A TIME-VARIANT NORM CONSTRAINED INTERPOLATION
PROBLEM ARISING FROM RELAXED COMMUTANT LIFTING

A.E. FRAZHO, S. TER HORST, AND M.A. KAASHOEK

Abstract. A time-variant analogue of an interpolation problem equivalent
to the relaxed commutant lifting problem is introduced and studied. In a
somewhat less general form the problem already appears in the analysis of the
set of all solutions to the three chain completion problem. The interpolants are
upper triangular operator matrices of which the columns induce contractive
operators. The set of all solutions of the problem is described explicitly. The
results presented are time-variant analogues of the main theorems in [23].

0. Introduction

Time-variant versions of metric constrained interpolation problems and time-
varying linear system theory have been intensively studied since the early 1990’s;
see the papers [1, 2, 7, 8, 13] and the books [14, 25, 20, 15] for a general overview
and additional references. The connection with commutant lifting theory was made
in [18], where a time-varying analogue of the commutant lifting theorem, known as
the three chain completion theorem, was proved. An early version of a time-variant
commutant lifting theorem appeared in Ball-Gohberg [6], which was later extended
to the setting of nest algebras in [30] (see also [12]); the connection with the three
chain theorem is explained in [5]. One of the recent developments in commutant
lifting theory is the introduction of a relaxation of the commutant lifting setting
in [21]. In the present paper we consider a time-variant norm constrained abstract
interpolation problem, which in the time-invariant case is equivalent to the relaxed
commutant lifting problem [23].

To state the interpolation problem considered in this paper we need some nota-
tion. Throughout U_k and Y_k are Hilbert spaces with k being an arbitrary integer,
and the symbols U and Y stand for the Hilbert direct sums $\oplus_{k \in \mathbb{Z}} U_k$ and $\oplus_{k \in \mathbb{Z}} Y_k$,
respectively. We shall consider operator matrices $H = [H_{j,k}]_{j,k \in \mathbb{Z}}$ of which the
(j, k)-th entry $H_{j,k}$ is an operator from U_k into Y_j. The set of all such operator
matrices will be denoted by $M(U, Y)$. By $UM(U, Y)$ we denote the subset of $M(U, Y)$ consisting of all $H = [H_{j,k}]_{j,k \in \mathbb{Z}}$ that are upper triangular, that is,$H_{j,k} = 0$ for each $k < j$.

In the present paper we are particularly interested in those $H = [H_{j,k}]_{j,k \in \mathbb{Z}}$ in
$UM(U, Y)$ that have the additional property

$\sum_{j=-\infty}^{k} \|H_{j,k}u_k\|^2 \leq c_H \|u_k\|^2, \quad u_k \in U_k \quad (k \in \mathbb{Z}),$

where c_H is some constant depending on H only. The set of all such operator matrices is denoted by $UM^2(U, Y)$. We say that H belongs to $UM^2_{ball}(U, Y)$ whenever

1991 Mathematics Subject Classification. Primary 47A57; Secondary 47A20, 30E05.
Key words and phrases. Norm constrained interpolation, contractions, upper triangular operator matrices, positive real operator matrices, harmonic majorants, parametrization of all solutions.
the constant c_H can be taken equal to one. Thus an upper triangular operator matrix H belongs to $\text{UM}^2_{\text{ball}}(U, Y)$ if and only if for each $k \in \mathbb{Z}$ the k-th column of H induces a contractive operator from U_k into $Y = \oplus_{k \in \mathbb{Z}} Y_k$. The following is the main problem treated in this paper.

Problem 0.1. Assume that for each $k \in \mathbb{Z}$ we have given a subspace F_k of U_k and a contraction

$$
\phi_k = \begin{bmatrix} \phi_{k,1} \\ \phi_{k,2} \end{bmatrix} : F_k \rightarrow \begin{bmatrix} Y_k \\ U_{k-1} \end{bmatrix}.
$$

(0.2)

Given this data, find all $H = [H_{j,k}]_{j,k \in \mathbb{Z}}$ in $\text{UM}^2_{\text{ball}}(U, Y)$ such that for each $k \in \mathbb{Z}$ the following interpolation conditions hold:

$$
H_{k,k}|_{F_k} = \phi_{k,1}, \quad H_{j,k}|_{F_k} = H_{j,k-1}\phi_{k,2} \quad (j, k \in \mathbb{Z}, j < k).
$$

(0.3)

Moreover in this case the interpolation condition and the norm constraint in Problem 0.1 can be restated as

$$
\phi_1 + L_{\text{H}}(l)\phi_2 = F_{\text{H}}(l)|_{\mathcal{F}} \quad (l \in \mathbb{D}) \quad \text{and} \quad \sum_{\nu = 0}^{\infty} \|H_{-\nu}u\|^2 \leq \|u\|^2 \quad (u \in \mathcal{U}).
$$

For a particular choice of the contractions ϕ_k, Problem 0.1 appears in a natural way in the analysis of the set of all solutions to the three chain completion problem [18], [19]. Indeed, see Section 4 in [19] or Section XIV.3 in [20], where one can find the following is the main problem treated in this paper.

To state our first main result some additional notation is needed. We use the symbol $\text{UM}^\infty(U, Y)$ to denote the set of all double infinite upper triangular operator matrices H that induce bounded linear operators from the Hilbert space $U = \oplus_{k \in \mathbb{Z}} U_k$ into the Hilbert space $Y = \oplus_{k \in \mathbb{Z}} Y_k$. If this induced operator is a contraction, then we say that H belongs to $\text{UM}^\infty_{\text{ball}}(U, Y)$. In particular, $\text{UM}^\infty_{\text{ball}}(U, Y) \subset \text{UM}^2_{\text{ball}}(U, Y)$. We write $\text{UM}^\infty_{0}(U, Y)$ and $\text{UM}^\infty_{\text{ball},0}(U, Y)$ for the sets of all strictly upper triangular operator matrices in $\text{UM}^\infty(U, Y)$ and $\text{UM}^\infty_{\text{ball}}(U, Y)$, respectively. Finally, when $U_k = Y_k$ for each $k \in \mathbb{Z}$, and hence $U = Y$, we shall always replace the argument (U, Y) by (U). Thus $\mathcal{M}(U)$ stands for $\mathcal{M}(U, U)$, and $\mathcal{M}(U)$ stands for $\mathcal{M}(U, U)$, etc. We are now ready to state the first main result.

Theorem 0.1. For each $k \in \mathbb{Z}$ let ϕ_k be the contraction given by (0.2). Choose

$$
Z^{(1)} = \begin{bmatrix} Z^{(1)}_{j,k} \end{bmatrix}_{j,k \in \mathbb{Z}} \in \text{UM}^\infty(U, Y), \quad Z^{(2)} = \begin{bmatrix} Z^{(2)}_{j,k} \end{bmatrix}_{j,k \in \mathbb{Z}} \in \text{UM}^\infty_{0}(U),
$$

such that

$$
\|Z^{(1)}u\|^2 + \|Z^{(2)}u\|^2 \leq \|u\|^2 \quad (u \in U)
$$

(0.5)
and

\[
Z_{j,k}^{(1)}|_{\mathcal{F}_k} = \begin{cases}
\delta_{k,1}, & \text{if } j = k, \\
0, & \text{if } j \neq k,
\end{cases} \quad Z_{j,k}^{(2)}|_{\mathcal{F}_k} = \begin{cases}
\delta_{k,2}, & \text{if } j = k - 1, \\
0, & \text{if } j \neq k - 1.
\end{cases}
\]

Then

\[
H = Z^{(1)}(I_U - Z^{(2)})^{-1}
\]

is a well-defined upper triangular operator matrix, \(H\) belongs to \(\text{UM}^2_{\text{ball}}(U, Y)\), and \(H\) is a solution of Problem \(0.1\).

Let us explain why formula (0.7) makes sense. In general, for arbitrary infinite operator matrices the usual matrix product is not defined. The situation is different for upper triangular matrices. For instance, for \(A \in \text{UM}(U, Y)\) and \(B \in \text{UM}(Y)\) the matrix product \(AB\) is well-defined and \(AB \in \text{UM}(U, Y)\). Furthermore, with the usual matrix product \(\text{UM}(U)\) is an algebra with the identity matrix \(I_U\) as a unit and an operator matrix \(M = \{M_{j,k}\}_{j,k \in \mathbb{Z}} \in \text{UM}(U)\) is invertible in \(\text{UM}(U)\) if and only if for each \(j \in \mathbb{Z}\) the \(j\)-th diagonal entry \(M_{j,j}\) is invertible as an operator on \(U_j\) (see Subsection 1.2 below for further details). From these remarks is clear that the operator \(I_U - Z^{(2)}\) in (0.7) is invertible in \(\text{UM}(U)\) and that the product in (0.7) is well-defined.

One can always find \(Z^{(1)}\) and \(Z^{(2)}\) satisfying the conditions (0.4), (0.5) and (0.6) in Theorem 0.1. For instance one can take

\[
Z^{(1)}_{j,k} = \delta_{j,k} \varphi_{1,1}^1 \Pi_{\mathcal{F}_k} \quad \text{and} \quad Z^{(2)}_{j,k} = \delta_{j,k-1} \varphi_{2,2}^1 \Pi_{\mathcal{F}_k}.
\]

Here \(\delta_{j,k}\) is the Kronecker delta and the map \(\Pi_{\mathcal{F}_j}\) is the orthogonal projection of \(U_j\) onto \(\mathcal{F}_j\). The solution of Problem 0.1 corresponding to this choice of \(Z^{(1)}\) and \(Z^{(2)}\) is given by \(\tilde{H} = [\tilde{H}_{j,k}]_{j,k \in \mathbb{Z}}\) with

\[
\tilde{H}_{j,k} = \begin{cases}
0, & \text{if } j > k, \\
\varphi_{1,1}^1 \Pi_{\mathcal{F}_k}, & \text{if } j = k, \\
(\varphi_{j,1}^1 \Pi_{\mathcal{F}_j})(\varphi_{j+1,2}^2 \Pi_{\mathcal{F}_{j+1}})\cdots(\varphi_{k-1,2}^2 \Pi_{\mathcal{F}_{k-1}})(\varphi_{k,2}^2 \Pi_{\mathcal{F}_k}), & \text{if } j < k.
\end{cases}
\]

Thus Problem 0.1 is always solvable.

Our second main result shows, in particular, that the method of Theorem 0.1 gives all solutions to Problem 0.1, that is, given a solution \(H\) to Problem 0.1 there exists a pair of operator matrices \((Z^{(1)}, Z^{(2)})\) satisfying (0.4), (0.5) and (0.6) such that \(H\) is given by the formula (0.7). In general, such a pair \((Z^{(1)}, Z^{(2)})\) is not uniquely determined by \(H\). This phenomenon already appears in the time-invariant case and can be illustrated by simple examples. For instance, assume all spaces \(\mathcal{F}_k\) consist of the zero element only. In that case \(H = 0\) is in \(\text{UM}^2_{\text{ball}}(U, Y)\) and is a solution, while (0.7) holds with \(Z^{(1)} = 0\) and with any \(Z^{(2)}\) from \(\text{UM}^0_{\text{ball}}(U)\).

Given a solution \(H\) to Problem 0.1 we shall describe the set of all pairs \((Z^{(1)}, Z^{(2)})\) satisfying (0.4), (0.5) and (0.6) stated in the above theorem such that \(H\) is given by (0.7). The precise result is given by Theorem 1.1 in Section 3. Here we only describe some of the main ingredients entering into the proof and present an abbreviated version of this theorem.

Let \(H\) be a solution to Problem 0.1 and let \(H_k\) be the \(k\)-th column of \(H\). Recall that \(H_k\) defines a contraction from \(U_k\) into \(Y\). Let \(D_{H_k} = (I_{H_k} - (H_k)^* H_k)^{1/2}\) denote the corresponding defect operator, and let \(D_{H_k}\) be the corresponding defect operator.
space, i.e., D_{H_k} is the closure of the range of D_{H_k} in \mathcal{U}_k. Since (0.3) is satisfied, for each $f \in \mathcal{F}_k$ we have

$$\|D_{H_k}f\|^2 = \|f\|^2 - \|H_kf\|^2 = \|f\|^2 - \|\phi_{k,1}f\|^2 - \|H_{k-1}\phi_{k,2}f\|^2 = \|f\|^2 - \|\phi_{k,1}f\|^2 - \|\phi_{k,2}f\|^2 + \|\phi_{k,1}f\|^2 - \|H_{k-1}\phi_{k,2}f\|^2$$

Hence we can define a contraction ϕ_{H_k} by

$$\phi_{H_k} : \mathcal{F}_k \rightarrow D_{H_{k-1}}, \quad \phi_{H_k}D_{H_k}|_{\mathcal{F}_k} = D_{H_{k-1}}\phi_{k,2}.$$

Now put $D_H = \oplus_{k \in \mathbb{Z}} D_{H_k}$, and let $C_{H, \phi}$ be the set of all operator matrices $C = [C_{j,k}]_{j,k \in \mathbb{Z}}$ in $\mathbb{UM}_{ball,0}(D_H)$ such that

$$C_{j,k}|_{\mathcal{F}_k} = \begin{cases} \phi_{H_k}, & \text{if } j = k - 1, \\ 0, & \text{if } j \neq k - 1. \end{cases}$$

Thus

$$C_{H, \phi} = \{ C \in \mathbb{UM}_{ball,0}(D_H) \mid \text{the } (j,k)\text{-th entry } C_{j,k}$$

(0.10)

of C satisfies (0.10) for each $j, k \in \mathbb{Z}$.

We can now state the abbreviated version of our second main result.

Theorem 0.2. Let H be a solution to Problem (0.1). Then there exists a pair of operator matrices $(Z^{(1)}, Z^{(2)})$ satisfying (0.4), (0.5) and (0.6) such that H is given by (0.7). Furthermore, the set of all such pairs $(Z^{(1)}, Z^{(2)})$ is in one-to-one correspondence with the set $C_{H, \phi}$.

The full version of the above theorem (see Theorem 4.1 below) will also present necessary and sufficient conditions guaranteeing that the set $C_{H, \phi}$ consists of a single element only.

Let H be a solution to Problem (0.1) In the analysis of the set of all pairs $(Z^{(1)}, Z^{(2)})$ satisfying (0.4)–(0.7) the following problem enters in a natural way.

Problem 0.2. Given $H \in \mathbb{UM}^2_{ball}(U, Y)$, describe the set of operator matrices F in $\mathbb{UM}(U)$ satisfying

$$F + F^* \geq H^*H + I_U \quad \text{and} \quad F_{j,j} = I_{U_j} \quad (j \in \mathbb{Z}).$$

(0.12)

Note that the matrix product H^*H is well-defined because each column of H induces a contractive operator (see Subsection 1.4 for further details). The inequality sign in (0.12) means that the operator matrix $\frac{1}{2}(F + F^*) - H^*H - I_U$ is non-negative (see Subsection 1.3 for the definition of this notion and further details). The fact that (0.12) appears in the analysis, follows from the observation that $F = (I_U - Z^{(2)})^{-1}$ satisfies (0.12) whenever the pair $(Z^{(1)}, Z^{(2)})$ satisfies the conditions (0.4)–(0.7). This connection will be made more precise in Theorem 2.1.

The solution to Problem 0.2 will be obtained as a corollary to Theorem 3.2.

For the time-invariant case Theorems 0.1 and 0.2 can be found in [23]. By using the reduction techniques developed in Chapter X of [20] (also [17]) Problem 0.1 can be transformed into a problem of the type considered in [23]. This transformation together with techniques from [20] can be used to present an alternative way to prove our main results. We shall not develop this approach in...
the present paper. Theorems 0.1 and Theorem 0.2 can be used to solve a time-
variant analogue of the relaxed commutant lifting problem. We will describe this
connection in the final section of the paper.

This paper consists of five sections not counting this introduction. The first
section has a preliminary character. We introduce some additional notation and
recall a number of elementary facts about operator matrices that will be used in
the proofs. In Section 2 we outline a general approach to deal with Problem 0.1
and prove Theorem 0.1. Section 3 is divided into three subsections. In this section
a time-variant analogue of the Cayley transform is used to relate operator matrices
from \(\mathbb{U}M(\infty,0) \) to positive real operator matrices from \(\mathbb{U}M(U) \). We apply this result
to solve Problem 0.2 and to parameterize the set of all its solutions. Theorem 0.2
is proved in Section 4; this section also presents the full version of Theorem 0.2
and its proof. Here we also discuss the problem of finding necessary and sufficient
conditions for the existence of a unique solution to Problem 0.1. In the final section
an example involving finite operator matrices will be presented and we discuss the
connection with a time-variant analogue of the relaxed commutant lifting problem.

1. Preliminaries

In this section we bring together a number of elementary facts about operator
matrices that will be used in the sequel. In what follows we assume the reader to
be familiar with the notations introduced in the previous section.

1.1. The set \(\mathbb{M}(U, Y) \) and bounded operators. The set \(\mathbb{M}(U, Y) \) is a lin-
ear space with respect to the usual operation of matrix addition. Given \(M = [M_{j, k}]_{j,k \in \mathbb{Z}} \) in \(\mathbb{M}(U, Y) \) and \(j \leq k \) we write \(\Delta_{j,k}(M) \) for the \(\{j,k\}\)-finite section of
\(M \), that is,
\[
(1.1) \quad \Delta_{j,k}(M) = \begin{bmatrix} M_{j,j} & \cdots & M_{j,k} \\
\vdots & \ddots & \vdots \\
M_{k,j} & \cdots & M_{k,k} \end{bmatrix}.
\]

Note that \(\Delta_{j,k}(M) \) defines a bounded linear operator from \(U_j \oplus \cdots \oplus U_k \) into
\(Y_j \oplus \cdots \oplus Y_k \).

In general, an operator matrix \(M \in \mathbb{M}(U, Y) \) does not induce in a canonical way
a bounded operator from \(U = \oplus_{k \in \mathbb{Z}} U_k \) into the space \(Y = \oplus_{k \in \mathbb{Z}} Y_k \). In order for
this to happen it is necessary and sufficient that
\[
(1.2) \quad \sup_{j \leq k} \|\Delta_{j,k}(M)\| < \infty.
\]

Furthermore, if (1.2) is satisfied, then the quantity in the left hand side of (1.2)
is equal to the norm of \(M = [M_{j,k}]_{j,k \in \mathbb{Z}} \) as an operator from \(U \) into \(Y \).

1.2. Invertibility in the algebra \(\mathbb{U}M(U) \). Let \(X = \oplus_{k \in \mathbb{Z}} X_k \), \(U = \oplus_{k \in \mathbb{Z}} U_k \), and
\(Y = \oplus_{k \in \mathbb{Z}} Y_k \) be Hilbert space direct sums. If \(B \in \mathbb{U}M(X, U) \) and \(A \in \mathbb{U}M(U, Y) \), then the (block) matrix product \(AB \) is well-defined and \(AB \in \mathbb{U}M(X, Y) \). More-
over, for \(C \in \mathbb{U}M(X, Y) \) we have
\[
(1.3) \quad AB = C \iff \Delta_{j,k}(A)\Delta_{j,k}(B) = \Delta_{j,k}(C) \quad (j \leq k).
\]

In particular, the set \(\mathbb{U}M(U) \) is closed under the usual multiplication of matrices.
In fact, from (1.3) we see that \(\mathbb{U}M(U) \) is an algebra with the identity matrix \(I_U \) as a
unit. From (1.3) it also follows that the operator matrix \(M = [M_{i,j}]_{i,j \in \mathbb{Z}} \in \mathbb{U}M(U) \)
is invertible in $\mathcal{UM}(\mathcal{U})$ if and only if for each $j \in \mathbb{Z}$ the j-th diagonal entry $M_{j,j}$ is an invertible operator on \mathcal{U}_j. In that case, we have

$$\Delta_{j,k}(M^{-1}) = \Delta_{j,k}(M)^{-1} \quad (j, k \in \mathbb{Z}, j \leq k).$$

(1.4)

In particular, the (j, j)-th entry of M^{-1} is equal to $M_{j,j}^{-1}$.

The above mentioned properties of $\mathcal{UM}(\mathcal{U})$ also follow from the fact that an operator matrix from $\mathcal{UM}(\mathcal{U})$ can be identified in the usual way with a linear transformation on the linear space \mathbf{U}^+. By definition, the space \mathbf{U}^+ consists of all double infinite one column matrices $u = [u_j]_{j \in \mathbb{Z}}$, with $u_j \in \mathcal{U}_j$ for each $j \in \mathbb{Z}$, such that $u_\nu = 0$ for $\nu > \ell$, for some ℓ depending on u.

1.3. **Hermitian and non-negative operator matrices.** An operator matrix $M \in \mathcal{M}(\mathcal{U})$, $M = [M_{j,k}]_{j, k \in \mathbb{Z}}$, is said to be hermitian if $M^* = M$, where M^* is the operator matrix $M^* = [(M_{k,j})^*]_{j, k \in \mathbb{Z}}$. The real part of $M \in \mathcal{M}(\mathcal{U})$ is the operator matrix $\text{Re } M$ given by

$$\text{Re } M = \frac{1}{2}(M + M^*).$$

(1.5)

Obviously, $\text{Re } M$ is hermitian. We call $M \in \mathcal{M}(\mathcal{U})$ non-negative if for each $j, k \in \mathbb{Z}$, $j \leq k$, the finite section $\Delta_{j,k}(M)$ induces a non-negative operator on the Hilbert space direct sum $\mathcal{U}_j \oplus \cdots \oplus \mathcal{U}_k$. In that case M is hermitian. For operator matrices M and N in $\mathcal{M}(\mathcal{U})$ we say that M is greater than or equal to N, and write $M \geq N$, if the operator matrix $M - N$ is non-negative. Hence $M \geq 0$ means that M is non-negative. Finally, an operator matrix $M \in \mathcal{UM}(\mathcal{U})$ is said to be positive real whenever $\text{Re } M$ is non-negative. Positive real operator matrices $M \in \mathcal{UM}(\mathcal{U})$ that induce bounded operators on $\mathbf{U} = \oplus_{k \in \mathbb{Z}} \mathcal{U}_k$ (i.e., $M \in \mathcal{UM}^\infty(\mathcal{U})$) have been extensively studied in [3, 4].

1.4. **The operator matrix H^*H.** Let $H \in \mathcal{UM}_{\text{full}}^2(\mathcal{U}, \mathcal{Y})$. Recall that for each $k \in \mathbb{Z}$ the k-th column H_k of H induces a contractive operator, also denoted by H_k, from \mathcal{U}_k into $\mathcal{Y}_k = \oplus_{j \in \mathbb{Z}} \mathcal{Y}_j$. It follows that for each j and k in \mathbb{Z} the product $(H_j)^*H_k$ is a well-defined contraction from \mathcal{U}_k into \mathcal{Y}_j. We define H^*H to be the operator matrix in $\mathcal{M}(\mathcal{U})$ given by

$$H^*H = \left((H_j)^*H_k \right)_{j, k \in \mathbb{Z}}.$$

(1.6)

Clearly, $H^*H \in \mathcal{M}(\mathcal{U})$ is hermitian. In fact, since for each $j, k \in \mathbb{Z}$, $j \leq k$,

$$\Delta_{j,k}(H^*H) = \begin{bmatrix} (H_j)^* \\ \vdots \\ (H_k)^* \end{bmatrix} \begin{bmatrix} H_j & \cdots & H_k \end{bmatrix},$$

the operator matrix H^*H is non-negative. Note that H^*H is the real part of the operator matrix $V \in \mathcal{UM}(\mathcal{U})$ given by

$$V = \left[V_{j,k} \right]_{j, k \in \mathbb{Z}}, \quad V_{j,k} = \begin{cases} 2(H_j)^*H_k, & \text{for } j < k, \\
(H_j)^*H_j, & \text{for } j = k, \\
0, & \text{for } j > k. \end{cases}$$

(1.7)
The set \(\mathbb{UM}_2^{\text{ball}}(U, Y) \) and the proof of Theorem 0.1

The main result of this section (Theorem 2.1 below) shows how elements in \(\mathbb{UM}_2^{\text{ball}}(U, Y) \) can be constructed from a pair of operators \(Z^{(1)} \in \mathbb{UM}_\infty(U, Y) \) and \(Z^{(2)} \in \mathbb{UM}_0^\infty(U) \) satisfying an additional norm constraint. This result together with Proposition 2.2 allows us to prove Theorem 0.1. Theorem 2.1 also shows the relevance of Problem 0.2 in the analysis of Problem 0.1.

Theorem 2.1. Assume we have given operator matrices

\[
Z^{(1)} \in \mathbb{UM}_\infty(U, Y), \quad Z^{(2)} \in \mathbb{UM}_0^\infty(U)
\]

satisfying the norm constraint

\[
\|Z^{(1)}u\|^2 + \|Z^{(2)}u\|^2 \leq \|u\|^2 \quad (u \in U).
\]

Then

\[
H = Z^{(1)}(I_U - Z^{(2)})^{-1} \quad \text{and} \quad F = (I_U - Z^{(2)})^{-1}
\]

are well-defined operator matrices,

\[
H \in \mathbb{UM}_2^{\text{ball}}(U, Y), \quad F \in \mathbb{UM}(U)
\]

and

\[
F + F^\ast \geq H^\ast H + I_U, \quad F_{j,j} = I_{U_j} \quad (j \in \mathbb{Z}).
\]

Conversely, if we have given \(H \) and \(F \) as in (2.4) such that (2.5) holds, then \(F \) is an invertible element in \(\mathbb{UM}(U) \), the operator matrices

\[
Z^{(1)} = HF^{-1} \quad \text{and} \quad Z^{(2)} = I_U - F^{-1}
\]

are well-defined and these operator matrices satisfy (2.1) and (2.2). Moreover, the map \((Z^{(1)}, Z^{(2)}) \mapsto (H, F) \) defined by (2.3) is a one-to-one map from the set of all pairs \((Z^{(1)}, Z^{(2)})\) satisfying (2.1) and (2.2) onto the set of all pairs \((H, F)\) satisfying (2.4) and (2.5). The inverse of this map is given by the map \((H, F) \mapsto (Z^{(1)}, Z^{(2)})\) defined by (2.6).

Proof. We split the proof into four parts. In the first two parts \(Z^{(1)} \) and \(Z^{(2)} \) are given and satisfy (2.1) and (2.2), and we prove that \(H \) and \(F \) in (2.3) are well-defined and satisfy (2.4) and (2.5). In the third part we prove the reverse statement. In the final part we show that the maps \((Z^{(1)}, Z^{(2)}) \mapsto (H, F) \) and \((H, F) \mapsto (Z^{(1)}, Z^{(2)})\) in Theorem 2.1 are each others inverses.

Part 1. Assume that \(Z^{(1)} \in \mathbb{UM}_\infty(U, Y) \) and \(Z^{(2)} \in \mathbb{UM}_0^\infty(U) \) satisfy (2.2), and let \(H \) be given by the first part of (2.3). Our aim is to prove that \(H \in \mathbb{UM}_2^{\text{ball}}(U, Y) \).

Fix \(k, j \in \mathbb{Z}, j < k \), and \(u_k \in U_k \). Define

\[
v = \begin{bmatrix} v_j \\ \vdots \\ v_k \end{bmatrix} = \Delta_{j,k} \left((I_U - Z^{(2)})^{-1} \right) u, \quad \text{where} \quad u = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ u_k \end{bmatrix} \in \oplus_{n=j}^k U_n.
\]
Note that \(v \in \oplus_{n=j}^{k} U_n \). Since \(Z^{(2)} \) is strictly upper triangular, we have \(v_k = u_k \).

Observe that
\[
\Delta_{j,k}(Z^{(2)}) \Delta_{j,k} \left((I_U - Z^{(2)})^{-1} \right) = \Delta_{j,k} \left(Z^{(2)} (I_U - Z^{(2)})^{-1} \right) = \Delta_{j,k} \left((I_U - Z^{(2)})^{-1} - I_U \right) = \Delta_{j,k} \left((I_U - Z^{(2)})^{-1} - I_{\oplus_{n=j}^{k} U_n} \right)
\]
and
\[
\Delta_{j,k}(Z^{(1)}) \Delta_{j,k} \left((I_U - Z^{(2)})^{-1} \right) = \Delta_{j,k} \left(Z^{(1)} (I_U - Z^{(2)})^{-1} \right) = \Delta_{j,k}(H).
\]

Hence
\[
\Delta_{j,k}(Z^{(2)}) v = v - u =: \alpha \quad \text{and} \quad \Delta_{j,k}(Z^{(1)}) v = \Delta_{j,k}(H) u =: \beta,
\]
where, using \(v_k = u_k \),
\[
\alpha = \begin{bmatrix} v_j \\ \vdots \\ v_{k-1} \\ 0 \end{bmatrix} \quad \text{and} \quad \beta = \begin{bmatrix} H_{j,k} u_k \\ \vdots \\ H_{k-1,k} u_k \\ H_{k,k} u_k \end{bmatrix}.
\]

The assumption \(2.A \) implies that
\[
\begin{bmatrix} \Delta_{j,k}(Z^{(1)}) \\ \Delta_{j,k}(Z^{(2)}) \end{bmatrix}
\]
is a contraction. Thus
\[
\sum_{\nu=j}^{k-1} \| v_{\nu} \|^2 + \sum_{\nu=j}^{k} \| H_{\nu,k} u_k \|^2 = \| \alpha \|^2 + \| \beta \|^2 \leq \| v \|^2 = \sum_{\nu=j}^{k} \| v_{\nu} \|^2.
\]

By comparing the first term in the left hand side of the above inequality with the term in the right side and using \(v_k = u_k \), we see that \(\sum_{\nu=j}^{k} \| H_{\nu,k} u_k \|^2 \) is less than or equal to \(\| u_k \|^2 \). This holds for each \(j \leq k \) and \(u_k \in U_k \), and therefore the operator defined by the \(k \)-th column of \(H \) is a contraction. Since \(k \in \mathbb{Z} \) is arbitrary, \(H \in \mathbb{UM}_{\text{ball}}(U, Y) \).

Part 2. Under the same assumptions as in Part 1, let \(H \) and \(F \) be given by \(2.3 \). Our aim is to prove that \(2.A \) holds. From the definition of \(F \) the right hand side of \(2.3 \) is clear. Thus we have to prove the inequality in the left hand side of \(2.3 \).

First assume that there exists an \(N \geq 0 \) such that \(U_k = \mathcal{Y}_k = \{0\} \) for \(|k| > N \).

In that case \(M(U) = L(U) = \mathbb{UM}(U) = \mathbb{UM}^{\infty}(U) \) and \(\mathbb{UM}(U, Y) = \mathbb{UM}^{\infty}(U, Y) \). In particular, \(H \) and \(F \) are bounded operators. We have
\[
I - Z^{(2)*} Z^{(2)} = I - (I - I + Z^{(2)*}) (I - I + Z^{(2)})
\]
\[
= I - (I - F^{-*}) (I - F^{-1})
\]
\[
= F^{-*} + F^{-1} - F^{-*} F^{-1}.
\]

Thus
\[
H^* H = F^* Z^{(1)*} Z^{(1)} F \leq F^* (I - Z^{(2)*} Z^{(2)}) F
\]
\[
= F^* (F^{-*} + F^{-1} - F^{-*} F^{-1}) F = F + F^* - I.
\]

So \(2.3 \) holds in this case.
Now fix \(j \leq k\). For \(N \geq |j|, |k|\) set
\[
U_N = \oplus_{i=-N}^{0} U_i, \quad Y_N = \oplus_{i=-N}^{0} Y_i,
\]
and notice that
\[
\Delta_{-N,N}(F) = (I_{U_N} - \Delta_{-N,N}(Z^{(2)}))^{-1}, \quad \Delta_{-N,N}(H) = \Delta_{-N,N}(Z^{(1)})(I_{U_N} - \Delta_{-N,N}(Z^{(2)}))^{-1}.
\]
Next apply the result of the second paragraph of this part to \(j, k\)
Using that \(\Delta_{j, k}^{(2)}\) and \(Q_N\) where
\[
H = \left[\begin{array}{ccc}
H_1 & \cdots & H_k
\end{array}\right]
\]
convergence in the strong operator topology, and (2.7) holds for each
\[
j, k \in \mathbb{Z}
\]
follows that
\[
\Delta_{-N,N}(Z^{(1)}) \in \mathcal{UM}(U_N, Y_N) \quad \text{and} \quad \Delta_{-N,N}(Z^{(2)}) \in \mathcal{UM}_0(U_N).
\]
Using that \(\Delta_{j, k}(\Delta_{-N,N}(M)) = \Delta_{j, k}(M)\) for each \(M \in \mathcal{UM}(U)\), it follows that
\[
\Delta_{j, k}(F) + \Delta_{j, k}(F^*) \geq \Delta_{j, k}(H^* Q_N H) + I,
\]
where \(Q_N \in \mathcal{L}(Y)\) is the orthogonal projection on \(Y_N\). Since
\[
\Delta_{j, k}(H^* Q_N H) = \left[\begin{array}{c}
(H_j)^* \\
\vdots \\
(H_k)^*
\end{array}\right] Q_N \left[\begin{array}{c}
H_j \\
\cdots \\
H_k
\end{array}\right],
\]
\[
[H_j \cdots H_k]
\]
is a bounded linear operator, \(Q_N \to I_Y\) as \(N \to \infty\) with convergence in the strong operator topology, and (2.7) holds for each \(N \geq |j|, |k|\), it follows that
\[
\Delta_{j, k}(F) + \Delta_{j, k}(F^*) \geq \Delta_{j, k}(H^* H) + I.
\]
Thus (2.8) holds.

Part 3. In this part we assume that \(H \in \mathcal{UM}_0^2(U, Y)\), \(F \in \mathcal{UM}(U)\), and that condition (2.6) is fulfilled. We show that the operator matrices \(Z^{(1)}\) and \(Z^{(2)}\) defined by (2.6) are in \(\mathcal{UM}_0^\infty(U, Y)\) and \(\mathcal{UM}_0^\infty(U)\), respectively, and that (2.2) is satisfied.
The second part of (2.6) implies that \(F\) is invertible in \(\mathcal{UM}(U)\). Thus the operator matrices \(Z^{(1)}\) and \(Z^{(2)}\) in (2.6) are well defined. Moreover, for each \(j \in \mathbb{Z}\) the \(j\)-th diagonal entry of \(F^{-1}\) is the identity operator \(I_{U_j}\), and thus the matrix \(Z^{(2)}\) is strictly upper triangular. It remains to show that \(Z^{(1)}\) and \(Z^{(2)}\) satisfy (2.2), since this automatically implies that \(Z^{(1)} \in \mathcal{UM}^\infty(U, Y)\) and \(Z^{(2)} \in \mathcal{UM}_0^\infty(U)\).
First note that it suffices to show that
\[
\Delta_{j, k}^{(1)}(Z^{(1)}) + \Delta_{j, k}^{(2)}(Z^{(2)}) \leq \Delta_{j, k}(I_U) \quad (j \leq k).
\]
Indeed, if the above inequalities have been established, then we can use the results reviewed in the second part of Subsection 1.1 to derive (2.2). Fix \(j \leq k\), and write \(\Delta\) in place of \(\Delta_{j, k}\). From \(Z^{(2)} = I_U - F^{-1}\), we see that \(\Delta(Z^{(2)}) = \Delta(I_U) - \Delta(F^{-1})\). Now use formula (1.4) to see that \(\Delta(F^{-1}) = \Delta(F)^{-1}\). But then
\[
\Delta(Z^{(2)}) \Delta(Z^{(2)}) = \Delta(I_U) - \Delta(F)^{-1} \Delta(I_U) - \Delta(F)^{-1} = \Delta(I_U) - \Delta(F)^{-1} - \Delta(F)^{-1} + \Delta(F)^{-1} \Delta(F)^{-1} = \Delta(F)^{-1} - \Delta(F) + \Delta(I_U) \Delta(F)^{-1}.
\]
Thus
\[
\Delta(F)^* \left(\Delta(I_U) - \Delta(Z(2))^* \Delta(Z(1)) \right) \Delta(F) = \\
= \Delta(F)^* + \Delta(F) - \Delta(I_U) \geq \Delta(H^*H).
\]
Here we used that the first part of (2.5) implies (2.8).

Next we consider the equality $H = Z^{(1)} F$. Again using (1.3), with $\Delta = \Delta_{j,k}$, we have $\Delta(H) = \Delta(Z^{(1)}) \Delta(F)$, and thus
\[
\Delta(F)^* \Delta(Z^{(1)})^* \Delta(Z^{(1)}) \Delta(F) = \Delta(H)^* \Delta(H).
\]

By combining this with the result of the previous paragraph we see that
\[
\Delta(F)^* \left(\Delta(I_U) - \Delta(Z^{(1)})^* \Delta(Z^{(1)}) - \Delta(Z^{(2)})^* \Delta(Z^{(2)}) \right) \Delta(F) \geq \\
\geq \Delta(H^*H) - \Delta(H)^* \Delta(H) \geq 0.
\]

To see that the last inequality holds, let P denote the projection from Y onto $\mathcal{Y}_j \oplus \cdots \oplus \mathcal{Y}_k$ and observe that
\[
\Delta(H^*H) = \begin{bmatrix} (H_j)^* H_j & \cdots & (H_j)^* H_k \\
\vdots & \ddots & \vdots \\
(H_k)^* H_j & \cdots & (H_k)^* H_k \end{bmatrix}
\begin{bmatrix} H_j & \cdots & H_k \end{bmatrix}
\geq P \begin{bmatrix} H_j & \cdots & H_k \end{bmatrix} = \Delta(H)^* \Delta(H).
\]

Since $\Delta(F)$ is invertible, we obtain (2.11).

Part 4. In case $Z^{(1)}$ and $Z^{(2)}$ satisfy the assumptions of Parts 1 and 2 and H and F are given by (2.3), it is clear that
\[
HF^{-1} = Z^{(1)} \quad \text{and} \quad I - F^{-1} = Z^{(2)}.
\]

If H and F satisfy the assumptions of Parts 3 and $Z^{(1)}$ and $Z^{(2)}$ are given by (2.5), then
\[
(I - Z^{(2)})^{-1} = (I_U - I_U + F^{-1})^{-1} = F \quad \text{and} \quad Z^{(1)}(I_U - Z^{(2)})^{-1} = HF^{-1}F = H.
\]

Thus the maps $(Z^{(1)}, Z^{(2)}) \mapsto (H, F)$ and $(H, F) \mapsto (Z^{(1)}, Z^{(2)})$ in Theorem 2.1 are each others inverses.

The next proposition is an addition to Theorem 2.1. It takes into account the interpolation condition on H in (0.3) and on the pair $(Z^{(1)}, Z^{(2)})$ in (0.6).

Proposition 2.2. Let $Z^{(1)}$ and $Z^{(2)}$ be as in (2.1) and (2.2), and define H and F by (2.3). Then the pair $(Z^{(1)}, Z^{(2)})$ satisfies the interpolation conditions (0.6) if and only if H satisfies the interpolation condition (0.3) and
\[
F_j,k|_{\mathcal{F}_k} = F_j,k-1|_{\mathcal{F}_k,2} \quad (j,k \in \mathbb{Z}, j < k).
\]

Proof. Let $Z^{(1)}$ and $Z^{(2)}$ satisfy (2.1) and (2.2), and let H and F be defined by (2.3).

We begin with a general remark about the interpolation conditions (0.3), (0.6), and (2.10). Recall that for each $k \in \mathbb{Z}$ the space \mathcal{F}_k is a subspace of U_k. In what
follows \(\tau_k \) is the canonical embedding of \(\mathcal{F}_k \) into \(\mathcal{U}_k \). Furthermore, \(\mathbf{F} \) will denote the Hilbert direct sum \(\oplus_{k \in \mathbb{Z}} \mathcal{F}_k \). Now let

\[
E = [E_{j,k}]_{j,k \in \mathbb{Z}}, \quad \Omega^{(1)} = \left[\Omega^{(1)}_{j,k} \right]_{j,k \in \mathbb{Z}}, \quad \Omega^{(2)} = \left[\Omega^{(2)}_{j,k} \right]_{j,k \in \mathbb{Z}},
\]

be the operator matrices defined by

\[
E_{j,k} = \begin{cases} \tau_k, & \text{if } j = k, \\ 0, & \text{if } j \neq k, \end{cases}
\]

and

\[
\Omega^{(1)}_{j,k} = \begin{cases} \phi_{k,1}, & \text{if } j = k, \\ 0, & \text{if } j \neq k, \end{cases} \quad \Omega^{(2)}_{j,k} = \begin{cases} \phi_{k,2}, & \text{if } j = k - 1, \\ 0, & \text{if } j \neq k - 1. \end{cases}
\]

Observe that both \(E \) and \(\Omega^{(1)} \) are diagonal operator matrices, \(E \in \mathbb{U}M_\infty^\text{ball}(\mathbf{F}, \mathbf{U}) \) and \(\Omega^{(1)} \in \mathbb{U}M_\infty^\text{ball}(\mathbf{F}, \mathbf{Y}) \), while \(\Omega^{(2)} \in \mathbb{U}M_\infty^\text{ball,0}(\mathbf{F}, \mathbf{U}) \) is a shifted diagonal operator, that is, all the entries of \(\Omega^{(2)} \) are zero except those in the first diagonal above the main diagonal. Using these operator matrices we can restate the interpolation conditions. In fact, we have

\[
(2.14) \quad \text{[Hence]} \quad HE = \Omega^{(1)} + H\Omega^{(2)},
\]

\[
(2.15) \quad \text{[F urthermore]} \quad Z^{(1)}E = \Omega^{(1)} \quad \text{and} \quad Z^{(2)}E = \Omega^{(2)},
\]

\[
(2.16) \quad \text{[But]} \quad FE - E = F\Omega^{(2)}.
\]

Now assume that the pair \((Z^{(1)}, Z^{(2)}) \) satisfies the interpolation condition \(\text{(1.6)} \). Since \(H \) and \(F \) are given by \(\text{(2.3)} \), we have

\[
H = Z^{(1)}(I_U - Z^{(2)})^{-1} = Z^{(1)} + Z^{(1)}(I_U - Z^{(2)})^{-1}Z^{(2)} = Z^{(1)} + HZ^{(2)},
\]

\[
F = (I_U - Z^{(2)})^{-1} = I_U + (I_U - Z^{(2)})^{-1}Z^{(2)} = I_U + FZ^{(2)}.
\]

Hence, using \(\text{(2.15)} \), we see that

\[
HE = Z^{(1)}E + HZ^{(2)}E = \Omega^{(1)} + H\Omega^{(2)}, \quad FE = E + FZ^{(2)}E = E + F\Omega^{(2)}.
\]

But then we can use \(\text{(2.14)} \) to conclude that \(H \) satisfies \(\text{(0.3)} \), and we can use \(\text{(2.16)} \) to conclude that \(F \) satisfies \(\text{(2.10)} \).

Next assume that \(H \) and \(F \) satisfy the interpolation conditions \(\text{(0.3)} \) and \(\text{(2.10)} \), respectively. From \(\text{(2.3)} \) we see that

\[
Z^{(1)} = HF^{-1} \quad \text{and} \quad Z^{(2)} = I - F^{-1}.
\]

Note that \(\text{(2.10)} \) and \(\text{(2.16)} \) imply that \(F^{-1}E = E - \Omega^{(2)} \). Hence

\[
Z^{(1)}E = HE = HE - H\Omega^{(2)} = \Omega^{(1)} \quad \text{by } \text{(2.14)},
\]

\[
Z^{(2)}E = E - F^{-1}E = \Omega^{(2)}.
\]

But then we can use the equivalence in \(\text{(2.15)} \) to conclude that the pair \((Z^{(1)}, Z^{(2)}) \) satisfies the interpolation conditions \(\text{(0.6)} \) as desired.

Proof of Theorem 0.1. Let \(Z^{(1)} \) and \(Z^{(2)} \) be a pair of operator matrices satisfying \(\text{(0.4)} \), \(\text{(0.5)} \) and \(\text{(0.6)} \). Define \(H \) by formula \(\text{(0.7)} \). Theorem 2.1 tells us that \(H \) is well-defined and \(H \in \mathbb{U}M_\infty^\text{ball}(\mathbf{U}, \mathbf{Y}) \); see formula \(\text{(2.4)} \). Since \((Z^{(1)}, Z^{(2)}) \) satisfies the interpolation conditions \(\text{(0.6)} \), we see from Proposition 2.2 that \(H \) satisfies \(\text{(0.3)} \). Thus \(H \) is a solution to Problem 0.1.

\[\square \]
3. Majorants of H^*H and the Solution to Problem \[0.2\]

In this section we solve Problem \[0.2\] and give a parametrization of the set of all its solutions. The first subsection, which has a preliminary character, deals with a time-variant version of the Cayley transform. The main result (Theorem \[3.2\] below) is presented in the second subsection, which is then used in the final subsection to solve Problem \[0.2\]

3.1. The Cayley transform

Let $C \in \mathcal{UM}_{\text{ball},0}^\infty(U)$. Then we know from Subsection \[1.2\] that $I_U - C$ is invertible in the algebra $\mathcal{UM}(U)$. It follows that K given by

\[
(3.1) \quad K = (I_U + C)(I_U - C)^{-1}
\]

is a well-defined element of $\mathcal{UM}(U)$. We shall refer to K as the Cayley transform of C. The following proposition shows that K is positive real (see \[3\], page 94, for a related but somewhat less general result).

Proposition 3.1. The map $C \mapsto K$ defined by \[3.1\] establishes a one-to-one correspondence between the set of all operator matrices C in $\mathcal{UM}_{\text{ball},0}^\infty(U)$ and the positive real $K \in \mathcal{UM}(U)$ satisfying $K_{j,j} = I_U$ for all $j \in \mathbb{Z}$.

Proof. Assume that K is defined by \[3.1\] for a $C \in \mathcal{UM}_{\text{ball},0}^\infty(D)$. Then

\[
K = I_U + 2C(I_U - C)^{-1}.
\]

Since $(I_U - C)^{-1}$ is upper triangular and C is strictly upper triangular, it follows that $K_{j,j} = I_U$ for each $j \in \mathbb{Z}$. Given an operator matrix M let $\Delta(M) = \Delta_{j,k}(M)$ denote the finite section of M for $j \leq k$. We have to prove (see Subsection \[1.3\]) that $\Delta(\text{Re} K)$ is non-negative. To do this note that

\[
2\Delta(\text{Re} K) = (I - \Delta(C^*))^{-1}(I + \Delta(C^*)) + (I + \Delta(C))(I - \Delta(C))^{-1}
\]

\[
= (I - \Delta(C^*))^{-1}((I + \Delta(C^*))\Delta(C)) + (I - \Delta(C))^{-1}(I + \Delta(C))(I - \Delta(C))^{-1}
\]

\[
= 2(I - \Delta(C^*))^{-1}\{I - \Delta(C^*)\Delta(C)\}(I - \Delta(C))^{-1}.
\]

In other words,

\[
(3.2) \quad \Delta(\text{Re} K) = (I - \Delta(C^*))^{-1}\{I - \Delta(C^*)\Delta(C)\}(I - \Delta(C))^{-1}.
\]

Here $I = I_{U,\oplus \cdots \oplus U}$. Because C is a contraction, $\Delta(C)$ is also a contraction. Hence all finite sections $\Delta(\text{Re} K)$ of Re K are non-negative. Therefore K is positive real.

Conversely, for a positive real matrix K in $\mathcal{UM}(U)$ satisfying $\text{diag } K_{j,j} = I_U$ for $j \in \mathbb{Z}$, consider the operator matrix C defined by

\[
(3.3) \quad C = (K - I_U)(K + I_U)^{-1}.
\]

We know that $K + I_U \in \mathcal{UM}(U)$ and for each $j \in \mathbb{Z}$ the j-th diagonal element of $K + I_U$ is invertible in $\mathcal{UM}(U)$ (see Subsection \[1.2\]). Moreover, $K - I$ is in $\mathcal{UM}_0(U)$. Thus C in \[3.3\] is a well defined operator matrix in $\mathcal{UM}_0(U)$. We claim that C is in $\mathcal{UM}_{\text{ball},0}^\infty(U)$. To see this let Δ and I be as in the previous paragraph. Using \[1.3\] and \[1.4\] we have

\[
\Delta(C) = (\Delta(K) - I)(\Delta(K) + I)^{-1}.
\]
Thus
\[I - \Delta(C)^* \Delta(C) = I - (\Delta(K)^* + I)^{-1}(\Delta(K)^* - I)(\Delta(K) - I)(\Delta(K) + I)^{-1} \]
\[= (\Delta(K)^* + I)^{-1} \{ (\Delta(K)^* + I)(\Delta(K) + I) \}
\[- (\Delta(K)^* - I)(\Delta(K) - I) \}(\Delta(K) + I)^{-1} \]
\[= 2(\Delta(K)^* + I)^{-1}(\Delta(K)^* + \Delta(K))(\Delta(K) + I)^{-1} \]
\[= 4(\Delta(K)^* + I)^{-1}\Delta(\text{Re} K)(\Delta(K) + I)^{-1} \geq 0. \]

Hence any finite section of \(C\) is a contraction. Therefore \(C\) is a contraction, and thus in \(UM^\infty_{ball,0}(U)\).

Finally, one easily verifies that the maps \(C \mapsto K\) given by (3.1) and \(K \mapsto C\) given by (3.3) are each others inverses. Hence the map \(C \mapsto K\) defined by (3.1) has the desired properties. \(\square\)

If \(K\) in \(UM(U)\) is positive real with \(K_{j,j} = I_{U_j}\) for \(j \in \mathbb{Z}\), then \(C\) defined by (3.3) will be called the inverse Cayley transform of \(K\).

3.2. Time-variant harmonic majorants of \(H^*H\). Let \(H \in UM^2_{ball}(U, Y)\) be given, and consider the operator matrix \(H^*H\) (see Subsection 1.4). In the present subsection we describe the operator matrices \(W \in UM(U)\) satisfying
\[\text{Re} W \geq H^*H \quad \text{and} \quad W_{j,j} = I_{U_j} \quad (j \in \mathbb{Z}). \]

This description will be used in the next subsection to give the solution to Problem 0.2.

When \(W \in UM(U)\) satisfies the first identity in (3.3) we call \(\text{Re} W\) a time-variant harmonic majorant of \(H^*H\). In that case, since \(H^*H\) is non-negative, \(W\) is automatically positive real. Time-variant harmonic majorants of \(H^*H\) do exist. In fact (see Subsection 1.4) the operator matrix \(V\) defined by (1.7) belongs to \(UM(U)\) and \(\text{Re} V = H^*H\). Thus \(H^*H\) is its own time-variant harmonic majorant.

To describe all \(W \in UM(U)\) satisfying (3.3) recall that \(D_H\) is the Hilbert space direct sum \(\oplus_{k \in \mathbb{Z}} D_{H_k}\), where \(H_k\) is the \(k\)-th column of \(H\) and \(D_{H_k}\) is the corresponding defect space. The latter space is well-defined because \(H_k\) defines a contraction from \(U_k\) into \(Y\). We define \(\nabla_H\) and \(\Pi_H\) to be the diagonal operator matrices in \(UM(D_H)\) and \(UM(U, D_H)\), respectively, given by
\[(\nabla_H)_{j,k} = \begin{cases} D_{H_k} & \text{for } j = k, \\ 0 & \text{for } j \neq k, \end{cases} \quad \text{and} \quad (\Pi_H)_{j,k} = \begin{cases} \Pi_{H_k} & \text{for } j = k, \\ 0 & \text{for } j \neq k. \end{cases} \]

In the definition of \(\nabla_H\) we view \(D_{H_k}\) as an operator on \(D_{H_k}\), and in the definition of \(\Pi_H\) the operator \(\Pi_{H_k}\) is the orthogonal projection of \(U_k\) onto \(D_{H_k}\). We can now state the main result of this section.

Theorem 3.2. Let \(H \in UM^2_{ball}(U, Y)\), and let \(\nabla_H\) and \(\Pi_H\) be the diagonal operator matrices given by (3.3). Then all operator matrices \(W \in UM(U)\) satisfying (3.3) are determined by
\[W = V + \Pi_H^* \nabla_H (I + C) (I - C)^{-1} \nabla_H \Pi_H, \]
where \(V \in UM(U)\) is given by (1.7), and \(C\) is an arbitrary operator matrix in \(UM^\infty_{ball,0}(D_H)\). Moreover, \(W\) and \(C\) in (3.3) determine each other uniquely.

Proof. Let \(C \in UM^\infty_{ball,0}(D_H)\). Then \(W\) in (3.6) is equal to
\[W = V + \Pi_H^* \nabla_H K \nabla_H \Pi_H, \]
where K is the Cayley transform of C. Using $\text{Re } K$ is non-negative this yields
\[\text{Re } W = \text{Re } V + \Pi_H^* \nabla_H^* \text{Re } K \nabla_H \Pi_H \geq \text{Re } V = H^* H, \]
and we have
\[W_{j,j} = V_{j,j} + D_{H_j} K_{j,j} D_{H_j} = H_j^* H_j + D_{H_j}^2 = Iu_j \quad (j \in \mathbb{Z}). \]
So W satisfies (3.4).

To prove the converse implication, assume that $W \in \text{UM}(U)$ satisfies (3.4). Since $\text{Re } V = H^* H$, the first part of (3.4) implies that the real part of the operator matrix $\Lambda = W - V \in \text{UM}(U)$ is non-negative. The second part of (3.4) gives
\[\Lambda_{j,j} = Iu_j - H_j^* H_j = D_{H_j}^2, \]
for all $j \in \mathbb{Z}$. The fact that $\text{Re } \Lambda$ is non-negative implies that for any $j < k$ the finite section $\Delta_{j,k}(\text{Re } \Lambda)$ is a non-negative operator on $\oplus_{i=j}^k U_i$. In particular, the two by two operator matrix
\[\begin{bmatrix} 2\Lambda_{j,j} & \Lambda_{j,k} \\ \Lambda_{j,k}^* & 2\Lambda_{k,k} \end{bmatrix} \]
is a non-negative operator on the Hilbert direct sum $U_j \oplus U_k$. A recall that an arbitrary operator matrix
\[\begin{bmatrix} A_1 & B^* \\ B & A_2 \end{bmatrix} \]
is a non-negative operator if and only if A_1 and A_2 are non-negative and $B = A_2^{1/2} \Phi A_1^{1/2}$, where Φ is a contraction from $A_1 \mathcal{E}_1$ into $A_2 \mathcal{E}_2$. Moreover, in this case, B and Φ uniquely determine each other; see Theorem XVI.1.1 in [16] for further details. Thus there exists a unique operator $K_{j,k}$ from \mathcal{D}_{H_j} into \mathcal{D}_{H_k} such that $\Lambda_{j,j} = D_{H_j} K_{j,j} D_{H_j}$. Now set $K_{j,j} = I_{\mathcal{D}_{H_j}}$ and $K_{j,k} = 0$ for $j > k$, and put $K = \begin{bmatrix} K_{j,k} \end{bmatrix}_{j,k \in \mathbb{Z}}$. Then
\[K \in \text{UM}(\mathcal{D}_H) \quad \text{and} \quad \Lambda = \Pi_H^* \nabla_H^* K \nabla_H \Pi_H. \]

Since the range of ∇_H is a dense set in \mathcal{D}_H and Λ is positive real, it follows that K is positive real and that Λ and K determine each other uniquely. Let C be the inverse Cayley transform of K. Then $C \in \text{UM}(\mathcal{D}_H)$ and W is given by (3.4). It also follows from the above that C and W determine each other uniquely. \hfill \Box

Corollary 3.3. There is only one operator matrix $W \in \text{UM}(U)$ satisfying (3.4) if and only if for each $k \in \mathbb{Z}$, the k-th column H_k of H defines an isometry from U_k into Y. In this case $W = V$, where V is given by (1.7), is the only operator matrix in $\text{UM}(U)$ satisfying (3.4).

Proof. The set $\text{UM}^\infty(\mathcal{D}_H)$ consists of just one element if and only if $\mathcal{D}_H = \{0\}$, i.e., $\mathcal{D}_{H_j} = \{0\}$ for all j. The latter condition is equivalent to H_j being an isometry for each $j \in \mathbb{Z}$. \hfill \Box

3.3. All solutions to Problem 0.2

We now describe the solution to Problem 0.2. Fix a $H \in \text{UM}^2(\mathcal{U}, Y)$. Define $N \in \text{UM}(U)$ by
\[N = \begin{bmatrix} N_{j,k} \end{bmatrix}_{j,k \in \mathbb{Z}}, \quad N_{j,k} = \begin{cases} (H_j)^* H_k, & \text{for } j \leq k, \\ 0, & \text{for } j > k, \end{cases} \]
Here, as before, H_k is the k-th column of H.
Theorem 3.4. Let \(H \in \mathbb{UM}_\text{ball}^2(U, Y) \). Define \(N \in \mathbb{UM}(U) \) by (3.7), and let the matrices \(\nabla_H \in \mathbb{UM}(D_H) \) and \(\Pi_H \in \mathbb{UM}(D_H, U) \) be the diagonal operator matrices given by (3.5). For each \(C \in \mathbb{UM}_\text{ball,0}(D_H) \) put
\[
F = N + \Pi_H \nabla_H (I_{D_H} - C)^{-1} \nabla_H \Pi_H.
\]
Then \(F \in \mathbb{UM}(U) \), and the map \(C \mapsto F \) defined by (3.8) is a one-to-one map from \(\mathbb{UM}_\text{ball,0}(D_H) \) onto the set of all \(F \in \mathbb{UM}(U) \) that satisfy (3.12). In particular, \(F \in \mathbb{UM}(U) \) satisfying (3.12) exist. Finally, there exists a unique \(F \in \mathbb{UM}(U) \) satisfying (3.12) if and only if for each \(k \in \mathbb{Z} \) the \(k \)-th column \(H_k \) of \(H \) defines an isometry from \(U_k \) into \(Y \). In this case \(F = N \) is the only \(F \in \mathbb{UM}(U) \) satisfying (3.12).

Proof. Assume \(W \) and \(F \) belong to \(\mathbb{UM}(U) \) and determine each other uniquely via
\[
W = 2F - I_U \quad \text{and} \quad F = \frac{1}{2}(W + I).
\]
Then \(W_{j,j} = I_{H_j} \) if and only if \(F_{j,j} = I_{H_j} \) for each \(j \in \mathbb{Z} \). Moreover, \(2 \text{Re}\, F = \text{Re}\, W + I \). Hence \(F \) satisfies (2.5) (where \(F + F^* = 2 \text{Re}\, F \)) if and only if \(W \) satisfies (3.4).

To complete the proof it remains to show that the map \(C \mapsto W \) given by (3.6) composed with the map \(W \mapsto F \) in (3.9) gives the map \(C \mapsto F \) in (3.8). Let \(C \in \mathbb{UM}_\text{ball,0}(D_H) \), define \(W \) by (3.9) and \(F \) by (3.8). Notice that \(V \) in (3.7) and \(N \) in (3.7) are related via \(V = 2N + \Pi_H^* \nabla_H \Pi_H - I \). Thus
\[
W = V + \Pi_H \nabla_H (I + C)(I - C)^{-1} \nabla_H \Pi_H = 2N + \Pi_H \nabla_H \Pi_H + \Pi_H \nabla_H (I + C)(I - C)^{-1} \nabla_H \Pi_H - I
= 2N + 2\Pi_H \nabla_H (I - C)^{-1} \nabla_H \Pi_H - I.
\]
Hence
\[
F = \frac{1}{2}(W + I) = \frac{1}{2}(2N + 2\Pi_H \nabla_H (I - C)^{-1} \nabla_H \Pi_H)
= N + \Pi_H \nabla_H (I - C)^{-1} \nabla_H \Pi_H.
\]
So \(F \) is given by (3.8).

A state space example. Consider the state space system \(\{A, B, E, D\} \), where \(A \) is an operator on \(X \) whose spectrum is contained in the open unit disc. The input space \(U = \oplus_{j \in \mathbb{Z}} U_j \) and the output space \(Y = \oplus_{j = 1}^n Y_j \). Furthermore, \(B \) is an operator mapping \(U \) into \(X \) and \(E \) is an operator mapping \(X \) into \(Y \), while \(D \in \mathbb{UM}(U, Y) \) is a finite upper triangular operator matrix mapping \(U = \oplus_{j = 1}^n U_j \) into \(Y = \oplus_{j = 1}^n Y_j \).

Now, let \(H \) be the operator matrix (consisting of \(N \) doubly infinite columns) of which the \(k \)-th column \(H_k = \text{col}\{H_{j,k}\}_{j \in \mathbb{Z}} \), \(k = 1, \ldots, n \), is given by
\[
H_{j,k} = \begin{cases}
EA^{-j-1}B_k & \text{when } j < 0, \\
D_{j,k} & \text{when } j = 1, \ldots, n, \\
0 & \text{when } j > n.
\end{cases}
\]
Here \(D_{j,k} \) is the \((j, k)\)-th entry of the \(n \times n \) operator matrix \(D \), and \(B_k \) is the restriction of \(B \) to the \(k \)-th component \(U_k \) of \(U = \oplus_{j = 1}^n U_j \). For this \(H \) we consider
the finite operator matrix version of Problem 0.2 that is, we seek all $F \in \text{UM}(U)$ satisfying

$$F + F^* \geq H^*H + I_U \quad \text{and} \quad F_{j,j} = I_{U_j} \quad (j = 1, \ldots, n).$$

By setting $U_j = \{0\}$ for $j < 0$ and $j > n$, we can identify U and $\bigoplus_{j \in \mathbb{Z}} U_j$, and we may view H as an operator matrix in $\text{M}(U, E)$, where $E = \bigoplus_{j \in \mathbb{Z}} E_j$ with

$$E_j = \begin{cases} Y & \text{when } j < 0 \text{ or } j > n, \\ \mathcal{Y}_j & \text{when } j = 1, \ldots, n. \end{cases}$$

The fact that D is upper triangular implies that $H \in \text{UM}(U, E)$. Hence the results obtained above apply.

Since A has its spectrum in the open unit disc, we know that the Lyapunov equation $P = A^*PA + E^*E$ has a unique solution which is given by

$$P = \sum_{j=0}^{\infty} A^{*j} E^* E A^j.$$

Using this, we obtain $H^*H = D^*D + B^*PB$. It follows that for each $k = 1, \ldots, n$ the k-th column H_k of H induces a contraction from U into E if and only if $P_{U_k}(D^*D + B^*PB)_{U_k}$ is a contraction, where P_{U_k} is the orthogonal projection onto U_k. In other words, H is in $\text{UM}^2_{\text{ball}}(U, E)$ if and only if the block diagonal entries of $D^*D + B^*PB$ are contractions.

Now assume that H is in $\text{UM}_{\text{ball}}^2(U, E)$. Let N be the upper triangular part of $D^*D + B^*PB$; see (3.7). In this setting, D_{H_k} equals the positive square root of the operator $I - P_{U_k}(D^*D + B^*PB)_{U_k}$, and ∇_H is the diagonal operator formed by $\{D_{H_k}\}_{k=1}^n$ on $\bigoplus_{k=1}^n D_{H_k}$; see (3.5). Then the set of all operators $F \in \text{UM}(U)$ satisfying (3.10) is determined by (3.2). Finally, $H = Z(1)(I_U - Z(2))^{-1}$, where $Z(1) = HF^{-1}$ and $Z(2) = I - F^{-1}$. Moreover, the operator matrix $[Z(1)^* \quad Z(2)^*]$ induces a contraction.

4. THE FULL VERSION OF THEOREM 0.2 AND ITS PROOF

The following theorem is the full version of Theorem 0.2.

Theorem 4.1. Let H be a solution to Problem 0.7, and let $C_{H, \sigma}$ be the set of all operator matrices C in $\text{UM}^\infty_{\text{ball}, \sigma}(D_H)$ defined by (4.11). Fix $C \in C_{H, \sigma}$, and put

$$F = N + \Pi_H \nabla_H (I_{D_H} - C)^{-1} \nabla_H \Pi_H. \tag{4.1}$$

Here $N \in \text{UM}(U)$ is defined by (3.4), and $\nabla_H \in \text{UM}(D_H)$ and $\Pi_H \in \text{UM}(D_H, U)$ are the diagonal operator matrices given by (3.5). Then $F \in \text{UM}(U)$, F satisfies (0.12), and

$$F_{j,k} = F_{j,k-1} \sigma_{k,2} \quad (j, k \in \mathbb{Z}, j < k). \tag{4.2}$$

Put

$$Z(1) = HF^{-1} \quad \text{and} \quad Z(2) = I_U - F^{-1}. \tag{4.3}$$

Then the pair of operator matrices $(Z(1), Z(2))$ satisfies (0.4), (0.5), (0.6), and H is given by (0.7). Furthermore, the map $C \mapsto (Z(1), Z(2))$ is a one-to-one map from the set $C_{H, \sigma}$ onto the set of all pairs $(Z(1), Z(2))$ satisfying (0.4), (0.5), (0.6), and such that H is given by (0.7). In particular, there exists a unique pair of operator matrices $(Z(1), Z(2))$ satisfying (0.4), (0.5) and (0.6) such that H is given by (0.7) if and only if one of the following three conditions is satisfied:
(1) \(\mathcal{F}_H = \mathcal{D}_H \) for each \(k \in \mathbb{Z} \);
(2) \(\phi_H \) is a co-isometry for each \(k \in \mathbb{Z} \);
(3) there exists an integer \(k \in \mathbb{Z} \) such that \(\mathcal{F}_H = \mathcal{D}_H \) for each \(j > k \) and the operator \(\phi_H \) is a co-isometry for each \(j \leq k \).

Let \(H \) be a solution to Problem 0.1. Recall that, in particular, this implies that \(H \) belongs to \(\mathcal{UM}^2_{\text{ball}}(U, Y) \). Hence Theorem 3.4 applies to \(H \). It will be convenient first to prove the following proposition.

Proposition 4.2. Let \(H \) be a solution to Problem 0.1. Fix \(C \in \mathcal{UM}(F, U) \) defined by (4.1) and let \(F = [F_{j,k}]_{j,k\in \mathbb{Z}} \in \mathcal{UM}(U) \) by defined by (4.1). Then \(F \) satisfies (4.2) if and only if \(C \) belongs to the set \(\mathfrak{C}_{H, \sigma} \) defined by (4.11).

Proof. Let \(H \) be a solution to Problem 0.1. We first show that

\[
C \in \mathfrak{C}_{H, \sigma} \iff C \nabla_H \Pi_H E = \nabla_H \Pi_H \Omega^{(2)}.
\]

Here \(E \) and \(\Omega^{(2)} \) are the operator matrices in \(\mathcal{UM}(F, U) \) defined by (2.12) and (2.13). To prove (4.4) we use (0.9) and (0.10). From these formulas it follows that the operator matrix \(C = [C_{j,k}]_{j,k\in \mathbb{Z}} \in \mathcal{UM}_{\text{ball}, 0}(D_H) \) belongs to \(\mathfrak{C}_{H, \sigma} \) if and only if for each \(j < k \) in \(\mathbb{Z} \) and each \(f_k \in \mathcal{F}_k \) we have

\[
C_{j,k} \mathcal{D}_H f_k = \begin{cases} D_{H_{j-1}} \phi_k, f_k & \text{for } j = k - 1, \\ 0 & \text{for } j \neq k - 1, \end{cases}
\]

In the language of operator matrices (4.5) is equivalent to the right hand side of (4.4). Thus our claim follows.

By assumption \(H \) belongs to \(\mathcal{UM}^2_{\text{ball}}(U, Y) \). Hence Theorem 3.4 applies to \(H \). In particular, since (3.8) and (4.1) are the same identities, \(F \) is well-defined and belongs to \(\mathcal{UM}(U) \). From (3.8) it follows that \(F \) is also given by the following formula:

\[
F = I_U + \mathcal{N} + \Pi_H \nabla_H (I - C)^{-1} \nabla_H \Pi_H,
\]

where \(\mathcal{N} = [\mathcal{N}_{i,j}] \in \mathcal{UM}(U) \) is the strictly upper triangular operator matrix given by

\[
\mathcal{N}_{i,j} = \begin{cases} (H_j)^* H_j & \text{for } i < j, \\ 0 & \text{for } i \geq j. \end{cases}
\]

We claim that

\[
\mathcal{N} E = \mathcal{N} \Omega^{(2)}.
\]

Note that both \(\mathcal{N} E \) and \(\mathcal{N} \Omega^{(2)} \) are strictly upper triangular operator matrices in \(\mathcal{UM}(F, U) \). Furthermore, for \(j < k \) the \((j, k)\)-th entry of \(\mathcal{N} E \) is equal to \((H_j)^* H_k \tau_k\), where \(\tau_k \) is the canonical embedding of \(\mathcal{F}_k \) into \(\mathcal{U}_k \). Now observe, using the second part of (0.3), that for \(j < k \) we have

\[
(H_j)^* H_k \tau_k f_k = \sum_{\nu = -\infty}^{j} H_{\nu, j}^* H_{\nu, k} f_k = \sum_{\nu = -\infty}^{j} H_{\nu, j}^* H_{\nu, k-1} \phi_k, 2 f_k
\]

\[
= (H_j)^* H_{k-1} \phi_k, 2 f_k \quad (f_k \in \mathcal{F}_k).
\]

But \((H_j)^* H_{k-1} \phi_k, 2\) is precisely the \((j, k)\)-th entry of \(\mathcal{N} \Omega^{(2)} \). Thus (4.8) is proved.
Next we use the two representations for F given by (4.1) and (4.6). We multiply (4.1) and (4.6) from the right by $\Omega(2)$ and E, respectively, and subtract the resulting identities. Then, using (4.8), we obtain

$$F \Omega(2) - FE + E = \Pi_H^1 \nabla_H (I_{D_H} - C)^{-1} (\nabla_H \Pi_H \Omega(2) - C \nabla_H \Pi_H E).$$

Notice that $\nabla_H (I_{D_H} - C)^{-1}$ acts as a one-to-one linear transformations on the linear space D_H (see the final paragraph of Subsection 1.2 for the definition of this space). Since Π_H^1 is also one-to-one on vectors from D_H^1, it follows that

$$F \Omega(2) - FE + E = 0 \iff \nabla_H \Pi_H \Omega(2) - C \nabla_H \Pi_H E = 0.$$

By comparing the left hand side of (4.9) with (2.16) and the right hand side of (4.9) with (4.4), we see that F satisfies (4.2) if and only if C belongs to $C_{H,\sigma}$. □

Proof of Theorem 4.1. Let H be a solution to Problem 0.1. Let F be given by (4.1) with C from $C_{H,\sigma}$. By assumption H satisfies (0.3). Proposition 4.2 tells us that F satisfies (2.10). Thus we can apply Proposition 2.2 to show that the pair $(Z^{(1)}, Z^{(2)})$ satisfies the interpolation condition (0.6). Moreover, this is not the only element of $C_{H,\sigma}$ for the first upper diagonal on which $\sigma_{H_k} \Pi_{F_{H_k}}$ is the entry in the $(k-1,k)$-th position.

In order to prove the claim in the final part of Theorem 4.1 note that there exists a unique pair of operator matrices $(Z^{(1)}, Z^{(2)})$ satisfying (0.4), (0.5) and (0.6) such that H is given by (0.7) if and only if the set $C_{H,\sigma}$ is a singleton.

Let $C = \left[C_{i,j} \right]_{i,j \in \mathbb{Z}} \in C_{H,\sigma}$. Fix a $k \in \mathbb{Z}$. Then observe that $F_{H_k} = D_{H_k}$ implies that the k-th column of C is completely determined by

$$C_{i,k} = \begin{cases} \varphi_{H_k}, & \text{if } i = k-1, \\ 0, & \text{if } i \neq k-1. \end{cases}$$

Moreover, if φ_{H_k} is a co-isometry, then we can use Corollary XXVII.5.3 in [24] to show that the $(k-1)$-th row of C is completely determined by

$$C_{k-1,j} = \begin{cases} \varphi_{H_k} \Pi \varphi_{H_k}, & \text{if } j = k, \\ 0, & \text{if } j \neq k. \end{cases}$$

Here $\pi_{F_{H_k}}$ denotes the orthogonal projection from D_{H_k} onto F_{H_k}. From these two observations and the fact that C is strictly upper triangular it follows that the conditions (1), (2) and (3) are each sufficient for $C_{H,\sigma}$ to be a singleton.

To see that these conditions are also necessary, assume that non of the conditions (1), (2) or (3) is satisfied, i.e., assume there exists a $k \in \mathbb{Z}$ with $F_{H_k} \neq D_{H_k}$ and such that $\varphi_{H_{k-1}}$ is not a co-isometry. In that case, set $G_{H_k} = D_{H_k} \oplus F_{H_k}$ and let $D_{\varphi_{H_{k-1}}}$ and $D_{\varphi_{H_{k-1}}}^-$ denote the defect operator and defect space of $\varphi_{H_{k-1}}$, respectively. Then both G_{H_k} and $D_{\varphi_{H_{k-1}}}^-$ are not equal to $\{0\}$, and thus there exists a non-zero contraction N from G_{H_k} into $D_{\varphi_{H_{k-1}}^-}$. Now define $C = \left[C_{i,j} \right]_{i,j \in \mathbb{Z}} \in \mathbb{UM}^{\text{ball},0}(D_H)$ by setting $C_{i,j} = 0$ in case $i \neq j-1$ and $(i, j) \neq (k-2,k)$, $C_{j-1,k} = \varphi_{H_k} \Pi_{F_{H_k}}$ for each $j \in \mathbb{Z}$ and $C_{k-1,k} = D_{\varphi_{H_{k-1}}}^-(N \Pi \varphi_{H_k})$. One easily sees that C is in $C_{H,\sigma}$. Moreover, this is not the only element of $C_{H,\sigma}$, because $C_{H,\sigma}$ always contains the operator matrix in $\mathbb{UM}^{\text{ball},0}(D_H)$ that has zeros in all entries except for the first upper diagonal on which $\varphi_{H_k} \Pi_{F_{H_k}}$ is the entry in the $(k-1,k)$-th position. □
The arguments used to prove the claim in the final part of Theorem 4.1 can also be used to derive the following proposition.

Proposition 4.3. There exists a unique pair of operator matrices $(Z^{(1)}, Z^{(2)})$ satisfying (0.4), (0.5) and (0.6) if and only if one of the following three conditions is satisfied:

1. $\mathcal{F}_k = U_k$ for each $k \in \mathbb{Z}$;
2. \varnothing_k is a co-isometry for each $k \in \mathbb{Z}$;
3. there exists a $k \in \mathbb{Z}$ such that $\mathcal{F}_j = U_j$ for each $j > k$ and the operator \varnothing_j is a co-isometry for each $j \leq k$.

In particular, if one of the conditions (1), (2) or (3) is satisfied, then there exists a unique solution to Problem 0.1.

Proof. Let $(Z^{(1)}, Z^{(2)})$ be a pair of operator matrices as in (0.4). Set $Z = \oplus_{i \in \mathbb{Z}} (\mathcal{Y}_{i+1} + U_i)$, and define

$$\tilde{Z} = \left[\tilde{Z}_{i,j} \right]_{i,j \in \mathbb{Z}} \in \mathbb{UM}_{\infty}^0(U, Z),$$

where $\tilde{Z}_{i,j} = \left[\begin{array}{c} Z^{(1)}_{i+1,j} \\ Z^{(2)}_{i,j} \end{array} \right] : U_j \to \left[\begin{array}{c} \mathcal{Y}_{i+1} \\ U_i \end{array} \right]$.

Observe that (0.5) is equivalent to $\tilde{Z} \in \mathbb{UM}_{\infty}^{ball,0}(U, Z)$, while (0.6) corresponds to

$$(4.10) \quad \tilde{Z}_{j,k}|_{\mathcal{F}_k} = \begin{cases} \varnothing_k, & \text{if } j = k - 1, \\ 0, & \text{if } j \neq k - 1. \end{cases}$$

Thus the pair $(Z^{(1)}, Z^{(2)})$ satisfies (0.5) and (0.6) if and only if \tilde{Z} is an element of

$$C_\alpha = \{ \tilde{Z} \in \mathbb{UM}_{\infty}^{ball,0}(U, Z) \mid \text{the } (i,j)-\text{th entry } \tilde{Z}_{i,j} \text{ of } \tilde{Z} \text{ satisfies (4.10) for each } i, j \in \mathbb{Z} \}.$$

The first statement now follows by translating the arguments in the proof of the last part of Theorem 4.1 to the present setting. The last statement of Proposition 4.3 follows immediately from the first part.

The conditions listed in the above proposition are sufficient, but in general not necessary conditions for the existence of a unique solution. This is already the case in the time-invariant case; see [28, 27]. The problem to give necessary and sufficient conditions for the existence of a unique solution to Problem 0.1 remains open.

5. **An example involving finite operator matrices and time-variant relaxed commutant lifting**

In this section we present some examples of how our results can be applied. In each case the contractions \varnothing_k, $k \in \mathbb{Z}$, are not given beforehand but are constructed from the given data. The first subsection deals with a 4×4 operator matrix problem. In the second subsection we introduce a time-variant analogue of the relaxed commutant lifting problem, and show how this time-variant problem can be solved by using Theorem 0.1.
5.1. An example involving finite operator matrices. When in Problem 0.1 all spaces U_k and Y_j are set to zero, with the exception of a finite numbers of k's and j's, finite operator matrix problems appear. We illustrate this with an example.

Consider the problem of finding all 4×4 operator matrices

\begin{equation}
A = \begin{bmatrix}
A_{1,1} & A_{1,2} & A_{1,3} & A_{1,4} \\
A_{2,1} & A_{2,2} & A_{2,3} & A_{2,4} \\
A_{3,1} & A_{3,2} & A_{3,3} & A_{3,4} \\
A_{4,1} & A_{4,2} & A_{4,3} & A_{4,4}
\end{bmatrix}
: \begin{bmatrix}
X_1 \\
X_2 \\
X_3 \\
X_4
\end{bmatrix} \rightarrow \begin{bmatrix}
Y_1 \\
Y_2 \\
Y_3 \\
Y_4
\end{bmatrix}
\end{equation}

such that

\begin{equation}
\| \begin{bmatrix}
A_{1,k} & A_{1,k+1} \\
A_{2,k} & A_{2,k+1} \\
A_{3,k} & A_{3,k+1} \\
A_{4,k} & A_{4,k+1}
\end{bmatrix} \| \leq 1, \quad k = 1, 2, 3.
\end{equation}

The problem is always solvable (the zero matrix is a solution). Moreover all solutions can be obtained by repeatedly applying Parrott’s lemma [29] (cf., Section IV.1 in [16] or Section XXVII.5 in [24]). Here we show that a more direct description of the set of all solutions can be obtained from Theorem 0.1. To do this we set $Y_j = \{0\}$ for $j \neq 1, 2, 3, 4$ and put

$U_k = \{0\}$, $F_k = \{0\}$ ($k \neq 4, 5, 6),

$U_4 = X_1 \oplus X_2$, $F_4 = \{0\},$

$U_5 = X_2 \oplus X_3$, $F_5 = X_2 \oplus \{0\}$, \quad $\sigma_5(x_2 \oplus 0) = 0 \oplus x_2$ ($x_2 \in X_2),$

$U_6 = X_3 \oplus X_4$, $F_6 = X_3 \oplus \{0\}$, \quad $\sigma_6(x_3 \oplus 0) = 0 \oplus x_3$ ($x_2 \in X_3).

To formulate this as an upper triangular operator matrix problem, consider

\begin{align*}
H_{1,4} &= [A_{1,1} & A_{1,2}], \quad H_{1,5} = [A_{1,2} & A_{1,3}], \quad H_{1,6} = [A_{1,3} & A_{1,4}] \\
H_{2,4} &= [A_{2,1} & A_{1,2}], \quad H_{2,5} = [A_{2,2} & A_{2,3}], \quad H_{2,6} = [A_{2,3} & A_{2,4}] \\
H_{3,4} &= [A_{3,1} & A_{3,2}], \quad H_{3,5} = [A_{3,2} & A_{3,3}], \quad H_{3,6} = [A_{3,3} & A_{3,4}] \\
H_{4,4} &= [A_{4,1} & A_{1,2}], \quad H_{4,5} = [A_{4,2} & A_{1,3}], \quad H_{4,6} = [A_{4,3} & A_{1,4}]
\end{align*}

Then (5.1) and (5.2) are satisfied if and only if

\begin{align*}
\| \begin{bmatrix}
H_{1,k} \\
H_{2,k} \\
H_{3,k} \\
H_{4,k}
\end{bmatrix} \| \leq 1 \quad (k = 4, 5, 6),
\end{align*}

\begin{align*}
\begin{bmatrix}
H_{1,5} \\
H_{2,5} \\
H_{3,5} \\
H_{4,5}
\end{bmatrix}
| f_5 = \begin{bmatrix}
H_{1,4} \\
H_{2,4} \\
H_{3,4} \\
H_{4,4}
\end{bmatrix}
\sigma_5, \quad \text{and} \quad
\begin{bmatrix}
H_{1,6} \\
H_{2,6} \\
H_{3,6} \\
H_{4,6}
\end{bmatrix}
| f_5 = \begin{bmatrix}
H_{1,5} \\
H_{2,5} \\
H_{3,5} \\
H_{4,5}
\end{bmatrix}
\sigma_6.
\end{align*}

Now consider our main problem with Y_j, $U_k = \{0\}$ and F_k as above. Furthermore, put

$\phi_{5,1} = 0$, \quad $\phi_{6,1} = 0$, \quad and \quad $\phi_{5,2} = \sigma_5 \quad \phi_{6,2} = \sigma_6.$
Since \(\mathcal{F}_k = \{0\} \) for \(k \neq 5, 6 \), we don’t have to consider the operators \(\phi_{k,1} \) and \(\phi_{k,1} \) for \(k \neq 5, 6 \). Note that
\[
\begin{bmatrix} \phi_{5,1} \\ \phi_{6,1} \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \phi_{5,2} \\ \phi_{6,2} \end{bmatrix}
\]
are both contractions.

It is now clear how the problem regarding the operator matrix \(A \) in (5.1) can be solved via Theorem 5.1.

5.2. A time-variant relaxed commutant lifting problem. In this subsection we present a time-varying version of the relaxed commutant lifting problem from [21] and explain the connection with Problem 0.1. We plan to come back to this time-variant relaxed commutant lifting problem in more detail in a future publication, where we will also discuss the relation with the time-invariant version, the three chain completion problem [18, 19] and its weighted versions [9].

A data set for the time-variant relaxed commutant lifting problem is a set \(\Lambda = \{A_n, T_n', U_n', R_n, Q_n \mid n \in \mathbb{Z}\} \) consisting of Hilbert space operators with for each \(k \in \mathbb{Z} \)
\[
T_k' : \mathcal{H}_{k-1} \rightarrow \mathcal{H}_k', \quad A_k : \mathcal{H}_k \rightarrow \mathcal{H}_k', \quad R_k : \mathcal{H}_{0,k} \rightarrow \mathcal{H}_k, \quad Q_k : \mathcal{H}_{0,k-1} \rightarrow \mathcal{H}_k,
\]
and such that \(T_k' \) and \(A_k \) are contractions and
\[
T_k' A_k R_k = A_k Q_k, \quad R_k A_k R_k = Q_k A_k R_k.
\]
The operator \(U_k' \) is completely determined by the set of operators \(\{T_n' \mid n \in \mathbb{Z}\} \) and can be seen as a time-varying analogue of the Sz.-Nagy-Schäffer isometric lifting of \(T_k' \); cf., [10]. To define \(U_k' \) we set
\[
\begin{align*}
D_n' &= \oplus_{i \leq n} D_{T_n'} \\
K_n' &= \mathcal{H}_n' \oplus D_n' \quad (n \in \mathbb{Z}).
\end{align*}
\]
Then \(U_k' \) is the isometric operator mapping \(K_{k-1}' \) into \(K_k' \) given by
\[
U_k' = \begin{bmatrix} T_k' & 0 \\ E_{D_{T_k'}} & E_{D_{D_k'}} \end{bmatrix} : \begin{bmatrix} \mathcal{H}_{k-1}' \\ D_{k-1}' \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{H}_k' \\ D_k' \end{bmatrix}.
\]
Here \(E_{D_{T_k'}} \) and \(E_{D_{D_k'}} \) are the canonical embeddings of \(D_{T_k'} \) and \(D_{D_k'} \) into \(D_k' \), respectively. We then consider the following problem.

Problem 5.1. Given the data set \(\Lambda = \{A_n, T_n', U_n', R_n, Q_n \mid n \in \mathbb{Z}\} \), describe the sets of operators \(\{B_n \mid n \in \mathbb{Z}\} \) with the property that for each \(k \in \mathbb{Z} \) the operator \(B_k \) is a contraction from \(\mathcal{H}_k \) into \(K_k' \) satisfying
\[
(5.4) \quad \Pi_{\mathcal{H}_k'} B_k = A_k \quad \text{and} \quad U_k' B_k R_k = B_k Q_k.
\]
Here \(\Pi_{\mathcal{H}_k'} \) is the orthogonal projection from \(K_k' \) onto \(\mathcal{H}_k' \).

After some translation and reduction steps it follows that the special case of Problem 5.1 with \(\mathcal{H}_0,k = \mathcal{H}_k \) and \(R_k = I_{\mathcal{H}_k} \) for each \(k \in \mathbb{Z} \) is just the nonstationary commutant lifting problem considered in [10] (see also Section 3.5 in [11]).

With the data set \(\Lambda \) we associate a set of contractions \(\{\phi_n \mid n \in \mathbb{Z}\} \) of the form (5.2). For each \(k \in \mathbb{Z} \), the contraction \(\phi_k \) is defined on the subspace \(\mathcal{F}_k = D_{A_k} Q_k \mathcal{H}_{0,k-1} \) of \(D_{A_k} \) and is given by
\[
\phi_k : \mathcal{F}_k \rightarrow \begin{bmatrix} D_{T_k'} \\ D_{A_k} \end{bmatrix}, \quad \phi_k D_{A_k} Q_k = \begin{bmatrix} DT_k' A_k R_k \\ DA_k R_k \end{bmatrix}.
\]
We refer to ϕ_k as the k-th underlying contraction of the data set Λ. To see that ϕ_k is in fact a contraction observe that for each η it follows directly from this computation that ϕ_k is contractive, and moreover, that ϕ_k is an isometry if and only if $R_{k-1}^* R_{k-1} = Q_k^* Q_k$.

From a variation on Parrott’s lemma [29] (cf., Section IV.1 in [16] or Section XXVII.5 in [24]) we obtain that an operator B_k from H_k into K'_k is a contraction that satisfies the first requirement of (5.4) if and only if Γ_k is of the form

\[B_k = \begin{bmatrix} A_k \\ \Gamma_k D_{A_k} \end{bmatrix}, \quad \text{with } \Gamma_k : D_{A_k} \to D'_k \text{ a contraction.} \tag{5.5} \]

Moreover, the contraction Γ_k is uniquely determined by B_k. In this case, writing out $U'_k B_{k-1} R_{k-1}$ and $B_k Q_k$, it follows that the second requirement in (5.4) holds if and only if Γ_k and Γ_{k-1} satisfy

\[\Gamma_k \pi_k = E_{D'_k} \phi_{k,1} + E_{D'_k} \Gamma_{k-1} \phi_{k,2}. \tag{5.6} \]

Here $\phi_{k,1}$ is the first component of ϕ_k mapping F_k into D'_k and $\phi_{k,2}$ is the second component of ϕ_k mapping F_k into D_{A_k-1}. Thus, alternatively, we seek the sets of operators \(\{ \Gamma_n \mid n \in \mathbb{Z} \} \) such that for each $k \in \mathbb{Z}$ the operator Γ_k is a contraction from D_{A_k} into D'_k and (5.6) is satisfied.

Now set $D = \oplus_{k \in \mathbb{Z}} D_{A_k}$ and $D' = \oplus_{k \in \mathbb{Z}} D_{T_k'}$. With a set of contractions \(\{ B_n : H'_n \to K'_n \mid n \in \mathbb{Z} \} \) satisfying the first condition of (5.4) we associate an operator matrix $H \in UM^2_{ball}(D, D')$ in the following way.

Procedure 5.1. Let \(\{ B_n : H'_n \to K'_n \mid n \in \mathbb{Z} \} \) be a set of contractions such that the first condition of (5.4) holds for each $k \in \mathbb{Z}$, and let Γ_k be the contraction from D_{A_k} into D'_k determined by (5.5). For each $k \in \mathbb{Z}$ we view D_k' as a subspace of D' and write $\Pi_{D_k'}$ for the orthogonal projection from D' onto D_k'. Define H_k to be the contraction from D_{A_k} into D' given by $H_k = \Pi_{D_k'} \Gamma_k$ and $H \in UM^2_{ball}(D, D')$ by

\[H = \begin{bmatrix} \cdots & H_{-1} & H_0 & H_1 & \cdots \end{bmatrix}. \]

One can reverse this procedure in order to obtain a set of contractions \(\{ B_n \mid n \in \mathbb{Z} \} \) that satisfy (5.4) for each $k \in \mathbb{Z}$ from an operator matrix in $UM^2_{ball}(D, D')$.

Procedure 5.2. Let $H \in UM^2_{ball}(D, D')$. For each $k \in \mathbb{Z}$ let H_k be the k-th column of H, i.e., $H_k = H|_{D_{A_k}}$, set $\Gamma_k = \Pi_{D_k'} H_k$ and define B_k by (5.5).

It is straightforward that Γ_k defined in Procedure 5.2 is a contraction, and thus that B_k is a contraction satisfying the first requirement of (5.4), and moreover, these procedures are each others inverse. Furthermore, the condition (5.6) on the contractions \(\{ \Gamma_n \mid n \in \mathbb{Z} \} \) translates to the columns in the operator matrix H obtained by Procedure 5.1 in the form

\[H_k \pi_k = \tau'_k \phi_{k,1} + H_{k-1} \phi_{k,2}, \tag{5.7} \]

where τ'_k is the canonical embedding of $D_{T_k'}$ into D', or, equivalently, in the form \(\phi_{k,1} \) with $\phi_{k,1}$ and $\phi_{k,2}$ as defined in the present subsection, $U_k = D_{A_k}$ and $Y_k = D_{T_k}$ for each $k \in \mathbb{Z}$. The converse is also true. For an operator matrix $H \in$
Theorem 5.2. Let \(\Lambda = \{ A_n, T'_n, U'_n, R_n, Q_n \mid n \in \mathbb{Z} \} \) be a data set as described above. For any solution \(H \) of Problem [5.1] with \(\phi_k \) equal to the \(k \)-th underlying contraction of \(\Lambda \) for each \(k \in \mathbb{Z} \), the set \(\{ B_n \mid n \in \mathbb{Z} \} \) obtained from Procedure 5.2 is a solution of Problem [5.1]. Conversely, for any solution \(\{ B_n \mid n \in \mathbb{Z} \} \) of Problem [5.1], the operator matrix \(H \) obtained from Procedure 5.2 is a solution of Problem [5.1].

From Theorem 5.1 in combination with Theorems [0.1] and [0.2] it is clear how all solutions of Problem [5.1] can be described. Furthermore, in combination with the full version of the second main result, Theorem 1.2, a time-variant analogue of all solutions of Problem 5.1 can be described. Furthermore, in combination with Theorem 1.2 in [22] (see also Theorem 1.2 in [29]) is obtained.

Not only can Problem 5.1 be seen as a special case of Problem 0.1, the converse from Theorem 5.1 in combination with Theorems 0.1 and 0.2 it is clear how all solutions of Problem 5.1 can be described.

Theorem 5.2. For each \(k \in \mathbb{Z} \) let \(\phi_k \) be a contraction of the form [0.2] with \(F_k \) a subspace of \(\mathcal{U}_k \). Set

\[
A_k = \begin{bmatrix} I_{Y_{k+1}} & 0 \end{bmatrix} : Y_{k+1} \rightarrow Y_{k+1}, \quad T'_k = 0 : Y_k \rightarrow Y_{k+1},
\]

\[
R_k = \begin{bmatrix} \phi_{1,k+1} & \phi_{2,k+1} \end{bmatrix} : F_{k+1} \rightarrow \begin{bmatrix} Y_{k+1} \\ Y_k \end{bmatrix}, \quad Q_k = \begin{bmatrix} 0 \\ \Pi_{F_k} \end{bmatrix} : F_k \rightarrow \begin{bmatrix} Y_{k+1} \\ Y_k \end{bmatrix},
\]

and define \(U'_k \) by [5.3] for each \(k \in \mathbb{Z} \). Here \(\Pi_{F_k} \) denotes the orthogonal projection from \(\mathcal{U}_k \) onto \(F_k \). Then \(\Lambda = \{ A_n, T'_n, U'_n, R_n, Q_n \mid n \in \mathbb{Z} \} \) is a data set for a time-variant relaxed commutant lifting problem, and \(\phi_k \) is the \(k \)-th underlying contraction of \(\Lambda \) for each \(k \in \mathbb{Z} \).

Proof. Fix \(k \in \mathbb{Z} \). Clearly, \(T'_k \) and \(A_k \) are contraction. Moreover, \(T'_k A_{k-1} R_{k-1} \) and \(A_k Q_n \) are both equal to the zero operator from \(F_k \) into \(Y_{k+1} \), and, since \(R_{k-1} = \phi_k \) is a contraction, we have \(R_{k-1} R_{k-1} \leq I_{F_k} = Q_k^* Q_k \). It then follows that \(\Lambda \) is a data set for a time-variant relaxed commutant lifting problem. Next, observe that

\[
D_{A_k} Q_k = \Pi_{F_k}, \quad D_{T'_k A_{k-1}} R_{k-1} = \phi_{1,k}, \quad \text{and} \quad D_{A_k R_{k-1}} = \phi_{2,k}.
\]

This implies that the \(k \)-th underlying contraction of \(\Lambda \) is equal to \(\phi_k \).
[6] J.A. Ball and I. Gohberg, A commutant lifting theorem for triangular matrices with diverse applications, *Integral Equations Operator Theory* 8 (1985), 205–267.

[7] J.A. Ball, I. Gohberg, and M.A. Kaashoek, Nevanlinna-Pick interpolation for time-varying input-output maps: the discrete case, in: *Time-Variant Systems and Interpolation*, OT 56, Birkhäuser-Verlag, Basel, 1992, pp. 1–51.

[8] J.A. Ball, I. Gohberg, and M.A. Kaashoek, $H\infty$-control and interpolation for time-varying systems, in: *Systems and networks: mathematical theory and applications, Vol. 1 (Regensburg, 1993)*, Math. Res., 77, Akademie-Verlag, Berlin, 1994, pp. 33–48.

[9] A. Biswas, C. Foias, and A.E. Frazho, Weighted variants of the three chain completion theorem, in: *Recent Advances in Operator Theory and Related Topics (Szeged, 1999)*, OT 127, Birkhäuser-Verlag, Basel, 2001, pp. 127–144.

[10] T. Constantinescu, Some aspects of nonstationarity. I, *Acta Sci. Math. (Szeged)* 54 (1990), 379–389.

[11] T. Constantinescu, *Schur parameters, factorization and dilation problems*, OT 82, Birkhäuser-Verlag, Basel, 1996.

[12] K.R. Davidson, *Nest algebras. Triangular forms for operator algebras on Hilbert space*, Pitman Research Notes in Mathematics Series, 191, Longman Scientific & Technical, Harlow, New York, 1988.

[13] P. Dewilde, Time-varying (matrix) interpolation, deadbeat control and the Löwner case, in: Proceedings of MTNS 2008 (Blacksburg, 2008).

[14] P. Dewilde, M.A. Kaashoek and M. Verhagen (Editors), *Challenges of a Generalized System Theory*, KNAW Wetensch. Verh. Afd. Natuurk. Eerste Reeks, 40, North-Holland, Amsterdam 1993.

[15] P. Dewilde and A.-J. van der Veen, *Time-varying systems and computations*, Kluwer Academic Publishers, Boston, MA, 1998.

[16] C. Foias and A.E. Frazho, *The Commutant Lifting Approach to Interpolation Problems*, OT 44, Birkhäuser-Verlag, Basel, 1990.

[17] C. Foias, A.E. Frazho, I. Gohberg, and M.A. Kaashoek, Discrete time-variant interpolation as classical interpolation with an operator argument, *Integral Equations and Operator Theory* 26 (1996), 371–403.

[18] C. Foias, A.E. Frazho, I. Gohberg, and M.A. Kaashoek, A time-variant version of the commutant lifting theorem and nonstationary interpolation problems, *Integral Equations Operator Theory* 28 (1997), 158–190.

[19] C. Foias, A.E. Frazho, I. Gohberg, and M.A. Kaashoek, Parameterization of all solutions of the three chains completion problem, *Integral Equations Operator Theory* 29 (1997), 455–490.

[20] C. Foias, A.E. Frazho, I. Gohberg, and M.A. Kaashoek, Metric constrained interpolation, commutant lifting and systems, Birkhäuser Verlag, Basel, 1998.

[21] C. Foias, A.E. Frazho, and M.A. Kaashoek, Relaxation of metric constrained interpolation and a new lifting theorem, *Integral Equations and Operator Theory*, 42 (2002), 253–310.

[22] A.E. Frazho, S. ter Horst, and M.A. Kaashoek, All solutions to the relaxed commutant lifting problem, *Acta Sci. Math. (Szeged)* 72 (2006), 299–318.

[23] A.E. Frazho, S. ter Horst, and M.A. Kaashoek, Relaxed commutant lifting: an equivalent version and a new application, in: Proceedings IWOTA 2007, OT 187, Birkhäuser Verlag, Basel, 2008, 157–168 (to appear).

[24] I. Gohberg, S. Goldberg and M.A. Kaashoek, *Classes of Linear Operators*, Volume II, OT 49, Birkhäuser Verlag, Basel, 1993.

[25] A. Halanay and V. Ionescu, *Time-varying discrete linear systems*, OT 68, Birkhäuser Verlag, Basel, 1994.

[26] S. ter Horst, *Relaxed commutant lifting and Nehari interpolation*, Ph.D. Thesis, Vrije Universiteit, Amsterdam, 2007, available online: www.darenet.nl.

[27] S. ter Horst, Relaxed commutant lifting: existence of a unique solution, submitted.

[28] W.S. Li and D. Timotin, The relaxed intertwining lifting in the coupling approach, *Integral Equations and Operator theory* 54 (2006), pp. 97–111.

[29] S. Parrott, On a quotient norm and the Sz.-Nagy-Foias lifting theorem, *J. Funct. Anal.* 30 (1978), 311–328.

[30] V.I. Paulsen and S.C. Power, Lifting theorems for nest algebras, *J. Operator Theory* 20 (1988), 311–327.
A TIME-VARIANT NORM CONSTRAINED INTERPOLATION PROBLEM

DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS, PURDUE UNIVERSITY, WEST LAFAYETTE, IN 47907, USA
E-mail address: frazho@ecn.purdue.edu

DEPARTMENT OF MATHEMATICS, VIRGINIA TECH, BLACKSBURG VA 24061, USA
E-mail address: terhorst@vt.edu

AFDELING WISKUNDE, FACULTEIT DER EXACTE WETENSCHAPPEN, VRIJE UNIVERSITEIT, DE BOELELAAN 1081A, 1081 HV AMSTERDAM, THE NETHERLANDS
E-mail address: ma.kaashoek@few.vu.nl