Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Understanding the B and T cell epitopes of spike protein of severe acute respiratory syndrome coronavirus-2: A computational way to predict the immunogens

Yoya Vashi¹, Vipin Jagrit¹, Sachin Kumar⁎

Viral Immunology Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India

ARTICLE INFO

Keywords:
SARS-CoV-2
Spike protein
Epitopes
Diagnostics

ABSTRACT

The 2019 novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak has caused a large number of deaths, with thousands of confirmed cases worldwide. The present study followed computational approaches to identify B- and T-cell epitopes for the spike (S) glycoprotein of SARS-CoV-2 by its interactions with the human leukocyte antigen alleles. We identified 24 peptide stretches on the SARS-CoV-2 S protein that are well conserved among the reported strains. The S protein structure further validated the presence of predicted peptides on the surface, of which 20 are surface exposed and predicted to have reasonable epitope binding efficiency. The work could be useful for understanding the immunodominant regions in the surface protein of SARS-CoV-2 and could potentially help in designing some peptide-based diagnostics. Also, identified T-cell epitopes might be considered for incorporation in vaccine designs.

1. Introduction

Emerging severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a recent pandemic and has been declared as a public health emergency by the World Health Organization (WHO, 2020b). The disease rapidly spread across the globe and caused havoc to humanity (Wu and McGoogan, 2020). By the start of May, SARS-CoV-2 had spread to 215 countries and infected over 3,862,676 people (WHO, 2020a). The WHO is continuously monitoring and updating health-related plans to curtail the disease spread. The absence of a specific treatment and vaccine worsens the situation and threatens the world.

The International Committee on Taxonomy of Viruses (ICTV), classified SARS-CoV-2 under the family Coronaviridae of order Nidovirales. The genomic sequence of SARS-CoV-2 isolated from the bronchoalveolar lavage fluid of a patient from Wuhan, China showed a length of 29,903 nucleotides [GenBank accession number NC_045512] (Wu et al., 2020). SARS-CoV-2 contains a positive-sense single-stranded RNA with 5´ and 3´ untranslated region. The genome codes for ORF1a, ORF1b, Spike (S), ORF3a, ORF3b, Envelope (E), Membrane (M), ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF14, Nucleocapsid (N), and ORF10 from 5´ to 3´ (Wu et al., 2020; Zhu et al., 2020).

The S glycoprotein forms a homotrimer and mediates viral entry into host cells. The S protein is a potential target for therapeutic and vaccine design against SARS-CoV-2 infection in humans (Li, 2016; Tortorici et al., 2019). The S glycoprotein comprises two functional subunits: the S1 subunit is responsible for binding to the host cell receptor and the S2 subunit is responsible for fusion of the virus with the cell membrane. Usually in CoVs, S is cleaved at the boundary between S1 and S2 subunits, which remain non-covalently bound in the prefusion conformation, to activate the protein for membrane fusion via extensive irreversible conformational changes (Burkard et al., 2014; Park et al., 2016; Walls et al., 2017). Setting it apart from other SARS-CoVs, it is found that the S glycoprotein of SARS-CoV-2 harbors a furin cleavage site at the boundary between the S1/S2 subunits (Walls et al., 2020). By now, it is evident that SARS-CoV-2 S uses angiotensin-converting enzyme 2 (ACE2) receptor-mediated entry into cells. Some studies suggest similar binding affinities to human ACE2 with the S protein of SARS-CoV-2 and SARS-CoV (Letko et al., 2020; Walls et al., 2020). However, some suggest that SARS-CoV-2 S binds ACE2 with higher affinity than SARS-CoV (Tai et al., 2020; Wang et al., 2020; Wrapp et al., 2020).

As the situation worsens, there is a growing need for the development of suitable therapeutics, vaccines, and other diagnostics against SARS-CoV-2 for effective disease management strategies. Vaccines and diagnostic assays based on peptides have become increasingly substantial and indispensable for their advantages over conventional methods (Li et al., 2014; Mohanraj et al., 2017). The present study...
aimed to locate appropriate epitopes within a particular protein antigen that can elicit an immune response and could be selected for the synthesis of an immunogenic peptide. Using a computational approach, the S glycoprotein of SARS-CoV-2 was explored to identify various immunodominant epitopes for the development of diagnostics and vaccines. Besides, the results could also help us to understand the SARS-CoV-2 surface protein response towards T- and B-cells.

2. Materials & methods

2.1. Collection of the targeted protein sequence

The amino acid sequences (n = 98) of S protein available at the time of study on targeted SARS-CoV-2 were downloaded from the National Centre for Biotechnological Information (NCBI) database.

2.2. Identification of potential peptides

To identify an immunodominant region, it is of extreme importance to select the conserved region within the S protein of SARS-CoV-2. All the sequences were compared among themselves for variability using the protein variability server by the Shannon method (Garcia-Boronat et al., 2008). The average solvent accessibility (ASA) profile was predicted for each sequence using the SABLE server (Adamczak et al., 2004). BepiPred 1.0 Linear Epitope Prediction module incorporated in Immune Epitope Database (IEDB) was used to predict potential epitopes within the S protein (Haste Andersen et al., 2006; Larsen et al., 2006; Ponomarenko and Bourne, 2007; Vita et al., 2019). The FASTA sequence of the targeted protein was used as an input for all the default parameters.

2.3. Identification of B-cell epitopes

We used two web-based tools for B-cell epitope prediction: the IEDB and ABCpred servers (Saha and Raghava, 2006). S protein structure from the protein data bank (PDB, 6VS) was analyzed for linear and discontinuous B-cell epitopes using the ElliPro module on the IEDB server with default settings (Ponomarenko et al., 2008; Wrapp et al., 2020). Also, the ABCpred server was used to detect B-cell epitopes using the artificial neural network (ann) method.

2.4. Identification of T-cell epitopes

T-cell epitopes with a binding affinity towards major histocompatibility complex (MHC)-I and MHC-II alleles were selected to boost up both cytotoxic T-cell and helper T-cell mediated immune response. IEDB server was used to predict the MHC-I and MHC-II binding epitopes for the targeted protein. The reference set of alleles was used for predicting the MHC-I and MHC-II T-cell epitopes (Karosiene et al., 2012; Nielsen et al., 2007; Nielsen et al., 2003; Peters and Sette, 2005; Sturniolo et al., 1999).

3. Results and discussion

In our study, we targeted the S glycoprotein of SARS-CoV-2 as it is present outside the virus and interacts with the host receptor. At the time of the study, there were 98 sequences available for the targeted protein of SARS-CoV-2. The S glycoprotein sequence is 1273 amino acids long, except for that of the virus isolated from Kerala (India), which is a 1272 amino acid long S glycoprotein (GenBank accession number MT012098). Our interest here was to determine conserved regions first and then determine surface-exposed regions, which are potential epitopes to generate an immune response. We found that sequences among all the S proteins in the analysis are least variable and highly conserved, as shown in Fig. 1. However, we found that there were 12 point mutations in the amino acid sequences collected. The mutated sites identified were as follows: positions 247 and 614 for sequence MT007544 (Australia), positions 145 and 408 for sequence MT012098 (India), position 49 for sequence MT027064 (USA), position 221 for sequence MT039890 (South Korea), position 28 for sequence MT049951 (China), position 797 for sequence MT093571 (Sweden), position 157 for sequence MT159716 (USA), positions 655 and 930 for sequence MT0409 (South Korea), position 181 for sequence MT184910 (Sweden), position 528 for sequence MT012098 (India), position 797 for sequence MT093571 (Sweden), position 157 for sequence MT159716 (USA), positions 655 and 930 for sequence MT163720 (USA), and position 181 for sequence MT184910 (USA). Regions having a high ASA value are more surface exposed compared to others. We identified a total of 24 peptides of varying lengths, which were selected based on high ASA values (Table 1). The

ASA & sequence variability profile for spike protein of SARS-CoV-2

![ASA & sequence variability profile for spike protein of SARS-CoV-2](chart.png)

Fig. 1. Profiles of average solvent accessibility (blue) in % and amino acid sequence variability (green) in numbers of the 98 SARS-CoV-2 protein plotted against amino acid numbers. High ASA value means the solvent accessibility score is relatively higher for that region and it is more surface exposed with respect to its neighbours. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
potential epitope regions were predicted using the sequence of the S protein of SARS-CoV-2 that showed the least variability (GenBank accession number NC_045512). The potential epitopes are represented by blue peaks, while green-colored slopes represent non-epitopic regions (Fig. 2).

The existence of B-cell linear and discontinuous (conformational) epitopes within the identified segments could help us to identify the peptides, which can elicit an immune response (Purcell et al., 2007). We identified 18 linear epitopes, predicted by ElliPro (IEDB), which contained regions from 19 of our selected peptides (highlighted in red in Table 1). These identified B-cell linear epitopes were placed based on their positional value and scores. Epitopes with high scores have more potential for antibody binding. Five of our selected peptides (peptide numbers 3, 5, 19, 23, and 24 in Table 1) were not considered as potential linear B-cell epitopes. Some parts of our identified epitopes were in accordance with epitopes recognized in an earlier study (Ahmed et al., 2020), which further supports the credibility of our identified epitopes.

Using the same module, B-cell discontinuous epitopes were predicted, which gave 16 epitope regions that contained regions from 18 of our selected peptides (highlighted in red in Table S1). Six peptides (peptide numbers 3, 5, 14, 19, 23, and 24 in Table 1) were not predicted as discontinuous B-cell epitopes. To further confirm, we used the ABCpred server to detect B-cell epitopes, with a default threshold of 0.51. It identified various epitopes with different lengths and scores. Out of those, the regions that contained our selected peptides are highlighted in red in Table 3. A high score represents good binding affinity with epitopes; most of our peptides scored more than 0.7 and were predicted as linear B-cell epitopes.

We used the IEDB server to determine the binding affinity for the human leucocyte antigen (HLA). As recommended by the IEDB server, reference HLA allele sets were used for the prediction of MHC-I and MHC-II T-cell epitopes, as they provide comprehensive coverage of the population. All the predictions were made using IEDB recommended procedures. The list of binding affinities for MHC-I T-cell epitopes is given in Table S2, where low rank represents high binding affinity. Similarly, the list of binding affinities for MHC-II T-cell epitopes are given in Table 4. Regions from our selected peptides are highlighted in red. The epitopes with rank < 1% for very high binding affinity were selected. We also observed that some of the peptides we identified as potential B-cell epitopes were present as T-cell epitopes with good binding affinities.

Overall, it was found that the regions identified in Table 1 not only had good B-cell and T-cell affinities, but the majority of them had also overlapped with discontinuous epitopes (Table S1). The peptide

Table 1
Conserved region selected based on protein variability, average solvent accessibility and antibody epitope prediction using BepiPred 1.0 Linear Epitope Prediction module of IEDB selected for further analysis.

Sl. No.	Start	End	Length	Peptide
1	21	38	18	RTQLPAP\textsubscript{Y}TSFTRGV\textsubscript{Y}Y
2	69	81	13	HVS\textsubscript{T}GNTGK\textsubscript{R}FDN
3	144	155	12	Y\textsubscript{Y}HENK\textsubscript{K}VW\textsubscript{M}ES
4	178	191	14	D\textsubscript{L}E\textsubscript{G}R\textsubscript{Q}CN\textsubscript{K}\textsubscript{N}L\textsubscript{R}E
5	249	261	13	L\textsubscript{T}PG\textsubscript{S}SSG\textsubscript{W}TG\textsubscript{A}G
6	278	287	10	KY\textsubscript{N}E\textsubscript{N}G\textsubscript{T}T\textsubscript{D}
7	314	325	12	QS\textsubscript{I}N\textsubscript{F}R\textsubscript{V}QP\textsubscript{E}T\textsubscript{E}S
8	407	428	22	V\textsubscript{R}QL\textsubscript{A}P\textsubscript{G}QT\textsubscript{G}K\textsubscript{I}A\textsubscript{D}YN\textsubscript{K}L\textsubscript{P}D\textsubscript{D}
9	437	450	14	N\textsubscript{S}N\textsubscript{L}\textsubscript{D}S\textsubscript{R}VGG\textsubscript{Y}N
10	461	485	25	L\textsubscript{K}F\textsubscript{P}E\textsubscript{R}D\textsubscript{I}S\textsubscript{E}T\textsubscript{I}E\textsubscript{Y}Q\textsubsubscript{A}G\textsubscript{S}\textsubscript{T}P\textsubscript{C}N\textsubscript{G}V\textsubscript{E}G
11	493	506	14	Q\textsubscript{S}Y\textsubscript{G}F\textsubscript{O}Q\textsubscript{T}\textsubscript{G}NC\textsubscript{V}G\textsubscript{Q}
12	521	533	13	PAT\textsubscript{V}C\textsubscript{G}P\textsubscript{K}\textsubscript{R}K\textsubscript{S}T\textsubscript{N}L
13	567	581	15	R\textsubscript{D}IA\textsubscript{O}TT\textsubscript{D}A\textsubscript{V}RD\textsubscript{P}Q\textsubscript{T}
14	597	607	11	V\textsubscript{I}P\textsubscript{T}G\textsubscript{T}N\textsubscript{S}\textsubscript{N}Q
15	625	648	24	H\textsubscript{A}D\textsubscript{Q}L\textsubscript{Q}T\textsubscript{P}\textsubscript{T}\textsubscript{W}R\textsubscript{V}Y\textsubscript{S}G\textsubscript{N}V\textsubscript{F}QTR\textsubscript{A}G
16	654	661	8	E\textsubscript{H}V\textsubscript{N}\textsubscript{N}\textsubscript{S}Y\textsubscript{E}
17	673	691	19	S\textsubscript{Y}Q\textsubscript{T}Q\textsubscript{T}\textsubscript{S}P\textsubscript{R}R\textsubscript{R}A\textsubscript{S}\textsubscript{V}\textsubscript{A}Q\textsubscript{S}
18	700	713	16	G\textsubscript{A}E\textsubscript{N}\textsubscript{S}\textsubscript{V}A\textsubscript{Y}S\textsubscript{N}S\textsubscript{N}SIA
19	768	780	13	T\textsubscript{G}I\textsubscript{A}\textsubscript{V}\textsubscript{E}\textsubscript{Q}D\textsubscript{K}N\textsubscript{T}Q\textsubscript{E}
20	788	799	14	I\textsubscript{V}K\textsubscript{T}P\textsubscript{R}E\textsubscript{K}\textsubscript{D}F\textsubscript{G}G
21	805	816	12	I\textsubscript{L}\textsubscript{P}\textsubscript{O}\textsubscript{P}\textsubscript{S}\textsubscript{K}\textsubscript{S}\textsubscript{K}S
22	1134	1150	17	N\textsubscript{N}T\textsubscript{V}Y\textsubscript{E}\textsubscript{D}\textsubscript{F}L\textsubscript{Q}\textsubscript{E}\textsubscript{L}\textsubscript{D}\textsubscript{S}\textsubscript{F}K\textsubscript{E}
23	1153	1171	19	D\textsubscript{K}R\textsubscript{K}\textsubscript{N}\textsubscript{N}\textsubscript{S}\textsubscript{P}\textsubscript{O}\textsubscript{D}\textsubscript{L}\textsubscript{G}\textsubscript{D}\textsubscript{G}
24	1255	1267	13	K\textsubscript{F}D\textsubscript{E}D\textsubscript{D}\textsubscript{D}\textsubscript{E}P\textsubscript{V}\textsubscript{L}K\textsubscript{G}

Fig. 2. Graphical representation of B-cell linear epitopes of spike protein of SARS-CoV-2. B-cell linear epitopes predicted using BepiPred 1.0 module incorporated in IEDB server using default threshold value (0.35).
segments identified from the set of 98 sequences of the SARS-CoV-2 S glycoprotein appear to hold reasonable potential to act as immunogens. Peptide-based diagnostics and vaccines have previously been proposed against virus outbreaks (Dey et al., 2017; Ichihashi et al., 2011; Navalkar et al., 2015; Oany et al., 2014; Zhao et al., 2009). The availability of a 3D structure (6VSB) of the SARS-CoV-2 S glycoprotein provided an opportunity to inspect the predicted peptides. Placement of the peptide segments identified by ASA and conserved sequence analysis on the S glycoprotein showed that 20 of the regions we identified lie on the surface (Fig. 3). In order to limit recognition and evade the immune response of the host, coronaviruses use conformational masking and glycan shielding (Walls et al., 2019; Xiong et al., 2018). SARS-CoV-2 S trimer also exists in multiple distinct conformational states, which is necessary for receptor engagement, leading to the initiation of fusogenic conformational changes (Walls et al., 2020). The considerable number of peptides at the surface region of the S glycoprotein allows for the potential use of those peptide regions as immunogens. Binding to the ACE2 receptor is a critical initial step for the SARS-CoV-2 in entering target cells. Recent studies have also pointed out the vital role of ACE2 in mediating the entry of SARS-CoV-2 (Hoffmann et al., 2020). Receptor binding motif (RBM) is part of the receptor-binding domain (RBD) of SARS-CoV-2, which contains most of the contacting residue for ACE-2 binding (Lan et al., 2020). It was observed that some of our identified peptides from Table 1 (peptide no. 7–12) fall in the regions of RBD (amino acid no. 319–540) and RBM (amino acid no. 438–506), which makes them potential peptide regions to be used.

The emergence of new viral diseases like SARS-CoV-2 represents a substantial global disease burden. Over the past few months, there have been increased research efforts for the design and development of diagnostics and vaccines for SARS-CoV-2. Some related analyses have been reported in distinct, parallel studies (Baruah and Bose, 2020; Bhattacharya et al., 2020; Grifoni et al., 2020). Our study leverages the available resources and computational methods and adds to the ongoing research focused on the development of diagnostics and vaccines against SARS-CoV-2. Other than already existing ones, we have identified a further number of peptides, which adds to the library of peptides that are likely to be recognized by human immune responses.

Table 2
IEDB ElliPro predicted linear epitopes for spike protein of SARS-CoV-2. Sequences that match our selected peptides are marked in red.

Sl. No.	Start	End	Peptide	No. of residues	Score
1	27	37	AYNTSFRTRGYV	11	0.701
2	56	196	LPFFSNVTW突如FIDNVPVLPDNGVYASTNIRGWAIFGTTLDSKTQSSLIVNANTVVIKVCQFCNDPFLGEFRVYSSANCTFEYVYQQFLK NLREFVFKN	103	0.851
3	280	286	NENGITT	7	0.521
4	322	375	PTESIVREFPNTLCPFEVGNATRFASYAWNRKRSNCVADYSFLVYNASASFS	54	0.646
5	393	515	TNVYADSFVIRGDEVRIQAIPQTTQGKIAKYKLPDDFTGCVIAWSNNLDSVNYLRYPLQSYGFQPTVGYQPRYR	80	0.842
6	464	511	FERDISTEFYNCYFPLQSYGFQPTVGYQPRYVRV	33	0.707
7	465	509	NERDISTENFCPLQSYGFQPTVGYQPRY	26	0.663
8	520	537	APATVCGBPKNSTLNVLKNK	18	0.617
9	577	585	RPQTLIEL	9	0.665
10	603	608	NTSNQV	6	0.522
11	616	643	NCTEVTSNVSF	11	0.578
12	652	661	GAEVNNSYTE	10	0.594
13	687	691	VASQS	5	0.612
14	700	719	GAENSVAYSNNSAIAPTNFT	20	0.659
15	789	805	YKTPPKDFGGFNFSQI	17	0.621
16	789	815	YKTPPKDFGGFNFSQILPDPSKR	24	0.609
17	807	815	PDPSKR	6	0.558
18	1069	1146	PAAKEKNTTAPAI CHDGAHP RPEGVFVSNGTHWFTQRNFYEPQIITDNTF VSGNCDDVVGIVVNNTV YDPLQPELD	78	0.832

Table 3
ABcprep determination of B-cell binding affinities. Note that high score indicates good binding affinity.

Sl. No.	Sequence	Start	Score
1	PPAYTN SFRTRGYYV	25	0.91
2	BVYSVGNTKGKRFDNPVLP Fn	68	0.89
3	VYYHYKNNKSWM ESEF R VYSS	143	0.9
4	DLEGKQONFKNLREFVF KN	178	0.82
5	YLTPGDSSGGWT	248	0.7
6	LLKYNENGTITDA VDCA LD P	276	0.76
7	IYQT SNFRVQPTES	312	0.68
8	RQIAPOQQTG KIA DAN YKLPD	408	0.75
9	WNSNNLDSDKVGNYNYL Y	436	0.67
10	SN LPKFERDIST GIF Y QA GST	459	0.82
11	LSQYGFO PTNGVGYO P	492	0.9
12	HA PATVC GPK KSTN	519	0.72
13	QQFR ORA D TD ATRDPQTL	563	0.82
14	VITP GTN TSNQOVAV	597	0.77
15	AHADQLQ TPTW R Y VSTG S	623	0.67
16	IGAEHVNSY ECDIPIGAGI	651	0.9
17	YQ TQSNPRAR SAS V QS	674	0.82
18	GAEN S VAY SNNSAI P T N	700	0.63
19	AVEQDKN T QEVFQ	771	0.89
20	IYKTPPKD GG FN	788	0.77
21	IL PDPSKR SPREDLL	805	0.63
22	VIGIVNTVYDPLOPE	1129	0.83
23	D KYFKNHSTPVDVLG D	1153	0.69
24	CSGSCCKFD EDD SE PV LKG	1248	0.73
Facilitated by high mutation rates, traditional vaccines based on antibody-mediated protection are often poor inducers of T-cell responses and can have limited success (Rosendahl Huber et al., 2014). Peptide-based sensitive and rapid diagnostic kits are considered a better alternative to the conventional serological tests, including whole antigenic protein (Mohanraj et al., 2017). In our study, we predicted both B-cell and T-cell epitopes for conferring immunity in different ways. We speculate that the identified epitopes with considerably good epitope binding efficiency have the potential to be an immunodominant peptide. The study could help us to use the predicted peptide as an immunogen for the development of diagnostics and vaccines against SARS-CoV-2.

4. Conclusion

In the present study, peptide segments were identified on S proteins for the development of diagnostics and vaccines against SARS-CoV-2. The recent availability of 3D data on 2019-CoV S glycoprotein has helped the search. SARS-CoV-2, being an RNA virus, has a high mutation rate and undergoes active recombination (Yi, 2020). Although the peptides identified are ideal candidates as immunogens for the development of peptide-based diagnostics and vaccines, more refinement and lab trials are essential steps that are yet to be undertaken for early development before the identified epitopes are rendered obsolete.

Table 4

Sl. No.	Allele	Start	End	Method	Peptide	Percentile Rank
1	HLA-DRB1*11:01	1	15	Consensus	MFVFLLLPLVSSQC	0.59
2	HLA-DPA1*03:01/DPB1*04:02	1	17	Consensus	MFVFLLLPLVSSQCVN	0.12
3	HLA-DRB1*01:01	1	18	Consensus	MFVFLLLPLVSSQCYNL	0.41
4	HLA-DRB1*13:02	109	126	Consensus	TLDSTKQSLIVNNATNV	0.07
5	HLA-DRB1*13:02	119	136	Consensus	IVNNATNVVIKVICFQFC	0.68
6	HLA-DPA1*01:03/DPB1*04:01	168	185	NetMHCIIpan	FEYVSQPFLMDLEGKQGN	0.87
7	HLA-DPA1*02:01/DPB1*05:01	183	197	Consensus	OQFKNLREFVFKNI	0.74
8	HLA-DPA1*02:01/DPB1*05:01	184	197	Consensus	GNFKNLREFVFKNI	0.62
9	HLA-DRA5*01:01	192	209	Consensus	VFVKNIIDGFYIKYSKHTP	0.39
10	HLA-DRA5*11:01	209	209	Consensus	DGYFKIYSKHTP	0.64
11	HLA-DRA5*01:01	234	248	Consensus	NTRFQTALLALHRSY	0.32
12	HLA-DRA5*11:01	236	249	Consensus	TRFQTALLALHRSYL	0.75
13	HLA-DRA5*15:01	237	251	Consensus	RPTQLALLALHRSYLT	0.84
14	HLA-DQA1*05:01/DQA1*03:01	255	268	Consensus	SSGWTAGAAXXYVYG	0.76
15	HLA-DQA1*05:01/DQA1*03:01	255	269	Consensus	SSGWTAGAAXXYVYGY	0.94
16	HLA-DRA5*04:01	314	331	Consensus	QTSMRTHQETESIVRFPN	1
17	HLA-DRA5*15:01	319	335	Consensus	RVQPTESIVRFPNITL	0.95
18	HLA-DPA1*03:01/DPB1*04:02	339	352	Consensus	GEVFNATRFASVYA	0.79
19	HLA-DRA5*01:01	344	358	Consensus	ATRFASYWAYRKKRI	0.49
20	HLA-DRA5*11:01	349	360	Consensus	SVYAWNKRISN	0.36
21	HLA-DRA5*03:01	400	413	Consensus	FVIRGDEVRIQAPG	0.47
22	HLA-DRA5*01:01	402	418	Consensus	IRGDEVRIQAIAPGQTGKI	0.94
23	HLA-DRA5*11:01	443	460	Consensus	SKVGQNYNLVYRLFRKSN	0.65
24	HLA-DRA5*11:01	444	457	Consensus	KVGQNYNLVYRLFR	0.9
25	HLA-DRA5*01:01	461	472	Consensus	LKPFERDISTEI	0.79
26	HLA-DPA1*01:03/DPB1*02:01	501	518	Consensus	NGVQYPVRVVVLFSELL	0.6
27	HLA-DPA1*02:01/DPB1*01:01	501	518	Consensus	NGVQYPVRVVVLFSELL	0.38
28	HLA-DRA5*01:01	506	523	Consensus	QPYRVVVVLSFELLHAP	0.69
29	HLA-DPA1*03:01/DPB1*04:02	507	521	Consensus	PYRVVVVLSFELLHAP	0.25
30	HLA-DRA5*01:01	514	526	Consensus	SFELHLAPATVCNG	0.02
31	HLA-DRA5*01:01	515	528	Consensus	SFELLHAPATVCGBP	0.49
32	HLA-DQA1*05:01/DQA1*03:01	664	675	Consensus	IPGAGICASYQ	0.43
33	HLA-DRA5*07:01	684	701	Consensus	ARSVVASQSHAYTMSLGA	0.77
34	HLA-DRA5*07:01	713	727	Consensus	AIPTNFTSIVYTEIL	0.4
35	HLA-DRA5*15:01	749	763	Consensus	CSNNLLQYGIFSCTQL	0.58
36	HLA-DQA1*04:01/DQA1*04:04:02	763	775	Consensus	LNRALTGIAVEQD	0.73
37	HLA-DQA1*03:01/DQA1*03:02	764	776	Consensus	LNRALTGIAVEQD	0.91
38	HLA-DPA1*01:03/DPB1*04:01	809	826	NetMHCIIpan	PSKPSKRSFIEDILFNKV	0.59
39	HLA-DRA5*01:01	855	867	Consensus	FNGLTVLPPLLTDT	0.89
40	HLA-DRA5*09:01	884	898	Consensus	SGWTFGAGAALQIPF	0.33
41	HLA-DQA1*05:01/DQA1*03:01	885	897	Consensus	GWTFGAGAALQIP	0.42
42	HLA-DRA5*13:02	1127	1141	Consensus	DVVIGIVNNTVYDPL	0.7
43	HLA-DQA1*05:01/DQA1*03:01	1216	1229	Consensus	IWLGFIAGLIALIVM	0.38
Declaration of Competing Interest

The authors declare no conflict of interest.

Acknowledgement

We thank Dr. Monika Koul and Dr. Nitin Chaudhary for proof reading the text and their valuable suggestions.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.meegid.2020.104382.

References

Adamczak, R., Porollo, A., Meller, J., 2004. Accurate prediction of solvent accessibility using neural networks-based regression. Proteins 56 (4), 753–767. https://doi.org/10.1002/prot.20176.

Ahmed, S.F., Quadeer, A.A., McKay, M.R., 2020. Preliminary identification of potential vaccine targets for the COVID-19 Coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses 12 (3), 254. https://doi.org/10.3390/v12030254.

Baruah, V., Bose, S., 2020. Immunoinformatics-aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019-nCoV. J. Med. Virol. 92 (5), 495–500. https://doi.org/10.1002/jmv.25698.

Bhattacharya, M., Sharma, A.R., Patra, P., Ghosh, P., Sharma, G., Patra, B.C., Lee, S.S., Chakraborty, C., 2020. Development of epitope-based peptide vaccine against novel coronavirus 2019 (SARS-CoV-2): Immunoinformatics approach. J. Med. Virol. https://doi.org/10.1002/jmv.25746.

Burkard, C., Verheije, M.H., Wicht, O., van Kasteren, S.I., van Kuppeveld, F.J., Haagmans, B.L., Pelkmann, L., Rottier, P.J., Bosch, E.J., de Haan, C.A., 2014. Coronavirus cell entry occurs through the endo-lysosomal pathway in a proteolysis-dependent manner. PLoS Pathog. 10 (11), e1004502. https://doi.org/10.1371/journal.ppat.1004502.

Dey, S., Nandy, A., Basak, S.C., Nandy, P., Das, S., 2017. A bioinformatics approach to designing a Zika virus vaccine. Comput. Biol. Chem. 68, 143–152. https://doi.org/10.1016/j.compbiochem.2017.03.002.

Garcia-Boromant, M., Diez-Rivero, C.M., Reinherz, L.L., Reche, P.A., 2008. PVS: a web server for protein sequence variability analysis tuned to facilitate conserved epitope discovery. Nucleic Acids Res. 36, W25–W41. https://doi.org/10.1093/nar/gkn211.

Grifoni, A., Sidney, J., Zhang, Y., Scheuermann, R.H., Peters, B., Letko, M., Marzi, A., Munster, V., 2020. Functional Assessment of Cell Entry and Receptor Usage for SARS-CoV-2 and Other Lineage B Betacoronaviruses. Nat. Microbiol. 5 (4), 562–569. https://doi.org/10.1038/s41564-020-0688-y.

Haste Andersen, P., Nielsen, M., Lund, O., 2006. Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci. 15 (11), 2558–2567. https://doi.org/10.1110/ps.062005906.

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., Schiergens, T.S., Herrler, G., Wu, N.H., Nitsche, A., Muller, M.A., Drosten, C., Pohlmann, S., 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181 (2), 271–280. https://doi.org/10.1016/j.cell.2020.02.052.

Ichihashi, T., Yoshida, R., Sugimoto, C., Takada, A., Kajino, K., 2011. Cross-protective peptide vaccine against influenza A viruses developed in HLA-A*2402 human immunity model. PLoS One 6 (9), e24626. https://doi.org/10.1371/journal.pone.0024626.

Karosiene, E., Lundegaard, C., Lund, O., Nielsen, M., 2012. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Immunogenetics 64 (3), 177–186. https://doi.org/10.1007/s00251-011-0579-8.

Letko, M., Marzi, A., Munster, V., 2020. Functional Assessment of Cell Entry and Receptor Usage for SARS-CoV-2 and Other Lineage B Betacoronaviruses. Nat. Microbiol. 5 (4), 562–569. https://doi.org/10.1038/s41564-020-0688-y.

Li, F., 2016. Structure, function, and evolution of Coronavirus spike proteins. Annu. Rev. Virol. 3 (1), 237–261. https://doi.org/10.1146/annurev-virology-110615-042301.

Li, W., Joshi, M.D., Singhania, S., Ramsey, K.H., Murphy, A.K., 2014. Peptide vaccine: Progress and challenges. Vaccines 2 (3), 515–536. https://doi.org/10.3390/vaccines20300515.

Mohanaei, U., Chander, S., Chavan, Y.G., 2017. Peptide based viral detection systems for effective diagnosis of common viral infections in India.Curr. Protein Pept. Sci. 18 (9), 699–705. https://doi.org/10.2174/1389203716666160724205226.

Navalkar, K.A., Johnston, S.A., Stafford, P., 2015. Peptide based diagnostics: are random-sequence peptides more useful than tiling proteome sequences? J. Immunol. Methods. 417, 10–21. https://doi.org/10.1016/j.jim.2014.12.002.

Nielsen, M., Lundegaard, C., Warming, P., Laumoller, S.L., Lambeth, K., Buus, S., Brunak, S., Lund, O., 2003. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 12 (5), 1007–1017. https://doi.org/10.1110/ps.0239403.

Nielsen, M., Lundegaard, C., Lund, O., 2007. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinformatics 8, 238. https://doi.org/10.1186/1471-2105-8-238.

Oany, A.R., Emran, A.A., Jyoti, T.P., 2014. Design of an epitope-based peptide vaccine against spike protein of human coronavirus: an in silico approach. Drug Des. Devel. Ther. 8, 1139–1149. https://doi.org/10.2147/DDDT.S67861.

Park, J.E., Li, K., Barlan, A., Fehr, A.R., Perlman, S., McCray Jr., P.B., Gallagher, T., 2016. Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism. Proc. Natl. Acad. Sci. U. S. A. 113 (43), 12262–12267. https://doi.org/10.1073/pnas.1601471113.

Peters, B., Sette, A., 2005. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics 6, 132. https://doi.org/10.1186/1471-2105-6-132.

Ponomarenko, J., Bui, H.H., Li, W., Fusseder, N., Bourne, P.E., Sette, A., Peters, B., 2008. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics 9, 514. https://doi.org/10.1186/1471-2105-9-514.

Ponomarenko, J.V., Bourne, P.E., 2007. Antibody-protein interactions: benchmark data sets and prediction tools evaluation. BMC Struct. Biol. 7, 64. https://doi.org/10.1186/1472-6807-7-64.

Purcell, A.W., McCluskey, J., Rossjohn, J., 2007. More than one reason to rethink the use of SMMP-align, a novel stabilization matrix alignment method. BMC Bioinformatics 8, 238. https://doi.org/10.1186/1471-2105-8-238.

Rosenfeld Huber, S., van Beek, J., de Jonge, J., Luytjes, W., van Baarle, D., 2014. T cell responses to viral infections - opportunities for peptide vaccination. Front. Immunol.

Fig. 3. Our selected peptides are highlighted on spike protein of SARS-CoV-2 protein structure downloaded from PDB (ID: 6VSB).
5, 171. https://doi.org/10.3389/fimmu.2014.00171.
Saha, S., Raghava, G.P., 2006. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65 (1), 40–48. https://doi.org/10.1002/prot.21078.
Sturmiolo, T., Bono, E., Ding, J., Raddazzani, I., Tuereci, O., Sabin, U., Brazenthaler, M., Gallazzi, F., Protti, M.P., Singaglia, F., Hammer, J., 1999. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat. Biotechnol. 17 (6), 555–561. https://doi.org/10.1038/9858.
Tai, W., He, L., Zhang, X., Fu, J., Voronin, D., Jiang, S., Zhou, Y., Du, L., 2020. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell. Mol. Immunol. https://doi.org/10.1038/s41423-020-0400-4.
Sturniolo, T., Bono, E., Ding, J., Raddrizzani, L., Tuereci, O., Sahin, U., Braxenthaler, M., Gallazzi, F., Protti, M.P., Singaglia, F., Hammer, J., 1999. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat. Biotechnol. 17 (6), 555–561. https://doi.org/10.1038/9858.
Saha, S., Raghava, G.P., 2006. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65 (1), 40–48. https://doi.org/10.1002/prot.21078.
Sturniolo, T., Bono, E., Ding, J., Raddrizzani, L., Tuereci, O., Sahin, U., Braxenthaler, M., Gallazzi, F., Protti, M.P., Singaglia, F., Hammer, J., 1999. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat. Biotechnol. 17 (6), 555–561. https://doi.org/10.1038/9858.
Tai, W., He, L., Zhang, X., Fu, J., Voronin, D., Jiang, S., Zhou, Y., Du, L., 2020. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell. Mol. Immunol. https://doi.org/10.1038/s41423-020-0400-4.
Sturniolo, T., Bono, E., Ding, J., Raddrizzani, L., Tuereci, O., Sahin, U., Braxenthaler, M., Gallazzi, F., Protti, M.P., Singaglia, F., Hammer, J., 1999. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat. Biotechnol. 17 (6), 555–561. https://doi.org/10.1038/9858.
Tai, W., He, L., Zhang, X., Fu, J., Voronin, D., Jiang, S., Zhou, Y., Du, L., 2020. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell. Mol. Immunol. https://doi.org/10.1038/s41423-020-0400-4.
Sturniolo, T., Bono, E., Ding, J., Raddrizzani, L., Tuereci, O., Sahin, U., Braxenthaler, M., Gallazzi, F., Protti, M.P., Singaglia, F., Hammer, J., 1999. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat. Biotechnol. 17 (6), 555–561. https://doi.org/10.1038/9858.
Tai, W., He, L., Zhang, X., Fu, J., Voronin, D., Jiang, S., Zhou, Y., Du, L., 2020. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell. Mol. Immunol. https://doi.org/10.1038/s41423-020-0400-4.
Sturniolo, T., Bono, E., Ding, J., Raddrizzani, L., Tuereci, O., Sahin, U., Braxenthaler, M., Gallazzi, F., Protti, M.P., Singaglia, F., Hammer, J., 1999. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat. Biotechnol. 17 (6), 555–561. https://doi.org/10.1038/9858.
Tai, W., He, L., Zhang, X., Fu, J., Voronin, D., Jiang, S., Zhou, Y., Du, L., 2020. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell. Mol. Immunol. https://doi.org/10.1038/s41423-020-0400-4.
Sturniolo, T., Bono, E., Ding, J., Raddrizzani, L., Tuereci, O., Sahin, U., Braxenthaler, M., Gallazzi, F., Protti, M.P., Singaglia, F., Hammer, J., 1999. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat. Biotechnol. 17 (6), 555–561. https://doi.org/10.1038/9858.
Tai, W., He, L., Zhang, X., Fu, J., Voronin, D., Jiang, S., Zhou, Y., Du, L., 2020. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell. Mol. Immunol. https://doi.org/10.1038/s41423-020-0400-4.
Sturniolo, T., Bono, E., Ding, J., Raddrizzani, L., Tuereci, O., Sahin, U., Braxenthaler, M., Gallazzi, F., Protti, M.P., Singaglia, F., Hammer, J., 1999. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat. Biotechnol. 17 (6), 555–561. https://doi.org/10.1038/9858.
Tai, W., He, L., Zhang, X., Fu, J., Voronin, D., Jiang, S., Zhou, Y., Du, L., 2020. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell. Mol. Immunol. https://doi.org/10.1038/s41423-020-0400-4.
Sturniolo, T., Bono, E., Ding, J., Raddrizzani, L., Tuereci, O., Sahin, U., Braxenthaler, M., Gallazzi, F., Protti, M.P., Singaglia, F., Hammer, J., 1999. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat. Biotechnol. 17 (6), 555–561. https://doi.org/10.1038/9858.
Tai, W., He, L., Zhang, X., Fu, J., Voronin, D., Jiang, S., Zhou, Y., Du, L., 2020. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell. Mol. Immunol. https://doi.org/10.1038/s41423-020-0400-4.