On cohomology of almost complex 4-manifolds

Qiang Tan, Hongyu Wang, Ying Zhang, and Peng Zhu

Abstract. Based on recent work of T. Draghici, T.-J. Li and W. Zhang, we further investigate properties of the dimension h_J^- of the J-anti-invariant cohomology subgroup H_J^- of a closed almost Hermitian 4-manifold (M, g, J, F) using metric compatible and fundamental 2-form compatible almost complex structures. We prove that h_J^- is 0 for generic almost complex structures J on M. We also prove that h_J^- is constant for almost complex structures J on M that are compatible with the same fundamental 2-form F.

AMS Classification (2000): 53C55, 53C22.

Keywords: Almost Hermitian 4-manifold, J-anti-invariant cohomology, metric compatible almost complex structure

1 Introduction

For an almost complex manifold (M, J), T.-J. Li and W. Zhang [30] introduced subgroups, H_J^+ and H_J^-, of the real degree 2 de Rham cohomology group $H^2(M, \mathbb{R})$, as the sets of cohomology classes which can be represented by J-invariant and J-anti-invariant real 2-forms, respectively. Let us denote by h_J^+ and h_J^- the dimensions of H_J^+ and H_J^-, respectively.

It is interesting to consider whether or not the subgroups H_J^+ and H_J^- induce a direct sum decomposition of $H^2(M, \mathbb{R})$. In the case of direct sum decomposition, J is said to be C^∞ pure and full (see Definition 2.2).

This is known to be true for integrable almost complex structures J which admit compatible Kähler metrics on compact manifolds of any dimension. In this case, the induced decomposition is nothing but the classical real Hodge-Dolbeault decomposition of $H^2(M, \mathbb{R})$ (see [7]).

Note that there are topological obstructions to the existence of almost complex structures on an even dimensional manifold. For a closed 4-manifold, a necessary condition is that $1 - b_1 + b^+$ be even [7], where b_1 is the first Betti number and b^+ is the number of positive eigenvalues of the quadratic form on $H^2(M, \mathbb{R})$ defined by the cup product; hence the condition is either b_1 be even and b^+ odd, or b_1 be odd and b^+ even.

It is a well-known fact that any closed complex surface with b^+ odd is Kähler. This was originally obtained from the classification theory, but direct proofs have been given (cf. [12, 25]).

*Supported by NSFC (China) Grants 11071208 (Wang), 10871139 (Zhang) and 11101352 (Zhu). Correspondence to: hywang@yzu.edu.cn (Wang).
In dimension 4, it was proved by T. Draghici, T.-J. Li and W. Zhang \[17\] that on any compact almost complex 4-manifold \((M, J)\), \(J\) is \(C^\infty\) pure and full. Further in \[18\], they computed the subgroups \(H^+_J\) and \(H^-_J\) and their dimensions \(h^+_J\) and \(h^-_J\) for almost complex structures metric related to an integrable one. Using Gauduchon metrics \[21, 22\], they proved that the almost complex structures \(\tilde{J}\) with \(h^-_{\tilde{J}} = 0\) form an open dense set in the \(C^\infty\)-topology in the space of almost complex structures metric related to an integrable one (\[18\] Theorem 1.1). Based on this, they made two conjectures about the dimension \(h^-_J\) of \(H^-_J\) on a compact 4-manifold: Conjecture 2.4 in \[18\] asserts that \(h^-_J\) vanishes for generic almost complex structures \(J\), and Conjecture 2.5 in \[18\] asserts that an almost complex structure \(J\) with \(h^-_J \geq 3\) is necessarily integrable. In particular, they have confirmed Conjecture 2.4 for 4-manifolds with \(b^+ = 1\) (see \[18, Theorem 3.1\]).

In this paper we confirm Conjecture 2.4 in \[18\] completely (see Theorem 1.1 below). For this, let us consider an almost Hermitian manifold \((M, g, J, F)\) where \(J\) is an almost complex structure on a \(2n\)-manifold \(M\), \(g\) an almost Hermitian metric which is \(J\)-compatible, namely, \(g(JX, JY) = g(X, Y)\) for all vector fields \(X\) and \(Y\), and \(F\) is the fundamental 2-form defined by \(F(X, Y) = g(JX, Y)\) (hence \(F\) is also \(J\)-compatible).

Let \(\mathcal{J}\) be the space of all almost complex structures on \(M\) and denote by \(\mathcal{J}^c_g\), \(\mathcal{J}^c_F\) and \(\mathcal{J}^{tF}\) respectively the spaces of \(g\)-compatible, \(F\)-compatible and \(F\)-tame almost complex structures on \(M\); namely,

- \(\mathcal{J}^c_g = \{ J \in \mathcal{J} \mid g(JX, JY) = g(X, Y), \forall X, Y \in TM\}\),
- \(\mathcal{J}^c_F = \{ J \in \mathcal{J} \mid F(JX, JY) = F(X, Y), \forall X, Y \in TM\}\),
- \(\mathcal{J}^{tF} = \{ J \in \mathcal{J} \mid F(JX, JX) > 0, \forall X \in TM, X \neq 0\}\).

It is well known that \(\mathcal{J}^c_g\), \(\mathcal{J}^c_F\) and \(\mathcal{J}^{tF}\) are contractible Fréchet spaces. See \[5, 9, 10, 17, 18, 32, 33\] for details.

Using \(g\)-compatible almost complex structures, we prove that for generic almost complex structures \(J\), the dimension \(h^-_J\) vanishes.

Theorem 1.1. Let \(M\) be a closed 4-manifold admitting almost complex structures. Then the set of almost complex structures \(J\) on \(M\) with \(h^-_J = 0\) is an open dense subset of \(\mathcal{J}\) in the \(C^\infty\)-topology.

Lejmi in \[28\] studied the existence of a smooth family of extremal almost Kähler metrics compatible with a fixed symplectic form under the assumption of the invariance of the dimension of \(J\)-anti-invariant cohomology for almost complex structures \(J\) compatible with the same symplectic form.

We shall prove (see Theorem 1.2 below) that, given any closed almost Hermitian 4-manifold \((M, g, J, F)\), the dimension \(h^-_J\) is constant for all \(\tilde{J} \in \mathcal{J}^{tF}\); in other words, the dimension of \(J\)-anti-invariant cohomology is stable under deformation of almost complex structures in \(\mathcal{J}^{tF}\).

Theorem 1.2. Suppose \((M, g, J, F)\) is a closed almost Hermitian 4-manifold. If \(\tilde{J} \in \mathcal{J}^{tF}\), then \(h^-_{\tilde{J}} = h^-_J\).
Note that the dimension h^-_J is not constant under deformation of almost complex structure J in \mathcal{J}_F^c (see Remark 1.5). When J is integrable, it follows from [17] Proposition 2.15] that $h^+_J = h^{1,1}_g$ and $h^-_J = 2h^{2,0}_g$, where $h^{1,1}_g$ and $h^{2,0}_g$ are (complex) dimensions of Dolbeault cohomology $H^{1,1}_J$ and $H^{2,0}_J$, respectively. Note that $h^{2,0}_g$ is also called the geometric genus of the compact complex surface. As noted in [17], together with the signature theorem ([7, Theorem 2.7]), this implies that if b_1 is even, then $h^+_J = b^- + 1$ and $h^-_J = b^+ - 1$, and that if b_1 is odd, then $h^+_J = b^-$ and $h^-_J = b^+$. Hence, for a complex surface (M, J), h^-_J is a topological invariant, equal to b^+ or $b^- - 1$. Thus, by Theorem 1.2 we have:

Corollary 1.3. If (M, g, J, F) is a closed complex surface and $\tilde{J} \in \mathcal{J}_F^c$, then

$$h^-_{\tilde{J}} = h^-_J = \begin{cases} b^+ - 1, & \text{if } b_1 \text{ is even,} \\ b^+, & \text{if } b_1 \text{ is odd.} \end{cases}$$

Remark 1.4. In general, an almost complex structure which is F-compatible with an integrable one may be non-integrable. Indeed, Kim [23] proved that every closed symplectic 4-manifold (M, F) admits an F-compatible almost Kähler metric of negative scalar curvature. On the other hand, for a closed Kähler surface (M, g, J, F), we have the following estimate for the total scalar curvature:

$$\int_M S(g) \, d\mu_g \leq 4\pi c_1(J) \cup [F],$$

with equality if and only if the structure is Kähler, where $c_1(J)$ is the first Chern class of (M, J) depending only on the homotopy class of J, $S(g)$ is the scalar curvature of g, and $[F]$ is the cohomology class of F ([11, 17, 8, 11, 23, 36]). It follows that (cf. [20, 31, 37]) there exist no negatively scalar curved Kähler metrics on rational complex surfaces and S^2-bundles, although there exist on them negatively scalar curved almost Kähler metrics by Kim’s results. In particular, A.-K. Liu [31] has classified symplectic 4-manifolds with

$$c_1(M) \cup [F] = \int_M c_1(J) \wedge F > 0$$

and there are no examples beyond the standard ones furnished by rational complex surfaces and S^2-bundles. Since $c_1 = 0$ for $K3$ surfaces and torus T^4, by Kim’s result, these surfaces give examples with $b^+ \geq 3$ which admit non-integrable complex structures J with $h^-_J = b^+ - 1$. Hence one can drop the assumption in [28] Theorem 1.1] that h^-_J is invariant under deformation of almost complex structure J compatible with a fixed symplectic 2-form.

We thus propose the following modification of Conjecture 2.5 in [18].

Question 1.5. Suppose (M, g, J, F) is a closed almost Hermitian 4-manifold with $h^-_J \geq 3$. Does there exist an integrable $\tilde{J} \in \mathcal{J}_F^c$?

By Corollary 1.3 we have the following question.
Question 1.6. Suppose \((M, g, J, F)\) is a closed almost Hermitian 4-manifold with \(h_J^- = b^+\) if \(b_1\) is odd, and \(h_J^- = b^+ - 1\) if \(b_1\) is even. Does there exist an integrable \(\tilde{J} \in J_c^c\)?

For compact complex surfaces \((M, J)\), \(b_+\) is stable under the blowing up operation. By Corollary 1.3, this gives the invariance of \(h_J^-\) under blowing up. Similarly, one can do the blowing up operation on almost complex 4-manifolds (cf. [7, 32]). Thus it is reasonable to ask the following question.

Question 1.7. Is \(h_J^-\) stable under the blowing up operation for non-integrable almost complex structures \(J\) on almost complex 4-manifolds?

The rest of the paper is organized as follows. In §2 we recall definitions and preliminary results mainly as given in [13]. In §3 we briefly discuss constructions of \(g\)- and \(F\)-compatible almost complex structures. Finally in §4 we give proofs of Theorems 1.1 and 1.2.

Acknowledgements. The authors would like to thank T.-J. Li and K.-C. Chen for their help in sending reference papers. The second author would like to thank the East China Normal University and Qing Zhou for hosting his visit in the fall semester in 2011.

2 Definitions and Preliminaries

Suppose \((M, J)\) is a closed almost complex 4-manifold. One can construct a \(J\)-invariant Riemannian metric \(g\) on \(M\), that is, \(g(JX, JY) = g(X, Y)\) for all tangent vector fields \(X\) and \(Y\) on \(M\). Such a metric \(g\) is called an almost Hermitian metric for \((M, J)\). This then in turn gives a \(J\)-compatible non-degenerate 2-form \(F\) on \(M\) by \(F(X, Y) = g(JX, Y)\), called the fundamental 2-form. Such a quadruple \((M, g, J, F)\) is called a closed almost Hermitian 4-manifold. Thus an almost Hermitian structure on \(M\) is a triple \((g, J, F)\). If the almost complex structure \(J\) is integrable, the triple \((g, J, F)\) is called a Hermitian structure. If the 2-form \(F\) is closed (i.e., symplectic), then the triple \((g, J, F)\) is called an almost Kähler structure. When the two conditions hold simultaneously, the \((g, J, F)\) defines a Kähler structure on \(M\). A metric will be called Hermitian, almost Kähler, or Kähler if it admits a compatible corresponding structure.

Let \(\Omega^2(M)\) denote the space of smooth 2-forms on \(M\), that is, the \(C^\infty\) sections of the bundle \(\Lambda^2(M)\). Then \(J\) acts on \(\Omega^2(M)\) as an involution by

\[\alpha(\cdot, \cdot) \mapsto \alpha(J\cdot, J\cdot), \quad \alpha \in \Omega^2(M).\]

This gives the vector bundle splitting

\[\Lambda^2 = \Lambda^+_J \oplus \Lambda^-_J,\]

where the bundles \(\Lambda^\pm_J\) are defined by

\[\Lambda^\pm_J = \{\alpha \in \Lambda^2 \mid \alpha(J\cdot, J\cdot) = \pm \alpha(\cdot, \cdot)\}.\]
Denote by Ω_J^+ and Ω_J^-, respectively, the C^∞ sections of the bundles Λ_J^+ and Λ_J^-, that is, the spaces of J-invariant and J-anti-invariant 2-forms. For $\alpha \in \Omega^2(M)$, denote by α_J^+ and α_J^-, respectively, the J-invariant and J-anti-invariant components of α with respect to the decomposition (2.2).

Remark 2.1. Note that Λ_J^- is a vector bundle of rank two and Λ_J^- inherits an almost complex structure, still denoted by J, defined by

$$(J\alpha)(X,Y) = -\alpha(JX,Y), \quad \alpha \in \Lambda_J^-.$$

It is well known that, when J is integrable, $\beta \in \Omega_J^-$ if and only if $J\beta \in \Omega_J^-$. Conversely, if (M,J) is a connected almost complex 4-manifold and there exists nonzero $\beta \in \Omega_J^-$ such that $J\beta \in \Omega_J^-$, then J is integrable (see [34]).

T.-J. Li and W. Zhang defined in [30] the J-invariant and J-anti-invariant cohomology subgroups H_J^\pm of $H^2(M;\mathbb{R})$.

Definition 2.2. (cf. [30, 17]) Let \mathcal{Z}^2 denote the space of closed 2-forms on M and set

$$Z_J^+ := \mathcal{Z}^2 \cap \Omega_J^+, \quad Z_J^- := \mathcal{Z}^2 \cap \Omega_J^-.$$

Define the J-invariant and J-anti-invariant cohomology subgroups H_J^\pm by

$$H_J^\pm = \{ a \in H^2(M;\mathbb{R}) \mid \text{there exists } \alpha \in Z_J^\pm \text{ such that } a = [\alpha] \}.$$

We say J is C^∞-pure if $H_J^+ \cap H_J^- = \{0\}$, C^∞-full if $H_J^+ + H_J^- = H^2(M;\mathbb{R})$, and thus J is C^∞-pure and full if and only if

$$H^2(M;\mathbb{R}) = H_J^+ \oplus H_J^-.$$

Proposition 2.3. [17, Theorem 2.3] For any closed almost complex 4-manifold (M,J), the almost complex structure J is C^∞-pure and full.

Remark 2.4. Recently, Angella and Tomassini [2] showed that the Iwasawa manifold of dimensions 6 admits complex structures which are neither C^∞-pure nor C^∞-full. Other interesting examples appear in [3], showing, in particular, that the notions of C^∞-pure and of C^∞-full are not related. The first 6-dimensional examples of (non-integrable) almost complex nilmanifolds which are neither C^∞-pure nor C^∞-full were given by Fino and Tomassini [19]. Draghici, Li and Zhang [18] proved that C^∞-pure property no longer holds even for Kähler J, if one gives up the compactness of the manifolds.

Since (M,g,J,F) is a closed almost Hermitian 4-manifold, the Hodge star operator $*_g$ gives the well-known self-dual, anti-self-dual splitting of the bundle of 2-forms:

$$\Lambda^2 = \Lambda^+_g \oplus \Lambda^-_g.$$

We denote by Ω^\pm_Λ the spaces of sections of Λ^\pm_Λ, and by α^+_g and α^-_g respectively the self-dual and anti-self-dual components of a 2-form α. Since the Hodge-de Rham Laplacian commutes with $*_g$, the decomposition (2.4) holds for
the space \mathcal{H}_g of harmonic 2-forms as well. By Hodge theory, this induces cohomology decomposition by the metric g:

$$H^2(M; \mathbb{R}) = \mathcal{H}_g = \mathcal{H}_g^+ \oplus \mathcal{H}_g^-.$$ \hfill (2.5)

As in Definition 2.2, one defines

$$H^\pm_g = \{ a \in H^2(M; \mathbb{R}) \ | \ \exists \alpha \in Z^\pm_g := Z^2 \cap \Omega_g^\pm \text{ such that } a = [\alpha] \}. \hfill (2.6)$$

For any $\alpha_1, \alpha_2 \in Z^\pm_g$ such that $[\alpha_1] = [\alpha_2]$, we have $\alpha_1, \alpha_2 \in H^\pm_g$ and

$$\|\alpha_1 - \alpha_2\|^2 = \int_M (\alpha_1 - \alpha_2) \wedge * (\alpha_1 - \alpha_2) = \pm \int_M (\alpha_1 - \alpha_2)^2 = 0. \hfill (2.7)$$

Hence

$$H^\pm_g = Z^\pm_g = H^\pm_g$$

and (2.5) can be written as

$$H^2(M; \mathbb{R}) = H^+_g \oplus H^-_g. \hfill (2.8)$$

There are the following relations between the decompositions (2.2) and (2.4) on an almost Hermitian 4-manifold:

$$\Lambda^+_j = \mathbb{R} \cdot F \oplus \Lambda^-_j, \hfill (2.9)$$

$$\Lambda^+_g = \mathbb{R} \cdot F \oplus \Lambda^-_j, \hfill (2.10)$$

$$\Lambda^+_j \cap \Lambda^+_g = \mathbb{R} \cdot F, \quad \Lambda^-_j \cap \Lambda^-_g = \{0\}. \hfill (2.11)$$

See [16] for details. It is easy to see that $H^-_j \subset \mathcal{H}_g^+$ and $\mathcal{H}_g^- \subset H^+_j$.

Let b_2 be the second Betti number, b^+ the self-dual Betti number, and b^- the anti-self-dual Betti number of M; thus $b_2 = b^+ + b^-$. If $[\alpha_1] = [\alpha_2] \in H^-_j$ with $\alpha_1, \alpha_2 \in Z^-_j$, then by (2.7) and (2.10), we have $\alpha_1 = \alpha_2$. Thus, for a closed almost Hermitian 4-manifold (M, g, J, F), there hold (see [17]):

$$H^-_j = Z^-_j, \quad h^+_j + h^-_j = b_2, \quad h^+_j \geq b^-, \quad h^-_j \leq b^+. \hfill (2.12)$$

Lejmi [27] recognizes Z^-_j as the kernel of an elliptic operator on Ω^-_j.

Lemma 2.5. [27, 28] Let (M, g, J, F) be a closed almost Hermitian 4-manifold. Let operator $P : \Omega^-_j \to \Omega^-_j$ be defined by

$$P(\psi) = P^-_j (d\delta \psi) = (d\delta \psi)^-_j,$$

where $P^-_j : \Omega^2 \to \Omega^-_j$ is the projection, δ is the codifferential operator with respect to metric g. Then P is a self-adjoint strongly elliptic linear operator with kernel the g-harmonic J-anti-invariant 2-forms. Hence,

$$\Omega^-_j = \ker P \oplus P^-_j (d\Omega^1) = H^-_j \oplus P^-_j (d\Omega^1).$$
In the case when \((M, J)\) is a closed complex surface, by using Gauduchon metrics on \((M, J)\), we have that the subgroups \(H^+_J\) are nothing but the (real) Dolbeault cohomology groups (see [2, 7, 17]):

\[
H^+_J = H^{1,1}_J \cap H^2(M; \mathbb{R}), \quad H^-_J = (H^{0,2}_J \oplus H^{2,0}_J) \cap H^2(M; \mathbb{R}). \tag{2.13}
\]

This gives the following relations between \(h^+_J\) and \(b^\pm\) for complex surfaces.

Proposition 2.6. [17, Proposition 2.15] If \((M, J)\) is a closed complex surface, then \(h^+_J\) are topological invariants of \(M\). Precisely, if \(b_1\) is even, then \(h^+_J = b^- + 1\) and \(h^-_J = b^+ - 1\), while if \(b_1\) is odd, then \(h^+_J = b^-\) and \(h^-_J = b^+\).

Let us denote the dimensions of \(H^{1,1}_J\) and \(H^{2,0}_J\) by \(h^{1,1}_J\) and \(h^{2,0}_J\), respectively. It follows from Proposition 2.6 that

\[
h^+_J = h^{1,1}_J, \quad h^-_J = 2h^{2,0}_J.
\]

Together with the signature theorem [7], we get

\[
h^+_J = \begin{cases} b^- + 1, & \text{if } b_1 \text{ is even}, \\ b^-, & \text{if } b_1 \text{ is odd}; \end{cases} \quad h^-_J = \begin{cases} b^+, & \text{if } b_1 \text{ is even}, \\ b^-, & \text{if } b_1 \text{ is odd}. \end{cases}
\]

Let \(H^{+,-}_J\) denote the subgroup of \(\mathcal{H}^+_g\) which is orthogonal to \(H^-_J\) with respect to the cup product; that is,

\[
H^{+,-}_J := \{ \omega \in Z^+_g \mid \int_M \omega \wedge \alpha = 0 \quad \forall \alpha \in Z^-_J \}. \tag{2.14}
\]

The following lemma will be used in §4.

Lemma 2.7. [17, Lemmas 2.4 and 2.6] Let \((M, g)\) be a closed Riemannian 4-manifold. If \(\alpha \in \Omega^+_g\) and \(\alpha = \alpha_h + d\theta + \delta \psi\) is its Hodge decomposition, then

\[
(d\theta)^+_g = (\delta \psi)^+_g \quad \text{and} \quad (d\theta)^-_g = -(\delta \psi)^-_g.
\]

Moreover, 2-form \(\alpha - 2(d\theta)^+_g = \alpha_h\) is harmonic and \(\alpha + 2(d\theta)^-_g = \alpha_h + 2d\theta\). In particular, if \((M, g, J, F)\) is a closed almost Hermitian 4-manifold and \(\alpha \in H^{+,-}_J\), then \(\alpha = fF + (d\theta)^-_J\) for some function \(f \not\equiv 0\) and \(\alpha - d\theta \in Z^+_J\).

Remark 2.8. As a direct consequence of Lemmas 2.5 and 2.7 we have

\[
\mathcal{H}^+_g = H^-_J \oplus H^{+,-}_J, \\
H^+_J = H^{+,-}_J \oplus \mathcal{H}^-_g.
\]

3 \(g\)- and \(F\)-compatible almost complex structures

In this section, let us fix an almost complex manifold \((M, g, J, F)\) and briefly describe constructions of \(g\)- and \(F\)-compatible almost complex structures on \(M\) (note that \(g\)-compatible almost complex structures are also called \(g\)-related ones [17, 18]); for details, see [6, 9, 27].
Recall that for a closed almost Hermitian 4-manifold \((M, g, J, F)\), \(g\) and \(F\) are \(J\)-compatible, that is, \(g(J\cdot, J\cdot) = g\), \(F(J\cdot, J\cdot) = F\) and \(F = g(J\cdot, \cdot)\). By a direct calculation, we have

\[
F \wedge F = 2d\mu_g,
\]

where \(d\mu_g\) is the volume form of \(M\) determined by \(g\).

Let us recall that the almost complex structure \(J\) acts on the cotangent bundle \(T^*M\) by \(J \cdot \alpha(X) = -\alpha(JX)\), where \(\alpha\) is a 1-form and \(X\) a vector field on \(M\). Hence \(J\) induces an action \(J \otimes J\) on \(\otimes^2 T^*M\), still denoted by \(J\). A section \(\psi\) of the bundle \(\otimes^2 T^*M\) admits an orthogonal splitting

\[
\psi = \psi^{J, +} + \psi^{J, -}
\]

as the sum of \(J\)-invariant and \(J\)-anti-invariant parts, where

\[
\psi^{J, +} (\cdot, \cdot) = \frac{1}{2} (\psi(\cdot, \cdot) + \psi(J\cdot, J\cdot)),
\]

\[
\psi^{J, -} (\cdot, \cdot) = \frac{1}{2} (\psi(\cdot, \cdot) - \psi(J\cdot, J\cdot)).
\]

In particular, the bundle of 2-forms decomposes under the action of \(J\) as:

\[
\Lambda^2(M) = \Lambda^+ J(M) \oplus \Lambda^- J(M),
\]

and the symmetric tensor bundle of type \((2, 0)\) decomposes as:

\[
S^2(M) = S^+ J(M) \oplus S^- J(M).
\]

Let us first construct \(g\)-compatible almost complex structures using sections of the bundle of \(J\)-anti-invariant 2-forms. Given \(\alpha \in \Omega_{-J}^2\), define tensor field \(K_\alpha\) of type \((1, 1)\) by

\[
g(X, K\alpha Y) = \alpha(X, Y).
\]

It can be checked that \(K_\alpha\) and \(JK\alpha\) are skew-adjoint. It follows that \(\text{Id} + JK\alpha\) is invertible \([26]\). Define tensor field \(J_\alpha\) of type \((1, 1)\) and 2-form \(F_\alpha\) by

\[
J_\alpha := (\text{Id} + JK\alpha)^{-1} J(\text{Id} + JK\alpha), \quad F_\alpha := g(J_\alpha \cdot, \cdot).
\]

The \(J_\alpha\) and \(F_\alpha\) so defined have the following properties.

Proposition 3.1. \([26]\) Proposition 1.5] Given \(\alpha \in \Omega_{-J}^2\), we define the norm function \(|\alpha|\) in \(C^\infty(M)\) of \(\alpha\) by \(\alpha \wedge \alpha = 2|\alpha|^2 d\mu_g\), i.e.,

\[
|\alpha|^2 = (\alpha \wedge \alpha)/(2d\mu_g).
\]

Then the \(J_\alpha\) and \(F_\alpha\) defined by \([3.3]\) satisfy:

\[
g(J_\alpha X, J_\alpha Y) = g(X, Y),
\]

\[
J_\alpha = \frac{1 - |\alpha|^2}{1 + |\alpha|^2} J - \frac{2}{1 + |\alpha|^2} K_\alpha,
\]

\[
F_\alpha = \frac{1 - |\alpha|^2}{1 + |\alpha|^2} F + \frac{2}{1 + |\alpha|^2} \alpha.
\]
Remark 3.2. The J_α's are sometimes called g-related almost complex structures (cf. [17, 18]). Note that the fibre bundle \mathcal{Z} of all g-compatible almost complex structures is called the twistor space of (M, g, J) (see [1]):

$$\mathcal{Z} = \{ J \in \text{SO}(TM) \mid J^2 = -\text{id} \} = \text{SO}(TM)/U(2);$$

so the twistor fibration $\pi : \mathcal{Z} \to M$ is an S^2 bundle. By using g-related almost complex structures one can study the twistor space of Riemannian 4-manifolds, complex structures on Riemannian 4-manifolds, Gromov-Witten invariants for Kähler surfaces and the dimension of J-anti-invariant cohomology of closed almost complex 4-manifolds (cf. [17, 18, 26, 34]).

Now we construct F-compatible almost complex structures by using J-anti-invariant symmetric tensor fields of type $(2,0)$. Suppose h is a J-anti-invariant symmetric tensor field of type $(2,0)$, that is,

$$h(X,Y) = h(Y,X), \quad h(JX,JY) = -h(X,Y)$$

for all vector fields X and Y. Define tensor field S_h of type $(1,1)$ by

$$g(X,S_hY) = h(X,Y). \quad (3.9)$$

Then we have $tS_h = S_h$, since

$$g(X,S_hY) = h(X,Y) = h(Y,X) = g(Y,S_hX) = g(S_hX,Y).$$

Similarly, we have $S_h = JS_hJ$, that is,

$$S_hJ + JS_h = 0. \quad (3.10)$$

It follows that, for $k = 1, 2, \ldots$,

$$S_h^{2k-1}J + JS_h^{2k-1} = 0, \quad S_h^{2k}J - JS_h^{2k} = 0. \quad (3.11)$$

Define tensor field J_h of type $(1,1)$ by

$$J_h := J e^{S_h} = e^{-S_h} J. \quad (3.12)$$

Then $J_h^2 = J e^{S_h} e^{-S_h} J = J^2 = -\text{Id}$. Define tensor field g_h of type $(2,0)$ by

$$g_h(X,Y) = g(X,e^{S_h}Y). \quad (3.13)$$

Then g_h is J_h-compatible, since

$$g_h(J_hX,J_hY) = g(J e^{S_h}X, e^{S_h} e^{-S_h} J Y) = g(J e^{S_h}X, JY) = g(e^{S_h}X,Y) = g(X,e^{S_h}Y) = g_h(X,Y). \quad (3.14)$$

We claim that F is J_h-compatible. Indeed, we have

$$F(J_hX,J_hY) = g(J \circ J \circ e^{S_h}X, e^{-S_h} J Y) = -g(e^{S_h}X, e^{-S_h} J Y) = -g(X,Y) = g(JX,Y) = F(X,Y). \quad (3.15)$$
It follows that (with g_1^h and g_2^h defined by the corresponding sums)

$$g_h(X,Y) = g(X,Y) + \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} g(X, S_h^{2k+1} Y) + \sum_{k=1}^{\infty} \frac{1}{(2k)!} g(X, S_h^{2k} Y)$$

$$= g(X,Y) + g_1^h(X,Y) + g_2^h(X,Y).$$

By (3.11), we have

$$g_1^h(X,Y) = -g_1^h(JX,JY), \quad g_2^h(X,Y) = g_2^h(JX,JY).$$

Proposition 3.3. Let h be a J-anti-invariant symmetric tensor field of type $(2,0)$, and let S_h be the tensor field of type $(1,1)$ defined by $g(X, S_h Y) = h(X,Y)$. Then $S_h + JS_h + S_h J = 0$. Furthermore,

$$J_h := Je^{S_h} = e^{-S_h} J$$

is an F-compatible almost complex structure and the corresponding almost Hermitian metric $g_h(\cdot, \cdot) := F(\cdot, J_h \cdot) = g(\cdot, e^{S_h} \cdot)$ is J_h-compatible.

Note that J_h is also called an F-calibrated almost complex structure (cf. [5]), and g_h an associated metric of F (cf. [9] [10]). Audin [5] gives another construction of F-compatible almost complex structures. For any symmetric tensor field S of type $(1,1)$ satisfying $\|S\| < 1$ and $JS + SJ = 0$, tensor field

$$J_S := J(Id + S)(Id - S)^{-1}$$

(3.16)

is an F-compatible almost complex structure.

Remark 3.4. $J^F_\mathbb{R}$ is the space of sections of a bundle over (M,J) with fibre the Siegel upper half-space $\text{Sp}(4,\mathbb{R})/U(2)$, which has an $\text{Sp}(4,\mathbb{R})$-invariant Kähler metric. Using deformation of F-compatible almost complex structures, many authors have studied extremal almost Kähler metrics and almost Kähler metrics of negative scalar curvature (see [13] [14] [15] [23] [27] [28]).

4 Proofs of Theorems 1.1 and 1.2

In this section we present proofs of Theorems 1.1 and 1.2.

We first prove Theorem 1.2 by deforming almost complex structures within the F-compatible ones.

Proof of Theorem 1.2 Suppose (M,g,J,F) is a closed almost Hermitian 4-manifold. Note that, by (2.9)–(2.11), we have the following (pointwise) orthogonal decomposition

$$\Lambda^2 = \mathbb{R}F \oplus \Lambda^-_J \oplus \Lambda^+_J.$$

(4.1)

We define the subgroup $H^{F,\perp}$ of $H^2(M;\mathbb{R})$ by

$$H^{F,\perp} = \{a \in H^2(M;\mathbb{R}) \mid \exists \alpha \in \mathbb{Z}^2 \text{ such that } a = [\alpha], \alpha \wedge F = 0\}.$$
Given $J_1, J_2 \in J^\infty_F$, let $g_i = F(\cdot, J_i)$, $i = 1, 2$. By (4.1), we have

$$\Lambda^2 = \mathbb{R}F \oplus \Lambda^+_J \oplus \Lambda^-_J, \quad i = 1, 2.$$

It follows that F is pointwise orthogonal to $\Lambda^+_J \oplus \Lambda^-_J$, $i = 1, 2$. Hence F is orthogonal to $H^+_J \oplus H^-_J$, and thus $H^+_J \oplus H^-_J \subseteq H^{F, \perp}_J$, $i = 1, 2$.

On the other hand, if $0 \neq [\alpha] \in H^{F, \perp}_J \subset H^2(\mathcal{M}; \mathbb{R})$ and $\alpha \wedge F = 0$, then, by Lemma 2.7 and Remark 2.8, we see that α is orthogonal to $H^+_J \oplus H^-_J$ with respect to cup product. Then $[\alpha] \in H^+_J \oplus H^-_J$ and hence $H^+_J \oplus H^-_J \supseteq H^{F, \perp}_J$, $i = 1, 2$. Thus α is orthogonal to $H^{F, \perp}_J$. Therefore $H^{F, \perp}_J$ is pointwise orthogonal to $\Lambda^+_J \oplus \Lambda^-_J$, $i = 1, 2$. Hence $H^{F, \perp}_J = H^+_J \oplus H^-_J$, $i = 1, 2$. Since $\dim H^-_J = b^-$, $i = 1, 2$, it follows that $h^+_J = h^+_J$. This completes the proof of Theorem 1.1.

To prove Theorem 1.1, let us first describe the C^∞-topology on the space J^∞ of C^∞ almost complex structures on \mathcal{M}. For $k = 0, 1, 2, \cdots$, the space J^k of C^k almost complex structures on \mathcal{M} has a natural separable Banach manifold structure. The natural C^∞-topology on J^∞ is induced by the sequence of C^k semi-norms $\|\cdot\|_k$, $k = 0, 1, 2, \cdots$. With this C^∞-topology, J^∞ is a Fréchet manifold. A complete metric which induces the C^∞-topology on J^∞ is defined by

$$d(J_1, J_2) = \sum_{k=0}^\infty \frac{\|J_1 - J_2\|_k}{2^k(1 + \|J_1 - J_2\|_k)}.$$

For details, see [5, 18, 33].

Proof of Theorem 1.1. Let (M, g, J, F) be a closed almost Hermitian 4-manifold. Note that $H^+_J \subset H^+_g$ and hence $h^+_J \leq b^+$. We may assume $b^+ \geq 2$, since the case where $b^+ = 1$ has been proved by T. Draghici, T.-J. Li and W. Zhang (cf. [18, Theorem 3.1]).

To prove the density statement, we may consider a family J_t, $t \in (0, 1)$ of almost complex structures on \mathcal{M} which is a deformation of J, that is, $J_t \to J$ as $t \to 0$.

If $h^+_J = 0$, then as noted in [18], we can establish path-wise semi-continuity property for h^\pm which follows directly from Lemma 2.5 and a classical result of Kodaira and Morrow ([24, Theorem 4.3]) showing the upper semi-continuity of the kernel of a family of elliptic differential operators. Therefore $h^+_J = 0$ for small t.

We now assume that $h^-_J \geq 1$. Let us write $m := h^-_J$ and $l := b^+ - m$. We shall construct a family of g-compatible almost complex structures $\{J_c\} \subset J^\infty_g$ where c are cut-off functions to be chosen such that $h^-_{J_c} = 0$ and $J_c \to J$ in the C^∞-topology as $c \to 0$.

First, suppose that $m(= h^-_J) < b^+$. Then $H^{-\perp}_J \neq \emptyset$ and

$$l = \dim H^{-\perp}_J = b^+ - m \geq 1.$$

(4.3)
For each nonzero $[\omega] \in H_\perp^{-1}$ we set
\[f_\omega := \langle \omega, F \rangle \in C^\infty(M). \] (4.4)

Then, by Lemma 2.7, $f_\omega \not\equiv 0$. Set
\[S_J := \{ [\omega] \in H_\perp^{-1} | \int_M \omega^2 = 1 \}. \] (4.5)

Then S_J is a sphere of dimension $b^+ - m - 1 = l - 1$. Define a function $V : S_J \to \mathbb{R}$ as follows: for any $[\omega] \in S_J$,
\[V(\omega) := \text{vol} (M \setminus f^{-1}_\omega(0)) = \int_{M \setminus f^{-1}_\omega(0)} d\mu_g. \] (4.6)

Then V is a continuous function on S_J. When H_\perp^{-1} is non-empty,
\[\delta_J := \inf_{\omega \in S_J} V(\omega) > 0 \] (4.7)
since S_J is compact. Let $\alpha_1, \ldots, \alpha_m \in Z_J^-$ be such that $[\alpha_1], \ldots, [\alpha_m]$ is an orthonormal basis of H_\perp with respect to cup product. Choose $[\omega_1], \ldots, [\omega_l] \in H_\perp^{-1}$, $l = b^+ - m$
such that $[\alpha_1], \ldots, [\alpha_m], [\omega_1], \ldots, [\omega_l]$ form an orthonormal basis of H_\perp with respect to cup product; namely, for $1 \leq i \leq m$ and $1 \leq j \leq l$,
\[\int_M \omega_i^2 = \int_M \alpha_j^2 = 1, \quad \int_M \omega_i \wedge \alpha_j = 0, \] (4.8)
and, for $1 \leq i_1 \neq i_2 \leq m$ and $1 \leq j_1 \neq j_2 \leq l$,
\[\int_M \omega_{i_1} \wedge \omega_{i_2} = \int_M \alpha_{j_1} \wedge \alpha_{j_2} = 0. \] (4.9)

To complete the proof of the density statement in Theorem 1.1, we need the following lemma which is a special case of a theorem of Bär.

Lemma 4.1. [6 Main Theorem] Let M be a closed Riemannian 4-manifold. Then every harmonic 2-form α on M has the unique continuation property. Hence if $\alpha \not\equiv 0$, then its nodal set $\alpha^{-1}(0)$ has empty interior; in fact, $\alpha^{-1}(0)$ has Hausdorff dimension ≤ 2.

By Lemma 4.1, the set $\bigcup_{i=1}^m \alpha_i^{-1}(0)$ has Hausdorff dimension ≤ 2. Hence
\[M' := \bigcap_{i=1}^m (M \setminus \alpha_i^{-1}(0)) \]
is an open submanifold of M of full volume: $\text{vol}(M') = \text{vol}(M)$. Choose an open set $U \subset M'$ such that $\text{vol}(U) < \delta_J$. Then $\alpha_j|_U$, $1 \leq i \leq m$ are nonzero sections of $\Lambda_\perp^{-1} U$.

We now construct a new g-compatible almost complex structure on M (cf. [17, 26]). Choose a cut-off function c_1 such that $\text{supp} c_1 \subset U$ and
\[|c_1 \alpha| < 1. \] (4.10)
Then, by Proposition 3.1, we get
\[J_{c_1} := J_{c_1 \alpha_1} = \frac{1 - |c_1 \alpha_1|^2}{1 + |c_1 \alpha_1|^2} J - \frac{2}{1 + |c_1 \alpha_1|^2} K_{c_1 \alpha_1}, \] (4.11)
\[F_{c_1} := F_{c_1 \alpha_1} = \frac{1 - |c_1 \alpha_1|^2}{1 + |c_1 \alpha_1|^2} F + \frac{2}{1 + |c_1 \alpha_1|^2} c_1 \alpha_1. \] (4.12)

Thus it is easy to see that, as \(c_1 \to 0, \)
\[J_{c_1} \to J, \quad F_{c_1} \to F. \] (4.13)

Note that \(J_{c_1} \in J_g^c \cap J_F^c. \)

We claim that \(H_{J_{c_1}}^- \subset H_J^- \). Since \(J_{c_1} \) is \(g \)-compatible, we have
\[H_{J_{c_1}}^- \subset H_g^+ = H_J^- \oplus H_J^{-1}. \] (4.14)

Given any nonzero \(\beta \in Z_{J_{c_1}}^{-} \), there exist real constants \(\xi_i \) and \(\eta_j \) such that
\[\beta = \sum_{i=1}^l \xi_i \omega_i + \sum_{j=1}^m \eta_j \alpha_j, \] (4.15)
where \(1 \leq i \leq l \) and \(1 \leq j \leq m \). Without loss of generality, we may assume that
\[\int_M \beta^2 = \sum_{i=1}^l \xi_i^2 + \sum_{j=1}^m \eta_j^2 = 1. \] (4.16)

Obviously, \(\langle \beta, F_{c_1} \rangle = 0. \) Restricted to \(M \setminus \text{supp} c_1 \), we have \(F_{c_1} = F \). On \(M \setminus \text{supp} c_1 \), we get
\[\langle \beta, F_{c_1} \rangle|_{M \setminus \text{supp} c_1} = \sum_{i=1}^l \xi_i \langle \omega_i, F \rangle|_{M \setminus \text{supp} c_1} = 0. \] (4.17)

If \(\sum_{i=1}^l \xi_i \omega_i \in H_J^{-1} \) is nontrivial, then we put
\[\beta_1 = \frac{\sum_{i=1}^l \xi_i \omega_i}{(\int_M (\sum_{i=1}^l \xi_i \omega_i)^2)^{1/2}}. \] (4.18)

Obviously, \(\beta_1 \in S_J \). By (4.17) and (4.18), \(f_{\beta_1} = \langle \beta_1, F \rangle \equiv 0 \), restricted to \(M \setminus \text{supp} c_1 \). Hence \(M \setminus f_{\beta_1}^{-1}(0) \subset \text{supp} c_1 \subset U \). It follows that
\[V(\beta_1) = \text{vol}(M \setminus f_{\beta_1}^{-1}(0)) \leq \text{vol}(U) < \delta_J, \] (4.19)
contradicting the definition of \(\delta_J \) (see (4.7)). Therefore \(\xi_i = 0 \) for \(1 \leq i \leq l \) and \(\beta = \sum_{j=1}^m \eta_j \alpha_j \). Thus we have proved that if \(H_J^- \neq \emptyset \) then \(H_{J_{c_1}}^- \subset H_J^- \).

Remark 4.2. In [18], T. Draghici, T.-J. Li and W. Zhang have considered \(g \)-related almost complex structures: if almost complex structures \(J \) and \(\tilde{J} \) are \(g \)-related then \(\Lambda_J^- + \Lambda_{\tilde{J}}^- \subset \Lambda_{g}^+ \) and hence \(H_J^- + H_{\tilde{J}}^- \subset H_{g}^+ \).

Secondly, if \(H_J^- = \mathcal{H}^+ \) then we construct any \(J_{c_1} \) and \(F_{c_1} \) such that \(H_{J_{c_1}}^- \subset H_J^- \). In summary, we have obtained the following
Proposition 4.3. Let \((M, g, J, F)\) be a closed almost Hermitian 4-manifold. If \(h_J \geq 1\), then we can construct a \(g\)-compatible almost complex structure \(J_{c_1}\) where the volume of \(\text{supp } c_1\) is small enough, so that
\[H^{-}_{J_{c_1}} \subset H^{-}_J. \]

The following observation is the key for the computation of \(h_{J_{c_1}}\).

Proposition 4.4. ([18, Proposition 3.7]) Suppose \(J\) and \(J'\) are \(g\)-related almost complex structures on a closed 4-manifold \(M\), with \(J' \not\equiv \pm J\). Then
\[\dim(H^{-}_J \cap H^{-}_{J'}) \leq 1. \]

Let us return to the proof of the density statement in Theorem 1.1. Since \(H^{-}_{J_{c}} \subset H^{-}_J\), it follows from Propositions 4.3 and 4.4 that \(h^{-}_{J_{c_1}} \leq 1\). Without loss of generality, we may suppose that \(h^{-}_{J_{c_1}} = 1\). Choose \([\alpha] \in H^{-}_J\) such that \(\int_M \alpha^2 = 1\). We then have \(\dim H^{-}_{J_{c_1}} = b^+ - 1\), and by the same reason as that for (4.7),
\[\delta_{J_{c_1}} := \inf_{\omega \in S^{-}_{J_{c_1}}} V(\omega) > 0. \quad (4.20) \]
Choose a cut-off function \(c_2\) such that \(\text{supp } c_2 \subset M \setminus \alpha^{-1}(0)\) (by Lemma 4.1) and that
\[\text{vol}(\text{supp } c_2) < \delta_{J_{c_1}}. \quad (4.21) \]
Construct
\[F_{J_{c_2}} = f_1 F_{J_{c_1}} + c_2 \alpha \]
such that \(F_{J_{c_2}} \wedge F_{J_{c_2}} = 2d\mu_g\). It is easy to see that \(J\) and \(J_{c_2}\) are both \(g\)-compatible (\(g\)-related); thus \(J_{c_2} \in J^c_g \cap J^F_k\).

We claim that \(h^{-}_{J_{c_2}} = 0\). Otherwise, there exists nonzero \(\beta \in H^{-}_{J_{c_2}}\). Then, by the above construction and by Proposition 4.3, \(H^{-}_{J_{c_2}} \subset H^{-}_{J_{c_1}}\); hence \(\beta \in H^{-}_{J_{c_1}}\), \(\beta = \eta \alpha\), \(\eta \neq 0\), and
\[\langle \beta, F_{c_2} \rangle \equiv 0. \quad (4.22) \]
Restricted to \(\text{supp } c_2\), we have \(F_{c_2} = f_1 F_{c_1} + c_2 \alpha\). It follows that
\[\langle \beta, F_{c_2} \rangle|_{\text{supp } c_2} = \langle \eta \alpha, c_2 \alpha \rangle = 2\eta c_2 |\alpha|^2 d\mu_g. \quad (4.23) \]
Thus \(\alpha^{-1}(0) \supset \text{supp } c_2\), contradicting Lemma 4.1 Hence \(h^{-}_{J_{c_2}} = 0\).

This completes the proof of the density statement in Theorem 1.1.

Remark 4.5. By the proof above, in contrast to Theorem 1.2, for any closed almost Hermitian 4-manifold \((M, g, J, F)\), we can find a family of almost complex structures \(\{J_{c_2}\} \subset J^c_g \cap J^F_k\) on \(M\) which depend on both of the cut-off functions \(c_1\) and \(c_2\) such that \(h^{-}_{J_{c_2}} = 0\) and \(J_{c_2} \to J\) in the \(C^\infty\)-topology as \(c_1 \to 0\) and \(c_2 \to 0\) simultaneously.
It remains to prove the openness statement in Theorem 3.1. The case $b^+ = 1$ is proved in [18]. Suppose $b^+ \geq 2$. Suppose that $J_k \to J$ as $k \to \infty$ and that

$$m_k := h_{J_k}^{-} \geq 1.$$

We need to prove that $h_{J}^{-} \geq 1$. Suppose $h_{J}^{-} = 0$. Then $b^+ = h_{J}^{-} + b^-$. Let g be a J-compatible metric and set $F = g(J, \cdot)$. Let $\psi^1, \ldots, \psi^{b^+} \in H^+_g$ be a cup-product orthonormal basis, that is,

$$\int_M \psi^i \wedge \psi^j = \delta_{ij}, \quad 1 \leq i, j \leq b^+.$$

(4.24)

Note that $H^+_g = H^+_J \oplus H^{-1}_J$. Since $h_{J}^{-} = 0$, by Lemma 4.7, $\psi^i = f^i F + P^-_J d\theta^i$, where $\theta^i \in \Omega^1$. Set

$$g_k = \frac{1}{k}(g(\cdot, \cdot) + g(J_k, \cdot, \cdot)), \quad F_k = g_k(J_k, \cdot, \cdot).$$

Then $(g_k, J_k, F_k) \to (g, J, F)$ as $k \to \infty$. Since $m_k = h_{J_k}^{-} \geq 1$, we may choose an orthonormal basis

$$\{\omega^i(k)\}_{1 \leq i \leq b^+ - m_k} \cup \{\alpha^l(k)\}_{b^+ - m_k + 1 \leq l \leq b^+}$$

of $H^+_{g_k}$ with respect to cup product. Denote by \triangle^k the Hodge-de Rham Laplace operator associated to g_k and by G^k the Green operator associated to \triangle^k. Then, as done in [18] Proof of Theorem 3.1,

$$\psi^i = (\psi^i - G^k(\triangle^k \psi^i)) + G^k(\triangle^k \psi^i) = \psi^i_{h, k} + \psi^i_{\text{ex}, k},$$

(4.25)

with $\psi^i_{h, k} := \psi^i - G^k(\triangle^k \psi^i)$ the g_k-harmonic part and $\psi^i_{\text{ex}, k} := G^k(\triangle^k \psi^i)$ the g_k-exact part. Thus $\psi^i_{h, k} \to \psi^i$ and $\psi^i_{\text{ex}, k} \to 0$ as $k \to \infty$. Moreover, if $(\psi^i_{h, k})^+$ denotes the g_k-self-dual part of $\psi^i_{h, k}$, then we still have $(\psi^i_{h, k})^+ \to \psi^i$ as $k \to \infty$ since ψ^i is g-self-dual harmonic form. So there exist $a^i_1(k) \in \mathbb{R}$, $1 \leq l \leq b^+$ such that

$$(\psi^i_{h, k})^+ = \sum_{l=1}^{b^+ - m_k} a^i_1(k) \omega^l(k) + \sum_{l=b^+ - m_k + 1}^{b^+} a^i_1(k) \alpha^l(k)$$

(4.26)

and

$$\langle (\psi^i_{h, k})^+, F_k \rangle = \sum_{l=1}^{b^+ - m_k} a^i_1(k) \langle \omega^l(k), F_k \rangle =: f^i(k).$$

(4.27)

Since $F_k \to F$ and $(\psi^i_{h, k})^+ \to \psi^i$ as $k \to \infty$, we have $f^i(k) \to f^i$ as $k \to \infty$. Note that $\psi^i = f^i F + P^-_J d\theta^i$. By (4.26), we have

$$P^-_J d\theta^i(k) = P^-_J \sum_{l=1}^{b^+ - m_k} a^i_1(k) d\theta^l(k),$$

(4.28)
where $\theta^i(k) \in \Omega^1(M)$. Note that $\psi^i \in H^{-1}_{-\infty} = \mathcal{H}_g$, $i = 1, \cdots, b^+$. Then

$$(\psi^i_{h,k})^+ := f^i(k)F_k + P^{-1}_{j_k}d\theta^i(k) \in \mathcal{H}_g^+ \setminus H^{-1}_{-\infty}$$ \tag{4.29}$$

and $(\psi^i_{h,k})^+ \rightarrow \psi^i$, $(\psi^i_{h,k})^+ - (\psi^i_{h,k})^+ \rightarrow 0$ as $k \rightarrow \infty$. Hence

$$\int_M (\psi^i_{h,k})^+ \wedge (\psi^i_{h,k})^+ \rightarrow \int_M \psi^i \wedge \psi^i = 1 \tag{4.30}$$

as $k \rightarrow \infty$. On the other hand,

$$(\psi^i_{h,k})^+ = (\psi^i_{h,k})^+ + \sum_{l=b^+-m_k+1}^{b^+} a^i_l(k)\alpha^l(k). \tag{4.31}$$

It follows that

$$\int_M (\psi^i_{h,k})^+ \wedge (\psi^i_{h,k})^+$$

$$= \int_M (\psi^i_{h,k})^+ \wedge (\psi^i_{h,k})^+ + \int_M \sum_{l=b^+-m_k+1}^{b^+} a^i_l(k)\alpha^l(k) \wedge \sum_{l=b^+-m_k+1}^{b^+} a^i_l(k)\alpha^l(k)$$

$$= \int_M (\psi^i_{h,k})^+ \wedge (\psi^i_{h,k})^+ + \sum_{l=b^+-m_k+1}^{b^+} (a^i_l(k))^2$$

$$\ge \int_M (\psi^i_{h,k})^+ \wedge (\psi^i_{h,k})^+ + (a^i_{b^+}(k))^2,$$

since $h^{-1}_{-\infty} \ge 1$ by a direct computation. Note that

$$\int_M \psi^i \wedge \psi^j = \delta_{ij} \text{ and } (\psi^i_{h,k})^+ \rightarrow \psi^i \text{ as } k \rightarrow \infty, \text{ for } 1 \le i \le b^+.$$ Thus,

$$\int_M (\psi^i_{h,k})^+ \wedge (\psi^i_{h,k})^+ = \sum_{l=1}^{b^+} a^i_l(k)a^l_i(k) \rightarrow \delta_{ij} \tag{4.33}$$

as $k \rightarrow \infty$. Denote by $A(k)$ the $b^+ \times b^+$ matrix: $A(k) = (a^i_l(k))$. Then

$$B(k) = A(k)A(k)^\dagger = \left(\sum_{l=1}^{b^+} a^i_l(k)\delta^i_l(k)\right) \rightarrow I_{b^+} \tag{4.34}$$

as $k \rightarrow +\infty$. Thus $A(k) \rightarrow A \in \text{SO}(b^+)$ as $k \rightarrow \infty$. Hence $A^\dagger \in \text{SO}(b^+)$ and

$$\sum_{l=1}^{n} a^i_l(k)a^l_m(k) \rightarrow \delta_{lm} \tag{4.35}$$
as \(k \to \infty \). In particular, as \(k \to \infty \),

\[
\sum_{i=1}^{n} a_i(k)^2 \to 1.
\]

(4.36)

This contradicts (4.32). Thus we get \(h_{\tilde{J}} \geq 1 \).

Thus the almost complex structures \(J \) with \(h_{\tilde{J}} = 0 \) form an open subset of \(J \) in the \(C^\infty \)-topology. This completes the proof of Theorem 1.1.

\[\square \]

References

[1] M. F. Atiyah, N. J. Hitchin and I. M. Singer, \textit{Self-duality in four-dimensional Riemannian geometry}, Proc. R. Soc. London Ser. A \textbf{362} (1978), 425–461.

[2] D. Angella and A. Tomassini, \textit{On cohomology decomposition of almost complex manifolds and deformations}, Journal of Symplectic Geometry, \textbf{9} (2011), no. 3, 1–26.

[3] D. Angella and A. Tomassini, \textit{On the cohomology of almost complex manifolds}, International J. Math., to appear (DOI No: 10.1142/S0129167X11007604).

[4] V. Apostolov, T. Draghici, \textit{Hermitian conformal classes and almost Kähler structures on 4-manifolds}, Differential Geom. Appl., \textbf{11} (1999), 179–195.

[5] M. Audin, \textit{Symplectic and almost complex manifolds, with an appendix by P. Gauduchon}, Progress in Math. \textbf{117}, Holomorphic Curves in Symplectic Geometry, 41–74, Birkhäuser, Basel, 1994.

[6] C. Bär, \textit{On nodal sets for Dirac and Laplace operators}, Comm. Math. Phys., \textbf{188} (1997), 709–721.

[7] W. Barth, K. Hulek, C. Peters and A. Van de Ven, \textit{Compact Complex Surfaces}, Springer-Verlag, Berlin, 2004.

[8] A. L. Besse, \textit{Einstein Manifolds}, Springer-Verlag, Berlin, 1987.

[9] D. E. Blair, \textit{On the set of metrics associated to a symplectic or contact form}, Bull. Inst. Math. Acad. Sinica, \textbf{11} (1983), 297–308.

[10] D. E. Blair, \textit{Riemannian Geometry of Contact and Symplectic Manifolds}, Second edition, Progress in Math., \textbf{203}, Birkhäuser, Basel, 2010.

[11] D. E. Blair and D. Perrone, \textit{A variational characterization of contact metric manifolds with vanishing torsion}, Canad. Math. Bull., \textbf{35} (1992), 455-462.

[12] N. Buchdahl, \textit{On compact Kähler surfaces}, Ann. Inst. Fourier, \textbf{49} (1999), 287–302.
[13] S. K. Donaldson, *Remarks on gauge theory, complex geometry and 4-manifolds topology*, in “The Fields Medalists Lectures”, pp. 384–403, World Scientific, 1997.

[14] S. K. Donaldson, *Symmetric Spaces, Kähler geometry and Hamiltonian dynamics*, Amer. Math. Soc. Transl. (2) **196**, pp. 13–23, 1999.

[15] S. K. Donaldson, *Two forms on four manifolds and elliptic equations*, Nankai Tracts Math., **11**, Inspired by S. S. Chern, 153–172, World Sci. Publ., Hackensack, N.J., 2006.

[16] S. K. Donaldson, *Some problems in differential geometry and topology*, Nonlinearity **21** (2008), 157–164.

[17] T. Draghici, T.-J. Li and W. Zhang, *Symplectic forms and cohomology decomposition of almost complex four-manifolds*, Int. Math. Res. Not., 2010, no. 1, 1–17.

[18] T. Draghici, T.-J. Li and W. Zhang, *On the J-anti-invariant cohomology of almost complex 4-manifolds*, preprint, arXiv:1104.2511v1.

[19] A. Fino and A. Tomassini, *On some cohomological properties of almost complex manifolds*, J. Geom. Anal., **20** (2010), 107–131.

[20] P. Gauduchon, *Surfaces kählériennes dont la courbure vériifie certaines conditions de positivité*, in: “Riemannian Geometry in Dimension 4” (Paris, 1978/1979), Textes Math. **3**, 220–263, CEDIC, Paris, 1981.

[21] P. Gauduchon, *Le théorème de l’excricité nulle*, C. R. Acad. Sc. Paris. Série A **285** (1977), 387–390.

[22] P. Gauduchon, *La 1-forme de torsion d’une variété hermitienne compacte*, Math. Ann., **267** (1984), 495–518.

[23] J. Kim, *A closed symplectic four-manifold has almost Kähler metrics of negative scalar curvature*, Ann. Glob. Anal. Geom., **33** (2008), 125–136.

[24] K. Kodaira and J. Morrow, *Complex Manifolds*, Holt, Rinehart and Winston, New York, 1971.

[25] A. Lamari, *Courants kachleriens et surfaces compactes*, Ann. Inst. Fourier, **49** (1999), 263–285.

[26] J. Lee, *Family Gromov-Witten invariants for Kähler surfaces*, Duke Math. J., **123** (2004), 209–233.

[27] M. Lejmi, *Strictly nearly Kähler 6-manifolds are not compatible with symplectic forms*, C. R. Math. Acad. Sci. Paris, **34** (2006), 759–762.

[28] M. Lejmi, *Stability under deformations of extremal almost-Kähler metrics in dimension 4*, Math. Res. Lett., **17** (2010), no. 4, 601–612.
[29] M. Lejmi, *Extremal almost-Kähler metrics*, to appear in IJM; preprint, arXiv:0908.0859v3.

[30] T.-J. Li and W. Zhang, *Comparing tamed and compatible symplectic cones and cohomological properties of almost complex manifolds*, Comm. Anal. Geom., 17 (2009), 651–684.

[31] A.-K. Liu, *Some new applications of general wall crossing formula, Gompf’s conjecture and its applications*, Math. Res. Lett., 3 (1996), 569–585.

[32] D. McDuff, D. Salamon, *Introduction to Symplectic Geometry*, Second Edition, Oxford University Press, 1998.

[33] D. McDuff, D. Salamon, *J-holomorphic Curves and Symplectic Topology*, American Mathematical Society, 2004.

[34] M. Pontecorvo, *Complex structures on Riemannian four-manifolds*, Math. Ann., 309 (1997), 159–177.

[35] S. Salamon, *Special structures on four-manifolds*, Conference on Diff. Geom. and Topology (Italian) (Parma, 1991) Riv. Mat. Univ. Parma (4), 17* (1991), 109–123 (1993).

[36] K. Yano, *Differential Geometry on Complex and Almost-Complex Spaces*, Pergamon Press, New York, 1965.

[37] S.-T. Yau, *On the scalar curvature of compact Hermitian manifolds*, Inven. Math., 25 (1974), 213–239.
Qiang Tan
School of Mathematical Sciences, Yangzhou University, Yangzhou, Jiangsu 225002, China
e-mail: tanqiang1986@yahoo.com.cn

Hongyu Wang
School of Mathematical Sciences, Yangzhou University, Yangzhou, Jiangsu 225002, China
e-mail: hywang@yzu.edu.cn

Ying Zhang
School of Mathematical Sciences, Soochow University, Suzhou, Jiangsu 215006, China
e-mail: yzhang@suda.edu.cn

Peng Zhu
School of Mathematical Sciences, Yangzhou University, Yangzhou, Jiangsu 225002, China
e-mail: zhupeng2004@yahoo.com.cn