A Survey on Multi-Product Sustainable Economic Production Quantity Model Considering Wastewater Emission Costs

Yu-Hua Chiang Li1,3, L L Sy2,4, K C Lomibao2,5 and J D German2,6 H M Wee1,3*

1Department of Industrial and Systems Engineering, Chung Yuan Christian University, Chungli 3202, Taiwan, R.O.C.
2School of Industrial Engineering and Engineering Management, Mapúa University, Manila, Philippines.
3g10602409@cycu.edu.tw
4llsy@mymail.mapua.edu.ph & jdgerman@mapua.edu.ph
5kclomibao@mymail.mapua.edu.ph
\textsuperscript{*Email: weehm@cycu.edu.tw

Abstract. Implementing sustainability in production processes is the goal of many companies. A traditional economic production quantity (EPQ) model is used to determine the optimal number of products to produce in one period. Few researchers have considered carbon emission costs. In this study, we made a survey on multi-product sustainable economic production quantity model considering wastewater emission costs. The objective of this study is investigate the possible research to determine the economic production quantity to minimize the total costs per production cycle and waste emissions. The survey consider researches under three scenarios: (1) sustainable EPQ model that considers all CO2 emissions from inventory holding and production; (2) sustainable EPQ with shortage backorder; and (3) multi-product sustainable EPQ model with shortage.

1. Introduction

Wastewater emission and demand for fresh water continues to increase with industrialization. Wastewater emission is a known global problem, where 80% of water effluents from various industries is discharged into rivers, lakes, and oceans that are left untreated \cite{1}, eventually leading to eutrophication, human health risks and water scarcity. Efforts to address these problems are already done by various researchers, utilizing different process integration methods to reduce water emission in industrial plants. These include linear models \cite{2}, nonlinear models \cite{3}, pinch analysis \cite{4}, genetic algorithms \cite{5}, management strategies \cite{6}, benchmarking \cite{7}, and wastewater reuse, recovery, and treatment methods \cite{8}.

Harmful gaseous releases are also produced from manufacturing industries, including carbon dioxide (CO2), sulphur oxides (SOx), nitrogen oxides (NOx), and methane (CH4) emissions. These gases are emitted through fossil fuel combustion, production, transportation, and other procedures. A 2016 study \cite{9} revealed that annual CO2 emission can go up to 11 million tons and is continually increasing while SOx and NOx emissions have increased during the years 1990 and 2016 respectively due to continuous fuel combustion \cite{10}. In contrast, CH4 emission associated from landfills, coal mining, and distribution of natural gas and petroleum products have decreased. CH4, however, still impacts the environment on a global scale as a greenhouse gas (GHG) due to its high global warming potential compared to other GHGs. Similarly, numerous researches have been conducted to address
GHG emission problems, focusing on inventory management [11], fuel saving strategies [12], and optimizing transhipment routes [13].

The problems regarding emission of pollutants are still not solved although information and procedures on how to integrate processes considering environmental factors are readily available. This may be attributed to the substantial costs and expenses for the implementation of sustainable processes, a main barrier to achieve a cleaner production system [14]. Other researchers linked the problem to the Green Attitude–Behaviour Gap of consumers, a term defined by [15] as the comparison between favourable attitude of customers and their actual purchasing activities for green products. It noted that consumers are more concerned with product price than green product attributes. This means that implementing sustainability is a challenge to industries.

Numerous researchers have already done the extension of the EPQ model. Some studies considered different types of demand [16], incorporated shortage situations [17], and included deteriorating rates [18]. Researches on sustainable inventory models integrating environmental costs through direct accounting approach are also available since there is a fervent need for environmental sustainability management. These include the work of Taleizadeh et al. [17], where an EPQ model is integrated to have carbon emission costs through direct accounting approach considering different shortage situations, and Zadafjar and Gholamian [2] who developed an inventory model that considers the emission of SOx, NOx, BOD, and COD from the manufacturing process of pulp and paper mills and its water effluents. The model was developed using exact non-linear constrained solution method. Another research [19] created a sustainable EPQ model considering carbon emission from production, warehousing, and waste disposal activities then extended it to a full backordering situation.

This paper aimed to provide a more realistic EPQ model that can be used to determine the right quantity to produce while minimizing the total costs per production cycle, taking into account of sustainable issues. Studying the EPQ model is more logical since water effluents and GHG emissions are more apparent during production processes. The sustainable EPQ model extends the study by [17] to consider a full backordering and multi-product situations. The model applies optimization methods to consider CO2 emission cost, wastewater costs and BOD/COD emission. Finally, the CH4 emission was incorporated from the waste disposal procedure.

As the world’s need for environmental sustainability management grows, tax laws and emission costs are continuously imposed on various industries. However, companies still tend to exclude sustainability management on their system because of the costs and expenses that comes with its implementation and maintenance. The costs may be compromised by increasing the product price, but the consumers would be less willing to purchase the product. For these reasons, the manufacturers must reduce cost by optimizing an EPQ model. Production processes are the main sources of harmful emissions for a manufacturing system. In order to become more globally competitive, manufacturers would want to consider sustainability in their production system without affecting or minimizing their total cost.

2. Finding the Gap: Literature Review

2.1. Sustainable Inventory Models

The EOQ model, developed by [20] in 1913 help companies determine the optimal quantity to order. Two years after, the same author extended his work by presenting a model for finding the EPQ that involves only holding and set-up costs. Since then the importance of environmental issues, sustainable development, and concept of sustainability receives more attention than before [21]. As newer sustainable machines and treatment processes are invented for different types of industries, both producers and buyers are still not accustomed to applying sustainability in the production system because of the implementation costs and expenses [14]. By then, numerous researchers studied and developed sustainable inventory models to respond to environmental needs of the corporate world. In a recent study by [17], four (4) sustainable EPQ models were analysed and applied to different shortage situations. Using direct accounting approach, the researchers developed the sustainable EPQ (SEPQ) with carbon emission costs from holding, obsolescence, and production under different backordering situations. The study revealed that although these did not generate the least cost; an
SEPQ with partial model is the ideal and realistic model to use. Similarly, [19] developed an SEPQ model through optimization methods considering carbon emission costs from production, warehousing, and waste disposal activities for a full backordering situation. A broader perspective has been adopted by [22], who implemented a study to a single-vendor single-buyer situation accounting for carbon emission from transporting, warehousing, and inventory holding of deteriorating items. This provided insights on determining the optimal production quantity while minimizing total inventory and carbon emission costs. The work of [2] on the other hand, presented a revised EOQ model by adding income from waste sales as well as sulphur, nitrogen, BOD, and COD emission costs. The investigators compared all the developed models to the real data from a pulp and paper mill in Iran and found that through environmental ergonomics, both inventory costs and emissions can be minimized. Together these studies provided important insights to both the manufacturers and buyers in implementing system sustainability. This study will attempt to fill the gaps and add new considerations in the models developed from past researches.

2.2. Pulp and Paper Mill Industry
Numerous literatures on sustainability to various types of industries including the pulp and paper mill industry is evident over the years. This industry has been receiving widespread attention due to its high-energy consumption [23]. The pulp and paper mill industry generate different pollutants that depend on the type of pulping process [8]. Paper production includes three (3) major activities: pulp making, paper formation, and finishing. During the pulp making and paper formation process, coatings and fillers are added to the pulp that converts it into paper. This process requires an intensive resource and energy that results to huge emission of GHGs, water effluents, and other pollutants [24]. Various researches on sustainability methods include generating environment-friendly management strategies [6], treatment processes [8], and integration of inventory models [2].

2.3. Emissions during the Pulp and Paper Production
The emissions of pulp and paper processes are presented in Table 1. Wood handling, pulping, and chemical recovery units emit specific amounts of SOx in each process. It can also be observed that NOx emissions are present only in pulping and chemical recovery. Wastewater emission can be found in all units except in packaging while wastewater treatment unit produces refined water (BOD and COD) and dry sludge. The dry sludge is then disposed to landfills that produce methane. Evidently, air and water pollutions are present in the pulp and paper mill industry.

![Table 1. Source of Emissions from a Pulp and Paper Mill Process](image)

Considered Processes	NOx	SOx	BOD	COD	CO2	CH4
Wood Handling	●	●	●	●	●	●
Pulping	●	●	●	●	●	●
Chemical Recovery	●	●	●	●	●	●
Pulp Washing	●	●	●	●	●	●
Pulp Bleaching	●	●	●	●	●	●
Paper Making	●	●	●	●	●	●
Finished Paper Storage	●	●	●	●	●	●
Wastewater Treatment	●	●	●	●	●	●
Disposal of Solid Waste (Dry Sludge)	●	●	●	●	●	●
Whole Production Process (Electricity)	●	●	●	●	●	●

3. Conclusion
This study focuses on literature review for sustainable Economic Production Quantity (EPQ) models. At proposal to extend the sustainable EPQ model is then is suggested to consider shortage and multiproduct production system with warehouse capacity constraint. The main goal is to provide insights
for researcher to minimize GH emission and the total cost per production cycle. If a manufacturer applies the proposed models to their current system, the company will become more sustainable and cost effective. The proposed sustainable EPQ models may provide significant insights to various manufacturing industries. Future research can focus on other objectives such as decreasing emission of hazardous wastes during production and broadening the models to consider simultaneously the perspectives of the manufacturer and the buyer.

4. References
[1] International Water Association, I. W. A. (2018). "The Reuse Opportunity." Wastewater Report
[2] Zadjafar, M. A. and Gholamian, M. R. (2018). "A sustainable inventory model by considering environmental ergonomics and environmental pollution, case study: Pulp and paper mills." Journal of Cleaner Production 199: 444-458.
[3] Oliveira-Esquerre, K. P., Seborg, D. E., Mori, M., & Bruns, R. E. (2004). "Application of steady-state and dynamic modeling for the prediction of the BOD of an aerated lagoon at a pulp and paper mill: Part II. Nonlinear approaches." Chemical Engineering Journal 105(1-2): 61-69.
[4] Jacob, J., Kaira, H., Couderc, F., & Paris, J. (2002). "Water network analysis in pulp and paper processes by pinch and linear programming techniques." Chemical Engineering Communications 189(2): 184-206.
[5] Shafiei, S., Domenech, S., Koteles, R., & Paris, J. (2004). "System closure in pulp and paper mills: network analysis by genetic algorithm." Journal of Cleaner Production 12(2): 131-135.
[6] Helin, K., Käki, A., Zakeri, B., Lahdelma, R., & Syri, S. (2017). "Economic potential of industrial demand side management in pulp and paper industry." Energy 141: 1681-1694.
[7] Rogers, J. G., Cooper, S. J., & Norman, J. B. (2018). "Uses of industrial energy benchmarking with reference to the pulp and paper industries." Renewable and Sustainable Energy Reviews 95: 23-37.
[8] Pokhrel, D. and T. Viraraghavan (2004). "Treatment of pulp and paper mill wastewater—a review." Science of The Total Environment 333(1): 37-58.
[9] Ritchie, H. R., M. (2018) "CO₂ and other Greenhouse Gas Emissions."
[10] United States Environmental Protection Agency, E. P. A. (2018). "Inventory of U.S. Greenhouse Gas Emissions and Sinks"
[11] Tang, S., Wang, W., Cho, S., & Yan, H. (2018). "Reducing emissions in transportation and inventory management:(R, Q) Policy with considerations of carbon reduction." European Journal of Operational Research 269(1): 327-340.
[12] Seddiek, I. S. and M. M. Elghohary (2014). "Eco-friendly selection of ship emissions reduction strategies with emphasis on SOx and NOx emissions." International Journal of Naval Architecture and Ocean Engineering 6(3): 737-748.
[13] Mirzapoore Al-e-hashem, S. M., Rekik, Y., & Hoseinhajlou, E. M. (2017). "A hybrid L-shaped method to solve a bi-objective stochastic transshipment-enabled inventory routing problem." International Journal of Production Economics.
[14] Shi, H., Peng, S. Z., Liu, Y., & Zhong, P. (2008)." Barriers to the implementation of cleaner production in Chinese SMEs: government, industry and expert stakeholders' perspectives." Journal of cleaner production 16(7): 842-852.
[15] Joshi, Y., and Rahman, Z. (2015). "Factors affecting green purchase behaviour and future research directions." International Strategic management review 3(1-2): 128-143.
[16] Pal, B., Sana, S. S., & Chaudhuri, K. (2013). "A mathematical model on EPQ for stochastic demand in an imperfect production system." Journal of Manufacturing Systems 32(1): 260-270.
[17] Taleizadeh, A. A., Soleymanfar, V. R., & Govindan, K. (2018). "Sustainable economic production quantity models for inventory systems with shortage." Journal of Cleaner Production 174: 1011-1020.
[18] Wee, H.-M. and Wang, W.-T. (2012). "A supplement to the EPQ with partial backordering and phase-dependent backordering rate." Omega 40(3): 264-266.
[19] Daryanto, Y. and Wee, H.-M. (2018). "Sustainable Economic Production Quantity Models: An Approach toward a Cleaner Production." ICAMM, Tokyo.
[20] Harris, F.W. (1915). What Quantity to Make at Once: In: The Library of Factory Management, Vol. V. Operation and Costs. Chicago: A. W. Shaw Company, 47-52.

[21] Shankar, K. M., Kannan, D., & Kumar, P. U. (2017). "Analyzing sustainable manufacturing practices—A case study in Indian context." Journal of Cleaner Production 164: 1332-1343.

[22] Tiwari, S., Daryanto, Y., & Wee, H. M. (2018). "Sustainable inventory management with deteriorating and imperfect quality items considering carbon emission." Journal of Cleaner Production 192: 281-292.

[23] Shan, Y., Liu, Z., & Guan, D. (2016). "CO2 emissions from China’s lime industry." Applied energy 166: 245-252.

[24] Sun, M., Wang, Y., Shi, L., & Klemes, J. J. (2018). "Uncovering energy use, carbon emissions and environmental burdens of pulp and paper industry: A systematic review and meta-analysis." Renewable and Sustainable Energy Reviews 92: 823-833.

[25] Cárdenas-Barrón, L. E. (2001). "The economic production quantity (EPQ) with shortage derived algebraically." International Journal of Production Economics 70(3): 289-292.

[26] Wee, H. M., Huang, Y. D., Wang, W. T., & Cheng, Y. L. (2014). "An EPQ model with partial backorders considering two backordering costs." Applied Mathematics and Computation 232: 898-907.

[27] Chiu, S. W., Tseng, C. T., Wu, M. F., & Sung, P. C. (2014). "Multi-item EPQ model with scrap, rework and multi-delivery using common cycle policy." Journal of applied research and technology 12(3): 615-622.

[28] Nobil, A. H., Sedigh, A. H. A., & Cárdenas-Barrón, L. E. (2016). "A multi-machine multi-product EPQ problem for an imperfect manufacturing system considering utilization and allocation decisions." Expert Systems with Applications 56: 310-319.

[29] GAPS Guidelines. (2015). Pulp and Paper Manufacturing.

[30] Taft, E. W. (1918). "The most economical production lot." Iron Age 101: 1410-1412.

[31] Pasandideh, S. H. R., Niaki, S. T. A., Nobil, A. H., & Cárdenas-Barrón, L. E. (2015). "A multiproduct single machine economic production quantity model for an imperfect production system under warehouse construction cost." International Journal of Production Economics 169: 203-214.

[32] Kuhn, H. and Tucker, A. (1951). "Nonlinear Programming." Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability. 481-492.

[33] Ghosh, S.K., Sarkar, T., and Chaudhuri, K. (2015). “A Multi-Item Inventory Model for Deteriorating Items in Limited Storage Space with Stock-Dependent Demand”. American Journal of Mathematical and Management Sciences 34: 147–161.