The Function of a Spindle Checkpoint Gene *bub-1* in *C. elegans* Development

Xiangming Wang1*, Min Liu1*, Weida Li1, Christopher D. Suh2,3, Zuoyan Zhu1, Yishi Jin2,3, Qichang Fan1*

1 School of Life Sciences, Peking University, Beijing, China, 2 Department of Molecular, Cell and Developmental Biology, Sinsheimer Laboratories, University of California Santa Cruz, Santa Cruz, California, United States of America, 3 Division of Biological Sciences, Neurobiology Section, Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, United States of America

Abstract

Background: The serine/threonine kinase BUB1 (Budding Uninhibited by Benzimidazole 1) was originally identified in yeast as a checkpoint protein, based on its mutant’s incapacity of delaying the cell cycle in response to loss of microtubules. Our understanding of its function is primarily from studies carried out in yeast *S. cerevisiae*. It has been shown that it is a component of the mitotic spindle checkpoint and regulates the separation of sister chromatids through its downstream molecules. However, its roles in multi-cellular organisms remain unclear.

Methods and Findings: In nematode *C. elegans*, rapid cell divisions primarily occur in embryos and in germline of postembryonic larvae and adults. In addition, a select set of cells undergo a few rounds of cell division postembryonically. One common phenotype associated with impaired cell division is described as Stu (Sterile and Uncoordinated) [1,2]. We conducted a genetic screen for zygotic mutants that displayed Stu phenotype in *C. elegans*. We isolated seven Stu mutants that fell into five complementation groups. We report here that two mutations, *FanWang5* (fw5) and *FanWang8* (fw8) affect the *bub-1* gene, a homolog of yeast *BUB1*. Both mutant alleles of *fw5* and *fw8* exhibited variable behavioral defects, including developmental arrest, uncoordinated and sterility. The number of postembryonically born neurons in the ventral cord decreased and their axon morphology was abnormal. Also, the decrease of neurons in the ventral cord phenotype could not be suppressed by a caspase-3 loss-of-function mutant. In addition, *bub-1(fw5)* and *fw8* mutants showed widespread effects on postembryonic development in many cell lineages. We found that *bub-1* functioned maternally in several developmental lineages at the embryonic stage in *C. elegans*. Studies in yeast have shown that BUB1 functions as a spindle checkpoint protein by regulating the anaphase promoting complex/cyclosome (APC/C). We performed double mutant analysis and observed that *bub-1* genetically interacted with several downstream genes, including *fzy-1/CDC20*, *mat-2/APC1* and *emb-27/APC6*.

Conclusions: Our results demonstrate a conserved role of *bub-1* in cell-cycle regulation and reveal that *C. elegans* *bub-1* is required both maternally and zygotically. Further, our genetic analysis is consistent with that the function of *bub-1* in *C. elegans* is likely similar to its yeast and mammalian homologs.

Citation: Wang X, Liu M, Li W, Suh CD, Zhu Z, et al. (2009) The Function of a Spindle Checkpoint Gene *bub-1* in *C. elegans* Development. PLoS ONE 4(6): e5912. doi:10.1371/journal.pone.0005912

Editor: Dong-Yan Jin, University of Hong Kong, Hong Kong

Received June 7, 2008; Accepted May 7, 2009; Published June 15, 2009

Copyright: © 2009 Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: C. Suh was a graduate student in Dr. Y. Jin’s laboratory and was supported by a grant from the National Institutes of Health, USA, under Dr. Y. Jin. Partial financial support for X. M. Wang was also provided by Dr. Y. Jin from a grant from the National Institutes of Health, USA. This project was supported by the National Natural Science Foundation of China (30470937) and National Key Basic Research Program of China (973 Program) funded by the Ministry of Science and Technology (2007CB946900, 2007CB946904).

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: qfan@pku.edu.cn

These authors contributed equally to this work.

Introduction

Precise chromosome segregation during cell division is controlled by a feedback mechanism [3]. During the mitotic cell cycle, the metaphase-to-anaphase transition occurs after all chromosomes have established precise bipolar attachments to the mitotic spindles [4]. The spindle checkpoint inhibits anaphase onset until kinetochores are properly bound with the spindle microtubules [5], [6]. Malfunction of the spindle checkpoint leads to precocious anaphase and chromosomal missegregation, and results in subsequent loss of genetic fidelity. Misregulation of the spindle checkpoint has been suggested as a major cause of fatality and cancer [7,8,9,10,11]. In 1990s, several groups have isolated a number of genes involved in the budding yeast spindle checkpoint, including MAD1 (Mitotic Arrest Deficient 1), MAD2, MAD3 [12], *BUB1*, *BUB2*, *BUB3* [13], and *MPS1* (Monopolospin 1) [14]. *BUB1* is a serine/threonine kinase that regulates the separation of sister chromatids. Studies from yeast have also shown that BUB1 acts through APC/C, a large multi-subunit E3 ubiquitin ligase [15,16]. In addition, BUB1 localizes at the kinetochore during the very early stages of mitosis, and is required for kinetochore localization of MAD1 and MAD2, independent of its kinase activity [9]. Following the localization of BUB1, MAD1 then lowers the energy barrier of MAD2 and triggers MAD2...
plays essential roles in the development of analysis shows that bub-1 with cell cycle defects, we isolated two genes that these genes function during spindle checkpoint process [3,24]. Studies of putative downstream genes of mdf-2 [23]. Studies of putative downstream genes of bub-1 may be associated with spindle checkpoint function at the early embryonic stage [23]. Studies of putative downstream genes of bub-1: mdf-2/MAD1, mdf-3/MAD2, mdf-3/MAD3, and fcy-1/CDC20 have also shown that these genes function during spindle checkpoint process [3,24]. In a genetic screen for zygotic mutants that are likely associated with spindle checkpoint at the early embryonic stage of normal gene products [25]. In an effort to identify new cell cycle related genes in C. elegans, we conducted a clonal screen for Stu mutants using a GFP marker juIs76 [Punc-25::GFP] that visualizes the D-type ventral cord motor neurons, which include embryonically born DD neurons and postembryonically born VD neurons [28]. We isolated seven Stu mutants from 3500 haploid genomes. By linkage group mapping and complementation tests, we found that these mutants fell into five complementation groups, of which one was a mem-5 allele that we had reported previously [29]. Table 1 shows the remaining four mutant complementation groups and their phenotypes. All animals isolated showed uncoordination, larval arrest, sterility and vulva defects (either vulvaless or protruding vulva). These phenotypic defects are commonly observed in animals with abnormal postembryonic development [27].

C. elegans has a single homolog of BUB1, bub-1. Antibody staining at one-cell stage shows that BUB-1 is an essential component in the mitotic kinetochore [22], consistent with its function in spindle checkpoint. RNAi of bub-1 in wild type results in embryonic arrest, and partially restores mitotic timing at one-cell stage in conditional embryonic-lethal apo-5(or358ts) mutant embryos with cytoskeletal abnormalities, suggesting that bub-1 may be associated with spindle checkpoint function during the early embryonic stage [23]. Studies of putative downstream genes of bub-1: mdf-2/MAD1, mdf-3/MAD2, mdf-3/MAD3, and fcy-1/CDC20 have also shown that these genes function during spindle checkpoint process [3,24]. In a genetic screen for zygotic mutants that are likely associated with cell cycle defects, we isolated two bub-1 mutant alleles. Our analysis shows that bub-1 functions in multiple cell lineages and plays essential roles in the development of C. elegans.

Results

New Stu mutant screen

In C. elegans, some of the cell cycle mutants show morphological and behavioral defects including Stu and Emb (Abnormal EMBryogenesis). Emb commonly leads to embryonic lethality, while Stu mutants are often associated with defects in the development of gonads (sterility) or neurons in the ventral nerve cord (uncoordination) [25,26,27]. Some Stu mutants survive through embryonic development, likely due to maternal deposit of normal gene products [25]. In an effort to identify new cell cycle related genes in C. elegans, we conducted a clonal screen for Stu mutants using a GFP marker juIs76 [Punc-25::GFP] that visualizes the D-type ventral cord motor neurons, which include embryonically born DD neurons and postembryonically born VD neurons [28]. We isolated seven Stu mutants from 3500 haploid genomes. By linkage group mapping and complementation tests, we found that these mutants fell into five complementation groups, of which one was a mem-5 allele that we had reported previously [29]. Table 1 shows the remaining four mutant complementation groups and their phenotypes. All animals isolated showed uncoordination, larval arrest, sterility and vulva defects (either vulvaless or protruding vulva). These phenotypic defects are commonly observed in animals with abnormal postembryonic development [27].

All new Stu animals have motor neuron defects

The generation of adult ventral nerve cord involves a series of postembryonic cell division in late L1 larvae, resulting in a fixed number of neurons arranged in a stereotypic manner [30]. To evaluate the mutant phenotype, we counted the number of ventral cord motor neurons. In wild type animals, Punc-25::GFP visualizes 6 DD and 13 VD neurons in the ventral nerve cord [29]. The DD neurons are born at the embryonic stage, whereas VD neurons are born at the L1 larval stage. All mutants had normal number of DD neurons in L1 larvae (data not shown). However, in later larvae (L2 or older) and adults, all mutants showed a general decrease in the number of GFP-expressing VD neurons (Figure 1). To confirm our findings, we used a pan-neuronal marker evIs111 [31] and DAPI staining. The result showed that the mutants were missing many neurons, consistent with previous findings (data not shown). As reported previously, impairment in cell cycle often causes defects in cell morphology [26]. By examining the morphology of motor neurons in the mutants, we found that some VD neuron axons showed defective morphology in several mutants (Figure 1C and Table 2).

Both fw5 and fw8 are mutations in bub-1

To identify the corresponding genes of the new Stu mutations, we performed snip-SNP mapping (see Materials and Methods) [32]. We mapped fa5 and fa8 to the same interval (between the SNP marker of B0041:6882 and VF39H2L: 3079) on the chromosome I. Further, fa5 and fa8 failed to complement. Both
Figure 1. D-type Neuron and Axon Defects of Stu Mutants. (A) Wild-type animal (juls76) has normal ventral cord D-type neurons. (B) bub-1(fw8) (C) bub-1(fw5) (D) fw9. Arrows show D-type neurons of the ventral nerve cord. In the fw5, fw8, and fw9 mutants, the numbers of D-type neurons were decreased when compared to the wild-type animal. The arrowhead shows axon guidance defects in the Stu mutants. Anterior is to the left and ventral is down. The scale bar represents 50 μm.

doi:10.1371/journal.pone.0005912.g001

Table 2. Summary of the D-Type Motor Neuron and Axon Phenotypes of Stu Mutants.

Mutation	Number of D-type Neurons	Axon Defects**					
	L1 (n*)						
	L2 or Older Animals (n)	Range					
		L1 (n)	L2 or Older Animals (n)				
		Circumferential Guidance Defects	L-R Defects	Longitudinal Extension Defects			
N2	6 (45)	19 (37)	18–19	0 (51)	0 (59)	2 (59)	0 (59)
tm2815	6 (33)	12.4 ± 2.0 (52)	9–18	0 (33)	14 (52)	8 (52)	7 (52)
fw2	6 (100)	10.8 ± 2.1 (262)	6–17	0 (100)	43 (262)	40 (262)	N/A***
fw3	6 (100)	11.3 ± 1.9 (239)	6–17	0 (100)	41 (239)	20 (239)	N/A
bub-1(fw5)	6 (100)	8.7 ± 1.7 (224)	6–16	0 (100)	19 (224)	15 (224)	32 (224)
bub-1(fw8)	6 (111)	8.7 ± 1.7 (244)	6–15	0 (111)	52 (244)	14 (244)	12 (244)
fw6	N/A	11.4 ± 2.4 (79)	7–17	N/A	31 (79)	16 (79)	4 (79)
fw9	6 (100)	9.5 ± 1.6 (216)	6–14	0 (100)	83 (216)	56 (216)	27 (216)

*The number in the bracket is the total mutant number examined.

**Circumferential defects include premature stop or inappropriate branching. L-R defect refers to the D-type neuron commissures that extend from left side of the animals. Longitudinal extension defects were scored as regions that lack GFP-labeled axons.

***N/A: not available.

doi:10.1371/journal.pone.0005912.t002
fw5 and fa8 were balanced by dpy-5(e61) unc-29(e403) for stock keeping.

We tested a set of RNAi clones covering the interval, and found that RNAi escapers of bub-1 led to reduced number of D-type neurons as well as Emb (data not shown). We then sequenced fw5 and fa8, and identified nucleotide alterations in the bub-1 gene in both alleles (Figure 2A). In C. elegans, the bub-1 gene encodes a 987aa protein with a conserved kinase domain at its C-terminal (Figure 2A). The mutations in fw5 and fa8 result in stop codon at W848 and W276, respectively, which produce truncated proteins lacking the kinase domain. We also obtained a deletion mutant, tm2815, which had an in-frame deletion of 105 amino acids from E473 to A586 in the middle of the protein, with unaffected kinase domain (Figure 2A). Homozygous tm2815 animals displayed embryonic arrest, larval arrest and sterility. However, the phenotypes observed in the deletion allele were weaker than those of fw5 or fa8. We also generated tm2815/fw5 and tm2815/fw8 animals and found that a larger number of surviving adult stage animals compared to homozgyous fw5 or fa8 (Table 1). This result indicates that tm2815 mutant behaves as a partial loss of function mutation, and fw5 and fa8 are more likely to be null mutations of bub-1.

We also performed transgenic rescue of the bub-1 mutant using a PCR product which encompasses the region from 1.40-kb upstream to 0.82-kb downstream of the gene, which was driven by a pan-neuronal promoter (the promoter of unc-29). Among the 48 gonad arms scored, 9 grew one quarter or less of the normal length. Furthermore, the number of germ cells in the abnormal gonads, we did not observe any eggs. Sperm production was not affected by the loss of bub-1 function. However, the cell division may be affected.

Effects of bub-1 in postembryonic development

In C. elegans, multiple types of tissues undergo several rounds of cell divisions during postembryonic development. Using a panel of markers, we examined the development of several tissues in bub-1 mutants as described below.

Intestinal nuclei division but not endoreplication was defective. The transgenic GFP line wIs51 was used to visualize the nuclei of the intestine cells (Figure 4A). In wide type late L1 animals, the intestine cells have 30 to 34 diploid nuclei. All intestinal nuclei endoreplicate their DNA prior to each of the four molts, thereby producing the 32 n DNA content nuclei in the adult intestine [39]. We found, however, about 24 intestinal nuclei in the bub-1[fa8] mutant larvae (n = 17) (Figure 4B). In addition, some of the intestinal nuclei were elongated and showed a thread structure, suggesting a defect in chromosomal segregation [25]. This observation was consistent with the DAPI staining experiment (Figure 3B). Furthermore, we checked the DNA content of the intestinal nuclei in the bub-1[fa8] L4 or adults. Using body wall muscle nuclei as an internal 2 n control, we determined that the amount of DNA in the intestinal lineages was 24.3 n in the WT and 28.3 n in the mutants (Figure 6). If the arrest of cell division prior to L4 stage and the lack of the last DNA replication after L4 to adult molt are taken into account, we tend to believe that the intestinal nuclei endoreplication might not be affected by the loss of bub-1 function. However, the cell division may be affected.

Division of seam cells was severely disrupted. We used a transgenic GFP line wIs51 to visualize the nuclei of seam cells [40] (Figure 4C). Ten seam cells aligned on each side of the body undergo stage-specific division patterns at each of four (L1–L4) postembryonic larval stages. From the L2 to L4 stage, the wild type animal has 16 seam cells [38]. In most of the bub-1[fa8] mutant, only the two most anterior seam cells H0 were present (Figure 4D). These H0 cells normally do not undergo postembryonic division [41]. These results indicate a severe failure in postembryonic division of seam cells.

Gonad development was severely impaired. The transgenic GFP line gk56 allowed us to visualize the two distal tip cells (DTCs) of the U-shaped gonad [42] (Figure 7A and 7C). The gonad arms acquire their U-shape by directed migration of the DTC. The arm elongation begins at the L2 stage and continues until the L4 molt [38]. We observed that about half of bub-1[fa8] animals showed only one gonad arm, and most of them stopped development prematurely (n = 32) (Figure 7B and 7D). Among the 48 gonad arms scored, 9 grew one quarter or less of the normal gonad length; 13 gonad arms grew less than one half of the normal length; and 10 gonad arms grew about three quarters of the normal length. Furthermore, the number of germ cells in the bub-1[fa8] was decreased to about 117 per arm (n = 11) (compared to about 1000 in wild type). In the abnormal gonads, we did not observe any eggs. Sperm production was not affected by the loss of bub-1 function. However, the cell division may be affected.

Ventral cord motor neurons.

We used a transgenic GFP strain, juIs14 [33], to visualize the cholinergic DA, DB, VA, and
A

S. cerevisiae BUB1	H. sapiens SUB1	C. elegans SUB-1
S. cerevisiae BUB1	1	
H. sapiens SUB1	1	
C. elegans SUB-1	1	

S. cerevisiae BUB1	H. sapiens SUB1	C. elegans SUB-1
S. cerevisiae BUB1	53	
H. sapiens SUB1	81	
C. elegans SUB-1	62	

S. cerevisiae BUB1	H. sapiens SUB1	C. elegans SUB-1
S. cerevisiae BUB1	133	
H. sapiens SUB1	161	
C. elegans SUB-1	139	

S. cerevisiae BUB1	H. sapiens SUB1	C. elegans SUB-1
S. cerevisiae BUB1	213	
H. sapiens SUB1	240	
C. elegans SUB-1	213	

S. cerevisiae BUB1	H. sapiens SUB1	C. elegans SUB-1
S. cerevisiae BUB1	293	
H. sapiens SUB1	290	
C. elegans SUB-1	290	

S. cerevisiae BUB1	H. sapiens SUB1	C. elegans SUB-1
S. cerevisiae BUB1	373	
H. sapiens SUB1	367	
C. elegans SUB-1	367	

S. cerevisiae BUB1	H. sapiens SUB1	C. elegans SUB-1
S. cerevisiae BUB1	453	
H. sapiens SUB1	478	
C. elegans SUB-1	467	

S. cerevisiae BUB1	H. sapiens SUB1	C. elegans SUB-1
S. cerevisiae BUB1	520	
H. sapiens SUB1	558	
C. elegans SUB-1	523	

S. cerevisiae BUB1	H. sapiens SUB1	C. elegans SUB-1
S. cerevisiae BUB1	591	
H. sapiens SUB1	630	
C. elegans SUB-1	582	

S. cerevisiae BUB1	H. sapiens SUB1	C. elegans SUB-1
S. cerevisiae BUB1	643	
H. sapiens SUB1	634	

B

![Graph showing statistical data](image)

* (fw8) W to stop codon

* (fw5) E to G

*(fw5) W to stop codon

* (fw8) W to stop codon
Figure 2. Sequence Comparison of BUB-1 and Rescue of *fw8*. (A) Alignment of *C. elegans* BUB-1 (http://www.wormbase.org/db/seq/protein?name=WP%3ACE06251;class=Protein), *S. cerevisiae* BUB1 (http://db.yeastgenome.org/cgi-bin/protein/protein?sgid=5000003420), and *H. sapiens* BUB1A (http://www.ensembl.org/Homo_sapiens/protview?peptide=ENSP0000030230). The conserved protein kinase domain of *C. elegans* BUB-1 is 29% identical with *S. cerevisiae* BUB1, and 31% identical with *H. sapiens* BUB1A. The protein sequences were obtained from wormbase, Ensembl, and SGD. BLASTs of two sequences were done using NCBI BLASTP. Multiple sequence alignment was done using ClustalW on the EMBL-EBI website (http://www.ebi.ac.uk/clustalw/index.html), and the shade was added by using BOXSHADE 3.21 (http://www.ch.embnet.org/software/BOX_form.html). The shade shows the conserved protein sequence. The black line indicates the deletion region of *S. cerevisiae* BUB1. (B) Partial rescue of the reduced D-type neuron defect of *fw8*. The scale bar represents 10 μm.

Table 3. Number of D Type Motor Neuron in bub-1(*fw8*); ced-3(n717) Mutants.

Mutation	Number of D-type Neurons
bub-1(*fw8*)	8.7±1.7 (244)
bub-1(*fw8*); ced-3(n717)	8.3±2.2 (31)

The number in the bracket is the total mutant number examined.

doi:10.1371/journal.pone.0005912.g003

VB neurons (Figure 8A). We observed a decreased number of neurons expressing GFP in the *bub-1(*fw8*)* mutant. Normally, embryonic-born DAs and DBs have commissural projections to the dorsal cord, while postembryonic-born VAs and VBs do not [38]. We found that the number of commissural projections to the dorsal cord was unchanged in the *bub-1(*fw8*)* mutant, and the axons of these neurons did not show any morphological defects (data not shown). Therefore, embryonic-born DAs and DBs were not affected, while most postembryonic-born VAs and VBs were missing in the *bub-1(*fw8*)* mutant.

Genetic interaction analysis supports a role of BUB-1 in the spindle checkpoint pathway

Previous studies have shown that several components of the spindle assembly pathway are functionally conserved in nematodes and yeast [20,21]. For example, the loss-of-function of *mdf-1/CDH1* causes embryonic and larval arrest [3], similar to the yeast mutant. Further, the lethal phenotype of *mdf-1/MADI* is suppressed by the mutations in the downstream genes, such as *fzy-1/CDC20* [20], and APC/C homologues, such as *emb-30/APC4* [43] and *sucb-1/APC5*-like [44]. To test if *bub-1* acts in the spindle checkpoint pathway, we examined genetic interactions between *bub-1(*fw8*)* and several candidate downstream genes.

fzy-1/CDC20 is an activator of APC/C at the transition from metaphase to anaphase. A previous study demonstrated that BUB1 inhibited CDC20 in cultured mammalian cells [19]. In *C. elegans*, *fzy-1(h1983)* did not exhibit major developmental abnormalities, except for the smaller brood size [20]. Consistently, we found that *fzy-1(h1983)* did not affect postembryonic neuronal cell division (Figure 8C). In the wild type worm, about 33 DA, DB, VA, and VB neurons are present along the ventral cord, not including the head ganglia neurons. In *bub-1(*fw8*)* worm (*n* = 105), only 13 were present. However, in the *fzy-1(h1983) bub-1(*fw8*)* double mutant, there were approximately 17 DA, DB, VA, and VB neurons present (*n* = 26). Moreover, 51.06% of double mutants of *fzy-1(h1983) bub-1(*fw8*)* survived to adulthood, compared to 26.03% of *bub-1(*fw8*)* (Figure 8E). These results indicate that the effects from the *bub-1* mutation are partially suppressed by the mutation of *fzy-1/CDC20*, consistent with *fzy-1* acting downstream of *bub-1*.

fzr-1/CDH1/HCT1 is another activator of APC/C required for exit of mitosis [45] and shows sequence similarity to *fzy-1*. In *C. elegans*, *fzr-1(ku298* and *ku298* alleles) did not exhibit major developmental abnormalities. To examine the genetic interaction

![Figure 3. Expression Pattern of bub-1.](http://www.plosone.org/figure.png)

(A) *P*bub-1:*GFP was widely expressed in the embryonic stage: (a) early *C. elegans* embryos in the gonad of an adult animal; (b) comma stage embryo; (c) two-fold stage embryo; and (d) three-fold stage embryo. The scale bar represents 50 μm for (a) and 10 μm for (b), (c), and (d). (B) Antibody staining of BUB-1 in embryo nucleus. (e) DAPI staining and (f) antibody staining of BUB-1 of the same embryo. (g) DAPI staining and (h) antibody staining of BUB-1 of the same embryo. In (e) and (f), some of the cells (as shown by the arrow) were at the prophase of mitosis and BUB-1 was localized in the nuclei. The arrowheads show the non-dividing cell where BUB-1 was not expressed. In (g) and (h), one cell (as shown by the arrow) was at the metaphase of mitosis and BUB-1 was localized to the kinetochore. The scale bar represents 10 μm.

doi:10.1371/journal.pone.0005912.g003
between *bub-1* and *fzr-1*, we made double mutants of *bub-1* (*fw8*) and *fzr-1* (*ok380* and *ku298* alleles). The survivability of both allelic double mutants was indistinguishable from *bub-1* (*fw8*), data not shown). Thus, *fzy-1* is most likely a downstream regulator of *bub-1*, but not *fzr-1*, in *C. elegans*.

Discussion

Identification and characterization of loss-of-function mutations of *C. elegans* *bub-1*, a cell cycle spindle checkpoint gene

Our conclusion that *fx5* and *fx8* are loss of function mutations in *bub-1* is based on the following results: 1) they failed to complement with each other; and were mapped to the same genetic interval; 2) RNAi against *bub-1* exhibited the same phenotypes as *fx5* and *fx8*; 3) sequencing data showed that *fx5* and *fx8* both contained nonsense mutations in the *bub-1* coding sequence; 4) an in-frame deletion mutant of *bub-1* (*tm2815*) failed to complement with *fx5* and *fx8*, and exhibited weaker phenotypes than *fx5* and *fx8*; and 5) *fx5* and *fx8* could be rescued by *bub-1* DNA and partially rescued by expression of *bub-1* gene driven by a pan-neuronal promoter.

BUB-1 may have both kinase-dependent and kinase-independent functions

Compared to our *bub-1* mutant *fx5* and *fx8*, the deletion mutant *bub-1(tm2815*) showed milder defects. This is likely due to an existing partial function of *bub-1(tm2815)*. Based on sequence alignment among different species, Bub1 has a conserved kinase domain at the C-terminus. Both *fx5* and *fx8* have premature stop codon prior to the kinase domain, whereas *bub-1(tm2815)* has an in-frame deletion which leaves an intact kinase domain. This might explain why *fx5* and *fx8* have more severe defects than *bub-1(tm2815)*. Furthermore, this difference might suggest that *bub-1* functions beyond a kinase. In yeast, BUB1 is required for kinetochore localization of MAD1 and MAD2 independent of its kinase activity [9]. Further, *mdf-1* (mitotic arrest defective) and *mdf-
Figure 5. DAPI Staining Images of \textit{bub-1} Mutants. (A) wild-type animal N2. (B) The arrow indicates the elongated intestine cell in \textit{bub-1(fw8)} animal. (C) Compared with N2 animals, the ventral cord of \textit{bub-1(fw8)} had fewer neuron numbers (shown by the insert). (D) The arrow indicates the sperm in the \textit{bub-1(fw8)} mutant. The bar represents 100 μm.

doi:10.1371/journal.pone.0005912.g005

Figure 6. Intestinal Ploidy Measurement of \textit{bub-1} Mutants. Body wall muscle nuclei were used as an internal 2 n standard. White bar indicates the average DNA content±s.d. of 10 body wall muscle nuclei in three independent animals. Black bar indicates the average DNA content±s.d. of 30 intestinal nuclei in three independent animals.

doi:10.1371/journal.pone.0005912.g006
2 were identified as homologs of \textit{MAD1} and \textit{MAD2}, and both exhibited conserved function in nematode and yeast [3]. Whether or not the kinase-independent function of \textit{bub-1} exists in \textit{C. elegans} still needs to be investigated further.

Our studies demonstrate that the cell cycle control gene \textit{bub-1} functions widely in the development of \textit{C. elegans}. The \textit{bub-1} null mutants exhibited defects in several developmental lineages, including seam cells, intestine nuclei, vulva, gonad, germ cells, and ventral cord neurons. Other postembryonic cell lineages we inspected were also defective in \textit{bub-1} mutants (data not shown). In \textit{bub-1(fz5, fz8)} mutants, all of the neurons in the ventral cord developed at the embryonic stage were intact, such as DAs, DBs, and DDs; while most of the postembryonic-born neurons were missing, such as VAs, VBs, and VDs. Our RNAi experiment shows that \textit{bub-1} is a maternal gene and the maternal effect of \textit{bub-1} is strong enough to support embryonic development even to the adult stage in \textit{bub-1} mutants. In \textit{C. elegans}, some cell cycle-related genes also show long lasting maternal function. For example, \textit{cye-1} Cyclin E deletion animals showed surprisingly normal development until the L3 stage, although RNAi resulted in embryonic lethality at nearly the hundred-cell stage [46,47].

The endoreduplication may not be affected by the loss of \textit{bub-1} function

Metazoans have various types of cell cycles during development. Endoreduplication is a specific type of cell cycle that skips the M phase. In \textit{C. elegans}, such endoreduplication type of cell cycle takes place in the intestine and hypodermis during development [39]. Intestinal nuclei go through an endoreduplication cycle before each molt, which results in adults with intestinal nuclei with a 32 n DNA content. In adult animals or L4 with \textit{bub-1(fz8)} mutants, we found that the amount of DNA was not affected. This result suggests that \textit{bub-1} function is specifically required for the spindle checkpoint in the M phase, which is missing from the endoreduplication in the \textit{C. elegans} intestinal cells.

The \textit{bub-1}-associated spindle checkpoint pathway is conserved in \textit{C. elegans}

Studies in yeast and mammals show that BUB1 kinase acts on the upstream of CDC20 [17,18,19]. Consistent with these studies, we found that h1983, a partial loss of function allele of \textit{fzy-1}/\textit{CDC20}, partially suppressed the \textit{bub-1(fz8)} phenotype. In \textit{fzy-1(h1983); bub-1(fz8)} mutants, all of the neurons in the ventral cord developed at the embryonic stage were intact, such as DAs, DBs, and DDs; while most of the postembryonic-born neurons were missing, such as VAs, VBs, and VDs. Our RNAi experiment shows that \textit{bub-1} is a maternal gene and the maternal effect of \textit{bub-1} is strong enough to support embryonic development even to the adult stage in \textit{bub-1} mutants. In \textit{C. elegans}, some cell cycle-related genes also show long lasting maternal function. For example, \textit{cye-1} Cyclin E deletion animals showed surprisingly normal development until the L3 stage, although RNAi resulted in embryonic lethality at nearly the hundred-cell stage [46,47].
(fw8) double mutant, the function of bub-1 was abolished and fzy-1 was not inhibited. As a result, the fzy-1(h1983) mutation partially complemented this defect and suppressed the phenotype of bub-1(fw8). In neuron counting number. Arrows indicate some of the A and B-type neurons. The bar represents 50 μm. (E) Y axis shows the A and B-type neuron numbers (not including neurons in the head ganglia). Error bars represent standard deviation (the t-test compared to control fw8; juls14: P<0.001).

doi:10.1371/journal.pone.0005912.g008

Table 4. Adult Sterility in Double Mutants of bub-1(fw8) with APC/C Subunits.

Mutation	Adult Sterility
bub-1(fw8)	26.0% (219)
bub-1(fw8); mat-2(ax102)	75.5% (73)
bub-1(fw8); emb-27(g48)	69.8% (69)

*The number in the bracket is the total mutant number examined.

doi:10.1371/journal.pone.0005912.t004

Materials and Methods

Culture conditions and strains

C. elegans strains were maintained at 20°C on nematode growth medium (NGM) seeded with E. coli strain OP50 as described by
Brenner [48]. The temperature-sensitive strains were maintained at 15°C, and examined at 25°C. Mutations in this study were as follows: LG1: *bub-1(mu2015), LGH: *emb-27(e48), fcy-1(kd386), ka298, fcy-1(k1903), mat-2(ax102); LGIV: *eri-1(mg366), edd-3(n717). Transgenic markers were: juIs76 [Punc-25::GFP] [20]; oxl12 [Punc-47::GFP] [49]; juIs14 [Purs-2::GFP] [33]; qf56 [Flag-2::GFP; unc-119(+)] [42]; ncl1 [Pelt-2::GFP] [50]; wks1 [SCM::GFP, unc-119(+) (Stern stands for stem cell specific promoter)], [40]; and eIs111 [Pp23SB3.3::GFP] [51].

Genetic screen for Stu mutants

CZ1200 juIs76 [Punc-25::GFP] animals were synchronized by lysing the adult hermaphrodites, using alkaline hypochlorite (0.5% sodium hypochlorite, 0.5 N NaOH). The synchronized L4 animals were then treated with 50 mM ethyl methylene sulfonate as described [52]. F1 progeny were placed on 1 animal per plate. Sterile or larval arrested, and Stu animals among the F2 progeny were examined for the number and morphology of postembryonic neurons using the Punc-25::GFP marker. Strains were maintained by propagating heterozygous animals.

Out-crossing, mapping and complementation testing

All of the mutants were out-crossed at least twice with N2. The mutants were mapped using standard snip-SNP assay [32] and the three-factor mapping technique [52]. The mutants mapped to similar genetic loci were tested. All of the mutants were out-crossed at least twice with N2. The temperature-sensitive strains were maintained at 15°C.

Nomarski fluorescent microscope examination

Live animals were mounted to M9 solution in 2% agar pads and viewed under Leica and Zeiss microscopes. Images were captured using a Leica DC500 or a Zeiss AxioCam.

Molecular analysis of *bub-1*

To identify the mutations in *f5c* and *f6a*, the sequences for the exons and exon-intron boundaries of *bub-1* were amplified from homozygous mutant animals using the following primers: first pair (5’gctgcctcctaattgct3’, 5’gctctccgcagttatt3’); second pair (5’ttcatctttgtcataag3’, 5’tcgctgggttacctct3’); third pair (5’tcttcggataaaatctct3’, 5’ggtgagcagcaaatc3’); fourth pair (5’ttccagccctgctg3’, 5’tcgcctggctctgtt3’); fifth pair (5’ctaacaggggtttgcta3’, 5’atctctccacacagca3’); and sixth pair (5’atgcttgggtcgtgt3’, 5’tcttacctggtgctgt3’). The mutations were confirmed by sequencing from both directions (through two different reactions). To generate a *bub-1* promoter-driven GFP construct, duplex PCR [53] was conducted to amplify the 1266 bps *bub-1* upstream sequence from N2 genomic DNA using the following primer set: 5’tattcccaaggaaggtc3’ and 5’atgctgctccgcagtgtgct3’. The final plasmid was cloned into the pRF4 plasmid (100 ng/μl) as co-injection marker. Two lines were obtained and both showed similar expression patterns.

Microinjection to rescue *fw8* phenotype

To rescue *bub-1(fw8)*, a region from 1.40-kb upstream to 0.82-kb downstream of the *bub-1* locus was amplified from genome DNA with PCR primers 5’tcgaatcgcagttcttgtc3’ and 5’gagctcagcgtttgg3’. The PCR product was injected (co-injected with pRF-4 [nm-6/a1m906]) at 80 ng/μl to the balanced strain *dpy-5(e61)* unc-29(e403)/ *bub-1(fw8)* at 40 ng/μl. In total, we obtained two transgenic lines. The full coding sequence of *bub-1* was cloned into the plasmid pBY103 (kindly provided by Dr. X. Huang) which contained the promoter of *unc-119* [54]. Based on their cloning data, *polf-1/Sal* double digestion was used to obtain the PCR product of *bub-1* genomic sequence. The *unc-119::bub-1* plasmid was injected (co-injected with pRF-4 [nm-6/a1m906]) at 80 ng/μl to the balanced strain *dpy-5(e61)* unc-29(e403)/ *bub-1(fw8)* at 40 ng/μl. We obtained two transgenic lines. However, at 80 ng/μl, we obtained only one line and in the F1 progenies many larvae were lethal.

Antibody staining

The freeze-crack method was used for permeabilization and fixation of the embryos [53]. The rabbit polyclonal antibody against BUB-1 (1:1000, a gift from Dr. Hyman [22]) was used, followed by the FITC conjugated mouse anti-rabbit secondary antibody (1:1000).

RNAi by feeding

RNAi clones were made by J. Ahringer’s laboratory [36], and obtained from the MRC service (UK). The bacteria expressing dsRNA of appropriate genes were cultured at 37°C overnight and seeded onto the NGM plates (containing 50 μg/mL Amp, 1 mM IPTG). The plates were kept at room temperature for two days. Three L4 CZ5547 (mg366, *ju176*) animals were transferred to the plates. Two days later, the animals were then transferred to a second plate with the same interfering bacteria. About 10 hours later, the animals were removed and the embryos were cultured for a period of several days in order to examine the phenotype. The results were scored from the second plate, which displayed a better representation of the gene’s mutant phenotype.

DAPI staining

Approximately 30 mutant animals were placed into M9 on a microscope slide and covered with coverslip. The slide was quickly frozen in liquid nitrogen and put into a pre-cooled iron block. The coverslip was then quickly removed. The slide was sequentially placed in methanol and then acetone for 10 minutes each at −20°C. After air drying, animals were treated with 4’,6-diamidino-2-phenylindole dihydrochloride (DAPI) and covered with a coverslip [55].
DNA quantitation
To quantitate DNA content, nuclei images of DAPI-stained animals were taken with a Zeiss AxioCam, and images were analyzed with NIH ImageJ 1.40 g software. Using body wall muscle nuclei as a 2 n DNA standard, C values of intestinal nuclei were estimated by their DAPI-based densitometric quantifications [57,58].

Double mutant analysis of bub-1(fw8) and mat-2(ax102), emb-27(g48)
Young adult stage double mutants dpk-5(e61) unc-29(e403)/bub-1(fw8); mat-2(ax102) and dpk-5(e61) unc-29(e403)/bub-1(fw8); emb-27(g48) were cultured at 15°C for two hours to lay eggs to bypass the meiosis requirement of APC/C. Then, the eggs were transferred to a temperature of 25°C. The phenotypes were scored as above. The dpk-5(e61) unc-29(e403)/bub-1(fw8) animals were treated with the same procedures as the control.

Acknowledgments
The authors thank A. M. Rose, H. Zhang, X. C. Wang, the Japanese Knockout Consortium and the Caenorhabditis elegans Genetic Center for strains, A. A. Hyman for anti-BUB-1 antibody, L. Liu, D. Liu, X. Huang, and X. C. Wang for suggestions on the manuscript, F. F. Zhang, T. Ma, and L. Lu for some mapping work.

Author Contributions
Conceived and designed the experiments: XW ZZ YJ QF. Performed the experiments: XW ML WI CS. Analyzed the data: XW ML QF. Contributed reagents/materials/analysis tools: XW ML QF. Wrote the paper: XW ML YJ QF.

References
1. Horvitz HR, Sulston JE (1980) Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics 96: 435–454.
2. Sulston JE, Horvitz HR (1981) Abnormal cell lineages in mutants of the nematode Caenorhabditis elegans. Dev Biol 82: 41–55.
3. Kitagawa R, Rose AM (1999) Components of the spindle-assembly checkpoint are essential in Caenorhabditis elegans. Nat Cell Biol 1: 514–521.
4. Chen RH (2004) Phosphorylation and activation of Bub1 on unattached chromosomes facilitate the spindle checkpoint. EMBO J 23: 3113–3121.
5. Li X, Nickas RR (1995) Mitotic forces control a cell-cycle checkpoint. Nature 373: 630–632.
6. Rieder CL, Cole RW, Khodjakov A, Sluder G (1995) The checkpoint delaying entry into metaphase is unstable in interphase. Cell 80: 241–250.
7. Jin DY, Spencer F, Jeang KT (1998) Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell 93: 81–91.
8. Cahill DP, Lengauer C, Yu J, Riggs JJ, Willow JK, et al. (1998) Mutations of mitotic checkpoint genes in humans. Nature 392: 300–303.
9. Sharp-Baker H, Chen RH (2001) Spindle checkpoint protein Bub1 is required for kinetochore localization of Mad1, Mad2, Bub3, and CENP-E, independently of its kinase activity. J Cell Biol 153: 1299–1309.
10. Lengauer C, Wang Z (2004) From spindle checkpoint to cancer. Nat Genet 36: 1144–1145.
11. Baker DJ, Chen J, van Deursen JM (2005) The mitotic checkpoint in cancer and aging: what have mice taught us? Curr Opin Cell Biol 17: 503–509.
12. Li R, Murray AW (1991) Feedback control of mitosis in budding yeast. Cell 66: 1209–1226.
13. Hong FD, Chen J, Donovan S, Schneider N, Nisen PD (1999) Taxol, vincristine or nocodazole induces lethality in G1-checkpoint-defective human astrocytoma U373MG cells by triggering hyperploid progression. Carcinogenesis 20: 1144–1145.
14. Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR (1993) The structure of the ventral nerve cord of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 275: 327–348.
15. Altun-Gultekin K, Andachi Y, Tsaik EL, Pilgrim D, Kohara Y, et al. (2001) A regulatory cascade of three homeobox genes, ceh-10, ceh-3 and ceh-23, controls cell fate specification of a defined interneuron class in C. elegans. Development 128: 1951–1969.
16. Wicks SR, Yeh RT, Gish WR, Waterston RH, Plasterk RH (2001) Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nat Genet 28: 160–164.
17. Hallam S, Singer E, Waring D, Jin Y (2000) The C. elegans NeuroD homolog cnd-1 functions in multiple aspects of motor neuron fate specification. Development 127: 4239–4252.
18. Basu J, Boubaa H, Logarinho E, Li Z, Williams BC, et al. (1999) Mutations in the essential spindle checkpoint gene bub1 cause chromosome missegregation and fail to block apoptosis in Drosophila. J Cell Biol 146: 13–28.
19. Niikura Y, Diet A, Scott R, Perkins G, Kitagawa K (2007) BUB1-mediated mitotic checkpoint prevents independent mitotic death determines cell fate. J Cell Biol 178: 283–296.
20. Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75: 641–652.
21. Kennedy S, Wang D, Ruckw G (2004) A conserved siRNA-degrading RNome negatively regulates RNA interference in C. elegans. Nature 427: 645–649.
22. Altun ZF, Hall DH (2005) Handbook of C. elegans Anatomy. In WormAtlas http://www.wormatlas.org/handbook/contents.htm.
23. Hedgcock EM, White JG (1985) Polyplody tissues in the nematode Caenorhabditis elegans. Dev Biol 107: 128–133.
24. Pelliss-Van Berkel W, Verheijen MH, Coppen E, Aashina M, de Rooij J, et al. (2005) Requirement of the Caenorhabditis elegans RAPPGEF psd-1 and rpp-1 for epithelial integrity. Mol Cell Biol 16: 106–116.
25. Kostic I, Li S, Roy R (2003) C. elegans C. elegans epithelial integrity. Mol Cell Biol 16: 106–116.
26. Tabor V, Horvitz HR (1984). Heterochromatin mutants of the nematode Caenorhabditis elegans. Science 226: 409–416.
27. Kostic I, Li S, Roy R (2003) C. elegans C. elegans epithelial integrity. Mol Cell Biol 16: 243–252.
28. Furuta T, Tsuk S, Kirchner J, Koch B, Assay R, et al. (2000) EMB-30 an APC/C homologue required for metaphase-to-anaphase transitions during meiosis and mitosis in Caenorhabditis elegans. Mol Cell Biol 11: 1401–1419.
29. Taira O, Kitagawa R, Rose AM (2007) Suppressors of spindle checkpoint defect (such) mutants identify new mdf-1/MAD1 interactors in Caenorhabditis elegans. Genetics 175: 1607–1629.
30. Kramer ER, Scheuringer N, Podbielnjakov AV, Mann M, Peters JM (2000) Mitotic regulation of the APC activators proteins CDC20 and CDH1. Mol Cell Biol 11: 1555–1569.
46. Brodigan TM, Liu J, Park M, Kipreos ET, Krause M (2003) Cyclin E expression during development in Caenorhabditis elegans. Dev Biol 254: 102–115.
47. Fay DS, Han M (2000) Mutations in cye-1, a Caenorhabditis elegans cyclin E homolog, reveal coordination between cell-cycle control and vulval development. Development 127: 4049–4060.
48. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71–94.
49. McIntire SL, Reimer RJ, Schuske K, Edwards RH, Jorgensen EM (1997) Identification and characterization of the vesicular GABA transporter. Nature 389: 870–875.
50. Kostic I, Roy R (2002) Organ-specific cell division abnormalities caused by mutation in a general cell cycle regulator in C. elegans. Development 129: 2155–2163.
51. Pilon M, Peng XR, Spence AM, Plasterk RH, Dosch HM (2000) The diabetes autoantigen ICA69 and its Caenorhabditis elegans homologue, ric-19, are conserved regulators of neuroendocrine secretion. Mol Biol Cell 11: 3277–3288.
52. Sulston J, Hodgkin J (1988) Methods. In: Wood WB, ed (1988) The Nematode Caenorhabditis elegans. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press. pp 587–606.
53. Hobert O (2002) PCR fusion-based approach to create reporter gene constructs for expression analysis in transgenic C. elegans. Biotechniques 32: 720–730.
54. Maduro M, Pilgrim D (1995) Identification and cloning of unc-119, a gene expressed in the Caenorhabditis elegans nervous system. Genetics 141: 977–988.
55. Miller DM, Shakes DC (1995) Immunofluorescence microscopy. Methods Cell Biol 48: 365–394.
56. Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, et al. (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408: 325–330.
57. Boxem M, Srinivasan DG, van den Heuvel S (1999) The Caenorhabditis elegans gene ncc-1 encodes a cdc2-related kinase required for M phase in meiotic and mitotic cell divisions, but not for S phase. Development 126: 2227–2239.
58. Lozano E, Saez AG, Flemming AJ, Cunha A, Leroi AM (2006) Regulation of growth by ploidy in Caenorhabditis elegans. Curr Biol 16: 493–498.