Role of Procalcitonin As an Inflammatory Marker in a Sample of Egyptian Children with Simple Obesity

Ghada M. El Kassas, Manal A. Shehata, Maged A. El Wakeel, Ahmed F. Amer, Fatma A. Elzaree, Marwa K. Darwish, Marwa F. Amer

Introduction

Childhood obesity is one of the most important public health problems with increasing prevalence worldwide in this century. Childhood obesity is more prevalent in low and middle-income countries, especially in urban areas. In 2016, the number of overweight children below 5 years old, worldwide, is approximately 41 million. About fifty per cent of overweight children below five years are from Asia, and twenty-five per cent are from Africa [1]. The aetiology of obesity is complicated, a range of factors are suggested to play a role, including factors related to the lifestyle preferences, genetic, neuroendocrine, metabolic, immunologic, environmental, social and cultural factors [2]. Obesity is associated with the chronic low-grade inflammatory reaction. This type of inflammation can be differentiated from normal inflammation by the absence of ordinary signs of inflammatory reactions. However, it shares the same diseases caused by typical inflammatory mediators and signalling pathway [2] [3].

Procalcitonin is the precursor to the hormone calcitonin, which is produced by all tissues throughout the body [4]. Production of procalcitonin occurs mainly in response to bacterial toxins and some inflammatory mediators. On the contrary, the downregulation of procalcitonin occurs in the course of viral infection. The definite physiological role of procalcitonin is not yet completely recognised [5]. Procalcitonin level can be detected in serum after about 3-6 hours after the onset of inflammation and stay raised for 12-36 hours after recovery [6].

Procalcitonin has been identified as a...
marker of infections and significant systemic inflammatory states [7]. Previously, research proved the ability of adipose tissue to express and produce procalcitonin [8]. This provides evidence for the relation between inflammation and obesity, considering procalcitonin a potential marker for it [9].

The objective of this study is to investigate the role of procalcitonin as a marker of inflammation in childhood obesity and its relationship with markers of obesity and other metabolic indices.

Subjects and Method

The present study included fifty children with simple obesity. Their age ranged from 5 to 15 years, with mean age 10.1 ± 2.5 years and 35 non-obese healthy children were enrolled as a control group with a mean age of 9.3 ± 2.1 years. Children with a diagnosis of obesity were recruited from the child health clinic in Medical and Scientific Centre of Excellence, National Research Centre. Obesity is defined as BMI greater than the 95th percentile on the growth charts from the National Center of Health and Statistics (NCHS). Exclusion criteria included genetic and endocrinial causes of obesity, children with chronic debilitating diseases, mental retardation, and use of drugs that affect blood pressure, lipid profile, or glucose level. Informed consents were obtained from the parents of the children studied, and the study was approved by the medical ethical committee of the National Research Centre, Cairo, Egypt.

A full history was taken from all participants. Also, thorough clinical examination and anthropometric measurements were done. A calibrated Seca scale was used to weigh children to the nearest 0.1 kg (Seca, Hamburg, Germany), whereas a Seca 225 stadiometer was used to measure height to the nearest 0.1 cm, with the children dressed in minimal clothes and without shoes [10]. Each measurement was taken as the mean of three consecutive readings following the recommendations of the International Biological Program [11]. BMI for age was recorded according to WHO standards using AnthroPlus software for personal computers [12]. Weight for age, height for age and BMI Z-score were determined using the new WHO reference [13]. Measurements of waist circumference, hip circumference, W/H ratio and blood pressure were done.

Morning venous blood sample (3 ml) was withdrawn after 12 hours overnight fasting into a plain tube and left to clot. The serum was separated by centrifugation for 10 minutes at 5000 rpm and stored at-20 until assays done. Fasting serum glucose, fasting serum insulin, cholesterol, triglycerides (TG), high-density lipoprotein cholesterol (HDL-c) were measured by calorimetric method.

Serum LDL-C levels were calculated using the Friedewald formula [LDL-C=Total cholesterol-HDL-C- (Triglyceride/5)] [14].

C-reactive protein was determined using a latex agglutination technique [15]. Procalcitonin (Human) ELISA Kit was used for the quantitative measurement of human Procalcitonin in serum (Bioassay Technology Laboratory). The detection range of this kit was 5 pg/ml - 20000 pg/ml [16].

Data entry was carried out in excel sheet, and statistical analysis was done using SPSS software program version 20.0, the measurement data presented as a mean ± standard deviation. A t-test was done for comparison between two means. Simple linear correlation (Pearson correlation) for quantitative data was also done. P value was considered statistically significant when P was <0.05 and considered statistically highly significant when its value was < 0.001.

Results

Comparisons between mean ± SD values of studied parameters in obese and non-obese groups are shown in (Table 1 & 2). The study comprised fifty obese children (34 females and 16 males) with mean age 10.1 ± 2.5 years and 35 non-obese healthy children (18 females and 17 males) with mean age 9.3 ± 2.1 years, considered as control group, there were highly significant statistical differences between them as regard weight z-score, body mass index z-score, waist circumference, hip circumference, mid-arm circumference, fasting blood glucose, cholesterol, triglycerides, LDL, hs-CRP, and PCT. Also significant statistical differences between them as regard waist/hip ratio, insulin and HOMA-IR. The comparison between males and females as regards the mean PCT level revealed a non-significant difference.

Characteristics	Obese (N = 50)	Non Obese (N = 35)	t	p-value
Age (years)	10.1 ± 2.5	9.3 ± 2.1	1.34	0.185
Weight z-score	2.54 ± 1.07	0.96 ± 0.6	7.02	0.000**
Height z-score	-0.31 ± 0.79	-0.70 ± 0.9	0.79	0.4
Z-score (BMI)	2.77 ± 0.6	1.7 ± 0.46	7.72	0.000**
Waist circumference	100.7 ± 18.6	69.9 ± 9.6	7.23	0.000**
Hip circumference	109.6 ± 17.8	79.4 ± 14.8	7.84	0.000**
Waist/hip ratio (WHR)	0.96 ± 0.34	0.79 ± 0.41	2.74	0.04*
Mid arm circumference (MAC)	33.4 ± 7.5	18.4 ± 5.4	9.75	0.000**

SD: standard deviation. BMI: body mass index. * if p<0.05, then the relation is statistically significant. ** if p<0.001, then the relation is statistically highly significant.
Results of the correlations of the various parameters with procalcitonin in obese children showed that there was strong significant positive association between procalcitonin and Weight z-score ($r = 0.34; P = 0.01$), BMI z-score ($r = 0.31; P = 0.02$) as shown in Fig. 1, insulin ($r = 0.4; P = 0.00$), HOMA-IR ($r = 0.37; P = 0.006$) as shown in Fig. 2, Hs-CRP ($P = 0.02$), cholesterol ($r = 0.3; P = 0.04$), and triglycerides ($r = 0.41; P = 0.00$) as shown in Fig. 3, while there were no significant correlations with age, height z-score, waist circumference, fasting blood glucose, LDL-cholesterol and HDL-cholesterol.

Discussion

The research for the pathogenesis of obesity during the last decades had showed a strong link between excessive nutrient intake and activating the innate immune response in many organs relevant to energy homeostasis [17] [18].

Strong correlations were reported between plasma concentrations of procalcitonin and the degree of inflammatory responses [19]. Procalcitonin is indicated mainly for diagnosing bacterial infections that precipitate systemic inflammatory responses. It shows high degrees of stability, with prolonged half-life and easy method of determination, making it perfect for clinical application [20].

Moreover, it was suggested that plasma PCT could be a marker of inflammation without the manifestations of systemic infection or sepsis [21] [22]. Adipose tissues have been considered as an endocrine organ, expressing calcitonin mRNA [23]. Also, it was found that adipocyte excretion of procalcitonin in vitro was triggered by activated macrophages [24], and the existence of those macrophages in adipose tissue has been reported to be associated proportionately to the extent of obesity [25].
proportional association between the amount of adipose tissue and the increased generation of inflammatory mediators [26]. Also, our results showed a positive correlation between procalcitonin and weight z-score, insulin and HOMA-IR.

In agreement with our results, Abbasi and colleagues who conducted a cross-sectional study on a general population, reported a higher procalcitonin level in more obese subjects, our results were also matching regarding the association of plasma procalcitonin with insulin resistance [9]. A recent study in Egypt, investigated procalcitonin level in type 2 diabetic patients and assessed its relation with obesity, the authors reported, significantly higher concentrations of procalcitonin, hs-CRP and HOMA-IR in obese compared to non-obese patients [27]. Moreover, Boursier et al., [28] found high plasma procalcitonin levels of their subjects associated with the degree of obesity, but in contrast to our results, they found no association between procalcitonin and insulin resistance. However, it is well known that increased adiposity is one of the major predisposing factors in developing insulin resistance [29]. Moreover, several studies suggest that inflammatory reactions that occur as a result of obesity may be implicated in the generation of insulin resistance, deficient insulin production, and disrupted energy homeostasis [30]. In accordance, Chen and his colleagues found a significant positive correlation between inflammatory markers and insulin resistance [31]. Also, Indulekha and his colleagues suggested that the relation between inflammatory reactions and insulin resistance indicates a continued cytokine-generated acute phase reactions [32].

On the other hand, the group of obese children in this study presented a state of disturbed lipid profile, and there was a significant correlation between procalcitonin, total cholesterol and triglycerides levels. These findings are supported by the accumulating evidence that reveals the association of systemic-obesity-related inflammation with the risk of developing cardiovascular disease (CVD). Hence, several obesity-associated factors including dyslipidemia are involved in CVD risk. In this regard, pro-inflammatory cytokines, are suggested to affect the liver, leading to alterations in the release of lipoproteins and inflammatory mediators [33] [34]. Particularly, they cause an elevation of very low-density lipoprotein, apolipoprotein B, and triglyceride levels [35]. C-reactive protein is a highly sensitive inflammatory marker, it is produced from the liver, and its production is controlled mostly by IL-6 [36]. Previous research has evidenced that concentrations of C-reactive protein have a positive relationship with BMI in healthy subjects [37].

Moreover, several studies have shown that CRP is associated with most obesity markers [38]. Our results showed significantly higher hs-CRP levels in obese children compared to non-obese. In accordance, Ahmed et al., [39], evaluated the role of some inflammatory mediators and adipokines in obese Egyptian children; they reported that the mean level of CRP was significantly elevated in obese children compared with controls.

In conclusion, the findings of this study revealed the significance of serum procalcitonin as a marker of obesity-related low-grade inflammation in obese children.

References

1. World Health Organization (WHO). Childhood overweight and obesity. Global Strategy on Diet, Physical Activity and Health, 2018. Available at http://www.who.int/dietphysicalactivity/childhood/en/ Last accessed 11/6/ 2018.

2. Castro AM, Macedo de la Concha LE, Pantoja-Meléndez CA. Low-grade inflammation and its relation to obesity and chronic degenerative diseases. Rev Med Hosp Gen Méx. 2017; 80(2):101-105. https://doi.org/10.1016/j.hgmx.2016.08.011

3. Castro AM, Toledo Rojas A, Macedo de la Concha LE, et al. Laobesidad infantil, un problema de salud multisistémico. Rev Med Hosp Gen Mex. 2001; 75: 37-40.

4. Becker KL, Snider R, Nylen ES. Procalcitonin in sepsis and systemic inflammation: a harmful biomarker and a therapeutic target. British journal of pharmacology. 2010; 159(2):253-64. https://doi.org/10.1111/j.1476-5381.2009.0433.x PMid:20002097 PMCid:PMC2825349

5. El Wakeel MA, Nassar MS, El Batal WH, Amer AF, Darwin MK, Aziz AA. Evaluation of procalcitonin as a biomarker for bacterial and nonbacterial community-acquired pneumonia in children. J Arab Soc Med Res. 2017; 12:68-72. https://doi.org/10.4103/jasms.jasmr.19_17

6. Maruna P, Nedednikova K, Gurlich R. Physiology and genetics of procalcitonin. Physiological Research. 2000; 49:557-62. PMid:10984072

7. Briel M, Schuetz P, Mueller B, Young J, Schild U, Nusbaumer C, Périat P, Bucher HC, Christ-Crain M. Procalcitonin-guided antibiotic use vs a standard approach for acute respiratory tract infections in primary care. Archives of internal medicine. 2008; 168(18):2000-7. https://doi.org/10.1001/archinte.168.18.2000 PMid:18852401

8. Linscheid P, Seboek D, Zulewski H, Keller U, Muller B. Autocrine/paracrine role of inflammation-mediated calcitonin gene-related peptide and adrenomedullin expression in human adipose tissue. Endocrinology. 2005; 146(6):2699-708. https://doi.org/10.1210/en.2004-1424 PMid:15761041

9. Abbasi A, Corpelein J, Postmus D, Gansevoort RT, De Jong PE, Gans RO, Struck J, Hillege HL, Stolk RP, Navis G, Bakker SJ. Plasma procalcitonin is associated with obesity, insulin resistance, and the metabolic syndrome. The Journal of Clinical Endocrinology & Metabolism. 2010; 95(9):E26-31. https://doi.org/10.1210/jc.2010-0305 PMid:20534760

10. Lohman TG, Roche AF. Anthropometric standardization reference manual. Martorell R, editor. Champaign: Human kinetics books, 1988. PMCid:PMC279682

11. Tanner JM. Growth and physique studies. Human biology: a guide to field methods. 1969.

12. World Health Organization. WHO AnthroPlus for personal computers Manual: Software for assessing growth of the world’s children and adolescents. Geneva: WHO, 2009.
13. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical chemistry. 1972; 18(6):499-502. PMid:4337382

14. World Health Organization. WHO child growth standards: length/height for age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age, methods and development. World Health Organization, 2006.

15. Wadsworth C, Wadsworth E. Efficacy of latex agglutination and quantification methods for determination of C-reactive protein (CRP) in pediatric sera. Clin Chim Acta. 1984; 138(3):309-18. https://doi.org/10.1016/0009-8981(84)90138-4

16. Arkader R, Troster EJ, Lopes MR, Júnior RR, Cardillo JA, Leone C, Okay TS. Procalcitonin does discriminate between sepsis and systemic inflammatory response syndrome. Archives of disease in childhood. 2006; 91(2):117-20. https://doi.org/10.1136/adc.2005.077446 PMid:16326799 PMCID:PMC2082702

17. Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest. 2011; 121(6):2115–28. https://doi.org/10.1172/JCI43139 PMid:21531399

18. Lackey DE, Olefsky JM. Regulation of metabolism by the innate immune system. Nat Rev Endocrinol. 2016; 12(1):15–28. https://doi.org/10.1038/nrendo.2015.182 PMid:26553134

19. Ghanem AI, Khalid M. Association of Serum Procalcitonin (PCT) and High-Sensitivity C-Reactive Protein (hs-CRP) Levels with Insulin Resistance and Obesity in Type 2 Egyptian Diabetic Patients. Acta Medica Mediterranea. 2012; 28(2):95.

20. Hatzistilianou M, Hitoglou S, Gougoustamou D, Rekliti A, Leike C, Okay TS. Procalcitonin does discriminate between sepsis and systemic inflammatory response syndrome. Archives of disease in childhood. 2006; 91(2):117-20. https://doi.org/10.1136/adc.2005.077446 PMid:16326799 PMCID:PMC2082702

21. van Ree RM, de Vries AP, Oterdoom LH, Seelen MA, Bakker SJ. Plasma procalcitonin is an independent marker of graft failure late after renal transplantation. Transplantation. 2009; 88:279-87. https://doi.org/10.1097/TP.0b013e3181a9ed9a PMid:19623026

22. van Ree RM, de Vries AP, Oterdoom LH, Seelen MA, Bakker SJ. Plasma procalcitonin is an independent predictor of graft failure late after renal transplantation. Transplantation. 2009; 88:279-87. https://doi.org/10.1097/TP.0b013e3181a9ed9a PMid:19623026

23. Linscheid P, Seboek D, Nylen ES, Langer I, Schlatter M, Becker KL, Keller U, Müller B. Central fat excess in polycystic ovary syndrome: relation to low-grade inflammation and insulin resistance. The Journal of Clinical Endocrinology & Metabolism. 2005; 90(11):6014-21. https://doi.org/10.1210/jc.2005-0058 PMid:16105965

24. van Ree RM, de Vries AP, Oterdoom LH, Seelen MA, Bakker SJ. Plasma procalcitonin is an independent marker of graft failure late after renal transplantation. Transplantation. 2009; 88:279-87. https://doi.org/10.1097/TP.0b013e3181a9ed9a PMid:19623026

25. Bl her M. Adipose tissue d sfunction contributes to obesit

26. Van Gaal LF, Mertens IL, Christophe E. Mechanisms linking obesity with cardiovascular disease. Nature. 2006; 444(7211):875. https://doi.org/10.1038/nature05487 PMid:17167476

27. Ghanem AI, Khalid M. Association of Serum Procalcitonin (PCT) and High-Sensitivity C-Reactive Protein (hs-CRP) Levels with Insulin Resistance and Obesity in Type 2 Egyptian Diabetic Patients. Med J Cairo Univ. 2016; 84(1):1165-1171.

28. Boursier G, Avignon A, Kuster N, Boegner C, Leprieur E, Picandet M, Bargnoux AS, Badiou S, Dupuy AM, Cristol JP, Sultan A. Procalcitonin, an Independent Marker of Abdominal Fat Accumulation in Obese Patients. Clinical laboratory. 2016; 62(3):435-41. https://doi.org/10.7754/Clin.Lab.2015.150736

29. Wilding JPH. Obesity and nutritional factors in the pathogenesis of type 2 diabetes mellitus. In: Text book of Diabetes, 3rd ed, Pickup JC, Ed. Oxford, U.K., Black-well Science Ltd., 2003:21-21.

30. Saltiel AR, Olefsky JM. Inflammatory mechanisms linking obesity and metabolic disease. The Journal of clinical investigation. 2017; 127(1):1-4. https://doi.org/10.1172/JCI92035 PMid:28045402 PMCID:PMC5199709

31. Chen J, Wildman RP, Hamm LL, Muntner P, Reynolds K, Whelton PK, He J. Association between inflammation and insulin resistance in US non-diabetic adults: results from the Third National Health and Nutrition Examination Survey. Diabetes care. 2004; 27(12):2960-5. https://doi.org/10.2339/diab.27.12.2960 PMid:15562214

32. Indulekha K, Suren-Dar J, Moha V. High Sensitivity C-Reactive Protein, Tumor Necrosis Factor-α, Interleukin-6, and Vascular Cell Adhesion Molecule-1 Levels in Asian Indians with Metabolic Syndrome and Insulin Resistance (CURES-105). Journal of Diabetes Science and Technology. 2011; 5(4):982-988. https://doi.org/10.1177/193229681100500421 PMid:21880241 PMCID:PMC3192605

33. Calabro P, Golia E, Maddaloni V, Malvezzi V, Casillo B, Marotta C, Calabro R, Golino P. Adipose tissue-mediated inflammation: the missing link between obesity and cardiovascular disease?. Internal and emergency medicine. 2009; 4(1):25-34. https://doi.org/10.1007/s11739-008-0207-2 PMid:19052701

34. Mathieu P, Poiret P, Pibarot P, Lemieux I, Després JP. Visceral obesity: the link among inflammation, hypertension, and cardiovascular disease. Hypertension. 2009; 53(4):577-84. https://doi.org/10.1161/HYPERTENSIONAHA.108.110320 PMid:19237685

35. Yu YH, Ginsberg HN. Adipocyte signaling and lipid homeostasis: sequelae of insulin-resistant adipose tissue. Circulation research. 2005; 96(10):1042-52. https://doi.org/10.1161/01.RES.0000165803.47776.38 PMid:15920027

36. Rodríguez-Hernández H, Simental-Mendia LE, Rodríguez-Ramírez G, Reyes-Romer MA. Obesity and inflammation: epidemiology, risk factors, and markers of inflammation. International journal of endocrinology. 2013; 2013.

37. Ford ES. The metabolic syndrome and C-reactive protein, fibrinogen, and leucocyte count: findings from the Third National Health and Nutrition Examination Survey. Atherosclerosis. 2003; 168(2):351-8. https://doi.org/10.1016/S0021-9150(03)00134-5

38. Park HS, Park JY, Yu R. Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-α and IL-6. Diabetes research and clinical practice. 2005; 69(1):29-35. https://doi.org/10.1016/j.diabres.2004.11.007 PMid:15955385

39. Ahmed HH, Abdel Hameed ER, Shehata MA, El Wakeel MA, Elsawy DH, Elshafei AI. Relation between afamin level and some inflammatory markers in obese children. Medical Research Journal. 2015; 14(1):1-6. https://doi.org/10.1097/MJUX.00000000000004329.16129c0