System-size dependence of the charged-particle pseudorapidity density at \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \) for pp, p–Pb, and Pb–Pb collisions

ALICE Collaboration

Abstract

We present the first systematic comparison of the charged-particle pseudorapidity densities for three widely different collision systems, pp, p–Pb, and Pb–Pb, at the top energy of the Large Hadron Collider (\(\sqrt{s_{NN}} = 5.02 \text{ TeV} \)) measured over a wide pseudorapidity range (\(-3.5 < \eta < 5 \)), the widest possible among the four experiments at that facility. The systematic uncertainties are minimised since the measurements are recorded by the same experimental apparatus (ALICE). The distributions for p–Pb and Pb–Pb collisions are determined as a function of the centrality of the collisions, while results from pp collisions are reported for inelastic events with at least one charged particle at midrapidity. The charged-particle pseudorapidity densities are, under simple and robust assumptions, transformed to charged-particle rapidity densities. This allows for the calculation and the presentation of the evolution of the width of the rapidity distributions and of a lower bound on the Bjorken energy density, as a function of the number of participants in all three collision systems. We find a decreasing width of the particle production, and roughly a smooth ten fold increase in the energy density, as the system size grows, which is consistent with a gradually higher dense phase of matter.

© 2022 CERN for the benefit of the ALICE Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.
1 Introduction

The number of charged particles produced in energetic nuclear collisions is an important indicator for the strong interaction processes that determine the particle production at the sub-nucleonic level. In particular, the production of charged particles is expected to reflect the number of quark and gluon collisions occurring during the initial stages of the reaction. The total number of particles produced also provides information on the energy transfer available from the initial colliding beams to particle production, as a consequence of nuclear stopping. In order to help unravel this complex scenario it is important to compare the particle production amongst collision systems of different sizes over a wide kinematic range.

We present the measured charged-particle pseudorapidity density, \(\frac{dN_{ch}}{d\eta} \), for pp, p–Pb, and Pb–Pb (previously published [2]) collisions at the same collision energy of \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \) in the nucleon–nucleon centre-of-mass reference frame. This is, at present, the maximum available energy at CERN’s Large Hadron Collider (LHC) for Pb–Pb collisions. The measurements were carried out using ALICE at LHC (for earlier \(\frac{dN_{ch}}{d\eta} \) results see for example Refs. [3, 4, 5]). The three studied reactions have different characteristics probing widely different particle production yields and mechanisms. In p–Pb collisions, the total particle yield for central collisions is of the order \(10^4 \), and a strongly coupled plasma of quarks and gluons (sQGP) is formed [6, 7, 8, 9], whose collective and transport properties are currently under intense study. On the other hand, pp collisions represent the simplest possible nuclear collision system, where the average total particle production is much smaller (\(\approx 80 \), by integrating the measured distributions), and is to first approximation much less subject to collective effects [10]. The p–Pb system is intermediate to the other reactions, corresponding to the situation where a single nucleon probes the nucleons in a narrow cylinder of the target nucleus. The extent to which p–Pb is governed by the initial state cold nuclear matter of the lead ion or whether collective phenomena in the hot and dense medium play an important role is, at present, a matter under scrutiny by the community [10][11].

In this letter, we compare the three reactions and present the ratios of the charged-particle pseudorapidity density distributions (\(\frac{dN_{ch}}{d\eta} \)) of the more complex reactions to the pp distribution. Owing to ALICE’s unique large acceptance in pseudorapidity, and using simple and robust assumptions, we transform the measured charged-particle pseudorapidity density distributions into charged-particle rapidity density distributions (\(\frac{dN_{ch}}{dy} \)). This allows us to calculate the width of the rapidity distributions as a function of the number of participating nucleons. The parameters of the transformation also allow us to estimate a lower bound on the energy density using the well-known formula from Bjorken [12]. An energy density exceeding the critical energy density of roughly \(1 \text{ GeV}/\text{fm}^3 \) [13] is a necessary condition for the formation of deconfined matter of quarks and gluons, and thus it is of the utmost interest to understand the development of these energy densities across different collision systems.

2 Experimental set-up, data sample, analysis method, systematic uncertainties

A detailed description of the ALICE detector and its performance can be found elsewhere [14][15]. The present analysis uses the Silicon Pixel Detector (SPD) to determine the pseudorapidity densities in the range \(-2 < \eta < 2\) and the Forward Multiplicity Detector (FMD) in the ranges \(-3.5 < \eta < -1.8\) and \(1.8 < \eta < 5\). The V0, comprised of two plastic scintillator discs covering \(-3.7 < \eta < -1.7\) (V0A) and \(2.8 < \eta < 5.1\) (V0A), and the ZDC, two zero-degree calorimeters located 112.5 m from the interaction point, measurements determine the collision centrality and are used for offline event selection [2].

The results presented are based on data from collisions at a centre-of-mass energy per nucleon pair of \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \) as collected by ALICE during LHC Run 1 (2013) for p–Pb, and during Run 2 (2015) for pp and Pb–Pb. The FMD suffered high levels of background noise during the 2016 p–Pb campaign, due to the high collision rate, and this data is therefore not used for the present analysis. About \(10^4 \) events with a minimum bias trigger requirement [2] were analysed in the centrality range from 0% to 90% and
System-size dependence of dN_{ch}/d\eta at \sqrt{s_{NN}} = 5.02\,\text{TeV}

ALICE Collaboration

0\% to 100\% of the visible cross section for Pb–Pb and p–Pb collisions, respectively. The minimum bias trigger for p–Pb and Pb–Pb collisions in ALICE was defined as a coincidence between the V0A and V0C sides of the V0 detector.

The data from the p–Pb collisions were taken in two beam configurations: one where the lead ion travelled toward positive pseudorapidity and one where it travelled toward negative pseudorapidity. The results from the latter collisions are mirrored around \(\eta = 0 \). The centre-of-mass frame in p–Pb collisions does not coincide with the laboratory frame, due to the single magnetic field in the LHC, and thus the rapidity of the centre-of-mass is \(y_{CM} = \pm 0.465 \) for the two directions, respectively, in the laboratory frame. For this reason, pseudorapidity, calculated with respect to the laboratory frame, is denoted \(\eta_{lab} \) whenever p–Pb results are presented.

Likewise, for the pp collisions, about \(10^5 \) events with coincidence between V0A and V0C and at least one charged particle in \(|\eta| < 1 \) were analysed. By requiring at least one charged particle at midrapidity, the so-called INEL > 0 event class, the systematic uncertainty, related to the absolute normalisation to the full inelastic cross section, is reduced, while still sampling a large fraction (> 75\%) of the hadronic cross section [16, 17].

The standard ALICE event selection [18] and centrality estimator based on the V0 amplitude [19, 20] are used in this analysis. The event selection consists of: a) exclusion of background events using the timing information from the ZDC (for Pb–Pb and p–Pb, e.g., beam–gas interactions) and V0 detectors, b) verification of the trigger conditions, and c) a reconstructed position of the collision (primary vertex). In Pb–Pb collisions, centrality is obtained from the sum amplitude in both V0 detector arrays (V0M). For p–Pb only the amplitude in the array on the lead-going side (V0A or V0C) is used. In Pb–Pb collisions, the 10\% most peripheral collisions have substantial contributions from electromagnetic processes and are therefore not included in the results presented here [19].

A primary charged particle is defined as a charged particle with a mean proper lifetime \(\tau > 1 \text{cm}/c \), which is either a) produced directly in the interaction, or b) from decays of particles with \(\tau < 1 \text{cm}/c \) [21]. All quantities reported here are for primary, charged particles, though “primary” is omitted in the following for brevity.

The analysis method is identical to that of previous publications [2]: the measurement of the charged-particle pseudorapidity density at midrapidity is obtained from counting particle trajectories determined using the two layers of the SPD. The SPD has a lower transverse momentum acceptance of 50 MeV/c, and the yield is extrapolated down to \(p_T = 0 \text{MeV}/c \) via simulations. In the forward regions, the measurement is provided by the analysis of the deposited energy signal in the FMD and a statistical method is employed to calculate the inclusive number of charged particles. A data-driven correction [22], based on separate measurements exploiting displaced collision vertices, is applied to remove the background from secondary particles.

Systematic uncertainty estimations for the midrapidity measurements are detailed elsewhere [2, 16, 20], and are from background suppression, transverse momentum extrapolation, weak decays, and simulations. The estimates are obtained through variation of thresholds and simulation studies. For pp (p–Pb), the total systematic uncertainty amounts to 1.5\% (2.7\%) over the whole pseudorapidity range; while for Pb–Pb the total systematic uncertainty is 2.6\% at \(\eta = 0 \) and 2.9\% at \(|\eta| = 2 \). The systematic uncertainty is mostly correlated over pseudorapidity for \(|\eta| < 2 \), and largely independent of centrality. The uncertainty in the forward region, estimated via variations of thresholds and simulation studies, is the same for all collision systems and is uncorrelated across \(\eta \), amounting to 6.9\% for \(\eta > 3.5 \) and 6.4\% elsewhere within the forward regions [22]. In the figures of this letter, uncorrelated, local in pseudorapidity, systematic uncertainties are indicated by open boxes on the data points, while correlated systematic uncertainties, those that affect the overall scale and typically from event classification and selection, are indicated by filled boxes to the right of the data. The systematic uncertainty on dN_{ch}/d\eta, due to the
System-size dependence of $dN_{\text{ch}}/d\eta$ at $\sqrt{s_{\text{NN}}} = 5.02$ TeV

ALICE Collaboration

Figure 1: Charged-particle pseudorapidity density in Pb–Pb [2] and p–Pb for the 5% most central collisions, and for pp collisions with INEL>0 trigger class. For symmetric collision systems (Pb–Pb and pp) the data has been symmetrised around $\eta = 0$ and points for $\eta > 3.5$ have been reflected around $\eta = 0$. The boxes around the points and to the right reflect the uncorrelated and correlated, with respect to pseudorapidity, systematic uncertainty, respectively. The relative correlated, normalisation, uncertainties are evaluated at $dN_{\text{ch}}/d\eta|_{\eta = 0}$. The lines show fits of Eq. (1) (Pb–Pb and pp) and Eq. (2) (p–Pb) to the data (discussed in Section 4). Please note that the ordinate has been cut twice to accommodate for the very different ranges of the charged-particle pseudorapidity densities.

3 Results

Figure 1 shows the measured pseudorapidity densities in pp, and in central p–Pb, and the previously published results for Pb–Pb [2] collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV for primary particles.

For the 5% most central Pb–Pb collisions $dN_{\text{ch}}/d\eta \approx 2000$ at midrapidity ($\eta = 0$) [2], while for p–Pb collisions the distribution peaks at $dN_{\text{ch}}/d\eta_{\text{lab}} \approx 60$ around $\eta_{\text{lab}} = 3$ in the lead-going direction ($\eta > 0$). For pp collisions with the INEL>0 trigger condition discussed above, $dN_{\text{ch}}/d\eta = 5.7 \pm 0.2$ at midrapidity, consistent with previous results derived from p_T spectra [24].

Figure 2 shows, as a function of centrality, the measured charged-particle pseudorapidity densities for p–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV. The strategy of centrality selection for proton on nucleus reactions is explained elsewhere [20]. The ALICE Collaboration has previously presented $dN_{\text{ch}}/d\eta$ for Pb–Pb collisions at this energy [2].

In Fig. 2 the charged-particle pseudorapidity densities in p–Pb and Pb–Pb reactions are divided by the pp distributions corresponding to the INEL>0 trigger class. The ratio is $r_X = (dN_{\text{ch}}/d\eta|_X)/(dN_{\text{ch}}/d\eta|_{pp})$, where X labels p–Pb and Pb–Pb collisions, in centrality classes, as a function of pseudorapidity. In the ratios, systematic uncertainties, of common origin, are partially cancelled, and, as an estimate, the magnitude of the resulting systematic uncertainties are given only by the uncertainties in the $dN_{\text{ch}}/d\eta|_X$ measurements, since the uncertainties are independent of the collision system. In p–Pb collisions the rapidity of the centre-of-mass is non-zero, which is not taken into account in the ratios. Such a correction would require prior determination of the full Jacobian of the transformation from pseudorapidity to
rapidity, which is not possible to perform reliably with the ALICE apparatus.

The ratio of the p–Pb relative to the pp distributions increases with pseudorapidity from the p-going to the Pb-going direction for central collisions, which Brodsky et al and Adil et al [25, 26] suggest is a sign of scaling of the pp distribution with the increasing number of participants as the lead nucleus is probed by the incident proton, and thus independent proton–nucleon scatterings on the lead-ion side. A similar scaling, however, does not hold for the Pb–Pb reaction. The ratios cannot be obtained by simple scaling of the elementary pp distributions. Instead, the ratio of the Pb–Pb relative to the pp distributions exhibits an enhancement of particle production around midrapidity for the more central collisions which is indicative of the formation of the sQGP [7]. Likewise, r_{pPb} increases for all but the two most peripheral centrality classes as $\eta_{lab} \to 3$. In Pb–Pb collisions it is seen that the various mechanisms behind the pseudorapidity distributions are more transversely directed than in pp collisions by the increase of r_{PbPb} as $|\eta| \to 0$.

4 Rapidity and energy-density dependence on system size and discussion

It has been shown that the charged-particle rapidity density (dN$_{ch}$/dy) in Pb–Pb collisions, to a good accuracy, follows a normal distribution over the considered rapidity interval ($|y| \lesssim 5$) [2, 27]. Those results relied on calculating the average Jacobian dN$_{ch}$/dy = $\langle J \rangle$ = $\langle \beta \rangle$ using the full p_T spectra, at midrapidity, of charged pions and kaons as well as protons and antiprotons. Here, we use the approximation

$$y \approx \eta - \frac{1}{2} \frac{m^2}{p_T} \cos \vartheta,$$

where ϑ is the polar angle of emission, and identify $a = p_T/m$ with an effective ratio of transverse momentum over mass. With this, the effective Jacobian can be written as

$$J'(\eta, a) = \left(1 + \frac{1}{a^2} \frac{1}{\cosh^2 \eta} \right)^{-1/2}.$$

We further make the ansatz that dN$_{ch}$/dy is normal distributed for symmetric collision systems (pp and Pb–Pb), so that dN$_{ch}$/dη can be parameterised as

$$f(\eta; A, a, \sigma) = J'(\eta, a) A \frac{1}{\sqrt{2\pi}\sigma} \exp \left(-\frac{\eta^2 - a^2}{2\sigma^2} \right),$$

(1)
System-size dependence of $dN_{\text{ch}}/d\eta$ at $\sqrt{s_{\text{NN}}} = 5.02$ TeV

Figure 3: Ratio r_X of the charged-particle pseudorapidity density in Pb–Pb (top) and p–Pb (bottom) in different centrality classes to the charged-particle pseudorapidity density in pp in the INEL>0 event class. Note, for Pb–Pb η_{lab} is the same as the centre-of-mass pseudorapidity.

where A and σ are the total integral and width of the distribution, respectively, and y the rapidity in the centre-of-mass frame. Motivated by the observed approximate linearity of r_{pPb} (see lower panel of Fig. 3), we replace A with $(\alpha y + A)$ for the asymmetric system (p–Pb) and parameterize $dN_{\text{ch}}/d\eta_{\text{lab}}$ as

$$g(\eta; A, a, \alpha, \sigma) = f'(\eta, a) (\alpha y \{\eta, a\} + A) \frac{1}{\sqrt{2\pi} \sigma} \exp \left(-\frac{(y \{\eta, a\} - y_{\text{CM}})^2}{2\sigma^2} \right).$$

(2)

The functions f and g defined in Eq. (1) and Eq. (2), respectively, describe the measurements within the measured region with χ^2 per degrees of freedom (ν) in the range of 0.1 to 0.5. The small χ^2/ν values are a consequence of the relatively large uncorrelated systematic uncertainties on the measurements. That is, the charged-particle distributions for pp, p–Pb, and Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV follow a normal distribution in rapidity, with free parameters A, a, σ, and α in the asymmetric case.

The top panel of Fig. 4 shows the best-fit parameter values of the normal width ($\sigma_{dN_{\text{ch}}/dy}$) for all three collision systems as a function of the average number of participating nucleons ($\langle N_{\text{part}} \rangle$) calculated using a Glauber model [28]. The best-fit parameters are found taking statistical and uncorrelated systematic uncertainties into account. The result using the above procedure, for the most central Pb–Pb collisions, is found to be compatible with previous results extracted by unfolding with the mean Jacobian estimated from transverse momentum spectra [2]. The open points (crosses) and dashed lines on the figure are from evaluations of Eq. (1) and Eq. (2), and direct calculations of $\sigma_{dN_{\text{ch}}/dy}$, respectively, using model
Figure 4: The width (top) and effective p_T/m (bottom) fit parameters as a function of the mean number of participants in pp, p–Pb, and Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV. Vertical uncertainties are the standard error on the best-fit parameter values, while horizontal uncertainties reflect the uncertainty on $\langle N_{\text{part}} \rangle$ from the Glauber calculations. Also shown are similar fit parameters from the same parameterisation of EPOS-LHC calculations as well as direct calculations of the standard deviation of the dN_{ch}/dy distributions and the $\langle p_T \rangle/\langle m \rangle$ ratio from the EPOS-LHC calculations.

Calculations with EPOS-LHC [29]. EPOS-LHC was chosen as it provides predictions for all three collision systems. The parameterisation, in terms of the two functions, of this model calculation generally reproduces the widths of the charged-particle rapidity densities, except in the asymmetric case where a direct evaluation of the standard deviation is less motivated.

The general trend is that the widths decrease as $\langle N_{\text{part}} \rangle$ increases, consistent with the behaviour of the r_{PbPb} ratios. Notably, the width of the dN_{ch}/dy distributions in p–Pb and Pb–Pb, for low number of participant nucleons in the collisions, approaches the width of the pp distribution, which, presumably, is dominated by kinematic and phase space constraints.

The lower panel of Fig. 4 shows the dependence of a on the average number of participants. The right-hand ordinate is the same, but multiplied by the average mass $\langle m \rangle = (0.215 \pm 0.001)$ GeV/c^2 estimated from measurements of identified particles in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV [30]. To better understand the parameter a, this parameter extracted from the EPOS-LHC calculations, using the above procedure, is also shown in the figure. The dotted lines show the average p_T/m predicted by EPOS-
System-size dependence of $dN_{ch}/d\eta$ at $\sqrt{s_{NN}} = 5.02$ TeV

LHC [29]. The EPOS-LHC calculations indicate that the extracted effective transverse momentum to mass ratio a is consistently smaller than the ratio of the average transverse momentum to the average mass. Thus a gives a lower bound on $\langle p_T \rangle / \langle m \rangle$.

We can estimate the energy density that is reached in the collisions as a function of the number of participants for the three systems. A conventional approach is to use the model originally proposed by Bjorken [12] in which the energy density (ε_{Bj}) depends on the rapidity density of particles and the volume of a longitudinal cylinder with cross sectional area determined by the overlap between the colliding partners and length determined by a characteristic particle formation time $\varepsilon_{\text{Bj}} \tau \geq \varepsilon_{\text{LB}} \tau = \frac{1}{c} \frac{1}{S_T} \frac{\langle m \rangle}{\sqrt{1 + (\langle p_T \rangle / \langle m \rangle)^2}}$.

Here, $S_T \approx \pi R^2 \approx \pi N_{\text{part}}^{2/3}$ is the transverse area spanned by the participating nucleons, dE_T/dy is the transverse-energy rapidity density, and τ is the formation time. While a formation time of $\tau = 1$ fm/c is often assumed, it is left as a free parameter here. With $\langle m_T \rangle = \langle m \rangle \sqrt{1 + (\langle p_T \rangle / \langle m \rangle)^2}$, the transverse-energy rapidity density can be approximated by

$$\langle \frac{dE_T}{dy} \rangle \approx \langle m_T \rangle \frac{1}{f_{\text{total}}} \frac{dN_{\text{ch}}}{dy} = \langle m \rangle \sqrt{1 + \left(\frac{\langle p_T \rangle}{\langle m \rangle} \right)^2} \frac{1}{f_{\text{total}}} \frac{dN_{\text{ch}}}{dy},$$

where $f_{\text{total}} = 0.55 \pm 0.01$, the ratio of charged particles to all particles [31], accounts for neutral particles not measured in the experiment, and is assumed the same for all collision systems. Substituting the derived dN_{ch}/dy and the effective $a = p_T/m \lesssim \langle p_T \rangle / \langle m \rangle$ results in a lower bound estimate for the Bjorken energy density (ε_{LB})

$$\varepsilon_{\text{Bj}} \tau \geq \varepsilon_{\text{LB}} \tau = \frac{1}{c} \frac{1}{S_T} \frac{\langle m \rangle}{\sqrt{1 + a^2}} \frac{1}{f_{\text{total}}} \frac{1}{a^2 \cosh^2 \eta} \frac{dN_{\text{ch}}}{d\eta}, \quad (3)$$

where a and $\langle m \rangle$ are as in the top panel of Fig. 4.

The transverse area S_T is estimated in a numerical Glauber model [32, 33] as shown in Fig. 5. We consider two extremes for the transverse area spanned by the participating nucleons: a) the exclusive (or direct) overlap between participating nucleons, \cap and open markers in Fig. 5, and b) the inclusive (or full) area of all participating nucleons, \cup and full markers in Fig. 5.
Figure 6: Estimate of the lower bound on the Bjorken transverse energy density in pp, p–Pb, and Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, considering the exclusive (\(\cap\), open markers) and inclusive (\(\cup\), full markers) overlap area S_T of the nucleons. The expression CN_{part}^p is fitted to case \cup, and we find $C = (0.8 \pm 0.3)$ GeV/(fm2 c) and $p = 0.44 \pm 0.08$. Also shown is an estimate, via $dE_T/d\eta$, of ε_{Bj} from Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV (stars with uncertainty band) [31].

Figure 6 shows the lower-bound energy density estimate, $\varepsilon_{LB} \tau \leq \varepsilon_{\text{Bj}} \tau$, as a function of the number of participants, which reaches values between 10 and 20 GeV/(fm2 c) in the most central Pb–Pb collisions. The uncertainties are from standard error propagation of Eq. (3) of uncertainties on the best-fit parameter values, the number of participants, mean mass, and f_{total}. A rise from roughly 1 GeV/(fm2 c) to over 10 GeV/(fm2 c) is observed if the transverse area is assumed to be the inclusive area of participating nucleons. This trend is illustrated by a power-law (CN_{part}^p) fit to the data in the figure, with the parameter values $C = (0.8 \pm 0.3)$ GeV/(fm2 c) and $p = 0.44 \pm 0.08$. On the other hand, if the transverse area is assumed to be the smaller exclusive overlap area, we observe a substantially larger lower bound on the energy density, but a less dramatic increase with increasing number of participating nucleons. Also shown in the figure are estimates of the Bjorken energy density $\varepsilon_{\text{Bj}} \tau$ for Pb–Pb reactions at $\sqrt{s_{NN}} = 2.76$ TeV [31].

These results where obtained from measurements of the transverse energy in the collisions and using the inclusive estimate of the transverse area S_T. The trend of the $\sqrt{s_{NN}} = 5.02$ TeV results are similar to these earlier results. Bearing in mind that for the largest LHC collision energy we show a lower bound estimate of the energy density in Fig. 6, we find a likely overall increase in the energy density from $\sqrt{s_{NN}} = 2.76$ TeV to 5.02 TeV.

5 Summary and conclusions

We have measured the charged particle pseudorapidity density in pp, p–Pb, and Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV over the widest possible pseudorapidity range available at the LHC. The distributions where determined using the same experimental apparatus and methods, and systematic uncertainties have been minimised to within the capabilities of the set-up. While the particle production in central Pb–Pb collisions clearly exhibits an enhancement as compared to pp collisions, particle production in p–Pb collisions is consistent with dominantly incoherent nucleon–nucleon collisions. By transforming the measured pseudorapidity distributions to rapidity distributions we have obtained systematic trends for the width of the rapidity distributions and a lower bound on the energy density, which shows a clear scaling behaviour as a function of the average number of participant nucleons. The decreasing width of the deduced rapidity distributions with increasing participant number suggests that the kinematic spread of particles, including longitudinal degrees of freedom, is reduced due to interactions in the early stages of the collisions. This is also reflected in the accompanying growth of the energy density. Both observations
are consistent with the gradual establishment of a high-density phase of matter with increasing size of the collision domain.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Ministry of Education of China (MOEC), Ministry of Science & Technology of China (MSTC) and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Foundation, Commission, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEC), CUBAenergía, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the VILLUM FONDEN and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; National Research and Innovation Agency - BRIN, Indonesia; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Académico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Education and Science, National Science Centre and WUT ID-UB, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics, Ministry of Research and Innovation and Institute of Atomic Physics and University Politehnica of Bucharest, Romania; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; Suranaree University of Technology (SUT), National Science and Technology Development Agency (NSTDA), Thailand Science Research and Innovation (TSRI) and National Science, Research and Innovation Fund (NSRF), Thailand; Turkish Energy, Nuclear and Mineral Research Agency (TENMAK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office
System-size dependence of $dN_{ch}/d\eta$ at $\sqrt{s_{NN}} = 5.02$ TeV

ALICE Collaboration

of Nuclear Physics (DOE NP), United States of America. In addition, individual groups or members have received support from: Marie Skłodowska Curie, Strong 2020 - Horizon 2020 (grant nos. 824093, 896850), European Union; Academy of Finland (Center of Excellence in Quark Matter) (grant nos. 346327, 346328), Finland.

References

[1] BRAHMS Collaboration, I. C. Arsene et al., “Nuclear stopping and rapidity loss in Au+Au collisions at $\sqrt{s_{NN}} = 62.4$ GeV”, Phys. Lett. B677 (2009) 267–271, arXiv:0901.0872 [nucl-ex].

[2] ALICE Collaboration, J. Adam et al., “Centrality dependence of the pseudorapidity density distribution for charged particles in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV”, Phys. Lett. B772 (2017) 567–577, arXiv:1612.08966 [nucl-ex].

[3] NA50 Collaboration, M. C. Abreu et al., “Scaling of charged particle multiplicity in Pb–Pb collisions at SPS energies”, Phys. Lett. B530 (2002) 43–55.

[4] PHOBOS Collaboration, B. Alver et al., “Charged-particle multiplicity and pseudorapidity distributions measured with the PHOBOS detector in Au+Au, Cu+Cu, d+Au, p+p collisions at ultrarelativistic energies”, Phys. Rev. C83 (2011) 024913, arXiv:1011.1940 [nucl-ex].

[5] ATLAS Collaboration, G. Aad et al., “Measurement of the centrality dependence of the charged-particle pseudorapidity distribution in proton–lead collisions at $\sqrt{s_{NN}} = 5.02$ TeV with the ATLAS detector”, Eur. Phys. J. C76 (2016) 199, arXiv:1508.00848 [hep-ex].

[6] BRAHMS Collaboration, I. Arsene et al., “Quark gluon plasma and color glass condensate at RHIC? The Perspective from the BRAHMS experiment”, Nucl. Phys. A757 (2005) 1–27, arXiv:nucl-ex/0410020 [nucl-ex].

[7] PHOBOS Collaboration, B. B. Back et al., “The PHOBOS perspective on discoveries at RHIC”, Nucl. Phys. A757 (2005) 28–101, arXiv:nucl-ex/0410022 [nucl-ex].

[8] STAR Collaboration, J. Adams et al., “Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions”, Nucl. Phys. A757 (2005) 102–183, arXiv:nucl-ex/0501009 [nucl-ex].

[9] PHENIX Collaboration, K. Adcox et al., “Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration”, Nucl. Phys. A757 (2005) 184–283, arXiv:nucl-ex/0410003 [nucl-ex].

[10] C. Bierlich, T. Sjöstrand, and M. Utheim, “Hadronic rescattering in pA and AA collisions”, Eur. Phys. J. A57 (2021) 227, arXiv:2103.09665 [hep-ph].

[11] Z.-W. Lin and L. Zheng, “Further developments of a multi-phase transport model for relativistic nuclear collisions”, Nucl. Sci. Tech. 32 (2021) 113, arXiv:2110.02989 [nucl-th].

[12] J. D. Bjorken, “Highly relativistic nucleus-nucleus collisions: The central rapidity region”, Phys. Rev. D27 (Jan, 1983) 140–151.

[13] H.-T. Ding, “Recent lattice QCD results and phase diagram of strongly interacting matter”, Nucl. Phys. A931 (2014) 52–62, arXiv:1408.5326 [hep-lat].

[14] ALICE Collaboration, K. Aamodt et al., “The ALICE experiment at the CERN LHC”, JINST 3 (2008) S08002.

[15] ALICE Collaboration, B. Abelev et al., “Performance of the ALICE Experiment at the CERN LHC”, Int. J. Mod. Phys. A29 (2014) 1430044, arXiv:1402.4476 [nucl-ex].

[16] ALICE Collaboration, J. Adam et al., “Charged-particle multiplicities in proton–proton collisions at $\sqrt{s} = 0.9$ to 8 TeV”, Eur. Phys. J. C77 (2017) 33, arXiv:1509.07541 [nucl-ex].

[17] ALICE Collaboration, S. Acharya et al., “Pseudorapidity distributions of charged particles as a function of mid- and forward rapidity multiplicities in pp collisions at $\sqrt{s} = 5.02, 7$ and 13 TeV”,
System-size dependence of $dN_{ch}/d\eta$ at $\sqrt{s_{NN}} = 5.02$ TeV

[18] ALICE Collaboration, K. Aamodt et al., "Charged–particle multiplicity density at mid–rapidity in central Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV", \textit{Phys. Rev. Lett.} \textbf{105} (2010) 252301, \href{https://arxiv.org/abs/1011.3916}{arXiv:1011.3916 [nucl-ex]}

[19] ALICE Collaboration, B. Abelev et al., "Centrality determination of Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV with ALICE", \textit{Phys. Rev.} \textbf{C88} (2013) 044909, \href{https://arxiv.org/abs/1301.4361}{arXiv:1301.4361 [nucl-ex]}

[20] ALICE Collaboration, J. Adam et al., "Centrality dependence of particle production in p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV", \textit{Phys. Rev.} \textbf{C91} (2015) 064905, \href{https://arxiv.org/abs/1412.6828}{arXiv:1412.6828 [nucl-ex]}

[21] ALICE Collaboration, S. Acharya et al., "The ALICE definition of primary particles", \textit{ALICE-PUBLIC-2017-005}. \url{https://cds.cern.ch/record/2270008}

[22] ALICE Collaboration, J. Adam et al., "Centrality dependence of particle production in p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV", \textit{Phys. Rev. Lett.} \textbf{116} (2016) 222302, \href{https://arxiv.org/abs/1512.06104}{arXiv:1512.06104 [nucl-ex]}

[23] ALICE Collaboration, J. Adam et al., "Centrality dependence of the charged-particle multiplicity density at midrapidity in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV", \textit{Phys. Lett.} \textbf{B754} (2016) 373–385, \href{https://arxiv.org/abs/1509.07299}{arXiv:1509.07299 [nucl-ex]}

[24] ALICE Collaboration, S. Acharya et al., "Charged-particle production as a function of multiplicity and transverse spherocity in pp collisions at $\sqrt{s} = 5.02$ and 13 TeV", \textit{Eur. Phys. J.} \textbf{C79} (2019) 857, \href{https://arxiv.org/abs/1905.07208}{arXiv:1905.07208 [nucl-ex]}

[25] S. J. Brodsky et al., "Hadron Production in Nuclear Collisions: A New Parton Model Approach", \textit{Phys. Rev. Lett.} \textbf{39} (1977) 1120

[26] A. Adil et al., "3D jet tomography of twisted strongly coupled quark gluon plasmas", \textit{Phys. Rev.} \textbf{C72} (2005) 034907, \href{https://arxiv.org/abs/nucl-th/0505004}{arXiv:nucl-th/0505004 [nucl-th]}

[27] ALICE Collaboration, E. Abbas et al., "Centrality dependence of the pseudorapidity density distribution for charged particles in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV", \textit{Phys. Lett.} \textbf{B726} (2013) 610–622, \href{https://arxiv.org/abs/1304.0347}{arXiv:1304.0347 [nucl-ex]}

[28] ALICE Collaboration, S. Acharya et al., "Centrality determination in heavy ion collisions", \textit{ALICE-PUBLIC-2018-011}. \url{http://cds.cern.ch/record/2636623}

[29] T. Pierog et al., "EPOS LHC: Test of collective hadronization with data measured at the CERN Large Hadron Collider", \textit{Phys. Rev.} \textbf{C92} (2015) 034906, \href{https://arxiv.org/abs/1306.0121}{arXiv:1306.0121 [hep-ph]}

[30] ALICE Collaboration, B. Abelev et al., "Centrality dependence of π, K, p production in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV", \textit{Phys. Rev.} \textbf{C85} (2012) 044910, \href{https://arxiv.org/abs/1303.0737}{arXiv:1303.0737 [hep-ex]}

[31] ALICE Collaboration, J. Adam et al., "Measurement of transverse energy at midrapidity in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV", \textit{Phys. Rev.} \textbf{C94} (2016) 034903, \href{https://arxiv.org/abs/1603.04775}{arXiv:1603.04775 [nucl-ex]}

[32] C. Loizides, J. Nagle, and P. Steinberg, "Improved version of the PHOBOS Glauber Monte Carlo", \textit{SoftwareX} \textbf{1-2} (2015) 13 – 18

[33] C. Loizides, "Glauber modeling of high-energy nuclear collisions at the subnucleon level", \textit{Phys. Rev.} \textbf{C94} (2016) 024914, \href{https://arxiv.org/abs/1603.03775}{arXiv:1603.03775 [nucl-ex]}
A. The ALICE Collaboration

S. Acharya, D. Adamov, A. Adler, G. Aglieri Rinella, M. Agnello, Z. Ahammed, S. Ahmad, S.U. Ahn, I. Ahuja, A. Akindinov, M. Al-Turany, D. Aleksandrov, B. Alessandro, H.M. Alfanda, R. Alfaro Molina, B. Ali, Y. Ali, A. Alci, N. Alizadehvandchali, A. Alkin, J. Almeida, G. Alocco, T. Alt, I. Altseybeev, M.N. Aanaam, C. Andrei, A. Andronic, V. Anguelov, F. Antonini, P. Antonioli, A. Anu, N. Apadula, L. Aphelctche, A. Appelshäuser, S. Arcelli, R. Arnaldi, I.C. Arseni, M. Arslanbekov, A. Augustinus, R. Averbeck, S. Azi, M.D. Azmi, A. Badakhshan, Y.W. Baek, X. Bai, R. Bahlache, Y. Bailung, R. Bala, A. Bälbinö, A. Baldissleri, B. Balis, D. Banerjee, Z. Banoo, R. Barbero, L. Bariglio, M. Barlout, G.G. Barnaföldi, L.S. Barnby, V. Barrett, L. Barretto, C. Bartels, J.R. Bartelz, E. Bartsch, F. Baruffaldi, N. Bastid, S. Basti, G. Batigne, D. Battistini, B. Batyunya, D. Baur, J.L. Bazo Alba, I.G. Bearden, C. Beattio, P. Becht, I. Belikov, A.M. Bell, Hechavarria, J.R. Bellwied, N. Belokurov, V. Belyaev, G. Bencedi, S. Beoke, A. Berucci, Y. Berdnikov, A. Berdnikova, L. Bergmann, M.G. Besoiu, L. Betev, P.P. Bhaduri, N. Bhasin, M.A. Bhat, B. Bhattacharjee, L. Bianchi, N. Bianchi, J. Bieleck, J. Biernat, A. Bilandzic, G. Biro, S. Biswas, J.T. Blair, D. Blau, M.B. Bliudariu, N. Blumh, C. Blume, G. Boccia, F. Bock, A. Bogdanov, S. Bot, J. Bok, L. Boldizsár, A. Bolozdynya, M. Bombara, P.M. Bond, G. Bonomi, H. Borel, A. Borissow, H. Bossi, E. Bottou, L. Bratrud, P. Braun-Munzinger, M. Bregant, A. Bro, M. Buckland, D. Budnikov, H. Buesching, S. Bufalino, O. Bugnon, P. Buhler, Z. Buthelezi, S. Bystak, S.A. Bysia, T. By, H. Caines, A. Caliva, E. Calvo Villar, J.M.M. Camacho, R.S. Camacho, P. Camerini, F.D.M. Canedo, A. Carabas, F. Carnesecchi, R. Caron, J. Castillo Gijares, F. Catalano, C. Ceballos Sanchez, I. Chakaberia, P. Chakraborty, S. Chandras, S. Chapeland, M. Chartier, S. Chattopadhyay, S. Chattopadhyay, T.G. Chavez, T. Cheng, C. Cheshkov, B. Cheynis, V. Chibante Barroso, D.D. Chinellato, E.S. Chizzali, S. Cho, P. Chochula, M. Christakoglou, C.H. Christensen, P. Christiansen, T. Chujo, M. Ciaco, M. Cicala, L. Cifarelli, F. Cindolo, M.R. Ciupek, G. Clai, J. Cleymans, F. Colamaria, J.S. Colburn, D. Coilella, A. Collu, M. Colocci, A. Concas, V. Conda, G. Conesa Balbastre, Z. Conesa del Valle, G. Contini, J.G. Contreras, M.L. Coquet, T.M. Cormier, P. Cortese, M.R. Cosentino, F. Costa, S. Costanza, P. Crochet, R. Cruz-Torres, E. Cuautle, P. Cui, L. Cunqueiro, A. Daine, M.C. Danisch, A. Danu, P. Das, P. Das, S. Das, S. Dash, R.M.H. David, A. De Caro, G. De Cataldo, L. De Cilliari, J. de Cuveland, A. De Falco, D. De Gruttola, N. De Marco, C. De Martin, S. De Pasquale, S. Deb, H.F. Degenhardt, K.R. Deja, R. Del Grande, L. Dello Stritto, W. Deng, P. Dhanoker, D. Di Bari, A. Di Mauro, R.A. Diaz, T. Dietel, Y. Ding, R. Divia, D.U. Dixit, O. Djoumsand, U. Dmitrieva, A. Dobrin, A. Dögnis, A.K. Dubey, J.M. Dubinski, A. Dubla, S. Dudi, P. Dupieux, M. Durkac, N. Dzalaiova, B. Erazmus, G. Eulisse, J. Faini, S. Faivre, C. Faggin, L. Feo, A. Ferrera, A. Ferrero, A. Ferrera, V.J.G. Feuillard, J. Figiel, V. Filova, D. Finogeev, G. Fiorenza, F. Flor, A.N. Flores, S. Foertsch, I. Fonk, S. Fokin, E. Fragiacomo, F. Frajma, U. Fuch, N. Funicello, F. Furger, A. Furs, J.J. Gaardhøje, M. Ga Migliarditi, A.M. Gago, C.D. Galvan, P. Ganoti, C. Garabatos, J.R.A. Garcia, E. Garcia-Solis, K. Garg, G. Garelli, A. Gargarry, E.F. Gauger, A. Garibi, K. Garner, E.F. Gauger, A. Gautami, M.B. Gay Ducati, M. Germain, M. Ghosh, M. Micaleon, P. Gianotti, P. Giubellino, P. Giraud, R. Giron, M. Girod, S. Gomber, M. Gongora, L. Górlich, S. Gotovac, F. Gou, A. Gupte, R. Gupta, R. Gupta, J.F. Grosse-Oetringhaus, R. Grosse, D. Grund, G.G. Guaridano, R. Guernane, M. Gulba, K. Gulbrandsen, T. Gunji, W. Guo, A. Gupta, R. Gupta.
S.P. Guzman13, L. Gyulai13,4, M.K. Habib97, C. Hadjidakis101, H. Hamagaki75, M. Hamid6, R. Hannigan106, M.R. Haque131, A. Harlanderova97, J.W. Harris35, A. Harton29, J.A. Hasenbichler32, H. Hassan39,4, D. Hatzifotiadou154, P. Hauer7, L.B. Havener135, S.T. Heckel34, E. Hellbäär79, H. Helstrup13, T. Herman13, G. Herrera Corral6, F. Herrmann132, K.F. Hetland14, B. Heybeck62, H. Hiillemanns133, C. Hills132, B. Hippolyte122, B. Hofman37, B. Hohlweg30, J. Honermann133,4, G.H. Hongo136, D. Horak54, A. Horzyczka33, R. Hosokawa134, Y. Hou9, P. Hristov32, C. Hughes188, P. Huhn62, L.M. Huhtta113, C.V. Hulse137, T.J. Humanic97, H. Hushud98, A. Hutson32,12, D. Hutter137, J.P. Iddon154, R. Ilkaev138, H. Ilyas133, M. Inaba122, G.M. Innocenti32, M. Ippolitov135, A. Isakov85, T. Isidori111, M.S. Islam99, M. Ivanov97, V. Ivanov135, V. Izueche138, M. Jablonski109, B. Jacak73, N. Jacazio12, P.M. Jacobs73, S. Jadhav103, J. Jadlovsky103, J. Jahneke109, M. Jalotra90, M.A. Janik110, T. Janson96, M. Jeric58, O. Jeovn99, A.A.P. Jimenez63, F. Jonas86,133, P.G. Jone99, J.M. Jowett32,97, J. Jung6,6, M. Jung6,2, A. Junique32, A. Jusko99, M.J. Kabus131, J. Kaevaja103, P. Kalianik38, A.S. Kalteyer97, A. Kalweit12, V. Kaplin138, A. Karasu Uysal70, D. Karato6c188, O. Karavicheva138, T. Karavec138, P. Karczmarczyk311, E. Karpechev138, V. Kashyap79, A. Kazantsev138, U. Kebschull68, R. Keidel137, D.L.D. Keijdener57, M. Keil32, B. Ketzer41, A.M. Khan6, S. Khan15, A. Kanzadeev138, Y. Kharlov138, A. Khatuntiev12, A. Khunta105, B. Kileng134, B. Kim146, C. Kim16,138, J.D. Kim113, E.J. Kim67, J. Kim136, J.S. Kim39, J. Kim94, J. Kim67, M. Kim94, S. Kim17, T. Kim136, S. Kirsch63, I. Kisel37, S. Kiselev138, A. Kisiel131, J.P. KITowski72,1, J.L. Klaj5, J. Klein132, S. Klein79, C. Klein-Bösing133, M. Kleiner62, T. Klement95, A. Kluge32, A.G. Knospel12, C. Kobdaj103, T. Kollegger97, A. Kondratyev139, N. Kondratyev138, E. Kondratyuk138, J. Konig62, S.A. Konigstorfer95, P.J. Konopka32, G. Kornakov131, S.D. Koryciak2, A. Kotiarov105, O. Kovalenko78, V. Kovalenko138, M. Kowalski105, J. Králík58, A. Kravčáková15, L. Krei57, M. Krivda99,88, F. Krizek93, K. Krikova Gajdosova35, M. Kroesen94, M. Krüger76, D.M. Krupova48, E. Kryshen138, M. Krzewicki73, V. Kučera12, C. Kuhn31, P.G. Kujire138, T. Kumaoka123, D. Kumar131, L. Kumar99, N. Kumar8, S. Kundu32, P. Kurashvili78, A. Kurepin138, A.B. Kurepin138, A. Kuryakin138, S. Kushpil315, J. Kvapil93, M.J. Kweon96, J.Y. Kwon36, Y. Kwon136, S.L. La Pointe37, P. La Rocca36, Y.S. Lai73, A. Lakrathok103, M. Lamanna62, R. Larson192, P. Larionov261, E. Laudi32,95, R. Lavicka101,35, T. Lazareva328, R. Lea129,53, J. Lehrbach37, R.C. Lemon192, E. León Monzón107, M.M. Lesch59, E.D. LESSER18, M. Lettrich52,95, P. Lévé134, X. Li101, X.L. Li9, J. Lien117, R. Lietava99, B. Lim16, S.H. Lim16, V. Lindenstruth17, A. Lindner44, C. Lippmann97, A. Liu18, D.H. Liu9, J. Liu115, I.M. Lofnes20, V. Logino138, C. Loizides998, P. Loncar33, J.A. Lopez94, J. Lopez123, E. Lopez Torres77, P. Lui116, J.R. Luhder133, M. Lunardon27, G. Luparello155, Y.G. Ma38, A. Maevskaya138, M. Magero12, T. Mahmoud41, A. Maire125, M. Malaeve138, N.M. Malik90, Q.W. Malik19, S.K. Malik90, L. Malinina7,129, D. Maliev138, D. Mallieck91,97, N. Mallick146, G. Mandaglio10,51, V. Manka138, F. Manso123, V. Manzarra46, Y. Mao9, G.V. Margaglioni23, A. Margotti49, A. Marion79, C. Markert106, M. Marquard62, N.A. Martin94, P. Martinengo32, J.L. Martinez112, M.I. Martinez43, G. Martínez García102, S. Masciiocchi97, M. Masera24, A. MASON62, L. Massarici71, A. Mastroserio127,49, A.M. Mathis95, O. Matonoha74, P.F.T. Matouka108, A. Matyja105, C. Mayer105, A.L. Mazuecos32, F. Mazzaschi24, M. Mazzioli32, J.E. Mdhuli119, A.F. Mechele62, Y. Melikyan138, A. Menchaca-Rocha65, E. Meninno101,28, A.S. Menon120, M. Merex12, S. Mhlanga111,66, Y. Mieake121, L. Micheletti34, L.C. Migliorini124, D.L. Mihaylov95, K. Mikhailov139,99, A.N. Mishra134, D. Miškowiec97, A. Modak32, A.P. Mohanty32, B. Mohanty79, M. Mohsin Khan15, M.A. Molander12, Z. Moravcova32, C. Mordasini95, D.A. Moreira De Godoy125, I. Morozov126, A. Morsch32, T. Mnjavac32, V. Muccifora7, E. Mucmnic33, S. Muhuri130, J.D. Mulligan73, A. Mullir32, M.G. Munhoz108, R.H. Munzer729, H. Murakami129, S. Murray111, L. Musa36, J. Musinsky94, J.W. Myrcha131, B. Naik119, R. Nair79, B.K. Nandi93, R. Nania79, E. Nappi48, A.F. Nassirpour138, A. Nath93, C. Nattrass113, A. Neagu13, A. Negrui132, L. Nellen133, S.W. Nesbo34, G. Neskovics127, D. Nesterov138, B.S. Nielsen82, E.G. Nielsen82, S. Nikolaev138, N. Nikulin138, V. Nikulin138, F. Norferini99, S. Noil11, P. Nomokonov139, J. Normann135, N. Novitzky121, P. Nowakowski131, A. Nyanin138, J. Nystrand20, M. Ogino75, A. Ohlson74, V.A. Okorokov138, J. Oleniacz131, A.C. Oliveira Da Silva116, M.H. Oliver135, A. Onnerstad113, C. Oppedalsøn54, A. Ortiz Velasquez63, A. Oskarsson74, J. Otwinowski105, M. Oya22, K. Oyama75, Y. Pachmayer94, S. Padhan36, D. Pagano129,53, G. Païc63, A. Palasciano138, S. Panebianco126, J. Park56, J.E. Parkkila123, S.P. Pathak12, R.N. Patra32, B. Paul12, H. Pei6, T. Peitzmann137, X. Peng6, L.G. Pereira64, H. Pereira Da Costa126, D. Peresunko138, G.M. Perez72, S. Perrin126, Y. Pestov138,
System-size dependence of $dN_{ch}/d\eta$ at $\sqrt{s_{NN}} = 5.02$ TeV

ALICE Collaboration

Affiliation Notes

I Deceased

II Also at: Max-Planck-Institut für Physik, Munich, Germany

III Also at: Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Bologna, Italy

IV Also at: Dipartimento DET del Politecnico di Torino, Turin, Italy

V Also at: Department of Applied Physics, Aligarh Muslim University, Aligarh, India

VI Also at: Institute of Theoretical Physics, University of Wroclaw, Poland

VII Also at: An institution covered by a cooperation agreement with CERN

Collaboration Institutes

1 A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia

2 AGH University of Science and Technology, Cracow, Poland

3 Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine

4 Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India

5 California Polytechnic State University, San Luis Obispo, California, United States

6 Central China Normal University, Wuhan, China

7 Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba

8 Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico

9 Chicago State University, Chicago, Illinois, United States

10 China Institute of Atomic Energy, Beijing, China

11 Chungbuk National University, Cheongju, Republic of Korea

12 Comenius University Bratislava, Faculty of Mathematics, Physics and Informatics, Bratislava, Slovak Republic

13 COMSATS University Islamabad, Islamabad, Pakistan

14 Creighton University, Omaha, Nebraska, United States

15 Department of Physics, Aligarh Muslim University, Aligarh, India

16 Department of Physics, Pusan National University, Pusan, Republic of Korea

17 Department of Physics, Sejong University, Seoul, Republic of Korea

18 Department of Physics, University of California, Berkeley, California, United States

19 Department of Physics, University of Oslo, Oslo, Norway

20 Department of Physics and Technology, University of Bergen, Bergen, Norway

21 Dipartimento di Fisica, Università di Pavia, Pavia, Italy

22 Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy

23 Dipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy

24 Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy

25 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Bologna, Italy

26 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Catania, Italy

27 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Padova, Italy

28 Dipartimento di Fisica ‘E.R. Caianiello’ dell’Università and Gruppo Collegato INFN, Salerno, Italy

29 Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy

30 Dipartimento di Scienze MIFT, Università di Messina, Messina, Italy

31 Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy

32 European Organization for Nuclear Research (CERN), Geneva, Switzerland

33 Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia

34 Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway

35 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic

36 Faculty of Science, P.J. Šafářík University, Košice, Slovak Republic

37 Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany

38 Fudan University, Shanghai, China

39 Gangneung-Wonju National University, Gangneung, Republic of Korea

40 Gauhati University, Department of Physics, Guwahati, India

41 Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn,
System-size dependence of $dN_{\text{ch}}/d\eta$ at $\sqrt{s_{\text{NN}}} = 5.02$ TeV

ALICE Collaboration

Germany
42 Helsinki Institute of Physics (HIP), Helsinki, Finland
43 High Energy Physics Group, Universidad Autónoma de Puebla, Puebla, Mexico
44 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
45 Indian Institute of Technology Bombay (IIT), Mumbai, India
46 Indian Institute of Technology Indore, Indore, India
47 INFN, Laboratori Nazionali di Frascati, Frascati, Italy
48 INFN, Sezione di Bari, Bari, Italy
49 INFN, Sezione di Bologna, Bologna, Italy
50 INFN, Sezione di Cagliari, Cagliari, Italy
51 INFN, Sezione di Catania, Catania, Italy
52 INFN, Sezione di Padova, Padova, Italy
53 INFN, Sezione di Pavia, Pavia, Italy
54 INFN, Sezione di Torino, Turin, Italy
55 INFN, Sezione di Trieste, Trieste, Italy
56 Inha University, Incheon, Republic of Korea
57 Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University/Nikhef, Utrecht, Netherlands
58 Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovak Republic
59 Institute of Physics, Homi Bhabha National Institute, Bhubaneswar, India
60 Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
61 Institute of Space Science (ISS), Bucharest, Romania
62 Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
63 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
64 Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
65 Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
66 iThemba LABS, National Research Foundation, Somerset West, South Africa
67 Jeonbuk National University, Jeonju, Republic of Korea
68 Johann-Wolfgang-Goethe Universität Frankfurt Institut für Informatik, Fachbereich Informatik und Mathematik, Frankfurt, Germany
69 Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
70 KTO Karatay University, Konya, Turkey
71 Laboratoire de Physique des 2 Infinis, Irène Joliot-Curie, Orsay, France
72 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France
73 Lawrence Berkeley National Laboratory, Berkeley, California, United States
74 Lund University Department of Physics, Division of Particle Physics, Lund, Sweden
75 Nagasaki Institute of Applied Science, Nagasaki, Japan
76 Nara Women’s University (NWU), Nara, Japan
77 National and Kapodistrian University of Athens, School of Science, Department of Physics, Athens, Greece
78 National Centre for Nuclear Research, Warsaw, Poland
79 National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, India
80 National Nuclear Research Center, Baku, Azerbaijan
81 National Research and Innovation Agency - BRIN, Jakarta, Indonesia
82 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
83 Nikhef, National institute for subatomic physics, Amsterdam, Netherlands
84 Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom
85 Nuclear Physics Institute of the Czech Academy of Sciences, Hudeč-Řež, Czech Republic
86 Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
87 Ohio State University, Columbus, Ohio, United States
88 Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia
89 Physics Department, Panjab University, Chandigarh, India
90 Physics Department, University of Jammu, Jammu, India
91 Physics Department, University of Rajasthan, Jaipur, India
92 Physics Program and International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, Hiroshima, Japan
93 Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
System-size dependence of $dN_{ch}/d\eta$ at $\sqrt{s_{NN}} = 5.02$ TeV

ALICE Collaboration