Codimension-3 Singularities and Yukawa Couplings in F-theory

東京大学理学系研究科物理学専攻 林 博貴
E-mail: hirotakahayashi@hep-th.phys.s.u-tokyo.ac.jp

標準模型の湯川結合は大きなヒアリングを持ち、その起源を問うことは重要な課題である。本研究 [1] では高エネルギーでの理論の候補である超弦理論の真空である F 理論を用いて湯川結合の解析を行った。まず標準模型より高エネルギーでの理論とされている SU(5)GUT 模型を考える。この模型でのアップタイプ湯川結合 10\cdot10 \cdot H_{10}(5) を解析する際に E 型のゲージ群も含む E 理論が有用である。F 理論と Type IIB 超弦理論を結合定数 \tau = C_0 + i e^{-\phi} が正則となるような内部空間にコンパクト化した理論であり、\((p, q) \) 7-brane を内部空間の余次元特異点として実現する。物質場は物質場曲線と呼ばれる 7-brane の交差 (余次元二特異点) によって、湯川結合は物質場曲線の交差、内部空間中の一点 (余次元三特異点) から生じると考えられる。従って F 理論における湯川結合の記述には局所的な定式化が必要であり、世界面の定式化が存在しない F 理論では湯川結合を解析することができなかった。しかし、本研究 [1] では [2] で構成された 7-brane 上の 8 元有効場の理論を用いて、F 理論において湯川結合定数を計算する手法を確立した。

我々の定式化では、まず求める湯川結合を生成すると考えられる特異点変形を考え、それを 7-brane の垂直方向の掃き方に対応する座標表現スカラー場 \(\varphi \) の真空期待値へと読み替える。この真空期待値は内部空間の位置に依存する。例えばアップタイプ湯川結合を考える場合、8 次元有効場の理論として E_6 ゲージ群の理論を考え、アップタイプ湯川結合が生成される点では真空期待値はゼロで E_6 特異点であり、その点から物質場曲線にそって離れる場合はそれぞれ D_5, A_5 特異点の真空期待値を与え、それ以外の方向へ離れる場合は A_4 特異点を実現するように真空期待値を制御する。この真空期待値を E_6 ゲージ群の 8 次元有効場の理論に代入することによりアップタイプ湯川結合近傍の振る舞いを湯川理論を用いて記述することができた。この定式化を用い、一般の複素構造をもつ内部空間を考えた場合、\(\langle \varphi \rangle \) を対角化した値は分岐曲線をもつことが分かった。この分岐曲線の周りで場は真空期待値が入った方向の SU(2) 群のワイル群の作用で引き合わされる。さらに、この分岐曲線をもたれた場の理論を被覆空間で書き表すことにより、7-brane はより一般にはヒッグスバンドルのスペクトル曲面により記述され、ヒッグスバンドルを考えることによりヘテロディック超弦理論と F 理論との対称性は両者のスペクトル曲面の一致と見なすことができることを示した。また一般の複素構造の内部空間を考えた場合、アップタイプ湯川結合定数はランク 1 の行列となり、現象論的にもトップフックが重いことと合致している。

この研究は東京大学 (本籍) の川野輝彥氏、リバノール大学の Radu Tatar 氏、IPMU の渡利泰山氏との共同研究に基づく。より詳細な議論は本論文 [1] を参照してもらいたい。

References

[1] H. Hayashi, T. Kawano, R. Tatar and T. Watari, arXiv:0901.4941 [hep-th].
[2] C. Beasley, J. J. Heckman and C. Vafa, JHEP 0901, 058 (2009) [arXiv:0802.3391 [hep-th]].