2014

Reactivation of multiple viruses in patients with sepsis

Andrew H. Walton
Washington University School of Medicine in St. Louis

Jared T. Muenzer
Washington University School of Medicine in St. Louis

David Rasche
Washington University School of Medicine in St. Louis

Jonathan S. Boomer
Washington University School of Medicine in St. Louis

Bryan Sato
Washington University School of Medicine in St. Louis

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Please let us know how this document benefits you.

Recommended Citation

Walton, Andrew H.; Muenzer, Jared T.; Rasche, David; Boomer, Jonathan S.; Sato, Bryan; Brownstein, Bernard H.; Pachot, Alexandre; Brooks, Terrence L.; Deych, Elena; Shannon, William D.; Green, Jonathan M.; Storch, Gregory A.; and Hotchkiss, Richard S., "Reactivation of multiple viruses in patients with sepsis." PLoS One. 9, 6. e98819. (2014).
https://digitalcommons.wustl.edu/open_access_pubs/3199

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Authors
Andrew H. Walton, Jared T. Muenzer, David Rasche, Jonathan S. Boomer, Bryan Sato, Bernard H. Brownstein, Alexandre Pachot, Terrence L. Brooks, Elena Deych, William D. Shannon, Jonathan M. Green, Gregory A. Storch, and Richard S. Hotchkiss

This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/3199
Abstract

A current controversy is whether patients with sepsis progress to an immunosuppressed state. We hypothesized that reactivation of latent viruses occurred with prolonged sepsis thereby providing evidence of clinically-relevant immunosuppression and potentially providing a means to serially-monitor patients’ immune status. Secondly, if viral loads are markedly elevated, they may contribute to morbidity and mortality. This study determined if reactivation of herpesviruses, polyomaviruses, and the anellovirus TTV occurred in sepsis and correlated with severity. Serial whole blood and plasma samples from 560 critically-ill septic, 161 critically-ill non-septic, and 164 healthy age-matched patients were analyzed by quantitative-polymerase-chain-reaction for cytomegalovirus (CMV), Epstein-Barr (EBV), herpes-simplex (HSV), human herpes virus-6 (HHV-6), and TTV. Polyomaviruses BK and JC were quantitated in urine. Detectable virus was analyzed with respect to secondary fungal and opportunistic bacterial infections, ICU duration, severity of illness, and survival. Patients with protracted sepsis had markedly increased frequency of detectable virus. Cumulative viral DNA detection rates in blood were: CMV (24.2%), EBV (53.2%), HSV (14.1%), HHV-6 (10.4%), and TTV (77.5%). 42.7% of septic patients had presence of two or more viruses. The 50% detection rate for herpesviruses was 5–8 days after sepsis onset. A small subgroup of septic patients had markedly elevated viral loads (>10^4–10^6 DNA copies/ml blood) for CMV, EBV, and HSV. Excluding TTV, DNAemia was uncommon in critically-ill non-septic patients and in age-matched healthy controls. Compared to septic patients without DNAemia, septic patients with viremia had increased fungal and opportunistic bacterial infections. Patients with detectable CMV in plasma had higher 90-day mortality compared to CMV-negative patients; p<0.05. Reactivation of latent viruses is common with prolonged sepsis, with frequencies similar to those occurring in transplant patients on immunosuppressive therapy and consistent with development of an immunosuppressive state. Whether reactivated latent viruses contribute to morbidity and mortality in sepsis remains unknown.
result in viral reactivation, replication, and virally-mediated tissue injury [15–20]. Sepsis impairs innate and adaptive immunity by multiple mechanisms including apoptosis-induced depletion of immune effector cells and induction of T-cell exhaustion thereby possibly predisposing to viral reactivation and dissemination [21–23].

Although viral reactivation has been documented in sepsis, studies have generally been limited in scope, focusing on CMV viremia or HSV-1 pneumonitis [15,18,20,24–28]. No comprehensive study of the herpes or polyomavirus family has been conducted in sepsis. Demonstration that widespread reactivation of latent herpes and polyomavirus occurs in sepsis has several important implications. First, it would provide strong evidence that sepsis results in functional immunosuppression and may provide a means to track patient immunocompetence during the disorder. Secondly, depending upon the level of viremia, reactivated viruses may contribute to morbidity and mortality in the disorder. We also investigated TTV, an anellovirus previously shown to be present in up to 40–50% of healthy adults [29–33]. Recent studies in patients with liver and stem cell transplantation, patients with HIV, and patients with chronic renal failure indicate that the magnitude of TTV viremia reflects patient immunocompetence and that TTV viral load is useful as a surrogate marker of the robustness of immunity [30–33].

Methods: (in addition, see Supporting Information)

Inclusion criteria

Septic patients. Non-immunocompromised patients treated in surgical/medical ICUs (2009–2013) were included prospectively. Sepsis was defined as a microbiologically-proven, clinically-proven, or suspected infection and presence of systemic inflammatory response syndrome [10]. Patients were followed through hospital discharge or 90 days after sepsis onset. Mortality status at 90 days was available for >95% of study subjects.

Critically-ill non-septic patients (CINS) and healthy-control patients. Non-septic, non-immunocompromised patients being treated in surgical/medical ICUs were one comparison group. A second group consisted of age-matched, ambulatory, pre-operative elective-surgery patients (American Society of Anesthesiology [ASA] class 1–3).

Exclusion criteria

Patient exclusion criteria included: HIV-1, organ transplantation, high-dose corticosteroids (≥300 mgs/day hydrocortisone) or other immunosuppressive medications, viral hepatitis, and autoimmune diseases.
Blood and Urine Collection
Analyses were performed on residual blood remaining after clinical hematologic testing was performed (Septic and CINS), or blood obtained from ambulatory volunteers prior to elective surgery (Healthy Control). Blood was retrieved daily starting within 24–72 hrs. of ICU admission. Whole blood and plasma were stored at 2–80°C. For detection of BK and JC, urine was typically obtained twice/week. Quantitative-PCR (qPCR) was performed 2–3 times/week.

CMV Serologic testing
IgG antibodies to CMV were quantitated by ELISA to identify individuals with prior CMV exposure.

Sample preparation and viral DNA detection
DNA was extracted using the NucliSens-EasyMag-extractor (BioMérieux) and assayed for viruses by qPCR using protocols from the Clinical Virology Laboratory at St Louis Children’s Hospital (except HHV-6 and TTV) and as previously described [34–39]. Briefly 5 uL of sample was used per reaction, and assays were performed on either an ABI 7500 Fast system (Applied Biosystems), or a LightCycler II (Roche). (See Table S1. for details regarding lower limit of quantitation for each virus and interassay coefficient-of-variation).

Statistical analysis
Data were analyzed using SAS-Statistical Software. Kaplan-Meier analyses were used for mortality, ICU length-of-stay, and secondary infection rates. Chi-square and t-tests were used for categorical and continuous variables.

Human Studies Human Studies
The study was approved by the Washington University Human Research Protection Office. Patient consent was obtained for venipuncture and chart review from pre-operative elective surgery patients. Oral consent was documented by having the patient sign the study consent form which was then placed in the patient chart with an additional copy kept with the research nurse coordinator. For septic and critically-ill non-septic patients, a waiver of consent was granted for obtaining excess clinical “waste” laboratory blood

Table 2. Frequency of Viral DNA in Septic and Control Patients.
Virus

No. positive/No. tested (%)
CMV*
EBV
HSV
HHV-6
TTV
JC**
BK**
Any Virus
>1 Virus

*Results are from CMV seropositive patients only. No. positive reflects the number of patients who tested positive in either whole blood or plasma or both. No. tested represents the total number of patients tested.

Table 3. Frequency of Viral DNA in Blood and Plasma Individually.
Virus

No. positive/No. tested (%)
CMV*
EBV
HSV
HHV-6
TTV
Any Virus
>1 Virus

*Results are from CMV seropositive patients only. No. positive represents the number of patients who tested positive in Blood or in Plasma separately. No. tested represents the total number of patients tested.

doi:10.1371/journal.pone.0098819.t002

doi:10.1371/journal.pone.0098819.t003
Table 4. Viral Loads in Blood, Plasma, and Urine.
Septic
Blood
GeoMean
GeoSEM
Median
Max
Min

Plasma	CMV	EBV	HSV	HHV-6	TTV	CMV	EBV	HSV	HHV-6	TTV	CMV	EBV	HSV	HHV-6	TTV
GeoMean	10896.5	4000	14342.5	4491.3	63946.9	N/A	4000	N/A	N/A	27047	N/A	4000	N/A	1.95E+06	20697
GeoSEM	1.41	1	1.25	1.31	1.25	N/A	1	N/A	N/A	1.37	N/A	1	N/A	5.16	1.26
Median	3243.4	4000	10640	3000	33504.2	N/A	4000	N/A	N/A	33248	N/A	4000	N/A	1.73E+06	11255
Max	435789	4000	1.16E+06	1.41E+06	8.00E+09	N/A	4000	N/A	N/A	1.50E+06	N/A	4000	N/A	1.58E+08	6.50E+06
Min	2000	4000	4000	3000	2000	N/A	4000	N/A	N/A	2000	N/A	4000	N/A	3000	2000

Urine	JC	BK	JC	BK
GeoMean	2.32E+06	62441	9.67E+05	17931
GeoSEM	1.5	1.59	2.89	2.61
Median	2.57E+06	31121	8.84E+05	16706
Max	4.41E+09	7.52E+07	3.56E+08	2.20E+05
Min	4000	4000	9620	4000

doi:10.1371/journal.pone.0098819.t004
Demographic data

560 septic, 160 CINS, and 165 healthy control patients were included (Table 1). The 560 septic patients included 31 patients originally classified as CINS who developed sepsis during their ICU admission and were transferred into the septic category. Median duration of ICU stay was 11 days (range 2–127) and 2 days (range 1–12) for septic and CINS patients respectively. The number of blood samples for septic and CINS patients ranged from 1–27 (mean 3.1) and 1–2 (mean 1.1) respectively. A single blood sample was obtained prior to surgery for the healthy control patients.

Cumulative detection rates and levels of herpes family viruses

CMV. 70.2% of patients (septic and controls) were CMV seropositive within 2–4 days of ICU admission, indicative of prior infection. With one exception, detection of CMV by PCR occurred only in patients who were CMV seropositive. 24.2% of septic CMV seropositive patients had CMV detected with geometric mean (geomean) levels of 6,409 copies/ml whole blood and 10,896 copies/ml plasma (Figure 1, Tables 2–4). CMV was detected by PCR in one CINS patient and in no healthy control patients (Table 2).

EBV. A single EBV DNA result was detected from a septic patient (1.8% of septic patients) with levels of 7,994 copies/ml whole blood. No EBV DNA was detected in any of the other groups.

HSV. A single HSV DNA result was detected from a septic patient (1.8% of septic patients) with levels of 6,150 copies/ml whole blood. No HSV DNA was detected in any of the other groups.

HHV-6. A single HHV-6 DNA result was detected from a septic patient (1.8% of septic patients) with levels of 7,994 copies/ml whole blood. No HHV-6 DNA was detected in any of the other groups.

JC. No JC DNA was detected in any of the study populations.

BK. No BK DNA was detected in any of the study populations.

TTV. No TTV DNA was detected in any of the study populations.
EBV. EBV was detected in blood samples from 53.2% of septic patients (Tables 2–4). Fifty-two septic patients (18.9%) had levels \(\geq 10,000 \) copies/ml whole blood, a level that is considered an indication for reducing immunosuppression in solid-organ transplant recipients at our institution (Figure 1, Table 4). EBV was detected in 12.1% and 3.6% of CINS and healthy control patients respectively.

HSV. HSV was detected in 14.1% of septic patients with geomean equaling 6,144 copies/ml whole blood and 14,342 copies/ml plasma (Tables 2–4). HSV was detected in blood of 1.5% of CINS patients. No healthy control patients had HSV viremia.

HHV-6. HHV-6 was detected in 10.4% of septic patients (Tables 2–4). One CINS and 6 (3.3%) healthy control patients were positive. HHV-6 levels were generally at or below the lower limit of quantitation of the qPCR assay (3,000 copies/ml blood).

Cumulative detection rate and levels of TTV
TTV was detected in plasma of 77.5% of septic patients with geomean equaling 64,000 copies/ml (Tables 2–4). TTV was detected in 63.6% and 60.1% of CINS and healthy control patients respectively. Geomean TTV levels were 27,000/ml and 21,000/ml in plasma of CINS and healthy control patients respectively.

Urine BK and JC detection rates and levels
JC was detected in urine of 35.7% of septic patients with geomean level of \(2.3 \times 10^6 \) copies/ml (Table 2). JC was detected in 23.8% of CINS patients with geomean level of \(9.7 \times 10^5 \) copies/ml. BK was detected in urine of 14.3% and 9.5% of septic and CINS patients respectively. BK geomean values were 6,441 copies/ml and 17,951 copies/ml in septic and CINS patients (Table 4).

Septic patients have multiple viruses with corresponding high viral titers
Overall, 42.7% of septic patients had two or more viruses detected during their illness (Table 2). This 42% may underestimate the frequency because not all patients were tested for all viruses. In a subgroup of 209 patients who were tested for all viruses, 54.1% were positive for multiple viruses including 27.8% positive for 2 viruses, 17.2% for 3 viruses, 7.7% for 4 viruses, 3.8% for 5 viruses, and 0.5% for 6 viruses. We also correlated the impact of the load of each of the viruses upon the prevalence of other viruses. In blood samples, the magnitude of the viral load of one
patients who were tested on or before the same day. Positive for viral reactivation divided by the total number of septic patients who convert from virus negative to virus positive status. *TTV represents only those septic patients who were negative for the particular viruses and who ultimately became positive during their septic course. The % represents the increase in the number of septic patients who convert from virus negative to virus positive status. **TTV was tested only in plasma (see Methods S1).

Correlation of viremia with clinical and laboratory parameters

Secondary infections. Impaired immunity in septic patients is frequently manifest by infections with fungal or relatively non-virulent “opportunistic” type bacterial organisms [40,41]. We prospectively selected *Acinetobacter, Stenotrophomonas,* and *Enterococcus* as representative of “opportunistic” bacteria in patients with sepsis; these relatively weakly virulent pathogens are common causes of secondary infection in our ICUs [41]. Septic patients who had detectable CMV in either blood or plasma and septic patients who had EBV detectable in plasma had increased risk of fungal infections independent of length-of-stay or duration of sepsis, Figure 4 and Figure S3; (*p*<0.001 for CMV and *p*<0.05 for EBV). For both viruses, the relationship was stronger for detection of virus in plasma than whole blood. These relationships with fungal infection were not present for the other viruses examined. Patients who had detectable HSV in blood had increased risk of developing opportunistic bacterial infections which was independent of length-of-stay, Figure 4; (*p*<0.05). A similar trend was also apparent for detection of HSV in plasma but not for any other virus.

ICU duration and severity of illness. Average ICU length-of-stay was increased in septic viremic versus non-viremic patients, Figure 5. Patient microbiologic data and white blood cell counts are shown in Table 5. For CMV and HSV, the number of ICU days was approximately doubled in patients who were viral positive versus viral negative. No effect of urine BK or JC was observed on length-of-stay. Septic patients with CMV viremia in blood had increased APACHE-II scores compared to CMV negative Table 6, *p*<0.01. Viremia with CMV, EBV, HSV, and HHV-6 was associated with higher SOFA scores, Table 6, *p*<0.01.

Effect of viral reactivation on mortality in sepsis. Septic patients with detectable CMV in plasma had increased 90-day mortality compared to CMV negative patients, Figure 6; *p*<0.05. The increased mortality with CMV had a stepwise increase in mortality with increased viral levels, Figure 7; though this was not statistically significant. Compared to septic patients who were TTV negative, there was a trend for increased mortality in septic patients who had the highest quartile of TTV viral load, Figure 7. Surprisingly, septic patients who were EBV positive in blood (but not plasma) had lower 90-day mortality, Figure 6; *p*<0.05. The protective effect of EBV tended to lessen as viral load increased in whole blood, Figure 8.

Discussion

A remarkable finding in the present study is the high prevalence of viral DNA in blood of septic patients. Previous studies which investigated viral reactivation in sepsis were generally focused on CMV or, much less commonly, HSV [15,20,24–28,42–44]. This is the first study to examine the impact of sepsis on multiple families of viruses. Detection of herpes viruses (CMV, EBV, HSV-1, and HHV-6), polyomaviruses (JC and BK), and anelloviruses (TTV) occurred with high frequency in sepsis (Tables 2–4). These increased rates of viral detection are particularly striking when viraldna in blood of septic patients. Previous studies which investigated viral reactivation in sepsis were generally focused on CMV or, much less commonly, HSV [15,20,24–28,42–44]. This is the first study to examine the impact of sepsis on multiple families of viruses. Detection of herpes viruses (CMV, EBV, HSV-1, and HHV-6), polyomaviruses (JC and BK), and anelloviruses (TTV) occurred with high frequency in sepsis (Tables 2–4). These increased rates of viral detection are particularly striking when...
Figure 4. Impact of viral reactivation on fungal and opportunistic bacterial infections. Septic patients with CMV detected in either blood or plasma had increased fungal infections compared to CMV negative patients; only results for plasma are shown and are significant, \(p < 0.001 \). Similarly, patients who had EBV detected in blood had increased fungal infections compared to viral negative patients, \(p = 0.05 \). Patients who were HSV positive in blood had increased opportunistic bacterial infections due to *Stenotrophomonas*, *Acinetobacter*, or *Enterococcus* compared to viral negative patients, \(p < 0.05 \). Censored subject (vertical hash marks) represent patients who were either discharged from the ICU or who died without events. Analysis was performed using all events but plot was truncated at 60 days for clarity. \(N = 35 \) patients with fungal infections, \(n = 86 \) patients with *Stenotrophomonas*, *Acinetobacter*, or *Enterococcus* infections.

doi:10.1371/journal.pone.0098819.g004
Viral Reactivation in Sepsis

Figure 5. Patients with viral reactivation have increased ICU length of stays. The average number of days spent in the ICU for septic patients with versus without viremia was determined. Septic patients who were positive for CVM, EBV, TTV, HSV, and HHV-6 had longer ICU stays compared to comparable patients who were viral negative. There was no impact of urine JC or BK positivity on ICU length of stay. Values were compared by student’s t test.

doi:10.1371/journal.pone.0098819.g005

compared to results in non-septic patients and healthy-control patients. The fact that 42.7% of septic patients had viremia with multiple viruses as well as the magnitude of viral loads (Figure 1) provides strong evidence that host immunity is impaired in sepsis. Potential mechanisms of immunosuppression in sepsis include T-cell exhaustion, apoptotic depletion of CD4 and CD8 T-cells, myeloid-derived suppressor cells, and increased T-regulatory cells, all of which might contribute to viral reactivation [4,23,45,46]. Importantly, EBV, CMV, and HHV-6 detection rates for septic patients in this study are similar to those reported in stem-cell and organ transplant patients [47–50]. For example, a study of solid organ transplant recipients reported detection rates in blood of 56.3% for EBV, 13.7% for HHV-6, 12.2% for BK and 4.9% for JC [47]. Thus, viral detection in septic patients is comparable to that in transplants patients who are pharmacologically immunosuppressed, providing further support that our findings are indicative of clinically-relevant immunosuppression.

The 24.2% incidence of CMV reactivation in sepsis in the present study is similar to other sepsis studies [15,24,25,44,51]. Although HSV pneumonitis occurs in sepsis [20,28,52], the incidence of HSV viremia in sepsis has (to our knowledge) not been previously reported. One study noted a >50% incidence of HHV-6A in critically-ill patients but this study was not confined to septic patients and the high percentage of HHV-6A reactivation seems incongruous with their other study finding of absence of CMV reactivation in their same patients [53]. The incidences of EBV, TTV, JC, and BK have not previously been reported in septic patients and therefore represent an important independent contribution to the literature.

Detection of the various viruses in the present study presumably represents viral reactivation. Almost all adults have been previously infected with HHV-6 and ~90% of adults have been previously infected with EBV [16,49]. The seroprevalences for HSV-1 and HSV-2 are 58% and 17% respectively [54] while those for JC and BK are ~70–80% and 60–70% respectively [17,19,55]. Therefore, it is likely that viral detection in the setting of sepsis is not due to primary infection but rather to viral reactivation. The precise mechanisms that lead to reactivation of latent viruses are not completely established, and indeed may differ between the different viruses. Pro-inflammatory cytokines, hypoxia, cell injury, and other stress-related mechanisms can induce viral reactivation and are commonly present in sepsis [56,57]. Thus, in addition to impaired immune surveillance, the initial hyper-inflammatory septic phase likely provides the stimulus which precipitates viral reactivation. However, the persistence and degree of elevated viral levels suggests that immune function is insufficient to effectively clear the viruses, strongly suggesting immune dysfunction. Most viruses were detected at high levels in plasma as well as blood (Table 2) and this finding is considered indicative of active viral replication [58]. Thus, while stress-induced mechanisms might initiate viral reactivation in sepsis, the predominant driving force for the extent, persistence, and degree of viral reactivation in most septic patients is most likely to be immune dysfunction. The degree and magnitude of viral loads is also consistent with impaired immunity in septic patients (see discussion below for EBV and TTV viral loads and immunosuppression).

EBV blood level is used as a surrogate marker of immunosuppression in transplant patients [49,59,60]. Fifty-two septic patients had EBV levels ≥10,000 copies/ml of whole blood, a level that some transplant clinicians consider to represent excessive immunosuppression and therefore advise reduction in anti-rejection medications [60]. Previous studies have also shown correlation between circulating TTV levels and immunocompetence [29–31,61]. Unlike herpes viruses, TTV is not thought to enter latency.

Table 5. Microbiology and Blood Cell Counts.

Microbiology	Septic	Critically-ill Non-septic	Healthy Controls
Gram Negative	389	323	39
Gram Positive			
Fungi			
White blood cell count (K/mm³)			
median			
range (IQR)	13.1	8.1	6.4
Absolute Lymphocytes K/mm³			
median	0.9	1.1	1.8
range (IQR)	0.6–1.3	0.7–1.6	1.4–2.3
Absolute Monocytes K/mm³			
median	0.7	0.6	0.5
range (IQR)	0.4–1.1	0.4–0.8	0.4–0.6
Absolute Polymorphonuclear K/mm³			
median	11.8	6	4.1
range (IQR)	8.5–16.7	5.0–7.4	3.2–5.5

doi:10.1371/journal.pone.0098819.t005
but rather to actively replicate at low levels and is present in plasma in 50% of healthy adults without known pathologic effects [29–33]. Previous studies reported that elevated TTV viral loads occur more frequently in hemodialysis patients, diabetics, and HIV-infected patients with low CD4 counts than in healthy individuals or HIV-infected patients with CD4 counts >500/mm³ [29–33]. Three studies have reported that TTV viremia increases with the degree of immunosuppressive therapy in patients with organ transplantation and suggested that the magnitude of TTV viremia is indicative of the robustness of the immune system [31–33]. The high prevalence (76.4%) and viral load of TTV in septic patients likely reflects their immunosuppression.

A critical question which is not answered by the present study is whether the increased viral reactivation in sepsis is merely a marker of impaired immunity or contributes to sepsis morbidity/mortality. A subgroup of septic patients had extremely high levels of CMV and/or EBV (Figure 1) which are frequently associated with pathologic effects. A current hypothesis is that CMV and HSV reactivation amplify sepsis-induced lung and systemic inflammation thereby contributing to multi-organ failure [15,61,62]. Additionally, chronic viral infections lead to T cell exhaustion and impaired immunity [63], and a recent postmortem study of septic patients demonstrated findings highly consistent with T cell exhaustion [23]. Thus, viral reactivation in sepsis could lead to T cell exhaustion which further impairs host immunity leading to additional viral reactivation. Septic patients who had viral reactivation had increased infections with organisms that generally do not infect patients with competent immune systems, e.g. Candida albicans, Stenotrophomonas, Acinetobacter, Enterococcus (Figure 4) [40,41]. While this commensal fungus and these bacteria are generally considered opportunistic bacteria, they may enter the bloodstream through barrier breakdown. Whether the increased propensity for infections with relatively weakly pathogenic organisms is a result of viral-mediated effects to impair immunity or whether viral reactivation occurs more readily in more profoundly immunosuppressed septic patients is unknown.

A surprising finding is the decreased mortality in septic patients with EBV viremia in blood (but not plasma) compared to EBV-negative patients (Figure 6). A potential explanation for this seemingly paradoxical finding is provided by studies showing that mice with low level gammaherpes-virus-68 infection (a murine virus genetically similar to human EBV) have improved survival and/or decreased microbial burden in bacterial sepsis due to L. monocytogenes and Y. pestis [64]. In that animal model, EBV infection protected by activating NK cells to produce IFN-γ, an essential factor for viral control. Significantly, EBV in plasma did not display a survival benefit and was associated with increased fungal infections. These findings may signal a fundamental difference

| Table 6. Correlation of Viral Positivity and Severity of Illness. |
|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Virus | Mean¹ APACHE II (S.E.M.) | P-value | Mean¹ SOFA (S.E.M.) | P-value |
| CMV | 18.2 (0.58) | 16.3 (0.39) | 0.002 | 9.5 (0.41) | 8.3 (0.20) | <0.01 |
| EBV | 17.2 (0.26) | 17.4 (0.33) | 0.687 | 8.9 (0.20) | 8.0 (0.20) | <0.01 |
| HSV | 17.4 (0.49) | 17.3 (0.23) | 0.346 | 9.8 (0.42) | 8.3 (0.15) | <0.001 |
| HHV-6 | 18.4 (0.77) | 17.2 (0.22) | 0.145 | 9.8 (0.42) | 8.3 (0.14) | <0.001 |
| TTV | 16.7 (0.26) | 15.9 (0.44) | 0.94 | 8.5 (0.19) | 8.2 (0.26) | 0.264 |
| JC | 16.3 (0.49) | 16.6 (0.44) | 0.783 | 7.3 (0.35) | 7.4 (0.28) | 0.963 |
| BK | 15.4 (0.60) | 16.6 (0.37) | 0.247 | 7.2 (0.48) | 7.4 (0.24) | 0.897 |

¹Mean value represents mean of all patients’ average APACHE II or SOFA score for the duration of their ICU stay.
²Represents CMV seropositive patients only.

Figure 6. Impact of CMV and EBV on sepsis mortality. Septic patients who were CMV positive in plasma had increased 90 day mortality compared to CMV negative patients, p<0.05. Surprisingly, patients who were EBV positive in whole blood (but not plasma) had decreased 90 day mortality compared to EBV negative patients, p<0.001. Data analyzed by Kaplan Meier.

doi:10.1371/journal.pone.0098819.g006
between patients with low and high levels of EBV in blood. We speculate that early reactivation of EBV in sepsis identifies patients who mount a more vigorous response to the pathogens. However, persistent EBV at high levels is likely detrimental to the host.

There are several significant implications of the present study. First, the current results highlight a degree of immunosuppression in septic patient that is on par with pharmacologically-induced immunosuppression in organ transplant patients [47–50]. Secondly, an intriguing idea is that serial quantitation of circulating viral load for a panel of viruses may be useful as a biomarker of host immunity in sepsis. This concept of tracking changes in viral load is similar to the approach used to guide dosing of immunosuppressive medications in some organ transplant recipients [47–50]. Besides the viruses quantitated in the present study, HHV-7, adenovirus, parvovirus B19, and human bocavirus are other candidates that might provide additional information regarding the status of host immunity [64,65,66]. Finally, these results provide a strong rationale for future and ongoing clinical trials of agents that boost host immunity in patients who have entered the immunosuppressive phase of sepsis [11,12].

A limitation to this study is the inability to make direct comparisons between septic and control groups. The ICU length-of-stay for CINS was considerably shorter than for septic patients because these patients tended to be more clinically stable and were transferred out of the ICU. Consequently, more serial-samples were obtained from septic versus CINS patients, undoubtedly contributing to the increased detection of viral DNA in sepsis.

Additionally, severity of illness in septic patients is invariably higher as a consequence of sepsis-induced multi-organ dysfunction. These issues make direct statistical comparisons between septic and control patients invalid. However, 31 CINS patients who became septic during their ICU stay were included and these patients had viral reactivation typical of the septic group at large following sepsis onset. It is possible that viral reactivation may not be related simply to sepsis but could extend to all critically-ill patients with similar severity of illness and length-of-stay. In this regard, EBV reactivation was higher in CINS patients versus healthy controls, \(p < 0.003 \).

Conclusions

In conclusion, reactivation of latent viruses is extremely common in patients with prolonged sepsis and is consistent with development of immunosuppression. Whether reactivated viruses represent an epiphenomenon or contribute to morbidity and mortality remains unknown and should be addressed because of

Figure 7. Impact of CMV and TTV viral loads on sepsis mortality. The relationship between CMV and TTV viral load in blood and 90 day mortality is displayed. There was a non-statistically significant increase in mortality due to sepsis with increasing CMV viral levels in blood. However, persistent EBV at high levels is likely detrimental to the host.

Figure 8. Effect of EBV load on survival. EBV in whole blood (but not plasma) was associated with a decrease in sepsis mortality. This protective effect of EBV DNAemia tended to lessen with increased viral burden although the effect was not statistically significant.

their potential impact on morbidity and mortality. Serially tracking of viral load for a panel of latent viruses might be useful as indicators of the state of host immunity.

Supporting Information

Figure S1 Effect of viral load on prevalence of other viruses. This Figure corresponds to Figure 2 displaying results for plasma as opposed to blood. Populations were established based upon viral DNA loads; each of these populations was examined for presence or absence of other viruses. Groups are defined as Negative = no detectable virus; Low = less than the median DNA load; High = greater than or equal to median DNA load. Negative, low, and high values for CMV (median = 3,243, n = 115, 16, 17 respectively) and HSV (median = 10,640, n = 193, 21, 21 respectively). For EBV and HHV-6, Negative = no detectable virus (n = 146 and n = 205 respectively), Positive = detectable virus (n = 72 and n = 30 respectively). For TTV, Negative = no detectable virus (n = 52), Q1 = first quartile (<5,881 copies/mL, n = 45), Q2 = second quartile (between 5,881 and 33,504 copies/mL, n = 45), Q3 = third quartile (between 33,717 and 299,609 copies/mL, n = 45), and Q4 = fourth quartile (>299,609 copies/mL, n = 44). Although the correlation is not as striking as in blood the same day. The plot starts at day 3 because of skewing of the day that the patient fulfilled sepsis criteria. (TIF)

Figure S2 Peak detection rate and time course of detection for BK and JC. The percentage of patients who tested positive in urine JC or BK virus during the course of sepsis (limited to 30 days) is displayed in two formats. Day 0 represents the day that the patient fulfilled sepsis criteria. Figure S2A represents all septic patients positive for viral reactivation divided by the total number of septic patients who were tested on or before the same day. The plot starts at day 3 because of skewing of display by small patient numbers. Figure S2B represents only those septic patients who were negative for the particular viruses and who ultimately became positive during their septic course. The percentage of patients who tested positive in urine JC or BK virus during the course of sepsis (limited to 30 days) is displayed in two formats. Day 0 represents the day that the patient fulfilled sepsis criteria. Figure S2A represents all septic patients positive for viral reactivation divided by the total number of septic patients who were tested on or before the same day. The plot starts at day 3 because of skewing of display by small patient numbers. Figure S2B represents only those septic patients who were negative for the particular viruses and who ultimately became positive during their septic course. The percentage of patients who tested positive in urine JC or BK virus during the course of sepsis (limited to 30 days) is displayed in two formats. Day 0 represents the day that the patient fulfilled sepsis criteria. Figure S2A represents all septic patients positive for viral reactivation divided by the total number of septic patients who were tested on or before the same day. The plot starts at day 3 because of skewing of display by small patient numbers. Figure S2B represents only those septic patients who were negative for the particular viruses and who ultimately became positive during their septic course. The percentage of patients who tested positive in urine JC or BK virus during the course of sepsis (limited to 30 days) is displayed in two formats. Day 0 represents the day that the patient fulfilled sepsis criteria. Figure S2A represents all septic patients positive for viral reactivation divided by the total number of septic patients who were tested on or before the same day. The plot starts at day 3 because of skewing of display by small patient numbers. Figure S2B represents only those septic patients who were negative for the particular viruses and who ultimately became positive during their septic course. (TIF)

Methods S1 Supporting materials and methods. Expands upon inclusion/exclusion criteria, virus qPCR assays and analysis criteria. (DOCX)

Acknowledgments

We gratefully acknowledge the lab of Randall T Hayden (Dept of Pathology, St Jude Children's Research Hospital) for development of the HHV-6 assay.

Author Contributions

Conceived and designed the experiments: AHW JTM JSB BHB AP WDS JMG GAS RSH. Performed the experiments: AHW JTM DR BS. Analyzed the data: AHW JTM DR BS TLB ED WDS. Contributed to the writing of the manuscript: AHW BS JMG GAS RSH.

References

1. Vincent JL, Opal SM, Marshall JC, Tracey KJ (2013) Sepsis definitions: time for change. Lancet 381: 774–775.
2. Angus DC, van der Poll T (2013) Severe sepsis and septic shock. N Engl J Med 369: 848–856.
3. Munford RS, Pugin J (2001) Normal responses to injury prevent systemic inflammation and can be immunosuppressive. Am J Respir Crit Care Med 163: 316–321.
4. Hotchkiss RS, Karl IE. (2003) The pathophysiology and treatment of sepsis. N Engl J Med 348: 139–150.
5. Cohen J, Opal S, Calandra T (2012) Sepsis studies need new direction. Lancet Infect Dis 12: 503–505.
6. Xiao W, Mindrinos MN, Seok J, Caschieri J, Cuenca AG, et al. (2011) A genomic storm in critically injured humans. J Exp Med 208: 2581–2590.
7. Hotchkiss RS, Monneret G, Payen D (2013) Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis 13: 269–268.
8. Angus DC (2011) The search for effective therapy for sepsis: back to the drawing board? JAMA 306: 2614–2615.
9. Dolgin E (2012) Trial failure prompts soul-searching for critical-care specialists. Nature 498: 214–215.
10. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, et al. (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 101: 1644–1655.
11. Meisel C, Schefold JC, Pachowski R, Baumann T, Hetzger K, et al. (2009) Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression: a double-blind, randomized, placebo-controlled multicenter trial. Am J Respir Crit Care Med 180: 640–648.
12. Hall MW, Knatz NL, Verterler G, Tomaszello S, Wewers MD, et al. (2011) Immunoparalysis and nosocomial infection in children with multiple organ dysfunction syndrome. Intensive Care Med 37: 525–532.
13. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, et al. (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 110: 3507–3512.
14. Venet F, Lakaszewicz AC, Payen D, Hotchkiss R, Monneret G (2013) Monitoring the immune response in sepsis: a rational approach to administration of immunosuppressive therapies. Curr Opin Immunol 25: 60–67.
15. Cook CH, Martin LC, Yvon J, Lalum MC, McGuinness B, et al. (2003) Occult herpes family viral infections are endemic in critically ill surgical patients. Crit Care Med 31: 1923–1929.
16. Dockrell DH (2003) Human herpesvirus 6: molecular biology and clinical features. J Med Virol 70: 5–18.
17. Chen Y, Bord E, Tompkins T, Miller J, Tan CS, et al. (2009) Asymptomatic reactivation of JC virus in patients treated with natalizumab. N Engl J Med 361: 1067–1074.
18. Chiche L, Forel JM, Papazian L (2011) The role of viruses in nosocomial pneumonia. Curr Opin Infect Dis 24: 152–156.
19. Boothpur R, Brennan DC (2010) Human polyoma viruses and disease with emphasis on clinical BK and JC. J Clin Virol 47: 306–312.
20. Bruynseels P, Jorens PG, Demey HE, Goossens H, Pattyn SR, et al. (2003) Herpes simplex virus in the respiratory tract of critical care patients: a prospective study. Lancet 362: 1536–1541.
21. Hotchkiss RS, Swanson PE, Freeman BD, Timley KW, Cobb JP, et al. (1999) Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J Immunol 166: 6952–6963.
23. Roumier JS, To K, Chang KC, Takasu O, Osborne DF, et al. (2011) Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA 306: 2594–2605.

24. Limaye AP, Kirby KA, Rubenfeld GD, Leisenring WM, Bolger EM, et al. (2008) Cytomegalovirus reactivation in critically ill immunocompetent patients. JAMA 300: 413–422.

25. Kalil AC, Floresco DF (2009) Prevalence and mortality associated with cytomegalovirus infection in nonimmunosuppressed patients in the intensive care unit. Crit Care Med 37: 2350–2358.

26. Heininger A, Jahn G, Engel C, Notheisen T, Unerl K, et al. (2001) Human cytomegalovirus infections in nonimmunosuppressed critically ill patients. Crit Care Med 29: 541–547.

27. Linssen CF, Jacobs JA, Selma FF, van Mook WN, Terpooten P, et al. (2008) Herpes simplex virus load in bronchoalveolar lavage fluid is related to poor outcome in critically ill patients. Intensive Care Med 34: 2202–2209.

28. Loyt CE, Combes A, Deback C, Aubriot-Lorton MH, Nazikowski A, et al. (2007) Herpes simplex virus lung infection in patients undergoing prolonged mechanical ventilation. Am J Respir Crit Care Med 175: 935–942.

29. Touissi M, Gallian P, Bagini P, Atouzi H, Valetter B, et al. (2001) TT virus infection: prevalence of elevated viremia and arguments for the immune control of viral load. J Clin Virol 21: 135–141.

30. Shibayama T, Masuda G, Ajiake A, Takahashi M, Nishizawa T, et al. (2001) Inverse relationship between the titre of TT virus DNA and the CD4 cell count in patients infected with HIV. AIDS 15: 563–570.

31. Focosi D, Maggi F, Albani M, Macera L, Ricci V, et al. (2010) Torquevirusemia viremia kinetics after autologous stem cell transplantation are predictable and may serve as a surrogate marker of functional immune reconstitution. J Clin Virol 47: 189–192.

32. Beland K, Doore-Nguyen M, Gagne MJ, Patey N, Brassard J, et al. (2014) Torque teno virus in children who underwent orthotopic liver transplantation: new insights about a common pathogen. J Infect Dis 209: 247–254.

33. De Vlaminck I, Kushi KK, Sterdel C, Kohli B, Luikart H, et al. (2013) Temporal response of the human virome to immunosuppression and antiviral therapy. Cell 155: 1178–1187.

34. Sanchez JL, Storch GA (2002) Multiplex, quantitative, real-time PCR assay for cytomegalovirus and human DNA. Journal of Clinical Microbiology 40: 2301–2306.

35. Wandering K, Jabs W, Siekhaus A, Buhle S, Trullenberg P, et al. (2000) Association between clinical disease activity and Epstein-Barr virus reactivation in MS. Neurology 55: 178–184.

36. Espy MJ, Ulh JR, Mitchell PS, Thorvalson JN, Scvin KA, et al. (2000) Diagnosis of herpes simplex virus infections in the clinical laboratory by LightCycler PCR. Journal of Clinical Microbiology 38: 795–799.

37. Maggi F, Pifferi M, Fornai C, Andreoli E, Tempestini E, et al. (2003) TT virus in patients with chronic liver disease: an observational study. J Clin Virol 27: 129–141.

38. Cheng XS, Bohl DL, Storch GA, Ryschkewitsch C, Gaudreault-Keener M, et al. (2002) Sequential reactivation of human herpesvirus 6 variant a occurs in critically ill immunocompetent hosts. J Infect Dis 185: 110–113.

39. Xu F, Sternberg MR, Kotirii BJ, McQuillan GM, Lee FK, et al. (2006) Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States. Am J Epidemiol 296: 964–973.

40. Babel N, Volk HD, Reinke P (2011) BK polyomavirus infection and nephropathy: the virus-immune system interplay. Nat Rev Nephrol 7: 399–406.

41. Pollock JL, Presti RM, Pardoil S, Virgin HW (1997) Latent murine cytomegalovirus in macrophages. Virology 227: 168–179.

42. Prosh S, Wenhe CF, Reinke P, Priemer C, Oppert M, et al. (2000) A novel link between stress and human cytomegalovirus (HCMV) infection: sympathetic hyperactivity stimulates HCMV activation. Virology 272: 357–363.

43. Razonable RR, Fanning C, Brown RA, Espy MJ, Riviero A, et al. (2002) Selective reactivation of human herpesvirus 6 variant a in patients critically ill, no evidence for critical illness. J Clin Virol 22: 155: 1178–1187.

44. Razonable RR, Fanning C, Brown RA, Espy MJ, Riviero A, et al. (2002) Selective reactivation of human herpesvirus 6 variant a in patients critically ill, no evidence for critical illness. J Clin Virol 22: 155: 1178–1187.

45. Vanet F, Chung CS, Kherouf H, Geeraert A, Malcus C, et al. (2009) Circulating regulatory T cells (CD4+/CD25+CD127−) contribute to lymphocyte anergy in septic shock patients. Intensive Care Med 35: 678–686.

46. Delano MJ, Scumpia PO, Weinstein JS, Cogo D, Nagaraj S, et al. (2007) MyD88-dependent expansion of an immature GR-1(+)/CD11b+ population induces T cell suppression and Th2 polarization in sepsis. J Exp Med 204: 1463–1474.

47. Humar A (2006) Reactivation of viruses in solid organ transplant patients. Cytomegalovirus and Epstein-Barr Virus in Transplantation: New and Updated Recommendations for Screening, Monitoring and Reporting of Viral Reactivation in Sepsis.

48. Razonable RR (2013) Human herpesviruses 6, 7 and 8 in solid organ transplant recipients. Am J Transplant 13 Suppl 3: 67–77.

49. Lee YJ, Chung D, Xiao K, Papadopoulos EB, Barker JN, et al. (2013) Adrenovirus viremia and disease: comparison of T cell-depleted and conventional hematopoietic stem cell transplantation recipients from a single institution. Biol Blood Marrow Transplant 19: 387–392.

50. Vanet F, Chung CS, Kherouf H, Geeraert A, Malcus C, et al. (2009) Circulating regulatory T cells (CD4+/CD25+CD127−) contribute to lymphocyte anergy in septic shock patients. Intensive Care Med 35: 678–686.

51. Delano MJ, Scumpia PO, Weinstein JS, Cogo D, Nagaraj S, et al. (2007) MyD88-dependent expansion of an immature GR-1(+)/CD11b+ population induces T cell suppression and Th2 polarization in sepsis. J Exp Med 204: 1463–1474.

52. Humar A (2006) Reactivation of viruses in solid organ transplant patients. Cytomegalovirus and Epstein-Barr Virus in Transplantation: New and Updated Recommendations for Screening, Monitoring and Reporting of Viral Reactivation in Sepsis.

53. Razonable RR (2013) Human herpesviruses 6, 7 and 8 in solid organ transplant recipients. Am J Transplant 13 Suppl 3: 67–77.

54. Lee YJ, Chung D, Xiao K, Papadopoulos EB, Barker JN, et al. (2013) Adrenovirus viremia and disease: comparison of T cell-depleted and conventional hematopoietic stem cell transplantation recipients from a single institution. Biol Blood Marrow Transplant 19: 387–392.