Influence of aging and chronic heart failure on temporal dispersion of myocardial repolarization

Gianfranco Piccirillo¹
Federica Moscucci¹
Matteo Pascucci¹
Maria Antonella Pappadà¹
Gaetana D’Alessandro¹
Pietro Rossi²
Raffaele Quaglione¹
Daniele Di Barba¹
Francesco Barillà¹
Damiano Magri³

¹Department of Cardiovascular, Respiratory, Nephrological and Geriatric Sciences, Policlinico Umberto I, “Sapienza” University of Rome, Rome, Italy; ²Division of Cardiology, S. Giovanni Calibita Fatebenefratelli Hospital, Rome, Italy; ³Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, “Sapienza” University of Rome, Rome, Italy

Background and purpose: QT and Tpeak-Tend (Te) intervals are associated with sudden cardiac death in patients with chronic heart failure (CHF). We studied age-dependent influence on short-term temporal dispersion of these two variables in patients with postischemic CHF.

Method: We grouped 75 CHF and 53 healthy control subjects into three age subsets: ≤50 years, >50 years and ≤65 years, and >65 years. We then calculated the following indices: QT and Te variability index (QTVI and TeVI), the ratio between the short-term variability (STV) of QT or Te, and the STV of resting rate (RR) (QT/RR STV and Te/RR STV).

Results: In all different age subgroups, patients with CHF showed a higher level of QTVI than age-matched control subjects (≤50 years: P < 0.0001; >50 years and ≤65 years: P < 0.05; >65 years: P < 0.05). Patients with CHF ≤50 years old also had all repolarization variability indices higher than normal age-matched controls (TeVI, P < 0.05; QT/RR STV, P < 0.05; Te/RR STV, P < 0.05), whereas we did not find any difference between the two older classes of subjects. Both QTVI (r²: 0.178, P < 0.05) and TeVI (r²: 0.433, P < 0.001) were positively related to age in normal subjects, even if the first correlation was weaker than the second one.

Conclusion: Our data showed that QTVI could be used in all ages to evaluate repolarization temporal liability, whereas the other indices are deeply influenced by age. Probably, the age-dependent increase in QTVI was more influenced by a reduction of RR variability reported in older normal subjects.

Keywords: aging, QT variability, heart rate variability, chronic heart failure, sudden death

Introduction
Malignant ventricular arrhythmias are common complications of chronic heart failure (CHF) induced by myocardial infarction. Senescence¹–² and CHF³–⁴ strongly influence the cardiovascular autonomic control and myocardial repolarization phase.⁵–⁹ Indeed, both these conditions are able to increase α-adrenoreceptor-mediated peripheral resistance¹ and to reduce β-adrenergic adrenoreceptor¹⁰ and baroreflex function,¹⁰,¹¹ with a consistent decrease of heart rate variability.¹²–¹⁶ The increase of temporal dispersion of the repolarization ventricular phase¹⁷–⁵ and the reduction of heart rate variability²⁵–²⁷ are risk factors for ventricular malignant arrhythmias and sudden cardiac death (SCD) and non-SCD. Aging²⁸–³⁰ and CHF¹¹ are clear pathogenetic factors able to induce ventricular arrhythmogenesis. Neurohumoral activation,⁵,⁶,¹² electroanatomical remodeling,³³,³⁴ chronic inflammatory condition,³⁵ and endothelial dysfunction³⁶–³⁹ are well-recognized causes of ventricular arrhythmia in patients with CHF. Elderly patients with CHF show higher proneness for the malignant ventricular arrhythmias because these subjects have lower levels of functional reserve capable of...
resisting arrhythmogenesis. Although the influence of CHF and aging on ventricular arrhythmias is well known, the underlying pathogenic mechanisms are not yet completely understood. Particularly, the impact of aging on markers of repolarization’s temporal dispersion during CHF has not been clarified. In a recent large community-based study, an increased risk of SCD has been found related to a prolonged T\textsubscript{peak} - T\textsubscript{end} interval (Te).6 In addition, in patients with CHF and SCD, a higher temporal dispersion was reported.3

All in all, we analyzed QT interval (from Q to end T wave electrocardiogram [ECG]) variability index (QTVI) and short-term variability (STV) of QT in CHF subjects with different ages, in order to individuate a possible age-dependent influence on these markers. Finally, we calculated the same indices of variability on the last part of the T wave (considering the peak and end of the T wave) to observe a peculiar age-related effect on this important part of repolarization.

Methods

Study subjects

For this study we selected 75 outpatients (63 men and 12 woman) who had stable CHF secondary to ischemic dilated cardiomyopathy, and 53 healthy control subjects (41 men and 12 women). We defined clinically stable patients as those who had not been hospitalized or had their therapy adjusted or had experienced any other acute coronary artery or noncoronary event during the past 3 months. All participants had undergone revascularization either cutaneously or by aortocoronary bypass at least 3 months before the study. None of the patients had malignancy, primary valve disease, atrial fibrillation, premature complexes (one premature complex per minute was permitted), or other arrhythmias likely to interfere with heart rate and QT analysis. None of the patients was New York Heart Association class IV. Before the study, none of the subjects had a documented history of cardiac arrest, ventricular tachycardia, or fibrillation. We suggested that all patients with ejection fraction \(< 35\%\) underwent an implantable cardioverter/defibrillator device.

To detect possible statistical differences related to age we divided each of the two study groups into three age subsets: \(\leq 50\) years, \(> 50\) years and \(\leq 65\) years, and \(> 65\) years.

Study protocol and offline data analysis

After a 10-minute rest lying down, each subject underwent a 5-minute, single ECG lead recording during controlled breathing (15 breaths per minute, 0.25 Hz). All digitized signal recordings were analyzed by a single physician (GP) blinded to the subjects’ circumstances.

We measured the following intervals from the respective time series of ECG recordings: resting rate (RR), QT (from the Q wave to the T wave end), and Te (from the T peak to T wave end). We therefore calculated mean and variance values of each of these intervals and then used the original formula proposed by Berger et al41 to calculate three different QT variability indices:

\[
\text{QTVI} = \log_{10}\left(\frac{\text{QT variance}}{(\text{QT mean})^2}\right)\left(\frac{\text{RR variance}}{(\text{RR mean})^2}\right)
\]

\[
\text{TeVI} = \log_{10}\left(\frac{\text{T_peak variance}}{(\text{T_mean})^2}\right)\left(\frac{\text{RR variance}}{(\text{RR mean})^2}\right)
\]

Software for data acquisition and storage and for spectral analysis were designed and produced by our research group and are described in detail elsewhere.7,9,42-45

Finally, we used all ECG recordings to measure the STV of the aforementioned intervals. This variable was calculated following the standard method, namely by using the first 60 consecutive beats (STV\textsubscript{60}46,47) and also by using the total number of beats in the whole 5-minute recording (STV\textsubscript{T}). The formula used was:

\[
\text{STV}_{60} = \sum [D_{n+1} - D_n] (60 \times \sqrt{2})
\]

\[
\text{STV}_T = \sum [D_{n+1} - D_n] (\text{total beats number} \times \sqrt{2})
\]

where D was the duration of RR or QTe, or Te interval. Consequently, we were able to obtain the following six STV indices: RR STV\textsubscript{60}, QT STV\textsubscript{60}, Te STV\textsubscript{60}, RR STV\textsubscript{T}, QTe STV\textsubscript{T}, and Te STV\textsubscript{T}.

Finally, we calculated the following ratio between the different STVs:

\[
\frac{\text{QT/RR}}{\text{STV}_{60}} = \frac{\text{QT STV}_{60}}{\text{RR STV}_{60}};
\]

\[
\frac{\text{Te/RR}}{\text{STV}_{60}} = \frac{\text{Te STV}_{60}}{\text{RR STV}_{60}};
\]

\[
\frac{\text{QT/RR}}{\text{STV}_T} = \frac{\text{QT STV}_T}{\text{RR STV}_T};
\]

\[
\frac{\text{Te/RR}}{\text{STV}_T} = \frac{\text{Te STV}_T}{\text{RR STV}_T}.
\]

Moreover, from the same 5-minute ECG segment, the corrected QT and Te intervals were obtained according to the formulas proposed by Bazett (QT/RR0.5; QT; Te/RR0.5), Friedericia (QT/RR0.5; Te/RR0.33), Lilly (QT/RR0.4; T/RR0.4), and Framingham (QT\textsubscript{+} \([0.154 \times (1000 - \text{RR})]\); Te+ \([0.154 \times (1000 - \text{RR})]\)).

Statistical analysis

Unless otherwise indicated, all data are expressed as means ± standard deviation. Data with skewed distribution are given as median and interquartile range (75th percentile–25th percentile).
Categorical variables were analyzed with the \(\chi^2 \) test. One-way analysis of variance and the Bonferroni test were used to compare data for the normally distributed variables. Kruskal–Wallis and Mann–Whitney tests were used to compare non-normally distributed variables (as evaluated by the Kolmogorov–Smirnov test). To detect possible statistical differences related to age, we divided each of the two study groups into three age subsets: \(\leq50 \) years, \(>50 \) years and \(\leq65 \) years, and \(\geq65 \) years.

Stepwise multiple regression analysis was used to determine possible relationships between the studied variables. \(P \)-values \(\leq0.05 \) were considered statistically significant. All data were evaluated with the database SPSS-PC+ (SPSS-PC+ Inc, Chicago, IL, USA).

Results

We examined 128 subjects, 75 with CHF and 53 healthy controls. The clinical characteristics of subjects enrolled in the study are shown in Table 1.

Age, body mass index, and sex distribution did not differ significantly between the two groups, whereas heart rate, diastolic arterial pressure, left ventricular ejection fraction, and QT interval differed significantly (Table 1). Both subgroups had a similar mean intergroup age (Table 2).

The younger CHF group showed a reduction of RR variance in comparison with the age-matched healthy controls, whereas only the older CHF group reported a longer RR\(_{mean}\) than controls (Table 3). Only elderly subjects had a significantly larger QT\(_{mean}\) (\(P < 0.05 \)), QT variance (\(P < 0.05 \)), and Te\(_{mean}\) (\(P < 0.05 \)) than age-matched healthy controls. Furthermore, the middle-aged group showed a QT\(_{variance}\) (\(P < 0.05 \)) significantly higher than age-matched controls (Table 3). In all subsets, independently from age, the CHF group showed a significantly higher QTVI (\(P < 0.001 \)) than age-matched controls, but only the younger CHF group had all other QT variability values significantly higher (TeV\(_i\)) (\(P < 0.05 \), QT/RR STV\(_{60}\), Te/RR STV\(_{60}\), QT/RR STV\(_{1}\), QT/RR STV\(_{1}\)) in comparison with age-matched controls (Table 4). In the middle-aged and elderly CHF groups we did not find any differences for the other repolarization variables (Table 4).

We did not find any difference between the three CHF groups in respect of the RR and QT variables (Tables 3 and 4). RR\(_{variance}\) (\(P < 0.001 \)) was significantly higher in younger and middle-aged control subjects than older subjects (Table 3), and this variable was also significantly higher in younger controls compared with healthy middle-aged subjects. Te (\(P < 0.05 \)) was higher in younger and middle-aged control subjects than older subjects (Table 3). On the other hand, Te\(_{variance}\) (\(P < 0.05 \)) was higher in the two younger groups than the older normal subjects.

In the control group, all temporal dispersion variables (QTVI, TeV\(_i\), QT/RR STV\(_{60}\), Te/RR STV\(_{60}\), QT/RR STV\(_{1}\), Te/RR STV\(_{1}\)) were significantly lower in the younger group in comparison with the older subjects (\(P < 0.05 \)) (Table 4). QTVI, TeV\(_i\), QT/RR STV\(_{1}\), and Te/RR STV\(_{1}\) were lower in the middle-aged subjects than in the older ones. Only QTVI results were significantly lower in the younger control group compared with the middle-aged group (Table 4).

Table 1 General characteristics of study sample

Characteristics	Chronic heart failure	Healthy controls	\(P \) values
	\(N = 75 \)	\(N = 53 \)	
Age, years	64 ± 13	60 ± 15	0.452
Male/female	63/12	41/12	0.275
BMI, kg/m\(^2\)	26 ± 4	26 ± 3	0.155
HR, beats/min	66 ± 11	68 ± 10	0.329
Systolic blood pressure, mmHg	123 ± 26	122 ± 17	0.700
Diastolic blood pressure, mmHg	66 ± 15	75 ± 11	0.002
Left ventricular ejection fraction, %	40 ± 10	57 ± 4	0.0001
QT, ms	375 ± 58	353 ± 26	0.007
QT\(_{normal}\), ms	389 ± 51	372 ± 20	0.017
QT\(_{end}, ms\)	384 ± 51	366 ± 19	0.008
QT\(_{rs}, ms\)	386 ± 51	361 ± 19	0.011
QT\(_{corrected}, ms\)	385 ± 51	368 ± 18	0.012
NYHA class, I/II/III	10/46/19	0	0.0001
Serum K, mmEq/L	4.2	4.1	0.842
\(\beta \)-blockers	35	0	0.0001
Furosemide	33	0	0.0001
ACEI/Sartans	56	5	0.0001
Spironolactone	22	0	0.0001
Digoxin	13	0	0.0001
Amiodorone	11	0	0.017

Note: Data are expressed as means ± standard deviation.

Abbreviations: BMI, body mass index; HR, heart rate; NYHA, New York Heart Association; ACEI, angiotensin converting enzyme; ms, milliseconds; mmEq/L, milliequivalents per liter.

Table 2 Mean age of subjects in the three age-subgroups

Age subgroups	Chronic heart failure	Healthy controls	\(P \) values
\(\leq50 \) years	46 ± 4	44 ± 3	0.371
\(n = 19 \)	\(n = 17 \)		
\(>50 \leq65 \) years	58 ± 3	57 ± 4	0.342
\(n = 21 \)	\(n = 18 \)		
\(\geq65 \) years	75 ± 6	77 ± 4	0.317
\(n = 35 \)	\(n = 18 \)		

Note: Data are expressed as means ± standard deviation.
Table 3 RR interval and QT dynamics data according to age and presence of chronic heart failure

Table 4 QT variability indices according to age and presence of chronic heart failure

Notes: Data are expressed as median and interquartile range (75th–25th). *P < 0.05 Group 1 vs Group 2; **P < 0.05 Group 1 vs Group 3; ***P < 0.05 Group 2 vs Group 3; ****P < 0.001 Group 2 vs Group 3.

Abbreviations: QTVI, QT variability index; TeVI, T wave variance, ms; RR mean or variance, waves interval; ms, milliseconds; QT interval mean or variance.
emphasized that CHF leads to a prolongation and dispersion of action potential duration that is quantitatively more pronounced in respect of pure aging. Specifically, functional downregulation of potassium current and an alteration in depolarizing sodium and calcium currents are responsible for electrical remodeling, with a consequent increase in QT temporal dispersion in CHF. Our data, besides confirming that QT variability-derived indices are significantly higher in patients with CHF compared with healthy controls, suggest that aging might represent a confounding factor for a number of them but not for QTVI. Initially, our data also suggested through which mechanisms QTVI remains a solid marker of myocardial repolarization lability despite aging. Indeed, in patients with CHF aged \(\leq 50 \) years, QTVI suffers because of extremely low RR variance values, whereas, considering those patients with CHF aged \(> 50 \) years, QTVI was much worse, as indicated by a marked increase in QT variance. Thus, it could be hypothesized that in relatively young patients with CHF, an increased QTVI might mirror a sinus node dysfunction due to a prevalent autonomic nervous system control derangement, whereas, with aging, QTVI mainly reflects an altered myocardial repolarization phase. A possible reason underlying a major role of sinus node dysfunction in worsening QTVI of young patients with CHF could be represented by the well-known age-related decline in heart rate variability.

Evidence indicates that an increased Te interval is related to SCD, and also recent research from our group showed an increased temporal dispersion of the last part of repolarization (TeVI) in patients with CHF and SCD, as well as in an animal model with pacing-induced heart failure (TeVI, Te/STVT). However, the pathophysiologic meaning of this ECG interval still remains controversial.
Some authors believe that Te is a reliable noninvasive marker of transmural repolarization gradient, whereas others affirm that this period reflects the total spatial ventricular repolarization dispersion.41,46,51 Notably, clinical and experimental evidence indicates that Te should be considered as a marker of I_k function, especially during sympathetic activation.52,53 Indeed, an enhancement in I_k was reported after a β-adrenergic stimulation, the latter leading to an elevation of intracellular cyclic adenosine monophosphate (cAMP) and an activation of protein kinase A.54 Supporting this datum, it was reported that subjects with concealed type 1 long QT reported a significant increase of Te interval during an infusion of epinephrine,55 again favoring a close link between adrenergic burst and I_k activity. Our current data seem to identify a possible role of Te-derived indices only when considering those patients with CHF aged \leq50 years. However, a real comparison is impossible given the different population enrolled and the lack of a follow-up. A possible explanation, albeit merely speculative, could be that aging per se, due to a downregulation of β-adrenoreceptor expression and function, could affect Te-derived indices, leading to an age-related loss of their diagnostic utility in patients with CHF. Accordingly, we can hypothesize that, between all indices of myocardial repolarization dispersion, QTVI might remain the only one that could be used to point out an increased SCD risk regardless of patients’ age, whereas Te indices should be useful just in middle-aged patients.

Conclusion

Our data demonstrate a deep influence of age on the short-term variability of repolarization phases, and tend to suggest that only QTVI is able to characterize temporal myocardial repolarization lability in patients with CHF regardless of aging.
Disclosure

The authors report no conflicts of interest in this work.

References

1. Hotta H, Uchida S. Aging of the autonomic nervous system and possible improvements in autonomic activity using somatic afferent stimulation. Geriatr Gerontol Int. 2010;10:S127–S136.
2. Kaye DM, Ester MD. Autonomic control of the aging heart. Neuro Molecular Medicine. 2008;10:179–186.
3. Kishi T. Heart failure as an autonomic nervous system dysfunction. J Cardiol. 2012;59:117–122.
4. Piccirillo G, Ogawa M, Song J, Chong VJ, Jongh B, Han S, et al. Power spectral analysis of heart rate variability and autonomic nervous system activity measured directly in healthy dogs and dogs with tachycardia-induced heart failure. Heart Rhythm. 2009;6:546–552.
5. Piccirillo G, Rossi P, Mitra M, et al. Indexes of temporal myocardial repolarization dispersion and sudden cardiac death in heart failure: any difference? Ann Noninvasive Electrocardiol. 2012; DOI:10.1111/anec.12005.
6. Piccirillo G, Magri D, Pappadá MA, Maruotti A, Ogawa M, Han S, et al. Autonomic nerve activity and the short term variability of T_{peak-T_end} in dogs with pacing-induced heart failure. Heart Rhythm. 2012;9:2044–2050.
7. Piccirillo G, Magri D, Ogawa M, Song J, Chong VJ, Han S, et al. Autonomic nervous system activity measured directly and QT interval variability in normal and pacing-induced tachycardia heart failure dogs. J Am Coll Cardiol. 2009;54:840–850.
8. Piccirillo G, Cacciafesta M, Lionetti M, Nocco M, Di Giuseppe V, Moisè A, et al. The influence of age, the autonomic nervous system and anxiety on QT interval variability. Clin Sci. 2001;101:429–438.
9. Piccirillo G, Magnanti M, Matera S, Di Carlo S, De Laurentis T, Torrini A, et al. Age and QT variability index in free breathing, controlled breathing and tilt in patients with chronic heart failure and healthy control subjects. Transl Res. 2006;146:72–78.
10. Janzewska AJ, Lakatta EG. Modulation of sarcoplasmic reticulum Ca^{2+} cycling in systolic and diastolic heart failure associated with aging. Heart Fail Rev. 2010;15:431–445.
11. Piccirillo G, Cacciafesta M, Viola E, et al. Influence of aging on cardiac baroreflex sensitivity determined noninvasively by power spectral analysis. Clin Sci. 2001;100:267–274.
12. Piccirillo G, Di Giuseppe V, Nocco M, Lionetti M, Naco C, Tallarico D, et al. Influence of aging and other cardiovascular risk factors on baroreflex sensitivity. J Am Geriatr Soc. 2001;49:1055–1069.
13. Piccirillo G, Fimognari FL, Viola E, Marigliano G. Age-adjusted normal confidence intervals for heart rate variability in healthy subjects during head-up tilt. Int J Cardiol. 1995;50:117–124.
14. Colosimo A, Giuliani A, Mancini AM, Piccirillo G, Marigliano V. Estimating a cardiac age by means of heart rate variability. Am J Physiol. 1997;273:H1841–H1847.
15. Piccirillo G, Bucca C, Bauco C, Cinti AM, Michele D, Fimognari FL, et al. Power spectral analysis of heart rate in subjects over a hundred years old. Int J Cardiol. 1998;63:53–61.
16. Piccirillo G, Magri D, Naco C, di Carlo S, Moisè A, De Laurentis T, et al. Factors influencing heart rate variability power spectral analysis during controlled breathing in patients with chronic heart failure or hypertension and in healthy normotensive subjects. Clin Sci (Lond). 2004;107:183–190.
17. Tereshchenko LG, Cygankiewicz I, McNitt S, Vazquez R, Bayes-Genis A, Han L, et al. Predictive value of beat-to-beat QT variability index across the continuum of left ventricular dysfunction: competing risks of noncardiac or cardiovascular death and sudden or nonsudden cardiac death. Circ Arrhythm Electrophysiol. 2012;5:719–727.
18. Dobson CP, La Rovere MT, Pinna GD, Goldstein R, Olsen C, Bernardinelli M, et al. QT variability index on 24-hour Holter independently predicts mortality in patients with heart failure: analysis of GISSI-HF trial data. Heart Rhythm. 2011;8:1237–1242.
19. Dobson CP, La Rovere MT, Olsen C, Bernardinelli M, Veniani M, Midi P, et al. 24-hour QT variability in heart failure. J Electrocardiol. 2009;42:500–504.
20. Haigney MC, Zarewa W, Nasir JM, McNitt S, Hackenius D, GentlekJ PJ, et al; MADIT II investigators. Gender differences and risk of ventricular tachycardia or ventricular fibrillation. Heart Rhythm. 2009;6:180–186.
21. Piccirillo G, Magri D, Matera S, Magnanti M, Torrini A, Pasquazzi E, et al. QT variability strongly predicts sudden cardiac death in asymptomatic subjects with mild or moderate left ventricular systolic dysfunction: a prospective study. Eur J Heart J. 2007;28:1344–1350.
22. Haigney MC, Zarewa W, GentlekJ PJ, Goldstein RE, Illowsky M, McNitt S, et al; Multicenter Automatic Defibrillator Implantation Trial II investigators. QT interval variability and spontaneous ventricular tachycardia or fibrillation in the Multicenter Automatic Defibrillator Implantation Trial (MADIT II). J Am Coll Cardiol. 2004;44:1481–1487.
23. Atiga WL, Calkins H, Lawrence JH, Tomasselli GF, Smith JM, Berger RD. Beat-to-beat repolarization liability identifies patients at risk for sudden cardiac death. J Cardiovasc Electrophysiol. 1998;9:899–908.
24. Piccirillo G, Magri D, Matera S, Magnanti M, Pasquazzi E, Schiavo E, et al. Effects of pink grapefruit juice on QT variability in patients with dilated or hypertensive cardiomyopathy and in healthy subjects. Transl Res. 2008;151:267–272.
25. Piccirillo G, Magri D, di Carlo S, De Laurentis T, Torrini A, Matera S, et al. Influence of cardiac-resynchronization therapy on heart rate and blood pressure variability: 1-year follow-up. Eur J Heart Fail. 2006;8:716–722.
26. Huijker HV, Stein PK. Clinical application of heart rate variability after acute myocardial infarction. Front Physiol. 2012;3:41.
27. Thayer JF, Yamamoto SS, Brosschot JF. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiol. 2010;141:122–131.
28. Cooper LL, Odening KE, Hwang MS, Chaves L, Schofield L, Taylor CA, et al. Electromechanical and structural alterations in the aging rabbit heart and aorta. Am J Physiol Heart Circ Physiol. 2012;302:H1625–H1635.
29. Bapat A, Nguyen TP, Lee JH, Sovari AA, Fishbein MC, Weiss JN, Karagueuzian HS. Enhanced sensitivity of aged fibrotic hearts to angiotensin II- and hypoxia-induced early after depolarization-mediated ventricular arrhythmias. Am J Physiol Heart Circ Physiol. 2012;302:H2331–H2340.
30. Morita N, Sovari AA, Xie Y, Fishbein MC, Mandel WJ, Garfinkel A, et al. Increased susceptibility of aged hearts to ventricular fibrillation during oxidative stress. Am J Physiol Heart Circ Physiol. 2009;297:H1594–H1605.
31. Alba T, Tomasselli GF. Electrical remodelling of the failing heart. Curr Opin Cardiol. 2010;25:29–36.
32. Zucker IH, Patel KP, Schultz HD. Neurohumoral stimulation. Heart Fail Clin. 2012;8:87–99.
33. Han S, Kobayashi K, Jongh B, Piccirillo G, Maruyama M, Vinters HV, et al. Effects of pink grapefruit juice on QT variability in patients with dilated or hypertensive cardiomyopathy. Circ Arrhythm Electrophysiol. 2009;2:180–186.
34. Ajijola OA, Wisco JJ, Lambert HW, Mahajan A, Stark E, Fishbein MC, Shivkumar K. Extracardiac neural remodeling in humans with cardiomyopathy. Circ Arrhythm Electrophysiol. 2012;5:1010–1116.
35. Rossi P, Ricci A, De Paulis R, Papi E, Pavacci H, Porcelli D, et al. Epacridial ganglionated plexus stimulation decreases post-operative inflammatory response in humans. Heart Rhythm. 2012;9:943–950.
36. Brack KE, Coote JH, Ng GA. Vagus nerve stimulation protects against ventricular fibrillation independent of muscarinic receptor activation. Cardiovasc Res. 2011;91:437–446.
37. Hassanabad ZF, Furman BL, Parratt JR, Aughey E. Coronary endothelial dysfunction increases the severity of ischaemia-induced ventricular arrhythmias in rat isolated perfused hearts. *Basic Res Cardiol.* 1998;93:241–249.

38. Piccirillo G, Quaglione R, Fimognari F, Moisè A, Mario M, Lionetti M, et al. Influence of L-arginine and vitamin C on the autonomic nervous system in chronic heart failure secondary to ischemic cardiomyopathy. *Am J Cardiol.* 2004;93:650–654.

39. Piccirillo G, Nocco M, Moisè A, et al. Influence of vitamin C on baroreflex sensitivity in chronic heart failure. *Hypertension.* 2003;41:1240–1245.

40. Panikkath R, Reinier K, Uy-Evanado A, Teodorescu C, Hattenhauer J, Mariani R, et al. Prolonged Tpeak-to-Tend interval on the resting ECG is associated with increased risk of sudden cardiac death. *Circ Arrhythm Electrophysiol.* 2011;4:441–447.

41. Berger RD, Kasper EK, Baughman KL, Marban E, Calkins H, Tomaselli GF. Beat-to-beat QT interval variability. Novel evidence for repolarization lability in ischemic and nonischemic dilated cardiomyopathy. *Circulation.* 1997;96:1557–1565.

42. Magri D, Piccirillo G, Bucci E, Pignatelli G, Cauti FM, Morino S, et al. Increased temporal dispersion of myocardial repolarization in myotonic dystrophy type 1: beyond the cardiac conduction system. *Int J Cardiol.* 2012;156:259–264.

43. Piccirillo G, Magri D, Mitra M, Rua A, Zicari E, Stromillo ML, et al. Increased QT variability in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. *Eur J Neurol.* 2008;15:1216–1221.

44. Magri D, Scioneri S, Fedele F, Gualdi G, Casciani E, Pugliese P, et al. Increased QT variability in young asymptomatic patients with beta-thalassemia major. *Eur J Haematol.* 2007;79:322–329.

45. Magri D, Piccirillo G, Quaglione R, Dell’armi A, Mitra M, Velitti S, et al. Effect of acute mental stress on heart rate and QT variability in postmyocardial infarction patients. *ISRN Cardiol.* 2012;912672.

46. Thomsen MB, Oros A, Schoenmakers M, et al. Proarrhythmic electrical remodeling is associated with increased beat-to-beat variability of repolarization. *Cardiovasc Res.* 2007;73:521–530.

47. Oosterhoff P, Tereshchenko LG, van der Heyden MA, et al. Short-term variability of repolarization predicts ventricular tachycardia and sudden cardiac death in patients with structural heart disease: a comparison with QT variability index. *Heart Rhythm.* 2011;8:1584–1590.

48. Janczewski AM, Lakatta EG. Modulation of sarcoplasmic reticulum Ca²⁺ in systolic and diastolic heart failure. *Heart Rev.* 2010;15:431–445.

49. Ocorr K, Reeves NL, Wessells RJ, Fink M, Chen HS, Akasaka T, et al. KCNQ potassium channel mutations cause cardiac arrhythmias in Drosophila that mimic the effects of aging. *PNAS.* 2007;104:3943–3948.

50. Aiba T, Tomaselli GF. Electrical remodeling in the failing heart. *Curr Opin Cardiol.* 2010;25:26–36.

51. Patel C, Burke JF, Patel H, et al. Is there a significant transmural gradient in repolarization time in the intact heart? Cellular basis of the T wave: a century of controversy. *Circ Arrhythm Electrophysiol.* 2009;2:80–88.

52. Xia Y, Liang Y, Kongstad O, et al. In vivo validation of the coincidence of the peak and end of the T wave with full repolarization of the epicardium and endocardium in swine. *Heart Rhythm.* 2005;2:162–169.

53. Izumi D, Chinushi M, Iijima K, et al. The peak-to-end of the T wave in the limb ECG leads reflects total spatial rather than transmural dispersion of ventricular repolarization in an anephelirin-A model of prolonged QT interval. *Heart Rhythm.* 2012;9:796–803.

54. Cheng JH, Kodama I. Two components of delayed rectifier K⁺ current in heart: molecular basis, functional diversity, and contribution to repolarization. *Acta Pharmacol Sin.* 2004;25:137–145.

55. Shimizu W, Noda T, Takaki H, Kurita T, Nagaya N, Satomi K, et al. Epinephrine unmasks latent mutation carriers with LQT1 form of congenital long-QT syndrome. *J Am Coll Cardiol.* 2003;41:633–642.