THE DISTANCE TO THE MASSIVE ECLIPSING BINARY LMC-SC1-105 IN THE LARGE MAGELLANIC CLOUD

ALCESTE Z. BONANOS1, NORBERTO CASTRO1, LUCAS M. MACRI2, AND ROLF-PETER KUDRITZKI3,4
1 Institute of Astronomy & Astrophysics, National Observatory of Athens, I, Metaxa & Vas. Pavlou St., P. Penteli, 15236 Athens, Greece; bonanos@astro.noa.gr, norberto@noa.gr
2 George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics & Astronomy, Texas A&M University, 4242 TAMU, College Station, TX 77843-4242, USA; lmacri@physics.tamu.edu
3 Institute for Astronomy, University of Hawaii, 2680 Woodlawn Dr., Honolulu, HI 96822, USA; kud@ifa.hawaii.edu
4 Max-Planck-Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741 Garching, Germany

Received 2010 December 23; accepted 2011 January 25; published 2011 February 9

ABSTRACT

This Letter presents the first distance measurement to the massive, semi-detached, eclipsing binary LMC-SC1-105, located in the LH 81 association of the Large Magellanic Cloud (LMC). Previously determined parameters of the system are combined with new near-infrared photometry and a new temperature analysis to constrain the reddening toward the system, and determine a distance of 50.6 ± 1.6 kpc (corresponding to a distance modulus of 18.52 ± 0.07 mag), in agreement with previous eclipsing binary measurements. Although this is the sixth distance measurement to an eclipsing binary in the LMC, it is the first to an O-type system. We thus demonstrate the suitability of O-type eclipsing binaries (EBs) as distance indicators.

Key words: binaries: eclipsing – distance scale – galaxies: individual (LMC) – stars: distances – stars: fundamental parameters – stars: individual (OGLE J053448.26-694236.4)

Online-only material: color figures

1. INTRODUCTION

As one of the nearest galaxies to the Milky Way, the Large Magellanic Cloud (LMC) has naturally been an attractive first rung for the Extragalactic Distance Scale. The Hubble Space Telescope Key Project (Freedman et al. 2001) adopted a distance modulus \(\mu = 18.50 \pm 0.10 \) mag (corresponding to a distance of 50.1 ± 2.4 kpc) to the LMC, which has since become the consensus in the community. Schaefer (2008) pointed out that band-wagon effects are present in the literature, with pre-2001 ± modulus consensus in the community. Schaefer (2008) pointed out that

The detached EBs selected by Michalska & Pigulski (2005) among the OGLE II systems as being most suitable for distance determination are also shown. Both the H1 kinematic center (Kim et al. 1998) and the dynamical center (or center of the bar; van der Marel et al. 2002) are overplotted, as is the line of nodes (\(\Theta = 129^\circ \pm 6^\circ \); van der Marel et al. 2002).

Motivated by the evidence for vertical structure in the LMC and the one discrepant EB distance, we proceed to compute the distance to LMC-SC1-105. LMC-SC1-105 is a massive, semi-detached, short-period (\(P = 4.25 \) days) O-type system, with component masses of \(M_1 = 30.9 \pm 1.0 M_\odot \), \(M_2 = 13.0 \pm 0.7 M_\odot \), and radii of \(R_1 = 15.1 \pm 0.2 R_\odot \), \(R_2 = 11.9 \pm 0.2 R_\odot \) (determined by Bonanos 2009). The very accurate measurement of the radii (<2%) renders the system suitable for a distance determination, given that EB distances are independent of the usual distance ladder and therefore important checks for other methods. However, accurate radii are not sufficient for an accurate distance. Accurate fluxes (i.e., effective temperatures) and extinction estimates are also needed.

Or OGLE J053448.26-694236.4 = MACHO 81.8881.21 = LH 81-72.
Figure 1. Spatial distribution of known EBs from OGLE II and MACHO (blue circles) on the Spitzer 3.6 μm image of the LMC. EBs with measured distances are labeled. Yellow circles mark the most suitable detached EBs for distance determination (Michalska & Pigulski 2005); red circles mark the OGLE II binaries we plan to measure distances to next. The H i kinematic center (white "x") from Kim et al. (1998) and the dynamical center or center of the bar (green "x") from van der Marel et al. (2002) are labeled; the solid line corresponds to the line of nodes (van der Marel et al. 2002). Coordinates are given for J2000.

(A color version of this figure is available in the online journal.)

therefore this Letter sets out to determine these quantities and obtain the distance. Specifically, Section 2 presents new near-infrared photometry of LMC-SC1-105, Section 3 an analysis of the spectra with state-of-the-art model atmospheres, Section 4 the distance determination, and finally, Section 5 a discussion of our results.

2. NEAR-INFRARED DATA

This study makes use of JHK_s observations of LMC-SC1-105 obtained with the CPAPIR camera (Artigau et al. 2004) at the CTIO 1.5 m, as part of a synoptic survey of Cepheid variables in the LMC (L. M. Macri et al. 2011, in preparation). The EB was observed at 20 different epochs on 11 nights between 2006 November 5 and 2007 December 2. Time-series point spread function photometry was carried out using DAOPHOT and ALLFRAME (Stetson 1987, 1994). Photometric zero points were determined using ∼2500 stars from the Two Micron All Sky Survey (2MASS) Point Source Catalog, located within 15′ of the system and with 10.5 mag < K_s < 13.5 mag, while color terms were derived using nearly 5 × 10^5 2MASS stars across the entire bar of the LMC. Figure 2 shows the calibrated, phased light curves of LMC-SC1-105. We calculated error-weighted out-of-eclipse mean magnitudes of J = 13.22 ± 0.04, H = 13.27 ± 0.04, and K_s = 13.26 ± 0.04 mag.

3. EFFECTIVE TEMPERATURE ANALYSIS

An accurate distance measurement to LMC-SC-105 requires an accurate flux determination for its binary components. We proceed to refine the effective temperatures estimated by Bonanos (2009)⁶ with the state-of-the-art NLTE stellar atmosphere code FASTWIND (Santolaya-Rey et al. 1997; Puls et al. 2005), which includes the effects of stellar winds and spherical atmospheric extension.

The analysis involves a direct comparison between the helium lines, which are the main temperature diagnostics at these spectral types, plus Hα, to constrain the stellar wind, with a complete FASTWIND model grid designed to study O-type stars at the metallicity of the LMC. The grid was developed within the FLAMES-II collaboration (Evans et al. 2010) and constructed at the Instituto de Astrofísica de Canarias. Specifically, we derived the set of models that provide the lowest χ², using Hα and the 10 strongest He i and He ii lines available.⁷ The synthetic models were downgraded to the instrumental resolution of the observed spectra and the projected rotational velocities ṽ sin i were refined to 160 km s⁻¹ and 120 km s⁻¹, for the primary and secondary components, respectively. We fixed the surface gravities to the values determined by Bonanos (2009): log (g₁) = 3.57 ± 0.02 and log (g₂) = 3.40 ± 0.03.⁸ In practice, we rounded the values to the first decimal point, to match the 0.1 dex step size of the grid. The χ² method provides the stellar parameters and their corresponding errors.

⁶ T_eff1 = 35 ± 2.5K, T_eff2 = 32.5 ± 2.5K, for log (g) = 3.50 (fixed), from best-fit TLUSTY models (Lanz & Hubeny 2005).
⁷ He i λλ 4026, 4143, 4713, 4922, 5015, 5875 and He ii λλ 4200, 4541, 5411.
⁸ Note, the log (g) error bars given in Table 5 of Bonanos (2009) incorrectly correspond to the errors in g.
The technique was applied to the two highest signal-to-noise (S/N) spectra of LMC-SC1-105 (see Bonanos 2009), obtained at phases 0.27 and 0.75, i.e., at the first and second quadratures. Both phases yielded the same temperature for each component, within the errors. Specifically, at the first quadrature, we found best-fit values of $T_{\text{eff}1} = 36,100 \pm 1000$ K, $T_{\text{eff}2} = 33,200 \pm 800$ K, while at the second quadrature $T_{\text{eff}1} = 35,700 \pm 1100$ K, $T_{\text{eff}2} = 33,100 \pm 900$ K. Figures 3 and 4 show the best-fit FASTWIND models, plus the effects of the temperature errors in the profiles. The synthetic models, which only include transitions of H\textsc{i}, He\textsc{i}, and He\textsc{ii}, provide a good match to the observed spectra. Despite not including the Balmer lines in the analysis (except H\alpha), the wings of these lines are in good agreement with the models, confirming the accuracy of the log(g) determination from the EB analysis.

Bonanos (2009) reported changes of the spectral types with phase due to the Struve–Sahade effect (Stickland 1997), the largest being from O7V to O8V for the primary, which would have an impact on the temperature of ~ 2000 K (Martins et al. 2005). Our analysis, however, does not yield any remarkable differences in temperature between the two quadratures. The reason for this is that the classification criteria (Walborn & Fitzpatrick 1990) hinge on the lines He\textsc{ii} $\lambda4541$, He\textsc{i} $\lambda4471$, Heπ $\lambda4200$, and Heπ + He\textsc{ii} $\lambda4026$, while the FASTWIND analysis averaged over 10 He\textsc{i} and He\textsc{ii} lines in the spectrum. The imperfect fits of Heπ $\lambda4200$ and Heπ $\lambda4471$ by the models (see Figure 3) are consistent with a spectral type change.

Figure 2. Phased CPAPIR JHK_s-band light curves of LMC-SC1-105.

Figure 3. Best-fit FASTWIND model (red) of LMC-SC1-105, at the first quadrature. The blue (green) lines correspond to models with the best-fit T_{eff} plus (minus) the 1σ error. The set of lines with smaller Doppler shifts corresponds to the primary.

(A color version of this figure is available in the online journal.)
At phase 0.75, the secondary star shows important deviations in the cores of H\(\beta\) and H\(\gamma\) from the model (see Figure 4), which might be due to excess emission arising from the slow mass transfer or the distorted line profiles of Roche lobe-filling stars (see Bitner & Robinson 2006). Nonetheless, the rest of the He\(\text{I}\) and He\(\text{II}\) lines are well modeled within the errors. Some of the He\(\text{II}\) lines (e.g., He\(\text{II}\) \(\lambda 4541\)) might indicate a slightly higher temperature, however these differences lie within the errors.

4. DISTANCE

The flux \(f_\lambda\), measured at Earth at a certain wavelength \(\lambda\) from a binary at distance \(d\) is given by

\[
 f_\lambda = \frac{1}{d^2} \left(R_1^2 F_{1,\lambda} + R_2^2 F_{2,\lambda} \right) \times 10^{-0.4 A(\lambda)},
\]

where \(R_1\) and \(R_2\) are the radii of the two stars and \(F_{1,\lambda}\) and \(F_{2,\lambda}\) the surface fluxes. The total extinction \(A(\lambda)\) is a function of the reddening \(E(B - V)\), the normalized extinction curve \(k(\lambda - V) \equiv E(\lambda - V)/E(B - V)\), and the ratio of total to selective extinction in the \(V\) band, \(R_V \equiv A(V)/E(B - V)\):

\[
 A(\lambda) = E(B - V) \left[k(\lambda - V) + R_V \right].
\]

Having measured the temperatures of the stars from the spectra, we computed fluxes and fit to the observed magnitudes, using Equation (1) and the best-fit FASTWIND model atmospheres for each quadrature determined above. Note that we used the mean radii\(^9\) of the stars instead of their volume radii as better approximations to compute their projected surface areas.

Following the procedure outlined in Bonanos et al. (2006) for the detached EB in M33, we calculated synthetic photometry of the composite spectrum over the appropriate Johnson–Cousins optical filter functions as defined by Bessell (1990) and calibrated by Landolt (1992), and the 2MASS filter set. Monochromatic fluxes were measured at the isophotal wavelengths (see Tokunaga & Vacca 2005), which best represent the flux in a passband. We used zero points from Bessell et al. (1998, Appendix A) and Cohen et al. (2003) to convert the fluxes to magnitudes. We reddened the model spectrum using the reddening law parameterization of Cardelli et al. (1989), as prescribed in Schlegel et al. (1998), and simultaneously fit the optical\(^{10}\) and near-infrared \(BV1\) \(JHK_s\) photometry. Specifically, we computed the intrinsic \((B - V)_0 = -0.27\) mag from the model atmospheres at the isophotal wavelengths, thus yielding \(E(B - V) = 0.11 \pm 0.01\) mag.

The value of \(R_V\) was determined as the value that minimized the error in the spectral energy distribution (SED) fit over the six photometric bands. For phase 0.27, we found \(R_V = 5.8 \pm 0.4\) and for phase 0.75, \(R_V = 5.7 \pm 0.4\). The resulting distance to LMC-SC1-105 and thus the LMC bar is 50.6 \(\pm\) 1.6 kpc.

\(^9\) \(r_{\text{pole}} + r_{\text{side}} + r_{\text{back}})/3.

\(^{10}\) \(B_{\text{max}} = 12.81 \pm 0.01\) mag, \(V_{\text{max}} = 12.97 \pm 0.01\) mag, \(I_{\text{max}} = 13.04 \pm 0.01\) mag (Wyrzykowski et al. 2003).
residuals of the fit are shown in the upper and lower panels of the reddened model spectrum to the photometry and the fit of the FASTWIND models to the spectra at the first quadrature, respectively. The fits are identical within errors. We adopt the distance derived for the first quadrature. The fit of the FASTWIND models to the spectra at the first quadrature, the distances are identical within errors. The fits are identical within errors. We adopt the distance derived for the first quadrature.

We tested the robustness of our reddening and distance results, by first fitting the BVI photometry alone, which yielded an identical value for the distance (50.8 ± 1.6 kpc or $\mu = 18.53 \pm 0.07$ mag, with $R_V = 5.7 \pm 0.4$), thus demonstrating the consistency of the near-infrared with the optical photometry. Next, if we fix $R_V = 3.1$, the best-fit value for $E(B-V) = 0.18$ mag, resulting in a distance of 51.9 ± 1.6 kpc ($\mu = 18.58 \pm 0.07$ mag), i.e., in agreement with our reported result, within errors. If instead we assume $R_V = 3.1$ and fit $E(B-V) = 0.11 \pm 0.01$ mag (based on our photometry and the model spectra), we would derive a much larger distance of 55.2 kpc ($\mu = 18.71$ mag), which yields a SED fit error of 0.05 mag (versus 0.01 mag) that is inconsistent with our photometry. The validity and implications of the high value of R_V that we have measured are discussed in the following section.

The error quoted above for R_V was estimated using the Bayesian code CHORIZOS (Maiz-Apellániz 2004). The available $BVI JHK_s$ photometry was given as input, with T_{eff} in the range $33,000–36,000$ K and $\log(g)$ fixed to 3.50, from TLUSTY models. The code yielded best-fit mean values (for a single star) of $T_{\text{eff}} = 34,500 \pm 1100$ K, $R_{\odot,5495} = 5.4 \pm 0.4$, and $E(\lambda 4405 - \lambda 5495) = 0.10 \pm 0.01$ mag, consistent with the values we derived.

5. DISCUSSION

LMC-SC1-105 is located in the LH 81 association (Massey et al. 2000), near the center of the LMC bar. It contains two early O-type stars and three Wolf-Rayet systems, one of which was recently found to be an EB (Szczygiel et al. 2010). Furthermore, this association resides in the superbubble N 154 (Henize 1956) = DEM 246 (Davies et al. 1976). We have determined a large value of $R_V = 5.8 \pm 0.4$ toward LMC-SC1-105, however, such high values are not uncommon. Cardelli et al. (1989) find $5 < R_V \leq 5.6$ for 6 out of the 29 OB stars in their sample, while Fitzpatrick & Massa (2007) find $R_V > 5$ for 12 out of the 328 stars in their sample. Large values of R_V imply larger dust grain sizes, which are expected to occur in dense regions of the interstellar medium due to accretion and coagulation of grains. We therefore conclude that the environment in which LMC-SC1-105 resides has large dust grains.

In this Letter, we have determined the distance to LMC-SC1-105 and consequently the LMC bar to be 50.6 ± 1.6 kpc ($\mu = 18.52 \pm 0.07$ mag). The agreement we find with previous EB distances to systems in the bar with different spectral types testifies to the robustness of the EB method and its potential as a powerful, independent distance indicator. Furthermore, it confirms that O-type (and semidetached) EBs are suitable for distance determination, i.e., that the fluxes predicted by FASTWIND are indeed accurate. EB-based distance determinations to M31 (Ribas et al. 2005; Vilardell et al. 2010) and M33 (Bonanos et al. 2006) can therefore provide an independent absolute calibration of the Extragalactic Distance Scale. Future distance determinations to EBs in the LMC (e.g., those marked in Figure 1) will additionally provide R_V values in different environments of the LMC. Finally, we suggest using bright, early-type EBs to measure distances along different sight lines to the LMC, as an independent way to map its depth and resolve the controversy about its vertical structure.

We are very grateful to S. Sémon-Diaz for making available part of his FASTWIND grid at $Z/Z_\odot = 0.4$. L.M.M. thanks Shashi Kanbur and Chow-Chong Ngeow for allowing the use of the CAPIR data in advance of publication. The CAPIR survey of the LMC was made possible by faculty startup funds from the State University of New York at Oswego and Texas A&M University. A.Z.B. and N.C. acknowledge research and travel support from the European Commission Framework Program Seven under the Marie Curie International Reintegration Grant PIRGO4-GA-2008-239335. R.P.K. acknowledges support from the Alexander-von-Humboldt-Foundation and from the National Science Foundation under grant AST-1008797. This research has made use of SAOImage DS9, developed by Smithsonian Astrophysical Observatory.

REFERENCES

Andersen, J. 1991, A&AR, 3, 91
Artigau, E., Doyon, R., Vallee, P., Riopel, M., & Nadeau, D. 2004, Proc. SPIE, 5494, 1479
Benedict, G. F., et al. 2002, AJ, 123, 473
Bessell, M. S. 1990, PASP, 102, 1181
Bessell, M. S., Castelli, F., & Plez, B. 1998, A&A, 333, 231
Binner, M. A., & Robinson, E. L. 2006, AJ, 131, 1712
Bonanos, A. Z. 2009, ApJ, 691, 407
Bonanos, A. Z., et al. 2006, ApJ, 652, 313
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
Cohen, M., Wheaton, W. A., & Megeath, S. T. 2003, AJ, 126, 1090
Davies, R. D., Elliott, K. H., & Meaburn, J. 1976, Mem. R. Astron. Soc., 81, 89
Derekas, A., Kiss, L. L., & Bedding, T. R. 2007, ApJ, 663, 249

Note. our $E(B-V)$ value is marginally consistent with the range (0.13–0.23 mag) measured by Massey et al. (2000) for 34 stars in LH 81.
Evans, C. J., et al. 2010, in IAU Symp. 266, Star Clusters: Basic Galactic Building Blocks Throughout Time and Space, ed. R. de Grijs & J. R. D. Lépine (Cambridge: Cambridge Univ. Press), 35
Faccioli, L., et al. 2007, AJ, 134, 163
Fitzpatrick, E. L., & Massa, D. L. 2007, ApJ, 663, 320
Fitzpatrick, E. L., Ribas, I., Guinan, E. F., DeWarf, L. E., Maloney, F. P., & Massa, D. 2002, ApJ, 564, 260
Fitzpatrick, E. L., Ribas, I., Guinan, E. F., Maloney, F. P., & Claret, A. 2003, ApJ, 587, 685
Freedman, W. L., et al. 2001, ApJ, 553, 47
Guinan, E. F., et al. 1998, ApJ, 509, L21
Henize, K. G. 1956, ApJS, 2, 315
Kim, S., Staveley-Smith, L., Dopita, M. A., Freeman, K. C., Sault, R. J., Kesteven, M. J., & McConnell, D. 1998, ApJ, 503, 674
Landolt, A. U. 1992, AJ, 104, 340
Lanz, T., & Hubeny, I. 2003, ApJS, 146, 417
Maíz-Apellániz, J. 2004, PASP, 116, 859
Massey, P., Waterhouse, E., & DeGioia-Eastwood, K. 2000, AJ, 119, 2214
Meixner, M., et al. 2006, AJ, 132, 2268
Michalska, G., & Pigulski, A. 2005, A&A, 434, 89
Nikolaev, S., Drake, A. J., Keller, S. C., Cook, K. H., Dalal, N., Griest, K., Welch, D. L., & Kanbur, S. M. 2004, ApJ, 601, 260
Olsen, K. A. G., & Salyk, C. 2002, AJ, 124, 2045
Pejcha, O., & Stanek, K. Z. 2009, ApJ, 704, 1730
Pietrzyński, G., et al. 2009, ApJ, 697, 862
Puls, J., Urbanova, M. A., Venero, R., Repolust, T., Springmann, U., Jokuby, A., & Mokiem, M. R. 2005, A&A, 435, 669
Ribas, I., Fitzpatrick, E. L., Maloney, F. P., Guinan, E. F., & Udalski, A. 2002, ApJ, 574, 771
Ribas, I., Jordi, C., Vilardell, F., Fitzpatrick, E. L., Hilditch, R. W., & Guinan, E. F. 2005, ApJ, 635, L37
Santolaya-Rey, A. E., Puls, J., & Herrero, A. 1997, A&A, 323, 488
Schaefer, B. E. 2008, AJ, 135, 112
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
Stetson, P. B. 1987, PASP, 99, 191
Stetson, P. B. 1994, PASP, 106, 250
Stickland, D. J. 1997, Observatory, 117, 37
Subramanian, S., & Subramaniam, A. 2010, A&A, 520, A24
Szczygiel, D. M., Stanek, K. Z., Bonanos, A. Z., Pojmanski, G., Pilecki, B., & Prieto, J. L. 2010, AJ, 140, 14
Tokunaga, A. T., & Vacca, W. D. 2005, PASP, 117, 421
Torres, G., Andersen, J., & Giménez, A. 2010, A&AR, 18, 67
van der Marel, R. P. 2006, in The Local Group as an Astrophysical Laboratory ed. M. Livio & T. M. Brown (Cambridge: Cambridge Univ. Press), 47
van der Marel, R. P., et al. 2002, AJ, 124, 2639
Vilardell, F., Ribas, I., Jordi, C., Fitzpatrick, E. L., & Guinan, E. F. 2010, A&A, 509, A70
Walborn, N. R., & Fitzpatrick, E. L. 1990, PASP, 102, 379
Wyrzykowski, L., et al. 2003, Acta Astron., 53, 1