COMMENTS AND CORRECTIONS

Corrections to “3D Printed Elastomeric Lattices With Embedded Deformation Sensing”

CAROLYN CARRADERO SANTIAGO™1, CHRISTIAAN RANDALL-POSEY†, ANDREI-ALEXANDRU POPA™2, LARS DUGGEN™1, BRIAN VUKSANOVICH†, PEDRO CORTES†, AND ERIC MACDONALD™1, (Senior Member, IEEE)

1Department of Materials Science and Engineering, Youngstown State University, Youngstown, OH 44455, USA
2Department of Mechanical Engineering, Youngstown State University, Youngstown, OH 44455, USA

Corresponding author: Carolyn Carradero Santiago (ccarradero@student.ysu.edu)

This work was supported by the Friedman Endowment for Manufacturing at Youngstown State University.

In the above article [1], Figure 3 should read “Isometric view of two wires forming a capacitor in the measured configuration. The yellow wire is the top plate and the red is the bottom plate of a capacitor. The gray is a dielectric elastomer lattice, the deformation of which can be indirectly determined by measuring the capacitance.” Figure 4 should read “Isometric (A) and bottom view (B) of a lattice with an alternative configuration in four quadrants for selective sensing. The selectivity can be extended to any combination of cells in both vertical and horizontal configurations.” In Figure 9, the x-axis should read “Min Deformation Slow; Min Deformation Fast; Max Deformation Slow; Max Deformation Fast.” A sentence in the introduction should read “Within the context of additive manufacturing, lattices are the focus of significant research since they...” The authors requested this correction for clarity purposes.

FIGURE 9. Box plot of repeatability analysis for two cycling speeds.

REFERENCES

[1] C. C. Santiago, C. Randall-Posey, A. A. Popa, L. Duggen, B. Vuksanovich, P. Cortes, E. Macdonald. “3D printed elastomeric lattices with embedded deformation sensing.” IEEE Access, vol. 8, pp. 41394–41402, 2020.