Colorectal cancer in patients with SARS-CoV-2: a systematic review and meta-analysis

Saad Alhumaid1*, Abbas Al Mutair2,3,4, Jawad S. Busubah5, Nourah Al Dossary6, Murtadha Alsuliman7, Sarah A. Baltyour8, Ibrahim Alissa9, Hassan I. Al Hassar10, Noor A. Al Aithan11, Hani A. Albassri12, Suliman A. AlOmar13, Raed M. ALGhazal14, Ahmed Busbah15, Nasser A. Alsaleem16, Waseem Alagham16, Mohammed Y. Alyousef17, Abdulaziz U. Alseffay18, Hussain A. Al Aish10, Ali Aldiaram9, Hisham A. Al eissa19, Murtadha A. Alhumaid20, Ali N. Bukhamseen21, Koblan M. Al mutared22, Abdullah H. Aljwisim23, Abdullah M. Twibah23, Meteab M. AlSaeed24, Hussien A. Alkaifal25, Fatemah M. ALShakhs26, Thoyaja Koritala27, Jaffar A. Al-Tawfiq28,29,30, Kuldeep Dhama31, Ali A. Rabaan32,33,34 and Awad Al-Omari35,36

Abstract

Background: Patients with colorectal cancer (CRC) are more likely to develop severe course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and experience increased risk of mortality compared to SARS-CoV-2 patients without CRC.

Objectives: To estimate the prevalence of SARS-CoV-2 infection in CRC patients and analyse the demographic parameters, clinical characteristics and treatment outcomes in CRC patients with COVID-19 illness.

Methods: For this systematic review and meta-analysis, we searched Proquest, Medline, Embase, Pubmed, CINAHL, Wiley online library, Scopus and Nature for studies on the incidence of SARS-CoV-2 infection in CRC patients, published from December 1, 2019 to December 31, 2021, with English language restriction. Effect sizes of prevalence were pooled with 95% confidence intervals (CIs). Sub-group analyses were performed to minimize heterogeneity. Binary logistic regression model was used to explore the effect of various demographic and clinical characteristics on patient’s final treatment outcome (survival or death).

Results: Of the 472 papers that were identified, 69 articles were included in the systematic review and meta-analysis (41 cohort, 16 case-report, 9 case-series, 2 cross-sectional, and 1 case-control studies). Studies involving 3362 CRC patients with confirmed SARS-CoV-2 (all patients were adults) were analyzed. The overall pooled proportions of CRC patients who had laboratory-confirmed community-acquired and hospital-acquired SARS-CoV-2 infections were 8.1% (95% CI 6.1 to 10.1, n = 1308, 24 studies, I² 98%, p = 0.66), and 1.5% (95% CI 1.1 to 1.9, n = 472, 27 studies, I² 94%, p < 0.01). The median patient age ranged from 51.6 years to 80 years across studies. The majority of the patients were male (n = 2243, 66.7%) and belonged to White (Caucasian) (n = 262, 7.8%), Hispanic (n = 156, 4.6%) and Asian (n = 153, 4.4%) ethnicity. The main source of SARS-CoV-2 infection in CRC patients was community-acquired.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

*Correspondence: saalhumaid@moh.gov.sa

1 Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Rashdia Street, P.O. Box 12944, Alahsa 31982, Saudi Arabia

Full list of author information is available at the end of the article.
Background

Since its outbreak in China in December 2019, coronavirus disease 2019 (COVID-19) has spread across the world to become a global pandemic. According to the World Health Organization (WHO), as of July 21, 2022, 562,672,324 confirmed cases of COVID-19 have been recorded worldwide, with 6,367,793 deaths [1]. Established, probable, and possible comorbidities that have been associated with severe COVID-19 in at least 1 meta-analysis or systematic review, in observational studies, or in case series were: age ≥ 65 years, asthma, cancer, cerebrovascular disease, chronic kidney disease, chronic lung disease (interstitial lung disease, pulmonary embolism, pulmonary hypertension, bronchiectasis, chronic obstructive pulmonary disease), chronic liver disease (cirrhosis, non-alcoholic fatty liver disease, alcoholic liver disease, autoimmune hepatitis), diabetes mellitus, type 1 and type 2, heart conditions (such as heart failure, coronary artery disease, or cardiomyopathies), human immunodeficiency virus (HIV), obesity (BMI ≥ 30 kg/m²) and overweight (BMI 25 to 29 kg/m²), pregnancy or recent pregnancy, primary immunodeficiencies, smoking (current and former), sickle cell disease or thalassemia, solid organ or blood stem cell transplantation, tuberculosis, use of corticosteroids or other immunosuppressive medications [2–4]. In a systematic analysis that calculated the total number of community infections through seroprevalence surveys from 53 countries prior to vaccine availability, the COVID-19 infection mortality rate was 0.005 percent at 1 year, decreased to 0.002 percent by age 7, and increased exponentially after that: 0.006 percent at age 15, 0.06 percent at age 30, 0.4 percent at age 50, 2.9 percent at age 70, and 20 percent at age 90 [5].

Colorectal cancer (CRC) is common and deadly disease, and globally, CRC still remains the third most commonly diagnosed cancer in males and the second in females [6]. CRC is the most common gastrointestinal malignancy and disproportionately affects medically underserved populations [7]. Patients with CRC are more likely to develop severe course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and experience increased risk of mortality compared to SARS-CoV-2 patients without CRC [8–16]. Higher mortality rates in CRC patients infected with COVID-19 case-series and cohort studies were reported; for instance, in two small Chinese case-series, rates of death reached up to 61.5 to 70% [11, 15], and in a large French cohort (a total of 376 CRC patients infected with COVID-19 cases), mortality rate was 37.8% [8]; and there was a lower proportion of death of all hospitalized CRC patients infected with COVID-19 based on two different studies in China (5.9%) and Turkey (6.4%) [14, 17]. The recent UK Coronavirus Cancer Monitoring Project (UKCCMP) prospective cohort study of 2,515 patients conducted at 69 UK cancer hospitals among adult patients (≥ 18 years) with an active cancer and COVID-19 reported a 38% (966 patients) mortality rate with an association between higher mortality in patients with haematological malignant neoplasms, particularly in those with acute leukaemias or myelodysplastic syndrome (OR, 2.16; 95% CI, 1.30–3.60) and myeloma or plasmacytoma (OR, 1.53; 95% CI, 1.04–2.26) [18]. Lung cancer was also significantly associated with higher COVID-19-related mortality (OR, 1.58; 95% CI, 1.11–2.25) [18]. A possible reason for increased mortality due to SARS-CoV-2 in patients with CRC is because most health care systems have been required to reorganize their infrastructure and staffing to manage the COVID-19 pandemic [19]. The pandemic has called for a review of healthcare workers daily medical practices, including our approach to CRC management where treatment puts patients at high risk of virus exposure. Given their higher median age, CRC patients are at an increased risk for severe symptoms and complications in cases of infection,
especially in the setting of immunosuppression. Considering that the reduction in CRC screening following SARS-CoV-2 pandemic is due to the restrictions imposed for the high prevalence of COVID-19 illness and the lack of referrals due to the fear of developing SARS-CoV-2 infection [20–22] (see Fig. 1).

To date, some studies have been performed to evaluate the SARS-CoV-2 infection in CRC patients, but the results of these studies were inconsistent because most of these are single-centre studies with limited sample sizes [23–36]. In light of newer case reports, case-series and cohort studies that were done to re-evaluate the development of COVID-19 disease in CRC patients, we aimed to estimate the prevalence of SARS-CoV-2 infection in CRC patients and analyse the demographic parameters, clinical characteristics and treatment outcomes in CRC patients with COVID-19 illness with larger and better-quality data.

Methods
Design
We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (PRISMA) in conducting this systematic review and meta-analysis [37]. The following electronic databases were searched: PROQUEST, MEDLINE, EMBASE, PUBMED, CINAHL, WILEY ONLINE LIBRARY, SCOPUS and NATURE with Full Text. We used the following keywords: COVID-19 OR SARS-CoV-2 OR Severe acute Respiratory Syndrome Coronavirus 2 OR Coronavirus Disease 2019 OR 2019 novel coronavirus AND colorectal cancer OR colon OR rectal OR rectum OR CRC OR bowel cancer OR tumor OR cancer OR neoplasm. The search was limited to papers published in English between 1 December 2019 and 31 December 2021. Based on the title and abstract of each selected article, we selected those discussing and reporting occurrence of CRC in COVID-19 patients.

Inclusion–exclusion criteria
Inclusion criteria are as follows: (1) published case reports, case series and cohort studies that focused on COVID-19 in CRC patients that included children and adults as our population of interest; (2) studies of experimental or observational design reporting the prevalence

Fig. 1 A caricature depicts surgeon’s worriment about contracting the SARS-CoV-2 and patient’s possible risk of getting post-surgical SARS-CoV-2 infection in a CRC patient.
of SARS-CoV-2 infection in patients with CRC; (3) the language was restricted to English.

The exclusion criteria are as follows: (1) editorials, commentaries, case and animal studies, discussion papers, preprints, news analyses, reviews and meta-analyses; (2) studies that did not report data on CRC and SARS-CoV-2; (3) studies that never reported details on SARS-CoV-2 identified cases with CRC; (4) studies that reported CRC in patients with negative COVID-19 PCR tests; (5) duplicate publications.

Data extraction

Six authors critically reviewed all of the studies retrieved and selected those judged to be the most relevant. Data were carefully extracted from the relevant research studies independently. Articles were categorized as case report, case series, cross-sectional, case-control or cohort studies. The following data were extracted from selected studies: authors; publication year; study location; study design and setting; age; proportion of male patients; patient ethnicity; methods used for CRC diagnosis; total number of patients and number of CRC patients with positive PCR SARS-CoV-2; source of SARS-CoV-2 infection [community-acquired or hospital-acquired]; CRC staging; treatments received; symptoms from tumor; comorbidities; if patient was admitted to intensive care unit (ICU), placed on mechanical ventilation, and/or suffered acute respiratory distress syndrome (ARDS); assessment of study risk of bias; and treatment outcome (survived or died); which are noted in Table 1.

Quality assessment

The quality assessment of the studies was undertaken based on the Newcastle–Ottawa Scale (NOS) to assess the quality of the selected studies [38]. This assessment scale has two different tools for evaluating case-control and cohort studies. Each tool measures quality in the three parameters of selection, comparability, and exposure/outcome, and allocates a maximum of 4, 2, and 3 points, respectively [38]. High-quality studies are scored greater than 7 on this scale, and moderate-quality studies, between 5 and 7 [38]. Quality assessment was performed by six authors independently, with any disagreement to be resolved by consensus.

Data analysis

We examined primarily the proportion of confirmed SARS-CoV-2 infection in patients with CRC. This proportion was further classified based on source of SARS-CoV-2 infection (if CRC patient contracted SARS-CoV-2 from the community or hospital). Community-acquired SARS-CoV-2 infection is the infection that CRC patients contracted outside the hospital (i.e., SARS-CoV-2 infection that become clinically apparent within 48 h of the hospital admission or CRC patients have had the infection when admitted to the hospital for some other reason) [39]. Hospital-acquired SARS-CoV-2 infection is the infection that CRC patients contracted within the hospital, the SARS-CoV-2 infections contracted within the hospital but not become clinically apparent until after the discharge of the CRC patient, or SARS-CoV-2 infections contracted by the healthcare workers as a result of their direct or indirect contact with the CRC patients [39]. Taking a conservative approach, a random effects with the DerSimoniane-Laird model was used [40], which produces wider confidence intervals (CIs) than a fixed effect model. Results were illustrated using forest plots. The Cochran’s chi-square (χ^2) and the I^2 statistic provided the tools of examining statistical heterogeneity [41]. An I^2 value of >50% suggested significant heterogeneity [42]. Examining the source of heterogeneity, a subgroup analysis was conducted based on study location (if continent of Asia, America, Europe or multi-countries).

Individual CRC patient data on demographic parameters and clinical variables and associated treatment outcomes (survived or died) were extracted from the included studies. Univariate and multivariable logistic regression analysis were used to estimate odds ratio (OR) and 95% CIs of the association of each variable with the treatment outcomes of CRC patients with SARS-CoV-2 infection. All p-values were based on two-sided tests and significance was set at a p-value less than 0.05. R version 4.1.0 with the packages finalfit and forestplot was used for all statistical analyses.

Results

Study characteristics and quality

A total of 1076 publications were identified (Fig. 2). After scanning titles and abstracts, we discarded 314 duplicate articles. Another 83 irrelevant articles were excluded based on the titles and abstracts. The full texts of the 472 remaining articles were reviewed, and 403 irrelevant articles were excluded. As a result, we identified 69 studies that met our inclusion criteria and reported SARS-CoV-2 infection in CRC patients [8–17, 23, 25–36, 43–85]. The detailed characteristics of the included studies are shown in Table 1. There were 16 case report [16, 32, 46, 48–50, 52, 54, 55, 59, 66, 67, 71, 75, 82, 84], 9 case series, 41 cohort [8–17, 23, 25, 26, 29, 31, 34, 43–45, 51, 53, 56–58, 60–65, 68–70, 73, 74, 77, 79, 80, 83, 85], 2 cross-sectional [72, 76] and 1 case-control [81] studies. These studies were conducted in China ($n = 15$), Italy ($n = 8$), United States ($n = 6$), United Kingdom ($n = 6$), Spain ($n = 5$), India ($n = 4$), France ($n = 3$), Turkey ($n = 2$), Brazil ($n = 2$), Japan ($n = 2$), Colombia ($n = 1$), Philippines ($n = 1$),...
Table 1 Summary of the characteristics of the included studies with evidence on colorectal cancer and SARS-CoV-2 (n = 69 studies), 2020–2021

Author, year, study location	Study design, setting	Age (years)*	Male, n (%)	Ethnicityb	CRC diagnosed through	Number of patients (n = 98,131)	Number of SARS-CoV-2 patients with CRC (%) [n = 3362, 3.43%]	Source of SARS-CoV-2 infection	CRC Staging	Treatment, n	Symptoms from the tumor, n	Comorbidities, n	Admitted to ICU, n	Mechanical ventilation, n	ARDS, n	NOS score; and Treatment outcome					
Al-Shamsi et al. 2020 [23], United Arab Emirates	Prospective, cohort, single centre	51.6 (40–76)	1 (50)	2 Arabs	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	85	2	Community-acquired	2 Chemotherapies	Not reported	Not reported	1	0	0	(NOS, 7)	2 survived					
Aschele et al. 2021 [43], Italy	Retrospective, cohort, multicentre	68 (28–89)	Not reported	38 Whites, (Caucasians)	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	406	38	Community-acquired	28 Chemotherapies	Not reported	(NOS, 7)	Treatment outcome was not available									
Ayhan et al. 2021 [44], Turkey	Retrospective, cohort, single centre	61.0 (21–84)	Not available	11 Whites, (Caucasians)	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	84	11	Community-acquired	Stage I (n = 1) Stage II (n = 3) Stage III (n = 1) Stage IV (n = 6)	8 Chemotherapies	5 Targeted therapies	2 Immunotherapies	Not reported	3 Hypertension 5 Diabetes mellitus 2 Coronary artery disease 1 COPD 1 Chronic renal failure	Not reported	Not reported	Not reported	(NOS, 6)	Treatment outcome was not available		
Azhab 2020 [40], Iran	Retrospective, cohort, single centre	Not reported	72 Persians	Not reported	Not reported	279	72	Community-acquired	Stage II (n = 11) Stage III (n = 36) Stage IV (n = 25)	72 Chemotherapies	25 Monoclonal antibodies [CRC use (n = 9) and COVID-19 use (n = 16)]	Not reported	Not reported	Not reported	1	(NOS, 6)	71 survived 1 died				
Author, year, study location	Study design, setting	Age (years)a	Male, n (%)	Ethnicityb	CRC diagnosed through	Number of patients (n = 98,131)	Number of SARS-CoV-2 patients with CRC (%) [n = 3362, 3.43%]	Source of SARS-CoV-2 infection	CRC Staging	Treatment, n	Symptoms from the tumor, n	Comorbidities, n	Admitted to ICU, n	Mechanical ventilation, n	ARDS, n	NOS score; and Treatment outcome					
-----------------------------	----------------------	--------------	-------------	-----------	---------------------	-------------------------------	--------------------------------	---------------------------	-------------	----------------	-------------------------	-----------------	-----------------	-----------------------------	--------	--					
Berger et al. 2021 (25), Austria	Retrospective, cohort, single centre	Not reported	1 (100)	1 White (Caucasian)	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	23	1	Hospital-acquired	Not reported	1 Chemo-therapy	1 Targeted therapy	1 Immuno-therapy	No comorbidities	0	0	0	(NOS, 7)	1 survived			
Bernard et al. 2021 (8), France	Retrospective, cohort, multicentre	73 (64–82)	Not reported	Multi-ethnic	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	6201	518	Community-acquired	Not reported	Not reported	Not possible to extract	67	Not possible to extract	Not possible to extract	(NOS, 8)	376 survived 142 died					
Binet et al. 2021 (46), Belgium	Retrospective, case report, single centre	62	0.01	1 White (Caucasian)	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	1	1	Hospital-acquired	Stage IV (n = 1)	1 Colectomy	1 Abdominal pain	1 Nausea and vomiting	1 Hypertension	0	0	(NOS, 6)	1 died				
Calvo et al. 2021 (47), Spain	Retrospective, case-series, single centre	63.9±(10.2)	3 (60)	5 Whites (Caucasians)	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	653	5	Hospital-acquired	Stage IV (n = 3)	3 Chemo-therapies	2 Radio-therapies	3 Steroids	3 Antivirals	3 HCQ	3 Surgical resections	1 Immuno-therapies	Not possible to extract	Not possible to extract	Not possible to extract	(NOS, 6)	3 survived 2 died
COV-IDSurg Collaborative 2021 (9), 40 countries	Prospective, cohort, multicentre	< 50; n = 174, 50–69; n = 966, AND ≥ 70; n = 933	1236 (59.6)	Multi-ethnic	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	2073	78	Hospital-acquired	Stage I–II (n = 838)	38 Surgical resections	Not reported	Not possible to extract	Not possible to extract	Not possible to extract	(NOS, 7)	63 survived 15 died					
Author, year, study location	Study design, setting	Age (years)*	Male, n (%)	Ethnicityb	CRC diagnosed through	Number of patients (n = 98,131)	Number of SARS-CoV-2 patients with CRC (%) [n = 3362, 3.43%]	Source of SARS-CoV-2 infection	CRC Staging	Treatment, Symptoms from the tumor, n	Comorbidities, n	Admitted to ICU, n	Mechanical ventilation, n	ARDS, n	NOS score; and Treatment outcome						
----------------------------	----------------------	-------------	-------------	------------	-----------------------	-------------------------------	--------------------------------	---------------------------	-------------	---------------------------------	----------------	----------------	-----------------------------	--------	-----------------------------						
Cosma et al. 2020 [48], Italy	Retrospective, case report, single centre	Not reported	Not reported	1 White (Caucasian)	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	1	Community-acquired	Stage IV (n = 1)	Not reported	Not reported	No comorbidities	0	0	0	(NOS, 5)	1 survived					
Costanzo et al. 2020 [49], Italy	Retrospective, case report, single centre	62	0 (0)	1 White (Caucasian)	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	1	Hospital-acquired	Stage IV (n = 1)	1 Surgical resection	1 Chemo-therapy	1 Lymph node dissection	1 Haematochezia (blood per anus)	1 Anaemia (unexplained iron deficiency)	1 Blood per rectum	1 Weight loss	No comorbidities	0	0	0	(NOS, 6)	1 survived
Filipe et al. 2021 [36], The Netherlands	Retrospective, cohort, multi-centre	-	-	2 Whites (Caucasian)	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	21	Hospital-acquired	Stage III (n = 1) Stage IV (n = 1)	2 Chemo-therapies	2 Surgical resections	Not reported	Not reported	Not reported	Not reported	(NOS, 7)	1 survived	1 died				
Gao et al. 2020 [50], China	Retrospective, case report, single centre	69	0 (0)	1 Asian	Symptoms and exploratory laparotomy	1	Community-acquired	Not reported	1 Colectomy	1 Lymph node dissection	No comorbidities	0	0	0	(NOS, 7)	1 survived					
Author, year, study location	Study design, setting	Age (years)	Male, n (%)	Ethnicity	CRC diagnosed through	Number of patients (n = 98,131)	Number of SARS-CoV-2 patients with CRC (n = 3362, 3.43%)	Source of SARS-CoV-2 infection	CRC Staging	Treatment	Symptoms from the tumor, n	Comorbidities, n	Admitted to ICU, n	Mechanical ventilation, n	ARDS, n	NOS score; and Treatment outcome					
-----------------------------	----------------------	-------------	-------------	-----------	----------------------	-------------------------------	---------------------------------	--------------------------------	---------------	------------	--------------------------	----------------	----------------	-----------------------	--------	--					
Gladbev et al. 2021 [51], 55 countries	Prospective, cohort, multicentre	-	-	Multi-ethnic	Symptoms, endoscopy, radiological imaging, biopsies and tumor makers	2310	134	Hospital-acquired	Not reported	134 Surgical resections	Not reported	Not possible to extract	NOS, 7	Treatment outcome was not available							
Haque et al. 2021 [52], United Kingdom	Retrospective, case report, single centre	69	1 (100)	White (Caucasian)	Symptoms, CT and colonoscopy	1	1	Community-acquired	Not reported	1 RBC transfusions 1 Antibiotics 1 Tranexamic acid 1 Palliative haemostatic radiotherapy	1 Melena (black tarry stools) 1 Anaemia (unexplained iron deficiency)	1 Lynch Syndrome 1 Pancolectomy 1 Rectal anastomosis 1 Adenocarcinoma 1 Nephroureterectomy 1 Recurrent VTE	0	0	0	NOS, 7	1 survived				
Huang et al. 2020 [141], China	Retrospective, case report, single centre	48	1 (100)	Asian	Symptoms, and CT	1	1	Hospital-acquired	Stage III (n = 1)	1 Sigmoidectomy 1 Colonic decompresion report 1 Anostomosis 1 Ileostomy	1 Abdominal pain 1 Constipation	1 Hepatitis B virus	0	0	0	NOS, 6	1 survived				
Joharatnam-Hogan et al. 2020 [53], United Kingdom	Retrospective, cohort, multicentre	76 (72–77.5)	4 (80)	4 Whites (Caucasians) 1 Black	Symptoms, endoscopy, radiological imaging, biopsies and tumor makers	699	5	Hospital-acquired	Not reported	2 Chemotherapies 1 Colectomy 2 Surgical resections 1 Radiotherapy	3 Anaemia (unexplained iron deficiency)	Not reported	Not reported	Not reported	NOS, 6	5 survived					
Table 1 (continued)

Author, year, study location	Study design, setting	Number of patients (n = 98,131)	Number of SARS-CoV-2 patients with CRC (%) [n = 3362, 3.43%]	Number of SARS-CoV-2 patients with CRC (%)	Source of SARS-CoV-2 infection	CRC Staging	Treatment, n	Symptoms from the tumor, n	Comorbidities, n	Admitted to ICU, n	Mechanical ventilation, n	ARDS, n	NOS score; and Treatment outcome	
Johnson et al. 2020 [54], United States	Retrospective, case report, single centre	63	1 (100)	1	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	Hospital-acquired	Stage IV (n = 1)	1 Chemo-therapy 1 Hepatectomy	Not reported	1 Lynch syndrome 1 Colon, liver, and thyroid cancer 1 Hepatitis C virus	0	0	0 (NOS, 6)	1 survived
Karam et al. 2020 [55], Australia	Retrospective, case report, single centre	66	1 (100)	1 White (Caucasian)	Symptoms, and CT	Community-acquired	Not reported	1 Antibiotics 1 Surgical debridement 1 Colectomy	1 Haematochezia (blood per anus) 1 Anaemia (unexplained iron deficiency) 1 Change in bowel habits	0	0	0 (NOS, 6)	1 survived	
Khan et al. 2021 [27], United Kingdom	Retrospective, case-series, single centre	78	1 (100)	1 White (Caucasian)	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	Hospital-acquired	Stage IV (n = 1)	1 Conservative treatment	1 Abdominal pain 1 Change in bowel habits	1 Heart failure 1 Chronic kidney disease	1	1	1 (NOS, 6)	1 died
Kuryba et al. 2021 [56], United Kingdom	Retrospective, cohort, multi-centre	60–74: 43.03%; AND 50–69: 26.3%	54 (55.6)	Multi-ethnic	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	Hospital-acquired	Stage I (n = 30) And Stage ≥ II (n = 23)	83 Surgical resections 33 Colectomies 6 Hartmann’s procedure 5 Stomas 2 Stents	Not reported	Not reported	Not reported	Not reported	(NOS, 6)	Treatment outcome was not available
Table 1 (continued)

Author, year, study location	Study design, setting	Age (years)a	Male, n (%)	Ethnicityb	CRC diagnosed through	Number of patients (n = 98,131)	Number of SARS-CoV-2 patients with CRC (%) [n = 3362, 3.43%]	Source of SARS-CoV-2 infection	CRC Staging	Treatment, n	Symptoms from the tumor, n	Comorbidities, n	Admitted to ICU, n	Mechanical ventilation, n	ARDS, n	NOS score; and Treatment outcome
Kumar et al. 2020	Ambispective, cohort, single centre	Not reported	Not reported	10 Indians	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	107	10	Hospital-acquired	Not reported	(NOS, 6)	10 survived					
Larfors et al. 2021	Retrospective, cohort, multi-centre	Not reported	Not reported	Multi-ethnic	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	54,651	50	Hospital-acquired	Not reported	(NOS, 6)	50 died					
Liang et al. 2020	Prospective, cohort, multi-centre	67.5 (53.7–85)	4 (100)	4 Asians	Not reported	1590	4	Hospital-acquired	Not reported	Not reported	Not reported	1 Diabetes mellitus	2	Not reported	(NOS, 7)	2 survived 2 died
Liu et al. 2020	Retrospective, case-series, single centre	65.5 (54.5–73.0)	3 (60)	6 Asians	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	52	5	Hospital-acquired	Not reported	Not reported	5 Surgical resections 2 Sigmoidectomies 1 Colectomy 1 Hartmann's procedure	1 Abdominal pain 2 Diarrhoea 3 Hyper tension 1 Diabetes mellitus 1 Tuberculosis	1	1	(NOS, 6)	4 survived 1 died
Author, year, study location	Study design, setting	Age (years)	Male, n (%)	Ethnicity	CRC diagnosed through	Number of patients (CRC %)	Source of SARS-CoV-2 infection	CRC Staging	Treatment, n	Symptoms from the tumor, n	Comorbidities, n	Admitted to ICU, n	Mechanical ventilation, n	ARDS, n	NOS score; and Treatment outcome	
-----------------------------	-----------------------	-------------	-------------	-----------	----------------------	---------------------------	-----------------------------	------------	-------------	--------------------------	-----------------	----------------	--------------------------	---------	--------------------------------	
Liu et al. 2021 [58], China	Retrospective, cohort, single centre	> 65: n = 3; AND < 65: n = 2	3 (60)	5 Asians	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	189	Community-acquired	5	Not reported	5 Surgical resections 2 Chemotherapies 1 Targeted therapy	1 Abdominal pain 3 Change in bowel habits 1 Nausea and vomiting 2 Diarrhoea	1	1	1	(NOS, 6)	4 survived 1 died
Liu et al. 2021 [17], China	Retrospective, cohort, multicentre	65.06 ± (11.51)	23 (63.9)	36 Asians	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	81	Community-acquired	36	21 Conservative treatment 4 Chemotherapies 4 Surgeries 32 Antivirals 28 Antibiotics 16 Steroids 10 IgG	7 Change in bowel habits 9 Diarrhoea	9 Diabetes mellitus 18 Hypertension 3 Cardiovascular disease 4 Cerebrovascular disease 3 COPD	6	5	8	(NOS, 6)	34 survived 2 died
Liu et al. 2021 [58], China	Retrospective, case-series, single centre	> 65: n = 3; AND < 65: n = 2	3 (60)	5 Asians	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	135	Community-acquired	5	Not reported	4 Antibiotics 3 Antivirals 3 Immunomodulator 4 Systemic glucocorticoids	1 Diabetes mellitus 1 Hypertension 1 Coronary heart disease 1 Renal disease	1	1	1	(NOS, 8)	4 survived 1 died
Ma et al. 2020 [11], China	Retrospective, cohort, single centre	62 (59–70)	6 (54.5)	11 Asians	Not available	1380	Not reported	11	4 Surgery 3 Radio-therapies 7 Chemotherapies 2 Targeted therapies 2 Immuno-therapies	2 Haematoma (blood per anus) 3 Diahoea	3 Diabetes mellitus 2 Hypertension 1 COPD	4	4	4	(NOS, 7)	7 survived 4 died
Table 1 (continued)

Author, year, study location	Study design, setting	Age (years)*	Male, n (%)	Ethnicityb	CRC diagnosed through	Number of SARS-CoV-2 patients with CRC (%)	Number of SARS-CoV-2 infection	CRC Staging	Treatment, n	Symptoms from the tumor, n	Comorbidities, n	Admitted to ICU, n	Mechanical ventilation, n	ARDS, n	NOS score; and Treatment outcome						
Manlubatan et al. 2021 [59], Philippines	Retrospective, case report, single centre	75	1 (100)	1 Asian	Symptoms, and CT	1	1 Community-acquired	Stage IV (n = 1)	1 Abdominal notransanal resection	1 Total mesorectal excision	1 Inter-sphincteric resection	1 Stoma was created	1 Haematochezia (blood per anus)	1 Melena (black tarry stools)	1 Change in bowel habits	1 Blood per rectum	0	0	0	(NOS, 6)	1 died
Mansi et al. 2021 [29], France	Prospective, cohort, multi-centre	70.5 (69–70.5)	1 (50)	2 Whites (Caucasians)	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	28	2 Community-acquired	Stage III (n = 1) Stage IV (n = 1)	2 Chemo-therapies	1 Monoclonal antibody: [CRC use (n = 1)]	Not reported	1 Dyslipidemia	1	1	1	(NOS, 7)	1 survived	1 died			
Martín-Bravo et al. 2021 [60], Spain	Retrospective, cohort, multi-centre	64 (52–64)	1 (50)	2 Whites (Caucasians)	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	673	2 Hospital-acquired	Stage IV (n = 2)	2 Chemo-therapies 2 Surgical resections	2 Palliative treatments 1 Immunotherapy 1 Targeted therapy 1 Radiotherapy	Not reported	No comorbidities	1	1	1	(NOS, 6)	1 survived	1 died			
Table 1 (continued)

Author, year, study location	Study design, setting	Age (years)\(^a\)	Male, n (%)	Ethnicity\(^b\)	CRC diagnosed through	Number of patients \((n=98,131)\)	Number of SARS-CoV-2 patients with CRC \((n=3362, 3.43\%)\)	Source of SARS-CoV-2 infection	CRC Staging	Treatment, n	Symptoms from the tumor, n	Comorbidities, n	Admitted to ICU, n	Mechanical ventilation, n	ARDS, n	NOS score; and Treatment outcome	
Martínez et al. 2021 [61], Spain	Retrospective, cohort, single centre	77 (57-80)	2 (66.7)	Whites (Caucasians)	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	32	3	Hospital-acquired	Stage III \((n=3)\)	1 Sigmoidectomy 1 Hartmann procedure 1 Colostomy 1 Laparoscopic approach 1 Stoma creation	1 Melena (black tarry stools) 1 Diarrhoea	1 Diabetes mellitus 1 Hypertension 1 COPD	0	0	0 (NOS, 7)	3 survived	
Martínez-Mardones et al. 2021 [30], Chile	Retrospective, case-series, single centre	72	1 (100)	Hispanic	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	16	1	Hospital-acquired	Stage IV \((n=1)\)	Not reported (NOS, 5)	1 survived						
McCarty et al. 2020 [12], 2 countries	Retrospective, cohort, multi-centre	80 (71.5–86.5)	-	Multi-ethnic	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	Not reported	1564	Community-acquired	Not reported (NOS, 6)	1139 survived 425 died							
Mehta et al. 2020 [62], United States	Retrospective, cohort, single centre	50–60: n = 1; 60–70: n = 3; 70–80: n = 1; 80–90: n = 2	6 (85.7)	Multi-ethnic	Not reported	218	21	Community-acquired	Not reported	Not reported	Not reported	Not reported	2 Morbid obesity 2 Congestive heart failure 2 Hypertension 1 Diabetes mellitus 1 Coronary artery disease 1 Chronic kidney disease 1 Hepatitis C virus 1 COPD 1 Malabsorption	5	5	7 (NOS, 6)	13 survived 8 died
Author, year, study location	Study design, setting	Age (years)	Male, n (%)	Ethnicity	CRC diagnosed through	Number of patients (n = 98,131)	Number of SARS-CoV-2 patients with CRC (%) [n = 3362, 3.43%]	Source of SARS-CoV-2 infection	CRC Staging	Treatment, n	Symptoms from the tumor, n	Comorbidities	Admitted to ICU, n	Mechanical ventilation, n	ARDS, n	NOS score; and Treatment outcome	
----------------------------	----------------------	------------	-------------	-----------	-----------------------	--------------------------------	--------------------------------	-----------------------------	-------------	----------------	------------------	---------------	----------------	------------------	--------	--------------------------------	
Miyashita et al. 2020 [63], United States	Retrospective, cohort, single centre	Not reported	Not reported	Multi-ethnic	Not reported	334	Not reported	Community-acquired	Not reported	Not reported	Not possible to extract	(NOS, 7)	Treatment outcome was not available				
Montopoli et al. 2020 [64], Italy	Retrospective, cohort, multi-centre	Not reported	Not reported	Multi-ethnic	Not reported	9280	Not reported	Community-acquired	Not reported	Not reported	Not possible to extract	(NOS, 7)	Treatment outcome was not available				
Nagarkar et al. 2021 [65], India	Retrospective, cohort, single centre	Not reported	Not reported	Indians	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	458	Not reported	Community-acquired 7 Hospital-acquired	Not reported	Not reported	Not possible to extract	(NOS, 6)	Treatment outcome was not available				
Nakanura et al. 2021 [31], Japan	Retrospective, cohort, single centre	70.5 (54–70.5)	1 (50)	Asian	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	32	Not reported	Hospital-acquired	Stage IV (n = 1)	2 Antivirals 2 Steroids 2 Surgical resections	Not reported	2 Hypertension 1 Coronary heart disease 1 Diabetes mellitus 1 Asthma	1	1	1	(NOS, 6)	1 survived 1 died
Ospina et al. 2021 [13], Colombia	Ambispective, cohort, multi-centre	50–60: 23.34%; 61–70: 22.24%; AND > 70: 27.22%	Not reported	Hispanics	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	742	Not reported	Community-acquired	Stage I (n = 3) Stage II (n = 2) Stage III (n = 10) Stage IV (n = 24)	Not possible to extract	Not reported	Not reported	19	Not reported	(NOS, 6)	64 survived 28 died	
Ottaiano et al. 2021 [32], Italy	Retrospective, case reports, single centre	60 (58–60)	2 (66.7)	Whites (Caucasians)	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	3	Not reported	Hospital-acquired	Stage III (n = 2) Stage IV (n = 1)	3 Chemotherapies 3 Colectomies 1 Monoclonal antibody: [CRC use (n = 1)]	Not reported	1 Peritoneal disease 1 Lung disease	0	0	0	(NOS, 6)	3 survived
Table 1 (continued)

Author et al.	Study design, setting	Age (years)	Male, n (%)	Ethnicity	CRC diagnosed through	Number of SARS-CoV-2 patients with CRC (%)	Source of SARS-CoV-2 infection	CRC Staging	Treatment, n	Symptoms from the tumor, n	Comorbidities, n	Admitted to ICU, n	Mechanical ventilation, n	ARDS, n	NOS score; and Treatment outcome	
Özdemir et al., 2021	Ambispective, cohort, multicentre	61 (19-94)	771 (50.6)	165 Whites (Caucasian)	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	15.25	Community-acquired	Not reported	Not possible to extract	Not reported	Not possible to extract	Not possible to extract	Not possible to extract	(NOS, 6)	155 survived 10 died	
Pawar et al., 2020	Retrospective, case report, single centre	28	0 (0)	1 Indian	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	1	Community-acquired	Not reported	1 Laparoscopic anterior resection	1 Blood per rectum	0	0	(NOS, 5)	1 survived		
Pertile et al., 2021	Retrospective, case-series, single centre	76	1 (100)	1 White (Caucasian)	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	25	Community-acquired	Stage IV (n = 1)	1 RBC transfusions	1 Anaemia (unexplained iron deficiency)	1 Chronic renal failure	1 Bilateral ureteral stenting	1 Hypertension	1 Paroxysmal atrial fibrillation	(NOS, 6)	1 died
Pordány et al., 2020	Retrospective, case report, single centre	75	0 (0)	1 White (Caucasian)	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	1	Community-acquired	Stage IV (n = 1)	1 Decolletotomy	1 Cardiac arrest	1	1	(NOS, 5)	1 survived		
Table 1 (continued)

Author, year, study location	Study design, setting	Age (years)a	Male, n (%)	Ethnicityb	CRC diagnosed through	Number of patients (n = 98,131)	Number of SARS-CoV-2 patients with CRC (%) [n = 3362, 3.43%]	Source of SARS-CoV-2 infection	CRC Staging	Treatment	Symptoms from the tumor, n	Comorbidities, n	Admitted to ICU, n	Mechanical ventilation, n	ARDS, n	NOS score; and Treatment outcome	
Qua-quarini et al. 2020 [34], Italy	Retrospective, cohort, single centre	60	1 (100)	1 White (Caucasian)	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	7	Community-acquired	Stage IV (n = 1)	1 Chemotherapy	Not reported	1 Hypertension	Not reported	Not reported	Not reported	(NOS, 7)	Treatment outcome was not available	
Robilotti et al. 2020 [69], United States	Retrospective, cohort, single centre	Most patients were adults over the age of 60 years	Not reported	Not reported	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	2035	Hospital-acquired	Not reported	Not possible to extract	Not reported	Not possible to extract	Not possible to extract	Not possible to extract	Not reported	(NOS, 8)	Treatment outcome was not available	
Ruiz-Garcia et al. 2021 [70], Mexico	Prospective, cohort, multicenter	Not reported	Not reported	56 Hispanics	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	599	Community-acquired	Not reported	Not possible to extract	Not reported	Not possible to extract	Not possible to extract	Not possible to extract	Not reported	(NOS, 6)	Treatment outcome was not available	
Serrano et al. 2020 [71], Spain	Retrospective, case report, single centre	78	1 (100)	1 White (Caucasian)	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	1	Community-acquired	Not reported	1 Antivirals	1 HCQ	1 Interferon beta-1b	Not reported	1 Hypertension	0	0	(NOS, 6)	1 survived
Sobrado et al. 2021 [72], Brazil	Retrospective, cross-sectional, single centre	72 (67–72)	3 (60)	5 Hispanics	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	103	Hospital-acquired	Stage III (n = 2) Stage IV (n = 3)	4 Surgical resections 2 Colectomies 1 Adrenalectomy 1 Colostomy closure 1 Hartmann’s procedure reversal	1 Abdominal pain 1 Change in bowel habits	2 Diabetes mellitus 1 Hypertension 1 Mesenteric ischemia 1 Pulmonary embolism	3	3	3	(NOS, 6)	2 survived 3 died	
Table 1 (continued)

Author, year, study location	Study design, setting	Age (years)*	Male, n (%)	Ethnicity*	CRC diagnosed through	Number of patients (n = 98,131)	Number of SARS-CoV-2 patients with CRC (%) (n = 3362, 3.43%)	Source of SARS-CoV-2 infection	CRC Staging	Treatment, n	Symptoms from the tumor, n	Comorbidities, n	Admitted to ICU, n	Mechanical ventilation, n	ARDS, n	NOS score; and Treatment outcome	
Sorrentino et al. 2020 [73], Italy	Retrospective, cohort, multi-centre	Not reported	Not reported	3 Whites (Caucasians)	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	Not reported	Not reported	Hospital-acquired	Not reported	(NOS, 6) 2 survived 1 died							
Sukumar et al. 2020 [74], India	Prospective, cohort, single centre	Not reported	63 (70)	1 Indian	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	90	1	Hospital-acquired	Stage II (n = 1)	1 Surgical resection	Not reported	1 Diabetes mellitus	0	0	0	(NOS, 6) 1 survived	
Tateno et al. 2021 [75], Japan	Retrospective, case report, single centre	63	1 (100)	1 Asian	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	1	1	Community-acquired	Stage III (n = 1)	1 Colostomy	1 Antibiotics	1 Antivirals	1 Diabetes mellitus	0	0	0	(NOS, 6) 1 survived
Taya et al. 2021 [76], United States	Retrospective, cross-sectional, single centre	63 (63–68)	3 (30)	7 Whites (Caucasians) 3 Blacks	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	745	10	Community-acquired	Not reported	(NOS, 6) Treatment outcome was not available							
Tejedor et al. 2021 [77], Spain	Prospective, cohort, multi-centre	76.5 (69–76.5)	3 (100)	3 Whites (Caucasians)	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	301	3	Hospital-acquired	Stage III (n = 2) Stage IV (n = 1)	1 Chemotherapy 1 Surgical resection 1 Sigmoidectomy	1 Colostomy	1 Diabetes mellitus	2	0	1	(NOS, 6) 2 survived 1 died	
Table 1 (continued)

Author, year, study location	Study design, setting	Age (years)a	Male, n (%)	Ethnicityb	CRC diagnosed through	Number of patients \((n = 98,131) \)	Number of SARS-CoV-2 patients with CRC (%) \[\(n = 3362, 3.43\% \) \]	Source of SARS-CoV-2 infection	CRC Staging	Treatment, n	Symptoms from the tumor, n	Comorbidities, n	Admitted to ICU, n	Mechanical ventilation, n	ARDS, n	NOS score; and Treatment outcome			
Tolley et al. 2020 [35], United Kingdom	Retrospective, case-series, single centre	67.5 (55–84)	2 (66.7)	3 Whites (Caucasians)	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	21	3	Hospital-acquired	Stage III \((n = 2) \) Stage IV \((n = 1) \)	3 Surgeries	Not reported	(NOS, 6) 2 survived 1 died							
Tolley et al. 2020 [78], United Kingdom	Retrospective, case-series, single centre	Not reported	Not reported	Not reported	Not reported	21	3	Hospital-acquired	Not reported	(NOS, 6) 2 survived 1 died									
Tuech et al. 2021 [79], France	Retrospective, cohort, multi-centre	Not reported	Not reported	Not reported	Not reported	461	6	Hospital-acquired	Not reported	(NOS, 6) 6 survived									
Vicente et al. 2021 [80], Brazil	Retrospective, cohort, single centre	64.4 (62–64)	1 (50)	2 Hispanics	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	41	2	Hospital-acquired	Stage III \((n = 2) \)	2 Sigmoidectomies 1 Chemotherapy 1 Radiotherapy 1 Ileostomy	Not reported	3 Hypertension 2 Diabetes mellitus 1 COPD 1 Chronic kidney disease	0	0	0	(NOS, 6) 2 survived			
Wang et al. 2021 [81], United States	Retrospective, case-control, multi-centre	Not reported	Not reported	Multi-ethnic	Not reported	1200	60	Community-acquired	Not reported	Not reported	Not reported	Not possible to extract	(NOS, 8) Treatment outcome was not available						
Wang et al. 2020 [15], China	Retrospective, cohort, multi-centre	63.5 (55–70)	26 (76.5)	34 Asians	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	283	34	Community-acquired	Most patients were stage I \((n = 20) \)	Not possible to extract	11 Change in bowel habits 7 Nausea and vomiting 6 Diarrhoea	Not possible to extract	(NOS, 5) 20 survived 14 died						
Author, year, study location	Study design, setting	Age (years)a	Male, n (%)	Ethnicityb	CRC diagnosed through	Number of SARS-CoV-2 patients with CRC (%) [n = 3362, 3.43%]	Source of SARS-CoV-2 infection	CRC Staging	Treatment, n	Symptoms from the tumor, n	Comorbidities, n	Admitted to ICU, n	Mechanical ventilation, n	ARDS, n	NOS score; and Treatment outcome				
-----------------------------	----------------------	-------------	-------------	------------	-----------------------	---------------------------------	------------------	-------------	----------------	-----------------	----------------	-------------------	-------------	----------------	------------------				
Woźniak et al. 2021 [82], Poland	Retrospective, case report, single centre	56	1 (100)	1 White (Caucasian)	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	1	Community-acquired	Stage IV (n = 1)	1 Chemo-therapy	1 Anaemia (unexplained iron deficiency)	1 Coronary heart disease	0	0	0	(NOS, 6)	1 survived			
Wu et al. 2020 [36], China	Retrospective, case-series, multicenter	29	0 (0)	1 Asian	Symptoms, endoscopy, radiological imaging, biopsies, and tumor markers	11	Hospital-acquired	Stage IV (n = 1)	1 Surgery	1 Chemo-therapy	1 Coronary artery ango-plasty	1	1	0	(NOS, 6)	1 died			
Yang et al. 2020 [16], China	Retrospective, cohort, multicenter	63 (56–70)	Not reported	28 Asians	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	205	Community-acquired	Stage I-III (n = 20)	Stage III-IV (n = 6)	Not possible to extract	1 Hypertension	11	2	2	(NOS, 8)	22 survived 6 died			
Yang et al. 2020 [83], China	Retrospective, cohort, single centre	Not reported	Not reported	11	Not reported	Not reported	Not reported	Not possible to extract	Not possible to extract	Not possible to extract	2	2	2	(NOS, 6)	11 survived 2 died				
Author, year, study location	Study design, setting	Age (years)\(^a\)	Male, n (%	Ethnicity\(^b\)	CRC diagnosed through	Number of patients (n = 98,131)	Number of SARS-CoV-2 patients with CRC (%) [n = 3,362, 3.43%]	Source of SARS-CoV-2 infection	CRC Staging	Treatment, n	Symptoms from the tumor, n	Comorbidities, n	Admitted to ICU, n	Mechanical ventilation, n	ARDS, n	NOS score; and Treatment outcome			
-----------------------------	---------------------	------------------	-----------------	-----------------	-------------------	------------------	-----------------------------	-----------------	-----------------	-----------------------	-----------------	-----------------	-----------------------------	--------	-----------------------------				
Ye et al. 2020 [84], China	Retrospective, case report, single centre	62	1 (100)	1 Asians	Symptoms, endoscopy, and radiological imaging	1	Hospital-acquired	Not reported	Not reported	1 Colectomy	1 Antibiotics	1 Antivirals	1 Antifungals	1 survived					
Yu et al. 2020 [83], China	Retrospective, cohort, single centre	66 (48–78)	2 (100)	2 Asians	Not reported	1524	Hospital-acquired	Not reported	Not reported	1 Best supportive care	1 Newely diagnosed; treatment yet to commence	2 survived							
Zhang et al. 2020 [85], China	Retrospective, cohort, multicentre	77.5 (75–77.5)	2 (100)	2 Asians	Symptoms, endoscopy, radiological imaging, biopsies and tumor markers	1276	Hospital-acquired	Not reported	Not reported	2 Antivirals	2 Antibiotics	1 Surgical operation	1 Chemotherapy	1 Steroids	1 Diarrhoea	1 Hypertension	1 Coronary heart disease	1 COPD	1 survived

ARDS Acute respiratory distress syndrome, COPD Chronic obstructive pulmonary disease, CRC Colorectal carcinoma, CT Computerized tomography, HCQ Hydroxychloroquine, ICU Intensive care unit, IgG Immunoglobulin G, IV Intravenous, NOS Newcastle ottawa scale, IBC Red blood cell, SARS-CoV-2 severe acute respiratory syndrome coronavirus 2, VTE Venous thromboembolism

\(^a\) Data are presented as median (25th–75th percentiles), or mean ± (SD)

\(^b\) Patients with black ethnicity include African-American, Black African, African and Afro-Caribbean patients
Poland (n = 1), Iran (n = 1), The Netherlands (n = 1), Belgium (n = 1), United Arab Emirates (n = 1), Mexico (n = 1), Sweden (n = 1), Austria (n = 1), Hungary (n = 1), Australia (n = 1), and Chile (n = 1). Few studies were made within multi-countries (n = 3) [9, 12, 51]. The majority of the studies were single centre [11, 16, 23, 25, 27, 28, 30–35, 44–50, 52, 54, 55, 58, 59, 61–63, 65–69, 71, 72, 74–76, 78, 80, 82–84] and only 25 studies were multi-centre [8 –10, 12–17, 26, 29, 36, 43, 51, 53, 56, 57, 60, 64, 70, 73, 77, 79, 81, 85]. The median NOS score for these studies was 6 (range, 5–7). Among the 69 included studies, 64 studies were moderate-quality studies (i.e., NOS scores were between 5 and 7) and 5 studies demonstrated a relatively high quality (i.e., NOS scores >7); Table 1.

Meta-analysis of SARS-CoV-2 infection in patients with CRC

The overall pooled proportions of CRC patients who had laboratory-confirmed community-acquired and hospital-acquired SARS-CoV-2 infections were 8.1% (95% CI 6.1 to 10.1, n = 1308, 24 studies, I² 98%, p = 0.66), and 1.5% (95% CI 1.1 to 1.9, n = 472, 27 studies, I² 94%, p < 0.01), respectively; (Fig. 3, Fig. 4).

In community-acquired infected SARS-CoV-2 patients, subgroup analysis showed some difference in the rates between all patients (Asia, Europe and America groups) [8, 11, 13–17, 23, 28, 29, 33, 34, 43–45, 58, 62–65, 70, 76, 81, 86]; and the Asia group [(9.1% (95% CI 6.1 to 12.2, n = 252, 10 studies, I² = 97%)] [11, 15–17, 23, 28, 45, 58, 65, 86]; Europe group [(7.7% (95% CI 3.9 to 11.4, n = 801, 8 studies, I² = 99%)]) [8, 14, 29, 33, 34, 43, 44, 64]; and
America group [7.0% (95% CI 3.2 to 10.7, n = 229, 6 studies, $I^2 = 96\%$)] [13, 62, 63, 70, 76, 81], respectively; Fig. 3. In the hospital-acquired SARS-CoV-2 infected patients, subgroup analysis showed a significant difference in the rates between all patients (Europe, multi-countries, Asia and America) [9, 10, 25–28, 30, 31, 35, 36, 47, 51, 53, 56, 57, 60, 61, 65, 68, 69, 72, 74, 77, 79, 80, 83, 85]; and Europe only patients [1.1% (95% CI 0.5 to 1.6, 10 studies, $I^2 = 99\%$)] [9, 10, 30, 31, 35, 36, 47, 51, 53, 56, 57, 60, 61, 65, 68, 69, 72, 74, 77, 79, 80, 83, 85].
Fig. 4 Pooled estimate for the prevalence of hospital-acquired COVID-19 infection in colorectal cancer patients stratified by the study location type.
Demographic and clinical characteristics of CRC patients with SARS-CoV-2 infection

The included studies had a total of 3362 CRC patients with confirmed SARS-CoV-2 infection as detailed in Table 1. Amongst these 3362 patients, all patients were adults. The median patient age ranged from 51.6 years to 80 years across studies. There was an increased male predominance in CRC patients diagnosed with SARS-CoV-2 in most of the studies \(n = 2243, 66.7\% \) \[9, 11, 14, 16, 17, 25, 27, 28, 30, 32–35, 47, 52–59, 61, 62, 71, 72, 74, 75, 77, 81–85\] and majority of the patients belonged to White (Caucasian) \(n = 262, 7.8\% \), Hispanic \(n = 156, 4.6\% \) and Asian \(n = 153, 4.5\% \) ethnicity \[11, 13–17, 25–34, 36, 43, 44, 46–50, 52–55, 57–61, 67, 70–73, 75–78, 80, 81, 83–85\]. Most patients were diagnosed for CRC through symptoms, endoscopy, radiological imaging, biopsies and tumor markers \[8–10, 12–14, 16, 17, 23, 25–36, 43, 44, 46–56, 58–61, 65–77, 80, 81–85\]. The main source of SARS-CoV-2 infection in CRC patients was community-acquired \(n = 2882, 85.7\% ; p = 0.014 \) \[8, 11–17, 23, 28, 29, 33, 34, 43–45, 48, 50, 52, 55, 58, 59, 62–67, 70, 71, 75, 76, 81–83\]. Most of those SARS-CoV-2 patients had stage III CRC \(n = 725, 21.6\% ; p = 0.036 \) \[9, 13, 17, 35, 45, 72, 83\]; and were treated mainly with surgical resections \(n = 304, 9\% \) and chemotherapies \(n = 187, 5.6\% ; p = 0.008 \) \[9–11, 16, 17, 23, 25, 26, 28, 29, 31–36, 43–45, 47, 49, 51, 53, 54, 56–58, 60, 61, 68, 72, 74, 77, 80, 82, 85\]. The most common tumor symptoms patients experienced were change in bowel habits \(n = 26, 0.8\% \), diarrhoea \(n = 25, 0.7\% \), abdominal pain \(n = 23, 0.7\% \), and nausea and vomiting \(n = 21, 0.6\% ; p = 0.048 \) \[9, 16, 17, 27, 46, 50, 55, 58, 61, 70, 72, 81\]. Many of the CRC patients infected with COVID-19 had pre-existing hypertension \(n = 68, 2\% \) and/or diabetes mellitus \(n = 49, 1.4\% ; p = 0.027 \) \[9, 11, 17, 28, 31, 33, 34, 44, 46, 55, 57, 58, 61, 62, 71, 72, 74, 75, 77, 79, 80, 83, 85\].

Patient treatment outcome and predictors of mortality

Patients were stratified based on treatment outcome (mortality or survival). A summary of the demographic, source of SARS-CoV-2 infection, CRC staging, treatment received, symptoms of tumor, comorbidities and medical complications with regards to final treatment outcome in 2787 patients who had either survived \(n = 2056 \) or died \(n = 731 \) is shown in Table 2.

Those patients who died were more likely to have been older in age \((\geq 60 \text{ years old}) \; 90.8\% \text{ vs } 0.7\% ; p = 0.000 \); and more likely to be men \(\text{[male gender: } 6.8\% \text{ vs } 2.3\%; p = 0.000 \]. Majority of patients who died had an Asian \(n = 37, 5.1\% \) and Hispanic ethnicity \(n = 31, 4.2\%; p = 0.011 \). CRC patients who transmitted SARS-CoV-2 from the community had a higher mortality compared to those patients who acquired the SARS-CoV-2 infection from a hospital source \((88.5\% \text{ vs } 11.5\%; p = 0.014 \). As expected with the CRC staging, patients with advanced stage had a high mortality \((\text{death in stage IV CRC patients occurred in } n = 61 \text{ (8.3\%)}, p = 0.036 \). CRC patients infected with SARS-CoV-2 who received chemotherapy had about two-fold increased risk of mortality compared to CRC patients with SARS-CoV-2 who had surgical resections \((39 \text{ (5.3\%) vs } 21 \text{ (2.9\%); } p = 0.008 \). The most common tumor symptoms in CRC patients with SARS-CoV-2 infection in whom mortality was reported were the change in bowel habits \(n = 7, 0.9\% \) and diarrhoea \(n = 5, 0.7\% ; p = 0.048 \). Patients with a pre-existing diabetes mellitus \(n = 19, 2.6\% \) and hypertension \(n = 14, 1.9\% \) had the highest mortality rate compared to other comorbidities \(p = 0.027 \). Mortality rate was significantly very high in CRC patients infected with SARS-CoV-2 who were admitted to the intensive care unit \((0.3\% \text{ vs } 13.1\%; p = 0.000 \), placed on mechanical ventilation \((0.1\% \text{ vs } 6.4\%; p = 0.000 \) and/or suffered acute respiratory distress syndrome \(0.05\% \text{ vs } 4\%; p = 0.000 \).

Potential determining variables associated in survival and death groups were analysed through binary logistic regression analysis and shown in Fig. 5, Fig. 6, Fig. 7, Fig. 8 and Fig. 9. As expected, old age \((\geq 60 \text{ years old}) \) \((OR 1.96, 95\% \text{ CI } 0.94–0.96; p < 0.001 \), male gender \((OR 1.44, 95\% \text{ CI } 0.41–0.47; p < 0.001 \), CRC patients infected with SARS-CoV-2 who came from Asia \((OR 1.16, 95\% \text{ CI } 0.36–0.44; p < 0.001 \), or transmitted the SARS-CoV-2 viral infection from a hospital source \((0.59, 95\% \text{ CI } 0.13–0.25; p < 0.001 \) are associated with increased odd ratio for death; Fig. 5. Among the CRC staging groups, patients who were infected with SARS-CoV-2 and presented with CRC stage III \((OR 1.54, 95\% \text{ CI } 0.02–1.05; p = 0.008 \) and stage IV \((OR 1.69, 95\% \text{ CI } 0.17–1.2; p = 0.009 \) had a high OR of death; Fig. 6. The odd ratios of death were also high in CRC patients infected with SARS-CoV-2 who had chemotherapy \((OR 1.35, 95\% \text{ CI } 0.5–0.66; p = 0.023 \) and surgical resections \((OR 1.4, 95\% \text{ CI } 0.8–0.73; p = 0.016 \); Fig. 6. Other predictors for increased risk of succumbing included admission to intensive care unit \((OR 1.88, 95\% \text{ CI } 0.85–1.12; p < 0.001 \), intubation and placing on mechanical ventilation \((OR 0.99, 95\% \text{ CI } 0.87–1.11; p < 0.001 \), and suffering from acute respiratory distress syndrome \((OR 0.63, 95\% \text{ CI } 0.23–1.1; p < 0.001 \); Fig. 9.
Table 2
Demographic data of the SARS-CoV-2 patients with colorectal cancer, stratified by treatment outcome ($n=69$ studies), 2020–2021

Variable	Findingsb	All ($n=3362$)	Survived ($n=2056$)	Died ($n=731$)	p-valuec
Age (years)					
< 60		126 (3.7)	1990 (86.8)	5 (0.7)	0.000*
≥ 60		1126 (33.5)	106 (5.1)	664 (90.8)	
Gender					
Female		236 (7.0)	151 (7.3)	17 (2.3)	0.000*
Male		2243 (66.7)	58 (2.8)	50 (6.8)	
Ethnicity					
White (Caucasian)		262 (7.8)	185 (9)	20 (2.7)	0.011*
Hispanic		156 (4.6)	69 (3.3)	31 (4.2)	
Asian		153 (4.5)	117 (5.7)	37 (5.1)	
Persian		72 (2.1)	71 (3.4)	1 (0.1)	
Indian		65 (1.9)	12 (0.6)	0	
Blacka		4 (0.12)	1 (0.05)	0	
Arab		2 (0.06)	2 (0.1)	0	
Source of SARS-CoV-2 infection					
Community-acquired		2882 (85.7)	1932 (94)	647 (88.5)	0.014*
Hospital-acquired		480 (14.3)	124 (6)	84 (11.5)	
Colorectal cancer staging					
Stage I		524 (15.6)	134 (6.5)	4 (0.5)	0.036*
Stage II		507 (15.1)	51 (2.5)	2 (0.2)	
Stage III		725 (21.6)	66 (3.2)	17 (2.3)	
Stage IV		227 (6.7)	39 (1.9)	61 (8.3)	
Treatment					
Surgical resections		304 (9.0)	53 (2.6)	21 (2.9)	0.008*
Chemotherapies		187 (5.6)	111 (5.4)	39 (5.3)	
Antibiotics		53 (1.6)	46 (2.2)	7 (0.9)	
Antivirals		49 (1.4)	54 (2.6)	5 (0.7)	
Colectomies		46 (1.4)	12 (0.6)	2 (0.3)	
Monoclonal antibodies		43 (1.3)	26 (1.3)	1 (0.1)	
Steroids		29 (0.9)	21 (1)	4 (0.5)	
Surgeries (nonspecific)		24 (0.7)	19 (0.9)	3 (0.4)	
Conservative (no treatment)		22 (0.6)	19 (0.9)	3 (0.4)	
Targeted therapies		20 (0.6)	3 (0.1)	2 (0.3)	
Immunotherapies		17 (0.5)	8 (0.4)	3 (0.4)	
Radiotherapy		12 (0.3)	10 (0.5)	2 (0.3)	
Stoma creation		10 (0.3)	2 (0.1)	1 (0.1)	
Immunoglobulin G		10 (0.3)	8 (0.4)	2 (0.3)	
Hartmann’s procedure		9 (0.3)	2 (0.1)	1 (0.1)	
Sigmoidectomies		8 (0.2)	7 (0.3)	1 (0.1)	
Hydroxychloroquine		6 (0.2)	5 (0.2)	1 (0.1)	
Palliative treatment		5 (0.2)	4 (0.2)	1 (0.1)	
Red blood cell transfusion		3 (0.1)	2 (0.1)	1 (0.1)	
Ileostomy		3 (0.1)	3 (0.1)	0	
Colostomy		3 (0.1)	3 (0.1)	0	
Hormones		3 (0.1)	–	–	
Stoma closure		2 (0.06)	2 (0.1)	0	
Stents		2 (0.06)	–	–	
Anastomosis		2 (0.06)	2 (0.1)	0	
Variable	Findings^b				
---	-----------------------				
Antifungals	1 (0.02) 1 (0.05) 0				
Tranexamic acid	1 (0.02) 1 (0.05) 0				
Interferon beta-1b	1 (0.02) 1 (0.05) 0				
Colonic decompression	1 (0.02) 1 (0.05) 0				
Symptoms from the tumor					
Change in bowel habits	26 (0.8) 10 (0.5) 7 (0.9) 0.048[*]				
Diarrhoea	25 (0.7) 18 (0.9) 5 (0.7)				
Abdominal pain	23 (0.7) 5 (0.2) 2 (0.3)				
Nausea and vomiting	21 (0.6) 6 (0.3) 4 (0.5)				
Anaemia (unexplained iron deficiency)	8 (0.2) 7 (0.3) 1 (0.1)				
Haematochezia (blood per anus)	6 (0.2) 5 (0.2) 1 (0.1)				
Weight loss	5 (0.05) 4 (0.2) 1 (0.1)				
Blood per rectum	4 (0.1) 2 (0.1) 2 (0.2)				
Melena (black tarry stools)	3 (0.1) 2 (0.1) 1 (0.1)				
Constipation	1 (0.03) 1 (0.05) 0				
Comorbidities					
Hypertension	68 (2) 51 (2.5) 14 (1.9) 0.027[*]				
Diabetes mellitus	49 (1.4) 25 (1.2) 19 (2.6)				
COPD	11 (0.3) 5 (0.2) 3 (0.4)				
Coronary heart disease	11 (0.3) 6 (0.3) 2 (0.3)				
Cerebrovascular disease	5 (0.1) 2 (0.1) 3 (0.4)				
Chronic kidney disease	4 (0.1) 2 (0.1) 2 (0.3)				
Chronic renal failure	3 (0.09) – 2 (0.3)				
Cardiovascular disease	3 (0.09) 2 (0.1) 1 (0.1)				
Morbid obesity	3 (0.09) 2 (0.1) 1 (0.1)				
Heart failure	2 (0.06) 1 (0.05) 1 (0.1)				
Acute ischemic stroke	2 (0.06) 0 2 (0.3)				
Dyslipidemia	2 (0.06) 1 (0.05) 1 (0.1)				
Hepatitis B virus	2 (0.06) 1 (0.05) 1 (0.1)				
Hepatitis C virus	2 (0.06) 1 (0.05) 1 (0.1)				
Lynch Syndrome	2 (0.06) 2 (0.1) 0				
Congestive heart failure	2 (0.06) 0 2 (0.3)				
Asthma	1 (0.03) 1 (0.05) 0				
Cardiac arrest	1 (0.03) 1 (0.05) 0				
Chronic anaemia	1 (0.03) 1 (0.05) 0				
Diabetic ketoacidosis	1 (0.03) 1 (0.05) 0				
Tuberculosis	1 (0.03) 0 1 (0.1)				

Complications and treatment outcomes

Event	Findings^b
Patient was admitted to ICU	153 (4.5) 7 (0.3) 96 (13.1) 0.000[*]
Patient was intubated and on mechanical ventilation during the ICU stay	51 (1.5) 3 (0.1) 47 (6.4) 0.000[*]
Patient experienced acute respiratory distress syndrome	36 (1.1) 1 (0.05) 29 (4) 0.000[*]

^a Patients with black ethnicity include African-American, Black African, African and Afro-Caribbean patients
^b Data are presented as number (%)

Percentages do not total 100% owing to missing data

* Represents significant differences
These variables were considered needing further evaluation and, thus, were included in multivariate regression analysis. Nevertheless, multivariate analysis confirmed old age (≥ 60 years), male gender, CRC patients with SARS-CoV-2 infection located in Asia and Europe, who transmitted SARS-CoV-2 from hospital, CRC stage III, who had chemotherapy and surgical resections, admitted to intensive care unit, intubated and placed on mechanical ventilation and suffered acute respiratory distress syndrome were significantly associated with increased death. Although univariate analysis showed CRC stage IV patients with SARS-CoV-2 infection was significantly associated with increased mortality (p = 0.009), however, this finding was not reciprocated by multivariate analysis; Fig. 5.

Discussion
In this large systematic review and meta-analysis, we included 3362 patients with laboratory-confirmed SARS-CoV-2 infection from 69 observational studies in order to estimate the prevalence of COVID-19 disease in CRC patients. A better understanding of the prevalence of SARS-CoV-2 disease in CRC patients allows the development of more specific and more efficient ways of prevention and therapy. As expected, overall prevalence of community-acquired SARS-CoV-2 infection in CRC patients was fivefold higher compared to hospital-acquired SARS-CoV-2 infection in this group of cancer patients (8.1% vs 1.5%). This could be chiefly explained by the maintenance of good knowledge and compliance of infection prevention and control by healthcare providers [87], antimicrobial stewardship [88], and robust surveillance for hospital-acquired infections and antimicrobial resistance [89] within healthcare organizations that provide healthcare for CRC patients. Prevalence of SARS-CoV-2 infection acquired from the community in CRC patients was almost similar in Asia (9.1%, 95% CI 6.1–12.2), Europe (7.7%, 95% CI 3.9–11.4), and America (7.0%, 95% CI 3.2–10.7). However, SARS-CoV-2 infection

![Table: Odds Ratio and P Value](link-to-table)

Fig. 5 Predictors of mortality in patients hospitalized for colorectal cancer and SARS-CoV-2 (n = 2768)
rate acquired from the hospital in CRC patients was the highest in studies conducted in multiple countries (4.7%, 95% CI 3.6–5.9). In general, there is an approximately ninefold variation in CRC prevalence rates by world regions, with the highest rates in European regions, Australia/New Zealand, and Northern America; and rates of CRC prevalence tend to be low in most regions of Africa and in South Central Asia [90]. However, negative impact of SARS-CoV-2 infection on CRC patients should be considered as the COVID-19 pandemic has led to a sustained reduction in the number of people referred, diagnosed, and treated for CRC [22, 91–93]. The findings in this meta-analysis showed different results from previous systematic meta-analyses that evaluated SARS-CoV-2 infection among CRC patients [24, 94]. We reported a much lower prevalence of SARS-CoV-2 infection in CRC patients [3.43%] compared to the previous two systematic meta-analyses (sample size: n = 92 and n = 20, respectively) [24, 94]. The current meta-analysis is more comprehensive and included a total of 69 studies [8–17, 23, 25–36, 43–85] including a total of 3362 patients; whose details on final treatment outcome were available; in comparison to smaller sample size in previous meta-analyses (sample size: n = 92 and n = 20, respectively) [24, 94]. The inclusion of 65 recently published studies [8–10, 12–17, 23, 25–36, 38, 43, 44, 46–56, 58–84] contributed to the refinement on evidence of the demographic and clinical characteristics; in addition to final treatment outcome in CRC patients with SARS-CoV-2 illness.

We report no paediatric case with SARS-CoV-2 infection and CRC as the incidence of CRC is rare compared with that in adults (prevalence of CRC in patients under age 20 was reported to be 0.2%) [95]. Unlike in adults, familial cancer history is not strongly associated with CRC in children [96]. The lack of childhood cases with COVID-19 and CRC in our review can also be justified by the fact that most children with SARS-CoV-2 disease have mild symptoms or have no symptoms at all [97] and

Variable	Odds Ratio	Odds Ratio (95% CI)	P Value
Colorectal cancer staging (Stage I)			
Univariate	0.21	(-0.51 - 0.52)	0.997
Multivariate	0.1	(-0.11 - 0.03)	0.834
Colorectal cancer staging (Stage II)			
Univariate	0.29	(-0.43 - 0.6)	0.745
Multivariate	0.36	(0.01 - 0.22)	0.365
Colorectal cancer staging (Stage III)			
Univariate	1.54	(0.02 - 1.05)	0.041
Multivariate	1.03	(0.34 - 0.49)	0.035
Colorectal cancer staging (Stage IV)			
Univariate	1.69	(0.17 - 1.2)	0.009
Multivariate	1.76	(0.38 - 0.69)	0.08
Treatment (Antibiotics=Yes)			
Univariate	-0.26	(-0.42 - 0.31)	0.762
Multivariate	-0.06	(-0.02 - 0.16)	0.221
Treatment (Antivirals=Yes)			
Univariate	0.05	(0.13 - 0.29)	0.951
Multivariate	0.2	(0.71 - 2.01)	0.76
Treatment (Chemotherapies=Yes)			
Univariate	1.35	(0.5 - 0.66)	0.023
Multivariate	1.91	(0.38 - 0.61)	0.041
Treatment (Surgical resections=Yes)			
Univariate	1.4	(0.8 - 0.73)	0.016
Multivariate	0.91	(0.67 - 0.8)	0.039

Fig. 6 Predictors of mortality in patients hospitalized for colorectal cancer and SARS-CoV-2 (n=2768)
the high severity of COVID-19 tends to be much lower in children compared to adults [98]. However, CRC is more likely to be lethal in children and young adults than middle-aged adults and was explained by the higher incidence of precancerous diseases (such as polyps, colitis) and mucinous adenocarcinoma and/or late CRC diagnosis in children [95, 96]. Hence CRC is usually diagnosed later and potentially associated with worst prognosis in young groups [95, 96], detecting CRC at an early, more treatable stage is important for cure and survival.

In our review, males gender predominated development of SARS-CoV-2 illness in CRC patients, a finding suggested in most of the reports [9, 11, 14, 16, 17, 25, 27, 28, 30, 32–35, 47, 52–59, 61, 62, 71, 72, 74, 75, 77, 81–85] and in contradiction with data from other reports suggesting an equal proportion of COVID-19 cases in CRC patients for both genders [14, 23, 29, 31, 60, 80] or patients with CRC and SARS-CoV-2 illness were mostly females [11, 36, 46, 49, 50, 66, 67, 76]. This review reflects previous studies in showing that the overall incidence of CRC is higher in males than in females [99–101]. This increased vulnerability of men to developing CRC may be due to a number of biological and gender-related (behavioural) factors [99, 102–104]. Men are more likely to have a diet high in red and processed meat [105], be heavier consumers of alcohol [106], and more likely to smoke [107]. Men also have a greater propensity to deposit visceral fat [108, 109] which is associated with increased risk of CRC [99–101, 110]. Moreover, SARS-CoV-2 has been known to infect cells via angiotensin-converting enzyme 2 receptors for entry which have been found to be highly expressed in human males and the angiotensin-converting enzyme 2 receptor gene is X-linked [111, 112]. However, male excess in CRC in our review might be attributed mainly to the differences in the inclusion criteria and the population age groups included in the studies; or can be explained by higher rates of comorbidities among men [113, 114], higher trend among females
to follow hand hygiene and preventive care [115, 116], stronger immune response to infections in females who outlive men [117] or lower rates of healthcare service utilization by males [118].

We found development of COVID-19 in CRC patients was highest in people of White (Caucasian) [14, 35, 43, 44, 47, 53, 76, 77], Hispanic [13, 70, 72, 80] and Asian ethnicity [11, 15–17, 28, 57, 58, 83] (7.8%, 4.6% and 4.5%, respectively). Moreover, we found mortality rate in CRC patients infected with COVID-19 was significantly high in patients with Asian and Hispanic ethnicity [5.1% and 4.2%, p = 0.011]. CRC is a substantial public health burden and it is increasingly affecting populations in Asian and Hispanic countries [119, 120]. The risk of contracting COVID-19 in people with Asian and Hispanic ethnicity is known to be high and clinical prognosis in those people has been previously described to be poor [121, 122]. CRC screening has been playing an important role in reducing its disease burden [123]. The surveillance system in countries with high burden needed to provide facilities for CRC screening and public awareness education program should be considered in national and international planes to increases the self-participation of people [124]. Financial limitation and lack of authorities are still the main obstacles in the way of CRC screening in most Asian and Hispanic countries with low-income status [125, 126]. Because most of the studies included in our review that reported the ethnicity of CRC cases infected with COVID-19 were either from China, Italy, United States of America, or United Kingdom; representation of other ethnicities at risk to develop COVID-19 in CRC patients can be misleading. For instance, we report a very low prevalence of SARS-CoV-2 infection in CRC patients in Black population (n = 4, 0.12%), yet, in the United States, the incidence and mortality rates for CRC are higher among Black patients, particularly men, than among those in other racial or ethnic groups, and,

Fig. 8 Predictors of mortality in patients hospitalized for colorectal cancer and SARS-CoV-2 (n = 2768)

Variable	Univariate	Multivariate	Odds Ratio (95% CI)	P Value
Colorectal cancer symptom (Abdominal pain=yes)			0.02 (-0.22 - 0.31)	0.333
Colorectal cancer symptom (Blood per rectum=yes)			0.1 (-0.72 - 0.92)	0.964
Colorectal cancer symptom (Diarrhoea=yes)			0.4 (0.42 - 0.73)	0.361
Colorectal cancer symptom (Haematochezia=yes)			0.8 (-0.22 - 0.42)	0.331
Colorectal cancer symptom (Melena=yes)			0.4 (-1.22 - 0.34)	0.692
Colorectal cancer symptom (Nausea and vomiting=yes)			0.66 (0.47 - 0.69)	0.119
Colorectal cancer symptom (Change in bowel habits=yes)			0.1 (0.51 - 0.48)	0.964
Colorectal cancer symptom (Weight loss=yes)			0.04 (0.21 - 0.44)	0.361

among Black patients, CRC occurs at a higher rate below age 50 years [127].

During the COVID-19 pandemic, increasing age in combination with male gender might denote seriously sick patients who can potentially have more morbidity and propensity to die [128, 129]. The majority of CRC patients hospitalized with SARS-CoV-2 are older and seemed to have underlying medical conditions [11, 27, 29, 31, 33, 35, 47, 57, 59, 60, 62, 72, 77, 85], with increased age being associated with clinical severity, including case fatality. Furthermore, comorbidities [11, 16, 17, 27, 28, 31, 33, 46, 57, 58, 62, 72, 77, 83, 85] and advanced CRC stages (stage III and IV) [26, 27, 29, 31, 33, 35, 36, 46–49, 60, 72, 77] affect the prognosis of COVID-19. Although chemotherapy and surgical resections are the primary treatment modalities for early stage CRC (stage I through III) [130, 131], we report active treatment of both chemotherapies and surgical resections were associated with an increased risk for severe disease and death from COVID-19 in CRC patients, a finding which is in line with previous meta-analyses [132, 133]. Although one meta-analysis found chemotherapy was associated with an increased risk of death from COVID-19 in patients with cancer but failed to show any significant association between other treatments like surgery due to the very small number of included studies [132], our meta-analysis shown the possible increase in risks of severe COVID-19 and death in SARS-CoV-2-infected CRC patients receiving surgical resections which is in consistent with recent cohort and meta-analysis studies [133–135]. Chemotherapies commonly used to treat cancer, including CRC, affect not only the tumor but also the immune system [136]. Advanced COVID-19 syndrome is characterized by the uncontrolled and elevated release of pro-inflammatory cytokines and suppressed immunity, leading to the cytokine storm [137]. An impaired immune system might cause a decreased inflammatory response against SARS-CoV-2 and, thus, protecting from cytokine storm [138]. The uncontrolled and dysregulated secretion

Variable	Odds Ratio	Odds Ratio (95% CI)	P Value
Diabetes mellitus (yes)	0.69	(0.5 - 0.85)	0.187
Univariate	0.59	(0.31 - 0.68)	0.36
Multivariate	0.63	(-0.42 - 1.69)	0.23
Hypertension (yes)	0.64	(0.24 - 0.31)	0.311
Univariate	0.61	(0.51 - 1.3)	0.65
Multivariate	0.5	(-0.76 - 0.34)	0.42
Chronic obstructive pulmonary disease (yes)	0.33	(-0.86 - 1.52)	0.51
Univariate	0.81	(0.51 - 1.3)	0.65
Multivariate	0.33	(0.28 - 0.51)	0.04
Hepatitis B virus (yes)	1.88	(0.85 - 1.12)	<0.001
Univariate	1.97	(0.83 - 0.64)	0.03
Multivariate	0.63	(0.28 - 1.11)	<0.001
Acute respiratory distress syndrome (yes)	0.63	(0.23 - 1.1)	<0.001
Univariate	0.44	(0.88 - 1.36)	0.02
Multivariate	0.44	(0.88 - 1.36)	0.02

Fig. 9 Predictors of mortality in patients hospitalized for colorectal cancer and SARS-CoV-2 (n = 2768)
of inflammatory and pro-inflammatory cytokines in SARS-CoV-2 patients with CRC is positively associated with the severity of the viral infection and mortality rate and this cascade of events may lead to multiple organ failure, ARDS, or pneumonia and need for ICU admission and mechanical ventilation [137, 139]. Furthermore, postoperative pulmonary complications was reported to occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality [135], therefore, consideration should be given for postponing non-critical procedures and promoting nonoperative treatment in CRC patients to delay or avoid the need for surgery [140]. When hospitals recommence routine surgical treatments, this will be in hospital environments that remain exposed to SARS-CoV-2, so strategies should be developed to reduce in-hospital SARS-CoV-2 transmission and mitigate the risk of postoperative complications in CRC patients [135].

Limitations
First, while most of the evidence discussed were based on many cohorts, case reports, case-series and few cross-sectional and case–control studies, many of these are small and not necessarily generalizable to the current COVID-19 clinical environment in patients with CRC history. Second, to assess factors associated with mortality, larger cohort of patients is needed. Last, almost all studies included in this review were retrospective in design which could have introduced potential reporting bias due to reliance on clinical case records.

Conclusion
Patients with CRC are at increased risk of severe complications from SARS-CoV-2 which may include ARDS, or pneumonia and need for ICU admission and mechanical ventilation. Key determinants that lead to increased mortality in CRC patients infected with COVID-19 include older age (≥ 60 years old); male gender; Asian and Hispanic ethnicity; if SARS-CoV-2 was acquired from hospital source; advanced CRC (stage III and IV); if patient received chemotherapies or surgical treatment; and if patient was admitted to ICU, ventilated or experienced ARDS.

Abbreviations
ARDS: Acute respiratory distress syndrome; COVID-19: Coronavirus disease 2019; CRC: Colorectal cancer; ICU: Intensive care unit; NOS: Newcastle–Ottawa scale; PRISMA: Preferred reporting items for systematic reviews and meta-analyses; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2.

Acknowledgements
We would like to thank authors and their colleagues who contributed to the availability of evidence needed to compile this article. We would also like to thank the reviewers for very helpful and valuable comments and suggestions for improving the paper. We would like to thank Murtdha Alsuliman who created the cartoon.

Author contributions
SA, A Al M, J S, B, N Al D, and A Al-O contributed equally to the systematic review. S A, A Al M, J S, B, and A A R were the core team leading the systematic review. S A, A Al M, J S, B, N Al D, I A, and A A A identified and selected the studies. H I, AI H, N A, AI A, H A, AI H, H A, S A A, and R M A did the quality assessment of the studies. S A, S A, B, A B, N A A, W A, M Y, A U A, H A A, M M M, A A, N B, M A, M A, A T, K J, A LIT, and K D collected the data. S A, K M, AI m, A H, A, A M T, H A, A, and F M A analyzed the data. A A, A Al M, J S, B, N Al D, S A, B, Ali A, and A Al-O drafted the manuscript. All authors approved the final version of the manuscript. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

Funding
None.

Availability of data and materials
All data generated or analysed during this study are included in this published article except for the datasets generated and analysed to explore the effect of various demographic parameters and clinical variables on patient’s final treatment outcome. These datasets are not publicly available due privacy concern but will be available, please contact the corresponding author for data requests.

Declarations
Consent for publication
Not applicable.

Ethics approval and consent to participate
This review is exempt from ethics approval because we collected and synthesized data from previous clinical studies in which informed consent has already been obtained by the investigators.

Competing interests
The authors declare that they have no competing interests.

Author details
1Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Rashidiah Street, P.O Box 12944, Alahsa 31982, Saudi Arabia. 2Research Center, Almoosa Specialist Hospital, Al-Ahsa, Saudi Arabia. 3College of Nursing, Princess Nofarah Bint Abdul Rahman University, Riyadh, Saudi Arabia. 4School of Nursing, University of Wollongong, Wollongong, Australia. 5Gastroenterology Department, King Fahad Hofuf Hospital, Ministry of Health, Al-Ahsa, Saudi Arabia. 6General Surgery Department, Alomran General Hospital, Alahsa, Saudi Arabia. 7Department of Pharmacy, Hereditary Blood Diseases Centre, Al-Ahsa, Saudi Arabia. 8Infection Prevention and Control Department, Alomran General Hospital, Alahsa, Saudi Arabia. 9Intensive Care Unit, Omran General Hospital, Al-Ahsa, Saudi Arabia. 10Pharmacy Department, Prince Saud Bin Jalawi Hospital, Al-Ahsa, Saudi Arabia. 11Intensive Care Unit, Omran General Hospital, Al-Ahsa, Saudi Arabia. 12Pharmacy Department, Prince Saud Bin Jalawi Hospital, Al-Ahsa, Saudi Arabia. 13Pharmacy Department, King Faisal General Hospital, Al-Ahsa, Saudi Arabia. 14Department of Gastroenterology, King Fahad Hofuf Hospital, Ministry of Health, Al-Ahsa, Saudi Arabia. 15Department of Critical Care, King Fahad Hofuf Hospital, Ministry of Health, Al-Ahsa, Saudi Arabia. 16Department of Critical Care, King Fahad Hofuf Hospital, Ministry of Health, Al-Ahsa, Saudi Arabia. 17Administration of Academic Affairs and Research, Ministry of Health, Al-Ahsa, Saudi Arabia. 18College of Medicine, King Khalid University Hospital, Riyadh, Saudi Arabia. 19Medical Services Department, King Fahad Hofuf Hospital, Al-Ahsa, Saudi Arabia. 20Pharmacy Department, Al-Jaber Hospital for Eye, Ear, Nose and Throat, Al-Ahsa, Saudi Arabia.
References

1. World Health Organization. WHO coronavirus disease (COVID-19) dashboard [21 July 2022]. Available from: https://covid19.who.int/

2. Centers for Disease Control and Prevention. Risk for COVID-19 infection, hospitalization, and death by age group 2022 [21 July 2022]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/hospitalization-death-by-age.html

3. Centers for Disease Control and Prevention. Science brief: Evidence used to update the list of underlying medical conditions that increase a person's risk of severe illness from COVID-19 2022 [21 July 2022]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/science/science‑briefs/underlying‑evidence‑table.html

4. Centers for Disease Control and Prevention. Science brief: Evidence used to update the list of underlying medical conditions that increase a person's risk of severe illness from COVID-19 2022 [21 July 2022]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/hcp/care‑forclinical‑care/underlying‑conditions.html

5. Centers for Disease Control and Prevention. Science brief: Evidence used to update the list of underlying medical conditions that increase a person's risk of severe illness from COVID-19 2022 [21 July 2022]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/hcp/care‑forclinical‑care/underlying‑evidence‑table.html

6. Sorensen RJ, Barber RM, Pigott DM, Carter A, Spencer CN, Ostroff SM, Reiner RC Jr, Abbafati C, Adolph C, Allorant A. Variation in the COVID‑19 infection‑fatality ratio by age, time, and geography during the pre‑vaccine era: A systematic analysis. Lancet. 2022;399(10334):1469–88.

7. Balzora S, Issaka RB, Anyane‑Yeboa A, Gray DM II, May FP. Impact of COVID‑19 on colorectal cancer disparities and the way forward. Gastro‑Intest Endosc. 2020;92(4):946–50.

8. Bernard A, Cottenet J, Bonniaud P, Piroth L, Arveux P, Tubert‑Bitter P, Reiner RC Jr, Abbafati C, Adolph C, Allorant A. Impact of the COVID‑19 pandemic on colorectal cancer screening: implications and solutions. Pathogens. 2021;10(11):1508.

9. Sundaram S, Olson S, Sharma P, Rajendra S. A Review of the Impact of the COVID‑19 pandemic on colorectal cancer surgery during the SARS‑CoV‑2 pandemic. Int J Colorectal Dis. 2021:https://doi.org/10.1007/s00384‑021‑00679‑x.

10. Whittaker TM, Abdelrazek ME, Fitzpatrick AJ, Froud JL, Kelly JR, William LA, Wilson IA, Williams GL. Delay to elective colorectal surgery and implications for survival: a systematic review and meta‑analysis. Colorectal Disease. 2021.

11. Filipe M, de Bock E, Geitenbeek R, Boerma D, Pronk A, Heikens J, Richir M, Raderer M, Preusser M, Berghoff AS. SARS‑CoV‑2 screening in cancer patients with COVID‑19: a single‑center retrospective observational study. J Gastro‑Intest Cancer. 2021;52(1):73–9.

12. Reiner RC Jr, Abbafati C, Adolph C, Allorant A. Variation in the COVID‑19 infection‑fatality ratio by age, time, and geography during the pre‑vaccine era: A systematic analysis. Lancet. 2022;399(10334):1469–88.

13. Ospina AV, Bruges R, Mantilla W, Tiania I, Ramos P, Aruanchan S, Quiroga A, Munueva I, Ortiz J, Llinás N. Impact of COVID‑19 Infection on patients with cancer: experience in a Latin American Country: The ACHOCG‑19 Study. The Oncoligist. 2021.

14. Özdemir N, Dוזdar O, Yauço O, Asoy O, Dede DS, Budakolu B, Metan G, Alp A, Budakolu O, Oksuzoglu OBC. Clinical features and outcomes of COVID‑19 in patients with solid tumors: Turkish national registry data. Int J Cancer. 2021;148(10):2407–15.

15. Wang J, Song Q, Chen Y, Wang Z, Chu Q, Gong H, Cai S, Dong X, Xu B, Hu W. Systematic investigations of COVID‑19 in 283 cancer patients. medRxiv. 2020.

16. Yang K, Sheng Y, Huang C, Jin Y, Xiong N, Jiang K, Lu H, Liu J, Yang J, Dong Y. Clinical characteristics, outcomes, and risk factors for mortality in patients with cancer and COVID‑19 in Hubei, China: a multicentre, retrospective, cohort study. Lancet Oncol. 2020;21(7):904–13.

17. Liu C, Wang K, Li L, Lv Q, Liu Y, Hu T, Trent JC, Sun B, Hu Q. Severity of COVID‑19 in Cancer patients versus patients without cancer: a propensity score matching analysis. J Cancer. 2021;12(1):3558.

18. Varnai C, Balie C, Arnold R, Curley HM, Purushoke K, Cheng VW, Booth S, Campton NA, Collins GP, Hughes DJ. Mortality among adults with cancer undergoing chemotherapy or immunotherapy and infected with COVID‑19. JAMA Netw. Open. 2022;5(2):e221030.

19. Leite H, Lindsay C, Kumar M. COVID‑19 outbreak: implications for healthcare operations. TQM J. 2020.

20. Whittaker TM, Abdelrazek ME, Fitzpatrick AJ, Froud JL, Kelly JR, William IA, Wilson IA, Williams GL. Delay to elective colorectal surgery and implications for survival: a systematic review and meta‑analysis. Colorectal Disease. 2021.

21. Sundaram S, Olson S, Sharma P, Rajendra S. A Review of the Impact of the COVID‑19 pandemic on colorectal cancer screening: implications and solutions. Pathogens. 2021;10(11):1508.

22. Mazidimoradi A, Tiznoebaik A, Salehinia H. Impact of the COVID‑19 pandemic on colorectal cancer screening: a systematic review. J Gastro‑Intest Cancer. 2021https://doi.org/10.1007/s12029‑021‑00679‑x.

23. Al‑Shamsi HO, Coomes EA, Alhawi S. Screening for COVID‑19 in asymptomatic patients with cancer in a hospital in the United Arab Emirates. JAMA Oncol. 2020;6(10):1627–8.

24. Antikchi MH, Neamatzadeh H, Ghelmani Y, Jafari‑Nedooshan J, Dastghelb SA, Kargar S, Nooshirzadam M, Bahrami R, Jaraezadeh MH. The risk and prevalence of COVID‑19 infection in colorectal cancer patients: a systematic review and meta‑analysis. J Gastro‑Intest Cancer. 2021;52(1):73–9.

25. Filipe M, de Bock E, Geitenbeek R, Boerma D, Pronk A, Heikens J, Richir M, Raderer M, Preusser M, Berghoff AS. SARS‑CoV‑2 screening in cancer patients with COVID‑19: a single‑center retrospective observational study. J Gastro‑Intest Surg. 2021;1:1–3.

26. Khan R, Zaidi N, Chituuki T, Rao M. Non‑COVID fatalities in the COVID‑19 era: a paradigm shift in the face of a pandemic‑lessons learnt (or not). Annals Med Surg. 2020;70:102617.

27. Liu Y‑L, Ren J, Yuan JP, Zhang Z‑J, Guo W‑Y, Guan Y, Hu N, Fu T. Postoperative onset and detection of sars‑cov‑2 in surgically resected specimens from gastrointestinal cancer patients with pre‑asymptomatic COVID‑19. Ann Surg. 2020;272(6):e321.

28. Mansi L, Spheher L, Dauinquaud E, Bouiller K, Almotah H, Stein U, Bouard A, Kim S, Klajer E, Jury M. Study of the SARS‑CoV‑2‑specific immune T‑cell responses in COVID‑19‑positive cancer patients. Eur J Cancer. 2021;150:1‑9.

29. Martinez‑Mardones M, Reyes G, Salas R, Fernández R, Melkonian E, Mordojovich E, Silva C, Suazo C. Strategies to advance recovery (STAR) protocol implemented colorectal cancer patients during the COVID‑19 pandemic. Rev Med Chil. 2021;149(2):205–9.

30. Nakamura S, Kanemasa Y, Atsutsa Y, Fujisawa S, Tanaka M, Fukushima K, Kobayashi T, Shimoyama T, Omuoro Y, Sekiya N. Characteristics and outcomes of coronavirus disease 2019 (COVID‑19) patients with cancer: a single‑center retrospective observational study in Tokyo. Japan Int J Clin Oncol. 2021;26(3):485–93.
Clinical outcomes of coronavirus disease 2019 (COVID-19) in cancer patients with prior exposure to immune checkpoint inhibitors. Cancer Commun. 2020;40(8):374–9.

Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.

Peterson J, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa: Ottawa Hospital Research Institute; 2011. p. 1–12.

Greenwood D, Slack RC, Barer MR, Irving WL. Medical Microbiology. E-Book: A Guide to Microbial Infections: Pathogenesis, Immunity, laboratory diagnosis and control with student consult online Access: Elsevier Health Sciences; 2012.

DesSorimianin R, Kacker R. Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials. 2007;28(2):105–14.

Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. BMJ. 2003;327(7414):557–60.

Clinical outcomes of coronavirus disease 2019 (COVID-19) in cancer patients with COVID-19 infection. Adv Med Oncol. 2021;13:17588359211011456.

Karam C, Badiani S, Berney CR. COVID-19 collateral damage: delayed presentation of a perforated rectal cancer presenting as Fournier’s gangrene. ANZ J Surg. 2020;90(3):1483.

Kuryba A, Boyle JM, Blake HA, Aggarwal A, Van Der Meulen J, Braun M, Walker K, Fearnhead NS. Surgical treatment and outcomes of colorectal cancer patients during the COVID-19 pandemic: a national population-based study in England. Annals Surg Open. 2021;2(2):e0071.

Liang W, Guan W, Chen R, Wang W, Li J, Xu K, Li C, Ai Q, Lu W, Liang H. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol. 2020;21(5):335–7.

Liu C, Wang K, Zhang M, Hu X, Hu T, Liu Y, Hu Q, Wu S, Yu J. High expression of ACE2 and TMPRSS2 and clinical characteristics of COVID-19 in colorectal cancer patients. NPJ precision oncology. 2021;5:1–7.

Manlaban SIT, Lopez MPI, Maglantac SACA, Ozoa GM. Abdomino‑notransal resection of a strangulated rectal carcinoidoma. BMJ Case Reports CP 2021:148:e244501.

Martín Bravo C, Quiotis R, Blancas FJG, Castro FGR, Forés‑García A, Rivera SR, Gerson‑Cwilich R, Gerson DS, Franco HM. Prognostic factors in cancer patients infected with SARS-CoV-2: a population-based study (N=4532). Ann Oncol. 2020;31(8):1040–5.

Nagarkar R, Roy S, Dhomde R, Adhav A, Manke A, Banswal L, Upwasni M, Kulkarni N, Tandale R, Bang Y. Elective surgical experience during COVID pandemic: a tertiary cancer care centre in India: a retrospective analysis. Indian J Surg Oncol. 2021;12:1–8.

Pawar T, Pokharkar A, Gori J, Pandey D, Rohila J, Dsouza A, Saklani A. The technique and justification for minimally invasive surgery in COVID-19 pandemic: laparoscopic anterior resection for near obstructed rectal carcinoma. J Laparoendosc Adv Surg Tech. 2020;30(5):485–7.

Pordány B, Herzeg G, Máté M. Colonic cancer during the coronavirus pandemic-recovery from COVID-19 pneumonia of an elderly woman with multiple Co-morbidities. Orv Hetil. 2020;161(25):1059–62.

Raj Kumar B, Pandey D, Rohila J, deSouza A, Saklani A. An observational study of the demographic and treatment changes in a tertiary colorectal cancer center during the COVID-19 pandemic. J Surg Oncol. 2020;122(7):1271–5.

Robiotti EV, Babady NE, Mead PA, Rollling T, Pérez-Johnston R, Bernardes M, Bogler Y, Calderaro M, Ortiz CJ, Glickman MS. Determinants of severity in cancer patients with COVID-19 illness. Nat Med. 2020;26(8):1218.

Ruiz-García E, Peña‑Nieves A, Alegria‑Baños J, Cormejo‑Juárez P, Mene‑ses‑García A, Rivera SR, Sánchez JJ, Gerson‑CWilich R, Gerson DS, Franco HM. Prognostic factors in cancer patients infected with SARS-CoV-2: a Latin American country results. Therapeutic Adv Chronic Disease. 2021;12:20406223211047756.

Serrano MM, Pérez‑Sánchez JR, Sánchez SP, De La Casa‑Fages B, Jimeno VM, Tamayo IP, Grandas F. Serotonin syndrome in two COVID-19 patients treated with lopinavir/ritonavir. J Neurol Sci. 2020;415:116944.

Sobrado LF, Nahas CSR, Marques DFS, Cotti GCDC, Imperiale AR, Averbach P, Meira JDD, Honvor M, Ribeiro‑Júnior U, Cecconello I. Is it safe to perform elective colorectal surgical procedures during the COVID-19 pandemic? A single institution experience with 103 patients. Clinics. 2021;76:2507.
73. Sorrentino L, Guagli L, Cosimelli M. Elective colorectal cancer surgery at the oncologic hub of Lombardy inside a pandemic COVID-19 area. J Surg Oncol. 2020;122(2):117–9.

74. Sukumar V, Pandy D, Kumar BR, Patel S, Pawar T, Rohila J, DeSouza A, Saklat A. Colorectal services in Covid-19 times: minimally invasive surgery and enhanced recovery, the need of the hour. Indian J Surg Oncol. 2020;11(2):297–301.

75. Tateno Y, Harada K, Okamoto F, Katsuragawa H. Elective laparoscopic colectomy in a patient 3 weeks after coronavirus disease 2019 infection: a case report. J Med Case Reports. 2021;15(1):1–4.

76. Taya M, Paredes V, Reddelman-Sidi G, Gangai N, Golia Perinick JS, Gollub MJ, Javed-Tayyab S, Perkovska I, Bates DD. Abdominal imaging findings on computed tomography in patients acutely infected with SARS-CoV-2: what are the findings? Emerg Radiol. 2021;28:1–10.

77. Tejedor P, Simo V, Arredondo J, Lopez-Rojo I, Baxaui J, Jimenez LM, Gomez-Ruiz M, Pastor C. The impact of SARS-CoV-2 infection on the surgical management of colorectal cancer: lessons learned from a multicenter study in Spain. Rev Esp Enferm Dig. 2021;113(2):85–91.

78. Tolley T, McGregor H, Clark J, Worwood M, Stephenson BM. Colorectal Tuech J-J, Manceau G, Ouaissi M, Denet C, Chau A, Kartheuser A, Vicente ACR, Marinho MS, Silva PGdS, Molina RO, Manzione TdS, Godoy Wang Q, Berger NA, Xu R. Analyses of risk, racial disparity, and outcomes Woźniak K, Sachs W, Boguradzki P, Basak GW, Stec R. Chemotherapy Ye Z, Hong Y, Wu X, Hong D, Zhang Y, Dong X, Rao Y, Lu X. Management Zhang L, Zhu F, Xie L, Wang C, Jia P, Guan H, Peng L, Chen Y. Clinical characteristics of COVID-19-infected cancer patients: a retrospective study in three hospitals within Wuhan, China. J Annals Oncol. 2020;31(7):894–901.

81. Wang Q, Berger NA, Xu R. Analyses of risk, racial disparity, and outcomes among US patients with cancer and COVID-19 infection. JAMA. 2021;72(2):220–7.

82. Wozniak K, Sachs W, Boguradzki P, Basak GW, Stec R. Chemotherapy during active SARS-CoV2 infection; a case report and review of the literature. Front Oncol. 2021;11:1146.

83. Wu J, Ouyang W, Chua ML, Xie C. SARS-CoV-2 transmission in patients with cancer at a tertiary care hospital in Wuhan. China JAMA Oncol. 2020;6(7):1108–10.

84. Ye Z, Hong Y, Wu X, Hong D, Zhang Y, Dong X, Rao Y, Lu X. Management of a colon cancer patient complicated with COVID-19. J Zhejiang Univ (Med Sci). 2020;49(2):245–8.

85. Zhang L, Zhu F, Xie L, Wang C, Wang J, Chen R, Jia P, Guan H, Peng L, Chen Y. Clinical characteristics of COVID-19-infected cancer patients: a retrospective study in three hospitals within Wuhan, China. J Annals Oncol. 2020;31(7):894–901.

86. Yang F, Shi S, Zhu J, Shi J, Dail K, Chen X. Clinical characteristics and outcomes of cancer patients with COVID-19. J Med Virol. 2020;92(10):2067–73.

87. Alhumaid S, Al Mutair A, Al‑Alawi Z, Alsuliman M, Ahmed GY, Rabaan Al‑Omari A, Al Mutair A, Alhumaid S, Salih S, Alanazi A, Albarsan H, Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal Center MM, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

88. Gheorghe A, Marinighe C, Spicie J, Purushotham A, Chalkidou K, Rachet B, Sullivan R, Aggarwal A. Economic impact of avoidable cancer deaths caused by diagnostic delay during the COVID-19 pandemic: a national population‑based modelling study in England UK. European J Cancer. 2021;125:253.
Arabia: a descriptive cross-sectional study. J Infect Public Health. 2020;13(11):1639–44.

115. McCloskey L, Bernstein J, Winter M, Iverson R, Lee-Parritz A. Follow-up of gestational diabetes mellitus in an urban safety net hospital: missed opportunities to launch preventive care for women. J Womens Health. 2014;23(4):327–34.

116. Laskar AM, Deepashree R, Bhat P, Pottakkat B, Narayan S, Sastry AS, Sneha R. A multimodal intervention to improve hand hygiene compliance in a tertiary care center. Am J Infect Control. 2018;46(7):775–80.

117. Brodin P, Davis MM. Human immune system variation. Nat Rev Immunol. 2017;17(1):21–9.

118. Robertson LM, Douglas F, Ludbrook A, Reid G, van Teijlingen E. What works with men? A systematic review of health promoting interventions targeting men. BMC Health Serv Res. 2008;8(1):1–9.

119. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66(4):683–91.

120. Wong MC, Ding H, Wang J, Chan PS, Huang J. Prevalence and risk factors of colorectal cancer in Asia. Destination research. 2019;17(3):317.

121. Raharja A, Tamara A, Kok LT. Association between ethnicity and severe COVID-19 infection and death among Latinos in the United States: examining heterogeneity in transmission dynamics. Ann Epidemiol. 2020;52(46–53):e2.

122. Altebrelli E, Lattanzi A, Paduano R, Varaia G, Di Orzo F. Colorectal cancer prevention in Europe: burden of disease and status of screening programs. Prev Med. 2011;52(22):3677.

123. Pourhoseingholi MA. Epidemiology and burden of colorectal cancer in low-income countries. J Clin Oncol. 2016;34(1):6.

124. American cancer society. Colorectal cancer facts & figures 2017–2019. Cancer.org/Research/Cancer-facts-and-figures/colon-cancer-facts-and-figures.pdf.

125. Beafa Jiwa J, Abdinour I, Youssif E, Amanuel A, Abdi H, Kinfu Y, et al. Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study. 2020;396(10243):532–38.

126. Kanterman J, Sade-Feldman M, Biton M, Ish-Shalom E, Lasry A, Goldstein A, Hubert A, Bansyash M. Adverse immunoregulatory effects of SFI and CPT11 chemotherapy on myeloid-derived suppressor cells and colorectal cancer outcomes. Can Res. 2014;74(21):6022–35.

127. Rabaan AA, Al-Ahmed SH, Muhammad J, Khan A, Sule AA, Tirupathi R, Mutair AA, Alhumaid S, Al-Omari A, Dhawan M. Role of inflammatory cytokines in COVID-19 patients: A review on molecular mechanisms, immune functions, immunopathology and immunomodulatory drugs to counter cytokine storm. Vaccines. 2021;9(5):436.

128. Askari AK, Akdis M, Askari D, Sokolowska M, van de Veen W, Brüggen MC, O’Mahony L, Gao Y, Nadeau K, Akdis CA. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy. 2020;75(7):1564–81.

129. Akboga SA, Gokce A, Hatipoglu M, Beyoglu MA, Inan K, Sezen AL, Dal HC, Akkas Y, Turan S, Kocer B. The relationship between mortality and inflammatory markers and the systemic immune inflammatory index in patients in the intensive care unit with a pneumothorax as a complication of COVID-19 disease. Irish Journal of Medical Science (1971). 2021;21:1–6.

130. American college of surgeons. COVID-19 guidance for triage of non-emergent surgical procedures 2020 [11 Jan 2022]. Available from: https://www.facs.org/covid-19-clinical-guidance/triage.

131. Huang Z, Yan J, Jin T, Huang X, Zeng G, Adashek ML, Wang X, Li J, Zhou D, Wu Z. The challenges of urgent radical sigmoid colorectal cancer resection in a COVID-19 patient: a case report. Int J Surg Case Rep. 2020;71:147–50.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.