Investigating the behaviors of corticosterone hormone in different solvents by using DFT calculations and experimental data

Davide Romani¹, Silvia Antonia Brandán ²,*

¹SST, Servicio sanitario della Toscana, Azienda USL 9 di Grosseto, Via Cimabue, 109, 58100 Grosseto, Italia.
²Cátedra de Química General, Instituto de Química Inorgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, (4000) San Miguel de Tucumán, Tucumán, Argentina

*corresponding author e-mail address: sbrandan@fbqf.unt.edu.ar | ScopeID 6602262428

ABSTRACT
In this work, structural, electronic, topological and vibrational properties of corticosterone hormone have been investigated in aqueous, ethanol and methanol solutions by using DFT calculations and experimental available infrared, attenuated total reflectance (ATR), Raman and Ultraviolet spectra. The properties predicted in the different solvents at the B3LYP/6-31G* level of theory were compared with those obtained in gas phase and, with others reported for steroids species at the same level of theory. The universal solvation model has evidenced higher solvation energy for corticosterone in aqueous solution and a higher value in methanol, as compared with the corresponding values to equilenin, equilin and estrone steroids in the same medium. Higher Mulliken charges on O atoms of C=O group of side chain are observed in the three solvents than the corresponding to C=O group of ring A while the MK charges on O atoms of OH group of ring C present higher values than the corresponding to O atoms of OH group of side chain. The natural bond orbital (NBO) studies have revealed a low stability of corticosterone in aqueous solution, as compared with the values in ethanol and methanol solutions, in total agreement with the higher solvation energy and dipole moment in this medium. On the other hand, the atoms in molecules (AIM) analyses support the lower stabilities of corticosterone in the three solutions because only five H bonds interactions different from of gas phase where six interactions are observed. The gap values suggests that corticosterone is most reactive in aqueous solution than the other solutions, as supported by the low stability and higher solvation energy and dipole moment values in this medium. This study shows clearly that the steroid species most reactive, equilenin and corticosterone, are characterized by a high global electrophilicity index value and low nucleophilicity index. Reasonable correlations in the predicted IR, Raman and UV spectra were observed, as compared with the corresponding experimental ones. Additionally, the complete vibrational assignments of all 159-vibration modes of corticosterone together with the harmonic force fields and force constants in the different media are for the first time presented.

Keywords: Corticosterone; Force fields; Vibrational analysis; DFT calculations; Molecular structure.

1. INTRODUCTION
The combination of theoretical density functional theory (DFT) calculations by using hybrid B3LYP methods with different experimental spectroscopic techniques is a very good methodology to elucidate reliably and effectively structural, electronic, topological and vibrational properties of diverse compounds [1-15]. The use of this methodology in species containing fused rings such as alkaloids, antihistaminic agents and species steroids, has allowed the optimizations of theoretical structures and the determination of their properties [1-15] while the complete assignments of all bands observed in the experimental infrared and Raman spectra were possible by using the normal internal coordinates, the SQMFF methodology and the Molvbiv program [16-18]. Now, the identifications of cocaine, heroin, morphine and scopalamine alkaloids [1,3-5,7], of antihistaminic agents promethazine [8] and of equilenin, equilin and estrone steroids [9] can be easily carried out in all media by using vibrational spectroscopy. For instance, in cocaine and scopalamine only two fused rings of five and six members’ can be seen, in promethazine three six members’s rings are fused [8], in equilenin, equilin and estrone steroids four fused rings named A, B, C and D can be observed [9] while in morphine and heroin five fused rings [1, 3-5,7]. In the studies on steroids species, the differences in the dipole moment and volume values predicted for equilin could probably be explained from a structural point of view due to e unsaturated C=C bond in the B ring, as compared with estrone and equilenin [9] while the aromatic naphthalene core of both A and B rings of equilenin support the differences with the other ones, as was evidenced experimental and theoretically by the mapped molecular electrostatic potential (MEP) surfaces. The natural bond orbital (NBO) studies support the higher stability of equilin, in relation to equilenin and estrone while the atoms in molecules (AIM) analyses reveal the higher stability for estrone. Moreover, equilenin is the most reactive species probably due to its higher global electrophilicity while the higher global nucleophilicity values are observed for equilin and estrone. In this work, the structures and properties of corticosterone, a glucocorticoid hormone (GC), were studied employing the same methodology that for those species with fused rings [1-9] because, as can be seen in Scheme 1 the structure of corticosterone has four A, B, C and D rings. The IUPAC name of corticosterone is (11b)-
The adrenal gland produces this hormone with anti-inflammatory and immunosuppressive properties [20,21,23,27,30-32,35-37,39-44]. So far, there are a lot of articles related to structural, chemical and biological studies on glucocorticoids, from experimental studies by using spectroscopic and electrochemical techniques up to different theoretical studies [19-44] because these species present dual regulation effects on the immune function which are strongly dependent on the concentration. Thus, experimental structures of corticosterone and their derivatives were already reported [19,24,25,29] together with other theoretical studies on structure, descriptors and reactivity [22,26,37]. Additional studies on temperature effects in low-frequency Raman spectra and terahertz adsorption and Raman scattering were also reported for corticosteroid and mineralocorticoid hormones [33,34], respectively but, the complete vibrational assignments of corticosterone in the different media by using SQMFF methodology were not reported yet. In this context, the aims of the work are the determination of most stable structure of corticosterone in gas phase and in aqueous, ethanol and methanol solutions in order to know its structural, electronic, topological and vibrational properties in those media and, then, to perform the complete vibrational assignment of its infrared and Raman spectra by using the corresponding force fields. Here, hybrid B3LYP/6-31G* calculations were employed in the determination of all properties of corticosterone in the different media [45,46]. These results for corticosterone were compared with the reported for equilenin, equilin and estrone steroids in gas phase by using the same method. Here, the study of frontier orbitals and descriptors in all media are fundamental to explain the differences among them because the four steroids have four fused rings [9]. The idea is that these comparisons can allow the elucidation of mechanisms of action of steroid hormones and their interaction with different biological species.

2. MATERIALS AND METHODS

The original corticosterone structure was optimized in gas phase and aqueous, ethanol and methanol solutions with the Revision A.02 of Gaussian program [47] and the hybrid B3LYP/6-31G* method [45,46]. The corticosterone structure is presented in Figure 1 with the atoms labelling and the definitions of four rings in different colours, as presented in scheme 1. The initial structure of corticosterone was modeled with the GaussView program [48] in accordance with the experimental structure reported [19,24,25,29]. The optimizations of corticosterone in the three solutions were performed taking into account the solvent effects with the integral equation formalism variant polarized continuum method (IEFPCM) while the universal solvation model was used to compute the solvation energies [49-51]. Later, the optimized geometrical parameters in the three media were used to calculate the atomic charges, molecular electrostatic potential, bond orders, frontier orbitals and topological properties by using Merz-Kollman charges and the NBO and AIM2000 programs [52-54] while the volume variations were computed with the Moldraw program [55]. The harmonic force fields in the three media were calculated with the scaled quantum mechanical force field (SQMFF) and the Molvib program by using the normal internal coordinates and transferable scaling factors [16-18]. After that, the vibrational analyses of all bands observed in the experimental available infrared, attenuated total reflectance (ATR) and Raman spectra [56] were carried out considering potential energy distribution (PED) contributions ≥ 10% and the corresponding force fields.

3. RESULTS

3.1. Geometrical parameters in the three media.

Some calculated properties for corticosterone in the different media by using the B3LYP/6-31G* method can be seen in Table 1. The total energies expressed in Hartrees were corrected by zero point vibrational energy (ZPVE) while the dipole moment and volume values are presented as function of permittivity values of different media. Both properties increase with the increase of permittivity presenting the higher values in aqueous solution while the volume value in ethanol is slightly higher than the corresponding in methanol. Figure 2 shows that...
the orientations, magnitudes and directions of dipole moment vectors in the four media are slightly different among them, especially in the three solutions, as compared with the value in gas phase.

Table 1. Calculated total energies (E) and dipole moments (µ) and volumes (V) of corticosterone in different media by using the B3LYP/6-31G* method.

Medium	E (Hartrees)	ZPVE	µ (D)	V (Å³)	ε
Gas phase	-1119.1687	-1118.6840	3.54	382.2	1.00
Ethanol	-1119.2061	-1118.7224	4.53	383.4	24.85
Methanol	-1119.2071	-1118.6827	4.63	383.3	32.61
Aqueous	-1119.1975	-1118.7130	4.72	383.7	78.35

The solvation energies for corticosterone in the different media by using the B3LYP/6-31G* method are given in Table 2 compared with the values calculated here for equilenin, equilenin and estrone steroids in methanol solution. In this work, the ΔG_m⁰ values for corticosterone in the three solvents were uncorrected by ZPVE because of the difference between the values in methanol solution and gas phase, -1118.6827 and -1118.6840 Hartrees is 3.41 kJ/mol, a value completely different from those calculated in ethanol (100.72 kJ/mol) and aqueous solution (76.07 kJ/mol). For this reason, in the calculations of ΔG_m⁰ only the E values taken from first column of Table 1 were considered. In the same way, the values for the other steroids were uncorrected by ZPVE. These results predict higher solvation energy for corticosterone in water evidencing probably a higher solubility and justifying, this way, the higher dipole moment value in this medium. On the other hand, higher volume expansion is also predicted for corticosterone in aqueous solution due to its high dipole moment value in this medium. Note that corticosterone in the three solvents present higher solvation energies, as compared with equilenin, equilenin and estrone steroids. Besides, in equilenin and estrone steroids are observed volume contractions while in equilenin in methanol solution a volume expansion is predicted.

Figure 2. Orientations, magnitudes and directions of dipole moment vectors of corticosterone in different media by using the B3LYP/6-31G* method.

Predicted parameters for corticosterone in gas phase and aqueous, ethanol and methanol solutions by using the B3LYP/6-31G* method are summarized in Table 3. The values are compared with the experimental structure determined by X-ray diffraction by Yousef et al [29] for 21-hydroxypregna-1,4-diene-3,20-dione by using the root-mean-square deviation (RMSD) values. The structural differences between corticosterone and 21-hydroxypregna-1,4-diene-3,20-dione are observed in blue circles in Figure 3. Hence, in the compared compound the ring A is nearly planar because presents a C=C bond different from corticosterone and, also, is characterized by the absence of an OH group.

Table 2. Corrected and uncorrected solvation energies (in kJ/mol) by the total non-electrostatic terms for corticosterone in aqueous, ethanol and methanol solutions by using the B3LYP/6-31G* method.

Medium	ΔG_m⁰	ΔG_ne	ΔG_c	ΔV
Aqueous	-75.54	30.56	-106.10	1.5
Ethanol	-98.10	-3.43	-94.67	1.2
Methanol †	-100.72	2.88	-103.60	1.1

ΔG_m⁰ = uncorrected solvation energy, ΔG_ne = total non electrostatic terms, ΔG_c = corrected solvation energies by uncorrected and non-electrostatic solvation energies. †Uncorrected by ZPVE; ‡This work

Figure 3. Comparisons between the optimized structure for (a) corticosterone in gas phase by using the hybrid B3LYP/6-31G* level of theory with the experimental one determined for (b) 21-hydroxypregna-1,4-diene-3,20-dione in the solid phase by Yousuf et al [29].

The comparisons in the geometrical parameters of corticosterone in the four media with the corresponding to 21-hydroxypregna-1,4-diene-3,20-dione by using the RMSD values demonstrate: (i) approximately the same values in gas phase and aqueous, ethanol and methanol solutions and, (ii) the better correlations for bond lengths and angles (0.017-0.016 Å and 1.4-1.1°), as compared with the values predicted for the dihedral angles. Here, very high RMSD values are calculated for the dihedral angles in the four media and, for this reason, the values are not presented in Table 3. The calculations predicted for the dihedral O4-C25-C21-C11, O4-C25-C21-O2 and C17-C6-C5-C13 angles of corticosterone in the four media few differences in the RMSD values but the same signs that the experimental structure of 21-hydroxypregna-1,4-diene-3,20-dione while, on the contrary, the dihedral C25-C21-C11-C6, C20-C9-C16-C18, C20-C9-C16-C23, C17-C6-C5-C7, O2-C21-C11-C6 and O2-C21-C11-C15 angles are predicted in the four media with different signs than those determined for the experimental structure of 21-hydroxypregna-1,4-diene-3,20-dione. Obviously, the differences are attributed to the absence of OH group and to the presence of C= C bond in the compared compound, different from structure of corticosterone.
Investigating the behaviors of corticosterone hormone in different solvents

Table 3. Calculated geometrical parameters of corticosterone in gas phase and aqueous, ethanol and methanol solutions by using the B3LYP/6-31G* method compared with the corresponding experimental values for 21-hydroxyprostra-1,4-diene-3,20-dione taken from Ref [29].

Parameters	Gas	B3LYP/6-31G* Method	Aqueous	Ethanol	Methanol	Experimental
			Bond lengths (Å)			
C12-O1	1.430	1.442	1.439	1.440		
C21=O2	1.222	1.230	1.228	1.229	1.202(3)	
C24=O3	1.223	1.239	1.236	1.237	1.231(4)	
C25-O4	1.398	1.414	1.411	1.412	1.402(4)	
C23=C16	1.349	1.354	1.353	1.354	1.332(4)	
C5-C6	1.550	1.550	1.550	1.550	1.542(3)	
C7-C8	1.557	1.557	1.557	1.557	1.544(3)	
C9-C16	1.532	1.529	1.530	1.530	1.505(4)	
C6-C17	1.549	1.545	1.546	1.546	1.525(4)	
C9-C20	1.554	1.555	1.554	1.555	1.551(5)	
C11-C21	1.514	1.506	1.508	1.507	1.514(4)	
C21-C25	1.524	1.517	1.519	1.518	1.500(4)	
RMSD	0.016	0.017	0.016	0.016		
			Bond angles (°)			
C10-C12-O1	111.2	110.8	110.9	110.8		
C8-C12-O1	115.1	114.8	114.9	114.8		
C11-C21-O2	123.2	123.8	123.7	123.7	123.1(3)	
C25-C21-O2	118.3	118.0	118.0	118.0	117.8(3)	
C21-C25-O4	111.7	111.4	111.4	111.4	112.2(3)	
C23-C24-O3	121.8	121.5	121.6	121.5	121.8(3)	
C22-C24-O3	122.5	121.7	121.9	121.7	122.2(3)	
C11-C6-C17	109.3	109.4	109.4	109.4	109.1(19)	
C10-C6-C17	112.3	112.5	112.5	112.5	111.0(2)	
C5-C6-C17	112.6	113.0	113.0	113.0	111.8(2)	
C8-C9-C20	113.5	114.0	114.0	114.0	111.9(2)	
C16-C9-C20	107.4	106.5	106.6	106.5	109.6(2)	
C19-C9-C20	109.6	109.9	109.8	109.8	108.0(3)	
C11-C21-C25	118.3	118.1	118.1	118.2	119.1(3)	
RMSD	1.1	1.4	1.4	1.4		
			Dihedral angles (°)			
O4-C25-C21-C11	176.1	175.9	176.2	176.2	175.3(3)	
O4-C25-C21-O2	-3.9	-4.2	-4.1	-4.1	-5.9(5)	
C25-C21-C11-C6	-95.6	-93.7	-94.4	-94.5	80.2(3)	
C20-C9-C16-C18	-72.2	-72.8	-73.0	-73.0	65.5(3)	
C20-C9-C16-C23	105.4	104.2	104.2	104.0	-118.0(3)	
C17-C6-C5-C7	64.6	65.0	65.1	65.1	-60.5(3)	
C17-C6-C5-C13	-67.9	-67.6	-67.7	-67.6	-70.7(3)	
O2-C21-C11-C6	84.4	86.4	86.0	85.8	-98.5(3)	
O2-C21-C11-C15	-35.1	-33.4	-33.9	-34.0	21.1(4)	

*aThis work, †From Ref [29], Letter Bold: RMSD values

3.2. Atomic charges, Moleculat electrostatic potentials (MEP) and bond orders (BO).

In corticosterone, the studies related to atomic charges, molecular electrostatic potentials and bond orders are very important parameters taking into account the presence of four fused rings and of acceptors (O atoms of C=O groups) and donors (OH) groups which, are essential factors to predict the good bioavailability when a species is used as a drug, according to
Veber et al. [69]. Hence, in Table 4 are given the atomic Merz-Kollman (MK) [52] and Mulliken charges, molecular electrostatic potentials and bond orders only calculated for the O atoms of corticosterone in gas phase, aqueous, ethanol and methanol solutions by using the B3LYP/6-31G* method.

Table 4. Atomic Merz-Kollman (MK) and Mulliken charges, molecular electrostatic potentials and bond orders of corticosterone in gas phase and aqueous, ethanol and methanol solutions by using the B3LYP/6-31G* method.

Atoms	MK chargesb	Mulliken chargesb						
	Gas	Aqueous	Ethanol	Methanol	Gas	Aqueous	Ethanol	Methanol
1 O	-0.700	-0.709	-0.706	-0.708	-0.632	-0.633	-0.632	-0.633
2 O	-0.426	-0.430	-0.430	-0.430	-0.475	-0.480	-0.479	-0.479
3 O	-0.507	-0.508	-0.508	-0.509	-0.483	-0.494	-0.492	-0.493
4 O	-0.619	-0.623	-0.623	-0.624	-0.625	-0.631	-0.630	-0.631

Atoms	MEPb	Bond Order						
	Gas	Aqueous	Ethanol	Methanol	Gas	Aqueous	Ethanol	Methanol
1 O	-22.306	-22.305	-22.305	-22.306	1.801	1.798	1.799	1.798
2 O	-22.303	-22.305	-22.305	-22.305	2.036	2.032	2.033	2.032
3 O	-22.346	-22.347	-22.347	-22.348	2.024	2.012	2.014	2.013
4 O	-22.317	-22.321	-22.320	-22.321	1.795	1.786	1.787	1.786

aThis work, bAtomic units (a.u.)

When the atomic MK and Mulliken charges on all O atoms are exhaustively analyzed for corticosterone in the four media the values are practically similar among them but, when their behaviours are graphed in Figure 4 we can see slight differences between the values of both charges. Thus, in all media the O2 and O3 atoms present the higher values of both charges while the charges on the O1 and O4 atoms have lower values.

These results are the expected because the O2 and O3 belong to two C=O groups while the O1 and O4 atoms belong to two OH groups. Besides, it is observed that the MK charges on the O2 atoms have higher values and lower values are observed on the O1 atoms in the four media while the Mulliken charges on the O3 atoms present the higher values. Note that both charges on the O4 atoms present the same values in the four media. If now, the molecular electrostatic potentials on all O atoms are analyzed from Table 4 the values practically are similar in the four media although notable differences can be seen in the mapped MEP surfaces, as shown in Figure 5.

Thus, the O3 atoms present the higher MEP values and, as a consequence strong red colours are observed on these atoms and weak red colours on the O2 and O4 atoms. Here, only the surfaces for corticosterone in gas phase and in aqueous solution are presented because the surfaces for corticosterone in ethanol and methanol are similar to those observed in aqueous solution. In gas phase, it is observed strong blue colours on the H51 and H55 atoms belong to OH groups but the colorations are weak in solution. Evidently, the hydration of these groups in solution justifies the diminishing of colour. On the other hand, green colours typical of inert places are observed on the C=C of ring A while light blue colours are also observed on some aliphatic C-H groups.

The red and blue colours are characteristic of nucleophilic and electrophilic sites, respectively where can take place reaction with biological electrophiles and nucleophiles reactive.
3.3. NBO and AIM studies.

The stabilities studies on equilenin, equilin and estrone steroids have evidenced that equilenin is the most stable species, as compared with equilenin and estrone probably due to the presence of an unsaturated C=O bond in the B ring of equilin [9]. These studies are also important in corticosterone taking into account that in the ring A there is a C=C bond. Hence, the main delocalization energies and the topological properties are analyzed for corticosterone in the four media with the NBO and AIM2000 programs by using B3LYP/6-31G* calculations [53,54]. The results can clearly be seen in Table 5.

The analyses of main delocalization energies show the presence of three different $\Delta E_{e-\sigma^*}$, $\Delta E_{n-\sigma^*}$ and $\Delta E_{e\sigma^*}$ interactions where the higher values are observed for the $\Delta E_{n-\sigma^*}$ interactions in the four media, as expected because in these interactions are involved the O2 and O3 atoms that belong to the two C=O groups. Hence, the evaluation of the total energies shows a higher stability of corticosterone in gas phase whiles in aqueous solution present the lower value. This latter resulted is in complete agreement with the higher solvation energy observed in this medium because in water corticosterone is most hydrated with solvent molecules than in ethanol and methanol.

The Bader’s theory of atoms in molecules (AIM) [70] is of great aid to investigate different types of interactions and, for this reason, for corticosterone in gas phase and aqueous, ethanol and methanol solutions were computed the topological properties with the AIM2000 program [54] in all bond critical points (BCPs) and ring critical points (RCPs) by using the B3LYP/6-31G* method. Hence, the electron density, $\rho(r)$ and the Laplacian values, $\nabla^2 \rho(r)$ were calculated in BCPs and RCPs by using the B3LYP/6-31G* method, as in similar species containing rings [1,3-15]. These properties for corticosterone in all media are presented in Table 6.

In this work, the other parameters, eigenvalues (λ_1, λ_2, λ_3) of the Hessian matrix and the $|\lambda_1|/\lambda_3$ ratio were no presented in

Table 6. Note that in gas phase appear six H bonds interactions which are O1-H48, O2-H40, O2-H55, H27-H39, H39-H51 and H30-H53 interactions while in the three solutions the O2-H40 interactions are no observed probably due to the higher distances between the two involved atoms. This way, the distances in the three solutions are higher than the observed in gas phase of 2.616 Å. Obviously, in the H bonds interactions $\lambda_1/\lambda_3<1$ and $\nabla^2 \rho(r)>0$ (closed-shell interaction). New RCPs are observed, as a consequence of H bonds interactions formed, named RCNP1, RCPN2, etc, while the RCPs of the four rings themselves are called A, B, C and D. The formation of six H bonds in gas phase and only five in the solutions indicate that corticosterone is most stable in gas phase than in the three solutions. In Figure 6 is presented the molecular graphic of corticosterone in gas phase showing all BCPs and RCPs because in this medium present a higher number of new H bonds.

This study clearly suggests the high stability of corticosterone in gas phase and the low stabilities in aqueous, ethanol and methanol solutions due to the new H bonds formed.

3.4. Frontier orbitals and quantum global descriptors studies.

Previous studies by using the gap values on steroids species have revealed that equilenin is the most reactive species than equilin and estrone due probably to its higher global electrophilicity value while higher global nucleophilicity values are observed for equilin and estrone [9]. For corticosterone in gas phase and aqueous, ethanol and methanol solutions were also calculated the gap values by using the frontier orbitals and, with these results were predicted the chemical potential (μ), electronegativity (χ), global hardness (η), global softness (S), global electrophilicity index (ω) and global nucleophilicity index (λ) descriptors [59-68]. Hence, in Table 7 are presented the frontier orbitals, gap and descriptors values for corticosterone in gas phase and aqueous, ethanol and methanol solutions by using the B3LYP/6-31G* method. Note that the equations used to compute all descriptors are also presented in that Table. The results clearly evidence the higher gap value in gas phase and, for this reason, corticosterone is most stable and less reactive in this medium while the lower value observed in aqueous solution support the higher reactivity in this medium and the lower stability, as suggested by the NBO studies and by the higher solvation energy. Here, for corticosterone it is observed a higher global electrophilicity value in aqueous solution (2.9814 eV) and a low nucleophilicity index (-9.5229 eV) in this medium, in complete agreement with equilenin steroid [9]. If now the gap values of equilenin (4.5008 eV), equilin (5.4695 eV) and estrone (5.4342 eV) are compared with the observed for corticosterone in the four media equilenin presents the lower value for which its species is the most reactive while corticosterone in all media is most reactive than equilin and estrone. This study shows clearly that the steroid species most reactive, equilenin and corticosterone, are characterized by a high global electrophilicity index value and low nucleophilicity index, having corticosterone a higher electrophilicity index value (2.8068 eV) while equilenin has a lower nucleophilicity index (-7.3851 eV).
Table 5. Main delocalization energies (in kJ/mol) for corticosterone in gas phase and aqueous, ethanol and methanol solutions by using B3LYP/6-31G* calculations.

Parameter	Gas	Aqueous	Ethanol	Methanol
\(\pi C16-C23 \rightarrow \pi^* O3-C24 \)	89.91	96.85	95.64	96.43
\(\Delta E_{\pi \rightarrow \pi^*} \)	89.91	96.85	95.64	96.43
\(LP(2)O2 \rightarrow \sigma^* C11-C21 \)	79.25	77.04	77.62	77.29
\(LP(2)O2 \rightarrow \sigma^* C23-C25 \)	77.79	74.49	75.28	74.95
\(LP(2)O3 \rightarrow \sigma^* C22-C24 \)	88.07	81.43	82.76	82.05
\(LP(2)O3 \rightarrow \sigma^* C23-C24 \)	81.05	74.11	75.45	74.70
\(\Delta E_{\sigma \rightarrow \sigma^*} \)	326.17	307.06	311.12	308.99
\(\pi^* O3-C24 \rightarrow \pi^* C16-C23 \)	155.29	159.13	160.72	161.01
\(\Delta E_{\pi^* \rightarrow \pi^*} \)	155.29	159.13	160.72	161.01
\(\Delta E_{Total} \)	571.37	563.04	567.48	566.43

Table 6. Analysis of the Bond Critical Points (BCPs) and Ring critical point (RCPs) for corticosterone in different media by using the B3LYP/6-31G* method.

Parameter	B3LYP/6-31G* Method	GAS PHASE				
\(\rho(r) \)	O1-H48	O2-H40	O2-H55	H27-H39	H39-H51	H30-H53
\(V' \rho(r) \)	0.0163	0.0091	0.0265	0.0101	0.0136	0.0050
Distance, Å	2.304	2.616	2.100	2.136	1.903	2.458
RCPs New	RCPN1	RCPN2	RCPN3	RCPN4	RCPN5	RCPN6
\(\rho(r) \)	0.0103	0.0091	0.0243	0.0101	0.0086	0.0045
\(V' \rho(r) \)	0.0494	0.0392	0.1428	0.0398	0.0420	0.0169
RCPs Rings	A	B	C	D		
\(\rho(r) \)	0.0175	0.0170	0.0171	0.0368		
\(V' \rho(r) \)	0.1212	0.1062	0.1053	0.2413		
AQUEOUS SOLUTION						
\(\rho(r) \)	0.0142	0.0094	0.0274	0.0094	0.0112	0.0056
\(V' \rho(r) \)	0.0515	0.0979	0.0372	0.0460	0.0199	
Distance, Å	2.379	1.995	2.188	1.976	2.390	
RCPs New	RCPN1	RCPN2	RCPN3	RCPN4	RCPN5	RCPN6
\(\rho(r) \)	0.0099	0.0247	0.0092	0.0081	0.0048	
\(V' \rho(r) \)	0.0461	0.1470	0.0408	0.0372	0.0187	
RCPs Rings	A	B	C	D		
\(\rho(r) \)	0.0177	0.0171	0.0172	0.0369		
\(V' \rho(r) \)	0.1233	0.1068	0.1064	0.2416		
ETHANOL SOLUTION						
\(\rho(r) \)	0.0147	0.0271	0.0094	0.0112	0.0053	
\(V' \rho(r) \)	0.0530	0.0972	0.0372	0.0460	0.0186	
Distance, Å	2.360	2.000	2.186	1.974	2.425	
RCPs New	RCPN1	RCPN2	RCPN3	RCPN4	RCPN5	RCPN6
\(\rho(r) \)	0.0101	0.0245	0.0092	0.0080	0.0047	
\(V' \rho(r) \)	0.0471	0.1457	0.0408	0.0368	0.0179	
RCPs Rings	A	B	C	D		
\(\rho(r) \)	0.0177	0.0170	0.0172	0.0369		
\(V' \rho(r) \)	0.1227	0.1064	0.1061	0.2413		
METHANOL SOLUTION						
\(\rho(r) \)	0.0144	0.0271	0.0094	0.0112	0.0053	
\(V' \rho(r) \)	0.0522	0.0971	0.0371	0.0458	0.0186	
Distance, Å	2.372	2.001	2.187	1.979	2.426	
RCPs New	RCPN1	RCPN2	RCPN3	RCPN4	RCPN5	RCPN6
Investigating the behaviors of corticosterone hormone in different solvents

Parameter	A	B	C	D
$\rho(r)$	0.0177	0.0170	0.0172	0.0369
$\nabla^2 \rho(r)$	0.1229	0.1064	0.1061	0.2413

Table 7. Frontier molecular HOMO and LUMO orbitals, gap values and descriptors (in eV) of corticosterone in gas phase by using the B3LYP/6-31G* method.

Orbitals	Gas	Aqueous	Ethanol	Methanol		
HOMO	-6.3022	-6.3212	-6.3239	-6.3212		
LUMO	-1.2381	-1.3660	-1.3470	-1.3551		
$	GAP	$	-5.0641	-4.9552	-4.9769	-4.9661

Descriptors	χ	μ	η	S	ω	E
	-2.5321	-2.4776	-2.4885	-2.4831	0.1975	2.5321
	-3.7702	-3.8436	-3.8535	-3.8382		
	2.3321	2.4776	2.4885	2.4831		
	0.2018	0.2009	0.2014			
	2.9814	2.9558				
	-9.5462	-9.5229	-9.5443	-9.5303		

A very important result derived from this study is that both global electrophilicity and nucleophilicity indexes are independent of number of C=O and OH groups because in the steroids species only a C=O group and one OH group are observed while in corticosterone two groups of each one are present in its structure. Evidently, other different properties are related to those two predictors.

3.5. Vibrational study.

The optimized structures of corticosterone in all media were predicted with C_1 symmetries by using the hybrid B3LYP/6-31G* level of theory while the expected numbers of vibration modes are 159 and where all them show activity in both spectra.

Figure 6. Molecular graphic for corticosterone in gas phase showing the geometries of all its bond critical points (BCPs) and ring critical points (RCPs) by using the B3LYP/6-31G* method.

Figure 7. Experimental available IR spectrum of corticosterone in solid phase [56] compared with the predicted in gas phase and aqueous, ethanol and methanol solutions by using the hybrid B3LYP/6-31G* method.

The experimental available infrared and Raman spectra were taken from the literature [56] and are given in Figures 7 and 8 compared with the corresponding predicted in gas phase and aqueous, ethanol and methanol solutions by using the same level of theory. Here, only the bands observed in the attenuated total reflectance (ATR) were considered because the intensities of bands observed in the IR spectrum in the higher wavenumber region are similar to the corresponding predicted while the bands...
observed in the ATR spectrum present higher intensities than the theoretical ones, as shown in Figure 9.

On the other hand, the complete assignments were performed by using the SQMFF procedure and the Molvib program, as indicated in section Mechanical quantum calculations [16-18]. The observed and calculated wavenumbers and assignments for cortisosterone in the gas phase and ethanol and methanol solutions are presented in Table 8. Later, brief discussions on assignments of some groups are discussed below.

3.6. Band Assignments.

4000-2000 cm⁻¹ region. This region is characteristic of stretching modes of C-H, OH, CH₃ and CH₂ groups. Hence, the SQM calculations predicted the two OH stretching modes of cortisosterone in all media between 3624 and 3443 cm⁻¹, as expected, for which the IR and ATR bands located between 3465 and 3412 cm⁻¹ are easily assigned to these vibration modes. Obviously, the only aromatic C23-H53 stretching modes in all media are predicted by calculations at higher wavenumbers than the other ones, hence, the weak Raman band at 3053 cm⁻¹ is assigned to those stretching modes. The aliphatic C-H stretching modes of cortisosterone in the different media are predicted in different regions and, for these reasons, these modes are assigned accordingly. In the same way, the SQM/B3LYP/6-31G* calculations have predicted the antisymmetric and symmetric stretching modes of CH₃ and CH₂ groups of cortisosterone in all media in different regions and, therefore, the IR and Raman bands between 3036 and 2934 cm⁻¹ are assigned to stretching modes of CH₃ groups while the stretching modes of CH₂ groups are associated to bands between 3004 and 2844 cm⁻¹. The symmetries of those stretching modes can be seen in detailed form in Table 8 where the bands of media intensities are assigned to symmetrical modes.

2000-1000 cm⁻¹ region. In cortisosterone are expected two C=O stretching modes, one C=C stretching mode, two C-O stretching modes and, moreover, other C-C stretching modes. In this region are also assigned the OH deformation modes, deformation, wagging and rocking modes of CH₂ groups, deformation and rocking modes of CH₃ groups and C-H rocking modes [1-9,60-64]. Some of these vibration modes in gas phase and ethanol and methanol solutions are predicted in different regions while other modes, as C=O and C=C stretching modes, are predicted at higher wavenumbers and in the same regions in the three media. Hence, the most intense IR, ATR and Raman bands between 1705 and 1602 cm⁻¹ are clearly assigned to C=O and C=C stretching modes, as in similar species [7,9,10,12,14,60,63,64]. The two OH deformation modes are predicted in the same regions and, hence, they are assigned to the shoulder and IR band at 1268 and 1224 cm⁻¹. The antisymmetric deformations of CH₃ groups are assigned to the bands between 1488 and 1466 cm⁻¹ while the corresponding symmetric modes are associated with the bands between 1394 and 1357 cm⁻¹. The CH₃ rocking modes are assigned between 1120 and 922 cm⁻¹. The deformation, wagging, rocking and twisting modes of CH₂ groups are respectively assigned to the bands 1458/1413, 1429/1277, 1345/1160 and 990/654 cm⁻¹. The C5-C6, C5-C13, C7-C8, C10-C12 and C19-C22 stretching modes are predicted in the same regions in the three media and, for these reasons, they are assigned accordingly.

1000-10 cm⁻¹ region. In this region, for cortisosterone in the different media are expected C-C stretching modes, C-H out-of-plane deformation, CH₃ and CH₂ twisting modes, deformations and torsions of four rings and torsions of OH groups. The assignments of all those modes are clearly detailed in Table 8 where it is observed a strong coupling of some vibration modes in the lower wavenumbers region, such as different torsion modes of OH and CH₂ groups and of rings. Other skeletal modes as, CCO and CCC deformation modes and rocking of C-CH₃ groups are also predicted in this region. Here, only the vibration modes predicted by SQM calculations until 156 cm⁻¹ have been assigned because the Raman spectrum was recorded from 3500 up to 160 cm⁻¹.

Figure 8. Experimental available Raman spectrum of cortisosterone in solid phase [56] compared with the predicted in gas phase and aqueous, ethanol and methanol solutions by using the hybrid B3LYP/6-31G* method.

Figure 9. Experimental available ATR spectrum of cortisosterone in solid phase [56] compared with the predicted in gas phase and aqueous, ethanol and methanol solutions by using the hybrid B3LYP/6-31G* method.
Table 8. Observed and calculated wavenumbers (cm\(^{-1}\)) and assignments of corticosterone in gas phase and ethanol and methanol solutions by using the B3LYP/6-31G* method.

IR\(^a\)	ATR\(^a\)	Raman\(^a\)	Experimental Gas	B3LYP/6-31G* Method\(^a\)							
			Assignments\(^a\)	Assignments\(^a\)							
			SQM\(^b\)	SQM\(^b\)							
3465w	3443s	3624	vO1-H51	vO1-H51							
3422w	3412s	3656	vO4-H55	vO4-H55							
3053w	3047	3047	vC23-H52	vC23-H52							
3036w	3037w	3042	vCH\(_2\)(C20)	vCH\(_2\)(C20)							
		3042	vCH\(_2\)(C17)	vCH\(_2\)(C17)							
3000w	3004w	3004	vCH\(_2\)(C15)	vCH\(_2\)(C15)							
		3004	vCH\(_2\)(C20)	vCH\(_2\)(C20)							
2986w	2983sh	2982	vCH\(_2\)(C22)	vCH\(_2\)(C13)							
2976sh	2976sh	2980	vCH\(_2\)(C13)	vCH\(_2\)(C22)							
		2980	vCH\(_2\)(C19)	vCH\(_2\)(C19)							
2965m	2966	2966	vCH\(_2\)(C19)	vCH\(_2\)(C18)							
		2966	vCH\(_2\)(C18)	vCH\(_2\)(C12-H32)							
2956w	2957sh	2956	vCH\(_2\)(C14)	vCH\(_2\)(C14)							
		2956	vCH\(_2\)(C15)	vCH\(_2\)(C15)							
2945m	2953	2953	vCH\(_2\)(C10)	vCH\(_2\)(C10)							
2938w	2936sh	2938	vCH\(_2\)(C20)	vCH\(_2\)(C17)							
		2938	vCH\(_2\)(C17)	vCH\(_2\)(C20)							
		2938	vCH\(_2\)(C17)	vCH\(_2\)(C20)							
2916m	2921sh	2915	vCH\(_2\)(C22)	vCH\(_2\)(C13)							
		2915	vCH\(_2\)(C22)	vCH\(_2\)(C25)							
2906s	2906s	2907	vCH\(_2\)(C14)	vCH\(_2\)(C19)							
		2907	vCH\(_2\)(C19)	vCH\(_2\)(C19)							
2895s	2902	2902	vCH\(_2\)(C10)	vCH\(_2\)(C10)							
		2902	vCH\(_2\)(C10)	vCH\(_2\)(C22)							
2884s	2890m	2893	vCH\(_2\)(C18)	vCH\(_2\)(C14)							
		2893	vCH\(_2\)(C18)	vCH\(_2\)(C14)							
2877s	2875m	2890	vCH\(_2\)(C25)	vCH\(_2\)(C18)							
		2890	vCH\(_2\)(C25)	vCH\(_2\)(C18)							
2866s	2857	2857	vCH\(_2\)(C25)	vCH\(_2\)(C25)							
2844w	2849	2849	vCH\(_2\)(C25)	vCH\(_2\)(C25)							
2834h	2833m	2847	vC5-H26	vC5-H26							
1680s	1676s	1716	vC21=O2	1680 vC21=O2							
1632vs	1633vs	1710	vC24=O3	1643 vC24=O3							
1602s	1602m	1624	vC16-C23	1603 vC16-C23							
1511sh	1488vw	1490	δCH\(_2\)(C17)	δCH\(_2\)(C17)							
		1490	δCH\(_2\)(C17)	δCH\(_2\)(C17)							
1466w	1460w	1465	δCH\(_2\)(C20)	δCH\(_2\)(C20)							
		1465	δCH\(_2\)(C20)	δCH\(_2\)(C20)							
1466w	1460w	1462	δCH\(_2\)(C17)	δCH\(_2\)(C17)							
		1462	δCH\(_2\)(C17)	δCH\(_2\)(C17)							
1458m	1458	1458	δCH\(_2\)(C19)	δCH\(_2\)(C25) wagCH\(_2\)(C25)							
		1458	δCH\(_2\)(C19)	δCH\(_2\)(C25) wagCH\(_2\)(C25)							
1457	1457	1457	δCH\(_2\)(C14)	δCH\(_2\)(C19)							
		1457	δCH\(_2\)(C14)	δCH\(_2\)(C19)							
IR*	ATR*	Raman*	Experimental	B3LYP/6-31G* Method*							
-----	------	--------	--------------	-----------------------							
			IR*	ATR*	Raman*	SQM*	Assignments*	SQM*	Assignments*	SQM*	Assignments*
1446sh	1455	δCH₃(C25)	1440	δCH₃(C15)	1446	δCH₃(C25)					
1442w	1443	δCH₃(C18)	1430	δCH₃(C10)	1441	δCH₃(C18)					
1432m	1442	δCH₃(C10)	1425	δCH₃(C18)	1440	δCH₃(C10)					
1429m	1423w	δCH₃(C22)	1410	δCH₃(C25) wagCH₃(C25)	1427	δCH₃(C22)					
1413m	1416w	ρC12-H32	1409	δCH₃(C22)	1415	wagCH₃(C25) δCH₃(C25)					
1416sh	1415	wagCH₃(C25)	1408	pC12-H32	1403	pC12-H32					
1398sh	1399sh	ρ'C5-H26	1397	p'C5-H26	1401	p'C5-H26					
1394m	1390w	δ,CH₃(C17)	1387	wagCH₃(C10)	1393	δ,CH₃(C17)					
1387sh	1386	wagCH₃(C19)	1383	wagCH₃(C19)	1386	wagCH₃(C19)					
1379	ρ'C12-H32	1377	ρ'C12-H32	1381	ρ'C12-H32 wagCH₃(C10)						
1372m	1375m	ρC5-H26	1372	wagCH₃(C14)	1375	wagCH₃(C14)					
1368sh	1371	δ,CH₃(C20) ρC8-H28	1365	ρC8-H28	1370	δ,CH₃(C20) ρC8-H28					
1363w	1363sh	wagCH₃(C19)	1362	pC11-H31	1364	δ,CH₃(C20)					
1357m	1360	ρC11-H31 wagCH₃(C10)	1360	δ,CH₃(C20)	1362	pC11-H31					
1357m	1356	wagCH₃(C18)	1350	wagCH₃(C18)	1357	wagCH₃(C18)					
1342m	1342m	ρC5-H26	1345	wagCH₃(C22) pCH₃(C19)	1351	ρC2H(C19)					
1342m	1345m	1347	wagCH₃(C22) pCH₃(C19)	1343	ρC5-H26	1348 ρC5-H26					
1337sh	1336	β'C23-H52 vC9-C16	1336	pC6H(C14) wagCH₃(C18)	1343 vC9-C16						
1327m	1326	ρC8-H28	1324	ρC8-H28	1325	ρC8-H28					
1318m	1320sh	wagCH₃(C13)	1318	wagCH₃(C15) wagCH₃(C13)	1321	wagCH₃(C15) wagCH₃(C13)					
1311w	1304	wagCH₃(C15)	1301	wagCH₃(C15)	1304	wagCH₃(C15)					
1300w	1301sh	1301	ρC7-H27	1296	ρC7-H27	1300 ρC7-H27					
1298m	1297m	1297	wagCH₃(C13) p'C12-H326	1292	wagCH₃(C13) wagCH₃(C15)	1296	wagCH₃(C13) p'C12-H326				
1288sh	1283	ρ'C12-H326	1279	wagCH₃(C22)	1285	wagCH₃(C22)					
1277sh	1273	wagCH₃(C22)	1272	pC11-H31	1278	p'C12-H326					
1268sh	1270sh	1271	δO4-H55	1264	δO4-H55	1264 wagCH₃(C25)					
1250s	1250s	1256	ρCH₃(C10) p'C11-H31	1251	pCH₃(C10) p'C11-H31	1255 ρCH₃(C10)					
1231s	1228s	1232	vC23-C24	1234 β'C23-H52	1238 β'C23-H52						
1224s	1227	δO1-H51	1229	δO1-H51	1227	pCH₃(C14) δO1-H51					
1224s	1224	ρCH₃(C15)	1224	pCH₃(C25)	1224 ρCH₃(C15) ρCH₃(C13)						
1217s	1214m	1216	ρCH₃(C18)	1216 pCH₃(C15) pCH₃(C13)	1212 ρCH₃(C18) ρCH₃(C13)						
1208	ρCH₃(C13)	1209	ρCH₃(C18)	1207 ρCH₃(C19)							
1200m	1200w	1198	ρCH₃(C25)	1205 vC6-C10	1198 ρCH₃(C25)						
Experimental	B3LYP-6-31G* Method*										
--------------	-----------------------										
IR*	ATR*	Raman*	Gas	Ethanol	Methanol						
	SQM*	Assignments*	SQM*	Assignments*	SQM*	Assignments*					
1186m	1186w	1188 w	ρCH₃(C22)	1182	pC7-H27	1188	ρCH₃(C22)				
11675	1167m	1179 vC9-C19	ρCH₃(C22)	1181	pC7-H27	1182	ρCH₃(C22)				
1160Sh	1161m	1162 ρCH₃(C18)	1157 ρCH₃(C14)	1156 δO1-H5 pendantCH₂(C18)							
1141s	1138m	1153 vC5-C6	1148 vC5-C6	1154 vC5-C6	1137 vC18-C16	1106 ρCH₃(C17)					
1135sh	1130sh	1135 vC5-C7	1136 vC5-C7	1106 vC5-C7	1106 vC5-C7	1106 ρCH₃(C17)					
	1120sh	1122 ρCH₃(C20)	1125 vC25-O4	1121 vC3(C20)	1121 vC8-C9	1121 βC21-O2					
	1115sh	1118 vC25-O4	1118 vC(CH₂(C20) C8-C9	1112 vC11-C21	1112 vC11-C21	1112 vC11-C21					
1102m	1099w	1107 ρCH₃(C17)	1107 vC(CH₂(C17) C9)	1106 vC5-C13	1106 vC5-C13	1106 vC5-C13					
1095sh	1086m	1099 vC5-C13	1099 vC5-C13	1100 vC5-C13	1100 vC5-C13	1100 vC5-C13					
1086m	1090 vC5-C7 vC18-C16	1090 vC5-C7	1088 vC5-C7	1046 vC25-O4	1046 vC25-O4	1046 vC25-O4					
	1077w	1075 vC25-O4	1071 vC25-O4	1072 vC25-O4	1072 vC25-O4	1072 vC25-O4					
1054s	1058s	1065 vC25-O4 vC11-C21	1066 vC11-C21	1054 vC7-C14	1054 vC7-C14	1054 vC7-C14					
1045s	1047w	1049 vC7-C14	1050 vC7-C14	1046 vC25-O4	1046 vC25-O4	1046 vC25-O4					
1043s	1033w	1043 vC7-C8	1042 vC7-C8	1042 vC7-C8	1042 vC7-C8	1042 vC7-C8					
1028m	1025w	1025 vC12-O1 vC10-C12	1016 vC12-O1 vC10-C12	1018 vC10-C12	1018 vC10-C12	1018 vC10-C12					
1016s	1015m	1015 vC14-C18	1014 vC9-C19	1016 vC9-C19	1016 vC9-C19	1016 vC9-C19					
1000m	1004sh	1000 vC19-C22	1001 vC19-C22	1002 vC19-C22	1002 vC19-C22	1002 vC19-C22					
999m	991w v997	997 vC5-C6	997 vC(CH₂(C17) C9)	998 vC9-C19	998 vC9-C19	998 vC9-C19					
		986 τCH₃(C13)	986 vC9-C19	989 vC9-C19	989 vC9-C19	989 vC9-C19					
983sh	979sh	984 vC15-C11	983 vC15-C11	982 vC15-C11	982 vC15-C11	982 vC15-C11					
977m	975v	969 vC13-C15	966 vC13-C15	969 vC13-C15	969 vC13-C15	969 vC13-C15					
	961s	952 vC13-C15	949 vC13-C15	952 vC13-C15	952 vC13-C15	952 vC13-C15					
942w	944w	940 βR(A2)	936 βR(A2)	939 vC13-C15	939 vC13-C15	939 vC13-C15					
931m	938	γC23-H52 ρCH₃(C20)	931 ρCH₃(C20)	938 γC23-H52	938 γC23-H52	938 γC23-H52					
929m	922s	929 vC6-C10	925 ρCH₃(C20) vC9-C16	929 ρCH₃(C20) vC6-C10	929 ρCH₃(C20) vC6-C10	929 ρCH₃(C20) vC6-C10					
916w	919w	915 γC23-H52	911 τCH₃(C25) vC6-C11	916 γC23-H52 βR(A2)	916 γC23-H52 βR(A2)	916 γC23-H52 βR(A2)					
892sh	913sh	912 τCH₃(C25) vC6-C11	908 γC23-H52	911 τCH₃(C25) vC6-C11	911 τCH₃(C25) vC6-C11	911 τCH₃(C25) vC6-C11					
886m	887w	886 vC13-C15	886 vC15-C11	887 vC21-C25	887 vC21-C25	887 vC21-C25					
879sh	881 vC21-C25	882 vC15-C11	876 τCH₃(C18)	883 vC23-H52	883 vC23-H52	883 vC23-H52					
870w	880 vC15-C11	876 τCH₃(C18)	854 γC23-H52 vC9-C20	860 τCH₃(C18) vC9-C20	860 τCH₃(C18) vC9-C20	860 τCH₃(C18) vC9-C20					
853s	855m	854 vC9-C20	854 γC23-H52 vC9-C20	860 τCH₃(C18) vC9-C20	860 τCH₃(C18) vC9-C20	860 τCH₃(C18) vC9-C20					
836m	835w	831 τCH₃(C10)	832 vC24-C22	833 vC24-C22	833 vC24-C22	833 vC24-C22					
	833w	831 τCH₃(C10)	832 vC24-C22	833 vC24-C22	833 vC24-C22	833 vC24-C22					
Experimental	B3LYP-6-31G* Method										
--------------	---------------------										
IR°	ATR°	Raman°	Gas	Ethanol	Methanol						
	SQM°	Assignments°	SQM°	Assignments°	SQM°	Assignments°					
824 w	829 sh	814 w	822 tCH₃(C10)	820 tCH₃(C10)	822 tCH₃(C10)	vC12-O1					
803 w	802 w	807 w	810 vC6-C11	809 vC6-C11	810 vC6-C11						
781 w	782 w	793	785 vC6-C17	783 tCH₂(C15)	786 tCH₂(C15)	vC6-C17, tCH₂(C13)					
757 m	757 w	775 m	757 tCH₃(C14)	756 tCH₂(C14)	758 tCH₃(C14)	vC8-C12					
746 w	741 w	746 w	749 βR(C4, A3)	750 βR(A3)	752 βR(C4, A3)						
	741 sh	743	βC21=O2	743 δC21C25O4	745 δC21C25O4						
	741 sh	737	tCH₃(C19) vC24-C22	738 tCH₃(C19)	739 tCH₃(C19)						
709 m	708 w	711 w	722 βR(A4)	720 βR(A4)	720 βR(A4)						
674 w	673 w	691 w	674 τR(A1)	678 τR(A1)	676 ButtC16-C9						
654 w	656 w	679 m	662 tCH₂(C15)	659 δC6C11C21	661 δC6C11C21						
643 w	645 w	650 w	650 γC24=O3	651 γC24=O3	653 γC24=O3						
612 w	612 w	612 m	621 βR(C4, A4)	622 βR(A4)	622 βR(C4, A4)						
590 sh	587 w	610	δC8C12O1B(R,C4, A3)	612 δC8C12O1	608 δC8C12O1B(R,C4, A3)						
571 m	561 sh	572 w	563 γC21=O2	566 γC21=O2	563 γC21=O2						
551 s	559 m	551	βR(C4, A4)	552 βR(C4, A4)	552 βR(C4, A4)						
521 w	547 w	549 m	522 tCH₃(C22)	526 tCH₃(C22)	530 tCH₃(C22)	βR(C4, A1)					
542 w	542 w	521	βR(C2, A2)	520 βC24=O3	521 βC24=O3						
510 w	518 w	518	βC24=O3	519 βR(C4, A1)	520 βR(C2, A2)						
503 w	501 w	490 sh	501 βR(C4, A1)	501 βR(C4, A2)	503 δC10C12O1						
479 s	477 w	468	γC21=O2, βC6-C17	464 γC21=O2	468 γC21=O2	βC6-C17					
470 w	450 w	450	βR(A1), βR(A1)	451 βR(A1), βR(A1)	452 βR(A1), βR(A1)						
439 s	444 sh	450 w	422 βR(A2)	422 βR(A2)	422 βR(A2), βR(A3)						
431 s	428 w	407	βR(A1)	407 βR(A3)	407 βR(A1)						
391 vs	386 w	387	ρC6-C17	384 ρC6-C17	396 τO4-H55						
379 sh	374 sh	381	ρC9-C20	380 ρC9-C20	383 ρC6-C17						
363 m	369	369	τO4-H55	365 τO4-H55	364 τO4-H55						
	363 m	364	ρC6-C17	357 δC21C25O4	364 τO4-H55						
359 sh	354	340	τO1-H51	340 τO1-H51	358 τO1-H51	δC12C25O4					
332 m	335	338	δC15C11C21	338 δC15C11C21	337 δC15C11C21						
312 sh	312	309	βR(A3)	309 βR(A3)	322 τO1-H51	δC10C12O1					
303 w	307	295	τR(A2), τR(A2)	295 τR(A2), τR(A2)	308 τR(A2)	δC10C12O1					
296 sh	295	294	τO1-H51, τR(A2)	294 τO4-H55	293 τR(A2)	δO4-H55					
279 sh	283	277	τO1-H51, τR(A2)	277 τR(A1), τR(A2)	275 τR(A1), τO1-H51						
269 sh	272	267	ρC9-C20	267 ButtC5-C6	263 ButtC5-C6						
259 sh	259	252	τC6-C17	252 τC6-C17	256 τC9-C20						
Investigating the Behaviors of Corticosterone Hormone in Different Solvents

Experimental	B3LYP/6-31G* Method*					
IR*	ATR*	Raman*				
	SQM*	Assignments*	SQM*	Assignments*	SQM*	Assignments*
253sh	252	τoCH₃(C20)	251	τoCH₃(C20)	251	τoCH₃(C20)
240sh	236	δC11C21C25	234	δC11C21C25	230	δC11C21C25
233vs	226	τRₓ(A1)	227	ButtC7-C8	226	τRₓ(A1)
224sh	217	τRₓ(C17),τRₓ(A3)	214	τRₓ(C17)	214	τRₓ(A1)
198sh	206	τRₓ(A1)	202	τRₓ(A1)	201	τRₓ(C17)
186sh	194	τRₓ(C20)	199	τRₓ(C20)	186	τRₓ(C17)
183m	174	τRₓ(A4)	174	τRₓ(A4)	178	τRₓ(A4)
178sh	166	τRₓ(A2)	167	τRₓ(A2),τRₓ(A3)	163	τRₓ(A1),τRₓ(A2)
167w	156	τRₓ(A1),τRₓ(A1)	159	τRₓ(A1)	159	ButtC7-C8
131		τRₓ(A3)	128	τRₓ(A3)	130	τRₓ(A3),τRₓ(A2)
119		τC25-C21,τO4-H55	118	τC25-C21	122	τC25-C21
108		τC25-C21,τRₓ(A4)	107	τRₓ(A4)	112	τRₓ(A4),τRₓ(A3)
76		τC25-C21,τRₓ(A2)	80	τC21-C11	87	τRₓ(A2),τRₓ(A4)
60		τRₓ(A1)	60	τRₓ(A1)	70	τRₓ(A1),τRₓ(A2)
51		τC25-C21	53	τRₓ(A1)	56	τRₓ(A2)
39		τC21-C11	44	τRₓ(A2),τRₓ(A3)	40	τC21-C11
28		τRₓ(A3)	28	τRₓ(A3)	32	τRₓ(A3),τC21-C11

Abbreviations: v, stretching; δ, deformation in the plane; γ, deformation out of plane; wag, wagging; τ, torsion; βₓ, deformation ring τₓ, torsion ring; ρ, rocking; τw, twisting; δ, deformation; a, antisymmetric; s, symmetric; (A₁), Ring A; (A₂), Ring B; (A₃), Ring C; (A₄), Ring D. *From Ref [56].

3.7 Force Fields.

Here, the harmonic force constants for corticosterone in gas phase and aqueous, ethanol and methanol solutions were calculated from its corresponding force fields by using the B3LYP/6-31G* method and, later the results were compared in Table 9 with those reported for equilenin, equilin and estrone steroids [9]. First, when the force constants values for corticosterone in different media are analyzed it is observed that some constants values in gas phase are different from those computed in the three solvents, evidencing this way, higher differences in the \(f(\nu C=O) \), \(f(\nu O-H) \), \(f(\nu C-O) \), \(f(\nu C-CH₂) \), \(f(\delta CH₂) \) and \(f(\delta OH) \) force constants in aqueous solution. Such variations are attributed to the higher hydration of the involved groups by water molecules due to the higher solvation energy predicted for corticosterone in this medium. If now the values for corticosterone are compared with the values for equilenin, equilin and estrone steroids, in general, it is observed higher values in the force constants of these steroids, with exception of \(f(\nu CH₂) \) and \(f(\nu C-H)_{A,B} \) force constants that practically present similar values. These differences in the values could be associated with the presence of two \(C=O \) and \(OH \) groups in the structure of corticosterone while in those steroids only one \(C=O \) group and one \(OH \) group can be observed.

3.8 Electronic spectra.

The ultraviolet spectra of corticosterone in aqueous, ethanol and methanol solutions were predicted by using the time-dependent DFT calculations (TD-DFT) with the B3LYP/6-31G* method [18]. These spectra are compared in Figure 9 with the experimental available taken from Ref [56]. In the experimental spectrum are observed a strong band at 235 nm and a shoulder at 315 nm while in the three theoretical spectra only intense bands at c.a. 222.15, 221.85 and 222.05 nm are predicted respectively in aqueous, ethanol and methanol solutions. Clearly, the most intense band could be attributed to the \(\pi \rightarrow \pi^* \) transitions due to the presence of \(C=C \) double bonds while the most weak band could be associated to the \(n \rightarrow \pi^* \) transitions of \(C=O \) groups, as were predicted by NBO studies.

Figure 9. Experimental ultraviolet spectrum of corticosterone in methanol solution compared with the corresponding predicted in aqueous, ethanol and methanol solutions by using B3LYP/6-31G* level of theory.
4. CONCLUSIONS

In the present work, structural, electronic, topological and vibrational properties of corticosterone hormone have been investigated in aqueous, ethanol and methanol solutions by using DFT calculations and experimental available infrared, attenuated total reflectance (ATR), Raman and Ultraviolet spectra.

The structures of corticosterone were determined theoretically in gas phase and the different solvents at the B3LYP/6-31G* level of theory. All predicted properties in the three solutions were compared with the values obtained in gas phase.

The universal solvation model has evidenced higher solvation energy for corticosterone in aqueous solution and a higher value in methanol, as compared with the corresponding values to equilenin, equilin and estrone steroids in the same medium.

The MK charges on the O atoms are different from the Mulliken ones. Higher Mulliken charges on O atoms of C=O group of side chain are observed in the three solvents than the corresponding to C=O group of ring A while the MK charges on O atoms of OH group of ring C present higher values than the corresponding to O atoms of OH group of side chain.

The natural bond orbital (NBO) studies have revealed a low stability of corticosterone in aqueous solution, as compared with the values in ethanol and methanol solutions, in total agreement with the higher solvation energy and dipole moment values in this medium. On the other hand, the atoms in molecules (AIM) analyses support the lower stabilities of corticosterone in the three solutions.

The gap values suggest that corticosterone is most reactive in aqueous solution than the other solutions, as supported by the low stability and higher solvation energy and dipole moment values in this medium. This study shows clearly that the steroid species most reactive, equilenin and corticosterone, are characterized by a high global electrophilicity index value and low nucleophilicity index.

Reasonable correlations in the predicted IR, Raman and UV spectra were found, as compared with the corresponding experimental ones.

Additionally, the complete vibrational assignments of all 159 vibration modes of corticosterone together with the harmonic force fields and force constants in the different media are for the first time presented.

5. REFERENCES

1. Brandán, S.A. Why morphine is a molecule chemically powerful. Their comparison with cocaine. Indian Journal of Applied Research 2017, 7, 511-528.
2. Rudyk, R.A.; Brandán, S.A. Force field, internal coordinates and vibrational study of alkalioid tropane hydrochloride by using their infrared spectrum and DFT calculations. Paripex A Indian Journal of Research 2017, 6, 616-623.
3. Romani, D.; Brandán, S.A. Vibrational analyses of alkalioid cocaine as free base, catonic and hydrochloride species base on their internal coordinates and force fields. Paripex A Indian Journal of Research 2017, 6, 587-602.
4. Iramain, M.A.; Ledesma, A.E.; Brandán, S.A. Analyzing the effects of halogen on properties of a halogenated series of R and S enantiomers analogous alkalioid cocaine-X, X=F, Cl, Br, I. Paripex A Indian Journal of Research 2017, 6, 454-463.
5. Brandán, S.A. Understanding the potency of heroin against to morphine and cocaine. International Journal of Science and Research Methodology 2018, 12, 97-140.
6. Rudyk, R.A.; Checa, M.A.; Guzzetti, K.A.; Iramain, M.A.; Brandán, S.A. Behaviour of N-CH3 Group in Tropane Alkaloids and correlations in their Properties. International Journal of Science And Research Methodology 2018, 10, 70-97.
7. Rudyk, R.A.; Checa, M.A.; Catalán, C.A.N.; Brandán, S.A. Structural, FT-IR, FT-Raman and ECD spectroscopic studies of free base, catonic and hydrobromide species of scopalamine alkalioid. J. Mol. Struct. 2019, 1180, 603-617. https://doi.org/10.1016/j.molstruc.2018.12.040.
8. Manzur, M.E.; Brandán, S.A. S(-) and R(+) Species Derived from Antihistaminic Promethazine Agent: Structural and Vibrational Studies. Heliyon 2019, 5, e02322. https://doi.org/10.1016/j.heliyon.2019.e02322.
9. Brandán, S.A. Structural and Vibrational Studies of Equilenin, Equilin and Estrone Steroids. BioInterface Research in Applied Chemistry 2019, 9, 4502-4516. https://doi.org/10.3326/BIRIAC96.502516.
10. M.A. Iramain, L. Davies, S.A. Brandán, FTIR, FT-Raman and UV-visible spectra of Potassium 3-furoyltrifluoroborate. J. Mol. Struct. 2018, 1158, 245-254, https://doi.org/10.1016/j.molstruc.2018.01.040.
11. Kausteklis, J.; Aleksa, V.; Iramain, M.A.; Brandán, S.A. Cation-anion interactions in 1-buthyl-3-methyl imidazolium nitrate liquid and their effect on their structural and vibrational properties. J. Mol. Struct. 2018, 1164, 1-14, https://doi.org/10.1016/j.molstruc.2018.03.100.
12. Iramain, M.A.; Davies, L.; Brandán, S.A. Evaluating structures, properties and vibrational and electronic spectra of the potassium 2-isonicotinoyltrifluoroborate salt. J. Mol. Struct. 2018, 1163, 41-53, https://doi.org/10.1016/j.molstruc.2018.02.098.
13. Kausteklis, J.; Aleksa, V.; Iramain, M.A.; Brandán, S.A. DFT study and vibrational assignment of 1-Butyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid by using the FT-Raman spectrum. J. Mol. Struct. 2019, 1175, 663-676, https://doi.org/10.1016/j.molstruc.2018.08.014.
14. Iramain, M.A.; Davies, L.; Brandán, S.A. Structural and spectroscopic differences among the Potassium 5-hydroxypentanoyltrifluoroborate salt and the fuuryl and isonicotinoyl salts. J. Mol. Struct. 2019, 1176, 718-728, https://doi.org/10.1016/j.molstruc.2019.02.010.
15. Iramain, M.A.; Ledesma, A.E.; Brandán, S.A. Structural properties and vibrational analysis of Potassium 5-Br-2-isonicotinoyltrifluoroborate salt. Effect of Br on the isonicotinoyl ring. J. Mol. Struct. 2019, 1184, 146-156, https://doi.org/10.1016/j.molstruc.2019.02.010.
16. Pulay, P.; Fogarasi, G.; Pongor, G.; Boggs, J.E.; Vargha, A. Combination of theoretical ab initio and experimental information to obtain reliable harmonic force constants. Scald quantum mechanical (QM) force fields for gloxyal, acrolein, butadiene, formaldehyde, and ethylene. J. Am. Chem. Soc. 1983, 105, 7073, https://doi.org/10.1021/ja00362a005.
17. Raubut, G.; Pulay, P. Transferable Scaling Factors for Density Functional Derived Vibrational Force Fields. J. Phys. Chem. 1995, 99, 3093-3100, https://doi.org/10.1021/j100010a019.
21. Sapolsky, R.M.; Romero, L.M.; Munck, A.U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. *Endocr Rev* 2000, 21, 55–89, https://doi.org/10.1210/edrv.21.1.0389.

22. Singh, P.P.; Srivastava, H.K.; Pasha, F.A. DFT-based QSAR study of testosterone and its derivatives. *Bioorganic & Medicinal Chemistry* 2004, 12, 171–177, https://doi.org/10.1016/j.bmc.2003.11.002.

23. Boonstra, R. Measuring stress in wildlife: Techniques for studying adrenal axis activity to depression and anxiety. *Homer* 2005, 31, 86, https://doi.org/10.1016/j.homer.2005.01.021.

24. Szczechowski, A.; Pietrzak, J.; Mǎkbius, K. Structure of Free Radical in γ-Irradiated 21-Hydroxyprogesterone (Deoxy corticosterone) Single Crystals. ESR/ENDOR and DFT Studies. *Acta Physica Polonica* 2005, A108, 119–126, https://doi.org/10.12693/PhysPolA.108.119.

25. Shiokii, K.; Seki, H.; Sakamoto, S.; Sei, Y.; Utsumi, H. Yamaguchi, K. Intermolecular Hydrogen Bonding of Steroid Compounds: PFG NMR Diffusion Study, Cold-Spray Ionization (CSI)-MS and X-Ray Analysis. *Chem. Pharm. Bull.* 2005, 53, 792–795, https://doi.org/10.1248/cpb.53.792.

26. Bultinek, P.; Carbó-Dorca, R. Molecular quantum similarity using conceptual DFT descriptors. *J. Chem. Sci.* 2005, 117, 425–435, https://doi.org/10.1007/BF02708346.

27. Fetter, T.; Nunes, D.; Rodriguez, A.L.; da Silva Hoffmann, F.; Luz, C. Paiva, F.; Braga, F.A.; Campio, M.M.; Bauer, M.E. Relaxation and guided imagery program in patients with breast cancer undergoing radiotherapy is not associated with neuroimmunomodulatory effects. *J. of Psychosomatic Research* 2007, 63647–655, https://doi.org/10.1016/j.jspsychres.2007.07.004.

28. Cherkasova, O.P.; Kargovsky, A.V.; Nazarov, M.M.; Smirnova, I.N.; Shkurinov, A.P. The effect of the nature of hydrogen bonding on THz and Raman spectra of cyclopentaphenanthrene derivatives. *IEEE* 2011.

29. Yousuf, S.; Bibi, M.; Choudhary, M. I. 21-Hydroxyprogren-1,4-diene-3,20-dione. *Acta Cryst.* 2011, E67, o2122, https://doi.org/10.1107/S0567739411008674.

30. Sheriff, M.J.; Dantzer, B.;Delehnay, B.; Palme, R.; Boonstra, R. Measuring stress in wildlife: Techniques for quantifying glucocorticoids. *Oecol* 2011, 166, 869–887, https://doi.org/10.1007/s00442-011-1943-x.

31. Grinevich, V.; Seeburg, P.H.; Schwarz, M.K.; Jezova, D. Homer 1–a new player linking the hypothalamic-pituitary-adrenal axis activity to depression and anxiety. *Endocr Regul* 2012, 46, 153–159, https://doi.org/10.4199/endo_2012_03_153.

32. Baugh, A.T.; Oers, K.; van, Dingemans, N.J.; Hau, M. Baseline and stress-induced glucocorticoid concentrations are not repeatable but covary within individual great tits (Parus major). *Gen Comp Endocrinol* 2014, 208, 154–163, https://doi.org/10.1016/j.ygcen.2014.08.014.

33. Minaeva, V.A.; Minaev, B.F.; Baryshnikov, G.V.; Suvorovsev, N.V. Cherkasova, O.P.; Tkachenko, L.I.; Karaush N.N.; Stromylo, E.V. Temperature Effects in Low-Frequency Raman Spectra of Corticosteroid Hormones. *Optics and Spectroscopy* 2015, 118, 214–223, https://doi.org/10.1134/S0030400X15020149.

34. Minaev, V.A.; Cherkasova, O.P.; Minaev, B.F.; Baryshnikov, G.V.; Khmara, A.V. Features of Terahertz Adsorption and Raman Scattering of Mineralocorticoid Hormones. *Bulletin of the Russian Academy of Sciences. Physics* 2015, 79, 1196–1201, https://doi.org/10.3103/S1062873115010220.

35. Bauch, C.; Riechert, J.; Verhulst, S.; Becker, P.H. Telomere length reflects reproductive effort indicated by corticosterone levels in a long-lived seabird. *Mol Ecol* 2016, 25, 5785–5794, https://doi.org/10.1111/mec.13874.

36. Yang, X.; Xu, F.; Zhuang, C.; Bai, C.; Huang, W.; Song, M.; Han, Y.; Li, Y. Effects of Corticosterone on Immune Functions of Cultured Rat Splenic Lymphocytes Exposed to Aluminum Trichloride. *Bio Trace Elem Res* 2016, 173, 399–404, https://doi.org/10.1007/s12011-016-0678-3.

37. Manickam, P.; Arizalaeta, F.; Gurusamy, M.; Bhansali, S. Theoretical Studies of Cortisol-Imprinted Prepolymerization Mixtures: Structural Insights into Improving the Selectivity of Affinity Sensors. *J. Electrochemical Society* 2017, 164, B3077–B3080.

38. Vitousek, M.N.; Jenkins, B.R.; Hubbard, J.K.; Kaiser, S.A.; Safran, R.J. An experimental test of the effect of brood size on glucocorticoid responses, parental investment, and offspring phenotype. *Gen Comp Endocrinol* 2017, 247, 97–106, https://doi.org/10.1016/j.ygcen.2017.01.021.

39. Huang, X.F.; Jiang, W.T.; Liu, L.; Song, F.C.; Zhu, X.; Shi, G.L.; Ding, S.M.; Ke, H.M; Wang, W.; O’Donnell, J.M.; Zhang, H-T; Luo, H.B; Wan, Y.Q; Song, G.Q; Xu, Y. A novel PDE9 inhibitor WYQ-C36D ameliorates corticosterone-induced neurotoxicity and depression-like behaviors by cGMP-CREB-related signaling. *CNS Neurosci Ther.* 2018, 24, 889–896, https://doi.org/10.1111/cns.12864.

40. Jimeno, B.; Hau, M.; Verhulst, S. Corticosterone levels reflect variation in metabolic rate, independent of‘ stress’. *Sci Rep.* 2018, 8, https://doi.org/10.1038/s41598-018-31258-z.

41. Reisinger, S.N.; Kong, E.; Molz, B.; Humberg, T.; Sideromenos, S.A.; Civacarie, T.; Steinkellner, J.W.; Yang, M.; Cabatic, F.J.; Monje, H.H.; Sitte, B.J.; Nichols, D.D.; Pollak, F.; Flotillin-1 interacts with the serotonin transporter and modulates chronic corticosterone response. *Genes, Brain and Behavior* 2019, 18, e12482, https://doi.org/10.1111/gbb.12482.

42. Fair, M.; Vassoler, A.M.; Toorie, E.M. Byrnes, Transgenerational blunting of morphine-induced corticosterone secretion is associated with dysregulated gene expression in male offspring. *Brain Res.* 2018, 15, 19–25, https://doi.org/10.1016/j.brainres.2017.11.004.

43. Vera, F.; Antenucci, C.D.; Zenuto, R.R. Different regulation of cortisol and corticosterone in the subterranean rodent Ctenomys talarm: Responses to dexamethasone, angiotensin II, potassium, and diet, General and Comparative. *Endocrinology* 2019, 282, 107–118, https://doi.org/10.1016/j.yenwe.2018.05.019.

44. Xia, Q.; Wang, H.; Yin, H.; Yang, Z. Excessive corticosterone induces excitotoxicity of hippocampal neurons and sensitivity of potassium channels via insulin-signaling pathway. *Metabolic Brain Disease* 2019, 34, 119–128, https://doi.org/10.1007/s11011-018-0326-z.

45. Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev.* 1988, B37, 785–789, https://doi.org/10.1103/PhysRevB.37.785.

46. Becker, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. *Phys. Rev.* 1988, A38, 3098–3100, https://doi.org/10.1103/PhysRevA.38.3098.
6. ACKNOWLEDGEMENTS

This work was supported with grants from CIUNT Project N° 26/D608 (Consejo de Investigaciones, Universidad Nacional de Tucumán, Argentina). The author would like to thank Prof. Tom Sundius for his permission to use MOLVIB.

© 2019 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).