Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Leukocyte adhesion deficiency II syndrome, a
generalized defect in fucose metabolism

Thorsten Marquardt, MD, Thomas Brune, MD, Kerstin Lühn, MS, Klaus-Peter Zimmer, MD,
Christian Körner, PhD, Larissa Fabritz, MD, Natacha van der Werft, MD, Josef Vormoor, MD,
Hudson H. Freeze, PhD, Frank Louwen, MD, Bettina Biermann, MD, Eric Harms, MD,
Kurt von Figura, MD, Dietmar Vestweber, PhD, and Hans Georg Koch, MD

Leukocyte adhesion deficiency II has been described in only 2 patients; herein we report extensive investigation of another patient. The physical stigmata were detected during prenatal ultrasonographic investigation. Sialyl-Lewis X (sLe^a^) was absent from the surface of polymorphonuclear neutrophils, and cell binding to E- and P-selectin was severely impaired, causing an immunodeficiency. The elevation of peripheral neutrophil counts occurred within several days after birth. A severe hypofucosylation of glycoconjugates bearing fucose in different glycosidic links was present in all cell types investigated, demonstrating that leukocyte adhesion deficiency II is not only a disorder of leukocytes but a generalized inherited metabolic disease affecting the metabolism of fucose. (J Pediatr 1999;134:681-8)

Sialyl-Lewis X and H-antigen are fucosylated carbohydrates in which fucose is bound in an α1,3- or an α1,2-glycosidic manner to N-acetylglucosamine and galactose, respectively. Furthermore, the α1,4-fucosylated Lewis blood group antigens are missing in patients with LAD II. The absence of fucose in different glycosidic linkages on multiple glycans strongly argues against a specific fucosyl transferase deficiency in LAD II and in favor of a more general defect in the fucose metabolism. Fucose is utilized by fucosyltransferases in the Golgi complex as guanosine diphosphate–fucose, which is synthesized in the cytoplasm and imported into the organelle; 90% of GDP-fucose biosynthesis occurs by conversion of GDP-mannose, which itself originates from mannose uptake into the cell or from fructose 6-phosphate. The remaining 10% is made by a fucose salvage pathway from degraded glycoconjugates or from exogenous fucose. Previous evidence suggests that LAD II is caused by a de-
fect in the conversion of GDP-mannose to GDP-fucose. Herein we report clinical and biochemical characteristics of a third child with LAD II.

METHODS

Flow Cytometry

For flow cytometric analysis of cell surface marker expression, peripheral blood cells were incubated for 20 minutes at room temperature with combinations of the following antibodies: anti-CD45-PerCP (anti-HLe-1), anti-CD3-PerCP (SK7), anti-HLA-DR-PerCP (L243), anti-CD56-PE (MY31) (Becton Dickinson, Heidelberg, Germany), anti-CD14-PE (RMO52), anti-CD15-fluorescein isothiocyanate (MOPC.315-43), anti-CD19-PE (J4.119), anti-CD8-FITC (B9.11), and anti-CD4-PE (13B8.2) (Coulter-Immunotech, Hamburg, Germany). In addition, the cells were stained with unspecific isotype control antibodies. Subsequently, the red cells were lysed (FACS Lysing Solution, Becton Dickinson), and the sample was washed twice with phosphate-buffered saline buffer. Data acquisition and analysis were performed on a FACSCalibur by using CellQuest software (Becton Dickinson).

For a more detailed analysis, peripheral blood leukocytes were separated from erythrocytes by centrifugation on a discontinuous Ficoll gradient as described previously. After labeling for 6 hours with 125 µCi mannose labeled with 2-tritium in serum-free minimal essential medium containing 0.5 mmol/L glucose and 0.5% bovine serum albumin, the cells were scraped immediately into methanol/10 mmol/L Tris, 1 mmol/L EDTA, pH 8.0 (1:1) and boiled for 5 minutes in a water bath. Free [2-3H]mannose and labeled metabolites (e.g., mannose phosphates, GDP-mannose, dolichol-phosphate mannose, and dolichol-linked oligosaccharides) were removed by sequential extraction with methanol/10 mmol/L Tris, 1 mmol/L EDTA, pH 8.0 (1:1), chloroform/methanol/water (10:10:3). The remaining pellet was redissolved in 100 mmol/L Tris, pH 7.5, 0.5% sodium dodecyl sulfate, heated at 95°C for 5 minutes, and treated with 400 µg/mL pronase (Boehringer, Mannheim) at 50°C for 40 hours. The digestion was terminated by heat inactivation at 95°C for 5 minutes. Glycopeptides were desalted with Sephadex G-25 columns and subjected to *Lens culinaris* lectin affinity chromatography as described previously.
tides were eluted with 100 mmol/L methyl α-D-mannopyranoside (Sigma) and analyzed by liquid scintillation counting.

Electron Microscopy

Leukocytes were prepared by using Neutrophil Isolation Medium (NIM; Paesel & Lorei, Hanau, Germany). After centrifugation, the cells were fixed with 5% paraformaldehyde in 50 mmol/L N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid and prepared for thin frozen sectioning and immunogold labeling as previously described. The thin frozen sections were incubated with 5% FCS to block unspecific binding sites, followed by an incubation with FITC-conjugated *Ulex europaeus* I lectin (Camon, Wiesbaden, Germany) at a concentration of 50 μg/mL. Lectin binding sites were detected with a rabbit anti-fluorescein IgG (Molecular Probes, Leiden, The Netherlands; dilution 1:150 in 1% FCS) and a goat anti-rabbit IgG conjugated with 12 nm gold particles (Dianova; dilution of 1:50 in 1% FCS). As a control, the labeling procedure was performed without addition of *Ulex*
ceuropaeus agglutinin and showed no binding sites.

RESULTS

Clinical Presentation

The boy is the first child of non-consanguineous parents. However, the parents may be distantly related, because ancestors of both lived in the same small village in Turkey (Fig 1). The first intrauterine ultrasonographic investigation was done at 28 weeks’ gestation and revealed a severely retarded growth of fetal limb bones. The second evaluation, performed just before birth, showed an even more pronounced deviation from the regular growth curves (data not shown; reference values reported by Merz et al12).

The child was delivered by cesarean section in the 32nd week of pregnancy, after fetal heart rate monitoring revealed a pathologic pattern. Birth weight was 850 g (<3rd percentile), length at birth was 35.5 cm (<3rd percentile), and head circumference was 26 cm (3rd percentile). A broad and depressed nasal bridge was seen. Short arms and legs were present, and on the broad palms a simian crease was noted. Dorsally positioned second toes overlapped with the first and third toes (Fig 2). No chromosomal abnormalities were found (karyotype 46, XY).

Meconium ileus necessitated surgery on the first day of life. Several severe septic events occurred during the first 3 months of life, requiring intravenous antibiotic therapy. Antibiotic prophylaxis with different drugs has been necessary all his life. Attempts to discontinue the antibiotic prophylaxis resulted in high fever and impaired clinical condition within several days. Even with antibiotic prophylaxis, many episodes of high fever led to hospitalization of the patient. Cultures from blood or cerebrospinal fluid samples obtained during these episodes were always sterile. The only infectious agent, which was repeatedly found, was coronavirus in stool samples.

Postnatal growth was severely impaired. Body length, weight gain, and head circumference remained below the 3rd percentile (data not shown). Several ultrasonographic investigations of the brain in the first month of life revealed no abnormalities. At 6.5 months, magnetic resonance imaging was performed and revealed a slight enlargement of the frontal subarachnoid space (Fig 3). A bulging large anterior fontanelle was observed on several occasions, but lumbar punctures did not reveal increased intracranial pressure, and cerebrospinal fluid cell counts were always within the normal range. Today, at 15 months of age, the boy has a severe neurodevelopmental delay with prominent muscular hypotonia and is unable to sit without support.

Leukocytes

Leukocyte Counts and Differentiation. Directly after delivery, peripheral leukocyte counts were 6100/μL with 36% neutrophils. Peripheral leukocyte counts were normal in the first 3 days of life (Fig 4, *inset*), but thereafter, total leukocyte counts were constantly elevated. In the absence of infection, total peripheral leukocyte counts were around 20,000/μL, but during febrile episodes they reached 70,000/μL (Fig 4, *left panel*). Differential counts demonstrated that in addition to neutrophils, total lymphocytes were also elevated (Fig 4, *middle panel*). FACS analysis of the expression of CD3, CD4, CD8, CD56, and HLA-DR revealed a normal distribution of lymphocyte subpopulations (not shown). Peripheral leukocyte counts of the parents were normal.

Increased neutrophil granulocytes often paralleled an increased serum concentration of C-reactive protein, indicating inflammatory activity in the body (Fig 4, *right panel*).

Sialyl-LeWes X. Because of persistently elevated peripheral leukocyte counts, FACS scan analysis of leukocyte antigens was performed, when the boy was 6 months of age. FACS analysis revealed the absence of CD15 (Fig 5, *A*), indicating the absence of LeX on the leukocyte surface. When the granulocyte population was tested with a monoclonal antibody that recognizes sLeX (CSLEX-1), virtually no sLeX was found on the cell surface (Fig 5, *B*). Sialyl-LeWes X is a carbohydrate structure of neutrophils, which is necessary for the interaction with selectins expressed on endothelial cells. The binding to E- and P-selectin is essential for the rolling of neutrophils on the endothelial cell layer before extravasation. Biotinylated soluble selectin fusion proteins were used to test the selectin binding of the patient’s granulocytes.7 A severely decreased capacity of the patient’s granulocytes for the binding to E- and P-selectin was found (Fig 5, *C* and *D*), indicating the absence of sLeX-like carbohydrate structures that could serve as selectin ligands. These results indicate the absence of α1,3-fucosylation in the LAD II cells.

Erythrocytes

Directly after birth, the blood group of the patient was determined to be O, RhD-positive (CcDEe), Kell anti-
The presence of blood group O was concluded, because the patient’s erythrocytes did not react with anti-A or anti-B sera. Because the sera of newborns normally do not contain isoagglutinins13 and because erythrocytes are not routinely checked for the presence of H-antigen (because of the rarity of Bombay blood groups in western Europe), the Bombay phenotype of the patient was missed at this time. At 6 months of age, the Oh Bombay blood group phenotype was detected. Conventional analysis was difficult, because 4 blood transfusions with O RhD-negative erythrocyte concentrates were done at 9, 18, 106, and 107 days of life to treat anemia caused by prematurity and several severe systemic infections. For this reason, a monoclonal antibody for H-antigen was used to search for H-antigen expression on the surface of the patient’s erythrocytes and to distinguish the transfused erythrocyte population from that of the patient. The FACS profile of the patient’s erythrocytes was identical to genuine Bombay blood. When anti-H antibodies were used, only a small population of transfused erythrocytes with H-antigen expression was detected 2.5 months after the last transfusion (Fig 5, E), indicating that α1,2-fucosylation is not occurring either.

At 6 months of age, no anti-H antibodies were present. However, at 14 months of age, low-titer IgM antibodies were detected, which caused an incomplete lysis of O, RhD-negative erythrocytes at 37°C. Lysis could only be detected when the serum was undiluted. These antibodies most likely represent anti-H antibodies as described in the other patients.1,2

Erythrocytes of patients with LAD II do not have the fucosylated Lewis antigens Lea and Leb at their surfaces. However, the absence of Lea and Leb is not informative in our patient, because it could also be inherited from his parents. The mother’s blood group is O, CcDee, Le(a–b+); the father’s blood group is O, CcDee, Le(a+b–). Both parents have the H-antigen. Father and child are non-secretors for the blood group antigens, whereas the mother shows the secretor status (meaning the presence of ABO antigens in the saliva).

Lectin Binding

The absence of sLea and H-antigen demonstrates that neither α1,3- nor α1,2-glycosidic linked fucose is present in the patient. Fucose-specific lectins were used to study the level of fucosylation and, in particular, the presence of α1,6-fucosylation of glycoconjugates in different cell types.

Ultrathin Frozen Sections. UEA is a fucose-specific lectin that recognizes fucose in different glycosidic bonds.10,14 Frozen sections of leuko-
cytes, thrombocytes, and fibroblasts were incubated with this lectin; and lectin binding was visualized by using immunogold labeling. In leukocytes and thrombocytes a marked decrease of the lectin binding was found in the LAD II cells. Most of granules of the control leukocytes were strongly labeled with UEA, whereas the granules of the patient’s leukocytes were only weakly labeled. The neutrophil preparations contained a few platelets in which granules and plasma membrane revealed many UEA binding sites. In contrast, the platelets of the patient were free of UEA labeling (Fig 6). UEA binding was modestly reduced in the patient’s fibroblasts. The results confirm the hypofucosylation of different cell types in LAD II.

LECTIN AFFINITY CHROMATOGRAPHY. Fibroblast extracts were analyzed by lectin affinity chromatography with *Lens culinaris* agglutinin, a lectin that recognizes high-mannose carbohy-
drate structures but shows high-affinity binding only in the presence of α1,6-linked core fucose residues. The fibroblasts were labeled with [2,5H]mannose, and glycopeptides were prepared. The lectin was coupled to a gel matrix, and the glycopeptides were passed over the column. The bound glycopeptides were eluted with methyl α-D-mannopyranoside. In contrast to controls, very little material was specifically bound to the column in the LAD II samples (Fig 7). A defect in mannose metabolism leads to carbohydrate-deficient glycoprotein syndromes and was ruled out in the patient with LAD II (T. Marquardt, unpublished results). Therefore the experiments demonstrate that core α1,6 fucosylation is defective in LAD II and that fibroblasts from LAD II cells express the disease phenotype.

DISCUSSION

In this article we report a third patient with LAD II and the first born to non-consanguineous parents. He strongly resembles the 2 other patients in morphologic stigmata, lacks sLe\(^x\) and H-antigen on leukocytes and erythrocytes, respectively, and shows an inability of neutrophils to bind to endothelial selectins. Peripheral leukocyte counts were constantly elevated after the third day of life and eventually led to the diagnosis of the disorder. Coming from a sterile intrauterine environment, surgery necessitated by the meconium ileus on the first day of life might have triggered the release of neutrophil granulocytes from the bone marrow, leukocytes, which then were unable to extravasate from the blood stream because of sLe\(^x\) deficiency. Impaired extravasation led to many infectious complications, which were the predominant clinical problem during the first year of life.

In our patient α1,2-, α1,3-, and α1,6-linked fucoses are missing. The broad spectrum of symptoms—ranging from

![Fig 6. Electron microscopy. UEA binding sites visualized by immunogold in neutrophil granulocytes (upper 2 panels) and thrombocytes (lower 2 panels). Photographs at left are from a healthy control subject; those at right are from the patient with LAD II, showing a considerably reduced number of lectin binding sites.](image)

![Fig 7. Lens culinaris binding of glycopeptides from fibroblasts after mannose labeling. After sample application, the column was washed to remove labeled material that was not specifically bound to the column. Maximal counts were present in the first 2 fractions of the void volume (with 12,000 cpm in second fraction from controls and 13,000 cpm in second fraction from LAD II cells; peaks are cut off in the diagram). On addition of methyl mannospyranoside, labeled glycopeptides were eluted in controls, whereas very few counts were eluted from LAD II cells. Circles, Controls; squares, LAD II cells.](image)
morphologic abnormalities, retarded growth, and psychomotor retardation to an immunodeficiency—indicates the importance of fucosylation, which requires GDP-fucose. This sugar nucleotide is generated in the cytoplasm predominantly from GDP-mannose and then imported into the Golgi complex, where it is transferred to glycoconjugates by different fucosyltransferases. The generalized hypofucosylation found in LAD II suggests a decreased availability of GDP-fucose for the different fucosylation processes. The exact molecular defect of LAD II has not been identified yet. In contrast to other reports, the conversion of GDP-mannose to GDP-fucose is not affected in our patient with LAD II.16 Fucose supplementation can correct the defect in the fibroblasts of our patient and is currently elucidated in vivo in our patient. The nature of the molecular defect and the benefit of fucose therapy are currently under investigation.

We are grateful to H.-J. Lengerke and B. Wittwer for their help with the clinical investigation of the patient. M. Linnebank is acknowledged for fruitful discussions and critical reading of the manuscript.

REFERENCES

1. Etzioni A, Frydman M, Pollack S, Avidor I, Phillips ML, Paulson JC, et al. Recurrent severe infections caused by a novel leukocyte adhesion deficiency. N Engl J Med 1992;327:1789-92.
2. Frydman M, Etzioni A, Eidlitz-Markus T, Avidor I,Varsano I, Shechter Y, et al. Ramban-Hasharon syndrome of psychomotor retardation, short stature, defective neutrophil motility, and Bombay phenotype. Am J Med Genet 1992;44:297-302.
3. Karsan A, Cornejo CJ, Winn RK, Schwartz BR, Way W, Lannir N, et al. Leukocyte adhesion deficiency type II is a generalized defect of de novo GDP-fucose biosynthesis. Endothelial cell fucosylation is not required for neutrophil rolling on an human nonlymphoid endothelium. J Clin Invest 1998;101:2458-45.
4. Niehues R, Hasilik M, Alton G, Körner C, Schiebe-Sukumar M, Koch HG, et al. Carbohydrate-deficient glycoprotein syndrome type Ib. Phosphomannomutase deficiency and mannosereactivity. J Clin Invest 1998;101:1414-20.
5. Yurchenco PD, Atkinson PH. Equilibration of fucosylglycoprotein pools in HeLa cells. Biochemistry 1977;16:944-53.
6. Sturla L, Etzioni A, Zanardi D, De Flora G, Silengo L, De Flora A, et al. Defective intracellular activity of GDP-D-mannose-4,6-dehydratase in leukocyte adhesion deficiency type II syndrome. FEBS Lett 1998;429:274-8.
7. Hahne M, Wagner U, Isermann S, Hallmann R, Vestweber D. Five tumor necrosis factor-inducible cell adhesion mechanisms on the surface of mouse endothelioa cells mediate the binding of leukocytes. J Cell Biol 1993;121:655-64.
8. Gotzsch U, Borges E, Bosse R, Böggemeyer E, Simon M, Mossmann H, et al. VE-cadherin antibody accelerates neutrophil recruitment in vivo. J Cell Sci 1997;110:583-5.
9. Körner C, Lehe L, von Figura K. Abnormal synthesis of mannose 1-phosphate derived carbohydrates in carbohydrate-deficient glycoprotein syndrome type I fibroblasts with phosphomannomutase deficiency. Glycobiology 1998;8:165-71.
10. Cummings RD. Use of lectins in analysis of glycocomponents. Methods Enzymol 1994;250:66-86.
11. Zimmer KP, Matsuda I, Matsuura T, Mori M, Colombo JP, Fahimi HD, et al. Ultrastructural, immunocytochemical and stereological investigation of hepatocytes in a patient with the mutation of the ornithine transcarbamylase gene. Eur J Cell Biol 1995;67:73-83.
12. Merz E, Kim-Kern MS, Pehl S. Ultrasonic mensuration of fetal limb bones in the second and third trimesters. J Clin Ultrasound 1987;15:175-83.
13. Walker RH. Technical manual. American Association of Blood Banks; 1993.
14. Debray H, Decout D, Strecker G, Spik G, Montreuil J. Specificity of twelve lectins towards oligosaccharides and glycopeptides related to N-glycosylproteins. Eur J Biochem 1981;117:41-55.
15. Manger ID, Wong SYC, Redemacher TW, Dwek RA. Synthesis of 1-N-glycyl β-oligosaccharide derivatives. Reactivity of Lens culinaris lectin with a fluorescent labeled streptavidin pseudoglycoprotein and immobilized neoglycolipid. Biochemistry 1992;31:10733-40.
16. Körner C, Linnebank M, Koch HG, Harms E, von Figura K, Marquardt T. Decreased availability of GDP-L-fucose in a patient with leukocyte adhesion deficiency syndrome II (LAD II) with normal GDP-D-mannose dehydratase and FX protein activities. J Leukoc Biol. In press.