Acceleration of ALA-Induced PpIX Fluorescence Development in the Oral Mucosa

Sirintra Charoenbanpachon, Tatiana Krasieva, PhD, Arata Ebihara, DDS, PhD, Kathryn Osann, PhD, and Petra Wilder-Smith, DDS, PhD*

Beckman Laser Institute, University of California, Irvine, California 92612

Background and Objectives: The development of 5-aminolevulinic acid (ALA)-induced tissue fluorescence is optimal 2–4 hours after ALA application. Goal of this work was to develop a means of accelerating oral topical ALA-induced tissue fluorescence.

Study Design/Materials and Methods: In 300 hamsters, DMBA (9,10 dimethyl-1,2-benzanthracene) cheek pouch carcinogenesis produced dysplasia in 3–5 weeks. Topical application of 20% ALA in Eucerin was followed by localized ultrasound treatment (1, 3.3 MHz) in 150 animals. In 75 animals, ALA was applied in an Oral Pluronic Lecithin Organogel (OPLO—an absorption enhancer) vehicle. Seventy-five animals received only topical ALA in Eucerin. Hamsters were sacrificed and cryosections underwent fluorescence measurements, histological evaluation, 20–180 minutes after ALA application. One-way ANOVA detected independent effects of pathology on laser-induced fluorescence (LIF). Two-way ANOVA tested for independent effect of pathology and of OPLO, ultrasound, and interaction effects.

Results: Ultrasound significantly (<0.05) accelerated tissue fluorescence development.

Conclusions: Low-frequency ultrasound can accelerate ALA-induced fluorescence development. Lasers Surg. Med. 32:185–188, 2003. © 2003 Wiley-Liss, Inc.

Key words: dysplasia; hamsters; laser induced fluorescence; protoporphyrin IX; ultrasound

INTRODUCTION

Claiming approximately 10,000 lives annually in the US, oral squamous cell carcinoma is usually preceded by dysplasia presenting as leukoplakia. Malignant transformation occurs unpredictably in 1–40% of patients over 5 years. Thus, there exists an urgent need for the development of a fast, reliable non-invasive modality for the clinical early detection and diagnosis of dysplasia and malignancy.

Recent studies using the hamster model have demonstrated that laser-induced fluorescence (LIF) can non-invasively identify oral dysplasia or malignancy [1,2]. Chemical agents called photosensitizers render pathologic tissues fluorescent when exposed to appropriate wavelengths of light [3,4]. While several studies have demonstrated the use of porphyrins as photosensitizers [4,5], their accumulation in skin can cause phototoxic reactions. An alternative is to stimulate synthesis of photosensitizing agents in situ with a precursor. The photosensitizer protoporphyrin IX (PpIX) is a precursor in the biosynthetic pathway for heme. The rate of PpIX synthesis can be increased by the addition of exogenous ALA [3,6,7]. A selective accumulation of PpIX occurs in areas of increased metabolism such as tumor cells [3,4,6,7]. The resulting tissue-specific photosensitization permits photodynamic diagnosis and therapy, whereby far lower light doses are used for diagnosis. Animal studies have demonstrated stronger PpIX fluorescence after application of ALA in colon [8], bladder [9], and skin tumors [10]. ALA can induce strong PpIX fluorescence in tumors of the bronchi, skin, and mammary tissue [7,11–14]. In the oral cavity, topical ALA can be used [1,2,15]. After excitation at 405 nm, ALA-induced PpIX fluorescence emits strongly in the red spectral region with maxima at 635 and 710 nm [16].

The safety of ALA as a topical or systemic photosensitizer has been established in multiple clinical trials [7–14]. PpIX is normally present in tissues of the body. ALA-induced PpIX is cleared from the body within 24 hours, whether the route of administration is systemic or topical [7]. Thus, protection from exposure to sunlight is only necessary for 24 hours after ALA application.

In oral mucosa, ALA-induced PpIX fluorescence develops progressively earlier and to a greater intensity (405 nm excitation/635 nm detection) with increasing severity of pathology [1,2,15]. In previous studies, optimum healthy: pathological PpIX fluorescence intensity ratios occurred after 180–210 minutes of topical ALA application [1,2]. In patients, this long delay is problematic. In cell culture, a transient enhancement of tumor cell porosity to photosensitizing agents in situ with a precursor. The photosensitizer protoporphyrin IX (PpIX) is a precursor in the biosynthetic pathway for heme. The rate of PpIX synthesis can be increased by the addition of exogenous ALA [3,6,7]. A selective accumulation of PpIX occurs in areas of increased metabolism such as tumor cells [3,4,6,7]. The resulting tissue-specific photosensitization permits photodynamic diagnosis and therapy, whereby far lower light doses are used for diagnosis. Animal studies have demonstrated stronger PpIX fluorescence after application of ALA in colon [8], bladder [9], and skin tumors [10]. ALA can induce strong PpIX fluorescence in tumors of the bronchi, skin, and mammary tissue [7,11–14]. In the oral cavity, topical ALA can be used [1,2,15]. After excitation at 405 nm, ALA-induced PpIX fluorescence emits strongly in the red spectral region with maxima at 635 and 710 nm [16].

The safety of ALA as a topical or systemic photosensitizer has been established in multiple clinical trials [7–14]. PpIX is normally present in tissues of the body. ALA-induced PpIX is cleared from the body within 24 hours, whether the route of administration is systemic or topical [7]. Thus, protection from exposure to sunlight is only necessary for 24 hours after ALA application.

The safety of ALA as a topical or systemic photosensitizer has been established in multiple clinical trials [7–14]. PpIX is normally present in tissues of the body. ALA-induced PpIX is cleared from the body within 24 hours, whether the route of administration is systemic or topical [7]. Thus, protection from exposure to sunlight is only necessary for 24 hours after ALA application.

In oral mucosa, ALA-induced PpIX fluorescence develops progressively earlier and to a greater intensity (405 nm excitation/635 nm detection) with increasing severity of pathology [1,2,15]. In previous studies, optimum healthy: pathological PpIX fluorescence intensity ratios occurred after 180–210 minutes of topical ALA application [1,2]. In patients, this long delay is problematic. In cell culture, a transient enhancement of tumor cell porosity to photosensitizers has been demonstrated during low-intensity ultrasound treatment [17]. The aim of this project was...
to develop a means of accelerating the development of tissue fluorescence from the 90–240 minutes currently needed to a clinically tolerable level.

MATERIALS AND METHODS

Animal Model

Using the Golden Syrian Hamster (Mesocricetus auratus, Harlan Sprague Dawley, San Diego, CA) cheek pouch model, thrice weekly application to the right cheek pouch of 0.5% DMBA (9,10 dimethyl-1,2-benzanthracene) (Sigma-Aldrich, St. Louis, MO) in mineral oil produced dysplastic leukoplakia after 3–4 weeks. In the control left cheek pouch of these 300 hamsters, only mineral oil (E.R.Squibb & Sons, Inc., Princeton, NJ) was applied. The animals were treated in accordance with ARC guidelines at UCI (IACUC 97-1972).

Prior to sacrifice, 1 g of 20% ALA (5-aminolevulinic acid HCl, Sigma-Aldrich, St. Louis, MO) in Eucerin (Beiersdorf, Inc., Norwalk, CT) adjusted to a pH of 5.5 using 1 N sodium hydrosulfide was applied to both cheek pouches. In 150 animals, ultrasound at 1 or 3.3 MHz with a total intensity of ~0.3 W/cm² (Dynatron 150 Plus, Dynatronics Corporation, Salt Lake City, Utah) was applied to external cheek surfaces for 60 seconds prior to sacrifice 20–180 minutes later. Energy conduction was enhanced using a water-filled pad between the ultrasound device head and the external cheek surface. In another 75 animals, freshly prepared 20% ALA in Oral Pluronic Lecithin Organogel (OPLO—an absorption enhancer) was applied topically to the internal surface of the cheek pouches prior to sacrifice 20–180 minutes later. Directly after sacrifice, cheek pouch tissues with a total intensity of 0.3 W/cm² for a duration of 60 seconds significantly (P < 0.05) affect time-based fluorescence development in healthy and dysplastic tissues (Fig. 1). Maximum fluorescence levels in all tissue types also did not differ significantly between control and OPLO groups (P > 0.05) (Fig. 1).

Statistical Analysis

One-way ANOVA was used to detect independent effects of pathology on LIF. A two-way ANOVA model was used to test simultaneously for independent effect of pathology and of ultrasound treatment modality, and interaction effects. We used non-parametric models and exact methods appropriate for small samples to compare the different ultrasound parameters.

RESULTS

Oral Pluronic Lecithin Organogel (OPLO) consisting of lecithin compounds in organic solvents can assist the transdermal transport of drugs, increasing the transport rates of small molecules such as ALA by approximately one order magnitude [17]. Due to its high viscosity, it adhered well to the cheek pouches. Dissolving ALA in OPLO prior to its application to the cheek pouches did not significantly (P < 0.05) affect time-based fluorescence development in healthy and dysplastic tissues (Fig. 1). Maximum fluorescence levels in all tissue types also did not differ significantly between control and OPLO groups (P < 0.05) (Fig. 1).

Application of ultrasound at 1 and 3.3 MHz to cheek pouch tissues with a total intensity of ~0.3 W/cm² for a duration of 60 seconds significantly (P < 0.05) accelerated time-based fluorescence development in healthy and dysplastic tissues (Fig. 1). As soon as 20 minutes after application of ALA and ultrasound, strong PpIX fluorescence was visible, compared with the 180–240 minutes
currently needed to achieve comparable fluorescence development. Using lower-frequency ultrasound (1 MHz) in healthy tissues, PpIX fluorescence levels at 20 minutes were comparable to those achieved in tissues without ultrasound at 180 minutes. In dysplastic tissues, the effect was similar, with fluorescence intensities in ultrasound-treated tissues at 20 minutes comparable to those in tissues without ultrasound treatment at 180 minutes. Thus, a significant \(P < 0.05 \) acceleration effect was seen in healthy and dysplastic tissues. Although a significant \(P < 0.05 \) acceleration effect was also achieved using ultrasound at 3.3 MHz, this frequency was associated with a significantly \(P < 0.05 \) smaller acceleration effect than the ultrasound at 1 MHz frequency. Moreover, there appeared to be a consistent and significant \(P < 0.05 \) reduction in the fluorescence maximum reached over time as compared to the non-ultrasound and the 1 MHz ultrasound groups.

DISCUSSION

Possibly the lack of accelerating effect of OPLO an ALA-induced fluorescence development may be linked to interactions between the OPLO and the ALA or an altered state of the OPLO at the low pH levels used to maintain ALA stability. Locally applied low-frequency ultrasound application greatly accelerated the development of ALA-induced PpIX fluorescence. These results confirm other studies demonstrating effects of ultrasound on transdermal penetration of drugs, although the reported results range from very strong to minimal acceleration, to actual hindrance, depending on the drug and ultrasound parameters used [20]. Contributing mechanisms postulated include disruption of membrane lipid bilayers and enhanced convection to generation of transient pores in cell membranes [20]. As in those studies, the effects of ultrasound were shown to vary depending on the parameters used, more work is needed to identify optimal ultrasound parameters and techniques, and to ensure that diagnostic sensitivity and specificity are not affected by ultrasound.

CONCLUSION

Low-frequency ultrasound can significantly accelerate ALA-induced fluorescence development, whereby a frequency of 1 MHz was shown to be more effective than 3.3 MHz.
REFERENCES

1. Wilder-Smith P, Liaw LH, Krasieva TB, Nguy L, Yoon Y, Messadi D. Topical ALA-induced fluorescence in oral dysplasia and malignancy. ASLMS 1999;69:39.
2. Wilder-Smith P, Liaw LH, Krasieva TB, Messadi D. Laser-induced fluorescence for detection and diagnosis of oral malignancy. J Dent Res 1999;78:820.
3. Shomacker KT, Frisoli JK, Compton CC, Flotte TJ, Richter JM, Nishioka NS, Deutsch TF. Ultraviolet laser-induced fluorescence of colonic tissue. Laser Surg Med 1992;12:63–68.
4. Benson RCJ. Treatment of diffuse transitional cell carcinoma in situ by whole bladder hematoporphyrin derivative photodynamic therapy. J Urol 1985;134:675–678.
5. Hayata Y, Kato H, Kanaka C, Ono J, Takizawa N. Hematoporphyrin derivative and laser photoradiation in the treatment of lung cancer. Chest 1982;81:269–277.
6. Divaris DXG, Kennedy JC, Pottier RH. Phototoxic damage to sebaceous glands and hair follicles of mice after systemic administration of ALA correlates with localized PpIX fluorescence. Am J Pathol 1980;136:891–897.
7. Kennedy JC, Pottier RH. Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. J Photochem Photobiol 1992;14:275–292.
8. Bedwell J, MacRobert AJ, Phillips D, Bown SG. Fluorescence distribution and photodynamic effect of ALA-induced PpIX in the DMH rat colonic tumor model. Br J Cancer 1992;65:818–824.
9. Benson RCJ. Treatment of diffuse transitional cell carcinoma in situ by whole bladder hematoporphyrin derivative photodynamic therapy. J Urol 1985;134:675–678.
10. Van der Neen N, de Bruijn HS, Berg RWJ, Star WM. Kinetics, and localization of PpIX fluorescence after topical and systemic ALA application, observed in skin and skin tumours of UVB treated mice. Br J Cancer 1996;73:925–930.
11. Profio AE, Balchum OJ. Fluorescence diagnosis of cancer. In: Kessel D, editor. Methods in porphyrin photosensitization. New York: Plenum; 1985. p 43.
12. Andersson R, Berg J, Johansen J, Killander D, Svanberg K, Svanberg S, Yuanlong Y. Photodynamic therapy in interplay with fluorescence diagnostics in the treatment of human superficial malignancies. SPIE 1992; Vol. 1645.
13. Kennedy JC, Pottier RH. Photodynamic therapy with endogenous PpIX. J Photochem Photobiol 1990;6:143–148.
14. Svanberg K, Andersson T, Killander D, Wang I, Stenram U, Andersson-Enges S, Berg R, Johansson J, Svanberg S. Photodynamic therapy of non-melanoma malignant tumors of the skin using topical ALA sensitization and laser irradiation. Br J Dermatol 1994;130:743–751.
15. Leunig A, Mehlmann M, Betz C, Stepp H, Arbegast S, Grevers G, Baumgartner R. Fluorescence staining of oral cancer using a topical application of 5-aminolevulinic acid: Fluorescence microscopic studies. J Photochem Photobiol 2001;60:44–49.
16. Pottier RH, Chow YFA, LaPlante J-P, Truscott TG, Kennedy JC, Beiner LA. Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo. Photochem Photobiol 1986;44(5):679–687.
17. Tachibana T, Uchida T, Ogawa K, Yamashita N, Tamura K. Induction of cell-membrane porosity by ultrasound. Lancet 1999;353:1409.
18. MacDonald DG. Comparison of epithelial dysplasia in hamster cheek pouch carcinogenesis and human oral mucosa. J Oral Pathol 1981;10:186–191.
19. Odell EW, Morgan PR. Oral squamous carcinoma and premalignancy. In: Biopsy pathology of the oral tissues. Chapman and Hall Medical; 1998.
20. Mitragotri S. Synergistic Effect of enhancers for transdermal drug delivery. Pharm Res 2000;17(11):1354.