TOROIDAL AUTOMORPHIC FORMS FOR SOME FUNCTION FIELDS

GUNTHER CORNELISSEN AND OLIVER LORSHEID

Abstract. Zagier introduced toroidal automorphic forms to study the zeros of zeta functions: an automorphic form on GL_2 is toroidal if all its right translates integrate to zero over all nonsplit tori in GL_2, and an Eisenstein series is toroidal if its weight is a zero of the zeta function of the corresponding field. We compute the space of such forms for the global function fields of class number one and genus $g \leq 1$, and with a rational place. The space has dimension g and is spanned by the expected Eisenstein series. We deduce an "automorphic" proof for the Riemann hypothesis for the zeta function of those curves.

1. Introduction

Let X denote a smooth projective curve over a finite field F_q with q elements, A the adeles over its function field $F := F_q(X)$, B its standard (upper-triangular) Borel subgroup, $K = G(\mathcal{O}_A)$ the standard maximal compact subgroup of G_A, with \mathcal{O}_A the maximal compact subring of A, and Z the center of G. Let \mathcal{A} denote the space of unramified automorphic forms $f : G_F \backslash G_A / KZ_A \rightarrow \mathbb{C}$. We use the following notations for matrices:

\[\text{diag}(a, b) = (a \ 0 \\ 0 \ b) \quad \text{and} \quad [\begin{array}{cc} a & b \\ 0 & 1 \end{array}] = (a \ b) \]

There is a bijection between quadratic separable field extensions E/F and conjugacy classes of maximal non-split tori in G_F via

\[E^\times = \text{Aut}_E(E) \subset \text{Aut}_F(E) \cong G_F. \]

If T is a non-split torus in G with $T_F \cong E^\times$, define the space of toroidal automorphic forms for F with respect to T (or E) to be

\[T_F(E) = \{ f \in \mathcal{A} \mid \forall g \in G_A, \quad \int_{T_FZ_A \backslash T_A} f(tg) \, dt = 0 \}. \]

The integral makes sense since $T_FZ_A \backslash T_A$ is compact, and the space only depends on E, viz., the conjugacy class of T. The space of toroidal automorphic forms for F is

\[T_F = \bigcap_E T_F(E), \]

where the intersection is over all quadratic separable E/F. The interest in these spaces lies in the following version of a formula of Hecke ([5], Werke p. 201); see Zagier, [15] pp. 298–299 for this formulation, in which the result essentially follows from Tate’s thesis:

Proposition 1.1. Let ζ_E denote the zeta function of the field E. Let $\varphi : \mathbb{A}^2 \rightarrow \mathbb{C}$ be a Schwartz-Bruhat function. Set

\[f(g, s) = |\det g|_F^{s} \int_{\mathbb{A}_F^\times} \varphi((0, a)g)|a|^{2s} \, d^\times a. \]
An Eisenstein series $E(s)$

$$E(s)(g) := \sum_{\gamma \in B_F \backslash G_F} f(\gamma g, s) \quad (\text{Re}(s) > 1)$$

satisfies

$$\int_{T_F Z_A \backslash T_A} E(s)(tg) \, dt = c(\varphi, g, s) | \det g|^s \zeta_E(s)$$

for some holomorphic function $c(\varphi, g, s)$. For every g and s, there exists a function φ such that $c(\varphi, g, s) \neq 0$. In particular, $E(s) \in T_F(E) \iff \zeta_E(s) = 0$. \hfill \Box

Remark 1.2. Toroidal integrals of parabolic forms are ubiquitous in the work of Waldspurger ([13], for recent applications, see Clozel and Ullmo [1] and Lysenko [10]). Wielonsky and Lachaud studied analogues of toroidal integrals of parabolic forms.

In particular, $E(s) \in T_F(E) \iff \zeta_E(s) = 0$.

Lemma 1.3. The spaces $T_F(E)$ (for each E with corresponding torus T) and T_F are invariant under the Hecke algebra \mathcal{H}, and

$$T_F(E) \subseteq \{ f \in \mathcal{A} \mid \forall \Phi \in \mathcal{H}, \int_{T_F Z_A \backslash T_A} \Phi(f)(t) \, dt = 0 \} \quad \Box$$

Now assume F has class number one and there exists a place ∞ of degree one for F; let t denote a local uniformizer at ∞. Strong approximation implies that we have a bijection

$$G_F \backslash G_A K Z_\infty \sim \Gamma \backslash G_\infty K Z_\infty,$$

where $\Gamma = G(A)$ with A the ring of functions in F holomorphic outside ∞, and a subscript ∞ refers to the ∞-component. We define a graph \mathcal{G} with vertices $V \mathcal{G} = G_\infty / K Z_\infty$. If \sim denotes equivalence of matrices modulo $K Z_\infty$, then we call vertices in $V \mathcal{G}$ given by classes represented by matrices g_1 and g_2 adjacent, if $g_1^{-1} g_2 \sim [t, b]$ or $[t^{-1}, 0]$ for some $b \in \mathcal{O}_\infty / t$. Then \mathcal{G} is a tree that only depends on q (the so-called Bruhat-Tits tree of $\text{PGL}(2, F_\infty)$, cf. [11], Ch. II).

The Hecke operator $\Phi_\infty \in \mathcal{H}$ given by the characteristic function of $K[t, 0] K$ maps a vertex of \mathcal{G} to its neighbouring vertices. The action of Φ_∞ on the quotient graph $\Gamma \backslash \mathcal{G}$ can be computed from the orders of the Γ-stabilizers of vertices and edges in \mathcal{G}. When drawing a picture of $\Gamma \backslash \mathcal{G}$, we agree to label a vertex along the edge towards an adjacent vertex by the corresponding weight of a Hecke operator, as in the next example.

Example 1.4. In Figure 1 one sees the graph $\Gamma \backslash \mathcal{G}$ for the function field of $X = \mathbb{P}^1$, with the well-known vertices representing $\{ c_i = [\pi^{-i}, 0] \}_{i \geq 0}$ and the weights of Φ_∞, meaning

$$\Phi_\infty(f)(c_n) = qf(c_{n-1}) + f(c_{n+1}) \quad \text{and} \quad \Phi_\infty(f)(c_0) = (q + 1)f(c_1).$$

![Figure 1. The graph $\Gamma \backslash \mathcal{G}$ for $X = \mathbb{P}^1$](image-url)
2. The rational function field

First, assume \(X = \mathbb{P}^1 \) over \(\mathbb{F}_q \), so \(F \) is a rational function field. Set \(E = \mathbb{F}_{q^2} F \) the quadratic constant extension of \(F \).

Theorem 2.1. \(T_F = T_F(E) = \{0\} \).

Proof. Let \(T \) be a torus with \(T_F = E^\times \), that has a basis over \(F \) contained in the constant extension \(\mathbb{F}_{q^2} \).

The integral defining \(f \in T_F(E) \) in equation (1) for the element \(g = 1 \in G_A \) becomes

\[
\int_{T_F/T_A \cap T_A} f(t) \, dt = \kappa \cdot \int_{T_F/Z_A \cap T_A} f(t) \, dt = \kappa \cdot \int_{E^\times A_E^0 \cap A_E^0/\mathcal{O}_E} f(t) \, dt = \kappa \cdot f(c_0),
\]

with \(\kappa = \mu(T_A \cap K) \neq 0 \). Indeed, by our choice of “constant” basis, we have \(T_A \cap K \cong O^\times \). For the final equality, note that the integration domain \(E^\times A_E^0 \cap A_E^0/\mathcal{O}_E \) is isomorphic to the quotient of the class group of \(E \) by that of \(F \), and that both of these groups are trivial, so map to the identity matrix \(c_0 \in \Gamma \cap J \).

Hence we first of all find \(f(c_0) = 0 \). For \(\Phi = \Phi_k \), this equation transforms into \((\Phi^k f)(c_0) = 0 \) (cf. 2), and with 3 this leads to a system of equations for \(f(c_i) \) (\(i = 1, 2, \ldots \)) that can easily be shown inductively only to have the zero solution \(f = 0 \). \(\square \)

3. Three elliptic curves

Now assume that \(F \) is not rational, has class number one, a rational point \(\infty \) and genus \(\leq 1 \). In this paper, we focus on such fields \(F \), since it turns out that the space \(T_F \) can be understood elaborating only existing structure results about the graph \(\Gamma \setminus J \).

The Hasse-Weil theorem implies that there are only three possibilities for \(F \), which we conveniently number as follows: \(\{F_q\}_{q=2}^4 \) with \(F_q \) the function field of the projective curve \(X_q/\mathbb{F}_q \) \((q = 2, 3, 4)\) are the respective elliptic curves

\[
y^2 + y = x^3 + x + 1, \quad y^2 = x^3 - x - 1 \quad \text{and} \quad y^2 + y = x^3 + \alpha
\]

with \(\mathbb{F}_4 = \mathbb{F}_2(\alpha) \). Let \(F_q^{(2)} = \mathbb{F}_{q^2} F_q \) denote the quadratic constant extension of \(F_q \).

\[
\begin{array}{c}
\bullet & 1 & \bullet \\
\bullet & 1 & \bullet \\
\bullet & 1 & \bullet \\
\end{array}
\]

\[
\begin{array}{c}
t_1 & 1 & t_q \\
q + 1 & 1 & q + 1 \\
q + 1 & 1 & q + 1 \\
\end{array}
\]

\[
\begin{array}{c}
c_0 & 1 & c_1 \\
q - 1 & 1 & q \\
z_0 & 1 & z_1 \\
\end{array}
\]

\[
\begin{array}{c}
c_2 & 1 & \cdots \\
q & 1 & q \\
\end{array}
\]

Figure 2. The graph \(\Gamma \setminus J \) for \(F_q \) \((q = 2, 3, 4)\)

The graph \(\Gamma \setminus J \) for \(F_q \) \((q = 2, 3, 4)\) with the \(\Phi_\infty \)-weights is displayed in Figure 2 cf. Serre [11, 2.4.4 and Ex. 3b)+3c] on page 117 and/or Takahashi [12] for these facts.

Further useful facts: One easily calculates that \(X_q(\mathbb{F}_{q^2}) \) is cyclic of order \(2q + 1 \); let \(Q \) denote any generator. We will use lateron that the vertices \(t_i \) correspond to classes of rank-two vector bundles on \(X_q(\mathbb{F}_q) \) that are pushed down from line bundles on \(X_q(\mathbb{F}_{q^2}) \) given by multiples \(Q, 2Q, \ldots, qQ \) of \(Q \), cf. Serre, loc. cit. For a representation in terms of matrices, one may refer to [12]: if \(iQ = (\ell, \ast) \in X_q(\mathbb{F}_{q^2}) \), then \(t_i = [\ell^2, t^{-1} + \ell t] \).
We denote a function f on $\Gamma \backslash \mathcal{S}$ by a vector
\[
f = [f(t_1), \ldots, f(t_q) \mid f(z_0), f(z_1) \mid f(c_0), f(c_1), f(c_2), \ldots].
\]

Proposition 3.1. A function $f \in T_{F_q}(F_q^{(2)})$ ($q = 2, 3, 4$) belongs to the Φ_∞-stable linear space \mathcal{S} of functions
\[
\mathcal{S} := \{ [T_1, \ldots, T_q \mid Z_0, Z_1 \mid C_0, C_1, C_2, \ldots] \}
\]
with $C_0 = -2(T_1 + \cdots + T_q)$ and for $k \geq 0$,
\[
C_k = \begin{cases}
\lambda_k Z_0 + \mu_k (T_1 + \cdots + T_q) & \text{if } k \text{ even} \\
\nu_k Z_1 & \text{if } k \text{ odd}
\end{cases}
\]
for some constants λ_k, μ_k, ν_k. In particular,
\[
\dim T_{F_q}(F_q^{(2)}) \leq \dim \mathcal{S} = q + 2,
\]
and $\dim T_{F_q}$ is finite.

Proof. We choose arbitrary values T_j at t_j ($j = 1, \ldots, q$) and Z_j at z_j ($j = 1, 2$), and set $T = T_1 + \cdots + T_q$. We have
\[
\int_{T \mathcal{A} \backslash T\mathcal{A}} f(t) \, dt = C_0 + 2\tau.
\]
Indeed, by the same reasoning as in the proof of Theorem 2.1, the integration area maps to the image of
\[
\text{Pic}(X_q(F_{q^2}))/\text{Pic}(X_q(F_q)) = X_q(F_{q^2}) / X_q(F_q) = X_q(F_{q^2})
\]
(the final equality since X_q is assumed to have class number one) in $\Gamma \backslash \mathcal{S}$, and these are exactly the vertices c_0 and t_j (the latter with multiplicity two, since $\pm Q \in E(F_{q^2})$ map to the same vertex). The integral is zero exactly if $C_0 = -2\tau$. Applying the Hecke operator Φ_∞ to this equation (cf. (2)) gives $C_1 = -2Z_1$, then applying Φ_∞ again gives $C_2 = -(q + 1)Z_0$. The rest follows by induction. If we apply Φ_∞ to the equations (5) for $k \geq 2$, we find by induction for k even that
\[
C_{k+1} = \lambda_k C_1 + (\lambda_k q + \mu_k q(q + 1) - q\nu_{k-1})Z_0
\]
and for k odd that
\[
C_{k+1} = (\nu_k - q\lambda_{k-1})Z_0 + (\nu_k - q\mu_{k-1})\tau.
\]

Lemma 3.2. The space \mathcal{S} from (3) has a basis of $q + 2$ Φ_∞-eigenforms, of which exactly $q - 1$ are cusp forms with eigenvalue zero and support in the set of vertices $\{t_j\}$, and three are non-cuspidal forms with respective eigenvalues $0, q, -q$.

Proof. With $\tau = T_1 + \cdots + T_q$, the function
\[
f = [T_1, \ldots, T_q \mid Z_0, Z_1 \mid -2\tau, C_1, C_2, \ldots]
\]
is a Φ_∞-eigenform with eigenvalue λ if and only if
\[
\lambda T_j = (q + 1)Z_1; \ \lambda Z_1 = \tau + Z_0; \ \lambda Z_0 = qZ_1 + C_1; \ \lambda(-2\tau) = (q + 1)C_1; \ \text{etc.}
\]
We consider two cases:

(a) if $\lambda = 0$, we find q forms
\[
f_k = [0, \ldots, 0, 1, 0, \ldots, 0 \mid 0, -1 \mid -q, \ldots]
\]
with $T_j = 1 \iff j = k$.

Corollary 3.3. The Riemann hypothesis is true for ζ_{F_q} ($q = 2, 3, 4$).

Proof. From Lemma 3.2, we deduce that the only possible Φ_∞-eigenvalue of a toroidal Eisenstein series is $\pm q$ or 0, but on the other hand, from Lemma 3.4, we know this eigenvalue is $q^s + q^{1-s}$ where $\zeta_{F_q}(s) = 0$. We deduce easily that s has real part $1/2$. \qed

Remark 3.4. One may verify that this proves the Riemann Hypothesis for the fields F_q without actually computing ζ_{F_q}: it only uses the expression for the zeta function by a Tate integral. Using a sledgehammer to crack a nut, one may equally deduce from Theorem 2.1 that ζ_{F_2} doesn’t have any zeros. At least the above corollary shows how enough knowledge about the space of toroidal automorphic forms does allow one to deduce a Riemann Hypothesis, in line with a hope expressed by Zagier 15.

Theorem 3.5. For $q = 2, 3, 4$, T_{F_q} is one-dimensional, spanned by the Eisenstein series of weight s equal to a zero of the zeta function ζ_{F_q} of F_q.

Remark 3.6. Note that the functional equation for $E(s)$ implies that $E(s)$ and $E(1-s)$ are linearly dependent, so it doesn’t matter which zero of ζ_{F_q} is taken.

Proof. By Lemma 3.2, T_{F_q} is a Φ_∞-stable subspace of the finite dimensional space \mathcal{S}, and Φ_∞ is diagonalizable on \mathcal{S}. By linear algebra, the restriction of Φ_∞ is also diagonalizable on T_{F_q} with a subset of the given eigenvalues, hence T_{F_q} is a subspace of the space of automorphic forms for the corresponding eigenvalues of Φ_∞. By [8], Theorem 7.1, it can therefore be split into a direct sum of a space of Eisenstein series \mathcal{E}, a space of residues of Eisenstein series \mathcal{R}, and a space of cusp forms \mathcal{C} (note that in the slightly different notations of [8], “residues of Eisenstein series” are called “cusp series”, too). We treat these spaces separately.

\mathcal{E}: By Proposition 3.1, $T_{F_q}(F_q(2))$ contains exactly two Eisenstein series, one corresponding to a zero s_0 of ζ_{F_q}, and one corresponding to a zero s_1 of $L_q(s) := \zeta_{F_q(2)}(s)/\zeta_{F_q}(s)$.

Now consider the torus \tilde{T} corresponding to the quadratic extension $E_q = F_q(z)/F_q$ of genus two defined by $x = z(z + 1)$. Set

$$\tilde{L}_q(s) := \zeta_{E_q}(s)/\zeta_{F_q}(s)$$

and $T = q^{-s}$. One computes immediately that $L_q = qT^2 + qT + 1$ but

$$\tilde{L}_2 = 2T^2 + 1, \quad \tilde{L}_3 = 3T^2 + T + 1 \quad \text{and} \quad \tilde{L}_4 = 4T^2 + 1.$$

Since L_q and \tilde{L}_q have no common zero, the \tilde{T}-integral of the Eisenstein series of weight s_1 is non-zero, and hence it doesn’t belong to T_{F_q}. Hence \mathcal{E} is as expected.

\mathcal{R}: Elements in \mathcal{R} have Φ_∞-eigenvalues $\neq 0, \pm q$, so cannot even occur in \mathcal{S}: since the class number of F_q is one, \mathcal{R} is spanned by the two forms

$$r_\pm := [1, \ldots, 1 \mid \pm 1, 1 \mid 1, \pm 1, 1, \pm 1, \ldots]$$

with $r(c_i) = (\pm 1)^i$, and this is a Φ_∞-eigenform with eigenvalue $\pm(q + 1)$. (In general, the space is spanned by elements of the form $\chi \circ \det$ with χ a class group character, cf. [8], p. 174.)
\(\mathcal{C} : \) By multiplicity one, \(\mathcal{C} \) has a basis of simultaneous \(\mathcal{H} \)-eigenforms. From Lemma 3.2, we know that potential cusp forms in \(\mathbb{T}_{\mathcal{F}} \) have support in the set of vertices \(\{ t_i \} \). To prove that \(\mathcal{C} = \{ 0 \} \), the following therefore suffices:

Proposition 3.7. The only cusp form which is a simultaneous eigenform for the Hecke algebra \(\mathcal{H} \) and has support in \(\{ t_i \} \) is \(f = 0 \).

Proof. Let \(f \) denote such a form. Fix a vertex \(t \in \{ t_i \} \). It corresponds to a point \(P = (t, \ast) \) on \(X_q(\mathbb{F}_q) \), which is a place of degree two of \(\mathbb{F}_q(X_q) \). Let \(\Phi_P \) denote the corresponding Hecke operator. We claim that

Lemma 3.8. \(\Phi_P(c_0) = (q + 1)c_2 + q(q - 1)t \).

Given this claim, we finish the proof as follows: we assume that \(f \) is a \(\Phi_P \)-eigenform with eigenvalue \(\lambda_P \). Then

\[
0 = \lambda_P f(c_0) = \Phi_P f(c_0) = q(q - 1)f(t) + (q + 1)f(c_2) = q(q - 1)f(t)
\]

since \(f(c_2) = 0 \), hence \(f(t) = 0 \) for all \(t \).

Proof of Lemma 3.8. As in [3], 3.7, the Hecke operator \(\Phi_P \) maps the identity matrix (= the vertex \(c_0 \)) to the set of vertices corresponding to the matrices \(m_\infty := \text{diag}(\pi, 1) \) and \(m_b := \begin{pmatrix} b & \pi \\ 0 & \pi \end{pmatrix} \), where \(\pi = x - \ell \) is a local uniformizer at \(P \) and \(b \) runs through the residue field at \(P \), which is

\[
\mathbb{F}_q[X]/(x - \ell) = \mathbb{F}_q[y]/F(\ell, y) \cong \mathbb{F}_q.
\]

if \(F(x, y) = 0 \) is the defining equation for \(X_q \). Hence we can represent every such \(b \) as \(b = b_0 + b_1y \). We now reduce these matrices to a standard form \(F \setminus \mathcal{T} \) from [12], §2. By right multiplication with \([1, -b_0] \), we are reduced to considering only \(b = b_1y \).

If \(b_1 = 0 \), then the matrix is \(m_b = \text{diag}(1, \pi) \sim \text{diag}(\pi^{-1}, 1) \). Recall that \(t = x/y \) is a uniformizer at \(\infty \), so \(x - \ell = t^{-2} \cdot A \) for some \(A \in \mathbb{F}_q[\ell] \). Hence right multiplication by \(\text{diag}(A^{-1}, 1) \) gives that this matrix reduces to \(c_2 \). The same is true for \(m_\infty \).

On the other hand, if \(b_1 \neq 0 \), multiplication on the left by \(\text{diag}(1, b_1) \) and on the right by \(\text{diag}(1, b_1^{-1}) \) reduces us to considering \(m_y \). By multiplication on the right with

\[
\text{diag}((x - \ell)^{-1} \cdot A, (x - \ell)^{-1}),
\]

we get \(m_y \sim [t^2, y/(x - \ell)] \). Now note that

\[
\frac{y}{x - \ell} = \frac{y}{x} \cdot \left(1 + \frac{\ell}{x} + \left(\frac{\ell}{x} \right)^2 + \ldots \right) = t^{-1} + \ell t + \beta(t)t^2
\]

for some \(\beta \in \mathbb{F}_q[\ell] \). Hence right multiplication with \([1, -\beta] \) gives \(m_y \sim [t^2, t^{-1} + \ell t] \), and this is exactly the vertex \(t \).

Remark 3.9. Using different methods, more akin the geometrical Langlands programme, the second author ([9]) has generalized the above results as follows. For a general function field \(F \) of genus \(g \) and class number \(h \), one may show that \(\mathbb{T}_F \) is finite dimensional. Its Eisenstein part is of dimension at least \(h(g - 1) + 1 \). Residues of Eisenstein series are never toroidal. For general elliptic function fields, there are no toroidal cusp forms. For a general function field, the analogue of a result of Waldspurger ([13], Prop. 7) implies that the cusp forms in \(\mathbb{T}_F \) are exactly those having vanishing central \(L \)-value.
REFERENCES

[1] Laurent Clozel and Emmanuel Ullmo. Équidistribution de mesures algébriques. *Compos. Math.*, 141(5):1255–1309, 2005.
[2] Alain Connes. Trace formula in noncommutative geometry and the zeros of the Riemann zeta function. *Selecta Math. (N.S.)*, 5(1):29–106, 1999.
[3] Stephen S. Gelbart. *Automorphic forms on adele groups*. Annals of Math. Studies, vol. 83, P.U.P., Princeton, 1975.
[4] Günter Harder. Chevalley groups over function fields and automorphic forms. *Ann. of Math.*, 100(2):249–306, 1974.
[5] Erich Hecke. Über die Kroneckersche Grenzformel für reelle quadratische Körper und die Klassenzahl relativ-abelscher Körper. *Verhandlungen der Naturforschenden Gesellschaft in Basel* 28:363–372, 1917 = Werke, pp. 198–207 (no. 10).
[6] Gilles Lachaud. Zéros des fonctions L et formes toriques. *C. R. Math. Acad. Sci. Paris*, 335(3):219–222, 2002.
[7] Gilles Lachaud. Spectral analysis and the Riemann hypothesis. *J. Comput. Appl. Math.*, 160(1-2):175–190, 2003.
[8] Wen-Ch’ing Winnie Li. Eisenstein series and decomposition theory over function fields. *Math. Ann.* 240:115–139, 1979.
[9] Oliver Lorscheid. Toroidal automorphic forms for function fields. Ph.D. Thesis, Utrecht University, 2008.
[10] Sergei Lysenko. Geometric Waldspurger periods. preprint [math.AG/0510110] (2005).
[11] Jean-Pierre Serre. *Trees*. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003.
[12] Shuzo Takahashi. The fundamental domain of the tree of $GL(2)$ over the function field of an elliptic curves. *Duke Math. J.* 72(1):85–97, 1993.
[13] Jean-Loup Waldspurger. Sur les valeurs de certaines fonctions L automorphe en leur centre de symétrie. *Compos. Math.* 54:173–242, 1985.
[14] Franck Wielonsky. Séries d’Eisenstein, intégrales toroidales et une formule de Hecke. *Enseign. Math. (2)*, 31(1-2):93–135, 1985.
[15] Don Zagier. Eisenstein series and the Riemann zeta function. In *Automorphic forms, representation theory and arithmetic (Bombay, 1979)*, volume 10 of *Tata Inst. Fund. Res. Studies in Math.*, pp. 275–301.

MATHEMATISCH INSTITUUT, UNIVERSITEIT UTRECHT, POSTBUS 80.010, 3508 TA UTRECHT, NEDERLAND

E-mail address: {cornelis,lorschei}@math.uu.nl