bioink-containing substrate (Figure 5B).

By far, extrusion bioprinting is the simplest and most widely used form of bioprinting accounting for 76% of the reports analyzed in this study. Current trends (Figure 5) revealed that the major factors driving the selection of bioprinting technologies are cost and ease of use, which are, in fact, the main strengths of extrusion bioprinting. Droplet-based bioprinting follows with a presence of 14%, and papers related to laser-assisted bioprinting account for 8%. However, in terms of printing velocity, extrusion bioprinting is arguably the less attractive option among these three technologies.

The maximum reported printing speeds are ~150 mm/s for extrusion bioprinting, ~200 mm/s for inkjet bioprinting, and ~20 mm/s to 500 mm/s for laser-based bioprinting. Droplet and laser-assisted bioprinting technologies also show higher resolution and precision capabilities than the extrusion bioprinting. However, the cost and required expertise for operation may be preventing the widespread use of droplet and laser-based methods.

Regardless of the method, the operation of any of these bioprinting platforms needs bioinks with a particular set of properties. Table 1 lists the important parameters for bioinks associated with each bioprinting technology. For all three techniques, the rheological properties of the bioinks are fundamental in determining the success of the bioprinting process. Several factors such as the cell density, cell type, the chemical nature of the hydrogel, and the hydrogel concentration, will directly influence the rheological properties of a bioink. Other specific parameters must also be considered when designing a bioink for a particular bioprinting method; for instance, extrusion bioprinting needs shear-thinning materials (materials that behave as liquids while being extruded through a nozzle and then render solid-like and non-collapsing filaments when deposited on the printing bed).

Droplet bioprinting benefits from bioinks with low viscosities and low cell densities. These characteristics favor the deposition of small droplets and, consequently, high-resolution architectures. Surface tension is another important parameter to consider when designing a bioink for droplet bioprinting, as the gelation should occur after material deposition to avoid nozzle clogging. By contrast, bioinks designed for laser bioprinting should give...
consideration on viscosity[99], cell density, and interaction with the receiving substrate (i.e., the surface tension and wettability).

Extrusion bioprinting requires several other innovations. Many of these are related to the ability to co-extrude two or more different materials concurrently (multimaterial bioprinting)[78,100-102]. For instance, these materials may contain different types of cells or different hydrogels to recapitulate the composition and architecture of a native tissue. In this context, a significant challenge is the selection/design of a compatible set of bioinks in terms of rheology, interfacial tension, and co-flowability, among other properties[103].

Novel embodiments of extrusion bioprinting have greatly pushed the limits of biofabrication in the last 5 years. For example, innovative bioprinting heads that use chaotic static mixers[102] to fabricate microstructured hydrogel filaments are enabling new applications, such as the facile fabrication of muscle-like fibers[12]. Extrusion-based bioprinters are also becoming more portable, and hand-held models promise to enable in situ and in vivo bioprinting for a wide range of scenarios, including wound healing, dentistry, and minor and major surgeries[104-108].

Emergent bioprinting technologies have been powerful drivers of innovation in 3D biomannufacturing. For example, vat-polymerization-based bioprinting brings unprecedented precision, and therefore resolution, to the bioprinting arena[77]. This enhanced resolution will push the limits of tissue engineering and create the need for development of new cell-friendly photoinitiators, novel materials, and additives for vat-bioprinting applications. Volumetric bioprinting, a recently developed 3D printing strategy inspired by optical tomography, is based on a programmed projection of 2D-planes of light in a 3D volume. This disruptive bioprinting strategy enables the fabrication of relatively large free-form constructs using photo-cross-linkable hydrogels[109].

As bioprinting technology evolves and matures, we expect to observe a more ad hoc selection of the bioprinting method based on specific clinical needs.

4.1. Most frequently used cells in bioinks

Arguably, living cells constitute the most important component of a bioink. Indeed, cells are a mandatory element if a bioink is to be considered as such[110]. The origin/source of the cells used to prepare a bioink is very important; for example, in implantable tissues, the selection of the cell type may determine the acceptance/rejection of the bioprinted construct by the recipient[6,111].

One emerging research line (the papers was not included in this scientometric analysis) illustrates the significant advances in the cell source-related technologies aimed at generating a safe and effective cell source for clinical use[112-114].

Notably, the utilization of cells usually very important; for example, in implantable tissues, the origin/source of the cells used to prepare a bioink is element if a bioink is to be considered as such component of a bioink. Indeed, cells are a mandatory Arguably living cells constitute the most important bioprinting method based on specific clinical needs.

Figure 6 presents the most reported cell types used in bioink formulations. At first sight, no direct correlation is observed between the applications (Figure 2) and the cells used (Figure 6). Notably, the utilization of cells usually serves one of two purposes: Biofabrication of a specific tissue or organ, or assessment of the performance of a bioink material or a bioprinting technology (technology development). Stem cells (SCs) and induced pluripotent SC (iPSCs)[122,123] comprise the main group of cells used in bioinks. SCs are attractive candidates for bioprinting studies since they possess the ability to differentiate into different cell lineages when cultured using ad hoc inducing conditions[117,124]. Interestingly, the origin of the SCs and iPSCs varied significantly within the set of analyzed articles (Figure 6)[125-127]. The combination of bioprinting techniques and the use of SCs may, at least in concept, provide tissue engineers with great flexibility to fabricate any tissue.

The second most important cell type in our analysis corresponds to skin cells, accounting for 20% of the papers[128,129]. Counterintuitively, in terms of the frequency of applications, skin bioprinting only accounts for 4% of the papers (Figure 2). The extended use of skin cells (mostly fibroblasts) reflects that they are the most popular cellular model for assessing bioink formulations and bioprinting techniques[130,131].

Similarly, cancer cells are also frequently employed as models in evaluating technological bioprinting innovations[132,133] in addition to the bioprinting of in vitro 3D cancer models[79,134,135]. Any commercial cell lines that are current gold standard models for several tissues originated from cancerous tissues (i.e., the 3T3, BJ, C2C12, MCF7, and MCF10A cell lines)[136]. The other mammalian cell type presented in Figure 6 (~50%) are directly related with the tissue intended to bioprint. In the near future, we anticipate convergences between mature bioprinting technologies and the technologies required to generate safe and effective cell sources for clinical use.
Non-animal cells have also been used in bioink formulations. Bacterial bioprinting is an emerging field that is gaining momentum\cite{137} and will enable exciting applications in the coming years. Recent papers illustrate the use of bioprinting techniques for the fabrication of bacterial biofilms with different functionalities\cite{138-141} or the re-creation of complex bacterial communities\cite{66,102,142}.

Microalgae\cite{143,144} have also had representation within the bioprinting literature. Recent experimental evidence shows that the symbiotic coexistence of microalgae and mammalian cells in thick bioprinted tissue constructs is a feasible alternative for enabling a sustainable supply of oxygen within the constructs.

4.2. Hydrogel formulations used in bioinks

Bioinks may consist solely of cells\cite{94,145,146}. However, 13 of the analyzed documents used cell aggregates or cell spheroids as bioinks. Most bioinks are cell-laden hydrogels and the hydrogel matrix has a starring role in the functionality of the bioink which contributes to the success of the bioprinting technology. Hydrogels must provide the right environment for living cells while still exhibiting the physicochemical properties (i.e., rheology, stability, molecular integrity) needed to facilitate their processability or manipulation\cite{147}. We identified 156 different hydrogels and 48 cross-linking methods within the analyzed literature. Figure 7 presents the top 10 most frequently reported hydrogels and cross-linking methods used for bioink formulations.

The most popular combination used in bioink formulations is alginate (a carbohydrate extracted from brown algae) and its preferred cross-linking agent (calcium chloride; CaCl$_2$)\cite{148}. Alginate\cite{149-151} is an anionic carbohydrate-based polymer that cross-links efficiently (easily and rapidly) in environments rich in divalent cations such as aqueous solutions of CaCl$_2$ or calcium sulfate (CaSO$_4$)\cite{152}. The ease and speed of this type of cross-linking make alginate a convenient working matrix.

Gelatin methacryloyl (GelMA)\cite{120,153,154} comes in second place, followed by gelatin and collagen in third and fourth place, respectively. These polymers have a common origin, namely collagen from animal tissues including mammals\cite{155,156}, fish\cite{157}, and poultry\cite{158}. As a group, they are the most prevalent type of hydrogels used in bioprinting applications. GelMA and gelatin are simpler versions of collagen, and both are friendlier materials to process and handle than collagen when formulating bioinks. They are also less costly; for instance, a gram of collagen from Sigma-Aldrich costs US$ 2360, while a gram of GelMA and gelatin costs US$ 206 and US$ 0.342, respectively. GelMA is a chemically modified gelatin that cross-links upon exposure to ultraviolet or visible light in the presence of a suitable photoinitiator, such as Irgacure\cite{153,159}, lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP)\cite{160,161}, or eosin Y\cite{162,163}, the end result is a solid hydrogel held together by covalent bonds\cite{154}. In fact, Irgacure, LAP, and eosin Y appear in the top 10 most used cross-linking methods.

Gelatin\cite{164}, in contrast, forms physical hydrogels in response to low temperatures\cite{165}. In this case, weak intermolecular forces between the gelatin chains, rather than covalent cross-links, hold the hydrogel together. Indeed, temperature occupies the third place in Figure 7B as a “cross-linking method” (in this case, no covalent or ionic bonds are involved, only weak molecular interactions).

A technological advantage of using GelMA instead of gelatin is that, while gelatin melts under incubation conditions (37°C), a photo-cross-linked GelMA construct remains stable\cite{166}.

However, neither gelatin nor GelMA conserves the tertiary and quaternary structure of collagen, which may represent a disadvantage for many applications. However, they both preserve the arginine-glycine-aspartate (RGD) domains (arginine, glycine, and aspartate) required for cell anchoring, which is a central attribute when designing cell scaffolds for tissue engineering\cite{166}, as promoting cell anchoring to the bioink.

![Figure 6. The most frequently reported cells used in bioinks.](image-url)
matrix is a crucial step for developing artificial living tissues. This is not a particular functional characteristic of pristine alginate hydrogels, and this establishes the main difference between the two most popularly used hydrogels for bioinks. Arguably, the key reasons for using alginate, GelMA, and gelatin are practicality, availability, and cost-effectiveness.

Similarly, practicality, availability, and low cost lead to the frequent use of poly(ethylene glycol) diacrylate (PEGDA)\(^\text{(167)}\) (a photo-cross-linkable synthetic polymer)\(^\text{(168)}\) and agarose (a thermo-sensitive natural carbohydrate)\(^\text{(169)}\) in bioink formulations. PEGDA and agarose also appear in the top-ten list of printable hydrogels. PEGDA hydrogels are amenable to chemical functionalization, making them very versatile materials for bioinks\(^\text{(168)}\). The synthetic nature of PEGDA also makes it very reliable in terms of batch-to-batch consistency, and it is an easily tunable material.

Fibrinogen is a protein amenable to enzymatic cross-linking (using thrombin) that renders a stable fibrin matrix\(^\text{(113,170)}\). This combination (matrix and cross-linker) contains cell-anchoring motifs similar to those provided by gelatin, collagen, and GelMA, making fibrinogen suitable for tissue engineering applications. Like GelMA, the high commercial cost of fibrinogen (~$205 USD/g) may limit its broad use\(^\text{(171,172)}\). Fibrinogen also has poor rheological properties and needs to be combined with shear-thinning materials when formulating extrusion bioinks\(^\text{(172)}\).

Silk fibroin, an insect-produced protein, also holds a spot among the top 10 most used hydrogels for formulating bioinks. This is perhaps the most innovative material within this list\(^\text{(173,174)}\). Among its attributes, biocompatibility, strength, and rheological and mechanical tunability have made this material an attractive choice for bioinks\(^\text{(175)}\).

Hyaluronic acid methacrylate\(^\text{(176,177)}\), a photo-cross-linkable version of hyaluronic acid, also holds a place in the top-ten list. This is not a surprise as hyaluronic acid is a major component of the extracellular matrix of cartilage and bone, the most bioprinted tissues today\(^\text{(177,178)}\).

The use of enzymes, such as the microbial transglutaminase (MTGase)\(^\text{(179)}\), tyrosinase\(^\text{(128)}\), and genipin, are also among the top ten list of cross-linking methods. These enzymes are used to cross-link protein-based hydrogels. This analysis reveals that, when formulating a bioink, the most important criteria are related to the ease of use (practicality), cost, availability, and basic biological functionality (i.e., mainly the presence of cell-anchoring motifs).

The recent incorporation of recombinant proteins\(^\text{(18,180)}\) into the portfolio of materials for bioink preparation will be a powerful enabler for customized and “smart” bioink engineering (at the molecular level).

Figure 7. The top 10 most frequently reported (A) hydrogels and (B) cross-linking methods for bioink formulations. Colored connectors relate hydrogels with their respective cross-linking methods.
4.3. Composite hydrogels in bioinks

Figure 7 presents the most frequently reported composite hydrogels used in bioink formulations: Hydrogel blends and hydrogels enhanced with functional additives. From the pool of 393 articles analyzed, 263 mention the use of composite or hybrid bioinks. We identified 102 materials combined in different ways in bioink formulations. A total of 213 documents reported the use of hydrogel blends (i.e., hybrid matrices containing more than one hydrogel) (Figure 8A), while 54 reported the use of functional additives (other than hydrogels) within the bioinks (Figure 8B). From the group of hydrogel blends, 170 of the 213 (80%) were composed of two hydrogels\(^{181,182}\), 36 (17%) of three hydrogels\(^{183,184}\), and 7 (3%) of four hydrogels\(^{185,186}\) (Figure 8).

Figure 9 shows the correlation maps corresponding to all hydrogel blends (Figure 9A), and 2–4 hydrogel blends (Figures 9B–D). Table 2 lists the most frequently used hydrogel blends, categorized by the number of matrices involved. Not surprisingly, the main components in all the correlation maps are alginate and GelMA, which is consistent with the top ten hydrogels reported in Figure 7A. Evident reasons for combining these two hydrogels are the facile and rapid cross-linking of alginate and the presence of cell-anchoring motifs in GelMA. GelMA hydrogels are somewhat recalcitrant to cross-linking immediately after extrusion from the bioprinting nozzle, and the use of alginate easily overcomes this challenge. Very often, alginate is used as a temporary template and GelMA as the permanent cell scaffolding.\(^{187–190}\) A filament of an alginate-GelMA blend can be ionically cross-linked immediately after extrusion to preserve its 3D shape. GelMA can then be covalently cross-linked by exposed to light. Finally, the alginate matrix can be removed using a Ca\(^{2+}\)-chelating agent, such as EDTA.\(^{133}\) This methodology and minor variations of it were reported in 22 of the 393 analyzed manuscripts.

For the other composite hydrogels, manufacturability and biological functionality are also the main guidelines for bioink design. Other criteria are often considered, such as the use of reinforcers or sacrificial matrices that leave hollow spaces within the hydrogels to mimic vascular networks\(^{191–195}\).

Bioink formulations may also include other functional additives, such as biomolecules\(^{194,195}\), particles\(^{151,196}\), and drugs\(^{197,198}\) (Table 3). A larger version of these correlation maps is presented as supplementary Table 2.

Table 2. The most frequently used hydrogel blends categorized by the number of matrices involved

Ranking	Two hydrogels	Three hydrogels	Four hydrogels
1°	Alginate	Fibrin	Gelatin
	Gelatin	Gelatin	GelMA
		HA	HA
			HAMA
2°	Alginate	Alginate	Alginate
	GelMA	Chitosan	CS-AEMA
		Fibrin	GelMA
			HAMA
3°	Alginate	Alginate	PEGDA
	Collagen type 1	GelMA	PEGOA
		PEGDA	Thiolated
			Gelatin
			Thiolated HA
			Collagen type 1
			Collagen
			Gelatin
4°	Gelatin	Alginate	Thiolated
	Silk	Carboxymethyl	HA
	Fibroin	cellulose	Collagen type 1
			GelMA
			Gelman Gum
			PLA
5°	Agarose	Alginate	Alginan
	Collagen type 1	Collagen type 1	dECM
		Gelatin	PLGA
			PVA

Figure 8. The most frequently reported hydrogel blends. (A) Distribution and (B) number of documents of hydrogel blends according to the number of matrices used.
file (Supplementary Figures S1-S4). Incorporating RGD domains to promote cell adhesion is the most popular functionalization strategy in this category\(^{[199,200]}\). The use of growth factors\(^{[21,195]}\), and especially VEGF\(^{[201-203]}\), is also a frequent strategy for enhancing the biological performance of bioinks.

From the pool of articles analyzed, 18 incorporated nano- or micro-particles into their bioink formulations for different purposes (i.e., to enhance rheological properties, immobilize functional molecules, and/or provide chemical\(^{[125,204]}\), electrical\(^{[205,206]}\), and topological\(^{[207,208]}\) cues). In this category, the most popular choice was silicate nanoparticles. These nanoparticles are versatile, commercially available in a wide range of sizes at a relatively low cost, cytocompatible, and amenable to functionalization with basic chemistry methods\(^{[209-216]}\).

Bioink formulations can also be designed to function as controlled-release matrices for drugs\(^{[198,244]}\). From the pool analyzed, seven reports incorporated different drugs for different aims, from modeling a drug-
delivery system\cite{245} to conferring antibiotic\cite{197} and anti-inflammatory\cite{240} activities.

New ingredients have been recently added to the repertoire of bioink additives to provide relevant functionalities for hydrogel-based inks. Examples are the use of a flexuous filamentous plant virus\cite{65} to enhance cell attachment and proliferation in the context of fabrication of muscle fibers; the incorporation of protease-degradable cross-linkers to enable cell remodeling\cite{49} and oxygen-releasing agents to improve and prolong tissue viability\cite{246}.

5. Conclusions

This scientometric analysis of the last two decades of progress on the use and development of bioinks reveals some very clear trends. Most of the analyzed documents report the use of simple compositions that fulfill the basic requirements of manufacturability and indispensable biological performance (cytocompatibility and cell adhesion). This is consistent with the current stage of development of bioprinting technology. As with any emerging technology scenario, bioprinting is naturally evolving as users address challenges with increasing degrees of difficulty with the available resources. However, many of the analyzed documents already deal with the development of advanced bioinks. This is particularly evident in the papers published in the last 5 years.

In the future, we anticipate that the scientific reports will deal with a broader and even more specialized portfolio of bioprinting technologies, hydrogels, additives, and cell sources. We expect to witness an evolution in the field whereby the parameters that guide the bioink design are related to the clinical and market demands (more in line with biomedical/clinical needs instead of what we can accomplish now).

Bioprinting technology must attain a more advanced level before facing its most ambitious challenge: the printing of functional tissues and organs (i.e., kidneys, livers, brain organoids, and relevant-sized tumors) to fulfill the global transplant demands. However, at this early stage, bioprinting has already proven useful in fabricating 3D human biological models for research and development purposes. We envision that this new market of reliable biological models will trigger and amplify the development of bioprinting and advanced bioinks.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Acknowledgments

We thank MSc. Jessica Janelly Mancilla de la Cruz for her assistance in proofreading the manuscript.

Funding

This work was supported by Consejo Nacional de Ciencia y Tecnología (CONACyT) and Tecnológico de Monterrey. S.C.P.G and B.E.P.B acknowledges funding received by CONACYT in the form of a Graduate Studies Scholarships. G.T.dS, M.M.A and M.R.S gratefully acknowledge the Academic Scholarships provided by CONACYT as members of the National System of Researchers (Sistema Nacional de Investigadores).
References

1. Rodríguez-Salvador M, Rio-Belver RM, Garechana-Anacabe G, 2017, Scientometric and Patentometric Analyses to Determine the Knowledge Landscape in Innovative Technologies: The Case of 3D Bioprinting. PLoS One, 12:e0180375. https://doi.org/10.1371/journal.pone.0180375
2. Rodríguez-Salvador M, Villarreal-Garza D, Álvarez MM, et al., 2019, Analysis of the Knowledge Landscape of Three-dimensional Bioprinting in Latin America. Int J Bioprinting, 5:16–25. https://doi.org/10.18063/ijb.v5i2.3.240
3. Ng WL, Chua CK, Shen YF, 2019, Print Me An Organ! Why We Are Not There Yet. Prog Polym Sci, 97:101145. https://doi.org/10.1016/j.progpolysci.2019.101145
4. Ravnic DJ, Leberfinger AN, Koduru SV, et al., 2014, Three-dimensional Additive Manufacturing from Biomedical Material Design to 3D Organ Printing. Appl Sci, 9:811. https://doi.org/10.3390/app9040811
5. Murphy SV, Atala A, 2014, 3D Bioprinting of Tissues and Organs. Nat Biotechnol, 32:773–85. https://doi.org/10.1038/nbt.2958
6. Fang Y, Eglen RM, 2017, Three-Dimensional Cell Cultures in Drug Discovery and Development. SLAS Discov, 22:456–72. https://doi.org/10.1177/1087057117696795
7. Kačarević ŽP, Rider PM, Alkildani S, et al., 2018, An Introduction to 3D Bioprinting: Possibilities, Challenges and Future Aspects. Materials (Basel), 11:2199. https://doi.org/10.3390/ma11112199
8. Mobaraki M, Ghaffari M, Yazdanpanah A, et al., 2020, Bioinks and Bioprinting: A Focused Review. Bioprinting, 18:e0080. https://doi.org/10.1016/j.bioprt.2020.e0080
9. Ashammakhi N, Ahadian S, Xu C, et al., 2019, Bioinks and Bioprinting Technologies to Make Heterogeneous and Biomimetic Tissue Constructs. Mater Today Bio, 1:100008. https://doi.org/10.1016/j.mtbio.2019.100008
10. Mironov V, Kasyanov V, Markwald RR, 2011, Organ Printing: From Bioprinter to Organ Biofabrication Line. Curr Opin Biotechnol, 22:667–73. https://doi.org/10.1016/j.copbio.2011.02.006
11. Bolívar-Monsalve EJ, Ceballos-González CF, Borrayo-Montaño KI, et al., 2021, Continuous Chaotic Bioprinting of Skeletal Muscle-like Constructs. Bioprinting, 21:e00125. https://doi.org/10.1016/j.bioprt.2020.e00125
12. Choudhury D, Anand S, Naing MW, 2018, The Arrival of Commercial Bioprinters-Towards 3D Bioprinting Revolution! Int J Bioprinting, 4:1–20. https://doi.org/10.18063/ijb.v4i2.139
13. Wilson WC, Boland T, 2003, Cell and Organ Printing 1: Protein and Cell Printers. Anat Rec Part A Discov Mol Cell Evol Biol, 272:491–6. https://doi.org/10.1002/ar.a.10057
14. Ringeisen BR, Kim H, Barron JA, et al., 2004, Laser Printing of Pluripotent Embryonal Carcinoma Cells. Tissue Eng, 10:483–91. https://doi.org/10.1089/107632704323061843
15. Nakamura M, Kobayashi A, Takagi F, et al., 2005, Biocompatible Inkjet Printing Technique for Designed Seeding of Individual Living Cells. Tissue Eng, 11:1658–66. https://doi.org/10.1089/teng.2005.11.1658
16. Sun W, Starly B, Daly AC, et al., 2020, The Bioprinting Roadmap. Biofabrication, 12:e022002. https://doi.org/10.1088/1758-5090/ab5158
17. Lee S, Sani ES, Spencer AR, et al., 2020, Human-Recombinant-Elastin-Based Bioinks for 3D Bioprinting of Vascularized Soft Tissues. Adv Mater, 32:1–10. https://doi.org/10.1002/adma.202003915
18. Kim SH, Yeon YK, Lee JM, et al., 2018, Precisely Printable and Biocompatible Silk Fibroin Bioink for Digital Light Processing 3D Printing. Nat Commun, 9:1620. https://doi.org/10.1038/s41467-018-03759-y
19. Zhang Z, Jin Y, Yin J, et al., 2018, Evaluation of Bioink Printability for Bioprinting Applications. Appl Phys Rev, 5:041304. https://doi.org/10.1063/1.5053979
20. Ruberu K, Senadeera M, Rana S, et al., 2021, Coupling Machine Learning with 3D Bioprinting to Fast Track Optimisation of Extrusion Printing. Appl Mater Today, 22:100914. https://doi.org/10.1016/j.apmt.2020.100914
21. Gu Y, Zhang L, Du X, et al., 2018 Reversible Physical Crosslinking Strategy with Optimal Temperature for 3D Bioprinting of Human Chondrocyte-laden Gelatin Methacryloyl Bioink. J Biomater Appl, 33:609–18. https://doi.org/10.1177/0885328218805864
22. Koo Y, Choi EJ, Lee J, et al., 2018, 3D Printed Cell-laden Collagen and Hybrid Scaffolds for In Vivo Articular Cartilage Tissue Regeneration. J Ind Eng Chem, 66:343–55. http://doi.org/10.1016/j.jiec.2018.05.049
24. Yang X, Lu Z, Wu H, et al., 2018, Collagen-alginate as Bioink for Three-Dimensional (3D) Cell Printing Based Cartilage Tissue Engineering. Mater Sci Eng C, 83:195–201. http://doi.org/10.1016/j.msec.2017.09.002
25. Shim JH, Lee JS, Kim JY, et al., 2012, Bioprinting of a Mechanically Enhanced Three-dimensional Dual Cell-laden Construct for Osteochondral Tissue Engineering Using a Multi-head Tissue/Organ Building System. J Micromech Microeng, 22:85014. https://doi.org/10.1088/0960-1317/22/8/085014
26. Lee JY, Koo Y, Kim G, 2018, Innovative Cryopreservation Process Using a Modified Core/Shell Cell-Printing with a Microfluidic System for Cell-Laden Scaffolds. ACS Appl Mater Interfaces, 10:9257–68. https://doi.org/10.1021/acsami.7b18360
27. Kim YB, Lee H, Kim GH, 2016, Strategy to Achieve Highly Porous/Biocompatible Macroscale Cell Blocks, Using a Collagen/Gelatin bioink and an Optimal 3D Printing Process. ACS Appl Mater Interfaces, 8:32230–40. https://doi.org/10.1021/acsami.6b11669
28. Baldwin P, Li DJ, Auston DA, et al., 2019, Autograft, Allograft, and Bone Graft Substitutes: Clinical Evidence and Indications for Use in the Setting of Orthopaedic Trauma Surgery. J Orthop Trauma, 33:203–13. https://doi.org/10.1097/BOT.0000000000001420
29. Frank RM, Cotter EJ, Hannon CP, et al., 2019, Cartilage Restoration Surgery: Incidence Rates, Complications, and Trends as Reported by the American Board of Orthopaedic Surgery Part II Candidates. Arthrosc J Arthrosoc Relat Surg, 35:171–8. https://doi.org/10.1016/j.arthro.2018.08.028
30. Cartilage Repair Market Size, Share. Global Industry Report, 2025, n.d. viewed September 16, 2020. Available from: https://www.grandviewresearch.com/industry-analysis/cartilage-repair-regeneration-market. [Last accessed on 2020 Oct 20].
31. Levato R, Webb WR, Otto IA, et al., 2017, The Bio in the Ink: Cartilage Regeneration with Bioprintable Hydrogels and Articular Cartilage-derived Progenitor Cells. Acta Biomater, 61:41–53. https://doi.org/10.1016/j.actbio.2017.08.005
32. You F, Eames BF, Chen X, 2017, Application of Extrusion-based Hydrogel Bioprinting for Cartilage Tissue Engineering. Int J Mol Sci, 18:8–14. https://doi.org/10.3390/ijms18071597
33. Shi W, Sun M, Hu X et al., 2017, Structurally and Functionally Optimized Silk-Fibroin-Gelatin Scaffold Using 3D Printing to Repair Cartilage Injury In Vitro and In Vivo. Adv Mater, 29:1–7. https://doi.org/10.1002/adma.201701089
34. Kilian D, Ahlfeld T, Akkineni AR, et al., 2020, 3D Bioprinting of Osteochondral Tissue Substitutes In Vitro-Chondrogenesis in Multi-Layered Mineralized Constructs. Sci Rep, 10:1–17. https://doi.org/10.1038/s41598-020-65050-9
35. Zhang H, Huang H, Hao G, et al., 2021, 3D Printing Hydrogel Scaffolds with Nanohydroxyapatite Gradient to Effectively Repair Osteochondral Defects in Rats. Adv Funct Mater, 31:1–13. https://doi.org/10.1002/adfm.202006697
36. Ashammakhi N, Hasan A, Kaarrela O, et al., 2019, Advancing Frontiers in Bone Bioprinting. Adv Healthc Mater, 8:1801048. https://doi.org/10.1002/adhm.201801048
37. Byambaa B, Annabi N, Yue K, et al., 2017, Bioprinted Osteogenic and Vasculogenic Patterns for Engineering 3D Bone Tissue. Adv Healthc Mater, 6:1700015. https://doi.org/10.1002/adhm.201700015
38. Li L, Yu F, Shi J, et al., 2017, In Situ Repair of Bone and Cartilage Defects Using 3D Scanning and 3D Printing. Sci Rep, 7:1–12. https://doi.org/10.1038/s41598-017-10060-3
39. Cui X, Boland T, 2009, Human Microvasculature Fabrication Using Thermal Inkjet Printing Technology. Biomaterials, 30:6221–7. http://doi.org/10.1016/j.biomaterials.2009.07.056
40. Strattesteen H, Köpf M, Kreimendahl F, et al., 2017, GelMA-collagen Blends Enable Drop-on-demand 3D Printablility and Promote Angiogenesis. Biofabrication, 9:45002. https://doi.org/10.1088/1758-5090/aa857c
41. Jia W, Gungor-Ozkerim PS, Zhang YS, et al., 2016, Direct 3D Bioprinting of Perfusionable Vascular Constructs Using a Blend Bioink. Biomaterials, 106:58–68. https://doi.org/10.1016/j.biomaterials.2016.07.038
42. Rouwkema J, Khademhosseini A, 2016, Vascularization and Angiogenesis in Tissue Engineering: Beyond Creating Static Networks. Trends Biotechnol, 34:733–45. https://doi.org/10.1016/j.tibtech.2016.03.002
43. Auger FA, Gibot L, Lacroix D, 2013, The Pivotal Role of Vascularization in Tissue Engineering. Annu Rev Biomed Eng, 15:177–200. https://doi.org/10.1146/annurev-bioeng-071812-152428
44. Suntornnond R, Tan EYS, An J, et al., 2017, A Highly Printable and Biocompatible Hydrogel Composite for Direct Printing of Soft and Perfusionable Vasculature-Like Structures. Sci Rep, 7:1–11.
45. Tomasinì C, Bodet T, Mota C, et al., 2019, Bioprinting Vasculature: Materials, Cells and Emergent Techniques. *Materials (Basel)*, 12:2701. https://doi.org/10.3390/ma12172701

46. Miri AK, Khaliplour A, Cecen B, et al., 2019, Multiscale Bioprinting of Vascularized Models. *Biomaterials*, 198:204–16. https://doi.org/10.1016/j.biomaterials.2018.08.006

47. Thomas A, Orellano I, Lam T, et al., 2020, Vascular Bioprinting with Enzymatically Degradeable Bioinks Via Multi-material Projection-based Stereolithography. *Acta Biomater*, 117:121–32. https://doi.org/10.1016/j.actbio.2020.09.033.

48. Ouyang L, Armstrong JPK, Chen Q, et al., 2020, Void-Free 3D Bioprinting for In Situ Endothelialization and Microfluidic Perfusion. *Adv Funct Mater*, 30:1908349. https://doi.org/10.1002/adfm.201908349

49. Song KH, Highley CB, Rouff A, et al., 2018, Complex 3D-Printed Microchannels within Cell-Degradeable Hydrogels. *Adv Funct Mater*, 28:1–10. https://doi.org/10.1002/adfm.201801331

50. Hakimi N, Cheng R, Leng L, et al., 2018, Handheld Skin Printer: In Situ Formation of Planar Biomaterials and Tissues. *Lab Chip*, 18:1440–51. https://doi.org/10.1039/C7LC01236E

51. Shamloo A, Aghababaie Z, Afjoul H, et al., 2021, Fabrication and Evaluation of Chitosan/Gelatin/PVA Hydrogel Incorporating Honey for Wound Healing Applications: An In Vitro, In Vivo Study. *Int J Pharm*, 592:120068. https://doi.org/10.1016/j.ijpharm.2020.120068

52. Yeo M, Kim G, 2018, Three-Dimensional Microfibrous Bundle Structure Fabricated Using an Electric Field-Assisted/Cell Printing Process for Muscle Tissue Regeneration. *ACS Biomater Sci Eng*, 4:728–38. https://doi.org/10.1021/acsbiomaterials.7b00983

53. Merceron TK, Burt M, Seol YJ, et al., 2015, A 3D Bioprinted Complex Structure for Engineering the Muscle-tendon Unit. *Biofabrication*, 7:35003. https://doi.org/10.1088/1758-5090/7/3/035003

54. Venus M, Waterman J, McNab I, 2010, Basic Physiology of the Skin. *Surgery*, 28:469–72. https://doi.org/10.1016/j.msia.2010.07.011

55. Garcia-Lizarribar A, Fernández-Garibay X, Velasco-Mallorquí F, et al., 2018, Composite Biomaterials as Long-Lasting Scaffolds for 3D Bioprinting of Highly Aligned Muscle Tissue. *Macromol Biosci*, 18:1800167. http://doi.org/10.1002/mabi.201800167

56. Kim BS, Kwon YW, Kong JS, et al., 2018, 3D Cell Printing of In Vitro Stabilized Skin Model and In Vivo Pre-vascularized Skin Patch Using Tissue-specific Extracellular Matrix Bioink: A Step towards Advanced Skin Tissue Engineering. *Biomaterials*, 168:38–53. https://doi.org/10.1016/j.biomaterials.2018.03.040

57. Skardal A, Murphy SV, Crowell K, et al., 2017, A Tunable Hydrogel System for Long-term Release of Cell-secreted Cytokines and Bioprinted In Situ Wound Cell Delivery. *J Biomed Mater Res Part B Appl Biomater*, 105:1986–2000. https://doi.org/10.1002/jbmb.b.33736

58. Jorgensen AM, Varkey M, Gorkun A, et al., 2020, Bioprinted Skin Recapitulates Normal Collagen Remodeling in Full-Thickness Wounds. *Tissue Eng Part A*, 26:512–26. https://doi.org/10.1089/ten.tea.2019.0319

59. Chen S, Nakamoto T, Kawazoe N, et al., 2015, Engineering Multi-layered Skeletal Muscle Tissue by Using 3D Microgrooved Collagen Scaffolds. *Biomaterials*, 73:23–31. https://doi.org/10.1016/j.biomaterials.2015.09.010

60. Mozetic P, Giannitelli SM, Gori M, et al., 2017, Engineering Muscle Cell Alignment through 3D Bioprinting. *J Biomed Mater Res Part A*, 105:2582–8. https://doi.org/10.1002/jbma.a.36117

61. Kim JH, Kim I, Seol YJ, et al., 2020, Neural Cell Integration into 3D Bioprinted Skeletal Muscle Constructs Accelerates Restoration of Muscle Function. *Nat Commun*, 11:1–12. https://doi.org/10.1038/s41467-020-14930-9

62. Baltazar T, Merola J, Catarino C, et al., 2020, Three Dimensional Bioprinting of a Vascularized and Per fusable Skin Graft Using Human Keratinocytes, Fibroblasts, Pericytes, and Endothelial Cells. *Tissue Eng Part A*, 26:227–38.

63. Ng WL, Qi JTZ, Yeong WY, et al., 2018, Proof-of-concept: 3D Bioprinting of Pigmented Human Skin Constructs. *Biofabrication*, 10:25005. https://doi.org/10.1088/1758-5090/aa9e1e

64. Kageyama T, Yan L, Shimizu A, et al., 2019, Preparation of Hair Beads and Hair Follicle Germs for Regenerative Medicine. *Biomaterials*, 212:55–63. https://doi.org/10.1016/j.biomaterials.2019.05.003

65. Frias-Sánchez A, Quevedo-Moreno D, Samandari M, et al., 2021, Biofabrication of Muscle Fibers Enhanced with Plant Viral Nanoparticles Using Surface Chaotic Flows. *Biofabrication*, 2021:abd9d7. https://doi.org/10.1088/1758-5090/abd9d7

66. Ceballos-González CF, Bolivar-Monsalve EJ, Quevedo-Moreno DA, et al., 2020, Micro-biogeography Greatly Matters for Competition: Continuous Chaotic Bioprinting of Spatially-controlled Bacterial Microcosms. *BioRxiv*,
67. Kim WJ, Lee H, Lee JU, et al., 2020, Efficient Myotube Formation in 3D Bioprinted Tissue Construct by Biochemical and Topographical Cues. Biomaterials, 230:119632. https://doi.org/10.1016/j.biomaterials.2019.119632

68. Organizacion Nacional de Transplantes, 2019, El Registro Mundial de Trasplantes cifra en 139.024 los Trasplantes Realizados en el Mundo en el Último año, con un Aumento del 2,3%, viewed October 1, 2020. Available from: http://www.ont.es/prensa/NotasDePrensa/28%2008%202019%20REGISTRO%20MUNDIAL%20DE%20TRASPLANTES.pdf. [Last accessed on 2020 Oct 01].

69. Organ Procurement and Transplantation Network, 2020, National Data, viewed October 5, 2020. Available from: https://www.optn.transplant.hrsa.gov/data/view-data-reports/national-data/.

70. Murphy SV, De Coppi P, Atala A, 2020, Opportunities and Challenges of Translational 3D Bioprinting. Nat Biomed Eng, 4:370–80. https://doi.org/10.1038/s41551-019-0471-7

71. Mirdamadi E, Tashman JW, Shiwarski DJ, et al., 2020, FRESH 3D Bioprinting a Full-Size Model of the Human Heart. ACS Biomater Sci Eng, 6:119632. https://doi.org/10.1021/acsbiomaterials.0c01133

72. Turunen S, Kaisto S, Skovorodkin I, et al., 2018, 3D Bioprinting of the Kidney Hype or Hope? AIMS Cell Tissue Eng, 2:119–62. https://doi.org/10.3934/celltissue.2018.3.119

73. Ali M, Kumar A Pr, Yoo JJ, et al., 2019, A Photo-Crosslinkable Kidney ECM-Derived Bioink Accelerates Renal Tissue Formation. Adv Healthc Mater, 8:1800092. http://doi.org/10.1002/adhm.201800992

74. Irvine SA, Agrawal A, Lee BH, et al., 2015, Printing Cell-laden Gelatin Constructs by Free-form Fabrication and Enzymatic Protein Crosslinking. Biomed Microdevices, 17:16. https://doi.org/10.1007/s10544-014-9915-8

75. Ozbolat IT, Hospodiuk M, 2016, Current Advances and Future Perspectives in Extrusion-based Bioprinting. Biomaterials, 76:321–43. https://doi.org/10.1016/j.biomaterials.2015.10.076

76. Gudapani H, Dey M, Ozbolat I, 2016, A Comprehensive Review on Droplet-based Bioprinting: Past, Present and Future. Biomaterials, 102:20–42. https://doi.org/10.1016/j.biomaterials.2016.06.012

77. Ng WL, Lee JM, Zhou M, et al., 2020, Vat Polymerization-based Bioprinting-Process, Materials, Applications and Regulatory Challenges. Biofabrication, 12:22001. https://doi.org/10.1088/1758-5090/ab6034
A Scientometric Analysis

84

International Journal of Bioprinting (2021)–Volume 7, Issue 2

Distributed Feedback Laser Using Optically Activated Silk Bio-Ink. *Adv Opt*, 4:1738–43. https://doi.org/10.1002/adom.201600369

88. Heinrich MA, Liu W, Jimenez A, et al., 2019, 3D Bioprinting: From Benches to Translational Applications. *Small*, 15:1–47. https://doi.org/10.1002/smll.201805510

89. Gao G, Huang Y, Schilling AF, et al., 2018, Organ Bioprinting: Are We There Yet? *Adv Healthc Mater*, 7:1–8. https://doi.org/10.1002/adhm.201701018

90. Badwaik R, 2019, 3D Printed Organs: The Future of Regenerative Medicine. *J Clin Diagnostic Res.*, 13:13256. https://doi.org/10.7860/jcdr/2019/42546.13256

91. Paxton N, Smolan W, Böck T, et al., 2017, Proposal to Assess Printability of Bioinks for Extrusion-based Bioprinting and Evaluation of Rheological Properties Governing Bioprintability. *Biofabrication*, 9:44107. https://doi.org/10.1088/1758-5090/aa8ddd8

92. Ding H, Chang RC, 2018, Printability Study of Bioprinted Tubular Structures Using Liquid Hydrogel Precursors in a Support Bath. *Appl Sci*, 8:403. https://doi.org/10.3390/app8030403

93. Diamantides N, Wang L, Pruiksma T, et al., 2017, Correlating Rheological Properties and Printability of Collagen Bioinks: The Effects of Riboflavin Photocrosslinking and pH. *Biofabrication*, 9:34102. https://doi.org/10.1088/1758-5090/aa780f

94. Bulanova EA, Koudan EV, Degosserie J, et al., 2017, Bioprinting of a Functional Vascularized Mouse Thyroid Gland Construct. *Biofabrication*, 9:34105. https://doi.org/10.1088/1758-5090/aa7fdd

95. Kiyotake EA, Douglas AW, Thomas EE, et al., 2019, Development and Quantitative Characterization of the Precursor Rheology of Hyaluronic Acid Hydrogels for Bioprinting. *Acta Biomater.*, 95:176–87. https://doi.org/10.1016/j.actbio.2019.01.041

96. Zhang B, Luo Y, Ma L, et al., 2018, 3D Bioprinting: An Emerging Technology Full of Opportunities and Challenges. *Biosdesign Manuf*, 1:2–13. https://doi.org/10.1007/s42242-018-0004-3

97. Hölzkl K, Lin S, Tygat L, et al., 2016, Bioink Properties Before, during and after 3D Bioprinting. *Biofabrication*, 8:32002. https://doi.org/10.1088/1758-5090/8/3/032002

98. Donderwinkel I, Van Hest JCM, Cameron NR, 2017, Bio-inks for 3D bioprinting: Recent advances and future prospects. *Polym*, 8(31):4451–71. https://doi.org/10.1039/c7py00826k

99. Li J, Chen M, Fan X, et al., 2016, Recent Advances in Bioprinting Techniques: Approaches, Applications and Future Prospects. *J Transl Med.*, 14:1–15. https://doi.org/10.1186/s12967-016-1028-0

100. Rocca M, Fragasso A, Liu W, et al., 2018, Embedded Multimaterial Extrusion Bioprinting. *SLAS Technol.*, 23:154–63. https://doi.org/10.1177/2472630317742071

101. Trujillo-De Santiago G, Alvarez MM, Samandari M, et al., 2018, Chaotic Printing: Using Chaos to Fabricate Densely Packed Micro-and Nanostructures at High Resolution and Speed. *Mater Horizons*, 5:813–22. https://doi.org/10.1039/c8mh00344k

102. Chávez-Madero C, Díaz de León-Derby M, Samandari M, et al., 2020, Using Chaotic Advection for Facile High-throughput Fabrication of Ordered Multilayer Micro and Nanostructures: Continuous Chaotic Printing. *Biofabrication*, 12:35023. https://doi.org/10.1088/1758-5090/ab84ec

103. Gungor-Ozkerim PS, Inci I, Zhang YS, et al., 2018, Bioinks for 3D Bioprinting: an Overview. *Biomater Sci*, 6:915–46. https://doi.org/10.1039/c7bm00765e

104. Campos DFD, Zhang S, Kreimendahl F, et al., 2020, Handheld Bioprinting for De Nova Vascular Formation Applicable to Dental Pulp Regeneration. *Connect Tissue Res*, 61:205–15. https://doi.org/10.1080/03008207.2019.1640217

105. Di Bella C, Duchi S, O’Connell CD, et al., 2018, *In Situ* Handheld Three-dimensional Bioprinting for Cartilage Regeneration. *J Tissue Eng Regen Med*, 12:611–21. https://doi.org/10.1002/term.2476

106. Singh S, Choudhury D, Yu F, et al., 2020, *In Situ* Bioprinting Bioprinting from Benchside to Bedside? *Acta Biomater*, 101:14–25. https://doi.org/10.1016/j.actbio.2019.08.045

107. Albanna M, Binder KW, Murphy SV, et al., 2019, *In Situ* Bioprinting of Autologous Skin Cells Accelerates Wound Healing of Extensive Excisional Full-Thickness Wounds. *Sci Rep*, 9:1–15. https://doi.org/10.1038/s41598-018-38366-w

108. Russell CS, Mostafavi A, Quint JP, et al., 2020, *In Situ* Printing of Adhesive Hydrogel Scaffolds for the Treatment of Skeletal Muscle Injuries. *ACS Appl Bio Mater*, 3:1568–79. https://doi.org/10.1021/acsabm.9b01176

109. Bernal PN, Delrot P, Loterie D, et al., 2019, Volumetric Bioprinting of Complex Living-Tissue Constructs within Seconds. *Adv Mater*, 31:1904209. https://doi.org/10.1002/adma.201904209

110. Navarro J, Calderon GA, Miller JS, et al., editors, 2019,
Bioinks for Three-Dimensional Printing in Regenerative Medicine. Academic Press, London, pp. 805–830.

111. Choi YJ, Jun YJ, Kim DY, et al., 2019, A 3D Cell Printed Muscle Construct with Tissue-derived Bioink for the Treatment of Volumetric Muscle Loss. Biomaterials, 206:160–9.

https://doi.org/10.1016/j.biomaterials.2019.03.036

112. Chu DT, Nguyen TPT, Nguyen LBT, et al., 2019, Adipose Tissue Stem Cells for Therapy: An Update on the Progress of Isolation, Culture, Storage, and Clinical Application. J Clin Med, 8:917.

https://doi.org/10.3390/jcm8070917

113. Xu W, Zhang XX, Yang P, et al., 2019, Alginate-honey Bioinks with Improved Cell Responses for Applications as Bioprinted Tissue Engineered Constructs. ACS Appl Mater Interfaces, 6:1–10.

https://doi.org/10.1021/acsami.9b06900

114. Zhou F, Hong Y, Liang R, et al., 2020, Rapid Printing of Bio-inspired 3D Tissue Constructs for Skin Regeneration. Biomaterials, 258:120287.

https://doi.org/10.1016/j.biomaterials.2020.120287

115. Kim H, Park MN, Kim J, et al., 2019, Characterization of Cornea-specific Bioink: High Transparency, Improved In Vivo Safety. J Tissue Eng, 10:2041731418823382.

https://doi.org/10.1177/2041731418823382

116. Ouyang L, Yao R, Zhao Y, et al., 2016, Effect of Bioink Properties on Printability and Cell Viability for 3D Bioplotting of Embryonic Stem Cells. Biofabrication, 8:1–12.

https://doi.org/10.1088/1758-5090/8/3/035020

117. Campos DFD, Blaeser A, Korsten A, et al., 2015, The Stiffness and Structure of Three-dimensional Printed Hydrogels Direct the Differentiation of Mesenchymal Stromal Cells toward Adipogenic and Osteogenic Lineages. Tissue Eng Part A, 21:740–56.

https://doi.org/10.1089/ten.tea.2014.0231

118. Ma H, Zhou Q, Chang J, et al., 2019, Grape Seed-Inspired Smart Hydrogel Scaffolds for Melanoma Therapy and Wound Healing. ACS Nano, 13:4302–11.

https://doi.org/10.1021/acsnano.8b09496

119. Park J, Lee SJ, Chung S, et al., 2017, Cell-laden 3D bioprinting hydrogel matrix depending on different compositions for soft tissue engineering: Characterization and evaluation. Mater Sci Eng C, 71:678–84.

https://doi.org/10.1016/j.msec.2016.10.069

120. Zhu W, Cui H, Boualam B, et al., 2018, 3D Bioprinting Mesenchymal Stem Cell-laden Construct with Core-shell Nanospheres for Cartilage Tissue Engineering. Nanotechnology, 29:185101.

https://doi.org/10.1088/1361-6528/aaafa1

121. Huang S, Yao B, Xie J, et al., 2016, 3D Bioprinted Extracellular Matrix Mimics Facilitate Directed Differentiation of Epithelial Progenitors for Sweat Gland Regeneration. Acta Biomater, 32:170–7.

https://doi.org/10.1016/j.actbio.2015.12.039

122. Gu Q, Tomaskovic-Crook E, Wallace GG, et al., 2017, 3D Bioprinting Human Induced Pluripotent Stem Cell Constructs for In Situ Cell Proliferation and Successive Multilineage Differentiation. Adv Healthc Mater, 6:1700175.

https://doi.org/10.1002/adhm.201700175

123. Li Y, Jiang X, Li L, et al., 2018, 3D Printing Human Induced Pluripotent Stem Cells with Novel Hydroxypropyl Chitin Bioink: Scalable Expansion and Uniform Aggregation. Biofabrication, 10:44101.

https://doi.org/10.1088/1758-5090/aacfc3

124. Choe G, Oh S, Seok JM, et al., 2019, Graphene Oxide/alginate Composites as Novel Bioinks for Three-dimensional Mesenchymal Stem Cell Printing and Bone Regeneration Applications. Nanoscale, 11:23275–85.

https://doi.org/10.1039/c9nr00753c

125. Gonzalez-Fernandez T, Rathan S, Hobbs C, et al., 2019, Pore-forming bioinks to Enable Spatio-temporally Defined Gene Delivery in Bioprinted Tissues. J Control Release, 301:13–27.

https://doi.org/10.1016/j.jconrel.2019.03.006

126. Sodupe-Ortega E, Sanz-Garcia A, Pernia-Espinoza A, et al., 2018, Accurate Calibration in Multi-material 3D Bioprinting for Tissue Engineering. Materials (Basel), 11:1–19.

https://doi.org/10.3390/ma11081402

127. Liu J, Li L, Suo H, et al., 2019, 3D Printing of Biomimetic Multi-layered GelMA/nHA Scaffold for Osteochondral Defect Repair. Mater Des, 171:107708.

https://doi.org/10.1016/j.matdes.2019.107708

128. Admene P, Gupta AC, Jois P, et al., 2019, Direct 3D Bioprinted Full-thickness Skin Constructs Recapitulate Regulatory Signaling Pathways and Physiology of Human Skin. Bioprinting, 15:e00051.

https://doi.org/10.1016/j.bprint.2019.e00051

129. Kwak H, Shin S, Lee H, et al., 2019, Formation of a Keratin Layer with Silk Fibroin-polyethylene Glycol Composite Hydrogel Fabricated by Digital Light Processing 3D Printing. J Ind Eng Chem, 72:232–40.

https://doi.org/10.1016/j.jiec.2018.12.023

130. Pereira RF, Sousa A, Barrias CC, et al., 2018, A Single-component Hydrogel Bioink for Bioprinting of Bioengineered
3D Constructs for Dermal Tissue Engineering. *Mater Horizons*, 5:1100–11.
https://doi.org/10.1039/c8mh00525g

131. Gholami P, Ahmadi-Pajouh MA, Abolfathi N, *et al*., 2018, Segmentation and Measurement of Chronic Wounds for Bioprinting. *IEEE J Biomed Health*, 22:1269–77.
https://doi.org/10.1109/JBHI.2017.2743526

132. Chen Y, Wang Y, Yang Q, *et al*., 2018, A Novel Thixotropic Magnesium Phosphate-based Bioink with Excellent Printability for Application in 3D Printing. *J Mater Chem B*, 6:4502–13.
https://doi.org/10.1039/C8TB01196F

133. Zhu K, Chen N, Liu X, *et al*., 2019, A General Strategy for Extrusion Bioprinting of Bio-Macromolecular Bioinks through Alginate-Templated Dual-Stage Crosslinking. *Macromol Biosci*, 18:1800127.
https://doi.org/10.1002/mabi.201800127

134. Cao X, Ashfaq R, Cheng F, *et al*., 2019, A Tumor-on-a-Chip System with Bioprinted Blood and Lymphatic Vessel Pair. *Adv Funct Mater*, 29:1801713.
https://doi.org/10.1002/adfm.201807173

135. Sánchez-Salazar MG, Álvarez MM, Trujillo-de Santiago G, 2021, Advances in 3D Bioprinting for the Biofabrication of Tumor Models. *Bioprinting*, 21:e00120.
https://doi.org/10.1016/j.bprint.2020.e00120

136. Lucey BP, Nelson-Rees WA, Hutchins GM, *et al*., 2009, Historical Perspective Henrietta Lacks, HeLa Cells, and Cell Culture Contamination. *Arch Pathol Lab Med*, 133:1463–7.
https://doi.org/10.1043/1543-2165-133.9.1463

137. Saygili E, Dogan-Gurbuz AA, Yesil-Celiktas O, *et al*., 2020, 3D Bioprinting: A Powerful Tool to Leverage Tissue Engineering and Microbial Systems. *Bioprinting*, 18:e00071.
https://doi.org/10.1016/j.bprint.2019.e00071

138. Schmieden DT, Vázquez SJB, Sangüesa H, *et al*., 2018, Printing of Patterned, Engineered *E. coli* Biofilms with a Low-Cost 3D Printer. *ACS Synth Biol*, 7:1328–37.
https://doi.org/10.1021/acssynbio.7b00424

139. Ning E, Turnbull G, Clarke J, *et al*., 2019, 3D Bioprinting of Mature Bacterial Biofilms for Antimicrobial Resistance Drug Testing. *Biofabrication*, 11:045018.
https://doi.org/10.1088/1758-5090/ab37a0

140. Huang Y, Xia A, Yang G, *et al*., 2018, Bioprinting Living Biofilms through Optogenetic Manipulation. *ACS Synth Biol*, 7:1195–200.
https://doi.org/10.1021/acssynbio.8b00003

141. Balasubramanian S, Aubin-Tam ME, Meyer AS, 2019, 3D Printing for the Fabrication of Biofilm-Based Functional Living Materials. *ACS Synth Biol*, 8:1564–7.
https://doi.org/10.1021/acssynbio.9b00192

142. Hynes WF, Chacón J, Segrè D, *et al*., 2018, Bioprinting Microbial Communities to Examine Interspecies Interactions in Time and Space. *Biomed Phys Eng Express*, 4:055010.
https://doi.org/10.1088/2057-1976/aad544

143. Lode A, Krujatz F, Brüggemeier S, *et al*., 2015, Green Bioprinting: Fabrication of Photosynthetic Algae-laden Hydrogel Scaffolds for Biotechnological and Medical Applications. *Eng Life Sci*, 15:177–83.
https://doi.org/10.1002/elbl.201400205

144. Maharjan S, Alva J, Cámara C, *et al*., 2021, Symbiotic Photosynthetic Oxygenation within 3D-Bioprinted Vascularized Tissues. *Matter*, 4:217–40.
https://doi.org/10.1016/j.matt.2020.10.022

145. Cui X, Dean D, Ruggeri ZM, *et al*., 2010, Cell Damage Evaluation of Thermal Inkjet Printed Chinese Hamster Ovary Cells. *Biotechnol Bioeng*, 106:963–9.
https://doi.org/10.1002/bit.22762

146. Ozler SB, Bakirci E, Kucukgul C, *et al*., 2017, Three-dimensional Direct Cell Bioprinting for Tissue Engineering. *J Biomed Mater Res Part B Appl Biomater*, 105:2530–44.
https://doi.org/10.1002/jbmb.b.33768

147. Hoffman AS, 2012, Hydrogels for Biomedical Applications. *Adv Drug Deliv Rev*, 64:18–23.
https://doi.org/10.1016/j.addr.2012.09.010

148. Chiew CSC, Poh PE, Pasbakhsh P, *et al*., 2014, Physicochemical Characterization of Halloysite/Alginate Bionanocomposite Hydrogel. *Appl Clay Sci*, 101:444–54.
https://doi.org/10.1016/j.clay.2014.09.007

149. Xiong R, Zhang Z, Chai W, *et al*., 2015, Freeform Demand Laser Printing of 3D Alginate and Cellular Constructs. *Biofabrication*, 7:45011.
https://doi.org/10.1088/1758-5090/7/4/045011

150. Freeman FE, Kelly DJ, 2017, Tuning Alginate Bioink Stiffness and Composition for Controlled Growth Factor Delivery and to Spatially Direct MSC Fate within Bioprinted Tissues. *Sci Rep*, 7:17042.
https://doi.org/10.1038/s41598-017-17286-1

151. Jeon O, Lee YB, Hinton TJ, *et al*., 2019, Cryopreserved Cell-laden Alginate Microgel Bioink for 3D Bioprinting of Living Tissues. *Mater Today Chem*, 12:61–70.
https://doi.org/10.1016/j.mtchem.2018.11.009

152. Hiller T, Berg J, Elomaa L, *et al*., 2018, Generation of a 3D Liver Model Comprising Human Extracellular Matrix in an Alginate/Gelatin-Based Bioink by Extrusion Bioprinting for Infection and Transduction Studies. *Int J Mol Sci*, 19:1–17.
153. de Ruijter M, Ribeiro A, Dokter I, et al., 2019, Simultaneous Micropatterning of Fibrous Meshes and Bioinks for the Fabrication of Living Tissue Constructs. Adv Healthc Mater, 8:e1800418.
https://doi.org/10.1002/adhm.201800418

154. Yue K, Trujillo-de Santiago G, Alvarez MM, et al., 2015, Synthesis, Properties, and Biomedical Applications of Gelatin Methacryloyl (GelMA) Hydrogels. Biomaterials, 73:254–71. https://doi.org/10.1016/j.biomaterials.2015.08.045

155. Lee BH, Lum N, Seow LY, et al., 2016, Synthesis and Characterization of Types A and B Gelatin Methacryloyl for Bioink Applications. Materials (Basel), 9:4–7. https://doi.org/10.3390/ma9100797

156. Chen X, Du W, Cai Z, et al., 2020, Uniaxial Stretching of Cell-Laden Microfibers for Promoting C2C12 Myoblasts Alignment and Myofibers Formation. ACS Appl Mater Interfaces, 12:2162–70. https://doi.org/10.1021/acsami.9b22203

157. Wang Z, Tian Z, Menard F, et al., 2017, Comparative Study of Gelatin Methacrylate Hydrogels from Different Sources for Biofabrication Applications. Biofabrication, 9:44101. https://doi.org/10.1088/1758-5090/aa83cf

158. Offengendel M, Chakrabarti S, Wu J, 2018, Chicken Collagen Hydrolysates Differentially Mediate Anti-inflammatory Activity and Type I Collagen Synthesis on Human Dermal Fibroblasts. Food Sci Hum Wellness, 7:138–47. https://doi.org/10.1016/j.fshw.2018.02.002

159. Lee J, Park CH, Kim CS, 2018, Microcylinder-laden Gelatin-based Bioink Engineered for 3D Bioprinting. Mater Lett, 233:24–7. https://doi.org/10.1016/j.matlet.2018.08.138

160. Ying GL, Jiang N, Maharjan S, et al., 2018, Aqueous Two-Phase Emulsion Bioink-Enabled 3D Bioprinting of Porous Hydrogels. Adv Mater, 30:1805460. https://doi.org/10.1002/adma.201805460

161. Yin J, Yan M, Wang Y, et al., 2018, 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy. ACS Appl Mater Interfaces, 10:6849–57. https://doi.org/10.1021/acsami.7b16059

162. Na K, Shin S, Lee H, et al., 2019, Effect of Solution Viscosity on Retardation of Cell Sedimentation in DLP 3D Printing of Gelatin Methacrylate/Silk Fibroin Bioink. J Ind Eng Chem, 61:340–7. https://doi.org/10.1016/j.jiec.2017.12.032

163. Wang Z, Abdulla R, Parker B, et al., 2015, A Simple and High-Resolution Stereolithography-based 3D Bioprinting System Using Visible Light Crosslinkable Bioinks. Biofabrication, 7:45009. https://doi.org/10.1088/1758-5090/7/4/045009

164. Rutz AL, Hyland KE, Jakus AE, et al., 2015, A Multimaterial Bioink Method for 3D Printing Tunable, Cell-Compatible Hydrogels. Adv Mater, 27:1607–14. https://doi.org/10.1002/adma.201405076

165. Shin JH, Kang HW, 2018, The Development of Gelatin-Based Bio-Ink for Use in 3D Hybrid Bioprinting. Int J Precis Eng Manuf, 19:767–71. https://doi.org/10.1007/s12541-018-0092-1

166. Nichol JW, Koshy ST, Bae H, et al., 2010, Cell-laden Microengineered Gelatin Methacrylate Hydrogels. Biomaterials, 31:5536–44. https://doi.org/10.1016/j.biomaterials.2010.03.064

167. Peak CW, Stein J, Gold KA, et al., 2018, Nanoengineered Colloidal Inks for 3D Bioprinting. Langmuir, 34:917–25. https://doi.org/10.1021/acs.langmuir.7b02540

168. Nemir S, Hayenga HN, West JL, 2010, PEGDA Hydrogels with Patterned Elasticity: Novel Tools for the Study of Cell Response to Substrate Rigidity. Biotechnol Bioeng, 105:636–44. https://doi.org/10.1002/bit.22574

169. López-Marcial GR, Zeng AY, Osuna C, et al., 2018, Agarose-Based Hydrogels as Suitable Bioprinting Materials for Tissue Engineering. ACS Biomater Sci Eng, 4:3610–6. https://doi.org/10.1021/acsbiomaterials.8b00903

170. Abelseth E, Abelseth L, De la Vega L, et al., 2019, 3D Printing of Neural Tissues Derived from Human Induced Pluripotent Stem Cells Using a Fibrin-Based Bioink. ACS Biomater Sci Eng, 5:234–3. https://doi.org/10.1021/acsbiomaterials.8b01235

171. Cappelletti RM, 2012, Fibrinogen and Fibrin: Structure and Functional Aspects. J Thromb Haemost, 3:1894–904.

172. de Melo BAG, Jodat YA, Cruz EM, et al., 2012, Fibrinogen and Fibrin: Structure and Functional Aspects. J Thromb Haemost, 3:1894–904.

173. de Ruijter M, Ribeiro A, Dokter I, et al., 2019, Simultaneous Micropatterning of Fibrous Meshes and Bioinks for the Fabrication of Living Tissue Constructs. Adv Healthc Mater, 8:e1800418.
https://doi.org/10.1002/adhm.201800418

174. Rodriguez MJ, Dixon TA, Cohen E, et al., 2018, 3D Freeform Printing of Silk Fibroin. Acta Biomater, 71:379–87. https://doi.org/10.1016/j.actbio.2018.02.035

175. Chawla S, Midha S, Sharma A, et al., 2018, Silk-Based
A Scientometric Analysis

186. Kuss M, Kim J, Qi D, et al., 2018, Effects of Tunable, 3D-bioprinted Hydrogels on Human Brown Adipocyte Behavior and Metabolic Function. Acta Biomater, 71:486–95. https://doi.org/10.1016/j.actbio.2018.03.021

187. Ebrahimi M, Ostrovidov S, Salehi S, et al., 2018, Enhanced Skeletal Muscle Formation on Microfluidic Spun Gelatin Methacryloyl (GelMA) Fibres Using Surface Patterning and Agrin Treatment. J Tissue Eng Regen Med, 12:2151–63. https://doi.org/10.1002/term.2738

188. Wang Y, Kankala RK, Zhu K, et al., 2019, Coaxial Extrusion of Tubular Tissue Constructs Using a Gelatin/GelMA Blend Bioink. ACS Biomater Sci Eng, 5:5514–24. https://doi.org/10.1021/acsbiomaterials.9b00926

189. Parthiban SP, Rana D, Jabbari E, et al., 2017, Covalently Immobilized VEGF-Mimicking Peptide with Gelatin Methacrylate Enhances Microvascularization of Endothelial Cells. Acta Biomater, 51:330–40. https://doi.org/10.1016/j.actbio.2017.01.046

190. Shao L, Gao Q, Zhao H, et al., 2018, Fiber-Based Mini Tissue with Morphology-Controllable GelMA Microfibers. Small, 14:1–8. https://doi.org/10.1002/smll.201802187

191. Lee VK, Kim DY, Ngo H, et al., 2014, Creating Perfused Functional Vascular Channels Using 3D Bio-printing Technology. Biomaterials, 35:8092–102. https://doi.org/10.1016/j.biomaterials.2014.05.083

192. Jia W, Gungor-Ozkerim PS, Zhang YS, et al., 2016, Direct 3D Bioprinting of Perfusable Vascular Constructs Using a Blend Bioink. Biomaterials, 106:58–68. https://doi.org/10.1016/j.biomaterials.2016.07.038

193. Shao L, Gao Q, Xie C, et al., 2020, Sacrificial Microgel-laden Bioink-enabled 3D Bioprinting of Mesoscale Pore Networks. Biodesign Manuf, 3:30–9. https://doi.org/10.1007/s42242-020-00062-y

194. Haring AP, Thompson EG, Tong Y, et al., 2019, Process-and Bio-inspired Hydrogels for 3D Bioprinting of Soft Free-standing Neural and Glial Tissues. Biofabrication, 11:25009. https://doi.org/10.1088/1758-5090/ab02e9

195. Saadati A, Hassanpour S, Hasanzadeh M, et al., 2019, Immunosensing of Breast Cancer Tumor Protein CA 15-3 (Carbohydrate Antigen 15.3) Using a Novel Nano-bioink: A New Platform for Screening of Proteins in Human Biofluids by Pen-on-paper Technology. Int J Biol Macromol, 132:748–58. https://doi.org/10.1016/j.ijbiomac.2019.03.170

Bioinks for 3D Bioprinting. Adv Healthc Mater, 7:1–23. https://doi.org/10.1002/adhm.201701204

176. Kuss MA, Harms R, Wu S, et al., 2017, Short-term Hypoxic Preconditioning Promotes Prevascularization in 3D Bioprinted Bone Constructs with Stromal Vascular Fraction Derived Cells. RSC Adv, 7:29312–20. https://doi.org/10.1039/c7ra04372d

177. Mouser VHM, Abdassada A, Levato R, et al., 2017, Development of a Thermosensitive HAMA-containing Bio-ink for the Fabrication of Composite Cartilage Repair Constructs. Biofabrication, 9:15026. https://doi.org/10.1088/1758-5090/aa6265

178. Ma K, Zhao T, Yang L, et al., 2020, Application of Robotic-assisted In Situ 3D Printing in Cartilage Regeneration with HAMA Hydrogel: An In Vivo Study. J Adv Res, 23:123–32. https://doi.org/10.1016/j.jare.2020.01.010

179. Zhou M, Lee BH, Tan YJ, et al., 2019, Microbial Transglutaminase Induced Controlled Crosslinking of Gelatin Methacryloyl to Tailor Rheological Properties for 3D Printing. Biofabrication, 11:25011. https://doi.org/10.1088/1758-5090/ab063f

180. Salinas-Fernández S, Santos M, Alonso M, et al., 2020, Genetically Engineered Elastin-like Recombinamers with Sequence-based Molecular Stabilization as Advanced Bioinks for 3D Bioprinting. Appl Mater Today, 18:100500. https://doi.org/10.1016/j.apmt.2019.100500

181. Rinoledi C, Costantini M, Kiejerska-Gawrońska E, et al., 2019, Tendon Tissue Engineering: Effects of Mechanical and Biochemical Stimulation on Stem Cell Alignment on Cell-Laden Hydrogel Yarns. Adv Healthc Mater, 8(7):1801218. https://doi.org/10.1002/adhm.201812018

182. Swaminathan S, Hamid Q, Sun W, et al., 2019, Bioprinting of 3D Breast Epithelial Spheroids for Human Cancer Models. Biofabrication, 11:025003. https://doi.org/10.1088/1758-5090/aafc49

183. Gu Q, Tomaskovic-Crook E, Lozano R, et al., 2016, Functional 3D Neural Tissue-Tissue from Printed Gel-Based Bioink and Human Neural Stem Cells. Adv Healthc Mater, 5:1429–38. https://doi.org/10.1002/adhm.201600095

184. Zhang K, Fu Q, Yoo J, et al., 2017, 3D Bioprinting of Urethra with PCL/PLCL Blend and Dual Autologous Cells in Fibrin Hydrogel: An In Vitro Evaluation of Biomimetic Mechanical Property and Cell Growth Environment. Acta Biomater, 50:154–64. https://doi.org/10.1016/j.actbio.2016.12.008

185. Wang Y, Shi W, Kuss M, et al., 2018, 3D Bioprinting of Breast Cancer Models for Drug Resistance Study. ACS Biomater Sci Eng, 4:4401–11. https://doi.org/10.1021/acsbiomaterials.8b01277
196. Mokhtari H, Kharaziha M, Karimzadeh F, et al., 2019, An Injectable Mechanically Robust Hydrogel of Kappacarrageenan-dopamine Functionalized Graphene Oxide for Promoting Cell Growth. Carbohydr Polym, 214:234–49. https://doi.org/10.1016/j.carbpol.2019.03.030

197. Aldrich A, Kuss MA, Duan B, et al., 2019, 3D Bioprinted Scaffolds Containing Macrophages and Antibiotics Promote Clearance of Staphylococcus aureus Craniootomy-Associated Biofilm Infection. ACS Appl Mater Interfaces, 11:12298–307. https://doi.org/10.1021/acsami.9b00264

198. Noh I, Kim N, Tran HN, et al., 2019, 3D Printable Hyaluronic Acid-based Hydrogel for its Potential Application as a Bioink in Tissue Engineering. Biomater Res, 23:3. https://doi.org/10.1007/s10856-019-6230-8

199. Arya N, Forget A, Sarem M, et al., 2019, RGDSP Functionalized Carboxylated Agarose as Extrudable Carriers for Chondrocyte Delivery. Mater Sci Eng C, 99:103–11. https://doi.org/10.1016/j.msec.2019.01.080

200. Ooi HW, Mota C, ten Cate AT, et al., 2018, Thiol-Ene Alginate Hydrogels as Versatile Bioinks for Bioprinting. Biomacromolecules, 19:3390–400. https://doi.org/10.1021/acs.biomac.8b00696

201. Kérourédan O, Bourget JM, Rémy M, et al., 2019, Micropatterning of Endothelial Cells to Create a Capillary-like Network with Defined Architecture by Laser-assisted Bioprinting. J Mater Sci Mater Med, 30:28. https://doi.org/10.1007/s10856-019-6230-1

202. Miri AK, Nieto D, Iglesias L, et al., 2018, Microfluidics-Enabled Multimaterial Maskless Stereolithographic Bioprinting. Adv Mater, 30:1800242. https://doi.org/10.1002/adma.201800242

203. Jang J, Park HJ, Kim SW, et al., 2017, 3D Printed Complex Tissue Construct Using Stem Cell-laden Decellularized Extracellular Matrix Bioinks for Cardiac Repair. Biomaterials, 112:264–74. https://doi.org/10.1016/j.biomaterials.2016.10.026

204. Shin S, Kwak H, Hyun J, 2018, Melanin Nanoparticle-Incorporated Silk Fibroin Hydrogels for the Enhancement of Printing Resolution in 3D-Projection Stereolithography of Poly(ethylene glycol)-Tetraacrylate Bio-ink. ACS Appl Mater Interfaces, 10:23573–82. https://doi.org/10.1021/acsami.8b05963

205. Laternser S, Keller H, Leupin O, et al., 2018, A Novel Microplate 3D Bioprinting Platform for the Engineering of Muscle and Tendon Tissues. SLAS Technol Transl Life Sci Innov, 23:599–613. https://doi.org/10.1177/2472630318776594

206. Zhu K, Shin SR, van Kempen T, et al., 2017, Gold Nanocomposite Bioink for Printing 3D Cardiac Constructs. Adv Funct Mater, 27:1605352. https://doi.org/10.1002/adfm.201605352

207. Zhai X, Ruan C, Ma Y, et al., 2018, 3D-Bioprinted Osteoblast-Laden Nanocomposite Hydrogel Constructs with Induced Microenvironments Promote Cell Viability, Differentiation, and Osteogenesis both In Vitro and In Vivo. Adv Sci, 5:1700550. https://doi.org/10.1002/advs.201700550

208. Lee D, Lee D, Won Y, et al., 2016, Insertion of Vertically Aligned Nanowires into Living Cells by Inkjet Printing of Cells. Small, 12:1446–57. https://doi.org/10.1002/smll.201502510

209. Hashmi MU, Khan F, Khalid N, et al., 2017, Hydrogels Incorporated with Silver Nanocolloids Prepared from Antioxidant Rich Aerva javanica as Disruptive Agents against Burn Wound Infections. Colloids Surfaces A Physicochem Eng Asp, 529:475–86. https://doi.org/10.1016/j.colsurfa.2017.06.036

210. Maharanj B, Kumar D, Awasthi GP, et al., 2019, Synthesis and Characterization of Gold/Silica Hybrid Nanoparticles Incorporated Gelatin Methacrylate Conductive Hydrogels for H9C2 Cardiac Cell Compatibility Study. Compos Part B Eng, 177:107415. https://doi.org/10.1016/j.compositesb.2019.107415

211. Hasnidadwani JN, Azlina HN, Norita H, et al., 2016, Synthesis of ZnO Nanostructures Using Sol-Gel Method. Procedia Chem, 19:211–6. https://doi.org/10.1016/j.proche.2016.03.095

212. Salavati-Niasari M, Soofivand F, Sobhani-Nasab A, et al., 2017, Facile Synthesis and Characterization of CdTiO3 Nanoparticles by Pechini Sol-gel Method. J Mater Sci Mater Electron, 28:14965–73. https://doi.org/10.1007/s10854-017-7369-5

213. Rahali K, Ben Messaoud G, Kahn CJF, et al., 2017, Synthesis and Characterization of Nanofunctionalized Gelatin Methacrylate Hydrogels. Int J Mol Sci, 18:2675. https://doi.org/10.3390/ijms18122675

214. Kusior A, Kollbek K, Kowalski K, et al., 2016, Sn and Cu Oxide Nanoparticles Deposited on TiO2 Nanoflower 3D Substrates by Inert Gas Condensation Technique. Appl Surf Sci, 380:193–202. https://doi.org/10.1016/j.apsusc.2016.01.204

215. Iqbal J, Abbasi BA, Ahmad R, et al., 2020, Biogenic Synthesis of Green and Cost Effective Iron Nanoparticles and
Evaluation of their Potential Biomedical Properties. J Mol Struct, 1199:126979.
https://doi.org/10.1016/j.molstruc.2019.126979

216. Nunes R, Baião A, Monteiro D, et al., 2020, Zein Nanoparticles as Low-cost, Safe, and Effective Carriers to Improve the Oral Bioavailability of Resveratrol. Drug Deliv Transl Res, 10:826–37.
https://doi.org/10.1007/s13346-020-00738-z

217. Peak CW, Singh KA, Adlouni M, et al., 2019, Printing Therapeutic Proteins in 3D using Nanoengineered Bioink to Control and Direct Cell Migration. Adv Healthc Mater, 8:1801553.
https://doi.org/10.1002/adhm.201801553

218. Chimene D, Peak CW, Gentry JL, et al., 2018, Nanoengineered Ionic-Covalent Entanglement (NICE) Bioinks for 3D Bioprinting. ACS Appl Mater Interfaces, 10:9957–68.
https://doi.org/10.1021/acsami.7b19808

219. Wilson SA, Cross LM, Peak CW, et al., 2017, Shear-Thinning and Thermo-Reversible Nanoengineered Inks for 3D Bioprinting. ACS Appl Mater Interfaces, 9:43449–58.
https://doi.org/10.1021/acsami.7b13602

220. Ahlfeld T, Cidonio G, Kilian D, et al., 2017, Development of a Clay Based Bioink for 3D Cell Printing for Skeletal Application. Biofabrication, 9:34103.
https://doi.org/10.1088/1758-5090/aa7e9

221. Olsen TR, Casco M, Herbst A, et al., 2016, Longitudinal Stretching for Maturation of Vascular Tissues Using Magnetic Forces. Bioengineering, 3:29.

222. Ojansivu M, Rashad A, Ahlinder A, et al., 2019, Wood-based Nanocellulose and Bioactive Glass Modified Gelatin-alginate Bioinks for 3D Bioprinting of Bone Cells. Biofabrication, 11:35010.
https://doi.org/10.1088/1758-5090/ab0692

223. Reakasame S, Trapani D, Detsch R, et al., 2018, Cell Laden Alginate-keratin Based Composite Microcapsules Containing Bioactive Glass for Tissue Engineering Applications. J Mater Sci Mater Med, 29:185.
https://doi.org/10.1007/s10856-018-6195-5

224. Trampe E, Koren K, Akkineni AR, et al., 2018, Functionalized Bioink with Optical Sensor Nanoparticles for O2 Imaging in 3D-Bioprinted Constructs. Adv Funct Mater, 28:1804411.
https://doi.org/10.1002/adfm.201804411

225. Allig S, Mayer M, Thielemann C. Workflow for Bioprinting of Cell-laden Bioink. Lek Tech, 48:46–51.

226. DeSimone E, Schacht K, Pellert A, et al., 2017, Recombinant Spider Silk-Based Bioinks. Biofabrication, 9:44104.
https://doi.org/10.1088/1758-5090/aa90db

227. Echalier C, Levato R, Mateos-Timoneda MA, et al., 2017, Modular Bioink for 3D Printing of Biocompatible Hydrogels: Sol-gel Polymerization of Hybrid Peptides and Polymers. RSC Adv, 7:12231–35.
https://doi.org/10.1039/C6RA28540F

228. Gao G, Zhang XF, Hubbell K, C et al., 2017, NR2F2 Regulates Chondrogenesis of Human Mesenchymal Stem Cells in Bioprinted Cartilage. Biotechnol Bioeng, 114:208–16.
https://doi.org/10.1002/bit.26042

229. Daly AC, Cunniffe GM, Sathy BN, et al., 2016, 3D Bioprinting of Developmentally Inspired Templates for Whole Bone Organ Engineering. Adv Healthc Mater, 5:2353–62.
https://doi.org/10.1002/adhm.201600182

230. Lee DY, Lee H, Kim Y, et al., 2016, Phage as Versatile Nanoink for Printing 3-D Cell-laden Scaffolds. Acta Biomater, 29:112–24.
https://doi.org/10.1016/j.actbio.2015.10.004

231. Lozano R, Stevens L, Thompson BC, et al., 2015, 3D Printing of Layered Brain-like Structures Using Peptide Modified Gellan Gum Substrates. Biomaterials, 67:264–73.
https://doi.org/10.1016/j.biomaterials.2015.07.022

232. Schacht K, Jüngst T, Schweinlin M, et al., 2015, Biofabrication of Cell-Loaded 3D Spider Silk Constructs. Angew Chemie Int Ed, 54:2816–20.
https://doi.org/10.1002/anie.201409846

233. Jia J, Richards DJ, Pollard S, et al., 2014, Engineering Alginate as Bioink for Bioprinting. Acta Biomater, 10:4323–31.
https://doi.org/10.1016/j.actbio.2014.06.034

234. Chung JHY, Naficy S, Yue Z, et al., 2013, Bio-ink Properties and Printability for Extrusion Printing Living Cells. Biomater Sci, 1:763–73.
https://doi.org/10.1039/C3BM00012E

235. Poon YF, Cao Y, Liu Y, et al., 2010, Hydrogels Based on Dual Curable Chitosan-graft-Polyethylene Glycol-graft-Methacrylate: Application to Layer-by-Layer Cell Encapsulation. ACS Appl Mater Interfaces, 2:2012–25.
https://doi.org/10.1021/am1002876

236. Ji S, Almeida E, Guvendiren M, 2019, 3D Bioprinting of Complex Channels within Cell-laden Hydrogels. Acta Biomater, 95:214–24.
https://doi.org/10.1016/j.actbio.2019.02.038

237. Park J, Lee SJ, Lee H, et al., 2018, Three Dimensional Cell Printing with Sulfated Alginate for Improved Bone Morphogenetic Protein-2 Delivery and Osteogenesis in Bone Tissue Engineering. Carbohydr Polym, 196:217–24.
https://doi.org/10.1016/j.carbpol.2018.05.048

238. Luo Y, Luo G, Gelinsky M, et al., 2017, 3D Bioprinting
Scaffold Using Alginate/Polyvinyl Alcohol Bioinks. *Mater Lett*, 189:295–8.
https://doi.org/10.1016/j.matlet.2016.12.009

239. Poldervaart MT, Wang H, van der Stok J, *et al*., 2013, Sustained Release of BMP-2 in Bioprinted Alginate for Osteogenicity in Mice and Rats. *PLoS One*, 8:e72610.
https://doi.org/10.1371/journal.pone.0072610.

240. Cunniffe GM, Gonzalez-Fernandez T, Daly A, *et al*., 2017, Three-Dimensional Bioprinting of Polycaprolactone Reinforced Gene Activated Bioinks for Bone Tissue Engineering. *Tissue Eng Part A*, 23:891–900.
https://doi.org/10.1089/ten.tea.2016.0498

241. Rathan S, Dejob L, Schipani R, Haffner B, Möbius ME, Kelly DJ. Fiber Reinforced Cartilage ECM Functionalized Bioinks for Functional Cartilage Tissue Engineering. *Adv Healthc Mater*, 8:1801501.

242. Kesti M, Fisch P, Pensalfini M, *et al*., 2016, Guidelines for Standardization of Bioprinting: A Systematic Study of Process Parameters and their Effect on Bioprinted Structures. *BioNanoMaterials*, 17:193–204.
https://doi.org/10.1515/bnm-2016-0004

243. Acosta-Vélez GF, Zhu TZ, Linsley CS, *et al*., 2018, Photocurable Poly(Ethylene Glycol) as a Bioink for the Inkjet 3D Pharming of Hydrophobic Drugs. *Int J Pharm*, 546:145–53.
https://doi.org/10.1016/j.ijpharm.2018.04.056

244. Gao G, Lee JH, Jang J, *et al*., 2017, Tissue Engineered Bio-Blood-Vessels Constructed Using a Tissue-Specific Bioink and 3D Coaxial Cell Printing Technique: A Novel Therapy for Ischemic Disease. *Adv Funct Mater*, 27:1700798.
https://doi.org/10.1002/adfm.201700798

245. Acosta-Vélez GF, Linsley CS, Craig MC, *et al*., 2017, Photocurable Bioink for the Inkjet 3D Pharming of Hydrophilic Drugs. *Bioengineering*, 4:11.

246. Erdem A, Darabi MA, Nasiri R, *et al*., 2020, 3D Bioprinting of Oxygenated Cell-Laden Gelatin Methacryloyl Constructs. *Adv Healthc Mater*, 9:1-12.
https://doi.org/10.1002/adhm.201901794