ON α-EMBEDDED SETS AND EXTENSION OF MAPPINGS

OLENA KARLOVA

Abstract. We introduce and study α-embedded sets and apply them to generalize the Kuratowski Extension Theorem.

1. Introduction

A subset A of a topological space X is called functionally open (functionally closed) if there exists a continuous function $f : X \to [0,1]$ such that $A = f^{-1}((0,1])$ ($A = f^{-1}(0)$).

Let $G_0^\alpha(X)$ and $F_0^\alpha(X)$ be the collections of all functionally open and functionally closed subsets of a topological space X, respectively. Assume that the classes $G_\xi^\alpha(X)$ and $F_\xi^\alpha(X)$ are defined for all $\xi < \alpha$, where $0 < \alpha < \omega_1$. Then, if α is odd, the class $G_\alpha^\alpha(X)$ ($F_\alpha^\alpha(X)$) consists of all countable intersections (unions) of sets of lower classes, and, if α is even, the class $G_\alpha^\alpha(X)$ ($F_\alpha^\alpha(X)$) consists of all countable unions (intersections) of sets of lower classes. The classes $F_\alpha^\alpha(X)$ for odd α and $G_\alpha^\alpha(X)$ for even α are said to be functionally additive, and the classes $F_\alpha^\alpha(X)$ for even α and $G_\alpha^\alpha(X)$ for odd α are called functionally multiplicative. If a set belongs to the α'th functionally additive and to the α'th functionally multiplicative class simultaneously, then it is called functionally ambiguous of the α'th class.

For every $0 \leq \alpha < \omega_1$ let

$$B_\alpha^\alpha(X) = F_\alpha^\alpha(X) \cup G_\alpha^\alpha(X)$$

and let

$$B^\alpha(X) = \bigcup_{0 \leq \alpha < \omega_1} B_\alpha^\alpha(X).$$

If $A \in B^\alpha(X)$, then A is said to be a functionally measurable set.

If P is a property of mappings, then by $P(X,Y)$ we denote the collection of all mappings $f : X \to Y$ with the property P. Let $P(X) (P^*(X))$ be the collection of all real-valued (bounded) mappings on X with a property P.

By the symbol C we denote, as usually, the property of continuity.

Let $K_0(X,Y) = C(X,Y)$. For an ordinal $0 < \alpha < \omega_1$ we say that a mapping $f : X \to Y$ belongs to the α'th functional Lebesgue class, $f \in K_\alpha(X,Y)$, if the preimage $f^{-1}(V)$ of an arbitrary open set $V \subseteq Y$ is of the α'th functionally additive class in X.

A subspace E of X is P-embedded (P^*-embedded) in X if every (bounded) function $f \in P(E)$ can be extended to a (bounded) function $g \in P(X)$.

1
A subset E of X is said to be z-embedded in X if every functionally closed set in E is the restriction of a functionally closed set in X to E. It is well-known that

$$E - C\text{-embedded} \Rightarrow E - C^*\text{-embedded} \Rightarrow E - z\text{-embedded}.$$

Recall that sets A and B are completely separated in X if there exists a continuous function $f : X \to [0, 1]$ such that $A \subseteq f^{-1}(0)$ and $B \subseteq f^{-1}(1)$.

The following theorem was proved in [2, Corollary 3.6].

Theorem 1.1 (Blair-Hager). *A subset E of a topological space X is C-embedded in X if and only if E is z-embedded in X and E is completely separated from every functionally closed set in X disjoint from E.***

It is natural to consider P- and P^*-embedded sets if $P = K_\alpha$ for $\alpha > 0$. In connection with this we introduce and study a class of α-embedded sets which coincides with the class of z-embedded sets when $\alpha = 0$. In Section 3 we generalize the notion of completely separated sets to α-separated sets. Section 4 deals with ambiguously α-embedded sets which play the important role in the extension of bounded K_α-functions. In the fifth section we prove an analog of the Tietze-Uryshon Extension Theorem for K_α-functions. Section 6 concerns the question when K_1-embedded sets coincide with K_1^*-embedded sets. The seventh section presents a generalization of the Kuratowski Theorem [11, p. 445] on extension of K_α-mappings with values in Polish spaces.

2. α-EMBEDDED SETS

Let $0 \leq \alpha < \omega_1$. A subset E of a topological space X is α-embedded in X if for any set A of the α’th functionally additive (multiplicative) class in E there is a set B of the α’th functionally additive (multiplicative) class in X such that $A = B \cap E$.

Proposition 2.1. *Let X be a topological space, $0 \leq \alpha < \omega_1$ and let $E \subseteq X$ be an α-embedded set of the α’th functionally additive (multiplicative) class in X. Then every set of the α’th functionally additive (multiplicative) class in E belongs to the α’th functionally additive (multiplicative) class in X.***

Proof. For a set C of the α’th functionally additive (multiplicative) class in E we choose a set B of the α’th functionally additive (multiplicative) class in X such that $C = B \cap E$. Then C belongs to the α’th functionally additive (multiplicative) class in X as the intersection of two sets of the same class. \hfill \square

Proposition 2.2. *Let X be a topological space, $E \subseteq X$ and

(i) X is perfectly normal, or
(ii) X is completely regular and E is its Lindelöf subset, or
(iii) E is a functionally open subset of X, or
(iv) X is a normal space and E is its F_α-subset,

then E is 0-embedded in X.***
Proof. Let G be a functionally open set in E.

(i). Choose an open set U in X such that $G = E \cap U$. Then U is functionally open in X by Vedenissoff’s theorem \[31\] p. 45.

(ii). Let U be an open set in X such that $G = E \cap U$. Since X is completely regular, $U = \bigcup_{s \in S} U_s$, where U_s is a functionally open set in X for each $s \in S$.

Notice that G is Lindelöf, provided G is F_α in the Lindelöf space E \[31\] p. 192. Then there exists a countable set $S_0 \subseteq S$ such that $G \subseteq \bigcup_{s \in S_0} U_s$. Let $V = \bigcup_{s \in S_0} U_s$.

Then V is functionally open in X and $V \cap E = G$.

(iii). Consider continuous functions $\varphi : E \rightarrow [0, 1]$ and $\psi : X \rightarrow [0, 1]$ such that $G = \varphi^{-1}((0, 1])$ and $E = \psi^{-1}((0, 1])$. For each $x \in X$ we set

$$f(x) = \begin{cases} \varphi(x) \cdot \psi(x), & x \in E, \\ 0, & x \in X \setminus E. \end{cases}$$

Since $\varphi(x) \cdot \psi(x) = 0$ on $\overline{E} \setminus E$, $f : X \rightarrow [0, 1]$ is continuous. Moreover, $G = f^{-1}((0, 1])$. Hence, the set G is functionally open in X.

(iv). Let \tilde{G} be an open set in X such that $G = \tilde{G} \cap E$. Since G is functionally open in E, G is F_α in E. Consequently, G is F_α in X, provided E is F_α in X. Since X is normal, for every $n \in \mathbb{N}$ there exists a continuous function $f_n : X \rightarrow [0, 1]$ such that $f_n(x) = 1$ if $x \in F_\alpha$ and $f_n(x) = 0$ if $x \in X \setminus \tilde{G}$. Then the set $V = \bigcup_{n=1}^{\infty} f_n^{-1}((0, 1])$ is functionally open in X and $V \cap E = G$. \hfill \Box

Examples [2, 3] and [2, 4] show that none of the conditions (i)-(iv) on X and E in Proposition 2.2 can be weaken.

Recall that a topological space X is said to be perfect if every its closed subset is G_δ in X.

Example 2.3. There exist a perfect completely regular space X and its functionally closed subspace E which is not α-embedded in X for every $0 \leq \alpha < \omega_1$.

Consequently, there is a bounded continuous function on E which cannot be extended to a \mathcal{K}_α-function for every α.

Proof. Let X be the Niemyski plane \[31\] p. 22], i.e. $X = \mathbb{R} \times [0, +\infty)$, where a base of neighborhoods of $(x, y) \in X$ with $y > 0$ form open balls with the center in (x, y), and a base of neighborhoods of $(x, 0)$ form the sets $U \cup \{(x, 0)\}$, where U is an open ball which tangent to $\mathbb{R} \times \{0\}$ in the point $(x, 0)$. It is well-known that the space X is perfect and completely regular, but is not normal.

Denote $E = \mathbb{R} \times \{0\}$. Since the function $f : X \rightarrow \mathbb{R}$, $f(x, y) = y$, is continuous and $E = f^{-1}(0)$, the set E is functionally closed in X.

Notice that every function $f : E \rightarrow \mathbb{R}$ is continuous. Therefore, $|\mathcal{B}_\alpha^*(E)| = 2^{2\aleph_0}$ for every $0 \leq \alpha < \omega_1$. On the other hand, $|\mathcal{B}_\alpha^*(X)| = 2^{\aleph_0}$ for every $0 \leq \alpha < \omega_1$, provided the space X is separable. Hence, for every $0 \leq \alpha < \omega_1$ there exists a set $A \in \mathcal{B}_\alpha^*(E)$ which can not be extend to a set $B \in \mathcal{B}_\alpha^*(X)$.
Observe that a function \(f : E \to [0,1] \), such that \(f = 1 \) on \(A \) and \(f = 0 \) on \(E \setminus A \), is continuous on \(E \). But there is no \(K_\alpha \)-function \(f : X \to [0,1] \) such that \(g|_E = f \), since otherwise the set \(B = g^{-1}(1) \) would be an extension of \(A \). \(\square \)

Example 2.4. There exist a compact Hausdorff space \(X \) and its open subspace \(E \) which is not \(\alpha \)-embedded in \(X \) for every \(0 \leq \alpha < \omega_1 \).

Proof. Let \(X = D \cup \{ \infty \} \) be the Alexandroff compactification of an uncountable discrete space \(D \) \([5, p. 169]\) and \(E = D \). Fix \(0 \leq \alpha < \omega_1 \) and choose an arbitrary uncountable set \(A \subseteq E \) with uncountable complement \(X \setminus A \). Evidently, \(A \) is functionally closed in \(E \). Assume that there is a set \(B \) of the \(\alpha \)'th functionally multiplicative class in \(X \) such that \(A = B \cap E \). Clearly, \(B = A \cup \{ \infty \} \). Moreover, there exists a function \(f : X \to \mathbb{R} \) of the \(\alpha \)'th Baire class such that \(B = f^{-1}(0) \) \([9, Lemma 2.1]\). But every continuous function on \(X \), and consequently every Baire function of the class \(\alpha \) on \(X \) satisfies the equality \(f(x) = f(\infty) \) for all but countably many points \(x \in X \), which implies a contradiction. \(\square \)

Proposition 2.5. Let \(0 \leq \alpha \leq \beta < \omega_1 \) and let \(X \) be a topological space. Then every \(\alpha \)-embedded subset of \(X \) is \(\beta \)-embedded.

Proof. Let \(E \) be an \(\alpha \)-embedded subset of \(X \). If \(\beta = \alpha \), the assertion of the proposition is obvious. Suppose the assertion is true for all \(\alpha \leq \beta < \xi \) and let \(A \) be a set of the \(\xi \)'th functionally additive class in \(E \). Then there exists a sequence of sets \(A_n \) of functionally multiplicative classes \(< \xi \) in \(E \) such that \(A = \bigcup_{n=1}^{\infty} A_n \).

According to the assumption, for every \(n \in \mathbb{N} \) there is a set \(B_n \) of a functionally multiplicative class \(< \xi \) in \(X \) such that \(A_n = B_n \cap E \). Then the set \(B = \bigcup_{n=1}^{\infty} B_n \) belongs to the \(\xi \)'th functionally additive class in \(X \) and \(A = B \cap E \). \(\square \)

The inverse proposition is not true, as the following result shows.

Theorem 2.6. There exist a completely regular space \(X \) and its 1-embedded subspace \(E \subseteq X \) which is not 0-embedded in \(X \).

Proof. Let \(X_0 = [0,1] \), \(X_s = \mathbb{N} \) for every \(s \in (0,1] \), \(Y = \prod_{s \in (0,1]} X_s \) and

\[
X = [0,1] \times Y = \prod_{s \in [0,1]} X_s.
\]

Then \(X \) is completely regular as a product of completely regular spaces \(X_s \). Let \(A_1 = (0,1] \) and \(A_2 = \{0\} \).

For \(i = 1,2 \) we consider the set

\[
F_i = \bigcap_{n \neq i} \{ y = (y_s)_{s \in [0,1]} \in Y : |\{s \in (0,1) : y_s = n\}| \leq 1 \}.
\]

Obviously, \(F_1 \cap F_2 = \emptyset \) and the sets \(F_1 \) and \(F_2 \) are closed in \(Y \).
Let

\[B_1 = A_1 \times F_1, \ \ \ B_2 = A_2 \times F_2 \text{ and } E = B_1 \cup B_2. \]

It is easy to see that the sets \(B_1 \) and \(B_2 \) are closed in \(E \), and consequently they are functionally clopen in \(E \).

Claim 1. The set \(B_i \) is 0-embedded in \(X \) for every \(i = 1, 2 \).

Proof. Let \(C \) be a functionally open set in \(B_i \).

Let us consider the set

\[H = \{ x = (x_s)_{s \in [0,1]} \in X : |\{ s \in [0,1] : x_s \neq 1 \}| \leq \aleph_0 \}. \]

Then the set \([0,1] \times F_i \) is closed in \(H \) for every \(i = 1, 2 \). Since \(H \) is the \(\Sigma \)-product of the family \((X_s)_{s \in [0,1]} \) (see [5] p. 118), according to [10] the space \(H \) is normal. Consequently, \([0,1] \times F_i \) is normal as closed subspace of normal space for every \(i = 1, 2 \). Clearly, \(B_1 \) is functionally open in \([0,1] \times F_1 \). Hence, \(B_1 \) is 0-embedded in \([0,1] \times F_1 \) according to Proposition 2.2(iii). Then \(C \) is functionally open in \([0,1] \times F_1 \) by Proposition 2.2. Notice that the set \([0,1] \times F_1 \) is 0-embedded in \(H \) by Propositions 2.2(iv). Hence, there exists a functionally open set \(C' \) in \(H \) such that \(C' \cap ([0,1] \times F_1) = C \). It follows from [3] that \(H \) is 0-embedded in \(X \). Then there exists a functionally open set \(C'' \) in \(X \) such that \(C'' \cap H = C'' \). Evidently, \(C'' \cap B_1 = C \). Therefore, the set \(B_1 \) in 0-embedded in \(X \).

Analogously, it can be shown that the set \(B_2 \) is 0-embedded in \(X \), using the fact that \(B_2 \) is 0-embedded in \([0,1] \times F_2 \) according to Proposition 2.2(iv).

Claim 2. The set \(E \) is not 0-embedded in \(X \).

Proof. Assuming the contrary, we choose a functionally closed set \(D \) in \(X \) such that \(D \cap E = B_1 \). Then \(D = f^{-1}(0) \) for some continuous function \(f : X \to [0,1] \).

It follows from [5] p. 117 that there exists a countable set \(S = \{0\} \cup T \), where \(T \subseteq (0,1] \), such that for any \(x = (x_s)_{s \in [0,1]} \) and \(y = (y_s)_{s \in [0,1]} \) of \(X \) the equality \(x|_S = y|_S \) implies \(f(x) = f(y) \). Let \(y_0 \in Y \) be such that \(y_0|_T \) is a sequence of different natural numbers which are not equal to 1 or 2. We choose \(y_1 \in F_1 \) and \(y_2 \in F_2 \) such that \(y_0|_T = y_1|_T = y_2|_T \). Then

\[f(a, y_0) = f(a, y_1) = f(a, y_2) \]

for all \(a \in [0,1] \). We notice that \(f(0, y_1) = 0 \). Therefore, \(f(0, y_0) = 0 \). But \(f(a, y_2) > 0 \) for all \(a \in A_2 \). Then \(f(a, y_0) > 0 \) for all \(a \in A_2 \). Hence, \(A_1 = (f^{y_0})^{-1}(0) \), where \(f^{y_0}(a) = f(a, y_0) \) for all \(a \in [0,1] \), and \(f^{y_0} \) is continuous. Thus, the set \(A_1 = (0,1] \) is closed in \([0,1] \), which implies a contradiction.

Claim 3. The set \(E \) is 1-embedded in \(X \).

Proof. Let \(C \) be a functionally \(G_\delta \)-set in \(E \). We put

\[E_1 = A_1 \times Y, \ \ E_2 = A_2 \times Y. \]

Then the set \(E_1 \) is functionally open in \(X \) and the set \(E_2 \) is functionally closed in \(X \). For \(i = 1, 2 \) let \(C_i = C \cap B_i \). Since for every \(i = 1, 2 \) the set \(C_i \) is functionally
Let B_i be a subset of X. By Proposition 2.5, there exists a functionally G_δ-set \tilde{C}_i in X such that $\tilde{C}_i \cap B_i = C_i$. Let

$$\tilde{C} = (\tilde{C}_1 \cap E_1) \cup (\tilde{C}_2 \cap E_2).$$

Then \tilde{C} is functionally G_δ in X and $\tilde{C} \cap E = C$. \hfill \square

3. α-separated sets and α-separated spaces

Let $0 \leq \alpha < \omega_1$. Subsets A and B of a topological space X are said to be α-separated if there exists a function $f \in K_\alpha(X)$ such that $A \subseteq f^{-1}(0)$ and $B \subseteq f^{-1}(1)$.

Remark that 0-separated sets are also called completely separated [5, p. 42].

Lemma 3.1 (Lemma 2.1 [8]). Let X be a topological space, $\alpha > 0$ and let $A_\alpha \subseteq X$ be a subset of the α'th functionally additive class. Then there exists a sequence $(A_n)_{n=1}^\infty$ such that each A_n is functionally ambiguous of the class α in X, $A_n \cap A_m = \emptyset$ for $n \neq m$ and $A = \bigcup_{n=1}^\infty A_n$.

Proof. Since A belongs to the α'th functionally additive class, $A = \bigcup_{n=1}^\infty B_n$, where each B_n belongs to the functionally multiplicative class $< \alpha$ in X. Therefore, each B_n is functionally ambiguous of the class α. Let $A_1 = B_1$ and $A_n = B_n \setminus \bigcup_{k<n} B_k$ for $n > 1$. Then $(A_n)_{n=1}^\infty$ is the required sequence. \hfill \square

Lemma 3.2 (Lemma 2.2 [8]). Let X be a topological space, $\alpha \geq 0$ and let A_n belongs to the α'th functionally additive class in X for every $n \in \mathbb{N}$ with $X = \bigcup_{n=1}^\infty A_n$.

Then there exists a sequence $(B_n)_{n=1}^\infty$ of mutually disjoint functionally ambiguous sets of the class α in X such that $B_n \subseteq A_n$ and $X = \bigcup_{n=1}^\infty B_n$.

Proof. If follows from Lemma 3.1 that for every $n \in \mathbb{N}$ there exists a sequence $(F_{n,m})_{m=1}^\infty$ such that each $F_{n,m}$ is functionally ambiguous of the class α in X, $F_{n,m} \cap F_{n,k} = \emptyset$ for $m \neq k$ and $A_n = \bigcup_{m=1}^\infty F_{n,m}$. Let $k : \mathbb{N}^2 \to \mathbb{N}$ be a bijection.

Set

$$C_{n,m} = F_{n,m} \setminus \bigcup_{k(p,s) \lt k(n,m)} F_{p,s}.$$

Evidently, $\bigcup_{n,m=1}^\infty C_{n,m} = X$. Let $B_n = \bigcup_{m=1}^\infty C_{n,m}$. Then $\bigcup_{n=1}^\infty B_n = \bigcup_{n=1}^\infty A_n = X$ and $B_n \subseteq \bigcup_{n=1}^\infty F_{n,m} = A_n$. Notice that each $C_{n,m}$ is functionally ambiguous of the class α. Therefore, B_n belongs to the functionally additive class α for every n. Moreover, $B_n \cap B_m = \emptyset$ for $n \neq m$. Since $X \setminus B_n = \bigcup_{k \neq n} B_k$, B_n is functionally ambiguous of the class α. \hfill \square
Lemma 3.3. Let $0 \leq \alpha < \omega_1$ and let A be a subset of the α’th functionally multiplicative class of a topological space X. Then there exists a function $f \in K_\alpha^*(X)$ such that $A = f^{-1}(0)$.

Proof. For $\alpha = 0$ the lemma implies from the definition of a functionally closed set.

Let $\alpha > 0$. Since the set $B = X \setminus A$ is of the α’th functionally additive class, there exists a sequence of functionally ambiguous sets B_n of the α’th class in X such that $B = \bigcup_{n=1}^{\infty} B_n$ and $B_n \cap B_m = \emptyset$ for all $n \neq m$ by Lemma 3.1. Define a function $f : X \to [0,1]$,

$$f(x) = \begin{cases} 0, & \text{if } x \in A, \\ \frac{1}{n}, & \text{if } x \in B_n. \end{cases}$$

Take an arbitrary open set $V \subseteq [0,1]$. If $0 \not\in V$ then $f^{-1}(V)$ is of the α’th functionally additive class as a union of at most countably many sets B_n. If $0 \in V$ then there exists such a number N that $\frac{1}{n} \in V$ for all $n > N$. Then the set $X \setminus f^{-1}(V) = \bigcup_{n=1}^{N} B_n$ belongs to the α’th functionally multiplicative class. Hence, $f^{-1}(V)$ is of the α’th functionally additive class in X. Therefore, $f \in K_\alpha^*(X)$.

Proposition 3.4. Let $0 \leq \alpha < \omega_1$ and let X be a topological space. Then any two disjoint sets A and B of the α’th functionally multiplicative class in X are α-separated.

Proof. By Lemma 3.3 we choose functions $f_1, f_2 \in K_\alpha(X)$ such that $A = f_1^{-1}(0)$ and $B = f_2^{-1}(0)$. For all $x \in X$ let

$$f(x) = \frac{f_1(x)}{f_1(x) + f_2(x)}.$$

It is easy to see that $f \in K_\alpha(X)$, $f(x) = 0$ on A and $f(x) = 1$ on B.

Let $0 \leq \alpha < \omega_1$. A topological space X is α-separated if any two disjoint sets $A, B \subseteq X$ of the α’th multiplicative class in X are α-separated. It follows from Urysohn’s Lemma [5] p. 41 that a topological space is 0-separated if and only if it is normal. Proposition 3.4 implies that every perfectly normal space is α-separated for each $\alpha \geq 0$. It is naturally to ask whether there is an α-separated space for $\alpha \geq 1$ which is not perfectly normal.

Example 3.5. There exists a completely regular 1-separated space which is not perfectly normal.

Proof. Let $D = D(m)$ be a discrete space of the cardinality m, where m is a measurable cardinal number [6] 12.1. According to [6] 12.2, D is not a realcompact space. Let $X = vD$ be a Hewitt realcompactification of D [5] p. 218. Then X is an extremally disconnected P-space, which is not discrete [6] 12H. Thus, there exists a point $x \in X$ such that the set $\{x\}$ is not open. Then $\{x\}$, being a closed
set, is not a $G_δ$-set, since X is a P-space (i.e. a space in which every $G_δ$-subset is open). Therefore, the space X is not perfect.

If A and B are disjoint $G_δ$-subsets of X, then A and B are open in X. Notice that in an extremally disconnected space any two disjoint open sets are completely separated \[1, 1H\]. Consequently, A and B are 1-separated, since every continuous function belongs to the first Lebesgue class.

Clearly, every ambiguous set A of the class 0 in a topological space (i.e., every clopen set) is a functionally ambiguous set of the class 0. If A is an ambiguous set of the first class, i.e. A is an $F_{α}$- and a $G_δ$-set, then A need not be a functionally $F_{α}$- or a functionally $G_δ$-set. Indeed, let X be the Niemytski plane, E be a set which is not of the $G_δα$-type in \mathbb{R} and let $A = E \times \{0\}$ be a subspace of X. Then A is closed and consequently $G_δ$-subset of X, since the Niemytski plane is a perfect space. Assume that A is a functionally $F_{α}$-set in X. Then $A = \bigcup_{n=1}^{∞} A_n$, where A_n is a functionally closed subset of X for every $n \in \mathbb{N}$. According to [13, Theorem 5.1], a closed subset F of X is a functionally closed set in X if and only if the set $\{x \in \mathbb{R} : (x, 0) \in F\}$ is a $G_δ$-set in \mathbb{R}. It follows that for every $n \in \mathbb{N}$ the set A_n is a $G_δ$-subset of \mathbb{R}, which implies a contradiction.

Theorem 3.6. Let $0 ≤ α < ω_1$ and let X be an $α$-separated space.

1. Every ambiguous set $A \subseteq X$ of the class $α$ is functionally ambiguous of the class $α$.

2. For any disjoint sets A and B of the $(α + 1)$'th additive class in X there exists a set C of the $(α + 1)$'th functionally multiplicative class such that $A \subseteq C \subseteq X \setminus B$.

3. Every ambiguous set A of the $(α + 1)$'th class in X is a functionally ambiguous set of the $(α + 1)$'th class.

4. Any set of the $α$'th multiplicative class in X is $α$-embedded.

Proof. (1) Since the set $B = X \setminus A$ belongs to the $α$'th multiplicative class in X, there exists a function $f \in K_α(X)$ such that $A \subseteq f^{-1}(0)$ and $B \subseteq f^{-1}(1)$. Then $A = f^{-1}(0)$ and $B = f^{-1}(1)$. Hence, the sets A and B are of the $α$'th functionally multiplicative class. Consequently, A is a functionally ambiguous set of the class $α$.

(2) Choose two sequences $(A_n)_{n=1}^{∞}$ and $(B_n)_{n=1}^{∞}$, where A_n and B_n belong to the $α$'th multiplicative class in X for every $n \in \mathbb{N}$, such that $A = \bigcup_{n=1}^{∞} A_n$ and $B = \bigcup_{n=1}^{∞} B_n$. Since X is $α$-separated, for every $n, m \in \mathbb{N}$ there exists a function $f_{n,m} \in K_α(X)$ such that $A_n \subseteq f_{n,m}^{-1}(1)$ and $B_m \subseteq f_{n,m}^{-1}(0)$. Set $C = \bigcap_{n=1}^{∞} \bigcup_{m=1}^{∞} f_{n,m}^{-1}((0, 1])$.

Then the set \(C \) is of the \((\alpha + 1)\)th functionally multiplicative class in \(X \) and \(A \subseteq C \subseteq X \setminus B \).

(3) Let \(A \subseteq X \) be an ambiguous set of the \((\alpha + 1)\)th class. Denote \(B = X \setminus A \). Since \(A \) and \(B \) are disjoint sets of the \((\alpha + 1)\)th additive class in \(X \), according to (2) there exists a set \(C \subseteq X \) of the \((\alpha + 1)\)th functionally multiplicative class such that \(A \subseteq C \subseteq X \setminus B \). It follows that \(A = C \), consequently \(A \) is of the \((\alpha + 1)\)th functionally multiplicative class. Analogously, it can be shown that \(B \) is also of the \((\alpha + 1)\)th functionally multiplicative class. Therefore, \(A \) is a functionally ambiguous set of the \((\alpha + 1)\)th class.

(4) If \(\alpha = 0 \) then \(X \) is a normal space. Therefore, any closed set \(F \) in \(X \) is 0-embedded by Proposition 2.2.

Let \(\alpha > 0 \) and let \(E \subseteq X \) be a set of the \(\alpha\)th multiplicative class in \(X \). Choose any set \(A \) of the \(\alpha\)th functionally multiplicative class in \(E \). Since the set \(E \setminus A \) belongs to the \(\alpha\)th functionally additive class in \(E \), there exists a sequence of sets \(B_n \) of the \(\alpha\)th functionally multiplicative class in \(E \) such that \(E \setminus A = \bigcup_{n=1}^{\infty} B_n \).

Then for every \(n \in \mathbb{N} \) the sets \(A \) and \(B_n \) are disjoint and belong to the \(\alpha\)th multiplicative class in \(X \). Since \(X \) is \(\alpha\)-separated, we can choose a function \(f_n \in K_\alpha(X) \) such that \(A \subseteq f_n^{-1}(0) \) and \(B_n \subseteq f_n^{-1}(1) \). Let \(\hat{A} = \bigcap_{n=1}^{\infty} f_n^{-1}(0) \).

Then the set \(\hat{A} \) belongs to the \(\alpha\)th functionally multiplicative class in \(X \) and \(\hat{A} \cap E = A \).\hfill \(\Box \)

Proposition 3.7. A topological space \(X \) is normal if and only if every its closed subset is 0-embedded.

Proof. We only need to prove the sufficiency. Let \(A \) and \(B \) be disjoint closed subsets of \(X \). Then \(A \) is a functionally closed subset of \(E = A \cup B \). Since \(E \) is closed in \(X \), \(E \) is a 0-embedded set. Therefore, there is a functionally closed set \(\hat{A} \) in \(X \) such that \(A = E \cap \hat{A} \). Then \(B \) is a functionally closed subset of the closed set \(D = \hat{A} \cup B \). Since \(D \) is 0-embedded in \(X \), there exists a functionally closed set \(\hat{B} \) in \(X \) such that \(B = D \cap \hat{B} \). It is easy to check that \(\hat{A} \cap \hat{B} = \emptyset \). If \(f : X \to [0,1] \) be a continuous function such that \(\hat{A} = f^{-1}(0) \) and \(\hat{B} = f^{-1}(1) \), then the sets \(U = f^{-1}([0,1/2]) \) and \(V = f^{-1}((1/2,1]) \) are disjoint and open in \(X \), \(A \subseteq U \) and \(B \subseteq V \). Hence, \(X \) is a normal space.\hfill \(\Box \)

An analog of the previous proposition takes place for hereditarily \(\alpha\)-separated spaces. We say that a topological space \(X \) is **hereditarily \(\alpha\)-separated** if every its subspace is \(\alpha\)-separated.

Proposition 3.8. Let \(0 \leq \alpha < \omega_1 \) and let \(X \) be a a hereditarily \(\alpha\)-separated space. If every subset of the \((\alpha + 1)\)th multiplicative class in \(X \) is \((\alpha + 1)\)-embedded, then \(X \) is \((\alpha + 1)\)-separated.

Proof. Let \(A, B \subseteq X \) be disjoint sets of the \((\alpha + 1)\)th multiplicative class. Then \(A \) is ambiguous of the class \((\alpha + 1)\) in \(E = A \cup B \). Since \(E \) belongs to the \((\alpha + 1)\)th multiplicative class in \(X \), \(E \) is \((\alpha + 1)\)-embedded. Moreover, \(E \) is \(\alpha\)-separated as
a subspace of the hereditarily \(\alpha \)-separated space \(X \). According to Theorem 3.6(3) \(A \) is functionally ambiguous of the \((\alpha+1)\)th class in \(E \). Therefore, there is a set \(\hat{A} \) of the \((\alpha+1)\)th functionally multiplicative class in \(X \) such that \(A = E \cap \hat{A} \).
Then \(B \) is a functionally ambiguous subset of the class \((\alpha+1)\) in \(D = \hat{A} \cup B \).
Since \(D \) belongs to the \((\alpha+1)\)th multiplicative class in \(X \), \(D \) is \((\alpha+1)\)-embedded. Therefore, there exists a set \(\hat{B} \) of the \((\alpha+1)\)th functionally multiplicative class in \(X \) such that \(B = D \cap \hat{B} \). It is easy to check that \(\hat{A} \cap \hat{B} = \emptyset \).
Hence, the sets \(\hat{A} \) and \(\hat{B} \) are \((\alpha+1)\)-separated by Proposition 3.4. Then \(A \) and \(B \) are \((\alpha+1)\)-separated too. \(\square \)

Remark that the Alexandroff compactification of the real line \(\mathbb{R} \) endowed with the discrete topology is a hereditarily normal space which is not 1-separated.

We give some examples below of \(\alpha \)-separated subsets of a completely regular space.

Proposition 3.9. Let \(X \) be a completely regular space and \(A, B \subseteq X \) are disjoint sets. Then

(a) if \(A \) and \(B \) are Lindelöf \(G_\delta \)-sets, then they are 1-separated;

(b) if \(A \) is a Lindelöf hereditarily Baire space and \(B \) is a functionally \(G_\delta \)-set, then \(A \) and \(B \) are 1-separated;

(c) if \(A \) is Lindelöf and \(B \) is an \(F_\sigma \)-set, then \(A \) and \(B \) are 2-separated.

Proof. (a). Let \(A = \bigcap_{n=1}^{\infty} U_n \), where \(U_n \) is an open set in \(X \) for every \(n \in \mathbb{N} \).
Since \(X \) is completely regular, \(U_n = \bigcup_{s \in S_n} U_{s,n} \) for every \(n \in \mathbb{N} \), where all the sets \(U_{s,n} \) are functionally open in \(X \). Then for every \(n \in \mathbb{N} \) there is a countable set \(S_{n,0} \subseteq S_n \) such that \(A \subseteq \bigcup_{s \in S_{n,0}} U_{s,n} \), since \(A \) is Lindelöf. Let \(V_n = \bigcup_{s \in S_{n,0}} U_{s,n} \), \(n \in \mathbb{N} \). Obviously, every \(V_n \) is a functionally open set and \(A = \bigcap_{n=1}^{\infty} V_n \). Hence, \(A \) is a functionally \(G_\delta \)-subset of \(X \). Analogously, \(B \) is also a functionally \(G_\delta \)-set. Therefore, the sets \(A \) and \(B \) are 1-separated by Proposition 3.4.

(b). According to \[7, Proposition 12\] there is a functionally \(G_\delta \)-set \(C \) in \(X \) such that \(A \subseteq C \subseteq X \setminus B \). Taking a function \(f \in K_1(X) \) such that \(C = f^{-1}(0) \) and \(B = f^{-1}(1) \), we obtain that \(A \) and \(B \) are 1-separated.

(c). Let \(X \setminus B = \bigcap_{n=1}^{\infty} U_n \), where \((U_n)_{n=1}^{\infty}\) is a sequence of open subsets of \(X \).
Then \(U_n = \bigcup_{s \in S_n} U_{s,n} \) for every \(n \in \mathbb{N} \), where all the sets \(U_{s,n} \) are functionally open in \(X \). Since \(A \) is Lindelöf, \(A \subseteq V_n = \bigcup_{s \in S_{n,0}} U_{s,n} \), where the set \(S_{n,0} \) is countable for every \(n \in \mathbb{N} \). Denote \(C = \bigcap_{n=1}^{\infty} V_n \). Then \(C \) is a functionally \(G_\delta \)-set in \(X \) and \(A \subseteq C \subseteq X \setminus B \). Since \(C \) is a functionally ambiguous set of the second class, \(A \) and \(B \) are 2-separated. \(\square \)
The following example shows that the class of separation of sets A and B in Proposition 3.9(c) can not be made lower.

Example 3.10. There exist a metrizable space X and its disjoint Lindelöf F_σ-subsets A and B, which are not 1-separated.

Proof. Let $X = \mathbb{R}$, $A = \mathbb{Q}$ and B is a countable dense subsets of irrational numbers. Assume that A and B are 1-separated, i.e. there exist disjoint G_δ-sets C and D in \mathbb{R} such that $A \subseteq C$ and $B \subseteq D$. Then $\overline{C} = \overline{D} = \mathbb{R}$, which implies a contradictions, since X is a Baire space. □

4. **Ambiguously α-embedded sets**

Let $0 < \alpha < \omega_1$. A subset E of a topological space X is ambiguously α-embedded in X if for any functionally ambiguous set A of the class α in E there exists a functionally ambiguous set B of the class α in X such that $A = B \cap E$.

Proposition 4.1. Let $0 < \alpha < \omega_1$ and let X be a topological space. Then every ambiguously α-embedded set E in X is α-embedded in X.

Proof. Take a set $A \subseteq E$ of the α'th functionally additive class in E. Then A can be written as $A = \bigcup_{n=1}^{\infty} A_n$, where A_n is a functionally ambiguous set of the class α in E for every $n \in \mathbb{N}$ by Lemma 3.1. Then there exists a sequence of functionally ambiguous sets B_n of the class α in X such that $A_n = B_n \cap E$ for every $n \in \mathbb{N}$. Let $B = \bigcup_{n=1}^{\infty} B_n$. Then the set B belongs to the α'th functionally additive class in X and $B \cap E = A$. □

We will need the following auxiliary fact.

Lemma 4.2 (Lemma 2.3 [8]). Let $0 < \alpha < \omega_1$ and let X be a topological space. Then for any disjoint sets $A, B \subseteq X$ of the α'th functionally multiplicative class in X there exists a functionally ambiguous set C of the class α in X such that $A \subseteq C \subseteq X \setminus B$.

Proof. Lemma 3.2 implies that there are disjoint functionally ambiguous sets E_1 and E_2 of the class α such that $E_1 \subseteq X \setminus A$, $E_2 \subseteq X \setminus B$ and $X = E_1 \cup E_2$. It remains to put $C = E_2$. □

Proposition 4.3. Let $0 < \alpha < \omega_1$ and let X be a topological space. Then every α-embedded set E of the α'th functionally multiplicative class in X is ambiguously α-embedded in X.

Proof. Consider a functionally ambiguous set A of the class α in E. Then there exists a set B of the α'th functionally multiplicative class in X such that $A = B \cap E$. Since E is of the α'th functionally multiplicative class in X, the set A is also of the same class in X. Analogously, the set $E \setminus A$ belongs to the α'th functionally multiplicative class in X. It follows from Lemma 4.2 that there exists a functionally ambiguous set C of the class α in X such that $A \subseteq C$ and
Hence, \(C \cap (E \setminus A) = \emptyset \). Clearly, \(C \cap E = A \). Hence, the set \(E \) is ambiguously \(\alpha \)-embedded in \(X \).

Example 4.4. There exists a 0-embedded \(F_\sigma \)-set \(E \subseteq \mathbb{R} \) which is not ambiguously 1-embedded.

Proof. Let \(E = \mathbb{Q} \). Obviously, \(E \) is a 0-embedded set. Consider any two disjoint \(A \) and \(B \) which are dense in \(E \). Then \(A \) and \(B \) are simultaneously \(F_\sigma \)- and \(G_\delta \)-sets in \(E \). Assume that there exists an \(F_\sigma \)- and \(G_\delta \)-set \(C \) in \(\mathbb{R} \) such that \(A = E \cap C \). Since \(A \subseteq C \) and \(B \subseteq \mathbb{R} \setminus C \), the sets \(C \) and \(\mathbb{R} \setminus C \) are dense in \(\mathbb{R} \). Moreover, the sets \(C \) and \(\mathbb{R} \setminus C \) are \(G_\delta \) in \(\mathbb{R} \). It implies a contradiction, since \(\mathbb{R} \) is a Baire space.

Example 4.5. There exists a Borel non-measurable ambiguously 1-embedded subset of a perfectly normal compact space.

Proof. Let \(X \) be the "two arrows" space (see [5, p. 212]), i.e. \(X = X_0 \cup X_1 \), where \(X_0 = \{(x,0) : x \in (0,1)\} \) and \(X_1 = \{(x,1) : x \in [0,1)\} \). The topology base on \(X \) is generated by the sets

\[
((x - \frac{1}{n}, x) \times \{0\}) \cup ((x - \frac{1}{n}, x) \times \{1\}) \text{ if } x \in (0,1] \text{ and } n \in \mathbb{N}
\]

and

\[
((x, x + \frac{1}{n}) \times \{0\}) \cup ((x, x + \frac{1}{n}) \times \{1\}) \text{ if } x \in [0,1) \text{ and } n \in \mathbb{N}.
\]

For a set \(A \subseteq X \) we denote

\[A^+ = \{x \in [0,1] : (x,1) \in A\} \text{ and } A^- = \{x \in [0,1] : (x,0) \in A\}.
\]

It is not hard to verify that for every open or closed set \(A \subseteq X \) we have \(|A^+ \Delta A^-| \leq \aleph_0 \). It follows that \(|B^+ \Delta B^-| \leq \aleph_0 \) for any Borel measurable set \(B \subseteq X \).

Let \(E = X_0 \). Since \(E^+ = \emptyset \) and \(E^- = (0,1) \), the set \(E \) is non-measurable. We show that \(E \) is an ambiguously 1-embedded set. Indeed, let \(A \subseteq E \) be an \(F_\sigma \)- and \(G_\delta \)-subset of \(E \). Then \(B = E \setminus A \) is also an \(F_\sigma \)- and \(G_\delta \)-subset of \(E \). Let \(\tilde{A} \) and \(\tilde{B} \) be \(G_\delta \)-sets in \(X \) such that \(\tilde{A} = \tilde{A} \cap E \) and \(\tilde{B} = \tilde{B} \cap E \). The inequalities \(|\tilde{A}^+ \Delta \tilde{A}^-| \leq \aleph_0 \) and \(|\tilde{B}^+ \Delta \tilde{B}^-| \leq \aleph_0 \) imply that \(|C| \leq \aleph_0 \), where \(C = \tilde{A} \cap \tilde{B} \). Hence, \(C \) is an \(F_\sigma \)-set in \(X \). Moreover, \(C \) is a \(G_\delta \)-set in \(X \). Therefore, \(\tilde{A} \setminus C \) and \(\tilde{B} \setminus \tilde{C} \) are \(G_\delta \)-sets in \(X \). According to Lemma 4.2 there is an \(F_\sigma \)- and \(G_\delta \)-set \(D \) in \(X \) such that \(\tilde{A} \setminus C \subseteq D \) and \(D \cap (\tilde{B} \setminus \tilde{C}) = \emptyset \). Then \(D \cap E = A \).

5. **Extension of real-valued \(K_\alpha \)-functions**

Analogs of Proposition 5.1 and Theorem 5.3 for \(\alpha = 1 \) were proved in [7].

Proposition 5.1. Let \(X \) be a topological space, \(E \subseteq X \) and \(0 < \alpha < \omega_1 \). Then the following conditions are equivalent:

(i) \(E \) is \(K_\alpha \)-embedded in \(X \);

(ii) \(E \) is ambiguously \(\alpha \)-embedded in \(X \);
(iii) \((X, E, [c, d])\) has the \(K_\alpha\)-extension property for any segment \([c, d] \subseteq \mathbb{R}\).

Proof. (i) \(\implies\) (ii). Take an arbitrary functionally ambiguous set \(A\) of the class \(\alpha\) in \(E\) and consider its characteristic function \(\chi_A\). Then \(\chi_A \in K_\alpha(E)\), as is easy to check. Let \(f \in K_\alpha(X)\) be an extension of \(\chi_A\). Then the sets \(f^{-1}(1)\) and \(f^{-1}(0)\) are disjoint and belong to the \(\alpha\)'th functionally multiplicative class in \(X\).

According to Lemma \ref{lem:extension} there exists a functionally ambiguous set \(B\) of the class \(\alpha\) in \(X\) such that \(f^{-1}(1) \subseteq B\) and \(B \cap f^{-1}(0) = \emptyset\). It remains to notice that \(B \cap E = f^{-1}(1) \cap E = \chi_A^{-1}(1) = A\). Hence, \(E\) is an ambiguously \(\alpha\)-embedded set in \(X\).

(ii) \(\implies\) (iii). Let \(f \in K_\alpha(E, [c, d])\). Define

\[
\begin{align*}
 h_1(x) &= \begin{cases}
 f(x), & \text{if } x \in E, \\
 \inf f(E), & \text{if } x \in X \setminus E,
 \end{cases} \\
 h_2(x) &= \begin{cases}
 f(x), & \text{if } x \in E, \\
 \sup f(E), & \text{if } x \in X \setminus E,
 \end{cases}
\end{align*}
\]

Then \(c \leq h_1(x) \leq h_2(x) \leq d\) for all \(x \in X\).

We prove that for any reals \(a < b\) there exists a function \(h \in K_\alpha(X)\) such that

\[
h_2^{-1}([c, a]) \subseteq h^{-1}(0) \quad \text{and} \quad h_1^{-1}([b, d]) \subseteq h^{-1}(1).
\]

Fix \(a < b\). Without loss of generality we may assume that

\[
\inf f(E) \leq a < b \leq \sup f(E).
\]

Denote

\[
A_1 = f^{-1}([c, a]), \quad A_2 = f^{-1}([b, d]).
\]

Then \(A_1\) and \(A_2\) are disjoint sets of the \(\alpha\)'th functionally multiplicative class in \(E\).

Using Lemma \ref{lem:extension} we choose a functionally ambiguous set \(C\) of the class \(\alpha\) in \(E\) such that \(A_1 \subseteq C\) and \(C \cap A_2 = \emptyset\). Since \(E\) is an ambiguously \(\alpha\)-embedded set in \(X\), there exists such a functionally ambiguous set \(D\) of the class \(\alpha\) in \(X\) that \(D \cap E = C\). Moreover, by Proposition \ref{prop:extension} there exist sets \(B_1\) and \(B_2\) of the \(\alpha\)'th functionally multiplicative class in \(X\) such that \(A_i = E \cap B_i\) when \(i = 1, 2\). Let

\[
\hat{A}_1 = D \cap B_1, \quad \hat{A}_2 = (X \setminus D) \cap B_2.
\]

Then the sets \(\hat{A}_1\) and \(\hat{A}_2\) are disjoint and belong to the \(\alpha\)'th functionally multiplicative class in \(X\). Moreover, \(A_1 = E \cap \hat{A}_1\) and \(A_2 = E \cap \hat{A}_2\). According to Proposition \ref{prop:extension} there is a function \(h \in K_\alpha^*(X)\) such that

\[
h^{-1}(0) = \hat{A}_1 \quad \text{and} \quad h^{-1}(1) = \hat{A}_2.
\]

According to \ref{thm:extension} Theorem 3.2 there exists a function \(g \in K_\alpha(X)\) such that

\[
h_1(x) \leq g(x) \leq h_2(x)
\]

for all \(x \in X\). Clearly, \(g\) is an extension of \(f\) and \(g \in K_\alpha(X, [c, d])\).

(iii) \(\implies\) (i). Let \(f \in K_\alpha^*(E)\) and let \(|f(x)| \leq C\) for all \(x \in E\). Consider a function \(g \in K_\alpha(X)\) which is an extension of \(f\). Define a function \(r: \mathbb{R} \to [-C, C]\),

\[
r(x) = \min\{C, \max\{x, -C\}\}.
\]

Obviously, \(r\) is continuous. Let \(h = r \circ g\). Then \(h \in K_\alpha^*(X)\) and \(h|_E = f\). Hence, \(E\) is \(K_\alpha^\ast\)-embedded in \(X\). \(\qed\)
Lemma 5.2. Let $0 < \alpha < \omega_1$, X be a topological space and let $E \subseteq X$ be such an α-embedded set in X that for any set A of the α'th functionally multiplicative class in X such that $E \cap A = \emptyset$ the sets E and A are α-separated. Then E is an ambiguously α-embedded set.

Proof. Consider a functionally ambiguous set C of the class α in E and denote $C_1 = C$, $C_2 = E \setminus C$. Then there exist sets \hat{C}_1 and \hat{C}_2 of the α'th functionally multiplicative class in X such that $\hat{C}_i \cap E = C_i$ when $i = 1, 2$. Then the set $A = \hat{C}_1 \cap \hat{C}_2$ is of the α'th functionally multiplicative class in X and $A \cap E = \emptyset$. Let $h \in K_\alpha(X)$ be a function such that $E \subseteq h^{-1}(0)$ and $A \subseteq h^{-1}(1)$. Denote $H = h^{-1}(0)$ and $H_i = H \cap \hat{C}_i$ when $i = 1, 2$. Since H_1 and H_2 are disjoint sets of the α'th functionally multiplicative class in X, by Lemma 4.2 there is a functionally ambiguous set D of the class α in X such that $H_1 \subseteq D \subseteq X \setminus H_2$. Obviously, $D \cap E = C$. \qed

Theorem 5.3. Let $0 < \alpha < \omega_1$ and let E be a subset of a topological space X. Then the following conditions are equivalent:

(i) E is K_α-embedded in X; (ii) E is α-embedded in X and for any set A of the α'th functionally multiplicative class in X such that $E \cap A = \emptyset$ the sets E and A are α-separated.

Proof. $(i) \implies (ii)$. Let $C \subseteq E$ be a set of the α'th functionally multiplicative class in E. Then by Lemma 3.3 we choose a function $f \in K_\alpha(E)$ such that $C = f^{-1}(0)$. If $g \in K_\alpha(X)$ is an extension of f, then the set $B = g^{-1}(0)$ belongs to the α'th functionally multiplicative class in X and $B \cap E = C$. Hence, E is an α-embedded set in X.

Now consider a set A of the α'th functionally multiplicative class in X such that $E \cap A = \emptyset$. According to Lemma 3.3 there is a function $h \in K_\alpha(X)$ such that $A = h^{-1}(0)$. For all $x \in E$ let $f(x) = \frac{1}{h(x)}$. Then $f \in K_\alpha(E)$. Let $g \in K_\alpha(X)$ be an extension of f. For all $x \in X$ let $\varphi(x) = g(x) \cdot h(x)$. Clearly, $\varphi \in K_\alpha(X)$. It is not hard to verify that $E \subseteq \varphi^{-1}(1)$ and $A \subseteq \varphi^{-1}(0)$.

$(ii) \implies (i)$. Remark that according to Lemma 5.2 the set E is ambiguously α-embedded in X.

Let $f \in K_\alpha(E)$ and let $\varphi : \mathbb{R} \to (-1, 1)$ be a homeomorphism. Using Proposition 5.1 to the function $\varphi \circ f : E \to [-1, 1]$ we have that there exists a function $h \in K_\alpha(X, [-1, 1])$ such that $h|_E = \varphi \circ f$. Let

$$A = h^{-1}(-1) \cup h^{-1}(1).$$

Then A belongs to the α'th functionally multiplicative class in X and $A \cap E = \emptyset$. Therefore, there exists a function $\psi \in K_\alpha(X)$ such that $A \subseteq \psi^{-1}(0)$ and $E \subseteq \psi^{-1}(1)$. For all $x \in X$ define

$$g(x) = \varphi^{-1}(h(x) \cdot \psi(x)).$$

Remark that $g \in K_\alpha(X)$ and $g|_E = f$. \qed
Corollary 5.4. Let $0 < \alpha < \omega_1$ and let E be a subset of the α'th functionally multiplicative class of a topological space X. Then the following conditions are equivalent:

(i) E is K_α-embedded in X;
(ii) E is α-embedded in X.

6. K_1^*-embedding versus K_1-embedding

A family \mathcal{U} of non-empty open sets of a space X is called a π-base \footnote{This footnote is not visible in the original text.} if for any non-empty open set V of X there is $U \in \mathcal{U}$ with $V \subseteq U$.

Proposition 6.1. Let X be a perfect space of the first category with a countable π-base. Then there exist disjoint F_σ- and G_δ-subsets A and B of X which are dense in X and $X = A \cup B$.

Proof. Let $(V_n : n \in \mathbb{N})$ be a π-base in X and $X = \bigcup_{n=1}^{\infty} X_n$, where X_n is a closed nowhere dense subset of X for every $n \geq 1$. Let $E_1 = X_1$ and $E_n = X_n \setminus \bigcup_{k<n} X_k$ for $n \geq 2$. Then E_n is a nowhere dense F_σ- and G_δ-subset of X for every $n \geq 1$, $E_n \cap E_m = \emptyset$ if $n \neq m$, and $X = \bigcup_{n=1}^{\infty} E_n$.

Let $m_0 = 0$. We choose a number $n_1 \geq 1$ such that $(\bigcup_{n=1}^{n_1} E_n) \cap V_1 \neq \emptyset$ and let $A_1 = \bigcup_{n=1}^{n_1} E_n$. Since $\overline{X \setminus A_1} = X$, there exists a number $m_1 > n_1$ such that $(\bigcup_{n=n_1+1}^{m_1} E_n) \cap V_1 \neq \emptyset$. Set $B_1 = \bigcup_{n=n_1+1}^{m_1} E_n$. It follows from the equality $\overline{X \setminus (A_1 \cup B_1)} = X$ that there exists $n_2 > m_1$ such that $(\bigcup_{n=m_1+1}^{n_2} E_n) \cap V_2 \neq \emptyset$.

Further, there is such $m_2 > n_2$ that $(\bigcup_{n=n_2+1}^{m_2} E_n) \cap V_2 \neq \emptyset$. Let $A_2 = \bigcup_{n=m_1+1}^{n_2} E_n$ and $B_2 = \bigcup_{n=n_2+1}^{m_2} E_n$. Repeating this process, we obtain the sequence of numbers

$m_0 < n_1 < m_1 < \cdots < n_k < m_k < n_{k+1} < \ldots$

and the sequence of sets

$A_k = \bigcup_{n=m_k+1}^{n_k} E_n, \quad B_k = \bigcup_{n=n_k+1}^{m_k} E_n, \quad k \geq 1,$

such that $A_k \cap V_k \neq \emptyset$ and $B_k \cap V_k \neq \emptyset$ for every $k \geq 1$.

Let $A = \bigcup_{k=1}^{\infty} A_k$ and $B = \bigcup_{k=1}^{\infty} B_k$. Clearly, $X = A \cup B$, $A \cap B = \emptyset$ and $\overline{A} = \overline{\overline{B}} = X$. Moreover, A and B are F_σ-sets in X. Therefore, A and B are F_σ- and G_δ-subsets of X. \qed

We say that a topological space X hereditarily has a countable π-base if every its closed subspace has a countable π-base.

Proposition 6.2. Let X be a hereditarily Baire space, E be a perfectly normal ambiguously 1-embedded subspace of X which hereditarily has a countable π-base. Then E is a hereditarily Baire space.

Proof. Assume that E is not a hereditarily Baire space. Then there exists a nonempty closed set $C \subseteq X$ of the first category. Notice that C is a perfectly normal space with a countable π-base. According to Proposition 6.1 there exist disjoint dense F_σ- and G_δ-subsets A and B of C such that $C = A \cup B$. Since C is F_σ- and G_δ-set in E, the sets A and B are also F_σ and G_δ in E. Therefore there exist disjoint functionally F_σ- and G_δ-subsets \tilde{A} and \tilde{B} of X such that $A = \tilde{A} \cap E$ and $B = \tilde{B} \cap E$. Notice that the sets \tilde{A} and \tilde{B} are dense in C. Taking into account that X is hereditarily Baire, we have that C is a Baire space. It follows a contradiction, since \tilde{A} and \tilde{B} are disjoint dense G_δ-subsets of C. \qed

Remark that there exist a metrizable separable Baire space X and its ambiguously 1-embedded subspace E which is not a Baire space. Indeed, let $X = (\mathbb{Q} \times \{0\}) \cup (\mathbb{R} \times (0, 1])$ and $E = \mathbb{Q} \times \{0\}$. Then E is closed in X. Therefore, any F_σ- and G_δ-subset C of E is also F_σ and G_δ in X. Hence, E is an ambiguously 1-embedded set in X.

Theorem 6.3. Let X be a hereditarily Baire space and let $E \subseteq X$ be its perfect Lindelöf subspace which hereditarily has a countable π-base. Then E is K_1^*-embedded in X if and only if E is K_1-embedded in X.

Proof. Since the sufficiency is obvious, we only need to prove the necessity.

According to Proposition 6.1 the set E is ambiguously 1-embedded in X. Using Proposition 6.2 we have E is a hereditarily Baire space. Since E is Lindelöf, Proposition 5.9 (b) implies that E is 1-separated from any functionally G_δ-set A of X such that $A \cap E = \emptyset$. Therefore, by Theorem 5.3 the set E is K_1-embedded in X. \qed

7. A GENERALIZATION OF THE KURATOWSKI THEOREM

K. Kuratowski [11, p. 445] proved that every mapping $f \in K_\alpha(E,Y)$ has an extension $g \in K_\alpha(X,Y)$ if the case X is a metric space, Y is a Polish space and $E \subseteq X$ is a set of the multiplicative class $\alpha > 0$.

In this section we will prove that the Kuratowski Extension Theorem is still valid if X is a topological space and E is a K_α-embedded subset of X.

We say that a subset A of a space X is discrete if any point $a \in A$ has a neighborhood $U \subseteq X$ such that $U \cap A = \{a\}$.

Theorem 7.1 (Theorem 2.11 [8]). Let X be a topological space, Y be a metrizable separable space, $0 \leq \alpha < \omega_1$ and $f \in K_\alpha(X,Y)$. Then there exists a sequence $(f_n)_{n=1}^\infty$ such that

(i) $f_n \in K_\alpha(X,Y)$ for every n;
Proposition 7.2. Let \(A \) be a partition of \(X \) and let \(\alpha \) be an \(\alpha \)-separated from any disjoint with it set of the \(\alpha \)'th functionally multiplicative class in \(X \) and let \((A_n : n \in \mathbb{N}) \) be a partition of \(E \) by functionally ambiguous sets of the class \(\alpha \) in \(E \). Then there is a partition \((B_n : n \in \mathbb{N}) \) of \(X \) by functionally ambiguous sets of the class \(\alpha \) in \(X \) such that \(A_n = E \cap B_n \) for every \(n \in \mathbb{N} \).

Proof. According to Proposition 5.2 for every \(n \in \mathbb{N} \) there exists a functionally ambiguous set \(D_n \) of the class \(\alpha \) in \(X \) such that \(A_n = D_n \cap E \). By the assumption there exists a function \(f \in K_\alpha(X) \) such that \(E \subseteq f^{-1}(0) \) and \(X \setminus \bigcup_{n=1}^{\infty} D_n \subseteq f^{-1}(1) \).

Let \(D = f^{-1}(0) \). Then the set \(X \setminus D \) is of the \(\alpha \)'th functionally additive class in \(X \). Then there exists a sequence \((E_n)_{n=1}^{\infty} \) of functionally ambiguous set of the class \(\alpha \) in \(X \) such that \(X \setminus D = \bigcup_{n=1}^{\infty} E_n \). For every \(n \in \mathbb{N} \) denote \(C_n = E_n \cup D_n \). Then all the sets \(C_n \) are functionally ambiguous of the class \(\alpha \) in \(X \) and \(\bigcup_{n=1}^{\infty} C_n = X \).

Let \(B_1 = C_1 \) and \(B_n = C_n \setminus \left(\bigcup_{k<n} C_k \right) \) for \(n \geq 2 \). Clearly, every \(B_n \) is a functionally ambiguous set of the class \(\alpha \) in \(X \), \(B_n \cap B_m = \emptyset \) if \(n \neq m \) and \(\bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} C_n = X \). Moreover, \(B_n \cap E = A_n \) for every \(n \in \mathbb{N} \). \(\square \)
Let $0 \leq \alpha < \omega_1$, X and Y be topological spaces and $E \subseteq X$. We say that a collection (X, E, Y) has the K_{α}-extension property if every mapping $f \in K_{\alpha}(E, Y)$ can be extended to a mapping $g \in K_{\alpha}(X, Y)$.

Theorem 7.3. Let $0 < \alpha < \omega_1$ and let E be a subset of a topological space X. Then the following conditions are equivalent:

(i) E is K_{α}-embedded in X;

(ii) (X, E, Y) has the K_{α}-extension property for any Polish space Y.

Proof. Since the implication (ii) \Rightarrow (i) is obvious, we only need to prove the implication (i) \Rightarrow (ii). Let Y be a Polish space with a metric d which generates its topological structure such that (Y, d) is complete and let $f \in K_{\alpha}(E, Y)$.

It follows from Theorem 7.1 that there exists a sequence of mappings $f_n \in K_{\alpha}(E, Y)$ which is uniformly convergent to f on E. Moreover, for every $n \in \mathbb{N}$ the set $f_n(E) = \{y_{i_n, n} : i_n \in I_n\}$ is at most countable and discrete. We may assume that each $f_n(E)$ consists of distinct points.

For every $n \in \mathbb{N}$ and for each $(i_1, \ldots, i_n) \in I_1 \times \cdots \times I_n$ let

$$B_{i_1, \ldots, i_n} = f_1^{-1}(y_{i_1, 1}) \cap \cdots \cap f_n^{-1}(y_{i_n, n}).$$

Then for each $i_1 \in I_1, \ldots, i_n \in I_n$ the set B_{i_1, \ldots, i_n} is functionally ambiguous of the class α in E and the family $(B_{i_1, \ldots, i_n} : i_1 \in I_1, \ldots, i_n \in I_n)$ is a partition of E for every $n \in \mathbb{N}$. By Proposition 7.2 we choose a sequence of systems of functionally ambiguous sets D_{i_1, \ldots, i_n} of the class α in X such that

1. $D_{i_1, \ldots, i_n} \cap E = B_{i_1, \ldots, i_n}$ for every $n \in \mathbb{N}$ and $(i_1, \ldots, i_n) \in I_1 \times \cdots \times I_n$;
2. $(D_{i_1, \ldots, i_n} : i_1 \in I_1, \ldots, i_n \in I_n)$ is a partition of X for every $n \in \mathbb{N}$.

For all $n \in \mathbb{N}$ and $(i_1, \ldots, i_n) \in I_1 \times \cdots \times I_n$ let

3. $D_{i_1, \ldots, i_n} = \emptyset$, if $B_{i_1, \ldots, i_n} = \emptyset$.

Notice that the system $(B_{i_1, \ldots, i_n, i_{n+1}} : i_{n+1} \in I_{n+1})$ forms a partition of the set B_{i_1, \ldots, i_n} for every $n \in \mathbb{N}$.

For all $i_1 \in I_1$ let

$$C_{i_1} = D_{i_1}.$$

Assume that for some $n \geq 1$ the system $(C_{i_1, \ldots, i_n} : i_1 \in I_1, \ldots, i_n \in I_n)$ of functionally ambiguous sets of the class α in X is already defined and

(A) $B_{i_1, \ldots, i_n} = E \cap C_{i_1, \ldots, i_n};$
(B) $(C_{i_1, \ldots, i_n} : i_1 \in I_1, \ldots, i_n \in I_n)$ is a partition of X;
(C) $C_{i_1, \ldots, i_n} = \emptyset$ if $B_{i_1, \ldots, i_n} = \emptyset;$
(D) $(C_{i_1, \ldots, i_{n-1}, i_n} : i_n \in I_n)$ is a partition of the set $C_{i_1, \ldots, i_{n-1}}$.

Fix i_1, \ldots, i_n. Since the set $K = C_{i_1, \ldots, i_n} \setminus \bigcup_{k \in I_{n+1}} D_{i_1, \ldots, i_n, k}$ is of the α’th functionally multiplicative class in X and $K \cap E = \emptyset$, there exists a set H of the α’th functionally multiplicative class in X such that $E \subseteq H \subseteq X \setminus K$. Using [8 Lemma 2.1] we obtain that there exists a sequence $(A_k)_{k=1}^\infty$ of disjoint functionally
ambiguous sets of the class α in X such that
\[C_{i_1,\ldots,i_n} \setminus H = \bigcup_{k=1}^{\infty} A_k. \]

Let
\[M_{i_1,\ldots,i_n,i_{n+1}} = \emptyset, \quad \text{if} \quad D_{i_1,\ldots,i_n,i_{n+1}} = \emptyset, \]
and
\[M_{i_1,\ldots,i_n,i_{n+1}} = (A_{i_{n+1}} \cup D_{i_1,\ldots,i_n,i_{n+1}}) \cap C_{i_1,\ldots,i_n}, \quad \text{if} \quad D_{i_1,\ldots,i_n,i_{n+1}} \neq \emptyset. \]

Now let
\[C_{i_1,\ldots,i_n,1} = M_{i_1,\ldots,i_n,1}, \]
and
\[C_{i_1,\ldots,i_n,i_{n+1}} = M_{i_1,\ldots,i_n,i_{n+1}} \setminus \bigcup_{k<i_{n+1}} M_{i_1,\ldots,i_n,k} \quad \text{if} \quad i_{n+1} > 1. \]

Then for every $n \in \mathbb{N}$ the system $(C_{i_1,\ldots,i_n} : i_1 \in I_1, \ldots, i_n \in I_n)$ of functionally ambiguous sets of the class α in X has the properties (A)–(D).

For each $n \in \mathbb{N}$ and $x \in X$ let
\[g_n(x) = y_{i_n,n}, \]
if $x \in C_{i_1,\ldots,i_n}$. It is not hard to prove that $g_n \in K_\alpha(X,Y)$.

We show that the sequence $(g_n)_{n=1}^{\infty}$ is uniformly convergent on X. Indeed, let $x_0 \in X$ and $n, m \in \mathbb{N}$. Without loss of generality, we may assume that $n \geq m$. By the property (B), $x_0 \in C_{i_1,\ldots,i_n} \cap C_{j_1,\ldots,j_m}$. It follows from (B) and (D) that $i_1 = j_1, \ldots, i_m = j_m$. Take an arbitrary point x from the set B_{i_1,\ldots,i_n}, the existence of which is guaranteed by the property (C). Then $f_m(x) = y_{i_m,m} = g_m(x_0)$ and $f_n(x) = y_{i_n,n} = g_n(x_0)$. Since the sequence $(f_n)_{n=1}^{\infty}$ is uniformly convergent on E,\[\lim_{n,m \to \infty} d(y_{i_m,m}, y_{i_n,n}) = 0. \]
Hence, the sequence $(g_n)_{n=1}^{\infty}$ is uniformly convergent on X.

Since Y is a complete space, for all $x \in X$ define $g(x) = \lim_{n \to \infty} g_n(x)$. According to the property (A), $g(x) = f(x)$ for all $x \in E$. Moreover, $g \in K_\alpha(X,Y)$ as a uniform limit of functions from the class K_α.

8. Open problems

Question 8.1. Does there exist a completely regular not perfectly normal space in which any functionally G_δ-set is 1-embedded?

Question 8.2. Does there exist a completely regular not perfectly normal space in which any set is 1-embedded?

Question 8.3. Do there exist a normal space and its functionally G_δ-subset which is not 1-embedded?

Question 8.4. Do there exist a topological space X and its subspace E such that E is K_1^\ast-embedded and is not K_1-embedded in X?
9. Acknowledgments

The author would like to thank the referee for his helpful and constructive comments that greatly contributed to improving the final version of the paper.

References

[1] Blair R. Filter characterization of z, C^*, and C-embeddings, Fund. Math. 90 (1976), 285–300.
[2] Blair R., Hager A. Extensions of zero-sets and of real-valued functions, Math. Zeit. 136 (1974), 41–52.
[3] Corson H. Normality in subsets of product spaces, Amer. J. Math. 81 (1959), 785–796.
[4] Encyclopedia of General Topology. Edited by Klaas Pieter Hart, Jun-iti Nagata and Jerry E. Vaughan, Elsevier (2004).
[5] Engelking R. General Topology. Revised and completed edition. Heldermann Verlag, Berlin (1989).
[6] Gillman L., Jerison M. Rings of continuous functions, Van Nostrand, Princeton (1960).
[7] Kalenda, O., Spurný, J. Extending Baire-one functions on topological spaces, Topol. Appl. 149 (2005), 195–216.
[8] Karlova O. Baire classification of mappings which are continuous with respect to the first variable and of the α'th functionally class with respect to the second variable, Mathematical Bulletin NTSH, 2 (2005), 98–114 (in Ukrainian).
[9] Karlova O. Classification of separately continuous functions with values in σ-metrizable spaces, Applied General Topology 13 (2) (2012), 167–178.
[10] Kombarov A., Malykhin V. On Σ-products, DAN SSSR, 213 (1973), 774–776 (in Russian).
[11] Kuratowski K. Topology, V.1, Moscow: Mir (1966) (in Russian).
[12] Lukeš J., Malý J., Zajíček L. Fine Topology Methods in Real Analysis and Potential Theory, Springer-Verlag, (1986).
[13] Ohta H. Extension properties and the Niemytski plane, Applied General Topology, 1 (1) (2000), 45–60.