Drug transporters in spermatogenesis
A re-evaluation of recent data on P-glycoprotein

Dolores D. Mruk* and C. Yan Cheng
The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; The Population Council; New York, NY USA

Keywords: drug transporter, P-glycoprotein, testis, Sertoli cell, germ cell

Abbreviations: ABC, ATP-binding cassette; BBB, blood-brain barrier; BTB, blood-testis barrier; ERM, ezrin, radixin and moesin; FAK, focal adhesion kinase; JAM-A, junctional adhesion molecule-A; MDR, multidrug resistance; MRSA, methicillin-resistant *Staphylococcus aureus*; OATP3, organic anion transporter protein 3; RNAi, RNA interference; SLC, solute carrier; TJ, tight junction; ZO-1, zonula occludens-1

Multidrug resistance (MDR) occurs when a disease-causing organism (i.e., bacteria, fungi or parasite) or a disease-causing cell (i.e., neoplastic or virally-infected) does not respond to a pharmacological agent(s) that is designed to destroy it. One of the most well-known examples of MDR to make headlines in recent years relates to methicillin-resistant *Staphylococcus aureus* (MRSA), the so-called ‘super bug’ residing in many hospitals and nursing homes that is almost impossible to eradicate by trusted and widely prescribed antibiotics such as methicillin, amoxicillin and penicillin. MDR can also manifest itself in neoplastic cells, as well as in immune cells harboring, for example, the human immunodeficiency virus (HIV). In all cases, MDR is a condition that prevents a drug(s) from reaching or accumulating its therapeutic dose and results in drug insensitivity so that individuals presenting for MDR remain ‘clincially untreated’, and this can result in death. Because MDR limits treatment options for those with life-debilitating and life-threatening conditions, it is a major concern that continues to elude physicians and healthcare professionals, as well as researchers trying to find an effective way to reverse it.

It is not completely understood why the MDR phenotype is triggered in some individuals and not in others. While MDR is known to associate with several mechanisms, perhaps the most well studied involves drug transporters (i.e., increased expression of efflux pumps and/or decreased expression of influx pumps). Drug transporters are integral membrane proteins that pump drugs and xenobiotics, as well as endogenous compounds such as steroids, into or out of cells, and two superfamilies have been identified in mammals: the ATP-binding cassette (ABC) superfamily of efflux transporters (P-glycoprotein or MDR1 is the best-studied efflux pump) and the solute carrier (SLC) superfamily of influx transporters.1-4 Interestingly, drug transporters are not only expressed by disease-causing organisms and cells;5-10 normal cells such as hepatocytes, epithelial cells in the intestine, Sertoli and germ cells in the testis are also known to express drug transporters. In fact, many drug transporters are known to be present at blood-tissue barriers where they are presumed to protect sensitive organs from dangerous exogenous agents.11-15 For example, knockout of *Mdr1a* (in rodents, MDR1 is encoded by *Mdr1a* and *Mdr1b*), which was previously shown to localize at the blood-brain (BBB) and the blood-testis barrier (BTB), rendered mice more susceptible to the harmful effects of ivermectin (an antiparasitic drug) and vinblastine (an anticancer drug).16 Specifically, increased uptake of these compounds was observed in the brain and in the testis of *Mdr1a*−/− vs. *wt* mice, illustrating that P-glycoprotein safeguards these organs by pumping out or prohibiting entry of harmful substances.

Recent studies from our group, as well as those from other laboratories, have shown testicular cells to express an array of drug transporters. For example, P-glycoprotein localized to Sertoli cells, late spermatids, Leydig cells and peritubular myoid cells.17,18 Within Sertoli cells, P-glycoprotein, as well as another drug transporter [i.e., organic anion transporter protein 3 (OATP3)], concentrated to the site of the BTB, and P-glycoprotein co-immunoprecipitated with structural tight junction (TJ) proteins, namely occludin, claudin-11 and junctional adhesion molecule-A.

*Correspondence to: Dolores D. Mruk; Email: mruk@popcbr.rockefeller.edu
Submitted: 04/20/12; Accepted: 04/25/12
http://dx.doi.org/10.4161/spmg.20507
when normal testis and/or Sertoli cell lysates were used. Equally important, knockdown of Mdr1a + Mdr1b (referred to as Mdr1 from here onwards) in rat Sertoli cells by RNA interference (RNAi) was found to partially compromise the integrity of the Sertoli cell barrier when its function was assessed by transepithelial electrical resistance measurements, as well as by immunoblotting and immunolocalization experiments. Following knockdown, Sertoli cell barrier dysfunction was noted. Specifically, the association between occludin and ZO-1 was disrupted, which increased the association between occludin and FAK. This resulted in the Thr phosphorylation (denoted by an encircled “P”) and in the endocytosis (denoted by a large circle) of occludin, disrupting the integrity of TJs. A decrease in the steady-state level of claudin-11 (denoted by a dotted-line and by connected lines that end with an “X”) was also observed following knockdown, contributing to TJ dysfunction as well. BTB dysfunction resulting from the loss of P-glycoprotein may have also allowed entry of drugs, toxicants and steroids (denoted by an assortment of symbols), which would have otherwise been prohibited from entering the adluminal compartment of the seminiferous epithelium or pumped out in the presence of P-glycoprotein at the BTB. An additional study has reported P-glycoprotein to associate with actin via the ezrin-radixin and moesin (ERM) protein complex, but it is not known if this finding applies to the testis as well. Future experiments are also needed to identify the mechanism behind the decrease in claudin-11 following knockdown of Mdr1. For simplicity, other junction types that contribute to BTB function have been omitted, and only selected TJ proteins have been included.

(JAM-A), when normal testis and/or Sertoli cell lysates were used. Equally important, knockdown of Mdr1a + Mdr1b (referred to as Mdr1 from here onwards) in rat Sertoli cells by RNA interference (RNAi) was found to partially compromise the integrity of the Sertoli cell barrier when its function was assessed by transepithelial electrical resistance measurements, as well as by immunoblotting and immunolocalization experiments. Following knockdown, Sertoli cell barrier dysfunction was noted. Specifically, the association between occludin and ZO-1 was disrupted, which increased the association between occludin and FAK. This resulted in the Thr phosphorylation (denoted by an encircled “P”) and in the endocytosis (denoted by a large circle) of occludin, disrupting the integrity of TJs. A decrease in the steady-state level of claudin-11 (denoted by a dotted-line and by connected lines that end with an “X”) was also observed following knockdown, contributing to TJ dysfunction as well. BTB dysfunction resulting from the loss of P-glycoprotein may have also allowed entry of drugs, toxicants and steroids (denoted by an assortment of symbols), which would have otherwise been prohibited from entering the adluminal compartment of the seminiferous epithelium or pumped out in the presence of P-glycoprotein at the BTB. An additional study has reported P-glycoprotein to associate with actin via the ezrin-radixin and moesin (ERM) protein complex, but it is not known if this finding applies to the testis as well. Future experiments are also needed to identify the mechanism behind the decrease in claudin-11 following knockdown of Mdr1. For simplicity, other junction types that contribute to BTB function have been omitted, and only selected TJ proteins have been included.

Figure 1. A mechanistic model of P-glycoprotein function at the BTB. Previous studies have shown P-glycoprotein to localize at the BTB and to co-immunoprecipitate with structural TJ proteins, namely occludin, claudin-11 and JAM-A, which assemble into a multi-protein complex via ZO-1 and FAK (see text for references). To better understand the role of P-glycoprotein at the BTB, Sertoli cells were isolated from testes of 20-d-old rats and cultured at high density on Matrigel-coated substrata for 3–4 d to allow the assembly of a functional Sertoli cell barrier. Thereafter, Mdr1 was silenced by RNAi (denoted by an “X”), and barrier function was assessed by transepithelial electrical resistance measurements, immunoblotting and immunolocalization experiments. Following knockdown, Sertoli cell barrier dysfunction was noted. Specifically, the association between occludin and ZO-1 was disrupted, which increased the association between occludin and FAK. This resulted in the Thr phosphorylation (denoted by an encircled “P”) and in the endocytosis (denoted by a large circle) of occludin, disrupting the integrity of TJs. A decrease in the steady-state level of claudin-11 (denoted by a dotted-line and by connected lines that end with an “X”) was also observed following knockdown, contributing to TJ dysfunction as well. BTB dysfunction resulting from the loss of P-glycoprotein may have also allowed entry of drugs, toxicants and steroids (denoted by an assortment of symbols), which would have otherwise been prohibited from entering the adluminal compartment of the seminiferous epithelium or pumped out in the presence of P-glycoprotein at the BTB. An additional study has reported P-glycoprotein to associate with actin via the ezrin-radixin and moesin (ERM) protein complex, but it is not known if this finding applies to the testis as well. Future experiments are also needed to identify the mechanism behind the decrease in claudin-11 following knockdown of Mdr1. For simplicity, other junction types that contribute to BTB function have been omitted, and only selected TJ proteins have been included.
entering or pumped out in the presence of P-glycoprotein at the BTB. This may have also affected BTB function (Fig. 1). At this point, additional studies are needed to better understand the role of P-glycoprotein and other drug transporters at the BTB.

What might some of these studies be? First, would a disruption (or at least a partial disruption) of the Sertoli cell barrier/BTB affect P-glycoprotein-mediated drug efflux? For instance, would knockdown of a critical TJ protein such as claudin-11, which is known to bind P-glycoprotein, increase the influx of P-glycoprotein substrates? If yes, one could conclude that BTB integrity is essential for P-glycoprotein function. Second, is aberrant regulation of drug transporters (efflux and influx pumps alike) linked to unexplained cases of male infertility? Environmental toxicants can utilize drug transporters expressed by the testis. The best example of this is the entry of cadmium by P-glycoprotein and other drug transporters at the BTB. This may have also affected BTB function (Fig. 1) protein complex mediated by focal adhesion kinase (FAK). Proc Natl Acad Sci U S A 2011; 108:19623-7. 8. Melaine N, Léandri MO, Dorval I, Le Goascogne C, Lejeune H, Jégou B. Multidrug resistance genes and P-glycoprotein in the testis of the rat, mouse, guinea pig, and human. Biol Reprod 2002; 67:1699-707. PMID:12448403; http://dx.doi.org/10.1093/biolreprod.67.6.1699. 9. Koendlerink JB, Kavishe RA, Rijpma SR, Russel FG, Rommers H, Simonis M, van Tellingen O, Beijnen JH, Schinkel AH, Su L, Mruk DD, Cheng CY. Drug transporter, P-glycoprotein (MDR1), is an integrated component of the mammalian blood-testis barrier. Int J Biochem Cell Biol 2009; 41:2578-87; PMID:19720156; http://dx.doi.org/10.1016/j.biocel.2009.08.015. 10. Fletcher JL, Haber M, Henderson MJ, Norris MD. ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer 2010; 10:147-56; PMID:20075923; http://dx.doi.org/10.1038/nrc2789. 11. Mruk DD, Su L, Cheng CY. Emerging role for drug transporters at the blood-testis barrier. Trends Pharmacol Sci 2011; 32:99-106; PMID:21168226; http://dx.doi.org/10.1016/j.tips.2010.11.007. 12. Su L, Mruk DD, Cheng CY. Drug transporters, the blood-testis barrier, and spermatogenesis. J Endocrinol 2011; 208:207-23; PMID:21134990; http://dx.doi.org/10.1677/JOE-10-0363. 13. Cheng CY, Mruk DD. The blood-testis barrier: and its implications for male contraception. Pharmacol Rev 2012; 64:16-64; PMID:22039149; http://dx.doi.org/10.1124/pr.1124.002790. 14. Fromm MF. Importance of P-glycoprotein at blood-tissue barriers. Trends Pharmacol Sci 2004; 25:423-9. PMID:15276711; http://dx.doi.org/10.1016/j.tips.2004.06.002. 15. van Herwaarden AE, Schinkel AH. The function of tight junction components with signaling pathways. Mol Cell Biol 2004; 24:6879(05)00026-1. 16. Barchowsky A, Atchison WD. The vascular system as a target of metal toxicity. Toxicol Sci 2008; 102:207-18; PMID:18877343; http://dx.doi.org/10.1093/toxsci/kfm265. 17. Fu D, Roufogalis BD. Actin disruption inhibits endo- smal traffic of P-glycoprotein-EGFP and resistance to daunorubicin accumulation. Am J Physiol Cell Physiol 2007; 292:C1543-52; PMID:17122416; http://dx.doi.org/10.1152/ajpcell.00668.2006. 18. Kin HC, Bartos M, Samanta R, Greenberger L, Srul E. Experimentally induced changes in the endocytic traffic of P-glycoprotein alter drug resistance of cancer cells. Am J Physiol 1997; 273:C687-702; PMID:9277567. 19. Hawkins BT, Rigor RR, Miller DS. Rapid loss of blood-brain barrier P-glycoprotein activity through transporter internalization demonstrated using a novel in situ proteolysis protection assay. J Cereb Blood Flow Metab 2010; 30:1593-7; PMID:20628400; http://dx.doi.org/10.1038/cbfl.2010.117. 20. Luciani F, Molinari A, Lurpione F, Calabrini A, Lugini L, Stringaro A, et al. P-glycoprotein-actin association through ERM family proteins: a role in P-glycoprotein function in human cells of lymphoid origin. Blood 2002; 99:641-8; PMID:12781249; http://dx.doi.org/10.1182/blood.V99.2.641. 21. Cummins PM. Occludin: one protein, many forms. Mol Cell Biol 2012; 32:242-50; PMID:22083955; http://dx.doi.org/10.1128/MCB.06029-11. 22. Gonzalez-Marcial I, Tapia R, Chamorro D. Juxtaposition of tight junction components with signaling pathways. Biocell Biophys Acta 2008; 1778:29-56; PMID:17950242; http://dx.doi.org/10.1016/j.bbadis.2007.08.018. 23. Dalton TP, He L, Wang B, Miller ML, Jin L, Stringer KE, et al. Identification of mouse SLC39A8, a xenobiotic transporter and influx pump. Drug transporters at the blood-testis barrier. T rends Pharmacol Sci 2004; 25:423-9. PMID:15276711; http://dx.doi.org/10.1016/j.tips.2004.06.002. 24. Fromm MF. Importance of P-glycoprotein at blood-tissue barriers. Trends Pharmacol Sci 2004; 25:423-9. PMID:15276711; http://dx.doi.org/10.1016/j.tips.2004.06.002. 25. van Herwaarden AE, Schinkel AH. The function of tight junction components with signaling pathways. Mol Cell Biol 2004; 24:6879(05)00026-1. 26. Barchowsky A, Atchison WD. The vascular system as a target of metal toxicity. Toxicol Sci 2008; 102:207-18; PMID:18877343; http://dx.doi.org/10.1093/toxsci/kfm265. 27. Fu D, Roufogalis BD. Actin disruption inhibits endosomal traffic of P-glycoprotein-EGFP and resistance to daunorubicin accumulation. Am J Physiol Cell Physiol 2007; 292:C1543-52; PMID:17122416; http://dx.doi.org/10.1152/ajpcell.00668.2006. 28. Kin HC, Bartos M, Samanta R, Greenberger L, Srul E. Experimentally induced changes in the endocytic traffic of P-glycoprotein alter drug resistance of cancer cells. Am J Physiol 1997; 273:C687-702; PMID:9277567. 29. Hawkins BT, Rigor RR, Miller DS. Rapid loss of blood-brain barrier P-glycoprotein activity through transporter internalization demonstrated using a novel in situ proteolysis protection assay. J Cereb Blood Flow Metab 2010; 30:1593-7; PMID:20628400; http://dx.doi.org/10.1038/cbfl.2010.117. 30. Luciani F, Molinari A, Lurpione F, Calabrini A, Lugini L, Stringaro A, et al. P-glycoprotein-actin association through ERM family proteins: a role in P-glycoprotein function in human cells of lymphoid origin. Blood 2002; 99:641-8; PMID:12781249; http://dx.doi.org/10.1182/blood.V99.2.641.