On a family of cubic graphs containing the flower snarks
Jean-Luc Fouquet, Henri Thuillier, Jean-Marie Vanherpe

To cite this version:
Jean-Luc Fouquet, Henri Thuillier, Jean-Marie Vanherpe. On a family of cubic graphs containing the flower snarks. Discussiones Mathematicae Graph Theory, University of Zielona Góra, 2010, 30 (2), pp.289-314. 10.7151/dmgt.1495. hal-00467641

HAL Id: hal-00467641
https://hal.archives-ouvertes.fr/hal-00467641
Submitted on 27 Mar 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
On a family of cubic graphs containing the flower snarks

Jean-Luc Fouquet and Henri Thuillier and Jean-Marie Vanherpe

L.I.F.O., Faculté des Sciences, B.P. 6759
Université d’Orléans, 45067 Orléans Cedex 2, FR

Abstract

We consider cubic graphs formed with \(k \geq 2 \) disjoint claws \(C_i \sim K_{1,3} \) such that for every integer \(i \) modulo \(k \) the three vertices of degree 1 of \(C_i \) are joined to the three vertices of degree 1 of \(C_{i-1} \) and joined to the three vertices of degree 1 of \(C_{i+1} \). Denote by \(t_i \) the vertex of degree 3 of \(C_i \) and by \(T \) the set \(\{ t_1, t_2, ..., t_{k-1} \} \). In such a way we construct three distinct graphs, namely \(FS(1, k) \), \(FS(2, k) \) and \(FS(3, k) \). The graph \(FS(j, k) \) \((j \in \{1, 2, 3\}) \) is the graph where the set of vertices \(\cup_{i=0}^{j-1} V(C_i) \setminus T \) induce \(j \) cycles (note that the graphs \(FS(2, 2p+1) \), \(p \geq 2 \), are the flower snarks defined by Isaacs [8]). We determine the number of perfect matchings of every \(FS(j, k) \). A cubic graph \(G \) is said to be 2-factor hamiltonian if every 2-factor of \(G \) is a hamiltonian cycle. We characterize the graphs \(FS(j, k) \) that are 2-factor hamiltonian (note that \(FS(1, 3) \) is the ”Triplex Graph” of Robertson, Seymour and Thomas [15]). A strong matching \(M \) in a graph \(G \) is a matching \(M \) such that there is no edge of \(E(G) \) connecting any two edges of \(M \). A cubic graph having a perfect matching union of two strong matchings is said to be a Jaeger’s graph. We characterize the graphs \(FS(j, k) \) that are Jaeger’s graphs.

Key words: cubic graph; perfect matching; strong matching; counting; hamiltonian cycle; 2-factor hamiltonian

1 Introduction

The complete bipartite graph \(K_{1,3} \) is called, as usually, a claw. Let \(k \) be an integer \(\geq 2 \) and let \(G \) be a cubic graph on \(4k \) vertices formed with \(k \) disjoint claws \(C_i = \{ x_i, y_i, z_i, t_i \} \) \((0 \leq i \leq k-1) \) where \(t_i \) (the center of \(C_i \)) is joined to the three independent vertices \(x_i, y_i \) and \(z_i \) (the external vertices of \(C_i \)). For every integer \(i \) modulo \(k \) \(C_i \) has three neighbours in \(C_{i-1} \) and three neighbours in \(C_{i+1} \). For any integer \(k \geq 2 \) we shall denote the set of integers modulo \(k \) as \(\mathbb{Z}_k \). In the sequel of this paper indices \(i \) of claws \(C_i \) belong to \(\mathbb{Z}_k \).
By renaming some external vertices of claws we can suppose, without loss of

generality, that \(\{x_i x_{i+1}, y_i y_{i+1}, z_i z_{i+1}\}\) are edges for any \(i\) distinct from \(k - 1\).

That is to say the subgraph induced on \(X = \{x_0, x_1, \ldots, x_{k-1}\}\) (respectively

\(Y = \{y_0, y_1, \ldots, y_{k-1}\}, Z = \{z_0, z_1, \ldots, z_{k-1}\}\) is a path or a cycle (as induced

subgraph of \(G\)). Denote by \(T\) the set of the internal vertices \(\{t_0, t_1, \ldots, t_{k-1}\}\).

Up to isomorphism, the matching joining the external vertices of \(C_{k-1}\) to

those of \(C_0\) (also called, for \(k \geq 3\), edges between \(C_{k-1}\) and \(C_0\)) determines

the graph \(G\). In this way we construct essentially three distinct graphs, namely

\(FS(1, k), FS(2, k)\) and \(FS(3, k)\). The graph \(FS(j, k)\) \((j \in \{1, 2, 3\})\) is the

graph where the set of vertices \(\bigcup _{i=0}^{k-1} \{C_i \setminus \{t_i\}\}\) induces \(j\) cycles. For \(k \geq 3\)

and any \(j \in \{1, 2, 3\}\) the graph \(FS(j, k)\) is a simple cubic graph. When \(k\) is

odd, the \(FS(2, k)\) are the graphs known as the flower snarks \([8]\). We note that

\(FS(3, 2)\) and \(FS(2, 2)\) are multigraphs, and that \(FS(1, 2)\) is isomorphic to the
cube. For \(k = 2\) the notion of "edge between \(C_{k-1}\) and \(C_0\)" is ambiguous,

so we must define it precisely. For two parallel edges having one end in \(C_0\)

and the other in \(C_1\), for instance two parallel edges having \(x_0\) and \(x_1\) as endvertices,
we denote one edge by \(x_0 x_1\) and the other by \(x_1 x_0\). An edge in

\(\{x_1 x_0, x_1 y_0, x_1 z_0, y_1 x_0, y_1 y_0, y_1 z_0, z_1 x_0, z_1 y_0, z_1 z_0\}\), if it exists, is an edge between

\(C_1\) and \(C_0\). We will say that \(x_0 x_1, y_0 y_1\) and \(z_0 z_1\) are edges between \(C_0\) and \(C_1\).

By using an ad hoc translation of the indices of claws (and of their vertices)

and renaming some external vertices of claws, we see that for any reasoning

about a sequence of \(h \geq 3\) consecutive claws \((C_i, C_{i+1}, C_{i+2}, \ldots, C_{i+h-1})\) there

is no loss of generality to suppose that \(0 \leq i < i + h - 1 \leq k - 1\). For a sequence

of claws \((C_p, \ldots, C_r)\) with \(0 \leq p < r \leq k - 1\), since \(0\) is a possible value for

subscript \(p\) and since \(k - 1\) is a possible value for subscript \(r\), it will be useful

from time to time to denote by \(x_{p-1}\) the neighbour in \(C_{p-1}\) of the vertex \(x_p\)

of \(C_p\) (recall that \(x_{p-1} \in \{x_{k-1}, y_{k-1}, z_{k-1}\}\) if \(p = 0\)), and to denote by \(x_{r+1}\)

the neighbour in \(C_{r+1}\) of the vertex \(x_r\) of \(C_r\) (recall that \(x_{r+1} \in \{x_0, y_0, z_0\}\) if

\(r = k - 1\)). We shall make use of analogous notations for neighbours of \(y_p\), \(z_p\),

\(y_r\) and \(z_r\).

We shall prove in the following lemma that there are essentially two types of

perfect matchings in \(FS(j, k)\).

Lemma 1 Let \(G \in \{FS(j, k), j \in \{1, 2, 3\}, k \geq 2\}\) and let \(M\) be a perfect

matching of \(G\). Then the 2–factor \(G\setminus M\) induces a path of length 2 and an

isolated vertex in each claw \(C_i\) \((i \in \mathbb{Z}_k)\) and \(M\) fulfils one (and only one) of
the three following properties:

i) For every i in $\mathbb{Z}_k M$ contains exactly one edge joining the claw C_i to the claw C_{i+1}.

ii) For every even i in $\mathbb{Z}_k M$ contains exactly two edges between C_i and C_{i+1} and none between C_{i-1} and C_i.

iii) For every odd i in $\mathbb{Z}_k M$ contains exactly two edges between C_i and C_{i+1} and none between C_{i-1} and C_i.

Moreover, when k is odd M satisfies only item i).

Proof Let M be a perfect matching of $G = FS(j, k)$ for some $j \in \{1, 2, 3\}$. Since M contains exactly one edge of each claw, it is obvious that $G \setminus M$ induces a path of length 2 and an isolated vertex in each claw C_i.

For each claw C_i of G the vertex t_i must be saturated by an edge of M whose end (distinct from t_i) is in $\{x_i, y_i, z_i\}$. Hence there are exactly two edges of M having one end in C_i and the other in $C_{i-1} \cup C_{i+1}$.

If there are two edges of M between C_i and C_{i+1} then there is no edge of M between C_{i-1} and C_i. If there are two edges of M between C_{i-1} and C_i then there is no edge of M between C_i and C_{i+1}. Hence, we get ii) or iii) and we must have an even number k of claws in G.

Assume now that there is only one edge of M between C_{i-1} and C_i. Then there exists exactly one edge between C_i and C_{i+1} and, extending this trick to each claw of G, we get i) when k is even or odd. □

Definition 2 We say that a perfect matching M of $FS(j, k)$ is of type 1 in Case i) of Lemma 1 and of type 2 in Cases ii) and iii). If necessary, to distinguish Case ii) from Case iii) we shall say type 2.0 in Case ii) and type 2.1 in Case iii). We note that the numbers of perfect matchings of type 2.0 and of type 2.1 are equal.

Notation: The length of a path P (respectively a cycle Γ) is denoted by $l(P)$ (respectively $l(\Gamma)$).

2 Counting perfect matchings of $FS(j, k)$

We shall say that a vertex v of a cubic graph G is inflated into a triangle when we construct a new cubic graph G' by deleting v and adding three new vertices inducing a triangle and joining each vertex of the neighbourhood $N(v)$ of v to
a single vertex of this new triangle. We say also that \(G' \) is obtained from \(G \) by a triangular extension. The converse operation is the contraction or reduction of the triangle. The number of perfect matchings of \(G \) is denoted by \(\mu(G) \).

Lemma 3 Let \(G \) be a bipartite cubic graph and let \(\{V_1, V_2\} \) be the bipartition of its vertex set. Assume that each vertex in some subset \(W_1 \subseteq V_1 \) is inflated into a triangle and let \(G' \) be the graph obtained in that way. Then \(\mu(G) = \mu(G') \).

Proof Note that \(\{V_1, V_2\} \) is a balanced bipartition and, by Knig’s Theorem, the graph \(G \) is a cubic 3-edge colourable graph. So, \(G' \) is also a cubic 3-edge colourable graph (hence, \(G \) and \(G' \) have perfect matchings). Let \(M \) be a perfect matching of \(G' \). Each vertex of \(V_1 \setminus W_1 \) is saturated by an edge whose second end vertex is in \(V_2 \). Let \(A \subseteq V_2 \) be the set of vertices so saturated in \(V_2 \). Assume that some triangle of \(G' \) is such that the three vertices are saturated by three edges having one end in the triangle and the second one in \(V_2 \). Then we need to have at least \(|W_1| + 2 \) vertices in \(V_2 \setminus A \), a contradiction. Hence, \(M \) must have exactly one edge in each triangle and the contraction of each triangle in order to get back \(G \) transforms \(M \) in a perfect matching of \(G \). Conversely, each perfect matching of \(G \) leads to a unique perfect matching of \(G' \) and we obtain the result. \(\square \)

Let us denote by \(\mu(j, k) \) the number of perfect matchings of \(FS(j, k) \), \(\mu_1(j, k) \) its number of perfect matchings of type 1 and \(\mu_2(j, k) \) its number of perfect matchings of type 2.

Lemma 4 We have

- \(\mu(1, 3) = \mu_1(1, 3) = 9 \)
- \(\mu(2, 3) = \mu_1(2, 3) = 8 \)
- \(\mu(3, 3) = \mu_1(3, 3) = 6 \)
- \(\mu(1, 2) = 9, \mu_1(1, 2) = 3 \)
- \(\mu(2, 2) = 10, \mu_1(2, 2) = 4 \)
- \(\mu(3, 2) = 12, \mu_1(3, 2) = 6 \)

Proof The cycle containing the external vertices of the claws of the graph \(FS(1, 3) \) is \(x_0, x_1, x_2, y_0, y_1, y_2, z_0, z_1, z_2, x_0 \). Consider a perfect matching \(M \) containing the edge \(t_0x_0 \). There are two cases:

- Case i) \(x_1x_2 \in M \) and \(ii) x_1t_1 \in M \). In Case i) we must have \(y_0y_1, t_1z_1, t_2z_2, z_0y_2 \in M \). In Case ii) there are two sub-cases:
 - ii)\(a \) \(x_2y_0 \in M \) and \(ii)\(b \) \(x_2t_2 \in M \). In Case ii)\(a \) we must have \(y_1y_2, t_2z_2, z_0z_1 \in M \) and in Case ii)\(b \) we must have \(y_0y_1, y_2z_0, z_1z_2 \in M \). Thus, there are exactly 3 distinct perfect matching containing \(t_0x_0 \). By symmetry, there are 3 distinct perfect matchings containing \(t_0y_0 \), and 3 distinct matchings containing \(t_0z_0 \), therefore \(\mu(1, 3) = 9 \).
It is well known that the Petersen graph has exactly 6 perfect matchings. Since $FS(2, 3)$ is obtained from the Petersen graph by inflating a vertex into a triangle these 6 perfect matchings lead to 6 perfect matchings of $FS(2, 3)$. We have two new perfect matchings when considering the three edges connected to this triangle (we have two ways to include these edges into a perfect matching). Hence $\mu(2, 3) = 8$.

$FS(3, 3)$ is obtained from $K_{3,3}$ by inflating three vertices in the same colour of the bipartition. Since $K_{3,3}$ has six perfect matchings, applying Lemma 3 we get immediately the result for $\mu(3, 3)$.

Is is a routine matter to obtain the values for $FS(j, 2)$ ($j \in \{1, 2, 3\}$).

Theorem 5 The numbers $\mu(i, k)$ of perfect matchings of $FS(i, k)$ ($i \in \{1, 2, 3\}$) are given by:

- $\mu(2, k) = 2^k$
- $\mu(1, k) = 2^k + 1$
- $\mu(3, k) = 2^k - 2$
- $\mu(2, k) = 2 \times 3^{\frac{k}{2}} + 2^k$
- $\mu(1, k) = 2 \times 3^{\frac{k}{2}} + 2^k - 1$
- $\mu(3, k) = 2 \times 3^{\frac{k}{2}} + 2^k + 2$

Proof We shall prove this result by induction on k and we distinguish the case ”k odd” and the case ”k even”.

The following trick will be helpful. Let $i \neq 0$ and let C_{i-2}, C_{i-1}, C_i and C_{i+1} be four consecutive claws of $FS(j, k)$ ($j \in \{1, 2, 3\}$). We can delete C_{i-1} and C_i and join the three external vertices of C_{i-2} to the three external vertices of C_{i+1} by a matching in such a way that the resulting graph is $FS(j', k - 2)$. We have three distinct ways to reduce $FS(j, k)$ into $FS(j', k - 2)$ when deleting C_{i-1} and C_i.

Case 1: We add the edges $\{x_{i-2}x_{i+1}, y_{i-2}y_{i+1}, z_{i-2}z_{i+1}\}$ and get $G_1 = FS(j_1, k - 2)$.

Case 2: We add the edges $\{x_{i-2}y_{i+1}, y_{i-2}z_{i+1}, z_{i-2}x_{i+1}\}$ and get $G_2 = FS(j_2, k - 2)$.

Case 3: We add the edges $\{x_{i-2}z_{i+1}, y_{i-2}x_{i+1}, z_{i-2}y_{i+1}\}$ and get $G_3 = FS(j_3, k - 2)$.
Following the cases, we shall precise the values of j_1, j_2 and j_3.

It is an easy task to see that each perfect matching of type 1 of $FS(j, k)$ leads to a perfect matching of either G_1 or G_2 or G_3 and, conversely, each perfect matching of type 1 of G_1 allows us to construct 2 distinct perfect matchings of type 1 of $FS(j, k)$, while each perfect matching of type 1 of G_2 and G_3 allows us to construct 1 perfect matching of type 1 of $FS(j, k)$.

We have

\[\mu_1(j, k) = 2\mu_1(G_1) + \mu_1(G_2) + \mu_1(G_3) \] \hspace{1cm} (1)

Claim 1 \(\mu_1(2, k) = 2^k \)

Proof Since the result holds for $FS(2, 3)$ and $FS(2, 2)$ by Lemma 4, in order to prove the result by induction on the number k of claws, we assume that the property holds for $FS(2, k-2)$ with $k-2 \geq 2$.

In that case G_1, G_2 and G_3 are isomorphic to $FS(2, k-2)$. Using Equation 1 we have, as claimed

\[\mu_1(2, k) = 4\mu_1(2, k-2) = 2^k \]

\[\Box \]

Claim 2 \(\mu_1(1, k) = 2^k - (-1)^k \) and \(\mu_1(3, k) = 2^k + 2(-1)^k \)

Proof Since the result holds for $FS(1, 3)$, $FS(1, 2)$, $FS(3, 3)$, and $FS(3, 2)$, by Lemma 4 in order to prove the result by induction on the number k of claws, we assume that the property holds for $FS(1, k-2)$, and $FS(3, k-2)$ with $k-2 \geq 2$.

When considering $FS(1, k)$, G_1 is isomorphic to $FS(1, k-2)$, and among G_2 and G_3 one of them is isomorphic to $FS(3, k-2)$ and the other to $FS(1, k-2)$. In the same way, when considering $FS(3, k)$, G_1 is isomorphic to $FS(3, k-2)$, and G_2 and G_3 are isomorphic to $FS(1, k-2)$.

Using Equation 1 we have,

\[\mu_1(1, k) = 2\mu_1(1, k-2) + \mu_1(1, k-2) + \mu_1(3, k-2) \]

and

\[\mu_1(1, k) = 2(2^{k-2} + 1) + 2^{k-2} + 1 + 2^{k-2} - 2 = 2^k + 1 \]
\[\mu_1(3, k) = 2(2^{k-2} - 2) + 2^{k-2} + 2^{k-2} + 1 = 2^k - 2 \]

When \(k \) is odd, we have \(\mu_2(j, k) = 0 \) by Lemma 1 and hence \(\mu(j, k) = \mu_1(j, k) \).

When \(k \) is even it remains to count the number of perfect matchings of type 2. From Lemma 1, for every two consecutive claws \(C_i \) and \(C_{i+1} \), we have either two edges of \(M \) joining the external vertices of \(C_i \) to those of \(C_{i+1} \) or none. We have 3 ways to choose 2 edges between \(C_i \) and \(C_{i+1} \), each choice of these two edges can be completed in a unique way in a perfect matching of the subgraph \(C_i \cup C_{i+1} \). Hence we get easily that the number of perfect matchings of type 2 in \(FS(j, k) \) (\(j \in \{1, 2, 3\} \)) is

\[\mu_2(j, k) = 2 \times 3^{\frac{j}{2}} \quad (2) \]

Using Claims 1 and 2 and Equation 2 we get the results for \(\mu(j, k) \) when \(k \) is even.

\[\square \]

3 Some structural results about perfect matchings of \(FS(j, k) \)

3.1 Perfect matchings of type 1

Lemma 6 Let \(M \) be a perfect matching of type 1 of \(G = FS(j, k) \). Then the 2-factor \(G \setminus M \) has exactly one or two cycles and each cycle of \(G \setminus M \) has at least one vertex in each claw \(C_i \) (\(i \in \mathbb{Z}_k \)).

Proof Let \(M \) be a perfect matching of type 1 in \(G \). Let us consider the claw \(C_i \) for some \(i \) in \(\mathbb{Z}_k \). Assume without loss of generality that the edge of \(M \) contained in \(C_i \) is \(t_ix_i \). The cycle of \(G \setminus M \) visiting \(x_i \) comes from \(C_{i-1} \), crosses \(C_i \) by using the vertex \(x_i \) and goes to \(C_{i+1} \). By Lemma 1, the path \(y_it_iz_i \) is contained in a cycle of \(G \setminus M \). The two edges incident to \(y_i \) and \(z_i \) joining \(C_i \) to \(C_{i-1} \) (as well as those joining \(C_i \) to \(C_{i+1} \)) are not contained both in \(M \) (since \(M \) has type 1). Thus, the cycle of \(G \setminus M \) containing \(y_it_iz_i \) comes from \(C_{i-1} \), crosses \(C_i \) and goes to \(C_{i+1} \). Thus, we have at most two cycles in \(G \setminus M \), as claimed, and we can note that each claw must be visited by these cycles. \(\square \)
Definition 7 Let us suppose that M is a perfect matching of type 1 in $G = FS(j, k)$ such that the 2-factor $G \setminus M$ has exactly two cycles Γ_1 and Γ_2. A claw C_i intersected by three vertices of Γ_1 (respectively Γ_2) is said to be Γ_1-major (respectively Γ_2-major).

Lemma 8 Let M be a perfect matching of type 1 of $G = FS(j, k)$ such that the 2-factor $G \setminus M$ has exactly two cycles. Then, the lengths of these two cycles have the same parity as k, and those lengths are distinct when k is odd.

Proof Let Γ_1 and Γ_2 be the two cycles of $G \setminus M$. By Lemma 3, for each i in \mathbb{Z}_k these two cycles must cross the claw C_i. Let k_1 be the number of Γ_1-major claws and let k_2 be the number of Γ_2-major claws. We have $k_1 + k_2 = k$, $l(\Gamma_1) = 3k_1 + k_2$ and $l(\Gamma_2) = 3k_2 + k_1$. When k is odd, we must have either k_1 odd and k_2 even, or k_1 even and k_2 odd. Then Γ_1 and Γ_2 have distinct odd lengths. When k is even, we must have either k_1 and k_2 even, or k_1 and k_2 odd. Then Γ_1 and Γ_2 have even lengths.

Lemma 9 Let M be a perfect matching of type 1 of $G = FS(j, k)$ such that the 2-factor $G \setminus M$ has exactly two cycles Γ_1 and Γ_2. Suppose that there are two consecutive Γ_1-major claws C_j and C_{j+1} with $j \in \mathbb{Z}_k \setminus \{k - 1\}$. Then there is a perfect matching M' of type 1 such that the 2-factor $G \setminus M'$ has exactly two cycles Γ_1' and Γ_2' having the following properties:

a) for $i \in \mathbb{Z}_k \setminus \{j, j + 1\}$ C_i is Γ_2'-major if and only if C_i is Γ_2-major,
b) C_j and C_{j+1} are Γ_2'-major,
c) $l(\Gamma_1') = l(\Gamma_1) - 4$ and $l(\Gamma_2') = l(\Gamma_2) + 4$.

Proof Consider the claws C_j and C_{j+1}. Since C_j is a Γ_1-major claw suppose without loss of generality that t_jz_j belongs to M and that Γ_1 contains the path $x'_{j-1}tx_jy_jy_{j+1}$ where x'_{j-1} denotes the neighbour of x_j in C_{j-1} (then x_jx_{j+1} belongs to M). Since C_{j+1} is Γ_1-major and Γ_2 goes through C_j and C_{j+1}, the cycle Γ_1 must contain the path $y_{j+1}t_{j+1}x_{j+1}x'_{j+2}$ where x'_{j+2} denotes the neighbour of x_{j+1} in C_{j+2} (then M contains $t_{j+1}z_{j+1}$ and $y_{j+1}y'_{j+2}$). Denote by P_1 the path $x'_{j-1}tx_jy_jy_{j+1}t_{j+1}x_{j+1}x'_{j+2}$. Then Γ_2 contains the path $P_2 = z'_{j-1}z_jz_{j+1}z'_{j+1}$ where z'_{j-1} and z'_{j+1} are defined similarly. See to the left part of Figure 3.

Let us perform the following local transformation: delete x_jx_{j+1}, t_jz_j and $t_{j+1}z_{j+1}$ from M and add z_jz_{j+1}, t_jx_j and $t_{j+1}x_{j+1}$. Let M' be the resulting perfect matching. Then the subpath P_1 of Γ_1 is replaced by $P'_1 = x'_{j-1}tx_jx_{j+1}x'_{j+2}$ and the subpath P_2 of Γ_2 is replaced by $P'_2 = z'_{j-1}z_jt_jy_jy_{j+1}t_{j+1}z_{j+1}z'_{j+2}$ (see Figure 3). We obtain a new 2-factor containing two new cycles Γ_1' and Γ_2'. Note that C_j and C_{j+1} are Γ_2'-major claws and for $i \in \mathbb{Z}_k \setminus \{j, j + 1\}$ C_i is Γ_2'-major (respectively Γ_1'-major) if and only if C_i is Γ_2-major (respectively Γ_1-major).
The length of Γ_1 (now Γ'_1) decreases of 4 units while the length of Γ_2 (now Γ'_2) increases of 4 units.

The operation depicted in Lemma 9 above will be called a **local transformation** of type 1.

Lemma 10 Let M be a perfect matching of type 1 of $G = FS(j, k)$ such that the 2-factor $G \setminus M$ has exactly two cycles Γ_1 and Γ_2. Suppose that there are three consecutive claws C_j, C_{j+1} and C_{j+2} with j in $Z_k \setminus \{k - 1, k - 2\}$ such that C_j and C_{j+2} are Γ_1-major and C_{j+1} is Γ_2-major. Then there is a perfect matching M' of type 1 such that the 2-factor $G \setminus M'$ has exactly two cycles Γ'_1 and Γ'_2 having the following properties:

a) for $i \in Z_k \setminus \{j, j + 1, j + 2\}$ C_i is Γ'_2-major if and only if C_i is Γ_2-major,
b) C_j and C_{j+2} are Γ'_2-major and C_{j+1} is Γ'_1-major,
c) $l(\Gamma'_1) = l(\Gamma_1) - 2$ and $l(\Gamma'_2) = l(\Gamma_2) + 2$.

Proof Since C_j is Γ_1-major, as in the proof of Lemma 9 suppose that Γ_1 contains the path $x_{j-1}t_jy_jy_{j+1}$ (that is edges t_jz_j and x_jx_{j+1} belong to M). Since C_{j+1} is Γ_2-major the cycle Γ_1 contains the edge $y_{j+1}y_{j+2}$. Then we see that Γ_1 contains the path $Q_1 = x_{j-1}tx_jy_jy_{j+1}y_{j+2}t_{j+2}z_jz_{j+1}$ and that Γ_2 contains the path $Q_2 = z_{j-1}z_jy_{j+1}t_{j+1}x_{j+1}x_{j+2}x_{j+3}$. Note that $y_{j+1}t_{j+1}$, $z_{j+1}z_{j+2}$ and $t_{j+1}x_{j+2}$ belong to M.

Let us perform the following local transformation: delete t_jz_j, x_jx_{j+1}, $z_{j+1}z_{j+2}$ and $x_{j+1}t_{j+2}$ from M and add x_jt_j, $z_{j+1}z_{j+2}$ and $x_{j+1}t_{j+2}$ to M. Let M' be the resulting perfect matching. Then the subpath Q_1 of Γ_1 is replaced by $Q_1' = x_{j-1}tx_jx_{j+1}t_{j+1}z_jz_{j+1}z_{j+2}z_{j+3}'$ and the subpath Q_2 of Γ_2 is replaced by $Q_2' = z_{j-1}z_jt_jy_jy_{j+1}y_{j+2}t_{j+2}x_{j+2}x_{j+3}$. We obtain a new 2-factor containing two new cycles named Γ'_1 and Γ'_2. Note that C_j and C_{j+2} are now Γ'_2-major claws and C_{j+1} is Γ'_1-major. The length of Γ_1 decreases of 2 units while the length of Γ_2 increases of 2 units. It is clear that for $i \in Z_k \setminus \{j, j + 1, j + 2\}$ C_i is Γ'_2-major (respectively Γ'_1-major) if and only if C_i is Γ_2-major (respectively Γ_1-major).
The operation depicted in Lemma 10 above will be called a local transformation of type 2.

Lemma 11 Let \(M \) be a perfect matching of type 1 of \(G = FS(j, k) \) such that the 2-factor \(G \setminus M \) has exactly two cycles \(\Gamma_1 \) and \(\Gamma_2 \). Suppose that there are three consecutive claws \(C_j, C_{j+1} \) and \(C_{j+2} \) with \(j \) in \(Z_k \setminus \{k-1, k-2\} \) such that \(C_{j+1} \) and \(C_{j+2} \) are \(\Gamma_2 \)-major and \(C_j \) is \(\Gamma_1 \)-major. Then there is a perfect matching \(M' \) of type 1 such that the 2-factor \(G \setminus M' \) has exactly two cycles \(\Gamma_1' \) and \(\Gamma_2' \) having the following properties:

a) for \(i \in Z_k \setminus \{j, j + 1, j + 2\} \) \(C_i \) is \(\Gamma_2 \)-major if and only if \(C_i \) is \(\Gamma_2 \)-major,

b) \(C_j \) and \(C_{j+1} \) are \(\Gamma_2' \)-major and \(C_{j+2} \) is \(\Gamma_1' \)-major,

c) \(l(\Gamma_1') = l(\Gamma_1) \) and \(l(\Gamma_2') = l(\Gamma_2) \).

Proof Since \(C_j \) is \(\Gamma_1 \)-major, as in the proof of Lemma 9 suppose that \(\Gamma_1 \) contains the path \(x_{j-1}x_jy_{j+1} \) (that is edges \(t_jz_j \) and \(x_jx_{j+1} \) belong to \(M \)). Since \(C_{j+1} \) and \(C_{j+2} \) are \(\Gamma_2 \)-major, the unique vertex of \(C_{j+1} \) (respectively \(C_{j+2} \)) contained in \(\Gamma_1 \) is \(y_{j+1} \) (respectively \(y_{j+2} \)). Note that the perfect matching \(M \) contains the edges \(t_jz_j, x_jx_{j+1}, t_{j+1}y_{j+1}, z_{j+1}z_{j+2} \) and \(t_{j+2}y_{j+2} \). Then the path \(R_1 = x_{j-1}x_jy_{j+1+y_{j+1}+2y_{j+3}} \) is a subpath of \(\Gamma_1 \) and the path \(R_2 = z_{j-1}z_jz_{j+1}t_{j+1}x_{j+1}x_{j+2}x_{j+2}y_{j+3} \) is a subpath of \(\Gamma_2 \). See to the left part of Figure 3.

Let us perform the following local transformation: delete \(t_jz_j, x_jx_{j+1}, t_{j+1}y_{j+1}, z_{j+1}z_{j+2} \) and \(t_{j+2}y_{j+2} \) from \(M \) and add \(x_jx_{j+1}, z_jz_{j+1}, t_{j+1}x_{j+1}, y_{j+1}y_{j+2} \) and \(t_{j+2}z_{j+2} \). Let \(M' \) be the resulting perfect matching. Then the subpath \(R_1 \) of \(\Gamma_1 \) is replaced by \(R_1' = x_{j-1}x_jx_{j+1}x_{j+2}t_{j+2}y_{j+3} \) and the subpath \(R_2 \) of \(\Gamma_2 \) is replaced by \(R_2' = z_{j-1}z_jz_{j+1}t_{j+1}z_{j+1}z_{j+2}z_{j+3} \). We obtain a new 2-factor containing two new cycles named \(\Gamma_1' \) and \(\Gamma_2' \) such that \(l(\Gamma_1') = l(\Gamma_1) \) and \(l(\Gamma_2') = l(\Gamma_2) \) (see Figure 3). It is clear that for \(i \in Z_k \setminus \{j, j + 1, j + 2\} \) \(C_i \) is \(\Gamma_2' \)-major (respectively \(\Gamma_1' \)-major) if and only if \(C_i \) is \(\Gamma_2 \)-major (respectively \(\Gamma_1 \)-major). Note that \(C_j \) and \(C_{j+1} \) are \(\Gamma_2 \)-major and \(C_{j+2} \) is \(\Gamma_1 \)-major. \(\square \)
The operation depicted in Lemma 11 above will be called a local transformation of type 3.

Lemma 12 Let M be a perfect matching of type 1 of $G = FS(j, k)$ such that the 2-factor $G \setminus M$ has exactly two cycles Γ_1 and Γ_2 such that $l(\Gamma_1) \leq l(\Gamma_2)$ and $l(\Gamma_2)$ is as great as possible. Then there exists at most one Γ_1-major claw.

Proof Suppose, for the sake of contradiction, that there exist at least two Γ_1-major claws. Since $l(\Gamma_2)$ is maximum, by Lemma 9 these claws are not consecutive. Then consider two Γ_1-major claws C_i and C_{i+h+1} (with $h \geq 1$) such that the h consecutive claws $(C_{i+1}, \ldots, C_{i+h})$ are Γ_2-major. Since $l(\Gamma_2)$ is maximum, by Lemma 10 the number h is at least 2. Then by applying $r = \lfloor \frac{h}{2} \rfloor$ consecutive local transformations of type 3 (Lemma 11) we obtain a perfect matching $M^{(r)}$ such that the 2-factor $G \setminus M^{(r)}$ has exactly two cycles $\Gamma_1^{(r)}$ and $\Gamma_2^{(r)}$ with $l(\Gamma_1^{(r)}) = l(\Gamma_1)$ and $l(\Gamma_2^{(r)}) = l(\Gamma_2)$ and such that $C_{i+2\lfloor \frac{h}{2} \rfloor}$ and C_{i+h+1} are $\Gamma_1^{(r)}$-major. Since $l(\Gamma_2^{(r)})$ is maximum, we can conclude by Lemma 9 and by Lemma 10 that h is neither even nor odd, a contradiction. □

3.2 Perfect matchings of type 2

We give here a structural result about perfect matchings of type 2 in $G = FS(j, k)$.

Lemma 13 Let M be a perfect matching of type 2 of $G = FS(j, k)$ (with $k \geq 4$). Then the 2-factor $G \setminus M$ has exactly one cycle of even length $l \geq k$ and a set of p cycles of length 6 where $l + 6p = 4k$ (with $0 \leq p \leq \frac{k}{2}$).

Proof Let M be a perfect matching of type 2 in G. By Lemma 1 the number k of claws is even. Let i in \mathbb{Z}_k such that there are two edges of M between C_{i-1} and C_i. There are no edges of M between C_i and C_{i+1} and two edges of M between C_{i+1} and C_{i+2}. We may consider that $0 \leq i < k - 1$.

For $j \in \{i, i + 2, i + 4, \ldots\}$ we denote by e_j the unique edge of $G \setminus M$ having...
one end vertex in C_{j-1} and the other in C_j. Let us denote by A the set \{${e_i, e_{i+2}, e_{i+4}, \ldots}$\}. We note that $|A| = \frac{k}{2}$.

Assume without loss of generality that the two edges of M between C_{i-1} and C_i have end vertices in C_i which are x_i and y_i (then z_i is the end vertex of e_i in C_i). Two cases may now occur.

Case 1: The end vertices in C_{i+1} of the two edges of M between C_{i+1} and C_{i+2} are x_{i+1} and y_{i+1} (then z_{i+1} is the end vertex of e_{i+2} in C_{i+1}). In that case the 2-factor $G \setminus M$ contains the cycle of length 6 $x_i x_{i+1} y_{i+1} y_i t_i$, while the edge $z_i z_{i+1}$ of $G \setminus M$ relies e_i and e_{i+2}.

Case 2: The end vertices in C_{i+1} of the two edges of M between C_{i+1} and C_{i+2} are y_{i+1} and z_{i+1} (respectively x_{i+1} and z_{i+1}). Then x_{i+1} (respectively y_{i+1}) is the end vertex of e_{i+2} in C_{i+1}.

In that case the edges e_i and e_{i+2} are connected in $G \setminus M$ by the path $z_i z_{i+1} t_{i+1} y_{i+1} y_i t_i x_{i+1}$ (respectively $z_i z_{i+1} t_{i+1} x_{i+1} x_i t_i y_i y_{i+1}$).

The same reasoning can be done for $\{e_{i+2}, e_{i+4}\}$, $\{e_{i+4}, e_{i+6}\}$, and so on. Then, we see that the set A is contained in a unique cycle Γ of $G \setminus M$ which crosses each claw. Thus, the length l of Γ is at least k. More precisely, each e_j in A contributes for 1 in l, in Case 1 the edge $z_i z_{i+1}$ contributes for 1 in l and in Case 2 the path $z_i z_{i+1} t_{i+1} y_{i+1} y_i t_i x_i x_{i+1}$ contributes for 7 in l. Let us suppose that Case 1 appears p times ($0 \leq p \leq \frac{k}{2}$), that is to say $G \setminus M$ contains p cycles of length 6. Since Case 2 appears $\frac{k}{2} - p$ times, the length of Γ is $l = \frac{k}{2} + p + 7(\frac{k}{2} - p) = 4k - 6p$. □

Remark 14 If k is even then by Lemmas 3, 8 and 13 $FS(j, k)$ has an even 2-factor. That is to say $FS(j, k)$ is a cubic 3-edge colourable graph.

4 Perfect matchings and hamiltonian cycles of $F(j, k)$

4.1 Perfect matchings of type 1 and hamiltonicity

Theorem 15 Let M be a perfect matching of type 1 of $G = FS(j, k)$. Then the 2-factor $G \setminus M$ is a hamiltonian cycle except for k odd and $j = 2$, and for k even and $j = 1$ or 3.

Proof Suppose that there exists a perfect matching M of type 1 of G such that $G \setminus M$ is not a hamiltonian cycle. By Lemma 3 and Lemma 8 the 2-factor $G \setminus M$ is made of exactly two cycles Γ_1 and Γ_2 whose lengths have the same parity as k. Without loss of generality we suppose that $l(\Gamma_1) \leq l(\Gamma_2)$.
Assume moreover that among the perfect matchings of type 1 of G such that the 2–factor $G \setminus M$ is composed of two cycles, M has been chosen in such a way that the length of the longest cycle Γ_2 is as great as possible. By Lemma 12 there exists at most one Γ_1–major claw.

Case 1: There exists one Γ_1–major claw.

Without loss of generality, suppose that C_0 is intersected by Γ_1 in $\{y_0, t_0, x_0\}$ and that y_ky_0 belongs to Γ_1. Since for every $i \neq 0$ the claw C_i is Γ_2–major, Γ_1 contains the vertices $y_0, t_0, x_0, x_1, x_2, \ldots, x_{k-1}$.

- If $k = 2r + 1$ with $r \geq 1$ then Γ_2 contains the path

 \[z_0z_1t_1y_1y_2t_2z_2 \cdots z_{2r−1}t_{2r−1}y_{2r−1}y_{2r}t_{2r}z_{2r}. \]

 Thus, y_0x_k, x_0y_k, $z_0z_{k−1}$ are edges of G. This means that $\cup_{i=0}^{j=k−1}\{C_i \setminus \{t_i\}\}$ induces two cycles, that is to say $j = 2$ and $G = FS(2, k)$.

- If $k = 2r + 2$ with $r \geq 1$ then Γ_2 contains the path

 \[z_0z_1t_1y_1y_2t_2z_2 \cdots z_{2r−1}t_{2r−1}y_{2r−1}y_{2r}t_{2r}z_{2r+1}t_{2r+1}y_{2r+1}. \]

 Thus, $x_0z_{k−1}$, $y_0x_{k−1}$ and $z_0y_{k−1}$ are edges. This means that $\cup_{i=0}^{j=k−1}\{C_i \setminus \{t_i\}\}$ induces one cycle, that is to say $j = 1$ and $G = FS(1, k)$.

Case 2: There is no Γ_1–major claw.

Suppose that x_0 belongs to Γ_1. Then, Γ_1 contains $x_0, x_1, \ldots, x_{k−1}$.

- If $k = 2r + 1$ with $r \geq 1$ then Γ_2 contains the path

 \[y_0t_0z_0z_1t_1y_1y_2 \cdots z_{2r−1}t_{2r−1}y_{2r−1}y_{2r}t_{2r}z_{2r}. \]

 Thus, $x_0x_{k−1}$, $y_0z_{k−1}$ and $z_0y_{k−1}$ are edges of G and the set $\cup_{i=0}^{j=k−1}\{C_i \setminus \{t_i\}\}$ induces two cycles, that is to say $j = 2$ and $G = FS(2, k)$.

- If $k = 2r + 2$ with $r \geq 1$ then Γ_2 contains the path

 \[y_0t_0z_0z_1t_1y_1y_2 \cdots y_{2r}t_{2r}z_{2r+1}t_{2r+1}y_{2r+1}. \]

 Thus, $x_0x_{k−1}$, $y_0y_{k−1}$ and $z_0z_{k−1}$ are edges. This means that $\cup_{i=0}^{j=k−1}\{C_i \setminus \{t_i\}\}$ induces three cycles, that is to say $j = 3$ and $G = FS(3, k)$.

\[\square\]

Definition 16 A cubic graph G is said to be 2–factor hamiltonian if every 2-factor of G is a hamiltonian cycle (or equivalently, if for every perfect
matching M of G the 2-factor $G \setminus M$ is a hamiltonian cycle).

By Theorem 15 for any odd $k \geq 3$ and $j \in \{1, 3\}$ or for any even k and $j = 2$, and for every perfect matching M of type 1 in $FS(j, k)$ the 2-factor $FS(j, k) \setminus M$ is a hamiltonian cycle. By Lemma 13 $FS(2, k)$ $(k \geq 4)$ may have a perfect matching M of type 2 such that the 2-factor $FS(2, k) \setminus M$ is not a hamiltonian cycle (it may contain cycles of length 6).

Then we have the following.

Corollary 17 A graph $G = FS(j, k)$ is 2-factor hamiltonian if and only if k is odd and $j = 1$ or 3.

We note that $FS(1, 3)$ is the "Triplex Graph" of Robertson, Seymour and Thomas [13]. We shall examine others known results about 2-factor hamiltonian cubic graphs in Section 5.

Corollary 18 The chromatic index of a graph $G = FS(j, k)$ is 4 if and only if $j = 2$ and k is odd.

Proof When $j = 2$ and k is odd, any 2-factor must have at least two cycles, by Theorem 15. Then Lemma 8 implies that any 2-factor is composed of two odd cycles. Hence G has chromatic index 4.

When $j = 1$ or 3 and k is odd by Theorem 15 $FS(j, k)$ is hamiltonian. If k is even then by Lemmas 3, 8 and 13 $FS(j, k)$ has an even 2-factor. □

4.2 Perfect matchings of type 2 and hamiltonicity

At this point of the discourse one may ask what happens for perfect matchings of type 2 in $FS(j, k)$ (k even). Can we characterize and count perfect matchings of type 2, complementary 2-factor of which is a hamiltonian cycle? An affirmative answer shall be given.

Let us consider a perfect matching M of type 2 in $FS(j, 2p)$ with $p \geq 2$. Suppose that there are no edges of M between C_{2i-1} and C_{2i} (for any $i \geq 1$), that is M is a matching of type 2.0 (see Definition 2). Consider two consecutive claws C_{2i} and C_{2i+1} $(0 \leq i \leq p - 1)$. There are three cases:

- **Case (x):** $\{y_{2i}, y_{2i+1}, z_{2i}, z_{2i+1}\} \subset M$ (then, $M \cap (C_{2i} \cup C_{2i+1}) = \{x_{2i+1}, x_{2i+1}t_{2i+1}\}$).

- **Case (y):** $\{x_{2i}, x_{2i+1}, z_{2i}, z_{2i+1}\} \subset M$ (then, $M \cap (C_{2i} \cup C_{2i+1}) = \{y_{2i}, y_{2i+1}t_{2i+1}\}$).
Case (z): \(\{x_{2i}, x_{2i+1}, y_{2i}, y_{2i+1}\} \subseteq M \) (then, \(M \cap (C_{2i} \cup C_{2i+1}) = \{z_{2i}, t_{2i}, z_{2i+1}, t_{2i+1}\} \)).

The subgraph induced on \(C_{2i} \cup C_{2i+1} \) is called a block. In Case (x) (respectively Case (y), Case (z)) a block is called a block of type \(X \) (respectively block of type \(Y \), block of type \(Z \)). Then \(FS(j, 2p) \) with a perfect matchings \(M \) of type 2.0 can be seen as a sequence of \(p \) blocks properly relied. In other words, a perfect matchings \(M \) of type 2 in \(FS(j, 2p) \) is entirely described by a word of length \(p \) on the alphabet of three letters \(\{X, Y, Z\} \). The block \(C_0 \cup C_1 \) is called initial block and the block \(C_{2p-1} \cup C_{2p} \) is called terminal block. These extremal blocks are not considered here as consecutive blocks.

By Lemma 13, \(FS(j, 2p) \setminus M \) has no 6-cycles if and only if \(FS(j, 2p) \setminus M \) is a unique even cycle. It is an easy matter to prove that two consecutive blocks do not induce a 6-cycle if and only if they are not of the same type. Then the possible configurations for two consecutive blocks are \(XY, XZ, YX, YZ, ZX \) and \(ZY \). To eliminate a possible 6-cycle in \(C_0 \cup C_{2p-1} \) we have to determine for every \(j \in \{1, 2, 3\} \) the forbidden extremal configurations. An extremal configuration shall be denoted by a word on two letters in \(\{X, Y, Z\} \) such that the left letter denotes the type of the initial block \(C_0 \cup C_1 \) and the right letter denotes the type of the terminal block \(C_{2p-1} \cup C_{2p} \). We suppose that the extremal blocks are connected for \(j = 1 \) by the edges \(x_{2p-1}z_0, y_{2p-1}x_0 \) and \(z_{2p-1}y_0 \), for \(j = 2 \) by the edges \(x_{2p-1}x_0, y_{2p-1}z_0 \) and \(z_{2p-1}y_0 \) and for \(j = 3 \) by the edges \(x_{2p-1}x_0, y_{2p-1}y_0 \) and \(z_{2p-1}z_0 \). Then, it is easy to verify that we have the following result.

Lemma 19 Let \(M \) be a perfect matching of type 2.0 of \(G = FS(j, 2p) \) (with \(p \geq 2 \)) such that the 2-factor \(G \setminus M \) is a hamiltonian cycle. Then the forbidden extremal configurations are

\[
XY, YZ \text{ and } ZX \text{ for } FS(1, 2p),
\]

\[
XX, YZ \text{ and } ZY \text{ for } FS(2, 2p),
\]

and \(XX, YY \) and \(ZZ \) for \(FS(3, 2p) \).

Thus, any perfect matching \(M \) of type 2.0 of \(FS(j, 2p) \) such that the 2-factor \(G \setminus M \) is a hamiltonian cycle is totally characterized by a word of length \(p \) on the alphabet \(\{X, Y, Z\} \) having no two identical consecutive letters and such that the sub-word [initial letter][terminal letter] is not a forbidden configuration. Then, we are in position to obtain the number of such perfect matchings in \(FS(j, 2p) \). Let us denote by \(\mu'_{2,0}(j, 2p) \) (respectively \(\mu'_{2,1}(j, 2p) \), \(\mu'_{2,1}(j, 2p) \)) the number of perfect matchings of type 2.0 (respectively type 2.1, type 2) complementary to a hamiltonian cycle in \(FS(j, 2p) \). Clearly \(\mu'_{2}(j, 2p) = \mu'_{2,0}(j, 2p) + \mu'_{2,1}(j, 2p) \) and \(\mu'_{2,0}(j, 2p) = \mu'_{2,1}(j, 2p) \).

15
Theorem 20 The numbers \(\mu'_2(j, 2p) \) of perfect matchings of type 2 complementary to hamiltonian cycles in \(FS(j, 2p) \) \((j \in \{1, 2, 3\}) \) are given by:

\[
\begin{align*}
\mu'_2(1, 2p) &= 2^{p+1} + (-1)^{p+1}2, \\
\mu'_2(2, 2p) &= 2^{p+1}, \\
\text{and} \quad \mu'_2(3, 2p) &= 2^{p+1} + (-1)^{p}4.
\end{align*}
\]

Proof Consider, as previously, perfect matchings of type 2.0. Let \(\alpha \) and \(\beta \) be two letters in \(\{X, Y, Z\} \) (not necessarily distinct). Let \(A^p_{\alpha\beta} \) be the set of words of length \(p \) on \(\{X, Y, Z\} \) having no two consecutive identical letters, beginning by \(\alpha \) and ending by a letter distinct from \(\beta \). Denote the number of words in \(A^p_{\alpha\beta} \) by \(a^p_{\alpha\beta} \). Let \(B^p_{\alpha\beta} \) be the set of words of length \(p \) on \(\{X, Y, Z\} \) having no two consecutive identical letters, beginning by \(\alpha \) and ending by \(\beta \). Denote by \(b^p_{\alpha\beta} \) the number of words in \(B^p_{\alpha\beta} \).

Clearly, the number of words of length \(p \) having no two consecutive identical letters and beginning by \(\alpha \) is \(2^{p-1} \). Then \(a^p_{\alpha\beta} + b^p_{\alpha\beta} = 2^{p-1} \). The deletion of the last \(\beta \) of a word in \(B^p_{\alpha\beta} \) gives a word in \(A^{p-1}_{\alpha\beta} \) and the addition of \(\beta \) to the right of a word in \(A^{p-1}_{\alpha\beta} \) gives a word in \(B^p_{\alpha\beta} \).

Thus \(b^p_{\alpha\beta} = a^{p-1}_{\alpha\beta} \) and for every \(p \geq 3 \) \(a^p_{\alpha\beta} = 2^{p-1} - a^{p-1}_{\alpha\beta} \). We note that \(a^2_{\alpha\beta} = 2 \) if \(\alpha = \beta \), and \(a^2_{\alpha\beta} = 1 \) if \(\alpha \neq \beta \). If \(\alpha = \beta \) we have to solve the recurrent sequence: \(u_2 = 2 \) and \(u_p = 2^{p-1} - u_{p-1} \) for \(p \geq 3 \). If \(\alpha \neq \beta \) we have to solve the recurrent sequence: \(v_2 = 1 \) and \(v_p = 2^{p-1} - v_{p-1} \) for \(p \geq 3 \). Then we obtain \(u_p = \frac{2}{3}(2^{p-1} + (-1)^p) \) and \(v_p = \frac{1}{3}(2^p + (-1)^{p+1}) \) for \(p \geq 2 \).

By Lemma [19]

\[
\begin{align*}
\mu'_{2,0}(1, 2p) &= a^p_{XX} + a^p_{YZ} + a^p_{ZX} = 3v_p = 2^p + (-1)^{p+1}, \\
\mu'_{2,0}(2, 2p) &= a^p_{XX} + a^p_{YZ} + a^p_{ZY} = u_p + 2v_p = 2^p, \\
\text{and} \quad \mu'_{2,0}(3, 2p) &= a^p_{XX} + a^p_{YY} + a^p_{ZZ} = 3u_p = 2^p + (-1)^p2.
\end{align*}
\]

Since \(\mu'_2(j, 2p) = \mu'_{2,0}(j, 2p) + \mu'_{2,1}(j, 2p) \) and \(\mu'_{2,0}(j, 2p) = \mu'_{2,1}(j, 2p) \) we obtain the announced results. \(\square \)

Remark 21 We see that \(\mu'_2(j, 2p) \simeq 2^{p+1} \) and this is to compare with the number \(\mu_2(j, 2p) = 2 \times 3^p \) of perfect matchings of type 2 in \(FS(j, 2p) \) (see backward in Section 2).
4.3 Strong matchings and Jaeger’s graphs

For a given graph $G = (V, E)$ a strong matching (or induced matching) is a matching S such that no two edges of S are joined by an edge of G. That is, S is the set of edges of the subgraph of G induced by the set $V(S)$. We consider cubic graphs having a perfect matching which is the union of two strong matchings that we call Jaeger’s graph (in his thesis [1] Jaeger called these cubic graphs equitable). We call Jaeger’s matching a perfect matching M of a cubic graph G which is the union of two strong matchings M_B and M_R. Set $B = V(M_B)$ (the blue vertices) and $R = V(M_R)$ (the red vertices). An edge of G is said mixed if its end vertices have distinct colours. Since the set of mixed edges is $E(G) \setminus M$, the 2-factor $G \setminus M$ is even and $|B| = |M|$. Thus, every Jaeger’s graph G is a cubic 3-edge colourable graph and for any Jaeger’s matching $M = M_B \cup M_R$, $|M_B| = |M_R|$. See, for instance, [2] and [3] for some properties of these graphs.

In this subsection we determine the values of j and k for which a graph $FS(j, k)$ is a Jaeger’s graph.

Lemma 22 If $G = FS(j, k)$ is a Jaeger’s graph (with $k \geq 3$) and $M = M_B \cup M_R$ is a Jaeger’s matching of G then M is a perfect matching of type 1.

Proof Suppose that M is of type 2 and suppose without loss of generality that there are two edges of M between C_0 and C_1, for instance x_0x_1 and y_0y_1. Then $C_0 \cap M = \{t_0z_0\}$ and $C_1 \cap M = \{t_1z_1\}$. Suppose that x_0x_1 and y_0y_1 belong to M_B. Since M_B is a strong matching, t_0z_0 and t_1z_1 belong to $M \setminus M_B = M_R$. This is impossible because M_R is also a strong matching. By symmetry there are no two edges of M_R between C_0 and C_1. Then there is one edge of M_B between C_0 and C_1, x_0x_1 for instance, and one edge of M_R between C_0 and C_1, y_0y_1 for instance. Since M_B and M_R are strong matchings, there is no edge of M in $C_0 \cup C_1$, a contradiction. Thus, M is a perfect matching of type 1. \square

Lemma 23 If $G = FS(j, k)$ is a Jaeger’s graph (with $k \geq 3$) then either $(j = 1$ and $k \equiv 1$ or 2 (mod 3)) or $(j = 3$ and $k \equiv 0$ (mod 3)).

Proof Let $M = M_B \cup M_R$ be a Jaeger’s matching of G. By Lemma 22 M is a perfect matching of type 1. Suppose without loss of generality that $M_B \cap E(C_0) = \{x_0t_0\}$. Since M_B is a strong matching there is no edge of M_B between C_0 and C_1. Suppose, without loss of generality, that the edge in M_R joining C_0 to C_1 is y_0y_1. Consider the claws C_0, C_1 and C_2. Since M_B and M_R are strong matchings, we can see that the choices of $x_0t_0 \in M_B$ and $y_0y_1 \in M_R$ fixes the positions of the other edges of M_B and M_R. More
precisely, \(\{t_1z_1, y_2t_2\} \subset M_B \) and \(\{x_1x_2, z_2z_3'\} \subset M_R \). This unique configuration is depicted in Figure 5.

![Figure 5. Strong matchings \(M_B \) (bold edges) and \(M_R \) (dashed edges)](image)

If \(k \geq 4 \) then we see that \(z_2z_3 \in M_R, x_3t_3 \in M_B, \) and \(y_3y_4' \in M_R \). So, the local situation in \(C_3 \) is similar to that in \(C_0 \), and we can see that there is a unique Jaeger’s matching \(M = M_B \cup M_R \) such that \(x_0t_0 \in M_B \) and \(y_0y_1 \in M_R \) in the graph \(FS(j, k) \). We have to verify the coherence of the connections between the claws \(C_{k-1} \) and \(C_0 \). We note that \(M_B = M \cap (\bigcup_{i=0}^{k-1}E(C_i)) \) and \(M_R \) is a strong matching included in the 2-factor induced by \(\bigcup_{i=0}^{k-1}\{V(C_i) \setminus \{t_i\}\} \).

Case 1: \(k = 3p \) with \(p \geq 1 \).
We have \(x_0t_0 \in M_B, y_{k-1}t_{k-1} \in M_B, x_{k-2}x_{k-1} \in M_R \) and \(z_{k-1}z_0 = z_{k-1}z'_0 \in M_R \) (that is, \(z_{k-1}z_0 \in M_R \)). Thus, \(z_{k-1}z_0, y_{k-1}y_0 \) and \(x_{k-1}x_0 \) are edges of \(FS(j, 3p) \) and we must have \(j = 3 \).

Case 2: \(k = 3p + 1 \) with \(p \geq 1 \).
We have \(x_0t_0 \in M_B, x_{k-1}t_{k-1} \in M_B \) (that is, \(x_{k-1}x_0 \notin E(G) \)), \(z_{k-2}z_{k-1} \in M_R \) and \(z_{k-1}z_0 = y_{k-1}y_0' \in M_R \) (that is, \(y_{k-1}z_0 \in M_R \)). Thus, \(y_{k-1}z_0, x_{k-1}y_0 \) and \(z_{k-1}x_0 \) are edges of \(FS(j, 3p + 1) \) and we must have \(j = 1 \).

Case 3: \(k = 3p + 2 \) with \(p \geq 1 \).
We have \(x_0t_0 \in M_B, z_{k-1}t_{k-1} \in M_B, y_{k-2}y_{k-1} \in M_R \) and \(z_{k-1}z_0 = x_{k-1}x_0' \in M_R \) (that is \(x_{k-1}z_0 \in M_R \)). Thus, \(x_{k-1}z_0, y_{k-1}x_0 \) and \(z_{k-1}y_0 \) are edges of \(FS(j, 3p + 2) \) and we must have \(j = 1 \). \(\square \)

Remark 24 It follows from Lemma 23 that for every \(k \geq 3 \) the graph \(FS(2, k) \) is not a Jaeger’s graph. This is obvious when \(k \) is odd, since the flower snarks have chromatic index 4.

Then, we obtain the following.

Theorem 25 For \(j \in \{1, 2, 3\} \) and \(k \geq 2 \), the graph \(G = FS(j, k) \) is a Jaeger’s graph if and only if
either \(k \equiv 1 \) or \(2 \pmod{3} \) and \(j = 1 \),

or \(k \equiv 0 \pmod{3} \) and \(j = 3 \).

Moreover, \(FS(1,2) \) has 3 Jaeger’s matchings and for \(k \geq 3 \) a Jaeger’s graph \(G = FS(j,k) \) has exactly 6 Jaeger’s matchings.

Proof For \(k = 2 \) we remark that \(FS(1,2) \) (that is the cube) has exactly three distinct Jaeger’s matchings \(M_1, M_2 \) and \(M_3 \). Following our notations:
\[
M_1 = \{x_0t_0, t_1z_1\} \cup \{y_0y_1, z_0x_1\}, \quad M_2 = \{z_0t_0, t_1y_1\} \cup \{y_0z_1, x_0x_1\} \quad \text{and} \quad M_3 = \{y_0t_0, t_1x_1\} \cup \{z_0z_1, x_0y_1\}.
\]

For \(k \geq 3 \), by Lemma 23, condition
\[
(*) \ (j = 1 \text{ and } k \equiv 1 \text{ or } 2 \pmod{3}) \text{ or } (j = 3 \text{ and } k \equiv 0 \pmod{3})
\]
is a necessary condition for \(FS(j,k) \) to be a Jaeger’s graph.

Consider the function \(\Phi_{X,Y} : V(G) \to V(G) \) such that for every \(i \in \mathbb{Z}_k \),
\[
\Phi_{X,Y}(t_i) = t_i, \quad \Phi_{X,Y}(z_i) = z_i, \quad \Phi_{X,Y}(x_i) = y_i \quad \text{and} \quad \Phi_{X,Y}(y_i) = x_i.
\]
Define similarly \(\Phi_{X,Z} \) and \(\Phi_{Y,Z} \). For \(j = 1 \) or 3 these functions are automorphisms of \(FS(j,k) \).

Thus, the process described in the proof of Lemma 23 is a constructive process of all Jaeger’s matchings in a graph \(FS(j,k) \) (with \(k \geq 3 \)) verifying condition \((*)\).

We remark that for any choice of an edge \(e \) of \(C_0 \) to be in \(M_B \) there are two distinct possible choices for an edge \(f \) between \(C_0 \) and \(C_1 \) to be in \(M_R \), and such a pair \(\{e,f\} \) corresponds exactly to one Jaeger’s matching. Then, a Jaeger’s graph \(FS(j,k) \) (with \(k \geq 3 \)) has exactly 6 Jaeger’s matchings. \(\square \)

Remark 26 The Berge-Fulkerson Conjecture states that if \(G \) is a bridgeless cubic graph, then there exist six perfect matchings \(M_1, \ldots, M_6 \) of \(G \) (not necessarily distinct) with the property that every edge of \(G \) is contained in exactly two of \(M_1, \ldots, M_6 \) (this conjecture is attributed to Berge in [16] but appears in [3]). Using each colour of a cubic 3-edge colourable graph twice, we see that such a graph verifies the Berge-Fulkerson Conjecture. Very few is known about this conjecture except that it holds for the Petersen graph and for cubic 3-edge colourable graphs. So, Berge-Fulkerson Conjecture holds for Jaeger’s graphs, but generally we do not know if we can find six distinct perfect matchings. We remark that if \(FS(j,k) \), with \(k \geq 3 \), is a Jaeger’s graph then its six Jaeger’s matchings are such that every edge is contained in exactly two of them.
5 2-factor hamiltonian cubic graphs

Recall that a simple graph of maximum degree $d > 1$ with edge chromatic number equal to d is said to be a Class 1 graph. For any d-regular simple graph (with $d > 1$) of even order and of Class 1, for any minimum edge-colouring of such a graph, the set of edges having a given colour is a perfect matching (or 1-factor). Such a regular graph is also called a 1-factorable graph. A Class 1 d-regular graph of even order is strongly hamiltonian or perfectly 1-factorable (or is a Hamilton graph in the Kotzig’s terminology) if it has an edge colouring such that the union of any two colours is a hamiltonian cycle. Such an edge colouring is said to be a Hamilton decomposition in the Kotzig’s terminology. In [10] by using two operations ρ and π (described also in [11]) and starting from the θ-graph (two vertices joined by three parallel edges) he obtains all strongly hamiltonian cubic graphs, but these operations do not always preserve planarity. In his paper [11] he describes a method for constructing planar strongly hamiltonian cubic graphs and he deals with the relation between strongly hamiltonian cubic graphs and 4-regular graphs which can be decomposed into two hamiltonian cycles. See also [12] and a recent work on strongly hamiltonian cubic graphs [2] in which the authors give a new construction of strongly hamiltonian graphs.

A Class 1 regular graph such that every edge colouring is a Hamilton decomposition is called a pure Hamilton graph by Kotzig [11]. Note that K_4 is a pure Hamilton graph and every cubic graph obtained from K_4 by a sequence of triangular extensions is also a pure Hamilton cubic graph. In the paper [11] of Kotzig, a consequence of his Theorem 9 (p.77) concerning pure Hamilton graphs is that the family of pure Hamilton graphs that he exhibits is precisely the family obtained from K_4 by triangular extensions. Are there others pure Hamilton cubic graphs? The answer is "yes".

We remark that 2-factor hamiltonian cubic graphs defined above (see Definition [16]) are pure Hamilton graphs (in the Kotzig’s sense) but the converse is false because K_4 is 2-factor hamiltonian and the pure Hamilton cubic graph on 6 vertices obtained from K_4 by a triangular extension (denoted by PR_3) is not 2-factor hamiltonian. Observe that the operation of triangular extension preserves the property ”pure Hamilton”, but does not preserve the property ”2-factor hamiltonian”. The Heawood graph H_0 (on 14 vertices) is pure Hamiltonian, more precisely it is 2-factor hamiltonian (see [7] Proposition 1.1 and Remark 2.7). Then, the graphs obtained from the Heawood graph H_0 by triangular extensions are also pure Hamilton graphs.

A minimally 1-factorable graph G is defined by Labbate and Funk [7] as a Class 1 regular graph of even order such that every perfect matching of G is contained in exactly one 1-factorization of G. In their article, they study
bipartite minimally 1-factorable graphs and prove that such a graph G has necessarily a degree $d \leq 3$. If G is a minimally 1-factorable cubic graph then the complementary 2-factor of any perfect matching has a unique decomposition into two perfect matchings, therefore this 2-factor is a hamiltonian cycle of G, that is G is 2-factor hamiltonian. Conversely it is easy to see that any 2-factor hamiltonian cubic graph is minimally 1-factorable. The complete bipartite graph $K_{3,3}$ and the Heawood graph H_0 are examples of 2-factor hamiltonian bipartite graph given by Labbate and Funk. Starting from H_0, from $K_{1,3}$ and from three copies of any tree of maximum degree 3 and using three operations called amalgamations the authors exhibit an infinite family of bipartite 2-factor hamiltonian cubic graphs, namely the $\text{poly} - \text{HB} - R - R^2$ graphs (see [7] for more details). Except H_0, these graphs are exactly cyclically 3-edge connected. Others structural results about 2-factor hamiltonian bipartite cubic graph are obtained in [13], [14]. These results have been completed and a simple method to generate 2-factor hamiltonian bipartite cubic graphs was given in [6].

Proposition 27 (Lemma 3.3, [6]) *Let G be a 2-factor hamiltonian bipartite cubic graph. Then G is 3-connected and $|V(G)| \equiv 2 \pmod{4}$. *

Let G_1 and G_2 be disjoint cubic graphs, $x \in v(G_1)$, $y \in v(G_2)$. Let x_1, x_2, x_3 (respectively y_1, y_2, y_3) be the neighbours of x in G_1 (respectively, of y in G_2). The cubic graph G such that $V(G) = (V(G_1) \setminus \{x\}) \cup (V(G_2) \setminus \{y\})$ and $E(G) = (E(G_1) \setminus \{x_1x, x_2x, x_3x\}) \cup (E(G_2) \setminus \{y_1y, y_2y, y_3y\}) \cup \{x_1y_1, x_2y_2, x_3y_3\}$ is said to be a star product and G is denoted by $(G_1, x) \ast (G_2, y)$. Since $\{x_1y_1, x_2y_2, x_3y_3\}$ is a cyclic edge-cut of G, a star product of two 3-connected cubic graphs has cyclic edge-connectivity 3.

Proposition 28 (Proposition 3.1, [6]) *If a bipartite cubic graph G can be represented as a star product $G = (G_1, x) \ast (G_2, y)$, then G is 2-factor hamiltonian if and only if G_1 and G_2 are 2-factor hamiltonian.*

Then, taking iterated star products of $K_{3,3}$ and the Heawood graph H_0 an infinite family of 2-factor hamiltonian cubic graphs is obtained. These graphs (except $K_{3,3}$ and H_0) are exactly cyclically 3-edge connected. In [6] the authors conjecture that the process is complete.

Conjecture 29 (Funk, Jackson, Labbate, Sheehan (2003) [6]) *Let G be a bipartite 2-factor hamiltonian cubic graph. Then G can be obtained from $K_{3,3}$ and the Heawood graph H_0 by repeated star products.*

The authors precise that a smallest counterexample to Conjecture 29 is a cyclically 4-edge connected cubic graph of girth at least 6, and that to show this result it would suffice to prove that H_0 is the only 2-factor hamiltonian
cyclically 4-edge connected bipartite cubic graph of girth at least 6. Note that some results have been generalized in [1].

To conclude, we may ask what happens for non bipartite 2-factor hamiltonian cubic graphs. Recall that K_4 and $FS(1, 3)$ (the ”Triplex Graph” of Robertson, Seymour and Thomas [15]) are 2-factor hamiltonian cubic graphs. By Corollary 17 the graphs $FS(j, k)$ with k odd and $j = 1$ or 3 introduced in this paper form a new infinite family of non bipartite 2-factor hamiltonian cubic graphs. We remark that they are cyclically 6-edge connected. Can we generate others families of non bipartite 2-factor hamiltonian cubic graphs? Since PR_3 (the cubic graph on 6 vertices obtained from K_4 by a triangular extension) is not 2-factor hamiltonian and $PR_3 = K_4 \ast K_4$, the star product operation is surely not a possible tool.

References

[1] M. Abreu, A.A. Diwan, Bill Jackson, D. Labbate, and J. Sheehan. Pseudo 2-factor isomorphic regular bipartite graphs. *J. Combin. Theory Ser. B*, 98:432–442, 2008.

[2] S. Bonvicini and G. Mazzuoccolo. On perfectly one-factorable cubic graphs. *Electronic Notes in Discrete Math.*, 24:47–51, 2006.

[3] J.L. Fouquet, H. Thuillier, J.M. Vanherpe, and A.P. Wojda. On linear arboricity of cubic graphs. *LIFO Univ. d’Orlans - Research Report*, 2007-13:1–28, 2007.

[4] J.L. Fouquet, H. Thuillier, J.M. Vanherpe, and A.P. Wojda. On isomorphic linear partition in cubic graphs. *Discrete Math.*, to appear, 2008.

[5] D.R. Fulkerson. Blocking and anti-blocking pairs of polyhedra. *Math. Programming*, 1:168–194, 1971.

[6] M. Funk, Bill Jackson, D. Labbate, and J. Sheehan. 2-factor hamiltonian graphs. *J. Combin. Theory Ser. B*, 87:138–144, 2003.

[7] M. Funk and D. Labbate. On minimally one-factorable r-regular bipartite graphs. *Discrete Math.*, 216:121–137, 2000.

[8] R. Isaacs. Infinite families of non-trivial trivalent graphs which are not Tait colorable. *Am. Math. Monthly*, 82:221–239, 1975.

[9] F. Jaeger. Etude de quelques invariants et problèmes d’existence en théorie de graphes. Thèse d’état, IMAG, Grenoble, 1976.

[10] A. Kotzig. Construction for hamiltonian graphs of degree three (in russian). *Čas. pěst. mat.*, 87:148–168, 1962.

22
[11] A. Kotzig. Balanced colourings and the four colour conjecture. In Proc. Sympos. Smolenice, 1963, volume 1964 Theory of Graphs and its Applications, pages 63–82. Publ. House Czechoslovak Acad. Sci., Prague, 63-82, 1964, 1963.

[12] A. Kotzig and J. Labelle. Quelques problèmes ouverts concernant les graphes fortement hamiltoniens. Ann. Sci. Math. Quebec, 3:95-106, 3:95–106, 1979.

[13] D. Labbate. On 3-cut reductions of minimally 1-factorable cubic bigraphs. Discrete Math., 231:303–310, 2001.

[14] D. Labbate. Characterizing minimally 1-factorable r-regular bipartite graphs. Discrete Math., 248:109–123, 2002.

[15] N. Robertson and P. Seymour. Excluded minor in cubic graphs. (announced), see also www.math.gatech.edu/~thomas/OLDFTP/cubic/graphs.

[16] P. Seymour. On multi-colourings of cubic graphs, and conjectures of Fulkerson and Tutte. Proc. London Math. Soc. (3), 38:423–460, 1979.