Efficacy and Safety of Sofosbuvir-based Regimens in Hepatitis C Patients With Decompensated Cirrhosis: A Systematic Review and Meta-analysis

Wenyan Zhang1#, Jing Zhang1#, Shan Tang1, Yali Liu1, Xiaofei Du1, Lixia Qiu1, Menglu Liu1, Haibin Yu1* and Calvin Q. Pan2*

1Beijing Youan Hospital, Capital Medical University, Beijing, China; 2Division of Gastroenterology and Hepatology, Department of Medicine, NYU Langone Health, NYU Grossman School of Medicine, New York, USA

Abstract

Background and Aims: Decompensated cirrhotic patients with hepatitis C (HCV) are often under-represented in clinical trials. We aimed to evaluate pooled data on the efficacy and safety of sofosbuvir (SOF)-based regimens in these patients.

Methods: We conducted a systemic review and meta-analysis by searching multiple databases for studies published from October 2010 to October 2020. Outcomes of interest were sustained virologic response (SVR) and safety of SOF-based regimens in decompensated HCV patients. Two reviewers independently performed the study selection and data extraction. Results: We included 33 studies that enrolled 5,302 HCV patients. The pooled SVR rate in decompensated patients with SOF-based regimens was 81.1% (95% CI: 82.8–87.3). Patients on SOF/velpatasvir-ribavirin achieved a significantly higher SVR (91.0%, 95% CI: 87.7–93.9) than that of SOF/ledipasvir-ribavirin (86.3%, 95% CI: 84.6–87.8; p=0.004), or on SOF/daclatasvir-ribavirin (82.4%, 95% CI: 78.2–86.2%; p<0.001). Adding ribavirin to SOF-based regimens (pooled SVR 84.9%, 95% CI: 81.7–87.9) did not significantly increase the SVR (83.8% (95% CI: 76.8–89.8%); p=0.76) in decompensated patients, which was also true in subgroup analyses for each regimen within the same treatment duration. However, adding ribavirin significantly increased the frequency of adverse events from 52.9% (95% CI: 28.0–77.1) to 89.2% (95% CI: 68.1–99.9) and frequency of severe events. The pooled incidence of hepatocellular carcinoma and case-fatality of decompensated patients were 3.1% (95% CI: 1.5–5.0) and 4.6% (95% CI: 3.1–6.3), respectively. The overall heterogeneity was high. There was no publication bias.

Conclusions: The analysis found that 12 weeks of SOF/velpatasvir without ribavirin is the preferred therapy, with a significantly higher SVR compared with other SOF-based regimens in decompensated HCV patients.

Citation of this article: Zhang W, Zhang J, Tang S, Liu Y, Du X, Qiu L, et al. Efficacy and Safety of Sofosbuvir-based Regimens in Hepatitis C Patients With Decompensated Cirrhosis: A Systematic Review and Meta-analysis. J Clin Transl Hepatol 2023;11(1):144–155. doi: 10.14218/JCTH.2022.00006.
should take the HCV genotype in the individual patient into consideration when selecting the regimen.6,11 Because of serious concerns associated with drug concentrations and the related risk of toxicity in patients with uncompensation, DAA regimens containing protease inhibitors (e.g. grazoprevir, voxilaprevir, or glecaprevir) should be avoided in Child-Pugh B or C patients with decompensated cirrhosis.12 However, data on the comparison of the three aforementioned SOF-based regimens that would assist in selecting individualized treatment for such patients are limited. As SOF/VEL, is a pan-genotypic regimen that can be used to treat patients who have a genotype indication for SOF/LDV or SOF/DCV, comparison of the efficacy and safety of several regimens are needed to guide treatment decisions. Several recent cohort studies and randomized controlled trials (RCTs) of SOF-based DAA therapy without ribavirin have included HCV patients with decompensated liver disease. There is growing interest in investigating whether ribavirin can be removed from the regimens in this special population because of the high frequency of adverse events (AEs).13 However, data from individual studies is limited. With that in mind, we performed a meta-analysis to analyze pooled outcomes on the efficacy and safety of SOF-based regimens for HCV patients with decompensated cirrhosis. We compared the SVR and AEs of the regimens and assessed the pooled SVR benefits and AEs when adding ribavirin to the DAA treatment in the patients.

Methods

Our systematic review and meta-analysis followed a protocol developed by authors CP, HBY, and JZ and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.14 The search strategy, eligibility criteria, and outcomes were registered on the PROSPERO website (CRD42020149072).

Eligibility criteria

The current review included controlled or comparative studies that enrolled HCV patients with decompensated cirrhosis, which was defined with Child-Pugh scores ≥7 points, or ascites, hepatic encephalopathy, upper gastrointestinal hemorrhage in the combination of fibrosis stage 4 within 6 months before the start of DAAs treatment. Additional eligibility criteria included: (1) study patients who had received SOF-based DAA regimens and reported outcomes that included SVR, treatment-associated AEs, and the incidence of HCC, death, and liver transplantation; (2) journal articles and meeting abstracts published in English and other languages; (3) inclusion of at least 20 adult patients ≥18 years of age. We excluded studies that met one of the following criteria: (1) enrollment of patients who received protease inhibitors; (2) treatment with only SOF or SOF combined with ribavirin; (3) inclusion of >5% of patients with coinfection of another hepatitis virus such as hepatitis B, delta or HCC, 4) lack of measurement of SVR; (5) in vitro or animal studies; and 6) lack of reported safety data. If two or more studies included the same cohort of patients, the most recent one was selected for review to avoid the analyses of the duplicated data.

Search strategy

We comprehensively and systematically searched PubMed, the Cochrane Central Register of Controlled Trials, Embase, MEDLINE, and Web of Science without language restrictions from October 2010, which is the time of the first publications on SOF DAA treatment to October 2020. The search terms were "liver cirrhosis" and "Child’s C, or Child C, or decompensated, or Child-Pugh C" and "Hepatic cirrhosis, or cirrhosis, or liver," and "sofosbuvir." Supplementary Table 1 summarizes the search strategy for PubMed and the other databases. We also looked at the reference lists for relevant abstracts and original research articles.

Study selection and data extraction

Two reviewers independently reviewed the titles and abstracts of the retrieved articles. Articles were selected for data extraction following review of the full text publications. Disagreements were reconciled by the consensus of the corresponding authors. For each article, two reviewers independently extracted data in duplicate using a pretested and standardized form. A third reviewer compared the content and discrepancies of the extracted data. The corresponding authors resolved inconsistencies by reviewing the full text of the articles. The extracted data were the name of first author, study type, year of publication, study country, study design, patient clinical characteristics: age, sex, body mass index, care setting, HCV RNA level, and renal function status), the severity of liver disease (Child-Pugh A/B/C), history of previous treatment for hepatitis C (treatment-naïve vs. treatment-experienced), reasons for liver transplantation before antiviral therapy (HCC non-LT vs. HCC/LT), HCV genotype, DAA regimen and treatment duration, efficacy, and safety outcomes. If the missing data in the article was not housekeeper data, we ignored it.

Assessment of outcomes

Our interests in outcomes included the treatment efficacy of SOF-based regimens assessed by SVR at 12 or 24 weeks after completion of treatment; the safety outcomes such as the frequency and percentage of AEs determined by the percentage of patients who had AEs that occurred after receiving treatment, particularly severe adverse events (SAEs) such as death, life-threatening conditions, permanent or severe disability that resulted in the patient being hospitalized, requiring extended hospital stay, or developing HCC.

Assessment of the study quality and risk of bias

Two reviewers independently evaluated the quality of each study. The risk of publication bias in randomized studies was evaluated using tools from the Cochrane Collaboration.13 In each domain, studies was classified as having "low risk," "unclear risk," or "high risk" of bias. The risk of bias for observational studies was assessed using the modified Newcastle-Ottawa scale (NOS),16 which includes three dimensions: participant selection (maximum 4 points), comparability (maximum 2 points), and exposure or outcomes of study participants (maximum 3 points); Based on overall scores, studies were classified as high (≥7), fair (4–6), or low quality (≤4).

Statistical analysis

We performed a meta-analysis of the data using the meta and forest plot packages in R Statistics (3.6.1). The pooled SVR12 data were analyzed for efficacy outcomes. Subgroup meta-analyses of SVR12 were performed with stratification

Journal of Clinical and Translational Hepatology 2023 vol. 11(1) | 144–155 145
by treatment regimen, HCV genotype, treatment duration, treatment location, and decompensated liver cirrhosis. As the SVR rates in the majority of studies approached 100%, we performed a Freeman-Tukey double arcsine transformation of the combined values to stabilize the variance.17 Meta-regression was used to find difference in SVR rates between the two subgroups, and 95% confidence intervals (CIs) were calculated. The output the of meta-regression was back-transformed, and the difference between the intercept and estimate of the relevant variable was calculated. Safety data were pooled, and the analysis included the AEs, SAEs, HCC, and case-fatality rates. We then calculated the weighted difference and the pooled effect size using random-effect or fixed-effect models. To measure the overall heterogeneity across the included studies, we used the Cochrane Q test and I^2 statistic, where an I^2 value >50% or a Cochrane Q test p-value of <0.1 indicated significant heterogeneity. If heterogeneity was high, the random-effect model was used, otherwise a fixed-effect model was used. We used sensitivity analysis to explore the impact of individual studies on the overall results, deleting each study in turn to observe and evaluate whether the results of the remaining studies differed significantly. Publication bias was assessed by Egger’s Regression asymmetry test and funnel plots, with $p<0.05$ considered statistically significant.

Results

A total of 1,915 studies were identified in the initial search of the electronic databases. Of those, 33 articles met the inclusion criteria; the others were excluded. Sixteen were prospective cohort studies, nine were RCTs, and eight were retrospective analyses. Figure 1 shows the selection process and reasons for exclusion.

Study characteristics

A total of 6,976 adult patients with HCV-related cirrhosis were enrolled in our meta-analysis. The characteristics of the included studies are summarized in Table 1.18–50 Studies
Author	Year	Study Country	Design Type	Age (range)	Regimen	Duration (weeks)	SVR12/24 (DC) %	Genotype	SVR12/24 (CC) %	Genotype		
Takehara	2019	RCT Japan	Prospective	66 (42–83)	SOF+VEL±RBV	12	94/102	1, 2, 3	100/100	1, 2, 3		
Ridruejo	2019	NO-RCT Argentina	Prospective	60±12	SOF-DCV±RBV	12/24	82/91	1, 2, 4	46/486	3, 4, 6		
Pellicelli	2019	NO-RCT Rome, Italy	Prospective	52±4±7.9	SOF/DCV±RBV	24	23/28	3	199/205	10/10		
Somlo	2019	NO-RCT Saudi Arabia	Prospective	61.1±10.9	SOF/DCV±RBV	12/24	43/48	1, 3	39/41	3, 4		
Sanai	2018	NO-RCT Rome	Prospective	54±3±7.5	SOF+DCV±RBV	12/24	38/41	1, 3	39/41	3, 4		
Garg	2018	NO-RCT India	Prospective	45±18–75	SOF+DCV±RBV	24	28/30	1, 3	28/30	1, 3		
Young	2017	NO-RCT Indian	Prospective	52±4±7.9	SOF/DCV±RBV	24	23/28	3	199/205	10/10		
Goel	2017	NO-RCT US	Retrospective	54±3±7.5	SOF+DCV±RBV	12	38/41	1, 3	39/41	3, 4		
Dalgaard	2017	NO-RCT Spain	Retrospective	58±19–75	SOF+DCV±RBV	12	38/41	1, 3	38/41	3, 4		
Alonso	2017	NO-RCT Spain	Retrospective	54±18–75	SOF+DCV±RBV	12	38/41	1, 3	38/41	3, 4		
Poordad	2016	NO-RCT UK	Prospective	54±28–79	SOF+DCV±RBV	12/24	38/41	1, 3	38/41	3, 4		
Foster	2016	NO-RCT England	Prospective	54±28–79	SOF+DCV±RBV	12/24	38/41	1, 3	38/41	3, 4		
Cheung	2016	NO-RCT France	Prospective	54±28–79	SOF+DCV±RBV	12/24	38/41	1, 3	38/41	3, 4		
Backus	2016	NO-RCT Middle East	Prospective	59±5	SOF+DCV±RBV	12/24	38/41	1, 2, 3	38/41	3, 4		
Laro	2016	NO-RCT France	Prospective	55±5	SOF+DCV±RBV	12/24	38/41	1, 2, 3	38/41	3, 4		
Petersen	2016	NO-RCT France, USA	Prospective	55±3 (9–77)	SOF+VEL+RBV	12/24	38/41	1, 2, 3	38/41	3, 4		
Flamm	2016	NO-RCT France	Prospective	55±5	SOF+DCV±RBV	12/24	38/41	1, 2, 3	38/41	3, 4		
Author	Year	Study	Country	Design	age Median (Range)	Male (%)	Regimen	Duration	Genotype	SVR12/24 (DC) n/N	SVR12/24 (CC) n/N	DC/ALL (%)
------------	------	-----------	---------	-------------	--------------------	----------	----------------------------------	----------	----------	-------------------	-------------------	------------
Zhang	2019	NO-RCT	Cambodian	retrospective	59 (55–65)	41 (38)	SOF+DCV±RBV	12/24 weeks	-	89/107	-	100
El-Sherif	2018	RCT	US	prospective	59 (54–62)	-	SOF+LDV+RBV; SOF+VEL±RBV	12/24 weeks	1, 2, 3, 4	509/594	-	100
Abd Alla	2018	RCT	Egypt	prospective	19–72	-	SOF+LDV	24 weeks	4	42/50	25/25	66.7
Welzel	2016	RCT	Germany	prospective	57.0 (27–87)	-	SOF+DCV±RBV	24 weeks	1, 2, 3, 4, 5	131/165	200/223	34
Manns	2016	RCT	Germany	prospective	58 (54–62)	113 (68)	SOF+LDV+RBV; SOF+VEL±RBV	12 weeks	1, 4	131/160	65/67	47.9
Curry	2015	RCT	USA	prospective	58 (43–72)	186 (70)	SOF+VEL±RBV	12 weeks	1, 2, 3, 4, 6	234/267	-	100
Troland	2017	RCT	Greater Glasgow	prospective	49.4 (7.1)	-	SOF+DCV+RBV	12 weeks	3	21/25	24/26	43.1
Bansal	2017	RCT	India	prospective	50 (35–70)	-	SOF+DCV+RBV	24 weeks	-	31/32	42/42	17.2
Liu	2018	RCT	China	prospective	60 (27–85)	-	SOF+LDV+RBV; SOF+DCV+RBV; SOF+VEL±RBV	12/24 weeks	1, 2, 3, 4, 6	39/43	118/127	8.3
Atsukawa	2020	NO-RCT	Japan	prospective	65 (43–86)	38 (59)	SOF+VEL	12 weeks	1, 2	61/64	-	100
Gheorghe	2020	NO-RCT	Romania	retrospective	61 (35–83)	-	SOF+LDV+RBV	12/24 weeks	1b	174/209	123/140	100
Tahata	2020	NO-RCT	Japan	prospective	68 (40–87)	43 (52)	SOF+VEL	12/24 weeks	1, 2, 3	74/82	-	42.2
Takaoka	2020	NO-RCT	Japan	retrospective	68 (62–72)	39 (54)	SOF+VEL	12 weeks	1, 2	69/72	-	100
Zhang	2020	NO-RCT	Cambodia	prospective	60.2 (55.5–65.8)	-	SOF+DCV	12/24 weeks	1, 2, 6	175/264	2,235/2,494	2.9

N, total number of patients included in the study; n, number of patients with sustained viral response at 12/24 weeks after the end of treatment. DC, decompensated cirrhosis; SOF, sofosbuvir; LDV, ledipasvir; VEL, velpatavir; DCV, daclatasvir; RBV, ribavirin; RCT, random effects model.
Zhang W. et al: Efficacy and safety of SOF-based regimens in DC of HCV

published from 2015 to 2020 included 5,302 HCV patients with decompensated and 1,674 with compensated cirrhosis. However, the enrollment of study patients in those studies could have been before 2015. The majority of patients were Caucasian. The treatment regimens were SOF/VEL, SOF/LDV, and SOF/DCL for t 12 to 24 weeks. Ribavirin was added to the regimens in 28 studies. All RCTs were considered to be high quality studies based on the methods of randomization and allocation concealment, and were found to have low risk of bias in terms of attrition, outcome reporting, and detection. Of 24 nonrandomized cohort studies, 22 had NOS scores ≥7 and were considered to be of high quality. The remaining two studies were of medium quality with scores of 4–6 points. Comprehensive evaluation of the risk of bias is shown in Supplementary Table 2.

Overall treatment outcomes of patients with decompensated cirrhosis

The treatment of cirrhotic patients with HCV with the afore-mentioned DAA regimens yielded high cure rates. The pooled SVR12 rate for all 5,302 patients with decompensated hepatitis C cirrhosis in the 33 studies was 85.1% (95% CI: 82.8–87.3). The random-effect model was used in the analysis because the $I^2=74\%$ ($\chi^2=0.0048$, $p<0.01$). The forest plots of SVR12 rates are shown in Figure 2. For comparison of pooled SVR rates in HCV patients with cirrhosis at the compensated versus decompensated stages, we compiled the SVR data from 14 studies including 1,674 patients with compensated cirrhosis and 5,302 with decompensated cirrhosis (Fig. 3). A significantly higher pooled SVR rate was found in the compensated group [95.8% (95% CI: 94.0–97.3) vs. 85.1% (95% CI: 82.8–87.3); $p<0.001$] (Supplementary Fig. 1). In a meta-regression model, the pooled SVR rate of patients with decompensated cirrhosis treated with DAA was 10.1% (95% CI: 6.6–13.6) lower than that of patients with compensated cirrhosis.

When we analyzed the two groups following stratification by DAA regimen (Fig. 3, Supplementary Table 3), The pooled SVR rates remained significantly lower in the decompensated patients who received SOF/LDV±RBV [86.6% (95% CI: 82.8–87.3)] vs. 85.1% (95% CI: 82.8–87.3); $p<0.001$] (Supplementary Fig. 1). In a meta-regression model, the pooled SVR rate of patients with decompensated cirrhosis treated with DAA was 10.1% (95% CI: 6.6–13.6) lower than that of patients with compensated cirrhosis.

When we analyzed the two groups following stratification by DAA regimen (Fig. 3, Supplementary Table 3), The pooled SVR rates remained significantly lower in the decompensated patients who received SOF/LDV±RBV [86.6% (95% CI: 82.8–87.3)] vs. 85.1% (95% CI: 82.8–87.3); $p<0.001$] (Supplementary Fig. 1). In a meta-regression model, the pooled SVR rate of patients with decompensated cirrhosis treated with DAA was 10.1% (95% CI: 6.6–13.6) lower than that of patients with compensated cirrhosis.

When we analyzed the two groups following stratification by DAA regimen (Fig. 3, Supplementary Table 3), The pooled SVR rates remained significantly lower in the decompensated patients who received SOF/LDV±RBV [86.6% (95% CI: 82.8–87.3)] vs. 85.1% (95% CI: 82.8–87.3); $p<0.001$] (Supplementary Fig. 1). In a meta-regression model, the pooled SVR rate of patients with decompensated cirrhosis treated with DAA was 10.1% (95% CI: 6.6–13.6) lower than that of patients with compensated cirrhosis.

When we analyzed the two groups following stratification by DAA regimen (Fig. 3, Supplementary Table 3), The pooled SVR rates remained significantly lower in the decompensated patients who received SOF/LDV±RBV [86.6% (95% CI: 82.8–87.3)] vs. 85.1% (95% CI: 82.8–87.3); $p<0.001$] (Supplementary Fig. 1). In a meta-regression model, the pooled SVR rate of patients with decompensated cirrhosis treated with DAA was 10.1% (95% CI: 6.6–13.6) lower than that of patients with compensated cirrhosis.

When we analyzed the two groups following stratification by DAA regimen (Fig. 3, Supplementary Table 3), The pooled SVR rates remained significantly lower in the decompensated patients who received SOF/LDV±RBV [86.6% (95% CI: 82.8–87.3)] vs. 85.1% (95% CI: 82.8–87.3); $p<0.001$] (Supplementary Fig. 1). In a meta-regression model, the pooled SVR rate of patients with decompensated cirrhosis treated with DAA was 10.1% (95% CI: 6.6–13.6) lower than that of patients with compensated cirrhosis.

When we analyzed the two groups following stratification by DAA regimen (Fig. 3, Supplementary Table 3), The pooled SVR rates remained significantly lower in the decompensated patients who received SOF/LDV±RBV [86.6% (95% CI: 82.8–87.3)] vs. 85.1% (95% CI: 82.8–87.3); $p<0.001$] (Supplementary Fig. 1). In a meta-regression model, the pooled SVR rate of patients with decompensated cirrhosis treated with DAA was 10.1% (95% CI: 6.6–13.6) lower than that of patients with compensated cirrhosis.

When we analyzed the two groups following stratification by DAA regimen (Fig. 3, Supplementary Table 3), The pooled SVR rates remained significantly lower in the decompensated patients who received SOF/LDV±RBV [86.6% (95% CI: 82.8–87.3)] vs. 85.1% (95% CI: 82.8–87.3); $p<0.001$] (Supplementary Fig. 1). In a meta-regression model, the pooled SVR rate of patients with decompensated cirrhosis treated with DAA was 10.1% (95% CI: 6.6–13.6) lower than that of patients with compensated cirrhosis.

When we analyzed the two groups following stratification by DAA regimen (Fig. 3, Supplementary Table 3), The pooled SVR rates remained significantly lower in the decompensated patients who received SOF/LDV±RBV [86.6% (95% CI: 82.8–87.3)] vs. 85.1% (95% CI: 82.8–87.3); $p<0.001$] (Supplementary Fig. 1). In a meta-regression model, the pooled SVR rate of patients with decompensated cirrhosis treated with DAA was 10.1% (95% CI: 6.6–13.6) lower than that of patients with compensated cirrhosis.

When we analyzed the two groups following stratification by DAA regimen (Fig. 3, Supplementary Table 3), The pooled SVR rates remained significantly lower in the decompensated patients who received SOF/LDV±RBV [86.6% (95% CI: 82.8–87.3)] vs. 85.1% (95% CI: 82.8–87.3); $p<0.001$] (Supplementary Fig. 1). In a meta-regression model, the pooled SVR rate of patients with decompensated cirrhosis treated with DAA was 10.1% (95% CI: 6.6–13.6) lower than that of patients with compensated cirrhosis.
CI: 85.3–88.0) vs. 97.5% (95% CI: 94.8–99.4); p < 0.001) (Supplementary Fig. 2), or SOF/DCL±RBV [82.4% (95% CI: 78.2–86.2) vs. 95.3% (95% CI: 92.8–97.4); p < 0.001] (Supplementary Fig. 3). When compared with patients with compensated cirrhosis, decompensated cirrhotic patients had a significantly lower pooled SVR rate [10.14% (95% CI: 5.8–16.4) with SOF/LDV±RBV and 12.0% (95% CI: 6.7–17.2)] with SOF/DCV±RBV. The combined SVR rates were similar in both groups (compensated vs. decompensated) when patients received SOF/VEL±RBV [93.2% (95% CI: 83.4–99.1) vs. 90.3% (95% CI: 88.1–92.2); p = 0.52] (Supplementary Fig. 4).

Subgroup SVR analysis by DAA regimens in decompensated patients

Further analysis with stratification by DAA regimen indicated that SOF/VEL±RBV had a significantly higher SVR12 rate than those of other regimens in decompensated cirrhotic patients. Nineteen of the 33 studies included a total of 2,805 patients with decompensated cirrhosis who were treated with SOF/LDV±RBV. Nineteen included 1,615 with decompensated cirrhosis and treated with SOF/DCV±RBV, and eight included 882 patients with decompensated cirrhosis treated with SOF/VEL±RBV. The pooled SVR rates (Fig. 4) of HCV patients decompensated cirrhosis treated with SOF/VEL±RBV was 91.0% (95% CI: 87.7–93.9), which was significantly higher than that of patients treated with SOF/LDV±RBV [(86.3% (95% CI: 84.6–87.8)] or SOF/DCV±RBV [82.4% (95% CI: 78.2–86.2)] (Supplementary Fig. 5). In the meta-regression model, patients treated with SOF/VEL±RBV had 8.3% (95% CI: 2.1–14.5) and 6.4% (95% CI: 3.2–9.8) higher SVR rates than patients treated with SOF/DCV±RBV and SOF/LDV±RBV, respectively.

The impact of ribavirin on SVR in decompensated patients

To analyze the effect of ribavirin on treatment outcomes in HCV patients with decompensated cirrhosis, we compared the pooled SVR rates of 1,010 who received SOF-based DAA without RBV and 1,658 with RBV. In the meta-regression analysis (Fig. 5), the SVR rates in patients treated with RBV [83.8% (95% CI: 76.8–89.8)] and without RBV [84.9% (95% CI: 81.7–87.9)], were not significantly different (p=0.76) (Supplementary Fig. 6). Subgroup analysis of different DAA regimens found that at both 12 versus 24 weeks of treatment, the effectiveness of achieving SVR was similar with or without use of RBV. The pooled data indicated that when the three regimens (SOF/LDV, SOF/DV, or SOF/VEL) were compared, differences in the enhancement of the SVR rate with the addition RBV to each therapy after 12 or 24 weeks of treatment were not significant. All regimens had similar pooled SVRs in this special population. Among those who received SOF/VEL, adding RBV (n=170) did not significantly increase the SVR rate compared with the patients (n=449) treated without RBV [90.0% (95% CI: 80.3–96.8) vs. 91.5% (95% CI: 86.5–95.5); p=0.70] (Supplementary Fig. 7).

Fig. 3. Treatment outcomes of patients with compensated versus decompensated cirrhosis. Horizontal bars are 95% confidence intervals (CIs) The box size indicates relative sample size. Two-tailed p-values <0.05 are significant (meta-regression).

Fig. 4. SVR12 rates of patients with decompensated cirrhosis on different regimens. Horizontal bars are 95% confidence intervals (CIs); box size indicates relative sample size. (n=36). Two-tailed p-values <0.05 are significant (meta-regression).
Overall safety outcomes of DAA therapy in decompensated patients

Of the 33 studies reviewed, 8/33, 15/33, 7/33, and 16/33 studies that reported safety data in terms of AEs, SAEs, HCC, and case-fatality in the total of 1,141, 2,547, 1,433, and 2,832 study patients, respectively (Fig. 6). The overall heterogeneity across the studies of the four safety outcomes was high, with an I^2 of >50% for each assessment. A random-effect model was used for the analysis of AEs, SAEs, HCC, and case-fatality across the studies. The compiled percentage of the AEs (i.e. one or more AE including headache, dizziness, nausea, vomiting, diarrhea, and the others reported by the investigators) was 69.0% (95% CI: 48.6–86.2). In addition, the percentage of patients who discontinued DAA treatment because of AEs (Supplementary Table 4) was 3.2% (95% CI: 1.5–5.2). The pooled percentage of SAEs, naïve in the onset of acute myocardial infarction, chronic obstructive pulmonary disease, epilepsy, mania, and others, was 16.2% (95% CI: 10.8–22.4). The pooled percentage of HCC was 3.1% (95% CI: 1.5–5.0) and that of death was 4.6% (95% CI: 3.1–6.3) in decompensated patients who received DAA therapy, respectively (Fig. 6).

Safety profiles of DAAs in decompensated versus compensated patients

The difference in incidence of AEs in decompensated and compensated patients treated with DAAs [69.0% (95% CI: 48.6–86.2) vs. 70.8% (95% CI: 30.7–97.8); $p=0.93$] was not significant. However, patients with decompensated cirrhosis had a significantly higher frequency of SAEs [2% (95% CI: 10.8–22.4) vs. 2.8% (95% CI: 0.9–5.7%); $p<0.001$], incidence of HCC [3.1% (95% CI: 1.5–5.0) vs. 0.0% (95% CI: 0.0–0.9); $p=0.001$]; and case-fatality rate [4.6% (95% CI: 3.1–6.3) vs. 0.5% (95% CI: 0.2–0.0); $p<0.001$] on DAA therapy (Supplementary Figs. 9–11, and Supplementary Table 5).

Safety analysis in decompensated patients treated with or without RBV

To gain a better understanding of the safety profile in decompensated patients treated with regimens containing RBV, we compared the pooled safety data with those of patients on DAA therapy without RBV (Fig. 7). Patients who were treated with RBV ($n=723$) had a significantly higher frequency of AEs [89.2% (95% CI: 68.1–99.9)] vs. 52.9% (95% CI: 28.0–77.7); $p=0.03$ (Supplementary Fig. 12), compared with those without RBV treatment ($n=418$). The
Zhang W. et al: Efficacy and safety of SOF-based regimens in DC of HCV

The frequency of SAEs in patients treated with RBV (n=721) was also significantly higher than that of patients (n=681) who were given DAAs without RBV [24.9% (95% CI: 16.3–34.7) vs. 12.8% (95% CI: 7.5–19.1); p=0.03] (Supplementary Fig. 13). In the meta-regression analysis, the frequencies of AEs and SAEs in patients treated with RBV increased by 33.3% (95% CI: 8.9–57.8) and 11.1% (95% CI: 1.7–23.9), respectively. The adverse effects associated with adding RBV and extending treatment duration are shown in Supplementary Table 5. There were no significant differences (p>0.05) in the frequencies of HCC and case-fatality rates between the two treatment methods (Fig. 8). In patients treated with SOF/VEL (Supplementary Fig. 14), the frequency of AEs was significantly higher in those with RBV than in those without RBV [50.2% (95% CI: 18.9–81.4) vs. 91.1% (95% CI: 85.4–95.6); p=0.008]. The results are consistent with the overall safety profile for patients with RBV treatment.

Publication bias

A sensitivity analysis of the effect on the overall results by excluding individual studies showed that the pooled SVR was not significantly changed by exclusion of any one of the 33 studies, indicating the robustness of the current analysis. Egger’s funnel plots (Supplementary Fig. 15) showed that the meta-analysis had no significant publication bias (p=0.83) as the plot of the included studies was symmetrical (Supplementary Fig. 16).

Discussion

SOF-based regimens are recommended by AASLD-IDSA and EASL guidelines for the treatment of decompensated cirrhotic patients with HCV. Both guidelines suggest SOF/VEL+RBV for...
Zhang W. et al: Efficacy and safety of SOF-based regimens in DC of HCV

In conclusion, our meta-analysis showed that SOF/VEL±RBV regimens had a significantly higher pooled SVR rate (91.0%) for decompensated cirrhotic patients compared with SOF/LDV±RBV (86.3%, \(p=0.004 \)) and SOF/DCV±RBV (82.4%, \(p<0.001 \)). There was no data on SOF/VEL±RBV for 24 weeks, and adding RBV to SOF-based regimens increased the overall frequency of AEs or SAEs, our results suggest that SOF/VEL±RBV therapy had a significantly higher pooled SVR rate (91.0%) for decompensated cirrhotic patients compared with SOF/LDV±RBV (86.3%, \(p=0.004 \)) and SOF/DCV±RBV (82.4%, \(p<0.001 \)). In addition, patients treated with SOF/VEL without RBV for 12 weeks achieved an SVR of 91.5%, which was similar to that of SOF/VEL±RBV (90.0). There was no data on SOF/VEL±RBV for 24 weeks, and adding RBV to SOF-based regimens increased the overall frequency of AEs or SAEs, our results suggest that SOF/VEL regimen without RBV was the best option in the clinical setting for HCV patients with liver decompensation when considering the efficacy and the AEs. Our findings have very important clinical implications that may serve as the evidence base for selecting SOF/VEL as the first-line treatment without RBV.
and potentially change future guidelines or the standard of clinical practice. SOF/LDV should be avoided because of the inferior efficacy in decompensated patients when compared with SOF/VEL. In patients who must be treated with SOF/LDV (n=36), it was not clear whether 24 weeks of therapy had a significantly higher SVR rate than that achieved with 12 weeks of therapy (n=50) because of the relatively small sample size. However, adding RBV had no significant impact on the SVR with either 12 or 24 weeks of SOF/LDV therapy. Our analysis also highlighted the need for future studies in decompensated patients who failed SOF/VEL (about 10%) as the SVR rates were significantly lower in decompensated patients than in noncirrhotic patients.

Acknowledgments

We thank Dr Lu Yin (Medical Research and Biometrics Center, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Fuwai Hospital) for her assistance with data analyses. The study was selected by AASLD as a poster presentation, the abstract was available for the public electronically on the AASLD website in early October 2021 and published in the October 2021 supplement of Hepatology.

Funding

The study was supported by a research grant from the Capital health development research project (grant number: 2020-1-3011); a grant from the Beijing Youan Hospital, Capital Medical University in 2018 (grant number: YNKTSTS2018105S); and a grant from the Beijing Municipal Administration of Hospitals Incubating Program in 2018 (grant number: PX2018058).

Conflict of interest

CQP is a speaker and consultant for Gilead Sciences. He also received a research grant from Gilead Sciences and Assembly Biosciences. The other authors have no conflicts of interest related to this publication.

Author contributions

Contributed equally to this work (WZ, JZ, ST), involved in data extraction, data analysis, drawing, and article proofreading (WZ). Involved in all stages of the study and supervised the conduct of the study (JZ), drafted the first draft and wrote the manuscript (ST), searched and filtered the literature (YL, XD), extracted data (LQ, ML), participated in analysis planning, interpretation of the data, and writing the manuscript, performed a critical review of the manuscript, and addressed the comments of the journal reviewers (CQP), and conceptualized the topic, supervised and facilitated the conduct of the study (HY). All authors reviewed and approved the final version of the manuscript.

Data sharing statement

All data are available upon request.

References

[1] Polaris Observatory HCV Collaborators. Global prevalence and genotype distribution of hepatitis C virus infection in 2015: a modelling study. Lancet Gastroenterol Hepatol 2017;2(3):161–176. doi:10.1016/S2352-3389(16)30181-9, PMID:28404132.

[2] Messina JP, Humphreys I, Paxman A, Brown A, Cooke GS, Pybus OG, et al. Global distribution and prevalence of hepatitis C virus genotypes. Hepatology 2015;61(1):77–87. doi:10.1002/hep.27259, PMID:25056959.

[3] de Oliveira Anrade L, D’Oliveira A, Meo RC, Da Souza EC, Costa Silva CA, Paranã R. Association between hepatitis C and hepaticcellular carcinoma. J Glob Infect Dis 2009;1(1):33–37. doi:10.4103/0977-7529.57729, PMID:20303038.

[4] Wang X, Fan X, Deng H, Zhang X, Zhang K, Li N, et al. Efficacy and safety of glecaprevir/pibrentasvir for chronic hepatitis C virus genotypes 1–6 infection: A systematic review and meta-analysis. Int J Antimicrob Agents 2019;54(6):780–789. doi:10.1016/j.ijantimicag.2019.07.005, PMID:31284039.

[5] Kamal-Yanni M. Hepatitis C drug affordability. Lancet Glob Health 2015;3(2):e73–e74. doi:10.1016/S2214-109X(14)70365-1, PMID:25617167.

[6] European Association for the Study of the Liver; Clinical Practice Guidelines Panel: Chair; EASL Governing Board representative; Panel members. EASL recommendations on the management of hepatitis C: Final update of the series. J Hepatol 2020;73(5):1170–1218. doi:10.1016/j.jhep.2020.08.018, PMID:32956768.

[7] HesamiAzedan K, Sharihi H, Rezaee-Zavarsh MS, Behnava B, Alavian SM. Next Steps Toward Eradication of Hepatitis C in the Era of Direct Acting Antivirals. Hepat Mon 2016;16(6):e37089. doi:10.5812/hepatim.37089, PMID:27275162.

[8] Charlton M, Everson GT, Flamm SL, Landis C, Brown RS Jr, et al. Ledipasvir and Sofosbuvir Plus Ribavirin for Treatment of HCV Infection in Patients With Advanced Liver Disease. Gastroenterology 2015;149(3):649–659. doi:10.1053/j.gastro.2015.05.010, PMID:25985734.

[9] Poordad F, Shiffman ML, Ghesquiere W, Wong A, Hunt GA, Dong F, et al. Daclatasvir and sofosbuvir with ribavirin for 24 weeks in chronic hepatitis C genotype 3-infected patients with cirrhosis: A Phase III study (ALLY-3C). Antivir Ther 2019;24(1):35–45. doi:10.3851/IMP3278, PMID:30382942.

[10] Goldberg D, Ditah IC, Saeanik E, Laelehizni M, Aronson A, Gores GC, et al. Changes in the Prevalence of Hepatitis C Virus Infection, Nonalcoholic Steatohepatitis, and Alcoholic Liver Disease Among Patients With Cirrhosis or Liver Failure on the Waitlist for Liver Transplantation. Gastroenterology 2017;152(5):1090–1099.e1. doi:10.1053/j.gastro.2017.01.003, PMID:28008461.

[11] Cota GF, de Sousa MR, Fereguetti TO, Rabello A. Efficacy of anti-leishmania therapy in visceral leishmaniasis among HIV infected patients: a systematic review and meta-analysis. Arch Public Health 2014;72(1):39. doi:10.1371/journal.pntd.0002195, PMID:23658850.

[12] Hézode C, Bronowicki JP, Forns X, D’Alesi M, Sokol RJ, Castellote JA, et al. Ideal oral combinations to eradicate HCV: The role of ribavirin. J Hepatol 2016;64(1):215–225. doi:10.1016/j.jhep.2015.09.009, PMID:26020878.

[13] Welch V, Petticrew M, Petrovskaja L, Relton C, White H, et al. Extending the PRISMA statement to equity-focused systematic reviews (PRISMA-E 2012): explanation and elaboration. J Clin Epidemiol 2016;70:68–69. doi:10.1016/j.jclinepi.2015.09.001, PMID:26348799.

[14] Higgins JP, Allenman IG, Gatsche PC, Juni P, Moher D, Oxman AD, et al. The GRADE Collaborator’s tool for assessing risk of bias in randomized controlled trials. BMJ 2011;343:d5928. doi:10.1136/bmj.d5928, PMID:22008217.

[15] Zhuge N, de Sousa MR, Fereguetti TO, Laelehizni M, Aronson A, Gores GC, et al. Efficacy and safety of sofosbuvir-velpatasvir with or without ribavirin in HCV-infected Japanese patients with decompensated cirrhosis: an open-label phase 3 trial. J Gastroenterol 2019;54(1):87–95. doi:10.1002/jgj.2005318-1503+x, PMID:30203225.

[16] Asian EASL-ICCA panel, EASL International Hepatitis B Task Force, EASL Integated Chronic Liver Disease Working Party. EASL recommendations on treatment of hepatitis C: Final update of the series☆. Panel: Chair; EASL Governing Board representative; Panel members. EASL International Hepatitis B Task Force, EASL Integrand Chronic Liver Disease Working Party. J Hepatol 2020;73(5):1170–1218. doi:10.1016/j.jhep.2020.08.018, PMID:32956768.

[17] High Efficacy and Safety of Flat-Dose Ribavirin Plus Sofosbuvir/Daclatasvir and sofosbuvir for 24 weeks in chronic hepatitis C genotype 3-infected patients with cirrhosis: a phase III study (ALLY-3C). Antivir Ther 2019;24(1):35–45. doi:10.3851/IMP3278, PMID:30382942.

[18] Zang W et al. Efficacy and safety of SOF-based regimens in DC of HCV. J Hepatol 2020;73(5):1170–1218. doi:10.1016/j.jhep.2020.08.018, PMID:32956768.
Zhang W. et al: Efficacy and safety of SOF-based regimens in DC of HCV

hepatitis C and advanced liver disease. BMC Infect Dis 2017;17(1):45. doi:10.1186/s12879-016-2106-x, PMID:28061762.

Hézode C, Lebray P, De Ledighen V, Zoulim F, Di Martino V, Boyer N, et al. Daclatasvir plus sofosbuvir, with or without ribavirin, for hepatitis C virus genotype 3 in a French early access programme. Liver Int 2017; 37(9):1314–1324. doi:10.1111/liv.13383, PMID:28177199.

Goel A, Bhargava R, Rai P, Aggarwal R. Treatment of chronic genotype-3 hepatitis C virus infection using direct-acting antiviral agents: An Indian experience. Indian J Gastroenterol 2017;36(3):227–234. doi:10.1007/s12664-017-0763-7, PMID:28656492.

Fox DS, McGinnis JJ, Tonnu-Mihara I, McCombs JS. Comparative treatment effectiveness of direct acting antiviral regimens for hepatitis C: Data from the Veterans administration. J Gastroenterol Hepatol 2017;32(6):1136–1142. doi:10.1111/jgh.13652, PMID:27869323.

Dalgal O, Weland O, Nordberg G, Kärsten L, Heggelund L, Färkkilä M, et al. Sofosbuvir based treatment of chronic hepatitis C genotype 3 infections-A Scandinavian real-life study. PLoS One 2017;12(7):e0179764. doi:10.1371/journal.pone.0179764, PMID:28704381.

Alonso S, Rivero-Barceló M, Fernández I, Rincón D, Real Y, Llerena S, et al. Effectiveness and safety of sofosbuvir-based regimens plus an NSSA inhibitor for patients with HCV genotype 3 infection and cirrhosis. Results of a multicenter real-life cohort. J Viral Hepat 2017;24(4):304–311. doi:10.1111/jvh.12648, PMID:27935168.

Efficacy and safety of sofosbuvir-based regimens plus an NSSA inhibitor for patients with HCV infection using direct-acting antiviral agents: An Indian experience. Indian J Gastroenterol 2017;36(3):227–234. doi:10.1007/s12664-017-0763-7, PMID:28656492.

McGinnis JJ, Tonnu-Mihara I, McCombs JS. Comparative treatment effectiveness of direct acting antiviral regimens for hepatitis C: Data from the Veterans administration. J Gastroenterol Hepatol 2017;32(6):1136–1142. doi:10.1111/jgh.13652, PMID:27869323.

Dalgal O, Weland O, Nordberg G, Kärsten L, Heggelund L, Färkkilä M, et al. Sofosbuvir based treatment of chronic hepatitis C genotype 3 infections-A Scandinavian real-life study. PLoS One 2017;12(7):e0179764. doi:10.1371/journal.pone.0179764, PMID:28704381.

Alonso S, Rivero-Barceló M, Fernández I, Rincón D, Real Y, Llerena S, et al. Effectiveness and safety of sofosbuvir-based regimens plus an NSSA inhibitor for patients with HCV genotype 3 infection and cirrhosis. Results of a multicenter real-life cohort. J Viral Hepat 2017;24(4):304–311. doi:10.1111/jvh.12648, PMID:27935168.

Poordad F, Schiff ER, Vierling JM, Landis C, Fontana RJ, Yang R, et al. Daclatasvir plus sofosbuvir, with or without ribavirin, for hepatitis C virus genotype 3 in a French early access programme. Liver Int 2017; 37(9):1314–1324. doi:10.1111/liv.13383, PMID:28177199.

Goel A, Bhargava R, Rai P, Aggarwal R. Treatment of chronic genotype-3 hepatitis C virus infection using direct-acting antiviral agents: An Indian experience. Indian J Gastroenterol 2017;36(3):227–234. doi:10.1007/s12664-017-0763-7, PMID:28656492.

Fox DS, McGinnis JJ, Tonnu-Mihara I, McCombs JS. Comparative treatment effectiveness of direct acting antiviral regimens for hepatitis C: Data from the Veterans administration. J Gastroenterol Hepatol 2017;32(6):1136–1142. doi:10.1111/jgh.13652, PMID:27869323.

Dalgal O, Weland O, Nordberg G, Kärsten L, Heggelund L, Färkkilä M, et al. Sofosbuvir based treatment of chronic hepatitis C genotype 3 infections-A Scandinavian real-life study. PLoS One 2017;12(7):e0179764. doi:10.1371/journal.pone.0179764, PMID:28704381.

Alonso S, Rivero-Barceló M, Fernández I, Rincón D, Real Y, Llerena S, et al. Effectiveness and safety of sofosbuvir-based regimens plus an NSSA inhibitor for patients with HCV genotype 3 infection and cirrhosis. Results of a multicenter real-life cohort. J Viral Hepat 2017;24(4):304–311. doi:10.1111/jvh.12648, PMID:27935168.

Poordad F, Schiff ER, Vierling JM, Landis C, Fontana RJ, Yang R, et al. Daclatasvir plus sofosbuvir, with or without ribavirin, for hepatitis C virus genotype 3 in a French early access programme. Liver Int 2017; 37(9):1314–1324. doi:10.1111/liv.13383, PMID:28177199.

Goel A, Bhargava R, Rai P, Aggarwal R. Treatment of chronic genotype-3 hepatitis C virus infection using direct-acting antiviral agents: An Indian experience. Indian J Gastroenterol 2017;36(3):227–234. doi:10.1007/s12664-017-0763-7, PMID:28656492.