Phenomenological NLO analysis of η_c production at the LHC in the collider and fixed-target modes

Yu Fenga, Jibo Heb,c, Jean-Philippe Lansbergd, Hua-Sheng Shaoe, Andrii Usachovb, Hong-Fei Zhangf

aDepartment of Physics, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
bLAL, Université Paris-Saclay, Univ. Paris-Sud, CNRS/IN2P3, F-91898, Orsay Cedex, France
cSchool of Physical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan district, Beijing 100049, P.R. China
dIPNO, Université Paris-Saclay, Univ. Paris-Sud, CNRS/IN2P3, F-91406, Orsay Cedex, France
eLPTHE, UMR 7589, Sorbonne Universités & CNRS, F-75252, Paris Cedex 05, France
fCollege of Big Data Statistics, Guizhou University of Finance and Economics, Guiyang 550025, China

Abstract

In view of the good agreement between the LHCb prompt-η_c data at $\sqrt{s} = 7$ and 8 TeV and the NLO colour-singlet model predictions – i.e. the leading v^2 NRQCD contribution –, we provide predictions in the LHCb acceptance for the forthcoming 13 TeV analysis bearing on data taken during the LHC Run2. We also provide predictions for $\sqrt{s} = 115$ GeV for proton-hydrogen collisions in the fixed-target mode which could be studied during the LHC Run3. Our predictions are complemented by a full theoretical uncertainty analysis. In addition to cross section predictions, we elaborate on the uncertainties on the $p\bar{p}$ branching ratio – necessary for data-theory comparison – and discuss other usable branching fractions for future studies.

1. Introduction

In 2014, LHCb released the first experimental study of prompt-η_c hadroproduction at the LHC [1] at $\sqrt{s} = 7$ and 8 TeV. It was found that the cross section measured by LHCb was compatible with a negligible contribution of Colour-Octet (CO) transitions. More quantitatively, this observation combined with Heavy-Quark-Spin Symmetry (HQSS) yielded severe constraints on the corresponding CO transitions at work on J/ψ production [2–5]. These are so stringent that only one fit [2] currently survives these constraints at the expense of a slight tension with the CDF polarisation data [6].

For reviews on quarkonium production, the reader is referred to Refs. [8–13].

In this paper, we provide predictions for prompt-η_c hadroproduction at $\sqrt{s} = 13$ TeV to further test the compatibility between the Colour-Singlet (CS) contributions and the data and then in turn to refine the constraints on the Long-Distance Matrix Elements (LDMEs) associated with the

1The recent IHEP analysis where λ_ϕ and λ_{η_c} were computed for the first time at NLO [7] also does not comply with the η_c data.

Preprint submitted to Nuclear Physics B

January 29, 2019
dominant CO contributions. See [14] for a recent similar study for the \(\eta'_c \) case for which forthcoming data will also be invaluable. Since such constraints need to be extracted taking a proper account of both theoretical and experimental uncertainties, we also elaborate on our knowledge of the branching fractions of the decay channels which can be used by LHCb as well as on the scale and Parton-Distribution Functions (PDFs) uncertainties of the CS cross-section predictions.

The structure of the article is as follows. Section 2 is devoted to the discussion on the decay channels. Section 3 explains the theory framework we have used to provide CS NLO predictions and gathers our predictions both for the collider kinematics and for the fixed-target kinematics. Section 4 gathers our conclusion.

2. Discussion on the decay channels

The decays of non-1\(^{-}\)\(^{--}\) charmonium states to the experimentally clean di-muon channel are strongly suppressed and hence these states can only be reconstructed using decays to hadrons or their radiative transitions to underlying charmonium states. In this section we discuss possible decay channels to study \(\eta_c, h_c \) and \(\eta'_c \) which cannot be accessed using their decays to \(\mu^+\mu^- \) or \(J/\psi\gamma \). The known branching fractions [15] of the decays discussed below are summarised in Tab. 1. Many of these branching fractions can be measured more precisely at Belle, Belle II, BES III, or the super tau-charm experiments.

\(\eta' \)	\(\phi' \)	\(\phi K^+K^- \)	\(\phi\pi^+\pi^- \)	\(\Lambda \Lambda \)	\(\Xi^-\Xi^+ \)	\(\Lambda(1520)\overline{\Lambda}(1520) \)	\(\eta_c, \gamma \)	\(p\bar{p}\pi^+\pi^- \)	
\(J/\psi \)	2.12 ± 0.03	forbidden	0.83 ± 0.12	0.87 ± 0.09	1.89 ± 0.08	0.97 ± 0.08	unknown	17 ± 4	6.0 ± 0.5
\(\eta_c \)	0.22 ± 0.01	0.80 ± 0.07	0.97 ± 0.25	unknown	0.33 ± 0.02	0.48 ± 0.07	0.31 ± 0.12	forbidden	2.1 ± 0.7
\(h_c \)	< 0.15	forbidden	unknown	unknown	unknown	unknown	unknown	510 ± 60	unknown
\(\chi_c \)	0.076 ± 0.003	0.42 ± 0.05	0.41 ± 0.15	unknown	0.11 ± 0.01	0.08 ± 0.02	< 0.09	forbidden	0.50 ± 0.19
\(\chi_{c0} \)	0.073 ± 0.003	1.06 ± 0.09	1.42 ± 0.29	unknown	0.18 ± 0.02	0.14 ± 0.03	0.46 ± 0.15	forbidden	1.32 ± 0.34
\(\eta'_c \) \(^2\)	0.072	unknown	unknown	unknown	unknown	unknown	forbidden	unknown	
\(\phi' \)	0.29 ± 0.01	forbidden	0.07 ± 0.02	0.12 ± 0.03	0.38 ± 0.01	0.29 ± 0.01	0.34 ± 0.5	0.60 ± 0.04	

Table 1: The branching fractions \((\times10^3)\) of charmonium decays to hadrons and radiative decays to \(\eta_c, \gamma \).

The \(p\bar{p} \) decays of charmonia have been investigated as a possible channel to measure charmonium production at the LHC [16]. The measurement of the \(\eta_c \) production at the LHCb experiment has been performed using the \(\eta_c \rightarrow p\bar{p} \) decay [1], which demonstrated that the \(p\bar{p} \) final state is powerful to reconstruct the \(\eta_c \) state and measure the \(\eta_c \) production rate relative to that of the \(J/\psi \), even though the \(\eta_c \) hadroproduction rate is measured only for \(\eta_c \) with transverse momenta \((P_T) \) larger than 6.5 GeV due to the available trigger bandwidth. Also, this decay is used to study exotic candidates decaying to \(\eta_c\pi^- \) [17]. The branching fraction of the \(\eta_c \rightarrow p\bar{p} \) is known to about 10% precision [15]. The studies of the \(\eta_c \) would benefit from a more precise measurement

\(^2\)Indirect determination
of $\mathcal{B}(\eta_c \to p\bar{p})$ or $\mathcal{B}(\eta_c \to p\bar{p})/\mathcal{B}(J/\psi \to p\bar{p})$. Branching fractions of $\chi_{cJ} \to p\bar{p}$ decays and $\psi' \to p\bar{p}$ have been measured to about 3-5\% precision. Recently, LHCb has observed the decay $\eta_c' \to p\bar{p}$ using a data sample of exclusive $B^+ \to p\bar{p}K^+$ decays [18]. Together with the measurement of $\mathcal{B}(B^+ \to \eta_c' K^+)$ by Belle [19], the branching fraction of $\eta_c' \to p\bar{p}$ is indirectly determined to be about 0.7×10^{-4}. Therefore, the decay $\eta_c' \to p\bar{p}$ is promising for the η_c' hadroproduction measurement.

The other promising final state to study prompt production of charmonium is $\phi\phi$. The $1^−$ charmonium states are forbidden to decay to $\phi\phi$. LHCb measured the $\chi_{c0,1,2}$ and η_c' production in inclusive b-hadron decays using the $\phi\phi$ final state with the first evidence of the $\eta_c' \to \phi\phi$ decay [20]. In the latter analysis, a possible problem was highlighted, namely the PDG fit value of $\mathcal{B}(\eta_c \to \phi\phi)$ differs from the PDG average value [15] by a factor close to 2. In addition, the ratio of the branching fractions $\mathcal{B}(\eta_c \to \phi\phi)/\mathcal{B}(\eta_c \to p\bar{p})$ was measured. More measurements are needed to establish a robust value of the $\mathcal{B}(\eta_c \to \phi\phi)$. Also, due to the evidence of the $\eta_c' \to \phi\phi$, this channel is promising to measure the hadroproduction of the η_c'. Similarly, the $\phi K^+K^−$ and the $\phi\pi^+\pi^−$ final states could be used.

The branching fractions of charmonium decays to long-lived baryons such as $\Lambda\bar{\Lambda}$ and $\Xi^+\Xi^−$ are measured for most charmonium states. The reconstruction of these decay channels is challenging for LHCb due to the large lifetimes of these baryons such that they escape the Vertex Locator (VELO), which cause a small reconstruction and trigger efficiency. Decays involving short-lived baryons are reconstructed by LHCb with better efficiency.

The decays $\chi_{c0,2} \to \Lambda(1520)\bar{\Lambda}(1520)$ have been observed by the BES III collaboration [21] while the $J/\psi \to \Lambda(1520)\bar{\Lambda}(1520)$ decay is not observed so far. This channel becomes another candidate to measure hadroproduction of charmonium states [22].

The least studied charmonium state is the h_c meson, and not many of h_c decays have been observed so far. The h_c meson is expected to decay to $p\bar{p}$, however, the upper limit on the $\mathcal{B}(h_c \to p\bar{p})$ reported by the BES III collaboration [23] is more than one order of magnitude smaller than the theoretical prediction [16]. Also, the h_c can be measured using its radiative transition $h_c \to \eta_c\gamma$ with branching fraction about 50\%, which requires reconstruction of the η_c state. Recently, LHCb observed the very clean decays $\chi_{c1,2} \to J/\psi\mu^+\mu^−$, and precisely measured the $\chi_{c,2}$ mass and its natural width [24]. The $h_c \to \eta_c\mu^+\mu^−$ decay can be searched similarly. Also, the BES III has observed the $h_c \to p\bar{p}\pi^+\pi^−$ decay and measured its branching fraction [25] to be $(2.89 \pm 0.32 \pm 0.55) \times 10^{-3}$, which is promising for searches by LHCb.
3. Framework and results

3.1. Framework

The present NLO analysis was performed thanks to the FDC framework \[26, 27\]^3 which generates the Born, real-emission and virtual contributions, ensures the finiteness of their sum, performs the partonic-phase-space integration and that over the PDFs. As announced, we performed a full study of the scale uncertainty by varying both μ_R and μ_F about the default value $\mu_0 = \sqrt{m_{\eta_c}^2 + P_T^2}$ as $(\mu_R, \mu_F) = \mu_0 \times (1, 1; 0.5, 0.5; 2, 2; 0.5, 1; 1, 0.5; 1, 2; 2, 1)$.

As for the CS LDME, we have taken $\langle O^{\eta_c}(S^{[1]}_0) \rangle = 0.39$ GeV3 which corresponds to $|R(0)|^2 = 0.81$ GeV3 for the radial wave function at the origin. In order to study the impact of the PDF uncertainties at NLO, we have used the CT14 set \[28\] which is included in LHAPDF5 \[29\]. The corresponding uncertainties follow from the 57 eigensets of CT14.

3.2. Results for the collider mode at $\sqrt{s} = 13$ TeV

Our predictions at $\sqrt{s} = 13$ TeV follow from the expected kinematical range of the forthcoming LHCb study performed on data taken during the Run2 in 2015-2016. They correspond to 2 fb$^{-1}$ of data at $\sqrt{s} = 13$ TeV. We have therefore considered the same rapidity acceptance as that used for the first LHCb analysis \[1\], namely $2 < y_{\text{cms}} < 4.5$ without any additional fiducial cuts on the decay product of the η_c.

Fig. 1a displays our predictions for the P_T-differential prompt-η_c cross section at NLO accuracy along with their associated scale and PDF uncertainties. It is clear that the latter are negligible in this energy range as compared to those from the scales. Fig. 1b shows the ratio of the NLO/LO cross sections with the scale uncertainties only and points at a K factor slightly increasing with P_T. This is the expected behaviour with leading P_T channels opening up at α_s^4. It also shows that the scale uncertainty is as large as 50%.

Assuming a recorded luminosity of 2 fb$^{-1}$, $\mathcal{B}(\eta_c \rightarrow p\bar{p}) = 1.52 \times 10^{-3}$ and an efficiency on the order of 2 %, the 100-count limit per GeV correspond to 2 pb and located around $P_T \approx 20$ GeV. Without any surprise, the increase in the energy should allow LHCb to push their measurements at 13 TeV to slightly larger P_T compared to 7 and 8 TeV. Limitation may come from the range where the $J/\psi \rightarrow p\bar{p}$ yield is measured as well as from systematical uncertainties. In view of the other branching fractions on Table (1), let us add that other decays are also within the reach of LHCb measurements.

\footnote{The FDC (standing for Feynman Diagram Calculation) package have been developed to automated HEP computations. It is based on the LISP symbolic programming language in order to produce FORTRAN codes. The Lagrangian are formed by the code, following the user requirement, from which are derived the corresponding Feynman rules. The package generates all possible Feynman diagrams contributing to a given process up to one loop in a given model. It can in particular deal quarkonium production within NRQCD. The amplitude of the process are analytically manipulated to generate FORTRAN codes of the squared amplitudes up to one loop. Numerical results for the (differential) cross sections are then computed by performing the phase-space integrals using the phase-space slicing method. We refer to \[27\] for explanations relevant to quarkonium-production applications.}
3.3. Results for the fixed-target mode at $\sqrt{s} = 115$ GeV

The use of the proton LHC beam in the fixed-target mode has lately be the object of intense investigation both in terms of feasibility and in terms of physics reach, see e.g. [30–52]. In particular, a wide variety of measurements in different possible implementations were discussed in [30]. We will limit ourselves here to a few statements on the kinematics. First, 7 TeV protons impinging fixed targets release a center-of-mass system (cms) energy close to 115 GeV ($\sqrt{s} = \sqrt{2m_{l}\pi}$). Second, the boost between the cms and the laboratory is $\gamma_{\text{lab}} = \frac{\sqrt{s}}{2m_{l}} \approx 60$ yielding a rapidity shift as large as $\tanh^{-1}\beta_{\text{lab}} \approx 4.8$. As such, the nominal acceptance of the LHCb detector in the cms approximates to $-2.8 < y_{\text{cms}} < -0.3$. Physics wise, the LHCb detector probes backward physics in the fixed-target mode.

Nowadays, the first analysed fixed-target data based on the SMOG LHCb system—initially designed to improve the luminosity determination in LHCb, now used as a low-density-unpolarised-gas target— are coming in [53, 54] and confirm that the particle multiplicity in the LHCb detector is such that its performance in the fixed-target mode remains intact. One can thus consider that similar decay channels of the η_c as those discussed for the collider mode could be studied if sufficient luminosities can be achieved.

Until now, the LHCb-SMOG statistical samples for J/ψ taken with different noble gases (He, Ar, Ne) remain too small—on the order of hundreds—to expect any η_c counts. The situation could significantly get better in the future with proposed SMOG2 system [55, 56] with achievable yearly luminosities on the order of 10 pb^{-1} during the LHC Run3. It is however crucial to further
constrain NRQCD LDMEs –as we propose here– to have a H target available as opposed as to nuclear –noble gas– targets. For the LHC Run4, yearly luminosities as high as few fb$^{-1}$ will be within experimental reach as discussed in [30].

Fig. 1a displays the P_T-differential η_c cross section at $\sqrt{s} = 115$ GeV in the expected acceptance of LHCb in the fixed-target mode. As above, we separated out the uncertainties from the scale variations (μ_F and μ_R) and from the PDFs which are a little larger here since one probes slightly larger x values. As a matter of fact, dedicated rapidity-differential measurements at very negative y_{cms} could provide specific constraints on the gluon PDFs [30, 51, 52]. Fig. 2b shows the ratio of the NLO/LO cross sections with the scale uncertainties only and points at a K factor slightly increasing with P_T. This is the expected behaviour with leading P_T channels opening up at α_s^4. It also shows that the scale uncertainty is as large as 5 at low energies.

Assuming an integrated luminosity of 10 pb$^{-1}$, $\mathcal{B}(\eta_c \rightarrow p\bar{p}) = 1.52 \times 10^{-3}$ and an efficiency on 50 %, the one-count limit per 2.5 GeV for $d\sigma/dP_T$ is on the order 0.08 pb, which corresponds according to our results to a P_T upper limit of 8.5 ÷ 10 GeV. It precisely happens to be the range accessed at 7 and 8 TeV. With 10 fb$^{-1}$, the reach would simply be equivalent to that of the collider mode. We further note that, thanks to the reduced multiplicities in fixed-target mode, lower P_T’s should be accessible. This would allow one to measure the gluon Transverse-Momentum-Dependent functions (TMDs) along the lines of [57–59].

Figure 2: (a) NLO P_T differential cross section in the LHCb acceptance at 115 GeV in the fixed-target mode. The black (red) hatched band denotes the scales (PDF) uncertainties; (b) NLO/LO cross-section ratio as a function of P_T where only the scale uncertainty on the NLO cross section is shown.
4. Conclusions and outlook

We have computed the prompt \(\eta_c \)-production cross section at one loop accuracy in QCD and in the CSM (LO in \(v^2 \) of NRQCD) for the LHCb kinematics in the collider mode at \(\sqrt{s} = 13 \) TeV and in the fixed-target mode at \(\sqrt{s} = 115 \) GeV. In addition, we have provided an up-to-date discussion of the possible decay channels to be used for such studies and performed an original analysis of the theoretical analysis including that from the factorisation and renormalisation scales and from the PDFs.

In addition, let us stress that the understanding and the measurements of \(\eta_c \) production go well beyond the determination of NRQCD LDMEs. Its production in proton-nucleus collisions (see [60] for predictions of the corresponding nuclear modification factors at LHC energies) can provide complementary means to probe the distribution of gluons inside nuclei along the lines of [61, 62]. In proton-deuteron collisions at extreme \(x_F \), it can also give us some handle on the gluon distribution in the deuteron at very large \(x \) [63].

Acknowledgements

We thank S. Barsuk for useful discussions. The work of YF, JH, JPL, HSS, HFZ is supported in part by CNRS via the LIA FCPPL. JPL is supported in part by the TMD@NLO IN2P3 project. HSS is supported in part by the LABEX ILP (ANR-11-IDEX-0004-02, ANR-10-LABX-63).

References

[1] LHCb Collaboration, R. Aaij et al., “Measurement of the \(\eta_c(1S) \) production cross-section in proton-proton collisions via the decay \(\eta_c(1S) \rightarrow p\bar{p} \),” *Eur. Phys. J.* **C75** no. 7, (2015) 311, arXiv:1409.3612 [hep-ex].

[2] H. Han, Y.-Q. Ma, C. Meng, H.-S. Shao, and K.-T. Chao, “\(\eta_c \) production at LHC and indications on the understanding of \(J/\psi \) production,” *Phys. Rev. Lett.* **114** no. 9, (2015) 092005, arXiv:1411.7350 [hep-ph].

[3] H.-F. Zhang, Z. Sun, W.-L. Sang, and R. Li, “Impact of \(\eta_c \) hadroproduction data on charmonium production and polarization within NRQCD framework,” *Phys. Rev. Lett.* **114** no. 9, (2015) 092006, arXiv:1412.0508 [hep-ph].

[4] M. Butenschoen, Z.-G. He, and B. A. Kniehl, “\(\eta_c \) production at the LHC challenges nonrelativistic-QCD factorization,” *Phys. Rev. Lett.* **114** no. 9, (2015) 092004, arXiv:1411.5287 [hep-ph].

[5] A. K. Likhoded, A. V. Luchinsky, and S. V. Poslavsky, “Production of \(\eta_Q \) meson at LHC,” *Mod. Phys. Lett.* **A30** no. 07, (2015) 1550032, arXiv:1411.1247 [hep-ph].

[6] CDF Collaboration, A. Abulencia et al., “Polarization of \(J/\psi \) and \(\psi_{2S} \) mesons produced in \(p\bar{p} \) collisions at \(\sqrt{s} = 1.96\text{-TeV} \),” *Phys. Rev. Lett.* **99** (2007) 132001, arXiv:0704.0638 [hep-ex].

[7] Y. Feng, B. Gong, C.-H. Chang, and J.-X. Wang, “The remaining parts for the long-standing \(J/\psi \) polarization puzzle,” arXiv:1810.08989 [hep-ph].

[8] N. Brambilla et al., “Heavy quarkonium: progress, puzzles, and opportunities,” *Eur. Phys. J.* **C71** (2011) 1534, arXiv:1010.5827 [hep-ph].

[9] A. Andronic et al., “Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions,” *Eur. Phys. J.* **C76** no. 3, (2016) 107, arXiv:1506.03981 [nucl-ex].

[10] R. Rapp, D. Blaschke, and P. Crochet, “Charmonium and bottomonium production in heavy-ion collisions,” *Prog. Part. Nucl. Phys.* **65** (2010) 209–266, arXiv:0807.2470 [hep-ph].
[11] J. P. Lansberg, “On the mechanisms of heavy-quarkonium hadroproduction,” *Eur. Phys. J.* **C61** (2009) 693–703, arXiv:0811.4005 [hep-ph].

[12] J. P. Lansberg, “J/ψ, ψ′ and Ψ' production at hadron colliders: A Review,” *Int. J. Mod. Phys.* **A21** (2006) 3857–3916, arXiv:hep-ph/0602091 [hep-ph].

[13] M. Kraemer, “Quarkonium production at high-energy colliders,” *Prog. Part. Nucl. Phys.* **47** (2001) 141–201, arXiv:hep-ph/0106120 [hep-ph].

[14] J.-P. Lansberg, H.-S. Shao, and H.-F. Zhang, “ηc Hadroproduction at Next-to-Leading Order and its Relevance to ψ' Production,” arXiv:1711.00265 [hep-ph].

[15] Particle Data Group Collaboration, C. Patrignani et al., “Review of particle physics,” *Chin. Phys.* **C40** (2016) 100001. and 2017 update.

[16] S. Barsuk, J. He, E. Kou, and B. Viaud, “Investigating charmonium production at LHC with the p pbar final state,” *Phys. Rev.* **D86** (2012) 034011, arXiv:1202.2273 [hep-ph].

[17] LHCb Collaboration, R. Aaij et al., “Evidence for an ηc(1S)π− resonance in B0 → ηc(1S)K*+π− decays,” *Eur. Phys. J.* **C78** no. 12, (2018) 1019, arXiv:1809.07416 [hep-ex].

[18] LHCb Collaboration, R. Aaij et al., “Observation of ηc(2S) → p̅p and search for X(3872) → p̅p decays,” *Phys. Lett.* **B769** (2017) 305–313, arXiv:1607.06446 [hep-ex].

[19] Belle Collaboration, Y. Kato et al., “Measurements of the absolute branching fractions of B+ → Xc(K+ + B− → D(∗)π+) at Belle,” *Phys. Rev.* **D97** no. 1, (2018) 012005, arXiv:1709.06108 [hep-ex].

[20] LHCb Collaboration, R. Aaij et al., “Study of charmonium production in b-hadron decays and first evidence for the decay B0 → φφφ,” *Eur. Phys. J.* **C77** no. 9, (2017) 609, arXiv:1706.07013 [hep-ex].

[21] BESIII Collaboration, M. Ablikim, “Observation of χc1,2 decaying into the p̅pK+K− final state,” *Phys. Rev.* **D83** (2011) 112009, arXiv:1103.2661 [hep-ex].

[22] J. Lefrancois, “private communication 2017.”

[23] BESIII Collaboration, M. Ablikim et al., “Search for ηc(2S)/h1 → p̅p decays and measurements of the χc1 → p̅p branching fractions,” *Phys. Rev.* **D88** no. 11, (2013) 112001, arXiv:1310.6099 [hep-ex].

[24] LHCb Collaboration, R. Aaij et al., “χc1 and χc2 Resonance Parameters with the Decays χc1,2 → J/ψμ+μ−,” *Phys. Rev. Lett.* **119** no. 22, (2017) 221801, arXiv:1709.04247 [hep-ex].

[25] BESIII Collaboration, M. Ablikim et al., “First observations of h1 → hadrons,” arXiv:1810.12023 [hep-ex].

[26] J.-X. Wang, “Progress in FDC project,” *Nucl. Instrum. Meth.* **A534** (2004) 241–245, arXiv:hep-ph/0407058 [hep-ph].

[27] B. Gong, L.-P. Wan, J.-X. Wang, and H.-F. Zhang, “Automatic calculation in quarkonium physics,” *J. Phys. Conf. Ser.* **523** (2014) 012039.

[28] S. Dulat, T.-J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin, C. Schmidt, D. Stump, and C. P. Yuan, “New parton distribution functions from a global analysis of quantum chromodynamics,” *Phys. Rev.* **D93** no. 3, (2016) 033006, arXiv:1506.07443 [hep-ph].

[29] M. R. Whalley, D. Bourilkov, and R. C. Group, “The Les Houches accord PDFs (LHAPDF) and LHAGLUE,” in *HERA and the LHC: A Workshop on the implications of HERA for LHC physics. Proceedings, Part B*, pp. 575–581, 2005. arXiv:hep-ph/0508110 [hep-ph].

[30] C. Hadjidakis et al., “A Fixed-Target Programme at the LHC: Physics Case and Projected Performances for Heavy-Ion, Hadron, Spin and Astroparticle Studies,” arXiv:1807.00603 [hep-ex].

[31] J. P. Lansberg, L. Massacrier, L. Szymanowski, and J. Wagner, “Single-Transverse-Spin Asymmetries in Exclusive Photo-production of J/ψ in Ultra-Peripheral Collisions in the Fixed-Target Mode at the LHC and in the Collider Mode at RHIC,” arXiv:1812.04553 [hep-ph].

[32] I. Karpenko, “Rapidity scan in heavy ion collisions at √sNN = 72 GeV using a viscous hydro + cascade model,” arXiv:1805.11998 [nucl-th].

[33] V. Begun, D. Kikola, V. Vovchenko, and D. Wielanek, “Estimation of the freeze-out parameters reachable in a
fixed-target experiment at the CERN Large Hadron Collider,” *Phys. Rev. C* **98** no. 3, (2018) 034905, arXiv:1806.01303 [nucl-th].

[34] V. P. Goncalves and M. M. Jaime, “Exclusive vector meson photoproduction in fixed-target collisions at the LHC,” *Eur. Phys. J. C* **78** no. 9, (2018) 693, arXiv:1806.01303 [hep-ph].

[35] L. Massacrier, J. P. Lansberg, L. Szymanowski, and J. Wagner, “Quarkonium-photoproduction prospects at a fixed-target experiment at the LHC (AFTER@LHC),” in Photon 2017: International Conference on the Structure and the Interactions of the Photon and 22th International Workshop on Photon-Photon Collisions and the International Workshop on High Energy Photon Colliders CERN, Geneva, Switzerland, May 22-26, 2017. arXiv:1709.09044 [nucl-ex].

[36] L. Massacrier, B. Trzeciak, F. Fleuret, C. Hadjidakis, D. Kikola, J. P. Lansberg, H. S. Shao, “Feasibility studies for quarkonium production at a fixed-target experiment using the LHC proton and lead beams (AFTER@LHC),” *Adv. High Energy Phys.* **2015** (2015) 986348, arXiv:1504.05145 [hep-ex].

[37] B. Trzeciak, C. Da Silva, E. G. Ferreiro, C. Hadjidakis, D. Kikola, J. P. Lansberg, L. Massacrier, J. Seixas, A. Uras, and Z. Yang, “Heavy-ion Physics at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC): Feasibility Studies for Quarkonium and Drell-Yan Production,” *Few Body Syst.* **58** no. 5, (2017) 148, arXiv:1703.03726 [nucl-ex].

[38] D. Kikola, M. G. Echevarria, C. Hadjidakis, J.-P. Lansberg, C. Lorc, C. Massacrier, C. M. Quintans, A. Signori, and B. Trzeciak, “Feasibility Studies for Single Transverse-Spin Asymmetry Measurements at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC),” *Few Body Syst.* **58** no. 4, (2017) 139, arXiv:1702.01546 [hep-ex].

[39] M. Anselmino, U. D’Alesio, and S. Melis, “Transverse single-spin asymmetries in proton-proton collisions at the AFTER@LHC experiment in a TMD factorisation scheme,” *Adv. High Energy Phys.* **2015** (2015) 475040, arXiv:1504.03791 [hep-ph].

[40] J.-P. Lansberg and H.-S. Shao, “Double-quarkonium production at a fixed-target experiment at the LHC (AFTER@LHC),” *Nucl. Phys. B* **900** (2015) 273–294, arXiv:1504.06531 [hep-ph].

[41] F. Arleo and S. Peigne, “Quarkonium suppression from coherent energy loss in fixed-target experiments using LHC beams,” *Adv. High Energy Phys.* **2015** (2015) 961951, arXiv:1504.07428 [hep-ph].

[42] K. Zhou, Z. Chen, and P. Zhuang, “Antishadowing Effects on Charmonium Production at a Fixed-Target Experiment Using LHC Beams,” *Adv. High Energy Phys.* **2015** (2015) 439689, arXiv:1507.05413 [nucl-th].

[43] J. P. Lansberg, L. Szymanowski, and J. Wagner, “Lepton-pair production in ultraperipheral collisions at AFTER@LHC,” *JHEP* **09** (2015) 087, arXiv:1504.02733 [hep-ph].

[44] V. P. Goncalves and W. K. Sauter, “ηc production in photon-induced interactions at a fixed target experiment at LHC as a probe of the odderon,” *Phys. Rev. D* **91** no. 9, (2015) 094014, arXiv:1503.06112 [hep-ph].

[45] K. Kanazawa, Y. Koike, A. Metz, and D. Pitonyak, “Transverse single-spin asymmetries in proton-proton collisions at the AFTER@LHC experiment,” *Adv. High Energy Phys.* **2015** (2015) 257934, arXiv:1502.04021 [hep-ph].

[46] R. Vogt, “Gluon Shadowing Effects on J/ψ and τ Production in p + Pb Collisions at √sNN = 115 GeV and p + Pb Collisions at √sNN = 72 GeV at AFTER@LHC,” *Adv. High Energy Phys.* **2015** (2015) 492302, arXiv:1510.03976 [hep-ph].

[47] F. A. Ceccopieri, “Studies of backward particle production with A Fixed-Target Experiment using the LHC beams,” *Adv. High Energy Phys.* **2015** (2015) 652062, arXiv:1503.05813 [hep-ph].

[48] G. Chen, X.-G. Wu, J.-W. Zhang, H.-Y. Han, and H.-B. Fu, “Hadronic production of Ξc at a fixed-target experiment at the LHC,” *Phys. Rev. D* **89** no. 7, (2014) 074020, arXiv:1401.6269 [hep-ph].

[49] A. Rakotozafindrabe et al., “Spin physics at A Fixed-Target ExpeRiment at the LHC (AFTER@LHC),” *Phys. Part. Nucl.* **45** (2014) 336–337, arXiv:1301.5739 [hep-ex].

[50] A. Rakotozafindrabe et al., “Ultra-relativistic heavy-ion physics with AFTER@LHC,” *Nucl. Phys. A* **904-905**
[51] J. P. Lansberg, S. J. Brodsky, F. Fleuret, and C. Hadjidakis, “Quarkonium Physics at a Fixed-Target Experiment using the LHC Beams,” *Few Body Syst.* 53 (2012) 11–25, arXiv:1204.5793 [hep-ph].

[52] S. J. Brodsky, F. Fleuret, C. Hadjidakis, and J. P. Lansberg, “Physics Opportunities of a Fixed-Target Experiment using the LHC Beams,” *Phys. Rept.* 522 (2013) 239–255, arXiv:1202.6585 [hep-ph].

[53] LHCb Collaboration, R. Aaij et al., “First measurement of charm production in fixed-target configuration at the LHC,” Submitted to: *Phys. Rev. Lett.* (2018), arXiv:1810.07907 [hep-ex].

[54] LHCb Collaboration, R. Aaij et al., “Measurement of Antiproton Production in pHe Collisions at $\sqrt{s_{NN}} = 110$ GeV,” *Phys. Rev. Lett.* 121 no. 22, (2018) 222001, arXiv:1808.06127 [hep-ex].

[55] S. Redaelli, M. Ferro-Luzzi, and C. Hadjidakis, “Studies for Future Fixed-Target Experiments at the LHC in the Framework of the CERN Physics Beyond Colliders Study,” in *Proceedings, 9th International Particle Accelerator Conference (IPAC 2018): Vancouver, BC Canada*, p. TUPAF045. 2018.

[56] QCD Working Group Collaboration, A. Dainese et al., “Physics Beyond Colliders: QCD Working Group Report,” arXiv:1901.04482 [hep-ex].

[57] D. Boer and C. Pisano, “Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER,” *Phys. Rev.* D86 (2012) 094007, arXiv:1208.3642 [hep-ph].

[58] J. P. Ma, J. X. Wang, and S. Zhao, “Transverse momentum dependent factorization for quarkonium production at low transverse momentum,” *Phys. Rev.* D88 no. 1, (2013) 014027, arXiv:1211.7144 [hep-ph].

[59] A. Signori, “Gluon TMDs in quarkonium production,” *Few Body Syst.* 57 no. 8, (2016) 651–655, arXiv:1602.03405 [hep-ph].

[60] J.-P. Lansberg and H.-S. Shao, “Towards an automated tool to evaluate the impact of the nuclear modification of the gluon density on quarkonium, D and B meson production in protonnucleus collisions,” *Eur. Phys. J.* C77 no. 1, (2017) 1, arXiv:1610.05382 [hep-ph].

[61] A. Kusina, J.-P. Lansberg, I. Schienbein, and H.-S. Shao, “Gluon Shadowing in Heavy-Flavor Production at the LHC,” *Phys. Rev. Lett.* 121 no. 5, (2018) 052004, arXiv:1712.07024 [hep-ph].

[62] A. Kusina, J. P. Lansberg, I. Schienbein, and H. S. Shao, “Impact of LHC Heavy-Flavour Data on Nuclear Gluon PDF,” *Acta Phys. Polon.* B49 (2018) 1185–1198.

[63] S. J. Brodsky, K. Y.-J. Chiu, J.-P. Lansberg, and N. Yamanaka, “The gluon and charm content of the deuteron,” *Phys. Lett.* B783 (2018) 287–293, arXiv:1805.03173 [hep-ph].