REVIEW

SMARCB1/INI1-deficient tumors of adulthood [version 1; peer review: 1 approved]

Nathaniel A. Parker1, Ammar Al-Obaidi1, Jeremy M. Deutsch2

1University of Kansas School of Medicine, 1010 N Kansas St, Wichita, KS, 67214, USA
2Cancer Center of Kansas, 818 N. Emporia #403, Wichita, KS, 67214, USA

Abstract
The SMARCB1/INI1 gene was first discovered in the mid-1990’s, and since then it has been revealed that loss of function mutations in this gene result in aggressive rhabdoid tumors. Recently, the term “rhabdoid tumor” has become synonymous with decreased SMARCB1/INI1 expression. When genetic aberrations in the SMARCB1/INI1 gene occur, the result can cause reduced, complete loss, and mosaic expression. Although SMARCB1/INI1-deficient tumors are predominantly sarcomas, this is a diverse group of tumors with mixed phenotypes, which can often make the diagnosis challenging. Prognosis for these aggressive tumors is often poor. Moreover, refractory and relapsing progressive disease is common. As a result, accurate and timely diagnosis is imperative. Despite the SMARCB1/INI1 gene itself and its implications in tumorigenesis being discovered over two decades ago, there is a paucity of rhabdoid tumor cases reported in the literature that detail SMARCB1/INI1 expression. Much work remains if we hope to provide additional therapeutic strategies for patients with aggressive SMARCB1/INI1-deficient tumors.

Keywords
SMARCB1, INI1, loss of function mutation, rhabdoid, sarcoma

Corresponding author: Nathaniel A. Parker (naparker1031@gmail.com)

Author roles: Parker NA: Conceptualization, Methodology, Writing – Original Draft Preparation, Writing – Review & Editing; Al-Obaidi A: Writing – Review & Editing; Deutsch JM: Supervision

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2020 Parker NA et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Parker NA, Al-Obaidi A and Deutsch JM. SMARCB1/INI1-deficient tumors of adulthood [version 1; peer review: 1 approved] F1000Research 2020, 9:662 https://doi.org/10.12688/f1000research.24808.1

First published: 30 Jun 2020, 9:662 https://doi.org/10.12688/f1000research.24808.1
History of the SMARCB1/INI1 Gene

SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 (SMARCB1), also known as integrase interactor 1 (INI1), is a crucial component of a chromatin-remodeling protein complex. SMARCB1/INI1 was first identified in yeast in the late 1980’s. By 1994, its human homologue was isolated in fibroblast cells. Subsequent molecular investigations showed this nuclear complex enhances DNA transcription by interactions with HIV-1 integrase. Nuclear SMARCB1/INI1 exists ubiquitously in all normal cells, and acts as a tumor suppressor gene. It was revealed in the early 2000’s by studies in mice that biallelic knockout of the SMARCB1/INI1 gene resulted in early lethality. Mice with heterozygous loss before birth, or who had later conditional single-allele knockout after birth, of SMARCB1/INI1 developed aggressive rhabdoid tumors. Since its discovery, much work has revealed this chromatin-remodeling protein has crucial roles in multiple signaling pathways that function to suppress tumorigenesis and tumor growth. Although these pathways are highly complex, the development and use of targeted anti-cancer therapies has practically become ubiquitous for nearly all solid tumors. Thus, continued investigations are needed if we hope to provide additional therapeutic strategies for patients with aggressive SMARCB1/INI1-deficient tumors.

Interestingly, the genetic signatures of SMARCB1/INI1-deficient tumors are far from monotonous. Three distinct patterns of abnormal SMARCB1/INI1 gene expression have been identified – reduced, complete loss, and mosaic.

Epidemiology, clinical, prognosis

Complete loss of SMARCB1/INI1 expression has been linked to a number of pediatric and adult sarcomas (Table 1). Malignant rhabdoid tumor (MRT) and epithelioid sarcoma (ES)

| Genealogy, selected clinical, and prognostic data for SMARCB1/INI1-deficient tumors. STS, soft tissue sarcomas; MRT, malignant rhabdoid tumor; MPNST, malignant peripheral nerve sheath tumor; NF-1, neurofibromatosis type 1; NF-2, neurofibromatosis type 2; GI, gastrointestinal; NA, data not available. |
|---|---|---|
| **Complete loss** | **Epidemiology, Clinical** | **Survival** |
| Reduced expression | Synovial sarcoma | 5 – 10% of all STS; median age of 40 years; males | 5-year, 36–76% |
| | Malignant rhabdoid tumor | Typically < 3 years of age; typically presents in intraabdominally in adult males | MRT: 5-year, 15 – 20%; extrarenal rhabdoid tumor: 5-year, 35% |
| | Atypical teratoid/rhabdoid tumor | Typically < 3 years of age; 10% of CNS tumors in infants | 20 months |
| | Epithelioid sarcoma | < 1% of all STS; median age of 27 years, males | 5-year, 68% (all ages) |
| | Renal medullary carcinoma | Third most common kidney cancer among children and young adults; median age of 28 years; males | Overall survival less than 12 months |
| | Epithelioid malignant peripheral nerve sheath tumor | < 1% of all STS; < 5% of all MPNSTs; aggressive MPNST variant; unlike MPNST uncommonly associated with NF-1; median age > 40 years | 5-year, 34 – 43% |
| | Myoepithelial carcinoma | About 70% occur in parotid gland; median age of 55 years | 5-year, 71% |
| | Extraskelatal myxoid chondrosarcoma | < 3% of all STS; median age of 50 years; males | 5-year, 80 – 90% |
| | Chordoma | Median age of 50 – 60 years in adults, males; median age of 10 – 12 years in children, females | 5-year, 70% |
| | Pancreas undifferentiated rhabdoid carcinoma | Heterogeneous group of neoplasms; poorly characterized | NA |
| | Sinonasal basaloid carcinoma | < 5% of all head/neck cancers; 0.5 cases per 100,000 population per year; males | Median overall survival 17 months |
| | Rhabdoid carcinoma of the gastrointestinal tract | About 0.1% of all gastric cancers; < 50 cases reported in the upper and lower GI tract | Overall survival six months |
| Mosaic expression | Schwannomatosis | Third major form of neurofibromatosis; distinct from NF-1 and NF-2; median age of 40 years; 20% familial | NA |
| | Gastrointestinal stromal tumor | 5% of all STS, 80% of all mesenchymal GI tract tumors; median age of 60 years | 5-year, 83% |
| | Ossifying fibromyxoid tumor | Only 300 cases reported worldwide; median age of 50 years; males | NA |
both result from biallelic deletions or mutations causing a complete loss of SMARCB1/INI1 expression\(^1\). Commonly arising before the age of three years old, MRTs are considered one of the most aggressive childhood neoplasms associated with high mortality\(^1\). MRTs have been reported in adults\(^2\)–\(^4\). Based on MRT of adulthood being primarily reported anecdotally, estimated rates of incidence remain unclear. Data concerning the 5-year survival rate for MRT in adults is difficult to determine as well, as various percentages have been reported in literature\(^4\)–\(^10\). However, estimated average survival following MRT diagnosis has been reported to be six months\(^10\).

ES is now categorized into two subgroups: distal and proximal. Conventional or distal-type ES tends to be histologically similar squamous cells. Also, distal-type ES immunohistochemical (IHC) profiles can be diverse. Proximal-type ES is thought to be the more aggressive variant, and has an affinity for the proximal limbs of young adults. Microscopically, sheets of large rhabdoid tumor cells are predominantly observed\(^11\). Based on more recent clinicopathologic and IHC data, many tumors that were previously diagnosed as a MRT are now classified as proximal ES\(^5\).

In addition to ES, atypical teratoid/rhabdoid tumor, renal medullary carcinoma, and pediatric chordoma are rare sarcomas that result from the complete loss of SMARCB1/INI1 expression (Table 1). They predominantly occur in pediatric or young adult patients. Collectively, these neoplasms typically develop in the head/neck, CNS, thorax, kidneys, other visceral organs, retroperitoneum, trunk, and extremities\(^12\)–\(^18\),\(^26\),\(^52\). Exceedingly rare SMARCB1/INI1-deficient tumors that occur more commonly in adults include synovial sarcomas, epithelioid malignant peripheral nerve sheath tumor, myoepithelial carcinoma, extraskeletal myxoid chondrosarcoma, chordoma, schwannomatosis, gastrointestinal stromal tumors (GIST), and ossifying fibromyxoid tumor (Table 1). On light microscopy, these sarcomatous neoplasms exist on a morphological spectrum. Tissue specimens are often composed of epithelioid or rhabdoid cells\(^4\). However, other morphologic patterns have been described\(^6\). Thus, the diagnosis of SMARCB1/INI1-deficient tumors can be difficult based on their polyphenotypic variation\(^7\). SMARCB1/INI1 immunostaining can be used to confirm the diagnosis of an epithelioid or rhabdoid sarcoma because loss of SMARCB1/INI1 expression is rarely observed in other tumor types\(^8\),\(^9\). Thus, in the absence of this genetic alteration, other malignant soft tissue tumors with epithelioid-like morphologies can be more confidently ruled out, such as melanoma, rhabdomyosarcoma, and undifferentiated carcinoma.

Aside from SMARCB1/INI1-deficient tumors sharing an aberration in the same gene, the relationship between these malignancies remains unclear. Following diagnosis in any age or organ, nearly all SMARCB1/INI1-deficient malignancies characteristically follow an aggressive clinical pattern and prognosis if often poor (Table 1). Survival rates are often reported low, but they may not be accurate given low rates of incidence, and considerations for newer treatments. Also, survival can be highly dependent on surgical intervention and completeness of tumor resection, especially for chordomas. GIST are the most common sarcomas of the gastrointestinal (GI) tract. They commonly develop in the sixth decade of life and have no gender predominance\(^10\). Following the diagnosis of a GIST, survival rates are highly variable and depend on specific biologic characteristics of the tumor, the type of treatment, and the risk of post-treatment recurrence\(^10\).

Challenges in retrospective data collection for adult cases of SMARCB1/INI-deficient tumors

Recently, the term “rhabdoid tumor” has become synonymous with tumors that harbor loss of function mutations in the SMARCB1/INI1 gene\(^16\). We reviewed the literature and found a paucity of cases reporting SMARCB1/INI1 genetic mutations in adult patients with sarcomas. A total of 450 cases of rare sarcomas were found to be described in single case reports, case series, or systematic reviews published between the years 2000 – 2020 (Table 2)\(^57\)–\(^62\). This number is likely far lower than the actual accounts of reported sarcoma cases in the literature. However, reports were excluded if it was apparent the case did not meet our inclusion criteria based on the publicly-available title or abstract information. Despite the SMARCB1/INI1 gene being discovered in the mid-1990’s, the majority of previous reports were excluded for not mentioning the tumor’s SMARCB1/INI1-deficiency status. Also, tumor occurrence in the pediatric patient population accounted for multiple exclusions.

We located 25 cases of adult SMARCB1/INI1-deficient sarcomas that were described in 18 reports (Table 3)\(^62\),\(^65\)–\(^90\)–\(^106\). Median age at the time of diagnosis was 36 years old. A male predominance was mildly observed (14 cases, 56%), which is consistent with other larger reviews. Presentation in the head and neck (e.g. brain, eye, nose, and scalp) occurred more frequently (6 cases, 24%). No descriptive data analysis was performed to determine if our observations were significant. The majority of reports were originally described as proximal epithelioid sarcoma, but overall these remained a morphologically diverse group of cases that also included rhabdoid and mixed phenotypes.

Treatment

Prior to, and still after, the discovery that SMARCB1/INI1-deficient tumors contribute to the large majority of soft tissue sarcomas, systemic cytotoxic agents have been used to treat this diverse group of neoplasms. Doxorubicin and ifosfamide have remained the mainstay of first-line treatment for advanced disease for the last few decades. Currently, the most widely used regimen for soft tissue sarcomas is termed AIM, which includes doxorubicin plus ifosfamide and mesna\(^105\)–\(^111\). Therapies such as these, and other cytotoxic agents, exhibit intermediate to improved anti-cancer activity, and prolong survival in metastatic soft tissue sarcoma (Table 4). However, refractory or progressive disease can occur. With the hopes of improving outcomes in patients who develop aggressive sarcomas, multiple new therapies are being introduced. Olaratumab, a monoclonal antibody that targets platelet-derived growth factor alpha and beta (PDGFRA/B), has been approved for first-line therapy in
The use of tyrosine kinase-inhibitors (TKIs) has transformed the treatment of advanced GIST. Imatinib, a TKI, as monotherapy is now approved for upfront treatment of metastatic GIST due to improved side effect profiles and outcomes in these patients. Given its mechanism of action, imatinib is also approved for first-line treatment of the fibrosarcomatous variant of dermatofibrosarcoma protuberans. Additional TKIs have recently been introduced, with clinical trial data showing promise for their use in sarcomas. Sunitinib and regorafenib significantly improve overall survival in imatinib-resistant GIST patients. Pazopanib, a TKI that targets angiogenesis by inhibiting vascular endothelial growth factor receptor, PDGFRA/B, and KIT, has been shown to improve progression free survival in certain histologic types of sarcoma. This led to its approval for advanced, refractory non-lipomatous sarcoma. Alveolar sarcomas appear to respond well to combination with doxorubicin due to improved progression and overall survival in sarcoma patients. The use of tyrosine kinase-inhibitors (TKIs) has transformed the treatment of advanced GIST.

Table 2. Excluded rare sarcomas in adults reported in single case reports, case series, or systematic reviews, 2000–2020. Exclusion criteria was as follows: 1.) individual patient age could not be confirmed; 2.) pediatric study population (less than 18 years of age); 3.) absence of documentation noting the loss of SMARCB1/INI1 expression by immunohistochemistry or genetic studies; 4.) intact SMARCB1/INI1 expression by immunohistochemistry or genetic studies; and 5.) non-sarcomatous histologic tumor type. PMID, PubMed Central © unique article identifier; GU, genitourinary; PNS, peripheral nervous system; GI, gastrointestinal.

Article	PMID	Cases, no.	Tumor site	Exclusion reason	Article	PMID	Cases, no.	Tumor site	Exclusion reason
Zhang et al., 2019	31933781	1	scalp	3	Weissekopf et al., 2006	16474944	1	spine	2,3
Kubota et al., 2019	31034722	1	GU	2	Onoi et al., 2006	16343734	1	GU	3
Kolin et al., 2018	29700418	5	GU	4	Zevallos-G. et al., 2005	16082246	2	perineum	3
Kim et al., 2018	30235775	1	brain	3	Masunaga et al., 2004	15260853	1	lung	3
Strehl et al., 2015	25920939	25	GU	3	Chang et al., 2004	14713833	1	GI	2
Santos et al., 2013	23739215	1	pelvis	3	Altundag et al., 2004	15579921	1	GU	3
Patrizi et al., 2013	23886403	1	GU	3	Lee et al., 2004	14675288	1	pelvis	3
Zhao et al., 2013	23761028	1	renal	3	Peng et al., 2003	12946214	1	renal	3
Tocco et al., 2012	23359842	1	scalp	3	Hanna et al., 2002	12107573	8	multiple	3
Rizzo et al., 2012	22614000	12	PNS	2	Etienne-M. et al., 2002	12445750	12	multiple	3,5
Kuge et al., 2012	22218708	1	brain	2	Moore et al., 2002	11925150	1	GU	3
Hagström et al., 2011	21420628	1	oral	3	Haidopoulos et al., 2002	12440823	1	GU	3
Narendra et al., 2010	20479553	1	GU	3	Tzialinis et al., 2002	16093195	1	GU	3
Tholpady et al., 2010	20881848	1	GU	2	Amrikachhi et al., 2002	12478486	4	GI	3
Chbani et al., 2009	19141382	106	multiple	1	Hasegawa et al., 2001	11454997	20	multiple	3
Hornick et al., 2009	19033866	127	multiple	1	Kasamatsu et al., 2001	11520372	1	GU	3
Kim et al., 2008	19471567	1	GU	3	Knapik et al., 2001	11521235	1	GU	4
Rekhi et al., 2008	18607629	40	multiple	3	Biegel et al., 2000	10738300	1	brain	2
Argenta et al., 2007	17692365	1	GU	3	Spillane et al., 2000	10791853	37	multiple	3
Bourdeaut et al., 2007	17152049	26	multiple	2					
Table 3. Included rare sarcomas reported in single case reports, case series, or systematic reviews, 2000–2020.

Inclusion criteria was as follows: ability to confirm an individual case patient was greater than 18 years of age; documentation of a loss of SMARCB1/INI1 expression by immunohistochemistry or genetic studies; and confirmed sarcomatous histologic tumor type. “-” denotes complete, reduced, or mosaic loss of SMARCB1/INI1 expression (exp.). M, male; F, female.

Article	PMID	Cases, no.	Age, Sex	Tumor site	SMARCB1/INI1 exp.	Sarcoma morphology
Parker et al., 2020[12]	32467817	1	56 M	inguinal	-	epithelioid, rhabdoid
Ahmad et al., 2019[23]	31737506	1	27 M	pleura	-	epithelioid
Bodi et al., 2018[34]	29541486	1	22 F	brain	-	epithelioid, spindle-shaped
Gurwale et al., 2017[38]	-	1	18 F	scalp	-	epithelioid
Saha D et al., 2016[46]	27045049	1	41 M	lung	-	epithelioid
Rego et al., 2015[39]	25737787	1	34 F	vulva	-	epithelioid, spindle-shaped
Wetzel et al., 2014[40]	24997629	1	51 F	oral	-	rhabdoid
Agaimy et al., 2014[49]	24503755	1	66 M	stomach	-	rhabdoid
Madsen et al., 2013[50]	24457248	1	45 M	pleura	-	epithelioid
Frank et al., 2013[51]	24308011	1	43 M	eye	-	epithelioid, spindle-shaped
		2	71 F	nasal	-	epithelioid
Kim et al. 2012[102]	21724432	1	41 F	vulva	-	epithelioid
Mannan et al., 2010[105]	19757197	1	47 M	inguinal	-	epithelioid
Takei et al., 2010[54]	19911885	1	33 F	brain	-	rhabdoid
		2	79 M	cecum	-	rhabdoid
Raoux et al., 2009[106]	19342946	1	31 F	bone	-	epithelioid, spindle-shaped
Robbens et al., 2006[107]	16602014	1	19 M	vertebra	-	epithelioid
Sigauke et al., 2005[108]	16528370	1	26 M	wrist	-	epithelioid
		2	26 M	lymph	-	epithelioid
Perry et al., 2005[109]	15761491	1	29 M	soft tissue	-	spindle-shaped
Modena et al., 2005[110]	15899790	1	31 F	thigh	-	epithelioid
		2	47 F	perineum	-	rhabdoid
		3	30 M	spine	-	epithelioid
		4	36 M	spine	-	epithelioid, spindle-shaped
		5	66 F	inguinal	-	epithelioid, rhabdoid

Anti-angiogenetic sorafenib and cediranib[12,112]. In phase II studies tivozanib, which mechanism of action mimics pazopanib, exhibits promising anti-cancer activity in metastatic or nonresectable soft tissue sarcomas[12].

Recently, much work studying the complex mechanisms involved in sarcoma tumorigenesis has revealed the potential for numerous new drug targets. Targeting mTOR by serine/threonine kinase inhibition has been widely studied. However, thus far either only equivocal or minor benefits have been shown with the administration of these agents[114]. In contrast, phase II trial data is reassuring for the future use of palbociclib, a cyclin-dependent kinase 4 and 6 inhibitor approved in breast cancer, for liposarcoma[125,126].

Preliminary data from pre-clinical and phase I/II trials is encouraging for small molecule inhibitors, such as with MDM2-antagonists, histone deacetylase inhibitors, and histone methylation inhibitors[114]. A possible breakthrough in small molecular inhibition is represented by the recent discovery of histone-lysine N-methyltransferase EZH2 upregulation in SMARCB1/INI1-deficient tumors[127]. Given the defining characteristic of SMARCB1/INI1 deficiency in the nearly all soft tissue sarcomas, tazemetostat has emerged as a highly intriguing compound for its direct...
inhibition of histone-lysine N-methyltransferase EZH219,139. Another new agent that hopes to improve outcomes for patients with these rare and aggressive SMARCB1/INI1-deficient rhabdoid sarcomas comes from the proteasome inhibitor drug class. Ixazomib selectively targets proteasomes involved in protein anabolism and cellular apoptosis, whose activity is directly enhanced by the transcription factor MYC in SMARCB1/INI1-deficient states. Currently, ixazomib plus gemcitabine and doxorubicin is being studied in the phase II trial setting for renal medullary carcinoma140,141.

Data availability

Underlying data

No data are associated with this article.

Table 4. Approved first-line treatments for sarcomas.

Tumor	Drugs	Schedules	ORR (%)	PFS (months)	OS (months)	Reference	
STS	Doxorubicin	D + I	26	7.4	14.3	128	
	Ifosfamide	D + P	28.3	6	15.9	129	
	Evosofamide	D + E	28.4	6.3	18.4	130	
	Trabectedin	D + T	17	5.7	13.3	131	
	Olaratumab	D + O	18.2	6.6	26.5	112	
		Trabectedin monotherapy	14.8	2.8	NA	132	
		Aldoxorubicin monotherapy	25	5.6	15.8	133	
		Amrubicin monotherapy	13	5.8	26	134	
		Gemcitabine Docetaxel	G + Doc	58.6	5.6	14.7	135
		Brostacillin monotherapy	3.9	1.6	NA	136	
GiST	Imatinib monotherapy	68.1	18	55	113–115		
Angiosarcoma	Paclitaxel monotherapy	NA	4	8	137		

References

1. Abrams E, Neigeborn L, Carlson M: Molecular analysis of SNF2 and SNF5, genes required for expression of glucose-repressible genes in Saccharomyces cerevisiae. Mol Cell Biol. 1986; 6(11): 3643–3651. PubMed Abstract | Publisher Full Text | Free Full Text
2. Kalpana GV, Marmon S, Wang W, et al.: Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5. Science. 1994; 266(5193): 2002–2006. PubMed Abstract | Publisher Full Text
3. Muchardt C, Sarstedt T, Bourachot B, et al.: A human protein with homology to Saccharomyces cerevisiae SNF5 interacts with the potential helicase bhm. Nucleic Acids Res. 1995; 23(7): 1127–1132. PubMed Abstract | Publisher Full Text | Free Full Text
4. Hollmann TJ, Horsnick JL: INI1-deficient tumors: diagnostic features and molecular genetics. Am J Surg Pathol. 2011; 35(10): e47–63. PubMed Abstract | Publisher Full Text
5. Guidi CJ, Sands AT, Zambrowicz BP, et al.: Disruption of Ini1 leads to peri-implantation lethality and tumorigenesis in mice. Mol Cell Biol. 2001; 21(10): 3598–3603. PubMed Abstract | Publisher Full Text | Free Full Text
6. Roberts CW, Orkin SH: The SWI/SNF complex—chromatin and cancer. Nat Rev Cancer. 2004; 4(2): 133–142. PubMed Abstract | Publisher Full Text
7. Roberts CW, Galash SA, McMenamin ME, et al.: Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proc Natl Acad Sci U S A. 2000; 97(25): 13786–13800. PubMed Abstract | Publisher Full Text | Free Full Text
8. Roberts CW, Leroux MM, Fleming MD, et al.: Highly penetrant, rapid tumorigenesis through conditional inversion of the tumor suppressor gene Snf5. Cancer Cell. 2002; 2(5): 415–425. PubMed Abstract | Publisher Full Text | Free Full Text
9. Kohashi K, Oda Y: Oncogenic roles of SMARCB1/INI1 and its deficient tumors. Cancer Sci. 2017; 108(4): 547–552. PubMed Abstract | Publisher Full Text | Free Full Text
10. Ferrari A, Sultan I, Huang TT, et al.: Soft tissue sarcoma across the age spectrum: a population-based study from the Surveillance Epidemiology and End Results database. Pediatr Blood Cancer. 2011; 57(6): 943–9. PubMed Abstract | Publisher Full Text | Free Full Text
11. Rare Soft Tissue Tumors: Synovial Sarcoma. National Cancer Institute Web site. 2019. Reference Source
12. Shonka NA, Armstrong TS, Prabhu SS, et al.: Atypical teratoid/rhabdoid tumors in adults: a case report and treatment-focused review. J Clin Med Res. 2011; 3(2): 85–92. PubMed Abstract | Publisher Full Text | Free Full Text
13. Doyle LA: Malignant rhabdoid tumor: Pathology of Human Disease. Academic press; 2014.
14. Horazdovsky R, Manivel JC, Cheng EY: Successful salvage and long-term
62. dos Santos LM, Nogueira L, Matsu CY, et al.: Proximal-type epithelioid sarcoma -- case report. Am Bras Dermatol. 2013; 88(3): 444–7.
Published Abstract | Publisher Full Text

63. Panizzi P, Conrado G, Saltarini M, et al.: Vulvar proximal-type epithelioid sarcoma: report of a case and review of the literature. Diagn Pathol. 2013; 8: 122.
Published Abstract | Publisher Full Text | Free Full Text

64. Tocco I, Bassetto F, Fàndini V: Primary epithelioid sarcoma of the scalp complicated by humoral hypercalcemia of malignancy. Epilepsia. 2012; 53: 118.
Published Abstract | Free Full Text

65. Rizzo D, Fréneaux P, Brisse H, et al.: Proximal-type epithelioid sarcoma of the vulva in an adult. Eur J Gynaecol Oncol. 2002; 23(5): 447–449.
PubMed Abstract

66. Hagström J, Mesimäki K, Apajalahti S, et al.: Loss of INI1 expression is characteristic of both conventional and proximal-type epithelioid sarcoma. Am J Surg Pathol. 2009; 33(4): 542–50.
Published Abstract | Publisher Full Text | Free Full Text

67. Hortok AL, De Cesare P, Feldsher CM: Loss of INI1 expression is characteristic of both conventional and proximal-type epithelioid sarcoma. Am J Surg Pathol. 2009; 33(4): 542–50.
Published Abstract | Publisher Full Text | Free Full Text

68. Rehki B, Gorad BD, Chinni RF: Clinicopathological features with outcomes of a series of conventional and proximal-type epithelioid sarcomas, diagnosed over a period of 10 years at a tertiary cancer hospital in India. Virchows Arch. 2008; 452(2): 141–153.
Published Abstract | Publisher Full Text | Free Full Text

69. Bernardi S, della Morte R, et al.: Proximal-type epithelioid sarcoma. J Cutan Pathol. 2008; 35(6): 616–622.
Published Abstract | Publisher Full Text

70. Chang JH, Dikranian AH, Johnston WH, et al.: Malignant extrarenal rhabdoid tumor of the bladder: 9-year survival after chemotherapy and partial cystectomy. J Urol. 2004; 171(2 Pt 1): 623–624.
Published Abstract | Publisher Full Text | Free Full Text

71. Altundag K, Dikbas O, Oyan B, et al.: Epithelioid sarcoma of vulva: a case report and review of the literature. Med Oncol. 2004; 21(4): 367–372.
Published Abstract | Publisher Full Text | Free Full Text

72. Lee MW, Jee KJ, Ro JY, et al.: Proximal-type epithelioid sarcoma: case report and result of comparative genomic hybridization. J Cutan Pathol. 2004; 31(1): 67–71.
Published Abstract | Publisher Full Text

73. Hanna SL, Kaste S, Jenkins SJ, et al.: Epithelioid sarcoma: clinical, MR imaging and pathologic findings. Skeletal Radiol. 2002; 31(7): 400–412.
Published Abstract | Publisher Full Text

74. Ettienne-Mauroirani B, Falchero L, Chabrousse L, et al.: Primary sarcomas of the lung: a clinicopathologic study of 12 cases. Lung Cancer. 2002; 38(3): 283–289.
PubMed Abstract | Publisher Full Text

75. Moore RG, Steinhof MM, Granai CO, et al.: Vulvar epithelioid sarcoma in pregnancy. Gynecol Oncol. 2002; 85(1): 218–222.
Published Abstract | Publisher Full Text

76. Knapik J, Voisin N, Riplly D, et al.: Urothelial sarcoma with rhabdoid features: diagnosis by perineal fluid cytology and absence of INI1 gene mutation. Hum Pathol. 2001; 32(8): 884–886.
PubMed Abstract | Publisher Full Text | Free Full Text

77. Agaimy A, Raut TT, Hartmann A, et al.: SMARCB1 (INI1-negative) rhabdoid carcinomas of the gastrointestinal tract: clinicopathologic and molecular study of a highly aggressive variant with literature review. Am J Surg Pathol. 2014; 38(7): 910–920.
PubMed Abstract | Publisher Full Text | Free Full Text

78. Madsen GA, Rasmussen TR, Barentsen S: A case of pleural epithelioid sarcoma of proximal type presenting as malignant pleural mesothelioma. J Thorac Oncol. 2013; 8(10): e89–e90.
PubMed Abstract | Publisher Full Text

79. Frank RD, Satre N, Dhatt T, et al.: Proximal-type Epithelioid Sarcoma of the Head and Neck (HN): A Study with Immunohistochemical and Molecular Analysis of SMARCB1. J Clin Exp Oncol. 2013; 2(2): 100106.
PubMed Abstract | Publisher Full Text | Free Full Text

80. Kim HJ, Kim MH, Kwon J, et al.: Proximal-type epithelioid sarcoma of the vulva with INI1 diagnostic utility. Ann Diag Pathol. 2012; 16(5): 411–415.
PubMed Abstract | Publisher Full Text | Free Full Text

81. Mannan AA, Rifat AA, Kahvic M, et al.: Proximal-type epithelioid sarcoma in the groin presenting as a diagnostic dilemma. Pathol Oncol Res. 2010; 16(2): 181–188.
PubMed Abstract | Publisher Full Text | Free Full Text

82. Takei H, Adesina AM, Mehta V, et al.: Atypical teratoid/rhabdoid tumor of the pirioreal region in an adult. J Neurosurg. 2010; 113(2): 374–379.
PubMed Abstract | Publisher Full Text | Free Full Text

83. Roaux D, Pech O, Pedouret F, et al.: Primary epithelioid sarcoma of bone: report of a unique case with immunohistochemical and fluorescent in situ hybridization confirmation of INI1 deletion. Am J Surg Pathol. 2009; 33(6):
Open Peer Review

Current Peer Review Status: ✔

Version 1

Reviewer Report 05 November 2020

https://doi.org/10.5256/f1000research.27370.r74306

© 2020 Malone C. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Conor Patrick Malone

Health Service Executive (Ireland), Dublin, Ireland

This article clearly and concisely reviews the role of SMARCB1/INI1 in rhabdoid tumours, as well as summarising the literature and discussing management options. The structure is good, the language is accessible, and the references are appropriate and comprehensive.

I would suggest a short conclusion to recap the main points and to ensure that there are clear learning outcomes for readers of varying experience levels.

Below are minor grammar/punctuation corrections and suggestions:

"the result can cause reduced, complete loss, and mosaic expression." - this is not clear - I would suggest changing to "the result can cause reduced expression, complete loss of expression, and mosaic expression"?

There should be no apostrophe in 1980's or 2000's, i.e. 1980s and 2000s are correct.

In Table 1 "typically presents in intraabdominally in adult males" the first "in" is an error.

"CNS" is used without expansion/explanation of the acronym.

"prognosis if often poor" - should read "is often poor".

In Tables 2 and 3 "criteria was as follows" should be "were as follows".

"A male predominance was mildly observed (14 cases, 56%), which is consistent with other larger reviews." - this wording is unclear - suggest "Consistent with other larger reviews, there was a slight male predominance (14 cases, 56%)."

"is termed AIM, which includes doxorubicin plus ifosfamide and mesna" - explain this more clearly so that the initialism (AIM) makes sense.
"KIT" is not an acronym/initialism but suggest "KIT proto-oncogene" so that it is clear what it is.

Explain what "mTOR" and "MDM2" and "EZH2" stand for.

"as a highly intriguing" - remove the word "highly".

Is the topic of the review discussed comprehensively in the context of the current literature?
Yes

Are all factual statements correct and adequately supported by citations?
Yes

Is the review written in accessible language?
Yes

Are the conclusions drawn appropriate in the context of the current research literature?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Orbital rhabdomyosarcoma.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com