Key words: Physical Data and Processes: gravitation

On static and spherically symmetric solutions of Starobinsky model

Shuang Yu1,2, Changjun Gao1,2 and Mingjun Liu3

1 Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China yushuang@nao.cas.cn
2 School of Astronomy and Space Sciences, University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, China
3 Department of Astronomy, School of Physics, Peking University, Beijing 100871, China

Abstract We investigate the problem of static and spherically symmetric solutions in the Starobinsky gravity model. By extending the Lichnerowicz and Israel theorems, William Nelson have demonstrated that the Schwarzschild solution is the unique static, spherically symmetric, and asymptotically flat black hole solution in the Starobinsky model. However, Hong Lü et al find that there are sign errors in the proof of Nelson. This raises the problem whether Nelson’s proof is correct or not. In order to answer this question, we explore the corresponding solutions by using the Taylor series expansion method. We find that Nelson’s conclusion is indeed correct despite the flaw in the proof.

1 INTRODUCTION

The most recent observations from the Planck satellite (Planck Collaboration et al., 2016) are remarkably consistent with the Starobinsky model of gravity $f(R) = R + sR^2$ (Starobinsky, 1980). On the contrary, the chaotic inflationary models like large field inflation and natural inflation are disfavored because of their high tensor-to-scalar ratio. On the other hand, compared to the Starobinsky model, other alternatives of $f(R)$ modified gravity theories are usually plagued by various problems. For example, they generally lead to the Einstein gravity plus a cosmological constant (Thongkool et al., 2009) or have a field-matter dominated epoch rather than a standard matter-dominated epoch (Amendola et al., 2007) or run into a curvature singularity (Frolov, 2008) (see Kobayashi & Maeda, 2008 for the existence of a singularity in an asymptotic de Sitter Universe and Upadhye & Hu, 2009 for the opposite statement), or produce high frequency oscillations and a singularity at finite time in cosmology (Appleby & Battye, 2008) or give rise to a fine tuning of the exponent (Faraoni, 2011). In view of these points, great research enthusiasm on Starobinsky gravity has been caused.

We shall deal with the solution problem of Starobinsky gravity. Actually, the investigations on the static, spherically symmetric spacetime solutions in the other modified gravity theories have also been carried out. In the first place, numerical solutions modeled as neutron stars in modified gravities are studied by the following references (Cooney et al., 2010; Babichev & Langlois, 2010; Arapoğlu et al., 2011; Jaime et al., 2011; Santos, 2012; Orellana et al., 2013; Alavirad & Weller, 2013; Astashenok et al., 2013; Ganguly et al., 2014; Astashenok et al., 2014; Yazadjiev et al., 2014; Capozziello et al., 2014; Astashenok et al., 2017). Secondly, many efforts are devoted to the aspects of black hole solutions. Here we are unable to exhaust all the references and we only present a brief review. Using the Taylor expansion method, the near-horizon geometry of black hole spacetime is investigated in Ref. (Lü et al., 2015). The Lifshitz black hole in four dimensional R-squared gravity is
presented in Ref. (Cai et al., 2009). Some exact, asymptotically non-flat and static black hole solutions are given in Ref. (Gao & Shen, 2016). Static spherically symmetric solutions of $f(R)$ gravity have also been studied in both the vacuum case (Multamäki & Vilja, 2006) and the perfect fluid model (Multamäki & Vilja, 2007). Following a perturbative approach in $f(R)$ gravity around the Einstein-Hilbert action, Ref. (de la Cruz-Dombriz et al., 2009) found that only solutions of the Schwarzschild-(Anti) de Sitter type are present up to second order in perturbations. A class of exact static spherically symmetric solutions has been presented in (Clifton & Barrow, 2005) for the form of $R^{1+\delta}$. Using the method of Lagrange multiplier, Ref. (Sebastiani & Zerbini, 2011) presents a Lagrangian derivation of the equation of motion for the static spherically symmetric spacetimes in $f(R)$ theory of gravity. It is found the corresponding equations of motion are simply of first order derivative and thus some new solutions are obtained. Ref. (Shojaei & Shojaei, 2012) constructs some new static spherically symmetric interior solutions in $R^{1+\delta}$ theory. With the method of Noether symmetries, Ref. (Capozziello et al., 2012) finds some new static spherically symmetric solutions in $f(R)$ theory. Ref. (Multamäki & Vilja, 2006) constructs the spherically symmetric solutions of $f(R)$ gravity using their input function method. Ref. (Gutirrez-Pieres & Lopez-Monsalvo, 2013) presents a static axially symmetric vacuum solution for $f(R)$ gravity in the Weyl’s canonical coordinates. Finally, using the so-called generator method, Ref. (Amirabi et al., 2016) presents some static spherically symmetric solutions in $f(R)$ theory in n dimensional spacetimes. For more works on static solutions in $f(R)$ gravity, we refer to the Refs. (Goswami et al., 2014; Hendi et al., 2012; Bergliaffa & Nunes, 2011; Cembranos et al., 2014; Aparicio Resco et al., 2016; Lobo & Oliveira, 2009; Caramés & de Mello, 2009; Azadi et al., 2008; Capozziello et al., 2008; Kainulainen et al., 2007; Cognola et al., 2015; Nojiri & Odintsov, 2013, 2014; Hendi et al., 2014; Babichev & Langlois, 2009; Hendi & Momeni, 2011; Myrzakulov et al., 2016; Lü et al., 2015; Chakraborty & SenGupta, 2015; Frolov & Shapiro, 2009).

In this paper, we shall seek for the static, spherically symmetric and asymptotically flat black hole solution in the Starobinsky model of gravity. In fact, Nelson (Nelson, 2010) has shown that, by extending the Lichnerowicz and Israel theorems from Einstein gravity to higher derivative gravities, the Schwarzschild solution is the unique static, spherically symmetric, and asymptotically flat black hole solution in the Starobinsky model of gravity. However, Hong Lü et al. (Lü et al., 2015) find that there are sign errors in the proof of Nelson. This raises the problem whether Nelson’s proof is correct or not. In order to answer this question, we explore the corresponding solutions by using the Taylor series expansion method. We find that Nelson’s conclusion is indeed correct despite the flaw in the proof. Compared to Nelson’s verification, we can go even further. Using the Taylor series expansion method, we find the conclusion is applicable not only to the Starobinsky model but also to the more generalized modified gravity, $f(R) = R + s_2 R^2 + s_3 R^3 + s_4 R^4 + O(R^5)$ (In contrast, Nelson’s verification is applicable to the theory of $f(R) = R + s R^2 + \alpha R_{\mu\nu} R^{\mu\nu}$). Thus it is an important conclusion. Throughout this paper, we adopt the system of units in which $G = c = \hbar = 1$ and the metric signature $(−, +, +, +)$.

2 SOLUTION IN THE EINSTEIN GRAVITY

In this section, as a warm-up, we shall derive the static, spherically symmetric and asymptotically flat spacetime solution in the Einstein gravity by using the Taylor expansion method.

Let’s start from the Einstein-Hilbert action

$$S = \int d^4x \sqrt{-g} \frac{R}{16\pi},$$ \hspace{1cm} (1)

where R is the Ricci scalar. Since we shall look for the vacuum solutions, the contribution of matters is absent in the action.

The metric for static and spherically symmetric spacetime in the isotropic coordinate system can be written as

$$ds^2 = -A(r)^2 dt^2 + B(r)^2 (dr^2 + r^2 d\Omega^2),$$ \hspace{1cm} (2)
On exact solution of Starobinsky

where \(d\Omega^2 = d\theta^2 + \sin^2 \theta d\phi^2 \). Then we obtain the Einstein equations

\[
\begin{align*}
2 BB''r - B'^2 r + 4BB' &= 0, \quad (3) \\
2BB'A'r + B'^2 Ar + 2B^2 A' + 2BB'A &= 0, \quad (4) \\
A''B^2 r + BAB''r - B^2 Ar + B^2 A' + BB'A &= 0. \quad (5)
\end{align*}
\]

The system of equations can be solved and the solution is

\[
A = \frac{1 - \frac{M}{2r}}{1 + \frac{M}{2r}}, \quad B = \left(1 + \frac{M}{2r}\right)^2,
\]

which is the Schwarzschild solution. \(M \) is the mass of the source. Different from the Schwarzschild coordinate, the metric components in isotropic coordinate are convergent on the event horizon. So we shall carry out the calculation in the isotropic coordinate ordinate. We expand \(A(r) \) and \(B(r) \) in the form of Taylor series

\[
\begin{align*}
A(r) &= 1 + \frac{a_1 M}{r} + \frac{a_2 M^2}{r^2} + \frac{a_3 M^3}{r^3} + \frac{a_4 M^4}{r^4} + \frac{a_5 M^5}{r^5} + \frac{a_6 M^6}{r^6} + O\left(\frac{1}{r^6}\right), \quad (7) \\
B(r) &= 1 + \frac{b_1 M}{r} + \frac{b_2 M^2}{r^2} + \frac{b_3 M^3}{r^3} + \frac{b_4 M^4}{r^4} + \frac{b_5 M^5}{r^5} + \frac{b_6 M^6}{r^6} + O\left(\frac{1}{r^6}\right), \quad (8)
\end{align*}
\]

where \(a_i \) and \(b_i \) are dimensionless constants to be determined. For sufficiently large \(r \), we have \(A = 1 \) and \(B = 1 \). In other words, the spacetime is asymptotically flat. Substituting Eq. (7) and (8) into the Einstein Eqs. (3), (4) and (5), we find Eqs. (9), (10) and (11) become

\[
\begin{align*}
0 &= \frac{\alpha_2}{r^2} + \frac{\alpha_3}{r^3} + \frac{\alpha_4}{r^4} + \frac{\alpha_5}{r^5} + \frac{\alpha_6}{r^6} + O\left(\frac{1}{r^6}\right), \quad (9) \\
0 &= \frac{\beta_1}{r} + \frac{\beta_2}{r^2} + \frac{\beta_3}{r^3} + \frac{\beta_4}{r^4} + \frac{\beta_5}{r^5} + \frac{\beta_6}{r^6} + O\left(\frac{1}{r^6}\right), \quad (10) \\
0 &= \frac{\gamma_1}{r} + \frac{\gamma_2}{r^2} + \frac{\gamma_3}{r^3} + \frac{\gamma_4}{r^4} + \frac{\gamma_5}{r^5} + \frac{\gamma_6}{r^6} + O\left(\frac{1}{r^6}\right), \quad (11)
\end{align*}
\]

where \(\alpha_i \), \(\beta_i \) and \(\gamma_i \) are constants whose concrete expressions are determined by \(a_i, b_i \) and \(M \). We need to find the expressions for twelve coefficients, \(a_i \) and \(b_i \) in the Eq. (7) and (8). So we want twelve algebraic equations.

By setting the leading terms in Eqs. (9), (10) and (11) to zero, we obtain twelve algebraic equations

\[
\begin{align*}
\alpha_2 &= 0, & \alpha_3 &= 0, & \alpha_4 &= 0, & \alpha_5 &= 0, \quad (12) \\
\beta_1 &= 0, & \beta_2 &= 0, & \beta_3 &= 0, & \beta_4 &= 0, \quad (13) \\
\beta_5 &= 0, & \gamma_3 &= 0, & \gamma_4 &= 0, & \gamma_5 &= 0. \quad (14)
\end{align*}
\]

We find \(\gamma_1 = \beta_1, \gamma_2 = \beta_2 \) and \(\gamma_1 = 0, \gamma_2 = 0 \). Solving the twelve equations, we arrive at

\[
\begin{align*}
a_1 &= -b_1, & b_1 &= b_1, \quad (15) \\
a_2 &= \frac{b_2^2}{2}, & b_2 &= \frac{b_2^2}{4}, \quad (16) \\
a_3 &= -\frac{b_3^2}{4}, & b_3 &= 0, \quad (17) \\
a_4 &= \frac{b_4^4}{8}, & b_4 &= 0, \quad (18) \\
a_5 &= -\frac{b_5^6}{16}, & b_5 &= 0, \quad (19) \\
a_6 &= \frac{b_6^8}{32}, & b_6 &= 0. \quad (20)
\end{align*}
\]
We remember \(b_1 = 1 \) in the Newtonian limit of Einstein equations. Therefore, we finally have
\[
\begin{align*}
a_1 &= -1, & b_1 &= 1, \\
a_2 &= \frac{1}{2}, & b_2 &= \frac{1}{4}, \\
a_3 &= -\frac{1}{4}, & b_3 &= 0, \\
a_4 &= \frac{1}{8}, & b_4 &= 0, \\
a_5 &= -\frac{1}{16}, & b_5 &= 0, \\
a_6 &= \frac{1}{32}, & b_6 &= 0.
\end{align*}
\] (21)

On the other hand, if we expand the Schwarzschild solution, Eq. (6) using the Taylor series, we have
\[
\begin{align*}
A &= 1 - \frac{M}{r} + \frac{M^2}{2r^2} - \frac{M^3}{4r^3} + \frac{M^4}{8r^4} - \frac{M^5}{16r^5} + \frac{M^6}{32r^6} + O\left(\frac{1}{r^6}\right), \\
B &= 1 + \frac{M}{r} + \frac{M^2}{4r^2}.
\end{align*}
\] (27)

Eqs. (21-26) are exactly consistent with Eqs. (27-28). Thus we conclude that there are no problems that we seek for the exact solution to any orders by using the Taylor series method.

3 SOLUTION IN THE STAROBINSKY MODEL

In this section, we solve the field equations in Starobinsky model by using the Taylor series method. The action of Starobinsky model in the absence of matters is given by
\[
S = \int d^4x \sqrt{-g} \frac{1}{16\pi} (R + s R^2).
\] (29)

Here \(s \) is a coupling constant which has the dimension of the square of length. The corresponding equations of motion take the form of
\[
G_{\mu\nu} + 2sR \left(G_{\mu\nu} + \frac{1}{4} R g_{\mu\nu} \right) + 2s \left(g_{\mu\nu} \nabla^2 R - \nabla_\mu \nabla_\nu R \right) = 0.
\] (30)

Given the metric Eq. (2), the equations of motion are then obtained. Then we are facing a daunting task of resolving the equations. Therefore, we resort to the Taylor series expansion method. Substituting Eqs. (7) and (8) into the equations of motion, we obtain
\[
\begin{align*}
0 &= \alpha_2 \frac{1}{r^2} + \alpha_3 \frac{1}{r^3} + \alpha_4 \frac{1}{r^4} + \alpha_5 \frac{1}{r^5} + \alpha_6 \frac{1}{r^6} + O\left(\frac{1}{r^6}\right), \\
0 &= \frac{\beta_1}{r} + \frac{\beta_2}{r^2} + \frac{\beta_3}{r^3} + \frac{\beta_4}{r^4} + \frac{\beta_5}{r^5} + \frac{\beta_6}{r^6} + O\left(\frac{1}{r^6}\right), \\
0 &= \frac{\gamma_1}{r} + \frac{\gamma_2}{r^2} + \frac{\gamma_3}{r^3} + \frac{\gamma_4}{r^4} + \frac{\gamma_5}{r^5} + \frac{\gamma_6}{r^6} + O\left(\frac{1}{r^6}\right),
\end{align*}
\] (31)

where \(\alpha_i, \beta_i \) and \(\gamma_i \) are determined by \(a_i, b_i \) and \(M \). In this case, we also have \(\gamma_1 = \beta_1 \) and \(\gamma_2 = \beta_2 \).

Thus we have the following algebraic equations
\[
\begin{align*}
\alpha_2 &= 0, & \alpha_3 &= 0, & \alpha_4 &= 0, & \alpha_5 &= 0, \\
\beta_1 &= 0, & \beta_2 &= 0, & \beta_3 &= 0, & \beta_4 &= 0, \\
\beta_5 &= 0, & \gamma_3 &= 0, & \gamma_4 &= 0, & \gamma_5 &= 0.
\end{align*}
\] (34)
Solving these equations, we obtain

\[a_1 = -b_1, \quad b_1 = b_1, \]
\[a_2 = \frac{b_2^2}{2}, \quad b_2 = \frac{b_2^2}{4}, \]
\[a_3 = -\frac{b_3^3}{4}, \quad b_3 = 0, \]
\[a_4 = \frac{b_4^5}{8}, \quad b_4 = 0, \]
\[a_5 = -\frac{b_5^5}{16}, \quad b_5 = 0, \]
\[a_6 = \frac{b_6^5}{32}, \quad b_6 = 0. \]

They are exactly for the Schwarzschild solution when \(b_1 = 1 \). We note that the coupling constant \(s \) does not emerge in the expressions of the coefficients. This means the Ricci-squared term \(sR^2 \) makes no contribution in the equations of motion. This observation is consistent with the proof of Nelson. In fact, Nelson showed that any static black-hole solution of Starobinsky model must have vanishing Ricci scalar. Taken this into consideration, the equations of motion Eq. (30) is simply

\[G_{\mu\nu} = 0. \]

Thus the Ricci-squared term \(sR^2 \) does make no contribution to the equations of motion. Up to this point, we confirm that Nelson’s conclusion the unique, static, spherically symmetric and asymptotically flat black hole solution of the Starobinsky model is nothing but the Schwarzschild solution is correct, despite the flaw in his proof. Compared to Nelson’s verification, we can go further. Using the Taylor series expansion method, we have checked that for more general modified gravity

\[S = \int d^4x \sqrt{-g} \frac{1}{16\pi} [R + s_2 R^2 + s_3 R^3 + s_4 R^4 + O(R^4)], \]

the unique, static, spherically symmetric and asymptotically flat black hole solution remains the Schwarzschild solution. Then the applicability of the conclusion is extended. It should be noted that Canate recently presents a no-hair theorem which discards the existence of four dimensional asymptotically-flat, static and spherically symmetric or stationary axial symmetric, non-trivial black holes in the frame of \(f(R) \) gravity [Canate (2017)]. This is a huge support for our examination.

4 CONCLUSION AND DISCUSSION

In conclusion, we have investigated the solution problem in the Starobinsky gravity model. By using the Taylor series expansion method, we show the static, spherically symmetric and asymptotically flat spacetime is uniquely the Schwarzschild solution. This is in agreement with the proof of Nelson who uses the method of extending the Lichnerowicz and Israel theorems from Einstein gravity to higher order theories of gravity, despite the flaw in his proof. But compared to Nelson’s verification, we can go further. We find the conclusion can be extended the more generalized modified gravity. Thus it is an important conclusion.

We can also understand the conclusion in another way of thinking. We remember that the \(f(R) \) theory of modified gravity is equivalent to the scalar tensor theory

\[\tilde{S} = \int d^4x \sqrt{-\tilde{g}} \left[\frac{\tilde{R}}{16\pi} + \frac{1}{2} \nabla_\mu \tilde{\phi} \nabla^\mu \tilde{\phi} + V (\tilde{\phi}) \right], \]

by making variable redefinitions and conformal transformations [Sotiriou & Faraoni (2010)]:

\[g_{\mu\nu} = e^{-\sqrt{\frac{\tilde{R}}{16\pi}} \tilde{\phi}} g_{\mu\nu}. \]
Refs. [Heusler (1992), Sudarsky (1995)] have shown that black holes in the above scalar tensor theory cannot carry scalar charge for arbitrary potentials. This is known as black-hole no-hair theorem. The theorem guarantees the scalar field ϕ is constant in this spacetime. Then the scalar potential plays the role of the cosmological constant. The no-hair theorem requires the Schwarzschild-de Sitter solution is the unique static spherically symmetric spacetime. If one assume the spacetime is asymptotically flat, we are left with only the Schwarzschild solution $\tilde{g}_{\mu\nu}$. From Eq. (46) we see the solution $g_{\mu\nu}$ of $f(R)$ gravity is exactly the Schwarzschild solution since it is proportional to $\tilde{g}_{\mu\nu}$ by a constant. In all, we have good reason to believe that the Schwarzschild solution is the unique static, spherically symmetric and asymptotically flat spacetime solution in the Starobinsky gravity.

ACKNOWLEDGMENTS

This work is partially supported by the Strategic Priority Research Program “Multi-wavelength Gravitational Wave Universe” of the CAS, Grant No. XDB09000000 and XDB23040100, and the NSFC under grants 10973014, 11373020, 11465012 and 11633004 and the Project of CAS, QYZDJ-SSW- SLH017.

References

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016, A&A, 594, A20
Starobinsky, A. A. 1980, Physics Letters B, 91, 99
Thongkool, I., Sami, M., Gannouji, R., & Jhingan, S. 2009, Phys. Rev. D, 80, 043523
Amendola, L., Gannouji, R., Polarski, D., & Tsujikawa, S. 2007, Phys. Rev. D, 75, 083504
Frolov, A. V. 2008, Physical Review Letters, 101, 061103
Kobayashi, T., & Maeda, K.-I. 2008, Phys. Rev. D, 78, 064019
Upadhye, A., & Hu, W. 2009, Phys. Rev. D, 80, 064002
Appleby, S. A., & Battye, R. A. 2008, J. Cosmol. Astropart. Phys., 5, 019
Faraoni, V. 2011, Phys. Rev. D, 83, 124044
Cooney, A., Dedeo, S., & Psaltis, D. 2010, Phys. Rev. D, 82, 064033
Babichev, E., & Langlois, D. 2010, Phys. Rev. D, 81, 124051
Arapoğlu, S., Deliduman, C., & Ekşi, K. Y. 2011, J. Cosmol. Astropart. Phys., 7, 020
Jaime, L. G., Patiño, L., & Salgado, M. 2011, Phys. Rev. D, 83, 024039
Santos, E. 2012, Ap&SS, 341, 411
Orellana, M., García, F., Teppa Pannia, F. A., & Romero, G. E. 2013, General Relativity and Gravitation, 45, 771
Alavirad, H., & Weller, J. M. 2013, Phys. Rev. D, 88, 124034
Astashenok, A. V., Capozziello, S., & Odintsov, S. D. 2013, J. Cosmol. Astropart. Phys., 12, 040
Ganguly, A., Gannouji, R., Goswami, R., & Ray, S. 2014, Phys. Rev. D, 89, 064019
Astashenok, A. V., Capozziello, S., & Odintsov, S. D. 2014, Phys. Rev. D, 89, 103509
Yazadjiev, S. S., Doneva, D. D., Kokkotas, K. D., & Staykov, K. V. 2014, J. Cosmol. Astropart. Phys., 6, 003
Capozziello, S., De Laurentis, M., Farinelli, R., & Odintsov, S. D. 2016, Phys. Rev. D, 93, 023501
Astashenok, A. V., Odintsov, S. D., & de la Cruz-Dombriz, Á. 2017, Classical and Quantum Gravity, 34, 205008
Lü, H., Perkins, A., Pope, C. N., & Stelle, K. S. 2015, Physical Review Letters, 114, 171601
Cai, R.-G., Liu, Y., & Sun, Y.-W. 2009, Journal of High Energy Physics, 10, 080
Gao, C., & Shen, Y.-G. 2016, General Relativity and Gravitation, 48, 131
Multamäki, T., & Vilja, I. 2006, Phys. Rev. D, 74, 064022
Multamäki, T., & Vilja, I. 2007, Phys. Rev. D, 76, 064021
de La Cruz-Dombriz, A., Dobado, A., & Maroto, A. L. 2009, Phys. Rev. D, 80, 124011
Clifton, T., & Barrow, J. D. 2005, Phys. Rev. D, 72, 103005
Sebastiani, L., & Zerbini, S. 2011, European Physical Journal C, 71, 1591
On exact solution of Starobinsky

Shojai, A., & Shojai, F. 2012, General Relativity and Gravitation, 44, 211
Capozziello, S., Frusciante, N., & Vernieri, D. 2012, General Relativity and Gravitation, 44, 1881
Gutierrez-Pieres, Antonio. C., & Lopez-Monsalvo, Cesar S. 2013, Physics Letters B, 718, 1493
Amirabi, Z., Halilsoy, M., & Mazharimousavi, S. H. 2016, European Physical Journal C, 76, 338
Goswami, R., & Nzioki, A. M., Maharaj, S. D., & Ghosh, S. G. 2014, Phys. Rev. D, 90, 084011
Hendi, S. H., Panah, B. E., & Mousavi, S. M. 2012, General Relativity and Gravitation, 44, 835
Bergliaffa, S. E. P., & Nunes, Y. E. C. D. O. 2011, Phys. Rev. D, 84, 084006
Cembranos, J. A., de la Cruz-Dombriz, R. A., & Romero, P. J. 2014 International Journal of Geometric
Methods in Modern Physics, 11, 1450001
Aparicio Resco, M., de la Cruz-Dombriz, Á., Llanes Estrada, F. J., & Zapatero Castrillo, V. 2016,
Physics of the Dark Universe, 13, 147
Lobo, F. S. N., & Oliveira, M. A. 2009, Phys. Rev. D, 80, 104012
Caramêes, T. R. P., & de Mello, E. R. B. 2009, European Physical Journal C, 64, 113
Azadi, A., Momeni, D., & Nouri-Zonoz, M. 2008, Physics Letters B, 670, 210
Capozziello, S., Stabile, A., & Troisi, A. 2008, Classical and Quantum Gravity, 25, 085004
Kainulainen, K., Piilonen, J., Reijonen, V., & Sunhede, D. 2007, Phys. Rev. D, 76, 024020
Cognola, G., Rinaldi, M., Vanzo, L., & Zerbini, S. 2015, Phys. Rev. D, 91, 104004
Nojiri, S. & Odintsov, S. D. 2013, Class. Quantum Grav, 30, 125003
Nojiri, S., & Odintsov, S. D. 2014, Physics Letters B, 735, 376
Hendi, S. H., Panah, B. E., & Corda, C. 2014, Canadian Journal of Physics, 92, 76
Hendi, S. H., Eslam Panah, B., & Saffari, R. 2014, International Journal of Modern Physics D, 23,
1450088
Babichev, E., & Langlois, D. 2009, Phys. Rev. D, 80, 121501
Hendi, S. H., & Momeni, D. 2011, European Physical Journal C, 71, 1823
Myrzakulov, R., Sebastiani, L., Vagnozzi, S., & Zerbini, S. 2016, Classical and Quantum Gravity, 33,
125005
Lü, H., Perkins, A., Pope, C. N., & Stelle, K. S. 2015, Phys. Rev. D, 92, 124019
Chakraborty, S., & SenGupta, S. 2015, European Physical Journal C, 75, 11
Frolov, V. P., & Shapiro, I. L. 2009, Phys. Rev. D, 80, 044034
Nelson, W. 2010, Phys. Rev. D, 82, 104026
Cañate, P. 2017, Classical and Quantum Gravity, 35, 025018
Sotiriou, T. P., & Faraoni, V. 2010, Reviews of Modern Physics, 82, 451
Heusler, M. 1992, Journal of Mathematical Physics, 33, 3497
Sudarsky, D. 1995, Classical and Quantum Gravity, 12, 579