Variation of alkaloid contents and antimicrobial activities of *Papaver rhoeas* L. growing in Turkey and northern Cyprus

İlkcan Çoban, Gizem Gülsoy Toplan, Berna Özbek, Çağlayan Unsal Gürer and Günay Saryar

Department of Pharmacognosy, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey; bDepartment of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey; cFaculty of Health Sciences, Cyprus International University, Haspolat, Lefkoşa, Cyprus

ABSTRACT

Context: *Papaver rhoeas* L. (Papaveraceae) corn poppy, widely distributed in Turkey, is used to make a cough syrup for children, as a tea for disturbed sleep, for pain relief and as a sedative in folk medicine.

Objective: Samples of *P. rhoeas* collected from eight different locations in Turkey and three from northern Cyprus were investigated for their alkaloid content and screened for their antimicrobial activities.

Materials and methods: From the aerial parts of *P. rhoeas* samples, alkaloids were isolated by column and preparative thin-layer chromatography. The alkaloids were identified by comparing their spectral data (UV, IR and 1H-NMR) and TLC Rf values with those of authentic samples. The antimicrobial study was carried out by microbroth dilution technique and diethyl ether, chloroform and Na2SO4, filtered and concentrated under vacuum to yield the tertiary alkaloid extracts of 11 samples.

Results: Twelve different alkaloids belonging to proaporphine (mecambrine), aporphine (roemerine), promorphinan (salutaridine), protopine (coulteropine and protopine) and rhoeadine (epiglaucamine, glaucamine, glaudine, isorhoeadine, isorhoeagenine, rhoeadine and rheogenine) groups were isolated. The most significant activity was observed with the alkaloid extract of P8 against *Staphylococcus aureus* with a MIC value of 1.22 µg/mL and against *Candida albicans* with a MIC value of 2.4 µg/mL.

Discussion: The results indicate that *P. rhoeas* samples (P8 and P9), which contain roemerine as their major alkaloid, were the most active extracts.

Introduction

Papaver rhoeas L. (Papaveraceae) – red poppy or corn poppy also named as ‘gelinek’ in Turkey – is an annual species of the section Rheodium Kaderiet. The species is widely distributed in Turkey and used for the treatment of various diseases in folk medicine as a cough syrup for children, a tea for insomnia, a sedative and for pain relief. Fresh aerial parts are also used as food mainly in southwest of Turkey (Tuzlacı and Eryasır Aymaz 2001; Köçüyğüt and Özhatay 2004; Ecevit Genç and Özhatay 2006; Tuzlacı 2006). Poppy flowers are also used as a source of food colouring and for enhancing the flavour of herbal teas. Poppy flowers contain anthocyanin glycosides (cyanidin and meccoycanin), up to 12% isoquinoline alkaloids (50% is rhoeadine). They also contain mucilage and many ubiquitous substances (Nosalova et al. 2006). Table 1 summarizes folkloric uses of *P. rhoeas* in Turkey.

In our previous studies on the alkaloids of *P. rhoeas* of Turkish origin, we reported the chemotypes of this species containing rhoeadine, proaporphine and benzylisoquinoline types as major alkaloids (Kalav and Saryar 1989; Unsal et al. 2007). One of the samples of corn poppy collected from southwest region of Turkey has been investigated for its antimicrobial activity using a microbroth dilution technique and diethyl ether, chloroform and acetone extracts of the aerial parts of the plant had showed a good activity against *Staphylococcus aureus* with a MIC value of 39.06 µg/mL (Unsal et al. 2009). As a continuation of our work on this species, we now report the isolation of major alkaloids and antimicrobial activities of both methanol and tertiary alkaloid extracts of 11 samples.

Materials and methods

Samples of *P. rhoeas* were collected from 11 different locations at the flowering stage. Collection data are given in Table 2. Voucher specimens have been identified by G. Saryar and deposited in the Herbarium of the Faculty of Pharmacy at Istanbul University (ISTE).

Extraction and isolation of alkaloids

The dried aerial parts of *P. rhoeas* (P1–P11) samples were each percolated with methanol at room temperature and concentrated under vacuum. The residue was taken up in 5% hydrochloric acid. The acid extract was first washed with light petroleum and then with diethyl ether. The aqueous layer was made alkaline with NH4OH to pH 7–8 and extracted successively with CHCl3. The combined CHCl3 extracts were dried over anhydrous Na2SO4, filtered and concentrated under vacuum to yield the tertiary alkaloid extracts. Table 3 shows the amount of the plant material used for the extraction and tertiary alkaloid extracts obtained.
isolated. Distribution of the alkaloids in the samples is shown in Table 4.

Antimicrobial activity tests

The antimicrobial activity tests were performed on methanol extracts obtained from the aerial parts of the samples (5 g) and on tertiary alkaloid extracts. Antimicrobial activity against *Staphylococcus aureus* ATCC 65538, *Staphylococcus epidermidis* ATCC 12228, *Escherichia coli* ATCC 11229, *Klebsiella pneumoniae* ATCC 4352, *Pseudomonas aeruginosa* ATCC 1539, *Proteus mirabilis* ATCC 14153, *Candida albicans* ATCC 10231, *Candida parapsilosis* ATCC 22019 and *Candida tropicalis* ATCC 750 were determined by the microbroth dilutions technique using the CLSI (2000, 2006) recommendations. Mueller–Hinton broth for bacteria, RPMI-1640 medium for yeast strain was used as the test media. The extracts were dissolved in dimethylsulphoxide (DMSO, 10 mg/mL) before the test for antimicrobial activity. Serial two-fold dilutions ranging from 5000 to 4.9 μg/mL were prepared in the medium. The inocula were prepared using a 6-h broth culture of each bacteria and 24 h culture of yeast dilutions ranging from 105 to 2.5 × 10^5 cfu/mL for bacteria and 0.5 to 2.5 × 10^5 cfu/mL for yeast in the test tray. The trays were covered and placed in plastic bags to prevent evaporation. The trays containing Mueller–Hinton broth were incubated at 35°C for 18–20 h and

Table 1. Medicinal uses of *Papaver rhoeas* L. in folk medicine in Turkey.

Parts used	Uses	References
Petals	Sedative in children, blood sugar lowering	Yücel and Tülükoğlu (2000)
Flowers	Against hemorrhoids	Ecevit Genç and Ozhatay (2006)
Young sprouts	Mild sedative	Tuzlac and Emre Bulut (2007)
Roots	Anthelmintic	Tuzlac (2006) and Tuzlac and Erol (1999)
Petals	Against kidney stones	Aslan et al. (2007)
Flowers	Antipyretic	Tuzlac (2006) and Tuzlac and Sadıkoglu (2007)
Flowers	Against asthma	Tuzlac (2006) and Tuzlac and Sadıkoglu (2007)
Flowers	Insomnia	Tuzlac (2006) and Tuzlac and Sadıkoglu (2007)
Petals	Antidiarrhoea	Tuzlac (2006) and Tuzlac and Sadıkoglu (2007)
Flowers	Antitussive	Tuzlac (2006) and Tuzlac and Alparslan (2007)
Flowers	Antispasmodic	Tuzlac (2006) and Tuzlac and Alparslan (2007)
Flowers	Menstrual disorders	Tuzlac (2006) and Tuzlac and Alparslan (2007)
Aerial parts	Antirheumatism	Kültür (2007)
Petals	Sore throat	Kültür (2007)
Petals	Demulcent	Kültür (2007)
Petals	Immunostimulant	Kültür (2007)
Petals	Against nose bleeding	Kültür (2007)
Petals	Mouth wounds in children	Tuzlac (2006) and Tuzlac and Eryaşar Aymaz (2001)
Leaves	Tonic	Tuzlac (2006) and Tuzlac and Eryaşar Aymaz (2001)
Leaves	Against jaundice	Tuzlac (2006) and Tuzlac and Eryaşar Aymaz (2001)
Petals	Galactagogue	Kültür (2007)

Table 2. Collection data of samples of *P. rhoeas* L. (P1–P11).

Sample no.	Location/date of collection	ISTE no.
P1	Uzunköprü, Edime, Turkey/8 May 2008	85919
P2	Karabük, Turkey/18 May 2008	85923
P3	Eskişehir, Turkey/1 May 2008	85918
P4	Çine, Aydın, Turkey/16 May 2008	85921
P5	Bodrum, Mugla, Turkey/19 April 2008	84601
P6	Fethiye, Mugla, Turkey/20 May 2008	85917
P7	Malatya, Turkey/15 May 2008	85922
P8	Şanlıurfa, Turkey/15 May 2009	86164
P9	Girne, Northern Cyprus/12 May 2009	86050
P10	Bellapais, Girne, Northern Cyprus/April 2015	110445
P11	Lefkoşa, Magosa, Northern Cyprus/April 2015	110446

Table 3. The plant material used for the extraction and yield of the tertiary alkaloid extracts.

Sample no.	Material weight (g)	Yield of tertiary alkaloid extracts (g) (%)
P1	722	0.68–0.09
P2	880	0.57–0.07
P3	647	0.75–0.12
P4	100	0.06–0.07
P5	824	1.24–0.15
P6	900	0.82–0.09
P7	780	0.76–0.1
P8	400	0.75–0.19
P9	955	1.60–0.17
P10	550	0.51–0.09
P11	700	1.29–0.18

The tertiary alkaloid extracts of P1–P11 were each separated on a column of silica gel (Kieselgel 60, 0.063–0.200 mm, 70–230 mesh) eluting with CHCl₃ and CHCl₃:MeOH (95:5, 90:10, 80:20). Fractions were evaporated and purified by preparative thin-layer chromatography on silica gel to afford the pure alkaloids. The solvent systems were cyclohexane:chloroform:diethylamine (7:2:1), cyclohexane:diethylamine (9:1) and (8:2). The identification of the alkaloids was carried out by comparing their spectral data (UV, IR, ¹H-NMR and mass spectroscopy) and TLC Rf values with authentic samples. Nine different alkaloids belonging to aporphine (roemerine), protopine (coulterpine and protopine) and rhoeadine (epiglaucamine, glauaine, isorhoeadine, isorhoeagenine, rhoeadine and rhoeagenine) groups were
Table 5 Minimum inhibitory concentrations (μg/mL) of extracts from *Papaver rhoeas* L.

Species/reference standard	Micro-organisms	Gram-positive bacteria	Gram-negative bacteria	Fungi						
		Staphylococcus aureus	Staphylococcus epidermidis	Klebsiella pneumoniae	Proteus mirabilis	Escherichia coli	Pseudomonas aeruginosa	Candida albicans	Candida parapsilosis	Candida tropicalis
P1 M 156		–	–	–	–	–	–	–	–	–
P2 M 625		–	–	–	–	–	–	–	–	–
P3 M 312 312		–	–	–	–	–	–	–	–	–
P4 M 312 312		–	–	–	–	–	–	–	–	–
P5 M 39 316		–	–	–	–	–	–	–	–	–
P6 M 312 312		–	–	–	–	–	–	–	–	–
P7 M 156 312		–	–	–	–	–	–	–	–	–
P8 M 312 312		–	–	–	–	–	–	–	–	–
P9 M 1.22 9.7 39		–	–	–	–	312	156	2.4	–	–
P10 M 312 625		–	–	–	–	312	156	9.7	–	–
P11 M 1.23 625		–	–	–	–	312	312	2.4	–	–
Roemerine		–	–	–	–	–	–	4.8	4.9	2.4
Mecambrine		–	–	–	–	–	–	39	39	9.8
Cefuroxime-Na		1.2	9.7	49	2.4	4.9	2.4	156	312	312
Cefazidime		–	–	–	–	–	–	2.4	–	–
Clotrimazole		–	–	–	–	–	–	4.9	–	–

M: methanol; A: alkaloidal; –: not active.

Only roemerine and mecambrine were tested against *Candida parapsilosis* and *Candida tropicalis*.
the trays containing RPMI-1640 medium were incubated at 35 °C for 46–50 h.

The MIC was defined as the lowest concentration of compound giving complete inhibition of visible growth. All the micro-organisms were obtained from American Type Culture Collection (ATCC), Manassas, VA. Cefuroxime–Na and cefazolin were used as a positive control for the tested bacteria, whereas clotrimazole was used as a positive control for yeast (CLSI 2000, 2006).

Results and discussion

In this work, samples of P. rhoæas collected from eight different locations of Turkey and three from northern Cyprus were studied for their tertiary alkaloid contents to reveal the chemotypes of this species. Antimicrobial activities of methanol and alkaloid extracts of the samples were also carried out using a microbroth dilution technique against nine ATCC strains.

The structures of the alkaloids were elucidated through spectroscopic analysis and TLC by direct comparison with authentic samples. It has been shown that five samples contain only rhoeadine type, whereas two samples yielded rhoeadine type together with protopine. Existence of roemerine was shown in three samples (Table 4). These findings confirm the results of previous researchers on P. rhoæas which reported the presence of rhoeadine types in most of the samples investigated (Kalav and Sarıyar 1989; Unsal et al. 2007).

On the basis of alkaloid yield, P. rhoæas samples from Turkey and Cyprus were found to be very similar. The yields of alkaloid extracts of Turkey samples were in the range of 0.07–0.19%, while Cyprus samples were in the range of 0.09–0.18%.

The results of the antimicrobial activity by the microbroth dilution method of P. rhoæas species are presented in Table 5. It could be observed that the alkaloid extracts from P8 and P9 and methanol extract from P5 showed a good antimicrobial activity against S. aureus, S. epidermidis and K. pneumoniae. No activity was seen against P. mirabilis. The most significant activity was observed with the alkaloid extract of P8 against S. aureus with a MIC value of 1.22 µg/mL. Alkaloid extracts of P8 and P9 were shown to be especially active against S. aureus, S. epidermidis and K. pneumoniae with MIC values ranging between 9.7 and 19 µg/mL. The antibacterial effect of these two extracts may be related to their major alkaloid roemerine. Also a moderate activity was obtained by the methanol extract of P5 against S. aureus and alkaloid extract of P8 against K. pneumoniae with a MIC value of 39 µg/mL.

Comparison of antifungal activity of all the extracts tested, P8, P9 and P10 alkaloid extracts exhibited a remarkable activity against Candida albicans with MIC values of 2.4, 9.7 and 2.4 µg/mL, respectively.

Rhoeadine-type skeletons represent the main alkaloids of P. rhoæas of Turkish origin, except for the southeast region sample (P8), whereas aporphine-type alkaloids were found in the two native P. rhoæas species of northern Cyprus (P9, P10). The extracts containing rhoeadine type (P1, P2, P4, P6, P7) and rhoeadine–protopine type (P3, P5) alkaloids had no significant activity against the microorganisms tested except the activity of P5 against S. aureus with a MIC value of 39 µg/mL. The most potent extracts (P8, P9 and P10) have been found to contain roemerine as the major alkaloid which has an aporphine alkaloid skeleton and a methylenedioxy moiety. This alkaloid has been shown to possess a variety of pharmacological properties, such as vasodilator (Valiante et al. 2004), anthelmintic (Lin et al. 2014) and antiplasmodial (Baghdikian et al. 2013) activities. One of the derivatives of roemerine, (+)-roemerine MeI, was reported to have strong antibacterial activity against Gram-positive bacteria, including Bacillus cereus, Micrococcus sp. and Staphylococcus aureus (Tsai et al. 1989). Previous studies showed that roemerine had a certain activity against fungal pathogens such as Candida albicans, Candida glabrata, Candida krusei, Candida parapsilosis and Cryptococcus neoformans (Rao et al. 2009). Furthermore, Agnicorti et al. (2008) have reported that this alkaloid has significant antifungal activity against Candida albicans. Roemerine was found to have great bioavailability (84%) in Sprague–Dawley rats and it was suggested that roemerine could be taken orally instead of intravenously (Liu et al. 2014). Hence, roemerine could be a promising drug lead for the clinical treatment of fungus infections.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The Research Fund of Istanbul University [Project No: 3254].

References

Agnicorti VK, Elsohly Hin, Khan SI, Jacob MR, Joshi VC, Smillie T, Khan IA, Walker LA. 2008. Constituents of Nelumbo nucifera leaves and their antimarial and antifungal activity. Phytochem Lett. 1:89–93.

Aslan A, Mat A, Özhatay N, Sarıyar G. 2007. A contribution to traditional medicine in West Anatolia. J Fac Pharm Istanbul. 39:73–83.

Baghdikian B, Mahiou-Ledlett V, Bory S, Bun SS, Dumetre A, Mabrouki F, Hutter S, Azas N, Ollivier E. 2013. New antiplasmodial alkaloids from Stephania rotundula. J Ethnopharmacol. 145:381–385.

Clinical and Laboratory Standards Institute (CLSI). 2000. M-27-A3: Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, Approved Standard. Wayne (P): CLSI Publication.

Clinical and Laboratory Standards Institute (CLSI). 2006. M7–A5: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, Approved Standard. Wayne (P): CLSI Publication.

Ecevit Genç, G, Özhatay N. 2006. An ethnobotanical study in Çatalca (European part of Istanbul) II. Türk J Pharm Sci. 3:73–89.

Kalav YN, Sarıyar G. 1989. Alkaloids from Turkish Papaver rhoæas L. Planta Med. 55:488.

Koçyigit M, Özhatay N. 2004, Wild plants used as medicinal purpose in Yalova (Northwest Turkey). J Fac Pharm Istanbul. 37:67–75.

Kültür Ş. 2007. Medicinal plants used in Kirkkareli province (Turkey). J Ethnopharmacol. 111:341–364.

Lin RJ, Wu MH, Ma YH, Chung LY, Chen CY, Yen CM. 2014. Anthelmintic activities of aporphine from Nelumbo nucifera Gaertn. cv. Rosa-plena against Hymenolepis nana. Int J Mol Sci. 15:3624–3639.

Liu YQ, He GH, Li HL, He JC, Feng EF, Bai L, Wang CY, Xu GL. 2014. Plasma pharmacokinetics and tissue distribution study of roemerine in rats by liquid chromatography with tandem mass spectrometry (LC-MS/MS). J Chromatogr B: Anal Technol Biomed Life Sci. 969:249–255.

Nosolova G, Mokry J, Franova S. 2006. Phytotherapy of cough. In: Khan MTH, Ather A, editors. Vol. 2: Lead molecules from natural products, discovery and new trends. Advances in phytomedicine. Amsterdam: Elsevier; p. 111–132.

Rao GX, Zhang S, Wang HM, Li ZM, Gao S, Xu GL. 2009. Antifungal alkaloids from the fresh ratten stem of Fibraurea recisa Pierre. J Ethnopharmacol. 123:1–5.

Tsai IL, Liou YF, Lu ST. 1989. Screening of isoquinoline alkaloids and their derivatives for antibacterial and antifungal activities. Kaohsiung J Med Sci. 5:132–145.

Tuzlacı E. 2006. Şifa Niyetine Türkiye’nin Bitkisel Halk İlaçları. Istanbul, Turkey: Alfa Yayıncılık.

Tuzlacı E, Alparslan DF. 2007. Turkish folk medicinal plants, Part V: Babaeski (Kirkkareli). J Fac Pharm Istanbul. 39:11–23.
Tuzlacı E, Emre Bulut G. 2007. Turkish folk medicinal plants, Part VII: Ezine (Çanakkale). J Fac Pharm Istanbul. 39:39–51.

Tuzlacı E, Erol MK. 1999. Turkish folk medicinal plants, Part II: Eğirdir (İsparta). Fitoterapia. 70:593–610.

Tuzlacı E, Eryaşar Aymaz P. 2001. Turkish folk medicinal plants, Part IV: Gönen (Balıkesir). Fitoterapia. 72:323–343.

Tuzlacı E, Sadıkoğlu E. 2007. Turkish folk medicinal plants, Part VI: Koçarlı (Aydın). J Fac Pharm Istanbul. 39:25–37.

 Unsal Ç, Atay M, Sarıyar G. 2007. Distribution of alkaloids in the samples of *Papaver rhoeas* L. growing in Turkey. Acta Pharm Turc. 49:209–212.

Ünsal Ç, Özbek B, Sarıyar G, Mat A. 2009. Antimicrobial activity of four annual *Papaver* species growing in Turkey. Pharm Biol. 47:4–6.

Valiente M, D’Ocon P, Noguera MA, Cassels BK, Lugnier C, Ivorra MD. 2004. Vascular activity of (−)-anonaine, (−)-roemerine and (−)-pukateine, three natural 6α(R)-1,2-methylenedioxyaporphines with different affinities for alpha1-adrenoceptor subtypes. Planta Med. 70:603–609.

Yücel E, Tülikoğlu A. 2000. Plants used as folk medicine in Gediz (Kütahya) province. Ekoloji. 36:12–14.