Research Article

Meta-Analysis of the Efficacy and Safety of Olanzapine versus Clozapine when Treating Senile Dementia

Zongqin Wang, Yingying Feng, Yanyan Wang, Hui Qiu, Zhongyang Rui, Mingxing Li, and Lihua Lv

Wuhan Mental Health Center, No. 93 Youyi Road Qiaokou District, China

Correspondence should be addressed to Lihua Lv; 18407134@masu.edu.cn

Received 7 June 2022; Revised 4 July 2022; Accepted 12 July 2022; Published 11 August 2022

Academic Editor: Gang Chen

Copyright © 2022 Zongqin Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objective. To systematically assess the safety and efficacy of olanzapine versus clozapine when treating senile dementia and to provide evidence-based medicine basis for its promotion and use.

Methods. PubMed, Embase, ScienceDirect, Cochrane Library, China Knowledge Network Database (CNKI), China VIP Database, Wanfang Database, and China Biomedical Literature Database (CBM) online database were searched for randomized controlled trials (RCT) of olanzapine and clozapine when treating senile dementia. The retrieval time limit is from the establishment of the database to the present. The data were extracted independently by two researchers, and the bias risk of each contained literature was analyzed in accordance with the standard of Cochrane Handbook 5.3. RevMan 5.4 statistical software was used to analyze the collected data by meta-analysis.

Results. Finally, 6 randomized controlled trial articles were included, with a total of 490 samples. Meta-analysis of clinical efficacy showed that the clinical efficacy was similar and there was no significant difference \((P > 0.05)\). Two articles used Alzheimer’s disease pathological behavior rating scale (BEHAVE-AD) to compare the pathological behavior of different stages after treatment. Statistical analysis showed that there was no significant difference between the total score of BEHAVE-AD and the scores of each factor in each week after treatment. The non-treatment adverse reaction scale (TESS) of the study group and the control group was analyzed by meta-analysis. The TESS score of the study group after treatment was significantly lower than that of the control group. The BPRS scores of different stages after treatment were analyzed by meta-analysis, and there was no significant difference in the total score and factor scores of BPRS in each week after treatment. Two clinical trials reported the incidence of neurological symptoms after treatment. Olanzapine and clozapine treatment can effectively reduce the risk of aging. There was no significant difference in the incidence of neurological symptoms in patients with dementia \((P > 0.05)\). According to the analysis of meat products, the incidence of adverse reactions in the study group was significantly lower than that in the control group \((P < 0.05)\). Conclusion. Olanzapine and clozapine have similar efficacy when treating mental and behavioral disorders in patients with senile dementia, in which olanzapine is more effective in improving the symptoms of patients with Alzheimer’s disease (AD), with less adverse reactions and high safety, which is worth popularizing in clinical practice. However, more studies and follow-up with higher methodological quality and longer intervention time are needed to further verify.

1. Introduction

There is a progressive and fatal neurodegenerative disease known as Alzheimer’s disease (AD), with symptoms of continuing cognitive and memory deterioration, progressive impairment of daily living abilities, and various neuropsychiatric and behavioral dysfunctions [1]. Its pathogenesis is mainly caused by choline deficiency, resulting in memory loss, loss of orientation, behavior and personality changes, and so on. The disease is a common chronic encephalopathy syndrome in the elderly, showing a chronic or progressive process. Because senile dementia patients are accompanied by depression, aggression, hallucinations, and delusions and other so-called mental and behavioral symptoms
may be di
cerebral vascular dementia, frontotemporal dementia, and
members or friends [3, 4]. Dementia with Lewy bodies, AD,
than 75% of people with dementia require the care of family
(BPSD), the use of antipsychotics is inevitable [2]. More
than 75% of people with dementia require the care of family
members or friends [3, 4]. Dementia with Lewy bodies, AD,
cerebral vascular dementia, frontotemporal dementia, and
Parkinson’s disease dementia are among the most common
types of dementia.

Mental and behavioral symptoms of dementia behav-
ioral and psychological symptoms of dementias (BPSD)
were defined in 1996 as disorders of perception, emotion,
thought content, or behavior [5]. BPSD is a major symp-
tom of dementia, and almost all patients with dementia have at
least one BPSD symptom in the course of the disease. The
common symptoms of BPSD include depression, hallucina-
tion, delusion, anxiety, apathy, irritability, agitation, disinhi-
bition, and sleep behavior disorder. Patients can have a
variety of symptoms at the same time or only one. The
symptoms that appear in different periods of dementia
may be different, and the symptoms of different types of
dementia also have their own emphasis. Some studies have
confirmed that more than 90% of AD patients develop at
least one BPSD symptom at some point in the course of
the disease [6, 7]. The commonly used scales for evaluat-
ing BPSD are BEHAVE-AD, NPI, Cohen-Mansfield agita-
tion questionnaire, noncognitive part of Alzheimer’s disease rat-
ing scale (ADAS), and so on. The appearance of BPSD is
one of the main reasons for patients with dementia to seek
medical treatment, which often means the progression of
the disease, resulting in higher mortality. BPSD seriously
affects the life quality of patients and their families and
brings greater life pressure to patients and caregivers. They
contribute to the ill health of countless patients, and these
symptoms are the most complex and expensive aspects of
care. Studies have shown that one-third of dementia care
costs are due to the management of these symptoms, such
as the need for additional medical resources, the cost of care,
and the cost of additional care [8, 9]. The emergence of
BPSD not only noticeably increases the cost of care and
treatment but also has a close relationship with the decline
in the quality of life, income, stress, and depression of
caregivers. Caregivers managing patients with psychobehavioral
symptoms of dementia are more distressed or frustrated
than caregivers managing patients with dementia alone or
with other chronic medical conditions [10].

Common causes of BPSD include unmet patient needs,
caregiver factors, environmental triggers, and their interac-
tions. Mechanistic considerations are related to disruption
of brain networks, alterations in neurotransmitters. Com-
mon methods of treatment of BPSD are nondrug and drug
therapy. Nondrug treatments include self-maintenance ther-
apy, memory therapy, music therapy, aromatherapy, physi-
cal therapy, light therapy, touch therapy, and integrative
therapy. The types of drug treatment include antipsychotic
drugs, anticholinesterase drugs, excitatory amino acid recep-
tor antagonists, antidepressants, antiepileptic drugs, and
benzodiazepines. Among them, antipsychotics are the most
widely used clinically. Typical antipsychotic drugs are chlor-
promazine, haloperidol, and so on. The common atypical
antipsychotic drugs are risperidone, olanzapine, quetiapine,
clozapine, aripiprazole, aminosulfonyl, sulpiride, and so on.
The adverse reactions of typical antipsychotics are more obvious than
those of atypical antipsychotics, so atypical antipsychotics are
more commonly used.

At present, the efficacy and safety of antipsychotics when
in patients with dementia are still being explored. A systematic analysis showed
that there exhibited no remarkable difference in the effi-
cacy of olanzapine, risperidone, and quetiapine when
treating BPSD, while quetiapine had the lowest incidence
of extrapyramidal symptoms and the lowest incidence of
somanolence adverse reactions of risperidone [11]. Recent
studies support risperidone and olanzapine as the first
choice to treat psychotic and invasive symptoms in
patients with dementia [12]. Olanzapine and risperidone
are the main atypical antipsychotic drugs. Randomized tri-
als comparing olanzapine and risperidone directly show
that olanzapine is more effective than risperidone, and its
safety is higher [13]. However, there exhibits no remark-
able difference in the therapeutic effect between olanzapine
and risperidone, but olanzapine takes effect faster and the
incidence of extrapyramidal symptoms is lower [14].
Therefore, this study makes a systematic, quantitative,

Include the literature	Year of publication	N (C/T)	Intervention method	Outcome index	Course of treatment	Whether it is random or not	Whether it is blind or not
Wan [15]	2011	38/38	Clozapine Olanzapine	⑨⑨	8 weeks	Yes	Yes
Yu et al. [16]	2011	38/38	Clozapine Olanzapine	⑩⑩	8 weeks	Yes	No
Gong [17]	2014	70/70	Clozapine Olanzapine	②	8 weeks	Yes	No
Zhu [18]	2015	26/26	Clozapine Olanzapine	④②④	8 weeks	No	No
Xu [19]	2012	50/50	Clozapine Olanzapine	④②④	8 weeks	Yes	No
Kong and Yu [20]	2014	23/23	Clozapine Olanzapine	④②④④	8 weeks	No	No

Note: C: control group; T: research group; ① clinical curative effect; ② BEHAVE-AD scoring; ③ TESS scoring; ④ incidence of mental symptoms; ⑤ adverse reaction; ⑥ BPRS scoring.
and comprehensive analysis of the results of similar independent studies through meta-analysis, in order to assess the safety and efficacy of olanzapine versus clozapine when treating senile dementia and provide objective basis for clinical application.

2. Research Contents and Methods

2.1. The Sources and Retrieval Methods of Documents. We searched PubMed, Embase, ScienceDirect, Cochrane Library, China Journal full-text Database (CNKI), VIP full-text Database (VIP), Wanfang Database, and Chinese Biomedical Literature Data (CBM); searched relevant Chinese journals, conference papers, degree papers, etc.; and collected relevant data about olanzapine and clozapine when treating senile dementia in China. Literature retrieval was conducted in the form of free words and subject words with the keywords of olanzapine, clozapine, AD, effectiveness, safety, meta-analysis, etc., from January 2010 to May 2022.

2.2. Literature Inclusion Criteria and Exclusion Criteria

2.2.1. Literature Inclusion Criteria. The inclusion criteria were as follows: (1) type of study: all randomized controlled trials (RCT) of olanzapine and clozapine when treating senile dementia in China; the language is limited to Chinese; (2) subjects: all the patients met the diagnostic criteria of AD, and the score of the pathological behavior rating scale of AD was more than 8 points. There were no antipsychotic drugs and no somatic diseases before this trial. No other antipsychotic drugs were used during treatment; (3) intervention: the study group was cured with olanzapine, and the control group was cured with clozapine.

2.2.2. Literature Exclusion Standard. The exclusion criteria were as follows: (1) it is not a randomized controlled study; (2) the data report is incomplete, and the data cannot be used; (3) repeat the research content, and take the latest research; (4) the evaluation of the curative effect of the study was not remarkable.

2.3. Quality Evaluation and Data Extraction

(1) Bias risk assessment contained in the study: the bias risk assessment tool recommended by Cochrane System Review Manual 5.3 was used for evaluation

(2) Identifying the literature and collecting data: two researchers independently identify the literature, collect the data, evaluate the quality, and cross-check. Whenever there are differences, discuss them and
resolve them, or ask the third researcher for assistance. Of note, Express document management software and Excel Office software were used to manage and extract research data. If the data contained in the literature is incomplete, contact the author of this article to supplement it. The content of data extraction contains (1) basic information: writer, number of cases, and publication time; (2) intervention: plan and course of treatment; and (3) outcome index.

2.4. Statistical Processing. The RevMan5 software originated from Cochrane collaboration network for meta-analysis. The mean and standard deviation of the net change difference of serum albumin, prealbumin, and hemoglobin in the experiment and the control cohorts were input into RevMan5 for analysis. Because the index is a continuous variable, the weighted mean difference (WMD) is used as the effect scale, and 95% confidence interval is selected. First, the

\[\chi^2 \] test is used to determine whether there is heterogeneity between the studies; if \(P > 0.05 \) and \(I^2 < 50\% \), it is considered that the included study is homogeneous, and the modified impact model can be collected for meta-analysis. If \(P < 0.05 \) and \(I^2 \geq 50\% \), when judging the homogeneity of the included study, the combined effect is needed, then choose the random effect model. If \(P < 0.05 \) and the source of heterogeneity could not be judged, meta-analysis was not performed, and descriptive analysis was used.

3. Results and Analysis

3.1. The Results of Literature Retrieval and the Basic Situation of Literature Inclusion. 1321 articles were retrieved through computer database; 526 articles were obtained after eliminating repeated studies; 271 articles were obtained by preliminary reading of titles and abstracts; 93 articles were contained after excluding irrelevant studies, reviews, case reports and noncontrol literatures; and then, 87 articles with incomplete data and no main outcome indicators were read carefully and finally contained 6 RCTs [15–20]. A total of 490 samples were analyzed by meta-analysis. The basic features contained in the literature are shown in Table 1.

3.2. Evaluation of the Quality of the Methodology Contained in the Literature. The 6 RCTs contained in this meta-analysis are all reported on the patients' baseline conditions. One of the RCTs did not mention “random assignment.” The six contained studies gave detailed intervention measures and treatment duration. None of the 6 RCTs described in detail the number and reasons for blinding and loss to follow-up or withdrawal. According to the Jadad scale, it can be seen that the 6 RCTs are all ≤2 points. The risk bias analysis is shown in Figures 1 and 2.

3.3. Meta-Analysis Result

3.3.1. Clinical Curative Effect. A total of 6 RCT studies were contained in this study, with a total of 490 samples, and a meta-analysis was conducted on the clinical efficacy. The results of the heterogeneity test showed that \(\chi^2 = 0.50, df = 3, P = 0.92 \), and \(I^2 = 0\% \), indicating that there is no obvious heterogeneity among the contained research data. According to the analysis in Figure 3, the clinical efficacy is comparable, and the difference was not statistically significant \((P > 0.05) \), suggesting that olanzapine and clozapine have similar efficacy for the treatment of mental and behavioral disorders in patients with AD.

3.3.2. Alzheimer’s Disease Pathological Behavior Score Scale (BEHAVE-AD). A total of 6 RCT studies were contained in this study, with a total of 490 samples, of which 2 articles used the AD pathological behavior rating scale (BEHAVE-AD) to compare the pathological behavior at different stages after treatment, from the heterogeneity test results: 2 weeks after treatment: \(\chi^2 = 4.90, df = 15, P = 0.99 \), and \(I^2 = 0\% \); four weeks after treatment: \(\chi^2 = 1.02, df = 15, P = 1.00 \), and \(I^2 = 0\% \); eight weeks after treatment: \(\chi^2 = 1.10, df = 15, P = 1.00 \), and \(I^2 = 0\% \). It shows that there is no obvious heterogeneity among the contained research data. From the analysis of Figures 4–6, it can be noticed that there exhibits no remarkable difference in the total score of BEHAVE-AD and each factor score after each week of treatment \((P > 0.05) \), suggesting that olanzapine and clozapine have similar effects on the improvement of pathological behavior in patients with senile dementia.

3.3.3. Adverse Drug Reaction Scale (TESS). A total of 6 RCT studies were contained in this study, with a total of 490 samples. A meta-analysis was carried out on the treatment-free adverse reaction scale (TESS). The results of the heterogeneity test showed that after 2 weeks of treatment, \(\chi^2 = 0.00 \),
df = 1, \(P = 0.96 \), and \(I^2 = 0\%\); after 4 weeks of treatment, \(\chi^2 = 1.00, df = 1, P = 0.32 \), and \(I^2 = 0\%\); and after 8 weeks of treatment, \(\chi^2 = 0.75, df = 2, P = 0.69 \), and \(I^2 = 0\%\). A summary analysis of all the literatures was carried out, and the results of the heterogeneity test showed the following: \(\chi^2 = 6.22, df = 6, P = 0.40 \), and \(I^2 = 3\%\), indicating that there exhibits no obvious heterogeneity among the contained research data, and the analysis in Figure 7 shows that the TESS score of the study group was noticeably lower compared to that of the control group after treatment, and the difference was statistically significant (\(P < 0.05 \)), suggesting that compared with clozapine, the incidence of adverse reactions of olanzapine when treating senile dementia patients was lower.

3.3.4 Concise Psychiatric Rating Scale (BPRS).

A total of 490 RCT studies were contained in this study, and the BPRS scores at different stages after treatment were meta-analyzed. According to the heterogeneity test results, after
2 weeks of treatment, $\chi^2 = 0.14$, df = 1, $P = 0.71$, and $I^2 = 0\%$; after 4 weeks of treatment, $\chi^2 = 1.49$, df = 1, $P = 0.22$, and $I^2 = 33\%$; and after 8 weeks of treatment, $\chi^2 = 1.66$, df = 1, $P = 0.20$, and $I^2 = 40\%$. A summary analysis of all the literatures was carried out, and the results of the heterogeneity test showed the following: $\chi^2 = 4.19$, df = 5, $P = 0.52$, and $I^2 = 0\%$, indicating that there exhibits no obvious heterogeneity among the contained research data, and the analysis in Figure 8 shows that there exhibited no remarkable difference in the BPRS total score and each factor score in each week of treatment ($P > 0.05$), which indicates that olanzapine can help reduce the mental symptoms of patients and promote patients.

3.3.5. Incidence of Neurological Symptoms. A total of 6 RCT studies were contained in this study, with a total of 490 samples, of which 2 clinical trials reported the incidence of neurological symptoms after treatment. The results of the
heterogeneity test showed the following: delusions/halluci-
nations: chi² = 0.32, df = 1, P = 0.57, and I² = 0%; abnormal
behavior: chi² = 1.30, df = 1, P = 0.25, and I² = 23%; and
anxiety and depression: chi² = 1.72, df = 1, P = 0.19, and I² =
0%, indicating that there exhibits no obvious heterogene-
ity among the contained research data; from the analysis in
Figure 9, it can be noticed that both olanzapine and cloza-
pine treatments can successfully reduce the incidence of
neurological symptoms in senile dementia patients, and the
difference was statistically significant (P > 0.05), which sug-
gests that olanzapine and clozapine are effective in elderly
patients. The improvement of neurological symptoms in
patients with stage dementia was comparable.

3.3.6. Adverse Reaction. A total of 6 RCT studies were con-
tained in this study, with a total of 490 samples. Meta-
analysis was conducted on the occurrence of adverse reac-
tions of patients after treatment. Common adverse reactions
include drowsiness, salivation, weight gain, dizziness, and rapid heart rate. A summary analysis of all the literatures was carried out, and the results of the heterogeneity test showed the following: $\chi^2 = 10.26$, df = 19, $P = 0.95$, and $I^2 = 0\%$, indicating that there exhibits no obvious heterogeneity among the contained research data. The analysis in Figure 10 shows that the incidence of adverse reactions in patients with senile dementia treated with olanzapine was lower than that in the control group, and the difference was statistically significant ($P < 0.05$), suggesting that compared with clozapine, the incidence of adverse reactions in patients with senile dementia treated with olanzapine was lower.

4. Analysis and Discussion

Senile dementia is the general name of all kinds of senile dementia, mainly including AD and vascular dementia (VD). Its clinical manifestations are the continuous deterioration of cognitive and memory function, the progressive decline of the ability of daily life, and various behavioral disorders and neuropsychiatric symptoms. In clinical, it is characterized by intellectual impairment. In addition, Alzheimer’s is also the fourth leading cause of disability and death in the elderly after tumors and cardiovascular and cerebrovascular diseases. Approximately 44 million people lived with dementia worldwide in 2013, according to statistics. There will be 76 million people with dementia in 2030 and 135 million in 2050, according to estimates [21]. Because the senile dementia patient is older, the liver and kidney functions are decreased; the drug absorption is slow; the excretion is prolonged; because of the increased sensitivity to the drug, it is easy to produce all kinds of adverse reactions; and most senile dementia patients are accompanied by somatic diseases, especially cardiovascular diseases, so the treatment of senile dementia patients with mental symptoms should not only consider the efficacy but also consider the safety of drugs [22].

There are many clinical methods to treat BPSD. The commonly used drugs for the treatment of mental and behavioral symptoms are anticholinesterase drugs, excitatory amino acid receptor antagonists, antipsychotic drugs, antidepressant drugs, antiepileptic drugs, benzodiazepine drugs, and so on. The most commonly used and effective atypical drugs are olanzapine, risperidone, and quinolin sulfoxide. Studies have shown that olanzapine, clozapine, and risperidone are superior to placebo when treating mental and behavioral symptoms of dementia, and quetiapine does not show a remarkable advantage over placebo [23, 24]. The aim of this study was to compare the safety and efficacy of olanzapine and clozapine when treating mental and behavioral symptoms of dementia. Through a comprehensive search of some databases, collection of relevant literature, formulation of inclusion and exclusion criteria, screening of literature, and quality evaluation of the article, a total of 6 articles with sample size of 490 cases were contained, and the relevant data were extracted. Finally, statistical analysis was carried out by RevMan 5.3 software.

Olanzapine is an antipsychotic drug with pharmacological effects on a variety of receptor systems, with affinity for 5-HT, dopamine D, α-adrenergic, histamine H, and other.
# Study or subgroup	Experimental	Control	Weight	Mean difference	Mean difference
1.4.1 After 2 weeks of treatment
Hongxing Zhu 2015 | 25.33 6.01 | 26.53 5.88 | 7.1% | -0.30 [-3.53, 2.93] | -
Rongjian Kong 2014 | 26.67 7.82 | 25.73 11.26 | 2.4% | 0.94 [-4.66, 6.54] | -
Subtotal (95% CI) | 49 | 49 | 9.4% | 0.01 [-2.79, 2.81] | -
Heterogeneity: $\chi^2 = 0.14$, df = 1 ($P = 0.71$); $I^2 = 0$
Test for overall effect: $Z = 0.01$ ($P = 0.99$)

1.4.2 After 4 weeks of treatment
Hongxing Zhu 2015 | 22.13 5.43 | 23.01 5.83 | 7.9% | -0.88 [-3.94, 2.18] | -
Rongjian Kong 2014 | 22.53 5.33 | 20.57 6.31 | 6.5% | 1.96 [-1.42, 5.34] | -
Subtotal (95% CI) | 49 | 49 | 14.4% | 0.40 [-1.87, 2.67] | -
Heterogeneity: $\chi^2 = 1.49$, df = 1 ($P = 0.22$); $I^2 = 33$
Test for overall effect: $Z = 0.35$ ($P = 0.73$)

1.4.3 After 8 weeks of treatment
Hongxing Zhu 2015 | 20.08 1.88 | 20.98 1.91 | 69.6% | -0.90 [-1.93, 0.13] | -
Rongjian Kong 2014 | 20.76 6.92 | 19.36 4.35 | 6.6% | 1.40 [-1.94, 4.74] | -
Subtotal (95% CI) | 49 | 49 | 76.2% | -0.70 [-1.68, 0.28] | -
Heterogeneity: $\chi^2 = 1.66$, df = 1 ($P = 0.20$); $I^2 = 40$
Test for overall effect: $Z = 1.39$ ($P = 0.16$)

Total (95% CI)
147 147 | 100.0% | -0.48 [-1.33, 0.38] | -
Heterogeneity: $\chi^2 = 4.19$, df = 5 ($P = 0.52$); $I^2 = 0$
Test for overall effect: $Z = 1.08$ ($P = 0.28$)
Test for subgroup differences: $\chi^2 = 0.89$, df = 2 ($P = 0.64$); $I^2 = 0$

Figure 8: Forest plot of meta-analysis of BPRS score.

Figure 9: Forest plot of meta-analysis of incidence of neurological symptoms.
receptors, as well as dopamine and choline. It can antagonize and even selectively reduce the firing of dopaminergic neurons in the limbic system (A10), while having little effect on the motor function pathway of the striatum (A9) [25–27]. Meta-analysis showed that the clinical efficacy was similar and there was no significant difference between olanzapine and clozapine in the treatment of mental and behavioral disorders in patients with AD. The meta-analysis of the concise psychiatric rating scale at different stages after treatment showed that there was no significant difference in the total score and factor scores of BPRS in each week after treatment, suggesting that olanzapine can help patients with mental symptoms and improve their daily behavior. Two articles were compared with Alzheimer’s disease pathological behavior rating scale (BEHAVE-AD). There was no significance difference in the total score and factor scores of

Study or subgroup	Experimental	Control	Weight	Odds ratio	Odds ratio	
	Events	Total	Events	Total	M-H, fixed, 95% CI	M-H, fixed, 95% CI
1.5.1 Somnolence						
Gong Wang 2014	1	70	1	70	0.7% 1.00 [0.06, 16.31]	
Guozhou Yu 2011	3	38	10	38	6.4% 0.53 [0.17, 1.63]	
Hongxing Zhu 2015	1	38	10	38	6.4% 0.53 [0.12, 2.58]	
Rongjian Kong 2014	1	23	11	23	6.5% 0.30 [0.08, 1.10]	
Xiaodong Wan 2011	6	38	11	38	7.0% 0.46 [0.15, 1.41]	
Subtotal (95% CI)	195	195	38	23.9%	0.46 [0.25, 0.85]	
Total events	21		38			
Heterogeneity: Chi² = 0.80, df = 4 (P = 0.94); I² = 0%						
Test for overall effect: Z = 2.50 (P = 0.01)						

1.5.2 Dizzy					
Gong Wang 2014	1	70	1	70	0.7% 1.00 [0.06, 16.31]
Guozhou Yu 2011	3	38	5	38	3.5% 0.57 [0.13, 2.56]
Xiaodong Wan 2011	2	38	8	38	5.7% 0.21 [0.04, 1.06]
Subtotal (95% CI)	146	146	9.9%		0.39 [0.14, 1.06]
Total events	6		14		
Heterogeneity: Chi² = 1.24, df = 2 (P = 0.54); I² = 0%					
Test for overall effect: Z = 1.84 (P = 0.07)					

1.5.3 Salivate					
Guozhou Yu 2011	1	38	9	38	6.6% 0.09 [0.01, 0.73]
Hongxing Zhu 2015	3	26	6	26	4.0% 0.43 [0.10, 1.97]
Rongjian Kong 2014	8	23	18	23	8.9% 0.15 [0.04, 0.55]
Xiaodong Wan 2011	0	38	10	38	7.8% 0.04 [0.00, 0.63]
Subtotal (95% CI)	125	125	27.3%		0.14 [0.06, 0.33]
Total events	12		43		
Heterogeneity: Chi² = 3.20 df = 3 (P = 0.36); I² = 6%					
Test for overall effect: Z = 4.62 (P < 0.00001)					

1.5.4 Body mass increase					
Guozhou Yu 2011	8	38	14	38	8.3% 0.46 [0.16, 1.27]
Hongxing Zhu 2015	1	26	3	26	2.2% 0.31 [0.03, 3.16]
Rongjian Kong 2014	13	23	17	23	5.6% 0.46 [0.13, 1.59]
Xiaodong Wan 2011	7	38	13	38	8.0% 0.43 [0.15, 1.25]
Subtotal (95% CI)	3	125	125	24.1%	0.44 [0.24, 0.80]
Total events	29		47		
Heterogeneity: Chi² = 0.10, df = 3 (P = 0.99); I² = 0%					
Test for overall effect: Z = 2.67 (P = 0.008)					

1.5.5 Speed up heart rate					
Guozhou Yu 2011	3	38	5	38	3.5% 0.57 [0.13, 2.56]
Hongxing Zhu 2015	2	26	4	26	2.8% 0.46 [0.08, 2.75]
Rongjian Kong 2014	10	23	15	23	6.4% 0.41 [0.12, 1.35]
Xiaodong Wan 2011	2	38	3	38	2.1% 0.65 [0.10, 4.12]
Subtotal (95% CI)	125	125	14.8%		0.49 [0.23, 1.04]
Total events	17		27		
Heterogeneity: Chi² = 0.21, df = 3 (P = 0.98); I² = 0%					
Test for overall effect: Z = 1.85 (P = 0.06)					

| Total (95% CI) | 716 | 716 | 100.0% | 0.37 [0.27, 0.50] |
| Total events | 85 | | 169 | | |
| Heterogeneity: Chi² = 10.06, df = 19 (P = 0.95); I² = 0% |
| Test for overall effect: Z = 6.22 (P < 0.00001) |
| Test for subgroup differences: Chi² = 6.45, df = 4 (P = 0.17); I² = 38.0% |

Figure 10: Forest plot of meta-analysis of adverse reactions.
BEAHAVE-AD in different weeks after treatment, suggesting that olanzapine and clozapine have similar effects on pathological behavior in patients with senile dementia. Meta-analysis of the incidence of neurological symptoms showed that there was no significant difference between olanzapine and clozapine, suggesting that olanzapine and clozapine can improve the neurological symptoms of senile dementia. The effect is comparable. It shows that olanzapine has obvious advantages over clozapine in these aspects and affirms its role in improving patients’ living ability and intelligence. This may be related to the prominent role of olanzapine in serotonin, dopamine, and cholinergic antagonism, so its effect on neurotransmitter improvement is obvious. However, it is worth noting that olanzapine also has certain side effects, such as drowsiness, weight gain, and dizziness. Its clinical manifestations are mild, but it still needs to be paid enough attention in the process of treatment [28–30]. A meta-analysis was carried out on the treatment-free adverse reaction scale (TESS). The results of the heterogeneity test showed that after 2 weeks of treatment, chi² = 0.00, df = 1, P = 0.96, and I² = 0%; after 4 weeks of treatment, chi² = 1.00, df = 1, P = 0.32, and I² = 0%; after 8 weeks of treatment, chi² = 0.75, df = 2, P = 0.69, and I² = 0%. A summary analysis of all literatures was carried out, and the results of the heterogeneity test showed the following: chi² = 6.22, df = 6, P = 0.40, and I² = 3%, indicating that there exhibited no obvious heterogeneity among the contained research data. The analysis showed that in the research group after treatment, the TESS score was noticeably lower compared to the control group (P < 0.05), showing that compared with clozapine, the incidence of adverse reactions in olanzapine when treating senile dementia was lower. Previous studies have found that small doses can achieve better efficacy, but the incidence of adverse reactions can be effectively reduced, suggesting that attention should be paid to clinical dosage. There are some limitations in this study. First of all, the sample size of the references included in this study is small, and they all belong to single-center research; there is a certain deviation. In the future research, we will carry out a large sample of prospective studies and hopefully draw more valuable conclusions.

5. Conclusion

To sum up, olanzapine and clozapine are effective when treating mental and behavioral symptoms of senile dementia, but olanzapine has less side effects and is more suitable for the treatment of senile dementia with mental symptoms than clozapine in terms of safety.

Data Availability

The datasets used and analyzed during the current study are available from the corresponding author upon reasonable request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Zongqin Wang and Yingying Feng have contributed equally to this work and share first authorship.

References

[1] J. A. Soria Lopez, H. M. González, and G. C. Léger, “Alzheimer’s disease,” Handbook of Clinical Neurology, vol. 167, no. 2, pp. 231–255, 2019.
[2] S. Tiwari, V. Atluri, A. Kaushik, A. Yndart, and M. Nair, “Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics,” International Journal of Nanomedicine, vol. 14, no. 2, pp. 5541–5554, 2019.
[3] A. Atri, “The Alzheimer’s disease clinical spectrum: diagnosis and management,” The Medical Clinics of North America, vol. 103, no. 2, pp. 263–293, 2019.
[4] Z. Breiijeh and R. Karaman, “Comprehensive review on Alzheimer’s disease: causes and treatment,” Molecules, vol. 25, no. 24, p. 5789, 2020.
[5] L. J. Bessey and A. Walaszek, “Management of behavioral and psychological symptoms of dementia,” Current Psychiatry Reports, vol. 21, no. 8, p. 66, 2019.
[6] I. Yunusa, A. Alsumali, A. E. Garba, Q. R. Regestein, and T. Eguale, “Assessment of reported comparative effectiveness and safety of atypical antipsychotics in the treatment of behavioral and psychological symptoms of dementia,” JAMA Network Open, vol. 2, no. 3, article e190828, 2019.
[7] H. C. Kales, C. G. Lyketsos, E. M. Miller, and C. Ballard, “Management of behavioral and psychological symptoms in people with Alzheimer’s disease: an international Delphi consensus,” International Psychogeriatrics, vol. 31, no. 1, pp. 83–90, 2019.
[8] F. Kose, J. M. S. Pelley, and T. B. Franklin, “Behavioural and psychological symptoms of dementia in mouse models of Alzheimer’s disease-related pathology,” Neuroscience and Biobehavioral Reviews, vol. 112, no. 8, pp. 634–647, 2020.
[9] W. Sun, T. Matsuoka, H. Oba, and J. Narumoto, “Importance of loneliness in behavioral and psychological symptoms of dementia,” International Journal of Geriatric Psychiatry, vol. 36, no. 4, pp. 540–546, 2021.
[10] L. B. Gerlach and H. C. Kales, “Managing behavioral and psychological symptoms of dementia,” Clinics in Geriatric Medicine, vol. 36, no. 2, pp. 315–327, 2020.
[11] S. Xuelian, D. Yiping, and D. Bilong, “Progress when treating mental and behavioral symptoms of dementia and nursing suggestions,” Modern Clinical Medicine, vol. 47, no. 3, pp. 223–226, 2021.
[12] S. Daliang and W. Lina, “Research progress of atypical antipsychotics when treating mental and behavioral symptoms associated with dementia,” Chinese Journal of Geriatrics, vol. 37, no. 2, pp. 240–244, 2018.
[13] V. Mühlbauer, R. Möhler, M. N. Dichter, S. U. Zuidema, S. Köpke, and H. J. Luijendijk, “Antipsychotics for agitation and psychosis in people with Alzheimer’s disease and vascular dementia,” Cochrane Database of Systematic Reviews, vol. 12, no. 12, p. CD013304, 2022.
[14] Y. Wang, “Clinical study of donepezil combined with olanzapine in the treatment of senile dementia complicated with mental and behavioral disorders,” Minerva Medica, vol. 113, no. 2, pp. 355–356, 2022.
[15] W. Xiaodong, "A comparative study of olanzapine and clozapine when treating mental symptoms of senile dementia," *Medical Information (first ten days issue)*, vol. 24, no. 5, pp. 2561-2562, 2011.

[16] Y. Guozhou, Y. Lifeng, and Z. Jianmei, "A comparative study of olanzapine and clozapine when treating mental symptoms of senile dementia," *Chinese Medicine Guide*, vol. 9, no. 8, pp. 110-111, 2011.

[17] W. Gong, "Study on the efficacy and safety of olanzapine in senile dementia," *Chinese Journal of practical Neurological Diseases*, vol. 17, no. 5, pp. 40-41, 2014.

[18] Z. Hongxing, "Efficacy and safety evaluation of olanzapine when treating Alzheimer's disease," *Chinese Medical Innovation*, vol. 12, no. 19, pp. 137-138, 2015.

[19] X. Shichao, "Comparative analysis of olanzapine and clozapine in mental symptoms of senile dementia," *Chinese Medicine Guide*, vol. 10, no. 19, pp. 128-129, 2012.

[20] K. R. Jian and Y. Qiongfang, "A clinical comparative study of clozapine and olanzapine when treating mental symptoms of Alzheimer's disease," *Medical Frontier*, vol. 1, pp. 54-55, 2014.

[21] L. Zhu, G. Wu, W. Heng, and X. Zang, "A comparative study of olanzapine, aripiprazole and risperidone in the treatment of psychiatric and behavioral symptoms of Alzheimer's disease," *Pakistan Journal of Pharmaceutical Sciences*, vol. 34, no. 5, pp. 2053-2057, 2021.

[22] T. Kanamori, Y. Kaneko, K. Yamada, and M. Suzuki, "Successful combination therapy of trazodone and fluvoxamine for pica in Alzheimer's disease: a case report," *Frontiers in Psychiatry*, vol. 12, no. 3, article 704847, 2021.

[23] K. Yafen, "Analysis of the efficacy of risperidone and olanzapine when treating senile dementia," *Continuing Medical Education*, vol. 35, no. 11, pp. 154-156, 2021.

[24] M. Xiangyu, "Comparative analysis of olanzapine and risperidone when treating mental and behavioral symptoms of senile dementia," *Chinese Journal of Metallurgical Industry Medicine*, vol. 36, no. 6, pp. 695-696, 2019.

[25] H. S. Lange, J. D. Vardigan, C. E. Cannon, V. Puri, D. A. Henze, and J. M. Uslaner, "Effects of a novel M4 muscarinic positive allosteric modulator on behavior and cognitive deficits relevant to Alzheimer's disease and schizophrenia in rhesus monkey," *Neuropharmacology*, vol. 197, no. 3, article 108754, 2021.

[26] O. O. Coker-Ayo, S. I. Nathaniel, N. Poupore et al., "Sex differences in demographic and pharmacological factors in Alzheimer patients with dementia and cognitive impairments," *Frontiers in Behavioral Neuroscience*, vol. 16, no. 3, article 828782, 2022.

[27] Z. Heng, "Effect of olanzapine combined with risperidone on mental and behavioral symptoms in patients with senile dementia," *Clinical Medical Research and Practice*, vol. 4, no. 26, pp. 45-47, 2019.

[28] F. Chunyan, "Clinical effect of olanzapine on mental and behavioral disorders in patients with senile dementia," *Chinese Contemporary Medicine*, vol. 25, no. 19, pp. 20-23, 2018.

[29] Y. Yunlong, W. Yonghua, L. Yin, X. Zheng, W. Minhong, and G. Zhengzhong, "Evaluation of the effect of olanzapine on mental and behavioral disorders in patients with senile dementia," *Northwest Journal of Pharmacy*, vol. 33, no. 2, pp. 247-250, 2018.

[30] J. Chyr, H. Gong, and X. Zhou, "DOTA: deep learning optimal transport approach to advance drug repositioning for Alzheimer's disease," *Biomolecules*, vol. 12, no. 2, p. 196, 2022.