New mitochondrial genomes of 39 soil dwelling Coleoptera from metagenome sequencing

Carmelo Andujar, Paula Arribas, Michal Motyka, Mathew Bocek, Ladislav Bocak, Benjamin Linard, Alfried Vogler

To cite this version:

Carmelo Andujar, Paula Arribas, Michal Motyka, Mathew Bocek, Ladislav Bocak, et al.. New mitochondrial genomes of 39 soil dwelling Coleoptera from metagenome sequencing. Mitochondrial DNA Part B Resources, Taylor & Francis Online, 2019, 4 (2), pp.2447-2450. 10.1080/23802359.2019.1637289 . hal-02922399

HAL Id: hal-02922399

https://hal.archives-ouvertes.fr/hal-02922399

Submitted on 26 Aug 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
New mitochondrial genomes of 39 soil dwelling Coleoptera from metagenome sequencing

Carmelo Andújar, Paula Arribasa, Michal Motyka, Mathew Bocek, Ladislav Bocak, Benjamin Linard and Alfried P. Vogler

ABSTRACT

High-throughput DNA methods hold great promise for the study of the hyperdiverse arthropod fauna of the soil. We used the mitochondrial metagenomic approach to generate 39 mitochondrial genomes from adult and larval specimens of Coleoptera collected from soil samples. The mitogenomes correspond to species from the families Carabidae (6), Chrysomelidae (1), Curculionidae (9), Dermentidae (1), Elateridae (1), Latridiidae (1), Scarabaeidae (3), Silvanidae (1), Staphylinidae (12), and Tenebrionidae (4). All the mitogenomes followed the putative ancestral gene order for Coleoptera. We provide the first available mitogenome for 30 genera of Coleoptera, including endemoge representatives of the genera Torneuma, Coiffaitiella, Otiorynchus, Oligotyphlopsis, and Typhlocharis.

The mitochondrial metagenomics approach (MMG) provides a cost-effective method for sequencing mitochondrial genomes from numerous species (Andújar et al. 2015; Crampton-Platt et al. 2015). Total genomic DNA from multiple specimens, either extracted individually or in bulk, is shotgun sequenced in a metagenomics mixture, followed by assembly with standard genomic assemblers, from which whole mitochondrial genomes emerge preferentially due to their high copy number relative to most of the nuclear genome. This ‘genome skimming’ approach was used to sequence the mitogenomes of beetle specimens collected from soil samples of the southern Iberian Peninsula at Sierra de Grazalema (36.7N, −5.4W), Sierra de Cabra (37.4N, −4.3W) and Sierra Madrona (38.4N, −4.3W) (see Andújar et al. 2015) by following the ‘Floatation-Berlese-Floation’ (FBF) protocol (Arribas et al. 2016). Briefly, aliquots of the DNA extracts from 1494 specimens (vouchered at the Natural History Museum London) were pooled to generate 3 pools with roughly equal molar DNA concentration per specimen, after the dsDNA concentration of extracts was measured (Qubit 2.0 Fluorometer, Life Technologies Corp., Carlsbad, CA). Further, TruSeq DNA libraries were constructed and sequenced in the Illumina MiSeq platform (Illumina Inc., San Diego, CA) (2 × 300 bp; 800–950 bp insert size).

The output was processed and assembled in three assemblers as indicated in Andújar et al. (2017). The resulting contigs were subjected to super-assembly in Geneious 7.1.9 (http://www.geneious.com) using the de novo assembly function and showed wide overlap. The procedure resulted in more than 200 mitogenomes longer than 5000 bp, of which 39 were selected for further annotation and identification to species or genus level. Thirty-four of these include the full set of protein-coding, rRNA and tRNA genes (>15,000 bp), of which 17 were complete circular mitogenomes. The remaining 17 were not circularized due to difficulties with the assembly of the control region. Five additional mitogenomes were incomplete by the lack of one or two genes (sequence length between 12,221 and 14,453 bp).

The mitogenomes were annotated using gene predictions with MITOS (Bernt et al. 2013) and manually refined in Geneious. All mitogenomes were structured following the putatively ancestral gene order for the Coleoptera. Mitogenomes assembled from the shotgun mixture were linked to particular specimens using the cox1 barcode sequences obtained from the same specimens with PCR-Sanger sequencing. For those cases where Sanger sequencing failed (5/39), validation was performed by unambiguous match to the species level on BOLD Public Data Portal (Ratnasingham and Hebert 2007, accessed on 20th March 2019). The mitogenomes correspond to 39 different species from the families Carabidae (6), Chrysomelidae (1), Curculionidae (9), Dermentidae (1), Elateridae (1), Latridiidae (1), Scarabaeidae (3), Silvanidae (1), Staphylinidae (12) and Tenebrionidae (4), and include representatives from 37...
Figure 1. Phylogenetic tree from maximum-likelihood analysis showing the relationships of the 39 newly generated mitogenomes. Circles in branch tips indicate the locality where each specimen was collected (Sierra de Grazalema: black; Sierra de Cabra: grey and Sierra Madrona: white). Shaded frames according with beetle families. GenBank accession numbers are in brackets.

Table 1. Additional data for the 39 mitogenomes of Coleoptera in this study.

Genbank Accession Numbers	Voucher code	Family	Species	FG**	FSP***	Life stage	Identification
MK692552	BMNH 1041149	Carabidae	Microlestes mauntianicus	x	x	Adult	J.L. Lencina det.
MK692553	BMNH 1042258	Tenebrionidae	Ochotrus unicolor	x	x	Adult	J.L. Lencina det.
MK692554	BMNH 1041892	Curculionidae	Teneuma sp.	x	x	Adult	C. Hernando det.
MK692556	BMNH 1044019	Staphylinidae	Achenium seditiosum	x	x	Adult	V. Assing det.
MK692557	BMNH 1041971	Carabidae	Typhlocharis sp.	x	x	Adult	C. Andújar det.
MK692559	BMNH 1041157	Tenebrionidae	Microlestes reitteri	x	x	Adult	J.L. Lencina det.
MK692560	BMNH 1042672	Staphylinidae	Othius myrmecophilus	x	x	Larva	BOLD match > 99%
MK692567	BMNH 1042021	Staphylinidae	Oligotyplopsis sp.	x	x	Adult	C. Hernando det.
MK692568	BMNH 1042062	Curculionidae	Tychius pusillus	x	x	Adult	BOLD match > 99%
MK692574	BMNH 1041943	Staphylinidae	Tachyporus nitidulus	x	x	Adult	V. Assing det.
MK692579	BMNH 1043732	Staphylinidae	Trechus Obtusus	x	x	BOLD match > 99%	
MK692585	BMNH 1041967	Elateridae	Hypera postica	x	x	Adult	BOLD match > 99%
MK692586	BMNH 1041911	Curculionidae	Centopus elongatus	x	x	Adult	C. Hernando det.
MK692587	BMNH 1042074	Curculionidae	Olyrhina longiseta	x	x	Adult	BOLD match > 99%
MK692591	BMNH 1041150	Carabidae	Trechus obtusus	x	x	Adult	J.L. Lencina det.
MK692592	BMNH 1042238	Tenebrionidae	Scaurus uncinus	x	x	Adult	J.L. Lencina det.
MK692593	BMNH 1043977	Staphylinidae	Atheta sp.	x	x	Adult	V. Assing det.
MK692599	NA	Staphylinidae	Ocyopus serthios	x	NA	BOLD match > 99%	
MK692601	BMNH 1042249	Staphylinidae	Medon sp.	x	x	Adult	V. Assing det.
MK692603	BMNH 1042190	Staphylinidae	Micusculus testaceus	x	x	Adult	V. Assing det.
MK692605	BMNH 1042074	Curculionidae	Hypera postica	x	x	Adult	BOLD match > 99%
MK692606	BMNH 1042031	Tenebrionidae	Cinemoplastia atropis	x	x	Adult	J.L. Lencina det.
MK692607	BMNH 1042209	Scabaeidae	Phaenops caesi	x	x	Adult	J.L. Lencina det.
MK692609	BMNH 1041982	Curculionidae	Protapion trifoli	x	x	Adult	J.L. Lencina det.
MK692616	BMNH 1041162	Staphylinidae	Geotrupidae	x	x	Adult	V. Assing det.
MK692625	NA	Chrysomelidae	Cryptoglyphus pilosus	x	NA	BOLD match > 99%	
MK692626	BMNH 1042569	Carabidae	Calathus granatensis	x	x	Larva	BOLD match > 99%
MK692638	NA	Staphylinidae	Lomechusa pubicollis	x	x	NA	BOLD match > 99%
MK692642	BMNH 1041893	Silvanidae	Oryzaephilus surinamensis	x	x	NA	J.L. Lencina det.
MK692645	NA	Curculionidae	Echinidea andalusiensis	x	x	NA	BOLD match > 99%
MK692646	BMNH 1042067	Curculionidae	Otionyphus hyalinus	x	x	Adult	C. Hernando det.
MK692648	BMNH 1042068	Scabaeidae	Eysmus pusillus	x	x	Adult	J.L. Lencina det.
MK692661	BMNH 1042524	Staphylinidae	Anthaxius mustus	x	x	Larva	BOLD match > 99%
MK692677	BMNH 1041924	Latridiidae	Carpicura sp.	x	x	Adult	J.L. Lencina det.
MK692678	BMNH 1042175	Dermestidae	Thorius sp.	x	x	Adult	J.L. Lencina det.
MK692681	NA	Carabidae	Sycius flavus	x	x	NA	BOLD match > 99%
MK692702	BMNH 1042255	Staphylinidae	Mecynothorax fuscus	x	x	Adult	BOLD match > 99%
MK692707	BMNH 1042182	Tenebrionidae	Ctenorius elongatus	x	x	Adult	J.L. Lencina det.

Genbank Accession Numbers, voucher codes, taxonomic identification, life stage, and information on whether the provided mitogenomes are the first available for the genus (FG column) and for the species (FSP column).

**All mitogenomes were obtained by bulk sequencing of a mix of specimens. Voucher code refers to the specimen with PCR-Sanger sequencing that matches (100% similarity) the obtained mitogenomes. Vouchers are not available for mitogenomes if PCR-Sanger sequencing failed for a particular specimen.

***FG: Marked with ‘x’ if the mitogenome is the first available for the genus.

**FSP: Marked with ‘x’ if the mitogenome is the first available for the species.
genera. For 30 of these genera, we provide the first available mitogenome and only two species (Oryzaephilus surinamensis and Hypera postica) have an available mitogenome. The new mitogenomes include endogean representatives of the genera Toreuma, Coiffaitiella, Otiorynchus, Oligotyphlopsis, and Typhlocharis. For further details on specimens and mitogenomes see Figure 1, Tables 1 and 2, and GenBank Accession Numbers.

For the 39 newly generated mitogenomes, the 13 protein-coding genes (PCGs) were extracted using Geneious and individually aligned using the FFT-NS-i-x2 algorithm of MAFFT (Katoh et al. 2002). Individual gene alignments were trimmed and concatenated to get a final dataset of 39 taxa and 12,940 bp. This alignment was used for phylogenetic inference using Maximum-likelihood in IQ-TREE (Nguyen et al. 2015), performed through the IQ-TREE web server (Trifinopoulos et al. 2016) without data partitioning, allowing the software to determine the best-fit substitution model and estimating an ultrafast bootstrap approximation with 10,000 replicates. The obtained tree showed the expected relationships among the families within Coleoptera, including the monophyly of the suborders Adephaga and Polyphaga and the monophyly of all families (with more than one mitogenome) (Figure 1).

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
The study was funded by the NHM Biodiversity Initiative (UK) and the Spanish Ministry of Economy and Competitiveness (Ministerio de Economía y Competitividad) under a project with the number CGL2015-74178-JIN.

References
Andújar C, Arribas P, Linard B, Kundrata R, Bocak L, Vogler AP. 2017. The mitochondrial genome of Iberobaenia (Coleoptera: Iberobaenidae): first rearrangement of protein-coding genes in the beetles. Mitochondrial DNA Part A. 28:156–158.
Andújar C, Arribas P, Ruzicka F, Platt AC, Timmermans MJTN, Vogler AP. 2015. Phylogenetic community ecology of soil biodiversity using mitochondrial metagenomics. Mol Ecol. 24:3603–3617.

Table 2. Sampling localities for the 39 mitogenomes of Coleoptera in this study.

GB accession	Locality*	Latitude (N)	Longitude (W)	Altitude (Meters)	Habitat
MK692552	La Dehesilla, Benaocaz, Cádiz, Spain	36.7074	−5.4570	480	Olea europaea field
MK692553	N-420 km 105, Fuencaliente, Ciudad Real, Spain	38.4445	−4.3247	730	Grassland-riverside
MK692554	Arroyo del Espino, El Bosque, Cádiz, Spain	36.7613	−5.5069	275	Riverside
MK692556	Nava de Cabra, Cabra, Córdoba, Spain	37.4856	−4.3634	995	Grassland
MK692557	La Dehesilla, Benaocaz, Cádiz, Spain	36.7074	−5.4567	470	Grassland
MK692559	La Dehesilla, Benaocaz, Cádiz, Spain	36.7074	−5.4570	480	Olea europaea field
MK692560	Robledo de las Hoyas, Fuencaliente, Ciudad Real, Spain	38.4371	−4.3413	950	Quercus faginea forest
MK692567	Arroyo del Bosque, El Bosque, Cádiz, Spain	36.7667	−5.5011	290	Riverside
MK692568	Llanos del Repúblicano, Villaluenga del Rosario, Cádiz, Spain	36.6817	−5.3574	810	Grassland
MK692574	Llanos del Repúblicano, Villaluenga del Rosario, Cádiz, Spain	36.6907	−5.3639	925	Quercus suber forest
MK692579	Huertediondia, Tavizna, Benaocaz, Cádiz, Spain	36.7192	−5.4850	360	Olea europaea field
MK692585	Colada de la Brena, Benaocaz, Cádiz, Spain	36.7070	−5.4704	430	Quercus suber forest
MK692586	El Pinsapar, Puerto del Pinar, Grazalema, Cádiz, Spain	36.7726	−5.4240	1115	Abies pinsapo forest
MK692587	Puerto del Boyar, Grazalema, Cádiz, Spain	36.7536	−5.3939	1120	Grassland
MK692591	La Dehesilla, Benaocaz, Cádiz, Spain	36.7074	−5.4570	480	Olea europaea field
MK692592	Arroyo del Bosque, El Bosque, Cádiz, Spain	36.7667	−5.5011	290	Riverside
MK692593	Cortijo del Nazauzelo, Carcabuye, Córdoba, Spain	37.4852	−4.3412	1035	Grassland
MK692597	Ermita Nta. Sra. de la Sierra, Cabra, Córdoba, Spain	37.4905	−5.4813	1145	Pinus halepensis
MK692599	Sierra de Cabra, Córdoba, Spain	NA	NA	NA	NA
MK692601	Ladera de la Casa de Cipriano, Fuencaliente, Ciudad Real, Spain	38.4190	−4.3138	765	Quercus suber forest
MK692603	Nava de Cabra, Cortijo de los Benitez, Cabra, Córdoba, Spain	37.4856	−4.3634	995	Grassland
MK692605	Casa de la Vinuela, Cabra, Córdoba, Spain	37.4852	−4.3861	1020	Quercus faginea forest
MK692606	Llanos del Repúblicano, Villaluenga del Rosario, Cádiz, Spain	36.6857	−5.3648	910	Quercus ilic forest
MK692607	Arroyo del Palancar, Carcabuye, Córdoba, Spain	37.4827	−4.3676	525	Riverside
MK692609	Arroyo del Bosque, El Bosque, Cádiz, Spain	36.7667	−5.5011	290	Riverside
MK692616	Llanos del Campo, Benamahoma, Cádiz, Spain	36.7556	−5.4556	642	Quercus ilic forest
MK692625	Sierra de Grazalema, Cádiz, Spain	NA	NA	NA	NA
MK692626	Llanos del Repúblicano, Villaluenga del Rosario, Cádiz, Spain	36.6907	−5.3639	925	Quercus suber forest
MK692638	Sierra Madrona, Ciudad Real, Spain	NA	NA	NA	N.A.
MK692642	El Boyar, Cortijo del Santo, Grazalema, Cádiz, Spain	36.7549	−5.4194	920	Quercus ilic forest
MK692645	Sierra de Grazalema, Cádiz, Spain	NA	NA	NA	NA
MK692646	Ermita Nta. Sra. de la Sierra, Cabra, Córdoba, Spain	37.4905	−5.4813	1145	Pinus halepensis
MK692648	Nava de Cabra, Cabra, Córdoba, Spain	37.5067	−5.4671	968	Quercus ilic forest
MK692661	Camino Viejo a la Ermita, Cabra, Córdoba, Spain	37.4811	−4.3885	970	Grassland
MK692677	Arroyo del Espino, El Bosque, Cádiz, Spain	36.7613	−5.5069	275	Riverside
MK692678	Cortijo del Nazauzelo, Carcabuye, Córdoba, Spain	37.4852	−4.3412	1035	Grassland
MK692701	Sierra de Grazalema, Cádiz, Spain	NA	NA	NA	NA
MK692702	Collado del Nazauzelo, Carcabuye, Córdoba, Spain	37.4801	−4.3347	995	Olea europaea field
MK692707	Nava de Cabra, Cortijo de los Benitez, Cabra, Córdoba, Spain	37.4856	−4.3634	995	Grassland

*All mitogenomes were obtained by bulk sequencing of a mix of specimens, and voucher codes to particular specimens assigned by the PCR-Sanger sequencing that matches (100% similarity) the obtained mitogenomes (see Table 1). Metagenomes not linked to a particular vouchered specimen are assigned to a locality but lack detailed information (precise coordinates, altitude, and habitat).
Arribas P, Andújar C, Hopkins K, Shepherd M, Vogler APAP, Andújar C, Hopkins K, Shepherd M, Vogler APAP. 2016. Metabarcoding and mitochondrial metagenomics of endogeans arthropods to unveil the mesofauna of the soil. Methods Ecol Evol. 7:1071–1081.
Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF. 2013. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 69:313–319.
Crampton-Platt A, Timmermans MJTN, Gimmel ML, Kutty SN, Cockerill TD, Vun Khen C, Vogler AP. 2015. Soup to tree: The phylogeny of beetles inferred by mitochondrial metagenomics of a Bornean Rainforest sample. Mol Biol Evol. 32:2302–2316.
Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl Acids Res. 30:3059–3066.
Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 32:268–274.
Ratnasingham S, Hebert PDN. 2007. BARCODING, BOLD: The Barcode of Life Data System (http://www.barcodinglife.org). Mol Ecol Notes. 7:355–364.
Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ. 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44:W232–W235.