Kakeya Sets Over non-Archimedean Local Rings

Evan P. Dummit

University of Wisconsin-Madison

October 13, 2012
Outline:

1. Classical Kakeya problem
2. Finite-field Kakeya problem
3. Kakeya problem over local rings
4. Open questions

This is joint work with M. Hablicek (UW-Madison).
Classical Kakeya Problem

Definition

A **Kakeya set** (or Besicovitch set) is a set of points in Euclidean space which contains a unit line segment in every direction.
Classical Kakeya Problem

Definition

A **Kakeya set** (or Besicovitch set) is a set of points in Euclidean space which contains a unit line segment in every direction.

Theorem (A. Besicovitch; 1919)

For $n \geq 2$, *there exists a Kakeya set of measure 0 in* \mathbb{R}^n.
The Kakeya conjecture

Definition

The **Minkowski dimension** of a set K is defined to be

$$\dim(K) = \lim_{\epsilon \to 0} \frac{\log N(\epsilon)}{\log(1/\epsilon)}$$

where $N(\epsilon)$ is the number of squares of size ϵ needed to cover K.

- The Kakeya conjecture

 Any Kakeya set in \mathbb{R}^n is of Minkowski dimension n.

 The conjecture is known to hold when $n = 2$ but only lower bounds are known for $n > 2$.

The Kakeya conjecture

Definition

The **Minkowski dimension** of a set K is defined to be

$$\dim(K) = \lim_{\epsilon \to 0} \frac{\log N(\epsilon)}{\log(1/\epsilon)}$$

where $N(\epsilon)$ is the number of squares of size ϵ needed to cover K.

Conjecture (Kakeya conjecture)

Any Kakeya set in \mathbb{R}^n is of Minkowski dimension n.

The conjecture is known to hold when $n = 2$ but only lower bounds are known for $n > 2$.
Kakeya sets over finite fields

Definitions:

- Let \mathbb{F}_q be a finite field, and n a fixed positive integer.
- Space of interest: $S = \mathbb{F}_q^n$.
- Lines in S are of the form $\{x + sy : s \in \mathbb{F}_q, x, y \in S\}$.
- A direction in S is an equivalence class of y giving the same line.
- A Kakeya set is a set containing a line in every direction.
Kakeya sets over finite fields

Definitions:

- Let \mathbb{F}_q be a finite field, and n a fixed positive integer.
- Space of interest: $S = \mathbb{F}_q^n$.
- Lines in S are of the form $\{x + sy : s \in \mathbb{F}_q, x, y \in S\}$.
- A direction in S is an equivalence class of y giving the same line.
- A Kakeya set is a set containing a line in every direction.

Theorem (Dvir; 2008)

Any Kakeya set in \mathbb{F}_q^n contains at least $\frac{q^n}{n!}$ points.

In other words, a Kakeya set over a finite field always has positive measure. (This proves the Kakeya conjecture over \mathbb{F}_q.)
Between \mathbb{R} and \mathbb{F}_q

Over \mathbb{R} there exist Kakeya sets of measure zero, but over \mathbb{F}_q, there exists a hard lower bound on measure (independent of q). What’s in between?

Question (J. Ellenberg, R. Oberlin, T. Tao; 2009)

Are there Besicovitch phenomena in $\mathbb{F}_q[[t]]^n$ or in \mathbb{Z}_p^n?

In other words, do there exist Kakeya sets of measure 0 in these spaces?
Between \mathbb{R} and \mathbb{F}_q

Over \mathbb{R} there exist Kakeya sets of measure zero, but over \mathbb{F}_q, there exists a hard lower bound on measure (independent of q). What's in between?

Question (J. Ellenberg, R. Oberlin, T. Tao; 2009)

Are there Besicovitch phenomena in $\mathbb{F}_q[[t]]^n$ or in \mathbb{Z}_p^n?

In other words, do there exist Kakeya sets of measure 0 in these spaces?

Theorem (E.D., Hablicek; 2011)

There exists a Kakeya set of measure 0 in $\mathbb{F}_q[[t]]^n$ for each $n \geq 2$.

Proof: Explicit construction.
Preliminaries

Definitions:

- Space of interest: \(S = \mathbb{F}_q[[t]]^n \).
- Lines in \(S \) are of the form \(\{x + sy : s \in \mathbb{F}_q[[t]], x, y \in S\} \).
- A direction in \(S \) is an equivalence class of \(y \), for which at least one coordinate is a unit.
- A **Kakeya set** is a set containing a line in every direction.
- The Haar measure \(\mu \) on \(S \) is generated by the projections \(\pi_k : \mathbb{F}_q[[t]] \to \mathbb{F}_q[[t]]/(t^k) \), where the measure on \((\mathbb{F}_q[[t]]/(t^k))^n \) is the probability measure.
Observations:

- Only need to construct a Kakeya set K of measure zero in $\mathbb{F}_q[[t]]^2$, then just take $K \times \mathbb{F}_q[[t]]^{n-2}$ in general.

- In $\mathbb{F}_q[[t]]^2$, only need to construct a set H containing all lines with direction vectors $(1, b)$; then $K = \{(x, y) : (x, y) \text{ or } (y, x) \in H\}$ is Kakeya.
Construction, I

Observations:

- Only need to construct a Kakeya set K of measure zero in $\mathbb{F}_q[[t]]^2$, then just take $K \times \mathbb{F}_q[[t]]^{n-2}$ in general.

- In $\mathbb{F}_q[[t]]^2$, only need to construct a set H containing all lines with direction vectors $(1, b)$; then $K = \{(x, y) : (x, y) \text{ or } (y, x) \in H\}$ is Kakeya.

- For any odd map $*: \mathbb{F}_q[[t]] \to \mathbb{F}_q[[t]]$, the set $H_* = \{(x, y) : ax + y = a^* \text{ for some } a \in \mathbb{F}_q[[t]]\}$ will contain a line with direction vectors $(1, b)$.

- Reason: For any $b \in \mathbb{F}_q[[t]]$, the points $(x, y) = (0, -b^*) + s(1, b)$ are in H_*.

Construction, II

We need to find a choice of a^* that makes H_* have measure zero.
Construction, II

We need to find a choice of a^* that makes H_* have measure zero.

Solution:
- For any $a \in \mathbb{F}_q[[t]]$, let a_i denote the coefficient of t^i.
- For any $a \in \mathbb{F}_q[[t]]$, define $a^* \in \mathbb{F}_q[[t]]$ by setting
 \[
 a^*_i = \begin{cases}
 0 & \text{if } i = 2^k - 2 \text{ for some natural number } k, \\
 a_{i+1} & \text{otherwise}.
 \end{cases}
 \]

Proposition

With notation as previous, the set
\[
H := \{(x, y) \in \mathbb{F}_q[[t]]^2 : ax + y = a^* \text{ for some } a \in \mathbb{F}_q[[t]]\}
\]
contains a line with direction vector $(1, b)$ for each $b \in \mathbb{F}_q[[t]]$, and
has measure 0.
Construction, III: Sketch of Proof

The point \((x, y)\) is in \(H\) if and only if there exists an \(a = a_0 + a_1 t + a_2 t^2 + \cdots\) satisfying the system

\[
\begin{align*}
a_0 x_0 + y_0 &= 0, \quad [0] \\
a_1 x_0 + a_0 x_1 + y_1 &= a_2, \quad [1] \\
a_2 x_0 + a_1 x_1 + a_0 x_2 + y_2 &= 0, \quad [2] \\
&\vdots \\
a_n x_0 + a_{n-1} x_1 + \cdots + a_0 x_n + y_n &= a_n^*, \quad [n] \\
&\vdots
\end{align*}
\]
Construction, III: Sketch of Proof

The point \((x, y)\) is in \(H\) if and only if there exists an \(a = a_0 + a_1 t + a_2 t^2 + \cdots\) satisfying the system

\[
a_{0}x_{0} + y_{0} = 0, \quad [0] \\
a_{1}x_{0} + a_{0}x_{1} + y_{1} = a_{2}, \quad [1] \\
a_{2}x_{0} + a_{1}x_{1} + a_{0}x_{2} + y_{2} = 0, \quad [2] \\
\vdots \\
a_{n}x_{0} + a_{n-1}x_{1} + \cdots + a_{0}x_{n} + y_{n} = a_{n}^{*}, \quad [n] \\
\vdots
\]

Now count solutions to equations \([0]-[n]\) as \(n\) grows, and show that the measure of the set of points \((x, y)\) such that there exists an \(a\) satisfying \([0]-[n]\) tends to 0 as \(n\) grows.
We can also pose the Kakeya conjecture over the local ring setting.
We can also pose the Kakeya conjecture over the local ring setting.

Definition

The **Minkowski dimension** of a subset E of $\mathbb{F}_q[[t]]^n$ is

$$\lim_{k \to \infty} \frac{\log |E_k|}{\log q^k}$$

where E_k is the image of E under $\mathbb{F}_q[[t]] \to \mathbb{F}_q[[t]]/(t^k)$.

(We have an analogous definition for subsets of \mathbb{Z}_p^n.)

Conjecture (Kakeya Conjecture)

For $n \geq 2$, the Minkowski dimension of a Kakeya set in R^n where $R = \mathbb{Z}_p$ or $\mathbb{F}_q[[t]]$ is n.
The Minkowski dimension of a Kakeya set in $\mathbb{F}_q[[t]]^2$ or \mathbb{Z}_p^2 is 2.

In dimensions $n \geq 3$ over these rings, the Kakeya conjecture remains open.
Theorem (E.D., M. Hablicek; 2011)

The Minkowski dimension of a Kakeya set in \(\mathbb{F}_q[[t]]^2 \) or \(\mathbb{Z}_p^2 \) is 2.

In dimensions \(n \geq 3 \) over these rings, the Kakeya conjecture remains open. Key result in proof:

Proposition

Let \(E \) be a Kakeya set in \(R^2 \) where \(R = \mathbb{F}_q[t]/t^k \) or \(\mathbb{Z}/p^k\mathbb{Z} \). Then

\[|E| \geq \frac{|R|^2}{2k}. \]

This proposition is a sharpening of a counting result of Ellenberg-Oberlin-Tao.
Open Questions

Question

Does a Kakeya set of measure 0 exist in \mathbb{Z}_p^2? (Or other rings?)
Open Questions

Question

Does a Kakeya set of measure 0 exist in \(\mathbb{Z}_p^2 \)? (Or other rings?)

Kakeya sets over \(\mathbb{R} \) are the central ingredient in a theorem on \(L^p \) spaces in classical analysis:

Theorem (C. Fefferman; 1971)

The truncated Fourier operator \(T \) on \(L^p(\mathbb{R}^n) \), defined by \(\hat{T}f(x) = \chi_p(x)\hat{f}(x) \), where \(\chi_p \) is the characteristic function of the unit ball, is bounded only on \(L^2 \).

If a Kakeya set of measure zero exists over \(\mathbb{Z}_p \), it may be possible to obtain a similar theorem over \(\mathbb{Z}_p \).
End of Talk

Thank you!