Citation for published version (APA):
Morello, F., Borshagovski, D., Survila, M., Tikker, L., Sadik-Ogli, S., Kirjavainen, A., Estartús, N., Knaapi, L., Lathi, L., Törönen, P., Mazutis, L., Delogu, A., Salminen, M., Ächim, K., & Partanen, J. (2020). Molecular fingerprint and developmental regulation of the tegmental GABAergic and glutamatergic neurons derived from the anterior hindbrain. Cell Reports, 33(2). https://doi.org/10.1016/j.celrep.2020.108268
Molecular Fingerprint and Developmental Regulation of the Tegmental GABAergic and Glutamatergic Neurons Derived from the Anterior Hindbrain

Highlights

- GABAergic and glutamatergic precursors contribute to tegmental nuclei

- The TF Tal1 and Notch signaling control neuron differentiation in the embryonic brainstem

- TFs downstream of Tal1 mark and regulate development of specific tegmental nuclei

Authors

Francesca Morello, Daniel Borshagovski, Mantas Survila, ..., Marjo Salminen, Kaia Achim, Juha Partanen

Correspondence

juha.m.partanen@helsinki.fi

In Brief

Morello et al. show how different types of neurons are generated among multipotent neuronal precursors in a specific region of the embryonic brainstem. As these neuronal precursors differentiate, they give rise to the neurons in tegmental nuclei that are highly important for the regulation of mood, motivation, movement, and memory.

Morello et al., 2020, Cell Reports 33, 108268

October 13, 2020 © 2020 The Author(s).

https://doi.org/10.1016/j.celrep.2020.108268
Molecular Fingerprint and Developmental Regulation of the Tegmental GABAergic and Glutamatergic Neurons Derived from the Anterior Hindbrain

Francesca Morello, 1,6 Daniel Borshagovski, 1,6 Mantas Survila, 1,6 Laura Tikker, 1,6 Samir Sadik-Ogli, 1 Anna Kirjavainen, 1 Nuri Estartús, 1 Laura Knaapi, 1 Laura Lahti, 1 Petri Törönen, 2 Linas Mazutis, 3 Alessio Delogu, 4 Marjo Salminen, 5 Kaia Achim, 1 and Juha Partanen 1,7,*

1Faculty of Biological and Environmental Sciences, P.O. Box 56, 00014 University of Helsinki, Helsinki, Finland
2Institute of Biotechnology, Helsinki Institute of Life Science, P.O. Box 56, 00014 University of Helsinki, Helsinki, Finland
3Institute of Biotechnology, University of Vilnius, 7 Saulėtekio av. LT-10257, Vilnius, Lithuania
4Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, London SE5 9NU, UK
5Faculty of Veterinary Medicine, P.O. Box 66, 00014 University of Helsinki, Helsinki, Finland
6These authors contributed equally
7Lead Contact
*Correspondence: juha.m.partanen@helsinki.fi

https://doi.org/10.1016/j.celrep.2020.108268

SUMMARY

Tegmental nuclei in the ventral midbrain and anterior hindbrain control motivated behavior, mood, memory, and movement. These nuclei contain inhibitory GABAergic and excitatory glutamatergic neurons, whose molecular diversity and development remain largely unraveled. Many tegmental neurons originate in the embryonic ventral rhombomere 1 (r1), where GABAergic fate is regulated by the transcription factor (TF) Tal1. We used single-cell mRNA sequencing of the mouse ventral r1 to characterize the Tal1-dependent and independent neuronal precursors. We describe gene expression dynamics during bifurcation of the GABAergic and glutamatergic lineages and show how active Notch signaling promotes GABAergic fate selection in post-mitotic precursors. We identify GABAergic precursor subtypes that give rise to distinct tegmental nuclei and demonstrate that Sox14 and Zfpm2, two TFs downstream of Tal1, are necessary for the differentiation of specific tegmental GABAergic neurons. Our results provide a framework for understanding the development of cellular diversity in the tegmental nuclei.

INTRODUCTION

The anterior brainstem is a complex brain region that comprises anatomically and functionally distinct tegmental nuclei regulating vital processes. The tegmental nuclei contain diverse inhibitory GABAergic and excitatory glutamatergic neurons that influence both the adjacent monoaminergic neurons and other targets in the anterior brain. GABAergic neurons in the substantia nigra pars reticulata (SNpr) control voluntary movement, the GABAergic rostromedial tegmental nucleus (RMTg), and the glutamatergic laterodorsal tegmental nucleus (LDTg) regulate aversion and reward responses, whereas GABAergic and glutamatergic neurons in the ventral tegmental area (VTA) and dorsal raphe (DR) control mood and motivated behavior (Barrot et al., 2012; Brown et al., 2014; Lorente-Cánovas et al., 2012; Machold and Fishell, 2005; Rose et al., 2009). Similarly, GABAergic neurons in the interpeduncular nucleus (IPN) and medial brainstem area undergo migrations from the dorsolateral r1 (Lorente-Cánovas et al., 2012; Waite et al., 2012). Yet, other brainstem neurons, such as GABAergic neurons of the posterior SNpr (pSNpr), VTA, and RMTg, as well as glutamatergic neurons in the LDTg and IPN, are born in a ventral r1 region (rV2), molecularly similar to the V2 domain of the spinal cord (Delile et al., 2019; Joshi et al., 2009; Lahti et al., 2016; Lorente-Cánovas et al., 2012; Peng et al., 2007). In the rV2 region, proliferative neuronal progenitors expressing the transcription factor (TF) Nkx6-1 give rise to intermingled post-mitotic precursors of both tegmental nuclei, it is essential to characterize their constituent neurons and the mechanisms that generate their diversity.

Tegmental GABAergic and glutamatergic neuron precursors largely originate in the embryonic rhombomere 1 (r1) of the hindbrain and can undergo complex tangential migrations. Some of the ventral brainstem neurons, such as glutamatergic neurons in the reticular activating system, originate in the dorsal r1, including the rhombic lip (Aroca et al., 2006; Green and Wingate, 2014; Lorente-Cánovas et al., 2012; Machold and Fishell, 2005; Rose et al., 2009). Similarly, GABAergic neurons in the interpeduncular nucleus (IPN) and medial brainstem area undergo migrations from the dorsolateral r1 (Lorente-Cánovas et al., 2012; Waite et al., 2012). Yet, other brainstem neurons, such as GABAergic neurons of the posterior SNpr (pSNpr), VTA, and RMTg, as well as glutamatergic neurons in the LDTg and IPN, are born in a ventral r1 region (rV2), molecularly similar to the V2 domain of the spinal cord (Delile et al., 2019; Joshi et al., 2009; Lahti et al., 2016; Lorente-Cánovas et al., 2012; Peng et al., 2007). In the rV2 region, proliferative neuronal progenitors expressing the transcription factor (TF) Nkx6-1 give rise to intermingled post-mitotic precursors of both
Figure A: Ventral rhombomere 1 dissection

Figure B: Single Cell mRNA-seq
- nV2 Tal1* GABAergic neurons
- nV2 Glutamatergic neurons

Figure C: UMAP plot showing cell clusters

Figure D: Heatmap showing expression levels of markers across different cell types

Figure E: Scatter plot showing log-fold change and adjusted p-value

Figure F: Bar graph showing number of cluster markers
- Upregulated in Tal1^cKO
- Downregulated in Tal1^cKO
- * adj. p-value < 0.0001

(legend on next page)
GABAergic and glutamatergic neurons (Lahti et al., 2016). In the newly born rV2 neuronal precursors, the TFs Tal1, Gata2, and Gata3 are required for differentiation into a GABAergic instead of a glutamatergic phenotype and the development of segmental GABAergic neurons, including the pSNpr, VTA, and RMTg GABAergic neurons associated with the monoaminergic systems (Achim et al., 2012; Bradley et al., 2006; Lahti et al., 2016). Although Tal1 and Gata TFs are instrumental for GABAergic fate selection, regulatory events up- and downstream of them remain unclear. In addition to the developing brain, Tal and Gata TFs regulate gene expression in many other tissues, including hematopoietic cells, where they interact with co-factors, such as Zfp111, to guide differentiation of distinct cell lineages (Chlon and Crispino, 2012). How the selector TFs instruct the development of segmental neuronal subtypes remains mostly unknown.

Large-scale single-cell profiling studies have revealed neuronal complexity throughout the adult mouse brain (Saunders et al., 2018; Zeisel et al., 2018). As this diversity is established during development, we used single-cell mRNA sequencing to study the differentiating neuronal populations in the embryonic mouse ventral r1. We focused on the stages of early neurogenesis, prior to the extensive gliogenesis that hampers high-throughput analyses in the adult brainstem. We characterize main cellular lineages in the r1, as well as gene regulatory cascades controlled by the GABAergic neuron selector Tal1. Our results reveal a dynamic gene expression pattern along the differentiation path of the Tal1-dependent GABAergic neurons, suggest mechanisms for separation of the GABAergic and glutamatergic branches of rV2 precursors, identify GABAergic neuron subtypes, and demonstrate requirements for TFs downstream of Tal1 in development of rV2-derived GABAergic nuclei. Our work provides a basis for understanding molecular characteristics and developmental mechanisms of the GABAergic and glutamatergic neuron subtypes in the segmental nuclei regulating central aspects of behavior.

RESULTS

Neuronal Progenitor and Precursor Cell Types in the Embryonic Ventral r1

To examine the cellular diversity in the developing mouse ventral r1, we used single-cell transcribing profiling. As Tal1-dependent GABAergic precursors are born in the ventral r1 at embryonic day 10.5 (E10.5) to E13.5 and move to their final destinations shortly thereafter (Achim et al., 2012; Lahti et al., 2016), we profiled the cell types undergoing neurogenesis.

Cells from wild-type E12.5 and E13.5 embryonic ventral r1 were collected using the Chromium (10xGenomics) single-cell mRNA sequencing assay (Figures 1A and 1B; Table S1). In addition, we used the InDrop method (Klein et al., 2015) to analyze the cells from both Control (Ctrl) and En1Cre;Tal1flox/flox; (Lahti et al., 2016) ventral r1 at E12.5 (Figure S2; Table S1). Clustering and analysis of the collected cells revealed similar cell types in the ventral r1 at E12.5 and E13.5 (Figures 1C, 1D, S1, and S2; Tables S2, S3, S4, and S5). The analysis of wild-type E12.5 cells revealed 47 cell clusters (Figure 1C), of which 13 contained proliferative neural progenitors (including progenitors at different dorsoventral levels and stages of cell cycle) and 29 represented post-mitotic GABAergic, glutamatergic, and serotonergic neuron precursors (Figure 1D). Based on their gene expression, the post-mitotic precursors were at different stages of differentiation and potentially contributing to a wide spectrum of segmental nuclei.

At E12.5, both male (n = 2) and female (n = 2) embryos were separately analyzed with the Chromium assay. All of the samples revealed similar cell clusters. Other than transcripts involved in X inactivation or derived from Y chromosome genes, we found only a few quantitative differences in gene expression between the sexes (Table S5).

Identification of Tal1-Dependent Precursor Subtypes

To pinpoint the Tal1-dependent cell groups in our single-cell data, we identified the cell clusters expressing Tal1 and its putative partners Gata2 and Gata3. At E12.5, five of the GABAergic precursor clusters (clusters 40, 4, 19, 6, and 7), expressed all of these TFs (Figure 1D; Table S3). In addition, we detected some Tal1−, Gata2−, and Gata3-positive cells in cluster 25, which also expressed markers of early post-mitotic precursors (St18 and Gadd45g), and cluster 45, which expressed G2/M-phase, but not S-phase, markers, thus likely representing cells undergoing a terminal mitosis before post-mitotic differentiation (Figures 1D, S1B, and S1D; Table S3). We were able to assign counterparts for the E12.5 Gata2−;Gata3−;Tal1− GABAergic clusters in the E13.5 data (Figure S1E; Table S4). In addition to these GABAergic precursor clusters, serotonergic precursors (cluster 15) expressed Gata2 and Gata3, but not Tal1 (Figures 1D and

Figure 1. Single-Cell mRNA Sequencing of the E12.5 Mouse Ventral r1

(A) Expression of Tal1 and Gad1 (ISH) in the ventral r1 at E12.5. The rV2 region is indicated. Scale bars represent 50 μm (main panel) and 10 μm (close-ups).

(B) The region of the ventral r1 dissected for single-cell mRNA sequencing.

(C) Uniform manifold approximation and projection (UMAP) plot showing the clusters of ventral r1 cells from E12.5 embryos (15,027 cells from four embryos). Six of the clusters (17, 18, 37, 43, 44, and 46) represent non-neural cell types, such as hematopoietic cells, endothelial cells, and microglia. The remaining 41 clusters represent neural cell types.

(D) Dotplot of key marker expression across proliferative progenitors and of post-mitotic precursors. Dot size corresponds to the proportion of cells expressing a gene in a cluster, and the color indicates the mean expression of the gene within a cluster.

(E) Bulk mRNA sequencing of E12.5 Ctrl (n = 6) and Tal1flox/flox (n = 6) ventral r1 tissue revealing genes down- (blue dots) and upregulated (red dots) in the Tal1flox tissue (adjusted p < 0.05).

(F) Enrichment of Tal1-dependent genes in clusters identified in the ventral r1 by single-cell mRNA sequencing. The x axis represents the clusters in the E12.5 single-cell mRNA sequencing data. The y axis shows the number of cluster markers found among differentially expressed genes in the bulk mRNA sequencing. Clusters with markers enriched for Tal1-dependent genes are marked with asterisks (*adjusted p < 0.001, two-tailed Fisher’s exact test). (R2) clusters are indicated with open (glutamatergic) and filled (GABAergic) triangles. Cluster 25 represents early precursors of the both lineages.

See also Figures S1 and S2 and Table S1, S2, S3, S4, S5, and S6.
Figure 2. Characterization of rV2-Derived Glutamatergic and GABAergic Precursors

(A) UMAP plot of E12.5 ventral r1 cell transcriptomes with the rV2-derived precursor clusters highlighted.

(B) Dot plot showing the expression of selected markers of E12.5 rV2 precursor clusters.

(C) Schematic summary of the distribution of rV2 cell clusters on a coronal view of E12.5 Ctrl and Tal1cko embryos.

(D) Expression of Lhx4, Vsx2, Skor1, and Sox14 (ISH) in E12.5 Ctrl and Tal1cko embryos. The rV2 domain is indicated by dashed lines. White arrows indicate higher levels of gene expression in Tal1cko embryos. In close-ups of boxed areas, yellow arrowheads indicate double-positive cells. Quantification of the number of Lhx4- and Skor1-positive cells in Ctrl and Tal1cko embryos is shown. Data are represented as mean ± SEM; *p < 0.05.

(E) Expression of Lhx4 (ISH) and Nkx6-1 (IHC) in the LDTg area of E18.5 Ctrl embryos. In close-ups of the boxed area, white arrowheads indicate single-positive cells, yellow arrowheads double positive cells. (Right) Expression of RFP (IHC) together with Lhx4 and Vsx2 (ISH) in the LDTg of E18.5 Vglut2Cre;R26RTdTomato mice.

(F) Retrograde tracing of projections from Nkx6-1+ LDTg cells to the VTA. (Top) Analysis of the Cholera toxin B subunit (CtB) injection site in the adult VTA by IHC for CtB and TH. (Bottom) Analysis of the retrogradely traced cells in the LDTg by IHC for CtB. High-magnification images show the co-localization of Nkx6-1 expression with Vglut2 (ISH) and CtB (IHC) in LDTg cells. Yellow arrowheads indicate double-positive cells.

(legend continued on next page)
S1B; Table S3), consistent with their roles in serotonergic neurogenesis (Haugas et al., 2016).

InDrop analysis of E12.5 Ctrl and Tal1cko cells revealed that the Gata2+/Gata3+/Tal1+ GABAergic cluster was mostly composed of Ctrl cells, suggesting that these cells are Tal1 dependent (E12.5 InDrop cluster 3, molecularly similar to E12.5 clusters 40, 4, 19, 6, and 7 and E13.5 clusters 4, 5, and 28; Figure S2; Tables S2, S3, and S4). Finally, we compared gene expression in the ventral r1 tissue between E12.5 Ctrl and Tal1cko embryos using bulk mRNA sequencing and identified genes whose expression was altered in the Tal1cko tissue (Figure 1E; Table S6). The genes expressed in the E12.5 Gata2+/Gata3+/Tal1+ GABAergic precursors (clusters 40, 4, 19, 6, and 7) were highly overrepresented among genes downregulated in the Tal1cko mutants (Figure 1F). We found genes upregulated in the Tal1cko embryos among the ones expressed in the early GABAergic/glutamatergic precursors (cluster 25) and glutamatergic precursors of the rV2 (clusters 21 and 8, see below) (Lahti et al., 2016).

In summary, single-cell analyses identified several groups of Tal1-dependent GABAergic precursors in the ventral r1, possibly representing different developmental stages and GABAergic neuron subtypes.

Anatomical Characterization of the Precursor Subtypes in the Ventral r1

To validate the single-cell mRNA sequencing results and to understand the anatomical localization of the precursor cell types, we characterized the expression of their marker genes in the embryonic ventral r1. We analyzed the tissue distribution of both Tal1-dependent (rV2) and Tal1-independent (dorsal and lateral) precursor cell types.

Dorsally Derived Glutamatergic and GABAergic Precursors

Several types of neurons originate in the embryonic dorsal r1 and migrate tangentially to its ventral part. These include glutamatergic precursors that express Lhx9 or Lmx1b and populate several nuclei in the brainstem (Green and Wingate, 2014; Millen et al., 2014; Rose et al., 2009). Consistently, we identified precursor subtypes expressing Lhx9 (clusters 36, 27, 2, 0, and 28) or Lmx1b/Tlx3 (clusters 30, 9, 14, and 47) (Figure 1D, Figures S3A and S3B; Tables S2 and S3). Using fluorescence in situ hybridization (ISH) and immunohistochemistry (IHC), we showed that Lhx9- and Lmx1b-expressing precursors locate in distinct domains of the lateral r1 at E12.5 (Figures S3C and S3D).

In addition to glutamatergic precursors, some GABAergic subtypes (clusters 35, 29, 16, 20, 3, and 32) also expressed dorsal markers, such as Zic1 and Skor1 (Figures 1D, S3E, and S3F; Tables S2 and S3) (Nagai et al., 1997). Both dorsal glutamatergic Lhx9+ and Lmx1b+ cells, as well as dorsal GABAergic Skor1+ cells, included clusters enriched for immature precursor markers, such as Gad1+, Gnat1, Cntn2, and Insma (Figures S3B and S3F; Tables S2 and S3), suggesting that they represent precursors at earlier stages of differentiation (Ratié et al., 2014; Tavano et al., 2018). Using ISH, we detected Skor1+;Gad1+ cells in the dorsocaudal part of the E12.5 r1, where they likely represented post-mitotic precursors derived from Zic1+;Pax3+ progenitors in the adjacent ventricular zone (Figures S3G and S3H). These glutamatergic and GABAergic precursors may contribute to subtypes of excitatory and inhibitory neurons in the anterior brainstem.

Laterally Derived GABAergic Precursors

Six of the E12.5 GABAergic clusters expressed Otp+, suggesting an origin in the lateral r1 (Figures 1D, S3E, and S3F) (Lorenete-Cánovas et al., 2012). We found the Otp+ cells divided into anatomically different cell groups expressing Cntr2, Foxo1, or Ntn1 (Figures S3G and S3H). Again, the Cntr2+ cells appeared to represent immature precursors, possibly giving rise to the Foxo1+ and Ntn1+ precursors. All of these Otp+ cell populations expressed different levels of Pax7, a marker for alar-plate-derived neurons. In addition to the IPN (Lorenete-Cánovas et al., 2012), we showed that the Foxo1+ cells contribute to the DTg (Figure 6, see below). In turn, we found that Ntn1+ cells also expressed Pltx2, a marker of Tal1-independent GABAergic neurons in the medial r1 (Figure S3H) (Lahti et al., 2016; Waite et al., 2012).

Both the glutamatergic and GABAergic subtypes migrating tangentially toward the floor plate expressed Robo receptors in a complementary pattern; Robo3 was expressed in the putative early precursors and Robo2 in the more mature precursors (Figure S3F, Table S3). The Robo receptors may thus coordinate the tangential migration of the anterior brainstem precursors similar to the precerebellar neurons derived later from the more caudal hindbrain (Marillat et al., 2004).

rV2-Derived Glutamatergic and GABAergic Precursors

In addition to the GABAergic marker Tal1 and the glutamatergic marker Vsx2, we detected a number of gene products enriched in the rV2-derived cell populations (Figures 1D, 2A, and 2B; Tables S3). One of the Vsx2+ glutamatergic clusters (cluster 21) expressed the TFs Lhx4, Skor1, Shox2, and Sox14. In E12.5 Ctrl brain, we detected Lhx4, Skor1, and Shox2 expression in Vsx2+ post-mitotic precursors in the rV2 mantle zone (Figures 2C, 2D, and S4E). In the rV2 of Tal1cko brain, the number of both Lhx4- and Skor1-expressing cells was increased (Ctrl versus Tal1cko, p < 0.05; Figure 2D), likely reflecting a fate change in mutant precursors (Lahti et al., 2016). We also observed...
Sox14^+;Vsx2^+ cells in both Ctrl and Tal1^cko brain, but in the Tal1^cko, most of the Sox14^+ cells also expressed Vsx2 (Figure 2D). As the Vsx2^+ cells give rise to glutamatergic neurons in the LDTg and IPN (Lahti et al., 2016), we analyzed the expression of the identified markers in these nuclei. Skor1 and Shox2 expression was not detectable in the perinatal brain (data not shown). In contrast, at E18.5, we detected Lhx4 expression specifically in glutamatergic neurons in the rostral LDTg, including Nkx6-1^+ neurons, but not in the IPN (Figure 2E). By retrograde tracing, we showed that the Nkx6-1^+ LDTg neurons project to the VTA (Figure 2F) and may thus contribute to the glutamatergic LDTg-VTA projection implicated in the control of reward behavior (Lammel et al., 2012).

Next, we analyzed the genes Sox14, Sox21, Otx1, Pax5, Id4, and Sst, as their expression was enriched in rV2 GABAergic precursors (clusters 40, 4, 19, 6, and 7) (Figures 1D, 2A, and 2B; Table S3). In addition to glutamatergic precursors, we found expression of two related TFs, Sox14 and Sox21, in both overlapping and specific subsets of embryonic rV2 GABAergic precursors, and they later marked distinct subtypes of regional neurons, including the RMTg, SNPr, and Retrorubral field (RRF) (Figure 2B, 2D, and S4A–S4D). The expression of Sox21 was unaltered in Sox14^+/-- mutant embryos (Delougo et al., 2012) (Figures S4C and S4D; data not shown), suggesting independent regulation of these two TFs. Otx1 and Pax5 were co-expressed with Gad1 and Zfpm2 in the GABAergic rV2 mantle precursors of Ctrl embryos (Figure 2H). In Tal1^cko mutants, Otx1, Id4, and Sst expression was lost in the rV2 precursors (Figures 2H and S4E).

Some of the rV2 cell clusters represented precursors at various stages of post-mitotic differentiation. We found that the rV2-derived glutamatergic and GABAergic precursor clusters were connected by a cell cluster negative for the expression of definitive glutamatergic or GABAergic markers (cluster 25). These cells expressed Gadd45g, St18, and Btg2/Tis21, characteristic of early neuronal precursors (Figure 2B; Table S3) (Canzoni et al., 2004; Matsushita et al., 2014; Ratié et al., 2014). They also contained some cells positive for TFs typical for glutamatergic (Nkx6-1 and Vsx2) and GABAergic (Tal1 and Gata2) lineages. In the early GABAergic cells next to the bifurcation of the rV2 GABAergic and glutamatergic lineages (cluster 40), the expression of a putative Notch regulator Pdzk1ip1 was highly enriched (Figure 2B; Tables S3) (Garcia-Heredia et al., 2017). In E12.5 Ctrl embryos, Pdzk1ip1^+ cells were located in the rV2 mantle zone, close to the ventricular zone (Figure 2G). Their number was significantly increased in Tal1^cko embryos (Ctrl versus Tal1^cko, p < 0.001, consistent with our bulk mRNA sequencing demonstrating Pdzk1ip1 upregulation in the ventral r1 of Tal1^cko embryos (Figure 2G; Table S6). In Ctrl embryos, Pdzk1ip1 transcripts co-localized with Tal1, but not with Gad1, Nkx6-1, or Vsx2 (Figures 2G and 3C). In Tal1^cko embryos, we found Pdzk1ip1 and Vsx2 expression in the same cells, suggesting that the loss of Tal1 affects GABAergic fate in early Pdzk1ip1^+ precursors.

In summary, we located the precursor cell clusters revealed by single-cell mRNA sequencing in embryonic r1 tissue. In rV2 precursors, we revealed both shared and unique gene expression features in glutamatergic and GABAergic precursors. In addition to precursors of different neuronal subtypes, we observed unique gene expression in precursors at different stages of post-mitotic development. These include early precursors of both rV2 GABAergic and glutamatergic neurons and GABAergic precursors after bifurcation of the rV2 GABAergic and glutamatergic lineages.

The Differentiation Path of Tal1-Dependent GABAergic Precursors

To further reveal gene expression changes during the rV2 GABAergic neuron differentiation, we pseudotemporally ordered the E12.5 rV2 mitotic cells (cluster 45), early post-mitotic precursors (cluster 25), and maturing Tal1-dependent precursors (clusters 40, 4, 19, 6, and 7). The general order of the clusters on the inferred trajectory was consistent with cell lineage progression. The lineages start with mitotic cells, followed by early and maturing post-mitotic precursors (Figure 3A). Over the pseudotime, we found statistically significant changes in the expression of 5,856 genes, including Notch pathway components and several TFs expressed in the rV2 GABAergic neuron clusters (Table S7).

To understand the gene co-expression dynamics during the cell lineage progression, we visualized the expression of pseudotime-dependent Notch pathway members and TFs marking the subclusters of Tal1^+ precursors over the inferred differentiation trajectory (Figure 3B). Tissue expression of representative members of early, intermediate, and late genes was consistent with their expression order over the pseudotime sequence (Figure 3C, and data not shown). We detected the expression of several Notch pathway genes, including Dll1 and Mfng, in ventricular zone progenitors and early post-mitotic precursors (Figures 3B and 3C). Tal1 and several of its co-regulators, such as Gata2, Tal2, Zfpm1, and Lmo1, were in the intermediate group (Figure 3B). The intermediate group also contained the TFs St18 and Insnm2 as well as Pdzk1ip1. The dynamics of their expression in E12.5 ventral r1 tissue matched the expression of these genes specifically in the early precursor clusters (clusters 25 and 40) (Figures 3C and 2B; Table S3).
We found that Gata3 and Zfp712 were activated after the other Tal/Gata complex members, and their expression continued in the maturing precursors (Figures 3B and 3C). Additional genes of the late group contained Tal1-dependent TFs, such as Otx1, Foxp1, Sox14, and En1, expressed in specific subsets of GABAergic neurons (see above and Lahti et al., 2016). Sal3- and Gsc2-expressing precursors were located at the end of the pseudotime trajectory (Figures 3A and 3B). However, our analyses of Sal3 expression at later stages of development did not support the conclusion that all the precursors end up with a Sal3 phenotype (Figure 5; see below). Rather, Sal3-expressing GABAergic precursors may have progressed further in their differentiation.

In summary, these results revealed sequential expression of gene products, including Notch pathway genes, Gata-Tal complex components, and Tal1-dependent TFs, during rV2 GABAergic neuron differentiation.

Bifurcation of the Glutamatergic and GABAergic rV2 Precursor Lineages

Our results suggested that the rV2 glutamatergic and GABAergic neurons share a pool of common precursors. Using pseudotemporal ordering of both E12.5 and E13.5 rV2 precursors, we addressed the bifurcation of these lineages. The analysis of the E13.5 precursors is described below. The E12.5 dataset gave highly similar results (data not shown). Of the E13.5 precursors, we included cells in cluster 36 (similar to E12.5 cluster 25), which represented common precursors exiting the cell cycle; postmitotic GABAergic clusters 28, 5, 4, and 9 (similar to E12.5 clusters 40, 4, 19, 6, and 7), and postmitotic glutamatergic clusters 18 and 12 (similar to E12.5 clusters 21 and 8) (Figures S1C and S1E). Pseudotemporal ordering of these cells revealed a lineage tree with a branch point between glutamatergic and GABAergic lineages (Figures 4A, 4D, and 4E). Analysis of gene expression dependent on this branch point revealed 23 modules of genes sharing similar patterns of expression (Table S8). These included gene products involved in mitotic division and cell-cycle exit found in very early precursors (gene modules 12, 16, 13, 14, and 22) and gene products involved in later neuronal maturation (gene modules 4, 9, and 19; Figures 4B and 4C; Table S8). Notably, we identified gene modules with biased expression in either the glutamatergic or GABAergic lineages. In particular, gene module 21 marked early GABAergic precursors and modules 1 and 8 marked more mature GABAergic precursors, whereas gene modules 7 and 11 marked the early and more mature glutamatergic precursors, respectively (Figures 4D–4I; Table S8). Genes in the early GABAergic module 21 contained several targets of Notch signaling and were highly enriched for Hes and Hey family genes; out of a total of 11 Hes/Hey family members, 4 genes (Hes5, Hey1, Hey2, and Hey3) were expressed in gene module 21 (hypergeometric p < 8.04e-07; Figure 4K). In turn, the early glutamatergic module 7 contained the Notch ligand genes Dil4 and Dil3, as well as Hes6, suggested to negatively regulate Hes5 function (Fior and Henrique, 2005) (Figure 4J). Gene Ontology analysis of biological pathways further revealed a significant enrichment of the term “Notch signaling pathway” both in gene module 21 (adjusted p = 0.0062) and in module 7 (adjusted p = 0.019) (Table S8).

In addition to the canonical Notch pathway genes, the early GABAergic gene module 21 included Pdzk1ip1, Ttyh1, Cbfa2t3, and Angpt1, whereas the early glutamatergic module 7 included Myb1, Nhlh1, Cbfa2t2, and Sstr2. These genes are potentially involved in the regulation of Notch signaling, gene expression, and intercellular communication during lineage bifurcation (Figures 4J, 4K, and 4N).

Notch Signaling in Glutamatergic and GABAergic rV2 Precursor Fate Selection

As the pseudotime suggested that Notch signaling is involved in GABAergic and glutamatergic lineage segregation, we characterized Notch signaling activity in the GABAergic precursors by IHC for the cleaved Notch1 intracellular domain (NICD). We detected NICD in the Gata3+ early precursors near the ventricular zone, but not in the more mature precursors positive for Gata3 and Gad1 expression (Figure 4L). This is consistent with the order of expression of Hes5, Gata3, and Gad1 along the pseudotime sequence (Figure 4K and 3B; data not shown).

To test the requirement of Notch signaling for GABAergic precursor differentiation in the ventral r1, we analyzed the expression of the GABAergic neuron markers Gad1, Tal1, and Gata3 in the rV2 region in the Presenilin 1 (Psen1) mutant mouse strain (De Strooper et al., 1998). In E12.5 Psen1+/− mutant embryos, where Notch signaling is defective, the expression of Tal1, Gata3, and Gad1 was markedly reduced in the ventral r1 (Figure 4M). In contrast to the rV2 region, Gad1 was still detected in the more dorsal and lateral r1. The loss of Gad1, Tal1, and Gata3 expression was concomitant with the overexpression of Vsx2 in the rV2 domain, suggesting that glutamatergic neurons may be produced at the expense of GABAergic neurons. Although some Tal1 expression was still maintained, the phenotype of Psen1+/− embryos highly resembles the Tal1−/− phenotype (Figure 4M) (Lahti et al., 2016). In conclusion, the analysis of Psen1 mutant mice suggests that Notch signaling is involved in the cell fate determination in the ventral r1, where cleavage of the Notch receptor might be specifically required in rV2 neuronal precursors to commit to the GABAergic fate (Figure 4N).

Development of Tal1-Dependent Sal3+ Precursors into GABAergic Neurons Adjacent to the DR

One of the rV2 GABAergic precursor clusters (E12.5 cluster 7; Figures 2B and 5A) expressed the TF genes Gsc2 and Sal3. Although Gsc2 and Sal3 expression patterns partly overlapped (Figure 5A), Gsc2+ and Sal3+ precursors appeared to differentiate into distinct GABAergic neuron subtypes. Whereas Gsc2-expressing precursors gave rise to IPN neurons (Funato et al., 2010; Ruiz-Reig et al., 2019) (data not shown), Sal3 marked a distinct type of Tal1+ GABAergic cells. Analysis of the glutamatergic and GABAergic lineage branch point identified a GABAergic precursor gene module (module 8) containing Sal3 (Table S8), suggesting that the Sal3+ precursors segregate from the other GABAergic rV2 precursors early in their differentiation. In E12.5 Ctrl embryos, we found Sal3 expression in GABAergic precursors in the rV2 close to the ventricular zone, particularly in its medial (ventral) half (Figure 5B). In Tal1+/− embryos, the expression of Sal3 was specifically lost in the rV2, while ventricular zone progenitors and other ventral r1
Figure 4. Branching of the rV2-Derived Glutamatergic and GABAergic Lineages
(A) UMAP plot of E13.5 rV2 GABAergic and glutamatergic cells and direction of the pseudotime trajectory. Clusters included were 36 (common precursors); 28, 5, 4, and 9 (GABAergic clusters); and 18 and 12 (glutamatergic clusters). Although Tal1+, the cluster 29 was excluded, as comparison with precursor transcriptomes from the embryonic midbrain suggested that it represents a midbrain contamination (our unpublished results). The branch point of the GABA- and glutamatergic cell lineages (branch point 25) is indicated with a square.

(B–K) Genes showing similar expression dynamics along the pseudotime trajectory (gene modules) at branchpoint 25. (B) Module 12 contains genes characteristic of early neuronal precursors at terminal mitosis (Ccnb2, Cenpf, Cdc20, and Cdca8). (C) Module 4 contains genes characteristic of maturing neuronal precursors (Sox4, Sox11, Dcx, and Map2). (D) Expression of Vsx2 over the pseudotime trajectory. Inset shows the expression of Vsx1 in the precursors prior to the emergence of Vsx2-expressing cells. (E) Expression of Tal1 over the pseudotime trajectory. (F–I) Gene modules showing asymmetric expression at the branchpoint and associated with early and late GABAergic or glutamatergic precursors. (J) Expression of genes belonging to glutamatergic gene module 7 or 11. (K) Expression of genes belonging to GABAergic gene module 21 or 1. Both glutamatergic and GABAergic modules contain a number of genes belonging to the Notch signaling pathway.

(L) Co-IHC of Notch1 intracellular domain (NICD) with Gata3 or GFP in the rV2 of E12.5 Gad67EGFP embryos.

(M) Tal1, Gata3, Gad1, Vsx2, and Nkx6-1 expression in E12.5 Ctrl and Psen1−/−/− embryos (ISH and IHC). The Nkx6-1-positive rV2 region is delineated. Arrowheads indicate the area of downregulated Tal1, Gata3, and Gad1 expression, coinciding with Vsx2 upregulation.

(N) Model of the signaling molecules, Notch pathway effectors, and TFs involved in the GABAergic versus glutamatergic lineage split. Scale bars represent 20 μm (L) and 50 μm (M). See also Table S8.
precursors maintained Sall3 expression (Figure 5B). In Ctrl embryos at later stages, Sall3 expression continued in the medial r1 (Figure 5C), increasing toward the caudal r1 and marking a region flanking the DR. At E18.5, we found Sall3+ cells in an area delimited by the caudal part of the DR and VTg (Figure 5D). ISH on parallel sections showed that the dorsal part of this region expressed Tal1. Some Sall3+ cells were also present in the VTg but were Zfpm2 negative (data not shown; see below).
Figure 6. Zfpm2 and Foxo1 Expression in the Developing and Mature VTg and DTg

(A) Origin and development of VTg and DTg from E12.5 to E15.5. VTg precursors co-express Zfpm2 (IHC) and Tal1 (ISH), and DTg precursors co-express Foxo1 and Pax3 (IHC). The two populations are distinct, as demonstrated by IHC for Zfpm2 and Pax3. White arrowheads indicate single-positive cells, and yellow arrowheads indicate double-positive cells.

(legend continued on next page)
Altogether, our results suggested that the medial rV2 gives rise to a unique subtype of Tal1-dependent Sall3+ GABAergic neurons located in the proximity of DR serotonergic neurons.

Development of the VTg, DTg, and pSNpr from Distinct r1 Precursors

Having identified genes expressed in subgroups of Tal1-dependent and independent GABAergic precursors during early development, we asked how they correspond to the GABAergic neuron subtypes and nuclei in the perinatal brain. By ISH and IHC, we followed the expression of a Tal1-dependent marker, Zfpm2 (rV2 GABAergic clusters 40, 4, 19, 6, and 7), and a Tal1-independent marker, Foxo1 (lateral GABAergic cluster 11), during the development of r1 from E12.5 to E15.5 (Figure 6A). At E12.5, Zfpm2+ cells (co-expressing Tal1) were located in the rV2 domain, while Foxo1+ precursors (co-expressing Otp and Pax3) were more dorsal. At E15.5, both populations were located near the midline, with Foxo1+ precursors positioned dorsally and Zfpm2+ cells more ventrally. Analyses of E18.5 and adult brain development showed that Zfpm2 and Foxo1 labeled the VTg and DTg, respectively (Figures 6B and 6C). Zfpm2 co-localized with Pvalb in the VTg, including its ventral part marked by Calb1-expressing fibers (Dillingham et al., 2015). Foxo1+ cells did not express Pvalb but were intermingled with Pvalb+ cells in the DTg. To confirm the distinct developmental origins of the VTg and DTg, we performed genetic fate mapping with Pax7Cre;R26RTdTomato embryos, Foxo1+ DTg cells expressed RFP, while Zfpm2+ VTg cells were not labeled, confirming the distinct developmental origins of these nuclei (Figure S5A). At birth-date the Zfpm2+ VTg and Foxo1+ DTg neurons, we injected pregnant females at E10.5–E13.5 with 5-ethynyl-2'-deoxyuridine (EdU) or 5-bromo-2’-deoxyuridine (BrdU) and analyzed cellular DNA labeling together with Zfpm2 and Foxo1 expression at postnatal day 0.5 (P0.5) (Figures S5B and S5C). Approximately 70% of both Foxo1+ DTg and Zfpm2+ VTg cells were generated between E10.5 and E11.5, but Zfpm2+ VTg cells were produced for a longer developmental period (Figure S5D). In summary, the VTg and DTg show differences in their gene expression, developmental origins, and timing of neurogenesis.

In addition to the VTg, Zfpm2 has been shown to be expressed in the SNpr (Lahti et al., 2016). The expression of Pax5, another TF marking Tal1-dependent GABAergic precursors, was recently also detected in the SNpr (Saunders et al., 2018; Zeisel et al., 2018). Therefore, we compared the expression of Zfpm2 and Pax5 at different embryonic time points. At E12.5, Pax5 was expressed in Zfpm2+ cells in the anterior r1, while Zfpm2+ cells in the posterior r1 did not express Pax5 (Figure S6A). At E15.5, we observed two Zfpm2+ populations, Zfpm2+;Pax5+ cells in the developing pSNpr and Zfpm2+;Pax5- cells in the presumptive VTg, suggesting that the Zfpm2+ populations in the anterior and posterior r1 give rise to different nuclei (Figure S6B).

At E18.5, the expression of Pax5 was maintained in the SNpr, where Pax5 co-localized with Zfpm2, En1, and Ctip2, markers of pSNpr neurons (Lahti et al., 2016; Allen Brain Atlas), but not with Six3 and Foxp1, markers of the anterior SNpr (aSNpr), which has a different developmental origin (Figure S6C) (Lahti et al., 2016). Moreover, our data suggest that r1-derived Pax5+ pSNpr neurons are intermingled with aSNpr neurons in a gradient established late in embryonic development and not apparent at E14.5 (Figures S6 and S7B).

In summary, these results suggest that alar-plate-derived Foxo1+ precursors give rise to DTg GABAergic neurons, whereas VTg and SNpr GABAergic neurons diverge from Zfpm2+ rV2 GABAergic precursors.

Regulation of GABAergic Neuron Differentiation by Zfpm2 and Sox14, TFs Activated Downstream of Tal1

Finally, we examined the requirement for Tal1 and its downstream genes, Sox14 and Zfpm2, in the development of r1-derived terminal nuclei, including the VTg, DTg, RMTg, and LDTg, and SNpr, using Tal1cko, En1Cre, Zfpm2flox/flox (Zfpm2cko) and Sox14p53f/f mice. In contrast to Tal1cko embryos (Lahti et al., 2016), early GABAergic precursor production appeared normal in E12.5 Zfpm2cko and Sox14p53f/f embryos, as we did not observe changes in expression of GABAergic and glutamatergic markers (e.g., Gad1, Tal1, FoxP1, Vsx2, and Nkx6-1; data not shown). As we had shown that the Zfpm2+ and Tal1+ VTg neurons were derived from GABAergic precursor clusters that also expressed Sox14, we analyzed VTg development in all of these mutants at E18.5/P0.5 using ISH or IHC for Zfpm2, Tal1, and Gad1 (Figure 7A). In Zfpm2cko and Tal1cko mice, VTg neurons were almost completely lost. The few remaining VTg cells in the Zfpm2cko were likely due to incomplete recombination, as all the VTg neurons appear r1 derived (Figure S5E). In Sox14p53f/f mutants, the VTg developed normally, indicating that in contrast to Tal1 and Zfpm2, Sox14 is not required for the differentiation of the VTg cells. Consistent with the distinct origins of VTg and DTg neurons, we found the Foxo1+ DTg unaltered in all of these mutants (Figure 7A).

In Tal1cko mice, rV2-derived GABAergic neurons in the RMTg and pSNpr are lost, while the number of glutamatergic neurons in the LDTg is increased (Lahti et al., 2016). Similar to Tal1cko mice, the development of the RMTg was impaired in both the Zfpm2cko and Sox14p53f/f brains at E18.5/P0.5, as demonstrated by reduced numbers of neurons expressing the RMTg markers Gad1, Sox2, and FoxP1 (FoxP1: Ctrl versus Zfpm2cko, p < 0.001, Ctrl versus Sox14p53f/f, p < 0.001) (Figures 7B and S7A). Further resembling Tal1cko mice, the number of pSNpr (Ctip2+) neurons was significantly reduced in Zfpm2cko mice (Ctip2: Ctrl versus Zfpm2cko, p < 0.001), but in Sox14p53f/f mice, pSNpr markers were unaffected (Figure 7C and S7B). In both Zfpm2cko and Sox14p53f/f mice, the aSNpr developed normally (Figure 7C), reflecting the distinct developmental origins...
and regulation of the aSNpr and pSNpr (Lahti et al., 2016). In contrast to Tal1cko mice, we did not observe an increase in glutamatergic Vsx2+ or Nkx6-1+ LDTg neurons in Zfpm2cko and Sox1.4Fpr/pip mutants (Figure 7B).

Altogether, our results suggest that Tal1, Zfpm2, and Sox14 are differently required for the development of ventral-r1-derived nuclei. Whereas Tal1 acts in early precursors and regulates the choice between GABAergic and glutamatergic fates, Zfpm2 and Sox14 are expressed downstream of Tal1 in the differentiating GABAergic precursors and are required for later development the distinct subtypes of GABAergic neurons in the VTg, RMTg, and pSNpr.

DISCUSSION

Knowledge of the neuronal cell types in the anterior brainstem is fundamental for understanding the regulation of mood, motivation, and movement. We applied single-cell transcriptomics to profile neuronal precursors in the ventral embryonic r1, a source of tegmental GABAergic and glutamatergic neurons. As the TF Tal1 regulates differentiation of brainstem GABAergic neuron subtypes, a special emphasis was to uncover the heterogeneity of the Tal1-dependent precursors. We found an intricate developmental sequence of the GABAergic and glutamatergic precursor segregation in the ventral r1, demonstrated a role for Notch signaling in this process, and identified molecular markers of the tegmental GABAergic neuron subtypes (for additional visualization of gene expression in the single-cell data, see http://tegex.helsinki.fi/). Moreover, we demonstrated requirements for Zfpm2 and Sox14, two TFs downstream of Tal1, in the differentiation of GABAergic neurons in specific tegmental nuclei.

Early Differentiation and Bifurcation of the GABAergic and Glutamatergic Lineages in the Ventral r1

Balanced differentiation of GABAergic and glutamatergic neurons in the ventral r1 is essential for the correct development of tegmental nuclei and normal behavior (Lahti et al., 2016; Morello et al., 2020). Our study unravels complex gene expression changes associated with different steps of GABAergic neuron differentiation in the ventral r1. Many of the genes expressed in early GABAergic precursors encode for TFs, such as Insm2 and St18. These TFs may regulate general events during the cell-cycle exit and neuronal differentiation, as shown for their paralogs during cortical neurogenesis (Matsushita et al., 2014; Tavano et al., 2018; Vasconcelos et al., 2016).

The genes activated early during the post-mitotic differentiation also include putative regulators of GABAergic differentiation. The Notch signaling pathway regulates the balance between GABAergic and glutamatergic neuron differentiation of the p2 progenitors giving rise to V2a and V2b neurons in the ventral spinal cord (Del Barrio et al., 2007; Okigawa et al., 2014; Peng et al., 2007). We found that also in the r2v, asymmetry of Notch signaling was established in early post-mitotic precursors. Our analysis of Psen1+/− mice supports the conclusion that Notch signaling is required for selection between the GABAergic and glutamatergic differentiation programs in r2v precursors. Further quantification of all the cell types derived from the r2v region in Ctrl versus Psen1+/− animals, as well as measurements of the activity of individual Notch signaling pathway members in r2v progenitors and precursors, would be required to pinpoint the biological mechanism of the cell-fate selection process. As a starting point, our computational analyses of the single-cell RNA-sequencing data provide hints for the putative molecular players in cell-fate selection. Notch target genes, such as Hes5 and Hey, were expressed in early r2v GABAergic precursors. In contrast, early r2 glutamatergic precursors expressed the Notch ligand genes Dll3 and Dll4 as well as Hes6. Thus, directional Notch signaling and mutual antagonism between Hes5 and Hes6 (Fior and Henrique, 2005) may contribute to lineage segregation. Furthermore, the glutamatergic branch TFs Myb1, Nhnh1, Cbfa2t2, and Ebf2 are repressed by intracellular Notch signaling; suppress Notch-induced transcription; or possibly controlDll expression (Dubois et al., 1998; Kaufman et al., 2019; Parang et al., 2015; Ratie et al., 2013). On the other hand, TFs expressed in the GABAergic branch, such as Cbfa2t3 (Eto2/MTG16), cooperate with Tal1 and Notch function (Chagraoui et al., 2018; Engel et al., 2010).

Our results also imply a role for additional regulators of the Notch pathway. These include a cargo protein, Pdxd1ip1, recently shown to interact with Numb and promote Notch activity (García-Heredia et al., 2017). Noteworthy, the Pdxd1ip1 gene is located next to Tal1 on chromosome 4, and the two genes share enhancer elements in hematopoietic cells (Delabesse et al., 2005; Tijssen et al., 2011; Zhou et al., 2013). Our results suggest that the initial activation of Tal1 and Pdxd1ip1 occurs in parallel, possibly also driven by a shared enhancer in differentiating supranuclear cells.
neural precursors. As Pdzk1p1 is normally rapidly downregulated in differentiating GABAergic precursors, the increase in its expression in the Tal1 mutant brain may indicate a delay in the developmental progression of GABAergic precursors, before their redirection into a glutamatergic identity. Our results also suggest that Ttyh1, recently shown to promote γ-secretase activity and Notch intracellular domain production (Kim et al., 2018), is a potential intracellular stimulator of Notch signaling in early GABAergic precursors. Furthermore, analysis of lineage-specific gene expression indicates reciprocal pathways, involving Angpt1 and Sstr2, in signaling from GABAergic to glutamatergic precursors during lineage branching. Notably, in angiogenic blood vessels, Angpt1 stimulates Dll4 expression (Shah et al., 2017). Interconnected Notch and Angpt1 signaling may similarly regulate the balance between GABAergic and glutamatergic differentiation in the ventral r1.

Development of Tegmental GABAergic Neuron Diversity

Our work demonstrates that the functionally diverse tegmental GABAergic neurons have different embryonic origins and are characterized by subtype-specific TFs required for the development of tegmental nuclei. For example, the main GABAergic neuron subtypes in the VTg and DTg, nuclei with rather similar projection patterns but distinct functions in memory and navigation (Vann and Nelson, 2015), are derived from the rV2 and lateral r1, respectively. Within the Tal1 lineage, we also discovered subgroups of GABAergic precursors and identified Tal1-dependent TFs marking them. We found that the TFs Zfpm2 and Sox14 were important for the full maturation of tegmental GABAergic neuron subtypes. In the case of Zfpm2, this may involve direction of the Gata/Tal TF complex to specific genomic loci, as its homolog, Zfpm1, modulates the DNA binding of Gata factors in hematopoietic cells (Chlon et al., 2012). Sox14 expression in developing thalamic and midbrain GABAergic precursors is Gata2 dependent, but, instead of a Gata2-dependent GABAergic identity, Sox14 is required for the migration of GABAergic precursors to thalamic nuclei (Delogu et al., 2012; Jager et al., 2016; Virolainen et al., 2012). The role of Sox14 may be similar in the developing RMTg, as unlike the loss of Tal1, the loss of Sox14 function did not result in a GABAergic to glutamatergic fate transformation. We found that Sox21, a Sox14-related TF, is also expressed in rV2 precursors. Partial redundancy between these factors, due to shared and unique cell types expressing them, may contribute to selective requirements for Sox14 in GABAergic and glutamatergic precursors.

The diversity within the Tal1 lineage may also reflect antero-posterior and dorsoventral regionalization of the rV2. For example, anterior Tal1+;Zfpm2+;Pax5+ precursors appear to migrate to the pSNpr, while the more posterior Tal1+;Zfpm2+;Pax5+ cells localize to the VTg. Pax5 expression in anterior rV2 precursors may reflect progenitor patterning by isthmic-organizer-derived signals (Urbánek et al., 1997). Consistent with our results, recent large-scale single-cell transcriptomic studies of adult brain found Tal1+;Pax5+;Zfpm2+ GABAergic neurons in the SNpr (Saunders et al., 2018; Zeisel et al., 2018). Further subtypes of pSNpr neurons were also distinguished (Lahti et al., 2016; Saunders et al., 2018). Although not all of these were found in our data, our results suggest that the main tegmental GABAergic neuron subtypes, or at least their markers, can be identified in early embryonic precursors. In addition to antero-posterior differences, we identified a subtype of Tal1-dependent Sal1+ GABAergic precursors in the medial (ventral) rV2 and found that they migrate next to the serotonergic neurons in the DR, marking a region that does not correlate with a previously identified brain nucleus. Interestingly, GABAergic neurons around the DR participate in the regulation of serotonergic neurons and control movement during avoidance behavior (Challis et al., 2013; Seo et al., 2019). In addition to spatial patterning, temporal changes in progenitors may contribute to the generation of neuronal diversity (Deille et al., 2019). However, we observed early activation of the subtype-specific TFs, suggesting that GABAergic and glutamatergic neurons are produced from the onset of neurogenesis in the rV2.

Conclusions

Transcriptional profiling of embryonic neuronal precursors in the r1 revealed developmental pathways and molecular characteristics of tegmental precursors. We identified several subtype-specific TFs important for development of the brainstem GABAergic nuclei. We provide a frame of reference for embryonic origins and diversity of GABAergic and glutamatergic neurons in the tegmental nuclei, in particular in the SNpr, RMTg, DTg, VTg, and DTg and the DR region. Targets of these neurons include the monoaminergic nuclei, and they form integral parts of circuits that regulate voluntary movement, motivation, and learning.

STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
- **RESOURCE AVAILABILITY**
 - Lead Contact
 - Materials Availability
 - Data and Code availability
- **EXPERIMENTAL MODEL AND SUBJECT DETAILS**
 - Animals
- **METHOD DETAILS**
 - Histology
 - Immunohistochemistry
 - mRNA in situ hybridization
 - EdU and BrdU labeling
 - Stereotaxic surgery and neuronal labeling
 - Imaging
 - RNA sequencing
 - Read mapping and expression quantification
 - Differential expression analysis
 - Validation of selected differentially expressed genes by RT-qPCR
 - Single-cell mRNA sequencing
 - Processing of the single-cell mRNA sequencing reads
 - Clustering analyses of the single-cell mRNA sequencing data
 - Comparison of the E12.5 and E13.5 cell clusters
 - Developmental trajectory (pseudotime) analyses
- **QUANTIFICATION AND STATISTICAL ANALYSIS**
SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.celrep.2020.108268.

ACKNOWLEDGMENTS

We acknowledge Outi Kostia and Annina Tervi for excellent technical assistance, Lassi Virtanen and Sami Kilpinen for building the tegex website, and thank Fiora Vaccarino (Otp antibody), Joshua R. Sanes (NeuroD6 probe), Toshiki Kameyama (St18 probe), Donna Karagogeos (Cntn2 probe), and Qiuifu Ma (Tlx3 probe) for reagents. L.T. was funded by the Integrative Life Science doctoral program. P.T. was supported by Helsinki Institute of Life Science. This work was supported by the Academy of Finland, Sigrid Juselius Foundation, and Jane and Aatos Erkko Foundation.

AUTHOR CONTRIBUTIONS

L.T., L.L., F.M., and K.A. prepared the samples for single-cell and bulk mRNA sequencing. M. Survila and L.M. set up the InDrop method, prepared the single-cell mRNA sequencing libraries, and analyzed the data. D.B., S.S.-O., P.T., and K.A. performed the retrograde tracing experiments. M. Salminen and J.P. supervised the project and participated in the analyses of the results. All the authors contributed to writing the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: February 4, 2019
Revised: June 9, 2020
Accepted: September 22, 2020
Published: October 13, 2020

REFERENCES

Achim, K., Peltopuro, P., Lahtti, L., Li, J., Salminen, M., and Partanen, J. (2012). Distinct developmental origins and regulatory mechanisms for GABAergic neurons associated with dopaminergic nuclei in the ventral mesencephalic region. Development 139, 2360–2370.

Anders, S., McCarthy, D.J., Chen, Y., Okoniewski, M., Smyth, G.K., Huber, W., and Robinson, M.D. (2013). Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nat. Protoc. 8, 1765–1786.

Aroca, P., Lorente-Cañovas, B., Mateos, F.R., and Puelles, L. (2006). Locus region. Development

Distinct developmental origins and regulatory mechanisms for GABAergic progenitor and require Sox14 to regulate daily activity rhythms. Nat. Neurosci. 9, 1510–1515.

Chion, T.M., and Crispino, J.D. (2012). Combinatorial regulation of tissue specific by GATA and FOX factors. Development 139, 3905–3916.

Chion, T.M., Doré, L.C., and Crispino, J.D. (2012). Cofactor-mediated restriction of GATA-1 chromatin occupancy coordinates lineage-specific gene expression. Mol. Cell 47, 608–621.

Cheng, L., Samad, O.A., Xu, Y., Mizuguchi, R., Luo, P., Shirasawa, S., Goulding, M., and Ma, Q. (2005). Lbx1 and Tlx3 are opposing switches in determining GABAergic versus glutamatergic transmitter phenotypes. Nat. Neurosci. 8, 1397–13988.

Challis, C., Bouden, J., Veerakumar, A., Espallergues, J., Vassoler, F.M., Pierce, R.C., Beck, S.G., and Berton, O. (2013). Rhope GABAergic neurons mediate the acquisition of avoidance after social defeat. J. Neurosci. 33, 13978–13988.

Delogu, A., Sellers, K., Zagoraiou, L., Bocianowska-Zbrog, A., Mandal, S., Guitton, M., and Ma, Q. (2005). Lbx1 and Tlx3 are opposing switches in determining GABAergic versus glutamatergic transmitter phenotypes. Nat. Neurosci. 8, 1510–1515.

Chion, T.M., and Crispino, J.D. (2012). Combinatorial regulation of tissue specific by GATA and FOX factors. Development 139, 3905–3916.

Crozat, A., Delong, A., Barres, B., and Travers, P. (2008). Postsynaptic loss of Nurr1 following restricted genetic inactivation of GABAergic interneurons. Nat. Neurosci. 11, 864–870.

Dillingham, C.M., Holmes, J.D., Wright, N.F., Erichsen, J.T., Aggleton, J.P., and Vann, S.D. (2015). Calcium-binding protein immunoreactivity in Gudden’s tectal nuclei and the hippocampal formation: differential co-localization in neurons projecting to the mammillary bodies. Front. Neuroanat. 9, 103.
Cell Reports

Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chen, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21.

Dubois, L., Bally-Cuif, L., Crozatier, M., Moreau, J., Paquereau, L., and Vincent, A. (1998). XCoO2, a transcription factor of the Col/Of-1/EBF family involved in the specification of primary neurons in Xenopus. Curr. Biol. 8, 199–209.

Engel, M.E., Nguyen, H.N., Mariotti, J., Hunt, A., and Hiebert, S.W. (2010). Myeloid transcription gene 16 (MTG16) interacts with Notch transcription complex components to integrate Notch signaling in hematopoietic cell fate specification. Mol. Cell. Biol. 30, 1852–1863.

Fior, R., and Henrique, D. (2005). A novel hes5/ hes6 circuitry of negative regulation controls Notch activity during neurogenesis. Dev. Biol. 291, 318–333.

Funato, H., Sato, M., Sinton, C.M., Gautron, L., Williams, S.C., Skach, A., Elmquist, J.K., Skoulitchi, A.I., and Yanagisawa, M. (2010). Loss of Goosecoid-like and DiGeorge syndrome critical region 14 in interpeduncular nucleus results in altered regulation of rapid eye movement sleep. Proc. Natl. Acad. Sci. USA 107, 18155–18160.

Gao, X., Hu, D., Gogol, M., and Li, H. (2019). ClusterMap: compare multiple single cell RNA-Seq datasets across different experimental conditions. Bioinformatics 35, 3039–3045.

García-Heredia, J.M., Lucena-Cacace, A., Vélez, E.M., Pérez, M., and Camero, A. (2017). The Cargo Protein MAP17 (PDZK1IP1) Regulates the Cancer Stem Cell Pathway Activating the Notch Pathway by Abducting NUMB. Clin. Cancer Res. 23, 3871–3883.

Green, M.J., and Wingate, R.J. (2014). Developmental origins of diversity in cerebellar output nuclei. Neural Dev. 9, 1.

Guimerà, J., Weisenthal, D.V., and Wurst, W. (2006). Megane/Heslike is required for normal GABAergic differentiation in the mouse superior colliculus. Development 133, 3847–3857.

Haugas, M., Tikker, L., Achim, K., Salminen, M., and Partanen, J. (2016). Gata2 and Gata3 regulate the differentiation of serotonergic and glutamatergic neuron subtypes of the dorsal raphe. Development 143, 4495–4508.

Jager, P., Ye, Z., Xu, X., Zagera, L., Prekop, H.T., Partanen, J., Jessell, T.M., Wisden, W., Brickley, S.G., and Delogu, A. (2016). Tectal-derived interneurons contribute to phasic and tonic inhibition in the visual thalamus. Nat. Commun. 7, 13579.

Joshi, K., Lee, S., Lee, B., Lee, J.W., and Lee, S.K. (2009). LMO4 controls the balance between excitatory and inhibitory spinal V2 interneurons. Neuron 61, 839–851.

Kameyama, T., Matsushita, F., Kadokawa, Y., and Marunouchi, T. (2011). Myt/NZF family transcription factors regulate neuronal differentiation of P19 cells. Neurosci. Lett. 497, 74–79.

Kaufman, M.L., Park, K.U., Goodson, N.B., Chew, S., Bersie, S., Jones, K.L., Lamba, D.A., and Brzezinski, J.A., 4th. (2019). Transcriptional profiling of midbrain crossing by hindbrain precerebellar neurons and axons. Neuron 48, 17–24.

Kimmel, R.A., Turnbull, D.H., Blanquet, V., Wurst, W., Loomis, C.A., and Joy-Kyllönen, C. (1997). The expression of the mouse Zic1, Zic2, and Zic3 gene family during cerebellum formation. Genes Dev. 11, 1858–1866.

Kay, J.N., Voinescu, P.E., Chu, M.W., and Sanes, J.R. (2011). Neurod6 expression is required for the generation of neuron subtypes of the dorsal raphe. Development 138, 4495–4508.

Lahti, L., Haugas, M., Tikker, L., Airavaara, M., Voutilainen, M.H., Anttila, J., Kumar, S., Inkinnen, C., Salminen, M., and Partanen, J. (2016). Differentiation and molecular heterogeneity of inhibitory and excitatory neurons associated with midbrain dopaminergic nuclei. Development 143, 516–529.

Lein, E.S., Hawrylycz, M.J., A. No, A., Ayres, M., Bensinger, A., Bernard, A., Boe, A.F., Boguski, M.S., Brockway, K.S., Bymes, E.J., et al. (2007). Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176.

Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930.

Lillevali, K., Matilainen, T., Karis, A., and Salminen, M. (2004). Partially overlapping expression of Gata2 and Gata3 during inner ear development. Dev. Dyn. 237, 775–781.

Lorente-Canovas, B., Marin, F., Corral-San-Miguel, R., Hidalgo-Sánchez, M., Ferrán, J.L., Puelles, L., and Arora, P. (2012). Multiple origins, migratory paths and molecular profiles of cells populating the avian interpeduncular nucleus. Dev. Biol. 367, 12–26.

Lun, A.T., Bach, K., and Marioni, J.C. (2016). Pooling across cells to normalize single-cell RNA-sequencing data with many zero counts. Genome Biol. 17, 75.

McFarlane, L., Truong, V., Palmer, J.S., and Wilhelm, D. (2013). Novel PCR crossing by hindbrain precerebellar neurons and axons. Neuron 43, 69–79.

Matsushita, F., Kameyama, T., Kadokawa, Y., and Marunouchi, T. (2014). Spatiotemporal expression pattern of Myt/NZF family zinc finger transcription factors during mouse nervous system development. Dev. Dyn. 243, 588–600.

McCarthy, D.J., Campbell, K.R., Lun, A.T., and Willis, Q.F. (2017). Scater: preprocessing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33, 1179–1186.

McFarlane, L., Truong, V., Palmer, J.S., and Wilhelm, D. (2013). Novel PCR assay for determining the genetic sex of mice. Sex Dev. 7, 207–211.

Millon, K.J., Shethina, E.Y., Iskusnykh, I.Y., and Chizhikov, V.V. (2014). Transformation of the cerebellum into more ventral brainstem fates causes cerebellar agenesis in the absence of Ptf1a function. Proc. Natl. Acad. Sci. USA 111, E1777–E1786.

Morello, F., Voikar, V., Parkkinen, P., Panhelainen, A., Rosenberg, M., Makki, A., Rantamäki, T., Piepponen, P., Alita-Aho, T., and Partanen, J. (2020). ADHD-like behaviors caused by inactivation of a transcription factor controlling the balance of inhibitory and excitatory neuron development in the mouse anterior brainstem. Translational Psychiatry 9, in press. https://doi.org/10.1038/s41398-020-01033-8.

Nagai, T., Aruga, J., Takada, S., Günther, T., Spörle, R., Schughart, K., and Mikoshiba, K. (1997). The expression of the mouse Zic1, Zic2, and Zic3 gene family during cerebellum formation. Genes Dev. 11, 1858–1866.
suggests an essential role for Zic genes in body pattern formation. Dev. Biol. 182, 299–313.

Okiyama, S., Mizoguchi, T., Okano, M., Tanaka, H., Isoda, M., Jiang, Y.J., Sus- ter, M., Higashijima, S., Kawakami, K., and Itoh, M. (2014). Different combina-
tions of Notch ligands and receptors regulate V2 interneuron progenitor prolif-
eration and V2a/V2b cell fate determination. Dev. Biol., 397, 198–206.

Parang, B., Rosenblatt, D., Williams, A.D., Washington, M.K., Revetta, F., Short, S.P., Reddy, V.K., Hunt, A., Shroyer, N.F., Engel, M.E., et al. (2015). The transcriptional corepressor MTGR1 regulates intestinal secretory lineage allocation. FASEB J. 29, 786–795.

Peng, C.Y., Yajima, H., Burns, C.E., Zon, L.I., Macosko, E.Z., Goldman, M., Krienen, F.M., de Ruitter, K., and West, A. (2015). Reward processing by the lateral habenula in normal and depressive behaviors. Nat. Neurosci. 18, 979–982.

Proulx, C.D., Hikosaka, O., and Malinow, R. (2014). Reward processing by the lateral habenula in normal and depressive behaviors. Nat. Neurosci. 17, 965–971.

Rose, M.F., Ahmad, K.A., Thaller, C., and Zoghbi, H.Y. (2009). Excitatory neu-
ns of the proprioceptive, interoceptive, and arousal hindbrain networks share a developmental requirement for Math1. Proc. Natl. Acad. Sci. USA 106, 22462–22467.

Ratke, L., Ware, M., Barloy-Hubler, F., Romé, H., Gicquel, I., Dubourg, C., Da-
vid, V., and Dupé, V. (2013). Novel genes upregulated when NOTCH signaling is disrupted during hypothalamic development. Neural Dev. 8, 25.

Ratke, L., Ware, M., Jaglone, H., David, V., and Dupé, V. (2014). Dynamic expression of Notch-dependent neurogenic markers in the chick embryonic nervous system. Front. Neuroanat. 8, 158.

Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47.

Rose, M.F., Ahmad, K.A., Thaller, C., and Zoghbi, H.Y. (2009). Excitatory neu-
ns of the proprioceptive, interoceptive, and arousal hindbrain networks share a developmental requirement for Math1. Proc. Natl. Acad. Sci. USA 106, 22462–22467.

Ruiu-Reig, N., Rakotobe, M., Bethus, I., Le Menn, G., Hudlitz, H.I., Marie, H., Lamonier, T., and D’Autreux, F. (2019). Developmental Requirement of Homeo-
proteins Otx2 for Specific Habenulo-Interpeduncular Subcircuits. J. Neurosci. 39, 1005–1019.

Saunders, A., Macosko, E.Z., Wyssker, A., Goldman, M., Krienen, F.M., de Rivera, H., Bien, E., Baum, L., Bortolin, L., Wang, S., et al. (2018). Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030.e1016.

Sao, C., Guro, A., Jin, F., Ito, B., Sleezer, B.J., Ho, Y.Y., Wang, E., Boada, C., Krupa, N.A., Kullakanda, D.S., et al. (2019). Intense threat switches dorsal raphe serotonin neurons to a paradoxical operational mode. Science 363, 538–542.

Seralini, T., Kennedy, T.E., Gallo, M.J., Mirzayan, C., Jessell, T.M., and Tess-
ier-Lavigne, M. (1994). The netrins define a family of axon outgrowth-promot-
ing proteins homologous to C. elegans UNC-6. Cell 78, 409–424.

Shah, A.V., Birdsey, G.M., Perghai, C., Pitulescu, M.E., Dufton, N.P., Yang, Y., Weinberg, I., Osuna Almagro, L., Payne, L., Mason, J.C., et al. (2017). The endothelial transcription factor ERG mediates Angiopoietin-1-dependent control of Notch signaling and vascular stability. Nat. Commun. 8, 16002.
KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
rabbit anti-Foxo1	Cell Signaling Technology	Cat#2880; RRID: AB_2106495
rabbit anti-Zfpm2	Santa Cruz Biotechnology	Cat#sc-10755; RRID: AB_2218978
mouse anti-Zfpm2	Santa Cruz Biotechnology	Cat#sc-398011; N/A
mouse anti-FoxP1	Abcam	Cat#ab32010; RRID: AB_1141518
rat anti-Ctip2	Abcam	Cat#ab16645; RRID: AB_732428
mouse anti-TH	Millipore	Cat#MAB318; RRID: AB_2201528
mouse anti-Sox2	Abcam	Cat#ab79351; RRID: AB_10710406
rabbit anti-Sox2	Millipore	Cat#ab5603; RRID: AB_2286686
sheep anti-Vsx2	Abcam	Cat#ab16141; RRID: AB_302278
rabbit anti-Nkx6-1	Novus Biologicals	Cat#NBPT-49672SS; RRID: AB_10011793
goat anti-CtB	List Biologicals	Cat#703; N/A
rabbit anti-Otp	a gift from Flora Vaccarino	N/A
mouse anti-Pax3	DSHB	Cat#ab528426; RRID: AB_528426
rabbit anti-Pax5	Abcam	Cat#ab109443; RRID: AB_10862070
mouse anti-Pax7	DSHB	Cat#ab528428; RRID: AB_528428
goat anti-Parvalbumin	Swant	Cat#PVG213; RRID: AB_2721207
mouse anti-Calbindin	Swant	Cat#CB300; N/A
rabbit anti-RFP	Rockland	Cat#ab600-401-379; RRID: AB_2209751
mouse anti-BrdU	GE Healthcare Life Sciences	Cat#RPN20AB; RRID: AB_2314032
mouse anti-HuC/D	Thermo Fisher Scientific	Cat# A-21271; RRID: AB_221448
rabbit anti-ph histone H3	Millipore	Cat# 06-570; RRID: AB_310177
Rabbit anti-Notch1 ICD	Cell Signaling Technology	Cat# 1417; RRID: AB_2153348
donkey anti-rabbit IgG Alexa Fluor 568	Thermo Fisher Scientific	Cat#A10042; RRID: AB_2534017
donkey anti-mouse IgG Alexa Fluor 488	Thermo Fisher Scientific	Cat#A-21202; RRID: AB_141607
donkey anti-rabbit IgG Alexa Fluor 488	Thermo Fisher Scientific	Cat#A-21206; RRID: AB_2535792
donkey anti-rabbit IgG Alexa Fluor 647	Thermo Fisher Scientific	Cat#A-31573; RRID: AB_2536183
donkey anti-mouse IgG Alexa Fluor 568	Thermo Fisher Scientific	Cat#A10037; RRID: AB_2534013
donkey anti-mouse IgG Alexa Fluor 647	Thermo Fisher Scientific	Cat#A-31571; RRID: AB_162542
donkey anti-sheep IgG Alexa Fluor 488	Thermo Fisher Scientific	Cat#ab150177; RRID: AB_2801320
donkey anti-sheep IgG Alexa Fluor 488	Thermo Fisher Scientific	Cat#ab21099; RRID: AB_10055702
donkey anti-rat IgG Alexa Fluor 488	Thermo Fisher Scientific	Cat#A-21208; RRID: AB_2535794
donkey anti-rat IgG Alexa Fluor 568	Abcam	Cat#ab175475; RRID: AB_2636887
donkey anti-goat IgG Alexa Fluor 568	Thermo Fisher Scientific	Cat#A-11057; RRID: AB_2534104
donkey anti-goat IgG Alexa Fluor 647	Abcam	Cat#ab150135; RRID: AB_2687955
donkey anti-goat IgG Alexa Fluor 488	Thermo Fisher Scientific	Cat#A-11055; RRID: AB_2534102
Deposited Data		
Raw and processed scRNA-seq data	Gene Expression Omnibus	GEO: GSE157964
Raw and processed RNA-seq data	Gene Expression Omnibus	GEO: GSE157964
Gene expression visualization in the scRNAseq data	RStudio Shiny based service	http://tegex.helsinki.fi/
Experimental Models: Organisms/Strains		
En1Cre: STOCK En1tm2(cre)Whr/J	The Jackson Laboratory	Cat#JAX:007916; RRID: I MSR_JAX:007916
Sox14Gfp	Delogu et al., 2012	N/A

(Continued on next page)
REAGENT or RESOURCE	SOURCE	IDENTIFIER
Tal1flox	Bradley et al., 2006	N/A
Zfpm2flox	Manuylov et al., 2007	Cat#JAX:007266; RRID: IMSR_JAX:007266
R26RTdTOMATO	The Jackson Laboratory	Cat#JAX:007909; RRID: IMSR_JAX:007909
Pax7Cre	The Jackson Laboratory	Cat#JAX:010530; RRID: IMSR_JAX:010530
Vglut2Cre	The Jackson Laboratory	Cat#5141283; RRID: MGI:5141283
Gad67EGFP	De Strooper et al., 1998	INFRAFRONTIER: EM:00303

Oligonucleotides

- SX_F: GAT GAT TTG AGT GGA AAT GTG AGG TA
- SX_R: CTT ATG TTT ATA GGC ATG CAC CAT GTA

Software and Algorithms

- **GraphPad Prism v.8**
 - GraphPad Software
 - https://www.graphpad.com/scientific-software/prism/
- **SPSS Statistics v.25**
 - IBM
 - https://www.ibm.com/analytics/spss-statistics-software
- **Adobe Photoshop CC 2018**
 - Adobe
 - https://www.adobe.com/products/photoshop.html
- **Adobe Illustrator CC 2018**
 - Adobe
 - https://www.adobe.com/products/illustrator.html
- **ImageJ v1.50i**
 - NIH
 - https://imagej.nih.gov/ij/
- **Imaris**
 - Bitplane Scientific Software
 - https://imaris.oxinst.com/packages
- **InDrop scripts**
 - Klein et al., 2015; Zilionis et al., 2017
 - N/A
- **Trimmomatic**
 - Bolger et al., 2014
 - http://www.usadellab.org/cms/?page=trimmomatic
- **Bowtie**
 - Langmead et al., 2009
 - http://bowtie-bio.sourceforge.net/index.shtml
- **R**
 - R Core Team
 - https://www.R-project.org
- **scater**
 - McCarthy et al., 2017
 - https://bioconductor.org/packages/release/bioc/html/scater.html
- **scran**
 - Lun et al., 2016
 - https://bioconductor.org/packages/release/bioc/html/scran.html
- **Seurat**
 - https://satijalab.org/seurat
 - https://cran.r-project.org/web/packages/seurat/index.html
- **Monocle 2**
 - Qiu et al., 2017
 - http://bioconductor.org/packages/release/bioc/html/monocle.html
- **Monocle 3**
 - Trapnell et al., 2014
 - https://cole-trapnell-lab.github.io/monocle3/
- **STAR**
 - Dobin et al., 2013
 - https://github.com/alexdobin/STAR
- **featureCounts**
 - Liao et al., 2014
 - https://bioconductor.org/packages/release/bioc/html/featureCounts.html
- **limma**
 - Ritchie et al., 2015
 - http://bioconductor.org/packages/release/bioc/html/limma.html
- **sva**
 - Leek et al., 2012
 - http://bioconductor.org/packages/release/bioc/html/sva.html
- **umap**
 - Becht et al., 2018
 - https://github.com/iminelines_umap
- **ClusterMap**
 - Gao et al., 2019
 - https://github.com/xgaoo/ClusterMap

(Continued on next page)
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Juha Partanen (juha.m.partanen@helsinki.fi).

Materials Availability
This study did not generate new unique reagents.

Data and Code availability
The accession number of the bulk and single-cell mRNA sequencing data reported in this paper is GEO: GSE157964). The gene expression across the E12.5 and E13.5 wild-type mouse r1 cell clusters can be viewed at URL http://tegex.helsinki.fi/
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
The following mouse lines were used in the study: En1Cre (Kimmel et al., 2000), Sox14Creip (Delougo et al., 2012), Fgog2fox (Manuylov et al., 2007), Tal1fox (Bradley et al., 2006), R26RTomato (Madsen et al., 2010), Pax7Cre (Keller et al., 2004), Vglut2Cre (Vong et al., 2011), Gad67Creip (Tamamaki et al., 2003), Psen1null (De Strooper et al., 1998). Mice were maintained on ICR background except Sox14Creip (C57BL/6), Pax7Cre (C57BL/6), Vglut2Cre (C57BL/6J). E12.5, E13.5, E14.5, E15.5, E18.5, P0.5 and adult (2-3 month old) mice were used in this study. Except for the single-cell mRNA sequencing experiments, the sex of the embryonic mice was not determined. Females were used for analysis of the adults. Littermates were used as a controls. All the experiments with these mice were approved by the Laboratory Animal Center, University of Helsinki, and the National Animal Experiment Board in Finland.

METHOD DETAILS

Histology
For the IHC and in situ hybridization studies, E12.5-E15.5 embryos or E18.5-P0.5 brains were dissected, fixed in the 4% paraformaldehyde (PFA; Sigma-Aldrich, Cat#P6148) in 1xPBS and an- shrine, and permeabilized for 10 min with 0.3% Triton X-100 (Sigma-Aldrich, Cat#T9284) in PBS and an-

Immunohistochemistry
The paraffin sections were rehydrated, permeabilized for 10 min with 0.3% Triton X-100 in PBS and an-
tigens were retrieved by boiling the sections in 0.1M Na-citrate buffer (pH 6) in the microwave oven for 15 min. The sections were

mRNA in situ hybridization
mRNA in situ hybridization (ISH) was carried out using digoxigenin- or fluorescein-labeled cRNA probes that were synthesized with specific RNA labeling kits (Roche, Cat#11277073910 and Cat#11685619910 respectively) as recommended by the manufacturer. The following cRNA in situ probes were used in this study: Dll1 (RZBD, IRAv968B07112D6), En1 (Davis and Joyner, 1988), Foxo1 (RP_050407_02_B11 from Allen Brain Atlas, (Lein et al., 2007)), Gad1 (Guimera et al., 2006), Gat3 (Lillevali et al., 2004), Lhx4 (Source BioScience, IMAGE5407576), Lhx9 (Source BioScience, IRAv968E08130D), Lmx1a (Source BioScience, IMAGE317647), Lhx1b (a gift from Horst Simon), Pdx1 (NCI_CGAP_Kid14), Mntg (NCI_CGAP_Mam), Ntcr (Serafini et al., 1994), NeuroD6 (Kay et al., 2011), Nurr1 (a gift Thomas Perlmann), Otx1 (Source BioScience, IMAGp998B1912702Q), Pnoc (Source BioScience, IMAGE12734121), Prph (NCI_CGAP_Co24), Sall3 (RP_051121_01_B02 from Allen Brain Atlas, (Lein et al., 2007)), Sert (RP_071204_04_G10 from Allen Brain Atlas (Lein et al., 2007)), Six3 (Source BioScience, IRAv998B1912702Q), Skor1 (RP_100908_02_A06 from Allen Brain Atlas, (Lein et al., 2007)), Sox14 (Source BioScience, IRAv968A2143910), Sox17 (Source BioScience, IRAv998B231140Q), St18 (Kameyama et al., 2011), Cnctn2 (Denaxa et al., 2001), Tal1 (Source BioScience, IRAv968B07112D6), Tk3 (Cheng et al., 2005), Vglut2 (Guimera et al., 2006), Vsx2 (a gift from Robert Chow), Zic1
Paraffin sections were rehydrated using xylene-ethanol series, permeabilized for 10 min with 0.3% Triton X-100 in PBS. Antigens were retrieved by boiling the sections in 0.1M Na-citrate buffer (pH 6) in the microwave oven for 15 min. Sections were permeabilized using 20% SDS (Sodium dodecyl sulfate) in PBS for 15 min and treated with 0.25% acetic anhydride (Sigma-Aldrich, Cat#33214) in 0.1M TEA (Triethanolamine; Sigma-Aldrich, Cat#33729) for 10 min on a shaker. Sections were hydrated using graded ethanol series and dried. Probes were diluted (1:400) in the hybridization buffer (10% Dextran sulfate (Sigma-Aldrich, Cat#D8906), 0.3M NaCl, 20mM Tris-HCl (pH 8.0), 5mM EDTA (pH 8.0), 1xDenhardt’s solution (Sigma-Aldrich, Cat#D2532), 50% Ultrapure formamide (Invitrogen, Cat#15515-026), 500ug/ml Yeast RNA (Sigma, Cat#R6750)) and added to the slides. Slides were incubated overnight at +65°C. The slides were washed with 5xSSC, followed by a wash in 50% formamide (Millipore, Cat#75-12-7) in 2xSSC in water bath at +65°C for 1 h. Slides were treated with RNase A (0.02mg/ml, Roche, Cat#10109169001) in NTE (0.5M NaCl, 5mM Tris-HCl pH8.0, 5mM EDTA pH8.0) at +37°C for 1 h. Slides were blocked with TNB blocking buffer (0.1M Tris-HCl pH7.5, 0.15M NaCl, 0.5% blocking reagent (Perkin Elmer, Cat#FP1012)) for 1 h and incubated with sheep anti-Digoxigenin-POD Fab fragments antibody (Roche, Cat#11207733910, 1:800) or sheep anti-Fluorescein-POD, Fab fragments (Roche, Cat#11426346910, 1:800) antibody at +4°C overnight. The TSA Plus Cyanine 3.5 (PerkinElmer, Cat#NEL763B001KT) or Fluorescein system (PerkinElmer, Cat#NEL741B001KT) was used to detect the antibody.

To combine ISH with IHC, the normal IHC was carried out on the slides starting with the blocking step. For double ISH, two different probes (digoxigenin and fluorescein labeled) were incubated simultaneously. The fluorescein-labeled probe was detected with the TSA Plus Fluorescein system. After the TSA Plus Fluorescein detection, peroxidase activity was quenched with 0.2N HCl for 40 min, and slides were incubated with sheep anti-Digoxigenin-POD Fab fragments antibody at +4°C overnight and visualized with TSA Plus Cyanine 3.5 kit.

EdU and BrdU labeling

For the birth-dating analysis, pregnant ICR females were injected with EdU (1mg/kg, Molecular Probes, Cat#C10338) or BrdU (2mg/kg, Sigma, Cat#B5002) at noon of E10.5, E11.5, E12.5 or E13.5. Embryos where collected at P0.5, fixed and paraffin sections were made like described in the histology. To visualize the EdU or BrdU positive nuclei, normal IHC was carried out. For EdU, Click-iT EdU Alexa Fluor 555 Imaging Kit (Molecular Probes, Cat#C10658) was used before the blocking step, while BrdU was detected using a mouse anti-BrdU antibody (GE Healthcare Life Sciences, Cat#RPN20AB).

Stereotaxic surgery and neuronal labeling

For retrograde tracing, eight week old wild-type ICR mice were used. Mice were anesthetized with isoflurane and attached to the stereotaxic frame. Small hole was drilled into the skull and unilateral, intracranial injections of 300nl of 0.2% Choleratoxin B subunit (CtB; List Biological Lab.Inc. Cat#104) was injected at the speed of 50nl/min using a microinjector (UltraMicroPump III, World Precision Instruments) and microsyringe (Hamilton, Cat#7803-06). Stereotaxic coordinates were measured from bregma in mm. To trace the LDTg neurons, CtB was injected into VTA: −3.1 (AP); 0.36 (ML); −4.65 (DV). Four to six days after the injections mice were intracardially perfused with 4% PFA and brains were collected, thereafter brains were fixed in 4% PFA for 24 h. 100 μm vibratome sections were cut for IHC stainings. Sections were blocked for 1 h in 10% donkey serum in PBS containing 05% Triton X-100 (PBS-T), followed by incubation overnight at room temperature with following antibodies diluted in PBS-T: rabbit anti-TH (1:1000, Merck Millipore) and DAPI. Secondary antibodies conjugated to Alexa 488, 594, or 647 were used for detection. ProLong Gold anti-fade mounting media was used for mounting (Thermo Fisher Scientific, P36930).

Imaging

Images were taken with Olympus BX63 microscope with the DP72 camera or TCS SP5 (Leica) laser scanning microscope with Plan Apochromat 20x/0.7 NA glycerol objective. Images were processed with Imaris (Bitplane Scientific Software) and Adobe Photoshop CC 2018 and Adobe Illustrator CC 2018 software.

RNA sequencing

RNA extraction

Tissue from the E12.5 ventral r1 of 6 Ctrl and 6 Tal1cko embryos were dissected in DMEM. The tissue was frozen in liquid nitrogen and stored at −80°C. The samples were homogenized in Precellys CK14 tubes with the Precellys 24 homogenizer (Bertin Technologies) for 30 s at 5000 rpm. Total RNA was isolated with Trizol Reagent/chloroform extraction using Direct-zol RNA MiniPrep columns (Zymo research, catalog # R2051) followed by DNase I digestion, according to manufacturer’s instructions. The RNA concentrations was measured spectrophotometrically using NanoDrop2000 (Thermo Scientific). RNA quality was assayed on RNA Nano Chips (Agilent) with Agilent Bioanalyzer 2100 according to manufacturer’s instructions. All samples used for RNA-seq had RNA integrity number (RIN) value of at least 9.4.
Sequencing and quality control of data
Sequencing libraries were prepared using the TruSeq Stranded Total RNA Sample Preparation Kit (Illumina) with Ribo-Zero rRNA depletion. The libraries were sequenced in one run with the Illumina NextSeq500 sequencer producing 400 million single reads of 86 base pairs. The average sequencing depth per sample was ~33 million reads.

Read mapping and expression quantification
The reference genome build used for mapping was UCSC mm10, downloaded from Illumina’s iGenomes collection on 07.06.2015 at https://support.illumina.com/sequencing/sequencing_software/igenome.html. The adaptor-trimmed sequencing reads were mapped to the reference genome with STAR 2.4 (Dobin et al., 2013). The suffix array used by STAR for mapping was generated using mm10 RefSeq gene annotation as a splice junction database. The annotation was downloaded in Gene Transfer Format (GTF) from the UCSC Table Browser at http://genome-euro.ucsc.edu/ (accessed on 08.06.2015). Gene-level read counts from uniquely mapped reads overlapping exons were obtained with the featureCounts function from the R package Rsubread version 1.16.1 (Liao et al., 2014). The RefSeq gene annotation for genome build mm10 provided by Rsubread was used for expression quantification after removing mitochondrial and rRNA annotations. The option for strand-specific read counting was used.

Differential expression analysis
The analysis of differential expression was carried out with the R package limma 3.24.12 (Ritchie et al., 2015). Lowly expressed and uninformative genes, based on counts per million (cpm) values, were removed as recommended (Anders et al., 2013). Genes with cpm over one in all samples and over five in at least six samples were kept. The counts were transformed with the function voomWithQualityWeights using TMM-normalized library sizes. The expression values were adjusted for effects due to RNA extraction and dissection dates with the function ComBat of the R package sva version 3.14.0 (Leek et al., 2012). A linear model with the genotype group as a predictor variable was fit to the adjusted data with the limma function lmFit. Empirical Bayes statistics were calculated for the linear model fit using the limma function eBayes and used to rank genes in order of evidence for differential expression. The false discovery rate (FDR) was controlled for by using the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995). An adjusted p value of 0.05 was used as the threshold of significance.

Validation of selected differentially expressed genes by RT-qPCR
For validation, the expression of ten genes with different fold changes (|log2FC| ≥ 0.5; Asic4, Cbfa2t3, Hs6st1, Id4, Lhx4, Otx1, Pdzk1ip1, Shox2, Skor1 and Sst) was analyzed by RT-qPCR in 3 Ctrl and 3 Tail samples not used for sequencing. One negative (Pax7) and four positive controls (Gad1, Gata3, Tal1, Vsx2) with known expression patterns were included in the analysis. The reactions were run using Power SYBR Green (Applied Biosystems, catalog #43700168) and thermal cyclers Bio-Rad C1000 and Bio-Rad C1000 Touch. The efficiencies and R2 values were calculated with Bio-Rad CFX Manager software version 3.1.1517.0823. All analyzed genes showed expression changes to the expected direction. All positive controls and seven candidate genes (Asic4, Cbfa2t3, Id4, Otx1, Pdzk1ip1, Shox2 and Sst) were differentially expressed with an FDR of 10%. Genes Gad1, Gata3, Id4, Otx1, Pdzk1ip1 and Sst were differentially expressed with an FDR of 5%. The corresponding fold change estimates from RNA-seq and RT-qPCR were generally close to each other, with a Pearson’s correlation coefficient of 0.93 (data not shown).

Single-cell mRNA sequencing
Dissection of ventral r1 and cell dissociation
Ventral r1 of E12.5 and E13.5 embryos (Table S1) was dissected in the 5% FBS (fetal bovine serum; Millipore, Cat#ES-009-B) in L-15 (Gibco, Cat#11415-049) medium on ice. Vascular and mesenchymal tissues surrounding the midbrain and hindbrain were removed. The r1 was separated from the hindbrain using a visible constriction at the midbrain-hindbrain boundary as a landmark. The border between r1 and r2 was estimated using En1Cre; R26R Tomato embryos as a reference. The ventral part of the r1 (area indicated in Figure 1B) was separated and transferred into a new Petri dish with dissection medium. The tissue was cut into smaller pieces with a knife and the pieces were collected into an Eppendorf tube. The pieces were washed 3 times with 500 μl of cold PBS (Lonza, Cat#BE17-516Q) by centrifuging them at 100 g (+4°C) for 5 min. R1 tissue was dissociated using the Papain Dissociation System (Worthington, Cat#KL003150) for 1 h at 37°C and processed as previously described (Chakrabarty et al., 2012). Cells were washed 3 times in cold PBS, counted, and their viability was determined before encapsulation. The genotype and the sex of the embryos was determined by PCR (sex-specific primers: SX_F: 5’-GATGATTTGAGTGGAAATGTGAGGTA’3 and SX_R: 5’-CTTATGTTTATA GGATGCACTCATGA’3 (McFarlane et al., 2013)). Samples containing at least 92% of viable cells were used for barcoding.

The sample information and sequencing statistics are shown in Table S1.

Barcoding and library preparation
Chromium Single Cell 3' RNAseq platform (10x Genomics) and InDrop technology (Klein et al., 2015; Zilionis et al., 2017) were used for single-cell mRNA sequencing library preparation. The Chromium Single Cell 3’RNAseq run and library preparation were done using the Chromium Single Cell 3’ Reagent version 3 chemistry. Briefly, in both platforms, the dissociated single cells are co-encapsulated into 3–4nl droplets together with barcoded hydrogel beads and a mixture of reverse-transcription (RT) and lysis reagents. Within every single droplet, a cell is lysed and cDNA tagged with a barcode during reverse transcription. The droplet emulsion is then broken and the bulk material taken through the following steps: i) second strand synthesis; ii) linear amplification by in vitro transcription (IVT);
amplified RNA fragmentation; iv) reverse transcription; v) PCR. The InDrop cDNA libraries were multiplexed and sequenced on Next-Seq Illumina platform in paired-end mode using high-yield 75 cycle kit. The Chromium 10xGenomics cDNA libraries were sequenced on Illumina NovaSeq 6000 system using read lengths: 28bp (Read 1), 8bp (i7 Index), 0 bp (i5 Index) and 89bp (Read 2). Read quality was assessed by running FASTQC (version 0.10.1).

Processing of the single-cell mRNA sequencing reads

Previously published Python scripts were used to process the sequencing reads and to generate count matrices (Klein et al., 2015; Zilionis et al., 2017) (GEO:GSE157964). Briefly, raw transcript reads were trimmed with Trimomatic 0.36 (Bolger et al., 2014), and barcode reads were filtered for expected structure (known cellular barcode, W1 sequence, poly-T tail). Filtered reads were sorted based on barcodes, and barcodes having at least 12 000 reads were kept (568 control barcodes and 1099 Tal1cko barcodes). The filtered reads were aligned with bowtie 1.1.1 (Langmead et al., 2009) to the Ensembl GRCm38 cDNA reference. A poly-A sequence of 125 bases was added to each transcript before building the bowtie index. For UMI quantification, a minimum of 10 bases were required to overlap non-poly-A sequence in the aligned transcript reads. Only unambiguous UMI counts were kept. Modifications to the original scripts include a hamming distance of 5 for W1 sequence matching and minimum poly-T length of 3 for the barcode reads. Percentages of unaligned reads per barcode were recorded from the script output and used in count matrix quality control. For quality control, we used the R package scater 1.4.0 (McCarthy et al., 2017) with the following criteria: we removed all cells with a, over 50% unmapped reads, b, with total numbers of counts and detected genes 3 median-absolute-deviations above or below the median (log10 scale), or c, with over 2% apoptosis gene counts or over 5% mitochondrial counts. Genes annotated with the GO term “positive regulation of apoptotic process” (GO:0043065; evidence codes EXP, IDA, IEP, IGI, IMP, IPI) were used for filtering apoptotic outliers. Genes with average counts below 0.03 were filtered out. Gene expression counts were normalized with size factors computed with the R package scanr 1.4.5 (Lun et al., 2016). After quality control, 458 control cells and 900 Tal1cko cells remained (Table S1). To avoid removing biological differences between the samples, no batch adjustment was performed for the two E12.5 samples (which were processed on different days) due to the confounding of processing date and genotype.

Chromium 10xGenomics data processing

Genome alignment and gene expression scoring were performed using recommended 10x Genomics Cell Ranger v3.0.1 pipelines. The reference genome was mouse mm10. The quality filtered count matrix included 15027 E12.5 cells and 15719 E13.5 cells. Before the downstream analyses, we filtered the count matrix, removing cells where either a, less than 300 features, b, over 7000 features, or c, over 15% of mitochondrial associated genes were detected. The filtered count data were normalized within the Seurat package using the normalization.method “LogNormalize,” and scale.factor = 1e4.

Clustering analyses of the single-cell mRNA sequencing data

InDrop clustering

Clustering was performed with the R package Seurat 1.4.0 (Rahul Satija (NA). Seurat: R toolkit for single cell genomics. R package version 1.4.0. https://satijalab.org/seurat). Highly variable genes (HVGs) were identified with the Seurat function MeanVarPlot using the following arguments: y.cutoff = 1.5, x.low.cutoff = 0, x.high.cutoff = 3. The total number of counts (nUMI) was regressed out with a negative binomial generalized linear model, and the data were centered and scaled. Dimensionality of the data were reduced with PCA calculated using the HVGs.

The cells were clustered with the Seurat function FindClusters using the SLM modularity optimization algorithm (Blondel et al., 2008). For combined clustering of the control and Tal1cko samples, the following arguments were used: pc.use = 1:15, resolution = 2.3, k.param = 18, k.scale = 15.

DE genes for all pairs of clusters were identified with Seurat’s function FindMarkers with the following arguments: min.pct = 0, test.t.use = “negbinom,” thresh.use = log(1.5), only.pos = F, latent.vars = c(“nUMI”). Cluster markers were identified with the Seurat function FindAllMarkers with the following arguments: thresh.use = log(1.5), test.use = “negbinom,” min.pct = 0, only.pos = T, return.thresh = 1. p values for between-cluster DE genes and cluster markers were adjusted for multiple testing with the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995). An adjusted p value of 0.05 was set as the threshold of significance. For visualization of clusters, dimensionality reduction with t-SNE was performed using Seurat’s RunTSNE function with the Barnes-Hut implementation and a perplexity of 30 (van der Maaten and Hinton, 2008).

Chromium 10xGenomics clustering

The data from E12.5 or E13.5 samples were clustered separately. Data from the samples of each stage were merged from filtered feature counts matrices (Cell Ranger). Graph-based clustering was performed with the R package Seurat 3.1.0., with default parameters unless mentioned below. We considered top 2000 highly variable genes in the clustering. Before clustering, genes were scaled and centered using the function ScaleData. To reduce the dimensionality of the data, we used PCA calculated using the top 2000 variable genes, and chose PCs 1-18 for the construction of the Shared Nearest Neighbor (SNN) Graph. The following parameters were used for clustering: dims = 1:18, resolution = 2.3 for E13.5 data and 2.5 for E12.5 data.
Clusters were visualized on a uniform manifold approximation and projection (UMAP) tools in Seurat (RunUMAP with argument dims = 1:18). Cluster specific genes (cluster markers) were identified with function FindAllMarkers and arguments only.pos = F, min.pct = 0.1, logfc.threshold = 0.25, test.use = “wilcox.” Cell cycle phases were scored with function CellCycleScoring using Seurat’s list of cell cycle associated genes (cc.genes).

Comparison of the E12.5 and E13.5 cell clusters
We used the R package ClusterMap 0.1.0 (Gao et al., 2019) to compare the cluster identities between the datasets from E12.5 and E13.5. To compare the datasets in an unbiased manner, the marker lists for both datasets were prepared using Seurat 3.1.0 function FindAllMarkers with arguments only.pos = T, min.pct = 0.1, logfc.threshold = 0.25, test.use = “wilcox”.

As the number of cluster specific markers varies greatly, we standardized the marker lists by ordering the genes by average log fold change, and trimming the lists to the length of the maximum common length of the specific markers (28 markers in our case). Considering these 28 top markers for each cluster, the clusters were matched using the function cluster_map with edge_cutoff = 0.1.

To assess the statistical significance of the resulting cluster matches, we calculated the hypergeometric p value for each of the E12.5 – E13.5 cluster pairs. We collected all the unique marker genes, found in E12.5 and E13.5 and used the size of smaller of two sets as the size of background population. This generates slightly weaker correlations between the clusters, emphasizing real correlations.

Generated cluster pair correlation table stores log(-log10(p value) + 1) values.

Developmental trajectory (pseudotime) analyses
Analysis of rV2 GABAergic trajectory
Cells from E12.5 clusters 45,25,40,4,19,6,7 were ordered in pseudotime with the R package Monocle 2.12.0 (Qiu et al., 2017). A negative binomial distribution model was used for the gene expression data. Genes for ordering were selected by an unsupervised dpFeature procedure. The cells were reclustered and the top 1000 most significant differentially expressed genes were selected as the ordering genes. Dimensionality of the data were reduced with the DDRTree algorithm using relative expression values normalized with a variance-stabilizing transformation. Pseudotime-dependent genes were identified with the Monocle function differentialGeneTest using default arguments. A q-value of 0.001 was used as the threshold of statistical significance for pseudotime-dependent genes.

Analysis of branching of rV2 glutamatergic and GABAergic lineages
Cells from E13.5 rV2 GABAergic and glutamatergic precursors clusters 4, 5, 9, 12, 18, 28 and 36 were used for developmental lineage reconstruction. The pseudotime analysis was performed by R package monocle3, version 0.1.2. The developmental trajectory graph was calculated using monocle3 functions preprocess_cds (num_dim = 100), reduce_dimension, cluster_cells and learn_graph (use_partition = F). Cells were assigned a pseudotime value using the monocle3 function order_cells. The root of the pseudotime trajectory was chosen manually as the beginning of cluster 36 (precursors exiting the cell cycle). Based on the diverging expression of GABA- and glutamatergic marker genes, the first branchpoint (branchpoint 25) of the pseudotime trajectory was manually picked for further analysis using function choose_cells. Differentially expressed genes along the trajectory were identified with Moran’s I test using function graph_test and resulting genes were filterd with q-value threshold q_value < 0.05, and grouped into co-expression modules with function find_gene_modules.

QUANTIFICATION AND STATISTICAL ANALYSIS
To quantify the cell numbers, cell counting was performed on at least 6 sections along the rostro-caudal r1 (for E12.5) or 12 sections (for E18.5), n = 3 for each genotype, using ImageJ (1.50i) or Adobe Photoshop CC 2018 (Adobe). Statistical analysis was done using SPSS Statistics (v.25; IBM) or GraphPad Prism (v.8; GraphPad Software). All the statistical parameters are described in the figure legends. To analyze the difference between two groups, we used the independent samples t test (Student’s t test). Additionally, the data were analyzed for outliers (via boxplots), normality (normal distribution via Shapiro-Wilk test) and homogeneity of variances (via Levene’s test). If one of these criteria was not met, the non-parametric Mann-Whitney U-test was carried out instead. When more than two groups were compared, we used two-way ANOVA with Bonferroni’s multiple comparisons test. Data were represented as mean ± SEM. Fisher’s exact test was used to evaluate the sample proportions in cell clusters. p values were adjusted for multiple testing using the Bonferroni procedure.