Angular decomposition of tensor products of a vector

Gregory S. Adkins

Franklin & Marshall College, Lancaster, Pennsylvania 17604 USA

(Dated: April 4, 2018)

The tensor product of \(L \) copies of a single vector, such as \(p_1 \cdots p_L \), can be analyzed in terms of angular momentum. When \(p_1 \cdots p_L \) is decomposed into a sum of components \((p_1 \cdots p_L)_\ell \), each characterized by angular momentum \(\ell \), the components are in general complicated functions of the \(p_i \) vectors, especially so for large \(\ell \). We obtain a compact expression for \((p_1 \cdots p_L)_\ell \) explicitly in terms of the \(p_i \) valid for all \(L \) and \(\ell \). We use this decomposition to perform three-dimensional Fourier transforms of functions like \(p^p \hat{p}_1 \cdots \hat{p}_L \) that are useful in describing particle interactions.

I. INTRODUCTION

Three-dimensional Fourier transforms of the general form

\[
I_{n; i_1 \cdots i_L}(\vec{r}) = \int \frac{d^3p}{(2\pi)^3} e^{i\vec{p} \cdot \vec{r}} p^n \hat{p}_{i_1} \cdots \hat{p}_{i_L} \tag{1}
\]

(where \(\hat{p} = \vec{p}/p \)) have a wide variety of uses. For example,

\[
I_{-2}(\vec{r}) = \int \frac{d^3p}{(2\pi)^3} e^{i\vec{p} \cdot \vec{r}} \frac{1}{p^2} = \frac{1}{4\pi r} \tag{2}
\]

is the Fourier representation of the Coulomb potential. Two related transforms that occur in the study of fermion-fermion interactions [1–3] are

\[
I_{-1; i}(\vec{r}) = \int \frac{d^3p}{(2\pi)^3} e^{i\vec{p} \cdot \vec{r}} \frac{p_i}{p^2} = \frac{i\hat{x}_i}{4\pi r^2}; \tag{3a}
\]

\[
I_{0; ij}(\vec{r}) = \int \frac{d^3p}{(2\pi)^3} e^{i\vec{p} \cdot \vec{r}} \frac{p_ip_j}{p^2} = \frac{1}{3} \delta_{ij} \delta(\vec{r}) - \frac{3}{4\pi r^3} (\hat{x}_i\hat{x}_j - \frac{1}{3} \delta_{ij}). \tag{3b}
\]

(In our notation the position vector has components \(\vec{r} = (x_1, x_2, x_3) = (x, y, z) \), and \(\hat{r} = \vec{r}/r \) with components \(\hat{x}_i = x_i/r \) is the associated unit vector.) The structure of three dimensional Fourier transforms such as (1) is organized by angular momentum. One sees that both the original function \(1/p^2 \) and the transform \(1/(4\pi r) \) of (2) are scalars under rotation. The original function \(p_i/p^2 \) of (3a) is a vector with \(\ell = 1 \) because the components \(\hat{p}_i \) can be expressed linearly in terms of spherical harmonics \(Y_1^m(\hat{p}) \) with \(\ell = 1 \). The transform \(i\hat{x}_i/(4\pi r^2) \) of (3a) also has \(\ell = 1 \) as \(\hat{x}_i \) can be expressed linearly in terms of \(Y_1^m(\hat{r}) \). The original function in (3b), \(\hat{p}_i\hat{p}_j \), is a combination of \(\ell = 0 \) and \(\ell = 2 \):

\[
\hat{p}_i\hat{p}_j = (\hat{p}_i\hat{p}_j)_0 + (\hat{p}_i\hat{p}_j)_2 = \left(\frac{1}{3} \delta_{ij} \right) + \left(\hat{p}_i\hat{p}_j - \frac{1}{3} \delta_{ij} \right) \tag{4}
\]

where \((\hat{p}_i\hat{p}_j)_0 = \frac{1}{3} \delta_{ij} \) is the \(\ell = 0 \) component and \((\hat{p}_i\hat{p}_j)_2 = \hat{p}_i\hat{p}_j - \frac{1}{3} \delta_{ij} \) is the \(\ell = 2 \) component. (In general we will write \((p_1 \cdots p_L)_\ell \) for the component of \(p_1 \cdots p_L \) of angular momentum \(\ell \).) We know that \((\hat{p}_i\hat{p}_j)_2 \) has \(\ell = 2 \) because it can be expressed linearly in terms of \(Y_2^m(\hat{p}) \): \((\hat{p}_i\hat{p}_j)_2 = \sum_m C_{ij}^{2m} Y_2^m(\hat{p}) \). It is apparent that the \(\ell = 0 \) and \(\ell = 2 \) components of \(\hat{p}_i\hat{p}_j \) behaves differently under the Fourier transform, acquiring different radial factors. It is generally true that in transforms like (1) it is useful to decompose \(\hat{p}_i \cdots \hat{p}_L \) into components of definite \(\ell \) and deal with each component separately.

The purpose of this work is to show how the decomposition of \(p_1 \cdots p_L \) can be done and to give explicit expressions for the components of \((p_1 \cdots p_L)_\ell \) having various values of angular momentum \(\ell \). This is a generalization of (4) to an arbitrary number of vectors \(L \). Our derivations are presented in terms of unit vectors because the relation

\[
(p_1 \cdots p_L)_\ell = p^L (\hat{p}_1 \cdots \hat{p}_L)_\ell \tag{5}
\]

\[\text{gadkins@fandm.edu}\]
allows us to immediately obtain the general case.

This work is organized as follows. In II we will review the method for performing three-dimensional Fourier transforms like (1) making use of angular decomposition. In III we obtain the general expression for the component of \(\hat{p}_i \cdots \hat{p}_{iL} \) of angular momentum \(\ell \). Finally, in IV we give some examples and applications of our results.

More general studies of the relation between Cartesian and spherical components of tensors have been done, [4–8] but the results of those studies are not in a form useful for our purposes here.

II. THREE-DIMENSIONAL FOURIER TRANSFORMS USING ANGULAR DECOMPOSITION

A systematic procedure exists for the evaluation of transforms such as (1) based on the decomposition of \(\hat{p}_i \cdots \hat{p}_{iL} \) into components of definite angular momentum. [9] Our purpose in this section is to review this procedure. We begin by noting that any function of angles, such as \(\hat{p}_i \cdots \hat{p}_{iL} \), can be written in terms of spherical harmonics:

\[
\hat{p}_i \cdots \hat{p}_{iL} = \sum_{\ell=L}^{1+0} \sum_{m=-\ell}^{\ell} C_{i_1 \cdots i_L}^{\ell m} Y_{\ell}^m (\hat{p}) \tag{6}
\]

for some constants \(C_{i_1 \cdots i_L}^{\ell m} \). The values of \(\ell \) that enter this sum are \(\ell = L, L - 2, \ldots \), down to 1 or 0 depending on whether \(L \) is odd or even. There are no values of \(\ell \) greater than \(L \) because \(\hat{p} \) has \(\ell = 1 \) and the combination of \(L \) objects having \(\ell = 1 \) can lead to angular momentum \(L \) at the most. Matching the parity \((-1)^\ell\) of \(\hat{p}_i \cdots \hat{p}_{iL} \) to the parity \((-1)^L\) of \(Y_{\ell}^m (\hat{p}) \) gives the requirement that only odd or only even values of \(\ell \) can contribute. We define \((\hat{p}_i \cdots \hat{p}_{iL})^L_\ell \) to be the component of \(\hat{p}_i \cdots \hat{p}_{iL} \) of angular momentum \(\ell \)

\[
(\hat{p}_i \cdots \hat{p}_{iL})^L_\ell = \sum_{m=-\ell}^{\ell} C_{i_1 \cdots i_L}^{\ell m} Y_{\ell}^m (\hat{p}),
\tag{7}
\]

so that

\[
\hat{p}_i \cdots \hat{p}_{iL} = \sum_{\ell=L}^{1+0} (\hat{p}_i \cdots \hat{p}_{iL})^L_\ell. \tag{8}
\]

It follows that any transform of the form given in (1) can be expressed as a linear combination of transforms like

\[
I_{n\ell m}(\vec{r}) = \int \frac{d^3 p}{(2\pi)^3} e^{i \vec{p} \cdot \vec{r}} p^n Y_{\ell}^m (\hat{p}).
\tag{9}
\]

It is convenient to express the exponential in (9) as a Rayleigh expansion: [10] 12

\[
e^{i \vec{p} \cdot \vec{r}} = \sum_{\ell=0}^{\infty} i^\ell (2\ell + 1) j_\ell (pr) P_\ell (\hat{p} \cdot \hat{r}) \tag{10}
\]

where the \(j_\ell (x) \) are spherical Bessel functions [13] and the \(P_\ell (x) \) are Legendre polynomials. We substitute (10) into (9) and use the addition theorem of spherical harmonics [14]

\[
P_\ell (\hat{p} \cdot \hat{r}) = \frac{4\pi}{2\ell + 1} \sum_{m=-\ell}^{\ell} Y_{\ell}^m (\hat{r}) Y_{\ell}^{m *} (\hat{p}) \tag{11}
\]

to factor the angular dependence present in \(P_\ell (\hat{p} \cdot \hat{r}) \) into parts involving the angles of \(\hat{p} \) and \(\hat{r} \) separately. We integrate over the angles of \(\hat{p} \) using orthogonality

\[
\int d\Omega_\hat{p} Y_{\ell}^{m *} (\hat{p}) Y_{\ell'}^{m'} (\hat{p}) = \delta_{\ell\ell'} \delta_{mm'},
\tag{12}
\]

where \(d\Omega_\hat{p} = d\theta_\hat{p} \sin \theta_\hat{p} d\phi_\hat{p} \) is the element of solid angle for \(\hat{p} \), to write the transform as

\[
I_{n\ell m}(\vec{r}) = \frac{i^\ell}{2\pi^2} Y_{\ell}^m (\hat{r}) \int_0^{\infty} dp p^{n+2} j_\ell (pr). \tag{13}
\]
The integral
\[R_{n\ell}(r) \equiv \int_{0}^{\infty} dp p^{n+2} j_\ell(pr) \]
converges for \(-(\ell + 3) < n < -1\) (when \(n\) and \(\ell\) are real, as here), and has the value \(R_{n\ell}(r) = \chi_{n\ell}/r^{n+3}\)
where \(\chi_{n\ell} = 2^{n+1} \sqrt{\pi} \frac{\Gamma\left(\frac{\ell+3+n}{2}\right)}{\Gamma\left(\frac{\ell-n}{2}\right)}\).

We can extend the useful range of \(n\) by generalizing \(13\) to
\[R_{n\ell}(r) = \lim_{\lambda \to 0^+} \int_{0}^{\infty} dp e^{-\lambda p} p^{n+2} j_\ell(pr), \]
which is also given by \(R_{n\ell}(r) = \chi_{n\ell}/r^{n+3}\) for all \(n\) in the larger range \(-(\ell + 3) < n < \ell\). When \(n = \ell\) the integral contains a delta function:
\[R_{\ell\ell}(r) = \lim_{\lambda \to 0^+} \int_{0}^{\infty} dp e^{-\lambda p} p^{\ell+2} j_\ell(pr) = \frac{2\pi^2(2\ell+1)!!}{\ell!} \delta(\hat{r}). \]

We always integrate over the spherical angles before doing the radial integration as part of the definition of these possibly singular integrals. (Non-spherical regularization alternatives have been considered by Hnizdo. \[16\] More general results for Fourier transforms of the form \[14\] have been obtained by Samko. \[17\]) All in all, we see that the initial transform \(14\) can be written as
\[\chi_{\ell m} = \sum_{\ell=L}^{1 or 0} \int_{0}^{\infty} dp p^{\ell+2} j_\ell(pr) = \frac{2\pi^2(2\ell+1)!!}{\ell!} \delta(\hat{r}). \]

where \((\hat{x}_i \cdots \hat{x}_L)_{\ell}\) is defined in terms of \(Y_{m}^{\ell}(\hat{r})\) just as \((\hat{p}_{i_1} \cdots \hat{p}_{i_L})_{\ell}\) is in terms of \(Y_{m}^{\ell}(\hat{p})\). It follows that if we can arrive at a useful expression for \((\hat{p}_{i_1} \cdots \hat{p}_{i_L})_{\ell}\), then we will be able to perform Fourier transforms of the form shown in \(14\) in a systematic way.

III. ANGULAR DECOMPOSITION OF \(\hat{p}_{i_1} \cdots \hat{p}_{i_L}\)

Our goal in this section is to obtain an explicit and useful expression for the component \((\hat{p}_{i_1} \cdots \hat{p}_{i_L})_{\ell}\) of angular momentum \(\ell\). We will discuss both a constructive method most useful for low values of \(L\) and a general result valid for all \(L\). Both approaches make use of the explicit solution for the constants \(C_{i_1 \cdots i_L}^{\ell m}\) in \(14\):
\[C_{i_1 \cdots i_L}^{\ell m} = \int d\Omega_p Y_{m}^{*}(\hat{p}) \hat{p}_{i_1} \cdots \hat{p}_{i_L}, \]

obtained through use of the orthogonality of the spherical harmonics. From this it is easy to see that the constants \(C_{i_1 \cdots i_L}^{\ell m}\), and thus the components \((\hat{p}_{i_1} \cdots \hat{p}_{i_L})_{\ell}^{L}\), are completely symmetric in all indices. The constructive method also uses the tracelessness of the maximum angular momentum component \((\hat{p}_{i_1} \cdots \hat{p}_{i_L})_{\ell}^{L}\), which follows from the tracelessness of \(C_{i_1 \cdots i_L}^{\ell m}\), which is a consequence of the fact that an object composed of \(L - 2\) parts, each part of unit angular momentum, has no overlap with an object of angular momentum \(L\):
\[C_{i_1 \cdots i_L}^{\ell m} \delta_{i_{L-1}i_L} = \int d\Omega_p Y_{L}^{m*}(\hat{p}) \hat{p}_{i_1} \cdots \hat{p}_{i_{L-2}} = 0. \]

The most convenient way to obtain \((\hat{p}_{i_1} \cdots \hat{p}_{i_L})_{\ell}^{L}\) for small values of \(L\) is by straightforward construction. We illustrate the constructive approach with a number of examples. The procedure starts with the maximum angular

\footnote{When \(\ell\) is not an odd integer we use \((2\ell + 1)!! = 2^\ell \ell! \Gamma(\ell + 3/2)/\Gamma(1/2)\).}
mumponent \((\hat{p}_i \cdots \hat{p}_i)_{\ell}^L\), which is completely symmetric and traceless. This maximum angular momentum component can be written as \(\hat{p}_i \cdots \hat{p}_i\) plus a linear combination of symmetric terms involving fewer momentum factors (but still with the same parity) added in with unknown coefficients. The condition of tracelessness determines the coefficients.

As a first example of the constructive approach, consider the case \(L = 3\). The maximum angular momentum component is

\[
(\hat{p}_i \hat{p}_j \hat{p}_k)^3 = \hat{p}_i \hat{p}_j \hat{p}_k - \frac{1}{5} (\hat{p}_i \delta_{jk} + \hat{p}_j \delta_{ki} + \hat{p}_k \delta_{ij}),
\]

(21)

where the \(-1/5\) coefficient was determined by the tracelessness condition. The other component, \((\hat{p}_i \hat{p}_j \hat{p}_k)^3\), is the difference \(\hat{p}_i \hat{p}_j \hat{p}_k - (\hat{p}_i \hat{p}_j \hat{p}_k)^3\).

\[
(\hat{p}_i \hat{p}_j \hat{p}_k)^3 = \frac{1}{3} (\hat{p}_i \delta_{jk} + \hat{p}_j \delta_{ki} + \hat{p}_k \delta_{ij}).
\]

(22)

It is clear that \((\hat{p}_i \hat{p}_j \hat{p}_k)^3\) has \(\ell = 1\) because each of its terms is linear in \(\hat{p}\).

As a second example of explicit construction, we consider the term with \(L = 4\). The term with maximal angular momentum is

\[
(\hat{p}_i \hat{p}_j \hat{p}_k \hat{p}_l)^4 = \hat{p}_i \hat{p}_j \hat{p}_k \hat{p}_l - \frac{1}{7} (\hat{p}_i \hat{p}_j \hat{p}_k \delta_{il} + \text{perms})_{6 \text{ terms}} + \frac{1}{35} (\delta_{ij} \delta_{kl} + \text{perms})_{3 \text{ terms}},
\]

(23)

where the coefficients \(-1/7\) and \(1/35\) were obtained by applying the tracelessness condition. We are only writing one representative permutation of indices—the others are represented by “+ perms” and an indication of how many independent permutations in all there are. We identify the \(\ell = 2\) component \((\hat{p}_i \hat{p}_j \hat{p}_k \hat{p}_l)^4\) by isolating the term in the difference \(\hat{p}_i \hat{p}_j \hat{p}_k \hat{p}_l - (\hat{p}_i \hat{p}_j \hat{p}_k \hat{p}_l)^4\) that is quadratic in \(\hat{p}\) and subtracting the appropriate momentum-independent terms so that each part of \((\hat{p}_i \hat{p}_j \hat{p}_k \hat{p}_l)^4\) has \(\ell = 2\):

\[
(\hat{p}_i \hat{p}_j \hat{p}_k \hat{p}_l)^4 = \frac{1}{7} \left((\hat{p}_i \hat{p}_j)^2 \delta_{il} + \text{perms} \right)_{6 \text{ terms}}.
\]

(24)

The \(\ell = 0\) component is the remainder:

\[
(\hat{p}_i \hat{p}_j \hat{p}_k \hat{p}_l)^0 = \frac{1}{15} (\delta_{il} \delta_{kl} + \text{perms})_{3 \text{ terms}}.
\]

(25)

We have also constructed the \(L = 5\) decomposition and just give the results:

\[
(\hat{p}_i \hat{p}_j \hat{p}_k \hat{p}_l)^5 = \hat{p}_i \hat{p}_j \hat{p}_k \hat{p}_l - \frac{1}{9} (\hat{p}_i \hat{p}_j \hat{p}_k \delta_{il} + \text{perms})_{10 \text{ terms}} + \frac{1}{63} (\delta_{ij} \delta_{kl} + \text{perms})_{15 \text{ terms}},
\]

(26a)

\[
(\hat{p}_i \hat{p}_j \hat{p}_k \hat{p}_l)^5 = \frac{1}{9} \left((\hat{p}_i \hat{p}_j \hat{p}_k)^3 \delta_{il} + \text{perms} \right)_{10 \text{ terms}}.
\]

(26b)

\[
(\hat{p}_i \hat{p}_j \hat{p}_k \hat{p}_l)^5 = \frac{1}{35} (\hat{p}_i \delta_{ij} \delta_{kl} + \text{perms})_{15 \text{ terms}}.
\]

(26c)

The basis of our general construction of \((\hat{p}_i \cdots \hat{p}_l)^L\) is an inductive argument using a recursion relation giving a component with angular momentum \(\ell\) in terms of components with lower values of \(\ell\). We will propose a general expression for \((\hat{p}_i \cdots \hat{p}_l)^L\) and show that it satisfies both the recursion relation and the appropriate initial values.

We can obtain a useful expression for \((\hat{p}_i \cdots \hat{p}_l)^L\) by using (13) in (7) along with the addition theorem for spherical harmonics:

\[
(\hat{p}_i \cdots \hat{p}_l)^L = \int d\Omega_{\ell'} \hat{p}_i' \cdots \hat{p}_l' \sum_{m=-\ell}^{\ell} Y_{\ell'}^m(\hat{p}') Y_{\ell}^m(\hat{p}) = (2\ell + 1) \int \frac{d\Omega_{\ell'}}{4\pi} \hat{p}_i' \cdots \hat{p}_l' P_{\ell}(\hat{p}' \cdot \hat{p})
\]

(27)

It can be seen from this expression both that \((\hat{p}_i \cdots \hat{p}_l)^L = 0\) for \(\ell > L\), and that \((\hat{p}_i \cdots \hat{p}_l)^L = 0\) unless \(L - \ell\) is even (by use of a parity argument). For any particular value of \(\ell\) we could write out \(P_{\ell}(\hat{p}' \cdot \hat{p})\) as a polynomial of order \(\ell\) and perform the angular integral using (18)

\[
\int \frac{d\Omega}{4\pi} \hat{x}_i' \cdots \hat{x}_N = \frac{\delta_{N,\text{even}}}{(N + 1)!!} (\delta_{i_2} \cdots \delta_{i_{N-1}i_N} + \text{perms})_{(N-1)!! \text{ terms}}.
\]

(28)
It is easy to perform the integral in (27) for \(\ell = 0 \) and \(\ell = 1 \) where \(P_0(\hat{p}' \cdot \hat{p}) = 1 \) and \(P_1(\hat{p}' \cdot \hat{p}) = \hat{p}' \cdot \hat{p} = \hat{p}_j \hat{p}_j \) (with an implied sum over \(j \) from 1 to 3). One finds that

\[
(\hat{p}_i \cdots \hat{p}_L)_0 = \int \frac{d^\ell p'}{4\pi} \hat{p}'_i \cdots \hat{p}'_L \equiv \left(\delta_L^{\text{even}} \right) \left(\delta_{i_1i_2} \cdots \delta_{i_{L-1}i_L} + \text{perms} \right) \left(L-1 \right)! \text{terms} \tag{29a}
\]

\[
(\hat{p}_i \cdots \hat{p}_L)_1 = 3 \int \frac{d^\ell p'}{4\pi} \hat{p}'_i \cdots \hat{p}'_L \hat{p}_j = 3 (\hat{p}_i \cdots \hat{p}_L \hat{p}_j)_0 \left(\hat{p}_j \right) \left(L-2 \right)! \text{terms} + \text{perms} \left(L-1 \right)! \text{terms} \tag{29b}
\]

These results will serve as initial values for the inductive argument. The recursion relation for \((\hat{p}_i \cdots \hat{p}_L)_\ell \) is

\[
(\hat{p}_i \cdots \hat{p}_L)_\ell = \frac{2\ell + 1}{\ell} \left\{ (\hat{p}_i \cdots \hat{p}_L \hat{p}_j)_{\ell-1} \hat{p}_j - \frac{\ell - 1}{2\ell - 3} (\hat{p}_i \cdots \hat{p}_L)_{\ell-2} \right\}
\]

which follows from (27) and the recursion relation for Legendre polynomials

\[
\ell P_\ell(x) = (2\ell - 1)x P_{\ell-1}(x) - (\ell - 1) P_{\ell-2}(x).
\]

In order to write down a general expression for \((\hat{p}_i \cdots \hat{p}_L)_\ell \) and perform the inductive proof of its correctness it will be useful to introduce a little notation. First, we will use the usual summation symbol to represent a ‘sum over permutations’ instead of the ‘+ perms’ notation used up until now. Specifically, we will write

\[
\sum_{(L-1)!!} (\delta_{i_1i_2} \cdots \delta_{i_{L-1}i_L}) \tag{32}
\]

for the sum over the \((L-1)!! \) independent permutations of the indices of the quantity in parentheses. This sum over permutations doesn’t include ones that trivially equal one another, which is why there are only \((L-1)!! \) permutations in (32), but would be \(L! \) permutations in a sum over permutations of \(A_{i_1}^L \cdots A_{i_L}^L \), but only one in a sum over permutations of \(S_{i_1 \cdots i_L} \) if \(S_{i_1 \cdots i_L} \) is completely symmetric. Also, we define the new symbol

\[
X_{i_1 \cdots i_L}^{L,\ell} \equiv \sum_{(\ell)!} (\hat{p}_i \cdots \hat{p}_\ell i \cdots i_{L-1}) (\delta_{i_{L-1}i_L}) \tag{33}
\]

to represent the completely symmetric object with \(L \) indices formed of \(\ell \) momentum unit vectors and \((L - \ell)/2 \) Kronecker deltas. The \((\ell)! \) notation represents the combinatoric factor \(\frac{(L - \ell)!}{L^{2\ell}} \) for the number of ways to pick \(\ell \) indices out of a collection of \(L \) indices. We can represent \(X_{i_1 \cdots i_L}^{L,\ell} \) slightly more compactly as

\[
X_{i_1 \cdots i_L}^{\ell} = \sum_{(\ell)!/(L-\ell)!!} (\hat{p}_i \cdots \hat{p}_\ell \delta_{i_{L-1}i_L}) \tag{34}
\]

We note that the \(X_{i_1 \cdots i_L}^{L,\ell} \) symbol only makes sense when \(L \) and \(\ell \) are either both even or both odd—we define it to be zero otherwise. We also define \(X_{i_1 \cdots i_L}^{L,\ell} \) to be zero if \(L \) or \(\ell \) is negative or if \(\ell \) is greater than \(L \). With the new notation we can write the results of (29a) as

\[
(\hat{p}_i \cdots \hat{p}_L)_0 = \frac{1}{(L+1)!!} X_{i_1 \cdots i_L}^{0,0}, \tag{35a}
\]

\[
(\hat{p}_i \cdots \hat{p}_L)_1 = \frac{3}{(L+2)!!} X_{i_1 \cdots i_L}^{1,1}. \tag{35b}
\]

Identities among \(X_{i_1 \cdots i_L}^{L,\ell} \) quantities can often be found by simple counting. For instance, consider the following identity for the symmetrized product of two \(X \)s:

\[
\sum_{(L+N)^N} X_{i_1 \cdots i_L}^{L,\ell} X_{i_{L+1} \cdots i_{L+N}}^{N, n} = \kappa X_{i_1 \cdots i_{L+N}}^{L+N,\ell+n}. \tag{36}
\]
Both sides of (35) involve the same set of \(L + N \) indices, both are symmetric in all indices, and both have exactly \(\ell + n \) momentum unit vectors in each term, so the two sides of (35) are proportional. Since all terms enter with the same sign and there are no cancellations, the constant of proportionality \(\kappa \) can be found simply by counting the total number of terms on each side. On the left there are \(\binom{L+N}{\ell} \binom{N}{n} (L - \ell - 1)!! (N - n - 1)!! \) terms, while on the right there are \(\binom{L+N}{\ell+n} (L + N - \ell - n - 1)!! \) terms. The constant \(\kappa \) is the ratio:

\[
\kappa = \left(\frac{L + N - \ell - n}{L - \ell} \right) \left(\frac{\ell + n}{\ell} \right) \frac{(L - \ell - 1)!! (N - n - 1)!!}{(L + N - \ell - n - 1)!!}. \tag{37}
\]

Two additional identities that will be useful to us involve the contraction \(X_{i_1 \ldots i_L}^{L,\ell} \hat{p}_{i_L} \) of an \(X \) with \(\hat{p} \) and the contraction \(X_{i_1 \ldots i_L}^{L,\ell} \delta_{i_{L-1}i_L} \) of two indices of an \(X \). For the first identity, we note that

\[
X_{i_1 \ldots i_L}^{L,\ell} = \sum_{(\ell - 1)} \left(\hat{p}_{i_1} \cdots \hat{p}_{i_L} \sum_{(L-\ell-1)!!} \left(\delta_{i_{\ell+1}i_{\ell+2}} \cdots \delta_{i_{L-1}i_L} \right) \right) + \sum_{(\ell - 1)} \left(\hat{p}_{i_1} \cdots \hat{p}_{i_{\ell-1}} \hat{p}_{i_L} \sum_{(L-\ell-1)!!} \left(\delta_{i_{\ell+1}i_{\ell+2}} \cdots \delta_{i_{L-2}i_{L-1}} \right) \right), \tag{38}
\]

where in the first term it is understood that index \(i_L \) is definitely on a \(\delta \), while in the second term index \(i_L \) is attached to a \(\hat{p} \). Contraction with \(\hat{p}_{i_L} \) then gives two corresponding terms: \(\hat{p}_{i_L} \) times the first term of (35) has \(L - 1 \) indices and \(\ell + 1 \) factors of \(\hat{p} \), while \(\hat{p}_{i_L} \) times the second term of (35) has \(L - 1 \) indices and only \(\ell - 1 \) powers of \(\hat{p} \), so that \(X_{i_1 \ldots i_L}^{L,\ell} \hat{p}_{i_L} = \alpha X_{i_1 \ldots i_L}^{L-1,\ell+1} + \beta X_{i_1 \ldots i_L}^{L-1,\ell-1} \) for some constants \(\alpha \) and \(\beta \). Counting terms allows us to identify the constants to be \(\alpha = \ell + 1 \) and \(\beta = 1 \), so that

\[
X_{i_1 \ldots i_L}^{L,\ell} \hat{p}_{i_L} = (\ell + 1)X_{i_1 \ldots i_{L-1}}^{L-1,\ell+1} + X_{i_1 \ldots i_{L-1}}^{L-1,\ell-1}. \tag{39}
\]

For the second identity we write \(X_{i_1 \ldots i_L}^{L,\ell} \) as

\[
X_{i_1 \ldots i_{L-1} i_L}^{L,\ell} = \sum_{(L-\ell-1)} \left(\hat{p}_{i_1} \cdots \hat{p}_{i_{\ell-2}} \sum_{(L-\ell-3)!!} \left(\delta_{i_{\ell+1}i_{\ell+2}} \cdots \delta_{i_{L-3}i_{L-1}} \delta_{i_{L-2}i_L} \right) \right) + \sum_{(L-\ell-1)} \left(\hat{p}_{i_1} \cdots \hat{p}_{i_{\ell-1}} \hat{p}_{i_L} \sum_{(L-\ell-1)!!} \left(\delta_{i_{\ell+1}i_{\ell+2}} \cdots \delta_{i_{L-2}i_{L-1}} \right) \right) + \sum_{(L-\ell-1)} \left(\hat{p}_{i_1} \cdots \hat{p}_{i_{\ell-2}} \hat{p}_{i_{L-1}} \hat{p}_{i_L} \sum_{(L-\ell-1)!!} \left(\delta_{i_{\ell+1}i_{\ell+2}} \cdots \delta_{i_{L-3}i_{L-2}} \right) \right) + \sum_{(L-\ell-1)} \left(\hat{p}_{i_1} \cdots \hat{p}_{i_{\ell-3}} \hat{p}_{i_{L-2}} \hat{p}_{i_{L-1}} \hat{p}_{i_L} \sum_{(L-\ell-1)!!} \left(\delta_{i_{\ell+1}i_{\ell+2}} \cdots \delta_{i_{L-4}i_{L-2}} \right) \right), \tag{40}
\]

where it is understood that in the first two terms the indices \(i_{L-1} \) and \(i_L \) are definitely on \(\delta \), on the same \(\delta \) in the first and on different \(\delta \)s in the second; in the third term \(i_{L-1} \) is on a \(\hat{p} \) while \(i_L \) is on a \(\delta \); in the fourth \(i_L \) is on a \(\hat{p} \) and \(i_{L-1} \) on a \(\delta \); and in the last term \(i_{L-1} \) and \(i_L \) are on \(\hat{p} \). Contraction of \(i_{L-1} \) with \(i_L \) gives rise to two structures: \(X_{i_1 \ldots i_{L-2}}^{L,\ell} \delta_{i_{L-1}i_L} = \rho X_{i_1 \ldots i_{L-2}}^{L-2,\ell} + \sigma X_{i_1 \ldots i_{L-2}}^{L-2,\ell-2} \) with the first four terms of (35) contributing to \(\rho \) and the last contributing to \(\sigma \). Again, we use term counting to identify values for \(\rho \) and \(\sigma \). finding \(\rho = L + \ell + 1 \) and \(\sigma = 1 \). (The four contributions to \(\rho \) are, in order, 3, \(L - \ell - 2 \), \(\ell \) and \(\ell \).) The final form of the contraction identity is

\[
X_{i_1 \ldots i_L}^{L,\ell} \delta_{i_{L-1}i_L} = (L + \ell + 1)X_{i_1 \ldots i_{L-1}}^{L-2,\ell} + X_{i_1 \ldots i_{L-1}}^{L-1,\ell-2}. \tag{41}
\]

We propose the following form for the general decomposition formula

\[
(\hat{p}_{i_1} \cdots \hat{p}_{i_L})_{L} = \left(\frac{(2L+1)(L - \ell - 1)!!}{(L - \ell)!(L + \ell + 1)!!} \right) \sum_{n=\ell}^{\infty} (-1)^{\ell-n} \frac{(L-n)!!(L+n-1)!!(\ell-n-1)!!}{(L-n)!(L+n-1)!!} X_{i_1 \ldots i_L}^{L,n}. \tag{42}
\]
where the sum is over \(n = \ell, \ell - 2, \) etc., ending with 1 or 0 depending on whether \(\ell \) is odd or even. We proceed to verify the correctness of this formula by: (i), showing that it is consistent with the initial values of \((35a), (35b)\); and (ii), verifying that it satisfies the recursion relation \((30)\). Verification of consistency with the initial values is immediate by substituting \(\ell = 0 \) and \(\ell = 1 \) into \((42)\) and noting that in each case there is only one term in the sum and that it agrees with \((35a), (35b)\). For step (ii), verification that \((42)\) satisfies the recursion relation \((30)\), we substitute \((42)\) into the right hand side of \((30)\) and obtain two terms. The first of these is

\[
\frac{2\ell + 1}{\ell} \frac{(2\ell - 1)(L - \ell + 1)!!}{(L - \ell + 2)!!(L + \ell + 1)!!} \sum_{n'=0}^{n-1} (-1)^{n'-1} (L + n' + 1)! \frac{(\ell + n' - 2)!!(\ell - n' - 2)!!}{(\ell - n' - 1)!!(L - n' - 1)!!} \left((n' + 1) X_{L,n+1}^{\ell} + X_{L,n-1}^{\ell} \right) \tag{43}
\]

and the second is

\[
- \frac{2\ell + 1}{\ell - 2\ell - 3} \frac{(2\ell - 3)(L - \ell + 1)!!}{(L - \ell + 2)!!(L + \ell - 1)!!} \sum_{n=0}^{1} (-1)^{-n} (L - n)! (\ell + n - 2)! (\ell - n - 3)! \frac{(\ell - n - 2)!}{(L - n - 2)!} X_{L,n}^{\ell} \tag{44}
\]

We shift the summation index in the first part of \((43)\) according to \(n' \to n - 1 \) and in the second part by \(n' \to n + 1 \), so that all terms are proportional to \(X_{L,n}^{\ell} \). We add the two parts of \((43)\) to \((44)\) and, after some algebraic simplification, find that the sum is equal to \((42)\). Thus \((42)\) satisfies the recursion relation and by induction is correct for all values of \(\ell \).

It is useful to find an expression for the component of \(\hat{p}_{i_1} \cdots \hat{p}_{i_L} \) having maximal angular momentum. With \(\ell \to L \) in the general decomposition formula \((42)\) we find that

\[
(\hat{p}_{i_1} \cdots \hat{p}_{i_L})_L^{\ell} = \sum_{n=L}^{1 \text{ or } 0} (-1)^{L-n} \frac{L+n-1!!}{(2L-1)!!} X_{L,n}^{\ell} \tag{45}
\]

This expression is traceless on all pairs of indices as required by \((20)\) and as can be confirmed by applying the trace identity \((41)\) to \((45)\).

Using \((45)\), the product identity \((36)\), and expression \((35a)\) for \((\hat{p}_{i_1} \cdots \hat{p}_{i_L})_0^{\ell} \), it is easy to see that \((\hat{p}_{i_1} \cdots \hat{p}_{i_L})_L^{\ell}\) can be written in an alternative, and illuminating, form:

\[
(\hat{p}_{i_1} \cdots \hat{p}_{i_L})_L^{\ell} = \frac{2(\ell + 1)!!(L - \ell + 1)!!}{(L + \ell + 1)!!} \sum_{\ell=L}^{0} (\hat{p}_{i_1} \cdots \hat{p}_{i_L})_L^{\ell} \left(\hat{p}_{i_{L+1}} \cdots \hat{p}_{i_L} \right)_{L-\ell}^{L-L} \tag{46}
\]

This form displays clearly the fact that every sub-part of \((\hat{p}_{i_1} \cdots \hat{p}_{i_L})_L^{\ell}\) has angular momentum \(\ell \) among some subset of momenta unit vectors and angular momentum zero among the rest. This behavior is illustrated by the examples shown in \((24)\), \((25)\), and \((26)\) (since \(\hat{p}_i^i = \hat{p}_i\)). Expressions \((43)\) for \((\hat{p}_{i_1} \cdots \hat{p}_{i_L})_L^{\ell}\) and \((45)\) for \((\hat{p}_{i_1} \cdots \hat{p}_{i_L})_0^{\ell}\) are the main results of this paper.

IV. APPLICATIONS

As discussed in \([9]\) and \([11]\) a useful class of three-dimensional Fourier transforms (that of functions like \(p^n \hat{p}_{i_1} \cdots \hat{p}_{i_L}\)) can be conveniently done after separation of the various angular momenta in the tensor product. With a Fourier transform pair \(\Phi(\vec{p})\) and \(\Psi(\vec{r})\) defined through

\[
\Psi(\vec{r}) = \int \frac{d^3p}{(2\pi)^3} e^{i\vec{p} \cdot \vec{r}} \Phi(\vec{p}) \tag{47a}
\]
\[
\Phi(\vec{p}) = \int d^3r e^{-i\vec{p} \cdot \vec{r}} \Psi(\vec{r}) \tag{47b}
\]

An expression consistent with \((42)\) is given in \([19, 20]\) but more general because not restricted to three dimensions of space. The consistency of \((42)\) with Theorem 1 of \([19, 20]\) is established through use of the identity \(\Delta^n p_{i_1} \cdots p_{i_L} = 2^n n! L^{-2n} X_{L,n}^{L,n} \) where \(\Delta\) is the Laplacian.
it is generally true that the angular momenta of $\Phi(\vec{p})$ and $\Psi(\vec{r})$ are the same. It follows that the transform pairs can be represented by

$$\Phi(\vec{p}) = \phi(p) Y^m_\ell (\hat{p}) \iff \Psi(\vec{r}) = \psi(r) Y^m_\ell (\hat{r})$$ \hspace{1cm} (48)

or

$$\Phi(\vec{p}) = \phi(p) (\hat{p}_1 \cdots \hat{p}_L) \ell \iff \Psi(\vec{r}) = \psi(r) (\hat{x}_1 \cdots \hat{x}_L) \ell$$ \hspace{1cm} (49)

where the radial functions $\phi(p)$ and $\psi(r)$ are related by

$$\psi(r) = \frac{i^\ell}{2\pi^2} \int_0^\infty dp \, p^2 j_\ell(pr) \phi(p),$$ \hspace{1cm} (50a)

$$\phi(p) = 4\pi (-i)^\ell \int_0^\infty dr \, r^2 j_\ell(pr) \psi(r).$$ \hspace{1cm} (50b)

In the case that $\phi(p) = p^n$ the transform is $\psi(r)$ where

$$\psi(r) = \begin{cases} \frac{i^\ell \chi_{n+\ell}}{2\pi r^{n+\ell}} & -(\ell + 3) < n < \ell, \\ \frac{i^\ell \delta(\hat{r})}{r^{n-\ell}} & n = \ell. \end{cases}$$ \hspace{1cm} (51)

Since the transform pair (50a), (50b) is essentially the Hankel transform, \cite{21,22} many additional ϕ, ψ pairs are also available, for example those that relate momentum space and coordinate space versions of the Coulomb wave functions. \cite{23} Results for the examples given in I are immediate consequences of angular decomposition and the transforms contained in (51).

An interesting use of Fourier transforms of the type considered here is to find unusual differential identities. Consider the Fourier transform of $f(p) (\hat{p}_1 \cdots \hat{p}_L) \ell$. The momentum vectors can be converted into derivatives when acting on the exponential in the Fourier transform, leading to

$$\int \frac{d^3p}{(2\pi)^3} e^{i\vec{p} \cdot \vec{r}} f(p) (\hat{p}_1 \cdots \hat{p}_L) \ell = (-i)^L \left(\partial_{\hat{p}_1} \cdots \partial_{\hat{p}_L}\right) \ell \int \frac{d^3p}{(2\pi)^3} e^{i\vec{p} \cdot \vec{r}} f(p).$$ \hspace{1cm} (52)

On the other hand, the transform can be evaluated explicitly using (51). Comparison leads to a differential identity. For example, comparison of the two approaches for the transform of $\frac{1}{r^k} (\hat{p}_1 \cdots \hat{p}_k) \ell$ leads to the identity

$$(\partial_{\hat{p}_1} \cdots \partial_{\hat{p}_k}) \ell \frac{1}{r} = \frac{(-1)^k (2k - 1)!!}{r^{k+1}} (\hat{x}_{i_1} \cdots \hat{x}_{i_k}) \ell.$$ \hspace{1cm} (53)

(The same identity expressed in terms of spherical harmonics has been given by Rowe. \cite{24} General derivatives of inverse powers of r have been worked out by Estrada and Kanwal from a distribution point of view. \cite{25}) For $k = 2$, and with use of the Poisson equation $\partial^2 r^2 = -4\pi \delta(\hat{r})$, one obtains the familiar identity \cite{26}

$$\partial_\ell \partial_\ell \frac{1}{r} = -\frac{4\pi}{3} \delta_{ij} \delta(\hat{r}) + \frac{3}{r^3} \left(\hat{x}_i \hat{x}_j - \frac{1}{3} \delta_{ij}\right),$$ \hspace{1cm} (54)

as also follows from (31) of Sec. I. A second interesting identity of this class follows from consideration of the transform of $\frac{1}{r^k} (\hat{p}_1 \cdots \hat{p}_k) \ell$:

$$(\partial_{\hat{p}_1} \cdots \partial_{\hat{p}_k}) \ell \delta(\hat{r}) = \frac{(-1)^k (2k + 1)!!}{r^k} (\hat{x}_{i_1} \cdots \hat{x}_{i_k}) \ell \delta(\hat{r}).$$ \hspace{1cm} (55)

Other differential identities can be obtained as easily.

Acknowledgments

This material is based upon work supported by the National Science Foundation through Grant No. PHY-1404268.
References

[1] G. Breit, Phys. Rev. 34, 553 (1929).
[2] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer-Verlag, Berlin, 1957), Sec. 39.
[3] V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics (Pergamon Press, Oxford, 1982), Sec. 83.
[4] J. A. R. Coope, R. F. Snider, and F. R. McCourt, J. Chem. Phys. 43, 2269 (1965).
[5] J. A. R. Coope and R. F. Snider, J. Math. Phys. 11, 1003 (1970).
[6] A. J. Stone, Mol. Phys. 29, 1461 (1975).
[7] A. J. Stone, J. Phys. A: Math. Gen. 9, 485 (1976).
[8] J.-M. Normand and J. Raynal, J. Phys. A: Math. Gen. 15, 1437 (1982).
[9] G. S. Adkins, arXiv:1302.1830 [math-ph].
[10] G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed. (Cambridge University Press, Cambridge, 1922), p. 368.
[11] P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw Hill, New York, 1953), p. 1466.
[12] G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists, 5th ed. (Academic Press, San Diego, 2001), p. 770.
[13] Arfken and Weber, op. cit., Sec. 11.7.
[14] Arfken and Weber, op. cit., Sec. 12.8.
[15] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, New York, 1980), Integral 6.561(14), p. 684.
[16] V. Hnizdo, Eur. J. Phys. 32, 287 (2011).
[17] S. G. Samko, On the Fourier transforms of the functions $Y_m(x/|x|)/|x|^{n+\alpha}$, Izvestiya VUZ. Matematika, 22(7), 73-78 (1978).
[18] J. M. Bowen, Am. J. Phys. 62, 511 (1994), Appendix A.
[19] A. Bezubik, A. Dabrowska, and A. Strasburger, J. Nonlinear Mathematical Physics, 11 Supplement, 167 (2004).
[20] A. Bezubik and A. Strasburger, Symmetry, Integrability and Geometry: Methods and Applications, 2, 033 (2006).
[21] F. Oberhettinger, Tables of Bessel Transforms (Springer-Verlag, Berlin, 1972).
[22] B. Davies, Integral Transforms and their Applications (Springer-Verlag, New York, 1978), Sec. 15.
[23] B. Podolsky and L. Pauling, Phys. Rev. 34, 109 (1929).
[24] E. G. P. Rowe, J. Math. Phys. 19, 1962 (1978).
[25] R. Estrada and R. P. Kanwal, Proc. R. Soc. Lond. A 401, 281 (1985).
[26] C. P. Frahm, Am. J. Phys. 51, 826 (1983).