Title: Anti-inflammatory and neuroprotective activity of Viphyllin a standardized extract of β-caryophyllene from black pepper (Piper Nigrum L) and its associated mechanisms in mouse macrophage cells and Human Neuroblastoma SH-SY5Y cells

Kuluvar Gouthamchandra¹*, Sudeep Heggar Venkataramana ¹, Anusha Sathish¹ Amritharaj¹, Lingaraju Harakanahalli Basavegowda², Naveen Puttaswamy³, Shyam Prasad Kodimule ² ³.

1. Department of Biomedicinal Research, R&D Centre for Excellence, Vidya Herbs Pvt. Ltd, #14A, Jigani I Phase, Bangalore-560105, Karnataka, India.

2. Department of Phytochemistry, R&D Centre for Excellence, Vidya Herbs Pvt. Ltd, #14A, Jigani, I Phase, Bangalore-560105, Karnataka, India.

3. Department of Analytical Development Research Lab. R&D Centre for Excellence, Vidya Herbs Pvt. Ltd, #14A, Jigani I Phase, Bangalore-560105, Karnataka, India.

*Address for correspondence:

K. Gouthamchandra
Department of Biomedicinal Research, R&D Centre for Excellence, Vidya Herbs Pvt. Ltd, #14A, Jigani I Phase, Bangalore-560105, Karnataka, India.

Phone: 91 80 42094158

Email: goutham06@gmail.com; bmrl@vidyaherbs.com
Abstract
Oxidative stress breeds various chronic lifestyle ailments including inflammatory conditions and neurodegenerative diseases. β-caryophyllene natural bicyclic sesquiterpene, obtained from various plants sources found to be effective against inflammation and neuroprotection. In this study, we have evaluated the protective effect of Viphyllin, a standardized extract of β-caryophyllene from black pepper against inflammation induced by lipopolysaccharide in RAW264.7 macrophage cells and mechanisms involved in hydrogen peroxide (H₂O₂)-challenged oxidative stress in human neuroblastoma SH-SY5Y cells. Viphyllin demonstrated the anti-inflammatory activity by subsiding the release of the pro-inflammatory intermediaries like NO, cytokines, interleukins, and protein expression levels of cyclooxygenase (COX-2) and inducible nitric oxide synthase (iNOS). In addition, Viphyllin suppressed the extracellular signal-regulated kinase (ERK). c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) phosphorylation. On the other hand, Viphyllin showed neuroprotective effect against neuronal oxidative damage caused by H₂O₂. Viphyllin lessened the expression B-cell lymphoma-2 (Bcl-2), B-cell lymphoma-2-associated X protein (BAX), cleaved caspase-9, and PARP-1 proteins associated with apoptosis. Our results indicate that Viphyllin ameliorated LPS-mediated inflammation in macrophages by regulating inflammation and Viphyllin exerted remarkable anti apoptotic effect against neuronal damage challenged by H₂O₂. Altogether, Viphyllin could be potential functional food ingredient for inflammation and neurodegenerative diseases.

Key words: Inflammation, cytokines, oxidative stress, apoptosis, COX-2, MTT
Introduction.

Pharmacological properties of medicinal plants are primarily due to the presence of secondary metabolites like polyphenols, polyphenols, steroids, flavonoids, alkaloids and terpenoids [1,2]. Terpenoids have been studied as an alternative to treat different disease conditions. Certain terpenoids for instance Taxol and Artemisinin has been using as anticancer and antimalarial drug, respectively. Terpenoids play diverse role in the field of food, drugs, and cosmetics, studies show the relationship of terpenoid consumption with the reduction of inflammation [3,4]. β-caryophyllene is a “natural bicyclic sesquiterpene hydrocarbon” it is most abundant constituent exist in many plant-originated essential oils, like as lemon balm, cloves, Cannabis sativa and black pepper [5,6]. Recent studies are reported on significant biological activities of β-caryophyllene against inflammation, cancer and chronic pain and chemo sensitizing properties for chemotherapies like oxaliplatin, doxorubicin sorafenib, and 5-fluorouracil. On the other hand, β-caryophyllene is a plant (or food) -derived cannabinoid ligand, and it is also reported that it functions as a selective agonist of cannabinoid receptor 2 (CB2). It is thought that CB (2) receptor activation is suitable medicinal approach for the treatment of inflammation related disorders. United States Food and Drug Administration considers β-caryophyllene is a dietary phyto cannabinoids and has been included in the list of “generally regarded as safe” ingredients for dietary use and [7,8].

In the current investigation, we have enriched and systematized the extract in a manner that is not less than 30% β-caryophyllene and termed it as Viphyllin, subsequently investigated for anti-inflammatory activity in LPS induced mouse macrophage cells and neuroprotective property against oxidative stress induced by H₂O₂. To the best of our knowledge, this is the very first study revealing that a standardized extract of beta caryophyllene (Viphyllin) from black pepper demonstrated an anti-inflammatory and neuroprotective activity.
Materials and methods

Sample preparation

Viphyllin a standardized extract of β-caryophyllene from black pepper (Piper Nigrum L) was collected from the Department of Phytochemistry, Vidya Herbs Pvt. Ltd. (Bangalore, Karnataka, India), and dissolved in cell culture media (DMEM) at the appropriate concentrations. (Supplementary figure S1)

Cell culture

RAW 264.7 Murine macrophage and Human neuroblastoma SH-SY5Y cells were obtained through NCCS (Pune, India), RAW264.7 cells were cultured in DMEM media containing 10% foetal bovine serum and antibiotic solution in a humidified 5% CO₂ incubator (Thermo Fisher Scientific). The cell culture medium was replaced with fresh DMEM media every 2 to 3 days, once cells reached 80% confluence, the cells were subcultured. SH-SY5Y cells were grown in DMEM and F12 nutrient mix subsidized with FBS (10%) and antibiotic solution respectively at 37 °C in the CO₂ incubator.

Cell viability assay

MTT assay was adopted to check the influence of Viphyllin on the viability of RAW 264.7 cells. Briefly, cell suspensions were seeded at density of 1×10⁴ cells/well in 96-well plates. After 18 h of incubation, the cells were treated with the different concentrations(5-50μg/mL) of Viphyllin, further incubated for 24 h. The supernatant was discarded and 100 μL of MTT solution (0.5 mg/mL) was replaced and cells were incubated for an extra 2-4hrs, subsequently 100 μL of MTT stop solution (DMSO) was added to wells to dissolve the formazan crystal. The absorbance was read at 550 nm using a microplate reader (Tecan Infinite M200 Pro). Likewise, cell viability assay was conducted on SHSY5Y cells. The preventive effect of
Viphyllin versus H$_2$O$_2$- elicited neurotoxicity was investigated by incubating cells with 12 and 24µg/mL of Viphyllin for 6 h and then treated them with 500µM H$_2$O$_2$ for 24 h. Cell viability of cells were determined using the MTT assay as described above.

Determination of NO

RAW macrophages were set at 4×104 cells/well in 96-well plates for 18 h. Then the cells were incubated with different concentrations (5-50µg/mL) of Viphyllin before they were stimulated with 1µg/ml lipopolysaccharide. After completion of 24h incubation, using the cell culture supernatant NO content was measured by Griess reagent.

Evaluation of cytokine secretion level in macrophages

The secretion level of PGE-2, TNF-α, IL-6 and IL-1β, inflammatory cytokines levels were measured by the ELISA using in the cell culture supernatant of RAW 264.7 macrophages according to manufacturer’s protocol (Krishgen Biosystems, Mumbai, India).

Lactate dehydrogenase (LDH) assay

The assay was performed by employing an LDH cytotoxicity detection kit (Sigma aldrich). SH-SY5Y cells were added at the density of 2.5×104 cells/ mL in 96-well. Then the cells were treated with Viphyllin at different concentrations (5-50µg/mL) for 24h. with and without H$_2$O$_2$. The amount of LDH release was determined by using a microplate reader (Tecan Infinite M200 Pro) at 490 nm.

Western Blot Analysis
RAW macrophages were incubated overnight and subjected to two different concentrations of Viphyllin 12 and 24µg/mL prior to LPS (1µg/mL) treatment. Cells were collected by trypsinization after 24 h incubation and were lysed with 100µL of radioimmunoprecipitation (RIPA) lysis buffer. Total protein concentration was measured using the Bradford reagent (Bio-Rad). Equivalent amounts of protein (30µg) were separated by sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and the protein bands were transferred onto a polyvinylidene fluoride (PVDF) membrane. The membrane was blocked with 5% non-fat milk solution (and incubated with 1:1000 diluted primary antibodies (cox2, iNOS, p-ERK, p-JNK, p-p38 and β-actin) at 4°C for overnight, and subsequently probed with specific secondary antibodies coupled to horseradish peroxidase (Santa Cruz Biotech, Dallas, TX, USA) and bands were visualized using ECL reagents, and quantified using the ImageJ software (National Institutes of Health, Bethesda, MD, USA). Similarly, western blot experiment was conducted in H2O2 induced oxidative damage in SH-SY5Y cells using PARP1, caspase 9, Bcl-2 and BAX primary antibodies.

Statistical analysis

One -way ANOVA and Dunnett’s multiple comparisons test has been used to determine the statistical significance of differences among control and treated groups. Experiments were carried out in triplicate and all the values that were expressed as a mean ± standard error.

Results

Cell viability

We investigated the cytotoxic effect of Viphyllin in RAW264.7 murine macrophages. As shown in Figure 1A, Viphyllin had no cytotoxic effect on macrophages up to the dosage of 30 µg, whereas higher dose of Viphyllin showed significant cytotoxicity in RAW264.7 cells.
Hence, we concluded that concentrations up to 30 μg/ml of the Viphyllin could be safe. Thus, in the subsequent experiments, RAW274.7 cells were treated with nontoxic concentrations of Viphyllin. The morphology of LPS elicited cells had an uneven shape and spreading compared to untreated cells, whereas Viphyllin treated cells offer protection against LPS treatment by maintaining normal shape of cells (Figure 1B).

Effect of Viphyllin on Nitric Oxide (NO) production

NO is secondary intermediate secreted by macrophages upon LPS stimulation which plays significant role in regulating natural and genetic immunity. Here in we observed the repressive activity of Viphyllin on production NO, the levels of NO production in the cell culture supernatant of LPS provoked RAW 264.4 murine macrophages after 18 h exposure were high and observed that Viphyllin treatment significantly decreased production of NO levels in macrophages when compared to LPS (positive control) treated cells. (Figure 1C).

Influence of Viphyllin on secretion of PGE2, TNF-α. IL-6 and IL-1β in LPS challenged RAW264.7 macrophages.

The effect of Viphyllin treatment on the secretion of inflammatory mediators PGE2 and cytokines (TNF-α IL-6 and IL-1β) in the supernatant of RAW264.7 macrophages challenged with LPS were examined. As shown in Figure 2A-D, LPS significantly elevated secretion level of cytokines in macrophages (P-value<0.001 respectively) compared normal cells. Whereas Viphyllin prior treatment significantly diminished the LPS elicited production of proinflammatory cytokines TNF-α, PGE-2, IL-6 in a concentration reliant manner, whereas IL-1β expression remains unchanged.

Effect of Viphyllin on the expression amount of COX-2, and iNOS protein in LPS elicited RAW 264.7 macrophages.
To examine the influence of Viphyllin as anti-inflammatory agent we have carried out western blotting experiments to check the expression amounts of COX-2, and iNOS protein in murine macrophages challenged by LPS(1µg/ml). 24h later, the presence of LPS (1µg/ml) in RAW 264.7 cells caused the dramatic upregulation of COX-2 and INOS protein levels when compared untreated normal cells. However, treatment with Viphyllin, in presence of LPS significantly subsided the expression levels of COX-2 and iNOS proteins at concentration at 24µg/mL compared to LPS alone treated RAW 264.7 macrophages (Figure 3).

Effect of Viphyllin on MAPK signalling pathway in LPS-Induced RAW 264.7 Cells

In many inflammatory diseases including cancer, viral infection and neurological disorders, extreme inflammation is pretty established as a crucial factor. Enhanced activity of MAPK, specifically p38 and their involvement in the management of the synthesis of inflammation intermediaries make them targets for anti-inflammatory drugs. To examine if these signalling pathways are affected by Viphyllin, we conducted western blot experiments. Western blot results showed that LPS stimulation significantly elicited phosphorylation of p-ERK, p-JNK and p-p38 MAPK compared to control untreated cells. In contrast we noticed Viphyllin pre-treatment mitigated phosphorylation of JNK and p38 (Fig. 4A-D). However, interestingly we observed Viphyllin at the concentration of 12µg/mL had significant effect on suppression of p-ERK. These results suggest that Viphyllin could inhibit inflammatory response through regulation of MAPKs signalling in LPS-activated murine macrophages.

Neuroprotective Effect of Viphyllin on H$_2$O$_2$-challenged Human Neuroblastoma SH-SY5Y cells.
Investigate the effect of Viphyllin presence on cell viability, SH-SY5Y cells were treated with Viphyllin at various concentrations ranging from 5–50µg/mL for 24 hr (Figure 5A). It has been observed that Viphyllin had no significant effect on SH-SY5Y cells up to the dosage of 30µg/ml where its viability ranges from (98.3, 95.97% and 95.12%) respectively, whereas higher concentration of Viphyllin subsided the cell viability. Therefore, we have selected the nontoxic dose (12 and 24µg/ml) of Viphyllin for further experiments. H₂O₂ is well established neurotoxin, which generates highly reactive oxygen species like hydroxyl, superoxide anion radicals, resulting in cellular damage. Determine protective effect of Viphyllin against H₂O₂ induced oxidative stress in SH-SY5Y cells, cells were pre-incubated with two different concentration (12 and 24µg/mL) of Viphyllin for 4 h and then subjected to 500µM of H₂O₂ for 24 h. cell viability assay demonstrated that presence of H₂O₂ decreased viability of SH-SY5Y cells, while interestingly 24µg/mL of Viphyllin pre-treatment showed considerable protection against H₂O₂-generated loss of cells (Figure 5B).

LDH assay

LDH is an intracellular enzyme that exists in the cells, elevated levels of LDH enzyme in the cell culture medium implies cellular membrane burst and it is considered as label of cell death. Impact of various concentration of Viphyllin on LDH release was examined, as shown in Figure 5C. Viphyllin up to the concentration of 30µg/mL did not affect the LDH release, on higher concentration significant release of LDH was observed, consequently nontoxic dose of Viphyllin was evaluated for its protective effect against H₂O₂ induced toxicity. LDH secretion in the H₂O₂-treated control group was significantly elevated compared to untreated control cells with the release of 88.66%. However, pre-treatment of Viphyllin significantly decreased H₂O₂-induced LDH release suggesting suppression of neuronal toxicity stimulated by H₂O₂ in SH-SY5Y cells (Figure 5D).
Effects of Viphyllin on apoptosis-related protein expressions in H$_2$O$_2$-induced SH-SY5Y cells

It has been reported that accumulation of H$_2$O$_2$ causes apoptosis, inflammation and necrosis in the brain is well known in neurodegenerative disease. H$_2$O$_2$ stimulated oxidative stress in SHSY-5Y cells is well established model for studying neurological disorders. Determine the antiapoptotic effect of Viphyllin, we investigated the of pro and antiapoptotic protein expression in SHSY-5Y cells. As presented in Figure 6A-C. we found the increased expressions of cleaved PARP1 and caspase-9 in the H$_2$O$_2$-stimulated cells when compared with the untreated normal cells. However, in the treated cells groups, Viphyllin lessened the -highly expressed cleaved PARP1 and caspase-9 in a concentration reliant manner. In addition, As represented in Figure 6 D-F. H$_2$O$_2$(500µM) treated group we found significantly elevated expression of the pro-apoptotic gene BAX and subsided expression of Bcl-2 an anti-apoptotic protein in SH-SY5Y cells, whereas Viphyllin treatment dose dependently reversed these effects.

Discussion

Persistent inflammation has a extensive role in the pathogenesis of various chronic diseases like diabetes, obesity, cardiovascular and neurological disorders [9-11]. Approaches to aim for inflammation has become an attractive approach to defend inflammatory-related ailments [12,13]. Over the last few years, bioactive constituents or standardized extracts obtained from plant sources still play a significant role in the treatment of many ailments without any adverse effect [14]. Macrophages are crucial participants in the immune response to foreign intruders such as infectious microorganisms. lipopolysaccharide (LPS) is a well-known prototypical endotoxin may directly activate macrophages. Plethora of measures have
recommended that activated macrophage produce a greater amount of various proinflammatory intermediaries like NO and PGE2, also proinflammatory cytokines for example TNF-α, and interleukins. All these elements stimulate the development of inflammation and worsen the inflammation over the harmonious interaction with further inflammatory intermediaries and there are reports that in variety of inflammatory ailments including asthma and colitis the expression levels of PGE2 and NO is elevated [15-17]. Our study revealed that Viphyllin efficiently inhibited the secretion of PGE2 and NO, and proinflammatory cytokines in LPS-challenged macrophages at safer dose, our findings are consistent with earlier published studies [18, 19]. COX-2. is an important target for the design of drugs against inflammation, particularly NSAIDs. Furthermore, iNOS and COX-2 enzymes play crucial role in the generation of NO and PGE2, Viphyllin significantly subsided the iNOS and COX-2 expression in LPS stimulated macrophages. Our results are consistent with the previous published reports [20,21].

The MAPK signalling cascade plays a key role in the initiation of response to inflammation. ERK, JNK, and p38 participate in MAPK signalling pathways, which gets activated by TNF-α and interleukins [22]. Earlier studies have shown that LPS or TNF activates MAPKs which are involved in acute lung injury. It has been reported that when MAPK gets activated phosphorylated ERK, p38, and JNK are moved to the nucleus and stimulates response to inflammation by inducing expression of proper gene of interest [23,24]. Pre-treatment of Viphyllin inhibited MAPK signalling by subsiding the phosphorylation of ERK, JNK, and p38 in LPS induced macrophages. It is evident from the study that inhibition of MAPK pathway is a potential mechanism by which Viphyllin wields anti-inflammatory effects. These findings are consistent with those earlier studies [25,26].

Lately, several findings have found neurodegenerative diseases caused by stress and has been extensively associated in neuronal cell death. Previous studies have reported that H₂O₂
accumulation has been well studied in neurodegenerative disease. Human neuroblastoma SH-SY5Y cells are very well-regarded cellular tool for research on H₂O₂-stimulated oxidative stress [27-29]. In our recent study we have explored standardized β-caryophyllene extract improves cognitive function in scopolamine-induced amnesia model [30]. In current study, we have studied the protective effect of Viphyllin against H₂O₂- provoked apoptotic events in SH-SY5Y cells. It has been showed that H₂O₂ stimulated oxidative damage dramatically declines viability of SH-SY5Y cells [31]. Our study also showed decline of cell viability in the presence of H₂O₂ in SH-SY5Y cells. Interestingly we have noticed viability of cells enhanced dose dependently by the treatment of Viphyllin. It has been well established that damage to cellular membranes releases LDH into the cell culture supernatant is important marker of cell death [32]. From our data it is noticeably clear that elevated level of LDH was found in the culture medium after H₂O₂-induction in SH-SY5Y cells. Treatment with the Viphyllin markedly lower the LDH in the SH-SY5Y cell culture medium subjected to H₂O₂. Hence, we reaffirmed the defensive effects of Viphyllin in H₂O₂-elicited SH-SY5Y cells. Our outcomes are constant with previously published study [33]. It has been reported that toxic effect on SHSY-5Y cell is caused by H₂O₂ is linked with mitochondria-associated apoptotic events and it is considered as one of the valuable tools in neurodegenerative diseases [34]. Cytochrome release occurs when elevated levels of ROS penetrate mitochondrial membrane which leads to the activation of caspase -9 and PARP-1 and gradually induces cell death [35]. Our results demonstrated that markedly elevated proteolytic cleavage of caspase-9 and PARP in H₂O₂ subjected SHSY-5Y cells. However, Viphyllin protects neuronal cells against H₂O₂ stimulated oxidative stress by lessening the expression of caspase-9 and PARP1. Furthermore, mitochondrial membrane injury leads to neuronal apoptosis by up-regulation of Bcl-2 and down-regulation of Bax, which leads to inhibition of caspase activation [36]. In current study, Viphyllin treatment lowered Bax level and enhanced Bcl-2 level. Hence, these
outcomes demonstrated that Viphyllin along with other active constituents from black pepper offered preventive effects against oxidative damage, our results were consistent with other published studies [37,38]. In conclusion, our current unearthing demonstrated that the Viphyllin standardized extract containing β-caryophyllene from black pepper exert an anti-inflammatory function via the downregulation COX-2, iNOS and of the MAPK pathway in LPS challenged macrophages on the other hand it also offers neuroprotective effect. This investigation may suggest Viphyllin is encouraging bioactive food ingredients. However, imminent research is essential relating to the other controlling mechanism of Viphyllin.

Acknowledgements

We would like to thank, Mr. Chandrappa S, Dr. Deepak, and Dr. Vedamuthy B.M, Department of Phytochemistry and Analytical development laboratory, Vidya Herbs Pvt. Ltd, Bangalore, India. Our lab members are also acknowledged for their useful suggestions.

Funding: The author(s) reveal that financial support was provided by Vidya Herbs Pvt Ltd. Bangalore, India.

Authors’ contributions

GK and SK drafted the original manuscript. GK, SHV, AS and AR Produced the data and prepared figures 1–6. LH and N P prepared figure S1. GK, SK and SHV designed and analyzed the experiment and results. All authors read and approved the final manuscript.

Quan L, Thiele G, Thian J, Wang D (2008) The development of novel therapies for rheumatoid arthritis. Expert Opin Ther Pat. 18: 723–738

References
1. Ota A, & Ulrih NP (2017) An Overview of Herbal Products and Secondary Metabolites Used for Management of Type Two Diabetes. Frontiers in pharmacology. 8: 436

2. Kure C, Timmer J, & Stough C (2017) The Immunomodulatory Effects of Plant Extracts and Plant Secondary Metabolites on Chronic Neuroinflammation and Cognitive Aging: A Mechanistic and Empirical Review. Frontiers in pharmacology. 8: 117.

3. Perveen S (2018) Introductory chapter: Terpenes and terpenoids. In Terpenes and Terpenoids; Perveen, S., Ed.; IntechOpen: London, UK

4. Kim T, Song B, Cho KS, Lee IS (2020) Therapeutic Potential of Volatile Terpenes and Terpenoids from Forests for Inflammatory Diseases. Int J Mol Sci. 2:2187.

5. Fidyk K, Fiedorowicz A, Strządala L, Szumny A (2016) β-caryophyllene and β-caryophyllene oxide-natural compounds of anticancer and analgesic properties. Cancer Med. 10:3007-3017.

6. Singh G, Marimuthu P, de Heluani CS, Catalan CA (2006) Antioxidant and biocidal activities of Carum nigrum (seed) essential oil, oleoresin, and their selected components. J Agric Food Chem. 54:174-81.

7. Gu X, Yao X, Mei J, He H, Gao X, Du Y, et al. (2021) β-caryophyllene, a natural bicyclic sesquiterpene, induces apoptosis by inhibiting inflammation-associated proliferation in MOLT-4 leukemia cells. Phcog Mag. 17:58-66.

8. Gertsch J, Leonti M, Raduner S, Racz I, Chen JZ, et al. (2008) Beta-caryophyllene is a dietary cannabinoid. Proc Natl Acad Sci U S A.105:9099-104.

9. Jayson MI (1989) Vascular damage, fibrosis, and chronic inflammation in mechanical back pain problems. Semin Arthritis Rheum. 18:73-6.

10. Furman, D, Campisi, J, Verdin, E. et al. (2019) Chronic inflammation in the etiology of disease across the life span. Nat Med. 25: 1822–1832

11. Jayarathne S, Stull AJ, Park OH, Kim JH, Thompson L (2019) Moustaid-Moussa N. Protective Effects of Anthocyanins in Obesity-Associated Inflammation and Changes in Gut Microbiome. Mol Nutr Food Res. 63:1900149.

12. Kim JH, Kismali G, Gupta SC (2018) Natural Products for the Prevention and Treatment of Chronic Inflammatory Diseases: Integrating Traditional Medicine into Modern Chronic Diseases Care. Evid Based Complement Alternat Med. 1: 9837863

13. Kany S, Vollrath JT, Relja B (2019) Cytokines in Inflammatory Disease. Int J Mol Sci. 20:6008.
14. Zhang JM, An J (2007) Cytokines, inflammation, and pain. Int Anesthesiol Clin. Spring. 45:27-37.
15. Korns D, Frasch SC, Fernandez-Boyanapalli R, Henson PM, Bratton DL (2011). Modulation of macrophage efferocytosis in inflammation. Front Immunol. 2:57.
16. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 8:958-69.
17. Silva D, Ferreira MS, Sousa-Lobo JM, Cruz MT (2021) Almeida IF. Anti-Inflammatory Activity of Calendula officinalis L. Flower Extract. Cosmetics. 8:31.
18. Wu X, Xie J, Qiu L, Zou L, Huang Y, et al. (2021) The anti-inflammatory and analgesic activities of the ethyl acetate extract of Viburnum taitoense Hayata. J Ethnopharmacol. 269:113742.
19. Xin YJ, Choi S, Roh KB, Cho E, Ji H, Weon et al. (2021) Anti-Inflammatory Activity and Mechanism of Isookanin, Isolated by Bioassay-Guided Fractionation from Bidens pilosa L. Molecules. 26:255.
20. Amala R, Sujatha S (2021) Presence of pyrroloquinazoline alkaloid in Adhatoda vasica attenuates inflammatory response through the downregulation of pro-inflammatory mediators in LPS stimulated RAW 264.7 macrophages. Bioimpacts.11:15-22.
21. Tian Y, Zhou S Q, Takeda R, Okazaki K, Sekita M, et al. (2021) Anti-inflammatory activities of amber extract in lipopolysaccharide-induced RAW 264.7 macrophages. Biomed. Pharmacother. 141, 111854
22. Eo HJ, Jang JH, Park GH (2021) Anti-Inflammatory Effects of Berchemia floribunda in LPS-Stimulated RAW264.7 Cells through Regulation of NF-κB and MAPKs Signaling Pathway. Plants (Basel).10:586.
23. Kim, E. K. & Choi, E. J (2010) Pathological roles of mapk signaling pathways in human diseases. Biochim. Biophys. Acta. 1802: 396–405
24. Xie X, Sun S, Zhong W, Soromou L W, Zhou X et al. (2014). Zingerone attenuates lipopolysaccharide-induced acute lung injury in mice. International immunopharmacology. 19:103–109
25. Li L, Chen J, Lin L, Pan G, Zhang S, Chen H, et al. (2020) Quzhou Fructus Aurantii Extract suppresses inflammation via regulation of MAPK, NF-κB, and AMPK signaling pathway. Sci Rep. 10:1593.

26. Jeong YH, Oh Y-C, Cho W-K, Lee B, Ma JY (2016) Anti-Inflammatory Effects of Melandrii Herba Ethanol Extract via Inhibition of NF-κB and MAPK Signaling Pathways and Induction of HO-1 in RAW 264.7 Cells and Mouse Primary Macrophages. Molecules. 2:818.

27. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature. 408:239-47.

28. Garcimartín A, Merino JJ, González MP, Sánchez-Reus MI, Sánchez-Muniz FJ, Bastida S, Benedi J. (2014) Organic silicon protects human neuroblastoma SH-SY5Y cells against hydrogen peroxide effects. BMC Complement Altern Med. 14:384.

29. Nirmaladevi D, Venkataramana M, Chandranayaka S, Ramesha A, Jameel NM, Srinivas C (2014) Neuroprotective effects of bikaverin on H₂O₂-induced oxidative stress mediated neuronal damage in SH-SY5Y cell line. Cell Mol Neurobiol.34:973-85.

30. Sudeep HV. A standardized black pepper seed extract containing β-caryophyllene improves cognitive function in scopolamine-induced amnesia model mice via regulation of brain-derived neurotrophic factor and MAPK proteins. Journal of Food Biochemistry Forthcoming 2021

31. Li J, Li W, Su J, Liu W, Altura BT et al. (2003). Hydrogen peroxide induces apoptosis in cerebral vascular smooth muscle cells: possible relation to neurodegenerative diseases and strokes. Brain Res Bull. 62:101-6.

32. Hansen MB, Nielsen SE, Berg K (1989) Re-examination, and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods.119:203-10.

33. Huang B, Liu J, Fu S, Zhang Y, Li Y, He D, Ran X, Yan X, Du J, Meng T, Gao X, Liu D. (2020) α-Cyperone Attenuates H₂O₂-Induced Oxidative Stress and Apoptosis in SH-SY5Y Cells via Activation of Nrf2. Front Pharmacol.11:281.

34. Hu XL, Niu YX, Zhang Q, Tian X, Gao LY, Guo LP et al. (2015) Neuroprotective effects of Kukoamine B against hydrogen peroxide-induced apoptosis and potential mechanisms in SH-SY5Y cells. Environ Toxicol Pharmacol. 40:230-40.
35. Wang X, Ohnishi K, Takahashi A, Ohnishi T (1998) Poly(ADP-ribosyl)ation is required for p53-dependent signal transduction induced by radiation. Oncogene. 17:2819-25.

36. Kim Y, Cho E, Lee Ah Y, Seo W (2021) Apigenin Ameliorates Oxidative Stress-induced Neuronal Apoptosis in SH-SY5Y Cells. Microbiology and Biotechnology Letters. 49. 138-147.

37. Tian W, Heo S, Kim DW, Kim IS, Ahn D et al. (2021) Ethanol Extract of *Maclura tricuspidata* Fruit Protects SH-SY5Y Neuroblastoma Cells against H$_2$O$_2$-Induced Oxidative Damage via Inhibiting MAPK and NF-κB Signaling. Int J Mol Sci. 22:6946.

38. Kumar MR, Yeap SK, Lee HC, Mohamad NE, Nazirul et al. (2021) Selected Kefir Water from Malaysia Attenuates Hydrogen Peroxide-Induced Oxidative Stress by Upregulating Endogenous Antioxidant Levels in SH-SY5Y Neuroblastoma Cells. Antioxidants (Basel).10:940.
Figure 1

A) Percentage inhibition at different concentrations of a substance. The x-axis represents the concentration in μg/mL, and the y-axis represents the percentage inhibition.

B) Images showing control and LPS conditions. The top images are labeled Control and LPS, respectively. The bottom images are labeled Viphillin 12μg+LPS and Viphillin 24μg+LPS.

C) Bar graph showing NO production in μM/mL under different conditions. The x-axis represents LPS concentration (1μg/mL) and Viphillin concentrations (12 and 24μg/mL), and the y-axis represents NO production.
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6