Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
A Systematic Review of the Impact of the First Year of COVID-19 on Obesity Risk Factors: A Pandemic Fueling a Pandemic?

Natasha Faye Daniels,1 Charlotte Burrin,1 Tianming Chan,1 and Francesco Fusco2

1School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom and 2Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom

ABSTRACT

Obesity is increasingly prevalent worldwide. Associated risk factors, including depression, socioeconomic stress, poor diet, and lack of physical activity, have all been impacted by the coronavirus disease 2019 (COVID-19) pandemic. This systematic review aims to explore the indirect effects of the first year of COVID-19 on obesity and its risk factors. A literature search of PubMed and EMBASE was performed from 1 January 2020 to 31 December 2020 to identify relevant studies pertaining to the first year of the COVID-19 pandemic (PROSPERO; CRD42020219433). All English-language studies on weight change and key obesity risk factors (psychosocial and socioeconomic health) during the COVID-19 pandemic were considered for inclusion. Of 805 full-text articles that were reviewed, 87 were included for analysis. The included studies observed increased food and alcohol consumption, increased sedentary time, worsening depressive symptoms, and increased financial stress. Overall, these results suggest that COVID-19 has exacerbated the current risk factors for obesity and is likely to worsen obesity rates in the near future. Future studies, and policy makers, will need to carefully consider their interdependency to develop effective interventions able to mitigate the obesity pandemic.

Keywords: COVID-19, obesity, depression, physical activity, financial stress, diet

© The Author(s) 2022. Published by Oxford University Press on behalf of the American Society for Nutrition. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction

With over 268 million infections and 5.2 million deaths worldwide (1), coronavirus disease 2019 (COVID-19) is one of the most serious infectious disease outbreaks in recent history. Even before the declaration of pandemic status by the WHO on 11 March 2020, many countries had begun to impose social-distancing measures (SDMs) in an attempt to reduce disease incidence. Understandably, the attention of scientists has focused on how to limit the short-term consequences of COVID-19, which were mitigated by SDMs until vaccines were released. As a result, the scientific community has prioritized the research on the determinants of mortality and morbidity of COVID-19 over the long-term implications of the virus and the necessary countermeasures, such as SDMs.

Obesity is defined by the WHO as abnormal or excessive fat accumulation that presents a risk to health, marked by a BMI (in kg/m²) > 30, and has reached epidemic proportions (2). Statistics suggest that the prevalence continues to follow an increasing trajectory, with over 650 million adults having obesity in 2016 (3). Various models are attempting to predict the future burden of obesity, with projections ranging from 44% to > 50% of the population (4, 5), although all agree that it is likely to encompass a significant proportion of the population. Many chronic illnesses are adversely affected by carrying excess body fat, with obesity being linked to cancers, cardiovascular disease, hypertension, and osteoarthritis, as well as a strong association with metabolic syndrome (6).

Among the factors that can increase the risk of obesity, some seem to play a more prominent role than others. For example, depression has repeatedly been shown to have bidirectional associations with obesity and overweight (7). The effect of depression on obesity is likely multifactorial, involving neuroendocrine disruption with a chronic state of elevated cortisol (8); lifestyle changes with reduced desire to exercise and increase in emotional eating (9); and, in some cases, the use of antidepressants (10). Socioeconomic status has long been linked inversely to body weight (11) and again is multifactorial with effects mediated through fewer opportunities for physical activity and healthy food and education and poorer mental health. Not only is low physical activity a risk factor for obesity but it is also an important modulator of risk conferred by excess weight (12), and so the potential effect of lockdowns on sedentary behavior may act as a multiplier for poor outcomes.
As a result of such health implications, obesity imposes a considerable economic burden, from the individual through national levels (13). In addition to direct effects on excess care needs, costs are also incurred through time off work, lower productivity at work, and associated disabilities. These costs have previously been estimated on a global scale to be 2.8% of global Gross Domestic Product (GDP) at US $2 trillion (14), since which time the proportion of the population having obesity has continued to rise.

The direct implications of COVID-19 on health and well-being are well-discussed elsewhere; what remains to be seen is whether this pandemic is exacerbating the growing obesity pandemic. A systematic review and meta-analysis by Bakaloudi et al. (15) suggest an overall global trend of weight gain during the first COVID-19 lockdown. To date, no studies have assessed the indirect impact of the COVID-19 pandemic, such as its SDMs, on obesity risk factors, that could explain this trend. Therefore, the objectives of this paper are to fill this gap by describing the effects of the COVID-19 pandemic and the needed countermeasures on obesity risk factors to explore underpinning mechanisms of the general trend of weight gain during the COVID-19 pandemic.

Methods

Search strategy and study selection

A literature search of PubMed and EMBASE was performed from 1 January 2020 to 31 December 2020 to identify relevant studies pertaining to the first year of the COVID-19 pandemic. The study was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (16). The protocol details were registered prospectively on PROSPERO (CRD42020219433).

The following keywords were used in the search criteria: (“Sars-Cov-2” OR “covid-19”) AND (“quarantine” OR “lockdown” OR “BMI” OR “body mass index” OR “obese” OR “obesity” OR “overweight” OR “weight gain” OR “physical activity” OR “depression” OR “depressive symptoms” OR “redundancy” OR “redundant” OR “low income” OR “sedentary behaviour”). The search was limited to the English language, full-text availability, and human subjects. The abstracts of the resulting studies were manually searched to identify relevant studies, with NFD, CB, and TC applying inclusion/exclusion criteria to the full text to select the final studies.

Inclusion and exclusion criteria

All English-language studies about weight change and key obesity risk factors (psychosocial and socioeconomic health) during the COVID-19 pandemic were considered for inclusion. Studies had to be comparative (baseline vs. during the pandemic) with cross-sectional and longitudinal studies considered. At least one of the following factors had to be included: 1) weight (either anthropometry or self-report), 2) dietary habit, 3) physical activity, 4) depressive symptoms, or 5) financial status. In cases of depression, a validated depression measure had to be used [such as Patient Health Questionnaire (PHQ)-9] with any unvalidated questionnaires excluded (17–19). Qualitative studies, case reports, and reviews were excluded. Papers including pregnant women were also excluded due to the confounding effect of pregnancy over the outcomes of interest.

Data extraction

Data extraction was performed independently by NFD, CB, and TC, with any ambiguity resolved via consensus. Each included study had the following extracted: 1) study ID (author name and date), 2) country, 3) study type, 4) sample size, 5) sample characteristics (age, sex, and occupation of sample), 6) assessment tool, and 7) outcome.

Data synthesis and quality assessment

Results were summarized via a narrative review; a quantitative synthesis was not attempted due to the heterogeneity of the samples and methodology between studies in the measurement of the relevant factors (e.g., depression). Study quality was assessed using a modified Newcastle Ottawa Scale (20), which was performed by NFD, CB, and TC, and any ambiguity was resolved via consensus (see Supplemental Material). The score used was based on the selection of the study sample using 4 criteria, the comparability of the outcome groups, and assessment of the outcome. The final score ranged from 0–10 points, with 0–4 considered unsatisfactory, 5–6 considered satisfactory, 7–8 considered good quality, and 9–10 points considered very good quality (20).

Results

The electronic search conducted identified 3773 studies (EMBASE: 1383; PubMed: 2390). After removing duplicates, 3154 studies were screened using a 2-step approach. First, the title and abstract of each paper were screened followed by a full-text screening if the inclusion and exclusion criteria were met. Based on screening the title and abstract, 805 (PubMed: 626; EMBASE: 179) potentially eligible studies were identified. Full-text screening resulted in a total of 87 studies that were included in the systematic review (Figure 1). A summary of the characteristics of included studies is presented in Tables 1–5.

Characteristics of included studies

Of the 87 studies included, 14 looked at the impact of COVID-19 on BMI directly (21–34), 18 looked at physical activity during the pandemic (31, 35–51), 11 looked at the financial impact (52–62), 27 at diet (23, 26, 33, 50, 61, 63–84), and 17 looked at depression (57, 85–100). None of the 87 studies investigated the link between the obesity risk factors and obesity itself. The majority of studies were conducted in the United States (n = 16), China (n = 13), Spain (n = 11), Poland (n = 6), and Italy (n = 7). The sample size ranged from 164,101 (100) to 18 (40) participants. In terms of quality assessment, there were a total of 2 unsatisfactory studies (51, 91), 36 satisfactory studies (21, 23, 25, 26, 28, 33, 36–38, 40, 41, 43, 44, 47, 48, 52–57, 59–64, 67, 68, 71, 77, 78, 81–83, 92), 42 good-quality studies (22, 24, 27, 29–32, 34, 39, 42, 45, 46, 49, 50, 57, 58, 61, 65, 66, 69, 70, 72–74, 76, 79, 80, 84–90, 93–98, 100), and 2 very good-quality studies (35, 99). Tables 1–5 show further details on the characteristics of the included studies.

Relation between COVID-19 and weight

A summary of the weight changes reported during COVID-19 is shown in Table 1. A total of 14 studies looking at the impact of COVID-19 on weight directly were included (21–30, 32–34, 75). Overall, there was a general trend of weight gain during the pandemic, with 12 studies reporting this. Although 3 studies included student populations (29, 32,
and 1 study looked at diabetic patients (28), the majority of the studies focused on the general population (22–24, 26, 27, 31). Different results were seen in Spain, in which 1 study reported no change in weight in the Spanish general population (33). This study by López-Moreno et al. (33) focused on BMI change, whereas the other 3 studies (21, 30, 31) used self-reported weight.

Obesity risk factors and COVID-19

Relation between COVID-19 and physical activity.

A summary of the changes in physical activity during the first year of COVID-19 is shown in Table 2. A total of 18 studies were included that looked at the relation between COVID-19 and changes in physical activity.
Study ID	Country	Study type	No. of participants	Sample characteristics	Assessment tool	Outcome
Fernandez-Rio et al. 2020 (21)	Spain	Cross-sectional	4379	Age: 16–84 y Sex (F): 2671 (60.9%) Occupation/characteristics: General population	Self-reported weight	No weight changes: 52.88% Weight increase: 25.82% Weight decrease: 21.27%
de Luis Román et al. 2020 (30)	Spain	Cross-sectional	284	Age: 60.4 ± 10.8 y Sex (F): 211 (74.3%) Occupation/characteristics: Obese outpatients	Self-reported weight	36.3% reported weight gain Increase in self-reported body weight was 1.62 ± 0.2 kg over 7 wk of confinement P value NR
Martínez-de-Quel et al. 2020 (31)	Spain	Longitudinal	161	Age: 35.0 ± 11.2 y Sex (F): 60 (37%) Occupation/characteristics: General population	Self-reported weight	Significant increase in weight (P = 0.012) during lockdown
López-Moreno et al. 2020 (33)	Spain	Cross-sectional	675	Age: 39.1 ± 12.9 y Sex (F): 472 (70%) Occupation/characteristics: General population	BMI	No significant change in BMI pre- and post-COVID-19 (P = 0.758)
Mason et al. 2020 (34)	USA	Longitudinal	1820	Age: 19.72 ± 0.46 y Sex (F): 1128 (62%) Occupation/characteristics: High school students	BMI	Overall significant increase in weight during COVID-19 relative to baseline (P < 0.001)
Yang et al. 2020 (29)	China	Cross-sectional	10,082	Age: High school students: 17 ± 1.2 y Undergraduate students: 20.6 ± 1.8 y Graduates: 24.6 ± 3.5 y Sex (F): 7229 (71.7%) Occupation/characteristics: Students	BMI	BMI significantly increased overall during COVID-19 (P < 0.001) in all subgroups Prevalence of overweight/obesity significantly increased generally (P < 0.001) and in high school (P < 0.01) and undergraduate students (P = 0.001)
Jia et al. 2020 (32)	China	Cross-sectional	10,082	Age: 19.8 ± 2.3 y Sex (F): 7229 (71.7%) Occupation/characteristics: Students	BMI	BMI significantly increased from 21.8 to 22.1 kg/m² (P < 0.001) Significant increase in prevalence of overweight participants, (21.4% vs. 24.6%, P < 0.001) and obesity (10.5% vs. 12.6%, P < 0.001)
Pellegrini et al. 2020 (24)	Italy	Observational retrospective	150	Age: 47.9 ± 16 Sex (F): 116 (77.3%) Occupation/characteristics: Obesity outpatients	Self-reported weight	Significant increase in mean self-reported weight gain during COVID-19 ≈ 1.5 kg (P < 0.001)
Study ID	Country	Study type	No. of participants	Sample characteristics	Assessment tool	Outcome
---------	---------	--------------------	---------------------	------------------------	------------------	---------
Gallè et al. 2020 (25)	Italy	Cross-sectional	1430	Age: 22.9 ± 3.5 y		
Sex (F): 936 (65.5%)						
Characteristics: Italian undergraduate students	BMI	No significant change in BMI				
(P = 0.96) during COVID-19						
Grabia et al. 2020 (28)	Poland	Cross-sectional	124	Age: 23 y (LQ-UQ 17–35)		
Sex (F): 103 (83%)
Occupation/characteristics: Diabetic patients | Self-reported weight | Change in body mass
(P < 0.001)
Increased during COVID-19: 49%
≤5 kg: 31%
>5 kg: 11%
No change: 28%
Reduced: 30%
| Sidor and Rzymski 2020 (23) | Poland | Cross-sectional | 1097 | Age: 27.7 ± 9.0 (18–71) y
Sex (F): 1043 (95.1%)
Occupation/characteristics: General population | Self-reported weight | Increase in weight: 29.9%
Decrease in weight: 18.6%
Those with high BMI at baseline experienced greater weight gain
(P < 0.05), as did those older in age
(P < 0.05) |
| Błaszczyk-Bbenek et al. 2020 (26) | Poland | Cross-sectional | 312 | Age: 41.12 ± 13.05 y
Sex (F): 200 (64.1%)
Occupation/characteristics: Age >18 y, not pregnant,
no diseases requiring a specific diet | Self-reported weight | Statistically significant increase in weight during confinement
(Δ 0.56 ± 2.43 kg;
P < 0.0001) |
| Cheikh Ismail et al. 2020 (22) | Middle East and North Africa | Cross-sectional | 2970 | Age: 18± y
Sex (F): 2126 (71.6%)
Occupation/characteristics: General population | Self-reported weight | No weight changes: 43.9%
Weight increase: 30.3%
Weight decrease: 16.9%
P value NR |
| Pišot et al. 2020 (27) | 9 European countries (Croatia, Italy,
Serbia, Slovakia, Spain, Greece,
Bosnia, and Kosovo) | Cross-sectional | 4108 | Age: 32.0 (13.2) y
Sex (F): 2581 (62.8%)
Occupation/characteristics: General population | Self-reported weight | Increase of 0.3 (±2.2) kg during COVID-19 pandemic measures
(P < 0.0008) (n = 2208) |

1 COVID-19, coronavirus disease 2019; NR, not reported; LQ-UQ, lower quartile-upper quartile; .
Study ID	Country	Study type	Sample size	Sample characteristics	Assessment tool	Outcome
Wang et al. 2020 (35)	China	Longitudinal	3544	Age: 51.6 ± 8.9 y		
Sex (F): 1226 (34.6%)						
Occupation/characteristics: General population	Daily step counts recorded by the accelerometer sensor	Significant decrease in daily steps during COVID-19: reduced by 2678 (95% CI: 2582–2763)				
Xiang et al. 2020 (51)	China	Longitudinal	2426	Age: 6–17		
Sex (F): 1184 (48.8%)						
Occupation/characteristics: Children and adolescents (6–17 y)	WHO Global Physical Activity Implantable cardioverter-defibrillators Questionnaire	Reduction in median time spent in physical activity (min/wk) during COVID-19: 540 vs. 105 (P < 0.001)				
Increase in prevalence of physically inactive students (21.3% vs. 65.6%), P value NR						
Increase in screen time (min/wk) by +1730 min [or ~30 h] per week on average (P < 0.001)						
Sassone et al. 2020 (44)	Italy	Longitudinal	24	Age: 72 ± 10 y		
Sex (F): 7 (29%)						
Occupation/characteristics: Patients with implantable cardioverter-defibrillators	ICD-embedded accelerometric sensors	Significant reduction in physical activity during forced confinement (P = 0.0001)				
Tornaghi et al. 2020 (47)	Italy	Longitudinal	1568	Age: 15–18 y		
Sex: not stated						
Occupation/characteristics: High school students	IPAQ	No significant change in physical activity between during and pre-restriction or during and post-restriction COVID-19 rules				
Only highly active students increased their PA during and after the lockdown measures with respect to their baseline levels						
Zheng et al. 2020 (45)	Hong Kong	Longitudinal	631	Age: 21.2 ± 2.9 y		
Sex (M:F): 386 (61.2%)						
Occupation/characteristics: Young adults	IPAQ	Decrease in vigorous (P < 0.05) and moderate (P < 0.01) physical activity during COVID-19				
Significant decrease in walking during COVID-19 (P < 0.01)						
Significant increase in sedentary time during COVID-19 (P < 0.01)						
Study ID	Country	Study type	Sample size	Sample characteristics	Assessment tool	Outcome
------------------	------------	----------------	-------------	--	---------------------	---
Schmidt et al. 2020 (46)	Germany	Longitudinal	1711	Age: 4–17 y	Questionnaire	Increase of 0.44 active days per week ($P < 0.01$) during COVID-19
				Sex (F): 852 (49.8%)		11.1% overall increase in adherence to WHO physical activity guidelines
				Occupation/characteristics: 4–17-y-olds		Screen time guideline adherence decreased by 17.5% ($P < 0.01$)
Hanke et al. 2020 (48)	Germany	Longitudinal	248	Age:	Questionnaire	Significant decrease in sport (h/wk) during lockdown ($P = 0.008$)
				Females: 52.3 ± 13.7 y		Significant increase in leisure activity 2 (h/wk) ($P < 0.001$)
				Males: 56.3 ± 13.7 y		
				Sex (F): 89 (35.9%)		
				Occupation/characteristics: Kidney transplant patients		
Yang and Koenigstorfer 2020 (49)	USA	Longitudinal	431	Age:	IPAQ-SF	Significant decrease in moderate PA ($P < 0.01$), vigorous PA ($P < 0.001$) and PA in MET-min/wk ($P < 0.01$) during lockdown
				Females: 39.1 ± 10.6 y		No significant change in sedentary time ($P = 0.85$) or walking ($P = 0.067$)
				Males: 221 (51.3%)		
				Occupation/characteristics: Healthy adults aged between 18 and 65 y old		
				Females: 67.8%		
Huckins et al. 2020 (37)	USA	Longitudinal	217	Age:	Mobile phone	Individuals were more sedentary during COVID-19 ($P < 0.001$)
				18–22 y	sensor data	
				Sex (F): 147 (67.8%)		
				Occupation/characteristics: Undergraduate students		
Gallo et al. 2020 (50)	Australia	Longitudinal	2018 n = 174	Age: 19–27 y	Active Australia	Males: Walking participation
			(for PA 158)	Sex (F): For physical activity:	Survey	Significant reduction in 2020 combined with years
				2018: 97,		2018/2019, ($P = 0.05$)
				2019: 104,		Vigorous activity
				2020: 84		No difference between 2020 and years 2018/2019, ($P = 0.257$)
				Occupation/characteristics: Undergraduate students		Females: Walking participation
						Significant reduction in 2020 combined with years
						2018/2019, ($P = 0.05$)
						Vigorous activity
						No difference between 2020 and years 2018/2019 combined ($P = 0.245$)

(Continued)
Study ID	Country	Study type	Sample size	Sample characteristics	Assessment tool	Outcome
Hemphill et al. 2020 (36)	Canada	Longitudinal	109, of which 56 had longitudinal data	2019: n = 83, 2020: n = 82 Age: 2019: 13.0 ± 2.3 y 2020: 13.2 ± 2.3 y Sex (F): 2019: 42% 2020: 48% Occupation/characteristics: Children with CHD aged 9–16 y	Step count data	Significant reduction in step count during lockdown (P < 0.001) During the early phase of the COVID-19 pandemic in Canada, children with CHD had a decline of 21–24% of their overall daily step counts
Bourdas and Zacharakis (2020) (38)	Greece	Longitudinal	8495	Age: 37.2 ± 0.2 y Sex (F): 5241 (61.7%) Occupation/characteristics: General population	Activity questionnaire	Overall physical activity decreased during lockdown measures (P < 0.05) Significant reduction (P < 0.05) in sporting activities
Munasinghe et al. (2020) (39)	Australia	Longitudinal	582	Age: 13–19 y Sex (F): 465 (79.9%) Occupation/characteristics: Adolescents	Questionnaire	Significant decrease in physical activity after physical-distancing measures
Muriel et al. (2020) (40)	Spain	Longitudinal	18	Age: 24.9 (2.8) y Sex (F): 0 (0%) Occupation/characteristics: Professional cyclists	Objective data collection—specialist software	Total training volume decreased by 33.9% during the lockdown (P < 0.01) Large reductions in best 5-min and best 20-min performances (P < 0.001)
Martinez-de-Quel et al. 2020 (31)	Spain	Longitudinal	161	Age: 35.0 ± 11.2 [19–65] y Sex (M:F): 60 (37%) Occupation/characteristics: General population	Minnesota Leisure Time Physical Activity Questionnaire (MLTPAQ)	Total physical activity significantly decreased during lockdown (P < 0.001) Increase in number physically inactive during the pandemic (P < 0.001)
Savage et al. (2020) (41)	UK	Longitudinal	214	Age: 20.0 y Sex (F): 154 (72%) Occupation/characteristics: Students	Questionnaire	Physical activity significantly decreased during the first 5 wk of lockdown (P < 0.01). Sedentary time significantly increased (P < 0.0001)
Vetrovsky et al. (2020) (42)	Czech Republic	Longitudinal	26	Age: 58.8 (9.8) y Sex (F): 8 (30.7%) Occupation/characteristics: Heart failure patients	Accelerometer	Significant decrease in daily step count during quarantine period (P < 0.001)
Zenic et al. (2020) (43)	Croatia	Longitudinal	823	Age: 16.5 ± 2.1 y Sex (F): NR Occupation/characteristics: Adolescents	Questionnaire	Physical activity levels significantly decreased during social distancing (P < 0.01). This was greater in urban than rural adolescents

1 CHD, congenital heart disease; COVID-19, coronavirus disease 2019; MET, metabolic equivalent of task; NR, not reported; PA, physical activity; ICD, implantable cardioverter-defibrillators; IPAQ-SF, International Physical Activity Questionnaire-Short form; .
2 Includes walks, bike rides, bicycle ergometer training, dancing, and bowling.
TABLE 3 Characteristics of included studies investigating the relation between COVID-19 and financial status

Study ID	Country	Study type	Sample size	Sample characteristics	Assessment tool	Outcome
Evanoff et al. 2020 (52)	USA	Cross-sectional	5550	Age: not specified Sex (F): 4274 (77.3%) Occupation/characteristics: Benefits-eligible university faculty, staff, and postdoctoral scholars	Worse financial well-being due to COVID-19-related work or life changes, n (%)	Significant increase in worse financial well-being for 1732 (31.4%) $P < 0.001$
Wilson et al. 2020 (55)	USA	Cross-sectional	474	Age: median 40 (19–85) y Sex (F): 218 (46.4%) Occupation/characteristics: Currently employed adults	Questionnaire	Job insecurity: Not worried: 19.6% Slightly worried: 18.8% Some what worried: 23.2% Worried: 16.6% Very worried: 21.9% P value NR
Wanberg et al. 2020 (57)	USA	Longitudinal observational	1143	Age: 30–81 y Sex (F): 635 (55.6%) Occupation/characteristics: RAND American Life Panel, general population	Questionnaire	Laid off due to COVID-19: 40 (3.5%) P value NR Furloughed due to COVID-19: 32 (2.8%) P value NR
Donnelly and Farina 2020 (58)	USA	Cross-sectional	State-specific sample size ranging from 11,279 (Wyoming) to 77,811 (California)	Age: 44.4 ± 11.86 [18–65] y Sex (F): 61.76% Occupation/characteristics: General population	National survey	Reduction in household income after 13 March 2020: 45% of the analytic sample P value NR
McDowell et al. 2020 (59)	USA	Cross-sectional	2303	Age: 18–75 y Sex (F): 1520 (66%) Occupation/characteristics: Adults in employment before COVID-19	Working status	Lost employment due to pandemic: 13% P value NR
Almndoz et al. 2020 (61)	USA	Cross-sectional	123	Age: 51.2 ± 13.0 y Sex (F): 107 (87%) Occupation/characteristics: Adults with obesity	Survey/questionnaire	Lost job since COVID-19: 11 (9.6%) P value NR
Study ID	Country	Study type	Sample size	Sample characteristics	Assessment tool	Outcome
--------------------------	---------	---------------------	-------------	---	-----------------	--
García-Alvarez et al.	Spain	Cross-sectional	21,207	Age: 39.7 ± 14.0 y Sex (F): 14,768 (69.6%) Occupation/characteristics: General population	Questionnaire	Reduction in income due to COVID-19: Up to 25%; 2292 (10.8%) 26–50%; 1367 (6.4%) 51–100%; 1738 (8.2%) Income increase: 133 (0.6%) P value NR Job loss: Temporary or permanent lay off: 1871 (8.9%) Dismissal: 390 (1.9%) Forced vacation: 954 (4.5%)
Gualano et al. 2020	Italy	Cross-sectional	1515	Age: Median: 42 (IQR: 23) y Sex (F): 973 (65.6%) Occupation/characteristics: General population	Questionnaire	Fear of losing employment: No: 543 (85.4%) Yes: 93 (14.6%) P value NR Income reduction: No: 46 (23.5%) Yes: 150 (76.5%) P value NR Job situation: Lay off: 98 (6.5%) Lost job: 18 (1.2%)
Song et al. 2020 (54)	China	Cross-sectional	709	Age: 35.35 ± 6.61 y Sex (F): 526 (74.2%) Occupation/characteristics: Working adults, not infected	Questionnaire	Income change: Decrease: 244 (34.4%) No change: 436 (61.5%) Increase: 39 (4.1%) P value NR Some degree of worry about unemployment caused by COVID-19: 251 (35.5%)
Guo et al. 2020 (53)	China	Cross-sectional	506	Age: 33.5 (14.0) Sex (F): 289 (57.1%) Occupation/characteristics: Patients with skin disease	Questionnaire	Decrease or loss of income in 317 (62.6%) during lockdown. P-value NR
Nienhuis and Lesser, 2020	Canada	Cross-sectional	1098	Age: 42 ± 15 Sex (F): 871 (79.3%) Occupation/characteristics: General population	Questionnaire	Change in work due to pandemic Men: 43% Women: 60% P-value NR Employment Status Post-COVID No change: 43.2% Reduced hours: 10% Remote work: 32.1% Loss of employment: 14.7% P-value NR

1 COVID-19, coronavirus disease 2019; NR, not reported.
TABLE 4: Characteristics of included studies investigating the relation between COVID-19 and diet

Study ID	Country	Study type	Sample size	Sample characteristics	Assessment tool	Outcome
Alhusseini and Alqahtani, 2020 (80)	Saudi Arabia	Longitudinal observational	2706	Age: 18+ y Sex (F): 1466 (54.2%) Occupation/characteristics: General population	Dietary habit questionnaire	Increase in healthy food rating (< 0.05) Increased consumption of home-cooked meals (< 0.001) Increased quantity of food consumption (< 0.001)
Robinson et al. 2020 (81)	UK	Cross-sectional	2002	Age: 34.74 ± 12.3 y Sex (F): 1236 (62%) Occupation/characteristics: General population	Short 13-item food-frequency questionnaire (SFFQ)	Diet during COVID-19 relative to baseline: Better: 694 (35%) Same: 620 (31%) Worse: 688 (35%) 56% reported snacking more frequently P value NR Having a higher BMI was independently associated with lower diet quality (< 0.01)
Buckland et al. 2020 (65)	UK	Cross-sectional	588	Age: 33.4 ± 12.6 y Sex (F): 403 (69%) Occupation/characteristics: General population	Questionnaire	Increased food consumption: 268 (48%) Increased meal amount: 173 (31%) P values NR
Do et al. 2020 (82)	Vietnam	Cross-sectional	5209	Age: 21–40 y: 4304 (82.6%) 41–60 y: 905 (17.4%) Sex (F): 3495 (67.1%) Occupation/characteristics: General population	Online survey	Dietary change compared with pre-pandemic: Unchanged or healthier: 5042 (96.8%) Less healthy: 167 (3.2%) P value NR
Carroll et al. 2020 (84)	Canada	Cross-sectional data (from longitudinal study)	361 parents from 254 families	Age: Mothers 39.4 (SD 5.5) y Fathers 37.5 (SD 4.8) y Children 5.7 (SD 2.0) y Sex: (F): 235 (65%) Occupation/characteristics: Families with young children	Food questionnaire	Eating more food since confinement (mothers, 57%; fathers, 46%; children, 42%) More snack foods (mothers, 67%; fathers, 59%; children, 55%) P value NR

(Continued)
Study ID	Country	Study type	Sample size	Sample characteristics	Assessment tool	Outcome
Huber et al. 2020	Germany	Cross-sectional	1964	Age: 23.3 ± 4.0 y	Questionnaire	Overall food intake during lockdown: Increased: 31.2%
				Sex (F): 1404 (71.5%)		Decreased: 16.8%
				Occupation/characteristics:		Increase in food intake was mainly triggered by consumption of bread (increased in 46.8%) and confectionery (increased in 64.4%).
Visser et al. 2020	Netherlands	Longitudinal cohort	1119	Age: 74 ± 7 y	Questionnaire	Change in eating habits during pandemic: Eating less than normal: 12.1%
				Sex (F): 593 (52.8%)		Eating too little or losing weight: 6.6%
				Occupation/characteristics:		Snacking more: 32.4%
				Dutch older adults		Skipping warm meals: 9.1%
López-Moreno et al. 2020	Spain	Cross-sectional	675	Age: 39.1 ± 12.9 y	Questionnaire	Overall worsening of diet: 112 (16.2%)
				Sex (F): 472 (70%)		Increased food intake: 19.6%
				Characteristics: General public		Increased purchase of snacks: 39%
						Increased purchase of processed foods: 25%
Rodriguez-Pérez et al. 2020	Spain	Cross-sectional	7514	Age: <20 y: 229	Mediterranean Diet Adherence Screener (MEDAS)	Decreased food intake: 33.3%
				21–35 y: 2558		P value NR
				36–50 y: 2371		Increased adherence to Mediterranean diet (P < 0.001)
				51–65 y: 1928		Reduced alcohol intake (P < 0.001)
				≥65 y: 428		Self-reported “not eating more” during confinement: 63.7% (P < 0.001)
Study ID	Country	Study type	Sample size	Sample characteristics	Assessment tool	Outcome
----------	------------------	------------------	-------------	------------------------	----------------------------------	---
Sánchez-Sánchez et al. 2020 (72)	Spain	Cross-sectional	1065	Age: 38.7 ± 12.4 y	Mediterranean Diet PREDIMED	Increased adherence to Mediterranean diet (P = 0.004)
				Sex (F): 775 (72.8%)	questionnaire	Significant increase in daily portions of vegetables, olive oil, fruit, red meat, sugary/carbonated beverages (P < 0.05)
				Occupation/characteristics: General population		Significant increase in proportion drinking wine ≥7×/wk (P < 0.001)
Ruiz-Roso et al. 2020 (69)	Spain (Madrid)	Cross-sectional	72	Age: 41.12 ± 13.05 y	Phone interview	Increased sugary food servings ≥5 times/wk (2.9% vs. 5.7%)
				Sex (F): 46 (64.1%)		Increased snacking ≥4 times/wk (5.7% vs. 12.9%)
				Occupation/characteristics: Cohort of adults with T2D (1) Between the age of 40 and 80 y, (2) BMI ≥25 and < 40 kg/m²		Significant increase in vegetable consumption (P < 0.0001)
Di Renzo et al. 2020 (66)	Italy	Cross-sectional	3533	Age: 40.03 ± 13.53 (12–86) y	Mediterranean Diet Adherence Screener (MEDAS)	Healthier diet (fruit, vegetables, nuts and legumes): 37.4%
				Sex (F): 848 (24%)		Unhealthier diet: 35.8%
				Occupation/characteristics: General population		P value NR
						Significant decrease in junk food consumption (P = 0.002)
Pietrobelli et al. 2020 (67)	Italy	Longitudinal	41	Age: 13.0 ± 3.1 y	Interview and questionnaire	Increased number of daily meals (P < 0.001)
				Sex (F): 19 (46%)		Increased fruit intake (P = 0.055); no change in vegetable intake
				Occupation/characteristics: Children and adolescents with obesity		Increase in potato chips, red meat, and sugary drink intake (P = 0.005)
						Dietary changes during pandemic: Stress eating: 61.2%
						Cooking more often: 63.8%
						Food behaviors: Reported healthy eating to be more challenging during pandemic: 61.2%
						Skipping meals when not food in secure: 12.1%
						P value NR
Almandoz et al. 2020 (61)	USA (Texas)	Cross-sectional	123	Age: 51.2 ± 13.0 y	Survey/questionnaire	(Continued)
				Sex (F): 107 (87%)		(Continued)
				Occupation/characteristics: Adults with obesity		(Continued)
Study ID	Country	Study type	Sample size	Sample characteristics	Assessment tool	Outcome
------------------	---------	--------------	-------------	------------------------	-----------------	--
Knell et al. 2020 (73)	USA	Cross-sectional	1809	Age: 18+ y Sex (F): 1220 (67.4%) Occupation/characteristics: General population	Alcohol questionnaire	Significant increase in alcohol consumption ($P < 0.01$)
Błaszczyk-Bbenek et al. 2020 (26)	Poland	Cross-sectional	312	Age: 41.12 ± 13.05 y Sex (F): 200 (64.1%) Occupation/characteristics: General population	Dietary Habits and Nutrition Beliefs Questionnaire	Significant increase in number of meals consumed and snacking ($P < 0.0001$) Significant increase in alcohol ($P = 0.0031$) Significant decrease in takeaways and fast food ($P < 0.0001$) Significant decrease in energy drink consumption ($P = 0.015$)
Sidor and Rzymski 2020 (23)	Poland	Cross-sectional	1097	Age: 27.7 ± 9.0 [18–71] y Sex (F): 1043 (95.1%) Occupation/characteristics: General population	Questionnaire	Dietary changes during pandemic: Eating more: 43.5% More frequent snacking: 51.8% Cooking more often: 62.3% P value NR Alcohol intake changes: Increase: 14.6% No change: 77% Unsure: 8.3% P value NR
Gómnicka et al. 2020 (68)	Poland	Cross-sectional	2381	Age: ≤30 y: 700 30–39 y: 1067 40–49 y: 306 50–59 y: 160 Sex (F): 2138 (89%) Occupation/characteristics: Over 18 y, not pregnant or lactating/breastfeeding	Questionnaire	Increase in unhealthy eating ($P < 0.001$) Increase in confectionary and alcohol ($P < 0.001$) Positive dietary changes during pandemic: Increased water intake ($P < 0.001$) Decreased fast-food intake ($P < 0.001$) Increased consumption of homemade meals ($P < 0.001$)
Yan et al. 2020 (78)	China	Cross-sectional	9016	Age:18–80 y Sex (F): 5177 (57.4%) Occupation/characteristics: General population	Alcohol questionnaire	Significant increase in alcohol consumption ($P < 0.001$) 54% diabetic and 10.2% nondiabetic participants reported significant increases in drinking
Study ID	Country	Study type	Sample size	Sample characteristics	Assessment tool	Outcome
----------	---------------	-----------------------	-------------	--	---	---
Wang et al. 2020 (70)	China	Cross-sectional	2289	Age: 17.8 ± 12 y	Questionnaire adapted from online nutritional survey of Guangdong Nutrition Society and Sun Yat-sen University	Daily eating frequency: Reduced: 23.1%
No change: 60%						
Increased: 17.3%						
Food behavior changes: Appetite unchanged: 71.4%						
Healthier diet: 23%						
More vegetables, fruits and milk: > 30%						
Increased snacking: ~30%						
P value NR						
Overall food consumption:						
Much more than before: 19.7%						
A little more than before: 30.5%						
Same as before: 40.0%						
A little less than before: 7.0%						
Much less than before: 2.9%						
P value NR						
No significant change in fruit consumption (P = 0.060); decrease in vegetable consumption (P = 0.008)	Total energy intake over 24 h (females):					
No significant change between 2019/2020 (P = 0.067); significant increase between 2018 and 2020 (P < 0.05)						
Total energy intake over 24 h (males):						
No significant difference						
Elran-Barak and Mozeikov 2020 (71)	Israel	Cross-sectional	315	Age: 18 ± y	Questionnaire	Significantly increased snacking (P = 0.006), more late-night snacks (P < 0.001),
Main meal was significantly more likely to be freshly made (P = 0.001), with reductions in fast-food consumption (P < 0.001).						
Decreased frequency of seafood consumption; no change in beverage consumption						
Study ID	Country	Study type	Sample size	Sample characteristics	Assessment tool	Outcome
-----------------	--	-----------------	-------------	--	---	---
Steele et al. 2020	Brazil	Longitudinal	10,116	Age: 18–39 y: 5174 (51.1%); 40–59 y: 4034 (39.9%); ≥ 60 y: 908 (9.0%); Sex (F): 7895 (78.0%); Occupation/characteristics: Adults ≥ 18 y, NutriNet Brasil Cohort	Adaptation of an instrument developed by the authors for the Ministry of Health Surveillance of Risk and Protective Factors for Chronic Diseases by Telephone Survey	Dietary behavior changes during pandemic: Increased consumption of vegetables and fruits ($P < 0.05$); Increased consumption of beans/legumes ($P < 0.05$)
Malta et al. 2020	Brazil	Cross-sectional	45,161	Age: 18 + y; Sex (F): 24,206 (53.6%); Occupation/characteristics: General population	Alcohol consumption: Increased: 17.6% P value NR	Alcohol consumption: Increased: 17.6% P value NR
Ruiz-Roso et al. 2020	Italy, Spain, Chile, Colombia, and Brazil	Cross-sectional	820	Age: 15 (10–19) y; Sex (F): 501 (61.1%); Occupation/characteristics: Adolescents between 10–19 y	Online questionnaire	Legumes, vegetables, and fruit intakes were significantly increased ($P < 0.05$); reduced fast-food consumption ($P < 0.0001$)
Ammar et al. 2020	Asia (36%), Africa (40%), Europe (21%), and other (3%)	Cross-sectional survey	1047	Age: 18 + y; Sex (F): 563 (53.8%); Occupation/characteristics: General population	Short Diet Behaviour Questionnaire for Lockdowns (SDBQ-L)	Increase in self-reported unhealthy eating ($P < 0.001$); Increased uncontrolled eating ($P < 0.001$); Increased snacking ($P < 0.05$)

1COVID-19, coronavirus disease 2019; NR, not reported; PREDIMED, Prevención con Dieta Mediterránea.
activity and sedentary behavior (24, 36, 45–52, 37–44). All of the 18 studies were longitudinal and used self-reported measurements, except for Wang et al. (35), who used an accelerometer sensor to record daily step counts. A total of 16 studies reported a reduction in physical activity during COVID-19, with 1 study showing an increase in activity (46) and 1 showing no change at all (40). A study in German schoolchildren aged between 4 and 17 y found an increase in active days per week, with an 11.1% increase in adherence to WHO physical activity guidelines (46). A study of high school students found no significant increment in physical activity during COVID-19 compared with the pre-restriction baseline; however, highly active students increased their activity levels relative to baseline (47).

Relation between COVID-19 and diet.

Twenty-seven studies were included that investigated the impact of COVID-19 on dietary patterns, as summarized in Table 4.

Favorable changes in dietary behavior. A total of 5 studies reported an increase in home-cooked meals during the pandemic (23, 61, 68, 74, 80). Three studies reported an overall reduction in the frequency of fast food (26, 74, 79). Of the studies looking at alcohol consumption, only 1 study found a decrease in alcohol consumption during the pandemic in the Spanish general population (77). This decline in alcohol was correlated with higher adherence to the Mediterranean diet.

A cross-sectional study of the general population in Italy found an increase in the consumption of fruit, vegetables, nuts, and legumes and a significant decrease in junk food consumption (66). Second, a Spanish cross-sectional study focusing on patients with type 2 diabetes found a significant increase in vegetable consumption during the pandemic (69). Third, a study looking at healthy Chinese adults found an increase in vegetable, fruit, and milk consumption (70) relative to before the pandemic. The last change reported by the studies was a reduction in overall food consumption during the pandemic (26, 82). A longitudinal study of adults older than 62 y in the Netherlands found that 12% of the sample were eating less than usual. However, this change in dietary habits was not reflected by a statistically significant reduction in weight (64).

Unfavorable changes in dietary behavior. A total of 7 studies reported an increase in alcohol consumption (23, 26, 68, 72, 73, 76, 78). Three of the studies were in the Polish general population (23, 26, 68), with the remainder reporting from Spain (72), the United States (73), China (78), and Brazil (76). A total of 10 studies found an increase in the quantity of food consumed during COVID-19 (23, 26, 50, 63, 65, 67, 71, 80, 83, 84). In particular, the most common change during the pandemic was an increase in snacking frequency, which was reported in 11 studies that included patients from a wide range of geographical areas ranging from Europe to Asia and including North America (23, 26, 33, 61, 64, 69, 70, 74, 81, 83, 84).

Relation between COVID-19 and socioeconomic status.

Eleven studies were included in this review that investigated the impact of COVID-19 on financial status, as summarized in Table 3. Out of these studies, one reported a statistically significant worsening of financial well-being among 5550 benefits-eligible university staff (94). The remaining studies did not report a P value or 95% CI but reported a detrimental impact of COVID-19 on financial status, resulting in either reduced income (53, 54, 58, 60, 62) or job loss (56, 57, 59–62). Two of the papers showed that COVID-19 resulted in alarming the participant and increasing their fear of job insecurity (55, 62), with Wilson et al. (55) reporting that 31.9% of participants had financial fears during the pandemic and only 19.6% of the sample had no concerns at all.

Relation between COVID-19 and depression.

Seventeen of the studies included in this review investigated the relation between COVID-19 and depression, as summarized in Table 5. Only validated depression scales were used, of which 3 studies used the Depression, Anxiety and Stress Scale (DASS) (85, 94, 97), 11 studies used the PHQ (57, 86, 88, 90–93, 96, 98–100), 1 study used the Children’s Depression Inventory–Short Form (CDI-S) (51), 1 study used the Center for Epidemiologic Studies–Depression (CES-D) (101), and 1 study used the Beck Depression Inventory (BDI) (89).

Ten studies reported a statistically significant increase in depressive symptoms during the pandemic (59, 89, 91, 93–96, 99–101). Two of the studies looked at the general population in the United States (57) and Austria (88). Three of these studies investigated clinical staff including obstetricians and midwives (96), nurses (98), and physicians (91). Four studies looked at a younger cohort of participants including schoolchildren (85) and students (86, 87, 100). Finally, one of the studies looked at the impact of COVID-19 on the LGBT (lesbian, gay, bisexual, transgender) population in the United States and found a significant increase in depressive symptoms, particularly in those with a negative baseline screen (92). Although the P value was not reported in 7 studies (89, 90, 93, 94, 97, 99, 100), 6 of them reported a trend of increased depression scores during COVID-19 (89, 90, 93, 97, 99, 100). Only 1 study found no increase in depressive symptoms during COVID-19 and looked at US physician trainees (94).

Discussion

This systematic review of over 350,000 participants from across the globe attempted to describe the indirect impact that the SDMs due to the COVID-19 pandemic had on population body weight by altering the most important risk factors—namely, diet, physical activity, mental health, and financial status. Although the impact of the countermeasures used to curb the COVID-19 pandemic was evident on obesity risk factors, none of the studies included in our research explored the direct impact of the risk factors on obesity itself.

The general trend seen in included studies was a worsening in the obesity risk factors. There were, however, notable exceptions. A German study in schoolchildren found an improvement in physical activity (46) due to recreational sporting activities. This discrepancy is likely due to contextual factors, such as how stringent the SDMs were in the specific countries. For example, in China, outdoor physical activity was banned during the first wave of COVID-19 (46).

Differences were also seen in dietary changes, with some studies showing an improvement in diet. However, those studies showing improvements in diet were looking at very different subgroups of the population (66, 69, 70), including the elderly or those with underlying medical conditions. The age of participants appears to have an impact, with the largest sample-size studies (25, 34) showing a significant weight increase in those under age 25. The same was seen in a US sample of stu-
TABLE 5 Characteristics of included studies investigating the relation between COVID-19 and depression

Study ID	Country	Study type	Sample size	Sample characteristics	Assessment tool	Outcome
Chen et al. 2020 (85)	Hong Kong	Longitudinal	543	Age: 10.88 ± 0.72 y	DASS-21	Significant increase in DASS-21 during COVID-19 ($P < 0.001$)
			(completed both baseline and follow-up)	Sex (F): 273 (51%)		
Ettman et al. 2020 (93)	USA	Cross-sectional	1441 during pandemic, 5065 pre-pandemic	Age: 18±y	PHQ-9	More than 3-fold increase in depression symptoms during COVID-19 P value NR
				Sex (F): Baseline: 2588 (51.4%) Post-pandemic: 718 (51.9%)		
				Occupation/characteristics: General population		
Kannampallil et al. 2020 (94)	USA	Cross-sectional	393	Age: Not included	DASS-21	No significant difference in DASS-21 score between those exposed to COV ID and those not ($P = 0.70$)
				Sex (F): 218 (55.5%)		
				Occupation/characteristics: Physician trainees		
Coughenour et al. 2020 (86)	USA	Longitudinal	194	Age: 25.11 (SD 7.84) y	PHQ-9	Significant increase in PHQ-9 depression score after stay-at-home order ($P < 0.01$)
				Sex (F): 140 (72.2%)		
				Occupation/characteristics: College students		
Flentje et al. 2020 (92)	USA	Longitudinal	2288	Age: 36.9 ± 14.7 y	PHQ-9	Significant increase in PHQ-9 depression score in the total population during COVID-19 ($P < 0.001$)
				Sex (F): 1428 (63.0%)		
				Occupation/characteristics: LGBT population		Significant decrease in PHQ-9 depression score in those with a positive baseline screen ($P = 0.001$)

(Continued)
TABLE 5 (Continued)

Study ID	Country	Study type	Sample size	Sample characteristics	Assessment tool	Outcome
Wanberg et al. 2020 (57)	USA	Longitudinal	1143	Age: 30–81 y Sex (F): 635 (55.6%) Occupation/characteristics: RAND American Life Panel, general population	PHQ-8	Significant increase in depressive symptoms during the pandemic ($P = 0.01$)
Xiang et al. 2020 (95)	China (Shanghai)	Longitudinal	2427	Age: 6–17 y Sex (F): 1185 (49%) Occupation/characteristics: School-age children	Children's Depression Inventory–Short Form (CDI-S)	Significant decrease in CDI-S score, 4.19 baseline vs. 3.90 during school closure ($P < 0.01$) Therefore, no evidence of increased depressive symptoms among students after a 2-mo school closure
Liu et al. 2020 (96)	China	Cross-sectional	2126	Age: 16+ y Sex (F): 2077 (97.7%) Occupation/characteristics: Obstetrician: 770; midwife: 1356	PHQ-9	Significant increase in PHQ-9 score during COVID-19 ($P < 0.001$) Those with direct contact with COVID-19 more likely to have severe depression ($P < 0.05$)
Cai et al. 2020 (98)	China	Longitudinal study	1330: 709 (53.3%) from the outbreak period and 621 (46.7%) from the stable period	Age: 18+ y Sex (F): Peak: 684 (96.5%) Stable: 605 (97.4%) Occupation/characteristics: Nurses	PHQ-9	Significant increase in mean PHQ-9 score during the pandemic (4.67 vs. 5.59, $P < 0.001$) During the outbreak, nurses had significantly higher proportions of depressive symptoms ($P < 0.001$) Depression significantly higher in those on the frontline ($P < 0.05$)
Li et al. 2020 (100)	China	Longitudinal	During outbreak (T1) ($n = 164,101$) During remission (T2) ($n = 148,343$)	Age: Not specified Sex (F): During outbreak: 103,645 (63.2%) During remission: 92,859 (62.6%) Occupation/characteristics: College students	PHQ-9	Increase in PHQ-9 depression score during remission (3.66 vs. 3.95) P value NR Significant increase in prevalence of depression (PHQ-9 score >9) during remission ($P < 0.001$) Depression more likely in seniors and those who consumed alcohol ($P < 0.001$)

(Continued)
Study ID	Country	Study type	Sample size	Sample characteristics	Assessment tool	Outcome
Li et al. 2020 (91)	China	Longitudinal	385	Age: median: 25 (IQR: 23–28) y		
Sex (F): 247 (64%)						
Occupation/characteristics: Physicians from 12 Shanghai hospitals who enrolled in the prospective Intern Health Study in August 2019	PHQ-9	Significant increase in depressive symptoms from T1 (pre-pandemic) to T2 (during pandemic)				
95% CI: 0.08, 1.14						
P = 0.02						
Quitkat et al. 2020 (97)	Germany	Cross-sectional	586	Age: 34.06 ± 13.45 y		
Sex (F): 470 (80%)						
Occupation/characteristics: Pre-existing depression	DASS-D	Depression compared with pre-pandemic:				
Considerable improvement: 48 (8.19%)						
Slight improvement: 113 (19.28%)						
No change: 88 (15.02%)						
Slight worsening: 218 (37.2%)						
Considerable worsening: 119 (20.3%)						
P value NR						
Thombs et al. 2020 (99)	Canada, France, UK, US	Longitudinal study	388	Age: 56.9 (SD 12.6) y		
Sex (F): 343 (88.5%)						
Occupation/characteristics: Systemic sclerosis patients	PHQ-8	Changes in depressive symptoms were minimal (reduction of 0.3 points, 95% CI: -0.7, 0.2) during pandemic				
P value NR						
Elmer et al. 2020 (87)	Switzerland	Longitudinal	n = 212 (who experienced the crisis)			
n = 54 (earlier cohort who did not)	Age: Unspecified					
Sex (F):						
Current year, Major I (n = 70) 33.7%						
Current year, Major II (n = 142) 15.3%						
Previous year, Major I (n = 54) 38.9%						
Occupation/characteristics: Undergraduate students	CES-D	Students became significantly more depressed during the pandemic (meandiff = 4.44, P < 0.001)				
No significant difference between Majors						
Pieh et al. 2020 (88)	Austria	Cross-sectional (compared to Austrian Health Interview Survey 2014)	1005	Age: 18+ y		
Sex (F): 530 (52.7%)
Occupation/characteristics: General population | PHQ-8 | Significant increase in PHQ-8 depression score during pandemic (2.5 vs. 5.9, P < 0.001) |

(Continued)
TABLE 5

Study ID	Country	Study type	Sample size	Sample characteristics	Assessment tool	Outcome	Study type	Sample size	Sample characteristics	Assessment tool	Outcome	Study type	Sample size	Sample characteristics	Assessment tool	Outcome
Munk et al. 2020 (89)	Germany	Cross-sectional	949	Age: 28.9 ± 10.8 y	BDI	Clinically depressive symptoms: Baseline 7.7% depressive symptom rate	p-value NR									
Schmitz et al. 2020 (90)	Canada	Cross-sectional	1607 (Quebec sample)	Age: 18 + y	PHQ-8	Increase in score > 10 in PHQ-8 during pandemic (6.8% vs. 19.2%)	p-value NR									

BDI, Beck Depression Inventory; CCHS, Canadian Community Health Survey; CES-D, Center for Epidemiologic Studies–Depression; COVID-19, coronavirus disease 2019; DASS, Depression, Anxiety and Stress Scale; LGBT, lesbian, gay, bisexual, transgender; NR, not reported; PHQ, Patient Health Questionnaire.

1Baseline data from the 2015/2016 CCHS.

The impact of COVID-19 on obesity risk factors

The COVID-19 pandemic, and its related SDMs, led to a worsening of obesity risk factors in the majority of studies—albeit some beneficial effects were observed in the dieting domain, such as higher consumption of home-cooked meals and healthy food (e.g., vegetables). On the other hand, the overall food and alcohol consumption showed an increasing trend, which could have been either the result or the cause of poorer mental health (102).

An unavoidable consequence of the SDMs and, in the most extreme cases, of the national lockdowns was financial hardship and job loss. A large body of evidence suggests that financial stress is linked to mental illness, which, then, could have fueled the obesity risk factors mentioned previously (103). Another element adding an extra level of complexity is the bidirectional relation between financial hardship, mental illness, and the other obesity risk factors, which makes it problematic to draw a conclusion on which is the leading factor during stressful circumstances, such as a pandemic.

There are several notable papers in the literature that have been published during the writing of this report, which go some way to supporting our conclusions. Jia (104), Browne et al. (105), and Knebush et al. (106) all discuss similar findings with the interaction between the coronavirus pandemic and obesogenic risk factors. Jia (104) highlights the multifactorial impact of the pandemic on the obesogenic environment in adolescents, including increased sedentary time and dietary changes. Upstream factors, such as changes in food environments and interaction with the built environment, might help to explain some of our findings; however, as noted by Jia, more modern measurement techniques are needed to better quantify this. An important issue raised is the difficulty in following up cohorts during periods of lockdown and how this will affect future data trends.

Browne et al. (105) also considered the change in the obesogenic environment affecting children during the COVID-19 pandemic. Increased stress has arisen from changes to home and school environments, in concert with less engagement in physical activity and increased familial financial stress. As we have found the case to be in adults, this review suggests that COVID-19 has exacerbated the obesity pandemic in children. An additional consideration in this paper was the deleterious impact of weight stigma, which can further increase the psychological and physical sequelae of obesity.

Knebush et al. (106) again noted similar patterns of reduced physical activity, increased screen time, and dietary changes. School closures have had a marked impact on each of these risk factors at critical points in a child’s development.

These papers all highlight a similar pattern of an increasingly obesogenic environment that children have been subjected to during multiple...
SDMs throughout the pandemic. Of interest will be the effect of this in years to come as these children become adults, perpetuating the trend for increasing weight. A BMJ feature (107) highlights the voice of Christina Marriott, chief executive of the Royal Society of Public Health, on the topic of obesity in the COVID-19 pandemic, who states that there has not been sufficient action to address the root causes of obesity. For this to happen, the complex relation between the obesity risk factors should be explored in quantitative studies. Our review acts to emphasize the areas in which further data are required. In addition to this, there is a clear need for cost-effective policies able to mitigate the impact on obesity of stressful circumstances, such as a pandemic.

Our research is the first to attempt to summarize the multifactorial implications that the SDMs due to the COVID-19 pandemic had on obesity. A very broad search strategy was adopted to capture as thorough a picture as possible, aiming to include papers noting an association between COVID-19 SDMs, obesity, and risk factors together. None of the studies included in our research investigated the link between 1) SDMs, 2) obesity risk factors, and 3) obesity itself. The absence of studies linking (1) to (2) and, thus (3), led us to focus our review on the impact of SDMs on obesity risk factors. As a consequence, our review cannot provide a conclusion on which elements have driven the increment in BMI during the COVID-19 pandemic (15). While this is the most important weakness of our study, our broad literature review allowed us to identify the studies on the effects of the pandemic on obesity and its risk factors.

Although our contribution is not sufficient to draw a conclusion, it represents a necessary step to develop new studies able to determine the key drivers of obesity in stressful circumstances, such as a pandemic. In addition to the absence of evidence necessary to draw a conclusion, many of the included studies focused either on self-reported body weight or BMI. Although these are widely used and validated measures of identifying individuals at risk of overweight or obesity, they do not account for factors that more reliably and objectively link to health outcomes, such as total body fat percentage.

Another limitation of our review is the high proportion of cross-sectional studies, which makes it problematic to establish a causal link. Likewise, the high heterogeneity in methodology, samples, and socioeconomic characteristics made comparisons difficult. Many of the studies had a significantly higher response rate in females, which may somewhat limit the application of our conclusions to the general population. Several studies also focused on specific groups, many of which used health care workers or students. Once again, this may limit the generalizability of our conclusions.

These limitations are acknowledged in our quality assessment of the included studies. However, given the circumstances in which many of these studies were carried out, amid national lockdowns, in-person data collection was often unfeasible and so the majority of studies were affected by this measurement issue.

While this review does not provide a conclusive answer on the driver of obesity during the COVID-19 pandemic, it provides useful information to direct future research aiming at strengthening the link between stressful circumstances and a rise in risk factors for obesity and weight gain. This is important as establishing a link enables us to effectively target the risk factors in preventative public health measures. There is a need for longitudinal studies to elucidate the nature of the association.

Acknowledgments

The authors’ responsibilities were as follows—FF: conceived the study idea; NFD and CB: designed the literature searches and wrote the first draft of the manuscript; NFD, CB, and TC: reviewed all abstracts and full-text articles; and all authors: read and approved the final manuscript.

References

1. Worldometer. COVID live update: Worldometer [Internet]. [cited 2021 Oct 28]. Available from: https://www.worldometers.info/coronavirus/.
2. Purnell JQ. Definitions, classification, and epidemiology of obesity [Internet]. Endotext. 2006 [cited 2021 Oct 26]. Available from: https://pubmed.ncbi.nlm.nih.gov/25905390/.
3. GBD 2015 Obesity Collaborators; Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, Lee A, Marczak L, Mokdad AH, Moradi-Lakeh M, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med 2017;377:13–27.
4. Wang Y, Beydoun MA, Liang L, Caballero B, Kumanyika SK. Will all Americans become overweight or obese? Estimating the progression and cost of the US obesity epidemic. Obesity 2008;16(10):2323–30.
5. Finkelstein EA, Khavjou OA, Thompson H, Trodgon JG, Pan L, Sherry B, Dietz W. Obesity and severe obesity forecasts through 2030. Am J Prev Med 2012;42(6):563–70.
6. Segula D. Complications of obesity in adults: a short review of the literature. Malawi Med J 2014;26:20–4.
7. Luppino FS, de Wit LM, Bouvy PF, Stijnen T, Cuijpers P, Penninx B, Zitman FG. Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies. Arch Gen Psychiatry 2010;67(3):220–9.
8. Bjerntorp P. Do stress reactions cause abdominal obesity and comorbidities? Obes Rev 2001;2(2):73–86.
9. van Strien T, Korttinnen H, Homberg JR, Engels R, Winkens LHH. Emotional eating as a mediator between depression and weight gain. Appetite 2016;100:216–24.
10. Stunkard AJ, Faith MS, Allison KC. Depression and obesity. Biol Psychiatry 2003;54(3):330–7.
11. McLaren L. Socioeconomic status and obesity. Epidemiol Rev 2007;29(1):29–48.
12. Koolhaas CM, Dhana K, Schoufou JD, Ikram MA, Kavousi M, Franco OH. Impact of physical activity on the association of overweight and obesity with cardiovascular disease: the Rotterdam Study. Eur J Prev Cardiol 2017;24(9):934–41.
13. Kent S, Fusco F, Gray A, Jebb SA, Cairns BJ, Mihaylova B. Body mass index and healthcare costs: a systematic literature review of individual participant data studies. Obes Rev 2017;18(8):869–79.
14. Dobbs R, Savers C, Thompson F, Manyika J, Woetzel J, Child P, McKenna S, Spaltharou A. McKinsey Global Institute [Internet]. 2014. Available from: www.mckinsey.com/mgi.
15. Bakaloudi DR, Barazzoni R, Bischoff SC, Breda J, Wickramasinghe K, Chouridakis M. Impact of the first COVID-19 lockdown on body weight: a combined systematic review and a meta-analysis. Clin Nutr [Internet], 2021. Available from: https://linkinghub.elsevier.com/retrieve/pii/S026156142000277.
16. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 2009;339:b2535.
17. Smarr KL, Keefer AL. Measures of depression and depressive symptoms: Beck Depression Inventory-II (BDI-II), Center for Epidemiologic Studies Depression Scale (CES-D), Geriatric Depression Scale (GDS), Hospital Anxiety and Depression Scale (HADS), and Patient Health Questionnaire [Internet]. Arthritis Care Res (Hoboken) 2011;63(Suppl 1). Available from: https://pubmed.ncbi.nlm.nih.gov/22588766/.
18. Scholten S, Velten J, Bieda A, Zhang XC, Margraf J. Testing measurement invariance of the Depression, Anxiety, and Stress Scales (DASS-21) across four countries. Psychol Assess 2017;29(11):1376–90.

19. Algayer A-K, Fröhle B, Pietsch K, Saravo B, Baethmann M, Schulte-Körne G. Is the Children’s Depression Inventory short version a valid screening tool in pediatric care? A comparison to its full-length version. J Psychosom Res 2012;73(5):369–74.

20. Modesti PA, Rebaldi G, Cappuccio FP, Ayegamere C, Remuzzi G, Rapi S, Perruolo E, Parati G. Pancreatic changes in blood pressure in Europe: a systematic review and meta-analysis. PLoS One 2016;11(1):e0147601.

21. Fernandez-Rio J, Ceczynia JA, Mendez-Gimenez A, Carriedo A. Weight changes during the COVID-19 home confinement. Effects on psychosocial variables. Obesity Res Clin Pract 2020;14(4):383–5.

22. Cheikh Ismail I, Osali TM, Mohamad MN, Al Marzouqi A, Jarrar AH, Zampelas A, Habib-Mourad C, Omar Abu Jamaous D, Ali HI, Al Sabbath H, et al. Assessment of eating habits and lifestyle during the coronavirus 2019 pandemic in the Middle East and North Africa region: a cross-sectional study. Br J Nutr 2021;126(5):757–66.

23. Sidor A, Rzymiński P. Dietary choices and habits during COVID-19 lockdown: experience from Poland. Nutrients 2020;12:1657.

24. Pellegrini M, Ponzo V, Rosato R, Sciamaci E, Goitre I, Benso A, Belcastro S, Crespi C, De Michielis F, Ghigo E, et al. Changes in weight and nutritional habits in adults with obesity during the “lockdown” period caused by the COVID-19 virus emergency. Nutrients 2020;12(7):1–11.

25. Gallè F, Sabella EA, Ferracuti S, Giglio OD, Caggiano G, Protano C, Perruolo M, Ponzo V, Rosato R, Scumaci E, Goitre I, Benso A, Belcastro S, et al. Impact of COVID-19 lockdown on physical and nutritional behaviors of Italian undergraduate students during lockdown at the time of COVID-19 pandemic. Int J Environ Res Public Health 2020;17(17):1–11.

26. Blaszczzyk-Bębenek E, Jagiełski P, Bolesławska I, Jagielska A, Nitsch-Usuch A, Kawalec P. Nutrition behaviors in Polish adults before and during COVID-19 lockdown. Nutrients 2020;12(10):1–16.

27. Píosot S, Milovanovic I, Šimunić B, Gentile A, Bosnar K, Prot F, Bianco A, Lo Coco G, Bartolucci S, Katic K, et al. Physical activity and nutritional habits in Italy during COVID-19 pandemic: results of the ELP-COVID-19 survey. Eur J Public Health 2020;30(6):1181–6.

28. Grabia M, Markiewicz-Zukowska R, Puścion-Jakubik A, Bielecka J, Nowakowski P, Gromkowska-Kepek K, Mięcark K, Socha K. The nutritional and health effects of the COVID-19 pandemic on patients with diabetes mellitus. Nutrients 2020;12(10):1–15.

29. Yang S, Guo B, Ao L, Yang C, Zhang L, Zhou J, Jia P. Obesity and activity patterns before and during COVID-19 lockdown among youths in China [Internet]. Clin Obesity 2020;10(6), Available from: pmc/articles/PMC7646045/.

30. de Luis Román DA, Izaola O, Primo Martín D, Gómez Hoyos E, Torres B, López Gómez JJ. Effect of lockdown for COVID-19 on self-reported body weight gain in a sample of obese patients. Nutr Hosp 2020;37:1232–7.

31. Martínez-de-Quel Ó, Suárez-Iglesias D, López-Flóres M, Pérez-CA. Physical activity, dietary habits and sleep quality before and during COVID-19 lockdown: a longitudinal study. Appetite 2021;158:105019.

32. Jia P, Zhang L, Yu W, Yu B, Liu M, Zhang D, Yang S. Impact of COVID-19 lockdown on activity patterns and weight status among youths in China: the COVID-19 Impact on Lifestyle Change Survey (COILCS). Int J Obes 2021;45(3):695–9.

33. López-Moreno M, López MTI, Miguel M, García-Rimón M, Physical and psychological effects related to food habits and lifestyle changes derived from COVID-19 home confinement in the Spanish population. Nutrients 2020;12(11):1–17.

34. Mason TB, Barrington-Trimm J, Leventhal AM. Eating to cope with the COVID-19 pandemic and body weight change in young adults. J Adolesc Health 2021;68(2):277–83.

35. Wang Y, Zhang Y, Bennell K, White DK, Wei J, Wu Z, He H, Liu S, Luo X, Hu S, et al. Physical distancing measures and walking activity in middle-aged and older residents in Changan, China, during the COVID-19 epidemic period: longitudinal observational study. J Med Internet Res 2020;22(10):e21632.
with health outcomes in patients with skin diseases: cross-sectional survey study. J Med Internet Res 2020;22(9):e22288.
54. Song L, Wang Y, Li Z, Yang Y, Li H. Mental health and work attitudes among people resuming work during the COVID-19 pandemic: a cross-sectional study in China. Int J Environ Res Public Health 2020;17(14):1–15.
55. Wilson JM, Lee J, Fitzgerald HN, Oosterhoff B, Sevi B, Shook NJ. Job insecurity and financial concern during the COVID-19 pandemic are associated with worse mental health. J Occup Environ Med 2020;62(9):686–91.
56. Nienhuis CP, Lesser IA. The impact of COVID-19 on women's physical activity behavior and mental well-being. Int J Environ Res Public Health 2020;17(23):1–12.
57. Wanberg CR, Cslilag B, Douglass RP, Zhou L, Pollard MS. Socioeconomic status and well-being during COVID-19: a resource-based examination. J Appl Psychol 2020;105(12):1382–96.
58. Donnelly R, Farina MP. How do state policies shape experiences of household income shocks and mental health during the COVID-19 pandemic? Soc Sci Med 2021;269:113557.
59. McDowell CP, Herring MP, Lasing J, Brower C, Meyer JD. Working from home and job loss due to the COVID-19 pandemic are associated with greater time in sedentary behaviors [Internet]. Front Public Health 2020;8:750.
60. García-Álvarez L, dela Fuente-Tomás L, García-Portilla MP, Sáiz PA, Lacasa M, Dal Santo F, González-Blanco L, Bubes-Bascarán MT, García MV, Vázquez CA, et al. Early psychological impact of the 2019 coronavirus disease (COVID-19) pandemic and lockdown in a large Spanish sample. J Global Health 2020;10(2):020505.
61. Almandoz JP, Xie L, Schellinger JN, Mathew MS, Gazda C, Ofori A, Kukreja S, Messiah SE. Impact of COVID-19 stay-at-home orders on weight-related behaviours among patients with obesity. Clin Obesity 2020;10(5):e12386.
62. Gualano MR, Moro G Lo, Voglino G, Bert F, Sililiquini R. Effects of COVID-19 lockdown on mental health and sleep disturbances in Italy. Int J Environ Res Public Health 2020;17(13):1–13.
63. Huber BC, Steffen J, Schlichtiger J, Brunner S. Altered nutrition behavior during COVID-19 pandemic lockdown in young adults. Eur J Nutr 2021;60(5):2593–602.
64. Visser M, Schaap LA, Wijnhoven HAH. Self-Reported impact of the COVID-19 pandemic on nutrition and physical activity behaviour in dutch older adults living independently. Nutrients 2020;12(12):1–11.
65. Buckland NJ, Swinnerton LF, Ng K, Price M, Wilkinson LL, Myers A, Dalton M. Susceptibility to increased high energy dense sweet and savoury food intake in response to the COVID-19 lockdown: the role of craving control and acceptance coping strategies. Appetite 2021;158:105017.
66. Di Renzo L, Gualtieri P, Pivari F, Soldati L, Attinà A, Cinelli G, Leggeri C, Caparello G, Barrea L, Scervo F, et al. Eating habits and lifestyle changes during COVID-19 lockdown: an Italian survey. J Transl Med 2020;18(1):229.
67. Pietrobelli A, Pecoraro L, Ferruzzi A, Heo M, Faith M, Zeller T, Antoniassi F, Piacentini G, Samek J, et al. Early psychological impact of the 2019 coronavirus disease (COVID-19) pandemic and lockdown in a large Spanish sample. J Global Health 2020;10(2):020505.
68. Górnicka M, Drywien ME, Zielinska MA, Hamulka J. Dietary and lifestyle changes and suspected COVID-19 symptoms among healthcare workers from: https://pubmed.ncbi.nlm.nih.gov/32759636/.
69. Wang X, Lei SM, Le S, Yang Y, Zhang B, Yao W, Gao Z, Cheng S. Bidirectional influence of the COVID-19 pandemic lockdowns on behaviors and quality of life among Chinese adults. Int J Environ Res Public Health 2020;17:1–17.
70. Wilson JM, Lee J, Fitzgerald HN, Oosterhoff B, Sevi B, Shook NJ. Job insecurity and financial concern during the COVID-19 pandemic are associated with worse mental health. J Occup Environ Med 2020;62(9):686–91.
71. Elran-Barak R, Mozeikov M. One month into the reinforcement of social distancing due to the COVID-19 outbreak: subjective health, health behaviors, and loneliness among people with chronic medical conditions. Int J Environ Res Public Health 2020;17(15):1–16.
72. Sánchez-Sánchez E, Ramírez-Vargas G, Avellaneda-López Y, Orellana-Pecino J, García-Marín E, Díaz-Jimenez JE. Eating habits and physical activity of the Spanish population during the COVID-19 pandemic period. Nutrients 2020;12:2826.
73. Knell G, Robertson MC, Dooley EE, Burford K, Mendez KS. Health behavior changes during COVID-19 pandemic and subsequent "stay-at-home" orders. Int J Environ Res Public Health 2020;17(17):1–16.
74. Husain W, Ashkanani F. Does COVID-19 change dietary habits and lifestyle behaviours in Kuwait: a community-based cross-sectional study [Internet]. Environ Heal Prev Med 2020 251. [cited 2021 Oct 26]. Available from: https://environhealthprevmed.biomedcentral.com/articles/10.1186/s12199-020-00901-5.
75. Steele EM, Rauber F, Costa CDS, Leite MA, Gabe KT, Louzada ML da C, Levy RB, Monteiro CA. Dietary changes in the Nutrinet Brasil cohort during the COVID-19 pandemic. Revista de Saude Publica 2020;54:91.
76. Malta DC, Szewarczkl D, Barros MB de A, Gomes CS, Machado ÉE, Júnior S, de PRB, Romero DE, Lima MG, Damacena GN, et al. The COVID-19 pandemic and changes in adult Brazilian lifestyles: a cross-sectional study, 2020 [Internet]. Epidemiol Serv Saude; 2020[cited 2021 Oct 26];29:e2020407. Available from: https://pubmed.ncbi.nlm.nih.gov/32997069/.
77. Rodríguez-Cerón P, Molina-Montes E, Verardo V, Artacho R, García-Villanova B, Guerra-Hernández EJ, Ruiz-López MD. Changes in dietary behaviours during the COVID-19 outbreak confinement in the Spanish COVIDiet study. Nutrients 2020;12(6):1–19.
78. Yan AF, Sun X, Zheng J, Mi B, Zuo H, Ruan G, Hussain A, Wang Y, Shi Z. Perceived risk, behavior changes and health-related outcomes during COVID-19 pandemic: findings among adults with and without diabetes in China. Diabetes Res Clin Pract 2020;167:108350.
79. Ruiz-Rosso MB, Padilla P de C, Mantilla-Escalante DC, Ulloa N, Bruñ P, Acvedo-Correia D, Peres WA, Martorell M, Aires MT, Cardoso L de O, et al. COVID-19 confinement and changes of adolescents' dietary trends in Italy, Spain, Chile, Colombia and Brazil. Nutrients 2020;12:1807.
80. Alhusseini N, Alqahtani A. COVID-19 pandemic's impact on eating habits in Saudi Arabia. J Public Health Res 2020;9(3):354–60.
81. Robinson E, Boyland E, Chisholm A, Harrold J, Maloney NG, Marty L, Mead BR, Noonan R, Hardman CA. Obesity, eating behavior and physical activity during COVID-19 lockdown: a study of UK adults. Appetite 2021;156:104853.
82. Do BN, Tran TV, Phan DT, Nguyen HC, Nguyen TTP, Nguyen HC, Ha TH, Dao HK, Trinh MV, Do TV, et al. Health literacy, eHealth literacy, adherence to infection prevention and control procedures, lifestyle changes, and suspected COVID-19 symptoms among health care workers during lockdown: online survey. J Med Internet Res 2020;22(11):e22894.
83. Ammar A, Brach M, Tabelsi K, Chtouchou H, Boukhiri O, Masmoudi L, Bouazziz B, Bentlage E, How D, Ahmed M, et al. Effects of COVID-19 home confinement on eating behaviour and physical activity: results of the ECLB-COVID19 international online survey. Nutrients 2020;12(6):1583.
84. Carroll N, Sadowski A, Laila A, Hruska V, Nixon M, Ma DWL, Haines J. The impact of COVID-19 on health behavior, stress, financial and food security among middle to high income Canadian families with young children. Nutrients 2020;12(8):1–14.
85. Chen I-H, Chen C-Y, Pakpour AH, Griffiths MD, Lin C-Y. Internet- and mobile-based applications for COVID-19: a systematic review. J Med Internet Res 2020;22(9):e222894.
88. Pieh C, Budimir S, Probst T. The effect of age, gender, income, work, and physical activity on mental health during coronavirus disease (COVID-19) lockdown in Austria. J Psychosom Res 2020;136:110186.
89. Munk AJL, Schmidt NM, Alexander N, Henkel K, Hennig J. Covid-19—beyond virology: potentials for maintaining mental health during lockdown. PLoS One 2020;15(8):e0236688.
90. Schmitz N, Holley P, Meng X, Fish I, Jedwab J. COVID-19 and depressive symptoms: a community-based study in Quebec. Can J Psychiatry 2020;65(10):733–5.
91. Li W, Frank E, Zhao Z, Chen L, Wang Z, Burmeister M, Sen S. Mental health of young physicians in China during the novel coronavirus disease 2019 outbreak. JAMA Network Open 2020;3(6):e2010705.
92. Flentje A, Obedin-Maliver J, Lubensky ME, Dastur Z, Neilands T, Lunn MR. Depression and anxiety changes among sexual and gender minority people coinciding with onset of COVID-19 pandemic. J Gen Intern Med 2020;35(9):2788.
93. Ettman CK, Abdalla SM, Cohen GH, Sampson L, Vivier PM, Galea S. Prevalence of depression symptoms in US adults before and during the COVID-19 pandemic. JAMA Network Open 2020;3(9):e2019686.
94. Kannampallil TG, Goss CW, Evanoff BA, Strickland JR, McAlister RP, Duncan J. Exposure to COVID-19 patients increases physician trainee stress and burnout. PLoS One 2020;15(8):e0237301.
95. Xiang M, Yamamoto S, Mizoue T. Depressive symptoms in students during school closure due to COVID-19 in Shanghai. Psychiatry Clin Neurosci 2020;74(12):664–6.
96. Liu T, Zheng Z, Sha X, Liu H, Zheng W, Su H, Xu G, Su K-P, So K-F, Lin K. Psychological impact in non-infectious disease specialists who had direct contact with patients with COVID-19. BJPsych Open 2021;7.
97. Quittkat HL, Düsing R, Holtmann F-J, Buhlmann U, Svaldi J, Vocks S. Perceived impact of Covid-19 across different mental disorders: a study on disorder-specific symptoms, psychosocial stress and behavior. Front Psychol 2020;3256.
98. Cai Z, Cui Q, Liu Z, Li J, Gong X, Liu J, Wan Z, Yuan X, Li X, Chen C, et al. Nurses endured high risks of psychological problems under the epidemic of COVID-19 in a longitudinal study in Wuhan China. J Psychosom Res 2020;131:132.
99. Thombs BD, Kwakkenbos L, Henry RS, Carrier ME, Patten S, Harb S, Bourgeault A, Tao L, Bartlett SJ, Mouthon L, et al. Changes in mental health symptoms from pre-COVID-19 to COVID-19 among participants with systemic sclerosis from four countries: a Scleroderma Patient-Centered Intervention Network (SPIN) cohort study. J Psychosom Res 2020;139.
100. Li Y, Zhao J, Ma Z, McReynolds LS, Lin D, Chen Z, Wang T, Wang D, Zhang Y, Zhang J, et al. Mental health among college students during the COVID-19 pandemic in china: a 2-wave longitudinal survey. J Affect Disord 2021;281:597–604.
101. Kelishadi R. Health impacts of obesity. Pakistan J Med Sci 2014;31:239.
102. Avila C, Holloway AC, Hahn MK, Morrison KM, Restivo M, Anglin R, Taylor VH. An overview of links between obesity and mental health. Curr Obesity Rep 2015;4(3):303–10.
103. Frankham C, Richardson T, Maguire N. Psychological factors associated with financial hardship and mental health: a systematic review. Clin Psychol Rev 2020;77:101832.
104. Jia P. A changed research landscape of youth’s obesogenic behaviours and environments in the post-COVID-19 era. Obes Rev 2021;22(S1):e13162.
105. Browne RAV, Macêdo GAD, Cabral LLP, Oliveira GTA, Vivas A, Fontes EB, Elsangedy HM, Costa EC. Initial impact of the COVID-19 pandemic on physical activity and sedentary behavior in hypertensive older adults: an accelerometer-based analysis. Exp Gerontol 2020;142:111121.
106. Knebusch V, Williams J, Yordi Aguirre I, Weber MW, Rakovac I, Breda J. Effects of the coronavirus disease 2019 pandemic and the policy response on childhood obesity risk factors: gender and sex differences and recommendations for research. Obes Rev 2021;22(S6).
107. Senthilingam M. Covid-19 has made the obesity epidemic worse, but failed to ignite enough action. BMJ 2021;372:n411.