Wolbachia prevalence in the vector species *Culex pipiens* and *Culex torrentium* in a Sindbis virus-endemic region of Sweden

Alexander Bergman and Jenny C. Hesson*

Abstract

Background: *Wolbachia pipientis* are endosymbiotic bacteria present in a large proportion of terrestrial arthropods. The species is known to sometimes affect the ability of its host to transmit vector-borne pathogens. Central Sweden is endemic for Sindbis virus (SINV), where it is mainly transmitted by the vector species *Culex pipiens* and *Culex torrentium*, with the latter established as the main vector. In this study we investigated the *Wolbachia* prevalence in these two vector species in a region highly endemic for SINV.

Methods: *Culex* mosquitoes were collected using CDC light traps baited with carbon dioxide over 9 years at 50 collection sites across the River Dalälven floodplains in central Sweden. Mosquito genus was determined morphologically, while a molecular method was used for reliable species determination. The presence of *Wolbachia* was determined through PCR using general primers targeting the *wsp* gene and sequencing of selected samples.

Results: In total, 676 *Cx. pipiens* and 293 *Cx. torrentium* were tested for *Wolbachia*. The prevalence of *Wolbachia* in *Cx. pipiens* was 97% (95% CI 94.8–97.6%), while only 0.7% (95% CI 0.19–2.45%) in *Cx. torrentium*. The two *Cx. torrentium* mosquitoes that were infected with *Wolbachia* carried different types of the bacteria.

Conclusions: The main vector of SINV in the investigated endemic region, *Cx. torrentium*, was seldom infected with *Wolbachia*, while it was highly prevalent in the secondary vector, *Cx. pipiens*. The presence of *Wolbachia* could potentially have an impact on the vector competence of these two species. Furthermore, the detection of *Wolbachia* in *Cx. torrentium* could indicate horizontal transmission of the endosymbiont between arthropods of different species.

Keywords: Vector, Field, Mosquito, Endosymbiont, Alphavirus, Horizontal transmission, Scandinavia

Background

The transmission of arboviruses is influenced by a number of factors, including both abiotic (e.g., temperature) and biotic elements (e.g., vector immune status) [1–4]. One important biotic factor is the intracellular symbiont *Wolbachia pipientis* (Class: Alphaproteobacteria, Order: Rickettsiales), present in some nematode species and an estimated 40% of all terrestrial arthropods [5]. *Wolbachia* is a genetically diverse species, composed of 18 phylogenetically distinct supergroups described to date (A–R) [6]. Deeply involved in the reproduction of its host [7], *Wolbachia* is known for inducing cytoplasmic incompatibility and giving rise to crossing types, most studied in *Culex pipiens* and its *Wolbachia* strain wPip, which belongs to supergroup B [8–10]. Additionally, it is well established that *Wolbachia* infection in mosquitoes can influence their ability to become infected and transmit several arboviruses [11–14].

In a global context, *Culex* mosquitoes are important vectors for, e.g., West Nile virus (WNV) and Japanese encephalitis virus (JEV) [15–18]. In Central and
Northern Europe, the morphologically identical vector species *Cx. pипiens* and *Cx. torrentium* are enzootic vectors of both WNV and Sindbis virus (SINV), transmitting these viruses among birds [19–22]. SINV is an arthritogenic alphavirus present throughout the Old World [23], although outbreaks of human disease are only reported from South Africa [24, 25] and Fennoscandia [26–29]. In Sweden, SINV is considered endemic to the central and northern parts of the country [28–30].

Culex torrentium is regarded as the most important enzootic vector in Sweden due to its high abundance in endemic areas, high infection rate, and superior vector competence to *Cx. pипiens* [31–34]. One difference between *Cx. torrentium* and *Cx. pипiens* is the prevalence of *Wolbachia*-infected individuals. Previous studies in Germany, Belgium, Russia, Belarus, Kazakhstan, and Kyrgyz Republic have found *Wolbachia* to be very common in *Cx. pипiens* but absent in *Cx. torrentium* [35–38]. It is therefore possible that these differences in *Wolbachia* infection status could account for part of the difference in vector competence seen between *Cx. pипiens* and *Cx. torrentium*. Previous studies have however only been performed in regions without intense SINV transmission. Therefore, this study aims at investigating the *Wolbachia* prevalence in *Cx. pипiens* and *Cx. torrentium* collected in a highly SINV-endemic region in central Sweden.

Methods

Mosquitoes

Mosquitoes were collected at 50 different locations across the River Dalälven floodplains (Fig. 1) as part of a routine mosquito monitoring program [39]. SINV is considered endemic to this region and some of the highest infection rates in mosquitoes have been detected here [22, 33]. Collections were performed every second week between May and September during the years 2010–2018 using CDC light traps baited with carbon dioxide. Mosquitoes were identified based on morphological characteristics [40], and *Cx. pипiens/torrentium* were sorted out and used for molecular identification to species. Briefly, individual mosquitoes were homogenized in 500 µl of phosphate-buffered saline (PBS) supplemented with 20% heat-inactivated fetal bovine serum, 100 U/ml penicillin, 100 µg/ml streptomycin, and 2.5 µg/ml amphotericin B (Thermo Fischer Scientific; Waltham, MA, USA) using two steel beads in the Qiagen TissueLyser II™ (Qiagen; Hilden, Germany). Five microliters (5 µl) of the homogenate was pretreated by incubating at 98 °C for 2 min in 20 µl of dilution buffer with 0.5 µl of DNA release additive, part of the Phire Tissue Direct PCR Master Mix kit (Thermo Scientific; Vilnius, Lithuania). The pretreated homogenate was stored at −20 °C before being used as a template in polymerase chain reaction (PCR).

Conventional PCR of part of the cytochrome oxidase subunit I (COI) was performed in 20 µl reactions with 1 µl template using the forward primer C1-J-2183 (5′-CAACATTTATTTGATTTTTG-3′) and the reverse primer TL2-N-3014 (5′-TCCAAATGACATACCTGCAAGAT-3′) at a concentration of 0.5 µM each under the following thermocycler conditions: initial denaturation at 98 °C for 5 min, followed by 40 cycles of denaturation at 98 °C for 5 s, annealing at 54.5 °C for 5 s and extension at 72 °C for 20 s, and a final extension step at 72 °C for 1 min. A PCR-restriction fragment length polymorphism (PCR–RFLP) assay [41] was performed on the PCR product, using the restriction enzymes FspBi and SspI (Thermo Fischer Scientific; Vilnius, Lithuania).

Culex pипiens molestus mosquitoes, originating from a field population sampled in Gothenburg, Sweden [42] and reared in our in-house mosquito rearing facility, were used as positive controls in PCR as they are naturally infected with a wPip strain of *Wolbachia* (data not shown). These were also used for PCR optimization.

Wolbachia detection

Wolbachia detection was performed through PCR on 5 µl of the mosquito homogenate, using the same Tissue Direct kit procedures as described above. *Wolbachia* primers 81F (5′-TGGCTCAAATGATGAAGAAAC-3′) and 691R (5′-AAAAATTAAACGCTACTCCA-3′), designed for general detection of *Wolbachia* within supergroups A and B [43], were used at a final concentration of 0.5 µM each. The thermocycler conditions for *Wolbachia* detection were as described above but with the annealing temperature set to 58 °C. A subset of samples was also tested with a confirmatory PCR to determine whether the detected *wsp* gene *Wolbachia* belonged to that of the wPip strain using wPip-specific primers wPF (5′-CGACGTAGTGGTGAACATTTA-3′) and wPR (5′-ATAACGGAGCAGGCAAGAGTCT3′) [44] with the same PCR conditions as described previously but with the annealing temperature set to 56 °C. For primer optimization, DNA integrity was controlled by extraction of total DNA to make sure that a negative PCR result was not due to DNA degradation in the sample. DNA was extracted from 44 samples with the E.Z.N.A.® Tissue DNA Kit (Omega Bio-Tek, Inc., Norcross, GA, USA), and visual inspection of DNA integrity was done by gel electrophoresis. Extracted DNA and all PCR products were visualized on 1.8% agarose gel stained with GelRed® Nucleic Acid Gel Stain (Biotium, Fremont, CA, USA) (Fig. 2). A subset of PCR products was purified with ExoSAP-IT® (Thermo Fischer Scientific; Vilnius, Lithuania) and sequenced through Sanger sequencing (Macrogen;
Amsterdam, The Netherlands) to validate the method and verify the results.

Data analysis
All records were kept and analysed in Microsoft Excel 2016 (Microsoft; Redmond, CA, USA). Confidence intervals for *Wolbachia* prevalence were calculated assuming binomial distribution using the Wilson score interval through RStudio (RStudio team, Boston, USA). P-values to determine statistical significance for differences in *Wolbachia* prevalence between years were calculated using Fisher’s exact test with Bonferroni correction. Sequences of PCR fragments were analysed in the BioEdit sequence alignment editor version 7.2.5 [45].

Results
In total, 969 Culex mosquitoes (676 *Cx. pipiens* and 293 *Cx. torrentium*) were identified to species and tested for *Wolbachia* (Fig. 2). *Wolbachia* was present in 96.5% of the *Cx. pipiens* population (95% CI 94.8–97.6%) but could only be detected in two out of 293 *Cx. torrentium* individuals (0.68% prevalence, 95% CI 0.19–2.45%) (Table 1). Three of the *Cx. pipiens* that carried *Wolbachia* from each year were tested with primers specific to the wPip variant of *wsp*, of which all 27 were found to carry a *wsp* belonging to the wPip strain. In 2012, the prevalence of *Wolbachia* in *Cx. pipiens* was significantly lower than normal (Fisher’s exact test: \(P = 0.00455, \) OR: 0.389 CI [0.198–0.778], Bonferroni-corrected \(P = 0.041 \)).

Two *Cx. torrentium* were found to carry *Wolbachia*. Sequencing of the amplicons showed that the two partial *wsp* sequences were only 90% identical to each other. The *wsp* sequence from one of the *Cx. torrentium* individuals was very similar (> 99.8% identity) to the *wsp* of *Wolbachia* from *Cx. pipiens* (GenBank: KT964224.1), but also to isolates from the winter moth (*Operophtera brumata*: GenBank: KY587652.1), cabbage moth (*Mamestra brassicae*: GenBank: AB094375.1), and *Toya propinqua* (GenBank: KM386826.1). The other *Cx. torrentium* carried a *Wolbachia* whose *wsp* gene was highly similar (> 99.6% identity) to that of *Wolbachia* detected in several other insects, namely the spotted fritillary (*Melitaea didyma*; GenBank: MN322891.1), silverleaf whitefly (*Bemisia tabaci*; GenBank: AJ291379.1), azalea lace bug (*Stephanitis pyrioides*, GenBank: AB109622.1), *Macrolophus pygmaeus* (GenBank: FJ374283.1), and *Amaurosomflavipes* (GenBank: JN601166.1), all of which carry *Wolbachia* from supergroup B. The sequencing results were confirmed by PCR using the wPip-specific *wsp* primers. This PCR amplified a correct fragment from...
only one of the two Wolbachia-positive Cx. torrentium (Fig. 3).

Discussion
We found that Wolbachia was highly prevalent in Cx. pipiens collected around the River Dalälven floodplains, while it was nearly absent from Cx. torrentium. This is in line with previous European studies investigating large samples of Cx. pipiens, with reported Wolbachia prevalence of 91% in western Russia [35], 95% in central Russia, 81% in Belarus [36], and 93% in Germany [37]. Raharimalala et al. [38] detected Wolbachia in nine out of nine tested adult Cx. pipiens and 26 out of 48 larvae collected in Belgium, which also supports the generally high prevalence of Wolbachia in this species. Interestingly, the different populations studied by Khrabrova et al. [36] had varying levels of Wolbachia prevalence, some with as few as 34.5% of individuals carrying the endosymbiont. Wolbachia is reported to approach fixation in most Cx. pipiens populations worldwide [46, 47], but this does not seem to hold true for all European populations.

Only Ricci et al. [48] have, to our knowledge, previously found Wolbachia in Cx. torrentium, after testing only two individuals collected in Italy. Raharimalala et al. [38], Leggewie et al. [37], Vinogradova et al. [35], and Khrabrova et al. [36] detected no Wolbachia in Cx. torrentium despite having tested 42 Belgian, 188 German, 321 Russian, and 853 Eastern European individuals, respectively. Our study, as well as the study by Ricci et al. [47], tested adult mosquitoes, while the four that failed to detect Wolbachia in Cx. torrentium tested field-collected larvae and pupae. Wolbachia is usually inherited and should thus be present in all life stages of the mosquito; however, life stage is still potentially an important consideration when screening for Wolbachia, both to avoid analysing siblings and to detect potential horizontal transmission.

Due to the low prevalence of Wolbachia in Cx. torrentium, we hypothesize that the two positive individuals or their recent ancestors acquired the infection horizontally. Transmission could potentially have occurred by feeding on the same plants as other arthropods [49, 50] or through arthropod parasites, such as through mites sometimes feeding on mosquitoes [51, 52]. Despite wsp

Table 1 Results of the screening of Cx. pipiens and Cx. torrentium for Wolbachia

Year	Species	Tested	Positive	% positive	Tested	Positive	% positive	Total tested	
	Culex pipiens				Culex torrentium				
2010	93	92	98.9		49	0	0	142	
2011	21	21	100		30	0	0	51	
2012	208	190	91.3		71	0	0	279	
2013	62	60	96.8		52	0	0	114	
2014	6	5	83.3		2	0	0	8	
2015	76	75	98.7		39	2	5.2	115	
2016	30	30	100		30	0	0	60	
2017	53	53	100		10	0	0	63	
2018	127	126	99.2		10	0	0	137	
Total	676	652	96.5		293	2	0.7	969	

The mosquitoes were collected in central Sweden between 2010 and 2018. The prevalence of Wolbachia in Cx. pipiens differed significantly in year 2012 from the 9-year average (Fisher’s exact test: $P = 0.00455$, OR: 0.389 CI [0.198–0.778], Bonferroni-corrected $P = 0.041$). The differences for all other years are non-significant.
being a poor marker of Wolbachia strain due to its tendency to recombine [53], the lineage of the Cx. torrentium whose wsp gene matched that of the Cx. pipiens through their shared habitat and ecological niche. Alternative sources are also possible, since a highly similar wsp sequence has also been found in other Palearctic insects. Further studies on the mechanisms for horizontal Wolbachia transmission involving mosquitoes are needed to fully explain the occasional spread of Wolbachia to Cx. torrentium.

The restriction of SINV outbreaks to Northern Europe has been suggested to be connected to the relatively higher abundance of the competent vector species Cx. torrentium in SINV-endemic regions [31, 32]. Under laboratory conditions, Cx. torrentium is significantly more susceptible to SINV infection than Cx. pipiens [34, 54]. The presence of Wolbachia in Cx. pipiens may contribute to its lower susceptibility to SINV. Such reduction in vector competence is often seen when transferring a novel Wolbachia strain into a mosquito species that is naturally Wolbachia-free or naturally carries a different strain [11, 55–58], but the impact of a naturally occurring Wolbachia infection (i.e., native infection) is not as clear, with reports of both reduced vector competence [13, 14, 59] and no observed effect [60–63]. No vector competence studies have been done on the role of Wolbachia in alphavirus transmission in Culex mosquitoes. With relatively few data to extrapolate from, empirical investigation is needed to evaluate the impact of Wolbachia on the SINV transmission cycle.

Conclusions
Our study, performed in a SINV-endemic region of Sweden, confirmed previously reported general patterns of Wolbachia infection in Culex mosquitoes, with most Cx. pipiens and very few Cx. torrentium carrying the endosymbiont, which potentially has implications for their differences in vector competence. Our findings, paired with the specific conditions under which SINV is transmitted in Sweden, prompt more research into Wolbachia’s role in the SINV transmission cycle as well as the horizontal routes of Wolbachia transmission among mosquitoes.

Abbreviations
CDC: Centers for Disease Control and Prevention; CHIKV: Chikungunya virus; COI: Cytochrome oxidase subunit I; Cx.: Culex; JEV: Japanese encephalitis virus; PBS: Phosphate buffered saline; PCR–RFLP: Polymerase chain reaction–restriction fragment length polymorphism; SINV: Sindbis virus; WNV: West Nile virus.

Acknowledgements
The authors are grateful to Jan O. Lundström for providing mosquito material, and for the financial support received from the funders described above.

Authors’ contributions
JCH conceptualized, supervised, and administered the project, acquired mosquito material and funding, and reviewed and contributed to the manuscript. AB conducted DNA extraction, Wolbachia screening and species verification, and wrote the manuscript. Both authors have read and approved the final manuscript.

Funding
Open access funding provided by Uppsala University. The research was funded by the Swedish Society for Medical Research, the Carl Trygger Foundation, and the European Union’s Horizon 2020 research and innovation programme under Grant No. 874735 (VEO). None of the funding bodies had any role in the design of the study or collection, analysis, and interpretation of data, or in drafting of the manuscript.

Availability of data and materials
For amplicon sequences of the Wolbachia detected in Cx. torrentium and Cx. pipiens, the data sets generated and/or analysed during the current study are available in the GenBank repository, accession numbers MW622245–MW622247. All other data sets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Declarations
Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 25 February 2021 Accepted: 7 August 2021
Published online: 26 August 2021
References

1. Ramirez JL, Souza-Neto J, Cosme RT, Ortz A, Pascale JM, et al. Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLoS Negl Trop Dis. 2012;6:e1561.

2. Sim S, Jupatanakul N, Dimopoulos G. Mosquito immunity against arbovi- ruses. Viruses. 2014;6:4479–504.

3. Zouache K, Fontaine A, Vega-Rua A, Mousson L, Thiberge J-M, Gaibani P, et al. Three-way interactions between mosquito population, viral strain and temperature underlying chikungunya virus transmission potential. Proc R Soc B. 2014;281:20141078.

4. Cioata AT, Kelsey AC. The role of temperature in transmission of zoonotic arboviruses. Viruses. 2019;11:1013.

5. Zug R, Hammerstein P. Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS ONE. 2012;7:e38544.

6. Landman F. The Wolbachia endosymbiosis. Microbiol Spectr. 2019. https://doi.org/10.1128/microbiolspec.BAI-0018-2019.

7. Werren JH, Baldo L, Clark ME. Still a host of hosts for Wolbachia: variability and host effects on crossing type in Culex mosquitoes. Nature. 2005;436:257–60.

8. Bonneau M, Atyame C, Beji M, Justy F, Cohen-Gonsaud M, Sicard M, et al. Culex pipiens crossing type diversity is governed by an amplified and polymorphic operon of Wolbachia. Nat Commun. 2019;10:319.

9. Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMenin-

10. van den Hurk AF, Ritchie SA, Mackenzie JS. Ecology and geographical and temporal distribution of Ockelbo disease in Sweden. Epidemiol Infect. 1991;106:567–74.

11. Bonneau M, Atyame C, Beji M, Justy F, Cohen-Gonsaud M, Sicard M, et al. Culex pipiens crossing type diversity is governed by an amplified and polymorphic operon of Wolbachia. Nat Commun. 2019;10:319.

12. Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMenin-

13. Tsai C-H, Chen T-H, Lin C, Shu P-Y, Su C-L, Teng H-J. The impact of temperature and Wolbachia infection on vector competence of potential dengue vectors Aedes aegypti and Aedes albopictus in the transmission of dengue virus serotype 1 in southern Taiwan. Parasites Vectors. 2017;10:151.

14. Glaser RL, Hammerstein P. Still a host of hosts for Wolbachia: variability and host effects on crossing type in Culex mosquitoes. Nature. 2005;436:257–60.

15. van den Hurk AF, Ritchie SA, Mackenzie JS. Ecology and geographical and temporal distribution of Ockelbo disease in Sweden. Epidemiol Infect. 1991;106:567–74.

16. Bonneau M, Atyame C, Beji M, Justy F, Cohen-Gonsaud M, Sicard M, et al. Culex pipiens crossing type diversity is governed by an amplified and polymorphic operon of Wolbachia. Nat Commun. 2019;10:319.

17. Spichtig J, Forouman Q, Larsson P, Näslund J, Lilja T, Engdahl C, et al. Detection and isolation of Sindbis virus from mosquitoes captured during an outbreak in Sweden, 2013. Vector Borne Zoonotic Dis. 2015;15:133–40.

18. Ahlm C, Eklsson M, Wahlqvist P, Evander M. Seroprevalence of Sindbis virus and associated risk factors in northern Sweden. Epidemiol Infect. 2013;142:1559–65.

19. Hesson JC, Östman Ö, Schäfer M, Lundström J. Geographic distribution and relative abundance of the sibling vector species Culex torrentium and Culex pipiens in Sweden. Vector Borne Zoonotic Dis. 2011;11:1383–9.

20. Hesson JC, Östman Ö, Schäfer M, Lundström J. Geographic distribution and relative abundance of the sibling vector species Culex torrentium and Culex pipiens in Sweden. Vector Borne Zoonotic Dis. 2011;11:1383–9.

21. Ahlm C, Eklsson M, Wahlqvist P, Evander M. Seroprevalence of Sindbis virus and associated risk factors in northern Sweden. Epidemiol Infect. 2013;142:1559–65.

22. Lundström J, Niskanen B, Francy DB. Swedish Culex torrentium and Cx. pipiens (Diptera: Culicidae) as experimental vectors of Ockelbo virus. J Med Entomol. 1990;27:561–3.

23. Vinogradova EB, Shaikheiv EV, Ivantsiv AV. A study of the distribution of Culex torrentium complex (Insecta: Diptera: Culicidae) mosquitoes in the European part of Russia by molecular methods of identification. Comp Cytogenet. 2007;1:129–38.

24. Schäfer M, Wahlgvist P, Lundström J. Stickmyggmängder vid nedre Daläl-

25. Becker N, Pietri D, Zgomba M, Boase C, Dahl C, Lane J, et al. Mosquitoes and their control. 2nd ed. Heidelberg: Springer; 2010.

26. Khrabrova NV, Bukhanskaya ED, Sibatav AK, Volkova TV. The distribution of strains of endosymbiotic bacteria Wolbachia pipiens in natural populations of Culex pipiens mosquitoes (Diptera: Culicidae). Eur Mosq Bull. 2009;27:18–22.

27. Leggewie M, Krumpack R, Radusche M, Heitmann A, Iansen S, Schmidt-

28. Schäfer M, Wahlgvist P, Lundström J. Stickmyggmängder vid nedre Daläl-

29. Becker N, Pietri D, Zgomba M, Boase C, Dahl C, Lane J, et al. Mosquitoes and their control. 2nd ed. Heidelberg: Springer; 2010.

30. Hesson JC, Lundström J, Halvanson P, Ersson P, Collado A. A sensitive and reliable restriction enzyme assay to distinguish between the mosquitoes of Wolbachia strains using wsp gene sequences. Proc R Soc Lond B. 1998;265:509–15.

31. Calvitti M, Moretti R, Skidmore AR, Dobson SL. Wolbachia strain wPip yields a pattern of cytoplasmic incompatibility enhancing a Wolbachia-based suppression strategy against the disease vector Ae. albopictus. Parasites Vectors. 2012;5:254.
45. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8.
46. Duron O, Lagnel J, Raymond M, Bourtads K, Fort P, Weill M. Transposable element polymorphism of Wolbachia in the mosquito Culex pipiens: evidence of genetic diversity, superinfection and recombination. Mol Ecol. 2005;14:1561–73.
47. Dumas E, Atiame CM, Milesi P, Fonseca DM, Shaiekhivich EV, Unal S, et al. Population structure of Wolbachia and cytoplasmic introgression in a complex of mosquito species. BMC Evol Biol. 2013;13:181.
48. Ricci I, Cancini G, Gabrielli S, D’Amelio S, Favia G. Searching for Wolbachia (Rickettsiales: Rickettsiaceae) in mosquitoes (Diptera: Culicidae): large polymerase chain reaction survey and new identifications. J Med Entomol. 2002;39:562–7.
49. Li S-J, Ahmed MZ, Lu N, Shi P-Q, Wang X-M, Huang J-L, et al. Population structure of Wolbachia and cytoplasmic introgression in a complex of mosquito species. BMC Evol Biol. 2013;13:181.
50. Sintupachee S, Milne JR, Poonchaisri S, Baimai V, Kittayapong P. Closely related Wolbachia strains within the pumpkin arthropod community and the potential for horizontal transmission via the plant. Microb Ecol. 2006;51:294–301.
51. Cook JM, Butcher RDJ. The transmission and effects of Wolbachia bacteria in parasitoids. Res Popul Ecol. 1999;41:15–28.
52. Brown AN, Lloyd VK. Evidence for horizontal transfer of Wolbachia by a Drosophila mite. Exp Appl Acarol. 2015;66:301–11.
53. Baldo L, Lo N, Werren JH. Mosaic nature of the Wolbachia surface protein. JB. 2005;187:5406–18.
54. Louisiana OW, Nilslund J, Lundmark E, Ahlm K, Ahlm C, Bucht G, et al. Experimental infection and transmission competence of Sindbis virus in Culex torrentium and Culex pipiens mosquitoes from northern Sweden. Vector Borne Zoonotic Dis. 2019;19:128–33.
55. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium. Cell. 2009;139:1268–78.
56. Blagrove MSC, Arias-Goeta C, Di Genua C, Failloux A-B, Sinkins SP. A Wolbachia wMel transfection in Aedes albopictus is not detrimental to host fitness and inhibits chikungunya virus. PLoS Negl Trop Dis. 2013;7:e2152.
57. Ant TH, Hend CS, Geoghegan V, Hoffmann AA, Sinkins SP. The Wolbachia strain wAv provides highly efficient virus transmission blocking in Aedes aegypti. PLoS Pathog. 2018;14:e1006815.
58. Caragata EP, Rocha MN, Pereira TN, Mansur SB, Dutra HLC, Moreira LA. Pathogen blocking in Wolbachia-infected Aedes aegypti is not affected by Zika and dengue virus co-infection. PLoS Negl Trop Dis. 2019;13:e0007443.
59. Mousson L, Zouache K, Arias-Goeta C, Raquin V, Mavingui F, Failloux A-B. The native Wolbachia symbionts limit transmission of dengue virus in Aedes albopictus. PLoS Negl Trop Dis. 2012;6:e1989.
60. Mousson L, Martin E, Zouache K, Madec Y, Mavingui F, Failloux AB. Wolbachia modulates chikungunya replication in Aedes albopictus. Mol Ecol. 2010;19:1953–64.
61. Micieli MV, Glaser RL. Somatic Wolbachia (Rickettsiales: Rickettsiaceae) levels in Culex quinquefasciatus and Culex pipiens (Diptera: Culicidae) and resistance to West Nile virus infection. J Med Entomol. 2014;51:189–99.
62. Ahmad NA, Vythilingam L, Lim YAL, Zabari NZAM, Lee HL. Detection of Wolbachia in Aedes albopictus and their effects on chikungunya virus. Am J Trop Med Hyg. 2016;94:148–56.
63. Joanne S, Vythilingam I, Teoh B-T, Leong C-S, Tan K-K, Wong M-L, et al. Vector competence of Malaysian Aedes albopictus with and without Wolbachia to four dengue virus serotypes. Trop Med Int Health. 2017;22:1154–65.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.