Neutrino pair annihilation
\((\nu\bar{\nu} \rightarrow e^- e^+)\) in the presence of
quintessence surrounding a black hole

G. Lambiase,\(^a,b\) L. Mastrototaro.\(^a,b,1\)

\(^a\)Dipartimento di Fisica “E.R Caianiello”, Università degli Studi di Salerno,
Via Giovanni Paolo II, 132 - 84084 Fisciano (SA), Italy
\(^b\)Istituto Nazionale di Fisica Nucleare - Gruppo Collegato di Salerno - Sezione di Napoli,
Via Giovanni Paolo II, 132 - 84084 Fisciano (SA), Italy

E-mail: lambiase@sa.infn.it, lmastrototaro@unisa.it

Abstract. Quintessence fields, introduced to explain the speed-up of the Universe, might
affect the geometry of spacetime surrounding black holes, as compared to the standard
Schwarzschild and Kerr geometries. In this framework, we study the neutrino pairs anni-
hilation into electron-positron pairs \((\nu\bar{\nu} \rightarrow e^- e^+)\) near the surface of a neutron star, focusing,
in particular, on the Schwarzschild-like geometry in presence of quintessence fields. The ef-
fact of the latter is to increase the photon-sphere radius \((R_{ph})\), increasing in such a way the
maximum energy deposition rate near to \(R_{ph}\). The rate turns out to be several orders of
magnitude greater than the rate computed in the framework of General Relativity. These
results might provide a rising in the GRBs energy emitted from a close binary neutron star
system and might be used to constraints the parameters of the quintessence model. Finally
we theoretically study the effects of rotation on the neutrino energy deposition
1 Introduction

Recent cosmological observations suggest that our Universe is currently undergoing to an accelerated expansion [1–6]. To explain such a phase of the Universe evolution, several alternative or modified theories of gravity have been proposed, which allow, among the other things, to encompass several shortcomings of the cosmology based on General Relativity, that is, the standard cosmological model. For example, higher-order curvature invariants allow to get inflationary behaviour, as well as to explain the flatness and horizon problems [7, 8] (for further applications and different models, see Refs. [9–38]). This approach, as well as ones related to it, follows from the fact that the high curvature regime requires that curvature invariants are necessary for building up self-consistent effective actions in curved spacetime [39–41].

Another possibility to explain the speed-up of the present Universe is to invoke some exotic component, called dark energy. Despite the observational evidence, the nature and origin of dark energy is till now a source of vivid debate. A candidate of Dark Energy could be the Quintessence [42], which is characterized by the fact that it may generate a negative pressure, and, since it exists everywhere in the Universe, it can cause the observed accelerated phase.

The existence of a quintessence field diffuse in the Universe has suggested the possibility that it could be present around a huge massive gravitational object, with the consequence that the spacetime around it gets deformed. Such a possibility has been studied by Kiselev in Ref. [43]. In this work, the author solved the Einstein field equations for static spherically symmetric quintessence surrounding a black hole in $d = 4$ dimensions. Here it is also shown that appropriate conditions of the energy-momentum tensor allow inferring the correct limit to the known solutions corresponding to the electromagnetic static field and the cosmological constant. The Kiselev solution is characterized by two parameters: the parameter of state w_q, that is bounded as $-1 < w_q < -\frac{1}{3}$, and the quintessence parameter c. The generalization of these results to d dimensions has been studied in [44]. The studies of quintessential black holes are also motivated from M-theory/superstring inspired models [45–47]. For applications see Refs. [42, 48–57].
The aim of this paper is to investigate the effects of the presence of the quintessence field around a gravitational object described by the black hole metric on the neutrino pair annihilation efficiency\(^1\) \((\nu \bar{\nu} \rightarrow e^+ e^-)\). Moreover, considering the merging of a binary system of neutron star, the \(e^+ e^-\) in turn generate gamma ray that may provide a possible explanation of the observed GRBs [75]. The studies of the energy source of GRBs induced by the neutrino-antineutrino annihilation into electrons and positrons, and their relevance in physics and astrophysics, have a quite long history [75–88]. It is worth to mention that the neutrino pair annihilation rate into electron pairs between two neutron stars in a binary system has been investigated in [79], while the study of the structure of neutron star disks based on the two-region (inner and outer) disk scenario has been performed in [89], where the neutrino annihilation luminosity from the disk has been calculated in various cases (see also [90–94]). The neutrino-antineutrino annihilation into electron-positron pairs near the surface of a neutron star assuming that the gravitational background is described by modified theories of gravity has been investigated in [95].

Motivated by the fact that gravity may influence energy deposition rate near to the photon-sphere, \(R_{\text{ph}}\), as compared to one derived in the framework of Newtonian gravity [75], we extend this analysis to the case of black hole spacetimes modified by quintessence fields. In particular, we focus on the process \(\nu \bar{\nu} \rightarrow e^+ e^-\), which is important also for the delay shock mechanism into the Type II Supernova: indeed, at late time, from the hot proto-neutron star, the energy is deposited into the supernova envelope via neutrino pair annihilation and neutrino-lepton scattering [95]. As we shall see, the computation of the efficiency of the process \(\nu \bar{\nu} \rightarrow e^+ e^-\) may increase by more than one order of magnitude respect to GR, making possible to explain the huge energy of the GRB energy emitted in the merging of a binary neutron star system, considering the neutrino annihilation as the unique source. Indeed electron pairs subsequently annihilate into photons (fireball model [96]) that ultimately powers the GRB. We have approximate the effect considering that all the energy released into electrons is converted into photons [75] and considering the escape probability for deposited energy equal to its minimum value of 1/2 at the neutrinosphere (see App. A).

The paper is organized as follows. In the next section, we recall the main features related to neutrino energy deposition. In particular, we write the total energy deposition and luminosity induced by neutrino annihilation processes. In Section 3 we discuss the effects of quintessential matter surrounding gravitational sources on the neutrino energy deposition. Such theoretical analysis could provides also an enhancement of the GRB energy emitted from the merging of a binary neutron star system and lead to constraints on the quintessence model. We will derive general results about the energy deposition rate for the model of neutrinos spherically emitted from the neutrinosphere as done in Ref. [75]. \(^2\) In the last section, we discuss our conclusions.

2 Energy deposition rate by the neutrino annihilation process

In this section we recall the main features to treat the energy deposition in curved spacetimes [82, 95]. As mentioned in the Introduction, previous calculations of the \(\nu \bar{\nu} \rightarrow e^- e^+\) reaction in the vicinity of a neutron star have been first based on Newtonian gravity [76, 77], then the

\(^{1}\)The propagation of neutrino in gravitational fields has been studied both in GR [58–71] and in modified gravity [72–74].

\(^{2}\)The relativistic effects on the energy deposition rate generated by neutrinos emitted from the accretion disk around a rotating black hole described by modified theories of gravity will be faced elsewhere.
effect of gravity has been incorporated for static stars [75, 79], and then extended to rotating stars [82, 91].

We consider the spacetime around a black hole in presence of the quintessence field. The solution of Einstein’s field equations for a static spherically symmetric quintessence surrounding a black hole in 4 dimension is described by the diagonal metric [43, 44] (see also [45–47] for quintessential black holes motivated from M-theory/superstring inspired models)

\[
g_{\mu\nu} = \text{diag} \left(-f(r), f^{-1}(r), r^2, r^2 \sin^2 \theta \right),
\]

with

\[
f(r) = 1 - \frac{2M}{r} - \frac{c}{r^{3\omega_q+1}}.
\]

See Appendix B for some details.

The energy deposition per unit time and per volume is given by (we shall use natural units, \(c = \hbar = 1 \)) [78]

\[
\dot{q}(r) = \int \int f_\nu(p_\nu, r) f_\bar{\nu}(p_{\bar{\nu}}, r) \left[\sigma |v_\nu - v_{\bar{\nu}}| \varepsilon_\nu \varepsilon_{\bar{\nu}} \right] \frac{\varepsilon_\nu + \varepsilon_{\bar{\nu}}}{\varepsilon_\nu \varepsilon_{\bar{\nu}}} d^3 p_\nu d^3 p_{\bar{\nu}},
\]

where \(f_\nu, f_{\bar{\nu}} \) are the neutrino number densities in phase space, \(v_\nu \) the neutrino velocity, and \(\sigma \) is the rest frame cross section. Since the term \(\sigma |v_\nu - v_{\bar{\nu}}| \varepsilon_\nu \varepsilon_{\bar{\nu}} \) is Lorentz invariant, it can be calculated in the center-of-mass frame, and turns out to be

\[
\sigma |v_\nu - v_{\bar{\nu}}| \varepsilon_\nu \varepsilon_{\bar{\nu}} = \frac{DG_F^2 \pi^3 \xi(5)}{2} \left[kT(r) \right] \Theta(r),
\]

where \(G_F = 5.29 \times 10^{-44} \text{ cm}^2 \text{ MeV}^{-2} \) is the Fermi constant,

\[
D = 1 \pm 4 \sin^2 \theta_W + 8 \sin^4 \theta_W,
\]

\(\sin^2 \theta_W = 0.23 \) is the Weinberg angle, and the plus sign is for electron neutrinos and antineutrinos while the minus sign is for muon and tau type. \(T(r) \) is the temperature measured by the local observer and \(\Theta(r) \) is the angular integration factor. In these frameworks the energy of the neutrinos is \(\gtrsim 10 \text{ MeV} \), so that the mass of the electrons can be neglected. It is possible to obtain that the general expression of the rate per unit time and unit volume of the \(\nu\bar{\nu} \rightarrow e^+e^- \) process is [75]

\[
\dot{q} = \frac{7DG_F^2 \pi^3 \xi(5)}{2} \left[kT(r) \right] \Theta(r).
\]

The evaluation of \(T(r) \) and \(\Theta(r) \) account for the gravitational redshift and path bending.

To write the latter in terms of observed luminosity \(L_\infty \), which is an observable quantity, one has to has to express the temperature of the free streaming neutrinos at radius \(r \) in terms of their temperature at the neutrinosphere radius \(R \) using the appropriate gravitational redshift. Temperature, like energy, varies linearly with red-shift. Following the procedure of Ref. [75], one finds that the above expressions, written in terms of the metric component
\[g_{00} = g_{rr}^{-1} = f(r), \]

are given by (see for example [95])

\[
\Theta(r) = \frac{2\pi^3}{3}(1 - x)^4(x^2 + 4x + 5), \tag{2.7}
\]

\[
T(r) = \frac{\sqrt{f(R)}}{\sqrt{f(r)}} T(R), \tag{2.8}
\]

\[
L_\infty = f(R) L(R), \tag{2.9}
\]

\[
L(R) = L_\nu + L_\pi = \frac{7}{4} a\pi R^2 T^4(R). \tag{2.10}
\]

Here \(x = \sin^2 \theta_r \), where \(\theta_r \) is the angle between the trajectory and the tangent velocity in terms of local radial and longitudinal velocities [82], and is defined as [95]

\[
\cos \theta_r = \frac{R}{r} \sqrt{\frac{f(r)}{f(R)}}, \tag{2.11}
\]

\(R \) the neutrinosphere radius (the spherical surface where the stellar material is transparent to neutrinos and from which neutrinos are emitted freely), \(L(R) \) is the neutrino luminosity at distance \(R \), and \(a \) the radiation constant. This relation comes from the fact that the impact parameter \(b \) is constant on all the trajectory and is related to \(\cos \theta_r \) by the relation

\[
b = \left(\frac{f(r)}{r \cos \theta_r} \right)^{-1}. \tag{2.12}
\]

The fact that \(b \) is constant along the trajectory, implies the existence of a photosphere radius \(R_{ph} \) below which a massless particle can not be emitted tangent to the stellar surface. The present discussion is therefore restricted to \(R > R_{ph} \). The neutrino emission properties hence mainly depend on the geometry of spacetime. From the equation of the velocities

\[
\dot{r}^2 = \left(E \dot{t} - L \dot{\phi} \right) f(r), \quad \dot{\phi} = \frac{L}{r^2}, \quad \dot{t} = -\frac{E}{f(r)},
\]

where \(E \) and \(L \) are the energy and angular momentum at the infinity, one gets the effective potential \(V_{eff} \), such that the photonsphere radius follows from the condition \(\frac{\partial V_{eff}}{\partial r} = 0 \). The circular orbit is derived imposing \(\dot{r}^2 = 0 \). We note en passant that these results reduce to ones derived in the case of the Schwarzschild geometry, \(R_{ph} = 3M \), as calculated in [75].

The integration of \(\dot{q} \) from \(R \) to infinity gives the total amount of local energy deposited by the neutrino annihilation process (for a single neutrino flavour) for time units

\[
\dot{Q} = 4\pi \int_R^\infty dr \frac{r^2}{\sqrt{f(r)}} \dot{q}, \tag{2.13}
\]

which can be cast in the form

\[
\dot{Q}_{51} = 1.09 \times 10^{-5} F \left(\frac{M}{R} \right) D L_{51}^{9/4} R_{6}^{-3/2}, \tag{2.14}
\]

where \(\dot{Q}_{51} \) and \(L_{51} \) are the total energy deposition and luminosity, respectively, in units of \(10^{51} \text{ erg/sec} \),

\[
\dot{Q}_{51} \equiv \frac{\dot{Q}}{10^{51} \text{ erg/sec}}, \quad L_{51} \equiv \frac{L_\infty}{10^{51} \text{ erg/sec}}, \tag{2.15}
\]

\[- 4 - \]
R_6 is the neutrinosphere radius in units of 10 km, $R_6 \equiv R/10\text{km}$, and

$$F\left(\frac{M}{R}\right) = 3f^{3/4}(R) \int_1^{R_{\text{ch}}} (x-1)^4(x^2+4x+5)\frac{y^2dy}{f^5(yR)},$$
(2.16)

with $y = r/R$. In the Newtonian limit ($M \to 0$) one gets $\dot{Q} \to \dot{Q}_{\text{Newt}}$, where \dot{Q}_{Newt} is obtained from (2.14) (or (2.15)) with $F(0) = 1$. It turns out convenient to define the ratio $\dot{Q}/\dot{Q}_{\text{Newt}}$, so that one gets

$$\frac{\dot{Q}}{\dot{Q}_{\text{Newt}}} = F\left(\frac{M}{R}\right).$$
(2.17)

In the next Section we will study the ratio (2.17) for astrophysical objects surrounding by Dark Energy quintessence.

3 Neutrino deposition in BH spacetimes with quintessence

In this section, we analyze the neutrino pair annihilation into electron-positron pairs near the surface of a gravitational source taking into account the deviation from Schwarzschild solution induced by the presence of the quintessence field. The effect is studied in the regime of strong gravitational field. In the Schwarzschild geometry with quintessence field, the parameter ω_q assumes, as stated in the Introduction, the values in the range

$$\omega_q \in \left[-1, -\frac{1}{3} \right].$$

The quintessence parameter is constrained by the fact that increasing c, the model passes from describing a black hole with an event horizon to one representing a naked singularity. This latter case is represented with the blue curve in Fig. 1. Moreover, it can be seen that increasing c the curve changes until the formation of a naked singularity occurs. According to these results, we confine ourselves to values of the parameter c for which the event horizon does exist. In what follows we analyzed some specific cases for different values of the parameter quintessence ω_q:

- $\omega_q = -0.9$ - In Fig. 2, it is possible to notice that we obtain only an increment of a factor 2 respect to GR in correspondence of $c = 1 \times 10^{-2}$. We can notice also that the different behaviour respect to GR for large value of R/M is due to the existence of the horizon at $R/M = 13.68$.

- $\omega_q = -2/3$ - In Fig. 3, it is possible to see that the relevant enhancement corresponds to $c = 5 \times 10^{-2}$, up to almost 3 times with respect to the GR behaviour. As before, the different behaviour respect to GR for large value of R/M is due to the existence of the horizon at $R \sim 16M$.

- $\omega_q = -0.4$ - This case is particularly interesting because, as arises from Fig. 4, there is a consistent increment of the fraction of the energy emission rates, up to a factor ~ 23 for $c = 4 \times 10^{-1}$.

For a comparison, we discuss the effects of a cosmological constant (ΛCMD model). The corresponding (gravitational) model is obtained from the metric (2.1) and (2.2), with $\omega_q = -1$ and $c = \Lambda/3$,

$$f(r) = 1 - \frac{2M}{r} - \frac{\Lambda r^2}{3}.$$
(3.1)
Figure 1. The $f(r)$ function defined in (2.2) vs r/M. The parameters ω_q and c are fixed as $\omega_q = -2/3$, $c = 0.01$ (black), $c = 0.05$ (red) and $c = 0.2$ (blue). As arises from the plot, increasing the values of the constant c, the curves approach the event horizon, corresponding to $f(r/M) = 0$, until the formation of a naked singularity (blue curve).

Results are shown in Fig. 5. As it can be seen, this model does not induce significant differences with respect to GR.

3.1 Energy deposition estimations

The enhancement of the ratio $\dot{Q}/\dot{Q}_{\text{Newt}}$ studied in the previous Section, Eq. (2.17), turns out to be relevant for GRB generation\(^3\). Here we follow the ideas proposed in the papers [79, 109–112]. According to them, merging neutron stars in a close binary system undergo to a relativistic compression and heating over a period of seconds, and may released gravitational binding energy that can be converted into internal energy. As a consequence, it is possible that neutrinos (thermally produced) can be emitted slightly before the stars collapse to a

\(^3\)Here we just recall the main feature of GRBs. They are classified in two categories, long and short GRBs [97–101]. They are powerful high-energy transient emissions from sources at cosmological distances that are randomly diffuse in the celestial sphere. Moreover, they are characterized by a short phase of intense emission in hard X and γ rays, lasting in the range of $\sim \mathcal{O}(10^{-3})$ sec to $\sim \mathcal{O}(10^{2})$ sec. More specifically, their duration is characterized by the fact that bursts with duration $\lesssim \mathcal{O}(1) \text{ sec}$ are referred as short GRBs, bursts with duration $\gtrsim \mathcal{O}(1) \text{ sec}$ are referred as long GRBs [96]. The firsts are generated by the merging of compact binaries [102], the latter by the collapse of the Wolf-Rayet star [103]. According to the general picture, after following the prompt phase, GRBs exhibit the afterglow phase, a long-lasting activity. During this phase, the observed flux decreases rapidly in time, with an emission peak energy shifting to longer wavelengths (X rays, visible and radio) on time scales that vary from hours to weeks [97]. The energy rate of short GRBs is $\dot{E} < 10^{52} \text{erg/s}$. There are several space-mission, which aim is to exploiting GRBs for investigating the early Universe and provide an advancement of multi-messenger and time-domain astrophysics (see Refs. [104–108] and references therein).
BH. The total neutrino luminosity is huge, up to 10^{53} erg/sec [113]. Neutrinos emerging from the merged star will deposit energy through the annihilation, $\nu\bar{\nu}$, leading to the subsequent formation of electron-positron pairs. As shown by Salmonson and Wilson (SW), strong gravitational fields near the stars will bend the neutrino trajectories, enhancing the annihilation and scattering rates [75]. In particular, for $R/M \sim 3 - 4$ (just before stellar collapse) it follows that $\nu\bar{\nu}$ annihilation deposited energy is enhanced by a factor $\mathcal{F}(R/M) \sim \mathcal{O}(8 - 28)$ (see below). The relevant consequence of SW results is that the hot electron-positron pair plasma, produced by the $\nu\bar{\nu}$ annihilation, generates in turn a relativistic expanding pair-photon plasma that becomes optically thin, so that photons can be released. SW found that the energy released in γ-rays [109] is such that the spectral and temporal properties are consistent with the observed short GRBs. As we will show, the enhancement can increase if the spacetime is deformed by the presence of quintessence field, making the mechanism of GRBs generation more efficient, as compared with GR.

From Eqs. (2.15) and (2.14), integrating in time, it follows that the maximum total energy deposited from the neutrino annihilation process can be explicitly rewritten as

$$Q = 2.4 \times 10^{48} \mathcal{F}(R_{ph})R_6^{-3/2} \text{ erg} \ ,$$

where we have considered neutrinos emitted from the photonsphere, a neutrino energy at infinity of $\mathcal{O}(10^{52})$ erg [114]\(^4\) and $D \sim 1.23$. For a gravitational background described by the

\(^4\)The final state of a binary neutron star merging is a black hole with a disk. Therefore, due to the used formalism, we have not considered the luminosity that arises from the disk but only that from the merged neutron stars collapsed to a BH.

Figure 2. Ratio of total energy deposition \dot{Q} for $\omega = -0.9$ to total Newtonian energy deposition \dot{Q}_{Newt} for two values of the parameter c. The green curve shows the GR energy deposition for comparison.
Figure 3. Ratio of total energy deposition \dot{Q} for $\omega = -2/3$ to total Newtonian energy deposition \dot{Q}_{Newt} for three values of the parameter c. The green curve shows the GR energy deposition for comparison.

Schwarzschild geometry of GR (and ΛCDM model), considering a radius $R = 20$ km [114], one infers that the function $\mathcal{F}(R_{\text{ph}})$ given by (2.16) is of the order $\mathcal{F}(R_{\text{ph}}) \sim 30$ (we are considering merged neutron stars in a binary system that emits neutrinos slightly before the collapse to a BH), so that the maximum energy reads

$$Q_{\text{GR}} \sim 2.5 \times 10^{49} \text{ erg}.$$ \hspace{1cm} (3.3)

In the case of Schwarzschild spacetime surrounding by a quintessence field, the function $\mathcal{F}(R_{\text{ph}})$ can assume higher values (see Figures 2 - 4). This implies that the deposited energy is at least two orders of magnitude higher than that in GR. Considering a maximum true emitted GRB energy of $\mathcal{O}(10^{52})$ erg (cfr Tab.2 of Ref. [114] 5), that neutrino pair annihilation is the only source of energy powering short GRBs and that the deposited energy is converted very efficiently to the relativistic jet energy, we infer a constraint on the quintessence model. For the latter case, also considering the increasing of the photonsphere radius respect to the one derived in GR, as it can be seen in Fig. 4, one obtains that the maximum allowed value of $\mathcal{F}(R_{\text{ph}})$ is $\mathcal{O}(10^4)$. The contour plots given in Figs. 6 and 7 show the value of $\mathcal{F}(R_{\text{ph}})$ for allowed value of ω_q and c. Therefore, one can infers, for $\mathcal{F}(R_{\text{ph}}) \sim \mathcal{O}(10^4-10^5)$, the values of the parameter c that are not allowed in the considered scenario.

5In Ref [114], the authors use the relation $E_{\text{true}} = (1 - \cos \theta_{\text{jet}})(E_{\gamma,\text{iso}} + E_{\text{kin,iso}})$ to determine the true GRB energy emitted related to some GRB jets data of Ref. [115]
Figure 4. Ratio of total energy deposition \dot{Q} for $\omega = -0.4$ to total Newtonian energy deposition \dot{Q}_{Newt} for three values of the parameter c. The green curve shows the GR energy deposition for comparison.

3.2 Neutrino deposition in Kerr BH spacetimes with quintessence

For completeness, we report the results corresponding to the case of a slowly rotating star with quintessence. To the second order approximation in angular momentum of the source, J, the line element for a particle in motion in the equatorial plane has the form \cite{48, 50}

$$ds^2 = -\left(1 - \frac{2M}{r} - \frac{2J^2}{r^4} - \frac{c}{r^{3\omega_q+1}}\right) dt^2 + \left(1 - \frac{2M}{r} + \frac{2J^2}{r^4} - \frac{c}{r^{3\omega_q+1}}\right)^{-1} dr^2$$

$$+ r^2 d\phi^2 - \left(\frac{4}{r} + \frac{2c}{r^{3\omega_q+1}}\right) J dt d\phi . \quad (3.4)$$

Using a similar procedure as in Ref. \cite{82}, Eqs. (2.12), (2.11), and (2.16) are generalized as

$$b = \left[\frac{J}{r} \left(\frac{2}{r} + \frac{c}{r^{3\omega_q+1}} \right) + \left(1 - \frac{2M}{r} + \frac{2J^2}{r^4} - \frac{c}{r^{3\omega_q+1}}\right)^{1/2} \right] , \quad (3.5)$$

$$\cos \theta_\rho = \frac{R^3 r^2 (1 - 2M/r + 2J^2/r^4 - c/r^{3\omega_q+1})^{1/2}}{J(2 + cr^{-3\omega_q})(r^3 - R^3) + R^2 r^3 (1 - 2M/R + 2J^2/R^4 - c/R^{3\omega_q+1})^{1/2}} , \quad (3.6)$$

$$\mathcal{F}_J \left(\frac{M}{R} \right) = 3 [g_{00}(R)]^{9/4} \int_1^{R_{\text{ch}}} (x - 1)^4 (x^2 + 4x + 5) \frac{g_{11}(yR)^{1/2} y^2 dy}{g_{00}(yR)^{9/2}} , \quad (3.7)$$

where $g_{00}(r)$ and $g_{11}(r)$ are defined in (3.4). The function $\mathcal{F}_J \left(\frac{M}{R} \right)$ reduces to $\mathcal{F} \left(\frac{M}{R} \right)$ for $J = 0$ (Eq. (2.16)).
As in the previous Section, we write the energy deposition due to the neutrino annihilation process, Eq. (2.14), in terms of the ratio \(\dot{Q}/\dot{Q}_{\text{Newt}} \), where now for rotating source reads

\[
\frac{\dot{Q}}{\dot{Q}_{\text{Newt}}} = F_J \left(\frac{M}{R} \right).
\]

(3.8)

In Figure 8 we report the ratio \(\dot{Q}/\dot{Q}_{\text{Newt}} \) vs \(R/M \) in the case of a slowly rotating gravitational source. The plot shows that the angular momentum \(J \) induces only slight modifications with respect to the non-rotating case. Moreover, we note that higher values of the angular momentum \(J \) reduces the ratio \(\dot{Q}/\dot{Q}_{\text{Newt}} \), an effect due to the fact that the \(J \)-term change \(\cos \theta_r \) as in Eq. (3.6) (we have checked that this is true for both positive and negative angular momentum of the source). According to these considerations, for a slowly rotating gravitational source, we get almost the same results of the non-rotational case. The extension to the case of high values of the angular momentum \(J \) is of interest, although the solutions of the Einstein field equation turned to be extremely involved.

4 Conclusion

In this paper, we have analyzed the neutrino pair annihilation \(\nu \bar{\nu} \rightarrow e^+e^- \) in the framework of BH surrounding by a quintessence field. We have shown that in the allowed range of parameters of the quintessence model a shift of the photosphere radius occurs, as compared to the one computed in GR, and a consequent enhancement of the emitted energy rate ratio \(\dot{Q}/\dot{Q}_{\text{Newt}} \). Such an enhancement could be relevant for the generation of GRBs in close neutron
star binary merging, for which neutrino pairs annihilation has been proposed as a possible source, and can be used to find constraints on the parameter c of the model (see Figs. 6 and 7).

The main purpose of the paper is hence to analyzed the case in which the space-time around a gravitational source is described by a Schwarzschild-like geometry modified by the presence of a quintessence field, and to use GRB to establish constraints on the model’s parameters. As stressed in [75], the physics near the surface of a hot ($T \sim \text{MeV}$) neutron star is not trivial, since interactions among particles (baryons, leptons, photons and neutrinos) are involved and play an important role in energy conversion and transport. Here we focused on the process $\nu \bar{\nu} \rightarrow e^+ e^-$, that represents only a small component with respect to all mentioned processes. Moreover, the possible interaction of particles with the quintessence field has been neglected. According to [75], results here derived could be non-trivial near the surface of a hot neutron star, such as Supernovae and merged neutron star binaries. Moreover, the mechanism for the generation of GRBs from the merging of a neutron stars binary system sourced by the annihilation of neutrino-antineutrino pairs, owing to the deformation of the space-time geometry, may provide the needed energy close to the energy liberated during GRBs. The analysis performed in this paper refers to a static spherically symmetric quintessence surrounding a gravitational source. We have also investigated the case corresponding to a slowly rotating gravitational source. The model can be generalized to include not only rotational effects in strong gravitational regimes [48, 50], but also the effects of (nonlinear) magnetic fields (see for example [42, 69]). In these scenarios, the presence of the quintessence field in
the surrounding of a Black Holes could significantly affect the gravitational influence on the neutrino pair annihilation and increases the neutrino luminosity factor, needed to efficiently generate the GRBs. These studies will be faced elsewhere.

A final comment is in order. Typically, it is expected that there is a connection between (short) GRBs and Gravitational Waves (GWs). Their correlation is important because would not only provide new astrophysical insight about the transient phenomena but also it would confirm, in the case of a binary neutron star merger, where this event occurred (being at the same time an indirect proof of that it actually happened). However, there are recent results of the searching for GWs associated with GRBs detected during the first observing run of the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), that indicate that there is no evidence of a GW signal for the 41 GRBs analyzed [116]. According to these results (i.e. there could not be a strict correlation among GWs, merging of neutron stars and GRBs), alternative mechanisms for the generation of GRBs could provide in future new scenarios for understanding the GRBs physics.

Acknowledgments

We thank the referee for comments that improved the paper. The work of G.L. and L.M. is supported by the Italian Istituto Nazionale di Fisica Nucleare (INFN) through the “QGSKY” project and by Ministero dell’Istruzione, Università e Ricerca (MIUR). Part of these activities (G.L.) was performed within the scientific working groups of the THESEUS Consortium.
Figure 8. Ratio of total energy deposition \dot{Q} for $\omega = -2/3$ and $c = 0.05$ to total Newtonian energy deposition \dot{Q}_{Newt} for four values of the parameter J. The green curve shows the GR energy deposition for comparison.

(http://www.isdc.unige.ch/theseus/ - THESEUS is a space astrophysics mission concept under Phase A assessment study by ESA as candidate M5 mission within the Cosmic VIsion programme). The computational work has been executed on the IT resources of the ReCaS-Bari data center, which have been made available by two projects financed by the MIUR (Italian Ministry for Education, University and Research) in the "PON Ricerca e Competitività 2007-2013" Program: ReCaS (Azione I - Interventi di rafforzamento strutturale, PONa3_00052, Avviso 254/Ric) and PRISMA (Asse II - Sostegno all’innovazione, PON04a2A).

A Escape probability for deposited energy

To determine the escape probability for the deposited energy, we have to use the photon equation of motion (we follow [117])

$$\left(\frac{dr}{d\tau} \right)^2 = \frac{1}{b^2} - V_{\text{eff}}(r)$$ \hspace{1cm} \text{(A.1)}

where V_{eff} is the effective potential for a photon. In GR it has the form:

$$V_{\text{eff}} = \frac{1}{r^2} \left(1 - \frac{2M}{r}\right) .$$ \hspace{1cm} \text{(A.2)}

This quantity has a maximum at $r = 3M$ which define the critical impact parameter:

$$b_c = 3\sqrt{3}M ,$$ \hspace{1cm} \text{(A.3)}
which is a distinguish for incoming particle between absorption and scattering. Therefore, for
\(r \geq 3M \), a particle is emitted if \(v^r > 0 \) or \(b > b_c \), with \(v^r \) the radial velocity measured by a
static observer.

It is possible to define \(v^r = \cos \phi \) and \(v^\phi = \sin \phi \) and one can write that:

\[
v^\phi = \frac{b}{r} \sqrt{1 - \frac{2M}{r}}.
\]

Therefore, finally, one can write that for \(r > 3M \) a particle escape if:

\[
0 < \phi < \frac{\pi}{2} + \arcsin \left(\frac{2M}{r} \right) = \frac{\pi}{2} + \arcsin \frac{\sqrt{3}M}{r} \sqrt{1 - \frac{2M}{r}}.
\]

This are the bounds we have to take in consideration while doing angular integration, that
lead to the probability:

\[
C(r) = \frac{1}{2} \left[1 + \sqrt{1 - \left(\frac{\sqrt{3}M}{r} \right)^2} \right].
\]

As it can be seen, the probability is always larger than 1/2. in the case of modified theories
of gravity, we will have a change in \(V_{\text{eff}} \), but due to Eq. (A.5), we will always have that
\(C(r) \geq \frac{1}{2} \).

B Static spherically symmetric black holes surrounded by quintessence

In this Appendix we shortly review the derivation of Eq. (2.1) corresponding to a static
spherically-symmetric black hole surrounded by quintessence in \(d \)-dimensions. We strictly
follow the Chen-Wang-Su paper [44]. The geometry of a static black hole is described by

\[
ds^2 = e^\nu(r) dt^2 - e^\lambda(r) dr^2 - r^2 d\theta_1^2 - r^2 \sin^2 \theta_1 d\theta_2^2 - \cdots - r^2 \sin^2 \theta_1 \cdots \sin^2 \theta_{d-3} d\theta_{d-2}^2.
\]

For a static spherically symmetric configuration, the quintessence energy density and pressure
can be written in the form [43]

\[
T^{00}_q = A(r), \quad T^{ij}_q = 0, \quad T^{ij}_q = C(r)r_ir_j + B(r)\delta_i^j,
\]

from which, averaging over the angles of isotropic state \(\langle r_ir_j \rangle = \frac{1}{d-1} r_k r^k \delta_i^j \), one gets

\[
\langle T^{ij} \rangle = D(r)\delta_i^j, \quad D(r) = -\frac{1}{d-1} C(r)r^2 + B(r).
\]

The quintessence is characterized by the condition \(p = -\omega_q \rho \), that is \(D(r) = -\omega_q A(r) \). As
in [43, 44] one considers \(C(r) \propto B(r) \), so that the (exact) solutions with charged or not
charged black holes are possible, as well as the generalization to asymptotically flat or de
Sitter spacetime. The constant coefficient between \(C(r) \) and \(B(r) \) is defined by the additivity
and linearity condition\(^6\).

\(^6\)Such a condition allows to obtain the correct limits for the well-known cases of charged black holes
\((w_q = 1/3) \), dust matter \((w_q = 0) \), and quintessence \((w_q = -1) \) [43].
The metric (B.1) allows to write down the Einstein field equations

\[
T_0^0 = \frac{d-2}{4} \left[-e^{-\lambda} \left(\frac{d-3}{r^2} - \frac{\lambda'}{r} \right) + \frac{d-3}{r^2} \right],
\]

\[
T_r^r = \frac{d-2}{4} \left[-e^{-\lambda} \left(\frac{d-3}{r^2} + \frac{\nu'}{r} \right) + \frac{d-3}{r^2} \right],
\]

\[
T_{\theta i}^\theta = T_{\theta_2}^\theta \cdots T_{\theta_{d-2}}^\theta = -\frac{e^{-\lambda}}{4} \left[\nu'' + \frac{\nu^2}{2} - \frac{\lambda' \nu'}{2} - \frac{(d-3)(\nu' - \lambda)}{r} + \frac{(d-3)(d-4)}{r^2} \right] + \frac{(d-3)(d-4)}{2r^2},
\]

where \(\lambda' = \partial \lambda / \partial r \). Using the appropriate general expression of the energy-momentum tensor of quintessence in the \(d \)-dimensional spherically-symmetric spacetime\(^7\)

\[
T_0^0 = \rho_q(r), \quad T_i^j = \rho_q(r) \alpha \left\{ -[1 + (d-1)B] \frac{r_i r_j}{r_j r k} + B \delta_i^j \right\},
\]

the equation of state \(p_q = \omega_q \rho_q \), and taking the isotropic average over the angles for which \(\langle T_i^j \rangle = -\rho_q(r) \frac{\alpha+1}{\alpha(d-2)} \delta_i^j \equiv -p_q \delta_i^j \), one gets \(\omega_q = \frac{\alpha+1}{\alpha(d-2)} \). For quintessence one has \(-1 < \omega_q < 0 \) and, consequently, \(-(d-1) < \alpha < 0 \). Moreover, requiring \(T_0^0 = T_r^r \) (this defines the principle of additivity and linearity [43]), which implies \(\lambda + \nu = 0 \) and substituting \(\lambda = -\ln f \), one obtains

\[
T_0^0 = T_r^r = -\frac{d-2}{4r^2} [rf' + (d-3)(f-1)],
\]

\[
T_{\theta i}^\theta = T_{\theta_2}^\theta \cdots T_{\theta_{d-2}}^\theta = -\frac{1}{4r^2} \left[r^2 f'' + 2(d-3)rf' + (d-4)(d-3)(f-1) \right].
\]

From equations (B.4) and (B.5) it immediately follows \(B = -\frac{\alpha+1}{\alpha(d-2)} = \frac{(d-1)\omega_q+1}{(d-1)(d-2)\omega_q} \). The components of the energy-momentum tensor (B.4) read

\[
T_0^0 = T_r^r = \rho_q,
\]

\[
T_{\theta i}^\theta = T_{\theta_2}^\theta \cdots T_{\theta_{d-2}}^\theta = -\frac{1}{d-2} \rho_q[(d-1)\omega_q + 1],
\]

while the combination of Eqs. (B.5)-(B.8) leads to the differential equation for \(f \)

\[
r^2 f'' + [(d-1)\omega_q + 2d-5]rf' + (d-3)[(d-1)\omega_q + d-3](f-1) = 0,
\]

whose general solution is of the form

\[
f = 1 - \frac{r_g}{r^{d-3}} + \frac{c_1}{r^{(d-1)\omega_q+d-3}},
\]

where \(r_g \) and \(c_1 \) are normalization factors. For \(c_1 = 0 \) one recovers the usual \(d \)-dimensional Schwarzschild solution. The energy density \(\rho_q \) for quintessence is given by \(\rho_q = \frac{c_1 \omega_q(d-1)(d-2)}{4r^{(d-1)\omega_q+1}} \). Since \(\rho_q > 0 \) and \(\omega_q \leq 0 \), it follows \(c_1 < 0 \). Taking \(r_g = 2M \) and \(c_1 = -c \), the metric of the \(d \)-dimensional spherically symmetric black hole surrounded by quintessence reads

\[
ds^2 = \left[1 - \frac{2M}{r^{d-3}} - \frac{c}{r^{(d-1)\omega_q+d-3}} \right] dt^2 - \frac{dr^2}{1 - \frac{2M}{r^{d-3}} - \frac{c}{r^{(d-1)\omega_q+d-3}}} - r^2 d\Omega_{d-2}.
\]

The metric (B.11) does depend on the quintessence state parameter \(\omega_q \). For \(d = 4 \), Eq. (B.11) reduces to (2.1) and (2.2).
References

[1] Supernova Search Team collaboration, Observational evidence from supernovae for an accelerating universe and a cosmological constant, *Astron. J.* 116 (1998) 1009 [astro-ph/9805201].

[2] Supernova Cosmology Project collaboration, Measurements of Ω and Λ from 42 high redshift supernovae, *Astrophys. J.* 517 (1999) 565 [astro-ph/9812133].

[3] 2dFGRS collaboration, The 2dF Galaxy Redshift Survey: Power-spectrum analysis of the final dataset and cosmological implications, *Mon. Not. Roy. Astron. Soc.* 362 (2005) 505 [astro-ph/0501174].

[4] WMAP collaboration, Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: temperature analysis, *Astrophys. J. Suppl.* 170 (2007) 288 [astro-ph/0603451].

[5] S.M. Carroll, The Cosmological constant, *Living Rev. Rel.* 4 (2001) 1 [astro-ph/0004075].

[6] V. Sahni and A.A. Starobinsky, The Case for a positive cosmological Lambda term, *Int. J. Mod. Phys. D* 9 (2000) 373 [astro-ph/9904398].

[7] A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, *Adv. Ser. Astrophys. Cosmol.* 3 (1987) 130.

[8] A.A. Starobinsky, The Perturbation Spectrum Evolving from a Nonsingular Initially De-Sitter Cosmology and the Microwave Background Anisotropy, *Sov. Astron. Lett.* 9 (1983) 302.

[9] S. Capozziello and M. De Laurentis, Extended Theories of Gravity, *Phys. Rept.* 509 (2011) 167 [1108.6266].

[10] G. Tino, L. Cacciapuoti, S. Capozziello, G. Lambiase and F. Sorrentino, Precision Gravity Tests and the Einstein Equivalence Principle, *Prog. Part. Nucl. Phys.* 112 (2020) 103772 [2002.02907].

[11] S. Nojiri and S.D. Odintsov, Modified $f(R)$ gravity unifying R^n inflation with the ΛCDM epoch, *Phys. Rev. D* 77 (2008) 026007.

[12] H. Oyaizu, M. Lima and W. Hu, Nonlinear evolution of $f(R)$ cosmologies. II. Power spectrum, *Phys. Rev. D* 78 (2008) 123524.

[13] L. Pogosian and A. Silvestri, The pattern of growth in viable $f(R)$ cosmologies, *Phys. Rev. D* 77 (2008) 023503 [0709.0296].

[14] I. Sawicki and W. Hu, Stability of cosmological solutions in $f(R)$ models of gravity, *Phys. Rev. D* 75 (2007) 127502.

[15] B. Li and J.D. Barrow, Cosmology of $f(R)$ gravity in the metric variational approach, *Phys. Rev. D* 75 (2007) 084010.

[16] T. Clifton, Higher powers in gravitation, *Phys. Rev. D* 78 (2008) 083501.

[17] T. Clifton and J.D. Barrow, The power of general relativity, *Phys. Rev. D* 72 (2005) 103005.

[18] S. Capozziello and G. Lambiase, Higher order corrections to the effective gravitational action from Noether symmetry approach, *Gen. Rel. Grav.* 32 (2000) 295 [gr-qc/9912084].

[19] S. Capozziello and G. Lambiase, Nonminimal derivative coupling and the recovering of cosmological constant, *Gen. Rel. Grav.* 31 (1999) 1005 [gr-qc/9901051].

[20] S. Capozziello, G. Lambiase and H. Schmidt, Nonminimal derivative couplings and inflation in generalized theories of gravity, *Annalen Phys.* 9 (2000) 39 [gr-qc/9906051].

[21] S. Nojiri and S.D. Odintsov, Inhomogeneous equation of state of the universe: Phantom era, future singularity, and crossing the phantom barrier, *Phys. Rev. D* 72 (2005) 023003.
[22] S. Capozziello, V.F. Cardone, E. Elizalde, S. Nojiri and S.D. Odintsov, *Observational constraints on dark energy with generalized equations of state*, Phys. Rev. D 73 (2006) 043512.

[23] I. Brevik, E. Elizalde, S. Nojiri and S.D. Odintsov, *Viscous little rip cosmology*, Phys. Rev. D 84 (2011) 103508.

[24] S. Nojiri and S.D. Odintsov, *The New form of the equation of state for dark energy fluid and accelerating universe*, Phys. Lett. B 639 (2006) 144 [hep-th/0606026].

[25] S. Nojiri and S.D. Odintsov, *Non-singular modified gravity unifying inflation with late-time acceleration and universality of viscous ratio bound in F(R) theory*, Prog. Theor. Phys. Suppl. 190 (2011) 155 [1008.4275].

[26] T.P. Sotiriou and V. Faraoni, *f(R) Theories Of Gravity*, Rev. Mod. Phys. 82 (2010) 451 [0805.1726].

[27] G. Lambiase, *Thermal leptogenesis in f(R) cosmology*, Phys. Rev. D 90 (2014) 064050.

[28] G. Lambiase, S. Mohanty and A.R. Prasanna, *Neutrino coupling to cosmological background: A review on gravitational Baryo/Leptogenesis*, Int. J. Mod. Phys. D 22 (2013) 1330030 [1310.8459].

[29] G. Lambiase and G. Scarpetta, *Baryogenesis in f(R) theories of gravity*, Phys. Rev. D 74 (2006) 087504.

[30] B. Jain, V. Vikram and J. Sakstein, *Astrophysical Tests of Modified Gravity: Constraints from Distance Indicators in the Nearby Universe*, Astrophys. J. 779 (2013) 39 [1204.6044].

[31] L. Lombriser, A. Slosar, U. Seljak and W. Hu, *Constraints on f(R) gravity from probing the large-scale structure*, Phys. Rev. D 85 (2012) 124038 [1003.3009].

[32] S. Ferraro, F. Schmidt and W. Hu, *Cluster abundance in f(R) gravity models*, Phys. Rev. D 83 (2011) 063503.

[33] L. Lombriser, F. Schmidt, T. Baldauf, R. Mandelbaum, U.c.v. Seljak and R.E. Smith, *Cluster density profiles as a test of modified gravity*, Phys. Rev. D 85 (2012) 102001.

[34] F. Schmidt, A. Vikhlinin and W. Hu, *Cluster constraints on f(R) gravity*, Phys. Rev. D 80 (2009) 083505.

[35] H. Motohashi, A.A. Starobinsky and J. Yokoyama, *Cosmology Based on f(R) Gravity Admits 1 eV Sterile Neutrinos*, Phys. Rev. Lett. 110 (2013) 121302 [1203.6828].

[36] S. Nojiri, S. Odintsov and V. Oikonomou, *Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution*, Phys. Rept. 692 (2017) 1 [1705.11098].

[37] M. Benetti, S. Capozziello and G. Lambiase, *Updating constraints on f(T) teleparallel cosmology and the consistency with Big Bang Nucleosynthesis*, Mon. Not. Roy. Astron. Soc. 500 (2021) [2006.15335].

[38] N. Bernal, A. Ghoshal, F. Hajkarim and G. Lambiase, *Primordial Gravitational Wave Signals in Modified Cosmologies*, JCAP 11 (2020) 051 [2008.04959].

[39] N. Birrell and P. Davies, *Quantum Fields in Curved Space*, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, Cambridge, UK (2, 1984), 10.1017/CBO978051162632.

[40] I. Buchbinder, S. Odintsov and I. Shapiro, *Effective action in quantum gravity*, IOP Publishing Ltd (1992).

[41] N.H. Barth and S.M. Christensen, *Quantizing fourth-order gravity theories: The functional integral*, Phys. Rev. D 28 (1983) 1876.
[42] M. Jamil, S. Hussain and B. Majeeed, *Dynamics of Particles Around a Schwarzschild-like Black Hole in the Presence of Quintessence and Magnetic Field*, *Eur. Phys. J. C* **75** (2015) 24 [1404.7123].

[43] V. Kiselev, *Quintessence and black holes*, *Class. Quant. Grav.* **20** (2003) 1187 [gr-qc/0210040].

[44] S. Chen, B. Wang and R. Su, *Hawking radiation in a d-dimensional static spherically-symmetric black Hole surrounded by quintessence*, *Phys. Rev. D* **77** (2008) 124011 [0801.2053].

[45] A. Belhaj, A.E. Balali, W.E. Hadri, Y. Hassouni and E. Torrente-Lujan, *Phase Transitions of Quintessential AdS Black Holes in M-theory/Superstring Inspired Models*, 2004.10647.

[46] M. Heydari-Fard, H. Razmi and H. Sepangi, *Brane-World Black Hole Solutions via a Confining Potential*, *Phys. Rev. D* **76** (2007) 066002 [0707.3558].

[47] M. Heydari-Fard and H. Sepangi, *Anisotropic brane gravity with a confining potential*, *Phys. Lett. B* **649** (2007) 1 [0704.1035].

[48] B. Toshmatov, Z. Stuchlík and B. Ahmedov, *Rotating black hole solutions with quintessential energy*, *Eur. Phys. J. Plus* **132** (2017) 98 [1512.01498].

[49] A. Abdujabbarov, B. Toshmatov, Z. Stuchlík and B. Ahmedov, *Shadow of the rotating black hole with quintessential energy in the presence of plasma*, *Int. J. Mod. Phys. D* **26** (2016) 1750051 [1512.05206].

[50] S.G. Ghosh, *Rotating black hole and quintessence*, *Eur. Phys. J. C* **76** (2016) 222 [1512.05476].

[51] A. Belhaj, M. Benali, A.E. Balali, H. El Moumni and S.-E. Ennadifi, *Deflection Angle and Shadow Behaviors of Quintessential Black Holes in arbitrary Dimensions*, *Class. Quant. Grav.* **37** (2020) 215004 [2006.01078].

[52] S.I. Israr Ali Khan, Amir Sultan Khan and F. Ali, *Particles dynamics around time conformal quintessential Schwarzschild black hole*, *Int. J. Mod. Phys. B* **29** (2020) 2050095.

[53] G. Abbas, A. Mahmood and M. Zubair, *Strong Gravitational Lensing for Photon Coupled to Weyl Tensor in Kiselev Black Hole*, *Chin. Phys. C* **44** (2020) 095105 [1909.06433].

[54] S.U. Khan and J. Ren, *Shadow cast by a rotating charged black hole in quintessential dark energy*, *Phys. Dark Univ.* **30** (2020) 100644 [2006.11289].

[55] W. Javed, J. Abbas and A. Övgün, *Effect of the Quintessential Dark Energy on Weak Deflection Angle by Kerr-Neumann Black Hole*, *Annals Phys.* **418** (2020) 168183 [2007.16027].

[56] I.A. Khan, A.S. Khan, S. Islam and F. Ali, *Particles dynamics around time conformal quintessential Schwarzschild black hole*, *Int. J. Mod. Phys. D* **29** (2020) 2050095.

[57] R. Uniyal, N. Chandrachani Devi, H. Nandan and K.D. Purohit, *Geodesic Motion in Schwarzschild Spacetime Surrounded by Quintessence*, *Gen. Rel. Grav.* **47** (2015) 16 [1406.3931].

[58] D.V. Ahluwalia and C. Burgard, *Gravitationally induced quantum mechanical phases and neutrino oscillations in astrophysical environments*, *Gen. Rel. Grav.* **28** (1996) 1161 [gr-qc/9603008].

[59] D. Piriz, M. Roy and J. Wudka, *Neutrino oscillations in strong gravitational fields*, *Phys. Rev. D* **54** (1996) 1587.

[60] G. Lambiase, G. Papini, R. Punzi and G. Scarpetta, *Neutrino optics and oscillations in gravitational fields*, *Phys. Rev. D* **71** (2005) 073011 [gr-qc/0503027].
[61] A. Capolupo, G. Lambiase and A. Quaranta, Neutrinos in curved spacetime: Particle mixing and flavor oscillations, *Phys. Rev. D* **101** (2020) 095022 [2003.00516].

[62] C.Y. Cardall and G.M. Fuller, Neutrino oscillations in curved space-time: An Heuristic treatment, *Phys. Rev. D* **55** (1997) 7960 [hep-ph/9610494].

[63] M. Dvornikov, Spin effects in neutrino gravitational scattering, *Phys. Rev. D* **101** (2020) 056018 [1911.08317].

[64] M. Dvornikov, Neutrino spin oscillations in gravitational fields, *Int. J. Mod. Phys. D* **15** (2006) 1017 [hep-ph/0601095].

[65] M. Dvornikov, Neutrino scattering off a black hole surrounded by a magnetized accretion disk, 2102.00806.

[66] J. Alexandre and K. Clough, Black hole interference patterns in flavor oscillations, *Phys. Rev. D* **98** (2018) 043004 [1805.01874].

[67] H. Swami, K. Lochan and K.M. Patel, Signature of neutrino mass hierarchy in gravitational lensing, *Phys. Rev. D* **102** (2020) 024043 [2002.00977].

[68] L. Visinelli, Neutrino flavor oscillations in a curved space-time, *Gen. Rel. Grav.* **47** (2015) 62 [1410.1523].

[69] H.J. Mosquera Cuesta, G. Lambiase and J.P. Pereira, Probing nonlinear electrodynamics in slowly rotating spacetimes through neutrino astrophysics, *Phys. Rev. D* **95** (2017) 025011 [1701.00431].

[70] H.J. Mosquera Cuesta and G. Lambiase, Neutrino mass spectrum from gravitational waves generated by double neutrino spin-flip in supernovae, *Astrophys. J.* **689** (2008) 371 [0809.0526].

[71] G. Lambiase, Pulsar kicks induced by spin flavor oscillations of neutrinos in gravitational fields, *Mon. Not. Roy. Astron. Soc.* **362** (2005) 867 [astro-ph/0411242].

[72] S. Capozziello and G. Lambiase, Neutrino oscillations in Brans-Dicke theory of gravity, *Mod. Phys. Lett. A* **14** (1999) 2193 [gr-qc/9910026].

[73] S. Chakraborty, Aspects of Neutrino Oscillation in Alternative Gravity Theories, *JCAP* **10** (2015) 019 [1506.02647].

[74] L. Buoninfante, G.G. Luciano, L. Petruzziello and L. Smaldone, Neutrino oscillations in extended theories of gravity, *Phys. Rev. D* **101** (2020) 024016 [1906.03131].

[75] J.D. Salmonson and J.R. Wilson, General relativistic augmentation of neutrino pair annihilation energy deposition near neutron stars, *Astrophys. J.* **517** (1999) 859 [astro-ph/9908017].

[76] J. Cooperstein, L. van den Horn and E.A. Baron, Neutrino flows in collapsing stars: a two-fluid model, *ApJ* **309** (1986) 653.

[77] J. Cooperstein, L.J. van den Horn and E.A. Baron, Neutrino Pair Energy Deposition in Supernovae, *ApJ* **321** (1987) L129.

[78] J. Goodman, A. Dar and S. Nussinov, Neutrini Annihilation in type II Supernovae, *Astrophys. J. Lett.* **314** (1987) L7.

[79] J.D. Salmonson and J.R. Wilson, Neutrino annihilation between binary neutron stars, *Astrophys. J.* **561** (2001) 950 [astro-ph/0108196].

[80] K. Asano and T. Fukuyama, Neutrino pair annihilation in the gravitation of gamma-ray burst sources, *Astrophys. J.* **531** (2000) 949 [astro-ph/0002196].

[81] K. Asano and T. Fukuyama, Relativistic effects on neutrino pair annihilation above a Kerr black hole with the accretion disk, *Astrophys. J.* **546** (2001) 1019 [astro-ph/0009453].
[82] A. Prasanna and S. Goswami, Energy deposition due to neutrino pair annihilation near rotating neutron stars, Phys. Lett. B 526 (2002) 27 [astro-ph/0109058].

[83] R. Birkl, M.-A. Aloy, H.-T. Janka and E. Mueller, Neutrino pair annihilation near accreting, stellar-mass black holes, Astron. Astrophys. 463 (2007) 51 [astro-ph/0608543].

[84] W.A. Miller, N.D. George, A. Kheyfets and J.M. McGhee, Off-axis neutrino scattering in grb central engines, Astrophys. J. 583 (2003) 833 [astro-ph/0205213].

[85] B. Paczynski, Super.eddington winds from neutron stars, ApJ 363 (1990) 218.

[86] P. Meszaros and M. Rees, High entropy fireballs and jets in gamma-ray burst sources, Mon. Not. Roy. Astron. Soc. 257 (1992) 29.

[87] M. Ruffert and H. Janka, Gamma-ray bursts from accreting black holes in neutron star mergers, Astron. Astrophys. 344 (1999) 573 [astro-ph/9809280].

[88] K. Asano and S. Iwamoto, Fireball heated by neutrinos, Astrophys. J. 581 (2002) 381 [astro-ph/0210130].

[89] D. Zhang and Z. Dai, Hyperaccreting Disks around Magnetars for Gamma-Ray Bursts: Effects of Strong Magnetic Fields, Astrophys. J. 718 (2010) 841 [0911.5528].

[90] R. Mallick and S. Majumder, A General Relativistic study of the neutrino path and calculation of minimum photosphere for different stars, Phys. Rev. D 79 (2009) 023001 [0810.5250].

[91] R. Mallick, A. Bhattacharyya, S.K. Ghosh and S. Raha, General Relativistic effect on the energy deposition rate for neutrino pair annihilation above the equatorial plane along the symmetry axis near a rotating neutron star, Int. J. Mod. Phys. E 22 (2013) 1350008 [0905.3605].

[92] T. Chan, K. Cheng, T. Harko, H. Lau, L. Lin, W. Suen et al., Could the compact remnant of SN 1987A be a quark star?, Astrophys. J. 695 (2009) 732 [0902.0653].

[93] Z. Kovacs, K. Cheng and T. Harko, Electron-positron energy deposition rate from neutrino pair annihilation in the equatorial plane of rapidly rotating neutron and quark stars, Mon. Not. Roy. Astron. Soc. 402 (2010) 1714 [0911.1186].

[94] Z. Kovacs, K. Cheng and T. Harko, Electron-positron energy deposition rate from neutrino pair annihilation on the rotation axis of neutron and quark stars, Mon. Not. Roy. Astron. Soc. 411 (2011) 1503 [1009.6029].

[95] G. Lambiase and L. Mastrototaro, Effects of modified theories of gravity on neutrino pair annihilation energy deposition near neutron stars, ApJ. 904 (2020) 1.

[96] M. Leng and D. Giannios, Testing the neutrino annihilation model for launching GRB jets, Mon. Not. Roy. Astron. Soc. 445 (2014) 1 [1408.4509].

[97] T. Piran, The physics of gamma-ray bursts, Rev. Mod. Phys. 76 (2004) 1143 [astro-ph/0405503].

[98] T. Piran, Gamma ray bursts as probes of quantum gravity, Lect. Notes Phys. 669 (2005) 351 [astro-ph/0407462].

[99] P. Meszaros, Gamma-Ray Bursts, Rept. Prog. Phys. 69 (2006) 2259 [astro-ph/0605208].

[100] F. Piron, Gamma-Ray Bursts at high and very high energies, Comptes Rendus Physique 17 (2016) 617 [1512.04241].

[101] B. Zhang, Open Questions in GRB Physics, Comptes Rendus Physique 12 (2011) 206 [1104.0932].

[102] D. Eichler, M. Livio, T. Piran and D.N. Schramm, Nucleosynthesis, Neutrino Bursts and Gamma-Rays from Coalescing Neutron Stars, Nature 340 (1989) 126.
S.E. Woosley, *Gamma-ray bursts from stellar mass accretion disks around black holes*, *Astrophys. J.* **405** (1993) 273.

L. Amati, C. Guidorzi, F. Frontera, M. Della Valle, F. Finelli, R. Landi et al., *Measuring the cosmological parameters with the E_p-E_{iso} correlation of Gamma-Ray Bursts*, *Mon. Not. Roy. Astron. Soc.* **391** (2008) 577 [0805.0377].

THESEUS collaboration, *The THESEUS space mission concept: science case, design and expected performances*, *Adv. Space Res.* **62** (2018) 191 [1710.04638].

THESEUS collaboration, *THESEUS: a key space mission concept for Multi-Messenger Astrophysics*, *Adv. Space Res.* **62** (2018) 662 [1712.08153].

SWIFT SCIENCE collaboration, *The Swift Gamma-Ray Burst Mission*, *Astrophys. J.* **611** (2004) 1005 [astro-ph/0405233].

F. Piron and V. Connaughton, *The Fermi view of gamma-ray bursts*, *Comptes Rendus Physique* **12** (2011) 267 [1106.0175].

J.D. Salmonson, J.R. Wilson and G.J. Mathews, *Gamma-ray bursts via pair plasma fireballs from heated neutron stars*, *AIP Conf. Proc.* **526** (2000) 570 [astro-ph/0001396].

J.D. Salmonson and J.R. Wilson, *A model of short gamma-ray bursts: heated neutron stars in close binary systems*, *AIP Conf. Proc.* **662** (2003) 223 [astro-ph/0208303].

G.J. Mathews, J.R. Wilson and J. Salmonson, *Gamma-ray bursts from neutron star binaries*, in *8th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories (MG 8)*, pp. 1594–1596, 6, 1997 [astro-ph/9710229].

J.D. Salmonson, J.R. Wilson and G.J. Mathews, *Gamma-ray bursts via the neutrino emission from heated neutron stars*, *Astrophys. J.* **553** (2001) 471 [astro-ph/0002312].

G.J. Mathews and J.R. Wilson, *Binary induced neutron star compression, heating, and collapse*, *Astrophys. J.* **482** (1997) 929 [astro-ph/9701142].

A. Perego, H. Yasin and A. Arcones, *Neutrino pair annihilation above merger remnants: implications of a long-lived massive neutron star*, *J. Phys. G* **44** (2017) 084007 [1701.02017].

W. Fong, E. Berger, R. Margutti and B.A. Zauderer, *A DECADE OF SHORT-DURATION GAMMA-RAY BURST BROADBAND AFTERGLOWS: ENERGETICS, CIRCUMBURST DENSITIES, AND JET OPENING ANGLES*, *The Astrophysical Journal* **815** (2015) 102.

LIGO SCIENTIFIC, VIRGO, IPN collaboration, *Search for Gravitational Waves Associated with Gamma-Ray Bursts During the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B*, *Astrophys. J.* **841** (2017) 89 [1611.07947].

S. Shapiro and S. Teukolsky, *Black holes, white dwarfs, and neutron stars: The physics of compact objects* (1983).