Lower Total Adipocyte Number but No Evidence for Small Adipocyte Depletion in Patients With Type 2 Diabetes

Magdalena Pasarica, MD, PhD
Hui Xie, MS
David Hymer, MS
George Bray, MD
Frank Greenway, MD
Eric Ravussin, PhD
Steven R. Smith, MD

Objective — We hypothesized that, compared with obese subjects, patients with type 2 diabetes have a lower total adipocyte number with fewer small adipocytes.

Research Design and Methods — Abdominal subcutaneous adipose tissue was obtained from lean and obese subjects with or without type 2 diabetes matched for BMI. Adipocyte size was measured by osmium fixation and sizing/counting in a Coulter counter. Adipocyte size and number subdistributions (small, medium, large, and very large) were determined.

Results — Compared with obese subjects, type 2 diabetic patients had larger mean adipocyte size and 67% bigger very large adipocytes; the total adipocyte number was lower, but the fraction of small adipocytes was increased by 27%.

Conclusions — Total adipocyte cellularity is lower in type 2 diabetic subjects than in obese subjects. We found no evidence for depletion of small adipocytes in patients with type 2 diabetes. This suggests the presence of a defect in early maturation of adipocytes in patients with type 2 diabetes.
In patients with type 2 diabetes than in BMI-matched obese subjects (1.0 vs. 0.79, respectively; P < 0.05). Interestingly, patients with type 2 diabetes have less adipocytes than BMI-matched obese subjects (P < 0.05). However, from all the subdistributions, the small fraction (percent from the total adipocyte number [%]) was significantly greater in patients with type 2 diabetes than in BMI-matched obese subjects (P < 0.05).

RESULTS—The obese and type 2 diabetic patients were matched for BMI and abdominal SAT; however, the latter had more VAT. The characteristics of the study populations are presented in supplemental Table 1.

Mean ± SD adipocyte size was larger in patients with type 2 diabetes than in obese subjects (1.0 ± 0.05 vs. 0.79 ± 0.04 μm; P < 0.05). Compared with BMI-matched obese subjects, patients with type 2 diabetes had 67% bigger very large adipocytes and 20% smaller small adipocytes compared with BMI-matched obese subjects (Fig. 1A). Importantly, total adipocyte number was lower in patients with type 2 diabetes (P < 0.05) while the fraction of small adipocytes was 27% greater (P < 0.05) (Fig. 1B and supplemental Table 2).

In lean and obese subjects, BMI was positively correlated with adipocyte mean size, large size, and very large size (R = 0.57, R = 0.36, and R = 0.25, respectively; P < 0.05) and negatively with small adipocyte size (R = −0.39; P < 0.05). HOMA-IR, a marker of insulin resistance, was positively correlated with adipocyte mean size, large size, and very large size (R = 0.54, R = 0.27, and R = 0.41, respectively; P < 0.05) and negatively with small size (R = −0.35; P < 0.05). Adipocyte number was positively correlated with HOMA-IR (R = 0.32; P < 0.05).

There are no significant correlations between adipocyte size and number with HOMA-IR. Interestingly, compared with the BMI-matched obese subjects, patients with type 2 diabetes have smaller small and medium adipocytes and bigger very large adipocytes. Data are means ± SD. *P < 0.05. B: Adipocyte number was determined by dividing the subcutaneous abdominal fat mass by the adipocyte mean size. Each subdistribution fraction represents percentage of adipocytes in a specific subdistribution from the total number of adipocytes analyzed. Boxes represent the mean of each subdistribution absolute number. Means ± SD of the adipocyte fractions expressed as percentage from the total adipocyte number are presented in supplemental Table 2. Total adipocyte number is smallest in lean and bigger in obese patients and those with 2 diabetes (P < 0.05). Interestingly, patients with type 2 diabetes have less adipocytes than BMI-matched obese subjects (P < 0.05). However, from all the subdistributions, the small fraction (percent from the total adipocyte number [%]) was significantly greater in patients with type 2 diabetes than in BMI-matched obese subjects (P < 0.05).

CONCLUSIONS—In this large sample of adipose tissue biopsies, we show for the first time that patients with type 2 diabetes have fewer subcutaneous adipocytes compared with BMI-matched obese subjects. This suggests that in individuals with type 2 diabetes, the number of adipocytes fails to increase as body fat increases. As suggested by Danforth, this may lead to fat accumulation in tissues such as VAT, muscle, and liver—all known to contribute to insulin resistance. We found that patients with type 2 diabetes have increased visceral tissue, supporting the concept that a failure of SAT to store energy leads to an increase in VAT and possibly other sites of ectopic fat. However, it is possible that these individuals have a low number of adipocytes in childhood; consequently, if this number is fixed, as some studies suggest, they might be at risk for developing diabetes as adults.

Compared with BMI-matched obese subjects, patients with type 2 diabetes had greater mean adipocyte size mainly driven by an increased size of the very large adipocyte, suggesting that type 2 diabetes is accompanied by hypertrophy rather than hyperplasia. Contrary to our hypothesis, patients with type 2 diabetes have greater fraction of small adipocytes. The increased size of the largest adipocyte (very large) in patients with type 2 diabetes might stimulate recruitment and proliferation of an adipocyte precursor, which leads to greater small adipocytes fraction (7). However, the size of small adipocytes is lower, suggesting that these new adipocytes cannot further accumulate lipid.

These observations suggest impairment of the complete maturation of adipocytes with no effect on late fatty acid
storage in patients with type 2 diabetes. This hypothesis is in accordance with recent data showing that insulin resistance per se causes impairment in adipogenesis (8,9). Future studies should test this novel hypothesis, i.e., that there might be a defect in the complete maturation of small adipocytes in patients with type 2 diabetes (supplementary Figure 4).

Acknowledgments—Research support was provided by Clinical Nutrition Research Unit Grant P30-DK-072476.

No potential conflicts of interest relevant to this article were reported.

Parts of this study were presented at the Obesity Society Annual Scientific Meeting, New Orleans, Louisiana, 20–24 June 2007.

We acknowledge the participation of the research volunteers who consented to provide adipose tissue samples for these studies.

References
1. Lundgren M, Svensson M, Lindmark S, Renstrom F, Ruge T, Eriksson JW. Fat cell enlargement is an independent marker of insulin resistance and ‘hyperleptinaemia.’ Diabetologia 2007;50:625–633
2. Smith SR, Xie H, Baghian S, Needham A, McNeil M, Bogacka I, Bray G. Pioglitazone changes the distribution of adipocyte size in type 2 diabetes. Adipocytes 2006;2:11–22
3. Boden G, Cheung P, Mozzoli M, Fried SK. Effect of thiazolidinediones on glucose and fatty acid metabolism in patients with type 2 diabetes. Metabolism 2003;52:753–759
4. Danforth E Jr. Failure of adipocyte differentiation causes type II diabetes mellitus? Nat Genet 2000;26:13
5. Matthews DR, Hesker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412–419
6. Hirsch J, Batchelor B. Adipose tissue cellularity in human obesity. Clin Endocrinol Metab 1976;5:299–311
7. Marques BG, Hausman DB, Martin RJ. Association of fat cell size and paracrine growth factors in development of hyperplastic obesity. Am J Physiol 1998,275:R1898–R1908
8. Dubois SG, Tchoukalova YD, Heilbronn LK, Albu JB, Kelley DE, Smith SR, Fang X, Ravussin E. Potential role of increased matrix metalloproteinase-2 (MMP2) transcription in impaired adipogenesis in type 2 diabetes mellitus. Biochem Biophys Res Commun 2008;367:725–728
9. Yang X, Jansson PA, Nagaev I, Jack MM, Carvalho E, Sunnerhagen KS, Cam MC, Cushman SW, Smith U. Evidence of impaired adipogenesis in insulin resistance. Biochem Biophys Res Commun 2004;317:1045–1051