Clinical significance of structural remodeling concerning substrate characteristics and outcomes in arrhythmogenic right ventricular cardiomyopathy

Chin-Yu Lin, MD,*† Fa-Po Chung, MD, PhD,*† Yenn-Jiang Lin, MD, PhD,*† Shih-Lin Chang, MD, PhD,*† Li-Wei Lo, MD, PhD,*† Yu-Feng Hu, MD, PhD,*† Ta-Chuan Tuan, MD,† Tze-Fan Chao, MD, PhD,† Jo-Nan Liao, MD,† Ting-Yung Chang, MD,† Ling Kuo, MD,† Cheng-I Wu, MD,† Chih-Min Liu, MD,*† Shin-Huei Liu, MD,† Jin-Long Huang, MD, PhD, Yu-Cheng Hsieh, MD, PhD, Shih-Ann Chen, MD*†‡

From the *Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, †Department of Medicine, National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan, and ‡Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan.

BACKGROUND The substrate and ablation outcome in arrhythmogenic right ventricular cardiomyopathy (ARVC) with or without right ventricular (RV) dysfunction is unclear.

OBJECTIVE We aimed to investigate ablation outcome and substrate in ARVC patients with or without RV dysfunction.

METHODS We retrospectively studied ARVC patients with (group 1) or without RV dysfunction (group 2) undergoing substrate mapping/ablation. Baseline characteristics and electrophysiological features were compared. The RV was divided into 7 prespecified segments. The scarred segment was defined as more than 50% of the area with bipolar scar. A multivariate regression analysis was performed to predict the risk of ventricular tachycardia (VT) recurrence.

RESULTS A total of 106 patients were enrolled (57 in group 1 and 49 in group 2). There were more men (73.7% vs 32.7%, \(P = .05 \)) in group 1 than group 2. Group 1 patients demonstrated larger abnormal substrate in both the endocardium (13.4 ± 14.7 cm² vs 7.8 ± 5.4 cm², \(P = .014 \)) and in the epicardium (40.3 ± 27.7 cm² vs 14.2 ± 12.6 cm², \(P = .002 \)) and had more scar in the inferior portion/tricuspid valve (TV) than group 2 patients. Twenty-five patients had recurrences of VT/ventricular fibrillation. After multivariate analysis, the presence of a superior TV scar in the endocardium predicted the recurrence in patients with sustained VT.

CONCLUSION The presence of RV dysfunction was associated with a larger abnormal substrate in the endocardium and epicardium of the RV. A scar involving the inferior portion and TV is associated with RV dysfunction. Scarring in the superior TV of the endocardium can predict recurrence despite catheter ablation.

KEYWORDS Arrhythmogenic right ventricular cardiomyopathy; Scar; Right ventricular dysfunction; Ventricular arrhythmia; Ablation

(Heart Rhythm 02 2022;3:422–429) © 2022 Heart Rhythm Society. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a type of inherited cardiomyopathy caused by mutations in the desmosomal proteins, which lead to the dysfunction of cellular adhesion molecules.1 ARVC is characterized by progressive fibrofatty replacement of the right ventricular (RV) myocardium creating a substrate for reentrant ventricular arrhythmias (VA).2–4 Catheter ablation has been established as an effective therapy for patients with ARVC and sustained ventricular tachycardia (VT). Combined epicardial and endocardial ablation may be required in some patients.5,6 End-stage RV failure or biventricular pump failure may develop in patients with long-standing disease.7–9 The involvement of epicardial substrate is usually more extensive than the endocardium, with an epicardium-to-endocardium progression pattern.7,10 The recent study suggested that patients with more advanced stage of ARVC tend to have less arrhythmic substrate in the epicardium owing to the progressive fibrofatty replacement at this level.10

The overall objective of this study was to determine if RV dysfunction affected ablation outcome. Furthermore, we tried
angiography was used to con-
(RV dysfunction). In patients without interpretable MRI, RV
dyskinesia with a decreased RVEF.
2010 Revised Task Force Criteria,11 who had undergone
We enrolled patients diagnosed with ARVC based on the
Study population
Methods
Methods
Study population
We enrolled patients diagnosed with ARVC based on the
2010 Revised Task Force Criteria,11 who had undergone
endocardial and/or epicardial substrate mapping and radio-
frequency catheter ablation for drug-refractory VA between
2013 and 2021. The indications for catheter ablation included
the following: (1) individuals with recurrent sustained mono-
monic VT refractory to antiarrhythmic drugs, and (2)
symptomatic individuals with a high burden of ventricular
ectopy and documented nonsustained VT refractory to antiar-
rhythmic drugs. The epicardial approach was considered for
patients with ARVC.12 Endocardial approach was attempted
initially for all the patients. Epicardial approach was indi-
cated for patients with (1) unmatched endocardial substrate
and VT exit, (2) lack of abnormal substrate in the endocar-
dium, (3) failed endocardial ablation, and (4) incomplete
VT circuit with endocardial mapping during VT.
All patients underwent 12-lead electrocardiogram (ECG),
24-hour Holter monitoring, transthoracic echocardiography,
coronal arteriography, RV angiography, and electrophysi-
ological evaluation. Magnetic resonance imaging (MRI) was
performed in patients without contraindication. Endomyo-
cardial biopsy was considered for all patients and performed
after getting informed consent from the patients.
The patients were categorized into 2 groups according to
the RV function, based on the Revised Task Force Criteria.11
Patients with RVEF ≤40% on MRI were classified as group 1
(RV dysfunction). In patients without interpretable MRI, RV
angiography was used to confirm regional RV akinesia or
dyskinesia with a decreased RVEF ≤40%. Patients with
RVEF >40% on MRI were classified as group 2. In patients
without interpretable MRI, RV angiography was used to
confirm no RV dysfunction.
Baseline characteristics, echocardiographic and electro-
physiological parameters, and substrate characteristics were
compared between patients with and without RV dysfunction.
The major/minor criteria of fibrofatty replacement, depolariza-
tion abnormalities, repolarization abnormalities, VA, and family
history were based on the revised Task Force Criteria.13
This retrospective study was approved by the Institutional
Review Board. The research reported in this paper adhered to
the Helsinki Declaration guidelines.
Electrophysiological study
The details of the electrophysiological study, substrate map-
ing, and ablation strategies were described in our previous
work.2 After obtaining informed consent, we performed a
standardized electrophysiological study for all patients under
fasting and sedated status. All antiarrhythmic drugs except
amiodarone were discontinued for at least 5 half-lives prior
to radiofrequency catheter ablation.2 Rapid ventricular pacing
and/or programmed stimulation up to 3 extrastimuli were per-
formed from the RV apex and/or RV outflow tract (RVOT) to
induce VT/ventricular fibrillation (VF), with and without intra-
venous isoproterenol (1–5 μg/min). The QRS morphologies
and cycle lengths (CL) of spontaneous and/or induced VTs
were compared with those of clinically documented VTs.
Three-dimensional electroanatomic mapping, and
ablation
Bipolar scar/low-voltage zone (LVZ) were defined by <0.5
and <1.5 mV, respectively. The unipolar LVZ was considered
once unipolar voltage was less than 5.5 mV.14 The average bi-
polar or unipolar median voltage was calculated. The area of
the scar, LVZ, and area of abnormal substrate (defined as elec-
trogram with late potential or an abnormal electrogram in-
scribed within the QRS, or continuous fragmented potentials)15
were measured using the standard surface area
measurement tool on the navigation system. When multiple
areas with confluent low voltages were present, the aggregate
area from the individual regions of interest was calculated.
Each value of percentage was calculated by dividing the total
endocardial RV area or epicardial RV area. To achieve homo-
geneously detailed maps, the fill threshold was set to 10 mm
in areas with normal voltages and to 5 mm in areas with low-
voltage amplitude, as in our previous publication.2
Once the stable VT was induced, activation mapping and/
or entrainment mapping of stable VT was performed to
localize the VT isthmus. A substrate-based ablation strategy
targeting the late and fractionated electrograms within or sur-
rounding the scar/LVZ was performed in all patients.
Successful ablation was defined as the absence of any
spontaneous or inducible VA using the same stimulation pro-
tocol at the end of the procedure, with and without isoproter-
ol.2 Partial success was defined as the presence of either
spontaneous or inducible nonclinical VA after ablation, while
failed ablation was considered for those with inducible clin-
cial VAs.
Scar distribution
Based on electroanatomic mapping, the epicardial and en-
docardial free wall of the RV was categorized into 7 distinct
anatomical RV segments based on our previous publication.16
The right ventricle was also categorized into 7 distinct anatom-
cal RV segments, including RVOT (from the pulmonic valve

KEY FINDINGS
■ The presence of right ventricle (RV) dysfunction is associated with a larger abnormal substrate in the endocardium and epicardium of the RV.
■ A scar involving the inferior portion and tricuspid valve is associated with RV dysfunction.
■ Scarring in the superior tricuspid valve can predict recurrence despite catheter ablation.

Lin et al Significance of Structural Remodeling in ARVC 423
Patients underwent regular follow-up at 1, 3, and 6 months after ablation in the first year and every 3–6 months thereafter. Implantable cardioverter-defibrillator (ICD) interrogation, ECG, and Holter monitoring were performed every 3 or 6 months. The cause of mortality during follow-up was classified into cardiovascular-caused mortality or non-cardiovascular-caused mortality according to the death diagnosis. Recurrent VAs were defined as recurrent sustained VT/VF.17 The events of appropriate ICD therapy included antitachycardia pacing and defibrillation. In the patients without ICD, the events were defined as sustained VT/VF in the Holter monitoring, surface ECG, ECG strips, or automated external defibrillator recording. These events were reviewed by at least 2 electrophysiologists.

Statistical analysis

Continuous variables are expressed as mean ± standard deviation, while categorical variables are expressed as percentages. Differences between continuous variables were assessed using the Student t test, whereas categorical variables were compared using the χ² test with or without Yates correction or Fisher exact test, as indicated. Statistical significance was set at P < .05. The Cox hazard ratio (HR) regression model included all parameters with significant differences (P < .05) between group 1 and group 2 in the baseline characteristics and electrophysiological study. All statistical analyses were performed using the Statistical Package for the Social Sciences (version 22.0; IBM Corporation, Armonk, NY).

Results

Baseline characteristics of patients with ARVC

One hundred and six patients (58 [54.7%] men; mean age, 46.6 ± 13.5 years) with a diagnosis of definite ARVC based on the 2010 Revised Task Force Criteria received endocardial and/or epicardial mapping and ablation. Patients were classified into 2 groups. Group 1 consisted of 57 patients with RV dysfunction, and group 2 comprised 49 patients without RV dysfunction. A total of 49 (46.2%) patients underwent endocardial and epicardial mapping. Drug-refractory sustained VT was documented in 81 patients (76.4%). A high burden of ventricular ectopy or nonsustained VT was documented in 25 (23.6%) symptomatic individuals. Of the total 106 patients, 68 patients agreed to and received endomyocardial biopsy. There were 72 patients offered genetic testing. MRI was performed in 91 patients (85.8%). Patients with RV dysfunction were classified as group 1, and other patients were classified as group 2. More patients in group 1 were male (42 [73.7%] vs 16 [32.7%], P < .001) and had decreased left ventricular ejection fraction (52.0% ± 7.8% vs 59.7% ± 8.5%, P < .001). There were no significant differences in the other baseline parameters, repolarization abnormalities, depolarization abnormalities, family history, and histopathologic evidence of fibrofatty infiltration between the 2 groups (Table 1). The major/minor criteria of fibrofatty replacement, depolarization abnormalities, repolarization abnormalities, VA, and family history were based on

Follow-up and recurrences of VA

Patients with recurrent sustained VT/VF were referred to surgery. The procedures were performed with a median of 2 electrophysiologists. Recurrence of sustained VT/VF was defined as recurrent sustained VT/VF.2 The patients without ICD underwent secondary prevention strategies, including appropriate ICD therapy, oral beta blockers, and class I AADs. The patients with ICD underwent appropriate ICD therapy, including antitachycardia pacing, cardioversion, and defibrillation. The events were classified as sustained VT/VF in the Holter monitoring, surface ECG, ECG strips, or automated external defibrillator recording. These events were reviewed by at least 2 electrophysiologists.
Table 2 Comparison of endocardial electrophysiological parameter between arrhythmogenic right ventricular cardiomyopathy patients with or without right ventricular dysfunction

	RV dysfunction (group 1, N = 57)	No RV dysfunction (group 2, N = 49)	P value
RV endocardium			
Averaged bipolar voltage†	2.0 ± 0.8	2.2 ± 0.9	.213
Averaged unipolar voltage†	5.0 ± 1.5	5.4 ± 1.3	.141
Total activation time (ms)	155.0 ± 34.5	140.1 ± 29.2	.020
Bipolar low-voltage zone (cm²)	35.1 ± 26.7	23.1 ± 10.9	.027
Bipolar low-voltage zone, %	15.7 ± 11.7	12.0 ± 6.0	.044
Bipolar scar (cm²)	17.5 ± 13.8	11.6 ± 10.9	.017
Bipolar scar, %	8.3 ± 6.1	5.5 ± 4.1	.008
Unipolar low-voltage zone (cm²)	66.5 ± 39.6	45.9 ± 21.6	.002
Unipolar low-voltage zone, %	27.3 ± 13.4	21.1 ± 8.5	.007
Area with abnormal substrate (cm²)	13.4 ± 14.7	7.8 ± 5.4	.014
Scar distribution			
RVOT	32 (56.1%)	30 (61.2%)	.693
Superior free wall	8 (14.0%)	11 (22.4%)	.314
Inferior free wall	11 (19.3%)	0 (0.0%)	.001
Superior TV	21 (36.8%)	7 (14.3%)	.014
Inferior TV	29 (50.9%)	13 (26.5%)	.016

RV = right ventricle; RVOT = right ventricular outflow tract; TV = tricuspid valve.
Results are mean ± SD or n (%).
†The average of bipolar or unipolar median voltage.

the revised Task Force Criteria.13 Forty-two (73.7%) and 26 (53.1%) patients underwent genetic analysis in group 1 and group 2, respectively. Seventeen (39.5%) and 8 (32.0%) patients in group 1 and group 2, respectively, demonstrated a mutation in the genes that were associated with ARVC, according to the Task Force criteria (P = .608).

Electrophysiological study
The mean number of clinical VT was 1.1 ± 0.3 in group 1 and 1.0 ± 0.1 in group 2 (P = .234). The mean number of inducible VT was 1.7 ± 1.0 in group 1 and 1.2 ± 0.5 in group 2 (P = .006). The CL of clinical VT (323.5 ± 68.6 vs 286.9 ± 55.8 ms, P = .016) and induced VT (360.0 ± 84.4 vs 302.8 ± 55.1 ms, P = .001) was longer in group 1 in comparison to group 2.

Acute procedural success with noninducible VT was achieved in 48 (84.2%) and 44 (89.8%) patients of group 1 and group 2, respectively. Partial success with inducible nonclinical VT was achieved in 9 (15.8%) and 3 (6.1%) patients of group 1 and group 2, respectively. Failed procedure was noted with inducible clinical VT in 2 (4.1%) patients of group 2. The distribution of acute procedural outcome (acute procedural success, partial success, and failed procedure) was not significantly different (P = .100, Pearson χ² test).

Table 3 shows the comparison of endocardial electrophysiological parameter between arrhythmogenic right ventricular cardiomyopathy patients with or without right ventricular dysfunction

	RV dysfunction (group 1, N = 57)	No RV dysfunction (group 2, N = 49)	P value
RV epicardium			
Averaged bipolar voltage†	1.1 ± 0.4	1.5 ± 0.8	.076
Total activation time (ms)	207.9 ± 18.4	200.8 ± 42.2	.413
Bipolar low-voltage zone (cm²)	110.1 ± 52.2	86.8 ± 60.8	.185
Bipolar low-voltage zone, %	38.6 ± 23.1	27.3 ± 12.8	.092
Bipolar scar (cm²)	55.5 ± 30.1	45.0 ± 38.5	.312
Bipolar scar, %	18.8 ± 12.2	13.7 ± 7.8	.152
Area with abnormal potentials (cm²)	40.3 ± 27.7	14.2 ± 12.6	.002
Scar distribution			
RVOT	18 (51.4%)	13 (92.9%)	.008
Superior free wall	5 (14.3%)	2 (14.3%)	.999
Inferior free wall	22 (62.9%)	3 (21.4%)	.012
Superior TV	14 (40.0%)	10 (71.4%)	.062
Inferior TV	29 (82.9%)	6 (42.9%)	.012
Anterior wall	3 (8.6%)	0 (0.0%)	.548
Apex	4 (11.4%)	0 (0.0%)	.312

RV = right ventricle; RVOT = right ventricular outflow tract; TV = tricuspid valve.
Results are mean ± SD or n (%).
†The average of bipolar or unipolar median voltage.

Endocardial substrate characteristics
Table 2 shows the comparison of substrate characteristics of RV epicardium between group 1 and group 2 patients. The mean number of mapping points was 593 ± 479 points. Group 1 patients demonstrated the larger bipolar LVZ (35.1 ± 26.7 cm² vs 23.1 ± 10.9 cm², P = .027), bipolar scar (17.5 ± 13.8 cm² vs 11.6 ± 10.9 cm², P = .017), unipolar LVZ (66.5 ± 39.6 vs 45.9 ± 21.6 cm², P = .002), and longer total activation time (155.0 ± 34.5 vs 140.1 ± 29.2 ms, P = .020) in comparison to the group 2 patients.

Group 1 patients had more scarred segments in the inferior free wall (19.3% vs 0.0%, P = .001), superior TV (36.8% vs 14.3%, P = .014), and inferior TV (50.9% vs 26.5%, P = .016) in comparison to the group 2 patients.

Table 3 shows the comparison of substrate characteristics of the RV epicardium (n = 49) between group 1 and group 2 patients. The mean number of mapping points was 1528 ± 971 points. There was a similar bipolar LVZ and scar area between the 2 groups. Group 1 patients demonstrated the larger abnormal substrate (40.3 ± 27.7
cm² vs 14.2 ± 12.6 cm², \(P = .002 \) in comparison to the group 2 patients.

Group 1 patients had more scarred segments in the inferior free wall (62.9% vs 21.4%, \(P = .012 \)) and inferior TV (82.9% vs 42.9%, \(P = .012 \)) in comparison to the group 2 patients. Conversely, group 1 patients had fewer scarred segments in the RVOT area (51.4% vs 92.9%, \(P = .008 \)) than group 2 patients.

Figure 1 shows an example of epicardial/endocardial bipolar voltage mapping for groups 1 and 2, respectively. Figure 2 summarizes the distribution of the scarred segment in the RV epicardium and endocardium from groups 1 and 2.

Follow-up
After a mean follow-up period of 45.3 ± 28.5 months, 3.5% (2/57) and 2.0% (1/49) of the patients died of noncardiovascular diseases in group 1 and group 2, respectively. A total of 35.1% (20/57) and 10.2% (5/49) of the patients had recurrences of sustained VT or VF in group 1 and group 2, respectively. Among patients with prior history of sustained VT/VF (\(n = 84; 48 \) in group 1 and 36 in group 2), 39.6% (19/48) and 13.9% (5/36) of the patients had recurrences of sustained VT or VF in group 1 and group 2, respectively. After univariate and multivariate Cox regression analysis in the subgroup with documented sustained VT (\(n = 84 \)), the endocardial scar in the superior TV in the endocardium area was associated with VT/VF recurrence in the entire study population (HR: 3.596; 95% confidence interval [CI]: 1.412–9.160, \(P = .007 \); Supplemental Table 1) and in patients with endo-epicardial mapping (HR: 4.702, 95% CI: 1.676–13.193, \(P = .003 \), Supplemental Table 2).

Discussion
Main findings
The present study had several important findings. First, both endocardial and epicardial scars were more extensive in patients with ARVC and RV dysfunction. Second, the distribution of scars differs between ARVC patients with or without RV dysfunction. In the endocardium, there were more patients with scar involvement in the TV area and inferior wall in the RV dysfunction group than in the other group. In the epicardium, there were more patients with scar involvement in the inferior wall and fewer patients with scarring in the RVOT in the RV dysfunction group than in the other group. Third, the presence of endocardial

Figure 1 Arrhythmogenic right ventricular cardiomyopathy (ARVC) patients with and without right ventricle (RV) dysfunction. Top: An example of an ARVC patient with severe RV dysfunction. The endocardial bipolar voltage map (left image) shows a dense scar in the inferior tricuspid valve (TV) and inferior free wall. The endocardial unipolar voltage map (middle image) shows an extensive low-voltage zone in the TV and free wall. The epicardial bipolar voltage map shows extensive scarring in the right ventricular outflow tract (RVOT), entire TV, and inferior free wall area. Bottom: An example of an ARVC patient without RV dysfunction. The endocardial bipolar voltage map (left image) shows a dense scar in the RVOT area. The endocardial unipolar voltage map (middle image) shows a comparable low-voltage zone in the RVOT area. The epicardial bipolar voltage map shows extensive scarring in the RVOT and superior TV area.
superior TV scars was associated with long-term VT/VF recurrence.

ARVC and the scar pattern
In patients with ARVC, the fibrofatty scar usually progresses from the epicardium toward the endocardium. In our study, the epicardial scar was more extensive than the endocardium in both groups, which is consistent with previous reports. The scar predominantly involves the RV free wall in patients with ARVC, which results in wall thinning and aneurysmal dilatation. The scar distribution is typically localized in the inflow tract (TV area), outflow tract, and apex. In the present study, no patient presented with scarring in the endocardial apex. In the epicardium, 4 patients had apical scar involvement with RV dysfunction. No scar involvement at the apex was observed in patients with preserved RV function.

To the best of our knowledge, this is the first report describing a difference in scar distribution in ARVC patients with or without RV dysfunction. In patients with RV dysfunction, the scar was more dominant in the inferior portion and TV area. Conversely, the scar was more dominant in the superior portion of the patient without RV dysfunction. Our prior publication described the scar progression in patients with ARVC who underwent repeat procedures. In patients with recurrent VT, scar involvement tends to extend with the deterioration of RV systolic function. In our study cohort, 4 patients presented with homogeneous epicardial RV scarring and RV dysfunction (Figure 3). Patients with preserved RV systolic function may progress and present with more extensive scars and worsening RV dysfunction.

Scar involvement and long-term recurrence
Considerable information has been published regarding risk stratification in patients with ARVC. The information was mostly the result of single-center reports and several small multicenter registries. In a previous study, the extent of electroanatomic scar on RV endocardial voltage mapping was associated with VT/VF recurrence. The RV dysfunction and LV dysfunction were associated with VT/VF events and adverse cardiovascular outcomes in previous studies. In our present study, LV dysfunction and extensive RV endocardial scarring were associated with the presence of RV dysfunction. Multivariate analysis showed that a scar involving the specific area (superior TV area) was independently associated with recurrence. Additionally, a longer activation time in the endocardium was also related
to long-term recurrence (Supplemental Table 1). However, when we performed the subgroup analysis with the patient with endo-epicardial mapping, the statistical result became insignificant (Supplemental Table 2).

Requirement of epicardial mapping/ablation

In our present study, more patients (35 [61.4%]) underwent epicardial mapping in group 1 in comparison to group 2 (14 [28.6%], $P < .01$). Additionally, the area with abnormal substrate was larger in group 1 patients in comparison to group 2 patients. Previous study suggested that patients with more advanced stage of ARVC tend to have more scar and less viable arrhythmogenic substrate in the epicardium owing to the progressive nature of ARVC. Therefore, the role of the epicardial approach might be less important in the advanced stage of ARVC. The finding was different from our results. Berruezo and colleagues defined that the advanced stage of ARVC was based on the substrate extension, which was different from our study. Further studies with more patients with ARVC are warranted to validate this result.

In our study, there was larger endocardial and epicardial scar area in the group 1 patients in comparison to group 2 patients. The extensive scar might indicate intramural wide-spreading fibrofatty infiltration and prohibit the energy penetration from the endocardial ablation. Therefore, the epicardial approach could be required to eliminate the intramural circuit in group 1 patients.

Limitations

The present study had some limitations. First, some of the study population did not receive epicardial mapping. The results of the present study might be confounded by the retrospective nature of the study. In our study population, some patients were not indicated for an epicardial approach based on our methodology. Therefore, the information of epicardial substrate was not complete. Whether selective bias could confound the current results remains unknown, and further investigations are warranted to validate the generalizability of the present findings in a prospective cohort. Third, the presence of epicardial fat could interfere with the recognition scar within the epicardium. Fourth, we analyzed the scar distribution pattern, which might not indicate the area of slow conduction and the VT substrate for reentry arrhythmia.

Conclusion

Patients with ARVC and RV dysfunction were associated with larger abnormal substrates in the endocardium and epicardium of the RV. The characteristics of scar distribution differed between ARVC patients with and without RV dysfunction. There were more scars involving the inferior portion and TV and fewer scars involving the RVOT in patients with RV dysfunction than in those without RV dysfunction. In the subgroup analysis of the patients with sustained VT, the presence of a scar in the superior TV of the endocardium could predict recurrence despite successful ablation.
Perspectives
This study demonstrated the substrate characteristics in patients with arrhythmogenic right ventricular cardiomyopathy with or without right ventricular dysfunction. Diseased substrate involving the inflow tract or the tricuspid annulus and the inferior wall of the right ventricle was associated with the right ventricular dysfunction. In contrast, the diseased substrate involving the outflow tract was associated with the preserved right ventricular function. Catheter ablation was effective in eliminating the ventricular arrhythmia. However, the presence of a dense scar in the superior tricuspid valve was associated with recurrent ventricular tachycardia despite catheter ablation in the subgroup with sustained ventricular tachycardia before procedure.

Funding Sources: This work was supported by the Ministry of Science and Technology, Taiwan (MOST 109-2314-B-075-076-MY3, MOST 109-2314-B-010-058-MY2, MOST 110-2314-B-A49A-541-MY3); and Taipei Veterans General Hospital, Taiwan (grant no. V110B-042, VN111-05, V111C-128, C19-027, C13-092); Research Foundation of Cardiovascular Veterans General Hospital, Taiwan (grant no. V110B-042, VN111-05, B-010-058-MY2, MOST 110-2314-B-A49A-541-MY3, MOST 110-2314-B-075-076-MY3, MOST 110-2314-B-075-076-MY3). This study was supported by the Task Force on Catheter Ablation of Ventricular Arrhythmias: Proposed Consensus on Catheter Ablation of Ventricular Arrhythmias: Developed in a partnership with the European Heart Rhythm Association (EHRA), a registered branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA). Heart Rhythm 2017;14:607–616.

Disclosures: The authors have no conflicts to disclose.

Authorship: All authors attest they meet the current ICMJE criteria for authorship.

Patient Consent: Informed consent was obtained from patients.

Ethics Statement: This retrospective study was approved by the Institutional Review Board. The research reported in this paper adhered to the Helsinki Declaration guidelines.

Appendix Supplementary data
Supplementary data associated with this article can be found in the online version at https://doi.org/10.1016/j.hroo.2022.04.007.

References
1. Corrado D, Link MS, Calkins H. Arrhythmogenic right ventricular cardiomyopathy. N Engl J Med 2017;376:61–72.
2. Lin CY, Chung FP, Kuo L, et al. Characteristics of recurrent ventricular tachycardia after catheter ablation in patients with arrhythmogenic right ventricular cardiomyopathy. J Cardiovasc Electrophysiol 2019;30:582–592.
3. Basso C, Thieme G, Corrado D, Angelini A, Nava A, Valente M. Arrhythmogenic right ventricular cardiomyopathy: Dysplasia, dystrophy, or myocarditis? Circulation 1996;94:983–991.
4. Dalal D, Nasir K, Bomma C, et al. Arrhythmogenic right ventricular dysplasia: a United States experience. Circulation 2005;112:3823–3832.
5. Santageli P, Zado ES, Supple GE, et al. Long-term outcome with catheter ablation of ventricular tachycardia in patients with arrhythmogenic right ventricular cardiomyopathy. Circ Arrhythm Electrophysiol 2015;8:1413–1421.
6. Chung FP, Lin CY, Lin YJ, et al. Application of noninvasive signal-averaged electrocardiogram analysis in predicting the requirement of epicardial ablation in patients with arrhythmogenic right ventricular cardiomyopathy. Heart Rhythm 2020;17:584–591.
7. Estelle G, Alban R, Françoise P, Philippe C, Robert F. Clinical diagnosis, imaging, and genetics of arrhythmogenic right ventricular cardiomyopathy/dysplasia: JACC state-of-the-art review. J Am Coll Cardiol 2018;72:784–804.
8. Hulot JS, Jouven X, Empua JP, Frank R, Fontaine G. Natural history and risk stratification of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circulation 2004;110:1879–1884.
9. Corrado D, Basso C, Thieme G, et al. Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study. J Am Coll Cardiol 1997;30:1512–1520.
10. Berruezo A, Acosta J, Fernandez-Armenta J, et al. Safety, long-term outcomes and predictors of recurrence after first-line combined endoepicardial ventricular tachycardia substrate ablation in arrhythmogenic cardiomyopathy. Impact of arrhythmic substrate distribution pattern. A prospective multicentre study. Europace 2017;19:607–616.
11. Marcus FI, McKenna WJ, Sherrill D, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the Task Force Criteria. Eur Heart J 2010;31:806–814.
12. Lin CY, Chang FP, Lin YJ, et al. Safety and efficacy of epicardial ablation of ventricular tachycardia: experience from a tertiary referral center in Taiwan. Acta Cardiol Sin 2018;34:49–58.
13. Marcus FI, McKenna WJ, Sherrill D, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation 2010;121:1533–1541.
14. Marchlinski FE, Callans DJ, Gottlieb CD, Zado E. Linear ablation lesions for control of unmappable ventricular tachycardia in patients with ischemic and non-ischemic cardiomyopathy. Circulation 2000;101:1288–1296.
15. Aliot EM, Stevenson WG, Almendral-Garrote JM, et al. EHRA/HRSA expert consensus on catheter ablation of ventricular arrhythmias: developed in a partnership with the European Heart Rhythm Association (EHRA), a registered branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA). Heart Rhythm 2009;6:886–933.
16. Lin CY, Chung FP, Lin YJ, et al. Clinical significance of J waves with respect to substrate characteristics and ablation outcomes in patients with arrhythmogenic right ventricular cardiomyopathy. Europace 2021;23:1418–1427.
17. Chung FP, Li HR, Chong E, et al. Seasonal variation in the frequency of sudden cardiac death and ventricular tachyarrhythmia in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy: the effect of meteorological factors. Heart Rhythm 2013;10:1589–1596.
18. Marcus FI, Fontaine GH, Guiraudon G, et al. Right ventricular dysplasia: a report of 24 adult cases. Circulation 1982;65:384–398.
19. Santageli P, Dello Russo A, Pironi M, et al. Fragmented and delayed electrograms within fibrofatty scar predict arrhythmic events in arrhythmogenic right ventricular cardiomyopathy: results from a prospective risk stratification study. Heart Rhythm 2012;9:1200–1206.
20. Migliore F, Zorzi A, Silvano M, et al. Prognostic value of endocardial voltage mapping in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circ Arrhythm Electrophysiol 2013;6:167–176.
21. Saguner AM, Vecchiati A, Baldinger SH, et al. Different prognostic value of functional right ventricular parameters in arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circ Cardiovasc Imaging 2014;7:230–239.
22. Wichter T, Paul M, Wolfmann C, et al. Implantable cardioverter/defibrillator therapy in arrhythmogenic right ventricular cardiomyopathy: single-center experience of long-term follow-up and complications in 60 patients. Circulation 2004;109:1503–1508.
23. Lemola K, Brunkhorst C, Helfenstein U, Occhisin E, Jenni R, Duru F. Predictors of adverse outcome in patients with arrhythmogenic right ventricular dysplasia/ cardiomyopathy: long term experience of a tertiary care centre. Heart 2005;91:1167–1172.
24. Hong KN, Russo MJ, Liberman EA, et al. Effect of epicardial fat on ablation performance: a three-energy source comparison. J Card Surg 2007;22:521–524.