Prospective Cohort Studies of Major Disorders Can Facilitate Phenotyping for Sleep Apnea

A few decades ago, several prospective cohort studies were initiated with the support of epidemiologists and often focused on a specific disorder or risk factors (1). One example of such a cohort study is MESA (Multi-Ethnic Study of Atherosclerosis), which was designed to investigate risk factors for cardiovascular diseases (2). Assessments of cardiovascular disease, including severity, risk factors, and comorbidities, were carefully chosen according to the methodology and physiological knowledge available 20 years ago. The hypotheses in the studies begun decades ago are borne out by the current and future treatments of pulmonary arterial hypertension.

Prospective Cohort Studies of Major Disorders Can Facilitate Phenotyping for Sleep Apnea

events during sleep such as obstructive, mixed, or central apneas and obstructive and central hypopneas, or even less well-defined events such as respiratory-related arousal or airflow flattening, are carefully scored in sleep centers and then counted and used as metrics for sleep apnea severity. It is now recognized that apnea–hypopnea index is not an adequate measure of severity. Counting oxygen desaturations and calculating the oxygen desaturation index is not much better, but instead distracts from the core problem of pathophysiological mechanisms.

Sleep apnea, as defined by apnea–hypopnea index (or oxygen desaturation index), is heterogeneous. Sleep apnea may be the cause of cardiovascular, respiratory, or metabolic disorders, or it may be the consequence of these. For an appropriate treatment, this does not matter much. However, for an understanding of pathophysiological pathways, and thus for prevention, this is important. The assessment of sleep apnea can be regarded as being similar to that used for high blood pressure. It is a sign, and a finding, that a basic physiological regulation (of blood pressure or, respectively, of respiratory stability during sleep) is losing its physiological boundaries. Different parameters are used to characterize the regulation. All these parameters are recorded by polysomnography and can be analyzed by exploiting the recordings more (6). Not only the number, but also the duration, of respiratory events is important for phenotyping patients (7).

Analyzing subgroups related to event duration may provide surprising results (8). Event duration may even allow a prediction of mortality, as recently reported based on a sleep cohort study (9).

To change the perspective on sleep-disordered breathing and change the view on the pathophysiology of sleep apnea, it is valuable
In clinical practice, this may be as simple as patients and develop better preventive, precision, tailored therapies. sleep-disordered breathing can help to better characterize their "atherosclerosis) might bene
which particular patients with the underlying disorder (here, airway pressure therapy in terms of slowing the progression of the optimal treatment including comorbidities.

In the study by Borker and colleagues, this exact step—adding a sleep exam at a later examination stage—had been taken (4). A sleep apnea assessment module with in-home polysomnography was used to assess all currently known aspects of sleep apnea. This study confirmed that event duration is very important and allows us to discriminate between groups and possibly phenotypes. In this way, it is possible to increase our understanding of sleep apnea pathophysiology. Surprising results found in previous studies could be confirmed (8). Furthermore, big data analysis and machine learning techniques can help to manage the large amounts of data obtained by sleep studies, and may help identify novel parameters that we do not consider today (12).

Currently, prevention of sleep apnea, prevention of sleep apnea progression, and prevention of associated comorbidities such as atherosclerosis are becoming the next research targets. Studies focused on finding a high prevalence of sleep apnea in certain disorders, although reassuring the importance of sleep apnea medicine, are no longer a priority.

There is another dimension in the activity of sleep medicine expertise—approaching and adding to existing large prospective cohort studies. We need to raise awareness of sleep in other medical fields (cardiac, respiratory, and metabolic) about the important comorbidity “sleep apnea” and that the assessment of sleep-disordered breathing can help to better characterize their patients and develop better preventive, precision, tailored therapies. In clinical practice, this may be as simple as finding out which particular patients with the underlying disorder (here, atherosclerosis) might benefit more from continuous positive airway pressure therapy in terms of slowing the progression of the underlying disorder (atherosclerosis). Generally speaking, patients in all medical fields could benefit from this approach of combining pathophysiological knowledge to derive preventive actions and find the optimal treatment including comorbidities.

References
1. Völzke H, Alte D, Schmidt CO, Radke D, Lorbeer R, Friedrich N, et al. Cohort profile: the study of health in Pomerania. Int J Epidemiol 2011;40:294–307.
2. Bild DE, Bluemke DA, Burke GL, Detrano R, Diez Roux AV, Folsom AR, et al. Multi-ethnic study of atherosclerosis: objectives and design. Am J Epidemiol 2002;156:871–881.
3. Zhao Y, Evans MA, Allison MA, Bertoni AG, Budoff MJ, Criqui MH, et al. Multisite atherosclerosis in subjects with metabolic syndrome and diabetes and relation to cardiovascular events: the Multi-Ethnic Study of Atherosclerosis. Atherosclerosis 2019;282: 202–209.
4. Borker PV, Reid M, Sofer T, Butler MP, Azarbarzin A, Wang H, et al. Non-REM apnea and hypopnea duration varies across population groups and physiologic traits. Am J Respir Crit Care Med 2021;203: 1173–1182.
5. Benjafeld AV, Ayas NT, Eastwood PR, Heinzer R, Ip MSM, Morrell MJ, et al. Estimation of the global prevalence and burden of obstructive sleep apnea: a literature-based analysis. Lancet Respir Med 2019;7: 687–698.
6. Zinchuk AV, Jeon S, Koo BB, Yan X, Bravata DM, Qin L, et al. Polysomnographic phenotypes and their cardiovascular implications in obstructive sleep apnea. Thorax 2018;73:472–480.
7. Nakayama H, Kobayashi M, Tsuiki S, Yanagihara M, Inoue Y. Obstructive sleep apnea phenotypes in men based on characteristics of respiratory events during polysomnography. Sleep Breath 2019;23: 1087–1094.
8. Leppänen T, Kulkas A, Mervaala E, Töyräs J. Increase in body mass index decreases duration of apneas and hypopneas in obstructive sleep apnea. Respir Care 2019;64:77–84.
9. Butler MP, Emch JT, Rueschman M, Sands SA, Shea SA, Wellman A, et al. Apnea-hypopnea event duration predicts mortality in men and women in the sleep heart health study. Am J Respir Crit Care Med 2019;199:903–912.
10. Martinez-Garcia MA, Campos-Rodriguez F, Almendros I, Garcia-Rio F, Sanchez-de-la-Torre M, Farre R, et al. Cancer and sleep apnea: cutaneous melanoma as a case study. Am J Respir Crit Care Med 2019;200:1345–1353.
11. Kitamura T, Miyazaki S, Sulaiman HB, Akaife R, Ito Y, Suzuki H. Insomnia and obstructive sleep apnea as potential triggers of dementia: is personalized prediction and prevention of the pathological cascade applicable? EPMA J 2020;11:355–365.
12. Lim DC, Mazzotti DR, Sutherland K, Mindel JW, Kim J, Cistulli PA, et al.; SAGIC Investigators. Reinventing polysomnography in the age of precision medicine. Sleep Med Rev 2020;52:101313.