Antiangiogenic molecules from marine actinomycetes and the importance of using zebrafish model in cancer research

Jhansi Nathan a,b,*, Rajaretinam Rajesh Kannan b,**

a AUKBC Research Centre, Anna University, MIT Campus, Chromepet, Chennai 600044, Tamil Nadu, India
b Centre for Molecular and Nanomedical Sciences, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai 600119, India

ARTICLE INFO

Keywords:
Danio rerio
Angiogenesis
Actinomycetes
Bioactive molecules
Transgenic model
Xenograft model
Biotechnology
Genetics
Proteins
Pharmaceutical science
Biomedical engineering
Molecular biology
Cancer research
Developmental biology
Toxicology

ABSTRACT

Blood vessel sprouting from pre-existing vessels or angiogenesis plays a significant role in tumour progression. Development of novel biomolecules from marine natural sources has a promising role in drug discovery specifically in the area of antiangiogenic chemotherapeutics. Symbiotic actinomycetes from marine origin proved to be potent and valuable sources of antiangiogenic compounds. Zebrafish represent a well-established model for small molecular screening and employed to study tumour angiogenesis over the last decade. Use of zebrafish has increased in the laboratory due to its various advantages like rapid embryo development, optically transparent embryos, large clutch size of embryos and most importantly high genetic conservation comparable to humans. Zebrafish also shares similar physiopathology of tumour angiogenesis with humans and with these advantages, zebrafish has become a popular model in the past decade to study on angiogenesis related disorders like diabetic retinopathy and cancer. This review focuses on the importance of antiangiogenic compounds from marine actinomycetes and utility of zebrafish in cancer angiogenesis research.

1. Introduction

Blood vessels’ sprouting from preexisting vasculature is angiogenesis, which can occur at both physiological as well as pathological conditions like wound healing, placentation, embryogenesis, inflammatory disorders and tumour growth [1, 2]. In tumour angiogenesis, tumour cell releases certain molecules that signal the host tissue and activate specific genes to make protein that boost development of novel blood vessels (Figure 1) [3]. Vascular endothelial growth factor (VEGF) is the key angiogenic determinant factor of angiogenesis (VEGF) and targeting its expression; thereby blocking the VEGF signaling cascade would be significantly useful in the development of new anticancer drugs [4]. Many novel bioactive molecules from natural sources are undergoing clinical trials to downregulate vegf and thereby disrupt the growth of angiogenic vessels [5, 6]. Natural products from marine sources are increasing popularity in drug discovery, especially the marine actinomycetes plays major role in development of novel bioactive compounds.

The idea of employing marine bioactive molecules to target angiogenic growth factors has been of a great importance in the past three decades after the substantial contribution by Dr Judah Folkman [7]. Marine invertebrates such as molluscs, gorgonia, soft coral, sponges, sponge-associated bacteria and actinomycetes, have been widely explored for possible angiogenic inhibitors [8]. Small molecular compounds from marine origin have become important in cancer research as well as in the study of antibacterial, antifungal, antiviral and anti-coagulant properties [9, 10]. It is evident that conventional treatment for cancer has many side effects and it is crucial to develop natural products based anticancer therapies in future. In angiogenic drug discovery efforts, rodent models have dominated to date, however, these models are not suitable for large-scale drug screening when compared to the advantages of zebrafish which requires minimal labor, resources and time. Furthermore, ethical issues in the usage of rodents have made their usage even more limited [11, 12, 13]. Zebrafish is an extensive model organism to study small molecular drug interactions as it provides a...
series of advantages like optical transparency, rapid development, and high number of offspring. Marine actinomycetes are distributed widely and thus, discovering novel antiangiogenic compounds from them can serve as promising candidates for cancer drug discovery. Figure 2 depicts the distribution of actinomycetes from marine sources, antiangiogenic small molecules discovered from marine actinomycetes and the importance of utilizing zebrafish in cancer research [14]. Thus, this review focuses on the utilization of zebrafish as a relevant model organism in antiangiogenic drug discovery mainly about marine symbiotic actinomycetes and drug screens.

2. Antiangiogenic agents from marine actinomycetes

Marine sources are rich in secondary metabolites and there are many compounds reported to possess anticancer properties. In a recent review, it has been elucidated that more than 45 compounds from marine origin are shown to have antiangiogenic potential and 10 of them have already entered clinical trials at different phases for cancer therapy [8]. These compounds include terpenes, saccharides, saponins, macrocycles, xanthones, peptides, alkaloids and pyrones which display a great structural and chemical diversity and also these compounds downregulate angiogenesis by altering distinct targets due to their unique structures. These angiogenesis inhibitors act directly on the endothelial cells or other growth factors of the angiogenic cascade (Figure 3) and they hinder the growth of the endothelial cells by arresting the cell cycle during mitosis or by causing DNA damage leading to apoptosis [15].

Actinomycetes are filamentous Gram-positive bacteria which belongs to the phylum Actinobateria, are considered to be the largest group in the bacterial domain [16]. Bioactive molecules from actinomycetes are reported to be the highest among the other bacterial species which is almost 45 percent of the overall metabolites reported [17]. Streptomyces is the major group among actinomycetes which has produced around 7,600 compounds [17] and they have also produced clinically important antitumour agents [18, 19]. The undesirable side effects and high toxicity of already available chemotherapy drugs for cancer treatment makes the researches to discover novel antitumour drugs from marine origin or phytochemicals which have no/less side effects when compared to conventional therapy [20]. Marine actinomycetes are unique in producing secondary metabolites when compared to other microorganisms from terrestrial origin; with many

![Figure 1. The process of angiogenesis.](image1.png)

![Figure 2. Importance of zebrafish model to study antiangiogenic compounds from marine actinomycetes (a. Distribution of actinomycetes from marine sources [14], b. Antiangiogenic biomolecules from marine actinomycetes, c. Advantages of zebrafish model in cancer research).](image2.png)
pharmacologically important activities like anti-oxidant, anti-inflammation and antitumour properties [21, 22, 23, 24, 25]. Table 1 lists some of the important antitumour compounds from marine actinomycetes. Marine microorganisms possess unique features and thus, they might synthesize different secondary metabolites in their challenging habitats [100]. Most important derivatives from marine actinomycetes which possess antiangiogenic potential are described in Table 2 and their structures are shown in Figure 4.

3. Zebrafish - a suitable model for angiogenesis research

Zebrafish model is widely used in angiogenesis study as the circulation starts after 24 hours post-fertilization (hpf), and the vascular system bears a strong similarity to that of humans. In the early embryonic development, blood vessels and organ formation can be easily visualized in the transparent embryos and larvae of both wildtype and transgenic species making it a viable model for angiogenesis research [105]. Therefore, this advantage of zebrafish plays an important role in studying tumour angiogenesis, which is crucial for cancer progression and metastasis and also serves as targets for antitumour therapeutics. Staining of vascular endothelial cells of zebrafish by a fluorescent protein can render the observation of newly formed blood vessels in the earliest tumour progressive stage. Zebrafish also serves as a tumour metastasis model; due to its transparent embryos and larvae the metastasizing tumour cells can be exactly traced by the fluorescent-stained tumour cells at the cellular level [106]. Furthermore, the large clutch size of embryos and inexpensiveness of zebrafish make them easily amenable for the large-scale drug screen in antiangiogenic drug discovery and efficacy.

3.1. Zebrafish transgenic models in tumour angiogenesis

Transgenic technology has improved the characteristic in vivo imaging capabilities of zebrafish larvae and embryos. A dissecting microscope is sufficient to visualize the blood flow and vessel development in early embryos and larvae, yet tissue specific expression of fluorescent proteins is required to study the vasculature in detail (Figure 5) [107]. Phenotypic changes and cell shape abnormalities with live specimens can be studied in detail by confocal microscopy and time-lapse imaging techniques and thus, formation of vasculature has been explained with the use of molecular markers in detail, both from the cellular and anatomical point of view [108, 109, 127]. Based on gene-specific promoters, transgenic zebrafish mutant lines were developed with vascular-specific phenotypes and both heterologous and autologous promoters have been shown to work. Zebrafish transgenic mutant lines which have been developed to study the vasculature is given in Table 3. The promoter closely similar to mammalian species was used previously; before the availability of whole genome sequence of zebrafish [128].

Molecular traces have been employed to study the formation of vasculature in zebrafish, during the embryonic development and thus the vascular anatomy has been well documented which has proven to share quiet a high percentage of resemblance with higher order vertebrates [108, 109, 130]. Based on gene-specific promoters, transgenic zebrafish mutant lines were developed with vascular-specific phenotypes and both heterologous and autologous promoters have been shown to work. Zebrafish transgenic mutant lines which have been developed to study the vasculature is given in Table 3. The promoter closely similar to mammalian species was used previously; before the availability of whole genome sequence of zebrafish [128].

Figure 3. Marine derived drugs targeting tumour angiogenesis.
Table 1. Antitumour compounds produced by marine actinomycetes.

Structural type	Compound	Organism	Reference
Indole	3,6-disubstituted indoles	*Streptomyces* sp. BL-49-58-005	[26]
Indole	Streptoclin	*Streptomyces* sp. 04DH1 10	[27-29, 30]
Polyketide	1-hydroxy-1-norresistomycin	*Streptomyces* chinensis AUBN1/7	[31-32]
Polyketide	1,8-dihydroxy-2-ethyl-3-Methanithraquinone	*Streptomyces* sp. FX-58	[33]
Polyketide	Actinofuranones	*Streptomyces* sp. CNQ766	[34]
Polyketide	Arenilolides	*Salinispora arenicola* CNR-005	[35]
Polyketide	Aureovericillactam	*Streptomyces aureovericillatus* NPS001583	[36]
Polyketide	Chalcomycin	*Streptomyces* sp. M491	[37]
Polyketide	Chalcomycin B	*Streptomyces* sp. B4842	[38]
Polyketide	Chartreusin	*Streptomyces* sp. QD518	[39]
Polyketide	Cyanosporasides	*Salinispora pacifica* CNS103	[40]
Polyketide	Daryamides	*Streptomyces* sp. CNQ-085	[41]
Polyketide	Fridamycin D	*Streptomyces* sp. B6921	[42]
Polyketide	Griseorhodin A	*Streptomyces* sp. JP9	[43, 44]
Polyketide	Himalomycins	*Streptomyces* sp. B6921	[42]
Polyketide	IB-0028	*Actinomadura* sp. BL-41-PO13-046	[45, 46]
Polyketide	IB-96212	*Micromonospora* sp. L-25-ES25-008	[47, 48]
Polyketide	Komodoquinones	*Streptomyces* sp. KS3	[49, 50]
Polyketide	Manumycin C	*Streptomyces* sp. M405	[51]
Polyketide	Marinomycins	*Marinispora* sp. CNQ-140	[52]
Polyketide	Marmycins	*Streptomyces* sp. CNH090	[53]
Polyketide	Nonactin	*Streptomyces* sp. KORDI-3238	[54]
Polyketide	Pacificanones	*Salinispora pacifica* CNS-237	[55]
Polyketide	Parimycin	*Streptomyces* sp. B8652	[56]
Polyketide	Piericidins	*Streptomyces* sp. YMI-14-060	[57, 58]
Polyketide	Rabelomycins	*Streptomyces* sp. B6921	[42]
Polyketide	Restitoflavine	*Streptomyces* chinensis AUBN1/7	[31-32, 59]
Polyketide	Resistomycin	*Streptomyces* sp. B8005	[32]
Polyketide	Salini ketals	*Salinispora arenicola* CNR-005	[60]
Polyketide	Salinipyrones	*Salinispora pacifica* CNS-237	[55]
Polyketide	Sporolides	*Salinispora tropica* CNB-392	[61]
Polyketide	SS-228 Y	*Chainsia* sp. SS-228	[62, 63]
Polyketide	Tetraclomycin D	*Streptomyces* sp. B8005	[32]
Polyketide	Triocarcenin	*Streptomyces* sp. isolate B8652	[64]
Non-ribosomal peptide	Arenamides	*Salinispora arenicola* CN-088	[65]
Non-ribosomal peptide	Lucentamycins	*Nocardiosis lucentensis* CNR-712	[66]
Polyketide/non-ribosomal peptide	Lajollamycin	*Streptomyces nodus* NPS007994	[67]
Non-ribosomal peptide	Mecherecharmycins	*Thermoactinomycetes* sp. YM3-251	[68]
Non-ribosomal peptide	Piperazimycins	*Streptomyces* sp. CNQ-593	[69]
Non-ribosomal peptide	Proximicincs	*Verrucosporis* sp. MG-7	[70, 71, 72]
Polyketide/non-ribosomal peptide	Salinosporamides	*Salinispora tropica* CNB-392	[61, 73, 74, 75, 76]
Non-ribosomal peptide	Thiocoraline	*Micromonospora* sp. L-13-ACM2-092	[77, 78]
Isoprenoid	4α,8α-dimethyl-6-[(2-methylpropenyl氧基)-3,4,α,4β,5,6,8α,9-octahydro-1H-phenanthren-2-one	*Actinobacteria* sp. MS1/7	[79]
Isoprenoid	Altemicidin	*Streptomyces* sioguensis SA-1758	[80, 81]
Isoprenoid	Chlorinated dihydroquinones	*Actinomycete* isolate CNQ-525	[82]
Isoprenoid	Marinones	*Actinomycete* isolate CNH-099	[83, 84, 85]
Isoprenoid	T-Muurolol	*Streptomyces* sp. M491	[37, 86]
Indolocarbazole	Arcyriaflavin A	*Actinomycete* sp. Z2039-2	[87]
Indolocarbazole	K252c	*Actinomycete* strain Z2039-2	[87]
Indolocarbazole	Staurosporins	*Streptomyces* sp. KS3	[39, 50, 88]

(continued on next page)
cell markers are employed to increase the possibility to visualize the migratory and proliferative behaviors of single cells, and various other cell types during the embryo-to-larva transition. Two different cell types were observed simultaneously by combining transgenic lines expressing different fluorescent proteins [113, 133, 134, 135]. Additionally, by using the combination of cell and nuclear membrane specific fluorescent tags, researchers have reported to study the single cell morphological dynamics in living larvae during vascular development [136]. Zebrafish transgenic lines development has been of a much greater utility in studying induced gene expression and also tissue specific gene expression [137]. Thus, these strategies facilitated the study of the sequence of events taking place during the formation of early circulatory loop in zebrafish embryos. The intersegmental vessels are the important angiogenic vessels, whose development is of a greater importance because of its characteristics and high accessibility feature in the zebrafish embryos. The intersegmental vessels are the important angiogenic vessels, whose development is of a greater importance because of its characteristics and high accessibility feature in the zebrafish embryos and larvae; these vessels emanate from dorsal aorta into the embryonic tail and trunk region, and finally grow into the anastomosing dorsal longitudinal vessels [138]. Experimental analysis of blood vessel development in zebrafish embryogenesis was carried out using two common methods namely immunohistochemistry and in situ hybridization for the visualization of protein and gene expression. But these methods were not specifically developed to study zebrafish vasculature, but various other protocols and tools are currently available that enable these strategies [139, 140]. Regardless of its popularity and success, the researchers using zebrafish model must also contemplate their work by extending their research on other higher vertebrates or mammalian systems, for further clinical applications in future.

3.2. Zebrafish in drug screens

The rationale of zebrafish usage for high-throughput drug screening of marine bioactive compounds as become popular in the past decade as these animals involve only sub-milligram quantities for hit selection and validation and are easily pliable to multi-well plates for the reason that they have small sized embryos and larvae [11, 141, 142]. The quantity of marine bioactive compounds for primary screening purposes is limited and it is yet another disadvantage of rodents in marine drug discovery as they require higher quantity for drug screening. As discussed earlier, optical transparency of zebrafish embryos until 5 days post-fertilization (dpf) aids easy visualization of tissues and organs and this feature, allows researchers to employ zebrafish transgenic lines coupled with fluorescently labeled organs and cells, and to study the vascular patterning by developing assay methods for chemical and genetic screening approaches [143, 144]. Significantly, several small bioactive compounds identified in zebrafish possess anticancer properties and are currently in clinical trial phase [141]. Zebrafish can also be used for phenotype-based drug discovery which allows the identification of small molecules independently of their mode of action [141, 142]. Zebrafish embryos and larvae have been used in drug screening strategies so far and anti-angiogenic properties of marine compounds studied in zebrafish model are discussed in Table 4.

3.3. Zebrafish Xenograft model

Xenografting is a pre-clinical tool used by researchers in the recent times to evaluate drug responses and to study tumour metastasis [151].

Table 2. Important derivatives from marine actinomycetes which possess antiangiogenic potential.

Compound	Marine organism Source	Action	Reference
Streptopyrrolidine	Streptomyces sp	Inhibition of tube formation in HUVECs	[98]
Cyclo-(L-Pro-L-Met)	Nocardisporangium sp. 03N67	Antiangiogenesis activity against human umbilical vein endothelial cells (HUVECs)	[101]
Streptochlorin	Streptomyces strain 04D110	• Inhibition of in vitro growth of human leukemia K-562 cells with an IC50 of 1.05 μg/mL significantly • Potent antiangiogenic agent by inducing ROS-mediated apoptosis and inhibits TNF-α-induced NF-κB activation. • Antiangiogenic potential by downregulating the expression of VEGF.	[27, 28, 29, 30]
Lynamicins	Marinicipora sp. NPS12745	• Potent antitumour and antiangiogenic properties • Reduction of resistance mediated by transporter ABCG2	[102, 103]
Marinomobil	Solmisporangium tropica	Potential anticancer agent and is currently undergoing Phase-I clinical trial.	[8, 104]
Thiocoraline	Micromonospora sp. L-13-ACM2-092	• Potent antitumour activity against melanoma MEL288, human lung adenocarcinoma A549, and marine leukemia P388	[77]
Figure 4. Structures of marine actinomycetes derived compounds that possess antiangiogenic potential.
Zebrafish is established as an efficient model for human tumour xenotransplantation (XT), specifically human leukemias and lymphomas. Absence of adaptive immune system in zebrafish larvae until 28hpf makes them a suitable XT model, with no constraint for immunosuppression. Likewise, the zebrafish XT system allows real time observation and imaging of tumour-cell crescendos in a live animal microenvironment. High conservation is observed in the developmental process of hematopoiesis of zebrafish, making it a robust model to study normal and abnormal blood vessel development and disorders especially in blood cancer research. Therefore, zebrafish can be utilized as a pre-clinical screening model to establish patient-derived cancer cell xenotransplantation and develop novel possibilities for personalized medicine. Table 5 gives important xenograft transplantation cancer models in zebrafish. The first studied xenotransplantation of human cells into zebrafish [153] led many researchers to use the zebrafish embryos to establish the factors underlying in the other sides of cancer biology which includes cancer-induced angiogenesis, cancer cell invasion and metastasis [176, 177]; cancer cells interaction with host cell [178]; and screening of drugs [179, 180]. In a recent study using zebrafish xenograft model (CDX), antiangiogenic effectiveness of ramucirumab, apatinib, regorafenib and cabozantinib was evaluated for the intersegmental vessels (ISVs) and subintestinal veins (SIVs) formation, in which all the four drugs exhibited antiangiogenic potential in the Tg (fl1-1:EGFP) zebrafish embryos [181]. Significantly, the laboratory observation

Table 3. Transgenic zebrafish lines developed to study and visualize the vasculature.

Line	Expression	Gene	Reference
Tg(dbh:EGFP)	Endothelial cells	Notch ligand	[110]
Tg(Tie2:EGFP)	Endothelial cells	Tie-2 receptor tyrosine kinase	[111]
TgBAC(dbh:GAL4FF)	Endothelial cells	Notch ligand	[112]
Tg(--):GFPy1	Endothelial cells, cytoplasmic	Transcription factor Fli-1	[113]
Tg(fl1-meqGFP)y7	Endothelial cells, nuclear	Transcription factor Fli-1	[114]
Tg(5xUAS:cdh5-EGFP)	Pan-endothelial	VE-cadherin	[115]
Tg(--):YFP	Pan-endothelial	VEGF	[116]
TgBAC(cdh5:Citrine)	Pan- endothelial	VE-cadherin	[117]
TgBAC(cdh5:GAL4FF)	Pan- endothelial	VE-cadherin	[118]
TgBAC(--):Citrine	Pan-endothelial	VEGF	[119]
Tg(kdr:eGFP)+843	Angioblast/endothelial precursors	VEGF2/Flk1/kdr/Vegfr4	[120]
Tg(kdr-G:RCFP)	Angioblast/endothelial precursors	VEGF2/Flk1/kdr	[121]
Tg(gata1:dsRed):ud2	Blood cells	Transcription factor GATA-1	[122]
Tg(gata2::GFP)	Blood cells	Transcription factor GATA-2	[122]
Tg(hap70::canotch3-EGFP)	Perivascular	Notch3 intracellular domain	[123]
Tg(gata1::GFP)	Erythroid lineage	Transcription factor GATA-1	[124]
Tg(fl1-7.8fa-c::GFP):nc3	Endocardial and myocardial cells	Transcription factor GATA-4	[125]
Tg(myt17::GFP)	Myocardial cells	Cardiac myosin light chain 2	[126]

Adapted from Baldessari and Mione (2008), Kamei et al. (2010) and Schuermann et al. (2014).

Table 4. List of marine compounds with antiangiogenic properties studied using zebrafish model.

Compound	Action	Targeted molecules	Reference
Solomomonamide A	Antiangiogenesis	ERK1/2 and Akt phosphorylation	[145]
Catunaregin	Antiangiogenesis	Modulating phosphorylation of Akt and eNOS	[146]
Somocystinamide A	Antiangiogenesis by inhibiting tube formation of endothelial cells	Caspase-8-expressing tumours	[147]
Stellettin B	Decreased blood vessel formation in developmental zebrafish	VEGF transcriptional expression	[148]
Crambesicidin 816	Antitumour effect	Caspase-3 cleavage and activation.	[149]
Bromophenol BBDE	Antiangiogenesis inhibiting sub-intestinal vessel formation	VEGF/VEGFR	[150]
Table 5. List of Human Cancer xenograft transplantation models in zebrafish.

Tumours	Transplant stage	Site of injection	Observation	Reference
Melanoma and colorectal cancer	48 hpf	Yolk sac, hind brain ventricle	Inhibition of vascularization by VEGFR2 inhibitor - SU5416.	[152]
(both murine)				
Melanoma, Uveal melanoma	Blastula	Blastodisc	• Studied tumor cell plasticity and investigated tumor microenvironment interactions.	[153]
48hpf	Yolk sac		• Large scale drug screening and drug discovery	[154]
Prostate Cancer (androgen dependent and independent)	48 hpf	Yolk sac	• Silencing of tyrosine kinase SYK prevented cancer cell dissemination.	[155]
			• Xenograft using LNCaP in zebrafish treated with exogenous testosterone - increased cancer cell proliferation	[156]
Colorectal cancer	48 hpf	Yolk sac	• Activation of by intrinsic apoptotic signaling by Marine guanidine alkaloids in tumour regression.	[149]
			• Efficacy of Bromelanin in tumour regression.	[157]
Pancreatic cancer	48 hpf	Yolk sac	Evaluation of tumour cell invasion and micrometastasis with transgenic zebrafish	[158]
Breast cancer	48 hpf	Yolk sac, Duct of Cuvier	• Patient-derived material (PDX) model in bone metastasis research.	[159]
			• Role of SOX2 interaction with AKT signalling in breast cancer.	[160]
Breast cancer, non-invasive and metastatic	48 hpf	Duct of Cuvier	TGF-β receptor kinase inhibitors for blocking and inhibiting TGF-β signaling.	[161]
Retinoblastoma	48 hpf	Yolk sac; brain	Orthoptic zebrafish model to understand the invasive and metastatic nature of retinoblastoma	[162]
Glioblastoma	52 hpf	Yolk sac; brain	• Changes in the cell heterogeneity after treatment with chemotherapy on tumour.	[163]
			• Model for detection of BBB (Blood-Brain Barrier) penetration of TNB.	[164]
			• RECQ1 helicase, a promising molecular target in the glioblastomotherapy and high throughput screening	[165]
Gastrointestinal tumours pancreas, stomach, colon	48 hpf	Yolk sac; liver	Inhibition of growth and metastasis in xenografted cells by targeting EGFR and its downstream signalling molecules AKT/ERK by Triphala	[166]
Oral squamous cell carcinoma	48 hpf	Yolk sac	Induction of apoptosis by Sandenolide in Oral cancer.	[167]
Non-small-cell lung cancer (NSCLC)	48 hpf	Yolk sac	• Bevacizumab, endostar and apatinib effects and its toxicity were analyzed.	[168]
Ewing sarcoma (EWS)	25 dpf	Yolk sac, Eye vessels	Nutlin-3, a tp53 activator, and YK-4-279, a EWSR1-ETS inhibitor as a Combinational therapy was studied.	[169]
48 hpf	Yolk sac		Drug efficacy and sensitivity was analysed using zebrafish PDX. Progression of cancer by cell dissemination and homing to bone marrow were investigated.	[170]
MM, Waldenstrom's macroglobulinemia	48hpf	Yolk sac; Pericardium	Drug efficacy and sensitivity was analysed using zebrafish PDX. Progression of cancer by cell dissemination and homing to bone marrow were investigated.	[170]
AML	48 hpf	PC vein	Inhibitory effect of imatinib and other antileukemic drugs.	[171]
Glioblastoma, melanoma, breast cancer, RMS	Adult	Peri-ocular muscle	A double mutant immunodeficient zebrafish to study cancer xenotransplantation.	[172]
MM cells from plasma MM cells from bone marrow	48 hpf	Yolk sac, Pericardium	Drug sensitivity or resistance were investigated using zebrafish model.	[173]
AML, HCC	48 hpf	Yolk sac, Trunk near dorsal aorta; heart	Treatment with busulfan successfully enabled xenograft AML cells and HCC cells into adult zebrafish	[174]
CML, HCC, prostate cancer	48 hpf	Yolk sac, Trunk near dorsal aorta	Model for xenotransplantation and drug screening by introducing cancer stem-like cells.	[175]

of developing a zebrafish tumour model and its response to chemotherapeutics is comparable to mouse xenograft models [182]. With these features, zebrafish can also be considered as a vital XT model to study and identify marine bioactive molecules.

4. Summary and conclusion

The established angiogenic inhibitors or small bioactive compounds from marine symbiotic actinomycetes provide hope for reducing the morbidity and mortality from metastatic cancers and other carcinomas. Though, it is reported to have successful results with the use of established antiangiogenic drugs which have entered clinical trials, long term survival benefits in cancer patients can be achieved by combination therapy by combining small molecules with chemotherapy or radiation therapy. The neovascularization of cancer tissue as well as the growth of the tumour can be repressed by the use of angiogenesis-suppressors and thus might be helpful in the treatment of cancer and, in particular few bioactive compounds produced by genus Streptomyces, serves as a source of numerous antitumour drugs. As marine system consists of enormous beneficial microbes, it is important to take into account for drug discovery as there are innumerable compounds with novel structural diversity which are yet to be discovered from marine actinomycetes. Antiangiogenic marine bioactive compounds have been extensively found successful in cell lines study and rodent models, whereas their usage in zebrafish is still in emergence stage. Therefore, a most potential and successful animal model is required to study the novel drug efficacy in a cost-effective manner. As we discussed in detail above using zebrafish in marine drug discovery, they are already proven model in angiogenesis research, which helps us to identify and discover novel anticancer/antiangiogenic compounds from marine actinobacteria.
Declarations

Author contribution statement

All authors listed have significantly contributed to the development and writing of this article.

Funding statement

This work was supported by Department of Science and Technology (DST) - INSPIRE [DST/INSPIRE/04/2018/003392] and DST- Science & Engineering Research Board (SERB) - National Postdoctoral Fellowship [File Number: PDF/2016/003879].

Data availability statement

No data was used for the research described in the article.

Declaration of interests statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

[1] J. Folkman, Angiogenesis in cancer, vascular, rheumatoid and other disease, Nat. Med. 1 (1) (1995) 27–31.
[2] W. Risau, Mechanisms of angiogenesis, Nature 386 (6626) (1997) 671–674.
[3] M.R. Gupta, R.Y. Qin, Mechanism and its regulation of tumour induced angiogenesis, World J. Gastroenterol. 9 (6) (2003) 1144–1155.
[4] N. Ferrara, R.S. Kerbel, Angiogenesis as a therapeutic target, Nature 438 (2005) 967–974.
[5] D.W. Siemann, D.J. Chaplin, M.R. Horsman, Vascular-targeting therapies for antituberculosis, and antiviral activities; affecting the cardiovascular, immune and inflammatory, antimalarial, antiplatelet, antiprotozoal, antiinfluenzal, antinflammatory, antimalarial, antiplatelet, antiprotozoal, antibacterial, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action, Comp. Biochem. Physiol. 145 (2007) 553–581.
[6] C. Kanthou, G.M. Tozer, Tumour targeting by microtubule-depolymerizing agents, Expert Opin. Ther. Targets 11 (2007) 1443–1457.
[7] J. Folkman, Tumour angiogenesis: therapeutic implications, N. Engl. J. Med. 314 (1986) 171–172.
[8] J.W. Blunt, B.R. Copp, M.H. Munro, P.T. Northcote, M.R. Prinsep, Marine natural products, Nat. Prod. Rep. 23 (2006) 26–78.
[9] C. Arenicolides, 26-membered ring macrolides from the marine actinomycete, Streptomyces isolate, J. Antibiot. 56 (2003a) 942–947.
[10] D. Tresselt, K. Eckardt, W. Ihn, Antibiotics from Actinomycetes - chemical structure elucidation of new fridamycin type antibiotics from a marine Streptomyces strain CNQ-085, J. Nat. Prod. 69 (2006) 1759–1764.
[11] J. Folkman, Angiogenesis in cancer, vascular, rheumatoid and other disease, Nat. Med. 1 (1) (1995) 27–31.
[12] M.R. Gupta, R.Y. Qin, Mechanism and its regulation of tumour induced angiogenesis, World J. Gastroenterol. 9 (6) (2003) 1144–1155.
[13] N. Ferrara, R.S. Kerbel, Angiogenesis as a therapeutic target, Nature 438 (2005) 967–974.
[14] U.R. Abdelmohsen, K. Bayer, U. Hentschel, Diversity, abundance and natural products of marine sponge-associated actinomycetes, Nat. Prod. Rep. 31 (2014) 337–343.
[15] D. Tresselt, K. Eckardt, W. Ihn, Antibiotics from Actinomycetes - chemical structure elucidation of new fridamycin type antibiotics from a marine Streptomyces strain CNQ-085, J. Nat. Prod. 69 (2006) 1759–1764.
[16] R.P. Maskey, R. Mankey, E. Helmke, L. Haast, Chalcomycin B, a new macrocyclic antibiotic from the marine isolate Streptomyces sp. B7064, J. Antibiot. 55 (2002) 893–898.
[17] D.C. Oh, P.G. Williams, C.A. Kauffman, P.R. Jensen, W. Fenical, Cytotoxic polycyclic xanthone produced by a marine-derived Actinomadura, II. Isolation of the strain, taxonomy and biological activities, J. Antibiot. 56 (2003) 974–1004.
[18] R.N. Asolkar, P.R. Jensen, W. Fenical, Daryamides A-C, weakly cytotoxic polypeptides from a marine-derived bacterium related to the genus Streptomyces (actinomycetes), J. Nat. Prod. 69 (2006) 425–428.
[19] P.G. Williams, E.D. Miller, R.N. Asolkar, P.B. Jensen, W. Fenical, A., A-, C. Arenicolid, 26-membered ring macrolides from the marine actinomycete Salinispora arenicola, J. Org. Chem. 72 (2007) 5025–5034.
[20] S.S. Mitchell, B. Nicholos, S. Teisan, K.S. Lam, B.C. Potts, Auroverticillactam, a new antituberculosis, and antiviral activities; affecting the cardiovascular, immune and inflammatory, antimalarial, antiplatelet, antiprotozoal, antibacterial, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action, Comp. Biochem. Physiol. 145 (2007) 553–581.
biosynthesis, and biological activity. Nat. Prod. Rep. 23 (2006) 1007–1045.

R.W. Robey, S. Shiba, K. Kudomi, T. Obrazt, E.M. Finlay, S.V. Ambudkar, S.E. Bates, Inhibition of GPR126/GPC2-mediated inhibition by protein kinase inhibitors with a bisindolylmaleimide or indolcarbazole structure, Mol. Cancer Ther. 6 (2007) 1877–1885.

A. Martin, H. Vietri, H. Gaspar, S. Santos, Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success, Mar. Drugs 12 (2014) 1066–1101.

N.C. Myra, A. Geraldine, A.F. Fernando, L.A. Miguel, T.E. Jose, Zebrabrain as an emerging model organism to study angiogenesis in development and regeneration, Front. Physiol. 7 (2016) 153–169.

R.M. White, A. Sesia, C. Burke, T. Bowman, J. LeBlanc, C. Cool, et al., Transparent adult zebrafish as a tool for in vivo transduction analysis, Cell Stem Cell 2 (2008) 153–159.

K.S. Okuda, J.W. Anip, J.P. Misa, M.V. Flores, K.E. Crosier, P.S. Crosier, Lyve1 expression reveals novel lymphatic vessels and new mechanisms for lymphatic vessel development in zebrafish, Development 139 (13) (2012) 2381–2391.

A.V. Gore, K. Monzo, Y.R. Cha, W. Pan, B.M. Weinstein, Vascular development in the zebrafish, Cold Spring Harb. Perspect. Med. 2 (5) (2012) a006684.

A. Schuermann, C.S. Heller, W. Herzog, Angiogenesis in zebrafish, semin, Cell Dev. Biol. 31 (2014) 106–114.

N. Sacilotto, R. Monteiro, J. Fritsch, P.W. Becker, L. Sanchez-Del-Campo, et al., Universal approaches to humanize zebrafish for drug discovery, Nat. Rev. Drug Discov. 14 (2015) 721–731.

A.D. Crawford, C.V. Eugserra, P.A. De Witte, Fishing for drugs from nature: zebrabrain as a technology platform for natural product discovery, Planta Med. 74 (2008) 624–632.

M. Raghunath, Y. Wong, M. Farooq, R. Ge, Pharmacologically induced angiogenesis in transgenic zebrafish, Biochem. Biophys. Res. Commun. 378 (2009) 766–771.

K. Taylor, N. Grant, T. Nempeter, E. Patton, Smaller molecule screening in zebrafish: an invivo approach to identifying new chemical tools and drug leads, Cell Commun. Signal. 8 (2010) 11.

C. Paloma, M. Beatriz, C. Ivan, G. Jessica, T. Chiara, J.L. Manuel, S. Francisco, A.M. Miguel, R.Q. Ana, Exploring the antiangiogenic potential of somocystinA a biocompatible precursor: in vitro and in vivo evidence of the inhibitory activity of solo FOH during angiogenesis, Mar. Drugs 17 (4) (2018) 224.

L. Jun-Xin, L. Min-Qi, X. Meng, W. Li, S. Mi-Mei, H. Yaohua, G. Guan-Chun, S. Chen, Marine compound catunaregin inhibits angiogenesis through the modulation of phosphorylation of Akt and eNOS in vivo and in vitro, Mar. Drugs 12 (5) (2014) 2790–2801.

W. Wolf, M. Ainhoa, A.T. Vicente, B. Simonne, K. Konstantin, L.S. Takashi, L.K. Richard, H.G. William, et al., The marine lipopeptide somocystinamideA triggers apoptosis via caspase 3, Proc. Natl. Acad. Sci. U S A. 105 (7) (2008) 2313–2318.

C. Shu-Yu, C. Nan-Fu, L. Pi-Yu, S. Ju-Hsin, C. Bing-Hung, K. Hsi-Mei, S. Chun-Sung, S. Ping-Jyun, W. Zhi-Hong, C. Wu-Fu, Anti-inflammation and antiangiogenic effects of stellettin B through inhibition of the Akt/Girdin signaling pathway and VEGF in glioblastoma cells, Cancers (Basel) 11 (2) (2019) 614.

R. Maria, M. Juan, G.V. Jorge, B.L.S. Signara, P.T. Oliver, C. Pablo, S. Laura, et al., Marine guanidine alkaloids crambescidins inhibit tumour growth and activate intrinsic apoptotic signaling inducing tumour regression in a colorectal carcinoma xenograft model, Oncotarget 7 (50) (2016) 83071–83087.

Q. Xin, L. Ge, Q. Lin, L. Lixin, L. Ming, Marine buphenolol(2,3-dibromo-4,5-dihydroxybenzyl) ether, represses angiogenesis in HUVECs and in zebrafish embryos via inhibiting the VEGF signaling systems, Biomed. Pharmacother. 75 (2014) 2801–2806.

M.J. Jager, A.G. Jochemsen, B.E. Snaar-Jagalska, Modeling of human uveal melanoma growth and metastasis: existing models, challenges and future perspectives, Crit. Rev. Oncol. Hematol. 97 (2016) 107–117.

C. Zhao, X. Wang, Y. Zhao, Z. Li, S. Lin, Y. Wei, H. Yang, A novel xenograft model in zebrafish for high resolution investigating dynamics of neovascularization in tumors, PloS One 6 (2011), e21768.

L.M. Lee, E.A. Seffor, G. Bonde, et al., The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumour formation, Dev. Dynam. 233 (4) (2005) 1560–1570.

M.D. van Marum, U.M. Domanska, H. Timmer-Bosch, et al., Studying cancer metastasis: existing models and future perspectives, Crit. Rev. Oncol. Hematol. 97 (2016) 107–117.

V. van der Ent, C. Burrello, A.F. Teunisse, B.R. Kansder, P.A. Van der Velden, M.J. Jager, A.G. Jochemsen, B.E. Snaar-Jagalska, Modeling of human uveal melanoma in zebrafish xenografts, Invest. Ophthalmol. Vis. Sci. 55 (2014) 6612–6622.

V.P.S. Ghotra, S. He, G. van der Horst, S. Niijhoff, SYK is a candidate kinase target for the treatment of advanced prostate cancer, Cancer Res. 75 (1) (2015) 230–240.

N. Melong, S. Steele, M. MacDonald, A. Holly, C.C. Collins, A. Zoubidi, J.N. Beren, G. Delaure, Enalatuzumab inhibits testosterone-induced growth of human prostate cancer xenografts in zebrafish and can induce Bradycardia, Sci. Rep. 7 (2017) 14698.

T.C. Chang, P.L. Wei, P.T. Makandi, W.T. Chen, C.Y. Huang, Y.J. Chang, Bromelian inhibits the ability of colorectal cancer cells to proliferate via activation of ROS production and apoptosis, PloS One 14 (2019), e0210274.

L.J. Marques, F.U. Weiss, D.H. Vlecken, C. Nitsche, J. Bakkers, A.K. Lagerdijk, L.J. Pardecke, C.D. Heidecke, M.M. Lerch, C.P. Bagowski, Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model, BMC Cancer 9 (2009) 14.

M. Mercatali, F. La Manza, A. Grencowood, R. Casadei, A. Picone, D. Blanchard, L. Maffei, et al., An updated analysis of a patient-
derived xenograft (FDX) of breast cancer bone metastasis in a zebrafish model, Int. J. Mol. Sci. 17 (2016) 1375.

[160] T. Schafer, H. Wang, P. Mir, M. Konantz, T.C. Pereboom, A.M. Puzulla, B. Merz, T. Fehm, S. Perner, O.C. Rothfuss et al., Molecular and functional interactions between AKT and SOX2 in breast carcinoma, Oncotarget 6 (2015) 43540–43556.

[161] Y. Drabsch, S. He, L. Zhang, B.E. Snaar-Jagalska, P. ten Dijke, Transforming growth factor-beta signalling controls human breast cancer metastasis in a zebrafish xenograft model, Breast Cancer Res. 15 (6) (2013) R106.

[162] X. Chen, J. Wang, Z. Cao, K. Hosaka, L. Jensen, H. Yang, Y. Sun, R. Zhuang, Y. Liu, Y. Cao, Invasiveness and metastasis of retinoblastoma in an orthotopic zebrafish tumor model, Sci. Rep. 5 (2015) 10351.

[163] A.M. Welker, B.D. Jaros, M. An, C.E. Beattie, Changes in tumor cell heterogeneity after chemotherapy treatment in a xenograft model of glioblastoma, Neuroscience 356 (2017) 25–43.

[164] A. Zeng, T. Ye, D. Cao, X. Huang, Y. Yang, X. Chen, X. Yie, S. Yao, C. Zhao, Identify a blood-brain barrier penetrating drug–TNB using zebrafish orthotopic glioblastoma xenograft model, Sci. Rep. 7 (2017) 14372.

[165] M. Vittori, B. Breznik, K. Hrovat, S. Kenig, T.T. Lab, RECQ1 helicase silencing decreases the tumour growth rate of U87 glioblastoma cell xenografts in zebra embryos, Genes 8 (2017) 222.

[166] J. Tsering, X. Hu, Triphala suppresses growth and migration of human gastric carcinoma cells in vitro and in a zebrafish xenograft model, BioMed Res. Int. (2018) 7046927.

[167] C.J. Yu, C.Y. Chen, W. Liu, P.C. Chang, C.W. Huang, K.F. Han, I.P. Lin, M.Y. Lin, C.H. Lee, Sandenolid induces oxidative stress-mediated apoptosis in oral cancer cells and in zebrafish xenograft model, Mar. Drugs 16 (2018) 387.

[168] Y. Jin, L. Wei, Q. Jiang, X. Song, Y. Liu, Y. Cao, Invasiveness and metastasis of retinoblastoma in an orthotopic zebrafish tumor model, Sci. Rep. 5 (2015) 10351.

[169] A. Sacco, A.M. Roccaro, D. Ma, J. Shi, Y. Mishima, M. Moschetta, M. Chiarini, C.I. Yu, C.Y. Chen, W. Liu, P.C. Chang, C.W. Huang, K.F. Han, I.P. Lin, M.Y. Lin, J. Tsering, X. Hu, Triphala suppresses growth and migration of human gastric carcinoma cells in vitro and in a zebrafish xenograft model, Sci. Rep. 7 (2017) 14372.

[170] A.M. Welker, B.D. Jaros, M. An, C.E. Beattie, Changes in tumor cell heterogeneity after chemotherapy treatment in a xenograft model of glioblastoma, Neuroscience 356 (2017) 25–43.

[171] Y. Feng, P. Martin, Imaging innate immune responses at tumour initiation: new insights from fish and flies, Nat. Rev. Cancer 15 (9) (2015) 556–562.

[172] D.P. Corkery, G. Dellaire, J.N. Berman, Leukaemia xenotransplantation in zebrafish–chemotherapy response assay in vivo, Br. J. Haematol. 153 (6) (2011) 786–789.

[173] Y. Gibert, M.C. Trengove, A.C. Ward, Zebrafish as a genetic model in pre-clinical drug testing and screening, Curr. Med. Chem. 20 (19) (2013) 2458–2466.

[174] W. Jia-Qi, F. Ruo-Yue, Z. Shi-Ru, L. Chong-Yong, S. Li-Zong, W. Pin, H. Zhi-Heng, H. Ming-Fang, A systematical comparison of anti-angiogenesis and anti-cancer efficacy of ramucirumab, apatinib, regorafenib and cabozantinib in zebrafish model, Life Sci. 247 (2020) 117402.

[175] R. Fior, V. Povoa, R.V. Mendes et al., Single-cell functional and chemosensitive profiling of combinatorial colorectal therapy in zebrafish xenografts, Proc. Natl. Acad. Sci. U. S. A. 114 (39) (2017) E8254–E8255.