The HCCL Speaker Verification System for Far-Field Speaker Verification Challenge

Zhuo Li1,2, Ce Fang1,2, Runqiu Xiao1,2, Zhigao Chen1,2, Wenchao Wang1,2, Yonghong Yan1,2,3

1Key Laboratory of Speech Acoustics and Content Understanding, Institute of Acoustics, Chinese Academy of Sciences, Beijing, China
2University of Chinese Academy of Sciences, Beijing, China
3Xinjiang Key Laboratory of Minority Speech and Language Information Processing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
{lizhuo,fangce,xiaorunqiu,chenzhigao,wangwenchao,yanyonghong}@hccl.ioa.ac.cn

Abstract
This paper describes the systems submitted by team HCCL to the Far-Field Speaker Verification Challenge. Our previous work in the Alshell Speaker Verification Challenge 2019 shows that the powerful modeling abilities of Neural Network architectures can provide exceptional performance for this kind of task. Therefore, in this challenge, we focus on constructing deep Neural Network architectures based on TDNN, Resnet and Res2net blocks. Most of the developed systems consist of Neural Network embeddings are applied with PLDA backend. Firstly, the speed perturbation method is applied to augment data and significant performance improvements are achieved. Then, we explore the use of AMsoftmax loss function and propose to join a CE-loss branch when we train model using AMsoftmax loss. In addition, the impact of score normalization on performance is also investigated. The final system, a fusion of four systems, achieves minDCF 0.5342, EER 5.05\% on task1 eval set, and achieves minDCF 0.5193, EER 5.47\% on task3 eval set.

Index Terms: speaker verification, speed perturbation, text-dependent, ftdnn, Resnet, Res2net, AMsoftmax loss

1. Introduction
In the past decade, with the development of deep learning, speaker verification technology has significantly advanced in telephone channel and close-talking. Recently, due to its extensive applications in smart home and smart city, speaker verification under far-field and complex environment has aroused great interest in research and authentic applications. However, with the adverse impacts of the long-range fading, room reverberation, and complex environmental noises, etc., far-field speaker verification is still challenging.

In this paper, we describe the speaker verification systems developed by the team HCCL for the FFSVC2020 challenge1. The challenge aims to benchmark the state-of-the-art speaker verification technology under far-field and noisy conditions, meanwhile, promote the development of new ideas and techniques in speaker verification. The challenge has three tasks, far-field text-dependent speaker verification from single microphone array, far-field text-independent speaker verification from single microphone array and far-field text-dependent speaker verification from distributed microphone array. Our team mainly participate in task1 and task3.

According to our prior work in the Alshell Speaker Verification Challenge 20192, we explore several deep speaker embedding extractors based on TDNN(Time Delay Neural Network), Resnet(Residual Neural Network),3 Res2net blocks and Res2net blocks in this challenge. In addition, the impact of data augmentation, loss function, backend strategies and score normalization techniques on systems performance is also analyzed.

2. System description
This section describes the systems we develop for the FFSVC2020 challenge. Firstly, we introduce the datasets, data augmentation and spectral feature used in model training. Secondly, we introduce several state-of-the-art models, including the common TDNN xvector architecture4, ETDNN(Extended TDNN) xvector architecture5, FTDNN(Factorized TDNN) xvector architecture6, Resnet7,8 architecture and Res2net9 architecture. Specially, we explore a unique resnet model, Res2net50 model, which proposed in paper9. Thirdly, we explore the use of AMsoftmax(Additive Margin Softmax)10 loss to improve the performance. Finally, some backend methods, such as PLDA(Probabilistic Linear Discriminant Analysis)11, EDA(Enrollment Data Augmentation)12, ASnorm(Adaptive Symmetric Score Normalization)13 and scores fusions are described.

2.1. Training data preparation
The training sets used in our experiments are VoxCeleb114,15, Alshell16,17,18, HIMIA19 and part of the DMASH Dataset that FFSVC202021 provides.

The challenge provides a training set with 120 speakers, and a development set with 35 speakers. The HIMIA dataset has 254 speakers in the training set and 42 speakers in the development set. There are 405 speakers in total after excluding duplicates in two data sets. For each text-dependent utterance in the HIMIA dataset, we use the recordings from four recording devices, which include one 25cm distance microphone and three randomly selected microphone arrays (4 channels per array). For the sake of clarity, the datasets notations are defined as in table11.

In order to increase the number of speakers in the HIMIA dataset and FFSVC dataset, the speed perturbation22 method is introduced to create copies of the original signal with speed factors of 0.8, 0.9 and 1.1 using standard Kaldi23 speed perturbation recipe. Because the speed perturbation results in changed speed spectrum, the copies are considered to belong to another speaker which differs from the original. In this way,
the number of speakers grows a lot. For the purpose of increasing the amount and the diversity of the training data, all training data, including copies created by the speed perturbation, is augmented by using the freely available MUSAN [25] and RIRs datasets, creating four corrupted copies of the original recordings with Kaldi recipe.

Table 1: Datasets Notations

notation	datasets	augmentation	num spks
Vox	Voxceleb 1+2	noise aug	7363
FFSVC405	FFSVCdata + HiMIA	noise aug	405
FFSVC1215	FFSVCdata + HiMIA	noise + speed	405*3
FFSVC1620	FFSVCdata + HiMIA	noise + speed	405*4

2.4. Loss Function

Recent studies have shown that AMsoftmax loss has greatly improved performance in the field of speaker verification [26]. We also use AMsoftmax in this challenge. Meanwhile, we add CELoss branch to the network to do joint training. The AMsoftmax loss function is formulated as:

\[L_{AMS} = \frac{1}{N} \sum_{i} -\log \frac{e^{x_{i} \cdot (y_{i} - \mu)}}{e^{x_{i} \cdot (y_{i} - \mu)} + \sum_{j \neq y_{i}} e^{x_{i} \cdot (y_{j} - \mu)}} \]

where \(s \) is a scale factor and \(m \) is the margin factor.

2.5. Backend

In this work, either CS(cosine similarity) or PLDA is used for scoring. Additionally, EDA and ASnorm are also applied.

2.5.1. Enrollment Data Augmentation

There is a large mismatch between the enrollment and the test utterances because of the different recording environments. Recent researches have shown that it’s an effective method to relif this mismatch by using MUSAN and RIRs dataset to augment enrollment utterances [25][21]. The final enrollment embedding is obtained by averaging the embedding from the original utterance and the augmented versions.

2.5.2. Score Normalization

Finally, ASnorm scheme is also adopted as proposed in [16]. For every pair \((x_1, x_2)\), the normalized score can be calculated as follows:

\[\hat{S}(x_1, x_2) = \frac{S(x_1, x_2) - \mu_1}{\sigma_1} + \frac{S(x_1, x_2) - \mu_2}{\sigma_2} \]

Here, \(\mu_1 \) and \(\sigma_1 \) are calculated by matching \(x_k \) against the cohort set and similarly for \(\mu_2 \) and \(\sigma_2 \). Means and standard deviations are calculated using a set of \(N \) best scoring impostors.

3. Implementation, Result and Analyze

We develop three series of systems based on TDNN and Resnet blocks, including Resnet systems used pyTorch, TDNN systems used Kaldi [24], TDNN systems used pyTorch. The first series are built using pyTorch, and based on Resnet and Res2net model. The second series are built using the Kaldi toolkit, and the TDNN and ETDNN xvector models are first pre-trained, then FFSVC2020 train-dataset and HIMIA dataset are used to finetune the model. The third series are built using pyTorch, and the ETDNN and FTDNN xvector models are trained only using FFSVC2020 train-dataset and HIMIA dataset. In addition, we explain the naming rules which is followed throughout this paper for all systems. The naming rules are divided into two categories, finetune and non-finetune. The first is named as \(\langle \text{the training data used for base model}\rangle\langle\text{-feature}\rangle\langle\text{-architecture}\rangle\langle\text{-the training data used for finetune}\rangle\langle\text{-feature}\rangle\langle\text{-architecture}\rangle\langle\text{-loss function}\rangle \). Considering the number of speakers in FFSVC405, finetune is a good transfer learning method for this challenge. The Resnet34
model, which described in [10], is pre-trained with 1211 speakers in Vox1-MFB. The widths (number of channels) of the residual blocks used in our experiments are [32,64,128,256]. In this stage, the model is trained using stochastic gradient descent with weight decay 1e-4 and momentum 0.9. The learning rate is set to 0.1, 0.01, 0.001 and is switched when the training loss plateaus. After the pre-trained model converges, FFSVC405-MFB is used to finetune the model with the learning rate 0.001.

FFSVC405-MFB-Resnet34: For comparison, the resnet34 model is directly trained with FFSVC405-MFB. Stochastic gradient descent optimization is used with weight decay 1e-4 and momentum 0.9. The learning rate is set to 0.1, 0.01, 0.001 and is switched when the training loss plateaus. In order to facilitate the training of PLDA, the embedding size is expanded from the original 128 dimensions to 512 dimensions. The impact of embedding size on performance is also explored by comparative experiments. Meanwhile, Spectrum masking [27] is used in our training stage, and masking 5%-10% of the Spectrogram for each utterance. The results are summarized in Table 2 and all scores in this Table use CS for scoring. It could find that embedding size has no effect on system performance, spectrum masking can yield a 3%-5% relative improvement in EER and minDCF; finetune can yield about 8% relative improvement in EER and 2%-4% improvement in minDCF.

Table 2: Research of mask and embedding size

system	embedding size	mask	minDCF	EER
Vox1-MFB	128	no	0.721	6.49
-Resnet34	128	yes	0.690	6.22
FFSVC405	512	no	0.719	6.49
-MFB-finetune	512	yes	0.677	6.28
FFSVC405	128	no	0.738	7.16
-MFB-Resnet34	128	yes	0.705	6.75
	512	no	0.729	6.98
	512	yes	0.722	6.78

Vox1-MFB-Resnet34-FFSVC1215-MFB-finetune: This extractor is similar to Vox1-MFB-Resnet34-FFSVC405-MFB-finetune, with the difference of using FFSVC1215-MFB to finetune.

Alshell-MFB-Resnet34-FFSVC1215-MFB-finetune: This extractor is similar to Vox1-MFB-Resnet34-FFSVC1215-MFB-finetune, with the difference of using Alshell-MFB, 2401 spks, to pre-train the model.

FFSVC1215-MFB-Resnet34: This extractor is similar to FFSVC1215-MFB-Resnet34, with the difference of using FFSVC1215-MFB to finetune.

FFSVC1215-MFB-Resnet50: This extractor is similar to FFSVC1215-MFB-Resnet34, with the difference of using Res2net50 embedding extractor, with width 16 and scale 4.

FFSVC1620-MFB-Resnet34: This extractor is similar to FFSVC405-MFB-Resnet34, with the difference of using FFSVC1215-MFB to finetune.

FFSVC1620-MFB-Resnet50: This extractor is similar to FFSVC1215-MFB-Resnet34, with the difference of using Res2net50 embedding extractor.

The results of this six systems are summarized in Table 3. It could find that the dataset used for pre-training has little effect on the final performance, and finetune is no longer effective when the number of speakers in datasets is comparable to the pre-training set. It is interesting that speed perturbation with speed factors of 0.9 and 1.1 achieves about 10% relative improvement in EER and 6% improvement in minDCF. Therefore, we draw the conclusion that speed perturbation is an effective data augmentation method to prevent over-fitting when numbers of speakers is not enough. In addition, Res2net blocks improves the performance by 3% relatively compared to Resnet blocks. Res2net blocks could get more receptive field to improve the multi-scale feature extraction ability by using scale and width so that Res2net blocks obtains better performance than Resnet blocks.

Table 3: Results of series of Resnet systems

system	minDCF	EER
Vox1-MFB-Resnet34-FFSVC1215-MFB-finetune	0.689	6.13
Alshell-MFB-Resnet34-FFSVC1215-MFB-finetune	0.695	6.02
FFSVC1215-MFB-Resnet34	0.648	5.62
FFSVC1215-MFB-Resnet50	0.630	5.49
FFSVC1620-MFB-Resnet34	0.639	5.37
FFSVC1620-MFB-Resnet50	0.620	5.30

3.2. TDNN systems used Kaldi

All systems in this series are implemented with Kaldi and MFC are used as input feature. In addition, all embeddings are transformed to 200 dimension using LDA, and then unit-length normalization and standard PLDA are applied. LDA/PLDA is trained on the finetune dataset. Here, xvector represents the common TDNN xvector model.

Alshell-MFC-xvector-FFSVC1620-MFC-finetune: According to the Resnet series systems, Alshell-MFC is used to pre-train xvector model, then FFSVC1620-MFC is used to finetune. The model is finetuned with an initial learning rate of 0.001 and a final learning rate of 0.0001.

AIshell-MFC-xvector-FFSVC405-MFC-finetune: This extractor is similar to Alshell-MFC-xvector-FFSVC1620-MFC-finetune, with the difference of using FFSVC405-MFC to finetune.

AIshell-MFC-ETDNN-FFSVC1620-MFC-finetune: This extractor is similar to Alshell-MFC-xvector-FFSVC1620-MFC-finetune. However, the model to pre-train is ETDNN xvector.

Alshell-MFC-xvector-FFSVC1215-MFC-finetune: This extractor is similar to Alshell-MFC-xvector-FFSVC1620-MFC-finetune, with the difference of the finetune dataset. Only part of FFSVC1215-MFC is used to finetune the base model. During the finetune stage, the accuracy of the training dataset increases rapidly to 99%, and the valid dataset is also rapidly maintained at 96%. So, we attempt to increase difficulty by remove the clean data from close-talking mic in the HIMIA dataset. Meanwhile, considering to channel mismatch between the close-talking enrollment utterance from cellphone and the far-field testing speech from microphone, the recordings from 25cm distance cellphone in The DMASH dataset is not removed. In addition, the impact of the learning rate during finetune stage is explored in our experiments. We attempt to fix the first 6 layers with the learning rate of 0.001-0.0001, and then we un-fix the first layer with the learning rate of 0.0001-0.00005, we named this system Alshell-MFC-xvector-FFSVC1215-MFC-finetune-V02. The results of these five systems are shown in Table 3.

3.3. TDNN systems used pyTorch

All systems in this series are implemented with pyTorch and use MFB as input feature. Particularly, AMS represents the AMSof-
Table 4: Research of backend technique

System	cosine PLDA scoring	Asnorm	
	minDCF EER	minDCF EER	minDCF EER
FFSVC1620-MFB-Resnet34	0.639 5.37	0.630 5.33	0.561 5.24
FFSVC1620-MFB-Res2net50	0.621 5.30	0.621 5.22	0.547 5.16
AlShell-MFCC-xvector-FFSVC1215-MFCC-finetune	- -	0.576 5.20	0.514 4.67
FFSVC1215-MFB-FTDNN-CEAMS	0.555 5.19	0.534 4.72	0.508 4.61

Table 5: Results of series of TDNN-Kaldi systems

System	minDCF EER
AlShell-MFCC-xvector-FFSVC405-MFCC-finetune	0.768 7.36
FFSVC1620-MFCC-finetune	0.612 5.82
FFSVC1215-MFCC-finetune	0.671 6.21
FFSVC1215-MFCC-finetune-V02	0.576 5.20

max loss is adopted in model training. CEAMS represents that the CE-loss branch is added when we train the models using AMsoftmax loss.

FFSVC1215-MFB-ETDNN-AMS: This extractor is similar to FFSVC1215-MFB-Resnet34, with the difference of using ETDNN model and AMsoftmax loss function. Parameters m and s are respectively equal to 0.1 and 30 during the whole training stage. In addition, weight decay uses 1e-3.

FFSVC1215-MFB-FTDNN-AMS: This extractor is similar to FFSVC1215-MFB-ETDNN-AMS, with the difference of using FTDNN model.

FFSVC1215-MFB-FTDNN-CEAMS: This extractor is similar to FFSVC1215-MFB-FTDNN-AMS, with the difference of using CEAMSsoftmax loss. During the training stage using AMsoftmax loss, the training process is extremely unstable, and is very prone to overfit, especially when parameters m is greater than 0.1. Although the copies which are created by using speed perturbation is considered to belong to different speakers, it’s similar to the original signal to some extent. In addition, deep network is prone to overfit when small-scale training data is available, not to mention similar utterances. To address this problems, CE-loss is added to the network to guide and assist the model training in the early stage. We first add a CE-loss class prediction branch to conventional feedforward architecture in parallel with the AMsoftmax-loss class prediction branch, in practice, the CE-loss class prediction branch is added after the statistics pooling layer of the FTDNN network, and has the same network structure as the AMsoftmax-loss branch. The weight of CE-loss is set to 1.0, 0.5, 0.1 and is switched when the training loss plateaus.

FFSVC1620-MFB-FTDNN-CEAMS: This extractor is similar to FFSVC1215-MFB-FTDNN-AMS, with the difference of using FFSVC1215-MFB.

Table 6: Results of series of TDNN-pyTorch systems

System	minDCF EER
FFSVC1215-MFB-ETDNN-AMS	0.698 6.57
FFSVC1215-MFB-FTDNN-AMS	0.609 6.27
FFSVC1215-MFB-FTDNN-CEAMS	0.555 5.21
FFSVC1620-MFB-FTDNN-CEAMS	0.534 5.18

The results of the above four models are summarized in Table 4. During the experiment, the model training stability has been greatly improved after adding CE-loss branch, and it achieves about 8% relative improvement in minDCF and 16% improvement in EER.

3.4. Backend

We select four of the best models to do backend scoring. The methods we use includes LDA, PLDA, ASnorm and score fusion. All of the four models use PLDA scoring and ASnorm. Firstly, for systems implemented with pytorch, we transform the centered, whitened, and unit-length normalized embeddings by LDA, without dimensionality reduction. Then, one Gaussian PLDA is trained either on FFSVC1215 or FFSVC1620 set. Finally, we use ASnorm to post-process the PLDA verification. We use the eval set and dev set as each other's cohort set. For each enrollment from 25cm distance cellphone, we randomly select 2700 single far-field microphone arrays from the cohort set to score with it, each testing utterance is similar. Then we select the top 5% of sorted cohort scores to calculate the normalization. The result of these four systems are shown in Table 4.

3.5. Submitted system and result

We submit the fusion results of the above four systems. Considering that task1 and task3 are similar, we use the same models in these two tasks. These four systems are re-named as follows, FFSVC1620-MFB-Resnet34 named system A, FFSVC1215-MFB-Res2net50 named system B, AlShell-MFCC-xvector-FFSVC1215-MFCC-finetune named system C, FFSVC1215-MFB-FTDNN-CEAMS named system D. The fusion results are summarized in Table 7.

Table 7: results of submitted systems

System	task1 dev minDCF EER	task1 eval minDCF EER	task3 eval minDCF EER
A+C+D	0.442 3.88	0.549 5.08	0.526 5.61
A+B+C+D	0.427 3.70	0.534 5.05	0.519 5.47

4. Conclusions

In this paper, we detail every aspects of our systems submitted to FFSVC2020 challenge. We describe the usage of data sets, the strategy of data augmentation, various embedding extractors, backend technique. Our data augmentation strategy is greatly helpful when only small-scale training data is available. In addition, AMsoftmax loss will be easier to utilize after adding CE-loss branch. Res2net block could improve performance by getting multi-scale feature information. The above three points might be useful to other researchers. Finally, we don’t make full use of the information between multi-channel, we will explore how to utilize these informations in the future.

5. Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (Nos. 11590772,11590770).
6. References

[1] X. Qin, M. Li, H. Bu, R. K. Das, W. Rao, S. Narayanan, and H. Li, “The fisrc 2020 evaluation plan,” arXiv preprint arXiv:2002.00387, 2020.

[2] X. Qin, H. Bu, and M. Li, “Hi-mia: A far-field text-dependent speaker verification database and the baselines,” in 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020, pp. 7609–7614.

[3] D. Snyder, D. Garcia-Romero, and D. Povey, “Time delay deep neural network-based universal background models for speaker recognition,” in 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU). IEEE, 2015, pp. 92–97.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.

[5] S. Gao, M.-M. Cheng, K. Zhao, X.-Y. Zhang, M.-H. Yang, and P. H. Torr, “Res2net: A new multi-scale backbone architecture,” IEEE transactions on pattern analysis and machine intelligence, 2019.

[6] D. Snyder, D. Garcia-Romero, D. Povey, and S. Khudanpur, “Deep neural network embeddings for text-independent speaker verification.” in Interspeech, 2017, pp. 999–1003.

[7] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur, “X-vectors: Robust dnn embeddings for speaker recognition,” in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018, pp. 5329–5333.

[8] D. Snyder, D. Garcia-Romero, G. Sell, A. McCree, D. Povey, and S. Khudanpur, “Speaker recognition for multi-speaker conversations using x-vectors,” in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 5796–5800.

[9] D. Povey, G. Cheng, Y. Wang, K. Li, H. Xu, M. Yarmohammadi, and S. Khudanpur, “Semi-orthogonal low-rank matrix factorization for deep neural networks.” in Interspeech, 2018, pp. 3743–3747.

[10] W. Cai, J. Chen, and M. Li, “Exploring the encoding layer and loss function in end-to-end speaker and language recognition system.” in Proc. of Odyssey, 2018, pp. 74–81.

[11] J. Villalba, N. Chen, D. Snyder, D. Garcia-Romero, A. McCree, G. Sell, J. Borststrom, L. P. Garcia-Peraula, F. Richardson, R. Dehak et al., “State-of-the-art speaker recognition with neural network embeddings in nist sre18 and speakers in the wild evaluations,” Computer Speech & Language, vol. 60, p. 101026, 2020.

[12] A. Gusev, V. Volchkov, T. Andzhukaev, S. Novoselov, G. Lavrenyeva, M. Volkova, A. Gazizullina, A. Shulipa, A. Gorlanov, A. Avdeeva et al., “Deep speaker embeddings for far-field speaker recognition on short utterances,” arXiv preprint arXiv:2002.06033, 2020.

[13] F. Wang, J. Cheng, W. Liu, and H. Liu, “Additive margin softmax for face verification,” IEEE Signal Processing Letters, vol. 25, no. 7, pp. 926–930, 2018.

[14] S. Ioffe, “Probabilistic linear discriminant analysis,” in European Conference on Computer Vision. Springer, 2006, pp. 531–542.

[15] S. J. Prince and J. H. Elder, “Probabilistic linear discriminant analysis for inferences about identity,” in 2007 IEEE 11th International Conference on Computer Vision. IEEE, 2007, pp. 1–8.

[16] S. Cumani, P. D. Batzu, D. Colibro, C. Vair, P. Laface, and V. Vasilakakis, “Comparison of speaker recognition approaches for real applications,” in Twelfth Annual Conference of the International Speech Communication Association, 2011.

[17] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: a large-scale speaker identification dataset,” arXiv preprint arXiv:1706.08612, 2017.

[18] J. S. Chung, A. Nagrani, and A. Zisserman, “Voxceleb2: Deep speaker recognition,” arXiv preprint arXiv:1806.05922, 2018.