Microstructure and mechanical characterisation of ZrO$_2$ reinforced Ti6Al4V metal matrix composites by powder metallurgy method

P Haja Syeddu Masooth1,2, G Bharathiraja1, V Jayakumar3 and Kumaran Palani4

1 Institute of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
2 Department of Mechanical Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Vadapalani Campus, No. 1 Jawaharlal Nehru Road, Vadapalani, Tamil Nadu, India
3 Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Chennai, Tamil Nadu, India
4 Department of Mechanical Engineering, College of Engineering, Wolaita Sodo University, Wolaita Sodo, PO Box 138, Ethiopia

E-mail: pkumaran2003@gmail.com

Keywords: titanium metal matrix composites, powder metallurgy method, microstructure and mechanical characterisation, ZrO$_2$, mechanical properties

Abstract

This study investigated the mechanical and microstructural properties of ZrO$_2$ reinforced titanium metal matrix composites (TMMCs) fabricated using powder metallurgy. The base matrix of the Ti6Al4V alloy was reinforced with ZrO$_2$ at mixing proportions of different wt percentage points at 0, 3, 4, 5 and 6. Microstructure evaluation was carried out to study the bonding characteristics of the matrix and reinforcement, and it was confirmed that the reinforcement was homogenously mixed with the base matrix. The objective is to study the effect of zirconia on mechanical properties such as hardness, compression strength and thermal expansion coefficient of Ti6Al4V alloy. The hardness, compression strength, and shrinkage rate are increased with the increase of ZrO$_2$. Finally, it was observed that, 6 wt percentage of ZrO$_2$ reinforced composite showed better characteristics in that the hardness and compression strength were the highest among all the proportions used and the coefficient of thermal expansion was low. Due to these promising results, the fabricated ZrO$_2$ reinforced Ti6Al4V composite can be a potential material for structural, aerospace and automotive applications.

1. Introduction

Titanium matrix composites are popularly known for their excellent mechanical characteristics such as low weight to high strength ratio, high Young’s modulus, chemical resistance, promising wear resistance and manufacturability. Their application is widespread in the military, aeronautical, biomedical and automotive industries, especially in biomedical bone implants due to the low average life growth and high population. Bone implant materials are mostly metallic alloys, of which Ti alloys and stainless steel are widely used. However, Ti6Al4V is preferred because of its low elastic modulus compared with stainless steel [1–7]. On the other hand, Zirconia plays a significant role in reinforcements compared to other materials such as SiC [8], TiC [9], WC [10] and TiB [11], owing to its high strength, enhanced biocompatibility, high fracture toughness and high thermal shock resistance. It is also used as medical implants and prosthesis [8–13].

Most recently, Titanium was reported as the base matrix in composite research. Therefore, it is worthwhile to achieve a promising tailor-made property of novel composite material by using Zirconia as reinforcement. However, no such combination was reported as a composite to the author’s knowledge. The selection method for fabricating a new novel composite is also challenging. A conventional technology in fabricating TMMCs like casting involves high embodied energy, time and high cost. Moreover, it experiences problems of porosity, chemical reactions and wetting. Furthermore, it increases the difficulty in machining due to the presence of brittle and hard materials as reinforcement. The powder metallurgy method was chosen to overcome these
limitations due to the flexibility in direct fabrication of parts with the advantage of high precision in components. In recent years, this method has developed swiftly and used to manufacture complex structured mechanical components due to less material utilisation with the least expensive production. Furthermore, it enables the distribution of powder particles uniformly, eliminating clustering problems and porosity to a certain extent and saving energy [14–20].

This literature study shows that the typical applications of Ti6Al4V alloys and Zirconia match in most areas; the combined tailor-made properties of these composites would be required in those specific applications. Therefore, in this study, to investigate the characterisation of microstructure and mechanical properties such as hardness, compression strength and thermal expansion coefficient of this novel composite, the new mixture of Ti6Al4V-ZrO2 fabricated by powder metallurgy was examined with different mixing proportions of wt percentages of 0, 3, 4, 5 and 6 for enhancing the tailor-made properties of base matrix and reinforcement.

Table 1. Chemical composition of Ti6Al4V alloy (in %).

	Ti	Al	V	Fe	O	C	N	H
	87.6–91	5.5–6.75	3.5–4.5	0.040	0.20	0.080	0.050	0.015

Table 2. Mechanical properties of Ti6Al4V alloy and ZrO2.

Material	Density (mg/m^3)	Hardness (VHN)	Tensile strength (MPa)	Compression strength (MPa)
Ti6Al4V	4.512	3730	1200	1080
ZrO2	6.15	15750	711	5200

Table 3. Weight percentage of Ti6Al4V alloy and ZrO2.

Specimen ID	Ti6Al4V	ZrO2
Pure Ti6Al4V	100	0
TMMC1	97	3
TMMC2	96	4
TMMC3	95	5
TMMC4	94	6

Figure 1. Ball milling set-up.
2. Materials and fabrication method

Ti6Al4V alloy was used as a base matrix and ZrO2 as reinforcement to form a Titanium matrix composite. The chemical composition of Ti6Al4V alloy and the mechanical properties of both matrix and reinforcement are shown in tables 1 and 2. The TMCs were prepared with 0, 3, 4, 5 and 6 wt% of ZrO2 through powder metallurgy method and the weight proportions of Ti6Al4V alloy and ZrO2 powders are presented in table 3. Two steps carried out this method: compacting and sintering. Firstly, the Ti6Al4V alloy and ZrO2 powders were processed to blend and size powders in the ball mill. As per the weight ratio of base matrix and reinforcement, five different wt proportions of the powders were fed separately into the ball mill and set for a spindle speed of 600 rpm and a
duration of one hour to obtain the homogenous mixture of powders and the desired uniform particle size of powders. Secondly, compacting is done by compressing the metallic powders in a hydraulic operated die of press capacity 10 tons to obtain the desired shape. Thirdly, the sintering process in which the compacted specimens were heated in a box furnace at the temperature of 1400 °C was maintained as constant for 2 h. The powder particles were fused together during the sintering process due to the diffusion of atoms and boundary-crossing of atoms between the base matrix and reinforcement. The setup of ball milling, compacting, and sintering in the powder metallurgy method is depicted in figures 1–3. The sintered specimens are shown in figure 4.

3. Results and discussion

3.1. Microstructure evaluation

Figures 5(a) to (o) show the SEM image of pure Ti6Al4V alloy and TMMCs. It is clearly evident that the homogenous distribution of reinforcement particles ZrO2 in TMMCs is seen. It is observed in figures 5(a) to (c) that the bonding strength of Ti6Al4V alloy particles is increased due to elevated temperature maintained at
1000 °C in the sintering process. The large void present in the surface is due to the poor flow characteristics of metal powder during compaction. In figures 5(d) to (o) of TMMCs, it is observed that the reinforcement particles for TMMC4 and TMMC5 compared to TMMC2 and TMMC3 are strongly bonded with matrix alloy, and the voids are lesser due to the structural shape variation between the matrix and reinforcement powder particles and the increased percentage of reinforcement particles.

Table 4. Observed values during hardness test.

Specimen ID	Trial 1 (HV)	Trial 2 (HV)	Trial 3 (HV)	Average (HV)
Pure Ti6Al4V	100	102	105	102.33
TMMC1	107	103	104	104.67
TMMC2	120	118	115	117.67
TMMC3	116	120	118	118
TMMC4	126	130	128	128
3.2. Hardness test
The hardness of the TMMCs was carried out using Vickers’s hardness machine based on ASTM standards. 5 kg load was applied in the test for determining the hardness of the TMMCs. Three trials were conducted for each specimen during the test. The observed values for three trials and average values are presented in table 4. The graphical representation of the hardness test is depicted in figure 6. The figure clearly shows that the hardness increases with an increase in ZrO2 reinforcement from 0% to 6% due to the higher density and hardness of ZrO2. The percentage improvement for hardness from 0% to 6% is 23%.

3.3. Compression test
The reinforcement effect from 0% to 6% is depicted as a graphical representation in figure 7. The figure clearly shows that the increase in reinforcement from 0% to 6% leads to an increase in compression strength of TMMCs. The increased compressive strength is achieved due to the uniform dispersion of the reinforcement phase in the matrix. In addition, due to the higher sintering temperature of 1000 °C, the interfacial reaction between the matrix and reinforcement leads to greater diffusion of atomic particles.
3.4. Thermal expansion

The thermal expansion curves were obtained by testing the sintered cylindrical specimens at 5 °C per min heating rate. The temperature range for the measurement is between 30 °C–1000 °C by using a dilatometer in a...
helium atmosphere. Figures 8(a) to (e) shows the shrinkage rate variation (total percentage) and expansion coefficient of Ti6Al4V alloy and TMMCs as a function of heating temperature. The maximum temperature for transformation is maintained at about 1000 °C, increasing with ZrO2 content. Due to the beginning of bulk sintering, the minimum temperature corresponding to the front of a sudden drop is the sample length. From the figure 9, it is clear that the Zirconia percentage also influenced the shrinkage rate of the specimens. The lowest value is seen in pure alloy specimens. The addition of Zirconia increases the shrinkage rate. The linear dimensions of all samples were increased during the sintering. The characteristics of changes were different that shrinkage for pure alloy was linear up to 1000 °C while the TMMCs were curved.

4. Conclusion

In this study, the Ti6Al4V alloy reinforced with ZrO2 from 0 to 6 wt percentage was fabricated using the powder metallurgy method. Hardness, compression and thermal expansion coefficient were investigated for the TMMC specimens. The significant findings of the present study are summarised as follows.

- The addition of Zirconia into titanium alloy strongly transitioned the microstructural characteristics and mechanical properties. The microstructural examination confirmed the homogenous distribution of ZrO2 particles with Ti6Al4V alloy for all weight percentages and the strong interfacial bonding.
- The hardness and compression strength of the TMMC4 reinforced with 6% of Zirconia is higher than other TMMCs and pure Ti6Al4V alloy.
- The thermal expansion curves also were different for the pure titanium alloy and other TMMCs. The changes resulted from the existing transition temperature conversion of titanium alloy transformation. The expansion coefficient is increased with the increase of Zirconia wt percentage.
- The analysis of the sintering process and the characteristics temperature proved the effect of Zirconia addition on the onset and final temperature of shrinkage, which increased with increased Zirconia content.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

ORCID iDs

Kumaran Palani ⋆ https://orcid.org/0000-0002-7978-1617
References

[1] Hayat M D, Singh H, He Z and Cao P 2019 Titanium metal matrix composites: an overview Composites: Part A 121 418–38
[2] Jiao Y, Huang J, Jeng L, Li X T, Gao Y N, Qian M F and Zhang R 2017 Nano-scaled TiSi3 evolution and strength enhancement of titanium matrix composites with two-scale architecture via heat treatment Mater. Sci. Eng. A 701 359–69
[3] Zheng B W et al 2020 Microstructure and tribological behaviour of in situ synthesised (TiB + TiC)/Ti6Al4V (TiB/TiC = 1/1) composites Tribol. Int. 145 1061–77
[4] Li S, Sun B, Imai H, Mimoto T and Kondo K 2013 Powder metallurgy titanium matrix composites reinforced with carbon nanotubes and graphite Composites Part A: Applied Science and Manufacturing 48 57–66
[5] Haja Syeddu Masooth P and Jayakumar V 2020 Experimental investigation on surface finish of drilled hole by TiAlN, TiN, Al2CN coated HSS drill under dry conditions Mat. Des. Proc. 22 315–21
[6] Haja Syeddu Masooth P, Jayakumar V and Bharathiraja G 2020 Experimental investigation on surface roughness in CNC end milling process by uncoated and TiAlN coated carbide end mill under dry conditions Mat. Des. Proc. 22 726–36
[7] Jojith R and Radhika N 2019 Mechanical and tribological properties of LM13/TiO2/ MoS2 hybrid metal matrix composite synthesised by stir casting Part. Sci. Technol. 5 566–78
[8] Ya B, Zhou B W, Yang H S, Huang B K, Jia F and Zhang X G 2015 Microstructure and mechanical properties of in situ casting TiC/ Ti6Al4V composites through adding multi-walled carbon nanotubes J. Alloy Compd. 637 456–60
[9] Sivakumar G, Ananthi V and Ramanathan S 2017 Production and mechanical properties of nano SiC particle reinforced Ti–6Al–4V matrix composite Trans. Nonferrous Met. Soc. China 27 82–90
[10] Shuqi G 2016 Reactive hot-pressed hybrid ceramic composites comprising SiC (SCS-6)/ Ti composite and ZrB2-ZrC ceramic J. Am. Ceram. Soc. 99 3241–30
[11] Singh H, Hayat M D, Das R, Wang X G and Cao P 2018 Microstructure characterization of in situ Ti–TiB metal matrix composites prepared by powder metallurgy process Key Eng. Mater. 770 25–30
[12] Wei Z J, Cao L, Wang H W and Zhou C M 2011 Microstructure and mechanical properties of TiC/Ti–6Al–4V composites processed by in situ casting route Mater. Sci. Technol. 27 1321–7
[13] Veeresh Kumar G B, Pramod R, Guna Sekhar C, Pradeep Kumar G and Bhanumurthy T 2019 Investigation of physical, mechanical and tribological properties of Al6061–ZrO2 nanocomposites Heliyon 5 1–5
[14] Ferri O M, Ebel T and Bormann R 2011 The influence of a small boron addition on the microstructure and mechanical properties of Ti 6Al–4V fabricated by metal injection moulding Adv. Eng. Mater. 13 436–47
[15] Li S et al 2016 Strengthening of in situ-synthesized (TiC–TiB)/Ti composites by powder metallurgy and hot extrusion Mater. Des. 95 127–32
[16] Alam M T 2021 Physical, corrosion and microstructural analysis of A356/SiC nanocomposites fabricated through stir casting process Mater. Sci. Forum 1036 73–86
[17] Mihalcea E, Vergara Hernandez H J, Jimenez O, Olmos L, Chavez J and Arteaga D 2021 Design and characterisation of Ti6Al4V/ 20vol%—highly porous Ti6Al4V biomedical bilayer processed by powder metallurgy Trans. Nonferrous Met. Soc. China 31 178–92
[18] Liu Y et al 2015 Powder metallurgical low-modulus Ti–Mg alloys for biomedical applications Mat. Sci. Engg. C. 56 241–50
[19] Ranjan A and Shanmugasundaram A 2019 Experimental investigation of mechanical and tribological properties of Al 7075—Mo55/27/27/ZrO2/Ni hybrid composite Advances in Materials and Metallurgy (Singapore: Springer) 299–309
[20] Krishna D, Mohan Kumar S, Jothysh J, Kumar A A and Ravikumar V 2017 Electrochemical corrosion studies and mechanical characterisation of AL7075 metal matrix composite reinforced with ZrO2 particulate by stir casting method Int. J. of Mech. Engg. and Tech. 11 949–57