Large Sets of t-Designs over Finite Fields

Michael Braun
University of Applied Sciences Darmstadt, Germany

Axel Kohnert
University of Bayreuth, Germany

Patric Östergård
Aalto University, Finland

Alfred Wassermann
University of Bayreuth, Germany

May 8, 2013

Abstract

A t-$(n, k, \lambda; q)$-design is a set of k-subspaces, called blocks, of an n-dimensional vector space V over the finite field with q elements such that each t-subspace is contained in exactly λ blocks. A partition of the complete set of k-subspaces of V into disjoint t-$(n, k, \lambda; q)$ designs is called a large set of t-designs over finite fields. In this paper we give the first nontrivial construction of such a large set with $t \geq 2$.
1 Introduction

A simple \(t \)-design over a finite field or, more precisely, a \(t-(n,k,\lambda;q) \) design is a set \(\mathcal{B} \) of \(k \)-subspaces of an \(n \)-dimensional vector space \(V \) over the finite field \(\mathbb{F}_q \) such that each \(t \)-subspace of \(V \) is contained in exactly \(\lambda \) members of \(\mathcal{B} \).

The study of combinatorial \(t \)-designs and Steiner systems on (finite) sets goes back to the 19th century and has a rich literature [7]. Cameron [5, 6] and Delsarte [8] extended the notions of \(t \)-designs and Steiner systems from sets to vector spaces over finite fields in the early 1970s. Recently, designs over finite fields gained a lot of interest because of applications for error-correction in networks [12].

In 1987, Thomas [24] constructed the first nontrivial simple \(t \)-designs over finite fields for \(t = 2 \). Since then, more designs over finite fields have been constructed, see [3, 4, 9, 17, 21, 22]. Specifically, in [3] the first nontrivial \(t \)-design over finite fields with \(t = 3 \) has been found and in [4] 2-(13,3,1;2) designs have been constructed. The latter ones are the first nontrivial \(t \)-designs over finite fields with \(\lambda = 1 \) and \(t = 2 \). Designs with \(\lambda = 1 \) are called \(q \)-Steiner systems.

An \(LS_q[N](t,k,n) \) large set \(\mathcal{L} \) is a set of \(N \) disjoint \(t-(n,k,\lambda;q) \) designs such that their union forms the complete set of all \(k \)-subspaces of \(V = \mathbb{F}_q^n \). Large sets of designs over finite fields have been studied for the first time by Ray-Chaudhuri and Schram [19]. There, the authors used non-simple designs. In this paper we investigate the existence of large sets of simple \(t \)-designs over finite fields.

In the case of designs on sets, large sets are intensively studied objects [10, Section II.4.4]. A celebrated result by Teirlinck [23] is that large sets of designs on sets exist for all \(t > 0 \) and \(N > 0 \).

Large sets of certain \(t-(n,k,\lambda;q) \) designs have been intensively studied in the framework of projective geometry. In geometry, \(1-(n,k,1;q) \) designs are known as \((k-1)\)-spreads in \(PG(n-1,q) \). A large set of \(1-(n,k,1;q) \) designs is called \((k-1)\)-parallelism of the projective geometry \(PG(n-1,q) \). A parallelism is a 1-parallelism, i.e. \(k = 2 \).

Since \(1-(n,k,1;q) \) designs exist if and only if \(k \) divides \(n \), a necessary condition for the existence of a parallelism in \(PG(n-1,q) \) is that \(n \) must be even. Beutelspacher [2] proved the existence of a parallelism in \(PG(2^i - 1,q) \) for all \(i \geq 2 \). Later, Baker [1] and Wettl [25] gave a construction of parallelisms in \(PG(n-1,q) \) for \(n \) even. Penttila and Williams [18] studied
PG(3, q) for $q \equiv 2 \mod 3$ and constructed parallelisms subsuming the results presented in [16].

Up to now, no large sets of t-designs over finite fields with $t \geq 2$ have been reported. The main result of this paper is the following one:

Theorem 1. Nontrivial large sets of t-designs over finite fields exist for $t \geq 2$.

The theorem is proved by showing the existence of a large set consisting of three disjoint 2-(8, 3, 21; 2) designs.

2 The Construction of Large Sets

Let $[V_k]$ denote the set of k-subspaces of V. The expression

$$\left[\begin{array}{c} n \\ k \end{array} \right]_q = \frac{(q^n-1)(q^{n-1}-1) \cdots (q^{n-k+1}-1)}{(q^k-1)(q^{k-1}-1) \cdots (q-1)}$$

is called the q-binomial coefficient. The set $[V_k]$ itself is already a design, the so-called trivial design, with parameters t-$(n, k, \lambda_{\text{max}}; q)$, where

$$\lambda_{\text{max}} = \left[\begin{array}{c} n-t \\ k-t \end{array} \right]_q.$$

Hence, an obvious necessary condition for the existence of a $LS_q[N](t, k, n)$ large set is the equality $\lambda \cdot N = \lambda_{\text{max}}$. Moreover, since the blocks of a t-design also form an i-design as long as $0 \leq i \leq t$, we have the necessary conditions

$$N \mid \left[\begin{array}{c} n-i \\ k-i \end{array} \right]_q \quad \text{for} \quad 0 \leq i \leq t.$$

The general linear group $\text{GL}(n, q)$, whose elements are represented by $n \times n$-matrices α, acts on $[V_k]$ by left multiplication $\alpha K := \{\alpha x \mid x \in K\}$. An element $\alpha \in \text{GL}(n, q)$ is called an automorphism of a t-$(n, k, \lambda; q)$ design \mathcal{B} if $\mathcal{B} = \alpha \mathcal{B} := \{\alpha K \mid K \in B\}$. The set of all automorphisms of a design forms a group, called the automorphism group of the design. Every subgroup of the automorphism group of a design is denoted as a group of automorphisms of the design.
If G is a subgroup of $GL(n, q)$ the G-orbit on a k-subspace K is denoted by $G(K) := \{ \alpha K \mid \alpha \in G \} \subseteq \binom{V}{k}$. Now, a t-$(n, k, \lambda; q)$ design \mathcal{B} admits a subgroup G of the general linear $GL(n, q)$ as a group of automorphisms if and only if \mathcal{B} consists of G-orbits on $\binom{V}{k}$. The G-incidence matrix $A_{t,k}^G$ is defined to be the matrix whose rows and columns are indexed by the G-orbits on the set of t- and k-subspaces of V, respectively. The entry indexed by the orbit $G(T)$ on $\binom{V}{t}$ and the orbit $G(K)$ on $\binom{V}{k}$ is defined by $|\{K' \in G(K) \mid T \subseteq K'\}|$.

According to Kramer and Mesner [13] a simple t-$(n, k, \lambda; q)$ design admitting G as a group of automorphisms exists if and only if there is a 0/1-column vector x satisfying $A_{t,k}^G x = \lambda \mathbf{1}$, where $\mathbf{1}$ denotes the all-one column vector. The vector x represents the corresponding selection of G-orbits on $\binom{V}{k}$.

The following algorithm describes a basic approach to find large sets. A version of this algorithm for large sets of designs on sets can be found in [14, 15].

Algorithm A. The algorithm computes an $LS_q[N](t, k, n)$ large set \mathcal{L} consisting of N t-$(n, k, \lambda; q)$ designs admitting G as a group of automorphisms. Either the algorithm terminates with a large set or it ends without any statement about the existence.

1. **[Initialize.]** Set \mathcal{B} as the complete set of G-orbits on $\binom{V}{k}$ and set $\mathcal{L} := \emptyset$.

2. **[Solve.]** Find a random t-$(n, k, \lambda; q)$ design \mathcal{B} consisting of orbits of \mathcal{B}. If such a t-design exists insert \mathcal{B} into \mathcal{L} and continue with A3. Otherwise terminate without a large set.

3. **[Remove.]** Remove the selected orbits in \mathcal{B} from \mathcal{B}. If $\mathcal{B} = \emptyset$ then terminate with a large set \mathcal{L}. Otherwise goto A2.

Algorithm A can be implemented by a slight modification of the Kramer-Mesner approach. We just have to add a further row to the Diophantine system of equations the following way:

$$
\begin{bmatrix}
A_{t,k}^G \\
\cdots y_K \\
\end{bmatrix}
\begin{bmatrix}
x \\
\end{bmatrix}
=
\begin{bmatrix}
\lambda \\
\vdots \\
\lambda \\
0 \\
\end{bmatrix}
$$

The vector $y = [\cdots y_K \cdots]$ is indexed by the G-orbits on $\binom{V}{k}$ corresponding to the columns of $A_{t,k}^G$. The entry y_K indexed by the G-orbit containing
K is defined to be one if the orbit has already been covered by a selected t-$(n, k, \lambda; q)$ design. Otherwise it is zero. In every iteration step the vector y has to be updated.

A second simple approach which might be reasonable if the number of total solutions of the Kramer-Mesner system is small uses an exact cover solver [11].

Algorithm B. The algorithm computes an $LS_q[N](t, k, n)$ large set \mathcal{L} consisting of N t-$(n, k, \lambda; q)$ designs admitting G as a group of automorphisms. The algorithm terminates with the existence statement true or false.

B1. [Initialize.] Find all 0/1-column vectors x_1, \ldots, x_s solving $A^G_{t,k}x = \lambda 1$ and form the matrix $A = [x_1 \mid \cdots \mid x_s]$.

B2. [Exact cover.] Find a 0/1-vector y solving the system $Ay = 1$. If such a solution y exists return true. Otherwise return false.

3 The Existence of $LS_2[3](2, 3, 8)$

In this section we present the construction of the first nontrival large set of designs over finite fields, a large set \mathcal{L} with parameters $LS_2[3](2, 3, 8)$. The large set consists of three 2-(8, 3, 21; 2) designs $\mathcal{L} = \{B_1, B_2, B_3\}$, each admitting $G = \langle \alpha \rangle \leq \text{GL}(8, 2)$ as a group of automorphisms. The group G has order 255 and is generated by a Singer cycle α, represented by the matrix

$$
\alpha = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}.
$$

The existence of 2-(8, 3, 21; 2) designs having G as a group of automorphisms has been shown previously in [3]. The large set \mathcal{L} was constructed with Algorithm A. Each of the three designs of \mathcal{L} consists of 127 orbits of G on the set of 3-subspaces of $V = \mathbb{F}_2^8$. The orbit representatives for each of
the designs B_1, B_2, and B_3 are depicted in Tables 1, 2, and 3. For each representative, the three column vectors

\[
\begin{bmatrix}
 x_0 & y_0 & z_0 \\
 x_1 & y_1 & z_1 \\
 \vdots & \vdots & \vdots \\
 x_7 & y_7 & z_7 \\
\end{bmatrix}
\]

spanning a 3-subspace of V, are encoded as a triple of the positive integers

\[
[X, Y, Z] = \left[\sum_{i=0}^{7} x_i 2^i, \sum_{i=0}^{7} y_i 2^i, \sum_{i=0}^{7} z_i 2^i \right].
\]

4 Further Results

Let $K^\perp = \{ x \in V \mid \langle x, y \rangle = 0 \text{ for all } y \in K \}$ denote the orthogonal complement of a subspace K of V with respect to the standard inner product $\langle -,- \rangle$. By Suzuki [20, Lemma 4.3] we know that every $t-(n, k, \lambda; q)$ design \mathcal{B} defines a $t-(n, n-k, \lambda^\perp; q)$ design $\mathcal{B}^\perp := \{ K^\perp \mid K \in \mathcal{B} \}$ with

\[
\lambda^\perp = \lambda \left\lceil \frac{n-t}{k-t} \right\rceil q.
\]

This design is called the *complementary design*. If a t-design admits G as a group of automorphisms, which group does the complementary t-design admit?

The orthogonal complement of a subspace corresponds to the set-wise complement of a subset in the classical situation for designs on sets. There, it is clear that the automorphism group which is a subgroup of the symmetric group remains the same, since set-wise complements commute with permutations: $\pi K = \pi \overline{K}$.

For designs over finite fields the following lemma gives the answer.

Lemma 1. A $t-(n, k, \lambda; q)$ design \mathcal{B} admits $G \leq \text{GL}(n, q)$ as a group of automorphisms if and only if the complementary $t-(n, n-k, \lambda^\perp; q)$ design \mathcal{B}^\perp admits $H = \{ \alpha^T \mid \alpha \in G \}$ as a group of automorphisms.
Table 1: Design B_1

1, 112, 128	14, 64, 128	40, 112, 128	69, 80, 128	92, 32, 128
1, 48, 128	15, 16, 128	41, 112, 128	70, 8, 128	94, 32, 128
2, 80, 128	15, 96, 128	41, 64, 128	70, 32, 128	94, 96, 128
2, 96, 128	16, 64, 128	42, 48, 128	70, 96, 128	98, 8, 128
3, 48, 128	17, 64, 128	43, 80, 128	71, 16, 128	98, 16, 128
3, 64, 128	17, 96, 128	44, 16, 128	71, 48, 128	99, 16, 128
4, 32, 128	18, 32, 128	45, 80, 128	72, 80, 128	99, 36, 128
4, 48, 128	19, 8, 128	47, 112, 128	73, 80, 128	100, 8, 128
4, 72, 128	19, 96, 128	49, 40, 128	74, 16, 128	100, 24, 128
5, 72, 128	20, 96, 128	49, 64, 128	75, 80, 128	100, 40, 128
5, 80, 128	21, 24, 128	50, 64, 128	77, 96, 128	101, 16, 128
6, 32, 128	21, 32, 128	50, 84, 128	78, 32, 128	101, 112, 128
6, 72, 128	21, 96, 128	52, 40, 128	79, 32, 128	102, 80, 128
6, 96, 128	23, 8, 128	55, 56, 128	79, 48, 128	103, 40, 128
7, 32, 128	25, 32, 128	55, 64, 128	79, 112, 128	103, 48, 128
7, 48, 128	33, 48, 128	56, 64, 128	83, 8, 128	103, 72, 128
7, 80, 128	33, 64, 128	57, 4, 128	83, 96, 128	105, 112, 128
8, 64, 128	33, 80, 128	60, 64, 128	84, 8, 128	106, 112, 128
9, 64, 128	34, 64, 128	61, 64, 128	84, 96, 128	110, 16, 128
9, 96, 128	35, 4, 128	62, 64, 128	85, 24, 128	110, 48, 128
10, 32, 128	35, 48, 128	63, 64, 128	85, 32, 128	114, 40, 128
10, 64, 128	36, 64, 128	65, 32, 128	85, 96, 128	114, 120, 128
12, 96, 128	37, 40, 128	66, 80, 128	86, 32, 128	122, 4, 128
13, 32, 128	37, 64, 128	67, 48, 128	87, 32, 128	
13, 64, 128	38, 16, 128	67, 96, 128	89, 96, 128	
14, 32, 128	38, 112, 128	69, 16, 128	90, 32, 128	
1, 24, 128	20, 32, 128	38, 64, 128	67, 112, 128	86, 96, 128
1, 32, 128	20, 64, 128	38, 72, 128	68, 16, 128	87, 8, 128
1, 64, 128	20, 72, 128	38, 80, 128	68, 96, 128	87, 24, 128
1, 92, 128	20, 120, 128	39, 80, 128	69, 24, 128	87, 96, 128
2, 32, 128	22, 32, 128	39, 120, 128	69, 32, 128	91, 32, 128
2, 64, 128	22, 64, 128	40, 16, 128	69, 40, 128	95, 96, 128
3, 16, 128	23, 64, 128	41, 16, 128	69, 96, 128	98, 48, 128
3, 32, 128	25, 64, 128	41, 48, 128	70, 48, 128	98, 80, 128
3, 68, 128	26, 96, 128	42, 64, 128	71, 32, 128	99, 48, 128
3, 80, 128	27, 32, 128	43, 64, 128	71, 72, 128	99, 80, 128
3, 96, 128	27, 64, 128	44, 80, 128	71, 80, 128	100, 16, 128
5, 32, 128	27, 96, 128	46, 16, 128	71, 112, 128	102, 16, 128
5, 64, 128	28, 64, 128	46, 64, 128	72, 32, 128	102, 40, 128
7, 96, 128	28, 96, 128	47, 16, 128	72, 96, 128	103, 16, 128
8, 48, 128	30, 64, 128	47, 80, 128	73, 96, 128	108, 48, 128
9, 16, 128	31, 32, 128	51, 64, 128	74, 32, 128	109, 16, 128
10, 96, 128	31, 96, 128	52, 64, 128	74, 96, 128	109, 48, 128
12, 32, 128	32, 64, 128	52, 72, 128	76, 32, 128	114, 4, 128
12, 64, 128	34, 20, 128	54, 8, 128	76, 48, 128	114, 36, 128
14, 48, 128	34, 80, 128	55, 24, 128	77, 32, 128	115, 40, 128
14, 80, 128	35, 8, 128	65, 24, 128	78, 96, 128	115, 72, 128
15, 32, 128	35, 16, 128	65, 112, 128	82, 32, 128	117, 120, 128
15, 48, 128	35, 36, 128	66, 16, 128	82, 56, 128	118, 120, 128
15, 112, 128	37, 8, 128	66, 48, 128	83, 32, 128	
18, 64, 128	37, 72, 128	66, 112, 128	84, 32, 128	
19, 72, 128	37, 112, 128	67, 80, 128	85, 40, 128	
Table 3: Design B_3

	1, 16, 128	14, 96, 128	36, 120, 128	66, 96, 128	87, 72, 128
2, 120	15, 64, 128	37, 24, 128	67, 16, 128	88, 32, 128	99, 32, 128
2, 36,	15, 80, 128	37, 80, 128	67, 32, 128	91, 64, 128	
2, 52,	17, 32, 128	39, 8, 128	68, 32, 128	92, 64, 128	
3, 40,	19, 32, 128	39, 16, 128	69, 48, 128	95, 32, 128	
4, 56,	19, 64, 128	39, 48, 128	69, 120, 128	99, 112, 128	
4, 64,	19, 68, 128	39, 64, 128	70, 16, 128	100, 112, 128	
4, 96,	21, 64, 128	40, 64, 128	71, 8, 128	100, 120, 128	
5, 16,	23, 32, 128	42, 80, 128	71, 56, 128	101, 24, 128	
5, 96,	23, 96, 128	43, 16, 128	72, 48, 128	101, 8, 128	
5, 112	24, 32, 128	44, 64, 128	73, 16, 128	101, 48, 128	
6, 56,	24, 64, 128	45, 64, 128	73, 32, 128	102, 56, 128	
6, 64,	26, 64, 128	47, 64, 128	76, 16, 128	104, 16, 128	
7, 16,	27, 4, 128	48, 64, 128	76, 80, 128	104, 112, 128	
7, 64,	28, 32, 128	49, 8, 128	76, 96, 128	107, 112, 128	
7, 112	30, 32, 128	53, 64, 128	77, 112, 128	107, 48, 128	
8, 32,	30, 96, 128	54, 64, 128	78, 16, 128	110, 80, 128	
8, 80,	31, 64, 128	55, 72, 128	79, 16, 128	111, 16, 128	
8, 96,	33, 40, 128	57, 64, 128	79, 96, 128	114, 8, 128	
9, 32,	33, 72, 128	58, 64, 128	81, 32, 128	114, 52, 128	
9, 48,	34, 48, 128	59, 64, 128	81, 96, 128	114, 84, 128	
9, 80,	34, 72, 128	65, 16, 128	82, 8, 128	118, 8, 128	
10, 16	34, 100, 128	65, 48, 128	82, 96, 128	118, 24, 128	
13, 48	35, 64, 128	65, 80, 128	83, 40, 128		
13, 96	35, 72, 128	65, 96, 128	86, 24, 128		
14, 16	35, 80, 128	66, 32, 128	87, 40, 128		
Proof. We have

\[(\alpha K)^\perp = \{x \in V \mid \langle x, \alpha y \rangle = 0 \forall y \in K\} \]
\[= \{x \in V \mid \langle \alpha^T x, y \rangle = 0 \forall y \in K\} \]
\[= \{(\alpha^T)^{-1} x \mid x \in V : \langle x, y \rangle = 0 \text{ for all } y \in K\} \]
\[= \{(\alpha^T)^{-1} x \mid x \in K^\perp\} \]
\[= (\alpha^T)^{-1}(K^\perp). \]

Since the mapping \(\alpha \mapsto (\alpha^T)^{-1}\) defines a group isomorphism between \(G\) and \(H\) the orthogonal complement maps orbits \(G(K)\) of \(\left[\begin{array}{c} V \\ k \end{array} \right]\) onto orbits \(H(K^\perp)\) of \(\left[\begin{array}{c} V \\ n-k \end{array} \right]\). This completes the proof. \(\square\)

The orthogonal complement defines a bijection between the set of \(k\)- and \((n-k)\)-subspaces, and hence a partition of \(\left[\begin{array}{c} V \\ k \end{array} \right]\) into \(t-(n, k, \lambda; q)\) designs yields a partition of \(\left[\begin{array}{c} V \\ n-k \end{array} \right]\) into \(t-(n, n-k, \lambda^\perp; q)\) designs. Finally, the existence of an \(LS_q[N](t, k, n)\) large set implies the existence of an \(LS_q[N](t, n-k, n)\) large set.

Taking the orthogonal complements of each orbit representative of the 2-(8, 3, 21; 2) designs given in the Tables[1][2] and[3] we obtain representatives of disjoint 2-(8, 5, 21; 2) designs forming an \(LS_2[3](2, 5, 8)\) large set, where each design is admitting a Singer cyclic group as a group of automorphisms by Lemma[1].

Acknowledgments

The collaboration of the authors has been partly funded by DFG KO 3154/9-1 and by the European COST project IC1104. The research of the third author was supported in part by the Academy of Finland under Grant No. 132122.

References

[1] R. D. Baker. Partitioning the Planes of \(AG_{2m}(2)\) into 2-Designs. \textit{Discrete Mathematics}, 15:205–211, 1976.

[2] A. Beutelspacher. On Parallelisms of Finite Projective Spaces. \textit{Geometriae Dedicata}, 3:35–40, 1974.
[3] M. Braun, A. Kerber, and R. Laue. Systematic Construction of q-Analogs of Designs. *Designs, Codes and Cryptography*, 34:55–70, 2005.

[4] M. Braun, T. Etzion, P. J. R. Östergård, A. Vardy, and A. Wassermann. Existence of q-Analogs of Steiner Systems. submitted, 2013.

[5] P. J. Cameron. Generalisation of Fisher’s Inequality to Fields with More than One Element, in T. McDonough and V. Mavron, Eds., *Combinatorics*, London Mathematical Society Lecture Note Series, 13:9–13, 1974.

[6] P. J. Cameron. Locally Symmetric Designs. *Geometriae Dedicata*, 3:65–76, 1974.

[7] C. J. Colbourn and J. H. Dinitz (eds.). *Handbook of Combinatorial Designs (2nd ed.)*. CRC Press, 2007.

[8] P. Delsarte. Association Schemes and t-Designs in Regular Semilattices. *Journal of Combinatorial Theory, Series A*, 20:230–243, 1976.

[9] T. Itoh. A New Family of 2-Designs over $GF(q)$ Admitting $SL_m(q^l)$. *Geometriae Dedicata*, 69:261–286, 1998.

[10] G. B. Khosrovshahi and R. Laue. t-designs with $t \geq 3$. in C. J. Colbourn and J. H. Dinitz (eds.), *Handbook of Combinatorial Designs (2nd ed.)*, 79–101, CRC Press, 2007

[11] D. E. Knuth. Dancing Links. in J. Davies, B. Roscoe, and J. Woodcock (eds.), *Millennial Perspectives in Computer Science*, Palgrave Macmillan, Basingstoke, 187–214, 2000.

[12] R. Koetter and F. Kschischang. Coding for Errors and Erasures in Random Network Coding. *IEEE Transactions on Information Theory*, 54:3579–3591, 2008.

[13] E. Kramer and D. Mesner. t-Designs on Hypergraphs. *Discrete Mathematics*, 15(3):263–296, 1976.

[14] R. Laue, S. Magliveras, and A. Wassermann. New Large Sets of t-Designs. *Journal of Combinatorial Designs*, 9:40–59, 2001.
[15] R. Laue, G. R. Omidi, B. Tayfeh-Rezaie, and A. Wassermann. New Large Sets of t-Designs with Prescribed Groups of Automorphisms. *Journal of Combinatorial Designs*, 15(3):210–220, 2007.

[16] G. Lunardon. On Regular Parallelisms in $PG(3, q)$. *Discrete Mathematics*, 51:229–235, 1984.

[17] M. Miyakawa, A. Munemasa, and S. Yoshiara. On a Class of Small 2-Designs over $GF(q)$. *Journal of Combinatorial Designs*, 3:61–77, 1995.

[18] T. Penttila and B. Williams. Regular Packings of $PG(3, q)$. *European Journal of Combinatorics*, 19:713–720, 1998.

[19] D. K. Ray-Chaudhuri and E. J. Schram. A Large Set of Designs on Vector Spaces. *Journal of Number Theory*, 47:247–272, 1994.

[20] H. Suzuki. *Five Days Introduction to the Theory of Designs*. Lecture Notes, given at Osaka City Univ. in December, 1989.

[21] H. Suzuki. 2-Designs over $GF(2^m)$. *Graphs and Combinatorics*, 6:293–296, 1990.

[22] H. Suzuki. 2-Designs over $GF(q)$. *Graphs and Combinatorics*, 8:381–389, 1992.

[23] L. Teirlinck. Locally Trivial t-Designs and t-Designs without Repeated Blocks. *Discrete Mathematics*, 77:345–356, 1989.

[24] S. Thomas. Designs over Finite Fields. *Geometriae Dedicata*, 24:237–242, 1987.

[25] F. Wettl. On Parallelisms of Odd-Dimensional Finite Projective Spaces. Proceedings of the second international mathematical miniconference, part II (Budapest, 1988), Period Polytech. Transportation Engrg, 19(1-2):111–116, 1991.