Clipping on Crossed Wrapping Method for Ruptured Blood Blister-Like Aneurysm of the Internal Carotid Artery: Technical Note and Long-Term Results

Toru Nishi1,2, Masatomo Kaji1, Kazunari Koga3, Shigeo Yamashiro1, Takamasa Mizuno4, Kiyotoshi Hamasaki3, Daisuke Muta1, Jun-ichi Kuratsu2, Shodo Fujioka5

BACKGROUND: We have been performing the clipping on crossed wrapping (COCW) method using 2 strips of cotton on patients with an internal carotid artery blood blister-like aneurysm (IC-BLA). This method is reliable in preventing the clips from slipping off and the aneurysm walls from being damaged during clipping, and it enables more appropriate and safer clipping. Here we report the technical details of this method and the long-term outcomes of patients receiving this procedure.

METHODS: Fifteen of 1275 (1.5%) patients with a ruptured cerebral aneurysm who received treatment at the Saiseikai Kumamoto Hospital during the period from January 1, 1999, to December 31, 2016, had an IC-BLA. All 15 patients were treated with COCW, except for the first patient, who was treated using a single strip of cotton. The long-term outcome of the treatment was analyzed.

RESULTS: The mean follow-up period was 74 months. The first patient experienced rerupture of an aneurysm 10 days after the operation. No complications or regrowth of an aneurysm were observed in the remaining 14 patients during the follow-up period, except for 1 patient who received a reoperation for the regrowth of an aneurysm. As the final outcome, the numbers of patients with a Modified Rankin Score of 0, 3, and 6 were 13, 1, and 1, respectively.

CONCLUSIONS: It is suggested that COCW is a treatment that enables safe and long-term management of lesions in IC-BLAs.

INTRODUCTION

A blood blister-like aneurysm (BBA) found in the internal carotid artery (ICA) is relatively rare. It has been reported that BBAs account for 0.3% to 2.7% of intracranial aneurysms and 0.9% to 9.4% of ICA aneurysms.1-7 The BBAs of the ICA (IC-BBAs) have been characterized by frequent reruptures and regrowth during and after surgery, generally resulting in poor outcomes.4,5,8-11 This type of aneurysm appears to involve a process of arterial dissection for its formation, judging from some of the pathologic examinations.12,13 Although diverse options have been proposed for the treatment of BBAs, including the endovascular method, as yet a unified standard treatment for BBA has not been established.14 The interventional approach was deemed be a better prospect because of a recent technological innovation;15-23 however, its long-term durability remains open.

Key words
- Blood blister-like aneurysm
- Clipping on crossed wrapping
- Clipping on wrapping
- Direct surgery
- Internal carotid artery aneurysm

Abbreviations and Acronyms

3D-CTA: Three-dimensional computed tomographic angiography
AchA: Anterior choroidal artery
BBA: Blood blister-like aneurysm
COCW: Clipping on crossed wrapping
COW: Clipping on wrapping
CT: Computed tomography
IC: Internal carotid
ICA: Internal carotid artery
IC-BBAs: BBAs of the ICA
mRS: Modified Rankin Scale

PcomA: Posterior communicating artery
SAH: Subarachnoid hemorrhage

From the 1Department of Neurosurgery, Stroke Center, Saiseikai Kumamoto Hospital, Kumamoto; 2Department of Neurosurgery, Sakurajyuji Hospital, Kumamoto; 3Department of Neurosurgery, Kumamoto General Hospital, Kumamoto; 4Department of Neurosurgery, Arao City Hospital, Kumamoto; and 5Department of Neurosurgery, Saiseikai Misumi Hospital, Kumamoto, Japan

To whom correspondence should be addressed: Toru Nishi, M.D., Ph.D.
[E-mail: toshi2@me.com]

Citation: World Neurosurg. X (2019) 2:100005.
https://doi.org/10.1016/j.wnsx.2018.100005
Journal homepage: www.journals.elsevier.com/world-neurosurgery-x
Available online: www.sciencedirect.com
Table 1. Characteristics, Treatment, and Outcome of 15 Patients with IC BBA

No.	Gender	Age (Years)	Location	Size of PcomA	Operation Date	Surgery	Rebleeding	Reoperation	mRS on Discharge	GOS on Discharge	Follow-Up Period (Months)	Final mRS
1	M	53	C2 distal segment	Anterolateral	Large	Grade II	0	COW	+	6	0	6
2	F	52	C1 communicating segment	Anterior	Large	Grade II	27	COW	—	1	1 GR	205
3	F	53	C1-C2	Anterior	Small	Grade II	40	COW	—	2	0 MD	96
4	F	39	C1-C2	Anterolateral	Small	Grade II	7	COW	—	1	1 MD	116
5	F	28	C1 communicating segment	Anterolateral	Small	Grade III	2	COW	—	0	1 GR	174
6	F	52	C2 distal segment	Anterior	Small	Grade II	2	COW	—	0	1 GR	71
7	F	62	C1-C2	Anterior	Small	Grade I	2	COW	—	1	0 MD	87
8	F	50	C2 distal segment	Anterolateral	Small	Grade II	2	COW	+	0	1 GR	50
9	M	39	C1 communicating segment	Lateral	Large	Grade I	8	COW	—	0	1 GR	105
10	M	52	C1 communicating segment	Anteromedial	Small	Grade II	2	COW	—	0	1 GR	60
11	F	57	C2 distal segment	Medial	Large	Grade III	3	COW	—	1	1 MD	70
12	F	41	C2 distal segment	Anterior	Small	Grade III	1	COW	—	1	1 MD	25
13	F	30	C1 choroidal segment	Medial	Large	Grade I	3	COW	—	2	0 MD	4
14	F	51	C1-C2	Medial	Large	Grade II	1	COW	—	4	0 SD	2
15	F	42	C2 distal segment	Anterior	Large	Grade III	2	COW	—	1	0 MD	8

The size of the posterior communicating artery was classified as “large” if it was drawn over the entire length in the 3D-CTA; otherwise it was classified as “small.”

BBA, blood blister-like aneurysm; COW, clipping on crossed wrapping; COW, clipping on wrapping; DE, dead; GOS, Glasgow Outcome Scale; GR, good recovery; H&K, Hunt & Kosnik; IC, internal carotid; LFB, low flow bypass; MD, moderate disability; mRS, Modified Rankin Scale; SD, severe disability; 3D-CTA, 3-dimensional computed tomographic angiography.
Figure 1. (A–O) Images of 3D-CTA or 3D-DSA of case 1 to case 15. A green arrow in each image indicates a blood blister aneurysm (BBA). The red arrow indicates the posterior communicating artery (PcomA), and the blue arrow indicates the anterior choroidal artery (AchA). (P) A schematic illustration of the left internal carotid artery (ICA) viewed from the left lateral side. Each green thin, long arrow indicates the site of a BBA in the individual case. A bright red wizard-hat-like shape indicates a BBA at the anterior or lateral wall of the ICA, whereas a darker flat shade indicates a BBA at the medial wall of the ICA. A1, first segment of the anterior cerebral artery.
to debate. Several approaches to direct surgery have been proposed.24-26 One of the procedures that use a metal clip to pinch the thin material wrapping the aneurysm is called clipping on wrapping (COW), or alternatively, the wrap-clip method.25,27,28 Because the details of this procedure vary from institute to institute as to which material is used for wrapping,29-32 it is difficult to evaluate accurate outcomes of this method as a single entity. Generally, the COW method that uses a single cotton strip to cover the aneurysm is widely accepted to provide adequate sealant effect for BBA while preserving blood flow in the ICA.33 However, as this COW method relies on the indirect closure of the aneurysm, unlike direct clipping of the saccular form of aneurysm, a fear of regrowth and subsequent rerupture always remains. To improve the efficacy of this procedure, we have employed 2 strips of cotton, instead of 1, to cross-wrap the lesion, ultimately achieving a more robust and complete closure of the aneurysm. This procedure was given the unique name of “clipping on crossed wrapping” (COCW), and already the COCW method has been
used for decades in our institution. Here, we report the technical
details of COCW and the favorable long-term outcomes of the
patients who received COCW.

MATERIALS AND METHODS

Patient Population

A total of 1811 patients, who presented with subarachnoid hemorrhage (SAH) at the Saiseikai Kumamoto Hospital during
the period of 17 years from January 1, 1999, to December 31,
2016, were retrospectively analyzed. Among them, the source
of bleeding was investigated and identified in 1347 patients
(74.4%), and BBAs were identified as the bleeding source in 15
patients (1.5%). The male-to-female ratio was 1:4, and the
mean patient age was 46.7 years, indicating that patients with
BBA are younger than those with other types of aneurysm as
shown previously.34 All 15 patients were treated with
the COCW method, except 1 patient who was treated with
COW.

Table 1 shows the summary of general characteristics of each
case, such as BBA location, size of the BBA, neurologic grade,
method of surgery, and outcome. Figure 1 shows a series of 3-
dimensional angiograms depicting the BBA on the ICA (green
arrow: BBA). As for the vertical distribution, the cases involved
the C1 choroidal segment (n = 1), the communicating segment
(n = 4), the C1-C2 junction (n = 4), and the C2 distal segment
(n = 6). As for the horizontal distribution, the cases involved the
anterior wall (n = 6), the anterolateral wall (n = 4), the ante-
romedial wall (n = 1), the lateral wall (n = 1), and the medial wall
(n = 3). With regard to the morphologic classification of IC-BBAs,
4 types (types I, II, III, and IV) have been reported.28 According
to this classification, all of the BBAs that we encountered were
considered as either type I, II, or III; there was no type IV BBA
in our group. The timing of surgery ranged from 0 to 40 days
from the onset of SAH. The first patient was treated with the
unmodified COW method using a single strip of cotton, and
the subsequent 14 patients were treated with COCW using 2
strips of cotton sheet to wrap around the lesion. A combination
of cross-wrapping with low-flow bypass was used in the 6 later
cases.

RESULTS

Surgical Procedures

Figure 2A—G shows the detailed steps of the COCW method. The
large diagram (Figure 2A) shows the lateral view of BBA at the
anterior wall of the C1-C2 junction of the left ICA. A superficial
temporal artery to middle cerebral artery anastomosis was per-
formed following the transsylvian approach as a precaution for the
unexpected obstruction of the ICA’s blood flow. Furthermore, the
ipsilateral cervical carotid bifurcation was surgically exposed in
case of proximal control of IC flow for all cases except a case
involving a BBA at C1. The subarachnoid spaces of the Sylvian
fissure were dissected from distal to proximal segment as widely
as possible to expose all the anatomical structures, including the
ICA, the anterior cerebral artery, and the middle cerebral artery.
Under proper proximal control, a whole aspect of the BBA was
exposed by clearing the blood clot over the ICA/BBA (Figure 2B).
If the BBA should rupture during the surgery, the bleeding could
be controlled by severing the IC at the proximal and distal side of the
BBA by a couple of temporary clips, and if necessary, severing the cervical IC as well. Before wrapping the lesion, appropriately sized cotton sheets were separated into 2 to 3 layers for the actual usage (Figure 2C). Then, the BBA-bearing segment of the IC was enveloped by each cotton strip in a crossing manner. If the BBA was found at the contralateral side of the origin of the main arterial branch, such as the posterior communicating artery (PcomA) or the anterior choroidal artery (AchA), it was wrapped with the first strip of cotton from the distal side and a second strip of cotton from the proximal side. Thus, each cotton strip was crossed over between the distal side and the proximal side of the artery (Figure 2D and E). After the entire lesion of ICA-BBA was covered with the 2 strips of cotton, a clip was used to pinch the over-wrapping cottons as well as the healthy portion of the arterial wall while the ends of the cotton strips were being pulled toward the direction of the fat red arrow (Figure 2F). A figure of the final step shows that the clip was placed in the appropriate position to include the right amount of the artery wall (notice: slightly shifted position of the clip), avoiding the constriction of the ICA. (Continues)
ICA was not too disturbed (Figure 2G). If a BBA faced the medial side, such as the backside of the ICA, the procedure became problematic, because the pulling action of the cotton had to be performed on the blind side (opposite direction from the view point). So, the closure necessitated a fenestrated clip. Because of those physical limitations, the maneuver required some special steps, such as follows: 1) the cross-wrapping cotton strips were pressed on the intact arterial wall at the far side of the BBA by the blades of the unfastened fenestrated clip, 2) the blades were gradually being slid toward the BBA-bearing side (medial side of the IC) with the adequate downward pressure to hold the tight adherence between the cotton and the arterial wall, and 3) the blades were finally closed at the adequate position under which a healthy volume of the intact arterial wall alongside the BBA remained (Figure 3, case 13). After successful clipping, an excess of cotton was cutoff as much as possible for negating its allergic effect. The absence of BBA regrowth was confirmed with either a 3-dimensional computed tomographic angiography (3D-CTA) scan or a cerebral angiography before discharge.

CASE PRESENTATIONS

Case 1 (Figure 4): A 53-year-old man, whose initial 3D-CTA had shown SAH and a BBA at the C1-C2 junction of the right ICA, received surgery on the same day of onset. First, the right ICA and then the BBA on which a blood clot was left unremoved (red arrow) were exposed. The COW method was performed using a single strip of cotton. Initially, the postoperative clinical course had been favorable, but the patient died of a recurrent SAH on day 10. Neither a postmortem brain scan nor an autopsy was performed. The intraoperative video raised some technical issues that might have been the culprits: 1) the removal of the blood clot over
Case 13. A 30-year-old woman had a rupture of a blood blister aneurysm (BBA) on the medial side of the internal carotid artery (ICA). (A) An initial computed tomography scan showed diffuse subarachnoid hemorrhage. (B) A 3D-DSA image showed a BBA (red arrow) on the medial side of the left ICA at the contralateral side of the origin of the left anterior choroidal artery (AchA) (blue arrow). The origin of the left posterior communicating artery (Pcom) is also indicated (green arrow). (C) The schematic figures depict the left ICA viewed from the lateral side, where an orifice of BBA is located at the medial side of ICA (green arrow). The BBA was wrapped with cotton strips at (D) proximal and (E) distal sides of the AchA. Using a (F) fenestrated clip, (G) clipping on crossed wrapping was performed. (H) A temporary clip was placed at C2 portion of the left ICA (green arrow), and then a first cotton strip (green arrow head) was wrapped over the IC-BBA (red arrow) at the proximal side of the AchA. (I) Another cotton strip was wrapped over the IC-BBA at the distal side of the AchA (green arrow head) to cover the entire BBA; then, the blades of a fenestrated clip (green arrow) were placed on the crossed wrapping. (J) Completion of COCW is shown. (K) Blood flow of the posterior communicating artery (PcomA) (green arrow head) and AchA (green arrow) was confirmed. (L) Four months after surgery, a 3-dimensional computed tomographic angiography image showed no recurrence. A1, first segment of the anterior cerebral artery; COCW, clipping on crossed wrapping; M1, first segment of the middle cerebral artery; Oph A, ophthalmic artery; 3D-DSA, Three-dimensional digital subtraction angiography.
the BBA seemed inadequate, 2) the single cotton strip might not have been large enough for the complete wrapping of the entire BBA, and 3) the clip seemed to have pinched only the cotton but not enough artery wall, which might have resulted in the incomplete closure of the BBA. This unfortunate case provided an invaluable experience; therefore, we decided to adopt an improvised version of COW, the COCW method, for the subsequent cases.

Case 2 (Figure 5): A 52-year-old woman, whose initial CT/3D-CTA had demonstrated severe SAH in the right basal cistern (A) and a BBA at the contralateral side of an origin of PcomA (B), received surgery on day 27 from the onset. The BBA was exposed, but the blood clot on the BBA was left (C: red arrow). The 2 strips of cotton were crossed around the origin of the PcomA to wrap the IC/BBA, first at the proximal side (D: green arrow), and then at the distal side (E: green arrow). Hence, the entire lesion of BBA was covered with the 2 "cross-wrapping" strips of cotton. Then, a Sugita straight clip was applied at the ideal position on the cotton strips that were being pulled with a constant force by forceps (F). The postoperative clinical course has been good, as a 3D-CTA at 205 months from the onset showed no recurrence of the BBA (G).

Case 8 (Figure 6): A 50-year-old woman, whose initial CT/3D-CTA had demonstrated diffuse SAH (A) and a BBA facing the medial side at the C1 portion of the left IC (B: red arrow) with a fetal type PcomA (B: green arrow), received surgery on day 3 after onset. Simple schematic drawings show the step-by-step procedures of the surgery for the BBA, including the relationship between the BBA and the main branches of the PcomA/AchA (Figure 3C–G). First, a left transsylvian approach was performed to expose the whole structures around the ICA including the BBA (H: red arrow), AchA (I: green arrow head), and PcomA (K: green arrow head). The orifice of the BBA was located on the contralateral side of the origin of the left AchA (C: green arrow, H: red arrow). A temporary clip was applied to the proximal side of the ICA (H: green arrow). COCW was performed for the BBA by crossing the 2 strips of cotton over
Figure 3. Continued
Figure 4. Case 1. A 53-year-old man underwent surgery for a blood blister aneurysm (BBA) on day 10 of subarachnoid hemorrhage (SAH). (A) A brain computed tomography image on admission showed diffuse SAH. (B) The 3-dimensional computed tomographic angiography image before surgery indicated a BBA just proximal to the origin of the posterior communicating artery (PcomA) (red arrow). (C) The BBA is exposed, but a blood clot is still sitting on the surface (red arrow). (D) The BBA is being wrapped with a single cotton strip (green arrow). (E) The BBA is being clipped over the cotton strip. (F) A picture taken after completion of the clipping operation. (G) An illustration explained the cause of the rerupture as a postoperative analysis of the surgical video showed that a single strip of cotton seemed insufficient to wrap the whole BBA, especially for the extreme proximal end of the BBA in this case (green arrow). A1, first segment of the internal cerebral artery; IC, internal carotid artery. (Continues)
the proximal side (D, H: green arrow head) and distal side (E, I green arrow head) of the AchA. The BBA was pinched over the main trunk of the ICA (G, I: green arrow head) using a fenestrated clip with sideward bended blades (F, I: green arrow). The complete closure of the BBA was achieved, whereas the blood flows of the PcomA (K: green arrow head) and the AchA (K: green arrow) were adequately preserved. The postoperative clinical course has been favorable, and a 3D-CTA at 4 months after the surgery showed no recurrence of a BBA (L).

Surgical Outcomes

A mean follow-up period was 74 months with a range of 7 to 204 months (Table 1). A patient (case 1) who received a COW surgery using a single strip of cotton died after rerupture of the BBA 10 days after the initial surgery. Another patient (case 8) received a reoperation of COCW after the regrowth of BBA was noticed before discharge. Despite this incident, the patient has been in good condition (Modified Rankin Score [mRS]: 0) for 50 months without any recurrence of BBA. A regrowth of a BBA was not observed in other patients, and no patient showed symptomatic stenosis or obstruction of the ICA. Furthermore, no patient showed granulation or cerebral edema in and around the vicinity of the lesion, which suggested that no or a negligible allergic reaction had occurred to the cotton used in the COCW method. The outcomes of those patients were assessed by the Glasgow Outcome Scales (good recovery, moderate disability, severe disability, dead) and the mRS (mRS: 0—6). The following GOS and mRS at hospital discharges were noted (good recovery: n = 6; moderate disability: n = 7; severe disability: n = 1; dead: n = 1/mRS 0: n = 5; mRS 1: n = 6; mRS 2: n = 2; mRS 4: n = 1; mRS 6: n = 1) with comparison with the improved outcomes at the end of the follow-up period (mRS 0: n = 12; mRS 3: n = 1; mRS 6: n = 1).

DISCUSSION

There are several reasons for the difficulties with the treatment of IC-BBA.9,12 The prime reason lies in the strenuous physical properties of BBAs. Because most IC-BBAs are associated with a dissection-related disorder, the angiography of BBAs tends to show a barely noticeable small bulge,3,7 and the shape of the BBA often lacks the neck-like segment that allows for conventional clipping.1,13 Also, the ICA itself, a parental artery of the BBA, has difficult properties such as a torturous curved course, which creates cramped workable space surrounded by important brain structures. In addition, the BBAs often involve the bifurcation of the indispensable but fragile PcomA or AchA, and the BBAs are widely distributed both vertically and horizontally. Those technical difficulties have impeded a unified therapy scheme to be implemented for the treatment of BBAs.3,6,14

There are 2 approaches to treat BBAs, such as endovascular or direct surgery (Table 2).7,18,22,25 The number of reports using the endovascular method has been increasing because of the recent improvement of medical equipment such as a flow diverter.11,15-17,20-21,36-43 Previous studies comparing the 2 approaches found higher risk in the direct surgeries including accidental IC occlusions, albeit higher recurrence rate and more frequent reoperation in the endovascular treatment.18,22,37-46 Despite those reports, because the technical details of direct surgery vary widely by institution,22,25,27 it seemed to be unrealistic to compare the treatment efficacy of these methods collectively.
A 52-year-old woman was the first patient who received a clipping on the cross-wrapping cotton (COCW). (A) A head computed tomography scan on admission showed diffuse subarachnoid hemorrhage. (B) A 3-dimensional computed tomographic angiography (3D-CTA) image showed a blood blister aneurysm (BBA) in the right internal carotid artery (ICA) just proximal to the origin of the posterior communicating artery (PcomA) (red arrow). (C) The blood blister aneurysm (BBA) was exposed and the blood clot was left on its surface (red arrow). The BBA was wrapped with the first strip of cotton from the proximal side of the PcomA (green arrow). (D) The BBA was wrapped with a second strip of cotton from the distal side of the PcomA (green arrow). (E) The vessel wall is being pinched with a clip blade (green arrow) while pulling the 4 ends of cotton strips by forceps. (F) The COCW procedure is completed. (G) Two hundred and five months after the surgery, a 3D-CTA image showed a slight stenosis of the ICA, but no recurrence of BBA. A1, first segment of the anterior cerebral artery. (Continues)
Direct surgeries are roughly classified into the following 2 groups: one that prevents rerupture by occlusion of the ICA together with the BBA or one that seals the BBA without compromising the ICA’s blood flow.\(^3\)\(^-\)\(^5\)\(^7\) If treatment involves occlusion of the ICA, often a high-flow bypass is required.\(^4\)\(^8\)\^-\(^5\)\(^2\) Although the bypass surgeries involve complex maneuvers with considerable risks, the trapping of the BBA itself is a straightforward and simple procedure. However, it should be noted that the retrograde blood flow from the bypass has to be able to maintain sufficient blood supply to the vital PcomA and AchA (Figure 7A). If the PcomA originating from the distal side of the trapped segment of the ICA was large enough to allow the retrograde flow, blood supply to the AchA territory would be sufficient (Figure 7B). On the other hand, if the PcomA was hypoplastic, trapping might create insufficient blood supply in the AchA to cause catastrophic infarction (Figure 7C).\(^5\) In fact, a study reported that a higher rate of ischemic complications often occurred during the surgery with trapping, especially if the operation was performed at the concurrent period of vasospasm.\(^5\)\(^0\) There has been a general consensus that occlusion of large vessels in the acute phase of SAH is not recommended in any situation because of the expected poor prognosis.\(^5\) Furthermore, the actual clinical experiences showed that it was indeed difficult to perform trapping of IC and simultaneously maintain good blood flow of the branching arteries, if the BBA was located at the C\(_1\) portion of the ICA involving the origin of the PcomA and AchA.\(^2\)\(^7\)\^-\(^5\)\(^2\) In our cases, analysis of sizes of PcomAs and distributions of BBAs showed that the PcomAs were hypoplastic in 8 patients, and the BBAs were found at C\(_1\) in 5 patients (Table 2). These findings indicated that a combination of trapping with adequate bypass surgery might have been suitable for only 4 of the 15 patients, which suggests the limitation of the trapping method for preserving the flow of branching arteries.

Hence, the core of a method that enables durable closure of the BBA as well as preserving ICA flow has to be clipping. When a BBA is treated with clipping, it is necessary 1) to pull intact vessel walls close to each other by pinching them over the fragile aneurysm dome and neck and 2) to prevent clip blades from slipping off after pinching.\(^2\)\(^,\)\(^3\)\(^,\)\(^8\)\(^,\)\(^2\)\(^8\) If these 2 conditions were satisfied, a BBA could be repaired by a simple clipping without the procedure of wrapping as reported in several studies.\(^4\)\(^,\)\(^7\)\(^,\)\(^2\)\(^5\)\(^,\)\(^2\)\(^6\)\(^,\)\(^5\)\(^3\)\(^,\)\(^5\)\(^6\)\(^,\)\(^5\)\(^7\)\(^,\)\(^5\)\(^8\)\(^,\)\(^5\)\(^9\)\(^,\)\(^5\)\(^9\)\(^,\)\(^6\)\(^0\) There have been reports of other methods, including a method of directly suturing a BBA alone\(^5\)\(^7\) or a method of suturing the BBA followed by clipping to augment the closure.\(^5\)\(^3\)\(^,\)\(^5\)\(^9\)\(^,\)\(^5\)\(^9\) Bojanowski et al\(^2\)\(^5\) classified the IC-BBAs into 4 types based on their morphology, and then chose an appropriate method, either a clipping only or a COW, according to its classification.

Such a clipping method requires removal of the blood clot adhering to the ruptured site as much as possible to make the
entire lesion and a whole aspect of the BBA directly observable. To do so, both considerable expansion of the operative field and proper proximal control are required to safely exfoliate the thick clot to expose the ruptured BBA. Also, it is imperative to achieve difficult tasks to avoid stenosis/occlusion of the ICA and not to rupture the BBA at the same time during this type of clipping. Although pinching a substantial portion of the intact artery wall may cause stenosis or occlusion of the ICA, pinching too shallowly for fear of stenosis may increase the risk of rupturing the BBA by letting the clip slide off.

Therefore, the idea of combining clipping and wrapping arises. An array of techniques to perform COW have been
proposed9,20,25,27-30,33,44,60-64 however, it is difficult to evaluate the efficacy and outcomes of these methods as a single entity. For example, some groups used clipping to fixate only wrapping material covering the BBA without including the artery wall.20,25 It is not ideal to use an elastic material such as fascia, cotton, or polyglycolic acid sheet (Neoval; Gunze, Osaka, Japan) to cover a fragile BBA, which is being constantly stressed by a high pressure of ICA, without a strong physical pressure.9,30,63 It might be better, strength-wise, if a less elastic material such as an expanded polytetrafluoroethylene sheet (Gore-Tex; W.L. Gore and Associates, Inc., Flagstaff, Arizona, USA) was used for wrapping.25,65 However, the ICA is not straight, and as its diameter varies as it ascends, it is difficult to adhere a nonelastic material tightly to the lesion. Even a slight gap between the BBA’s wall and the wrapping material may allow the BBA to regrow.63 Furthermore, it is technically very difficult to wrap a rigid material around a lesion that involves a complex shape where the origin of the PcomA or AchA arises. Therefore, the ideal treatment has to involve a fine-tuned clipping to create just enough adherence between the wrapping material and the BBA.27 To satisfy all of the demanding issues mentioned here, we incorporated many tweaks into our own COCW procedure. By using 2 strips of cotton, instead of a single strip, and also crossing them over the proximal origin of PcomA or AchA to envelop the entire BBA on the ICA, the procedure permits less deformation of the ICA that may disrupt the flow of the branching arteries. Also, it allows the end of the strips to be pulled much harder for a better closure, and it enables the clip blades to land in a more appropriate location without fear of slipping off or obstructing their blood flow. The most difficult BBAs for this method are the ones occurring at the medial aspect of the ICA, where the tight cisternal space impedes the pulling action of cotton necessary to maintain a tight grip of the ICA during the closure of the clip. Despite this limitation, as shown in the presentation of case 13, COCW was safely performed for this type of BBA with the help of a fenestrated clip. Likewise, Garrett and Spetzler27 reported a modified COW by making a cut to the wrapping material to facilitate preserving blood flow to the branching artery while achieving robust closure of the BBA.

The biggest concern about the use of cotton strips is a possible allergic reaction that induces granulation around the ICA to
cause stenosis or occlusion. In our experiences of COCW, however, no patient has shown granulation or cerebral edema in the vicinity of the treated BBAs as an allergic reaction, and also no consequential stenosis or obstruction of the ICA was encountered.

Limitations
It should be noted that this study is a retrospective study with a small number of patients. In addition, significant technical alterations, such as the introduction of new monitoring devices including indocyanine green video angiography and motor-evoked potential, were made during the study period. However, the 3 of our surgeons have performed COCW surgery with the same

Figure 7. (A) An illustration describes how a high-flow bypass provides a retrograde blood flow into the branching arteries in case of trapping internal carotid artery at the C2. (B) If the retrograde flow was boosted by the presence of a larger posterior communicating artery (PcomA) (green arrow) as a suctioning effect, the blood flow into the anterior choroidal artery (AchA) (red arrow as strong flow) could be strengthened as well. (C) If the PcomA was hypoplasic, it would not able to provide a vital perfusion pressure to the AchA (red dashed arrow as weaker flow).

Table 2. Treatment Options for IC BBAs

	1. Direct surgery
	Direct simple clipping
	Clipping on wrapping ± low flow bypass
	Trapping + low or high flow bypass
	2. Endovascular surgery
	Simple coiling
	Coiling through stent
	Flow diverter

BBA, blood blister-like aneurysm; IC, internal carotid.
scheme, and the basic surgical procedures have been consistent throughout this study.

CONCLUSIONS

Although concerns over allergic reactions and granulation to the cotton material remain as issues, this COCW method deserves consideration as a novel method that enables the safe and effective long-term control of IC-BBAs.

ACKNOWLEDGMENT

We thank Dr. Yasuyuki Hitoshi for editing English.

REFERENCES

1. Yaaragil MG. Internal carotid artery aneurysms. Microsurgery. 2004;24(5):332-339.

2. Nakagawa F, Kobayashi S, Takemae T, Sugita K. Aneurysms protruding from the dorsal wall of the internal carotid artery. J Neurosurg. 1986;65:303-308.

3. Abe M, Tabuchi K, Yokoyama H, Uchino A. Blood blister-like aneurysms of the internal carotid artery. J Neurosurg. 1998;89:419-424.

4. Sim SY, Shin YS, Cho KG, et al. Blood blister-like aneurysms at nonbranching sites of the internal carotid artery. J Neurosurg. 2006;105:400-405.

5. Meling TK, Sorteberg A, Bakke SJ, Slettebo H, Hennesenimi I, Sorteberg W. Blood blister-like aneurysms of the internal carotid artery trunk causing subarachnoid hemorrhage: treatment and outcome. J Neurosurg. 2008;108:662-671.

6. Satoh A, Sugiyama T, Hongo K, Kakizawa Y, Ishihara S, Matsutani M. Nationwide surveillance of IC anterior (or dorsal) wall aneurysms: with special reference to its dissecting nature. Acta Neurochir Suppl. 2008;98:31-35.

7. McLaughlin N, Laroche M, Bojanowski MW. Surgical management of blood blister-like aneurysms of the internal carotid artery. World Neurosurg. 2007;67(4):483-492.

8. Shigeta H, Kyoshima K, Nakagawa F, Kobayashi S. Dorsal internal carotid artery aneurysms at nonbranching sites in the suprachinoid portion of the internal carotid artery: internal carotid artery trunk aneurysms. Neurosurgery. 2000;47:578-583 [discussion: 578-580].

9. Lee JW, Choi HG, Jung JY, Huh SK, Lee KC. Surgical strategies for ruptured blister-like aneurysms arising from the internal carotid artery: a clinical analysis of 18 consecutive patients. Acta Neurochir (Wien). 2009;151:125-130.

10. Gaughran JR, Hasan D, Dumont AS, Jensen ME, McKenzie J, Evans AI. The efficacy of endovascular stenting in the treatment of suprachinoid internal carotid artery blister aneurysms using a stent-in-stent technique. Am J Neuroradiol. 2012;33:1132-1138.

11. Ishikawa T, Nakamura N, Houkin K, Nomura M. Pathological consideration of a "blister-like" aneurysm at the superior wall of the internal carotid artery: case report. Neurosurgery. 1997;41:403-405 [discussion: 5].

12. Silva CR, Faquini IV, Kitamata MA, Azevedo-Filho HR. Internal carotid artery blood blister-like aneurysm. Arq Neuropsiquiatr. 2008;66:963-965.

13. Xu F. Treatment strategies for ruptured blood blister-like aneurysms of the internal carotid artery. Neurosurgery. 2014;74:155-157.

14. Cauzin F, Pascalella R, Pavesi G, et al. Acute endovascular treatment (<48 hours) of uncookable ruptured aneurysms at nonbranching sites using silk flow-diverting devices. Intern Neurol. 2011;17:357-364.

15. Consoli A, Nappini S, Renieri L, Limbucci N, Ricciardi F, Manganico S. Treatment of two blood blister-like aneurysms with flow diverter stenting. J Neurinterv Surg. 2012;4:64.

16. Cinar C, Oran I, Bozkaya H, Ozyiray E. Endovascular treatment of ruptured blister-like aneurysms with special reference to the flow-diverting strategy. Neuroradiolog. 2013;55:447-457.

17. Gonzalez AM, Narata AP, Yilmaz H, et al. Blood blister-like aneurysms: single center experience and systematic literature review. Eur J Radiol. 2014;83:497-505.

18. Yoon JW, Siddiqui AH, Dumont TM, et al. Feasibility and safety of pipeline embolization device in patients with ruptured carotid blister aneurysms. Neurosurgery. 2014;74:449-457 [discussion: 457].

19. Rouchaud A, Brinjikji W, Cloft HJ, Kallmes DF. Endovascular treatment of ruptured blister-like aneurysms: a systematic review and meta-analysis with focus on deconstructive versus reconstructive and flow-diverting treatments. AJNR Am J Neuroradiol. 2015;36:233-239.

20. Aydin K, Arat A, Sencer S, et al. Treatment of ruptured blood blister-like aneurysms with flow diverter SILK stents. J Neurinterv Surg. 2015;7:202-207.

21. Shah SS, Gersey ZG, Nuh M, Ghoriman H, Elhammady MS, Peterson EC. Microsurgical versus endovascular interventions for blood-blister aneurysms of the internal carotid artery: systematic review of literature and meta-analysis on safety and efficacy. J Neurourol. 2017;17:7:1-13.

22. Park KS, Kang DH, Son WS, Park J, Kim YS, Kim BM. A case of ruptured blood blister-like aneurysm treated with pipeline embolization device: clinical significance of fetal-type posterior communicating artery. Neurointervention. 2017;12:40-44.

23. Park PJ, Meyer FB. The Suntik clip graft. Neurosurg. 2008;66(Suppl Operative):300-305 [discussion: 3].

24. Kalani MY, Zambramki JM, Kim LJ, et al. Long-term follow-up of blister aneurysms of the internal carotid artery. Neurosurgery. 2012;73:1026-1033 [discussion: 31].

25. Owen CM, Montemurro N, Lawton MT. Blister aneurysms of the internal carotid artery: micro-surgical results and management strategy. Neurosurgery. 2017;80:35-37.

26. Garrett M, Speitler RF. Surgical treatment of blister-like aneurysms. World Neurosurg. 2012;77:76-77.

27. Bojanowski MW, Weil AG, McLaughlin N, Chaudala C, Magro E, Fournier J. Morphological aspects of blister aneurysms and nuances for surgical treatment. J Neurosurg. 2010;112:9-10.

28. Kubo Y, Ogawara K, Tomitsuka N, Otawara Y, Watanabe M, Ogawa A. Wrap-clipping with polyvinylfluorathene for ruptured blister-like aneurysms of the internal carotid artery. J Neurosurg. 2008;109:785-787.

29. Kim YB, Hong CK, Chung I, Joo YJ, Huh SK. Long-term clinical and angiographic outcomes of wrap-clipping strategies for unclippable cerebral aneurysms. Yonsei Med J. 2014;55:401-409.

30. Kubo Y, Koji T, Yoshida K, Sato H, Ogawa A, Ogawara K. High-flow bypass and wrap-clipping for ruptured blood blister-like aneurysms of the internal carotid artery using intraoperative monitoring of cerebral hemodynamics. Vasc Health Risk Manag. 2015;11:397-402.

31. Nagasaki H, Takaishi M, Nagaya G, Nago S, Tsuzoi Y, Kamayashiki C. Hybrid procedure combining clip on wrapping and stent placement for ruptured suprachinoid blood blister-like aneurysms of the internal carotid artery. Clin Case Rep. 2017;5:285-289.

32. Fujioka S, Nishi T, Koga K, et al. Ruptured blood blister-like aneurysm originating from the anterior wall of the internal carotid artery: counterplanns for pitfalls in diagnosis and treatment. Surg Cereb Stroke. 2008;36:38-44.

33. Shimizu H, Matsutomo Y, Tominaa T. Nonsaccular aneurysms of the suprachinoid internal carotid artery trunk causing subarachnoid hemorrhage: acute surgical treatments and review of literatures. Neurosurg Rev. 2010;33:205-216.

34. Yu-Tseo L, Ho-Fai W, Cheng-Chi L, Chu-Mei K, Yi-Chou W, Tao-Chic Y. Rupture of symptomatic blood blister-like aneurysm of the internal carotid artery: clinical experience and management outcome. Br J Neurosurg. 2012;26:378-382.
Fang YB, Li Q, Wu YN, et al. Overlapping stents with stent-assisted coiling followed by flow diverter in-stent insertion. A case report. Intrav Neuroradiol. 2011;17:369-370.

Lim YC, Kim BM, Suh SH, et al. Reconstructive treatment of ruptured blood blister-like aneurysms with stent and coil. Neururgensurg. 2013;73:680-688.

Kim BC, Kwon OK, Oh CW, et al. Endovascular treatment of blister-like aneurysms using flow-diverting silk(R) stents. An analysis of 32 consecutive patients. Intrav Neuroradiol. 2014;20:739-745.

Chalouhi N, Zanaty M, Tjoumakaris S, et al. Staged treatment of a blood blister-like aneurysm with stent-assisted coil embolization. J Neurointerv Surg. 2017;9:280-284.

Mazur MD, Taussky P, MacDonald JD, Park MS. Treatment of blood blister-like aneurysms with the pipeline embolization device. Neurosurgery. 2014;74:527-532 [discussion: 32].

Fang YB, Li Q, Wu YN, et al. Overlapping stents for blood blister-like aneurysms of the internal carotid artery. Clin Neurol Neurosurg. 2014;123:34-39.

Princiotta C, Dall’olio M, Ciello L, Leonardi M. Staged treatment of a blood blister-like aneurysm with stent-assisted coiling followed by flow diverter in-stent insertion. A case report. Intrav Neuroradiol. 2011;17:369-370.

Lim YC, Kim BM, Suh SH, et al. Reconstructive treatment of ruptured blood blister-like aneurysms with stent and coil. Neururgensurg. 2013;73:680-688.

Kim BC, Ewon OK, Oh CW, et al. Endovascular internal carotid artery trapping for ruptured blood blister-like aneurysms: long-term results from a single centre. Neuroangiolog. 2014;56:211-217.

Buyukkaya R, Kocaeli H, Yildirim N, Cebeci H, Erdogan C, Halayreem B. Treatment of complex intracranial aneurysms using flow-diverting silk(R) stents. An analysis of 32 consecutive patients. Intrav Neuroradiol. 2014;20:739-745.

Chalouhi N, Zanaty M, Tjoumakaris S, et al. Staged treatment of a blood blister-like aneurysm with stent-assisted coil embolization. J Neurointerv Surg. 2017;9:280-284.

Mazur MD, Taussky P, MacDonald JD, Park MS. Treatment of blood blister-like aneurysms with the pipeline embolization device. Neurosurgery. 2014;74:527-532 [discussion: 32].

Fang YB, Li Q, Wu YN, et al. Overlapping stents for blood blister-like aneurysms of the internal carotid artery. Clin Neurol Neurosurg. 2014;123:34-39.

Princiotta C, Dall’olio M, Ciello L, Leonardi M. Staged treatment of a blood blister-like aneurysm with stent-assisted coiling followed by flow diverter in-stent insertion. A case report. Intrav Neuroradiol. 2011;17:369-370.

Lim YC, Kim BM, Suh SH, et al. Reconstructive treatment of ruptured blood blister-like aneurysms with stent and coil. Neururgensurg. 2013;73:680-688.

Kim BC, Ewon OK, Oh CW, et al. Endovascular internal carotid artery trapping for ruptured blood blister-like aneurysms: long-term results from a single centre. Neuroangiolog. 2014;56:211-217.

Buyukkaya R, Kocaeli H, Yildirim N, Cebeci H, Erdogan C, Halayreem B. Treatment of complex intracranial aneurysms using flow-diverting silk(R) stents. An analysis of 32 consecutive patients. Intrav Neuroradiol. 2014;20:739-745.

Chalouhi N, Zanaty M, Tjoumakaris S, et al. Staged treatment of a blood blister-like aneurysm with stent-assisted coil embolization. J Neurointerv Surg. 2017;9:280-284.

Mazur MD, Taussky P, MacDonald JD, Park MS. Treatment of blood blister-like aneurysms with the pipeline embolization device. Neurosurgery. 2014;74:527-532 [discussion: 32].

Fang YB, Li Q, Wu YN, et al. Overlapping stents for blood blister-like aneurysms of the internal carotid artery. Clin Neurol Neurosurg. 2014;123:34-39.

Princiotta C, Dall’olio M, Ciello L, Leonardi M. Staged treatment of a blood blister-like aneurysm with stent-assisted coiling followed by flow diverter in-stent insertion. A case report. Intrav Neuroradiol. 2011;17:369-370.

Lim YC, Kim BM, Suh SH, et al. Reconstructive treatment of ruptured blood blister-like aneurysms with stent and coil. Neururgensurg. 2013;73:680-688.

Kim BC, Ewon OK, Oh CW, et al. Endovascular internal carotid artery trapping for ruptured blood blister-like aneurysms: long-term results from a single centre. Neuroangiolog. 2014;56:211-217.

Buyukkaya R, Kocaeli H, Yildirim N, Cebeci H, Erdogan C, Halayreem B. Treatment of complex intracranial aneurysms using flow-diverting silk(R) stents. An analysis of 32 consecutive patients. Intrav Neuroradiol. 2014;20:739-745.

Chalouhi N, Zanaty M, Tjoumakaris S, et al. Staged treatment of a blood blister-like aneurysm with stent-assisted coil embolization. J Neurointerv Surg. 2017;9:280-284.

Mazur MD, Taussky P, MacDonald JD, Park MS. Treatment of blood blister-like aneurysms with the pipeline embolization device. Neurosurgery. 2014;74:527-532 [discussion: 32].

Fang YB, Li Q, Wu YN, et al. Overlapping stents for blood blister-like aneurysms of the internal carotid artery. Clin Neurol Neurosurg. 2014;123:34-39.

Princiotta C, Dall’olio M, Ciello L, Leonardi M. Staged treatment of a blood blister-like aneurysm with stent-assisted coiling followed by flow diverter in-stent insertion. A case report. Intrav Neuroradiol. 2011;17:369-370.

Lim YC, Kim BM, Suh SH, et al. Reconstructive treatment of ruptured blood blister-like aneurysms with stent and coil. Neururgensurg. 2013;73:680-688.

Kim BC, Ewon OK, Oh CW, et al. Endovascular internal carotid artery trapping for ruptured blood blister-like aneurysms: long-term results from a single centre. Neuroangiolog. 2014;56:211-217.

Buyukkaya R, Kocaeli H, Yildirim N, Cebeci H, Erdogan C, Halayreem B. Treatment of complex intracranial aneurysms using flow-diverting silk(R) stents. An analysis of 32 consecutive patients. Intrav Neuroradiol. 2014;20:739-745.

Chalouhi N, Zanaty M, Tjoumakaris S, et al. Staged treatment of a blood blister-like aneurysm with stent-assisted coil embolization. J Neurointerv Surg. 2017;9:280-284.

Mazur MD, Taussky P, MacDonald JD, Park MS. Treatment of blood blister-like aneurysms with the pipeline embolization device. Neurosurgery. 2014;74:527-532 [discussion: 32].

Fang YB, Li Q, Wu YN, et al. Overlapping stents for blood blister-like aneurysms of the internal carotid artery. Clin Neurol Neurosurg. 2014;123:34-39.