Hausdorff compactifications in ZF

Kyriakos Keremedis
Department of Mathematics
University of Aegean
Karlovassi, Samos 83200, Greece
E-mail: kker@aegean.gr

and

Eliza Wajch
Institute of Mathematics and Physics
Siedlce University of Natural Sciences and Humanities
3 Maja 54,
08-110 Siedlce, Poland
E-mail: eliza.wajch@wp.pl

May 25, 2018

Abstract

For a compactification αX of a Tychonoff space X, the algebra of all functions $f \in C(X)$ that are continuously extendable over αX is denoted by $C_\alpha(X)$. It is shown that, in a model of ZF, it may happen that a discrete space X can have non-equivalent Hausdorff compactifications αX and γX such that $C_\alpha(X) = C_\gamma(X)$. Amorphous sets are applied to a proof that Glicksberg’s theorem that $\beta X \times \beta Y$ is the Čech-Stone compactification of $X \times Y$ when $X \times Y$ is a Tychonoff pseudocompact space is false in some models of $Z\text{F}$. It is noticed that if all Tychonoff compactifications of locally compact spaces had C^*-embedded remainders, then van Douwen’s choice principle would be satisfied. Necessary and sufficient conditions for a set of continuous bounded real functions on a Tychonoff space X to generate a compactification of X are given in $Z\text{F}$. A concept of a functional Čech-Stone compactification is investigated in the absence of the axiom of choice.
1 Introduction

For a topological space X, we denote by $C(X)$ the algebra of all continuous real functions on X and by $C^*(X)$ the algebra of all bounded continuous real functions on X. We recall that a compactification of X is an ordered pair $\langle \alpha X, \alpha \rangle$ such that αX is a compact (not necessarily Hausdorff) space, while $\alpha : X \to \alpha X$ is a homeomorphic embedding such that $\alpha(X)$ is dense in αX. Usually, a compactification $\langle \alpha X, \alpha \rangle$ of X is denoted by αX, the space X is identified with $\alpha(X)$ and α is treated as the identity map $\text{id}_X : X \to \alpha X$. Thus, in abbreviation, we can say that a compactification of X is a compact space αX such that X is a dense subspace of αX. The remainder of a compactification αX of X is the set $\alpha X \setminus X$. We use the notation $\alpha X \approx \gamma X$ to say that compactifications αX and γX of X are equivalent, i.e. that there exists a homeomorphism $h : \alpha X \to \gamma X$ such that $h \circ \alpha = \gamma$. If there exists a continuous map $f : \alpha X \to \gamma X$ such that $f \circ \alpha = \gamma$, we write $\gamma X \leq \alpha X$. If αX and γX are Hausdorff compactifications of X, then $\alpha X \approx \gamma X$ if and only if $\alpha X \leq \gamma X$ and $\gamma X \leq \alpha X$.

Throughout this article, we assume the same system ZF of set-theoretic axioms as in [22] to develop a theory of Hausdorff compactifications without the axiom of choice AC. Of course, we assume that ZF is consistent. We clearly denote theorems provable in ZF or, respectively, in ZF enriched by an additional axiom A by putting $[\text{ZF}]$ or $[\text{ZF} + \text{A}]$, respectively, at the beginning of theorems. We use the same notation as in [12] for weaker forms of AC, and we shall refer to a corresponding form from [15]. In particular, UFT stands for the ultrafilter theorem which states that, for every set X, each filter in the power set $\mathcal{P}(X)$ can be enlarged to an ultrafilter (cf. Definition 2.15 in [12] and Form 14 A in [15]).

If F is a set of mappings $f : X \to Y_f$, then the evaluation map $e_F : X \to \prod_{f \in F} Y_f$ is defined by: $e_F(x)(f) = f(x)$ for any $x \in X$ and $f \in F$ (cf. Defini-
tion 1.23 in [2]). For a Tychonoff space X, we denote by $\mathcal{E}(X)$ the collection of all $F \subseteq C^*(X)$ such that $e_F : X \to \mathbb{R}^F$ is a homeomorphic embedding. If $F \in \mathcal{E}(X)$, we denote by $e_F X$ the closure of $e_F(X)$ in \mathbb{R}^F. In ZFC-theory of Hausdorff compactifications, it is well known that every Hausdorff compactification αX of a non-empty space X is strictly determined by the algebra $C_\alpha(X)$ of all continuous real functions on X that are continuously extendable over αX; more precisely, αX is equivalent with $e_F X$ for $F = C_\alpha(X)$. Moreover, if αX and γX are Hausdorff compactifications of X, then it holds true in ZFC that αX is equivalent with γX if and only if $C_\alpha(X) = C_\gamma(X)$ (cf. Theorem 2.10 in [2]). However, in ZF, it is equivalent with UFT that, for every non-empty Tychonoff space X and for each $F \in \mathcal{E}(X)$, the space $e_F X$ is compact (see, for instance, Theorem 10.12 of [22] and Theorem 4.37 in [12]). In our article, we pay a special attention to the fact that there is a model of ZF in which there are Tychonoff spaces that have Hausdorff, not completely regular compactifications.

In Section 2, we prove that, in a model of ZF, it may happen that even a discrete space X can have non-equivalent Hausdorff compactifications αX and γX such that $C_\alpha(X) = C_\gamma(X)$ and γX is not completely regular. A not completely regular Hausdorff compactification of a Tychonoff space is called a strange compactification. We show that all Hausdorff compactifications with finite remainders of Tychonoff spaces are completely regular in ZF. We prove that it may happen in a model of ZF that the remainder a Tychonoff compactification of a locally compact space can be not C^*-embedded in the compactification. If for every locally compact space X and for every Tychonoff compactification αX of X the remainder $\alpha X \setminus X$ is C^*-embedded in αX, then van Douwen’s choice principle (Form 119 in [15]) must hold. We notice that an amorphous set exists if and only if there exists an infinite discrete space X whose all Hausdorff compactifications are equivalent with the Alexandroff compactification of X. Moreover, we show that Glicksberg’s theorem on when the product of Čech-Stone compactifications of X and Y is the Čech-Stone compactification of $X \times Y$ is false in some models of ZF.

In Section 3, we show a number of necessary and sufficient conditions for $F \in \mathcal{E}(X)$ to have the property that the space $e_F X$ is compact in ZF. We give a definition of a functional Čech-Stone compactification and compare it in ZF with the standard notion of the Čech-Stone compactification of a Tychonoff space. For $F \in \mathcal{E}(X)$, we list a number of new problems on the smallest sequentially closed subalgebra of $C^*(X)$ which contains F and all constant functions from $C^*(X)$.

3
It is not obvious at all whether every Tychonoff space has a Hausdorff compactification in ZF. In 2016, E. Wajch asked whether there is a model of ZF in which a non-compact metrizable Cantor cube can fail to have a Hausdorff compactification (see Question 3.8 of [27]). The following general problem is unsolved:

Problem 1.1. Does there exist a model of ZF in which there is a Tychonoff space which does not have any Hausdorff compactification?

Proposition 1.2. In every model of ZF + UFT, every Tychonoff space has a Tychonoff compactification.

Proof. Let X be a Tychonoff space in a model \mathcal{M} of ZF + UFT. Since, by Theorem 4.70 of [12], all Tychonoff cubes are compact in \mathcal{M}, the space $e_F X$ for $F = C^*(X)$ is compact. Thus, in \mathcal{M}, the pair $\langle e_F X, e_F \rangle$ is a Tychonoff compactification of X. □

Although we are still unable to solve Problem 1.1, we offer some other results relevant to it. Of course, if X is an infinite T_1-space, it is easy to show a compact T_1-space Y such that X is a dense subspace of Y and $Y \setminus X$ is a singleton. To do this, for an infinite T_1 space X, it suffices to take a point $\infty \not\in X$, put $Y = X \cup \{\infty\}$ and define a topology in Y as the collection of all open subsets of X and of all sets of the form $Y \setminus A$ where A is a finite subset of X.

We use the same definition of the Čech-Stone compactification in ZF as in [10]:

Definition 1.3. A Čech-Stone compactification of a Hausdorff space X is a Hausdorff compactification $\langle \beta X, \beta \rangle$ of X such that, for every compact Hausdorff space K and for each continuous mapping $f : X \to K$, there exists a continuous mapping $\tilde{f} : \beta X \to K$ such that $f = \tilde{f} \circ \beta$.

Any two Čech-Stone compactifications of a space X are equivalent, so, if a Hausdorff space X has a Čech-Stone compactification, we denote any Čech-Stone compactification of X by βX and call it the Čech-Stone compactification of X.

Remark 1.4. In ZF, if a Hausdorff space X has its Čech-Stone compactification, then, for every Hausdorff compactification αX of X, we have $\alpha X \leq \beta X$.

Basic facts about Hausdorff compactifications in ZFC can be found, for instance, in [2], [7], [23] and [5]. An essential role in ZFC-theory of Hausdorff compactifications is played by the following notion of a normal (Wallman) base which can be found, for instance, in [2] and [23]; however, we use its slightly modified form given in Definition 1.7 of [22]:

Definition 1.5. A family \(C \) of subsets of a topological space \(X \) is called a normal or Wallman base for \(X \) if \(C \) satisfies the following conditions:

(i) \(C \) is a base for closed sets of \(X \);

(ii) if \(C_1, C_2 \in C \), then \(C_1 \cap C_2 \in C \) and \(C_1 \cup C_2 \in C \);

(iii) for each set \(A \subseteq X \) and for each \(x \in X \setminus A \), if \(A \) is a singleton or \(A \) is closed in \(X \), then there exists \(C \in C \) such that \(x \in C \subseteq X \setminus A \);

(iv) if \(A_1, A_2 \in C \) and \(A_1 \cap A_2 = \emptyset \), then there exist \(C_1, C_2 \in C \) with \(A_1 \cap C_1 = A_2 \cap C_2 = \emptyset \) and \(C_1 \cup C_2 = X \).

For Wallman-type extensions, we use the same notation as in [22]. Namely, suppose that \(C \) is a Wallman base for \(X \). Let \(W(X,C) \) denote the set of all ultrafilters in \(C \). For \(A \in C \), we put

\[
[A]_C = \{ p \in W(X,C) : A \in p \}.
\]

The Wallman space of \(X \) corresponding to \(C \) is denoted by \(W(X,C) \) and it is the set \(W(X,C) \) equipped with the topology having the collection \(\{ [A]_C : A \in C \} \) as a closed base. The canonical embedding of \(X \) into \(W(X,C) \) is the mapping \(h_C : X \to W(X,C) \) defined by the equality \(h_C(x) = \{ A \in C : x \in A \} \) for each \(x \in X \). The pair \((W(X,C), h_C) \) is called the Wallman extension of \(X \) corresponding to \(C \) and, for simplicity, this extension is denoted also by \(W(X,C) \). In the case when \(X \) is a discrete space, the Wallman space \(W(X, P(X)) \) corresponding to the power set \(P(X) \) is usually called the Stone space of \(X \) and it is denoted by \(S(X) \).

A topological space \(X \) is called semi-normal if \(X \) has a Wallman base (cf. [6] and [22]). In the light of Theorem 2.8 of [22], UFT is an equivalent of the following sentence: For every semi-normal space \(X \) and for every normal base \(C \) of \(X \), the Wallman space \(W(X,C) \) is compact. A Hausdorff compactification \(\alpha X \) of a space \(X \) is called a Wallman-type compactification of \(X \) if there exists a normal base \(C \) of \(X \) such that the space \(W(X,C) \) is
compact and the compactification $W(X,C)$ of X is equivalent with αX. It was proved in [25] that not all Hausdorff compactifications in ZFC are of Wallman type; however, a satisfactory solution to the following problem is unknown:

Problem 1.6. Can it be proved in ZF that there are discrete spaces that have Hausdorff compactifications which are not of Wallman type?

Remark 1.7. It is worth to notice that Šapiro’s result given in [24] that all Hausdorff compactifications of discrete spaces are of Wallman type is provable in ZF. Historical remarks about the results of [24] are given in [3].

For a topological space X, let $Z(X)$ stand for the collection of all zero-sets in X. Then $Z(X) = \{ f^{-1}(0) ; f \in C^*(X) \}$. Of course, $Z(X)$ is a normal base for X if and only if X is a Tychonoff space. It is well known that, in ZFC, if X is a Tychonoff space, then its Čech-Stone compactification is of Wallman type because it is equivalent with the Wallman extension of X corresponding to the normal base $Z(X)$ (cf., e.g., [2], [6], [7], [23] and [22]). That the Wallman space $W(X,Z(X))$ is compact for every Tychonoff space X is an equivalent of UFT (see, e.g., Theorem 2.8 of [22]). Some relatively new results on Hausdorff compactifications in ZF have been obtained in [14], [10], [11], [18], [19] and, for Delfs-Knebusch generalized topological spaces (applicable to topological spaces), in [22]. In [1], there is a well-written chapter on a history of Hausdorff compactifications in ZFC (see [3]). Unfortunately, not much is known about Hausdorff compactifications in ZF. In this article, to start a systematic study of Hausdorff compactifications in ZF, we put in order basic notions concerning them, as well as we show newly discovered important differences between ZF-theory and ZFC-theory of Hausdorff compactifications.

2 Strange Hausdorff compactifications

Definition 2.1. Let αX be a Hausdorff compactification of a Tychonoff space X. We say that:

(i) αX is *generated by a set of functions* if there exists $F \in \mathcal{F}(X)$ such that the space $e_F X$ is compact and the compactifications αX and $e_F X$ of X are equivalent;
(ii) \(\alpha X\) is generated by a set \(F \in \mathcal{E}(X)\) if the space \(e_F X\) is compact, while the compactifications \(e_F X\) and \(\alpha X\) of \(X\) are equivalent;

(iii) \(\alpha X\) is strange if it is not generated by a set of functions.

Definition 2.2. For a topological space \(X\), we say that:

(i) \(\text{UL}(X)\) holds or, equivalently, \(X\) satisfies Urysohn's Lemma or, equivalently, \(X\) is a U space if, for each pair of disjoint closed subsets \(A, B\) of \(X\) there exists \(f \in C^*(X)\) such that \(A \subseteq f^{-1}(0)\) and \(B \subseteq f^{-1}(1)\);

(ii) \(\text{TET}(X)\) holds or, equivalently, \(X\) satisfies Tietze’s Extension Theorem or, equivalently, \(X\) is a T space if, for each closed subspace \(P\) of \(X\), every function \(f \in C(P)\) is extendable to a function from \(C(X)\).

Let us denote Form 78 of [15] (Urysohn’s Lemma) by \(\text{UL}\). Then \(\text{UL}\) is the sentence: \(\text{UL}(X)\) holds for every normal space \(X\). We denote Form 375 of [15] (Tietze-Urysohn Extension Theorem) by \(\text{TET}\). Then \(\text{TET}\) is the sentence: \(\text{TET}(X)\) holds for every normal space \(X\). The principle of dependent choices (Form 43 in [15]) is denoted by \(\text{DC}\).

Remark 2.3. In [16], spaces that satisfy Urysohn’s Lemma were called U spaces, while spaces that satisfy Tietze’s Extension Theorem were called T spaces, \(\text{UL}\) was denoted by \(\text{NU}\), while \(\text{TET}\) by \(\text{NT}\). Of course, every T space is a U space and all U spaces are normal. In [16], \(\text{NU (NT, resp.)}\) is an abbreviation to: "Every normal space is a U space." ("Every normal space is a T space.", resp.). However, in this article, we find it more natural to denote Urysohn’s Lemma by \(\text{UL}\) and Tietze’s Extension Theorem by \(\text{TET}\). It is well known that \(\text{UL}\) and \(\text{TET}\) are independent of \(\text{ZF}\). Of course, it is true in \(\text{ZF}\) that if \(X\) is a topological space such that \(\text{TET}(X)\) holds, then \(\text{UL}(X)\) also holds. It is known that \(\text{ZF + DC}\) implies both \(\text{UL}\) and \(\text{TET}\) (cf. entries (43, 78) and (43, 375) on pages 339 and 386 in [15]). Hence, in \(\text{ZF + DC}\), a topological space \(X\) satisfies \(\text{UL}(X)\) if and only if \(\text{TET}(X)\) holds. In [16], it was shown that there is a model \(\mathcal{M}\) of \(\text{ZF}\) in which there is a compact Hausdorff space \(X\) such that \(\text{UL}(X)\) holds and \(\text{TET}(X)\) fails in \(\mathcal{M}\). However, it is an open question, already posed in [16], whether \(\text{UL}\) implies \(\text{TET}\).

We can easily obtain the following results:

Proposition 2.4. \([\text{ZF + UL}]\) An arbitrary Hausdorff compactification is not strange.
Proposition 2.5. [ZF] A Hausdorff compactification αX of a non-empty Tychonoff space X is not strange if and only if αX is completely regular.

Proposition 2.6. [ZF] If a Hausdorff compactification γX of a non-empty topological space X is completely regular, then γX is generated by $C_\gamma(X)$.

Definition 2.7. Let n be a positive integer. It is said that a compactification αX of a topological space X is an n-point compactification of X if the remainder $\alpha X \setminus X$ consists of exactly n points.

The Alexandroff compactification of a locally compact, non-compact Hausdorff space X is every Hausdorff compactification of X with a one-point remainder. However, the following notion of the Alexandroff compactification of a topological space is also useful:

Definition 2.8. Let $\langle X, \tau_X \rangle$ be a non-compact topological space and let ∞ be an element which does not belong to X. Denote by K_X the collection of all simultaneously closed and compact sets of $\langle X, \tau_X \rangle$. We put $\alpha_a X = X \cup \{\infty\}$ and $\tau = \tau_X \cup \{U \subseteq \alpha_a X : \alpha_a X \setminus U \in K_X\}$. Then the topological space $\langle \alpha_a X, \tau \rangle$ is called the Alexandroff compactification of $\langle X, \tau_X \rangle$ and we denote it by $\alpha_a X$.

We are going to give partial solutions to the following open problem:

Problem 2.9. Is there a model of ZF in which there exists a Hausdorff, not completely regular compactification γX of a Tychonoff space X such that $\gamma X \setminus X$ is completely regular?

For a space X, let $Coz(X) = \{X \setminus A : A \in Z(X)\}$. Members of $Coz(X)$ are called cozero-sets of X. Basic properties of zero-sets and cozero-sets can be found in [7] and [5].

We are going to prove in ZF that all Hausdorff compactifications with finite remainders of Tychonoff spaces are not strange. To do this well, we need a proof in ZF of Theorem 3.1.7 of [5]; however, since the axiom of choice is involved in the proof to Theorem 3.1.7 in [5], let us state the following lemma and give its subtle proof in ZF:

Lemma 2.10. [ZF] Let K be a compact subset of a completely regular space X and let A be a closed subset of X such that $K \cap A = \emptyset$. Then there exists a function $f \in C^*(X)$ such that $A \subseteq f^{-1}(0)$ and $K \subseteq f^{-1}(1)$.
Proof. Let \(\mathcal{V} = \{ V \in Coz(X) : \text{cl}_X V \subseteq X \setminus A \} \). Since \(X \) is completely regular, we have \(K \subseteq \bigcup \mathcal{V} \). By the compactness of \(K \), there exists a finite collection \(\mathcal{U} \subseteq \mathcal{V} \) such that \(K \subseteq \bigcup \mathcal{U} \). A finite union of cozero-sets is a cozero-set; thus, the set \(U_0 = \bigcup \mathcal{U} \) is a cozero-set of \(X \). There exists a continuous function \(g : X \to [0,1] \) such that \(U_0 = g^{-1}((0,1]) \). Then \(g^{-1}(0) \cap K = \emptyset \). It follows from the continuity of \(g \) and from the compactness of \(K \) that there exists a positive integer \(n_0 \) such that \(g^{-1}([0,\frac{1}{n_0}]) \cap K = \emptyset \). The sets \(C = g^{-1}(\{0\}) \) and \(D = g^{-1}([\frac{1}{n_0},1]) \) are disjoint zero-sets in \(X \), \(K \subseteq D \) and \(A \subseteq C \). Since disjoint zero-sets are functionally separated (cf. 1.10 in [4] or Theorem 1.5.14 in [3]), there exists a continuous function \(f : X \to [0,1] \) such that \(C \subseteq f^{-1}(0) \) and \(D \subseteq f^{-1}(1) \). Then \(A \subseteq f^{-1}(0) \) and \(K \subseteq f^{-1}(1) \). \(\square

Corollary 2.11. [ZF] Every compact completely regular space \(X \) satisfies UL(\(X \)).

Proposition 2.12. [ZF] If \(X \) is a Tychonoff, locally compact non-compact space, then the one-point Hausdorff compactification of \(X \) is not strange.

Proof. Let us fix a closed subset \(A \) of \(\alpha_aX \) and suppose that \(x \in \alpha_aX \setminus A \). We consider the following cases:

(i) \(\infty \in A \). In this case \(x \in X \). Since every Hausdorff compact space is normal, there exists a pair \(U, V \) of disjoint open sets in \(\alpha_aX \) such that \(x \in U \) and \(A \subseteq V \). Then \(x \notin \text{cl}_{\alpha_aX} V \). Since \(X \) is Tychonoff, there exists a function \(f \in C^*(X) \) such that \(f(x) = 0 \) and \(X \cap \text{cl}_{\alpha_aX} V \subseteq f^{-1}(1) \). We define a function \(F : \alpha_aX \to \mathbb{R} \) by putting \(F(t) = f(t) \) for each \(t \in X \) and \(F(\infty) = 1 \). To check that \(F \) is continuous, suppose that \(D \) is a closed subset of \(\mathbb{R} \). Then \(F^{-1}(D) = f^{-1}(D) \subseteq \alpha_aX \setminus V \) when \(1 \notin D \), while \(F^{-1}(D) = [f^{-1}(D) \cap (\alpha_aX \setminus V)] \cup \text{cl}_{\alpha_aX} V \) when \(1 \in D \). This, together with the continuity of \(f \), implies that \(F^{-1}(D) \) is closed in \(\alpha_aX \), so \(F \in C^*(\alpha_aX) \). Of course, \(A \subseteq F^{-1}(1) \) and \(F(x) = 0 \).

(ii) \(\infty \notin A \). In this case \(A \) is a compact subset of \(X \). Working similarly to case (i), we can find a pair \(U, V \) of disjoint open subsets of \(\alpha_aX \) such that \(A \subseteq U \) and \(\{\infty, x\} \subseteq V \). Since \(X \) is completely regular, it follows from Lemma 2.10 that there exists a function \(f \in C^*(X) \) such that \(A \subseteq f^{-1}(0) \) and \(X \cap \text{cl}_{\alpha_aX} V \subseteq f^{-1}(1) \). We define \(F \in C^*(\alpha_aX) \) by putting \(F(t) = f(t) \) for each \(t \in X \) and \(F(\infty) = 1 \). Then \(A \subseteq F^{-1}(0) \) and \(F(x) = 1 \). \(\square

Proposition 2.12 can be generalized to the following:
Proposition 2.13. [ZF] Every Hausdorff compactification αX a non-compact locally compact Tychonoff X with a finite remainder $\alpha X \setminus X$ is completely regular.

Proof. Let αX be a Hausdorff compactification of X such that $\alpha X \setminus X$ is finite. For $n \in \omega$, suppose that $\alpha X \setminus X$ is of cardinality n. Let $\alpha X \setminus X = \{y_i : i \in n\}$. Let A be a closed subset of αX and let $y \in \alpha X \setminus A$. If $y \in X$, we know from Proposition 2.12 that there exists a function $h \in C_{\alpha a}(X)$ such that $h(y) = 0$ and $A \cap X \subseteq h^{-1}(1)$. Since $\alpha_aX \leq \alpha X$, the function h is continuously extendable over αX. If h is the continuous extension of h over αX, then $\tilde{h}(y) = 0$ and $A \subseteq \tilde{h}^{-1}(1)$.

Now, consider the case when $y \in \alpha X \setminus X$. There is a collection $\{V_i : i \in n\}$ of pairwise disjoint open sets in αX such that $y_i \in V_i$ for each $i \in n$. Let $K = \alpha X \setminus \bigcup_{i \in n} V_i$ and let $A_i = K \cup (A \cap V_i)$ for each $i \in n$. Consider any $i \in n$. Notice that $A_i = K \cup [A \cap (\alpha X \setminus \bigcup\{V_j : j \in n \setminus \{i\}\})]$, so A_i is closed in $K \cup V_i$. Of course, $K \cup V_i = \alpha X \setminus \bigcup\{V_j : j \in n \setminus \{i\}\}$ is a one-point compactification of $K \cup (X \cap V_i)$. Therefore, if $y_i \notin A$, it follows from Proposition 2.12 that there exists a continuous function $f_i : K \cup V_i \to [0, 1]$ such that $f_i(y_i) = 0$ and $A_i \subseteq f_i^{-1}(1)$. If $i \in n$ is such that $y_i \in A$, we put $f_i(z) = 1$ for each $z \in K \cup V_i$. We define a function $f : \alpha X \to [0, 1]$ as follows: if $i \in n$ and $z \in K \cup V_i$, then $f(z) = f_i(z)$. Clearly, $A \subseteq f^{-1}(1)$ and $f(y_i) = 0$ for each $i \in n$ such that $y_i \notin A$. Let us prove that f is continuous. To this aim, consider any closed in \mathbb{R} set D. If $i \in n$, the set $f_i^{-1}(D)$ is closed in $K \cup V_i$. Since $K \cup V_i$ is closed in αX for each $i \in n$, we have that $f^{-1}(D)$ is closed in αX because $f^{-1}(D) = \bigcup\{f_i^{-1}(D) : i \in n\}$. Finally, to show that $f(y) = 0$ and $A \subseteq f^{-1}(1)$, it suffices to notice that since $y \in \alpha X \setminus X$, there exists $i \in n$ such that $y = y_i$ and, of course, $y_i \notin A$.

Proposition 2.14. [ZF] Suppose that αX is a Hausdorff compactification of a Tychonoff space X such that $\alpha X \setminus X$ is homeomorphic with the Alexandroff compactification of the discrete space ω. Then αX is completely regular.

Proof. We may assume that $\alpha X \setminus X = \omega + 1$ where $\omega + 1$ is equipped with the usual order topology on ordinal numbers. Notice that X is locally compact because X is open in αX. Therefore, α_aX is a Hausdorff compactification of X. Let A be a closed subset of αX and let $y \in \alpha X \setminus A$. If $y \in X$, we know from Proposition 2.12 that there exists $f \in C(\alpha aX)$ such that $f(y) = 0$ and $(A \cap X) \cup (\alpha_aX \setminus X) \subseteq f^{-1}(1)$. If f is the continuous extension of $f|_X$ over
\(\alpha X \), then \(\tilde{f}(y) = 0 \) and \(A \subseteq \tilde{f}^{-1}(1) \). Now, assume that \(y \in \alpha X \setminus X \) and consider the following cases (i) and (ii):

(i) \(y = \omega \). In this case, there exists an open in \(\alpha X \) set \(V \) such that \(A \cap \text{cl}_{\alpha X}V = \emptyset \), \(y \in V \) and the set \((\alpha X \setminus X) \setminus V \) is finite. Let \(W \) be an open set in \(\alpha X \) such that \(A \subseteq W \) and \((\text{cl}_{\alpha X}W) \cap (\text{cl}_{\alpha X}V) = \emptyset \). Put \(Y = X \cap \text{cl}_{\alpha X}W \) and \(\gamma Y = \text{cl}_{\alpha X}Y = \text{cl}_{\alpha X}W \). Then \(\gamma Y \) is a Hausdorff compactification of the Tychonoff space \(Y \) such that \(\gamma Y \setminus Y \) is finite. In view of Proposition 2.13, the space \(\gamma Y \) is completely regular. The sets \(\text{bd}_{\alpha X}W \) and \(A \) are disjoint and both compact in the compact Tychonoff space \(\gamma Y \). Thus, it follows from Lemma 2.10 that there exists a continuous function \(g : \gamma Y \to [0, 1] \) such that \(\text{bd}_{\alpha X}W \subseteq g^{-1}(0) \) and \(A \subseteq g^{-1}(1) \). We define a function \(\tilde{g} : \alpha X \to [0, 1] \) putting \(\tilde{g}(z) = 0 \) for each \(z \in \alpha X \setminus \text{cl}_{\alpha X}W \), while \(\tilde{g}(z) = g(z) \) for each \(z \in \gamma Y \). The function \(\tilde{g} \) is continuous on \(\alpha X \); moreover, \(\tilde{g}(y) = 0 \) and \(A \subseteq \tilde{g}^{-1}(1) \).

(ii) \(y \in \omega \). Then there exists an open neighbourhood \(W(y) \) of \(y \) in \(\alpha X \) such that \(A \cap \text{cl}_{\alpha X}W(y) = \emptyset \) and \(\text{cl}_{\alpha X}W(y) \cap (\alpha X \setminus X) = \{y\} \). Since \(\text{cl}_{\alpha X}W(y) \) is a point Hausdorff compactification of \(X \cap \text{cl}_{\alpha X}W(y) \), it follows from Proposition 2.12 that there exists a continuous function \(h : \text{cl}_{\alpha X}W(y) \to [0, 1] \) such that \(h(y) = 0 \) and \(\text{bd}_{\alpha X}W(y) \subseteq h^{-1}(1) \). We define a function \(\tilde{h} : \alpha X \to [0, 1] \) as follows: if \(z \in \text{cl}_{\alpha X}W(y) \), then \(\tilde{h}(z) = h(z) \); if \(z \in \alpha X \setminus W(y) \), then \(\tilde{h}(z) = 1 \). The function \(\tilde{h} \) is continuous, \(\tilde{h}(y) = 0 \) and \(A \subseteq \tilde{h}^{-1}(1) \).

We recall that a subspace \(P \) of a space \(X \) is called \(C^* \)-embedded in \(X \) if each function from \(C^*(P) \) is continuously extendable over \(X \) (cf. 1.13 in [7] or Definition 1.31 in [2]).

Theorem 2.15. [ZF] Let \(\alpha X \) be a Hausdorff compactification of a locally compact Tychonoff space \(X \) such that \(\alpha X \setminus X \) is completely regular and \(C^* \)-embedded in \(\alpha X \). Then \(\alpha X \) is completely regular.

Proof. Let \(A \) be a closed subset of \(\alpha X \) and let \(y \in \alpha X \setminus A \). If \(y \in X \), we know from Proposition 2.12 that there exists a function \(\psi \in C(\alpha_\alpha X) \) such that \(\psi(y) = 1 \) and \(A \cap X \cup (\alpha_\alpha X \setminus X) \subseteq \psi^{-1}(0) \). If \(f \) is the restriction of \(\psi \) to \(X \), while \(\tilde{f} \) is the continuous extension of \(f \) over \(\alpha X \), then \(\tilde{f}(y) = 1 \) and \(A \subseteq \tilde{f}^{-1}(0) \).

Now, consider the case when \(y \in \alpha X \setminus X \). Since \(\alpha X \setminus X \) is completely regular, there exists a continuous function \(g : \alpha X \setminus X \to [0, 1] \) such that \(g(y) = 1 \) and \(A \cap (\alpha X \setminus X) \subseteq g^{-1}(0) \). Since \(\alpha X \setminus X \) is \(C^* \)-embedded in \(\alpha X \), the function \(g \) has a continuous extension \(\tilde{g} : \alpha X \to [0, 1] \). Let \(B = A \cap \tilde{g}^{-1}([\frac{1}{2}, 1]) \). Then \(B \) is a compact subset of \(X \). In the light of Proposition
2.12, the Alexandroff compactification \(\alpha X \) is completely regular, so there exists a continuous function \(\phi : \alpha X \to [0, 1] \) such that \(\phi(\alpha X \setminus X) = \{1\} \) and \(B \subseteq \phi^{-1}(0) \). Since \(\alpha_a X \leq \alpha X \), the function \(\phi|_X \) has a continuous extension \(\tilde{h} : \alpha X \to [0, 1] \) defined by \(\kappa = \min\{\tilde{g}, \tilde{h}\} \). It is clear that \(\kappa(y) = 1 \). If \(z \in B \), then \(\kappa(z) = 0 \) because \(\tilde{h}(z) = 0 \). If \(z \in A \setminus B \), then \(\tilde{g}(z) \leq \frac{1}{2} \), so \(\kappa(z) \leq \frac{1}{2} \). This implies that \(A \subseteq \kappa^{-1}([0, \frac{1}{2}]) \). Let \(C = \kappa^{-1}(1) \) and \(D = \kappa^{-1}([0, \frac{1}{2}]) \). Then \(C, D \) are disjoint zero-sets in \(\alpha X \) such that \(y \in C \) and \(A \subseteq D \). This proves that \(\alpha X \) is completely regular because disjoint zero-sets are functionally separated. \(\square \)

Remark 2.16. In view of Remark 2.3 and Lemma 2.10, it holds true in every model of \(ZF + DC \) that if \(X \) is a compact Tychonoff space, then \(TET(X) \) is satisfied. It was shown in Section 3 of [10] that there is a model of \(ZF \) in which a compact Tychonoff space \(X \) need not satisfy \(TET(X) \).

Proposition 2.17. [ZF] Suppose that \(\alpha X \) is a Hausdorff compactification of a Tychonoff space \(X \) such that \(\alpha X \setminus X \) is finite. Then \(\alpha X \setminus X \) is \(C^* \)-embedded in \(\alpha X \).

Proof. We may assume that \(X \) is non-compact. Let \(n \in \omega \) be equipotent with \(\alpha X \setminus X \). We fix a function \(f : \alpha X \setminus X \to \mathbb{R} \) and put \(D = f(\alpha X \setminus X) \). Assume that \(\alpha X \setminus X = \{y_i : i \in n\} \). There is a collection \(\{V_i : i \in n\} \) of pairwise disjoint open sets in \(\alpha X \) such that \(y_i \in V_i \) for each \(i \in n \). For \(d \in D \), let \(N(d) = \{i \in n : f(y_i) = d\} \) and \(A(d) = \alpha X \setminus \bigcup\{V_i : i \in N(d)\} \).

In the light of Proposition 2.13, the space \(\alpha X \) is Tychonoff. Thus, for each \(d \in D \), there exists a continuous function \(g_d : \alpha X \to [d, 1 + \max D] \) such that \(f^{-1}(d) \subseteq g_d^{-1}(d) \) and \(A(d) \subseteq g_d^{-1}(1 + \max D) \). Let \(g(t) = \min\{g_d(t) : d \in D\} \) for each \(t \in \alpha X \). Then \(g \in C(\alpha X) \) and \(g(t) = f(t) \) for each \(t \in \alpha X \setminus X \). \(\square \)

Of course, one can also deduce from Proposition 2.13 and the \(ZFC \)-proof to Tietze-Urysohn extension theorem that Proposition 2.17 holds in \(ZF \); however, we prefer a simpler, direct \(ZF \)-proof to it. Among other facts, we are going to show that it may happen in a model of \(ZF \) that, for a Hausdorff compactification \(\alpha X \) of a locally compact Tychonoff space such that \(\alpha X \setminus X \) is homeomorphic with \(\omega + 1 \), the remainder \(\alpha X \setminus X \) can fail to be \(C^* \)-embedded in \(\alpha X \). It might be interesting to know the place of the following sentences \(C^*\mathbb{R} \) and \(C^*\mathbb{R}[\omega] \) in the hierarchy of choice principles:

- **\(C^*\mathbb{R} \):** For every locally compact Tychonoff space \(X \) and for every Tychonoff compactification \(\alpha X \) of \(X \), the remainder \(\alpha X \setminus X \) is \(C^* \)-embedded in \(\alpha X \).
$C^*\mathbb{R}[\omega]$: For every locally compact Tychonoff space X and for every Hausdorff compactification αX of X such that $\alpha X \setminus X$ is homeomorphic with $\omega + 1$, the remainder $\alpha X \setminus X$ is C^*-embedded in αX.

As usual, we denote by CMC the axiom of countable multiple choice which states that for each sequence $(X_n)_{n \in \omega}$ of non-empty sets there exists a sequence $(F_n)_{n \in \omega}$ of non-empty finite subsets F_n of X_n (see Form 126 in [15] and Definition 2.10 in [12]). The axiom of countable choice (Form 8 in [15]), denoted by CC in Definition 2.5 of [12] and by CAC in many articles (see, for instance, [13] and [16]), states that every non-empty countable collection of non-empty sets has a choice function. Let us recall the following van Douwen’s choice principle (Form 119 in [15], as well as CC(Z) on page 79 in [12]) which was introduced in [4] and denoted by $vDCP(\omega)$ in [16]:

$vDCP(\omega)$: For every family $\{\langle A_i, \leq_i \rangle : i \in \omega\}$ such that each $\langle A_i, \leq_i \rangle$ is a linearly ordered set isomorphic with the set \mathbb{Z} of integers equipped with the standard order, the family $\{A_i; i \in \omega\}$ has a choice function.

It was shown in [16] that $vDCP(\omega)$ is strictly weaker than CMC. For significant applications of models in which $vDCP(\omega)$ fails, the following construction was used, for instance, in [4], [16], [27] and in Section 4.7 of [12]:

Let $A = \{\langle A_i, \leq_i \rangle : i \in \omega\}$ be a collection of linearly ordered sets $\langle A_i, \leq_i \rangle$ isomorphic with the set \mathbb{Z} of integers equipped with the standard order. Let $A = \bigcup\{A_i : i \in \omega\}$. Fix sets $\bar{A} = \{a_i : i \in \omega\}$ and $\bar{B} = \{b_i : i \in \omega\}$ of pairwise distinct elements such that $A \cap (\bar{A} \cup \bar{B}) = \emptyset = A \cap \bar{B}$. Put $X_i = A_i \cup \{a_i, b_i\}$ and extend the order \leq_i to a linear order \leq_i on X_i by requiring that a_i is the smallest element of $\langle X_i, \leq_i \rangle$, while b_i is the largest element of $\langle X_i, \leq_i \rangle$. For simplicity, without any loss of generality, we may assume that $X_i \cap X_j = \emptyset$ for each pair i, j of distinct elements of ω. We equip each X_i with the order topology induced by \leq_i. We denote by $X[A]$ the disjoint union (the sum) of the linearly ordered topological spaces X_i where $i \in \omega$. The spaces X_i are all metrizable, so Tychonoff. Clearly, the space $X[A]$ is locally compact. It is easy to prove in ZF that sums of completely regular spaces are completely regular. Hence $X[A]$ is also completely regular in ZF.

Theorem 2.18. The following implications are true in every model of ZF:

(i) $C^*\mathbb{R}[\omega]$ implies $vDCP(\omega)$;

(ii) the conjunction of UFT and $C^*\mathbb{R}[\omega]$ implies CMC;

(iii) CC implies $C^*\mathbb{R}[\omega]$.

13
Proof. (i) Let us fix a family \(\mathcal{A} = \{(A_i, \leq_i) : i \in \omega \} \) as in the definition of \(\nu\text{DCP}(\omega) \), as well as sets \(\tilde{A} = \{a_i : i \in \omega \}, \tilde{B} = \{b_i : i \in \omega \} \) as in the construction of \(X[\mathcal{A}] \) described above. We consider the Alexandroff compactification \(\alpha \tilde{X}[\mathcal{A}] = X[\mathcal{A}] \cup \{\infty\} \) of \(X[\mathcal{A}] \), the set \(K = \tilde{A} \cup \{\infty\} \cup \tilde{B} \) and the subspace \(X = (\alpha \tilde{X}[\mathcal{A}]) \setminus K \) of \(\alpha \tilde{X}[\mathcal{A}] \). Of course, the space \(X \) is discrete and dense in \(\alpha \tilde{X}[\mathcal{A}] \). In view of Proposition 2.12, the compactification \(\alpha X = \alpha \tilde{X}[\mathcal{A}] \) of \(X \) is Tychonoff. We define a continuous function \(g : K \to [-1,1] \) by putting \(g(\infty) = 0 \), while \(g(a_i) = \frac{1}{i+1} \) and \(g(b_i) = \frac{1}{i+1} \) for each \(i \in \omega \). Suppose that \(K \) is \(C^* \)-embedded in \(\alpha X \). Then \(g \) has a continuous extension to a function \(\tilde{g} : \alpha X \to [-1,1] \). In much the same way, as in Section 3 of [16], for each \(i \in \omega \), we can define \(t(i) = \max \{x \in A_i : \tilde{g}(x) < 0\} \) to obtain a choice function \(t \in \prod_{i \in \omega} A_i \). This, together with the fact that \(K \) is homeomorphic with the Alexandroff compactification \(\omega + 1 \) of \(\omega \), implies that (i) holds.

(ii) Now, let us suppose that \text{CMC} is false. In this case, notice that it was shown in the proof to Theorem 3 of [16] that there exists a Tychonoff space \(Z \) such that, for a compact subset \(C \) of \(Z \), the set \(Z \setminus C \) is dense in \(Z \), while \(C \) is not \(C^* \)-embedded in \(Z \) and \(C \) is homeomorphic with \(\omega + 1 \). Assume that \text{UFT} is satisfied. It follows from Proposition 1.2 that the space \(Z \) has a Tychonoff compactification \(\gamma Z \). The subspace \(Z_0 = (\gamma Z) \setminus C \) of \(\gamma Z \) is a locally compact space such that the remainder \(C = (\gamma Z) \setminus Z_0 \) is not \(C^* \)-embedded in the Tychonoff compactification \(\gamma Z \) of \(Z_0 \).

(iii) Assume that \text{CC} holds. Let \(\alpha X \) be a Hausdorff compactification of a Tychonoff space \(X \) such that \(\alpha X \setminus X = \omega + 1 \). Denote by \(\mathcal{F} \) the collection of all non-empty finite subsets of \(\omega \). Then \(\mathcal{F} \) is countable. Let \(\mathcal{F} = \{F_n : n \in \omega\} \). For each \(n \in \omega \), let \(\mathcal{G}_n \) be the collection of all functions \(g \in C(\alpha X) \) such that \((\omega + 1) \setminus F_n \subseteq g^{-1}(0) \) and \(F_n \subseteq g^{-1}(1) \). The collections \(\mathcal{G}_n \) are all non-empty because, by Proposition 2.14, the space \(\alpha X \) is Tychonoff. Since \text{CC} holds, the collection \(\{\mathcal{G}_n : n \in \omega\} \) has a choice function. Let \(G \in \prod_{n \in \omega} \mathcal{G}_n \). Let \(A, B \) be a pair of non-empty disjoint closed subsets of \(\omega + 1 \). Then \(A \in \mathcal{F} \) or \(B \in \mathcal{F} \). Suppose that \(n_0 \in \omega \) is such that \(A = F_{n_0} \). The function \(g = G(n_0) \) is such that \(B \subseteq g^{-1}(0) \) and \(A \subseteq g^{-1}(1) \). With this observation in hand, if \(f \in C(\omega + 1) \), we can slightly modify the well-known standard \text{ZFC}-proof of Tietze-Urysohn Extension Theorem to find in \text{ZF+CC} a continuous extension of \(f \) over \(\alpha X \).

Corollary 2.19. The following sentences are relatively consistent with \text{ZF}:

(i) There exists a Tychonoff compactification \(\gamma X \) of a locally compact space
such that TET(γY) fails but γY \ Y is C*-embedded in γY.

(ii) C*R[ω] is false.

Proof. Let us consider the space X = αX[A] \ K and its compactification αX = αX[A] used in the proof to (i) of Theorem 2.18. Let c ∈ αX be an accumulation point of X, let Y = αX \ {c} and γY = αX. It was shown in the proof to Theorem 2.18 (i) that if A is such that \{A_i : i ∈ ω\} does not have a choice function, then αX is not a T space. To complete the proof, it suffices to use Theorem 2.18 together with the fact that there is a model of ZF in which vDCP fails.

We are going to prove that it is relatively consistent with ZF that there exists a Tychonoff space which has a strange Hausdorff compactification. We shall deduce several surprising consequences of the existence of strange compactifications in some models of ZF.

Theorem 2.20. [ZF] Let Y be a given non-empty compact Hausdorff space. Then there exist a discrete space D_Y and a Hausdorff compactification γD_Y of D_Y such that (γD_Y) \ D_Y is homeomorphic with Y.

Proof. Let D_Y = (ω × Y) \ ({0} × Y) be considered with its discrete topology. Let γD_Y = ω × Y be equipped with the following topology:

(i) all points of (γD_Y) \ ({0} × Y) are isolated;

(ii) if y ∈ Y, then a base of neighbourhoods of the point ⟨0, y⟩ in γD_Y consists of all sets of the form: (ω × U) \ K where K is a finite subset of D_Y, while U is open in Y and y ∈ U.

Obviously, the topological space γD_Y is a compact Hausdorff space such that D_Y is a dense subspace of γD_Y, while the space Y is homeomorphic with the remainder (γD_Y) \ D_Y.

Theorem 2.21. The following sentences are relatively consistent with ZF:

(i) There exists a discrete space which has a strange compactification.

(ii) There exists a Tychonoff space X which has non-equivalent Hausdorff compactifications αX and γX such that C_α(X) = C_γ(X).
Proof. Let \mathcal{M} be a model of ZF such there exists in \mathcal{M} an uncountable Hausdorff space Y which is compact and such that all continuous real functions on Y are constant (see [9], as well as Form 78 in models $\mathcal{N}3$ and $\mathcal{N}8$ in [15]). In view of Theorem 2.20, there exist in \mathcal{M} a discrete space D_Y and a Hausdorff compactification γD_Y of D_Y such that $(\gamma D_Y) \setminus D_Y$ is homeomorphic with Y. Put $X = D_Y$ and, for simplicity, assume that $\gamma X \setminus X = Y$. Then it holds true in \mathcal{M} that γX is a strange compactification of X. Let αX be the one-point compactification in \mathcal{M} of X. Of course, γX and αX are non-equivalent, while $C_\gamma(X) = C_\alpha(X)$.

Corollary 2.22. It is not a theorem of ZF that if αX and γX are Hausdorff compactifications of a Tychonoff space X such that $C_\alpha(X) \subseteq C_\gamma(X)$, then $\alpha X \leq \gamma X$.

One can easily prove the following:

Theorem 2.23. [ZF] If Hausdorff compactifications αX and γX of a topological space X are both completely regular, then $\alpha X \leq \gamma X$ if and only if $C_\alpha(X) \subseteq C_\gamma(X)$.

Problem 2.24. Find in ZF reasonable necessary and sufficient internal conditions for a Tychonoff space to have no strange Hausdorff compactification.

We recall that an amorphous set is an infinite set X such that if A is an infinite subset of X, then the set $X \setminus A$ is finite (see E.11 in Section 4.1 of [12], Form 64 and Note 57 in [15]). Amorphous sets exist, for instance, in ZF-model $\mathcal{M}37$ of [15] (see also model $\mathcal{N}1$ of [15] together with entries (361,64) and (363, 64) on page 335 in [15]).

Definition 2.25. A topological space $\langle X, \tau \rangle$ will be called amorphous if X is an amorphous set.

Proposition 2.26. [ZF] Every amorphous Hausdorff space is either discrete or a one-point Hausdorff compactification of an amorphous discrete space.

Proof. Let X be an amorphous Hausdorff space. Suppose that X is not discrete. Then X has exactly one accumulation point. Let x_0 be the unique accumulation point of X and let $Y = X \setminus \{x_0\}$. Then Y is a discrete amorphous space such that X is a one-point Hausdorff compactification of Y.

The following theorem, together with Theorem 2.21, points out that a satisfactory solution to Problem 2.24 can be complicated even for discrete spaces:
Theorem 2.27. [ZF] Let X be an infinite discrete space. Then every Hausdorff compactification of X is equivalent with the Alexandroff compactification of X if and only if X is amorphous.

Proof. Let αX be a Hausdorff compactification of X. If $\alpha X \setminus X$ is not a singleton, then there is a pair x, y of distinct points of $\alpha X \setminus X$, so there exists a pair U, V of disjoint open sets in αX such that $x \in U$ and $y \in V$. Then the sets $U \cap X$ and $V \cap X$ are disjoint infinite subsets of X, hence X cannot be amorphous. On the other hand, if X is not amorphous, then there are disjoint infinite subsets Y, Z of X such that $X = Y \cup Z$, which implies that X has a two-point Hausdorff compactification. □

Corollary 2.28. [ZF] If a discrete space X is amorphous, then its Čech-Stone compactification is the Alexandroff compactification of X.

Corollary 2.29. [ZF] The following conditions are equivalent:

(i) there do not exist amorphous sets;

(ii) every infinite discrete space has a Hausdorff compactification whose remainder is not a singleton.

Theorem 2.30. [ZF] Let $n \in \omega \setminus \{0\}$ and let X be an infinite discrete space. Then X has an n-point Hausdorff compactification and does not have any $(n + 1)$-point Hausdorff compactification if and only if X is a disjoint union of n amorphous sets.

Proof. Necessity. First, assume that X has an n-point compactification. Then there exists a collection $\{V_i : i \in n\}$ of infinite pairwise disjoint subsets of X such that the set $X \setminus \bigcup_{i \in n} V_i$ is compact. Suppose that there exists $i_0 \in n$ such that the set V_{i_0} is not amorphous. Then there exists an infinite subset U of V_{i_0} such that the set $V_{i_0} \setminus U$ is also infinite. Since Theorem 6.8 of [2] (cf. Theorem 2.1 of [21]) is provable in ZF, we can apply it to showing that X has an $(n + 1)$-point Hausdorff compactification. Therefore, if X does not have any $(n + 1)$-point Hausdorff compactification, the sets V_i must be amorphous for each $i \in n$.

Sufficiency. Now, assume that $\{X_i : i \in n\}$ is a collection of pairwise disjoint amorphous subsets of X such that $X = \bigcup_{i \in n} X_i$. Then X has an n-point Hausdorff compactification αX such that, for each pair $i, j \in n$, the sets X_i and X_j have disjoint closures in αX whenever $i \neq j$. Let γX
be an arbitrary Hausdorff compactification of X. Put $Y = \alpha X \times \gamma X$ and define a mapping $r : X \to Y$ by: $r(x) = \langle \alpha(x), \gamma(x) \rangle$ for each $x \in X$. Then $\langle rX, r \rangle$, where $rX = \text{cl}_Y r(X)$, is a Hausdorff compactification of X such that $\alpha X \subseteq rX$ and $\gamma X \subseteq rX$. Let $h : rX \to \alpha X$ be such that $h \circ r = \alpha$. Suppose that there exists $z \in \alpha X \setminus X$ such that $h^{-1}(\{z\})$ is not a singleton. Then there exists a collection $\{W_j : j \in n + 1\}$ of pairwise disjoint infinite subsets of X such that, for each $j \in n + 1$, there exists $i \in n$ such that $W_j \subseteq X_i$. There must exist $i_1 \in n$ and a pair j, k of distinct numbers from $n + 1$ such that $W_j \subseteq X_{i_1}$ and $W_k \subseteq X_{i_1}$. This is impossible because X_{i_1} is amorphous. The contradiction obtained shows that the compactifications αX and rX are equivalent. Since $\gamma X \leq rX$ and $rX \setminus r(X)$ consists of exactly n points, we have that $\gamma X \setminus \gamma(X)$ consists of at most n points. This completes the proof.

Theorem 2.31. [ZF] Let $n \in \omega \setminus \{0\}$ and let X be a discrete space such that X is a union of n pairwise disjoint amorphous sets. Then the Čech-Stone compactification βX of X is the unique (up to the equivalence) n-point Hausdorff compactification of X.

Proof. By Theorem 2.30, X has an n-point Hausdorff compactification αX. We have shown in the proof to Theorem 2.30 that if γX is a Hausdorff compactification of X, then $\gamma X \leq \alpha X$. This implies that $\beta X \approx \alpha X$. Lemma 6.12 of [2] is provable in ZF and we infer from it and from Theorem 2.30 that all n-point Hausdorff compactifications of X are equivalent.

One of the most important theorems on products of Čech-Stone compactifications is Glicksberg’s theorem of ZFC which asserts that, for infinite Tychonoff spaces X and Y, the Cartesian product $\beta X \times \beta Y$ is the Čech-Stone compactification of $X \times Y$ if and only if $X \times Y$ is pseudocompact (see [8] and Problem 3.12.21 (c) of [5]). We are going to prove that Glicksberg’s theorem fails in every model of ZF in which there is an amorphous set. A well-known fact of ZFC is that if X is a compact Hausdorff space, while Y is a pseudocompact Tychonoff space, then the product $X \times Y$ is pseudocompact (see Corollary 3.10.27 of [5]). Unfortunately, the proof to it in [5] is not a proof in ZF. This is why we show a proof in ZF to the following helpful lemma:

Lemma 2.32. [ZF] Suppose that X, Y are non-empty topological spaces such that X is compact and Y is pseudocompact. Then $X \times Y$ is pseudocompact.
Proof. Let $g : X \times Y \to \mathbb{R}$ be a continuous function. Put $f = |g|$ and define a function $F : Y \to \mathbb{R}$ by:

$$F(y) = \sup\{f(x, y) : x \in X\}.$$

To check that F is continuous, consider any point $y_0 \in Y$ and real numbers a, b such that $a < F(y_0) < b$. Let \mathcal{U} be a collection of all non-empty open sets in X such that if $U \in \mathcal{U}$, then there exists an open in Y set G such that $y_0 \in G$ and $f(U \times G) \subseteq (-\infty, b)$. It follows from the continuity of f that U is an open cover of X. Since X is compact, there exists a finite subcover \mathcal{U}_0 of \mathcal{U}. For each $U \in \mathcal{U}_0$, we can choose an open neighbourhood $G(U)$ of y_0 such that $f(U \times G(U)) \subseteq (-\infty, b)$. Since $a < F(y_0)$, there exists $x_0 \in X$ such that $a < f(x_0, y_0)$. By the continuity of f, there exists an open neighbourhood V_0 of y_0 such that $f(U \times V_0) \subseteq (a, +\infty)$. Let $V = V_0 \cap \bigcap\{G(U) : U \in \mathcal{U}_0\}$. There exists $U_0 \in \mathcal{U}_0$ such that $x_0 \in U_0$. If $y \in V$, then $a < f(x_0, y) \leq F(y) < b$; hence, F is continuous at y_0. Since Y is pseudocompact, the function F is bounded. This implies that f is bounded, so g is also bounded.

Theorem 2.33. $[$ZF$]$ For every amorphous discrete space X, the spaces X and $\beta X \times X$ are both pseudocompact, while $\beta X \times \beta X$ is not the Čech-Stone compactification of $\beta X \times X$.

Proof. Let X be an amorphous discrete space. Consider any $f : X \to \mathbb{R}$. Then $f(X)$ is either finite or amorphous. Since there do not exist amorphous linearly ordered sets, the set $f(X)$ is finite. This implies that X is pseudocompact. By Corollary 2.28, βX is a one-point Hausdorff compactification of X. In view of Lemma 2.32, the space $\beta X \times X$ is pseudocompact. Now, let $A = \{(x, y) \in \beta X \times X : x = y\}$. Then A is clopen in $\beta X \times X$. Let $f : \beta X \times X \to \{0, 1\}$ be defined by $f(z) = 0$ if $z \in A$, while $f(z) = 1$ if $z \in (\beta X \times X) \setminus A$. The function f is continuous but it is not continuously extendable over $\beta X \times \beta X$ since the sets $f^{-1}(0)$ and $f^{-1}(1)$ do not have disjoint closures in $\beta X \times \beta X$. □

Corollary 2.34. The following statement is independent of ZF: there exist a compact Tychonoff space K and a pseudocompact Tychonoff space X such that X has its Čech-Stone compactification, while $K \times \beta X$ is not the Čech-Stone compactification of $K \times X$.

19
3 Compactifications generated by sets of functions

As we have already informed in section 1, it holds true in every model of \(\text{ZF} + \text{UFT}\) that if \(X\) is a Tychonoff space and \(F \in \mathcal{E}(X)\), then the space \(e_F X\) is compact; however, \(e_F X\) can fail to be compact in a model of \(\text{ZF} + \neg\text{UFT}\). Therefore, it might be useful to find necessary and sufficient conditions for \(F \in \mathcal{E}(X)\) to have the property that the space \(e_F X\) is compact in \(\text{ZF}\).

For a compactification \(\alpha X\) of \(X\) and for a function \(f \in C_{\alpha}(X)\), the unique continuous extension of \(f\) over \(\alpha X\) is usually denoted by \(f_{\alpha}\). For \(F \subseteq C_{\alpha}(X)\), we put \(F_{\alpha} = \{f_{\alpha} : f \in F\}\).

Theorem 3.1. [\(\text{ZF}\)] Suppose that \(X\) is a Tychonoff space and that \(F \in \mathcal{E}(X)\). Then the following conditions are equivalent:

(i) \(e_F X\) is compact;

(ii) there exists a (not necessarily Hausdorff) compactification \(\alpha X\) of \(X\) such that \(F \subseteq C_{\alpha}(X)\).

Proof. If \(e_F X\) is compact, then \(F \subseteq C_{e_F}(X)\), so (i) implies (ii). Assume that (ii) holds. Let \(\alpha X\) be a compactification of \(X\) such that \(F \subseteq C_{\alpha}(X)\). We define a mapping \(h : \alpha X \to \mathbb{R}^F\) by \(h(t)(f) = f_{\alpha}(t)\) for all \(t \in \alpha X\) and \(f \in F\). Since \(e_F(X) \subseteq h(\alpha X)\), it follows from the compactness of \(\alpha X\) that \(e_F X \subseteq h(\alpha X)\). We shall show that \(e_F X = h(\alpha X)\). To this aim, suppose that \(y \in h(\alpha X) \setminus e_F X\). Let \(t \in \alpha X\) be such that \(h(t) = y\). There exist a non-empty finite set \(K \subseteq F\) and a positive real number \(\varepsilon\), such that if \(V_f = \mathbb{R}\) for \(f \in F \setminus K\), while \(V_f = (y(f) - \varepsilon, y(f) + \varepsilon)\) for \(f \in K\), then \(e_F(X) \cap \prod_{f \in F} V_f = \emptyset\). Then \(t \in \bigcap_{f \in K} (f_{\alpha})^{-1}(V_f)\) and, by the density of \(X\) in \(\alpha X\), there exists \(z \in X \cap \bigcap_{f \in K} (f_{\alpha})^{-1}(V_f)\). Then \(h(z) \in e_F(X) \cap \prod_{f \in F} V_f\) which is impossible. The contradiction obtained implies that \(e_F X = h(\alpha X)\).

In consequence, \(e_F X\) is compact. Hence (ii) implies (i).

Definition 3.2. A Hausdorff completely regular compactification \(\gamma X\) of a Tychonoff space \(X\) will be called a functional Čech-Stone compactification of \(X\) if \(C_\gamma(X) = C^*(X)\).

The following proposition is an immediate consequence of Theorem 2.23:
Proposition 3.3. [ZF] If $\gamma_1 X$ and $\gamma_2 X$ are functional Čech-Stone compactifications of X, then $\gamma_1 X$ and $\gamma_2 X$ are equivalent.

Remark 3.4. Suppose that a Tychonoff space X has a functional Čech-Stone compactification. Since all functional Čech-Stone compactifications of X are equivalent, let us denote by $\beta^f X$ an arbitrary functional Čech-Stone compactification of X.

Proposition 3.5. [ZF] Let X be a Tychonoff space and let $F = C^*(X)$. Then X has its functional Čech-Stone compactification if and only if the space $e_F X$ is compact. Moreover, if $\beta^f X$ exists, then $\beta^f X \approx e_F X$.

Proof. Suppose that $\beta^f X$ exists. It follows from Theorem 3.1 that the space $e_F X$ is compact. If $e_F X$ is compact, then since $C(e_F X) = C^*(X)$, we have $\beta^f X \approx e_F X$ by Theorem 2.23.

It was observed in [22] that Taimanov’s Theorem 3.2.1 of [5] is valid in ZF (see Theorem 5.15 of [22]). By using Taimanov’s theorem and Lemma 2.10, one can easily prove the following proposition:

Proposition 3.6. [ZF] Suppose that a Tychonoff space X has its functional Čech-Stone compactification. If K is a compact Tychonoff space, then every continuous mapping $f : X \to K$ is continuously extendable over $\beta^f X$.

Corollary 3.7. [ZF] Let X be a Tychonoff space such that $\beta^f X$ exists. Then, for every completely regular Hausdorff compactification αX of X, we have $\alpha X \leq \beta^f X$.

Theorem 3.8. [ZF] Let X be a non-empty Tychonoff space such that βX exists. Then there exists $\beta^f X$ and $\beta^f X \leq \beta X$.

Proof. If βX exists, it follows from Theorem 3.1 that $\beta^f X$ exists, too. In view of Remark 1.4, $\beta^f X \leq \beta X$.

From Theorem 3.8 and Corollary 3.7, we deduce the following:

Proposition 3.9. [ZF] Suppose that X is a Tychonoff space such that βX exists. If βX is completely regular, then $\beta X \approx \beta^f X$.

Theorem 3.10. [ZF] For every non-empty Tychonoff space X, the following conditions are equivalent:
(i) the Wallman space \(W(X, \mathcal{Z}(X))\) is compact;

(ii) there exists a compactification \(\alpha X\) of \(X\) such that \(C_{\alpha}(X) = C^*(X)\);

(iii) \(e_F X\) is compact where \(F = C^*(X)\).

Proof. It is obvious that (i) implies (ii) and (iii) implies (ii). That (ii) implies (iii) follows from Theorem 3.1. To show that (ii) implies (i), let us assume (iii) and put \(h = e_F\) where \(F = C^*(X)\). Now, consider any filter \(A\) in \(\mathcal{Z}(X)\).

By the compactness of \(e_F X\), there exists \(p \in \bigcap_{A \in \mathcal{A}} \text{cl}_{e_F X}[h(A)]\). We define

\[
\mathcal{F} = \{f^{-1}(0) : p \in \text{cl}_{e_F X}h(f^{-1}(0)) : f \in F\}.
\]

Then \(A \subseteq \mathcal{F}\). We shall prove that \(\mathcal{F}\) is a filter in \(\mathcal{Z}(X)\).

Let \(Z_1, Z_2 \in \mathcal{F}\). To show that \(Z_1 \cap Z_2 \in \mathcal{F}\), suppose that \(p \notin \text{cl}_{e_F X}[h(Z_1 \cap Z_2)]\). By the complete regularity of \(\mathbb{R}^F\), there exists \(\psi \in C^*(\mathbb{R}^F)\) such that \(\psi(p) = 0\) and \(h(Z_1 \cap Z_2) \subseteq \psi^{-1}(1)\). Let \(A_1 = Z_1 \cap h^{-1}(\psi^{-1}((-\infty, \frac{1}{2}]))\) and \(A_2 = Z_2 \cap h^{-1}(\psi^{-1}((-\infty, \frac{1}{2}]))\). Then \(A_1, A_2 \in \mathcal{Z}(X)\) and \(A_1 \cap A_2 = \emptyset\).

There exists \(g \in C^*(X)\) such that \(A_1 \subseteq g^{-1}(0)\) and \(A_2 \subseteq g^{-1}(1)\). For the projection \(\pi_g : \mathbb{R}^F \to \mathbb{R}\), we have \(h(A_1) \subseteq \pi_g^{-1}(0)\) and \(h(A_2) \subseteq \pi_g^{-1}(1)\), so \(\text{cl}_{e_F X}[h(A_1)] \cap \text{cl}_{e_F X}[h(A_2)] = \emptyset\). This contradicts the fact that \(p \in \text{cl}_{e_F X}[h(A_1)] \cap \text{cl}_{e_F X}[h(A_2)]\). Hence \(p \in \text{cl}_{e_F X}[h(Z_1 \cap Z_2)]\). This implies that \(Z_1 \cap Z_2 \in \mathcal{F}\), so \(\mathcal{F}\) is a filter in \(\mathcal{Z}(X)\). To check that the filter \(\mathcal{F}\) is maximal in \(\mathcal{Z}(X)\), suppose that \(\mathcal{H}\) is a filter in \(\mathcal{Z}(X)\) such that \(\mathcal{F} \subseteq \mathcal{H}\). Suppose that \(Z \in \mathcal{H}\) and \(Z \notin \mathcal{F}\). Then \(p \notin \text{cl}_{e_F X}h(Z)\). By the complete regularity of \(\mathbb{R}^F\), there exists \(A \in \mathcal{Z}(X)\) such that \(A \cap Z = \emptyset\) and \(p \in \text{cl}_{e_F X}(h(A))\). Then \(A \in \mathcal{F}\), so \(A \in \mathcal{H}\). This is impossible because \(Z \in \mathcal{H}\), while \(Z \cap A = \emptyset\).

Therefore, \(\mathcal{F}\) is an ultrafilter in \(\mathcal{Z}(X)\). Since every filter in \(\mathcal{Z}(X)\) is contained in an ultrafilter in \(\mathcal{Z}(X)\), the Wallman space \(W(X, \mathcal{Z}(X))\) is compact. Hence (ii) implies (i).

\[\square\]

Corollary 3.11. [ZF] Let \(X\) be a non-empty Tychonoff space which has its functional Čech-Stone compactification. Then \(W(X, \mathcal{Z}(X))\) is a Hausdorff compactification of \(X\) equivalent with \(\beta^f X\).

Proof. It follows from Theorem 3.10 that \(W(X, \mathcal{Z}(X))\) is compact. Since, for every pair \(A, B\) of disjoint sets from \(\mathcal{Z}(X)\), the closures of \(A\) and \(B\) in \(\beta^f X\) are also disjoint, it follows from Theorem 5.15 of [22] that the mapping \(h_{\mathcal{Z}(X)} : X \to W(X, \mathcal{Z}(X))\) is continuously extendable over \(\beta^f X\), hence \(W(X, \mathcal{Z}(X)) \leq \beta^f X\). On the other hand, if \(A, B \in \mathcal{Z}(X)\) are disjoint, then
the closures of A and B in $\mathcal{W}(X, Z(X))$ are disjoint; therefore, in view of Theorem 5.15 of [22], the mapping $\text{id}_X : X \to \beta^f X$ has a continuous extension over $\mathcal{W}(X, Z(X))$. This gives that $\beta^f X \leq \mathcal{W}(X, Z(X))$.

Remark 3.12. For a compactification αX of X, let $Z_{\alpha}(X) = \{f^{-1}(0) : f \in C_{\alpha}(X)\}$. It may happen in a model of ZF that, for a completely regular space X, there exists a Hausdorff compactification αX of X such that $Z(X) = Z_{\alpha}(X)$, while the Wallman space $\mathcal{W}(X, Z(X))$ is not compact. To prove this, let us notice that Form 70 of [15] is equivalent to the statement: There are no free ultrafilters in the power set $\mathcal{P}(\omega)$. In the model $\mathcal{M}2$ of [15], Form 70 of [15] is false. This implies that the Wallman space $\mathcal{W}(\omega, \mathcal{P}(\omega))$ is not compact in $\mathcal{M}2$. However, for the Alexandroff compactification $\alpha_{a\omega}$ of the discrete space ω in $\mathcal{M}2$, we have that $Z(\omega) = Z_{\alpha_{a\omega}}(\omega)$.

For a topological space X, let us denote by $\text{Cl}(X)$ the collection of all closed sets of X.

Theorem 3.13. [ZF] Suppose that X is a T_1-space which satisfies $\text{UL}(X)$. Then the following conditions are equivalent:

(i) the Wallman space $\mathcal{W}(X, \text{Cl}(X))$ is compact;

(ii) the Čech-Stone compactification of X exists;

(iii) the functional Čech-Stone compactification of X exists.

Proof. It is obvious that if (i) holds, then the compactification $\mathcal{W}(X, \text{Cl}(X))$ is the Čech-Stone compactification of X, so (i) implies (ii). In view of Theorem 3.8, (ii) implies (iii).

Assume that $\beta^f X$ exists. Let K be a compact Hausdorff space and let $h : X \to K$ be a continuous mapping. Consider any pair A, B of disjoint closed sets of K. Since $\text{UL}(X)$ holds, the sets $h^{-1}(A)$ and $h^{-1}(B)$ are functionally separated in X. In consequence, the sets $h^{-1}(A)$ and $h^{-1}(B)$ have disjoint closures in $\beta^f X$. By Theorem 5.15 of [22], the function h is continuously extendable over $\beta^f X$. This proves that $\beta^f X$ is the Čech-Stone compactification of X. Therefore, (ii) and (iii) are equivalent.

Assume (ii). Let A be a filter in $\text{Cl}(X)$. There exists $p \in \bigcap_{A \in A} \text{cl}_{\beta^f X} A$. We define

$$\mathcal{F} = \{A \in \text{Cl}(X) : p \in \text{cl}_{\beta^f X} A\}.$$

Let us check that \mathcal{F} is a filter in $\text{Cl}(X)$. Let $C_1, C_2 \in \mathcal{F}$. Suppose that $p \notin \text{cl}_{\beta^f X}(C_1 \cap C_2)$. In much the same way, as in the proof to Theorem 3.10,
we find a set $D \in \mathcal{Z}(\beta X)$ such that $p \in \text{int}_{\beta X}D$ and $D \cap (C_1 \cap C_2) = \emptyset$. We put $A_i = D \cap C_i$ for $i \in \{1, 2\}$. We have that $p \in \text{cl}_{\beta X} A_i$ for $i \in \{1, 2\}$.

On the other hand, since X satisfies UL(X), the sets A_1, A_2 have disjoint closures in βX. This is impossible. In consequence, $C_1 \cap C_2 \in \mathcal{F}$. Therefore, \mathcal{F} is a filter. Of course, $\mathcal{A} \subseteq \mathcal{F}$. We check that \mathcal{F} is an ultrafilter in $\text{Cl}(X)$. To do this, consider any filter \mathcal{H} in $\text{Cl}(X)$ such that $\mathcal{F} \subseteq \mathcal{H}$. Suppose that there exists $A \in \mathcal{H} \setminus \mathcal{F}$.

Then $p \notin \text{cl}_{\beta X}A$, so there exists $Z \in \mathcal{Z}(\beta X)$ such that $p \in \text{int}_{\beta X}Z$ and $Z \cap A = \emptyset$. It is obvious that $Z \cap X \in \mathcal{F}$, so $Z \cap X \in \mathcal{H}$. This is impossible because $A \in \mathcal{H}$ and $(Z \cap X) \cap A = \emptyset$. Therefore, \mathcal{F} is an ultrafilter in $\text{Cl}(X)$. Since every filter in $\text{Cl}(X)$ can be enlarged to an ultrafilter in $\text{Cl}(X)$, the space $\mathcal{W}(X, \text{Cl}(X))$ is compact.

Corollary 3.14. [ZF] Let X be a normal T_1-space such that $\beta^f X$ exists. If UL(X) holds, then $\beta X \approx \beta^f X \approx \mathcal{W}(X, \text{Cl}(X))$.

Remark 3.15. Theorem 18 of [14] follows directly from our Corollary 3.14 and Theorem 3.10.

Since UFT is equivalent to the Boolean Prime Ideal Theorem BPI (Form 14 in [15], denoted by PIT in [12]), all statements equivalent to BPI are also equivalent to conditions (i)-(vii) of the following theorem:

Theorem 3.16. [ZF] The following conditions are equivalent:

(i) UFT;

(ii) every Tychonoff space has its functional Čech-Stone compactification;

(iii) every Cantor cube 2^J has a Hausdorff compactification Y such that, for each $j \in J$, the projection $\pi_j : 2^J \to \{0, 1\}$ has a continuous extension over Y;

(iv) every Cantor cube 2^J is compact;

(v) every Tychonoff space X has a Hausdorff compactification αX such that every clopen set of X has a clopen closure in αX;

(vi) every Tychonoff space X has a Hausdorff compactification αX such that every continuous function from X into the discrete space $\{0, 1\}$ is continuously extendable to a function from αX into $\{0, 1\}$.
(vii) every discrete space X has a compactification αX such that, for each subset A of X, the closure in αX of A is clopen in αX.

Proof. That (i) implies (ii) follows Theorem 4.70 of [22] and from our Theorem 3.1. It is obvious that (ii) implies (iii). When we replace the unit interval $[0,1]$ by the two-point discrete space $\{0,1\}$ and use similar argument as in the proof to Theorem 10.12 in [22], we can show that (iii) implies (iv). In view of Theorem 4.70 of [12], (iv) and (i) are equivalent. Of course, (v) and (vi) are equivalent, (ii) implies (vi) and (vi) implies (vii). Suppose that (vii) holds. Let X be a non-empty discrete space and let $f \in C^*(X)$. Consider any pair C,D of disjoint closed subsets of \mathbb{R}. Put $A = f^{-1}(C)$ and $B = f^{-1}(D)$. Let αX be a compactification of X such that every subset of X has a clopen closure in αX. Then the sets A,B must have disjoint closures in αX. It follows from Theorem 5.15 of [22] that f is continuously extendable over αX. It follows from Theorem 3.10 that the Stone space $S(X) = W(X, Z(X))$ is compact. Hence (vii) implies (i) (cf. Remark 2.9 of [22]).

By applying our Theorem 3.1 and the proof to Theorem 10.12 of [22], we can immediately deduce the following:

Proposition 3.17. [ZF] Let J be an infinite set. Then the Cantor cube 2^J is compact if and only if there exists a Hausdorff compactification Y of 2^J such that, for each $j \in J$, the projection $\pi_j : 2^J \to \{0,1\}$ is continuously extendable over Y. Similarly, the Tychonoff cube $[0,1]^J$ is compact if and only if there exists a Hausdorff compactification Z of $[0,1]^J$ such that, for each $j \in J$, the projection $\pi_j : [0,1]^J \to [0,1]$ is continuously extendable over Z.

Theorem 3.18. The following sentences are relatively consistent with ZF:

(i) There exists a 0-dimensional T_1-space which has no compactification αX such that every clopen subset of X has a clopen closure in αX.

(ii) There exists a metrizable 0-dimensional space which has no compactification αX such that every clopen subset of X has a clopen closure in αX.

Proof. It was shown in [27] that in some models of ZF (for instance, in the model $\mathcal{M}7$ of [15]) there exists a metrizable non-compact Cantor cube. Let X be a metrizable non-compact Cantor cube. Of course, X is 0-dimensional.
It follows from Theorem 3.1 and Proposition 3.17 that X does not have a compactification αX such that every clopen subset of X has a clopen closure in αX. Hence both (i) and (ii) are relatively consistent with ZF.

Remark 3.19. It is known that in the model $\mathcal{M}7$ of [15], the Cantor cube $2^\mathbb{R}$ is not compact (see [17]). Hence, in view of Proposition 3.17 and Theorem 3.1, $2^\mathbb{R}$ is a 0-dimensional T_1-space which has no compactifications in $\mathcal{M}7$ in which closures of clopen sets in $2^\mathbb{R}$ are clopen. However, by Theorem 2.2 of [27], the space $2^\mathbb{R}$ cannot be metrizable.

Definition 3.20. Let X be a topological space and $\text{Clop}(X)$ the collection of all clopen subsets of X. Every filter in the family $\text{Clop}(X)$ will be called a clopen filter of X. Every ultrafilter in $\text{Clop}(X)$ will be called a clopen ultrafilter of X.

In the light of Theorem 3.18, it may be useful to have a deeper look at clopen filters.

Theorem 3.21. [ZF] Let X be a topological space. Suppose that αX is a compactification of X such that every set $A \in \text{Clop}(X)$ has a clopen closure in αX. Then every clopen filter of X is included in a clopen ultrafilter of X.

Proof. Let \mathcal{H} be a clopen filter of X. It follows from the compactness of αX that the set $K = \bigcap_{H \in \mathcal{H}} \text{cl}_{\alpha X}(H)$ is non-empty. Let us fix $x \in K$ and put

$$\mathcal{F} = \{ F \in \text{Clop}(X) : x \in \text{cl}_{\alpha X}F \}.$$

We show that \mathcal{F} is a clopen ultrafilter of X such that $\mathcal{H} \subseteq \mathcal{F}$. Clearly, $\emptyset \notin \mathcal{F}$ and $\mathcal{H} \subseteq \mathcal{F}$. For each $A \in \text{Clop}(X)$, we have $\alpha X = \text{cl}_{\alpha X}(A) \cup \text{cl}_{\alpha X}(X \setminus A)$. Hence, since X is dense in αX, it follows from our hypothesis that, for each $A \in \text{Clop}(X)$, the point x belongs to exactly one of the sets $\text{cl}_{\alpha X}(A)$ and $\text{cl}_{\alpha X}(X \setminus A)$, so exactly one of A and $X \setminus A$ belongs to \mathcal{F}.

Consider any $A, B \in \mathcal{F}$. We show that $A \cap B \notin \mathcal{F}$. Assume the contrary that $A \cap B \notin \mathcal{F}$. Then $(X \setminus A) \cup (X \setminus B) \in \mathcal{F}$ and, consequently, $x \in \text{cl}_{\alpha X}(X \setminus A)$ or $x \in \text{cl}_{\alpha X}(X \setminus B)$. This implies that either $A \notin \mathcal{F}$ or $B \notin \mathcal{F}$ - a contradiction. Hence \mathcal{F} is closed under finite intersections. Of course, for any $A \in \mathcal{F}$ and $B \in \text{Clop}(X)$ such that $A \subseteq B$, we have $B \in \mathcal{F}$. All this taken together implies that \mathcal{F} is a clopen ultrafilter of X such that $\mathcal{H} \subseteq \mathcal{F}$. \hfill \Box
Remark 3.22. (a) The requirement from Theorem 3.21 that if \(A \in \text{Clop}(X) \), then \(\text{cl}_{\alpha X}(A) \in \text{Clop}(\alpha X) \), cannot be dropped out even when \(X \) is discrete. Indeed, if \(\mathcal{M} \) is a \(\text{ZF} \)-model such that \(\omega \) has no free ultrafilters in \(\mathcal{M} \), e.g. Feferman’s Model \(\mathcal{M}_2 \) or Solovay’s Model \(\mathcal{M}_5(\aleph) \) in [15], then the clopen filter \(\mathcal{H} \) of all cofinite subsets of the discrete space \(\omega \) does not extend to a clopen ultrafilter of \(\omega \) in \(\mathcal{M} \). The Alexandroff compactification \(\alpha \omega \) of the discrete space \(\omega \) is a Hausdorff compactification of \(\omega \) such that, for each infinite subset \(A \) of \(\omega \), if \(\omega \setminus A \) is infinite, the closure of \(A \) in \(\alpha \omega \) is not clopen.

(b) That conditions (i) and (vii) of Theorem 3.16 are equivalent can be proved by applying Theorem 3.21. Namely, for a discrete space \(X \), the Stone space \(S(X) \) is compact if and only if every filter in the power set \(\mathcal{P}(X) \) is contained in an ultrafilter in \(\mathcal{P}(X) \). By Theorem 3.21, condition (vii) of Theorem 3.16 implies that \(S(X) \) is compact for every discrete space \(X \). Of course, \(S(X) \) is compact for every discrete space \(X \) if and only if \(\text{UFT} \) holds.

(c) It was shown in [18] that the following are equivalent:

(i) every clopen filter of \(2^\mathbb{R} \) extends to a clopen ultrafilter of \(2^\mathbb{R} \) (Form 139 in [15]).

(ii) \(\text{BPI}(\omega) \) : every filter on \(\omega \) extends to an ultrafilter (Form 225 in [15]).

(iii) the Cantor cube \(2^\mathbb{R} \) is compact.

Hence, \(2^\mathbb{R} \) is not compact if and only if there exists a clopen filter \(\mathcal{H} \) of \(2^\mathbb{R} \) which does not extend to a clopen ultrafilter of \(2^\mathbb{R} \). Thus, it follows directly from Theorems 3.1, 3.21 and Proposition 3.17 that the Cantor cube \(2^\mathbb{R} \) does not have a compactification in which closures of clopen sets of \(2^\mathbb{R} \) are clopen if and only if there exists a clopen filter of \(2^\mathbb{R} \) which does not extend to a clopen ultrafilter of \(2^\mathbb{R} \).

Remark 3.23. (a) Let \(X \) be a Tychonoff space and \(\alpha X \) be a Hausdorff compactification of \(X \). It is known that if \(\alpha X \) is a Čech-Stone compactification of \(X \), then the following condition is satisfied:

\[(\ast) \quad \text{for every clopen set } A \text{ of } X, \text{ cl}_{\alpha X}(A) \text{ is a clopen set of } \alpha X. \]

On the other hand, the interval \([0,1]\) is a non-Čech-Stone compactification of the open interval \((0,1)\) with the usual topology, while \((0,1)\) satisfies trivially \((\ast)\). Thus, \((\ast)\) does not imply \(\alpha X \) is a Čech-Stone compactification of \(X \).

(b) For each \(n \in \omega \), let \(\mathcal{F}_n = \{ A \subseteq \omega : n \in A \} \). Since the set \(W = \{ \mathcal{F}_n : n \in \omega \} \) is dense in \(S(\omega) \), it follows that any compactification of \(S(\omega) \) is also
a compactification of the discrete space ω. In particular, if $S(\omega)$ is compact, then it is the Čech-Stone compactification of ω. Clearly, if in a ZF-model \mathcal{M} there do not exist free ultrafilters in the collection $\mathcal{P}(\omega)$, then $S(\omega) = W$ is discrete in \mathcal{M}, and the Alexandroff compactification α_aW is a Hausdorff compactification of W but, in view of Theorem 2.27, α_aW is not a Čech-Stone compactification of W because W is not amorphous. In the model $\mathcal{N}[\Gamma]$ of $[\Pi]$, $S(\omega)$ is a dense-in-itself Tychonoff space which is easily seen not to be locally compact. Hence, the Alexandroff compactification $\alpha_aS(\omega)$ of $S(\omega)$ is a Hausdorff compactification of $S(\omega)$ but, in much the same way, as in the proof to Theorem 3.5.9 of [5], one can check that eX is the Čech-Stone compactification of X.

Proposition 3.24. [ZF] If a topological space X has a Hausdorff compactification and there exists a set \mathcal{K} of Hausdorff compactifications of X such that every Hausdorff compactification of X is equivalent with a member of \mathcal{K} and, moreover, if the space $\prod_{\gamma X \in \mathcal{K}} \gamma X$ is compact, then X has its Čech-Stone compactification.

Proof. Let \mathcal{K} be a set of Hausdorff compactifications of X such that every Hausdorff compactification of X is equivalent with a member of \mathcal{K}. Put $Y = \prod_{\gamma X \in \mathcal{K}} \gamma X$ and assume that Y is compact. Let $e: X \to Y$ be defined by: $e(x)(\gamma X) = \gamma(x)$ for all $x \in X$ and $\gamma X \in \mathcal{K}$. Denote by eX the closure in Y of $e(X)$. Then eX is a Hausdorff compactification of X. In much the same way, as in the proof to Theorem 3.5.9 of [5], one can check that eX is the Čech-Stone compactification of X. \square

Proposition 3.25. [ZF] Suppose that a topological space X has its Čech-Stone compactification. Then there exists a set \mathcal{K} of Hausdorff compactifications of X such that every Hausdorff compactification of X is equivalent with a member of \mathcal{K}.

Proof. Let us consider the collection \mathcal{R} of all collections \mathcal{D} of pairwise disjoint closed subsets of βX such that each $D \in \mathcal{D}$ is non-empty, $\beta X \setminus X = \bigcup_{D \in \mathcal{D}} D$ and the quotient space $r_{\mathcal{D}}X$ obtained from βX by identifying each set $D \in \mathcal{D}$ with a point is a Hausdorff compactification of X. It follows from ZF that the class $\mathcal{K} = \{r_{\mathcal{D}}X : \mathcal{D} \in \mathcal{R}\}$ is a set. Of course, every Hausdorff compactification of X is equivalent with a member of \mathcal{K}. \square
Remark 3.26. In ZFC, for a non-empty Tychonoff space X, the class $K = \{ e_F : F \in \mathcal{E}(X) \}$ is a set of Hausdorff compactifications of X such that every Hausdorff compactification of X is equivalent with a member of K. However, perhaps, in a model of ZF, it may happen that every class K of Hausdorff compactifications of a space X such that every Hausdorff compactification of X is equivalent with a member of K is a proper class.

We include a careful proof to the following theorem for completeness:

Theorem 3.27. [ZF] The following conditions are equivalent:

(i) UFT;

(ii) for every topological space X it holds true that if X has a Hausdorff compactification, then X has the Čech-Stone compactification;

(iii) every Tychonoff space has its Čech-Stone compactification.

Proof. Suppose that $\langle X, \tau \rangle$ is a topological space which has a Hausdorff compactification. Consider the Stone space $S(X)$ of the discrete space $\langle X, \mathcal{P}(X) \rangle$. Assume that (i) holds. Then $S(X)$ is the Čech-Stone compactification of $\langle X, \mathcal{P}(X) \rangle$. Consequently, for every Hausdorff compactification $\gamma \langle X, \tau \rangle$ of $\langle X, \tau \rangle$ the mapping $\text{id}_X : X \to \gamma \langle X, \tau \rangle$ is continuously extendable over $S(X)$ to a mapping $g_{\gamma} : S(X) \to \gamma \langle X, \tau \rangle$. We consider the equivalence relation \approx_γ on $S(X)$ defined by: $y \approx_\gamma z$ if and only if $g_{\gamma}(y) = g_{\gamma}(z)$ for $y, z \in S(X)$. Then the space $\gamma \langle X, \tau \rangle$ is homeomorphic with the quotient space $S(X)/\approx_\gamma$ (see Theorem 2.4.3 of [5]). Since the class of all quotient spaces obtained from $S(X)$ is a set, we can deduce from the scheme of replacement (Axiom 6 on page 10 of [20]) that there exists a set \mathcal{K} of Hausdorff compactifications of $\langle X, \tau \rangle$ such that every Hausdorff compactification of $\langle X, \tau \rangle$ is equivalent with a member of \mathcal{K}. In the light of Proposition 3.24 and Theorem 4.70 of [12], we infer that (i) implies (ii). We can deduce from Theorem 3.16 that (ii) implies (i) and that (iii) implies (i). In the light of Theorem 4.70 of [12], it follows from Theorem 3.16 and Proposition 3.24 that (i) implies (iii).

Corollary 3.28. [ZF + UFT + UL] Every normal T_1-space has its Čech-Stone compactification.

Proof. We assume ZF + UFT + UL. Let X be a normal T_1 space. That X is Tychonoff follows from UL(X). Since UFT holds, it follows from Theorem 3.27 or from Corollary 3.14 and Theorem 3.16 that βX exists.
For a non-empty topological space X, let us consider $C^* (X)$ with the metric of uniform convergence ρ_u defined by the equality $\rho_u(f, g) = \sup \{|f(x) - g(x)| : x \in X\}$ for $f, g \in C^* (X)$. The topology $\tau(\rho_u)$ induced by ρ_u is called the **topology of uniform convergence** in $C^* (X)$.

Definition 3.29. A set $A \subseteq C^* (X)$ will be called:

(i) **sequentially closed** in $C^* (X)$ if, for each uniformly convergent on X sequence (f_n) of functions from A, the limit function $f = \lim_{n \to +\infty} f_n$ belongs to A;

(ii) **uniformly closed** in $C^* (X)$ if A is closed with respect to the topology of uniform convergence in $C^* (X)$.

Of course, every uniformly closed subset of $C^* (X)$ is sequentially closed. It follows from Theorem 4.54 of [12] that it may not be true in a model of ZF that every sequentially closed subset of $C^* (X)$ is uniformly closed. The following theorem of ZFC can be deduced immediately from Theorem 2.12 of [26]:

Theorem 3.30. [ZFC] If a compactification γX of a non-empty topological space X is generated by a set $F \in \mathcal{E}(X)$, then $C_{\gamma} (X)$ is the smallest (with respect to inclusion) sequentially closed subalgebra of $C^* (X)$ which contains F and all constant functions from $C^* (X)$.

It is still unknown whether Theorem 3.30 can be proved in ZF. In the original proof to Theorem 2.12 in [26], the axiom of choice was used. Theorem 3.30 is a useful tool for investigations of Hausdorff compactifications in every model of ZFC.

Conclusions. In this article, we have proved a considerable number of theorems on Hausdorff compactifications with the absence of the axiom of choice. We have posed non-trivial open problems that are of fundamental importance in ZF-theory of Hausdorff compactifications. More research is needed to solve the problems in a not-too-distant future.

References

[1] C. E. Aull, R. Lowen (eds.), Handbook of the History of General Topology, vol. 2, Kluwer Academic Publishers 1998.
[2] R. Chandler, Hausdorff Compactifications, Marcel Dekker, New York, 1976.

[3] R. E. Chandler and G. D. Faulkner, Hausdorff Compactifications: a Retrospective, pages 631–667 in [11].

[4] E. van Douwen, Horrors of topology without AC: A non-normal orderable space, Proc. Amer. Math. Soc. 95 (1985) 101–105.

[5] R. Engelking, General Topology, Sigma Series in Pure Mathematics 6, Heldermann, Berlin, 1989.

[6] O. Frink, Compactifications and semi-normal spaces, Am. J. Math. 86 (1964) 602–607.

[7] L. Gillman and M. J. Jerison, Rings of Continuous Functions, Springer-Verlag, New York-Heidelberg-Berlin, 1976.

[8] I. Glicksberg, Stone-Čech compactifications of products, Trans. Amer. Math. Soc. 90 (1959) 369–382.

[9] C. Good and I. J. Tree, Continuing horrors of topology without choice, Topol. Appl. 63 (1995) 79–90.

[10] E. Hall and K. Keremedis, Čech-Stone compactifications of discrete spaces in ZF and some weak forms of the Boolean Prime Ideal Theorem, Topology Proc. 41 (2013) 111–122.

[11] E. Hall, K. Keremedis and E. Tachtsis, The existence of free ultrafilters on ω does not imply the extension of filters on ω to ultrafilters, Math. Logic Quart. 59 (2013) 158–267.

[12] H. Herrlich, Axiom of Choice, Lecture Notes in Mathematics, vol.1876, Springer-Verlag, Berlin-Heidelberg, 2006.

[13] H. Herrlich, P. Howard and K. Keremedis, On extensions of countable filterbases to ultrafilters and ultrafilter compactness, Quaest. Math. 41 (2018) 213–225.

[14] H. Herrlich and K. Keremedis, Remarks on the space N₁ in ZF, Topol. Appl. 158 (2011) 229–237.
[15] P. Howard and J. E. Rubin, Consequences of the axiom of choice, Math. Surveys and Monographs 59, A.M.S., Providence R.I., 1998.

[16] P. Howard, K. Keremedis, H. Rubin and J. E. Rubin, Versions of normality and some weak forms of the axiom of choice, Math. Logic Quart. 44 (1998) 367–382.

[17] K. Keremedis, The Compactness of $2^\mathbb{R}$ and the Axiom of Choice, Math. Log. Quart. 46 (2000) 569–571.

[18] K. Keremedis, Clopen ultrafilters of ω and the cardinality of the Stone space $S(\omega)$ in ZF, Topology Proc. 51 (2018) 1–17.

[19] K. Keremedis and E. Tachtsis, Wallman compactifications and Tychonoff’s compactness theorem in ZF, Topology Proc. 42 (2013) 275–297.

[20] K. Kunen, The Foundations of Mathematics, Studies in Logic, vol.19, College Publications, London, 2009.

[21] K. D. Magill Jr., N-point compactifications, Am. Math. Mon. 72 (1965) 1075–1081.

[22] A. Piękosz and E. Wajch, Compactness and compactifications in generalized topology, Topol. Appl. 194 (2015) 241–268.

[23] J. R. Porter and R. G. Woods, Extensions and Absolutes of Hausdorff Spaces, Springer-Verlag, Berlin-Heidelberg, 1988.

[24] L. B. Šapiro, A reduction of the fundamental problem of bicom pact extensions of Wallman type, Dokl. Akad. Nauk SSSR 217, 38–41 (in Russian), Translation: Soviet Math. Dokl. 15 (1974) 1020–1023.

[25] V. M. Ul’janov, Solution of a basic problem on compactifications of Wallman type, Dokl. Akad. Nauk SSSR 233 (1977) 1056–1059.

[26] E. Wajch, Subsets of $C^*(X)$ generating compactifications, Topol. Appl. 29 (1988) 29–39.

[27] E. Wajch, Quasi-metrizability of products in ZF and equivalences of CUT(fin), Topol. Appl. 241 (2018) 62–69.