Understanding Challenges in Deploying Deep Learning Based Software: An Empirical Study

Zhenpeng Chen, Yanbin Cao, Yuanqiang Liu
Peking University, Beijing, China
{czp, caoyanbin, yuanqiangliu}@pku.edu.cn

Haoyu Wang
Beijing University of Posts and Telecommunications, Beijing, China
haoyuwang@bupt.edu.cn

Tao Xie, Xuanzhe Liu∗
Peking University, Beijing, China
{taoxie, xzl}@pku.edu.cn

ABSTRACT

Deep learning (DL) becomes increasingly pervasive, being used in a wide range of software applications. These software applications, named as DL based software (in short as DL software), integrate DL models trained using a large data corpus with DL programs written based on DL frameworks such as TensorFlow and Keras. A DL program encodes the network structure of a desirable DL model and the process by which the model is trained using the training data. To help developers of DL software meet the new challenges posed by DL, enormous research efforts in software engineering have been devoted. Existing studies focus on the development of DL software and extensively analyze faults in DL programs. However, the deployment of DL software has not been comprehensively studied. To fill this knowledge gap, this paper presents a comprehensive study on understanding challenges in deploying DL software. We mine and analyze 3,023 relevant posts from Stack Overflow, a popular Q&A website for developers, and show the increasing popularity and high quality of DL software deployment among developers. We build a taxonomy of specific challenges encountered by developers in the process of DL software deployment through manual inspection of 769 sampled posts and report a series of actionable implications for researchers, developers, and DL framework vendors.

KEYWORDS

deep learning, software deployment, Stack Overflow

1 INTRODUCTION

Deep learning (DL) has been used in a wide range of software applications from different domains, including natural language processing [76], speech recognition [89], image processing [79], disease diagnosis [80], autonomous driving [86], etc. These software applications, named as DL based software (in short as DL software), integrate DL models trained using a large data corpus with DL programs. To implement DL programs, developers rely on DL frameworks (e.g., TensorFlow [68] and Keras [62]), which encode the structure of desirable DL models and the process by which the models are trained using the training data.

The increasing dependence of current software applications on DL (as in DL software) makes it a crucial topic in the software engineering (SE) research community. Specifically, many research efforts [78, 82, 83, 103, 105] have been devoted to characterizing the new challenges that DL poses to software development. To characterize the challenges that developers encounter in this process, various studies [83, 103, 105] focus on analyzing faults in DL programs. For instance, Islam et al. [83] have presented a comprehensive study of faults in DL programs written based on TensorFlow (TF) [68], Keras [62], PyTorch [63], Theano [71], and Caffe [84] frameworks.

Recently, with the great demand of deploying DL software to different platforms for real usage [78, 88, 99], it also poses new challenges to software deployment, i.e., deploying DL software on a specific platform. For example, a computation-intensive DL model in DL software can be executed efficiently on PC platforms with the GPU support, but it cannot be directly deployed and executed on platforms with limited computing power, such as mobile devices. To facilitate such a deployment process, some DL frameworks such as TF Lite [65] and Core ML [60] are rolled out by major vendors. Furthermore, SE researchers and practitioners also begin to focus on DL software deployment. For example, Guo et al. [81] investigated the changes in prediction accuracy and performance when DL models trained on PC platforms are deployed to mobile devices and browsers, and unveiled that the deployment still suffers from compatibility and reliability issues. Additionally, DL software deployment also poses some specific programming challenges to developers such as converting DL models to the formats expected by the deployment platforms; these challenges are frequently asked in developers’ Q&A forums [1–4]. Despite some efforts made, to the best of our knowledge, a fundamental question remains under-investigated: what specific challenges do developers face when deploying DL software?

To bridge the knowledge gap, this paper presents the first comprehensive empirical study on identifying challenges in deploying DL software. Given surging interest in DL and the importance of DL software deployment, such a study can aid developers to avoid common pitfalls and make researchers and DL framework vendors better positioned to help software engineers perform the deployment task in a more targeted way. Besides mobile devices and browsers that have been considered in previous work [81], in this work, we also take into account server/cloud platforms, where a large number of DL software applications are deployed [78, 104]. To understand what struggles faced by developers when they deploy DL software, we analyze the relevant posts from a variety of developers on Stack Overflow (SO), which is one of the most popular Q&A forums for developers. When developers have troubles to solve programming issues that they meet, they often seek technological advice from peers on SO [78]. Therefore, it has been a common practice for researchers to understand the challenges that developers encounter when dealing with different engineering tasks from SO posts, as shown in recent work [70, 72–74, 78, 93, 102, 103].

∗ Corresponding author: Xuanzhe Liu (xzl@pku.edu.cn).

1 Unless explicitly stated, framework vendors in this paper refer to vendors of deployment related frameworks such as TF Lite and Core ML.
We first briefly describe the current practice of DL software development and deployment. Figure 1 shows an overview of the methodology of our study in Figure 2.

2 BACKGROUND

We first briefly describe the current practice of DL software development and deployment. Figure 1 distinguishes the two processes.

DL software development. To integrate DL capabilities into software applications, developers make use of state-of-the-art DL frameworks (e.g., TF and Keras) in the software development process. Specifically, they use these frameworks to create the architecture of DL models and specify run-time configuration (e.g., hyperparameters). In a DL model, multiple layers of transformation functions are used to convert input to output, with each layer learning successively higher level of abstractions in the data. Then large-scale data (i.e., the training data) are used to train (i.e., adjust the weights of) the multiple layers. Finally, validation data, which are different from the training data, are used to tune the model. Due to the space limit, we show only the model training phase in Figure 1.

DL software deployment. After DL software has been well validated and tested, it is ready to be deployed to different platforms for real usage. The most popular way is to deploy DL software on the server or cloud platforms [104]. Such a way enables developers to invoke services powered by DL techniques via simply calling an API endpoint. Some frameworks (e.g., TF Serving [66]) and platforms (e.g., Google Cloud ML Engine [61]) can facilitate this deployment way. In addition, there is a rising demand in deploying DL software to mobile devices [99] and browsers [88]. For mobile platforms, due to their limited computing power, memory size, and energy capacity, models that are trained on PC platforms and used in the DL software cannot be deployed directly to the mobile platforms in some cases. Therefore, some lightweight DL frameworks, such as TF Lite for Android and Core ML for iOS, are specifically designed for converting pre-trained DL models to the formats supported by mobile platforms. In addition, it is a common practice to perform model quantization before deploying DL models on mobile devices, in order to reduce memory cost and computing overhead [81, 99]. For model quantization, TF Lite supports only converting model weights from floating points to 8-bit integers, while Core ML allows flexible quantization modes, such as 32-bits to 16/8/4 bits [81]. For browsers, some solutions (e.g., TF.js [67]) are proposed for deploying DL models under Web environments.

3 METHODOLOGY

To understand the challenges in deploying DL software, we analyze the relevant questions posted on Stack Overflow (SO), where developers seek technological advice about unresolved issues. We show an overview of the methodology of our study in Figure 2.

Step 1: Download Stack Overflow dataset. In the first step of this study, we download SO dataset from the official Stack Exchange Data Dump [64] on December 2, 2019. The dataset covers the SO posts generated from July 31, 2008 to December 1, 2019. The metadata of each post includes its identifier, post type (i.e., question or answer), creation date, tags, title, body, identifier of the accepted answer if the post is a question, etc. Each question has one to five tags based on its topics. The developer who posted a question can mark an answer as an accepted answer to indicate that it works for the question. Among all the questions in the dataset (denoted as the set A), 52.33% have an accepted answer.

Step 2: Identify relevant questions. In this study, we select three representative deployment platforms of DL software for study, including server/cloud, mobile, and browser platforms. Since questions related to DL software deployment may be contained in DL
related questions, we first identify these questions related to DL. Following previous work [82, 83], we extract questions tagged with at least one of the top five popular DL frameworks (i.e., TF, Keras, PyTorch, Theano, and Caffe) from A and denote the extracted 70,669 questions as the set B. Then we identify the relevant questions for each kind of platform, respectively.

Server/Cloud. We define a vocabulary of words related to server and cloud platforms (i.e., “cloud”, “server”, and “serving”). Then we perform a case-insensitive search of the three terms within the title and body (excluding code snippets) of questions in B and denote the questions that contain at least one of the terms as the set C. Since questions in C may contain some noise that is not related to deployment (e.g., questions about training DL models on the server), we filter out those that do not contain the word “deploy” and finally 279 questions are remained in C. To further complement C, we extract questions tagged with TF Serving, Google Cloud ML Engine, and Amazon SageMaker from A. TF Serving is a DL framework that is specifically designed for deploying DL software to servers; Google Cloud ML Engine and Amazon SageMaker [59] are two popular cloud platforms for training DL models and deploying DL software. Since the two platforms are rolled out by two major cloud services vendors, i.e., Google and Amazon, we believe that they are representative. For questions tagged with the two platforms, we filter out those that do not contain the word “deploy” as they also support model training. Then we add the remaining questions as well as all questions tagged with TF Serving into C and remove the duplicate questions. Finally, we have 1,325 questions about DL software deployment to server/cloud platforms in the set C.

Mobile. We define a vocabulary of words related to mobile devices (i.e., “mobile”, “android”, and “ios”) and extract the questions that contain at least one of the three words from B in a case-insensitive way. We denote the extracted 486 questions as the question set D. Then, following previous work [81], we also consider two DL frameworks specifically designed for DL software deployment to mobile platforms (i.e., TF Lite and Core ML). We extract the questions tagged with the two frameworks from A and then add them into D. Finally, we remove the duplicate questions and have 1,533 questions about DL software deployment to mobile devices in the set D.

Browser. We extract the questions that contain the word “browser” from B in a case-insensitive way and denote the extracted 89 questions as the set E. In addition, following previous work [81], we also take TF.js, which can be used for deploying DL models on browsers, into consideration. Different from TF Lite that only supports deployment, TF.js also supports developing DL models. However, since DL on browsers is still at dawn [88], questions tagged with TF.js in A are too few, only 353. If we employ the strict keyword matching method to filter out questions that do not contain “deploy” as above, only 10 out of 353 questions can remain. To keep as many as possible the relevant questions, instead of keyword matching, we employ manual inspection here. Specifically, we add all the 353 questions into E and exclude the duplicate questions. Then two authors examine the remaining 576 questions independently and determine whether or not each question is about DL software deployment. The inter-rater agreement measured as Cohen’s Kappa (κ) [77] is 0.894, which indicates almost perfect agreement. Then the conflicts are resolved through discussion, and the questions considered as non-deployment issues are excluded from E. Finally, we have 165 questions about DL software deployment to browsers in the set E.

Step 3: Determine popularity trend. To illustrate the popularity trend of DL software deployment, following previous work [72], we calculate the number of users and questions related to the topic per year. Specifically, the metrics are calculated based on the question sets C, D, and E, for each of the past five years (i.e., from 2015 to 2019). Step 3 answers the research question RQ1.

Step 4: Determine difficulty. We measure the difficulty of deploying DL software using two metrics widely adopted by previous work [70, 72, 73], including the percentage of questions with no accepted answer (“%no acc.”) and the response time needed to receive an accepted answer. In this step, we use the questions related to other aspects of DL software (in short as non-deployment questions) as the baseline for comparison. To this end, we exclude the deployment related questions (i.e., questions in C, D, and E) from the DL related questions (i.e., questions in B), and use the remaining questions as the non-deployment questions. For the first metric, proportion test [91] is employed to ensure the statistical significance of comparison. For the second metric, we select the questions that have received accepted answers and then show the distribution and the median value of the response time needed to receive an accept answer for both deployment and non-deployment questions. Step 4 answers the research question RQ2.

Step 5: Construct taxonomy of challenges. In this step, we manually analyze the questions related to DL software deployment, in order to construct the taxonomy of challenges. Following previous work [103], to ensure a 95% confidence level and a 5% confidence interval, we randomly sample 297 server/cloud related questions from C and 307 mobile related questions from D. Since browser related questions in E are not too many, we use all the 165 questions in it for manual analysis. In total, we get a dataset of 769 questions that are used for taxonomy construction. The size of this dataset is comparable and even larger than those used in existing studies [69, 75, 103, 105] that also require manual analysis of SO posts. Next, we present our procedures of taxonomy construction.

Pilot construction. First, we randomly sample 30% of the 769 questions for a pilot construction of the taxonomy. The taxonomy for each kind of platform is constructed individually based on its corresponding samples. We follow an open coding procedure [94] to inductively create the categories and sub-categories of our taxonomy in a bottom-up way by analyzing the sampled questions. The first two authors, who both have four years of DL experiences, jointly participate in the pilot construction. The detailed procedure is described below.

They read and reread all the questions, in order to be familiar with them. In this process, they take all the elements of each question, including title, body, code snippets, comments, answers, tags, and even URLs mentioned by questioners and answerers, for careful inspection. Questions not related to DL software deployment are classified as False positives. For a relevant question, if the authors cannot identify the specific challenge behind it, they mark it as Unclear questions, which as well as False positives are not included into the taxonomy. For the remaining questions, the authors assign short phrases as initial codes to indicate the challenges behind them.
Specifically, for those that are thrown without attempts (mainly in the form of “how”, e.g., “how to process raw data in tf-serving” [5]), the authors can often clearly identify the challenges from the question descriptions; for those that describe the faults or unexpected results developers encountered in practice, the authors identify their causes as the challenges. For example, if a developer reported an error that she encountered when making predictions and the authors can find that the cause is the wrong format of input data from the question descriptions, comments, or answers, they consider setting the format of input data correctly as the challenge behind this question.

Then the authors proceed to group similar codes into categories and create a hierarchical taxonomy of challenges. The grouping process is iterative, in which they continuously go back and forth between categories and questions to refine the taxonomy. A question is assigned to all related categories if it is related to multiple challenges. All conflicts are discussed and resolved by introducing three arbitrators. The arbitrator for server/cloud deployment is a practitioner who has four years of experiences in deploying DL software to servers/cloud platforms. The arbitrators for mobile and browser deployment are both graduate students who have two years of experiences in deploying DL software to mobile devices and browsers, respectively. Both of them have published papers related to DL software deployment in top-tier conferences. The arbitrators finally approve all categories in the taxonomy.

Reliability analysis and extended construction. Based on the coding schema in the pilot construction, the first two authors then independently label the remaining 70% questions for reliability analysis. Each question is labeled with False positives, Unclear questions, or the identified leaf categories in the taxonomy. Questions that cannot be classified into the current taxonomy are added into a new category named Pending. The inter-rater agreement during the independent labeling is 0.818 measured by Cohen’s Kappa (κ), which indicates almost perfect agreement and demonstrates the reliability of our coding schema and procedure. The conflicts of labeling are then discussed and resolved by the aforementioned three arbitrators. For the questions classified as Pending, we also employ the arbitrators to help us further identify the challenges behind them and determine if new categories need to be added. Finally, 8 new leaf categories are added and all questions in Pending are assigned into the taxonomy.

In summary, among the 769 sampled questions, 58 are marked as False positives, 130 Unclear questions. In addition, two questions are assigned into two categories. The remaining 583 samples (i.e., 227 for server/cloud deployment, 231 for mobile deployment, and 125 for browser deployment) are all covered in the final taxonomy. The entire manual construction process takes about 450 man-hours. Step 5 answers the research question RQ3.

4 RQ1: POPULARITY TREND

Figure 3 shows the popularity trend of deploying DL software in terms of the number of users and questions on SO. The figure indicates that such a topic is gaining increasing attention, which demonstrates the timeliness and urgency of this study.

For deploying DL software on server/cloud platforms, we observe that users and questions increase in a steady trend. In 2017, most major vendors rolled out their DL frameworks for mobile devices [99]. As a result, we can observe that both the number of users and the number of questions related to mobile deployment in 2017 increased by more than 300% compared to 2016. For deploying DL software on browsers, questions start to appear in 2018, which can be explained by the release of TF.js in 2018. As found by Ma et al. [88], DL in browsers is still at dawn. Therefore, the users and questions related to it are still not so many, as shown in Figure 3.

5 RQ2: DIFFICULTY

For deployment and other aspects (in short of non-deployment) of DL software, the percentages of relevant questions with no accepted answer are 62.7% and 70.7%, respectively. The significance of such a difference is ensured by the result of proportion test ($\chi^2 = 78.153$, df = 1, p-value < 2.2e-16), which indicates that questions related to DL software deployment are more difficult to answer than those related to other aspects of DL software. In addition, in terms of this metric, questions about deploying DL software are also more difficult to resolve than other well-studied challenging topics in SE, such as big data (% no acc. = 60.5% [73]), concurrency (% no acc. = 43.8% [70]), and mobile (% no acc. = 55.0% [93]).

Figure 4 presents the boxplot of response time needed to receive an accepted answer for deployment and non-deployment related questions. We can observe that the time needed for non-deployment questions are mostly concentrated below 600 minutes, while deployment questions have a wider spread. Furthermore, we find that the median response time for deployment questions (i.e., 404.9 minutes) is about 3 times the time needed for non-deployment questions (only 145.8 minutes). Additionally, in previous work, researchers find that the median response time needed for other challenging topics, including big data, concurrency, and mobile, is about 198 minutes [73], 42 minutes [70], and 55 minutes [93], respectively. By comparison, questions related to deploying DL software needs longer time to receive accepted answers.
In summary, we find that questions related to DL software deployment are difficult to resolve, which partly demonstrates the finding in previous work that model deployment is the most challenging phase in the life cycle of machine learning (ML) [72] and motivates us to further identify the specific challenges behind it.

6 RQ3: TAXONOMY OF CHALLENGES

Figure 5 illustrates the hierarchical taxonomy of challenges in DL software deployment. According to it, we can observe that developers have difficulty in a broad spectrum of problems. Note that although the identified challenges are about deploying DL software to specific platforms, not all relevant issues occur on corresponding platforms. For example, to deploy DL software to mobile devices, the model conversion task can be done on PC platforms.

We group the full taxonomy into three sub-taxonomies that correspond to the challenges in deploying DL software to server/cloud, mobile, and browser platforms, respectively. Each sub-taxonomy is then organized into three-level categories, including the root categories (e.g., Server/Cloud), the inner categories (e.g., Model Export), and the leaf categories (e.g., Model quantization). In total, we have 3 root categories, 25 inner categories, and 72 leaf categories. We show the percentages for questions related to each category in the parentheses. Then we describe and exemplify each inner category.

6.1 Common Challenges in Server/Cloud, Mobile, and Browser

To avoid duplicate descriptions, we first present the common inner categories in Server/Cloud, Mobile, and Browser.

6.1.1 General Questions. This category shows general challenges that do not involve a specific step in the deployment process and contains several leaf categories as follows.

Entire procedure of deployment. This category refers to general questions about the entire procedure of deployment that are mainly thrown without practical attempts. They are mainly in the form of “how”, like “how can I use that model in android for image classification” [6]. In such questions, developers often complain about the documentation, e.g., “there is no documentation given for this model” [7]). Answerers mainly handle these questions by providing existing tutorials or documentation-like information that does not appear elsewhere, or translate the jargon heavy documentation into case-specific guidance phrased in a developer-friendly way. Compared to Server/Cloud (9.7%) and Mobile (13.4%), Browser contains relatively less such questions (3.2%). A possible explanation is that since DL in browsers is still in the early stage [88], developers are mainly stuck in its primary usage rather than being eager to explore how to apply it to various scenarios.

Conceptual questions. This category presents questions about basic concepts or background knowledge related to DL software deployment, like “is there any difference between these Neural Network Classifier and Neural Network in machine learning model type used in iO’s” [8]. This category of questions is also observed in previous work that analyzed challenges that developers face through SO questions [70, 73, 95]. For Server/Cloud and Mobile, this category accounts for 4.4% and 4.8%, respectively, which indicates that developers find even the basics of DL software deployment challenging. For Browser, this category is missing. Since TF.js also supports model training, we filter out the conceptual questions about TF.js during manual inspection as we cannot discern whether these questions occur during training or deployment. However, it does not mean that there is no conceptual problems about browser deployment. We discuss this deficiency in threats to validity.

6.1.2 Model Export and Model Conversion. Both categories cover challenges in converting DL models in DL software into the formats supported by deployment platforms. Model export directly saves the trained model into the expected formats, which is a common way for deploying DL models to server/cloud platforms. By comparison, model conversion always needs two steps: i) saving the trained model into a format supported by the deployment frameworks; ii) using these frameworks to convert the saved model into the format supported by mobile devices or browsers. Considering the similar functions of model export and model conversion, we put them together for description. Model export represents 15.0% of questions in Server/Cloud, while model conversion is the most challenging problem in Mobile and the third challenging problem in Browser, accounting for 26.4% and 18.4%, respectively. Then we present representative leaf categories under the two categories.

Procedure. Different from Entire procedure of deployment that asks about the entire deployment process, questions in Procedure are about the procedure of a specific step in the process. For example, questions in Procedure under Model Conversion are like “how can I convert this file into a .coreml file” [1]. Due to page limit, we do not repeat the descriptions of Procedure in other inner categories.

Export/conversion of unsupported models. The support of DL on some platforms is still unfledged. Some standard operators and layers used in the trained model are not supported in deployment frameworks. For example, developers reported that LSTM is not supported by TF Lite [2] and that GaussianNoise is not supported by TF.js [11]. Similarly, Guo et al. [81] reported that they could not deploy the RNN models (i.e., LSTM and GRU) to mobile platforms due to the “unsupported operation” error. In addition, when developers attempt to export or convert models with custom operators or layers, they also encounter difficulties [3, 4].

Specification of model information. When exporting or converting DL models to expected formats, developers always need to specify model information. For instance, TF Serving requires developers to construct a signature to specify names of the input and output tensors and the method of inference (i.e., regression, prediction, or classification) [12]. Incorrect specification would result in errors [13]. Sometimes, developers directly use off-the-shelf models that have been well trained and released online for deployment, but they have no idea about their information (e.g., names of the input and output tensors [14]), which also makes the model export/conversion task challenging.
Figure 5: Taxonomy of challenges in deploying DL software.
Selection/usage of APIs. There are so many APIs provided by different frameworks for developers to export and convert models to various formats. Therefore, it is challenging for developers to select and use these APIs correctly according to their demand. For example, a developer was confused about the "relationship between tensorflow saver, exporter and save model" [15] and said frankly that she felt more confused after reading some tutorials. What’s more, the addition, deprecation, and upgrade of APIs caused by the update of frameworks also make the selection and usage of APIs error-prone [16].

Model quantization. Model quantization reduces precision representations of model weights, in order to reduce memory cost and computing overhead of DL models [17]. It is mainly used for deployment to mobile devices, due to their limitations of computing power, memory size, and energy capacity. For such a technique, developers have difficulty in configuration of relevant parameters [18]. In addition, developers call for support of more quantization options. For instance, TF Lite supports only 8-bits quantization (i.e., converting model weights from floating points to 8-bits integers), but developers may need more bits for quantization [19].

6.1.3 Data Processing. This category covers challenges in converting raw data into the input format needed by DL models in DL software (i.e., pre-processing) and converting the model output into expected formats (i.e., post-processing). It accounts for the most questions (i.e., 19.8%) in Server/Cloud. For Mobile and Browser, it represents 16.9% and 18.4% of questions, respectively. Then We describe the representative leaf categories under Data Processing.

Setting size/shape/format/datatype of input data. It is a common challenge in data pre-processing to set the size/shape and format/datatype of data. A faulty behavior manifests when the input data have an unexpected size/shape (e.g., a 224×224 image instead of a 227×227 image [20]), format (e.g., encoding an image in the Base64 format instead of converting it to a list [21]), or datatype (e.g., float instead of int [22]).

Migrating pre-processing. When developing ML/DL models, data pre-processing is often considered as an individual phase [72] and thus may not be included inside the model architecture. In this case, code for data pre-processing needs to be migrated during the deployment process, so as to keep the consistent behaviors of software before and after deployment. For instance, when developers deploy a DL application with pre-processing that is implemented with Python and out of the DL models to an Android device, they may need to re-implement pre-processing using a new language (e.g., Java or C/C++). Forgetting to re-implement it [23] or re-implementing it incorrectly [24] can lead to faulty behaviors. In addition, an alternative to keep data pre-processing consistent is to add it into the architecture of DL models. For this option, developers face challenges like “how to add layers before the input layer of model restored from a .pb file [...] to decode jpeg encoded strings and feed the result into the current input tensor” [25].

Parsing output. This category includes challenges in converting the output of DL models to expected or human-readable results, such as parsing the output array [26] or tensor [27] to get the actual predicted class.

6.1.4 Model Update. Once DL software are deployed for real usage, they can receive feedback (e.g., bad cases) from users. The feedback can be used to update the weights of models in DL software for further performance improvement. Many challenges, such as periodically automated model update on clouds [28] and model update (or re-training) on mobile devices [29], emerge from the efforts to achieve this goal. This category represents 2.6%, 3.0%, and 1.6% of questions in Server/Cloud, Mobile, and Browser, respectively.

6.1.5 Model Security. DL models in DL software are often stored in unencrypted formats, which results in a risk that competitors may disassemble and reuse the models. To avoid such a risk and ensure the model security, developers attempt multiple approaches, such as obfuscating code [30] or libraries [31]. Any challenges related to model security are included in this category. This category is observed only in Mobile and Browser, since models deployed to these platforms are easier to obtain. By comparison, models deployed on server/cloud platforms are hidden behind API calls.

6.2 Common Challenges in Mobile and Browser

6.2.1 Data Extraction. To deploy DL software successfully, developers need to consider any stage that may affect the final performance, including data extraction. This category is only observed in Mobile and Browser, accounting for 1.7% and 3.2% of questions, respectively. This indicates the difficulty of extracting data in mobile devices and browsers.

6.2.2 Inference Speed. Compared to server or cloud platforms, mobile and browser platforms have weaker computing power. As a result, the inference speed of the deployed software has been a challenge in mobile devices (3.9%) and browsers (7.2%).

6.3 Common Challenges in Server/Cloud and Browser

Environment. This category presents challenges in setting up the environment for DL software deployment, and accounts for 19.4% and 19.2% of issues in Server/Cloud and Browser, respectively. For Mobile, its environment related issues are mainly distributed in DL Library Compilation and DL Integration into Projects categories that will be introduced later. When deploying DL software to servers or clouds, developers need to configure various environment variables, whose diverse options make the configuration task challenging. In addition, for the server deployment, developers also need to install or build necessary frameworks such as TF Serving. Problems occurred in this phase are included in Installing/building frameworks. Similarly, when deploying DL software to browsers, some developers have difficulty in Importing libraries, e.g., “I am developing a chrome extension, where I use my trained keras model. For this I need to import a library tensorflow.js. How should I do that” [32]. Besides these, the rapid evolution of DL frameworks makes the version compatibility of frameworks/libraries challenging for developers. For instance, an error reported on SO is caused by that the TF used to train and save the model has an incompatible version with TF Serving used for deployment [33]. Similarly, Humbatova et al. [82] mentioned that version incompatibility between different libraries and frameworks was one of the main concerns of practitioners in developing DL software.
6.4 Remaining Challenges in Server/Cloud

6.4.1 Request. This category covers challenges in making requests in the client and accounts for 13.7% in Server/Cloud. For Request, developers have difficulty in configuring the request body [34], sending multiple requests at a single time (i.e., batching request) [35], getting information of serving models via request [36], etc.

6.4.2 Serving. This category concerns challenges related to serving DL software on the server/cloud platforms and accounts for 13.2% of questions. To make a DL model in DL software servable, developers firstly need to load it, where problems such as loading time [37] and memory usage [38] may emerge. In addition, many developers encounter difficulties in authenticating the client [39] and parsing the request [40]. Sometimes, developers need to serve multiple different models to provide diverse services or serve different versions of one model at the same time [41], but they find that the implementation is not so easy (accounting for 3.5% of questions). Similarly, Zhang et al. [104] demonstrated that multiple model maintenance is one of the main challenges in DL software deployment and maintenance in the server side. Finally, we want to mention a specific configuration problem in this category, i.e., Configuration of batching. To process requests in batches, developers need to configure relevant parameters manually. We observe this problem in 2.6% of questions, e.g., “I know that the batch.config file needs to be fine-tuned a bunch by hand, and I have messed with it a lot and tuned numbers around, but nothing seems to actually effect runtimes” [42].

6.5 Remaining Challenges in Mobile

6.5.1 DL Library Compilation. This category includes challenges in compiling DL libraries for target mobile devices and represents 7.8% of questions in Mobile. Since Core ML is well supported by iOS, developers can use it directly without installing or building it. For TF Lite, pre-built libraries are officially provided for developers to serve DL software conveniently. However, developers still need to compile TF Lite from source code by themselves in some cases (e.g., deploying models containing unsupported operators). Since the operators supported by TF Lite are still insufficient to meet developers’ demand [43], developers sometimes need to register unsupported operators manually to add them into the run-time library, which may be challenging for developers who are unfamiliar with TF Lite. In addition, for compilation, developers need to configure build command lines and edit configuration files (i.e., Build configuration). Wrong configurations [44] can result in build failure or library incompatibility with target platforms.

6.5.2 DL Integration into Projects. This category presents challenges in integrating DL libraries and models into mobile software projects. It accounts for 21.2% in Mobile. To integrate DL libraries and build projects, developers need to edit build configuration files (i.e., Build configuration), which has been a common challenge (3.9%) for both Android and iOS developers. To integrate DL models into projects, developers have challenges in importing and loading models (4.3%). For example, in an Xcode project for iOS, developers can drag the models into the project navigator, and then Xcode can parse and import the model automatically [45]. However, some developers encountered errors during this process [46, 47]. When it comes to an Android project, the importing process is more complicated. For instance, if developers load a TF Lite model with C++ or Java, they need to set the information (e.g., datatype and size) of input and output tensors manually (8.2%), but some developers fail in this configuration [48]. What’s more, developers have difficulty in the thread management (2.2%) when integrating DL models into projects, like “I am building an Android application that has three threads running three different models, would it be possible to still enable inter_op_parallelism_threads and set to 4 for a quad-core device” [49].

6.6 Remaining Challenges in Browser

Model Loading. This category shows challenges in loading DL models in browsers. It is the most common challenge in browser deployment, accounting for 24.0% of questions. For browsers, TF.js provides with tf.loadLayersModel method to support loading models from local storage. HTTP endpoints, and IndexedDB. Among the three ways, we observe that the main challenge lies in loading from local storage (8.0%). In the official document of TF.js [50], “local storage” refers to the browser’s local storage, which is interpreted in a hyperlink [51] contained in the document as that the stored data is saved across browser sessions. However, nearly all bad cases in Loading from local storage attempted to load models from local file systems. In fact, tf.loadLayersModel uses the fetch method [52] under the hood. Fetch is used to get a file served by a server and cannot be used directly with local files. To work with local files, developers firstly need to serve them on a server. What’s more, many developers do not have a good grasp of the asynchronous loading (5.6%). In a scenario, when a developer loaded a DL model in Chrome and then used it to make predictions, she received that “loadModel.predict is not a function error” since the model had not been successfully loaded [53]. Since model loading is an asynchronous process in TF.js, developers need to either use await or .then to wait for the model to be completely loaded before using it for further actions.

6.7 Unclear Questions

Although unclear questions are not included in our taxonomy, we also manually examine them to seek for some insights. All unclear questions have no accepted answers and do not have informative discussions and question descriptions to help us determine the challenges behind them. Among them, 53% reported unexpected results [54] or errors [55] when making predictions using the deployed models. However, no anomalies occur at any stages before this phase, making it rather difficult to discover the challenges behind. In fact, various problems can result in the errors or unexpected results in this phase. Take the server deployment as an example. During the manual inspection, we find that errors occurring in making predictions can be attributed to the improper handling of various challenges, such as version incompatibility between libraries used for training and deploying [56] (i.e., Environment), wrong specification of model information [57] (i.e., Model Export), mismatched format of input data [58] (i.e., Data Processing), etc.
7 IMPLICATIONS

Based on the preceding derived findings, we then discuss our insights and some practical implications for developers, researchers, and DL framework vendors.

Researchers. As demonstrated in our study, DL software deployment is gaining increasing attention from developers, but they encounter a spectrum of challenges and various unresolved issues. Such findings encourage researchers to develop technology to help developers meet these deployment challenges. Here, we briefly discuss some potential opportunities to the research communities based on our results.

(i) Automated fault localization. In Section 6.7, we find that 53% of unclear questions reported errors when making predictions and that various faults in different phases can result in such errors. This indicates the difficulty in manually localizing the faults and highlights the needs for researchers to propose automated fault localization tools for DL software deployment. Similarly, pro-active alerting techniques can be proposed to inform developers about potential errors during the deployment process. However, it should be acknowledged that monitoring and troubleshooting deployment process is quite difficult, because of the myriad potential problems, including hardware and software failures, misconfigurations, input data, even simply unrealistic user expectations, etc. Therefore, we encourage researchers to conduct a systematic study to characterize the major types and root causes of faults occurred in deploying DL software before developing the aforementioned automated tools.

(ii) Automated configuration. In our taxonomy, many challenges are related to configuration (e.g., Specification of model information and Configuration of environment variables). This observation motivates researchers to propose automated configuration techniques to simplify some deployment tasks for developers, especially non-experts. In addition, automated configuration checkers can be proposed to detect and diagnose misconfigurations, based on analyzing the configuration logic, requirements, and constraints.

(iii) Implications for other communities. Our results reveal some emerging needs of developers, which can provide implications for other research communities, such as system and AI. For example, some developers call for more quantization options (see Model quantization) in model conversion. Researchers from the AI community should propose more effective and efficient techniques for model quantization, so as to help improve current frameworks. In addition, to update model on mobile devices (see Model Update), system researchers need to propose effective techniques to support model update (i.e., re-training) on the devices with limited computation power.

Developers. (i) Targeted learning of required skills. DL software deployment lies in the interaction between DL and SE. Therefore, it requires developers with a solid knowledge of both fields, which makes such a task quite challenging. Our taxonomy can serve as a checklist for developers with varying backgrounds, motivating them to learn necessary knowledge before really deploying DL software. For instance, an Android developer needs to learn necessary knowledge about DL before deploying DL software to mobile devices. Otherwise, she may fail in the specification of information about DL models (see Specification of model information) trained by DL developers or data scientists. Similarly, when a DL developer who is not skillful in JavaScript deploys DL models on browsers, she may directly load models from local file systems due to the misunderstanding of “browsers’ local storage” (see Section 6.6).

(ii) Avoiding common pitfalls. Our study identifies some common pitfalls in DL software deployment. Developers should pay attention to these pitfalls and avoid them accordingly. For instance, when deploying DL software to target platforms, developers should remember to migrate the pre-processing code and pay attention to version compatibility. (iii) Better project management. Our taxonomy presents the distribution of different categories, indicating which challenges developers have encountered more. In a project that involves DL software deployment, the project manager can use our taxonomy to assign a task where developers always have challenges (e.g., model conversion) to a more knowledgeable developer.

Framework vendors. (i) Improving the usability of documentation. As shown in our results, many developers even have difficulty in the entire procedure of deployment (i.e., how to deploy DL software). For instance, such questions account for 13.4% in mobile deployment. As described, developers often complain about the poor documentation in these questions. It reveals that the usability [69] of relevant documentation should be improved. Specifically, DL framework vendors can provide better detailed documentation and tutorials for developers’ reference. In addition, confused information organization, such as hiding explanations of important concepts behind hyperlinks (see Section 6.6), may result in developers’ misuse and thus should be avoided. (ii) Improving the completeness of documentation. The prevalence of “Conceptual questions” category suggests that framework vendors should improve the completeness [69, 106] of their documentation, especially considering that DL software deployment requires a wide set of background knowledge and skills. Indeed, basic information that might look clear from the vendors’ perspective is not always easy to digest by the users (i.e., the developers) [69]. The vendors should involve the users in the review of the documentation, in order to supplement necessary explanations of basic knowledge in them. This might help in minimizing developers’ learning curve and avoiding misunderstandings. (iii) Improving the design of APIs. The quality of APIs heavily influences the developing experience of developers and even correlates with the success of applications that make use of them [97]. Our study reveals some APIs issues that need the attention of DL framework vendors. For one function, framework vendors may provide similar APIs for various options (see Selection/usage of APIs), which makes some developers confused in practice. To mitigate this issue, framework vendors should better distinguish these APIs and clarify use cases of them more clearly. (iv) Improving the functions as needed. We observe that many developers suffer from conversion and export of unsupported models in the deployment process. For instance, in mobile deployment, 6.1% of issues are about such a challenge. Since it is impractical for framework vendors to support all possible operators at once, we suggest that they can mine SO and GitHub to collect related issues reported by developers and then first meet those most urgent operators and models.
8 THREATS TO VALIDITY

Construct validity. Our automated identification of relevant questions is based on pre-selected tags and keywords-matching mechanisms. We mainly follow previous related work to determine the tags. Moreover, all tags we use are about popular frameworks or platforms, which promises the representativeness of the questions used in this study. However, it is still possible that in other contexts developers discuss issues that we do not encounter. In addition, the keywords-matching identification may result in the retrieval of false positives and the loss of posts that do not contain explicit keywords. The false positives are discarded during our manual examination, so they do not affect the precision of our final taxonomy. Compared to the implicit posts, our identified posts with explicit keywords are more representative. Therefore, we believe that the loss of these implicit posts also does not invalidate our distilled challenges. What’s more, our identification of posts related to browser deployment is based on manual examination, during which some issues are discarded as we cannot discern whether they occur during training or deployment. As a result, categories such Conceptual questions are missing in Browser. However, it does not mean that there is no basic conceptual problems in browser deployment. The implications derived from the taxonomy and results are general, not specific to server/cloud or mobile platforms.

Internal validity. The manual analysis in this study presents threats to internal validity. To minimize this threat, two authors are involved in inspecting cases and finally reach agreement with the help of three experienced arbitrators through discussions. The inter-rater agreement is relatively high, which evidences the reliability of the coding schema and procedure. What’s more, we use 30% of samples for a pilot construction and the remaining for reliability analysis. Although the selection of this threshold is a bit arbitrary, samples used in both phases are all examined by two authors and their classification results are approved by arbitrators. Therefore, we believe that this threshold selection does not affect the validity of our taxonomy.

External validity. Similar to previous studies [70, 72, 73, 93, 95, 102, 103], our work uses SO as the only data source to study the challenges developers encounter. As a result, we may overlook valuable insights from other sources. In future work, we plan to extend our study to diverse data sources and conduct in-depth interviews with researchers and practitioners to further validate our results. However, since SO contains both novices’ and experts’ posts [105], we believe that our results are still valid.

9 RELATED WORK

In this section, we summarize the relevant studies to well position our work within the literature.

Challenges that ML/DL poses for SE. The rapid development of ML technologies poses new challenges for software developers. To characterize such challenges, Thung et al. [96] collected and analyzed bugs in ML systems to study bug severities, efforts needed to fix bugs, and bug impacts. Alshangiti et al. [72] demonstrated that ML questions are more difficult to answer than other questions on SO and that model deployment is most challenging across all ML phases. In addition, they found that DL related topics are most popular among the ML related questions. In recent years, several studies focused on the challenges in DL. By inspecting DL related posts on SO, Zhang et al. [103] found that program crashes, model deployment, and implementation questions are the top three most frequently asked questions. Besides, several studies characterized the faults in software that make use of DL frameworks. Zhang et al. [105] collected bugs in TF programs from SO and GitHub. By manual examination, they categorized the symptoms and root causes of these bugs and proposed strategies to detect and locate DL bugs. Following this work, Islam et al. [83] and Humbatova et al. [82] extended their scope to the bugs in programs written based on the top five popular DL frameworks to present more comprehensive results. Inspired by these pioneer studies, we also aim to investigate the challenges that DL poses for SE. However, different from the existing efforts, this study focuses on the deployment process of DL software.

DL software deployment. To make DL software really accessible for users, developers need to deploy them to different platforms according to various application scenarios. A popular way is to deploy DL software to server/cloud platforms, and then the DL functionality can be accessed as services. For this deployment way, Cummaudo et al. [78] analyzed the pain-points that developers face when using these services. In other words, they focused on the challenges occurred after the deployment of DL software. Different from this work, our study focuses on the challenges in the deployment process. In addition, mobile devices have created great opportunities for DL software. Researchers have built numerous DL software applications on mobile devices [90, 92, 100] and proposed various optimization techniques (e.g., model compression [87, 98] and cloud offloading [85, 101]) for deploying DL software to mobile platforms. To bridge the knowledge gap between research and practice, Xu et al. [99] conducted the first empirical study on large scale Android apps to demystify how DL techniques are adopted in the wild. In addition, in recent years, various JavaScript-based DL frameworks have been published to enable DL-powered Web applications in browsers. To investigate what and how well we can do with these frameworks, Ma et al. [88] selected seven JavaScript-based frameworks and measured their performance gap when running different DL tasks on Chrome. Their findings showed that DL in browsers are still at dawn. Recently, Guo et al. [81] put their attention on DL software deployment across different platforms, and investigated the performance gap when the trained DL models are migrated from PC to mobile devices and Web browsers. Their findings unveiled that the deployment still suffers from compatibility and reliability issues. Despite these efforts, the specific challenges in deploying DL software are still under-investigated and thus our study aims to fill this knowledge gap.

10 CONCLUSION

Based on SO posts related to DL software deployment, we find that this task is becoming increasingly popular among software engineers. By comparison, we further evidence that it is more challenging than other aspects of DL software and even other challenging topics in SE such as big data and concurrency, which motivates us to identify the specific challenges behind DL software deployment. To this end, we manually inspect 769 sampled SO posts to derive a taxonomy of 72 challenges faced by developers in DL software.
[65] TensorFlow Lite. https://www.tensorflow.org/mobile/tflite. Retrieved on February 11, 2020.

[66] TensorFlow Servicing. https://github.com/tensorflow/serving. Retrieved on February 11, 2020.

[67] TensorFlow.js. https://www.tensorflow.org/js. Retrieved on February 11, 2020.

[68] Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, An-Qianyu Guo, Sen Chen, Xiaofei Xie, Lei Ma, Qiang Hu, Hongtao Liu, Yang Liu, Jingyue Gao, Xiting Wang, Yasha Wang, Zhao Yang, Junyi Gao, Jiangtao Wang, Jacob Cohen. 1960. A coefficient of agreement for nominal scales. In Proceedings of the 41st International Conference on Software Engineering, ICSE 2019. 1199–1201.

[70] Syed Ahmed and Mehdi Bagherzadeh. 2018. What do concurrency developers ask about?: A large-scale study using Stack Overflow. In Proceedings of the 12th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM 2018. 30:1–30:10.

[71] Rami Al-Rfou, Guillaume Alain, and Anjali Almahairi et al. 2016. Theano: a python framework for fast computation of mathematical expressions. CoRR abs/1605.02688 (2016).

[72] Moayad Alshangiti, Hitesh Sapkota, Pradeep K. Murukannash, Xumin Liu, and Qi Yu. 2019. Why is developing machine learning applications challenging? A study on Stack Overflow posts. In Proceedings of 2019 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM 2019. 1–11.

[73] Mehdi Bagherzadeh and Rafi Khatchadourian. 2019. Going big: a large-scale study on what big-data developers ask. In Proceedings of the ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2019. 432–442.

[74] Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah. 2014. Mining questions about web developers. In Proceedings of the 11th Working Conference on Mining Software Repositories, MSR 2014. 2014, 112–121.

[75] Stefanie Beyer, Christian Macho, Martin Pinzger, and Massimiliano Di Penta. 2018. Automatically classifying posts into question categories on Stack Overflow. In Proceedings of the 26th Conference on Program Comprehension, ICPC 2018. 211–221.

[76] Zhenpeng Chen, Yanbin Cao, Xuan Lu, Qiaozhu Mei, and Xuanchi Liu. 2019. SentiMoji: an emoji-powered learning approach for sentiment analysis in software engineering. In Proceedings of the ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2019. 491–494.

[77] Jacob Cohen. 1968. A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20. 1 (1960), 37–46.

[78] Alex Cummaudo, Rajesh Vasa, Scott Barnett, John Grundy, and Mohamed Abdelrazek. 2020. Interpreting cloud computer vision pain-points: a mining study. In Proceedings of the 41st International Conference on Software Engineering, ESEC 2020.

[79] Ryosuke Furuta, Naoto Inoue, and Toshikilo Yamashita. 2019. Fully convolutional network with multi-step reinforcement learning for image processing. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019. 3598–3605.

[80] Jinzhao Gao, Xuyuan Bing, Fabian Klenk, and Xuanzhe Liu. 2018. DeepCache: principled cache for mobile deep vision. In Proceedings of the 16th IEEE International Conference on Mobile Computing and Networking, MobiCom 2018. 129–144.

[81] Xinliang Li, Xiaofei Chen, and Shaojie Shen. 2019. Stereo R-CNN based 3D object detection for autonomous driving. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019. 7644–7652.

[82] Sicong Liu, Yuyang Lin, Zizhen Zhao, Kunming Nan, Hui Liu, and Junzhao Du. 2018. On-demand deep model compression for mobile devices: a usage-driven model selection framework. In Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services, MobiSys 2018. 389–400.

[83] Yun Ma, Dongwei Xiang, Shuyu Zheng, Deysu Tian, and Xuanchi Liu. 2019. Moving deep learning into Web browser: how far can we go?. In Proceedings of the World Wide Web Conference, WWW 2019. 1234–1244.

[84] Brian McMahan and Delip Rao. 2018. Listening to the world improves speech command recognition. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, AAAI 2018. 378–385.

[85] Gaurav Mittal, Kaushal B. Yagnik, Mohit Garg, and Narayanan C. Krishnan. 2016. SpotGarbage: smartphone app to detect garbage using deep learning. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Ubicomp 2016. 940–945.

[86] Robert G. Newcombe. [n.d.]. Interval estimation for the difference between independent proportions: comparison of eleven methods. Statistics in Medicine 17, 8 ([n. d.],). 873–890.

[87] Qi Yu. 2019. Why is developing machine learning applications challenging? A large-scale study using Stack Overflow. Empirical Software Engineering and Measurement, 26 (2019), 129–152.

[88] Mohammad Tahaei, Kami Yansea, and Naomi Saphra. 2020. Understanding privacy-related questions on Stack Overflow. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, CHI 2020. 185–188.

[89] Christoffer Rosen and Emad Shihab. 2018. What are mobile developers asking about?: A large scale study using Stack Overflow. Empirical Software Engineering and Measurement, 23 (2018), 1192–1223.

[90] Carolyn B. Seaman. 1999. Qualitative Methods in Empirical Studies of Software Engineering. IEEE Trans. Software Eng. 25, 4 (1999), 557–572.

[91] Mengwei Xu, Mengze Zhu, Yunxin Liu, Felix Xiaozhu Lin, and Xuanzhe Liu. 2018. DeepCache: principled cache for mobile deep vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016. 4820–4828.

[92] Mengwei Xu, Jiawei Liu, Yuanqiang Liu, Felix XiaoZhu Lin, Yunxin Liu, and Xuanzhe Liu. 2019. DeepCache: principled cache for mobile deep vision. In Proceedings of the 23rd International Symposium on Software Reliability Engineering, ISSRE 2012. 271–280.

[93] Mengwei Xu, Jiawei Liu, Yuanqiang Liu, Felix XiaoZhu Lin, Yunxin Liu, and Xuanzhe Liu. 2019. DeepCache: principled cache for mobile deep vision. In Proceedings of the 23rd International Symposium on Software Reliability Engineering, ISSRE 2012. 271–280.