Alpha and heavy cluster radioactivity of superheavy nuclei
$100 \leq Z \leq 120$

GM Carmel Vigila Bai1 and R Revathi2

1Department of Physics, Government Arts and Science College, Nagercoil -04.
217211172132026 Department of Physics, Rani Anna Government College for Women, Tirunelveli-08.
Affiliated to Manonmaniam Sundaranar University, Abhishekpati, Tirunelveli-12, Tamil Nadu, India.
E-mail: gmcarmelvb@gmail.com, renuraj.r1995@gmail.com

Abstract. Using Cubic plus Yukawa plus Exponential (CYE) model, half lives of alpha decay and heavy cluster radioactivity of Superheavy nuclei have been systematically investigated for even-even, even-odd, odd-even and odd-odd nuclei with $100 \leq Z \leq 120$. We have done our calculations by considering the Coulomb, centrifugal and Yukawa plus exponential potentials as an interacting barrier for separated fragments and the cubic potential for the overlapping region. The predicted half life time values by including deformation effects on parent and parent cluster have been compared with the Analytical Super Asymmetric Fission (ASAF) model of D.N.Poenaru et.al. In this work, we have compared the half life time values of alpha and heavy cluster radioactivity of Super heavy nuclei leading to 208Pb. This study suggests that heavy-cluster radioactivity may be comparable to or even dominant over α decay for some of the isotopes with $Z \geq 118$. Furthermore, branching ratio calculations have been performed to find out the probable cluster emitters. The predictions for cluster emitters are in agreement with CPPM model by Santhosh et. al., and Wentzel-Kramers-Brillouin (WKB) method by A.Soylu et. al. We hope that this study will help in future measurements on α-decay and cluster radioactivity half-lives of SHN.

1. Introduction

The study of Superheavy nuclei (SHN) has become a most interesting topic in the field of nuclear physics both experimentally [1-5] as well as theoretically [6 -14]. In the past few years, new Superheavy elements (SHEs) up to $Z = 118$ were synthesized in fusion reactions with the subsequent emission of neutrons and γ rays [3]. Two different experimental approaches, cold fusion (with one evaporated neutron) and hot fusion (with three or four evaporated neutrons), were used to synthesis SHN [5].

The formation of Superheavy nuclei may undergo different types of decay modes such as alpha decay, cluster radioactivity, spontaneous fission and ternary fission. In 1986, Becquerel [15] discovered radioactivity of Uranium. Rutherford and Geiger [16] studied nuclear charge and nature of alpha particle. Flerov and Petrakh [17], discovered the spontaneous fission of 238U. Sandulescu et al. [18] studied the cluster decay of 134C from SHN. Poenaru et al., [19] studied alpha decay half lives of Superheavy nuclei. Poenaru et al. [20] used the analytical super asymmetric fission model (ASAFM)
to calculated the alpha and cluster radioactive decay half lives of heavy and superheavy nuclei. Poenaru et.al., [21] studied half lives and branching ratios of Z=104-124. Poenaru et.al., [22, 23] studied half lives of alpha decay and cluster radioactivity of SHN and observed that alpha decay is the most prominent decay mode in SHN. Poenaru and Gherghescu [24, 12] studied cluster radioactivity of Superheavy nuclei using ASAF, UNIV and alpha decay ASAF, UNIV, semFIS and AKRA. Poenaru et.al. [25] studied the spontaneous fission half lives of the SHN 286Fl using asymmetry center shell model. Xu et al. [26] investigated the half-lives and branching ratios of alpha decay and spontaneous fission in the heavy and Super heavy nuclei Z ≥ 90. Staszczak et al. [27] studied the competition between different decay modes in superheavy nuclei with 108 ≤ Z ≤ 126. Using a unified fission model and Royer’s analytical formula, Bao et al. [28] evaluated alpha decay half lives of superheavy nuclei and compared with that of the available experimental values. Ni et al. [29] proposed a semiempirical formula for alpha decay and cluster radioactivity. Manjunatha and Sridhar [30] predicted most suitable projectile – target combination in the synthesis of Z=117. Manjunatha et.al., studied the half lives of spontaneous fission, ternary fission and cluster decay of Superheavy nuclei Z=126, 124 [31, 32] and compared with that of alpha decay half lives. Zhang et.al.[33] systematically investigated the probable cluster radioactivity of SHN Z=118, 119 & 120.

The study of the structure, decay modes, and decay half-lives of Super heavy nuclei is of great importance for future studies. Superheavy nuclei may decay through different decay modes such as, alpha decay, cluster radioactivity and spontaneous fission. Alpha decay is one of the dominant decay modes of the Super heavy nuclei and the alpha decay half-life is crucial for the synthesis and study of Super heavy nuclei. A Survey of literature reveals that half lives of different cluster decay modes have been studied using different models such as Analytical Super Asymmetric Fission Model (ASAFM) [22], Unified description (UD) formula [34], the Universal curve for alpha and cluster radioactive decay [35], Universal decay law (UDL) [36], the Horoi formula [37] and Cubic plus Yukawa plus Exponential model (CYEM) [38-48].

In our earlier work, we have compared the alpha decay, cluster decay and Spontaneous fission decay properties of different isotopes of Superheavy nuclei 126307, 318-320, 322-326 using our Cubic plus Yukawa plus Exponential model without considering the deformation effects [49]. Also we have studied the alpha decay properties of 126317-319, 325, 330, 331 using Cubic plus Yukawa plus Exponential model by including both parent and daughter deformations [50]. Alpha decay half lives of various isotopes of Superheavy elements with Z=122 and Z=124 for different Q values have been studied [51, 52]. Alpha and Spontaneous fission decay properties of various isotopes of SHE Z=125 for different Q values have been studied by using CYEM with parent deformation [53]. We have also studied the alpha decay and different cluster radioactive decay such as 8Be, 12C, 16O, 30,32Si, 48Ca, 66,68Ni, 72,74,76Zn, 75,77,79Ga, 80Ge, 81,83As, 84Se, 85Br, 86Kr, 87,89Rb, 90Sr, 89,93,96Y, 94,96Zr, 97,99,103Nb and 98,100,102Mo of 208118, 206120 and 208122 using Cubic plus Yukawa plus Exponential Model (CYEM) by including both parent & daughter deformation (WPD) and parent & cluster deformation (WPC) effects [54]. In this work, we have studied the heavy cluster radioactivity half life time values of Superheavy nuclei for set of some even-even, even-odd and odd-odd emitted clusters. And also studied the competition between alpha decay and cluster radioactivity of Superheavy nuclei leading to 208Pb and the branching ratio calculations have been done. These computed values are used for the prediction of prominent decay modes in SHN and the results are compared with the results of ASAF [12], WKB [55] and CPPM [11].

The overview of the paper is as follows: A detailed description of our CYEM is given in section II. The results and discussions of alpha and cluster decay properties of SHN are presented in section III and the last section summarizes our entire work.
2. CUBIC PLUS YUKAWA PLUS EXPONENTIAL (CYE) MODEL:

In this work, to study the properties of Superheavy elements we have used a realistic model [39] called as CYE model. The zero-point vibration energy is explicitly included without violating the conservation of energy and the inertial mass coefficient dependent on the centre of mass distance.

The half life time of the system is calculated by using the relation,

\[T = \frac{1.433 \times 10^{-21}}{E_v} [1 + \exp(K)] \]

(1)

Where

\[K = \frac{2}{\hbar} \int_{r_a}^{r_f} [2B_r(r) V(r)]^{1/2} dr + \frac{2}{\hbar} \int_{r_f}^{r_b} [2B_r(r) V(r)]^{1/2} dr \]

(2)

Here, \(r_a \) and \(r_b \) are the two appropriate zeros of the integrand.

POTENTIAL FOR THE POST-SCISSION REGION

In this work, the parent and the daughter nucleus are treated as spheroid. If the daughter nucleus has a deformation, say quadrupole deformation only, while the emitted nucleus is spherical and if the Q value of the reaction is taken as the origin, then the potential for the post-sciission is given by,

\[V(r) = V_c(r) + V_n(r) - V_{df}(r) - Q \quad \text{if} \quad r \geq r_i \]

(3)

Here,

- \(V_c(r) \) is the coulomb potential between a spheroidal daughter and spherical emitted fragment as in Ref. [56].
- \(V_n(r) \) is the nuclear interaction energy due to finite range effects Krappe et.al. [57].
- \(V_{df}(r) \) is the change in the nuclear interaction energy due to quadrupole deformation (\(\beta_2 \)) of the daughter nucleus as in Ref. [57].

For a prolate spheroid daughter nucleus with longer axis along the fission direction, Pik-Pichak [56] obtained

\[V_c(r) = \frac{3}{2} \frac{Z_1 Z_2 e^3}{\gamma r} \left[\frac{1 + \gamma}{2} \ln \frac{\gamma + 1}{\gamma - 1} + \gamma \right] \]

(4)

and for an oblate spheroid daughter with shorter axis along the fission direction

\[V_c(r) = \frac{3}{2} \frac{Z_1 Z_2 e^3}{\gamma r} \left[\gamma (1 + \gamma^2) \arctan \gamma^{-1} - \gamma^2 \right] \]

(5)

Here

\[\gamma = \frac{r}{\sqrt{(a_z^2 - b_z^2)^3}} \]

Here \(a_2 \) and \(b_2 \) are the semi-major and minor axes of the spheroidal daughter nucleus respectively.

If the nuclei have spheroid shape, the radius vector \(R(\theta) \) making an angle \(\theta \) with the axis of symmetry locating sharp surface of a deformed nuclei is given by ref [57].
\[R(\theta) = R_0 \left[1 + \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \beta_{nm} Y_{nm}(\theta) \right] \] (6)

Here \(R_0 \) is the radius of the equivalent spherical nucleus.

The Change in the nuclear interaction energy due to the quadrupole deformation \(\beta_2 \) [41] of the daughter nucleus is given by

\[V_d = \frac{4R_0^4 \beta_2}{a r_0^2} \left(\frac{5}{4\pi} \right)^{1/2} \]

POTENTIAL FOR THE PRE-SCISSION REGION

The shape of the potential barrier in the overlapping region which connects the ground state and the contact point is approximated by a third order polynomial in \(r \) suggested by Nix [58] having the form,

\[V(r) = -E_v + \left[V(r_i) + E_v \right] \left\{ s_1 \left[\frac{r}{r_i} \right]^2 - s_2 \left[\frac{r}{r_i} \right]^3 \right\} ; \quad r_i \leq r \leq r_t \] (7)

Where \(r_i \) is the distance between the centre of mass of two portions of the daughter and the emitted nuclei in the spheroidal parent nucleus.

If we consider spheroid deformation \(\beta_2 \), then

\[R(\theta) = R_0 \left[1 + \beta_2 \left(\frac{5}{4\pi} \right)^{1/2} \left(\frac{5}{8} \cos^2 \theta - \frac{1}{2} \right) \right] \] (8)

and if the Nilsson’s hexadecapole deformation \(\beta_4 \) is also included in the deformation, then eq. (6) becomes

\[R(\theta) = R_0 \left[1 + \beta_2 \left(\frac{5}{4\pi} \right)^{1/2} \left(\frac{5}{8} \cos^2 \theta - \frac{1}{2} \right) + \beta_4 \left(\frac{5}{4\pi} \right)^{2/3} (35 \cos^4 \theta - 30 \cos^2 \theta + 3) \right] \] (9)

For calculating the zero point vibration energy \(E_v \), we choose [59]

\[E_v = \frac{\hbar}{2} \left(\frac{\omega_i^4}{(C_1 + C_2)} \right) \]

\(C_1 \) and \(C_2 \) are the central radii of the fragments given by [60],

\[C_i = 1.18 \ A_i^{1/4} - 0.48 \quad (i = 1, 2) \]

and reduced mass,

\[\mu = \frac{m_1 m_2}{m_1 + m_2} \]
Table 1. Comparison of Cluster radioactivities of even-even emitters from SHN using CYEM with ASAFM

Parent nuclei	Daughter nuclei	Emitted cluster	Q_c (MeV)	Log T_c (s)				
			CYEM	ASAFM				
			WOD	WP	WPC			
252Fm	204Hg	48Ca	145.85	24.19	21.59	20.838	23.63	
278Ds	208Pb	72Ni	216.64	20.48	18.23	22.681	16.76	
282Cn	208Pb	74Zn	223.06	19.20	16.66	22.105	15.21	
284Cn	208Pb	76Zn	245.52	13.93	12.32	5.375	9.29	
284Fl	208Pb	78Ge	245.30	13.33	12.16	1.850	8.91	
286Fl	208Pb	80Ge	264.41	12.80	11.69	-3.084	6.71	
288Fl	208Pb	80Ge	264.72	12.06	10.68	10.48	42.839	6.18
290Fl	208Pb	82Ge	263.89	10.91	11.33	11.33	21.328	5.30
294Fl	212Pb	82Ge	258.17	18.06	18.20	25.584	10.81	
294Lv	208Pb	84Se	284.64	7.15	8.45	14.389	0.55	
294Og	208Pb	86Kr	303.81	6.15	5.45	20.674	-2.45	
300120	208Pb	92Sr	321.36	4.58	4.52	-6.583	-5.73	
302120	208Pb	94Sr	320.04	5.16	4.70	-21.795	-5.26	

Table 2. Comparison of Cluster radioactivities of even-odd emitters from SHN using CYEM with ASAFM

Parent nuclei	Daughter nuclei	Emitted cluster	Q_c (MeV)	Log T_c (s)			
			CYEM	ASAFM			
			WOD	WP	WPC		
265Rf	210Pb	55Ti	165.27	26.83	22.94	18.72	26.71
267Rf	208Hg	61Cr	175.93	29.88	25.53	18.46	28.83
269Sg	205Hg	64Fe	195.84	26.67	22.54	22.42	24.94
271Sg	206Hg	65Fe	195.65	26.49	22.07	23.34	24.86
273Hs	207Hg	68Ni	216.27	22.52	18.01	20.69	20.25
275Hs	207Hg	70Ni	216.20	21.97	17.73	21.54	19.97
277Hs	206Hg	71Ni	216.04	21.64	18.51	21.94	19.76
279Ds	208Pb	71Ni	225.09	17.30	15.08	20.58	15.77
281Ds	209Pb	72Ni	223.55	18.86	17.06	21.67	17.05
281Cn	207Pb	74Zn	245.18	14.71	13.61	6.58	12.15
283Cn	207Pb	76Zn	244.79	14.38	13.10	3.54	12.00
285Cn	208Pb	77Zn	244.08	14.67	12.87	7.83	12.26
287Fl	207Pb	80Ge	264.49	11.37	10.40	1.34	8.04
289Fl	208Pb	81Ge	263.78	11.56	11.88	4.47	8.22
291Lv	207Pb	84Se	284.42	7.90	6.52	12.99	3.58
293Lv	208Pb	85Se	283.13	8.90	8.82	-0.21	4.34
295Og	209Pb	87Kr	303.06	6.58	7.35	14.89	0.50
299120	208Pb	91Sr	321.48	5.11	5.57	24.64	-2.70
301120	208Pb	93Sr	320.58	5.03	5.06	-22.12	-3.86
Table 3. Comparison of Cluster radioactivities of odd-even & odd-odd emitters from SHN using CYEM with ASAM

Parent nuclei	Daughter nuclei	Emitted cluster	Q_c (MeV)	Log T_c (s)	CYEM	ASAFM	
253Es	207Tl	40Ar	129.54	24.71	22.05	16.78	25.87
277Hs	206Th	71Ar	216.04	-47.95	-45.72	-28.59	19.76
277Hg	206Hg	71Ni	225.98	7.12	4.97	13.00	15.24
287Nh	208Pb	77Ga	254.02	12.98	12.47	5.96	8.97
297119	208Pb	81Rb	311.65	6.81	7.77	5.47	-1.71
299119	208Pb	81Rb	310.63	6.99	7.30	-4.93	-1.52
278Bh	205Au	77Ni	211.19	23.76	21.56	24.80	22.73
282Mt	211Pb	71Co	208.28	27.30	24.83	24.35	25.44
286Rg	208Pb	75Cu	230.34	20.75	18.85	20.95	18.88
290Nh	209Pb	81Ga	251.27	15.88	15.12	22.35	13.45
300119	208Pb	92Rb	309.74	7.70	7.61	-21.94	1.56

Figures 1-3: Comparison of the calculated CR half lives of even-even, even-odd and odd-even & odd-odd clusters from SHN by with & without deformation with ASAFM.
3. Results and discussions:

In this work, we have calculated the heavy cluster radioactivity half lives of some of the isotopes of heavy mass nuclei using Cubic plus Yukawa plus Exponential Model (CYEM) without including deformation (WOD), with including parent deformation (WP) only and parent, cluster deformation(WPC) effects for the case of even-even, even-odd, odd-even and odd-odd. The comparison of heavy cluster radioactivity half lives using CYEM and the other theoretical values are given in Table 1-3. In this table, the first & second columns indicate the parent nuclei and the emitted clusters. The third column denotes the energy released during the emission of heavy cluster radioactivity. The Q values for the decay were taken from ref. [11] in which they were calculated using WS4 mass table [61]. The next four columns give the calculated cluster radioactivity half lives of SHN using ASAFM and CYE model. The half lives of all the heavy cluster emissions shown in Tables 1-3 are less than 10^{30}s. So These clusters may be detected through the experiments.

Next, we have compared the competition between alpha decay and cluster radioactive decay half lives of some of the isotopes of Superheavy nuclei leading to 208Pb using our CYE model for e-e, e-o, o-e & o-o in Tables 4-7. The predicted values are compared with the other values of ASAF model of Poenaru et.al, CPPM of Santhosh et. al, and WKB method of Soylu et.al. To gain a better insight into the competition between alpha decay and cluster radioactive decay, we calculated the branching ratio b_c of cluster decay relative to the corresponding alpha decay as

$$
\text{Log}_{10}(b_c) = \text{Log}_{10}(\lambda_c/\lambda_a) = \text{Log}_{10}(T_a/T_c)
$$

where λ_c and λ_a are the decay constants for cluster and alpha emission, T_c and T_a are the half-lives for cluster and alpha emission respectively. Ratio values ($\text{log}_{10} b$) have been calculated as

$$
\text{log}_{10}[T_a(s)]-\text{log}_{10}[T_c(s)].
$$

We have plotted logarithmic half lives for the emission of heavy clusters from a set of isotopes of Superheavy nuclei using the CYE model as a function of the energy released during the emission. Figures 1-3 shows the comparison of cluster radioactivity of Superheavy nuclei for the case of even-even, even-odd, odd-even and odd-odd using the CYE model with the other theoretical values of ASAF. From this figure, it is seen that these values are in agreement with each other. Figures 4-7 shows the decimal logarithm of b_c for the most probable emitted clusters versus the neutron number N of parent nuclei by using the WKB, CYEM, CPPM and UDL. From this figure we observed that $\text{Log}_{10} b_c < 0$, which means that the alpha decay half lives are much shorter than the cluster radioactivity half lives which shows that the alpha decay is the dominant decay mode.
Table 4. Comparison of alpha and CR decay half lives for even-even clusters from SHN using CYEM with the other theoretical model values.

Parent	Q_α (MeV)	Cluster	Q_α (MeV)	Log T_α (s) CYEM	Log T_α (s) WKB	Log T_α (s) CPPM
Q_α				CYEM	WKB	CPPM
235Fm	6.452	50Ar	125.322	8.98	7.875	6.338
236Fm	5.746	52Ar	117.703	12.85	11.644	9.853
238Ra	8.427	54Ti	169.713	2.41	1.526	0.494
236Rf	8.427	54Ti	169.713	2.41	1.526	0.494
238Sg	8.562	58Cr	187.005	2.70	1.801	0.782
236Sg	8.089	60Cr	184.492	4.40	3.433	2.294
239Hs	9.131	62Fe	205.344	1.53	0.672	-0.232
237Hs	9.578	64Fe	204.680	0.10	-0.695	-1.504
237Hs	9.517	66Fe	204.000	0.25	-0.551	-1.375
238Ds	10.892	66Ni	225.766	-2.81	-3.470	-4.031
238Ds	10.868	68Ni	226.562	-2.78	-3.445	-4.012
238Ds	10.226	70Ni	225.893	-1.12	-1.864	-2.554
239Ds	9.410	72Ni	224.634	1.26	0.406	-0.457
238Ds	8.511	74Ni	222.909	4.28	3.309	2.231
238Ds	7.862	76Ni	220.495	6.77	5.718	4.466
238Ds	7.745	78Ni	218.010	7.25	6.159	4.873
238Cn	10.089	74Zn	244.875	-0.11	-0.910	-1.636
238Cn	9.514	76Zn	244.548	1.61	0.768	-0.088
239Cn	9.010	78Zn	243.250	3.26	2.326	1.351
239Cn	9.081	80Zn	241.562	2.99	2.061	1.102
239Cn	8.950	82Zn	237.248	3.75	2.796	1.780
238Fl	9.936	76Ge	263.339	1.08	0.221	-0.557
238Fl	9.614	78Ge	263.655	2.03	1.139	0.288
239Fl	9.491	80Ge	262.971	2.39	1.483	0.603
239Fl	8.924	82Ge	259.488	4.27	3.292	2.274
239Fl	8.685	84Ge	255.184	5.10	4.093	3.013
239Fl	9.533	86Ge	249.904	5.64	4.609	3.488
240Lv	11.052	82Se	282.590	-1.38	-2.128	-2.688
240Lv	11.096	84Se	283.645	-1.53	-2.268	-2.821
240Lv	10.635	86Se	281.394	-0.33	-1.129	-1.776
240Lv	10.865	88Se	278.668	-0.99	-1.755	-2.357
240Lv	10.743	90Se	274.664	-0.70	-1.474	-2.101
240Og	12.167	86Kr	302.857	-3.48	-4.125	-4.484
240Og	11.722	88Kr	301.778	-2.47	-3.168	-3.611
240Og	12.153	90Kr	300.304	-3.52	-4.157	-4.523
240Og	11.928	92Kr	297.665	-3.03	-3.696	-4.104
240Og	12.014	94Kr	241.426	-3.27	-3.917	-4.310
240Og	13.096	96Kr	292.723	-5.65	-6.162	-6.365
240Og	12.455	98Kr	289.570	-4.33	-4.919	-5.236
240Og	11.180	100Kr	285.311	-1.32	-2.068	-2.622
240Og	13.312	88Sr	321.274	-5.34	-5.875	-6.035
240Og	12.977	90Sr	321.277	-4.68	-5.258	-5.479
240Og	13.290	92Sr	320.816	-5.36	-5.896	-6.063
240Og	12.862	94Sr	319.646	-4.51	-5.092	-5.336
240Og	12.736	96Sr	317.102	-4.27	-4.868	-5.137
Table 5. Comparison of alpha and CR decay half lives for even-odd from SHN using CYEM with the other theoretical model values.

Parent	Q_α (MeV)	Cluster	Q_c (MeV)	Log T_α (s) CYEM	Log T_α (s) WKB	Log T_α (s) CPPM	Log T_c (s) CYEM	Log T_c (s) WKB	Log T_c (s) CPPM
^{264}\text{Rf}	8.691	^{53}\text{Ti}	169.729	1.52	0.894	-0.298	21.43	14.159	22.502
^{267}\text{Sg}	8.269	^{59}\text{Cr}	185.130	3.74	3.020	1.706	24.45	15.165	23.200
^{270}\text{Ds}	6.834	^{71}\text{Ni}	224.814	-0.02	-0.590	-1.583	17.67	7.838	16.019
^{271}\text{Ds}	8.956	^{75}\text{Ni}	223.404	2.73	2.035	0.246	19.01	9.099	16.579
^{273}\text{Ds}	8.142	^{75}\text{Ni}	221.424	5.66	4.865	3.468	21.30	10.940	17.642
^{275}\text{Cn}	9.203	^{77}\text{Zn}	243.548	2.63	1.939	0.789	15.45	5.183	12.526
^{277}\text{Cn}	9.036	^{79}\text{Zn}	242.147	3.16	2.447	1.255	16.71	6.342	13.055
^{279}\text{Cn}	9.021	^{81}\text{Zn}	239.146	3.17	2.463	1.267	20.42	9.046	14.969
^{281}\text{Fl}	9.241	^{83}\text{Gr}	261.074	3.20	2.479	1.317	14.61	3.536	9.499
^{283}\text{Fl}	8.579	^{85}\text{Gr}	252.092	5.48	4.679	3.349	26.25	11.611	15.911
^{285}\text{Lv}	10.763	^{87}\text{Se}	282.194	-0.67	-1.225	-2.066	10.32	-0.934	4.216
^{287}\text{Lv}	10.744	^{87}\text{Se}	279.642	-0.65	-1.207	-2.054	13.05	1.066	5.750
^{289}\text{Lv}	10.207	^{89}\text{Se}	276.303	-0.85	-1.401	-2.237	16.98	3.822	7.996
^{291}\text{Og}	11.872	^{89}\text{Kr}	302.099	-2.22	-3.270	-3.906	7.99	-4.194	-0.563
^{293}\text{Og}	12.074	^{91}\text{Kr}	300.635	-3.32	-3.749	-4.349	8.87	-3.218	-0.047
^{295}\text{Og}	12.017	^{91}\text{Kr}	298.540	-3.22	-3.655	-4.268	10.81	-1.692	1.125
^{297}\text{Og}	13.113	^{95}\text{Kr}	321.105	-4.95	-5.287	-5.705	7.18	-6.642	-5.028
^{301}\text{Og}	13.036	^{97}\text{Sr}	319.729	-4.86	-5.199	-5.634	6.33	-6.060	-5.833
^{303}\text{Og}	12.783	^{97}\text{Sr}	312.098	-4.35	-4.726	-5.207	7.55	-4.994	-5.056
^{305}\text{Og}	11.001	^{101}\text{Sr}	305.805	-0.22	-0.809	-1.634	21.18	4.286	3.266
Table 6. Comparison of alpha and CR decay half lives for odd-even from SHN using CYEM with the other theoretical model values.

Parent	$Q_α$ (MeV)	Cluster	$Q_α$ (MeV)	Log $T_α$ (s) CYEM	Log $T_α$ (s) WKB	Log $T_α$ (s) CPPM	Log T_c (s) CYEM	Log T_c (s) WKB	Log T_c (s) CPPM
288Rg	9.300	60Cu	233677	1.97	1.540	0.187	17.33	7.225	14.754
288Rg	8.660	60Cu	23294	4.12	3.608	2.101	18.59	8.420	15.284
288Rg	8.415	60Cu	230240	4.99	4.446	2.876	20.91	10.284	16.403
288Rg	8.405	60Cu	226923	4.99	4.450	2.876	25.28	13.454	18.638
288Nh	9.460	60Ga	253288	2.17	1.728	0.394	14.53	3.880	10.932
288Nh	9.317	60Ga	252620	2.60	2.141	0.773	14.91	4.510	10.985
290Nh	9.132	62Ga	250069	3.18	2.702	1.289	17.57	6.514	12.323
290Mc	10.363	60As	271927	0.17	-0.195	-1.344	14.01	1.622	8.150
292Mc	9.902	64As	271325	1.45	1.038	-0.214	12.89	1.778	7.204
292Mc	9.668	64As	268083	2.15	1.702	0.896	16.73	4.479	9.325
290Mc	9.579	68As	263985	2.40	1.942	0.614	21.96	8.064	12.202
290Ts	11.346	66Br	291744	-1.85	-2.122	-3.088	9.69	-2.004	2.288
290Ts	11.473	68Br	289937	-2.20	-2.455	-3.97	11.25	-0.694	3.138
292Ts	11.490	68Br	287164	-2.28	-2.526	-3.467	14.33	1.483	4.903
300Ts	11.521	62Br	283855	-2.39	-2.630	-3.566	18.18	4.198	7.149
299119	12.684	92Rb	310410	-4.38	-4.511	-5.239	8.00	-4.465	-2.513
300119	12.543	92Rb	308963	-4.10	-4.253	-5.007	8.88	-3.522	-1.995
302119	12.398	92Rb	306661	-3.81	-3.981	-4.763	11.01	-1.844	-0.559
304119	12.902	92Rb	304176	-4.94	-5.039	-5.733	13.81	0.029	1.044
306119	13.173	92Rb	302910	-5.53	-5.595	-6.243	14.75	0.874	1.459
308119	12.032	102Rb	30089	-3.08	-3.283	-4.135	17.97	3.023	3.301
310119	10.855	102Rb	296174	-0.13	-0.494	-1.567	23.10	6.409	6.328
Table 7. Comparison of alpha and CR decay half lives for odd-odd from SHN using CYEM with the other theoretical model values.

Parent	Q_α (MeV)	Cluster	Q_γ (MeV)	Log T_α (s)	Log T_γ (s)				
				CYEM	WKB	CPPM	CYEM	WKB	CPPM
271Mt	9.785	65Co	214.549	-0.11	-0.682	-1.673	21.69	1.931	19.646
272Mt	10.190	65Co	214.761	-1.30	-1.814	-2.726	20.70	9.844	18.940
273Mt	9.109	71Co	221.969	1.85	1.195	0.050	22.79	12.467	19.560
281Mt	8.230	77Co	209.782	4.93	4.156	2.795	25.47	14.631	20.853
283Mt	7.526	75Co	206.545	7.78	6.911	5.853	29.80	17.961	23.099
285Rg	9.730	77Cu	234.400	0.64	0.035	-0.988	16.69	6.370	14.474
289Rg	8.998	77Cu	233.416	2.95	2.251	1.062	17.33	7.181	14.661
291Rg	2.431	77Cu	231.826	4.95	4.170	2.839	19.23	8.772	15.543
293Rg	8.415	79Cu	229.607	4.97	4.196	2.859	21.57	10.611	16.647
281Nh	10.372	75Ga	253.410	-0.51	-1.067	-1.967	15.76	3.751	11.839
283Nh	9.778	77Ga	253.692	1.19	0.556	-0.471	14.41	3.359	10.936
287Nh	9.315	79Ga	253.215	2.62	1.929	0.796	14.18	3.635	10.652
291Nh	9.292	81Ga	252.029	2.66	1.970	0.829	15.07	4.552	10.981
293Nh	8.220	83Ga	248.075	4.04	3.290	2.050	20.13	8.073	13.702
287Mc	10.467	79As	271.643	-0.11	-0.693	-1.586	14.95	1.720	8.744
291Mc	10.263	81As	272.794	0.43	-0.172	-1.109	12.30	0.547	7.045
293Mc	10.162	83As	272.931	0.69	0.077	-0.884	11.05	0.237	6.159
297Mc	9.684	85As	270.046	2.11	1.436	0.368	14.25	2.579	7.964
299Mc	9.695	87As	266.570	2.04	1.370	0.304	18.56	5.528	10.299
293Mc	9.564	89As	261.857	2.43	1.738	0.640	24.70	9.748	13.719
297Ts	11.591	85Br	292.841	-2.44	-2.916	-3.600	8.64	-3.046	1.689
301Ts	11.266	87Br	291.182	-1.67	-2.180	-2.927	9.94	-1.876	2.387
297Ts	11.589	89Br	289.153	-2.51	-2.974	-3.662	11.88	-0.367	3.461
301Ts	11.430	91Br	285.884	-2.15	-2.635	-3.354	15.73	2.265	5.689
305Ts	11.584	93Br	282.208	-2.56	-3.025	-3.717	20.12	5.263	8.187
291Rb	12.394	89Rb	311.079	-3.72	-4.129	-4.673	7.67	-5.122	-2.702
295Rb	12.735	91Rb	310.194	-4.50	-4.863	-5.349	7.66	-4.649	-2.809
301Rb	12.398	93Rb	308.297	-3.80	-4.200	-4.747	9.26	-3.328	-1.786
305Rb	12.389	95Rb	305.374	-3.81	-4.212	-4.762	12.49	-1.109	0.289
309Rb	13.398	97Rb	303.888	-5.97	-6.237	-6.611	13.73	-0.083	0.909
301Rb	12.753	99Rb	302.050	-4.68	-5.023	-5.510	15.59	1.266	1.897
305Rb	11.342	101Rb	298.500	-1.40	-1.931	-2.681	12.07	4.179	4.526
Table 8. Comparison of branching ratios of the probable cluster emitters from SHN using CYEM with the other theoretical model values.

Parent	Cluster	WKB	CPPM	CYEM
288Fl	80Ge	-0.143	-8.057	-10.19
290Fl	82Ge	-0.224	-7.602	-9.86
291Mc	83As	-0.160	-7.043	-10.36
293Ts	85Br	0.130	-5.289	-11.08
294Ts	86Br	-0.118	-5.376	-11.54
295Ts	87Br	-0.304	-5.314	-11.61
292Lv	84Se	0.017	-6.109	-10.24
293Lv	85Se	-0.291	-6.283	-10.99
294Lv	86Se	-0.556	-6.321	-11.3
294Og	86Kr	0.795	-3.649	-11.03
295Og	87Kr	0.924	-3.344	-10.81
296Og	88Kr	1.102	-2.883	-10.29
297Og	89Kr	-0.531	-4.302	-12.19
297119	89Rb	0.993	-1.971	-11.39
298119	90Rb	-0.046	-2.726	-12.38
299119	91Rb	-0.214	-2.540	-12.16
300119	92Rb	-0.731	-3.012	-12.98
30119	93Rb	-0.872	-2.961	-13.06
300120	88Sr	0.995	-1.380	-13.03
297120	89Sr	1.355	-0.677	-12.13
298120	90Sr	1.874	0.338	-10.80
300120	92Sr	1.132	0.506	-10.73
301120	93Sr	0.861	0.199	-11.19
302120	94Sr	1.258	1.077	-10.21
303120	95Sr	0.268	-0.151	-11.90
304120	96Sr	-0.341	-0.694	-12.74
310120	103Sr	-1.206	-1.003	-14.48
4. Conclusion

In this work, we have calculated the heavy cluster radioactivity half lives of some of the set of isotopes of Superheavy nuclei using Cubic plus Yukawa plus Exponential Model in two sphere approximations and also including parent deformation and parent cluster deformations. The computed values are compared with the ASAF model of Poenaru et.al. Then we have studied the comparison between alpha decay and cluster radioactivity half lives of Superheavy nuclei leading to 208Pb using our CYE model. These values are compared with the other theoretical values. To investigate the dominant decay modes of the Super heavy nuclei, we have calculated the branching ratio values also. From the results it is found that alpha decay half lives are smaller than that of cluster radioactivity and it is confirmed that alpha decay is the most dominant decay mode for SHN. Finally, the parent nuclei emit probable clusters when the daughter nuclei are close to doubly magic 208Pb. As all the predicted half-lives are below 10^{30}s and are within the experimentally measurable range, we hope that our present predictions would be helpful for future studies in this field.

References

[1]. N. T. Brewer et al., Phys. Rev. C98, 024317 (2018).
[2]. V. K. Utyonkov et al., Phys. Rev. C97, 014320 (2018).
[3]. Yu. Ts. Oganessian and K. P. Rykaczewski, Phys. Tod.68(8), 32 (2015).
[4]. Yu. Ts. Oganessian et al., Phys. Rev. Lett.104, 142502 (2010).
[5]. S. Hofmann and G. Munzenberg, Rev. Mod. Phys. 72, 733 (2000).
[6]. D. N. Poenaru and R. A. Gherghescu, Phys. Rev. C97, 044621 (2018).
[7]. D. N. Poenaru, H. Stcker, and R. A. Gherghescu, Eur. Phys. J. A54, 14 (2018).
[8]. Yibin Qian and Zhongzhou Ren, J. Phys. G: Nucl. Part. Phys.45, 085103 (2018).
[9]. Fan Li, Long Zhu, Zhi-Han Wu, Xiao-Bin Yu, Jun Su, and Chen-Chen Guo, Phys. Rev. C98, 014618 (2018).
[10]. K.P.Santhosh and C. Nithya, At. Data Nucl. Data Tables 119, 33 (2018).
[11]. K. P. Santhosh and C. Nithya, Phys. Rev. C97, 064616 (2018).
[12]. D. N. Poenaru, H. Stcker, and R. A. Gherghescu, Eur. Phys. J. A54, 14 (2018).
[13]. Yibin Qian and Zhongzhou Ren, J. Phys. G: Nucl. Part. Phys.45, 085103 (2018).
[14]. Fan Li, Long Zhu, Zhi-Han Wu, Xiao-Bin Yu, Jun Su, and Chen-Chen Guo, Phys. Rev. C98, 014618 (2018).
[15]. H. Becquerel, C. R. de l Acad. (Paris) 122 (1896) 420.
[16]. E. Rutherford and H. Geiger, Proc. R. Soc.81 (1908) 162.
[17]. Flerov and Petrhrak, Phys. Rev.58 (1940) 89.
[18]. Sandulscu, D. N. Poenaru and W.Greiner, Sov. J. Part. Nucl.11 (1980) 528.
[19]. D. N. Poenaru, I. H. Plonski and W. Greiner, Phys. Rev. C74 (2006) 014312.
[20]. D. N. Poenaru and W. Greiner, Cluster Radioactivity, in Clusters in Nuclei, Vol. 1, Lecture Notes in Physics, C. Beck, ed., Vol. 818 (Springer, Berlin, 2010), pp. 1-56.
[21]. D. N. Poenaru, R. A. Gherghescu, and W.Greiner, Phys. Rev. Lett.107 (2011) 062503.
[22]. D. N. Poenaru, R. A. Gherghescu, and W.Greiner, Phys. Rev. C85, 034615 (2012).
[23]. D. N. Poenaru and R. A. Gherghescu, J. Phys. G: Nucl. Part. Phys. 41 (2014) 125104.
[24]. D. N. Poenaru and R. A. Gherghescu, EPL 118 (2017) 22001.
[25]. D. N. Poenaru and R. A. Gherghescu, Phys. Rev. C94 (2016) 014309.
[26]. C. Xu, Z. Ren, Y. Guo, Phys Rev C78, 044329 (2008)
[27]. Staszczaq, A. Baran, W. Nazarewicz, Phys Rev C87, 024320 (2013)
[28]. Yibin Qian and Zhongzhou Ren, J. Phys. G: Nucl Part Phys 42(085101) (2015)
[29]. H. C. Manjunatha and K. N. Sridhar, Eur. Phys. J. A53 (2017) 97.
[30]. H. C. Manjunatha and N. Sowmya “Competition between spontaneous fission, ternary fission, cluster decay and alpha decay in the Superheavy nuclei of Z=126” Nucl. Phys. A 969 (2018).
[31]. H. C. Manjunatha and N. Sowmya, Int. J. Modern Physics EVol. 27, (2018).
[32]. H. C. Manjunatha and N. Sowmya, Int. J. Modern Physics EVol. 27, (2018).
[33]. Y.L. Zhang, Y.Z. Wang, Phys. Rev. C97, 014318 (2018).
[34]. D. D. Ni, Z. Z. Ren, T. K. Dong, and C.Xu, Phys. Rev. C78, 044310(2008).
[35]. D. N. Poenaru, R. A. Gherghescu, and W. Greiner, Phys. Rev. C83, 014601 (2011).
[36]. M. Horoi, J. Phys. G: Nucl. Part. Phys.30, 945 (2004).
[37]. C. Qi, F. R. Xu, R. J. Liotta, and R. Wyss, Phys. Rev. Lett.103, 072501 (2009).
[38]. G. Shanmugam and B. Kamalahan, Phys. Rev. C41, 1742 (1990).
[39]. G. Shanmugam, G. M. Carmel Vigila Bai and B. Kamalahan, Phys. Rev. C51, 2616 (1995).
[40]. G. Shanmugam, G. M. Carmel Vigila Bai, Pramana Journal of Physics, 53 (1999).
[41]. G.M. Carmel Vigila Bai, Ph.D., Thesis, “A systematic study of Cluster radioactivity in the Trans-Tin region” ManonmaniamSundaranar University (1997).
[42]. G.M. Carmel Vigila Bai and J.UmaiParvathi, “Alpha decay properties of heavy and superheavy elements” Pramana, Journal of Physics, volume 84, No.1, 113-116 (2015).
[43]. J.UmaiParvathi, Ph.D., Thesis, “Properties of Superheavy elements in trans-actinide region”ManonmaniamSundaranar University (2016).
[44]. G.M. Carmel Vigila Bai and R.Nithya Agnes, “Systematic calculation of alpha decay half-lives of heavy nuclei from ground state to ground and excited states of daughter”, International journal of current science, Vol.2, Issue 3, ISSN: 2454-5422 (2016).
[45]. G.M. Carmel Vigila Bai and R.Nithya Agnes, “Fine structure of alpha decay for odd-even isotopes of Am, Es and Md nuclei”, Journal of Applied Science and Engineering Methodologies, Vol.2, No.3, (2016).

[46]. G.M. Carmel Vigila Bai and R.Nithya Agnes, “Role of multi polarity-six deformation parameter on exotic decay half-life of Berkelium nucleus” IOSR-Journal of Applied Physics, Vol.3, ISSN: 2278-4861 (2017).

[47]. G.M. Carmel Vigila Bai and R.Nithya Agnes, “Alpha decay and cluster decay of some neutron-rich actinide nuclei” Pramana, Journal of Physics, 88 (2017).

[48]. R.Nithya Agnes, Ph.D., Thesis, “Life time study of neutron rich elements in actinide region and its extension to nanophysics” ManonmaniamSundaranar University (2018).

[49]. G.M. Carmel Vigila Bai and R.Revathi, “Competition between alpha decay, cluster decay and spontaneous fission in the Superheavy nuclei, Z=126”, Mathematical sciences Int. Research Journal Vol.7, (2018).

[50]. G.M. Carmel Vigila Bai and R.Revathi, “Effect of deformation in the Superheavy nuclei, Z=126” proceedings of III-International Conference of KAAS 2018, 29 & 30Sep. 2018.

[51]. G.M. Carmel Vigila Bai and R.Revathi, “Alpha decay properties of SHE Z=122” paper presented in National seminar on Emerging Trends in Physics NSETP-2019, 10 & 11 January 2019.

[52]. G.M. Carmel Vigila Bai and R.Revathi, “Superheavy element 124-decay properties” proceedings of International conference on functional materials and nanotechnology ICFMN-2019, Vol.1, ISBN: 978-93-5346-855-2, (2019).

[53]. G.M. Carmel Vigila Bai and R.Revathi, “Alpha and Spontaneous fission decay properties of125Z with parent deformation” Proceedings of the National symposium on recent advances in Physical Science, ISBN-13: 978-93-82592-02-0, (2019).

[54]. G.M. Carmel Vigila Bai and R.Revathi, “A Systematic study of cluster radioactivity of deformed Superheavy nuclei”, submitted to Pramana Journal of Physics (2019).

[55]. Soylu, F. Koyuncu, Eur. Phys. J. A55: 118, 12790 (2019).

[56]. G. A. Pik-Pichak, Sov. J. Nucl. Phys. 44, 923 (1986).

[57]. H.J. Kruppe, J.R Nix and A.J. Sierk, Phys. Rev. C20, 992 (1979).

[58]. J. R. Nix, Ann. Phys. 41, 52 (1967).

[59]. H.G. De Carvalho, J. B. Martins, and O.A.P. Tavares, Phys. Rev. C34, 2261 (1986).

[60]. R.Hofstadter and H.R.Collard, “Nuclear Radii” in Nuclear Physics and Technology, Vol. 2, edited by H.Schopper, Springer–Verlag, Berlin (1967).

[61]. N. Wang, M. Liu, X.Z. Wu, J. Meng, Phys. Lett. B 734, 215 (2014).