Supplementary Materials

Rational design of MgF$_2$ catalysts with long-term stability for the
dehydrofluorination of 1,1-difluoroethane (HFC-152a)

Haodong Tang,* Mingming Dang, Yuzhen Li, Lichun Li,* Wenfeng Han, Zongjian Liu, Ying Li and Xiaonian Li

a Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, 310014, PR China
b College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China

Corresponding author – Dr Haodong Tang, tanghd@zjut.edu.cn; Dr Lichun Li, lichunli@zjut.edu.cn

List of figures:

Figure S1. Conversion rate as a function of time on stream for three MgF$_2$ catalysts including MgF$_2$-S, MgF$_2$-T, and MgF$_2$-P at 350 °C.

Figure S2. XRD patterns of the MgF$_2$ catalysts synthesized from precipitation, sol-gel and hard-template methods after calcination at 200, 300 and 350 °C.

Figure S3. An example GC spectrum of contents in gas stream after dehydrofluorination of HFC-152a demonstrating the product/reactant distribution. Note that, the peak at 0.907 min represents N$_2$; the peak at 2.815 min represents the product PVF; the peak at 5.848 min represents the reactant HFC-152a.
Figure S1. Conversion rate as a function of time on stream for three MgF$_2$ catalysts including MgF$_2$-S, MgF$_2$-T, and MgF$_2$-P at 350 °C.

Figure S2. XRD patterns of the MgF$_2$ catalysts synthesized from precipitation, sol-gel and hard-template methods after calcination at 200, 300 and 350 °C.

Figure S3. An example GC spectrum of contents in gas stream after dehydrofluorination of HFC-152a demonstrating the product/reactant distribution. Note that, the peak at 0.907 min represents N$_2$; the peak at 2.815 min represents the product PVF; the peak at 5.848 min represents the reactant HFC-152a.