MOSSBAUER STUDIES OF 57Co-DOPED LAYERED PEROVSKITES *

S. JHA, D. SUYANTO and S. YEHIA

Physics Department, University of Cincinnati, Cincinnati, Ohio 45221, U.S.A.

Glenn M. JULIAN

Physics Department, Miami University, Oxford, Ohio 45056, U.S.A.

R.A. DUNLAP

Physics Department, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5

Amer LAHAMER

Physics Department, Vanderbilt University, Nashville, Tennessee, U.S.A.

S-W. CHEONG, Z. FISK and J.D. THOMPSON

Los Alamos National Laboratory, Los Alamos, New Mexico 87545, U.S.A.

Mössbauer spectra of 57Co-doped polycrystalline or single-crystal samples of layered perovskites La$_2$Mo$_4$ (M = Cu, Co, Ni) and R$_2$CuO$_4$ (R = Nd, Eu, Gd) were recorded at room temperature and below. Of the samples studied, only La$_2$CuO$_4$ shows a widely separated doublet at room temperature and a single clearly resolved sextet well below T_N.

1. Introduction

The layered perovskite La$_2$CuO$_4$ is the parent compound from which the first high-T_c superconductors were obtained [1] by doping with divalent elements. La$_2$CuO$_4$ is orthorhombic at and below room temperature [2]. Oxygen-deficient La$_2$CuO$_{4-y}$ is antiferromagnetic with T_N as high as 328 K [2,3], while oxygen-rich La$_2$CuO$_{4+y}$ is superconducting with $T_c \approx 30$ K [4]. La$_2$CoO$_4$ is orthorhombic at room temperature and becomes tetragonal below ~ 135 K; it becomes antiferromagnetic below about 275 K [5]. La$_2$NiO$_4$ is very sensitive to oxygen content, the stoichiometric compound being orthorhombic and not magnetically ordered between 95 K and 4 K [6] while La$_2$NiO$_{4.05}$ undergoes a tetragonal to orthorhombic transition in cooling below about 240 K and becomes antiferromagnetic below 70 K [7].

* Supported by NASA Grant NAG 3-847.

© J.C. Baltzer A.G. Scientific Publishing Company
Recently the layered perovskites \(R_2CuO_{4-y} \), where \(R = Pr, Nd, Sm \) [8] or Eu but not Gd [9], have been found to be electron-type superconductors below about 20 K when 15% of \(R \) is replaced with tetravalent Ce or Th. The parent compounds \(R_2CuO_{4-y} \) are tetragonal and semiconductorlike, and in muon spin rotation experiments reveal static magnetic order of Cu moments below 300 K [10]. Antiferromagnetic ordering of Cu in \(R_2CuO_4 \) below room temperature has been suggested by susceptibility measurements for \(R = Eu \) [11] and Gd [12]. The compounds \(R_2CuO_{4-y} \), where \(R = \) light rare earth element Pr through Gd, differ from \(La_2MO_{4-y} \) in that the former have oxygen atoms square-planar coordinated about Cu, while in the latter oxygen atoms are octahedrally coordinated about Cu [5,8,13].

The present work undertakes Mössbauer studies of \(^{57}\text{Co-doped} \) [16] polycrystalline or single-crystal samples of layered perovskites \(La_2MO_{4-y} \) (\(M = \text{Cu, Co, Ni} \)) and \(R_2CuO_4 \) (\(R = \text{Nd, Eu, Gd} \)).

2. Experimental results

Polycrystalline samples of \(La_2MO_{4-y} \) and \(R_2CuO_4 \) were made by mixing stoichiometric amounts of the constituents by co-precipitation and by repeated grinding and firing [14]. Samples were cooked at 500 °C overnight, in flowing helium gas to produce the oxygen-deficient form, or in air to produce the stoichiometric form. X-ray powder diffraction showed the samples to be single-phase. Thin, platelike single-crystal samples were grown from PbO- and CuO-based fluxes; the tetragonal c-axis was perpendicular to the thin face [11,12].

For Mössbauer source experiments, carrier-free \(^{57}\text{Co} \) was deposited on one face of the single-crystal sample or on a disk made by compressing a polycrystalline sample; after repeating the final anneal such sources were used with a 0.3
Table 1
Mössbauer data for 57Co-doped perovskites. T is the sample temperature. Sample form is single crystal (SC) or polycrystalline (PC); absorber is PFC unless indicated ~. In mm/s, δ is the isomer shift relative to α-Fe, Γ is the FWHM for all lines in the spectrum, and Δ is the splitting of the doublet or ΔE_Q. Error in the least significant digit is given in ().

Sample	Form	T (K)	δ	Γ	Δ	H (kOe)
La_2CuO_4	SC	295	-0.30 (5)	0.96	1.68 (5)	
La_2CuO_4	PC	295	-0.30 (1)	0.44	1.76 (2)	
La_2CoO_4	PC	295	-0.48 (5)	1.2	0.0 (4)	434 (5)
La_2NiO_4	PC	295	-0.39 (5)	0.67	0.29 (5)	
Nd_2CuO_4	SC	295	-0.38 (5)	1.2	0.7 (1)	
Eu_2CuO_4	SC	295	-0.30 (5)	0.82	0.65 (5)	
Eu_2CuO_4	PC	295a	-0.34 (5)	0.64	0.66 (5)	370 (10)
Eu_2CuO_4	PC	78a	-0.34 (5)	0.30 (5)	0.30 (5)	
Gd_2CuO_4	SC	295	-0.46 (5)	0.76	0.29 (5)	
Gd_2CuO_4	PC	295	-0.51 (5)	0.71	0.61 (5)	
Gd_2CuO_4	PC	200	-0.39 (5)	0.67	0.29 (5)	
Gd_2CuO_4	PC	180	-0.39 (5)	0.64	0.30 (5)	290 (10)
Gd_2CuO_4	PC	78a	-0.39 (5)	0.64	0.30 (5)	
Gd_2CuO_4	PC	0.14	-0.39 (5)	0.64	1.31 (5)	

a Sign not determined where not explicitly given.
b Ref. [14].

mg/cm2 57Fe enriched potassium ferrocyanide (PFC) or stainless steel (SS) absorber at room temperature.

Mössbauer spectra are given in figs. 1 and 2, and the data are presented in table 1. Spectra are fitted with a doublet for 295 K, and for R_2CuO_4 ($\text{R} = \text{Eu, Gd}$) below 200 K, with a doublet and 1 or 2 sextets.

3. Discussion

La_2MO_4 ($\text{M} = \text{Cu, Co, Ni}$) have similar lattice constants and Cu-O octahedra; R_2CuO_4 ($\text{R} = \text{Nd, Eu, Gd}$) have larger c/a ratios and Cu-O squares. Room-temperature Mössbauer spectra of 57Co-doped samples are each fitted with a doublet, but the splitting is sizable (> 1 mm/s) only for La_2CuO_4. If in La_2CuO_4 this is interpreted as quadrupole splitting, then the 57Fe probe experiences much greater electric field gradient in La_2CuO_4 than in R_2CuO_4. This might be due to the difference in oxygen coordination or to the difference in c/a; in either case one would have expected sizable splitting in La_2MO_4 ($\text{M} = \text{Co, Ni}$) as well.
Comparison [14] of 57Co- and 57Fe-doped $\text{La}_2\text{CuO}_{4-y}$, showed that the electron capture aftereffect does not significantly broaden the lines in this Mössbauer source experiment. Broad lines might be expected for magnetic interaction weak relative to quadrupole interaction just below T_N (for La_2MO_4, $M=\text{Cu}, \text{Co}$ at 295 K). However, it is not clear why the lines are broader at 295 K for the singlecrystal samples than for the polycrystalline samples of the same material; final heat treatments were the same.

The Mössbauer spectra for $^{57}\text{Co}(\text{La}_2\text{CoO}_{4-y})$ from 295 K to 78 K do not reflect the magnetic ordering and structural phase change reported [5] in this temperature range.

Zeeman splitting of the Mössbauer spectra for $^{57}\text{Co}(\text{R}_2\text{CuO}_4)$ is consistent with the presence of antiferromagnetic ordering of the copper moments for temperatures below about 150 K in Eu_2CuO_4 and below about 200 K in Gd_2CuO_4 [15], as had initially been hinted in susceptibility measurements [11,12]. The fitting of two sextets for Gd_2CuO_4 indicates two different types of site for the 57Fe probe.

References

[1] J.G. Bednorz and K.A. Muller, Z. Phys. B 64 (1986) 189.
[2] D.C. Johnston et al., Physica C 153-155 (1988) 572.
[3] S-W. Cheong et al., Physica C 158 (1989) 109.
[4] J.D. Jorgensen et al., Phys. Rev. B 38 (1988) 11337;
C. Chaillout et al., Physica C 158 (1989) 183.
[5] K. Yamada et al., Phys. Rev. B 39 (1989) 2336.
[6] J. Rodriguez-Carvajal et al., Phys. Rev. B 38 (1988) 7148.
[7] G. Aeppli and D.J. Buttrey, Phys. Rev. Lett. 61 (1988) 203.
[8] Y. Tokura et al., Nature 337 (1989) 345.
[9] J.T. Markert et al., Physica C 158 (1989) 178.
[10] G.M. Luke et al., Nature 338 (1989) 49.
[11] M. Tovar et al., Phys. Rev. B 39 (1989) 2661.
[12] J.D. Thompson et al., Phys. Rev. B 39 (1989) 6660.
[13] von B. Grande et al., Z. Anorg. Allg. Chem. 428 (1977) 120.
[14] S. Jha et al., Hyp. Int., 50 (1989) 607.
[15] S. Jha et al., Hyperfine Interactions Conf. 1989, Prague, Hyp. Int. (1990) forthcoming.
[16] A. Barcs et al. (This conference 6-4).