Immunoinformatic analysis of the whole proteome for vaccine design: An application to Clostridium perfringens

Luis F. Soto1, Ana C. Romani1, Gabriel Jiménez-Avalos2, Yshoner Silva3, Carla M. Ordinola-Ramirez 3, Rainer M. Lopez Lapa3,4 and David Requena5*

1Escuela Profesional de Genética y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru, 2Departamento de Ciencias Celulares y Moleculares, Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru, 3Departamento de Salud Pública, Facultad de Ciencias de la Salud, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru, 4Instituto de Ganadería y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru, 5Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, United States

Clostridium perfringens is a dangerous bacterium and known biological warfare weapon associated with several diseases, whose lethal toxins can produce necrosis in humans. However, there is no safe and fully effective vaccine against C. perfringens for humans yet. To address this problem, we computationally screened its whole proteome, identifying highly immunogenic proteins, domains, and epitopes. First, we identified that the proteins with the highest epitope density are Collagenase A, Exo-alpha-sialidase, alpha n-acetylglucosaminidase and hyaluronoglucosaminidase, representing potential recombinant vaccine candidates. Second, we further explored the toxins, finding that the non-toxic domain of Perfringolysin O is enriched in CTL and HTL epitopes. This domain could be used as a potential sub-unit vaccine to combat gas gangrene. And third, we designed a multi-epitope protein containing 24 HTL-epitopes and 34 CTL-epitopes from extracellular regions of transmembrane proteins. Also, we analyzed the structural properties of this novel protein using molecular dynamics. Altogether, we are presenting a thorough immunoinformatic exploration of the whole proteome of C. perfringens, as well as promising whole-protein, domain-based and multi-epitope vaccine candidates. These can be evaluated in preclinical trials to assess their immunogenicity and protection against C. perfringens infection.

KEYWORDS
immunoinformatics, Clostridium perfringens, epitope, toxin, vaccine, molecular dynamics
Introduction

Clostridium perfringens is a Gram-positive bacterium frequently associated with systemic and enteric diseases (1). In humans, *C. perfringens* is one of the most common food-poisoning bacteria, responsible for 1,000,000 cases per year in the US (2). Over a thousand cases result in gas gangrene, which can take from hours to weeks to develop depending on the tissue oxygen levels (3). It has a 10-30% mortality rate when treated, but 100% when untreated (4). Moreover, it is a pathogen known as a biological warfare weapon (5, 6). Therefore, it is necessary to develop preventive tools, like the identification of proteins and domains that can be used for molecular diagnostics and vaccines.

The histotoxic infections caused by this bacterium include gas gangrene in contaminated wounds, and several symptoms of human gastrointestinal diseases by either food- or non-foodborne *C. perfringens* infection (7, 8). *C. perfringens* isolates are classified into five toxigenotypes, based on the production of four major toxins: α, β, ε and τ (1). *C. perfringens* type A is the main toxigenotype that infects humans, producing gas gangrene, food poisoning, and non-foodborne gastrointestinal disease (9). Its main mechanism of cell invasion depends on the formation of a pore in the host cell membrane. The phospholipase C (cpa) and perfringolysin O (pfo) are involved in histotoxic infections, while the enterotoxin (ets), the β toxin (cph) and the ε-like toxin, the epsilon toxin (cpe) are involved in intestinal diseases (9, 10).

When *C. perfringens* toxins enter host cells, they are cut into small peptides by the proteasomes (11). Similarly, the whole bacterium can also be phagocytized and degraded by the endolysosomes into peptides. In both scenarios, the HLA (human leukocyte antigen) molecules (class I and class II, respectively) bind to these peptides and display them on the cell surface. Then, the HLA-peptide complexes are recognized by the TCR receptor in the surface of CD8+ and CD4+ immature T-cells, respectively, triggering an adaptive immune response. They will mature into cytotoxic T (CTL) and T-helper (HTL) lymphocytes. CTLs will produce a cytotoxic response against the infected cells, while HTL will stimulate the proliferation of antigen-specific B cells by clonal expansion, generating specific antibodies against the pathogen (12).

Vaccination is the most cost-effective method to prevent diseases (13). Although there is a vaccine available against *C. perfringens* for sheep and goats (14), there is no one approved for humans (5). Traditional vaccine development approaches are based on whole attenuated or dead microorganisms, and inactivated bacterial toxins. Nevertheless, they present the risk of potential reactivation or recombination of the vaccine strain, as well as offering limited protective effectiveness and immunity versus newer technologies (13). An alternative is subunit-based vaccines, consisting in one or more domains of antigenic proteins. Generally, these protein domains should be easily accessible, such as the external region of membrane proteins. As example, the NVX-CoV2373, a protein subunit-based vaccine producing the recombinant Spike protein, have demonstrated to neutralize the virus in different organism models and in humans (15, 16).

A new kind of vaccine, called the multi-epitope vaccine, has gained popularity in recent years (17). It consists of a novel protein connecting immunogenic epitopes. This kind of vaccine provides certain advantages over classical vaccines and single-epitope vaccines, such as a broader spectrum of pathogen variants, an optimized design that elicits both CTL, HTL, and B cell responses, and reduced adverse effects (18). It relies on the identification of epitopes through computational prediction and experimental testing. Epitopes are selected based on different criteria and assembled into a construct for their delivery to the immune system machinery. Multi-epitope vaccines have already shown good results when tested in human clinical trials. For example, EMD640744 and Reniale have shown immunologic efficacy against advanced solid tumors (19) and in reducing tumor progression (20), respectively. Also, multi-epitope vaccines developed to trigger cross-immunity against different strains of influenza have shown great immunogenicity (21). Additionally, in mice, a multi-epitope vaccine has shown protective immunity against Toxoplasma gondii (22).

Nowadays, immunoinformatics tools help to massively screen protein sequences. They allow the computational identification of antigenic proteins and epitopes, reducing development time and cost (23). They rely on experimental data, which is available in databases like the Immune Epitope Database (IEDB) (24). It collects data of antibodies and CTL-, HTL- and B-epitopes, detected or evaluated in humans and other animal species (24, 25). Furthermore, there are predictors of CTL- and HTL-epitopes based on artificial intelligence tools and trained on experimental information. Among them, we have NetMHCPan I and II (26, 27) and MHCFlurry (28), which are currently the best according to independent evaluations (29). Additionally, Epitope-Evaluator performs comparative analysis of the outputs of these predictors, allowing an easy and graphical identification of highly antigenic proteins, as well as conserved promiscuous epitopes (30). Protein modeling and molecular dynamics (MD) allow studying structural characteristics of antigenic proteins, such as flexibility, disorder degree, and solvent accessibility, among others. These features are related to the immune response elicited (31–34). This could be because flexible and disordered antigens have more different conformations available at the moment of binding to the immune system molecules, maximizing favorable interactions (33).

In the present study, we predicted immunogenic epitopes from the 2721 proteins that comprise the known proteome of *C. perfringens* type A, to identify vaccine candidates following 3 different approaches. First, we used epitope prediction to identify
the proteins containing the highest number of epitopes that may elicit a good immunogenic response when used as recombinant vaccines. Second, we analyzed only the toxins and determined which non-toxic regions of these proteins are rich in HTL-epitopes and could be used as a vaccine, without the histotoxic damage. Third, using the best candidate epitopes, we generated synthetic constructs and studied their structural characteristics such as the flexibility and the accessibility of the epitopes through molecular dynamics. As result, we are presenting novel candidates for further testing as potential vaccines.

Material and methods

Data retrieval

Protein sequences and selection

We downloaded amino acid sequences of the 2721 proteins reported for *C. perfringens* Type A in the UniProt database, using the reference proteome with ID:UP000000818 (Supplementary Table 1). We explored the proteome, following three approaches (Figure 1).

In the first approach, we sought to identify proteins with most epitopes. So, the “epitope density” of each protein was calculated, which was defined as the number of epitopes of the protein divided by the length (in aa) of the protein. This was calculated using the tool “Epitope Density” from Epitope-Evaluator (https://fuxmanlab.shinyapps.io/Epitope-Evaluator/) (30). Only proteins longer than 100aa with “evidence at protein level” according to the UniProt database were considered in this approach (Figure 1A).

In the second approach, the epitopes within toxins were analyzed, using the following protein sequences: perfringolysin O (P0C2E9), enterotoxin A (Q8XKY4), enterotoxin B (Q8XKP0), enterotoxin D (Q8XMT2), beta2-toxin (Q93MD0) and phospholipase C (P0C216), as previously reported (10, 35). To propose a subunit-based vaccine that induces an appropriate humoral response, we further studied the HTL-epitopes in the non-toxic domains of these proteins. Among them, only the non-toxic domain of Perfringolysin O is well characterized, so we further studied this region. This protein is one of the most immunogenic toxins of *C. perfringens* (35), and its non-toxic domain is between the amino acid position 1 and 363, while the toxic and binding domains are reported to be between 363 and 472 (35, 36). This analysis was performed using the “Epitope Location” tool of Epitope-Evaluator (30) and the tridimensional model obtained by AlphaFold2 (Figure 1B).

![Flowchart of the immunoinformatic exploration of pathogens for vaccine development](https://frontiersin.org/)

Flowchart of the immunoinformatic exploration of pathogens for vaccine development. We present three workflows to identify: (A) immunogenic proteins for protein-based vaccines, (B) protein domains enriched in HTL epitopes for subunit vaccines, and (C) nested epitopes for the design of novel multi-epitope protein vaccines. The proteins obtained in these three approaches might be used as well in immunodiagnostic tests.
In the third approach, we started with all the epitopes in the proteins of C. perfringens Type A and applied consecutive filters, as described below (see Figure 1C).

Selection of HLA class-I and -II alleles

Each population has a different distribution of HLA class I and II alleles (37, 38). Therefore, to maximize the potential use of our construct across populations, the HLA “supertype” alleles were considered as they are representative of the most frequent HLAs class I and II alleles worldwide. For HLA class-I, these are: HLA-A*01:01 (A1), HLA-A*26:01 (A1), HLA-A*02:01 (A2), HLA-A*03:01 (A3), HLA-A*24:02 (A24), HLA-B*07:02 (B7), HLA-B*08:01 (B8), HLA-B*27:05 (B27), HLA-B*39:01 (B27), HLA-B*40:01 (B44), HLA-B*58:01 (B58) and HLA-B*15:01 (B62) (39). And for HLA class-II: DRB1*03:01, DRB1*04:01, DRB1*04:05, DRB1*08:02, DRB1*11:01, DRB1*13:02 and DRB3*01:01 and DRB3*02:02 (9, 10, 40).

Prediction and selection of candidate epitopes

Prediction of CTL- and HTL-epitopes

Epitopes of 8, 9, and 10 amino acids (aa) were predicted in C. perfringens proteins for the HLA class-I supertype alleles using NetMHCpan v4.1 (27) and MHCFlurry 2.0 (28), selecting based on the consensus of these predictors. For HLA class-II, epitopes of 15 aa were predicted using the NetMHCIIpan v4.0 (26). A threshold of rank ≤ 2% was used for all these software. With the prediction results, the epitope promiscuity (number of HLA alleles each epitope is predicted to bind to) was calculated, identifying epitopes that can bind to many alleles.

Discarding epitopes present in the host proteome

A previous study has shown that epitopes present in both proteins of the pathogen and proteins of the host may trigger an auto-immune response (41). To prevent this, all predicted epitopes matching human proteins with 100% identity and sequence coverage were removed.

In the first and second approaches described in 2.1.1, the whole protein was discarded. In the third approach, just the epitope was discarded. All the proteoforms of the human proteome (UniProt ID: UP000005640) were used as reference.

Multi-epitope vaccine design

Identification of nested epitopes

To keep the artificial multi-epitope protein small while maximizing the number and quality of epitopes in the construct, highly immunogenic overlapping candidate epitopes were selected, which we called “nested epitopes”. These were defined as linear HTL-epitopes containing linear CTL-epitopes in its sequence. Previous studies have also used this approach to induce both CD4+ and CD8+ T-cell responses (40, 41).

Filtering proteins by the number of transmembrane helices and UniProt evidence

To further filter the list of nested epitopes, only predicted epitopes belonging to proteins having two or more predicted external transmembrane regions with epitopes within were considered. Transmembrane helices were predicted using TMHMM (http://www.cbs.dtu.dk/services/TMHMM/) (42, 43), and the presence of epitopes in external regions was checked with a custom script in Python. Additionally, only proteins with the following evidence categories according UniProt were considered: “Experimental evidence at protein level”, “Experimental evidence at transcript level” and “Protein inferred from homology”. The annotation found in UniProt was independently verified for correctness.

Selection of nested epitopes with high immunogenicity

From the proteins filtered above, only those nested epitopes predicted to bind 5 or more HLA-II supertype alleles were selected. Adjacent nested epitopes with overlap were merged to reduce the number of peptides while extending the predicted immunogenic regions. Non-overlapping nested epitopes were discarded.

Determination of highly conserved epitopes

Pathogens frequently mutate as an adaptation mechanism to environmental and immunological pressure, generating multiple variants (44). Selecting conserved regions may extend the validity of vaccines over time and confer protection against different strains. For this purpose, we performed BLASTp of our nested epitopes against C. perfringens. Epitopes with 90% of conservation or higher in the alignment were selected as candidate epitopes.

In addition, the conservation of each candidate nested epitope among the five C. perfringens toxinotypes was calculated. For each of the proteins having any of our candidate nested epitopes, a sequence alignment of the protein and its corresponding homologous proteins in the other toxinotypes was made. First, to find the homologous proteins, a Blast alignment was performed between the C. perfringens type A protein and the whole proteome of each toxinotype (Supplementary Table 2). Next, multiple global alignments were performed by protein using ClustalX2 (45). The alignments were visualized using CLC Sequence Viewer, where the regions corresponding to nested epitopes were extracted.
Design of multi-epitope vaccine candidates

Multi-epitope constructs were designed by concatenating the candidate epitopes in different orders. However, when assembling the constructs, neoepitopes that can bind to the HLA supertype alleles may appear at the interface of two candidate epitopes joined. Therefore, we need to know which epitope connections are allowed. This problem was modeled using a directed graph, where the nested candidate epitopes were represented as nodes, connected by directed edges representing the order of precedence in which the epitopes can be concatenated. To determine which directed edges are allowed in the graph, all the candidate epitopes were concatenated in a "pyramidal order", which is a single sequence containing all possible connections (see Figure 4A). This sequence was submitted to NetMHCIIpan to predict if there are strong binder epitopes located in the interface between two nested epitopes. Thus, the edges (connections) harboring unwanted neoepitopes were removed from the directed graph. Then, all the semi and complete Hamiltonian paths were found using EpiSorter, a python-based toolset for multi-epitope assembly (Figure 4B). Finally, those candidate epitopes either disconnected from the rest of the graph or with no edges enabling the generation of a complete path were discarded.

Additionally, neoepitopes at the interface of two candidate epitopes may be present in the host proteome, which may result in unwanted immune responses potentially leading to autoimmune reactions or tolerance. To prevent this, the multi-epitope constructs were sliced in all the possible fragments of 15 aa and we evaluated if they were present in any human protein using BLASTp against the human proteome. This was performed using BioPython and the following parameters: program = "blastp", database = "nr", entrez_query = "txid9606ORGN", expect = 20000, alignments = 100. For any 15-mer, if scores of 100% of coverage and 100% of identity were obtained, the corresponding construct was discarded.

Structural analysis of the vaccine constructs

Prediction of physicochemical properties

The physicochemical properties of the multi-epitope vaccines were calculated using ProtParam (https://web.expasy.org/protparam/) (46), which computes the molecular weight, theoretical isoelectric point, grand average of hydropathicity (GRAVY), among other metrics.
Structural modeling

The structure of the multi-epitope proteins were predicted with AlphaFold v. 2.1.0 (47), using all the databases to search for templates and the model “monomer_casp14” to infer the 3D coordinates. For each multi-epitope construct, its possible 3D structures were ranked by mean pLDDT and the best five structures were refined by restrained energy minimization with AMBER99SB, as implemented in the AlphaFold2 pipeline. Thus, selecting the structure with highest confidence for each multi-epitope construct. Then, the two multi-epitope proteins with the highest mean pLDDT were selected to analyze their structural conformation through MD simulation.

Molecular dynamics

We performed 1.2 μs of MD for each multi-epitope structure. First, the structures were submitted to the PDB2PQR web server (48) to add the corresponding hydrogens at pH 7.4. Then, MD was carried out using NAMD 2.14 (49) with the CHARMM36 force field (50). Accordingly, NaCl ions were included on the surface of the protein based on its Coulombic potential using the package cIOnize 2.0 (51). Next, ions located 20 Å farther from the protein were removed. Finally, the protein was solvated in a size-optimized box with 15 Å of padding and a salt concentration of 0.154 M, using the Autoionize Plugin v.1.5 (https://www.ks.uiuc.edu/Research/vmd/plugins/autoionize/).
Initially, only the water atoms were minimized for 5000 steps using the conjugate gradient algorithm. Then, MD of these atoms was performed at 0 K for 30 ps. Next, the whole system was minimized for 5000 steps, equilibrating the temperature to 298.15 K and the pressure 1 bar, as previously described (52). For this process, the Langevin thermostat and the Nosé-Hoover Langevin barostat were used in the NPT ensemble. Briefly, the system was heated from 50 K to 298 K, increasing the temperature by 4 K every 10 ps and applying harmonic restraints to the backbone with a force constant of 5 kcal/mol. Subsequently, the restraints were reduced by 10% every 0.05 ns. Finally, 1.2 μs of unrestrained MD of the NPT ensemble was performed at 298.15 K. Changes of temperature, potential energy, and density along the simulation were examined to verify convergence. All the processes described were performed in periodic boundary conditions with an integration time of 2 fs/timestep and Particle Mesh Ewald (PME) grid spacing of 1.0 Å. The cut-off for non-bonded interactions was set at 12 Å.

Assessing conformational convergence

For each trajectory, the alpha carbon root mean square deviation (Cα-RMSD) of all frames was calculated with an in-house Tcl script that uses VMD functions and the module “bigdcd”. The frame 0 was used as reference point. The structural compactness was quantified by the radius of gyration (Rg), which was calculated using an in-house Tcl script similar to the one described above. Trajectories where the RMSD and Rg did not converge were discarded. The remaining trajectories were trimmed to only include the interval where the RMSD and Rg converged.

It is known that two completely different structures could have the same Cα-RMSD when compared against the same reference. Therefore, we complemented our graphical approach with a Cα-RMSD-based clustering in Wordom v.0.22 (53). This method assigns conformations to the same cluster if every pair in the group has a Cα-RMSD less or equal to a given threshold (cluster diameter) (54), which we set as 2.5 Å. Therefore, finding a cluster much bigger than the rest suggests that a dominant conformation was produced by the simulation, suggesting conformational convergence.

Final refinement and evaluation of the structural quality

The centroid of the most populated cluster of each remaining multi-epitope MD was subjected to a two-step final refinement. First, main-chain and fast all-atom energy minimizations were conducted using the web server ModRefiner (55), without a reference structure. Second, the protein was solvated, followed by a minimization and MD of only water atoms using the methodology described above. Then, the output was minimized for 5000 steps in explicit solvent with NAMD and the CHARMM36 force field, applying harmonic restraints to all protein atoms with a force constant of 1 kcal/mol. The refined structures were uploaded to the web server MolProbity to construct Ramachandran plots. In addition, the web implementations of ProSA (56) and ERRAT (57) were used to further assess the structural quality.

Analysis of epitope flexibility and accessibility in MEP_12 structure

For each MD of the multi-epitope constructs, the centroids of the five most populated clusters were compared against each other. First, to have all the structures in the same coordinate system, all the centroids were RMS-aligned against the initial AlphaFold2 model in Pymol v.2.4.1 (58). Then, the AlphaFold2

FIGURE 4
Selection of epitopes for the design of a multi-epitope construct. (A) An example of the pyramidal order for 5 epitopes, showing how they should be concatenated into a new protein, to evaluate the presence of neoepitopes in all the connections in just a single prediction step. (B) Allowed connections (without neoepitopes) are represented in the directed graph. The Hamiltonian path (in red) exemplifies a solution containing all the nodes. (C) Graph representing the nested epitopes (nodes) and its allowed connections (edges), selected in this study for the construction of the multi-epitope construct. Epitopes discarded from the design are marked in red.
model was removed and Pymol selection algebra was used to obtain a list of residues forming the same secondary structure in all the centroids.

To identify the most rigid and accessible epitope within the multi-epitope construct, the convergent trimmed trajectories were analyzed, identifying the most flexible protein regions by computing the Cα-RMSF of the trimmed trajectory in VMD. The trimmed trajectory was loaded with a step of 5 and aligned against frame 0, then the Cα-RMSF measured during these modified coordinates. Finally, the Solvent Accessible Surface Area (SASA) per epitope was measured during the trimmed trajectory using an in-house Tcl script. Then, the module “bigdcd” was used to load the complete trimmed trajectory and examine the changes of SASA along it, assessing the convergence of each epitope. For each epitope whose SASA converged, the mean SASA over the entire trajectory was computed and 95% confidence intervals calculated by computing the statistical inefficiency with the block averaging approach (59).

Evaluation of MEP_12 innate response potential

The potential of MEP_12 to trigger an innate response was tested based on its interaction with TLR1/TLR2 and TLR4/MD2. The representative conformation of MEP_12, from MD Ca-RMSD-based clustering, was docked against the ectodomains of TLR1/TLR2 (PDB ID: 2Z7X) and TLR4/MD-2 (TLR4/MD-2, PDB ID: 3FX1) using Haddock v.2.4 (60). The structures of these TLRs were submitted to PDBfixer to complete the missing sections and remove irrelevant heteroatoms (61). As TLR ectodomains are glycosylated in vivo (62), the covalently attached glycans of the structures were kept in order to obtain a TLR-MEP_12 interaction closer to real conditions.

As information about the possible interaction sites was not available, a blind docking approach was followed. Haddock ab-initio mode was used to scan the surface of the MEP_12 and the corresponding TLR ectodomain, to find the most favorable interacting pose. This was performed during the rigid docking phase. Fifty thousand structures were computed for this step, to ensure that the whole surface of each protein will be sampled. Then, the best 500 structures were selected based on the Haddock scores, which were calculated from the semi-flexible simulated annealing and the final energy minimization refinement. The solutions of both docking steps were clustered by Fraction of Common Contacts (FCC), using 0.6 Å as threshold. Cluster-mean Haddock scores were computed using the structures with the four lowest values. Then, the clusters were ranked, where those with lower mean Haddock scores were the most favorable.

The most favorable clusters that had overlapping error bars (one standard deviation) of their Haddock-scores were selected. Protein-protein interaction analysis of the epitopes was performed using a custom Python pipeline, evaluating the plausibility of the solution based on prior structural data. After selecting one cluster, its most favorable structure was submitted to the web servers PDBsum and PRODIGY to map the interacting residues and to compute the protein-protein binding energy, respectively (63, 64).

Simulation of the immune response

The immune response profile by immunization with the multi-epitope vaccine was simulated using C-IMMSIM (https://kraken.iac.rm.cnr.it/C-IMMSIM/). Three vaccinations with a dose of 1000 unit of the multi-epitope vaccine and 100 of adjuvant without LPS were administered as described in Figure 10A. The most frequent HLA alleles were considered: HLA-A*0101, HLA-B*08:01, HLA-B*15:01, DRB1-11:01 and DR83-02:02. One thousand timesteps of 8 hours were simulated, representing ~11 months. Vaccine doses were administered four weeks apart, as commonly recommended (65), corresponding to days 3, 30 and 60. Pathogen challenge was introduced on day 111 by inoculating 1000 units of those proteins of C. perfringens type A harboring epitopes of the vaccine, with a pathogen multiplication factor of 0.2 (Figure 10A).

Multi-epitope sequence design and codon optimization

Codon optimization was performed to improve the expression efficiency of the vaccine construct in Escherichia coli for production. The codon usage table of E. coli K12 strain, available in the Codon Usage Database (https://www.kazusa.or.jp/codon/), was used for reverse translation. The CAIcal SERVER (http://genomes.urvs.es/CAIcal/) was used to calculate the Codon Adaptation Index (CAI). The cDNA sequence obtained was analyzed with NEBcutter (http://nc2.neb.com/NEBcutter2/), identifying cleavage sites of commercially available restriction enzymes.

Results

Identification of proteins with high epitope density

A total of 429809 CTL- and 121450 HTL-epitopes were predicted from the proteome of C. perfringens Type A. The number of CTL- and HTL-epitopes predicted were strongly correlated with the protein length (CTL: p < 2.2e-16, r = 0.97; HTL: p < 2.2e-16, r = 0.91, Pearson correlation) (Figure 2A). There is also a positive correlation between the number of CTL- and HTL-epitopes predicted by protein (p < 2.2e-16, r = 0.87, Pearson correlation) (Figure 2B), indicating that C. perfringens proteins containing a higher number of predicted CTL-epitopes tend to contain more HTL-predicted epitopes as well.

Regarding the epitope length, we found a significantly greater number of 9-mer than 8-mer or 10-mer predicted proteins containing a higher number of predicted epitopes as well.
CTL-epitopes (Wilcoxon test, p value < 2.2e-16), as biologically expected. Additionally, the number of 9-mer CTL epitopes predicted by protein was higher than the number of HTL-epitopes (Figure 2C). These observations were statistically significant even when normalizing by protein length (Wilcoxon test, p < 2.2e-16) (Supplementary Figure 1A).

The distribution of predicted epitopes across the proteome was explored by randomly concatenating the sequences of all the 2721 proteins and calculating the epitope density along it. Local peaks were detected, showing that the predicted epitopes were not evenly distributed across the proteome and that not all proteins have the same epitope density (Figure 2D).

Epitopes that were either duplicated (i.e. appearing in two or more different proteins) or present in any human protein were removed, resulting in 121244 (99.83%) HTL- and 427944 (99.56%) predicted CTL-epitopes left (Supplementary Table 3). This comprises 59578, 237664 and 130702 CTL-epitopes predicted of 8, 9 and 10 aa, respectively (Supplementary Figure 1B). Regarding the epitope promiscuity (i.e. the number of alleles an epitope can bind to), we found that the majority of the CTL-epitopes predicted (312032 out of 427944) bind to only one HLA-II allele. Similarly, 67080 of the 121244 HTL-epitopes were predicted to bind just one HLA-II. Noteworthy, there were 2 promiscuous CTL-epitopes binding to 11 HLA-II alleles, and 33 HTL-epitopes binding to 8 HLA-II alleles (Supplementary Figures 1C, D).

The evidence status of the proteins with at least 1 epitope predicted was retrieved from UniProt, obtaining 32 with “evidence at protein level”, 1 with “evidence at transcript level”, 1064 with “inferred from homology”, 1623 “predicted”, and 1 “uncertain”. The set of proteins with “evidence at protein level”, when compared with the set of proteins “inferred from homology”, showed no significant difference in the number of epitopes (p = 0.33) but in epitope density (p < 0.02) (Supplementary Figures 1E, F).

Among the proteins with “evidence at protein level”, 25 show an epitope density above 0.5 (Supplementary Table 4). Notoriously, each of the proteins Collagenase A, Exo-alpha-sialidase, alpha-n-acetylglucoaminidase and hyaluronoglucosaminidase contain more than 500 CTL- and 200 HTL-epitopes (Figure 2E), and more than 15 epitopes per HLA supertype allele (Figure 2F).

Evaluation of the HTL-epitopes in C. perfringens toxins

The six toxins evaluated have a different number (45–157) but similar density (0.15–0.25) of HTL-epitopes. Notably, enterotoxin D contains the highest number of HTL-epitopes even not being the largest toxin. Contrarily, beta2-toxin showed the lowest number of HTL-epitopes (Figure 3A). In terms of HTL-epitope density, the enterotoxins A and D showed the lowest and highest values, respectively (Figure 3B).

All the toxins, except the beta2-toxin, contained several epitopes by HLA allele. Among the HLA-II alleles used, DRB3*02:02 and DRB1*11:01 were found to recognize the highest and the lowest number of epitopes from toxins (Figure 3C). Regions enriched with promiscuous HTL-epitopes within the toxins were identified. For example, the C-terminal region of the enterotoxin D contains the most promiscuous epitopes of the protein, while the region between positions 130 and 256aa has almost no epitopes (Figure 3D). Similarly, the HTL-epitopes of the enterotoxins A and B were mainly located at the N-terminal region. Additionally, the non-toxic domain of Perfringolysin O contains at least nine predicted epitopes per HLA-II allele (Figure 3E). Furthermore, among the toxins, we identified 12 HTL-epitopes binding five or more HLA-II alleles, covering the majority of HLA-II supertype alleles (Table 1). We also found that four of these promiscuous epitopes are located in the external region of the non-toxic domain of the Perfringolysin O (Figure 3F). Altogether, it suggests that this domain can be considered as a potential subunit-based vaccine.

Design of multi-epitope vaccine candidates

We identified 112714 nested epitopes from the whole proteome, comprising 112714 predicted HTL-epitopes containing 145854 predicted CTL-epitopes (Supplementary Table 5). Next, from the 2685 proteins containing nested epitopes, 266 proteins had at least two external transmembrane regions with at least one nested epitope. Then, the proteins annotated as “predicted proteins” or “uncertain proteins” were removed, resulting in 105 proteins containing 1884 nested epitopes. From this set, only nested epitopes that can bind to at least five HLA-II alleles were selected, obtaining 42. And it was possible to merge 29 of these 42 nested epitopes into 11 overlapped nested epitopes (Table 2), which represent the candidates for the design of the muti-epitope construct (Figure 1C). The conservation analysis showed that these candidate epitopes were highly conserved among the sequences of the different strains of C. perfringens (Table 2). Moreover, these epitopes are 100% conserved among the five toxinotypes (Supplementary Figure 2).

These 11 overlapped nested epitopes were used to build the directed graph. By finding the allowed directed edges, epitopes “7” was discarded as it was disconnected from the rest of the graph. Also, epitope “2”, because there were no edges permitting the generation of a complete path (Figure 4C). From the subgraph containing the nine remaining overlapped nested epitopes, we obtained 21 different Hamiltonian paths, representing multi-epitope constructs (Supplementary
TABLE 1
Promiscuous HTL-epitopes in *C. perfringens* toxins.

Epitopes	Alleles	Number of Alleles	Proteins
PENIKIIANGKVVVD	DRB1*03:01, DRB1*04:01, DRB1*04:05, DRB1*08:02, DRB1*11:01, DRB1*13:02, DRB3*02:02	7	PHOSPHOLIPASE C
PKYIVIHDTNRQAQ	DRB1*03:01, DRB1*04:01, DRB1*04:05, DRB1*08:02, DRB1*13:02, DRB3*01:01	6	ENTEROTOXIN D
RKPINIDPLGLGK-NPKYIVIHDTNRQA	DRB1*03:01, DRB1*04:01, DRB1*04:05, DRB1*08:02, DRB1*13:02, DRB3*02:02	6	PERFRINGOLYSIN O - ENTEROTOXIN D
MLEEFPYDPNQQLKS-LEEFKYDPNQQLKSF	DRB1*03:01, DRB1*04:01, DRB1*04:05, DRB1*13:02, DRB3*01:01, DRB3*02:02	6	BETA2 TOXIN
LKSFEILNSQKIDNK	DRB1*03:01, DRB1*04:01, DRB1*04:05, DRB1*08:02, DRB1*11:01, DRB1*13:02, DRB3*01:01	6	BETA2 TOXIN
KYIVIHDTNRQAQA	DRB1*03:01, DRB1*04:01, DRB1*04:05, DRB1*13:02, DRB3*01:01	5	ENTEROTOXIN D
KRKPINIDPLGLK	DRB1*03:01, DRB1*04:01, DRB1*04:05, DRB1*13:02, DRB3*02:02	5	PERFRINGOLYSIN O
EIRKVIDNATSTK-IRKVIDNATSTK-NNDNINLNSNVAV-EMLEEFPYDPNQQLK-EEFPYDPNQQLK	DRB1*03:01, DRB1*04:01, DRB1*13:02, DRB3*01:01	5	PERFRINGOLYSIN O - PERFRINGOLYSIN O - ENTEROTOXIN A - BETA2 TOXIN - BETA2 TOXIN
GEINIDGKEGWSYK	DRB1*03:01, DRB1*08:02, DRB1*11:01, DRB1*13:02, DRB3*01:01	5	ENTEROTOXIN B
ENIKIIANGKVVVDK-NIKIANGKVVVDK	DRB1*03:01, DRB1*08:02, DRB1*11:01, DRB1*13:02, DRB3*02:02	5	PHOSPHOLIPASE C
WNEKYSTHTLPART-NEKYSTHTLPARTQ-GNYVYGTLRRNDK-ASKSYTIYNEGNN-SKSYTIYNEGNN	DRB1*04:01, DRB1*04:05, DRB1*08:02, DRB1*11:01, DRB1*13:02	5	PERFRINGOLYSIN O - PERFRINGOLYSIN O - ENTEROTOXIN A - ENTEROTOXIN D - ENTEROTOXIN D
KQIVKVKNSALMRS-KSEIILNSQKIDNKE	DRB1*04:01, DRB1*04:05, DRB1*08:02, DRB1*13:02, DRB3*02:02	5	ENTEROTOXIN D - BETA2 TOXIN

TABLE 2
Characteristics of the predicted epitopes selected for the construction of the multi-epitope protein.

Epitope	Overlaped epitope	Nested epitope	HLA-II alleles	Protein name	Protein ID	Position	Epitope	HLA-I Alleles	Conservation
Ep_0	IDGKEYKIANALIGEGK	IDGKEYKIANALIG	DRB1*13:02, DRB3*02:02, DRB1*04:05, DRB1*08:02, DRB1*04:01	Fox domain-containing protein	Q8XM39	453	A2*2402	160/161	
	DGKEYKIANALIG		DRB1*13:02, DRB1*11:01, DRB3*02:02, DRB1*04:05, DRB1*08:02, DRB1*04:01						
	GKEYKIANALIGGEG		DRB1*13:02, DRB1*11:01, DRB3*02:02, DRB1*04:05, DRB1*08:02, DRB1*04:01						

(Continued)
Epitope	Overlapped epitope	Nested epitope	HLA-II alleles	Protein name	Protein ID	Position	Epitope	HLA-I Alleles	Conservation
KEYKIANALIGEGK	DRB1*13:02, DRB3*02:02, DRB1*04:05, DRB1*08:02, DRB1*04:01	456	YKIANNALI B*39:01, KEYKIANNAL B*04:01	Cardiolipin synthase	387	FLHAKTIV B*08:01, FLHAKTIV B*08:01	YKIANNALI B*39:01, KEYKIANNAL B*04:01	89/89	
YEGFLHAKTIVADSS	DRB1*11:01, DRB3*02:02, DRB1*04:05, DRB1*08:02, DRB1*04:01	388	FLHAKTIV B*08:01, FLHAKTIV B*08:01	Stage V sporulation protein AF	245	VIIDNSPSV A*02:01, A*26:01	G18X7	85/86	
EKIVVIDNSPSVIIIL	DRB1*13:02, DRB3*02:02, DRB1*04:05, DRB1*08:02, DRB1*04:01	246	IIDNSPSV A*02:01, A*26:01	Polysacc synt 2 domain-containing protein	406	FFVDDGSTRL B*27:05, FFVDDGSTRL B*27:05	IEKENVGGDSSTRLL A*02:01, IEKENVGGDSSTRLL A*26:01	30/32	
Ep_1	LYEKGFLHAKTIVADSS	LYEKGFLHAKTIVAD							
Ep_2	EGKIVVIDNSPSVIIIL	EGKIVVIDNSPSVIIIL							
Ep_3	GAERFVLISTDKAVNFT	GAERFVLISTDKAVN							
Ep_4	IEKENFVDGSTRLLSDL	IEKENFVDGSTRLLSDL							

(Continued)
Epitope	Overlapped epitope	Nested epitope	HLA-II alleles	Protein name	Protein ID	Position	Epitope	HLA-I Alleles	Conservation
Ep_5	RHKDKIYIDTSPVNNLI	HKDKIYIDTSPVNNL	DRB1*04:01, DRB1*04:05, DRB3*01:01, DRB1*13:02	TRA-1 D-C domain-containing protein	Q5M09	158	KYIDTSPV	A*02:01	70/82
			DRB1*13:02, DRB1*02:02, DRB1*04:05, DRB1*03:01, DRB1*01:01, DRB1*04:01				YIDTSPV	A*02:01	
			KDYIDTSPVNNLI				IDTSPVNNL	B*40:01	
Ep_6	ASATYYIDEDSKIKTA	SATYYIDEDSKIKTA	DRB3*02:02, DRB1*04:05, DRB1*03:01, DRB1*01:01, DRB1*04:01	FoxO domain-containing protein	Q8XM39	331	ATYYIDEDSK	A*03:01	126/128
			DRB1*13:02, DRB1*03:01, DRB3*01:01, DRB1*04:01				TYYIDEDSK	A*24:02	
			SATYYIDEDSKIKTA				YIDEDSKIK	A*01:01	
			SATYYIDEDSKIKTA				YIDEDSKIK	A*24:02	
Ep_7*	VPDNIVSNLKPIANK	PDNIVSNLKPIANK	DRB1*13:02, DRB1*11:01, DRB3*02:02, DRB1*03:01, DRB1*01:01, DRB1*04:01	FoxO domain-containing protein	Q8XM39	490	VSNLKPIANK	A*03:01	136/147
			DRB1*13:02, DRB1*11:01, DRB3*02:02, DRB1*03:01, DRB1*01:01, DRB1*04:01				VPDNIVSNL	B*37:02, B*48:01, B*99:01	
			PDNIVSNLKPIANK				SNLKPIANK	A*03:01	
			PDNIVSNLKPIANK				SNLKPIANK	A*03:01	
			PDNIVSNLKPIANK				SNLKPIANK	B*08:01	
Ep_8	LDYKFILDTNYIEAKL	DYKFILDTNYIEAKL	DRB1*02:02, DRB1*04:05, DRB1*03:01, DRB1*01:01, DRB1*04:01	Spore germination protein KA	Q8XMPV	191	FILDNTYIEA	A*02:01	42/43
			DRB1*02:02, DRB1*04:05, DRB1*03:01, DRB1*01:01, DRB1*04:01				ILDTNTYIEA	A*03:01	
			DYKFILDTNYIEAKL				ILDTNTYIEA	A*03:01	
			DYKFILDTNYIEAKL				ILDTNTYIEA	A*03:01	
			DYKFILDTNYIEAKL				ILDTNTYIEA	A*03:01	
Ep_9	LDLFFITEKANNSYTF	DLDFFITEKANNSYT	DRB1*13:02, DRB1*11:01, DRB3*02:02, DRB1*08:02, DRB1*04:01	Cardiolipin synthase	Q8SP94	265	ITIEKANNSY	A*01:01, A*24:01, A*15:01, B*58:01	114/115
			DRB1*13:02, DRB1*11:01, DRB3*02:02, DRB1*08:02, DRB1*04:01				ITIEKANNSY	A*01:01, A*24:01, A*15:01, B*58:01	
			DLDFFITEKANNSYT				ITIEKANNSY	A*01:01, A*24:01, A*15:01, B*58:01	
			DLDFFITEKANNSYT				ITIEKANNSY	B*40:01	
			DLDFFITEKANNSYT				ITIEKANNSY	B*36:01	

(Continued)
Using BLASTp, we obtained that only a 5 aa fragment of an epitope (DTNYI) matched with a human protein (ATP-dependent DNA helicase HFM1) with a 100% coverage and identity. Therefore, no construct was discarded.

Structural analysis of the multi-epitope constructs

Physicochemical characterization

We evaluated the physicochemical properties of the constructs using ProtParam (Supplementary Table 7). Each one had 150 aa, a molecular weight of 16.83 kDa and a predicted pl of 4.61, indicating an acidic nature. The number of negatively and positively charged residues computed at pH 7 were 27 and 17, respectively. The aliphatic index (relative volume occupied by the aliphatic side chains) was 93, indicating a thermostable nature. The construct had a GRAVY value of -0.363.

Modelling the constructs

Models of each multi-epitope construct were prepared in AlphaFold2, and its mean pLDDT were computed. Values under 50 were obtained for all models (Supplementary Figure 3A), suggesting structural disorder (66). After modeling the 21 multi-epitope constructs, only MEP_6 and MEP_12 were selected, as they showed the highest mean pLDDT.

The structures of the multi-epitope (MEP) MEP_6 and MEP_12 had the highest mean pLDDT values, being the most reliable ones. Besides the similarity in their mean pLDDT, the distribution of per-residue pLDDT notably differed. MEP_6 had 94.7% of its residues with pLDDT under 50 and 5.3% between 50 and 70 (Figure 5A). In contrast, MEP_12 had 68% of residues with pLDDT under 50, 31.3% between 50 and 70, and 0.7% between 70 and 90 (Figure 5B).

In addition, the per-residue pLDDT seemed to be non-dependent on the epitope from which the residues belong. For instance, the residues of epitope "4" had pLDDTs under 50 in MEP_6, whereas values between 50 and 70 in MEP_12 (Figure 5).

Assessing the conformational convergence

The confidence of our best candidate models (MEP_6 and MEP_12) were improved by performing extensive MDs to refine them, and their conformational changes were evaluated. The RMSD and Rg over each trajectory were measured to assess their conformational convergence.

The RMSD of MEP_6 increased during the last 600 ns of MD, which is indicative of a conformation that is still changing (Figure 6A). The conformational instability was corroborated by an unstable Rg, which continuously decreased during all the trajectory (Figure 6B). Therefore, MEP_6 was discarded of further analysis as it did not reach conformational convergence.

In contrast, the RMSD and Rg of MEP_12 reached a steady state during the last 500 ns (Figures 6C, D) suggesting conformational convergence of the trajectory. It was verified by an RMSD-based clustering of frames of the last 500 ns, using 2.5 Å as threshold. More than 70% of the conformations adopted during this lapse were highly similar among them and were grouped in Cluster 1, confirming the convergence (see Figure 6E; Supplementary Table 8).

As the centroid of Cluster 1 represents the preferred conformation of MEP_12, it was retrieved and considered as the most probable average structure of MEP_12 in solution. Remarkably, although displaced due to the MD, the β-strands formed by the same residues are present both in the centroid and in the initial AphaFold2 model (Figure 6F).

Evaluating the structural quality

A two-steps refinement of the centroid was performed using ModRefiner and NAMD, obtaining a structure that remained close to the original conformation (Supplementary Figure 3B). The quality of the refined structure was assessed using the web servers MolProbity, ProSA and ERRAT. We observed that all the

Table 2 Continued

Epitope	Overlaped epitope	Nested_epitope	HLA-II alleles	Protein name	Protein ID	Position	Epitope	HLA-I Alleles	Conservation

Epitopes “2” and “7” (with asterisk) were not included in the final design. Conservation is represented as the number of sequences where epitope is conserved over the total number of sequences analyzed.
residues in the model were correctly oriented, as the Ramachandran plot indicated that 100% of residues were in allowed regions, not showing any outliers (Figure 7A). Furthermore, 96.6% of the residues were observed in favored regions. ProSA predicted a Z-score of -6.55 for our model, which is within the range of values observed in other proteins of similar length, obtained from NMR or X-ray crystallography (Figure 7B). An ERRAT overall score of 94.531 was obtained, indicating that this model has a good resolution. Notably, only windows centered at residues 96 and 127 had error values above 99% (Figure 7C). All the quality statistics were better in the refined structure than the original model (Supplementary Figure 4).

Analysis of MEP_12 trajectory

An ensemble approach was followed to assign the secondary structures of the aminoacidic residues. The centroids of the five
most populated clusters were compared, as they are distinct and representative conformations of MEP_12 in solution. Then, sets of residues forming the same secondary structure in all the centroids were retrieved. We reasoned that if those sets are folded in the same way, even in different but representative conformations, there is a high chance that they might adopt that conformation when synthesized. Notably, comparing the five centroids, we found that 12 β-strands were formed by the same sets of residues (Figure 8A). The number of residues forming these β-strands represent 41.33% of the MEP_12. The other residues were mostly in loops in all the centroids evaluated. No consistent alpha helices were found.

By analyzing the Cα-RMSF, epitopes “3”, “8” and “10” were found to be the least flexible ones (Figure 8B). The rigidity of “3” can be explained because part of this epitope forms a parallel β-sheet with a portion of epitope “6” (Figure 8D). Next, the mean SASA over the steady state of the MD was computed, excluding epitope “4” as it was not stable over the MD (Supplementary Figure 5). Epitopes “3”, “10”, and “8” showed the lowest mean SASA values, in decreasing order (Figure 8C). Altogether, this indicates that epitope “3” is the most accessible among the rigid epitopes of MEP_12.

Evaluation of MEP_12 innate response potential

Blind docking of MEP_12 against TLR1/TLR2 resulted in four clusters containing 3.6% of the refined structures. The Haddock-scores of these clusters showed overlapping error bars (one standard deviation) (Figure 9A), not allowing to discern which cluster is the best.

The TLR1/TLR2 crystal structure had missing residues in the N-termini of both TLRs. As the cluster “1” contained binding
modes of MEP_12 interacting with TLR2 in a region that might be occupied by those missing residues, it was discarded (Supplementary Figures 6A, B). All the other clusters showed MEP_12 docked to similar regions of TLR1 (Supplementary Figure 6A). The best binding mode of the cluster "2" showed contacts with epitopes "3", "4" and "6". It showed four hydrogen bonds and one salt bridge that stabilized the interaction (Figure 9B). The best binding modes of the cluster "3" and "4" showed contacts were with epitopes "6" and "0"; and "0", "1" and "9", respectively (Supplementary Table 9).

Blind docking of MEP_12 against TLR4/MD-2 resulted in six clusters containing 5.2% of the refined structures. The Haddock-scores of the best four clusters had overlapping error bars (one standard deviation) (Figure 9C). From this set, only cluster "5" contained solutions in which MEP_12 interacted exclusively with the co-receptor MD-2, while the others showed MEP_12 interacting with any of the two chains of TLR4 (Supplementary Figure 6C). Therefore, the solutions of cluster "5" were discarded.

Noteworthy, unlike TLR1/TLR2, the T14/MD-2 complex is symmetric (Supplementary Figure 6D). In that sense, we noticed that the binding modes of clusters "3" are the same but reflected along the symmetry axis (Supplementary Figure 6D). Thus, these two can be seen as the same cluster. The best binding mode of the cluster "3-6" showed contacts with epitopes "0", "1", "3" and "10". It showed 3 hydrogen bonds and 2 salt bridges and had a binding energy of -9.9 kcal/mol (Figure 9D). The best binding mode of the cluster "1" showed contacts with epitopes "1", "5", "8" and "9" (Supplementary Table 9).

Simulating the immune response

The simulation of immunizing with the multi-epitope protein showed that the second and third doses generated significantly higher responses than the first one, as expected. HTL populations were higher in the second and third dose than in the first one, suggesting activation of the memory cells (Figure 10B). However, the CTL population was higher during the first dose, indicating an early immune response (Figure 10C). The B-cell subpopulations, including memory B-cells and Plasma B lymphocytes (PLB cells), showed considerable expansion after each dose reaching the highest peak at day 60 (Figure 10D). After the challenge, the response generated by B-cells was the highest in the simulation, indicating an appropriate production of antibodies (Figure 10E). Moreover, an early production of IgM was detected, which changed to IgG after the antigen administration (fourth response) (Figure 10F). Regarding the innate system, NK (natural killer) activity was found to be constant during the three doses and showed increased activity during the challenge (Figure 10G).
Codon optimization of MEP_12 DNA sequence

The optimized sequence of the 450 nt cDNA vaccine construct had a Codon Adaptation Index (CAI) of 0.772, and a %GC of 48.9%. This sequence contains 111 restriction sites for 55 commercial enzymes (Supplementary Table 10).

Discussion

C. perfringens is one of the most common food-poisoning causing bacteria, causing a major impact on human health worldwide. It is also a reported biological warfare agent. These reasons make developing a vaccine an urgent matter. Most experimental studies have focused on *C. perfringens* toxins to find vaccines protective against gas gangrene. It has been shown that the alpha toxin protect against *C. perfringens* type A (67, 68). This toxin has been produced in endospores of recombinant *Bacillus subtilis* and tested as vaccine in mice, resulting in protection against gas gangrene (69). The β-toxin has also been evaluated as a possible vaccine against *C. perfringens* type C in piglets (70). However, none of them have been tested in humans. There is still no approved vaccine for humans nowadays (5).

While other studies had focused only on specific proteins of *C. perfringens* (71, 72), we consider that analyzing the whole proteome could reveal novel more immunogenic proteins. We followed three approaches to propose vaccine candidates: a whole-protein based vaccine, a protein-subunit based vaccine, and a multi-epitope protein vaccine. The first approach consist in identifying natural proteins of the pathogen enriched with both CTL and HTL epitopes to be used as recombinant vaccines. With the second approach, we further studied the sequence and
structure of the main toxins, identifying regions exposed to the extra-cellular medium and rich in HTL epitopes that could generate immune responses against gas gangrene. Lastly, in the third approach, we identified the best CTL and HTL epitopes of the whole proteome and performed several immunoinformatics and structural analyses to assemble them into a multi-epitope construct, aiming to combat *C. perfringens* infection. The immunogenic proteins obtained by computational methods in these three approaches may represent good vaccine candidates, and they could be used as well for the development of immunodiagnostic tests (73, 74).

The immunoinformatic exploration of the whole proteome resulted in 429809 CTL- and 121450 HTL- predicted epitopes (Supplementary Table 3), which could be further used in both computational and experimental studies seeking a better understanding of the immunogenic characteristics of *C. perfringens* proteins, the developing of diagnostic tests, and the design of peptide-based vaccines and therapies. A strong positive correlation between the number of CTL- and HTL-epitopes predicted with the protein length was found, indicating that longer proteins contain a higher number of epitopes. This has been previously reported by an independent study in viral proteins, showing that protein length is positively correlated with its number of CD8+ T-cell epitopes within (75), supporting our observation. Another observation is that the 9-mer CTL-epitopes were more promiscuous, binding more HLA-I supertype alleles (Supplementary Figure 1B). These two observations might be correlated with the fact that most of the experimental data, and consequently most software training data, is based on 9-mer CTL-epitopes. A similar pattern was observed for 15 aa HTL-epitopes. These observations match with what is biologically expected, as they are the canonical epitope sizes which have been commonly observed in MHC-epitope experimental data (29, 76, 77).

The Collagenase A (UniProt ID: P43153), Exo-alpha-sialidase (UniProt ID: Q8XMY5), alpha n-acetylglucosaminidase (UniProt ID: Q8XM24) and hyaluronoglucosaminidase (UniProt ID: P26831) were identified as the top 4 proteins with more CTL- and HTL-epitopes. The Collagenase A, encoded by the gene colA, is an extracellular proteolytic enzyme that degrades extracellular matrix and plays a role in the pathogenesis of gangrene (78). This enzyme has hemorrhagic and dermonecrotic activities.

![Figure 10](https://example.com/figure10.png)

FIGURE 10

Results of the C-IMMSIM simulation for 350 days. (A) Schematic illustration of the vaccination trial, with three doses of the multi-epitope vaccine (green box) at days 3, 30, 60; and the challenge (red box) at day 111. Dynamics of (B) HTL and (C) CTL populations. Memory and not memory cells are represented with light-blue and green lines, respectively. (D) B cell populations, grouped by immunoglobulin isotype production. (E) Population of Plasma B lymphocytes producing IgM, IgG1 and IgG2. (F) Antigen concentration and relative antibodies responses. (G) Total population of NK cells. The first, second and third doses were inoculated.
and intravenous inoculation of Collagenase A has shown to be lethal for mice (79). However, little is known about its role as immunogen. The Exo-alpha-sialidase, encoded by the gene nanJ, is the largest of the three sialidases produced by *C. perfringens*. It is involved in the intestinal virulence by increasing the binding affinity of the sialidases to their targets, enhancing pathogen adherence to intestinal cells. Sialidase inhibitors, such as Siastatin B or N-acetyl-2,3-dehydro-2-deoxy neuraminic acid (NADNA), have been tested *in vitro* and proposed as possible therapeutics against intestinal infection of *C. perfringens*; however, *in vivo* validation is still needed (80, 81). The hyaluronoglucosaminidase, encoded by the gene nagH, is a carbohydrate-active enzyme that acts on the connective tissue during the gas gangrene (82, 83). The alpha n-acetylglucosaminidase is an enzyme with strong preferences for carbohydrate motifs, found on the class III mucins within the gastric mucosa (81). Although there is no study testing alpha-acetylglucosaminidase, vaccination with beta-acetylglucosaminidase has shown to generate protection against necrotic enteritis in chickens (84). Similarly, a peptide-based vaccine comprising of several epitopes from these mucolytic enzymes produced reduction of lesions caused by necrotic enteritis in chicks. Altogether, these studies suggest that these four enzymes can be used as potential protein-based vaccines (85).

The use of epitope-enriched proteins has been previously suggested as a strategy for the rational selection of immunogens, considering B-cell epitopes (86) and T-cell epitopes (73). Proteins with high epitope density are expected to maximize the probability of immune cells presentation and activation. Protein-based vaccines have been widely studied and used, with some advantages like having relatively low production costs, and not causing severe side effects unlike attenuated vaccines (87, 88).

Next, we studied the six most studied *C. perfringens* type A toxins in more detail. All of them, except for the beta2 toxin, showed at least 10 HTL-epitopes by HLA-II supertype allele (Figure 2C). These observations suggest that toxins are generally good candidates for protein-based vaccines, as shown in previous experimental studies (89–93). Our results support the idea that toxins could generate an appropriate humoral response to protect, mainly, against gangrene or histotoxic damage before infection (67, 94). Noteworthy, we show the relevance of not only predicting promiscuous epitopes but studying their location within the proteins as well. For instance, we found that the most promiscuous epitopes of enterotoxin D are in SH3B domains, which are correlated with promoting pathogen survival and invasion by binding to host receptors. This indicates that not all the extension, but specific regions of the protein are rich in epitopes. The use of non-toxic domains of toxins has shown to be advantageous for vaccine development as they present similar immunogenicity than the entire toxins without undesired toxicity (95–97). For example, the use of the non-toxic domain HC50 of the Botulinum neurotoxin type A induces a strong anti-HC50 IgG antibody response, neutralizing the circulating neurotoxin in mice (98). And, immunization with the nontoxic fragment of the C-domain of phospholipase C produces antibodies against this toxin, providing protection against gas gangrene in mice (5). Similarly, our analysis suggests that the nontoxic domain of Perfringolysin O is a promissory candidate for experimental testing as a protein-subunit based vaccine.

Numerous studies have used bioinformatics software to propose epitope-based vaccines against *C. perfringens*. A previous study predicted B-cell epitopes in the epsilon toxin of *C. perfringens* types B and D. However, they are not the main toxinotypes of *C. perfringens* affecting human health (99) and the epsilon toxin is not present in *C. perfringens* type A. Another study predicted 15 unique epitopes in the toxin NetF using mouse rather than human MHC alleles. Although the authors suggest that NetF could be a good vaccine candidate and the epitopes found can be used in multi-epitope vaccines, this needs to be evaluated in humans (100). Furthermore, the NetF protein has been associated with gastroenteritis and enterocolitis in canine and foals (100), but its role in humans is not well studied. Another study has predicted T- and B-cell epitopes in the fructose 1,6-bisphosphate aldolase (101). Nonetheless, they did not design a multi-epitope construct, which might be more effective than single-epitope vaccines (18, 102). Other bioinformatic studies of *C. perfringens* aimed to find only candidate epitopes in toxins or few proteins (71, 103).

A rational workflow was elaborated to design a multi-epitope vaccine, consisting of (1) using different immunoinformatics tools to predict epitopes from the whole proteome of *C. perfringens* (2), considering the epitope location in the structure of their native proteins, and (3) merging and assembling nested epitopes in potential constructs, and (4) evaluating the structure and dynamics of the constructs by MD. Of the programs available for T-cell epitope prediction, we opted to use NetMHCpan and MHCFlurry to predict CTL-epitopes, and NetMHCIIpan for HTL-epitopes, as they have shown the best performance against competitors (27, 28). Proteasome cleavage and TAP transport are also important processes of the intracellular presentation pathway. Predictors of proteasome developed, being the most popular netChop and ProteaSMM. However, benchmarking studies have shown that these predictors still need to improve their sensitivity and specificity (105). Moreover, it has been reported that current cleavage predictions based on *in vitro* data do not correlate with *in vivo* data (106). Therefore, we decided not to discard constructs based on these predictors. TAP transport predictors face the same limitations, with very few predictors available and the lack of unbiased benchmarking studies (107). Targeting HLA supertype alleles maximize the potential usability of our multiprofitep in different populations. This choice
was a tradeoff between wider usability and higher local specificity, and we decided to prioritize the first one as currently *C. perfringens* infection is a widely spread pathogen without universal vaccine. Higher local specificity would be more relevant in other scenarios, such as if broad-range vaccines become available, or if the disease becomes endemic, or if there is a high incidence of cases in a specific geographic location, among others. This will imply a change in the HLA allele selection strategy, giving more importance to certain HLA alleles abundant in the specific geographic areas affected by the disease.

Keeping the synthetic protein small is important to reduce synthesis and production costs (i.e. facilitate its purification in inclusion bodies), as well as to prevent toxicity in the organism used for production (98, 108). Using nested epitopes allows to maximize the number of epitopes in the multi-epitope construct without increasing the construct length. Recent studies have used nested epitopes to construct multi-epitope proteins, but experimental testing is still needed to verify the advantage provided by this strategy (104, 109). From the set of 112714 nested epitopes, several filters were applied to select the best candidates. One of these filters is to prioritize epitope promiscuity, which has been associated with contributing to epitope immunodominance, as promiscuous epitopes are recognized by multiple HLA alleles (110). The use of promiscuous epitopes allows to cover a larger number of HLA-alleles (i.e. a larger proportion of the target population) without increasing the number of epitopes in the vaccine construct (111). We also filtered by epitope conservation among all the reported protein variants of *C. perfringens*. This may result in covering a broader range of current, and potentially future, pathogen variants. Thus, a high epitope conservation could lead to a better protection as the immune response tends to focus on conserved epitopes when individuals are exposed to different strains (112, 113). In our construct, the conservation analysis of the overlapped nested epitopes showed 100% conservation. Thus, even though *C. perfringens* type A is the most common cause of gas gangrene, our construct may confer extended protection against other toxinotypes as well. Our construct of 150 aa is made of 9 overlapped HTL-CTL epitopes, comprising 24 HTL-epitopes containing 34 CTL-epitopes. This suggests a better cellular immune response than previous multiprotein constructs, which were longer and had less epitopes in its sequence (114). Whilst the study of Aldakheel *et al.* (114) attempted to target all HLA-I and -II alleles, we opted to focus on the HLA supertype alleles. This allowed us to focus on the HLA supertype alleles. This allowed us to need less epitopes in our design to match all the target alleles. Additionally, having less HLA targets to express allows epitopes with better immunogenicity to be selected from the prediction. Thus, we successfully covered all the HLA supertype alleles, while the previous study just covered 10 of the 12 HLA-I and 5 of the 8 HLA-II supertypes alleles. Additionally, our design is about 1/3 in length (150 versus 415 aa), due to our strategy of using nested HTL-CTL epitopes in extracellularly exposed regions.

The 9 overlapped nested epitopes in our construct belong to the FTSX domain-containing protein (UniProt ID: Q8XM39), the cardiolipin synthase (UniProt ID: P0C2F2), the Polysaccharide synthase 2 domain-containing protein (UniProt ID: Q8XN75), the probable hemolysin-related protein (UniProt ID: Q8XPD3), the TraG-D C domain-containing protein (UniProt ID: Q93M96), the spore germination protein KA (UniProt ID: Q8XMP0) and CPE0011 (UniProt ID: Q8XPF2). Our prediction indicates that all of them are membrane proteins with a high content of HTL- and CTL-epitopes. Moreover, these proteins present functions related with the cell membrane structure (Cardiolipin synthase), survival (Spore germination protein KA) and host colonization (Hemolysin-related protein) (115–117). External regions of transmembrane proteins involved in the infective process are frequently considered vaccine targets, as antibodies can efficiently neutralize them (118).

Assembling epitopes to make a new protein can be performed with or without linkers, or adding adjuvant sequences (119). Multiple linker and adjuvant sequences have been reported in the literature (120–122). Linkers are used to reduce the occurrence of neoepitopes (123), with the downside of increasing the construct length and the cost of protein synthesis. There are very few software to optimize the use of linkers (112, 124, 125), and this approach is frequently used because finding an appropriate epitope sorting without linkers is time-consuming and computationally demanding. Here, we used a novel algorithm and software based on graph theory (EpiSorter), assembling all the epitopes without the need of linkers and without unwanted neoepitopes shared with human proteins, avoiding autoimmune or tolerance responses. Thus, we believe that using linkers can be avoided and, instead, we recommend prioritizing the number and promiscuity of the epitopes selected.

Several immunoinformatics studies have reported structural models of their multi-epitope constructs using only one or two software, complemented with refinement steps (126–128). Nonetheless, modeling novel proteins is a difficult task as they usually do not have close homologues. The situation becomes even more complex if the novel protein to model consists of highly flexible linear epitopes. To tackle this problem, we employed the state-of-the-art protein-structure prediction software AlphaFold2 (47). Nowadays, this is the first time this software has been used to predict the 3D structure of multi-epitope constructs.

The high proportion of residues of the multi-epitope structures with low pLDDT suggests that the models obtained by AlphaFold were not completely reliable. However, it also says that the multi-epitope protein is highly disordered and flexible, characteristics that may favor its binding to immune proteins. Disordered regions in proteins are characterized by a lack of a stable tertiary structure and high flexibility (129). Moreover, it has been pinpointed that flexibility in protein antigens positively affects their binding affinity (130).

The multi-epitope construct selected did not present Ramachandran outliers and shows an ERRAT score
comparable to scores of high-resolution structures (131). Moreover, these quality statistics are better than the ones obtained in various similar studies designing multi-epitope vaccines (119, 127, 132–135). This reaffirms the quality and consistency of our structural approach, although better modeling software is still needed for multi-epitope proteins.

Docking was performed against TLR1/TLR2 and TLR4/MD2, as they have been widely reported to be important in the innate defense against C. perfringens infection in chickens and mice (136), although little is known in humans. The lipopeptide and lipopolysaccharide binding sites of TLR1/TLR2 and TLR4/MD-2, respectively, have been structurally characterized (137, 138). As there is neither prior experimental information about the binding sites for MEPs, nor which epitope of our novel MEP might interact with the TLRs, we considered blind docking the most appropriate approach. The docking simulation showed binding between our MEP_12 and the TLR1/TLR2, suggesting an innate immune response in addition to the adaptive immune response generated by the nested epitopes. The docking analyses also showed that epitopes “3” and “10” interact with TLR1/TLR2. These epitopes are relatively rigid, which may result in a more favorable binding as shown in previous studies. Epitopes tend to be more rigid than the rest of the protein (31). And, from a thermodynamic point of view, rigid surfaces have less entropic penalty when interacting with other proteins, resulting in tighter bindings.

The binding region of MEP_12 in TLR4/MD-2 is similar to the one observed in a previous study, where a SARS-CoV-2 candidate vaccine was docked against this receptor (119), even though different protocols were followed. This suggest that this region of TLR4/MD-2 is where antigenic proteins bind. However, experimental studies are needed to validate this observation. Noteworthy, the MEP_12 is smaller and establishes fewer interactions with TLR4/MD-2 than the SARS-CoV-2 candidate vaccine but achieves a similar binding energy, differing in just in 0.4 kcal/mol. This indicates that our design is a more efficient TLR4/MD-2 binder and correlates with the finding that MEP_12 is flexible and disordered. These are two desired characteristics, as they make antigens more efficient at binding immune proteins (33).

Immunization with MEP_12 was simulated, showing that our vaccine candidate can elicit immune responses to clear the antigen on secondary exposure. The challenge with C. perfringens proteins after three vaccine injections induced higher levels of IgG than IgM. IgM is the principal isotype in the first response, while IgG is predominant in secondary responses, representing specific pathogen recognition (139). Also, the increased production of immunoglobulins by plasma B cells indicated that memory of C. perfringens proteins is present in the immune system (140). Finally, a gene encoding MEP_12 was designed optimizing its sequence for expression and production in E. coli, as this organism has been widely used to produce recombinant vaccines (141–143). Additionally, the design can be adapted to other organisms following the methodology we described.

In summary, in the current study, we have performed a thorough immunoinformatic exploration of the whole proteome to generate vaccine candidates against C. perfringens. Three approaches were followed to identify (1) the most immunogenic proteins (2), immunogenic non-toxin domains of toxins, and (3) the design a novel protein with the best HTL-CTL nested epitopes, expected to trigger both adaptive and cellular immune responses. These resulted in promising candidates for further experimental in vitro and in vivo studies. These candidates may help in the prevention of necrotic enteritis, as well as other human diseases caused by C. perfringens.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.

Author contributions

Conceptualization, LFS and DR. Methodology, LFS, DR, GJ-A, and DR. Software, LFS, DR, and GJ-A. Validation, LS and DR. Formal Analysis, LFS and DR. Investigation, LFS, AR, GJ-A, and DR. Resources, DR. Data curation, DR. Writing – original draft preparation, LFS, DR, GJ-A, and DR. Writing-review and editing, LFS, AR, and DR. Visualization, LFS and GJ-A. Supervision, DR. Project administration, DR, RLL, YS, and CO-R. Funding acquisition, DR, RLL, YS, and CO-R. All authors contributed to the article and approved the submitted version.

Funding

The publication of this work was funded by the grant Nº 2264962 SNIP N°317435 “Creación del Centro de Promoción de la Investigación y Transferencia Tecnológica” of the University “Toribio Rodriguez de Mendoza de Amazonas”.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or
Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu.2022.942907/full#supplementary-material

SUPPLEMENTARY FIGURE 1

Density and promiscuity of the CTL- and HTL-epitopes. (A) Epitope density in proteins by epitope length (CTL-epitopes: 8, 9, and 10 aa; HTL-epitopes: 15 aa). (B) The bar plot represents in the X-axis the number of epitopes identified, for each epitope length (Y-axis). The color indicates how many HLA supertype alleles each epitope binds. In the bar plots (C) (for CTL-epitopes) and (D) (for HTL-epitopes), the Y-axis represents the number of epitopes that can bind a certain number of HLA supertype alleles (X-axis). Panels (E, F) show the distribution of the number and density, respectively, of HTL-epitopes in the proteins of each of the levels of evidence indicated in the X-axis.

SUPPLEMENTARY FIGURE 2

Conservation of the nested candidate epitopes across C. perfringens toxigenotypes. Each subtree shows the alignment of the nested epitope, the epitope ID and the protein name.

SUPPLEMENTARY FIGURE 3

(A) Mean pLDDT of the 22 multi-epitope (MEP) candidates. (B) Structural alignment between the centroid of the most populated cluster of MEP_12, before renefinition, and after (cyan) refinement.

SUPPLEMENTARY FIGURE 4

Quality assessment of the centroid of the most populated cluster of MEP_12 before refinement. (A) Ramachandran plot for the general case. The percentage of residues in preferred (light blue) and allowed (blue) regions are shown. (B) Scatterplot of the Z-scores of the centroid (black dot) and protein structures with experimental evidence (NMRI: blue, X-ray crystallography: light blue). (C) ERRAT plot of the centroid. Bars represent the error value (white: error < 95%, yellow: 95% error < 99%) of a nine-residue sliding window. The overall quality factor indicates the percentage of protein residues with error values lower than 95%.

SUPPLEMENTARY FIGURE 5

SASA values per epitope. Values over the last 500 ns of convergent simulation are shown for epitopes “0” to “10” (excluding “4”) in panels A to L, respectively. The SASA of all epitopes shown but “5” and “9” achieved convergence. Epitope “8” only achieved convergence during the last 400 ns (enclosed in a red box, close-up in inset plot). So, only this region was considered for its mean SASA computations.

SUPPLEMENTARY FIGURE 6

Comparison of all plausible clusters of docking of MEP_12 against TLR1/TLR2 and TLR4/MD2. The best binding modes of clusters (enclosed in a red box) and how they have been color-coded, with their corresponding docking scores with overlapping error bars (standard deviations) are shown for the dockings (A) MEP_12-TLR1/TLR2, and (C) MEP_12-TLR4/MD2. TLR1 and TLR2 chains are colored in green and orange, respectively. Attached glycans are shown as sticks in cyan. In (A), the best binding modes of MEP_12 from clusters “1,” “2,” “3,” and “4” are colored in red, cyan, gray, and blue, respectively. In (C), the best binding modes of MEP_12 from clusters “1,” “3,” “5,” and “6” are colored in gray, blue, red, and cyan, respectively. (B) Enlarged view of the best binding mode of cluster “1” (red cartoon with transparent surface) in the docking MEP_12-TLR1/TLR2. The N-terminal residues missing in TLR1/TLR2 structure (in gray) were completed by structural alignment to a TLR2 model from the AlphaFold Protein 1500 Database. These interact with MEP_12 cluster “1” (D) Best binding modes from cluster “3” and “6” from the docking MEP_12-TLR4/MD2. The black line separating the two sides of TLR4/MD2 represents a symmetry axis. The binding modes of left side become equivalent to the right side after a 180° right-handed rotation, as shown in (E).

References

1. Hassan KA, Elbourne LDH, Tetu SG, Melville SR, Rood JI, Paulsen IT. Genomic analyses of clostridium perfringens isolates from five toxigenotypes. Res Microbiol (2015) 166(4):255–63. doi: 10.1016/j.resmic.2014.10.003
2. Grass JE, Gould LH, Mahon BE. Epidemiology of foodborne disease outbreaks caused by clostridium perfringens, United States, 1998–2010. Foodborne Pathog Dis (2013) 10(2):131–6. doi: 10.1089/fpd.2012.1316
3. Janik E, Ceremuga M, Saluk-Bijak J, Bijak M. Biological toxins as the potential tools for bioterrorism. Int J Mol Sci (2019) 20(5):E1181. doi: 10.3390/ijms20051181
4. Buboltz JB, Murphy-Lavoie HM. Gas gangrene. Treasure Island (FL: StatPearls Publishing) (2022). Available at: http://www.ncbi.nlm.nih.gov/books/NBK537030/.
5. Tithall RW. Clostridium perfringens vaccines. Vaccine (2009) 27 Suppl 4: D44–47. doi: 10.1016/j.vaccine.2009.07.047
6. Barras V, Greub G. History of biological warfare and bioterrorism. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis (2014) 20(6):497–502. doi: 10.1111/cmi.12706
7. Sim K, Shaw AG, Randell P, Cox MJ, McClure ZE, Li MS, et al. Dysbiosis anticipating necrotizing enterocolitis in very premature infants. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis (2015) 21(3):389–97. doi: 10.1016/j.cmi.2014.08.022
8. Heida FH, van Zoonen AGIF, Hulscher JBF, te Kieft BJC, Wessels R, Kooi EMW, et al. A necrotizing enterocolitis-associated gut microbiota is present in the meconium: Results of a prospective study. Clin Infect Dis (2016) 62(7):863–70. doi: 10.1093/cid/ciw016
9. Uzal FA, Freedman JC, Shrestha A, Theoret JR, Garcia J, Awdal MM, et al. Towards understanding of the role of clostridium perfringens toxins in human and animal disease. Future Microbiol (2014) 9(3):361–77. doi: 10.2217/fmb.13.168
10. Navarro MA, McClane BA, Uzal FA. Mechanisms of action and cell death associated with clostridium perfringens toxins. Toxins (2018) 10:5. doi: 10.3390/toxins10050212
11. Kammerl IE, Memers S. Proteasome function shapes innate and adaptive immune responses. Ann Physiol Lung Cell Mol Physiol (2016) 311(2):L328–36. doi: 10.1152/ajplv.00156-2016
12. Yao Y, Yang H, Shi L, Liu S, Li C, Chen J, et al. HLA class II genes HLA-DPB1, HLA-DPB1, and HLA-DQB1 are associated with the antibody response to inactivated Japanese encephalitis vaccine. Front Immunol (2019) 10. doi: 10.3389/fimmu.2019.00428
13. Moyle PM, Toth I. Modern subunit vaccines: Development, components, and research opportunities. ChemMedChem (2013) 8(3):360–76. doi: 10.1002/cmdc.201200487
14. Uzal FA, Wong JP, Kelly WR, Priest J. Antibody response in goats vaccinated with liposome-adjuvanted clostridium perfringens type d epsilon toxoid. Vet Res Commun (1999) 23(3):143–50. doi: 10.1023/A:10062616220
15. Tian JH, Patel N, Hauppi R, Zhou H, Weston S, Hammond H, et al. SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice. Nat Commun (2021) 12(1):372. doi: 10.1038/s41467-020-20653-8
16. Heath PT, Galiza EP, Baxter DN, Boffard K. Ebola virus vaccines: Past, present, and future. Vaccine (2020) 38(28):4485–91. doi: 10.1016/j.vaccine.2019.07.101
17. Koff WC, Schenkelberg T. The future of vaccine development. Vaccine (2020) 38(28):4485–6. doi: 10.1016/j.vaccine.2019.07.101
18. Zhang L. Multi-epitope vaccines: a promising strategy against tumors and viral infections. Cell Mol Immunol (2018) 15(2):182–4. doi: 10.1038/cmi.2017.92
different supertypes and a surprising degree of repertoire sharing across supertypes. Immunogenetics (2011) 33(1):325–330. doi:10.1007/s00775-011-0113-0

41. Bergland L, Andrade J, Oldberg J, Uhlen M. The epitope space of the human proteome. Protein Sci Publ Protein Soc (2008) 17(4):606–13. doi:10.1002/pro.73347208

42. Sonnhammer EL, von Heijne G, Krogh A. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol (1998) 6:175–82.

43. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Edited by I. Cohen. J Mol Biol (2001) 305(3):567–80. doi:10.1006/jmbi.2000.4315

44. Finlay BB, McFadden G. Anti-immunology: Evasion of the host immune system by bacterial and viral pathogens. Cell (2006) 124(4):767–82. doi:10.1016/j.cell.2006.01.034

45. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Chustal W and clustal X version 2.0. Nucleic Acids Res (2008) 36(11):168–70. doi:10.1093/nar/gkn506

46. Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, et al. Protein identification and analysis tools in the ExPASy server. Methodol Mol Biol Clifton NJ (1999) 112:531–52. doi:10.1385/1-59259-584-7:531

47. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature (2021) 596(7875):583–9. doi:10.1038/s41586-021-03819-2

48. Dolinsky TJ, Czukowska P, Li H, Nielsen JE, Jensen JL, Klebe G, et al. Scalable molecular dynamics on GPUs and CPUs with NAMD. J Chem Phys (2015) 143(4):044130. doi:10.1063/1.4914475

49. Huang J, Rauscher S, Navrocki G, Tan R, Feig M, de Groot BL, et al. CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat Methods (2017) 14(1):71–3. doi:10.1038/nmeth.4067

50. Stone J, Phillips JC, Freedholm PL, Hardy DJ, Trabuco LG, Schulten K. Accelerating molecular modeling applications with graphics processors. J Comput Chem (2007) 28(16):2618–40. doi:10.1002/jcc.20829

51. Hadden JA, Peiraza JR. Molecular dynamics simulations of protein-drug complexes: A computational protocol for investigating the interactions of small-molecule therapeutics with biological targets and biosensors. Methodol Mol Biol Clifton NJ (2018) 1762:245–70. doi:10.1007/978-1-4939-7756-7_13

52. Seeger M, Eller A, Raimondi F, Muff S, Friedman R, Rao F, et al. Wordom: A user-friendly program for the analysis of molecular structures, trajectories, and free energy surfaces. J Comput Chem (2011) 32(16):1183. doi:10.1002/jcc.21688

53. Daura X, Gademann K, Jaun B, Seebach D, van Gunsteren WF, Mark AE. Peptide folding: When simulation meets experiment. Angew Chem Int Ed (1999) 38(19):236–40. doi:10.1002/(SICI)1521-3773(19990915)38:19<236::AID-ANGE1>3.0.CO;2-M

54. Xu D, Zhang Y. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys J (2012) 103(10):2525–34. doi:10.1016/j.bpj.2012.10.024

55. Wiederstein M, Sippel MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res (2007) 35(W10):W407–10. doi:10.1093/nar/gkm290

56. Colovos C, Yeates TO. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci Publ Protein Soc (1993) 239:1151–9. doi:10.1002/pro.5560020916

57. Schrödinger L, DeLano WM. PyMOL [Internet]. (2020). Available from: http://www.pymol.org/pymol

58. Molecular modelling: Principles and applications. Available at: https://www.pearson.com/content/one-dot-com/one-dot-com-us/en/higher-education/program.html

59. Domínguez C, Boelens R, Bonvin AMJF. HADDOCK: a protein–protein docking approach based on biochemical or biophysical information. J Am Soc Med (2003) 125(7):1731–7. doi:10.1021/jc026939x

60. Eastman P, Friedrichs MS, Choeura JD, Radmer RJ, Bruns CM, Ku JP, et al. OpenMM 4: A reusable, extensible, hardware independent library for high performance molecular simulation. J Chem Theory Comput (2013) 9(1):461–9. doi:10.1021/ct300857t

61. Weber ANR, Morse MA, Gay NJ. N linked glycosylation sites in human toll-like receptor 2 cooperate to direct efficient biosynthesis and secretion . J Biol Chem (2004) 279(33):34358–94. doi:10.1074/jbc.M403830200
chickens against clostridium perfringens-induced necrotic enteritis using purified infection.

(1994) 243(2):215
(2009) 390(2):208

sialidase toxin from clostridium perfringens.

32 carbohydrate-binding module from clostridium perfringens NagH.

Epidemiol Evol Genet Infect Dis

means of a clostridium perfringens toxoid vaccine.

et al. Immunoinformatics prediction of epitope based peptide vaccine against

j.meegid.2020.104461

649111. doi:10.1101/649111

E341. doi:10.3390/toxins8110341

Jpn J Med Sci Biol

yoken1952.24.9

Protein truncating variants of colA in clostridium perfringens type G strains.

jimmunol.1302101

1950

The length distribution of class I-restricted T cell epitopes is determined by both

alleles are associated with peptide-binding repertoires of different size, af

Soto et al. 10.3389/

Frontiers in Immunology frontiersin.org24

70. Springer S, Selbitz H -J. The control of necrotic enteritis in sucking piglets by

71. Wang Yh. Bioinformatics analysis of NetF proteins for designing a multi-

70. doi:10.1101/649111

7. doi:10.2174/1389201014666131226124348

5. Morales Ruiz S, Bendezu J, Choque Guevara R, Montesinos R, Requena D,

6. doi:10.4049/

9. doi: 10.4049/jmeegid.2013.07.030

23. doi: 10.7883/jmmu.2022.942907

101. Goumari MM, Farhani I, Nezafat N, Mahmoodi S. Multi-epitope vaccines

68. Van Damme L, Cox N, Callens C, Dargatz M, Flügel M, Hark S, et al.

103. Rodrigues RR, Ferreira MRA, Kremer FS, Donassolo RA, Ju
defa A, et al. Recombinant vaccine design against clostridium spp. toxins using

102. Sette A, Livingston B, McKinney D, Appella E, Fikes J, Sidney J, et al. The

101. Goumari MM, Farhani I, Nezafat N, Mahmoodi S. Multi-epitope vaccines

102. Sette A, Livingston B, McKinney D, Appella E, Fikes J, Sidney J, et al. The

100. Mohamed Z, Vaast J, Sabo M, Adolphe S, Frelin S, Alcalay E, et al. Recombinant

86. Caradonna TM, Schmidt AG. Protein engineering strategies for rational

immunogen design. NPJ Vaccines (2021) 6(1):154. doi:10.1038/s41541-021-00417-1

Merlin M, Gecchle E, Capaldi S, Pezzotti M, Avanesi L. Comparative evaluation of recombinant protein production in different biofactories: The final perspective. BioMed Res Int (2014) 2013:164691. doi:10.1155/2014/364194

Ploenchit Langraud R, Shamsara M, Aghaipour K. Expression of clostridium perfringens epsilon-beta fusion toxin gene in e. coli and its immunogenicity in mice. Vaccine (2013) 31(32):3295–9. doi: 10.1016/j.vaccine.2013.04.061

Florez-Dias M, Alape-Girón A. Role of clostridium perfringens phospholipase c in the pathogenesis of gas gangrene. Toxicon (2003) 42(8):979–86. doi: 10.1016/toxicon.2003.11.013

Verherstraeten S, Goossens E, Vaalbergen B, Pardon B, Timmermont L, Haesebrouck F, et al. Non-toxic perfringolysin O and ε-toxin derivatives as potential vaccine candidates against bovine necrohaemorrhagic enteritis. Vet J Lond Engl 1997 (2006) 169:207–14. doi:10.1016/j.vetj.2006.09.008

Liao CM, Huang C, Huang SL, Chen ZW, Lee WC, Liu CL, et al. Immunogenicity and efficacy of three recombinant subunit pasteurella multocida toxin vaccines against progressive atrophic rhinitis in pigs. Vaccine (2006) 24(1):27–35. doi:10.1016/j.vaccine.2005.07.079

Tinker JK, Yan J, Knuppl RJ, Panayiotou P, Cornell KA. Immunogenicity of a West Nile virus DIII-chola toxin A2/B chimera after intranasal delivery. Toxins (2014) 6(4):397–418. doi:10.3390/toxins6040397

Mustafa W, Al-Saleem FH, Nasser Z, Olson RM, Mattis JA, Simpson LL, et al. Immunization of mice with the non-toxic HC50 domain of botulinum neurotoxin presented by rabies virus particles induces a strong immune response affording protection against high-dose botulinum neurotoxin challenge. Vaccine (2011) 29(28):4368–43. doi:10.1016/j.vaccine.2011.04.045

Kausik H, Deshmukh S, Mathur DD, Tiwari A, Garg LC. Recombinant expression of in silico identified hept cell epitope of epsilon toxin of clostridium perfringens in translational fusion with a carrier protein. Bioinformation (2013) 9 (12):617. doi:0.6026/9732003009617

Mehdizadeh Gohari I, Parreza VR, Nowell VL, Nicholson VM, Olphant K, Prescott JF. A novel pore-forming toxin in type A clostridium perfringens is associated with both fatal canine hemorrhagic gastroenteritis and fatal foal necrotizing enterocolitis. PloS One (2015) 10(4):e0122684. doi:10.1371/journal.pone.0122684

Gounari MM, Farhan I, Nezafat N, Mahmodoo S. Multi-epitope vaccines (MEVs), as a novel strategy against infectious diseases. Curr Vaccines Proteomics (2020) 17(3):354–64. doi:10.1016/j.molbiol.2016.12.010140

Sette A, Livingston B, McKinney D, Appella E, Fikes J, Sidney J, et al. The development of multiple-epitope vaccines: Epitope identification, vaccine design and clinical evaluation. Biologics (2001) 29(3):271–6. doi:10.1016/biol.2001.0297

Rodrigues RR, Ferreira MRA, Kremer FS, Donassolo RA, Junior CM, Alves MFP, et al. Recombinant vaccine design against clostridium spp. toxins using immunoinformatics tools. In: S. D. M., editor, Vaccination Methods and protocols, volume 3 resources for vaccine development, vol. p. New York, Springer US (2022). p. 457–70.
the cytosolic delivery of macromolecules.

Glycoprotein 2 from Pakistan: A step towards heterologous vaccine design. Analysis of b-cell and T-cell epitopes of hepatitis c virus 3a genotype enveloped DM, et al. T-Cell epitope conservation across allergen species is a major lymphocyte epitopes. et al. A rational strategy to design multiepitope immunogens based on multiple Th 578.e7. doi:10.1016/j.jaci.2015.11.034

Mediated immune models for mycobacterium tuberculosis and bordetella (2015) 2015:763461. doi:10.1155/2015/763461

Population coverage by HLA class-I restricted cytotoxic T-lymphocyte epitopes. Soto et al. 10.3389/

BioMed (2021) 137:111254. doi:10.1016/j.biopha.2021.111254

117. Paredes-Sabja D, Setlow P, Sarker MR. Germination of spores of bacillales processing predictions in T cell epitope identi-

109. Carrasco Pro S, Sidney J, Paul S, Lindestam Arlehamn C, Weiskopf D, Ahmadi N, et al. Reverse vaccination approach to design a novel multi-epitope candidate vaccine against COVID-19. An in silico study. J Biomial Struct Dyn (2021) 39(8):2857–72. doi:10.1093/jpmas/48.23/8566.72 – 10.1093/jpmas/48.23/8566

126. Kalita P, Lyngdoh DL, Padhi AK, Shukla H, Tripathi T. Development of multi-epitope driven subunit vaccine against fasciola gigantica using immunoinformatics approach. Int J Biol Macromol (2019) 138:224–33. doi:10.1016/j.jbhm.2019.07.024

127. Vakili B, Eslanim M, Hatam GR, Zare B, Erfani N, Nezafat N, et al. Immunoinformatics-aied design of a potential multi-epitope peptide vaccine against leishmania infantum. Int J Biol Macromol (2018) 120:1127–39. doi:10.1016/j.jbhm.2018.08.125

128. Enayatkhani M, Hasanzadat M, Faezi S, Goukami L, Davoodian P, Ahmadi N, et al. Reverse vaccination approach to design a novel multi-epitope b-cell vaccine against COVID-19. An in silico study. J Biomial Struct Dyn (2021) 39(8):2857–72. doi:10.1093/jpmas/48.23/8566.72 – 10.1093/jpmas/48.23/8566

129. Bhattarai A, Emerson IA. Dynamic conformational flexibility and molecular interactions of intrinsically disordered proteins. J Biosci (2020) 45 (1).29. doi:10.1007/s12038-020-0010-4

130. Fieser TM, Tainer JA, Geysen HM, Houghten RA, Lerner RA. Influence of protein flexibility and peptide conformation on reactivity of monoclonal anti-

131. M. et al. Immunological memory in humans. Immunology and evolution of infectious disease. Princeton University Press (2020). doi:10.1515/9780691220161

132. Khatoon N, Pandey BK, Praipait V. Okologing leishmania secretory proteins to design b and T cell multi-epitope subunit vaccine using immunoinformatics approach. Sci Rep (2017) 7(1):8285. doi:10.1038/s41598-017-08842-w

133. Tripathi TDR, Shukla P, Das S, Mishra S, Pramanik R, Dole J, et al. Reverse vaccination assisted designing of multi-epitope based subunit vaccine against SARS-COV-2. Immunoinformatics and in silico approaches. PLoS One (2020) 15 (12):e0244176. doi:10.1371/journal.pone.0244176

134. Tahir Ul Qamar M, Rehman A, Tulseem K, Ashfaq UA, Qasim M, Zhu X, et al. Designing of a next generation multi-epitope based vaccine (MEV) against SARS-COV-2. Immunoinformatics and in silico approaches. PLoS One (2020) 15 (12):e0244176. doi:10.1371/journal.pone.0244176

135. Tahir Ul Qamar M, Shahid F, Ashfaq A, Ashfaq UA, Samad, Fatima I, et al. Reverse vaccination assisted designing of multi-epitope based subunit vaccine against SARS-COV-2. Infect Dis Poverty (2020) 9:132. doi:10.1186/s40249-020-00752-w

136. Tarig MH, Bhattarai R, Ali NF, Ashfaq UA, Shahid F, Almatroudi A, et al. Rational design of chimeric multiepitope based vaccine (MEBV) against human T-

137. Frank SA. Immunology and evolution of infectious disease. Princeton University Press (2020). doi:10.1515/9780691220161

138. Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO. The structural basis of lipopolysaccharide recognition by the TL1R4-MD complex. Nature (2009) 458 (7242):1191–5. doi:10.1038/nature07930

139. Crotty S, Ahmed R. Immunological memory in humans. Semin Immunol (2004) 16(3):197–203. doi:10.1016/j.smim.2004.02.008

140. Ihssen J, Kowarik M, Dilettoso S, Tanner C, Wacker M, Thöny-Meyer L. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell (2007) 130(10):1071–82. doi:10.1016/j.cell.2007.09.008

141. Ihssen J, Kowarik M, Dilettoso S, Tanner C, Wacker M, Thöny-Meyer L. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell (2007) 130(10):1071–82. doi:10.1016/j.cell.2007.09.008

142. Tripathi NK, Shrivastava A. Recent developments in recombinant protein-

143. Aguilar-Yanez FM, Portillo-Lara R, Mendosa-Ochoa GL, Garcia-Echauri SA, Lopez-Pacheco F, Bulnes-Abundis D, et al. An influenza A/H1N1/2009 hemagglutinin vaccine produced in escherichia coli. PLoS One (2010) 5(7): e11694. doi:10.1371/journal.pone.011694