On total H-irregularity strength of diamond ladder, three circular ladder, and prism graphs

D M O Suni1,2, Dafik1,2, I M Tirta1,3, A I Kristiana1,2 and R Nisviasari1,3

1CGANT-University of Jember, Indonesia
2Department of Mathematics Education Post Graduate University of Jember, Indonesia
3Department of Mathematics, University of Jember, Indonesia

E-mail: mutdaifa@gmail.com

Abstract. Let G be a graph with vertex set V and edge set E. A total labeling $\varphi : V(G) \cup E(G) \rightarrow \{1, 2, 3, ..., \alpha\}$ is called a total α-labeling of a graph G. For the subgraph $H \subseteq G$ under the total α-labeling, H-weight is defined as $wt_{\varphi}(H) = \sum_{v \in V(H)} \varphi(v) + \sum_{e \in E(H)} \varphi(e)$. A total α-labeling is called an H-irregular total α-labeling of the graph G if $wt_{\varphi}(H') \neq wt_{\varphi}(H'')$ for any two distinct subgraphs H' and H'' isomorphic to H. The minimum α for which the graph G has a total H-irregular α-labeling is called the total H-irregularity strength of G, denoted by $tHs(G)$. In this paper we initiate to study the total H-irregularity strength of G and we have obtained the tHs of diamond ladder, three circular ladder and prism graphs.

1. Introduction

We use a simple, connected, and finite graph, especially planar graph in this research. G is a graph which has the vertex set is given as $V(G)$ and the edge set is given as $E(G)$. Graph labeling is mapping graph elements to positive or non-negative integers number. The most common choices of domain are the set of all vertices (vertex labellings), the only edge set (edge labellings), or the set of either vertices or edges (total labellings). Other domains are possible [5]. The graph G contains H includes each H_j isomorphic subgraph which conditions each $E(G)$ edge included in every one of the H_j subgraphs, $j = 1, 2, \ldots, s$ [4].

The total irregular vertex of α-labeling on the graph G is the assignment of the $1, 2, \ldots, \alpha$ for vertices and edges such that the weights calculated at the different vertices. The vertex weight $v \in V$ in G is defined as the sum of label v and labels all incident edges with v, that is $wt(v) = \lambda(v) + \sum_{uv \in E} \lambda(uv)$ [9]. The vertex-irregularity strength of G is the smallest α integer on the H-irregular label of G and denoted by $vhs(G, H)$ [3]. Indriati et al. [7] obtain a for the total vertex irregularity strength of generalized helm graphs and prisms with outer pendant edges.

The irregular total edge α-labeling of a graph $G = (V, E)$ is labeling $\phi : V \cup E = 1, 2, \ldots, \alpha$ so that the total edge weight of $wt(xy) = \phi(x) + \phi(xy) + \phi(y)$ is different for all different edge pairs. The minimum α where graph G has an irregular total edge α-labeling is called the total irregular edge strength of G and denoted by $vhs(G, H)$ [2]. Baća and Siddiqui [6] investigate the total edge irregularity strength of generalized prism.
Ashraf et al. in [3] introduce total H-irregularity strength as a natural extension of the \(\text{tes}(G) \) and \(\text{tvs}(G) \) parameters. \(G \) is a graph that recognizes \(H \)-covering. For subgraph \(H \subseteq G \) under total \(\alpha \)-labeling \(\varphi \) associated with \(H \)-weight is defined as

\[
\text{wt}_\varphi(H) = \sum_{v \in V(H)} \varphi(v) + \sum_{e \in E(H)} \varphi(e).
\]

The total \(\alpha \)-labeling is called \(H \)-irregular total \(\alpha \)-labeling of the graph \(G \) if \(\text{wt}_\varphi(H') \neq \text{wt}_\varphi(H'') \) for every two different subgraphs of \(H' \) and \(H'' \) isomorphic to \(H \).

The smallest integer \(\alpha \) for which an \(H \)-irregular total \(\alpha \)-labeling of exists is known as the total \(H \)-irregularity strength of \(G \) and denoted by \(tHs(G,H) \).

Theorem 1. [4] Let \(G \) be a graph that recognizes \(H \)-covering provided by the \(t \) isomorphic subgraph to \(H \). Then

\[
tHs(G,H) \geq \left[1 + \frac{t-1}{|V(H)|+|E(H)|} \right].
\]

Agustin et al [1] have conducted research and obtained results from \(tHs(G,H) \) of shackle and amalgamation graphs. Nisviasari [8] have conducted research and obtained results from \(tHs(G,H) \) of triangular ladder and grid graphs. Ashraf et al. [3] have conducted research and obtained results from \(tHs(G,H) \) of ladder and fan graphs. We use diamond ladder, three circular ladders, and prism graph to get \(tHs(G,H) \).

2. Results

In this paper, we provide the results of \(tHs(G,H) \) of diamond ladder, three circular ladders, and prism graphs, is as follows.

Theorem 2. Let \(Dl_m \) be a diamond ladder graph and subgraph \(H_1 \equiv Dl_n \). The total \(H_1 \)-irregularity strength of \(Dl_m \) graph for \(2 \leq n < m \) is

\[
\left[\frac{m+11n-3}{12n-3} \right].
\]

Proof. Let \(Dl_m \), \(m \geq 0 \), be a diamond ladder graph with the vertex set \(V(Dl_m) = \{x_j, y_j : j = 1, 2, 3, \ldots, m\} \cup \{z_j : j = 1, 2, 3, \ldots, 2m\} \) and the edge set \(E(Dl_m) = \{x_jy_j, x_jz_{2j-1}, x_jz_{2j}, y_jz_{2j-1}, y_jz_{2j} : j = 1, 2, 3, \ldots, m\} \cup \{x_ix_{i+1}, y_iy_{i+1} : j = 1, 2, 3, \ldots, m-1\} \cup \{z_{2j-2}z_{2j-1} : j = 2, 3, \ldots, m\} \). The diamond ladder graph \(Dl_m, m \) is positive integer, admits a \(Dl_n \) covering with exactly \((m - n + 1)\) diamond ladder \(Dl_n \), where \(n \) is a positive integer and \(2 \leq n < m \). Based on Theorem 2, we have \(tHs((Dl_m), Dl_n) \geq \left[\frac{m+11n-3}{12n-3} \right] \).

Put \(l = \left[\frac{m+11n-3}{12n-3} \right] \). The following function of \(Dl_n \)-irregular total \(\alpha \)-labeling \(\varphi_n : V(Dl_m) \cup E(Dl_m) \rightarrow \{1, 2, \ldots, l\}, n = 2, 3, \ldots, m \) is prove that \(\alpha \) as an upper bound for the total \(Dl_n \)-irregularity strength of \(Dl_m \).

\[
\varphi_n(y_j) = \begin{cases}
\left[\frac{j + 20n - 6}{24n - 6} \right], & \text{for } j \text{ is even} \\
\left[\frac{j + 16n - 5}{24n - 6} \right], & \text{for } j \text{ is odd}
\end{cases}
\]
\[\varphi_n(x_j) = \left\lceil \frac{j + 11n - 3}{12n - 3} \right\rceil, \text{ for } j \in [1, m], \quad \varphi_n(z_j) = \left\lceil \frac{j + 9n - 3}{12n - 3} \right\rceil, \text{ for } j \in [1, m] \]
\[\varphi_n(x_jx_{j+1}) = \left\lceil \frac{j + 2n - 2}{12n - 3} \right\rceil, \text{ for } j \in [1, m - 1], \quad \varphi_n(x_jy_j) = \left\lceil \frac{j + 3n - 3}{12n - 3} \right\rceil, \text{ for } j \in [1, m] \]
\[\varphi_n(z_jz_{j+1}) = \left\lceil \frac{j}{12n - 3} \right\rceil, \text{ for } j \in [1, m - 1], \quad \varphi_n(x_jy_{2j-1}) = \left\lceil \frac{j + 4n - 3}{12n - 3} \right\rceil, \text{ for } j \in [1, m] \]
\[\varphi_n(x_jy_{2j}) = \left\lceil \frac{j + 7n - 3}{12n - 3} \right\rceil, \text{ for } j \in [1, m], \quad \varphi_n(y_{2j-1}z_j) = \left\lceil \frac{j + 5n - 3}{12n - 3} \right\rceil, \text{ for } j \in [1, m] \]
\[\varphi_n(y_{2j}z_{j}) = \left\lceil \frac{j + 6n - 3}{12n - 3} \right\rceil, \text{ for } j \in [1, m], \quad \varphi_n(y_{j}y_{j+1}) = \left\lceil \frac{j + 2n - 2}{24n - 6} \right\rceil, \text{ for } j \text{ is even.} \]

We get the upper bound from the function of \(Dl_{ir} \)-irregular total \(Dl_n \)-labeling. We take the largest label from \(\varphi_n(x_j) = \left\lceil \frac{j + 11n - 3}{12n - 3} \right\rceil \) for \(j = m \) \(\varphi_n(x_j) = \left\lceil \frac{m + 1n - 3}{12n - 3} \right\rceil \). We get to present the upper bound of the graph in the Theorem 2, \(tHs((Dl_m), Dl_n) \leq \left\lceil \frac{m + 11n - 3}{12n - 3} \right\rceil \).

Based on the labeling above, we can show the all weights are different by the following equation:

\[
\text{wt}_{\varphi_n}(Dl_{i+1}^j) - \text{wt}_{\varphi_n}(Dl_{i}^j) = \varphi_n(x_{j+n}) + \varphi_n(y_{2j+2n-1}) + \varphi_n(y_{2j+2n}) + \varphi_n(z_{j+n}) + \varphi_n(x_{j+n-1}x_j) + \varphi_n(y_{2j}y_{2j+1}) + \varphi_n(z_jz_{j+1}) + \varphi_n(x_jz_j) + \varphi_n(x_jy_{2j-1}) + \varphi_n(x_jy_{2j}) + \varphi_n(y_{2j-1}z_j) + \varphi_n(y_jy_{2j-1}z_j) + \varphi_n(z_jy_{2j}) - \varphi_n(x_j) - \varphi_n(y_{2j-1}) - \varphi_n(y_{2j}) - \varphi_n(z_j) - \varphi_n(x_jx_{j+1}) - \varphi_n(y_{2j}y_{2j+1}) - \varphi_n(z_jz_{j+1}) - \varphi_n(x_jz_j) - \varphi_n(x_jy_{2j-1}) - \varphi_n(x_jy_{2j}) - \varphi_n(z_jy_{2j}) - \varphi_n(z_jy_{2j-1}) - \varphi_n(z_jy_{2j}) = 1
\]

We respect to \(\text{wt}_{\varphi_n}(Dl_{i}^j) < \text{wt}_{\varphi_n}(Dl_{i+1}^j) \), \(j = 1, 2, \ldots, m - n \) then \(\text{wt}_{\varphi_n}(Dl_{i}^{j+1}) = \text{wt}_{\varphi_n}(Dl_{i}^j) = 1 \). The all \(H_1 \)-weights are distinct. This matter concludes that \(tHs((Dl_m), Dl_n) = \left\lceil \frac{m + 11n - 3}{12n - 3} \right\rceil \). The example of total \(Dl_n \)-irregularity of diamond ladder graph labeling, we can see on Figure 1, and we get \(tHs((Dl_8), Dl_2) = 2 \).
Figure 1. The Example of Total Dl_2-Irregularity of Dl_8 labeling

Theorem 3. Let TCl_m be a three circular ladder graph and subgraph $H_2 \equiv C_3$. The total H_2-irregularity strength of TCl_m graph is $\left\lceil \frac{3m + 5}{6} \right\rceil$.

Proof. Let TCl_m, $m \geq 0$, be a three circular ladder graph with the vertex set $V(TCl_m) = \{x_j, z_j : j = 1, 2, 3, \ldots, m + 1\} \cup \{y_j : j = 1, 2, 3, \ldots, m\}$ and the edge set $E(TCl_m) = \{x_jy_j, x_{j+1}y_j, y_{j}z_{j}, z_{j}z_{j+1} : j = 1, 2, 3, \ldots, m\} \cup \{x_{j}z_{j} : j = 1, 2, 3, \ldots, m + 1\} \cup \{y_{j}z_{j+1} : j = 1, 2, 3, \ldots, m - 1\}$. The three circular ladder graph TCl_m, m is positive integer, admits a C_3-covering with exactly m cycles C_3. Based on Theorem 3, we have $tHs((TCl_m), C_3) \geq \left\lceil \frac{3m + 5}{6} \right\rceil$. Put $l = \left\lceil \frac{3m + 5}{6} \right\rceil$. The following function of C_3-irregular total α-labeling $\varphi_3 : V(TCl_m) \cup E(TCl_m) \rightarrow \{1, 2, \ldots, l\}$ is prove that α as an upper bound for the total C_3-irregularity strength of TCl_m.

\[
\varphi_3(x_i) = \left\lceil \frac{j + 1}{2} \right\rceil, \text{ for } j \in [1, m + 1], \quad \varphi_3(y_i) = \left\lceil \frac{j + 1}{2} \right\rceil, \text{ for } j \in [1, m] \\
\varphi_3(z_j) = \left\lceil \frac{j}{2} \right\rceil, \text{ for } j \in [1, m + 1], \quad \varphi_3(x_jy_j) = \left\lceil \frac{j}{2} \right\rceil, \text{ for } j \in [1, m] \\
\varphi_3(x_{j+1}y_j) = \left\lceil \frac{j}{2} \right\rceil, \text{ for } j \in [1, m], \quad \varphi_3(y_jz_j) = \left\lceil \frac{j}{2} \right\rceil, \text{ for } j \in [1, m] \\
\varphi_3(y_jz_{j+1}) = \left\lceil \frac{j + 1}{2} \right\rceil, \text{ for } j \in [1, m - 1], \quad \varphi_3(x_jz_j) = \left\lceil \frac{j}{2} \right\rceil, \text{ for } j \in [1, m + 1] \\
\varphi_3(z_jz_{j+1}) = \left\lceil \frac{j}{2} \right\rceil, \text{ for } j \in [1, m].
\]

We get the upper bound from the function of C_3-irregular total TCl_m-labelling. We take the largest label from $\varphi_3(x_i) = \left\lceil \frac{j + 1}{2} \right\rceil$ for $j = m + 1 \varphi_3(x_i) = \left\lceil \frac{m + 2}{2} \right\rceil$. We get to present the upper bound of the graph in the Theorem 3, $tHs((TCl_m), C_3) \leq \left\lceil \frac{3m + 5}{6} \right\rceil$.

Based on the labeling above, we can show the all weights are different by the following equation:

\[
wt_3(C_3^{j+1}) - wt_3(C_3^j) = \varphi_3(x_j+1) + \varphi_3(y_j+1) + \varphi_3(z_j+1) + \varphi_3(x_{j+1}y_{j+1}) + \\
\varphi_3(x_{j+1}z_{j+1}) + \varphi_3(y_{j+1}z_{j+1}) - \varphi_3(x_j) - \varphi_3(y_j) - \\
\varphi_3(z_j) - \varphi_3(x_jy_j) - \varphi_3(x_jz_j) - \varphi_3(y_jz_j) = 3
\]

\[
wt_3(C_3^{j+1}) - wt_3(C_3^j) = \varphi_3(y_{j+1}) + \varphi_3(x_{j+2}) + \varphi_3(z_{j+2}) + \varphi_3(y_{j+1}x_{j+2}) + \\
\varphi_3(y_{j+1}z_{j+2}) + \varphi_3(x_{j+2}z_{j+2}) - \varphi_3(y_j) - \varphi_3(x_{j+1}) - \\
\varphi_3(z_{j+1}) - \varphi_3(y_{j+1}x_{j+1}) - \varphi_3(y_{j+1}z_{j+1}) = 3
\]

We respect to \(wt_\varphi(C_3^j) < wt_\varphi(C_3^{j+1}) \), \(j = 1, 2, \ldots, m \) then \(wt_\varphi(C_3^{j+1}) - wt_\varphi(C_3^j) = 3 \). The all \(H_2 \)-weights are distinct. This matter concludes that \(tHs((TCl_m), C_3) = \left\lceil \frac{3m + 5}{6} \right\rceil \). The example of total \(C_3 \)-irregularity of three circular ladder graph labeling, we can see on Figure 2, and we get \(tHs((TCl_m), C_3) = 5 \).

![Figure 2. The Example of Total C₃-Irregularity of TClₘ labeling](image)

Theorem 4. Let \(Pr_m \) be a prism graph and subgraph \(H_3 \equiv C_4 \). The total \(H_3 \)-irregularity strength of \(Pr_m \) graph for \(m \geq 3 \), \(m \equiv 0 \mod 4 \) and \(m \equiv 1 \mod 4 \) is \(\left\lfloor \frac{n + 7}{8} \right\rfloor \).

Proof. Let \(Pr_m \), \(m \geq 3 \), be a prism graph with the vertex set \(V(Pr_m) = \{x_j, y_j : j = 1, 2, 3, \ldots, m\} \) and the edge set \(E(Pr_m) = \{x_jx_{j+1}, y_jy_{j+1} : j = 1, 2, 3, \ldots, m - 1\} \cup \{x_jy_j : j = 1, 2, 3, \ldots, m\} \cup \{x_my_1\} \cup \{y_my_1\} \). The prism graph \(Pr_m \), \(m \geq 3 \), contains a \(C_4 \)-covering with exactly \(m \) cycles \(C_4 \). Based on Theorem 4, we have \(tHs(Pr_m), C_4) \geq \left\lfloor \frac{m + 7}{8} \right\rfloor \). Put \(\alpha = \left\lfloor \frac{m + 7}{8} \right\rfloor \). The following function of \(C_4 \)-irregular total \(\alpha \)-labeling \(\varphi_3 : V(Pr_m) \cup E(Pr_m) \to \{1, 2, \ldots, \alpha\} \) is prove that \(\alpha \) as an upper bound for the total \(C_4 \)-irregularity strength of \(Pr_m \).
A C_4-irregular total α-labeling $\varphi_4 : V(Pr_m) \cup E(Pr_m) \to \{1, 2, \ldots, \alpha\}$ is as follows:

for $j = 1, 2, \ldots, \left\lfloor \frac{m}{2} \right\rfloor$

$$\varphi_4(x_j) = \left\lceil \frac{j + 2}{4} \right\rceil,$$
$$\varphi_4(y_j) = \left\lceil \frac{j + 2}{4} \right\rceil,$$
$$\varphi_4(x_jx_{j+1}) = \left\lceil \frac{j + 1}{4} \right\rceil,$$

for $j = \left\lceil \frac{m}{2} \right\rceil + 1, \ldots, m - 1$, and $m \equiv 0 \text{ mod } 4$

$$\varphi_4(x_j) = \left\lceil \frac{m}{4} \right\rceil - \left\lceil \frac{j}{4} \right\rceil + 2,$$
$$\varphi_4(y_j) = \left\lceil \frac{m}{4} \right\rceil - \left\lceil \frac{j + 1}{4} \right\rceil + 2,$$
$$\varphi_4(x_jx_{j+1}) = \left\lceil \frac{m}{4} \right\rceil - \left\lceil \frac{j + 3}{4} \right\rceil + 2,$$

for $j = \left\lceil \frac{m}{2} \right\rceil + 1, \ldots, m - 1$, and $m \equiv 1 \text{ mod } 4$

$$\varphi_4(x_j) = \left\lceil \frac{m}{4} \right\rceil - \left\lceil \frac{j + 1}{4} \right\rceil + 2,$$
$$\varphi_4(y_j) = \left\lceil \frac{m}{4} \right\rceil - \left\lceil \frac{j + 2}{4} \right\rceil + 2,$$
$$\varphi_4(x_jx_{j+1}) = \left\lceil \frac{m}{4} \right\rceil - \left\lceil \frac{j}{4} \right\rceil + 1,$$

for $i = m$

$$\varphi_4(x_m) = 2, \quad \varphi_4(x_my_m) = 1,$$
$$\varphi_4(y_m) = 1, \quad \varphi_4(x_mx_1) = 1,$$
$$\varphi_4(y_my_1) = 1.$$

We get the upper bound from the function of C_4-irregular total Pr_m-labeling. We take from the largest label of graph. We get to present the upper bound of the graph in the Theorem 4,
$$tHs(Pr_m, C_4) \leq \left\lceil \frac{m + 7}{8} \right\rceil.$$
Based on the labeling above, we can show the all weights are different by the following equation:

for every \(j = 1, 2, \ldots, \left\lfloor \frac{m}{2} \right\rfloor \), we have

\[
wt_{\phi_n}(C_4^{j+1}) - wt_{\phi_n}(C_4^j) = \varphi_4(x_{j+1}) + \varphi_4(x_{j+2}) + \varphi_4(x_{j+1}x_{j+2}) + \varphi_4(y_{j+1}) + \varphi_4(y_{j+2}) + \varphi_4(y_{j+1}y_{j+2}) + \varphi_4(x_{j+1}y_{j+1} + y_{j+1}y_{j+2}) - \varphi_4(x_j) - \varphi_4(x_{j+1}) - \varphi_4(x_{j}x_{j+1}) - \varphi_4(y_j) - \varphi_4(y_{j+1}) - \varphi_4(y_{j}y_{j+1}) - \varphi_4(x_{j}y_{j}) - \varphi_4(x_{j+1}y_{j+1})
\]

= \(2 \)

for every \(j = \left\lfloor \frac{m}{2} \right\rfloor + 1, \ldots, m - 1 \), we have

\[
wt_{\phi_n}(C_4^{j+1}) - wt_{\phi_n}(C_4^j) = \varphi_4(x_{j+1}) + \varphi_4(x_{j+2}) + \varphi_4(x_{j+1}x_{j+2}) + \varphi_4(y_{j+1}) + \varphi_4(y_{j+2}) + \varphi_4(y_{j+1}y_{j+2}) + \varphi_4(x_{j+1}y_{j+1} + y_{j+1}y_{j+2}) - \varphi_4(x_j) - \varphi_4(x_{j+1}) - \varphi_4(x_{j}x_{j+1}) - \varphi_4(y_j) - \varphi_4(y_{j+1}) - \varphi_4(y_{j}y_{j+1}) - \varphi_4(x_{j}y_{j}) - \varphi_4(x_{j+1}y_{j+1})
\]

= \(-2 \)

for every \(j = m \), we have

\[
wt_{\phi_n}(C_4^m) = \varphi_4(x_m) + \varphi_4(y_m) + \varphi_4(x_my_m) + \varphi_4(x_mx_1) + \varphi_4(y_my_1) + \varphi_4(x_1y_1)
\]

= \(2 + 1 + 1 + 1 + \left\lfloor \frac{j + 2}{4} \right\rfloor + \left\lfloor \frac{j + 2}{4} \right\rfloor + \left\lfloor \frac{j}{4} \right\rfloor \)

= \(6 + \left\lfloor \frac{1 + 2}{4} \right\rfloor + \left\lfloor \frac{1 + 2}{4} \right\rfloor + \left\lfloor \frac{1}{4} \right\rfloor \)

= \(9 \)

We respect to \(wt_{\phi_4}(C_4^j) < wt_{\phi_4}(C_4^{j+1}) \), \(j = 1, 2, \ldots, m \). If every \(j = 1, 2, \ldots, \left\lfloor \frac{m}{2} \right\rfloor \) then

\[
wt_{\phi_4}(C_4^{j+1}) - wt_{\phi_4}(C_4^j) = 2. \text{ If every } j = \left\lfloor \frac{m}{2} \right\rfloor + 1, \ldots, m - 1 \text{ then } wt_{\phi_4}(C_4^{j+1}) - wt_{\phi_4}(C_4^j) = -2.
\]

If every \(j = m \) then \(wt_{\phi_4}(C_4^m) = 9 \). The all \(H_3 \)-weights are distinct. This matter concludes that \(tHs((Pr_m), C_4) = \left\lfloor \frac{m + 7}{8} \right\rfloor \). We know that example of total \(C_4 \)-irregularity of prism graph on Figure 3, and we get \(tHs((Pr_{16}), C_4) = 2 \) which \(j \) is even. But we can see the example of total \(C_4 \)-irregularity of prism graph labeling on Figure 4, and we get \(tHs((Pr_{17}), C_4) = 2 \) which \(j \) is odd.
3. Concluding Remarks
In this research we have obtained of the total H-irregularity strength of prism graphs, diamond ladder graphs, and three circular ladder graphs. We recognize H-covering on prism graphs and three circular ladder graphs for which H is cyclical. But, we recognize H-covering on diamond ladder graph that H is a diamond ladder graph.

Open Problem 1 Find the total H-Irregularity Strength (tHs) of the Pr_m, $m \geq 3$.

Acknowledgment
We gratefully acknowledge CGANT University of Jember 2019.
References

[1] Agustin I H, Dafik, Marsidi, and Albirri E R 2017 On the total H-irregularity strength of graphs: a new notion Journal of Physics: Conf. Series 855 pp 1-9

[2] Al-Mushayt O and Ahmad A 2012 On the total edge irregularity strength of hexagonal grid graphs Australian Journal of Combinatorics 53 pp 263-271

[3] Ashraf F, Bača M, Feňovčíková S A, and Siddiqui M K 2019 On H-irregularity strength of ladders and fan graphs AKCE International Journal of Graphs and Combinatorics

[4] Ashraf F, Bača M, Láskůková M and Semaničová-Feňovčíková A 2017 On H-irregularity strength of graphs Discussiones Mathematicae: Graph Theory 37 pp 1067-1078

[5] Bača M, Jendrol S, Miller M, and Ryan J 2007 On irregular total labellings Discrete Mathematics 307 pp 1378-1388

[6] Bača M, Siddiqui M K 2014 Total edge irregularity strength of generalized prism Applied Mathematics and Computation 235 pp 168-173

[7] Indriati D, Widodo, Wijayanti I E, Sugeng K A, Bača M, and Feňovčíková A S 2016 The total vertex irregularity strength of generalized helm graphs and prisms with outer pendant edges Australian Journal of Combinatorics 65 pp 14-26

[8] Nisviasari R, Dafik, Agustin I H 2019 The total H-irregularity strength of triangular ladder and grid graphs Journal of Physics: Conf. Series 1211

[9] Slamin, Dafik, and Winnona W 2011 Total vertex irregularity strength of the disjoint union of sun graphs The Electronic Journal of Combinatorics 2012 pp 1-9