HLA Associations and Risk of Posttransplant Lymphoproliferative Disorder in a Danish Population-Based Cohort

Maja Ølholm Vase, MD,1 Eva Futtrup Maksten,2 Charlotte Strandhave, MD, PhD,3 Esben Sondergaard, MD, PhD,4 Knud Bendix, MD, PhD,5 Stephen Hamilton-Dutoit, MD, PhD,5 Klaus Andersen, MD, PhD,6 Michael Boe Møller, MD, PhD,7 Søren Schwartz Sørensen, MD, PhD,8 Jan Kampmann, MD,9 Hans Eiskjær, MD,10 Martin Iversen, MD, PhD,11 Ilse Duus Weinreich,12 Bjarne Møller, MD, PhD,13 Bente Jespersen, MD, PhD,2 and Francesco d’Amore, MD, PhD1

Background. Posttransplant lymphoproliferative disorder (PTLD) is a feared complication to organ transplantation, associated with substantial morbidity and inferior survival. Risk factors for PTLD include T cell-depleting induction therapy and primary infection or reactivation of Epstein-Barr virus. Possible associations between certain HLA types and the risk of developing PTLD have been reported by other investigators; however, results are conflicting. Methods. We conducted a retrospective, population-based study on 4295 Danish solid organ transplant patients from the Scandiatransplant database. Having identified 93 PTLD patients in the cohort, we investigated the association of HLA types with PTLD, Epstein-Barr virus status and time to PTLD onset. The outcomes survival and PTLD were evaluated using Cox regression; mismatching, and the PTLD-specific mortality were evaluated in a competing risk analysis. Results. Risk of PTLD was associated with male sex (odds ratio, 1.70; 95% confidence interval, 1.07–2.71), and, in women, HLA-DR13 conferred an increased risk (odds ratio, 3.22; 95% confidence interval, 1.41–7.31). In multivariate analysis, HLA-B45 and HLA-DR13 remained independent predictive factors of PTLD. Mismatching in the B locus was associated with a reduced risk of PTLD (P < 0.001). Overall survival was poor after a PTLD diagnosis and was significantly worse than that in the remaining transplant cohort (P < 0.001). Conclusions. Our data indicate risk-modifying HLA associations, which can be clinically useful after transplantation in personalized monitoring schemes. Given the strong linkage disequilibrium in the HLA region, the associations must be interpreted carefully. The large size, virtually complete ascertainment of cases and no loss to follow-up remain important strengths of the study.

(Transplantation Direct 2015;1: e25; doi: 10.1097/TXD.0000000000000534. Published online 11 August.)

Received 24 June 2015. Accepted 30 June 2015.

1 Department of Hematology, Aarhus University Hospital, Aarhus, Denmark.
2 Department of Nephrology, Aarhus University Hospital, Aarhus, Denmark.
3 Department of Nephrology, Aalborg University Hospital, Aalborg, Denmark.
4 Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.
5 Institute of Pathology, Aarhus University Hospital, Aarhus, Denmark.
6 Department of Pathology, Odense University Hospital, Odense, Denmark.
7 Department of Pathology, Aarhus University Hospital, Aarhus, Denmark.
8 Department of Nephrology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
9 Department of Nephrology, Odense University Hospital, Odense, Denmark.
10 Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.
11 Division of Lung Transplantation, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Denmark.
12 Scandiatransplant, Aarhus University Hospital, Aarhus, Denmark.
13 Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark.

The authors declare no conflicts of interest.

Copyright © 2015 The Authors. Transplantation Direct. Published by Wolters Kluwer Health, Inc. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially.

ISSN: 2373-8731
DOI: 10.1097/TXD.0000000000000534

M.O.V., K.B., S.H.-D., B.J., F.d’A participated in conception and design. K.B., S.H.-D., M.B.M., C.A., I.D.W. participated in provision of study material. J.K., E.F.M., S.S.S., E.S., C.S., M.I., H.E., I.D.W., M.O.V. participated in the collection of data. M.O.V., K.B., S.H.-D., B.K.M., F.d’A. participated in data analysis and interpretation. All authors participated in article writing and final approval of article.

Correspondence: Maja Ølholm Vase, MD, Department of Hematology, Aarhus University Hospital, Tage Hansensgade 2, DK-8000 Aarhus C, Denmark. (majvas@rm.dk).
The HLA genes are highly polymorphic, resulting in a wide variety of specificities in the peptide-binding grooves. The HLA specificities play a crucial role in infectious and inflammatory conditions and have also been associated with susceptibility to certain hematological diseases. Post-transplant lymphoproliferative disorder (PTLD) is a feared complication to organ transplantation, associated with substantial morbidity and inferior survival. Confirmed risk factors for PTLD include T cell–depleting induction therapy, and primary infection or reactivation of Epstein-Barr virus (EBV), underlining the importance of T-cell surveillance in antitumor immune responses. Possible associations between certain HLA types and the risk of developing PTLD have been reported by other investigators. However, conflicting results and short follow-up (3-10 years) have made it difficult to draw firm conclusions with regard to the importance of these associations. Because the incidence of EBV-negative PTLD increases with follow-up, this might be an under-reported group, and nonviral causes need also to be considered. With the increasing possibilities for monitoring and preemptive treatment, information regarding risk factors, even before transplantation, could be of considerable importance in the management of these patients.

METHODS

Study Population

This was a retrospective, population-based study including all 4295 heart, kidney, heart-lung or lung solid organ transplantations (SOTs) performed in Denmark during the period January 1 1995, to Feb 19th 2013. Data were recorded in Scandiatransplant, which contains data on all SOTs carried out in Denmark since 1995, including information on HLA-typings of both donors and recipients. All HLA typings were performed in laboratories in Copenhagen and Aarhus, accredited by the “European Federation for Immunogenetics” in accordance with current standards. For MHC class I, HLA-A and -B, and for MHC class II, HLA-DR were recorded. It was possible to determine the killer immunoglobulin-like receptor ligand HLA-Bw4 and HLA-Bw6 status in 3962 and in 3973 patients, respectively, based on http://hla.alleles.org/antigens/bw46.html.

Cases of PTLD were identified in the Danish Scandiatransplant cohort by combined retrieval of data from the Danish Cancer Registry and the Danish Lymphoma Group Registry. This strategy was applied to maximize capture of incident lymphoma cases. The Danish Cancer Registry has re-registered incident cancer cases on a nationwide scale since 1943 with accurate and almost complete ascertainment of cases. Lymphoma diagnoses were coded according to the International Classification of Diseases (ICD) for Oncology (ICD-O-1-3) from 1977 to 2003 and according to ICD-10 since 2004. All cases recorded from 1978 onward have subsequently been converted to ICD-10 codes, including codes for lymphoma subtypes. The PTLDs occurring up to 3 months after graft loss, and subsequent tapering of immunosuppressive therapy, were included. Patient status (alive or deceased) was retrieved from the Danish civil registration registry, including date if deceased. All data sources were linked using the civil registration number, a unique 10-digit personal identifier assigned at birth or immigration to all Danish residents since 1968. The number encodes sex and date of birth. It permits valid and unambiguous linkage between all registries and clinical databases in Denmark and ensures no loss to follow-up. This initial strategy identified 88 PTLDs in the Danish Scandiatransplant cohort. A further 5 PTLDs in patients transplanted in the period 1990 to 1995, and in which cases, HLA data were available, were identified through the participating pathology departments. Thus, a total of 93 PTLDs were included in the correlation analyses.

The histopathology of all cases of PTLD identified among cohort members were reviewed by expert hematopathologists (coauthors K.B. or S.H.D.) and reclassified according to current World Health Organization (WHO) 2008 criteria, providing a sufficient amount of tumor tissue was available. In cases with inadequate tumor tissue (n = 41), the original pathology reports and chart review unequivocally confirmed the PTLD diagnosis.

Detailed clinical data were obtained from the Danish Lymphoma Group Registry and from medical records. The study was approved by the Central Denmark Region Committees on Health Research Ethics (record no. 41309) and the Danish Data Protection Agency (record no. 1-16-02-247-13) and was conducted in accordance with the Helsinki Declaration.

Immunohistochemistry for Revision of Tumor Classification

Primary diagnostic formalin fixed paraffin-embedded tissue samples containing representative PTLD were available from 52 patients; samples of these were included in a tissue microarray (TMA). Briefly, three 1-mm diameter tissue cores were identified in tumor areas, punched out and re-embedded in recipient blocks using a TMA master-01 (3DHISTECH Ltd., Budapest, Hungary).

Immunohistochemical stains were performed on 4 μm formalin fixed paraffin-embedded tissue sections according to standard antibody-specific protocols, optimized in house for use with the Ventana Benchmark automated staining system (Ventana Medical Systems, Tucson, AZ). For review of the classification of the tumors according to WHO 2008 criteria, a panel of markers was applied consisting of CD3 (polyclonal, Dako, Glostrup, Denmark), CD5 (SP19, Ventana Medical Systems), CD4 (SP35, Ventana), CD8 (SP57, Ventana), CD10 (SP67, Ventana), CD20 (L26, Ventana), CD79a (MRQ-48, Ventana), CD30 (Ber-H2, Dako) and MUM1 (MUM1P, Dako). The EBV antigens were visualized using antibodies to LMP (LMP clones CS.1-4, Dako) and EBNA2 (PE2; Abcam, Cambridge, UK). EBV-RNA (EBER) expression was identified by in-situ hybridization (ISH View Blue Detection kit; Ventana). In each case, EBV status in the PTLD cell population was evaluated by the authors (S.H.D. and M.V.) and recorded as either positive or negative.

HLA Supertypes

The class I major histocompatibility complex molecule presents intracellularly derived peptides from protein processing. Although these receptors are extremely polymorphic, class I molecules can be clustered into 9 so-called supertypes that bind largely overlapping peptide structures. In addition to carrier frequencies, the HLA class I phenotypes were also categorized according to the deduced supertype.

Statistical Analyses

Associations between HLA typings, deduced HLA supertypes, EBV status and PTLD occurrence were evaluated using
RESULTS

Clinicopathological Features of the Patients

The characteristics of the patients are summarized in Table 1 (the subgroup of patients in the TMA has been described previously\(^1^9\)). Patients developing PTLD were transplanted at a significantly younger age (mean age 41 years vs 44 years; \(P = 0.018\)), and the majority (74%) were men. Epstein-Barr virus was present in the tumor cell population in 60 of 77 (78%) cases with known EBV status. Comparing patients with EBV-negative and EBV-positive PTLDs, no significant age differences were found at either the time of transplantation or at the time of PTLD presentation. The median time to PTLD was 2.2 (interquartile range, 0.8-5.9) and 7.2 (interquartile range, 2.4-9.1) years for EBV-positive and EBV-negative PTLD, respectively (\(P = 0.011\)), and 3.3 years (interquartile range, 1.0-7.7 years) for the combined PTLD cohort. In the whole cohort, the median follow-up from transplantation to censoring was 7.1 years (interquartile range, 3.7-11.8 years) and did not differ between the patients who developed PTLD and those who did not (\(P = 0.116\)).

Host-Related Risk Factors of PTLD

An overview of all HLA phenotype frequencies in transplanted patients is provided in Table S1 (SDC, http://links.lww.com/TXD/A7). Comparing the PTLD cohort with the rest of the transplanted patients, HLA-B45 was more common in PTLD patients (4.3% vs 1.4%).

The risk of developing PTLD was strongly associated with male sex (age-adjusted OR\(^b\), 0.59; 95% CI, 0.37-0.93; OR\(^d\), 1.71; 95% CI, 1.07-2.71; \(P = 0.040\)). This applied to all HLA specificities and deduced supertypes. For women only, HLA-DR6 and HLA-DR8 expression tended to correlate with a higher risk (OR\(^b\), 2.28; 95% CI, 1.02-5.14 and

Table 1: Baseline characteristics of all transplantations

PTLD patients	Transplantations without PTLD	\(P\)	
Number	93 (100)	4202 (100)	0.018
Age at transplantation, mean (range), y	41 (1-68)	44 (0.5-83)	
Sex (%)			
Male	68 (73)	2595 (62)	0.026
Female	25 (27)	1607 (38)	
Organ transplant (%)			
Kidney	72 (77)	3175 (75)	0.158
Heart	12 (13)	469 (11)	
Lung	8 (9)	550 (13)	
Heart and lung	1 (1)	8 (1)	
Transplantation per calendar period (per year)			
Before 1995 (not included in rate calculation)	5	0	0.000
1995-1999	33 (6)	1045 (208)	
2000-2004	26 (4.6)	1125 (225)	
2005-2009	21 (4.0)	1160 (232)	
2010-2013	8 (2.5)	872 (277)	
Induction therapy			
Antithymocyte globulin	31 (33)	1367 (33)	0.638
CD25 antibody	39 (42)	1928 (46)	
EBV serostatus			
R−/D+	10 (11)	66 (2)	
R+/D+	3 (3)	566 (13)	
Unknown	80 (86)	3570 (85)	
Previous malignancy			
Nonmelanoma skin cancer	13 (14)	Unknown	
Other\(^c\)	6 (6)	Unknown	
Histological subtype of PTLD			
Early lesions	14 (15)	NA	
Polymorphic lesions	6 (7)		
Monomorphic lesions	73 (78)		
Diffuse large	58 (62)		
B-cell lymphoma			
Classical Hodgkin lymphoma	5 (5)		
Burkitt lymphoma	3 (3)		
Marginal zone lymphoma	2 (2)		
T-anaplastic large cell lymphoma	2 (2)		
Malignant lymphoma unspecified	2 (2)		
Mantle cell lymphoma	1 (1)		

\(^a\)Cutoff at February 19, 2013.

\(^b\)Due to large amount of missing data statistical analyses were regarded inappropriate.

\(^c\)1 renal cell carcinoma, 2 prostate cancer, 1 melanoma, 1 carcinoid tumor, 1 ductal carcinoma of the breast.
OR, 3.20; 95% CI, 1.07-9.55), respectively, adjusted \(P \) values were not significant. When looking at the splits of HLA-DR6, this higher risk was solely attributable to the HLA-DR13 split (OR, 3.22; 95% CI, 1.41-7.31; \(P = 0.045 \)). Comparing the EBV-positive PTLD patients versus patients without PTLD, an increased OR for carriers of the split HLA-B45 (OR, 5.83; 95% CI, 2.25-15.10; \(P < 0.001 \)) was found. None of these phenotypes was associated with EBV-negative PTLD. In the latter, only HLA-B37 (OR, 5.78; 95% CI, 1.62-20.54; \(P = 0.072 \)) showed a trend toward an increased risk. All estimates were adjusted for sex.

The relevant ORs are presented in Figure 1, and the sex-specific ORs in Figure S1 (SDC, http://links.lww.com/TXD/A7).

Differences in HLA Phenotypes Between EBV-Positive and EBV-Negative PTLD

In the PTLD cohort, the EBV-positive lymphoproliferations developed significantly earlier after transplantation than the EBV-negative ones (see above). However, this effect of EBV was influenced by the patient’s HLA type. The presence of HLA-A2 and HLA-B15 were consistently associated with a shorter time to PTLD onset for EBV-positive tumors (\(P = 0.028 \) and 0.03, respectively); for the HLA types, A10, A11, B14, B18, B21, and B22, the EBV-positive PTLD presented earlier regardless of whether the HLA type was expressed or not (all \(P \) values, 0.011-0.037). In contrast, for HLA-A1, -A3, -A9, -A19, -A28, -B5, -B7, -B8, -B13, -B16, -B17, -B27, -B35, -B37, -B40, -DR2, -DR3, -DR5, -DR7, -DR8, and -DR9, when present, the time to PTLD was not associated with the EBV status of the tumor (all \(P \) values between 0.011 and 0.043). When examining the splits, the results were consistent with those of the broad specificities, except for HLA-B45[12], in which EBV-positive PTLD always had a shorter time to onset, no matter the expression status (\(P = 0.015 \); group 2).

FIGURE 1. Sex- and EBV-specific odds ratios for significant split specificities with regard to development of posttransplant lymphoproliferative disorder.

HLA Mismatching and Risk of PTLD

The implications of HLA mismatching on PTLD development are depicted in Figure 2. At the HLA-B locus, zero mismatches were associated with a significantly higher incidence of PTLD (\(P < 0.001 \)) compared with 1 to 2 mismatches; this corresponded to an RR for 1 to 2 mismatches at 5 and 10 years of 0.42 (95% CI, 0.23-0.75; \(P = 0.003 \)) and 0.52 (95% CI, 0.31-0.86; \(P = 0.010 \)), respectively. At 5 years after transplantation, HLA-DR mismatching was associated with a small, but statistically significant, risk reduction for EBV-negative PTLD compared with no mismatches (RR, 0.07; 95% CI, 0.008-0.57; \(P = 0.013 \)). The HLA-A mismatching had no impact on PTLD incidence. The number of mismatches for both HLA-A and -B was significantly lower in living donor transplantations (\(P < 0.001 \) for both). However, donor type itself (i.e., living versus deceased) was not associated with PTLD occurrence (\(P = 0.525 \)).

The risk of PTLD, as illustrated by the incidence rate, differed according to time after transplantation and to the EBV status of the tumor (Table S2, SDC, http://links.lww.com/TXD/A7). The previously reported bimodal pattern20 is in our data attributable to the variation in EBV expression (Figure 3), with PTLD cases from the first incidence peak developing soon after transplantation being largely EBV positive, followed over 15 to 20 years after transplantation by a rise in EBV-negative PTLD.

Results of the univariate and multivariate analyses for risk of developing PTLD are listed in Table 2. The individual variables were chosen based on the results of the regression analyses and predefined variables of interest. The multivariate analysis was adjusted for sex, because of the observed sex-related differences. Expression of HLA-B45–, HLA-DR13–, and the HLA-A2–associated supertypes remained independent predictive factors for the risk of developing PTLD (Table 2).
Survival Analyses

With a mean follow-up of 4 years (range, 0-18 years) from onset of PTLD, the 5-year OS and PFS, for all PTLD patients taken as 1 group, were 58% (95% CI, 47-68%) and 51% (95% CI, 38-58%), respectively (Figure 4). As expected, patients with monomorphic disease did considerably worse than patients with early/polymorphic lesions (log-rank \(P = 0.022 \)). Also, mismatching at the DR locus was associated with poorer survival (5-year OS, 70% (45-85%), 62% (47-75%), and 29% (11-49%) for 0, 1, and 2 mismatches, respectively; log-rank \(P = 0.013 \)).

The variables assessed at univariate level are listed in Table 3. In the multivariate Cox regression analysis, we included HLA-DR mismatches, rituximab treatment, WHO performance status, nodal versus extranodal disease, and Ann Arbor stage. All except HLA-DR mismatches retained independent prognostic value in the multivariate analysis (Table 3).

Next, we evaluated PTLD-specific mortality (Figure 4) in the total cohort of transplanted patients. The PTLD patients had a significantly higher mortality compared with the remaining cohort population, with a risk difference of 24% (95% CI, 15-33%) at 5 years and 49% (95% CI, 36-62%) at 10 years after transplantation (\(P < 0.001 \) for both risk estimates).

DISCUSSION

In this large population-based cohort of Danish SOT patients, we identified several host-related risk factors for the development of PTLD and performed outcome analyses in various patient subsets.

We identified HLA types associated with PTLD according to: time to PTLD onset, tumoral EBV status, sex and survival. So far, the data on HLA typing related to the development of PTLD is scarce and discordant.\(^7\)-\(^10\) Three studies also included a variety of organ transplantations from both living and deceased donors in mainly white populations; Reshef et al\(^9\) identified HLA-A26 as the main PTLD risk locus, Subklewe et al\(^7\) reported HLA-B18 and -B21 as main risk factors, whereas Lustberg et al\(^10\) pointed to HLA-B40. In our cohort, HLA-A26 was only found in 5% of the transplanted patients and in 8% of those who developed PTLD. Corresponding values for HLA-B21 were 4% and 2% in the 2 groups, respectively, whereas HLA-B18 was found in 6% of patients in both groups. The HLA-B40 was also almost equally expressed in control and PTLD patients. The fourth study by Pourfarziani et al\(^8\) is markedly smaller, included only renal transplantations, and reported data from an Iranian patient cohort with an expectedly different immunological background to our patients. The primary risk loci in our study (HLA-B45 and -DR13) have never been reported before and remained independent predictive factors for the risk of developing PTLD in multivariate analysis. They were both identified in patient subgroups, and we did not identify any risk alleles in the combined cohort. These differences probably reflect the heterogeneity of the analyzed patient cohorts and emphasize the need for a detailed understanding of the factors influencing PTLD development.
characterization of donor, recipient and tumor biology to facilitate cohort comparisons.

One of the strongest associations revealed by our study was the significantly higher risk of PTLD in male patients. The present report is one of the few to identify this association, and is the first to link a sex-related risk to a specific HLA phenotype. An increased risk related to male sex was previously reported by Dharnidharka et al.,21 Morton et al.,22 and Lustberg et al10 and is consistent with the general male preponderance also seen in lymphomas occurring in non-overtly immunosuppressed individuals. The male preponderance was found throughout all HLA phenotypes and supertypes. Furthermore, our findings indicate a difference in PTLD-associated HLA types identified in this study (HLA-B45 and HLA-DR13) play similar roles in the context of EBV infection because they both present immediate-early proteins (BRLF1 and BZLF1) expressed in the lytic cycle.23 These same proteins are also presented by HLA-B18, which in a large cohort of diffuse large B-cell lymphomas correlated significantly with outcome, and was associated with PTLD.3,7 Moreover, in humans, viral peptide specific CD4+ T-cells play a crucial role in controlling both primary and recurrent infections. It has been shown, that sex-specific differences in memory T-cell responses exist,24-26 although available data are limited, and an increased risk in men might be attributable to factors other than the HLA system. The influence of EBV on PTLD development is unquestionable; however, the rate of EBV-negative PTLD increases with follow-up. In our series, the latest observed case of PTLD occurred 17 years after transplantation; the long follow-up without loss of cases is one of the main strengths of this study. It is unclear whether these “late occurring” EBV-negative

TABLE 2.

Cox regression analyses for PTLD development

Variables	PTLD patients N (%)	Univariate HR (95% CI)	P	Multivariate\(a\) HR (95% CI)	P
Sex					
Male	68 (73)	ref	0.055		
Female	25 (27)	0.64 (0.40-1.01)			
Time covariates					
Age at transplantation, mean(range)	47 (2-77)	0.99 (0.98-1.00)	0.240		
HLA mismatches					
A					
0	25 (27)	ref			
1-2	68 (73)	0.94 (0.60-1.49)	0.801		
B					
0	23 (25)	ref			
1-2	70 (75)	0.57 (0.35-0.91)	0.018	0.61 (0.37-1.01)	0.055
DR					
0	26 (28)	ref			
1-2	67 (72)	0.93 (0.59-1.46)	0.757		
HLA carrier status					
HLA-A2	41 (48)	0.71 (0.46-1.08)	0.108		
HLA-B44	26 (30)	1.34 (0.85-2.12)	0.217		
HLA-B45	4 (5)	3.62 (1.33-9.88)	0.012	3.52 (1.28-9.67)	0.015
HLA-DR13	20 (23)	1.57 (0.96-2.58)	0.072	1.70 (1.03-2.79)	0.037
Supertype A2	41 (48)	0.63 (0.41-0.96)	0.033	0.62 (0.40-0.95)	0.027
Donor type					
Living	24 (26)	ref			
Deceased	66 (71)	1.18 (0.74-1.88)	0.489		
Unknown	3 (3)				
Organ transplanted\(b\)					
Kidney	72 (77)	ref			
Heart	12 (13)	1.46 (0.76-2.79)	0.255		
Lung	8 (9)	1.23 (0.55-2.73)	0.620		
Heart-lung	1 (1)	6.32 (0.86-46.51)	0.070	4.87 (0.66-36.02)	0.212
Induction therapy					
Antithymocyte globulin	31 (33)	ref			
CD25 antibody	39 (42)	1.26 (0.74-2.17)	0.396		
Unknown\(c\)	23 (25)				

\(a\) Adjusted for sex.
\(b\) Adjusted for transplant center.
\(c\) The group is formed of kidney transplantation, who all received induction.
nor H antigens (mHags)\(^{31}\) In allogeneic hematopoietic stem
against reactivation. Interestingly, HLA-A2 presents various mi-
and strength of graft-versus-host and graft-versus-leukemia
mismatching in 2 studies\(^{7,9}\); these identified differently associated
subtype. The differences between EBV-negative and EBV-
clonal) may explain this, as well as the inconsistent results.
(b) EBV latency programs and varying tumor histology
despite using the largest EBV-positive cohort to date. Differ-
ciates in many individuals,\(^{23}\) thereby probably protecting
mHags was demonstrated,\(^{32}\) and it is plausible that the cyto-
toxic T-cell response elicited by mHag mismatching trans-
lates into a more effective tumor control.
Our findings indicate a protective effect of mismatches in
the B-loci overall, and of DR-mismatches in EBV-negative
PTLD. Because the mechanisms of how HLA types are asso-
ciated to PTLD development are largely unknown, possible
explanations for the protective effect of HLA-B-locus mis-
mismatching against PTLD development remain speculative.
Roughly a quarter of our patients received a graft from a living
donor, some of which were related and thus possibly matched
for unknown antigens, which might have been of greater
importance in determining susceptibility to PTLD than the
possible impact of HLA type matching. Wong et al\(^{33}\) found
a similar association, although in lung transplant patients, and
attributed this observation to impaired tumor surveillance sec-
ondary to decreased alloreactivity in matched patients. Also in
this field, published results are conflicting. Thus, 2 large stud-
ies by Caillard et al\(^{34}\) and Faull et al,\(^{20}\) which also included
both deceased and living donors, found no associations be-
 tween HLA mismatching and risk of PTLD. In contrast 3
other large studies\(^{35-37}\) reported increased risks of PTLD with,
respectively, increased HLA-DR-, HLA-B- and overall number
of mismatches. However, several factors make direct compar-
isons with our work difficult. The study by Opelz et al\(^{35}\) in-
cluded only deceased-donor transplantations and cases of
posttransplant non-Hodgkin lymphomas. In addition, their
follow-up was 3 years after transplantation, thus exclud-
ing most EBV-negative and a substantial proportion of the
EBV-positive PTLDs from their analysis. We also used a dif-
ferent methodology (a competing risk model) as the present
competing events would bias the Kaplan-Meier estimate.\(^{38}\)
Similarly, the estimates in the study by Bakker et al\(^{36}\) are
not easy to interpret, as the authors included several variables
in a Cox regression model which counted 20 events.\(^{39}\)
Caillard et al\(^{34}\) later reported no association with HLA mis-
matches. Although no definitive causal explanations can be
given, we find it likely that mismatching results in a more
vigorous immune response against donor-derived peptides,
thereby creating a less permissive tumor microenvironment.
Patient survival was poor after a diagnosis of PTLD, al-
though the introduction of treatment with the CD20 anti-
body rituximab has improved survival and also remained
an independent prognostic factor. Poor performance status
and widespread disease were also independently associated
with a dismal outcome, reflecting both aggressive disease
and probably also the frailty of the patients, which does not
allow for too aggressive treatment strategies. The impact
of HLA mismatching on OS is in line with previous reports.\(^{40-42}\)
A major limitation of our study is the lack of information
on the immunosuppressive treatment used in the total cohort
after transplantation, because different regimens are associ-
ated with risk of PTLD.\(^{43}\) We did, however, adjust for trans-
plantation site in the Cox analysis to account for different
strategies at the various transplantation centers, and this
did not show any association with PTLD development. Also,
we had only scarce information on donor/recipient EBV
seromismatches at time of transplant, which might explain
some of the varying HLA associations in the literature, and
our results should be interpreted in the light of this. The large
lymphomas represent sporadic disease, result from “hit and
run” EBV infection, or evolve after many years as the result
of the accumulated effect of various possible transplantation-
associated factors, such as chronic antigen stimulation by
the graft or long-term immunosuppressive medication. We
identified 1 HLA-allele (HLA-B45) associated with EBV-
positive lymphoproliferations, in line with the findings from
2 gene expression profiling studies, that suggest that PTLDs
segregate according to EBV status\(^{27,28}\) rather than histological
subtype. The differences between EBV-negative and EBV-
positive PTLDs based on tumoral EBV status were investi-
gated in 2 studies\(^{7,9}\); these identified differently associated
HLA types, although these did not overlap our results. A re-
cent study was not able to confirm these reported findings,\(^{29}\)
despite using the largest EBV-positive cohort to date. Differ-
ences in EBV latency programs and varying tumor histology
(B-cell vs T-cell, indolent vs aggressive, polyclonal vs mono-
clonal) may explain this, as well as the inconsistent results.

In line with previous reports, we found the HLA-A2
supertype to be correlated with a lower occurrence of lymphoproliferation.\(^{4,30}\) HLA-A2 is capable of inducing effective
cytotoxic T-cell responses against EBV latent antigen pep-
tides in many individuals,\(^{23}\) thereby probably protecting
against reactivation. Interestingly, HLA-A2 presents various
minor H antigens (mHags).\(^{31}\) In allogeneic hematopoietic stem
cell transplantation, mHag disparities increase the frequency
and strength of graft-versus-host and graft-versus-leukemia
effects. In a multicenter study, a significantly lower relapse
rate in patient/donor pairs mismatched for hematopoietic
mHags was demonstrated,\(^{32}\) and it is plausible that the cyto-
toxic T-cell response elicited by mHag mismatching trans-
lates into a more effective tumor control.
Variables	Patients N (%)	Univariate Analyses	Multivariate Analysis		
Sex		HR (95% CI)	*P*	HR (95% CI)	*P*
Male	68 (73)	ref			
Female	25 (27)	0.54 (0.24-1.12)	0.104		
Time covariates					
Time to PTLD, mean (range)	5 (0.25-17)	0.96 (0.90-1.03)	0.297		
Year of transplantation (5-y intervals)	93 (100)	0.91 (0.69-1.20)	0.498		
HLA mismatches					
A 0	19 (22)	ref			
1	52 (60)	1.59 (0.70-3.62)	0.219		
2	16 (18)	1.85 (0.67-5.12)	0.233		
B 0	17 (20)	ref			
1	40 (46)	0.76 (0.32-1.77)	0.523		
2	30 (34)	1.47 (0.66-3.28)	0.348		
DR 0	20 (23)	ref			
1	47 (54)	1.01 (0.44-2.27)	0.994		
2	20 (23)	2.57 (1.07-6.18)	0.035	2.40 (0.86-6.69)	0.004
HLA carrier status					
HLA-A2	40 (47)	0.87 (0.46-1.66)	0.675		
HLA-B44	26 (30)	1.25 (0.64-2.43)	0.513		
HLA-B45	4 (5)	1.54e-15 (0)	1.0		
HLA-DR13	20 (23)	0.82 (0.38-1.78)	0.614		
Supertype A2	41 (48)	0.86 (0.46-1.64)	0.655		
Supertype B44	45 (48)	0.79 (0.44-1.43)	0.438		
Immunosuppressive treatment					
Cyclosporin	69 (79)	1.78 (0.69-4.56)	0.230		
Tacrolimus	35 (41)	0.59 (0.29-1.18)	0.136		
MMF	65 (75)	0.72 (0.37-1.43)	0.351		
Azathioprine	20 (24)	1.90 (0.96-3.79)	0.067		
Antithymocyte globulin	31 (33)	ref			
CC25 antibody	39 (42)	0.63 (0.27-1.50)	0.297		
Presentation					
Early (<1 y)	23 (25)	ref			
Late (>1 y)	70 (75)	1.11 (0.56-2.20)	0.762		
Stage					
I-II	54 (59)	ref			
III-IV	38 (41)	2.29 (1.26-4.16)	0.007	2.22 (1.31-4.36)	0.020
Primary localization					
Nodal	43 (46)	ref			
Extracral	50 (54)	2.23 (1.20-4.15)	0.012	2.57 (1.18-5.57)	0.017
WHO score					
0-2	73 (81)	ref			
3-4	17 (19)	5.73 (2.96-11.07)	0.000	6.32 (3.00-13.35)	0.000
EBV status of tumor					
Positive	60 (78)	ref			
Negative	17 (22)	0.88 (0.38-2.01)	0.753		
Graft PTLD					
Present	8 (9)	1.61 (0.68-3.84)	0.280		
Absent	85 (91)	ref			
Type PTLD					
Early/polymorphic lesion	20 (22)	ref			
Monomorphic PTLD	64 (78)	1.61 (1.05-2.47)	0.029		
PTLD treatment					
Rituximab	45 (49)	2.05 (1.09-3.85)	0.025	2.96 (1.48-5.93)	0.002

Adjusted for organ transplanted.
size, inclusion of both early and monomorphic lesions, virtually
completely ascertainment of cases, and no loss to follow-
up remain important strengths of the study.

In conclusion, we report several risk-modifying HLA asso-
ciations, which can be clinically useful in personalized moni-
toring schemes after transplantation.

Given the strong linkage disequilibrium in the gene-
rich HLA region, each of the HLA alleles has to be
interpreted carefully, as other strongly linked alleles might
actually represent the true causative variant, and other
non-HLA genes in the region might also be involved. Our
present data should therefore be supplemented and con-
firming by more extensive genomic analyses, such as whole
genomic sequencing.

ACKNOWLEDGMENTS

The authors thank Dr Lars Skov Dalgaard for statistical as-
assistance, Dr Kaj Jørgensen for providing collaboration with
the Scandiatransplant registry and Line Petersen and Kristina
Lauridsen for technical assistance.

REFERENCES

1. International HIV Controllers Study, Pereyra F, Jia X, et al. The major ge-
etic determinants of HIV-1 control affect HLA class I peptide presenta-
tion. Science. 2010;330:1551–1557.
2. Gragert L, Fingerson S, Albrecht M, et al. Fine-mapping of HLA associa-
tions with chronic lymphocytic leukemia in US populations. Blood.
2014;124:2657–2665.
3. Alcoceba M, Sebastian E, Marín L, et al. HLA specificities are related to
development and prognosis of diffuse large B-cell lymphoma. Blood.
2013;122:1448–1454.
4. Niers M, Jarrett RF, Hiepcka RA, et al. HLA-A*02 is associated with a re-
duced risk and HLA-A*01 with an increased risk of developing EBV+
Hodgkin lymphoma. Blood. 2007;110:3310–3315.
5. Evens AM, Roy R, Sterrenberg D, et al. Post-transplantation lymphoprolif-
erative disorders: diagnosis, prognosis, and current approaches to ther-
apy. Curr Oncol Rep. 2010;12:383–394.
6. Opelz G, Döhler B. Lymphomas after solid organ transplantation: a collabor-
ative transplant study report. Am J Transplant. 2004;4:222–230.
7. Subkleve M, Marquis R, Choquet S, et al. Association of human leucocyte
antigen haplotypes with posttransplant lymphoproliferative disease after
solid organ transplantation. Transplantation. 2006;82:1092–1100.
8. Bourdou P, Gharbi H, Issaberi B, Taheri S, et al. Associations of Human Leuko-
cyte Antigen (HLA) haplotypes with risk of developing lymphoproliferative
disorders after renal transplantation. Ann Transplant. 2007;12:16–22.
9. Reshef R, Luskin MR, Kamoun M, et al. Association of HLA polymor-
phisms with post-transplant lymphoproliferative disorder in solid organ
transplant recipients. Am J Transplant. 2011;11:817–825.
10. Lustberg ME, Pelletier RP, Porcu P, et al. Human leucocyte antigen type
and posttransplant lymphoproliferative disorder. Transplantation. 2015;
99:1220–1225.
11. Grunnet N, Böckvassson M, Jakobsen A, et al. Scandiatransplant report
2009. Transplant Proc. 2010;42:4429–4431.
12. Gjerstorff ML. The Danish Cancer Registry. Scand J Public Health.
2011;39(7 Suppl):42–45.
13. Sverdlov SH, Campo E, Harris NL, et al (Eds.). WHO Classification of
Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. Volume 2,
World Health Organization. 2008.
14. Sidney J, Petersen B, Frahm N, et al. HLA class I supertypes: a revised and
updated classification. BMC Immunol. 2008;9:1.
15. Benjamin Y, Yekutieli D. The control of the false discovery rate in multiple
testing under dependency. Ann Stat. 2001;29:1165–1188.
16. Perner ET, Andersen PK. Regression analysis of censored data using
pseudo-observations. Statia J. 2010;10:408–422.
17. Pepe MS, Mori M, Kaplan-Meier, marginal or conditional probability curves
in summarizing competing risks failure time data? Stat Med. 1993;12:
737–751.
18. Klein JP, Logan B, Harhoff M, et al. Analyzing survival curves at a fixed
point in time. Stat Med. 2007;26:4505–4519.
19. Vase M03, Maksten EF, Bendix K, et al. Occurrence and prognostic rele-
vance of CD30 expression in post-transplant lymphoproliferative disor-
ders. Leuk Lymphoma. 2015;56:1677–1685.
20. Faull RJ, Hollet P, McDonald SP. Lymphoproliferative disease after renal
transplantation in Australia and New Zealand. Transplantation. 2005;80:
190–197.
21. Dhamdhere VR, Tejani AH, Ho PL, et al. Post-transplant lymphoprolifer-
ative disorder in the United States: young Caucasian males are at highest
risk. Am J Transplant. 2002;2:993–998.
22. Morton M, Coupes B, Roberts SA, et al. Epidemiology of posttransplan-
tation lymphoproliferative disorder in adult renal transplant recipients.
Transplantation. 2013;85:470–475.
23. Hislop AD, Taylor GS, Sauce D, et al. Cellular responses to viral infection in
patients: lessons from Epstein-Barr virus. Annu Rev Immunol. 2007;
25:587–617.
24. Villacres MC, Longmate J, Auge C, et al. Predominant type 1 CMV-
specific memory T-helper response in humans: evidence for gender differ-
ences in cytokine secretion. Hum Immunol. 2004;65:476–485.
25. Klein NP, Holmes TH, Sharp MA, et al. Variability and gender differences in
memory T cell immunity to varicella-zoster virus in healthy adults.
Vaccine. 2006;24:5913–5918.
26. Zhang X, Castelli FA, Zhu X, et al. Gender-dependent HLA-DR-restricted
epitopes identified from herpes simplex virus type 1 glycoprotein D. Clin
Vaccine Immunol. 2008;15:1436–1449.
27. Morscio J, Dierichk D, Fereiro JF, et al. Gene expression profiling reveals
clear differences between EBV-positive and EBV-negative posttransplant
lymphoproliferative disorders. Am J Transplant. 2013;13:1305–1316.
28. Cross FE, Johnson LR, Immune factors contributing to risk of
Epstein-Barr virus-positive and -negative monomorphic B-cell posttransplant
lymphoproliferative disorders. Diagn Mol Pathol. 2007;16:158–168.
29. Jones K, Wooncker L, Thornton A, et al. HLA class I associations with
EBV+ post-transplant lymphoproliferative disorder. Transpl Immunol.
2015;32:126–130.
30. Huang X, Kushkekar K, Nolte I, et al. HLA associations in classical
Hodgkin lymphoma: EBV effects matter. PLoS One. 2012;7:e39562.
31. Spierings E, Minor histocompatibility antigens: past, present, and future.
Tissue Antigens. 2014;84:374–380.
32. Spierings E, Kim YH, Hendriks M, et al. Multicenter analyses demon-
strate significant clinical effects of minor histocompatibility antigens on
GvHD and GVl after HLA-matched related and unrelated hematopoieti-
cell stem cell transplantation. Biol Blood Marrow Transplant. 2013;19:
124–1253.
33. Wong JY, Tait B, Lewvey B, et al. Epstein-Barr virus primary mismatching
and HLA matching: key risk factors for post lung transplant lymphoprolif-
erative disease. Transplantation. 2004;78:205–210.
34. Caillard S, Dhamdhere V, Agodoa L, et al. Posttransplant lymphoprolif-
erative disorders after renal transplantation in the United States in era of
modern immunosuppression. Transplantation. 2005;80:1233–1243.
35. Cross FE, Döhner E. HLA mismatching influence the outcome of
posttransplant non–Hodgkin lymphoma after kidney transplantation.
Transplantation. 2009;80:567–572.
36. Bakker NA, van Imhoff GW, Verschuuren EA, et al. HLA antigens and post
renal transplant lymphoproliferative disease: HLA-B matching is critical.
Transplantation. 2005;80:595–599.
37. Caillard S, Agodoa LY, Böhm EM, et al. Myeloma, Hodgkin disease, and
lymphoid leukemia after renal transplantation: characteristics, risk factors
and prognosis. Transplantation. 2006;81:888–895.
38. Chappell R. Competing risk analyses: how are they different and why
should you care? Clin Cancer Res. 2012;18:2127–2129.
39. Peduzzi P, Concato J, Feinstein AR, et al. Importance of events per in-
dependent variable in proportional hazards regression analysis. II. Ac-
curacy and precision of regression estimates. J Clin Epidemiol. 1995;48:
1503–1510.
40. Quartz MA, Bennett LE, Meyer DM, et al. Does human leucocyte antigen
matching influence the outcome of lung transplantation? An analysis of
3,549 lung transplants. J Heart Lung Transplant. 2000;19:473–479.
41. Opelz G, Döhler B. Ceppellini Lecture 2012: collateral damage from
HLA mismatching in kidney transplantation. Tissue Antigens. 2013;82:
235–242.
42. Amsaard D, BuBN D, Nilsson J. Human leucocyte antigen matching in heart
transplantation: systematic review and meta-analysis. Transplant Int.
2014;27:793–804.
43. Bustami RT, Ojo AO, Wolfe RA, et al. Immunosuppression and the risk of
post-transplant malignancy among cadaveric first kidney transplant recip-
ients. Am J Transplant. 2004;4:87–93.