The mitochondrial genome of *Protostrongylus rufescens* – implications for population and systematic studies

Abdul Jabbar*, Namitha Mohandas, Aaron R Jex and Robin B Gasser*

Abstract

Background: *Protostrongylus rufescens* is a metastrongyloid nematode of small ruminants, such as sheep and goats, causing protostrongylosis. In spite of its importance, the ecology and epidemiology of this parasite are not entirely understood. In addition, genetic data are scant for *P. rufescens* and related metastrongyloids.

Methods: The mt genome was amplified from a single adult worm of *P. rufescens* (from sheep) by long-PCR, sequenced using 454-technology and annotated using bioinformatic tools. Amino acid sequences inferred from individual genes of the mt genomes were concatenated and subjected to phylogenetic analysis using Bayesian inference.

Results: The circular mitochondrial genome was 13,619 bp in length and contained two ribosomal RNA, 12 protein-coding and 22 transfer RNA genes, consistent with nematodes of the order Strongylida for which mt genomes have been determined. Phylogenetic analysis of the concatenated amino acid sequence data for the 12 mt proteins showed that *P. rufescens* was closely related to *Aelurostrongylus abstrusus*, *Angiostrongylus vasorum*, *Angiostrongylus cantonensis* and *Angiostrongylus costaricensis*.

Conclusions: The mt genome determined herein provides a source of markers for future investigations of *P. rufescens*. Molecular tools, employing such mt markers, are likely to find applicability in studies of the population biology of this parasite and the systematics of lungworms.

Keywords: *Protostrongylus* (Nematoda: Strongylida), Lungworm, Protostrongylosis, Sheep, Mitochondrial genome, Systematics, Epidemiology

Background

Protostrongylus rufescens is a metastrongyloid nematode of small ruminants, including sheep and goats (definitive hosts) in most parts of the world [1]. The dioecious adults of this nematode live in the respiratory system (terminal bronchioles and alveoli) of the definitive host. Here, the females produce eggs, from which first-stage larvae (L1s) hatch within the airways of the lung. L1s then migrate via the bronchial/tracheal escalator to the pharynx, are swallowed and are then excreted in the faeces. L1s infect a molluscan intermediate host (snail) and then develop, under favourable environmental conditions, into third-stage larvae (L3) [1]. L3s within an infected intermediate host are then ingested by the ruminant host, penetrate the gut wall and then migrate via the lymphatic system or blood stream to the lungs, where they develop to adult worms. The prepatent period is reported to be ~ 4–9 weeks [2]. Although *P. rufescens* infection is widespread, it does not usually cause major clinical disease. Nonetheless, pathological changes, characterized by chronic, eosinophilic, granulomatous pneumonia, can be detected upon post mortem examination. Adult worms reside mainly in the bronchioles and alveoli, and are surrounded by macrophages, giant cells, eosinophils and other inflammatory cells which produce grey or beige plaques (1–2 cm) under the pleura in the dorsal border of the caudal lung lobes [3].

Little is known about fundamental aspects of the epidemiology and ecology of *P. rufescens*. Molecular tools...
employing suitable genetic markers can underpin fundamental studies in these areas, with a perspective on investigating transmission patterns linked to particular genotypes of a parasite and on discovering population variants or cryptic species [4,5]. Advances in nucleic acid sequencing and bioinformatics have provided a foundation for characterizing the mt genomes from parasitic nematodes as a source of genetic markers for such explorations. Here, we used an established, massively parallel sequencing-bioinformatics pipeline [6] for the characterization of the mt genome of *P. rufescens*, which we compared with those of related metastrongyloid nematodes, for which mt genomic sequence data are available. We also studied the genetic relationships among these lungworms and selected representatives within the order Strongylida, and suggest that selected regions in the genome of *P. rufescens* should serve well as markers for future studies of the ecology and epidemiology of this nematode around the world.

Methods

Parasite and genomic DNA isolation

Adult worms of *P. rufescens* were collected from the lungs of a fresh sheep cadaver in Victoria, Australia, washed extensively in physiological saline and then stored at ~80°C. Upon thawing, genomic DNA was isolated from a single adult male specimen using an established method of sodium dodecyl-sulphate (SDS)/proteinase K digestion and subsequent mini-column purification [7]. The identity of the specimen was verified by PCR-based sequencing (BigDye chemistry v.3.1) of the second internal transcribed spacer (ITS-2) of nuclear ribosomal DNA [7].

Long-PCR, sequencing and mt genome assembly

From the genomic DNA extracted from the single male worm, the complete mt genome was amplified by long-PCR (BD Advantage 2, BD Biosciences) as two overlapping amplicons (~5 kb and ~10 kb), using the protocol described by Hu et al. [8], with appropriate positive (i.e., *Haemonchus contortus* DNA) and negative (i.e., no template) controls. Amplicons were consistently produced from the positive control samples; in no case was a product detected for the negative controls. Amplicons were then treated with shrimp alkaline phosphatase and exonuclease I [9], and quantified by spectrophotometry. Following agarose electrophoretic analysis, the two amplicons (2.5 μg of each) were pooled and subsequently sequenced using the 454 Genome Sequencer FLX (Roche) [10] according to an established protocol [6]. The mt genome sequence was assembled using the program CAP3 [11] from individual reads (of ~300 bp).

Annotation and analyses of sequence data

Following assembly, the mt genome of *P. rufescens* was annotated using the bioinformatic annotation pipeline developed by Jex et al. [6]. Briefly, the open reading frame (ORF) of each protein-coding mt gene was identified (six reading frames) by comparison to those of the mt genome of *Angiostrongylus vasorum* [GenBank: JX268542; [12]]. The large and small subunits of the mt ribosomal RNA genes (*rrnL* and *rrnS*, respectively) were identified by local alignment. The transfer RNA (tRNA) genes were predicted (from both strands) based on their structure, using scalable models based on the standard mt tRNAs for nematodes [5]. Predicted tRNA genes were then grouped according to their anti-codon sequence and identified based on the amino acid encoded by the anti-codon. Two separate tRNA gene groups were predicted each for leucine (Leu) (one each for the anticodons CUN and UUR, respectively) and for serine (Ser) (one each for the anticodons AGN and UCN, respectively), as these tRNA genes are duplicated in many invertebrate mt genomes, including those of nematodes [5]. All predicted tRNAs for each amino acid group were ranked according to the “strength” of their structure (inferred based on minimum nucleotide mismatches in each stem); for each group, the 100 best-scoring structures were compared by BLASTn against a database comprising all tRNA genes for each amino acid for all published mt genome sequences of nematodes (available via http://drake.physics.mcmaster.ca/ogre/; [13]). The tRNA genes were then identified and annotated based on their highest sequence identity to known nematode tRNAs. Annotated sequence data were imported using the program SEQUIN (via http://www.ncbi.nlm.nih.gov/Sequin/), the mt genome structure verified and the final sequence submitted as an SQN file to the GenBank database.

Phylogenetic analysis of concatenated amino acid sequence datasets

The amino acid sequences were predicted from individual mt genes of *P. rufescens* and of other nematodes, including *An. cantonensis, An. costaricensis, An. vasorum, Metastrongylus pudendotectus* and *M. salmi* [GenBank: GQ398122, JX268542, GQ398121, GQ888714 and GQ888715, respectively; Metastrongyloidea]; *Ancylostoma caninum* and *Necator americanus* [GenBank: FJ483518 and NC_003416, respectively; Ancylostomatoidea]; *H. contortus* and *Trichstrongylus axei* [GenBank: NC_010383 and GQ888719, respectively; Trichostrongyloidea]; *Oesophagostomum dentatum* and *Strongylus vulgaris* [GenBank: GQ888716 and GQ888717, respectively; Strongyloidea]; and *Strongyloides stercoralis* [GenBank: AJ558163; Strongyloidea] [6,12,14-20] (Table 1). All amino acid sequences were aligned using the program MUSCLE [21] and then subjected to phylogenetic analysis. For this analysis,
best-fit models of evolution were selected using ProtTest 3.0 [22] employing the Akaike information criterion (AIC) [23]. Bayesian inference analysis was conducted using MrBayes 3.1.2 [24], with a fixed mtREV amino acid substitution model [25], using four rate categories approximating a Γ distribution, four chains and 200,000 generations, sampling every 100th generation. The first 200 generations were removed from the analysis as burn-in.

Results and discussion

Features of the mt genome

The circular mt genome sequence of *P. rufescens* [GenBank: KF481953] is 13,619 bp in length (Figure 1).

Table 1 Details of the whole mitochondrial genome sequences used in this study as reference sequences

Species	Host	Predilection site	Length of genome (bp)	Accession number	Reference
Angiostrongylus vasorum	Dog	Pulmonary artery	13422	NC_018602	[12]
Aelurostrongylus abstrusus	Cat	Lung	13913	JX519458	[28]
Angiostrongylus cantonensis	Rat	Pulmonary artery	13497	GQ398121	[20]
Angiostrongylus costaricensis	Rodent	Mesenteric arteries	13585	GQ398122	[20]
Protostrongylus rufescens	Sheep	Lung	13619	KF481953	This study
Metastrongylus salmii	Pig	Lung	13778	NC_013815	[6]
Metastrongylus pudendotectus	Pig	Lung	13793	NC_013813	[6]
Haemonchus contortus	Sheep	Abomasum	14055	NC_010383	[18]
Trichostrongylus axei	Sheep	Abomasum	13653	NC_013824	[6]
Oesophagostomum dentatum	Pig	Large intestine	13869	NC_013817	[6]
Strongylus vulgaris	Horse	Large intestine	14301	NC_013818	[6]
Necator americanus	Human	Small intestine	13605	NC_003416	[15]
Ancylostoma caninum	Dog	Small intestine	13717	NC_012309	[19]
Strongyloides stercoralis	Dog	Small intestine	13758	AJ558163	[16]

Figure 1 Schematic representation of the circular mt genome of *Protostrongylus rufescens*. Each transfer RNA gene is identified by a one-letter amino acid code in the map (external), and the AT rich region is also indicated. All genes are transcribed in the clockwise direction.
It contains two ribosomal genes, 12 protein-coding (cox1-3, nad1-6, nad4L, atp6 and cytb) and 22 tRNA genes. The gene arrangement (GA2) in the mt genome of *P. rufescens* was the same as all other strongylid nematodes studied to date [5,26]. All of the 36 genes are transcribed in the same direction (5′ to 3′) (Figure 1). Overall, the genome is AT-rich, as expected for strongylid nematodes [12,20,27,28], with T being the most favoured nucleotide and C the least favoured. The nucleotide contents were 25.9% (A), 6.8% (C), 18.6% (G) and 48.6% (T) (Table 2). The longest non-coding (AT-rich) region, located between the genes trnA and trnP, was 223 bp in length (see Figure 1); its AT-content was 83.4%, significantly greater than for all other parts of the mt genome (Table 2).

Ribosomal RNA genes

The *rrnS* and *rrnL* genes of *P. rufescens* were identified by sequence comparison with *An. vasorum*. The *rrnS* gene was located between *trnE* and *trnS* (UCN), and *rrnL* was between *trnH* and *nad3*. The two genes were separated from one another by the protein-encoding genes *nad3*, *nad5*, *nad6* and *nad4L* (Figure 1). The sizes of the *rrnS* and *rrnL* genes of *P. rufescens* were 683 bp and 959 bp, respectively. The lengths of these two genes were similar to those of other metastrongyloids for which mt genomes are known (694–699 bp for *An. cantonensis*, 700 bp for *A. vasorum* [12,20,28] (Table 4). All 64 codons were used. The preferred nucleotide usage at the third codon position of mt protein genes of *P. rufescens* reflects the overall nucleotide composition of the mt genome. At this position, T was the most frequently, and C the least frequently used. For *P. rufescens*, the codons ending in A had higher frequencies than the codons ending in G, which is similar to, for example, other members of the order Strongylida and Caenorhabditis elegans (Rhabditida), but distinct from *Ascaris suum* (Ascaridida) and *Onchocerca volvulus* (Spirurida) [14-17,30]. As the usage of synonymous codons is proposed to be preferred in gene regions of functional importance, codon bias appears to be linked to selection at silent sites and to translation efficiency [31,32].

The AT bias in the genome is also reflected in the amino acid composition of predicted proteins. The AT-rich codons represent the amino acids Phe, Ile, Met, Tyr, Asn the Lys, and GC-rich codons represent Pro, Ala, Arg the Gly. In the mt genome of *P. rufescens*, the most frequently used codons were TTT (Phe), TTA (Leu), ATT (Ile), TTG (Leu), TAT (Tyr), GGT (Gly), AAT (Asn) and GTT (Val). Six of these codons are AT-rich, and one of them is GC-rich. Seven of the eight codons contained an A or a T at two positions, except for GGT (Gly), which contained a T only in the third position. None of them had a C at any position. The least frequently used codons were CTC, CTTG (Leu), GTC (Val), AGC (Ser), CCC (Pro), GCC (Ala), CAC (His), CGA (Arg), TCC (Ser), GGC (Gly) and ACC (Thr). All four GC-rich codons were represented here, and every codon had at least one C. When the frequencies of synonymous codons within the AT-rich group, such as Phe (TTT, 14.2%; TTC, 1.2%), Ile (ATT, 5.6%; ATC, 0.7%), Tyr (TAT, 5.6%; TAC, 0.9%) and Asn (AAT, 3.8%; AAC, 0.7%), were compared, the frequency was always less if the third position was a C.

Protein-coding genes and codon usage

The prediction of initiation and termination codons for the protein-coding genes of *P. rufescens* (Table 3) revealed that the commonest start codon was ATT (for five of 12 proteins), followed by TGG (four genes), ATA (two genes) and ATG (one gene). Ten mt protein genes of *P. rufescens* were predicted to have a TAA or TAG translation termination codon. The other two protein genes ended in an abbreviated stop codon, such as T or TA (Table 3).

The codon usage for the 12 protein-encoding genes of *P. rufescens* was also compared with that of other metastrongyloid nematodes, *Aelurostrongylus (Ae.) abstrusus*, *An. cantonensis*, *An. costaricensis* and *An. vasorum* [12,20,28] (Table 4). All 64 codons were used. The preferred nucleotide usage at the third codon position of mt protein genes of *P. rufescens* reflects the overall nucleotide composition of the mt genome. At this position, T was the most frequently, and C the least frequently used. For *P. rufescens*, the codons ending in A had higher frequencies than the codons ending in G, which is similar to, for example, other members of the order Strongylida and Caenorhabditis elegans (Rhabditida), but distinct from *Ascaris suum* (Ascaridida) and *Onchocerca volvulus* (Spirurida) [14-17,30]. As the usage of synonymous codons is proposed to be preferred in gene regions of functional importance, codon bias appears to be linked to selection at silent sites and to translation efficiency [31,32].

The AT bias in the genome is also reflected in the amino acid composition of predicted proteins. The AT-rich codons represent the amino acids Phe, Ile, Met, Tyr, Asn the Lys, and GC-rich codons represent Pro, Ala, Arg the Gly. In the mt genome of *P. rufescens*, the most frequently used codons were TTT (Phe), TTA (Leu), ATT (Ile), TTG (Leu), TAT (Tyr), GGT (Gly), AAT (Asn) and GTT (Val). Six of these codons are AT-rich, and one of them is GC-rich. Seven of the eight codons contained an A or a T at two positions, except for GGT (Gly), which contained a T only in the third position. None of them had a C at any position. The least frequently used codons were CTC, CTTG (Leu), GTC (Val), AGC (Ser), CCC (Pro), GCC (Ala), CAC (His), CGA (Arg), TCC (Ser), GGC (Gly) and ACC (Thr). All four GC-rich codons were represented here, and every codon had at least one C. When the frequencies of synonymous codons within the AT-rich group, such as Phe (TTT, 14.2%; TTC, 1.2%), Ile (ATT, 5.6%; ATC, 0.7%), Tyr (TAT, 5.6%; TAC, 0.9%) and Asn (AAT, 3.8%; AAC, 0.7%), were compared, the frequency was always less if the third position was a C.

Transfer RNA genes

Twenty-two tRNA gene sequences were predicted in the mt genome of *P. rufescens*. These sequences ranged from 52–63 nt in length. The tRNA structures had a 7 bp amino-acyl arm, a 4 bp DHU arm, a 5 bp anticodon stem, a 7 base anticodon loop, a T always preceding an anticodon as well as a purine always following an anticodon. Twenty of the 22 tRNA genes (i.e. excluding the two *trnS* genes) have a predicted secondary structure with a 4 bp DHU stem and a DHU loop of 4–10 bases, in accordance with most nematodes whose mt genomes have been characterised [5]. The mt *trnS* for *P. rufescens* has a secondary structure consisting of a DHU replacement loop of 7 bases, 3 bp TΨC arm, TΨC loop of 4–6 bases and a

Table 2 Nucleotide composition (%) for the entire or regions of the mitochondrial genome of *Protostrongylus rufescens*

Nucleotide	Length (bp)	A	C	T	G	A + T
Entire sequence	13619	25.9	6.8	48.6	18.6	74.5
Protein genes	10317	23.3	7.1	50.2	19.4	73.5
RNA genes	1661	33.1	6.3	44.2	16.4	77.3
AT-rich	223	44.8	5.8	10.7	38.6	83.4
variable loop of 3 bases, consistent with other members of the Chromadorea [6,14,20,33], but different from the enoplid nematodes *Trichinella murrelli* and *T. spiralis* [29,34,35]. Overlaps of one to four nucleotides are found between the genes *trnH* and *rrnL*, *nad4L* and *trnW*, *trnY* and *nad1*, *trnI* and *trnR* within the mt genome of *P. rufescens*.

Table 3 Summary of the mitochondrial genome of *Protostrongylus rufescens*

Gene	Nucleotide positions	Sequence lengths	Codons	
		No. of nucleotides	No. of amino acids encoded	Start/Stop
cox1	1 – 1572	1571	523	ATA/TAA
trnC	1572 – 1626	54		
trnM	1626 – 1689	63		
trnD	1689 – 1742	53		
trnG	1744 – 1800	56		
cox2	1801 – 2493	692	230	ATT/TAA
trnH	2499 – 2553	54		
rrnL	2549 – 3508	959		
nadB	3682 – 4017	335	111	TTG/TAG
nadS	4022 – 5596	1574	524	ATT/T
trnA	5601 – 5655	54		
trnP	5878 – 5930	52		
trnV	5941 – 5994	53		
nad6	6004 – 6429	425	141	TTG/TAA
nad4L	6431 – 6664	233	77	ATT/T
trnW	6663 – 6718	55		
trnE	6719 – 6775	56		
trnS	6776 – 7459	683		
trnS (UCN)	7461 – 7516	55		
trnN	7516 – 7569	53		
trnY	7570 – 7623	53		
nad1	7621 – 8496	875	291	TTG/TAA
atp6	8497 – 9096	599	199	ATT/TAA
trnK	9104 – 9164	60		
trnL (UUR)	9165 – 9219	54		
trnS (AGN)	9220 – 9272	52		
nad2	9272 – 10129	857	285	ATT/TAG
trnI	10120 – 10177	57		
trnR	10175 – 10228	53		
trnQ	10231 – 10285	54		
trnF	10286 – 10342	56		
coa	10352 – 11455	1103	367	ATA/TAA
trnL (CUN)	11455 – 11510	55		
cox3	11499 – 12278	779	259	ATG/TAA
trnT	12274 – 12326	52		
nad4	12327 – 13556	1229	409	TTG/TAA

Amino acid sequence comparisons and genetic relationships of *P. rufescens* with metastrongyloid and other nematodes

The amino acid sequences predicted from individual protein-encoding mt genes of *P. rufescens* were compared with those of *Ae. abstrusus*, *An. cantonensis*, *An. costaricensis*, *An. vasorum*, *Dictyocaulus viviparus* and
Pairwise comparisons of the concatenated sequences revealed identities of 37.0-92.4% between these species. Based on identity, COX1 was the most conserved protein, whereas NAD2 and NAD6 were the least conserved. Phylogenetic analysis of the concatenated amino acid sequence data for the 12 mt proteins showed that *P. rufescens* was more closely related to *Ae. abstrusus*, *An. cantonensis*, *An. costaricensis* and *An. vasorum*, (pp = 1.00) than to *M. pudendotectus* and *M. salmi* (metastrongloids) (pp = 1.00), to the exclusion of *H. contortus*, *T. axei* (trichostrongyloids), *Anc. caninum*, *N. americanus* (hookworms; ancylostomatoids) and *O. dentatum* and *S. vulgaris* (strongyloids) (Figure 2) (pp = 1.00).

Implications
The characterisation of the mt genome of *P. rufescens* provides genetic markers for future population genetic and systematic studies. As sequence variation in ITS-2 nuclear rDNA is usually low within most species of strongylid nematodes [36], mt DNA is better suited for assessing population genetic variation. Therefore, PCR-based analytical approaches, using *cox1*, *nad1* and *nad4* (displaying varying levels of within-species divergence), could be used to study haplotypic variation in *P. rufescens* populations in sheep and goats and also in molluscan hosts. Given that species complexes are commonly encountered in bursate nematodes [1,4,36], it would be interesting to prospect for cryptic species, to assess whether distinct genotypes/haplotypes of *P. rufescens* exist in sheep and goats as well as snails [37], and to establish whether particular sub-populations of *P. rufescens* occur in particular environments or geographical regions/countries, and have particular patterns of transmission.

It would also be interesting to assess the genetic structure of *P. rufescens* populations using PCR-coupled

Table 4 Codon usages (%) in mitochondrial protein-encoding genes of *Protostrongylus rufescens*

Amino acid	Codon	*Protostrongylus rufescens*	*Angiostrongylus vasorum*	*Angiostrongylus cantonensis*	*Angiostrongylus costaricensis*	*Aelurostrongylus abstrusus*
Non-polar						
Alanine	GCN	98 (2.9)	88 (2.5)	75 (1.7)	52 (1.2)	84 (2.5)
Isoleucine	ATY	217 (6.3)	226 (6.5)	290 (6.4)	306 (6.8)	242 (7.1)
Leucine	CTN	47 (1.4)	23 (0.7)	135 (3.0)	152 (3.4)	66 (1.9)
Leucine	TTR	524 (15.5)	566 (16.4)	511 (11.3)	453 (10.1)	514 (14.9)
Methionine	ATR	202 (5.9)	148 (4.3)	225 (5.0)	191 (4.2)	103 (3.0)
Phenylalanine	TTY	495 (14.4)	461 (13.3)	614 (13.6)	675 (15.0)	548 (15.9)
Proline	CCN	71 (2.1)	71 (2.0)	57 (1.3)	35 (0.8)	75 (2.2)
Tryptophan	TGR	68 (1.9)	58 (1.7)	181 (4.0)	216 (4.8)	42 (1.2)
Valine	GTN	307 (8.9)	368 (10.6)	370 (8.2)	409 (9.1)	345 (10.1)
Polar						
Asparagine	AAY	118 (3.4)	92 (2.7)	146 (3.2)	155 (3.4)	98 (2.8)
Cysteine	TGY	45 (1.3)	77 (2.2)	156 (3.4)	209 (4.6)	59 (1.7)
Glutamine	CAR	39 (1.2)	38 (1.1)	46 (1.0)	32 (0.7)	43 (1.3)
Glycine	GGN	196 (5.7)	224 (6.5)	246 (5.4)	237 (5.3)	222 (6.5)
Serine	AGN	222 (6.5)	245 (7.1)	238 (5.3)	297 (6.6)	209 (6.1)
Serine	TNC	160 (4.7)	136 (3.9)	111 (2.5)	111 (2.4)	153 (4.5)
Threonine	ACN	96 (2.8)	77 (2.2)	102 (2.2)	56 (1.2)	80 (2.3)
Tyrosine	TAY	189 (5.5)	192 (5.5)	288 (6.4)	241 (5.4)	188 (5.5)
Acidic						
Aspartate	GAY	69 (2.0)	70 (2.0)	122 (2.7)	116 (2.6)	75 (2.2)
Glutamate	GAR	72 (2.1)	80 (2.3)	105 (2.3)	131 (2.9)	72 (2.1)
Basic						
Arginine	CGN	32 (0.9)	161 (4.6)	33 (0.7)	34 (0.7)	100 (2.9)
Histidine	CAY	52 (1.5)	53 (1.5)	48 (1.1)	36 (0.8)	55 (1.6)
Lysine	AAR	104 (3.3)	93 (2.7)	161 (3.6)	155 (3.4)	93 (2.7)

International Union of Pure and Applied Chemistry (IUPAC) codes (N = A, G, C or T; Y = C or T; R = A or G) were used.
mutation scanning and sequencing of selected mt gene regions (such as \textit{cox1} and \textit{nad4}), and mt DNA diversity within populations and the gene flow among populations. Findings for this lungworm (with an indirect life cycle via a molluscan intermediate host) could be compared with those for \textit{D. viviparus} (with a direct life cycle), which has been reported to have surprisingly low mt DNA diversity within populations and limited gene flow among populations [38,39].

The complete mt genome of \textit{P. rufescens} provides a basis for extended comparative mt genomic/proteomic analyses of other protostrongyloids of ruminants, including \textit{P. brevispiculum}, \textit{P. davtiani}, \textit{P. hobmaieri}, \textit{P. rushi}, \textit{P. skrjabini}, \textit{P. stilesi}, \textit{Cystocaulus ocreatus}, \textit{Neostrongylus lineatus}, \textit{Muellerius capillaris} (the latter of which is a particularly pathogenic parasite in goats), and those of other animal hosts, such as lagomorphs and pinnipeds. Given the utility of predicted mt proteomic datasets, high phylogenetic signal and consistently high nodal support values in recent systematic analyses [6,12,27,28,33] provide an opportunity to reassess the evolutionary relationships of lungworms (order Strongylida). For example, the family Protostrongylidae is distinguished from other metastrongyloids by only a couple of morphological characters, i.e., the gubernaculum and telamon in adult male

\begin{table}[h]
\centering
\caption{Pairwise comparison of the amino acid sequences of the 12 protein-encoding mitochondrial genes}
\begin{tabular}{|c|c|c|c|c|c|}
\hline
\textbf{Protein} & \textbf{Amino acid identity (\%)*} \\
 & \textbf{Pr/Aa} & \textbf{Pr/Aca} & \textbf{Pr/Aco} & \textbf{Pr/Av} & \textbf{Pr/De} & \textbf{Pr/Dv} \\
\hline
ATP6 & 64.8 & 67.8 & 68.8 & 70.4 & 44.8 & 52.8 \\
COB & 71.7 & 70.4 & 70.7 & 71.7 & 65.7 & 65.1 \\
COX1 & 92.4 & 91.0 & 90.0 & 89.1 & 86.4 & 86.2 \\
COX2 & 80.0 & 77.4 & 75.2 & 72.2 & 63.5 & 66.7 \\
COX3 & 82.2 & 82.0 & 81.5 & 73.8 & 69.9 & 70.0 \\
NAD1 & 72.1 & 79.8 & 80.1 & 78.7 & 62.8 & 62.7 \\
NAD2 & 55.0 & 57.0 & 58.8 & 53.0 & 37.0 & 43.0 \\
NAD3 & 65.8 & 70.0 & 70.0 & 69.4 & 50.0 & 55.0 \\
NAD4 & 68.9 & 68.7 & 68.5 & 66.3 & 55.6 & 52.9 \\
NAD4L & 76.9 & 74.0 & 68.8 & 64.0 & 51.8 & 64.1 \\
NAD5 & 58.7 & 63.6 & 61.3 & 57.1 & 52.9 & 51.5 \\
NAD6 & 58.0 & 58.2 & 59.4 & 56.0 & 46.0 & 38.0 \\
\hline
\end{tabular}
*These percentages are based on comparisons (in \%) of the amino acid sequences predicted from the mt genome of \textit{Protostrongylus rufescens} (Pr) and those of related lungworms, \textit{Aelurostronglyus abstrusus} (Aa), \textit{Angiostrongylus vasorum} (Av), \textit{Dictyocaulus eckerti} (De) and \textit{Dictyocaulus viviparus} (Dv).
\end{table}

![Figure 2 Phylogenetic relationship of \textit{Protostrongylus rufescens} with other nematodes. Concatenated amino acid sequence data for all protein-encoding mitochondrial genes of \textit{Protostrongylus rufescens} (bold) and other metastrongyloids, including \textit{Aelurostronglyus abstrusus}, \textit{Angiostrongylus caninensis}, \textit{An. costaricensis}, \textit{An. vasorum}, \textit{Metastrongylus pudendotectus} and \textit{M. salmi} (metastrongyloids), as well as other concatenated sequence data representing different superfamilies, including \textit{Ancylostoma caninum} and \textit{Necator americanus} (hookworms; ancylostomatoids); \textit{Haemonchus contortus} and \textit{Trichostonglyus axei} (trichostrongyloids); \textit{Oesophagostomum dentatum} and \textit{Strongylus vulgaris} (strongyloids); and \textit{Strongyloides stercoralis} (a rhabditid outgroup) were analyzed using Bayesian inference. The numbers above each tree branch represent the statistical support for each node (based on posterior probability [pp] score). GenBank accession numbers are in round brackets.](http://www.parasitesandvectors.com/content/6/1/263)
w arma [40], and it is proposed that protostrongyloids of lagomorphs originated from their ancestors primarily infecting sheep, goat, antelopes and deer [41]. Analyses of inferred mt proteomic data sets from a range of protostrongyloids should allow relationships within the family Protostrongylidae and also the origin of the protostrongylids of lagomorphs to be assessed. In addition, there has been considerable debate as to the relationships among suborders within the Strongylida, based on the use of phenotypic characters [42]. On one hand, it has been hypothesized that the suborder Metastrongylina (to which species of Protostrongylus, Metastrongylus, Aelurostrongylus and Angiostrongylus belong) originated from ancestors in the Strongylina [43,44] or Trichosarto-

Conclusions
Comparative analyses of proteomic sequence datasets inferred from the mt genomes of *P. rufescens* and other lungworms indicate that *P. rufescens* is closely related to *Ae. abstrusus*, *An. cantonensis*, *An. costaricensis* and *An. vasorum*. The mt genome determined herein should provide a source of markers for future investigations of *P. rufescens*. Molecular tools, employing such mt markers, are likely to find applicability in studies of the population biology of this parasite and the systematics of lungworms.

Abbreviations

aptp: Adenine triphosphatase subunit 6; cox: Cytochrome c subunit; cyt b: Cytochrome b subunit; ITS-2: Second internal transcribed spacer; mt: Mitochondrial; nad: Nicotinamide dehydrogenase subunit; ORF: Open reading frame; rRNA: Nuclear ribosomal DNA; rnl: Ribosomal large subunit; rsmS: Ribosomal small subunit; trRNA: Transfer RNA.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
RBG & ARJ conceived the project and attracted the funding; AJ carried out molecular laboratory work; NM undertook the bioinformatics analysis; RBG, NM & AJ carried out data analysis and interpretation; RBG, AJ, NM & ARJ wrote the draft manuscript. All authors read and approved the final version of the manuscript.

Acknowledgements
We thank Professor Ian Beveridge for providing the parasite material and commenting on the draft manuscript. The present study was supported by the Australian Research Council (ARC), the National Health and Medical Research Council (NHMRC) and Melbourne Water Corporation. The Early Career Researcher and Collaborative Research grants (AJ) from The University of Melbourne are gratefully acknowledged.

Received: 15 August 2013 Accepted: 28 August 2013

References

1. Anderson RC: *Nematode Parasites of Vertebrates*. Their Development and Transmission. Wallingford: CAB International, 2000:167.

2. Forrester DJ, Senger CM: Prenatal infection of bighorn sheep with protostrongylid lungworms. *Nature* 1964, 201:701.

3. Mansfield LS, Gamble HR: Alveolar mastocytosis and eosinophilia in lambs with naturally acquired nematode infections of *Protostrongylus rufescens* and *Haemonchus contortus*. *Vet Immunol Immunopathol* 1995, 49:251–262.

4. Blouin MS: Molecular prospecing for cryptic species of nematodes: mitochondrial DNA versus internal transcribed spacer. *Int J Parasitol* 2002, 32:527–531.

5. Hu M, Gasser RB: Mitochondrial genomes of parasitic nematodes - progress and perspectives. *Trends Parasitol* 2006, 22:78–84.

6. Jex AR, Hall RS, Littlewood DT, Gasser RB: An integrated pipeline for next-generation sequencing and annotation of mitochondrial genomes. *Nucleic Acids Res* 2010, 38:e22–533.

7. Gasser RB, Hu M, Chilton NB, Campbell BE, Jex AR, Ottono D, Cafarchia C, Beveridge L, Zhu XQ: Single-strand conformation polymorphism (SSCP) for the analysis of genetic variation. *Nat Protoc* 2006, 1:3121–3128.

8. Hu M, Jex AR, Campbell BE, Gasser RB: Long PCR amplification of the entire mitochondrial genome from individual helminths for direct sequencing. *Nat Protoc* 2007, 2:3339–3344.

9. Werle E, Schneider C, Rennet M, Volker M, Fiehn W: Convenient single-step, one tube purification of PCR products for direct sequencing. *Nucleic Acids Res* 1994, 22:4354–4355.

10. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman M, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Itzk GP, Jando SC, Alenquer ML, Jarvie TP, Jurage K, Kim JB, Knight JR, Lanza JR, Edoisf M, Li J, Lohman KL, et al: Genome sequencing in microfabricated high-density picolitre reactors. *Nature* 2005, 437:376–380.

11. Huang X, Madan A: CAP3: A DNA sequence assembly program. *Genome Res* 1999, 9:868–877.

12. Gasser RB, Jabbar A, Mohandas N, Schnyder M, Deplazes P, Littlewood DTJ, Jex AR: Mitochondrial genome of *Angiostrongylus vasorum*: comparison with congers and implications for studying the population genetics and epidemiology of this parasite. *Infect Genet Evol* 2012, 12:1884–1891.

13. Jameson D, Gibson AP, Hudelet C, Higgs PG: OGRE: a relational database for comparative analysis of mitochondrial genomes. *Nucleic Acids Res* 2003, 31:202–206.

14. Okimoto R, Macfarlane L, Clary D, Wolstenholme DR: The mitochondrial genomes of two nematodes, *Caenorhabditis elegans* and *Ascaris suum*. *Genetics* 1992, 130:471–498.

15. Hu M, Chilton NB, Gasser RB: The mitochondrial genomes of the human hookworms, *Anchoclostradua duodenale* and *Necator americanus* (Nematoda: Secernentea). *Int J Parasitol* 2002, 32:145–158.

16. Hu M, Chilton NB, Gasser RB: The mitochondrial genome of *Strongyloides stercoralis* (Nematoda) – idiosyncratic gene order and evolutionary implications. *Int J Parasitol* 2003, 33:1393–1408.

17. Li MW, Lin RQ, Song HQ, Wu YY, Zhu XQ. The complete mitochondrial genomes for three *Toxocara* species of human and animal health significance. *BM Genomics* 2008, 16(0):224.

18. Jex AR, Hu M, Littlewood DT, Waeschbach A, Gasser RB: Using 454 technology for long-PCR based sequencing of the complete mitochondrial genome from *Haemonchus contortus* (Nematoda). *BM Genomics* 2008, 11:9–11.

19. Jex AR, Waeschbach A, Hu M, van Wyk JA, Beveridge L, Littlewood DT, Gasser RB: The mitochondrial genomes of *Anchoclostradua caninum* and *Bunostomum phlebotomum* - two hookworms of animal health and zoonotic importance. *BM Genomics* 2009, 11:10–79.
20. Lv S, Zhang Y, Zhang L, Liu Q, Liu HX, Hu L, Wei FR, Steinmann P, Graeff-Teixeira C, Zhou XN, Utzinger J. The complete mitochondrial genome of the rodent intra-arterial nematodes Angiostrongylus cantonensis and Angiostrongylus costaricensis. Parasitol Res 2012, 111:115–123.

21. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:782–792.

22. Dambra D, Taboada GJ, Ocaña R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 2011, 27:1164–1165.

23. Akaike H. A new look at the statistical model identification. IEEE T Automat Contr 1974, 19:716–723.

24. Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 2001, 17:754–755.

25. Adachi J, Hasegawa M. A new look at the statistical model identification. Mol Biol Evol 1996, 42459–468.

26. Jex AR, Littlewood DT, Gasser RB. Towards next-generation sequencing of mitochondrial genomes - focus on parasitic worms of animals and biotechnological implications. Biotechnol Adv 2010, 28:151–159.

27. Gasser RB, Jex AR, Mohandas N, Höglund J, Hall RS, Littlewood DTJ, Jex AR. Assessment of the genetic relationship between Dictyocaulus species from Bos taurus and Cervus elaphus using complete mitochondrial genomic datasets. Parasit Vectors 2013, 6:241.

28. Jabbar A, Mohandas N, Hall RS, Littlewood DTJ, Gasser RB. The mitochondrial genome of Aeluropostangiulus abstrusus – diagnostic, epidemiological and systematic implications. Gene 2013, 516:294–300.

29. Lavrov DV, Brown WM. Trichinella spiralis mtDNA: a nematode mitochondrial genome that encodes a putative ATP8 and normally structured rRNAs and has a gene arrangement relatable to those of coelomate metazoans. Genetics 2001, 157:621–637.

30. Needle EM, Higazi T, Unnasch TR. The mitochondrial genome of Onchocerca volvulus: sequence, structure and phylogenetic analysis. Mol Biochem Parasitol 1998, 95:111–127.

31. Sharp PM, Matassi G. Codon usage and genome evolution. Curr Opin Genet Dev 1994, 4:851–860.

32. Durent L, Mouchiroud D. Evolution of zooparasitic groups in the phylum Nematoda, with special reference to host distribution. J Parasitol 1951, 31:553–578.

33. Akaike H. A new look at the statistical model identification. IEEE T Automat Contr 1974, 19:716–723.

34. Hu M, Chilton NB, Gasser RB. Onchocerca volvulus: sequence, structure and phylogenetic analysis. Proc Natl Acad Sci U S A 1998, 95:4482–4487.

35. Park JK, Sultana T, Lee SH, Kang S, Kim HK, Min GS, Eom KS, Nadler SA. Monophyly of clade III nematodes is not supported by phylogenetic analysis of complete mitochondrial genome sequences. BMC Genomics 2011, 12:302.

36. Webb KM, Rosenthal BM. Deep resequencing of Trichinella spiralis reveals previously un-described single nucleotide polymorphisms and intra-isolate variation within the mitochondrial genome. Infect Genet Evol 2010, 10:304–310.

37. Webb KM, Rosenthal BM. Next-generation sequencing of the Trichinella murrelli mitochondrial genome allows comprehensive comparison of its divergence from the principal human trichinellosis, Trichinella spiralis. Infect Genet Evol 2011, 11:116–123.

38. Gasser RB. Molecular tools – advances, opportunities and prospects. Vet Parasitol 2006, 136:69–89.

39. Bowman DD. Respiratory system parasites of the dog and cat (Part II): trachea and bronchi, and pulmonary vessels. In: Companion and Exotic Animal Parasitology. Edited by Bowman DD. Ithaca NY, USA: International Veterinary Information Service; 2000.

40. Hu M, Chilton NB, Gasser RB. The mitochondrial genomics of parasitic nematodes of socio-economic importance: recent progress, and implications for population genetics and systematics. Adv Parasitol 2004, 56:133–212.

41. Hvaglund J, Morrison DA, Mattsson IG, Engström A. Population genetics of the bovine/cattle lungworm (Dictyocaulus viviparus) based on mtDNA and AFLP marker techniques. Parasitolology 2006, 133:85–99.

42. Boev SN. Protostrogyllida. Fundamentals of Nematology. 25th edition. USSR: Academy of Science of the USSR, 1975. Translated by Amerind Publishing Co., Pvt. Ltd. New Delhi, 1984.

43. Dougherty EC. The phylogeny of the nematode family Metastrogyllidae Leiper, (1909): a correlation of host and symbiote evolution. Parasitology 1949, 39:222–234.

44. Dougherty EC. Evolution of zooparasitic groups in the phylum Nematoda, with special reference to host distribution. J Parasitol 1951, 31:553–578.

45. Durette-Desset MC, Beveridge I, Spratt DM. The origins and evolutionary expansion of the Strongyloidea (Nematoda). Int J Parasitol 1994, 24:1139–1165.

46. Schulz RS. Filogenez nematod podotryada strongilyat i perestroika systemy Metastrongyloidea. Dokl Akad Nauk SSR 1951, 8:293–296.

47. Skrjabin KI. Phylogenetic relationships of nematodes of subclass Phasmidia. Zool Zhurnal 1941, 20:327–340.

48. Chilton NB, Hub-Chilton F, Gasser RB, Beveridge I. The evolutionary origins of nematodes within the order Strongyloidea are related to predilection sites within hosts. Mol Phylogenet Evol 2006, 40:118–128.

49. Carrero RA, Nadler SA. Phylogenetic analysis of the Metastrongyloidea (Nematoda: Strongyloidea) inferred from ribosomal RNA gene sequences. J Parasitol 2003, 89:965–973.

Cite this article as: Jabbar et al.: The mitochondrial genome of Protostrongylus rufescens – implications for population and systematic studies. Parasites & Vectors 2013, 6:263.
Author/s:
Jabbar, A; Mohandas, N; Jex, AR; Gasser, RB

Title:
The mitochondrial genome of Protostrongylus rufescens - implications for population and systematic studies

Date:
2013-09-12

Citation:
Jabbar, A., Mohandas, N., Jex, A. R. & Gasser, R. B. (2013). The mitochondrial genome of Protostrongylus rufescens - implications for population and systematic studies. PARASITES & VECTORS, 6 (1), https://doi.org/10.1186/1756-3305-6-263.

Persistent Link:
http://hdl.handle.net/11343/265555

File Description:
Published version

License:
CC BY