Direct-acting antiviral agents in the treatment of chronic Hepatitis C – Real-life experience from clinical practices in Pakistan

CURRENT STATUS: POSTED

Saima Mushtaq
National University of Sciences and Technology

Atika Mansoor
Institute of Biomedical and Genetic Engineering

Saima Siddiqi
Institute of Biomedical and Genetic Engineering

Amjad Khan
Quaid-i-Azam University

Sobia Manzoor
National University of Sciences and Technology

lcianunique@yahoo.com

Corresponding Author

DOI: 10.21203/rs.2.15322/v1

SUBJECT AREAS
Infectious Diseases

KEYWORDS
Direct-acting antiviral agents, Genotype 3, Hepatitis C, Sustained virological response
Abstract
Background: This study aims to evaluate the clinical effectiveness in terms of sustained virological response (SVR), predictors of SVR and safety of available second generation generic direct-acting antivirals in Pakistani chronic Hepatitis C patients.

Methods: This is a retrospective study conducted in multiple centers of Pakistan from January 2015 to January 2019. The samples include patients infected with chronic hepatitis C virus, regardless of virus genotype, cirrhosis, or prior treatment. Statistical analysis was performed to compare the effectiveness among the direct-acting antiviral agents (DAAs) based treatments and also to reveal the factors influencing the achievement of SVR.

Results: A total of 993 patients were included in the present study, with the majority receiving sofosbuvir with daclatasvir (95%), sofosbuvir with daclatasvir and ribavirin (4%) and sofosbuvir with ribavirin (1%). There were 96% cases of chronic hepatitis, 3% cases compensated cirrhosis and 1% cases of decompensated cirrhosis. Genotype 3 (99.6%) was the most common genotype. Overall SVR after 12 weeks was 98% for all treatment regimens. High SVR12 was observed with sofosbuvir in combination with daclatasvir (98.5%), then sofosbuvir in combination with daclatasvir and ribavirin (90.2%) and sofosbuvir in combination with ribavirin (75%). SVR rates were high in CHC patients (98.2%) as compared to cirrhotic patients (92.1%) and it was high in treatment naive (98.8%) then IFN experienced patients (90.1%). In multivariate binary logistic regression analysis, patients’ education status, treatment strategy, viral load and ALT had statistically significant association with SVR at 12 weeks. No major adverse events occurred which required treatment discontinuation.

Conclusion: Generic oral DAAs (sofosbuvir with daclatasvir) achieved higher SVR12 rates and were well tolerated in this large real-world cohort of genotype 3 infected patients.

Introduction
Chronic hepatitis C virus (HCV) infection is the main cause of liver pathologies and hepatocellular carcinoma (HCC) worldwide (1). Globally, 71 million people infected with chronic hepatitis C (CHC) infection, with estimated 3.5–5 million die annually (2). According to recent estimates Pakistan has the second-largest HCV burden in the world, with of 4.5–8.2% HCV sero-prevalence (3, 4). Out of the
seven major HCV genotypes (5), the majority of HCV infections in Pakistan are GT3a (69.1%), followed by GT1 (7.1%), 2 (4.2%), and 4 (2.2%) (4, 6). In Pakistan, HCV is transmitted by many risk factors, such as health care practices i.e. injections and blood transfusion in health care professionals (27-42.3%) and in the general population (7.8-68%), community-based activities i.e. ear and nose piercing, barbering, and injecting drug use (4, 7, 8).

Before the introduction of DAAs, the HCV treatment was interferon (IFN)-based that had many side effects i.e. poorly tolerated and low SVR rate (50%) (9). Inspite of “Chief Minister’s Program for Hepatitis B and C Control in Pakistan”, the IFN-based treatment was only effective in 67%-74% of the infected population (10, 11).

Hepatitis C treatment has been transformed by the development of DAAs. HCV replication cycle is inhibited by these drugs mainly interfering with the activity of non-structural proteins of HCV (12). Three drug classes (inhibitors of the NS3/NS4A protease, inhibitors of the NS5A complex and inhibitors of the NS5B polymerase) have been developed and approved by the FDA. Combinations of two or more drugs from three classes achieve high (> 90%) SVR rates and are well tolerated (12).

In Pakistan, the treatment for CHC infection is changing to the new DAAs. Since November 2014, sofosbuvir and ribavirin was the registered and widely available DAAs in Pakistan (13, 14). Sofosbuvir (SOF) inhibits the NS5B region of HCV which encodes RNA-dependent RNA polymerase enzyme for viral replication. SOF has pangenotypic action with less side effects as compare to IFN-based therapy (15). Pakistan is among the high-burden countries for HCV where majority of the HCV infected population fall in lower income category. They are unable to buy high priced branded SOF for their treatment. Therefore, the government of Pakistan and the pharmaceutical companies started manufacturing SOF generics at a low prices to control the HCV prevalence (16).

The inclusion of SOF-based DAAs in the “National Guidelines for HCV Treatment in Pakistan” has increased its use by clinicians. Recently, Daclatasvir (DCV; HCV NS5A replication complex inhibitor) new DAAs are also available in Pakistan and added in the national treatment program with combination of SOF against GT3. Such additions will certainly offer better safety profile with improving patient compliance to treatment (15, 17).
However, these DAAs are designed on the bases of proteins structure of GT1HCV. Also, the registration trials for these drugs contained few patients infected with GT3HCV, which is highly prevalent in Pakistan. This raises a concern about the effectiveness of these drugs on Pakistani patients. Given the limited data on treatment of chronic GT3 HCV infection with DAAs and the above concerns, this study was conducted to gather data on the antiviral efficacy of generic DAAs with respect to treatment outcome in chronic HCV Pakistani patients. The predictors of SVR at 12 weeks and safety profile of DAAs were also determined in this cohort.

Materials And Methods

Study design

This was a retrospective cohort study of 1200 CHC patients, who were treated with different sofosbuvir based DAAs between January 2015 to January 2019. The patient records were collected from Centre for Liver and Digestive Diseases, Holyfamily Hospital, Rawalpindi and outdoor patient department of General Teaching Hospital, Islamabad. Both hospitals are tertiary care hospitals. Out of 1200 patients, 993 patients completed the therapy while 207 patients were lost of follow-ups and missing data. The ethical committee of Holyfamily hospital, Institute of Biomedical and Genetic Engineering and National University of Science and Technology approved this study. Those CHC patients which are having (≥18 years) of age and concluded or make withdrawal of second generation DAA treatment before January 2019 were included in this study. Patients were included in this cohort regardless of comorbidities, co-infection, liver cirrhosis, prior treatment or genotype. Treatment and management of patients at study centers were as per national guidelines. Treatment Naive or Interferon experienced patients were offered generic sofosbuvir 400 mg and daclatasvir 60 mg once daily for 12 weeks. Ribavirin 1000 mg (in patients < 75 kg) or 1200 mg (in patients > 75 kg) was added to the regimen (Fig.1).

Study assessments

Pretreatment baseline demographics, laboratory findings, baseline Hepatitis C virus viral load, treatment efficacy at 12–24 weeks, different DAAs combination, prior treatment experience and comorbidities were recorded. For the determination of cirrhosis status, some non-invasive measures were used like Fibroscan, ultrasound and child class before the initiation of therapy. Pretreatment PCR
≥ 80000 IU mL−1 was considered as high viral load whereas PCR < 80000 IU mL−1 was considered as low viral load (18).

Treatment response was assessed with HCV RNA viral load (IU/ml) at 4 weeks after initiation of treatment (RVR; defined as undetectable HCV RNA after four weeks of therapy), at the end of treatment (EOTr; defined as undetectable HCV RNA at treatment completion), and 12 weeks after completion of treatment (SVR12; defined as undetectable viral load at 12 weeks after the end of treatment). Tests were performed using Artus HCV RT-PCR Kit (Qiagen) or Hepatitis C Viral RNA Quantitative/Qualitative Fluorescence Diagnostic Kit (PCR Fluorescence Probing) by Sansure Biotech. The lower limit of detection of HCV RNA was 34 IU/ml Artus HCV RT-PCR Kit and 50 IU/ml for Sansure Biotech kit. Patients that completed the therapy but did not have any SVR results (i.e., missing data or lost to follow up) were excluded from the analysis.

Statistical analysis
Statistical Package for Social Sciences (SPSS) version 21 was used for the analysis of data. One-way ANOVA was used for the calculation of means and standard deviations of continuous variables. Categorical data is presented in the form of frequencies and percentages. For observing significance between categorical variables, we used a chi-squared test. Relevant variables with a p-value < 0.25 in the univariate analysis were included in the multivariate analysis (19). For obtaining a final model, Multivariate logistic regression analysis with the Wald statistical criteria was considered and used. A p-value of < 0.05 was considered statistically significant. Correlations assessed among those variables which were included in multivariate analysis. The results of multivariate analysis were presented as P-value, adjusted odds ratio and 95% confidence interval. The fit of the model was assessed by Hosmer Lemeshow and overall classification percentage.

Results
Characteristics of patients at baseline
Demographic and clinical characteristics of patients at baseline are shown in Table 1. Mean age of the cohort was 45.6 ranging from 18 to 90 years with females in majority than males (55%). Comorbidities at baseline included diabetes (26.1%), hypertension (11.5%), chronic kidney disease (6.3%), ischemic heart disease (4.3%), HIV (0.4%) and HBV (1.8%). Significant differences were
observed in age groups (p-value = 0.054), gender (p-value = 0.016), ethnicity (p-value = 0.004) and HCV genotype (p-value = <0.001). Socioeconomic status with lower and middle classes more affected than the upper class (p-value = 0.030), marital status (p-value = <0.001), diabetes mellitus (p-value = 0.013), viral load (p-value = 0.051), AST (p-value = 0.012) and ALT (p-value = 0.015) also showed significant differences.

Treatment regimens
Among the 993 patients with chronic HCV infection, 944 (95.1%) patients were in SOF+DCV group, 41(4.1%) patients in SOF+DCV+RBV group, and 8 (28.1%) patients in SOF+RBV group (Fig 1).

Treatment response and SVR predictors
The overall SVR12 was 98% (973/993). In univariate analysis, it was identified that patients who achieved SVR12 when compared with those who did not achieve SVR12 showed statistically significant differences at various parameters. These included relationship in age, socioeconomic status, education, race, marital status, hypertension, cirrhosis, child-Pugh score, treatment given, RVR, ETR, prior treatment, viral load, AST and ALT. However, in multivariate binary logistic regression analysis, patients’ education status, treatment, viral load and ALT had statistically significant association with sustained viral response at 12 weeks (SVR12). Educated patients were more likely to achieve SVR than non-educated as shown in table 2. Furthermore, combination therapy to achieved SVR 12 (Sofosbuvir + daclatasvir) showed significant results compared to other treatment regimens (OR = 31.23, 95% CI: 2.179-447.813, p-value = 0.011). Similarly, patients with lower viral loads, that is less than 800,000 IU mL$^{-1}$ showed good response to treatment as compared to higher viral loads (SVR12 OR = 20.31 95%CI: 1.549-266.519, p-value = 0.022). Higher ALT levels were also less likely to achieve SVR12 (OR = 0.093, 95%CI: 0.014-0.611, p-value: 0.013). This model fit was based on non-significant Hosmer Lemeshow test (p-value = 1) and an overall classification percentage of 98.7% from the classification table. SVR12 was not affected by HIV or HBV status, the presence of comorbidities, cirrhosis or previous treatment (Table 2).

Comparison of different treatment regimens
In Sofosbuvir+Daclatasvir group, 98.5% patients achieved SVR. In multivariate binary logistic regression analysis, education status (OR = 42.037, 95%CI = 1.596-1107.522, p-value = 0.025) and
elevated ALT (OR = 0.003, 95% CI = 0.000–0.252, p-value = 0.010) had statistically significant association with SVR12 (Table 3).

Sofosbuvir + Daclatasvir + Ribavirin group achieved 90.2% SVR rate as depicted in Table (Supplementary file). Presence of cirrhosis, prior treatment experience, elevated liver enzymes and other comorbid conditions did not exhibit significant association with SVR12 in multivariate binary logistic regression analysis. However viral load, employment and education status were significant factors in univariate analysis but not in multivariate analysis.

Sofosbuvir + Ribavirin group overall SVR 12 rate was reported as 75% as shown in Table (Supplementary file). In this group, no significant association was observed between SVR12 and any variable in multivariate analysis.

Rates of sustained virological response in chronic and cirrhotic HCV patients
The SVR rates were higher in chronic HCV patients (98.2%) as compare to cirrhotic patients (CC = 93.8%, DC = 83%). Sofosbuvir in combination with ribavirin was not as effective as the other combinations in chronic HCV patients with SVR rate 75%. However, only decompensated cirrhosis was difficult to treat group achieving 83% SVR rates than the rest of the patient groups. A highest SVR rate in all patient groups was achieved by sofosbuvir and daclatasvir combination (Table 4).

Adverse events reported by treatment regimen
Table 5 describes the association between treatment regimens and adverse events (AEs) reported during the study. Statistically significant association was observed between treatment regimens and skin rash (43.8%), Insomnia (33%), Oral ulcers (30.2%) and fatigue (16.6%).

Discussion

Development of direct acting antiviral agents (DAAs) is the landmark in treatment of HCV infection. This Interferon-free treatment provides high SVR rates and tends to prevent liver disease progression. Availability of DAA regimens replaced interferon treatment for HCV therapy across the globe (12). A notable decline was observed in the prices of DAAs by the DAAs generics availability in 101 developing countries (20), but scientific assessment is required for the efficacy of these generics. However, to design and to implement strategies regarding the treatment of HCV on large scale, it is necessary to review the existing experience with DAAs in Pakistani population.
In the current study, we reported the effects of DAA-based regimens for the treatment of chronic hepatitis C infection. We observed 989/993 HCV patients of GT3. The clinical effectiveness (SVR12) of SOF+DCV (±RBV) was 98%. These findings are comparable with Indian study where SVR12 rate was 96% in GT3 by DCV+SOF (±) RBV (21). Belperio et al. reported 94.5% SVR12 with SOF+DCV and 88.1% SVR12 with DCV + SOF + RBV combination (22), However, we noticed little higher SVR12 rates i.e. 98.8% in SOF+DCV group and 90.2% in DCV + SOF + RBV group. Our study found similar SVR12 rates as reported in other studies (21, 23–25).

In the current study, we observed 75% SVR12 rate in CHC patients with SOF + RBV, which is in agreement to the results of the study conducted by Jacobson et al. where they reported 78% sustained virologic response with SOF + RBV (26). This shows only SOF is less effective than other combinational therapies. Thus, a longer period of therapy is required to remove remaining viral reservoirs or the addition of other DAAs to the treatment.

In the current study, SVR12 was very high in treatment-naive patients (99%) as compare to treatment-experienced (90%). These findings are comparable with a study conducted by Nelson and colleagues where SVR12 rates were 90% and 86% in treatment-naive and treatment-experienced patients with SOF+DCV and an overall SVR rate was 96% which is almost similar to our findings (24).

The stage of disease like presence or absence of cirrhosis influence on SVR rate is also very important. We observed lower effectiveness of SOF+DCV in patients with cirrhosis (92% SVR12) as compared to non-cirrhotic patients (98% SVR12). In compliance to our study findings, SVR12 rates greater than 90% in cirrhotic patients was reported in respective studies conducted elsewhere (21, 23–25, 27, 28).

Cure rates above 90% have been reported using different combinations of all-oral DAAs in CHC patients treated in several clinical trials (29, 30). Initial real-world results support these findings but the efficacy tends to be lower mainly due to predictors of lower SVR rate in registration trials.

Furthermore doctor’s limited expertise using these new DAAs led to the impairment of their success (29–36).

Given the high SVR rates with DAAs, treatment failure studies is comparatively low and largely
influenced by treatment strategies explored and drugs combination (35, 37, 38). Furthermore, predictors of SVR rates are not uniform in different trials making it difficult to make comparisons. Baseline variables associated with a lower SVR rate include the presence of natural polymorphisms at the viral non-structural genes that reduce drug susceptibility, infection with HCV GT1 and GT3, liver cirrhosis, prior treatment experience and elevated viral load (5, 37, 38).

In the current study, we observed patients’ education status, treatment strategy, viral load and elevated ALT as predictors of SVR12. Educated patients achieved higher rate of SVR12 than with no education. As during therapy, recurrent missing doses or premature drug cessation by uneducated people can lead to adverse events and treatment failure. Limited information is available to explain this finding.

Furthermore, those patients who were treated with SOF+DCV significantly achieved higher SVR12 (p = 0.011) than those who were treated with other treatments like SOF+DCV+RBV and SOF + RBV. Studies conducted so far did not find this correlation neither as a predictor of SVR12. Patients with viral load <800,000 IU mL−1 significantly achieved higher SVR12 (p = 0.022) then viral load ≥800,000 IU mL−1. These findings are comparable with Brazilian study (18) and Lourianne study (15). The negative predictor of SVR was elevated alanine transaminase (ALT) level. Those patients who had elevated ALT levels were less likely to achieved higher SVR12 (p = 0.013). Our findings are supported by a study conducted by Huynh et al. (39).

As the treatment with generic DAAs is safe and effective alternative towards the elimination of HCV (40). The safety profile of these generic DAAs in our study was well tolerated. The most common AEs were skin rash, Insomnia, oral ulcers and fatigue which is comparable with a study findings conducted by Leroy et al. where fatigue and insomnia were major side effects. (41). In our study apart from these major AEs, patient also complained of skin rash (43.8%) and Oral ulcers (30.2%). A study from Egypt reported skin rash up to 9.8% of the patients using generic sofosbuvir and daclatasvir (20). Oral ulcers have been found 8.8% with this combination in Pakistani population (42).

Conclusions
The findings of the current study confirmed that second generation generic DAAs (sofosbuvir with
daclatasvir) are highly effective for CHC patients treatment in Pakistan, particularly for genotype 3. Current SVR rates with sofosbuvir based DAAs were higher as compared with previous therapies. Host factors like education level, treatment strategy, viral load and Alanine aminotransferase (ALT) were seemed to be the predictors of SVR rate. The safety profile of these DAAs was well tolerated and safe. A large multi-center prospective study is recommended to confirm the present findings.

Study limitations
This study was limited to only three months follow-up. A multicenter study with longer follow-up of six months is recommended. Furthermore, only host factors being assessed in this study, the viral factors (resistance associated substitutions; RAS) need to be assessed for the efficacy of the therapeutic regimens.

Abbreviations
DAA, Direct Acting Antivirals; SOF, Sofosbuvir; DCV, Daclatasvir; RBV, Ribavirin; BMI: Body mass index; HCV, Hepatitis C virus; DM, Diabetes Mellitus; HTN, Hypertension; CKD, Chronic kidney disease; IHD, Ischemic heart disease; HIV, Human immunodeficiency viruses; HBV, Hepatitis B virus; RVR, Rapid virological response; ETR, End-of-treatment response; SVR, Sustained virological response; IFN, Interferon; HB, Hemoglobin; WBCs, White blood cells; PLT, Platelets; TBR, Total bilirubin; ALP, Alkaline phosphatase; AST, Aspartate aminotransferase; ALT, Alanine aminotransferase.

Declarations

Acknowledgments
We are grateful to all the hospital and laboratory staff, and patients who participated in this study.

Funding
This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Availability of data and materials
All data generated or analyzed during this study are included in this current article. The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors’ contributions
SM conceived and designed this study under guidance and supervision of SM. AK and SM made
substantial contributions to the acquisition and analysis of the data. SM drafted the manuscript and AM, SS, and SM were involved in critical revision for important intellectual content. All authors read and approved the final manuscript.

Ethics approval and consent to participate
The study was approved by the ethical review board of Rawalpindi Medical University, Holyfamily, Institute of Biomedical and Genetic Engineering and National University of Science and Technology (IRB–130). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent for publication
Not applicable.

Informed consent
Informed consent was obtained from all individual participants included in the study.

Competing interests
The authors declare that they have no competing interests.

References
1. Baumert TF, Berg T, Lim JK, Nelson DR. Status of direct-acting antiviral therapy for hepatitis C virus infection and remaining challenges. Gastroenterology. 2019;156(2):431-45.

2. Lim AG, Qureshi H, Mahmood H, Hamid S, Davies CF, Trickey A, et al. Curbing the hepatitis C virus epidemic in Pakistan: the impact of scaling up treatment and prevention for achieving elimination. International Journal of Epidemiology. 2018;47(2):550–60.

3. Iqbal S, Sheikh MA, Arshad M. Response of different HCV genotypes to interferon therapy in different age groups of chronic hepatitis-C patients. Journal of Ayub Medical College Abbottabad. 2014;26(3):310–5.

4. Umer M, Iqbal M. Hepatitis C virus prevalence and genotype distribution in Pakistan: Comprehensive review of recent data. World journal of gastroenterology. 2016;22(4):1684.

5. Lontok E, Harrington P, Howe A, Kieffer T, Lennerstrand J, Lenz O, et al. Hepatitis C virus drug resistance-associated substitutions: State of the art summary. Hepatology. 2015;62(5):1623–32.

6. Khan S, Ali I, Badshah M, Khan QM, Haider ZN, Ali S, et al. Molecular Epidemiology of Hepatitis C
Virus Genotypes Among Chronically Infected Patients in Pakistan. Jundishapur Journal of Microbiology. 2019;12(3):1–7.

7. Al Kanaani Z, Mahmud S, Kouyoumjian SP, Abu-Raddad LJ. The epidemiology of hepatitis C virus in Pakistan: systematic review and meta-analyses. Royal Society open science. 2018;5(4):180257.

8. Trickey A, May MT, Davies C, Qureshi H, Hamid S, Mahmood H, et al. Importance and contribution of community, social, and healthcare risk factors for hepatitis C infection in Pakistan. The American journal of tropical medicine and hygiene. 2017;97(6):1920–8.

9. Manns MP, McHutchison JG, Gordon SC, Rustgi VK, Shiffman M, Reindollar R, et al. Peginterferon alfa–2b plus ribavirin compared with interferon alfa–2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. The Lancet. 2001;358(9286):958–65.

10. Qureshi H, Mohamud BK, Alam SE, Arif A, Ahmed W. Treatment of hepatitis B and C through national programme-an audit. J Pak Med Assoc. 2013;63(220):e4.

11. Ali S, Ahmad B, Ali I, Mahmood N, Anwar N, Saeedi I, et al. Virological response to conventional interferon therapy combined with ribavirin against various HCV genotypes in Khyber Pakhtunkhwa, Pakistan. Asian Pacific Journal of Cancer Prevention. 2016;17(5):2407–10.

12. Spengler U. Direct antiviral agents (DAAs)-A new age in the treatment of hepatitis C virus infection. Pharmacology & therapeutics. 2018;183:118–26.

13. Gane EJ, Stedman CA, Hyland RH, Ding X, Svarovskaia E, Symonds WT, et al. Nucleotide polymerase inhibitor sofosbuvir plus ribavirin for hepatitis C. New England Journal of Medicine. 2013;368(1):34–44.

14. Murakami E, Tolstykh T, Bao H, Niu C, Steuer HMM, Bao D, et al. Mechanism of activation of PSI–7851 and its diastereoisomer PSI–7977. Journal of biological chemistry. 2010;285(45):34337–47.

15. Cavalcante LN, Lyra AC. Predictive factors associated with hepatitis C antiviral therapy response. World journal of hepatology. 2015;7(12):1617.

16. Andrieux-Meyer I, Cohn J, de Araújo ESA, Hamid SS. Disparity in market prices for hepatitis C virus direct-acting drugs. The Lancet Global Health. 2015;3(11):e676-e7.

17. Capileno YA, Van den Bergh R, Donchunk D, Hinderaker SG, Hamid S, Auat R, et al. Management of
chronic Hepatitis C at a primary health clinic in the high-burden context of Karachi, Pakistan. PloS one. 2017;12(4):e0175562.

18. Ferreira VL, Borba HHL, Wiens A, Pedroso MLA, de Camargo Radunz VF, Ivantes CAP, et al. Effectiveness and tolerability of direct-acting antivirals for chronic hepatitis C patients in a Southern state of Brazil. The Brazilian Journal of Infectious Diseases. 2018;22(3):186-92.

19. Maldonado G, Greenland S. Simulation study of confounder-selection strategies. American journal of epidemiology. 1993;138(11):923–36.

20. Hill A, Simmons B, Gotham D, Fortunak J. Rapid reductions in prices for generic sofosbuvir and daclatasvir to treat hepatitis C. Journal of virus eradication. 2016;2(1):28.

21. Goel A, Bhargava R, Rai P, Aggarwal R. Treatment of chronic genotype–3 hepatitis C virus infection using direct-acting antiviral agents: An Indian experience. Indian Journal of Gastroenterology. 2017;36(3):227–34.

22. Belperio PS, Shahoumian TA, Loomis TP, Mole LA, Backus LI. Real-world effectiveness of daclatasvir plus sofosbuvir and velpatasvir/sofosbuvir in hepatitis C genotype 2 and 3. Journal of hepatology. 2019;70(1):15–23.

23. Hézode C, Lebray P, De Ledinghen V, Zoulim F, Di Martino V, Boyer N, et al. Daclatasvir plus sofosbuvir, with or without ribavirin, for hepatitis C virus genotype 3 in a French early access programme. Liver International. 2017;37(9):1314–24.

24. Nelson DR, Cooper JN, Lalezari JP, Lawitz E, Pockros PJ, Gitlin N, et al. All-oral 12-week treatment with daclatasvir plus sofosbuvir in patients with hepatitis C virus genotype 3 infection: ALLY-3 phase III study. Hepatology. 2015;61(4):1127–35.

25. Welzel TM, Petersen J, Herzer K, Ferenci P, Gschwantler M, Wedemeyer H, et al. Daclatasvir plus sofosbuvir, with or without ribavirin, achieved high sustained virological response rates in patients with HCV infection and advanced liver disease in a real-world cohort. Gut. 2016;65(11):1861–70.

26. Jacobson IM, Gordon SC, Kowdley KV, Yoshida EM, Rodriguez-Torres M, Sulkowski MS, et al. Sofosbuvir for hepatitis C genotype 2 or 3 in patients without treatment options. New England Journal of Medicine. 2013;368(20):1867–77.
27. Cornberg M, Petersen J, Schober A, Mauss S, Böker K, Link R, et al. Real-world use, effectiveness and safety of anti-viral treatment in chronic hepatitis C genotype 3 infection. Alimentary pharmacology & therapeutics. 2017;45(5):688-700.

28. Hajarizadeh B. Generic direct acting antiviral treatment: the first step towards elimination of hepatitis C in Iran. Hepatitis Monthly. 2017;17(1).

29. Del Bello D, Cha A, Sorbera M, Bichoupan K, Levine C, Doyle E, et al. Real-world sustained virologic response rates of sofosbuvir-containing regimens in patients coinfected with hepatitis C and HIV. Clinical Infectious Diseases. 2016;62(12):1497-504.

30. Zhu G-Q, Zou Z-L, Zheng J-N, Chen D-Z, Zou T-T, Shi K-Q, et al. Systematic review and network meta-analysis of randomized controlled trials: comparative effectiveness and safety of direct-acting antiviral agents for treatment-naive hepatitis C genotype 1. Medicine. 2016;95(9).

31. Arias A, Aguilera A, Soriano V, Benítez-Gutiérrez L, Lledó G, Navarro D, et al. Rate and predictors of treatment failure to all-oral HCV regimens outside clinical trials. Antivir Ther. 2017;22(4):307–12.

32. Backus L, Belperio P, Shahoumian T, Loomis T, Mole L. Effectiveness of sofosbuvir-based regimens in genotype 1 and 2 hepatitis C virus infection in 4026 US Veterans. Alimentary pharmacology & therapeutics. 2015;42(5):559–73.

33. Dieterich D, Bacon B, Flamm S, Kowdley K, Milligan S, Tsai N, et al. Evaluation of sofosbuvir and simeprevir-based regimens in the TRIO network: academic and community treatment of a real-world, heterogeneous population. Hepatology. 2014;60.

34. Jensen D, O’Leary J, Pockros P, Sherman K, Kwo P, Mailliard M, et al. Safety and Efficacy of Sofosbuvir-Containing Regimens for Hepatitis C: Real-World Experience in a Diverse, Longitudinal Observational Cohort: 45. Hepatology. 2014;60.

35. Soriano V, Labarga P, de Mendoza C, Fernández-Montero JV, Esposito I, Benítez-Gutiérrez L, et al. New hepatitis C therapies for special patient populations. Expert opinion on pharmacotherapy. 2016;17(2):217-29.

36. Sulkowski MS, Vargas HE, Di Bisceglie AM, Kuo A, Reddy KR, Lim JK, et al. Effectiveness of simeprevir plus sofosbuvir, with or without ribavirin, in real-world patients with HCV genotype 1
infection. Gastroenterology. 2016;150(2):419–29.

37. Benítez-Gutiérrez L, Barreiro P, Labarga P, de Mendoza C, Fernandez-Montero JV, Arias A, et al. Prevention and management of treatment failure to new oral hepatitis C drugs. Expert opinion on pharmacotherapy. 2016;17(9):1215–23.

38. Buti M, Riveiro-Barciela M, Esteban R. Management of direct-acting antiviral agent failures. Journal of Hepatology. 2015;63(6):1511–22.

39. Huynh T, Zhang J, Hu K-Q. Hepatitis C Virus Clearance by Direct-acting Antiviral Results in Rapid Resolution of Hepatocytic Injury as Indicated by Both Alanine Aminotransferase and Aspartate Aminotransferase Normalization. Journal of clinical and translational hepatology. 2018;6(3):258.

40. Freeman J, Sallie R, Kennedy A, Hieu P, Jeffreys G, Hill A. High sustained virological response rates using generic direct acting antiviral treatment for hepatitis C, imported into Australia. Journal of Hepatology. 2016;64(2):S209.

41. Leroy V, Angus P, Bronowicki JP, Dore GJ, Hezode C, Pianko S, et al. Daclatasvir, sofosbuvir, and ribavirin for hepatitis C virus genotype 3 and advanced liver disease: a randomized phase III study (ALLY-3+). Hepatology. 2016;63(5):1430–41.

42. Umar M, Akhter TS, Sadiq J, Saleem S, Khokhar S. Efficacy and safety of generic daclatasvir+sofosbuvir±ribavirin in treatment of genotype 3 infected hepatitis C patients-a real life experience from Pakistan. 2018.

Tables

Table 1: Demographic and clinical characteristics of patients at baseline with treatment regimens

Treatment regimens	Total (n = 993)	P value		
SOF + DCV 12W (n = 944)	45.57(18-90)	0.288		
SOF + DCV + RBV 12W (n = 41)	45.44(19-75)			
SOF + RBV 12W (n = 8)	52.63(33-62)			
Total (n = 993)	45.62(18-90)			
P value	0.054			
rs	875 (88%)			
832 (88.1%)	118 (12%)			
38 (92.7%)	3 (3.7%)			
5 (62.5%)	118 (12%)			
523 (88%)	118 (12%)			
10 (2.2%)	3 (3.7%)			
31 (75.6%)	448 (45%)			
511 (54.1%)	545 (55%)			
31 (75.6%)	545 (55%)			
59.22 (12.2-124)	153.06 (32-182)			
59.55 (12.2-124)	25.18 (2-51.6)			
25.05 (2-51.6)	27.96 (19.71-38.86)			
604 (60.8%)	314 (31.6%)			
581 (61.5%)	32 (1.3%)			
19 (46.3%)	1 (12.5%)			
Status	42(4.4%)	5(12.2%)	2(25.0%)	49(4.9%)
-----------------	---------	---------	---------	---------
25(2.6%)	-	-	1(12.5%)	26(2.6%)
1(0.1%)	1(2.4%)	1(12.5%)	-	2(0.2%)
1(0.1%)	40(97.6%)	7(87.5%)	989(99.6%)	
942(99.8%)	-	-	-	-

<0.001

tatus	391(41.4%)	26(63.4%)	15(36.6%)	553(58.6%)
25(2.6%)	1(0.1%)	-	1(12.5%)	-
1(0.1%)	40(97.6%)	7(87.5%)	989(99.6%)	
942(99.8%)	-	-	-	-

0.809

Status	307(32.5%)	17(41.5%)	15(36.6%)	478(50.6%)
159(16.8%)	9(22%)	-	1(12.5%)	-
17(41.5%)	4(50%)	4(50%)	324(32.6%)	
15(36.6%)	-	-	497(50.1%)	
9(22%)	-	-	172(17.3%)	

0.030

Status	203(21.5%)	10(24.4%)	15(34.1%)	478(50.6%)
291(30.8%)	13(31.7%)	3(7.3%)	-	60(6.4%)
17(41.5%)	4(50%)	4(50%)	324(32.6%)	
15(34.1%)	4(50%)	4(50%)	497(50.1%)	
9(22%)	-	-	172(17.3%)	

0.153

Status	383(40.6%)	24(58.5%)	3(7.3%)	561(59.4%)
38(3.3%)	4(9.8%)	1(12.5%)	-	-
3(7.3%)	4(9.8%)	-	-	-
24(58.5%)	3(7.3%)	1(12.5%)	-	-
17(41.5%)	3(7.3%)	1(12.5%)	-	-

<0.001

Status	255(27.0%)	3(7.3%)	2(25.0%)	563(59.6%)
110(11.7%)	4(9.8%)	1(12.5%)	-	-
61(6.5%)	1(2.4%)	1(12.5%)	-	-
39(4.1%)	4(9.8%)	-	-	-
4(0.4%)	-	-	-	-
18(1.7%)	-	-	-	-

0.013

Status	906(96%)	41(100%)	3(7.3%)	38(4%)
38(4%)	-	-	-	-
41(100%)	-	-	-	-
8(100%)	-	-	-	-
955(96%)	-	-	-	-

0.359

Status	938(99.4%)	41(100%)	3(7.3%)	6(0.6%)
938(99.4%)	-	-	-	-
41(100%)	-	-	-	-
32(78%)	-	-	-	-
828(87.7%)	-	-	-	-

0.548

Status	116(12.3%)	9(22%)	3(7.3%)	913(96.7%)
828(87.7%)	32(78%)	4(50%)	957(96%)	
9(22%)	4(50%)	3(7.3%)	957(96%)	
3(7.3%)	1(2.4%)	1(2.4%)	36(4%)	
38(92.7%)	38(92.7%)	2(25%)	36(4%)	

0.001

Status	31(3.3%)	2(25%)	4(9.8%)	930(98.5%)
913(96.7%)	38(92.7%)	6(75%)	973(98%)	
31(3.3%)	3(7.3%)	2(25%)	973(98%)	
2(25%)	2(25%)	4(9.8%)	902(91%)	
4(9.8%)	2(25%)	37(90.2%)	91(9%)	

<0.001

Status	20(2%)	3(37.5%)	14(1.5%)	864(91.5%)
930(98.5%)	37(90.2%)	6(75%)	973(98%)	
80(8.5%)	8(19.5%)	5(62.5%)	902(91%)	
14(1.5%)	2(25%)	4(9.8%)	91(9%)	
1(0.1%)	1(2.4%)	1(12.5%)	-	

0.001

Status	2(25%)	3(37.5%)	864(91.5%)	80(8.5%)
913(96.7%)	38(92.7%)	6(75%)	973(98%)	
31(3.3%)	3(7.3%)	2(25%)	973(98%)	
31(3.3%)	3(7.3%)	2(25%)	902(91%)	
1(0.1%)	1(2.4%)	1(12.5%)	-	

0.051
Table 2. Demographic and clinical characteristics of patients at baseline by treatment response

Variables	SVR12 (No. %)	Univariate analysis	P-value	Multivariate analysis		
	Yes	No	OR (95% CI)		OR (95% CI)	
Gender						
Male	440 (98.2)	8 (1.8)	Reference	1.238 (0.502-3.056)		
Female	553 (97.8)	12 (2.2)			NA	
Age (years)						
18-60	862 (98.5)	13 (1.5)	Reference	4.182 (1.634-10.703)	0.003	
>60	111 (94.1)	7 (5.9)			Reference	1.420 (0.112-18.1)
HCV Genotype						
1	2 (100)	-	Non-computable		Reference	
2	2 (100)	-			Reference	2.441 (0.271-21.1)
3	969 (98)	20 (2)			Reference	36.425 (1.487-892.175)
Socioeconomic Status						
Low	319 (98.5)	5 (1.5)	Reference		Reference	0.296 (0.022-3.219)
Middle	489 (98.4)	8 (1.6)	1.044 (0.338-3.219)	0.941	0.224 (0.016-3.1	
High	165 (95.9)	7 (4.1)	2.707 (0.846-8.659)	0.093	0.576 (0.037-8.5)	
Education						
No	205 (94)	13 (6)	Reference		Reference	36.425 (1.487-892.175)
Primary	404 (99.5)	2 (0.5)	0.078 (0.017-0.349)	0.001	0.224 (0.016-3.1	
Secondary	303 (99.3)	2 (0.7)	0.104 (0.023-0.466)	0.003	12.268 (1.237-121	
Tertiary	61 (95.3)	3 (4.7)	0.776 (0.214-2.810)	0.699	0.576 (0.037-8.5	
Race						
Punjabi	595 (98.2)	9 (1.8)	Reference		Reference	2.441 (0.271-21.1)
Pathan	310 (99)	4 (1)	0.853 (0.261-2.792)	0.793	Reference	2.441 (0.271-21.1)

Data are presented as mean (range) or n (%). P-value for continuous variables is calculated by one-way ANOVA, p-value for categorical variables is calculated by Pearson chi-square test by comparing three groups. Abbreviations: DAA, direct acting antivirals; SOF, Sofosbuvir; DCV, daclatasvir; RBV, ribavirin; BMI: body mass index; HCV, hepatitis C virus; DM, diabetes mellitus; HTN, hypertension; CKD, chronic kidney disease; IHD, ischemic heart disease; HIV, human immunodeficiency viruses; HBV, Hepatitis B virus; Rapid virological response (RVR); End-of-treatment response (ETR); Sustained virological response (SVR12); IFN, interferon; HB, Hemoglobin; WBCs, white blood cells; PLT, platelets; TBR, total bilirubin; ALP, Alkaline phosphatase; AST, Aspartate aminotransferase; ALT, Alanine aminotransferase.
Resident	Balochi	Sindhi	Viral load (IU/mL)	*p* Value	Viral load (IU/mL)	*p* Value
Rural	46(93.9)	3(6.1)	4.312(1.128-16.476)	0.033	3.523(0.041-305)	0.001
Urban	22(88)	4(12)	12.02(3.436-42.051)	<0.001	3.209(0.024-425)	0.001
Marital status						
Single	402(98.3)	7(1.7)	Reference		NA	
Married	571(97.8)	13(2.2)	1.307(0.543-3.306)	0.571		
Employment						
Employed	381(99.5)	2(0.5)	Reference		Reference	
Unemployed	592(97)	18(3)	5.792(1.336-25.105)	0.019	0.276(0.019-3.5)	
Diabetes Mellitus						
No	718(97.8)	16(2.2)	Reference		Reference	
Yes	255(98.5)	4(1.5)	0.704(0.233-2.125)		NA	
Hypertension						
No	863(98.2)	16(1.8)	Reference		Reference	
Yes	110(96.5)	4(3.5)	1.961(0.644-5.972)	0.236	Reference	
Chronic kidney disease						
No	911(98)	19(2)	Reference		NA	
Yes	62(98.4)	1(1.6)	0.773(0.102-5.872)	0.804		
Ischemic heart disease						
No	931(98)	19(2)	Reference		NA	
Yes	42(97.7)	1(2.3)	1.167(0.153-8.923)	0.882		
HIV						
No	973(98.4)	16(1.6)	Non-computable		NA	
Yes	-	4(100)				
HBV						
No	955(97.9)	20(2.1)	Non-computable		NA	
Yes	18(100)	-				
Cirrhosis						
Absent	938(98.2)	17(1.8)	Reference		Reference	
Present	35(92.1)	3(7.9)	0.211(0.059-0.755)	0.017	0.103(0.009-1.1)	
Child-Pugh score						
Class A	968(98.1)	19(1.9)	Reference		Reference	
Class B	5(83.3)	16(1.7)	0.098(0.011-0.881)	0.038	1.171(0.003-540)	
Treatment						
SOF +DCV +RBV	37(90.2)	4(9.8)	Reference		Reference	
SOF +DCV	930(98.5)	14(1.5)	7.181(2.254-22.880)	0.001	31.239(2.179-44'8)	
SOF + RBV	6(75)	2(25)	0.324(0.048-2.177)	0.246	12.032(0.185-780)	
RVR						
No	117(90.7)	12(9.3)	Reference		Non-computable	
Yes	856(99.1)	8(0.9)	10.974(4.394-27.406)	<0.001		
ETR						
No	24(66.7)	12(33.3)	Reference		Non-computable	
Yes	949(99.2)	8(0.8)	59.312(22.215-154.359)	<0.001		
Prior Treatment						
Treatment Naive	891(98.8)	11(1.2)	Reference		Reference	
Pretreated with IFN	82(90.1)	9(9.9)	8.890(3.580-22.075)	<0.001	0.119(0.012-1.1)	
Viral load						
≥ 800,000 IU mL−1	273(94.8)	15(5.2)	Reference		Reference	
<800,000 IU mL−1	700(99.3)	5(0.7)	0.130(0.047-0.361)	<0.001	20.319(1.549-26f)	
Responses	SVR12 rate	Univariate P value	Multivariate P value			
-----------	------------	--------------------	----------------------			
Overall	930/944 (98.5)					
Age groups (years)						
Adults (18–60)	823/832 (98.9)	Reference	Reference			
Elders (> 60)	107/112 (95.5)	0.010	0.685			
Gender						
Male	426/433 (98.4)	Reference	0.755			
Female	504/511 (98.6)					
Ethnicity						
Punjabi	574/582 (98.6)	Reference	Reference			
Pathan	296/296 (100)	0.994	0.992			
Balochi	39/42 (92.9)	0.014	0.791			
Sindhi	21/24 (87.5)	0.001	0.954			
HCV genotype						
1	1/1 (100)	Reference	1.000			
2	1/1 (100)	1.000	1.000			
3	928/942 (98.5)					
Resident						
Rural	386/391 (98.7)	Reference	0.663			
Urban	544/553 (98.4)					
Socioeconomic status						
Low	302/307 (98.4)	Reference	0.665			
Middle	472/478 (98.7)	0.665	0.839			
High	156/159 (98.1)					
Education						
No	194/203 (95.6)	Reference	Reference			
Primary	390/390 (100)	0.993	0.989			
Secondary	289/211 (99.3)	0.016	0.025			
Tertiary	57/60 (95)	0.854	0.832			

All variables with p-value < 0.25 were included in the multivariate analysis.

Abbreviations: OR, odds ratio; CI, confidence interval; SOF, Sofosbuvir; DCV, daclatasvir; RBV, ribavirin; HCV, hepatitis C virus; HIV, human immunodeficiency viruses; HBV, Hepatitis B virus; Rapid virological response (RVR); End-of-treatment response (ETR); Sustained virological response (SVR12); IFN, interferon; ALP, Alkaline phosphatase; AST, Aspartate aminotransferase; ALT, Alanine aminotransferase.
Single-Married	381/383 (99.5)	Reference	0.063	Reference	0.231
	549/561 (97.9)	Reference	0.848		

Employment	375/381 (98.4)	Reference	0.895	0.261
Employed	555/563 (98.6)	Reference	0.997	0.574

Co-morbidities	251/255 (98.4)	Reference	0.999	0.999
DM	107/110 (97.3)	Reference	0.848	0.231
HTN	61/61 (100)	Reference	0.895	0.261
CKD	38/39 (97.4)	Reference	0.997	0.574
IHD	0/4 (0)	Reference	0.999	0.999
HIV	18/18 (100)	Reference	0.848	0.231
HBV	0/4 (0)	Reference	0.848	0.231

Cirrhosis	Absent	895/906 (98.2)	Reference	0.143	Reference	0.091
Present	35/38 (92.1)	Reference	0.143	0.091		

Child-Pugh score	925/938 (98.6)	Reference	0.019	Reference	0.980
Class A	5/6 (83.3)	Reference	0.019	Reference	0.980

RVR	No	106/116 (91.4)	Reference	<0.001	Reference	0.997
Yes	824/828 (99.5)	Reference	<0.001	Reference	0.997	

ETR	No	21/31 (67.7)	Reference	<0.001	Reference	0.995
Yes	909/913 (99.6)	Reference	<0.001	Reference	0.995	

Previous Experience	857/864 (99.2)	Reference	<0.001	Reference	0.098
Naive	73/80 (91.3)	Reference	<0.001	Reference	0.098

Viral load	≥ 800,000 IU mL⁻¹	271/281 (96.4)	Reference	0.002	Reference	0.196
	<800,000 IU mL⁻¹	659/663 (99.4)	Reference	0.002	Reference	0.196

Elevated ALP	838/852 (98.4)	0.997	
Elevated AST	636/646 (98.5)	0.557	NA
Elevated ALT	177/187 (94.7)	<0.001	0.010

All variables with p-value < 0.25 were included in the multivariate analysis. Abbreviations: OR, odds ratio; CI, confidence interval; HCV, hepatitis C virus; DM, diabetes mellitus; HTN, hypertension; CKD, chronic kidney disease; IHD, ischemic heart disease. HIV, human immunodeficiency viruses; HBV, Hepatitis B virus; Rapid virological response (RVR); End-of-treatment response (ETR); Sustained virological response (SVR); IFN, interferon; ALP, Alkaline phosphatase; AST, Aspartate aminotransferase; ALT, Alanine aminotransferase.

Table 4. Rates of SVR at 12 weeks after treatment completion among patients with different disease severities and treatment regimens
Treatment regimen	Chronic HCV (no cirrhosis)	Compensated cirrhosis (CC)	Decompensated cirrhosis (DC)	Total (N=993)
SOF+DCV	895/906(98.8%)	30/32(93.8%)	5/6(83.3%)	930/944(98.5%)
SOF+DCV+RBV	37/41(90.2%)	-	-	37/41(90.2%)
SOF+RBV	6/8(75%)	-	-	6/8(75%)
Total	938/955(98.2%)	30/32(93.8%)	5/6(83.3%)	973/993(98%)

Abbreviations: SOF, sofosbuvir; DCV, daclatasvir; RBV, ribavirin.

Table 5. Treatment related adverse events

Adverse events	SOF+DCV (N=944)	SOF+DCV+RBV (N=41)	SOF+RBV (N=8)	Total (N=993)	P value
Headache	551(58.4%)	19(46.3%)	7(87.5%)	577(58.1%)	0.074
Nausea	521(55.2%)	25(61%)	3(37.5%)	549(55.3%)	0.457
Abdominal pain	442(46.8%)	19(46.3%)	3(37.5%)	464(46.7%)	0.870
Myalgia	698(73.9%)	28(68.3%)	8(100%)	734(73.9%)	0.174
Arthralgia	566(60%)	26(63.4%)	5(62.5%)	597(60.1%)	0.898
Dizziness	154(16.3%)	9(22%)	1(25.5%)	164(16.5%)	0.607
Insomnia	320(33.9%)	8(19.5%)	-	328(33%)	**0.022**
Fatigue	153(16.2%)	12(29.3%)	-	165(16.6%)	**0.040**
Skin rash	414(43.9%)	21(51.2%)	-	435(43.8%)	**0.028**
Oral ulcers	283(30%)	17(41.5%)	-	300(30.2%)	**0.051**

Figures
Flow chart of study population cohort

Figure 1

Inclusion criteria:
- Age ≥ 18 years
- Diagnosed as chronic HCV patients
- Treated patients with DAAs

Exclusion criteria:
- Patients with age < 18 years
- Patients with pregnancy
- Patients on non-DAA therapy
- Patients with incomplete profile

Identification of HCV chronic patients taking DAAs from 2015-2019 (1200)

Selected patients included in final analysis (993)

Sustained virologic response12 rates in patients taking DAAs

Comparison

SOF+DCV	SOF+DCV+RBV	SOF+RBV
(n = 944)	(n = 41)	(n = 8)

Statistical analysis

- Assessment of clinically-laboratory characteristics of SVR12 and predictors
- Assessment of therapy combination for SVR12, predictors and adverse effects

Tabulation of results, interpretations, discussion and conclusive remarks
