RECOGNITION OF DISCHARGES THAT ARE ACCOMPANIED BY LOW-TEMPERATURE OVERHEATING BASED ON THE ANALYSIS OF GASES DISSOLVED IN THE OIL OF HIGH-VOLTAGE TRANSFORMERS

Abstract. Based on the analysis of test results for 135 high-voltage transformers, ranges of gas percentage, gas ratio values were obtained and nomograms for 10 types of combined defects were made, representing discharges with different intensity which are accompanied by overheating with temperature of 150-300°C. It has been established that in transformers with discharges accompanied by low-temperature overheating the values of CH4/H2, C2H2/CH4, C2H2/C2H6 and C2H2/C2H4 ratios determine the discharge energy, in accordance with the most known standards, the C2H4/C2H6 ratio varies slightly depending on the hot spot temperature and the C2H6/CH4>1 ratio value. Dynamics of defects nomograms changing in the process of their development is analyzed. It is stated by the analysis results that in majority of cases the primary defect is discharges with different intensity, which are accompanied by low-temperature overheating. Overheating occurs in the process of discharge development. The analysis of recognition reliability of discharges with different intensity which are accompanied by 150-300°C overheating was made, using norms and criteria regulated by the most known standards and methods. The results of the analysis show that the most reliable recognition of the defects analyzed is provided to a large extent by the graphical methods, namely the ETRA square and the Duval triangle. The results obtained will significantly increase the recognition reliability of combined defects based on the results of the dissolved gas analysis in the oil.

Keywords: power transformers, dissolved gas analysis, combined defects, discharges and low-temperature overheating, diagnostic criteria, dynamics of the defect development, diagnostic reliability.
Аннотация. На основании анализа результатов испытаний по 135 высоковольтным трансформаторам получены диаграммы значений процентного содержания газов, значений отношений газов и построены номограммы для 10 типов комбинированных дефектов, представляющих собой разряды с разной степенью интенсивности которые сопровождаются нагревом с температурой 150-300°C. Установлено, что в трансформаторах с разрядами, которые сопровождаются низкотемпературными перергевами значения отношений: CH4/H2, C2H2/CH4, C2H2/C2H6 и C2H2/C2Н4 определяют энергию разрядов, в соответствии с нормами регламентируемыми в большинстве известных стандартов, значение отношения C2H2/C2Н6 незначительно варьируется в зависимости от температуры горячей точки, а значение отношения C2H6/CH4>1. Проанализирована динамика изменения номограмм дефектов в процессе их развития. По результатам анализа установлено, что при развитии разрядов с разной степенью интенсивности, которые сопровождаются перегревами в диапазоне низких температур, в большинстве случаев первичным дефектом является именно разряды. Перегревы возникают уже в процессе развития разрядов. Выполнен анализ достоверности распознавания разрядов с разной степенью интенсивности, которые сопровождаются нагревом с температурой 150-300°C, с использованием норм и критериев, регламентируемых наиболее известными стандартами и методиками. По результатам анализа установлено, что наибольшую достоверность распознавания, применительно к анализируемым дефектам обеспечивают в большей степени графические методы, а именно квадрат Ётраф и треугольник Дюваза. Полученные результаты позволяют существенно повысить достоверность распознавания комбинированных дефектов по результатам анализа растворов газов.

Ключевые слова: силовые трансформаторы, анализ растворенных в масле газов, комбинированные дефекты, разряды и низкотемпературный перегрев, диагностические критерии, динамика развития дефекта, достоверность диагностики.

Introduction. One of the ways to reduce the damageability of high-voltage power transformers, especially those operating beyond their standard service life, is the development of new and improvement of existing methods of non-destructive diagnostics. One of these methods, which have found the widest application, both in Ukraine and abroad, is the dissolved gas analysis (DGA). This method makes it possible not only to detect defects, which develop in oil-filled equipment at an early stage, but also to recognize their type. The latter circumstance is fundamentally important when deciding on the possibility of further operation of equipment, which imposes rather high requirements for the reliability of defect type recognition. Currently, the DGA method enables to recognize both defects of electrical type (partial, spark, creeping and arc discharges) and thermal defects (overheating with different "hot spot" temperature). However, during operation combined defects may occur, such as discharges accompanied by overheating or overheating transforming into discharges. Diagnostics of combined defects is connected with certain difficulties due to practical absence of norms and criteria allowing to recognize them. In order to eliminate this problem, the article presents the results of a complex analysis of the values of diagnostic criteria used to recognize the type of defects based on the results of dissolved gas analysis for transformers in which discharges with different intensity accompanied by overheating with temperature of 150-300°C are detected.

Publication analysis and research agenda. Both analytical and graphical methods are used for defect type identification [1]. Analytical methods are based on the analysis of gas ratios characteristic of different defect types. For example in standards [2-6] the values of three gas ratios are regulated for defect type identification: CH4/H2, C2H4/C2H6 and C2H2/C2H4. The Dörnenburg method [7] uses four ratios: CH4/H2, C2H2/C2H4, C2H2/CH4 and C2H6/C2H2. The Rogers method [8] also uses four ratios: CH4/H2, C2H6/CH4, C2H4/C2H2 and C2H2/C2H4. In contrast,
the MSS method [9] uses five ratios: H2/CH4, C2H4/C2H6, C2H2/C2H6, C2H4/C3H6 and CO2/CO. However, of the eight standards analyzed only [5, 6] regulates values of gas ratios characteristic of combined defects. At the same time the given standards do not allow to estimate either the discharge energy or the hot spot temperature.

In turn, graphical recognition methods can use various criteria as coordinates of the object to be diagnosed. The values of the gas ratios are used in the ETRA square [10] and the graphical interpretation of the gas ratios according to [2]. In the Duval Triangles [11] and GATRON fault gas triangle [12], the defect type is determined by the gas percentage values (CH4, C2H4, C2H2 in the Duval method) and (H2, C2H2 and weighted sum of hydrocarbon gases CH4, C2H4, C2H6, C3H6 and C3H8 in the GATRON method). In the Key Gas method [3] the type of defect is determined by the percentage content of the five gases H2, CH4, C2H6, C2H4 and C2H2. In the Nomogram method [10, 13] the defect type is determined by a graphical image, which is plotted by the ratios of five gases (H2, CH4, C2H6, C2H4 and C2H2) to the gas with the maximum content. The type of defect is determined by comparing the obtained nomogram with the reference one. It should be noted that both in the ETRA square and in the Duval triangle, areas corresponding to combined defects are highlighted. However, in the ETRA square this area corresponds only to discharges and overheating with a temperature above 700°C. In the Duval triangle, the region corresponding to the combined defects is related neither to the discharge energy nor to the hot spot temperature.

In addition to the norms and criteria regulated by known standards and author's methods, a rather large number of publications are nowadays devoted to the interpretation of DGA results using more advanced mathematical tools, such as artificial neural network (ANN) [14-15], fuzzy logic [16-17], Adaptive Neuro-Fuzzy Inference System (ANFIS) [18-19]. In [20], a modified clustering method has been proposed to classify the state of different transformers. In [21], Adaptive Dynamic Rose Guided Whale Optimization algorithm is used to improve the accuracy of transformer diagnosis using various classical diagnostic methods. A multi-nominal classification model called KosaNet based on decision trees is described in [22]. In [23], the diagnostic accuracy of power transformer faults is improved using K-Nearest Neighbors (KNN). A comparative analysis of dissolved gases using machine learning and traditional diagnostic methods has been carried out in [24].

However, despite the rather large number of publications, issues related to improving the recognition reliability of combined defects are not well covered, which is the reason for this article.

Analysis of the values of the diagnostic criteria used to recognize the type of defect in power transformers with discharges, which are accompanied by low-temperature overheating.

As noted in [25], one of the significant problems encountered in determining the type of defect based on DGA results is that using different standards and diagnostic criteria (characteristic gas ratios, gas percentage content values, gas concentration ratios to the maximum gas concentration value) for the same data can lead to different diagnoses. One way to eliminate this problem is to evaluate and analyze the values of all diagnostic criteria simultaneously in the same type of equipment with defects of the same type, with subsequent training of the diagnostic model. The use of such an approach makes it possible, on the one hand, to eliminate contradictions between different diagnostic criteria when recognizing defects of the same type [26], and, on the other hand, to determine characteristic ranges of diagnostic criteria values for defects for which such ranges are not regulated [27-28].

As input data for analysis of diagnostic criteria values, which are used to determine the type of defect according to DGA results, the results of periodic tests on 135 power transformers were used, in which electrical discharges with different intensity which were accompanied by overheating with temperature of 150-300°C were identified. The raw data were first divided into several separate arrays depending on the type of defect detected. Then, by analogy with [26-28], the percentage content values for each of the five gases were determined, the values of
Characteristic gas ratios were calculated, and defect nomograms were constructed for each of the transformers analyses. The obtained values were compared with each other and if the value of at least one of the criteria differed significantly from those obtained earlier, the DGA results for the analyzed transformer were transferred to another array. The procedure of successive selection of homogeneous DGA results allowed the formation of 10 arrays with similar values of diagnostic criteria. The ranges of gas percentages in transformers with electrical discharges with different degrees of intensity, which were accompanied by overheating with a temperature of 150-300°C, are shown in Table 1 (the symbol N indicates the volume of sample values for each of the arrays). As can be seen from Table 1, the gas percentage content of the 10 arrays obtained varies significantly. The gases with maximum content are H2 (arrays No. 1-8) and C2H2 (arrays No. 9-10), indicating the presence of electrical discharges in the transformers under investigation. For almost all 10 arrays formed, the second gas in content is C2H6, indicating the presence of low-temperature overheating. The content of C2H2 increases as the discharge energy increases and in some transformers, according to the DGA results of which array No. 8 was formed, exceeds the content of C2H6.

The content of CH4 and C2H4 varies mainly depending on the overheating temperature. In [30] it is shown that in overheating with temperatures of 150-300°C the gas with maximum content is C2H6 and the second gas in content depending on the hot spot temperature is either CH4 or C2H4. As the hot spot temperature increases, the percentage of C2H4 increases. This trend is also true for combined defects, for example, in transformers whose DGA results formed arrays No. 4 and 5, the gas content has very similar values. The difference is that transformers with DGA results for array No. 4 have a higher CH4 content, while transformers with DGA results for array No. 5 have a higher C2H4 content.

Comparing the gas percentage ranges given in Table 1 with the gas percentage ranges regulated by the Key Gas Method [31], it should be noted that the values obtained do not correspond to the gas percentage values for any of the defect types recognizable by the Key Gas Method.

### Table 1. Gas percentage in high-voltage power transformers with electrical discharges with different intensity, which were accompanied by overheating with temperatures of 150-300°C

| Array | Type of defect, sample volume | Gas percentage, % |
|-------|-------------------------------|-------------------|
| 1     | Partial discharges and low-temperature overheating. N=20. | H2: 73-99, CH4: 0.2-7.5, C2H6: 0.48-17, C2H4: 0-5.3, C2H2: 0-1.58 |
| 2     | Partial discharges and low-temperature overheating. N=6.  | H2: 81-96, CH4: 1.6-5, C2H6: 1.6-10, C2H4: 1.1-4.5, C2H2: 0-1.6 |
| 3     | Discharges and low-temperature overheating. N=22.   | H2: 38-73, CH4: 0.002-10, C2H6: 15-47, C2H4: 0.002-18, C2H2: 0-3 |
| 4     | Discharges and low-temperature overheating. N=20.   | H2: 38-73, CH4: 10-28, C2H6: 13-35, C2H4: 0.04-11, C2H2: 0-2.1 |
| 5     | Discharges and low-temperature overheating. N=6.   | H2: 33-66, CH4: 1-10, C2H6: 14-35, C2H4: 10-28, C2H2: 0-5 |
| 6     | Discharges and low-temperature overheating. N=5.   | H2: 30-41, CH4: 3-22, C2H6: 23-40.5, C2H4: 6-20, C2H2: 2.9-10 |
| 7     | Discharges and low-temperature overheating. N=7.   | H2: 40-68, CH4: 4-22, C2H6: 15-30, C2H4: 1-17, C2H2: 1.6-17 |
| 8     | Discharges with high energy density and overheating with temperatures of 150-300°C. N=24. | H2: 27-74, CH4: 3-17, C2H6: 6-28, C2H4: 0.4-15, C2H2: 8-37 |
| 9     | Discharges with high energy density and overheating with temperatures of 150-300°C. N=9. | H2: 1.5-6.5, CH4: 1.7-10, C2H6: 23-35, C2H4: 14-22, C2H2: 36-51 |
| 10    | Discharges with high energy density and overheating with temperatures of 150-300°C. N=16. | H2: 5-37, CH4: 1.5-21, C2H6: 2.5-36, C2H4: 0.6-22, C2H2: 25-58 |

As can be seen from Table 2, for 9 out of 10 arrays (No. 1-8 and 10), the content of H2 exceeds the content of CH4, that is, the value of CH4/H2<1, which is more typical of the electrical type defects. At the same time for the transformers in which the partial discharges accompanied by overheating with temperature 150-300°C have been revealed, values of CH4/H2<0.1. For the transformers with discharges with higher energy density accompanied by overheating with temperature 150-300°C, values of the ratio 0.1<CH4/H2<1. Only in transformers, according to the DGA results of which the array No. 9 is formed, the CH4 content
exceeds the H2 content, that is the value of the ratio CH4/H2>1, which is more typical for the thermal type defects.

The ranges of characteristic gas ratios obtained from the DGA results of the transformers analyzed are given in Table 2. The studies performed in [29] showed that the defect nomograms constructed by the DGA results of the same type of equipment, with a defect of the same nature can differ significantly. In order to account for drift in the coordinate values of defect nomograms (values of ratios of gas concentrations to the gas with the maximum content), defect nomograms, by analogy with [26-28], were represented in the form of graphical areas instead of defect nomograms. Graphical areas based on the DGA results of transformers where electrical discharges with different intensity, which were accompanied by overheating with temperature of 150-300°C were detected, are shown in Fig. 1. The number of the graphic area coincides with the number of defects from Tables I and II. Dotted lines in the figures mark upper and lower boundaries of areas, solid line marks centres of areas which coincide with defect nomograms.

For all the analyzed transformers the values of the ratio C2H6/CH4>1, which according to Rogers [8] is typical only for low-temperature overheating, but as can be seen from Table 2, the same values of this ratio take place and in discharges, which are accompanied by overheating with temperature 150-300°C.

Table 2.

| Array | Gas ratio values |
|-------|------------------|
|       | CH4/H2 | C2H6/CH4 | C2H4/C2H6 | C2H2/CH4 | C2H2/C2H6 | C2H2/C2H4 |
| 1     | 0.032-0.09 | 1.5-4.1 | 0.01-0.58  | –       | –         | –         |
| 2     | 0.011-0.073 | 1.1-2.0 | 0.35-0.92  | 0.087-0.208 | 0.07-0.139 | 0.12-0.16 |
| 3     | 0.0004-0.19 | 4.2-800 | 0.125-0.46 | 0.1-0.143  | 0.0001-0.06 | 0.001-0.27 |
| 4     | 0.19-0.72  | 1.06-2.9 | 0.007-0.373 | 0.007-0.07 | 0.004-0.039 | 0.039-0.56 |
| 5     | 0.08-0.147 | 1.6-11.2 | 0.71-0.85  | –       | –         | –         |
| 6     | 0.5-0.6    | 1.2-1.5 | 0.6-0.63   | 0.33-0.43  | 0.23-0.36  | 0.5-0.58  |
| 7     | 0.1-0.46   | 1.1-2.5 | 0.05-0.7   | 0.07-1.5   | 0.06-0.62  | 0.88-1.1  |
| 8     | 0.1-0.38   | 1.03-3.8 | 0.07-0.66  | 0.99-6.0   | 0.47-5.1   | 1.67-68   |
| 9     | 1.1-2.1    | 2.7-6.3 | 0.42-0.93  | 4.5-9.3    | 1.05-2.2   | 1.9-3.33  |
| 10    | 0.43-0.92  | 1.09-6.2 | 0.01-1.0   | 1.7-12     | 1.04-4.6   | 1.3-66    |

Value of C2H4/C2H6 ratio in all data sets does not exceed 1 that indicates low-temperature character of overheating. At the same time, relatively high values of this ratio are observed both for partial discharges with low-temperature overheating (array No. 2), and for discharges with low energy density and low-temperature overheating (array No. 5), as well as for discharges with high energy density and low-temperature overheating (arrays No. 9 and 10). This fact made it possible to conclude that for the analyzed defects the value of C2H4/C2H6 ratio is determined more by the hot spot temperature than by the discharge energy. At the same time, the values of C2H2/CH4, C2H2/C2H6 and C2H2/C2H4 increase with the growth of the discharge energy, which allows to conclude that the values of these ratios are determined by the discharge energy. Thus, in discharge transformers with low-temperature overheating, the values of CH4/H2, C2H2/CH4, C2H2/C2H6 and C2H2/C2H4 determine the discharge energy in accordance with the norms regulated in the most known standards [2, 4-6], the value of C2H4/C2H6 slightly varies depending on hot spot temperature and the value of C2H6/CH4>1. The graphical areas in Figure 1 also show this trend.

As can be seen from Figure 1, for all graphical areas without exception there is a characteristic "triangle" with the apex corresponding to the values of C2H6. The analysis showed
that in none of the existing standards similar defect nomograms (centres of reference areas, highlighted in solid lines in the figures) are not regulated. Some of the areas shown have been given in [26, 32, 33 and 34].

However, despite this, it would be desirable to be able to determine the defect type of equipment without the presence of a similar reference nomogram or a nomogram obtained by other researchers. As shown in [27], the nomograms obtained from the DGA results for transformers with combined defects are the sum of the nomogram corresponding to the electric discharge of a certain intensity and the nomogram corresponding to the thermal defect with a certain temperature. Figure 2 illustrates this fact.

In order to recognize combined defects using the Nomogram method, the coordinates of a known nomogram corresponding to the closest discharge or closest heating must be subtracted from the coordinates of the nomogram to be analyzed. The nomogram obtained as a result of the subtraction will determine either the thermal or electrical defect type.

Analysis of the dynamics of gas content change during the development of discharges with different intensity, which are accompanied by overheating with temperatures of 150-300°C.

One possible way of early detection of developing defects in oil-filled equipment, based on the DGA results, is to analyze the dynamics of change in diagnostic criteria over time during the development of the defect. As shown in [36], this kind of analysis is best carried out using defect nomograms. The analysis made it possible to establish that during the development of discharges with different intensity, which are accompanied by overheating in the low temperature range, in most cases it is the discharges that are the primary defect. Overheating occurs already in the process of discharge development.

Figure 1. Graphical areas based on DGA results for high voltage power transformers with electrical discharges with different intensity, which were accompanied by overheating with temperatures of 150-300°C.
As can be seen from the figure, the defect nomograms plotted from the first two tests correspond to discharges with low energy density. However, during the development process (nomograms No. 3 and 4), in addition to partial discharges, low-temperature overheating caused by increased heating of the bolted joints occurred in this transformer.

As an example, Figure 3 shows the evolution of nomograms during the development of low energy density partial discharges accompanied by low-temperature overheating, plotted from the DGA results of a transformer with a rated capacity of 40 MVA and a voltage of 110 kV. As can be seen from the figure, the defect in the transformer in question initially started as low energy density discharges (nomogram No. 1). However, the defect nomograms constructed from the results of two subsequent tests correspond to arc discharges, which indicates an increase in discharge energy during the development of the defect. Only the nomogram based on the DGA results, obtained just before the transformer was repaired, corresponds to discharges with high energy density, which are accompanied by low-temperature overheating.

Figure 4 shows the evolution of defect nomograms in a transformer with a rated capacity of 250 MVA and a voltage of 220 kV during the development of discharges with high energy density, which are accompanied by a low-temperature overheating.

Assessment of the recognition reliability of discharges that are accompanied by overheating with temperatures of 150-300°C using known standards and techniques. As the results of the analysis given in [26,32-34] have shown, the recognition of discharges that are accompanied by low-temperature overheating, using the norms and criteria regulated by the current standards and author's methods, does not always allow a correct diagnosis. Moreover, often the same DGA results are interpreted differently in different sources. For example, the same DGA results: \( \text{H}_2 = 0.012 \% \text{ vol.}; \ \text{CH}_4 = 0.0017 \% \text{ vol.}; \ \text{C}_2\text{H}_6 = 0.0032 \% \text{ vol.}; \ \text{C}_2\text{H}_4 = 0.0023 \% \text{ vol.} \) and \( \text{C}_2\text{H}_2 = 0.0004 \% \text{ vol.} \) in [37] are interpreted as partial discharges, while in [38] – as a low-temperature overheating. It is therefore of practical interest to assess the reliability of the recognition of discharges which are accompanied by low-temperature overheating, using the best known standards and techniques. Using the approach given in [26-28], in the process of analysis it was determined the statistics of correct diagnoses, partially correct diagnoses (the type of defect was determined correctly, but its intensity – temperature of heating or energy density of discharge – was estimated incorrectly). The statistics of incorrect diagnoses and failures of recognition (that is cases where the analyzed method does not allow to establish a diagnosis) were also recorded. The results of the analysis are shown in Table 3. As in [26-28], the numerator of column 1 is the percentage of correct diagnoses and the denominator is the percentage of partially correct diagnoses. The numerator of column 2 is the percentage of incorrect diagnoses and the denominator is the percentage of recognition failures. Figure 5 shows the results of the diagnostics of the analyzed transformers using the graphical representation of the gas ratios according to IEC 60599 (Fig. 5 a), the Duval triangle (Fig. 5 b) and the ETRA square (Fig. 5 c). When analyzing the data in Table 3 it is easy to see that the recognition reliability of the analyzed defects, using the norms and criteria regulated by the different standards, differs significantly. The highest number of correct diagnoses (up to 15%) is provided by the use of ratio values regulated in [5]. Approximately 7% of correct diagnoses can be established using the Duval triangle. The highest number of partially correct diagnoses was obtained using the ETRA square (41%), and the Duval triangle (30%). At the same time, the highest number of failures of recognition are observed for methods based on gas ratios (84.4% for MSS, 81.5% for IEC 60599, 80% for Dörnenburg, 74.8% for Rogers, 59.3% for SOU, and 45.2% for RD).

As can be seen from Table 3, the use of the gas ratios values, regulated by the standards [2,4-5], in relation to the recognition of discharges with different intensity, which are accompanied by overheating with a temperature of 150-300°C, allowed to put partially correct diagnosis only for transformers, the DGA results of which formed array No. 1. In all other cases, a failure of recognition was recorded.
Figure 2. Scheme of formation of combined defect nomograms (electrical discharges, which are accompanied by low-temperature overheating) from known thermal and electrical defect nomograms:

1 – partial discharges; 2, 5 and 8 – overheating with temperature 150-300°C; 3 – partial discharges accompanied by overheating with temperature 150-300°C; 4 – discharges with low energy density; 6 – discharges with low energy density accompanied by overheating with temperature 150-300°C; 7 – arc discharges; 9 – arc discharges accompanied by overheating with temperature 150-300°C.

Figure 3. The evolution of defect nomograms in a transformer with a rated capacity of 40 MVA and a voltage of 110 kV during the development of low energy density partial discharges, which are accompanied by low-temperature overheating.

The main reason for the failure of recognition is that, according to these standards, the values of the C2H4/C2H6 ratio for low and high energy density discharges are regulated at a level greater than 1 (Fig.5a).
Figure 4. The evolution of defect nomograms in a transformer with a rated capacity of 250 MVA and a voltage of 220 kV during the development of discharges with high energy density, which are accompanied by low-temperature overheating.

Table 3. Results of a comparative analysis of the recognition reliability of discharges that are accompanied by low-temperature overheating using the best known standards and techniques.

| Defect Group | IEC 60599 [2] | SOU-N EE 46.501-2006 (Ukraine) [4] | RD 153.34.0-46.302-00 (Russia) [5] | Doernenburg ratio method [7] | Roger's ratio method [8] | Duval triangle method [11] | Nomogram method [13] | ETTRA square method [10] | MSS [9] |
|--------------|---------------|-------------------------------------|-----------------------------------|-----------------------------|--------------------------|-------------------------|----------------------|-------------------------|--------|
| 1            |               |                                     |                                   |                             |                          |                         |                      |                         |        |
| 2            |               |                                     |                                   |                             |                          |                         |                      |                         |        |
| 3            |               |                                     |                                   |                             |                          |                         |                      |                         |        |
| 4            |               |                                     |                                   |                             |                          |                         |                      |                         |        |
| 5            |               |                                     |                                   |                             |                          |                         |                      |                         |        |
| 6            |               |                                     |                                   |                             |                          |                         |                      |                         |        |
| 7            |               |                                     |                                   |                             |                          |                         |                      |                         |        |
| 8            |               |                                     |                                   |                             |                          |                         |                      |                         |        |
| 9            |               |                                     |                                   |                             |                          |                         |                      |                         |        |
| 10           |               |                                     |                                   |                             |                          |                         |                      |                         |        |

At the same time, because of the development of low-temperature overheating, C2H6 is the second gas with the highest content (Table 1) and, therefore, regardless of the discharge energy, C2H6/C2H4 ratio value is less than 1 (Table 2). As can be seen from Table 3 and Figure 5 b the use of the Duval triangle allows a partially correct diagnosis of the discharge energy for 30% of all transformers analyzed, but the presence of overheating was recognized for only 7% of the sample analyzed. In fact, the lack of account of the C2H6 concentration in the analyzed triangle did not allow a correct diagnosis for 93% of the transformers. The incorrect diagnoses in the diagnostics of discharges with different intensity, which are accompanied by overheating with a temperature of 150-300°C, using the ETRA square, are due to the absence in this method of defect areas corresponding to discharges and low-temperature overheating, as can be easily seen by analyzing Fig. 5 c. Since none of the given defect nomograms are regulated by known standards, the use of the Nomogram method for all 10 defect types resulted in a failure of...
recognition. Thus, the greatest reliability in recognition of discharges with different intensity, which are accompanied by overheating with temperature of 150-300°C, is provided by graphic methods of interpretation (ETRA square and Duval triangle), which allow to partially recognize the presence of discharges, as well as their energy. At the same time, diagnosis using analytical methods based on the use of gas ratios gives much worse results, because most of the standards used do not contain the values of gas ratios corresponding to the defect in question. Therefore, the values of gas ratios obtained in Table 2 will significantly increase the reliability of recognition of discharges, which are accompanied by low-temperature overheating.

**Figure 5.** Diagnostic results for transformers with discharges with different intensity accompanied by overheating with temperatures of 150-300°C using the IEC 60599 graphical method (a), Duval triangle (b), and the ETRA square (c).

**Conclusions.** The analysis of gas percentages, gas ratios and defect nomograms for 135 high-voltage transformers, where discharges with different intensity, which are accompanied by overheating with temperature of 150-300°C have been identified, allowed to establish that depending on discharge energy both gas percentages, gas ratios as well as defect graphical areas differ significantly. For all defects without exception the gases with the maximum content are H2 or C2H2, and the second gas is C2H6. From the analysis of gas ratios values for transformers with discharges with different intensity, which are accompanied by low-temperature overheating, it has been established that the values of CH4/H2, C2H2/CH4, C2H2/C2H6 and C2H2/C2H4 ratios determine the discharge energy in accordance with the norms regulated in the most known standards, the C2H4/C2H6 ratio value slightly varies depending on hot spot temperature, but does not exceed 1, and the C2H6/CH4>1.
Based on the analysis of the dynamics of changes in defect nomograms it was found that during the development of discharges with different intensity, which are accompanied by low-temperature overheating, in most cases the primary defect is the discharge, and overheating occurs already in the process of their development. The performed analysis of recognition reliability of discharges with different intensity, which are accompanied by overheating with temperature 150-300°C, with use of norms and criteria regulated by the most known standards and methods, showed that the greatest reliability in recognition of discharges with different intensity, which are accompanied by overheating with temperature of 150-300°C, is provided by graphic methods of interpretation (ETRA square and Duval triangle), which allow to partially recognize the presence of discharges, as well as their energy. At the same time, diagnosis using analytical methods based on the use of gas ratios gives much worse results, because most of the standards used do not contain the values of gas ratios corresponding to the defect in question.

The ranges of gas percentages and ratios obtained and the plotted defect areas will significantly increase the reliability of detecting discharges with different intensity, which are accompanied by low-temperature overheating.

**Список використаної літератури:**

1. Kulyk, O. Analysis of the diagnostic criteria used to defect type recognition based on the results of analysis of gases dissolved in oil // Bulletin of the National Technical University "KhPI", Series: Energy: Reliability and Energy Efficiency. – 2020. – No. 1. – P. 15-25. – DOI: https://doi.org/10.20998/2224-0349.2020.01
2. Mineral oil-filled electrical equipment in service – Guidance on the interpretation of dissolved and free gases analysis: IEC 60599:2015. – Geneva, Switzerland: International Electrotechnical Commission, 2015. – 78 p.
3. IEEE Guide for the Interpretation of Gases Generated in Mineral Oil-Immersed Transformers: IEEE Std C57.104-2019. – Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers, 2019. – 98 p.
4. Диагностика маслонаполненного трансформаторного оборудования за результатами хроматографического анализа вольных газов, отобранных из газового реле, и газов, розчинених у ізоляційному маслі. Методичні вказівки: СОУ-Н ЕЕ 46.501:2006. – Київ: Міністерство палива та енергетики України, 2007. – 91 с.
5. Методичні вказівки по технічному діагностированию развивающихся дефектов трансформаторного оборудования по результатам хроматографического анализа газов, растворенных в масле: РД 153-34.0-46.302-00. – Москва: НЦ ЭНАС, 2001. – 41 с.
6. Методичні вказівки по технічному диагностике развивающихся дефектов маслонаполненного высоковольтного электрооборудования по результатам анализа газов, растворенных в минеральном трансформаторном масле: СТО 34.01-23-003-2019. – ПАО «Россети», 2019. – 63 с.
7. Dornenburg, E., Strittmater, W. Monitoring Oil-Cooled Transformers by Gas Analysis // Brown Boveri Review. – 1974. – Vol. 61. – P. 238-274.
8. Rogers, R. IEEE and IEC Codes to Interpret Incipient faults in Transformers, Using Gas in Oil Analysis // IEEE Trans. on Electrical Insulation. – 1978. – Vol. 5, No. 38. – P. 349-354. – DOI: https://doi.org/10.1109/TIEI.1978.298141
9. Müller, R., Schliesing, H., Soldner, K. Die Beurteilung des Betriebszustandes von Transformatoren durch Gasanalyse // Elektrizitätswirtschaft. – 1977. – No. 76. – P. 345-349.
10. Guideline for the refurbishment of electric power transformers // Electric Technology Research Association. – 2009. – Vol. 65. – No. 1 (in Japanese).
11. Duval, M. The Duval Triangle for load tap changers non-mineral oils and low temperature faults in transformers // IEEE Electrical Insulation Magazine. – 2008. – Vol. 24, No. 6. – P. 22-29. – DOI: https://doi.org/10.1109/MIEI.2008.4665347
12. Bräsel, E. Universal Fault Gas Triangle for Transformer Diagnostics. – GATRON GmbH. – P. 1-6.
13. Kawamura, T., Kawada, H., Ando, K., Yamaoka, M., Maeda, T., Takatsu, T. Analyzing gases dissolved in oil and its application to maintenance of transformers // Paris, SIGRE Session Report 12-05, 1986 – 5 p.
14. Naganathan, G. et al. Internal fault diagnosis of power transformer using artificial neural network // Materials Today: Proceedings. – 2021. – Vol. 2021. – DOI: https://doi.org/10.1016/j.matpr.2021.02.206
15. Ahmadi, S.-A., Sanaye-Pasand, M. A Robust Multi-Layer Framework for Online Condition Assessment of Power Transformers // IEEE Transactions on Power Delivery. – 2021. – DOI: https://doi.org/10.1109/TPWRD.2021.3074545
16. Gene, S., Karagol, S. Fuzzy Logic Application in DGA Methods to Classify Fault Type in Power Transformer // 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). – 2020. – P. 1-4. – DOI: https://doi.org/10.1109/HORA49412.2020.9152896
17. Apte, R., Wajirabhadkar, A. Incipient Fault Diagnosis of Transformer by DGA Using Fuzzy Logic // 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). – 2018. – P. 1-5. – DOI: https://doi.org/10.1109/PEDES.2018.8707928.

18. Kari, T. et al An integrated method of ANFIS and Dempster-Shafer theory for fault diagnosis of power transformer // IEEE Transactions on Dielectrics and Electrical Insulation. – 2018. – Vol. 25, No. 1. – P. 360-371. – DOI: https://doi.org/10.1109/TDEI.2018.006746

19. Tighetiz, L. et al. An intelligent system based on optimized ANFIS and association rules for power transformer fault diagnosis // ISA Transactions. – 2020. – Vol. 103. – P. 63-74. – DOI: https://doi.org/https://doi.org/10.1016/j.isatra.2020.02.018

20. Dias, L. et al. An unsupervised approach for fault diagnosis of power transformers // Quality and Reliability Engineering International. – 2021. – DOI: https://doi.org/10.1002/qre.2892.

21. Ghoneim, S. S. M., Farrag, T. A., Rashed, A. A., El-Kenawy, E.-S. M., Ibrahim, A., Adaptive Dynamic Meta-Heuristics for Feature Selection and Classification in Diagnostic Accuracy of Transformer Faults // IEEE Access. – 2021. – Vol. 9. – P. 78324-78340. – DOI: https://doi.org/10.1109/ACCESS.2021.3083593

22. Odongo, G., Musabe, R., Hanyurwimyaha, D. A Multinomial DGA Classifier for Incipient Fault Detection in Oil-Impregnated Power Transformers // Algorithms. – 2021. – Vol. 14, No. 4. – P. 128. – DOI: http://dx.doi.org/10.3390/a14040128

23. Kherif, O., Benmahamed, Y., Teguargue, M., Boubakeur, A., Ghoneim, S. S. M. Accuracy Improvement of Power Transformer Faults Diagnostic Using KNN Classifier With Decision Tree Principle // IEEE Access. – 2021. – Vol. 9. – P. 81693-81701. – DOI: https://doi.org/10.1109/ACCESS.2021.3086135

24. Demirci, M., Gozde, H., Taplamacioglu, M. C. Comparative Dissolved Gas Analysis with Machine Learning and Traditional Methods // 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). – 2021. – P. 1-6. – DOI: https://doi.org/10.1109/HORA52670.2021.9461371

25. Алексеев, Б. А. Контроль состояния крупных силовых трансформаторов. – Москва: НЦ ЭНАС, 2002. – 216 с.

26. Shutenko, O., Kulyk, O. Analysis of Gas Content in Oil-Filled Equipment with Low Energy Density Discharges // International Journal on Electrical Engineering and Informatics. – 2020. – Vol. 12, No. 2. – P. 258-277. – DOI: https://doi.org/10.15676/ijeei.2020.12.2.6

27. Shutenko, O., Kulyk, O. Recognition of Overheating with Temperatures of 150-300°C by Analysis of Dissolved Gases in Oil // 2020 IEEE 4th International Conference on Intelligent Energy and Power Systems (IEPS). – 2020. – P. 71-76. – DOI: https://doi.org/10.1109/IEPS51250.2020.9263145

28. Shutenko, O., Kulyk, O. Combined Defects Recognition in the Low and Medium Temperature Range by Results of Dissolved Gas Analysis // 2020 IEEE KhPI Week on Advanced Technology (KhPIWeek). – IEEE, 2020. – P. 71-76. – DOI: https://doi.org/https://doi.org/10.1109/KHPIWEEK51250.2020.9263145

29. Шутенко, О. В. Анализ графических образов по результатам хроматографического анализа растворенных в масле газов высоковольтных силовых трансформаторов с различными типами дефектов // Вісник Нац. техн. ун-ту «ХПІ» : зб. наук. пр. Сер.: Енергетика: надійність та енергоефективність. – Харків: НТУ “ХПІ”, 2017. – № 31 (1253). – С. 97–121

30. Shutenko, O., Kulyk, O. Analysis of gas content in oil-filled equipment with defects for which ethane is the key gas // Lighting Engineering & Power Engineering. – 2020. – Vol. 2, No. 58. – P. 78-87. DOI: https://doi.org/10.33042/2079-424X-2020-2-58-33-42

31. Ghoneim, S. S. M., Merabtine, N. Early stage transformer fault detection based on expertise method // International Journal of Electrical Electronics and Telecommunication Engineering. – 2013. – Vol. 44. – No. 2. – P. 1289-1294.

32. Шутенко, О. В. Аналisis содержания газов в маслонаполненном оборудовании с дефектами электрического типа // Problemele Energeticii Regionale – Кишинев. – 2018 – № 3 (38). – С 1–16. DOI: https://doi.org/10.5281/zenodo.2222331

33. Shutenko, O., Yakovenko, I. Analysis of Gas Content in High Voltage Equipment With Partial Discharges // 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS). Kharkiv. – 2018. – P. 347-352. DOI: https://doi.org/10.1109/IEPS.2018.8559534

34. Shutenko, O. Analysis of gas composition in oil-filled faulty equipment with acetylene as the key gas // Energetika. – 2019. – Vol 65, No 1. – P. 21-38. DOI: https://doi.org/10.6001/energetika.v65i1.3973.

35. Гумран, В. Е. Теория вероятностей и математическая статистика. Учеб. пособие для вузов. – Москва: Высш. шк., 1977. – 479 с.

36. Шутенко, О.В. Особенности динамики изменения критериев используемых для интерпретации результатов ХАРГ в силовых трансформаторах с различными типами дефектов // Новое в Российской электроэнергетике. – 2017. – № 9. – С. 30-49.

37. Shah, S. Online monitoring of transformer health using fuzzy logic approach // Proceedings of SARC-IRAJ International Conference. – 2013 – P. 16-20.
38. Wagh Nandkumar, Deshpande D.M. Fuzzy Decision on Transformer Fault Diagnosis using Dissolved Gas Analysis and IEC Ratio Codes // International Journal of Scientific & Engineering Research. – 2013 – Vol. 4, Iss. 9. – P. 2503-2509.

References:
1. Kulyk O. Analysis of the diagnostic criteria used to defect type recognition based on the results of analysis of gases dissolved in oil. Bulletin of the National Technical University “KPI”. Series: Energy: Reliability and Energy Efficiency. 2020. № 1. P. 15-25. DOI: https://doi.org/10.20998/2224-0349.2020.01
2. Mineral oil-filled electrical equipment in service – Guidance on the interpretation of dissolved and free gases analysis: IEC 60599:2015. Geneva, Switzerland: International Electrotechnical Commission, 2015. 78 p.
3. IEEE Guide for the Interpretation of Gases Generated in Mineral Oil-Immersed Transformers: IEEE Std C57.104-2019. Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers, 2019. 98 p. DOI: https://doi.org/10.1109/IEEESTD.2019.8890040
4. Diagnostyka maslonapovnennoho transformatornoho obладнання za rezultatami khromatografichnoho analizu vilnykh haziv, vidibranych iz hazovoho rele, i haziv, rozchynenych u izoliatsiinomu masli. Metodychni vkazivky [Diagnosis of oil-filled transformer equipment by chromatographic analysis of free gases sampled from the gas relay and gases dissolved in the insulating oil. Methodological guidelines]: SOU-N EE 46.501:2006. Kyiv, Ministry of Fuel and Energy of Ukraine, 2007. 91 p.
5. Metodicheskie ukazaniia po diagnostike razvivaishchikhsia defektov transformatornogo oborudovaniia po rezultatam khromatograficheskogo analiza gazov, rastvorenykh v masle [Methodological guidelines for the technical diagnosis of developing defects in transformer equipment using the results of chromatographic analysis of gases dissolved in the oil]: RD 153-34.0-46.302-00. Moscow, NTs ENAS Publ., 2001, 41 p.
6. Metodicheskie ukazaniia po tekhnikeskomu diagnostirovaniu razvivaishchikhsia defektov maslonapolnennoego voskovolntnogo elektrooborudovaniia po rezultatam analiza gazov, rastvorenykh v mineralnom transformatornom masle [Methodological guidelines for monitoring oil-filled high-voltage electrical equipment based on the results of dissolved gas analysis]: STO 34.01-23-003-2019. PJSC «Rosseti», 2019. 63 p.
7. Dornenburg E., Strittmater W. Monitoring Oil-Cooled Transformers by Gas Analysis. Brown Boveri Review. 1974. Vol. 61. P. 238-274.
8. Rogers R. IEEE and IEC Codes to Interpret Incipient faults in Transformers, Using Gas in Oil Analysis. IEEE Trans. on Electrical Insulation. 1978. Vol. 5, No. 38. P. 349-354. DOI: https://doi.org/10.1109/TEI.1978.298141
9. Müller R., Schliesing H., Soldner K. Die Beurteilung des Betriebszustandes von Transformatoren durch Gasanalyse. Elektrizitätswirtschaft. 1977. No. 76. P. 345-349.
10. Guideline for the refurbishment of electric power transformers. Electric Technology Research Association. 2009. Vol. 65. No. 1 (in Japanese).
11. Duval M. The Duval Triangle for load tap changers non-mineral oils and low temperature faults in transformers. IEEE Electrical Insulation Magazine. 2008. Vol. 24, No. 6. P. 22-29. DOI: https://doi.org/10.1109/MEI.2008.4665347
12. Bräsel E. Universal Fault Gas Triangle for Transformer Diagnostics. GATRON GmbH. P. 1-6.
13. Kawamura T., Kawada H., Ando K., Yamaoka M., Maeda T., Takatsu T. Analyzing gases dissolved in oil and its application to maintenance of transformers. Paris, SIGRE Session Report 12-05, 1986. 5 p.
14. Naganathan G. et al. Internal fault diagnosis of power transformer using artificial neural network. Materials Today: Proceedings. 2021. Vol. 2021. DOI: https://doi.org/10.1016/j.matpr.2021.02.206
15. Ahmadi S.-A., Sanaye-Pasand M. A Robust Multi-Layer Framework for Online Condition Assessment of Power Transformers. IEEE Transactions on Power Delivery. 2021. DOI: https://doi.org/10.1109/TPWRD.2021.3074545.
16. Genc S., Karagol S. Fuzzy Logic Application in DGA Methods to Classify Fault Type in Power Transformer. 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). 2020. P. 1-4. DOI: https://doi.org/10.1109/HORA49412.2020.9152896
17. Apte R., Wajirabakar A. Incipient Fault Diagnosis of Transformer by DGA Using Fuzzy Logic. 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). 2018. P. 1-5. DOI: https://doi.org/10.1109/PEDES.2018.8707928
18. Kari T. et al An integrated method of ANFIS and Dempster-Shafer theory for fault diagnosis of power transformer. IEEE Transactions on Dielectrics and Electrical Insulation. 2018. Vol. 25, No. 1. P. 360-371. DOI: https://doi.org/10.1109/TDEI.2018.006746
19. Tightzi L. et al. An intelligent system based on optimized ANFIS and association rules for power transformer fault diagnosis. ISA Transactions. 2020. Vol. 103. P. 63-74. DOI: https://doi.org/10.1016/j.isatra.2020.03.022
20. Dias L. et al. An unsupervised approach for fault diagnosis of power transformers. Quality and Reliability Engineering International. 2021. DOI: https://doi.org/10.1002/qre.2892
21. Ghoneim S. S. M., Farrag T. A., Rashed A. A., El-Kenawy E.-S. M., Ibrahim A., Adaptive Dynamic Meta-Heuristics for Feature Selection and Classification in Diagnostic Accuracy of Transformer Faults. IEEE Access. 2021. Vol. 9. P. 78324-78340. DOI: https://doi.org/10.1109/ACCESS.2021.3083593
22. Odongo G., Musabe R., Hanyurwimfura D. A Multinomial DGA Classifier for Incipient Fault Detection in Oil-Impregnated Power Transformers. Algorithms. 2021. Vol. 14, No. 4. P. 128. DOI: http://dx.doi.org/10.3390/a14040128
23. Kherif O., Bennahamed Y., Teguar M., Boubakeur A., Ghoneim S. S. M. Accuracy Improvement of Power Transformer Faults Diagnostic Using KNN Classifier With Decision Tree Principle. IEEE Access. 2021. Vol. 9. P. 81693-81701. DOI: https://doi.org/10.1109/ACCESS.2021.3086135
24. Demirci M., Gozde H., Taplamacioglu M. C. Comparative Dissolved Gas Analysis with Machine Learning and Traditional Methods. 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). 2021. P. 1-6. DOI: https://doi.org/10.1109/HORA52670.2021.9461371
25. Alekseev B. A. Kontrol sostoianiia (diagnostika) krupnykh silovyh transformatorov [Condition monitoring (diagnostics) of large power transformers]. Moscow, NTs ENAS Publ., 2002. 216 p.
26. Shutenko O., Kulyk O. Analysis of Gas Content in Oil-Filled Equipment with Low Energy Density Discharges. International Journal on Electrical Engineering and Informatics. 2020. Vol. 12, No. 2. P. 258-277. DOI: https://doi.org/10.15676/ijeii.2020.12.2.6
27. Shutenko O., Kulyk O. Recognition of Overheating with Temperatures of 150-300° C by Analysis of Dissolved Gases in Oil. 2020 IEEE 4th International Conference on Intelligent Energy and Power Systems (IEPS). IEEE, 2020. P. 71-76. DOI: https://doi.org/10.1109/IEPS51250.2020.9263145
28. Shutenko O., Kulyk O. Combined Defects Recognition in the Low and Medium Temperature Range by Results of Dissolved Gas Analysis. 2020 IEEE KhPI Week on Advanced Technology (KhPIWeek). IEEE. 2020. P. 65-70. DOI: https://doi.org/10.1109/KhPIWeek51551.2020.9250131
29. Shutenko O. V. Analiz graficheskikh obraztsov postroennykh po rezultatam khromatograficheskogo analiza rastvorenныkh v masle gazov dla vysokovoltnых silovых transformatorov s razlichnymimi tipami defektov [Analysis of graphical samples of gases constructed for chromatographic analysis of gases dissolved in oil for high-voltage power transformers with various types of defects]. Bulletin of the National Technical University “KhPI”: a collection of scientific papers. Thematic issue: Energetics: reliability and energy efficiency. 2017. No. 31 (1253). P. 97-121.
30. Shutenko O., Kulyk O. Analysis of gas content in oil-filled equipment with defects for which ethane is the key gas. Lighting Engineering & Power Engineering. 2020. Vol. 2, No. 58. P. 78-87.
31. Ghoneim S., Merabtine N. Early stage transformer fault detection based on expertise method. International Journal of Electrical Electronics and Telecommunication Engineering. 2013. Vol. 44. No. 2. P. 1289-1294.
32. Shutenko O. V. Analiz soderzhaniia gazov v maslonapolnennom oborudovanii s defektami elektricheskogo tipa [Analysis of the content of gases in oil-filled equipment with electrical defects]. PROBLEMELE ENERGETICII REGIONALE. 2018 No. 3 (38). P. 1–16. DOI: https://doi.org/10.5281/zenodo.2222331
33. Shutenko O., Yakovenko I. Analysis of Gas Content in High Voltage Equipment With Partial Discharges. 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS). Kharkiv. 2018. P. 347-352.
34. Shutenko O. Analysis of gas composition in oil-filled faulty equipment with acetylene as the key gas. Energetika. 2019. Vol 65, No 1. P. 21-38. DOI: https://doi.org/10.6001/energetika.v65i1.3973
35. Gmurman V. E. Teoriia veroiatnosti i matemati cheskaia statistika. Ucheb. posobie dlia vuzov [Probability Theory and Mathematical Statistics. Textbook for Universities.]. Moscow, High school Publ., 1977. 479 p.
36. Shutenko O. V. Osobennosti dinamiki izmeneniia kriteriev ispolzuemykh dlia interpretatsii rezultatov KhARG v silovых transformatorakh s raznymi tipami defektov [Peculiarities of the dynamics of the criteria used for the interpretation of DGA results in power transformers with different types of defects]. New in the Russian electricity sector. 2017. No. 9. P. 30-49.
37. Shah S. Online monitoring of transformer health using fuzzy logic approach. Proceedings of SARC-IRAJ International Conference. 2013 P. 16-20.
38. Wagh Nandkumar, Deshpande D.M. Fuzzy Decision on Transformer Fault Diagnosis using Dissolved Gas Analysis and IEC Ratio Codes. International Journal of Scientific & Engineering Research. 2013. Vol. 4. Iss. 9. P. 2503-2509.