A Search for Charmless $B \to VV$ Decays

CLEO Collaboration
(January 12, 2001)

Abstract

We have studied two-body charmless decays of the B meson into the final states $\rho^0\rho^0$, $K^{*0}\rho^0$, $K^{*0}K^{*0}$, $K^{*+}\rho^0$, $K^{*+}K^{*0}$, and $K^{*+}K^{*-}$ using only decay modes with charged daughter particles. Using 9.7 million $B\bar{B}$ pairs collected with the CLEO detector, we place 90% confidence level upper limits on the branching fractions, $(0.46 - 7.0) \times 10^{-5}$, depending on final state and polarization.
R. Godang, 1 G. Bonvicini, 2 D. Cinabro, 2 M. Dubrovin, 2 S. McGee, 2 G. J. Zhou, 2
A. Bornheim, 3 E. Lipeles, 3 S. P. Pappas, 3 M. Schmidtler, 3 A. Shapiro, 3 W. M. Sun, 3
A. J. Weinstein, 3 D. E. Jaffe, 4 G. Masek, 4 H. P. Paar, 4 D. M. Asner, 5 A. Eppich, 5
T. S. Hill, 5 R. J. Morrison, 5 R. A. Briere, 6 G. P. Chen, 6 T. Ferguson, 6 H. Vogel, 6
A. Gritsan, 7 J. P. Alexander, 8 R. Baker, 8 C. Bebek, 8 B. E. Berger, 8 K. Berkelman, 8
F. Blanco, 8 V. Boisvert, 8 D. G. Cassel, 8 P. S. Drell, 8 J. E. Duboscq, 8 K. M. Ecklund, 8
R. Ehrlich, 8 A. D. Foland, 8 P. Gaidarev, 8 L. Gibbons, 8 B. Gittelman, 8 S. W. Gray, 8
D. L. Hartill, 8 B. K. Heltsley, 8 P. I. Hopman, 8 L. Hsu, 8 C. D. Jones, 8 J. Kandaswamy, 8
D. L. Kreinick, 8 M. Lohner, 8 A. Magerkurth, 8 T. O. Meyer, 8 N. B. Mistry, 8 E. Nordberg, 8
M. Palmer, 8 J. R. Patterson, 8 D. Peterson, 8 D. Riley, 8 A. Romano, 8 J. G. Thayer, 8
D. Urner, 8 B. Valant-Spaight, 8 G. Viehhauser, 8 A. Warburton, 8 P. Avery, 9 C. Prescott, 9
A. I. Rubiera, 9 H. Stoeck, 9 J. Yelton, 9 G. Brandenburg, 10 A. Ershov, 10 D. Y.-J. Kim, 10
R. Wilson, 10 T. Bergfeld, 11 B. I. Eisenstein, 11 J. Ernst, 11 G. E. Gladding, 11 G. D. Gollin, 11
R. M. Hans, 11 E. Johnson, 11 I. Karliner, 11 M. A. Marsh, 11 C. Plager, 11 C. Sedlack, 11
M. Selen, 11 J. J. Thaler, 11 J. Williams, 11 K. W. Edwards, 12 R. Janicek, 13 P. M. Patel, 13
A. J. Sadoff, 14 R. Ammar, 14 A. Bean, 15 D. Besson, 15 X. Zhao, 15 S. Anderson, 16
V. V. Frolov, 16 Y. Kubota, 16 S. J. Lee, 16 R. Mahapatra, 16 J. J. O'Neill, 16 R. Poling, 16
T. Riehle, 16 A. Smith, 16 C. J. Stepaniak, 16 J. Urheim, 16 S. Ahmed, 17 M. S. Alam, 17
S. B. Athar, 17 L. Jian, 17 L. Saleem, 17 S. Timm, 17 F. Wappler, 17 A. Anastassov, 18
E. Eckhart, 18 K. K. Gan, 18 C. Gwon, 18 T. Hart, 18 K. Honscheid, 18 D. Hufnagel, 18
H. Kagan, 18 R. Kass, 18 T. K. Pedlar, 18 H. Schwartzhoff, 18 J. B. Thayer, 18 E. von Toerne, 18
M. M. Zoeller, 18 S. J. Richichi, 19 H. Severini, 19 P. Skubic, 19 A. Undrus, 19 V. Savinov, 20
S. Chen, 21 J. Fast, 21 J. W. Hinson, 21 J. Lee, 21 D. H. Miller, 21 E. I. Shibata, 21
I. P. J. Shipsey, 21 V. Pavlinin, 21 D. Cronin-Hennessy, 22 A.L. Lyon, 22 E. H. Thorndike, 22
T. E. Coan, 23 V. Fadeyev, 23 Y. S. Gao, 23 Y. Maravin, 23 I. Narsky, 23 R. Stroynowski, 23
J. Ye, 23 T. Wlodek, 23 M. Artuso, 24 R. Ayad, 24 C. Boulahouache, 24 K. Buitink, 24
E. Dambasuren, 24 G. Majumder, 24 G. C. Moneti, 24 R. Mountain, 24 S. Schil, 24
T. Skwarnicki, 24 S. Stone, 24 J.C. Wang, 24 A. Wolf, 24 J. Wu, 24 S. Kopp, 25 M. Kostin, 25
A. H. Mahmood, 26 S. E. Csorna, 27 I. Danko, 27 K. W. McLean, 27 and Z. Xu 27

1Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
2Wayne State University, Detroit, Michigan 48202
3California Institute of Technology, Pasadena, California 91125
4University of California, San Diego, La Jolla, California 92093
5University of California, Santa Barbara, California 93106
6Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
7University of Colorado, Boulder, Colorado 80309-0390
8Cornell University, Ithaca, New York 14853
9University of Florida, Gainesville, Florida 32611
10Harvard University, Cambridge, Massachusetts 02138
11University of Illinois, Urbana-Champaign, Illinois 61801
12Carleton University, Ottawa, Ontario, Canada K1S 5B6
and the Institute of Particle Physics, Canada
13McGill University, Montréal, Québec, Canada H3A 2T8
and the Institute of Particle Physics, Canada
14 Ithaca College, Ithaca, New York 14850
15 University of Kansas, Lawrence, Kansas 66045
16 University of Minnesota, Minneapolis, Minnesota 55455
17 State University of New York at Albany, Albany, New York 12222
18 Ohio State University, Columbus, Ohio 43210
19 University of Oklahoma, Norman, Oklahoma 73019
20 University of Pittsburgh, Pittsburgh, Pennsylvania 15260
21 Purdue University, West Lafayette, Indiana 47907
22 University of Rochester, Rochester, New York 14627
23 Southern Methodist University, Dallas, Texas 75275
24 Syracuse University, Syracuse, New York 13244
25 University of Texas, Austin, Texas 78712
26 University of Texas - Pan American, Edinburg, Texas 78539
27 Vanderbilt University, Nashville, Tennessee 37235
In the Standard Model, CP violation is introduced by the complex phase in the Cabibbo-Kobayashi-Maskawa quark-mixing matrix. The experimental study of CKM phases will probe the Standard Model description of CP violation. This may provide a window to new physics. In particular, it has been suggested that we may construct a relationship between charmless $B \rightarrow VV$ decays that may lead to the extraction of the angle α. Earlier observations of rare charmless decay modes at CLEO include $B \rightarrow K\pi, \pi\pi, \eta K, \rho\pi, \eta'K, \eta K^*$ and $\omega\pi$. It is natural to extend our search toward other rare charmless B decays.

In this letter, we present results of searches for B meson decays into the vector mesons ρ^0, K^{*0} and K^{*+}. The decays are dominated by the $b \rightarrow u$ tree-level and $b \rightarrow d\bar{g}$ penguin processes, though other mechanisms may also contribute.

The data used in this analysis were collected by the CLEO detector at the Cornell Electron Storage Ring (CESR). The data consist of an integrated luminosity of 9.1 fb$^{-1}$ at the $\Upsilon(4S)$ resonance, corresponding to 9.7×10^6 $B\bar{B}$ events. To determine backgrounds due to non-resonant $e^+e^- \rightarrow q\bar{q}$ process, we also collected 4.6 fb$^{-1}$ of continuum data at energies just below the $\Upsilon(4S)$ resonance.

The CLEO detector has 67 tracking layers and a CsI electromagnetic calorimeter that provides efficient π^0 reconstruction, all operating within a 1.5T superconducting solenoid. The central tracking system, consisting of an inner 6-layer straw tube precision tracker, a 10-layer vertex drift chamber, and a 51-layer main drift chamber, provides a measurement of momenta of charged particles and the vertex position of decaying K_S. It also measures the specific ionization loss, dE/dx, which is used for particle identification. The precision tracker was replaced by a silicon vertex detector for the latter 65% of data taking. Muons are identified using proportional counters placed at various depths in the steel return yoke of the magnet.

B candidates are selected by straightforward criteria based on energy-momentum conservation and event shape. Simulations of the signal and backgrounds are used to refine these criteria and to determine their effectiveness.

The $B \rightarrow VV$ decays are reconstructed through the decay channels $B^0 \rightarrow \rho^0 \rho^0$, $B^0 \rightarrow K^{*0} \rho^0$, $B^0 \rightarrow K^{*0}K^{*0}$, $B^0 \rightarrow K^{*0}K^0$, $B^+ \rightarrow K^{*+} \rho^0$, $B^+ \rightarrow K^{*+}K^{*0}$, and $B^0 \rightarrow K^{*+}K^{*-}$. We form ρ^0 candidates from $\pi^+\pi^-$ pairs with an invariant mass within 150 MeV/c^2 of the nominal ρ^0 mass. $K^{*0}/K^{*0}/K^{*\pm}$ candidates are selected from $K^\pm \pi^\mp/K_S^0\pi^\pm$ pairs within 50 MeV/c^2 of the nominal K^* mass.

Charged tracks are selected by requiring them to pass quality criteria and must be consistent with production from the primary interaction point (except for pions from K_S^0 decays). The measured specific ionization (dE/dx) of charged kaon and pion candidates is required to be within 3.0σ (standard deviation) of their most probable values. We reject electrons based on dE/dx and the ratio of the track momentum to the associated shower energy in the CsI calorimeter. We reject muons by requiring that the tracks not penetrate the steel absorber past a depth of 3 nuclear interaction lengths. The K_S^0 is selected by requiring a decay vertex displaced from the primary interaction point and an invariant mass within 10 MeV/c^2 of the K_S^0 mass.

Fully reconstructed B mesons are selected on the basis of the beam-constrained mass of the candidate, $M_B = \sqrt{E_{beam}^2 - P_{reconstructed}^2}$, and the difference between the reconstructed and beam energies, $\Delta E = E_{reconstructed} - E_{beam}$. ΔE is sensitive to missing or extra particles in the B candidate, as well as incorrect assignment of particle masses. For the fully recon-
Structured B meson decays in this analysis, the M_B distribution peaks at 5.28 GeV/c^2 with a resolution ranging between 2.2-2.6 MeV/c^2, and ΔE peaks at zero GeV with a resolution ranging from 16 MeV to 27 MeV. Candidates are accepted for further analysis if ΔE and M_B are within a signal region $\pm 2\sigma$ around the central signal values for all channels (except K^+K^+ where a larger region is used since this involves two K_S^0's and is therefore relatively clean).

The backgrounds consist primarily of continuum events from $e^+e^- \rightarrow q\bar{q}$ ($q = u, d, s, c$) with a 10-15% contribution from B decays, and are estimated from a combination of off-resonance data and $b \rightarrow c$ Monte Carlo. Event-shape variables can be used to discriminate against the jet-like continuum events since B mesons are produced nearly at rest. Accordingly, we select only events with $R_2 < 0.5$, where R_2 is the ratio of the second to zeroth Fox-Wolfram moments of the event [5]. In continuum events, momentum conservation aligns the thrust axis of the B candidate with that of the rest of the event while they are almost uncorrelated in $B\bar{B}$ events. This allows additional suppression of continuum by restricting $|\cos \theta_{tt}|$, the angle between the two axes. We require $|\cos \theta_{tt}| < 0.7$ for all decay modes, except for K^+K^-, where we use $|\cos \theta_{tt}| < 0.9$.

The four selection criteria discussed above, on M_B, ΔE, R_2 and $\cos \theta_{tt}$, determine the signal efficiency (ϵ) for each mode. We measure this efficiency using Monte Carlo simulation for each of the 3 possible helicity states of the decay products: 00, -1-1 and +1+1. Our study indicates that the 00 helicity has slightly lower efficiency than the 11 helicities, since it results in more low momentum charged pion and kaon tracks from the B decay chain, for which the detector has a lower acceptance. In addition, the 00 state will tend to align the vector decay products leading to a higher average R_2, also decreasing the efficiency. We give separate results assuming the signal is 100% 00 helicity or 100% 11 helicity. For any assumed helicity distribution of signal events in the data sample, upper limits can be obtained by linear interpolation.

We find significant double counting of events in the $K^{*0}\rho^0$ channel, caused in most cases by the K/π ambiguity in the $K^{*0} \rightarrow K^+ + \pi^-$ sub-decay. In the final results we count only one entry for each event. We also consider the possibility of cross-feed between different channels of $B \rightarrow VV$ decays. Neglecting the contribution from the forbidden decay mode $B \rightarrow K^{*0}K^{*0}$ ($\Delta S = 2$), the cross-feed effect is small even if we use the 90% upper limits to evaluate the cross-feed contribution to the yields. We do not correct for this contribution when extracting the upper limits.

There are several sources of systematic error. A substantial contribution comes from the uncertainty in track efficiency, which is 1.5% per charged track. For B decay modes with $K^{*\pm}$, there is an additional 5% uncertainty due to the K_S^0 vertex requirement. In addition, we estimate 1% per charged track uncertainty due to the dE/dx requirement. Additional systematic errors include 7% uncertainty from the thrust criterion and 3% from the ΔE and M_B requirements. Uncertainties due to Monte Carlo statistics range from 2% to 6%, depending on B decay mode.

The results of this analysis are summarized in Table 1; we see no statistically compelling signal in any individual decay channel. To calculate 90% confidence level (C.L.) upper limits on the number of signal events in each channel, we use the Poisson likelihood of a hypothesis for the average number of signal events n_S given n_{obs} events detected and a background of $n_B = n_{b\rightarrow c} + n_{off}$:
TABLE I. The 90% C.L. upper limits for the $B \to VV$ decay modes ($\mathcal{B}_{\text{CLEO}}$) are shown in units of 10^{-6}, along with the corresponding theoretical predictions ($\mathcal{B}_{\text{THEORY}}$). n_{obs} is the number of observed events, n_{off} is the off-resonance background (normalized), $n_{b \to c}$ is the $B\bar{B}$ background estimate (from Monte Carlo), and $n_{u.l.}$ is the corresponding upper limit including systematic error and background statistics. The reconstruction efficiency (\mathcal{E}) is also shown along with the systematic error ($\delta \mathcal{E}/\mathcal{E}$). We assume equal branching fractions for $\Upsilon(4S) \to B^0\bar{B}^0$ and B^+B^-.

Mode	Helicity	n_{obs}	n_{off}	$n_{b \to c}$	\mathcal{E} (%)	$\delta \mathcal{E}/\mathcal{E}$ (%)	$n_{u.l.}$	$\mathcal{B}_{\text{CLEO}}$ ($\times 10^{-6}$)	$\mathcal{B}_{\text{THEORY}}$ ($\times 10^{-6}$)
$\rho^0\rho^0$	00	54	67	7.6	13	11	7.5	< 5.9	0.54–2.5
	11							< 4.6	
$K^{*0}\rho^0$	00	96	92	14	12	11	15	< 19	0.7–6.2
	11							< 13	
$K^{*0}K^{*0}$	00	22	14	1.6	11	11	15	< 31	
	11							< 24	
$K^{*0}K^{*0}$	00	12	16	1.4	12	11	5.4	< 10	0.28–0.96
	11							< 8.7	
$K^{*+}\rho^0$	00	12	5.9	2.4	7.8	13	9.5	< 54	0.8–14
	11							< 36	
$K^{*+}K^{*0}$	00	3	0.0	0.0	7.3	13	5.3	< 50	0.29–1.8
	11							< 34	
$K^{*+}K^{*+}$	00	0	2.0	0.0	6.6	17	2.3	< 70	
	11							< 45	

$$\mathcal{L}(n_S, n_B, n_{\text{obs}}) = e^{-(n_S+n_B)}(n_S + n_B)^{n_{\text{obs}}}/n_{\text{obs}}!.$$

To include the effect of the systematic error in the acceptance and the limited statistics of the background samples, we convolute the appropriate distributions (Gaussian for the systematic error, and Poissons for the $b \to c$ and continuum backgrounds) with the likelihood function, \mathcal{L}, to obtain a modified likelihood function, \mathcal{L}^*. The 90% C.L. upper limit on the yield is obtained by integrating \mathcal{L}^*, i.e. by solving for $n_{u.l.}$ in:

$$\int_{0}^{n_{u.l.}} \mathcal{L}^*(n_S, n_B, n_{\text{obs}})dn_S = 0.90$$

The upper limits on the branching ratios are then calculated from the formula,

$$\mathcal{B}(B \to VV) = \frac{n_{u.l.}}{n_{B\bar{B}} \times \mathcal{E} \times \prod_B}$$

where $n_{B\bar{B}}$ is the number of $B\bar{B}$ meson pairs in the data sample, and \prod_B is the product over all the relevant branching fractions of the vector meson decay chain.

To summarize, we set 90% C.L. upper limits on branching fractions of seven $B \to VV$ charmless decay modes. Theoretical predictions for the branching fractions of these modes tend to be near 10^{-6}. Thus our results are consistent with theoretical calculations based on
the Standard Model. In order to challenge these predictions data samples of the order of 10^8 $B\bar{B}$ mesons would be required.
REFERENCES

[1] D. Atwood and A. Soni, Phys.Rev.D\textbf{59}, 13007(1999).
[2] CLEO Collaboration, D. Cronin-Hennessy \textit{et al.}, Phys.Rev.Lett.\textbf{85}, 525(2000);
CLEO Collaboration, S.J. Richichi \textit{et al.}, Phys.Rev.Lett.\textbf{85}, 520(2000);
CLEO Collaboration, R. Godang \textit{et al.}, Phys.Rev.Lett.\textbf{80}, 3456(1998);
CLEO Collaboration, B. Behrens \textit{et al.}, Phys.Rev.Lett.\textbf{80}, 3710(1998);
CLEO Collaboration, T. Bergfeld \textit{et al.}, Phys.Rev.Lett.\textbf{81}, 272(1998);
CLEO Collaboration, D.M. Asner \textit{et al.}, Phys.Rev.D\textbf{53}, 1039(1996).
[3] A. Ali, G. Kramer, and C.-D. L"{u}, Phys.Rev.D\textbf{58}, 94009(1998);
A. Deandrea \textit{et al.}, Phys.Lett.B\textbf{320}, 170(1994);
N. G. Deshpande, in \textit{B Decays}, ed. S. Stone, World Scientific (Singapore, 1992, 1994);
D. Du and Z. Xing, Phys.Rev.D \textbf{48}, 4155(1993);
L. Chau \textit{et al.}, Phys.Rev.D\textbf{45}, 3143(1992);
G. Kramer and W.F. Palmer, Phys.Rev.D.\textbf{46}, 2969(1992);
M. Bauer, B. Stech, and M. Wirbel, Z.Phys.C\textbf{34}, 103(1987).
[4] CLEO Collaboration, Y. Kubota \textit{et al.}, Nucl.Instrum.Methods.Res.A\textbf{320},66(1992).
[5] G. Fox and S. Wolfram, Phys.Rev.Lett.\textbf{41}, 1581(1978).
[6] Particle Data Group, \textit{Review of Particle Physics}, Eur.Phys.Jour.C\textbf{15}, 1(2000).