Particle Dark Matter - A Theorist’s Perspective

Leszek Roszkowski
Department of Physics and Astronomy, University of Sheffield, Hicks Building, Sheffield, S3 7RH, England

Abstract. Dark matter is presumably made of some new, exotic particle that appears in extensions of the Standard Model. After giving a brief overview of some popular candidates, I discuss in more detail the most appealing case of the supersymmetric neutralino.

Keywords. Dark Matter, Supersymmetry

PACS Nos 2.0

1. Introduction – WIMP–Type Candidates for DM

While one cannot complain about a shortage of candidates for explaining the nature of the dark matter (DM) in the Universe, from the point of view of particle physics, the WIMP (weakly interacting massive particle) looks particularly attractive. In many “scenarios” as well as more complete theories beyond the SM there often appear several new WIMPs and it is typically not too difficult to ensure that the lightest of them is stable by means of some discrete symmetry or topological invariant. (For example, in supersymmetry, one invokes R–parity.) In order to meet stringent astrophysical constraints on exotic relics (like anomalous nuclei), they must be electrically and (preferably) color neutral. They can however interact weakly.

Contrary to common wisdom, WIMP–type candidates are neither bound to interact with roughly weak interaction strength (in the sense of electroweak) nor does their mass have to be in the GeV to TeV regime. From a particle theorist’s point of view, it is most sensible to concentrate on the cases where the WIMP appears as a “by–product” in some reasonable frameworks beyond the SM which have been invented to address some other major puzzle in particle physics. In other words, let’s talk about WIMP candidates that have not been invented for the sole purpose of solving the DM problem.

One way to present this is to consider a big “drawing board” as in Fig. 1: a plane spanned by the mass of the WIMP on the one side and by a typical strength \(\left< \text{int} \right> \) of its interaction with ordinary matter (\(i.e., \) detectors) on the other. To a first approximation the mass range

Invited talk at PASCOS–03, Mumbai, India, 3–8 January 2003.
Figure 1. A schematic representation of some well-motivated WIMP-type particles for which a priori one can have! 1. Ω_int represents a typical order of magnitude of interaction strength with ordinary matter. The neutrino provides hot DM which is disfavored. The box marked “WIMP’ stands for several possible candidates, e.g., from Kaluza–Klein scenarios. Can in principle extend up to the Planck mass scale, but not above, if we are talking about elementary particles. The interaction cross section could reasonably be expected to be of the electroweak strength ($\sigma_{\text{int}} \sim 10^{-38} \text{ cm}^2 = 10^{-2} \text{ pb}$) but could also be as tiny as that purely due to gravity:

$$m_{\text{WIMP}} \approx M_P \sim 10^{32} E_W 10^{-34} \text{ pb}.$$

What can we put into this vast plane shown in Fig. 1? One obvious candidate is the neutrino, since we know that it exists. Neutrino oscillation experiments have basically convinced us that its mass of at least 0.1 eV. On the upper side, if it were heavier than a few eV, it would overclose the Universe. The problem of course is that such a WIMP would constitute hot DM which is hardly anybody’s favored these days. While some like it hot, or warm, most like it cold. Cold, or non-relativistic at the epoch of matter dominance (although not necessarily at freezeout!) and later, DM particles are strongly favored by a few independent arguments. One is numerical simulations of large structures. Also, increasingly accurate studies of CMB anisotropies, most notably recent results from WMAP [1], imply a large cold DM (CDM) component and strongly suggest that most (90%) of it is non-baryonic.

In the SUSY world, of course we could add a sneutrino \tilde{e}, which, like neutrinos, interacts weakly. From LEP its mass $> 70 \text{ GeV}$ (definitely a cold DM candidate), but then $\tilde{e} \neq 1$. Uninteresting and \tilde{e} does not appear in Fig. 1.

The main suspect for today is of course the neutralino χ. Unfortunately, we still know little about its properties. LEP bounds on its mass are actually not too strong, nor are they robust: they depend on a number of assumptions. In minimal SUSY (the so-called MSSM)
in most cases’ $m > 70\text{ GeV}$, but the bound can be also much lower. Theoretically, because of the fine tuning argument, one expects its mass to lie in the range of several tens or hundreds of GeV. More generally, $m > \frac{2\pi}{g} \text{ GeV}$ from $h^2 < 1$ (the so–called Lee-Weinberg bound [2]) and $m < 300\text{ TeV}$ from unitarity [3]. Neutralino interaction rates are generally suppressed relative to $\frac{\alpha}{\sqrt{s}}$ by various mixing angles in the neutralino couplings. In the MSSM they are typically between $10^{-3} \frac{\alpha}{\sqrt{s}}$ and $10^{-10} \frac{\alpha}{\sqrt{s}}$, although could be even lower in more complicated models where the LSP would be dominated for example by a singlino (fermionic partner of an additional Higgs singlet under the SM gauge group). This uncertainty of the precise nature of the neutralino is reflected in Fig. 1 by showing both the smaller (dark blue) region of minimal SUSY and an extended one (light blue) with potentially suppressed interaction strengths in non–minimal SUSY models. Another example of a WIMP that would belong to the light blue box is the the lightest Kaluza–Klein state which is massive, fairly weakly interacting and stable in some currently popular Kaluza–Klein frameworks [8].

One can see that, while the (s)neutrinos interact weakly sensu stricto, this is not quite the case with the neutralino and the other WIMP candidates above. In fact, a typical strength of their interactions can be several orders of magnitude less, while still giving $h^2 < 1$.

There are some other cosmologically relevant relics out there whose interactions would be much weaker than electroweak. One well–known know example is the axion – a light neutral pseudoscalar particle which is a by–product of the Peccei–Quinn solution to the strong CP problem. Its interaction with ordinary matter is suppressed by the PQ scale $(\frac{\alpha}{\sqrt{s}})^2 \frac{\alpha}{\sqrt{s}} \text{ pb} \left(f_a \sim 10^{11} \text{ GeV} \right)$, hence extremely tiny, while its mass $m_a \approx 10^{-6} \text{ eV}$ if $a = 1$. The axion, despite being so light, is of CDM–type because it is produced by the non–thermal process of misalignment in the early Universe.

In the supersymmetric world, the axion has its fermionic superpartner, called axino. Its mass is strongly model–dependent but, in contrast to the neutralino, often not directly determined by the SUSY breaking scale $\sim 1 \text{ TeV}$. Hence the axino could be light and could naturally be the LSP, thus stable. An earlier study concluded that axinos could be warm DM with mass less than 2 keV [4]. More recently it has been pointed out more massive axinos quite naturally can be also cold DM as well, as marked in Fig. 1. Relic axinos can be produced either through thermal scatterings and decays involving gluinos and/or squarks in the plasma, or in out-of-equilibrium decays of the next–to-LSP, e.g. the neutralino [5]. The first mechanism is more efficient at larger reheat temperatures $T_R > 10^4 \text{ GeV}$, the second at lower ones. Axino cosmology is very interesting but I have no time to discuss it here [5].

Lastly, there is the gravitino – the fermionic superpartner of the graviton – which arises by coupling SUSY to gravity. The gravitino relic abundance can be of order one [6] but one has to also worry about the so–called gravitino problem: heavier particles, like the NLSP, will decay to gravitinos very late, around 10^7 sec after the Big Bang, and the associated energetic photons may cause havoc to BBN products. The problem is not unsurmountable but more conditions/assumptions need to be satisfied. One way is to assume that the NLSP is mostly a higgsino but this does not normally happen in the framework of grand unification, at least not in minimal models. Fig. 1 the gravitino is marked in the mass range of keV to GeV and gravitational interactions only, although keV–gravitinos have actually strongly enhanced couplings via their goldstino component.

While Fig. 1 is really about WIMPs which arise in attractive extensions of the SM, it
is worth mentioning another class of relics, popularized under the name of WIMPzillas, for which there exist robust production mechanisms (curvature perturbations) in the early Universe [7]. As the name suggests, they are thought to be very massive, 10^{13} GeV or so. There are no restrictions on WIMPzilla interactions with ordinary matter, other than they must interact at least gravitationally, as schematically depicted in Fig. 1.

In summary, the number of well–motivated WIMP and WIMP–type candidates for CDM is in the end not so large. On the other hand, one should remember that in the box marked with the generic name “WIMP” one can accommodate not just the neutralino but also some other stable states appearing in various extensions of the SM, e.g., Kaluza–Klein type theories. One can add to this picture other candidates, like cryptons and other particles arising in the context of superstrings, or mirror DM [9].

SUSY, which to many is the most promising extension of the SM, provides three robust WIMP candidates for the CDM: the neutralino, the axino and the gravitino. Each has its virtues and weak points but I will have no time to discuss this here. I think that it is fair to say that the WIMP for today, and this decade, is the neutralino. It is therefore of our primary interest here because it is present in any sensible SUSY spectrum and is testable in today’s experimental programmes.

In this talk, I will explore cosmological properties of the neutralino as the LSP in the general MSSM and in two unification–based models: the Constrained MSSM (CMSSM) and in the GUT model based on the $SU(10)$ gauge group. (See the talk by Raby [10]). I will next present ensuing predictions for the cross section for DM neutralino elastic scattering with detector material in both models and contrast them with the case of the general MSSM. See also the complementary presentation of Nojiri [11] for a discussion of indirect detection and collider search for SUSY aspects of the neutralino.

2. The Neutralino

2.1 The Frameworks

There are two basic schemes in which one usually considers cosmological properties of the neutralino. One is a rather general framework of the MSSM where superpartner masses originate primarily from soft SUSY–breaking terms. Additionally, one assumes a common mass parameter m_1 for all the gauginos in the spectrum which leads to the well–known relations $M_1 = \frac{2}{3} \tan^2\beta M_2$ and $M_2 = \mu m_{\tilde{t}} - \frac{1}{3} m_{\tilde{e}}$, with $M_1 = M_2 = m_{\tilde{g}}$ being the soft bino/wino/gluino mass. One further imposes the R–parity to make the LSP stable.

Alternatively, it is more popular today to consider specific boundary conditions at some high scale, like the grand unification scale M_{GUT} or the string scale. In unified models one writes down the Lagrangian at the unification scale and next employs the Renormalization Group Equations (RGEs) to compute the couplings and masses in an effective theory valid at the electroweak scale. One such popular model is the CMSSM, aka mSUGRA, where one assumes a common soft mass scale m_0 for all the scalars (sfermions and Higgs) and a common trilinear soft SUSY–breaking parameter A_0. These parameters are run using their respective RGEs down from M_{GUT} to some appropriately chosen low-energy scale Q_0 where the Higgs potential (including full one-loop corrections) is minimized while keeping the usual ratio $\tan \beta = \frac{v_u}{v_d}$ of the Higgs VEVs fixed. The Higgs/higgsino mass parameter
and the bilinear soft mass term B are then computed from the conditions of radiative electroweak symmetry breaking (EWSB), and so are the Higgs and superpartner masses. The CMSSM thus a priori has only the usual $\tan \beta$, $m_{1,2}; m_0; A_0; \text{sgn}(\mu)$ as input parameters. However, in the case of large $m_{1,2}; m_0 > 1 \text{TeV}$ and/or large $\tan \beta (\mu=m_b)$ some resulting masses will in general be highly sensitive to the assumed physical masses of the top and the bottom (as well as the tau).

Another interesting scenario is a fully realistic effective SUSY model which derives from a minimal GUT with the $SO(10)$ gauge group (MSO$_{10}$SM $[12,10]$). It involves a different set of boundary conditions at M_{GUT} which leads to a distinctively different set of phenomenological and cosmological predictions $[13,10]$. On starts with a well defined model at the GUT scale: the sfermions of all the three families have a unified (soft) mass m_{16}, while for the Higgs (which come in 10_H and its conjugate) the analogous unified quantity is m_{10}. After running the parameters down to m_Z, one finds that experimental constraints require $A_0 \leq 2 m_{16}, m_{10}$, $m_{10} > 2 \text{TeV}; m_{16} > 1 \text{TeV}$ and $m_{1,2}$, and $m_H > 10\%$, where $m_H^2 = m_{10}^2 (\tan \beta)$ $[12]$. $\tan \beta$ is necessarily large 50 because of Yukawa unification.

The case of large $\tan \beta$ requires one to treat the top, bottom and tau masses with special care. These (especially m_b) receive large radiative corrections from SUSY and one has to be careful in extracting from them the corresponding Yukawa couplings which in turn have an important effect on the running of the RGEs at large $\tan \beta$. The masses of the top and tau are treated with a similar accuracy although corrections to their masses are typically smaller.

Despite a small number of independent parameters in unified models, their analysis is often technically rather involved, especially at large $\tan \beta$, as mentioned above. Furthermore, in order to reduce the scale dependence of the Higgs sector and related conditions for the EWSB it is important to include full one-loop corrections to the Higgs potential and also minimize the Higgs potential at the scale Q_{e^p} with $m_{\tilde{e}}$ denoting the physical masses of the stops. This is because, at this scale, the role of the otherwise large log-terms $\log m_{\tilde{e}}^2 = Q^2$ from the dominant stop-loops will be reduced. At this scale one evaluates the one-loop conditions for the EWSB which determine $\tan \beta$ as well as the bilinear soft mass parameter B. Alternatively, one can run down all the mass parameters down to m_Z (or their physical values, if they are above m_Z) and include all the threshold corrections to the ϕ-functions due to the decoupling of states.

The mass of the pseudoscalar m_A plays an important role in evaluating h^2, especially at very large $\tan \beta$. 50. This is so for three reasons: (i) m_A decreases with increasing $\tan \beta$ $[14]$ due to the increased role of the bottom Yukawa coupling which at large enough $\tan \beta$ opens up a wide resonance $A \rightarrow f \bar{f}$; (ii) because the A-resonance is dominant due to the coupling $A \rightarrow f \bar{f} \tan \beta$ for down-type fermions; and (iii) because, in contrast to the heavy scalar H, this channel is not p-wave suppressed $[15]$. One needs to stress however that there still remains considerable uncertainty (of the order of 5%) in the procedure for computing Higgs masses and conditions for EWSB.
2.2 The Bino is the winner

The lightest neutralino is the lowest–lying mass eigenstate of the two gauginos (\(\tilde{\chi}^0_1\) and \(\tilde{\chi}^0_2\)) and the two higgsinos (\(\tilde{\chi}^0_1\), \(\tilde{\chi}^0_2\)) which are the fermionic superpartners of the neutral gauge and Higgs boson states, respectively. Remarkably, despite a priori many free parameters present in SUSY theories, the state that appears to most naturally give \(h^2 \approx 1\) is the nearly pure bino [16]. This is true in both the MSSM and in basically all unified models. Indeed, for the higgsino one typically finds \(h^2 \approx 1\) due to efficient annihilation to \(W W, ZZ, tt\) and coannihilation. In unified models, the LSP neutralino is often a nearly pure bino [17–19] because of the requirement of radiative EWSB which typically gives \(j \approx M_1\). This often allows one to impose strong constraints from \(h^2 < 1\) on most of the region of \(m_{j=1}\) and \(m_0\) in the ballpark of \(1\) TeV, as originally shown in Refs. [18,19] and later confirmed by many studies. There a few exceptions to this rough upper bound which play an important role in unified SUSY models. The bino as the cosmologically favored LSP has now become part of the standard lore.

2.3 Experimental Constraints

First I’ll summarize the relevant experimental constraints.

1. \(m_{\chi} > 104\) GeV from LEP. This constraint is fairly robust, except for some fairly degenerate cases.

2. \(m_{h} > 111\) GeV in the case of light SM–like Higgs which holds in unified models. The actual limit from LEP is \(m_{h} > 114\) GeV but theoretical uncertainty is still about \(2 \pm 3\) GeV. In the MSSM, there remains a narrow corridor of \(m_{h} \approx m_{\chi}\) down to some 90 GeV.

3. \(BR(\tilde{b} \to X_s) = (3 \pm 4, 0 \pm 8) \times 10^{-4}\) [20,21]. This constraint is very important in the light of a rather good agreement between experiment and the SM prediction \(BR(\tilde{b} \to X_s)_{SM} = (3 \pm 7, 0 \pm 3) \times 10^{-4}\) [22]). However, it is also very sensitive to underlying theoretical assumptions and has to be applied with much care. If one makes the usual simplifying assumption that the mass mixing in the down–type squark sector is the same as in the corresponding quark sector (the so–called minimal flavor violation, or MFV, scenario), then the constraint provides a very strong lower bound on \(m_{j=2}\) and \(m_0\), especially at large \(\tan \beta\) where SUSY contributions as strongly enhanced. However, by allowing for even a mild relaxation of the MFV assumption, one finds that the constraint from \(b \to X_s\) may become very much weaker, or even disappear altogether [21]. We will show its effect in the (C)MSSM but not in the MSO13SM where the MFV scenario does not necessarily hold. The constraint favors \(a > 0\) although the are ways to overcome this [21].

4. \(a_{SM} = (22 \pm 11)\) and \(a_{expt} = (7 \pm 10)\) \((e^+ e^- \text{ data})\) and \(a_{SM} = (7 \pm 10)\) \((\mu^+ \mu^- \text{ data})\), where \(a = (g - 2)\) is the anomalous magnetic moment of the muon. These numbers are quoted from the latest analysis [23]. This reduces previous discrepancy with the SM value: \(1.9\) and \(0.7\), respectively, and also between the analyses using the \(e^+ e^-\) and \(\mu^+ \mu^-\) data. It also favors \(a > 0\).

5. \(0.95 < h^2 < 0.13\) (2d), a stringent range determined recently by WMAP (+CBI and ACBAR) [1]. Larger values are excluded. Smaller ones are in principle allowed but would imply that the neutralino would only be a sub–dominant component of the CDM.
This constraint will have an extremely strong effect on the parameter space of SUSY and allowed ranges of \(m \), but not on the detection cross sections, as we will see later.

2.4 Allowed Parameter Space

I will now present the implications of experimental and cosmological constraints, as described above, on the parameter space of the CMSSM and the MSO\(_{10}\)SM. Next we will discuss the ensuing ranges for direct detection elastic scattering cross sections.

The CMSSM. In the CMSSM there are two distinct cases: low to moderate \(\tan \beta \) regime and the case \(\tan \beta \approx 50 \) [20]. We will illustrate this in Fig. 2 in the plane \((m_{1=2}, m_0)\) for a representative choice of \(\tan \beta \) for each class. In the left and right panel of Fig. 2 the experimental and cosmological bounds are presented for \(\tan \beta = 10 \) and \(50 \), respectively. We can see many familiar features. At \(m_{1=2} \approx 2m_0 \) there is a dark red wedge where the \(\tilde{e}_1 \) is the LSP. On the other side, at \(m_0 \approx m_{1=2} \) we find large gray regions where the EWSB is not achieved. Just below the region of no–EWSB the parameter \(h^2 \) is small but positive which allows one to exclude a further (light red) band by imposing the LEP chargino mass bound. As one moves away from the wedge of no-EWSB, \(h^2 \) increases rapidly. That implies that, just below the boundary of the no-EWSB region, the LSP neutralino very quickly becomes the usual nearly pure bino. This causes the relic abundance \(h^2 \) to accordingly increase rapidly from very small values typical for light higgsinos, through the narrow strip \((m_{1=2} \approx 5 \text{ GeV})\) of the cosmologically expected (green) range \((0.095 < h^2 < 0.13)\) up to larger values which are excluded (light orange). In particular, in the whole region allowed by the chargino mass bound the LSP is mostly bino-like.

A general pattern of the cosmologically favored regions does not change much until \(\tan \beta \approx 45 \) (depending somewhat on \(m_b, m_t, \) etc.). Generally one finds a robust (green) region of expected \(h^2 \) at \(m_{1=2} \approx m_0 \) in the range of a few hundred GeV [19]. In addition, at \(m_{1=2} \approx m_0 \) just above the wedge where the LSP is the \(\tilde{e}_1 \), the coannihilation of the neutralino LSP with \(\tilde{e}_1 \) opens up a very long and narrow corridor of \(m_{1=2} \) and \(m_0 \) favored by \(0.095 < h^2 < 0.13 \). At \(m_0 \approx m_{1=2} \), very close to the region of no–EWSB, again one finds a very narrow range of \(h^2 \) consistent with observations.

The new feature that appears at large \(\tan \beta \) is the effect of a very distinct, wide pseudoscalar Higgs resonance in the annihilation process \(\tilde{A} \tilde{A} \). Since, as I mentioned above, \(m_A \) decreases with increasing \(\tan \beta \), at some point, this opens up a corridor in the plane of \((m_{1=2}, m_0)\) along \(m_A = 2m_0 \). Clearly, at large \(\tan \beta \) cosmological constraints on \(h^2 \) permit much larger superpartner masses, not only in the very narrow strips close to the regions of no-EWSB and/or \(\tilde{e}_1 \)-LSP, but especially because of the resonance.

The existence of the resonance and of the region of no–EWSB are quite generic but their exact positions at large \(\tan \beta \) are rather sensitive to the relative values of the top and bottom masses. Generally, at fixed \(\tan \beta \), increasing (decreasing) the top mass relative to the bottom mass causes the region of no–EWSB to move up (down) considerably because of the diminishing (growing) effect of the bottom Yukawa coupling on the loop correction to the conditions of EWSB. At fixed top and bottom masses, as \(\tan \beta \) decreases, the region of no–EWSB moves toward somewhat larger \(m_0 \) and smaller \(m_{1=2} \) but the overall effect is not very significant.
Regarding other constraints, the lightest Higgs mass excludes a sizable region of smaller $m_{1=2}$. In the Figures we plot the contours of $m_h = 114 \pm 1$ GeV and of $m_h = 111$ GeV to show the mentioned earlier effect of the uncertainties in computing m_h. Larger values of m_h are given by contours which are shifted along the $m_{1=2}$ axis with roughly equal spacings but diverge somewhat at larger m_0. The (light brown) region excluded by BR ($\bar{B} \to X_s$) grows significantly because the dominant chargino-squark contribution to the branching ratio grows linearly with $m_{1=2}$. On the other hand, one has to remember that the constraint has been derived in the MFV scenario and can easily be relaxed (or strengthened) by even a small departure from scheme. Finally, ($\overline{3}$) robustly excludes an oval–shape (yellow) region of small $m_{1=2}$ and m_0. An upper bound still exists at 1 but is now much weaker than before, and it disappears completely at 2.

One of the most promising strategies to detect WIMPs in the Galactic halo is to look for the effect of their elastic scattering from a target material in an underground detector. How do the “theory plots” of Fig. 2 translate into the more familiar (to the general community) language of WIMP mass vs. cross section ones? And how do they compare with predictions following from less constrained SUSY models, like the general MSSM?

A relevant quantity is a scalar, or spin–independent (SI), interaction cross section on a free proton at zero momentum transfer σ_{SI}. First, in Fig. 3 we show the case of the
Figure 3. Scalar interaction cross section σ_I versus m. The lowest (intermediate) red and blue bands correspond to the cosmologically favored regions of Fig. 2 with $\tan\beta = 10$ ($\tan\beta = 55$), which are allowed by experimental constraints, except $(g \neq 2)$, and by the favored range $0.095 < h^2 < 0.13$. The top band is for the non–unified Higgs model case with $\tan\beta = 60, A_0 = 0$ and $\mu = 1$. In the dashed red bands the $b ! s$ is not satisfied (within the MFV scenario). The blue (light blue) region is predicted by the general MSSM by varying $10 < \tan\beta < 65$ and assuming cosmological and collider constraints including (except for) $b ! s$. See text for more details.

CMSSM for the same choices of parameters as in Figs. 2. We plot allowed ranges of σ_I vs. the neutralino mass. For comparison, the wide (blue) region is predicted by the general MSSM assuming rather generous ranges of SUSY parameters [24]. In particular, we take $5 < \tan\beta < 65$ and $A_0 = 0; 1$ TeV.

The two lower narrow (red) strips correspond to the allowed configurations of the CMSSM of Fig. 2, with the lower (middle) one corresponding to $\tan\beta = 10 (\tan\beta = 55)$. In deriving them, the collider bounds mentioned above and $0.095 < h^2 < 0.13$ were applied, as well as the 1σ constraint from $b ! s$. Since the last one is highly sensitive to theoretical assumptions at the unification scale and excludes large regions of smaller $m_{1=2}$ and m_0, the effect of removing it is shown by a dashed line. One can see that, at large $\tan\beta$, ranges of much larger σ_I (at smaller m) become allowed. On the other hand, we do not apply the constraint from a. Its effect in the right window would be to exclude (at 2 σ) the part with $m < 150$ GeV in the main (red) band, but not in the (violet) focus point band. For $\tan\beta = 10$ instead the Higgs mass bound remains stronger.

For each $\tan\beta$ a general pattern is that of two distinct “branches”. The lower (red) one corresponds for the most part to the $m_{1=2}$ resonance and/or e–coannihilation region at $m_{1=2} = m_0$ in Figs. 2. On the other hand, the upper (violet) branch comes from the focus
sleptons are large, in the TeV range, the mass of the lightest neutralino remains moderate, since roughly $m_{\text{neutralino}} \approx m_{\text{slepton}}$. In both branches, the dominant contribution to \tilde{h}^0 comes from the exchange of the heavy scalar Higgs.

One can clearly see that predictions of the CMSSM are rather definite (thus fully justifying the name the model bears). In particular, note a remarkably narrow bands of \tilde{h}^0 as a function of $m_{1=2}$. Generally larger values of \tilde{h}^0 and smaller $m_{1=2}$ are predicted by the extremely narrow focus point region of $m_{1=2}$, while the long (red) tail comes from the region of the neutralino–slepton coannihilation and (at large $\tan \beta > 50$) of the wide resonance. Generally, as $\tan \beta$ increases, so does the cross section at fixed $m_{1=2}$.

This implies that, for both small and large $\tan \beta$, there is also an upper bound on $m_{1=2}$ because the cosmologically allowed regions in the plane ($m_{1=2};m_{0}$) eventually end at large $m_{1=2} \leq m_{0}$. As $m_{1=2}$ grows, the neutralino–slepton coannihilation eventually ceases to remain effective and h^2 grows beyond 0:13. At very large $\tan \beta > 50$ the A–resonance extends in the plane ($m_{1=2};m_{0}$) up to very large values of $m_{1=2}$ but eventually ends, too. Thus follows a lower bound on \tilde{h}^0 of about 8×10^{11} pb and an upper limit $m_{1=2} < 1950$ GeV, as can be (barely) seen in the Figure.

The top red region (with an amusing shape) has been added to show a rather exceptional case of boundary conditions for which the predicted \tilde{h}^0 is unusually high, in fact already partly excluded by experiment. It corresponds to the scenario where the soft mass terms of the Higgs doublet at the GUT scale is not unified with the other scalars. The case presented in the Figure is for $\tan \beta = 60$, $A_0 = 0$ and $u = 1$ where $m_{12}^2 = m_{0}^2 (1 + u)$. This specific example is somewhat unusual because for other choices of $\tan \beta$ and/or $u < 1$ the predicted ranges of \tilde{h}^0 are typically $< 10^{7}$ pb, like in the CMSSM, while on the other hand usually giving patterns distinctively different from those predicted in the CMSSM. The hashed (full) red region corresponds to relaxing (imposing) the constraint from $b ! s$.

In contrast to the specific patterns resulting from different unification assumptions, in the general MSSM one is struck by the enormity of the a priori allowed ranges, extending down to 10^{12} pb, or, at lower $m_{1=2}$, even below [24]. The lowest values of \tilde{h}^0 generally correspond to one or more SUSY mass parameters being very large, above 1 TeV, and thus can be considered more fine–tuned, and therefore (hopefully!) less likely. Requiring SUSY mass parameters to be less than a few TeV allows one to put a lower bound on \tilde{h}^0. At lower $m_{1=2}$ the lower bound on \tilde{h}^0 can actually extend to much lower values. This is because h^2 is determined there primarily by neutralino coannihilation with sleptons. By selecting a slepton mass not too much above $m_{1=2}$, one can make coannihilation reduce h^2 to the favored range and have at the same time very low \tilde{h}^0. This requires some fine–tuning but three or four orders of magnitude for \tilde{h}^0 (or even smaller) become allowed by allowing for SUSY mass parameters in the multi–TeV range. The coannihilation with sleptons is very effective at $m_{1=2}$ in the range of several hundred GeV (with the upper limit growing with $\tan \beta$) but at some point ceases to be effective enough and \tilde{h}^0 grows to too large values. One can still reduce it to acceptable values by either fine–tuning $m_{1=2}$ to twice m_{0} or by taking j very (!) large.

That’s for the lower ranges, which hopefully will never have to be probed! On the upper side, values as large as 10^{7} pb are allowed. At lower m_{0} they are limited from above by a lower bound on light Higgs mass and by the lower limit on h^2. At larger $m_{1=2}$ they are limited from below by the main constraint. The effect of lifting it is marked by a lighter
shade of blue. The constraint from a puts an upper bound (at 1) of $m > 450 \text{ GeV}$ but not on S_1^p [24], and not at 2 .

The current experimental sensitivity is also shown for comparison. Denoted are the regions claimed by DAMA to be consistent with the annual modulation signal allegedly present in their data when one ignores (magenta dots) or includes (blue dash) the Collaboration’s previous limits. Some other experiments (CDMS, UKDMC, Edelweiss) have by now excluded much of the DAMA region.

The MSO$_{1,0}$SM. A typical example of the parameter space is presented in the left panel of Fig. 4. (For other cases see [13] and the talk by Raby [10].) The mass of the pseudoscalar is fairly low which allows for efficient depletion of the number of WIMP neutralinos in the early Universe through the A–resonance, as in the case of the CMSSM. The vertical position of the pole is clearly visible in the panel at $m_{1\ell} = 350 \text{ GeV}$. Away from it, h^2 is too large, close to it it’s too small. In-between one finds sizable cosmologically favored (green) regions. Impact of other relevant constraints is also shown. We do not apply the constraint from b ! s because because in this model one is not bound by the MFV framework. On the other hand, all the sfermions are heavy and the model predicts basically the SM value for $(g_2/2) = 2$.

Another aspect of the MSO$_{1,0}$SM which is of much interest to phenomenology is the process $B_s \to \mu^+ \mu^-$. Because the process involves a flavor–changing exchange of the pseudoscalar, which is fairly light, the resulting $\mathcal{B}(B_s \to \mu^+ \mu^-)$ can be large, often well within the reach of Run II at the Tevatron. At lower m_A, it can even exceed the current bound 2×10^{-6} from CDF which is expected to be improved by a some two orders of magnitude. In short, the process offers very good prospects for the Tevatron.

In the right panel of Fig. 4 we present S_1^p vs. m for several typical choices of $m_A =$
300 GeV (light shade) and 500 GeV (dark shade), and for $m_{16} = 2.5$ TeV (green), 3 TeV (red) and 5 TeV (blue) [13]. The patterns are somewhat different from those of the CMSSM (thus possibly allowing for discriminating between the two models should a WIMP signal be detected and s_p^Z and m measured with some accuracy). One also finds $s_p^Z < 10^{-7}$ pb although also $s_p^Z > 10^{-9}$ pb which is encouraging, compared to the CMSSM.

In summary, it is clear that the current experimental sensitivity is sufficient to already probe a part of the parameter space of the general MSSM. On the other hand, it is still typically at least one order of magnitude above the preferred ranges of cross sections that are predicted by unified models as the examples of the CMSSM and the MSO10SM demonstrate. For these ranges to be explored a new generation of detectors will be required and is actually already being constructed. On the other hand, theoretically lower ranges of WIMP mass and therefore larger s_p^Z are more natural (fine tuning and a). It is therefore quite possible that a nice surprise may come before long. Finally, since the specific ranges of s_p^Z and m are typically very narrow and model dependent, once a WIMP signal is detected, one may hope to be able to discriminate among different unification scenarios.

I am indebted to Professor D.P. Roy for his kind invitation and to the whole Organizing Committee for preparing a very successful and interesting meeting.

References

[1] D. N. Spergel et al., Astrophys. J. Suppl. 148 (2003) 175.
[2] B.W. Lee and S. Weinberg, Phys. Rev. Lett. 39 (1977) 165-168. For more references, see E.W. Kolb and M.S. Turner, The Early Universe, Addison-Wesley, Redwood City, 1990.
[3] K. Griest and M. Kamionkowski, Phys. Rev. Lett. 64 (1990) 615.
[4] K. Rajagopal, M.S. Turner and F. Wilczek, Nucl. Phys. B 358 (1991) 447.
[5] L. Covi, J.E. Kim and L. Roszkowski, Phys. Rev. Lett. 82 (1999) 4180; L. Covi, H.B. Kim, J.E. Kim and L. Roszkowski, JHEP 0105 (2001) 033; L. Covi, L. Roszkowski and M. Small, JHEP 0207 (2002) 023.
[6] H. Pagels and J.R. Primack, Phys. Rev. Lett. 48 (1982) 223; S. Weinberg, Phys. Rev. Lett. Phys. Rev. Lett. 48 (1982) 1303; J. Ellis, A.D. Linde and D.V. Nanopoulos, Phys. Lett. B 118 (1982) 59; Phys. Lett. B 443 (1998) 209; and several more recent papers.
[7] D.J.H. Chung, E.W. Kolb and A. Riotto, Phys. Rev. Lett. 81 (1998) 4048; V. Kuzmin and I. Tkachev, hep-ph/9809547.
[8] G. Servant and T. Tait, Nucl. Phys. B 650 (2003) 391 and New J. Phys. 4 (2002) 99.
[9] R.N. Mohapatra and V.L. Teplitz, Phys. Rev. D 62 (2000) 063506.
[10] S. Raby, talk at this conference.
[11] M. Nojiri, talk at this conference.
[12] T. Blažek, R. Dermišek and S. Raby, Phys. Rev. Lett. 88 (2002) 111804; Phys. Rev. D 65 (2002) 115004.
[13] R. Dermišek, S. Raby, L. Roszkowski and R. Ruiz de Austri, JHEP 0304 (2003) 037.
[14] M. Drees and M. Nojiri, Phys. Rev. D 47 (1993) 376.
[15] See, e.g., G. Jungman, M. Kamionkowski and K. Griest, Phys. Rept. 267 (1996) 195.
[16] L. Roszkowski, Phys. Lett. B 262 (1991) 59; see also J. Ellis, D.V. Nanopoulos, L. Roszkowski, and D.N. Schramm, Phys. Lett. B 245 (1990) 251.
[17] P. Nath and R. Arnowitt, Phys. Lett. B 289 (1992) 368.
[18] R.G. Roberts and L. Roszkowski, Phys. Lett. B 309 (1993) 329.
[19] G.L. Kane, C. Kolda, L. Roszkowski, and J. Wells, Phys. Rev. D 49 (1994) 6173.
[20] L. Roszkowski, R. Ruiz de Austri and T. Nihei, JHEP 0108 (2001) 024.
[21] K. Okumura and L. Roszkowski, hep-ph/0208101 and JHEP 0310 (2003) 024.
[22] A. J. Buras, A. Czarnecki, M. Misiak and J. Urban, Nucl. Phys. B 631 (2002) 219.
[23] M. Davier, S. Eidelman, A. Hocker and Z. Zhang, hep-ph/0308214.
[24] Y. G. Kim, T. Nihei, L. Roszkowski and R. Ruiz de Austri, JHEP 0212 (2002) 034.
