Liu, Wei; Röckner, Michael; Luís da Silva, José
Strong dissipativity of generalized time-fractional derivatives and quasi-linear (stochastic) partial differential equations. (English) Zbl 1469.35227
J. Funct. Anal. 281, No. 8, Article ID 109135, 34 p. (2021).

Summary: In this paper strong dissipativity of generalized time-fractional derivatives on Gelfand triples of properly in time weighted L^p-path spaces is proved. In particular, as special cases the classical Caputo derivative and other fractional derivatives appearing in applications are included. As a consequence one obtains the existence and uniqueness of solutions to evolution equations on Gelfand triples with generalized time-fractional derivatives. These equations are of type
\[
\frac{d}{dt}(k \ast u)(t) + A(t, u(t)) = f(t), \quad 0 < t < T,
\]
with (in general nonlinear) operators $A(t, \cdot)$ satisfying general weak monotonicity conditions. Here k is a non-increasing locally Lebesgue-integrable nonnegative function on $[0, \infty)$ with $\lim_{s \to \infty} k(s) = 0$. Analogous results for the case, where f is replaced by a time-fractional additive noise, are obtained as well. Applications include generalized time-fractional quasi-linear (stochastic) partial differential equations. In particular, time-fractional (stochastic) porous medium and fast diffusion equations with ordinary or fractional Laplace operators and the time-fractional (stochastic) p-Laplace equation are covered.

MSC:

35R11 Fractional partial differential equations
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35K59 Quasilinear parabolic equations
76S05 Flows in porous media; filtration; seepage
26A33 Fractional derivatives and integrals
45K05 Integro-partial differential equations
35K92 Quasilinear parabolic equations with p-Laplacian

Keywords:
generalized time-fractional derivative; strong dissipativity; weak monotonicity; generalized porous medium equation

Full Text: DOI arXiv

References:

[1] Allen, M.; Caffarelli, L.; Vasseur, A., A parabolic problem with a fractional time derivative, Arch. Ration. Mech. Anal., 221, 2, 603-630 (2016) · Zbl 1338.35428
[2] Allouba, H.; Xiao, Y., L-Kuramoto-Sivashinsky SPDEs vs. time-fractional SPIDEs: exact continuity and gradient moduli, 1/2-derivative criticality, and laws, J. Differ. Equ., 263, 2, 1552-1610 (2017) · Zbl 1454.60085
[3] Atanackovic, T. M.; Pilipovic, S.; Zorica, D., Time distributed-order diffusion-wave equation. I, II, (Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 465 (2009), The Royal Society), 1869-1891, 1893-1917 · Zbl 1186.35106
[4] Baeumer, B.; Meerschaert, M. M., Stochastic solutions for fractional Cauchy problems, Fract. Calc. Appl. Anal., 4, 481-500 (2001) · Zbl 1057.35102
[5] Baeumer, B.; Meerschaert, M. M.; Nane, E., Brownian subordinators and fractional Cauchy problems, Trans. Am. Math. Soc., 361, 7, 3915-3930 (2009) · Zbl 1186.60079
[6] Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J. J., Fractional Calculus: Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, vol. 3 (2012), World Scientific Publishing Co. Pte. Ltd.: World Scientific Publishing Co. Pte. Ltd. Hackensack, NJ · Zbl 1248.26011
[7] Barbu, V., Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer Monographs in Mathematics (2010), Springer: Springer New York · Zbl 1197.35002
[8] Barbu, V.; Röckner, M., An operatorial approach to stochastic partial differential equations driven by linear multiplicative
noize, J. Eur. Math. Soc., 17, 7, 1789-1815 (2015) - Zbl 1327.60122

[9] Bertoin, J., Lévy Processes, Cambridge Tracts in Mathematics, vol. 121 (1996), Cambridge University Press: Cambridge University Press Cambridge - Zbl 0861.60003

[10] Brezis, H., Équations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier (Grenoble), 18, 115-175 (1968) - Zbl 0169.18602

[11] Brouwer, F. E., Pseudo-monotone operators and nonlinear elliptic boundary value problems on unbounded domains, Proc. Natl. Acad. Sci. USA, 74, 7, 2659-2661 (1977) - Zbl 0358.35034

[12] Caputo, M., Linear models of dissipation whose q is almost frequency independent-II, Geophys. J. R. Astron. Soc., 13, 529-539 (1967)

[13] Caputo, M., Mean fractional-order-derivatives differential equations and filters, Ann. Univ. Ferrara, Sez. 7: Sci. Mat., 41, 1, 73-84 (1995) - Zbl 0882.34007

[14] Caputo, M., Distributed order differential equations modelling dielectric induction and diffusion, Fract. Calc. Appl. Anal., 4, 421-442 (2001) - Zbl 1042.34028

[15] Chechkin, A. V.; Gorenflo, R.; Sokolov, I. M.; Gonchar, V. Y., Distributed order time fractional diffusion equation, Fract. Calc. Appl. Anal., 6, 3, 259-290 (2003) - Zbl 1089.60046

[16] Chechkin, A. V.; Kläfter, J.; Sokolov, I. M., Fractional Fokker-Planck equation for ultraslow kinetics, Europhys. Lett., 63, 3, 326 (2003)

[17] Chen, L., Nonlinear stochastic time-fractional diffusion equations on \((\mathbb{R}^\mathbb{R}) \): moments, Hölder regularity and intermittency, Trans. Am. Math. Soc., 369, 12, 8497-8535 (2017) - Zbl 1406.60093

[18] Chen, L.; Hu, G.; Hu, Y.; Huang, J., Space-time fractional diffusions in Gaussian noisy environment, Stochastics, 89, 1, 171-206 (2017) - Zbl 1379.60065

[19] Chen, Z.-Q., Time fractional equations and probabilistic representation, Chaos Solitons Fractals, 102, 168-174 (2017) - Zbl 1374.60122

[20] Chen, Z.-Q.; Kim, K.-H.; Kim, P., Fractional time stochastic partial differential equations, Stoch. Process. Appl., 125, 4, 1470-1499 (2015) - Zbl 1322.60106

[21] Chen, Z.-Q.; Kim, P.; Kumagai, T.; Wang, J., Time fractional Poisson equations: representations and estimates, J. Funct. Anal., 278, 2, Article 108311 pp. (2020) - Zbl 1427.35312

[22] Craiem, D.; Rojo, F. J.R.; Atienza, J. M.; Armentano, R. L.; Guinea, G. V., Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries, Phys. Med. Biol., 53, 17, 4533-4554 (2008)

[23] Desch, G.; Londen, S.-O., Evolutionary equations driven by fractional Brownian motion, Stoch. Partial Differ. Equ., Anal. Computat., 1, 3, 424-454 (2013) - Zbl 1283.60094

[24] Diethelm, K., The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Lecture Notes in Mathematics, vol. 2004 (2010), Springer-Verlag: Springer-Verlag Berlin - Zbl 1215.34001

[25] Doi, M.; Edwards, S., The Theory of Polymer Dynamics. Comparative Pathobiology - Studies in the Postmodern Theory of Education (1988), Clarendon Press

[26] Ferry, J., Viscoelastic Properties of Polymers (1980), Wiley

[27] Foochun, M.; Nane, E., Asymptotic properties of some space-time fractional stochastic equations, Math. Z., 287, 1-2, 493-519 (2017) - Zbl 1378.60090

[28] Gess, B., Random attractors for degenerate stochastic partial differential equations, J. Dyn. Differ. Equ., 25, 1, 121-157 (2013) - Zbl 1312.60106

[29] Gorenflo, R.; Mainardi, F., Fractional relaxation of distributed order, (Complexum Mundi: Emergent Patterns in Nature (2006), World Scientific), 33-42 - Zbl 1164.26009

[30] Grigorenko, G.; Londen, S.-O.; Steffans, O., Valterra Integral and Functional Equations, vol. 34 (1990), Cambridge University Press: Cambridge University Press Cambridge - Zbl 0695.45002

[31] Herrmann, R., Fractional Calculus - An Introduction for Physicists (2018), World Scientific Publishing: World Scientific Publishing Singapore - Zbl 1374.26001

[32] Jakubowski, V. G.; Wittbold, P., On a nonlinear elliptic-parabolic integro-differential equation with \((L^\infty) \)-data, J. Differ. Equ., 197, 2, 427-445 (2004) - Zbl 1036.35150

[33] Kim, I.; Kim, K.-H.; Lim, S., An \((L_q(L_p)) \)-theory for the time fractional evolution equations with variable coefficients, Adv. Math., 306, 123-176 (2017) - Zbl 1361.35196

[34] Kim, I.; Kim, K.-H.; Lim, S., A Sobolev space theory for stochastic partial differential equations with time-fractional derivatives, Ann. Probab., 47, 4, 2087-2130 (2019) - Zbl 1446.60044

[35] Kochubei, A. N., Distributed-order calculus: an operator-theoretic interpretation, Ukr. Math. J., 60, 4, 551-562 (2008) - Zbl 1164.60009

[36] Kochubei, A. N., Distributed order calculus and equations of ultraslow diffusion, J. Math. Anal. Appl., 340, 1, 252-281 (2008) - Zbl 1149.26014

[37] Kochubei, A. N., Distributed order derivatives and relaxation patterns, J. Phys. A, 42, 31, Article 315203 pp. (2009) - Zbl 1191.34005

[38] Kochubei, A. N., General fractional calculus, evolution equations, and renewal processes, Integral Equ. Oper. Theory, 71, 4, 583-600 (2011) - Zbl 1250.26006
[69] Heidelberg Academy of Sciences and Humanities

[70] Rockafellar, R. T., On the maximal monotonicity of subdifferential mappings, Pac. J. Math., 33, 209-216 (1970)

[71] Liu, W.; Röckner, M., Stochastic Partial Differential Equations: An Introduction, Universitext (2015), Springer - Zbl 1361.60002

[72] Liu, W.; Röckner, M.; da Silva, J. L., Quasi-linear (stochastic) partial differential equations with time-fractional derivatives, SIAM J. Math. Anal., 50, 3, 2588-2607 (2018) - Zbl 1407.60086

[73] Lorenzo, C. F.; Hartley, T. T., Variable order and distributed order fractional operators, Nonlinear Dyn., 29, 1-4, 57-98 (2002) - Zbl 1018.39007

[74] Luchko, Y.; Yamamoto, M., General time-fractional diffusion equation: some uniqueness and existence results for the initial-boundary-value problems, Fract. Calc. Appl. Anal., 19, 3, 676-695 (2016) - Zbl 06604016

[75] Ma, Z. M.; Rockafellar, R. T., Introduction to the Theory of (Nonsymmetric) Dirichlet Forms, Universitext (1992), Springer-Verlag Berlin

[76] Mainardi, F., Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models (2010), Imperial College Press: Imperial College Press London - Zbl 1210.26004

[77] Mainardi, F.; Mura, A.; Goreño, R.; Stojanovic, M., The two forms of fractional relaxation of distributed order, J. Vib. Control, 13, 9-10, 1249-1268 (2007) - Zbl 1165.26092

[78] Mainardi, F.; Mura, A.; Paginini, G.; Goreño, R., Time-fractional diffusion of distributed order, J. Vib. Control, 14, 9-10, 1267-1290 (2008) - Zbl 1229.35118

[79] Meerschaert, M. M.; Benson, D. A.; Scheffler, H.-P.; Baeumer, B., Stochastic solution of space-time fractional diffusion equations, Phys. Rev. E, 66, 4, Article 041103 pp. (2002) - Zbl 1244.60080

[80] Meerschaert, M. M.; Nane, E.; Vellaisamy, P., Fractional Cauchy problems on bounded domains, Ann. Probab., 37, 3, 979-1007 (2009) - Zbl 1247.60078

[81] Meerschaert, M. M.; Scheffler, H.-P., Limit theorems for continuous-time random walks with infinite mean waiting times, J. Appl. Probab., 41, 3, 623-638 (2004) - Zbl 1065.60042

[82] Meerschaert, M. M.; Scheffler, H.-P., Stochastic model for ultraslow diffusion, Stoch. Process. Appl., 116, 9, 1215-1235 (2006) - Zbl 1100.60024

[83] Meerschaert, M. M.; Sikorskii, A., Stochastic Models for Fractional Calculus, De Gruyter Studies in Mathematics, vol. 43 (2012), Walter de Gruyter \& Co.: Walter de Gruyter \& Co. Berlin - Zbl 1247.60003

[84] Metzler, R.; Barkai, E.; Klafter, J., Anomalous diffusion and relaxation close to thermal equilibrium: a fractional Fokker-Planck equation approach, Phys. Rev. Lett., 82, 5, 3563-3567 (1999)

[85] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1-77 (2000) - Zbl 0984.82032

[86] Orsingher, E.; Beghin, L., Fractional diffusion equations and processes with randomly varying time, Ann. Probab., 37, 1, 206-249 (2009) - Zbl 1173.60027

[87] Reed, M.; Simon, B., Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness (1975), Academic Press: Academic Press New York, London - Zbl 0308.47002

[88] Ren, J.; Rockner, M.; Wang, F.-Y., Stochastic generalized porous media and fast diffusion equations, J. Differ. Equ., 238, 1, 118-152 (2007) - Zbl 1129.60059

[89] Rockafellar, R. T., On the maximal monotonicity of subdifferential mappings, Pac. J. Math., 33, 209-216 (1970) - Zbl 0199.47101

[90] Russ, B., The development of fractional calculus 1695-1900, Hist. Math., 4, 75-89 (1977) - Zbl 0358.01008

[91] Samko, S. G.; Cardoso, R. P., Integral equations of the first kind of Sonine type, Int. J. Math. Math. Sci., 57, 3609-3632 (2003) - Zbl 1034.45007

[92] Schilling, R. L.; Song, R.; Vondraček, Z., Bernstein Functions: Theory and Applications, De Gruyter Studies in Mathematics, vol. 37 (2012), Walter de Gruyter \& Co.: Walter de Gruyter \& Co. Berlin - Zbl 1257.33001

[93] Sonine, N., Sur la généralisation d’une formule d’Abel, Acta Math., 4, 171-176 (1884) - Zbl 16.0354.01

[94] Stanat, W., The theory of generalized Dirichlet forms and its applications in analysis and stochastics, Mem. Am. Math. Soc., 142, 678 (1999) - Zbl 1008.47001

[95] Talafarro, S. D., Pointwise bounds and blow-up for nonlinear fractional parabolic inequalities, J. Math. Pures Appl., 132, 1, 77-118 (2020) - Zbl 1437.35697

[96] Vergara, V.; Zacher, R., Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods, SIAM J. Math. Anal., 47, 1, 210-239 (2015) - Zbl 1317.45006

[97] Zacher, R., Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces, Funkc. Ekvacijo, 52, 1, 1-18 (2009) - Zbl 1171.45003

[98] Zacher, R., Global strong solvability of a quasilinear subdiffusion problem, J. Evol. Equ., 12, 4, 813-831 (2012) - Zbl 1259.35220

[99] Zeidler, E., Nonlinear Functional Analysis and Its Applications. II/B Nonlinear Monotone Operators (1990), Springer-Verlag New York

[100] Zhang, X., Stochastic Volterra equations in Banach spaces and stochastic partial differential equation, J. Funct. Anal., 258, 4, 1361-1425 (2010) - Zbl 1189.60124

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically
