A STATISTICAL STUDY OF MULTIPLY IMAGED SYSTEMS IN THE LENSING CLUSTER ABELL 68\(^1,2\)

Johan Richard,\(^3\) Jean-Paul Kneib,\(^3,4\) EricJullo,\(^5,4\) Giovanni Covone,\(^6\) Marceau Limousin,\(^6\) Richard Ellis,\(^5\) Daniel Stark,\(^3\) Kevin Bundy,\(^3\) Olivier Czoske,\(^7\) Harald Ebeling,\(^8\) and Geneviève Soucail.\(^9\)

Received 2006 December 26; accepted 2007 February 26

ABSTRACT

We have carried out an extensive spectroscopic survey with the Keck and VLT telescopes, targeting lensed galaxies in the background of the massive cluster Abell 68. Spectroscopic measurements are obtained for 26 lensed images, including a distant galaxy at \(z = 5.4\). Redshifts have been determined for 5 out of 7 multiple-image systems. Through a careful modeling of the mass distribution in the strongly lensed regime, we derive a mass estimate of \(5.3 \times 10^{14} \, M_\odot\) within 500 kpc. Our mass model is then used to constrain the redshift distribution of the remaining multiply imaged and singly imaged sources. This enables us to examine the physical properties for a subsample of 7 Ly\(\alpha\) emitters at \(1.7 \leq z \leq 5.5\), whose unlensed luminosities of \(\approx 10^{41}\) erg s\(^{-1}\) are fainter than similar objects found in blank fields. Of particular interest is an extended Ly\(\alpha\) emission region surrounding a highly magnified source at \(z = 2.6\), detected in VIMOS integral field spectroscopy data. The physical scale of the most distant lensed source at \(z = 5.4\) is very small (<300 pc), similar to the lensed \(z = 5.6\) emitter reported by Ellis et al. in Abell 2218. New photometric data available for Abell 2218 allow for a direct comparison between these two unique objects. Our survey illustrates the practicality of using lensing clusters to probe the faint end of the \(z \sim 2-5\) Ly\(\alpha\) luminosity function in a manner that is complementary to blank-field narrowband surveys.

Subject headings: cosmology: observations — galaxies: clusters: individual (A68) — galaxies: high-redshift — gravitational lensing

Online material: color figures

1. INTRODUCTION

The central regions of massive galaxy clusters act as powerful gravitational telescopes, magnifying the light from background galaxies via the effect of strong lensing. Such magnifications can attain typical values of 1–3 mag in concentrated cluster cores, enabling the detection of intrinsically fainter sources than in unlensed field surveys. The detailed study of low-luminosity galaxies at \(z > 2\), where the major fraction of star formation activity is thought to occur, is an interesting, but poorly understood topic. Such galaxies can be found either through their Ly\(\alpha\) emission (e.g., Franx et al. 1997; Santos et al. 2004) or through their ultraviolet continuum fluxes via Lyman break techniques (Kneib et al. 2004; Richard et al. 2006). A prerequisite for strong-lensing studies of intrinsically faint galaxies at high redshift is an accurate measurement of the projected mass distribution in the lens (Kneib et al. 2003; Gavazzi et al. 2003; Sand et al. 2005). Such mass models are primarily limited by the number of available multiply imaged sources of known redshift. Only a few well-studied clusters, such as Abell 1689 (Broadhurst et al. 2005; Halkola et al. 2006; Limousin et al. 2007), with more than 30 multiply imaged systems, or Abell 2218 (Ebbels et al. 1996; Kneib et al. 1996) have sufficient constraints to permit precise modeling of each individual dark matter clump. Spectroscopic searches for Ly\(\alpha\) emitters (LAEs) at high redshift usually have a better line flux sensitivity and span a larger redshift range \((\Delta z \sim 4)\) than those of wide-field narrowband surveys. This gain in sensitivity is even larger in strong-lensing applications. Lensed spectroscopic surveys may also be sensitive to sources with emission lines with an equivalent width \(W < 20\) Å, smaller than those in narrowband surveys (e.g., Fynbo et al. 2003; Shimasaku et al. 2006). An additional complication in narrow-band surveys is how interlopers are treated; confirmatory spectroscopy is usually necessary. By contrast, in lensed surveys, the geometric configuration of multiply imaged systems can reliably

\(^{1}\) Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

\(^{2}\) Also based on observations collected at the Very Large Telescope (Antu/UT1 and Melipal/UT3), European Southern Observatory, Paranal, Chile (ESO programs 070.A-0643 and 073.A-0774), the NASA/ESA Hubble Space Telescope (program 8249) obtained at the Space Telescope Science Institute, which is operated by AURA under NASA contract NAS5-26555, and the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

\(^{3}\) Department of Astronomy, California Institute of Technology, Pasadena, CA 91125; johan@astro.caltech.edu, kneib@astro.caltech.edu, dps@astro.caltech.edu, kbundy@astro.caltech.edu.

\(^{4}\) OAMP, Laboratoire d’Astrophysique de Marseille, Marseille, France; Jean-Paul.Kneib@oamp.fr.

\(^{5}\) European Southern Observatory, Vitacura, Chile; ejullo@eso.org.

\(^{6}\) INAF-Osservatorio Astronomico di Capodimonte, 80131 Naples, Italy; giovanni.covone@na.asastro.it.

\(^{7}\) Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, marceau@dark-cosmology.dk.

\(^{8}\) Argelander-Institut für Astronomie (Founded by merging of the Institut für Astrophysik und Extraterrestrische Forschung, the Sternwarte, and the Radioastronomisches Institut der Universität Bonn), Universität Bonn, 53121 Bonn, Germany; oczoske@astro.uni-bonn.de.

\(^{9}\) Institute of Astronomy, University of Hawaii, Honolulu, HI 96822; ebeling@ifa.hawaii.edu.

\(^{10}\) Observatoire Midi-Pyrénées, 31000 Toulouse, France; soucail@ast.obs-mip.fr.
distinguish between high-redshift objects and low-redshift interlopers (see e.g., Ellis et al. 2001).

As our surveys expand, a variety of types of emission-line galaxies are being discovered. Of particular interest are the extended Lyα emission sources, which have been mainly discovered in regions of significant overdensity through deep narrowband imaging (Steidel et al. 2000; Francis et al. 2001). Matsuda et al. (2004) have identified a large number of such giant Lyα blobs (with typical sizes $\gtrsim 50$ kpc) in a $34' \times 27'$ field of view, demonstrating the existence of a continuous distribution. The origin of the extended Lyα emission in such radio-quiet sources may be explained by gas inflow during the early stages of galaxy formation: large amounts of hydrogen collapsing into the dark matter potential well will cool through Lyα radiation. Giant Lyα blobs may thus be the progenitors of very massive galaxies in the local universe. A key issue is whether the same process is seen to occur in lower mass objects. A route to addressing this question is to examine the nature of smaller extended Lyα sources, either by long-slit or integral field spectroscopy (IFS). This identification is more easily achieved than spectroscopic work with the larger magnification factors, high-resolution HST imaging, and broadband photometry.

The spatial magnification associated with lensing can also be used to yield physical sizes for the most distant sources. Using strong lensing in the cluster Abell 2218, Ellis et al. (2001) located a remarkably small source at $z = 5.6$, where the combination of Lyα emission-line flux density and the weak stellar continuum were used to deduce a young age and modest stellar mass ($\sim 10^9 - 10^8 M_\odot$) consistent, perhaps, with a forming globular cluster. Further surveys are required to evaluate whether such systems are common at $z \gtrsim 6$.

The major drawback arising from the study of lensed sources located through studies of individual clusters is, of course, the significant cosmic variance that is associated with the small volumes being probed. Compared to field surveys, any statistical inferences about the abundances of various classes of populations may be much more uncertain, even granting that fainter sources are probed. To overcome this limitation, an effective survey would have to be conducted through a large sample ($\sim 20 - 40$) of lensing clusters, each with reliable mass models based on the spectroscopic study of many multiply imaged systems (Kneib et al. 1996). Fortunately, the construction of such a sample of well-mapped clusters is now a realistic proposition. Several Hubble Space Telescope (HST) snapshot imaging surveys of X-ray–luminous clusters are now underway with associated ground-based spectroscopy, such as the Massive Clusters Survey (MACS; GO 10491, CFHT Camden), RICHARD ET AL., P.I.: H. Ebeling) and the Local Cluster Substructure Survey (LoCuSS; GO 10881, P.I.: G. Smith).

The purpose of this paper is to illustrate the promise of such surveys by examining spectroscopically the rich population of lensed sources located in the lensing cluster Abell 68 ($\alpha = 00^h 37^m 06.8^s$, $\delta = +09^\circ 09' 24.0''$) ($J2000.0$, $z = 0.255$), one of the most X-ray–luminous clusters ($L_X \sim 8.4 \pm 2.3 \times 10^{44}$ ergs s$^{-1}$, $0.1 - 2.4$ keV) in the X-ray brightest Abell-type clusters sample (XBACS; Ebeling et al. 1996). Strong lensing in this cluster has been previously studied by Smith et al. (2005, hereafter S05), as part of a survey of 10 X-ray–luminous galaxy clusters at $z \sim 0.2$. Smith et al. identified a list of potential multiple-image systems, a few of which were confirmed spectroscopically. Here we significantly extend this work by securing the redshifts of new multiple-image systems, many of which are strongly lensed LAEs at $z \gtrsim 2$.

The combination of a large magnification factor, high-resolution HST imaging, and broadband photometry enables us to demonstrate the value of studying the physical properties of these faint emitters, such as their star formation rates, intrinsic scales, and stellar masses. The paper is intended to illustrate the significant promise of continuing such spectroscopic work with the larger samples of clusters now being surveyed with HST.

The paper is organized as follows. In §2, we describe the various observations and the reduction of the spectroscopic data. We present in §3 the strong-lensing constraints, in the light of the redshifts and identification of new multiply imaged systems. Section 4 presents a mass model of the cluster from which the source magnifications are deduced. The physical properties of the various categories of high-redshift LAEs are presented in §5, and the implications are discussed in the context of the limitations of blank-field surveys in §6. We summarize our conclusions in §7.

Throughout this paper, we adopt the following cosmology: a flat Λ-dominated universe with the values $\Omega_m = 0.7$, $\Omega_\Lambda = 0.3$, $\Omega_b = 0.045$, and $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$. All magnitudes given in the paper are quoted in the AB system (Oke 1974). The correction C_{AB} between AB and Vega photometric systems, defined as $m_{AB} = m_{Vega} + C_{AB}$, are reported in Table 1 for each filter.

Table 1: Properties of the Photometric Data Set

Instrument	Filter	Exposure Time (ks)	Pixel Size (arcsec)	Depth (AB mag)	C_{AB} (mag)	Seeing (arcsec)
CFH12k	B	8.1	0.206	27.4	-0.066	1.11
CFH12k	R	7.2	0.206	27.2	0.246	0.67
WFC2	R232W	7.5	0.1	28.0	0.299	0.17
CFH12k	I	3.6	0.206	26.5	0.462	0.58
FORS2	z	9.6	0.252	26.5	0.554	0.71
ISAAC	J	6.48	0.148	26.2	0.945	0.48
ISAAC	H	7.12	0.148	26.3	1.412	0.48

Notes.—The table presents properties of the photometric data set. Col. (1): Instrument; col. (2): filter; col. (3): total integration time; col. (4): pixel size; col. (5): photometric depth (defined as 4 pixels above 3 σ); col. (6): photometric correction C_{AB} between the AB and Vega systems; col. (7): seeing measured on bright unsaturated stars.
here, whereas multicolor images are used to estimate their spectral energy distributions (SEDs). Redshift and emission-line measurements for individual objects were obtained during subsequent spectroscopic observations. These included multiobject spectroscopy of multiply imaged candidates, as well as systematic long-slit searches in the central regions of the cluster. Figure 1 shows the location of the main spectroscopic settings in the cluster field.

2.1. Imaging Data

A considerable body of multiwavelength data exists in the field around Abell 68, including high-resolution HST imaging. The main characteristics of the data set used in this study are summarized in Table 1. We obtained 3×2.5 ks of integration time with the Wide Field Planetary Camera (WFPC2) during Cycle 8 in the R F702W band, as part of HST program 8249 (PI: J. P. Kneib). Observations were carried out in low-sky mode, and a 1.0" dithering pattern was used between each exposure. Details on the reduction of these data are given in S05.

Recognition of faint multiply imaged systems in the vicinity of the cluster core is hindered by the dominant stellar halo of the brightest cluster galaxy (BCG). To overcome this, we fitted and subtracted from the HST image a model representation of the surface brightness distribution using the IRAF task ellipse. Both the position angle and ellipticity were allowed to vary as a function of the semimajor axis in the fitted elliptical isophotes, as well as the isophote centroid in the central part. This procedure was found to give satisfactory residuals at the center (Fig. 3).

Associated optical images in B, R, and I have been obtained on UT 1999 November 19 using the CFH12k camera at CFHT. These sample a field of $42' \times 28'$ at a 0.205" pixel scale. The total exposure times are 8.1, 7.2, and 3.6 ks in the B, R, and I band, respectively. The data were reduced using procedures similar to those described by Czoske (2002) and Bardeau et al. (2005).

At longer wavelengths, Abell 68 has been observed at the Very Large Telescope (VLT) using the Focal Reducer/low-dispersion Spectrograph (FORS2/UT4) in the z-band on UT 2002 October 6 and the Infrared Spectrometer And Array Camera (ISAAC/UT1) in the J and H bands on UT 2002 September 29. The field of view of the FORS2 image is $7.2' \times 7.2'$ after dithering, with a pixel size of 0.252", and we used 80 dithered exposures of 120 s. The field of view of the ISAAC images is about $2.5' \times 2.5'$ after dithering, with a pixel size of 0.148", the subintegration-integration times of the dithered exposures were 6×35 s and 10×12 s in the J and H bands, respectively. All these data have been reduced using procedures similar to those described by Richard et al. (2006).

2.2. Keck Multiobject Spectroscopy

The Low Resolution Imaging Spectrograph (LRIS; Oke et al. 1995) on Keck I has been used in multiobject (MOS) mode during two observing runs, in order to target background galaxies

Fig. 1.—Composite CFH12k-BRI color image of the field of view around the center of Abell 68. We overplot the redshift measurements obtained for galaxies located in the background of the cluster (labels). Circles represent cluster members confirmed with spectroscopy. We delineate the imprints of the HST WFPC2 (polygon) and the VIMOS/IFU (square) fields, as well as the spatial coverage of the different LRIS long-slit configurations (rectangles). [See the electronic edition of the Journal for a color version of this figure.]
and multiply imaged candidates selected on the basis of morphology and colors. On UT 2001 August 4, four exposures of 1.8 ks were acquired with a 31 slit mask, using a 300 line mm\(^{-1}\) grism blazed at 5000 Å in the single red channel of the camera, which covers the approximate range 5500–9900 Å at a dispersion of 2.5 Å per pixel. The average seeing was ~1.0′′. The night was photometric, and spectrophotometric standard stars were used for flux calibration.

On UT 2002 November 30, a 32 slit mask was used during 3 × 2.4 ks of integration time. A 6800 Å dichroic separated the red channel of the instrument, equipped with a 600 line mm\(^{-1}\) grating blazed at 7500 Å, from the blue channel equipped with a 400 line mm\(^{-1}\) grism blazed at 3400 Å. The whole setting covers the wavelength range 3500–9500 Å with dispersions of 1.28 and 1.09 Å per pixel in the red and blue channels, respectively. Despite good seeing conditions (~0.8′′), the night was not photometric, and no standard stars were observed. These data sets were reduced using standard IRAF procedures for bias removal, flat-fielding, wavelength and flux calibration, sky subtraction, and extraction of the one-dimensional spectra.

2.3. Keck Long-Slit Spectroscopy

2.3.1. Optical Spectroscopy

Abell 68 was observed on UT 2002 September 11 with LRIS, in the course of a survey targeting low-luminosity Ly\(\alpha\) sources at high redshift (Santos et al. 2004). A 175′′ long and 1′′ wide slit was used to map the high-magnification regions of a sample of \(z \sim 0.2\) lensing clusters. In the case of Abell 68, six adjacent slit settings scanned the theoretical location of the critical lines at \(z \sim 5\), with \(2 \times 1000\) s of integration time at each position. The reduction of these data is detailed in Santos et al. (2004).

In addition to the detection of high-redshift sources through their Ly\(\alpha\) emission, this blind spectroscopic survey provided secure redshifts for a number of lensed background galaxies serendipitously falling into the long slit. On UT 2003 August 26, a single long-slit LRIS position was aligned on two components of a triply imaged system, discovered as R-dropouts by a R\(\text{Ic}\) color-color selection technique (see § 3). A 300 line mm\(^{-1}\) grism blazed at 5000 Å and a 600 line mm\(^{-1}\) grating blazed at 1μm were used in the blue and red channels of the instrument, both light paths being separated by a dichroic at 6800 Å. Two exposures of 1.2 ks were acquired at this position, with a 5″ dithering offset along the slit. Finally, an additional LRIS long-slit integration of 3 × 1.2 ks was acquired on UT 2005 November 29 with a 600 line mm\(^{-1}\) grism blazed at 4000 Å, a 400 line mm\(^{-1}\) grating blazed at 8500 Å, a 5600 Å dichroic, and 5″ dithering offsets.

2.3.2. Near-Infrared Spectroscopy

Abell 68 was observed on UT 2005 October 13 using the Near-InfraRed SPECTrograph (NIRSPEC; McLean et al. 1998) on Keck II, during a spectroscopic survey of the critical lines of lensing clusters similar to the LRIS survey described before, but at longer wavelengths (Stark & Ellis 2006). A 42″ × 0.76″ long slit was used at two adjacent slit positions, with 9 × 600 s of integration time on each of them. The spectra were reduced using IDL routines, following optimal spectroscopic reductions techniques presented in Kelson (2003). More details are presented in a forthcoming paper (Stark et al. 2007).

2.4. VLT Integral Field Spectroscopy

Abell 68 was observed on UT 2004 August 12 using the Visible Multi-Object Spectrograph (VIMOS; Le Fèvre et al. 2003) on VLT/UT3 in low-resolution (LR-blue grism) integral field spectroscopy (IFS) mode, as part of a survey targeting the central regions of an intermediate-redshift galaxy cluster sample (073.A-0774; PI G. Soucail). The 54″ × 54″ field of view of the integral field unit (IFU; composed of 6400 fibers, split into four quadrants feeding the four VIMOS CCDs) was centered on the cD galaxy. In the given configuration, the spectral resolution is about 200, and the diameter of the fibers is 0.66″, covering the wavelength range 3900–6800 Å with a dispersion of 5.355 Å per pixel; 2 × 2.4 ks of integration time were acquired without dithering.

These three-dimensional (3D) spectroscopic data have been reduced using the Vimos Interactive Pipeline Graphical Interface (VIPGI; Scodeglio et al. 2005). Before building the data cube for each exposure, every step in the data reduction was performed on a single-quadrant basis. After bias subtraction and cosmic-ray removal (see Zanichelli et al. [2005] for a description of the algorithm), the spectra were traced on the CCDs with the help of the high signal-to-noise ratio (S/N) spectra of a continuum lamp. Following wavelength calibration, inhomogeneities in fiber efficiencies were corrected by measuring the counts in the 5577 Å sky emission line after subtracting the contribution from a galaxy spectrum where fibers cover a galaxy position. The flux calibration is applied by using observations of a standard star in each quadrant. See Covone et al. (2006), who present similar data on Abell 2667, for a detailed description of the procedures.

2.5. Redshift Measurements

We attempted to measure the redshift of all individual objects falling in the slits that revealed a discernible continuum or possible emission lines. To obtain an accurate redshift measurement for foreground galaxies, cluster members, and other bright objects, we applied the IRAF task \texttt{xezao} from the radial velocity package RVSAO (Kurtz et al. 1992) on all extracted spectra. This procedure uses a cross-correlation method based on spectral templates (Coleman et al. 1980; Kinney et al. 1996) to estimate the redshift and the corresponding redshift error. For the remaining objects in the spectroscopic catalog, the redshift measurement is based on the wavelength at the peak of the brightest emission line detected. In the latter case, we estimated the redshift error from the spectral dispersion. Additional uncertainties generated by the accuracy of the relative and absolute wavelength calibrations, of about 0.8 and 1.5 Å, respectively, for the LRIS data, were quadratically added to the previous estimates to yield the final redshift errors.

A confidence class C, ranging from 1 to 4, was assigned to each individual redshift measurement according to the prescription of Le Fèvre et al. (1995); this corresponds to a probability level for a correct identification of 50%, 75%, 95%, and 100%, respectively. A specific value of 9 is used when only a single secure spectral feature is seen in emission. The identification of most \(z > 2\) objects in the catalog is based on only a single emission line interpreted as Ly\(\alpha\) and a confidence class of 9. However, the constraints provided by the lensing configuration in case of multiple images (see § 3) enable us to strengthen most of these interpretations.

Multicolor photometry was performed for all sources identified in the WIPOC F702W-band and CFH12k R-band images, using the SExtractor software (Bertin & Arnouts 1996). Total magnitudes and errors were measured on the original images without any resampling or convolution. The final spectroscopic catalog of lensed galaxies is presented in Table 2, and individual spectra of \(z > 1\) sources are shown in Figure 2.

11 VIPGI has been developed within the VIRMOS Consortium. For more information, see http://cosmos.mi.iasf.cnr.it/pandora/vipgi.html.
Figure 1 displays the location of all sources in the catalog and the spectroscopic configuration of each data set. A circle marks the location of 44 cluster members from our sample, for which we measured a spectroscopic redshift. Long-slit and IFU pointings were mainly focused on the central region of the cluster (within ~80") in the vicinity of the critical curves, whereas MOS surveys with LRIS probed a wider field of view of ~6' x 8'.

The redshift distribution of lensed background galaxies appears to be highly correlated. Three sources are located in the 2.63 < z < 2.69 range, two sources have z ~ 0.86, and the C1 system has a z ~ 1.6 redshift similar to C0 (Smith et al. 2002a). Even more prominent is a group of eight sources having 0.62 < z < 0.64, which lie predominantly at the south of the cluster center and exhibit similar colors in the composite CFH12k image (Fig. 1).

3. CATALOG OF MULTIPLY IMAGED SYSTEMS

In this section we update the catalog of multiply imaged systems in the field of Abell 68, taking into account both our new spectroscopic measures and systems without spectroscopy located on the basis of their geometric location and similar colors. For each system, we present a close-up view from the HST R image in the bottom panels of Figure 3 and summarize the position, photometry, shape parameters, and magnification in Table 3.

3.1. Morphological Identification

Multiply imaged systems can be identified via a visual inspection of morphologies in the central region of the HST R702w image (Fig. 3), examined in combination with the broadband photometric catalogs. Our starting point is a detailed study of candidates identified to μ702 > 25 mag arcsec−2 presented by S05. This work revealed three main systems (C0a, b, c; C1a, b, c; and C2a, b), as well as 20 other possible multiply imaged candidates (C3 to C22). We adopt the same nomenclature, extending to include the new systems presented here.

The three images identified as C15, C16, and C17 have been selected as R-dropouts on the basis of color-color diagrams combining R, I, and z-band filters. Indeed, they are very faint in the HST image (R702 ~ 25.7) and undetected at shorter wavelengths in the B or R band with CFH12k with a combination of red (R − I)AB ~ 1.7 and blue (I − z)AB ~ −0.5 colors, as measured with aperture photometry on the seeing-matched images. Such a spectral energy distribution (SED) is characteristic of galaxies in the redshift range 5 ≤ z ≤ 6, where the Lyα break in the

Table 2

SPECTROSCOPIC CATALOG OF LENSED BACKGROUND GALAXIES

ID (1)	R.A. (2)	Decl. (3)	R (mag) (4)	z (5)	C (6)	Features	μ (mag) (8)	W0 (A) (9)
Lyα								
1 (C15a)	37 04.297	09 43.40	26.00 ± 0.18	5.421 ± 0.0021	9	Lyα	2.74 ± 0.08	53 ± 16a
2 (C15b)	37 04.861	09 51.78	26.52 ± 0.22	5.421 ± 0.0021	9	Lyα	2.89 ± 0.07	
3 (C26)	37 08.960	09 06.90	27.24 ± 0.25	3.677 ± 0.0022	9	Lyα	2.06 ± 0.03	107 ± 8.2
4 (C23a)	37 07.902	09 29.80	26.44 ± 0.18	3.135 ± 0.0021	9	Lyα	2.37 ± 0.07	259 ± 5.2
5 (C25)	37 06.506	10 16.70	24.40 ± 0.07	2.6930 ± 0.0021	9	Lyα	1.12 ± 0.07	10.4 ± 5.1
6 (C20c)	37 05.405	09 59.14	25.15 ± 0.09	2.6890 ± 0.0020	9	Lyα	3.61 ± 0.09	30.4 ± 6.3
7 (C4)	37 07.657	09 05.90	23.31 ± 0.04	2.6280 ± 0.0021	9	Lyα	4.15 ± 0.16	42.4 ± 2.3
8 (C27)	37 04.906	10 30.20	22.81 ± 0.03	1.7546 ± 0.0021	4	Lyα	1.72 ± 0.10	2.4 ± 0.5

Notes.—Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds. Col. (2)–(3): astrometric position (J2000.0); col. (4): R-band magnitude in the AB system (WFPC/F702W or CFH12k); col. (5): spectroscopic redshift; col. (6): redshift confidence class (see text for details); col. (7): main spectroscopic features; col. (8): magnification factor (in magnitudes); col. (9): rest-frame equivalent width of Lyα (top half) or [O II] emission lines (bottom half).

a Measured on the averaged spectrum of C15a and C15b.

b R-band magnitude from CFH12k.
spectral continuum occurs between the R and I bands. The preliminary mass model (§4) shows that the location of these three images is compatible with a multiply imaged source, thereby strengthening the high-redshift interpretation. We designate this system as C15 (with the three images C15a, b, and c corresponding to C15/16/17) and confirmed that the components C15a and C15b lie at the same redshift using LRIS spectroscopy (see §3.2).

The arclet identified as C20 was serendipitously covered during the same LRIS long-slit observation. We interpret the extended emission seen in the spectrum (§3.2) as Lyα at $z = 2.689$. This is also supported by the mass model, which predicts two detected
Fig. 3.—Top: Enlarged region of the RF702W image showing the location and morphology of the multiple-image systems identified in the field of Abell 68. We subtracted the contribution from the brightest cluster galaxy (BCG) to assist in the identification of underlying objects, such as the radial arc associated with C0. The curves show the location of the critical lines at $z = 1.6$ (thin curve) and $z = 5.42$ (thick curve), as inferred from the mass model (§ 4). We overplot new spectroscopic redshifts of background sources. Bottom: Close-up of each component of the multiple systems discussed in the text. [See the electronic edition of the Journal for a color version of this figure.]
counterimages with similar optical colors. We refer to this system as C20a, b, and c. Next to the C20a and C20b images, a fainter extended arc C6 was identified by S05 as a possible multiply imaged system at a similar redshift. This arc can be split into three components, C6a, b, and c.

Finally, we uncovered a new lensed image, C23a, close to the cluster center during the critical line survey using LRIS (Santos et al. 2004). Its spectrum is consistent with a high-redshift source dominated by its Lyα emission. Again, the cluster mass model predicts the position of a second faint component for this system (C23b), detected on the HST image.

3.2. Redshift Constraints

We now present the new spectroscopic redshifts obtained for six multiply imaged candidates, as well as constraints implied for the remaining multiply imaged systems, C2 and C10, from the updated mass model (§ 4).

C0 source.—This source is a strongly lensed ($\mu \approx 3.2$ mag) multiply imaged system with three components, discovered during a survey for extremely red objects (EROs) in the fields of 10 massive galaxy cluster lenses at $z \approx 0.2$ (Smith et al. 2002b). A redshift measurement on the brightest image, C0a, was presented in Smith et al. (2002a). Based on the 4000 Å break identification at $\lambda = 1.04 \pm 0.01 \mu \text{m}$, the redshift is $z = 1.60 \pm 0.03$. This image was also included in two LRIS masks, but we failed to detect strong spectral features in the wavelength range 5500–9200 Å.

Because of the clear symmetry of images C0a and C0b with respect to the critical line, it is possible to isolate four bright knots in each of images C0a, C0b, and C0c and use the corresponding 12 images to constrain the mass model. Furthermore, part of the southwest knot of C0a is located within the radial caustic line in the source plane. We are able to detect a very faint radial arc predicted by the mass model (labeled “C0-radial” in Fig. 3) after removing the light from the BCG.

C1 source.—The brightest component C1a of this system was observed during our NIRSPEC critical lines survey (see Stark & Ellis 2006; Stark et al. 2007). Three strong emission lines were identified as [O iii] $\lambda 5007$, [O ii] $\lambda 4959$, and Hβ (Fig. 4, left), which unambiguously give the redshift $z = 1.583$. Optical spectroscopy of component C1c, included in one of our LRIS masks, could not identify any strong [O ii] emission for this source, with a 3σ upper limit of 50 Å for the equivalent width in the rest frame.

Table 3

Properties of the Multiple-Image Systems

System	R.A. (J2000.0)	Decl. (J2000.0)	a (arcsec)	b (arcsec)	θ (deg)	R (mag)	z	μ (mag)
C0 a	37 07.426	09 28.42	0.66	0.33	24.1	25.72 ± 0.10	1.6	3.14 ± 0.06
C0 b	37 07.324	09 24.03	0.63	0.36	8.1	25.20 ± 0.08	...	2.72 ± 0.06
C0 c	37 06.161	09 08.84	0.42	0.30	82.3	25.84 ± 0.10	...	2.15 ± 0.11
C1	37 06.870	09 25.51	0.61	0.19	350.0	26.51 ± 0.30	...	1.75 ± 0.12
C2 a	37 06.190	09 17.42	1.38	0.48	42.7	24.02 ± 0.04	1.583	2.52 ± 0.06
C2 b	37 06.466	09 24.80	1.14	0.63	10.1	24.19 ± 0.05	...	2.29 ± 0.06
C2 c	37 07.515	09 39.42	0.84	0.48	41.1	24.94 ± 0.07	...	1.62 ± 0.04
C3	37 07.024	09 33.73	0.75	0.39	67.1	25.59 ± 0.15	[1.39 ± 0.08]	3.09 ± 0.06
C4	37 06.724	09 31.05	0.60	0.24	38.6	25.57 ± 0.16	...	2.80 ± 0.05

Possible Multiple-Image Systems

System	R.A. (J2000.0)	Decl. (J2000.0)	a (arcsec)	b (arcsec)	θ (deg)	R (mag)	z	μ (mag)
C10 a	37 03.672	10 16.75	1.0	0.25	55.0	24.56 ± 0.08	[1.11 ± 0.12]	3.5 ± 0.6
C10 b	37 03.458	10 15.85	1.4	0.18	107.0	25.27 ± 0.13	...	3.7 ± 2.0
C10 c	[37 04.290]	[10 23.14]

Maximum Redshift of Single Images

System	R.A. (J2000.0)	Decl. (J2000.0)	a (arcsec)	b (arcsec)	θ (deg)	R (mag)	z	μ (mag)
C3	37 08.203	09 22.70	1.9	0.5	108	...	[<2.7]	...
C5	37 06.404	09 48.42	1.1	0.4	154	...	[<2.7]	...
C9	37 04.235	10 01.67	1.7	0.3	146	...	[<2.3]	...
C11	37 04.789	10 03.60	1.2	0.6	152	...	[<1.9]	...
C13	37 04.498	10 28.08	2.6	0.4	115	...	[<1.5]	...
C18	37 07.945	09 31.83	1.2	0.4	114	...	No constraints	...

Notes.—Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds. In addition to the six secured systems, C10 is included as a potential candidate (see § 3.1). Col. (1): identification; cols. (2)–(3): astrometric position (J2000.0); cols. (4)–(6): ellipse shape parameters (a, b, and θ); col. (7): R_{500kW} magnitude; col. (8): measured redshift; col. (9): magnification factor (in magnitudes) derived from the mass model. Bracketed values are also predictions inferred from the mass model.
C4 source.—Although not multiply imaged, this blue arc has very strong Lyα emission corresponding to $z \sim 2.63$. An extended Lyα blob has also been detected in the IFU data (see § 5.4; Fig. 3). The mass model gives a very high magnification factor of $\mu \sim 4.0$ mag, because the source is very close to a cusp.

C6 and C20 sources.—We identify a spatially extended emission line in the LRIS spectrum at $\lambda = 4485$ Å, surrounding the C20c image (Fig. 4, middle). The lack of other strong emission lines in the optical range and the predicted position for two other components for C20 from the mass model confirms this to be Lyα at $z = 2.689$. In addition, this redshift is close to the Lyα blob associated with C4, and we identify a similar strong emission line at a similar redshift, $z = 2.693$, for the nearby source C25 (~8′′ away in the source plane).

The location and color of the lower surface brightness arc, C6, close to images C20a and C20b, is compatible with three merging images forming a single giant arc at a similar redshift (Fig. 4, middle). This is further evidence of a possible group of galaxies at $z \sim 2.6$ including sources C6, C20, and C25.

C15 source.—A strong asymmetric emission line is clearly seen on the LRIS spectrum at the position of C15a and C15b (Fig. 4, top right), with a central peak at 7808 Å. In both cases, a faint continuum is detected on the red side of the emission line, with a flux $\sim (4.4 \pm 1.5) \times 10^{-19}$ ergs s$^{-1}$ cm$^{-2}$ Å$^{-1}$. We interpret the emission line as Lyα at $z = 5.421$. This redshift could be slightly overestimated due to an unknown amount of self-absorption in the Lyα emission line and the absence of other spectral features. By averaging the extracted spectra of both images (Fig. 4, top right), the integrated flux measured within the emission line, of $(9.7 \pm 0.8) \times 10^{-17}$ ergs s$^{-1}$ cm$^{-2}$, corresponds to a rest-frame equivalent width of ~ 35 Å. We measure a full-width half-maximum of ~ 7 Å when fitting the average emission line with a Gaussian profile. The strong Lyα emission line of this source seems to dominate the overall I-band flux.

C23 source.—The identification of the pair of images C23a and C23b, predicted by the lensing model at $z = 3.1$, strengthens the Lyα interpretation for the single emission line seen in the spectrum of C23a at $\lambda = 5028$ Å. A fainter counterimage, C23c, predicted by the mass model, lies beyond the detection limit of the HST image.

C2 source.—This system is composed of two bright symmetrical images, identified close to the cluster center. Using the mass model, we predict a redshift of $z \sim 1.4$ for this source, with a magnification factor of $\mu \sim 2.9$ mag for C2a and C2b. A less magnified ($\mu \sim 1.8$ mag) counterimage, C2c, is also predicted by the model, but is not detected in the less sensitive region of the HST image, at the junction between two WF chips.

C10 source.—A faint curved arc near a bright cluster member was identified by S05 as a multiply imaged candidate C10. The optical colors of this blue arc are indeed compatible with a source at $z < 2.5$. It is probably formed by two images merging on the critical line; its shape is in agreement with predictions from the mass model. However, the low surface brightness of this arc and the lack of spectroscopic information strongly limit this interpretation, making it more uncertain than the systems previously mentioned. Therefore, we only include this source in Table 3 as a possible additional multiply imaged system. The mass model predicts a redshift of ~ 1.1, which is in very good agreement with the photometric redshift estimate of $z_{\text{phot}} = 1.15 \pm 0.05$ derived from the broadband colors using the Hyperz photometric redshift code (Bolzonella et al. 2000). A fainter counterimage (C10c) is predicted by the mass model, but remains undetected in the HST image.

4. MASS MODEL

4.1. Modeling Method

Using the new redshift measurements and the identification of further multiply imaged systems, we are now in a position to considerably improve the precision of the mass model presented by S05. In doing so, we will maintain the pseudo-isothermal elliptical mass distribution model (PIEMD; Kassiola & Kovner 1993) adopted by S05 to infer the dark matter mass distribution.
This parametric method has been used for modeling galaxy clusters, as well as individual galaxies (Covone et al. 2006; Natarajan et al. 1998). It assumes each dark matter clump can be parameterized by a central position, ellipticity, central velocity dispersion σ_0, and two characteristic radii, r_{core} and r_{cut}. The total mass of this profile is proportional to $r_{\text{cut}}^2\sigma_0^2$. A more detailed discussion of the validity of this approach, in contrast to alternatives, is given by Limousin et al. (2007).

The cluster galaxy population is incorporated into the lens model as galaxy-scale perturbations to the cluster potential, assuming a scaling relation $M/L = \text{const}$ (Brainerd et al. 1996 S05) for all $r_{\text{core}}, r_{\text{cut}}$, and σ_0. This is motivated by the similar Faber & Jackson (1976) scaling relation observed in elliptical galaxies. Following the same procedure as Limousin et al. (2007), we keep the r_{cut} and σ_0 values corresponding to a L^* elliptical galaxy as free parameters, while keeping r_{core} at 0.15 kpc. We select cluster galaxies in the field of Abell 68 by plotting the characteristic cluster red sequences $B - R_{\text{NG}}$ and $R_{\text{NG}} - K$ in two color-magnitude diagrams, keeping the objects pertaining to both red sequences. This reduces the photometric catalog used by S05, containing 69 galaxies with K-band photometry, to 47 cluster members. This method is more efficient than a single red sequence selection, as we did not select any of the spectroscopically confirmed background or foreground galaxies. As described in S05, the K-band photometry was obtained by Balogh et al. (2002) using GIM2D (Simard 1998) to fit the surface brightness profiles of the cluster galaxies. This method gives more accurate results than one could obtain with SEExtractor, because SEExtractor usually overestimates the local background around the brightest and most extended galaxies.

In a first attempt at modeling the lens, we adopted the parameters given by S05, who included two dark matter halos. We found that any attempt to reconstruct the mass distribution using a single clump was unable to reproduce the multiply imaged systems accurately, confirming the strong bimodality of this cluster. When incorporating our spectroscopically confirmed multiply imaged systems, a reoptimization is necessary. To do this, we use the new Bayesian optimization method provided by the Lenstool software\footnote{For more information and to download the latest version of the code, see http://www.oamp.fr/cosmology/lenstool.} (Kneib 1993; Jullo et al. 2007) so that we can derive error estimates for each optimized parameter. The software optimizes the locations of each system in the source plane, based on the following χ^2 estimator, which defines the goodness of the fit:

$$\chi^2 = \sum_i \chi_i^2,$$

where χ_i^2 is the same estimator for a given multiply imaged system i, constructed by comparing the predicted positions of the N observed images in the source plane (x_i, y_i) to their barycenter (x_i^B, y_i^B):

$$\chi_i^2 = \frac{1}{N} \sum_{j=1}^{N} \left(\frac{(x_{ij} - x_i^B)^2 + (y_{ij} - y_i^B)^2}{\sigma_{\text{pos}}^2} \right),$$

where σ_{pos} is the uncertainty in measuring the position of each image in the source plane. We use a typical value of $\sigma_{\text{pos}} = 0.2''$ for the same uncertainty in the image plane and relate it to σ_{pos} with the amplification A: $\sigma_{\text{pos}} = A\sigma_{\text{pos}}$. For its important influence on the position of systems C15 and C20, we choose to optimize the velocity dispersion and the cut radius of the third brightest cluster galaxy. We also optimize the same parameters for the BCG and galaxy 106 (adjacent to image C0c) in order to match the location of all images from the C0 system.

The associated reduced χ^2 is ~ 1.7, with 21 degrees of freedom, and the astrometric error on the position of the predicted multiple images is 0.37$''$ in the image plane. The new parameters of the mass model are presented in Table 4. The optimized values are slightly higher than the ones we obtain by using only their luminosity as a parameter for the gravitational potential. However, those values are not sufficiently high to propose a third dark matter clump. As additional confirmation for the quality of the mass model, we also checked that all spectroscopically confirmed background sources for which we did not identify multiple-image systems were predicted to be singly imaged.

In comparison with the results from S05, we have refined the mass model by increasing the number of constrained parameters from 11 to 21, while keeping a similar reduced χ^2 value. In particular, we optimized the location of the second dark matter clump, where we have the main differences in the confirmed multiply imaged systems, and constrained individual parameters for two particular galaxies, in addition to the BCG.

4.2. Results from the Mass Model

Our improved mass model of Abell 68 enables us to compute a lensing mass of the cluster by integrating the derived surface mass density within a given projected distance R. Within a physical radius $R < 500$ kpc, we obtain a value $M_{\text{ens}} = (5.31 \pm 0.17) \times 10^{14} M_\odot$. This is somewhat higher than the value $(4.4 \pm 0.1) \times 10^{14} M_\odot$ derived by S05. By comparing both models using the same parameters given in Table 4, this difference arises mainly because of the higher mass of the second dark matter clump, for which we derive higher σ_0 and r_{cut} values compared to S05. The remaining model parameters (the location, ellipticity,
and orientation) lie within 3σ. We argue that the parameters of the secondary clump are better constrained in our model, given the identification of new multiple images to the northwest of the cluster. The difference with S05 is further revealed by computing the contrast, typical LAEs selected within narrowband surveys have low μL values in this sample through 5.1. Star Formation Rates

We explore two ways of determining the instantaneous star formation rate (SFR) for a high-redshift LAE, both using the calibration from Kennicutt (1998), who assumed a Salpeter (1955) initial mass function with mass limits 0.1 and 100 M⊙. The first calibration is based on the UV continuum luminosity L1500 at 1500 Å in the rest frame, with the following relationship:

\[
\text{SFR}_{UV}(M_{\odot} \text{ yr}^{-1}) = 1.05 \times 10^{-40} L_{1500} \text{ergs s}^{-1} \text{Å}^{-1},
\]

We estimated the individual L1500 values in this sample through the broadband photometric measurements. The second calibration adopted from Kennicutt (1998) is based on the intrinsic luminosity within the Lyα emission line, assuming no extinction and case B recombination (Brocklehurst 1971):

\[
\text{SFR}_{Ly\alpha}(M_{\odot} \text{ yr}^{-1}) = 9.1 \times 10^{-43} L_{Ly\alpha} \text{ergs s}^{-1}.
\]

The corresponding SFR estimates are given in Table 5. In most cases, we find good agreement between these two estimates, with a trend for SFR_{Ly\alpha} to be lower than SFR_{UV}, with a mean ratio SFR_{UV}/SFR_{Ly\alpha} ~ 1–4. We interpret this difference as due to the specific properties of Lyα emission, which usually shows some self-absorption or dust extinction. The ratio above is quite similar to that typically found in high-redshift Lyα samples, ~3 (Santos et al. 2004; Ajiki et al. 2003), as well as for the most distant galaxies at z ~ 6.5 (Hu et al. 2002; Kodaira et al. 2003). We note two exceptions, C27 and C25; these show much higher SFR ratios (~50). Since C27 shows a double nucleus, its UV

and orientation) lie within 3σ. We argue that the parameters of the secondary clump are better constrained in our model, given the identification of new multiple images to the northwest of the cluster. The difference with S05 is further revealed by computing the contrast, typical LAEs selected within narrowband surveys have low μL values in this sample through 5.1. Star Formation Rates

We explore two ways of determining the instantaneous star formation rate (SFR) for a high-redshift LAE, both using the calibration from Kennicutt (1998), who assumed a Salpeter (1955) initial mass function with mass limits 0.1 and 100 M⊙. The first calibration is based on the UV continuum luminosity L1500 at 1500 Å in the rest frame, with the following relationship:

\[
\text{SFR}_{UV}(M_{\odot} \text{ yr}^{-1}) = 1.05 \times 10^{-40} L_{1500} \text{ergs s}^{-1} \text{Å}^{-1},
\]

We estimated the individual L1500 values in this sample through the broadband photometric measurements. The second calibration adopted from Kennicutt (1998) is based on the intrinsic luminosity within the Lyα emission line, assuming no extinction and case B recombination (Brocklehurst 1971):

\[
\text{SFR}_{Ly\alpha}(M_{\odot} \text{ yr}^{-1}) = 9.1 \times 10^{-43} L_{Ly\alpha} \text{ergs s}^{-1}.
\]

The corresponding SFR estimates are given in Table 5. In most cases, we find good agreement between these two estimates, with a trend for SFR_{Ly\alpha} to be lower than SFR_{UV}, with a mean ratio SFR_{UV}/SFR_{Ly\alpha} ~ 1–4. We interpret this difference as due to the specific properties of Lyα emission, which usually shows some self-absorption or dust extinction. The ratio above is quite similar to that typically found in high-redshift Lyα samples, ~3 (Santos et al. 2004; Ajiki et al. 2003), as well as for the most distant galaxies at z ~ 6.5 (Hu et al. 2002; Kodaira et al. 2003). We note two exceptions, C27 and C25; these show much higher SFR ratios (~50). Since C27 shows a double nucleus, its UV
emission may be coming from an active galactic nucleus (AGN). For C25, we estimate a 0.6″ offset between the center of the star-forming region and the center of the LRIS slit (originally aligned on C15a and C15b). Conceivably, we missed the majority of the light coming from this object, which may explain the discrepancy.

5.2. Stellar Masses

Next we combine the constraints from multiband photometry and spectroscopic redshifts to derive estimates of the stellar mass associated with each source. A key question is whether LAEs are being seen at a special stage in their evolution, for example, with a high star formation rate, but low stellar mass. In this calculation, prior to SED fitting, it is important to remove the contribution of the Lyα flux from the photometric measurements.

We derive the stellar mass using the Bayesian stellar mass code developed by Bundy et al. (2005), which compares the SED of each object with a grid of synthetic SEDs from Bruzual & Charlot (2003) assuming a Chabrier (2003) initial mass function. The star formation history is parameterized as an exponential decaying burst SFR ∝ exp(−t/τ). In addition, the code gives an error estimate for each stellar mass, combining photometric errors and degeneracies in the model parameter space (age, reddening, metallicity, and star formation history). At 2 ≤ z ≤ 5.5, photometric measurements or upper limits in the seven filters from Table 6 cover the rest-frame UV and optical wavelengths, which is the main limiting factor in deriving stellar masses. Depending on the number of photometric bands (2–7) where a LAE is detected, the typical errors arising from the degeneracies in model parameters cover the range 0.1–0.5 in log M*. It was not possible to derive a stellar mass for C26, because it is only detected in the R702W filter.

Stellar masses, corrected for magnification, are reported in Table 5. We also compute the inverse of the specific star formation rate (star formation rate per unit stellar mass (e.g., Brinchmann et al. 2004), based on the SFR_{UV} estimate. This gives an indication of the timescale on which the star formation is taking place in each object. We find typical values of 500 Myr to 1 Gyr, suggesting that higher star formation may have occurred in these LAEs during the past, unless they were formed very early.

5.3. Physical Scales

In addition to brightening the observed flux of background sources, the magnification also stretches the angular sizes of the lensed images. This affects all the object shape parameters (a, b, and θ), increasing the observed solid angle by the same factor μ. We are thus able to probe a physical scale R in the source plane, with

$$R = \sqrt{ab/\mu D_A(z)},$$

where D_A(z) is the angular distance for a source at z.

For most of the high-redshift sources that are not resolved (along one direction) in the HST image, this value of R is an upper limit (Table 5). In most cases, we find that we are able to probe high-redshift sources at sub-kiloparsec scales. Another interesting physical property we derive is the intrinsic surface density of star formation [Σ = SFR_{UV}/(πR^2)], which is a lower limit when sources are unresolved.

5.4. Lyâ Emission Surrounding C4

We now turn to a specific issue relating to the origin of the so-called Lyα blobs, of which C4 at z = 2.63 is the first lensed example. We have used the updated mass model to reconstruct the source-plane morphology of C4. The high magnification (~4 mag) enables us to resolve the source morphology at ~30 pc scales. The galaxy displays a bright component with an elongated shape and several knots, at a scale length of ~3 kpc along the major axis. A fainter component having a similar shape and one bright knot is located ~4.6 kpc away (Fig. 5, fourth panel). Such an elongated shape and small physical scale is not uncommon among high-redshift galaxies: Ravindranath et al. (2006) have measured that ~50% of galaxies in their sample of z > 2.5 Lyman break galaxies (LBGs) taken from GOODS show a barlike morphology and scale lengths of about 1.7–2. kpc.
The strong Lyα emission of C4 detected with LRIS was also identified in the VIMOS/IFU data (Fig. 5, first panel). Compared with the observed size of the arc in the continuum image R_{702} ($4'' \times 1.2''$), this emission is significantly more extended ($\sim 15'' \times 3''$; Fig. 5, third panel). After correction for an average magnification, this corresponds to an intrinsic scale of ~ 10 kpc.

We use the R_{702} image to estimate the continuum flux of C4 at the wavelength of the Lyα emission, after applying a k-correction factor assuming a UV spectral slope of 2.0 typical of starburst galaxies. By comparing the spatial coverage of the Lyα emission and the continuum, we construct a map of rest-frame Lyα equivalent width W_0 (Fig. 5, second and third panels). The W_0 values are typically in the range $5 < W_0 < 10$ Å in the region detected on the HST image. However, the map shows a significant increase of Lyα equivalent width, with values $W_0 > 10$ Å, in the northern part of the arc, where the continuum is hardly visible in the R band. Because of the size of the blob and the presence of this stronger stellar continuum at the center of C4, the most probable mechanism producing such an extended Lyα emission is the presence of a superwind outflow originating from the central starburst (Taniguchi et al. 2001; Wilman et al. 2005).

We also observed C4 with two different LRIS configurations, located across or along the longer dimension of the arc (Fig. 6). In both cases, we observed two different components to the Lyα line on the two-dimensional (2D) spectrum, a stronger emission centered around 4411 Å and a fainter emission region at a slightly bluer wavelength (4408 Å). The LRIS data also show a tilt in the emission region, due to an offset in the central peak of the Lyα line (Fig. 6, top). These components may be related to the different star-forming regions identified morphologically in the HST image. Unfortunately, because of the poorer resolution, no similar offset in the central wavelength or variations in the line profile were detected in the IFU data.

The main difference between C4 and the very luminous Lyα blobs is its very small physical size, 2.2 kpc, compared with the $R > 30$ kpc selection criteria for Lyα blobs adopted by Matsuda et al. (2004), along with the rest-frame equivalent-width criterion $W_0 > 20$ Å. For this reason, it is more likely that the associated physical processes may be different, the size of C4 being more similar to extended Lyα emissions observed around star-forming galaxies. In this strongly lensed case, the effects of outflows on the Lyα emission can be studied in higher detail by way of the lensing magnification, stretching the observed scales.

5.5. Intrinsic Properties of the $z = 5.4$ Source

We finally turn to the most distant lensed source, C15, at $z = 5.4$ and whether it is a further example of the intriguing lensed source detected at $z = 5.6$ by Ellis et al. (2001) in Abell 2218. C15 has an intrinsic Lyα luminosity of $\sim 3 \times 10^{42}$ erg s$^{-1}$. This is about 5 times fainter than typical values found for $z \sim 5.7$ LAEs targeted by narrowband searches (Hu et al. 2004; Shimasaku et al. 2006), but not too dissimilar to those in the much fainter $z \sim 6.5$ sample from Kashikawa et al. (2006), who used very deep (~ 10 ks) spectroscopy with Keck and Subaru to confirm 17 faint LAEs.

All three images of this source are unresolved along the shear direction and therefore suggest a very small physical scale, $R \lesssim 300$ pc, in the source plane. More interestingly, we infer a minimum star formation surface density of $\sim 16 M_\odot$ kpc$^{-2}$, which is much higher than for any other object in our sample, making this source similar to the most active star-forming regions at any redshift.

The strong Lyα emission dominates the optical flux, and in this respect it is very similar to the $z \sim 5.6$ object found by Ellis et al. (2001) in the cluster Abell 2218. To compare these sources, we have performed a reanalysis of the photometric data for that
object, taking into account HST data that arrived for Abell 2218 subsequent to the Ellis et al. (2001) analysis. This includes HST ACS, NICMOS, and Spitzer IRAC observations presented by Kneib et al. (2004) and Egami et al. (2005). We find that the Ellis et al. source is now detected in the I_{F814W}, z_{F850LP}, J_{F110W}, and H_{160W} filters (Fig. 7; Table 6). The source is faint (AB \sim 26.6) and remains undetected with IRAC at 3.6 and 4.5 μm. However, the IRAC upper limits are quite high (around AB \sim 24), due to the proximity of the BCG (\sim15") and a coarse point-spread function.

In order to compare the revised data with that for C15, we compute and incorporate in column (9) of Table 5 various physical properties for the Ellis et al. object, alongside those for the other LAEs. When deriving the stellar mass, we note the significant change implied by the new data ($M_{\star} \approx 10^8 M_\odot$; cf. 107--108 M_\odot given by Ellis et al.). The major change arises from different assumptions: in order to reproduce the observed Lyα emission and the nondetection of the UV spectral continuum in LRIS, Ellis et al. used the Starburst99 spectrophotometric code (Leitherer et al. 1999) to derive an upper limit of 2 Myr on the LRIS, Ellis et al. source previously formed the majority of its stellar mass and is having a very young burst, whereas C15 has been forming stars for a longer timescale.

6. DISCUSSION

We have demonstrated in our survey of Abell 68 that, after applying magnification correction, we can reach LAEs with typical unlensed absolute AB magnitudes $\sim -20 < M_{AB} < -16.5$ in the rest-frame UV. This is about 2 mag fainter than the UV selection criterion for typical Lyman break galaxies used by Steidel et al. (2003) of $R_{AB} < 25.5$ at $z \sim 3$ and the faintest LAEs found with narrowband searches (e.g., Fynbo et al. 2003; Gawiser et al. 2006; Shimasaku et al. 2006). Moreover, the lensed Lyα sources have much lower equivalent widths, similar to those seen in LBGs (Shapley et al. 2003).

The derived properties of the LAEs depend on the individual magnification factors μ used to correct each image for the lensing effects. The error estimates on μ, computed by the Bayesian optimization method, range from 1% to 16% and were quadratically added to the measurement errors in Table 5, in the case of $L_{3\alpha}$, SFR$_{3\alpha}$, and M_{\star}. In each case, the photometry is the dominant source of error. We acknowledge that these values of μ still depend on the approach used to parameterize the mass model, for instance, the use of the PIEMD profile for the dark matter halos. Nevertheless, the LAEs presented here are strongly lensed and have been identified in the central regions of the cluster, where the magnification factors are associated with the location of the critical lines. These critical lines are constrained by the same set of multiple images, quite independently of the parameterization used for the mass model (PIEMD or Navarro-Frenk-White [NFW] profile). Therefore, we are confident that the computed magnification factors are reliable.

Although such a lensing survey is not strictly flux limited, we can use this unique probe to gauge the properties of the faintest LAEs yet located at $z > 2$. We find that the typical stellar masses are log (M_{\star}/M_\odot) \sim 8.5--9.5. These values are similar to the typical stellar masses of the bright LAEs from Gawiser et al. (2006) found by selecting very high equivalent width ($W_0 > 150$) LAEs at $z = 3.1$. Our LAEs have fainter UV and Lyα luminosities and therefore a lower SFR, by typically 1--2 mag. Even if the wavelength range covered by the broadband photometry dominates the errors in the stellar masses derived in both surveys, this is indicative that, at comparable stellar masses, our LAEs are more quiescent than the objects found in narrowband searches.

Recognizing the limitations of our sample, as a point of illustration, we compare in Figure 8 the luminosity range of our lensed emitters with current constraints on the cumulative Lyα luminosity function at $z \sim 3$, mostly based on narrowband searches. The number of dedicated searches for LAEs at $z \sim 3$ from the...
literature is quite limited. We report in this diagram the compilation of five samples, either in blank fields or overdense environments, presented by Fynbo et al. (2001), as well as an estimate of the number density from a Lyα survey in GOODS-South (Nilsson et al. 2007). Based on our subsample of six emitters at $2 \leq z \leq 3.7$ and the surface area probed in the high-magnification region ($\mu > 0.75$ mag) of the source plane, we estimate a number density of $4.3^{+2.7}_{-1.7} \times 10^{-3}$ Mpc$^{-3}$ down to $L = 1.4 \times 10^{41}$ ergs s$^{-1}$. Because our spectroscopy is only sparsely covered this region, we report this value as a lower limit in Figure 8. Although we acknowledge the limits due to very small statistics and the small areas probed in these lensed surveys, our sample of $z \sim 3$ emitters gives constraints at fainter luminosities than any of the narrowband searches at this redshift. More observations are, however, needed in order to better constrain the faint-end slope of this luminosity function.

An interesting question is the likelihood of finding highly magnified sources at $z \sim 5.5$ like C15 and the source reported by Ellis et al. (2001): we can estimate this through the space density of R-dropouts in our magnified field of view. Based on our photometric RIz color-color selection technique (see §3.1), we identified one source in the field of view covered by the HST image. Since it is detected at $\approx 8 \sigma$ level in the I-band filter, where R-dropouts are brighter, and has a magnification factor of $\mu \sim 2.5$, we computed the effective covariance in the source plane having $\mu > 0.75$, taking into account the reduction of the surface area due to lensing effects. We derive an effective covariance of 420 Mpc3, in the redshift range $5 < z < 6$ probed by our set of filters. Assuming Poisson noise statistics, we obtain a rough estimate of $2.4^{+3.4}_{-1.0} \times 10^{-5}$ Mpc$^{-3}$ for the number counts of R-dropouts. Although cosmic variance effects can be quite large when probing such a small volume, this result is in good agreement with the space density of low-luminosity Lyα sources at $z \sim 5$ on the diagram (Fig. 8) mentioned above.

From these simple calculations, C15 does not seem to be a serendipitous case of a low-luminosity $z \sim 5$ LAE, since we would expect to find such one source in the magnified region of the cluster. By observing a larger number of lensed fields, such as the new HST clusters imaged by ACS, we could build a more significant sample of similar objects and compare their physical properties.

7. CONCLUSIONS

We have performed a spectroscopic analysis of background sources in the field of the massive cluster Abell 68 and identified 26 lensed images in the range $0.3 < z < 5.5$, including seven LAEs at $z > 1.7$. Using the new redshift measurements and identification of new multiple-image systems, we perform a precise modeling of the cluster mass distribution with five spectroscopic systems and also predict the redshift and counterimages for two remaining systems. This makes Abell 68 one of the best modeled lensing clusters, along with Abell 1689 and Abell 2218, allowing for the precise measurement of its dark matter distribution.

We derived the star formation rates, stellar masses, and physical scales for our sample of high-redshift LAEs. The broadband luminosities of these objects are comparable to the faint LAEs found in deep narrowband searches, but their equivalent widths are much lower, making them 1–2 mag fainter in Lyα luminosity. Two of these sources show a more extended Lyα emission region, when compared to the stellar continuum in the HST image. For one of them, we demonstrated how we use IFU data to probe regions with distinct Lyα equivalent widths. The stretch provided by lensing enables us to characterize small regions of Lyα emission that would otherwise be beyond the reach of ground-based integral field instruments. Although the large equivalent widths are comparable to giant Lyα blobs observed around massive forming galaxies, we interpret the small physical scales of these lensed emissions as outflows originating from a central starburst.

The highest redshift ($z \sim 5.4$) multiple-image source of this sample is very similar to the pair of strongly lensed images identified by Ellis et al. (2001) in Abell 2218, in terms of magnification and physical size, albeit being intrinsically more massive and more luminous. We therefore expect to detect it in IRAC images of depth similar to the data presented in Egami et al. (2005) in the first two channels of this instrument. Such measurements would tighten the constraints on the stellar mass of this source by reducing the degeneracies in the other model parameters and also provide additional information on its age and star formation history, when combined with the properties of the Lyα emission.

Our survey provides the first tentative indications of the density of faint LAEs at $z \sim 3$, down to unlensed fluxes of $\sim 2 \times 10^{41}$. Although our survey is not flux limited nor complete in any formal sense, the cumulative Lyα luminosity function we derive promises a dedicated search for lensed Lyα emitters through larger samples of well-mapped clusters now being surveyed with HST and the ability of this approach to complement narrowband searches carried out in blank fields.

We thank the anonymous referee for his/her helpful comments, and acknowledge helpful discussions with Johan Fynbo, Kim Nilsson, Fabrice Lamareille, Mark Swinbank, and Tommaso Treu. J. R. is grateful to Caltech for financial support. The Dark Cosmology Centre is funded by the Danish National Research Foundation. The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.
REFERENCES

Ajiki, M., et al. 2003, AJ, 126, 2091
Balogh, M. L., et al. 2002, ApJ, 566, 123
Bardeau, S., Kneib, J.-P., Czoske, O., Soucail, G., Smail, I., Ebeling, H., & Smith, G. P. 2005, A&A, 434, 433
Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393
Bolzonella, M., Miralles, J.-M., & Pelló, R. 2000, A&A, 363, 476
Brunner, T. G., Blandford, R. D., & Smail, I. 1996, ApJ, 466, 623
Brinchmann, J., Charlot, S., White, S. D. M., Tremonti, C., Kauffmann, G., Heckman, T., & Brinkmann, J. 2004, MRNRA, 351, 1151
Broadhurst, T., et al. 2005, ApJ, 621, 53
Brocklehurst, M. 1971, MNRAS, 153, 471
Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000
Burke, T. G., Blandford, R. D., & Smail, I. 1996, ApJ, 466, 623
Brinchmann, J., Charlot, S., White, S. D. M., Tremonti, C., Kauffmann, G., Heckman, T., & Brinkmann, J. 2004, MRNRA, 351, 1151
Broadhurst, T., et al. 2005, ApJ, 621, 53
Brocklehurst, M. 1971, MNRAS, 153, 471
Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000
Bundy, K., Ellis, R. S., & Conselice, C. J. 2005, ApJ, 625, 621
Chabrier, G. 2003, PASP, 115, 763
Coleman, D., Wu, C., & Weedman, D. 1980, ApJS, 43, 393
Covone, G., Kneib, J.-P., Soucail, G., Richard, J., Jullo, E., & Ebeling, H. 2006, A&A, 456, 409
Czoske, O. 2002, Ph.D. thesis, Université Paul Sabatier, Toulouse III, France
Ebbels, T. M. D., Le Borgne, J.-F., Pello, R., Ellis, R. S., Kneib, J.-P., Smail, I., & Sanahuja, B. 1996, MNRAS, 281, L75
Ebeling, H., Voges, W., Bühringer, H., Edge, A. C., Huchra, J. P., & Briel, U. G. 1996, MNRAS, 281, 799
Faber, S. M., & Jackson, R. E. 1976, ApJ, 204, 668
Francis, P. J., et al. 2001, ApJ, 554, 1001
Franx, M., Illingworth, G. D., Kelson, D. D., van Dokkum, P. G., & Tran, K. 1997, ApJ, 486, L75
Fynbo, J. P. U., Ledoux, C., Möller, P., Thomsen, B., & Burud, I. 2003, A&A, 403, 11
Gavazzi, R., Fort, B., Mellier, Y., Pelló, R., & Dantel-Fort, M. 2003, A&A, 403, 11
Gawiser, E., et al. 2006, ApJ, 642, L13
Halkola, A., Seitz, S., & Pannella, M. 2006, MNRAS, 372, 1425
Hu, E. M., Cowie, L. L., Capak, P., McMahon, R. G., Hayashino, T., & Komiyama, Y. 2004, AJ, 127, 563
Hu, E. M., Cowie, L. L., McMahon, R. G., Capak, P., Iwamuro, F., Smail, I., Kneib, J.-P., Mailhara, T., & Motohara, K. 2002, ApJ, 568, L75
Jullo, E., et al. 2007, New J Phys, submitted
Kashikawa, N., et al. 2006, ApJ, 648, 7
Kasliwa, A., & Kovner, I. 1993, ApJ, 417, 450
Kelson, D. D. 2003, PASP, 115, 688
Kennicutt, R. C. 1998, ApJ, 498, 541
Kinney, A. L., Calzetti, D., Bohlin, R., McQuade, K., Storchi-Bergmann, T., & Schmitt, H. 1996, ApJ, 467, 38
Kneib, J.-P. 1993, Ph.D. thesis, Univ. Paul Sabatier, Toulouse
Kneib, J.-P., Ellis, R. S., Santos, M. R., & Richard, J. 2004, ApJ, 607, 697
Kneib, J.-P., Ellis, R. S., Smail, I., Couch, W. J., & Sharples, R. M. 1996, ApJ, 471, 643
Kneib, J.-P., et al. 2003, ApJ, 598, 804
Kodaira, K., et al. 1993, ApJ, 433, 433
Kurtz, M. J., Mink, D. J., Wyatt, W. F., Fabricant, D. G., Torres, G., Kriss, G. A., & Tonry, J. L. 1996, in ASP Conf. Ser. 25, Astronomical Data Analysis Software and Systems I, ed. D. M. Worrall, C. Biemesderfer, & J. Barnes, 432
Le Fèvre, O., Crampton, D., Lilly, S. J., Hammer, P., & Tresse, L. 1995, ApJ, 455, 60
Le Fèvre, O., et al. 2003, Messenger, 111, 18
Leitherer, C., et al. 1998, ApJS, 123, 3
Limousin, M., et al. 2007, preprint (astro-ph/0612165)
Matsumura, Y., et al. 2004, AJ, 128, 569
McLean, I. S., et al. 1998, Proc. SPIE, 3354, 376
Natarajan, P., Kneib, J.-P., Smail, I., & Ellis, R. S. 1998, ApJ, 499, 600
Nilsson, K. K., Fynbo, J. P. U., Möller, P., Sommer-Larsen, J., & Ledoux, C. 2006, A&A, 452, L23
Nilsson, K. K., et al. 2007, A&A, submitted
Oke, J. B. 1974, ApJS, 27, 21
Oke, J. B., et al. 1995, PASP, 107, 375
Ravindranath, S., et al. 2006, ApJ, 652, 963
Richard, J., Pelló, R., Schaerer, D., Le Borgne, J.-F., & Kneib, J.-P. 2006, A&A, 456, 861
Salpeter, E. E. 1955, ApJ, 121, 161
Sand, D. J., Treu, T., Ellis, R. S., & Smith, G. P. 2005, ApJ, 627, 32
Santos, M. R., Ellis, R. S., Kneib, J.-P., Richard, J., & Kuijken, K. 2004, ApJ, 606, 683
Scodeggio, M., et al. 2005, PASP, 117, 1284
Shapley, A. E., Steidel, C. C., Pettini, M., & Adelberger, K. L. 2003, ApJ, 588, 65
Shimasaku, K., et al. 2006, PASJ, 58, 313
Simard, L. 1998, in ASP Conf. Ser. 145, Astronomical Data Analysis Software and Systems VII, ed. R. Albrecht, R. N. Hook, & H. A. Bushouse (San Francisco: ASP), 108
Smith, G. P., Kneib, J.-P., Smail, I., Mazzotta, P., Ebeling, H., & Czoske, O. 2005, MNRAS, 359, 417(S05)
Smith, G. P., Smith, I., Kneib, J.-P., Davis, C. J., Takamiya, M., Ebeling, H., & Czoske, O. 2002a, MNRAS, 333, L16
Smith, G. P., et al. 2002b, MNRAS, 330, 1
Stark, D. P., & Ellis, R. S. 2006, NewA Rev., 50, 46
Stark, D. P., Ellis, R. S., Richard, J., Kneib, J.-P., Smith, G. P., & Santos, M. R. 2007, ApJ, 663, 10
Steidel, C. C., Adelberger, K. L., Shapley, A. E., Pettini, M., Dickinson, M., & Giavalisco, M. 2000, ApJ, 532, 170
———. 2003, ApJ, 592, 728
Taniguchi, Y., Shioya, Y., & Kakazu, Y. 2001, ApJ, 562, L15
Wilman, R. J., Gerssen, J., Bower, R. G., Morris, S. L., Bacon, R., de Zeeuw, P. T., & Davies, R. L. 2005, Nature, 436, 227
Zanichelli, A., et al. 2005, PASP, 117, 1271