Does stimulant drug–induced sensitization occur in primates?

Marco Leyton, PhD

Drug-induced sensitization is said to occur when a drug regimen leads to larger responses to the same dose or measurable responses to a previously ineffective low dose. Sensitization hypotheses of problematic substance use further propose that these effects facilitate the development of incentive responses to drug-paired cues. These effects are well-established in rodents, but, in some circles, it remains controversial whether they occur in primates (Box 1). What is the evidence?

Stimulant drug–induced behavioural sensitization in healthy humans

The first 2 attempts to demonstrate stimulant drug–induced behavioural sensitization in humans were unsuccessful. Both administered low doses of d-amphetamine (5 or 10 mg, orally). In comparison, 80% of studies (8 of 10) administering at least 20 mg of d-amphetamine found evidence of sensitization. Among the 6 studies that administered at least 3 doses of 20 mg or more, 100% found an effect. The most consistent changes were to the drug’s behaviourally energizing effects with augmented responses continuing for at least a year (Table 1).

Stimulant drug–induced behavioural sensitization in nonhuman primates

There is consistent evidence of cocaine and amphetamine-induced behavioural sensitization in nonhuman primates. As in humans, augmented responses have been seen for psychomotor stimulation, but psychosis-like phenomena can emerge following high-dose regimens. The effects can last for more than 2 years (Table 2).

Stimulant drug–induced behavioural sensitization in people with addictions

Clinical observations at least raise the possibility that people with stimulant drug addictions exhibit behavioural sensitization; e.g., markedly elevated incentive (drug-seeking) responses to small doses of the drug and drug-related cues. These observations noted, perhaps the most compelling demonstration that extensive substance use can lead to sensitization in humans investigated alcohol. In this 10-year prospective study, young adult drinkers (n = 163) received an alcohol challenge (0.8 g/kg, orally) at baseline and 5 and 10 years later. Among those who developed an alcohol use disorder (AUD; n = 39), the self-reported alcohol-induced “wanting” and “stimulation” responses became progressively larger. The larger the wanting and stimulation responses, the greater the likelihood of developing an AUD and the greater the number of AUD symptoms.

Stimulant drug–induced dopamine sensitization in healthy humans

Based on studies in rodents, 2 neurotransmitters have been implicated in drug-induced sensitization: dopamine and glutamate. In humans, the transmitter release literature is both smaller and limited to dopamine, but evidence of amphetamine-induced sensitization has been found in all 3 studies that administered at least 3 doses (0.3–0.4 mg/kg, orally). Correlational research suggests that these augmentations could continue to accumulate through to 150 uses or more. The drug use histories that yield sensitization can also lead to conditioned dopamine release.

Stimulant drug–induced dopamine sensitization in nonhuman primates

Two studies giving 10–50 stimulant drug exposures found sensitized dopamine responses in nonhuman primates; 4 studies with more extensive regimens did not. A number of explanations have been offered for the negative findings, including (1) small sample sizes (n = 4–6), particularly since, in both rodents and humans, only some develop an enlarged response; (2) the absence of drug-related cues during testing, an important feature since the expression of sensitization can become context-dependent; (3) the use of isoflurane, an anesthetic that can alter dopamine cell firing and release; (4) evidence that drug-induced dopamine

Correspondence to: M. Leyton, Department of Psychiatry, McGill University, Montreal, QC; marco.leyton@mcgill.ca

Cite as: J Psychiatry Neurosci 2022 April 13;47(2). doi: 10.1503/jpn.220055

© 2022 CMA Impact Inc. or its licensors
Stimulant drug–induced sensitization in primates

In people with addictions, there is some evidence of dopamine sensitization. Compared with healthy controls, people who used methamphetamine showed larger amphetamine-induced dopamine responses in extrastriatal regions.83 Within the striatum, 1 study found larger responses to ethanol in people with an AUD68 while another study69 found larger responses to amphetamine in people with a gambling disorder. These studies noted, the most common finding in people with cocaine65–69 and amphetamine use disorders89 has been an absence of sensitized responses and even significantly reduced responses. These blunted responses may be specific to the testing conditions rather than evidence of ubiquitous dopamine deficits.2,27,80,90 Indeed, there is well-replicated evidence that people with stimulant use disorders exhibit robust dopamine responses to drug-related cues.15,17–19 Moreover, those with a cocaine use disorder can also exhibit larger stimulant drug–induced striatal dopamine responses than healthy volunteers when drug administration is unexpected.21 Together, these findings indicate that, in this population, there remains only modest evidence of dopamine sensitization per se, but the potential for large dopamine responses is retained, differing only in when it is expressed.

Conclusion

This brief analysis yields 3 main conclusions. First, despite occasional claims to the contrary, there is overwhelming evidence of stimulant drug–induced behavioural sensitization in both human and nonhuman primates (18 of 19 studies administering at least 3 doses of at least 0.25 mg/kg of amphetamine or high-dose cocaine). Second, there is compelling evidence of dopamine sensitization in primates (5 of 5 studies administering 3–50 drug doses). Third, behavioural sensitization following extended high-dose drug use occurs, but more work is needed to understand the mediating neurobiology and when the augmented responses are expressed. Answering these questions will require thoughtful study designs. For laboratory research, this includes (1) testing awake subjects in the same environment where the drug was previously given, (2) administering the drug intermittently12,13 with abstinence periods long enough to promote the incubation of both conditioned and sensitized responses, (3) testing how the influence of drug-paired cues (conditioning) and expectations (RPE) might change with progressively greater substance use, and (4) testing samples large enough to capture individual differences in susceptibility. Among those who are susceptible to drug use problems, features 1 and 2 resemble the early substance-use patterns that typically lead to a problem. This might not be a coincidence.

Sensitization is readily expressed following modest substance use25 but not following the ingestion of greater quantities with only brief abstinence periods before testing;77,78 (5) the possibility that, following many drug use sessions and the development of highly trained associations, dopamine cell reactivity comes to be influenced by reward-prediction errors (RPE; i.e., larger responses to unexpected drug delivery);21 and (6) for cocaine, sensitized glutamate release might be more important than dopamine.70

Box 1. Controversies

Contrary voices

Some well-respected researchers have expressed doubts that stimulant drug–induced sensitization develops in primates; e.g., “there is minimal evidence of sensitization in humans3”, and “sensitization... does not appear to happen in primates.” Curiously, the latter statement was made when commenting on a study that was not about sensitization. Rhesus monkeys had self-administered cocaine for 100 days but were tested without drug and in an environment that had been paired with the absence of drug.8

History of the controversy

The debate about sensitization in primates primarily reflects 2 related issues. First, questions remain about the mediating neurobiology following extensive drug use. Second, it has been suggested that the low dopamine responses seen in people with substance use disorders under some testing conditions are the primary driver of addiction-related behaviours. In comparison, this writer and others propose that low dopamine states aggravate the clinical picture of addiction, but this does not include the ability to activate drug-seeking. To the contrary, there is considerable evidence for the converse. Dopamine release in humans is increased by all relapse triggers tested to date, including drug-related cues, small quantities of the drug, stress, and, in people with long histories of opioid use, drug withdrawal. As sagely noted by David Epstein, no one feature is likely to account for all clinically relevant aspects of addiction. Claims that sensitization is not one of the critical elements are likely misguided.

Implications for clinical practice

The incentive sensitization model proposes that repeated, intermittent exposure to strong rewards progressively increases their ability to elicit approach. These processes can become tied to either healthy or unhealthy pursuits. There is little evidence that the effects can be reversed, but, among those with addictions, there is evidence that sensitization-influenced reinforcement processes can be redirected toward healthy ones; e.g., the financial rewards provided in contingency management therapy. The evidence of drug-induced sensitization in humans has also raised concerns about prescribing stimulant medications to youth with attention deficit/hyperactivity disorder. There is little evidence that standard continuous exposure regimens of low to moderate doses lead to sensitization, but problems might arise in some, especially those who have been prescribed amphetamines as opposed to methylphenidate. This requires further study.

Sensitization to nonstimulant drugs in primates

Few studies have tested whether “non-stimulant” drugs can produce sensitization in primates precluding confident conclusions. This noted, both alcohol and opioids can have stimulant effects and these effects can become sensitized in rodents. In humans, there is preliminary evidence that striatal dopamine responses to alcohol and alcohol-paired cues are larger in high- than in low-risk drinkers, and alcohol use problems are associated with larger ethanol-induced stimulant responses and striatal dopamine release. Opioid sensitization in primates is less studied, and the relation to increased drug use remains unclear. There is, however, some evidence that repeat morphine administration can lead to behavioural sensitization and, in humans, early-life trauma is associated with increased risk of opioid use disorders and augmented morphine reward.

Stimulant drug–induced dopamine sensitization in people with addictions

In people with addictions, there is some evidence of dopamine sensitization. Compared with healthy controls, people who used methamphetamine showed larger amphetamine-induced dopamine responses in extrastriatal regions. Within the striatum, 1 study found larger responses to ethanol in people with an AUD while another study found larger responses to amphetamine in people with a gambling disorder. These studies noted, the most common finding in people with cocaine and amphetamine use disorders has been an absence of sensitized responses and even significantly reduced responses. These blunted responses may be specific to the testing conditions rather than evidence of ubiquitous dopamine deficits. Indeed, there is well-replicated evidence that people with stimulant use disorders exhibit robust dopamine responses to drug-related cues. Moreover, those with a cocaine use disorder can also exhibit larger stimulant drug–induced striatal dopamine responses than healthy volunteers when drug administration is unexpected. Together, these findings indicate that, in this population, there remains only modest evidence of dopamine sensitization per se, but the potential for large dopamine responses is retained, differing only in when it is expressed.

Conclusion

This brief analysis yields 3 main conclusions. First, despite occasional claims to the contrary, there is overwhelming evidence of stimulant drug–induced behavioural sensitization in both human and nonhuman primates (18 of 19 studies administering at least 3 doses of at least 0.25 mg/kg of amphetamine or high-dose cocaine). Second, there is compelling evidence of dopamine sensitization in primates (5 of 5 studies administering 3–50 drug doses). Third, behavioural sensitization following extended high-dose drug use occurs, but more work is needed to understand the mediating neurobiology and when the augmented responses are expressed. Answering these questions will require thoughtful study designs. For laboratory research, this includes (1) testing awake subjects in the same environment where the drug was previously given, (2) administering the drug intermittently with abstinence periods long enough to promote the incubation of both conditioned and sensitized responses, (3) testing how the influence of drug-paired cues (conditioning) and expectations (RPE) might change with progressively greater substance use, and (4) testing samples large enough to capture individual differences in susceptibility. Among those who are susceptible to drug use problems, features 1 and 2 resemble the early substance-use patterns that typically lead to a problem. This might not be a coincidence.

Affiliations: From the Departments of Psychiatry and Psychology, McGill University; the Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University; the Center for Studies in Behavioral Neurobiology, Concordia University; and the Research Unit on Children’s Psychosocial Maladjustment, Université de Montréal, Montreal, Que., Canada.
### Table 1: Stimulant drug–induced behavioural sensitization in humans

| Study                  | No. of doses | d-Amphetamine regimen | Sensitization*          |
|------------------------|--------------|-----------------------|-------------------------|
| Johanson et al<sup>42</sup> | 5            | 5.0 mg, p.o.          | No — mood, no. of tablets chosen |
| Kelly et al<sup>43</sup>  | 6            | 10.0 mg, p.o.         | No — speech rate, smoking, stimulant effects, liking |
| Kegeles et al<sup>42</sup> | 2            | ~20 mg, i.v. (0.30 mg/kg) | No — euphoria, restless, anxiety |
| Wachtel et al<sup>43</sup> | 2            | 20.0 mg, p.o.         | No — subjective and psychomotor effects |
| Strakowski et al<sup>45</sup> | 3            | ~20 mg, p.o. (0.25 mg/kg) | Yes — energy, eye-blink |
| Strakowski et al<sup>47</sup> | 3            | ~20 mg, p.o. (0.25 mg/kg) | Yes — energy, euphoria |
| Strakowski et al<sup>48</sup> | 2            | ~20 mg, p.o. (0.25 mg/kg) | Yes — energy, eye-blink, mood, speech rate |
| Boleau et al<sup>49</sup>  | 4–5          | ~20 mg, p.o. (0.30 mg/kg) | Yes — energy, eye-blink |
| O’Daly et al<sup>50</sup>  | 4            | ~20 mg, p.o. (0.30 mg/kg) | Yes — energy, euphoria |
| childs et al<sup>51</sup>  | 2            | 20 mg, p.o.           | No — stimulation, craving |
| Weidenauer et al<sup>54</sup> | 4            | ~30 mg, p.o. (0.40 mg/kg) | Yes — lively, outgoing |
| Smart et al<sup>55</sup>   | 4            | ~20 mg, p.o. (0.30 mg/kg) | Yes — mind-racing, speech |

i.v. = intravenous; i.p. = oral.

*There is consistent evidence of amphetamine-induced behavioural sensitization in humans administered a minimum of 3 doses ≥ 0.25 mg/kg (6 of 6 studies).<sup>44–47,49,50</sup>

### Table 2: Stimulant drug–induced behavioural sensitization in nonhuman primates

| Study                  | No. of doses | Stimulant regimen | Sensitization* |
|------------------------|--------------|-------------------|----------------|
| Tatum et al<sup>44</sup>  | ≤ 120        | Cocaine, 5–30 mg/d, s.c. (1.67–10 mg/kg) for up to 4 mo | Yes — rhesus macaques (-3 kg) showed progressively greater excitement and susceptibilities to seizures. |
| Ellinwood<sup>55</sup>  | ≤ 111        | Methamphetamine, 1–20 mg/d, i.m. 4–7 d/wk for 4–6 mo | Yes — rhesus monkeys showed progressively greater stereotypies that, with higher doses, became constricted and bizarre. |
| Garver et al<sup>56</sup> | 12–46        | d-Amphetamine, 2.0 mg/kg, n.g. twice daily for up to 3 wk followed by 3 wk abstinence | Yes — stumptail macaques developed increased activity, checking, stereotypies, harmful grooming and psychosis-like behaviours. |
| Post et al<sup>57</sup>  | ≤ 48         | Cocaine, ≤ 16 mg/kg, i.p., twice daily | Yes — progressively increasing excitatory, stereotypic and psychosis-like behaviours. |
| Ellinwood et al<sup>58</sup> | ≤ 180        | Amphetamine, 1–25 mg/kg/d for 6 mo | Yes — rhesus monkeys showed progressively greater stereotypies that, with higher doses, became constricted and bizarre. The activating effects were reduced by haloperidol. |
| Ridley et al<sup>59</sup> | 111          | Amphetamine, 1–4 mg/kg, p.o. for 60 d Amphetamine plus haloperidol for 51 d | Yes — marmosets developed destructive grooming habits. |
| Post et al<sup>60</sup>  | ≤ 260        | Cocaine, 10 – 17 mg/kg, i.p. twice daily 5 d/wk for up to 6 mo | Yes — rhesus monkeys showed progressively greater stereotypies, and increased susceptibilities to seizures, catalepsy, and abnormal visual tracking and staring. |
| Ridley et al<sup>61</sup> | 35           | d-amphetamine, 4–12 mg/kg/d, i.v. | Yes — vervet monkeys developed stereotypies followed by psychosis-like behaviours and over-responsiveness to stimuli. |
| Farfel et al<sup>62</sup> | 56           | Cocaine, 3.0–4.0 mg/kg, i.m. 4 times/d for 14 d | Yes — rhesus macaques developed stereotypies, visual tracking and splayed legs. |
| Castner et al<sup>63</sup> | 120          | S(+)-amphetamine, 0.1 mg/kg, i.m. escalating to 1.0 mg/kg, i.m. twice daily 5 d/wk for 12 wk Challenge doses (0.4–0.46 mg/kg, i.m.) were given following 6, 9, 12, and 28 mo abstinence | Yes — rhesus macaques developed increased pacing and stereotypies. |
| Castner et al<sup>64</sup> | 60           | d-amphetamine, 0.1–1.0 mg/kg, i.m. twice daily 5 d/wk for 6 wk | Yes — rhesus macaques developed increased fine-motor and oral stereotypies, parasitotic-like grooming, static posturing, etc. |
| Castner et al<sup>65</sup> | 60           | d-amphetamine, 0.1–1.0 mg/kg, i.v. twice daily 5 d/wk for 6 wk Challenge doses (0.4 mg/kg, i.v.) were given following 21 d and 6.5–8 mo abstinence | Yes — rhesus macaques developed increased fine-motor and oral stereotypies and hallucination-like behaviours. |
| Rodriguez et al<sup>66</sup> | 660          | Methylphenidate, 0.15–27 mg/kg, p.o. twice daily 5 d/wk for 66 wk | No change in rhesus monkeys on measures of executive function. |
| Gill et al<sup>67</sup>   | 365          | Extended-release methylphenidate, ≥ 20 mg/d, p.o. for 12 mo | No change in the proportion of rhesus monkeys that acquired cocaine self-administration. |
| Soto et al<sup>68</sup>   | 182          | Methylphenidate (12–16 mg/kg, p.o.) or d-amphetamine (0.7–0.8 mg/kg, p.o.) twice daily for 18 mo | No change in rhesus monkeys on measures of response speed or executive function. |
| Martelle et al<sup>69</sup> | 365         | Extended-release methylphenidate, ≥ 20 mg/d, p.o. for 12 mo | No change in methylphenidate self-administration. |

i.m. = intramuscular; i.p. = intraperitoneal; i.v. = intravenous; n.g. = nasogastric; p.o. = oral; s.c. = subcutaneous.

*Contrary to the expectations of those writing the early papers, repeated stimulant drug administration did not lead to drug tolerance. As seen in laboratory rodents, lower doses produced behavioural hyperactivity while higher doses elicited stereotypies. With repeated administration, the behavioural responses became progressively greater and more disturbed, with higher doses eventually eliciting psychosis-like phenomenology, seizures, and dyskinesias. These effects were consistently observed for cocaine and amphetamines but not methylphenidate.
Stimulant drug–induced sensitization in primates

References

1. Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. *Brain Res Brain Res Rev* 1993;18:247-91.
2. Kalivas PW, Stewart J. Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. *Brain Res Brain Res Rev* 1991;16:223-44.
3. Vezina P. Sensitization of midbrain dopamine neuron reactivity and the self-administration of psychomotor stimulant drugs. *Neurosci Biobehav Rev* 2004;27:827-39.
4. Berridge KC, Robinson TE. Liking, wanting, and the incentive-sensitization theory of addiction. *Am J Psychol* 2007;27:670-9.
5. Robinson MJ, Zumbusch AS, Anselme P. The incentive sensitization theory of addiction. *The Oxford Research Encyclopedia of Psychology* 2022. Available: https://doi.org/10.1093/acrefore/9780190236557.013.715 (accessed 2022 Feb. 5).
6. Ivanov I, Bjork JM, Blair J, et al. Sensitization-based risk for substance abuse in vulnerable individuals with ADHD: review and re-examination of evidence. [Epub ahead of print]. *Neurosci Biobehav Rev* 2022;135:104575.
7. Bradberry CW. Whole brain metabolic mapping–another chapter in a great book on the effects of cocaine in monkeys. [Epub ahead of print]. *Neurosci Biobehav Rev* 2021 Oct 13. doi: 10.1016/j.neubiorev.2021.02.014-1.
8. Porrino LJ, Smith HR, Beveridge TJR, et al. Residual deficits in regional volume in children. *Neuroimage Clin* 2021;31:102695.
9. Moran LV, Ongur D, Hsu J, et al. Psychosis with methylphenidate or amphetamine in patients with ADHD. *N Engl J Med* 2019;380:1128-38.
10. Badiani A, Belin D, Epstein D, et al. Opiate versus psychostimulant addiction: the differences do matter. *Nat Rev Neurosci* 2011;12:685-700.
11. Newman EL, Leonard MZ, Arena DT, et al. Social defeat stress and escalation of cocaine and alcohol consumption: focus on CRF. *Neurobiol Stress* 2018;9:151-65.
12. Cofresí RU, Bartholow BD, Piasecki TM. Evidence for incentive salience sensitization as a pathway to alcohol use disorder. *Neurosci Biobehav Rev* 2019;107:897926.
13. Boileau I, Assad JM, Pihl RO, et al. Alcohol promotes dopamine release in human nucleus accumbens. *Synapse* 2005;49:226-31.
14. Setiawan E, Pihl RO, Dagher A, et al. Differential striatal dopamine responses following oral alcohol in individuals at varying risk for dependence. *Alcohol Clin Exp Res* 2014;38:126-34.
15. Galmer BG, Dzemidzic M, Tran SM, et al. Beer flavor provokes striatal dopamine release in male drinkers: mediation by family history of alcoholism. *Neuropsychopharmacology* 2013;38:1617-24.
16. King A, Vena A, Hasin DH, et al. Subjective responses to alcohol in the development and maintenance of alcohol use disorder. *Am J Psychiatry* 2021;178:560-71.
17. Yoder KK, Albrecht DS, Dzemidzic M, et al. Differences in IV alcohol-induced dopamine release in the ventral striatum of social drinkers and non-treatment-seeking alcoholics. *Drug Alcohol Depend* 2016;160:163-9.
18. Chen S, Zhai H, Cui Y, et al. Clonidine attenuates morphine withdrawal and subsequent drug sensitization in rhesus monkeys. *Acta Pharmacol Sin* 2007;28:473-83.
19. Carlyle M, Broomby R, Simpson G, et al. A randomised, double-blind study investigating the relationship between early childhood trauma and the rewarding effects of morphine. *Addict Biol* 2021;26:e13047.
20. Johanson CE, Uhlenhuth EH. Drug preference and mood in humans: repeated assessment of d-amphetamine. *Pharmacol Biochem Behav* 1981;14:159-63.
21. Kelly TH, Follin RW, Fischman MW. The effects of repeated amphetamine exposure on multiple measures of human behavior. *Pharmacol Biochem Behav* 1991;38:417-26.
22. Weidenauer A, Bauer M, Sauerzopf U, et al. On the relationship of first-episode psychosis to the amphetamine-sensitized state: a dopamine D2/3 receptor agonist radioligand study. *Transl Psychiatry* 2020;10:2.
Leyton 68. Soto PL, Wilcox KM, Zhou Y, et al. d,l- Amphetamine mixture in 67. Gill KE, Pierre PJ, Daunais J, et al. Chronic treatment with ex-
65. Castner SA, Goldman-Rakic PS. Amphetamine sensitization of 61. Post RM, Kopanda RT, Black KE. Progressive effects of cocaine on 
55. Ellinwood EH. Effect of chronic methamphetamine intoxication in 54. Tatum AL, Seevers MH. Experimental cocaine addiction. 
53. Wachtel SR, de Wit H. Subjective and behavioral effects of re-
52. Kegeles LS, Zea-Ponce Y, Abi-Dargham A, et al. Stability of [123I] 
51. Childs E, de Wit H. Contextual conditioning enhances the psycho-
46. Strakowski SM, Sax KW. Progressive behavioral response to re-
45. Smart K, Nagan-Saito A, Millella M, et al. Low metabolotropic gluta-
44. Martelle SE, Porrino LJ, Nader MA. Effects of chronic methylphe-
43. Vanderschuren LJMJ, Kalivas PW. Alterations in dopaminergic 
42. Vezina P, Leyton M. Conditioned cues and the expression of sensi-
41. Leyton M, Vezina P. Striatal ups and downs: their roles in vulner-
40. Leyton M, Tomasi D, Wang G-J, et al. Stimulant-induced dopa-
39. Martello SF, Tsukada H. Nicotine sensitization of monkey striatal dopamine release. Eur J Pharmacol 2009;607:91-5. 
38. Bradberry CW, Rubino SR. Dopaminergic responses to self-
37. Wolf ME. Synaptic mechanisms underlying persistent cocaine craving. Nat Rev Neurosci 2016;17:351-65. 
36. Cox SML, Yau Y, Larcher K, et al. Cocaine cue-induced dopamine release in recreational cocaine users. Sci Rep 2017;7:46665 10.1038/ srep46665. 
35. Bradberry CW. Acute and chronic dopamine dynamics in a model of recreational cocaine use. J Neurosci 2000;20:7109-15. 
34. Domingo EF, Tsukada H. Nicotine sensitization of kindling and psychosis. Arch Gen Psychiatry 2009;66:703-9. 
33. Vezina P, Leyton M. Contextual conditioning enhances the psycho-
32. Childs E, de Wit H. Contextual conditioning enhances the psycho-
31. Castner SA, Williams GV. From vice to virtue: insights from sensi-
30. Castner SA, Goldman-Rakic PS. Long-lasting psychotomimetic consequences of repeated low-dose amphetamine exposure in rhe-
29. Castner SA, Goldman-Rakic PS. Amphetamine sensitization of hallucinatory-like behaviors is dependent on prefrontal cortex in nonhuman primates. Psychopharmacology (Berl) 2003;167:140-51. 
28. El-Egamy A, D’Souza D, Shah S, et al. Effects of repeated injections of cocaine on cataleptic responses in rats, dopamine transporter binding sites and behavior in the rhesus monkey. Neuropharmacology 2008;55:317-26. 
27. Leyton M, Tomasi D, Wang G-J, et al. Stimulant-induced dopamine 
26. Leyton M, Tomasi D, Wang G-J, et al. Stimulant-induced dopamine 
25. Leyton M, Tomasi D, Wang G-J, et al. Stimulant-induced dopamine 
24. Leyton M, Tomasi D, Wang G-J, et al. Stimulant-induced dopamine 
23. Leyton M, Tomasi D, Wang G-J, et al. Stimulant-induced dopamine 
22. Leyton M, Tomasi D, Wang G-J, et al. Stimulant-induced dopamine 
21. Leyton M, Tomasi D, Wang G-J, et al. Stimulant-induced dopamine 
20. Leyton M, Tomasi D, Wang G-J, et al. Stimulant-induced dopamine
19. Leyton M, Tomasi D, Wang G-J, et al. Stimulant-induced dopamine
18. Leyton M, Tomasi D, Wang G-J, et al. Stimulant-induced dopamine
17. Leyton M, Tomasi D, Wang G-J, et al. Stimulant-induced dopamine
16. Leyton M, Tomasi D, Wang G-J, et al. Stimulant-induced dopamine
15. Leyton M, Tomasi D, Wang G-J, et al. Stimulant-induced dopamine
14. Leyton M, Tomasi D, Wang G-J, et al. Stimulant-induced dopamine
13. Leyton M, Tomasi D, Wang G-J, et al. Stimulant-induced dopamine
12. Leyton M, Tomasi D, Wang G-J, et al. Stimulant-induced dopamine
11. Leyton M, Tomasi D, Wang G-J, et al. Stimulant-induced dopamine
10. Leyton M, Tomasi D, Wang G-J, et al. Stimulant-induced dopamine
9. Leyton M, Tomasi D, Wang G-J, et al. Stimulant-induced dopamine
8. Leyton M, Tomasi D, Wang G-J, et al. Stimulant-induced dopamine
7. Leyton M, Tomasi D, Wang G-J, et al. Stimulant-induced dopamine
6. Leyton M, Tomasi D, Wang G-J, et al. Stimulant-induced dopamine
5. Leyton M, Tomasi D, Wang G-J, et al. Stimulant-induced dopamine
4. Leyton M, Tomasi D, Wang G-J, et al. Stimulant-induced dopamine
3. Leyton M, Tomasi D, Wang G-J, et al. Stimulant-induced dopamine
2. Leyton M, Tomasi D, Wang G-J, et al. Stimulant-induced dopamine
1. Leyton M, Tomasi D, Wang G-J, et al. Stimulant-induced dopamine
