Pathogenic Chytrid Fungus *Batrachochytrium dendrobatidis*, but Not *B. salamandrivorans*, Detected on Eastern Hellbenders

Emma K. Bales‡, Oliver J. Hyman‡, Andrew H. Loudon*‡a, Reid N. Harris1, Gregory Lipps‡b, Eric Chapman3, Kenneth Roblee4, John D. Kleopfer5, Kimberly A. Terrell6

1 Biology Department, James Madison University, Harrisonburg, Virginia, United States of America, 2 Gregory Lipps, LLC, Toledo, Ohio, United States of America, 3 Western Pennsylvania Conservancy, Pittsburgh, Pennsylvania, United States of America, 4 New York Department of Environmental Conservation, Albany, New York, United States of America, 5 Virginia Department of Game and Inland Fisheries, Richmond, Virginia, United States of America, 6 Smithsonian Conservation Biology Institute, Front Royal, Virginia, United States of America

‡ These authors contributed equally to this work.

*terrellk@si.edu

Abstract

Recent worldwide declines and extinctions of amphibian populations have been attributed to chytridiomycosis, a disease caused by the pathogenic fungus *Batrachochytrium dendrobatidis* (*Bd*). Until recently, *Bd* was thought to be the only *Batrachochytrium* species that infects amphibians; however a newly described species, *Batrachochytrium salamandrivorans* (*Bs*), is linked to die-offs in European fire salamanders (*Salamandra salamandra*). Little is known about the distribution, host range, or origin of *Bs*. In this study, we surveyed populations of an aquatic salamander that is declining in the United States, the eastern hellbender (*Cryptobranchus alleganiensis alleganiensis*), for the presence of *Bs* and *Bd*. Skin swabs were collected from a total of 91 individuals in New York, Pennsylvania, Ohio, and Virginia, and tested for both pathogens using duplex qPCR. *Bs* was not detected in any samples, suggesting it was not present in these hellbender populations (0% prevalence, 95% confidence intervals of 0.0 – 0.04). *Bd* was found on 22 hellbenders (24% prevalence, 95% confidence intervals of 0.16 ≤ 0.24 ≤ 0.34), representing all four states. All positive samples had low loads of *Bd* zoospores (12.7 ± 4.9 S.E.M. genome equivalents) compared to other *Bd* susceptible species. More research is needed to determine the impact of *Batrachochytrium* infection on hellbender fitness and population viability. In particular, understanding how hellbenders limit *Bd* infection intensity in an aquatic environment may yield important insights for amphibian conservation. This study is among the first to evaluate the distribution of *Bs* in the United States, and is consistent with another, which failed to detect *Bs* in the U.S. Knowledge about the distribution, host range, and origin of *Bs* may help control the spread...
Alytes obstetricans is resistant to Bs, despite the species’ known susceptibility to infection by Bd [2]. Despite the potential importance of Bs to global amphibian conservation, little is known about the distribution, host range, and origin of this fungus (but see [2–4]). In this study, we surveyed wild populations of the eastern hellbender (Cryptobranchus alleganiensis alleganiensis) for the presence of both Batrachochytrium species.

The hellbender is an aquatic salamander inhabiting cool (typically ≤20°C), highly-oxygenated rivers throughout the eastern U.S. and in parts of the Ozarks [5]. This species is the sole member of the family Cryptobranchidae in the western hemisphere, and its closest relatives, the Japanese and Chinese giant salamanders (Andrias japonicus and Andrias davidensis, respectively), are endangered in the wild. Although Bd has been detected on wild [6] and museum [7] specimens of Andrias, the susceptibility of these species to the resulting disease, chytridiomycosis, is unknown. Both the eastern and Ozark (C. a. bishopi) subspecies of hellbender have experienced widespread population declines in the last 30 years, likely due in part to habitat degradation and poaching [8–10].

Although Bd has been detected on hellbenders across a broad geographic area [11–16] and is believed to sometimes cause chytridiomycosis in captive individuals [17], the potential role of this pathogen in the species’ decline remains unclear. There is some evidence of seasonality in Bd infection of hellbenders, with prevalence being higher in cooler months of the year (March) compared to warmer months (May) [15]. Both captive and wild hellbenders are susceptible to skin disease that results in tissue necrosis, particularly on the ventral surface of the feet, but the cause of this condition is unknown [18]. Given that hellbenders are restricted to cool aquatic habitats (typically <20°C) [5], are commonly infected with Bd [11–16], and exhibit idiopathic skin disease in situ [5], it is a priority species for Bs testing. To our knowledge, Bs infection has not been reported for any North American amphibian or Cryptobranchid salamander [4].

We sampled populations of eastern hellbenders for the presence of Bd during routine population monitoring surveys from June 2012—July 2013. Because Bs was first reported before our samples were analyzed, we tested them for both pathogens simultaneously. Given the observation of presumed chytridiomycosis in captive hellbenders [17] and evidence that both eastern red-backed salamanders (Plethodon cinereus) [19] and southern mountain yellow-legged frogs (Rana muscosa) [20] lose weight when infected with Bd, we hypothesized that wild hellbenders infected by either Batrachochytrium species would exhibit poorer body conditions (as...
measured by a quantitative index calculated from weight and length) compared to uninfected counterparts. We further predicted that the prevalence of Bd infections in hellbenders would be lower during the warmest months of the year (i.e., July and August) when compared to animals sampled in early summer (i.e., June). We anticipated that knowledge about the prevalence and consequences of Batrachochytrium infection (particularly Bs) in eastern hellbenders could help inform the management of salamanders in this biologically-diverse region.

Materials and Methods

Hellbender sampling

Hellbenders (n = 88) were captured by dip net or net while snorkeling between June and August of 2012 and during July of 2013 from 17 sites in Ohio, Virginia, Pennsylvania and New York (n = 1–23 individuals per site). An additional three hellbenders (making n = 91 in total) were held in captivity at a regional fish hatchery, which has a flow-through system with water pumped directly from an adjacent stream that is known to be inhabited by hellbenders. Weight, length, life stage (adult vs. juvenile), and sex were recorded for each animal. Sampled individuals included 18 adult females, 34 adult males, 7 juveniles, and 32 individuals of unknown sex. The presence or absence of cloacal swelling (indicative of spermatogenesis) was used to determine the sex of adult hellbenders captured from mid July—early August. Individuals captured before that period were classified as unknown sex. Juvenile (total length ≤30 cm) hellbenders cannot be sexed in the field. Hellbenders were rinsed with sterile Provasoli medium in sterile plastic containers three times prior to sampling to remove dirt and other PCR inhibitors and to increase the likelihood that any detected Batrachochytrium was associated with the individual’s skin rather than the aquatic environment. New gloves were used between individuals. Each animal was swabbed with a sterile rayon swab (BBL CultureSwab, BD Diagnostics, Franklin Lakes, NJ, USA) ten times back and forth on their ventral side, and five times back and forth on each hand and foot. Swabs were stored on ice and frozen at -80°C within 24 hours of collection.

Ethics Statement

All animal procedures were approved by the respective Animal Care and Use Committees at Smithsonian Institution (protocol #11–19) and at James Madison University (protocol #A13–12). Field research permits were obtained from the Virginia Department of Game and Inland Fisheries (permit #042343) and the Pennsylvania Fish and Boat Commission (permit #637). Sampling in New York (NY) was conducted directly by the NY Department of Environmental Conservation. Hellbender sampling in Ohio was conducted under letter permit from the Ohio Division of Wildlife issued to Gregory Lipps.

Molecular Techniques

DNA was isolated from the swabs using the Mo Bio PowerSoil Kit (Mo Bio Laboratories, Inc. Carlsbad, CA) using the EMP protocol (http://www.earthmicrobiome.org/emp-standard-protocols/). Duplex real-time polymerase chain reaction (qPCR) was performed in triplicate using previously described methods [23] with a Bio-Rad CFX96 Touch Real-Time PCR Detection System (Bio-Rad, Hercules, CA). Negative and positive controls were included in each PCR run. In addition, the presence of PCR inhibitors was tested using internal controls [24] in one replicate well for each sample. B. dendrobatidis standard curves from 1 to 1000 zoospore genome equivalents (G.E.) were prepared from JEL 423 cultures maintained at R. Harris’ laboratory (James Madison University, Harrisonburg, VA, USA). B. salamandrivorans standard
curves from 0.1 to 100 zoospore equivalents were prepared from cultures provided by An Mar-tel (Ghent University, Merelbeke, Belgium.). A more sensitive standard curve was generated for Bs due to the lack of information about zoospore loads in wild amphibians. Samples were considered positive if all three wells contained more than one dilution-corrected zoospore equivalent of the pathogen. Samples that tested positive in only one or two wells were retested and considered positive if the pathogen was detected in at least one well in the subsequent run. Reported G.E. were corrected to account for the total amount of DNA isolated per swab.

Statistical Analyses
Pathogen prevalence was calculated using the number of infected animals divided by the total sample size and included 95% Clopper-Pearson binomial confidence intervals. Chi-squared analyses were used to test the influence of sex and sampling month on the presence of infection. Body condition index (BCI) of each animal was calculated as the residuals from a regression of log-transformed body mass against log-transformed total length [25]. Six animals were dropped from this analysis due to improperly recorded data. The BCI of infected versus uninfected hellbenders was compared using a one-tailed Student’s t-test. Statistical tests were performed using SPSS V. 21(2012; Armonk, NY, USA). Results were considered significant at $P < 0.05$ and are reported as means ± standard error unless otherwise noted.

Results
Positive and negative qPCR controls indicated no evidence of inhibition or contamination, respectively. B. salamandrivorans was not detected in any sample (0% prevalence, 95% confidence intervals of 0.0–0.04). In contrast, Bd was detected in 13 (~72%) of the sites, representing all four states (S1 Table; Fig. 1). Overall Bd prevalence was 24%, with 22 samples testing positive (95% CI: 0.16≤0.24≤0.34). Of these samples, 17 tested positive initially, whereas five were negative in one well and subsequently rerun. In the second run, all five samples were positive in at least one well. All samples that tested positive contained Bd zoospore loads of ≤100, with a mean infection intensity of 12.7 ± 4.9 G.E. There was no influence of sex on infection probability (chi square $n = 52, \text{df} = 1, p = 0.73$), although 32 out of 84 adults could not be sexed because they were captured before the onset of seasonal spermatogenesis. No juveniles tested positive for Bd (0% prevalence, 95% CI: 0.0≤0.41), but life stage did not influence detection probability (chi square $n = 91, \text{df} = 1, p = 0.12$). Overall Bd prevalence in adults was 26% (95% CI: 0.17≤0.26≤0.37; S2 Table). The number of Bd positive animals differed by month (chi square $n = 91, \text{df} = 2, p = 0.04$), with higher prevalence in early summer (June) than mid-late summer (S1 Fig.). Body condition of Bd-positive animals was not significantly different from Bd-negative individuals (1-tailed t-test; $t = -1.155, p = 0.176; N = 85$; Fig. 2).

Discussion
Despite the potential importance of Bs to global amphibian conservation, current understand-ing of this newly described pathogen is limited. To our knowledge, this study was the second to investigate the presence of Bs in North America [4] and the first to test for Bs in any Crypto-branchid salamander. Our findings yielded four important insights. First, our data suggest that Bs is not present in populations of hellbenders in the eastern United States. Second, our findings expand the known distribution of Bd in this host species, supporting the idea that the fungus is common (although not ubiquitous) throughout the hellbender’s range. Third, we detected low loads of Bd zoospores (≤100 G.E.) in all positive samples. In contrast, previous studies in hellbenders either did not quantify or did not report Bd zoospore load. Finally, we
did not detect a relationship between Bd infection status and body condition, highlighting the need for empirical research to elucidate the consequences of Bd infection in hellbenders.

Although Bs does not appear to be present in eastern hellbender populations, more surveys will be needed to determine whether Bs is present within the U.S. These surveys should target aquatic or semi-aquatic salamander species that occupy thermal environments similar to that of the European fire salamander, such as mole salamanders (*Ambystoma* spp.), common mud-puppies (*Necturus maculosus maculosus*), red-spotted newts (*Notophthalmus viridescens viridescens*), or Pacific giant salamanders (*Dicamptodon* spp.). Future surveys should also target potentially vulnerable geographic areas such as cities and regions with coastal ports, because they may be likely entry points for disease from pet trade [26]. Experimental infection trials will be necessary to determine which amphibian species outside of Belgium are susceptible to
Bs infection and could serve as early indicators of the pathogen’s presence. This knowledge will also help identify species of concern for Bs related decline. It is also unknown whether Bs has alternative hosts. Future research should investigate potential non-amphibian hosts to Bs, such as crayfish [27] and waterfowl [28], which can carry Bd infections.

Although Bd has been detected on hellbenders from Arkansas [13], Georgia [15], Indiana [14], Missouri [11,13], Pennsylvania [29], and Tennessee [16], little is known about the individual and population-level impacts of this pathogen on hellbenders and other Cryptobranchids. Previous studies in hellbenders either have not measured or have not reported Bd zoospore loads. The infection intensities that we detected (12.7 ± 4.9 S.E.M. zoospore G.E.) were low compared to other amphibians [30] and far below the “~10,000 zoospore (per swab) threshold”, where declines in some amphibian populations become evident [31]. This suggests that hellbenders can limit colonization and reproduction of Bd on their skin. Determining how hellbenders limit Bd infection intensity in an aquatic environment may yield important insights for amphibian conservation against Bd.

We found no difference in body condition between Bd-positive and Bd-negative hellbenders. The low-level infections we found may not have been strong enough to cause negative growth effects. Alternatively, Bd-positive individuals with significantly deteriorating body condition could have died, either from infection or predation, and thus gone undetected. Importantly, hellbenders can consume large prey items, which could confound a weight-based body condition metric. Future hellbender studies should investigate alternative health metrics not based on mass, such as circulating leukocyte profiles [32] or fluctuating asymmetry [33]. Experimental infection of captive animals or mark-recapture studies of wild infected animals could also help elucidate how Bd affects hellbender fitness.

Fig 2. Body condition of Bd-positive versus Bd-negative eastern hellbenders. Body condition index of Bd-positive and Bd-negative animals did not differ (1-tailed t-test; t = -1.155, p = 0.176). The lower and upper edges of the boxes represent the first and third quartile, respectively. A bold horizontal line indicates the median value; vertical bars indicate the range of data, excluding outliers (indicated by circles).

doi:10.1371/journal.pone.0116405.g002
We detected a seasonal trend in *Bd* prevalence with a greater prevalence at the beginning of summer (S1 Fig.). This is consistent with past studies finding higher *Bd* prevalence and intensity during cooler temperatures [34]. However, because each site was visited opportunistically at only one time point, we cannot separate the effect of season versus site on *Bd* prevalence. Despite this caveat, these data suggest that seasonal variation in infection prevalence should be considered when monitoring hellbender populations for the presence of *Bd*. Hellbender population monitoring surveys are typically conducted during the summer months (primarily July-August) due to the difficulty of surveying in cold water conditions and high water levels in the spring. It will be important to monitor hellbenders during cooler months when they may be more susceptible to *Batrachochytrium* infection and chytridiomycosis or before and after cooler months by use of mark recapture.

Our results highlight the need for more research on the effects of *Bd* on eastern hellbenders. In addition, our limited knowledge of the distribution and host range of *Bs* emphasizes the need for caution against spreading this pathogen to potentially naïve regions. This caution is especially important for the eastern United States, a global center of salamander diversity [35]. Studies that examine the susceptibility of hellbenders and other U.S. salamanders to *Batrachochytrium* infection, coupled with regular monitoring of wild salamander populations, will facilitate the development of sound management strategies to protect these endemic amphibian species.

Supporting Information

S1 Data. Spreadsheet of all data used for statistical analyses.
(XLSX)

S1 Fig. *Bd* prevalence on eastern hellbenders by month (June-August). *Bd* prevalence was significantly higher for animals sampled in June (early summer) than for those sampled in July (mid-summer; chi square \(n = 78, df = 1, p = 0.02 \)). Prevalence in August (late summer) was not significantly different from June (chi square \(n = 36, df = 1, p = 0.09 \)) or July (chi square \(n = 68, df = 1, p = 0.81 \)). Vertical error bars represent Clopper-Pearson 95% confidence intervals. Numbers below each month signify sample size for that month. Letters above error bars signify months with statistically significant differences in *Bd* prevalence.
(TIF)

S1 Table. *Bd* prevalence for each of 18 total sampling sites across four states (\(N = 91 \)). The location of each site is not presented in order to protect the hellbenders. VA Site 4 (\(n = 3 \)) represents the captive animals sampled from the Buller fish hatchery.
(DOCX)

S2 Table. Occurrences of *Bd* infection by sex and life stage of sampled hellbenders with Clopper-Pearson 95% confidence intervals.
(DOCX)

Acknowledgments

We thank Dr. An Martel for providing *Bs* standards, and Dr. Bruce Wiggins for helping with the map. We thank Mr. John Navarro from the Ohio Division of Wildlife and The Columbus Zoo and Aquarium Conservation fund (Grant awarded to RNH and AHL) for funding this project and NSF grant # 1136602 to RNH. Additionally, we thank Dr. Eria Rebollar and Ms. Molly Bletz for their assistance in the laboratory. Finally, we would like to acknowledge the many volunteers that assisted with field surveys.
Author Contributions

Conceived and designed the experiments: KAT AHL. Performed the experiments: AHL GL KR JDK KAT EC. Analyzed the data: EKB OJH AHL. Contributed reagents/materials/analysis tools: AHL RNH. Wrote the paper: EKB OJH AHL RNH KAT.

References

1. Kilpatrick AM, Briggs CJ, Daszak P (2010) The ecology and impact of chytridiomycosis: an emerging disease of amphibians. Trends in Ecology and Evolution 25(2):109–118. doi: 10.1016/j.tree.2009.07.011 PMID: 19836101

2. Martel A, Spitzen-van der Sluijs A, Blooi M, Bert W, Ducatelle R, et al. (2013) Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. PNAS 110(38):15325–15329. doi: 10.1073/pnas.1307356110 PMID: 24003137

3. Zhu W, Xu F, Bai C, Liu X, Wang S, et al. (2014) A survey for Batrachochytrium salamandrivorans in Chinese amphibians. Current Zoology 60(6):729–735.

4. Mulet z C, Caruso NM, Fleischer RC, McDiarmid RW, Lips KR (2014) Unexpected rarity of the pathogen Batrachochytrium dendrobatidis in Appalachian Plethodon salamanders: 1957–2011. PLoS One 9(8):1–7.

5. Nickerson M, Mays C (1973) The hellbenders: North American “giant” salamanders. Milwaukee Public Museum Publications in Biology and Geology 106 p.

6. Goka K, Yokoyama J, Une Y, Kuroki T, Suzuki K, et al. (2009) Amphibian chytridiomycosis in Japan: distribution, haplotypes and possible route of entry into Japan. Molecular Ecology 18:4757–4774. doi: 10.1111/j.1365-294X.2009.04384.x PMID: 19840263

7. Zhu W, Bai C, Wang S, Soto-Azat C, Li X, et al. (2014) Retrospective survey of museum specimens reveals historically widespread presence of Batrachochytrium dendrobatidis in China. EcoHealth 11:241–250. doi: 10.1007/s10393-013-0894-7 PMID: 24419667

8. Wheeler BA, Prosen E, Mathis A, Wilkinson RF (2003) Population declines of a long-lived salamander: a 20+-year study of hellbenders, Cryptobranchus alleganiensis. Biological Conservation 109:151–156.

9. Furniss L (2003) Conservation assessment for Ozark hellbender (Cryptobranchus alleganiensis bishopi): USDA Forest Service, Eastern Region.

10. Mayasich J, Grandmaison D, Phillips C (2003). Eastern hellbender status assessment report. Duluth, MN: Natural Resources Research Institute.

11. Bodinof CM, Briggler JT, Duncan MC, Beringer J, Millsbaugh JJ (2011) Historic occurrence of the amphibian chytrid fungus Batrachochytrium dendrobatidis in hellbender Cryptobranchus alleganiensis populations from Missouri. Diseases of Aquatic Organisms 96:1–7. doi: 10.3354/dao02380 PMID: 21991660

12. Briggler JT, Etting J, Wanner M, Schuette C, Duncan M, et al. (2007) Cryptobranchus alleganiensis (Hellbender) chytrid fungus. Herpetological Review 38(2):174.

13. Briggler JT, Larson KA, Irwin KJ (2008) Presence of the amphibian chytrid fungus (Batrachochytrium dendrobatidis) on hellbenders (Cryptobranchus alleganiensis) in the Ozark highlands. Herpetological Review 39(4):443–444.

14. Burgmeier NG, Unger SD, Meyer JL, Sutton TM, Williams RN (2011) Health and habitat quality assessment for the eastern hellbender (Cryptobranchus alleganiensis alleganiensis) in Indiana, USA. Journal of Wildlife Diseases 47(4):836–848. PMID:22102654

15. Goyner JL, Yabsley MJ, Jensen JB (2011) A preliminary survey of Batrachochytrium dendrobatidis exposure in hellbenders from a stream in Georgia, USA. Herpetological Review 42(1):58–59.

16. Souza MJ, Gray MJ, Colclough P, Miller DL (2012) Prevalence of infection by Batrachochytrium dendrobatidis and Ranavirus in eastern hellbenders (Cryptobranchus alleganiensis) in eastern Tennessee. Journal of Wildlife Diseases 48(3):560–566. PMID:22740521

17. Junge RE (2012) Hellbender Medicine. In: Miller RE, Fowler M, editors. Fowler’s Zoo and Wild Animal Medicine Current Therapy 7:260–264.

18. Nickerson CA, Ott CM, Castro SL, Garcia VM, Molina TC, et al. (2011) Evaluation of microorganisms cultured from injured and repressed tissue regeneration sites in endangered giant aquatic Ozark hellbender salamanders. PLoS One 6:e28906. doi: 10.1371/journal.pone.0028906 PMID:22205979

19. Becker MH, Harris RN (2010) Cutaneous bacteria of the red-back salamander prevent morbidity associated with a lethal disease. PLoS One 5(6):e10957. doi: 10.1371/journal.pone.0010957 PMID: 20532032
20. Harris RN, Brucker RM, Walke JB, Becker MH, Schwantes CR, et al. (2009) Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. The ISME Journal 3(7):818–824. doi: 10.1038/ismej.2009.27 PMID: 19322245

21. Peterson CL, Wilkinson RF Jr., Topping MS, Metter DE (1983) Age and growth of the Ozark hellbender (Cryptobranchus alleganiensis bishopi). Copeia 1:225–231

22. Wyngaard GA, Chinnappa CC (1982) General biology and cytology of cyclopoids. In: Harrison FW, Cowden RR, editors. Developmental Biology of Freshwater Invertebrates. pp. 485–533.

23. Bloo M, Pasmans F, Longcore JE, Spitzen-van der Sluijs A, Vercammen F, et al. (2013) Duplex real-time PCR for rapid simultaneous detection of Batrachochytrium dendrobatidis and B. salamandrivorans in amphibian samples. Journal of Clinical Microbiology 51(12):4173–4177. doi: 10.1128/JCM.02313-13 PMID: 24108616

24. Hyatt AD, Boyle DG, Olsen V, Boyle DB, Berger L, et al. (2007) Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms 73:175–192. PMID: 17330737

25. Schulte-Hostedde AI, Zinner B, Millar JS, Hickling GJ (2005) Restitution of mass-size residuals: validating body condition indices. Ecology 86(1):155–163.

26. Kolby JE (2014) Presence of the amphibian chytrid fungus Batrachochytrium dendrobatidis in native amphibians exported from Madagascar. PLoS One 9(3):e89660. doi: 10.1371/journal.pone.0089660 PMID: 24599336

27. McMahon TA, Brannelly LA, Chatfield MWH, Johnson PTJ, Joseph MB, et al. (2013) Chytrid fungus Batrachochytrium dendrobatidis has nonamphibian hosts and releases chemicals that cause pathology in the absence of infection. PNAS 110(1):210–215. doi: 10.1073/pnas.1200592110 PMID: 23248288

28. Garmyn A, Van Rooij P, Pasmans F, Hellebuyck T, Van Den Broeck W, et al. (2012) Waterfowl: potential environmental reservoirs of the chytrid fungus Batrachochytrium dendrobatidis. PLoS One 7(4): e35038. doi: 10.1371/journal.pone.0035038 PMID: 22514705

29. Reeder NMM, Pessier AP, Vredenburg VT (2012) A reservoir species for the emerging amphibian pathogen Batrachochytrium dendrobatidis among eastern hellbender populations (Cryptobranchus a. alleganiensis) within the Allegheny-Ohio and Susquehanna river drainages, Pennsylvania, USA. Herpetological Review 43:90–93.

30. Vredenburg VT, Knapp RA, Tunstall TS, Briggs CJ (2010) Dynamics of an emerging disease drive large-scale amphibian population extinctions. PLoS ONE 7(3): e33567. doi: 10.1371/journal.pone.0033567 PMID: 22428071

31. Terrell KA, Quintero RP, Murray S, Kleopfer JD, Murphy JB, et al. (2013) Cryptic impacts of temperature variability on amphibian immune function. The Journal of Experimental Biology 216:4204–4211. doi: 10.1242/jeb.089886 PMID: 23948472

32. Parris MJ, Cornelius TO (2004) Fungal pathogen causes competitive and developmental stress in larval amphibian communities. Ecology 85:3385–3395.

33. Hyman OJ, Collins JP (2012) Evaluation of a filtration-based method for detecting Batrachochytrium dendrobatidis in natural bodies of water. Diseases of Aquatic Organisms 97(3):185–195. doi: 10.3354/dao02423 PMID: 22422089

34. Petranka JW (1998) Salamanders of the United States and Canada. Washington D.C.: Smithsonian Books. 587 p.