Comments on Solutions for Nonsingular Currents in Open String Field Theories

Isao Kishimoto

I. K., Y. Michishita, arXiv:0706.0409 [hep-th], to be published in PTP
Introduction

• Witten’s bosonic open string field theory (d=26):

\[S[\Psi] = -\frac{1}{g^2} \left(\frac{1}{2} \langle \Psi, Q_B \Psi \rangle + \frac{1}{3} \langle \Psi, \Psi \ast \Psi \rangle \right). \]

• There were various attempts to prove Sen’s conjecture since around 1999 using the above.

• Numerically, it has been checked with “level truncation approximation.” [c.f. … Gaiotto-Ratelli “Experimental string field theory”(2002)]

• Analytically, some solutions have been constructed.

• Here, we generalize “Schnabl’s analytical solutions” (2005, 2007) which include “tachyon vacuum solution” in Sen’s conjecture and “marginal solutions.”
• In Berkovits’ WZW-type superstring field theory (d=10) the action in the NS sector is given by

\[S_{NS}[\Phi] = -\frac{1}{g^2} \int_0^1 dt \langle (\eta_0 \Phi)(e^{-t\Phi} Q_B e^{t\Phi}) \rangle. \]

• There were some attempts to solve the equation of motion.
• Numerically, tachyon condensation was examined using level truncation. [Berkovits(-Sen-Zwiebach)(2000),…]

• Analytically, some solutions have been constructed.
• Recently [April (2007)], Erler / Okawa constructed some solutions, which are generalization of Schnabl / Kiermaier-Okawa-Rastelli-Zwiebach’s marginal solution (2007) in bosonic SFT. We consider generalization of their solutions and examine gauge transformations.
Main claim

Suppose that $\hat{\Psi}$ is BRST invariant and nilpotent:

$$Q_B \hat{\Psi} = 0, \quad \hat{\Psi} \ast \hat{\Psi} = 0.$$ Then,

$$\Psi^{(\alpha,\beta)} = P_{\alpha} \ast \frac{1}{1 + \hat{\Psi} \ast A^{(\alpha+\beta)}} \ast \hat{\Psi} \ast P_{\beta}$$

gives a solution to the EOM:

$$Q_B \Psi^{(\alpha,\beta)} + \Psi^{(\alpha,\beta)} \ast \Psi^{(\alpha,\beta)} = 0,$$

where

$$Q_B P_{\alpha} = 0, \quad P_{\alpha} \ast P_{\beta} = P_{\alpha+\beta}, \quad P_{\alpha=0} = I, \quad Q_B A^{(\gamma)} = I - P_{\gamma}.$$

In the case $|r = \alpha + 1\rangle = P_{\alpha}$: wedge state, we have $A^{(\gamma)} = \frac{\pi}{2} \int_0^{\gamma} d\alpha B_1^\alpha P_{\alpha}$.

$\hat{\Psi} = U_1^{\dagger} U_1 \lambda eJ(0)|0\rangle$,
$\alpha = \beta = 1/2$: Schnabl / Kiermaier-Okawa-Rastelli-Zwiebach’s marginal solution for nonsingular current is reproduced.

$\hat{\Psi} = \lambda Q_B U_1^{\dagger} U_1 B_1^\gamma c_1 |0\rangle$,
$\alpha = \beta = 1/2, \quad \lambda = \infty$: Schnabl’s tachyon vacuum solution is reproduced.
Suppose that $\hat{\phi}$ satisfies following conditions:

\[
\eta_0 Q_B \hat{\phi} = 0, \quad \hat{\phi} \ast \hat{\phi} = 0, \quad \hat{\phi} \ast \eta_0 \hat{\phi} = 0, \quad \hat{\phi} \ast Q_B \hat{\phi} = 0.
\]

Then,

\[
\Phi^{(\alpha, \beta)}_{(1)} = \log(1 + P_\alpha \ast f_{(1)} \ast P_\beta), \quad f_{(1)} = \frac{1}{1 - \eta_0 \hat{\phi} \ast Q_B \hat{A}^{(\alpha+\beta)} \ast \hat{\phi}},
\]

\[
\Phi^{(\alpha, \beta)}_{(2)} = \log(1 - P_\alpha \ast f_{(2)} \ast P_\beta), \quad f_{(2)} = \hat{\phi} \ast \frac{1}{1 - \eta_0 \hat{A}^{(\alpha+\beta)} \ast Q_B \hat{\phi}},
\]

\[
\Phi^{(\alpha, \beta)}_{(3)} = - \log(1 - P_\alpha \ast f_{(3)} \ast P_\beta), \quad f_{(3)} = \frac{1}{1 - Q_B \hat{\phi} \ast \eta_0 \hat{A}^{(\alpha+\beta)} \ast \hat{\phi}},
\]

\[
\Phi^{(\alpha, \beta)}_{(4)} = - \log(1 - P_\alpha \ast f_{(4)} \ast P_\beta), \quad f_{(4)} = \hat{\phi} \ast \frac{1}{1 - Q_B \hat{A}^{(\alpha+\beta)} \ast \eta_0 \hat{\phi}},
\]

give solutions to the EOM:

\[
\eta_0 (e^{-\Phi^{(\alpha, \beta)}_{(i)}} Q_B e^{\Phi^{(\alpha, \beta)}_{(i)}}) = 0, \quad (i = 1, 2, 3, 4)
\]

where

\[
\eta_0 P_\alpha = 0, \quad Q_B P_\alpha = 0, \quad P_\alpha \ast P_\beta = P_{\alpha+\beta}, \quad P_{\alpha=0} = I,
\]

\[
\eta_0 Q_B \hat{A}^{(\gamma)} = I - P_\gamma.
\]

In the case $P_\alpha :$ wedge state, we find $\hat{A}^{(\gamma)} = \int_0^\gamma d\alpha \log \left(\frac{\alpha}{\gamma}\right) \left(\frac{\pi}{2} j^{1-\gamma}_1 + \frac{\pi^2}{4} g^{1-\gamma}_1 b_1^1\right) P_\alpha.$

\[
\hat{\phi} = \zeta_a U_1^\dagger U_1 \xi e^{-\phi} \psi^a(0) |0\rangle, \quad \zeta_a \zeta_b \Omega^{ab} = 0, \quad \alpha = \beta = 1/2
\]

$\hat{\phi}$: Erler / Okawa’s marginal solutions for nonsingular supercurrents are reproduced.
Witten’s bosonic open string field theory

Action: \[S[\Psi] = -\frac{1}{g^2} \left(\frac{1}{2} \langle \Psi, Q_B \Psi \rangle + \frac{1}{3} \langle \Psi, \Psi \ast \Psi \rangle \right) \]

String field: \[|\Psi\rangle = \phi(x)c_1|0\rangle + A_\mu(x)\alpha_\mu^i c_1|0\rangle + iB(x)c_0|0\rangle + \cdots \]

BRST operator: \[Q_B = \oint \frac{dz}{2\pi i} \left(cT^m + b c \partial c + \frac{3}{2} \partial^2 c \right) \]

Witten star product:

Equation of motion: \[Q_B \Psi + \Psi \ast \Psi = 0 \]

Gauge transformation: \[\delta_\Lambda \Psi = Q_B \Lambda + \Psi \ast \Lambda - \Lambda \ast \Psi \]
Preliminary

• “sliver frame”: \(\tilde{z} = \arctan z \) (\(z : \text{UHP} \))

For a primary field \(\phi \) of dim=h,

\[
\tilde{\phi}(\tilde{z}) = \left(\frac{dz}{d\tilde{z}} \right)^h \phi(z) = (\cos \tilde{z})^{-2h} \phi(\tan \tilde{z})
\]

In particular, we often use

\[
\mathcal{L}_0 \equiv \tilde{L}_0 = L_0 + \sum_{k=1}^{\infty} \frac{2(-1)^{k+1}}{4k^2 - 1} L_{2k}, \quad K_1 \equiv \tilde{L}_{-1} = L_1 + L_{-1},
\]

\[
\mathcal{B}_0 \equiv \tilde{b}_0 = b_0 + \sum_{k=1}^{\infty} \frac{2(-1)^{k+1}}{4k^2 - 1} b_{2k}, \quad B_1 \equiv \tilde{b}_{-1} = b_1 + b_{-1},
\]

and

\[
\hat{\mathcal{L}} = \mathcal{L}_0 + \mathcal{L}_0^\dagger, \quad K_1^{L/R} = \frac{1}{2} K_1 \pm \frac{1}{\pi} \hat{\mathcal{L}}, \quad \hat{\mathcal{B}} = \mathcal{B}_0 + \mathcal{B}_0^\dagger, \quad B_1^{L/R} = \frac{1}{2} B_1 \pm \frac{1}{\pi} \hat{\mathcal{B}}.
\]
Using $U_r = \left(\frac{2}{r}\right)^{L_0} = \left(\frac{2}{r}\right)^{L_0} e^{-\frac{r^2}{3r^2}} L_2 + \frac{r^2}{30r^4} L_4 + \cdots$ we have a \star product formula:

$$U_r^\dagger U_r \phi_1(\tilde{x}_1) \cdots \phi_n(\tilde{x}_n) \ket{0} \star U_s^\dagger U_s \tilde{\psi}_1(\tilde{y}_1) \cdots \tilde{\psi}_m(\tilde{y}_m) \ket{0} $$

$$= U_{r+s-1}^\dagger U_{r+s-1} \phi_1(\tilde{x}_1 + \frac{\pi}{4}(s-1)) \cdots \phi_n(\tilde{x}_n + \frac{\pi}{4}(s-1)) \tilde{\psi}_1(\tilde{y}_1 - \frac{\pi}{4}(r-1)) \cdots \tilde{\psi}_m(\tilde{y}_m - \frac{\pi}{4}(r-1)) \ket{0}$$

For the wedge state: $|r = \alpha + 1\rangle = U_{\alpha+1}^\dagger U_{\alpha+1} \ket{0} = P_\alpha$, we have $P_\alpha \star P_\beta = P_{\alpha+\beta}$.
• Associated with the wedge states, we have

\[A^{(\gamma)} = \frac{\pi}{2} \int_0^\gamma d\alpha \: B_1^{\alpha} P_{\alpha} \] such as \(Q_B A^{(\gamma)} = I - P_\gamma \).

[Ellwood-Schnabl]

With BRST invariant and nilpotent \(\hat{\psi} \):

\[Q_B \hat{\psi} = 0, \quad \hat{\psi} \ast \hat{\psi} = 0, \]

we have a solution to the equation of motion

\[
\Psi^{(\alpha,\beta)} = P_\alpha \ast \frac{1}{1 + \hat{\psi} \ast A^{(\alpha+\beta)}} \ast \hat{\psi} \ast P_\beta
\]

\[
= \sum_{k=0}^\infty (-1)^k P_\alpha \ast (\hat{\psi} \ast A^{(\alpha+\beta)})^k \ast \hat{\psi} \ast P_\beta.
\]
\[Q_B \Psi^{(\alpha,\beta)} = P_\alpha \ast Q_B \left(\frac{1}{1 + \hat{\psi} \ast A^{(\alpha+\beta)}} \right) \ast \hat{\psi} \ast P_\beta \]

\[= -P_\alpha \ast \frac{1}{1 + \hat{\psi} \ast A^{(\alpha+\beta)}} \ast (Q_B (I + \hat{\psi} \ast A^{(\alpha+\beta)})) \ast \frac{1}{1 + \hat{\psi} \ast A^{(\alpha+\beta)}} \ast \hat{\psi} \ast P_\beta \]

\[= P_\alpha \ast \frac{1}{1 + \hat{\psi} \ast A^{(\alpha+\beta)}} \ast \hat{\psi} \ast (Q_B A^{(\alpha+\beta)}) \ast \frac{1}{1 + \hat{\psi} \ast A^{(\alpha+\beta)}} \ast \hat{\psi} \ast P_\beta \]

\[= P_\alpha \ast \frac{1}{1 + \hat{\psi} \ast A^{(\alpha+\beta)}} \ast \hat{\psi} \ast (I - P_{\alpha+\beta}) \ast \frac{1}{1 + \hat{\psi} \ast A^{(\alpha+\beta)}} \ast \hat{\psi} \ast P_\beta \]

\[= P_\alpha \ast \frac{1}{1 + \hat{\psi} \ast A^{(\alpha+\beta)}} \ast \hat{\psi} \ast \hat{\psi} \ast \frac{1}{1 + A^{(\alpha+\beta)}} \ast \hat{\psi} \ast P_\beta \]

\[= -P_\alpha \ast \frac{1}{1 + \hat{\psi} \ast A^{(\alpha+\beta)}} \ast \hat{\psi} \ast P_\beta \ast P_\alpha \ast \frac{1}{1 + \hat{\psi} \ast A^{(\alpha+\beta)}} \ast \hat{\psi} \ast P_\beta \]

\[= -\Psi^{(\alpha,\beta)} \ast \Psi^{(\alpha,\beta)} . \]

Note 1. \(\lambda \hat{\psi} \) is also BRST invariant and nilpotent. \(\rightarrow \) \(\Psi^{(\alpha,\beta)} \) can naturally include 1-parameter.
Note 2.

In general, for \[\Psi^{(\alpha,\beta)}(\psi) \equiv P_{\alpha} * \frac{1}{1 + \psi * A^{(\alpha+\beta)}} * \psi * P_{\beta} \]
we have

\[Q_B \Psi^{(\alpha,\beta)}(\psi) + \Psi^{(\alpha,\beta)}(\psi) * \Psi^{(\alpha,\beta)}(\psi) \]
\[= P_{\alpha} * \frac{1}{1 + \psi * A^{(\alpha+\beta)}} * (Q_B \psi + \psi * \psi) * \frac{1}{1 + A^{(\alpha+\beta)} * \psi} * P_{\beta}. \]

We can regard \[\psi \mapsto \Psi^{(\alpha,\beta)}(\psi) = P_{\alpha} * \frac{1}{1 + \psi * A^{(\alpha+\beta)}} * \psi * P_{\beta} \]
as a map \textit{from a solution to another solution}:

\[Q_B \psi + \psi * \psi = 0 \]
\[\rightarrow Q_B \Psi^{(\alpha,\beta)}(\psi) + \Psi^{(\alpha,\beta)}(\psi) * \Psi^{(\alpha,\beta)}(\psi) = 0 \]

Composition of maps forms a commutative monoid:

\[\Psi^{(\alpha,\beta)}(\Psi^{(\alpha',\beta')}(\psi)) = \Psi^{(\alpha+\alpha',\beta+\beta')}(\psi), \quad (\alpha, \beta, \alpha', \beta' \geq 0) \]
\[\Psi^{(0,0)}(\psi) = \psi. \]
Example of BRST invariant and nilpotent $\hat{\psi}$

\[
\hat{\psi} = \lambda_s \hat{\psi}_s + \lambda_m \hat{\psi}_m ,
\]
\[
\hat{\psi}_s = Q_B \hat{\Lambda}_0 , \quad \hat{\Lambda}_0 \equiv U_1^\dagger U_1 B_1^L c_1 |0\rangle ,
\]
\[
\hat{\psi}_m = U_1^\dagger U_1 c J(0) |0\rangle .
\]

where $J(z) = \zeta_\alpha J^\alpha(z)$ is “nonsingular” matter primary of dimension 1:

\[
\zeta_\alpha \zeta_\beta g^{\alpha \beta} = 0 , \quad J^\alpha(y) J^\beta(z) \sim \frac{g^{\alpha \beta}}{(y-z)^2} + \frac{1}{y-z} i f^{\alpha \beta \gamma} J^\gamma(z) + \cdots .
\]

In particular, $\lambda_s = 0 \quad \Longrightarrow \quad$ marginal solution

$\lambda_m = 0 \quad \Longrightarrow \quad$ tachyon solution

Due to the nonsingular condition for the current, we find nilpotency:

\[
c\zeta_\alpha J^\alpha(\epsilon) c\zeta_\beta J^\beta(0) \sim 0
\]
Marginal solution

From a BRST invariant, nilpotent \(\hat{\Psi}_m = U_1^{\dagger} U_1 c J(0) |0\rangle \) which satisfies

\[(\mathcal{B}_0 - \mathcal{B}_0^{\dagger}) \hat{\Psi}_m = 0, \]

we can generate a solution

\[
\Psi^{(\alpha, \beta)} = \sum_{k=0}^{\infty} (-1)^k \lambda_m^{k+1} P_{\alpha} \ast (\hat{\Psi}_m \ast A^{(\alpha + \beta)})^k \ast \hat{\Psi}_m \ast P_{\beta} = \sum_{n=1}^{\infty} \lambda_m^n \psi_{m,n},
\]

\[
\psi_{m,1} = U_{\alpha + \beta + 1}^{\dagger} U_{\alpha + \beta + 1} c \tilde{J}(\frac{\pi}{4} (\beta - \alpha)) |0\rangle,
\]

\[
\psi_{m,k+1} = \left(-\frac{\pi}{2} \right)^k \int_0^{\alpha + \beta} dr_1 \cdots \int_0^{\alpha + \beta} dr_k U_{\alpha + \beta + 1 + \sum_{l=1}^{k} r_l}^{\dagger} U_{\alpha + \beta + 1 + \sum_{l=1}^{k} r_l} \prod_{m=0}^{k} \tilde{J}(\frac{\pi}{4} (\beta - \alpha - \sum_{l=1}^{m} r_l + \sum_{l=m+1}^{k} r_l)) \right.
\times \left[- \frac{1}{\pi} \tilde{J}(\frac{\pi}{4} (\beta - \alpha + \sum_{l=1}^{k} r_l)) \tilde{J}(\frac{\pi}{4} (\beta - \alpha - \sum_{l=1}^{k} r_l)) + \frac{1}{2} \left(\tilde{J}(\frac{\pi}{4} (\beta - \alpha + \sum_{l=1}^{k} r_l)) + \tilde{J}(\frac{\pi}{4} (\beta - \alpha - \sum_{l=1}^{k} r_l)) \right) \right] |0\rangle.
\]

\[
\Psi^{(\alpha, \beta)} \sim \sum_{m} \lambda_m^n \int dr_k
\]
Tachyon solution

- From a BRST invariant, nilpotent \(\hat{\psi}_s = Q_B U_1^{\dagger} U_1 B_1^L c_1 |0\rangle \) which satisfies \((B_0 - B_0^\dagger) \hat{\psi}_s = 0 \), we can generate a solution:

\[
\Psi^{(\alpha, \beta)} = \sum_{k=0}^{\infty} (-1)^k \lambda_s^{k+1} P_\alpha * \hat{\psi}_s * (A^{(\alpha+\beta)} * \hat{\psi}_s)^k * P_\beta = \sum_{n=1}^{\infty} \lambda_s^n \psi_{s,n}.
\]

Each term is computed as

\[
\psi_{s,n} = P_\alpha * (Q_B \hat{\Lambda}_0) * P_\beta * (P_\alpha * \hat{\Lambda}_0 * P_\beta - I)^{n-1} = -\sum_{l=0}^{n-1} \frac{(-1)^{n-1-l}(n-1)!}{l!(n-1-l)!} \partial_t \psi_t^{(\alpha, \beta)} |_{t=0},
\]

\[
\psi_{t,n}^{(\alpha, \beta)} = \frac{2}{\pi} U_{n(\alpha+\beta)+t+\alpha+\beta+1} U_{n(\alpha+\beta)+t+\alpha+\beta+1} \left[-\frac{1}{\pi} \tilde{c}(\frac{\pi}{4}(\beta - \alpha + t + n(\alpha + \beta))) \tilde{c}(\frac{\pi}{4}(\beta - \alpha - t - n(\alpha + \beta))) \\
+ \frac{1}{2} \left\{ \tilde{c}(\frac{\pi}{4}(\beta - \alpha + t + n(\alpha + \beta))) + \tilde{c}(\frac{\pi}{4}(\beta - \alpha - t - n(\alpha + \beta))) \right\} \right] |0\rangle.
\]

Then, we can re-sum the above as

\[
\Psi^{(\alpha, \beta)} = -\sum_{l=0}^{\infty} \lambda_s^{l+1} \partial_t \psi_{t,l}^{(\alpha, \beta)} |_{t=0}.
\]

Here, expansion parameter is redefined as

\[
\lambda_S \equiv \frac{\lambda_s}{\lambda_s + 1}.
\]
The solution can be rewritten as

\[\Psi(\alpha, \beta) = e^{\pi \beta - \alpha} K_1(\alpha + \beta) D^2 \Psi^{(1/2,1/2)}, \]

where \(K_1 = L_1 + L_{-1}, \ D = \mathcal{L}_0 - \mathcal{L}_0^\dagger \) are BPZ odd and derivations w.r.t. *,

and \(\Psi^{(1/2,1/2)} \) is the Schnabl’s solution for tachyon condensation at

\[\lambda_S = 1 \iff \lambda_S = \infty. \]

By regularizing it as

\[\Psi(\alpha, \beta)|_{\lambda_S=1} = \lim_{N \to \infty} \left(\frac{1}{\alpha + \beta} \psi^{(\alpha,\beta)}_{t=0,N} - \sum_{n=0}^{N} \partial_t \psi_{t,n}^{(\alpha,\beta)} \right), \]

the new BRST operator around the solution \(Q'_B \) satisfies

\[Q'_B A^{(\alpha+\beta)} \equiv Q_B A^{(\alpha+\beta)} + \Psi(\alpha,\beta)|_{\lambda_S=1} \ast A^{(\alpha+\beta)} + A^{(\alpha+\beta)} \ast \Psi(\alpha,\beta)|_{\lambda_S=1} = I, \]

which implies vanishing cohomology and

\[S[\Psi(\alpha,\beta)|_{\lambda_S=1}]/V_{26} = \frac{1}{2\pi^2 g^2} = T_{25}. \]

This result is \((\alpha, \beta)\)-independent.
Note

We can evaluate the action as \(S[\Psi^{(\alpha,\beta)}]/V_{26} = 0 \) (\(|\lambda_s| < 1\)).

In fact, the solution can be rewritten as pure gauge form by evaluating the infinite summation formally

\[
\Psi^{(\alpha,\beta)} = Q_B(\lambda_s P_\alpha \ast \hat{\Lambda}_0 \ast P_\beta) \ast \frac{1}{1 - \lambda_s P_\alpha \ast \hat{\Lambda}_0 \ast P_\beta}.
\]
Berkovits’ WZW-type super SFT

The action for the NS sector is

$$S_{NS}[\Phi] = -\frac{1}{g^2} \int_0^1 dt \langle (\eta_0 \Phi)(e^{-t\Phi} Q_B e^{t\Phi}) \rangle.$$

String field Φ: ghost number 0, picture number 0, Grassmann even, expressed by matter and ghosts b, c, ϕ, ξ, η ($\beta = e^{-\phi} \partial \xi, \gamma = \eta e^\phi$):

$$Q_B = \oint \frac{dz}{2\pi i} (c(T^m - \frac{1}{2} (\partial \phi)^2 - \partial^2 \phi + \partial \xi \eta) + b c \partial c + \eta e^\phi G^m - \eta \partial \eta e^{2\phi} b)(z),$$

$$\eta_0 = \oint \frac{dz}{2\pi i} \eta(z).$$

Equation of motion: $\eta_0 (e^{-\Phi} Q_B e^\Phi) = 0 \iff Q_B (e^\Phi \eta_0 e^{-\Phi}) = 0$

Gauge transformation: $\delta e^\Phi = \Xi_1 \ast e^\Phi + e^\Phi \ast \Xi_2$, $Q_B \Xi_1 = 0$, $\eta_0 \Xi_2 = 0$.

Using the wedge states $|r = \alpha + 1\rangle = P_\alpha$ as in bosonic SFT, we have

$$Q_B P_\alpha = 0, \quad \eta_0 P_\alpha = 0, \quad P_\alpha \ast P_\beta = P_{\alpha+\beta}, \quad P_{\alpha=0} = I.$$
Corresponding to the wedge states, we have constructed \(\hat{A}(\gamma) \):

\[
\hat{A}(\gamma) = \int_0^\gamma d\alpha \log \left(\frac{\alpha}{\gamma} \right) \left(\frac{\pi}{2} J_{1}^{--L} + \frac{\pi^2}{4} \tilde{G}_{1}^{-L} B_{1}^{L} \right) P_\alpha ,
\]

such as \(\eta_0 \hat{A}(\gamma) = -\frac{\pi}{2} \int_0^\gamma d\alpha B_{1}^{L} P_\alpha , \quad Q_B \hat{A}(\gamma) = -\frac{\pi}{2} \int_0^\gamma d\alpha \tilde{G}_{1}^{-L} P_\alpha , \quad \eta_0 Q_B \hat{A}(\gamma) = I - P_\gamma , \)

\(J^{--}(z) = \xi b(z), \quad \tilde{G}^- = [Q_B, J^{--}(z)] \implies J_{1}^{--L}, \tilde{G}_{1}^{-L} \) are defined in the same way as \(B_{1}^{L} \).

Then, we find that

\[
\Phi_{(1)}^{(\alpha, \beta)}(\phi) = \log(1 + P_\alpha \ast f_{(1)} \ast P_\beta) , \quad f_{(1)} = \frac{1}{1 + (e^\phi \eta_0 e^{-\phi}) Q_B \hat{A}^{(\alpha + \beta)}(e^\phi - 1) ,}
\]

\[
\Phi_{(2)}^{(\alpha, \beta)}(\phi) = \log(1 + P_\alpha \ast f_{(2)} \ast P_\beta) , \quad f_{(2)} = (e^\phi - 1) \frac{1}{1 - \eta_0 \hat{A}(\alpha + \beta)(e^{-\phi} Q_B e^\phi)} ,
\]

\[
\Phi_{(3)}^{(\alpha, \beta)}(\phi) = -\log(1 - P_\alpha \ast f_{(3)} \ast P_\beta) , \quad f_{(3)} = \frac{1}{1 - (e^{-\phi} Q_B e^\phi) \eta_0 \hat{A}(\alpha + \beta)(1 - e^{-\phi})} ,
\]

\[
\Phi_{(4)}^{(\alpha, \beta)}(\phi) = -\log(1 - P_\alpha \ast f_{(4)} \ast P_\beta) , \quad f_{(4)} = (1 - e^{-\phi}) \frac{1}{1 + Q_B \hat{A}^{(\alpha + \beta)}(e^\phi \eta_0 e^{-\phi})} ,
\]

map solutions to other solutions because

\[
e^{\Phi_{(1)}^{(\alpha, \beta)}} \eta_0 e^{-\Phi_{(1)}^{(\alpha, \beta)}} = e^{\Phi_{(4)}^{(\alpha, \beta)}} \eta_0 e^{-\Phi_{(4)}^{(\alpha, \beta)}} = P_\alpha \frac{1}{1 + (e^\phi \eta_0 e^{-\phi}) Q_B \hat{A}(\alpha + \beta)(e^\phi \eta_0 e^{-\phi})} P_\beta ,
\]

\[
e^{-\Phi_{(2)}^{(\alpha, \beta)}} Q_B e^{\Phi_{(2)}^{(\alpha, \beta)}} = e^{-\Phi_{(3)}^{(\alpha, \beta)}} Q_B e^{\Phi_{(3)}^{(\alpha, \beta)}} = P_\alpha (e^{-\phi} Q_B e^\phi) \frac{1}{1 - \eta_0 \hat{A}(\alpha + \beta)(e^{-\phi} Q_B e^\phi)} P_\beta .
\]
If $\hat{\phi}$ satisfies $\eta_0 Q_B \hat{\phi} = 0$, $\hat{\phi} \ast \hat{\phi} = 0$, $\hat{\phi} \ast \eta_0 \hat{\phi} = 0$, $\hat{\phi} \ast Q_B \hat{\phi} = 0$, $\hat{\phi}$ is a solution: $\eta_0 (e^{-\hat{\phi}} Q_B e^{\hat{\phi}}) = 0$.

\[\Phi^{(\alpha, \beta)}_{(i)} (\hat{\phi}), \ (i = 1, 2, 3, 4) \] are also solutions.

Example of $\hat{\phi}$ using nonsingular matter supercurrent:

\[J^a(z, \theta) = \psi^a(z) + \theta J^a(z) \]

\[\hat{\phi} = \zeta_a U_1^\dagger U_1 c \xi e^{-\phi} \psi^a(0) |0\rangle, \quad \zeta_a \zeta_b \Omega^{ab} = 0, \]

where we suppose

\[\psi^a(y)\psi^b(z) \sim (y - z)^{-1} \Omega^{ab}, \]
\[J^a(y)\psi^b(z) \sim (y - z)^{-1} i f^{abc} \psi^c(z), \]
\[J^a(y)J^b(z) \sim (y - z)^{-2} \Omega^{ab} + (y - z)^{-1} i f^{abc} J^c(z). \]

More explicitly, on the flat background, we can take

\[J^\mu(z, \theta) = \psi^\mu(z) + \theta i \partial X^\mu(z), \quad \zeta_\mu \zeta_\nu \eta^{\mu\nu} = 0. \]
Gauge transformations

Using path-ordering, we found

\[
\Psi^{(\alpha,\beta)} = V^{(\alpha,\beta)-1} \ast \psi \ast V^{(\alpha,\beta)} + V^{(\alpha,\beta)-1} \ast Q_B \ast V^{(\alpha,\beta)},
\]

\[
V^{(\alpha,\beta)} = \mathcal{P} \exp \int_0^1 dt G^{(\alpha,\beta)}(t),
\]

\[
G^{(\alpha,\beta)}(t) \equiv \frac{-\pi}{2} \left(\alpha (B_1^L P_t \alpha) \ast \frac{1}{1 + \psi \ast A(t(\alpha+\beta))} \ast \psi \ast P_{t\beta} + \beta P_t \alpha \ast \frac{1}{1 + \psi \ast A(t(\alpha+\beta))} \ast \psi \ast B_1^R P_{t\beta} \right),
\]

for bosonic SFT.

(In the case \(\alpha = \beta \), this form coincides with Ellwood’s one.)

In this sense,

\[\Psi^{(\alpha,\beta)} \sim \hat{\psi}\]

Without the identity state, including Schnabl's marginal and scalar solutions

Based on the identity state, BRST inv. and nilpotent
• Similarly, in super SFT, we have found

\begin{align*}
&\quad e^{\Phi_{(3)}^{(\alpha,\beta)}} = W_1 \ast e^\phi \ast W_2, \quad Q_B W_1 = 0, \quad \eta_0 W_2 = 0, \\
&\quad W_1 \equiv P' \exp \int_0^1 dt G_1^{(\alpha,\beta)}(t), \quad W_2 \equiv P \exp \int_0^1 dt G_2^{(\alpha,\beta)}(t), \\
&\quad G_1^{(\alpha,\beta)}(t) \equiv \frac{\pi}{2} \left[-\alpha K_1^L I + (\alpha + \beta) Q_B B_1^R \left(P_{t\alpha} - \frac{1}{1 - Q_B ((e^\phi - 1) \eta_0 \hat{A}^{(t,\alpha+\beta)}(1 - e^\phi))} P_{t\beta} \right) \right], \\
&\quad G_2^{(\alpha,\beta)}(t) \equiv \frac{\pi}{2} \left[\alpha K_1^L I + (\alpha + \beta) B_1^R \left(P_{t\alpha}(e^{-\phi} Q_B e^\phi) - \frac{1}{1 - \eta_0 \hat{A}^{(t,\alpha+\beta)}(1 - e^{-\phi})} P_{t\beta} \right) \right], \\
&\quad e^{\Phi_{(1)}^{(\alpha,\beta)}} = W_3 \ast e^\phi \ast W_4, \quad Q_B W_3 = 0, \quad \eta_0 W_4 = 0, \\
&\quad W_3 \equiv P' \exp \int_0^1 dt G_4^{(\alpha,\beta)}(t), \quad W_4 \equiv P \exp \int_0^1 dt G_3^{(\alpha,\beta)}(t), \\
&\quad G_3^{(\alpha,\beta)}(t) \equiv \frac{\pi}{2} \left[\alpha K_1^L I - (\alpha + \beta) \eta_0 \hat{G}_1^{-R} \left(P_{t\alpha} - \frac{1}{1 - \eta_0 ((1 - e^\phi) Q_B \hat{A}^{(t,\alpha+\beta)}(1 - e^\phi))} P_{t\beta} \right) \right], \\
&\quad G_4^{(\alpha,\beta)}(t) \equiv \frac{\pi}{2} \left[-\alpha K_1^L I + (\alpha + \beta) \hat{G}_1^{-R} \left(P_{t\alpha}(e^{-\phi} \eta_0 e^{-\phi} Q_B \hat{A}^{(t,\alpha+\beta)}(e^\phi - 1)) - \frac{1}{1 + (e^\phi \eta_0 e^{-\phi}) Q_B \hat{A}^{(t,\alpha+\beta)}(e^\phi - 1))} P_{t\beta} \right) \right].
\end{align*}

\begin{align*}
&\quad e^{\Phi_{(2)}^{(\alpha,\beta)}} = U_{23} \ast e^{\Phi_{(3)}^{(\alpha,\beta)}}, \quad e^{\Phi_{(1)}^{(\alpha,\beta)}} = e^{\Phi_{(4)}^{(\alpha,\beta)}} \ast V_{41}, \\
&\quad U_{23} \equiv 1 - Q_B \left(P_{t\alpha}(e^\phi - 1)) - \frac{1}{1 - \eta_0 \hat{A}^{(\alpha+\beta)}(e^\phi - 1))} \eta_0 \hat{A}^{(\alpha+\beta)}(1 - e^\phi) P_{t\beta} \right), \\
&\quad V_{41} \equiv 1 + \eta_0 \left(P_{t\alpha}(1 - e^{-\phi}) - \frac{1}{1 + Q_B \hat{A}^{(\alpha+\beta)}(e^\phi - 1))} Q_B \hat{A}^{(\alpha+\beta)}(e^\phi - 1)) P_{t\beta} \right).
\end{align*}
In this sense, \(\Phi^{(\alpha, \beta)}_{(i)} \sim \hat{\phi} \)

Based on the identity state,

\[
\eta_0 Q_B \hat{\phi} = 0, \quad \hat{\phi} \ast \hat{\phi} = 0, \\
\hat{\phi} \ast \eta_0 \hat{\phi} = 0, \quad \hat{\phi} \ast Q_B \hat{\phi} = 0.
\]

Note:
The above gauge equivalence relations seem to be *formal* and might not be well-defined.
The gauge parameter string fields might become “singular,” as well as Schnabl or Takahashi-Tanimoto’s tachyon solution.
Future problems

• How about general (super)currents? Namely, $\zeta_a \zeta_b g^{ab} \neq 0$, $\zeta_a \zeta_b \Omega^{ab} \neq 0$.

C.f. [KORZ], [Fuchs-Kroyter-Potting], [Fuchs-Kroyter], [Kiermaier-Okawa]

In [Takahashi-Tanimoto, Kishimoto-Takahashi] some solutions based on the identity state for general (super)current were already constructed.

At least formally, $\Psi^{(\alpha,\beta)}(\Psi^{TT})$ and $\Phi^{(\alpha,\beta)}(\Phi^{KT})$ with $\alpha, \beta > 0$

give solutions which are not based on the identity state!

Zeze’s talk!

So far, various computations seem to be rather formal.

• Definition of the “regularity” of string fields?

It is very important in order to investigate “regular solutions,”
gauge transformations among them and cohomology around them.
理研シンポジウム

弦の場の理論 07

10月6日（土），7日（日）

埼玉県和光市理化学研究所
大河内記念ホール

http://www.riken.jp/lab-www/theory/sft/