Collapse dynamics of trapped Bose-Einstein Condensates

L. Santos\(^1\) and G. V. Shlyapnikov\(^1,2,3\)

\(^1\)Institut für Theoretische Physik, Universität Hannover, D-30167 Hannover, Germany
\(^2\)FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
\(^3\)Russian Research Center Kurchatov Institute, Kurchatov Square, 123182 Moscow, Russia

We analyze the implosion and subsequent explosion of a trapped condensate after the scattering length is switched to a negative value. Our results compare very well qualitatively and fairly well quantitatively with the results of recent experiments at JILA.

Bose-Einstein condensates (BECs) in trapped ultracold atomic gases are strongly influenced by the atom-atom interactions. These interactions are characterized by a single parameter, the s-wave scattering length \(a\). For \(a > 0\) the interatomic potential is repulsive and the condensate is stable. On the other hand, if \(a < 0\) the interaction is attractive and a uniform condensate is unstable against local collapses. The trapping potential stabilizes a condensate with a sufficiently small number of particles \(N < N_c\), where \(N_c\) is a critical value below which the spacing between the trap levels exceeds the attractive mean-field interparticle interaction. Trapped condensates with \(a < 0\) have been obtained in experiments with \(^7\)Li at Rice and recently at ENS.

Over the last decade, the creation of condensates with tunable interparticle interactions (tunable BEC) has attracted a great deal of interest. There have been several proposals on how to modify the scattering length \(a\). The idea of varying the magnetic field and meeting Feshbach resonances has been successfully implemented for Na condensates at MIT. However, the Na experiment was limited by large inelastic losses. Recently, a tunable BEC of \(^{85}\)Rb atoms has been realized at JILA, without large particle losses. These experiments constitute an excellent tool for analyzing the influence of interatomic interactions on the BEC properties.

The JILA experiment allows for the creation of large condensates with \(a = a_{\text{init}} \geq 0\) and a subsequent sudden change of the scattering length to \(a = a_{\text{collapse}} < 0\). After this change of \(a\), the condensate undergoes an implosion (collapse) followed by the ejection of relatively hot atoms (burst atoms), which form a halo surrounding a core of atoms at the trap center (remnant atoms).

The collapse of a spatially homogeneous condensate is described by the well-known nonlinear Schrödinger equation (NLSE) which in the context of BECs is called the Gross-Pitaevskii (GP) equation. This collapse has a variety of analogies, such as self-focusing of wave beams in nonlinear media, collapse of Langmuir waves, etc. (see e.g. \(^2\) and refs. therein). The collapse of the solutions of NLSE has been extensively investigated and it has been found that the dimensionality of the system plays a crucial role. In 3D one has a weak collapse where the singularity is reached at a finite time. Before this happens the collapsing part is described by a universal Zakharov solution. This solution consists of quasistationary tails and a collapsing central part. The number of particles in the collapsing part continuously decreases, whereas the density increases. The dynamics of collapse in the presence of dissipation has been also analyzed (see \(^3\) and ref. therein). The dissipation is introduced through a nonlinear imaginary (damping) term in the NLSE, which prevents the appearance of the singularity if the nonlinearity is at least quintic.

The collapse of a trapped condensate has been recently analyzed in several theoretical papers. Kagan \textit{et al} \(^7\) argued that three-body recombination should be explicitly included in the GP equation as an imaginary loss term. The recombination "burns" only part of the condensed atoms and prevents a further collapse of the cloud once the peak density becomes so high that the three-body loss rate is already comparable with the mean-field interaction. Then the collapse turns to expansion and the trapped condensate can undergo macroscopic oscillations accompanied by particle losses. Kagan \textit{et al} considered the case of a comparatively large recombination rate constant, where a single collapse does not have an internal structure. By using the formalism of Ref. \(^7\), Saito and Ueda \(^9\) have observed rapid intermittent implosions of the collapsing BEC cloud. This resembles the distributed collapse discussed by Vlasov \textit{et al} \(^3\) in the context of collapsing cavities in plasmas. Saito and Ueda estimated the energy of the atoms released during the explosion, and predicted the formation of nonlinear patterns in the course of the collapse.

A different approach was suggested by Duine and Stoof \(^21\), who proposed binary collisions as the source of burst atoms in the JILA experiments. Finally, Köhler and Burnett \(^22\) have recently analyzed the JILA collapsing condensates with the help of a non-Markovian nonlinear Schrödinger equation, suggesting that the burst atoms can be formed due to the violation of the common s-wave scattering approximation.

In the present paper, we analyze the implosion and subsequent explosion of the BEC in the conditions of the recent experiments with \(^{85}\)Rb at JILA. A detailed
analysis of measurable quantities is provided by numerical simulations of the GP equation which includes three-body recombination losses as proposed in Ref. [17]. Our results agree fairly well with the data of JILA.

We consider a Bose-Einstein condensate of initially \(N \) atoms of mass \(m \) confined in a cylindrically symmetric harmonic trap. We restrict ourselves to the trap employed in \(^{85}\)Rb experiments, i.e. a cigar-shaped trap with axial frequency \(\omega_a = 2\pi \times 6.8\text{Hz} \), and radial frequency \(\omega_r = 2\pi \times 17.5\text{Hz} \). Assuming a sufficiently low temperature and omitting the presence of an initial thermal cloud, the behavior of the condensate wavefunction \(\psi \) is governed by the GP equation (cf. [17]):

\[
i\hbar \psi = \left(-\frac{\hbar^2 \nabla^2}{2m} + V(r) + g|\psi|^2 - i\frac{\hbar L_3}{12} |\psi|^4 \right) \psi,
\]

where \(V(r) = m(\omega_a^2 r^2 + \omega_r^2 z^2)/2 \) is the trapping potential, \(g = 4\pi \hbar^2 a/m \), and \(\psi \) is normalized to \(N \). The last term in the rhs of Eq. (1) describes three-body recombination losses. The quantity \(L_3 \) is the recombination rate constant for an ultra-cold thermal cloud, and the numerical factor \(1/12 \) accounts for the reduction of the recombination rate by a factor of 6 in the condensate.

As in the conditions of the JILA experiment, we consider an initial scattering length \(a_{\text{init}} \geq 0 \). For this value of \(a \) we obtain the ground-state condensate wavefunction by evolving Eq. (1) in imaginary time. At \(t = 0 \) the scattering length is abruptly switched to a value \(a_{\text{collapse}} < 0 \). The simulation of the subsequent dynamics under the conditions of JILA involves a very demanding numerical procedure, due to very different time and distance scales at \(t = 0 \), during the collapse, and after the explosion. In our simulation we have numerically solved Eq. (1) by means of the Crank-Nicholson algorithm with variable spatial and time steps. We have taken a special care of the time and spatial numerical discretizations and checked that our results do not change significantly when a more accurate sampling is used.

An additional problem in simulating the BEC dynamics from Eq. (1) is the lack of knowledge of exact values of the three-body rate constant \(L_3 \). The experiments [23] based on the measurement of losses in thermal clouds set an upper bound for \(L_3 \), due to difficulties to distinguish between two- and three-body losses. The rate constant \(L_3 \) is safely determined only far from the Feshbach resonance (154.9G for \(^{85}\)Rb). A value of \(L_3 = 4.24 \times 10^{-24}\text{cm}^6/\text{s} \) has been measured at 250G where \(a = -336a_0 \) [23]. The existing predictions for \(L_3 \) are related to the case of large positive \(a \) [24, 25]. For the recombination to deeply bound states, which is the case at \(a < 0 \), the predictions contain a number of phenomenological parameters [24]. In our simulations we rely on the experimental value of \(L_3 \) at 250G and assume the dependence \(L_3 \propto a^2 \) to obtain \(L_3 \) for magnetic fields in which \(|a| \) is smaller (\(a < 0 \)). This particular choice is within the error bars of the JILA measurements of \(L_3 \) [23] and leads to a fairly good agreement between our calculations and the JILA experimental results [1] for the dynamics of collapsing condensates.

As discussed above, the condensate collapses if \(N \) is larger than a critical value. In the absence of three-body losses, the cloud collapses continuously and the central density approaches infinity at a finite time \(t_{\text{collapse}} \). After some time from the start of the collapse, the cloud becomes spherical and is described by the universal Zakharov solution [15]. The size of the central part of the cloud decreases as \((t_{\text{collapse}} - t)^{1/2} \) and the central density increases as \(1/(t_{\text{collapse}} - t) \). In this stage of the collapse the presence of the trapping potential is not important (see [20]). We have tested the appearance of the universal Zakharov solution in our simulations.

The presence of three-body recombination changes the situation drastically. Once the central density becomes such that \(g|\psi(0,t)|^2 \approx (\hbar L_3/12)|\psi(0,t)|^4 \), the collapse stops since the recombination losses prevent further increase of the central density [17]. We have checked that for most of realistic values of \(L_3 \) the Zakharov solution is not realized in the course of the contraction to maximum density. For comparatively small \(L_3 \) the maximum density of the cloud is rather high, and the number of particles in the central part of the cloud is small. These particles are rapidly burned by the recombination and the central density drops. However, the central region is then quickly refilled by the flux of particles from the wings of the spatial distribution. Therefore one obtains a set of intermittent collapses, i.e. the collapse becomes distributed [13, 19]. As each intermittent collapse burns only a very small number of atoms the total number of particles presents a smooth time dependence.

In our calculations we have analyzed the implosion and successive explosion of a condensate for the initial number of atoms \(N = 6000 \) and \(N = 15000 \), and for \(a_{\text{collapse}} \) ranging from \(-250a_0 \) to \(-300a_0 \). We have considered \(a_{\text{init}} = 0 \) for the case of \(N = 6000 \), and \(a_{\text{init}} = 7a_0 \) for \(N = 15000 \), in order to compare our results with those at JILA [1]. Typically, we observe that the condensate contracts mostly radially and reaches a maximum central density after a time \(t_{\text{collapse}} \) which ranges from 0.5 ms to several ms. Then intermittent collapses occur. Close to the maximum density in each intermittent collapse, the central region of the collapsing condensate becomes spherical. As expected, the collapse stops when \((\hbar L_3/12)|\psi(0,t)|^4 \approx g|\psi(0,t)|^2 \) [16]. At this maximum density the total number of condensed atoms \((N_{\text{tot}}) \) decreases due to recombination losses. Due to the presence of a set of intermittent collapses, the time dependence of \(N_{\text{tot}} \) shows a step-wise decay. However, the average over short time intervals of the order of the time interval between neighbouring intermittent collapses allows us to fit \(N_{\text{tot}} \) by an exponential \(\exp(-t/\tau_{\text{decay}}) \). After the BEC explodes, we observe the formation of a dilute halo of
burst atoms surrounding a central cloud of atoms. This reproduces qualitatively the picture observed at JILA.

![Graph](image1)

FIG. 1. The fractions N_{burst}/N (circles) and N_{remnant}/N (squares) in % versus a_{collapse} for $N = 6000$, $a_{\text{inst}} = 0$. The solid curve shows N_{cr}/N.

![Graph](image2)

FIG. 2. The times t_{collapse} (upper figure) and τ_{decay} (bottom figure) versus a_{collapse} for $N = 6000$, $a_{\text{inst}} = 0$ (circles), and $N = 15000$, $a_{\text{inst}} = 7a_0$ (squares). In the upper figure the triangles show the experimental results of JILA for $N = 6000$.

We calculate various quantities: t_{collapse}, τ_{decay}, the number of burst (N_{burst}) and remnant (N_{remnant}) atoms, and the axial and radial energy of the burst atoms. We determine the number of burst atoms by integrating the condensate density over the axial coordinate and fitting the tail of the obtained radial profile by a Gaussian. The axial and radial energies per particle in the burst were calculated by averaging the axial and radial Hamiltonians, $H_z = -\hbar^2\nabla^2/2m + m\omega_z^2z^2/2$ and $H_\rho = -\hbar^2\nabla^2/2m + m\omega_\rho^2\rho^2/2$, over the density distribution. Since the presence of the remnant cloud may introduce errors in the determination of the burst energies, we have excluded the central region from the average of H_z and H_ρ. We prevent possible errors by extracting central regions of different widths ranging from one to several harmonic oscillator lengths. After a typical simulation time of 20 ms, we have checked that our results for the burst energy per particle are independent of the width of the excluded central region.

In Fig. 3 we present the fractions N_{burst}/N and N_{remnant}/N versus a_{collapse} for $N = 6000$ at a time of 20 ms. After this time N_{burst} and N_{remnant} reach stationary values. In the same figure we depict the critical value $N_{cr} = k\hbar \omega_\rho/|a_{\text{collapse}}|$, were $k = 0.46$ is the stability coefficient for ^{85}Rb [27], and $a_{\text{ho}} = \sqrt{\hbar/m\omega}$ with $\omega = (\omega_z^2\omega_\rho)^{1/3}$. A similar picture has been obtained for $N = 15000$. The burst fraction N_{burst}/N varies between 15% and 25% and only weakly depends on N and a_{collapse}. This is in good agreement with the results of JILA [14], where $N_{\text{burst}}/N \approx 20%$. One can also see that $N_{\text{remnant}} > N_{cr}$, which is expected and is in agreement with the experiments at JILA.

Fig. 4 displays the dependence of t_{collapse} and τ_{decay} on a_{collapse} for $N = 6000$ and $N = 15000$, respectively. As observed, neither characteristic time changes significantly with changing N. The time of collapse ranges from 0.5 to 4 ms for considered values of a_{collapse}. The decay time τ_{decay} weakly depends on a_{collapse}. For $N = 6000$ it ranges from 2.5 ms at $a_{\text{collapse}} = -25a_0$ to 1.6 ms at $a_{\text{collapse}} = -300a_0$. For the same values of a_{collapse} at $N = 15000$, the time τ_{decay} ranges from 2.2 to 1.1 ms. These results are in excellent agreement with Ref. [13].

Fig. 5 shows the radial and axial burst energies versus a_{collapse} for $N = 6000$ and $N = 15000$. Both energies smoothly depend on a_{collapse} and N. The radial energy is of the order of 100 nK, and the axial one of the order of 50 nK. We have performed simulations for a large range of values of a and L_3 and found that the energy of the burst atoms is proportional to a^2/L_3, as observed by Saito and Ueda [19]. This is expected as the burst energy should be of the order of the maximum mean-field interaction $g|\psi(0,t)|^2$ at the trap center for $t \sim t_{\text{collapse}}$, and this interaction has exactly the same scaling.

For the three-body rate constants used in our calculations, the results are in a fair agreement with the data of the JILA experiment. However, we are not able to reproduce the JILA results for the radial burst energy in the case of $N = 15000$ and $a_{\text{collapse}} \approx 100a_0$. The JILA radial burst energy for this particular set of parameters is by a factor of 4 larger than that observed in our simulations, whereas the rest of measured energies depart by less than 50% from our results.

To summarize, we have analyzed the collapse dynamics of trapped condensates after the scattering length is switched to a negative value. Our analysis, based on the GP equation with three-body losses explicitly included, explains qualitatively and to a large extent quantitatively the experiments performed at JILA.
We acknowledge fruitful discussions with S. L. Cornish, E. A. Donley, J. L. Roberts, E. A. Cornell, C. E. Weiman, and M. Lewenstein.

Note added: After this work was completed we learned that Saito and Ueda extended their analysis, also based on the GP equation with three-body losses, to the case of an axially symmetric trap of JILA (second version of [28]). They calculated t_{collapse} and found the number of burst and remnant atoms as functions of the initial number of atoms N at a given value of a_{collapse}. Their results for t_{collapse} agree very well with ours.

References

1. M. H. Anderson et al., Science 269, 198 (1995); K. B. Davis et al., Phys. Rev. Lett. 75, 3969 (1995); C. C. Bradley et al., Phys Rev. Lett. 75, 1687 (1995); D. G. Fried et al., Phys. Rev. Lett. 81, 3811 (1998); A. Robert et al., Science 292, 461 (2001); F. P. Dos Santos et al., Phys. Rev. Lett. 86, 3459 (2001); M. Inguscio private communication.

2. C. C. Bradley, et al. Phys. Rev. Lett. 78, 985 (1997).

3. S. L. Cornish et al., Phys. Rev. Lett. 85, 1795 (2000).

4. C. Salomon, private communication.

5. See, e.g., for review F. Dalfovo et al, Rev. Mod. Phys. 71, 463 (1999).

6. E. Tiesinga et al., Phys. Rev. A 47, 4114 (1993).

7. P. Fedichev et al., Phys. Rev. Lett. 77, 2913 (1996).

8. S. Yi and L. You, Phys. Rev. A 63, 053607 (2001).

9. S. Inouye et al., Nature (London) 392, 151 (1998); J. Stenger et al., Phys. Rev. Lett. 82, 2422 (1999).

10. J. Stenger et al., Phys. Rev. Lett. 82, 2422 (1999).

11. E. A. Donley et al., Nature 412, 295 (2001).

12. V. E. Zakharov and E. A. Kuznetsov, Zh. Eksp. Teor. Fiz. 91, 1310 (1986) [Sov. Phys. JETF 64, 773 (1986)].

13. S. N. Vlasov et al., Zh. Eksp. Teor. Fiz. 95, 1945 (1989) [Sov. Phys. JETF 68, 1125 (1125)].

14. M. E. Kosmatov et al., Physica D (Amsterdam) 52, 16 (1991).

15. V. E. Zakharov, Zh. Eksp. Teor. Fiz. 62, 1745 (1972) [Sov. Phys. JETP 35, 908 (1972)].

16. Yu. Kagan et al., Phys. Rev. Lett. 79, 2604 (1997). This paper presents a scaling solution for the wavefunction of initially Thomas-Fermi trapped condensate which undergoes a global contraction ("global collapse") under a change of the scattering length to a negative value.

17. Yu. Kagan et al., Phys. Rev. Lett. 81, 933 (1998).

18. A. Eleftheriou and K. Huang, Phys. Rev. A 61, 043601 (2000).

19. H. Saito and M. Ueda, Phys. Rev. Lett. 86, 1406 (2001); H. Saito and M. Ueda, Phys. Rev. A 63, 043601 (2001).

20. L. Bergé and J. J. Rasmussen, Phys. Rev. A 63, 043601 (2001).

21. R. A. Duine and H. T. C. Stoof, Phys. Rev. Lett. 86, 2204 (2001).

22. T. Köhler and K. Burnett, private communication.

23. J. L. Roberts et al., Phys. Rev. Lett. 85, 728 (2000).

24. P. O. Fedichev et al., Phys. Rev. Lett. 77, 2921 (1996).

25. P. F. Bedaque et al., Phys. Rev. Lett. 85, 908 (2000).

26. E. Braaten and H.-W. Hammer, Phys. Rev. Lett. 87, 160407 (2001).

27. J. L. Roberts et al., Phys. Rev. Lett. 86, 4211 (2001).

28. H. Saito and M. Ueda, cond-mat/0107248.