Hardy–Sobolev equations on compact Riemannian manifolds
Hassan Jaber

To cite this version:
Hassan Jaber. Hardy–Sobolev equations on compact Riemannian manifolds. Nonlinear Analysis: Theory, Methods and Applications, Elsevier, 2014, 103, pp.39 - 54. 10.1016/j.na.2014.02.011. hal-01103033

HAL Id: hal-01103033
https://hal.archives-ouvertes.fr/hal-01103033
Submitted on 16 Jan 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
HARDY-SOBOLEV EQUATIONS ON COMPACT RIEMANNIAN MANIFOLDS

HASSAN JABER

Abstract. Let (M, g) be a compact Riemannian Manifold of dimension $n \geq 3$, $x_0 \in M$, and $s \in (0, 2)$. We let $2^*(s) := \frac{2(n-s)}{n-2}$ be the critical Hardy-Sobolev exponent. We investigate the existence of positive distributional solutions $u \in C^0(M)$ to the critical equation

$$\Delta_g u + a(x)u = \frac{u^{2^*(s)-1}}{d_g(x, x_0)^s} \text{ in } M$$

where $\Delta_g := -\text{div}_g(\nabla)$ is the Laplace-Beltrami operator, and d_g is the Riemannian distance on (M, g). Via a minimization method in the spirit of Aubin, we prove existence in dimension $n \geq 4$ when the potential a is sufficiently below the scalar curvature at x_0. In dimension $n = 3$, we use a global argument and we prove existence when the mass of the linear operator $\Delta_g + a$ is positive at x_0. As a byproduct of our analysis, we compute the best first constant for the related Riemannian Hardy-Sobolev inequality.

Let (M, g) be a compact Riemannian Manifold of dimension $n \geq 3$ without boundary. Given $s \in (0, 2)$, $x_0 \in M$, and $a \in C^0(M)$, we consider distributional solutions $u \in C^0(M)$ to the equation

$$(1) \quad \Delta_g u + a(x)u = \frac{u^{2^*(s)-1}}{d_g(x, x_0)^s} \text{ in } M$$

where $2^*(s) := \frac{2(n-s)}{n-2}$ is the Hardy-Sobolev exponent. More precisely, let $H^2(M)$ be the completion of $C^\infty(M)$ for the norm $u \mapsto \|u\|_2 + \|\nabla u\|_2$. The exponent $2^*(s)$ is critical in the following sense: the Sobolev space $H^2(M)$ is continuously embedded in the weighted Lebesgue space $L^p(M, d_g(\cdot, x_0)^{−s})$ if and only if $1 \leq p \leq 2^*(s)$, and this embedding is compact if and only if $1 \leq p < 2^*(s)$.

There is an important literature on Hardy-Sobolev equations in the Euclidean setting of a domain of \mathbb{R}^n, in particular to show existence or non-existence of solutions, see for instance Ghoussoub-Kang [5], Ghoussoub-Yuan [7], Li-Ruf-Guo-Niu [15], Musina [16], Pucci-Servadei [17], Kang-Peng [12], and the references therein. In particular, in the spirit of Brezis-Nirenberg, Ghoussoub-Yuan [7] proved the existence of solutions for equations like (1) when $n \geq 4$ and the potential a achieves negative values at the interior singular point x_0. In the present manuscript, our objective is both to study the influence of the curvature when dealing with a Riemannian Manifold, and to tackle dimension $n = 3$.

We consider the functional

$$J(u) := \frac{\int_M (|\nabla u|^2_g + au^2) \, dv_g}{\left(\int_M \frac{|u|^{2^*(s)}}{d_g(x, x_0)^s} \, dv_g \right)^{1/2}} \quad ; \quad u \in H^2(M) \setminus \{0\},$$
which is well-defined due to the above-mentioned embeddings. Here dv_g denotes the Riemannian element of volume. When the operator $\Delta_g + a$ is coercive, then, up to multiplication by a positive constant, critical points of the functional J (if they exist) are solutions to equation (1). In the sequel, we assume that $\Delta_g + a$ is coercive. In the spirit of Aubin [1], we investigate the existence of solutions to (1) by minimizing the functional J: it is classical for this type of problem that the difficulty is the lack of compactness for the critical embedding. Since the resolution of the Yamabe problem (see [1], [19] and [24]), it is also well known that there exists a dichotomy between high dimension (see Aubin [1]) where the arguments are local, and small dimension (see Schoen [19]) where the arguments are global.

In the sequel, we let $\text{Scal}_g(x)$ be the scalar curvature at $x \in M$. We let $G_{x_0} : M \setminus \{x_0\} \to \mathbb{R}$ be the Green’s function at x_0 for the operator $\Delta_g + a$ (this is defined since the operator is coercive). In dimension $n = 3$, there exists $m(x_0) \in \mathbb{R}$ such that for all $\alpha \in (0, 1)$

$$G_{x_0}(x) = \frac{1}{\omega_{2d}_g(x, x_0)} + m(x_0) + O(d_g(x, x_0)^\alpha)$$

when $x \to x_0$.

Here and in the sequel, ω_k denote the volume of the canonical k-dimensional unit sphere \mathbb{S}^k, $k \geq 1$. The quantity $m(x_0)$ is refered to as the mass of the point $x_0 \in M$. Our main result states as follows:

Theorem 1. Let $x_0 \in M$, $s \in (0, 2)$, and $a \in C^0(M)$ be such that the operator $\Delta_g + a$ is coercive. We assume that

$$\left\{ \begin{array}{ll}
 a(x_0) < c_{n,s}\text{Scal}_g(x_0) & \text{if } n \geq 4 \\
 m(x_0) > 0 & \text{if } n = 3.
\end{array} \right.$$

(2)

with $c_{n,s} := \frac{(n-2)(6-s)}{2(2n-2-s)}$. Then there exists a positive solution $u \in C^0(M) \cap H^2(M)$ to the Hardy-Sobolev equation (1). Moreover, $u \in C^{\theta, \theta}(M)$ for all $\theta \in (0, \min\{1, 2-s\})$ and we can choose u as a minimizer of J.

As a consequence of the Positive Mass Theorem (see [20], [21]), we get (see Druet [3] and Proposition 2 in Section 4 below) that $m(x_0) > 0$ for $n = 3$ when $a \leq \text{Scal}_g/8$, with the additional assumption that (M, g) is not conformally equivalent to the canonical 3-sphere if $a \equiv \text{Scal}_g/8$.

Theorem 1 suggests some remarks. For equations of scalar curvature type, that is when $s = 0$, a similar result was obtained by Aubin [1] (for $n \geq 4$) and by Schoen [19] (see also Druet [3]) (for $n = 3$): however, when $s \in (0, 2)$, the problem is subcritical outside the singular point x_0, and therefore it is natural to get a condition at this point. Another remark is that, when $s = 0$, Aubin (see [1]) obtained the constant $c_{n,0}$ when $n \geq 4$, the potential $c_{n,0}\text{Scal}_g$ being such that the Yamabe equation is conformally invariant. When $s \in (0, 2)$, the critical equation enjoys no suitable conformal invariance due to the singular term $d_g(\cdot, x_0)^{n-s}$, and, despite our existence result involves the scalar curvature, one gets another constant $c_{n,s}$.

It is also to notice that, unlike the case $s = 0$, the solutions to equations like (1) are not C^2. This lead us to handle with care issues related to the maximum principle, for which we develop a suitable approach. As in Aubin, the minimization approach leads to computing some test-function estimates. However, unlike the case $s = 0$,
the terms involved in the expansion of the functional are not explicit and we need to collect them suitably to obtain the explicit value of $c_{n,s}$ above. The proof of Theorem 1 uses the best constant in the Hardy-Sobolev inequality. It follows from the Hardy-Sobolev embedding that there exist $A, B > 0$ such that

\begin{equation}
(3) \quad \left(\int_M \frac{|u|^2^*(s)}{d_g(x,x_0)^s} \, dv_g \right)^{\frac{2}{2+s}} \leq A \int_M |\nabla u|^2 \, dv_g + B \int_M u^2 \, dv_g
\end{equation}

for all $u \in H^2(M)$. We let $A_0(M, g, s, x_0)$ be the best first constant of the Riemannian Hardy-Sobolev inequality, that is

\begin{equation}
(4) \quad A_0(M, g, s, x_0) := \inf\{ A > 0 ; (3) \text{ holds for all } u \in H^2(M) \}.
\end{equation}

We prove the following:

Theorem 2. Let (M, g) be a compact Riemannian Manifold of dimension $n \geq 3$, $x_0 \in M$, $s \in (0, 2)$ and $2^*(s) = \frac{2(n-s)}{n-2}$. Then

\[A_0(M, g, s, x_0) = K(n, s), \]

where $K(n, s)$ is the optimal constant of the Euclidean Hardy-Sobolev inequality, that is

\begin{equation}
(5) \quad K(n, s)^{-1} := \inf_{\varphi \in C_c^\infty(\mathbb{R}^n) \setminus \{ 0 \}} \frac{\int_{\mathbb{R}^n} |\nabla \varphi|^2 \, dX}{\left(\int_{\mathbb{R}^n} \frac{|\varphi^{2^*(s)}|}{|X|} \, dX \right)^{\frac{2}{2+s}}}.
\end{equation}

Theorem 2 was proved by Aubin [2] for the case $s = 0$. The value of $K(n, s)$ is

\[K(n, s) = \left(\frac{n-2}{n-s} \right)^{\frac{2-n}{2-s}} \left(\frac{1}{\Gamma(2(n-s)/2-s)} \right)^{\frac{2-n}{2-s}}. \]

It was computed independently by Aubin [2], Rodemich [18] and Talenti [22] for the case $s = 0$, and the value for $s \in (0, 2)$ has been computed by Lieb (see [14], Theorem 4.3).

A natural question is to know whether the infimum $A_0(M, g, s, x_0)$ is achieved or not, that is if there exists $B > 0$ such that equality (3) holds for all $u \in H^2(M)$ with $A = K(n, s)$. The answer is positive: this is the object of the work [11].

A very last remark is that Theorem 1 holds when M is a compact manifold with boundary provided x_0 lies in the interior. In particular, we extend Ghoussoub-Yuan’s [7] result to dimension $n = 3$:

Theorem 3. Let Ω be a smooth bounded domain of \mathbb{R}^3 and let $x_0 \in \Omega$ be an interior point. For $a \in C^0(\overline{\Omega})$ such that $\Delta + a$ is coercive, we define the Robin function as $R(x,y) := \omega^{-1}_x |x-y|^{-1} - G_x(y)$ where G is the Green’s function for $\Delta + a$ with Dirichlet boundary condition. We assume that $R(x_0, x_0) < 0$. Then there exists a function $u \in C^{0,\theta}(\overline{\Omega})$ for all $\theta \in (0, \min\{1, 2-s\})$ to the Hardy-Sobolev equation

\[\Delta u + a(x)u = \frac{u^{2^*(s)-1}}{|x-x_0|^s}, \quad u > 0 \quad \text{in } \Omega \text{ and } u = 0 \text{ on } \partial \Omega. \]

This paper is organized as follows. In Section 1, we prove Theorem 2. In Section 2, we prove a general existence theorem for solutions to equation (1). In Section 3, we compute the full expansion of the functional J taken at the relevant test-functions.
for dimension $n \geq 4$. In Section 4, we perform the test-functions estimate for the specific dimension $n = 3$ and prove Theorems 1 and 3.

After this work was completed, we learned that Thiam [23] has independently studied similar issues.

Acknowledgments: The author sincerely thanks Prof. Frédéric Robert for helpful discussions, suggestions and remarks.

1. **The best constant in the Hardy-Sobolev inequality**

In this section, we will prove Theorem 2. For that, we begin by the following proposition:

Proposition 1. Let (M, g) be a compact Riemannian Manifold of dimension $n \geq 3$, $x_0 \in M$, $s \in (0, 2)$. For any $\epsilon > 0$, there exists $B_\epsilon > 0$ such that

$$\left(\int_M \frac{|u|^{2^*(s)}(s)}{d_g(x, x_0)^s} dv_g\right)^{\frac{1}{2^*}} \leq (K(n, s) + \epsilon) \int_M |\nabla u|^2_g dv_g + B_\epsilon \int_M u^2 dv_g,$$

for all $u \in H^{2^*_s}(M)$.

Thiam [23] proved a result in the same spirit with addition of an extra remainder term. The case $s = 0$ has been proved by Aubin [2] (see also [9], [10] for an exposition in book form). We adapt this proof to our case.

Proof. **Step 1:** Covering of M by geodesic balls. For any $x \in M$, we denote as \exp_x the exponential map at x with respect to the metric g. In the sequel, for any $r > 0$ and $z \in M$, $B_r(z) \subset M$ denotes the ball of center 0 and of radius r for the Riemannian distance d_g. For any $x \in M$ and any $\rho > 0$, there exist $r = r(x, \rho) \in (0, i_g(M)/2)$, $\lim_{\rho \to 0} r(x, \rho) = 0$ (here, $i_g(M)$ denotes the injectivity radius of (M, g)) such that the exponential chart $(B_{2r}(x), \exp_x^{-1})$ satisfies the following properties: on $B_{2r}(x)$, we have that

$$(1 - \rho)\delta \leq g \leq (1 + \rho)\delta,$$

$$(1 - \rho)\tilde{\mathbb{E}} dx \leq dv_g \leq (1 + \rho)\tilde{\mathbb{E}} dx,$$

$$D^\rho_p[T]\delta \leq |T|_g \leq D^\rho_p|T|_g, \text{ for all } T \in \chi(T^*M)$$

where $\lim_{\rho \to +\infty} D^\rho_p = 1$. $\chi(T^*M)$ denotes the space of 1-covariant tensor fields on M, δ is the Euclidean metric on \mathbb{R}^n, that is the standard scalar product on \mathbb{R}^n, and we have assimilated g to the local metric $(\exp_x)^*g$ on \mathbb{R}^n via the exponential map.

It follows from the compactness of M that there exists $N \in \mathbb{N}$ (depending on ρ) and $x_1, \ldots, x_{N-1} \in M \setminus \mathbb{B}_{2r}(x_0)$ (depending on ρ) such that

$$M \setminus \mathbb{B}_{r_0}(x_0) \subset \bigcup_{m=1}^{N-1} \mathbb{B}_{r_m}(x_m),$$

where $r_0 = r(x_0, \rho)$ and $r_m = r(x_m, \rho)$, $r_m < r_0^2$, for $m = 0, \ldots, N - 1$.

Step 2: We claim that for all $\epsilon > 0$ there exists $\rho_0 = \rho_0(\epsilon) > 0$ such that $\lim_{\rho \to 0} \rho_0(\epsilon) = 0$ and for all $\rho \in (0, \rho_0)$, all $m \in \{0, \ldots, N - 1\}$ and all $u \in C^\infty_0(\mathbb{B}_{r_m}(x_m))$, we have that:

$$\left(\int_M \frac{|u|^{2^*(s)}(s)}{d_g(x, x_0)^s} dv_g\right)^{\frac{1}{2^*}} \leq (K(n, s) + \frac{\epsilon}{2}) \int_M |\nabla u|^2_g dv_g.$$
Indeed, it follows from (5) that for all \(\varphi \in C^\infty_c(\mathbb{R}^n) \):

\[
(8) \quad \left(\int_{\mathbb{R}^n} \left| \varphi \right|^{2^*(s)} \left| X \right|^{-\frac{2^*(s)}{2}} dX \right)^{\frac{1}{2^*(s)}} \leq K(n, s) \int_{\mathbb{R}^n} |\nabla \varphi|^2 dX.
\]

We consider \(\rho > 0, m \in \{0, \ldots, N\} \) and \(u \in C^\infty_c(B_{r_m}(x_m)) \) such that \((B_{r_m}(x_m), \exp^{-1}) \) is an exponential card as in Step 1. We distinguish two cases:

Case 2.1: If \(m = 0 \) then using the properties of the exponential card \((B_{r_0}(x_0), \exp^{-1})\), developed in Step 1, and the Euclidean Hardy-Sobolev inequality (8), we write

\[
\left(\int_M \frac{|u|^{2^*(s)}}{d_g(x, x_0)^s} dv_g \right)^{\frac{1}{2^*(s)}} \leq (1 + \rho)^{\frac{1}{2^*(s)}} K(n, s) \int_{\mathbb{R}^n} |\nabla (u \circ \exp_{x_m})|^2 dX
\]

\[
\leq D^2_2(1 + \rho)^{\frac{1}{2^*(s)}} (1 - \rho)^{-\frac{s}{2}} K(n, s) \int_M |\nabla u|_g^2 dv_g.
\]

Letting \(\rho \to 0 \), we get (7), for all \(u \in C^\infty_c(B_{r_0}(x_0)) \), when \(m = 0 \). This proves (7) in the Case 2.1.

Case 2.2: If \(m \in \{1, \ldots, N - 1\} \) then for all \(x \in B_{r_m}(x_m) \), we have:

\[
d_g(x, x_0) \geq \lambda_0 > 0,
\]

with \(\lambda_0 = \frac{2^*}{2} - r_m \). Thanks to Hölder’s inequalities and inequalities of Gagliardo-Nirenberg-Sobolev, we can write that:

\[
\left(\int_M \frac{|u|^{2^*(s)}}{d_g(x, x_0)^s} dv_g \right)^{\frac{1}{2^*(s)}} \leq \frac{\text{vol}(B_{r_m}(x_m))^{2^*(s)}}{\lambda_0^{\frac{2^*(s)}{2}}} \left(\int_{B_{r_m}(x_m)} |u|^{2^*(s)} dv_g \right)^{\frac{1}{2^*(s)}}
\]

\[
\leq Q'_\rho \int_M |\nabla u|_g^2 dv_g,
\]

where \(\lim_{\rho \to 0} Q'_\rho = 0 \) and \(2^* := \frac{2n}{n - 2} \) is the Sobolev exponent. Letting \(\rho \to 0 \), we get (7), for all \(u \in C^\infty_c(B_{r_0}(x_m)) \), when \(m \geq 1 \). This ends Step 2.

Step 3: We fix \(\epsilon > 0, \rho \in (0, \rho_0(\epsilon)) \) and \(x_1, \ldots, x_N \) as in Step 1 and Step 2. We consider now \((\alpha_m)_{m=0, \ldots, N-1}\) a \(C^\infty\)-partition of unity subordinate to the covering \((B_{r_m}(x_m))_{m=0, \ldots, N-1}\) of \(M \) and define, for all \(m = 0, \ldots, N - 1 \), a function \(\eta_m \) on \(M \) by

\[
\eta_m = \frac{\alpha_m^3}{\sum_{i=0}^{N-1} \alpha_i^3}.
\]

We can see easily that \((\eta_m)_{m=0, \ldots, N-1}\) is a \(C^\infty\)-partition of unity subordinate to the covering \((B_{r_m}(x_m))_{m=0, \ldots, N-1}\) of \(M \) s.t. \(\eta_m^\infty \in C^1(M) \), for every \(m = 0, \ldots, N - 1 \). We let \(H > 0 \) satisfying for each \(m = 0, \ldots, N - 1 \):

\[
|\nabla \eta_m^\infty|_g \leq H.
\]

Step 4: In this step, we will prove the Hardy-Sobolev inequality on \(C^\infty(M) \). Indeed, we let \(\epsilon > 0 \) and \((\eta_m)_{m=0, \ldots, N-1}\) be a \(C^\infty\)-partition of unity as in Step 3.
and consider \(u \in C^\infty(M) \). Since \(\frac{2^{(\alpha)}(s)}{2} > 1 \), we get that:

\[
\left(\int_M \frac{|u|^{2^{(s)}}}{d_g(x, x_0)^s} dv_g \right)^{\frac{s}{2^{(s)}}} \leq \left(\int_M \left| \sum_{m=0}^{N-1} \eta_m u^{2^{(s)}} \right| d_g(x, x_0)^s \right)^{\frac{s}{2^{(s)}}},
\]

\[
\leq \left\| \sum_{m=0}^{N-1} \eta_m u^2 \right\|_{L^{\frac{2^{(s)}}{s}}(M, d_g(x, x_0)^{-s})} \leq \sum_{m=0}^{N-1} \left\| \eta_m u^2 \right\|_{L^{\frac{2^{(s)}}{s}}(M, d_g(x, x_0)^{-s})}
\]

\[
\leq \sum_{m=0}^{N-1} \left(\int_M \frac{|\eta_m u^{2^{(s)}}}{d_g(x, x_0)^s} dv_g \right)^{\frac{s}{2^{(s)}}}.
\]

Using inequality (7) in Step 2 and by density \((\eta_m u \in C^1(M)) \), we get that

\[
\left(\int_M \frac{|\eta_m u^{2^{(s)}}}{d_g(x, x_0)^s} dv_g \right)^{\frac{s}{2^{(s)}}} \leq (K(n, s) + \epsilon) \int_M |\nabla (\eta_m u)|^2 dv_g.
\]

Hence

\[
\left(\int_M \frac{|u|^{2^{(s)}}}{d_g(x, x_0)^s} dv_g \right)^{\frac{s}{2^{(s)}}} \leq (K(n, s) + \epsilon) \int_M \left(|\nabla u|^2 + 2\eta_m^2 |\nabla u| |\nabla \eta_m| + |u|^2 |\nabla \eta_m|^2 \right) dv_g.
\]

Using the Cauchy-Schwarz inequality and (9) from Step 3, we get that:

\[
\left(\int_M \frac{|u|^{2^{(s)}}}{d_g(x, x_0)^s} dv_g \right)^{\frac{s}{2^{(s)}}} \leq (K(n, s) + \epsilon) \int_M \left(|\nabla u|^2 + 2NH |\nabla u|_2 |u|_2 + NH^2 |u|_2^2 \right) dv_g.
\]

We choose now \(\epsilon_0 > 0 \) s.t.

\[
(K(n, s) + \epsilon) (1 + \epsilon_0) \leq K(n, s) + \epsilon.
\]

Since

\[
2NH |\nabla u|_2 |u|_2 \leq \epsilon_0 |\nabla u|_2^2 + \frac{(NH)^2}{\epsilon_0} |u|_2^2,
\]

then by combining (10) with (11) and (12), we get that:

\[
\left(\int_M \frac{|u|^{2^{(s)}}}{d_g(x, x_0)^s} dv_g \right)^{\frac{s}{2^{(s)}}} \leq (K(n, s) + \epsilon) \int_M |\nabla u|^2 dv_g + B \epsilon \int_M |u|^2 dv_g,
\]

where \(B \epsilon = \frac{(NH)^2}{\epsilon_0} + NH^2 (K(n, s) + \frac{\epsilon}{2}) \). This proves inequality (6) for functions \(u \in C^\infty(M) \). The inequality for \(H^2_\gamma(M) \) follows by density. This ends the proof of Proposition 1.

\[\Box\]

Proof of Theorem 2: We let \(A \in \mathbb{R} \) be such that there exists \(B > 0 \) such that inequality (3) holds for all \(u \in H^2_\gamma(M) \). Therefore, we have that

\[
\left(\int_M \frac{|u|^{2^{(s)}}}{d_g(x, x_0)^s} dv_g \right)^{\frac{s}{2^{(s)}}} \leq A \int_M |\nabla u|^2 dv_g + B \int_M u^2 dv_g.
\]
We consider $\phi \in C^\infty_c(\mathbb{R}^n)$ such that $\text{Supp } \phi \subset B_R(0)$, $R > 0$ and $(B_{p_0}(x_0), \exp_{x_0}^{-1})$ an exponential chart centered at x_0 with $p_0 \in (0, \delta_g(M))$. For all $\mu > 0$ sufficiently small ($\mu \leq \frac{\rho}{2R}$), we let $\phi_\mu \in C^\infty(B_{p_0}(x_0))$ be such that
\[
\phi_\mu(x) = \phi(\mu^{-1} \exp_{x_0}^{-1}(x))
\]
for all $x \in B_{p_0}(x_0)$. Applying, by density, (13) to ϕ_μ, we write:
\[
(14) \quad \left(\int_{B_{R}(x_0)} \frac{|\phi_\mu|^{2^*(s)}}{d_g(x, x_0)^s} dv_g \right)^\frac{1}{2^*} \leq A \int_{B_{R}(0)} |\nabla \phi_\mu|^2 dv_g + B \int_{B_{R}(0)} \phi_\mu^2 dv_g.
\]
For all $\epsilon > 0$, there exists $R_\epsilon > 0$ such that
\[
(1 - \epsilon)\delta \leq g \leq (1 + \epsilon)\delta
\]
in $B_{R_\epsilon}(x_0)$, where g is assimilated to the local metric $(\exp_{x_0})^*g$ on \mathbb{R}^n. Then, for all $\mu > 0$ sufficiently small such that $R_\mu < R_\epsilon$, we get successively that :
\[
(15) \quad \int_{B_{R}(x_0)} \frac{|\phi_\mu|^{2^*(s)}}{d_g(x, x_0)^s} dv_g \geq (1 - \epsilon)^{2}\mu^{-s} \int_{B_R(0)} \frac{\phi^{2^*(s)}(X)}{|X|^s} dX,
\]
\[
(16) \quad \int_{B_{R}(x_0)} |\nabla \phi_\mu|^2 dv_g \leq (1 + \epsilon)^{2}\mu^{s-2} \int_{B_R(0)} |\nabla \phi|^2 dX
\]
and
\[
(17) \quad \int_{B_{R}(x_0)} \phi_\mu^2 dv_g \leq (1 + \epsilon)^{2}\mu^{n} \int_{B_R(0)} \phi^2 dX.
\]
Plugging the estimates (15), (16) and (17) into (14), letting $\mu \to 0$ and then $\epsilon \to 0$, we get that
\[
(18) \quad \left(\int_{\mathbb{R}^n} \frac{\phi^{2^*(s)}(X)}{|X|^s} dX \right)^\frac{1}{2^*} \leq A \int_{\mathbb{R}^n} |\nabla \phi|^2 dX, \quad \text{for all } \phi \in C^\infty_c(\mathbb{R}^n).
\]
It then follows from the definition of $K(n, s)$ that $A \geq K(n, s)$. Therefore, it follows from the definition of $A_0(M, g, s, x_0)$ that $A_0(M, g, s, x_0) \geq K(n, s)$. By Proposition 1, we have that $A_0(M, g, s, x_0) \leq K(n, s)$. Therefore, $A_0(M, g, s, x_0) = K(n, s)$. This proves Theorem 2.

Remark: Proposition 1 does not allow to conclude whether $A_0(M, g, s, x_0)$ is achieved or not, that is of one can take $\epsilon = 0$ in (6). Indeed, in our construction, when $\epsilon \to 0$, $r_m \to 0$ and then $H \geq |\nabla \eta|^2 \to +\infty$ (see the proof of Proposition 1). This implies that $\lim_{\epsilon \to 0} B_\epsilon = +\infty$. Proving that $A_0(M, g, s, x_0)$ is achieved required different techniques and blow-up analysis: this is the object of the article [11].

2. A General Existence Theorem

This section is devoted to the proof of the following Theorem:

Theorem 4. Let (M, g) be a compact Riemannian Manifold of dimension $n \geq 3$ without boundary. We fix $s \in (0, 2)$, $x_0 \in M$, and $a \in C^0(M)$ such that $\Delta_g + a$ is coercive. We assume that
\[
(18) \quad \inf_{u \in H^1_0(M) \setminus \{0\}} J(u) < \frac{1}{K(n, s)}
\]
Then the infimum of J on $H^2_q(M) \setminus \{0\}$ is achieved by a positive function $u \in H^2_q(M) \cap C^0(M)$. Moreover, up to homothety, u is a solution to (1) and $u \in C^{0,\theta}(M) \cap C^{1,\alpha}_{\text{loc}}(M \setminus \{x_0\})$ for all $\theta \in (0, \min\{1, 2 - s\})$ and $\alpha \in (0,1)$.

The existence of a minimizer of J in $H^2_q(M) \setminus \{0\}$ has been proved independently by Thiam [23].

We prove Theorem 4 via the classical subcritical approach. For any $q \in (2, 2^*(s)]$, we define

$$J_q(u) := \frac{\int_M (|\nabla u|^2 + au^2) \, dv_g}{\left(\int_M \frac{|u|^q}{d_g(x,x_0)} \, dv_g \right)^{\frac{2}{q}}} ; \ u \in H^2_q(M),$$

and

$$H_q = \left\{ u \in H^2_q(M) ; \int_M d_g(x,x_0)^s \, dv_g = 1 \right\}.$$

Finally, we define:

$$\lambda_q = \inf_{u \in H^2_q(M) \setminus \{0\}} J_q(u).$$

We fix $q \in (2, 2^*(s))$. Since the embedding $H^2_q(M) \hookrightarrow L^q(M, d_g(\cdot, x_0)^{-s})$ is compact, there exists a minimizer for λ_q^{\ominus}. More precisely, there exists $u_q \in H^2_q(M) \setminus \{0\} \cap H_q$, $u_q \geq 0$ a.e. such that u_q verifies weakly the subcritical Hardy-Sobolev equation:

$$\Delta_g u_q + au_q = \lambda_q^{\ominus} \frac{u_q^{q-1}}{d_g(x,x_0)^s} \ \text{in} \ M.$$

In particular, we have that $\lambda_q = J_q(u_q)$.

Now we proceed in several steps.

Step 1: We claim that the sequence $(\lambda_q)_q$ converge to $\lambda_{2^*(s)}$ when $q \to 2^*(s)$.

The proof follows the standard method described in [25] and [1] for instance. We omit the proof.

Step 2: As one checks, the sequence $(u_q)_q$ is bounded in $H^2_q(M)$ independently of q.

Therefore, there exists $u \in H^2_q(M)$, $u \geq 0$ a.e. such that, up to a subsequence, $(u_q)_q$ converge to u weakly in $H^2_q(M)$ and strongly in $L^2(M)$, moreover, the convergence holds a.e. in M. It is classical (see [25] and [1]) that $u \in H^2_q(M)$ is a weak solution to

$$\Delta_g u + au = \lambda_{2^*(s)} \frac{u_{2^*(s)-1}}{d_g(x,x_0)^s} \ \text{in} \ M ; \ u \geq 0 \ \text{a.e. in} \ M.$$

Step 3: We claim that $u \neq 0$ is a minimizer of $J(s)$ and that $(u_q)_q \to u$ strongly in $H^2_q(M)$.

Indeed, it follows from the hypothesis (18) that there exists $\epsilon_0 > 0$ such that

$$\lambda_{2^*(s)}(K(n,s) + \epsilon_0) < 1.$$

Now from Proposition 1, we know that there exists $B_{\epsilon_0} > 0$ such that for all $q \in (2, 2^*(s))$:

$$\left(\int_M \frac{|u_q|^{2^*(s)}}{d_g(x,x_0)^s} \, dv_g \right)^{\frac{2}{2^*(s)}} \leq (K(n,s) + \epsilon_0) \int_M |\nabla u_q|^2 \, dv_g + B_{\epsilon_0} \int_M u_q^2 \, dv_g.$$

\begin{align}
(20) \quad \int_M \frac{|u_q|^{2^*(s)}}{d_g(x,x_0)^s} \, dv_g & \leq (K(n,s) + \epsilon_0) \int_M |\nabla u_q|^2 \, dv_g + B_{\epsilon_0} \int_M u_q^2 \, dv_g.
\end{align}
Hölder inequality and $u_q \in H_q$ yield:

$$
\left(\int_M \frac{|u|^2(s)}{d_g(x, x_0)^s} dv_g \right)^{\frac{1}{2}} \geq 1 + o(1)
$$

where $o(1) \to 0$ when $q \to 2^*(s)$. Combining (20) and (21), we get:

$$
\left[(K(n, s) + \epsilon_0) \lambda_q + B_\epsilon \int_M u^2 dv_g \right] \geq 1 + o(1),
$$

where $o(1) \to 0$ when $q \to 2^*(s)$. Letting $q \to 2^*(s)$ in the last relation, we write:

$$
(K(n, s) + \epsilon_0) \lambda_{2^*(s)} + B(\epsilon_0) \int_M u^2 dv_g \geq 1.
$$

It then follows from (19) that $B_\epsilon \int_M u^2 dv_g > 0$, and then $u \not\equiv 0$. It is then classical that $u \in H^2_1(M)$ is a minimizer and that $u_q \to u$ strongly in $H^2_1(M)$ when $q \to 2^*(s)$.

Step 4: We claim that $u \in C^{0, \theta}(M)$, for all $\theta \in (0, \min\{1, 2 - s\})$. Following the method used in [6] (see Proposition 8.1) inspired by the strategy developed by Trudinger [24] for the Yamabe problem, we get that $u \in L^p(M)$, for all $p \geq 1$. Defining $f_\alpha(x) := \frac{u(x)^{2^*(s) - 1}}{d(x, x_0)}$, we then get from Hölder inequality that $f_\alpha \in L^p(M)$, for all $p \in [1, \frac{n}{s})$. Since $\Delta_g u + au = f_\alpha$ and $u \in H^2_1(M)$ and $s \in (0, 2)$, it follows from standard elliptic theory (see [8]) that $u \in C^{0, \theta}(M)$, for all $\theta \in (0, \min\{1, 2 - s\})$.

Step 5: We claim that $u \in C^{1, \alpha}_{loc}(M \setminus \{x_0\})$, for all $\alpha \in (0, 1)$. Indeed, since $u \in L^p(M)$ for all $p > 1$ (see Step 4), we get that $f_\alpha \in L^p_{loc}(M \setminus \{x_0\})$ for all $p > 1$. Since $\Delta_g u + au = f_\alpha$ and $u \in H^2_1(M)$, then, up to taking $p > n$ sufficiently large, it follows from standard elliptic theory (see [8]) that $u \in C^{1, \alpha}_{loc}(M \setminus \{x_0\})$ for all $\alpha \in (0, 1)$.

Remark: If $a \in C^{0, \gamma}(M)$ for some $\gamma \in (0, 1)$ then, using the same argument as above, we get that $u \in C^{2, \gamma}_{loc}(M \setminus \{x_0\})$.

Step 6: We claim that $u > 0$ on M. Indeed, we consider $x_1 \neq x_0$ such that $B_{2r}(x_1) \subset M \setminus \{x_0\}$, with $r > 0$ sufficiently small and a function h defined on $\mathbb{B}_{2r}(x_1)$ by $h(x) := a(x) - \lambda_{2^*(s)} \frac{|u(x)|^{2^*(s) - 2}}{d(x, x_0)}$. Clearly, we have that $h \in C^0(\overline{\mathbb{B}_{2r}(x_1)})$. Since $u \in H^2_1(\mathbb{B}_{2r}(x_1))$, $u \geq 0$ and $(\Delta_g + h) u = 0$ on $\mathbb{B}_{2r}(x_1)$. It then follows from standard elliptic theory (see [8], Theorem 8.20) that there exists $C = C(M, g, x_1, r) > 0$ such that $\sup_{\mathbb{B}_{r}(x_1)} u \leq C \inf_{\mathbb{B}_{r}(x_1)} u$. This implies that $u_{\mathbb{B}_{r}(x_1)} > 0$. Therefore, $u(x) > 0$ for all $x \in M \setminus \{x_0\}$.

We are left with proving that $u(x_0) > 0$. We argue by contradiction and we assume that $u(x_0) = 0$.

Step 6.1: We claim that u is differentiable at x_0. Here again, we follow the method used in [6] (see Proposition 8.1). Since $u \in C^{0, \alpha}(M)$, for all $\alpha \in (0, \min\{1, 2 - s\})$ (from Step 4) and $u(x_0) = 0$ then for any $\alpha \in (0, \min\{1, 2 - s\})$, there exists a constant $C_1(\alpha) = C(M, g, \alpha) > 0$ such that

$$
|u(x)| \leq C_1(\alpha) d_g(x, x_0)^{\alpha}
$$

for all $x \in M$. Therefore, we have that

$$
\Delta_g u + au = f_u,
$$

where f_u is the right-hand side of the equation.

We then have

$$
\int_M \frac{|u(x)|^{2^*(s)} - \frac{2^*(s) - 1}{2} |u(x)|^{2^*(s) - 2} |\nabla_g u(x)|^2}{d_g(x, x_0)^s} dv_g \geq 0.
$$

Since $u(x_0) = 0$, we have

$$
\int_M \frac{|u(x)|^{2^*(s)} - \frac{2^*(s) - 1}{2} |u(x)|^{2^*(s) - 2} |\nabla_g u(x)|^2}{d_g(x, x_0)^s} dv_g \geq 0.
$$

This implies that $\Delta_g u + au = f_u$, where f_u is the right-hand side of the equation.

We then have

$$
\int_M \frac{|u(x)|^{2^*(s)} - \frac{2^*(s) - 1}{2} |u(x)|^{2^*(s) - 2} |\nabla_g u(x)|^2}{d_g(x, x_0)^s} dv_g \geq 0.
$$

Since $u(x_0) = 0$, we have

$$
\int_M \frac{|u(x)|^{2^*(s)} - \frac{2^*(s) - 1}{2} |u(x)|^{2^*(s) - 2} |\nabla_g u(x)|^2}{d_g(x, x_0)^s} dv_g \geq 0.
$$

This implies that $\Delta_g u + au = f_u$, where f_u is the right-hand side of the equation.
where with (22), we have that

\begin{equation}
|f_u(x)| \leq \frac{C_2(\alpha)}{d_p(x, x_0)^{s-\alpha(2^*(s)-1)}}
\end{equation}

for all \(x \in M \setminus \{x_0\} \).

We claim that \(u \in C^{0,\alpha}(M) \), for all \(\alpha \in (0,1) \).

Indeed, we define \(\alpha_1 := \sup\{\alpha \in (0,1) : u \in C^{0,\alpha}(M)\} \) and \(N'_s = s - \alpha_1(2^*(s) - 1) \) and distinguish the following cases:

- **Case 6.1.1** \(N'_s \leq 0 \). In this case, up to taking \(\alpha \) close enough to \(\alpha_1 \), we get that \(f_u \in L^p(M) \), for all \(p \geq 1 \). It follows from (23) and standard elliptic theory that there exists \(\theta \in (0,1) \) such that \(u \in C^{1,\theta}(M) \). This proves that \(\alpha_1 = 1 \) in Case 6.1.1.

- **Case 6.1.2** \(0 < N'_s < 1 \). In this case, up to taking \(\alpha \) close enough to \(\alpha_1 \), we get that \(f_u \in L^p(M) \), for all \(p < \frac{N'_s}{\alpha_1} \). Since \(1 > N'_s \) then there exists \(p \in (n, \frac{n}{N'_s}) \), such that \(f_u \in L^p(M) \). Therefore, (23) and standard elliptic theory yield the existence of \(\theta \in (0,1) \) such that \(u \in C^{1,\theta}(M) \). This proves that \(\alpha_1 = 1 \) in Case 6.1.2.

- **Case 6.1.3** \(N'_s = 1 \). In this case, up to taking \(\alpha \) close enough to \(\alpha_1 \), we get that \(f_u \in L^p(M) \), for all \(p < n \). This implies that for any \(p \in (\frac{n}{2}, n) \), we have that \(f_u \in L^p(M) \). Equation (23) and standard elliptic theory then yields \(u \in C^{0,\theta}(M) \) for all \(\theta \in (0,1) \). This proves that \(\alpha_1 = 1 \) in Case 6.1.3.

- **Case 6.1.4** \(N'_s > 1 \). In this case, up to taking \(\alpha \) close enough to \(\alpha_1 \), we get that \(f_u \in L^p(M) \), for all \(p < \frac{n}{N'_s} \). Therefore, (23), \(N'_s \in (1,2) \) (because \(N'_s > 0 \) and \(s < 2 \)), and standard elliptic theory yield \(u \in C^{0,\theta}(M) \) for all \(\theta < 2 - N'_s \). It then follows from the definition of \(\alpha_1 \) that \(\alpha_1 \geq 2 - N'_s \). This leads to a contradiction with the definition of \(N'_s \). Then Case 6.1.4 does not occur.

These four cases imply that \(u \in C^{0,\alpha}(M) \), for all \(\alpha \in (0,1) \). This proves the claim.

In order to end Step 6.1, we proceed as the above, let \(N''_s = s - 2^*(s) + 1 \) and distinguish two cases:

- **Case 6.1.5** \(N''_s \leq 0 \). In this case, up to taking \(\alpha \) close enough to 1, we have that \(f_u \in L^p(M) \), for all \(p \geq 1 \). Therefore, (23) and elliptic theory yield \(u \in C^1(M) \). This proves Step 6.1 in Case 6.1.5.

- **Case 6.1.6** \(N''_s > 0 \). In this case, up to taking \(\alpha \) close enough to 1, we have that \(f_u \in L^p(M) \), for all \(p < \frac{n}{N''_s} \). Since \(1 > N''_s \), there exists \(p \in (n, \frac{n}{N''_s}) \) such that \(f_u \in L^p(M) \). Therefore, it follows from (23) and elliptic theory that \(u \in C^1(M) \). This proves the claim of Step 6.1 in Case 6.1.6.

This ends Step 6.1.

Step 6.2: We prove the contradiction here. Since \(u \in C^1(M) \), we are able to follow the strategy of [8] (see Lemma 3.4) to adapt Hopf’s strong maximum principle. We let \(\Omega \subset M \setminus \{x_0\} \) be an open set such that \(x_0 \in \partial\Omega \) and \(\partial\Omega \) satisfies an interior sphere condition at \(x_0 \), then there exists an exponential chart \((\mathbb{B}_{2r_y}(y), \exp_y^{-1}) \), \(y \in \Omega, r_y > 0 \) small enough such that \(\mathbb{B}_{r_y}(y) \cap \partial\Omega = \{x_0\} \). We consider \(C > 0 \) such that

\[L_{g,C}(-u) := -((\Delta_g + C)(-u) \geq (\Delta_g + a)(u) \geq 0 \]

on \(\Omega \). We fix \(\rho \in (0, r_y) \) and introduce the function \(v_\rho \) defined on the annulus \(\mathbb{B}_{r_y}(y) \setminus \mathbb{B}_\rho(y) \) by \(v_\rho(x) = e^{-kr^2} - e^{-kr_y^2} \) where \(r := d_g(x, y) \) and \(k > 0 \) to be
Now we define \(\tilde{\lambda} \) determined. Now, if \(u \) is the smaller eigenvalue of \(g^{-1} \) then that for any \(x \in B_{\rho}(y) \setminus B_{\rho}(y) \) we have that:

\[
L_{g,C}v_\rho(x) \geq e^{-kr^2} \left[4k^2 \lambda(x)r^2 - 2k \left(\sum_{i=1}^{n} g^{ii} + \Gamma_0 r \right) - C \right]
\]

where \(\Gamma_0 = \Gamma_0(y) \). Hence we choose \(k \) large enough so that \(L_{g,C}v_\rho \geq 0 \) on \(B_{\rho}(y) \setminus B_{\rho}(y) \). Since \(-u < 0 \) on \(\partial B_{\rho}(y) \) then there exists a constant \(\epsilon > 0 \) such that \(-u + \epsilon v_\rho \leq 0 \) on \(\partial B_{\rho}(y) \). Thus we have \(-u + \epsilon v_\rho \in H^2_{\Gamma}(B_{\rho}(y) \setminus B_{\rho}(y)), -u + \epsilon v_\rho \leq 0 \) on \(\partial B_{\rho}(y) \) and \(L_{g,C}(-u + \epsilon v_\rho) \geq 0 \) on \(B_{\rho}(y) \setminus B_{\rho}(y) \). It follows from the weak maximum principle (see Theorem 8.1 in [8]) that

\[
-u + \epsilon v_\rho \leq 0, \quad \text{on } B_{\rho}(y) \setminus B_{\rho}(y)
\]

In the sequel, \(B_r(0) \) denotes a ball in \((\mathbb{R}^n, \delta) \) centered at the origin and of radius \(r \). Now we define \(\tilde{u} = u \circ \exp_y \) and \(\tilde{v}_\rho = v \circ \exp_y \) on \(B_{\rho}(0) \). By (25), we get:

\[
\epsilon \tilde{v}_\rho \leq \tilde{u}, \quad \text{on } B_{\rho}(0) \setminus B_{\rho}(0)
\]

We define \(X_0 := \exp_y^{-1}(x_0) \). Since \(\tilde{u}(X_0) = \tilde{v}_\rho(X_0) = 0 \), then, by (26), we can write that

\[
\frac{\partial \tilde{u}}{\partial \nu}(X_0) := \liminf_{t \to 0^+} \frac{\tilde{u}(X_0 + tv) - \tilde{u}(X_0)}{t} \leq \epsilon \liminf_{t \to 0^+} \frac{\tilde{v}_\rho(X_0 + tv) - \tilde{v}_\rho(X_0)}{t} := \epsilon \frac{\partial \tilde{v}_\rho}{\partial \nu}(X_0),
\]

where \(\nu \) is the outer normal vector field on \(B_{\rho}(y) \). Therefore \(\frac{\partial u}{\partial \nu}(X_0) \leq \epsilon \frac{\partial v_\rho}{\partial \nu}(X_0) \), but \(\frac{\partial v_\rho}{\partial \nu}(x_0) = v_\rho'(R) \), it follows that

\[
\frac{\partial \tilde{u}}{\partial \nu}(X_0) \leq \epsilon v_\rho'(r_\rho) \leq 0.
\]

This is a contradiction since \(\min_M u = u(x_0) \) and therefore \(\nabla \tilde{u}(X_0) = \nabla u(x_0) = 0 \). This ends the proof of Step 6.

3. Test-functions for \(n \geq 4 \)

We consider the test-function sequence \((u_\epsilon)_{\epsilon > 0} \) defined, for any \(\epsilon > 0 \), \(x \in M \), by

\[
u(x) = \left(\frac{\epsilon^{1-\frac{\alpha}{2}}}{\epsilon^{2-s} + d_\rho(x,x_0)^{2-s}} \right) \xrightarrow{\epsilon \to 0} \Phi
\]

the function \(\Phi \) defined on \(\mathbb{R}^n \) by

\[
\Phi(X) = (1 + |X|^{-2-s})^{-\frac{s}{2-s}}
\]

Since \(u_\epsilon \) is a Lipschitz function, we have that \(u_\epsilon \in H^2(M) \), for any \(\epsilon > 0 \). Given \(\rho \in (0,i_g(M)) \), where \(i_g(M) \) is the injectivity radius on \(M \), we recall that \(B_{\rho}(x_0) \) be the geodesic ball of center \(x_0 \) and radius \(\rho \). Cartan’s expansion of the metric \(g \) (see [13]) in the exponential chart \((B_{\rho}(x_0), \exp_{x_0}^{-1}) \) yields

\[
\det(g)(x) = 1 - \frac{R_{\alpha\beta}(x_0)x_\alpha x_\beta}{3} + O(r^3),
\]

where the \(x_\alpha \)'s are the coordinates of \(x \), \(r^2 = \sum_{\alpha} (x_\alpha)^2 \) and \((R_{\alpha\beta}) \) is the Ricci curvature. Integrating on the unit sphere \(S^{n-1} \) yields

\[
\int_{S^{n-1}} \sqrt{\det(g)}(r) \, d\theta = \omega_{n-1} \left[1 - \frac{\text{Scal}(x_0)}{6n} r^2 + O(r^3) \right].
\]
3.1. **Estimate of the gradient term.** At first, we estimate \(\int_M |\nabla u_\epsilon|^2 d\nu_g \). For that, we write for all \(x \in M \):

\[
|\nabla u_\epsilon|^2(x) = (n - 2)^2 \epsilon^{n-2} \frac{r^{2(1-s)}}{(\epsilon^2 - s + r^{2-s})^{\frac{2n-s}{2}}}
\]

where \(r = d_g(x, x_0) \). Therefore, using (27) and the change of variable \(t = r\epsilon^{-1} \), we get that

\[
\int_{\mathcal{B}_r(x_0)} |\nabla u_\epsilon|^2 d\nu_g = (n - 2)^2 \epsilon^{n-2} \omega_{n-1} \int_0^{r_0} \frac{r^{n+1} \left(1 - \frac{\text{Scal}_g(x_0)}{6n} \right) r^2 + O(r^3)}{t^{2s} (\epsilon^2 - s + r^{2-s})^{\frac{2(n-s)}{2}}} dt
\]

Straightforward computations yield

\[
\int_0^{+\infty} \frac{t^{n+1} dt}{t^{2s} (1 + t^{2-s})^{\frac{2(n-s)}{2}}} = (n - 2)^{-2} \omega_{n-1} \int_{\mathbb{R}^n} |\nabla \Phi|^2 dX,
\]

and

\[
\epsilon^2 \int_0^{+\infty} \frac{t^{n+3} dt}{t^{2s} (1 + t^{2-s})^{\frac{2(n-s)}{2}}} = \begin{cases} \\
\epsilon^2 (n - 2)^{-2} \omega_{n-1} \int_{\mathbb{R}^n} |X|^2 |\nabla \Phi|^2 dX & \text{if } n \geq 5, \\
\epsilon^2 \ln \frac{1}{\epsilon} & \text{if } n = 4, \\
O(\epsilon) & \text{if } n = 3.
\end{cases}
\]

Since

\[
\int_{M \setminus \mathcal{B}_r(x_0)} |\nabla u_\epsilon|^2 d\nu_g = O(\epsilon^{n-2}),
\]

when \(\epsilon \to 0 \), putting together (30) with (31) and (32) yield

\[
\int_M |\nabla u_\epsilon|^2 d\nu_g = \begin{cases} \\
\int_{\mathbb{R}^n} |\nabla \Phi|^2 dX - \frac{\text{Scal}_g(x_0)}{6n} \epsilon^2 + O(\epsilon^2) & \text{if } n \geq 5, \\
\int_{\mathbb{R}^n} |\nabla \Phi|^2 dX - \frac{\epsilon^2}{6n} \text{Scal}_g(x_0) \epsilon^2 \ln(\frac{1}{\epsilon}) + O(\epsilon^2) & \text{if } n = 4, \\
\int_{\mathbb{R}^n} |\nabla \Phi|^2 dX + O(\epsilon) & \text{if } n = 3.
\end{cases}
\]

Arguing as the above and using that \(a \in C^0(M) \), we get that:

\[
\int_M au_\epsilon^2 d\nu_g = \begin{cases} \\
e^2 a(x_0) \int_{\mathbb{R}^n} \Phi^2 dX + O(\epsilon^2) & \text{if } n \geq 5, \\
a(x_0) \omega_3 \epsilon^2 \ln \frac{1}{\epsilon} + O(\epsilon^2) & \text{if } n = 4, \\
O(\epsilon) & \text{if } n = 3.
\end{cases}
\]

and

\[
\int_M |u_\epsilon|^2 d\nu_g = \begin{cases} \\
\int_{\mathbb{R}^n} |\Phi|^2 dX - \epsilon^2 \frac{\text{Scal}_g(x_0)}{6n} \int_{\mathbb{R}^n} |X|^{2-s}|\Phi|^2 dX + O(\epsilon^2) & \text{if } n \geq 4, \\
\int_{\mathbb{R}^n} |\Phi|^2 dX + O(\epsilon) & \text{if } n = 3.
\end{cases}
\]
From Lieb [14], we know that \(\Phi \) is an extremal for (5), that is
\[
\frac{\int_{\mathbb{R}^n} |\nabla \Phi|^2 dX}{\left(\int_{\mathbb{R}^n} |\Phi|^{2^*} dX \right)^{\frac{n}{2^*}}} = K(n, s)^{-1}
\] (36)
Combining (33), (34) and (35) and this last equation, we obtain, for any \(\epsilon > 0 \), the following results :
\[
J(u_\epsilon) = K(n, s)^{-1} \left(1 + \left\{ \begin{array}{ll}
(C_1(n, s)a(x_0) - C_2(n, s)\text{Scal}_g(x_0))e^2 + o(e^2) & \text{if } n \geq 5 \\
\omega_3(\int_{\mathbb{R}^n} |\nabla \Phi|^2 dX)^{-1} (a(x_0) - \frac{1}{6}\text{Scal}_g(x_0)) e^2 \ln \left(\frac{1}{\epsilon} \right) + O(\epsilon^2) & \text{if } n = 4 \\
O(\epsilon) & \text{if } n = 3
\end{array} \right. \right)
\] (37)
where
\[
C_1(n, s) := \frac{\int_{\mathbb{R}^n} |\Phi|^2 dX}{\left(\int_{\mathbb{R}^n} |\nabla \Phi|^2 dX \right)^{\frac{n}{2}}}
\]
\[
C_2(n, s) := \frac{1}{6n} \frac{\int_{\mathbb{R}^n} |X|^2 |\nabla \Phi|^2 dX}{\int_{\mathbb{R}^n} |\Phi|^2 dX} - \frac{2}{2^*(s)6n} \frac{\int_{\mathbb{R}^n} |X|^{2-s} |\Phi|^{2^*(s)} dX}{\int_{\mathbb{R}^n} |\Phi|^{2^*(s)} dX}
\]
Unlike the case \(s = 0 \), it is not possible to compute explicitly the constants \(C_1(n, s) \) and \(C_2(n, s) \). However, we are able to explicit their quotient, which is enough to prove our theorem. We need the following lemma taken from Aubin [1] :

Lemma 1. Let \(p, q \in \mathbb{R}_+^* \) such that \(p - q > 1 \) and assume that \(I^q_p = \int_0^{+\infty} \frac{e^t dt}{(1+t)^p} \), then
\[
I^q_{p+1} = \frac{p - q - 1}{p} I^q_p \quad \text{and} \quad I^q_{p+1} = \frac{q + 1}{p - q - 1} I^q_p
\]
Indeed, an integration by parts shows that \(I^q_p = \frac{p}{q+1} I^q_{p+1} \). On the other hand, we can easily see that \(I^q_p = I^q_{p+1} + I^q_{p+1} \). Together, the above relations yield the lemma.

We apply Lemma 1 to the computation of \(C_2(n, s)/C_1(n, s) \) when \(n \geq 5 \). We have that
\[
\frac{C_2(n, s)}{C_1(n, s)} = \frac{1}{6n} \frac{\int_{\mathbb{R}^n} |X|^2 |\nabla \Phi|^2 dX}{\int_{\mathbb{R}^n} \Phi^2 dX} - \frac{2}{2^*(s)6n} \frac{\int_{\mathbb{R}^n} |X|^{2-s} |\Phi|^{2^*(s)} dX}{\int_{\mathbb{R}^n} |\Phi|^{2^*(s)} dX}
\]
Independently
\[
\frac{\int_{\mathbb{R}^n} |X|^2 |\nabla \Phi|^2 dX}{\int_{\mathbb{R}^n} \Phi^2 dX} = \int_0^{+\infty} \frac{e^{n-3-2s} r^{n-1} dr}{(1+r^{2-s})^{\frac{2(n-2)}{2-s}}},
\]
up to taking \(t = r^{2-s} \) and using the Lemma 1, we get that :
\[
\frac{\int_{\mathbb{R}^n} |X|^2 |\nabla \Phi|^2 dX}{\int_{\mathbb{R}^n} \Phi^2 dX} = \frac{(n-2)^2}{2-s} \int_0^{+\infty} \frac{r^{n-3-2s} dr}{(1+t)(1+t)^2} = \frac{n(n-2)(n+2-s)}{2(2n-2-s)}
\] (39)
We follow the technique developed by Druet [3] for test-function in dimension \(n \geq 2 \). Let \(W \) be a compact Riemannian Manifold of dimension \(n \geq 2 \). The case of a manifold with boundary is discussed at the end of this section. We fix \(\rho \in (0, i_g(M)/2) \) and we consider a cut-off function \(\eta \in C^\infty_c(\mathbb{B}_2(x_0)) \) such that \(\eta \equiv 1 \) on \(\mathbb{B}_\rho(x_0) \). Then there exists

\[
\phi \in \mathcal{D}(M) \cap L^1_v S^p(M) \quad \text{such that} \quad \phi \equiv 1 \quad \text{on} \quad \mathbb{B}_\rho(x_0) \quad \text{and} \quad \phi \in C^\infty(M) \quad \text{outside} \quad \mathbb{B}_\rho(x_0).
\]

Moreover, if \(\rho \leq 1 \), then

\[
\inf_{v \in H^1(M) \setminus \{0\}} J(v) \leq K(n,s)^{-1}.
\]

Moreover, if \(n \geq 4 \) and \(a(x_0) < c_{n,s} \text{Scal}_g(x_0) \), where \(c_{n,s} \) is as (43), then inequality (44) is strict.

4. Test-functions: the case \(n = 3 \)

The argument used for \(n \geq 4 \) is local in the sense that the expansion (42) only involves the values of \(a \) and \(\text{Scal}_g \) at the singular point \(x_0 \). When \(n = 3 \), the first-order in (42) of Section 3 has an undetermined sign. It is well-known since Schoen [19] that the relevant quantity to use in small dimension is the mass, which is a global quantity.

We follow the technique developed by Druet [3] for test-function in dimension 3. The case of a manifold with boundary is discussed at the end of this section. We define the Green-function \(G_{x_0} \) of the elliptic operator \(\Delta_g + a \) on \(x_0 \) as the unique function strictly positive and symmetric verifying, in the sense of distribution,

\[
\Delta_g G_{x_0} + a G_{x_0} = D_{x_0},
\]

where \(D_{x_0} \) is the Dirac mass at \(x_0 \). We fix \(\rho \in (0, i_g(M)/2) \) and we consider a cut-off function \(\eta \in C^\infty_c(B_{2\rho}(x_0)) \) such that \(\eta \equiv 1 \) on \(B_\rho(x_0) \). Then there exists
\(\beta_{x_0} \in H^2_1(M) \) such that we can write \(G_{x_0} \) as follow:

\[
\omega_2 G_{x_0}(x) = \frac{\eta(x)}{d_g(x, x_0)} + \beta_{x_0}(x)
\]

for all \(x \in M \). According to (45) and (46), we have that

\[
\Delta_g \beta_{x_0} + a \beta_{x_0} = f_{x_0}
\]

where

\[
f_{x_0}(x) := -\Delta_g \left(\frac{\eta(x)}{d_g(x, x_0)} \right) - \frac{(a \eta)(x)}{d_g(x, x_0)} \quad \text{for all } x \in M \setminus \{x_0\}.
\]

In particular, for all \(p \in (1, 3) \), we have \(f_{x_0} \in L^p(M) \). Therefore, it follows from standard elliptic theory that \(\beta_{x_0} \in C^0(M) \cap C^1_{\text{loc}}(M \setminus \{x_0\}) \cap H^2_p(M) \) for all \(p \in (1, 3) \).

In particular, the mass satisfies \(m(x_0) = \beta_{x_0}(x_0) \). For any \(\epsilon > 0 \), we define, on \(M \), the function

\[
u_\epsilon = \eta u_\epsilon + \sqrt{\epsilon} \beta_{x_0},
\]

where \(u_\epsilon \) is the general test-function defined as (27). This section is devoted to computing the expansion of \(J(\nu_\epsilon) \). We compute the different terms separately.

4.1. **The leading term** \(f_M(\|\nabla v_\epsilon\|_g^2 + a v_\epsilon^2) dv_g \). Integration by parts and using the definition of \(v_\epsilon \), we write, for any \(\epsilon > 0 \), that:

\[
\int_M (\|\nabla v_\epsilon\|_g^2 + a v_\epsilon^2) dv_g = \int_M \eta^2 u_\epsilon \Delta_g u_\epsilon dv_g + \int_M u_\epsilon^2 \eta \Delta_g \eta dv_g - \int_M \eta (\nabla \eta, \nabla u_\epsilon^2) g dv_g + \int_M a \eta^2 u_\epsilon^2 dv_g + \int_M (\Delta_g \beta_{x_0} + a \beta_{x_0})(\epsilon \beta + 2 \sqrt{\epsilon} \eta u_\epsilon) dv_g.
\]

Writing \(u_\epsilon^2 \) in the form:

\[
u_\epsilon = \frac{\epsilon}{d_g(x, x_0)^2} + O(\epsilon^{5-2s}),
\]

with \(O(1) \in C^2(M \setminus B_\rho(x_0)) \) uniformly bounded with respect to \(\epsilon \), we obtain that

\[
\int_M u_\epsilon^2 \eta \Delta_g \eta dv_g = \epsilon \int_{M \setminus B_\rho(x_0)} \frac{\eta \Delta_g \eta}{d_g(x, x_0)^2} dv_g + o(\epsilon),
\]

and

\[
\int_M \eta (\nabla \eta, \nabla u_\epsilon^2) g dv_g = \epsilon \int_{M \setminus B_\rho(x_0)} \eta (\nabla \eta, \nabla \frac{1}{d_g(x, x_0)^2}) g dv_g + o(\epsilon).
\]

By integrating by parts, using (50) and since \(\partial_\nu \eta = 0 \) then we write

\[
\int_M u_\epsilon^2 \eta \Delta_g \eta dv_g - \int_M \eta (\nabla \eta, \nabla u_\epsilon^2) g dv_g = \epsilon \int_{M \setminus B_\rho(x_0)} \frac{\|\nabla \eta\|_g^2}{d_g(x, x_0)^2} dv_g + o(\epsilon)
\]

We have also that

\[
\int_M a \eta^2 u_\epsilon^2 dv_g = \epsilon \int_M \frac{a \eta^2}{d_g(x, x_0)^2} dv_g + R_1(\epsilon) + o(\epsilon),
\]

where, as in (30),

\[
R_1(\epsilon) = O \left(\epsilon^{3-s} \int_{B_\rho(x_0)} \frac{a \eta^2 dv_g}{d_g(x, x_0)^2(\epsilon^{2-s} + a \eta^2 + d_g(x, x_0)^2)^{2-s}} \right) = O \left(\epsilon^2 \int_0^{t_0} \frac{dt}{1 + t^{2-s}} \right) = o(\epsilon).
\]
This latest relation and (54) give that

\[\int_M \alpha n^2 u^2 dv_g = \epsilon \int_M \frac{\alpha n^2}{d_g(x, x_0)^2} dv_g + o(\epsilon). \]

Writing now \(u_\epsilon \) in the form

\[u_\epsilon(x) = \frac{\sqrt{\epsilon}}{d_g(x, x_0)} + O(\epsilon^{-s}), \]

with \(O(1) \in C^2(M \setminus B_\rho(x_0)) \) we get that

\[\int_{M \setminus B_\rho(x_0)} \eta^2 u_\epsilon \Delta_g u_\epsilon dv_g = \epsilon \int_{M \setminus B_\rho(x_0)} \frac{\eta^2}{d_g(x, x_0)} \Delta_g \left(\frac{1}{d_g(x, x_0)} \right) dv_g + o(\epsilon). \]

Since \(u_\epsilon \) is radially symmetrical, denoting \(\Delta_\delta \) as the Laplacian in the Euclidean metric \(\delta \), we get with a change of variable and Cartan’s expansion of the metric (29) that

\[\int_{B_\rho(x_0)} u_\epsilon \Delta_\delta u_\epsilon dv_g = \int_{\mathbb{R}^n} \Phi \Delta_\delta \Phi dX + o(\epsilon), \]

where \(\Phi \) is defined in (28). Since

\[\Delta_g u_\epsilon = \Delta_\delta u_\epsilon - \partial_r (\ln det(g)) \partial_r u_\epsilon \]

in \(g \)-normal coordinates, we have that

\[\int_{B_\rho(x_0)} u_\epsilon \Delta_g u_\epsilon dv_g = \int_{\mathbb{R}^n} \Phi \Delta_\delta \Phi dX + o(\epsilon) \]

when \(\epsilon \to 0 \). Similar computations to the ones we just developed give that

\[\epsilon \int_{B_\rho(x_0)} \frac{d_g(x, x_0)^{1-s} \partial_r (\ln det(g))}{2(\epsilon^2 + d_g(x, x_0)^2 s)} dv_g = \epsilon \int_{B_\rho(x_0)} \frac{\partial_r (\ln det(g))}{2d_g(x, x_0)^2} dv_g + o(\epsilon) \]

\[+ O \left(\epsilon^{s-3} \int_{B_\rho(x_0)} d_g(x, x_0)^3 (\epsilon^2 + d_g(x, x_0)^2) dv_g \right). \]

Cartan’s expansion of the metric \(g \), (29) and to this latest relation yield

\[\epsilon \int_{B_\rho(x_0)} \frac{d_g(x, x_0)^{1-s} \partial_r (\ln det(g))}{2(\epsilon^2 + d_g(x, x_0)^2 s)} dv_g = \epsilon \int_{B_\rho(x_0)} \frac{\partial_r (\ln det(g))}{2d_g(x, x_0)^2} dv_g + o(\epsilon) \]

(59)

Relations (57), (58) and (59) yield

\[\int_M \eta^2 u_\epsilon \Delta_g u_\epsilon dv_g = \int_{\mathbb{R}^n} \Phi \Delta_\delta \Phi dX + \epsilon \int_{B_\rho(x_0)} \frac{\partial_r (\ln det(g))}{2d_g(x, x_0)^2} dv_g \]

\[+ \epsilon \int_{M \setminus B_\rho(x_0)} \frac{\eta^2}{d_g(x, x_0)} \Delta_g \left(\frac{1}{d_g(x, x_0)} \right) dv_g + o(\epsilon) \]

(60)
when $\epsilon \to 0$. At last, using again the expansion (60) of u_ϵ, we obtain that:
\[
\int_M (\Delta g \beta_{x_0} + a \beta_{x_0})(\epsilon \beta_{x_0} + 2 \sqrt{\epsilon} u_\epsilon) dv_g = \epsilon \int_M (\Delta g \beta_{x_0} + a \beta_{x_0})(\beta_{x_0} + 2 \eta d_g(x, x_0)) dv_g + O\left(\epsilon^{4-s} \int_M (\Delta g \beta_{x_0} + a \beta_{x_0}) \frac{\eta}{d_g(x, x_0)} dv_g\right).
\]
The latest relation and (47) allow to write:
\[
\int_M (\Delta g \beta_{x_0} + a \beta_{x_0})(\epsilon \beta_{x_0} + 2 \sqrt{\epsilon} u_\epsilon) dv_g = \epsilon \int_M (\Delta g \beta_{x_0} + a \beta_{x_0})(\beta_{x_0} + 2 \eta d_g(x, x_0)) dv_g + o(\epsilon).
\]
Since $\beta_{x_0} \in C^0(M) \cap H^p(M)$ for all $p \in (\frac{3}{4}, 3)$, it follows from (45) and (46) that
\[
\int_M (\Delta g \beta_{x_0} + a \beta_{x_0})(\beta_{x_0} + 2 \eta d_g(x, x_0)) dv_g = \omega_2 \beta_{x_0}(x_0).
\]
Then the last couple of relations give that
\[
\int_M (\Delta g \beta_{x_0} + a \beta_{x_0})(\epsilon \beta_{x_0} + 2 \sqrt{\epsilon} u_\epsilon) dv_g = \epsilon \omega_2 \beta_{x_0}(x_0) + o(\epsilon)
\]
when $\epsilon \to 0$. Knowing, from (47) and (48), that
\[
\int_M (\Delta g \beta_{x_0} + a \beta_{x_0})(\beta_{x_0} + 2 \eta d_g(x, x_0)) dv_g = M_1 = \int_B \phi \Delta_g \phi dX + \epsilon \omega_2 \beta_{x_0}(x_0) + o(\epsilon)
\]
and combining (53), (55),(60) and (61) with (49), we get that
\[
\int_M (|\nabla u_\epsilon|^2 + u_\epsilon^2) dv_g = \int_{\mathbb{R}^n} \Phi \Delta_g \Phi dX + \epsilon \omega_2 \beta_{x_0}(x_0) + o(\epsilon)
\]
when $\epsilon \to 0$.

4.2. Estimate of $\int_M \frac{e^{\epsilon \phi(x)}}{M_3(x, x_0)} dv_g$. Since $s \in (0, 2)$ then $6 - 2s > 2$. Therefore there exists $C(s) > 0$ such that for all $X, Y \in \mathbb{R}$, we have:
\[
||X + Y|^{6-2s} - |X|^{6-2s} - (6 - 2s)XY|X|^{4-2s} \leq C(s) (|X|^{4-2s}Y^2 + |Y|^{6-2s})
\]
This allows to write
\[
\int_M \frac{e^{\epsilon \phi(x)}}{M_3(x, x_0)} dv_g = \int_M \frac{(\eta u_\epsilon + \sqrt{\epsilon} \beta_{x_0})^{6-2s}}{d_g(x, x_0)^s} dv_g
\]
\[
= \int_{B_\rho(x_0)} \frac{(\eta u_\epsilon + \sqrt{\epsilon} \beta_{x_0})^{6-2s}}{d_g(x, x_0)^s} dv_g + O(\epsilon^{3-s})
\]
\[
= \int_{B_\rho(x_0)} \frac{u_\epsilon^{6-2s} + (6 - 2s)u_\epsilon^{6-2s} - 2u_\epsilon \sqrt{\epsilon} \beta_{x_0}}{d_g(x, x_0)^s} dv_g + R_2(\epsilon) + o(\epsilon)
\]
(63)

where
\[
R_2(\epsilon) = O\left(\int_{B_\rho(x_0)} \frac{u_\epsilon^{4-2s} \epsilon \beta_{x_0} + \epsilon^{3-s} \beta_{x_0}^{6-2s}}{d_g(x, x_0)^s} dv_g\right) = o(\epsilon)
\]
(64)
Hence, the latest relation and (66) give that
\[\int_{B_\rho(x_0)} \frac{u_0^6 - 2s}{d_g(x, x_0)^s} dv_g = \int_{\mathbb{R}^n} \frac{\Phi^{2^*(s)}(X)}{|X|^s} dX + o(\epsilon),\]
when \(\epsilon \to 0\). Using that \(\beta_{x_0} \in C^0,\theta(M)\) for all \(\theta \in (0, 1)\), we get that
\[\int_{B_{\rho}(x_0)} \frac{(6 - 2s)u \rho^{-2s} \sqrt{c_{x_0}}}{d_g(x, x_0)^s} dv_g = \epsilon^{3-s}(6 - 2s)\beta_{x_0}(x_0)\omega_2 \int_0^\rho \frac{r^{2-s} dr}{(\epsilon^{2-s} + r^{2-s})^{\frac{2-s}{s}}} + o(\epsilon)\]
\[= \epsilon(6 - 2s)\beta_{x_0}(x_0)\omega_2 \int_0^\pi \frac{t^{2-s} dt}{(1 + t^{2-s})^{\frac{2-s}{s}}} + o(\epsilon)\]
\[= \epsilon(6 - 2s)\beta_{x_0}(x_0)\omega_2 \int_0^{+\infty} \frac{t^{2-s} dt}{(1 + t^{2-s})^{\frac{2-s}{s}}} + o(\epsilon),\]
when \(\epsilon \to 0\). Since \(\Delta_\theta \Phi = (3 - s)\frac{\Phi^{2^*(s) - 1}}{|X|^s}\) in \(\mathbb{R}^n\), a changes of variable and an integration by parts yields
\[\omega_2 \int_0^{+\infty} \frac{t^{2-s} dt}{(1 + t^{2-s})^{\frac{2-s}{s}}} = \int_{\mathbb{R}^n} \frac{\Phi^{2^*(s)-1}(X)}{|X|^s} dX = (3 - s)^{-1} \lim_{R \to +\infty} \int_{\partial B_R(0)} -\partial_\nu \Phi dX,\]
where \(\nu\) is the normal vector field on the Euclidean ball \(B_R(0)\). Since \(\partial_\nu \Phi = -|X|^{1-s}(1 + |X|^{2-s}) \frac{\Phi^{2^*(s)-1}}{|X|^s}\) for all \(X \in \mathbb{R}^n\), passing to the limit in (67) yields
\[\omega_2 \int_0^{+\infty} \frac{t^{2-s} dt}{(1 + t^{2-s})^{\frac{2-s}{s}}} = (3 - s)^{-1} \omega_2.\]
Hence, the latest relation and (66) give that
\[\int_{B_{\rho}(x_0)} \frac{(6 - 2s)u \rho^{-2s} \sqrt{c_{x_0}}}{d_g(x, x_0)^s} dv_g = \epsilon(2\beta_{x_0}(x_0)\omega_2) + o(\epsilon),\]
when \(\epsilon \to 0\). Combining (64), (65) and (68) with (63), we get that
\[\int_M \frac{\nu_0^{2^*(s)}}{d_g(x, x_0)^s} dv_g = \int_{\mathbb{R}^n} \frac{\Phi^{2^*(s)}(X)}{|X|^s} dX + \epsilon(2\beta_{x_0}(x_0)\omega_2) + o(\epsilon),\]
when \(\epsilon \to 0\).

4.3. Expansion of \(J(\nu_x)\) and proof of Theorem 1. Equality (69), (62) and (67) yield
\[J(\nu_x) = \frac{\int_M (|\nabla \nu_0|^2 + a\nu_0^2) dv_g}{\left(\int_M \frac{\nu_0^{2^*(s)}}{d_g(x, x_0)^s} dv_g\right)^{\frac{1}{2^*(s)}}}\]
\[= K(3, s)^{-1} \left(1 - \epsilon \frac{2\beta_{x_0}(x_0)\omega_2}{\int_{\mathbb{R}^n} |x|^{-s}\Phi^{2^*(s)}(x) dx} + o(\epsilon)\right)\]
when \(\epsilon \to 0\). Noting that \(m(x_0) = \beta_{x_0}(x_0)\), we then get the following as a consequence of (70):
Theorem 6. Let (M, g) be a compact Riemannian Manifold of dimension $n = 3$. Let $a \in C^0(M)$ such that $\Delta_g + a$ is coercive, $x_0 \in M$ and $s \in (0, 2)$. Assume that that the mass at x_0 is positive, that is $\beta_{x_0}(x_0) > 0$. Then we have that
\[
\inf_{v \in H^2(\Delta_g + a) \setminus \{0\}} J(v) < K(n, s)^{-1}.
\]

Proof of Theorem 1. Theorem 1 follows from the existence result (Theorem 4) and the upper-bounds (Theorem 5 and Theorem 6).

Proof of Theorem 3. As one checks, the estimates (42) and (70) hold when M is a smooth compact manifold with boundary provided x_0 lies in the interior. Then Theorem 1 extends to such a case, and Theorem 3 is a corollary.

4.4. Examples with positive mass.

Proposition 2. Let (M, g) be a compact Riemannian Manifold of dimension $n = 3$. Let $a \in C^0(M)$ such that $\Delta_g + a$ is coercive, $x_0 \in M$ and $s \in (0, 2)$. If $\{a \leq c_{3,0}\text{Scal}_g\}$ or $\{a \equiv c_{3,0}\text{Scal}_g\}$ and (M, g) is not conformally equivalent to the canonical n-sphere then we have that:
\[
\inf_{v \in H^2(M) \setminus \{0\}} J(v) < K(3, s)^{-1}.
\]

Indeed, the positivity of the mass in this case was proved by Druet [4]. We incorporate the proof for the sake of self-completeness.

Lemma 2. Let (M, g) be a compact Riemannian Manifold of dimension $n = 3$. We consider $a, a' \in C^0(M)$ such that operators $\Delta_g + a$ and $\Delta_g + a'$ are coercive. We denote as G_x, G'_x their respective Green’s function at any point $x \in M$. We assume that $a \leq a'$. Then $\beta_x > \beta'_x$ for all $x \in M$, where $\beta_x, \beta'_x \in C^{0,\theta}(M), \theta \in (0,1)$ are such that
\[
\omega_2G_x = \frac{\eta_x}{d_g(x, \cdot)} + \beta_x \quad \text{and} \quad \omega_2G'_x = \frac{\eta_x}{d_g(x, \cdot)} + \beta'_x.
\]

Proof. We fix $x \in M$ and we define $h_x = \beta'_x - \beta_x$, where β'_x and β_x are as in (71). Noting $L := \Delta_g + a$ and $L' := \Delta_g + a'$, we have that $L'(h_x) = -(a' - a)G_x \leq 0$. Since $h_x \in H^2(M)$ for all $p \in (1,3)$, then for all $y \in M$, Green’s formula yields
\[
h_x(y) = - \int_M G'_y(z)(a' - a)(z)G_x(z) \, dv_g(z).
\]

Therefore $h_x \leq 0$ since $a \leq a'$. Moreover, since $a \not\equiv a'$, we have that $h_x < 0$. This ends the proof.

Proof of Proposition 2: We consider the operator $L^0 := \Delta_g + c_{3,0}\text{Scal}_g$, β^0 the mass of (M, g) corresponding to L^0. The Positive Mass Theorem (see [20], [21]) gives that $\beta^0(x) > 0$, the equality being achieved only in the conformal class of the canonical sphere. It then follows from Lemma 2 that $\beta_{x_0}(x_0) > 0$ when $\{a \leq c_{3,0}\text{Scal}_g\}$ or $\{a \equiv c_{3,0}\text{Scal}_g\}$ and (M, g) is not conformally equivalent to the unit n-sphere. It then follows from Theorem 6 that
\[
\inf_{v \in H^2(M) \setminus \{0\}} J(v) < K(3, s)^{-1}.
\]
20 HASSAN JABER

REFERENCES

[1] T. Aubin, Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. 55 (1976), 269–296.

[2] Problèmes isopérimétriques et espaces de Sobolev, J. Math. Pures Appl. 11 (1976), 573–598.

[3] O. Druet, Optimal Sobolev inequality and Extremal functions. The three-dimensional case, Indiana University Mathematics Journal 51 (2002), no. 1, 69–88.

[4] Compactness for Yamabe Metrics in Low Dimensions, IMRN International Mathematics Research Notices 23 (2004), 1143–1191.

[5] N. Ghoussoub and X.S. Kang, Hardy-Sobolev critical elliptic equations with boundary singularities, AHP-Analyse non linéaire 21 (2004), 767–793.

[6] N. Ghoussoub and F. Robert, The effect of curvature on the best constant in the Hardy-Sobolev inequalities, GAFA, Geom. funct. anal. 16 (2006), 1201–1245.

[7] N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc. 352 (2000), no. 12, 5703–5743.

[8] G. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Second edition, Vol. 224, Grundlehren der mathematischen Wissenschaften, Springer, Berlin, 1983.

[9] E. Hebey, Introduction à l’analyse non linéaire sur les Variétés, Diderot, 1997.

[10] Non linear analysis on Manifolds : Sobolev spaces and inequalities, American Mathematical Society, Collection : Courant lecture notes in mathematics, 2001.

[11] H. Jaber, Optimal Hardy-Sobolev inequalities on compact Riemannian Manifolds (2013). Preprint.

[12] D. Kang and S. Peng, Existence of solutions for elliptic equations with critical Sobolev-Hardy exponents, Nonlinear Analysis 56 (2004), 1151–1164.

[13] J. Lee and T. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 1, 37–91.

[14] E.H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Mathematics 118 (1983), 349–374.

[15] Y. Li, B. Ruf, Q. Guo, and P. Niu, Quasilinear elliptic problems with combined critical Sobolev-Hardy terms, Annali di Matematica 192 (2013), 93–113.

[16] R. Musina, Existence of extremals for the Maz’ya and for the Caffarelli-Kohn-Nirenberg inequalities, Nonlinear Anal. 70 (2009), no. 8, 3002–3007.

[17] P. Pucci and R. Servadei, Existence, non existence and regularity of radial ground states for p-Laplacian equations with singular weights, Ann. I. H. Poincaré 25 (2008), 505–537.

[18] E.H.A. Thiam, Hardy and Hardy-Sobolev Inequalities on Riemannian Manifolds (2013). Preprint.

[19] R. Schoen, Conformal deformation of a Riemannian metric to a constant scalar curvature, Journal of Differential Geometry 118 (1984), 479–495.

[20] R. Schoen and S. Yau, On the proof of the positive mass conjecture in general relativity, Comm. Math. Phys. 65 (1979), no. 1, 45–76.

[21] Proof of the positive action-conjecture in quantum relativity, Phys. Rev. Lett. 42 (1979), no. 9, 547–548.

[22] G. Talenti, Best constant in Sobolev inequality, Ann. di Matem. Pura ed Appl. 110 (1976), 353–372.

[23] E.H.A. Thiam, Hardy and Hardy-Sobolev Inequalities on Riemannian Manifolds (2013). Preprint.

[24] N.S. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact Manifolds, Ann. Scuola Norm. Sup. Pisa 22 (1968), 265–274.

[25] H. Yamabe, On a Deformation of Riemannian Structures on Compact Manifolds, Osaka Math. J. 12 (1960), 21–37.

Université de Lorraine, Institut Elie Cartan de Lorraine, UMR 7502, Vandoeuvre-lès-Nancy, F-54506, France.
E-mail address: Hassan.Jaber@univ-lorraine.fr