Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Synthesis and biological evaluation of 3-acyl-2-phenylamino-1,4-dihydroquinolin-4(1H)-one derivatives as potential MERS-CoV inhibitors

Ji Hye Yoon, Jun Young Lee, Jihye Lee, Young Sup Shin, Sangeun Jeon, Dong Eon Kim, Jung Sun Min, Jong Hwan Song, Seungtaek Kim, Sunoh Kwon, Young-hee Jin, Min Seong Jang, Hyoung Rae Kim, Chul Min Park

Corresponding author.

Keywords:
MERS-CoV
RNA virus
3-Acyl-2-amino-1,4-dihydroquinolin-4(1H)-one Inhibitor
SAR optimization

Abstract
3-Acyl-2-phenylamino-1,4-dihydroquinolin-4(1H)-one derivatives were synthesized and evaluated to show high anti-MERS-CoV inhibitory activities. Among them, 6,8-difluoro-3-isobutyryl-2-((2,3,4-trifluorophenyl)amino)quinolin-4(1H)-one (6u) exhibits high inhibitory effect (IC₅₀ = 86 nM) and low toxicity (CC₅₀ > 25 μM). Moreover, it shows good metabolic stability, low hERG binding affinity, no cytotoxicity, and good in vivo PK properties.

Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging, fatal virus that causes severe respiratory symptoms in humans with high mortality (about 38%), such as high fever, cough, shortness of breath, and acute pneumonia. MERS-CoV is a zoonotic coronavirus that can spread non-sustained person-to-person transmission. Travel-related MERS-CoV infections continued to spread from the Arabian Peninsula to several other countries and caused epidemics with high fatal rates.

MERS-CoV is a single-stranded, positive-sense RNA virus and uses host cellular components to accomplish various physiological processes, including internalization of the virion, genome replication, packaging and budding of the virions. Therefore, each stage of these steps of the virus life cycle can be targets for therapeutic inhibition. Screening of FDA-approved drugs for MERS-CoV identified many drugs with anti-MERS-CoV inhibitory effects. These drugs can be categorized into inhibitors disrupting endocytosis, interrupting MERS-CoV RNA replication and translation, and inhibitors with undefined mechanisms. To date, there are still no approved antiviral drugs. Therefore, the development of therapeutics against MERS has received more and more attention.

We began our investigation by screening 200,000 compounds of Korean Chemical Bank (KCB) against MERS-CoV using high content screening (HCS) platform of Institut Pasteur Korea (IPK). Through this effort, 3-acetyl-6-chloro-2-(isopropylamino)-8-(trifluoromethyl)quinolin-4(1H)-one 1 was identified as a primary hit (Fig. 1). 1,4-Dihydroquinolin-4(1H)-one derivatives showed a broad range of pharmacological activities, such as antibacterial, anti-neurodegenerative, and anti-inflammator. Here we report on the synthesis and biological effects of 3-acyl-2-amino-1,4-dihydroquinolin-4(1H)-one derivatives.

All series of 3-acyl-2-amino-1,4-dihydroquinolin-4(1H)-one analogues were synthesized using Scheme 1. β-Keto amides 2 were prepared either by reaction of diketene and amines in the presence of basic catalyst or condensation reaction of substituted-acetyl acetate and anilines. Bis(methylthio) compounds 3 were synthesized by reacting β-keto amides 2 with carbon disulfide and dimethylsulfate in the presence of potassium carbonate. Refluxing bis(methylthio) compounds 3 in an inert solvent like 1,2-dichlorobenzene was transformed into 3-acyl-2-methylsulfanyl-quinolin-4(1H)-ones 4. Treatment of 3-acyl-2-methylsulfanyl-quinolin-4(1H)-ones 4 with hydrogen peroxide in acetic acid led to the corresponding sulfoxides 5, which are more reactive to substitution reaction. Nucleophilic substitution reactions with various amines with sulfoxides 5 afforded 2-amino-1,4-dihydroquinolin-4(1H)-ones 6.

The anti-MERS-CoV activities of the synthesized compounds for Vero cells infected with a Korean clinical MERS-CoV isolate were...
determined by monitoring the cells expressing viral spike (S) protein using immunofluorescence assay (IFA). Extensive SAR investigations to assess the effects of 3-acyl moieties, substituents on aryl, and various amines are shown in Table 1.

We started SAR studies by varying the substituents of 5 to 8 positions of quinolone ring of compound 1, having fixed with acetyl group at 3 position and isopropyl amine at 2 position. Compounds with electron donating groups, such as 8-isopropyl (6a) and 6,8-dimethyl (6b), showed no inhibitory effects. Application of phenyl substituent at 3 position (6c) was detrimental for inhibitory effect. 2,4-Difluoroaniline substituent at 2 position (6d) resulted in significant higher activity (IC50 = 0.15 μM). Given the beneficial effect of 2,4-difluoroaniline at 2 position, we explored the effects of electron-withdrawing groups of left-hand ring of quinolone part of 6d by preparing analogues 6e–6h. Replacement of the C(8)-trifluoromethyl with fluorine (6e) and nitro functionality at 2 position (6f) were moderately tolerated (IC50 = 0.98 and 1.16 μM, respectively). 6,8-Difluoro (6g) and 5,6,8-trichloro (6h) derivatives also retained the inhibitory effects (IC50 = 1.06 and 0.29 μM, respectively). This observation showed that electron-withdrawing substituents of left-ring of quinolone scaffold were fruitful to inhibitory activity, while electron-donating substituents were detrimental.

Next, substituent effects at 2 position of 1,4-dihydroquinolin-4(1H)-one scaffold were evaluated. Although less active than quinolone derivative 6d (IC50 = 0.15 μM) with 6-chloro-8-trifluoromethyl group, 6,8-difluoro substituent analogue 6g opens the possibility to extensively explore SAR studies via modifications of 2 position. Therefore, we have focused on the optimization of 6g. 3-Acetyl-6,8-difluoro-1,4-dihydroquinolin-4(1H)-ones with piperidine (6i) and morpholine (6j), n-butyl amine (6k) and 2,4-dichlorobenzyl alcohol (6l) and 2,4-difluorobenzyl amine (6m) were only moderately tolerated (IC50 = 7.8 and 5.9 μM, respectively), whereas 4-fluorobenzyl amine (6n) and 4-methoxybenzyl amine (6o) functionalities are detrimental for the binding affinities. Compounds with 3-methoxyaniline (6p) and 4-methoxyaniline (6q) showed no inhibitory effects, indicating that aniline substituents with electron-donating groups were detrimental. 4-Bromoaniline (6r) and 4-chloroaniline group (6s) showed similar inhibitory effects (IC50 = 1.13 and 1.44 μM, respectively) to 6g. 2,3,4-Trifluorooaniline analogue 6t displayed increased inhibitory effect (IC50 = 0.53 μM). Through the investigation into wide range of substituent effects at 2 position, aniline groups with electron-withdrawing substituents showed high binding affinities (0.53–1.44 μM).

In the next phase of optimization, substituent effects at 3 position were investigated. As the benzyol substituent (6c) at 3 position completely abolished activity and pivaloyl group at 3 position blocked the nucleophilic substitution of anilines at 2 position, compounds with isobutyl substituent at 3 position were deeply examined (6u–z). 6,8-Difluoro Compound 6u and 6v, including 2,3,4-trifluoroaniline and 2,4-difluoro aniline group at 2 position, showed higher inhibitory effects than its corresponding compounds with acetyl group at 3 position (IC50 = 0.086 and 0.79 μM, respectively). 5,6,8-Trichloro (6w) and 6,8-dichloro compound (6x) with 2,3,4-trifluoroaniline substituent at 2 position also displayed higher inhibitory effects (IC50 = 0.100 and 0.166 μM, respectively) than their corresponding ones. 5,6,8-Trichloro (6y) and 6-chloro,8-trifluoro compound (6z) with 2,4-difluoroaniline substituent at 2 position also showed potent biological activities (IC50 = 0.129 and 0.13 μM, respectively). Of note, all the above compounds except 6d, 6w, and 6z displayed no obvious cytotoxicity (CC50 > 10 μM).

Compound 6u was found to be a very potent MERS-CoV inhibitor and evaluated further for its metabolic stability, hERG, cytotoxicity, and in vivo pharmacokinetic profile (Table 2). 6u displays good metabolic stability in human, rat, and mouse liver microsomes. 6u shows a low hERG binding affinity and no cytotoxicity toward VERO, HFL-1, 1929, NIH 3T3, and CHO-K1 cell lines and it exhibits good oral bioavailability of 56% with promising Cmax, T1/2, AUC values and clearance.

In Summary, we have developed a novel class of 3-acyl-2-amino-1,4-dihydroquinolin-4(1H)-one based MERS-CoV inhibitors through systemic SAR optimization from lead compound 1. Compound 6u, including isobutyl substituent at 3 position and 6,8-difluorophenyl group, is a good MERS-CoV inhibitor with IC50 of 86 nM. In addition, this substance shows good metabolic stability, low hERG binding affinity, no cytotoxicity, and good in vivo PK properties with an oral bioavailability of 56% in rat. Future optimization of these 3-acyl-2-amino-1,4-dihydroquinolin-4(1H)-one based MERS-CoV inhibitors on
the in vivo efficacy of 6u in animal models will mainly be performed in due course.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The chemical library used in this study was kindly provided by Korea Chemical Bank (http://www.chemicalbank.org/) of Korea Research Institute of Chemical Technology. This work was supported by a grant of National Research Council of Science & Technology (NST) by the Korean government (MSIP) (No. CRC-16-01-KRICT).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bmcl.2019.126727.

References

1. Cotten M, Watson SJ, Zumla AI, et al. mBio. 2014;5:e01062–e01063.
2. Liang R, Wang L, Zhang N, et al. Viruses. 2018;10:721.

Table 1
MERS-CoV inhibitory activity of 3-acyl-2-amino-1,4-dihydroquinolin-4(1H)-one derivatives.

Cpd	X	Y	Z	W	R1	R2	IC50 (μM)	CC50 (μM)	SI
1	H	Cl	H	CF3	Me	i-PrNH-	0.77	> 25	33
6a	H	H	H	i-Pr	Me	i-PrNH-	> 25	-	-
6b	H	Me	H	Me	Me	i-PrNH-	> 25	-	-
6c	H	Cl	H	CF3	Ph	i-PrNH-	> 25	-	-
6d	H	Cl	H	CF3	Me	2,4-F2-PhNH-	0.15	7.3	78
6e	H	Cl	H	F	Me	2,4-F2-PhNH-	0.98	> 25	26
6f	H	Cl	H	NO2	Me	2,4-F2-PhNH-	1.16	> 25	21
6g	H	F	H	F	Me	2,4-F2-PhNH-	1.06	> 25	25
6h	Cl	Cl	H	Cl	Me	2,4-F2-PhNH-	0.29	> 25	91
6i	H	F	H	F	Me	1-Piperidinyl	> 25	-	1
6j	H	F	H	F	Me	4-Morpholinyl	> 25	-	-
6k	H	F	H	F	Me	n-ButylnH-	> 25	-	-
6l	H	F	H	F	Me	3,4-C12-PhCH2O-	7.8	> 25	3
6m	H	F	H	F	Me	2,4-F2-PhCH2NH-	5.9	> 25	1
6n	H	F	H	F	Me	4-F-PhCH2NH-	17.6	> 25	1
6o	H	F	H	F	Me	4-MeO-PhCH2NH-	> 25	> 25	1
6p	H	F	H	F	Me	4-MeO-PhCH2NH-	> 25	> 25	1
6q	H	F	H	F	Me	4-Br-PhCH2NH-	1.13	> 25	28
6r	H	F	H	F	Me	4-Cl-PhNH-	1.44	> 25	22
6s	H	F	H	F	Me	4-Cl-PhNH-	> 25	> 25	1
6t	H	F	H	F	Me	2,3,4-F3-PhNH-	0.53	> 25	48
6u	H	F	H	F	Me	2,3,4-F3-PhNH-	0.086 ± 0.041	> 25	500
6v	H	F	H	F	Me	2,4-F2-PhNH-	0.79	> 25	45
6w	Cl	Cl	H	Cl	i-Pr	2,4-F2-PhNH-	0.100 ± 0.023	6.4	77
6x	Cl	Cl	H	Cl	i-Pr	2,4-F2-PhNH-	0.166 ± 0.067	10.89 ± 4.29	9
6y	Cl	Cl	F	Cl	i-Pr	2,4-F2-PhNH-	0.199 ± 0.026	> 25	23
6z	Cl	Cl	H	CF3	i-Pr	2,4-F2-PhNH-	0.13	7.3	144

Table 2
Data for microsomal stability, hERG, cytotoxicity, and in vivo pharmacokinetic profile of 6u.

Assay	Results of 6u
Human microsomal stability	52
Rat microsomal stability	44
Mouse microsomal stability	35
hERG	6.9
Cytotoxicity	VERO: 86.1
	HFL-1: 15.6
	I929: 15.8
	NIH 3T3: 65.6
	CHO-K1: 6.9
In vivo PK	
Cmax (μg/mL)	2.32 ± 0.20
T1/2 (h), i.v.	4.6 ± 0.66
AUC0−24h (μg·h/mL), i.v.	28.3 ± 4.18
CL (L/h/kg), i.v.	28.9 ± 4.21
%F	0.07 ± 0.01
%F	56

Assay	Results of 6u
Human microsomal stability	52
Rat microsomal stability	44
Mouse microsomal stability	35
hERG	6.9
Cytotoxicity	VERO: 86.1
	HFL-1: 15.6
	I929: 15.8
	NIH 3T3: 65.6
	CHO-K1: 6.9
In vivo PK	
Cmax (μg/mL)	2.32 ± 0.20
T1/2 (h), i.v.	4.6 ± 0.66
AUC0−24h (μg·h/mL), i.v.	28.3 ± 4.18
CL (L/h/kg), i.v.	28.9 ± 4.21
%F	0.07 ± 0.01
%F	56

a,b IC50 and CC50 were derived from the results of at least two independent experiment in VERO.

Si (selectivity index) = CC50/IC50 for inhibiting MERS-CoV infection.

d Mean ± SD of four independent tests.

Table 2
Data for microsomal stability, hERG, cytotoxicity, and in vivo pharmacokinetic profile of 6u.

Analyte	Results of 6u
Human microsomal stability	52
Rat microsomal stability	44
Mouse microsomal stability	35
hERG	6.9
Cytotoxicity	VERO: 86.1
	HFL-1: 15.6
	I929: 15.8
	NIH 3T3: 65.6
	CHO-K1: 6.9
In vivo PK	
Cmax (μg/mL)	2.32 ± 0.20
T1/2 (h), i.v.	4.6 ± 0.66
AUC0−24h (μg·h/mL), i.v.	28.3 ± 4.18
CL (L/h/kg), i.v.	28.9 ± 4.21
%F	0.07 ± 0.01
%F	56

a,b IC50 (µM) values in various mammalian cell lines. Cell information. VEROR: African green monkey kidney cell line, HFL-1: human embryonic lung cell line, I929: mouse fibroblast cell line, NIH 3T3: mouse embryonic fibroblast cell line, CHO-K1: Chinese hamster ovary cell line.

c IC50 (µM) values in various mammalian cell lines. Cell information.
d IC50 (µM) values in various mammalian cell lines. Cell information.

d IC50 (µM) values in various mammalian cell lines. Cell information.

d IC50 (µM) values in various mammalian cell lines. Cell information.

d IC50 (µM) values in various mammalian cell lines. Cell information.

d IC50 (µM) values in various mammalian cell lines. Cell information.

d IC50 (µM) values in various mammalian cell lines. Cell information.
7. (a) Cruz DJ, Bonotto RM, Gomes RG, et al. PLoS Negl Trop Dis. 2013;7(10):2471
(b) Anti-MERS-CoV activity assay. Vero cells were seeded in 384-well µ-clear plates (Greiner Bio-One, Austria) at a density of 1.2×10^4 cell per well in 30 µl SFM and incubated for 24 h prior to infection. Compounds were transferred from the library into intermediate 384-well polypropylene plates containing SFM and were mixed using an automated liquid handling system (Apricot Personal Pipettor, Apricot Design, USA). Subsequently, the diluted compounds were added to the cell plates in 10 µl volumes (final DMSO concentration of 0.5% (v/v)). For infection, the plates were transferred into the RSL-3 containment facility prior to adding 10 µl MERS-CoV at a multiplicity of infection (MOI) of 0.0625. The cells were fixed at 24 hpi with 4% PFA and the infected cells were identified by IFA. The fixed cells were permeabilized with 0.25% Triton X-100 (Sigma-Aldrich, USA) for 20 min. Then the cells were incubated with rabbit anti-MERS-CoV Spike antibody for 1 h at 37°C. After three washes with PBS, the cells were incubated with Alexa 488-conjugated goat anti-rabbit IgG (H + L) secondary antibody and Hoechst 33342 (Life Technologies, USA) for 1 h at 37°C. Images were acquired by Perkin Elmer Operetta (20 x; Waltham, USA). The acquired images were analyzed with in-house-developed Image-Mining 3.0 (IM 3.0) plug-in software. In the analyzed images, the total number of cells and the number of infected cells were determined by counting Hoechst-stained nuclei and spike protein-expressing cells, respectively.
8. Kim HJ, Kim N, Shum D, Huddar S, Park CM, Jang S. Assay Drug Dev Techn. 2017;15(3):198.
9. Kang D-H, Jun K-Y, Lee JP, Pak CS, Na Y, Kwon Y. J Med Chem. 2009;52(9):3093.
10. Sharma MC, Sharma S. MedChemRes. 2016;25:2119.
11. (a) Park CS, Choi EB. Synthesis. 1992;12:1291;
(b) Choi EB, Yeon GH, Lee HK, Yang HC, Yoo CY, Park CS. Synthesis. 2003;18:2771
(c) 6a: 1H NMR (300 MHz, CDCl$_3$) δ 13.45 (s, 1H), 7.80 (dt, $J = 8.8$, 2.2 Hz, 1H), 7.62 (s, 1H), 7.24–7.15 (m, 2H), 7.10 (ddd, $J = 10.3$, 7.8, 2.8 Hz, 1H), 4.48–4.28 (m, 1H), 1.21 (d, $J = 6.7$ Hz, 6H); 13C NMR (500 MHz, CDCl$_3$) δ 209.41, 174.51, 159.10, 154.38, 151.00, 149.81, 149.02, 127.14, 121.55, 119.85, 113.32, 108.23, 107.16, 106.93, 100.62, 38.98, 19.17; HRMS m/z calcd for C$_{19}$H$_{13}$F$_{5}$N$_{2}$O$_{2}$ [M$^+$] 396.0897; found 396.0910.
12. Hwang BH, Park SH, Choi EB, Park CS, Lee HK. Tetrahedron. 2008;64:6698.