Simultaneous Speech Translation for Live Subtitling: from Delay to Display

Alina Karakanta akarakanta@fbk.eu
Sara Papi spapi@fbk.eu
Matteo Negri negri@fbk.eu
Marco Turchi turchi@fbk.eu

Fondazione Bruno Kessler, Via Sommarive 18, Povo, Trento, Italy
University of Trento, Italy

Abstract

With the increased audiovisualisation of communication, the need for live subtitles in multilingual events is more relevant than ever. In an attempt to automatise the process, we aim at exploring the feasibility of simultaneous speech translation (SimulST) for live subtitling. However, the word-for-word rate of generation of SimulST systems is not optimal for displaying the subtitles in a comprehensible and readable way. In this work, we adapt SimulST systems to predict subtitle breaks along with the translation. We then propose a display mode that exploits the predicted break structure by presenting the subtitles in scrolling lines. We compare our proposed mode with a display 1) word-for-word and 2) in blocks, in terms of reading speed and delay. Experiments on three language pairs (en→it, de, fr) show that scrolling lines is the only mode achieving an acceptable reading speed while keeping delay close to a 4-second threshold. We argue that simultaneous translation for readable live subtitles still faces challenges, the main one being poor translation quality, and propose directions for steering future research.

1 Introduction

The globalisation of business, education and entertainment, together with the recent movement restrictions, have transferred human interaction to the online sphere. The boom in online multilingual communication is setting new challenges for achieving barrierless interaction between audiences with diverse linguistic and accessibility needs. Subtitles, as a key means for ensuring accessibility, have been adapted to respond to the challenge of timely communication, giving rise to live subtitling. Live subtitling, whether intralingual (same language as the speech) or interlingual (different language than the speech), allows for obtaining subtitles in real time and is recently witnessing an upsurging demand in a range of occasions; from news and TV programmes, to online meetings, conferences, live events, shows and university lectures, live subtitles are bringing the world closer together.

Technology has always been a leading factor in live subtitling. Live subtitles were initially obtained by means of keyboards or stenotyping, but Automatic Speech Recognition (ASR) gave rise to respeaking, a technique where the subtitler respeaks the original sound into an ASR system, which produces the subtitles on the screen (Romero-Fresco, 2011). Although originally employed for intralingual subtitles, respeaking is gradually extending to produce interlingual subtitles, a task bearing close resemblance to simultaneous interpreting. Still, the tediousness
of the task and the scarcity of highly-skilled professionals for live subtitling call for a more
pronounced role of technology for providing real-time access to information.

These growing needs for access to multilingual spoken content have motivated researchers
to develop fully automatic solutions for real-time spoken language translation (Grissom II et al.,
2014; Gu et al., 2017; Alinejad et al., 2018; Arivazhagan et al., 2019; Ma et al., 2019). The new
possibilities opened up by neural machine translation have led to improvements in automatic
simultaneous speech-to-text translation (SimulST). In SimulST (Ma et al., 2020; Ren et al.,
2020), the generation of the translation starts before the entire audio input is received, which
is an indispensable characteristic for achieving low latency (translation delay) between speech
and text in live events. The translation becomes available at consecutive steps, usually one word
at a time. However, a display mode based on the word-for-word rate of generation of SimulST
systems may not be optimal for displaying readable subtitles. Studies in intralingual subti-
lting have shown that a word-for-word display increases the number of saccadic crossovers be-
tween text and scene (Rajendran et al., 2013) and leaves viewers less time to look at the images
(Romero-Fresco, 2010). For this reason, regulators, such as the UK Office of Communications,
recommended displaying subtitles in blocks (Ofcom, 2015). However, this display mode is not
ideal for live events since waiting until the block is filled before displaying the subtitle would
extremely increase latency at the risk of losing synchronisation with the speaker. Despite the
existence of some applications of SimulST, so far no work has explored its potential for live
subtitling and how the delay in generation impacts the readability of the subtitles.

Given the boosting demand in live subtitles and previous studies on the readability of live
subtitles, in this work we pose the following research questions: 1) Can automatic simulta-
neous translation be a viable method for producing live interlingual subtitles? 2) What
are the challenges of the generation mode of SimulST systems for the readability of the
subtitles? We first explore the performance of a direct SimulST system on three language
pairs (en→it, de, fr) in terms of translation quality and its ability of generating readable sub-
titles in terms of technical constraints, such as length and proper segmentation. Second, we
investigate two methods for displaying live subtitles, i.e. i) word-for-word and ii) blocks, and
how the display mode affects their readability (reading speed and delay). Thirdly, we propose
scrolling lines, a mixed display method which takes advantage of the ability of our system to
define proper line breaks and show that it leads to a more comfortable reading speed at an ac-
ceptable delay. Lastly, we discuss challenges and recommendations for applying simultaneous
translation for live subtitling.

2 Related work

2.1 Live subtitling and its reception

Live subtitles are a simpler and more customisable alternative to other ways of translating
speech, such as simultaneous interpreting (Marsh, 2004). Originally, the practice of live sub-
titling was used to produce intralingual subtitles, in order to enable deaf or hard-of-hearing
persons to follow live TV programs (Lambourne, 2006). With the widening definition of acces-
sibility beyond the deaf and hard-of-hearing to include persons not speaking the source speech
language, live subtitling was adapted to provide interlingual subtitles (Dawson, 2019).

Live subtitles were produced initially with standard keyboards, but the need to reduce la-
tency led to resorting to stenography or to the invention of a customised syllabic keyboard,
called Velotypé. With the adoption of ASR technologies, respeaking became the most popu-
lar technique for live subtitling (Lambourne, 2006). With this technique, a respeaker listens to
the original sound of a (live) event and respeaks it to an ASR software, which turns the recog-

https://www.velotype.com/en/homepage-eng/
nized utterances into subtitles (Romero-Fresco 2011). In its interlingual mode, live subtitling is a newly established practice and therefore the industry is experimenting with different profiles for the role of interlingual live subtitlers (Pöchhacker and Remael 2020). Interlingual live subtitling requires skills from three disciplines: respeaking, subtitling and simultaneous interpreting. As a result, the availability of highly-skilled professionals for interlingual live subtitling cannot meet the growing needs in real-time multilingual communication.

Except for the quality of live subtitles, their speed and display mode greatly affect the user’s views, perception and comprehension (Perego et al. 2010). The faster the subtitles, the more time users spend on reading them, and therefore they have less time to focus on the images, which negatively impacts comprehension. Recommendations for comfortable reading speed depend on the user group and language. For example, 15 characters per second (cps) are recommended for live interlingual English SDH — subtitles for the deaf and hard of hearing – (Ofcom 2005), 12-15 cps for offline interlingual subtitling in Central Europe (Szarkowska 2016), 17–20 cps in global online streaming services (Netflix 2021) and 21 cps for TED Talks (TED 2021). According to Romero-Fresco (2015), a fast subtitle speed of 17–18 cps allows viewers to spend approximately 80% time on subtitles and only 20% on images. As for the display mode, Romero-Fresco (2010) found that a word-for-word display results in viewers spending 90% of time reading the subtitles as opposed to 10% looking at the images, which detriment comprehension. Moreover, the presence of the word to the right of fixation is vital for fluent reading (Rayner et al. 2006) and its absence leads to more re-reading (Sharmin et al. 2016). Rajendran et al. (2013) showed that scrolling subtitles cause the viewers to spend significantly more time reading than subtitles appearing in blocks. These findings have been assumed by broadcasters in several countries to replace their scrolling subtitles by block subtitles where possible. Currently, a word-for-word display is used in most live speech translation applications, such as STACL (Ma et al. 2019), ELITR (Bojar et al. 2021) and Google Translate (Arivazhagan et al. 2020). In this work, we experiment with displaying the output of SimulST systems in ways which turn out to be more comfortable for the viewer, leading to better comprehension and a more pleasant user experience.

2.2 Simultaneous translation

Simultaneous Speech Translation (SimulST) is the task in which the generation of the translation starts before the audio input becomes entirely available. In simultaneous settings, a model has to choose, at each time step, a read or a write action, that is, whether to receive new information from the input or to write using the information received until that step. Consequently, a SimulST system needs a policy which decides the next action. Decision policies can be divided into: fixed, when the decision is taken based on the elapsed time, and adaptive, when the decision is taken by looking also at the contextual information extracted from the input. Even if the adoption of a fixed policy disregards the input context leading to a sub-optimal solution, little research has been done on adaptive policies (Gu et al. 2017; Zheng et al. 2019a, 2020) because they are hard and time-consuming to train (Zheng et al. 2019b; Arivazhagan et al. 2019).

Among the fixed policies, the most popular and recently studied is the wait-\(k\) strategy, which was first proposed by Ma et al. (2019) for simultaneous Machine Translation (SimulMT). The SimulMT wait-\(k\) policy is based on waiting for \(k\) source words before starting to generate the target sentence. This simple yet effective approach was then employed in SimulST, as in Ma et al. (2020) and Ren et al. (2020), by using direct models i.e. models that, given an audio source, generate a textual target without the need for intermediate transcription steps. While the original wait-\(k\) implementation is based on textual source data, Ma et al. (2020) adapted this strategy to the audio domain by waiting for \(k\) fixed amount of time (step size) instead of \(k\) words. The best step size resulting from their experiments was 280ms, correspond-
ing to, approximately, the length of a word – on average 271ms – motivating the equivalence between the MT and the ST policies. In Ren et al. (2020), the adaptation was done differently since their direct system includes a segmentation module that is able to determine word boundaries i.e. when a word finishes and the successive one starts. In this case, the wait-k strategy is applied by waiting for k pauses which are automatically detected by the segmenter.

Some studies have attempted to improve the performance of the wait-k strategy, both in relation to latency and quality. For instance, Nguyen et al. (2021) propose to emit more than one token during the writing mode to improve the quality-latency trade-off, while Elbayad et al. (2020) propose a unidirectional encoder instead of a standard SimulST bidirectional encoder (i.e. avoiding to update the encoder states after each READ action) to slow down the decoding phase. However, these systems are not applicable in our case since Nguyen et al. (2021) uses an offline system which is simulated as a simultaneous system during the decoding phase while the model of Elbayad et al. (2020) is for SimulMT and not for SimulST. No previous work has explored the possibilities offered by SimulST for the generation of live subtitles.

3 SimulST for live subtitling

3.1 Simultaneous ST models

The SimulST systems used in this work are based on direct ST models (Béard et al., 2016; Weiss et al., 2017), which are composed of an audio encoder and a text decoder. The encoder starts from the audio features extracted from the input signal and computes a hidden representation, while the decoder transforms this representation into the target text. These systems have been shown to have lower latency (Ren et al., 2020) – an important factor in simultaneous systems – compared to cascade systems, which perform two generation steps, one for transcription and one for translation. Moreover, Karakanta et al. (2020a) suggested that direct ST systems, having access to the audio source, make better subtitle segmentation decisions by taking advantage of the pauses in the audio.

In order to adapt SimulST systems for the task of live interlingual subtitling, we force the system to learn from human subtitle segmentation decisions by training on data annotated with break symbols which correspond to subtitle breaks ($<\text{eob}>$ for end of a subtitle block and $<\text{eol}>$ for end of line inside a subtitle block). These break symbols, if positioned properly, are the key element which allows us to experiment with different display modes for live subtitles.

Our direct SimulST models combine the efficiency of the wait-k strategy (Ma et al., 2019) and the findings of Karakanta et al. (2020a) for obtaining readable subtitles with direct ST systems. This decision policy was also chosen because it allows us to control the latency of our systems. In this way, we can study the effect of latency both on the conformity of the subtitles and on the subtitle display modes.

3.2 Display modes

We experiment with the following three display modes: 1) word-for-word, 2) blocks, and 3) scrolling lines. Figure 1 shows an example of a subtitle displayed in the different modes.

Word-for-word: In the word-for-word display, words appear sequentially on the screen as soon as they are generated by the system. One line at the bottom of the screen is filled from left to right until no more space is available on the right. Then, the line disappears and a new line is filled again. As already mentioned, this display mode is used in most simultaneous applications and follows the generation process of the SimulST system. Naturally, the length of the subtitle depends on the size of the screen. In our case, we selected a maximum of 84 characters, which matches the max. length of a full subtitle block of the block method (see
In some cases, it is because they are not suitable for ethics, or non-ethical, but often, they have been conducted to unethical objectives. Figure 1: Example sentence displayed in the three different modes. Words on the left column correspond to the time steps.

Blocks: In this mode, the subtitles are displayed only when a full subtitle block is completed. This means that the system continues generating words which are only displayed when the block delimiter `<eob>` is generated. The subtitle block remains on screen until the next `<eob>` symbol is generated, therefore the first subtitle is substituted by the next one. Display in blocks is used primarily in offline subtitling, where subtitles are prepared beforehand.

Scrolling lines: Instead of waiting for the full block, we propose a mode in which each line is displayed as soon as a break is predicted (either `<eob>` or `<eol>`). Whenever a new break is predicted, the previous line moves to the upper row of the block and the new line occupies the lower row. Since the allowed number of lines in a block is two, each line moves from the lower to the upper row before disappearing. This mode combines the benefits of the two previous methods. It reduces the dynamicity of the text compared to the word-for-word display, it makes content available earlier than the block display, it allows for access to extended context and it reduces long-distance eye movements since the previous line appears above. This mode is similar to the most popular mode employed for broadcasting, with the difference that there is no word-for-word display inside the lines.

The last two display modes are possible because of the ability of our SimulST system to predict subtitle breaks, which was not considered before in SimulST.

3.3 Evaluation of display modes

Our evaluation of the generated subtitles follows Ofcom’s recommendations (Ofcom [2015]) and focuses on three key dimensions: quality, delay between utterance and subtitle, and reading

2 According to the TED Talk subtitling guidelines.

https://simultrans-demo.github.io/
speed. For the display modes the quality is fixed, since they are applied to the same output. We thus focus on the speed and delay. In general, the reading speed is computed in characters per second (cps), as the number of characters over the total time of display. A low but also constant reading speed is pivotal for user experience, considering that it represents how fast or slow a user has to read. Since each of the display methods described in Section 3.2 has a different granularity, the computation of the reading speed has to take into account these visualization differences. The computations of reading speed and delay are described in detail for each visualization mode below.

Reading Speed. In the Word-for-word mode (see Figure 1) a word appears on screen as soon as it is generated and remains on screen until the block changes, i.e. when the 84-character limit is reached. Thus, the amount of time available for a user to read this word and all the following words of the block – hereinafter display time – is the interval elapsed from the generation of the word to that of the first word of the successive block. Consequently, the reading speed can be computed at each generation step as the length (in characters) of the generated word and of the successive words of the block divided by the display time. After computing the reading speed for each word of a block, the block-level reading speed is obtained by taking the maximum value since this represents how fast a user has to read to avoid losing part of the text.

Formally, each block corresponds to a group of words of maximum 84 characters or to the last group of words before end of sentence (<eos>) is emitted, i.e. the end of the audio segment. Thus, a block is composed by a set of W words $w_1, ..., w_W$ emitted at times $t_1, ..., t_W$, measured in seconds. At time t_{W+1}, the successive block starts or <eos> is emitted.

With this notation, we can compute the reading speed as follows:

$$rs = \max_{i=1, ..., W} \frac{len(text_i)}{elapsed_i}$$

where:

$$elapsed_i = \begin{cases}
\text{DELAY}_K, & w_i = \text{<eos>} \\
 t_{i+1} - t_i, & i = W \\
 t_{i+1} - t_i + elapsed_{i+1}, & \text{otherwise}
\end{cases}$$

$$text_i = \begin{cases}
w_i, & i = W \\
w_i + \text{SPACE} + text_{i+1}, & \text{otherwise}
\end{cases}$$

and \text{SPACE} represents a blank space added between the two texts. If the block is the last block of the audio segment, we do not know the emission time of the next word. For this reason, we use a fictitious delay:

$$\text{DELAY}_K = 0.280s \cdot k$$

where k corresponds to the k of the wait-k policy. This amount of time is a lower bound for the generation time of the first token of the next segment. As the wait-k policy reads for k steps (each of them lasting 280ms) and then generates the first word, the actual elapsed time will always be higher as it includes the time required for the generation of the word. Thus, DELAY_K represents a conservative estimation of the time available to read the last word.

For the Blocks mode, the block/line structure of the subtitles is exploited and a block stays on screen until the next block is filled. The reading speed is computed at block level, dividing its length by the time elapsed between the display time of the current block and that of the successive one. In an audio segment with B blocks, each block b is composed by W_b words.

4The code is available at: https://github.com/sarapapi/reading_speed
\(w_1, \ldots, w_{W_b}, \) where \(w_{W_b} \) is the \(<eob>\). Each word \(w_i \) is emitted at time \(t_i \), thus each block \(b \) is emitted at time \(t_{W_b} \), hereinafter \(t_b \). Using this notation, Equations 2 and 3 become:

\[
elapsed_b = \begin{cases}
\text{DELAY}_K, & b = B \\
t_{b+1} - t_b, & \text{otherwise}
\end{cases}
\]

(4)

\[
text_b = \sum_{i=1}^{W_b-1} \begin{cases}
\text{BLANK}, & w_i = <eol> \\
w_i, & i = W_b - 1 \\
w_i + \text{SPACE}, & \text{otherwise}
\end{cases}
\]

(5)

where \text{BLANK} corresponds to the empty string and, as before, \text{DELAY}_K conservatively accounts for the last unknown block time. In \(text_b \) we do not consider \(<eol>\) and \(<eob>\) (the \(W_b \)-th word) for the reading speed computation since they are only used for formatting the subtitles and are not read by the user. Consequently, the reading speed of a block is:

\[
rs = \frac{\text{len}(text_b)}{\elapsed_b}
\]

(6)

Our proposed display mode, **Scrolling Lines**, also exploits the subtitle structure considering both \(<eob>\) and \(<eol>\) as a unique \(<eol>\) delimiter. Since each line scrolls up when another is generated and two lines stay together on the screen, each line is displayed until the next two lines are generated. As a consequence, the reading speed is computed at line level, dividing the length of a line by the time needed to generate the two successive lines.

If we denote \(L \) as the number of lines present in an audio segment, then each line \(l \) is composed by \(W_l \) words \(w_{1_l}, \ldots, w_{W_l} \) emitted at times \(t_{1_l}, \ldots, t_{W_l} \), where \(w_{W_l} \) is the \(<eol>\) and \(t_{W_l} = t_l \) is its emission time. In this case, the reading speed is calculated at line-level instead of block-level, considering that each line is displayed until the next two lines (since a block can be composed by two lines) are produced. Thus, Equations 4, 5 and 6 are modified as follows:

\[
lapsed_l = \begin{cases}
\text{DELAY}_K, & l = L \\
t_{l+2} - t_{l+1} + (t_{l+1} - t_l), & \text{otherwise}
\end{cases}
\]

(8)

\[
text_l = \sum_{i=1}^{W_l-1} \begin{cases}
w_i, & i = W_l - 1 \\
w_i + \text{SPACE}, & \text{otherwise}
\end{cases}
\]

(9)

where, in this case, \text{DELAY}_K conservatively accounts for the last unknown line time.

Delay. The delay is estimated as the time between speech and subtitling. While in intralingual subtitling the correspondence between audio and subtitle is easier to establish, the interlingual setting poses the challenge of finding the correspondences between source audio and target text. Since a word-aligner would capture semantic correspondences, we opt for a temporal-based correspondence, based on the system’s lagging. Therefore delay is calculated as:

\[
delay = \sum_{i=1}^{w_i} (t_{\text{display}_w} - t_{\text{received}_w} - \text{DELAY}_K)
\]

(10)

where \(t_{\text{display}_w} \) is the time the word was displayed on screen and \(t_{\text{received}_w} \) the utterance time corresponding to the displayed token, minus the \(k \)-wait delay. For word-for-word display, the time of display corresponds to the system’s elapsed time, therefore the delay equals the system’s lagging. For block and scrolling lines display, the time of display is the time elapsed for the generation of the break (\(<eob>\) for blocks or any break for scrolling lines).
4 Experimental setting

Data For our experiments we use MuST-Cinema (Karakanta et al., 2020b), an ST corpus compiled from TED Talk subtitles. This corpus is ideal for exploring display modes other than word-for-word because it contains subtitle breaks as special symbols. We conduct experiments on three language pairs, English→Italian (442 hours), English→German (408 hours) and English→French (492 hours). For tuning and evaluation we use the MuST-Cinema dev and test sets. The text data were tokenized using SentencePiece (Kudo and Richardson, 2018) with the unigram setting (Kudo, 2018), trained on the training data with a 10k-token vocabulary size. The source audio was pre-processed with the SpecAugment data augmentation technique (Park et al., 2019), then the speech features (80 log Mel-filter banks) were extracted and Cepstral Mean and Variance Normalization was applied at global level. Samples with a length above 30s were filtered out. The configuration parameters are the default ones set by Ma et al. (2020).

Training settings Our SimulST systems are Transformer-based models (Vaswani et al., 2017), composed by 12 encoder layers, 6 decoder layers, 256 features for the attention layers and 2,048 hidden units in the feed-forward layers. All models are based on a custom version of Wang et al. (2020), having two initial 1D convolutional layers with gelu activation functions (Hendrycks and Gimpel, 2020), but adapted to the simultaneous scenario as per Ma et al. (2020). Moreover, the encoder self-attentions are biased using a logarithmic distance penalty (Di Gangi et al., 2019), leveraging the local context. Training was performed with cross entropy loss, Adam optimizer (Kingma and Ba, 2015) with a learning rate of 1e-4 with an inverse square-root scheduler and 4,000 warm-up updates. We set mini-batches of 5,000 max tokens and update the gradients every 16 mini-batches. The best checkpoint was selected based on the lowest cross entropy value on the MuST-Cinema dev set. READ/WRITE actions of the wait-k policy are decided by means of a pre-decision module at BPE (token) level (Ma et al., 2020). The adopted pre-decision module is fixed, which triggers the decision process at every pre-defined number of frames. Since a frame covers 10ms of the audio, an encoder state covers 40ms due to a 4x subsampling by the initial convolutional layers. Since the average length of a word in MuST-Cinema is 270ms, we consider 7 encoder states for a READ/WRITE action, which is the default parameter used by Ma et al. (2020), leading to a window size of 280ms. In order to explore the quality vs latency compromise and to study the effect of the system latency on the delay of the subtitles, we experimented with two values of k, resulting in wait-3 and wait-5 models. For comparison, we also trained one offline ST system per language.

Evaluation The evaluation focuses on two different aspects: 1) systems’ performance and 2) display modes. For systems’ performance, quality is evaluated with SacreBLEU (Post, 2018), which is computed on the ST output containing the subtitle breaks. The latency of the system is evaluated with Average Lagging (AL) (Ma et al., 2019) adapted to the ST scenario by Ma et al. (2020). In order to test the ability of the systems to generate properly formed subtitles, we evaluate the conformity to the length constraint (Len) as the percentage of subtitles having a length between 6 and 42 characters per line TED (2021). The display modes are evaluated in terms of reading speed and delay, as described in Section 3.3.

5 Results

5.1 Quality, Latency and Conformity

As far as quality is concerned (Table 1), the wait-3 strategy achieves low BLEU scores but there is significant improvement for wait-5, even reaching the performance of the offline system for French. These scores are in line with those reported in SimulST settings while in our setting the difficulty is exacerbated by the requirement to correctly place the subtitling breaks. In fact, the
offline system, despite not being optimised for the offline mode, still performs comparatively or better than [Karakanta et al. (2020a)](#), who reported 18.76 BLEU points for French and 11.82 for German, while the length conformity is higher by 2%. As for latency (AL), we observe an increase between 0.2-0.6 seconds from wait-3 to wait-5, which lags behind by 2 seconds. Still, these spans are not higher than the Ear-to-V oice Span (EVS) threshold reported for intralingual respeaking (2.1 seconds) and way below the EVS for interlingual respeaking (4.1 secs) (Chmiel et al., 2017). This shows that, despite the poor quality, SimulST could have the potential of reducing the delay in interlingual live subtitling. In terms of proper subtitles, we found that our systems are capable of properly inserting the break symbols, despite the partial input they receive, since more than 90% of the generated subtitles conform to the length constraint. This ability of our SimulST systems is indispensable for taking advantage of the predicted structure of the subtitles to experiment with display modes in blocks and lines.

Model	en-it	en-de	en-fr						
	BLEU	AL	Len	BLEU	AL	Len	BLEU	AL	Len
offline	19.5	-	96%	14.0	-	96%	18.6	-	97%
wait-3	12.2	1755	91%	7.7	1422	94%	13.5	1570	92%
wait-5	15.1	1936	92%	11.1	2050	91%	18.1	2035	94%

Table 1: SacreBLEU (considering <eol> and <eob>), Average Lagging (AL) in ms and conformity to the length constraint (Len) on three language pairs of MuST-Cinema amara.

5.2 Display mode and reading speed

When comparing the reading speed (rs) of the three modes (Table 2), the word-for-word and block mode have the highest rs for the wait-5 and wait-3 strategy respectively. The standard deviation is much higher for the word-for-word mode, which indicates a large variation in the rs. This could be attributed to the SimulST systems’ generation rate. The systems wait at the beginning of the utterance but, when the end of the input is reached, they perform greedy search and emit all remaining words at once. This rate leads to a jerky display of words, where some words remain on screen for a long time and others flush before the viewer manages to read them. However, the block mode has the lowest percentage of subtitles achieving a reading speed of max 21 cps. The problem of this mode is that each block remains on screen until the next <eob> is generated, which corresponds to the duration of the following block. For example, if a block of two lines with 40 characters each is followed by a block of one line of 25 characters, the first block would have a short time to be displayed, resulting in a high rs, and vice versa. One future direction would be to adjust the time of each block to better accommodate its reading speed, however, in initial experiments we found that this approach led to excessively high delay. Scrolling lines, our proposed method, achieves by far the lowest mean rs, with all models scoring below the 21 cps threshold. The same result is shown for the percentage of conforming subtitles, where conformity to reading speed reaches ~80%. It is worth noting that rs increases from wait-3 to wait-5 for the block and line modes for en→de, contrary to the other languages. This correlates with the lower percentage of length conformity (94% for wait-3 to 91% for wait-5) and shows the importance of correctly predicting the position of the breaks for the success of the display methods relying on these breaks.

As for delay, the word-for-word mode has the lowest delay, which corresponds to the system’s lagging. The block mode has the highest delay, while our proposed method manages to reduce the delay by 0.6 seconds on average compared to the display in blocks, remaining close to a 4-second EVS. Our results are validated by the inversely proportional relationship between rs and delay. Scrolling lines, our proposed method, seems to achieve a fair compromise
between a comfortable reading speed and an acceptable delay, while combining the benefits of the presence of the word on the right, less dynamic text and the preservation of the block structure which is familiar to most viewers.

Display Mode	rs	≤ 21 cps	delay	rs	≤ 21 cps	delay
en-it						
word	53.5 ± 9.9	61%	1755	40.1 ± 8.0	70%	1936
block	53.4 ± 9.1	38%	4690	36.5 ± 7.0	62%	5004
line	17.6 ± 5.2	79%	4092	14.4 ± 4.1	85%	4461
en-de						
word	29.1 ± 7.2	70%	1422	58.4 ± 10.5	63%	2050
block	33.3 ± 6.2	37%	4772	52.6 ± 9.2	56%	4503
line	12.4 ± 3.7	85%	4090	19.9 ± 5.4	78%	3894
en-fr						
word	39.7 ± 7.9	55%	1570	53.4 ± 9.0	57%	2035
block	43.8 ± 7.6	37%	4872	46.1 ± 8.0	56%	5273
line	15.4 ± 4.2	78%	4217	18.4 ± 4.8	78%	4708

Table 2: Reading speed (rs) mean and standard deviation in characters per second (cps), percentage of subtitles with a rs of max. 21 cps and display delay (in ms) on three language pairs of MuST-Cinema amara.

6 Conclusions

In this work we adapted SimulST systems for the task of live subtitling, by forcing the systems to generate subtitle breaks. We showed that SimulST systems are able to generate properly-formed subtitles. Given this finding, we moved on to explore display strategies alternative to the word-for-word display, the established display mode in SimulST. Word-for-word display is sub-optimal for readability and comprehension (Romero-Fresco, 2010). For automatically generated live subtitles, we found that it leads to an extremely variable reading speed, with some words lagging on the screen while the words towards the end of the utterance flushing through the screen. On the other hand, the display in blocks, which is the traditional mode for displaying offline subtitles, leads to a large delay and improves the reading speed only for SimulST systems with a higher latency. Our proposed display method, scrolling lines, is the only one achieving a comfortable mean reading speed below 21 cps, with around 80% of the subtitles having acceptable reading speed, while the delay remains along the 4-second threshold.

As for the feasibility of SimulST for live subtitling, there is still a long way to go in several directions. From a technical point of view, the principal issue is still the poor translation quality, which could benefit from advancements in tailored architectures. Evaluation marks progress in any field, but we still lack robust evaluation methodologies, taking into account all dimensions of the target medium, both quality and readability. Lastly, scholarly work is needed around user perception studies in automatic subtitling and live interlingual subtitling. Technology is moving faster than research and user studies are key to ensure our implementational efforts are moving in the right direction. We hope our work has set the ball rolling for further research in automatising live interlingual subtitling.
References

Alinejad, A., Siahbani, M., and Sarkar, A. (2018). Prediction improves simultaneous neural machine translation. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3022–3027, Brussels, Belgium. Association for Computational Linguistics.

Arivazhagan, N., Cherry, C., Macherey, W., Chiu, C.-C., Yavuz, S., Pang, R., Li, W., and Raffel, C. (2019). Monotonic infinite lookback attention for simultaneous machine translation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 1313–1323, Florence, Italy. Association for Computational Linguistics.

Arivazhagan, N., Cherry, C., Macherey, W., and Foster, G. F. (2020). Re-translation versus streaming for simultaneous translation. In IWSLT.

Bojar, O., Macháček, D., Sagar, S., Smrž, O., Kratochvíl, J., Polák, P., Ansari, E., Mahmoudi, M., Kumar, R., Franceschini, D., Canton, C., Simonini, I., Nguyen, T.-S., Schneider, F., Stüker, S., Waibel, A., Haddow, B., Sennrich, R., and Williams, P. (2021). ELITR multilingual live subtitling: Demo and strategy. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 271–277, Online. Association for Computational Linguistics.

Bérard, A., Pietquin, O., Servan, C., and Besacier, L. (2016). Listen and Translate: A Proof of Concept for End-to-End Speech-to-Text Translation. In NIPS Workshop on end-to-end learning for speech and audio processing, Barcelona, Spain.

Chmiel, A., Szarkowska, A., Korzinek, D., Lijewska, A., Łukasz Dutka, Łukasz Brocki, and Marasek, K. (2017). Ear–voice span and pauses in intra- and interlingual respeaking: An exploratory study into temporal aspects of the respeaking process. Applied Psycholinguistics, 38:1201 – 1227.

Dawson, H. (2019). Feasibility, quality and assessment of interlingual live subtitling: A pilot study. Journal of Audiovisual Translation, 2(2):36–56.

Di Gangi, M. A., Negri, M., and Turchi, M. (2019). Adapting Transformer to End-to-End Spoken Language Translation. In Proc. Interspeech 2019, pages 1133–1137.

Elbayad, M., Besacier, L., and Verbeek, J. (2020). Efficient Wait-k Models for Simultaneous Machine Translation. In Proc. Interspeech 2020, pages 1461–1465.

Grissom II, A., He, H., Boyd-Graber, J., Morgan, J., and Daumé III, H. (2014). Don’t until the final verb wait: Reinforcement learning for simultaneous machine translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1342–1352, Doha, Qatar. Association for Computational Linguistics.

Gu, J., Neubig, G., Cho, K., and Li, V. O. (2017). Learning to translate in real-time with neural machine translation. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 1053–1062, Valencia, Spain. Association for Computational Linguistics.

Hendrycks, D. and Gimpel, K. (2020). Gaussian Error Linear Units (GELUs).

Karakanta, A., Negri, M., and Turchi, M. (2020a). Is 42 the answer to everything in subtitling-oriented speech translation? In Proceedings of the 17th International Conference on Spoken Language Translation, pages 209–219, Online. Association for Computational Linguistics.
Karakanta, A., Negri, M., and Turchi, M. (2020b). MuST-cinema: a speech-to-subtitles corpus. In Proceedings of the 12th Language Resources and Evaluation Conference, pages 3727–3734, Marseille, France. European Language Resources Association.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In Bengio, Y. and LeCun, Y., editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

Kudo, T. (2018). Subword Regularization: Improving Neural Network Translation Models with Multiple Subword Candidates. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 66–75, Melbourne, Australia. Association for Computational Linguistics.

Kudo, T. and Richardson, J. (2018). SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 66–71, Brussels, Belgium. Association for Computational Linguistics.

Lambourne, A. (2006). Subtitle respeaking. Intralinea, Special Issue on Respeaking.

Ma, M., Huang, L., Xiong, H., Zheng, R., Liu, K., Zheng, B., Zhang, C., He, Z., Liu, H., Li, X., Wu, H., and Wang, H. (2019). STACL: Simultaneous translation with implicit anticipation and controllable latency using prefix-to-prefix framework. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3025–3036, Florence, Italy. Association for Computational Linguistics.

Ma, X., Pino, J., and Koehn, P. (2020). SimulMT to SimulST: Adapting simultaneous text translation to end-to-end simultaneous speech translation. In Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing, pages 582–587, Suzhou, China. Association for Computational Linguistics.

Marsh, A. (2004). Simultaneous Interpreting and Respeaking: a Comparison. Master’s thesis, University of Westminster, UK.

Netflix (2021). Timed text style guide: General requirements. https://partnerhelp.netflixstudios.com/hc/en-us/articles/215758617-Timed-Text-Style-Guide-General-Requirements. Last accessed: 10/06/2021.

Nguyen, H., Estève, Y., and Besacier, L. (2021). An empirical study of end-to-end simultaneous speech translation decoding strategies. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 7528–7532. IEEE.

Ofcom (2005). Subtitling—an issue of speed? Technical report, Ofcom, London: Ofcom.

Ofcom (2015). Measuring live subtitling quality: Results from the fourth sampling exercise. Technical report, Ofcom, London: Office of Communications.

Park, D. S., Chan, W., Zhang, Y., Chiu, C.-C., Zoph, B., Cubuk, E. D., and Le, Q. V. (2019). SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition. In Proc. Interspeech 2019, pages 2613–2617.

Perego, E., Missier, F. D., Porta, M., and Mosconi, M. (2010). The cognitive effectiveness of subtitle processing. Media Psychology, 13:243—272.
Post, M. (2018). A call for clarity in reporting BLEU scores. In Proceedings of the Third Conference on Machine Translation: Research Papers, pages 186–191, Brussels, Belgium. Association for Computational Linguistics.

Pöchhacker, F. and Remael, A. (2020). New efforts? a competence-oriented task analysis of interlingual live subtitling. Linguistica Antverpiensia, New Series – Themes in Translation Studies, 18(0).

Rajendran, D. J., Duchowski, A. T., Orero, P., Martínez, J., and Romero-Fresco, P. (2013). Effects of text chunking on subtitling: A quantitative and qualitative examination. Perspectives, 21(1):5–21.

Rayner, K., Liveredge, S. P., and White, S. J. (2006). Eye movements when reading disappearing text: The importance of the word to the right of fixation. Vision Research, pages 310—323.

Ren, Y., Liu, J., Tan, X., Zhang, C., Qin, T., Zhao, Z., and Liu, T.-Y. (2020). SimulSpeech: End-to-end simultaneous speech to text translation. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 3787–3796, Online. Association for Computational Linguistics.

Romero-Fresco, P. (2010). Standing on quicksand: hearing viewers’ comprehension and reading patterns of respoken subtitles for the news, pages 175 – 194. Brill, Leiden, The Netherlands.

Romero-Fresco, P. (2011). Subtitling through speech recognition: Respeaking. Manchester: St. Jerome.

Romero-Fresco, P. (2015). Final thoughts: Viewing speed in subtitling. The Reception of Subtitles for the Deaf and Hard of Hearing in Europe, pages 335–341.

Sharmin, S., Wiklund, S. M.-A., and Tiittula, L. (2016). The reading process of dynamic text – a linguistic approach to an eye movement study. SKY Journal of Linguistics, pages 119–146.

Szarkowska, A. (2016). Report on the results of an online survey on subtitle presentation times and line breaks in interlingual subtitling. part 1: Subtitlers. Technical report, London: University College London.

TED (2021). Subtitling tips. https://www.ted.com/participate/translate/subtitling-tips.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. (2017). Attention is all you need. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.

Wang, C., Tang, Y., Ma, X., Wu, A., Okhonko, D., and Pino, J. (2020). fairseq s2t: Fast speech-to-text modeling with fairseq. In Proceedings of the 2020 Conference of the Asian Chapter of the Association for Computational Linguistics (AACL): System Demonstrations.

Weiss, R. J., Chorowski, J., Jaitly, N., Wu, Y., and Chen, Z. (2017). Sequence-to-Sequence Models Can Directly Translate Foreign Speech. In Proceedings of Interspeech 2017, pages 2625–2629, Stockholm, Sweden.

Zheng, B., Liu, K., Zheng, R., Ma, M., Liu, H., and Huang, L. (2020). Simultaneous translation policies: From fixed to adaptive. ArXiv, abs/2004.13169.

Zheng, B., Zheng, R., Ma, M., and Huang, L. (2019a). Simpler and faster learning of adaptive policies for simultaneous translation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1349–1354, Hong Kong, China. Association for Computational Linguistics.
Zheng, B., Zheng, R., Ma, M., and Huang, L. (2019b). Simultaneous translation with flexible policy via restricted imitation learning. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pages 5816–5822, Florence, Italy. Association for Computational Linguistics.