Phosphopantothenoylcysteine Synthetase from Escherichia coli

IDENTIFICATION AND CHARACTERIZATION OF THE LAST UNIDENTIFIED COENZYME A BIOSYNTHETIC ENZYME IN BACTERIA*

Received for publication, January 23, 2001, and in revised form, March 7, 2001
Published, JBC Papers in Press, March 13, 2001, DOI 10.1074/jbc.C100033200

Erick Strauss, Cynthia Kinsland, Ying Ge, Fred W. McLaflerty, and Tadphg. Begley†
From the Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York, 14853

Phosphopantothenoylcysteine synthetase catalyzes the formation of (R)-4′-phospho-N-pantothenoylcysteine from 4′-phosphopantothenate and L-cysteine: this enzyme, involved in the biosynthesis of coenzyme A (CoA), has not previously been identified. Recently it was shown that the N-terminus domain of the Dfp protein from bacteria catalyzes the next step in CoA biosynthesis, the decarboxylation of (R)-4′-phospho-N-pantothenoylcysteine to form 4′-phosphopantetheine (Kupke, T., Uebeler, M., Schmid, D., Jung, G., Blaesse, M., and Steinbacher, S. (2000) J. Biol. Chem. 275, 31838–31846). We have partially purified phosphopantothenoylcysteine decarboxylase from Escherichia coli and demonstrated that the protein encoded by the dfp gene, here renamed coaBC, also has phosphopantothenoylcysteine synthetase activity, using CTP rather than ATP as the activating nucleoside 5′-triphosphate. This discovery completes the identification of all the enzymes involved in the biosynthesis of coenzyme A in bacteria.

Coenzyme A (CoA)1 fulfils a vital role in the normal metabolism of living organisms: it has been reported that ~4% of all enzymes utilize either CoA, its thioesters or 4′-phosphopantetheine (1). As an essential cofactor of fatty acid synthases, polypeptide synthases, and nonribosomal peptide synthases, 4′-phosphopantetheine functions as an acyl group carrier, activating carboxylic acids for biological Claisen reactions and the formation of peptides and esters. Acetyl-CoA and succinyl-CoA are key intermediates in energy metabolism, taking part in the tricarboxylic acid cycle. It is therefore surprising that three of the CoA biosynthetic enzymes have only recently been identified in E. coli (2, 3).

Phosphopantothenoylcysteine decarboxylase (PPC-DC) catalyzes the decarboxylation of 4′-phosphopantothenoylcysteine (PPanCys) to form 4′-phosphopantetheine (Fig. 1). From a mechanistic perspective this reaction proves to be particularly interesting as it is unclear how the stabilization of the carboxyl intermediate is achieved. To study this enzyme we have repeated, with major modifications, the published purification of PPC-DC from wild-type E. coli (4). Amino-terminal sequencing identified the dfp gene as coding for the protein having this activity. The flavin-containing Dfp protein was first identified from a temperature-sensitive mutant (dfp-707), believed to be involved in DNA and pantothenate metabolism (5, 6). However, the conditional lethality of the mutant was reported not to be a direct result of pantothenate auxotrophy, and its complete characterization was not achieved. While our work was in progress, Kupke et al. (7) also identified Dfp as having PPC-DC activity by sequence comparison with EpiD, a lantibiotic-synthesizing protein catalyzing the decarboxylation of peptidylcysteine intermediates.

We now report that the protein encoded by dfp also catalyzes the formation of PPanCys from 4′-phosphopantothenate and L-cysteine using cytidine 5′-triphosphate (CTP) as the activating nucleoside 5′-triphosphate. The protein releases CMP as the product of the coupling reaction, indicating the formation of an activated acyl-cytidylate intermediate. In addition, we show that the protein does not contain a covalently linked pyruvoyl group as cofactor as was reported previously (4). The identification of phosphopantothenoylcysteine synthase (PPC-S) completes the identification of all the enzymes involved in the biosynthesis of CoA in bacteria and prepares the way for its careful study and possible exploitation in the design of antimicrobial agents.

EXPERIMENTAL PROCEDURES

Materials and Methods—All chemicals were purchased from Aldrich or Sigma and were of the highest purity. Resins and columns were purchased from Amersham Pharmacia Biotech, except hydroxyapatite (Bio-Rad). Radiolabeled chemicals (1-14C) cystine (100 mCi/mmol, 1 mCi/μl) and 14CH4NaHCO3 (50 mCi/mmol, 1 mCi/μl) were purchased from American Radiolabeled Chemicals (St. Louis, MO). Ecolume (ICN) was used for liquid scintillation counting, performed on a Beckman LS 1801 instrument. Oligonucleotide synthesis and automated DNA sequencing were performed at the Cornell Biotechnology Resource Center.1H NMR was performed on a Bruker INNOVA 400 MHz instrument.

Purification of the Native Protein—PPC-DC activity was partially purified from 38 g of frozen E. coli B cells (Fermentation Facility, University of Alabama, Birmingham, AL) using normal protein purification methodology (Table I). However, protein concentration was not accomplished by buffer removal through membranes as this led to large losses of enzymatic activity; instead, solutions were concentrated on short DEAE-Sepharose columns and the concentrated protein eluted in buffer containing 400 mM NaCl when necessary. Buffer exchanges and salt removal were performed by dialysis.

Cloning and Overexpression of the coaBC Gene—The coaBC gene was amplified by PCR using as the forward primer: 5′-CTCACAGGAAAAATCCATAGGGGCTGCGGGG-3′, introducing an NdeI restriction site (underlined), and as the reverse primer: 5′-GCCAGTTCTACGGCGTCATTGCGACCACGCGACCAGG-3′, introducing an XhoI restriction site (underlined). The resulting PCR product coding for Dfp from Met25 to the end of the protein was cloned into NdeI/Xhol-digested pET28a ex-
pression vector (Novagen). The sequence of the resulting plasmid, designated pCLK1210, was verified by automated DNA sequencing. The expression plasmid was transformed into the E. coli Tuner(DE3) strain (Novagen).

Purification of Recombinant Protein—E. coli Tuner(DE3) pCLK1210

was grown in LB broth supplemented with 15 µg/ml kanamycin sulfate at 37 °C to A₆₀₀ ~ 0.6, and induced with 200 µM IPTG. After growing overnight at 37 °C, the cells were harvested, suspended in sonication buffer (5 mM imidazole, 0.5 M NaCl, and 20 mM Tris, pH 7.9, 10 ml/g cell paste), disrupted by sonication, and centrifuged at 35,000 x g for 30 min to collect the crude cell extract. This was applied to a 5-ml His-Bind column (Novagen). Weakly bound proteins were removed by washing with sonication buffer, followed by sonication buffer containing 100 mM imidazole. The protein of interest was eluted as a yellow band by increasing the imidazole concentration to 0.5 M. Elution was monitored at A₂₈₀ and A₄₃₅.

Synthesis of 4'-Phosphopantothenoyl cysteine—Benzy1 pantothenate was synthesized by alkylation of sodium pantothenate (1.00 g, 4.15 mmol dissolved in 15 ml of dry DMF) with benzyl bromide (494 µl, 4.15 mmol) by heating at 70 °C overnight. DMF was removed in vacuo, ethyl acetate (100 ml) was added, the organic layer was washed with saturated aqueous NaCl (3 x 20 ml), dried (Na₂SO₄), and the solvent removed. The product was purified by flash column chromatography (silica gel; ethyl acetate/hexane 2:1), to give a clear oil (576 mg, yield 88%). Dibenzylchlorophosphate was prepared similarly synthesized on the same scale as above using L-1-[14C]cysteine (–0.4 mCi/mmol), prepared from L-1,1'-[14C]cystine and L-cysteine.

Assay Procedure—The CO₂ release assay was performed as described previously (4), with modifications. Assays were performed in unmodified microcentrifuge tubes, and all additions were made directly to the sample followed by immediate closure of the tube. Assay mixtures contained 10 mM DTT, 2 mM MgCl₂, 50 mM Tris, pH 7.6, enzyme (–2 µg) and either 3.0 mM PAH-1-14C(Cys) or 3.5 mM L-1-14C(cysteine) in a total volume of 60 µl; if the synthetase activity was being assayed, mixtures also contained 2.5 mM 4'-phosphopantothenoyl cysteine and 3.5 mM CTP. The reaction was initiated by addition of the 14C-labeled substrate (10 µl of stock solution, i.e. 21 mM cysteine or 18 mM PanCys) to the rest of the assay components in 50 µl and stopped after 10 min at room temperature by addition of 100 µl of 5 M Na₂SO₄. The amount of CO₂ released was determined as reported previously (4). Efficiency of CO₂ trapping was determined over the same concentration range as for the assay, using [14C]NaHCO₃ as standard. Assay results were adjusted using the resulting standard curve (y = 0.70x – 0.08, R² = 0.99).

High Resolution Mass Spectrometry—Protein samples were desalted by loading onto reverse-phase protein traps (Michrom Bioresources, Auburn, CA), washed with 2 ml of 2:96:2 methanol/H₂O/acetic acid, and step eluted with 70:26:4 methanol/H₂O/acetic acid. Mass spectra were acquired on a modified 6-T Finnigan FTMS with the Odyssey data system described previously (9), with nanospray sample injection (10). Specific ions were isolated using stored waveform inverse Fourier transform (SWIFIT) (11), and assignment of the fragment masses and compositions was made using the computer program THRAW (12). Spectra were calibrated externally using bovine ubiquitin (M_r = 8,564.64).

Identification of the CTP Product—HPLC analysis was performed on reaction mixtures containing 1.5 mM 4'-phosphopantothenate, 3.5 mM CTP, 3.5 mM L-cysteine, 25 mM Tris, 2.5 mM MgCl₂, pH 7.6, and 20 µl of purified enzyme (0.95 mg/ml in 25 mM Tris, 1 mM EDTA, 2 mM DTT, pH 7.6) in a total volume of 500 µl. After standing at 25 °C for 4 h, protein was removed by centrifugation through a membrane (Vivaspin 500, Vivascience), and the reaction mixture was analyzed with a Supelcosil LC-18-3 µm, 15 cm x 4.6 mm inner diameter column (Supelco) on an HP series 1100 HPLC system eluting with 100 mM potassium phosphate buffer, pH 6.8, containing 4 mM tetrabutylammonium hydrogen sulfate. Elution was monitored at 254 nm, and identification was performed by comparison to CMP, CDP, and CTP as standards.
Phosphopantothenoylcysteine Synthetase from E. coli

RESULTS AND DISCUSSION

Purification of the Native Protein and Identification of the Synthetase Activity—Our procedure for the purification of PPC-DC differed significantly from that previously published; it is summarized in Table I. Throughout the purification the protein exhibited a number of characteristics that hampered its isolation. These included copurification with proteins of high molecular weight and coagulation on concentrating membranes leading to large losses of activity. After solving these problems PPC-DC could be partially purified 1,280-fold as one of a small set of proteins (~15% purity, the major contaminant (~80%) being alcohol dehydrogenase (adhE gene product) as determined by NH2-terminal sequencing), the final fraction having a specific activity of 370 nmol CO2/min/mg.

During the purification trials we observed that substrate analogs like 4'-phosphopantothenoylalnine and 4'-phosphopantothenoylsereine did not inhibit PPC-DC activity in partially purified fractions. Furthermore, the high concentrations of PPanCys needed to saturate the enzyme, combined with the reported failure to detect PPanCys in cell extracts (13), suggested that PPanCys was not the physiological substrate for the protein catalyzing its decarboxylation. The most likely alternative was to consider close interaction between the PPC-S and PPC-DC activities, and subsequently we tested 4'-phosphopantothenate, CTP, and 1-L-1[14C]cysteine as substrates. We found that 14CO2 was released from the reaction mixture, while cysteine was not decarboxylated in the absence of the other substrates. Our choice of CTP as activating nucleoside diphosphate rather than the more usual ATP was based on previous studies (13) that had demonstrated that crude extracts from E. coli preferentially used CTP for 4'-phosphopantothenoylcysteine synthetase activity. However, it was not possible to determine whether these PPC-DC and PPC-S activities found in our partially purified fractions were located on the same protein, or on two distinct proteins which were copurifying, until the enzyme was purified to homogeneity.

Identification, Cloning, Overexpression, and Purification of Recombinant PPC-DC—The proteins from the purified fraction with the highest specific activity were separated by SDS-PAGE and subsequently electroblotted to a polyvinylidene difluoride membrane. Determination of the NH2-terminal sequence of the band at 45.0 kDa gave SLAGKILVLGV, revealed by a BLAST search to correspond to residues 26–36 of the protein coded for by the dfp gene, annotated as a flavoprotein affecting DNA and pantothenate metabolism in an unspecified way.

Amplification of the dfp gene (using ATG25 as the start codon) from the E. coli genome by PCR and subsequent insertion of the product into pET28a gave pCLK1210 as the resulting plasmid. Transformation of this plasmid into the Tuner(DE3) cell strain, a lac permease deletion mutant allowing uniform entry of IPTG into cells and providing strict concentration-dependent control of induction, allowed the production of soluble overexpressed Dfp following induction at 37 °C with 200 μM IPTG (Fig. 2, lane 1). Expression in the BL21(DE3) host strain failed to produce soluble protein under a variety of conditions. The presence of an NH2-terminal 6 × His-tag made the purification of the recombinant protein possible by imidazole elution from a Ni2+ chelating affinity resin (Fig. 2, lane 2). Both the purification procedure and subsequent dialysis had to be performed at an ambient temperature as the protein precipitated at 4 °C. Solutions of the protein could be concentrated by centrifugation through a membrane if the procedure was carried out at 15 °C.

PPC-DC Is Not a Pyruvoyl-dependent Enzyme—The report of the first purification of PPC-DC from E. coli (4) claimed that the enzyme contained a base labile pyruvoyl group. We set out to determine whether we could identify such a post-translational modification by mass spectrometric analysis of the pure recombinant protein.

The analysis of Dfp by high resolution ESI/FTMS showed that the protein had a molecular mass of 45,470.6 Da (Fig. 3). This value corresponds exactly to the calculated mass of the recombinant protein with the NH2-terminal methionine removed (45,470.4 Da) and excludes the possibility that PPC-DC contains a pyruvoyl group or any other covalent post-translational modification.

Identification of the Flavin Cofactor—The purified protein exhibited a UV-visible spectrum characteristic of flavoenzymes, with a λmax at 455 and 378 nm. The identity of the flavin was previously found to be flavin mononucleotide (FMN) by TLC analysis of the denatured protein and comparison to standards (5). We confirmed this finding by isolating the flavin cofactor from heat-denatured enzyme and subjecting it to ESI/MS analysis. The isolated product had an m/z value of 457.2 (M + H)" corresponding to FMN (M, 456.3 for the free acid). Further MSMS analyses of the molecular ion confirmed this identification. No peaks corresponding to FAD molecular ions could be observed.

4'-Phosphopantothenoylcysteine Synthetase Activity of the Dfp Protein—Since our initial studies on partially purified mixtures of PPC-DC suggested that it was copurifying with PPC-S activity, we repeated our experiments with the purified Dfp protein. This enzyme catalyzes the release of 14CO2 from 1-L-1[14Clcysteine in the presence of 4'-phosphopantothenate, CTP, and Mg2+, but not when any one of these cosubstrates was absent. Analysis of the reaction mixture by ESI/MS demonstrated the formation of 4'-phosphopantothenate.

None of the other nucleoside 5'-triphosphates, i.e. ATP, GTP, and UTP, could substitute for CTP in the coupling reaction even at concentrations as high as 10 mm. The function of cytidylyltransferases in the formation of critical intermediates in the biosynthesis of lipids and complex carbohydrates has been studied extensively; these enzymes use CTP to form activated CDP-alcohols or CMP-acid sugars (Ref. 15 and references cited therein). However, the utilization of CTP by enzymes to activate acyl groups in a transient fashion has, to our knowledge, not been reported. Furthermore, it has been reported that members of the family of cytidylyltransferases can be identified by the presence of certain conserved binding motifs, the HXGH
parameters. The presence negatively influences the determination of the kinetic parameters. It was found that increasing the initial rates of reaction are quenched within this period of time is a close approximation of the average rate of a reaction. We have therefore assumed that the release of 14CO$_2$ by the Dfp protein demonstrated a linear contrast with that of the partially purified rat liver (18), and in the case of the former, it was shown that the enzyme is pyruvoyl-dependent (19). PPC-S from rat liver uses ATP as the activating nucleotide, instead of CTP, and forms an acyl-phosphate intermediate as suggested by the formation of ADP and phosphate (16). These differences between the key CoA biosynthetic enzymes in bacteria and higher organisms raise the possibility of exploiting the selective inhibition of the bacterial enzyme in the development of new antibiotics. Our identification of the Dfp protein from $E. coli$ as having both PPC-S and PPC-DC activities leads us to suggest the renaming of the dpf gene as $coaBC$, in accordance with the nomenclature established for CoA biosynthetic enzymes and to accommodate the existence of separate orthologs, notably in Klebsiella pneumoniae and Streptococci, encoding for CoaB and CoaC. This finding completes the identification of all the enzymes involved in the biosynthesis of coenzyme A in bacteria.

Acknowledgment—We thank Ryan Mehli for assistance with HPLC analysis and for helpful discussions.

REFERENCES

1. Lee, C. H., and Chen, A. F. (1982) in The Pyridine Nucleotide Coenzymes (Everse, J., Anderson, B., and Yos, K., eds) p. 189, Academic Press, Inc., New York
2. Begley, T. P., Kinsland, C., and Strauss, E. (2001) in Vitamins and Hormones (Liwack, G., and Begley, T. P., eds) Vol 61, pp. 157–171, Academic Press, Inc., New York
3. Geerlof, A., Lewendon, A., and Shaw, W. V. (1999) J. Biol. Chem. 274, 27105–27111
4. Yang, H., and Abeles, R. H. (1987) Biochemistry 26, 4076–4081
5. Spitzer, E. D., and Weiss, B. (1985) J. Bacterial. 164, 994–1003
6. Spitzer, E. D., Jimenez-Bilnini, H. E., and Weiss, B. (1988) J. Bacterial. 170, 872–876
7. Kupke, T., Uebele, M., Schmid, D., Jung, G., Blesse, M., and Steinbacher, S. (2000) J. Biol. Chem. 275, 31838–31846
8. Martin, D. P., Bibart, R. T., and Drucehammer, D. G. (1994) J. Am. Chem. Soc. 116, 4660–4668
9. Beu, S. C., Senko, M. W., Quinn, J. P., Wampler, F. M., and McLaYefft, F. W. (1995) J. Am. Soc. Mass Spectrom. 4, 557–565
10. Wilm, M., and Mann, M. (1996) Anal. Chem. 68, 1–8
11. Loo, J. A., and Smith, R. D. (1988) Rapid Commun. Mass Spectrom. 2, 207–221
12. Little, D. P., Speir, J. P., Senko, M. W., O’Connor, P. B., and McLaYefft, F. W. (1994) Anal. Chem. 66, 2860–2865
13. Brown, G. M. (1959) J. Biol. Chem. 234, 370–378
14. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) J. Mol. Biol. 215, 403–410
15. Weber, C. H., Park, Y. S., Sanker, S., Kent, C., and Ludwig, M. L. (1999) Structure (Lond.) 7, 1113–1124
16. Abiko, Y. (1970) Methods Enzymol. 18A, 350–354
17. Scandurra, R., Barboni, E., Granata, F., Messa, B., and Costa, M. (1974) Eur. J. Biochem. 49, 1–9
18. Abiko, Y. (1970) Methods Enzymol. 18A, 354–358
19. Scandurra, R., Politi, L., Santoro, L., and Consalvi, V. (1987) FEBS Lett. 212, 79–82

TABLE I

Purification of PPC-DC activity from $E. coli$ B cells

Purification step	Protein	Activity	Specific activity	Yield	Purification
Crude extract"	2927	845	0.289	100	1
30–50% (NH$_4$)$_2$SO$_4$ fraction	1152	767	0.665	91	2.3
HiPrep 16/60 Sepharose S-200	429	480	1.12	57	3.9
DEAE-Sepharose Fast Flow	15.7	240	15.3	28	53
Hydroxyapatite (CHT Type I)	3.32	103	31.0	12	107
HiTrap Blue	0.45	36.7	80.9	4.3	280
Superdex 200 prep grade	0.026	9.5	371	1.1	1280

" The data were obtained from 38 g of frozen cell paste. Special precautions had to be followed during the purification, see “Experimental Procedures” for details.

TABLE II

K_m and k_{cat} values of the PPC-S and PPC-DC activities of Dfp

Substrate	K_m	k_{cat}
4′-Phosphopantothenate	290	53
CTP	290	
Cysteine	240	
$PPanCys$	780	50

" k_{cat} values are for the coupled (synthetase and decarboxylation) and decarboxylation reactions, respectively.

and RTXGISTT motifs being the best examples (15). However, Dfp from $E. coli$ does not contain such a motif, or any other motif that has been associated with NTP binding.

HPLC analysis of the products of the coupling reaction showed that CTP was converted exclusively to CMP. This indicates the formation of an activated acyl-cytidylate, which is subsequently attacked by cysteine (Fig. 1). This mode of action contrasts with that of the partially purified rat liver PPC-S (16), which was shown to produce ADP and phosphate as products of the coupling reaction, suggesting the formation of an acyl-phosphate intermediate for that system.

Steady State Kinetic Analysis—Time course assays based on the release of 14CO$_2$ by the Dfp protein demonstrated a linear increase of CO$_2$ production for the first 10 min of reaction. We have therefore assumed that the average rate of a reaction quenched within this period of time is a close approximation of the initial rates of reaction.

The accurate determination of the kinetic parameters was hampered by a number of factors. It was found that increasing the enzyme concentration above $\sim 30 \mu$g/ml led to a rapid decrease in activity. Protein from which the His-tag had been removed by thrombin cleavage exhibited similar behavior (data not shown). Although leading to practical problems, the physiological significance of this observation is unclear, because the decrease in activity is only observed at levels of enzyme concentration above those expected to occur under normal cellular conditions. However, it does confirm the tendency of the enzyme to aggregate, a process hastened at lower temperatures. The enzyme also loses activity over time; this deterioration may be slowed by the presence of high ($\sim 200 \mu$m) concentrations of NaCl in the enzyme sample, but its presence negatively influences the determination of the kinetic parameters.

Despite these problems, preliminary values for K_m and k_{cat} were determined at $\sim 30 \mu$g/ml enzyme, while maintaining nonvariable substrates at concentrations of at least $5 \times K_m$ (Table II). 4′-Phosphopantothenate shows substrate inhibition at high concentrations. The 2.7-fold higher value of $K_m(4′-\text{phosphopantothenate})$ suggests that this intermediate is not the physiological substrate.

Conclusion—The Dfp protein from $E. coli$ bears little resemblance to PPC-S and PPC-DC from mammalian sources: PPC-DC has been partially purified from both horse (17) and rat liver (18), and in the case of the former, it was shown that the enzyme is pyruvoyl-dependent (19). PPC-S from rat liver uses ATP as the activating nucleotide, instead of CTP, and forms an acyl-phosphate intermediate as suggested by the formation of ADP and phosphate (16). These differences between the key CoA biosynthetic enzymes in bacteria and higher organisms raise the possibility of exploiting the selective inhibition of the bacterial enzyme in the development of new antibiotics. Our identification of the Dfp protein from $E. coli$ as having both PPC-S and PPC-DC activities leads us to suggest the renaming of the dpf gene as $coaBC$, in accordance with the nomenclature established for CoA biosynthetic enzymes and to accommodate the existence of separate orthologs, notably in Klebsiella pneumoniae and Streptococci, encoding for CoaB and CoaC. This finding completes the identification of all the enzymes involved in the biosynthesis of coenzyme A in bacteria.