THOMAS ERNST

Multiplication formulas for q-Appell polynomials and the multiple q-power sums

Abstract. In the first article on q-analogues of two Appell polynomials, the generalized Apostol-Bernoulli and Apostol-Euler polynomials, focus was on generalizations, symmetries, and complementary argument theorems. In this second article, we focus on a recent paper by Luo, and one paper on power sums by Wang and Wang. Most of the proofs are made by using generating functions, and the (multiple) q-addition plays a fundamental role. The introduction of the q-rational numbers in formulas with q-additions enables natural q-extension of vector forms of Raabes multiplication formulas. As special cases, new formulas for q-Bernoulli and q-Euler polynomials are obtained.

1. Introduction. In 2006, Luo and Srivastava [8, p. 635-636] found new relationships between Apostol–Bernoulli and Apostol–Euler polynomials. This was followed by the pioneering article by Luo [10], where multiplication formulas for the Apostol–Bernoulli and Apostol–Euler polynomials of higher order, together with λ-multiple power sums were introduced. Luo also expressed these λ-multiple power sums as sums of the above polynomials. One year later, Wang and Wang [12] introduced generating functions for λ-power sums, some of the proofs use a symmetry reasoning, which lead

2010 Mathematics Subject Classification. Primary 05A40, 11B68; Secondary 05A10.

Key words and phrases. Raabes multiplication formulas, q-Appell polynomials, multiple q-power sum, symmetry, q-rational number.
to many four-line identities for Apostol–Bernoulli and Apostol–Euler polynomials and λ-power sums; as special cases, some of the above Luo identities were obtained.

In [5] it was proved that the q-Appell polynomials form a commutative ring; in this paper we show what this means in practice. Thus, the aim of the present paper is to find q-analogues of most of the above formulas with the aid of the multiple q-addition, the q-rational numbers, and so on. Many formulas bear a certain resemblance to the q-Taylor formula, where q-rational numbers appear to the right in the function argument; this means that the alphabet is extended to $\mathbb{Q}_{\oplus q}$. In some proofs, both q-binomial coefficients and a vector binomial coefficient occur, this is connected to a vector form of the multinomial theorem, with binomial coefficients, unlike the case in [3, p. 110].

This paper is organized as follows: In this section we give the general definitions. In each section, we then give the specific definitions and special values which we use there.

In Section 2, multiple q-Apostol–Bernoulli polynomials and q-power sums are introduced and multiplication formulas for q-Apostol–Bernoulli polynomials are proved, which are q-analogues of Luo [10].

In Section 3, multiplication formulas for q-Apostol–Euler polynomials are proved. In Section 4, formulas containing q-power sums in one dimension, q-analogues of Wang and Wang, [12] are proved. Then in Section 5, mixed formulas of the same kind are proved. Most of the proofs are similar, where different functions, previously used for the case $q = 1$, are used in each proof.

We now start with the definitions. Some of the notation is well-known and can be found in the book [3]. The variables i, j, k, l, m, n, ν will denote positive integers, and λ will denote complex numbers when nothing else is stated.

Definition 1. The Gauss q-binomial coefficient are defined by

\[(1) \quad \binom{n}{k}_q \equiv \frac{[n]_q!}{[k]_q!(n-k)_q!}, k = 0, 1, \ldots, n.\]

Let a and b be any elements with commutative multiplication. Then the NWA q-addition is given by

\[(2) \quad (a \oplus_q b)^n = \sum_{k=0}^{n} \binom{n}{k}_q a^k b^{n-k}, n = 0, 1, 2, \ldots\]

If $0 < |q| < 1$ and $|z| < |1 - q|^{-1}$, the q-exponential function is defined by

\[(3) \quad E_q(z) \equiv \sum_{k=0}^{\infty} \frac{1}{[k]_q!} z^k.\]
The following theorem shows how Ward numbers usually appear in applications.

Theorem 1.1. Assume that \(n, k \in \mathbb{N} \). Then

\[
(\pi_q)^k = \sum_{m_1 + \ldots + m_n = k} \binom{k}{m_1, \ldots, m_n}_q,
\]

where each partition of \(k \) is multiplied with its number of permutations.

The semiring of Ward numbers, \((\mathbb{N} \oplus q, \oplus_q, \odot_q)\) is defined as follows:

Definition 2. Let \((\mathbb{N} \oplus q, \oplus_q, \odot_q)\) denote the Ward numbers \(k q \), \(k \geq 0 \) together with two binary operations: \(\oplus_q \) is the usual Ward \(q \)-addition. The multiplication \(\odot_q \) is defined as follows:

\[
\pi_q \odot_q m_q \sim nm_q,
\]

where \(\sim \) denotes the equivalence in the alphabet.

Theorem 1.2. Functional equations for Ward numbers operating on the \(q \)-exponential function. First assume that the letters \(m_q \) and \(n_q \) are independent, i.e. come from two different functions, when operating with the functional. Then we have

\[
E_q(\pi_q n_q t) = E_q(\pi_q t).
\]

Furthermore,

\[
E_q(\sum_j m_q) = E_q(\sum_q)^m = E_q(\pi_q)^j = E_q(\pi_q \odot_q m_q).
\]

Proof. Formula (6) is proved as follows:

\[
E_q(\pi_q n_q t) = E_q((1 \oplus_q 1 \oplus_q \cdots \oplus_q 1)\pi_q t),
\]

where the number of 1s to the left is \(m \). But this means exactly \(E_q(\pi_q t)^m \), and the result follows.

Definition 3. The notation \(\sum_{\vec{m}} \) denotes a multiple summation with the indices \(m_1, \ldots, m_n \) running over all non-negative integer values.

Given an integer \(k \), the formula

\[
m_0 + m_1 + \ldots + m_j = k
\]

determines a set \(J_{m_0, \ldots, m_j} \in \mathbb{N}^{j+1} \).

Then if \(f(x) \) is the formal power series \(\sum_{l=0}^{\infty} a_l x^l \), its \(k \)'th NWA-power is given by

\[
(\oplus_{q,l=0}^{\infty} a_l x^l)^k \equiv (a_0 \oplus_q a_1 x \oplus_q \cdots)^k \equiv \sum_{|\vec{m}|=k} \prod_{m_i \in J_{m_0, \ldots, m_j}} (a_i x^l)^m_l \binom{k}{m_l}_q.
\]
We will later use a similar formula when \(q = 1 \) for several proofs.

In order to solve systems of equations with letters as variables and Ward number coefficients, we introduce a division with a Ward number. This is equivalent to \(q \)-rational numbers with Ward numbers instead of integers.

Definition 4. Let \(\mathbb{Q}_{\oplus_q} \) denote the set of objects of the following type:

\[
\frac{m_q}{n_q}, \text{ where } \frac{m_q}{n_q} \equiv 1,
\]

together with a linear functional

\[
v, \mathbb{R}[x] \times \mathbb{Q}_{\oplus_q} \to \mathbb{R},
\]

called the evaluation. If \(v(x) = \sum_{k=0}^{\infty} a_k x^k \), then

\[
v\left(\frac{m_q}{n_q}\right) \equiv \sum_{k=0}^{\infty} a_k \left(\frac{m_q}{n_q}\right)^k.
\]

Definition 5. For every power series \(f_n(t) \), the \(q \)-Appell polynomials or \(\Phi_q \) polynomials of degree \(\nu \) and order \(n \) have the following generating function:

\[
f_n(t)E_q(xt) = \sum_{\nu=0}^{\infty} t^\nu \{\nu\}_q \Phi^{(n)}_{\nu,q}(x).
\]

For \(x = 0 \) we get the \(\Phi^{(n)}_{\nu,q} \) number of degree \(\nu \) and order \(n \).

Definition 6. For \(f_n(t) \) of the form \(h(t)^n \), we call the \(q \)-Appell polynomial \(\Phi_q \) in (14) **multiplicative**.

Examples of multiplicative \(q \)-Appell polynomials are the two \(q \)-Appell polynomials in this article.

2. The NWA \(q \)-Apostol–Bernoulli polynomials.

Definition 7. The generalized NWA \(q \)-Apostol–Bernoulli polynomials \(B_{\text{NWA,} \lambda, \nu,q}^{(n)}(x) \) are defined by

\[
t^n \frac{E_q(xt)}{(\lambda E_q(t) - 1)^n} = \sum_{\nu=0}^{\infty} \frac{t^\nu B_{\text{NWA,} \lambda, \nu,q}^{(n)}(x)}{\{\nu\}_q \nu!}, \quad |t + \log \lambda| < 2\pi.
\]

Notice that the exponent \(n \) is an integer.

Definition 8. A \(q \)-analogue of [10, (20) p. 381], the multiple \(q \)-power sum is defined by

\[
s^{(l)}_{\text{NWA,} \lambda, m,q}(n) \equiv \sum_{|\vec{j}|=l} \left(\frac{t}{j}\right) \lambda^k \left(\overline{k_q}\right)^m,
\]

where \(k \equiv j_1 + 2j_2 + \cdots + (n-1)j_{n-1}, \forall j_i \geq 0. \)
Definition 9. A q-analogue of [10, (46) p. 386], the multiple alternating q-power sum is defined by

\[\sigma^{(l)}_{\text{NWA},\lambda,m,q}(n) \equiv (-1)^l \sum_{|\vec{j}|=l} (-\lambda)^k \left(\frac{k_q}{m_q} \right)^m, \]

where $k \equiv j_1 + 2j_2 + \cdots + (n-1)j_{n-1}$, $\forall j_i \geq 0$.

Remark 1. For $l = 1$, formulas (16) and (17) reduce to single sums, as will be seen in section 4.

We now start rather abruptly with the theorems; we note that limits like $\lambda \rightarrow 1$ and $q \rightarrow 1$ can be taken anywhere in the paper, and also in the next one [6]; see the subsequent corollaries. Much care is needed in the proofs, since the Ward numbers need careful handling.

Theorem 2.1. A q-analogue of [10, p. 380], multiplication formula for q-Apostol–Bernoulli polynomials.

\[\mathcal{B}^{(n)}_{\text{NWA},\lambda,\nu,q}(m_q x) = \left(\frac{m_q q}{m_q} \right)^{\nu} \sum_{|\vec{j}|=n} \lambda^k \left(\frac{n}{\lambda_q} \right)^n \mathcal{B}^{(n)}_{\text{NWA},\lambda^m,\nu,q}(x \oplus_q \frac{k_q}{m_q}), \]

where $k = j_1 + 2j_2 + \cdots + (m-1)j_{m-1}$, and $\frac{k_q}{m_q} \in \mathbb{Q} \oplus_q$.

Proof. We use the well-known formula for a geometric sum.

\[\sum_{\nu=0}^{\infty} \mathcal{B}^{(n)}_{\text{NWA},\lambda,\nu,q}(m_q x) \frac{t^\nu}{\nu_q!} = \frac{t^n}{(\lambda q(x)_q - 1)^n} E_q(m_q x t) \]

\[= \frac{t^n}{(\lambda q(x)_q - 1)^n} \left(\sum_{i=0}^{m-1} \lambda^i E_q(x_q^i) \right)^n E_q(m_q x t) \]

\[\text{by (7),} \]

\[= \left(\frac{t}{(\lambda q(x)_q - 1)} \right)^n \sum_{|\vec{j}|=n} \lambda^k E_q \left(x \oplus_q \frac{k_q}{m_q} \right)^n \sum_{\nu=0}^{\infty} \frac{t^\nu}{\nu_q!}. \]

The theorem follows by equating the coefficients of $\frac{t^\nu}{\nu_q!}$. \qed

Corollary 2.2. A q-analogue of [10, p. 381]:

\[\mathcal{B}_{\text{NWA},\lambda,\nu,q}(m_q x) = \left(\frac{m_q q}{m_q} \right)^{\nu} \sum_{j=0}^{m-1} \lambda^j \mathcal{B}^{(n)}_{\text{NWA},\lambda^m,\nu,q}(x \oplus_q \frac{k_q}{m_q}). \]
Corollary 2.3. A q-analogue of Carlitz formula [2], [10, p. 381]

\[
B_{\text{NWA},\nu,q}^{(n)}(x) = \frac{(m_q)^\nu}{(m_q)^n} \sum_{|\nu| = n} \binom{n}{j} B_{\text{NWA},\nu,q}^{(n)} \left(x \oplus_q \frac{k}{m_q} \right),
\]

where \(k = j_1 + 2j_2 + \cdots + (m-1)j_{m-1} \), and \(\frac{k}{m_q} \in \mathbb{Q}_q \).

Theorem 2.4. A formula for a multiple q-power sum, a q-analogue of [10, (25) p. 382]:

\[
s_{\text{NWA},\lambda,m,q}^{(l)}(n) = \sum_{j=0}^{l} \binom{l}{j} \frac{(-1)^{l-j}\lambda^{(n-1)j+l}}{(m+1)_{l,q}} \times \sum_{k=0}^{m+l} \binom{m+l}{k} B_{\text{NWA},\lambda,k,q}^{(j)} \left((n-1)j + l_q \right) B_{\text{NWA},\lambda,m+l-k,q}^{(l-j)}. \tag{22}
\]

Proof. We use the generating function technique. Put \(k = j_1 + 2j_2 + \cdots + (n-1)j_{n-1} \). It is assumed that \(j_i \geq 0, 1 \leq i \leq n-1 \), zeros are neglected.

\[
\sum_{\nu=0}^{\infty} s_{\text{NWA,\nu,q}}^{(l)}(n) \frac{t^\nu}{\nu!} = \sum_{\nu=0}^{\infty} \sum_{|\nu|=l} \binom{l}{j} \lambda^k \left(k_q \right)^\nu \frac{t^\nu}{\nu!} \tag{23}
\]

The theorem follows by equating the coefficients of \(\frac{t^\nu}{\nu!} \). \(\square \)
Corollary 2.5. A q-analogue of [10, (26) p. 382]: The generating function for $s_{\text{NWA},\lambda,\nu,q}^{(l)}(n)$ is

$$
\sum_{\nu=0}^{\infty} s_{\text{NWA},\lambda,\nu,q}^{(l)}(n) \frac{t^{\nu}}{\{\nu\}_{q}!} = \left(\frac{\lambda^n E_{q}(\tau q t)}{\lambda E_{q}(t) - 1} - \frac{\lambda E_{q}(t)}{\lambda E_{q}(t) - 1} \right)^l
$$

$$
= (\lambda E_{q}(t) + \lambda^2 E_{q}(2q t) + \cdots + \lambda^{n-1} E_{q}(n - 1 t))^l.
$$

Theorem 2.6. A recurrence relation for q-Apostol–Bernoulli numbers, a q-analogue of [10, (32) p. 384].

$$
(m_q)^l B_{\text{NWA},\lambda,n,q}^{(l)} = \sum_{j=0}^{n} \binom{n}{j} B_{\text{NWA},\lambda,\nu,q}^{(l)} m_q^{n-j} B_{\text{NWA},\lambda,\nu,j,q}^{(l)} s_{\text{NWA},\lambda,\nu,j,q}(m),
$$

where $k = j_1 + 2j_2 + \cdots + (m-1)j_{m-1}$.

Proof. We use the definition of q-Appell numbers as q-Appell polynomial at $x = 0$.

$$
(m_q)^l B_{\text{NWA},\lambda,n,q}^{(l)} \overset{\text{by (18)}}= \sum_{|\nu|-l} \lambda^k \left(l \frac{1}{\nu} \right) B_{\text{NWA},\lambda,\nu,q}^{(l)} \left(\frac{t_{q}}{m_q} \right)
$$

$$
= (m_q)^n \sum_{|\nu|-l} \lambda^k \left(l \frac{1}{\nu} \right) \sum_{j=0}^{n} \binom{n}{j} B_{\text{NWA},\lambda,\nu,j,q}^{(l)} \left(\frac{t_{q}}{m_q} \right)^{n-j}
$$

$$
= \sum_{j=0}^{n} \binom{n}{j} \frac{(m_q)^n}{m_q^{n-j}} B_{\text{NWA},\lambda,\nu,j,q}^{(l)} \sum_{|\nu|-l} \lambda^k \left(l \frac{1}{\nu} \right) \left(\frac{t_{q}}{m_q} \right)^{n-j} \overset{\text{by (16)}}= \text{LHS}.
$$

3. The NWA q-Apostol–Euler polynomials. We start with some repetition from [3]:

Definition 10. The generating function for the first q-Euler polynomials of degree ν and order n, $F_{\text{NWA},\nu,q}^{(n)}(x)$, is given by

$$
\frac{2^n E_{q}(xt)}{(E_{q}(t) + 1)^n} = \sum_{\nu=0}^{\infty} \frac{t^{\nu}}{\{\nu\}_{q}!} F_{\text{NWA},\nu,q}^{(n)}(x), \ |t| < \pi.
$$

Definition 11. The generalized NWA q-Apostol–Euler polynomials $T_{\text{NWA},\lambda,\nu,q}^{(n)}(x)$ are defined by

$$
\frac{2^n}{(\lambda E_{q}(t) + 1)^n} E_{q}(xt) = \sum_{\nu=0}^{\infty} \frac{t^{\nu} T_{\text{NWA},\lambda,\nu,q}^{(n)}(x)}{\{\nu\}_{q}!}, \ |t + \log \lambda| < \pi.
$$
Theorem 3.1. A q-analogue of [10, (37) p. 385], first multiplication formula for q-Apostol–Euler polynomials.

\[
\mathcal{F}_{NWA,\lambda,\nu,q}(\overline{m}_q x)^{(n)} = (\overline{m}_q)^\nu \sum_{|\vec{j}|=n} (-\lambda)^k \binom{n}{\vec{j}} \mathcal{F}_{NWA,\lambda^m,\nu,q}(x \oplus_q \frac{\overline{k}_q}{\overline{m}_q}),
\]

where $k = j_1 + 2j_2 + \cdots + (m - 1)j_{m-1}$, m odd.

Proof.

\[
\sum_{\nu=0}^{\infty} \mathcal{F}_{NWA,\lambda,\nu,q}(\overline{m}_q x)^{(n)} \frac{t^\nu}{\nu!} = \frac{2^n}{(\lambda^m E_q(\overline{m}_q t) + 1)^n} E_q(\overline{m}_q x)
\]

\[
= \left(\frac{2}{(\lambda^m E_q(\overline{m}_q t) + 1)}\right)^n \sum_{|\vec{j}|=n} (-\lambda)^k E_q\left(\left(x \oplus_q \frac{\overline{k}_q}{\overline{m}_q}\right)\overline{m}_q t\right)
\]

\[
= \sum_{\nu=0}^{\infty} \left(\overline{m}_q\right)^\nu \sum_{|\vec{j}|=n} \binom{n}{\vec{j}} (-\lambda)^k \mathcal{F}_{NWA,\lambda^m,\nu,q}(x \oplus_q \frac{\overline{k}_q}{\overline{m}_q}) \frac{t^\nu}{\nu!}.
\]

The theorem follows by equating the coefficients of $\frac{t^\nu}{\nu!}$. \qed

Theorem 3.2. A q-analogue of [10, (38) p. 385], second multiplication formula for q-Apostol–Euler polynomials.

\[
\mathcal{F}_{NWA,\lambda,\nu,q}(\overline{m}_q x)
\]

\[
= (-2)^n (\overline{m}_q)^{\nu+n} \sum_{|\vec{j}|=n} (-\lambda)^k \binom{n}{\vec{j}} \mathcal{F}_{NWA,\lambda^m,\nu+n,q}(x \oplus_q \frac{\overline{k}_q}{\overline{m}_q}),
\]

where $k = j_1 + 2j_2 + \cdots + (m - 1)j_{m-1}$, m even.

Corollary 3.3. A q-analogue of [10, (43) p. 386]:

\[
\mathcal{F}_{NWA,\lambda,\nu,q}(\overline{m}_q x) = \left\{
\begin{array}{ll}
(\overline{m}_q)^\nu \sum_{j=0}^{m-1} (-\lambda)^j \mathcal{F}_{NWA,\lambda^m,\nu,q}(x \oplus_q \frac{\overline{j}_q}{\overline{m}_q}), & m \text{ odd}, \\
-2(\overline{m}_q)^{\nu+1} \sum_{j=0}^{m-1} (-\lambda)^j \mathcal{B}_{NWA,\lambda^m,\nu+1,q}(x \oplus_q \frac{\overline{j}_q}{\overline{m}_q}), & m \text{ even},
\end{array}
\right.
\]

where $\frac{\overline{j}_q}{\overline{m}_q} \in \mathbb{Q}_{\oplus_q}$.

Theorem 3.4. A formula for a multiple alternating q-power sum, a q-analogue of \cite{10}, (51) p. 387:
\[
\sigma_{\text{NWA}, \lambda, m, q}^{(l)}(n) = 2^{-l} \sum_{j=0}^{\lfloor m+1 \rfloor t} \binom{l}{j} (-1)^{jn} \lambda^{(n-1)j+l} \\
\times \left(\sum_{k=0}^{m+l} \binom{m+l}{k} \mathcal{F}_{\text{NWA}, \lambda, k, q}^{(l-j)} \right) q^{(n-1)j+l_k} q^{(l-j)}.
\]

Proof. We use the generating function technique. Put $k_j = j_1 + 2j_2 + \cdots + (n-1)j_{n-1}$. It is assumed that $j_i \geq 0$, $1 \leq i \leq n-1$.
\[
\sum_{\nu=0}^{\infty} \sigma_{\text{NWA}, \lambda, \nu, q}^{(l)}(n) \frac{t^\nu}{\nu!} = \sum_{\nu=0}^{\infty} \sum_{[j]=l} \binom{l}{j} (-1)^{l} (-\lambda)^k (E_\nu^q)^k \frac{t^\nu}{\nu!} = \\
(\lambda E_q(t) - \lambda^2 E_q(\bar{2}q) + \cdots + (-1)^n \lambda^{n-1} E_q(n-1q)) = \\
\left(\frac{(-\lambda)^n E_q(\bar{n}q)}{\lambda E_q(t) + 1} + \frac{\lambda E_q(t)}{\lambda E_q(t) + 1} \right)^l = \\
\sum_{j=0}^{l} \binom{l}{j} (-1)^{l-j} \left(\frac{(-\lambda)^n E_q(\bar{n}q)}{\lambda E_q(t) + 1} \right)^j \left(\frac{\lambda E_q(t)}{\lambda E_q(t) + 1} \right)^{l-j} = \\
\sum_{i=0}^{\infty} \mathcal{F}_{\text{NWA}, \lambda, i, q}^{(l-j)} \frac{t^i}{\{i\}_q!} = \sum_{\nu=0}^{\infty} \left(2^{-l} \sum_{j=0}^{l} \binom{l}{j} (-1)^{jn} \lambda^{(n-1)j+l} \sum_{k=0}^{m+l} \binom{m+l}{k} \mathcal{F}_{\text{NWA}, \lambda, k, q}^{(l-j)} \right) q^{(n-1)j+l_k} q^{(l-j)} \\
\times \sum_{k=0}^{m+l} \binom{m+l}{k} \mathcal{F}_{\text{NWA}, \lambda, k, q}^{(l-j)} \frac{t^i}{\{i\}_q!}.
\]

The theorem follows by equating the coefficients of $\frac{t^\nu}{\nu! q}$.

Corollary 3.5. A q-analogue of \cite{10}, (52) p. 387: The generating function for $\sigma_{\text{NWA}, \lambda, \nu, q}^{(l)}(n)$ is
\[
\sum_{\nu=0}^{\infty} \sigma_{\text{NWA}, \lambda, \nu, q}^{(l)}(n) \frac{t^\nu}{\nu! q} = \left(\frac{(-\lambda)^n E_q(\bar{n}q)}{\lambda E_q(t) + 1} + \frac{\lambda E_q(t)}{\lambda E_q(t) + 1} \right)^l = \\
(\lambda E_q(t) - \lambda^2 E_q(\bar{2}q) + \cdots + (-1)^n \lambda^{n-1} E_q(n-1q)) =
\]
Theorem 3.6. A q-analogue of [10, p. 389]. For m odd, we have the following recurrence relation for q-Apostol–Euler numbers.

\[
F_{NWA,\lambda,m,q}(n) = (-1)^j \sum_{j=0}^{n} \binom{n}{j} \frac{(\overline{m}_q)^n}{q(\overline{m}_q)^{n-j}} F_{NWA,\lambda^m,j,q}\sigma_{NWA,\lambda,n-j,q}(m),
\]

where \(k = j_1 + 2j_2 + \cdots + (m-1)j_{m-1}\).

Proof.

\[
F_{NWA,\lambda,n,q} \text{ by (20)} = \sum_{|\vec{\nu}| = l} (\lambda^l) \frac{k}{q} \sum_{j=0}^{n} \binom{n}{j} q^{n-j} F_{NWA,\lambda,m,j,q}(\overline{k}_q) \sigma_{NWA,\lambda,n-j,q}(m),
\]

\[
= \sum_{j=0}^{n} \binom{n}{j} q^{n-j} F_{NWA,\lambda,m,j,q}(\overline{k}_q) \sigma_{NWA,\lambda,n-j,q}(m)
\]

4. Single formulas for Apostol q-power sums. In order to keep the same notation as in [3], we make a slight change from [12, p. 309]. The following definitions are special cases of the q-power sums in section 2.

Definition 12. Almost a q-analogue of [12, p. 309], the q-power sum and the alternate q-power sum (with respect to \(\lambda\)), are defined by

\[
s_{NWA,\lambda,m,q}(n) = \sum_{k=0}^{n-1} \lambda^k (\overline{k}_q)^m \quad \text{and} \quad \sigma_{NWA,\lambda,m,q}(n) = \sum_{k=0}^{n-1} (-1)^k \lambda^k (\overline{k}_q)^m.
\]

Their respective generating functions are

\[
\sum_{m=0}^{\infty} s_{NWA,\lambda,m,q}(n) \frac{t^m}{\{m\}_{q}!} = \frac{\lambda^n E_q(\overline{\pi}_q t) - 1}{\lambda E_q(t) - 1}
\]

and

\[
\sum_{m=0}^{\infty} \sigma_{NWA,\lambda,m,q}(n) \frac{t^m}{\{m\}_{q}!} = \frac{(-1)^{n+1} \lambda^n E_q(\overline{\pi}_q t) + 1}{\lambda E_q(t) + 1}.
\]

Proof. Let us prove (38). We have

\[
\sum_{m=0}^{\infty} s_{NWA,\lambda,m,q}(n) \frac{t^m}{\{m\}_{q}!} = \sum_{m=0}^{\infty} \sum_{k=0}^{n-1} \lambda^k (\overline{k}_q)^m \text{ by (6)} = \sum_{k=0}^{n-1} \lambda^k (E_q(t))^k = \text{RHS}.
\]
We have the following special cases:

\begin{align}
\sigma_{\text{NWA}, \lambda, m, q}(1) &= \delta_{0, m}, \\
\sigma_{\text{NWA}, \lambda, m, q}(2) &= \delta_{0, m} + \lambda, \quad \sigma_{\text{NWA}, \lambda, m, q}(2) = \delta_{0, m} - \lambda.
\end{align}

Theorem 4.1. A \(q \)-anologue of [12, p. 310], and extensions of [3, p. 121, 131]:

\begin{align}
\sigma_{\text{NWA}, \lambda, m, q}(n) &= \frac{\lambda^n B_{\text{NWA}, \lambda, m+1, q}(\tilde{\pi}_q) - B_{\text{NWA}, \lambda, m+1, q}}{(m+1)_q} \\
\sigma_{\text{NWA}, \lambda, m, q}(n) &= \frac{(-1)^{n+1} \lambda^n \sigma_{\text{NWA}, \lambda, m+1, q}(\tilde{\pi}_q) - \sigma_{\text{NWA}, \lambda, m+1, q}}{2}.
\end{align}

Theorem 4.2. A \(q \)-anologue of [12, (18), p. 311],

\begin{align}
\sum_{k=0}^{n} \binom{n}{k} \frac{(\tilde{\tau}_q)^k}{q^k} (\tilde{\tau}_q)^{n-k} B_{\text{NWA}, \lambda, m, q} (\tilde{\tau}_q x) s_{\text{NWA}, \lambda, n-k, q}(i) \\
= \sum_{k=0}^{n} \binom{n}{k} \frac{(\tilde{\tau}_q)^k}{q^k} (\tilde{\tau}_q)^{n-k} B_{\text{NWA}, \lambda, m, q} (\tilde{\tau}_q x) s_{\text{NWA}, \lambda, n-k, q}(j)
\end{align}

\begin{align}
= \frac{(\tilde{\tau}_q)^n}{i} \sum_{m=0}^{j-1} \lambda^m B_{\text{NWA}, \lambda, m, q} \left(\tilde{\tau}_q x \otimes q \frac{im_q}{i_q} \right) \\
= \frac{(\tilde{\tau}_q)^n}{j} \sum_{m=0}^{j-1} \lambda^m B_{\text{NWA}, \lambda, m, q} \left(\tilde{\tau}_q x \otimes q \frac{im_q}{j_q} \right).
\end{align}

Proof. Define the following function, symmetric in \(i \) and \(j \).

\begin{align}
f_q(t) &\equiv \frac{t E_q(\tilde{\tau}_q x t) (\lambda^j E_q(\tilde{\tau}_q t) - 1)}{\lambda E_q(\tilde{\tau}_q t) - 1}(\lambda^j E_q(\tilde{\tau}_q t) - 1) \\
= \frac{(\tilde{\tau}_q t)^1 E_q(\tilde{\tau}_q x t)}{\lambda E_q(\tilde{\tau}_q t) - 1} \left(\frac{\lambda^j E_q(\tilde{\tau}_q t) - 1}{\lambda^j E_q(\tilde{\tau}_q t) - 1} \right) \frac{1}{i}.
\end{align}

By using the formula for a geometric sequence, we can expand \(f_q(t) \) in two ways:

\begin{align}
f_q(t) &= \sum_{\nu=0}^{\infty} B_{\text{NWA}, \lambda, \nu, q} (\tilde{\tau}_q x \otimes q \nu)_{q^\nu} \sum_{m=0}^{\infty} s_{\text{NWA}, \lambda, m, q}(i) \left(\frac{(\tilde{\tau}_q t)^m}{q_m} \right) \frac{1}{i} \\
= \frac{(\tilde{\tau}_q t)^1 \sum_{m=0}^{i-1} \lambda^m \left(E_q \left(\tilde{\tau}_q x \otimes q \frac{im_q}{i_q} \right) \right) \frac{1}{i}}{\lambda E_q(\tilde{\tau}_q t) - 1} \\
= \sum_{\nu=0}^{\infty} \frac{(\tilde{\tau}_q t)^\nu}{i} \sum_{m=0}^{i-1} \lambda^m B_{\text{NWA}, \lambda, \nu, q} \left(\tilde{\tau}_q x \otimes q \frac{im_q}{i_q} \right) \frac{1}{\nu}.\]

The theorem follows by equating the coefficients of $\frac{t^\nu}{(\nu)_q}$ and using the symmetry in i and j of $f_q(t)$. □

Corollary 4.3. A q-analogue of [12, (19), p. 311],

$$B_{NWA,\lambda,n,q}(\tilde{t}_q x) = \sum_{k=0}^{n} \binom{n}{k} \frac{(\tilde{t}_q)^k}{k} B_{NWA,\lambda^i,k,q}(x) s_{NWA,\lambda,n-k,q}(i)$$

(47)

$$= \frac{(\tilde{t}_q)^n}{i} \sum_{m=0}^{i-1} \lambda^{m} B_{NWA,\lambda^i,n,q} \left(x \oplus_q \frac{m_q}{\tilde{t}_q} \right).$$

Proof. Put $j = 1$ in (44) and use (41). □

Remark 2. This proves formula (20) again.

Corollary 4.4. A q-analogue of [12, (20), p. 311],

$$\sum_{m=0}^{1} \lambda^{m} B_{NWA,\lambda^2,n,q} \left(\tilde{t}_q x \oplus_q \frac{m_q}{\tilde{t}_q} \right)$$

(48)

$$= \frac{2}{(2q)^n} \sum_{k=0}^{n} \binom{n}{k} \frac{(\tilde{t}_q)^k}{k} \left(\frac{2q}{2q} \right)^{n-k} B_{NWA,\lambda^i,k,q}(\tilde{t}_q x) s_{NWA,\lambda^2,n-k,q}(i)$$

$$= \frac{2}{(2q)^n} \frac{(\tilde{t}_q)^n}{i} \sum_{m=0}^{i-1} \lambda^{2m} B_{NWA,\lambda^i,n,q} \left(\tilde{t}_q x \oplus_q \frac{2m_q}{\tilde{t}_q} \right).$$

Proof. Put $j = 2$ in (44) and multiply by $\frac{2}{(2q)^n}$. □

Moreover, we have

(49)

$$B_{NWA,\lambda,n,q}(x) = \frac{(\tilde{t}_q)^n}{2} \sum_{m=0}^{1} \lambda^{m} B_{NWA,\lambda^2,n,q} \left(x \oplus_q \frac{m_q}{\tilde{t}_q} \right).$$

Proof. Put $i = 2$ in (47) and replace x by $x \frac{1}{\tilde{t}_q}$. □

For $\lambda = 1$ and $x = 0$, this reduces to

(50)

$$B_{NWA,n,q} \left(\frac{1}{\tilde{t}_q} \right) = \left(\frac{2}{(2q)^n} - 1 \right) B_{NWA,n,q}.$$
Theorem 4.5. A q-analogue of [12, (22) p. 312]. Assume that i and j are either both odd, or both even, then we have

\[
\sum_{k=0}^{n} \binom{n}{k} q^n (\overline{t}_q)^{n-k} \mathcal{F}_{\text{NWA},\lambda',k,q} (\overline{t}_q x) \sigma_{\text{NWA},\lambda',n-k,q}(i) = \sum_{k=0}^{n} \binom{n}{k} q^n (\overline{j}_q)^{n-k} \mathcal{F}_{\text{NWA},\lambda',k,q} (\overline{j}_q x) \sigma_{\text{NWA},\lambda',n-k,q}(i)
\]

(51)

\[
= (\overline{t}_q)^n \sum_{m=0}^{i-1} \lambda^m (-1)^m NWA_{\lambda',n,q} \left(\overline{j}_q x + q \frac{jmq}{t_q} \right)
\]

\[
= (\overline{j}_q)^n \sum_{m=0}^{j-1} \lambda^m (-1)^m NWA_{\lambda',n,q} \left(\overline{i}_q x + q \frac{imq}{j_q} \right).
\]

Proof. Define the following symmetric function

\[
f_q(t) = \frac{E_q(\overline{t}_q x t)((-1)^{i+1} \lambda^j E_q(\overline{t}_q t) + 1)}{(\lambda E_q(\overline{t}_q t) + 1)(\lambda E_q(\overline{j}_q t) + 1)}
\]

(52)

By using the formula for a geometric sequence, we can expand \(f_q(t) \) in two ways:

\[
f_q(t) = \frac{1}{2} \sum_{\nu=0}^{\infty} \mathcal{F}_{\text{NWA},\lambda',\nu,q} (\overline{t}_q x)^{\nu} \left(\sum_{m=0}^{i} \sigma_{\text{NWA},\lambda',n,q}(i) \frac{(\overline{t}_q t)^m}{m!} \right)
\]

(53)

\[
= \frac{1}{2} \sum_{\nu=0}^{\infty} \mathcal{F}_{\text{NWA},\lambda',\nu,q} \left(\overline{j}_q x + q \frac{jmq}{t_q} \right)^{\nu} \left(\sum_{m=0}^{i-1} \lambda^m E_q \left(\overline{j}_q x + q \frac{jmq}{t_q} \right) \frac{t_q^m}{m!} \right)
\]

The theorem follows by equating the coefficients of \(\frac{t_q^\nu}{\nu!} \) and using the symmetry in \(i \) and \(j \) of \(f_q(t) \).

\[\Box \]

Theorem 4.6. (A q-analogue of [12, (24) p. 313]) For i odd we have

\[
\mathcal{F}_{\text{NWA},\lambda,n,q}(\overline{t}_q x) = \sum_{k=0}^{n} \binom{n}{k} q^n (\overline{t}_q)^{n-k} \mathcal{F}_{\text{NWA},\lambda',k,q} (x) \sigma_{\text{NWA},\lambda,n-k,q}(i)
\]

(54)

\[
= (\overline{t}_q)^n \sum_{m=0}^{i-1} (-\lambda)^m \mathcal{F}_{\text{NWA},\lambda',n,q} \left(x + q \frac{mq}{t_q} \right).
\]
(A q-analogue of [12, (25) p. 313]) For i even,

$$
\sum_{m=0}^{1} \lambda^{im}(-1)^{m} F_{\text{NW,A},q,n,q} \left(i_{q} x \oplus \frac{m_{q}}{q} \right)
$$

(55)

$$
= \frac{1}{(2q)^{n}} \sum_{k=0}^{n} \binom{n}{k} (\bar{q}_{q})^{k} (\sigma_{q})^{n-k} F_{\text{NW,A},\nu,k,q} (\sigma_{q} x) \sigma_{\text{NW,A},\lambda^{2},n-k,q}(i)
$$

$$
= \frac{(i_{q})^{n}}{(2q)^{n}} \sum_{m=0}^{i-1} (-1)^{m} \lambda^{2m} F_{\text{NW,A},q,n,q} \left(\frac{\sigma_{q} x \oplus \frac{m_{q}}{q}}{i_{q}} \right).
$$

Proof. Put $j = 1$ or 2 in (51), and divide by $(2q)^{n}$. □

Remark 3. This proves the first part of formula (32) again.

5. Apostol q-power sums, mixed formulas. We now turn to mixed formulas, which contain polynomials of both kinds.

Theorem 5.1. A q-analogue of [12, (26) p. 313]. If i is even then

$$
\sum_{k=0}^{n} \binom{n}{k} \left(\frac{\bar{q}_{q}}{i} \right)^{k} (\bar{j}_{q})^{n-k} F_{\text{NW,A},\lambda^{1},n,q} (\bar{j}_{q} x) \sigma_{\text{NW,A},\lambda^{1},n-k,q}(i)
$$

(56)

$$
= -\frac{(i_{q})^{n}}{2} \sum_{k=0}^{n-1} \binom{n-1}{k} (\bar{j}_{q})^{k} (\bar{q}_{q})^{n-k-1} \times F_{\text{NW,A},\lambda^{1},n-k,q}(\bar{j}_{q} x) \sigma_{\text{NW,A},\lambda^{1},n-k,q}(i)
$$

$$
= \frac{(i_{q})^{n}}{i} \sum_{m=0}^{i-1} (-1)^{m} \lambda^{im} F_{\text{NW,A},\lambda^{1},n,q} \left(\frac{\sigma_{q} x \oplus \frac{m_{q}}{q}}{i_{q}} \right)
$$

$$
= -\frac{(i_{q})^{n}}{2} \sum_{m=0}^{i-1} \lambda^{im} F_{\text{NW,A},\lambda^{1},n-1,q} \left(\frac{\sigma_{q} x \oplus \frac{m_{q}}{q}}{i_{q}} \right).
$$

Proof. Define the following function

$$
f_{q}(t) \equiv \frac{t F_{q}(\bar{j}_{q} x t)((-1)^{i+1} \lambda^{i} E_{q}(\bar{j}_{q} t) + 1)}{(\lambda^{i} E_{q}(\bar{j}_{q} t) - 1)(\lambda^{i} E_{q}(\bar{j}_{q} t) + 1)}
$$

(57)

$$
= \frac{(i_{q} t)^{i} E_{q}(\bar{j}_{q} x t)}{(\lambda^{i} E_{q}(\bar{j}_{q} t) - 1)} \frac{(-1)^{i+1} \lambda^{i} E_{q}(\bar{j}_{q} t) + 1}{\lambda^{i} E_{q}(\bar{j}_{q} t) + 1} \frac{1}{i}.
$$
By using the formula for a geometric sequence, we can expand $f_q(t)$ in two ways:

$$f_q(t) = \left(\sum_{\nu=0}^{\infty} B_{NWA, \lambda, \nu, q} (\tilde{t}_q x) \right) \left(\sum_{m=0}^{\infty} \sigma_{NWA, \lambda, m, q}(i) \frac{(\tilde{t}_q t^m)}{(m)_{q!}} \right) \frac{1}{i}$$

\[(58) = \left(\frac{(\tilde{t}_q)^1}{\lambda^1 E_q(\tilde{t}_q t)} - 1 \right) \sum_{m=0}^{i-1} (-1)^m \lambda^m E_q \left(\frac{\tilde{t}_q x + \overline{jm_q}}{\tilde{t}_q} \right) \frac{(\tilde{t}_q x^i)}{(i)_{q!}} \frac{1}{i} \]

$$= \sum_{\nu=0}^{\infty} \left(\frac{(\tilde{t}_q)^\nu}{\nu!} \right) \sum_{m=0}^{i-1} (-1)^m \lambda^m B_{NWA, \lambda, \nu, q} \left(\frac{\tilde{t}_q x + \overline{jm_q}}{\tilde{t}_q} \right) \frac{(\tilde{t}_q x^i)}{(i)_{q!}} \frac{1}{i}.$$

By equating the coefficients of $\frac{t^\nu}{(\nu)!}$, we obtain rows 1 and 3 of formula (56).

On the other hand, we can rewrite $f_q(t)$ in the following way:

$$f_q(t) = -t \frac{2 \left(\lambda^1 E_q(\tilde{t}_q t) \right)}{\lambda^1 E_q(\tilde{t}_q t) + 1}$$

\[(59) = -t \frac{2 \left(\lambda^1 E_q(\tilde{t}_q t) \right)}{\lambda^1 E_q(\tilde{t}_q t) + 1} \left(\frac{\lambda^1 E_q(\tilde{t}_q t) - 1}{\lambda^1 E_q(\tilde{t}_q t) - 1} \right). \]

By using the formula for a geometric sequence, we can expand (59) in two ways:

$$f_q(t) = -t \left(\sum_{\nu=0}^{\infty} F_{NWA, \lambda, \nu, q} (\tilde{t}_q x) \right) \left(\sum_{m=0}^{\infty} \sigma_{NWA, \lambda, m, q}(j) \frac{(\tilde{t}_q t^m)}{(m)_{q!}} \right) \frac{1}{i}$$

\[(60) = -t \frac{2 \lambda^m}{\lambda^1 E_q(\tilde{t}_q t) + 1} \left(\frac{\tilde{t}_q x + \overline{jm_q}}{\tilde{t}_q} \right) \frac{(\tilde{t}_q x^i)}{(i)_{q!}} \frac{1}{i} \]

$$= -t \sum_{\nu=0}^{\infty} \left(\frac{(\tilde{t}_q)^\nu}{\nu!} \right) \sum_{m=0}^{i-1} \lambda^m \tilde{t}_q^\nu F_{NWA, \lambda, \nu, q} \left(\frac{\tilde{t}_q x + \overline{jm_q}}{\tilde{t}_q} \right) \frac{(\tilde{t}_q x^i)}{(i)_{q!}} \frac{1}{i}.$$

By equating the coefficients of $\frac{t^\nu}{(\nu)!}$, we obtain rows 2 and 4 of formula (56).

\[\square \]

Corollary 5.2. A q-analogue of [12, (28) p. 313]. If i is even, then

$$F_{NWA, \lambda, n-1, q} (\tilde{t}_q x)$$

\[(61) = -2 \left(\frac{\tilde{t}_q}{n} \right) \sum_{k=0}^{n} \binom{n}{k} \frac{(\tilde{t}_q)^k}{k} B_{NWA, \lambda, k, q} (x) \sigma_{NWA, \lambda, n-k, q}(i) \]

$$= -2 \frac{(\tilde{t}_q)^n}{i \{n\}_q} \sum_{m=0}^{i-1} (-\lambda)^m B_{NWA, \lambda, m, q} \left(x + \overline{jm_q} \right).$$

Proof. Put $j = 1$ in formula (56) and multiply by $-\frac{2}{\{n\}_q}$. \[\square \]
Corollary 5.3. A q-analogue of [12, (29) p. 313].

$$F_{\text{NWA}, \lambda, n-1, q}(x) = -\frac{2}{\{n\}_q} \sum_{k=0}^{n} \binom{n}{k} \frac{(\tau_q^k)}{q} B_{\text{NWA}, \lambda^k, q} \left(\frac{x}{2q} \right) \sigma_{\text{NWA}, \lambda, n-k, q}(2)$$

$$= -\frac{(\tau_q^n)}{\{n\}_q} \sum_{m=0}^{1} (-\lambda)^m B_{\text{NWA}, \lambda^m, n, q} \left(\frac{x}{2q} \oplus q \frac{m q}{2q} \right).$$

Proof. Put $i = 2$ in formula (61), and replace x by $\frac{x}{2q}$. □

Corollary 5.4. A q-analogue of [12, (31) p. 314]. If i is even, then

$$1 \sum_{m=0}^{1} \lambda^m F_{\text{NWA}, \lambda^2, n-1, q} \left(\tau_q x \oplus_q \frac{m q}{2q} \right)$$

$$= -\frac{2}{\{n\}_q (\tau_q^n)} \sum_{k=0}^{n-1} \binom{n}{k} \frac{(\tau_q^k)}{q} B_{\text{NWA}, \lambda^k, q} \left(\tau_q x \right) \sigma_{\text{NWA}, \lambda, n-k, q}(i)$$

$$= \frac{1}{(\tau_q^n)} \sum_{k=0}^{n-1} \binom{n-1}{k} \frac{(\tau_q^k)}{q} B_{\text{NWA}, \lambda^k, q} \left(\tau_q x \right) \sigma_{\text{NWA}, \lambda, n-k-1, q}(2)$$

$$= -\frac{2}{\{n\}_q (\tau_q^n)} \binom{\tau_q^n}{i} \sum_{m=0}^{i-1} (-1)^m \lambda^{2m} B_{\text{NWA}, \lambda^m, n, q} \left(\tau_q x \oplus \frac{m q}{\tau_q} \right).$$

Proof. Put $j = 2$ in formula (56) and multiply by $-\frac{2}{\{n\}_q (\tau_q^n) n-1}$. □

Corollary 5.5. A q-analogue of [12, (32) p. 314].

$$1 \sum_{m=0}^{1} (-1)^{m+1} \lambda^m B_{\text{NWA}, \lambda, n, q} \left(x \oplus_q \frac{2m q}{2q} \right)$$

$$= \frac{\{n\}_q (\tau_q^n)}{(\tau_q^n)^n} \sum_{m=0}^{1} \lambda^m F_{\text{NWA}, \lambda, n-1, q} \left(x \oplus \frac{2m q}{\tau_q} \right).$$

Proof. Put $i = 2$ in formula (63), replace x and λ^2 by $\frac{x}{\tau_q}$ and λ, and multiply by $\frac{\{n\}_q (\tau_q^n)}{(\tau_q^n)^n}$. □
Corollary 5.6. A q-analogue of [12, (33) p. 314].

\[
\sum_{m=0}^{1} (-1)^{m} \lambda^{j} m \mathfrak{B}_{\text{NWA}, \lambda^{2}, n, q} \left(T_{q} x \oplus q \frac{j m}{2 q} \right)
\]

\[
= -\left\{ n \right\}_{q} \sum_{k=0}^{n-1} \binom{n-1}{k} \left(\mathfrak{T}_{\text{NWA}, \lambda^{j}, k, q} \left(\frac{T_{q} x}{2 q} \right) \right)^{n-k-1} \mathfrak{F}_{\text{NWA}, \lambda^{2}, n-k-1, q}(j)
\]

\[
= -\left\{ n \right\}_{q}^{2} \sum_{m=0}^{j-1} \lambda^{2m} \mathfrak{F}_{\text{NWA}, \lambda^{j}, n-1, q} \left(\frac{T_{q} x \oplus q}{2 q} \frac{j m}{2 q} \right).
\]

Proof. Put \(i = 2 \) in formula (56) and multiply by \(\frac{2}{(2q)^n} \). \(\square \)

6. Discussion. As was indicated in [5], we have considered q-analogues of the currently most popular Appell polynomials, together with corresponding power sums. The beautiful symmetry of the formulas comes from the ring structure of the q-Appell polynomials. We have not considered JHC q-Appell polynomials, since we are looking for maximal symmetry in the formulas. The q-Taylor formulas have not been used in the proofs, since the generating functions were mostly used. In a further paper [6], we will find similar expansion formulas for q-Appell polynomials of arbitrary order.

References

[1] Apostol, T. M., On the Lerch zeta function, Pacific J. Math. 1 (1951), 161–167.
[2] Carlitz, L., A note on the multiplication formulas for the Bernoulli and Euler polynomials, Proc. Amer. Math. Soc. 4 (1953), 184–188.
[3] Ernst, T., A Comprehensive Treatment of q-calculus, Birkhäuser/Springer, Basel, 2012.
[4] Ernst, T., On certain generalized q-Appell polynomial expansions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 68, No. 2 (2015), 27–50.
[5] Ernst, T., A solid foundation for q-Appell polynomials, Adv. Dyn. Syst. Appl. 10 (2015), 27–35.
[6] Ernst, T., Expansion formulas for Apostol type q-Appell polynomials, and their special cases, submitted.
[7] Luo, Q.-M., Srivastava, H. M., Some generalizations of the Apostol–Bernoulli and Apostol–Euler polynomials, J. Math. Anal. Appl. 308, No. 1 (2005), 290–302.
[8] Luo, Q.-M., Srivastava, H. M., Some relationships between the Apostol–Bernoulli and Apostol–Euler polynomials, Comput. Math. Appl. 51, No. 3–4 (2006), 631–642.
[9] Luo, Q.-M., Apostol–Euler polynomials of higher order and Gaussian hypergeometric functions, Taiwanese J. Math. 10, No. 4 (2006), 917–925.
[10] Luo, Q.-M., The multiplication formulas for the Apostol–Bernoulli and Apostol–Euler polynomials of higher order, Integral Transforms Spec. Funct. 20, No. 5–6 (2009), 377–391.
[11] Milne-Thomson, L. M., The Calculus of Finite Differences, Macmillan and Co., Ltd., London, 1951.
[12] Wang, Weiping, Wang, Wenwen, Some results on power sums and Apostol-type polynomials, Integral Transforms Spec. Funct. 21, No. 3–4 (2010), 307–318.
Thomas Ernst
Department of Mathematics
Uppsala University
P.O. Box 480, SE-751 06 Uppsala
Sweden
e-mail: thomas@math.uu.se

Received September 16, 2015