On projective representations of finitely generated groups

Sumana Hatui\(^a\), E. K. Narayanan\(^b\), and Pooja Singla\(^c\)

\(^a\)School of Mathematical Sciences, National Institute of Science Education and Research, An OCC of HBNI, Bhubaneswar, Odisha, India; \(^b\)Department of Mathematics, Indian Institute of Science, Bangalore, India; \(^c\)Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur, India

ABSTRACT

We prove a characterization of monomial projective representations of finitely generated nilpotent groups. We also characterize polycyclic groups whose projective representations are finite dimensional.

ARTICLE HISTORY

Received 20 May 2021
Revised 11 May 2022
Communicated by Alexander Olshanski

KEYWORDS

Finite weight; monomial representations; projective representations; representation groups; Schur multiplier

2020 MATHEMATICS SUBJECT CLASSIFICATION

20C25; 20C15; 20G05; 20F18

1. Introduction

The study of projective representations has a long history starting with the pioneering work of Schur for finite groups [12–14]. It involves understanding homomorphisms from a group into the projective general linear groups. Let \(G \) be a group and \(V \) be a complex vector space. A projective representation of a group \(G \) is a homomorphism \(\rho \) from \(G \) to the projective general linear group \(\text{PGL}(V) \). More precisely, \(\rho \) is a map from \(G \) to the general linear group \(\text{GL}(V) \) with \(\rho(1) = \text{Id}_V \) and such that

\[
\rho(xy) = \alpha(x, y)\rho(x)\rho(y) \quad \forall \ x, y \in G
\]

where \(\alpha : G \times G \to \mathbb{C}^\times \) is a 2-cocycle. Such a \(\rho \) is called an \(\alpha \)-representation. If \(\alpha(x, y) = 1 \) for all \(x, y \in G \) then \(\rho \) is an ordinary representation. A key concept in the study of projective representations is the representation group to which these representations lift as ordinary representations. Schur [12] proved that for every finite group \(G \) there exists a group \(\tilde{G} \), nowadays called Schur cover or representation group of \(G \), such that the \(\alpha \)-representations of \(G \) are obtained from the ordinary representations of \(\tilde{G} \). The representation groups for the symmetric group \(S_n \) for \(n \geq 4 \), were classified by Schur [14]. See [8, Section 3.3] for more examples of Schur covers for several finite groups. For a finitely generated group \(G \), under the assumption that \(H_2(G, \mathbb{Z}) \) is finitely generated, there is a finitely generated representation group \(\tilde{G} \) (see [2, Chapter II, Proposition 3.2]).

We next define induction for the projective representations of a group. A definition of this appeared in [3, Section 2.2]. Below, we give a slight variant of this one that fits better in our discussion.

Definition 1.1 (Induced projective representation). Let \(\alpha \) be a 2-cocycle of \(G \), \(H \) be a subgroup of \(G \) and \((\phi, W) \) be an \(\alpha \)-representation of \(H \). The induced projective representation \((\tilde{\phi}, V) \) of \(\phi \), denoted by \(\text{Ind}_H^G(\phi) \), is defined as follows: The space \(V \) consists of the functions \(f : G \to W \) such that
(i) \(f(hg) = (h, g)^{-1} \phi(h)f(g) \) for all \(h \in H, g \in G \).

(ii) The support of \(f \) is contained in a union of finitely many right cosets of \(H \) in \(G \).

The projective representation \(\tilde{\phi} : G \to GL(V) \) is defined by \(\tilde{\phi}(g)f(x) = \alpha(x, g)f(xg) \) for all \(x, g \in G \).

It is easy to see that \(\tilde{\phi}(g)f \in V \) and \(\tilde{\phi} \) is an \(\alpha \)-representation of \(G \). For \(\alpha = 1 \), the above definition coincides with usual induction for discrete groups, see [9, Definition 2.1].

Our first result is a characterization of the irreducible monomial projective representations of finitely generated nilpotent groups. Let \(\alpha \in Z^2(G, \mathbb{C}^\times) \) and let \(\rho \) be an \(\alpha \)-representation of \(G \). Then \(\rho \) is said to be monomial if there exists a subgroup \(H \subset G \) and an \(\alpha \)-representation \(\psi : H \to \mathbb{C}^\times \) such that \(\rho \) is equivalent to \(\text{Ind}_{H}^{G}(\psi) \). In the context of ordinary representations of finitely generated nilpotent groups, monomial representations are characterized by the finite weight property (see [1, 9]). Motivated by this result, we define the following:

Definition 1.2. An \(\alpha \)-representation \((\rho, V) \) of a group \(G \) is said to have finite weight if there exists a subgroup \(H \subset G \) and an \(\alpha \)-representation \(\psi : H \to \mathbb{C}^\times \) such that the space

\[
V_{H}(\psi) = \{ v \in V : \rho(h)v = \psi(h)v \forall h \in H \}\]

is a nontrivial finite dimensional space.

The following result gives a complete characterization of monomial irreducible projective representations of a finitely generated nilpotent group.

Theorem 1.3. An irreducible \(\alpha \)-representation \(\rho \) of a finitely generated nilpotent group is monomial if and only if it has finite weight.

For a proof of this result, see Section 3. To prove this result, we show that the characterization of monomial irreducible projective representations of \(G \) can be obtained from the corresponding characterization for the ordinary representations of its representation group.

Our next result is a generalization of the well-known result of Hall [4, Theorem 3.2, Theorem 3.3] which states that a polycyclic group \(G \) has all irreducible representations finite dimensional if and only if \(G \) is abelian by finite. We extend this result to projective representations. For a 2-cocycle \(\alpha \) of \(G \), we say \(G \) is \(\alpha \)-finite if every irreducible \(\alpha \)-representation of \(G \) is finite dimensional. We obtain the following characterization of \(\alpha \)-finite polycyclic groups.

Theorem 1.4. Let \(G \) be a polycyclic group and \(\alpha \) be a 2-cocycle of \(G \). Then \(G \) is \(\alpha \)-finite if and only if there is a normal abelian subgroup \(N \) of \(G \) such that \([\alpha]_{N \times N} \) is of finite order and \(G/N \) is a finite group.

The proof of this result is included in Section 4 and is built on generalizing the ideas of Hall for \(\alpha = 1 \) case. We conclude by characterizing the finite dimensional irreducible \(\alpha \)-representations of discrete Heisenberg groups of rank one.

2. Preliminaries

In this section we recall some standard definitions and results regarding projective representations of discrete groups. We refer the reader to [8] for related results in the case of finite groups. Recall that the second cohomology group \(H^2(G, \mathbb{C}^\times) \) is defined to be the abelian group \(Z^2(G, \mathbb{C}^\times)/B^2(G, \mathbb{C}^\times) \), where \(Z^2(G, \mathbb{C}^\times) \) is the set of all 2-cocycles of \(G \) which form an abelian group under the pointwise multiplication and \(B^2(G, \mathbb{C}^\times) \) is the collection of all 2-coboundaries on \(G \). For any \(\alpha \in Z^2(G, \mathbb{C}^\times) \), its image in \(H^2(G, \mathbb{C}^\times) \) is denoted by \([\alpha] \). Two 2-cocycles \(\alpha_1, \alpha_2 \in Z^2(G, \mathbb{C}^\times) \) are called cohomologous if
Let V be a complex vector space. Recall, a projective representation of a group G is a map $\rho : G \to \text{GL}(V)$ such that
\[\rho(x)\rho(y) = \alpha(x,y)\rho(xy) , \text{ for all } x, y \in G, \]
for suitable scalars $\alpha(x, y) \in \mathbb{C}^\times$. By the associativity of $\text{GL}(V)$, the map $(x, y) \mapsto \alpha(x, y)$ gives a 2-cocycle of G, that is, α satisfies the following:
\[\alpha(x, y)\alpha(xy, z) = \alpha(x, yz)\alpha(y, z) , \text{ for all } x, y, z \in G. \]
In this case, we say ρ is an α-representation. Two α-representations $\rho_1 : G \to \text{GL}(V)$ and $\rho_2 : G \to \text{GL}(W)$ are called linearly equivalent if there is an invertible $T \in \text{Hom}(V, W)$ such that
\[T\rho_1(g)T^{-1} = \rho_2(g) , \text{ for all } g \in G. \]
Recall that an α-representation of G for $\alpha(x, y) = 1$ for all $x, y \in G$ is called an ordinary representation of G. At times we shall call this just as a representation of G, omitting the word ordinary, whenever our meaning is clear from the context.

Let $\text{Irr}(G)$ denote the set of all linearly inequivalent ordinary irreducible representations of G over \mathbb{C} and $\text{Irr}^\alpha(G)$ denote the set of all linearly inequivalent irreducible α-representations of G over \mathbb{C}. We remark that for $\alpha, \alpha' \in Z^2(G, \mathbb{C}^\times)$ such that $[\alpha] = [\alpha']$, the sets $\text{Irr}^\alpha(G)$ and $\text{Irr}^{\alpha'}(G)$ are in bijective correspondence and can be easily obtained from each other. Therefore to study irreducible projective representations of G, we will pick a representative α for each element of $H^2(G, \mathbb{C}^\times)$ and study the corresponding α-representations.

For a group G and a 2-cocycle α of G, the set $\mathbb{C}^\alpha G$, called the twisted group algebra of G with 2-cocycle α, is a \mathbb{C}-algebra with its vector space basis given by the set $\{e_g \mid g \in G\}$. The multiplication of basis elements of $\mathbb{C}^\alpha G$ is given by the following
\[e_g e_h = \alpha(g, h)e_{gh}, \text{ for all } g, h \in G \]
and is extended linearly to the whole set. Parallel to the ordinary representations of G, notions of twisted group algebra appears in [8] for finite groups and in [10, 11] for infinite groups.

We next recall the definition of transgression and inflation homomorphisms. For a central extension,
\[1 \to A \to \tilde{G} \to G/A \to 1, \]
the Hochschild-Serre spectral sequence [6] for cohomology of groups yields the following exact sequence
\[\text{Hom}(\tilde{G}, \mathbb{C}^\times) \xrightarrow{\text{res}} \text{Hom}(A, \mathbb{C}^\times) \xrightarrow{\text{tra}} H^2(\tilde{G}/A, \mathbb{C}^\times) \xrightarrow{\text{inf}} H^2(\tilde{G}, \mathbb{C}^\times), \tag{2.0.1} \]
where $\text{tra} : \text{Hom}(A, \mathbb{C}^\times) \to H^2(\tilde{G}/A, \mathbb{C}^\times)$ given by $f \mapsto \text{tra}(f) = [\alpha]$, with
\[\alpha(x, y) = \frac{f(\mu(x)\mu(y)\mu(x\bar{y})^{-1})}{\mu(\bar{x}y)}, \text{ for all } x, y \in \tilde{G}/A, \]
for a section $\mu : \tilde{G}/A \to \tilde{G}$, denotes the transgression homomorphism. The inflation homomorphism, $\text{inf} : H^2(\tilde{G}/A, \mathbb{C}^\times) \to H^2(\tilde{G}, \mathbb{C}^\times)$ is given by $[\alpha] \mapsto \text{inf}(\mu) = [\beta]$, where $\beta(x, y) = \alpha(xA, yA)$, for all $x, y \in \tilde{G}$.
Throughout this article, while making a choice of a section map we will always choose one that maps identity to identity. We end this section with some required results regarding representation group of G.

Definition 2.1 (Representation group of G). A group \tilde{G} is called a representation group of G, if there is a central extension
\[1 \to A \to \tilde{G} \to G \to 1 \]
such that corresponding transgression map
\[\text{tra} : \text{Hom}(A, \mathbb{C}^\times) \to H^2(G, \mathbb{C}^\times) \]
is an isomorphism.
Lemma 2.2. Let G be a polycyclic group. Then G has a representation group over \mathbb{C} which is finitely generated. Furthermore if G is finitely generated nilpotent, then G has a representation group which is finitely generated nilpotent.

Proof. For any group G, there exists a central extension $1 \to H_2(G, \mathbb{Z}) \to \tilde{G} \to G \to 1$ such that \tilde{G} is a representation group of G (see [2, Chapter II, Proposition 3.2]). In particular, if both G and $H_2(G, \mathbb{Z})$ are finitely generated then \tilde{G} is finitely generated. It is well-known that polycyclic groups are finitely presented. Let $G = F/R$ be a free presentation of polycyclic group G. By Hopf formula [7], $H_2(G, \mathbb{Z}) = \frac{[F,F]}{[F,R]}$ is a subgroup of $R/[F,R]$ and $R/[F,R]$ is a finitely generated abelian group. Hence $H_2(G, \mathbb{Z})$ is a finitely generated group. This proves the existence of a finitely generated representation group of a polycyclic group G. The result for nilpotent groups follows because every nilpotent group is a polycyclic group.

In [5], the authors described a representation group for finitely generated abelian groups as well as for discrete Heisenberg groups and their t-variants. Then, by [5, Corollary 3.3], it follows that the sets $\text{Irr}(\tilde{G})$ and $\bigcup_{\alpha \in H_2(G, \mathbb{C} \times)} \text{Irr}_\alpha(G)$ are in bijective correspondence.

Lemma 2.3. Let $1 \to A \to \tilde{G} \to G \to 1$ be a central extension such that \tilde{G} is a representation group of G. Then $A \subseteq [\tilde{G}, \tilde{G}]$, where $[\tilde{G}, \tilde{G}]$ denotes the commutator subgroup of \tilde{G}.

Proof. By the definition of the representation group and the exactness of (2.0.1), we have $\text{res}: \text{Hom}(\tilde{G}, \mathbb{C} \times) \to \text{Hom}(A, \mathbb{C} \times)$ is trivial. Hence, $A \subseteq [\tilde{G}, \tilde{G}]$.

3. Monomial and finite weight projective representations

In this section we explore the monomial projective representations of a finitely generated group G and its relations to the monomial representations of a representation group \tilde{G}. As a consequence we show that, for a finitely generated nilpotent group G, an irreducible projective representation ρ is monomial if and only if ρ is of finite weight (see Definition 1.2). We need the following results.

Lemma 3.1. Let H and K be two subgroups of G and $\chi : H \to \mathbb{C}^\times$, $\delta : K \to \mathbb{C}^\times$ be characters of H and K respectively such that,

1. $kHk^{-1} \subseteq H$ for all $k \in K$, i.e. K normalizes H.
2. $\chi(khk^{-1}) = \chi(h)$ for all $h \in H$ and $k \in K$.
3. $\chi|_{H \cap K} = \delta|_{H \cap K}$

Then $\chi \delta : HK \to \mathbb{C}^\times$ defined by $\chi \delta(hk) = \chi(h)\delta(k)$ for all $h \in H$ and $k \in K$ is a character of HK such that $\chi \delta|_H = \chi$.

Proof. See Lemma 2.9 in [9].

Theorem 3.2. [Frobenius reciprocity] The induction functor is left adjoint to the restriction functor, i.e.,

$$\text{Hom}_G(\text{Ind}_G^G(\rho), \delta) = \text{Hom}_K(\rho, \text{Res}_K^G(\delta)),$$

where δ is any representation of G, ρ is a representation of a subgroup H of G and $\text{Res}_K^G(\delta)$ is the restriction of δ to K.

Proof. See [15, Chapter 1]
Theorem 3.3. Let G be a finitely generated nilpotent group. An irreducible representation ρ of G is monomial if and only if ρ is of finite weight.

Proof. See the main results in [1] and [9].

Let G be a group and \tilde{G} be its representation group. Thus by Lemma 2.3, we have a subgroup A of \tilde{G}, $A \subset [\tilde{G}, \tilde{G}] \cap Z(\tilde{G})$ and a central extension

$$1 \rightarrow A \rightarrow \tilde{G} \rightarrow G \rightarrow 1$$

such that the map τ is an isomorphism. Fix a section $s : G \rightarrow \tilde{G}$. Let $\alpha \in H^2(G, \mathbb{C}^\times)$ and $\chi : A \rightarrow \mathbb{C}^\times$ be such that

$$\alpha(x, y) = \chi(s(x)s(y)s(xy)^{-1}), \quad \text{for all } x, y \in G.$$

For any α-representation (ρ, V) of G, define $\tilde{\rho} : \tilde{G} \rightarrow \text{GL}(V)$ by $\tilde{\rho}(g)s(g)) = \chi(g)\rho(g)$. Then $(\tilde{\rho}, V)$ is an ordinary representation of \tilde{G}. It is well-known that the map $\rho \mapsto \tilde{\rho}$ preserves irreducibility and gives an equivalence between categories of all α-representations of G and the category of all representations of \tilde{G} lying above χ.

Lemma 3.4. Let \tilde{H} be a subgroup of \tilde{G} and $\tilde{\psi}$ be a one dimensional ordinary representation of \tilde{H}. If $\text{Ind}_{\tilde{H}}^G(\tilde{\psi})$ is an ordinary irreducible representation of \tilde{G}, then $A \subseteq \tilde{H}$.

Proof. Suppose $A \not\subseteq \tilde{H}$. The character $\tilde{\psi}$ restricted to $\tilde{H} \cap A$ can be extended to a character δ of A (since A is abelian). By Lemma 3.1 we obtain an extension of the character $\tilde{\psi}$ to $\tilde{\psi} \delta : HA \rightarrow \mathbb{C}^\times$. It follows from Frobenius reciprocity (Theorem 3.2) that

$$\text{Hom}_{HA}^{\tilde{H}}(\text{Ind}_{\tilde{H}}^A(\tilde{\psi}), \tilde{\psi} \delta) = \text{Hom}_{\tilde{H}}^{\tilde{H}}(\tilde{\psi}, \tilde{\psi} \delta|_{\tilde{H}}) \neq 0.$$

Hence $\text{Ind}_{\tilde{H}}^A(\tilde{\psi})$ is not irreducible. On the other hand $\text{Ind}_{\tilde{H}}^G(\tilde{\psi}) \cong \text{Ind}_{HA}^{\tilde{H}}(\text{Ind}_{\tilde{H}}^A(\tilde{\psi}))$ implies that $\text{Ind}_{\tilde{H}}^A(\tilde{\psi})$ is irreducible. This is a contradiction. Hence $A \subseteq \tilde{H}$.

Proof of Theorem 1.3. By Lemma 2.2, a finitely generated nilpotent group G has a representation group \tilde{G} which is also finitely generated nilpotent. Let $\rho : G \rightarrow \text{GL}(V)$ be an irreducible monomial α-representation. Then there exists a subgroup $H \subset G$ and an α-representation $\psi : H \rightarrow \mathbb{C}^\times$ such that $\rho = \text{Ind}_H^G(\psi)$. Let $\tilde{H} = \pi^{-1}(H)$, where π is the surjective homomorphism from \tilde{G} to $G = \tilde{G}/A$. Then \tilde{H} is a subgroup of \tilde{G} and every element $\tilde{h} \in \tilde{H}$ can be uniquely written as $\tilde{h} = a_h s(h)$ for some $h \in H$ and $a_h \in A$. Define $\tilde{\psi} : \tilde{H} \rightarrow \mathbb{C}^\times$ by

$$\tilde{\psi}(\tilde{h}) = \tilde{\psi}(a_h s(h)) = \chi(a_h)\psi(h).$$

The map $\tilde{\psi}$ is a one dimensional representation of \tilde{H}. By definition of $\tilde{\rho}$ and induced representation, we obtain that $(\tilde{\rho}, V)$ and $\text{Ind}_{\tilde{H}}^G(\tilde{\psi})$ are isomorphic as \tilde{G} representations. By Frobenius reciprocity,

$$\text{Hom}_{\tilde{H}}(\tilde{\psi}|_{\tilde{H}}, \tilde{\rho}|_{\tilde{H}}) = \text{Hom}_{\tilde{G}}(\tilde{\rho}, \tilde{\psi}) = 0.$$

Since $\tilde{\rho}$ is irreducible, $V_{\tilde{H}}(\tilde{\psi})$ is one dimensional. By definition of $\tilde{\rho}$, $V_{\tilde{H}}(\tilde{\psi}) = V_{\tilde{H}}(\psi)$, hence $V_{\tilde{H}}(\psi)$ is finite dimensional. This implies that ρ is a finite weight representation of G. Conversely, suppose (ρ, V) is a finite weight irreducible α-representation of G. Then there exists a subgroup H and an α-representation $\psi : H \rightarrow \mathbb{C}^\times$ such that $V_{\tilde{H}}(\psi)$ is finite dimensional. Let $\tilde{H} = \pi^{-1}(H)$ and $\tilde{\psi} : \tilde{H} \rightarrow \mathbb{C}^\times$ given by

$$\tilde{\psi}(\tilde{h}) = \tilde{\psi}(a_h s(h)) = \chi(a_h)\psi(h)$$

is a one dimensional character of \tilde{H}. We note that $(\tilde{\rho}, V)$ is an irreducible representation of \tilde{H} such that $V_{\tilde{H}}(\tilde{\psi}) = V_{\tilde{H}}(\psi)$. Therefore $\tilde{\rho}$ is a finite weight representation. By Theorem 3.3, $\tilde{\rho}$ is a monomial
representation. Let \(\tilde{\rho} \cong \text{Ind}_{\tilde{H}}^{G}(\tilde{\psi}) \). By Lemma 3.4 \(\alpha \subset \tilde{H} \). Therefore \(\rho \cong \text{Ind}_{H}^{G}(\psi) \) and hence a monomial representation.

4. Criterion for finite dimensional projective representations

Let \(G \) be a polycyclic group. It is a well-known result due to Hall that every irreducible representation of \(G \) is finite dimensional if and only if \(G \) is abelian by finite (see [4, Theorems 3.2 and 3.3]). That is, such groups \(G \) are characterized by the condition that there exists an abelian normal subgroup \(N \) of \(G \) such that \(G/N \) is finite. By closely following some of the arguments in [4], we extend this result to projective representations. For \(\alpha \in Z^{2}(G, \mathbb{C}^{\times}) \), we show that every irreducible \(\alpha \)-representation of \(G \) is finite dimensional if and only if there exists an abelian normal subgroup \(N \) of \(G \) such that \(G/N \) is finite and \([\alpha_{N \times N}] \) is of finite order. Notice that the finite order condition is automatically satisfied if \([\alpha] = [1] \).

As a consequence of this main result we show that every irreducible projective representation of a finitely generated polycyclic group \(G \) is finite dimensional if and only if there is a normal abelian subgroup \(N \) of \(G \) such that \(G/N \) is finite and \([\alpha]_{N \times N} \) is of finite order for all \(\alpha \in Z^{2}(G, \mathbb{C}^{\times}) \).

Recall that for \(\alpha \in Z^{2}(G, \mathbb{C}^{\times}) \), the group \(G \) is \(\alpha \)-finite if every irreducible \(\alpha \)-representation of \(G \) is finite dimensional. We need the following results:

Theorem 4.1. Let \(N \) be a finitely generated abelian group. Then there exists a central extension

\[
1 \to \mathbb{Z} \to N^{*} \to N \to 1,
\]

such that \(\mathbb{Z} = Z(N^{*}) = [N^{*}, N^{*}] \) and \(N^{*} \) is a representation group of \(N \). Moreover, \(N^{*} \) is a finitely generated two step nilpotent group.

Proof. See [5, Theorem 1.4] and its proof. The proof of [5, Theorem 1.4] is done by showing that the corresponding transgression map is an isomorphism.

Theorem 4.2. Let \(G \) be a finitely generated two step nilpotent group and \(\pi \) an irreducible representation of \(G \). Then, \(\pi \) is finite dimensional if and only if the character obtained by restricting \(\pi \) to \([G, G] \) is of finite order.

Proof. See [9, Theorem 1.3].

We start with the following lemma:

Lemma 4.3. Let \(N \) be a finitely generated abelian group and \(\alpha \in Z^{2}(N, \mathbb{C}^{\times}) \). Then \(N \) is \(\alpha \)-finite if and only if \([\alpha] \) is of finite order.

Proof. Let \(\rho \) be an irreducible \(\alpha \)-representation of \(N \) and \(\tilde{\rho} \) be its lift to \(N^{*} \) (see Theorem 4.1). Let \(s : N \to N^{*} \) be a section such that \(s(1) = 1 \). By Theorem 4.1, we have \(\chi : \mathbb{Z} \to \mathbb{C}^{\times} \) such that \(\text{tra}(\chi) = [\alpha] \).

For \(n_{1}, n_{2} \in N \),

\[
\alpha(n_{1}, n_{2}) = \rho(n_{1})\rho(n_{2})\rho(n_{1}n_{2})^{-1} = \tilde{\rho}(s(n_{1})s(n_{2})s(n_{1}n_{2})^{-1}).
\]

It follows from the injectivity of the map \(\text{tra} \) that the character obtained by restricting the irreducible representation \(\tilde{\rho} \) to the center \(Z = [N^{*}, N^{*}] \) equals \(\chi \). Since orders of \(\chi \) and \([\alpha] \) are equal and \(\rho \) is finite dimensional if and only if \(\tilde{\rho} \) is finite dimensional, the proof now follows from Theorem 4.2.

Let \(N \) be a subgroup of \(G \) and \(\alpha \) be a 2-cocycle of \(G \). The restriction of cocycle \(\alpha \) to the set \(N \times N \) gives a 2-cocycle of \(N \) and this is denoted by either \(\alpha|_{N \times N} \) or by \(\alpha \) itself.
Lemma 4.4. Let G be α-finite and N be a normal subgroup of G. Then N is $\alpha|_{N \times N}$-finite.

Proof. Let Q be a maximal ideal of the twisted group algebra $\mathbb{C}^\alpha N$. Then there exists a maximal ideal P of $\mathbb{C}^\alpha G$ containing Q. Consider a natural non-zero morphism $\lambda : \mathbb{C}^\alpha N/Q \to \mathbb{C}^\alpha G/P$ of $\mathbb{C}^\alpha N$-modules that sends the class of 1 to the class of 1. By condition of the lemma, the vector space $\mathbb{C}^\alpha G/P$ is finite-dimensional. Next, maximality of Q implies that λ is injective. This shows finite-dimensionality of $\mathbb{C}^\alpha N/Q$.

The following lemma will be crucially used in the proof of Theorem 1.4.

Lemma 4.5. Let G be a finitely generated polycyclic group with cyclic series

$$1 = G_0 \subseteq G_1 \subseteq G_2 \subseteq \cdots \subseteq G_n = G.$$

Assume that G_{n-1} has an abelian subgroup of finite index and G_n does not have an abelian subgroup of finite index. Then there exists a free abelian subgroup A of finite rank, normal in G, and of finite index in G_{n-1}, satisfying the following:

1. $\text{rank}(A) \geq 2$.
2. There exists $z \in G_n$ such that $L = \langle A, z \rangle$ has finite index in G and L/A is infinite.
3. There exists a subgroup B of A such that $A = B \oplus \langle t \rangle$ for some $t \in A$ and $N_L(B) > A$, where $N_L(B)$ is the normalizer of B in L.

Proof. A proof of the above result is included in the proof of [4, Theorem 3.3 (p. 615)].

Now we are in a position to prove Theorem 1.4. We provide necessary and sufficient conditions for a polycyclic group to be α-finite.

Proof of Theorem 1.4. We first suppose that N is a normal abelian subgroup of G of finite index such that every irreducible α-representation of N is finite dimensional. Let V be an irreducible $\mathbb{C}^\alpha G$-module. We will prove that V is finite dimensional. Suppose not. Since V is also $\mathbb{C}^\alpha N$-module and G is finitely generated, there exists a maximal $\mathbb{C}^\alpha N$-submodule of V, say W. Then V/W is an irreducible $\mathbb{C}^\alpha N$-module and hence finite dimensional.

Let $\{x_1 = 1, x_2, \ldots, x_i\}$ be a set of left coset representatives of N in G. Now $N(x_iW) \subseteq x_i(NW) \subseteq x_iW$ and $\dim(V/x_iW) = \dim(V/W)$. Consider $W_0 = \cap_{i=1}^{n} x_iW$. Then V/W_0 is a finite dimensional $\mathbb{C}^\alpha N$-module. If $x_iW = x_iNW$ and $w \in W_0$, $x_i(wx_iW) = x_iNW \in W_0$. Hence W_0 is a $\mathbb{C}^\alpha G$-submodule of V. Since V is irreducible, either $W_0 = V$ or $W_0 = 0$. Either case leads to finite dimensionality of V.

Conversely, Suppose G is α-finite. We prove that there is an abelian normal subgroup N of G such that G/N is finite. Since G is a finitely generated polycyclic group, G has a series

$$1 = G_0 \subseteq G_1 \subseteq G_2 \subseteq \cdots \subseteq G_n = G$$

such that G_i/G_{i-1} is cyclic. We use induction on n. The group G is cyclic for $n = 1$. So the result is true in this case. Now assume $n > 1$. We consider the following cases separately:

(a) G_{n-1} does not have an abelian subgroup of finite index.
(b) G_{n-1} has an abelian subgroup of finite index.

Case (a): First suppose that G_{n-1} has no abelian subgroup of finite index. Hence by induction hypothesis G_{n-1} has an infinite dimensional irreducible α-representation. So by Lemma 4.4, G has an infinite dimensional irreducible α-representation and we are done.

Case (b): In this case, we prove the result by contradiction. Assume that G does not have an abelian subgroup of finite index. Let A be the normal, abelian subgroup of G obtained by Lemma 4.5. If $[\alpha|_{A \times A}]$ is
not of finite order, then by Lemma 4.3, A is not α-finite. By Lemma 4.4, G is not α-finite, a contradiction. Hence $[\alpha|_{A \times A}]$ is of finite order. By Lemma 4.3, A is α-finite. By Theorem 4.1, we have a central extension

$$1 \to Z \to A^* \to A \to 1$$

such that A^* is a representation group of A, which is a two-step nilpotent group such that $Z = [A^*, A^*]$. There is a character χ of Z such that $\text{tra}(\chi) = [\alpha_{A \times A}]$. Since A is α-finite, irreducible ordinary representations of A^* lying above χ are finite dimensional and by [9, Theorem 1.1], they are monomial. Thus irreducible $\alpha_{A \times A}$-representations of A are finite dimensional and monomial. So for $\rho \in \text{Irr}^A(A)$, there exists a finite index subgroup H of A and a character $\psi : H \to \mathbb{C}^\times$ such that $\alpha(h_1, h_2) = \psi(h_1)\psi(h_2)\psi(h_1h_2)^{-1}$ and $\rho = \text{Ind}_H^A(\psi)$. Define a map $\mu : G \to \mathbb{C}^\times$ by

$$\mu(g) = \begin{cases} \psi^{-1}(g) & \text{for } g \in H, \\ 1 & \text{for } g \notin H. \end{cases}$$

Then take $\alpha'(g_1, g_2) = \alpha(g_1, g_2)\mu(g_1)\mu(g_2)\mu(g_1g_2)^{-1}$ for all $g_1, g_2 \in G$. The cocycles α' and α are cohomologous and $\alpha'|_{\text{H} \times H} = 1$. Let $[A : H] = \ell$. Consider the subgroup C of A generated by ℓ-th power of elements of A. Clearly $C \subset H$. By definition, C is a characteristic subgroup of A of finite index such that $\alpha'|_{C \times C} = 1$.

Let $M = \langle C, z \rangle$. We show that M has an irreducible α'-representation of infinite dimension. Since M is a finitely generated polycyclic group, we have a central extension

$$1 \to J \to M^* \to M \to 1$$

such that M^* is a representation group of M, existence follows from Theorem 2.2. Then there is a character $\chi : J \to \mathbb{C}^\times$ such that $\text{tra}(\chi) = [\alpha'|_{M \times M}]$. Let $\tilde{C} = \pi^{-1}(C)$. Consider the central extension $1 \to J \to \tilde{C} \to C \to 1$. Every element $\tilde{c} \in \tilde{C}$ can be written as $\tilde{c} = (c, j), c \in C, j \in J$, where s is a section from M to M^*.

Recall that $A = B \oplus \langle t \rangle$ such that A/B is infinite cyclic. Since A/C is of finite index, there is a smallest positive integer k such that $t^k \in C$. Now let $\lambda, \beta \in \mathbb{C}^\times$ which is not a root of unity. For each integer $h = 0, \pm 1, \pm 2, \ldots$, we define a function ρ_h on \tilde{C} by the rule that, for any $\tilde{c} \in \tilde{C}$, $\rho_h(\tilde{c}) = \rho_h(c)j = \chi(j)\lambda^\beta$, where the integer $\beta = \beta_h(c)$ is defined by the condition that $z^h \tilde{e}z^{-h} = (t^k)^\beta (\text{mod } B)$. Let $\tilde{c}_i = j_i s(c_i), i = 1, 2$. Now we have $\tilde{c}_1 \tilde{c}_2 = j_1 j_2 s(c_1) s(c_2) s(c_1 c_2)^{-1} s(c_1 c_2).$ so,

$$\rho_h(\tilde{c}_1 \tilde{c}_2) = \chi(j_1)\chi(j_2)\chi(s(c_1)s(c_2))s(c_1 c_2)^{-1}\lambda^{\beta_1 + \beta_2}$$

$$= \chi(j_1)\chi(j_2)\alpha'(c_1 c_2)\lambda^{\beta_1 + \beta_2}$$

$$= \chi(j_1)\chi(j_2)\lambda^{\beta_1 + \beta_2}$$

$$= \rho_h(\tilde{c}_1)\rho_h(\tilde{c}_2).$$

Hence ρ_h are one dimensional ordinary representations of \tilde{C} such that $\rho_h|_J = \chi$. Observe that $\{\rho_h|h = 0, \pm 1, \pm 2, \ldots\}$ are not equivalent.

Since $M/C \cong \langle z \rangle$, we have $M^*/C \cong \langle s(z) \rangle$. Now we define $V = \oplus_{\infty} \mathbb{C}[v_m]$, where v_m is a generator of space ρ_m for $m = 0, \pm 1, \pm 2, \ldots$. Define

$$s(z)v_m = v_{m+1}, \quad \tilde{c}v_m = \rho_m(\tilde{c})v_m.$$

Then V is an infinite dimensional ordinary representation of M^* lying above χ. The representation V is easily seen to be irreducible. Thus V is an infinite dimensional irreducible α'-representation of M. So by Lemma 4.4, G will have an infinite dimensional irreducible α'-representation. The cocycles α' and α are cohomologous, so G will have an infinite dimensional irreducible α-representation, which is a contradiction.

Corollary 4.6. Every irreducible projective representation of a polycyclic group G is finite dimensional if and only if there is a normal abelian subgroup N of G such that for any $\alpha \in Z^2(G, \mathbb{C}^\times), [\alpha|_{N \times N}]$ is of finite order and G/N is a finite group.
Proof. Let G be a polycyclic group. If there is an abelian normal subgroup N such that for any $\alpha \in \mathbb{Z}^2(G, \mathbb{C}^\times)$, $[\alpha]_{N\times N}$ is of finite order and G/N is finite, then by Theorem 1.4 every irreducible projective representation of G is finite dimensional.

Conversely, suppose every irreducible projective representation of G is finite dimensional. By Theorem 1.4, it follows that, there is an abelian normal subgroup N such that G/N is finite. If for some $\alpha \in \mathbb{Z}^2(G, \mathbb{C}^\times)$, $[\alpha]_{N\times N}$ is not of finite order, then by Lemmas 4.3 and 4.4, there exists an infinite dimensional irreducible α-representation of G, which is a contradiction. □

4.1. Examples

In this section, we discuss some examples of α-finite groups.

Example 1. Consider the group $G = (\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}) \rtimes \mathbb{Z}$, where the multiplication is defined by

$$(m_1, n_1, p_1)(m_2, n_2, p_2) = (m_1 + m_2 + p_1 n_2 (\text{mod } n), n_1 + n_2, p_1 + p_2).$$

By [5, Lemma 2.2(ii)], it follows that every 2-cocycle $\alpha \in \mathbb{Z}^2(G, \mathbb{C}^\times)$, up to cohomologous, is of the following form:

$$\sigma((m_1, n_1, p_1), (m_2, n_2, p_2)) = \lambda^{(m_2 p_1 + m_1 p_2 (p_1 - 1)/2)} \mu^{(n_1 m_2 + p_1 m_2 (n_2 - 1)/2 + p_1 n_1 n_2)},$$

where $\lambda, \mu \in \mathbb{C}^\times$ such that $\lambda^2 = \mu^2 = 1$. Hence every 2-cocycle is of finite order and there is a normal subgroup $(\mathbb{Z}/n\mathbb{Z} \times n\mathbb{Z}) \times \mathbb{Z}$ of G such that quotient group is finite. So by Corollary 4.6, every projective representation of G is finite dimensional.

Example 2. Our next example is of generalized discrete Heisenberg groups. These are finitely generated two-step nilpotent groups of rank $2n + 1$ with rank 1 center. Given an n-tuple (d_1, d_2, \ldots, d_n) of positive integers with $d_1 | d_2 \cdots | d_n$ we write

$$G = \mathbb{H}_{2n+1}(d_1, d_2, \ldots, d_n) = \{(a, b, c) | a \in \mathbb{Z}, b, c \in \mathbb{Z}^n\},$$

where the group operation is defined by

$$(a, b_1, b_2, \ldots, b_n, c_1, \ldots, c_n)(a', b_1', b_2', \ldots, b_n', c_1', \ldots, c_n') = (a + a' + \sum_{i=1}^n d_i b_i' c_i, b_1 + b_1', b_2 + b_2', \ldots, b_n + b_n', c_1 + c_1', \ldots, c_n + c_n').$$

Consider $H = \mathbb{H}_3(d_1)$ and $K = \mathbb{H}_{2n-1}(d_2, \ldots, d_n)$. Then G is a central product of normal subgroups H and K with $Z = [H, H] \cap [K, K] = d_2 \mathbb{Z}$. Consider the set

$$H_3^{d_1}(d_2) = \{(m, n, p) | m \in \mathbb{Z}/d_2 \mathbb{Z}, n, p \in \mathbb{Z}\},$$

with the group operation defined by

$$(m_1, n_1, p_1)(m_2, n_2, p_2) = (m_1 + m_2 + d_1 p_1 n_2, n_1 + n_2, p_1 + p_2).$$

Then

$$G/Z \cong H_3^{d_1}(d_2) \times \mathbb{Z}^{2n-2}.$$
Funding

The first named author acknowledges NBHM grant (0204/52/2019/R&D-II/333) and IISc Raman post doctoral fellowship (R(IA)/CVR-PDF/2020/2700) for their support. The second and third named authors are grateful to the support in the form of SERB MATRICS grant MTR/2018/000501 and MTR/2018/000094 respectively.

References

[1] Beloshapka, I. V., and Gorchinski˘ı, S. O. (2016). Irreducible representations of nilpotent finitely generated groups. Mat. Sb. 207(1):45–72.
[2] Beyl, F. R., Tappe, J. (2006). Group Extensions, Representations, and the Schur Multiplier, Vol. 958. Berlin: Springer.
[3] Cheng, C. (2015). A character theory for projective representations of finite groups. Linear Algebra Appl. 469: 230–242.
[4] Hall, P. (1959). On the finiteness of certain soluble groups. Proc. London Math. Soc. 3(4):595–622.
[5] Hatui, S., Singla, P. (2021). On schur multiplier and projective representations of heisenberg groups. J. Pure Appl. Algebra 225(11):106742.
[6] Hochschild, G., Serre, J.-P. (1953). Cohomology of group extensions. Trans. Amer. Math. Soc. 74:110–134.
[7] Hopf, H. (1964). Fundamentalgruppe und zweite bettische gruppe. In Selecta Heinz Hopf. Berlin: Springer, pp. 186–206.
[8] Karpilovsky, G. (1985). Projective Representations of Finite Groups. New York-Basel:Marcel Dekker Inc.
[9] Narayanan, E. K., Singla, P. (2018). On monomial representations of finitely generated nilpotent groups. Commun. Algebra 46(6):2319–2331.
[10] Passman, D. S. (1970). Radicals of twisted group rings. Proc. London Math. Soc. 3(3):409–437.
[11] Passman, D. S. (1996). The semiprimitivity problem for twisted group algebras of locally finite groups. Proc. London Math. Soc. 3(2):323–357.
[12] Schur, J. (1904). Über die darstellung der endlichen gruppen durch gebrochen lineare substitutionen. J. für die Reine und Angew. Math. 1904(127):20–50.
[13] Schur, J. (1907). Untersuchungen über die darstellung der endlichen gruppen durch gebrochene lineare substitu-

[14] Schur, J. (1911). Über die darstellung der symmetrischen und der alternierenden gruppe durch gebrochene lineare substitutionen. J. für die Reine und Angew. Math. 1911(139):155–250.
[15] Vignéras, M.-F. (1996). Représentations l-modulaires d’un groupe réductif p-adique avec l ≠ p, Progress in Mathematics, Vol. 137. Boston: Birkhäuser Inc.