INTRODUCTION

It was a long-standing belief that the multinodular goiter has usually lesser malignant potential than solitary nodules and that’s the prime reason for conservative management of such cases. However, recent studies in the past decade suggested a rise in incidental cases of malignancy in surgically treated cases of Multinodular goiter. Multinodular goiter is no longer considered benign as studies have suggested the incidence of malignancies to be 7-17%.^2^ The global prevalence of Multinodular goiter is 4-7%.^3^ If the prevalence of goiter is greater than 10%, it is called endemic goiter. Multiple risk factors for the disease have been identified including the black race, female gender, deficiency of iodine and exposure to irradiation. With the advances in diagnostic techniques including PET scan, FNAC and high resolution ultrasonography, the prevalence of incidental thyroid carcinoma has raised from 5% to 10%.^5^

Malignant thyroid tumors are a heterogeneous group of endocrine malignancies which account for 1% of all the malignancies in general and are the commonest endocrine malignancies (90% of all endocrine malignancies) with a prevalence of up to 40 cases per million per year.^6^ This prevalence may increase further if occult cancers of thyroid are taken into consideration. Thyroid carcinomas are found in all age groups with a slight female preponderance. However, the studies on the mortality and morbidity associated with these carcinomas have shown an aggressive pattern in males. In Pakistan, thyroid carcinoma accounts for 1.2% of all the malignant carcino-
The objective of study was to find out the frequency and types of malignancy in patients treated surgically for nontoxic multinodular goiter and its correlation in different age groups and genders.

METHODOLOGY

This was a prospective observational study carried out in Department of ENT Combined Military Hospital Rawalpindi, from December 2018 to December 2019. Non-probability consecutive sampling was done. A sample size of 102 was calculated (by using a reference prevalence of 4% of Multinodular Goiter) 3 by Open Epi software (Confidence Level: 99%) but we included all the patients who underwent surgery during the study period i.e.116. Demographic details of the patients including age, sex and time since diagnosis was documented in pre-designed proforma. Age of the patients was divided into 6 groups; group 1 (19-28 year), group 2 (29-38 year), group 3 (39-48 year) group 4 (49-58 year), group 5 (59-68 year) and group 6 (>68 years). Their clinical examination along with the relevant radiological investigations were carried out. We included the patients of multinodular goiter who had diagnostic quality cytology sample and histopathology report after total thyroidectomy. All patients with active thyroid disease and chronic diseases like hypertension, diabetes, chronic pulmonary, liver, heart or kidney disease were excluded from this study. Before Fine Needle Aspiration Cytology (FNAC) was carried out, a diagnostic ultrasonography of the neck was done by a radiologist. Size, morphology, and enlargement of the surrounding lymph nodes was focused. The consistency of the thyroid nodule was classified into predominantly cystic, solid and mixed. Fine Needle Aspiration Cytology was performed under real-time Ultrasound guidance by the pathologist. Those cases in which diagnostic quality FNAC sample was suspicious or positive for surgery were operated by a team of qualified ENT & Head and Neck surgeons with expertise in Thyroid surgery. Elective radical thyroid surgeries were performed on different patients according to the primary diagnosis, size of mass and extent of disease. Follow up after surgical intervention was done in all cases. All excised thyroid tissues were sent to one histopathologist to reduce bias. Histopathology reports were compared to the pre-operative Cytology reports. Data was analyzed using Social package for Statistical Sciences version 22. The p-value ≤0.05 was considered significant. Informed consent of all the patients and approval from the ethical review committee and institutional review board (IRB # ENT-1018) was obtained.

RESULTS

Age ranges from 19 to 70 years (mean 43.5 ± 4.1 years). Out of 116 cases operated for multinodular goiter, 37 (31.8%) had malignant thyroid lesions on post-op histopathological examination of the sample, while 79 (68.1%) had benign lesions. Amongst the 37 patients who had malignant thyroid nodules, 13 (35.1%) were males while 24 (64.9%) were females. Maximum patients with thyroid malignancy (n=12) belonged to age group 4 i.e. 49-58 years with a mean age of 53.4 ± 2.9 years. Distribution of age in the patients with malignancies is given in table-I. Frequencies of various carcinomas are given in table-II. Correlation between age groups and histopathological
types of malignant nodules is given in table-III. The chi-square test was applied and results were statistically significant (p-value 0.019). Total Thyroidectomy was done in 78 (67.2%) patients, Total Lobectomy in 28 (24.1%), Near Total thyroidectomy in 10 (8.6%) patients. Frequencies of malignant carcinomas on histopathological examination (HPE) in different thyroid surgeries (table-IV).

The most common type of thyroid malignancy found in our study was papillary carcinoma (45.9%) followed by a follicular variant of papillary carcinoma (24.3%). Nadeem et al, in his study in Rahim yar Khan, Pakistan, reported the incidence of papillary carcinoma to be 50% while Haq et al, and Hanumanthappa et al, documented 60% frequency of papillary carcinoma in malignant goiters13,14. Comparison of frequency of different thyroid tumors with other studies is shown in table-V.

Papillary carcinoma is a well-differentiated tumor with the least invasive potential. Its better prognosis is expected in patients of early age. Surgery is the definitive treatment. Follicular carcinoma originates from the follicular cells of the thyroid and is the second most common tumor of

Table-III: Correlation of various age groups and histopathological variants of malignant thyroid nodules.

Age Groups (years)	Anaplastic Carcinoma	Follicular variant of Papillary carcinoma	Papillary carcinoma	Insular Carcinoma	Medullary Carcinoma	Lymphomas	Follicular carcinoma
19-28	-	-	2	-	-	-	-
29-38	-	2	5	1	1	-	-
39-48	-	2	3	-	1	-	-
49-58	2	5	3	-	-	1	1
59-68	1	-	4	-	-	-	-
>68	-	-	-	-	1	1	1

p-value: 0.019

Table-IV: Frequencies of malignancies in different thyroid surgeries.

Surgical Procedures Performed	n	Malignancy on HPE
Total Thyroidectomies	78	27 (34.6%)
Near Total Thyroidectomies	10	3 (30%)
Total Lobectomies	28	7 (25%)

Table-V: Comparison of frequency of different thyroid tumors with other studies.

Type of thyroid Carcinoma	Our study	Shah et al15	Yogish et al16	Solomon et al6
Papillary Carcinoma	45.9%	69 %	71.42 %	90 %
Follicular Variant of Papillary Carcinoma	24.3%	11.6 %	23.80 %	8 %
Medullary Carcinoma	8.1%	9.7 %	4.76 %	2 %
Anaplastic carcinoma	8.1 %	-	-	-

DISCUSSION

In our study, among 37 cases of malignancy, 13 were males and 24 were females with a male to female ratio of 1.2 in line with other national and international studies9. The frequency of malignant thyroid carcinoma on histopathological examination was 31.8% in our study which was slightly higher than other similar studies in the literature. Athavale et al, reported 10% of the operated cases of multinodular goiter to be malignant9. Anwar et al, reported 16.18% frequency of malignant tumors amongst multinodular goiters10, while Solomon et al, documented 18% prevalence of thyroid malignancy6. Padmawar et al, studied the clinicopathological correlation of Multinodular goiter and reported the frequencies of malignancy to be 20% on histopathological examination11. Nadeem et al, documented 14.9% incidence of malignancy in multinodular goiters12.
the thyroid. Medullary carcinoma has its origina-
tion from parafollicular C type cells of the thyroid
and Anaplastic tumors are the least differentiated
or undifferentiated type with most aggressive
potential17.

The dramatic rise in the incidence of malign-
ancy has led to increased use of radical thyroid
surgery in patients with multinodular goiter
with suspicious FNAC17. The results of our study
depict a higher frequency of malignancy in pa-
ients who underwent radical thyroid surgeries.
In this study 67.2% of patients with multinodular
goiter, Total Thyroidectomy was performed,
Total Lobectomy in 24.1% and Near Total thy-
roidectomy in 8.6% patients. In 34.6% cases with
Total Thyroidectomy, 30% with Near Total Thy-
roidectomy and 25% with Total Lobectomy, ma-
lignancy was reported on histopathological exa-
nination. Kapoor et al, reported Total Thyroidec-
tomy is the most common procedure found and
incidence of malignancy in 14% cases18. These
results were similar to a study done by Athavale
et al9, and a similar trend was reported in this
study as well.

CONCLUSION

There is a high frequency of malignant thy-
roid cancers in patients with non-toxic multin-
odular goiter. Malignant Thyroid cancers showed
a female preponderance and were the most com-
mon in age group 49-58 years. Papillary carcino-
ma of thyroid was the commonest tumor found
followed by Follicular variant of Papillary carcini-
oma. Radical thyroid surgery is a recommended
surgical management option for nontoxic Multi-
nodular goiter owing to the increased incidence
of malignant disease in such cases.

CONFLICT OF INTEREST

This study has no conflict of interest to be
declared by any authors.

REFERENCES

1. Yong JS. Multinodular goiter: A study of malignancy risk in
nondominant nodules. Ear Nose Throat J 2017; 96(8): 336-42.
2. Ali MM, Mahmood AS, Al-Wattar WM. Incidence of thyroid
cancer in long standing multinodular goiter: prospective study, J
Res Med Dent Sci, 2018; 6(5): 217-22.
3. Hegedüs L. Clinical practice. The thyroid nodule. N Engl J Med
2004; 351(17): 1764-71.
4. Khatawkar AV. Multi-nodular goiter: epidemiology, etiology,
pathogenesis and pathology. Int Assoc Infant Massage 2015;
2(9): 152-56.
5. Al-Hashimi AM. Thyroid nodules in Baghdad, Iraq: a personal
experience. Int J Sci Res 2015; 4(7): 588-89.
6. Solomon TN, Oli PT, Kailas CK, Jose V. Prevalence of thyroid
malignancy in goitre: a cross sectional study. Int Surg J 2019;
6(10): 3586-89.
7. Townsend CM, Beauchamp RD, Evers BM. Sabiston Textbook of
Surgery E-Book. Elsevier Health Sci 2016; Avalibal at [Internat].
https://www.elsevier.com/books/sabiston-textbook-of-
surgery/townsend/978-0-323-29987-9.
8. Gandolfi PP, Frisina A, Raffa M, Renda F, Rocchetti O, Ruggeri
C, et al. The incidence of Thyroid Carcinoma in Multinodular
Goiter: retrospective analysis. Acta bio medica ateneoparmense
2004; 75(3): 114-17.
9. Athavale VS, Thakkar SM, Gope DD, Tulisan AR, Kumar SB,
Gogineni JC. A clinicopathological study of multinodular goitre.
Int Surg J 2019; 6(3): 892-97.
10. Anwar K, Din G, Zada B, Shahabi I. The frequency of malign-
nancy in nodular goiter-A single center study. J Postgrad Med
Inst 2011; 26(1): 96-01.
11. Padmawar MR. Studied the clinicopa-thological study of multi-
nodular goitre at AVBRH. Int J Biomed Adv Res 2014; 5(1): 10-3.
12. Nadeem K, Akhtar N, Tarar JY. Thyroid malignancy in multi
nodular goiter; incidence, a retrospective study in southern
Punjab. Professional Med J 2013; 20(4): 587-90.
13. Ul Haq RN, Khan BA, Chaudhry IA. Prevalence of malignancy
in goitre-a review of 718 thyroidectomies. J Ayub Med Coll
Abbottabad 2009; 21(4): 134-36.
14. Hanumanthappa MB, Gopinathan S, Suvarna R, Rai G, Shetty
G, Shetty A, et al. The incidence of malignancy in multi-nodular
goitre: a prospective study at a tertiary academic centre. J Cln
Diag Res Apr 2012; 6(2): 267-70.
15. Shah SH, Muzaffar S. Morphological patterns and frequency of
thyroid tumors. J Pak Med Assoc 1999; 49(6): 131-33.
16. Yogish V, Teja C, Grover H. A study to determine the incidence
of carcinoma of the thyroid gland in patients treated for multi-
nodular goiter. Int Surg J 2019; 6(9): 3289-92.
17. Kaliszewski K, Wojtczak B, Grzegorzółka J, Bronowicki J, Saeid
S, Knychalski B, et al. Nontoxic multinodular goitre and inci-
dental thyroid cancer: what is the best surgical strategy-a
retrospective study of 2032 patients. Hindawi Int J Endo 2018;
2018(1): 1-8.
18. Kapoor S, Kumar A, Singh B, Gupta G, Singh A, Seth K. Study of
clinical pattern of thyroid swellings and their management. J
Dental Med Sci 2018; 17(2): 27-35.