The rate of growth of the water volume in the reservoir varies with each charging season. The accuracy of the predictions is required in sustainable reservoir management. Its intrinsic growth rate as an ecological parameter plays a role in determining this speed. This study aimed to analyze the dynamics of water volume growth based on its intrinsic growth rate to assess the potential for hydrometeorology disasters. The population growth models proposed to be tested for suitability and goodness is the Verhulst, Richards, Comperzt, and modified Malthus model. Test suitability and model goodness were subjected to stages of verification, parameter estimation and model validation based on daily water volume data in the Gembong Reservoir, Pati, Indonesia for the period 2007–2020. A good model is determined based on the Mean Average Percentage Error (MAPE) criteria. The Richards model with \(b = 2 \) and \(r = 0.063/\text{day} \) had consistently low MAPE values during training and testing. This model was chosen as a new approach to understand the dynamics of water volume growth in a reservoir. The ecological implication of these dynamics of water volume growth is that reservoirs experience an abundance of water during the charging season. Reservoir normalization can be prioritized as a mitigation strategy for potential flood disasters.

Keywords: hydrometeorology, intrinsic growth rate; mitigation, Richards model, water volume.
The mathemtical model is a concept that describes the behavior of a real system quantitatively, which can be developed analytically and empirically. A good model fit was tested through the stages of verification, parameter estimation, data-based model validation to obtain a good model, and analyzing the intrinsic growth rate to assess the potential for local hydrometeorology disasters. The development of its application to the dynamics of biotic population growth. This article discusses the development of its application to the dynamics of water volume growth in a reservoir.

Therefore, the objective of this study was to analyze the dynamics of water volume growth in the reservoir based on its intrinsic growth rate. The study was conducted by modifying the generalization logistic growth model through the stages of verification, parameter estimation, data-based model validation to obtain a good model, and analyzing the intrinsic growth rate to assess the potential for local hydrometeorology disasters. This study was carried out in the Gembong Reservoir, Pati Regency, Indonesia in 2019–2020.

MATERIALS AND METHODS

Data collection

The mathematical model is a concept that describes the behavior of a real system quantitatively, which can be developed analytically and empirically. A good model fit was tested through the stages of verification, parameter estimation, and model...
validation [Jorgensen, 1994]. The data on daily water volume of the Gembong Reservoir for the period 2007-2018 is used as training, data in 2019 for testing, and data in 2020 for predicting. The proposed dynamic models, namely the Verhulst, Richards, Gompertz and Malthus modified models were tested for goodness based on the water volume data.

Model Development

The verification was carried out by making a curve of the water volume growth in each charging season to determine the shape of the curve and its geometric properties. The parameter estimation begins by solving the ordinary differential equations of each proposed model to obtain the growth function. The intrinsic growth rate parameter \(r \) is formulated and estimated according to the growth functions at each charging season. From the daily water volume data in each charging season, the initial water volume \(V_0 \) (m\(^3\)), the water volume carrying capacity of the reservoir \(K \) (m\(^3\)), and the duration of time (days) during the charging season, can be seen. Model validation was performed using the MAPE (Mean Absolute Percentage Error) criteria based on Eq. (2) to confirm the model goodness.

\[
MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{y_i - \hat{y}_i}{y_i} \right| \times 100\%
\]

(2)

where \(y_i \) is the \(i \)th water volume, \(\hat{y}_i \) is a prediction of the \(i \)th water volume, and \(n \) is a sample size during the charging season, \(i = 1, 2, 3, \ldots n \). On the basis of the criteria by Lewis (1982), the forecast model with a smaller MAPE value is better [Hyndman and Koehler, 2006; Chen et al., 2008].

The analysis of the dynamics of water availability in reservoirs and the potential for local hydrometeorology disasters is based on the intrinsic growth rate characteristics of the selected model.

RESULTS AND DISCUSSION

Dynamic modeling of the water volume growth based on data

The field verification confirmed that charging in the Gembong Reservoir only occurs during the rainy season, the volume of water in the Gembong Reservoir is an accumulation of rainfall, and its infrastructure is in good condition [PJRRC, 2015]. The curve in Figure 1 is an example of the

Fig. 1. Curve of the water volume in 2012

Model	Equation	Growth Function	R
Verhulst	\[\frac{dV}{dt} = rV(1 - \frac{V}{K}) \]	\(V_t = \frac{K}{1 + e^{-rt}} \left(\frac{K}{V_0} - 1 \right) \)	\(r = -\frac{\ln\left(\frac{V_0}{K - V_0}\right)\left(K - V_t\right)}{t} \)
Richards \(b = 2 \)	\[\frac{dV}{dt} = rV(1 - \left(\frac{V}{K}\right)^2) \]	\(V_t = \frac{K}{1 - e^{2rt}(1 - \left(\frac{K}{V_0}\right)^2)^{1/2}} \)	\(r = -\frac{1}{2t} \left(\frac{K}{V_0} \right)^2 \)
Gompertz	\[\frac{dV}{dt} = rV_t(\ln\left(\frac{K}{V_t}\right)) \]	\(V_t = K \exp\left[\ln\left(\frac{V_0}{K}\right)e^{-rt}\right] \)	\(r = -\frac{1}{t} \left(\frac{\ln\left(V_0/V_t\right)}{\ln\left(V_0/K\right)} \right) \)
Malthus modified	\[\frac{dV}{dt} = r(K - V_t) \]	\(V_t = K + (V_0 - K)e^{-rt} \)	\(r = -\frac{1}{t} \left(\frac{V_t - K}{V_0 - K} \right) \)
The water volume growth curve in each charging season. Geometrically, there are three phases of the growth curve gradient, namely a small gradient at the beginning of the rainy season, then growing in the middle of the rainy season, and shrinking back asymptotically until the end of the rainy season [Thornley et al., 2004] or finally reaching a constant volume equivalent to volume. The water carrying capacity of reservoirs [Idlango et al., 2017]. The water volume growth curve resembles the logistic growth curve [Bradley, 2000; Tsoularis, 2001; Kribs-Zaleta, 2004; Chong et al., 2005; Miranda and Lima, 2010; Melica et al., 2014; Jin et al., 2018; Brilhante et al., 2019], so that the water volume growth curve in the Gembong Reservoir can be described by the logistic growth curve.

The growth function is a solution to the ordinary differential equation of the proposed model. Table 1 presents the formulations of the r parameter based on each of these solutions. The value of V_0 is known from each charging season, while K is the capacity of the reservoir. These V_0 and K values are substituted for the r equation for each of the proposed models, so that the r value for each t is obtained. Then, the mean value of r is calculated and used as the estimated value of r for each proposed model. Table 2 shows that the estimated value of r with the Verhulst model > Richards model > Gompertz model > modified Malthus model.

The estimated value of r in Table 2 is then substituted for each growth function in Table 1.

Table 2. Estimated parameter of r/day) for each charging season

Year	Verhulst	Richards $b = 2$	Gompertz	Malthus modified
2007	0.115	0.099	0.054	0.022
2008	0.069	0.056	0.034	0.016
2009	0.038	0.032	0.015	0.009
2010	0.054	0.028	0.052	0.051
2011	0.047	0.036	0.027	0.016
2012	0.057	0.047	0.030	0.015
2013	0.099	0.085	0.052	0.026
2014	0.068	0.053	0.039	0.022
2015	0.028	0.029	0.016	0.007
2016	0.082	0.063	0.046	0.026
2017	0.084	0.068	0.044	0.022
2018	0.030	0.025	0.016	0.008
2019	0.101	0.082	0.054	0.028
Average	0.067	0.055	0.037	0.021

Table 3. MAPE for each charging season (%)

Year	Verhulst	Richards $b = 2$	Gompertz	Malthus modified
2007	14 18	17 22	12 12	23 11
2008	15 11	12 12	31 34	72 16
2009	65 40	53 38	80 73	169 38
2010	0.3 222	0.30 43	0.56 13	0.30 30
2011	0.3 30	6 30	20 48	38 18
2012	5 20	7 17	10 43	24 20
2013	5 14	6 18	8 14	17 12
2014	8 11	13 13	9 28	30 11
2015	32 55	49 19	49 14	68 49
2016	3 11	3 13	5 18	11 12
2017	10 11	13 14	9 21	14 11
2018	25 53	23 54	38 71	59 44
Average	16 41	17 24	23 32	44 23
Validation of each model was carried out by calculating the MAPE training value (tr) and the MAPE testing value (ts) to determine the accuracy of the model. Table 3 presents the tr and ts values of each of the proposed models.

Table 3 shows that the Richards model with $b = 2$ has consistently smaller tr and ts values than the other three models. Thus, the Richards model with $b = 2$ is the best model of the other three models. The 2016 charging season has little MAPE consistency, so that the estimated parameter value $r = 0.063$/day in Table 2 based on the Richards model with $b = 2$ is chosen as the parameter value r. Therefore, the Richards growth model with $b = 2$ and $r = 0.063$/day is a good model [Hyndman and Koehler, 2006; Chen et al., 2008] to explain the dynamics of water volume growth in the Gembong Reservoir. Figure 2 presents the growth curve of the Richards model with $b = 2$ and $r = 0.063$/day and the growth curve for daily water volume for the 2020 charging season.

The dynamic analysis of water volume growth

Figure 2 shows that the curve of the Richards model with $b = 2$ is good enough to illustrate the growth curve of water volume in the Gembong Reservoir in the 2020 charging season. The ecological implication of the phenomenon of water volume growth in the reservoir in each rainy season has three growth phases, as shown by the curve in Figure 2. Rainfall at the beginning of the rainy season is relatively small, so the intrinsic growth rate of reservoir water volume is also small. Rainfall becomes larger in the mid-rainy season phase. The loss of rainwater caused by the interception is getting smaller, so that the rain falling on the land has the potential to flow into the reservoir storage. The intrinsic growth rate of water volume in this phase is greater, which then reaches the inflection point [Tsoularis, 2001], and finally shrinks asymptotically to near zero. The r parameter in Table 2 fluctuates from year to year without following a certain trend pattern. The characteristics of the r parameter are in line with the characteristics of local rainfall [Kartono et al., 2020]. The Richards growth function in Table 1 fulfills the asymptotic nature, using Eq. 3.

$$\lim_{t \to \infty} V(t) = K$$ \hspace{1cm} (3)

Geometrically from Eq.(3), the line $V = K$ is an asymptotic line of the V_t curve, meaning that the growth in reservoir water volume reaches its carrying capacity under saturated conditions [Kribs-Zaleta, 2004]. The higher the r value, the greater the speed of the reservoir to reach saturation. This shows that the dynamic model of biotic population growth [Jorgensen, 1994; Peleg, 2006; Al-Saffar and Kim, 2017; Jin et al., 2018; Batista, 2020; Torrealba-Rodriguez et al., 2020] can be developed as a dynamics model of a-biotic population growth (water volume). The reproduction rate in a biotic population is defined by the rate of increase in the a-biotic population. The logistic growth models can reveal the dynamic properties of water volume growth in reservoirs, although the goodness of the model for prediction depends on the goodness or quality of empirical data [Batista, 2020].

Ecological implications of the dynamics of water volume growth based on the intrinsic growth rate

The average intrinsic growth rate of the Richards model of 0.055/day can be used as an early warning indicator [Burkhard et al., 2015; Forni et al., 2016], which indicates the potential for water abundance in the reservoir [Mushar et al., 2019]. The potential for flood disasters
triggered by the abundance of water is becoming higher along with the shrinking capacity of the reservoir due to increased sedimentation.

There are two phases of risk to be aware of, namely the growth phase and the saturation phase during the reservoir water charging process. If the value of r is greater in the growth phase, then t is smaller. The reservoir reaches its water volume carrying capacity faster (the reservoir is full), and the reservoir experiences a saturation condition for a longtime. In this phase, some of the reservoir water will overflow through the spillway when it rains. The longer the remaining rainy season, the greater the water overflow through the spillway. This condition increases the environmental pressure on the resilience of the reservoir building which can have fatal consequences [Harsoyo, 2010], so that normalization of the reservoir needs to be done as a mitigation strategy against potential flooding.

Conversely, if the value of r is becoming smaller, then t is becoming greater, meaning that the reservoir takes longer to reach the water volume carrying capacity. Under this condition, the reservoir does not take too long to fully store water, so that the overflow of water through the spillway is smaller or does not occur. The potential for scarcity of water can trigger a meteorologist drought when the value of r is very small. Such a trend cannot be understood as having the potential for flooding, given that 75% of local rainfall occurs with high concentrations [Kartono et al., 2020].

CONCLUSIONS

The Richards model with $b = 2$ and $r = 0.063$/day is a good model to explain the dynamics of water volume growth in the Gembong Reservoir. The intrinsic growth rate $r = 0.063$/day is greater than the average growth rate. The greater the value of r, the faster the growth function curve reaches its saturation value. Thus, the ecological implication of these dynamics of water volume growth is that reservoirs experience an abundance of water during the charging season. The awareness of the potential for flooding needs to be increased. Reservoir normalization can be prioritized as a mitigation strategy for potential flood disasters. It is urgent to reduce the volume of sediment in the Gembong Reservoir.

The results of this study indicate a new contribution from the application of the logistic growth model in the real world phenomena and enriching scientific knowledge, namely the application of mathematical models in eco-hydrology studies. The intrinsic growth rate applies not only to the growth dynamics of biotic populations, but also to the dynamics of a-biotic population growth. The methodology for obtaining a good model through the stages of verification, parameter estimation, and model validation based on empirical data can be applied to similar reservoirs. The development of the application of a logistic model to another a-biotic population growth phenomenon opens up the opportunities for further research.

Acknowledgements

The authors would like to thank for the funding provided by the Faculty of Science and Mathematics, Universitas Diponegoro [Research Grant No.1956/UN7.5.8/PP/2020].

REFERENCES

1. Ali A.M., Shafee M.E., Berglund E.Z. 2017. Agent-based modeling to simulate the dynamics of urban water supply: Climate, population growth, and water shortage. Sustainable Cities and Society 28:420-434. https://dx.doi.org/10.1016/j.scs.2016.10.001
2. Alifujiang Y., Abuduwalli J., Ma L., Samat A., Groll M. 2017. System Dynamics Modeling of Water Level Variations of Lake Issyk-Kul, Kyrgyzstan, Water 9, 989. . https://dx.doi.org/10.3390/w9120989
3. Al-Saffar A., Kim E-J. 2017. Sustainable theory of a logistic model-Fisher information approach, Mathematical Biosciences 285:81-91. http://dx.doi.org/10.1016/j.mbs.2016.12.009
4. Anand V., Oinam B. 2019. Future climate change impact on hydrological regime of river basin using SWAT model, Global J.Environ.Sci.Manage 5(4):471-484.
5. Araujo J.C., Guntner A., Bronstert A. 2006. Loss of reservoir volume by sediment deposition and its impact on water availability in semiarid Brazil, Hydrological Sciences Journal, 51(1): 157-170. https://doi.org/10.1623/hysj.51.1.157
6. Batista M. 2020. Estimation of the final size of coronavirus epidemic by the logistic model, ResearchGate. https://www.researchgate.net/publication/339240777
7. Bonacci O., Roje-Bonacci T. 2008. Water losses from the Recie reervoir built in the Dinaric karst. Engineering Geology 99:121-127. https://dx.doi.org/10.1016/j.enggeo.2007.11.014
8. Bradley D.M. 2000. Verhulst’s Logistic Curve. The College Mathematics Journal. http://dx.doi.org/10.2307/2687113

9. Brilhante M.F., Gomes M.I., Pestana D. 2019. Modeling Risk of Extreme Events in Generalized Verhulst Models, REVSTAT-Statistical Journal 17(2): 145-162.

10. Burkhard B., Fath B.D., Jorgensen S.E., Larry B.L. 2015. Use of ecological indicator in models. Ecol.Model 295:1-4. https://www.sciencedirect.com/science/article/pii/S0304380014004852?via%3Dihub

11. Chen J., Shao C., Jiang S., Qu L., Zhao F., Dong G. 2019. Effects of changes in precipitation energy and water balance in a Eurasion meadow steppe. Ecol. Process 8(17). https://dx.doi.org/10.1186/s13717-019-0170

12. Chen R.J.C., Blomfield P., Cubbage F.W. 2008. Comparing Forecasting Models in Touris, Journal of Hospitality and Tourism Research, 32(1): 3-21. http://dx.doi.org/10.1177/1096348007309566

13. Chong O.A.G., Diniz G.L., Villatoro F.R. 2005. Dispersal of fish population in dams: modeling and simulation. Ecol.Model 186:290-298. . https://dx.doi.org/10.1016/j.ecolmodel.2004.11.025

14. Cortes E. 2016. Review:Perspectives on the intrinsic rate of population growth. Methods in Ecology and Evolution 7(10):1136–1145. . http://dx.doi.org/10.1111/2041-210X.12592

15. Desta H., Lemma B. 2017. SWAT based hydrological assessment and characterization of Lake Ziway sub-watersheds, Ethiopia, Journal of Hydrology: Regional Studies 13:122-137. http://dx.doi.org/10.1016/j.ejrh.2017.08.002

16. FAO. 2020. Integrated agriculture water management and health, Rome. ISBN: 978-92-5-132444-8. https://doi.org/10.4060/ca8712en

17. Forni L.G., Medellin-Azuara J., Tansey M., Young C., Purkey D., Howitt R. 2016. Integrating complex economic and hydrologic planning models: An application for drought under climate change analysis, Water Resources and Economics 16: 15-27. http://dx.doi.org/10.1016/j.wre.2016.10.002

18. Fowe T., Karambiri H., Paturel J.E., Possin J.C., Cecchi P. 2015. Water balance of small reservoirs in the Volta basin: A case study of Boura reservoir in Burkina Faso. Agricultural Water Management 152:99-109. http://dx.doi.org/10.1016/j.agwat.2015.01.006

19. Ghose D., Das U., Roy P. 2018. Modeling response of runoff and evapotranspiration for predicting water table depth in arid region using dynamic recurrent neural network, Groundwater for Sustainable Development 6:263-269. https://doi.org/10.1016/j.gsd.2018.01.007

20. Hallouz F., Meddi M., Mahe G., Alirahmani S., Keddar A. 2018. Modelling of discharge and sediment transport through the SWAT model in the basin of Harraza (Northwest of Algeria), Water Science 32:79-88. https://doi.org/10.1016/j.wsj.2017.12.004

21. Han M., Zhao C., FENG G., Disse M., Shi F., Li J. 2015. An eco-hydrological approach to predicting regional vegetation and groundwater response to ecological water conveyance in dryland riparian ecosystems, Quaternary International 380-381:224-236. . http://dx.doi.org/10.1016/j.quaint.2015.02.032

22. Harsoyo B. 2010. Jebolnya Tanggul Situ Gintung (27 Maret 2009) Bukan Karena Faktor Hujan Eks trem. Jurnal Sains dan Teknologi Modifikasi Cuaca, 11(1): 9-17. http://ejurnal.bppt.go.id/index.php/JSTMC/article/view/2176/1814

23. Hyndman R.J., Koehler A.B. 2006. Another look at measures of forecast accuracy, Int.J. Forecast 22:679-688. http://dx.doi.org/10.1016/j.ijforecast.2006.03.001

24. Idlango M.A., Shepherd J.J., Gear J.A. 2017. Logistic growth with a slowly varying Holling type II harvesting term. Commun Nonlinear Sci Numer Simulat 49:81-92. http://dx.doi.org/10.1016/j.cnsns.2017.02.005

25. Jin W., McCue S.W., Simpson M.J. 2018. Extended logistic growth model for heterogeneous populations. Journal of Theoretical Biology 445:51-6. https://doi.org/10.1016/j.jtbi.2018.02.027

26. Jorgensen S.E. 1994. Fundamental of Ecological Modelling (2nd Ed), Elsevier, Netherlands.

27. Jorgensen S.E. 2016. Ecohydrology as an important concept and tool in enviromental management. J.Ecohyd 16:4-6. http://dx.doi.org/10.1016/j.ecohyd.2015.04.005

28. Kartono K., Purwanto P., Suripin S. 2020. Analysis of Local Rainfall Characteristics as a Mitigation Strategy for Hydrometeorology Disaster in Rain-fed Reservoirs Area. Adv. Sci. Technol. Eng. Syst. J. 5(3):299-305. . https://dx.doi.org/10.25046/aj050339

29. Kribs-Zaleta C.M. 2004. To switch or taper off: the dynamics of saturation, Mathematical Biosciences 192: 137-152. https://doi.org/10.1016/j.mbs.2004.11.001.

30. Melica V., Invernizzi S., Carist G. 2014. Logistic density-dependent growth of an Aurelia Aurita polyps population, Ecol.Model 291:1-5. http://dx.doi.org/10.1016/j.ecolmodel.2014.07.009

31. Mereu S., Susnik J., Trabucco A., Daccache A., Vamvakeridou-Lyroudia L., Renoldi S., Virdis A., Savic D., Assimacopoulos D. 2016. Operational resilience of reservoirs to climate change, agricultural demand, and tourism: A case study from Sardinia, J.Sci.Tot.Env 543: 1028-1038. https://dx.doi.org/10.1016/j.scitotenv.2015.04.066
32. Miranda L.C.M., Lima C.A.S. 2010. A new methodology for the logistic analysis of evolutionary S-shaped processes: Application to historical time series and forecasting, J.Tech. Fore & Soc. Ch 77: 175-192. https://dx.doi.org/10.1016/j.techfore.2009.07.007

33. Miskinis P., Vasiliauskiene V. 2017. The analytical solutions of the harvesting Verhulst’s evolution equation, Ecol.Modell 360:189-193.http://dx.doi.org/10.1016/j.ecolmodel.2017.06.021

34. Mugagga F., Nabaasa B.B. 2016. The centrality of water resources to the realization of Sustainable Development Goals (SDG). A review of potential and constraints on the African continent. International Soil and Water Conservation Research 4: 215-223. http://dx.doi.org/10.1016/j.iswcr.2016.05.004

35. Mushar S.H.M., Ahmad S.S.S., Kasmin F., Kasmuri E. 2019. Flood Damage Assessment: A Preliminary Study, J. Env.Rese. Eng. Manage 75 (3): 55-70 http://dx.doi.org/10.5755/j01.emre.75.3.22433

36. Pandey P.K., Soupir M.L., Singh V.P., Panda S.N., Pandey V. 2011. Modeling Rainwater Storage in Distributed Reservoir Systems in Humid Subtropical and Tropical Savannah Regions, Water Resour. Manage25:3091-3111. http://dx.doi.org/10.1007/s11269-011-9847-5

37. PJRRC. 2015. Final Report of the infrastructure investigation in the Gembong Reservoir on 2015.

38. Peleg M., Corradini M.G., Normand M.D. 2007. The logistic (Verhulst) model for sigmoid microbial growth curves revisited, J.Food.Res.Int 40:808-818. http://dx.doi.org/10.1016/j.foodres.2007.01.012

39. Pinol C.M.N., Banzon R.S. 2011. Stability in a population model without random deaths by the Verhulst factor, Physica A 390:1295-1299. http://dx.doi.org/10.1016/j.physa.2010.11.046

40. Purwanto, 2005. Permodelan Rekayasa Proses dan Lingkungan, Badan Penerbit Universitas Diponegoro, Semarang.

41. Rogovchenko S.P., Rogochenko Y.V. 2009. Effect of Periodic environmental fluctuations on the Pearl-Verhulst model, Chaos, Solitons & Fractals 39:1169-118. Ecol.Modell 220:3472-3474, 2009. http://dx.doi.org/10.1016/j.ecolmodel.2009.08.024

42. Ross J.V. 2009. A note on density dependence in population models, Ecol.Modell 220:3472-3474. http://dx.doi.org/10.1016/j.ecolmodel.2009.08.024

43. Shi P., Sandhu H.S., Ge F. 2013. Could the intrinsic rate of increase represent the fitness in terrestrial ectotherms?, Journal of Thermal Biology 38:148-151. http://dx.doi.org/10.1016/j.jtherbio.2013.01.002

44. Szporak-Wasilewska S., Piniewski M., Kubrak J., Okruszko T. 2015. What we can learn from a wetland water balance? Nariew National Park case study, Ecohydrology & Hydrobiology 15:136-149. https://dx.doi.org/10.1016/j.ecohyd.2015.02.003

45. Thornley J.H.M., France J. 2004. An open-ended logistic-based growth function, Ecol.Modell., 184: 257-261. http://dx.doi.org/10.1016/j.ecolmodel.2004.10.007

46. Torrealba-Rodriguez O., Conde-Gutierrez R.A., Hernandez-Javier A.L. 2020. Modeling and prediction of COVID-19 in Mexico applying mathematical and computational models, Chaos, Soliton and Fractals 138:109946. https://doi.org/10.1016/j.chaos.2020.109946

47. Tsoularis A., Wallace J. 2002. Analysis of Logistic Growth Models, Math. Biosci., 179(1):21-55.https://www.researchgate.net/publication/11325416_Analysis_of_Logistic_Growth_Models/link/59f22a27aca272cdc7d01333/download

48. WHO. 2020. Water, sanitation, hygiene, and waste management for the COVID-19 virus: interim guidance. WHO/2019-nCoV/IPC_WASH/2020.2.

49. Xi X., Poh K.L. 2013. Using system dynamics for sustainable water resources management in Singapore, Procedia Comp Sci 16:157-166. . http://dx.doi.org/10.1016/j.procs.2013.01.017