Effect of glucose on reduced glutathione level in Malay uncomplicated type 2 diabetes patients

Subandrate¹, Raafqi Ranasasmita²*

¹Biochemistry Department, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia
²Halal Laboratory, Indonesian Halal Certifier LPPOM MUI, Bogor, Indonesia
*Corresponding author: Halal Laboratory, Indonesian Halal Certifier LPPOM MUI, Jl. Pemuda No. 5 Bogor, 16161, Indonesia.
Email: raafqi@halalmui.org

Introduction

Type 2 diabetes is a condition characterized by hyperglycemia due to insulin resistance, with a 1.4-1.6% prevalence in Indonesia. Such condition is usually triggered by multiple factors, such as age, race, family history, diet, lifestyle, and several other metabolic diseases [1–3]. Hyperglycemia could lead to chronic complications such as nephropathy and retinopathy. Such complications may be caused by the increasing free radicals that will accelerate microangiopathic and macroangiopathic complications due to damaged lipids, DNA, and protein [3–8]. This condition can be detected by the increase of oxidative stress markers such as malondialdehyde (MDA) and carbonyl compounds. It can also be measured by the decrease of endogenous antioxidants such as glutathione (GSH), as it is depleted to counteract the free radicals [1,4]. Research in Egypt showed a significant rise in SOD, MDA, and GSH levels in patients with type 2 diabetes compared to healthy people. Other studies also show an increase in free radicals in type 2 diabetes patients [9,10]. The expression of enzyme related to glutathione metabolism based of racial profile have been explored, but none has discussed ethnic population in Indonesia [11,12].

Unfortunately, previous research that measures GSH either did not distinguish diabetic type 2 patients based on the absence of complications [13–15], or they use a limited number of uncomplicated diabetic patients (<10 subjects) [16]. Within Malay race patients, there is also an absence of data...
regarding the relationship between random glucose levels versus GSH in uncomplicated type 2 diabetes patients. This study aimed to evaluate GSH in the early stage of diabetic type 2 pathogenesis and the effect of race. This research measured the correlation between glucose level and GSH, to evaluate the impact of hyperglycemia on GSH as an endogenous antioxidant.

Methods

Subjects

This study was an observational analytic study conducted from July to November 2015 with a case-control approach. The research subjects were 25 type 2 diabetes patients treated at the Internal Medicine Polyclinic in Mohammad Hoesin Hospital, Palembang, Indonesia. The inclusion criteria were Malay race and agree to participate by signing informed consent. Exclusion criteria were suffering from other endocrine diseases, diabetes complications (including, but not limited to, complicated diabetic foot, retinopathy, nephropathy), carcinoma, and infectious disease. For the controlled group, we recruited 25 healthy people with matching ages and sex. The study was conducted with ethical permission from The Bioethical and Humanities Unit of Mohammad Hoesin Hospital Palembang and Faculty of Medicine, Universitas Sriwijaya number 157/kepkrsmhfkunsri/2014.

Patients included in this study were type 2 diabetes mellitus patients without complications, which were verified by asking the patient’s history and checking their medical records. The patient has received antidiabetics therapy from the doctor in the form of metformin and/or glimepiride in accordance with the guidelines for treating diabetes mellitus from The Indonesian Society of Endocrinology [17].

Measurement of glucose and GSH levels

Two mL of blood samples were taken from the median cubital vein in the left arm. Blood glucose was measured by using ACCU-CHECK® Active Kit. The plasma was obtained through centrifugation. GSH plasma was measured by using Sigma GSH Assay, according to the manufacturer’s instruction.

Statistical analysis

All data were presented as mean ± SEM. GraphPad Prism 8 (California, US) was used to generate the figure. Data were then analyzed using GraphPad for unpaired t-test, and SPSS 16 for the Pearson correlation test.
Effect of glucose on reduced glutathione level

Results

Characteristics of subjects

Table 1 shows characteristic of subjects including of gender, age, and duration of experienced with diabetes. Type 2 diabetes patients enrolled in this study were dominantly female (20 women, 5 men) with an average age of 52 years old. They experienced diabetes for an average of 5.8 years. Results showed that the diabetic patients have a higher average random blood glucose levels (236.2 + 69.9 mg/dL) than those of the control (101.9 + 13.6 mg/dL) (Figure 1).

GSH levels

The average GSH level of type 2 diabetes patients were 4.52 + 0.72 µmol/L, which is significantly lower than the control group with 5.50 µmol/L + 1.51 µmol/L (p=0.01) (Figure 2). The Pearson correlation test showed that a negative correlation between blood sugar levels and GSH levels (r = -0.437, p=0.02) (Figure 3).

Discussion

The lower GSH levels result (compared to the control) in our research indicates increasing free radicals and higher oxidative stress. It concurs with a previous smaller study in which nine diabetes type 2 patients with microvascular complications had significantly lower GSH than the remaining seven patients who had no complications [16]. The aldehyde group of glucose is a highly reactive compound. The high blood glucose concentration in diabetic type 2 patient will cause non-enzymatic protein glycation through the binding of monosaccharides to an amino group in the protein [5]. Such reactions will alter protein structure and produce advanced glycosylation end compounds, which have a significant role in long-term diabetic complications.

Patients who were included in the study also received antidiabetics therapy, metformin and/or
Studies have shown that metformin does not affect glutathione metabolism [19]. There is no human study on the effect of glimepiride. However, an animal study also shows that glimepiride has no effect on glutathione [20]. It shows that the effect of the medication can be ignored. Related to the use of the ACCU-CHECK® kit, it has been shown to have comparable performance with standard laboratory assay [21,22] and relatively superior to other blood glucose self-monitoring test [23] while also being simplistic. This self-monitoring device were also used were frequently used in various research to measure blood glucose in the diabetic patients [24–26].

In terms of racial profile, this study’s reach a similar conclusion to research in other populations, such as in India and Egypt (Table 2). In the Indian study, type-2 diabetic patients without nephropathy has 12.20 ± 1.84 mg%, while type 2 diabetic patients with nephropathy have lower GSH, 10.62 ± 1.84 mg%. This is also much lower compared to control with 14.21 ± 2.55 mg% [27]. In the Egypt study, insulin-dependent diabetes mellitus (with and without vascular complications) had 3.04 ± 0.38 mg/g protein (n=40), while non insulin-dependent diabetes mellitus (with and without vascular complications) had 2.35 ± 0.39 mg/g protein (n=55) [28]. Our findings along both studies indicate a GSH-related antioxidant protecting mechanism in uncomplicated diabetes type 2 patients, irrespective of race.

Study	Patient group	Sample size	GSH value
Our study	Normal	25	5.50 ± 1.51 µmol/L
	Uncomplicated type-2 diabetes	25	4.52 ± 0.72 µmol/L
India study	Normal	30	14.21 ± 2.55 mg%
	type-2 diabetes without nephropathy	30	12.20 ± 1.84 mg%
	type 2 diabetes with nephropathy	30	10.62 ± 1.84 mg%
Egypt study	Normal	20	4.19 ± 0.58 mg/g protein
	Insulin-dependent diabetes*	40	3.04 ± 0.38 mg/g protein
	Non insulin-dependent diabetes*	55	2.35 ± 0.39 mg/g protein

1) with and without vascular complications

Conclusion

In Malay type 2 diabetes patients, the blood GSH levels decreased significantly compared to controls, showing that the increased blood sugar levels may generate free radicals and deplete antioxidant pool, including GSH. Further research should examine endogenous antioxidant expression at the cellular level. A control group of uncomplicated diabetes type 2 patients who do not receive metformin and/or glimepiride should also be included to observe how metformin and glimepiride affects the antioxidant mechanism.

Acknowledgment

We would like to acknowledge the staff in the Endocrinology Polyclinic, Department of Internal Medicine, Mohammad Hoesin Hospital, Palembang, Indonesia, who facilitates the sampling process, especially dr. Yulianto Kusnadi, Sp.PD-KEMD, FINASIM.

Author contribution

Conceptualization, S.; Methodology, S. and R.R.; Formal Analysis, S.; Investigation, S.; Resources, S.; Writing – Original Draft, R.R; Writing – Review & Editing, S. and R.R.; Visualization, S.; Funding Acquisition, S.; Resources, S. and R.R.; Project Administration, S.
Effect of glucose on reduced glutathione level

Declaration of interest
Both authors declare the absent of potential conflict of interest.

Received: 16 March 2021
Accepted: 31 August 2021
Published online: 4 September 2021

References

1. Ligita T, Wicking K, Francis K, Harvey N, Nurjannah I. How people living with diabetes in Indonesia learn about their disease: A grounded theory study. PLoS One. 2019;14: e0212019. https://doi.org/10.1371/journal.pone.0212019

2. Sugarta IGRM, Darmita IGK. Profil penderita Diabetes Mellitus Type-2 (DM-2) dengan komplikasi yang menjalani rawat inap di Rumah Sakit Umum Daerah (RSUD) Klungkung, Bali tahun 2018. Intisari Sains Medis. 2020;11: 7. https://doi.org/10.15562/isn.v11i1.515

3. Kaura Parbhakar K, Rosella LC, Singhal S, Quíñonez CR. Acute and chronic diabetes complications associated with self-reported oral health: a retrospective cohort study. BMC Oral Health. 2020;20: 66. https://doi.org/10.1186/s12903-020-1054-4

4. Dludla PV, Joubert E, Muller CJF, Louw J, Johnson R. Hyperglycemia-induced oxidative stress and heart disease-cardioprotective effects of rooibos flavonoids and phenylpyruvic acid-2-O-β-D-glucoside. Nutr Metab (Lond). 2017;14: 45. https://doi.org/10.1186/s12986-017-0200-8

5. Ohiagu FO, Chikezie PC, Chikezie CM. Pathophysiology of diabetes mellitus complications: Metabolic events and control. Biomed Res Ther. 2021;8: 4243–4257. https://doi.org/10.15419/bmrat.v8i3.663

6. Marocveccio ML, University of Cambridge, Cambridge. UK. Complications of acute and chronic hyperglycemia. US Endocrinol. 2017;13: 17. https://doi.org/10.17925/USE.2017.13.01.17

7. Vodošek Hojs N, Bevc S, Elkart R, Hojs R. Oxidative Stress Markers in Chronic Kidney Disease with Emphasis on Diabetic Nephropathy. Antioxidants (Basel). 2020;9. https://doi.org/10.3390/antiox9100925

8. Turpin C, Catan A, Guerin-Dubourg A, Debussche X, Bravo SB, Álvarez E, et al. Enhanced oxidative stress and damage in glycated erythrocytes. PLoS One. 2020;15: e0235335. https://doi.org/10.1371/journal.pone.0235335

9. Asmat U, Ahad K, Ismail K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm J. 2016;24: 547–553. https://doi.org/10.1016/j.jspj.2015.03.013

10. Kristina H, Sartono N, Rusdi R. Kadar peroksida lipid dan aktivitas superoksida dismutase serum darah pada penderita diabetes mellitus type 2. biomia. 2015;11: 1. https://doi.org/10.21009/biomia11(1)1

11. Li J, Jiang R, Cong X, Zhao Y. UCP2 gene polymorphisms in obesity and diabetes, and the role of UCP2 in cancer. FEBS Lett. 2019;593: 2525–2534. https://doi.org/10.1002/1873-3468.13546

12. Hu CY, Lu D-L, Wu T, Cheng S-L, Wu T-T, Wang S, et al. Glutathione-S-transferases M1/T1 gene polymorphisms and male infertility risk in Chinese populations: A meta-analysis. Medicine. 2019;98: e14166. https://doi.org/10.1097/MD.00000000000014166

13. Sutton EF, Beyl R, Early KS, Cofalu WT, Ravussin E, Peterson CM. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab. 2018;27: 1212–1221.e3. https://doi.org/10.1016/j.cmet.2018.04.010

14. Farinha JB, Ramis TR, Vieira AF, Macedo RCO, Rodrigues-Krause J, Boeno FP, et al. Glycemic, inflammatory and oxidative stress responses to different high-intensity training protocols in type 1 diabetes: A randomized clinical trial. J Diabetes Complicat. 2018;32: 1124–1132. https://doi.org/10.1016/j.jdiacomp.2018.09.008

15. Luc K, Schramm-Luc A, Guzik TJ, Mikolajczyk TP. Oxidative stress and inflammatory markers in prediabetes and diabetes. J Physiol Pharmacol. 2019;70. https://doi.org/10.26402/jpp.2019.6.01

16. Lutchmansingh FK, Hsu JW, Bennett F, Badaloo AV, McFarlane-Anderson N, Gordon-Strachan GM, et al. Glutathione metabolism in type 2 diabetes and its relationship with microvascular complications and glycaemia. PLoS One. 2018;13: e0198626. https://doi.org/10.1371/journal.pone.0198626

17. Pulungan AB, Afifa FT, Amnisa D. Type 2 diabetes mellitus in children and adolescent: an Indonesian perspective. Ann Pediatr Endocrinol Metab. 2018;23: 119–125. https://doi.org/10.6065/apem.2018.23.3.119

18. Rehman K, Akash MSH. Mechanism of generation of oxidative stress and pathophysiology of type 2 diabetes mellitus: how are they interlinked? J Cell Biochem. 2017;118: 3577–3585. https://doi.org/10.1002/jcb.26097

19. Bandeira S de M, Guedes G da S, da Fonseca LJS, Pires AS, Gelain DP, Moreira JCF, et al. Characterization of blood glucose monitoring systems applying ISO 15197:2013 accuracy criteria and calculation of insulin dosing errors. Diabet Med. 2017;34: 913–918. https://doi.org/10.1111/dme.13546

20. Krauss H, Koźlik J, Grzymiłaowski M, Sosnowski P, Mikrut K, Piatek J, et al. The influence of glimepiride on the oxidative state of rats with streptozotocin-induced hyperglycemia. Med Sci Monit. 2017;13: 3577–3585. https://doi.org/10.1002/1873-3468.13546

21. Freckmann G, Jendrike N, Baumstark A, Pleus S, Liebing A. Enhanced oxidative stress and heart disease-cardioprotective effects of rooibos flavonoids and phenylpyruvic acid-2-O-β-D-glucoside. Nutr Metab (Lond). 2017;14: 45. https://doi.org/10.1186/s12986-017-0200-8

22. Pulungan AB, Afifa FT, Amnisa D. Type 2 diabetes mellitus in children and adolescent: an Indonesian perspective. Ann Pediatr Endocrinol Metab. 2018;23: 119–125. https://doi.org/10.6065/apem.2018.23.3.119

23. Rehman K, Akash MSH. Mechanism of generation of oxidative stress and pathophysiology of type 2 diabetes mellitus: how are they interlinked? J Cell Biochem. 2017;118: 3577–3585. https://doi.org/10.1002/jcb.26097

24. Bandeira S de M, Guedes G da S, da Fonseca LJS, Pires AS, Gelain DP, Moreira JCF, et al. Characterization of blood glucose monitoring systems applying ISO 15197:2013 accuracy criteria and calculation of insulin dosing errors. Diabet Med. 2017;34: 913–918. https://doi.org/10.1111/dme.13546

25. Krauss H, Koźlik J, Grzymiłaowski M, Sosnowski P, Mikrut K, Piatek J, et al. The influence of glimepiride on the oxidative state of rats with streptozotocin-induced hyperglycemia. Med Sci Monit. 2017;13: 3577–3585. https://doi.org/10.1002/1873-3468.13546

26. Freckmann G, Jendrike N, Baumstark A, Pleus S, Liebing A. Enhanced oxidative stress and heart disease-cardioprotective effects of rooibos flavonoids and phenylpyruvic acid-2-O-β-D-glucoside. Nutr Metab (Lond). 2017;14: 45. https://doi.org/10.1186/s12986-017-0200-8
22. Kermani SK, Khatony A, Jalali R, Rezaei M, Abdi A. Accuracy and precision of measured blood sugar values by three glucometers compared to the standard technique. J Clin Diagn Res. 2017;11: OC05-OC08. https://doi.org/10.7860/JCDR/2017/23926.9613
23. Klatman EL, Jenkins AJ, Ahmedani MY, Ogle GD. Blood glucose meters and test strips: global market and challenges to access in low-resource settings. Lancet Diabetes Endocrinol. 2019;7: 150–160. https://doi.org/10.1016/S2213-8587(18)30074-3
24. Srimaekarat T. Capillary blood glucose screening (Accu-Chek Advantage) for gestational diabetes. J Med Assoc Thai. 2009;92: 1268–1272.
25. Paula JS, Braga LD, Moreira RO, Kupfer R. Correlation between parameters of self-monitoring of blood glucose and the perception of health-related quality of life in patients with type 1 diabetes mellitus. Arch Endocrinol Metab. 2017;61: 343–347. https://doi.org/10.1590/2359-3997000000222
26. Riyaz MSU, Rather MK, Koul PA. Diabetes in immigrant tibetan muslims in kashmir, north india. J Immigr Minor Health. 2018;20: 410–415. https://doi.org/10.1007/s10903-017-0558-9
27. Kumawat M, Sharma TK, Singh I, Singh N, Ghalaut VS, Vardey SK, et al. Antioxidant Enzymes and Lipid Peroxidation in Type 2 Diabetes Mellitus Patients with and without Nephropathy. N Am J Med Sci. 2013;5: 213–219. https://doi.org/10.4103/1947-2714.109193
28. Abou-Seif MA, Youssef A-A. Evaluation of some biochemical changes in diabetic patients. Clin Chim Acta. 2004;346: 161–170. https://doi.org/10.1016/j.cccn.2004.03.030