Understanding Complex Electron Radiolysis in Saline Solution by Big Data Analysis

Zhihao Zhang, Hongxuan Guo, Bo Liu, Dali Xian, Xuanxuan Liu, Bo Da, and Litao Sun

ABSTRACT: In this article, we developed a new method to analyze the complex chemical reactions induced by electron beam radiolysis based on big data analysis. At first, we built an element transport network to show the chemical reactions. Furthermore, the linearity between the species was quantified by Pearson correlation coefficient analysis. Based on the analysis, the mechanism of the high linearity between the special species pairs was interpreted by the element transport roadmap and chemical equations. The time variation of the pH of the solution and bubble formation in the solution were analyzed by simulation and data analysis. The simulation indicates that O₂ and H₂ can easily oversaturate and form bubbles. Finally, the radiolysis of high-energy electrons in pure water was analyzed as a reference for the radiolysis of high-energy electrons in saline solution. This work provides a new method for investigating a high-energy electron radiolysis process and for simplifying a complex chemical reaction based on quantitative analysis of the species variation in the reaction.

INTRODUCTION

Radiolysis is a complicated phenomenon induced by ion beams, electron beams, and other radioactive particles on condensed materials. It is important to analyze the radiolysis of an aqueous solution, such as saline, in various applications. For instance, the efficiency of radiotherapy is dominated by the radiolysis of the external radioactive beam, radiotherapy implants, and injections on tumors and living cells. Living cells exposed to beta rays and other radioactive sources are damaged by direct radiation hazards and radiation chemical reactions. In addition to health science, radiolysis has been investigated in other fields. In radioactive waste disposal work, the service life of metal containers for high-radioactivity liquid storage is reduced because the corrosion of the metals is accelerated by the products of water radiolysis. In some chemical experiments, radiolysis products actuate the experiments for nanoparticle formation and evolution. Nanostructures printed by electron beams are also controlled by free radicals induced by the radiolysis of high-energy electrons in water and other solutions. Thus, the exploration of radiolysis is important and instructive to engineering and technologies.

Multiple water radiolysis product yield rates by pulsed electron beams have been measured since 1962. Le Càër defined the water radiolysis process into three stages. In the first stage, water molecules undergo relaxation processes after energy is deposited and provide excited molecules, ionized molecules, and subexcitation electrons. In the second stage, molecules undergo complex physical reactions such as ion–molecule reactions and dissociative relaxation. In the last stage, species undergo chemical reactions and diffuse in water. Schneider revealed the relationship between the water radiolysis product concentration and electron beam setting data by mathematical models and experiments.

Received: February 19, 2022
Accepted: April 8, 2022
Published: April 21, 2022
of the aqueous saline solution was investigated. Molecular decomposition and chemical reactions are used to explain the complex species generated during radiolysis. Energy absorption-induced molecular decomposition in solution yields free radicals and other species. Chemical reactions rebuild species chemical bonds and produce other species. These complex species irreversibly change solutions. This complex process is difficult to understand through the related more than one hundred chemical equations. Normal saline is a basic component of human cells, and normal saline radiolysis process research is important to understand radioactive damage to cells. Thus, we analyzed the radiolysis of high-energy electrons in normal saline solution by a big data method. The chemical reaction induced by radiolysis was clarified based on big data analysis.

**MODEL DEVELOPMENT**

**Kinetic Model.** A kinetic model of the radiolysis process was established based on the chemical reactions in normal saline solution. In this model, we analyzed the formation of species and the chemical reaction among them. According to Le Caër’s three-stage theory, the radiolysis process can be divided into three stages. However, the theory of how the electron beams affect water during the radiolysis process has great development. In Taylor’s words, the radiolysis effect is the reactions by free radicals produced by water and electron. Thus, the radiolysis process can be grouped into two stages by varied features in the species transformation. In the first stage, the electron beam transmits energy to the water molecules and yields free radicals. This process stops with the removal of the electron beam. In the first stage, new species yielded by the electron beam are listed in eqs 1 and 2. In eq 1, the species yield hydrogen and oxygen atoms with new bonds. Moreover, in eq 2, chloride ions become chloride atoms with electrons lost, and sodium ions are always stable. In radiation dosimetry, the G value is used to define the rate of the new species’ yield or disappearance in the radiolysis process. In the second stage, all species react with others based on the chemical equations shown in the SI (Supporting Information).

\[ \text{H}_2\text{O} - e^- _\text{H}, \text{H}, \text{OH}, \text{H}_2, \text{H}_2\text{O}_2, \text{H}_2\text{O}^+, \text{HO}_2^- \]  

\[ \text{Cl}^- - e^- _\text{Cl} \]  

(1)

(2)

The temporal evolution of the species induced by electron beam irradiation was analyzed in this paper; thus, we assumed that the cross area of the solution was exposed homogeneously. A simplified kinetic model was established to describe the temporal evolution of the species concentrations. In addition, the mass of the analyzed solution is a constant in the model. It is suggested that the heat effect induced by laser pulse irradiation increases the temperature of the sample by more than 10 °C. We find that the dose rate in Liu’s work is about 2.5 × 10^7 (Gy/s), this dose rate is the same as the electron beam with 300 keV voltage and 350 pA current. However, living cell research will not use such huge dose rates; on the one hand, the high current will kill the living cell quickly while, on the other hand, the high voltage cannot provide image information clearly. The settings of dose rate in living cell research are under 2.5 × 10^5 (Gy/s); thus, the heat effect is limited and it can be ignored in this model. The diffusion calculation was neglected because space influence was excluded from consideration in this paper.

The concentration variation rate of all species in the saline solution was calculated by eq 3 with an improved Euler method, where \( R_i \) was calculated by eq 4, the dose rate of radiolysis was 7.5 × 10^7 (Gy/s), and the G values of the radiolysis are listed in Table 1. The detailed symbol description is listed in Table 3. In this work, we calculated the species concentration with time from 0 to 0.1 s with a step of 10^-10 s; thus, we had 10^6 data points for each species.

\[ \frac{\partial C_i}{\partial t} = - \sum_i r_{ij} C_i C_j + \sum_{i,k,l} \eta_{ijkl} C_i C_k C_l + R_i \]  

\[ R_i = \frac{\rho \gamma G_i}{F} (M/s) \]  

(3)

(4)

**Pearson Correlation Coefficient (PCC) Calculation.** PCC analysis is an effective method for displaying two database relationships in machine learning technique studies. In this paper, the linearity of the concentration of the species was indicated by the Pearson correlation coefficient (PCC). After that, highly correlated species pairs were set according to linearity. In this work, the PCC of species was calculated with eqs 5–7. We chose 1.1 × 10^5 data points from 10^9 data points. The data picking rule was as follows: the complete data from 10^-10 to 10^-8 s were chosen; one data point for each 10^-5 s from 10^-5 to 10^-1 s was chosen. We performed logarithmic calculations for previously selected data in the PCC calculation.

\[ P_{cc_{ij}} = \frac{A}{B} \]  

\[ A = \sum_{i=1}^{n} C_{i,v} C_{i,v} - \sum_{i=1}^{n} C_{i,v} \sum_{v=1}^{n} C_{i,v} \]  

\[ B = \left( \sum_{i=1}^{n} C_{i,v} \right)^2 \left( \sum_{v=1}^{n} C_{i,v} \right)^2 \]  

(5)

(6)

(7)

**Normalized Conventional Rate Calculation.** In eq 8, variable \( V_{ei}(t) \) is the conventional rate, which stands for the transform rate from original species \( i \) to product \( e \). \( r_{ij} \) is the rate constant in the chemical reaction about species \( i \) and \( j \) to yield species \( e \). \( C_i \) and \( C_j \) is the concentration of species \( i \) and \( j \), respectively. In eq 9, variable \( P_{ei}(t) \) is the normalized conventional rate, which stands for the form percent for species \( e \) in variable \( V_{ei}(t) \) is the species that can be yielded by species \( i \), for instance, species \( O_3 \) can yield \( O_2, HO_2, \) and \( O_3^- \); thus, \( x \) stands for \( O_2, HO_2, \) and \( O_3^- \). Species transform path effect can be qualified by \( P_{ei}(t) \): high \( P_{ei}(t) \) means species \( i \)
transformation to $e$ with high percent while low $P_{i/e}(t)$ means species $i$ transformation to $e$ with low percent.

$$V_{i/e}(t) = \sum r_{i,j}C_iC_j$$

$$P_{i/e}(t) = \frac{V_{i/e}(t)}{\sum V_{i/e}(t)}$$

$C_i$ and $C_j$ are functions of time; thus, $P_{i/e}(t)$ is dependent on time. According to $P_{i/e}(t)$ development, transform paths can be classified into three groups as Table 2 shows. The first group is

Table 2. Path Classification

| path type | $P_{i/e}$ feature |
|-----------|-------------------|
| void path | $P_{i/e} < 0.03$  |
| stable path | $P_{i/e} > 0.01$ and $\Delta P_{i/e} < 0.01$ |
| time-variant path | $P_{i/e}$ depends on time |

the void path, which has $P_{i/e}(t) < 0.03$ at all times. In this group, the conversion of species from $i$ to $e$ is negligible even with a theoretical equation to interpret the reaction. In the second group, the path with $P_{i/e}(t) > 0.03$ and the disturbance of $P_{i/e}(t)$ $< 0.01$ were defined as stable paths. This definition means that species $e$ was convened from species $i$ without time dependence. In the third group, paths with time-dependent $P_{i/e}(t)$ were considered time-variant paths, and most transform paths belong to group 3. Group 2 and group 3 are shown in Figure 2 with different colors.

# RESULTS

Element Transport Roadmap (ETR). The element transport roadmap (ETR) denotes the efficient element transport paths in the chemical reactions. The ETR was drawn from the analysis of 32 species based on big data on time-scale species concentrations and the corresponding chemical equations. The possible transport paths were provided based on the chemical equations. Then, those paths were classified into three groups according to different $P_{i/e}$ features, the stable and time-variant paths were retained, and the void paths were removed. Table 4 and Figure 1 are instances of the calculation of the ClOH$^+$ transport path efficiency by $V_{i/e}$ and $P_{i/e}$.

First, all chemical equations that use ClOH$^+$ as a reactant were listed.

Second, $V_{i/e}$ for each product was calculated. In Table 4,

$$V_{\text{ClOH},\text{Cl}} = 8 \times 10^9 \times C_{\text{H}} \times C_{\text{ClOH}} + 10^{10} \times C_{\text{eq}} - C_{\text{ClOH}} + 6.1 \times 10^9 \times C_{\text{ClOH}} - C_{\text{ClOH}}$$

$$V_{\text{ClOH},\text{Cl}_2} = 9 \times 10^4 \times C_{\text{Cl}_2} - C_{\text{ClOH}}$$

$$V_{\text{ClOH},\text{Cl}_2} = 2.1 \times 10^4 \times C_{\text{Cl}_2} - C_{\text{ClOH}}$$

Third, $P_{i/e}$ was calculated. In Table 4, the denominator for $P_{i/e}$ is

$$\sum V_{i/e}(t) = V_{\text{ClOH},\text{Cl}} + V_{\text{ClOH},\text{Cl}_2} + V_{\text{ClOH},\text{Cl}_2}$$

Last, $P_{i/e}$ for the complete simulation time was plotted and those paths were classified into different groups. The paths from ClOH$^+$ to Cl$^-$ or Cl are time-varying paths, and the path from ClOH$^+$ to Cl$_2^-$ is a void path because of the low $P_{\text{ClOH},\text{Cl}_2^-}$.

Hydrogen, oxygen, and chlorine reactions were analyzed with the corresponding ETRs. In the H ETR, time-variant paths are the overwhelming majority, and these complex time-variant paths display the fixability of the H element transformation network. In the O ETR, species have directional close relationships by effective paths that have high $P_{i/e}$. In the Cl ETR, species have a clear feature with transformation paths, and special species ClOH$^+$ and other Cl formed only species are linked by time-variant paths and the remaining species are linked by stable paths. Oxochloride species use stable paths to contract themselves in the O and Cl ETRs.

Pearson Correlation Coefficient (PCC) Calculation. Figure 3a shows the PCC for all possible special pairs in the chemical reaction induced by electron radiolysis. The species can be classified into different groups according to the PCC value. More details about the classification can be seen in the Discussion section. Species pairs with high correlation were arranged in the same group. Figure 3b1 shows that the high PCC species pair has a similar shape. Meanwhile, the low PCC species pairs have significantly different shapes, as shown in Figure 3b2.

# DISCUSSION

Complexity Analysis for Element Transport Roadmap (ETR). The complexity of the ETR is qualified by the number of paths connecting special species in the ETR. The indegree is the number of species that can transform into destined species. The outdegree is the number of destined species transformed from a special species. The degree is the sum of the indegree and outdegree in an ETR. The species degree for the H ETR was calculated from Figure 2a2. It can be seen from the species degrees of H$_2$O (15) and H$_2$O$_2$ (10) that these two species are
the dominating transformation stations in the H element transport system. This is because H2O is the original species in solution. Moreover, H2O2 has high activity, can be the reactant in bountiful reactions, and is the product of multiple species. The indegree of HO3 (0) and outdegree of HO3 (1) means that no species produces HO3 in the H ETR. However, the $P_v(t)$ of the reaction to produce HO3 is small, inducing an insignificant transformation path. Therefore, the HO3 production paths are not shown in Figure 2a2.

The H element transport network is maneuverable, and most species have multiple removal paths. Figure 2a2 shows that H2O is the core transport station, is the largest source, and saves the most H atoms.

Figure 2b2 is the O ETR. The species degree of OH− (10) suggests that OH− is a dominant transport station for the O transport network. The species indegree of O2 (7) indicates that complex reactions produce O2. Moreover, species outdegrees of O2 (2) suggest that O2 only has two removal paths in the reaction. Thus, bubbles easily form in the solution because the species O2 generation rate is higher than the destruction rate. The indegree for species O3 and Cl2O is zero, meaning that the forming paths for these two species are removed in the O ETR because of low $P_v(t)$.

Species in Figure 2b2 were classified into two groups. The first group includes O4, Cl2O4, ClO2, ClO3−, ClO4−, ClO2−, and Cl2O2, and the second group includes the remaining species. Group 1 is mainly formed by oxychloride and O4. Transformation paths for group 1 species except for ClO3− are almost stable. These paths are stable because reactions between group 1 species are sampled, and there are absolute disparities in the concentration of group 1 species. Thus, the effective transformation paths between species of group 1 are few. Group 2 species build a complex and flexible transport network with time-variant transformation paths based on chemical reactions.

Figure 2c2 shows the Cl ETR with all possible transformation paths. Cl2− has the largest degree, which suggests that Cl2− is an important species. The species indegree of Cl2O (0) means that the Cl2O yield paths are too small to be considered. Similar to the previous discussion, we classified the species into two groups: the first group included Cl2O4, ClO2, ClO−, ClO2−, ClO3−, ClO4−, Cl2O2, ClO2, and Cl2O3, and the second group included the remaining species. Species transformation paths in group 2 are time-varying. HClO and HCl are the bridge that links the two groups. The first group species can transform to the second group species, but not vice versa.

ETR uses species transformation paths to exhibit the contact for species based on chemical reaction and species concentration data. The dominant species and important species were discovered by ETR. Species were classified into several groups for the Cl ETR and O ETR according to the transformation path features between them, which will simplify the complex species relationship.

**PCC Result Analysis Based on the ETR.** According to Figure 3a, species were classified into three groups based on the PCC analysis. The PCC of the species pair in the identical group was high. Moreover, the PCC of the species pair in different groups was low. The classification is shown in Table 5.

The PCCs between the species pairs in group I, such as H2O-Cl−, H-eh−, OH−-O−, and ClOH−-OH are high. This result indicates that correlation bandings are only formed between the special species pairs. In group II and group III, the PCCs between every species in the identical group are high, as shown in Figure 3a. Here, species pairs with PCCs > 0.99 are listed in Table 6.

The relationship between the high PCC species pairs was interpreted by ETR, as shown in Figures 2 and 4. As shown in Figure 2, the transformation paths between species pairs with direct paths are single steps. For instance, the PCC value between O4 and O2 is more than 0.99, which can be interpreted as the transformation path between O2 and O4 being a single-step reaction, as shown in equation K108 (SI). Moreover, the PCC value between ClO2 and Cl2O is also higher than 0.99. However, the single-step reaction between ClO2 and Cl2O is absent from the reaction equation list in the
Only a multiple-step reaction ($\text{Cl}_2\text{O} - \text{Cl}_2\text{O}_2 - \text{ClO} - \text{ClO}_2^- - \text{Cl}_2\text{O}_4 - \text{ClO}_2^-$), as shown in Figure 4a, links the ClO$_2$-Cl$_2$O pairs with a high PCC value. In contrast to the species pairs with time-variant paths, as shown in Figure 4b, the transformation paths between the species list in Figure 4a are stable.

The indirect transformation path group species pairs in the ETR lack the direct transformation path. However, species in one pair in the indirect path group both have the same strong linear correlation species. This intermediate species could be the bridge to contact the species pairs and induce high linearity. Figure 4a shows that the species pair of Cl$_2$O$_4$ and O$_4$ is an important bridge that links the Cl ETR to the O ETR. Moreover, these species pairs have a high correlation and stable transformation paths. Similar to Cl$_2$O$_4$ and O$_4$, the oxychloride species (ClO, ClO$_2^-$, ClO$_3^-$, Cl$_2$O$_2$, Cl$_2$O, ClO$_2$, ClO$_2$) are in contact with each other by stable transformation paths. Another species, HCl and oxychloride, showed a strong relationship because of the stable transformation paths from HCl to Cl$_2$O$_4$.

No direct stable transformation path or effective intermediate species contacts O$_2$ and H$_2$. Thus, instead of the ETR, chemical reactions were analyzed to determine the relationship between O$_2$ and H$_2$. The most important reactions of the O$_2$-H$_2$ pair were selected according to the reaction rate. Clearly, H$_2$ is mainly formed by H$_2$O, which reacts with eh$^-$ or H atoms, and H$_2$ mainly reacts with OH to consume itself. O$_2$ is yielded from OH, HO$_2$, and O$_2^-$, and O$_2$ mainly reacts with eh$^-$ or H atoms. Thus, OH, H, and eh$^-$ could be the intermediate species to provide a unique relationship for the O$_2$-H$_2$ pair.

Figure 2. (a1) Initial H ETR (element transport roadmap). (a2) Complete H ETR. (b1) Initial O ETR. (b2) Complete O ETR. (c1) Initial Cl ETR. (c2) Complete Cl ETR. Arrows are transport paths, arrow colors from blue to red represent path transformation percentages from 99 to 3% for time-varying paths, and gray arrows are stable transformation percentage paths.
Figure 3. (a) PCC (Pearson correlation coefficient) for each species pair. The x axis represents the first species, the y axis represents the second species, and the color and height represent the PCC value. (b1). Time-varying Cl_2^− concentration (solid line, left label) and HO_2^− concentration (dotted line, right label). (b2). Time-varying HO_2 concentration (solid line, left label) and ClOH concentration (dotted line, right label). (b3). Time-varying H^+ concentration (solid line, left label) and OH^− concentration (dotted line, right label). It is easy to see the relationship between different shapes and PCCs.

### Table 5. Species Classification

| group | species |
|-------|---------|
| I     | H_2O→ Cl^−, H→ e^−, OH^−→ O^−, ClO^−→ OH |
| II    | H^+, Cl, HO_2 |
| III   | ClO, H_2O_2, HO_2^−, O_3, O_2^−, HO_2, ClO_2, ClO_3, ClO_4, O_2, H_2, Cl_2, Cl_2^−, Cl_3, Cl_2O_2, Cl_2O_3, ClO_2, ClO_3, ClO_4, O_2 |

### Table 6. PCC > 0.99 Species Pairs

| direct path | indirect path |
|-------------|---------------|
| stable path | time-variant path |
| O_3→ O_3  | ClO_2→ O_4  |
| O_3→ HO_3 | O_2→ HCl   |
| O_2→ O_2  | HCl→ O_4   |
| ClO_2→ ClO_4 | ClO→ ClO_2 |
| ClO→ O_2  | HO_2→ ClO  |
| ClO→ ClO_2 | HClO→ ClO_2 |
| ClO→ ClO_3 | ClO→ ClO_2 |
| HCl→ ClO_4 | ClO→ ClO_2 |
| ClO_2→ O_4 | ClO→ ClO_2 |

A direct path between species pairs, as shown above, means that the transformation between the species pairs can be completed in one reaction. Species pairs in the indirect path group need multiple reactions to complete the species transformation in ETRs.

The relationship between each species was analyzed by PCC calculation, which provided an efficient approach to analyze the radiolysis and reaction by a big data method. However, PCC data are defective in indicating the complete connection for all species because PCC results are not based on the complete transformation paths, as shown in the ETR, but are only calculated by the concentration data of two species. The transformation paths were ignored in the PCC calculation, inducing the low linearity of core species with other species.

![Image](https://doi.org/10.1021/acsomega.2c01010)

Figure 4. Species transformation network for indirect paths. This figure shows the intermediates for species pairs in the Table 6 indirect path group, which includes stable path parts (a) and time-variant path parts (b).

On the other hand, PCC is based on calculated concentration data that include complete chemical reaction information, although the ETR only analyzes the important reactants and overlooks other reactant influences on the species. Thus, the ETR analysis method can help to identify the dominant species, which is a protagonist in chemical reactions, and PCC is an effective tool for providing highly correlated species pair information that we cannot find in the ETR.

**pH, Oversaturated Gas, and the Difference between Saline and Pure Water.** Solution pH is well known as a time-varying property during the radiolysis process because chemical reactions change the H^+ concentration. Moreover, when the radiolysis process is sufficiently long, the solution cannot dissolve all the O_2 and H_2 yielded by chemical reactions, and these gases quickly form bubbles and keep the concentrations of O_2 and H_2 constant in the solution.

In Figure 5a1, the pH decreases at a high rate before 10^−6 s, and then the pH increases. Finally, the pH in a low stage suggests that the solution became acidic. The unusual increase in pH during 10^−6−10^−4 s can be explained in terms of chemical reactions. Several reaction equations that include H^+ extreme.
as a reactant or product and with a high reaction rate were analyzed as key equations. The rate of the chemical reaction that yields H⁺ always increases, while the H⁺ consumption chemical reaction rate increases and decreases. Thus, a possible reason is that the H⁺ decrease rate grew faster than the H⁺ increase rate and induced an increase in pH. The concentrations of HO₂⁻ and O₂⁻ increased, and the two species can react with H⁺. Thus, the increase in HO₂⁻ and O₂⁻ concentrations accelerated the H⁺ consumption rate and finally induced an increase in pH during 10⁻⁶ to 10⁻⁴ s.

Figure 5c shows that the shape of the escaped O₂ concentration is similar to that of H₂, and the O₂ dissolution saturation time is shorter than that of H₂. However, O₂ is more soluble than H₂ in solution, suggesting that O₂-related reactions are stronger than H₂-related reactions.

To find the differences in radiolysis inference between pure water and saline solution, species concentration databases of pure water and saline solution were plotted against time, as shown in Figure 6.

Here, we only consider those species that appeared in pure water under electron beam exposure.

The Schneider pure water model²⁶ was used to calculate the species concentration variation in pure water. The G value is identical for the same species in pure water and saline solution, and the saline solution has a G value for Cl⁻ in addition. Other settings, including the calculation step, the initial value, and the simulation completion time, were identical for the two types of solutions. In Figure 6, the salt-water model species concentrations approach pure water before 10⁻⁶ s, and then the two models’ concentrations become different for most species.

After 10⁻⁵ s, the concentration ratios differ. Species OH⁻, HO₂⁻, O⁻, O₂⁻, and O₃⁻ are always in the decreasing stage (Figure 6a), which indicates that these species are less abundant in saltwater than in pure water. Moreover, species...
H⁺, H₂O₂, OH⁻, HO₂⁻, and H₂O are in the opposite state (Figure 6b). The concentration ratios of species eh⁺, O₂, HO₂⁻, and H initially decrease and then increase (Figure 6c). O₂ and H₂ have multiple trend changes and finally obtain ratios of 1 (Figure 6d) because both species remain at saturation concentrations.

From Table 7, the yields of OH⁺, H₂O₂, HO₂⁻, O⁻, O₃⁻, O₃, HO₃, and H₂O and the applied rate in pure water are higher than those in salt solution. O₂ and H initially decrease and then increase (Figure 6c). O₂ and H₂ have multiple trend changes and finally obtain ratios of 1 (Figure 6d) because both species remain at saturation concentrations.

Table 7. Variation Rate of 16 Species in 10⁻³ s by Two Models

| Species  | YIELD by WATER | YIELD by salt | APPLIED in WATER | APPLIED in salt | C_salt/C_water ratio |
|----------|----------------|---------------|------------------|----------------|---------------------|
| H⁺       | 4.8 x 10⁷      | 15            | 2.7 x 10⁷        | 2.7 x 10⁷      | 7.8 x 10⁻¹         |
| H₂O₂     | 1.1 x 10⁸      | 5.7 x 10⁷     | 3.2 x 10⁷        | 8.9 x 10⁷      | 6.2 x 10²          |
| OH⁻      | 5.2 x 10⁸      | 1.7 x 10⁸     | 5.2 x 10¹⁰       | 1.8 x 10⁸      | 1.5 x 10⁻³         |
| HO₂⁻     | 5.2 x 10⁸      | 1.6 x 10⁸     | 5.2 x 10¹⁰       | 1.8 x 10⁸      | 2.0                |
| H⁵⁺      | 5.2 x 10⁸      | 1.5 x 10⁷     | 5.2 x 10¹⁰       | 1.5 x 10⁷      | 2.8 x 10⁻³         |
| H       | 9.6 x 10⁶      | 1.8 x 10⁶     | 7.8 x 10⁶        | 9.6 x 10⁶      | 2.0                |
| OH       | 5.0 x 10⁷      | 2.8 x 10¹⁰    | 7.6 x 10⁷        | 2.8 x 10¹⁰     | 1.9 x 10¹          |
| O⁻       | 4.0 x 10⁷      | 1.0 x 1⁰⁵     | 4.0 x 1⁰⁷        | 1.1 x 1⁰⁶     | 2.5 x 10⁻²         |
| HO₂       | 2.5 x 1⁰⁵     | 7.0 x 1⁰⁷     | 2.6 x 1⁰⁷        | 7.1 x 1⁰⁷     | 1.0 x 10²          |
| O₂⁻      | 3.7 x 1⁰⁵     | 6.3 x 1⁰⁷     | 3.6 x 1⁰⁷        | 6.3 x 1⁰⁷     | 1.4 x 10⁻²         |
| O₂         | 2.2 x 1⁰⁵     | 2.3 x 1⁰⁷     | 1.5 x 1⁰⁷        | 1.5 x 1⁰⁷     | 1                  |
| H₂         | 2.5 x 1⁰⁵     | 3.8 x 1⁰⁷     | 9.4 x 1⁰⁴        | 1.3 x 1⁰⁶     | 1                  |
| O₂⁻      | 1.9 x 1⁰⁵     | 4.1 x 1⁰⁴     | 1.9 x 1⁰⁶        | 4.2 x 1⁰⁴     | 1.4 x 10⁻⁴         |
| O₂         | 2.6 x 1⁰⁵     | 664           | 2.6 x 1⁰⁵        | 666           | 6.2 x 10⁻²         |
| HO₂⁻     | 963           | 302           | 975              | 302           | 3.1 x 10⁻¹         |
| H₂O       | 5.2 x 1⁰⁸     | 2.0 x 1⁰⁸     | 5.2 x 1⁰¹⁰       | 1.5 x 1⁰⁸     | 1                  |

This table uses the pure water model and salt solution model results to calculate the rate for listed species. Only species that appeared in the two models were considered. This table uses species concentration data in 10⁻³ s⁻¹. Yield by water” is the yield speed of species concentrations in the pure water model, and “applied in salt” is the consumption speed of species concentrations in the salt solution model.

CONCLUSIONS

In this article, we built the ETR of the chemical reaction induced by high-energy electron radiolysis (HEER) based on the chemical reaction equation and big data analysis. Based on the simulation and PCC analysis, the highly linear species pairs were selected and interpreted by the ETR. The ETR provides essential information on the chemical reaction, such as the element transport, reaction rate, and reaction direction. Combining ETR and PCC analysis, we developed an effective and reliable method for analyzing the complex chemical reaction induced by high-energy electron radiolysis in saline solution. The time variation of pH and bubble formation induced by high-energy electron radiolysis were analyzed based on this method.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.2c01010.

AUTHOR INFORMATION

Corresponding Authors

Hongxuan Guo — SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People’s Republic of China; Center for Advanced Materials and Manufacture, Joint Research Institute of Southeast University and Monash University, Suzhou 215123, People’s Republic of China; orcid.org/0000-0002-8092-8057; Email: ghx@seu.edu.cn

Litaо Sun — SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People’s Republic of China; Center for Advanced Materials and Manufacture, Joint Research Institute of Southeast University and Monash University, Suzhou 215123, People’s Republic of China; orcid.org/0000-0002-2750-5004; Email: slt@seu.edu.cn

Authors

Zhihao Zhang — SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People’s Republic of China

Bo Liu — SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People’s Republic of China

Dali Xian — SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People’s Republic of China

Xuanxuan Liu — SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People’s Republic of China
Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.2c01010

Author Contributions

Z. Z. and H. G. contributed equally.

Author Contributions

Z. Z. and H. G. conceived the study, analyzed the data, and wrote the original draft. B. L., D. X., and X. L. took part in the result discussion. B. D. provided the calculation method. All authors gave suggestive feedback. L. S. supervised the entire work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported by the National Natural Science Foundation of China (Grant no. 11874105).

REFERENCES

(1) Ren, J.-G.; Xia, H.-L.; Just, T.; Dai, Y.-R. Hydroxyl radical-induced apoptosis in human tumor cells is associated with telomere shortening but not telomerase inhibition and caspase activation. FEBS Lett. 2001, 488, 123–132.

(2) Valko, M.; Izakovic, M.; Mazur, M.; Rhodes, C. J.; Telser, J. Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell. Biochem. 2004, 266, 37–56.

(3) Peckys, D. B.; Mazur, P.; Gould, K. L.; de Jonge, N. Fully Hydrated Yeast Cells Imaged with Electron Microscopy. Biophys. J. 2011, 100, 2522–2529.

(4) de Jonge, N.; Peckys, D. B. Live Cell Electron Microscopy Is Probably Impossible. ACS Nano 2016, 10, 9061–9063.

(5) Lloyd, M. M.; Grima, M. A.; Rayner, B. S.; Hadfield, K. A.; Davies, M. J.; Hawkins, C. L. Comparative reactivity of the myeloperoxidase-derived oxidants hypohalous acid and hypohalous acid with human coronary artery endothelial cells. Free Radical Biol. Med. 2013, 65, 1352–1362.

(6) Barbouti, A.; Doulias, P. T.; Nousis, L.; Tenopoulou, M.; Galaris, D. DNA damage and apoptosis in hydrogen peroxide-exposed Jurkat cells: bolus addition versus continuous generation of H2O2. Free Radical Biol. Med. 2002, 33, 691–702.

(7) Shao, L.; Li, Q.; He, J.; Wang, J.; Tan, Z. Fragmentation and rapid shortening of telomere in HeLa cells in the early phase of hydroxyl radical-induced apoptosis. Cancer Biol. Ther. 2005, 4, 336–341.

(8) Xie, J.; Wang, C.; Wang, N.; Zhu, S.; Mei, L.; Zhang, X.; Yong, Y.; Li, L.; Chen, C.; Huang, C.; Gu, Z.; Li, Y.; Zhao, Y. Graphophyline nanoradioprotector with efficient free radical scavenging ability for mitigating radiation-induced gastrointestinal tract damage. Biomaterials 2020, 244, 119940.

(9) Ballinger, S. W.; Van Houten, B.; Conklin, C. A.; JIN, G.-F.; Godfrey, B. F. Hydrogen Peroxide Causes Significant Mitochondrial DNA Damage in Human RPE Cells. Exp. Eye Res. 1999, 68, 765–772.

(10) Davies, K. J. A. Protein damage and degradation by oxygen radicals I. General aspects. Biol. Chem. 1987, 262, 9895–9901.

(11) Powers, E. L. The Hydrated electron, the Hydroxyl Radical, and Hydrogen Peroxide in Radiation Damage in Cells. Isr. J. Chem. 1972, 10, 1199–1211.

(12) Zhang, Y.; Keller, D.; Rossell, M. D.; Erni, R. Formation of Au Nanoparticles in Liquid Cell Transmission Electron Microscopy: From a Systematic Study to Engineered Nanostructures. Chem. Mater. 2017, 29, 10518–10525.

(13) Donev, E. U.; Hastings, J. T. Electron-Beam-Induced Deposition of Platinum from a Liquid Precursor. Nano Lett. 2009, 9, 2715–2718.

(14) Ahn, T.-Y.; Hong, S.-P.; Kim, S.-I.; Kim, Y.-W. In situ liquid-cell transmission electron microscopy for direct observation of concentration-dependent growth and dissolution of silver nanoparticles. RSC Adv. 2015, 5, 82342–82345.

(15) Liao, H. G.; Cui, L.; Whitelam, S.; Zheng, H. Real-time imaging of Pt,Fe nanorod growth in solution. Science 2012, 336, 1011–1014.

(16) Winkler, R.; Fowlkes, J. D.; Rack, P. D.; Plank, H. 3D nanoprinting via focused electron beams. J. Appl. Phys. 2019, 125, 210901.

(17) Tirumula, V. R.; Divan, R.; Ocola, L. E.; Mancini, D. C. Direct-Write E-Beam Pattern of Stimuli-Responsive Hydrogel Nanostructures. J. Vac. Sci. Technol., B Microelectron. Process. Phenom. 2005, 23, 3124–3128.

(18) Gupta, T.; Strelcov, E.; Holland, G.; Schumacher, J.; Yang, Y.; Esch, M. B.; Aksyuk, V.; Zeller, P.; Amati, M.; Gregoratti, L.; Kolmakov, A. Electron and X-ray Focused Beam-Induced Cross-Linking in Liquids: Toward Rapid Continuous 3D Nanoprinting and Interfacing using Soft Materials. ACS Nano 2020, 14, 12982–12992.

(19) Ballav, N.; Schlip, S.; Zharnikov, M. Electron-Beam Chemical Lithography with Aliphatic Self-Assembled Monolayers. Angew. Chem., Int. Ed. 2008, 47, 1421–1424.

(20) Krsko, P.; Sukhishvili, S.; Mansfield, M.; Clancy, R.; Libera, M. Electron-Beam Surface-Patterned Poly (ethylene glycol) Microhydrogels. Langmuir 2003, 19, 5618–5625.

(21) Zharnikov, M.; Grunze, M. Modification of thiol-derived self-assembling monolayers by electron and x-ray irradiation: scientific and lithographic aspects. J. Vac. Sci. Technol., B Microelectron. Process. Phenom. 2002, 20, 1793–1807.

(22) Fisher, J. S.; Kottke, P. A.; Kim, S.; Fedorov, A. G. Rapid Electron Beam Writing of Topologically Complex 3D Nanostructures Using Liquid Phase Precursor. Nano Lett. 2015, 15, 8385–8391.

(23) Anderson, A. R.; Hart, E. J. Radiation chemistry of water with pulsed high intensity electron beams. J. Phys. Chem. 1962, 66, 70–75.

(24) LaVerne, J. A.; Pimblott, S. M. Scavenger and time dependences of radicals and molecular products in the electron radiolysis of water: examination of experiments and models. J. Phys. Chem. 1991, 95, 3196–3206.

(25) Le Caër, S. Water Radiolysis: Influence of Oxide Surfaces on H2 Production during Ionizing Radiation. Water. 2011, 3, 235–253.

(26) Schneider, N. M.; Norton, M. M.; Mendel, B. J.; Grogan, J. M.; Ross, F. M.; Bau, H. H. Electron–Water Interactions and Implications for Liquid Cell Electron Microscopy. J. Phys. Chem. C 2014, 118, 23273–23282.

(27) Anbar, M.; Thomas, J. K. Pulse Radiolysis Studies of Aqueous Sodium Chloride Solutions. J. Phys. Chem. 1964, 68, 3829–3835.

(28) Kim, K.-J.; Hamill, W. H. Pulse radiolysis of concentrated aqueous solutions of chloride, iodide, and persulfate ions. J. Phys. Chem. 1976, 80, 2325–2330.

(29) Pucheault, J.; Ferradínl, C.; Julien, R.; Deyesine, A.; Gilles, L.; Moreau, M. Radiolysis of concentration solutions. 1. Pulse and gamma radiolysis studies of direct and indirect effects in LiCl solutions. J. Phys. Chem. 1979, 83, 330–336.

(30) Kelm, M.; Bohnert, E. Radiation chemical effects in the near field of a final disposal site - I: Radiolytic products formed in concentrated NaCl solutions. Nucl. Technol. 2000, 129, 119–122.

(31) Kelm, M.; Bohnert, E. Radiation chemical effects in the near field of a final disposal site - II: Simulation of the radiolytic processes in concentrated NaCl solutions. Nucl. Technol. 2000, 129, 123–130.

(32) Kelm, M.; Metz, V.; Bohnert, E.; Janata, E.; Bube, C. Interaction of hydrogen with radiolysis products in NaCl solution — comparing pulse radiolysis experiments with simulations. Radiat. Phys. Chem. 2011, 80, 426–434.

(33) Woehl, T. J.; Moser, T.; Evans, J. E.; Ross, F. M. Electron-beam-driven chemical processes during liquid phase transmission electron microscopy. MRS Bull. 2020, 45, 746–753.

(34) Jinwen, L.; Jun, H.; Zhangquan, P.; Shaojun, D. Nonisothermal Nonisothermal Sodium Chloride Solutions. J. Phys. Chem. 1991, 95, 3196–3206.

(35) Okada, T.; Ogura, T. Nanoscale imaging of untreated mammalian cells in a medium with low radiation damage using
scanning electron-assisted dielectric microscopy. Sci. Rep. 2016, 6, 29169.

(36) Inami, W.; Horiba, D.; Kawata, Y. Cell stimulation by focused electron beam of atmospheric SEM. Ultramicroscopy 2019, 206, 112823.

(37) Liu, Y.; Mu, Y.; Chen, K.; Li, Y.; Guo, J. Daily Activity Feature Selection in Smart Homes Based on Pearson Correlation Coefficient. Neural Process. Lett. 2020, 51, 1771–1787.