Resistance of disposable drapes to bacterial penetration

AW Blom, A Barnett, P Ajitsaria
Department of Orthopaedic Surgery, University of Bristol, Bristol, United Kingdom

A Noel
Department of Medical Microbiology, University of Bristol, Bristol, United Kingdom

CM Estela
Department of Plastic Surgery, University of Bristol, Bristol, United Kingdom

ABSTRACT

Purpose. To test the bacterial penetrability of disposable non-woven drapes used specifically for total hip arthroplasty.

Methods. 12 round agar plates were inoculated with 10^7 colony-forming units/ml of coagulase-negative staphylococci (CNS) and incubated in air at 37°C for 18 hours to obtain a semi-confluent growth of organisms. Six brands of disposable drapes were tested; each was assigned to 2 plates. Each disposable drape was placed between a round agar plate and an inverted square agar plate filled with blood agar. After 30 and 90 minutes, the square agar plates were removed and incubated for 48 hours and inspected for growth of CNS.

Results. Bacterial penetration was time dependant. Certain brands of drapes were more impenetrable than others; none was impenetrable at all time points, but most remained so or allowed passage of fewer than 100 colony-forming units at 90 minutes.

Conclusion. It is recommended that drapes be rigorously tested with regard to their resistance to bacterial penetration.

Key words: arthroplasty; bacteria; Staphylococcus

INTRODUCTION

Wound infection caused by intra-operative contamination increases morbidity, mortality, and costs of total joint arthroplasty.1 Measures such as prophylactic antibiotics, laminar flow, and occlusive clothing are effective in reducing both wound infection2 and contamination,3 as are pulse and chlorhexidine lavage.4,5 Surgical technique and operating time also affect infection rates;6 longer operating time confers higher risk of infection.7 The passage of bacteria through drapes is a potential source of wound contamination. Disposable non-woven drapes are superior to reusable woven cotton/linen drapes in resisting bacterial penetration.8

We aimed to test the bacterial penetrability of 6 brands of disposable drapes used specifically for total hip arthroplasty.
MATERIALS AND METHODS

12 round agar plates, 90 mm in diameter, were filled with Columbia agar (Becton Dickenson; Oxford, UK) containing 8% whole horse blood (TCS BioSciences; Botolph Claydon, UK). The plates were pre-incubated for 12 hours at 37°C and inspected for bacterial growth. Then they were inoculated with 10^7 colony-forming units (CFU)/ml of coagulase-negative staphylococci (CNS) and incubated in air at 37°C for 18 hours to obtain a semi-confluent growth of organisms.

Six brands of disposable drapes were tested; each was assigned to 2 plates. Each disposable drape was placed between a round agar plate and an inverted square agar plate, 100x100 mm in size, filled with blood agar. After 30 and 90 minutes, the square agar plates were removed and incubated for 48 hours and inspected for growth of CNS. The experiment was repeated 4 times to check for reproducibility.

The 6 brands of disposable drapes were: 3M Steridrape (St Paul [MN], USA), Allegiance Hip Pack (McGaw Park [IL], USA), Medline Hip Set (Mundelein [IL], USA), Molnlycke Barrier Brand (Goteborg, Sweden), Molnlycke Klinidrape (Goteborg, Sweden), and Vygon Unidrape (Ecouen, France).

RESULTS

The following results are presented anonymously, using a logarithmic scale for CFUs. Bacterial penetration was time dependant. Certain brands of drapes were more impenetrable than others; none was impenetrable at all time points, but most remained impenetrable or allowed the passage of <100 CFU at 90 minutes (Fig.).

Drape 1 was impenetrable in all except the second experiment in which there was a passage of <10 CFU at 90 minutes. Drape 2 was also impenetrable in all except the second experiment in which there was a passage of <10 CFU at 30 minutes and $<10^2$ CFU at 90 minutes. Drape 3 was impenetrable at
30 minutes in all except the second experiment in which there was a passage of <10 CFU; at 90 minutes it was impenetrable only in the first experiment and there was a passage of <10 to <10⁰ CFU in the other experiments. Drape 4 was impenetrable in all except the first experiment in which there was a passage of <10 CFU at both 30 and 90 minutes. Drape 5 was impenetrable at 30 minutes in experiments 3 and 4, but there was a passage of <10⁴ CFU in experiment 1 and <10⁰ CFU in experiment 2; at 90 minutes there was a passage of <10⁵ to <10⁴ CFU in all experiments. Drape 6 was impenetrable in all except the first and second experiments in which there was a passage of <10² CFU at 90 minutes.

DISCUSSION

The methodology of assessing bacterial penetrability of drapes is well-established.⁸⁻¹⁰ Other studies have reported the resistance of drapes to fluids¹¹ and tracer particles,¹² but we consider bacteria have greater clinical significance. A modification of this method has been used to assess the penetrability of gowns to bacteria.¹³ CNS was used because it is the most common source of infection in total joint arthroplasties.⁴¹⁴

In our experiments, drapes were directly exposed to the heavily contaminated agar (10⁷ CFU). This is much more demanding than the situation usually encountered in total hip arthroplasty. The highest penetration of any drape was 10⁴ CFU, which was a considerable reduction in bacterial load. Previous studies have shown that reusable cotton/linen drapes performed much worse than disposable drapes under similar conditions.⁸

A small inoculum of bacteria can cause deep infection in a cemented arthroplasty.¹⁵ It is recommended that drapes be rigorously tested with regard to their resistance to bacterial penetration.

REFERENCES

1. Bannister GC. Prevention of infection in joint replacement. Curr Orthop 2002;16:426–33.
2. Lidwell OM. Air, antibiotics and sepsis in replacement joints. J Hosp Infect 1998;11(Suppl C):S18–40.
3. Hubble MJ, Weale AE, Perez JV, Bowker KE, MacGowan AP, Bannister GC. Clothing in laminar-flow operating theatres. J Hosp Infect 1996;32:1–7.
4. Hope PG, Kristinsson KG, Norman P, Elson RA. Deep infection of cemented total hip arthroplasties caused by coagulase-negative staphylococci. J Bone Joint Surg Br 1989;71:851–5.
5. Taylor GJ, Leeming JP, Bannister GC. Effect of antiseptics, ultraviolet light and lavage on airborne bacteria in a model wound. J Bone Joint Surg Br 1993;75:724–30.
6. Gordon SM, Culver DH, Simmons BP, Jarvis WR. Risk factors for wound infections after total knee arthroplasty. Am J Epidemiol 1990;131:905–16.
7. Pavel A, Smith RL, Ballard A, Larsen IJ. Prophylactic antibiotics in clean orthopaedic surgery. J Bone Joint Surg Am 1974;56:777–82.
8. Blom A, Estela C, Bowker K, MacGowan A, Hardy JR. The passage of bacteria through surgical drapes. Ann R Coll Surg Engl 2000;82:405–7.
9. Blom AW, Estela CM, Bowker KE, MacGowan AP, Hardy JR. A new method of assessing the penetration of bacteria through fabrics used in the operating theatre. J Hosp Infect 1999;43:69–70.
10. Blom AW, Gozzard C, Heal J, Bowker K, Estela CM. Bacterial strike-through of re-usable surgical drapes: the effect of different wetting agents. J Hosp Infect 2002;52:52–5.
11. Mackintosh CA, Lidwell OM. The evaluation of fabrics in relation to their use as protective garments in nursing and surgery. III. Wet penetration and contact transfer of particles through clothing. J Hyg (Lond) 1980;85:393–403.
12. Ha'eri GB, Wiley AM. Wound contamination through drapes and gowns: a study using tracer particles. Clin Orthop Relat Res 1981;154:181–4.
13. Lankester BJ, Bartlett GE, Garneti N, Blom AW, Bowker KE, Bannister GC. Direct measurement of bacterial penetration through surgical gowns: a new method. J Hosp Infect 2002;50:281–5.
14. Blom AW, Brown J, Taylor AH, Pattison G, Whitehouse S, Bannister GC. Infection after total knee arthroplasty. J Bone Joint Surg Br 2004;86:688–91.
15. Southwood RT, Rice JL, McDonald PJ, Hackendorf PH, Rozenbilds MA. Infection in experimental hip arthroplasties. J Bone Joint Surg Br 1985;67:229–31.