Large-scale Interconnection Power System Model Sanity Check, Tuning, and Validation for Frequency Response Study

Shutang You¹, Yilu Liu¹,²
1. University of Tennessee, Knoxville, TN, USA
2. Oak Ridge National Laboratory, TN, USA
Email: syou3@utk.edu

Abstract—The quality and accuracy of power system models is critical for simulation-based studies, especially for studying actual stability issues in large-scale systems. With the deployment of wide-area monitoring systems (WAMs), the high-reporting-rate frequency measurement provides a trustworthy ground truth for validating models in frequency response studies. This paper documented an effort to check, tune, and validate the U.S. power system model based on a WAMS called FNET/GridEye. Four metrics are used to quantitatively compare the simulation results and the actual measurement, including frequency nadir, RoCoF, settling frequency and settling time. After tuning governor deadband and the governor ratio, the model frequency response shows significant improvement and matches well with the event measurement data. This work serves as an example for tuning and validating large-scale power system models.

Index Terms—Solar PV, power grid, stability, electromechanical wave propagation, inertia.

I. INTRODUCTION

Ensuring reliability is an important goal in power grid planning and operation [1-6]. As the penetration of renewable energy increases, power grid planners and operators hope to look ahead on power grid conditions to make better preparation for a high renewable future [7, 8]. Therefore, they increasingly rely on future grid models for developing better investment and operation plans of power grids. However, it is fairly challenging to obtain accurate power grid models due to modeling errors and parameter inaccuracy. The development of wide-area synchrophasor measurement technology, especially low-cost synchrophasor sensor technology, has facilitated real-time monitoring and enabled a variety of situational awareness applications to improve grid reliability [9-31]. Based on this measurement data, many other applications have been developed to improve grid reliability and stability [15, 25, 27, 32-43]. These measurements can also serve as a basis for modeling current grids and study future grid scenarios and explore future stability challenges [34, 44-51]. Nevertheless, little literature discussed how to validate grid dynamic models for frequency response studies using synchrophasor measurements.

As noticed by both academia and industry, some interconnection models that are widely used in the industry exhibit frequency responses that are much more optimistic than system actual performances. Such inaccuracy tends to conceal the potential risks of frequency response degradation associated with PV penetration. Therefore, building a credible baseline model is critical to the correctness of the end results and conclusions of the entire project.

In this paper, efforts have been made to validate or check the dynamic models of the three U.S. interconnection models. By comparing simulated frequency response against multiple frequency events recorded by FNET/GridEye, model parameters can be tuned so that simulations are able to show much improved consistence with actual measurements. The validated interconnection models are ready for future studies on grid stability.

II. EI MODEL SANITY CHECK

It has been noticed that the EI multi-regional modeling working Group (MMWG) models do not reflect actual system frequency response accurately (as shown in Figure 1) [52, 53]. When used for grid frequency response studies, the original EI models with inaccurate representation of frequency response tend to be blind-sighted to potential risks. Therefore, the EI MMWG dynamic model was tuned and validated in previous projects using FNET/GridEye frequency measurement [54].

![Mismatch between frequency response.](image)

Figure 1. Frequency response mismatch between EI measurement and simulation

According to a previous study done by Oak Ridge National Laboratory (ORNL), the fraction of generators that provide

This work was also supported by U.S. Department of Energy Solar Energy Technologies Office under award number 30844. This work made use of Engineering Research Center shared facilities supported by the Engineering Research Center Program of the National Science Foundation and the Department of Energy under NSF Award Number EEC-1041877 and the CURENT Industry Partnership Program.
governor response (also referred to as governor ratio) and governor deadband are the most influential factors of interconnection-level frequency response [54]. Other factors, such as governor droop and generator inertia, also play a role. Governor ratio matters because it determines how many generation units are able to provide power support after a generation loss event. The unrealistically high governor ratio in the original EI MMWG model was the major reason why the measured settling frequency was much lower than the simulated value. Therefore, the original MMWG model’s governor ratio was reduced in order to be consistent with the measured frequency response.

Governor deadband is another major factor. Since frequency can fluctuate within a range of tens of mHz under normal operation conditions, governor deadbands are implemented to prevent generators from excessive controls. This parameter was usually ignored in EI dynamic simulations. However, the EI system is such a large interconnection that its frequency deviation after a generation trip is within 50 mHz in many cases. In contrast, the typical governor deadband is 36 mHz [54]. Therefore, the impact of governor deadbands on frequency response should not be ignored for the EI system. In order to represent the impact of governor deadbands, a WECC-modified generic turbine governor model, WSIEG1 (as shown in Figure 2), was employed. This model can represent the dynamics of most thermal governors, and more importantly, capture the nonlinear characteristic of the governor deadband. To keep the consistency of governor parameters, original governor models, such as TGOV1, GAST, IEEESGO, and IEEEG1, were converted to WSIEG1 through proper model logic conversion. An example of model logic conversion from TGOV1 (as shown in Figure 3) to WSIEG1 is listed in (1) to (5). Other conversion equations are documented in [54]. To model the overall governor deadband effect of the EI system, an average value of governor deadband was employed uniformly in the model.

Governor ratio, governor deadbands, and generator inertia, were adjusted in a coordinated manner to match actual FNET/GridEye frequency measurements. The FNET/GridEye frequency measurement accuracy is ±0.0005 Hz, which provides high accuracy for model tuning. After this tuning process, the EI MMWG model showed a much improved simulation accuracy compared with actual measurement.

In the following sections, multiple events recorded by FNET/GridEye will be used to perform a sanity check on the validated EI MMWG model. Two test events are given in details as examples and a summary of all the test cases is also presented afterwards.

A. EI Case 1

The first test event is a 1,016 MW generation trip, whose detailed information can be found from the Nuclear Regulation Commission (NRC) website. The frequency response comparison between simulated value and actual measurement of three different locations are shown in Figure 4. Clearly, the frequency nadir, rate of change of frequency (ROCOF), frequency settling time, and settling frequency all demonstrate good consistencies. Furthermore, as shown by Table 1, the

1 http://www.nrc.gov/reading-rm/doc-collections/event-status/event/2013/20130222en.html (Access date: April 21st, 2013)
Observation in Kansas

(c) Observation in Kansas
Figure 4. EI model sanity check results: EI case 1

Table 1. EI model sanity check metrics for EI case 1

Metric	FNET/GridEye Measurement	Simulated Value	Mismatch	Metric Success Value
Frequency Nadir (Hz)	59.959	59.959	0.000	0.010
Rate of Change of Frequency (mHz/s)	4.94	5.58	0.64	10
Frequency Settling Time (s)	9.9	9.2	0.7	3.0
Settling Frequency (Hz)	59.962	59.961	0.001	0.010

B. EI Case 2

The second test case is a 974 MW generation trip, whose detailed information is also provided by NRC.

Similar to case 1, frequency response comparisons at different locations are given in Figure 5 and the successfully-met metrics are presented in Table 2.

Figure 5. EI model sanity check results: EI case 2

Table 2. EI model sanity check metrics for EI case 2

Metric	FNET/GridEye Measurement	Simulated Value	Mismatch	Metric Success Value
Frequency Nadir (Hz)	59.961	59.959	0.002	0.010
Rate of Change of Frequency (mHz/s)	4.39	4.83	0.44	10
Frequency Settling Time (s)	11.5	12.8	1.3	3.0
Settling Frequency (Hz)	59.960	59.963	0.003	0.010

Besides, Table 3 and Table 4 summarize the results of all four test cases used for the EI model sanity check. The metrics in Table 4 show that the validated EI base case meets the model evaluation metrics and it is ready for follow-on studies.

Table 3. Summary of EI test cases

Time (UTC)	Generation Trip	
Case 1	2013/02/21 14:57:06	1,016
Case 2	2013/05/28 19:07:54	974
Case 3	2013/06/28 17:29:44	1,182
Case 4	2013/03/12 18:51:50	921

Table 4. Summary of EI model sanity check metrics

Mismatch	Frequency Nadir (Hz)	Rate of Change of Frequency (mHz/s)	Frequency Settling Time (s)	Settling Frequency (Hz)	
Case 1	0.000	0.64	0.7	0.001	
Case 2	0.002	0.44	1.3	0.003	
Case 3	0.006	0.99	2.3	0.009	
Case 4	0.001	0.64	1.7	0.009	
Average	0.002	0.67	1.5	0.006	
Mismatch	Metric Success Value	0.010	10.00	3.0	0.010

C. Validation at Grid Edges for Case 1

Due to the large scale of the EI system, the need to check the model validation accuracy using FNET/GridEye measurements at grid edges was identified. Therefore, the accuracy of the validated EI model was checked at the EI grid edges using the FNET/GridEye measurement of the EI Case 1 event. Measurement locations at the EI edges are shown in Figure 6.

1 Here, ROCOF is calculated as the average frequency changing rate between Point A and Point C defined by NERC

3 http://www.nrc.gov/reading-rm/doc-collections/event-status/event/2013/20130529en.html (Access date: July 8th, 2013)
The simulation and measurement frequency response at these locations are shown in Figure 7, respectively. Despite some discrepancies of the low-magnitude oscillations, the simulation and measurement show good consistency in terms of overall frequency response.

III. ERCOT MODEL VALIDATION

To improve the accuracy of the ERCOT model, governor deadbands were also incorporated into the ERCOT dynamic model. Similar to the work on the EI model, the WECC-modified generic turbine governor model was adopted in modeling the governor deadband in ERCOT. The original governor models, such as TGOV1, GAST, IEESGO, and IEEEG1, were translated to WSIEG1 through proper model logic conversion to keep the consistency of governor dynamics. The deadband settings are determined by ERCOT specifications [55].

The accuracy of the deadband-enabled ERCOT model was checked using the FNET/GridEye measurements. The case given here is a 390MW generation trip that occurred at 16:30:20 (UTC) on January 8, 2016. Figure 8 shows the measurements from the ERCOT system and the same event’s simulation results from both models: one was tuned without deadband modeled while the other includes deadbands. Table 5 calculates the mismatches between measured and simulated values. It shows that the tuned model has high accuracy compared with measurement. In addition, the model with governor deadbands shows even smaller discrepancy in the frequency recovering period, as shown in Figure 8.
IV. CONCLUSIONS

This paper uses synchrophasor measurements from a wide-area monitoring system called FNET/GridEye to validate power grid models for frequency response studies. Four metrics of frequency response, including frequency nadir, RoCoF, frequency settling time, and settling frequency, are used to compare the model simulation results with the actual measurement. To reflect the system actual condition, the deadband is incorporated into governor models and the ratio of governors are tuned. The tuned models of U.S. EI and ERCOT systems show close match with the event frequency response in the FNET/GridEye database. These models can serve as base models for further studies on frequency response.

REFERENCES

1. Wang, J., et al., *Long-term maintenance scheduling of smart distribution system through a PSO-TS algorithm*. Journal of Applied Mathematics, 2014. 2014.

2. Hadley, S.W. and S. You, *Influence Analysis of Wind Power Variation on Generation and Transmission Expansion in US Eastern Interconnection*. 2016.

3. Wang, J., et al., *Flexible transmission expansion planning for integrating wind power based on wind power distribution characteristics*. J. Electr. Eng. Technol. 2015. 10: p. 709-718.

4. Guo, J., et al. *An ensemble solar power output forecasting model through statistical learning of historical weather dataset*. in 2016 IEEE Power and Energy Society General Meeting (PESGM). 2016. IEEE.

5. Hadley, S., et al., *Electric grid expansion planning with high levels of variable generation*. ORNL/TM-2015/515, Oak Ridge National Laboratory, 2015.

6. You, S., et al., *Co-optimizing generation and transmission expansion with wind power in large-scale power grids—Implementation in the US Eastern Interconnection*. Electric Power Systems Research, 2016. 133: p. 209-218.

7. Sun, K., et al., *A Review of Clean Electricity Policies—From Countries to Utilities. Sustainability*, 2020. 12(19): p. 7946.

8. Wang, R., et al. *A Novel Transmission Planning Method for Integrating Large-Scale Wind Power*. in 2012 Asia-Pacific Power and Energy Engineering Conference. 2012. IEEE.

9. Wu, L., et al. *Statistical analysis of the FNET/GridEye-detected inter-area oscillations in Eastern Interconnection (EI)*. in 2017 IEEE Power & Energy Society General Meeting. 2017. IEEE.

10. Liu, Y., et al., *Recent developments of FNET/GridEye—A situational awareness tool for smart grid*. CSEE Journal of Power and Energy Systems, 2016. 2(3): p. 19-27.

11. Liu, Y., et al. *Recent application examples of FNET/GridEye*. in 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG 2018). 2018. IEEE.

12. You, S., et al. *FNET/GridEye for Future High Renewable Power Grids—Applications Overview*. in 2018 IEEE PES Transmission & Distribution Conference and Exhibition-Latin America (T&D-LA). 2018. IEEE.

13. You, S., et al., *Disturbance location determination based on electromechanical wave propagation in FNET/GridEye: a distribution-level wide-area measurement system*. IET Generation, Transmission & Distribution, 2017. 11(18): p. 4436-4443.

14. Liu, Y., et al., *A distribution level wide area monitoring system for the electric power grid—FNET/GridEye*. IEEE Access, 2017. 5: p. 2329-2338.

15. Yao, W., et al., *Source location identification of distribution-level electric network frequency signals at multiple geographic scales*. IEEE Access, 2017. 5: p. 11166-11175.

16. Liu, Y., S. You, and Y. Liu, *Smart transmission & wide area monitoring system*. Communication, Control and Security for the Smart Grid, 2017.
17. Lv, C., et al., Short-term transmission maintenance scheduling based on the benders decomposition. International Transactions on Electrical Energy Systems, 2015. 25(4): p. 697-712.

18. You, S., et al. Ring-down oscillation mode identification using multivariate empirical mode decomposition. in 2016 IEEE Power and Energy Society General Meeting (PESGM). 2016. IEEE.

19. You, S., et al., Oscillation mode identification based on wide-area ambient measurements using multivariate empirical mode decomposition. Electric Power Systems Research, 2016. 134: p. 158-166.

20. You, S., et al., Non-invasive identification of inertia distribution change in high renewable systems using distribution level PMU. IEEE Transactions on Power Systems, 2017. 33(1): p. 1110-1112.

21. Wu, L., et al, Multiple Linear Regression Based Disturbance Magnitude Estimations for Bulk Power Systems. in 2018 IEEE Power & Energy Society General Meeting (PESGM). 2018. IEEE.

22. Liu, S., et al., Model-free Data Authentication for Cyber Security in Power Systems. IEEE Transactions on Smart Grid, 2020.

23. Zhang, X., et al. Measurement-based power system dynamic model reductions. in 2017 North American Power Symposium (NAPS). 2017. IEEE.

24. Wang, W., et al., Information and Communication Infrastructures in intermodern Wide-Area Systems. Wide Area Power Systems Stability, Protection, and Security: p. 71-104.

25. Zhang, Y., et al., Impacts of power grid frequency deviation on time error of synchronous electric clock and worldwide power system practices on time error correction. Energies, 2017. 10(9): p. 1283.

26. Yao, W., et al., GPS signal loss in the wide area monitoring system: Prevalence, impact, and solution. Electric Power Systems Research, 2017. 147: p. 254-262.

27. Li, J., et al., A fast power grid frequency estimation approach using frequency-shift filtering. IEEE Transactions on Power Systems, 2019. 34(3): p. 2461-2464.

28. Zhao, J., et al. Data quality analysis and solutions for distribution-level PMUs. in 2019 IEEE Power & Energy Society General Meeting (PESGM). 2019. IEEE.

29. You, S., et al. Data architecture for the next-generation power grid: Concept, framework, and use case. in 2015 2nd International Conference on Information Science and Control Engineering. 2015. IEEE.

30. Wang, W., et al, Advanced synchrophasor-based application for potential distributed energy resources management: key technology, challenge and vision. in 2020 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). 2020. IEEE.

31. You, S., et al. A survey on next-generation power grid data architecture. in 2015 IEEE Power & Energy Society General Meeting. 2015. IEEE.

32. Li, H., et al., Analytic analysis for dynamic system frequency in power systems under uncertain variability. IEEE Transactions on Power Systems, 2018. 34(2): p. 982-993.

33. You, S., et al., Comparative assessment of tactics to improve primary frequency response without curtailing solar output in high photovoltaic interconnection grids. IEEE Transactions on Sustainable Energy, 2018. 10(2): p. 718-728.

34. You, S., et al. Energy Storage for Frequency Control in High Photovoltaic Power Grids. in IEEE EUROCON 2019-18th International Conference on Smart Technologies. 2019. IEEE.

35. Yuan, Z., et al., Frequency control capability of Vsc-Hvdc for large power systems. in 2017 IEEE Power & Energy Society General Meeting. 2017. IEEE.

36. Liu, Y., et al., Frequency response assessment and enhancement of the US power grids toward extra-high photovoltaic generation penetrations—An industry perspective. IEEE Transactions on Power Systems, 2018. 33(3): p. 3438-3449.

37. Tan, J., et al. Frequency Response Study of US Western Interconnection under Extra-High Photovoltaic Generation Penetrations. in 2018 IEEE Power & Energy Society General Meeting (PESGM). 2018. IEEE.

38. Zhang, X., et al., Frequency Response Study on the ERCOT under High Photovoltaic (PV) Penetration Conditions.

39. Sun, K., et al., Frequency secure control strategy for power grid with large-scale wind farms through HVDC links. International Journal of Electrical Power & Energy Systems, 2020. 117: p. 105706.