A Case Study Maintenance Task Allocation Analysis on Marine Loading Arm Using Reliability Centered Maintenance

Nurhadi Siswantoro¹, Muhammad Badrus Zaman¹, Feizar Fahreza¹, Dwi Priyanta¹, Trika Pitana¹, Hari Prastowo¹, Adhitya Wicaksana¹, Haris Nur Fauzi²

¹Department of Marine Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya, Indonesia
²Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taiwan

corresponding author’s e-mail: nurhadi@ne.its.ac.id

Abstract. Marine Loading Arm (MLA) supports all liquid bulk loading and unloading activities, especially imports of chemical raw materials such as NH₃, H₂SO₄, and H₃PO₄. Therefore, to minimize the occurrence of failure it is necessary to have a treatment method. Reliability Centered Maintenance (RCM) is a maintenance method that focuses on increasing the reliability of components in the system. The RCM uses the principle of risk management to determine tasks and maintenance schedules appropriately. The RCM process is implemented using American Bureau Shipping (ABS) Guidelines. According to the results of this research, there are three types of maintenance tasks for MLA, in which category A has 14 maintenance tasks, category B has 21 maintenance tasks, and there are no maintenance tasks in category C. In all maintenance categories for Preventive Maintenance by 54% with 19 tasks, for Condition Monitoring of 37% with 13 tasks, while for Run-To-Failure of 9% with 3 tasks.

Keywords: Failure, maintenance task, marine loading arm, reliability, RCM

1. Introduction
PT. XYZ has its terminal equipped with tools for unloading bulk cargo. One of the equipments used for liquid bulk loading-unloading activity is Marine Loading Arm (MLA). MLA is one of the most used liquid bulk disassembly tools compared to the loading arm. MLA is more often used due to being simpler in its operation and is assessed safer during the loading process [1]. Some types of chemical fluids dismantled include ammonia (NH₃), sulfuric acid (H₂SO₄), and phosphoric acid (H₃PO₄). Over time the MLA system suffered various failures. Failure to a component can affect the performance of a system. The state when the tool cannot be used because one or more components are damaged is called the breakdown term [2]. If a tool is damaged, it must be repaired immediately. While the time used to repair the tool is called downtime [3-4]. This downtime causes loading and unloading activities to be delayed from the expected schedule, and this has an impact on the company’s losses. The role of MLA is very important in the chemical liquid loading process, considering that MLA is the only liquid unloading tool currently owned by the company.

Reliability Centered Maintenance (RCM) is a method of maintenance analysis that systematically establishes the appropriate maintenance tasks for assets at optimal frequencies to maintain the appropriate functions required during certain periods [5-7]. RCM regulates maintenance policies at the plant or equipment type level. RCM is a more structured way of using the best methods...
and disciplines [8]. The power of RCM is to produce a planned and effective maintenance program. RCM has been proven to increase the availability of the system by achieving its reliability and security properties while reducing maintenance costs [9-10]. The success stories of implementing RCM have been carried out by many researchers and applied in the industry. In the marine industry, there have been many applications of RCM, such as Zaman et al (2020) conducting research to determine maintenance strategies on the tugboat cooling system to prevent overheating [11]. Priyanta et al (2020) conducted RCM research on the main engine to determine proper maintenance activities and scheduling plans [12]. The latest is the RCM approach for assessing reliability challenges and maintenance needs of unmanned cargo ships [13]. In other fields, such as oil and gas, the application of RCM is also carried out by Shaneza (2019) who reviewed RCM on the cooling water pump of LNG production [14]. Zakikhani et al (2020) conducted research on Availability-based reliability-centered maintenance planning for gas transmission using Monte Carlo simulation [15]. The other critical success factors of the RCM in oil and gas were conducted by Zeinalnezhad [10].

In this research, RCM was applied to determine the appropriate type of maintenance for the Marine Loading Arm (MLA) system. The RCM method approach used is the American Bureau of Shipping (ABS) Classification [16-17]. ABS provides an RCM approach by adding a criticality assessment to its stages. Failure mode, effect, and criticality analysis (FMECA) is a method used to assess the level of equipment risk so that the maintenance strategy can be prioritized [17-18]. FMECA has undergone many developments by researchers with several approaches, such as fuzzy logic [19][20], analytical network process (ANP) [21], and grey theory method [22-23].

2. Methods

2.1. Data Collection

Data collection is used as object research. The data collected is obtained from the Department of Port maintenance PT. XYZ. The data required in this research are as follows: Data on the loading/unloading equipment in the port of PT. XYZ, (2) Historical Data on the loading/unloading machine in the port, (3) Data downtime and repair time of each loading/unloading machine in the port, (4) Cause of failure that occurs in the loading/unloading machine in the port, (5) How repairs are made to the damage of the machine.

2.2. Defining the System Limitation

In this research, the object research is Marine Loading Arm (MLA) system. Based on the working system of the dismantling of liquid ammonia, MLA acts as the connector between the pipe vessel with a pipeline on land driven using a hydraulic motor. Some of the sub-systems are integrated and when the failure occurs at one sub-system, it will affect the process of unloading the ammonia.

2.3. Identifying Mode and Operation Context

Mode operation is used to determine the operating context of each item to be identified. The operation mode identification is divided into three categories:

1. Environmental parameters based on functional assets operate.
2. Usage-based on operational function.
3. The performance capabilities are defined by the functional group.

The development of operational context is agreed to consider performance or quality, system setting, safety, environmental standards, and operation. The operation context is developed on each level hierarchy. Functional linkages of the system in functional groups will be explained through a diagram block or fault-tree diagram in the form of narration to allow the effect of the failure to be comprehensively understood.

2.4. Specifying System Definitions

On the system to be analyzed RCM must be defined by functional groups into the system, subsystem, equipment/item, and components. Further development of narrative descriptions in any functional
groups, systems, items, and components. The narrative description at each level of the hierarchy and the functional requirements will be developed and provide the following information:

1. A general overview of operations and structures.
2. The functional relationship of any item or component of the equipment.
3. Consideration of each mode of operation on the limit of acceptable functional performance of the item or component.
4. Obstacles encountered in operation.

2.5. **Identifying System Block Diagrams and Functions**

All functions must be identified including functions on functional groups, systems, items, and components. When identifying functions, the operation mode and operation context must be well recorded. Block Diagram is used for development that shows the sequence of functional flow, both technical about the function and operation of the system. The block Diagram must contain (1) functional groups are divided into systems, items, and components, (2) All inputs and outputs are labelled according to the identification number, (3) All redundancy, alternate signal paths, and other technique features show the "Fail-safe" action size.

Performance standard system function is the minimum acceptable requirement for the context of operation compared with system design capabilities. Performance standards must be identified as they are used to determine failures. Functions should be categorized as follows: (1) Primary functions, i.e., the underlying functions that are the reason why there are functional groups or items or components, (2) Secondary functions, in addition to the main functions of the system.

2.6. **Criticality Analysis using FMECA methods**

After the failure mode is specified on the subsystem, the next stage determines the effect of each – each failure that occurs or is commonly referred to as Failure Modes, Effect and Critically Analysis (FMECA). Once the specified failure mode then gets the data failure effect. This Failure effect determines what kind of maintenance task to do. FMECA results in a level of the critical asset. To obtain the value of criticism on the components, it can be done by converting the value of the probability rating against the value of consequence rating that has been determined using the risk matrix of ABS classification. The risk level is represented in a 4x5 matrix as shown in figure 1. Meanwhile, the criteria for likelihood and severity levels are shown in tables 1-2.

Severity Level	Improbable	Remote	Occasional	Probable	Frequent
4	Medium	Medium	High	High	High
3	Low	Medium	Medium	High	High
2	Low	Low	Medium	Medium	High
1	Low	Low	Low	Medium	Medium

Figure 1. Risk matrix of ABS classification [17]

2.7. **Determining the Maintenance Task**

The Maintenance Task series is a work package describing the maintenance strategy based on RCM. Work package creation in the form of a spreadsheet as recommendations related to maintenance on the Marine Loading Arm.
Table 1. Severity level [17]

Severity Level	Descriptions for Severity Level	Definition for Severity Level
1	Minor, Negligible,	Function is not affected, no significant operational delays. Nuisance.
2	Major, Marginal, Moderate	Function is not affected, however failure detection/corrective measures not functional. OR Function is reduced resulting in operational delays.
3	Critical, Hazardous, Significant	Function is reduced, or damaged machinery, significant operational delays
4	Catastrophic, Critical	Complete loss of function

Table 2. Likelihood level [17]

Likelihood level	Likelihood Descriptor	Description
1	Improbable	Fewer than 0.001 events/year
2	Remote	0.001 to 0.01 events/year
3	Occasional	0.01 to 0.1 events/year
4	Probable	0.1 to 1 events/year
5	Frequent	1 or more events/year

3. Result and Discussion

3.1. Object Research
Data from PT. XYZ is obtained in three ways: field observations, interviews with employees, and data retrieval information in the form of technical data, and other documentation relating to the system. Table 3 shows the technical specification of the Marine Loading Arm. Marine Loading Arm has several sub-systems with many components inside. All parts of the Marine Loading Arm have been noted to facilitate the handling of its maintenance. Table 4 shows the list of asset registers of the Marine Loading Arm system. While figure 2 shows the Marine Loading Arm on PT. XYZ.

Figure 2. The Marine loading arm on PT. XYZ
Table 3. Technical specification of marine loading arm

Marine Loading Arm Specification	
Year made	2010
Maker	Emco Wheaton
Type	B0030
Design Pressure	10 Bar
Design Temperature	-40 - 40°C
Weight	13.5 ton

Electric Motor Specification	
Maker	SIEMENS
Type	Motor 3 phase
Frequency	50Hz
Power	5.0 kW
RPM	1445

Pump Specification	
Type	External Gear Pump

Table 4. List of asset register of marine loading arm system

EQUIPMENT TAG	EQUIPMENT TYPE	DESCRIPTION
B25M801-ERS	Emergency Release System MLA	Stray Current Protectors
B25M801-ERS-SCP		
B25M801-ERS-TSA		Triple Swivel Assembly
B25M801-ERS-TSJ		Triple Support Jack
B25M801-ERS-DS		Drainage System
B25M801-ERS-CC		Camlock Coupling
B25M801-SA	Secondary Arm MLA	
B25M801-SA-ASJ1		Apex Swivel Joint 1
B25M801-SA-ASJ2		Apex Swivel Joint 2
B25M801-SA-ASJ3		Apex Swivel Joint 3
B25M801-PA	Primary Arm MLA	
B25M801-PA-FSJ1		Fulcrum Swivel Joint 1
B25M801-PA-FSJ2		Fulcrum Swivel Joint 2
B25M801-PA-PCW		Primary Counter Weight
B25M801-SP	Stand Post MLA	
B25M801-SP-ELB		Earth Lug Baseplate
B25M801-SP-OF		Outlet Flange
B25M801-SP-LD		Ladder
B25M801-SP-SL		Slew Lock
B25M801-SP-BSJ		Base Swivel Joint
B25M801-SP-DV		Drain Valve
B25M801-SP-PI		Pressure Indicator
B25M801-HS	Hydraulic System MLA	
B25M801-HS-HPU		Hydraulic Power Unit
B25M801-HS-EHP		Emergency Hand Pump
B25M801-HS-HT		Hydraulic Tank
B25M801-HS-HSV		Hydraulic Solenoids Valves
B25M801-HS-HC		Hydraulic Controls
B25M801-HS-HA		Hydraulic Accumulator
B25M801-HS-ECP		Eex-ed Electrical Control Panel
B25M801-HS-EH		Ex-D Housing
B25M801-HS-HP		Hydraulic Piping
B25M801-PL	Purge Line MLA	
B25M801-PL-FH		Flexible Hose
B25M801-PL-BV		Block Valve
3.2. Operating Modes and Context
To determine the characteristics of operation, various modes of operation must be identified. The interconnectedness between functions of the selected system in a functional group should be explained through the use of block diagrams in a narrative format to make it easier to understand. The list of failure modes for each system to be analyzed will be developed taking into consideration the system settings, performance or quality standards, environmental standards, safety standards, and operation modes. The operation mode used for the determination of the operating context can be shown in table 5.

General Characteristic	Operating Modes		
	At sea	Manoeuvring Alongside	Cargo Handling
Environmental Parameters	Not Used	Not Used	Pressure 1 ATM in reservoir tank hydraulic oil temperature <70°C
Manner of Use	Not Used	Not Used	Generating the MLA’s arm with 180bar pressure using 5,0kW hydraulic pump
Performance Capability	Not Used	Not Used	Generates 5,0kW at 1445 RPM to supply 180bar hydraulic pressure

3.3. System and Function Block Diagram
The block diagram shows the sequence of the functional group flow, technical understanding of the functions, and system operation and for further analysis. The system block diagram also shows the effects and sequence of events that will and may occur due to component failure. So if a failure occurs, the system or other components that are affected by the failure can be seen from the system block diagram. All components in this system work in series. With this condition, it can be concluded that if there is one component in the system that fails, the whole system is declared a failure. Figure 3 shows the functional block diagram of the MLA hydraulic system.
Figure 3. The functional block diagram of the MLA hydraulic system

3.4. Result of Criticality Assessment using FMECA Methods

For each failure mode, FMECA must show all functional losses, severity, probability of failure, and resulting risk. The consequence category must be considered in FMECA when the failure mode directly initiates consequences. Each failure mode can impact performance, safety, reliability, and potentially cause a fatal failure. The failure characteristics in each failure mode must be identified into three, such as wear-in failure, random failure, and wear-out failure. In this study, failure modes were obtained from various sources, repair history, OREDA, and manufacturer's recommendations.

The effect of failure in each failure mode should be listed as a local effect, functional failure, and end effect. The local effect describes the initial changes in components or equipment when failure mode occurs. The local effect will continue to the end effect, which is a description of the overall effect that will occur. Table 6-7 shows the example of the FMECA worksheet. The recapitulation of the FMECA risk level analysis in the MLA hydraulic system is shown in figure 4. There are 30% low risk, 49% moderate risk, and 21% high risk.

Table 6. FMECA Worksheet (1/2)

No.	Item	Functional Failure	Failure Mode	Causes	Failure Characteristic	Local effects	Functional Failure
1		The resulting pressure is less than 180 bar	Leak in solenoid valve seal (Evident)	Prolonged use and excessive pressure can damage the seal on the solenoid valve	Random Failure, Wear out	Hydraulic oil will seep out of the system	The resulting pressure is less than 180bar
Table 7. FMECA Worksheet (2/2)

No. Item	End Effect	Matrix	Severity	Current Likelihood	Current Risk	Failure Detection
1	The pressure in the solenoid valve will decrease thereby inhibiting the movement of the actuator	Loss of Containment	Major	Occasional	Medium	Failure can be detected visually by checking regularly

Risk Level in the MLA Hydraulic System

![Risk Level Chart]

Legend:
- Low Risk
- Medium Risk
- High Risk

- 21% Low Risk
- 30% Medium Risk
- 49% High Risk

Figure 4. The recapitulation of the FMECA analysis

3.5. Determining Maintenance Task

Each action proposed to deal with the failure modes that occur in the FMECA analysis, will be divided into several categories. Maintenance tasks can be categorized into 3 categories following:

- **Category A** - Can be performed by on-site mechanical personnel.
- **Category B** - Must be undertaken alongside by equipment vendors or with use of dockside facilities.
- **Category C** - Must be undertaken in the dry dock/workshop.

There are several types of maintenance recommendations to do maintenance categories A, B, or C, including Preventive Maintenance (PM), Condition Monitoring (CM), Failure Finding (FF), and One-Time Change (OTC). The steps for determining the type of maintenance are based on logic tree analysis (LTA). Then the logic tree analysis results will determine recommendations for maintenance actions. Table 8 shows an example of logic tree analysis to determine maintenance tasks. Based on the results of the LTA, there are 37% maintenance category A (14 tasks), 63% maintenance category B (21 tasks) and no maintenance category C. Figure 5 shows the maintenance category chart.

Table 8. Logic tree analysis worksheet

No. Item	Failure Mode	RCM LTA Task Selection	Result
1	Leak in solenoid valve seal (Evident)	A1 A2 B1 B2 B3 B4 B5 B6 B7 C1 C2 C3	One-time change may be necessary to achieve a tolerable risk
		N - N Y - N N - N - - -	
Figure 5. The recapitulation of maintenance category

Figure 6. The recapitulation of maintenance task

Meanwhile, figure 6 shows the results of the recapitulation of the types of maintenance task recommendations from all categories. There are 54% Preventive Maintenance types, 37% Condition Monitoring types, and 9% Run-To-Failure types.

4. Conclusion
In this research, the Reliability Centered Maintenance (RCM) method is used to determine the priority of the Marine Loading Arm maintenance on PT. XYZ. From the stage of FMECA analysis, criticality equipment is 30% low risk, 49% moderate risk, and 21% high risk. Therefore, based on logic tree analysis, the recommended maintenance category is 37% category A (14 tasks), 63% category B (21 tasks). Meanwhile, the recapitulation of the types of maintenance task recommendation from all categories is 54% Preventive Maintenance (19 tasks), 37% Condition Monitoring (13 tasks), and 9% Run-To-Failure (3 tasks). Finally, a further recommendation from this research is to add other methods such as fuzzy logic and analytical network process to develop a more comprehensive criticality assessment in the stage of RCM analysis.

Acknowledgements
The authors thank to Digital Marine Operation and Maintenance Laboratory, Department of Marine Engineering, and Institut Teknologi Sepuluh Nopember for supporting facilities this research.

References
[1] M.K.S. Sastry, L. Seekumar 2012 Automation of real time monitoring and controlling of a marine loading arm Journal of Engineering, Design and Technology, 10 2 217 – 227.

[2] G. Pintoa, F. J. G. Silva, A. Baptista, N. O. Fernandes, R. Casais, C. Carvalho 2020 TPM implementation and maintenance strategic plan – a case study Procedia Manufacturing, 51 1423-1430.

[3] Willem E.L. Brujin, J. Rip, A. J.H. Hendriks, Pieter H.A.J.M. van Gelder, Sebastiaan N. Jonkman 2019 Probabilistic downtime estimation for sequential marine operations Applied Ocean Research, 86 257-267.

[4] P. Camus, A. Tomás, G. Díaz-Hernández, B. Rodríguez, C. Izaguirre, I.J. Losada 2019 Probabilistic assessment of port operation downtimes under climate change Coastal Engineering, 147 12-24.

[5] P. Afzali, F. Keynia, M. Rashidinejad 2019 A new model for reliability-centered maintenance prioritisation of distribution feeders Energy, 171 701-709.

[6] Y. Tang, Q. Liu, J. Jing, Y. Yang, Z. Zou 2017 A framework for identification of maintenance significant items in reliability centered maintenance Energy, 118 1295-1303.

[7] J. Moubray 1997 RCM II: Reliability centered maintenance - 2nd edition (Butterworth Heinemann Elsevier)

[8] David J. Smith 2017 Reliability, maintainability and risk (ninth edition) (Butterworth-Heinemann)

[9] Islam H. Afefy 2010 Reliability-centered maintenance methodology and application: a case study Engineering, 2 863-873

[10] M. Zeinalnezhad, A. G. Chofreh, F. A. Goni, J. J. Klemes 2020 Critical success factors of the reliability-centred maintenance implementation in the oil and gas industry Symmetry, 12 1585-14.

[11] M. B. Zaman, Semin, T. Pitana, N. Siswantoro, F. Hanugrah 2020 Application of reliability-centered maintenance for tugboat kresna 315 cooling system Journal of Southwest Jiaotong University, 55 4 1-9.

[12] D. Priyanta, N. Siswantoro, M. N. Pratiwi 2020 Implementation of reliability centered maintenance method for the main engine of tugboat X to select the maintenance task and schedule International Journal of Marine Engineering Innovation and Research, 5 2 102-110.

[13] S. Eriksen, I. B. Utne, M. Lützen 2021 An RCM approach for assessing reliability challenges and maintenance needs of unmanned cargo ships Reliability Engineering & System Safety, 210 107550.

[14] Shaneza R. F, T. Pitana, N. Siswantoro 2019 Reviewing the RCM on cooling water pump of LNG production company International Journal of Marine Engineering Innovation and Research, 3 3 109-17.

[15] K. Zakikhani, F. Nasiri, T. Zayed 2020 Availability-based reliability-centered maintenance planning for gas transmission pipelines International Journal of Pressure Vessels and Piping, 183 104105.

[16] American Bureau of Shipping 2016 Guide for surveys based on machinery reliability and maintenance techniques - 2016 edition (ABS Classification).

[17] American Bureau of Shipping 2018 Guidance notes on reliability-centered maintenance (ABS Classification).

[18] N. Siswantoro, Semin, M. B. Zaman 2020 Criticality assessment for marine diesel engine using failure mode and effect criticality analysis (FMECA) approach: case study on lubricating oil system International Review of Mechanical Engineering (IREME), 14 4 258-263.

[19] H. Liu, X. Deng and W. Jiang 2017 Risk evaluation in failure mode and effects analysis using fuzzy measure and fuzzy integral Symmetry, 9 8 1-13.

[20] M. B. Zaman, E. Kobayashi, N. Wakabayashi, S. Khanfir, T. Pitana and A. Maimun 2014 Fuzzy FMEA model for risk evaluation of ship collisions in the malacca strait: based on ais data Journal of Simulation, 8 91–104.
[21] M. Alrifaey, T. S. Hong, E. E. Supeni, A. As’arry and C. K. Ang 2019 Identification and prioritization of risk factors in an electrical generator based on the hybrid FMEA framework *Energies*, 12 1-22.

[22] X. Lia, H. Lia, B. Suna, F. Wanga 2018 Assessing information security risk for an evolving smart city based on fuzzy and grey FMEA *Journal of Intelligent & Fuzzy Systems*, 34 2491–2501.

[23] H. C. Liu, L. E Wang, X. Y You and S. M. Wu 2019 Failure mode and effect analysis with extended grey relational analysis method in cloud setting *Total Quality Management & Business Excellence*, 30 7-8 745-767.