Behavior of Solutions to An Initial Boundary Value Problem for a Hyperbolic System With Relaxation

CEN Luyu, LIN Lu, LIU Jiyuan, XIAO Yujie
City University of Hong Kong

Abstract: The behavior of solutions to an initial boundary value problem for a hyperbolic system with relaxation is studied when the relaxation parameter is small, by using the method of Fourier Series and the energy method.

1 Introduction

In this paper, we consider the initial boundary value problem for the following hyperbolic system with relaxation:

\[u_t + v_x = 0 \] \hspace{1cm} (1.1)

\[v_t + a^2 u_x = \frac{bu - v}{\epsilon} \] \hspace{1cm} (1.2)

with the boundary condition:

\[u(0,t) = u(1,t) = 0, \] \hspace{1cm} (1.3)

and the initial condition:

\[u(x,0) = f(x) \] \hspace{1cm} (1.4)

\[v(x,0) = g(x) \] \hspace{1cm} (1.5)

where \(a > 0 \) and \(b \) are constants, and \(\epsilon > 0 \) is the relaxation parameter. We assume that

\[|b| < a, \] \hspace{1cm} (1.6)

such that the so called “subcharacteristic condition” is satisfied. System (1.1) can be transform to:

\[u_{tt} - a^2 u_{xx} + \frac{1}{\epsilon} (bu_x + u_t) = 0 \] \hspace{1cm} (1.7)

with the boundary and initial conditions:

\[u(0,t) = u(1,t) = 0, \] \hspace{1cm} (1.8)

and the initial condition:

\[u(x,0) = f(x), \quad u_t(x,0) = -g'(x). \] \hspace{1cm} (1.9)

In order to match the initial and boundary conditions, we require that

\[f(0) = f(1), \quad g'(0) = g'(1) = 0. \] \hspace{1cm} (1.10)

Formally, as \(\epsilon \to 0 \), system (1.1) is relaxed to the equilibrium

\[u_t + bu_x = 0, \] \hspace{1cm} (1.11)

\[v = bu. \] \hspace{1cm} (1.12)
System \((1.1)\) is related to a general relaxation system of Jin-Xin model \([3]\), for which the asymptotic behavior as the relaxation parameter tends to zero of solutions to the initial value problem was discussed in \([1, 5, 6, 7]\). The asymptotic behavior as the relaxation parameter tends to zero for the initial boundary problems in a quarter plane in \((x, t)\) was discussed in \([8, 9, 10]\) with one boundary \(x = 0\). In this paper, we are interested in the behavior of solutions in a \((x, t)\)-strip, \(0 \leq x \leq 1, \ t \geq 0\). It should be noted that the Fourier-Laplace transformation is used in \([9]\) to study the problem in a quarter plane. For the problem in a strip studied in this paper, we have two boundaries, \(x = 0\) and \(x = 1\). This is the main difference of the problem studied in this paper, compared with those in a quarter plane. For example, the Fourier-Laplace transformation is not applicable to our problem any more. Instead, we use the Fourier series method.

The boundary layer behavior is a main concern of this paper, which is shown by the Fourier series solution.

Relaxation phenomena are important in many physical situations. For more background, please refer to \([2, 4]\).

2 Fourier Series Solution.

2.1 Solution Formula

Theorem 2.1. The Fourier series solution \(u(x, t) = \sum_{n=1}^{\infty} T_n(t)X_n(x)\) of problem \((1.7), (1.8)\) and \((1.9)\) is given by:

\[
u(x, t) = \sum_{n=1}^{k} e^{\frac{b}{2a^{2}\pi x}} \sin(n\pi x) \left(c_n e^{\alpha_n^{-t}} + d_n e^{\alpha_n^{+t}} \right) + \sum_{n=k+1}^{\infty} e^{\frac{b}{2a^{2}\pi x}} \sin(n\pi x) e^{-\frac{1}{2\epsilon} t} \left[c_n \cos(\beta_n t) + d_n \sin(\beta_n t) \right]
\]

where \(k = \lfloor \sqrt{\frac{a^{2}-b^{2}}{4a^{2}\pi^{2}}} \rfloor\),

\[
c_n = \int_{0}^{1} f(x) e^{\frac{-b}{2a^{2}\pi x}} \sin(n\pi x) dx - \frac{2\epsilon}{\sqrt{(1 - \frac{b^{2}}{a^{2}})} - 4a^{2}n^{2}\epsilon^{2}\pi^{2}} \int_{0}^{1} \left(\frac{f(x)}{2\epsilon} - g'(x) \right) e^{-\frac{b}{2a^{2}\pi x}} \sin(n\pi x) dx,
\]

\[
d_n = \int_{0}^{1} f(x) e^{\frac{-b}{2a^{2}\pi x}} \sin(n\pi x) dx + \frac{2\epsilon}{\sqrt{(1 - \frac{b^{2}}{a^{2}})} - 4a^{2}n^{2}\epsilon^{2}\pi^{2}} \int_{0}^{1} \left(\frac{f(x)}{2\epsilon} - g'(x) \right) e^{-\frac{b}{2a^{2}\pi x}} \sin(n\pi x) dx
\]

\[
\alpha_{n\pm} = \frac{-1 \pm \sqrt{1 - \frac{b^{2}}{a^{2}}} - 4a^{2}n^{2}\epsilon^{2}\pi^{2}}{2\epsilon}
\]

(2.1)
for $n \leq k$, and

$$c_n = 2 \int_0^1 f(x) e^{-\frac{b}{2\pi x}} \sin(n\pi x) \, dx \quad (2.5)$$

$$d_n = \frac{4\epsilon}{\sqrt{(\frac{b^2}{a^2} - 1) + 4a^2n^2\epsilon^2\pi^2}} \int_0^1 \left(\frac{f(x)}{2\epsilon} - g'(x) \right) e^{-\frac{b}{2\pi x}} \sin(n\pi x) \, dx, \quad (2.6)$$

$$\beta_n = \frac{\sqrt{(\frac{b^2}{a^2} - 1) + 4a^2n^2\epsilon^2\pi^2}}{2\epsilon} \quad (2.7)$$

for $n \geq k + 1$.

ii) If $\sqrt{\frac{a^2-b^2}{4\epsilon^2a^4\pi^2}}$ is an integer, let $k = \sqrt{\frac{a^2-b^2}{4\epsilon^2a^4\pi^2}}$. Then

$$u(x,t) = \sum_{n=1}^{k-1} e^{\frac{b}{2\pi x}} \sin(n\pi x) \left(c_n e^{\alpha_n t} + d_n e^{\gamma_n t} \right) + 2e^{-\frac{b}{2\pi t}} \int_0^1 f(x) \sin(k\pi x) \, dx + \int_0^1 \frac{-g'(x)}{e^{\frac{b}{2\pi x}}} \sin(k\pi x) \, dx e^{-\frac{b}{2\pi t}} + e^{-\frac{b}{2\pi t}} \sum_{n=k+1}^{\infty} e^{\frac{b}{2\pi x}} \sin(n\pi x) \left[c_n \cos(\beta_n t) + d_n \sin(\beta_n t) \right] \quad (2.8)$$

where c_n, d_n and β_n are the same as in case i).

Proof

For the initial boundary value problem (1.7), (1.8) and (1.9), we use the separation of variables and let

$$u(x,t) = X(x)T(t). \quad (2.9)$$

Substitute this in (1.7) to get

$$T''(t)X(x) - a^2T(t)X''(x) + \frac{1}{\epsilon} (bT(t)X'(x) + T'(t)X(x)) = 0.$$

Thus,

$$\frac{T''(t)}{T(t)} - a^2 \frac{X''(x)}{X(x)} + \frac{b}{\epsilon} \frac{X'(x)}{X(x)} + \frac{1}{\epsilon} \frac{T'(t)}{T(t)} = 0. \quad (2.10)$$

Reorganize this and let

$$\frac{T''(t)}{T(t)} + \frac{1}{\epsilon} \frac{T'(t)}{T(t)} = a^2 \frac{X''(x)}{X(x)} - \frac{b}{\epsilon} \frac{X'(x)}{X(x)} = \lambda \quad (2.10)$$

λ is a constant.

From the left side of (2.10), we get an ODE of $T(t)$

$$T''(t) + \frac{1}{\epsilon} T'(t) - \lambda T(t) = 0 \quad (2.11)$$

and the right side turns out to be an ODE of $X(x)$

$$a^2X''(x) - \frac{b}{\epsilon}X'(x) - \lambda X(x) = 0 \quad (2.12)$$
with boundary condition

\[X(0) = X(1) = 0. \quad (2.13) \]

The characteristic equation for (2.12) is

\[a^2 \alpha^2 - \frac{b}{\epsilon} \alpha - \lambda = 0. \quad (2.14) \]

Then we have the following cases:

Case 1: \(\Delta > 0 \)

\[\left(-\frac{b}{\epsilon} \right)^2 + 4a^2 \lambda > 0 \]

\[\lambda > -\frac{b^2}{4a^2 \epsilon^2} \]

then (2.14) has two roots \(\alpha_{\pm} \) given by (2.4), and

\[X(x) = C_1 e^{\alpha_{-}x} + C_2 e^{\alpha_{+}x}, \]

where \(C_1 \) and \(C_2 \) are constants. By (2.13), we have

\[X(0) = C_1 + C_2 = 0, X(1) = C_1 e^{\alpha_{-}} + C_2 e^{\alpha_{+}} = 0 \]

\(\Rightarrow C_1 = C_2 = 0. \)

Case 2: \(\Delta = 0 \)

\[\left(-\frac{b}{\epsilon} \right)^2 + 4a^2 \lambda = 0 \]

\[\lambda = -\frac{b^2}{4a^2 \epsilon^2} \]

then (2.14) has only one root

\[\alpha = \frac{b}{2a^2 \epsilon} \]

\[X(x) = C_1 e^{\frac{b^2 x}{2a^2 \epsilon}} + C_2 x e^{\frac{b^2 x}{2a^2 \epsilon}}, \]

for some constants \(C_1 \) and \(C_2 \). Just like the Case 1, we get \(C_1 = C_2 = 0. \)

Case 3: \(\Delta < 0 \)

\[\left(-\frac{b}{\epsilon} \right)^2 + 4a^2 \lambda < 0 \]

\[\lambda < -\frac{b^2}{4a^2 \epsilon^2} \]

then (2.14) has two complex roots

\[\alpha = \frac{b}{2a^2 \epsilon} \pm i \sqrt{\frac{-(\frac{b}{\epsilon})^2 - 4a^2 \lambda}{2a^2}} \]

\[X(x) = e^{\frac{b}{2a^2 \epsilon} x} \left(C_1 \cos \left(\frac{\sqrt{-(\frac{b}{\epsilon})^2 - 4a^2 \lambda}}{2a^2} x \right) + C_2 \sin \left(\frac{\sqrt{-(\frac{b}{\epsilon})^2 - 4a^2 \lambda}}{2a^2} x \right) \right) \]

\[X(0) = 0 \Rightarrow C_1 = 0 \]
\[
X(1) = C_2 e^{\frac{\epsilon}{2a^2}} \sin \left(\frac{\sqrt{-\left(\frac{b^2}{a^2}\right)^2 - 4a^2\lambda}}{2a^2} \right) = 0
\]

\[
\Rightarrow \sin \left(\frac{\sqrt{-\left(\frac{b^2}{a^2}\right)^2 - 4a^2\lambda}}{2a^2} \right) = 0 \Rightarrow \sqrt{-\left(\frac{b^2}{a^2}\right)^2 - 4a^2\lambda} = n\pi, n = 1, 2, 3, \ldots
\]

\[
\Rightarrow \lambda_n = -a^2n^2\pi^2 - \frac{b^2}{4a^2\epsilon^2}.
\]

Therefore, only Case 3 fits the condition, so

\[
X_n = e^{\frac{\epsilon}{2a^2} x} \sin (n\pi x) \quad (2.15)
\]

Next, solve (2.11) with

\[
\lambda_n = -a^2n^2\pi^2 - \frac{b^2}{4a^2\epsilon^2}
\]

its characteristic equation is:

\[
\alpha^2 + \frac{1}{\epsilon} \alpha + \left(a^2n^2\pi^2 + \frac{b^2}{4a^2\epsilon^2} \right) = 0 \quad (2.16)
\]

If \(\Delta < 0 \),

\[
T_n(t) = e^{-\frac{1}{2\epsilon} t} \left[c_n \cos \left(\frac{\sqrt{\left(\frac{b^2}{a^2}\right) - 1} + 4a^2n^2\epsilon^2\pi^2}{2\epsilon} t \right) + d_n \sin \left(\frac{\sqrt{\left(\frac{b^2}{a^2}\right) - 1} + 4a^2n^2\epsilon^2\pi^2}{2\epsilon} t \right) \right] \quad (2.17)
\]

If \(\Delta > 0 \), two roots of (2.16) are

\[
\alpha_{n\pm} = \frac{-1 \pm \sqrt{(1 - \frac{b^2}{a^2}) - 4a^2n^2\epsilon^2\pi^2}}{2\epsilon}
\]

\[
T_n(t) = c_n e^{\alpha_{n-} t} + d_n e^{\alpha_{n+} t} \quad (2.18)
\]

We have the following cases:

Case 1: \(\sqrt{\frac{a^2-b^2}{4\epsilon^2a^2\pi^2}} \) is not an integer
when \(n \leq \left\lfloor \sqrt{\frac{a^2-b^2}{4\epsilon^2 a^2 \pi^2}} \right\rfloor, \Delta > 0 \)

\[
T_n(t) = (2.18)
\]

When \(n > \left\lfloor \sqrt{\frac{a^2-b^2}{4\epsilon^2 a^2 \pi^2}} \right\rfloor, \Delta < 0 \)

\[
T_n(t) = (2.17)
\]

Case 2: \(\sqrt{\frac{a^2-b^2}{4\epsilon^2a^2\pi^2}} \) is an integer
when \(n < \sqrt{\frac{a^2-b^2}{4\epsilon^2 a^2 \pi^2}}, \Delta > 0 \)

\[
T_n(t) = (2.18)
\]
when \(n = \sqrt{\frac{a^2 - b^2}{4\varepsilon^2a^2\pi^2}} \), \(\Delta = 0 \)

\[
T_n(t) = c_n e^{-\frac{t}{\pi}} + d_n t e^{-\frac{t}{\pi}}
\]

when \(n > \sqrt{\frac{a^2 - b^2}{4\varepsilon^2a^2\pi^2}} \), \(\Delta < 0 \)

\[
T_n(t) = (2.17)
\]

For case 1, let \(k = [\sqrt{\frac{a^2 - b^2}{4\varepsilon^2a^2\pi^2}}] \)

\[
u(x,t) = \sum_{n=1}^{\infty} X_n(x) T_n(t)
\]

With initial condition (1.4),

\[
u(x,0) = e^{\frac{b}{2\varepsilon}x} \sum_{n=1}^{k} (c_n + d_n) \sin(n\pi x) + e^{\frac{b}{2\varepsilon}x} \sum_{n=k+1}^{\infty} c_n \sin(n\pi x) = f(x)
\]

We have

\[
c_n + d_n = 2 \int_0^1 \frac{f(x)}{e^{\frac{b}{2\varepsilon}x}} \sin(n\pi x) dx \quad n = 1, 2, 3...k \quad (2.19)
\]

\[
c_n = 2 \int_0^1 \frac{f(x)}{e^{\frac{b}{2\varepsilon}x}} \sin(n\pi x) dx \quad n = k + 1, k + 2, k + 3... \quad (2.20)
\]

Let

\[
\beta_n = \sqrt{\left(\frac{b^2}{a^2} - 1\right) + 4a^2n^2\varepsilon^2n^2} \quad (2.21)
\]

and substitute

\[
\cos(\beta_nt) = \frac{e^{i\beta_nt} + e^{-i\beta_nt}}{2} \quad (2.22)
\]

\[
\sin(\beta_nt) = \frac{e^{i\beta_nt} - e^{-i\beta_nt}}{2i} \quad (2.23)
\]

\[
u(x,0) \text{ can be written as}
\]

\[
u(x,0) = e^{\frac{b}{2\varepsilon}x} \sum_{n=1}^{k} (c_n + d_n) \sin(n\pi x)
\]

\[
+ e^{\frac{b}{2\varepsilon}x} \sum_{n=k+1}^{\infty} \left[\frac{c_n - id_n}{2} e^{i\beta_nt} + \frac{c_n + id_n}{2} e^{-i\beta_nt} \right] e^{-\frac{1}{2\varepsilon}t} \quad (2.24)
\]

With initial condition (1.5),

\[
u_t(x,0) = e^{\frac{b}{2\varepsilon}x} \sum_{n=1}^{k} (c_n\alpha_{n-} + d_n\alpha_{n+}) \sin(n\pi x)
\]

\[
+ e^{\frac{b}{2\varepsilon}x} \sum_{n=k+1}^{\infty} \left[\frac{c_n - id_n}{2} (i\beta_n - \frac{1}{2\varepsilon}) + \frac{c_n + id_n}{2} (-i\beta_n - \frac{1}{2\varepsilon}) \right] \quad (2.25)
\]

\[
= -g'(x)
\]
We have
\[c_n \alpha_n^- + d_n \alpha_n^+ = 2 \int_0^1 -g'(x)e^{-\frac{b}{2\pi \epsilon} x} \sin(n\pi x)dx \quad n \leq k \] (2.26)
\[\frac{c_n - id_n}{2} (i\beta_n - \frac{1}{2\epsilon}) + \frac{c_n + id_n}{2} (-i\beta_n - \frac{1}{2\epsilon}) \]
\[= 2 \int_0^1 -g'(x)e^{-\frac{b}{2\pi \epsilon} x} \sin(n\pi x)dx \quad n \geq k + 1 \] (2.27)

This implies
\[-\frac{1}{2\epsilon} c_n + d_n \beta_n = 2 \int_0^1 -g'(x)e^{-\frac{b}{2\pi \epsilon} x} \sin(n\pi x)dx, \quad n \geq k + 1 \] (2.28)

When \(n \leq k \), we obtain \(c_n \) and \(d_n \) given by (2.2) and (2.5) from (2.19) and (2.26). When \(n \geq k + 1 \), the formula for \(c_n \) and \(d_n \) follows from (2.20) and (2.28), and (2.41) is proved.

Case ii) in Theorem 2.2 can be shown similarly.

2.2 Analysis of the Solutions of Fourier Series

We prove the following Theorem

Theorem 2.2. For the solution given in Theorem 2.2, let \(u_n(x,t) = T_n(t)X_n(x) =: A_n(x,t)\sin(n\pi x) \). Then when \(\epsilon \) is sufficiently small

i) For \(b > 0 \),
\[|A_1(x,t)| \leq A \epsilon \exp \left(\frac{b}{2a^2\epsilon} \left(x - \frac{a^2}{b} \left(1 - \sqrt{1 - \frac{b^2}{a^2} - 4a^2\epsilon^2\pi^2} \right) t \right) \right), \] (2.29)

for small \(\epsilon \), and for \(k = \lfloor \sqrt{\frac{a^2 - b^2}{4a^2\pi^2}} \rfloor \), \(m \geq 1 \), and \(\epsilon \leq \frac{\delta}{m} \) for some small \(\delta > 0 \),
\[|A_{k-m}(x,t)| \leq \frac{B \sqrt{\epsilon}}{\sqrt{m}} \exp \left(\frac{b}{2a^2\epsilon} \left(x - \frac{a^2}{b} \left(1 - \sqrt{1 - \frac{b^2}{a^2} - 4a^2\epsilon^2(k-m)^2\pi^2} \right) t \right) \right), \] (2.30)
\[|A_{k+m}(x,t)| \leq \frac{C \sqrt{\epsilon}}{\sqrt{m}} \exp \left(\frac{b}{2a^2\epsilon} \left(x - \frac{a^2}{b} t \right) \right), \] (2.31)

for \(0 \leq x \leq 1 \) and \(t > 0 \), where \(A \), \(B \) and \(C \) are constants independent of \(\epsilon \).

Remark 2.3. The case for \(b < 0 \) can be discussed similarly, by replacing \(x \) by \(1 - x \).

Remark 2.4. \(A_n \) \((n \geq 1) \) are the amplitudes of Fourier modes. The case for \(b < 0 \) can be discussed similarly, by replacing \(x \) by \(1 - x \). For \(b > 0 \), by (2.29), and (2.30), we have, for \(n < k \), that \(A_n(x,t) \to 0 \) as \(\epsilon \to 0 \) for \(x - \frac{a^2}{b} \left(1 - \sqrt{1 - \frac{b^2}{a^2}} \right) t \) < 0.

For \(n > k \), we have that \(A_n(x,t) \to 0 \) as \(\epsilon \to 0 \) for \(x - \frac{a^2}{b} t \) < 0.
Proof of Theorem 2.2. For \(n = 1 \), note that
\[
\alpha_{1+} = -1 \pm \sqrt{(1 - \frac{\nu^2}{\sigma^2}) - 4a^2e^2\pi^2} \over 2\epsilon, \tag{2.32}
\]
\[
c_1 = \int_0^1 f(x)e^{-\frac{b}{2\pi \sigma^2}x} \sin(\pi x)dx - \frac{2\epsilon}{\sqrt{(1 - \frac{\nu^2}{\sigma^2}) - 4a^2e^2\pi^2}} \int_0^1 \left(\frac{f(x)}{2\epsilon} - g'(x) \right) e^{-\frac{b}{2\pi \sigma^2}x} \sin(\pi x)dx, \tag{2.33}
\]
\[
d_1 = \int_0^1 f(x)e^{-\frac{b}{2\pi \sigma^2}x} \sin(\pi x)dx + \frac{2\epsilon}{\sqrt{(1 - \frac{\nu^2}{\sigma^2}) - 4a^2e^2\pi^2}} \int_0^1 \left(\frac{f(x)}{2\epsilon} - g'(x) \right) e^{-\frac{b}{2\pi \sigma^2}x} \sin(\pi x)dx, \tag{2.34}
\]
\[
u_1(x,t) = e^{\frac{b}{2\pi \sigma^2}x} \sin(\pi x) \left(c_1e^{\alpha_{1-t}} + d_1e^{\alpha_{1+t}} \right) = A_1(x,t) \sin(\pi x). \tag{2.35}
\]
Apparently,
\[
|A_1|(x,t) \leq (|c_1| + |d_1|)e^{\frac{b}{2\pi \sigma^2}x + \alpha_{1-t}}, \tag{2.36}
\]
for \(0 \leq x \leq 1 \) and \(t > 0 \). We estimate \(c_1 \) and \(d_1 \) as follows,
\[
\left| \int_0^1 f(x)e^{-\frac{b}{2\pi \sigma^2}x} \sin(\pi x)dx \right|
\leq \max_{x \in [0,1]} |f(x)| \int_0^1 e^{-\frac{b}{2\pi \sigma^2}x}dx \leq \frac{2a^2\epsilon}{b} \max_{x \in [0,1]} |f(x)|, \tag{2.37}
\]
\[
\left| \frac{2\epsilon}{\sqrt{(1 - \frac{\nu^2}{\sigma^2}) - 4a^2e^2\pi^2}} \int_0^1 \left(\frac{f(x)}{2\epsilon} - g'(x) \right) e^{-\frac{b}{2\pi \sigma^2}x} \sin(\pi x)dx \right|
\leq \frac{\sqrt{2}}{\sqrt{(1 - \frac{\nu^2}{\sigma^2})}} \int_0^1 |f(x)|e^{-\frac{b}{2\pi \sigma^2}x}dx
\leq \frac{\sqrt{2}}{\sqrt{(1 - \frac{\nu^2}{\sigma^2})}} \frac{2a^2\epsilon}{b} \max_{x \in [0,1]} |f(x)|, \tag{2.38}
\]
\[
\left| \frac{2\epsilon}{\sqrt{(1 - \frac{\nu^2}{\sigma^2}) - 4a^2e^2\pi^2}} \int_0^1 g'(x)e^{-\frac{b}{2\pi \sigma^2}x} \sin(\pi x)dx \right|
\leq \frac{\sqrt{2}}{\sqrt{(1 - \frac{\nu^2}{\sigma^2})}} \frac{2a^2\epsilon}{b} \max_{x \in [0,1]} |g'(x)|, \tag{2.39}
\]
for small \(\epsilon \). Obviously,
\[
\alpha_{1-} \leq -1 + \sqrt{(1 - \frac{\nu^2}{\sigma^2})} \over 2\epsilon. \tag{2.40}
\]
(2.29) follows from the above estimates then.
\[u(x, t) = \sum_{n=1}^{k} e^{\frac{b}{2\pi^2 x^2} \sin(n\pi x)} \left(c_n e^{\alpha_n t} + d_n e^{\alpha_{n+1} t} \right) + \sum_{n=k+1}^{\infty} e^{\frac{b}{2\pi^2 x^2} \sin(n\pi x)} e^{-\frac{t}{4\pi^2}} \left[c_n \cos(\beta_n t) + d_n \sin(\beta_n t) \right] \quad (2.41) \]

where \(k = \lfloor \sqrt{\frac{a^2-b^2}{4\pi^2 \pi^2}} \rfloor \),

\[u_1 = \sin(\pi x) \left(c_1 e^{\frac{b}{2\pi^2 x^2} -\frac{1+1/2}{\pi^2} t} + d_1 e^{\frac{b}{2\pi^2 x^2} +\frac{1+1/2}{\pi^2} t} \right) \]

\[\frac{b}{2a^2 \epsilon} x - 1 + \sqrt{\frac{1-b^2}{a^2 \epsilon} t} = \frac{b}{2a^2 \epsilon} \left[x - \frac{a^2}{b} \left(1 + \sqrt{1 - \frac{b^2}{a^2}} \right) t \right] \]

\[\frac{b}{2a^2 \epsilon} x + 1 - \sqrt{\frac{1-b^2}{a^2 \epsilon} t} = \frac{b}{2a^2 \epsilon} \left[x - \frac{a^2}{b} \left(1 - \sqrt{1 - \frac{b^2}{a^2}} \right) t \right] \]

\[c_1 = \int_0^1 f(x) e^{-\frac{b}{2\pi^2 x^2} \sin(\pi x)} dx - \frac{2\epsilon}{\sqrt{1 - \frac{b^2}{a^2}}} \int_0^1 \left(\frac{f(x)}{2\epsilon} - g'(x) \right) e^{-\frac{b}{2\pi^2 x^2} \sin(\pi x)} dx, \quad (2.42) \]

\[d_n = \int_0^1 f(x) e^{-\frac{b}{2\pi^2 x^2} \sin(n\pi x)} dx + \frac{2\epsilon}{\sqrt{1 - \frac{b^2}{a^2}}} \int_0^1 \left(\frac{f(x)}{2\epsilon} - g'(x) \right) e^{-\frac{b}{2\pi^2 x^2} \sin(\pi x)} dx \quad (2.43) \]

For \(n = k - m, m \geq 1 \), we estimate \(c_{k-m} \) and \(d_{k-m} \) as follows.

\[1 - \frac{b^2}{a^2} - 4a^2(k-m)^2 \epsilon^2 \pi^2 \]

\[= 1 - \frac{b^2}{a^2} - 4a^2 \epsilon^2 \pi^2 \left(\left\lfloor \frac{\sqrt{a^2-b^2}}{2a^2 \pi \epsilon} \right\rfloor^2 - 2\left\lfloor \frac{\sqrt{a^2-b^2}}{2a^2 \pi \epsilon} \right\rfloor m + m^2 \right) \]

\[\geq 8a^2 \epsilon^2 \pi^2 m \left\lfloor \frac{\sqrt{a^2-b^2}}{2a^2 \pi \epsilon} \right\rfloor - 4a^2 \epsilon^2 \pi^2 m^2 \]

\[\geq 2\epsilon \pi m \sqrt{a^2-b^2} - 4a^2 \epsilon^2 \pi^2 m^2 \]

\[\geq \pi m \epsilon \sqrt{a^2-b^2}, \]

if \(\epsilon \leq \frac{\sqrt{a^2-b^2}}{4\pi a^2 \pi^2} \). Hence

\[|c_{k-m}| + |d_{k-m}| \leq \frac{4 \epsilon^2}{b} \max_{x \in [0,1]} |f(x)| + \frac{4 \epsilon}{\sqrt{\pi m \sqrt{a^2-b^2}}} \max_{x \in [0,1]} (|f(x)| + \epsilon |g'(x)|), \]

if \(\epsilon \leq \frac{\delta}{m} \) for some small \(\delta \). This proves (2.30), (2.31) can be proved similarly.
2.3 Case for \(b = 0 \)

When \(b = 0 \), the equilibrium equation (1.11) becomes \(u_t = 0 \) to which we denote the solution by \(u^c(x, t) \) which is independent of \(t \). Then we have

\[
u^c(x, t) = f(x) = \sum_{n=0}^{\infty} a_n \sin(nx) \quad \text{where} \quad a_n = 2 \int_0^1 f(x) \sin(x) dx.
\]

Denote the solution for the problem (1.7), (1.8) and (1.9) by \(u(x, t) = \sum_{n=1}^{\infty} A_n(x, t) \sin(n \pi x) \). We will show that for any fixed \(n < k \), \(A_n(x, t) - a_n \to 0 \) as \(\epsilon \to 0 \) for \(t > 0 \).

From (2.41), when \(b = 0 \), we have \(k = \lfloor \frac{1}{2 \pi \alpha} \rfloor \),

\[
u(x, t) = \sum_{n=1}^{k} \sin(n \pi x) \left(c_n e^{\alpha_{n-} t} + d_n e^{\alpha_{n+} t} \right)
\]

\[
+ \sum_{n=k+1}^{\infty} \sin(n \pi x) e^{-\frac{\epsilon}{\pi}} \left[c_n \cos(\beta_n t) + d_n \sin(\beta_n t) \right] \quad (2.44)
\]

where, for \(n \leq k \),

\[
\alpha_{n\pm} = -1 \pm \sqrt{1 - 4a^2 n^2 \epsilon^2 \pi^2}
\]

\[
c_n = \int_0^1 f(x) \sin(n \pi x) dx - \frac{2 \epsilon}{\sqrt{1 - 4a^2 n^2 \epsilon^2 \pi^2}} \int_0^1 \left(\frac{f(x)}{2 \epsilon} - g'(x) \right) \sin(n \pi x) dx,
\]

\[
d_n = \int_0^1 f(x) \sin(n \pi x) dx + \frac{2 \epsilon}{\sqrt{1 - 4a^2 n^2 \epsilon^2 \pi^2}} \int_0^1 \left(\frac{f(x)}{2 \epsilon} - g'(x) \right) \sin(n \pi x) dx
\]

and for \(n > k \),

\[
c_n = 2 \int_0^1 f(x) e^{-\frac{b}{2 \pi \alpha^2} x} \sin(n \pi x) dx \quad (2.47)
\]

\[
d_n = \frac{4 \epsilon}{\sqrt{1 - 4a^2 n^2 \epsilon^2 \pi^2}} \int_0^1 \left(\frac{f(x)}{2 \epsilon} - g'(x) \right) \sin(n \pi x) dx \quad (2.48)
\]

Obviously, For any fixed \(n < k \) and \(t > 0 \), \(e^{\alpha_{n-} t} \to 0 \) as \(\epsilon \to 0 \).

We denote

\[
u(x, t) = \sum_{n=1}^{\infty} A_n(x, t) \sin(n \pi x).
\]

When \(n \leq k \), Let \(w_n = \frac{4 \epsilon}{\sqrt{1 - 4a^2 n^2 \epsilon^2 \pi^2}} \int_0^1 \left(\frac{f(x)}{2 \epsilon} - g'(x) \right) \sin(n \pi x) dx \), Then

\[
c_n = \frac{a_n - w_n}{2} \quad (2.49)
\]

\[
d_n = \frac{a_n + w_n}{2} \quad (2.50)
\]

Do Taylor expansion to \(\alpha_{n+} \) to get

\[
\alpha_{n+} = -1 + \sqrt{1 - 4a^2 n^2 \epsilon^2 \pi^2} = -1 + 1 - \frac{3a^2 n^2 \epsilon^2 \pi^2}{2} + n^4 O(\epsilon^4) = -a^2 n^2 \pi^2 \epsilon + n^4 O(\epsilon^3)
\]
Furthermore we have
\[e^{\alpha_n t} = 1 - a^2 n^2 \pi^2 t + n^4 t O(\epsilon^3) \]
and
\[w_n = \frac{4\epsilon}{\sqrt{1 - 4a^2 n^2 \pi^2}} \int_0^1 \left(\frac{f(x)}{2\epsilon} - g'(x) \right) \sin(n\pi x) dx \]
\[= 2 \int_0^1 (f(x) - 2\epsilon g'(x)) \sin(n\pi x) dx \frac{1}{\sqrt{1 - 4a^2 n^2 \pi^2}} \]
By Taylor expansion, it is easy to show that
\[w_n = a_n + O(\epsilon) + n^2 O(\epsilon^2), \]
for any fixed \(n < k \), as \(\epsilon \to 0 \).
Therefore, when \(\epsilon \to 0 \),
\[d_n e^{\alpha_n t} - a_n \]
\[= a_n + w_n e^{\alpha_n t} - a_n \]
\[= a_n + a_n + O(\epsilon) + n^2 O(\epsilon^2) \left(1 - a^2 n^2 \pi^2 t + n^4 t O(\epsilon^3) \right) - a_n \]
\[= O(\epsilon) + n^2 (1 + t) O(\epsilon^2). \]
Since \(e^{\alpha_n t} \to 0 \) as \(\epsilon \to 0 \) for \(t > 0 \) and \(n < k \), we have \(A_n(x, t) - a_n \to 0 \) as \(\epsilon \to 0 \) for any fixed \(n < k \) and \(t > 0 \). The case \(n = k + m \) for \(m \geq 1 \) can be analysed as for the case when \(b > 0 \).

3 Analysis by the energy method

3.1 The case when \(b = 0 \)

In the case of \(b = 0 \), the equilibrium equation (1.11) becomes
\[\ddot{u} = 0. \]
With the initial value \(\ddot{u}(x, 0) = f(x) \), then we have \(\ddot{u}(x, t) = f(x), \; x \in [0, 1], \; t \geq 0. \)
Let \(u \) be the smooth solution of (1.7), (1.8) and (1.9). Set
\[w = u - \ddot{u} \]
(3.1)
Then \(w \) is a solution to the following initial boundary value problem:
\[\left\{ \begin{array}{l}
\ddot{w} - a^2 \dddot{w} - a^2 \dddot{w} + \frac{1}{\epsilon} \dddot{w} = 0, \; 0 \leq x \leq 1, \; t > 0, \\
\dot{w}(0, t) = \dot{w}(1, t) = 0, \\
\dot{w}(x, 0) = 0, \; \dddot{w}(x, 0) = -g'(x). \end{array} \right. \]
(3.2)

Theorem 3.1. Let \(w \) be the solution to problem \((3.2) \). It then holds that
\[\int_0^1 w^2(x, t) dx + \int_0^t \int_0^1 w^2_t(x, s) dx ds \leq C \epsilon \left(\int_0^1 (g'(x))^2 dx + t \int_0^1 (f'(x))^2 + (f''(x))^2 dx \right), \]
(3.3)
for \(0 < \epsilon < 1/4 \) and \(t > 0 \), where \(C \) is a constant only depending on \(a \).
Proof. Multiply (3.2) with \(w_t \) and \(w \) respectively, and integrate the resulting equations by parts over \([0,1]\), and use the boundary conditions to get

\[
\frac{d}{dt} \int_0^1 \left(\frac{w^2}{2\epsilon} + w w_t \right) (x,t) dx - \int_0^1 w_t^2 (x,t) dx + a^2 \int_0^1 w_x^2 (x,t) dx = - \int_0^1 a^2 \bar{u}_x w_x (x,t) dx
\]

(3.4)

By the Cauchy-Schwarz inequality, we have

\[
\int_0^1 |a^2 \bar{u}_x w_t| dx \leq \frac{1}{2} \int_0^1 (w_t^2 + \frac{a^2}{2} w_{xx}^2) dx
\]

\[
\int_0^1 a^2 |\bar{u}_x w_x| dx \leq \int_0^1 (\frac{a^2}{2} w_x^2 + \frac{a^2}{2} \bar{u}_{xx}^2) dx.
\]

Therefore,

\[
\frac{d}{dt} \int_0^1 \left(\frac{1}{2\epsilon} \frac{1}{2} w^2 + w w_t + \frac{a^2}{2} w_t^2 \right) dx + \frac{1}{\epsilon} \int_0^1 w_t^2 dx + a^2 \int_0^1 w_x^2 dx
\]

\[
= - \int_0^1 a^2 \bar{u}_x w_x dx + \int_0^1 a^2 \bar{u}_{xx} w_t dx
\]

\[
\leq a^2 \int_0^1 \bar{u}_x^2 dx + \frac{a^2}{2} \int_0^1 w_x^2 dx + \int_0^1 \left(\frac{1}{2} w_t^2 + \frac{a^2}{2} \bar{u}_{xx}^2 \right) dx.
\]

Hence,

\[
\frac{d}{dt} \int_0^1 \left(\frac{1}{2\epsilon} \frac{1}{2} w^2 + w w_t + \frac{a^2}{2} w_t^2 \right) dx + \frac{1}{\epsilon} \int_0^1 w_t^2 dx + a^2 \int_0^1 w_x^2 dx
\]

(3.6)

\[
\leq \frac{a^2}{2} \int_0^1 \bar{u}_x^2 dx + \frac{a^2}{2} \int_0^1 \bar{u}_{xx}^2 dx.
\]

Noting that

\[
\frac{1}{2\epsilon} \frac{1}{2} w^2 + w w_t + \frac{a^2}{2} w_t^2 \geq (\frac{1}{2\epsilon} - 1) w^2 + \frac{1}{4} w_t^2,
\]

\[
-(w^2 + \frac{1}{4} w_t^2) \leq w w_t
\]

\[
\leq w^2 + \frac{1}{4} w_t^2
\]

Integrating (3.6) to get

\[
\int_0^1 (\frac{1}{2\epsilon} - 1) w^2 + \frac{3}{4} w_t^2 + \frac{a^2}{2} w_t^2 (x,t) dx + (\frac{1}{2\epsilon} - 3) \int_0^1 \int_0^t w_t^2 (x,s) dx ds + \frac{a^2}{2} \int_0^t \int_0^1 w_x^2 (x,s) dx ds
\]

\[
\leq \int_0^1 (\frac{1}{2\epsilon} + 1) w^2 + \frac{3}{4} w_t^2 + \frac{a^2}{2} w_t^2 (x,0) dx + \int_0^t \int_0^1 \left(\frac{a^2}{2} \bar{u}_x^2 + \frac{a^4}{2} \bar{u}_{xx}^2 \right) (x,s) dx ds.
\]

By the initial condition \(w(x,0) = w_x(x,0) = 0 \) and \(w_t(x,0) = -g'(x) \), we have

\[
\int_0^1 \left(\frac{1}{2\epsilon} - 1 \right) w_t^2 (x,t) dx + (\frac{1}{2\epsilon} - 3) \int_0^t \int_0^1 w_t^2 dx ds
\]

\[
\leq \int_0^t \int_0^1 \frac{3}{4} (g'(x))^2 (x,0) + \int_0^t \int_0^1 \frac{a^2}{2} (\bar{u}_x^2 + \frac{a^4}{2} \bar{u}_{xx}^2) (x,s) dx ds.
\]

This proves (3.3) and complete the proof of Theorem 3.1.
3.2 The case for $b < 0$

In this subsection, we present the analysis for the case when $b < 0$ by using the boundary layer profile and the energy method. When $b < 0$, the boundary layer occurs at the boundary $x = 0$. The case for $b > 0$ can be handled similarly for which the boundary layer occurs at $x = 1$. Denote the solution at equilibrium as $u_e(x,t)$, then it satisfies the following equations:

\[
\begin{align*}
\partial_t u_e + b \partial_x u_e &= 0, \\
u_e(1,t) &= 0, \\
u_e(x,0) &= f(x).
\end{align*}
\]

Solving for u_e, we have:

\[
u_e(x,t) = \begin{cases}
 f(x - bt) & x \leq 1 + bt \\
 0 & x > 1 + bt.
\end{cases}
\]

The solution u_e is illustrated in the above figures. Take $a = 1$ for convenience, we may write the problem (1.7), (1.8) and (1.9) as

\[
\begin{align*}
u_{tt} - \nu_{xx} + \frac{1}{\epsilon}(\nu_t + bu_x) &= 0, \\
u(0,t) &= \nu(1,t) = 0, \\
u(x,0) &= f(x), \\
u(0,x) &= -g'(x),
\end{align*}
\]

where we have used u_e to indicate the dependence of the solution on ϵ.

Boundary layer expansion:

\[
u(x,t) = \nu(x,t) + U_0(y,t) + \epsilon U_1(y,t) + w(x,t),
\]
where \(y = \frac{x}{\epsilon} \).

Plug (3.15) in (3.11), we obtain:
\[
\partial^2_t u - \partial^2_x u + \frac{1}{\epsilon}(\partial_t u + b \partial_x u) +
\]
\[
\partial^2_t U_0 - \frac{1}{\epsilon^2} \partial^2_y U_0 + \frac{1}{\epsilon}(\partial_t U_0 + \frac{b}{\epsilon} \partial_x U_0) +
\]
\[
\epsilon [\partial^2_t U_1 - \frac{1}{\epsilon^2} \partial^2_y U_1 + \frac{1}{\epsilon}(\partial_t U_1 + \frac{b}{\epsilon} \partial_y U_1)] +
\]
\[
\partial^2_t w - \partial^2_x w + \frac{1}{\epsilon}(\partial_t w + b \partial_x w) = 0.
\]

To make the \(O(\epsilon^{-2}) \) and \(O(\epsilon^{-1}) \) order 0, we have:
\[
O(\epsilon^{-2}) : -\partial^2_y U_0 + b \partial_y U_0 = 0, \quad (3.17)
\]
\[
O(\epsilon^{-1}) : \partial_t U_0 - \partial^2_y U_1 + b \partial_y U_1 = 0. \quad (3.18)
\]

After solving for (3.17) and (3.18), we take
\[
U_0(y, t) = c(t)e^{by}, \quad (3.19)
\]
\[
U_1(y, t) = \frac{c'(t)}{b} \left[(y - \frac{1}{b})e^{by} + \frac{1}{b}\right] + \frac{d(t)}{b}(e^{by} - 1). \quad (3.20)
\]

Then (3.16) becomes:
\[
\partial^2_t u - \partial^2_x u + \partial^2_t U_0 + \epsilon \partial^2_t U_1 +
\]
\[
\partial_t U_1 + \partial^2_t w - \partial^2_x w + \frac{1}{\epsilon}(\partial_t w + b \partial_x w) = 0. \quad (3.21)
\]

Recall that
\[
w = u - U_0 - \epsilon U_1 - u. \quad (3.22)
\]

We want \(w(0, t) = w(1, t) = 0 \). Since \(u(0, t) = u(1, t) = 0 \) and
\[
u(1, t) = 0 \quad (3.23)
\]
\[
u(0, t) = \begin{cases}
 f(-bt) & t \leq -\frac{1}{b} \\
 0 & t > -\frac{1}{b}
\end{cases} \quad (3.24)
\]

To make \(w(0, t) = w(1, t) = 0 \), the following equations must be satisfied:
\[
(U_0 + \epsilon U_1)(0, t) = -u(0, t) \quad (3.25)
\]
\[
(U_0 + \epsilon U_1)(1, t) = 0 \quad (3.26)
\]

Solving (3.25) and (3.26)
\[
c(t) = \begin{cases}
 -f(-bt) & t \leq -\frac{1}{b} \\
 0 & t > -\frac{1}{b}
\end{cases} \quad (3.27)
\]
\[d(t) = \frac{bc(t) e^{\frac{b}{\epsilon}} + c'(t)\left[\left(\frac{1}{\epsilon} - \frac{1}{b}\right)e^{\frac{b}{\epsilon}} + \frac{1}{b}\right]}{1 - e^{\frac{b}{\epsilon}}} \]

(3.28)

Also, we can see that

\[\lim_{\epsilon \to 0} d(t) = \frac{c'(t)}{b} \]

(3.29)

Consider (3.21), now we have:

\[\partial_t^2 w - \partial_x^2 w + \frac{1}{\epsilon} (\partial_t w + b \partial_x w) + (\epsilon \partial_t^2 u^e - \partial_x^2 u^e) + (\epsilon \partial_t^2 U_1 + \partial_t U_1 + \partial_x^2 U_0) = 0 \]

(3.30)

with boundary condition:

\[w(0, t) = w(1, t) = 0 \]

(3.31)

Also, for the initial condition:

\[w(x, 0) = u^e(x, 0) - u^e(x, 0) - U_0 \left(\frac{x}{\epsilon}, 0 \right) - \epsilon U_1 \left(\frac{x}{\epsilon}, 0 \right) \]

\[= -\epsilon U_1 \left(\frac{x}{\epsilon}, 0 \right) \]

(3.32)

Therefore by (3.20), (3.28), (3.31) we have

\[w(x, 0) = -\epsilon U_1 \left(\frac{x}{\epsilon}, 0 \right), \]

(3.33)

\[w_t(x, 0) = u_t^e - u_t^e - U_t - U_{0t}. \]

(3.34)

From the definitions of \(u^e, U_1 \) and \(U_0 \), it is easy to see that

\[|w(x, 0)| \leq C \epsilon |f'(0)|, \]

(3.35)

\[|w_t(x, 0)| \leq C \epsilon (|f'(0)| + |f''(0)|) + C(|g'(x)| + |b||f'(x)|) \]

(3.36)

\[|w_x(x, 0)| \leq C |f'(0)|, \]

(3.37)

where and in the following, we use \(C \) to denote a generic constant independent of \(\epsilon \).

Theorem 3.2. Suppose that \(f \in C^3([0, 1]) \) and \(f'(0) = 1 \). Let \(w \) be the solution to problem (3.30), (3.31) and (3.34). Then it holds that

\[
\int_0^1 w^2(x, t)dx + \int_0^t \int_0^1 w^2dxds \\
\leq C \epsilon^2 e^{2t} \left(\int_0^1 (g'(x))^2 + b^2 |f'(x)|^2)dx + (|f'(0)|^2 + |f''(0)|^2) \right) \\
+ C \epsilon t e^{2t} \max_{[0,1]} \sum_{i=1}^3 |f^{(i)}(x)|^2.
\]

(3.38)

Remark 3.3. It is easy to verify that \(\int_0^1 U_0^2(x, t)dx \leq O(1) \epsilon \) and \(\int_0^1 \epsilon^2 U_1^2(x, t)dx \leq O(1) \epsilon^2 \). It follows from (3.38) that, for any fixed \(t > 0 \), \(\int_0^1 (u^e - u^e)^2(x, t)dx \) converges to zero in the order of \(\epsilon \) as \(\epsilon \to 0 \).
Proof of Theorem 3.2
Multiply (3.30) by w_t, then integrate both sides on $(0,1)$ with respect to x:

$$\frac{d}{dt} \int_0^1 \left(\frac{w_t^2}{2} + \frac{w_x^2}{2} \right) dx + \frac{1}{\epsilon} \int_0^1 w_t^2 dx + \frac{b}{\epsilon} \int_0^1 w_x w_t dx = - \int_0^1 (\partial_t^2 u^\epsilon - \partial_x^2 u^\epsilon) w_t dx - \int_0^1 (\epsilon \partial_t^2 U_1 + \partial_t U_1 + \partial_x^2 U_0) w_t dx. \quad (3.39)$$

Similarly, multiply (3.30) by w, then integrate both sides on $(0,1)$ with respect to x:

$$\frac{d}{dt} \int_0^1 (ww_t + \frac{1}{2\epsilon} w^2) dx + \int_0^1 (w_x^2 - w_t^2) dx = - \int_0^1 (\partial_t^2 u^\epsilon - \partial_x^2 u^\epsilon) w dx - \int_0^1 (\epsilon \partial_t^2 U_1 + \partial_t U_1 + \partial_x^2 U_0) w dx. \quad (3.40)$$

Denote

$$G(x,t) = \left[(\partial_t^2 u^\epsilon(x,t) - \partial_x^2 u^\epsilon(x,t)) \right] + \left[\epsilon \partial_t^2 U_1(\frac{x}{\epsilon},t) + \partial_t U_1(\frac{x}{\epsilon},t) + \partial_x^2 U_0(\frac{x}{\epsilon},t) \right]. \quad (3.41)$$

Then (3.39) + (3.40) $\times k$ for a constant k to be determined later yields that

$$\frac{d}{dt} \int_0^1 \left(\frac{w_t^2 + w_x^2}{2} + kw_t + \frac{kw^2}{2\epsilon} \right) dx + \int_0^1 \left(\frac{1}{\epsilon} - k \right) w_t^2 dx + \frac{b}{\epsilon} \int_0^1 w_x w_t dx + k \int_0^1 w_x^2 dx = - \int_0^1 Gw_t dx - k \int_0^1 Gw dx. \quad (3.42)$$

The left hand side of (3.42) can be written as:

$$L.H.S = \frac{d}{dt} \int_0^1 \left\{ \frac{1}{2} [(w_t + kw)^2 + \frac{(k - k^2)w^2}{\epsilon}] + \frac{1}{2} w_x^2 \right\} dx + \int_0^1 k(w_x + \frac{k}{2\epsilon k} w_t)^2 + (\frac{1}{\epsilon} - k - \frac{b^2}{4\epsilon^2 k}) w_t^2 dx. \quad (3.43)$$

In order to have positive coefficients, we have:

$$\frac{k}{\epsilon} - k^2 > 0, \quad (3.44)$$
$$\frac{1}{\epsilon} - k - \frac{b^2}{4\epsilon^2 k} > 0, \quad (3.45)$$
$$k > 0. \quad (3.46)$$

Solving for these conditions, we obtain:

$$k \in \left(\frac{1 - \sqrt{1 - b^2}}{2\epsilon}, \frac{1 + \sqrt{1 - b^2}}{2\epsilon} \right). \quad (3.47)$$

Thus we take

$$k = \frac{1}{2\epsilon}. \quad (3.48)$$
Then (3.42) becomes:

\[
\frac{1}{2} \frac{d}{dt} \int_0^1 \left[(w_t + w) + \frac{1}{4\epsilon^2} w^2 + w_x^2 \right] dx + \int_0^1 \left[\frac{1}{2\epsilon} (w_x + bw_t)^2 + \frac{1-b^2}{2\epsilon} w_t^2 \right] dx = -\int_0^1 (Gw_t + \frac{Gw}{2\epsilon}) dx. \tag{3.49}
\]

Integrate both sides of (3.49) on (0, t) with respect to t:

\[
\frac{1}{2} \int_0^1 \left[(w_t + w) + \frac{1}{4\epsilon^2} w^2 + w_x^2 \right] dx dt + \int_0^t \int_0^1 \left[\frac{1}{2\epsilon} (w_x + bw_t)^2 + \frac{1-b^2}{2\epsilon} w_t^2 \right] dx ds = \frac{1}{2} \int_0^1 \left[(w_t + w) + \frac{1}{4\epsilon^2} w^2 + w_x^2 \right] dx + \int_0^t \int_0^1 (Gw_t + \frac{Gw}{2\epsilon}) dx ds. \tag{3.50}
\]

By the Cauchy-Schwarz inequality:

\[
|\int_0^t \int_0^1 Gw_t dx ds| \leq \frac{1-b^2}{4\epsilon} \int_0^t \int_0^1 w_t^2 dx ds + \frac{\epsilon}{1-b^2} \int_0^t \int_0^1 G^2 dx ds. \tag{3.51}
\]

Then (3.50) becomes

\[
\frac{1}{2} \int_0^1 \left[(w_t + w) + \frac{1}{4\epsilon^2} w^2 + w_x^2 \right] dx dt + \int_0^t \int_0^1 \left[\frac{1}{2\epsilon} (w_x + bw_t)^2 + \frac{1-b^2}{4\epsilon} w_t^2 \right] dx ds \\
\leq \frac{1}{2} \int_0^1 \left[(w_t + w) + \frac{1}{4\epsilon^2} w^2 + w_x^2 \right] dx + \int_0^t \int_0^1 \int_0^1 Gw dx ds + \frac{\epsilon}{1-b^2} \int_0^t \int_0^1 G^2 dx ds. \tag{3.52}
\]

With the initial conditions (3.33), (3.34), we have

\[
\frac{1}{2} \int_0^1 \left[(w_t + w) + \frac{1}{4\epsilon^2} w^2 + w_x^2 \right] dx dt + \int_0^t \int_0^1 \left[\frac{1}{2\epsilon} (w_x + bw_t)^2 + \frac{1-b^2}{4\epsilon} w_t^2 \right] dx ds \\
\leq C \int_0^1 \left(w_t^2 + \frac{1}{\epsilon^2} w^2 + w_x^2 \right) dx + \int_0^t \int_0^1 \int_0^1 Gw dx ds + \frac{\epsilon}{1-b^2} \int_0^t \int_0^1 G^2 dx ds. \tag{3.53}
\]

Again, by Cauchy-Schwarz Inequality,

\[
\left| \int_0^t \int_0^1 Gw dx ds \right| \leq \frac{1}{4\epsilon} \int_0^t \int_0^1 (w^2 + G^2) dx ds. \tag{3.54}
\]

From (3.54) and (3.53), we have

\[
\frac{1}{8\epsilon^2} \int_0^1 w^2(x, t) dx + \frac{1}{4\epsilon} \int_0^t \int_0^1 w^2 dx ds + \frac{1}{2\epsilon} \int_0^t \int_0^1 G^2 dx ds \tag{3.55}
\]

for small \(\epsilon \).
From the definition of G, we can see that,
\[
\int_0^1 G^2(x,t)dx \leq C \max_{[0,1]} \sum_{i=1}^3 |f^{(i)}(x)|^2.
\] (3.56)

Denote
\[
F(t) = \int_0^t \int_0^1 w^2dxds.
\] (3.57)

In view of (3.35), and (3.56), (3.55) becomes
\[
F'(t) - 2\epsilon F(t)
\leq C\epsilon^2 \int_0^1 (w_t^2 + \frac{1}{\epsilon^2} w^2 + w_x^2)(x,0)dx + 4\epsilon \int_0^t \int_0^1 G^2dxds
\leq C\epsilon^2 \left(\int_0^1 ((g'(x))^2 + b^2|f'(x)|^2)dx + (|f'(0)|^2 + |f''(0)|^2) \right)
+ C\epsilon t \max_{[0,1]} \sum_{i=1}^3 |f^{(i)}(x)|^2.
\] (3.58)

for small ϵ.

Multiply this by $e^{-2\epsilon t}$ on both sides and integrate with respect to t, we obtain,
\[
F(t)
\leq C\epsilon^2 e^{-2\epsilon t} \left(\int_0^1 ((g'(x))^2 + b^2|f'(x)|^2)dx + (|f'(0)|^2 + |f''(0)|^2) \right)
+ C\epsilon e^{-2\epsilon t} \max_{[0,1]} \sum_{i=1}^3 |f^{(i)}(x)|^2.
\] (3.59)

This proves (3.38).

4 Numerical Results

We obtained the results from the Fourier solutions with $f(x) = \sin(\pi x)$, $g'(x) = -\pi \sin(\pi x)$, $a = 2$ and $b = 1$.

Acknowledgements

The results obtained in this project were under the supervision of Professor Tao Luo at every stage, to whom the authors are greatly grateful.

References

[1] S. Bianchini, Hyperbolic limit of the Jin-Xin relaxation model. Comm. Pure Appl. Math. 59 (2006), no. 5, 688–753

[2] G.-Q. Chen, C. D. Levermore, and T.-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math. 47 (1994), 787–830.

[3] S. Jin and Z. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Comm. Pure Appl. Math. 48 (1995), 235–277.

[4] T. P. Liu, Hyperbolic conservation laws with relaxation, Comm. Math. Phys., 108 (1987), pp. 153–175. MR0872145

[5] R. Natalini, Convergence to equilibrium for the relaxation approximations of conservation laws, Comm. Pure Appl. Math., 49 (1996), pp. 795–823. MR1391756

[6] E. Tadmor and T. Tang, Pointwise error estimates for scalar conservation laws with piecewise smooth solutions, SIAM J. Numer. Anal., 36 (1999), pp. 1739–1758.
[7] Z. H. Teng, First-order L1-convergence for relaxation approximations to conservation laws, Comm. Pure Appl. Math., 51 (1998), pp. 857–895.

[8] W.-C. Wang and Z. Xin, Asymptotic limit of initial boundary value problems for conservation laws with relaxation extensions, Comm. Pure Appl. Math., 51 (1998), pp. 505–535.

[9] Xin, Zhouping; Xu, Wen-Qing, Stiff well-posedness and asymptotic convergence for a class of linear relaxation systems in a quarter plane. J. Differential Equations 167 (2000), no. 2, 388–437.

[10] Xin, Zhouping; Xu, Wen-Qing Initial-boundary value problem to systems of conservation laws with relaxation. Quart. Appl. Math. 60 (2002), no. 2, 251–281.

[11] W.-A. Yong, Boundary conditions for hyperbolic systems with stiff source terms, Indiana Univ. Math. J. 48, No. 1 (1999), 115–137.

CEN Luyu: luyuc2-c@my.cityu.edu.hk
LIN Lu: lulin22-c@my.cityu.edu.hk
LIU Jiyuan: jiuyianliu2-c@my.cityu.edu.hk
XIAO Yujie: yujiexiao3-c@my.cityu.edu.hk