Association of birthweight with diabetes and insulin sensitivity or secretion in the Japanese general population

Junko Oya1*, Tomoko Nakagami1, Moritoshi Kurita1, Yayoi Yamamoto1, Yukiko Hasegawa1, Yuki Tanaka1, Yasuhiro Endo2, Yasuko Uchigata1

1Diabetes Center, Tokyo Women’s Medical University, and 2Department of Health and Community Medicine, Saitama-Ken Saiseikai Kurushi Hospital, Saitama, Japan

Keywords
Birthweight, Diabetes, Homeostasis model assessment

*Correspondence
Junko Oya
Tel.: +81-3-3353-8111
Fax: +81-3-3358-1941
E-mail address: johya@dmc.twmu.ac.jp

J Diabetes Invest 2015; 6: 430–435
doi: 10.1111/jdi.12325

ABSTRACT

Aims/Introduction: Low birthweight (birthweight <2,500 g) has been considered to be a risk factor for diabetes in data from Western countries, and its percentage is increasing in Japan. The aim of the present study was to assess the association between birthweight and diabetes, as well as both insulin resistance and secretion.

Materials and Methods: The participants were 847 adults who underwent health check-ups. The participants were divided by birthweight into four groups (low birthweight and tertiles 1–3 above it). We assessed the effect of birthweight on diabetes using a logistic regression model. Multivariable linear regression analyses were carried out to examine whether birthweight is independently associated with homeostasis model assessment of insulin resistance and β-cell function.

Results: The prevalence of diabetes tended to increase with decreasing birthweight. The adjusted odds ratio for diabetes with low birthweight was 3.52 (1.04–11.96) compared with the reference category, tertile 2. Univariable linear regression analyses showed that homeostasis model assessment of insulin resistance was negatively associated with birthweight, and this association remained after adjusting for age, sex, current body mass index and family history of diabetes. There was no significant association between homeostasis model assessment of β-cell function and birthweight.

Conclusions: Low birthweight was inversely associated with diabetes and insulin resistance in the Japanese general population. Longitudinal data analyses are required to examine the causal relationship between bodyweight and diabetes or insulin resistance in adulthood.

INTRODUCTION

In Japan, the percentage of babies with low birthweight (LBW), defined as birthweight (BW) <2,500 g, is increasing and the average BW is decreasing. The proportion of LBW infants was 4.2% in 1980, 6.1% in 1990, 8.3% in 2000 and 9.6% in 2010. This has been associated with an increase in smoking prevalence, a decrease in body mass index (BMI) in young women and aggressive management of weight gain in pregnancy. Recently, LBW has been considered an independent risk factor for diabetes in studies from Europe and the USA, but data from Asia are limited. The nature of the association between BW and diabetes was controversial because of ethnic differences and methodological differences in the statistical approach. An unfavorable intrauterine environment might lead to future insulin resistance (IR) and β-cell dysfunction. Japanese individuals are characterized by lower BMIs, but higher percentages of body fat than Caucasian individuals and have lower insulin-secretory capacities. Consequently, the effects of BW on insulin sensitivity and secretion in Japanese individuals might be different from those reported by previous studies in Europe and the USA. If the increased number of
LBW infants is a reason for the increasing number of diabetes patients in Japan; it is important for women to control body-weight and to modify their lifestyle during pregnancy. Thus, the aim of the present study was to assess the association between BW and diabetes and insulin sensitivity or secretion in people with LBW in a Japanese population.

MATERIALS AND METHODS

Participants

The study participants were 2,421 men and women who underwent general health examinations at Saitama-ken Saiseikai Kurihashi Hospital between October 2006 and September 2007. For the current analysis, individuals with missing information for BW (n = 1,563), those with missing data for fasting plasma glucose (FPG) or fasting insulin concentrations (n = 8) and those with missing data for relevant covariates (n = 3) were excluded. Thus, 534 men and 313 women were included in the analysis.

Measurements

In the present study, the health examination included self-administered questionnaires regarding family history of diabete s, physical examination and biochemical tests. All biochemical measurements were carried out at the same commercial laboratory (SRL, Hachioji, Tokyo, Japan). Blood samples were collected in the morning after a 10-h fast. FPG was measured using the hexokinase UV method with a 9000 automatic analyzer (JCA-BM2250; Hitachi, Tokyo, Japan). Fasting plasma immunoreactive insulin (F-IRI) was measured using an immunoradiometric assay (CLEIA, Lumipulse Presto II; Fuji Rebio, Tokyo, Japan). Height was measured to the nearest 0.1 cm with the participants standing without shoes. Bodyweight was measured to the nearest 0.1 kg with the participants dressed in light indoor clothing. BMI was calculated as the weight divided by the square of the height (kg/m²). The BW information was collected by a questionnaire with inputs based on records in the maternal and child health notebook or the memory through the mother. The participants were divided into four groups by BW (LBW and tertiles [T] 1–3 above LBW): LBW, <2,500 g; T1, 2,500–3,000 g; T2, 3,001–3,200 g; and T3, >3,200 g. LBW was defined, according to the World Health Organization criteria, as <2,500 g.

The diagnosis of diabetes was based on self-reports by participants or a FPG level of ≥126 mg/dL (according to the World Health Organization 2006 FPG criteria)¹⁷. IR and insulin secretion were calculated on the basis of the FPG and F-IRI according to the homeostasis model assessment (HOMA)¹⁵: HOMA of IR (HOMA-IR) = FPG (mg/dL) × F-IRI (µU/mL) / 405 and HOMA of β-cell function (HOMA-B) = 360 × F-IRI / (FPG – 63).

Statistical Analysis

A χ²-test was used to compare proportions, and Student’s t-test or Mann–Whitney U-test was used to compare a continuous variable between men and women, and means of BW between participants with and without diabetes. The Armitage trend test was used to examine the trend in diabetes prevalence across the aforementioned four BW groups.

Multivariable logistic regression analyses were carried out to calculate p-values, odds ratios (ORs) and their 95% confidence intervals (95% CIs) for the effects of BW on diabetes, after adjusting for age (continuous), sex (categorical), current BMI (continuous) and family history of diabetes (categorical). When the four groups of BW were used as variables, each group was compared with T2.

Spearman’s correlation coefficient analysis was used to evaluate the correlations between BW and anthropometric parameters or glucose metabolism. Participants taking medication for diabetes (n = 20) were excluded when analyzing data for plasma glucose, insulin concentrations, HOMA-IR and HOMA-B.

Univariable linear regression analyses were carried out to examine the association between HOMA-IR or HOMA-B and BW. Next, multivariable linear regression analyses were carried out to examine whether BW is independently associated with HOMA-IR. We chose HOMA-IR rather than HOMA-B, as HOMA-B was not significantly associated with BW in the univariable model. In the multivariable model, age, sex, current BMI and family history of diabetes were included as covariates as in the logistic model. Because of skewed distributions of HOMA-IR and HOMA-B, log-transformed values were used, which followed normal distributions more closely.

The study was approved by the institutional review board of Saitama-ken Saiseikai Kurihashi Hospital and Tokyo Women’s Medical University, and informed consent was obtained from the participants.

Data were analyzed using SAS version 9.2 for Windows (SAS Institute, Cary, NC, USA). The P-values were based on two-sided tests, and the cut-off point for statistical significance was P < 0.05.

RESULTS

Characteristics of Study Participants

The average age and BMI were 47 ± 7 years and 23.5 ± 3.3 kg/m², respectively. The average BW was 3070 ± 430 g, and the prevalence of LBW was 5.3%. The participants with diabetes were older and had lower means of BW and HOMA-B, and higher means for current BMI, FPG and HOMA-IR than those without diabetes (Table 1).

Prevalence and Association of Diabetes and BW

The prevalence of diabetes tended to increase with decreasing BW (Table 2). The univariable logistic regression analysis showed that ORs (95% CIs) for the associations of diabetes with LBW, T1 and T3 were 3.76 (1.03–13.69, P = 0.044), 3.62 (1.50–8.73, P = 0.004) and 1.00 (0.34–2.91, P = 0.999), respectively, in comparison with those with T2 (Table 2). The corresponding values in the multivariable model were 3.52...
Table 1 | Characteristics of study participants

Characteristics of study participants	Total	Non-diabetes	Diabetes
n	847	807	40
Age (years)	47 ± 7	47 ± 7	49 ± 6***
Men, n (%)	534 (63.0)	500 (62.0)	34 (85.0)**
Current BMI (kg/m²)	23.5 ± 3.3	23.4 ± 3.3	25.7 ± 3.8**
Birthweight (g)	3070 ± 430	3080 ± 429	2841 ± 390*
Fasting plasma glucose (mg/dL)	90 (85–97)	90 (85–96)	147 (125–172)*
Fasting insulin concentration (µU/mL)	5.36 (3.61–7.64)	5.22 (3.56–7.56)	7.56 (5.33–10.33)
HOMA-IR	1.20 (0.81–1.76)	1.18 (0.80–1.75)	2.61 (1.45–3.29)**
HOMA-B	72.3 (51.4–102.8)	72.7 (52.3–103.7)	44.7 (26.15–59.49)**
Family history of diabetes, n (%)	94 (11.1)	84 (10.4)	10 (25.0)***
Low birthweight, n (%)	44 (5.2)	40 (5.0)	4 (10.0)

For each continuous variable, mean ± standard deviation or median (interquartile) is shown. For each dichotomous variable, number (percent) is shown. Low birthweight is defined as <2,500 g. *P < 0.001, **P < 0.01, ***P < 0.05 vs non-diabetes. BMI, body mass index; HOMA-B, homeostasis model assessment of β-cell function; HOMA-IR, homeostasis model assessment of insulin resistance.

Table 2 | Prevalence and multiple odds ratios of diabetes according to four groups of birthweight

Birthweight	LBW <2,500 g	T1 2,500–3,000 g	T2 3,001–3,200 g	T3 >3,200 g	*P for trend
n	44	247	326	230	
Cases of diabetes (%)	4 (9.1)	20 (8.1)	9 (2.8)	7 (3.0)	0.0002
Crude ORs (95% CIs)	3.76 (1.03–13.69)	3.62 (1.50–8.73)	1.00 (ref)	1.00 (0.34–2.91)	
Multivariable ORs (95% CIs)	3.52 (1.04–11.96)	3.10 (1.39–6.94)	1.00 (ref)	1.11 (0.41–3.01)	

Multiple models were adjusted for age, sex, current body mass index and family history of diabetes. Low birth weight (LBW) is defined as <2,500 g. Tertiles 1–3 are categories of normal birth weight: tertile 1 (T1) is 2,500–3,000 g, T2 is 3,001–3,200 g and T3 is >3,200 g. *Armitage trend test. CI, confidence intervals; ORs, odds ratios; T, tertile.

Table 3 | Spearman’s correlation coefficients between birthweight and anthropometric parameters or glucose metabolism

	ρ	P-value
Age (years)	−0.076	0.027
Current BMI (kg/m²)	0.082	0.016
Fasting plasma glucose (mg/dL)	−0.002	0.992
Fasting insulin concentration (µU/mL)	−0.111	0.038
HOMA-IR	−0.105	0.041
HOMA-B	−0.033	0.405

Participants taking medication for diabetes (n = 20) were excluded when analyzing data for glucose metabolism. BMI, body mass index; HOMA-B, homeostasis model assessment of β-cell function; HOMA-IR, homeostasis model assessment of insulin resistance.

(1.04–11.96, P = 0.044), 3.10 (1.39–6.94, P = 0.006) and 1.11 (0.41–3.01, P = 0.844). The adjusted OR and its 95% CI for diabetes associated with a 1-kg/m² increase of current BMI was 1.14 (1.02–1.27, P = 0.023).

BW, Insulin Sensitivity and Insulin Secretion

BW was significantly and negatively correlated with age, F-IRI and HOMA-IR, and positively correlated with current BMI (Table 3).

Univariable linear regression analyses showed that HOMA-IR was negatively associated with BW, whereas HOMA-B was not. This significant association between BW and HOMA-R remained after adjusting for age, sex, current BMI and family history of diabetes. HOMA-IR was positively and independently associated with current BMI (Table 4).

DISCUSSION

The present study has shown that BW was inversely and independently associated with diabetes and HOMA-R, whereas HOMA-B was not significantly associated with BW in the Japanese general population. Many previous studies reported inverse, linear associations between BW and diabetes. However, some investigators claimed that low and high BW are associated with diabetes, and that BW shows a U-shaped relationship with diabetes prevalence. One possible explanation...
Table 4 | Factors affecting homeostasis model assessment of insulin resistance analyzed using a multivariable regression model

Factors	Partial regression coefficient (β)	Standard error	Standardized partial regression coefficient (β)	P-values
Birthweight (1 kg)	-0.155	0.023	-0.123	<0.001
Age (1-year-old)	0.030	0.002	0.023	0.488
Sex (men vs women)	-0.076	0.043	-0.061	0.082
Current BMI (1 kg/m²)	0.601	0.006	0.605	<0.001
Family history of diabetes	0.057	0.061	0.044	0.191

BMI, body mass index; HOMA-IR, homeostasis model assessment of insulin resistance.

for this discrepancy is that native North Americans have a high prevalence of diabetes and obesity from a young age, which leads to a high prevalence of gestational diabetes. Although ethnic and genetic factors might affect the association between BW and diabetes, these reports were consistent with the notion that LBW is positively associated with the risk of type 2 diabetes. The present results also suggested the association between LBW and diabetes is independent of current BMI. To our knowledge, this is the first study to assess the relationship between BW and diabetes in the Japanese general population. Regarding another study from Japan, Anazawa et al. investigated hospital-based data and occupational cohort data of middle-aged men, and showed that the prevalence of LBW was higher among patients with diabetes than those without diabetes. The findings in the present study were consistent with those of the aforementioned study in that LBW as well as current high BMI were important risk factors for diabetes.

Glucose intolerance is characterized by both increased IR and decreased insulin secretion. Most previous studies that reported an inverse association between BW and measures of IR used the intravenous glucose tolerance test and minimal model analysis. When IR was measured using the euglycemic-hyperinsulinemic clamp technique, insulin sensitivity was decreased by approximately 20% in LBW participants compared with normal BW individuals. Studies from Asia also showed that the insulin sensitivity index was positively correlated with BW. In the present study, multiple regression analysis showed the association between HOMA-IR and BW was independent of current BMI. Data on the relationship between BW and insulin secretion are inconsistent. It was hypothesized that fetal malnutrition was mediated through programming of the development of the pancreas, leading to impaired β-cell function. Many previous reports, including several from Asia, showed no defect in β-cell function, but some reported reduced insulin secretion in LBW participants. In the present study, HOMA-B had no significant association with BW. Because the insulin-secretory capacity in Asians is estimated to be relatively lower than that in Western populations, the compensatory ability of β-cells against IR might be limited in cases of high BMI.

Several mechanisms have been proposed to explain the association of LBW with diabetes and IR. According to the thrifty-
memories through the mothers, our total BW data were approximately normally distributed. In the alternative analysis applying cut-off points based on quartiles of BW (<2,800, 2,801–3,010, 3,011–3,350, >3,351 g), the adjusted ORs (95% CIs) for diabetes in participants with 1st, 2nd and 4th quartiles of BW were 3.55 (1.40–8.98), 1.78 (0.63–4.98), and 0.48 (0.19–1.69), respectively, compared with the 3rd quartile, thereby suggesting that a lower BW is a significant and independent risk factor of diabetes. Prospective and longitudinal studies are required to confirm our results using accurate information for BW. Third, it was cross-sectional study; thus, longitudinal data required to conduct factor of diabetes. Prospective and longitudinal studies are needed to analyze in the future. Fourth, the oral or intravenous glucose tolerance test and the hyperinsulinemic-euglycemic clamp technique are the standard techniques to measure IR and insulin secretion. Thus, HOMA-B provides a surrogate measure of insulin secretion, and therefore, the present results indicate that HOMA-B is available to assess IR; HOMA reflects 65% of the variability in IR as assessed by the glucose clamp technique.

In conclusion, the present cross-sectional study has shown that BW was inversely and independently associated with diabetes and IR in the Japanese general population. Longitudinal data analyses are required to examine the causal relationship between BW and diabetes or IR in adulthood.

ACKNOWLEDGMENTS

We thank Dr Naoyuki Kamatani MD PhD, a specialist in medical statistics at StaGen Co. Ltd., for his advice regarding the statistical analyses used in the present manuscript. This study was supported by grants to TN from the Japan Diabetes Society, Japanese Ministry of Health, Labor and Welfare, Japan Medical Women’s Association, Tokyo Women’s Medical University Association, Yayoi Yoshioka Research Fund, Japan Automobile Research Institute Foundation, and Yazuya Food and Health Research Foundation. The authors declare no conflict of interest.

REFERENCES

1. Takimoto H, Yokoyama T, Yoshiike N, et al. Increase in low-birth-weight infants in Japan and associated risk factors, 1980-2000. J Obstet Gynaecol Res 2005; 31: 314–322.
2. Ohmi H, Hirooka K, Hata A, et al. Recent trend of increase in proportion of low birth weight infants in Japan. Int J Epidemiol 2001; 30: 1269–1271.
3. Equal Employment, Children and Families Bureau, Ministry of Health, Labour, and Welfare. Year 2010 Report of the Children and Infant Growth Survey. Ministry of Health, Labour and Welfare, Tokyo, 2011. (In Japanese)
4. Tsukamoto H, Fukuoka H, Inoue K, et al. Restricting weight gain during pregnancy in Japan: a controversial factor in reducing perinatal complications. Eur J Obet Gynecol Reprod 2007; 133: 53–59.
5. Harder T, Rodekamp E, Schellong K, et al. Birth weight and subsequent risk of type 2 diabetes: a meta-analysis. Am J Epidemiol 2007; 165: 849–857.
6. Curhan GC, Willett WC, Rimm EB, et al. Birth weight and adult hypertension, diabetes mellitus, and obesity in US men. Circulation 1996; 94: 3246–3250.
7. Rich-Edwards JW, Colditz GA, Stampfer MJ, et al. Birthweight and the risk for type 2 diabetes mellitus in adult women. Ann Intern Med 1999; 130: 278–284.
8. Lithell HO, McKeigue PM, Berglund L, et al. Relation of size at birth to non-insulin dependent diabetes and insulin concentration in men aged 50-60 years. BMJ 1996; 31: 406–410.
9. Eriksson JG, Forsen T, Tuomilehto J, et al. Early adiposity rebound in childhood and risk of type 2 diabetes in adult life. Diabetologia 2003; 46: 190–194.
10. Forsen T, Eriksson JG, Tuomilehto J, et al. The fetal and childhood growth of persons who develop type 2 diabetes. Ann Intern Med 2000; 133: 176–182.
11. Anazawa S, Atsumi Y, Matsuoka K. Low birth weight and development of type 2 diabetes in a Japanese population. Diabetes Care 2003; 26: 2210–2211.
12. Fall CH, Stein CE, Kurnar K, et al. Size at birth, maternal weight, and type 2 diabetes in South India. Diabetic Med 1998; 15: 220–227.
13. Dyck RF, Klomp H, Tan L. From “thrifty genotype” to “hefty fetal phenotype”: the relationship between high birth weight and diabetes in Saskatchewan Registered Indians. Can J Public Health 2001; 92: 340–344.
14. Jensen CB, Storgaard H, Dela F, et al. Early differential defects of insulin secretion and action in 19-year-old Caucasian men who had low birth weight. Diabetes 2002; 51: 1271–1280.
15. Wang J, Thornton JC, Russell M, et al. Asians have lower body mass index (BMI) but higher percent body fat than do whites: comparisons of anthropometric measurements. Am J Clin Nutr 1994; 60: 23–28.
16. Chan JC, Malik V, Jia W, et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA 2009; 301: 2129–2140.
17. World Health Organization. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia-Report of a WHO/IDF Consultation. World Health Organization, Geneva, 2006.
18. Matthews DR, Hosker JP, Rudinski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412–419.
19. Godfrey KM, Barker DJ. Fetal nutrition and adult disease. Am J Clin Nutr 2000; 71(Suppl): 13445–13525.
20. McCance DR, Pettitt DJ, Hanson RL, et al. Birth weight and non-insulin dependent diabetes: thrifty genotype, thrifty
phenotype, or surviving small baby genotype? BMJ 1994; 308: 942–945.
21. Johansson S, Iliadou A, Bergvall N, et al. The association between low birth weight and type 2 diabetes: contribution of genetic factors. Epidemiology 2008; 19: 659–665.
22. Weyer C, Bogardus C, Mott DM, et al. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest 1999; 104: 787–794.
23. Clausen JO, Borch-Johnsen K, Pedersen O. Relation between birth weight and insulin sensitivity index in a population sample of 331 young, healthy Caucasians. Am J Epidemiol 1997; 146: 23–31.
24. Flanagan DE, Moore VM, Godsland IF, et al. Fetal growth and the physiological control of glucose tolerance in adults: a minimal model analysis. Am J Physiol Endocrinol Metab 2000; 278: E700–E706.
25. Jaquet D, Gaboriau A, Czernichow P, et al. Insulin resistance early in adulthood in subjects born with intrauterine growth retardation. J Clin Endocrinol Metab 2000; 85: 1401–1406.
26. Mi J, Law C, Zhang KL, et al. Effects of infant birthweight and maternal body mass index in pregnancy on components of the insulin resistance syndrome in China. Ann Intern Med 2000; 132: 253–260.
27. Choi CS, Kim CH, Lee WJ, et al. Association between birth weight and insulin sensitivity in healthy young men in Korea: role of visceral adiposity. Diabetes Res Clin Pract 2000; 49: 53–59.
28. Hales CN, Barker DJ, Clark PM, et al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 1991; 26: 1019–1022.
29. Jaquet D, Chevenne D, Czernichow P, et al. No evidence for a major beta-cell dysfunction in young adults born with intra-uterine growth retardation. Pediatr Diabetes 2000; 1: 181–185.
30. Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 1992; 35: 595–601.
31. Heijmans BT, Tobi EW, Stein AD, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 2008; 105: 17046–17049.
32. Schultz NS, Broholm C, Gillberg L, et al. Impaired leptin gene expression and release in cultured preadipocytes isolated from individuals born with low birth weight. Diabetes 2014; 63: 111–121.
33. Singhal A, Farooqi IS, O’Rahilly S, et al. Early nutrition and leptin concentrations in later life. Am J Clin Nutr 2002; 75: 993–999.
34. Clark PM. Programming of the hypothalamo-pituitary-adrenal axis and the fetal origins of adult disease hypothesis. Eur J Pediatr 1998; 157: S7–S10.
35. Troy LM, Michels KB, Hunter DJ, et al. Self-reported birthweight and history of having been breastfed among younger women: an assessment of validity. Int J Epidemiol 1996; 25: 122–127.
36. Bonora E, Targer G, Alberiche M, et al. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity. Diabetes Care 2000; 23: 57–63.