Improving both domain robustness and domain adaptability in machine translation

Wen Lai and Jindřich Libovický and Alexander Fraser
Center for Information and Language Processing, LMU Munich, Germany
{lavine, libovicky, fraser}@cis.lmu.de

Abstract
We address two problems of domain adaptation in neural machine translation. First, we want to reach domain robustness, i.e., good quality of both domains from the training data, and domains unseen in the training data. Second, we want our systems to be adaptive, i.e., making it possible to finetune systems with just hundreds of in-domain parallel sentences. In this paper, we introduce a novel combination of two previous approaches, word adaptive modelling, which addresses domain robustness, and meta-learning, which addresses domain adaptability, and we present empirical results showing that our new combination improves both of these properties.

1 Introduction
The success of Neural Machine Translation (NMT; Bahdanau et al., 2015; Vaswani et al., 2017) heavily relies on large-scale high-quality parallel data, which is difficult to obtain in some domains. We study two major problems in NMT domain adaptation. First, models should work well on both seen domains (the domains in the training data) and unseen domains (domains which do not occur in the training data). We call this property domain robustness. Second, with just hundreds of in-domain sentences, we want to be able to quickly adapt to a new domain. We call this property domain adaptability. There are a few works attempting to solve these two problems. Jiang et al. (2020) proposed using individual modules for each domain with a word-level domain mixing strategy, which they showed has domain robustness on seen domains. We show that in fact word-level domain mixing can also have domain robustness on unseen domains, a new result. Sharaf et al. (2020); Zhan et al. (2021) use meta-learning approaches for improving on unseen domains. This work has strengths in adaptability to unseen domains but sacrifices robustness on seen domains.

Our goal is to develop a method that makes the model domain adaptable while maintaining robustness. We show that we can combine meta-learning with a robust word-level domain mixing system to obtain both domain robustness and domain adaptability simultaneously in a single model. The reasons are as follows: i) word-level domain mixing is better at capturing the domain-specific knowledge on seen domains, and is more adaptive in the process of domain knowledge sharing on unseen domains (Jiang et al., 2020); ii) meta-learning fails to work in seen domains, hence we considered using domain-specific knowledge learned from word-level domain mixing to improve the performance in seen domains; iii) meta-learning show its strength in adapting to new domains, allowing us to use the domain knowledge shared from seen domains to improve the performance on new domains.

To achieve this, we propose RMLNMT (robust meta-learning NMT), a more robust and adaptive meta-learning-based NMT domain adaptation framework. We first train a word-level domain mixing model to improve the robustness on seen domains, and show that, surprisingly, this improves robustness on unseen domains as well. Then, we train a domain classifier based on BERT (Devlin et al., 2019) to score training sentences; the score measures similarity between out-of-domain and general-domain sentences. Finally, we improve domain adaptability by integrating the domain-mixing model into a meta-learning framework with a domain classifier and a balanced sampling strategy.

We evaluate RMLNMT on two translation tasks: English→German and English→Chinese. We conduct experiments for NMT domain adaptation in two low-resource scenarios. In the first scenario, a word-level domain mixing model is trained, and we carry out an evaluation of domain robustness. We also show that meta-learning on the seen domains fails to improve the domain robustness on unseen domains. In the second scenario, we com-
bine domain robust word-level domain mixing with meta-learning using just hundreds of in-domain sentences, and show that this combination has both domain robustness and domain adaptability.

The rest of the paper is organized as follows: We first describe related work (§2) and the models in detail (§3). Then we define the experimental setup (§4) and evaluate domain robustness and domain adaptability (§5). Finally, we analyse the results through an ablation study (§6).

2 Related Work

Domain Adaptation for NMT. Domain Adaptation for NMT typically uses additional in-domain monolingual data or a small amount of in-domain parallel data to improve the performance of domain translation in new domains (Chu and Wang, 2018). Current approaches can be categorized into two groups by granularity: From a sentence-level perspective, researchers either use data selection methods (Moore and Lewis, 2010; Axelrod et al., 2011) to select the training data that is similar to out-of-domain parallel corpora or train a classifier (Rieß et al., 2021) or utilize a language model (Wang et al., 2017; Zhan et al., 2021) to better weight the sentences. From a word-level perspective, researchers try to model domain distribution at the word level, since a word in a sentence can be related to more domains than just the sentence domain (Zeng et al., 2018; Yan et al., 2019; Hu et al., 2019; Sato et al., 2020; Jiang et al., 2020). In this work, we combine sentence-level (domain classifier) and word-level (domain mixing) domain information.

Curriculum Learning for NMT. Curriculum learning (Bengio et al., 2009) starts with easier tasks and then progressively gain experience to process more complex tasks and have proved useful in NMT domain adaptation. Stojanovski and Fraser (2019) utilize curriculum learning to improve anaphora resolution in NMT systems. Zhang et al. (2019) use a language model to compute a similarity score between domains, from which a curriculum is devised for adapting NMT systems to specific domains from general domains. Similarly, Zhan et al. (2021) use language model divergence scores as the curriculum to improve the performance of NMT domain adaptation with meta-learning in low-resource scenarios. In this paper, we improve the performance of NMT domain adaptation using curriculum learning based on a domain classifier.

Meta-Learning for NMT. Gu et al. (2018) apply model-agnostic meta-learning (MAML; Finn et al., 2017) to NMT. They show that MAML effectively improves low-resource NMT. Li et al. (2020) and Sharaf et al. (2020) propose to formulate the problem of low-resource domain adaptation in NMT as a meta-learning problem: the model learns to quickly adapt to an unseen new domain from a general domain. Recently, Zhan et al. (2021) propose to use language model divergence score as the curriculum to improve the performance of NMT domain adaptation. In this paper, we improve the domain robustness through a word-level domain-mixing model and integrate it into a meta-learning framework to improve the domain adaptability.

We approach meta-learning similarly to Zhan et al. (2021), which used the language model divergence score as curricula for improving the performance of NMT domain adaptation. In contrast, we use the probability of being out-of-domain assigned by classifier to guide the curriculum; we also use a balanced sample strategy to split the tasks (see more details in Section 3.3). Furthermore, our meta-learning work does not use a plain transformer as the pre-trained model, but relies on a word-level domain mixing model (Jiang et al., 2020), which we will show is effective and robust in multi-domain adaptation. Finally, we use a stronger baseline, as we will discuss in the evaluation section (§4).

3 Method

In our initial experiments, we observed that the traditional meta-learning approach for NMT domain adaptation sacrifices the domain robustness on seen domains in order to improve the domain adaptability on unseen domains (see more details in Table 1 and Table 2, these will be discussed in Section 5). To address these issues, we propose a novel approach, RMLNMT, which combines meta-learning with a word-level domain-mixing system to improve both domain robustness and domain adaptability simultaneously in a single model. RMLNMT consists of three parts: Word-Level Domain Mixing, Domain classification, and Online Meta-Learning. Figure 1 illustrates RMLNMT.

3.1 Word-level Domain Mixing

In order to improve the robustness of NMT domain adaptation, we follow the approach of Jiang et al.
(2020) to train the word-level layer-wise domain mixing NMT model. We provide a brief review of this approach here; please refer to Jiang et al. (2020) for more details.

Domain Proportion. From a sentence-level perspective (i.e., the classifier-based curriculum step), each sentence has a domain label. However, the domain of a word in the sentence is not necessarily consistent with the sentence domain. E.g., the word *doctor* shares the same embedding can have a different meaning in the medical domain and the academic domain. More specifically, for k domains, the embedding $w \in \mathbb{R}^d$ of a word, and a matrix $R \in \mathbb{R}^{k \times d}$, the domain proportion of the word is represented by a smoothed softmax function as:

$$
\Phi(w) = (1 - \epsilon) \cdot \text{softmax}(Rw) + \epsilon/k,
$$

where $\epsilon \in (0, 1)$ is a smoothing parameter to prevent the output of $\Phi(w)$ from collapsing towards 0 or 1.

Domain Mixing. The standard Transformer (Vaswani et al., 2017) models the multi-head attention mechanism to focus on information in different representation subspaces from different positions:

$$
\text{MultiHead}(Q, K, V) = \text{Concat}(h_1, \ldots, h_k) W^O
$$

where $W^Q_i, W^K_i, W^V_i \in \mathbb{R}^{d \times d/m}$ and $W^O \in \mathbb{R}^{d \times d}$. For i-th head h_i, m is the number of heads, and d is the dimension of the model output.

Following Jiang et al. (2020), each domain has its own multi-head attention modules. Therefore, we can integrate the domain proportion of each word into its multi-head attention module. Specifically, we take the weighted average of the linear transformation based on the domain proportion Φ. For example, we consider the point-wise linear transformation $\{W_{i,j}\}_{j=1}^k$ on the t-th word of the input, V_t, of all domains. The mixed linear transformation can be written as:

$$
\hat{V}_{i,t} = \sum_{j=1}^k V_t^\top W_{i,j} \Phi_{V_{i,j}}(V_t),
$$

where $\Phi_{V_{i,j}}(V_t)$ denotes the j-th entry of $\Phi_V(V_t)$, and Φ_V is the domain proportion layer related to V. For other linear transformations, we apply the domain mixing scheme in the same way for all attention layers and the fully-connected layers.

Training. The model can be efficiently trained by minimizing a composite loss:

$$
L^* = L_{\text{gen}}(\theta) + L_{\text{mix}}(\theta),
$$

where θ contains the parameter in encoder, decoder and domain proportion. $L_{\text{gen}}(\theta)$ denotes the cross-entropy loss over training data $\{x_i, y_i\}_{i=1}^n$.

Figure 1: Method overview. The whole procedure mainly consists of three parts: domain classification, word-level domain mixing and online meta-learning.
and \(L_{\text{mix}}(\theta) \) denotes the cross-entropy loss over the words/domain labels. For \(L_{\text{mix}}(\theta) \), we compute the cross-entropy loss of its domain proportion \(\Phi(w) \) as \(-\log(\Phi_J(w))\), which take \(J \) as the domain label. Hence, \(L_{\text{mix}}(\theta) \) is computed as the sum of the cross-entropy loss over all such pairs of word labels of the training data.

3.2 Domain classification

Domain similarity has been successfully applied in NMT domain adaptation. Moore and Lewis (2010) calculate cross-entropy scores with a language model to represent the domain similarity. Rieß et al. (2021) leverage simple classifiers to compute similarity scores; these scores are more effective than scores from language models for domain adaptation of NMT. Following Rieß et al. (2021), we compute domain similarity using a sentence-level classifier, but in contrast with their work, we based our classifier on a pre-trained language model.

Given \(k \) domain corpora (one general domain corpus and \(n \) out-of-domain corpora), we trained a sentence classification model \(M \) based on BERT (Devlin et al., 2019). For a sentence \(x \) with a domain label \(L_x \), a simple softmax is added to the top of the model \(M \) to predict the domain probability of sentence \(x \):

\[
P(x \mid h) = \text{softmax}(Wh),
\]

where \(W \) is the parameter matrix of \(M \) and \(h \) is the hidden state of \(M \). \(P(x \mid h) \) is a probability set, which contains \(k \) probability scores indicating the similarity of sentence \(x \) to each domain. A higher probability \(P \) of general domain means the domain of sentence \(x \) is more similar to the general domain, and vice versa. We finally select the probability of the general domain as the score of the sentence \(x \) and use this score as the curriculum to split the task in meta-learning (see more details in Section 3.3). A higher score indicates that the sentence is more similar to the general domain, so we will select it earlier.

3.3 Online Meta-Learning

The idea of meta-learning is to use a small set of source tasks \(\{T_1, \ldots, T_n\} \) to find the initialization of model parameters \(\theta \) from which learning a target task \(T_0 \) would require only a small number of training examples. Meta-learning algorithms consist of three main steps: (i) split the seen domain corpus into small tasks \(T \) containing a small amount of data as \(D_{\text{meta-train}} \) and \(D_{\text{meta-test}} \) to simulate the low-resource scenarios; Data for each task \(T_i \) could be decomposed into two sub-sets: a support set \(T_{\text{support}} \) used for training the model and a query set \(T_{\text{query}} \) used for evaluating the model; (ii) leverage a meta-learning policy to adapt model parameters to different small tasks using \(D_{\text{meta-train}} \) datasets. We use MAML, proposed by Finn et al. (2017), and instantiated for the meta-learning to adapt the NMT systems in different domains. (iii) finetune the model using \(D_{\text{meta-test}} \). Algorithm 1 shows the complete algorithm.

Split Tasks.
Zhan et al. (2021) propose a curriculum-based task splitting strategy, which uses divergence scores computed by a language model as the curriculum to split the corpus into small tasks. We follow a similar idea, but propose to use predictions from a domain classifier as the criterion for splitting the data. Concretely, we first train a domain classifier with BERT; the classifier scores sentences, indicating domain similarity between an in-domain sentence and a general domain sentence (see Section 3.2). The tasks are then split according to the scores; sentences more similar to the general domain sentences are selected in the early task.

![Figure 2: The statistic of samples in the task for token-based sampling strategy.](image)

Balanced Sampling.
Traditional meta-learning approaches (Sharaf et al., 2020; Zhan et al., 2021) are based on token-size based sampling, which uses 8k or 16k token sizes split into many small tasks. However, the splitting process for the domain is not balanced, since some tasks did not contain all seen domains, especially in the early tasks. As we can see in Figure 2, the token-based splitting methods usually allocate more samples on domain-similar domains (WMT, Globalvoices) and allocate small
samples on domain-distant domains (EMEA, JRC) in the tasks of early sampled. This can cause problems in our method since the model architecture is dynamically changing according to the numbers of domains (see more details in Section 3.1).

To address these issues, we sample the data uniformly from the domains to compensate for imbalanced domain distributions based on domain classifier scores.

Meta-Training. Following the balanced sampling, the process of meta-training is to update the current model parameter on \(T_{support} \) from \(\theta \) to \(\theta' \), and then evaluate on \(T_{query} \). The model parameter \(\theta' \) is updated to minimize the meta-learning loss through MAML.

Given a pre-trained model \(f_\theta \) (initialize with parameter \(\theta \) trained on word-level domain mixing) and the meta-train data \(D_{meta-train} \), for each task \(T \), we learn to use one gradient update the model parameter from \(\theta \) to \(\theta' \) as follows:

\[
\theta' = \theta - \alpha \nabla_\theta L_T (f_\theta)
\]

where \(\alpha \) is the learning rate and \(L \) is the loss function. In our methods, we consider both the traditional sentence-level meta-learning loss \(L_T (f_\theta) \) and the word-level loss \(\Gamma_T (f_\theta) \) (\(L^* \) of \(T \)) calculated from the word-level domain mixing pretrained model. More formally, the loss is updated as follows:

\[
L_T (f_\theta) = L_T (f_\theta) + \Gamma_T (f_\theta)
\]

The meta-training phrase is not adapted to a specific domain and can be used as a metric to evaluate the domain robustness of the model.

Meta-Adaptive. After the meta-training phase, the parameters are updated to adapt to each domain using the small support set \(D_{meta-test} \) corpus to simulate the low-resource scenarios. Then performance is evaluated on the query set of \(D_{meta-test} \).

4 Experiments

Datasets. We experiment with English→German (en2de) and English→Chinese (en2zh) translation tasks. For the en2de task, we use the same corpora as Zhan et al. (2021). The data consists of corpora in nine domains (Bible, Books, ECB, EMEA, GlobalVoices, JRC, KDE, TED, WMT-News) publicly available on OPUS\(^1\) (Tiedemann, 2012). The COVID-19 corpus\(^2\) is used as the real-world domain data. For en2zh, we use UM-Corpus (Tian et al., 2014) containing eight domains: Education, Microblog, Science, Subtitles, Laws, News, Spoken, Thesis. We use WMT14 (en2de) and WMT18 (en2zh) corpus published on the WMT website\(^3\) as our general domain corpora. We also use WMT19 English monolingual corpus to train the LM model so that we can reproduce the results in the previous work.

Data Preprocessing. For English and German, we preprocessed all data with the Moses tokenizer\(^4\) and use sentencepiece\(^5\) (Kudo and Richardson, 2018) to encode the corpus with a joint vocabulary, with size 40,000. After that, we filter the sentence longer than 175 tokens and deduplicate the corpus. For Chinese, we perform segment texts with pkuseg\(^6\) (Luo et al., 2019). To have a fair comparison with previous methods (Sharaf et al., 2020; Zhan et al., 2021), we use the same setting, which randomly sub-sampled \(D_{meta-train} \) and \(D_{meta-test} \) for each domain with fixed token sizes in order to simulate domain adaptation tasks in low-resource scenarios. More details for data used in this paper can be found in Appendix A.1.

Baselines. We compare RMLNMT with the following baselines:

\(^1\)http://www.statmt.org
\(^2\)github.com/NLP2CT/Meta-Curriculum
\(^3\)opus.nlpl.eu
\(^4\)github.com/moses-smt/mosesdecoder
\(^5\)github.com/google/sentencepiece
\(^6\)github.com/lancopku/pkuseg-python
Table 1: Domain Robustness: BLEU scores on the English → German translation task. w/o denotes the meta-learning systems without fine-tuning, FT denotes fine-tuning. Best results are highlighted in bold.

Models	Unseen	Seen								
	Covid	Bible	Books	ECB	TED	EMEA	Globalvoices	JRC	KDE	WMT
Vanilla w/o FT	24.34	12.08	12.61	29.96	27.89	37.27	24.19	39.84	27.75	27.38
Meta-MT w/o FT	23.69	11.07	12.10	23.04	26.86	30.94	23.73	38.82	23.04	26.13
Meta-Curriculum (LM) w/o FT	23.70	11.16	12.24	28.22	27.21	34.69	24.27	39.21	27.60	25.83
Meta-Curriculum (cls) w/o FT	24.03	13.10	12.29	27.49	27.61	34.00	24.27	39.61	27.37	26.68
Word-level Adaptive	26.14	14.37	12.80	30.41	28.97	34.00	24.16	39.82	26.47	26.38

Table 2: Domain Adaptability: BLEU scores on the English → German translation task.

Models	Unseen	Seen								
	Covid	Bible	Books	ECB	TED	EMEA	Globalvoices	JRC	KDE	WMT
Plain FT	24.81	12.61	12.78	30.48	28.36	37.26	24.26	40.02	27.99	27.31
Meta + FT	25.83	14.20	13.39	30.36	28.57	34.69	24.64	39.15	27.47	26.38
Meta-Curriculum (LM) + FT	**26.66**	14.37	13.70	30.41	28.97	34.00	24.72	39.61	27.37	26.68
Meta-Curriculum (cls) + FT	26.14	15.16	13.53	30.72	29.11	33.96	24.72	39.40	27.86	26.45
RMLNMT w/o FT	25.48	11.48	13.11	31.42	28.05	47.00	26.35	51.13	32.80	28.37
RMLNMT + FT	26.53	**15.37**	13.72	31.97	29.47	47.02	**26.55**	51.13	32.88	28.37

• **Vanilla.** A standard Transformer-based NMT system trained on the general domains (WMT14 for en2de, WMT18 for en2zh) and $D_{\text{meta-train}}$ corpus in seen-domains. We use the $D_{\text{meta-train}}$ corpus because meta-learning-based methods also use the $D_{\text{meta-train}}$ corpus, which is been seen as a more fair and stronger baseline.

• **Plain fine-tuning.** Fine-tune the vanilla system on query set of $D_{\text{meta-test}}$.

• **Meta-MT.** Standard meta-learning approach on domain adaptation task, which learn to adapt to new unseen domains based on meta-learned model (Sharaf et al., 2020).

• **Meta-Curriculum (LM).** Meta-learning approach for domain adaptation using LM score as the curriculum to sample the task (Zhan et al., 2021).

• **Meta-Curriculum (cls).** Similar to Meta-Curriculum (LM), domain classifier score is used instead of LM.

• **Meta-based w/o FT.** This series of experiments uses the meta-learning system prior to adaptation to the specific domain. This can be used to evaluate the domain robustness of meta-based models (see more details in the meta-training part of Section 3.3).

• **Word-Level Adaptive.** Multi-domain NMT with word-level layer-wise domain mixing (Jiang et al., 2020).

Implementation. We use the Transformer model (Vaswani et al., 2017) implemented in fairseq (Ott et al., 2019). For our word-level domain-mixing modules, we dynamically adjust the network structure according to the number of domains since every domain has its multi-head layers. Hence, the model parameters in the attentive sub-layers of RMLNMT is k times larger than the standard transformer (k is the numbers of domain in the training data). Following Jiang et al. (2020), we enlarged the baseline models to have \sqrt{k} times larger embedding dimension, so the baseline has the same number of parameters. This should rule out that the improvements are due to increased parameter count rather than modeling improvements. For our meta-learning framework, we consider the general meta loss and word-adaptive loss together (as seen in Section 3.3). More details on hyper-parameters are listed in Appendix A.2.

Evaluation. For a fair comparison with previous work, we use the same data from the support set of $D_{\text{meta-test}}$ to finetune the model and the same data from the query set of $D_{\text{meta-test}}$ to evaluate the models. We measure case-sensitive detokenized BLEU with SacreBLEU (Post, 2018); beam search with a beam of size five is used. Because of the recent criticism of BLEU score (Mathur et al., 2020), we also evaluate our models using chrF (Popović, 2015) and COMET (Rei et al., 2020); the results are listed in Appendix A.3. We evaluated the performance of each model in terms of domain robustness and domain adaptability separately.

Domain Robustness. Domain robustness shows the effectiveness of the model both in seen and unseen domains. Hence, we use the model
without fine-tuning to evaluate the domain robustness.

Domain Adaptability. We evaluate the domain adaptability in the following scenarios: the model quickly adapts to new domains using just hundreds of in-domain parallel sentences. Therefore, we fine-tune the models on a small amount of domain-specific data.

5 Results

Domain Robustness. Tables 1 and 3 show the domain robustness of the models. As we can see, the word-level domain mixing model shows the best domain robustness compared with other models both in seen and unseen domains. In addition, the traditional meta-learning approach without fine-tuning is even worse than the standard transformer model. Note this setup differs from the previous work (Sharaf et al., 2020; Zhan et al., 2021) because we included the $D_{\text{meta-train}}$ data to the vanilla system to insure all systems in the table use the same training data. Interestingly, the translation quality in the WMT domain decreases with the increasing robustness in other domains. We speculate this might be due overfitting of the vanilla system to the WMT domain.

Domain Adaptability. Tables 2 and 4 show the domain adaptability of the models. We observe that, the traditional meta-learning approach show high adaptability to unseen domains but fails on seen domains due to limited domain robustness. In contrast, RMLNMT shows its domain adaptability both in seen and unseen domains, and maintains the domain robustness simultaneously. One interesting observation is that RMLNMT does not improve much on seen domains after finetuning, because the meta-learning model without finetuning is already strong enough due to the domain robustness of word-level domain mixing.

The results of both domain robustness and domain adaptability are consistent for the chrF and COMET evaluation metrics (see more details in Tables 13 and 14 of Appendix A.3).

6 Analysis

In this section, we conduct additional experiments to better understand the strength of RMLNMT. We first analyze the contribution of different components in RMLNMT, through an ablation study. Next, we schedule experiments testing the cross-domain robustness of RMLNMT.

6.1 Ablation study

Different classifiers. Tables 1, 2, 3 and 4 show that classifier-based curriculum slightly outperforms the curriculum derived from language models. We evaluate the impact of different classifiers on translation performance.

With a general in-domain corpus and some out-of-domain corpora, we train five classifiers. We experiment with two different labeling schemes: 2-labels where we distinguish only two classes: out-of-domain and in-domain; many-labels where sentences are labeled with the respective domain labels. Further, we experiment with two variants of the BERT model: first, we use mono-
lingual English BERT on the source side only, and second, we use multilingual BERT (mBERT) to classify the parallel sentence pairs. For further comparison, we include also a CNN-based classifier (Kim, 2014). We present the accuracy of the English-German domain classifier in Table 8.

The BLEU score achieved by each classifier is shown in Table 5. We observed that the performance of RMLNMT is not directly proportional to the accuracy of the classifier. In other words, slightly higher classification accuracy does not lead to better BLEU scores. This is because the accuracy of the classifier is close between BERT-based models and the primary role of the classifier is to construct the curriculum for splitting the tasks. When we use a significantly worse classifier, i.e., the CNN in our experiments, the overall performance of RMLNMT is worse than the BERT-based classifier.

Balanced sampling vs. Token-based sampling. Plain meta-learning uses a token-based sampling strategy to split sentences into small tasks. However, the token-based strategy could cause unbalanced domain distribution in some tasks, especially in the early stage of training due to domain mismatches (see the discussion of balanced sampling in Section 3.3). To address this issue, we proposed to balance the domain distribution after splitting the task. Table 6 shows that our methods can result in small improvements in performance. For example, in the Books domain, BLEU was 12.70 with token-based sampling, but with the balanced sampling strategy BLEU was 12.79. We keep the same number of tasks to have a fair comparison with previous methods.

Different fine-tuning strategies. As described in Section 3.1, the model for each domain has its own multi-head and feed-forward layers. During fine-tuning on one domain corpus, we devise four strategies:

- **FT-unseen:** fine-tuning using all unseen domain corpora of $D_{\text{meta-test}}$;
- **FT-seen:** fine-tuning using all seen domain corpora of $D_{\text{meta-test}}$;
- **FT-all:** fine-tuning using all out-of-domain corpora (seen and unseen domains) of $D_{\text{meta-test}}$;
- **FT-specific:** using the specific domain corpus of $D_{\text{meta-test}}$ to fine-tune the specific models.

The results are shown in Table 7. **FT-specific** obtains robust results among all the strategies. Although other strategies outperform **FT-specific** in some domains, **FT-specific** is robust across all domains. Furthermore, **FT-specific** is the fairest comparison because it uses only a specific domain corpus to fine-tune, which is the same as the baseline systems.

Cross-Domain Robustness

To better show the cross-domain robustness of RMLNMT, we use the fine-tuned model of one specific domain to generate the translation for other domains. More formally, given k domains, we use the fine-tuned model M_J with the domain label of J to generate the translation of k domains. We calculate the BLEU score difference between the translations generated in the different domains and the vanilla baseline separately. Table 9 reports the average difference of $k \times k$ BLEU scores and the specific BLEU scores for all domains can be seen in Appendix A.4. A larger positive value means a more robust model.
Table 7: Different sampling strategy: BLEU scores on the English → German translation task.

Finetune Strategy	Unseen	Seen	JRC	KDE	WMT													
	Covid	Bible	Books	ECB	TED	EMEA	Globalvoices	FT-unseen	25.23	13.18	12.73	**32.45**	28.41	46.35	25.83	50.85	32.30	26.88
	FT-seen	24.58	11.73	12.57	30.79	27.29	46.58	25.73	50.91	31.78	26.51							
	FT-all	15.00	7.77	9.06	21.33	16.98	24.69	14.63	27.59	12.77	15.75							
	FT-unseen	26.53	15.37	13.71	31.97	29.47	47.02	26.33	51.13	32.83	28.37							

Table 8: The accuracy of the different classifiers.

Classifier	Acc(%)
CNN	74.91%
BERT: many-labels	96.12%
BERT: 2-labels	95.35%
mBERT: many-labels	95.41%
mBERT: 2-labels	95.26%

Table 9: The average improvement over vanilla baseline.

Methods	Avg
Meta-MT	-1.97
Meta-Curriculum (LM)	-0.96
Meta-Curriculum (cls)	-0.98
RMLNMT	**2.64**

8 Acknowledgments

This work was supported by funding to Wen Lai’s PhD research from LMU-CSC (China Scholarship Council) Scholarship Program. This work has received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (grant agreement #640550). This work was also supported by the DFG (grant FR 2829/4-1). We thank Mengjie Zhao for the helpful comments.

References

Amittai Axelrod, Xiaodong He, and Jianfeng Gao. 2011. Domain adaptation via pseudo in-domain data selection. In *Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing*, pages 355–362, Edinburgh, Scotland, UK. Association for Computational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly learning to align and translate. In *3rd International Conference on Learning Representations*.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009. Curriculum learning. In *Proceedings of the 26th annual international conference on machine learning*, pages 41–48.

Chenhui Chu and Rui Wang. 2018. A survey of domain adaptation for neural machine translation. In *Proceedings of the 27th International Conference on Computational Linguistics*, pages 1304–1319, Santa Fe, New Mexico, USA. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-learning for fast adaptation of deep networks. In *International Conference on Machine Learning*, pages 1126–1135. PMLR.

7 Conclusion

We presented RMLNMT, a robust meta-learning framework for low-resource NMT domain adaptation reaching both high domain adaptability and domain robustness (both in the seen domains and unseen domains). Unlike previous methods which sacrifice the performance on other domains, our proposed methods keeps robustness on all domains. We show consistent improvements in translation from English to German and English to Chinese. RMLNMT is recommended for those who want systems that are domain-robust and domain adaptable in low-resource scenarios. In future work, we would like to extend RMLNMT to multilingual and multi-domain low-resource NMT scenarios.
Haoming Jiang, Chen Liang, Chong Wang, and Tuo Junjie Hu, Mengzhou Xia, Graham Neubig, and Jaime Jiatao Gu, Yong Wang, Yun Chen, Victor O. K. Li, and Kyunghyun Cho. 2018. Meta-learning for low-resource neural machine translation. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pages 3622–3631, Brussels, Belgium. Association for Computational Linguistics.

Junjie Hu, Mengzhou Xia, Graham Neubig, and Jaime Carbonell. 2019. Domain adaptation of neural machine translation by lexicon induction. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pages 2989–3001, Florence, Italy. Association for Computational Linguistics.

Ruixuan Luo, Jingjing Xu, Yi Zhang, Xuancheng Ren, Rumeng Li, Xun Wang, and Hong Yu. 2020. Multi-domain neural machine translation with word-level adaptive layer-wise domain mixing. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 1823–1834, Online. Association for Computational Linguistics.

Ruixuan Luo, Jingjing Xu, Yi Zhang, Xuancheng Ren, and Xu Sun. 2019. Pkuseg: A toolkit for multi-domain chinese word segmentation. *arXiv preprint arXiv:1906.11455*.

Nitika Mathur, Timothy Baldwin, and Trevor Cohn. 2020. Tangled up in BLEU: Reevaluating the evaluation of automatic machine translation evaluation metrics. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 4984–4997, Online. Association for Computational Linguistics.

Robert C. Moore and William Lewis. 2010. Intelligent selection of language model training data. In *Proceedings of the ACL 2010 Conference Short Papers*, pages 220–224, Uppsala, Sweden. Association for Computational Linguistics.
References

Amitai Axelrod, Xiaodong He, and Jianfeng Gao. 2011. Domain adaptation via pseudo in-domain data selection. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 355–362, Edinburgh, Scotland, UK. Association for Computational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly learning to align and translate. In 3rd International Conference on Learning Representations.

Joshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009. Curriculum learning. In Proceedings of the 26th annual international conference on machine learning, pages 41–48.

Chenhui Chu and Rui Wang. 2018. A survey of domain adaptation for neural machine translation. In Proceedings of the 27th International Conference on Computational Linguistics, pages 1304–1319, Santa Fe, New Mexico, USA. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-learning for fast adaptation of deep networks. In International Conference on Machine Learning, pages 1126–1135. PMLR.

Jiatao Gu, Yong Wang, Yun Chen, Victor O. K. Li, and Kyunghyun Cho. 2018. Meta-learning for low-resource neural machine translation. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3622–3631, Brussels, Belgium. Association for Computational Linguistics.

Junjie Hu, Mengzhou Xia, Graham Neubig, and Jaime Carbonell. 2019. Domain adaptation of neural machine translation by lexicon induction. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 2989–3001, Florence, Italy. Association for Computational Linguistics.

Haoming Jiang, Chen Liang, Chong Wang, and Tuo Zhao. 2020. Multi-domain neural machine translation with word-level adaptive layer-wise domain mixing. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 1823–1834, Online. Association for Computational Linguistics.

Yoon Kim. 2014. Convolutional neural networks for sentence classification. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1746–1751, Doha, Qatar. Association for Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece: A simple and language independent subword tokenizer and detokenizer for neural text processing. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 66–71, Brussels, Belgium. Association for Computational Linguistics.
Rumeng Li, Xun Wang, and Hong Yu. 2020. Metamt, a meta learning method leveraging multiple domain data for low resource machine translation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34, pages 8245–8252.

Ruixuan Luo, Jingjing Xu, Yi Zhang, Xuacheng Ren, and Xu Sun. 2019.Pkuseg: A toolkit for multi-domain chinese word segmentation. *arXiv preprint arXiv:1906.11455*.

Nitika Mathur, Timothy Baldwin, and Trevor Cohn. 2020. Tangled up in BLEU: Reevaluating the evaluation of automatic machine translation evaluation metrics. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 4984–4997, Online. Association for Computational Linguistics.

Robert C. Moore and William Lewis. 2010. Intelligent selection of language model training data. In *Proceedings of the ACL 2010 Conference Short Papers*, pages 220–224, Uppsala, Sweden. Association for Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and Michael Auli. 2019. fairseq: A fast, extensible toolkit for sequence modeling. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations)*, pages 48–53, Minneapolis, Minnesota. Association for Computational Linguistics.

Maja Popović. 2015. chrF: character n-gram F-score for automatic MT evaluation. In *Proceedings of the Tenth Conference on Empirical Methods in Natural Language Translation*, pages 392–395, Lisbon, Portugal. Association for Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU scores. In *Proceedings of the Third Conference on Machine Translation: Research Papers*, pages 186–191, Brussels, Belgium. Association for Computational Linguistics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon Lavie. 2020. COMET: A neural framework for MT evaluation. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pages 2685–2702, Online. Association for Computational Linguistics.

Simon Rieß, Matthias Huck, and Alex Fraser. 2021. A comparison of sentence-weighting techniques for NMT. In *Proceedings of the 18th Biennial Machine Translation Summit (Volume 1: Research Track)*, pages 176–187, Virtual. Association for Machine Translation in the Americas.

Shoetsu Sato, Jin Sakuma, Naoki Yoshinaga, Masashi Toyoda, and Masaru Kitsuregawa. 2020. Vocabulary adaptation for domain adaptation in neural machine translation. In *Findings of the Association for Computational Linguistics: EMNLP 2020*, pages 4269–4279, Online. Association for Computational Linguistics.

Amr Sharaf, Hany Hassan, and Hal Daumé III. 2020. Meta-learning for few-shot NMT adaptation. In *Proceedings of the Fourth Workshop on Neural Generation and Translation*, pages 43–53, Online. Association for Computational Linguistics.

Dario Stojanovski and Alexander Fraser. 2019. Improving anaphora resolution in neural machine translation using curriculum learning. In *Proceedings of Machine Translation Summit XVII: Research Track*, pages 140–150, Dublin, Ireland. European Association for Machine Translation.

Liang Tian, Derek F. Wong, Lidia S. Chao, Paulo Quaresma, Francisco Oliveira, Yi Lu, Shuo Li, Yiming Wang, and Longyue Wang. 2014. UM-corpus: A large English-Chinese parallel corpus for statistical machine translation. In *Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)*, pages 1837–1842, Reykjavik, Iceland. European Language Resources Association (ELRA).

Jörg Tiedemann. 2012. Parallel data, tools and interfaces in OPUS. In *Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC’12)*, pages 2214–2218, Istanbul, Turkey. European Language Resources Association (ELRA).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In *Advances in neural information processing systems*, pages 5998–6008.

Rui Wang, Masao Utiyama, Lemao Liu, Kehai Chen, and Eiichiro Sumita. 2017. Instance weighting for neural machine translation domain adaptation. In *Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing*, pages 1482–1488, Copenhagen, Denmark. Association for Computational Linguistics.

Shen Yan, Leonard Dahlmann, Pavel Petrushkov, Sanjika Hewawitharana, and Shahram Khadivi. 2019. Word-based domain adaptation for neural machine translation. *arXiv preprint arXiv:1906.03129*.

Jiali Zeng, Jinsong Su, Huating Wen, Yang Liu, Jun Xie, Yongjing Yin, and Jianqiang Zhao. 2018. Multi-domain neural machine translation with word-level domain context discrimination. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pages 447–457, Brussels, Belgium. Association for Computational Linguistics.

Runzhe Zhan, Xuebo Liu, Derek F. Wong, and Lidia S. Chao. 2021. Meta-curriculum learning for domain adaptation in neural machine translation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, pages 14310–14318.
A Appendix

A.1 Datasets

For the OPUS corpus used in English → German translation task, we deduplicated the corpus, which is different from (Zhan et al., 2021) and is the main reason that we cannot reproduce the results in the original paper. The statistics of the original OPUS are shown in Table 10. We can see that, the seen domains (EMEA, Globalvoices, JRC, KDE, WMT) contain a lot of duplicated sentences. The scores in the original paper are too high because the $D_{\text{meta-train}}$ dataset overlaps with some sentences in $D_{\text{meta-test}}$.

Corpus	Original	Deduplicated
Covid	3,325	3,312
Bible	62,195	61,585
Books	51,467	51,106
ECB	113,116	113,081
TED	143,830	142,756
EMEA	1,103,807	360,833
Globalvoices	71,493	70,519
JRC	717,988	503,789
KDE	223,672	187,918
WMT	45,913	34,727

Table 10: Data statistic of the original corpus for English → German translation task

For the meta-learning phase, to have a fair comparison with previous methods, we use the same setting. We random split 160 tasks and 10 tasks respectively in $D_{\text{meta-train}}$ and $D_{\text{meta-test}}$ to simulate the low-resource scenarios. For each task, the token amount of support set and query set is a strict limit to $8K$ and $16K$. $D_{\text{meta-dev}}$ corpus is limited to 5000 sentences for each domain. Table 11 and Table 12 shows the detailed statistics of English → German and English → Chinese translation tasks.

Corpus	$D_{\text{meta-train}}$	$D_{\text{meta-test}}$		
	Support	Query	Support	Query
Covid	/	/	309	612
Bible	/	/	280	548
Books	/	/	304	637
ECB	/	/	295	573
TED	/	/	390	772
EMEA	14856	29668	456	975
Globalvoices	11686	23319	368	699
JRC	7863	15769	254	519
KDE	24078	48284	756	1510
WMT	10939	21874	334	704

Table 11: Data statistic of the meta-learning stage for English→German translation task

Corpus	$D_{\text{meta-train}}$	$D_{\text{meta-test}}$		
	Support	Query	Support	Query
Education	/	/	395	785
Microblog	/	/	358	721
Science	/	/	392	852
Subtitles	/	/	612	1219
Laws	6379	13001	197	416
News	9004	18362	281	536
Spoken	18270	36569	571	1148
Thesis	8914	17883	298	547

Table 12: Data statistic of the meta-learning stage for English→Chinese translation task

We use the Transformer Base architecture (Vaswani et al., 2017) as implemented in fairseq (Ott et al., 2019). We use the standard Transformer architecture with dimension 512, feed-forward layer 2048, 8 attention heads, 6 encoder layers and 6 decoder layers. For optimization, we use the Adam optimizer with a learning rate of $5 \cdot 10^{-5}$. To prevent overfitting, we applied a dropout of 0.3 on all layers. The number of warm-up steps was set to 4000. At the time of inference, a beam search of size 5 is used to balance the decoding time and accuracy of the search.

For the word-level domain-mixing model, we use the same setting as Jiang et al. (2020). Notice that the number of parameters of our proposed model is dynamically adjusted with the domain numbers and k times than standard model architecture, since every domain has its multi-head attention layer and feed-forward layer.

A.3 Evaluations

In addition to BLEU, we also use chrF (Popović, 2015) and COMET (Rei et al., 2020) as evaluation metrics. Table 13 and Table 14 show the results. We observed that RMLNMT is more effective than all previous methods.
Table 13: chrF scores on the English → German translation task.

Models	Unseen				Seen					
	Covid	Bible	Books	ECB	TED	EMEA	Globalvoices	JRC	KDE	WMT
1 Vanilla	0.550	0.418	0.385	0.538	0.542	0.599	0.536	0.614	0.525	0.558
Plain FT	0.555	0.423	0.388	0.540	0.548	0.600	0.536	0.618	0.528	0.558
Meta-MT w/o FT	0.545	0.410	0.382	0.498	0.538	0.532	0.531	0.610	0.464	0.553
Meta + FT	0.566	0.432	0.390	0.542	0.556	0.582	0.538	0.613	0.522	0.552
2 Meta-Curriculum (LM) w/o FT	0.548	0.412	0.384	0.523	0.543	0.560	0.536	0.611	0.521	0.554
Meta-Curriculum (LM) + FT	0.567	0.434	0.395	0.544	0.548	0.572	0.539	0.615	0.522	0.553
3 Meta-Curriculum (cls) w/o FT	0.549	0.414	0.385	0.518	0.546	0.559	0.536	0.609	0.516	0.550
Meta-Curriculum (cls) + FT	0.558	0.447	0.394	0.547	0.562	0.574	0.540	0.615	0.527	0.553
4 Word-level Adaptive	0.560	0.418	0.387	0.557	0.551	0.662	0.541	0.705	0.555	0.555
RMLNMT w/o FT	0.555	0.405	0.388	0.557	0.544	0.656	0.552	0.702	0.574	0.561
RMLNMT + FT	0.562	0.451	0.395	0.558	0.560	0.656	0.552	0.702	0.574	0.561

Table 14: COMET scores on the English → German translation task.

Models	Unseen				Seen					
	Covid	Bible	Books	ECB	TED	EMEA	Globalvoices	JRC	KDE	WMT
1 Vanilla	0.4967	-0.1230	-0.2225	0.3276	0.3400	0.3096	0.3199	0.5430	0.1836	0.4326
Plain FT	0.5066	-0.1105	-0.1985	0.3315	0.3553	0.3177	0.3276	0.5492	0.1813	0.4392
Meta-MT w/o FT	0.4850	-0.1454	-0.2228	0.0953	0.3506	0.0524	0.2985	0.5319	0.1304	0.4137
Meta + FT	0.5175	-0.0650	-0.1878	0.3466	0.3824	0.2678	0.3189	0.5509	0.1316	0.4161
2 Meta-Curriculum (LM) w/o FT	0.4879	-0.1365	-0.2122	0.2568	0.3751	0.1968	0.3273	0.5246	0.0982	0.4206
Meta-Curriculum (LM) + FT	0.5193	-0.0604	-0.1773	0.3460	0.3729	0.2366	0.3141	0.5430	0.1467	0.4128
3 Meta-Curriculum (cls) w/o FT	0.4861	-0.1331	-0.2141	0.2496	0.3637	0.1758	0.3171	0.5193	0.0849	0.4120
Meta-Curriculum (cls) + FT	0.5163	-0.0763	-0.1757	0.3421	0.3801	0.2435	0.3235	0.5452	0.1564	0.4174
4 Word-level Adaptive	0.5070	-0.1408	-0.2149	0.3544	0.3678	0.4296	0.3410	0.6838	0.2610	0.4106
RMLNMT w/o FT	0.4943	-0.1956	-0.2179	0.3580	0.3394	0.4026	0.3769	0.6797	0.3014	0.4255
RMLNMT + FT	0.5302	-0.0543	-0.1610	0.3547	0.3867	0.4046	0.3771	0.6797	0.3015	0.4256

A.4 Cross-Domain Robustness

In Figure 3 we show the detailed results ($k \times k$ scores) as described in Section 6.2. We observed that RMLNMT shows its robustness on all domains and that the model performance fine-tuned in one specific domain is not sacrificed in other domains.
Figure 3: BLEU scores for one specific finetuned model on other domains for en2de translation.