SOLUBLE GROUPS WITH FEW ORBITS UNDER AUTOMORPHISMS

RAIMUNDO BASTOS, ALEX C. DANTAS, AND EMERSON DE MELO

Abstract. Let G be a group. The orbits of the natural action of $\text{Aut}(G)$ on G are called “automorphism orbits” of G, and the number of automorphism orbits of G is denoted by $\omega(G)$. We prove that if G is a soluble group with finite rank such that $\omega(G) < \infty$, then G contains a torsion-free characteristic nilpotent subgroup K such that $G = K \rtimes H$, where H is a finite group. Moreover, we classify the mixed order soluble groups of finite rank such that $\omega(G) = 3$.

1. Introduction

Let G be a group. The orbits of the natural action of $\text{Aut}(G)$ on G are called “automorphism orbits” of G, and the number of automorphism orbits of G is denoted by $\omega(G)$. It is interesting to ask what can we say about “G” only knowing $\omega(G)$. It is obvious that $\omega(G) = 1$ if and only if $G = \{1\}$, and it is well known that if G is a finite group then $\omega(G) = 2$ if and only if G is elementary abelian. In [3], T. J. Laffey and D. MacHale proved that if G is a finite non-soluble group with $\omega(G) \leq 4$, then G is isomorphic to $\text{PSL}(2, \mathbb{F}_q)$ with $q \in \{4,7,8,9\}$. Later, M. Stroppel, in [8], has shown that the only finite non-abelian simple groups G with $\omega(G) \leq 5$ are the groups $\text{PSL}(2, \mathbb{F}_q)$ with $q \in \{4,7,8,9\}$, $\text{PSL}(3, \mathbb{F}_4)$ or $\text{ASL}(2, \mathbb{F}_4)$ (answering a question of M. Stroppel, cf. [3 Problem 2.5]).

Some aspects of automorphism orbits are also investigated for infinite groups. M. Schwachhöfer and M. Stroppel in [7, Lemma 1.1], have shown that if G is an abelian group with finitely many automorphism orbits, then $G = \text{Tor}(G) \oplus D$, where D is a characteristic torsion-free divisible subgroup of G and $\text{Tor}(G)$ is the set of all torsion elements in G. In [1, Theorem A], the authors proved that if G is a FC-group with finitely many automorphism orbits, then the derived subgroup G'

\begin{flushright}
2010 Mathematics Subject Classification. 20E22; 20E36.

Key words and phrases. Extensions; Automorphisms; Soluble groups.

This work was partially supported by FAPDF - Brazil.
\end{flushright}
is finite and \(G \) admits a decomposition \(G = \text{Tor}(G) \times A \), where \(A \) is a divisible characteristic subgroup of \(Z(G) \). For more details concerning automorphism orbits of groups see [8].

If \(G \) is a group and \(r \) is a positive integer, then \(G \) is said to have finite rank \(r \) if each finitely generated subgroup of \(G \) can be generated by \(r \) or fewer elements and if \(r \) is the least such integer. The next result can be viewed as a generalization of the above mentioned results from [1] and [7].

Theorem A. Let \(G \) be a soluble group of finite rank. If \(\omega(G) < \infty \), then \(G \) has a torsion-free radicable nilpotent subgroup \(K \) such that \(G = K \rtimes H \), where \(H \) is a finite subgroup.

We do not know whether the hypothesis that \(G \) has finite rank is really needed in Theorem A. The proof that we present here uses this assumption in a very essential way.

In [3], T. J. Laffey and D. MacHale showed that \(G \) is a finite group in which the order \(|G| \) is not prime power and \(\omega(G) = 3 \) if and only if \(|G| = pq^n \), the Sylow \(q \)-subgroup \(Q \) is a normal elementary abelian subgroup of \(G \) and \(P \) is a Sylow \(p \)-subgroup which acts fixed-point-freely on \(Q \). See also [5] for groups with \(\omega(G) \leq 3 \) (almost homogeneous groups).

Recall that a group \(G \) has mixed order if it contains non-trivial elements of finite order and also elements of infinite order. We obtain the following classification.

Theorem B. Let \(G \) be a mixed order soluble group with finite rank. We have \(\omega(G) = 3 \) if and only if \(G = A \rtimes H \) where \(|H| = p \) for some prime \(p \), \(H \) acts fixed-point-freely on \(A \) and \(A = \mathbb{Q}^n \) for some positive integer \(n \).

2. Proofs

A well-known result in the context of extensions of finite groups, due to I. Schur, states that if \(G \) is a finite group and \(N \) is a normal abelian subgroup with \((|N|, |G : N|) = 1 \), then there exists a complement \(K \) of \(N \). Recall that \(K \) is a complement of (a normal subgroup) \(N \) in \(G \) if \(N \cap K = 1 \) and \(G = NK \). In particular, \(G = N \rtimes K \). Now, we prove that Schur’s theorem holds under a more general assumption that \(G \) contains a divisible abelian subgroup of finite index. The proof presented here is adapted from the ideas of the finite case (cf. [6] 9.1.2).

Lemma 2.1. Let \(A \) be a divisible normal abelian subgroup of finite index of a group \(G \). Then there exists a subgroup \(H \) of \(G \) such that \(G = A \rtimes H \).
Proof. Let $B = G/A$. From each coset x in B we choose a representative t_x, so that the set $T = \{t_x \mid x \in B\}$ is a transversal to A in G. Since $t_xt_yA = t_{xy}A$, there is an element $c(x, y)$ of A such that $t_xt_y = t_{xy}c(x, y)$. Then
\[
(t_xt_y)t_z = t_{xy}c(x, y)t_z = t_{xy}t_zc(x, y)^z = t_{xy}c(xy, z)c(x, y)^z,
\]
and $c(xy, z)c(x, y)^z = c(x, yz)c(y, z)$, for each $x, y \in B$. Consider the element $d(y) = \prod_{x \in B}c(x, y) \in A$. As A is an abelian group $d(z)d(y)^z = d(yz)c(y, z)^n$, where $n = |B|$. We obtain that $d(yz)^n = d(y)\cdot d(z)c(y, z)^{-n}$.

Now, since A is a divisible group, there exists $e(y) \in A$ such that $e(y)^n = d(y)^{-1}$ for each $y \in B$. Hence
\[
e(z)^{-n} = (e(y)^z e(z)c(y, z))^{-n}.
\]

Since A is torsion-free, it follows that $e(z) = (e(y)^z e(z)c(y, z))$. Define $s_x = t_x e(x)$, then
\[
s_y s_z = t_y t_z e(y)^z e(z) = t_y c(y, z) (e(y)^z e(z)) = t_y c(y, z) = s_y s_z.
\]
Thus $x \mapsto s_x$ defines a homomorphism $\phi : B \rightarrow G$. Now $s_x = 1$ implies that $t_x \in A$ and $x = A = 1_B$. From this we conclude that $H = B^\phi$ is the desired complement.

Now, we consider groups with finitely many automorphism orbits with a characteristic torsion-free soluble subgroup of finite index (see also Schur-Zassenhaus Theorem [6, 9.1.2]).

Lemma 2.2. Let n be a positive integer. Let G be a group such that $\omega(G) < \infty$ and A a torsion-free characteristic subgroup of G with finite index n. If A is soluble, then there exists a subgroup H of G such that $G = A \rtimes H$.

Proof. If A is abelian, then the result is immediate by Lemma 2.1. Assume that A is non-abelian. Set d the derived length of A. First we prove that $A/A^{(d-1)}$ is torsion-free. The subgroup $A^{(d-1)}$ is a torsion-free abelian divisible subgroup since A is torsion-free and has finitely many automorphism orbits. If $A/A^{(d-1)}$ is not torsion-free, then we can find an element $a \in A$ such that $\langle a, A^{(d-1)} \rangle$ has a torsion-free divisible group of finite index. Then by Lemma 2.1 the subgroup $\langle a, A^{(d-1)} \rangle$ has elements of finite order. That is a contradiction. Thus $A/A^{(d-1)}$ is torsion-free.

Now, we complete the proof arguing by induction on the derived length of A. Consider the quotient group $\tilde{G} = G/A^{(d-1)}$. By induction we deduce that there exists a finite subgroup \tilde{B} of order n in \tilde{G} such that $\tilde{G} = \tilde{A} \rtimes \tilde{B}$. Set B the inverse image of \tilde{B}. Clearly $A^{(d-1)} \leq B$.

and $A^{(d-1)}$ has finite index n in B. Therefore, by Lemma 2.1 B has a subgroup H of order n and so such a subgroup is a complement of A in G. The result follows. □

The following lemma is well-known. We supply the proof for the reader’s convenience.

LEMMA 2.3. Let G be an abelian group of finite rank. If $\omega(G) < \infty$, then the torsion subgroup $\text{Tor}(G)$ is finite.

Proof. Since G has finitely many automorphism orbits, it follows that the exponent $\exp(\text{Tor}(G))$ is bounded. As G has finite rank we have that $\text{Tor}(G)$ is finitely generated. We deduce that $\text{Tor}(G)$ is finite, which completes the proof. □

The following result provides a description of radicable nilpotent groups of finite rank (see [4, Theorem 5.3.6] for more details). Recall that a group G is said to be radicable if each element is an nth power for every positive integer n.

LEMMA 2.4. Let G be a soluble group with finite rank. Then the following are equivalent:

(i) G has no proper subgroups of finite index;
(ii) $G = G^m$ for all $m > 0$;
(iii) G is radicable and nilpotent.

We are now in a position to prove Theorem A.

Proof of Theorem A. We argue by induction on derived length of G.

Assume that G is abelian. By Schwachhöfer-Stroppel’s result [4], $G = D \oplus T$, where D is a characteristic torsion free divisible subgroup and T is the torsion subgroup of G. By Lemma 2.3 the torsion subgroup $T = \text{Tor}(G)$ is a finite subgroup of G, the result follows.

Now, we assume that G is non-abelian. Set d the derived length of G. Arguing as in the previous paragraph, we deduce that $G^{(d-1)} = D_1 \oplus T_1$, where D_1 is a characteristic torsion-free divisible subgroup and T_1 is the torsion subgroup of $G^{(d-1)}$ and so, T_1 is finite. By induction $G/G^{(d-1)}$ has the desired decomposition. More precisely, $G^{(d-1)} = D_1 \oplus T_1$ and $G/G^{(d-1)} = \bar{A} \rtimes \bar{B}$ where \bar{A} is torsion-free and \bar{B} is finite. Note that $\bar{A}^n = \bar{A}$ for any positive integer n, since the quotient groups $\bar{A}^{(i)}/\bar{A}^{(i+1)}$ are torsion-free divisible groups (we can use Lemma 2.2 to conclude that each quotient is torsion-free).

Note that the centralizer $C_G(T_1)$ is a subgroup of finite index in G, because $G/C_G(T_1)$ embeds in the automorphism group of T_1 which has finite order. Let \bar{A} be the inverse image of \bar{A}. As \bar{A} is torsion-free
and \(A^n = A \) for any positive integer \(n \), we have \(A \leq C_G(T_1) \). Thus \(T_1 \leq Z(A) \) and Tor(\(A \)) = \(T_1 \). Set \(K = A^e \), where \(e = \exp(T_1) \). Then \(K \) is torsion-free and has finite index in \(G \). Therefore, by Lemma 2.2, there exists a finite subgroup \(H \) such that \(G = K \rtimes H \). According to Lemma 2.4, we deduce that \(K \) is a radicable nilpotent group (the subgroup \(K \) has no proper subgroups of finite index). The proof is complete. \(\square \)

Now we will deal with Theorem B: Let \(G \) be a mixed order soluble group with finite rank. We have \(\omega(G) = 3 \) if and only if \(G = A \rtimes H \) where \(A = Q^n \) for some positive integer \(n \), \(|H| = p \) for some prime \(p \) and \(H \) acts fixed-point-freely on \(A \).

Proof of Theorem B. First assume that \(G \) is a mixed order soluble group of finite rank and have \(\omega(G) = 3 \). By Theorem A, \(G = A \rtimes H \) where \(A \) is a torsion-free radicable nilpotent subgroup and \(H \) is a finite group. Since \(\omega(G) = 3 \) and \(G \) has mixed order, it follows that \(A \) must be abelian (so that \(A = Q^n \)) and \(H \) is an elementary abelian \(p \)-subgroup. On the other hand, since \(A \) is characteristic, we deduce that all elements in \(G \setminus A \) have order \(p \) and then \(H \) acts fixed-point-freely on \(A \). Thus using the identity \((xy)^p = x^n(y^{p-1}) \ldots y^xy\), we obtain

\[
(h^ja)^p = h^ja^h \ldots a^{h^{p-1}j}) = 1
\]

for all \(a \in Q^n \). So all elements of \(G \setminus A \) have order exactly \(p \) and act fixed-point-freely on \(A \).

Now, let \(b, c \in A \setminus \{1\} \) and \(\alpha, \beta \in G \setminus A \). By Cyclic Decomposition Theorem, there exist \(b_1, b_2, \ldots, b_t, c_1, c_2, \ldots, c_t \in A \) such that

\[
\{b_1, b_1^\alpha, \ldots, b_1^{\alpha^{p-2}}, \ldots, b_t, b_t^\alpha, \ldots, b_t^{\alpha^{p-2}}\}
\]

and

\[
\{c_1, c_1^\beta, \ldots, c_1^{\beta^{p-2}}, \ldots, c_t, c_t^\beta, \ldots, c_t^{\beta^{p-2}}\}
\]
are bases of A. Without loss of generality we can assume that $b = b_1$
and $c = c_1$. Thus the map given by

$$b_i \mapsto c_i \text{ and } \alpha \mapsto \beta,$$

where $i = 1, \ldots, t$ extends to an automorphism of G. Hence all non-
trivial elements of A belong to the same orbit under the action of
$\text{Aut}(G)$, and all elements in $G \setminus A$ are in the same orbit under the
action of $\text{Aut}(G)$. The proof is complete. \hfill \square

References

[1] R. Bastos and A. C. Dantas, FC-groups with finitely many automorphism or-
bits, J. Algebra, 516 (2018) pp. 401–413.
[2] R. Bastos, A. C. Dantas and M. Garonzi, Finite groups with six or seven au-
tomorphism orbits, J. Group Theory, 21 (2017) pp. 945–954.
[3] T. J. Laffey and D. MacHale, Automorphism orbits of finite groups, J. Austral.
Math. Soc. Ser. A, 40(2) (1986) pp. 253–260.
[4] J. C. Lennox and D. J. S. Robinson, The Theory of Infinite Soluble Groups,
Clarendon Press, Oxford, 2004.
[5] H. Mäurer and M. Stroppel, Groups that are almost homogeneous, Geom. Dedicata,
68 (1997) pp. 229–243.
[6] D. J. S. Robinson, A course in the theory of groups, 2nd edition, Springer-
Verlag, New York, 1996.
[7] M. Schwachhöfer and M. Stroppel, Finding representatives for the orbits under
the automorphism group of a bounded abelian group, J. Algebra, 211 (1999)
pp. 225–239.
[8] M. Stroppel, Locally compact groups with few orbits under automorphisms,
Top. Proc., 26(2) (2002) pp. 819–842.