1 Introduction

The class \mathcal{S}. The class of univalent functions φ from the open unit disk \mathbb{D} into the complex plane \mathbb{C}, subject to the normalizations $\varphi(0) = 0$ and $\varphi'(0) = 1$, is denoted by \mathcal{S}. It is classical that for $\varphi \in \mathcal{S}$, we have the distortion estimates

$$\frac{1 - |z|}{(1 + |z|)^3} \leq |\varphi'(z)| \leq \frac{1 + |z|}{(1 - |z|)^3}, \quad z \in \mathbb{D}. \quad (1.1)$$

The above-mentioned estimates are sharp, as is shown by the example of a suitable rotation of the Koebe function

$$\kappa(z) = \frac{z}{(1 - z)^2}, \quad z \in \mathbb{D};$$

this function is in \mathcal{S}, and maps the disk onto the plane minus the slit $]-\infty, -\frac{1}{4}[$. After all, a simple calculation shows that

$$\kappa'(z) = \frac{1 + z}{(1 - z)^3}, \quad z \in \mathbb{D}.$$

It is of interest to better understand the sets in \mathbb{D} where $|\varphi'(z)|$ is either large or small. For instance, $|\kappa'(z)|$ is big near the boundary point $z = 1$, and small near $z = -1$, and elsewhere, the size is quite modest. One way to measure the average growth or decrease is to consider the integral means

$$\mathbb{M}_t[\varphi'](r) = \frac{1}{2\pi} \int_{-\pi}^{\pi} |\varphi'(re^{i\theta})|^t \, d\theta, \quad 0 < r < 1,$$

where t is a real parameter. It is clear from (1.1) that

$$\mathbb{M}_t[\varphi'](r) = O \left(\frac{1}{(1 - r)^\beta} \right) \quad \text{as} \quad r \to 1^-, \quad (1.2)$$

holds for some positive β that depends on t. The infimum of all values of β for which the estimate (1.2) is valid is denoted by $\beta_{\varphi}(t)$. This is known as the integral means spectral function for φ, or simply the integral means spectrum of φ. The universal integral means spectrum for the class \mathcal{S} is then defined by

$$B_{\mathcal{S}}(t) = \sup_{\varphi \in \mathcal{S}} \beta_{\varphi}(t).$$

Each $\beta_{\varphi}(t)$ is a convex function of t, and therefore, $B_{\mathcal{S}}(t)$ is a convex function of t as well. It is a consequence of (1.1) plus testing with $\varphi(z) = z$ that

$$0 \leq B_{\mathcal{S}}(t) \leq \max \{ 3t, -t \}, \quad t \in \mathbb{R}. \quad (1.3)$$

We call this the trivial bound.
For certain t, the exact values of $B_S(t)$ are known. Namely, (see [3])

$$B_S(t) = 3t - 1 \quad \text{for} \quad \frac{2}{5} \leq t < +\infty,$$

and there exists a critical value R_{CM}, $2 \leq R_{CM} < +\infty$ such that

$$B_S(t) = -t - 1 \quad \text{for} \quad -\infty < t \leq -R_{CM},$$

whereas $-t - 1 < B_S(t)$ for $-R_{CM} < t < +\infty$ (see [4]). The exact value of the universal constant R_{CM} is not known. The well-known Brennan conjecture is equivalent to the statement that $R_{CM} = 2$, which may also be expressed as $B_S(-2) = 1$.

The class Σ. We should also mention the related class Σ of conformal maps φ which map the external disk

$$\mathbb{D}_e = \{ z \in \mathbb{C}_\infty : 1 < |z| \leq +\infty \}$$

into the Riemann sphere $\mathbb{C}_\infty = \mathbb{C} \cup \{ \infty \}$ in such a way that

$$\varphi(z) = z + O(1), \quad |z| \to +\infty.$$

It is classical that for $\varphi \in \Sigma$, we have the distortion estimates

$$\frac{|z|^2 - 1}{|z|^2} \leq |\varphi'(z)| \leq \frac{|z|^2}{|z|^2 - 1}, \quad z \in \mathbb{D}_e. \quad (1.4)$$

For $\varphi \in \Sigma$, we consider the integral means

$$M_t[\varphi'](r) = \frac{1}{2\pi} \int_{-\pi}^{\pi} |\varphi'(re^{i\theta})|^t \, d\theta, \quad 1 < r < +\infty,$$

and in this case, we are interested in the behavior of this quantity as $r \to 1^+$. The infimum of all β such that

$$M_t[\varphi'](r) = O\left(\frac{1}{(r - 1)^\beta} \right) \quad \text{as} \quad r \to 1^+$$

holds is denoted by $\beta_\varphi(t)$. And $B_\Sigma(t)$ – the universal spectral function for the class Σ – is defined as the supremum of all $\beta_\varphi(t)$, where φ ranges over all elements of Σ. This function $B_\Sigma(t)$ is a convex function of t, for essentially the same reasons that $B_S(t)$ is. The trivial bound of $B_\Sigma(t)$ based on the pointwise estimate (1.4) is

$$0 \leq B_\Sigma(t) \leq |t|, \quad t \in \mathbb{R}. \quad (1.5)$$

It is known that

$$B_\Sigma(t) = |t| - 1, \quad t \in [-\infty, -R_{CM}] \cup [2, +\infty[,$$

where the constant R_{CM} is the same as before, so the remaining interval $[-R_{CM}, 2]$ is what should be investigated.

Comparison of spectra. By analyzing the harmonic measure of the set of points where the boundary of a simply connected set is close to the origin, Nikolai Makarov found in [11] the following relation between the two spectral functions:

$$B_S(t) = \max \{ B_\Sigma(t), 3t - 1 \}, \quad t \in \mathbb{R}. \quad (1.6)$$

We should tell the reader that Makarov’s original statement deals with S_b, the class of bounded conformal maps from \mathbb{D} into \mathbb{C} that preserve the origin, in place of the class Σ, but that these classes are sufficiently similar for the argument to carry over.
Here, we intend to study mainly the spectral function $B_{\Sigma}(t)$. We shall obtain estimates that are considerably better than what has been known up to this point. However, we have not been able to settle the part of the so-called Kraetzer conjecture \[10\] that applies to B_{Σ}; this conjecture claims that

$$B_{\Sigma}(t) = \frac{t^2}{4}, \quad -2 \leq t \leq 2.$$

Bergman space methods. We prefer to obtain a reformulation of the definition of $\beta_{\varphi}(t)$ for $\varphi \in \mathcal{S}$. It is easy to see that, for $-1 < \alpha < +\infty$,

$$\int_0^1 M_t[\varphi'](r) (1 - r)^\alpha dr < +\infty \quad \Rightarrow \quad M_t[\varphi'](r) = O\left(\frac{1}{(1 - r)^{\alpha + 1}}\right) \quad \text{as} \quad r \to 1^-,$$

$$M_t[\varphi'](r) = O\left(\frac{1}{(1 - r)^{\alpha + 1}}\right) \quad \text{as} \quad r \to 1^- \quad \Rightarrow \quad \int_0^1 M_t[\varphi'](r) (1 - r)^{\alpha + \varepsilon} dr < +\infty,$$

for each positive ε. For a given parameter α with $-1 < \alpha < +\infty$, we now introduce the Bergman space $\mathcal{H}_\alpha(\mathbb{D})$, consisting of those holomorphic functions f on \mathbb{D} with

$$\|f\|^2 = \int_\mathbb{D} |f(z)|^2 \, dA(z) < +\infty,$$

where we use the notation

$$dA_\alpha(z) = (\alpha + 1) (1 - |z|^2)^\alpha \, dA(z), \quad dA(z) = \frac{dx\,dy}{\pi}, \quad z = x + iy. \quad (1.7)$$

The above expression defines a norm on $\mathcal{H}_\alpha(\mathbb{D})$ which makes it a Hilbert space. In view of the above relationships, we have the identity

$$\beta_{\varphi}(t) = \inf \left\{ \alpha + 1 : (\varphi')^{t/2} \in \mathcal{H}_\alpha(\mathbb{D}) \right\}. \quad (1.8)$$

We think of this as a kind of “Hilbertization” of the problem.

In this paper, we obtain estimates of the norms

$$\left\| (\varphi')^{t/2} \right\|_\alpha$$

which are uniform in $\varphi \in \mathcal{S}$; in particular, this leads to estimates of the function $B_{\Sigma}(t)$. Our methods are Bergman space techniques in combination with the classical tools of Geometric Function Theory, such as Grönewall’s area theorem. To be more precise, we exploit a generalization of the area theorem, due to Prawitz. The advantage of our method is that it permits us to encode essentially the full strength of the area-based results, rather than just a single aspect thereof, such as the classical estimate ($\varphi \in \mathcal{S}$)

$$\left| \frac{\varphi''(z)}{\varphi'(z)} - \frac{2z}{1 - |z|^2} \right| \leq \frac{4}{1 - |z|^2}, \quad z \in \mathbb{D},$$

which is a consequence of Bieberbach’s inequality $\frac{1}{2} |\varphi''(0)| = |\tilde{\varphi}(2)| \leq 2$.

Complex parameters in the spectral function. It is natural to consider the integral means spectral functions also for complex arguments. For complex $\tau \in \mathbb{C}$, we define the associated τ-integral means of φ' by

$$M_t[\varphi'](r) = \frac{1}{2\pi} \int_0^\pi \left| [\varphi'(re^{i\theta})]^\tau \right| \, d\theta, \quad 0 < r < 1,$$
for \(\varphi \in \mathcal{S} \), and by the same formula with \(1 < r < +\infty \) for \(\varphi \in \Sigma \). The definition of the power is more delicate this time, but we are saved by the fact that \(\varphi'(z) \) is zero-free in the disk, and we choose – as a matter of convenience – the branch of \(\lvert \varphi'(z) \rvert^r \) which gives the value 1 for \(z = 0 \). This allows us to define \(\beta_{r,\varphi}(\tau) \) just as before, and taking the suprema over the two classes \(\mathcal{S} \) and \(\Sigma \), we obtain the universal integral means spectral functions \(B_S(\tau) \) and \(B_\Sigma(\tau) \) defined over \(\tau \in \mathbb{C} \). A simple analysis of these two functions shows that each is convex in the whole complex plane. Our method will supply estimates of the function \(B_S(\tau) \) for complex \(\tau \), but we usually do not stress this fact.

Underlying ideas. We outline the underlying philosophy of the paper. As we began this study of integral means spectral functions, we got increasingly convinced that the topic is related to the smallness of certain operators associated to a given conformal mapping \(\varphi \). To get the basic idea, we suppose that

\[
\sup_{\varphi} \int_D \lvert \varphi'(z) \rvert^\alpha \, dA_\alpha(z) < +\infty
\]

holds for some \(\alpha, -1 < \alpha < +\infty \), and some complex \(\tau \); the supremum runs over all \(\varphi \in \mathcal{S} \). This assumption looks slightly stronger than the statement that \(B_S(\tau) < \alpha + 1 \), due to the uniformity in the bound, but is most likely equivalent to it. We suppose that, in addition, the same estimate holds for \(-\tau \) as well:

\[
\sup_{\varphi} \int_D \lvert \varphi'(z) \rvert^{-\tau} \, dA_\alpha(z) < +\infty.
\]

In fact, the estimate we really need is

\[
\sup_{\varphi} \int_D \lvert \varphi'(z) \rvert \, dA_\alpha(z) \times \int_D \lvert \varphi'(z) \rvert^{-\tau} \, dA_\alpha(z) < +\infty,
\]

which we write in the form

\[
\sup_{\varphi} \left\langle \lvert \varphi'(z) \rvert \right\rangle_{D,\alpha} \left\langle \lvert \varphi'(z) \rvert^{-1} \right\rangle_{D,\alpha} < +\infty,
\]

(1.10)

where the notation

\[
\left\langle f \right\rangle_{Q,\alpha} = \frac{1}{|Q|_\alpha} \int_Q f(z) \, dA_\alpha(z)
\]

is used for the \(dA_\alpha \)-average of \(f \) on the subset \(Q \) of \(D \); here, \(|Q|_\alpha \) is the \(dA_\alpha \)-area of \(Q \). We now use the fact that for each \(z_0 \in \mathbb{D} \), the function

\[
z \mapsto \varphi \left(\frac{z + z_0}{1 + \bar{z}_0 z} \right) - \varphi(z_0)
\]

is an element of \(\mathcal{S} \), plug it into (1.10) in place of \(\varphi \), and make an appropriate Möbius shift of coordinates in \(\mathbb{D} \). It then follows that

\[
\sup_{\varphi, Q} \left\langle \lvert \varphi'(z) \rvert \right\rangle_{Q,\alpha} \left\langle \lvert \varphi'(z) \rvert^{-1} \right\rangle_{Q,\alpha} < +\infty,
\]

(1.11)

where the supremum runs over all \(\varphi \in \mathcal{S} \) and all Carleson “squares” \(Q \) in \(\mathbb{D} \). Condition (1.11) is of \(dA_\alpha \)-area Muckenhoupt (or Békollé) type. In the limit case \(\alpha = -1 \), when \(dA_\alpha \) degenerates to arc length measure on the unit circle \(T \), the Muckenhoupt (\(A_2 \)) condition on the positive weight \(\omega \), which reads

\[
\sup_Q \left\langle \omega \right\rangle_{Q,-1} \left\langle \omega^{-1} \right\rangle_{Q,-1} < +\infty,
\]
is – by the celebrated Helson-Szegö theorem \[9\] – equivalent to having

$$\log \omega = u + \tilde{v},$$

where \(u\) and \(v\) are real-valued functions in \(L^\infty(\mathbb{T})\), with

$$\|v\|_{L^\infty(\mathbb{T})} < \frac{\pi}{2};$$

\(\tilde{v}\) is the harmonic conjugate of \(v\). We note that this time, the Carleson “squares” \(Q\) are tacitly assumed to include the adjacent boundary arcs on \(\mathbb{T}\). We interpret the Helson-Szegö theorem as saying that part of the BMO(\(\mathbb{T}\)) norm of \(\log \omega\) is small. A similar argument was used in \([7]\) to show that Brennan’s conjecture is equivalent to an area Muckenhoupt condition on \(|\varphi'|^q\), for suitable exponents \(q\). The space that corresponds to the subspace BMOA(\(\mathbb{D}\)) of BMO(\(\mathbb{T}\)) (consisting of all functions whose Poisson extensions to the interior are holomorphic) in the case when arc length is replaced by area measure is the Bloch space \(\mathcal{B}(\mathbb{D})\) (see, for instance, \([8]\)) of all holomorphic functions \(f\) in \(\mathbb{D}\) with

$$\|f\|_\mathcal{B} = \sup \left\{ \left(1 - |z|^2\right) |f'(z)| : z \in \mathbb{D} \right\} < +\infty;$$

the above expression is known as the Bloch norm. This means that, ideologically, we should hope to find some estimates of the Bloch norm of \(\log \varphi'\) which would be more or less equivalent to the \(dA_{\alpha}\)-area Muckenhoupt condition \([11\, 11]\). We are of course groping in the dark here, as there is no known theorem of Helson-Szegö type that would apply in the (weighted) area measure case. In any case, the conjectured property of \(B_S(t)\) that this function is even near the origin, plus the related stronger rotational invariance suggested by Binder, lends credence to the idea that a study of \((1.11)\) is the same as studying the integral means spectral function \(B_S(\tau)\), at least for \(\tau \in \mathbb{C}\) near the origin. If a function \(f \in \mathcal{B}(\mathbb{D})\) has sufficiently small Bloch norm, then it can be shown that \(e^f\) belongs to any fixed Bergman space \(\mathcal{H}_\alpha(\mathbb{D})\) \((-1 < \alpha < +\infty)\), with good control of the norm. In addition, it is also true that \(\log \varphi' \in \mathcal{B}(\mathbb{D})\) for \(\varphi \in \mathcal{S}\); this is an easy consequence of \([13\, 13]\). The problem is that there is a genuine gap between the constants for the necessary and the sufficient conditions, and the only way to bridge that gap is to find an appropriate substitute for the Bloch norm as defined above. In \([7]\), it was suggested by the first-named author, Hedenmalm, that spectral properties of a Volterra-type operator associated with \(\log \varphi'\) should be relevant for the problem at hand; inspiration for this came from conversations with Alexandru Aleman. Essentially, this amounts to studying the multiplier properties of \(\varphi''/\varphi'\). Then the second-named author, Shimorin, found that the multiplier norm of the Schwarzian derivative from the space \(\mathcal{H}_\alpha(\mathbb{D})\) to \(\mathcal{H}_{\alpha+4}(\mathbb{D})\) could be estimated effectively by using the area methods directly rather than going via the classical pointwise estimate

$$\left| \frac{\varphi''(z)}{\varphi'(z)} \right| \leq \frac{6}{(1 - |z|^2)^2}, \quad z \in \mathbb{D},$$

(1.12)

and that this led to a better estimate of \(B_S(-1)\) and \(B_S(-2)\) than what was previously known. We should mention that \((1.12)\) also expresses in a way that \(\log \varphi' \in \mathcal{B}(\mathbb{D})\), and that the multiplier norm estimate implies an estimate of the spectral radius of a Volterra-type operator associated with the Schwarzian derivative. Shimorin’s work suggests that the multiplier norm of the derivative of \(\log \varphi'\) from \(\mathcal{H}_\alpha(\mathbb{D})\) to \(\mathcal{H}_{\alpha+2}(\mathbb{D})\) is a more appropriate way to measure the size of \(\log \varphi'\) than applying the usual Bloch norm. Then, by dissecting a theorem by Prawitz, which generalizes the Grönwall area theorem, we found a collection of estimates of multiplier norm type, parametrized by a real parameter \(\theta\), \(0 < \theta \leq 1\). Generally speaking, these estimates were the result of the application of the diagonal restriction operator on the bidisk \(\mathbb{D}^2\) and the use of sharp constants in norm estimates. By adding
higher order terms corresponding to the multiplicity of the zero along the diagonal, we
found an estimate that was in fact an equality for all full mappings φ. Unfortunately, the
vast majority of these additional terms carry information of which it is, generally speaking,
hard to make effective use as regards the study of integral means spectra. The details of
the method are presented in Sections 2, 3, and 4.

2 Area theorem type estimates

The theorem of Prawitz. Our point of departure is a theorem of Prawitz, which general-
izes Grönewall’s famous area theorem.

THEOREM 2.1 Let $\varphi \in S$. Then, for $0 < \theta \leq 1$, we have

$$\left| \int_{D} \left(\frac{\varphi'(z)}{\varphi(z)} \right)^{\theta+1} - 1 \right|^2 \frac{dA(z)}{|z|^{2\theta+2}} \leq \frac{1}{\theta},$$

with equality precisely for the full mappings φ.

Proof. The inequality follows from a classical result of Prawitz, see [13, p. 13] (the
inequality in [13] is formulated for functions of the class Σ, but a stan-
dard passage from Σ to S leads to the above inequality). The fact that we have an equality precisely for the
full mappings is a part of Prawitz’ theorem.

In Theorem 2.1,

$$\left(\frac{z}{\varphi(z)} \right)^{\theta+1} = \exp \left((\theta + 1) \log \frac{z}{\varphi(z)} \right),$$

where the logarithm expression is determined uniquely by the requirements that it be
holomorphic in D and that it assume the value 0 at $z = 0$.

A two-variable version of Prawitz’ theorem. We shall try to move the special point
$z = 0$ about in the disk, by the following procedure. We start with a given $\varphi \in S$, and put

$$\psi(\zeta) = \varphi \left(\frac{\zeta + w}{1 + \bar{w}\zeta} \right) - \varphi(w) \frac{1 - |w|^2}{|\varphi'(w)|} \varphi(w), \quad \zeta \in D,$$

for fixed $w \in D$, which then is another element of S. Now, we insert this ψ in place of φ in
Theorem 2.1

$$\int_{D} \left| \frac{1}{\varphi'(w)} (1 + \bar{w}\zeta)^{-2} \varphi' \left(\frac{\zeta + w}{1 + \bar{w}\zeta} \right) \left(1 - |w|^2 \right) \varphi'(w) \varphi(w) \right|^2 \frac{dA(\zeta)}{|\zeta|^{2\theta+2}} \leq \frac{1}{\theta},$$

and we make the change of variables

$$z = \frac{\zeta + w}{1 + \bar{w}\zeta} \iff \zeta = \frac{z - w}{1 - wz},$$

in the integral. After simplification, we then obtain

$$\int_{D} \left| \frac{\varphi'(z)}{\varphi'(w)} \left(\frac{\varphi'(w)(z - w)}{\varphi(z) - \varphi(w)} \right)^{\theta+1} = \left(\frac{1 - |w|^2}{1 - wz} \right)^{1-\theta} \frac{dA(z)}{|z - w|^{2\theta+2}} \leq \frac{1}{\theta (1 - |w|^2)^{-2\theta}}, \ (2.1)$$
valid for all θ in the interval $0 < \theta \leq 1$. This inequality is basic for our analysis. We shall write it in a slightly different form. Let

$$\Phi_\theta(z, w) = \frac{1}{z - w} \left\{ \frac{\varphi'(z)}{\varphi'(w)} \left(\frac{\varphi'(w) (z - w)}{\varphi(z) - \varphi(w)} \right)^{\theta + 1} - 1 \right\}, \quad (z, w) \in \mathbb{D}^2, \ z \neq w,$$

and

$$L_\theta(z, w) = \frac{1}{z - w} \left\{ 1 - \left(\frac{1 - |w|^2}{1 - \bar{w}z} \right)^{1-\theta} \right\}, \quad (z, w) \in \mathbb{D}^2, \ z \neq w.$$

We note that Φ_θ extends analytically to the whole bidisk \mathbb{D}^2, and that its diagonal restriction is

$$\Phi_\theta(z, z) = \frac{1 - \theta \varphi''(z)}{2 \varphi'(z)}.$$

The function L_θ extends real analytically to \mathbb{D}^2. In view of (2.1), we have the following.

THEOREM 2.2 Fix $\theta, 0 < \theta \leq 1$, and let $\varphi \in S$ be arbitrary. Then, for all $w \in \mathbb{D}$,

$$\int_\mathbb{D} \left| \Phi_\theta(z, w) + L_\theta(z, w) \right|^2 \frac{dA(z)}{|z - w|^{2\theta}} \leq \frac{1}{\theta} (1 - |w|^2)^{-2\theta},$$

with equality if and only if φ is a full mapping.

3 Bergman spaces in the bidisk

For $-\infty < \alpha, \beta < +\infty$, we consider the Hilbert space $L_{\alpha,\beta}(\mathbb{D}^2)$ of all Lebesgue measurable functions on the bidisk \mathbb{D}^2 (modulo null functions), subject to the norm boundedness condition

$$\|f\|_{\alpha,\beta} = \left(\int_\mathbb{D} \int_\mathbb{D} |f(z, w)|^2 |z - w|^{2\beta} dA(z) dA(w) \right)^{1/2} < +\infty,$$

where dA is as in (1.1). We also need the closed subspace $H_{\alpha,\beta}(\mathbb{D}^2)$ of $L_{\alpha,\beta}(\mathbb{D}^2)$ that consists of functions holomorphic in \mathbb{D}^2. The space $H_{\alpha,\beta}(\mathbb{D}^2)$ is trivial unless $-1 < \alpha < +\infty$. The reproducing kernel for the space $H_{\alpha,\beta}(\mathbb{D}^2)$ will be denoted by

$$P_{\alpha,\beta}((z, w); (z', w')), \quad (z, w), (z', w') \in \mathbb{D}^2;$$

it is holomorphic in (z, w), and anti-holomorphic in (z', w'). It is defined by the reproducing property

$$f(z, w) = \int_\mathbb{D} \int_\mathbb{D} P_{\alpha,\beta}((z, w); (z', w')) f(z', w') |z' - w'|^{2\beta} dA(z') dA(w'),$$

for all $(z, w) \in \mathbb{D}^2$ and $f \in H_{\alpha,\beta}(\mathbb{D}^2)$. In case $\beta = 0$, it is given by the explicit formula

$$P_{\alpha,0}((z, w); (z', w')) = \frac{1}{(1 - z\bar{z'})^2(1 - w\bar{w'})^{\alpha+2}}, \quad (z, w), (z', w') \in \mathbb{D}^2.$$

Associated with a kernel $T = T_{\alpha,\beta}$ of the variables $((z, w); (z', w')) \in \mathbb{D}^2 \times \mathbb{D}^2$, we have an operator on $L_{\alpha,\beta}(\mathbb{D}^2)$ defined by

$$T_{\alpha,\beta} f(z, w) = \int_\mathbb{D} \int_\mathbb{D} T_{\alpha,\beta}((z, w); (z', w')) f(z', w') |z' - w'|^{2\beta} dA(z') dA(w'),$$

$$\mathbb{D}^2$$
for \((z, w) \in \mathbb{D}^2\), which is going to be bounded in all cases we shall consider. For instance, associated with the kernel \(P_{\alpha,\beta}\) is the operator \(P_{\alpha,\beta}\) which effects the orthogonal projection \(\mathcal{L}_{\alpha,\beta}(\mathbb{D}^2) \to \mathcal{H}_{\alpha,\beta}(\mathbb{D}^2)\).

Let \(N = 0, 1, 2, 3, \ldots\) be a nonnegative integer, and consider the closed subspace \(\mathcal{H}_{\alpha,\beta;N}(\mathbb{D}^2)\) of \(\mathcal{H}_{\alpha,\beta}(\mathbb{D}^2)\) consisting of functions with

\[
f(z, w) = O(|z - w|^N)
\]

near the diagonal. These functions vanish up to degree \(N\) along the diagonal, and are holomorphically divisible by \((z - w)^N\). For \(N = 0\), we have

\[
\mathcal{H}_{\alpha,\beta;0}(\mathbb{D}^2) = \mathcal{H}_{\alpha,\beta}(\mathbb{D}^2);
\]

more generally, for \(N = 1, 2, 3, \ldots\),

\[
\mathcal{H}_{\alpha,\beta;N}(\mathbb{D}^2) = \mathcal{H}_{\alpha,\beta}(\mathbb{D}^2) \quad \text{if} \quad -\infty < \beta + N \leq 0.
\]

Being a closed subspace of the Hilbert space \(\mathcal{H}_{\alpha,\beta}(\mathbb{D}^2)\), the subspace \(\mathcal{H}_{\alpha,\beta;N}(\mathbb{D}^2)\) has a reproducing kernel function, denoted

\[
P_{\alpha,\beta;N}((z, w); (z', w')), \quad (z, w), (z', w') \in \mathbb{D}^2.
\]

Associated to the kernel is the orthogonal projection

\[
P_{\alpha,\beta;N} : \mathcal{L}_{\alpha,\beta}(\mathbb{D}^2) \to \mathcal{H}_{\alpha,\beta;N}(\mathbb{D}^2).
\]

The following is an important observation.

Proposition 3.1 For \(-1 < \alpha, \beta < +\infty\), we have

\[
P_{\alpha,\beta;N}((z, w); (z', w')) = (z - w)^N (\bar{z}' - \bar{w}')^N P_{\alpha,\beta+N}((z, w); (z', w')),
\]

for \((z, w), (z', w') \in \mathbb{D}^2\).

Proof. We note that multiplication by \((z - w)^N\) is an isometric isomorphism

\[
\mathcal{H}_{\alpha,\beta+N}(\mathbb{D}^2) \to \mathcal{H}_{\alpha,\beta;N}(\mathbb{D}^2);
\]

from this, the conclusion is immediate. \(\blacksquare\)

For \(N = 0, 1, 2, 3, \ldots\), consider the Hilbert space

\[
\mathcal{I}_{\alpha,\beta;N}(\mathbb{D}^2) = \mathcal{H}_{\alpha,\beta;N}(\mathbb{D}^2) \ominus \mathcal{H}_{\alpha,\beta;N+1}(\mathbb{D}^2).
\]

Its reproducing kernel has the form

\[
Q_{\alpha,\beta;N}((z, w); (z', w')) = P_{\alpha,\beta;N}((z, w); (z', w')) - P_{\alpha,\beta;N+1}((z, w); (z', w')),
\]

and the associated operator projects orthogonally

\[
Q_{\alpha,\beta;N} : \mathcal{L}_{\alpha,\beta}(\mathbb{D}^2) \to \mathcal{I}_{\alpha,\beta;N}(\mathbb{D}^2).
\]

We write \(Q_{\alpha,\beta}\) for the special kernel \(Q_{\alpha,\beta;0}\). It then follows from Proposition 3.1 that

\[
Q_{\alpha,\beta;N}((z, w); (z', w')) = (z - w)^N (\bar{z}' - \bar{w}')^N Q_{\alpha,\beta+N}((z, w); (z', w')).
\]
The fact that the only function that vanishes to an infinite degree along the diagonal is the zero function implies the orthogonal decomposition

\[\mathcal{H}_{\alpha,\beta}(\mathbb{D}^2) = \bigoplus_{N=0}^{+\infty} \mathcal{I}_{\alpha,\beta;N}(\mathbb{D}^2). \]

As a consequence, we have the decomposition of the kernel

\[P_{\alpha,\beta}((z, w); (z', w')) = \sum_{N=0}^{+\infty} Q_{\alpha,\beta;N}((z, w); (z', w')) \]

\[= \sum_{N=0}^{+\infty} (z - w)^N (z' - w')^N Q_{\alpha,\beta;N+1}((z, w); (z', w')). \quad (3.3) \]

and the norm decomposition

\[\left\| P_{\alpha,\beta} f \right\|_{\alpha,\beta}^2 = \sum_{N=0}^{+\infty} \left\| Q_{\alpha,\beta;N} f \right\|_{\alpha,\beta}^2, \quad f \in \mathcal{L}_{\alpha,\beta}(\mathbb{D}^2). \quad (3.4) \]

There are some natural families of unitary operators acting in spaces \(\mathcal{H}_{\alpha,\beta}(\mathbb{D}^2) \). First, we can perform simultaneous rotations of variables \(z \) and \(w \):

\[R_\theta[f](z, w) = f(e^{i\theta} z, e^{i\theta} w); \quad f \in \mathcal{H}_{\alpha,\beta}(\mathbb{D}^2); \quad \theta \in \mathbb{R}. \]

The next family of unitary operators is given by the lemma below.

LEMMA 3.2 For each \(\lambda \in \mathbb{D} \), the operator

\[U_\lambda[f](z, w) = \frac{(1-|\lambda|^2)^{\alpha/2+\beta+2}}{(1-\lambda z)^{\alpha+\beta+2}(1-\lambda w)^{\alpha+\beta+2}} \left(\frac{\lambda - z}{1-\lambda z} \right)^{\alpha/2} \left(\frac{\lambda - w}{1-\lambda w} \right)^{\beta/2} f \left(\frac{\lambda - z}{1-\lambda z}, \frac{\lambda - w}{1-\lambda w} \right) \]

is unitary on \(\mathcal{H}_{\alpha,\beta}(\mathbb{D}^2) \), and its square is the identity: \(U_\lambda^2[f] = f \) for all \(f \in \mathcal{H}_{\alpha,\beta}(\mathbb{D}^2) \).

Proof. This amounts to an elementary change of variables calculation. \(\blacksquare \)

In fact, if both \(\alpha \) and \(\beta \) are even integers, then for each Möbius automorphism \(\psi \) of the disk \(\mathbb{D} \), one can define the operator \(U_\psi \):

\[U_\psi[f](z, w) = f(\psi(z), \psi(w)) \cdot (\psi'(z))^{1+\beta/2} \cdot (\psi'(w))^{1+\alpha/2+\beta/2}. \]

Then all operators \(U_\psi \) are unitary in \(\mathcal{H}_{\alpha,\beta}(\mathbb{D}^2) \) and the map \(\psi \mapsto U_\psi \) is a unitary representation of the group of Möbius automorphisms of \(\mathbb{D} \).

We proceed by analyzing the reproducing kernel \(P_{\alpha,\beta} \) along the diagonal.

LEMMA 3.3 Fix \(-1 < \alpha, \beta < +\infty \). We then have

\[P_{\alpha,\beta}((z, w); (z', w')) = Q_{\alpha,\beta}((z, w); (z', w')) = \frac{\sigma(\alpha, \beta)}{(1-zz')^{\alpha+\beta+2}(1-wz')^{\alpha+\beta+2}}, \]

where the constant \(\sigma(\alpha, \beta) \) is given by

\[\frac{1}{\sigma(\alpha, \beta)} = \int_\mathbb{D} \int_\mathbb{D} |z - w|^{2\beta} dA(z) dA_\alpha(w). \]
Proof. We note first that the fact that rotation operators R_θ are unitary in $\mathcal{H}_{\alpha,\beta}(\mathbb{D}^2)$ implies that

$$P_{\alpha,\beta}((e^{i\theta}z, e^{i\theta}w); (0,0)) = P_{\alpha,\beta}((z,w); (0,0)).$$

Now, we observe that the only functions analytic in \mathbb{D}^2 and having this property are the constant functions, which follows at once by considering double power series expansions. Hence, $P_{\alpha,\beta}((z,w); (0,0))$ is constant in (z,w), and we write

$$\sigma(\alpha, \beta) = P_{\alpha,\beta}((z,w); (0,0)). \quad (3.5)$$

for this constant. The above integral formula for $\sigma(\alpha, \beta)$ follows from the reproducing property of the kernel $P_{\alpha,\beta}((\cdot, \cdot); (0,0))$ applied to the constant function 1.

Now, let $\lambda \in \mathbb{D}$. We pick $f \in \mathcal{H}_{\alpha,\beta}(\mathbb{D}^2)$, and note that in view of (3.5) and Lemma 3.2,

$$(1 - |\lambda|^2)^{\alpha/2 + \beta + 2} f(\lambda, \lambda) = U_\lambda[f](0,0) = \sigma(\alpha, \beta) \langle U_\lambda^2[f], U_\lambda[1] \rangle_{\alpha,\beta} = \sigma(\alpha, \beta) \langle f, U_\lambda[1] \rangle_{\alpha,\beta}.$$

This formula expresses the reproducing identity at the diagonal point (λ, λ), which shows that

$$P_{\alpha,\beta}((z,w); (\lambda, \lambda)) = \sigma(\alpha, \beta)(1 - |\lambda|^2)^{-\alpha/2 - \beta - 2} U_\lambda[1](z,w);$$

after some simplification, this gives the desired expression.

In view of Lemma 3.3,

$$P_{\alpha,\beta}((z,z); (z', z')) = \frac{\sigma(\alpha, \beta)}{(1 - z z')^{\alpha + 2\beta + 4}},$$

which we identify as the reproducing kernel for the Hilbert space coinciding as a set with the space $\mathcal{H}_{\alpha+2\beta+2}(\mathbb{D})$ from the introduction and supplied with the norm

$$\|f\| = \frac{1}{\sigma(\alpha, \beta)} \int_\mathbb{D} |f(z)|^2 dA_{\alpha+2\beta+2}(z) = \frac{1}{\sigma(\alpha, \beta)} \|f\|_{\alpha+2\beta+2}^2.$$

Let \otimes denote the operation of taking the diagonal restriction:

$$(\otimes f)(z) = f(z, z), \quad z \in \mathbb{D}.$$

In view of the general theory of reproducing kernels (see [11] and [16]), we have the sharp estimate

$$\frac{1}{\sigma(\alpha, \beta)} \|\otimes f\|_{\alpha+2\beta+2}^2 \leq \|f\|_{\alpha, \beta}^2, \quad f \in \mathcal{H}_{\alpha,\beta}(\mathbb{D}^2). \quad (3.6)$$

In fact, we can even determine the corresponding norm identity.

Lemma 3.4 We have the equality of norms

$$\frac{1}{\sigma(\alpha, \beta)} \|\otimes f\|_{\alpha+2\beta+2}^2 = \|Q_{\alpha,\beta} f\|_{\alpha, \beta}^2, \quad f \in \mathcal{H}_{\alpha,\beta}(\mathbb{D}^2).$$

Proof. The analysis of reproducing kernel functions that leads up to the estimate (3.6) also shows that to each $f \in \mathcal{H}_{\alpha,\beta}(\mathbb{D}^2)$ there exists a $g \in \mathcal{H}_{\alpha,\beta}(\mathbb{D}^2)$ such that $\otimes g = \otimes f$ and

$$\frac{1}{\sigma(\alpha, \beta)} \|\otimes f\|_{\alpha+2\beta+2}^2 = \|g\|_{\alpha, \beta}^2, \quad f \in \mathcal{H}_{\alpha,\beta}(\mathbb{D}^2).$$
We decompose this g as follows:

$$g = Q_{\alpha,\beta} f + (g - Q_{\alpha,\beta} f) \in \mathcal{I}_{\alpha,\beta} L^2(D^2) + \mathcal{H}_{\alpha,\beta} L^2(D^2).$$

As this decomposition is orthogonal, we get

$$\|Q_{\alpha,\beta} f\|_{\alpha,\beta}^2 \leq \|Q_{\alpha,\beta} f\|_{\alpha,\beta}^2 + \|g - Q_{\alpha,\beta} f\|_{\alpha,\beta}^2 = \|Q_{\alpha,\beta} f + (g - Q_{\alpha,\beta} f)\|_{\alpha,\beta}^2 = \|g\|_{\alpha,\beta}^2.$$

The assertion now follows from the above estimates together with Lemma 3.5.

Lemma 3.5 Fix $-1 < \alpha, \beta < +\infty$. Then

$$\frac{1}{\sigma(\alpha, \beta)} = \int_D \int_D |z - w|^{2\beta} \, dA(z) \, dA(w) = \frac{1}{1 + \beta} \frac{\Gamma(\alpha + 2) \Gamma(\alpha + 2\beta + 3)}{\Gamma(\alpha + \beta + 2) \Gamma(\alpha + \beta + 3)}.$$

Proof. We perform the change of variables

$$\zeta = \frac{w - z}{1 - \bar{w} z}, \quad z = \frac{w - \zeta}{1 - \bar{w} \zeta},$$

and replace the pair (z, w) by (ζ, w). The result is, after simplification,

$$\frac{1}{\sigma(\alpha, \beta)} = \frac{\alpha + 1}{(1 + \beta)(\alpha + 2\beta + 3)} \sum_{n=0}^{+\infty} \frac{(\beta + 2)_n (\beta + 1)_n}{n! (\alpha + 2\beta + 4)_n}$$

$$= \frac{\alpha + 1}{(1 + \beta)(\alpha + 2\beta + 3)} \, _2F_1(\beta + 2, \beta + 1; \alpha + 2\beta + 4; 1),$$

where $_2F_1$ denotes Gauss’ hypergeometric function. Here, we use the standard Pochhammer notation

$$(a)_n = a(a+1)(a+2)\ldots(a+n-1).$$

The assertion now follows from the well-known identity

$$_2F_1(a, b; c; 1) = \frac{\Gamma(c) \Gamma(c - a - b)}{\Gamma(c - a) \Gamma(c - b)}. \quad (3.7)$$

The proof is complete.

Remark 3.6 It follows from Lemma 3.5 that

$$\frac{\sigma(\alpha, \beta + n)}{\sigma(\alpha, \beta)} = \frac{n + 1 + \beta}{1 + \beta} \frac{(\alpha + \beta + 2)_n (\alpha + \beta + 3)_n}{(\alpha + 2\beta + 3)_n}, \quad n = 1, 2, 3, \ldots.$$

We obtain an integral representation of the kernel $Q_{\alpha,\beta}$.

Lemma 3.7 Fix $-1 < \alpha, \beta < +\infty$. The kernel $Q_{\alpha,\beta}$ is given by the integral formula

$$Q_{\alpha,\beta}((z, w); (z', w')) = \sigma(\alpha, \beta) \int_D \frac{dA_{\alpha+2\beta+2}(\xi)}{(1 - \xi z)^{\beta+2} (1 - \xi w)^{\alpha+\beta+2} (1 - \xi z')^{\beta+2} (1 - \xi w')^{\alpha+\beta+2}},$$

for $(z, w), (z', w') \in D^2$.

that the series expansion in (3.3) leads to diagonal points.

Above integral formula, then it coincides with the reproducing kernel function for the space \(H \). This follows from the reproducing property of the well-known kernel function in the space \(H \).

Proposition 3.8 Fix \(\alpha, \beta \) belongs to of Chapter 1 in [8], we can show that this function belongs to \(L_1(\mathbb{D}^2) \). Inspection, it is also analytic in \(\mathbb{D}^2 \), and hence an element of \(H \). To prove that it is orthogonal to \(H \), we note that each “term”

\[
(z, w) \mapsto \frac{1}{(1 - \xi \bar{\xi})^{\alpha+\beta+2}}
\]

is a multiple of the element that achieves the point evaluation at the diagonal point \((\xi, \xi) \), and therefore it is orthogonal to the subspace \(H \), as these functions vanish at all diagonal points.

Now, we see, by inspection, that this follows from the reproducing property of the well-known kernel function in the space \(H \). We note that this is the same as \(Q_{\alpha, \beta}((z, z); (z', w')) \), according to Lemma [16]. And since functions from \(I_{\alpha, \beta, 0} \) are uniquely determined by their diagonal restrictions, we obtain \(\tilde{Q}_{\alpha, \beta} = Q_{\alpha, \beta} \).

Proposition 3.8 Fix \(-1 < \alpha, \beta < +\infty\). Then, for \(N = 0, 1, 2, 3, \ldots \), we have

\[
\|Q_{\alpha, \beta; N} f\|_{\alpha, \beta}^2 = \frac{1}{\sigma(\alpha, \beta + N)} \|\cdot P_{\alpha, \beta; N} f(z, w) \|_{\alpha+2\beta+2N+2}^2,
\]

where \(f \in L_{\alpha, \beta}(\mathbb{D}^2) \).

Proof. This follows from a combination of Proposition [16] and Lemma [8].

In view of Lemma [8], we have, for \(z \in \mathbb{D} \),

\[
\|P_{\alpha, \beta; N} f(z, w) \|_{\alpha+2\beta+2N+2}^2 = \int_{\mathbb{D}} \int_{\mathbb{D}} (1 - z \bar{z})^{\alpha+\beta+2} (1 - w \bar{w})^{\alpha+\beta+2} \frac{(z' - w')^N}{(z' - \bar{z}')^{\alpha+\beta+N+2}} f(z', w') \left| z' - w' \right|^{2\beta} dA(z') dA(w'). \quad (3.8)
\]

We want to express this in terms of derivatives of order \(N \) of \(f \). To this end, we note that the series expansion in (3.3) leads to

\[
\left[\partial_z^k P_{\alpha, \beta} \right] ((z, z); (z', w')) = \sum_{n=0}^k \frac{n! (z' - \bar{w})^n}{n!} \left[\partial_z^{k-n} Q_{\alpha, \beta+n} \right] ((z, z); (z', w')) \quad (3.9)
\]
where ∂_z stands for the (partial) derivative with respect to z. Moreover, in view of Lemma 3.7,
\[
\partial_z^{k-n} Q_{\alpha,\beta}((z,w);(z',w')) = \sigma(\alpha,\beta) (\beta+2)_{k-n} \times \int_D \frac{\xi^{k-n} dA_{\alpha+2\beta+2}(\xi)}{(1-\xi z)^{\alpha+\beta+2}(1-\xi w)^{\alpha+\beta+2}(1-\xi w')^{\alpha+\beta+2}},
\]
which, when restricted to the diagonal, becomes
\[
[\partial_z^{k-n} Q_{\alpha,\beta}]((z,z);(z',w')) = \sigma(\alpha,\beta) (\beta+2)_{k-n} \times \int_D \frac{\xi^{k-n} dA_{\alpha+2\beta+2}(\xi)}{(1-\xi z)^{\alpha+\beta+2} z^{\alpha+\beta+2}(1-\xi w')^{\alpha+\beta+2}} = \frac{(\beta+2)_{k-n}}{(\alpha+2\beta+4)} \partial_z^{k-n} \sigma(\alpha,\beta) (1-\xi w')^{\alpha+\beta+2}.
\]
By changing β to $\beta+n$, we obtain, in view of Lemma 3.3 that
\[
[\partial_z^{k-n} Q_{\alpha,\beta+n}]((z,z);(z',w')) = \frac{(\beta+n+2)_{k-n}}{(\alpha+2\beta+2n+4)} \partial_z^{k-n} \left[P_{\alpha,\beta+n}((z,z);(z',w')) \right].
\]
Now, applying (3.9) to a function $f \in L_{\alpha,\beta}(D^2)$, while taking (3.10) into account, we find that
\[
\bigotimes [\partial_z^k P_{\alpha,\beta} f](z) = \sum_{n=0}^k n! \binom{k}{n} \frac{(\beta+n+2)_{k-n}}{(\alpha+2\beta+2n+4)} \partial_z^{k-n} \bigotimes \left[\frac{P_{\alpha,\beta+n} f(z,w)}{(z-w)^n} \right](z).
\]
We differentiate the above relation $N-k$ times with respect to z, and obtain
\[
\partial_z^{N-k} \bigotimes [\partial_z^k P_{\alpha,\beta} f](z) = \sum_{n=0}^k n! \binom{k}{n} \frac{(\beta+n+2)_{k-n}}{(\alpha+2\beta+2n+4)} \partial_z^{N-n} \bigotimes \left[\frac{P_{\alpha,\beta+n} f(z,w)}{(z-w)^n} \right](z).
\]
We now formulate the desired relation.

Proposition 3.9 Fix $-1 < \alpha, \beta < +\infty$. For each $N = 0, 1, 2, 3, \ldots$, we have
\[
\bigotimes \left[\frac{P_{\alpha,\beta,N} f(z,w)}{(z-w)^N} \right] = \sum_{k=0}^N a_{k,N} \partial_z^{N-k} \bigotimes [\partial_z^k P_{\alpha,\beta} f],
\]
where
\[
a_{k,N} = \frac{(-1)^{N-k}}{k!(N-k)!} \frac{(\beta+k+2)_{N-k}}{(\alpha+2\beta+N+k+3)_{N-k}}.
\]

Proof. In view of (3.11), we should verify that
\[
\sum_{k=0}^N a_{k,N} \partial_z^{N-k} \bigotimes [\partial_z^k P_{\alpha,\beta} f](z)
\]
\[
= \sum_{k=0}^N \sum_{n=0}^k a_{k,N} n! \binom{k}{n} \frac{(\beta+n+2)_{k-n}}{(\alpha+2\beta+2n+4)} \partial_z^{N-n} \bigotimes \left[\frac{P_{\alpha,\beta+n} f(z,w)}{(z-w)^n} \right](z)
\]
\[
= \bigotimes \left[\frac{P_{\alpha,\beta,N} f(z,w)}{(z-w)^N} \right](z), \quad (3.12)
\]
where \(a_{k,N}\) is as above. We realize that it is enough to show that
\[
\sum_{k=0}^{N} a_{k,N} n! \binom{k}{n} \frac{(\beta + n + 2)_{k-n}}{(\alpha + 2\beta + 2n + 4)_{k-n}} = \delta_{n,N}, \quad n = 0, 1, 2, 3, \ldots, N,
\]
where the delta is the usual Kronecker symbol; as we implement the given values of the constants \(a_{k,N}\), this amounts to
\[
\sum_{k=n}^{N} \frac{(-1)^{N-k}}{(k-n)! (N-k)!} \frac{(\beta + n + 2)_{k-n}(\beta + k + 2)^{N-k}}{(\alpha + 2\beta + 2n + 4)_{k-n}(\alpha + 2\beta + N + k + 3)_{N-k}} = \delta_{n,N},
\]
for \(n = 0, 1, 2, 3, \ldots, N\). We quickly verify that this is correct for \(n = N\). To deal with smaller values of \(n\), we first note that
\[
(\beta + n + 2)_{k-n}(\beta + k + 2)^{N-k} = (\beta + n + 2)^{N-n},
\]
which is independent of \(k\), so that we may factor it out, and reduce the problem to showing that
\[
\sum_{k=n}^{N} \frac{(-1)^{N-k}}{(k-n)! (N-k)!} \frac{1}{(\alpha + 2\beta + 2n + 4)_{k-n}(\alpha + 2\beta + N + k + 3)_{N-k}} = 0,
\]
for \(n = 0, 1, 2, \ldots, N - 1\). We compute that
\[
(\alpha + 2\beta + 2n + 4)_{k-n}(\alpha + 2\beta + N + k + 3)_{N-k} = \frac{(\alpha + 2\beta + 2n + 4)_{2N-2n-1}}{(\alpha + 2\beta + n + k + 4)_{N-n-1}},
\]
which reduces our task further to showing that
\[
\sum_{k=n}^{N} \frac{(-1)^{N-k}}{(k-n)! (N-k)!} (\alpha + 2\beta + n + k + 4)_{N-n-1} = 0,
\]
for \(n = 0, 1, 2, \ldots, N - 1\). We introduce the variables \(j = k - n\) and \(N' = N - n\), and rewrite the above:
\[
\sum_{j=0}^{N'} \frac{(-1)^{N'-j}}{j! (N'-j)!} (\alpha + 2\beta + 2n + j + 4)_{N'-1} = 0,
\]
for \(n = 0, 1, 2, \ldots\) and \(N' = 1, 2, 3, \ldots\). Next, we consider the variable
\[
\lambda = \alpha + 2\beta + 2n + 4,
\]
which we shall think of as an independent variable, and we once more rewrite the above assertion:
\[
\sum_{j=0}^{N'} (-1)^j \binom{N'}{j} (\lambda + j)_{N'-1} = 0,
\]
for \(N' = 1, 2, 3, \ldots\). The expression \(q(\lambda) = (\lambda)_{N'-1}\) is a polynomial of degree \(N' - 1\) in \(\lambda\), and
\[
\sum_{j=0}^{N'} (-1)^j \binom{N'}{j} q(\lambda + j)
\]
is an \(N'\)-th order iterated difference, which automatically produces 0 on polynomials of degree less than \(N'\). The assertion follows.

We finally obtain an expansion of the norm in \(H_{\alpha,\beta}(\mathbb{D}^2)\) on the bidisk in terms of “one-dimensional” norms, taken over the unit disk, analogous to the Taylor expansion along the diagonal.
COROLLARY 3.10 For $f \in \mathcal{H}_{\alpha, \beta}(\mathbb{D}^2)$, we have the norm expansion
\[
\|f\|_{\alpha, \beta}^2 = \sum_{N=0}^{+\infty} \frac{1}{\sigma(\alpha, \beta + N)} \left| \sum_{k=0}^{N} a_{k,N} \partial_z^{N-k} \left(\partial_z^k f \right) \right|^2\]
where the constants are as in Lemma 3.5 and Proposition 3.9.

Proof. This results from a combination of (3.1) and Propositions 3.8 and 3.9.

4 The main inequality

Integration with respect to the second variable. Fix θ, $0 < \theta < 1$, and let $\varphi \in \mathcal{S}$ be arbitrary. At times, the calculations below will be valid only for $0 < \theta < 1$, but the validity for $\theta = 1$ can usually be established easily by a simple limit argument. By Theorem 2.2, we have
\[
\int_{\mathbb{D}} |\Phi_\theta(z, w) + L_\theta(z, w)|^2 |z - w|^{2\theta} \, dA(z) \, dA(w) \leq \frac{1}{\theta} (1 - |w|^2)^{-2\theta}, \tag{4.1}
\]
Let g be a function that is holomorphic in \mathbb{D}. Then, in view of (4.1),
\[
\int_{\mathbb{D}} \int_{\mathbb{D}} |\Phi_\theta(z, w) g(w) + L_\theta(z, w) g(w)|^2 |z - w|^{-2\theta} \, dA(z) \, dA(w) \leq \frac{1}{\theta} \int_{\mathbb{D}} |g(w)|^2 (1 - |w|^2)^{-2\theta} \, dA(w) = \frac{\alpha + 1}{\theta(\alpha - 2\theta + 1)} \|g\|_{\alpha - 2\theta}^2 \tag{4.2}
\]
(the last equality holds provided that $-1 + 2\theta < \alpha < +\infty$).

In what follows, we assume that $g \in \mathcal{H}_{\alpha - 2\theta}(\mathbb{D})$ and $-1 < \alpha - 2\theta < +\infty$. The left hand side of (4.2) expresses the square of the norm of the function $\Phi_\theta(z, w) g(w) + L_\theta(z, w) g(w)$ in the space $\mathcal{L}_{\alpha - \theta}(\mathbb{D}^2)$. It will be shown later that both terms of this sum belong to $\mathcal{L}_{\alpha - \theta}(\mathbb{D}^2)$ and hence one has the following decomposition:
\[
\Phi_\theta(z, w) g(w) + L_\theta(z, w) g(w) = \left\{ \Phi_\theta(z, w) g(w) + P_{\alpha - \theta} [L_\theta(z, w) g(w)] \right\} + P_{\alpha - \theta}^\perp [L_\theta(z, w) g(w)], \tag{4.3}
\]
with the corresponding decomposition of the norm
\[
\|\Phi_\theta(z, w) g(w) + L_\theta(z, w) g(w)\|_{\alpha - \theta}^2 = \|\Phi_\theta(z, w) g(w) + P_{\alpha - \theta} [L_\theta(z, w) g(w)]\|_{\alpha - \theta}^2 + \|P_{\alpha - \theta}^\perp [L_\theta(z, w) g(w)]\|_{\alpha - \theta}^2. \tag{4.4}
\]
Here, $P_{\alpha - \theta}^\perp$ is the projection complementary to $P_{\alpha - \theta}$:
\[
P_{\alpha - \theta}^\perp = I - P_{\alpha - \theta} \quad \text{in} \quad \mathcal{L}_{\alpha - \theta}(\mathbb{D}^2),
\]
where I stands for the identity operator. It follows that the inequality (4.2) assumes the form
\[
\|\Phi_\theta(z, w) g(w) + P_{\alpha - \theta} [L_\theta(z, w) g(w)]\|_{\alpha - \theta}^2 \leq \frac{\alpha + 1}{\theta(\alpha - 2\theta + 1)} \|g\|_{\alpha - 2\theta}^2 - \|P_{\alpha - \theta}^\perp [L_\theta(z, w) g(w)]\|_{\alpha - \theta}^2. \tag{4.5}
\]
The norm of a projected term. We shall find an explicit expression for the squared norm
\[\| P_{\alpha, -\theta} [L_\theta(z, w)g(w)] \|_{\alpha, -\theta}^2. \]
We first note that
\[\| P_{\alpha, -\theta} [L_\theta(z, w)g(w)] \|_{\alpha, -\theta}^2 = \| L_\theta(z, w)g(w) \|_{\alpha, -\theta}^2 - \| P_{\alpha, -\theta} [L_\theta(z, w)g(w)] \|_{\alpha, -\theta}^2 \quad (4.6) \]
We recall the classical definition of the Gauss hypergeometric function:
\[2F_1(a, b; c; x) = 1 + \sum_{n=1}^{\infty} \frac{(a)_n (b)_n}{(c)_n n!} x^n, \]
where the series converges at least for complex \(x \in \mathbb{D} \), unless we accidentally divide by zero in any of the terms.

LEMMA 4.1 For fixed \(w \in \mathbb{D} \), we have the identity
\[\int_\mathbb{D} |L_\theta(z, w)|^2 |z - w|^{-2\theta} dA(z) = \frac{1}{\theta} \left[1 - 2F_1(1 - \theta, -\theta; 1; |w|^2) \right] (1 - |w|^2)^{-2\theta}. \]

Proof. We make the change of variables
\[z = \frac{w - \zeta}{1 - \bar{w}\zeta}, \quad \zeta = \frac{w - z}{1 - \bar{w}z}, \]
which gives
\[\int_\mathbb{D} |L_\theta(z, w)|^2 |z - w|^{-2\theta} dA(z) = (1 - |w|^2)^{-2\theta} \int_\mathbb{D} \left| \frac{1 - (1 - \bar{w}\zeta)^{\theta-1}}{\zeta} \right|^2 |\zeta|^{-2\theta} dA(\zeta). \]
We expand the power appearing in the integrand on the right hand side as a Taylor series, and use that \(z^j \) and \(z^k \) are orthogonal in a radially weighted Bergman space whenever \(j \neq k \). The expression involving the Gauss hypergeometric function then results from this.

LEMMA 4.2 For \(w \in \mathbb{D} \), we have
\[2F_1(1 - \theta, -\theta; 1; |w|^2) \geq 2F_1(1 - \theta, -\theta; 1; 1) = \frac{\Gamma(2\theta + 1)}{2[\Gamma(\theta + 1)]^2}. \]

Proof. The inequality follows if we see that the coefficients of the Taylor series for \(2F_1(1 - \theta, -\theta; 1; x) \) are all negative except for the first one. The evaluation of \(2F_1(1 - \theta, -\theta; 1; 1) \) is classical (see any book on special functions).

Combining these two lemmas, we obtain the following.

PROPOSITION 4.3 For \(g \in \mathcal{H}_{\alpha - 2\theta}(\mathbb{D}) \), we have
\[\int_\mathbb{D} |L_\theta(z, w)g(w)|^2 |z - w|^{-2\theta} dA(z) dA_\alpha(w) \]
\[= \frac{\alpha + 1}{\theta (\alpha - 2\theta + 1)} \int_\mathbb{D} \left[1 - 2F_1(1 - \theta, -\theta; 1; |w|^2) \right] |g(w)|^2 dA_{\alpha - 2\theta}(w) \]
\[\leq \frac{\alpha + 1}{\theta (\alpha - 2\theta + 1)} \left[1 - \frac{\Gamma(2\theta + 1)}{2[\Gamma(\theta + 1)]^2} \right] \|g\|_{\alpha - 2\theta}^2. \]
In particular, we see that the function \(L_\theta(z, w)g(w) \) is in the space \(\mathcal{L}_{\alpha,-\theta}(\mathbb{D}^2) \). For later use, we need the following representation of the square of its norm:

\[
\|L_\theta(z, w)g(w)\|_{\alpha,-\theta}^2 = \frac{\alpha + 1}{\theta(\alpha - 2\theta + 1)} \left(1 - \frac{\Gamma(2\theta + 1)}{2[\Gamma(\theta + 1)]^2} \right) \|g\|_{\alpha-2\theta}^2 + \frac{\alpha + 1}{\theta(\alpha - 2\theta + 1)} \left(1 - \frac{\Gamma(2\theta + 1)}{2[\Gamma(\theta + 1)]^2} \right) \|g\|_{\alpha-2\theta}^2 + O(\|g\|_{\alpha-\theta}^2),
\]

This is made explicit in the following lemma.

Lemma 4.4 There exists a positive constant \(C_1 = C_1(\alpha, \theta) \) depending only on \(\alpha \) and \(\theta \) such that

\[
0 \leq \int_{\mathbb{D}} \left[2F_1(1 - \theta, -\theta; 1; |w|^2) - 2F_1(1 - \theta, -\theta; 1; 1) \right] |g(w)|^2 \, dA_{\alpha-2\theta}(w) \leq C_1 \|g\|_{\alpha-\theta}^2.
\]

Proof. We use the inequality

\[
1 - x^n \leq n^\theta (1 - x)^{\theta}, \quad 0 \leq x \leq 1,
\]

and the well-known asymptotics of the Pochhammer symbol

\[
\frac{(1 - \theta)n}{n!} \sim \frac{n^{-\theta}}{\Gamma(1 - \theta)} \text{ as } n \to +\infty,
\]

to obtain

\[
0 \leq \int_{\mathbb{D}} \left[2F_1(1 - \theta, -\theta; 1; |w|^2) - 2F_1(1 - \theta, -\theta; 1; 1) \right] |g(w)|^2 \, dA_{\alpha-2\theta}(w)
\]

\[
= \int_{\mathbb{D}} \sum_{n=1}^{\infty} \frac{|(-\theta)n(1 - \theta)n}{(n!)^2} (1 - |w|^{2n}) |g(w)|^2 \, dA_{\alpha-2\theta}(w)
\]

\[
\leq \theta \int_{\mathbb{D}} \sum_{n=1}^{\infty} \frac{(1 - \theta)n}{(n - \theta)(n!)^2} n^{-\theta} (1 - |w|^{2n}) |g(w)|^2 \, dA_{\alpha-2\theta}(w)
\]

\[
\leq C_2(\alpha, \theta) \left(\sum_{n=1}^{\infty} \frac{n^{-\theta}}{n - \theta} \right) \|g\|_{\alpha-\theta}^2,
\]

for some appropriate positive constant \(C_2(\alpha, \theta) \). By putting

\[
C_1(\alpha, \theta) = C_2(\alpha, \theta) \sum_{n=1}^{\infty} \frac{n^{-\theta}}{n - \theta},
\]

the assertion follows, at least for \(0 < \theta < 1 \). The remaining case \(\theta = 1 \) is trivial. \(\blacksquare \)

We remark that the assertion of Lemma 4.4 remains valid if on the right hand side of the estimate we replace the squared norm \(\|g\|_{\alpha-\theta}^2 \) by \(\|g\|_{\alpha-\theta+\nu}^2 \), for a fixed number \(\nu \) in the interval \(0 < \nu < 2\theta \).

It follows from Lemma 4.4 that (4.7) can be written as

\[
\|L_\theta(z, w)g(w)\|_{\alpha,-\theta}^2 = \frac{\alpha + 1}{\theta(\alpha - 2\theta + 1)} \left[1 - \frac{\Gamma(2\theta + 1)}{2[\Gamma(\theta + 1)]^2} \right] \|g\|_{\alpha-2\theta}^2 + O(\|g\|_{\alpha-\theta}^2), \quad (4.8)
\]
where the constant in the big “Oh” term only depends on \(\alpha \) and \(\theta \). To proceed in our calculation of the norm of
\[
\| P_{\alpha,-\theta}^\perp [L_\theta(z, w) g(w)] \|_{\alpha,-\theta}^2.
\]
we should like to know the norm of the analytic projection of the function \(L_\theta(z, w) g(w) \). We do this by calculating the norm of each contribution in the expansion of the function around the diagonal, in accordance with (3.4) and Proposition 3.8.

PROPOSITION 4.5 For \(g \in \mathcal{H}_{\alpha-2\theta}(\mathbb{D}) \), we have
\[
\bigotimes \left[P_{\alpha,-\theta;N}^\perp [L_\theta(z, w) g(w)] \right] (z) = \frac{(-1)^N + (1 - \theta)_{N+1}}{(N + 1)! (\alpha + N + 2 - 2\theta)_{N+1}} g^{(N+1)}(z), \quad z \in \mathbb{D}.
\]

Proof. In view of (3.3),
\[
\bigotimes \left[P_{\alpha,-\theta;N}^\perp [L_\theta(z, w) g(w)] \right] (z) = \sigma(\alpha, -\theta + N)
\]
\[
\times \int_{\mathbb{D}} \int_{\mathbb{D}} \frac{(z' - \bar{w}')^N}{(1 - z z' - \theta + N + 2(1 - \bar{w}')^{\alpha + N + 2} L_\theta(z', w') g(w') |z' - w'|^{-2\theta} \, dA(z') \, dA_{\alpha}(w')}.
\]
We first integrate with respect to \(z' \), that is, we compute
\[
\int_{\mathbb{D}} \frac{(z' - \bar{w}')^N}{(1 - z z' - \theta + N + 2(1 - \bar{w}')^{\alpha + N + 2} L_\theta(z', w') |z' - w'|^{-2\theta} \, dA(z')}.
\]
The change of variables
\[
z' = \frac{w' + \zeta}{1 + \bar{w}' \zeta}, \quad \zeta = \frac{w' - z}{1 - \bar{w}' z},
\]
leads to
\[
\int_{\mathbb{D}} \frac{(z' - \bar{w}')^N}{(1 - z z' - \theta + N + 2(1 - \bar{w}')^{\alpha + N + 2} L_\theta(z', w') |z' - w'|^{-2\theta} \, dA(z')} = \bar{w}' \frac{(1 - |w'|^2)_{N+1-2\theta}}{(1 - \bar{w}')^{\alpha - 2\theta + N + 2}} \int_{\mathbb{D}} \frac{1}{\bar{w}' \zeta} \left[(1 + \bar{w}' \zeta)^{\theta - 1} - 1 \right] \left(1 + \bar{w}' \zeta \frac{w' - z}{1 - z \bar{w}'} \right)^{\theta - N - 2} \frac{\zeta^N}{|\zeta|^{2\theta}} \, dA(\zeta) \, \zeta^{\frac{\theta - 1}{N + 1}} \left(\frac{\theta - N - 2}{n} \right) (\bar{w}')^N \left(\frac{w' - z}{1 - z \bar{w}'} \right)^n.
\]
The integration with respect to \(w' \) then gives
\[
\int_{\mathbb{D}} \int_{\mathbb{D}} \frac{(z' - \bar{w}')^N}{(1 - z z' - \theta + N + 2(1 - \bar{w}')^{\alpha + N + 2} L_\theta(z', w') g(w') |z' - w'|^{-2\theta} \, dA(z') \, dA_{\alpha}(w')} = \frac{1}{(\alpha + 1)} \sum_{n=0}^{\infty} \left(\frac{\theta - 1}{N + n + 1} \right) \left(\frac{\theta - N - 2}{n} \right) (\bar{w}')^{N+n} (w' - z)^n g(w') \left(\frac{1 - |w'|^2}{1 - z \bar{w}'} \right)^{N+1+\alpha-2\theta} \, dA(w').
\]
Next, we notice that by differentiating the reproducing identity for the weighted Bergman kernel \(k \) times, we obtain
\[
\int_\mathbb{D} \frac{(\bar{w})^k}{(1 - z \bar{w})^{\gamma + k + 2}} f(w') \, dA_z(w') = \frac{1}{(\gamma + 2)_k} f^{(k)}(z);
\]
as we implement this into the above identity, the result is
\[
\mathcal{O} \left[\frac{P_{\alpha, -\theta, N} [L_\theta(z, w) g(w)]}{(z - w)^N} \right] (z)
= (-1)^{N+1} (\alpha + 1) \frac{\sigma(\alpha, -\theta + N)}{(N + 1)!} g^{(N+1)}(z) \sum_{n=0}^{\infty} \frac{(1 - \theta)_{N+n+1} (N + 1 - \theta)_n}{(N + 1 - \theta)_n (\alpha + N - 2\theta + 2)_n},
\]
so that
\[
\mathcal{O} \left[\frac{P_{\alpha, -\theta, N} [L_\theta(z, w) g(w)]}{(z - w)^N} \right] (z)
= (-1)^{N+1} (\alpha + 1) \frac{\sigma(\alpha, -\theta + N)}{(N + 1)!} g^{(N+1)}(z) \frac{(1 - \theta)_N}{(\alpha + N - 2\theta + 2)_N} \sum_{n=0}^{\infty} \frac{(N + 1 - \theta)_n (N + 2 - \theta)_n}{n! (\alpha + 2N - 2\theta + 4)_n}
\times {}_2F_1(N + 1 - \theta, N + 2 - \theta; \alpha + 2N - 2\theta + 4; 1).
\]
If we use (4.9) as well as Lemma 3.5, the proof is completed.

COROLLARY 4.6 For \(g \in \mathcal{H}_{\alpha - 2\theta}(\mathbb{D}) \), we have
\[
\left\| P_{\alpha, -\theta} [L_\theta(z, w) g(w)] \right\|_{\alpha, -\theta}^2 = \sum_{N=0}^{\infty} \frac{1}{\sigma(\alpha, -\theta + N)} \left(\frac{(1 - \theta)_{N+1}}{(N + 1)! (\alpha + N + 2 - 2\theta)_{N+1}} \right)^2 \left\| g^{(N+1)} \right\|_{\alpha - 2\theta + 2N + 2}^2 (4.9)
\]
where the constant \(\sigma(\alpha, -\theta + N) \) is as in Lemma 3.5.

The next proposition is crucial for our further analysis.

PROPOSITION 4.7 \((-1 < \alpha < +\infty)\) Fix the real parameter \(\nu \), with \(0 < \nu \leq 1 \). Then there exists a positive constant \(C_3(\alpha, \nu) \) such that for each function \(g \in \mathcal{H}_\alpha(\mathbb{D}) \) and every integer \(n = 1, 2, 3, \ldots \),
\[
0 \leq (\alpha + 2)_n \| g \|_{\alpha}^2 - \| g^{(n)} \|_{\alpha + 2n}^2 \leq C_3(\alpha, \nu) n^{2\nu} (\alpha + 2)_n \| g \|_{\alpha + \nu}^2.
\]

Proof. The first step is to note that the norm in \(\mathcal{H}_\alpha(\mathbb{D}) \) can be expressed as follows in terms of the Taylor coefficients:
\[
\left\| g \right\|_{\alpha}^2 = \sum_{k=0}^{\infty} \frac{k!}{(\alpha + 2)_k} |\hat{g}(k)|^2.
\]
We then have
\[(\alpha + 2)2n\|g\|_{\alpha}^2 - \|g^{(n)}\|_{\alpha + 2n}^2\]
\[= (\alpha + 2)2n \sum_{k=0}^{+\infty} \frac{k!}{(\alpha + 2)_k} |\tilde{g}(k)|^2 - \sum_{k=0}^{+\infty} \frac{(k - n)!}{(\alpha + 2 + 2n)_{k-n}} [(k - n + 1)_{n}]^2 |\tilde{g}(k)|^2 =
\[= (\alpha + 2)2n \sum_{k=0}^{+\infty} (1 - \frac{(k - n + 1)_{n}}{(k + \alpha + 2)_{n}}) \frac{k!}{(\alpha + 2)_k} |\tilde{g}(k)|^2.\]

The assertion of the proposition follows from this identity together with the following technical inequality:
\[0 \leq 1 - \frac{(k - n + 1)_{n}}{(k + \alpha + 2)_{n}} \leq C_4(\alpha) \frac{n^{2\nu}}{(k + 1)^{\nu}}, \quad k = 0, 1, 2, 3, \ldots, n = 1, 2, 3, \ldots \quad (4.10)\]
The left hand side of this inequality is obvious. The right hand side is also more or less obvious (with $C_4(\alpha) = 1$) for $k \leq n^2 - 1$. So, we assume that $k \geq n^2$. Then we have, by the standard properties of the logarithm function,
\[1 - \frac{(k - n + 1)_{n}}{(k + \alpha + 2)_{n}} \leq \log \left(\frac{(k + \alpha + 2)_{n}}{(k - n + 1)_{n}}\right) = \sum_{l=1}^{n} \left[\log \left(1 + \frac{\alpha + 1 + l}{k}\right) - \log \left(1 - \frac{n - l}{k}\right)\right]\]
\[\leq \sum_{l=1}^{n} \left[\frac{\alpha + 1 + l}{k} + C_5 \frac{n - l}{k}\right] \leq C_4(\alpha) \frac{n^{2\nu}}{k + 1} \leq C_4(\alpha) \left[\frac{n^{2\nu}}{k + 1}\right]^{\nu},\]
for appropriate values of the positive constants $C_4(\alpha)$ and C_5. We are done. \[\Box\]

We are now allowed to replace $\|g^{(N+1)}\|_{\alpha - 2\theta + 2N+2}^2$ in each term of (4.9) by the expression
\[(\alpha - 2\theta + 2)_{2N+2} \|g\|_{\alpha - 2\theta}^2,\]
while estimating the remainder as prescribed by Proposition \[\[\] with $\nu = \theta$. In fact, we get convergence for the estimate of the remainder term so long as $0 < \nu < 2\theta$. After some algebraic manipulations, we then arrive at
\[\|P_{\alpha - \theta} [L_{\theta}(z, w) g(w)]\|_{\alpha - \theta}^2 = \varpi(\alpha, \theta) \|g\|_{\alpha - 2\theta}^2 + \Theta(\|g\|_{\alpha - \theta}^2),\quad (4.11)\]
where
\[\varpi(\alpha, \theta) = \frac{(1 - \theta)\Gamma(\alpha + 2)\Gamma(\alpha + 2 - \theta)}{(\alpha + 2 - \theta)\Gamma(\alpha + 3 - \theta)} \times \sum_{N=0}^{+\infty} \frac{(\alpha + 3 - 2\theta + 2N)(1 - \theta)\Gamma(\alpha + 2 - \theta)\Gamma(\alpha + 3 - \theta)}{(\alpha + 3 - \theta)\Gamma(\alpha + 3 - \theta)\Gamma((N + 1)!)^2} \quad (4.12)\]
The series which comes from summing the estimates for the remainders converges, by the standard asymptotics of the Pochhammer symbol.

The constant $\varpi(\alpha, \theta)$ can be expressed in terms of the generalized hypergeometric function $\,\,\,_{4}F_{3}$.
We recall its definition:
\[\,\,\,_{4}F_{3}\left(\begin{array}{cccc}
a_1 & a_2 & a_3 & a_4 \\
b_1 & b_2 & b_3 \end{array}\right) x \right) = 1 + \sum_{n=1}^{+\infty} \frac{(a_1)_n(a_2)_n(a_3)_n(a_4)_n}{(b_1)_n(b_2)_n(b_3)_n} \frac{x^n}{n!},\]
wherever the series converges. By splitting the last factor in the right hand side of (4.12) as the sum \(\alpha + 3 - 2\theta + 2N = (\alpha + 2 - 2\theta + N) + (N + 1)\), we obtain

\[
\zeta(\alpha, \theta) = \frac{(1 - \theta)\Gamma(\alpha + 2\theta + 1)}{\Gamma(\alpha + 2 + \theta)\Gamma(\alpha + 3 + \theta)} \left\{ (\alpha + 1 - \theta)(\alpha + 2 - \theta) \right\} - \frac{(\alpha + 1 - \theta)(\alpha + 2 - \theta)}{\theta(1 - \theta)(\alpha + 1 - 2\theta)} F_3 \left(\begin{array}{c} \theta \ 1 - \theta \ \alpha - 2\theta + 1 \
\end{array} \right| \begin{array}{c} \alpha - 2\theta + 2
\end{array} \right)
+ 4 F_3 \left(\begin{array}{c} 1 - \theta \ 2 - \theta \ \alpha - 2\theta + 2 \
\end{array} \right| \begin{array}{c} \alpha - 2\theta + 2 \
\end{array} \right) \right) \right). \tag{4.13}
\]

We combine (4.10), (4.15), and (4.11), to obtain the following expression for the right hand side of (4.10):

\[
\left\{ \frac{(\alpha + 1)\Gamma(2\theta + 1)}{2\theta(\alpha - 2\theta + 1)\Gamma(\theta + 1)^2} \right\}^2 + \zeta(\alpha, \theta) \right\} \|g\|_{a - 2\theta}^2 + O\left(\|g\|_{a - \theta}^2\right).
\]

On the other hand, the left hand side of (4.10) may be likewise decomposed into a series by the use of Corollary 4.10 and Proposition 4.8. For \(k = 0, 1, 2, 3, \ldots\), we introduce the analytic functions \(\Phi_{k, \theta}(z)\) by the formula

\[
\Phi_{k, \theta}(z) = \odot [D_z^k \Phi_{\theta}](z), \quad z \in \mathbb{D}.
\]

We arrive at the following statement.

PROPOSITION 4.8 \((-1 + 2\theta < \alpha < +\infty)\) For \(g \in \mathcal{H}_{a - 2\theta}(\mathbb{D})\), we have

\[
\left\| \Phi_{\theta}(z, w) g(w) + P_{a, -\theta} [L_{\theta}(z, w) g(w)] \right\|_{a, -\theta}^2
= \sum_{N=0}^{+\infty} \frac{1}{\sigma(\alpha, \theta + N)} \left\| b_N g^{(N+1)}(z) + \sum_{k=0}^{N} a_{k,N} D_z^{N-k} [\Phi_{k, \theta}(z) g(z)] \right\|_{a - 2\theta + 2N + 2}^2,
\]

where the constant \(\sigma(\alpha, \theta + N)\) is as in Lemma 3.3 and the other constants are given by

\[
b_N = \frac{(-1)^{N+1}(1 - \theta)N+1}{(N + 1)! (\alpha - 2\theta + N + 2)N+1} \tag{4.14}
\]

and

\[
a_{k,N} = \frac{(-1)^{N-k} k! (N - k)!}{\alpha - 2\theta + N + k + 3)N-k} \tag{4.15}
\]

Finally, we express the main inequality (4.5) in the following guise.

THEOREM 4.9 \((-1 + 2\theta < \alpha < +\infty)\) There exists a constant \(C_\theta(\alpha, \theta)\) depending only on \(\theta, \alpha\), with \(0 < \theta \leq 1\), such that for any \(g \in \mathcal{H}_{\alpha}(\mathbb{D})\),

\[
\sum_{N=0}^{+\infty} \frac{1}{\sigma(\alpha, \theta + N)} \left\| b_N g^{(N+1)}(z) + \sum_{k=0}^{N} a_{k,N} D_z^{N-k} [\Phi_{k, \theta}(z) g(z)] \right\|_{a - 2\theta + 2N + 2}^2 \leq \left\| b_N \right\|_{a - 2\theta}^2 + \zeta(\alpha, \theta) \right\} \|g\|_{a - \theta}^2 + C_\theta(\alpha, \theta) \|g\|_{a - \theta}^2,
\]

where the constants \(\sigma(\alpha, \theta), b_N, a_{k,N}, \) and \(\zeta(\alpha, \theta)\) are given by Lemma 3.3 and equations (4.14), (4.15), and (4.13), respectively.
5 The algebra of φ-forms

In the classical theory of univalent functions, we frequently encounter expressions like

$$\frac{\varphi''(z)}{\varphi'(z)} \quad \text{and} \quad \frac{\varphi'''(z)}{\varphi'(z)} - \frac{3}{2} \left[\frac{\varphi''(z)}{\varphi'(z)} \right]^2,$$

where the first is known as the logarithmic derivative of the derivative (or the pre-Schwarzian derivative), and the second is known as the Schwarzian derivative of the given univalent function $\varphi \in \mathcal{S}$. There are higher-order expressions of a similar nature, and it seems reasonable to try to classify them.

An expression of the form

$$\frac{\varphi^{(n+1)}(z)}{\varphi'(z)},$$

with n a positive integer, is said to be a monomial φ-form of degree n and bidegree 1. The degree and bidegree are additive under multiplication, which means that, for instance,

$$\frac{\varphi'''(z)\varphi''(z)}{[\varphi'(z)]^2}$$

is a monomial φ-form of degree 3 and bidegree 2. We form linear combinations of φ-forms of the same degree n and the same bidegree k, and say that the resulting expression is a monomial φ-form of degree n and bidegree k. We may also form linear combinations of monomial φ-forms of the same degree n but of different bidegrees, and speak of the result as a φ-form of degree n (without a bidegree). As we form sums of monomial φ-forms of various degrees, the maximum of which is n, we get a φ-form with the degree n. This way, we get an algebra of φ-forms. As far as we are concerned, only monomial φ-forms will be of any interest.

Explicit calculation of the functions $\Phi_{k,\theta}$. We recall the formula

$$\Phi_{\theta}(z, w) = \frac{1}{z - w} \left\{ \frac{\varphi'(z)}{\varphi'(w)} \left(\frac{\varphi(z) - \varphi(w)}{\varphi'(w)(z - w)} \right)^{-\theta - 1} - 1 \right\}, \quad (z, w) \in \mathbb{D}^2, \ z \neq w.$$

We expand $\varphi(z)$ in a Taylor series about $z = w$:

$$\varphi(z) = \varphi(w) + \sum_{j=1}^{+\infty} \frac{\varphi^{(j)}(w)}{j!} (z - w)^j.$$

This means that

$$\frac{\varphi(z) - \varphi(w)}{\varphi'(w)(z - w)} = \sum_{j=1}^{+\infty} \frac{1}{j!} \varphi^{(j)}(w) \varphi'(w)(z - w)^{j-1} = 1 + \sum_{j=2}^{+\infty} \frac{1}{j!} \varphi^{(j)}(w) (z - w)^{j-1},$$

which leads to

$$\left(\frac{\varphi(z) - \varphi(w)}{\varphi'(w)(z - w)} \right)^{-\theta - 1} = \left[1 + \sum_{j=2}^{+\infty} \frac{1}{j!} \varphi^{(j)}(w) (z - w)^{j-1} \right]^{-\theta - 1}$$

$$= \sum_{n=0}^{+\infty} \left(\sum_{j=2}^{+\infty} \frac{1}{j!} \varphi^{(j)}(w) (z - w)^{j-1} \right)^n$$

$$= 1 + \sum_{n=1}^{+\infty} \left(\sum_{j=2}^{+\infty} \frac{1}{j!} \varphi^{(j)}(w) (z - w)^{j-1} \right)^n.$$
We also have the Taylor series expansion for φ', which leads to

$$\varphi'(z) = 1 + \sum_{k=2}^{+\infty} \frac{1}{(k-1)!} \varphi^{(k)}(w) (z - w)^{k-1}. $$

As we multiply these expressions together, we obtain

$$\frac{\varphi'(z)}{\varphi'(w)} (\frac{\varphi(z) - \varphi(w)}{\varphi'(w)} (z - w))^{-\theta-1} = 1 + \sum_{k=2}^{+\infty} \frac{1}{(k-1)!} \varphi^{(k)}(w) (z - w)^{k-1}$$

$$+ \sum_{k=1}^{+\infty} \frac{1}{(k-1)!} \varphi^{(k)}(w) (z - w)^{k-1}$$

$$\times \sum_{n=1}^{+\infty} \left(-\frac{\theta - 1}{n}\right) (z - w)^n \left(\sum_{j=2}^{+\infty} \frac{1}{j!} \varphi^{(j)}(w) (z - w)^{j-2} \right)^n,$$

so that

$$\Phi_{\theta}(z, w) = \sum_{k=2}^{+\infty} \frac{1}{(k-1)!} \varphi^{(k)}(w) (z - w)^{k-2}$$

$$+ \sum_{k=1}^{+\infty} \frac{1}{(k-1)!} \varphi^{(k)}(w) (z - w)^{k-1}$$

$$\times \sum_{n=1}^{+\infty} \left(-\frac{\theta - 1}{n}\right) (z - w)^n \left(\sum_{j=2}^{\infty} \frac{1}{j!} \varphi^{(j)}(w) (z - w)^{j-2} \right)^n.$$

The next step is to note that

$$\left(\sum_{j=2}^{\infty} \frac{1}{j!} \varphi^{(j)}(w) (z - w)^{j-2} \right)^n$$

$$= \sum_{j_1, \ldots, j_n=1}^{+\infty} \frac{\varphi^{(j_1+1)}(w) \cdots \varphi^{(j_n+1)}(w)}{(j_1 + 1)! \cdots (j_n + 1)! [\varphi'(w)]^n} (z - w)^{j_1 + \cdots + j_n - n},$$

so that we get

$$\Phi_{\theta}(z, w) = \sum_{l=0}^{+\infty} \frac{1}{(l+1)!} \varphi^{(l+2)}(w) (z - w)^l$$

$$+ \left\{ 1 + \sum_{l=1}^{+\infty} \frac{1}{l!} \varphi^{(l+1)}(w) (z - w)^l \right\}$$

$$\times \sum_{n=1}^{+\infty} \left(-\frac{\theta - 1}{n}\right) \sum_{j_1, \ldots, j_n=1}^{+\infty} \frac{\varphi^{(j_1+1)}(w) \cdots \varphi^{(j_n+1)}(w)}{(j_1 + 1)! \cdots (j_n + 1)! [\varphi'(w)]^n} (z - w)^{j_1 + \cdots + j_n - 1}. \quad (5.1)$$

For integers k, n, with $1 \leq n \leq k$, we introduce the function

$$\Psi_{k,n}(z) = \sum_{(j_1, \ldots, j_n) \in I(k,n)} \frac{\varphi^{(j_1+1)}(z) \cdots \varphi^{(j_n+1)}(z)}{(j_1 + 1)! \cdots (j_n + 1)! [\varphi'(z)]^n},$$

\[23 \]
where $I(k, n)$ is the set of all n-tuples (j_1, \ldots, j_n) of positive integers with $j_1 + \ldots + j_n = k$. We realize that $\Psi_{k,n}(z)$ is a monomial φ-form of degree k and bidegree n. We calculate that, for instance,

$$
\Psi_{k,1}(z) = \frac{\varphi^{(k+1)}(z)}{(k+1)! \varphi'(z)}, \quad \Psi_{k,2}(z) = \sum_{l=1}^{k-1} \frac{\varphi^{(l+1)}(z) \varphi^{(k-l+1)}(z)}{(l+1)!(k-l+1)! [\varphi'(z)]^2}.
$$

PROPOSITION 5.1 For $k = 0, 1, 2, \ldots$, we have

$$
\Phi_{k,\theta}(z) = \bigcirc [\partial^k_x \Phi_{\theta}](z) = (k+1-\theta) k! \sum_{n=1}^{\infty} \frac{(-1)^{n-1}(\theta + 1)n-1}{n!} \Psi_{k+1,n}(z).
$$

Proof. We calculate that

$$
\sum_{l=1}^{+\infty} \frac{1}{l!} \frac{\varphi^{(l+1)}(w)}{\varphi'(w)} (z-w)^l
\times \sum_{n=1}^{+\infty} \frac{(-\theta -1)}{n} \cdot \frac{\varphi(j_1+1)(w) \cdots \varphi(j_n+1)(w)}{(j_1 + 1)! \cdots (j_n + 1)! [\varphi'(w)]^n} (z-w)^{j_1+\ldots+j_n}
= \sum_{n=1}^{+\infty} \left(-\theta -1 \right) \sum_{j_0,j_1,\ldots,j_n=1}^{+\infty} \frac{(j_0+1)(w) \cdots \varphi(j_n+1)(w)}{(j_0 + 1)! \cdots (j_n + 1)! [\varphi'(w)]^n} (z-w)^{j_0+\ldots+j_n},
$$

and realize that the expression involving the sum over j_0, \ldots, j_n is essentially of the same type as the sum appearing on the previous line which was over j_1, \ldots, j_n. By (5.1), then, the k-th order Taylor coefficient is

$$
\frac{1}{k!} \Phi_{k,\theta}(w) = \frac{1}{k!} \bigcirc [\partial^k_x \Phi_{\theta}](w) = \frac{1}{(k+1)!} \frac{\varphi^{(k+2)}(w)}{\varphi'(w)}
\sum_{n=1}^{k+1} \frac{(-\theta -1)}{n} \sum_{(j_1, \ldots, j_n) \in I(k+1,n)} \frac{\varphi(j_1+1)(w) \cdots \varphi(j_n+1)(w)}{(j_1 + 1)! \cdots (j_n + 1)! [\varphi'(w)]^n}
\sum_{n=1}^{k} \frac{(-\theta -1)}{n} \sum_{(j_0, \ldots, j_n) \in I(k+1,n+1)} \frac{\varphi(j_0+1)(w) \cdots \varphi(j_n+1)(w)}{(j_0 + 1)! \cdots (j_n + 1)! [\varphi'(w)]^n}.
$$

We see that

$$
\sum_{(j_0, \ldots, j_n) \in I(k+1,n+1)} \frac{(j_0+1)(w) \cdots \varphi(j_n+1)(w)}{(j_0 + 1)! \cdots (j_n + 1)! [\varphi'(w)]^n}
= \sum_{(j_0, \ldots, j_n) \in I(k+1,n+1)} \frac{\varphi(j_0+1)(w) \cdots \varphi(j_n+1)(w)}{(j_0 + 1)! \cdots (j_n + 1)! [\varphi'(w)]^n}
= \frac{n+k+2}{n+1} \Psi_{k+1,n+1}(w),
$$

which leads to the simplification

$$
\frac{1}{k!} \Phi_{k,\theta}(w) = \frac{1}{(k+1)!} \frac{\varphi^{(k+2)}(w)}{\varphi'(w)} + \sum_{n=1}^{k+1} \frac{(-\theta -1)}{n} \Psi_{k+1,n}(w)
\sum_{n=1}^{k} \frac{(-\theta -1)}{n} \frac{n+k+2}{n+1} \Psi_{k+1,n+1}(w).
$$
As we change the order of summation a bit, and change variables from \(w \) to \(z \), the assertion of the proposition follows.

REMARK 5.2 It follows that the expression \(\Phi_{k,\theta}(z) \) is a monomial \(\varphi \)-form of degree \(k + 1 \).

Derivatives of powers of \(\varphi' \). Let \(\lambda \) be a complex parameter, and consider the function

\[
g_\lambda(z) = [\varphi'(z)]^\lambda = \exp \left[\lambda \log \varphi'(z) \right], \quad z \in \mathbb{D},
\]

where \(\log \varphi'(z) \) takes the value 0 at \(z = 0 \), and is analytic throughout the disk \(\mathbb{D} \). We compute that

\[
g'_\lambda(z) = \lambda \frac{\varphi''(z)}{\varphi'(z)} g_\lambda(z), \quad (5.2)
\]

and

\[
g''_\lambda(z) = \lambda \left(\frac{\varphi'''(z)}{\varphi'(z)} + (\lambda - 1) \left[\frac{\varphi''(z)}{\varphi'(z)} \right]^2 \right) g_\lambda(z). \quad (5.3)
\]

Let \(\Omega_{k,\lambda}(z) \) be the function defined by

\[
g^{(k)}_\lambda(z) = \Omega_{k,\lambda}(z) g_\lambda(z), \quad (5.4)
\]

which means that

\[
\Omega_{1,\lambda}(z) = \lambda \frac{\varphi''(z)}{\varphi'(z)}, \quad \Omega_{2,\lambda}(z) = \lambda \frac{\varphi'''(z)}{\varphi'(z)} + \lambda(\lambda - 1) \left[\frac{\varphi''(z)}{\varphi'(z)} \right]^2.
\]

From the rules of differentiation, we have that

\[
\Omega_{k+1,\lambda}(z) = \Omega'_{k,\lambda}(z) + \lambda \frac{\varphi'''(z)}{\varphi'(z)} \Omega_{k,\lambda}(z).
\]

This allows us to successively calculate a few higher order factors \(\Omega_{k,\lambda}(z) \), such as \(\Omega_{3,\lambda}(z) \):

\[
\Omega_{3,\lambda}(z) = \lambda \frac{\varphi^{(4)}(z)}{\varphi'(z)} + 3\lambda(\lambda - 1) \frac{\varphi'''(z)\varphi''(z)}{[\varphi'(z)]^2} + \lambda(\lambda - 1)(\lambda - 2) \left[\frac{\varphi''(z)}{\varphi'(z)} \right]^3, \quad (5.5)
\]

To obtain the formula for the general case, we use the tentative representation

\[
\Omega_{k,\lambda}(z) = \sum_{n=1}^{k} (\lambda - n + 1) c(j_1, \ldots, j_n) \frac{\varphi(j_1+1)(z) \cdots \varphi(j_n+1)(z)}{[\varphi'(z)]^n}, \quad (5.6)
\]

where as before, \(I(k,n) \) is the set of all \(n \)-tuples \((j_1, \ldots, j_n) \) of positive integers with \(j_1 + \cdots + j_n = k \). Also, we assume that the as of yet undetermined coefficients \(c(j_1, \ldots, j_n) \) are invariant under permutations, so that, for instance, \(c(j_1, \ldots, j_n) = c(j_n, \ldots, j_1) \). Let \(\Psi(j_1, \ldots, j_n) \) denote the collection of all (different) permutations of the given \(n \)-tuple \((j_1, \ldots, j_n) \). We begin by setting \(c(1) = 1 \), and we define

\[
c(j_1, \ldots, j_{n-1}, 0) = \frac{1}{n} c(j_1, \ldots, j_{n-1}),
\]

for positive integers \(j_1, \ldots, j_{n-1} \). All the other values of the constants appearing in (5.6) are obtained iteratively from the formula

\[
c(j_1, \ldots, j_n) = \frac{n}{|\Psi(j_1, \ldots, j_n)|} \sum_{(j_1, \ldots, j_n) \in \Psi(j_1, \ldots, j_n)} c(J_1, \ldots, J_{n-1}, J_n - 1),
\]

where the absolute value sign is used to denote the number of elements.

REMARK 5.3 For all \(k = 1, 2, 3, \ldots \), the expression \(\Omega_{k,\lambda} \) is a monomial \(\varphi \)-form of degree \(k \).
6 Estimates of the integral means spectrum

An estimate based on the first diagonal term. In this section, we shall use the first term on the left hand side of the inequality of Theorem 4.9 to obtain an estimate of the universal integral means spectrum $B_S(\tau)$, which is of interest mainly for $\tau \in \mathbb{C}$ near the origin.

Throughout this section, we assume that φ is a sufficiently smooth function of the class S; to make this precise, we shall suppose that φ is analytic and univalent in slightly larger disk than D. For appropriate values of the real parameter β (which is allowed to depend on τ), we shall obtain estimates of the norms $\left\| (\varphi')^{\tau/2} \right\|_{\beta-1}$ that are uniform in φ. By a standard dilation argument, we then get the same uniform norm estimate for general $\varphi \in S$ as well. In view of (1.8), this leads to the estimate $B_S(\tau) \leq \beta$.

The following proposition is based on Theorem 4.9, with only the first term on the left hand side counted. It uses a fixed value for the parameter θ. For the formulation, we need the expression

$$K(\beta, \theta) = \frac{(\beta + 2\theta) \Gamma(2\theta + 1)}{2 \theta \beta [\Gamma(\theta + 1)]^2} + \varphi(\beta + 2\theta - 1, \theta),$$

(6.1)

where the function φ is as in (4.12) or (4.13).

PROPOSITION 6.1 Fix $\tau \in \mathbb{C} \setminus \{0\}$ and θ with $0 < \theta < 1$. Suppose that for some positive real β, the following inequality holds:

$$K(\beta, \theta) < (1 - \theta)(\beta + 1)(\beta + 2) \left| \frac{1}{\beta + 1} - \frac{1}{\tau} \right|^2 \frac{\Gamma(\beta + 1 + 2\theta) \Gamma(\beta + 2)}{\Gamma(\beta + 1 + \theta) \Gamma(\beta + 2 + \theta)},$$

(6.2)

where the function K is as above. Suppose, in addition, that

$$\left\| (\varphi')^{\tau/2} \right\|_{\beta-1+\theta} = O(1)$$

holds uniformly in $\varphi \in S$. Then we also have

$$\left\| (\varphi')^{\tau/2} \right\|_{\beta-1} = O(1)$$

uniformly in $\varphi \in S$. In particular, $B_S(\tau) \leq \beta$.

Proof. If we take into account only the first term of the sum on the left hand side of the inequality in Theorem 4.9 and pick $\alpha = \beta + 2\theta - 1$, we obtain

$$\frac{1}{\sigma(\beta + 2\theta - 1, -\theta)} \left| \frac{1 - \theta}{\beta + 1} g' + \frac{1 - \theta}{2} \frac{\varphi''}{\varphi'} g \right|_{\beta+1}^2 \leq K(\beta, \theta) \left\| g \right\|_{\beta-1}^2 + O(\left\| g \right\|_{\beta-1+\theta}^2),$$

(6.3)

for an arbitrary $g \in \mathcal{H}_{\beta-1}(\mathbb{D})$. Here, we used the fact that

$$\Phi_{0, \theta}(z) = \psi(\Phi_{0, \theta}(z)) = \frac{1 - \theta}{2} \frac{\varphi''(z)}{\varphi'(z)}, \quad z \in \mathbb{D},$$

which is an almost trivial case of Proposition 5.1.

The next step is to apply the estimate (6.3) to the functions

$$g(z) = g_\tau(z) = \left[\varphi'(z) \right]^{\tau/2},$$
and to make the observation that
\[\frac{\varphi''(z)}{\varphi'(z)} g_\tau(z) = \frac{2}{\tau} g_\tau'(z), \quad z \in \mathbb{D}. \quad (6.4) \]

By Proposition 4.7 (with \(\nu = \theta \)), we have
\[\|g''\|_{\beta+1}^2 = (\beta + 1)(\beta + 2) \|g\|_{\beta-1}^2 + O(\|g\|_{\beta-1+\theta}^2) \]
holds generally, so that if we combine it with the above observation and recall the formula of Lemma 3.5, we obtain from (6.3) that
\[\left\{ (1 - \theta) \frac{\Gamma(\beta + 1 + 2\theta)\Gamma(\beta + 2)}{\Gamma(\beta + 1 + \theta)\Gamma(\beta + 2 + \theta)} (\beta + 1)(\beta + 2) \right\} \|g_\tau\|_{\beta-1}^2 = O(\|g_\tau\|_{\beta-1+\theta}^2), \]
which implies the assertion of the proposition.

REMARK 6.2 A part of the assertion of Proposition 6.1, namely \(B_S(\tau) \leq \beta \), remains true under the weaker assumption of “\(\leq \)” in (6.2). This is so because in the case of equality in (6.2) for given \(\theta \), \(\beta \), and \(\tau \), we may move \(\tau \) slightly so as to achieve “\(< \)” Using the continuity of the function \(B_S \), the asserted inequality follows by taking the limit.

We may use the above proposition iteratively to obtain successively better bounds for the function \(B_S(\tau) \) starting from some some trivial bound, like what follows from the pointwise Kœbe-Bieberbach estimate (1.1). A more general estimate is
\[\left\| \left[\frac{\varphi'}{\varphi} \right]_\tau \right\|_{2|\tau|+\Re \tau - 1+\varepsilon} = O(1) \quad (6.6) \]
holds uniformly in \(\varphi \in \mathcal{S} \), for all positive values of \(\varepsilon \). A first estimate of the integral means spectrum near the origin. We apply Proposition 6.1 to obtain asymptotic bounds for the function \(B_S(t) \) for \(t \) near the origin.

PROPOSITION 6.3 Fix a \(\theta \) with \(0 < \theta < 1 \). We then have
\[\limsup_{C \ni \tau \to 0} \frac{B_S(\tau)}{|\tau|^2} \leq \frac{1 + \theta}{2(1 - \theta)}. \quad (6.7) \]

Proof. Pick a positive \(\varepsilon \), and let
\[\beta = \beta(\tau) = \left[\frac{1 + \theta}{2(1 - \theta)} + \varepsilon \right] |\tau|^2. \]
We plug this β into both sides of (6.2), and observe that the left hand side behaves like
\[
\frac{2(1-\theta)\Gamma(2\theta+1)}{\Gamma(1+\theta)\Gamma(2+\theta)} \frac{1}{|\tau|^2} + o \left(\frac{1}{|\tau|^2} \right)
\] as $\tau \to 0$,
while the right hand side behaves like
\[
\left[\frac{1+\theta}{2(1-\theta) + \varepsilon} \right]^{-1} \frac{\Gamma(2\theta+1)}{\Gamma(\theta+1)} \frac{1}{|\tau|^2} + o \left(\frac{1}{|\tau|^2} \right)
\] as $\tau \to 0$,
which shows that condition (6.2) is fulfilled for sufficiently small values of $|\tau|$. As the trivial estimate (6.6) shows that
\[
\left\| \frac{\varphi'}{\tau} \right\|_{2(\beta+1+\varepsilon)} = O(1)
\] for sufficiently small $|\tau|$, we may apply Proposition 6.1 to deduce that
\[
\left\| \frac{\varphi'}{\tau} \right\|_{2(\beta+1)} = O(1)
\] holds uniformly in φ for sufficiently small $|\tau|$. The desired assertion follows.

\section*{Corollary 6.4}
We have
\[
\limsup_{C \ni \tau \to 0} \frac{B_S(\tau)}{|\tau|^2} \leq \frac{1}{2}.
\]

\section*{Proof.}
Let $\theta \to 0^+$ in (6.7).

\section*{The improved estimate of the integral means spectrum near the origin.}
Below, we obtain a better constant instead of $\frac{1}{2}$ in the estimate of Corollary 6.3.

Naturally, if we take into account more terms of the sum in the left hand side of the inequality in Theorem 4.9, we obtain more precise information. We now analyze the estimate obtained by considering the first two terms. As in the proof of Proposition 6.1, we fix some θ with $0 < \theta < 1$ and some positive β, and we plug in $\alpha = \beta + 2\theta - 1$ and $g = g_\tau = [\varphi']^{\tau/2}$ into Theorem 4.9, throwing away all but the first two terms on the left hand side. We use Proposition 5.1 to evaluate $\Phi_{k,\theta}(z)$ for $k = 0, 1$, and the identity (6.4) to obtain, for $0 < \beta < +\infty$,
\[
(1-\theta)(\beta+1)(\beta+2) \frac{\Gamma(\beta+1+2\theta)}{\Gamma(\beta+1+\theta)\Gamma(\beta+2+\theta)} \left| \frac{1}{\beta+1} - \frac{1}{\tau} \right|^2 \left\| \frac{[\varphi']^{\tau/2}}{\beta-1} \right\|_{\beta-1}^2
\]
\[
+ (2-\theta) \frac{\Gamma(\beta+2\theta+1)}{\Gamma(\beta+2\theta+1)\Gamma(\beta+\theta+3)} \times ♣
\]
\[
\leq K(\beta,\theta) \left\| \frac{[\varphi']^{\tau/2}}{\beta-1} \right\|_{\beta-1}^2 + O \left(\left\| \frac{[\varphi']^{\tau/2}}{\beta+\theta-1} \right\|_{\beta-1}^2 \right), \quad (6.8)
\]
where
\[
♣ = \left\| \frac{1-\theta}{2(\beta+2)\beta+3} \right\|_{\beta+3}^2 \left\{ [\varphi']^{\tau/2} \right\} - \frac{1-\theta}{2(\beta+3)} \left\{ \frac{\varphi''}{\varphi'} \right\} \left([\varphi']^{\tau/2} \right)
\]
\[
+ \left\{ \frac{1}{6} \frac{\varphi''''}{\varphi'} - \frac{\theta+1}{8} \left(\frac{\varphi''}{\varphi'} \right)^2 \right\} \left([\varphi']^{\tau/2} \right) \right\|_{\beta+3}^2, \quad (6.9)
\]
and $\partial = d/dz$ stands for the operator of differentiation. As before, we first apply this inequality to estimate $B_\delta(\tau)$ near the origin. We consider $\beta = \beta(\tau) = B_0 |\tau|^2$, where B_0 is some fixed constant with $0 < B_0 < \frac{1}{2}$. We put $\theta(\tau) = 4|\tau|$, and plug these values into (6.8). By the trivial estimate (6.6), we have

$$\left\| \left[\frac{\varphi}{\varphi'} \right]^{\tau/2} \right\|_{\beta(\tau)+\theta(\tau)-1}^2 = O(1),$$

uniformly in $\varphi \in S$ for each fixed $\tau \in \mathbb{C}$. Then (6.8) takes the following form:

$$\frac{2 + \epsilon_1(\tau)}{|\tau|^2} \left\| \left[\frac{\varphi}{\varphi'} \right]^{\tau/2} \right\|_{-1+\beta(\tau)}^2 + (6 + \epsilon_2(\tau)) \left\{ \left(\frac{1}{24} + \epsilon_3(\tau) \right) \left[\frac{\varphi''}{\varphi'} \right]^2 + \epsilon_4(\tau) \left[\frac{\varphi''}{\varphi'} \right] \right\} \left\| \left[\frac{\varphi'}{\varphi''} \right]^{\tau/2} \right\|_{3+\beta(\tau)}^2$$

$$\leq \frac{1 + \epsilon_5(\tau)}{B_0 |\tau|^2} \left\| \left[\varphi' \right]^{\tau/2} \right\|_{-1+\beta(\tau)}^2 + O(1), \quad (6.10)$$

where the last $O(1)$ is uniform in $\varphi \in S$ for each fixed τ. For $k = 1, 2, 3, 4, 5$, the functions $\epsilon_k(\tau)$ satisfy

$$\lim_{\tau \to 0} \epsilon_k(\tau) = 0;$$

and for $k = 1, 2, 5$, the functions are in addition real-valued.

Lemma 6.5 ($-1 < \alpha < +\infty$) There exists a positive constant $C_\tau(\alpha)$ such that, for any $g \in \mathcal{H}_\alpha(\mathbb{D})$,

$$\left\| \frac{\varphi''}{\varphi'} g \right\|_{\alpha+4}^2 \leq C_\tau(\alpha) \parallel g \parallel_{\alpha}^2.$$

Moreover,

$$C_\tau(\alpha) = O \left(\frac{1}{\alpha+1} \right)$$

as $\alpha \to -1^+$.

Proof. The assertion follows from the identity

$$\frac{\varphi''}{\varphi'} g = \frac{d}{dz} \left(\frac{\varphi''}{\varphi'} g \right) + \left[\frac{\varphi''}{\varphi'} \right]^2 g - \frac{\varphi''}{\varphi'} g'$$

combined with the classical pointwise estimate (6.9) and Proposition 4.7.

As we apply the above lemma, we obtain from (6.10) that the inequality

$$\left\| \left[\frac{\varphi}{\varphi'} \right]^{\tau/2} \right\|_{\beta(\tau)+3}^2 \leq \frac{96}{|\tau|^2} \left(\frac{1}{B_0} - 2 + \varepsilon \right) \left\| \left[\frac{\varphi'}{\varphi''} \right]^{\tau/2} \right\|_{\beta(\tau)-1}^2 + O(1) \quad (6.11)$$

holds for each fixed positive ε, for sufficiently small values of $|\tau|$.

Lemma 6.6 ($0 < \beta < +\infty$) For each $g \in \mathcal{H}_{\beta-1}$, we have

$$\left\| \frac{\varphi''}{\varphi'} g \right\|_{\beta+1}^2 \leq \frac{\beta + 2}{\sqrt{\beta(\beta+4)}} \parallel g \parallel_{\beta-1} \left\| \left[\frac{\varphi''}{\varphi'} \right]^2 g \right\|_{\beta+3}. \quad (6.12)$$
Proof. This follows from a standard application of the Cauchy-Schwarz–Bunyakovskii inequality. □

By estimate (6.11) and Lemma 6.6, we have the following chain of inequalities (as before, \(\beta(\tau) = B_0|\tau|^2 \)):

\[
\begin{align*}
\left\| \frac{\varphi'}{\varphi'} \right\|_{\beta(\tau) - 1} & = \frac{|\tau|^2}{4(\beta(\tau) + 1)(\beta(\tau) + 2)} \left\| \frac{\varphi''}{\varphi'} \left[\varphi' \right] \right\|_{1 + \beta(\tau)}^2 + O(1) \\
& \leq \frac{|\tau|^2}{4(\beta(\tau) + 1)(\beta(\tau) + 2)} \left\| \frac{\varphi''}{\varphi'} \left[\varphi' \right] \right\|_{\beta + 3}^2 \left\| \left[\varphi' \right] \right\|_{\beta(\tau) - 1}^{\tau/2} + O(1) \\
& \leq \frac{1 + \epsilon_0(\tau)}{8\sqrt{B_0}} \sqrt{96 \left(\frac{1}{B_0} - 2 + \epsilon \right)} \left\| \left[\varphi' \right] \right\|_{\beta(\tau) - 1}^{\tau/2} + O \left(\left\| \left[\varphi' \right] \right\|_{\beta(\tau) - 1}^{\tau/2} \right) + O(1),
\end{align*}
\]

where the function \(\epsilon_0(\tau) \) is real-valued with limit \(\epsilon_0(\tau) \to 0 \) as \(\tau \to 0 \). This inequality implies that

\[
\left\| \left[\varphi' \right] \right\|_{\beta(\tau) - 1}^{\tau/2} = O(1)
\]

uniformly in \(\varphi \in S \), provided that

\[
\frac{1 + \epsilon_0(\tau)}{8\sqrt{B_0}} \sqrt{96 \left(\frac{1}{B_0} - 2 + \epsilon \right)} < 1.
\]

We conclude that

\[
\limsup_{C \ni \tau \to 0} \frac{B_S(\tau)}{|\tau|^2} \leq B_0
\]

holds for each real constant \(B_0, 0 < B_0 < \frac{1}{2} \), for which

\[
96 \left(\frac{1}{B_0} - 2 \right) < 64 B_0.
\]

By solving this last inequality for \(B_0 \), we obtain the following estimate.

THEOREM 6.7 We have that

\[
\limsup_{C \ni \tau \to 0} \frac{B_S(\tau)}{|\tau|^2} \leq \frac{\sqrt{15} - 3}{2} = 0.43649\ldots (6.13)
\]

REMARK 6.8 The best previous estimate of this type was \(B_S(t) \leq (3 + \epsilon) t^2 \) for real \(t \) near the origin (see [13]).

An optimization method to estimate B_S using two terms. Our next goal is to estimate the function \(B_S(\tau) \) using this inequality (6.8), which employs the first two terms on the left hand side of the inequality in Theorem 6.7. This time we intend to take into account somehow all possible values of \(\theta \) at the same time, rather than considering a single value at a time. This of course requires that the estimates we have obtained so far are sufficiently uniform in \(\theta \), if \(\theta \) is confined to some compact interval \([\theta_0, 1]\), which is true and possible to verify without too much effort. We fix \(\tau \in C \) and \(\beta \) with \(0 < \beta < +\infty \), and rewrite (6.8) as follows, using (6.2):

\[
\begin{align*}
\left\| A_1(\theta) \theta^2 \left\{ \left[\varphi' \right] \right\}^{\tau / 2} + A_2(\theta) \left[\frac{\varphi''}{\varphi'} \left[\varphi' \right] \right] \right\|_{\beta + 3}^{\tau / 2} & \leq \left\| \left[\varphi' \right] \right\|_{-1 + \beta}^{\tau / 2} + O \left(\left\| \left[\varphi' \right] \right\|_{-1 + \beta + \theta}^{\tau / 2} \right), \quad (6.14)
\end{align*}
\]
where
\[
A_1(\theta) = \left[\frac{1 - \theta}{2(\beta + 2)(\beta + 3)} - \frac{1 - \theta}{\tau(\beta + 3)} + \frac{1}{3\tau} \right] \left\{ (2 - \theta) \frac{\Gamma(\beta + 2\theta + 1)\Gamma(\beta + 4)}{\Gamma(\beta + \theta + 2)\Gamma(\beta + \theta + 3)} \right\}^{1/2} \\
\times \left\{ K(\beta, \theta) - (1 - \theta)(\beta + 1)(\beta + 2) \frac{\Gamma(\beta + 2\theta + 1)\Gamma(\beta + 2)}{\Gamma(\beta + \theta + 1)\Gamma(\beta + \theta + 2)} \left| \frac{1}{\beta + 1} - \frac{1}{\tau} \right| \right\}^{-1/2},
\]
and
\[
A_2(\theta) = \left[\frac{1}{6} \left(1 - \frac{\tau}{2} \right) - \frac{\theta + 1}{8} \right] \left\{ (2 - \theta) \frac{\Gamma(\beta + 2\theta + 1)\Gamma(\beta + 4)}{\Gamma(\beta + \theta + 2)\Gamma(\beta + \theta + 3)} \right\}^{1/2} \\
\times \left\{ K(\beta, \theta) - (1 - \theta)(\beta + 1)(\beta + 2) \frac{\Gamma(\beta + 2\theta + 1)\Gamma(\beta + 2)}{\Gamma(\beta + \theta + 1)\Gamma(\beta + \theta + 2)} \left| \frac{1}{\beta + 1} - \frac{1}{\tau} \right| \right\}^{-1/2}.
\]
we recall the definition of the function $K(\beta, \theta)$ in (6.1). Without loss of generality, we may assume that
\[
(1 - \theta)(\beta + 1)(\beta + 2) \frac{\Gamma(\beta + 2\theta + 1)\Gamma(\beta + 2)}{\Gamma(\beta + \theta + 1)\Gamma(\beta + \theta + 2)} \left| \frac{1}{\beta + 1} - \frac{1}{\tau} \right|^2 < K(\beta, \theta)
\]
holds for all θ, $0 < \theta < 1$; for otherwise, we may apply Proposition 6.1 in conjunction with Remark 6.1 to get the desired inequality $B_S(\tau) \leq \beta$. This means that the square roots which are used to define the functions A_1 and A_2 produce real-valued functions on the whole interval $0 < \theta < 1$. For each θ, $0 < \theta < 1$, we consider the disk
\[
D_\theta = \left\{ w \in \mathbb{C} : |A_1(\theta) - wA_2(\theta)| \leq \frac{1}{\sqrt{(\beta + 1)4}} \right\}.
\]
Here, of course, $(\beta + 1)4 = (\beta + 1)(\beta + 2)(\beta + 3)(\beta + 4)$.

We have the following result.

PROPOSITION 6.9 Suppose that there exists a certain θ_0, with $0 < \theta_0 \leq 1$, such that
(a) the intersection $\bigcap_{\theta_0 < \theta \leq 1} D_\theta$ is empty, and
(b) the estimate $\|v'^{\tau/2}\|_{1+\beta+\theta_0} = O(1)$ holds uniformly in $v \in S$.

Then
\[
\|v'^{\tau/2}\|_{1+\beta} = O(1)
\]
holds uniformly in $v \in S$, so that in particular, $B_S(\tau) \leq \beta$.

Proof. A standard compactness argument shows that the assumption (a) remains valid if we replace the disks D_θ by the slightly bigger disks
\[
D_\theta' = \left\{ w \in \mathbb{C} : |A_1(\theta) - wA_2(\theta)| \leq \frac{1 + \varepsilon}{\sqrt{(\beta + 1)4}} \right\},
\]
for a small enough positive ε. This means that
\[
\inf_{w \in \mathbb{C}} \|A_1 - wA_2\|_{C^1[\theta_0, 1]} \geq \frac{1 + \varepsilon}{\sqrt{(\beta + 1)4}}
\]
holds, if, as is standard, $C[\theta_0, 1]$ is the Banach space of complex-valued functions continuous in $[\theta_0, 1]$, supplied with the uniform norm. By standard duality, this entails that there exists a complex Borel measure μ on the interval $[\theta_0, 1]$ such that the total variation of μ is 1, and, in addition,

$$\frac{1 + \varepsilon}{\sqrt{(\beta + 1)}} \leq \left| \int_{\theta_0}^{1} A_1(\theta) \, d\mu(\theta) \right| \quad \text{while} \quad \int_{\theta_0}^{1} A_2(\theta) \, d\mu(\theta) = 0.$$

We find that an application of (6.14) leads to

$$\frac{1 + \varepsilon}{\sqrt{(\beta + 1)}} \| \partial^2 \{ [\varphi']^{\tau/2} \} \|_{\beta+3} \leq \left\| \left\{ \int_{\theta_0}^{1} A_1(\theta) \, d\mu(\theta) \right\} \partial^2 \{ [\varphi']^{\tau/2} \} \right\|_{\beta+3}$$

$$= \left\| \int_{\theta_0}^{1} \left\{ A_1(\theta) \partial^2 \{ [\varphi']^{\tau/2} \} + A_2(\theta) \left[\frac{\varphi''}{\varphi'} \right]^2 (\varphi')^{\tau/2} \right\} d\mu(\theta) \right\|_{\beta+3}$$

$$\leq \int_{\theta_0}^{1} \left\| A_1(\theta) \partial^2 \{ [\varphi']^{\tau/2} \} + A_2(\theta) \left[\frac{\varphi''}{\varphi'} \right]^2 (\varphi')^{\tau/2} \right\| d\mu(\theta) \right\|_{\beta+3}$$

$$\leq \left\| [\varphi']^{\tau/2} \right\|_{-1+\beta} + O\left(\left\| [\varphi']^{\tau/2} \right\|_{-1+\beta+\theta_0} \right).$$

In view of Proposition 6.9 and the assumption (b), the desired conclusion follows.

The moral content of Proposition 6.9 is that we are able to obtain the estimate

$$\left\| [\varphi']^{\tau/2} \right\|_{-1+\beta} = O(1)$$

uniformly over all $\varphi \in S$ for as long as the criterion

$$\bigcap_{0 < \theta \leq 1} D_\theta(\beta, \tau) = \emptyset$$

is fulfilled, where $D_\theta(\beta, \tau) = D_\theta$ as in (6.18). In a concrete situation, of course, we have to start with a trivial a priori estimate, and inch our way down in the scale of β's in accordance with details specified by Proposition 6.9. We should mention that by Helly’s intersection theorem, (6.19) holds if and only if

$$D_{\theta_1}(\beta, \tau) \cap D_{\theta_2}(\beta, \tau) \cap D_{\theta_3}(\beta, \tau) = \emptyset$$

for some triplet $\theta_1, \theta_2, \theta_3$ with $0 < \theta_j \leq 1, j = 1, 2, 3$.

REMARK 6.10 For $\tau = t$ real, it suffices to verify the assumption (a) of Proposition 6.9 along the real line only, as can be seen from the observation that the functions $A_1(\theta)$ and $A_2(\theta)$ are real-valued then. This means that if we put

$$I_\theta = \left\{ x \in \mathbb{R} : \left| A_1(\theta) - x \right| \leq \frac{1}{\sqrt{(\beta + 1)^4}} \right\},$$

which constitutes a closed interval, it is enough to check that

$$\bigcap_{\theta_0 \leq \theta \leq 1} I_\theta = \emptyset.$$

This criterion can be easily checked by computer calculations. Indeed, if we denote the left and right end points of I_θ by $\alpha_1(\theta)$ and $\alpha_2(\theta)$, so that

$$I_\theta = [\alpha_1(\theta), \alpha_2(\theta)],$$
then the criterion (6.21) is equivalent to
\[
\inf_{\theta \in [\theta_0, 1]} \alpha_2(\theta) < \sup_{\theta \in [\theta_0, 1]} \alpha_1(\theta),
\]
which is easily treated numerically.

REMARK 6.11 It would be desirable to change the implementation of the optimization method so that we may incorporate the information supplied by Lemma 6.6, so as to obtain a more optimal estimate based on the first two terms. If we do this in a straightforward manner, focussing on the term containing \(A_2(\theta) \) instead of \(A_1(\theta) \), we are to replace the intervals \(I_\theta = D_\theta \cap \mathbb{R} \) by
\[
J_\theta = \left\{ x \in \mathbb{R} : \left| A_2(\theta) - x A_1(\theta) \right| \leq \frac{t^2}{4(\beta + 1) \sqrt{\beta(\beta + 4)}} \right\},
\]
and the criterion \(\bigcap_{\theta_0 \leq \theta \leq 1} J_\theta = \emptyset \) then permits us to conclude that \(B_S(t) \leq \beta \). Numerical simulation shows that this criterion is more powerful for (real) \(t \) near the origin than the criterion (a) of Proposition 6.9.

Numerical implementation. By successive application of Proposition 6.9 for real \(\tau = t \), taking into account Remark 6.10, we obtain the estimate \(B_S(t) \leq B_*(t) \), where the function \(B_*(t) \) is tabulated below. We use suitably small values of \(\theta_0 \). The function \(B_*(t) \) is also graphed. For some values of \(t \), the method outlined in Remark 6.11 is used in place of Proposition 6.9; this is then indicated with an asterisk (*).

The tabulated bounds for \(B_S(-1) \) and \(B_S(-2) \) are to be compared with the bounds that were found recently by the second-named author in [17]; there, it was shown that \(B_S(-1) \leq 0.420 \) and \(B_S(-2) \leq 1.246 \). It should be noted that the inequality of Theorem 1 in [17] leading to these bounds is a particular case of our main inequality – the inequality of Theorem 4.9 – if we put \(\theta = 1 \) and, like in (6.14), take into account only the first two terms in the sum on the left hand side. In this particular case, the first term vanishes and the constant \(C_S(\alpha, \theta) \) which appears in (4.9) vanishes as well, because \(L_\theta = 0 \) for \(\theta = 1 \).
\begin{table}
\centering
\begin{tabular}{|l|l|l|}
\hline
\textit{t} & \textit{B}_*(t) & \max\{-t, 0\} \\
\hline
-20.000 & 19.028 & 19.000 \\
-10.000 & 9.040 & 9.000 \\
-8.000 & 7.049 & 7.000 \\
-6.000 & 5.067 & 5.000 \\
-5.000 & 4.082 & 4.000 \\
-4.000 & 3.105 & 3.000 \\
-3.000 & 2.144 & 2.000 \\
-2.500 & 1.674 & 1.500 \\
-2.400 & 1.582 & 1.400 \\
-2.300 & 1.490 & 1.300 \\
-2.200 & 1.398 & 1.200 \\
-2.100 & 1.308 & 1.100 \\
-2.000 & 1.218 & 1.000 \\
-1.900 & 1.130 & 0.900 \\
-1.800 & 1.042 & 0.800 \\
-1.752 & 1.001 & 0.752 \\
-1.700 & 0.956 & 0.700 \\
-1.600 & 0.871 & 0.600 \\
-1.500 & 0.787 & 0.500 \\
-1.400 & 0.706 & 0.400 \\
-1.300 & 0.626 & 0.300 \\
-1.200 & 0.549 & 0.200 \\
-1.100 & 0.474 & 0.100 \\
-1.000 & 0.403 & 0.000 \\
-0.900 & 0.336 & 0.000 \\
-0.800 & 0.272 & 0.000 \\
-0.700 & 0.213* & 0.000 \\
-0.600 & 0.159* & 0.000 \\
-0.500 & 0.112* & 0.000 \\
-0.400 & 0.072* & 0.000 \\
-0.300 & 0.040* & 0.000 \\
-0.200 & 0.0179* & 0.000 \\
-0.150 & 0.0100* & 0.000 \\
-0.100 & 0.0043* & 0.000 \\
-0.050 & 0.00110* & 0.000 \\
\hline
\end{tabular}
\caption{TABLES 1 AND 2.}
\end{table}
By taking advantage of the fact that the function $B_{\Sigma}(t)$ is convex, with $B_{\Sigma}(t) \leq B_{S}(t)$ and $B_{\Sigma}(2) = 1$, we derive from a somewhat larger supply of sample values of the graphed function $B_{\ast}(t)$ that $B_{\Sigma}(1) \leq 0.4600$, improving the best earlier known estimate, due to Makarov and Pommerenke [12], which was $B_{\Sigma}(1) \leq 0.4886$. The value of $B_{\Sigma}(1)$ describes the growth of the length of Green lines (the level curves of the Green function) as they approach the boundary of an arbitrary simply connected bounded planar domain. It also determines the rate of decay of the Laurent series coefficients of functions in the class Σ (see [3]).

REMARK 6.12 By taking advantage of the fact that the function $B_{\Sigma}(t)$ is convex, with $B_{\Sigma}(t) \leq B_{S}(t)$ and $B_{\Sigma}(2) = 1$, we derive from a somewhat larger supply of sample values of the graphed function $B_{\ast}(t)$ that $B_{\Sigma}(1) \leq 0.4600$, improving the best earlier known estimate, due to Makarov and Pommerenke [12], which was $B_{\Sigma}(1) \leq 0.4886$. The value of $B_{\Sigma}(1)$ describes the growth of the length of Green lines (the level curves of the Green function) as they approach the boundary of an arbitrary simply connected bounded planar domain. It also determines the rate of decay of the Laurent series coefficients of functions in the class Σ (see [3]).

FIGURE 1. Graph of $B = B_{\ast}(t)$, the estimated universal spectral function; support lines included.

The optimization method to estimate B_{S} using three or more terms. How do we implement the optimization method if we take into account more than two terms on the left hand side of the inequality of Theorem 4.9 (2) into account, putting, as before, $\alpha = \beta + 2\theta - 1$ and $g = [\varphi']^{t/2}$, we obtain an inequality of the form

$$
\left\| A_{1}(\theta) \partial^{2} \{ [\varphi']^{t/2} \} + A_{2}(\theta) \left[\frac{\varphi''}{\varphi} \right]^{2} [\varphi']^{t/2} \right\|_{\beta+3}^{2} + \frac{1}{(\beta + 5)(\beta + 6)}
\times \left\| A_{3}(\theta) \partial^{3} \{ [\varphi']^{t/2} \} + A_{4}(\theta) \partial \left\{ \left[\frac{\varphi''}{\varphi} \right]^{2} [\varphi']^{t/2} \right\} + A_{5}(\theta) \left[\frac{\varphi''}{\varphi} \right]^{3} [\varphi']^{t/2} \right\|_{\beta+5}^{2} \leq
\leq \left\| [\varphi']^{t/2} \right\|_{\beta-1}^{2} + O \left(\left\| [\varphi']^{t/2} \right\|_{\beta-1+\theta}^{2} \right), \tag{6.22}
$$

where the functions A_{1} and A_{2} are given by (6.15) and (6.16), and the functions A_{3}, A_{4}, A_{5} are continuous on $[0, 1]$, and given by certain explicit expressions. As before, we assume that condition (6.17) is fulfilled for all θ, $0 < \theta \leq 1$. The process of deriving equation...
Then we apply Proposition 4.7 to the second term on the left-hand side of (6.22), which holds uniformly in $\varphi(x, y)$ for all ϕ.

Suppose that there exists a certain θ_0, with $0 < \theta_0 \leq 1$, such that

(a) the intersection $\bigcap_{\theta \in [\theta_0, 1]} E_{\theta}$ is empty;
(b) $\|([\varphi']^{t/2})_{-1+\beta+\theta_0} = O(1)$ uniformly in $\varphi \in S$.

Then

$$\left\|([\varphi']^{t/2})_{-1+\beta} = O(1)\right.\right.$$ holds uniformly in $\varphi \in S$ and, in particular, $B_S(t) \leq \beta$.

Proof. First, we introduce the operator of integration I_0,

$$I_0f(z) = \int_0^z f(w) \, dw, \quad z \in \mathbb{D}.$$ Then we apply Proposition 6.7 to the second term on the left-hand side of (6.22), which allows us to rewrite (6.22) in the form

$$\left\|A_1(\theta) - x A_2(\theta) \right\|^2 + \left\|A_3(\theta) - x A_4(\theta) - y A_5(\theta) \right\|^2 \leq \frac{1}{(\beta + 1)^4}.$$ A standard compactness argument shows that the assumption (a) remains valid if the ellipses E_{θ} are replaced by slightly larger ellipses E_{θ}^x, defined by

$$\left\|A_1(\theta) - x A_2(\theta) \right\|^2 + \left\|A_3(\theta) - x A_4(\theta) - y A_5(\theta) \right\|^2 \leq \frac{1 + \varepsilon}{(\beta + 1)^4},$$ provided that the positive number ε is small enough. Moreover, a similar argument shows that we may assume that a finite intersection of E_{θ}^x is empty:

$$\bigcap_{\theta \in \mathfrak{g}} E_{\theta}^x = \emptyset,$$ for some finite subset \mathfrak{g} of the interval $[\theta_0, 1]$. This condition is equivalent to having

$$\max_{\theta \in \mathfrak{g}} \left\{\left\|A_1(\theta) - x A_2(\theta) \right\|^2 + \left\|A_3(\theta) - x A_4(\theta) - y A_5(\theta) \right\|^2 \right\} > \frac{1 + \varepsilon}{(\beta + 1)^4}$$ for all $x, y \in \mathbb{R}$, or, expressed differently,

$$\text{dist}_X \left[\begin{pmatrix} A_1 \\ A_3 \end{pmatrix}, \ \ \ \ \ \ \ \begin{pmatrix} A_2 \\ A_4 \end{pmatrix} \right] = \sqrt{\frac{1 + \varepsilon}{(\beta + 1)^4}}.$$
where “span” means the \mathbb{R}-linear span, and $\text{dist}_\mathcal{X}$ is the distance function on the space \mathcal{X}, the \mathbb{R}-linear space of vector-valued functions
\[\theta \mapsto \begin{pmatrix} \xi_1(\theta) \\ \xi_2(\theta) \end{pmatrix}, \quad \theta \in \mathfrak{g}, \]
supplied with the norm
\[\left\| \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} \right\|_\mathcal{X} = \max_{\theta \in \mathfrak{g}} \sqrt{|\xi_1(\theta)|^2 + |\xi_2(\theta)|^2}. \]
The \mathbb{R}-linear space \mathcal{X}^* of vector-valued functions
\[\theta \mapsto \begin{pmatrix} \mu_1(\theta) \\ \mu_2(\theta) \end{pmatrix}, \quad \theta \in \mathfrak{g}, \]
supplied with the norm
\[\left\| \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} \right\|_{\mathcal{X}^*} = \sum_{\theta \in \mathfrak{g}} \sqrt{|\mu_1(\theta)|^2 + |\mu_2(\theta)|^2}, \]
is then dual to \mathcal{X} with respect to the natural dual pairing
\[\left\langle \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}, \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} \right\rangle = \sum_{\theta \in \mathfrak{g}} \left\{ \xi_1(\theta)\mu_1(\theta) + \xi_2(\theta)\mu_2(\theta) \right\}. \]
By standard duality theory, the inequality (6.24) means that there exists a vector-valued function
\[\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} \in \mathcal{X}^* \]
which satisfies
\[\left\| \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} \right\|_{\mathcal{X}^*} = 1; \quad \sqrt{\frac{1 + \varepsilon}{(\beta + 1)^4}} < \left\langle \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}, \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} \right\rangle, \tag{6.25} \]
while
\[\left\langle \begin{pmatrix} A_2 \\ A_4 \end{pmatrix}, \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} \right\rangle = \left\langle \begin{pmatrix} 0 \\ A_5 \end{pmatrix}, \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} \right\rangle = 0. \]
We then have
\[
\sqrt{\frac{1 + \varepsilon}{(\beta + 1)^4}} \left\| \partial^2 [\varphi^t]^{t/2} \right\|_{\beta+3} < \sum_{\theta \in \mathfrak{g}} \left\{ \mu_1(\theta)A_1(\theta) + \mu_2(\theta)A_3(\theta) \right\} \left\| \partial^2 [\varphi^t]^{t/2} \right\|_{\beta+3} \\
= \sum_{\theta \in \mathfrak{g}} \left\{ \mu_1(\theta) \left[A_1(\theta) \partial^2 \left[[\varphi^t]^{t/2} \right] + A_2(\theta) \left[\frac{\varphi^{''}}{\varphi^{q}} \right]^{2} \left[[\varphi^{''}]^{1/2} \right] \right] + \mu_2(\theta) \right\} \\
\times \left[A_3(\theta) \partial^2 \left[[\varphi^t]^{t/2} \right] + A_4(\theta) \left[\frac{\varphi^{''}}{\varphi^{q}} \right]^{2} \left[[\varphi^{''}]^{1/2} \right] + A_5(\theta) I_0 \left[\left[\frac{\varphi^{''}}{\varphi^{q}} \right]^{3} \left[[\varphi^{''}]^{1/2} \right] \right] \right] \right\|_{\beta+3} \\
\leq \sum_{\theta \in \mathfrak{g}} \left\{ |\mu_1(\theta)| \left\| A_1(\theta) \partial^2 \left[[\varphi^t]^{t/2} \right] + A_2(\theta) \left[\frac{\varphi^{''}}{\varphi^{q}} \right]^{2} \left[[\varphi^{''}]^{1/2} \right] \right\|_{\beta+3} + |\mu_2(\theta)| \right\} \\
\times \left[A_3(\theta) \partial^2 \left[[\varphi^t]^{t/2} \right] + A_4(\theta) \left[\frac{\varphi^{''}}{\varphi^{q}} \right]^{2} \left[[\varphi^{''}]^{1/2} \right] + A_5(\theta) I_0 \left[\left[\frac{\varphi^{''}}{\varphi^{q}} \right]^{3} \left[[\varphi^{''}]^{1/2} \right] \right] \right] \right\|_{\beta+3} \\
\leq \left\| [\varphi^t]^{1/2} \right\|_{\beta+1} + O\left(\left\| [\varphi^t]^{1/2} \right\|_{\beta+1} + \right),
\]
where in the last step, we appeal to the Minkowski inequality, as well as to (6.25) and (6.23). Since \(\varepsilon \) is positive, this completes the proof, in view of Proposition 4.7.

REMARK 6.14 When running computer tests based on the criterion of Proposition 6.13, it is useful to know that – by Helly’s intersection theorem – it is enough to check that

\[
\mathcal{E}_{\theta_1} \cap \mathcal{E}_{\theta_2} \cap \mathcal{E}_{\theta_3} = \emptyset
\]

for some triplet \(\theta_1, \theta_2, \theta_3 \) with \(\theta_0 \leq \theta_j \leq 1, \ j = 1, 2, 3 \). We have not yet carried out these computer runs.

7 Ways to extend the method

Is it possible to improve our method so that it leads to better bounds for the integral means? We feel that one way to achieve improvement is to try and replace our starting point inequality (2.1) by some other, more appropriate estimate.

Moving the boundary branch point \(\infty \) to \(\mu \). Let \(\mu \in \mathbb{C} \setminus \varphi(\mathbb{D}) \). Then the function

\[
\varphi_\mu(z) = \frac{\mu \varphi(z)}{\mu - \varphi(z)}
\]

is again in \(S \), and replacing \(\varphi \) by \(\varphi_\mu \) in (2.1) leads to

\[
\int_{\mathbb{D}} \left| \frac{\varphi'(z)}{\varphi'(w)} \left(\frac{\mu - \varphi(w)}{\mu - \varphi(z)} \right)^{1-\theta} \left(\frac{\varphi'(w)(z-w)}{\varphi(z) - \varphi(w)} \right)^{\theta+1} \left(\frac{1 - |w|^2}{1 - wz} \right)^{1-\theta} \right|^2 |z - w|^{2\theta+2} dA(z)
\]

\[
\leq \frac{1}{\theta} (1 - |w|^2)^{-2\theta}. \quad (7.1)
\]

We introduce the notation

\[
\Phi_{\theta,\mu}(z, w) = \frac{1}{z - w} \left\{ \frac{\varphi'(z)}{\varphi'(w)} \left(\frac{\mu - \varphi(w)}{\mu - \varphi(z)} \right)^{1-\theta} \left(\frac{\varphi'(w)(z-w)}{\varphi(z) - \varphi(w)} \right)^{\theta+1} - 1 \right\},
\]

so that

\[
\Phi_{\theta,\mu}(z, w) = \left(\frac{\mu - \varphi(w)}{\mu - \varphi(z)} \right)^{1-\theta} \Phi_{\theta}(z, w) + \frac{1}{z - w} \left\{ \left(\frac{\mu - \varphi(w)}{\mu - \varphi(z)} \right)^{1-\theta} - 1 \right\}.
\]

Note that as \(\mu \) tends to \(\infty \) from inside the complement of \(\varphi(\mathbb{D}) \),

\[
\Phi_{\theta,\mu}(z, w) \to \Phi_{\theta}(z, w).
\]

Also, \(\Phi_{1,\mu}(z, w) \equiv \Phi_{1}(z, w) \). In terms of \(\Phi_{\theta,\mu} \), estimate (7.1) can be written as follows.

THEOREM 7.1 Fix \(\theta, \ 0 < \theta \leq 1 \). Let \(\varphi \in S \) be arbitrary, and suppose \(\mu \in \mathbb{C} \setminus \varphi(\mathbb{D}) \). Then, for all \(w \in \mathbb{D} \),

\[
\int_{\mathbb{D}} \left| \Phi_{\theta,\mu}(z, w) + L_{\theta}(z, w) \right|^2 |z - w|^{2\theta} dA(z) \leq \frac{1}{\theta} (1 - |w|^2)^{-2\theta},
\]

with equality if and only if \(\varphi \) is a full mapping.
One way to spread out the effect of the point \(\mu \) in Theorem 2.1 is to integrate both sides of the inequality with respect to a probability measure in the variable \(\mu \), supported on \(\mathbb{C} \setminus \varphi(D) \). A particularly attractive choice of such a measure would be the harmonic measure for the point at the origin.

The diagonal restriction of the function \(\Phi_{\theta, \mu} \) equals
\[
\Phi_{\theta, \mu}(z, z) = \frac{1-\theta}{2} \left(\frac{\varphi''(z)}{\varphi'(z)} + \frac{2\varphi'(z)}{\mu - \varphi(z)} \right)
\]

Note that the \(\mu \)-average of this function with respect to the harmonic measure for the origin equals
\[
\frac{1-\theta}{2} \left\{ \frac{\varphi''(z)}{\varphi'(z)} + \frac{2\varphi'(z)}{z - \varphi(z)} \right\} = \frac{1-\theta}{2} \frac{d}{dz} \log \frac{z^2 \varphi'(z)}{|\varphi(z)|^2}.
\]

The expression \(z^2 \varphi'(z)/(|\varphi(z)|^2) \) is essentially the derivative of a function from \(\Sigma \), if we use the inversion map to go from \(D \) to \(D_c \). So, averaging with respect to \(\mu \) in this way may lead to interesting properties for the class \(\Sigma \).

Nehari’s extension of Prawitz’ theorem. Another way to generalize inequality (2.1) is to start with a more general initial inequality than Prawitz’ estimate, as given by Theorem 2.1. A polynomial version of Prawitz’ theorem was obtained by Nehari [14], and it can be reformulated as the inequality (valid for \(0 < \theta < 1 \))
\[
\int_D \left| \sum_{j=1}^N c_j \Lambda_\theta(z, \zeta_j) \right|^2 \frac{dA(z)}{|z|^2\theta} \leq \sum_{j,k=1}^N c_j \bar{c}_k K_\theta(\zeta_j, \zeta_k),
\]
\[
\Lambda_\theta(z, \zeta) = \left[\frac{\varphi(z)}{\zeta} \right]^{-\theta} \left[\frac{\varphi(\zeta)}{\zeta} \right]^\theta \frac{\varphi'(z)}{\varphi(z) - \varphi(\zeta)} - \frac{1}{z - \zeta}
\]
and
\[
K_\theta(\zeta, \zeta) = \sum_{n=0}^{+\infty} \frac{(\zeta \bar{\zeta})^n}{n + \theta}.
\]

Prawitz’ theorem is the special case when \(N = 1 \), \(\zeta_1 = 0 \), and \(c_1 = 1 \). As we shift the branching point from the origin to an arbitrary point \(w \in D \) by the same procedure as in Section 2, we obtain the inequality
\[
\int_D \left| \sum_{j=1}^N c_j \Lambda_\theta(z, \zeta_j; w) \right|^2 \frac{dA(z)}{|z-w|^2\theta} \leq \sum_{j,k=1}^N c_j \bar{c}_k K_\theta(\zeta_j, \zeta_k; w),
\]
\[
\Lambda_\theta(z, \zeta; w) = \left[\frac{\varphi(z) - \varphi(w)}{z-w} \right]^{-\theta} \left[\frac{\varphi(\zeta) - \varphi(w)}{\zeta-w} \right]^\theta \frac{\varphi'(z)}{\varphi(z) - \varphi(\zeta)} - \frac{1 - \bar{w}\zeta}{1 - \bar{w}z} \right]^{1-\theta} \frac{1}{z - \zeta}
\]
and
\[
K_\theta(\zeta, \zeta; w) = \frac{1}{(1 - \bar{w}\zeta)^\theta (1 - w\zeta)^\theta} \sum_{n=0}^{+\infty} \frac{1}{n + \theta} \left[\frac{(\zeta - w)(\bar{\zeta} - \bar{w})}{(1 - \bar{w}\zeta)(1 - w\zeta)} \right]^n.
\]

The inequality (2.1) results from (7.2) if we set \(N = 1 \), \(c_1 = 1 \), and \(\zeta_1 = w \). It is not clear whether this is the optimal choice of the parameters for the method.

A Prawitz-type theorem with two internal branching points. Inequalities in the spirit of (2.1) (or, more generally, in the spirit of (1.2)), can be obtained for expressions
associated with more than one branching point; after all, (7.2) means that we have placed a single (interior) branching point at \(w \in \mathbb{D} \). Let us focus on the case of two (interior) branching points. We place one at the origin and the other at the point \(w \in \mathbb{D} \), and supply both with “branching multiplicity” \(\frac{1}{2} \). The inequality that is the analogue of (2.1) with \(\theta = \frac{1}{2} \) can be shown to assume the form

\[
\int_{\mathbb{D}} |\Xi(z,w) + N(z,w)|^2 \frac{dA(z)}{|z(z-w)|} \leq M(w), \quad w \in \mathbb{D},
\]

(7.3)

where

\[
\Xi(z,w) = \left(\frac{\varphi(w)}{w} \right)^{1/2} \left(\frac{\varphi(z)}{z} \right)^{-1/2} \frac{\varphi'(z)}{\varphi'(w)} \left(\frac{\varphi'(w)(z-w)}{\varphi'(z) - \varphi'(w)} \right)^{3/2},
\]

and the functions \(N(z,w) \) and \(M(w) \) are given by certain explicit expressions involving elliptic functions. Again, we have equality for all full mappings \(\varphi \in \mathcal{S} \). The method to derive the inequality (7.3) as well as its generalizations to arbitrary \(0 < \theta < 1 \) will be explained in forthcoming papers. Unfortunately, the inequality (7.3) – and similar inequalities with branching points at the origin and at the point \(w \) with branching multiplicities \(1 - \theta \) and \(\theta \) \((0 < \theta < 1)\), respectively – do not seem to yield any new information as regards integral means spectra. The analysis of these inequalities leads to expressions of just the same type as before, with the only difference that they are written in terms of the meromorphic function \(1/\varphi(z) \), which becomes an element of the class \(\Sigma \) after the change of variables \(z \mapsto 1/z \).

References

[1] N. Aronszajn, *Theory of reproducing kernels*. Trans. Amer. Math. Soc. **68** (1950), 337–404.

[2] L. de Branges, *Underlying concepts in the proof of the Bieberbach conjecture*. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), 25–42, Amer. Math. Soc., Providence, RI, 1987.

[3] L. Carleson, P. W. Jones, *On coefficient problems for univalent functions and conformal dimension*. Duke Math. J. **66** (1992), no. 2, 169–206.

[4] L. Carleson, N. Makarov, *Some results connected with Brennan’s conjecture*. Ark. Mat. **32** (1994), no. 1, 33–62.

[5] P. L. Duren, *Univalent functions*. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], **259**. Springer-Verlag, New York, 1983.

[6] J. Feng, T. H. MacGregor, *Estimates on integral means of the derivatives of univalent functions*. J. Analyse Math. **29** (1976), 203–231.

[7] H. Hedenmalm, *The dual of a Bergman space on simply connected domains*. J. Analyse Math. **88** (2002), 311–335.

[8] H. Hedenmalm, B. Korenblum, K. Zhu, *Theory of Bergman spaces*. Graduate Texts in Mathematics, **199**. Springer-Verlag, New York, 2000.

[9] H. Helson, G Szegő, *A problem in prediction theory*. Ann. Mat. Pura Appl. (4) **51** (1960), 167–138.
[10] P. Kraetzer, *Experimental bounds for the universal integral means spectrum of conformal maps*. Complex Variables Theory Appl. 31 (1996), no. 4, 305–309.

[11] N. G. Makarov, *Fine structure of harmonic measure*. St. Petersburg Math. J. 10 (1999), no. 2, 217–268.

[12] N. G. Makarov, Ch. Pommerenke, *On coefficients, boundary size and Hölder domains*. Ann. Acad. Sci. Fenn. Math. 22 (1997), no. 2, 305–312.

[13] I. M. Milin, *Univalent functions and orthonormal systems*. Translated from the Russian. Translations of Mathematical Monographs, Vol. 49. American Mathematical Society, Providence, R. I., 1977.

[14] Z. Nehari, *Inequalities for the coefficients of univalent functions*. Arch. Rational Mech. Anal. 34 (1969), 301–330.

[15] Ch. Pommerenke, *Boundary behaviour of conformal maps*. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 299. Springer-Verlag, Berlin, 1992.

[16] S. Saitoh, *Theory of reproducing kernels and its applications*. Pitman Research Notes in Mathematics Series, 189. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1988.

[17] S. Shimorin, *A multiplier estimate of the Schwarzian derivative of univalent functions*. Int. Math. Res. Not. 2003, no. 30, 1623–1633.

Hedenmalm and Shimorin: Department of Mathematics, Royal Institute of Technology, S–100 44 Stockholm, Sweden. Email: haakanh@math.kth.se, shimorin@math.kth.se