Metabolic Engineering of *Escherichia coli* for Production of Polyhydroxyalkanoates with Hydroxyvaleric Acid Derived from Levulinic Acid

Doyun Kim¹ and Sung Kuk Lee¹,²,³*

¹Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
²Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
³Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea

Introduction

Since 2019, the world has been dealing with the effects of the coronavirus pandemic (COVID-19) [1], which has caused wide-ranging environmental and health issues since it was officially classified as a global problem in 2020. One of the serious environmental impacts of the pandemic has been the sudden increase in demand for plastic products known as personal protective equipment (PPE) [2].

Bio-based plastics have emerged as a sustainable alternative to conventional plastics, and can help replace fossil fuels with renewable resources in the short term [3]. The use of bio-based plastics can reduce their carbon footprint, and biodegradable plastics increase the efficiency of plastic recycling and waste management, thereby lessening the environmental impact of plastic waste [4, 5]. Polyhydroxyalkanoates (PHAs) are highly appealing polymers derived from biomass and used as biodegradable plastics [6]. Among them, poly-3-hydroxybutyrate ([P(3HB)] has been researched most.

P(3HB) is a 3-hydroxybutyrate (3HB)-based short-chain-length PHA (scl-PHA) with physical properties similar to those of petroleum-based plastics, including polypropylene and polystyrene [7]. However, P(3HB) is difficult to manufacture because of its high brittleness and high melting point, both limiting factors in its production and application [8, 9]. Glass and melting transition temperatures are important parameters related to the application of PHA [10]. To solve this problem, studies have been conducted to control PHA composition, and it has been confirmed that the properties of PHA can be improved by altering its composition [11]. Incorporating 4-hydroxyvalerate (4HV) or 3-hydroxyvalerate (3HV) monomers into PHAs has been shown to lower the melting point and improve flexibility without affecting the plastic decomposition efficiency [11-13]. However, the production of such copolymer PHAs has been limited owing to the high toxicity of petroleum-derived precursors like γ-valerolactone (GVL), valeric acid, or propionate, and the high cost of biological production of 4HV and 3HV monomers [8, 14, 15].

Renewable carbon sources are economically reasonable and have excellent potential as feedstock for industrial PHA production [10]. Levulinic acid (LA) is considered a 3HV and 4HV precursor for PHA production [16-18]. In addition, LA can be produced on industrial scale from cellulosic biomass at a cost as low as $0.04–0.10/lb [19]. An engineered *Pseudomonas putida* strain showed potential for effective PHA production from LA using its LA
metabolic pathway [18]. However, use of this *Pseudomonas* strain is hindered by incomplete knowledge of genetic information and non-availability of genetic manipulation tools when using low-cost carbon sources.

Biological PHA production studies should aim to improve the cost and efficiency of the process. Most natural microorganisms can easily synthesize PHA from various monomers, but only on laboratory-scale and from structurally related precursors [20]. PHA biosynthesis in hosts that do not naturally produce PHA may improve the quality and quantity of PHA [21]. In addition, the PHA synthesis pathway can also be modified to extend the range of products and control the monomer content [21]. *Escherichia coli* generally does not produce PHA, but its short doubling time and the comprehensive knowledge of its molecular genetics and physiology have made *E. coli* a pioneering organism in the study of PHA biosynthesis [22-25].

In this study, we investigated the biosynthesis of different forms of PHA in *E. coli* engineered with the LA catabolic pathway (lva pathway) derived from *P. putida* KT2440 [26]. The present study also proposes an alternative method to effectively supply HV monomers for PHA synthesis compared to using petroleum-derived precursors (GVL, valeric acid, or propionate).

Materials and Methods

Construction of Bacterial Strains and Plasmids

Table 1 lists the strains and plasmids used in this research. *E. coli* DH10B was used for all molecular cloning experiments. It was used as the parent strain of *E. coli* MG1655 developed for PHA production. *P. putida* KT2440 (DSMZ 6125) was procured from the German Collection of Microorganisms and Cell Cultures GmbH (DSMZ, Germany). *Cupriavidus necator* H16 (KCTC 22469) and *Chromobacterium violaceum* (KCTC 2887) were purchased from the Korean Collection for Type Cultures (KCTC, Korea).

Q5 High-Fidelity DNA polymerase, Taq DNA ligase, T4 polynucleotide kinase, and T5 exonuclease were procured from New England Biolabs (USA) and used for PCR and plasmid construction. All plasmids used in this study were constructed using the Biobrick plasmid [27]. To create pBbB6a-lvaED, pBB6k-lvaABC, pBbA2c-phaC, and pBB42c-phaAB plasmids, the genes lvaEDABC of *P. putida* KT2440, phaC of *C. violaceum*, and phaAB of *C. necator* were amplified individually and cloned into each plasmid [28]. The RBS sequence was newly synthesized and applied to each gene using the Salis Lab RBS calculator. (Version 2.1) [29]. The plasmid was then transformed into *E. coli* using a MicroPulser electroporator (Bio-Rad, USA).

Media and Cultivation Conditions

LA solution (Sigma-Aldrich, USA) was neutralized to pH 7 with NaOH and used for cultivation. For the gas chromatography–mass spectrometry (GC-MS) analysis, methyl benzoate (Acros Organics, USA), GVL, and PHA polymer granules (88 mol% 3HB, 12 mol% 3HV) (Sigma-Aldrich) were used. GVL was saponified with NaOH to prepare 4-hydroxyvaleric acid for GC-MS [30].

The recombinant *E. coli* strains were inoculated in 5 ml lysogeny broth (LB) (5 g/l yeast extract, 10 g/l tryptone, and 10 g/l NaCl) and cultured at 37°C for 10 h with 200 rpm shaking. For PHA production, the grown seed culture was transferred (1:40) into 40 ml MR medium (pH 7) containing: 4 g/l (NH₄)₂HPO₄, 6.67 g/l KH₂PO₄, 0.8 g/l citric acid, 0.8 g/l MgSO₄·7H₂O, 1.2 ml trace element solution (0.3 g/l CoCl₂·H₂O, 2.4 g/l FeCl₃·6H₂O, 0.3 g/l ZnCl₂, 0.15 g/l CuCl₂·2H₂O, 0.075 g/l H₂BO₃, 0.3 g/l Na₂MoO₄·2H₂O, and 0.495 g/l MnCl₂·4H₂O), and 2.3 g/l LA (pH 7), with 15 g/l glucose. The bacteria were cultured in a 250-ml shake flask at 30°C for 96 h with 200 rpm shaking. When the optical density (OD₆₀₀) reached 0.3, 0.1 mM isopropyl-D-1-thiogalactopyranoside (IPTG) and 50 nM tetracycline were added to induce gene expression. The medium was supplemented with ampicillin (100 μg/l), chloramphenicol (30 μg/l), and/or kanamycin (50 μg/l) depending on the resistance marker of the plasmids. A spectrophotometer was used to measure the OD₆₀₀ (Libra S22; Biochrom, UK).

Table 1. Strains and plasmids.

Strains	Genotype and description	Reference
MG1655	*E. coli* K-12 ΔlacZ ΔlacYΔlacQ rfb-50 rpr-1	[41]
DH10B	F mcrA Δ(mrr-hsdRMS-mcrBC) q80lacZAM15 ΔlacY74 recA1 endA1 araD139	[42]
PHV01	MG1655 harboring pBB6a-lvaED, and pBB2a-phaC	This study
PHV11	MG1655 harboring pBB6a-lvaED, and pBB6k-lvaABC, and pBB2a-phaC	This study
PHBV01	MG1655 harboring pBB6a-lvaED, and pBB2a-phaCAB	This study
PHBV11	MG1655 harboring pBB6a-lvaED, pBB6k-lvaABC, and pBB2a-phaCAB	This study
pBB6k-gfp	pBRRI origin, carrying gfp under the P₅lacO-1, Ampk	[27]
pBB6k-rfp	ColEl origin, carrying rfp under the P₅lacO-1, Kmpk	[27]
pBB2a-Δrfp	Δrmp origin, carrying rfp under the P₅rmpC, Cmk	[27]
pBB6a-lvaED	pBB6a-gfp with Δgfp::lvaED from P. putida KT2440, Ampk	This study
pBB6k-lvaABC	pBB6k-rfp with Δrmp::lvaABC from P. putida KT2440, Kmpk	This study
pBB2a-phaC	pBB2a-Δrfp with Δrmp::phaC from C. violaceum, Cmk	This study
pBB2a-phaCAB	pBB2a-Δrfp with Δrmp::phaCAB from C. violaceum, and C. necator H16, Cmk	This study

January 2022 | Vol. 32 | No. 1
PHA Analytical Methods

For the PHA study, 10 ml of culture was centrifuged for 20 min at 4°C at 2,600 × g (Swingout rotor, Combi-514R, Hanil Scientific, Korea). The harvested cells were washed twice with triple-distilled water and the pellet was frozen at -80°C using a 2.5-L benchtop freeze dryer (Labconco, USA). The cells were treated with a mixture of 1 ml chloroform, 1 ml of 15% (v/v) methanol, and 85% (v/v) sulfuric acid in 8 ml glass vials (WH224704, Wheaton, USA), and reacted in a dry bath (MaXtable H10, DAIHAN, Korea) at 100°C for 3 h. A polytetrafluoroethylene-lined cap was used to close the vials (WH240409, Wheaton, Millville, New Jersey, USA). The vials were cooled to room temperature after the reaction, and 1 ml of a 0.5% (v/v) methyl benzoate-chloroform solution and 1 ml triple distilled water were applied for phase acceleration and vortexed for 30 s. The phase separation was performed at room temperature (20~22°C) for 3 h. The sample (500 µl) obtained in the organic solvent layer was used for GC-MS analysis.

The analysis was performed on a 7890 B GC-MS (Agilent Technologies) system equipped with an Agilent J&W CycloSil-B column (113-6632). Helium was used at a flow rate of 1.5 ml/min, and 2 µl of the sample was injected. From a starting temperature of 60°C, the oven temperature was raised at the rate of 10°C/min for 7 min, and then increased at the rate of 30°C/min until reaching 250°C. All experiments were performed in triplicate.

Results and Discussion

Construction of Engineered E. coli for PHA Production

P(3HB) is the most widespread and best-characterized form of PHA and is produced by various bacterial species such as Cupriavidus necator [1], Alcaligenes latus [2], Bacillus spp. [4], Azotobacter vinelandii [3], and Pseudomonas sp. [4]. The incorporation of other monomer units into the 3HB polymer chains can result in copolymers with improved properties. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) is among the most popular copolymers, containing 3HV produced from propionic acid, propanol, valeric acid, pentanol, or heptanoic acid.

Recently, a metabolic pathway in the lva operon that can synthesize 4HV-CoA and 3HV-CoA from LA, which can be cost-effectively produced from renewable cellulosic biomass, was identified in P. putida and characterized [26]. To synthesize HV monomer units from LA in E. coli, P. putida lvaED and lvaABC were cloned into pBB6a-gfp and pBB6k-rfp by replacing gfp and rfp, respectively, generating pBB6a-lvaED and pBB6k-lvaABC plasmids. pBB6a-lvaED was introduced into E. coli to produce 4HV-CoA and pBB6k-lvaABC to produce 3HV-CoA (Fig. 1).

C. necator H16 is a model microorganism for PHB production using the phaABC operon. To synthesize 3HB monomer units from glucose in E. coli, the phaAB genes encoding acetyl-CoA reductase and acetyl-CoA acetyltransferase from C. necator were cloned into pBB6c-rfp together with PHA synthase (PhaC Cv) from C. violaceum under the tetracycline-inducible promoter (tetR-PtetA) to generate pBB6c-phaCAB. To produce PHAs with HVs in E. coli, PHA synthase (PhaC Cv) from C. violaceum was expressed on the pBB62 plasmid under the tetracycline-inducible promoter (tetR-PtetA) with and without C. necator phaAB, generating pBB62c-phaCAB and pBB62c-phaC plasmids, respectively.

Fig. 1. Metabolic pathways involved in the production of scl-PHA in this study. Enzymes: PhaA, acetyl-CoA acetyltransferase from Cupriavidus necator H16; PhaB, acetoacetyl-CoA reductase from C. necator H16; LvaA, 4-hydroxypentanoyl-CoA kinase; LvaB, 4-hydroxyvaleryl-CoA kinase; LvaC, 4-oxopentanoyl-CoA 4-dehydrogenase; LvaD, 4-oxopentanoyl-CoA 4-dehydrogenase; LvaE, short-chain acyl-CoA synthetase; PhaC Cv, poly(R)-3-hydroxyalkanoate polymerase from Chromobacterium violaceum.
Poly-4-Hydroxyvalerate (p(4HV)) Production

Although E. coli does not naturally produce P(3HB), recombinant E. coli strains harboring the C. necator PHA biosynthesis genes have been used to efficiently produce P(3HB) mostly from glucose [32].

To investigate the possibility of high P(4HV) production from LA, a promising platform chemical that can be obtained from biomass, we constructed E. coli MG1655 harboring pBbB6a-lvaED and pBbA2c-phaC. In this system, only two enzymatic reactions are involved in the production of 4HV-CoA from LA, which is then polymerized by PhaCCv to form P(4HV), compared with the 12 enzymatic steps required for 3HB-CoA synthesis from glucose for P(3HB) production [33]. Approximately 1.6 g/l dry cell weight (DCW) with 9.0 wt% P(4HV) content was obtained from 2.3 g/l LA after 96 h cultivation of the PHV01 strain (Table 2). Even without the expression of PhaAB, trace amounts of 3HB (approximately 0.1 wt%) were incorporated into the PHA backbone. This might be due to 3-hydroxyacyl-CoA epimerase (FadB, FadJ) activity in the cell that converts (S)-3-hydroxybutyl-CoA released during beta-oxidation to (R)-3-hydroxybutyryl-CoA [34].

In previous P(4HV) production studies, P. putida KT2440 with lvaAB deletion accumulated only a small amount (2 wt% cell content) of the P(4HV) homopolymer from 7.5 g/l LA [18] and an engineered E. coli strain also produced a small amount (1 wt%) of P(4HV) from 4HV as a substrate [35]. In this study, a higher (9.0 wt%) P(4HV) content was produced than those in previous studies; nevertheless, this amount is still low compared with the P(3HB) production of up to 80 wt% (Fig. 2) [36]. Considering a previous study that showed production of 100 g/l and 4.2 g/l/h of 4HV from LA in E. coli MG1655 [37], the low production of P(4HV) in the present study

Table 2. PHA content in the cell biomass (wt%), monomer molar ratio (mol%) and dried cell weight (g/l) of strains.

Strain	PHA Content (wt%)	Molar Ratio (mol%)	Dried Cell Weight (g/l)		
	3HB (mol%)	3HV (mol%)	4HV (mol%)	CDM (g/l)	PHA Content (wt%)
PHV01	85.3 ± 1.0	ND	9.1 ± 0.7	1.6 ± 0.0	9.1 ± 0.7
PHV11	87.9 ± 0.8	ND	1.7 ± 0.1	1.6 ± 0.1	1.7 ± 0.1

Fig. 2. Cellular PHA content (wt%), dry cell weight (g/l) (A) and PHA monomer composition (mol%) (B) in PHV01 strain harboring pBbB6a-lvaED and pBbA2c-phaC, and PHV11 strain harboring pBbB6a-lvaED, pBbE6k-lvaABC and pBbA2c-phaC. Samples were taken and analyzed after 96 h of cultivation. Yellow, 3HB; red, 4HV; green, 3HV. The table shows the names of plasmid-expressed enzymes. Error bars represent the standard deviations of three independent cultivations.
may be due to the low activity of the PHA synthase PhaCv, for 4HV-CoA, an unnatural substrate, and because the availability of 4HV-CoA for the synthesis of P(4HV) was not optimized. This study suggests that enzyme and metabolic engineering must be further explored to increase high P(4HV) production.

Poly-3-Hydroxyvalerate-co-4-Hydroxyvalerate

Production

P(4HV) production in microorganisms was still low (9.0 wt%), possibly owing to the low substrate specificity of the PHA synthase for 4HV-CoA. Because 4HV-CoA and 3HV-CoA could be generated from LA via the lva operon, we attempted to produce a copolymer. The PhaCc of *C. violaceum* accumulates polymers comprising predominantly 3HV [38]. Therefore, the production of P(3HV-co-4HV) copolymer was investigated in the PHV11 strain by expressing the polymerase together with LvaED and LvaABC.

After 96 h of cultivation, a DCW of 1.6 g/l and P(3HV-co-4HV) copolymer with a molar ratio of 82.4 mol% of 3HV and trace amounts of 4HV were produced. The highest PHA concentration was determined to be 27.2 mg/l, which corresponds to a PHA content of 1.7 wt% of DCW. In contrast to the PHV01 expressing only LvaED, the molar proportion of 3HV in the copolymer rose to 82.4 mol% (Fig. 2). In a previous study, a molar ratio of 61.6 mol% 3HV and 37.8 mol% 4HV was achieved in *P. putida* KT2440 with the same PhaCc enzyme but no PhaAB expression [18]. *P. putida* KT2440 produced 37.4 wt% P(3HV-co-4HV), which was approximately 22 times higher than that produced by the *E. coli* MG1655 strain.

The PHA monomer composition depends on the amount and proportion of monomers that are fed into the culture medium [39]. In the *P. putida* KT2440 strain, LA was used at a high concentration of 7.5 g/l to induce nitrogen limitation [18], whereas 2.3 g/l (20 mM) LA was used in this study with *E. coli* MG1655. *P. putida* KT2440 probably produced a higher 4HV monomer proportion than *E. coli* MG1655 owing to the difference in LA concentration. For instance, the molar ratios of 3HB, 3HV, and 4HV were controlled by modulating the substrate concentration in a study on the production of P(3HB-co-4HV-co-3HV) using *Cupriavidus* sp. USMAA2-4 strain [8]. In another study using the *Cupriavidus* sp. L7L strain, the molar proportion of 3HV and cellular PHA content was altered when the quantity of LA in the medium was varied (0.2–1.7%) [11]. In the present study, only one LA concentration was applied to evaluate the feasibility of PHA production in engineered *E. coli*. Additional metabolic engineering and LA feeding control can be performed to vary the monomer composition of PHAs. The production of PHA with higher 4HV proportion by *P. putida* can also be attributed to the higher rate of LA consumption by *P. putida* than the engineered *E. coli* PHV11 strain. Improving LA consumption in *E. coli* through further metabolic engineering can be expected to facilitate higher production of P(3HV-co-4HV).

Poly-3-Hydroxybutyrate-co-4-Hydroxyvalerate

Production

The inclusion of 4HV has been proven to improve the physical properties of commercialized PHB [30]. Although petroleum-derived precursors (GVL, valeric acid, or propionate) have been used to supply 4HV, LA, which is easily obtained from biomass, offers economic advantages as a substrate for 4HV synthesis. We therefore investigated the production of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) copolymer from glucose and LA in engineered *E. coli* PHBV01.

When *E. coli* PHBV01 expressing LvaED, PhaAB, and PhaCc, was grown in MR minimal medium with LA (20 mM) and glucose (15 g/l), 1.8 g/l DCW and 435.6 mg/l PHA titer were obtained after 96 h cultivation. The cellular PHA content and 4HV molar ratio were 24.2 wt% and 14.6 mol%, respectively (Table 2, Fig. 3). The molar fraction of the non-conventional monomer 4HV was not very low, even in the presence of the natural monomer 3HB of PHA synthase. However, the amount of 4HV decreased from 9.0 wt% to 3.9 wt% compared to that of the PHV01 strain without PhaAB expression, indicating that the PHA synthase exhibits higher substrate specificity for 3-hydroxyacyl-CoA (3HB-CoA) than 4-hydroxyacyl-CoA (4HV-CoA).

These results showed that the PHBV copolymer could be produced in a non-natural PHA-producing *E. coli* strain by introducing heterologous genes. The monomer molar ratio may be varied by controlling the monomer production rate. To increase both PHB production and 4HV molar ratio, it is necessary to further engineer PHA synthase to increase its specificity for the non-natural substrate 4HV over 3HB.

Poly-3-Hydroxybutyrate-co-3-Hydroxyvalerate-co-4-Hydroxyvalerate

Production

Various plastics with specialized properties are required for specific applications. The properties of plastics can be controlled by polymer blending or the production of block copolymers with various monomers. We investigated the production of a random copolymer containing two 3-hydroxyacids (3HB and 3HV) and a 4-hydroxyacid (4HV) by supplying 3HB from glucose through PhaAB reactions and 3HV and 4HV from LA through LvaEDABC reactions.

After 96 h of cultivation, a P(3HB-co-3HV-co-4HV) terpolymer with 1.4 g/l DCW and 35.6 wt% and a monomer molar ratio of 88:6:6 were obtained from the PHBV11 strain. The content of 3HB monomer increased from 85.3 mol% in the terpolymer compared to 87.9 mol% in the PHBV produced by the PHBV11 strain. However, the amount of total HV monomer was still 12.1 mol%. The DCW also reduced slightly from 1.8 g/l to 1.4 g/l (Table 2, Fig. 3). In comparison with *P. putida* KT2440 strains that produced PHBV with 9.4 mol% 3HB, 67.1 mol% 3HV, and 23.5 mol% 4HV [18], the *E. coli* strain produced PHBV with a higher proportion of the 3HB monomer.

The observed variation in terpolymer monomer ratio might be attributed to differences in PhaCc expression, 3HB monomer availability under different PhaAB expression patterns, and variation in the cellular physiology of host cells *E. coli* MG1655 and *P. putida* KT2440.

In conclusion, *E. coli* provides a well-established culture strategy for achieving high cell densities and fragility of
Production of Polyhydroxyalkanoates with Hydroxyvaleric Acid

January 2022 | Vol. 32 | No. 1

cells, facilitating the simple isolation and purification of biopolymers [20, 40]. Four distinct varieties of PHAs, namely p(4HV), p(3HV-co-4HV), p(3HB-co-4HV), and p(3HB-co-3HV-co-4HV) were produced using metabolically engineered E. coli. Although E. coli produces less PHA than P. putida KT2440, the results from this study demonstrate that it can serve as a host to produce PHAs with HV monomers synthesized from LA after further metabolic engineering. This research also provides an alternative approach for effectively supplying HV monomers from a cost-effective alternative for PHA synthesis rather than using costly substrates like GVL, valeric acid, or propionate.

Acknowledgments

This work has supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MIST) (2020R1A4A1018332) and granted by innovative science project in 2020 of The circle foundation

Conflict of Interest

The authors have no financial conflicts of interest to declare.

References

1. Reinecke F, Steinbüchel A. 2009. Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotechnological production of technically interesting biopolymers. Microbiol. Physiol. 16:91-108.
2. Yu J. 2007. Microbial production of bioplastics from renewable resources, pp. 585-610. Bioprocessing for value-added products from renewable resources, Ed. Elsevier.
3. Pettinari MJ, Vázquez GJ, Silberschmidt D, Rehm B, Steinbüchel A, Méndez BS. 2001. Poly (3-hydroxybutyrate) synthesis genes in Azotobacter sp. strain PAR. Appl. Environ. Microbiol. 67:5331-5334.
4. Lütke-Eversloh T, Steinbüchel A. 2004. Microbial polythioesters. Macromol. Biosci. 4:165-174.
5. Napper IE, Thompson RC. 2019. Environmental deterioration of biodegradable, oxo-biodegradable, compostable, and conventional plastic carrier bags in the sea, soil, and open-air over a 3-year period. Environ. Sci. Technol. 53:4775-4783.
6. Bhattia SK, Guzav R, Choi P, Rehmar, Jung H R, Yang S Y, Moon Y M, et al. 2019. Bioconversion of plant biomass hydrolysates into bioplastic (polyhydroxyalkanoates) using Ralstonia eutropha 5119. Bioresour. Technol. 271:306-315.
7. Lemoigne M. 1926. Products of dehydration and of polymerization of β-hydroxybutyric acid. Bull. Chem. Soc. Japan 8:770-782.
8. Muazaynah AR, Amirul AA. 2013. Studies on the microbial synthesis and characterization of polyhydroxyalkanoates containing 4-hydroxyvalerate using γ-valerolactone. Appl. Biochem. Biotechnol. 170:1194-1215.
9. Raza ZA, Abid S, Banat IM. 2018. Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. Int. Biodeterior. Biodegradation 126: 45-56.
10. Mozesko-Ciesielka I, Kiewisz R. 2016. Bacterial polyhydroxyalkanoates: Still fabulous? Microbiol. Res. 192: 271-282.
11. Sheu D-S, Chen Y-L, Jiang W-J, Chen H-Y, Jane W-N. 2018. Cultivation temperature modulated the monomer composition and polymer properties of polyhydroxyalkanoate synthesized by Cupriavidus sp. 17F. from levulinic acid as sole carbon source. Int. J. Biol. Macromol. 118: 1558-1564.
12. Gahlawat G, Soni SK. 2017. Valorization of waste glycerol for the production of poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer by Cupriavidus necator and extraction in a sustainable manner. Bioreour. Technol. 243: 492-501.
13. Schmack G, Gorenflo V, Steinbüchel A. 1998. Biotechnological production and characterization of polyesters containing 4-hydroxyvaleric acid and medium-chain-length hydroxyalkanoic acids. Macromolecules 31: 644-649.
14. Lee W-H, Loo C-Y, Nomura CT, Sudesh K. 2008. Biosynthesis of poly(hydroxyalkanoic acids) from fatty acids in recombinant bacteria. J. Bacteriol. 190: 3643-3651.
15. Schmack G, Gorenflo V, Steinbüchel A. 1995. Accumulation of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid-co-4-hydroxyvaleric acid) by mutants and recombinant strains of Alcaligenes eutrophus. J. Environ. Polymer Degradation 3: 169-175.
16. Koller M, Hesse P, Faal H, Stelzer F, Braunegg G. 2017. Study on the effect of levulinic acid on whey-based biosynthesis of Poly(3-hydroxyvalerate)-type polyesters. by Hydrogenophaga pseudoflava. Appl. Food Biotechnol. 4: 65-78.
17. Rand JM, Pisithkul T, Clark RL, Thiede JM, Mehrer CR, Agnew DE. 2000. Properties of engineered poly-3-hydroxyalkanoates produced in Corynebacterium glutamicum. Biochim. Biophys. Acta 1453-1462.
18. Tripathi L, Wu L-P, Dechuan M, Chen J, Wu Q, Chen G-Q. 2013. YfcX enables medium-chain-length poly (3-hydroxyalkanoate) formation in Escherichia coli. J. Biol. Eng. 7: e2748.
19. Liu S-J, Steinbüchel A. 2000. A novel genetically engineered pathway for synthesis of poly(hydroxyalkanoic acids) in Escherichia coli. Biotechnol. Biochem. 64: 33-43.
20. Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO. 2009. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6: 343-345.
21. Raza ZA, Abid S, Banat IM. 2018. Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. Int. Biodeterior. Biodegradation 126: 45-56.
22. Mozesko-Ciesielka I, Kiewisz R. 2016. Bacterial polyhydroxyalkanoates: Still fabulous? Microbiol. Res. 192: 271-282.
23. Ren Q, Siervo N, Kellerhals M, Kessler B, Witholt B. 2000. Properties of engineered poly-3-hydroxyalkanoates produced in recombinant Escherichia coli strains. Appl. Environ. Microbiol. 66: 1311-1320.
24. Lee TS, Krupa RA, Zhang F, Hajimorad M, Holtz WJ, Prasad N. 2000. Production of poly (3-hydroxybutyrate) from inexpensive substrates. Biotech. Bioeng. 73: 739-743.
25. Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, et al. 2001. The complete genome sequence of Escherichia coli K-12. Science 287: 1453-1462.
26. Durfee T, Nelson R, Baldwin S, Plunkett G, Burland V, Mau B, et al. 2008. The complete genome sequence of Escherichia coli DH10b: insights into the biology of a laboratory workhorse. J. Bacteriol. 190: 2597-2606.
27. Roux J, Lespinat R, Boudier F, Jochems H, Govaert S, et al. 2001. ADP/ATP carrier and ADP/ATP exchanger expression levels in recombinant Escherichia coli strains. Appl. Environ. Microbiol. 67: 390-398.
28. Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO. 2009. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6: 343-345.
29. Raza ZA, Abid S, Banat IM. 2018. Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. Int. Biodeterior. Biodegradation 126: 45-56.
30. Mozesko-Ciesielka I, Kiewisz R. 2016. Bacterial polyhydroxyalkanoates: Still fabulous? Microbiol. Res. 192: 271-282.
31. Raza ZA, Abid S, Banat IM. 2018. Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. Int. Biodeterior. Biodegradation 126: 45-56.
32. Mozesko-Ciesielka I, Kiewisz R. 2016. Bacterial polyhydroxyalkanoates: Still fabulous? Microbiol. Res. 192: 271-282.
33. Raza ZA, Abid S, Banat IM. 2018. Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. Int. Biodeterior. Biodegradation 126: 45-56.
34. Raza ZA, Abid S, Banat IM. 2018. Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. Int. Biodeterior. Biodegradation 126: 45-56.
35. Raza ZA, Abid S, Banat IM. 2018. Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. Int. Biodeterior. Biodegradation 126: 45-56.
36. Raza ZA, Abid S, Banat IM. 2018. Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. Int. Biodeterior. Biodegradation 126: 45-56.
37. Raza ZA, Abid S, Banat IM. 2018. Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. Int. Biodeterior. Biodegradation 126: 45-56.
38. Raza ZA, Abid S, Banat IM. 2018. Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. Int. Biodeterior. Biodegradation 126: 45-56.
39. Raza ZA, Abid S, Banat IM. 2018. Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. Int. Biodeterior. Biodegradation 126: 45-56.
40. Raza ZA, Abid S, Banat IM. 2018. Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. Int. Biodeterior. Biodegradation 126: 45-56.
41. Raza ZA, Abid S, Banat IM. 2018. Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. Int. Biodeterior. Biodegradation 126: 45-56.