ON THE SPECTRUM FOR THE GENERA OF MAXIMAL CURVES OVER SMALL FIELDS

NAZAR ARAKELIAN
Centro de Matemática, Computação e Cognição (CMCC)
Universidade Federal do ABC
Avenida dos Estados 5001
09210-580, Santo André, SP, Brazil

SAEED TAFAZOLIAN
School of Mathematics, Institute for Research in Fundamental Science (IPM)
P.O. Box 19395-5746, Tehran, Iran
and
Dept. of Mathematics and Computer Science, Amirkabir University of Technology
424 Hafez Ave, P.O. Box: 15875-4413, Tehran, Iran

FERNANDO TORRES
Instituto de Matemática, Estatística e Computação Científica (IMECC)
Universidade Estadual de Campinas
R. Sérgio Buarque de Holanda 651
Cidade Universitária “Zeferino Vaz”, 13083-859, Campinas, SP, Brazil

(Communicated by Ferruh Özbudak)

Abstract. Motivated by previous computations in Garcia, Stichtenoth and Xing (2000) paper [11], we discuss the spectrum $\mathcal{M}(q^2)$ for the genera of maximal curves over finite fields of order q^2 with $7 \leq q \leq 16$. In particular, by using a result in Kudo and Harashita (2016) paper [22], the set $\mathcal{M}(7^2)$ is completely determined.

1. Introduction

Let X be a (projective, nonsingular, geometrically irreducible, algebraic) curve of genus g defined over a finite field $K = \mathbb{F}_\ell$ of order ℓ. The following inequality is the so-called Hasse-Weil bound on the size N of the set $X(K)$ of K-rational points of X:

$$|N - (\ell + 1)| \leq 2g \cdot \sqrt{\ell}.$$

In Coding Theory, Cryptography, or Finite Geometry one is often interested in curves with “many points”, namely those with N as big as possible. In this paper, we work out over fields of square order, $\ell = q^2$, and deal with so-called maximal curves over K; that is to say, those curves attaining the upper bound in (1), namely

$$N = q^2 + 1 + 2g \cdot q.$$

2010 Mathematics Subject Classification: Primary: 11G20, 11M38, 14H05, 14G15; Secondary: 14HXX.

Key words and phrases: Finite field, Hasse-Weil bound, Stöhr-Voloch theory, maximal curve.

The first author was partially supported by FAPESP, grant 2013/00564-1. The second author was in part supported by a grant from IPM (No. 93140117). The third author was partially supported by CNPq (Grant 308326/2014-8).
The subject matter of this note is in fact concerning the spectrum for the genera of maximal curves over K.

$$(3) \quad M(q^2) := \{ g \in \mathbb{N}_0 : \text{there is a maximal curve of genus } g \text{ over } K \}.$$

In Section 2 we subsume basic facts on a maximal curve X being the key property the existence of a very ample linear series D on X equipped with a nice property; namely (5). We have that Castelnuovo’s genus bound (6) and Halphen’s theorem imply a nontrivial restriction on the genus g of X, stated in (8) (see [21]); in particular, $g \leq q(q-1)/2$ is the well-known Ihara’s bound [19].

Let r be the dimension of D. Then $r \geq 2$ by (5), and the condition $r = 2$ is equivalent to $g = q(q-1)/2$, or equivalent to X being K-isomorphic to the Hermitian curve $g^{q+1} = x^q + x$ [30, 9, 20]. Under certain conditions, we have a similar result for $r = 3$ in Corollary 1 and Proposition 1. In fact, in Section 3 we bound g via Stöhr-Voloch theory [27] applied to D being the main results the aforementioned Proposition and its Corollary 2. Finally, in Section 4 we apply all these results toward the computation of $M(q^2)$ for $q = 7, 8, 9, 11, 13, 16$. In fact, here we improve [11, Sect. 6] and, in particular, we can compute $M(7^2)$ (see Corollary 3) by using Corollary 2 and a result of Kudo and Harashita [22] which asserts that there is no maximal curve of genus 4 over \mathbb{F}_{49}.

We recall that the approach in this paper is quite different from Danisman and Özdemir [4], where in particular the set $M(7^2)$ is missing.

Conventions. \mathbb{P}^s is the s-dimensional projective space defined over the algebraic closure of the base field.

2. Basic facts on maximal curves

Throughout, let X be a maximal curve of genus g over the field $K = \mathbb{F}_{q^2}$ of order q^2. Let $\Phi : X \to X$ be the Frobenius morphism relative to K (in particular, the set of fixed points of Φ coincides with $X(K)$). For a fixed point $P_0 \in X(K)$, let $j : X \to J, P \mapsto [P - P_0]$ be the embedding of X into its Jacobian variety J. Then, in a natural way, Φ induces a morphism $\tilde{\Phi} : J \to J$ such that

$$(4) \quad j \circ \Phi = \tilde{\Phi} \circ j.$$

Now from (2) the numerator of the Zeta Function of X is given by the polynomial $L(t) = (1 + qt)^{2g}$. It turns out that $h(t) := t^{2g}L(t^{-1})$ is the characteristic polynomial of $\tilde{\Phi}$; i.e., $h(\tilde{\Phi}) = 0$ on J. As a matter of fact, since $\tilde{\Phi}$ is semisimple and the representation of endomorphisms of J on the Tate module is faithful, from (4) it follows that

$$(5) \quad (q + 1)P_0 \sim qP + \Phi(P), \quad \text{for each } P \in X.$$

This suggests to study the Frobenius linear series on X, namely the complete linear series $D := [(q + 1)P_0]$ which is in fact a K-invariant of X by (5); see [8], [16, Ch. 10] for further information.

Moreover, D is a very ample linear series in the following sense. Let r be the dimension of D, which we refer to as the Frobenius dimension of X, and $\pi : X \to \mathbb{P}^r$ be a morphism related to D; we noticed above that $r \geq 2$ by (5). Then π is an embedding [20, Thm. 2.5]. In particular, Castelnuovo’s genus bound applied to $\pi(X)$ gives the following constrain involving the genus g, r and q (see [16, Cor.
10.25]):
\[g \leq F(r) = F(r, q + 1) := \begin{cases}
 ((2q - (r - 1))^2 - 1)/8(r - 1) & \text{if } r \text{ is even}, \\
 (2q - (r - 1))^2/8(r - 1) & \text{if } r \text{ is odd}.
\end{cases} \]

Remark 1. A direct computation shows that \(F(r) \leq F(s) \) provided that \(r \geq s \).

Since \(F(r) \leq F(2) = q(q - 1)/2 \), as \(r \geq 2 \), then \(g \leq q(q - 1)/2 \) which is a well-known fact on maximal curves over \(K \) due to Ihara [19]. In addition, \(F(r) \leq F(3) = (q - 1)^2/4 \) for \(r \geq 3 \), so that the genus \(g \) of a maximal curve over \(K \) satisfies the following condition (see [9])
\[g \leq F(3) = (q - 1)^2/4 \quad \text{or} \quad g = F(2) = q(q - 1)/2. \]

As a matter of fact, the following holds true.

Lemma 1 ([25, 9, 29]). Let \(\mathcal{X} \) be a maximal curve over \(K \) of genus \(g \) with Frobenius dimension \(r \). The following sentences are equivalent:

1. \(g = F(2) = q(q - 1)/2 \);
2. \((q - 1)^2/4 < g \leq q(q - 1)/2 \);
3. \(r = 2 \);
4. \(\mathcal{X} \) is \(K \)-isomorphic to the Hermitian curve \(\mathcal{H} : y^{q+1} = x^q + x \).

Corollary 1. Let \(\mathcal{X} \) be a maximal curve over \(K \) of genus \(g \) and Frobenius dimension \(r \). Suppose that
\[F(4) = (q - 1)(q - 2)/6 < g \leq F(3) = (q - 1)^2/4. \]

Then \(r = 3 \).

Proof. If \(r \geq 4 \), then \(g \leq (q - 1)(q - 2)/6 \) by (6); so \(r = 2 \) or \(r = 3 \). Thus \(r = 3 \) by Lemma 1 and the hypothesis on \(g \).

It is known that \(g = \lfloor F(3) \rfloor \) if and only if \(\mathcal{X} \) is is uniquely determined by plane models of type: \(y^{(q+1)/2} = x^q + x \) if \(q \) is odd, and \(y^{q+1} = x^{q/2} + \ldots + x \) otherwise; see [8, 2, 21].

Let us consider next an improvement on (7). Suppose that
\[c_1(3) = c_1(q^2, 3) := \lfloor (q^2 - q + 4)/6 \rfloor < g \leq F(3). \]

Therefore Halphen’s theorem implies that \(\mathcal{X} \) is contained in a quadric surface and so \(g = \lfloor F(3) \rfloor \); see [21]. In particular, (7) improves to
\[g \leq c_1(3), \quad \text{or} \quad g = \lfloor F(3) \rfloor, \quad \text{or} \quad g = F(2). \]

The following important remark is commonly attributed to J.P. Serre.

Remark 2. Any curve (nontrivially) \(K \)-covered by a maximal curve over \(K \) is also maximal over \(K \). In particular, any subcover over \(K \) of the Hermitian curve is so; see e.g. [11, 3].

Remark 3. We point out that there are maximal curves over \(K \) that cannot be \(K \)-covered by the Hermitian curve \(\mathcal{H} \); see [12, 28]. We observe that the examples occurring in these papers are all defined over fields of order \(q^2 = \ell^6 \) with \(\ell > 2 \).

We also point out that there are maximal curves over \(K \) that cannot be Galois covered by the Hermitian curve; see [10, 5, 28, 15, 14, 24, 13].
3. The set $\mathcal{M}(q^2)$

In this section we investigate the spectrum $\mathcal{M}(q^2)$ for the genera of maximal curves defined in (3). By using Remark 2 this set has already been computed for $q \leq 5$ [11, Sect. 6]. As a matter of fact, $\mathcal{M}(2^2) = \{0,1\}$, $\mathcal{M}(3^2) = \{0,1,3\}$, $\mathcal{M}(4^2) = \{0,1,2,6\}$, and $\mathcal{M}(5^2) = \{0,1,2,3,4,10\}$. Thus from now on we assume $q \geq 7$.

Let $F(r)$ be the function in (6). Next we complement Corollary 1. Let X be a maximal curve of genus g over K with Frobenius dimension r.

Proposition 1. If either

(A) $q \equiv 0 \pmod{3}$, and $(3q-1)(2g-2) > (q+1)(q^2-4q-1)$; or
(B) $q \not\equiv 0 \pmod{3}$, $r = 3$, and $(4q-1)(2g-2) > (q+1)(q^2-5q-2)$,

then

$$g \geq F(4) + (q + 1)/6 = (q^2 - 2q + 3)/6.$$

Proof. We shall apply Stöhr-Voloch theory [27] to the Frobenius linear series D on X. First we notice that the hypothesis on g in (A) implies $g > F(4) = (q-1)(q-2)/6$ so that $r \leq 3$. Thus by Lemma 1 we can assume $r = 3$.

Let $R = \sum r(v_p(R))P$ and $S = \sum r(v_p(S))P$ denote respectively the ramification and Frobenius divisor of D. Associated to each point $P \in X$, we have the sequence of possible intersection multiplicities of X with hyperplanes in \mathbb{P}^3, namely $\mathcal{R}(P) = 0 = j_0(P) < 1 = j_1(P) = j_2(P) < j_3(P)$. From (5), $j_3(P) = q + 1$ (resp. $j_3(P) = q$) if $P \in \mathcal{X}(K)$ (resp. $P \not\in \mathcal{X}(K)$). Moreover, $\mathcal{R}(P)$ is the same for all but a finite number of points (the so-called D-Weierstrass points of X); such a generic sequence (the orders of D) will be denoted by $\mathcal{E} : 0 = \epsilon_0 < 1 = \epsilon_1 < \epsilon_2 < q = \epsilon_3$. The numbers $0 = \nu_0 < 1 = \nu_1 < q = \nu_2$ are the K-Frobenius orders of D (see [27, Prop. 2.1] and [8, Thm. 1.4]). The very basic properties (1)-(6) below hold true:

1. $j_i(P) \geq \epsilon_i$ for any i and $P \in X$ [27, p. 5];
2. $v_p(R) \geq \sum_{i=0}^3 j_i(P) - \epsilon_i \geq 1$ for $P \in \mathcal{X}(K)$ [27, Thm. 1.5];
3. $\deg(R) = (\epsilon_3 + \epsilon_2 + \epsilon_1)(2g-2) + 4(q+1)$ [27, p. 6];
4. $(p$-adic criterion) If ϵ is an order and $\binom{\nu}{\eta} \neq 0 \pmod{p}$ (p is the characteristic of K), then η is also an order [27, Cor. 1.7];
5. $v_p(S) \geq (j_1(P) - \nu_0) + (j_2(P) - \nu_1) + (j_3(P) - \nu_2) = j_2(P) + 1 \geq \epsilon_2 + 1$ for $P \in \mathcal{X}(K)$ [27, Prop. 2.4];
6. $\deg(S) = (\nu_2 + \nu_1)(2g-2) + (q+1)(q^2 + 3)$ [27, p. 9].

Now the proof of Proposition 1 is based on the following

Claim. $\epsilon_2 = 2$.

Proof of the Claim. Suppose that $\epsilon_2 \geq 3$. Let $q \equiv 0 \pmod{3}$. From (5), (6) and the maximal property of X

$$\deg(S) = (q+1)(2g-2) + (q^2 + 3)(q+1) \geq 4(q+1)^2 + 4q(2g-2)$$

so that $(q^2-4q-1)(q+1) \geq (3q-1)(2g-2)$, a contradiction. Suppose now that $q \not\equiv 0 \pmod{3}$. Then $\epsilon_2 \geq 4$ by the p-adic criterion. Then (5), (6) and the maximal property of X gives

$$\deg(S) = (q+1)(2g-2) + (q^2 + 3)(q+1) \geq 5(q+1)^2 + 5q(2g-2)$$

so that $(q+1)(q^2 - 5q - 2) \geq (4q-1)(2g-2)$ a contradiction; the claim follows.
Finally, we use the ramification divisor R of D; we have
\[\deg(R) = (q + 2 + 1)(2g - 2) + 4(q + 1) \geq (q + 1)^2 + q(2g - 2) \]
and thus $g \geq (q^2 - 2q + 3)/6$. \hfill \square

Remark 4. Notation as above. There are maximal curves over K with Frobenius dimension 3 and $\epsilon_2 = 3$ [6, Thm. 2].

We mainly apply Proposition 1(B) in the following form:

Corollary 2. Let X be a maximal curve over K, of genus g, where $q \not\equiv 0 \pmod{3}$. Then
\[g \geq (q^2 - 2q + 3)/6 \]
provided that $g > (q - 1)(q - 2)/6$.

Proof. As in the proof of the above proposition, we can assume that the Frobenius dimension of X equals 3. Now the hypothesis on g is equivalent to $(2g - 2) > (q + 1)(q - 4)/3$; thus
\[(4q - 1)(2g - 2) > (4q - 1)(q - 1)(q - 4)/3 > (q + 1)(q^2 - 5q - 2), \]
and the result follows from Proposition 1. \hfill \square

4. $M(q^2)$ for $7 \leq q \leq 16$

In this section we shall improve on the following computations which follow from [11, Remark 6.1], (8), from [1] for $(q, g) \in \{(13, 1), (11, 6), (11, 8)\}$, from [11, Ex. 5.12] for $(q, g) = (13, 10)$, from [21, Thm. 2] for $22 \not\in M(13^2)$ and $35 \not\in M(16^2)$, and from [23, Remarks 7.1, 7.2] (see also [17]) for $3, 4, 5 \in M(13^2)$, $16 \in M(16^2)$.

Proposition 2. (1) $\{0, 1, 2, 3, 5, 7, 9, 21\} \subseteq M(7^2) \subseteq [0, 7] \cup \{9\} \cup \{21\}$; (2) $\{0, 1, 2, 3, 4, 6, 7, 9, 10, 12, 28\} \subseteq M(8^2) \subseteq [0, 10] \cup \{12\} \cup \{28\}$; (3) $\{0, 1, 2, 3, 4, 6, 8, 9, 12, 16, 36\} \subseteq M(9^2) \subseteq [0, 12] \cup \{16\} \cup \{36\}$; (4) $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 18, 19, 25, 55\} \subseteq M(11^2) \subseteq [0, 19] \cup \{25\} \cup \{55\}$; (5) $\{0, 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 26, 36, 78\} \subseteq M(13^2) \subseteq [0, 21] \cup [23, 26] \cup [36] \cup \{78\}$; (6) $\{0, 1, 2, 4, 6, 8, 12, 16, 24, 28, 40, 56, 120\} \subseteq M(16^2) \subseteq [0, 34] \cup [36, 40] \cup \{56\} \cup \{120\}$.

Proposition 3. Let $M(q^2)$ be the spectrum for the genera of maximal curves over K. Then
(1) $6 \not\in M(7^2)$; (2) $8 \not\in M(8^2)$; (3) $10 \not\in M(9^2)$; (4) $16 \not\in M(11^2)$; (5) $23, 24 \not\in M(13^2)$; (6) $36, 37 \not\in M(16^2)$.

Proof. As above let $F(4) = (q - 1)(q - 2)/6$. If $q \equiv 0 \pmod{3}$, Corollary 2 says that $M(q^2) \cap F(4), [(q^2 - 2q + 3)/6] - 1 = \emptyset$, where $[x]$ stands for the smallest integer $\geq x$. After some computations we obtain (1), (2), (4), (5), and (6). Let $q = 9$; the hypothesis in Proposition 1(A) reads $13(q - 1) > 5 \cdot 22$, i.e. $g \geq 10$. If $10 \in M(9^2)$, $10 \geq (9^2 - 2 \cdot 9 + 3)/6 = 11$, a contradiction. \hfill \square

Remark 5. The entry for $(q^2, g) = (13^2, 24)$ in [1] must be $N_{13^2}(24) < 794$. In fact, the genus of the given curve $y^{56} = x(x + 1)^{12}$ in [1] is 26.
Corollary 3. We have
\[M(7^2) = \{0, 1, 2, 3, 5, 7, 9, 21\}. \]

Proof. By the above propositions, it is enough to show that 4 \notin M(7^2). Indeed, this is the case as follows from a result in Kudo and Harashita paper [22, Thm. B] concerning superspecial curves.

Remark 6. To compute \(M(q^2) \) for \(q = 8, 9, 11, 13, 16 \) we need to answer the following questions:

1. Is 5 \in M(8^2)?
2. Are 5, 7, 11 \in M(9^2)?
3. Are 12, 14, 17 \in M(11^2)?
4. Are 7, 8, 11, 13, 14, 16, 17, 19, 20, 21, 25 \in M(13^2)?
5. Are 3, 5, 7, 9, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 38, 39 \in M(16^2)?

According to Tables 9–13 in [23], in case of an affirmative answer to any of the above questions, the corresponding curve would not be a quotient of the Hermitian curve.

Example 1. Here, for the sake of completeness, we provide an example of a maximal curve of genus \(g \) for each \(g \in M(7^2) \); cf. [1], [29].

1. (\(g = 0 \)) The rational curve;
2. (\(g = 1 \)) \(y^2 = x^3 + x \);
3. (\(g = 2 \)) \(y^2 = x^2 + x \);
4. (\(g = 3 \)) \(y^2 = x^7 + x \);
5. (\(g = 5 \)) \(y^8 = x^4 - x^2 \);
6. (\(g = 7 \)) \(y^{16} = x^9 - x^{10} \);
7. (\(g = 9 \)) \(y^4 = x^7 + x \);
8. (\(g = 21 \)) \(y^8 = x^7 + x \).

Remark 7. The curves in (6), (7), and (8) above are unique up to \(F_{49} \)-isomorphism; see respectively [7, 8, 25].

Acknowledgments

We are deeply grateful to the referees for their comments and corrections that allowed to improve the early version of the paper: specially Remark 3, Proposition 1 and Proposition 2.

References

[1] manYPoints-Table of Curves with Many Points, available at www.manypoints.org
[2] M. Abdón and F. Torres, Maximal curves in characteristic two, Manuscripta Math., 99 (1999), 39–53.
[3] A. Cossidente, G. Korchmáros and F. Torres, On curves covered by the Hermitian curve, J. Algebra, 216 (1999), 56–76.
[4] Y. Danisman and M. Ozdemir, On the genus spectrum of maximal curves over finite fields, J. Discrete Math. Sci. Crypt., 18 (2015), 513–529.
[5] I. Duursma and K. H. Mak, On maximal curves which are not Galois subcovers of the Hermitian curve, Bull. Braz. Math. Soc. New Series, 43 (2012), 453–465.
[6] S. Fanali and M. Giulietti, On some open problems on maximal curves, Des. Codes Crypt., 56 (2010), 131–139.
[7] S. Fanali, M. Giulietti and I. Platoni, On maximal curves over finite fields of small order, Adv. Math. Commun., 6 (2012), 107–120.
On the spectrum for the genera of maximal curves

[8] R. Fuhrmann, A. Garcia and F. Torres, On maximal curves, J. Number Theory, 67 (1997), 29–51.
[9] R. Fuhrmann and F. Torres, The genus of curves over finite fields with many rational points, Manuscripta Math., 89 (1996), 103–106.
[10] A. Garcia and H. Stichtenoth, A maximal curve which is not a Galois subcover of the Hermitian curve, Bulletin Braz. Math. Soc., 37 (2006), 1–14.
[11] A. Garcia, H. Stichtenoth and C. P. Xing, On subfields of the Hermitian function field, Compositio Math., 120 (2000), 137–170.
[12] M. Giulietti and G. Korchmáros, A new family of maximal curves over a finite field, Math. Ann., 343 (2009), 229–245.
[13] M. Giulietti, M. Montanucci, L. Quoos and G. Zini, The automorphism group of some Galois covers of the Suzuki and Ree curves, preprint, arXiv:1609.09343
[14] M. Giulietti, M. Montanucci and G. Zini, On maximal curves that are not quotients of the Hermitian curve, Finite Fields Appl., 41 (2016), 71–78.
[15] M. Giulietti, L. Quoos and G. Zini, Maximal curves from subcovers of the GK-curve, J. Pure Appl. Algebra., 220 (2016), 3372–3383.
[16] J. W. P. Hirschfeld, G. Korchmáros and F. Torres, Algebraic Curves over Finite Fields, Princeton Univ. Press, 2008.
[17] E. W. Howe, Quickly constructing curves of genus 4 with many points, in Frobenius Distributions: Sato-Tate and Lang-Trotter Conjectures, Amer. Math. Soc., Providence, 2016, 149–173.
[18] N. E. Hurt, Many Rational Points, Coding Theory and Algebraic Geometry, Kluwer Acad. Publ., The Netherlands, 2003.
[19] I. Ihara, Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Tokyo Sec. IA, 28 (1981), 721–724.
[20] G. Korchmáros and F. Torres, Embedding of a maximal curve in a Hermitian variety, Compositio Math., 128 (2001), 95–113.
[21] G. Korchmáros and F. Torres, On the genus of a maximal curve, Math. Ann., 333 (2002), 589–608.
[22] M. Kudo and S. Harashita, Superspecial curves of genus 4 in small characteristic, Finite Fields Appl., 45 (2017), 131–169.
[23] M. Montanucci and G. Zini, On the spectrum of genera of quotients of the Hermitian curve, preprint, arXiv:1703.10592
[24] M. Montanucci and G. Zini, Some Ree and Suzuki curves are not Galois covered by the Hermitian curve, Finite Fields Appl., 48 (2017), 175–195.
[25] H. G. Rück and H. Stichtenoth, A characterization of Hermitian function fields over finite fields, J. Reine Angew. Math., 457 (1994), 185–188.
[26] H. Stichtenoth, Algebraic Function Fields and Codes, 2nd edition, Springer-Verlag, New York, 2009.
[27] K. O. Stöhr and J. F. Voloch, Weierstrass points and curves over finite fields, Proc. London Math. Soc., 52 (1986), 1–19.
[28] S. Tafazolian, A. Teherán-Herrera and F. Torres, Further examples of maximal curves which cannot be covered by the Hermitian curve, J. Pure Appl. Algebra., 220 (2016), 1122–1132.
[29] S. Tafazolian and F. Torres, On the curve $y^n = x^m + x$ over finite fields, J. Number Theory, 145 (2014), 51–66.
[30] C. P. Xing and H. Stichtenoth, The genus of maximal functions fields, Manuscripta Math., 86 (1995), 217–224.

Received for publication October 2016.

E-mail address: n.arakelian@ufabc.edu.br
E-mail address: tafazolian@gmail.com
E-mail address: ftorres@ime.unicamp.br