On the Dependency Heaviness of CRAN/Bioconductor Ecosystem

Zuguang Gu

*National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg, 69120, Germany

Abstract

The R package ecosystem is expanding fast and dependencies among packages are becoming more complex in the ecosystem. In this study, we explored the package dependencies from a new aspect. We applied a new metric named “dependency heaviness” which measures the number of additional strong dependencies that a package uniquely contributes to its child or downstream packages. We systematically studied how the dependency heaviness spreads from parent to child packages, and how it further spreads to remote downstream packages in the CRAN/Bioconductor ecosystem.

We extracted top packages and key paths that majorly transmit heavy dependencies in the ecosystem. Additionally, the dependency heaviness analysis on the ecosystem has been implemented as a web-based database that provides comprehensive tools for querying dependencies of individual R packages.

Keywords: CRAN, Bioconductor, Dependency graph, Dependency heaviness, Software ecosystem, Software engineering

1. Introduction

R has become a major programming language applied in many fields, including statistics, bioinformatics, geoinformatics, economics and general data science. It is widely used for a variety of tasks such as data processing (Grolemund and Wickham, 2016), visualization (Wilke, 2019), statistical modeling (Venables and Ripley, 2002), interactive web application development (Chang et al., 2022) and reproducible reporting (Xie, 2015). The reusable and extensible code implemented by developers are formatted as R packages and distributed on public repositories such as the Comprehensive R Archive Network (CRAN) and Bioconductor (Huber et al., 2015). CRAN is the major repository for R packages and Bioconductor specifically focuses on biology data analysis, especially on high-throughput omics data. Both repositories perform manual validations on new packages and apply regular checks on packages to ensure their quality and usability. The number of packages in the two repositories increases almost exponentially by year (Hornik et al., 2021). Besides these two “standard repositories”, there are also a huge number of R packages distributed on GitHub, which are self-maintained and mainly for experimental purposes.

Code reuse is an essential part of a programming language (Haefliger et al., 2008). An R package may inherit functionalities from other packages, which forms the dependency relations between packages. In other words, a package depends on the availability of other packages to work. R packages as well as their complex dependency relations construct the ecosystem. The continuously increasing number of R packages makes the dependency relations among packages even more complex (Mora-Cantallops et al., 2020a). By 2022-06-08, there are in total 22,076 CRAN and Bioconductor packages, including 194,351 direct dependency relations. With such complex dependency relations, the ecosystem might be vulnerable to failures of only a small number of packages. For example, recently a compiling failure of the isoband package caused additional failures of 4,747 (almost 25%) of all packages on CRAN.

isoband is a dependency of the hub package ggplot2 and it results in the failure being transmitted continuously to a huge number of downstream packages via ggplot2. Thus, it is important to explore the dependency structure in the R package ecosystem from the aspect of software engineering, which helps to understand the structure of the ecosystem, to reveal top packages having major impacts and to study the vulnerability of the ecosystem.

The ecosystem contains complex dependency relations between packages, which can be naturally modeled as a graph (Fortuna et al., 2011). There are mainly two types of studies on the dependency graph. In the first category, researchers applied complex network analysis (CNA) approaches on the dependency graph, such as calculating various centrality metrics to explore the impacts of

The statistics were obtained with the R function available.packages().

See a bug report on https://twitter.com/cjvanlissa/status/1577552826566117457. The failure was fixed very quickly within a week, https://github.com/wilkelab/isoband/issues/33.
top packages, or applying network community methods to partition packages into densely connected subgraphs to further analyze their specific attributes (Mora-Cantallops et al., 2020b). In the second category, researchers developed tools for visualizing the complex dependency relations. These tools are mainly implemented as R packages, such as `deepdep` (Rafacz et al., 2021), `pkgnet` (Burns et al., 2021), `pkggraph` (Srikanth and Nikhil, 2018) and `miniCRAN` (de Vries, 2022). They give intuitive views of how dependencies are transmitted within packages. Nevertheless, they only work well on subgraphs showing local relations with small sizes, e.g., dependencies from a small number of R packages, while it becomes difficult to generate and to read when the size of the graph increases.

Network analysis on the dependency graph helps to understand the R ecosystem from the system's level. The degree centrality is a widely-studied metric which measures the number of dependency packages or the number of child packages that depend on a package (i.e., the dependents) (Korkmaz et al., 2019; Mora-Cantallops et al., 2020b). Indeed, degree is an important metric for revealing top packages that have significant impacts on the ecosystem. However, it is a local metric and we can still look at the system from new aspects. In practice, when a user installs a new package P, additional packages to be installed that he would notice are actually the total dependency packages upstream of P, while which packages are P's direct dependencies are unobservable to the user. From a developer's perspective, the direct dependencies of his package provide no information of which parent brings more dependencies to it, while he needs to inspect the complete upstream of the dependency chain to find out parent packages contributing heavy dependencies. All these imply, the number of “total dependencies” instead of “direct dependencies” is a more practical metric. In fact, the number of total dependencies begins to be paid more attention in software with several use cases. In this study, we extended the definition of dependency heaviness to a broader range. Besides the dependency heaviness from a single parent to a single child package, we also studied how it is transmitted remotely from upstream to downstream packages. We performed a systematic empirical study on the dependency transmission in the R package ecosystem. The contributions of this study are briefly listed as follows:

1. We studied how dependency heaviness spreads locally from parent to child packages, and we studied how dependency heaviness is simultaneously contributed by two parent packages.
2. We studied how dependency heaviness is transmitted remotely from upstream to downstream packages.
3. We applied CNA approaches and we extracted top packages and key paths that majorly transmit heavy dependencies in the ecosystem.
4. The dependency heaviness analysis on the ecosystem has been implemented as a web-based database which provides comprehensive tools for analyzing dependencies of individual R packages.

https://r-universe.dev/
The remainder of this paper is organized as follows. Section 2 briefly summarizes current studies on the ecosystem of R as well as other programming languages. Section 3 provides technical background for understanding dependency relations in R. Section 4 introduces definitions of various heaviness metrics. Section 5 describes the new functionalities of the pkgdep package for this study as well as data processing. Section 6 raises various research questions. Section 7 describes the results of the analysis and answers the research questions. Section 8 describes the web-based database for the dependency heaviness analysis. Section 9 discusses how dependency heaviness analysis benefits developers. Section 10 summarizes the study. Section 11 discusses limitations of the analysis and proposes future plans. Section 12 encloses the paper with conclusions.

2. Current studies

2.1. Current studies on the R package ecosystem

There are a few studies applied on the R ecosystem where researchers analyzed the dependency relations as well as from other aspects. In this section, we briefly described their analyses and findings.

R package dependencies can be modeled as a network with a complex structure. Mora-Cantallops et al. (2020a) performed complex network analysis on the CRAN ecosystem. Similar to social networks, they found the dependency network of CRAN also has the scale-free property. In a scale-free network, node degree follows a power-law distribution and the proportion of degrees of hub nodes is stable as the network size increases (Wang and Chen 2003). This implies, in the R ecosystem, there are only a small number of hub packages that contribute huge amounts of dependencies to other packages. They also partitioned the global dependency network into modules and they found CRAN is modular where each module mainly corresponds to a specific analysis task.

Bommarito and Bommarito (2021) studied how packages contribute dependencies to their dependents, but aggregated by developers. Very interestingly, many of the most depended-on packages are maintained by the same developers. They found the top 10 developers are responsible for more than 50% of all packages in the ecosystem, and the percent would become higher if transitive dependency relations are also considered. This suggests that the R ecosystem is more vulnerable on the developer’s level.

German et al. (2013) separated R packages into base packages, recommended packages, popular packages and contributed packages where the order of the four groups reflects the priority to be core packages in the ecosystem. They found that the more core a package is, the more dependents it has. Additionally, they explored other aspects such as code size, documentation, and community interest. One interesting finding was code size for base packages keeps increasing over years while in other categories code size is almost stably unchanged.

As there are also a huge amount of R packages hosted on GitHub, Decan et al. (2016b) studied the inter-repository package dependencies between CRAN and GitHub. They performed survival analysis and found that packages on GitHub are easier to break due to updates of their dependencies from CRAN. This may imply R packages on GitHub are less maintained and tested.

Mora-Cantallops et al. (2020a) studied the evolution of the R ecosystem. They revealed that in general packages are stably updated over the years, but the number of packages as well as the complexity of dependency relations are increasing. The increasing complexity is expected as a result of the scale-free property of the dependency graph where hub packages will preferably be linked to more new packages when the ecosystem evolves.

There are also studies focusing on other aspects of the R ecosystem. Claes et al. (2014) analyzed package errors on CRAN. They found Solaris and MacOS have more errors mainly because they are less used in development and packages are less tested on the two platforms. They also found the majority of the errors on CRAN are from external factors thus irrelevant to developers.

Korkmaz et al. (2019) measured the impacts of packages by the numbers of downloads, and they studied how various factors can predict package impacts by utilizing a generalized linear regression model. They used three groups of predictor variables: 1. package features such as number of commits and GitHub stars, 2. dependency networks centrality such as degree and closeness, 3. metrics from the co-developer network. They found the number of dependents is a major factor that well correlates to package impacts. Another interesting finding in this study was if an author contributes to more packages, i.e., if an author is more active, his packages tend to have higher impacts.

In a very recent paper (Vidoni 2021), the author called for more software engineering studies on R programming language. She proposed various future directions for both software engineers and R developers for better understanding the R ecosystem from the system’s level.

2.2. Current studies on other ecosystems

Given parent-child dependency relations of packages, the construction of dependency graphs is similar for other programming languages. Methods applied in one ecosystem can almost be seamlessly applied to other ecosystems. We briefly described some of the current analyses and findings as follows.

Decan et al. (2016a) compared topology of dependency graphs in CRAN, npm (package repository of JavaScript) and PyPI (package repository of Python) and they found various network metrics are statistically different between ecosystems. This may reflect specific patterns of how packages are implemented in different programming languages.

8In a co-developer network, developers are nodes and two developers are connected if they contribute to the same package.
In particular, they found Python packages are more isolated where a large number of them only depend on the standard core packages.

Abate et al. (2009) studied the transitive dependency in the ecosystem. They proposed a metric “sensitivity” which measures the total number of downstream packages. They applied it to the Debian ecosystem and they revealed packages with small amounts of direct dependents but affecting majority of other packages in the ecosystem in an indirect manner. They claimed sensitivity is a more meaningful metric for measuring risks in the ecosystem.

Evolution of a package involves bug fixing, adding new features and changing interfaces, thus it may cause code breaks to downstream packages. Bogart et al. (2016) studied different responses to break changes, i.e., package updates that are not compatible with its dependencies packages, in the Eclipse, npm and CRAN ecosystems. They found that different responses reflect the difference on policies and values of the repositories, such that Eclipse requires backward compatibility, npm allows break changes via parallel versioning of the same package, and CRAN requires compatibility always for the newest versions.

Jafari et al. (2021) discussed strategies applied in dependent packages for getting rid of break changes from upstream. By analyzing the JavaScript ecosystem, they discovered seven bad habits for handling dependencies, which they named as “dependency smells”, for example, depending on a fixed version, or depending directly on a remote repository with a URL. They argued these smells will produce potential risks to the ecosystem in the future. As a note, the dependency smell they categorized can mostly be applied to other ecosystems.

For a package P, Abate et al. (2009) proposed a metric “strong dominance” which measures the proportion of P’s dependencies that are from an upstream package Q. The metric helps to identify a package that dominantly contributes dependencies to its downstream package P. It is similar to the dependency heaviness metric we applied in this paper, but the dependency heaviness metric is more focused on the unique dependencies that Q contributes to P in the ecosystem.

3. Background concepts

Reusable code in R is formatted as packages. R provides a flexible way for handling dependencies. In this section, we first introduce the definitions of various dependency relations. Next we categorize packages according to their relations in the dependency graph, and specific heaviness metrics will be defined for them later in Section 4.1.

3.1. Dependency relations

Dependency relations are declared in the fields of “Depends”, “Imports”, “LinkingTo”, “Suggests” and “Enhances” in an R package’s DESCRIPTION file, which locates under the root directory of a package (Figure 1). Denote a package as P, dependency packages in its “Depends” are expected to be directly used by users if P is to be used, and they provide base functionalities for P. For example, it might be a good idea to set the package ggplot2 as a “Depends” package for its extension packages. Dependency packages in “Depends” are attached to the search path in the R session ahead of P when executing the command library(P). All their public functions are visible to users. Dependency packages listed in “Imports” are internally used by P where specific functions, methods or classes from there are imported into P’s namespace based on the rules defined in P’s NAMESPACE file. The “Imports” packages are also loaded in the R session, but they are not attached to the search path, thus not visible to users. Dependency packages listed in “LinkingTo” contain header files to compile P’s C/C++ code. Packages listed in “Depends”, “Imports” and “LinkingTo” are necessary for using P and they must be installed before installing P.

Fields “Suggests” and “Enhances” are similar. They contain dependency packages that are not necessary for using P, e.g., only used in examples or vignettes, or in the code that provides optional functionalities of P. Thus, these two types of dependencies are not mandatory to be installed when installing P. However, dependencies in “Suggests” are by default required for a complete R CMD check: “Enhances” field is more flexible and packages listed are never checked.

In the CRAN/Bioconductor ecosystem, the proportions of the five types of dependency relations are 8.8% for “Depends”, 10.7% for “Imports”, 22.4% for “LinkingTo”, 8.2% for “Suggests” and 8.8% for “Enhances”. Only a fragment of the file is demonstrated. This is an example where all five dependency fields are specified. For most of the packages in CRAN/Bioconductor, only a subset of them is specified. Version requirements can also be specified for dependency packages.

Figure 1: The DESCRIPTION file of the package lubridate. Only a fragment of the file is demonstrated. This is an example where all five dependency fields are specified. For most of the packages in CRAN/Bioconductor, only a subset of them is specified. Version requirements can also be specified for dependency packages.

4. Reusable code in R
3.2. Flexible control of dependencies

Being different from other programming languages, R provides a flexible control of dependencies. For example, in JavaScript, all dependencies should be available in advance of using a library, even if the functionality of a dependency is only rarely used by users. As a comparison, R allows specifying a set of core dependencies as well as a set of weak dependencies. Dependencies used in P’s source code can be explicitly specified in a form of pkg::function(...) where pkg is a parent of P. In this way, function() is not directly imported from pkg, thus availability of pkg is not mandatory for R CMD check while it is only checked when pkg::function(...) is executed in P. Although pkg contributes to P’s source code, it is used optionally. Thus it can be declared as a weak dependency and put in P’s “Suggests” field. This actually provides the possibility to optimize P’s dependencies. When a parent of P brings a large number of extra dependencies but it only provides limited functionalities which are rarely used by users, it is reasonable to specify it as a weak dependency in “Suggests”.

3.3. Dependency categories

Depending on different dependency relations, the following dependency categories for package P are defined as follows.

Strong parent packages: Dependency packages listed in the “Depends”, “Imports”, and “LinkingTo” fields of P (red box in Figure 2). They are also called strong direct dependency packages of P. Strong parent packages are mandatory to be installed when installing P. To make it easy to discuss, we always referred to them as parent packages in the paper.

Weak parent packages: Dependency packages listed in the “Suggests” and “Enhances” fields of P (green box in Figure 2). They are optionally required when installing P.

Strong dependency packages: Total dependency packages by recursively looking for parent packages (category A, B, as well as packages in red box in Figure 2). They are also called upstream packages. Note strong dependency packages include parent packages. Strong dependency packages are mandatory to be installed when installing P and failure of any strong dependency package will prevent installation of P. In some other studies, they are also called transitive dependency packages (Decan et al., 2019; Mora-Cantallops et al., 2020b; Kikas et al., 2017).

All dependency packages: Total dependencies by recursively looking for parent packages, but on the level of P, its weak parents are also included (package category A, B, C and D, plus all packages listed in the red and green boxes in Figure 2). It simulates when the full functionality of P is required, or when all weak parents become strong parents, the total number of strong dependency packages that P requires. In this paper, we did not discuss packages in this category, but for completeness, its definition is still given here.

11The dependency relations of all CRAN/Bioconductor packages were obtained with the R function available.packages(). Data was collected on 2022-06-08.

12Developer can write helper code to check whether weak parent is already installed. If not, a friendly message can be printed to inform users to install it.
Figure 3: Demonstration of the heaviness definition. A) Fragment of the DESCRIPTION file of package P where package A is a strong parent. B) Change A to a weak parent of P, i.e., by moving A to P’s “Suggests”. C) The dependency graph of all upstream packages of P. Note the graph only contains strong dependency relations. D) Remove the relation between A and P from the dependency graph to simulate A has become a weak parent of P. E) Fragment of the DESCRIPTION file of package P where package B is a weak parent. F) Change B to a strong parent of P, i.e., by moving B to P’s “Imports”. G) The dependency graph of all upstream packages of P. Note since B is a weak parent of P, there is no connection between B and P. H) Add a new connection between B and P to simulate B has become a strong parent of P.

Child packages: Packages whose parents include P (category E in Figure 2). They are the packages on which P has a direct impact of dependencies. In some studies and package repositories, they are also called direct dependents ([German et al., 2013](#)).

Downstream packages: Total packages by recursively looking for child packages (category E and F in Figure 2). P is required for the installation of any of its downstream packages. Note downstream packages include child packages.

Indirect downstream packages: Downstream packages excluding child packages (category F in Figure 2), i.e., these with distance to P of at least 2 in the global dependency graph. These are the packages on which P has an indirect influence of dependencies.

Except explicitly clarifying, the term “dependency” always refers to “strong dependency” in the paper.

4. Methods

4.1. Definitions of dependency heaviness

The dependency heaviness in general measures the number of additional dependencies that a parent uniquely brings to its child packages or downstream packages in the ecosystem. Depending on different dependency categories defined in Section 3.3 there are various heaviness metrics listed in the following subsections.

Heaviness from a parent. If package A is a strong parent of P, the heaviness of A on P denoted as h is calculated as

$$ h = n_1 - n_2 $$

where n_1 is the number of strong dependencies of P (Figure 3A), and n_2 is the number of strong dependencies of P after changing A from a strong parent to a weak parent, i.e., by moving A to P’s “Suggests” (Figure 3B). Thus, the heaviness measures the number of additionally required strong dependencies that A brings to P and are not brought by any other parent. In some discussions in the paper, we explicitly denoted it as $h^{A\rightarrow P}$ to indicate the parent-child relation, or h^A if only the parent is of interest.

If package B is a weak parent of P, n_2 is defined as the number of strong dependencies of P after changing B to a strong parent of P, i.e., by moving B to P’s “Imports” (Figure 3E-F). In this scenario, the heaviness of the weak parent is calculated as $n_2 - n_1$.

From the aspect of dependency graph denoted as a directed graph $G = (V, E)$ where V is the set of all packages and E is the set of all strong parent-child dependency relations in the ecosystem, the heaviness of A on P is a score associated with an edge $e^{A\rightarrow P} \in E$. Now n_1 is the number of upstream packages of P ($n_1 = 9$ in Figure 3C) and n_2 is the number of upstream packages of P after removing the
connection of \(A \rightarrow P \) from \(G \) (\(n_2 = 6 \) in Figure 3D), thus the heaviness of \(A \) on \(P \) is \(n_1 - n_2 = 3 \). When \(B \) is a weak parent of \(P \), \(n_2 \) is calculated as the number of upstream packages after adding a new connection of \(B \rightarrow P \) to \(G \) (Figure 3G-H).

Since weak parents are not necessarily required for \(P \), in this paper, we only discussed the heaviness from strong parents.

Max heaviness from parents. Normally, a package has multiple parents. Max heaviness from parents helps to reveal the parent that dominantly brings extra dependencies to package \(P \). Assume \(P \) has \(K_p \) parents, the heaviness denoted as \(h_{\text{max}} \) is defined as

\[
h_{\text{max}} = \max_{k \in \{1, K_p\}} h_k
\]

where \(h_k \) is the heaviness of the \(k^{\text{th}} \) parent on \(P \).

Heaviness from an upstream package. If package \(C \) is an upstream package of \(P \) in the global dependency graph, let \(n_1 \) be the number of strong dependencies of \(P \), and let \(n_2 \) be the number of strong dependencies of \(P \) after changing \(C \) to a weak parent of all \(C \)'s child packages, then the heaviness of \(C \) on \(P \) denoted as \(h_u \) is calculated as

\[
h_u = n_1 - n_2.
\]

From the aspect of the dependency graph, \(n_2 \) is the number of upstream packages of \(P \) after removing all edges which start from \(C \). When \(C \) is only a parent of \(P \) (i.e., distance from \(C \) to \(P \) is one), \(h_u \) is not always identical to \(h \). Assume \(C \) is a parent of \(P \) and \(P \) has another parent \(A \) where \(C \) is also a parent of \(A \), i.e., with the relations of \(C \rightarrow P \) and \(C \rightarrow A \rightarrow P \). \(h \) just measures the local dependency effect which only removes \(C \rightarrow P \), while \(h_u \) is a global dependency effect which removes all links from \(C \), i.e., both \(C \rightarrow P \) and \(C \rightarrow A \), which results in general \(h_u \geq h \). In some discussions in the paper, we denoted it explicitly as \(h_u^{C \rightarrow P} \) to indicate the upstream-downstream relation.

Heaviness on child packages. Assume \(P \) has \(K_c \) child packages and the \(k^{\text{th}} \) child is denoted as \(A_k \). Denote the number of strong dependencies of \(A_k \) as \(n_{1k} \), and denote the number of strong dependencies of \(A_k \) after changing \(P \) to a weak parent of \(A_k \) as \(n_{2k} \), the heaviness of \(P \) on its child packages denoted as \(h_c \) is calculated as

\[
h_c = \frac{1}{K_c} \sum_{k=1}^{K_c} (n_{1k} - n_{2k}).
\]

\(n_{1k} - n_{2k} \) is actually the heaviness of \(P \) on \(A_k \). Equation 4 can be rewritten as

\[
h_c = \frac{1}{K_c} \sum_{k=1}^{K_c} h_{p \rightarrow A_k}.
\]

The heaviness measures the average number of additional dependencies that \(P \) brings to its child packages.

Heaviness on downstream packages. The definition is similar to the heaviness on child packages. Assume \(P \) has \(K_d \) downstream packages and the \(k^{\text{th}} \) downstream package is denoted as \(B_k \). Denote the number of strong dependencies of \(B_k \) as \(n_{2k} \), and denote the number of strong dependencies of \(B_k \) after changing \(P \) to a weak parent of all \(P \)'s child packages as \(n_{2k} \). The heaviness of \(P \) on its downstream packages denoted as \(h_d \) is calculated as

\[
h_d = \frac{1}{K_d} \sum_{k=1}^{K_d} (n_{1k} - n_{2k}).
\]

From the aspect of the dependency graph, \(n_{2k} \) is the number of upstream packages of \(B_k \) in a reduced graph where \(P \) is removed. Equation 6 can be rewritten as

\[
h_d = \frac{1}{K_d} \sum_{k=1}^{K_d} h_{u \rightarrow B_k}
\]

where \(h_{u \rightarrow B_k} \) is the heaviness of \(P \) as an upstream package on \(B_k \). In this way, \(h_c \) and \(h_d \) are not always identical if \(P \) only has child packages. \(h_d \) is a local measure while \(h_d \) is a global measure. They have the relation of \(h_d \geq h_c \).

Heaviness on indirect downstream packages. The calculation is the same as \(h_d \) except here child packages are excluded from downstream packages. Denote the heaviness as \(h_{id} \) and denote the set of \(P \)'s child packages as \(S_c \), \(h_{id} \) is defined as

\[
h_{id} = \frac{1}{K_d - K_c} \sum_{k=1}^{K_d} (n_{1k} - n_{2k}) \cdot I(B_k \notin S_c)
\]

where \(K_c \) and \(K_d \) are the numbers of child and downstream packages respectively, and \(I() \) is an indicator function. \(h_{id} \) is set to 0 if \(K_c = K_d \), i.e., \(P \) has no indirect downstream packages. \(h_{id} \) measures the contribution of dependencies of \(P \) to the ecosystem in an indirect way.

4.2. Adjusted heaviness

In the Results section (Section 7), we performed dependency heaviness analysis on the CRAN/Bioconductor ecosystem. One of the aims is to prioritize packages which are significantly affected by upstream packages or affect their downstream packages in the ecosystem. If grouping packages by \(K \) which can be the number of parent, child or downstream packages depending on different types of heaviness metrics, distributions of heaviness values always have long tails, and tails are especially longer for smaller \(K \) (Figure 6 and 9). Thus, if simply ranking packages based on the original heaviness values, top packages are preferably associated with small \(K \). In general, packages with small \(K \) are of less interest because they only have very small impacts on the ecosystem. To prioritize packages with broader impacts on the ecosystem, the original definitions of various heaviness metrics are adjusted to decrease the weights of packages with smaller \(K \). Please note, the
designs of the adjusted heaviness metrics are empirical and the absolute values of adjusted heaviness are meaningless, which are only used for ranking packages.

Adjusted max heaviness from parents. When a package has more parents, dependencies from individual parents would have more overlap (i.e., dependencies from parent A overlap to dependencies from parent B). Since heaviness only measures the number of unique dependencies that a single parent brings in, or in other words, the number of dependencies that are mutually exclusive to those brought by all other parents, with more parents, the max heaviness from parents would decrease. For a package indexed as k in the ecosystem, the original max heaviness from parent denoted as $h_{\text{max},k}$ is adjusted to $h_{\text{max},k}^{\text{adj}}$ by multiplying a zooming factor denoted as a_k:

$$h_{\text{max},k}^{\text{adj}} = a_k \cdot h_{\text{max},k}. \quad (9)$$

a_k is defined as

$$a_k = \frac{n_k + 30}{n_{\text{max}}} \quad (10)$$

where n_k is the number of parents of the k^{th} package, and n_{max} is the maximal number of parents of all packages in the ecosystem. The value of 30 was selected empirically to balance the zooming rate on different n_k.

Adjusted heaviness on child packages. Generally, heaviness on child packages has a trend that distribution tails are shortened when the numbers of child packages increase (Figure 9). This is mainly because if package P has more child packages, its child packages may have more other parents which dilute the heaviness from P. To decrease the weights of packages with small numbers of child packages, a positive penalty term denoted as a is added to K_c as in Equation (11) where K_c is the number of child packages and h_{adj} is the adjusted heaviness of a package on its child packages. Note a is set to the same value for all packages.

$$h_{\text{adj}}^c = \frac{1}{K_c + a} \sum_k (n_{1k} - n_{2k}) = \frac{K_c}{K_c + a} \cdot h_c. \quad (11)$$

It is easy to see that a decreases h_c faster for smaller K_c than larger K_c. To select an optimized value for a, we took a as integers in the set $\{1, 2, \ldots, 29, 30\}$; and for a specific package indexed as k and a value of a, we calculated the adjusted heaviness on its child packages denoted as $h_{\text{adj}}^{c,k,a}$, and the vector for all packages is denoted as $h_{\text{adj}}^{c,a}$. a is selected as the value by which the ranking of adjusted heaviness of all packages becomes stable. To measure the stability of the ranking in $h_{\text{adj}}^{c,a}$ compared to $h_{\text{adj}}^{c,a-1}$, we calculated the stability score denoted as s_a as

$$s_a = \frac{1}{N} \sum_k I(|R_{k,a} - R_{k,a-1}| \leq 50) \quad (12)$$

where N is the total number of packages in the ecosystem, $R_{k,a}$ and $R_{k,a-1}$ are the ranks of package k’s adjusted heaviness in the two vectors $h_{\text{adj}}^{c,a}$ and $h_{\text{adj}}^{c,a-1}$ respectively, and $I()$ is the indicator function.

s_a, or its general denotation s, measures the fraction of packages whose ranking differences of adjusted heaviness are no larger than 50 between two neighboring values of a (50 is a small value compared to the total number of R packages in the ecosystem, which is 22,076 in this study).

![Figure 4: Select a proper penalty value a for adjusting heaviness values. A) Adjust heaviness on child packages. B) Adjust heaviness on indirect downstream packages. Vertical dashed lines are the final selections of the penalty values.](image-url)
When \(s \) becomes stable with \(a \), we could conclude increasing \(a \) won’t greatly change the ranking in \(s \). In Figure 4A, we calculated \(s \) on a list of \(a \) in \(\{1, 2, \ldots, 29, 30\} \). By observing the trend of the curve, we can see when \(a = 10 \) (red vertical in Figure 4A), \(s \) starts to increase slowly. Thus, \(a \) was empirically selected to 10.

Adjusted heaviness on indirect downstream packages. The definition is the same as the adjusted heaviness on child packages. For a package \(P \), the adjusted heaviness denoted as \(h_{id}^{adj} \) is calculated as:

\[
h_{id}^{adj} = \frac{K_{id}}{K_{id} + a} \cdot h_{id}
\]

(13)

where \(K_{id} \) is the number of indirect downstream packages, i.e., \(K_{id} = K_d - K_c \). The penalty \(a \) was selected in a similar way as for child packages. It was selected as \(a = 6 \) (Figure 3B).

The heaviness on all downstream packages can be adjusted in the same way. However, in this study, we only looked at the heaviness on indirect downstream packages instead of total downstream packages, thus, here we omitted the definition of adjustment of heaviness on all downstream packages.

4.3. Co-heaviness from parent pairs

Heaviness from parent \(A \) on \(P \) only measures the number of additional dependencies that \(A \) uniquely brings to \(P \). However, there are scenarios where multiple parents import a similar set of dependencies, which results in heaviness from individual parents being very small. Here we define the co-heaviness that measures the number of additional dependency packages simultaneously brought by two parent packages (Figure 5). Let \(A \) and \(B \) be two parents of \(P \), let \(S_A \) be the set of reduced dependency packages when only changing \(A \) to a weak parent of \(P \) (Figure 5D), let \(S_B \) be the set of reduced dependency packages when only changing \(B \) to a weak parent of \(P \) (Figure 5E), and let \(S_{AB} \) be the set of reduced dependency packages when changing both \(A \) and \(B \) to weak parents of \(P \), then the co-heaviness of \(A \) and \(B \) on \(P \) denoted as \(h_{co} \) is defined as

\[
h_{co} = |S_{AB} \setminus (S_A \cup S_B)|
\]

(14)

where \(X \setminus Y \) is the set of elements in \(X \) but not in \(Y \), and \(|X| \) is the number of elements in set \(X \) (Figure 5F). The co-
heaviness measures the number of reduced packages only caused by co-action of A and B. In some discussions in the paper, we denoted it explicitly as $h_{co}^{(A,B)\rightarrow P}$ to indicate the relations.

With the previous denotations, there are

$$h^A = |S_A|$$

(15)

$$h^B = |S_B|$$

(16)

$$S_A \cap S_B = \emptyset$$

(17)

where h^A is the heaviness of A on P, h^B is the heaviness of B on P, and S_A and S_B are mutually exclusive. Then there is the following relation:

$$|S_{AB}| = h_{co} + h_A + h_B.$$

(18)

Thus, the number of reduced dependencies by moving both A and B to P’s weak parents is the sum of heaviness of A and B on P individually and the co-heaviness of A and B on P (Figure 5F).

5. Tools and materials

In our previous study (Gu and Hübschmann 2022), we have developed an R package pkgndep which performs dependency heaviness analysis on single packages. For a given R package whose dependency packages are only from CRAN and Bioconductor, pkgndep calculates the dependency heaviness from every of its parent package, additionally with an intuitive heatmap visualization as well as an HTML report, which helps developers to easily reveal heavy parents. To be a companion tool for the study described in this paper, we have updated pkgndep to version 1.2.0 with new functionalities for analyzing the R package ecosystem\footnote{https://CRAN.R-project.org/package=pkgndep}. Given a package P, there are the following functions for querying package dependencies in various dependency categories:

- **parent_dependency()**
- **upstream_dependency()**
- **child_dependency()**
- **downstream_dependency()**

And there are the following functions for calculating the corresponding dependency heaviness metrics:

- **heaviness()**
- **co_heaviness()**
- **heaviness_from_upstream()**
- **heaviness_on_children()**

- **heaviness_on_downstream()**

The function names are self-explanatory. We believe these new functions will be convenient tools for researchers who wish to perform software engineering studies on the R package ecosystem.

The analysis on the R package ecosystem is bound to a certain snapshot of CRAN and Bioconductor. In this study, dependency relations of all CRAN and Bioconductor packages (we call it the “package database”) were obtained with the function `available.packages()` on 2022-06-08\footnote{available.packages()}.

This resulted in 18,638 R packages from CRAN, 3,438 packages from Bioconductor (bioc version 3.15), and 124,251 strong dependency relations in the two ecosystems. Various dependency analyses in this study were applied with the pkgndep package with its aforementioned new functions. The result is presented as a table where rows are R packages and columns are various heaviness metrics. The table can be obtained by the function `all_pkg_stat_snapshot()` in pkgndep. Network analysis was applied with the package igraph (Csardi and Nepusz 2006) and visualized with Cytoscape (Shannon et al. 2003) and the R package RCy3 (Gustavsen et al. 2019).

For reproducibility of this study, we have integrated the script for calculating dependency metrics for all packages in the pkgndep package and it can be accessed with the command `system.file("extdata", "analysis.R", package = "pkgndep")`. The scripts for the figures in this paper are available at \url{https://github.com/jokergoo/pkgndep_global} pkgndep version 1.2.* can be used to reproduce the complete analysis in this study. We plan to regularly update the package database in pkgndep to ensure the dependency analysis on R packages is always up-to-date.

6. Research questions

Dependency heaviness is a directional measure. It measures the amount of dependencies uniquely transmitted from a package to its single or total downstream packages. In the context of the complex dependency graph, we separated our research questions (RQs) into three categories according to different dependency directions.

Packages have certain numbers of parents and each parent may bring additional dependencies transitively. We studied the dependency flow from parent to child packages and we first asked the following two research questions:

- **RQ1:** What is the general pattern of dependency heaviness from parents? This includes the following sub-questions: 1. What is the proportion of packages suffering from heavy parents and what are they? 2. How is the dependency heaviness accumulated from remote upstream packages?
Table 1: Average values of various metrics of packages on CRAN and Bioconductor. N_{child}: number of child packages; N_{indirect}: number of indirect downstream packages.

Metrics averaged in the ecosystem	CRAN	Bioconductor
Number of strong dependencies	30.8	66.1
Number of parents	5.1	8.4
Max heaviness from parents	13.3	24.6
Max co-heaviness from parents	4.5	12.2
Number of children	4.7	3.5
Number of children (with $N_{\text{child}} > 0$)	18.2	15.2
Heaviness on child packages (with $N_{\text{child}} > 0$)	7.8	14.8
Number of indirect downstream	29.0	11.5
Number of indirect downstream (with $N_{\text{indirect}} > 0$)	256.8	136.5
Heaviness on indirect downstream packages (with $N_{\text{indirect}} > 0$)	4.4	8.3

• RQ2: It is very common that a package depends on multiple parents. The second research question is how do two parents contribute dependencies synergistically?

For hub packages such as ggplot2 in the ecosystem, their dependencies are all passed to their downstream packages. With regards to the impacts on downstream packages, we asked the next following two research questions:

• RQ3: What is the general pattern of dependency heaviness of a package contributing to all its child packages? This also includes several sub questions: 1. What is the distribution of dependency heaviness on child packages? 2. What are the top packages that spread the highest amount of dependencies directly to their children?

• RQ4: A package may transmit dependencies to its remote downstream packages. We next asked what are the differences between the dependency heaviness transmission to indirect downstream packages and to direct child packages?

CNA on the dependency graph can reveal interesting structures of dependency transmission in the ecosystem. From the aspect of network analysis, we asked the last research question:

• RQ5. How are the dependency flows transmitted throughout the ecosystem? This includes the following sub questions: 1. What is the global attribute and structure of the dependency graph if taking dependency heaviness as weight? 2. How deep can the dependency heaviness be transmitted? 3. Does there exist a core graph that transmits the majority of the dependencies in the ecosystem?

When answering these research questions, we also examined the difference between CRAN and Bioconductor to reveal ecosystem-specific patterns.

7. Results

7.1. RQ1: Heaviness from parent packages

A package may have multiple parents. Here we only studied the max heaviness from its parents (abbreviated as MHP) which measures the number of unique dependencies that a package maximally inherits from its parents. In Section 7.1.3, we demonstrated that if a package suffers heavy dependency from its parents, it is very likely that one or only a very few parents contribute heavy dependencies to it. Therefore, MHP is a reasonable metric for studying the general pattern of heaviness from parent packages.

7.1.1. Distribution of MHP

In general, MHP has a long-tail distribution where 82.4% of all packages have a heaviest parent contributing heaviness < 30, whereas there are only 878 (4.0%) packages having a heaviest parent contributing heaviness ≥ 60. Therefore, only a small fraction of packages have heavy parents in the ecosystem. For 878 packages with extremely heavy parents (MHP ≥ 60), 785 (89.4%) of them only have less than 15 parents, which indicates packages with small numbers of parents are more likely to have heavy parents. Also interestingly, 720 (82.0%) of them do not have child packages, which indicates when packages have heavier parents, they are more likely to be leaf packages in the dependency graph and no other package depends on them.

Distribution tails of MHP are shortened when numbers of parents increase (Figure 6A). As has been explained in Section 4.1, MHP measures the number of unique dependencies that a single parent maximally brings in. Thus, with more parents, dependencies from multiple parents would have more chances to overlap, which results in decreasing MHP. In Figure 6A, it can be straightforwardly observed that, on the top edge of the point clouds, there is a clear trend where MHP drops as the number of parents increases.
Figure 6: Heaviness from parent packages. A) Distribution of MHP. B) Upstream of packages with adjusted MHP ≥ 60. Only edges with heaviness ≥ 20 are included. Values on the edges are the dependency heaviness of a parent on its child package. C) Gini index of the heaviness from parents. In Figure A, since points may overlap, we visualized the two-dimensional distribution densities where numbers of neighbor points were based on circular areas with radius of 1% of ranges on x-axis and y-axis respectively. The packages highlighted in red in Figure A are the same as in Figure B and C, which are the top packages with adjusted MHP ≥ 60. MHP: max heaviness from parents.
Globally, Bioconductor packages have heavier parents than CRAN packages. The mean MHP for all Bioconductor packages is 24.6 while it is only 13.3 for all CRAN packages (Table 1. The median values are 16 vs 6). Nevertheless, the difference of MHP in the two repositories becomes smaller when the number of parents increases. E.g., when only considering packages with parents > 20 (580 packages left), the mean MHP values are 27.2 vs 22.8 for CRAN and Bioconductor packages, and the median values are 23 vs 19.

Bioconductor packages suffer heavier parents than CRAN packages. The reason might be that Bioconductor packages are mainly for biological data analysis and many of them integrate various analyses and annotation resources from upstream packages (average numbers of parents are 5.1 and 8.4 for CRAN and Bioconductor, Table 1). Thus, it is easier for dependency heaviness to be accumulated from upstream on Bioconductor (average numbers of strong dependencies are 30.8 and 66.1 for CRAN and Bioconductor, Table 1). For example, the Bioconductor package ‘minsponger’ listed as a top package in Figure 6A has an upstream package ‘SPONGE’ which integrates analysis from a list of heavy parents for different analysis aims (tidyverse for data processing, ggpubr for visualization, biomaRt for obtaining biological annotation data, caret for statistical modeling).

7.1.2. Top packages with the highest MHP

If a package has more upstream dependencies, it is more vulnerable to corruptions from its upstream packages. We identified top packages with the highest MHP and these top packages have the most risky parents in the ecosystem from the aspect of how they uniquely contribute risks to their child packages.

Packages with smaller numbers of parents have longer distribution tails of MHP. To capture top packages with the heaviest parents but not biased by the small numbers of parents, the original MHP was adjusted. Top packages that have extremely heavy parents are filtered by adjusted MHP ≥ 60 and they are marked in red in Figure 6A. We found there are 8 CRAN packages and 24 Bioconductor packages that have extremely heavy parents. This also indicates Bioconductor packages may suffer more from heavy parents. Among them, the package ‘MinBAR’ has the highest MHP with the heaviest parent named ‘ecospat’ which uniquely contributes 206 additional dependencies to ‘MinBAR’.

When a package suffers from an extremely heavy parent, the next question naturally to ask is how are the dependencies accumulated from the upstream of the heavy parent? Figure 6B illustrates upstream dependencies of the top 32 packages with adjusted MHP ≥ 60. To keep the graph small and compact, parent-child with dependency heaviness ≥ 20 are only included in the graph. In other words, the graph in Figure 6B contains major dependency flows from upstream to the packages suffering heavy parents. Interestingly, for most packages, high dependencies are accumulated from upstream in very long ranges. The longest transmission path in the graph has a length of 9, e.g., from testthat to treekoR or censcyt. As a comparison, the average distance in the global dependency graph is only 2.6. We also found heavy dependencies can be inherited from the same parents, such as ‘Seurat’ transmitting on average 130 unique dependencies to its 3 child packages and ‘limi’ transmitting on average 152 unique dependencies to its 7 child packages. The transmission of heaviness will be further discussed in Section 7.3 on the short-range transmissions and in Section 7.5 on the long-range transmissions.

7.1.3. Uniqueness of the heaviest parents

A package may have multiple parents. We observed a general pattern that only a small number of parents contribute large heaviness while the majority of other parents only contribute very small heaviness to their child packages. The Gini index was used to quantitatively measure the dispersion of the heaviness distribution from a package’s parents. When the Gini index is close to 1, there is a uniquely high heaviness value; and when the Gini index is close to zero, the heaviness values approximately follow a uniform distribution. Figure 6C shows that there is a clear trend that when MHP increases, i.e., when the parents get heavier, the Gini indices increase as well. For the top packages with extremely high MHP, the corresponding Gini indices are very close to 1. This indicates these heaviest parents play unique and dominant roles in contributing dependencies to their child packages.

Answer to RQ1
Only a small fraction of R packages in the ecosystem suffer from heavy parents. The heavy dependencies on them are normally accumulated from far upstream. If a package suffers from heavy parents, it is very likely the heaviest parent plays a unique and dominant role in contributing dependencies to it.

7.2. RQ2: Co-heaviness from two parent packages

Heavyness discussed in Section 7.1 only measures the number of dependencies that a single parent uniquely brings in. However, there are scenarios where multiple parents import similar sets of dependencies, which results in heaviness from individual parents being very small. Taking the package ‘DESeq2’ (version 1.36.0) as an example, its two parent packages ‘geneplotter’ and ‘genefilter’ import 51 and 53 dependencies respectively, among which 50 are the same. Due to the high overlap, the heaviness of ‘geneplotter’ and ‘genefilter’ on ‘DESeq2’ are only 1 and 2. In this section, we studied the dependency heaviness simultaneously.

\[\text{The heaviness analysis on } \text{DESeq2} \text{ can be accessed in the heaviness database introduced in Section 6.}\]

\[\text{The heaviness analysis on } \text{DESeq2} \text{ can be accessed in the heaviness database introduced in Section 6.}\]
imported by two strong parents, i.e., the co-heaviness. In the analysis, for a package, we only looked at the maximal co-heaviness from all its parent pairs (abbreviated as MCoHP). Empirically, MCoHP is dramatically higher than the co-heaviness from other pairs if a package has an obvious heavy parent pair. For the ease of discussion, we name the parent pair which contributes the highest co-heaviness as the MCoHP parents in the paper.

7.2.1. Relations of parent pairs

In the CRAN/Bioconductor ecosystem, we found 92.6% of all packages have MCoHP < 20, and only 533 (2.4%) of them (143 from CRAN and 390 from Bioconductor) have MCoHP ≥ 40, which indicates the proportion of packages whose heavy dependencies are simultaneously inherited from two parents are extremely small in the ecosystem. Denote two parents of package \(P \) as \(A \) and \(B \), the relations of parent pairs can be summarized into the following four categories:

1. **Parent-child.** E.g., \(B \) is a parent of \(A \) where \(A \) inherits all dependencies from \(B \).
2. **Upstream-downstream.** E.g., \(B \) is an indirect upstream package of \(A \) where \(A \) also inherits all dependencies from \(B \).
3. **Common-upstream.** There exists a common upstream package \(C \) of \(A \) and \(B \) where \(C \) contributes heavy dependencies to both \(A \) and \(B \), defined as \(h_{\text{C} \rightarrow \text{A}}^{\text{C}} > 0.75h_{\text{C} \rightarrow \text{B}}^{\text{C}} \) and \(h_{\text{C} \rightarrow \text{B}}^{\text{C}} > 0.75h_{\text{C} \rightarrow \text{A}}^{\text{C}} \). This means the co-heaviness of \(A \) and \(B \) mainly comes from \(C \).
4. **No clear relation.** The dependencies of \(A \) and \(B \) are accumulated from their upstream packages independently; or \(A \) and \(B \) may have common upstream, but the upstream packages do not contribute significantly high heaviness on them.

For the 533 top packages with MCoHP ≥ 40, in 486 (91.2%) packages, MCoHP parents are in parent-child relation; in 4 (0.75%) packages, MCoHP parents are in upstream-downstream relation; in 13 (2.4%) packages, MCoHP parents are in common-upstream relation; and in 30 (5.6%) packages, MCoHP parents have no clear relation (Figure 7).

7.2.2. Parent pairs that contribute high co-heaviness

Since most MCoHP parents are in parent-child relations, we next studied whether there is preference of selecting a member of the MCoHP parents. Again only in the 533 packages with MCoHP ≥ 40, we found in the Bioconductor ecosystem, the package AnnotationDbi dominantly contributes high co-heaviness to its child packages as a MCoHP parent (Figure 8A-B). Top four companion packages co-working with AnnotationDbi are org.Hs.es.db (affecting 70 child packages), org.Mm.es.db (affecting 51 child packages), GenomicFeatures (affecting 48 child packages) and org.Rn.es.db (affecting 35 child packages) (Figure 8A). AnnotationDbi is a base Bioconductor package which defines the general database interface, and a large number of other packages storing specific biological annotation data are implemented with this interface. To use a specific annotation package from Bioconductor, methods from AnnotationDbi should also be used for extracting corresponding data. Therefore, the data packages (e.g., org.Hs.es.db for human, org.Mm.es.db for mouse and org.Rn.es.db for rat) and AnnotationDbi are normally used together. Similarly, AnnotationHub and ExperimentHub provide similar functionalities for storing external annotation and experimental data. ExperimentHub inherits the same set of function interface from AnnotationHub, thus any package depending on ExperimentHub would also depend on AnnotationHub. These two “Hub” packages are becoming standard ways for handling external data and they are used more and more frequently in the Bioconductor system. Figure 8B shows the number of child packages of the MCoHP parent packages. Besides the aforementioned three “org.*.es.db” packages, AnnotationDbi co-works with in total 18 packages on Bioconductor and it affects 235 child packages with mean co-heaviness of 44. There are other examples of heavy MCoHP parents (Figure 8B). The package GenomicFeatures co-works with 9 other packages where GenomicFeatures provides tools for manipulating gene/transcript annotations and the companion packages are organism-specific annotation packages. The package BSgenome co-works with 30 other packages where BSgenome provides classes and methods for dealing with genome sequences, and the companion packages are also organism-specific annotation packages.
Figure 8: Co-heaviness in the CRAN/Bioconductor ecosystem. A, C, E) Number of child packages for each MCoHP parent pair. A: all 390 top Bioconductor packages; C: the top Bioconductor packages of which MCoHP parents do not include the annotation packages listed in Figure B; E: all 143 top CRAN packages. In Figure A, C, E, numbers in the parentheses are the average co-heaviness. B, D, F) Number of child packages for packages as a member of MCoHP parents. In Figure B, D, F, numbers in the parentheses are the average co-heaviness and numbers of companion packages. All analyses are restricted to 533 packages with MCoHP ≥ 40. MCoHP: max co-heaviness from parents.
As has been demonstrated previously, top packages contributing strong co-heaviness in the Bioconductor ecosystem are all annotation-related packages. We next explored Bioconductor by excluding the eight top annotation-related packages listed in Figure 8B. We aimed to study the co-heaviness patterns for the “software packages” on Bioconductor. Figure 8C shows now there is almost no dominant parent pair contributing strong co-heaviness, except the pair CAMERA and xcms. These two packages are both for mass spectrometry data analysis and they contribute a mean co-heaviness of 77 to their 5 child packages. CAMERA and xcms provide core functionalities for mass spectrometry data analysis and additional packages in the field might need to depend on both of them. Figure 8D lists top Bioconductor software packages as heavy co-parents. Notably, the package Gviz which provides a general visualization framework for genomics data affects 6 child packages as a co-parent with other 4 comparison packages. It contributes on average a co-heaviness of 88 which is much higher than other co-parent packages.

For CRAN packages, there are less package pairs that contribute strong co-heaviness to their child packages (average MCohP are 4.5 and 12.2 for CRAN and Bioconductor, Table 1). There is only one parent pair Hmisc and rms that contribute strong co-heaviness on their 9 child packages with average co-heaviness of 57 (Figure 8E). Also, Hmisc affects 20 child packages as a co-parent with other 9 companion packages (Figure 8F) where Hmisc is a parent of all its companion packages.

Answer to RQ2

Only a small fraction of R packages in the ecosystem inherit dependencies uniquely and simultaneously from two parents. The two parents contributing high co-heaviness mostly have the relation of parent-child, thus they provide a similar set of dependencies. There are more Bioconductor packages having high co-heaviness from parents where one parent provides an interface for manipulating biological data and the other parent provides data for specific organisms with that interface. On CRAN, there are very few packages suffering from high co-heaviness from parents.

7.3. **RQ3: Heaviness on child packages**

We studied how a package P contributes dependency heaviness to its child packages (abbreviated as HC) by looking at the average number of dependencies uniquely brought by P.

7.3.1. **Distribution of HC**

Figure 9A illustrates the distribution of HC for 5,593 (25.3%) packages with at least one child. In general, distributions of HC have very long tails for packages with small numbers of children, and distribution tails are shortened dramatically as numbers of children increase. This is mainly because when P has more child packages, the heaviness on child packages may be diluted by their other parents.

On average, CRAN packages have slightly more children than Bioconductor (18.2 vs 15.2, Table 1), but with smaller average HC (7.8 vs 14.8, Table 116). In Section 7.3.2, we have demonstrated Bioconductor packages have more parents and inherit more strong dependencies, thus it is expected that they on average transmit more dependency heaviness to their children.

7.3.2. **Top packages with the highest HC**

From the perspective of R package developers, HC is especially useful because it also measures the expected number of additional dependencies if P is added as a new strong parent of their packages. Thus it is important to list top packages that contribute high heaviness in the ecosystem. Similarly, we also adjusted original HC and we set adjusted HC ≥ 30 to extract top packages that broadly affect a large number of child packages in the ecosystem (Figure 9A and Table 2). Not surprisingly, these top packages already inherit large amount of dependencies from their parents (the column Nstrong in Table 2), and most of these dependencies are transmitted to their child packages uniquely (the column Nchd in Table 2). To list a few, the package lumi has 162 dependencies from its parents, and on average 114 (70.4%) of them are uniquely contributed to its child packages; the package RTCA has 127 dependencies from its parents, and all of them uniquely go to its child packages. Also as listed in Table 2 there are several packages transmitting large heaviness to broader sets of child packages, such as the package caret contributing on average 41 additional dependencies to its 180 child packages, the package Seurat contributing on average 40.6 additional dependencies to its 183 child packages, and the package ggpubr contributing on average 37.0 additional dependencies to its 125 child packages. These packages play major roles in contributing heavy dependencies to their child packages in the ecosystem.

Expectedly, many of the top packages listed in Table 2 are popular and widely applied in various fields such as general statistical modeling (car, caret, fda, rms and FactoMineR), specific analysis approaches on biological data (WGCNA and Seurat), data visualization (ggpubr, Gviz and survminer) and infrastructure-related applications (devtools and tidyverse), thus they are depended-on by a great number of child packages. However, developers who depend on these top packages should be aware of the potential risks that they introduce.

7.3.3. **How do package dependencies transmit to children?**

Package P may have multiple child packages. We explored the distribution of individual heaviness values of P on all its child packages. In Figure 9B, when packages

16Statistics are based on packages with at least one child package.
Figure 9: Heaviness analysis on child and indirect downstream packages. A) Heaviness on child packages. B) Gini indices of individual heaviness values on child packages. C) Compare top 500 packages with the highest HC, HD and HID values. In each plot, packages are sorted by two metrics, e.g., HC and HD in the left plot. Top 500 packages by either of the two metrics are highlighted by segments that connect the same packages in the two sorted lists. At the bottom is a Venn diagram showing the overlap of the top 500 packages from the two metrics. D) Heaviness on indirect downstream packages. HC: heaviness on child packages; HD: heaviness on downstream packages; HID: heaviness on indirect downstream packages.
Table 2: Top packages with adjusted HC ≥ 30. \(N_{\text{strong}} \): number of strong dependencies; \(N_{\text{child}} \): number of child packages; HC: heaviness on child packages.

Package	\(N_{\text{strong}} \)	\(N_{\text{child}} \)	HC	Repository	Package	\(N_{\text{strong}} \)	\(N_{\text{child}} \)	HC	Repository
ecospat	232	3	151.0	CRAN	GenomicScores	98	26	56.0	Bioconductor
RTCGA	127	9	128.0	Bioconductor	AER	92	22	52.6	CRAN
lumi	162	13	114.2	Bioconductor	WGCGNA	108	33	52.3	CRAN
Rcmdr	135	45	101.2	CRAN	drc	96	17	51.1	CRAN
Deducer	107	5	94.6	CRAN	tidyverse	107	89	48.4	CRAN
Seurat	145	38	85.3	CRAN	devtools	76	80	47.0	CRAN
taxize	127	12	77.4	CRAN	Gviz	142	37	43.5	Bioconductor
TraMineR	100	7	77.1	CRAN	FactoMineR	104	52	41.2	CRAN
smacof	122	8	75.2	CRAN	caret	81	180	41.0	CRAN
brms	123	13	65.1	CRAN	car	87	183	40.6	CRAN
MESS	84	9	63.8	CRAN	ggpubr	96	125	37.0	CRAN
minfi	141	38	62.4	Bioconductor	rstatix	78	54	36.8	CRAN
survminer	115	27	58.2	CRAN	rda	60	78	33.9	CRAN

have high adjusted HC values, i.e., ranked as top packages affecting their child packages, Gini indices of the heaviness values get close to 0.2. It indicates that top heavy packages contribute dependencies almost evenly to their child packages.

Answer to RQ3

In general, the average unique dependencies that a package contributes to all its child packages decrease when it has more children. HC metric is important especially for developers because it also measures the expected number of additional dependencies if \(P \) is added as a new strong parent of their packages. We found many of the top packages with extremely high HC are already popular in use and we suggest developers pay more attention to these packages if they want to add them as new parents of their packages.

7.4. RQ4: heaviness on indirect downstream packages

HC is a metric of local relation, i.e., the direct parent-child relation. We next studied how dependency heaviness is uniquely transmitted to remote downstream of the global dependency graph.

7.4.1. Remove child packages from downstream

We observed that, for top packages with the highest heaviness on downstream packages (abbreviated as HD), they tend to also have high HC values. In the left panel of Figure 9C, 478 packages are common in the top 500 packages with the highest HC values and the top 500 packages with the highest HD values. This implies, for these 478 packages, the downstream packages are mainly composed of child packages. For this reason, to study the long-range dependency transmission, we removed child packages from downstream packages, i.e., we only studied the heaviness on indirect downstream packages (abbreviated as HID). In the right panel of Figure 9C, now there are only 129 packages in common in the top 500 packages by HC and by HID, and these 129 packages contribute strong heaviness to both their direct child packages and remote downstream packages.

7.4.2. Compare packages with top HC and HID

Figure 9D illustrates the distributions of HID for 2,396 (10.9%) packages with at least one indirect downstream package. Similarly, distributions also have long tails, which indicates only a small fraction of packages spread large dependencies to the ecosystem in the long ranges. In Figure 9D, we highlighted packages with adjusted HID ≥ 20. Compared to Figure 6A, the list of top packages changes. Table 3 lists top packages with adjusted HC ≥ 30 or adjusted HID ≥ 20. To reduce the length of the table, we additionally set the numbers of downstream packages (i.e., numbers of child packages + numbers of indirect downstream packages) ≥ 30. In the 21 packages listed in Table 3, they can be summarized into three categories: i) having both top HC and HID values (9 packages); ii) only having top HID values (7 packages); iii) only having top HC values (5 packages). In the first category, packages not only affect their direct child packages but also affect indirect downstream packages. An example is the package **car** which directly affects 183 child packages (with HC of 40.6) and additionally 435 indirect downstream packages (with HID of 31.9, Figure 10A). In the second category, packages have very few direct child packages, but child packages play as hub packages to transmit the heaviness to a great number of indirect downstream packages. One typical example is the package **rstatix**, which only has 10 child packages, but affects 203 indirect downstream packages. Figure 10B demonstrates the heaviness is mainly
Table 3: Top packages with adjusted HC ≥ 30 or adjusted HID ≥ 20. Additionally, packages listed in the table have numbers of downstream packages (i.e., numbers of child packages + numbers of indirect downstream packages) ≥ 30. N_{child}: number of child packages; HC: heaviness on child packages; N_{id}: number of indirect downstream packages; HID: heaviness on indirect downstream packages.

Package	N_{child}	HC	N_{id}	HID	Is it a top HC package?	Is it a top HID package?
car	183	40.6	435	31.9	y	y
recipes	26	9.9	227	20.6	y	y
rstatix	10	12.1	203	26.0	y	y
caret	180	41.0	29	28.4	y	y
ggpubr	125	37.0	80	24.4	y	y
AnnotationHub	97	16.7	101	23.4		y
rainbow	5	21.0	125	27.5	y	y
fds	2	37.0	126	29.3	y	y
fda	78	33.9	46	22.7	y	y
devtools	80	47.0	15	36.3	y	y
tidyverse	89	48.4	5	38.0	y	y
FactoMineR	52	41.2	37	18.5	y	y
rms	54	36.8	30	30.3	y	y
minfi	38	62.4	22	35.2	y	y
RemdrMisc	7	19.3	43	34.6		y
Gviz	37	43.5	9	35.7	y	y
Remdr	45	101.2	1	81.0	y	
Seurat	38	85.3	2	54.0	y	
survminer	27	58.2	9	60.0	y	y
WGCNA	33	52.3	2	24.5	y	
weights	12	30.6	21	35.4	y	

Transmitted from rstatix via a hub child package ggpubr which spreads the dependency flow to 96.2% of downstream packages of rstatix. In the third category, packages mainly contribute heaviness only till their child packages and majority of the transmission do not go further deep in the dependency graph, e.g., the package tidyverse (Figure 10C). The downstream dependency graph for any package on CRAN/Bioconductor can be accessed in the heaviness database in pkgndep which will be introduced in Section 8.

Similar to HC, CRAN packages have more indirect downstream packages than Bioconductor (256.8 vs 136.5, Table 1), but CRAN packages on average transmit less dependency heaviness to their indirect downstream packages (4.4 vs 8.3, Table 1)\(^\text{17}\). Nevertheless, there are more packages with top HID (adjusted HID ≥ 20) on CRAN than on Bioconductor (25 vs 7).

Answer to RQ4

Only a small fraction of packages spread large dependencies in the ecosystem in the long ranges. There are three modes of the dependency transmission: i) Dependency heaviness is broadly transmitted to both direct child packages and remote downstream packages; ii) Dependency heaviness is transmitted to remote downstream via hub child packages; iii) Dependency heaviness is mainly transmitted locally where their child packages are the ends of the dependency transmission.

7.5. RQ5: Dependency graph analysis

In previous sections, the analysis was focused on different heaviness metrics on individual packages. In this section, we studied the dependency relations from the aspect of the global dependency graph by applying the complex network analysis approaches on it.

7.5.1. The general patterns of heaviness spreads in the dependency graph

Denote the global dependency graph as $G = (V, E)$, where V is the set of all packages in the CRAN/Bioconductor ecosystem, E is the set of strong dependency relations, and G is directed, then the heaviness from a parent on a child is a score associated to an edge in the graph. Figure 11A

\(^{17}\)Statistics are based on packages with at least one indirect package.
Figure 10: Three examples of dependency graphs of how packages transmit dependencies heaviness to their downstream packages. A) The package `car`. B) The package `rstatix`. C) The package `tidyverse`. The three packages are colored in orange in the graphs. In Figure A, to reduce the size of the graph for visualization, leaf nodes sharing the same parent are grouped and colored in green. Note the three graphs are directed where `car`, `rstatix` and `tidyverse` are the root nodes.

illustrates the distribution of heaviness which can be approximated as a stretched exponential distribution (Elton, 2018) fitted as

\[\Pr(H = h) = 0.46 \cdot \exp(-1.66h^{0.37}) \] (19)

where \(H \) is the random variable of the heaviness. The model implies in the ecosystem, there are only a very small amount of dependency transmissions that are heavy from parent to child packages. The 95th percentile of all heaviness values is 20.

7.5.2. Total dependency heaviness to the ecosystem

In Section 7.3 and 7.4 we studied the average heaviness on child packages and indirect downstream packages. Here we looked at the total heaviness that a package contributes to the whole ecosystem, i.e., to all its downstream packages. Using the same denotation in Equation 6, the total heaviness of package \(P \) on all its downstream packages is calculated as \(h_d \cdot K_d \). The total heaviness also measures the number of reduced dependencies in the whole ecosystem if \(P \) is removed. A package with small HD may have a large total effect simply because it has a huge num-
Figure 11: Heaviness analysis on the global dependency graph. A) Distribution of heaviness from a parent on a child package. The line is the fit from a stretched exponential distribution ($R^2 = 0.952$). B) Total heaviness on downstream packages for the packages with HD ≥ 10. Packages in red have total heaviness $\geq 5,000$. Values in the parentheses are the numbers of downstream packages. C) MHP distribution of packages at each depth in the dependency graph. D) Number of packages at each depth. In Figure C and D, packages with depth $= 0$ (709 packages, i.e., packages with no dependencies) and depth ≥ 11 (1 package) are removed for the plot. HD: heaviness on downstream packages; MHP: max heaviness from parents.

number of downstream packages. For example, the package `stringr` only has a small HD of 2.3, but it affects 5,276 downstream packages, which makes it a top package contributing dependencies in the ecosystem. Therefore, we only looked at packages with HD ≥ 10 (1,247 packages left). Figure 11B illustrates `ggplot2` is the most influential package that affects 5,622 downstream packages with a HD value of 14.7. It uniquely contributes in total 82,830 dependencies to the ecosystem. Another example is the package `car` which affects 618 downstream packages but with a higher HD value of 35.6, uniquely contributing in total 20,001 dependencies. All of the top 20 packages (filtered by total heaviness on downstream $\geq 5,000$) listed in Figure 11B affect a large number of downstream packages, with an average number of 882. The top 20 packages (0.1% of all packages) contribute 18.9% unique dependencies to
the whole ecosystem. This suggests if developers of these top packages can manage to reduce dependencies of their packages, it will greatly reduce the risks they bring to the whole ecosystem.

7.5.3. Depth of the dependency heaviness transmission

In Section 7.3, we observed dependency heaviness on top packages with the highest MHP are accumulated from very remote upstream. Here we studied dependency heaviness transmission for all packages in the ecosystem. For each package, we calculated its depth in the graph as the maximal distance from all its upstream packages where the distance between two packages is the length of the shortest path in the directed graph. Figure 11C illustrates the distribution of MHP at each depth, and Figure 11D illustrates the number of packages at each depth. The two figures clearly show, when a package locates more downstream in the graph, it receives larger dependency heaviness from its parent.

7.5.4. Core graph

To study how the dependency heaviness is transmitted in the global dependency graph, we constructed a core graph where heaviness from a parent on a child is ≥ 30. The core graph includes 4,302 packages (19.5%), 3,950 strong dependency relations (3.2%) and 44.2% heaviness flows of the complete graph (measured as the fraction of total betweenness in the key paths and in the global graph).

The core graph is visualized in Figure 12A. It can be easily observed that there are several hub packages that transmit large heaviness to their direct child packages. The top two packages ggplot2 and AnnotationDbi contribute heavy dependencies to their 442 and 273 child packages directly. We also observed there are a huge number of isolated and small graph components (i.e., maximally connected subgraphs) where heaviness is only transmitted locally. Out of the total 379 graph components, 352 components only have size ≤ 10; however, the other 27 components include 77.0% of packages in the core graph. The largest component led by ggplot2 includes 2,082 packages (48.4% of all packages in the core graph). The size of the graph component approximately follows a power-law distribution (Figure 12B).

We next studied how deep a package P can transmit heavy dependencies to downstream of the core graph. For this, we defined a metric named “dependency transmission length”\footnote{Package A is reachable to package B in the dependency graph when the distance from A to B is finite.}. Assume P is reachable to Nleaf leaf packages\footnote{Where a leaf package has out-degree of zero in the graph, let \(d_i\) be the distance from P to the \(i^{th}\) leaf package which is the length of the shortest path from P to the leaf package, then the dependency transmission length denoted as \(l\) for P is calculated as \(l = \max_{i \in [1..N_{\text{leaf}}]} d_i\).} where a leaf package has out-degree of zero in the graph, where heavy dependencies can be continually transmitted through.

\[l = \max_{i \in [1..N_{\text{leaf}}]} d_i. \]

Figure 12C illustrates the distribution of dependency transmission length. It shows the majority of the transmission from P only has a length of 1, which can be easily confirmed by Figure 12A. But there also exist long paths where heavy dependencies can be continually transmitted to P’s deep downstream packages (examples in Figure 12D). Note the depth analysis here is different from that in Section 7.5.3. In Section 7.5.3 we studied how the dependency heaviness P inherits from its upstream, while in this section we studied how the dependency heaviness is transmitted to P’s downstream.

7.5.5. Key dependency paths

The betweenness of an edge measures the number of shortest paths in the graph that pass through the edge. In the context of the dependency graph, the edge betweenness measures the amount of heaviness flows that are transmitted via a parent-child pair. In Figure 12A, edges with betweenness ≥ 20 are highlighted in red and a subgraph that only contains these high betweenness edges is induced in Figure 12D. We named the subgraph as “key dependency paths”. The key paths transmit 25.2% of the total heaviness flows (measured as the fraction of total betweenness in the key paths and in the core graph) while only including 0.8% edges and 1.0% packages from the core graph. In most cases, in the key paths, the heaviness is transmitted from hub packages, however there are exceptions. For example, rstatix only has a few child packages (10 in the global graph and 4 in the core graph), but it connects two hub packages car and ggpubr as a bridge to continue the dependency transmission (Figure 12D). Another similar example is viridis that connects ggplot2 and fields (Figure 12D). Besides that, we also found there are long paths such as from testthat to MBESS with length of 6, and from car to dplyr or RTCGA with length of 5, where the heavy dependencies can be continually transmitted through.

Answer to RQ5

We constructed a core graph which transmits heavy dependencies in the ecosystem. We revealed graph components and key paths that transmit major heaviness in the ecosystem. We found that hub packages mainly transmit dependency heaviness only to their child packages, thus locally. When a package locates more deep in the downstream of the dependency graph, it preferably inherits larger dependency heaviness from the ecosystem.

8. The open database

We have integrated the dependency heaviness analysis for the CRAN/Bioconductor ecosystem in the package
pkgndep as a web-based database (We call it the heaviness database, Figure 13). It provides detailed analysis reports on the dependency heaviness both from direct parent-child relations and remote upstream-downstream relations. The heaviness database can be simply accessed with the function dependency_database() from the pkgndep package. The database has two parts: a summary table of all packages and analyses of individual packages. Figure 13 illustrates the global table of the heaviness analysis of all packages. Columns in the table are separated into two groups highlighted in yellow and blue, which correspond to metrics from upstream (e.g., MHP) and on downstream (e.g., HC, HD and HID). Packages with adjusted HC ≥ 30 are highlighted in red to emphasize that they have high impacts on the ecosystem. If a package only imports a limited number of functions from the heaviest parent, the
Figure 13: Web-based database of the dependency heaviness analysis for all R packages on CRAN/Bioconductor. A) The global heaviness table of all packages. B) Upstream of a package. Dependency path from every upstream package is listed in a table and visualized in a graph. C) Downstream of a package. Dependency path to every downstream package is listed in a table. The table can be filtered by selecting a range of depths of the dependency paths. D) A graph of the downstream dependency graph. Green nodes represent groups of leaf packages that connect to the same parent package. Edges with high betweenness are highlighted in red. The cutoff of betweenness is selected as the ‘elbow’ of the curve of sorted betweenness of all edges in the graph. Values on edges are the heaviness from parents to corresponding child packages.
package is marked as ‘reducible’ in purple, which implies possibility to reduce its upstream dependencies for developers (see our suggestions in Section 9.1).

The database contains comprehensive tools for querying dependencies for individual packages. For a package, the database allows to explore how the dependencies are inherited from parent or upstream to its package, and how the dependencies are transmitted from its package to its child or downstream. In the direct parent and child dependency results, there are tables showing heaviness-related metrics. It also lists the “Imports” information (i.e., how classes and methods are imported from parents to or from P to its children) which is automatically parsed from the NAMESPACE files of corresponding packages. In the upstream dependency results, the dependency path from each upstream package to P is listed, which is the shortest path from the upstream package to P in the global dependency graph (Figure 13B). There is also an interactive graph that shows how the heaviness is accumulated (Figure 13B). Similarly, in the downstream dependency results, the dependency path from P to every downstream package is listed, which can be further filtered by the depth to the downstream packages (Figure 13C). The downstream dependency graph is also visualized as an interactive graph (Figure 13D). Normally, the downstream dependency graph is large. To reduce the graph size for visualization, leaf packages are grouped into a single node if they have the same parent (Figure 13D). Additionally, edges with high betweenness in the downstream dependency graph are highlighted in red, which correspond to the key paths that transmit major dependency heaviness from P.

9. Considerations for developers

The heaviness analysis is especially useful for developers. As this study was motivated and accumulated from the author’s experience as an active developer of R packages, we proposed the following considerations from three different aspects from a developer’s perspective. Note the three aspects are associated while not isolated. In the following subsections, we discussed each aspect with several examples to demonstrate how heaviness analysis benefits developers. The dependency heaviness analysis for all example packages mentioned in this section can be accessed in the heaviness database in pkgndep.

9.1. How to properly handle the dependency of a package?

It is a good practice to keep package dependency as simple as possible. However, there is always a balance between the compactness of dependencies and the comprehensiveness of a package’s functionalities. If a package has a parent showing high heaviness (e.g., with high MHP), it is a sign that reduction of the dependency complexity should be considered. We have the following three suggestions that developers may consider.

First, if package P only imports one or a small amount of simple functions from its parent A, heavy dependencies from A can be avoided by directly implementing functions with the same functionalities as the original ones. For example, as we have demonstrated in our previous study (Gu and Hübschmann 2022), the package mapstats has a heavy parent Hmisc with heaviness of 49 where only a single function capitalize() is imported to mapstats. capitalize() is an extremely simple function that only capitalizes the first letter of a word. It can be easily re-implemented by developer’s own to get rid of the 49 unnecessary dependencies.

Second, on CRAN/Bioconductor, it is common that there are several packages providing the same functionalities for an analysis task. Then if P depends on a heavy parent, the developer can look for a light dependency package which provides the same functionality as the heavy one. For example, the package biovizBase has a heavy parent Hmisc with heaviness of 30 where a single function bezier() is imported to biovizBase. bezier() is for generating Bézier curves and the use of Hmisc can be replaced with other lighter packages that also generate Bézier curves, e.g., a package called bezier but with zero additional dependency. As a note, this optimization on biovizBase is even more meaningful because the reduction of the 30 extra dependencies on biovizBase can additionally reduce the dependencies of its 631 downstream packages with an average reduced dependencies of 20 for each package.

Third, Some packages aim to be a “toolkit” to provide comprehensive analysis by integrating many other packages. This increasing comprehensiveness also brings the expansion of dependencies. For example, the package singleCellTK provides comprehensive tools for analyzing single-cell RNASeq data by depending on 82 parents and in total 369 strong dependencies. This makes it very vulnerable to failures from upstream packages and it is not friendly for users to install. Nevertheless, for such toolkit packages, there are always core functionalities that are more frequently used by users and optional functionalities that are less used. The huge dependencies of such packages can be reduced by moving parents that only provide optional functionalities to weak parents, then it dramatically reduces the total strong dependencies (see methods in Section 3.2). Take the package cola which is also developed by the author as an example. cola provides consensus clustering analysis as its core functionality, and it also provides comprehensive functions for downstream analysis. According to our experience, we found some downstream analyses that depend on heavy parents are rarely used by users, thus, we set them as weak parents. With

https://jokergoo.github.io/software/
this strategy, the strong dependency of \textit{cola} was dramatically reduced from 252 to 64.

Nevertheless, there are also packages with no parent contributing significantly high dependency heaviness. In this case, optimizing the dependencies is difficult. An example is the package \textit{Seurat} which has 50 parents and 145 strong dependencies, but the heaviest parent only contributes 8 additional dependencies (MHP = 8), thus optimization on one or only a few parents won’t dramatically reduce dependencies of \textit{Seurat}. Besides that, there are also scenarios where reduction of heavy parents could not be performed: (i) A heavy parent provides core functionality to its child package; (ii) S4 methods or S4 classes are imported from a parent package; (iii) A child package depends on the C/C++ headers from a parent.

9.2. How is dependency heaviness accumulated to a package from upstream?

Dependencies from remote upstream cannot be directly controlled by the developer, but it is still useful for understanding how the heaviness is accumulated to his package. Here we take top packages with the highest adjusted HC (Section 7.3) as examples, because they also inherit huge dependency heaviness from their upstream and they play important roles in the ecosystem. Figure 14 illustrates upstream packages that transmit major dependency heaviness to top HC packages. In general, dependencies are transmitted in the long ranges, which agrees with the results in Section 7.3. We observed there are three different modes of dependency accumulation.

1. Heaviness is accumulated from multiple heavy parents. For example, package \textit{ecospat} inherits unique dependencies from \textit{ENMeval} (with a heaviness of 74 uniquely transmitted to \textit{ecospat}) and \textit{caret} (with a heaviness of 19 uniquely transmitted to \textit{ecospat}) separately.

2. A group of packages inherit heavy dependencies all from the same heavy upstream package. For example, package \textit{TraMineR}, \textit{taxize}, \textit{Gviz} and \textit{WGCNA} all inherit huge unique dependencies from the same upstream package \textit{Hmisc}.

3. The heaviness transmission can be traced back to a remote upstream package. As a typical example, dependency transmission to package \textit{RTCGA} can be traced back to the package \textit{car} which additionally affects several other packages. If tracing further to \textit{car}'s upstream, we can see the heavy dependencies are actually from the package \textit{testthat}.

Once we have revealed the upstream source of the heaviness, this leads us to the question which is asked in the next section: how does the dependency heaviness spread in the ecosystem from the “source”? In particular, we will explore the impacts of \textit{testthat} and \textit{Hmisc} on their downstream packages.

9.3. How to reduce the dependency heaviness spreading to the downstream?

When a package becomes popular in the ecosystem, it is very important for the developer to carefully manage its dependency size. If the developer introduces new features that need extra dependencies, he should be aware of the risks that are also brought to the ecosystem. We suggest the developer also paying attention to the current set of parents of his package, and trying to compact its dependency size.

According to our observation, there are still a large number of packages on CRAN/Bioconductor whose dependency sizes can be reduced. Here we take the package \textit{AnnotationDbi} as an example. \textit{AnnotationDbi} is a hub package that contributes dependency heaviness to 1,444 downstream packages in the ecosystem (with HD of 20.2, mainly on Bioconductor). It was also mentioned as a high impact package in Section 7.2.2 and Section 7.5.4. By exploring how \textit{AnnotationDbi}'s parents contribute their functionalities to \textit{AnnotationDbi}, we found a package \textit{KEGGREST} contributes 20 unique dependencies to \textit{AnnotationDbi} and these extra dependencies are transmitted to all downstream packages of \textit{AnnotationDbi}. A close inspection shows only one function \texttt{KeggList()} is imported to \textit{AnnotationDbi} and this functionality is very rarely used by its massive downstream packages. If \textit{KEGGREST} can be set as a weak parent of \textit{AnnotationDbi}, on average 9.5 dependencies can be reduced for every of its 1,444 downstream packages. This actually implies even a small re-

\footnote{S4 is an object oriented system in R.}
\footnote{Then the parent must be put in the “LinkingTo” field of the child package.}
duction of dependencies of a hub package will have a huge impact on the whole ecosystem.

It is also interesting to explore how dependencies from hub packages are transmitted to downstream packages in the ecosystem. This helps to reveal the “problematic sites” of the dependency transmission and later developers can propose possible solutions to fix them. We found the following two typical scenarios where heavy dependencies are improperly transmitted to the ecosystem and they can actually be avoided.

Inefficient use of a parent package. In Section 9.2, we revealed a long dependency heaviness transmission originated from testthat. A closer look shows testthat behaves as a hub package in the ecosystem which has 130 child packages and 1,304 indirect downstream packages, with HC of 18.2 and HID of 15.8 respectively. This is quite unexpected because testthat is a package mainly for package unit testing purpose and it is normally put in a package’s “Suggests” field. We found there are two reasons for its high impact in the ecosystem. First, majority of the heaviness from testthat are transmitted via its child package nloptr to downstream. In total 18,933 extra unique dependencies (81.3% of all from testthat) are transmitted to its 1,156 (80.6%) downstream packages via nloptr. nloptr declares testthat as its strong parent because nloptr performs unit testing on its C++ code which requires a header file from testthat, thus testthat must be put in its “LinkingTo” field. If by some means, nloptr can get rid of the strong dependency on testthat, e.g., by using another unit testing tool on C++ code, on average 16.4 dependency heaviness for each of its 1,156 downstream packages can be reduced.

Secondly, we also observed testthat is used inefficiently in its 129 other child packages (excluding nloptr). In these packages, developers use testthat to perform object validation in the source code, e.g., to compare whether two objects are equal (by `expect_equal(x, y)` or to validate a text output (e.g., by `expect_match(text)`) testthat provides comprehensive tools for unit testing on packages. While it would be too heavy if it is directly used in package’s source code just for simple validation. Actually, developers can replace `expect_*()` functions from testthat with self-implemented code very easily. For example `expect_equal(x, y)` can be replaced by `x == y` (assuming `x` and `y` are two scalars), and `expect_match(text, regexp)` can be replaced by `grepl(regexp, text)`. In this way, large amount of extra dependencies of testthat can be reduced.

A hub package providing a wide range of functionalities. If a hub package provides a wide range of functionalities, it is very likely that it also inherits a large number of packages from upstream (We have partially discussed it in Section 9.1). All the dependencies of the hub package are transmitted to the downstream even though child packages may only import a limited number of functions from it. Here we take the package dextra and Hmisc as two examples. dextra provides functionalities for package development, but in the ecosystem it has 80 child packages with HC of 47 and 15 indirect downstream with HID of 36.3. A deep inspection shows most of its child packages import the function `install_github()` to install dependencies that are directly from their development branches on GitHub. There are two possible optimizations. First, dependency on dextra can be set as a weak parent because dextra does not contribute to the functionalities of its child packages. And second, the installation functionality in dextra can be separated into a new and light package. Actually, `install_github()` has already been moved to a new package remotes and developers can consider to migrate from dextra to remotes.

As a second example, also as we have mentioned in Section 7.22 and Section 9.2, Hmisc behaves as a heavy hub package with 248 child packages (with HC of 29.4) and 383 indirect downstream packages (with HID of 20). Hmisc, as its name tells, provides a huge collection of functions for “data analysis, high-level graphics, utility operations, functions for computing sample size and power, simulation, importing and annotating datasets, imputing missing values, advanced table making, variable clustering, character string manipulation, conversion of R objects to LaTeX and HTML code, and recording variables”. It has 18 parents and in total 67 strong dependencies from upstream. The dependency heaviness analysis on Hmisc reveals ggplot2, viridis and htmlTable contribute majority (59.7%) of dependencies to Hmisc. The first two are for data visualization and the last one is for report generation. A deep inspection of how Hmisc is used in its child packages shows the visualization and reporting are very rarely used. Thus, similar as dextra, if Hmisc can separate its visualization and reporting parts out as a separated package, it can save on average 18.5 extra dependencies for every of its 631 downstream packages.

10. Discussion

Dependency analysis is an important topic for studying package ecosystems. One of the aims is to discover top packages that have major impacts on the dependency transmission in the ecosystem. Number of dependents is a widely-used metric that measures the local impact of how important a package is in contributing to other packages’ functionalities (Mora-Cantallops et al. 2020b; Korkmaz et al. 2019). By taking the ecosystem as a whole, researchers studied the vulnerability of packages to the failures caused by recursive dependencies from upstream.

[23] The downstream dependency graph of testthat can be accessed in the heaviness database in pkgndep.

[25] https://r-pkgs.org/testing-basics.html

[27] The first version of remotes was released in 2016.

[29] https://CRAN.R-project.org/package=Hmisc

[30] Heaviness analysis of Hmisc can be performed in the heaviness database in pkgndep.
Then, a more useful metric, the number of transitive dependencies, is proposed \cite{Mora-Cantallops2020b, Decan2019}. Besides the transitive effects accumulated from upstream, researchers also looked at the number of transitive dependents to study the indirect influences on downstream of the ecosystem \cite{Decan2019, Abate2009}. Although these metrics are useful for understanding the attributes of the ecosystem, they are used as descriptive statistics in current studies \cite{Decan2019}. These analyses are usually global and they are limited for developers because they provide almost no practical help on how to manage dependencies of their packages. After high impact packages are discovered from the ecosystem, naturally there will be the follow-up questions to ask, such as how the dependencies are transmitted from upstream to the high impact packages or how the dependencies are transmitted from the high impact packages to downstream? This may bring more questions such as can we find the most important part of the dependency transmission in the ecosystem? As a package may have multiple dependencies, either direct or transitive, it is quite common that individual dependencies have different levels of influences on the package. This implies, to understand the ecosystem deeper, we need to shift the focus from package-centered to dependency relation-centered, i.e., to find which dependency relation is more important with regard to transmitting dependencies. For this purpose, we proposed a new metric named “dependency heaviness” which quantitatively measures the unique contribution of dependency from a parent to a child. Dependency heaviness is also based on transitive dependencies, but it measures from a different aspect. With this metric, we can easily identify which parents are heavy with regards to how they contribute dependencies to a child package.

Based on the direct dependency heaviness from a parent to a child, we extended the heaviness definitions to a broader range to study the patterns of unique dependency flows in the ecosystem. We aimed to answer the question of how the dependencies are uniquely transmitted through the ecosystem. We first explored the heavy dependency inheritance from parent and upstream packages. This analysis might be less interesting for software engineering because top packages with this metric are basically special cases. They are preferably located at the end of the dependency transmission chain and with no dependents, thus having no large impact on the ecosystem. But as they inherit heavy dependencies from upstream, it is still interesting to explore how the dependencies are accumulated. We found the deeper a package is located in the ecosystem, the more likely it inherits heavier dependencies.

We next explored how packages transmit unique dependencies to the downstream of the ecosystem with two metrics of HC and HID. This analysis is more important because top packages with the highest HC or HID have major impacts on the dependency transmission in the ecosystem. HC is a more practical metric because it also measures the expected number of additional dependencies if a package is included as a new parent of a developer’s package. HC, although it is also summarized from all its child packages, can generate different results from current studies. For example, the package Rcpp has 2,795 child packages and it is the package with the third most child packages in the ecosystem. As a hub package, code breaks of Rcpp will affect a large number of other packages. In this sense, Rcpp can be treated as the source of the “risk” in the ecosystem. However, from the aspect of dependency heaviness, it only has a HC of 0.58, which means it is an extremely light package. HC and HID focus more on the role of a package as an intermediate package receiving dependencies from upstream and transmitting to downstream. So they are more like bi-directional metrics of the dependency transmission. Additionally, HC and HID focus more on the influences on individual packages while not on the whole set of dependents.

We applied network analysis on the dependency graph. Being different from network analysis in current studies which take the graph as unweighted \cite{Mora-Cantallops2020b}, we studied the graph by weighting edges with dependency heaviness. In this way, we can distinguish which relations are more important in the graph. Based on the edge weights, we extracted a core graph and key paths that transmit major dependencies in the ecosystem. A deeper analysis on the dependency graph revealed heavy dependencies can be accumulated from very far upstream, and hub packages transmit heavy dependencies most locally.

We have implemented the complete analysis as a web-based database that can be easily accessed from the pkgdep package. The database provides detailed statistics for various heaviness metrics both from upstream and downstream packages. It also provides comprehensive dependency analysis for individual packages. It helps developers understand how the dependencies are accumulated to their packages from the ecosystem and how the dependencies spread to the downstream of their packages. We have extensively used it to study the dependency chains of example packages in Section 10.28

11. Limitations and future work

In Section 7.1 we studied patterns of maximal heaviness from parents (MHP) in the ecosystem. As we have demonstrated, if a package suffers heavy dependencies from its parents, in many cases, the heaviest parent dominantly contributes unique dependencies to it. Nevertheless, there are still cases where there are more than one dominantly heavy parents. For example, the package pathwayTMB\footnote{pathwayTMB inherits 215 strong dependencies from its 16 parent packages.} has two heaviest parents of clusterProfiler and survminer which contribute dependency heaviness of 62 and 55 mutually exclusively. One reasonable hypothesis is that if package P has more than one heavy parent, these heavy parents...
are responsible for different analysis tasks in \(P \). Indeed, for the two heavy parents of \texttt{pathwayTMB}, \texttt{clusterProfiler} performs gene set enrichment analysis and \texttt{survminer} performs survival analysis, thus they introduce dependencies from different sources. Nevertheless, such scenarios where \(P \) has multiple heavy parents should not be often, but it provides a complementary view on the ecosystem.

In Section 4.3, we defined the co-heaviness metric from two parents. We can define co-heaviness from more than two parents in a similar way. However, as co-heaviness only measures the unique number of dependencies that a group of parents simultaneously bring in, with considering more parents, the co-heaviness value will decrease and it would not be a proper metric for studying the ecosystem.

Our study was only focused on the CRAN and Bioconductor ecosystems. There are also a great number of R packages only hosted on GitHub. Since CRAN and Bioconductor packages are not allowed to depend on GitHub packages, it would be interesting to study how the dependencies heaviness is transmitted to GitHub packages. Since GitHub packages are more for experimental purposes, one hypothesis is that GitHub packages may suffer more from heavy parents.

Evolution of the package ecosystem is also a popular topic in software engineering (German et al., 2013; Kikas et al., 2017; Mora-Cantalops et al., 2020) which studies the longitudinal change of packages as well as their dependency relations over time. In particular, we think the following two topics might be worth exploring. 1. We can study the dependency changes after a high impact package was introduced to the ecosystem. For example, \texttt{tidyverse} was introduced to CRAN in 2016. Since then, it has become a core package for data analysis. \texttt{tidyverse} is a heavy package with HC of 48.4 and it would be interesting to study how it changes the dependency structure of the ecosystem. 2. Specific for Bioconductor, it would be interesting to study the dependency structure change along with the evolution of high-throughput technologies, e.g., in the era of microarray, genomics, single cell transcriptomics, and multi-omics.\footnote{An example of the timeline can be found at \url{https://carpentries-incubator.github.io/bioc-project/02-introduction-to-bioconductor/index.html}} This might help to answer the question: does more advanced technology make the corresponding tools more complex? Finally, we hope the study presented in this paper as well as the \texttt{pkgndep} package can give developers new insights to properly maintain and optimize dependencies of their packages, then to build a healthier and more robust R ecosystem in the future.

In Section 9, we manually explored that heavy dependencies of a group of packages can be traced back to the upstream package \texttt{nlme} which inherits large dependencies from \texttt{testthat}. This analysis is important because it helps to find out the “source” of the heavy dependency transmission. Then the question is how to reveal such “source packages” systematically and automatically? To answer this question, we can look at a parent package \(A \) and its child \(P \) from two aspects. First, the dependency transmission from \(A \) to \(P \) is influential in the ecosystem where \(A \) contributes a huge amount of dependency heaviness to the downstream via \(P \). Let’s denote the total amount of dependency heaviness from \(A \) to its downstream via \(P \) as \(h_{d, \text{total}}^{A \rightarrow P} \). Using the same denotations in Equation 6, it can be calculated as

\[
h_{d, \text{total}}^{A \rightarrow P} = \sum_{k=1}^{K_A} (n_{1k} - n_{2k}) \cdot I(A_k \in S_d^P)
\]

where \(A_k \) is \(A \)'s \(k \)th downstream package and \(S_d^P \) is the set of \(P \)'s downstream packages. Second, heavy dependencies transmitted to \(A \)'s downstream via \(P \) are not originated from \(A \)'s parents. Let’s denote \(A \)'s MHP parent as \(B \), then we can quantitatively measure the level of \(A \rightarrow P \) being a source of the heaviness transmission denoted as \(s^{A \rightarrow P} \) by

\[
s^{A \rightarrow P} = h_{d, \text{total}}^{A \rightarrow P} - h_{d, \text{total}}^{B \rightarrow P}.
\]

In this way, if \(A \) is the source of heaviness transmission via \(P \), \(h_{d, \text{total}}^{B \rightarrow P} \) will be small which makes \(s^{A \rightarrow P} \) being a large value; while if most of the heaviness is still from \(A \)'s parent \(B \), \(h_{d, \text{total}}^{A \rightarrow P} \) and \(h_{d, \text{total}}^{B \rightarrow P} \) would be similar which makes \(s^{A \rightarrow P} \) being a small value.

The dependency heaviness analysis can be extended to ecosystems in other programming languages. Theoretically, definitions of various heaviness metrics have no assumption of which package ecosystem to use, and they can be universally applied as long as a global dependency graph is available. Similar as \texttt{pkgndep}, we plan to implement a general purpose tool that supports many other package ecosystems also with a web-based analysis platform for them.

12. Conclusion

We performed a systematic analysis on the dependency heaviness landscape of the R package ecosystem. We revealed the general patterns of the dependency transmission locally from parent to child packages, also remotely from upstream to downstream packages. Using network analysis approaches, we revealed top packages and key paths that play significant roles in transmitting dependencies in the ecosystem. The complete analysis has been implemented as a web-based database and we believe it will facilitate researchers as well as R package developers to better understand the R package ecosystem and to build more robust software.
CRediT authorship contribution statement

Zuguang Gu: Conceptualization; Formal analysis; Investigation; Methodology; Software; Visualization; Writing - original draft; Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

All data as well as the web-based dependency database are available in the pkgndep R package https://CRAN.R-project.org/package=pkgndep. How to access the data is described in Section §. The use of the heaviness database is described in Section §. pkgndep version 1.2.* can be used to reproduce the analysis in this study.

Acknowledgements

This study did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

Abate, P., Di Cosmo, R., Boender, J., Zacchiolo, S., 2009. Strong dependencies between software components, in: Proceedings of the 2009 3rd International Symposium on Empirical Software Engineering and Measurement, IEEE Computer Society, USA. p. 89–99. doi:10.1109/ESEM.2009.5316017

Bogart, C., Kastner, C., Herbsleb, J., Thung, F., 2016. How to break an API: Cost negotiation and community values in three software ecosystems, in: Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, Association for Computing Machinery, New York, NY, USA. p. 109–120. doi:10.1145/2950290.2950326

Bommarito, M.J., Bommarito, E., 2021. An empirical analysis of the R package ecosystem. doi:10.2139/esa.r.3788978

Burns, B., Lamb, J., Qi, J., 2021. pkgnet: get network representation of an R package. URL: https://CRAN.R-project.org/package=pkgnet

Chang, W., Cheng, J., Allaire, J., Sievert, C., Schloerke, B., Xie, Y., Allen, J., McPherson, J., Dipert, A., Borges, B., 2022. shiny: Web Application Framework for R. URL: https://CRAN.R-project.org/package=shiny

Claes, M., Mens, T., Grossejean, P., 2014. On the maintainability of CRAN packages, in: 2014 Software Evolution Week - IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE), pp. 308–312. doi:10.1109/CSMR-WCRE.2014.6747183

Csardi, G., Nepusz, T., 2006. The igraph software package for complex network research. InterJournal Complex Systems, 1695. URL: https://igraph.org

de Vries, A., 2022. minicran: create a mini version of CRAN containing only selected packages. URL: https://CRAN.R-project.org/package=minicran

Decan, A., Mens, T., Claes, M., 2016a. On the topology of package dependency networks: A comparison of three programming language ecosystems, in: Proceedings of the 10th European Conference on Software Architecture Workshops, Association for Computing Machinery, New York, NY, USA. pp. 1–4. doi:10.1145/2993412.3003382

Decan, A., Mens, T., Grossejean, P., 2016b. When GitHub meets CRAN: An analysis of inter-repository package dependency problems, in: 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER), pp. 493–504. doi:10.1109/SANER.2016.12

Decan, A., Mens, T., Claes, M., 2019. An empirical comparison of dependency network evolution in seven software packaging ecosystems. Empirical Software Engineering 24, 381–416. doi:10.1007/s10664-017-9589-y

Elton, D.C., 2018. Stretched exponential relaxation. doi:10.48550/ARXIV.1808.00881

Fortuna, M.A., Bonachela, J.A., Levin, S.A., 2011. Evolution of a modular software network. Proceedings of the National Academy of Sciences 108, 19985–19989. doi:10.1073/pnas.1115960108

German, D.M., Adams, B., Hassan, A.E., 2013. The evolution of the R software ecosystem, in: 2013 17th European Conference on Software Maintenance and Reengineering, pp. 243–252. doi:10.1109/CSMR.2013.33

Grombund, G., Wickham, H., 2016. R for Data Science. O’Reilly Media, Inc., Sebastopol, CA.

Gu, Z., Hülsmann, D., 2022. Pkgdep: a tool for analyzing dependency heaviness of R packages. Bioinformatics 38, 4248–4251. doi:10.1093/bioinformatics/btat649

Gustavson, A., J. Pai, Shradhha, Isserlin, Ruth, Demchak, Barry, Pico, R., A., 2019. Rcy3: Network biology using cytoscape from within r. F1000Research doi:10.12688/f1000research.20887.3

Haefliger, S., von Krogh, G., Spaeth, S., 2008. Code reuse in open source software. Management Science 54, 180–193. doi:10.1287/ msc.1070.0748

Horvitz, K. Lligadas, U., Zeleiis, A., 2021. Changes on CRAN 2021-07-01 to 2021-12-31. The R Journal 13. URL: https://journal.r-proj ect.org/archive/2021-2

Huber, W., Carey, V.J., Gentleman, R., Anders, S., Carlson, M., Carvalho, B.S., Bravo, H.C., Davis, S., Gatto, L., Girke, T., Gottardo, R., Hahne, F., Hansen, K.D., Irizarry, R.A., Lawrence, M., Love, M.I., MacDonald, J., Obenchain, V., Oles, A.K., Pages, H., Reyes, A., Shannon, P., Smyth, G.K., Tenenbaum, D., Waldron, L., Morgan, M., 2015. Orchestrating high-throughput genonomic analysis with Bioconductor. Nature Methods 12, 115–121. doi:10.1038/ meth.3292

Jafari, A.J., Costa, D.E., Abdalkareem, R., Shihab, E., Tan- talis, N., 2021. Dependency smells in JavaScript projects. IEEE Transactions on Software Engineering , 1–10. doi:10.1109/ tse.2021.3106247

Kikas, R., Gousios, G., Dumas, M., Pfahlf, D., 2017. Structure and evolution of package dependency networks, in: 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR), pp. 102–112. doi:10.1109/MSR.2017.55

Korkmaz, G., Kelling, C., Robbins, C., Keller, S., 2019. Modeling the impact of Python and R packages using dependency and contributor networks. Social Network Analysis and Mining 10, 7. doi:10.1007/s13278-019-0619-1

Mora-Cantallops, M., Sicilia, M.A., García-Barriocanal, E., Sánchez-Alonso, S., 2020a. Dependency and Software 170, 110744. doi:10.1016/j.jses.2020.110744

R Core Team, 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. URL: https://www.R-project.org/
visualise and explore the deep dependencies of R packages. URL: https://CRAN.R-project.org/package=deepdep
Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T., 2003. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research 13, 2498–2504. doi:10.1101/gr.1239303
Srikanth, K., Nikhil, S., 2018. pkggraph: A consistent and intuitive platform to explore the dependencies of packages on the Comprehensive R Archive Network Like Repositories. URL: https://CRAN.R-project.org/package=pkggraph
Venables, W.N., Ripley, B.D., 2002. Modern Applied Statistics with S. Springer New York, NY, New York.
Vidoni, M., 2021. Software Engineering and R Programming: A Call for Research. The R Journal 13, 6–14. doi:10.32614/RJ-2021-108
Wang, X.F., Chen, G., 2003. Complex networks: small-world, scale-free and beyond. IEEE Circuits and Systems Magazine 3, 6–20. doi:10.1109/MCAS.2003.1228503
Wilke, C.O., 2019. Fundamentals of Data Visualization. O’Reilly Media, Inc., Sebastopol, CA.
Xie, Y., 2015. Dynamic Documents with R and knitr. Chapman and Hall/CRC, Boca Raton, Florida.