Cardiovascular Manifestations of Renovascular Hypertension in Diabetic Mice

Sonu Kashyap, Sean Engel, Mazen Osman, Yousif Al-Saiegh, Asarn Wongjarupong, Joseph P Grande

Purpose. Type 2 diabetes is the leading cause of end stage renal disease in the United States. Atherosclerotic renal artery stenosis is commonly observed in diabetic patients and impacts the rate of renal and cardiovascular disease progression. We sought to test the hypothesis that renovascular hypertension, induced by unilateral renal artery stenosis, exacerbates cardiac remodeling in leptin-deficient (db/db) mice, which serves as a model of human type II diabetes. **Methods.** We employed a murine model of renovascular hypertension through placement of a polytetrafluoroethylene cuff on the right renal artery in db/db mice. We studied 109 wild-type (non-diabetic, WT) and 95 db/db mice subjected to renal artery stenosis (RAS) or sham surgery studied at 1, 2, 4, and 6+ weeks following surgery. Cardiac remodeling was assessed by quantitative analysis of the percent of myocardial surface area occupied by interstitial fibrosis tissue, as delineated by trichrome stained slides. Aortic pathology was assessed by histologic sampling of grossly apparent structural abnormalities or by section of ascending aorta of vessels without apparent abnormalities. **Results.** We noted an increased mortality in db/db mice subjected to RAS. The mortality rate of db/db RAS mice was about 23.5%, whereas the mortality rate of WT RAS mice was only 1.5%. Over 60% of mortality in the db/db mice occurred in the first two weeks following RAS surgery. Necropsy showed massive intrathoracic hemorrhage associated with aortic dissection, predominantly in the ascending aorta and proximal descending aorta. Aortas from db/db RAS mice showed more smooth muscle dropout, loss of alpha smooth muscle actin expression, medial disruption, and hemorrhage than aortas from WT mice with RAS. Cardiac tissue from db/db RAS mice had more fibrosis than did cardiac tissue from WT RAS mice. **Conclusions.** db/db mice subjected to RAS are prone to develop fatal aortic dissection, which is not observed in WT mice with RAS. The db/db RAS model provides the basis for future studies directed towards defining basic mechanisms underlying the interaction of hypertension and diabetes on the development of aortic lesions.
Cardiovascular Manifestations of Renovascular Hypertension in Diabetic Mice

Sonu Kashyap1, Sean R. Engel1,2, Mazen Osman1, Yousif Al-Saiegh3, Asarn Wongjarupong4, and Joseph P. Grande1,5

1Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN, 2Wartburg College, Waverly, IA, 3Hannover Medical School (MHH), Hannover, Germany, 4Chulalongkorn University, Bangkok, Thailand, 5Division of Nephrology & Hypertension, Mayo Clinic, Rochester, MN 55905 USA

Number of Text Pages: 29
Number of Tables: 2
Number of Figures: 5

Corresponding Author: Joseph P. Grande, M.D., Ph.D.
Mayo Clinic
200 First Street SW
Rochester MN 55905 USA
Email: grande.joseph@mayo.edu
Tel: 1-507-266-9356; Fax: 1-507-266-1163
ABSTRACT

Purpose. Type 2 diabetes is the leading cause of end stage renal disease in the United States. Atherosclerotic renal artery stenosis is commonly observed in diabetic patients and impacts the rate of renal and cardiovascular disease progression. We sought to test the hypothesis that renovascular hypertension, induced by unilateral renal artery stenosis, exacerbates cardiac remodeling in leptin-deficient (db/db) mice, which serves as a model of human type II diabetes.

Methods. We employed a murine model of renovascular hypertension through placement of a polytetrafluoroethylene cuff on the right renal artery in db/db mice. We studied 109 wild-type (non-diabetic, WT) and 95 db/db mice subjected to renal artery stenosis (RAS) or sham surgery studied at 1, 2, 4, and 6+ weeks following surgery. Cardiac remodeling was assessed by quantitative analysis of the percent of myocardial surface area occupied by interstitial fibrosis tissue, as delineated by trichrome stained slides. Aortic pathology was assessed by histologic sampling of grossly apparent structural abnormalities or by section of ascending aorta of vessels without apparent abnormalities.

Results. We noted an increased mortality in db/db mice subjected to RAS. The mortality rate of db/db RAS mice was about 23.5%, whereas the mortality rate of WT RAS mice was only 1.5% . Over 60% of mortality in the db/db mice occurred in the first two weeks following RAS surgery. Necropsy showed massive intrathoracic hemorrhage associated with aortic dissection, predominantly in the ascending aorta and proximal descending aorta. Aortas from db/db RAS mice showed more smooth muscle dropout, loss of alpha smooth muscle actin expression, medial disruption, and hemorrhage than aortas from WT mice with RAS. Cardiac tissue from db/db RAS mice had more fibrosis than did cardiac tissue from WT RAS mice.
Conclusions. db/db mice subjected to RAS are prone to develop fatal aortic dissection, which is not observed in WT mice with RAS. The db/db RAS model provides the basis for future studies directed towards defining basic mechanisms underlying the interaction of hypertension and diabetes on the development of aortic lesions.
INTRODUCTION

Diabetes, hypertension, and hyperlipidemia are major risk factors for the development of cardiovascular disease, the leading cause of death in the United States [1]. Diabetes is the most common cause of chronic renal disease, and is responsible for up to 50% of end stage renal disease cases in developed countries [2]. In addition to increased risk for myocardial infarction and stroke, patients with diabetes are prone to develop a diabetic cardiomyopathy, characterized by extensive fibrotic changes and cardiomyocyte hypertrophy, leading to increased myocardial stiffness and diastolic dysfunction [3, 4].

Hypertension is a major risk factor for both renal disease progression and cardiovascular morbidity and mortality in patients with type 2 diabetes[5]. Atherosclerotic renal artery stenosis is one of the most common causes of secondary hypertension [6]. The prevalence of renal artery stenosis approaches 7% in individuals greater than 65 years of age and is up to 45% in patients with coronary artery or aortoiliac disease [7-9]. The prevalence of renal artery stenosis varies from 17-44% in patients with hypertension and diabetes [10].

It is well recognized that renal artery stenosis promotes cardiac remodeling, characterized by replacement of myocardial tissue with extracellular matrix [11, 12]. However, mechanisms underlying the additive or synergistic effects of renovascular hypertension and cardiac remodeling have not been adequately addressed in previous studies. In order to address this issue, we have established a murine model of diabetic renovascular disease through placement of a cuff on the right renal artery of leptin deficient mice (db/db mice), which develop obesity and type 2 diabetes [13].

Throughout the course of our studies, we found an increased incidence of sudden death in db/db mice subjected to renal artery stenosis (RAS), which was not observed in wild-type mice.
subjected to RAS. Necropsy of mice available for analysis revealed massive hemothorax and/or hemoperitoneum, which was associated with aortic dissection.

The objective of this study was to characterize the aortic and cardiac phenotype of db/db mice subjected to RAS. We found that cardiac tissue from db/db RAS mice had more fibrosis than did cardiac tissue from WT RAS mice studied at greater than 2 weeks following surgery. Aortas from db/db RAS mice had more smooth muscle dropout, medial disruption, and hemorrhage than did aortas from WT mice with RAS at both early (less than 2 weeks) and late time points (greater than 2 weeks). The db/db RAS model provides the basis for future studies directed towards defining basic mechanisms underlying the interaction of hypertension and diabetes on the development of aortic lesions.
METHODS

Animal Model

For survival analysis, a total of C57BLKS (WT) (N = 109) and C57BLKS/JLepr (db/db) (N = 95) male mice, (Jackson Laboratory, Bar Harbor, ME) were studied. Both WT and db/db mice at 6-7 weeks age underwent RAS or sham surgery through placement of a polytetrafluoroethylene cuff (0.2 mm internal diameter) on the right renal artery, as previously described (N = 68 for WT and N= 64 db/db) [14, 15]. Sham surgery was performed through manipulation of the right renal artery without placement of the cuff (N = 41 for WT and N= 31 db/db). Mice were sacrificed at 1 week (N=33 WT RAS, N=22 WT sham, N=18 db/db RAS, N=5 db/db sham), 2 weeks (N=8 WT RAS, N=5 WT sham, N=17 db/db RAS, N=8 db/db sham), 4 weeks (N=10 WT RAS, N=5 WT sham, N=8 db/db RAS, N=5 db/db sham), 6 weeks (N=10 WT RAS, N=5 WT sham, N=13 db/db RAS, N=8 db/db sham), and 17 weeks (N=7 WT RAS, N=4 WT sham, N=8 db/db RAS, N=5 db/db sham).

For analysis of aortas and heart, a total of 38 WT RAS (N=18 harvested at week 1, N=3 week 4, N=10 week 6, and N=7 week 17), 19 WT sham (N=5 week 1, N=5 week 2, N=5 week 6, and N=4 week 17), 48 db/db RAS (N=11 week 1, N=10 week 2, N=7 week 4, N=12 week 6, N=8 week 17), and 22 db/db sham (N=5 week 1, N=3 week 2, N=9 week 6, and N=5 week 17) were studied. The animals studied were divided into early time point (pre 2 weeks following surgery) and late time point (post 2 weeks following surgery) groups. All animal protocols were performed after getting approval from the Mayo Clinic Institutional Animal Care and Use Committee for appropriate experiments.
All animal protocols were approved by the Mayo Clinic Institutional Animal Care and Use Committee for appropriate experiments (IACUC Protocol Number A62613).
Histological and Immunohistochemical analysis

Aortas were carefully examined for grossly apparent abnormalities, including dilation, medial disruption, or hemorrhage. Five aortas, obtained from db/db RAS mice that died suddenly, showed evidence of aortic dissections involving the ascending or proximal descending aorta. If there were no grossly apparent abnormalities, a section of ascending aorta, taken from the same site among samples, was submitted for histologic processing. Aorta and heart tissues were fixed with 10% neutral buffered formalin and then processed for histology or immunohistochemistry using standard techniques. Histological sections of heart and aorta (5 μm thick) were stained with hematoxylin-eosin (H&E). H&E was used for scoring the aorta pathology and aortic diameter. The aortic score numbers were represented as, 0 = normal aorta; 1 = isolated smooth muscle dropout; 2 = multifocal smooth muscle dropout; 3 = hemorrhage, necrosis, dissection, or mural thrombosis. Slides were read in a blinded fashion. Heart sections were also stained with Masson's trichrome stain and used for the quantification of fibrosis. Width of aorta and percentage of fibrosis in heart trichrome sections were quantified at 200x magnification using an Olympus BX50 microscope (Olympus America, Melville, NY), a Micropublisher 3.3 RTV camera (Q-Imaging, Surrey, BC), and the NIS Elements Imaging Software (Nikon Instruments, Inc., Melville, NY).

Sections of aortas were stained for alpha smooth muscle actin (1:500, Abcam Inc., Cambridge, MA). Loss of alpha smooth muscle actin in the media of aortas was semiquantitatively assessed as 0=none, 1=isolated, 2=multifocal, and 3=generalized. Assessment was conducted in a blinded fashion.

Statistical Analysis
Data are presented as mean ± SEM. Comparisons between two groups were done using student t-test for parametric data and Mann-Whitney test for nonparametric data. For comparison across multiple groups, one-way ANOVA followed by a Turkey adjustment was used for post-hoc comparison of the measurements. P values <0.05 were considered significant. Correlation analysis and all statistical comparisons were performed using Graphpad Prism 6 (GraphPad Software, La Jolla, CA).
RESULTS

A summary of heart weight, body weight and heart to body weight ratio at time of analysis is provided in Table 1. In accordance with our previous studies, both db/db RAS and WT RAS mice became hypertensive within 1 week and remained hypertensive thereafter, with no significant differences between db/db RAS and WT RAS at any time point [13]. As expected, the weight of both db/db sham and db/db RAS mice was significantly greater than that of WT sham and WT RAS mice. Although the heart weight of db/db RAS mice was significantly higher than that of db/db sham mice at late time point, this difference was not significant after correction for body weight (Table 1). However, the heart weight of WT RAS mice corrected for body weight was significantly greater than that of WT sham mice corrected for body weight at early time point (Table 1). At both time points, the heart weight to body weight ratio in WT sham mice was significantly greater than that of db/db sham mice (Table 1).

db/db mice with RAS had a higher mortality rate than WT mice with RAS

Fifteen of 64 (23.4%) db/db mice subjected to RAS died suddenly, whereas only 1 death was observed in 64 WT mice with RAS (1.5%, p<0.001). Mortality of db/db mice as a function of time following RAS surgery is summarized in Table 2. Necropsy, performed on 7 of the db/db mice that died suddenly, showed massive intrathoracic hemorrhage with evidence of aortic dissection. The dissections appeared to occur in the ascending aorta (Figure 1) or the proximal descending thoracic aorta. The aorta of the WT mouse that died suddenly was without grossly apparent or histopathologic abnormality. Approximately 60% of deaths in the db/db mice occurred in the two weeks following RAS surgery (Table 2).

Severity of aortic histopathologic lesions was greater in db/db RAS mice than WT RAS mice
Aortas were obtained for histopathologic analysis on 38 WT RAS mice (18 at week 1, 3 at week 4, 10 at week 6, and 7 at week 17), 19 WT sham mice (5 at week 1, 5 at week 2, 5 at week 6, and 4 at week 17), 48 db/db RAS mice (11 at week 1, 10 at week 2, 7 at week 4, 12 at week 6, and 8 at week 17), and 22 db/db sham mice (5 at week 1, 3 at week 2, 9 at week 6, and 5 at week 17). Histologic sections were obtained from the ascending aorta and proximal descending thoracic aorta, sites where grossly apparent aortic dissections were observed. If no aortic abnormalities were grossly apparent, a standard section of ascending aorta was obtained. A semiquantitative scoring system was employed to assess severity of aortic pathology, including medial smooth muscle dropout, medial disruption, hemorrhage, or necrosis; slides were read in a blinded fashion. Given that a majority of the sudden deaths in db/db mice with RAS occurred within the first 2 weeks following surgery, we compared histopathologic alterations in the aorta of mice studied at 2 weeks or less following surgery with those in the aorta of animals studied at greater than 2 weeks following surgery. No damage was found in the aortas of any db/db or WT sham mice. Aortic damage was observed in both db/db and WT RAS mice. Typical histopathologic alterations included medial smooth muscle dropout and medial disruption with hemorrhage (Figures 2 A-D). At both early and late time points, db/db RAS mice showed a significantly increased aortic pathology score compared to WT RAS mice (Figure 2E). Loss of aortic medial smooth muscle cells was associated with local or generalized reduction in medial alpha-smooth muscle actin expression (Figure 3). Loss of alpha smooth muscle actin expression was significantly correlated with aortic pathology score in db/db mice subjected to RAS and studied at early time points ($r^2=0.62$, $p=<0.0001$). Alpha smooth muscle actin scores did not significantly correlate with aortic pathology scores in db/db RAS mice studied at late time points or in WT RAS mice studied at early or late time points.
Increase in Aortic wall width observed in damaged aortae in both WT and db/db RAS mice

To determine whether aortic histopathologic alterations were associated with increased medial thickness, the aortic width was examined at 200x magnification, from the internal elastic lamina to the adventitia in WT and db/db RAS mice. Aortas demonstrating normal histopathology (score=0) were compared with those showing isolated smooth muscle dropout (score =1), multifocal smooth muscle dropout (score =2) or evidence of medial disruption, hemorrhage, or necrosis (score =3). The wall thickness of aortas showing minor to severe histopathologic abnormalities was significantly greater than that of aortas showing normal histopathology, in both db/db and WT RAS mice (p=0.002 for db/db and p=0.000 for WT) (Figure 4).

db/db RAS mice showed more cardiac fibrosis

Myocardial remodeling was determined as the percentage of surface area staining blue with trichrome stain, as assessed by computer-assisted quantitative morphometric analysis. Representative photomicrographs are shown in Figures 5 A-D. Cardiac fibrosis was increased in both db/db and WT RAS mice compared to their sham at both early and late time points (Figure 5E). There was a significantly higher degree of fibrosis in db/db RAS mice compared to WT RAS mice at time points greater than 2 weeks (Figure 5E). The extent of cardiac fibrosis did not correlate with aortic pathology.
We unexpectedly found an increased prevalence of aortic dissection leading to sudden death in db/db but not WT mice subjected to RAS. Aortas showed more medial smooth muscle dropout, medial disruption and hemorrhage in db/db mice than WT mice with RAS. Aortic lesions were observed in the ascending and proximal descending aorta, which are common sites for human aortic dissection.

Although a well-established risk factor for atherosclerosis, diabetes is associated with a reduced prevalence of atherosclerotic aortic aneurysms [16-19]. It is thought that production of advanced glycation end products and extracellular matrix deposition may lead to reduced macrophage infiltration, matrix metalloproteinase activity, and plasmin activation [18]. In the current study, we did not find any significant difference in aortic medial thickness between db/db and WT mice subjected to RAS. Furthermore, we did not find any evidence of atherosclerosis in the db/db mice. In order to reduce potential complications associated with delayed wound healing in older db/db mice, we performed RAS surgery on young (6-7 weeks old) mice, prior to the development of end organ manifestations of diabetes.

Aortic aneurysms and dissection result from either genetic or acquired defects in the aortic wall. Since aortic aneurysms are typically asymptomatic until they rupture, it is important to better characterize the pathophysiology of aortic aneurysms and to identify patients who are at increased risk of developing these catastrophic lesions. Several animal models of aortic aneurysms have been developed to elucidate basic mechanisms underlying the development of these lesions [20].

Ang II infusion in atherosclerotic Apolipoprotein E (Apo-E) deficient mice has been employed as a model of aortic aneurysms [20-22]. In addition to increasing blood pressure, Ang
II promotes influx of T cells and macrophages into the aorta and other vessels [23]. Ang II infusion promotes abdominal aortic aneurysms independent of increased blood pressure in hypercholesterolemic mice [24]. These studies suggest that the pro-inflammatory effect of Ang II is more important than its hypertensive effect in the development of aortic aneurysms [24].

Along these lines, the incidence of both atherosclerosis and of aortic aneurysms is significantly reduced in Apo-E deficient mice lacking CCR2, a critical receptor that directs influx of macrophages and T cells to sites of tissue injury [22]. Although endogenous angiotensin II production is likely responsible for the development of aortic lesions in mice with RAS, the dissections observed in the current study were observed primarily in the ascending and proximal descending aorta, whereas angiotensin II infused mice tend to develop abdominal aortic aneurysms [20, 24, 25]. Mononuclear cell infiltrates were observed in both WT and db/db RAS mice, in accordance with studies indicating that angiotensin II promotes vascular inflammation [26, 27]. However, we did not observe any significant differences in the severity of mononuclear cell infiltrates between WT and db/db RAS mice in this study.

Recent studies have defined a critical role for TGF-β signaling in the pathogenesis of aortic aneurysms and dissection. TGF-β signaling is initiated through binding of TGF-β to the type 2 receptor (TBR2), recruitment of the type 1 receptor (TBR1), followed by phosphorylation of SMAD3, recruitment of SMAD4, nuclear translocation and activation of target genes [28, 29]. Mutations in SMAD3, have been identified in up to 2% of patients with familial thoracic aneurysms leading to acute aortic dissection [30]. Patients with the Loeys-Dietz syndrome have mutations in receptors for TGF-β (TGFBR1 and TGFBR2) [31]. In mice with homozygous deletion of the Smad3 gene, angiotensin II (Ang II) infusion promotes the development of aortic aneurysms and aortic dissection. Development of aneurysms is due to
Ang II mediated macrophage infiltration and upregulation of NOS2 (inducible nitric oxide synthase), matrix metalloproteinases (MMP) 2 and 9 rather than hypertension alone [32]. Of note, we did not observe any aortic dissections in our previous study employing RAS in mice bearing homozygous deletion of the Smad3 gene [14].

In addition to the increased risk of developing ischemic heart disease, patients with diabetes are prone to develop diabetic cardiomyopathy, characterized by cardiac hypertrophy, myocardial fibrosis, and diastolic dysfunction [3]. Although leptin-deficient db/db mice do not develop myocardial remodeling or cardiac dysfunction, they are more susceptible to Ang II mediated hypertrophy and dysfunction [33]. Along these lines, we observed more severe cardiac remodeling in db/db RAS mice than WT RAS mice. Smad3 null mice crossed with leptin deficient db/db diabetic mice were protected from the development of diabetic cardiomyopathy [34]. However, db/db SMAD3 null mice showed increased mortality due to spontaneous rupture of the ascending aorta. [34]. SMAD3 deficiency was associated with increased MMP-2 and MMP-9 activity, with no change in tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) activity.

In mice fed a high fat diet or obese ob/ob mice, Ang II infusion promotes macrophage influx into the aorta and fosters the development of aortic aneurysms [25]. In our model, which employs endogenous activation of the renin-angiotensin system due to renal artery stenosis [14, 15, 35] we find that db/db mice are more susceptible to both renal and cardiovascular disease than WT mice, despite similar elevation in systolic blood pressure [13]. In our previous study of db/db mice subjected to RAS, we found that angiotensin I production is elevated in both db/db and WT mice, but returns to baseline levels by 6 weeks following surgery [13], making it
unlikely that differences in blood pressure or angiotensin II production are responsible for the development of aortic dissection in db/db mice.

Although we believe that this is the first study to document aortic lesions in db/db mice subjected to renovascular hypertension, there are several limitations. First, this was a retrospective study which was not designed to identify aortic lesions. It was not possible to perform histopathologic analysis on many of the mice that died suddenly. Nevertheless, we were able to identify more aortic lesions in db/db mice, even in vessels with no grossly apparent pathology. Finally, we have not established a potential mechanism through which hyperglycemia/diabetes interacts with renovascular hypertension to produce the aortic lesions. This may be at least in part due to the fact that many, if not most, of the aortas obtained from both db/db or WT mice had minor histopathologic abnormalities. Although an effort was made to sample grossly abnormal regions of the aorta, the focal nature of the lesions may lead to an underestimation of the degree of histologic abnormalities, including macrophage infiltration.

Placement of a cuff on the right renal artery produces kidney lesions that recapitulate many of the histopathologic features of human renal artery stenosis [36]. The stenotic kidney of mice with RAS develops progressive tubular atrophy, interstitial inflammation, and interstitial fibrosis [15, 35], whereas the contralateral kidney undergoes compensatory enlargement with minimal histopathologic abnormalities. Unlike WT mice, db/db mice subjected to RAS develop bilateral, progressive renal disease, with severe atrophy of the stenotic kidney and diffuse mesangial sclerosis, with segmental and global glomerulosclerosis, interstitial fibrosis, and tubular atrophy—features reminiscent of diabetic nephropathy. Of note, the severity of renal or cardiac lesions did not correlate with aortic pathology. Future studies will determine whether the diabetic phenotype interacts with the pro-inflammatory state driven by elevated Ang II levels and
will define maladaptive signaling pathways triggered through which hyperglycemia/diabetes intersect with renovascular hypertension to produce aortic dissection.
ACKNOWLEDGMENTS

We thank Karen Lien for assistance with histology.
FIGURE LEGENDS

Table 1. Mean±SEM body weight, heart weight and the heart to body weight ratio of WT and db/db mice groups.

Table 2. Number of mortality observed in WT and db/db mice as function of time. db/db RAS mice showed the highest mortality.

Figure 1. Photograph of aorta dissection showing the severe rupture just distal to aortic root. Representative photograph of aortic rupture. In the study, most aortic ruptures were found in the ascending aorta.

Figure 2. db/db mice showed higher mean pathology score at both early and late time points. Representative images of aorta illustrating semiquantitative histologic assessment scores. A. shows normal aorta (score of 0). B. Focal myocyte dropout (Score of 1). C. Multifocal myocyte dropout (Score of 2). D. Medial disruption and hemorrhage (Score of 3). Mean pathology score of db/db and WT early and late time points animals subjected to RAS surgery. *p=0.007, **p=0.0034 in comparison to WT group.

Figure 3. db/db mice showed more α smooth muscle actin loss in aorta at both early and late time points compared to WT. Representative images of aorta illustrating semiquantitative assessment of α smooth muscle actin (α SMA) loss at 400x using α SMA staining. A. shows no loss of α SMA stain (score of 0). B. focal loss of α SMA stain (Score of 1). C. multifocal loss of α SMA stain (Score of 2). D. extensive loss of α SMA stain (Score of 3). E. Mean α SMA stain
loss score of db/db and WT early and late time points animals. *p=0.0152, **p=0.002, #p=0.0001
in comparison to respective sham groups. $p=0.0001.

Figure 4. Abnormal aorta showed increased overall wall thickness. Mean aortic medial
thickness was greater in aortas with histopathological scores of 1, 2, or 3 versus a score of 0 in
both WT and db/db mice (*p = 0.002, **p=0.0001).

**Figure 5. Increased cardiac fibrosis in db/db RAS mice compared to WT at later time
points.** Myocardial fibrosis was assessed by quantitative image analysis of trichrome stained
sections at 200x magnification obtained from A. WT sham, B. db/db sham, C. WT RAS and D.

db/db RAS mice (E). The mean percentage of fibrosis in db/db and WT mice at early and late
time points. Both WT and db/db showed increase % fibrosis following RAS compared to their
respective sham at both early and late time points. db/db RAS mice had significantly more
fibrosis compared to WT RAS at late time points. *p =0.02, **p=0.009, #p=0.001, $p=0.0001
compared to their respective shams and &p=0.03.
REFERENCES

1. Lee MS, Flammer AJ, Kim HS, Hong JY, Li J, Lennon RJ, Lerman A: The prevalence of cardiovascular disease risk factors and the Framingham Risk Score in patients undergoing percutaneous intervention over the last 17 years by gender: time-trend analysis from the Mayo Clinic PCI Registry. *J Prev Med Public Health* 2014, 47(4):216-229.

2. Tuttle KR, Bakris GL, Bilous RW, Chiang JL, de Boer IH, Goldstein-Fuchs J, Hirsch IB, Kalantar-Zadeh K, Narva AS, Navaneethan SD et al: Diabetic kidney disease: a report from an ADA Consensus Conference. *Diabetes Care* 2014, 37(10):2864-2883.

3. Asbun J, Villarreal FJ: The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy. *J Am Coll Cardiol* 2006, 47(4):693-700.

4. Ryden L, Grant PJ, Anker SD, Berne C, Cosentino F, Danchin N, Deaton C, Escaned J, Hammes HP, Huikuri H et al: ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: the Task Force on diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and developed in collaboration with the European Association for the Study of Diabetes (EASD). *Eur Heart J* 2013, 34(39):3035-3087.

5. Ghaderian SB, Hayati F, Shayanpour S, Beladi Mousavi SS: Diabetes and end-stage renal disease; a review article on new concepts. *J Renal Inj Prev* 2015, 4(2):28-33.

6. Safian RD, Textor SC: Renal-artery stenosis. *N Engl J Med* 2001, 344(6):431-442.
7. Hansen KJ, Edwards MS, Craven TE, Cherr GS, Jackson SA, Appel RG, Burke GL, Dean RH: Prevalence of renovascular disease in the elderly: a population-based study. J Vasc Surg 2002, 36(3):443-451.

8. Weber-Mzell D, Kotanko P, Schumacher M, Klein W, Skrabal F: Coronary anatomy predicts presence or absence of renal artery stenosis. A prospective study in patients undergoing cardiac catheterization for suspected coronary artery disease. Eur Heart J 2002, 23(21):1684-1691.

9. Iglesias JI, Hamburger RJ, Feldman L, Kaufman JS: The natural history of incidental renal artery stenosis in patients with aortoiliac vascular disease. Am J Med 2000, 109(8):642-647.

10. Valabhji J, Robinson S, Poulter C, Robinson AC, Kong C, Henzen C, Gedroyc WM, Feher MD, Elkeles RS: Prevalence of renal artery stenosis in subjects with type 2 diabetes and coexistent hypertension. Diabetes Care 2000, 23(4):539-543.

11. Khan AR, Sheikh M, Kaw D, Cooper CJ, Khouri SJ: Prevalence and factors associated with left ventricular remodeling in renal artery stenosis. J Am Soc Hypertens 2014, 8(4):254-261.

12. Al-Suraih M, Grande JP: Management of renal artery stenosis: What does the experimental evidence tell us? World J Cardiol 2014, 6(8):855-860.

13. Hartono SP, Knudsen BE, Lerman LO, Textor SC, Grande JP: Combined effect of hyperfiltration and renin angiotensin system activation on development of chronic kidney disease in diabetic db/db mice. BMC Nephrol 2014, 15(1):58.

14. Warner GM, Cheng J, Knudsen BE, Gray CE, Deibel A, Juskewitch JE, Lerman LO, Textor SC, Nath KA, Grande JP: Genetic deficiency of Smad3 protects the kidneys
from atrophy and interstitial fibrosis in 2K1C hypertension. *Am J Physiol Renal Physiol* 2012, **302**(11):F1455-1464.

15. Wang D, Warner GM, Yin P, Knudsen BE, Cheng J, Butters KA, Lien KR, Gray CE, Garovic VD, Lerman LO et al: Inhibition of p38 MAPK attenuates renal atrophy and fibrosis in a murine renal artery stenosis model. *Am J Physiol Renal Physiol* 2013, **304**(7):F938-947.

16. Takagi H, Umemoto T, of Group A: Diabetes and Abdominal Aortic Aneurysm Growth. *Angiology* 2015.

17. Golledge J, Cooper ME, Chai Z: Diabetes and Aortic Aneurysm. *Angiology* 2015.

18. Pafili K, Gouni-Berthold I, Papanas N, Mikhailidis DP: Abdominal aortic aneurysms and diabetes mellitus. *Journal of diabetes and its complications* 2015.

19. Pafili K, Gouni-Berthold I, Papanas N: Abdominal aortic aneurysms: do not underestimate the role of diabetes. *Expert review of cardiovascular therapy* 2015:1-2.

20. Baker KM, Campanile CP, Trachte GJ, Peach MJ: Identification and characterization of the rabbit angiotensin II myocardial receptor. *Circ Res* 1984, **54**(3):286-293.

21. van Kats JP, Danser AH, van Meegen JR, Sassen LM, Verdouw PD, Schalekamp MA: Angiotensin production by the heart: a quantitative study in pigs with the use of radiolabeled angiotensin infusions. *Circulation* 1998, **98**(1):73-81.

22. Daugherty A, Rateri DL, Charo IF, Owens AP, Howatt DA, Cassis LA: Angiotensin II infusion promotes ascending aortic aneurysms: attenuation by CCR2 deficiency in apoE-/- mice. *Clin Sci (Colch)* 2010, **118**(11):681-689.
23. Lindpaintner K, Ganten D: The cardiac renin-angiotensin system. An appraisal of present experimental and clinical evidence. *Circ Res* 1991, **68**(4):905-921.

24. Qian F, Montgomery RR: Quantitative Imaging of Lineage-specific Toll-like Receptor-mediated Signaling in Monocytes and Dendritic Cells from Small Samples of Human Blood. 2012(62):e3741.

25. Clauser E: [Molecular structure and function of angiotensin ii receptors]. *Nephrologie* 1998, **19**(7):403-410.

26. Klingbeil AU, Schneider M, Martus P, Messerli FH, Schmieder RE: A meta-analysis of the effects of treatment on left ventricular mass in essential hypertension. *Am J Med* 2003, **115**(1):41-46.

27. Harrison DG, Vinh A, Lob H, Madhur MS: Role of the adaptive immune system in hypertension. *Current Opinion in Pharmacology* 2010, **10**(2):203-207.

28. Cheng JF, Grande JP: Transforming growth factor-beta signal transduction and progressive renal disease. *Experimental Biology & Medicine* 2002, **227**(11):943-956.

29. Cheng J, Grande JP: Transforming growth factor-B and kidney dysfunction. *Journal of Organ Dysfunction* 2009, **5**(3):182-192.

30. Regalado ES, Guo DC, Villamizar C, Avidan N, Gilchrist D, McGillivray B, Clarke L, Bernier F, Santos-Cortez RL, Leal SM *et al*: Exome sequencing identifies SMAD3 mutations as a cause of familial thoracic aortic aneurysm and dissection with intracranial and other arterial aneurysms. *Circ Res* 2011, **109**(6):680-686.
31. Loeys BL, Schwarze U, Holm T, Callewaert BL, Thomas GH, Pannu H, De Backer JF, Oswald GL, Symoens S, Manouvrier S et al: Aneurysm syndromes caused by mutations in the TGF-beta receptor. *N Engl J Med* 2006, 355(8):788-798.

32. Tan CK, Tan EH, Luo B, Huang CL, Loo JS, Choong C, Tan NS: SMAD3 deficiency promotes inflammatory aortic aneurysms in angiotensin II-infused mice via activation of iNOS. *J Am Heart Assoc* 2013, 2(3):e000269.

33. Harrap SB, Dominiczak AF, Fraser R, Lever AF, Morton JJ, Foy CJ, Watt GC: Plasma angiotensin II, predisposition to hypertension, and left ventricular size in healthy young adults. *Circulation* 1996, 93(6):1148-1154.

34. Biernacka A, Cavalera M, Wang J, Russo I, Shinde A, Kong P, Gonzalez-Quesada C, Rai V, Dobaczewski M, Lee D-WW et al: Smad3 Signaling Promotes Fibrosis While Preserving Cardiac and Aortic Geometry in Obese Diabetic Mice. *Circulation Heart failure* 2015, 8(4):788-798.

35. Cheng J, Zhou W, Warner GM, Knudsen BE, Garovic VD, Gray CE, Lerman LO, Platt JL, Romero JC, Textor SC et al: Temporal analysis of signaling pathways activated in a murine model of 2-kidney, 1-clip hypertension. *Am J Physiol Renal Physiol* 2009, 297(4):F1055-1068.

36. Keddis MT, Garovic VD, Bailey KR, Wood CM, Raissian Y, Grande JP: Ischaemic nephropathy secondary to atherosclerotic renal artery stenosis: clinical and histopathological correlates. *Nephrol Dial Transplant* 2010.
Table 1.

Mice Group	Early Time Point			Late Time Point	Heart Weight (mg)	Heart/Body Weight Ratio
	Body Weight (g)	Heart Weight (mg)	Heart/Body Weight Ratio	Body Weight (g)	Heart Weight (mg)	Heart/Body Weight Ratio
WT RAS	18.9±0.5*	134.4±4.5	7.1±0.2@&	23.7±0.5*	146.8±3.5*	6.2±0.2@
db/db RAS	32.5±0.8*	140.0±3.1	4.4±0.1@	38.6±1.4*,**	183.1±9.1*	4.9±0.3@
WT Sham	21.1±0.2*	125.0±3.7	5.9±0.2&@	25.8±0.4**	143.3±5.0	5.6±0.1&
db/db Sham	33.3±1.2*	131.4±6.3	4.0±0.1@	32.7±1.6**	131.4±5.8*	4.2±0.3&

* p<0.001 = Body weight comparison between db/db RAS vs WT RAS at both early and late time points, WT sham vs db/db sham early time point.
** p<0.05 = Body weight comparison between WT sham vs db/db sham late time point, db/db RAS vs db/db sham at late time point.
@ p<0.001 = Heart weight comparison between db/db RAS vs WT RAS at late time point, db/db RAS vs db/db sham at late time point.
p<0.001 = Heart to body weight ratio comparison between db/db RAS vs WT RAS at both early and late time points, WT sham vs db/db sham early time point.
& p<0.05 = Heart to body weight ratio comparison between WT sham vs db/db sham late time point, WT RAS vs WT sham early time point.
Table 2.

Mice Group	Days Following Surgery												
	1	3	4	5	7	9	14	28	40	61	90	104	117
db/db/ RAS	1	2	1	2	2	0	1	1	1	1	1	1	1
db/db/ Sham	0	0	0	0	0	0	0	0	0	0	0	0	0
WT/RAS	0	0	0	0	0	1	0	0	0	0	0	0	0
WT/Sham	0	0	0	0	0	0	0	0	0	0	0	0	0
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

A.

B.

C.

D.

E.

% Area Fibrosis (Trichrome)