SUPPLEMENTARY MATERIAL

Cytotoxic pimarane-type diterpenes from the marine sediment-derived fungus *Eutypella* sp. FS46

Hongxin Liu, Ling Zhang, Yuchan Chen, Saini Li, Guohui Tan, Zhanghua Sun, Qingling Pan, Wei Ye, Haohua Li* and Weimin Zhang**

State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China

Abstract

Two new pimarane-type diterpenes, scoparanes H-I (1-2), along with five known ones (3-7) were isolated from the culture broth of a marine sediment-derived fungus *Eutypella* sp. FS46, which was obtained from the South China Sea. Their structures were established by extensive spectroscopic analysis. All of them were evaluated for their cytotoxic activities against MCF-7, NCI-H460, and SF-268 tumor cell lines. Scopararane I (2) showed moderate inhibitory activities.

Keywords: pimarane diterpenes; *Eutypella* sp. FS46; scopararane H; scopararane I; cytotoxic activity

* Corresponding authors. E-mail: wmzhang@gdim.cn; hhli100@126.com; Fax: +86-20-87688612.
Contents

Figure S1. 1H NMR spectrum of 1.
Figure S2. 13C NMR spectrum of 1.
Figure S3. DEPT spectrum of 1.
Figure S4. 1H-1H COSY spectrum of 1.
Figure S5. HSQC spectrum of 1.
Figure S6. HMBC spectrum of 1.
Figure S7. NOESY spectrum of 1.
Figure S8. HREIMS spectrum of 1.
Figure S9. UV spectrum of 1.
Figure S10. IR spectrum of 1.
Figure S11. 1H NMR spectrum of 2.
Figure S12. 13C NMR spectrum of 2.
Figure S13. DEPT spectrum of 2
Figure S14. 1H-1H COSY spectrum of 2.
Figure S15. HSQC spectrum of 2.
Figure S16. HMBC spectrum of 2
Figure S17. NOESY spectrum of 2.
Figure S18. HREIMS spectrum of 2.
Figure S19. UV spectrum of 2
Figure S20. IR spectrum of 2.
Figure S21. Key NOESY correlations of compounds 1 and 2.
Table S1. 1H (500 MHz) and 13C (125 MHz) NMR data of compounds 1 and 2 in CD$_3$OD (J in Hz, δ in ppm).
Table S2. Cytotoxic activities of compounds 1–7.
Figure S1. 1H NMR spectrum of 1

Figure S2. 13C NMR spectrum of 1
Figure S3. DEPT spectrum of 1

Figure S4. 1H–1H COSY spectrum of 1
Figure S5. HSQC spectrum of 1

Figure S6. HMBC spectrum of 1
Figure S7. NOESY spectrum of 1

Elemental Composition Report

Single Mass Analysis
Tolerance = 6.0 PPM / DBE: min = -1.5, max = 50.0
Element prediction: Off
Number of isotopic peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions
329 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 0-100 H: 0-1000 N: 0-5 O: 0-200 Na: 1-1

MS+
ES(+) 29 (1.67E) AM (C6, 60.00, Ar, 6500, 0.555, 0.70, 0.75, 0.75); 3m (Me, 2x3.00); 5b (1x4.00); Cm (4.33)
1: TDF MS ES+ 6.34e+004

Figure S8. HREIMS spectrum of 1
Figure S9. UV spectrum of 1

Figure S10. IR spectrum of 1
Figure S11. 1H NMR spectrum of 2

Figure S12. 13C NMR spectrum of 2
Figure S13. DEPT spectrum of 2

Figure S14. 1H-1H COSY spectrum of 2
Figure S15. HSQC spectrum of 2

Figure S16. HMBC spectrum of 2
Figure S17. NOESY spectrum of 2

Figure S18. HRESIMS spectrum of 2
Figure S19. UV spectrum of 2

Figure S20. IR spectrum of 2
Figure S21. Key NOESY correlations of compounds 1 and 2.

Table S1. 1H (500 MHz) and 13C (125 MHz) NMR data of compounds 1 and 2 in CD$_3$OD (J in Hz, δ in ppm).

no.	δ	δ	no.	δ	δ
1	7.11, d, 10.4	157.3, CH	1	1.77, m	13.2, CH
2	5.93, d, 10.4	126.7, CH	2a	2.29, ddd, 3.0, 9.3, 16.0	25.8, CH$_2$
3	206.9, C	45.8, C	2b	1.92, dd, 3.0, 6.3	43.5, CH
4	2.63, d, 1.5	44.2, CH	3	4.88, t, 3.0	71.7, CH
5	4.29*	71.6, CH	4	2.44, d, 12.6	40.2, C
6	7.1, d, 1.5	71.4, CH	5	4.26, d, 12.6	77.4, CH
7	4.29*	136.8, C	6	1.92, ddd, 3.0, 9.3, 16.0	201.4, C
8	2.55, m	75.5, C	7	1.95, ddd, 3.0, 9.3, 16.0	131.8, C
9	46.4, C	10	1.88, m	167.4, C	
10	25.2, CH$_2$	11a	2.20, ddd, 3.0, 9.3, 16.0	23.8, CH$_2$	
11a	1.85, m	28.1, C			
11b	2.33, ddd, 3.0, 9.3, 16.0	11b	1.88, m	39.8, C	
12a	1.56, m	32.1, CH$_2$	12a	1.95, ddd, 3.0, 9.3, 16.0	26.1, CH$_2$
12b	1.78, m	12b	1.44, m	112.6, CH$_2$	
13	38.3, C	13	4.18, s	68.0, CH	
14	5.95, ddd, 3.0, 9.3, 16.0	14	6.06, m	146.6, CH	
15	132.9, CH	15	5.07, d, 1.3	112.6, CH$_2$	
16a	148.7, CH	16a	5.07, d, 1.3	70.5, CH$_2$	
16b	110.9, CH$_2$	16b	5.45, d, 1.3	20.9, CH$_3$	
17	23.3, CH$_3$	17	5.04, dd, 1.3, 5.1	20.9, CH$_3$	
18	25.6, CH$_3$	18	0.76, s	171.9, C	
19	24.5, CH$_3$	19	1.19, s	21.0, CH$_3$	
20	21.3, CH$_3$	20b	0.69, dd, 5.2, 9.5	178.1, C	
	2.12, t, 5.2	1"	1.99, s	35.2, CH	
	0.69, dd, 5.2, 9.5	1"	1.99, s	19.2, CH$_3$	
	1.12, d, 7.0	1"	1.99, s	19.2, CH$_3$	

*aoverlapped
Table S2. Cytotoxic activities of compounds 1–7.

Compounds	IC\textsubscript{50} (μg mL-1)		
	MCF-7	NCI-H460	SF-268
1	80.63	>100	>100
2	13.59	83.91	25.31
3	5.18	>100	62.34
4	5.18	34.29	13.27
5	10.03	53.91	>100
6	>100	>100	>100
7	0.84	10.74	1.37
Cisplatin	1.20	0.87	1.43