The role of noise in the spatial public goods game

Marco Alberto Javarone1 and Federico Battiston2

1 Department of Mathematics and Computer Science, University of Cagliari, 09123 Cagliari, Italy
2 School of Mathematical Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK
E-mail: marcojavarone@gmail.com

Received 27 May 2016, revised 18 June 2016
Accepted for publication 27 June 2016
Published 21 July 2016

Abstract. In this work we aim to analyze the role of noise in the spatial public goods game, one of the most famous games in evolutionary game theory. The dynamics of this game is affected by a number of parameters and processes, namely the topology of interactions among the agents, the synergy factor, and the strategy revision phase. The latter is a process that allows agents to change their strategy. Notably, rational agents tend to imitate richer neighbors, in order to increase the probability to maximize their payoff. By implementing a stochastic revision process, it is possible to control the level of noise in the system, so that even irrational updates may occur. In particular, in this work we study the effect of noise on the macroscopic behavior of a finite structured population playing the public goods game. We consider both the case of a homogeneous population, where the noise in the system is controlled by tuning a parameter representing the level of stochasticity in the strategy revision phase, and a heterogeneous population composed of a variable proportion of rational and irrational agents. In both cases numerical investigations show that the public goods game has a very rich behavior which strongly depends on the amount of noise in the system and on the value of the synergy factor. To conclude, our study sheds a new light on the relations between the microscopic dynamics of the public goods game and its macroscopic behavior, strengthening the link between the field of evolutionary game theory and statistical physics.

Keywords: evolutionary game theory, agent-based models, phase transitions into absorbing states
1. Introduction

Nowadays, evolutionary game theory (hereinafter EGT) [1–7] represents an emerging field, whose interdisciplinarity makes it of interest for scientists coming from different communities, from biology to social sciences. The emergence of cooperation [8] in structured populations [9], in particular in games characterized by a Nash equilibrium of defection, is one of the main topics studied in this field. For instance, different mechanisms and strategies have been proposed to foster cooperation [10–12] in paradigmatic games representing pairwise interactions, such as the prisoner’s dilemma [13], and group interactions, namely the public goods game (hereinafter PGG) [14]. Since these models are mainly studied by means of numerical simulations, they often lack an analytical description. However, the latter can be provided once some specific assumptions are introduced, as for instance considering memory-aware agents (i.e. able to save their payoff over time) [15]. In the modern area of complex systems [16, 17], investigations in the spirit of statistical physics [18], trying to relate the macroscopic emergent behavior to the microscopic dynamics of the agents, are useful to get insights on a wide range of topics, from socio-economic systems to biological phenomena. Therefore, in this work we aim to provide a description of the PGG by the lens of statistical physics, focusing in particular on the impact of noise in the population dynamics. Notably, for each individual the noise is controlled by a parameter adopted in the strategy revision phase (SRP), i.e. the process allowing the agent to update their strategy. The SRP can be implemented in several ways, e.g. considering rational agents that aim to increase their payoff. Usually, rational agents...
tend to imitate their richer neighbors, while irrational agents are those that randomly change their strategy. Remarkably, tuning the level of noise to interpolate between configurations where agents fully utilize payoff information (low noise) to those where they behave at random (high noise), strongly affects the macroscopic behavior of a population. Although previous works (e.g. [19–22]) focused on this topic (i.e. the role of noise) in this game, a complete analysis is still missing. In particular, we study the effect of noise in two different scenarios. We first consider the case of a homogeneous population, where the intensity of noise in the system is controlled by tuning the level of stochasticity of all agents during the SRP, by means of a global parameter. The latter is usually indicated by K, and defined as temperature or as an inverse degree of rationality [14]. Then, we consider a heterogeneous population, characterized by two types of agents, rational and irrational ones. While the former take their decision considering the payoff of their neighbors, the latter take decisions randomly. In the second case, the noise is controlled by tuning the density of irrational agents in the population. In both cases, we study the macroscopic dynamics of the population and the related steady states, achieved for different amount of noise and values of the synergy factor. It is worth to emphasize that the synergy factor, before mentioned, is a parameter of absolute relevance in the PGG, as it supports cooperative behaviors by enhancing the value of the total contributions provided by cooperators. Eventually, we recall that the influence of rationality in the PGG has been studied, by a probabilist approach, in [23] where authors implemented agents able to select (with a given probability) between a rational and an irrational behavior. The remainder of the paper is organized as follows: section 2 introduces the dynamics of the PGG, and the setup of our model. Section 3 shows results of numerical simulations. At last, suitable extensions of the model and future work are discussed in the conclusion section 4.

2. The public goods game

The PGG is a simple game involving N agents that can adopt one of the following strategies: cooperation and defection. Those playing as cooperators contribute with a coin c (representing the individual effort in favor of the collectivity) to a common pool, while those playing as defectors do not contribute. Then, the amount of coins in the pool is enhanced by a synergy factor r, and eventually equally divided among all agents. The cooperators’ payoff (i.e. π^c) and that of defectors (i.e. π^d) read

$$
\begin{align*}
\pi^c &= r \frac{N^c}{G} - c \\
\pi^d &= r \frac{N^c}{G}
\end{align*}
$$

(1)

where N^c is the number of cooperators among the G agents involved in the game, r synergy factor, and c agents’ contribution. Without loss of generality, we set $c = 1$ for all agents.

We now discuss the main properties and processes that characterize a population playing the PGG.
2.1. The structure of the population

In the case of well-mixed populations of infinite size, the behavior of the system behavior can be predicted as a function of the synergy factor r [14] by studying the related Nash equilibria. In particular, when agents play in groups of G players, two different absorbing states appear separated at a critical point $r_{wm} = G$. The population falls into full defection for $r < r_{wm}$ and into full cooperation for $r > r_{wm}$. Conversely, when agents are placed in the nodes of a network, surprisingly some cooperators can survive for values of r lower than r_{wm}. This effect is known as network reciprocity [9, 22, 24], since a cooperative behavior emerges as a result of the same mutualistic interactions taking place repeatedly over time. At the same time, the network structure allows a limited number of defectors to survive also beyond $r = r_{wm}$. We refer to the two critical values of r at which cooperators first appear, and defectors eventually disappear from the population, respectively as r_{c1} and r_{c2}. It is worth mentioning that most investigations in EGT are performed by numerical simulations and an analytical definition of the critical thresholds (i.e. r_{c1} and r_{c2}) identified in networked topologies is missing. As a result, when studying EGT models by arranging agents in different spaces, the values of critical thresholds are achieved by Monte Carlo simulations. In a networked population, depending on the values of r and on how agents are allowed to update their strategy, it is possible to observe different regimes: two ordered equilibrium absorbing phases, where only one strategy survives (either cooperation or defection), and an active but macroscopically stable disordered phase [15] corresponding to the coexistence between the two species (i.e. cooperators and defectors).

2.2. The strategy revision phase

Let us now consider the specific mechanism that allows the population to evolve, i.e. the process previously mentioned and defined as strategy revision phase. In principle, the SRP can be implemented in several ways, as agents may follow different rules or may be provided with particular behaviors. Usually this process is payoff-driven, i.e. agents tend to imitate richer neighbors [14]. A common way to compute the probability that one agent y imitates a neighbor x is to set it equal to the following Fermi-like equation

$$ W(s_y \leftarrow s_x) = \left(1 + \exp\left(\frac{\pi_y - \pi_x}{K_y}\right)\right)^{-1} $$

(2)

where π_x and π_y correspond to the payoffs of two linked agents, and s_x and s_y indicate the binary strategy of the two agents. $K_y > 0$ is an agent-dependent parameter whose role will be described in the following and whose distribution of values allows to control the level of noise in the population.

2.3. The dynamics of the PGG

We consider an asynchronous dynamics, where the agents sequentially update their strategy. In doing so, the population dynamics can be summarized as follows:
(i) at $t = 0$ set a population with the same amount of cooperators and defectors;

(ii) select randomly two connected agents: x and y;

(iii) selected agents play the PGG with their groups of belonging (accumulating a payoff);

(iv) y performs the SRP using x as reference (see equation (2));

(v) repeat from (ii) until the population reaches an ordered phase (or up to a limited number of time steps elapsed).

We indicate with T the average number of updates per agents at which the dynamics has been stopped, either because the system has reached an absorbing phase or because no significant macroscopic changes were observed in the system over time. We notice that such second condition is fulfilled even in the case of the microscopic active phase induced by network reciprocity for a value of $T = 10^6$, after which all simulations are stopped.

2.4. The noise and the general set up of the model

A crucial parameter appearing in equation (2) is K_y, which plays the role of noise and then parametrizes the uncertainty in adopting a strategy. Notably, a low noise entails agents to strongly consider the difference in payoff $\Delta p = \pi_y - \pi_x$ while deciding their next strategy, whereas increasing the noise the payoff difference plays a more marginal role. In the case of a homogeneous population K is equal for all individuals, such that by tuning the value of this global variable we are able to control the level of noise in the system. In the limit of $K = 0$, the yth agent will imitate the strategy of the xth agent with probability $W = 1$ if $\pi_y > \pi_x$ and $W = 0$ otherwise. Conversely, in the limit $K \to \infty$ the SRP becomes a coin flip, and the imitation occurs with probability $W = 1/2$ no matter the value of the synergy factor. In the latter case the behavior of the PGG is analogous to that of a classical voter model [25] where imitation between a pair of selected agents takes place with probability $W = 1/2$. Our study aims to confirm computationally results reported in [20, 22], and to evaluate the relation between r and K, in order to provide a complete description of the PGG, from the microscopic dynamics to the global behavior of the population. According to previous investigations, setting $K = 0.5$ is often considered as a good choice to describe a rational population with a moderate level of noise and where only a limited number of irrational updates may occur. In the case of bidimensional lattices with periodic boundary conditions—see figure 1, since each agent has four neighbors, group interactions involve $G = 5$ players at a time. It has been shown in [14] that for such K the values of r_{c1}, at which cooperators emerge, and r_{c2}, where defectors completely disappears from the population, are respectively equal to 3.75 and 5.5. Instead, a coexistence between cooperators and defectors occurs for intermediate values of r between the two thresholds (i.e. r_{c1} and r_{c2}). Conversely, in the corresponding PGG on well-mixed populations, where games are organized in groups of the same size $G = 5$, the full defection and full cooperation
The role of noise in the spatial public goods game

Regimes are separated at the critical point $r_{wm} = 5$. It is also possible to consider the case of heterogeneous populations where agents are characterized by different values K. In such scenario, the simplest set up is the one where only two different sets of agents exist: one endowed with K^1 and one with $K^2 > K^1$. Recalling that a higher value of K implies lower rationality in the SRP, by varying the density f of one species, with $0 \leq f \leq 1$, it is possible to control the level of noise in the system and study the outcomes of the model in different conditions. For instance, setting $K^1 = 0.5$ and $K^2 = \infty$, it is possible to evaluate the influence of a density f of rational agents in driving the population towards a particular state. This is particularly useful to analyze the behavior of a population whose agents have a different sensibility to their payoff and, from a social point of view, it allows to study the influence of rationality in driving the population towards an equilibrium (or steady state). As shown in related works from the sociophysics literature [26, 27], random imitation is not the only relevant non-rational behavior able to impact the way in which agents choose their next strategy. Just to

Figure 1. Pictorial representation of the PGG on the considered topology. Agents are arranged in bidimensional square lattice with continuous boundary conditions, forming a toroid as shown in (a). Each agent belongs to five groups of size $G = 5$: one where he is the central player, in red, and four as a peripheral node, in black (b). At each time step, two agents x and y are randomly selected and they play the PGG with all the players in their groups for all groups of belonging. In (c) we show the group where x and y are central: the green nodes are neighbors of node x, and this group has an orange shadow; while neighbors of agent y are cyan and this group has a violet shadow. The dotted lines in the area between x and y indicate the intersection between the groups formed by x and y. Notably, y belongs to the group formed by x and vice versa. In (d) we show for both x and y one of the possible groups where they are peripheral.
cite few, investigations driven on simple principles such as social conformity [28] or nonconformity [29], extremism [30], stubbornness [31] or multiplexity [32] showed how simple changes in the microscopic dynamics of the agents can significantly affect the social dynamics of a given population [26, 33–35]. Eventually, we note that in a heterogeneous population it could be interesting to consider more complicated cases where agents are characterized by a broad distribution of values of K, and can possibly change their own degree of rationality, for instance by thermalization-like processes (i.e. when two agents play, they modify their degree of rationality taking the average value of their current K). Since in the PGG, the strategy of the xth agent can be described by a binary variable $s_x = \pm 1$, with $+1$ representing cooperation and -1 defection, the average magnetization \[M \] reads

\[M = \frac{1}{N} \sum_{i=1}^{N} s_i, \]

(3)

where $M = 1$ corresponds to full cooperation, while $M = -1$ to full defection. Since we are not interested in the sign of the prevalent strategy, but only to which extent the system is ordered, we consider the absolute value of the magnetization $|M|$. From equation (3) it is straightforward to derive the density ρ of cooperators in the population

\[\rho = \frac{M + 1}{2} \]

(4)

so that we can identify the two (ordered, i.e. $|M| = 1$) absorbing states corresponding to $\rho = 1$ (i.e. full cooperation) and $\rho = 0$ (i.e. full defection). At last, another interesting order parameter useful to detect fluctuations in the system’s behavior is the standard deviation of the fraction of cooperators $\sigma(\rho)$ obtained over the different runs. In the following section, we describe the macroscopic state of the system by reporting the average value of ρ, $\sigma(\rho)$, $|M|$ and T averaged over 100 simulations for all the considered configurations.

3. Results

We performed several numerical simulations of the PGG, for different values of the synergy factor r and the noise (measured either in terms of K or density of irrational agents $1 - f$), in a population of $N = 10^4$ agents distributed on a bidimensional lattice with periodic boundary conditions.

3.1. Homogeneous populations

Let us here show results for the homogeneous case, where the level of noise in the system is controlled by the global variable K used in the SRP. We first analyze the phase diagram of the average density of cooperators $\langle \rho \rangle$ as a function of r and K—figure 2. Here, we observe that the PGG has a very rich behavior. For instance, plot (a) of figure 2 shows 5 different regions (below described) of interest when studying the density of cooperators at equilibrium. Notably, low values of K (i.e. $K < 10$) let emerge
three phases as a function of r in the considered range (i.e. from 3.4 to 6.0): two ordered phases (i.e. full defection and full cooperation) for low and high values of r, and a mixed phase (i.e. coexistence) for intermediate values of r. Therefore, at a first glance, an order-disorder phase transition of second kind emerges crossing the region labeled (1) in the first phase diagram (i.e. (a) of figure 2). For higher values of K, next to $K = 10$, the active phase vanishes and the population always reaches an ordered phase. A more abrupt phase transition between the two ordered phases, separating region (2A) (full defection) and (2B) (full cooperation), appears, resembling analytical results obtained for the well-mixed approximation, even if fluctuations are possible near the critical point $r = 5$. For greater values of K, the region of r around $r = 5$ such that both ordered states are attainable increases. In such range of values the system behaves as a biased voter model, where the absorbing states of cooperation (defection) is favored for $r > 5$ ($r < 5$). In the limit $K \to \infty$, the behavior of the system approaches that of a classical unbiased voter model, no matter the value of the adopted synergy factor. Plots (b) and (c) of figure 2 confirm the main differences among the five regions of plot (a). The former shows that the population does not reach an ordered phase for intermediate values of r around $r = 5$ and low K, and the simulation is only stopped once the average number of updates is equal to the considered maximum number $T = 10^6$ with the system macroscopically at the steady state. Conversely, for different parameters the population reaches an absorbing state (i.e. full defection or cooperation) relatively quickly.
Instead, plot (c) shows that the variance reaches a maximum value (as expected), $\sigma(\rho) = 1/2$, when the PGG behaves like a voter model, while smaller non-null values are also obtained for the active phase, due to the existence of fluctuations. In order to obtain a deeper characterization of the phase transitions occurring in the PGG, we study the average absolute value of the magnetization $|M|$ as a function of the synergy factor r for different K. As the temperature K increases, the range of r giving rise to an active phase shrinks around $r = r_{wm} = 5$ up to a critical value beyond which network reciprocity disappears. The scaling as a function of K of the two extreme points of the active range, r_{c1} and r_{c2}, as well as the value of r_0 for which $|M| = 0$, are shown in (b). In the bottom panels we show the average density of cooperators $\langle \rho \rangle$ (c) and the standard deviation $\sigma(\rho)$ for selected values of K (d). For the three smallest temperatures the system crosses region (1), marked by a second order transition in $\langle \rho \rangle$ and small values of σ. For $K = 50$, on each single run the system always reaches one of the two absorbing states. $\langle \rho \rangle$ is equal to 0 (1) for low (high) values of r, but takes intermediate values around $r = 5$. The transition is quite steep and $\sigma(\rho) = 0$ unless around $r = 5$. For higher values of K, for even a greater range of values of r around $r = 5$ both full defection or cooperation are achievable, $0 < \langle \rho \rangle < 1$ and $\sigma > 0$. In such regime the system behaves as a biased voter model under the external field $r - r_{wm}$. As K increases, the behavior of an unbiased voter model, no matter the value of r, is approached. Results are averaged over 100 simulation runs.

Figure 3. In the top panels we focus on the transition from the active phase towards the ordered phase. In (a) we show the average absolute value of the magnetization $|M|$ as a function of the synergy factor r for different K. As the temperature K increases, the range of r giving rise to an active phase shrinks around $r = r_{wm} = 5$ up to a critical value beyond which network reciprocity disappears. The scaling as a function of K of the two extreme points of the active range, r_{c1} and r_{c2}, as well as the value of r_0 for which $|M| = 0$, are shown in (b). In the bottom panels we show the average density of cooperators $\langle \rho \rangle$ (c) and the standard deviation $\sigma(\rho)$ for selected values of K (d). For the three smallest temperatures the system crosses region (1), marked by a second order transition in $\langle \rho \rangle$ and small values of σ. For $K = 50$, on each single run the system always reaches one of the two absorbing states. $\langle \rho \rangle$ is equal to 0 (1) for low (high) values of r, but takes intermediate values around $r = 5$. The transition is quite steep and $\sigma(\rho) = 0$ unless around $r = 5$. For higher values of K, for even a greater range of values of r around $r = 5$ both full defection or cooperation are achievable, $0 < \langle \rho \rangle < 1$ and $\sigma > 0$. In such regime the system behaves as a biased voter model under the external field $r - r_{wm}$. As K increases, the behavior of an unbiased voter model, no matter the value of r, is approached. Results are averaged over 100 simulation runs.

Instead, plot (c) shows that the variance reaches a maximum value (as expected), $\sigma(\rho) = 1/2$, when the PGG behaves like a voter model, while smaller non-null values are also obtained for the active phase, due to the existence of fluctuations. In order to obtain a deeper characterization of the phase transitions occurring in the PGG, we study the average absolute value of the magnetization $|M|$ as a function of the synergy factor for different K values. As shown in plot (a) of figure 3, only for values of $K < 10$ there are values of the synergy factors r such that $\langle |M| \rangle \neq 1$, since at $K \approx 10$ a more
abrupt phase transition between full defection and full cooperation emerges, resembling the first-order first transition predicted analytically in the case of well-mixed population of infinite size. Then, we note that for all K values in the range $[0 \leq K \leq 10]$, it is possible to find a synergy factor r such that $|M(r)| = 0$. Notably, as K increases, the difference between the two critical thresholds r_{c1} and r_{c2} goes to zero as both converge quickly towards $r_{wm} = 5$, eventually hitting such value at $K \approx 10$—see plot (b) of figure 3. Furthermore, we also observe that the value of r_0, for which cooperators and defectors coexist in equal number, is always smaller than r_{wm}—see plot (b) of figure 3. Here, we remark that r_0 separates the active phase in two regions, where either defectors (1A) or cooperators (1B) are predominant. Eventually, both plots (c) and (d) of figure 3 clearly confirms the previous investigations. For instance, for $K = 10000$ the density of cooperators becomes almost flat as in a Voter model (see plot (c) of figure 3).

3.2. Heterogeneous populations

We now consider the case of a heterogeneous population, where a density of agents f ($0 \leq f \leq 1$) with $K^1 = 0.5$ is inserted, spatially at random, in a population of irrational individuals which perform coin flips to decide their strategy. In this configuration, the level of noise is controlled by the variable f, and the lower its value the higher the stochasticity in the population. As shown in figure 4, the phase diagram obtained as a function of the different values of noise is qualitatively comparable to the previously considered case. As f goes to 1 the PGG turns its behavior to the expected one for a population composed of only rational individuals (i.e. $r_{c1} = 3.75$ and $r_{c2} = 5.5$). Remarkably, the outcomes shown in figure 4 suggest that for values as small as $f \sim 3\%$, the PGG shows an active phase (i.e. the network reciprocity still holds). Thus, very few rational agents are able to provide the population an overall rational behavior at equilibrium. See plot (b) of figure 4 to observe the scaling for the critical values of the synergy factor: r_{c1} (at which cooperators first appear), r_{c2} (at which defectors disappears),

![Figure 4](image.png)

Figure 4. (a) Phase diagram, of the average density of cooperators $\langle \rho \rangle$ as a function of the synergy factor r and the fraction of rational agents in the population f, i.e. those provided with $K^1 = 0.5$. (b) Critical thresholds r_{c1}, r_{c2} of synergy factors, and the value r_0 for which cooperators and defectors coexist in equal number as function of the fraction f of rational agents. Results are averaged over 100 simulation runs.
and \(n_0 \) (where cooperators and defectors coexist in equal proportion). Finally, considering both the homogenous and heterogenous case here presented, it is important to highlight that our analyses do not study the evolution of a population over time, but focus on the final equilibria (or steady-state). Therefore, further investigations of the proposed models could be related to this aspect (i.e. a time-dependent investigation). For instance, it would be of absolute interest studying the emergence of clusters in the population, as in the theory of percolation [18].

4. Discussion and conclusion

The aim of this work is to provide a detailed study of the role of noise in the PGG by the lens of statistical physics. Notably, the proposed model allows to define a clear relation between the noise introduced in the microscopic individual behavior and the macroscopic properties of a population. To achieve this goal, we start from the theoretical considerations presented in [19, 20], then considering a richer scenario and controlling the noise in two different cases: a homogeneous population (i.e. all agents have the same degree of rationality) and a heterogeneous one (i.e. more degrees of rationality are considered). The phase diagram resulting from numerical simulations shows the influence of the synergy factor \(r \) and of the noise in the macroscopic behavior of the population. So, beyond confirming results reported in works as [19, 22], our investigation extends to further insights. Notably, the phase diagram (see figure 2) shows many interesting regions. For a finite range of values of low noise, there exists a second order phase transition between two absorbing states as a function of \(r \), with the presence of a metastable regime between them (region (1)—see plot (a) of figure 2). For higher values of noise the active phase and network reciprocity disappears (regions (2A) and (2B)—see plot (a) of figure 2) and the system always reaches an ordered state. In particular, cooperation (defection) is usually reached if \(r \) is greater (smaller) than the group size \(G = 5 \), even if fluctuations are possible next to the critical point due to the finite size of the system. As the level of noise increases, the system approaches the behavior of a classical voter model (region (3)—see plot (a) of figure 2), where either one of the two ordered phase is reached no matter the value of the synergy factor. From the analysis of the heterogenous population case, we note that even a very small density \(f \) of rational agents, \(f \approx 3\% \), allows to observe a network reciprocity effect. In such sense, beyond the physical interpretation of our results, we deem important to highlight that, from the perspective of EGT and from that of sociophysics, the PGG is a system that 'correctly works' even in the presence of few rational players. Here, saying that the system 'correctly works' means that the equilibrium predicted for given a \(r \) by the analysis of the Nash equilibria of the system in the well-mixed approximation is achieved. Finally, it might be interesting to investigate the behavior of the PGG for populations with greater heterogeneity in the rationality of the agents, and possibly change it over time. For instance, we think that investigating a model where agents modify their \(K \) due to simple interactions, as in thermalization-like contact processes, might be relevant to get further insights on these dynamics. In particular, even if the average value of \(K \) in the population is constant, we reckon that differences might emerge with regard to the
The role of noise in the spatial public goods game

final steady state of the corresponding homogeneous population, due to the existence of a different initial transient where the distribution of K is non-trivial. To conclude, our work extends results reported in previous analyses on the role of noise in the spatial PGG and aims to link evolutionary game theory to other spin models, such as the voter model, more rigorously studied in the context of statistical physics.

Acknowledgments

The authors wish to thank Matjaz Perc for his helpful comments and suggestions. MAJ wants to thank the National Group of Mathematical Physics (GNFM-INdAM) for supporting his work.

References

[1] Szolnoki A and Perc M 2016 Collective influence in evolutionary social dilemmas Europhys. Lett. 113 58004
[2] Tomassini M 2014 Introduction to evolutionary game theory Proc. Conf. on Genetic and Evolutionary Computation Companion
[3] Perc M and Grigolini P 2013 Collective behavior and evolutionary games an introduction Chaos Solitons Fractals 56 1–5
[4] Nowak M A and May R M 1992 Evolutionary games and spatial chaos Nature 359 826–9
[5] Nowak M A 2006 Evolutionary Dynamics: Exploring the Equations of Life (Cambridge, MA: Harvard University Press)
[6] Perc M et al 2013 Evolutionary dynamics of group interactions on structured populations: a review J. R. Soc. Interface 10 20120997
[7] Masuda N and Kazuyuki A 2003 Spatial prisoner’s dilemma optimally played in small-world networks Phys. Lett. A 313 55–61
[8] Nowak M A 2006 Five rules for the evolution of cooperation Science 314 1560–3
[9] Hisashi O and Nowak M A 2006 Direct reciprocity on graphs J. Theor. Biol. 247 462–70
[10] Meloni S et al 2009 Effects of mobility in a population of prisoner’s dilemma players Phys. Rev. E 79 067101
[11] Antonioni A et al 2014 Random diffusion and cooperation in continuous two-dimensional space J. Theor. Biol. 344 40–8
[12] Perc M and Szolnoki A 2008 Social diversity and promotion of cooperation in the spatial prisoner’s dilemma Phys. Rev. E 77 011904
[13] Chunyan Z et al 2011 Evolution of interactions and cooperation in the spatial prisoner’s dilemma game PloS One 6 e26724
[14] Szolnoki A and Perc M 2010 Reward and cooperation in the spatial public goods game Europhys. Lett. 92 38003
[15] Javarone M A 2016 Statistical physics of the spatial prisoner’s dilemma with memory-aware agents Eur. Phys. J. B 89 1–6
[16] Albert R and Barabasi A L 2002 Statistical mechanics of complex networks Rev. Mod. Phys. 74 47–97
[17] Hauert C and Szabo G 2005 Game theory and physics Am. J. Phys. 73 405
[18] Huang K 1987 Statistical Mechanics 2nd edn (New York: Wiley)
[19] Szolnoki A, Perc M and Szabo G 2009 Topology-independent impact of noise on cooperation in the spatial public goods game Phys. Rev. E 80 056109
[20] Szabo G and Christoph H 2002 Phase transitions and volunteering in spatial public goods games Phys. Rev. Lett. 89 118101
[21] Szolnoki A, Vukov J and Szabo G 2009 Selection of noise in strategy adoption for spatial social dilemmas Phys. Rev. E 80 056112
[22] Gracia-Lazaro C et al 2014 Inter-groups information exchange drives cooperation in the public goods game Phys. Rev. E 90 042808
[23] Vilone D 2012 Social and strategic imitation: the way to consensus Sci. Rep. 2 686
[24] Szolnoki A and Perc M 2015 Conformity enhances network reciprocity in evolutionary social dilemmas J. R. Soc. Interface 12 20141299
[25] Liggett T M 1985 Interacting Particle Systems (New York: Springer)
The role of noise in the spatial public goods game

[26] Castellano C et al 2009 Statistical physics of social dynamics Rev. Mod. Phys. 81 591–646
[27] Galam S 2008 Sociophysics: a review of Galam models Int. J. Mod. Phys. C 19 409–40
[28] Javarone M A, Antonioni A and Caravelli F 2016 Conformity-driven agents support ordered phases in the spatial public goods game Europhys. Lett. 114 38001
[29] Javarone M A and Squartini T 2015 Conformism-driven phases of opinion formation on heterogeneous networks: the q-voter model case J. Stat. Mech. P10002
[30] Galam S and Javarone M A 2016 Modeling radicalization phenomena in heterogeneous populations PloS One 11 e0155407
[31] Galam S 2016 Stubbornness as an unfortunate key to win a public debate: an illustration from sociophysics Mind Soc. 15 117–30
[32] Battiston F, Cairoli A, Nicosia V, Baule A and Latora V 2016 Interplay between consensus and coherence in a model of interacting opinions Physica D 323–4 12–9
[33] Galam S 2004 Contrarian deterministic effects on opinion dynamics: ‘the hung elections scenario’ Physica A 333 453–60
[34] Sznajd-Weron K 2000 Opinion evolution in closed community Int. J. Mod. Phys. C 11 1157
[35] Javarone M A 2014 Social influence in opinion dynamics: the role of conformity Physica A 414 19–30
[36] Mobilia M and Redner S 2003 Majority versus minority dynamics: phase transition in an interacting two-state spin system Phys. Rev. E 68 046106

doi:10.1088/1742-5468/2016/07/073404