Emulating quantum state transfer through a spin-1 chain on a 1D lattice of superconducting qutrits

Joydip Ghosh
Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
E-mail: ghoshj@ucalgary.ca

Abstract. Spin-1 systems, in comparison to spin-$\frac{1}{2}$ systems, offer a better security for encoding and transfer of quantum information, primarily due to their larger Hilbert spaces. Superconducting artificial atoms possess multiple energy-levels, and thereby capable of emulating higher-spin systems. Here we consider a 1D lattice of nearest-neighbor-coupled superconducting transmon systems, and devise a scheme to transfer an arbitrary qutrit-state (a state encoded in a three-level quantum system) across the chain. We assume adjustable couplings between adjacent transmons, derive an analytic constraint for the control-pulse, and show how to satisfy the constraint to achieve a high-fidelity state-transfer under current experimental conditions. Our protocol thus enables enhanced quantum communication and information processing with promising superconducting qutrits.

Keywords: Quantum state transfer, Superconducting qubit, Quantum simulation, Quantum communication.
1. Introduction

Quantum State Transfer (QST) between two quantum systems remains a primitive operation for many protocols in quantum communication, simulation and information processing. QST along a chain of nearest-neighbor-coupled spin-$\frac{1}{2}$ systems has been extensively studied as a channel for short-distance quantum communication [1–7], and its implementations have been proposed for NMR systems [8–10], trapped Rydberg ions [11], coupled-cavity-arrays [12] and superconducting flux qubits [13], with experimental realizations reported so far for NMR systems [14], photonic lattices [15, 16] and cold atoms [17, 18]. However, with the discovery that quantum information processing becomes more robust on higher-dimensional spin systems [19,20], considerable attention has been paid to the higher-dimensional spin chains. This leads to the emergence of a number of proposals in recent years for possible QST schemes on d-level ($d > 2$) spin chains, specifically spin-1 chains [21–27].

Superconducting artificial atoms contain more than two energy levels that can be readily manipulated and reliably measured, thereby allowing the possibility of emulating the higher spin systems [28]. In this work, we devise a scheme to emulate a QST along a spin-1 chain on a 1D array of nearest-neighbor-coupled superconducting transmon systems [29]. The transmons are treated as qutrits (three-level systems) with the three lowest energy levels mapping to the three possible states of a spin-1 particle. We also assume an adjustable coupling between each pair of adjacent transmons that can be tuned via control electronics, an architecture often referred to as a gmon device [30,31]. It should be emphasized in this context that, when two transmons are coupled (via an inductive tunable coupler), the coupling strengths in the single- and double-excitation subspaces are unequal requiring two different timescales to transfer quantum states for those two subspaces. These unequal coupling strengths, in fact, preclude a direct generalization from a qubit-to-qubit state-transfer to a qutrit-to-qutrit state-transfer for superconducting systems, which motivates us to develop a novel strategy for such a higher-dimensional state-transfer across the chain of superconducting qutrits under experimental conditions.

The problem of emulating the QST on the array of coupled transmon qutrits can be described as follows: First, we prepare an arbitrary qutrit-state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle + \gamma |2\rangle$ in the first qutrit (as demonstrated by Neeley et al. [28]), and then control the tunable coupling strengths for a specific time-duration, such that,

$$|\psi\rangle_1 \otimes |0\rangle_2 \otimes |0\rangle_3 \otimes \ldots \otimes |0\rangle_N \rightarrow |0\rangle_1 \otimes |0\rangle_2 \otimes |0\rangle_3 \otimes \ldots \otimes |\psi\rangle_N,$$

where the subscripts denote the qutrit-indices and N is the number of transmons in the array. The transformation shown in Eq.(1) is achieved via successive state-transfers between adjacent qutrits, given by,

$$|\psi\rangle_j \otimes |0\rangle_{j+1} \rightarrow |0\rangle_j \otimes |\psi\rangle_{j+1}, \quad \forall j \in \{1, 2, \ldots, N-1\}.$$

Note that, in order to perform the state-transfer between adjacent qutrits, it is necessary
and sufficient that the operations,
\[
|1\rangle_j \otimes |0\rangle_{j+1} \rightarrow |0\rangle_j \otimes |1\rangle_{j+1},
\]
\[
|2\rangle_j \otimes |0\rangle_{j+1} \rightarrow |0\rangle_j \otimes |2\rangle_{j+1},
\]
are performed simultaneously with other states unchanged. Here we show how to achieve such a simultaneous state transfer with superconducting qutrits under current experimental constraints.

The remainder of the paper is organized as follows: We first discuss the state transfer between two coupled qutrits in Sec. 2. Next, we describe our QST protocol across the array of coupled qutrits in Sec. 3. The effects of intrinsic and decoherence-induced errors are discussed in Sec. 4, and we conclude with possible future directions in Sec. 5.

2. Quantum state transfer between two qutrits

Here we focus on the QST between two coupled superconducting qutrits. First we describe the model and then discuss our state-transfer protocol.

2.1. Coupled-qutrit model

The Hamiltonian of a system of two superconducting transmon devices coupled via an adjustable inductive coupling (the ‘gmon’ architecture [30, 31]) is given by (from the lab-frame),
\[
H(t) = \sum_{i=1}^{2} \begin{bmatrix}
0 & 0 & 0 \\
0 & \epsilon_i(t) & 0 \\
0 & 0 & 2\epsilon_i(t) - \eta_i
\end{bmatrix}_{q_i} + g(t)X_1X_2,
\]
where,
\[
X_k = \begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & \sqrt{2} \\
0 & \sqrt{2} & 0
\end{bmatrix}_{q_k},
\]
where \(k\) denotes the qutrit index. \(\epsilon_i\) in Eq.(4) denotes the frequency of the \(i^{th}\) qutrit that can be tuned with an external control pulse. \(g\) denotes the adjustable coupling strength between two qutrits and is assumed to be varied between 0 and 50 MHz. \(\eta_i\) is the anharmonicity of the \(i^{th}\) qutrit, and here we assume \(\eta_1 = \eta_2 = \eta\) (= 200 MHz).

In order to transform our Hamiltonian (4) from lab frame to a rotating frame, we specify a local reference clock for each qutrit (with frequencies \(\omega_1\) and \(\omega_2\)) with a clock Hamiltonian,
\[
H_{cl} = \begin{bmatrix}
0 & 0 & 0 \\
0 & \omega_1 & 0 \\
0 & 0 & 2\omega_1
\end{bmatrix}_{q_1} + \begin{bmatrix}
0 & 0 & 0 \\
0 & \omega_2 & 0 \\
0 & 0 & 2\omega_2
\end{bmatrix}_{q_2}.
\]
The rotating frame, therefore, is defined as,
\[R(t) \equiv e^{iH_0t}. \]
(7)

The Hamiltonian from the rotating frame is given by,
\[\tilde{H}(t) = R^\dagger(t)H(t)R(t) - i\dot{R}^\dagger(t)R(t) \]
\[= \sum_{i=1}^{2} \begin{bmatrix} 0 & 0 & 0 \\ 0 & \Delta_i(t) & 0 \\ 0 & 0 & 2\Delta_i(t) - \eta_i \end{bmatrix}_{q_i} + g(t)V, \]
(8)

where,
\[\Delta_{1,2}(t) = \epsilon_{1,2}(t) - \omega_{1,2}, \]

\[V = \begin{bmatrix} 0 & A & 0 \\ B & 0 & A\sqrt{2} \\ 0 & B\sqrt{2} & 0 \end{bmatrix}, \text{ with } \\
A := \begin{bmatrix} 0 & e^{i(\omega_1+\omega_2)} & 0 \\ e^{i(\omega_1-\omega_2)} & 0 & \sqrt{2}e^{i(\omega_1+\omega_2)} \\ 0 & \sqrt{2}e^{i(\omega_1-\omega_2)} & 0 \end{bmatrix}, \]

\[B := \begin{bmatrix} 0 & e^{i(\omega_2-\omega_1)} & 0 \\ e^{-i(\omega_1+\omega_2)} & 0 & \sqrt{2}e^{i(\omega_2-\omega_1)} \\ 0 & \sqrt{2}e^{-i(\omega_1+\omega_2)} & 0 \end{bmatrix}. \]
(9)

Applying Rotating Wave Approximation (RWA) and assuming \(\omega_1 = \omega_2 \) (a global clock), we rewrite the Hamiltonian (8) as,
\[\tilde{H}(t) = \sum_{i=1}^{2} \begin{bmatrix} 0 & 0 & 0 \\ 0 & \Delta_i(t) & 0 \\ 0 & 0 & 2\Delta_i(t) - \eta_i \end{bmatrix}_{q_i} + \frac{g(t)}{2} (X_1X_2 + Y_1Y_2), \]
(10)

where,
\[Y_k = \begin{bmatrix} 0 & -i & 0 \\ i & 0 & -i\sqrt{2} \\ 0 & i\sqrt{2} & 0 \end{bmatrix}, \ \forall k \in \{1,2\}, \]

and \(X_k \) is defined in Eq.(5). \(\Delta_{1,2} \) and \(g \) are time-dependent control parameters varying within \(-2.5 \text{ to } +2.5 \) GHz and \(0 - 50 \) MHz respectively. Also, it is interesting to note that the transformation from lab-frame to rotating frame, in fact, changes the interaction part of our Hamiltonian from ‘XX’ type to ‘XY’ type under RWA.

2.2. Population transfer between two qutrits

First, we describe how to transfer the population from one qutrit to another. In order to perform the population transfer, it is sufficient to transform \(|00\rangle \leftrightarrow |00\rangle, |10\rangle \leftrightarrow |01\rangle, \) and \(|20\rangle \leftrightarrow |02\rangle \) simultaneously. These simultaneous transformations can be achieved
by bringing the qutrits in resonance (i.e., $\Delta_1=\Delta_2$) and then turning the coupling on under certain constraints that we now derive analytically.

First, it is important to note that the $|00\rangle$ state is sufficiently detuned from all other energy levels when the qutrits are in resonance, and therefore remains invariant even if the coupling is turned on. For $\Delta_1 = \Delta_2$, we represent the Hamiltonian (10) in the single-excitation subspace $\{|01\rangle, |10\rangle\}$ (denoted by \tilde{H}_1) and double-excitation subspace $\{|11\rangle, |02\rangle, |20\rangle\}$ (denoted by \tilde{H}_2) as (after energy rescaling),

$$
\tilde{H}_1(t) = \begin{bmatrix}
0 & g \\
g & 0
\end{bmatrix}
\quad \text{and} \quad
\tilde{H}_2(t) = \begin{bmatrix}
\eta & g\sqrt{2} & g\sqrt{2} \\
g\sqrt{2} & 0 & 0 \\
g\sqrt{2} & 0 & 0
\end{bmatrix},
$$

where the time-dependence is embedded in g. In the notation of Pauli spin matrices, $\tilde{H}_1(t) = g(t)\sigma^x$, and therefore, a population transfer in the single excitation subspace requires,

$$
\int_0^{t_{\text{QST}}} g(t)dt = \frac{m\pi}{2},
$$

where m is an odd number and t_{QST} denotes the time required for the quantum state transfer.

How about a population transfer in the $\{|02\rangle, |20\rangle\}$ subspace? Note that, the levels $|02\rangle$ and $|20\rangle$ are not directly coupled, but coupled via $|11\rangle$ state. The instantaneous eigenvalues of \tilde{H}_2 are 0 and $\eta/2 \pm \sqrt{\eta^2/4 + (2g)^2}$, when the qutrits are in resonance. We can, therefore, construct an effective coupling g_{eff} between $|02\rangle$ and $|20\rangle$ states from the level repulsion between these states as,

$$
g_{\text{eff}} = \left| \frac{\eta}{4} - \sqrt{\left(\frac{\eta}{4}\right)^2 + g^2} \right|.
$$

Following the same argument as for single excitation subspace, we can express the condition for population transfer between $|20\rangle$ and $|02\rangle$ states as,

$$
\int_0^{t_{\text{QST}}} g_{\text{eff}}(t)dt = \int_0^{t_{\text{QST}}} \left| \frac{\eta}{4} - \sqrt{\left(\frac{\eta}{4}\right)^2 + [g(t)]^2} \right| dt = \frac{l\pi}{2},
$$

where l is an odd number. Since $g \gg g_{\text{eff}} \approx 2g^2/\eta$ (assuming $\eta \gg g$), the population transfer in the single excitation subspace is faster than that in the double excitation subspace, which motivates us to assume $l = 1$ and $m > 1$. Now, combining Eq.(13) and Eq.(15), we obtain the condition for population transfer between qutrits as,

$$
\int_0^{t_{\text{QST}}} g(t)dt = m \int_0^{t_{\text{QST}}} \left| \frac{\eta}{4} - \sqrt{\left(\frac{\eta}{4}\right)^2 + [g(t)]^2} \right| dt = \frac{m\pi}{2},
$$

where m is an odd number and we show later that it is possible to constrain g within an experimentally feasible range for $m = 3$.
2.3. Designing a control-pulse for $g(t)$

Now we use Eq. (16) to design a trapezoidal pulse for $g(t)$ with $g(0) = g(t_{QST}) = 0$. Let g_{max} be the maximum value that $g(t)$ achieves in the intermediate time, which gives,

$$\int_0^{t_{QST}} g(t)dt = g_{\text{max}}(t_{QST} - 2) = \frac{3\pi}{2},$$

(17)

assuming $m = 3$ and a 2 ns ramp as shown in Fig. 1a. Now, we estimate an approximate value for g_{max}, assuming that the area traced out by $g(t)$ and $g_{\text{eff}}(t)$ during the constant part of the trapezoidal pulse are almost equal, which essentially means,

$$g_{\text{max}} = 3 \left| \frac{\eta}{4} - \sqrt{\left(\frac{\eta}{4}\right)^2 + g_{\text{max}}^2} \right|.$$

(18)

Solving for g_{max} from Eq. (18) and then t_{QST} from Eq. (17), we obtain,

$$g_{\text{max}} = \frac{3\eta}{16} \quad \text{and} \quad t_{QST} = 2 + \frac{8\pi}{\eta}.$$

(19)

For $\eta = 200$ MHz, $g_{\text{max}} = 37.5$ MHz and $t_{QST} = 22$ ns.

![Figure 1. (a) Optimal trapezoidal control-pulse for $g(t)$ while two qutrits are in resonance. (b) Probability of population in the $|01\rangle$ (blue curve) and $|02\rangle$ (red curve) states under the trapezoidal pulse, assuming that the $|10\rangle$ and $|20\rangle$ states are occupied initially.](image)

It is possible to further improve the fidelity (defined below) of qutrit-qutrit population transfer by optimizing g_{max} and t_{QST} independently, using the analytical values as initial solutions. Fig. 1a shows such an optimal trapezoidal pulse for $g(t)$ with $\Delta_1 = \Delta_2$, and $\eta = 200$ MHz. Table. 1 summarizes the analytical estimates and optimal numerical values for g_{max} and t_{QST}.
Table 1. Parameters for the control-pulse and the corresponding fidelities (defined in Eq. (26)). Analytical estimates are computed from Eq. (19) and numerical values are obtained via optimization of g_{max} and t_{QST} independently.

Parameters	Values	
	numerical	analytical
g_{max} (MHz)	37.7	37.5
t_{QST} (ns)	21.95	22
\mathcal{F} [%]	99.996	99.992

Fig. 1b shows the probabilities of population transfer as a function of time for $|10\rangle \rightarrow |01\rangle$ and $|20\rangle \rightarrow |02\rangle$ transitions under the optimal trapezoidal pulse shown in Fig. 1a. As mentioned earlier, population transfer in the $\{|10\rangle, |01\rangle\}$ subspace is faster than that in the $\{|20\rangle, |02\rangle\}$ subspace, and in our protocol we set a specific value for g_{max} such that these transfers occur simultaneously coinciding the first peak for the latter with the second peak for the former case. In contrast with the qubit-qubit state-transfer, this unusual peak-matching is, in fact, necessary for our qutrit-qutrit state-transfer, and probably the only choice that satisfies current experimental constraints for superconducting devices. The oscillation observed for the $|20\rangle \rightarrow |02\rangle$ transition (red curve) is due to the interference with the $|11\rangle$ state in the double-excitation subspace.

2.4. Compensating phases

In the population transfer protocol described above, the double excitation subspace acquires a phase (in the rotating frame), $\varphi = \eta t_{\text{QST}}$, with respect to the $\{|00\rangle, |01\rangle, |10\rangle\}$ subspace. Our state-transfer protocol, therefore, consists of the population-transfer plus compensating the additional phases acquired by any of the basis states. Here we discuss how to compensate any arbitrary phase acquired by a superconducting qutrit. The Hamiltonian for a single superconducting qutrit in a rotating frame is given by (in the computational basis),

$$
\tilde{H}_q(t) = \begin{bmatrix}
0 & 0 & 0 \\
0 & \Delta(t) & 0 \\
0 & 0 & 2\Delta(t) - \eta
\end{bmatrix}.
$$

In order to perform an arbitrary phase rotation,

$$
U_{\text{phase}} = \begin{bmatrix}
0 & 0 & 0 \\
0 & e^{-i\theta} & 0 \\
0 & 0 & e^{-i\phi}
\end{bmatrix},
$$

(21)
on the single-qutrit basis states, we vary the time-dependent qutrit-frequency such that,

\[
\theta = \int_0^{t_{\text{phase}}} \Delta(t) \, dt \\
\phi = \int_0^{t_{\text{phase}}} (2\Delta(t) - \eta) \, dt.
\]

(22)

Eq. (22) is satisfied if we set,

\[
t_{\text{phase}} = \frac{2\theta - \phi}{\eta} \\
\Delta_{\text{max}} = \frac{\eta\theta}{2\theta - \phi - 2\eta},
\]

(23)

assuming a trapezoidal pulse for \(\Delta(t)\) with 2 ns ramp, and \(\Delta_{\text{max}}\) being the maximum value. Eq. (23) can always be satisfied with a proper choice of \(\theta\) and \(\phi\) modulo \(2\pi\).

2.5. State-transfer fidelity

The state transfer considered in this section requires one qutrit to be in an arbitrary state \(|\psi\rangle\), while the other qutrit is in \(|0\rangle\) state. The state transfer operation \(U_{\text{QST}}\) can, therefore, be represented in matrix form in the basis,

\[
\{ |00\rangle, |01\rangle, |10\rangle, |02\rangle, |20\rangle \}
\]

(24)

as,

\[
U_{\text{QST}} = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{bmatrix}.
\]

(25)

If \(U_{\text{obtained}}\) be the time-evolution operator obtained under the control-pulse shown in Fig. 1a, then the fidelity \((F)\) between \(U_{\text{obtained}}\) and \(U_{\text{QST}}\) is defined as \([32]\),

\[
F = \frac{\text{Tr} \left(\hat{P} U_{\text{obtained}} U_{\text{QST}}^\dagger \hat{P} \right) + \text{Tr} \left(U_{\text{QST}}^\dagger \hat{P} U_{\text{obtained}} \hat{P} \right)}{d(d+1)},
\]

(26)

where \(\hat{P}\) is the projection operator that projects the time-evolution operator \(U_{\text{obtained}}\) into the computational subspace (24), and \(d\) is the dimension of the computational subspace, which is 5 for this case. In absence of decoherence, the dominant source of error in state transfer is the leakage to the \(|11\rangle\) state in the double excitation subspace \([33]\), while the phase compensation operation is exact under the model considered for this work. We, therefore, can replace \(U_{\text{obtained}}\) by \(|U_{\text{obtained}}|\) in Eq. (26) and compute \(F\) that characterizes the fidelity for both, the state-transfer as well as the population-transfer.
3. State transfer across a chain of nearest-neighbor-coupled qutrits

Here we describe the model for an array of nearest-neighbor-coupled transmons and then discuss the QST across the chain.

3.1. Array of coupled qutrits

Following the same technique as adopted in Sec. 2.1 to derive the coupled-qutrit Hamiltonian (10), we can show that the Hamiltonian for a system of N nearest-neighbor-coupled superconducting qutrits is given by (from rotating frame),

$$\tilde{H}_N(t) = \sum_{k=1}^{N} \begin{bmatrix} 0 & 0 & 0 \\ 0 & \Delta_k(t) & 0 \\ 0 & 0 & 2\Delta_k(t) - \eta \end{bmatrix} + \sum_{k=1}^{N-1} \frac{g_k(t)}{2} (X_k X_{k+1} + Y_k Y_{k+1}),$$

where Δ_k is frequency of kth transmon measured in reference to the frequency of the rotating frame, and X_k and Y_k are three-dimensional generalizations of Pauli’s σ^x and σ^y matrices, as defined in Eq. (5) and Eq. (11) respectively. While both the frequencies and coupling strengths are time-dependent for our system, in order to perform QST we keep all the qutrits in resonance, i.e., $\Delta_k = 0$, $\forall k \in \{1, 2, \ldots, N\}$, and control the coupling strengths g_k with external control pulses.

3.2. State transfer protocol

![Figure 2](image_url)

Figure 2. Trapezoidal pulses for $g_k(t)$ for a state-transfer across a chain of 4 coupled superconducting qutrits. In order to emulate a QST across a chain of n qutrits, we need to concatenate $(n-1)$ such pulses.

As mentioned earlier, all the qutrits are always in resonance during our QST protocol, while the coupling strengths are changed sequentially to transfer our initial state successively from one qutrit to another via neighboring qutrits. Fig. 3.2 shows our sequential trapezoidal control pulses for a QST across a chain of 4 coupled qutrits, where we use the optimal parameters (shown in Table. 1) obtained numerically for the two-qutrit state transfer. A state-transfer across a chain of n coupled qutrits requires concatenation of $(n-1)$ such pulses one after another. We emphasize that, it is sufficient for our QST protocol if we just optimize the pulse for a single qutrit-qutrit state transfer,
and then combine the pulses sequentially as done in Fig. 3.2. This modularity is, in fact, required for any scalable QST protocol.

4. Analysis of errors

Here we discuss various error-mechanisms relevant for our QST scheme. First, we estimate the errors generated from the unitary evolution under the control pulse (intrinsic errors), and then explore the effect of decoherence.

4.1. Intrinsic errors

Our QST scheme is composed of concatenating successive trapezoidal pulses for the coupling strengths, where the same set of optimal parameters is used for each pulse. Intrinsic errors are defined as errors originating from the unitary evolution of the system under the control pulse at $T_{1,2} \rightarrow \infty$. In order to quantify how the intrinsic errors accumulate with sequential state-transfer steps, we prepare a uniform superposition $\psi_{\text{unif}} = (|0\rangle + |1\rangle + |2\rangle)/\sqrt{3}$ in the first qutrit, and then compute the error after every state-transfer step to the adjacent qutrit. If ψ_k is the quantum state transferred at the k^{th} step to the $(k+1)^{\text{th}}$ qutrit, then we define the intrinsic error as,

$$E_{\text{intr}}^k = 1 - |\langle \psi_{\text{unif}} | \psi_k \rangle|^2. \quad (28)$$

The green data-points in Fig. 4.1 show the intrinsic error as a function of the number of steps, and we observe a quartic accumulation of intrinsic errors in that regime. The magenta curve in Fig. 4.1 is a quartic fit corresponding to $E_{\text{intr}}^k = A k^4$, where the pre-factor A is numerically determined to be $\sim 2.1 \times 10^{-10}$ for our case. The quartic accumulation of intrinsic errors, as opposed to an exponential accumulation [34], in fact allows us to perform a state-transfer across a longer chain of superconducting qutrits.

4.2. Effects of decoherence

The model considered for this work assumes tunable couplings between adjacent qutrits, which means during the entire state-transfer all the qutrits are decoupled from the system as well as remain in the ground state, except for the two neighboring qutrits participating in the QST. We, therefore, argue that the effects of decoherence on the qutrit state is essentially equivalent to that on a single qutrit prepared in the same state during the entire state-transfer process. In order to quantify the decoherence-induced errors on our QST scheme, we consider a single qutrit prepared in a uniform superposition $\psi_{\text{unif}} = (|0\rangle + |1\rangle + |2\rangle)/\sqrt{3}$ (as considered for estimating the intrinsic errors), and construct the Kraus matrices for the amplitude and phase damping using the damped harmonic oscillator approximation [35]. We then perform the Kraus evolution for a time-duration $k t_{\text{QST}}$ (time required for k successive state-transfer steps) on the
Figure 3. Accumulation of intrinsic and decoherence-induced errors with the number of steps. The blue (green) diamonds are numerically computed data-points, while the solid red (magenta) curve is the linear (quartic) fit for the decoherence-induced (intrinsic) error.

single-qutrit density matrix ρ. The blue data-points in Fig. 4.1 show the decoherence-induced error,

$$E_{k}^{\text{decoh}} = 1 - \langle \psi_{\text{unif}} \rvert \rho(kt_{\text{QST}}) \rvert \psi_{\text{unif}} \rangle,$$

as a function of k. The red line (almost aligned with the blue data-points) in Fig. 4.1 shows the linear fit for the decoherence-induced error corresponding to $E_{k}^{\text{decoh}} = Bk$, where the pre-factor B is numerically determined to be $\sim 3.6 \times 10^{-4}$. This numerical estimate of the slope of the linear fit is consistent with the approximate analytical estimate $t_{\text{QST}}/T_{1,2} (\approx 3.66 \times 10^{-4})$, where we assumed $T_{1} = T_{2} = 60 \text{ } \mu\text{s}$ for the superconducting transmon qutrits. It is interesting to note that for our case decoherence is dominated by the intrinsic errors for $k > 120$, due the the quartic scaling of the intrinsic errors.

5. Conclusions

In this work, we have introduced a proposal for emulating a QST across a chain of spin-1 systems on a lattice of nearest-neighbor-coupled superconducting qutrits. While the emulation of higher spin systems with a single superconducting artificial atom has been demonstrated earlier [28], the problem transmitting a qutrit state along a chain of superconducting atoms has remained a nontrivial problem primarily due to the unequal
coupling strengths in the single- and double-excitation subspaces. Here we have shown how to overcome this challenge with a proper choice of the control parameters under existing experimental conditions. Our proposal thus motivates the simulation of various quantum transport processes across higher spin systems, as well as enhanced quantum communication with scalable superconducting qutrits. Some possible future directions of this work include transmission of an arbitrary \textit{qudit} state (a state encoded in a \textit{d}-level quantum system) along a chain of coupled superconducting atoms and transfer of various entangled qutrit states across a chain of superconducting qutrits.

\section*{Acknowledgments}

This research was funded by NSERC, AITF and University of Calgary’s Eyes High Fellowship Program. I thank Barry Sanders for many illuminating comments as well as his careful reading of the manuscript. I also gratefully acknowledge useful discussions with David Feder, Michael Geller and Pedram Roushan.

\section*{References}

[1] Bose S 2003 \textit{Phys. Rev. Lett.} \textbf{91}(20) 207901 URL \url{http://link.aps.org/doi/10.1103/PhysRevLett.91.207901}
[2] Albanese C, Christandl M, Datta N and Ekert A 2004 \textit{Phys. Rev. Lett.} \textbf{93}(23) 230502 URL \url{http://link.aps.org/doi/10.1103/PhysRevLett.93.230502}
[3] Subrahmanyam V 2004 \textit{Phys. Rev. A} \textbf{69}(3) 034304 URL \url{http://link.aps.org/doi/10.1103/PhysRevA.69.034304}
[4] Korzekwa K, Machnikowski P and Horodecki P 2014 \textit{Phys. Rev. A} \textbf{89}(6) 062301 URL \url{http://link.aps.org/doi/10.1103/PhysRevA.89.062301}
[5] Di Franco C, Paternostro M and Kim M S 2008 \textit{Phys. Rev. Lett.} \textbf{101}(23) 230502 URL \url{http://link.aps.org/doi/10.1103/PhysRevLett.101.230502}
[6] Bose S 2007 \textit{Contemporary Physics} \textbf{48} 13–30 (Preprint \url{http://dx.doi.org/10.1080/00107510701342313})
[7] Kay A 2010 \textit{International Journal of Quantum Information} \textbf{08} 641–676 (Preprint \url{http://www.worldscientific.com/news/doi/pdf/10.1142/S0219749910006514})
[8] Cappellaro P, Ramanathan C and Cory D G 2007 \textit{Phys. Rev. Lett.} \textbf{99}(25) 250506 URL \url{http://link.aps.org/doi/10.1103/PhysRevLett.99.250506}
[9] Ajoy A, Rao R K, Kumar A and Rungta P 2012 \textit{Phys. Rev. A} \textbf{85}(3) 030303 URL \url{http://link.aps.org/doi/10.1103/PhysRevA.85.030303}
[10] Kaur G and Cappellaro P 2012 \textit{New Journal of Physics} \textbf{14} 083005 URL \url{http://stacks.iop.org/1367-2630/14/i=8/a=083005}
[11] Müller M, Liang L, Lesanovsky I and Zoller P 2008 \textit{New Journal of Physics} \textbf{10} 093009 URL \url{http://stacks.iop.org/1367-2630/10/i=9/a=093009}
[12] Liu Y and Zhou D 2014 \textit{arXiv preprint arXiv:1405.2634}
[13] Lyakhov A and Bruder C 2005 \textit{New Journal of Physics} \textbf{7} 181 URL \url{http://stacks.iop.org/1367-2630/7/i=1/a=181}
[14] Rao K, Mahesh T and Kumar A 2013 \textit{arXiv preprint arXiv:1307.5220}
[15] Bellec M, Nikolopoulos G M and Tzortzakis S 2012 \textit{Opt. Lett.} \textbf{37} 4504–4506 URL \url{http://ol.osa.org/abstract.cfm?URI=ol-37-21-4504}
[16] Perez-Leija A, Keil R, Kay A, Moya-Cessa H, Nolte S, Kwek L C, Rodríguez-Lara
B M, Szameit A and Christodoulides D N 2013 Phys. Rev. A 87(1) 012309 URL http://link.aps.org/doi/10.1103/PhysRevA.87.012309

[17] Fukuhara T, Kantian A, Endres M, Cheneau M, Schausz P, Hild S, Bellem D, Schollwock U, Giamarchi T, Gross C, Bloch I and Kuhr S 2013 Nat Phys 9 235–241 ISSN 1745-2473 URL http://dx.doi.org/10.1038/nphys2561

[18] Fukuhara T, Schausz P, Endres M, Hild S, Cheneau M, Bloch I and Gross C 2013 Nature 502 76–79 ISSN 0028-0836 URL http://dx.doi.org/10.1038/nature12541

[19] Bechmann-Pasquinucci H and Tittel W 2000 Phys. Rev. A 61(6) 062308 URL http://link.aps.org/doi/10.1103/PhysRevA.61.062308

[20] Durt T, Cerf N J, Gisin N and Žukowski M 2003 Phys. Rev. A 67(1) 012311 URL http://link.aps.org/doi/10.1103/PhysRevA.67.012311

[21] Eckert K, Romero-Isart O and Sanpera A 2007 New Journal of Physics 9 155 URL http://stacks.iop.org/1367-2630/9/i=5/a=155

[22] Qin W, Wang C and Long G L 2013 Phys. Rev. A 87(1) 012339 URL http://link.aps.org/doi/10.1103/PhysRevA.87.012339

[23] Asoudeh M and Karimipour V 2014 Quantum Information Processing 13 601–614 ISSN 1570-0755 URL http://dx.doi.org/10.1007/s11128-013-0676-8

[24] Bayat A 2014 Phys. Rev. A 89(6) 062302 URL http://link.aps.org/doi/10.1103/PhysRevA.89.062302

[25] Romero-Isart O, Eckert K and Sanpera A 2007 Phys. Rev. A 75(5) 050303 URL http://link.aps.org/doi/10.1103/PhysRevA.75.050303

[26] Wiesniak M, Dutta A and Ryu J 2013 arXiv preprint arXiv:1312.6543

[27] Delgado A, Saavedra C and Retamal J 2007 Physics Letters A 370 22 – 27 ISSN 0375-9601 URL http://www.sciencedirect.com/science/article/pii/S0375960107007426

[28] Neeley M, Ansmann M, Bialczak R C, Hofheinz M, Lucero E, O’Connell A D, Sank D, Wang H, Wenner J, Cleland A N, Geller M R and Martinis J M 2009 Science 325 722–725 (Preprint http://www.sciencemag.org/content/325/5941/722.full.pdf) URL http://www.sciencemag.org/content/325/5941/722.abstract

[29] Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White T C, Mutus J, Fowler A G, Campbell B, Choy Y, Chen Z, Chiaro B, Dunsworth A, Neill C, O’Malley P, Roushan P, Vainsencher A, Wenner J, Korotkov A N, Cleland A N and Martinis J M 2014 Nature 508 500–503 ISSN 0028-0836 URL http://dx.doi.org/10.1038/nature13171

[30] Chen Y, Neill C, Roushan P, Leung N, Fang M, Barends R, Kelly J, Campbell B, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Megrant A, Mutus J Y, O’Malley P J J, Quintana C M, Sank D, Vainsencher A, Wenner J, White T C, Geller M R, Cleland A N and Martinis J M 2014 ArXiv e-prints (Preprint 1402.7367)

[31] Geller M R, Donate E, Chen Y, Neill C, Roushan P and Martinis J M 2014 ArXiv e-prints (Preprint 1405.1915)

[32] Ghosh J, Galiautdinov A, Zhou Z, Korotkov A N, Martinis J M and Geller M R 2013 Phys. Rev. A 87(2) 022309 URL http://link.aps.org/doi/10.1103/PhysRevA.87.022309

[33] Ghosh J, Fowler A G, Martinis J M and Geller M R 2013 Phys. Rev. A 88(6) 062329 URL http://link.aps.org/doi/10.1103/PhysRevA.88.062329

[34] Ronke R, Spiller T P and D’Amico I 2011 Phys. Rev. A 83(1) 012325 URL http://link.aps.org/doi/10.1103/PhysRevA.83.012325

[35] Liu Y x, Özdemir i m e K, Miranowicz A and Imoto N 2004 Phys. Rev. A 70(4) 042308 URL http://link.aps.org/doi/10.1103/PhysRevA.70.042308