Asthma is the most common chronic illness of childhood. The prevalence is rising and the mortality and morbidity from asthma are unacceptably high in South Africa. It is important to make a correct diagnosis based, most importantly, on the clinical history and supported by investigations. The appropriate drug and device must be chosen to achieve good asthma control. Patients must be followed up regularly and their asthma control must be assessed. The treatment can then be adjusted according to the level of control. The COVID-19 pandemic has placed new challenges on the care of our asthmatics. Asthma education and adherence are important components of management of the condition.

Asthma prevalence
Asthma is the most common chronic respiratory disorder in childhood. The prevalence of asthma in childhood is high and is rising. Asthma is underdiagnosed and undertreated.

Asthma diagnosis
Asthma should be diagnosed in children who present with episodes of variable expiratory airflow limitation. It remains a largely clinical diagnosis, which should be supported by lung function testing in school-aged children. The symptoms may include episodic wheeze (due to bronchoconstriction), shortness of breath, difficult or laboured breathing, chest tightness and reduced activity with or without cough. The intensity varies over time and symptoms improve after correct use of a rapid-acting inhaled bronchodilator. The symptoms are not specific to asthma, and other conditions may mimic the condition. Chronic airway inflammation and variable expiratory airflow limitation define asthma. We propose the following four steps to guide the clinician.

Children <6 years of age
Step 1. History taking
This is the most important step. The inception of asthma is associated with a number of risk factors (refer to the main document on the ALLSA website: https://allsa.org).

The history regarding the features of episodes of wheezing assists in the diagnosis:

- **Variable airflow limitation.** A history of (preferably doctor-confirmed) bronchodilator-initiated improvement of wheeze will support an asthma diagnosis.
- **Severity of wheeze events.** A history of more severe wheeze (e.g. with respiratory distress or a need for oxygen supplementation) favours an asthma diagnosis, but does not exclude alternative diagnoses.
- **Frequency and duration of episodes.** Events that occur more frequently (>3 episodes per year) and that last longer (>10 days at
a time) may indicate an asthma diagnosis, but will not exclude an alternative reason.

- **Temporal pattern of symptoms.** Wheeze that does not only occur during airway infections, but also in response to other triggers in-between infections, supports an asthma diagnosis. Events that persist after 3 years of age, night-time worsening, an association with exercise or environmental change (e.g. cold air exposure) further support an asthma diagnosis.

Step 2. Exclude an alternative reason for wheezing episodes

The aim of the clinical examination is not only to find signs of asthma and other features of atopic disease (atopic dermatitis, allergic rhinitis, etc.) that may support an asthma diagnosis, but also to look for clinical findings that would indicate an alternative reason to wheeze (such as digital clubbing, growth faltering, asymmetric wheeze) (Table 1).

Step 3. Assess inflammation

Clinical features of other atopic disease (such as atopic dermatitis and allergic rhinitis) and the presence of allergen-specific IgE (through skin-prick testing or ImmunoCAP (ThermoFisher Scientific, USA)) may support an asthma diagnosis. A pragmatic therapeutic trial will confirm the presence of corticosteroid-responsive inflammation (Table 2).

A step-wise trial of correctly administered low-dose inhaled corticosteroid (ICS) should be followed when starting treatment in any child with a wheezing disorder. Treatment should be viewed as a *therapeutic trial* and the initial treatment response must be evaluated in 6 - 8 weeks. If there is no clinical response to correctly administered ICS therapy, it should be discontinued, and the child investigated further. Symptoms that resolve during ICS therapy may be due to the natural history of a preschool wheezing disorder or to an effect of treatment. This must be distinguished by again withdrawing treatment. Treatment should only be restarted if symptoms recur. An ongoing benefit of ICS treatment should be reviewed every 3 months and the ICS kept at the lowest possible dose for symptom control.

Step 4. Seek objective evidence of variable expiratory airflow limitation

A clinical assessment of the response to a correctly administered rapid-acting inhaled bronchodilator can be helpful. The clinician should pursue every opportunity to document improvement in wheeze and hyperinflation after the administration of a rapid-acting inhaled bronchodilator. The more it is confirmed clinically, the more likely that the correct diagnosis is asthma (Table 3).

Children 6 - 11 years of age

For children 6 - 11 years of age, the same steps as for younger children should be followed (Table 4). A proper history, exclusion of an alternative reason to wheeze and an assessment for inflammation should be undertaken. Objective evidence of variable expiratory airflow limitation can then be demonstrated and should ideally be

Table 1. Differential diagnosis of asthma in children <6 years of age

Infective	Structural	Functional
Bronchiolitis	Trachea and bronchomalacia	Wheezy phenotypes
Atypical infection	Tracheal webs	Primary ciliary dyskinesia
Bacterial airway infection	Lymphadenopathy	Cystic fibrosis
Laryngotraceobronchitis	Vascular compression	Gastro-oesophageal reflux disease
		Double aortic arch
		Innominate artery compression
		Left pulmonary artery sling
		Patent ductus arteriosus ligament
		Cardiac chamber or pulmonary artery enlargement
Protracted bacterial bronchitis	Cystic lesions and masses	Retained foreign body
		H-type tracheo-oesophageal fistula
		Laryngeal clefts
		Perceived tight chest

Table 2. Management of persistent asthma in children ≤6 years of age

Intermittent asthma	Management of persistent asthma
Step 1	SABA* and short course (7 - 10 days) of ICS at start of URTI
Step 2	Daily low-dose ICS and SABA*
Step 3	Medium-dose ICS, or, in children >4 years of age, daily low-dose ICS/LABA and SABA*
Step 4	Daily medium-dose ICS/LABA and SABA* or medium-dose ICS plus LTRA
Step 5	Refer to specialist

SABA = short-acting beta-2 agonist; ICS = inhaled corticosteroid; URTI = upper-respiratory tract infection; LABA = long-acting beta-agonist; LTRA = leukotriene receptor antagonist.

*As needed.
done before commencement of controller therapy. Peak expiratory flow (PEF) measurements or, preferably, spirometry can be used (Table 3). Normal test results do not exclude the diagnosis of asthma. The history is suggestive of asthma, and the spirometry does not support the diagnosis, other specialised tests, such as exercise bronchoprovocation or methacholine challenge, may be done by a pulmonologist to confirm the diagnosis.

Goals of asthma treatment
The long-term goals of asthma management include the following:

- to achieve good symptom control
- to maintain normal activity levels
- to minimise future risk of asthma-related mortality
- to reduce exacerbations
- to maintain lung function and normal lung development
- to minimise side-effects of treatment
- to provide a written action plan
- to consider the patient’s own goals with regard to treatment.

The goals of asthma management can only be achieved through an appropriate understanding between the patient, parent/caregiver and medical team. A cycle of assess (diagnosis, symptom control, risk factor assessment, medication technique and adherence), adjust treatment (medications, non-pharmacological strategies, treatment of modifiable risk factors) and review response (medication effects and side-effects), in combination with education of both the parent/caregiver and the child with regard to effective inhaler use, adherence, symptom monitoring and a written personalised action plan, should be done during every visit.

Asthma management
This involves avoidance of triggers, and pharmacological treatment.

Avoidance of triggers
Asthma triggers, such as exercise, are difficult to avoid. However, all attempts should be made to reduce exposure to avoidable triggers, particularly where a clear association between exposure and symptoms is seen:

- environmental tobacco smoke and other indoor air pollutants
- control of indoor allergens, such as house-dust mites, pets, cockroach and mould allergy.

Treatment
Principles of asthma treatment

Table 3. Confirmation of variable expiratory airflow limitation with peak expiratory flow or spirometry

Confirmation of variable expiratory airflow limitation
For PEF measurements
PEF variability with an average daily diurnal variability >13% when documented twice daily for 2 weeks
Positive exercise challenge test with decrease in PEF >15% after reaching target heart rate (0.8 × 220 minus age in years)
Excessive variation of PEF >15% between outpatient visits (using the same equipment) with or without airway infections

For spirometry measurements

| Decreased FEV₁/FVC ratio due to decreased FEV₁ (normal ratio >0.9) |
| Positive bronchodilator reversibility with increase in FEV₁ >12% |
| Positive exercise challenge test with decrease in FEV₁ >12% after reaching target heart rate (0.8 × 220 minus age in years) |
| Excessive variation of FEV₁ >12% between outpatient visits (using the same equipment) with or without airway infections |

Table 4. Management of persistent asthma in children 6 - 11 years of age

SABA* and short course (7 - 10 days) of ICS at start of URTI or daily low-dose ICS	Daily and-as-needed low-dose ICS/ LABA (formoterol) combination or low-dose ICS/ LTRA	Daily and-as-needed medium-dose ICS/LABA (formoterol) combination or high-dose ICS/LABA or add LTRA or add tiotropium	Refer for expert advice for assessment for anti-IgE therapy or other biologic therapy or daily and-as-needed high-dose ICS/LABA combination plus LRTA

Table 5. Classification of asthma severity based on symptoms and lung function presenting for the first time without treatment

Symptoms	Mild intermittent (step 1)	Mild persistent (step 2)	Moderate persistent (step 3)	Severe persistent (step 4)
≤2/week	≤2/week	>2/week	Daily symptoms	Continual symptoms
≤2/month	>2/month	>2/month	>1/week	Frequent
≥80 predicted	≥80 predicted	≥80 predicted	>60 ≤80	≤60
<20	20 - 30	>30	>30	>30

PEF = peak expiratory flow; PEFR = peak expiratory flow rate.
Choose an appropriate device and delivery system.
- Start treatment.
- Review in 4 - 6 weeks.
- Assess asthma control (Table 9).
- Step up or step down treatment, depending on level of control.

Metered-dose inhalers
The most common asthma pump is the metered-dose inhaler (MDI), preferably with a spacer. Spacers comprise a simple holding chamber with or without a valve. The medication is suspended within the

Inhaled corticosteroid	Total daily inhaled dose, µg
Beclomethasone dipropionate (HFA)	100
Budesonide (pMDI and spacer)	200
Budesonide (nebulised)	500
Fluticasone propionate (HFA)	100

HFA = hydrofluoroalkane; pMDI = pressurised metered-dose inhaler.

Drug	Low daily dose, µg	Medium daily dose, µg	High daily dose, µg
Children 6 - 11 years of age			
Beclomethasone dipropionate	100 - 200	200 - 400	>400
Budesonide*	100 - 200	200 - 400	>400
Ciclesonide*	80	80 - 160	>160
Fluticasone propionate†	100 - 200	200 - 500	>500
Mometasone furoate	110 - 220	220 - 440	>440
Triamcinolone acetonide	400 - 800	800 - 1 200	>1 200
Adolescents ≥12 years of age			
Beclomethasone dipropionate HFA†	100 - 200	>200 - 400	>400
Budesonide*	200 - 400	>400 - 800	>800
Ciclesonide	80 - 160	>160 - 320	>320
Fluticasone propionate†	100 - 250	>250 - 500	>500
Mometasone furoate	110 - 220	>220 - 440	>440

HFA = hydrofluoroalkane; CFC = chlorofluorocarbon.
* Approved for once daily dosing in patients with mild illness.
† Ciclesonide is registered for children ≥12 years of age.
‡ May be used at half the dose of budesonide equivalent.
§ As CFC preparations are taken off the market, medication inserts for HFA preparations should be carefully reviewed for the equivalent correct dosage.

Combination	Device	Dose, µg
Fluticasone propionate/salmeterol	DPI (Accuhaler)	100/50
		250/50
		500/50
Fluticasone propionate/salmeterol	pMDI	50/25
		125/25
		250/25
Budesonide/formoterol fumarate	pMDI	80/4.5
		160/4.5
Budesonide/formoterol fumarate	DPI (Turbuhaler)	80/4.5
		160/4.5
		320/9
Fluticasone furoate/vilanterol	pMDI	100/25
Mometasone furoate/formoterol fumarate	pMDI	100/5
Mometasone furoate/formoterol fumarate	pMDI CFC free	100/5
		200/5

pMDI = pressurised metered-dose inhaler; DPI = dry-powder inhaler; CFC = chlorofluorocarbon.

GINA assessment of asthma control and future risk in children <5 years of age, 6 - 11 years of age, adolescents and adults

- Daytime asthma symptoms more than twice per week?
- Night-time awakening due to asthma?
- Reliever (SABA) use more than twice per week?
- Limitation of activity?

GINA = Global Initiative for Asthma; SABA = short-acting beta-2 agonist.
space and then breathed in, enhancing lung deposition. A spacer is recommended for all children and adults with difficult-to-control asthma. A very effective spacer device can be constructed out of a 500 mL plastic cold-drink bottle. A hole large enough to take the mouthpiece of an MDI is cut (or burnt) in the bottom end of the bottle to form a simple low-cost non-valved spacer.

Nebulisers
Home nebulisers are not recommended for asthma management.

Dry-powder inhalers
Dry-powder inhalers (DPIs) are easy to use, but are only suitable for older children and adults because of the inspiratory flow required for their actuation. Measurements of peak inspiratory flow can be done with appropriate devices to assess suitability of DPIs.

Asthma control
Asthma control is the extent to which the effects of asthma can be seen in a patient or have been reduced or removed by treatment. Evaluation of asthma control includes two broad concepts, i.e. symptom control and future risk of adverse outcomes. Symptom control is assessed by frequency of symptoms, reliever medication use and activity limitation over the past week and month.

Future risk refers to the possibility of exacerbations, medication side-effects (oral symptoms and impaired growth in children) or loss of lung function. No test is a gold standard and all tests must be used in conjunction with a good history and clinical examination to assess control.

Advice for asthmatics to avoid viral-induced exacerbations
The common steps individuals take to avoid influenza and other respiratory infections also protect from the coronavirus:

• Keep a distance from others (social distancing – 1 m).
• Avoid people who are sick.
• Avoid crowded venues.
• Wash your hands often for 20 - 30 seconds, always after coughing or sneezing.
• Disinfect surfaces, but avoid disinfectants that precipitate asthma exacerbations.

Wearing a mask to protect people from coronavirus in public spaces is now recommended by the World Health Organization (WHO), and is also endorsed for patients with asthma. There is no evidence to suggest that mask-wearing is deleterious to people with asthma.

Asthma education
Asthma education is an important part of the management of asthmatics. Patients must be informed of triggers and the need for adherence, and should be given a written treatment action plan.

Treatment adherence
Adherence to asthma treatment in the paediatric population is poor, with studies reporting only one-third of children using ICS therapy appropriately. Assessing adherence is part of the clinical assessment of the asthmatic child. Barriers to adherence may be intentional (driven by illness perceptions or medication beliefs, leading to patients and caregivers deliberately choosing not to follow treatment recommendations) or unintentional (related to family routines and socioeconomic factors).

Comorbidities
Identification and treatment of associated comorbidities may improve asthma control. These are:

• rhinitis or sinusitis
• obesity
• gastro-oesophageal reflux disease (GORD)
• Allergic bronchopulmonary aspergillosis (ABPA).

Summary of the changes
In children <6 years of age with recurrent wheezing triggered by respiratory tract infections and no wheezing between infections, we recommend starting a short course (7 - 10 days) of ICS at the onset of a respiratory tract infection with an as-needed short-acting beta-2 agonist (SABA) for quick-relief therapy compared with as-needed SABA for quick-relief therapy only.

In children 6 - 11 years of age we recommend as-needed SABA and a short course (7 – 10 days) of ICS at the start of an upper-respiratory tract infection or daily low-dose ICS.

In children aged 6+ years with moderate to severe persistent asthma, we recommend ICS-formoterol in a single inhaler as daily controller and reliever therapy compared with either higher-dose ICS as daily controller therapy and SABA for quick-relief or same-dose ICS-LABA as daily controller therapy and SABA for quick-relief therapy.

Declaration.

None.

Acknowledgements.

None.

Author contributions.

All authors contributed equally to the literature review and writing of the document.

Funding.

None.

Conflicts of interest.

Most authors have received honoraria for speaking engagements and from pharmaceutical companies (advisory boards). Individual activities are available on request.

1. Masekela R, Gray CL, Green RJ, et al., on behalf of the South African Childhood Asthma Working Group (SACAWG). The increasing burden of asthma in South African children: A call to action. S Afr Med J 2018;108(7):537-539. https://doi.org/10.7196/SAMJ.2018.108.11562
2. Masekela R, Ngcobo SM, Kitchin OF, et al., on behalf of the South African Childhood Asthma Working Group. The diagnosis of asthma in children: An evidence-based approach to a common clinical dilemma. S Afr Med J 2018;108(7):540-554. https://doi.org/10.7196/SAMJ.2018.108.11560
3. Masekela R, Jovanović A, Eling S, et al., on behalf of the South African Childhood Asthma Working Group (SACAWG). Asthma treatment in children: A pragmatic approach. S Afr Med J 2018;108(8):612-618. https://doi.org/10.7196/SAMJ.2018.108.11563
4. Masekela R, Leuny L, Jotta PH, et al., on behalf of the South African Childhood Asthma Working Group (SACAWG). Looking beyond the magic bullet: Novel asthma drugs or education, which works better? S Afr Med J 2018;108(9):619-623. https://doi.org/10.7196/SAMJ.2018.108.11561
5. South African Childhood Asthma Working Group. Management of childhood and adolescent asthma – 1991 consensus. S Afr Med J 1991;81:36-40.
6. South African Childhood Asthma Working Group. Management of chronic childhood and adolescent asthma – 1994 consensus. S Afr Med J 1994;84(12):862-866.
7. South African Childhood Asthma Working Group. Guidelines for the management of chronic asthma in children – 2000 update. S Afr Med J 2000;90(3):312-330.
8. Menda C, Green RJ, Motes AJ, Peter PJ, Zav HE, Guideline for the management of chronic asthma in children – 2009 update. S Afr Med J 2009;99(12):997-912.
9. Global Initiative for Asthma. Global strategy for asthma management and prevention. 2020. www.ginasthma.org (accessed 1 September 2020).
10. Brand PLF, Caufer D, Dier F, et al. Classification and pharmacological treatment of preschool wheezing: Changes since 2008. Eur Respir J 2014;43:1172-1177. https://doi.org/10.1183/09031936.01299513
11. Bush A, Ngadzulira P. Preschool wheezing phenotypes. Eur Respir J 2016;47(1):10-15.
12. Bago-Homs J, Hermannson M, Lindahl L, Hjalmarsson B, Bumsted D. Asthma in preschool children: risk factors for asthma. Pediatr Pulmonol 2009;44:1098-1107. https://doi.org/10.1002/ppul.21278
13. Gelbard SF, Morpou T, Nseobor HL, Hsu K, Guenot O, Liao O. The relationship of the bronchodilator response to poor asthma control in children with normal spirometry. J Pediatr 2011;158(6):953-959. https://doi.org/10.1016/j.jpeds.2010.11.029
14. Masekela R, Ngcobo SM, Kitchin OF, et al. The diagnosis of asthma in children: An evidence-based approach to a common clinical dilemma. S Afr Med J 2018;108(7):540-545. https://doi.org/10.7196/SAMJ.2018.108.11562
15. The Global Asthma Report. 2017. www.globalasthmareport.org (accessed 3 January 2017).
16. Expert Panel Working Group of the National Heart, Lung, and Blood Institute (NHLBI). 2020 focused updates to the Global Initiative for Asthma (GINA): A report from the National Asthma Education and Prevention Program (NAEPP) Expert Panel Working Group. J Allergy Clin Immunol 2020;146(6):1257-1270. https://doi.org/10.1016/j.jaci.2020.10.003
17. Green RJ, Klein M, Becker P, et al. Drug-sampling between common measures of asthma control. Chest 2015;147:117-122. https://doi.org/10.1378/chest.14-1070
18. Dukhun T, Chippie H. Clinical tools to assess asthma control in children. Pediatr Allergy Immunol 2017;28(Suppl.1):e140-156. https://doi.org/10.1111/pai.12740
19. Accepted 18 March 2021.