Chryseobacterium endalhagicum sp. nov., isolated from seed of leguminous plant

Xiaobo Zhang¹, Xingyan Guo¹,², Mayina Kahaer¹,³, Tingting Tian³ and Yuping Sun³,*

TAXONOMIC DESCRIPTION

Zhang et al., Int. J. Syst. Evol. Microbiol. 2021;71:005077
DOI 10.1099/ijsem.0.005077

Author affiliations: ¹School of Public Health, Xinjiang Medical University, Urumqi 831100, PR China; ²Medical and Health Management and Service Center of Xinjiang, Urumqi 831100, PR China; ³School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 831100, PR China.

*Correspondence: Yuping Sun, 544481723@qq.com

Keywords: microbial taxonomy; novel species; Chryseobacterium.

Abbreviations: ANI, average nucleotide identity; DDH, DNA-DNA hybridization; PGAP, prokaryotic genome annotation pipeline.

Two supplementary tables and two supplementary figures are available with the online version of this article.

© 2021 The Authors
This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.

Abstract

A Gram-stain-negative, yellow-pigmented bacterium, designated as L7T, was isolated from seeds of *Alhagi sparsifolia* Shap., a leguminous plant that grows in northwest PR China. Strain L7T was found to be non-flagellated, non-spore forming rods which can grow at 10–37 °C, pH 6.0–8.5 and in 0–3% (v/w) NaCl concentration. The 16S rRNA gene sequence analysis showed that strain L7T belongs to the genus *Chryseobacterium* with sequence similarities to *C. vietnamense* GIMN1.005T (98.1%), *C. bernardetii* NCTC13530T (98.0%), *C. vrystaatense* LMG 22846T (97.9%), *C. nakagawai* NCTC13529T (97.7%), *C. shigense* DSM 17126T (97.6%) and *C. rhizosphaerae* RSB3-1T (97.5%). The average nucleotide identity of strain L7T to 31 reference strains were 78.6–85.6%, lower than the species delineation threshold of 95%. MK-6 was the only respiratory quinone of L7T and major fatty acids were iso-C15:0, iso-C17:0 3-OH, C16:1 ω7c and/or C16:1 ω6c, isoC17:1 ω9c and/or C16:0 10-methyl. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, three unidentified aminophospholipids, two unidentified aminolipids, three unidentified glycolipids and two unidentified lipids. The G+C content of the genome was 38.58 mol%. On the basis of polyphasic taxonomy analyses in this study, strain L7T is considered to represent a novel species in the genus *Chryseobacterium*, for which the name *Chryseobacterium endalhagicum* sp. nov. is proposed. The type strain is L7T (=MCCC 1K05687T=JCM 34506T).

INTRODUCTION

The genus *Chryseobacterium* belongs to the family *Weeksellaceae*, and was first described by Vandamme in 1994 [1]. There are 120 species of the genus that have been reported until now (https://lpsn.dsmz.de/genus/chryseobacterium), and most species could form yellow colonies on solid medium. Species of *Chryseobacterium* were isolated from varied environments, such as terrestrial and aquatic environments [2–5], even including organisms and food [6–8].

In this study, strain L7T was isolated from seeds of *Alhagi sparsifolia* Shap., a leguminous plant grown in northwest China. Comparing physiological, biochemical and genetic characteristics with reference strains *C. vietnamense* GIMN1.005T, *C. bernardetii* NCTC13530T, *C. vrystaatense* LMG 22846T, *C. nakagawai* NCTC 13529T, *C. shigense* DSM 17126T, *C. rhizosphaerae* RSB3-1T and type strain *C. gleum* ATCC35910T, strain L7T represents a novel species in the genus *Chryseobacterium*.

METHODS

Isolation and ecology

Strain L7T was isolated from seeds of *Alhagi sparsifolia* Shap. collected from Turpan basin of Xinjiang (N 45°16´, E 85°2´). We took about 1.0 g of the seeds and surface sterilized them according to the method of Yuan [9]: firstly, we rinsed the seeds with distilled water three times, and then soaked them with 0.01 % (v/w) Tween-20 for 1 min; followed by soaking with 5 % (v/w) sodium hypochlorite solution, then rinsed with sterile water three times and dried with sterile paper. We then ground the sterile seeds into an homogenate, took 0.1 ml the slurry and spread it on Tryptic Soy Agar (TSA, Qingdao Rishui Biotechnologies Co., Ltd), incubated at 30 °C for 72 h, then selected single colonies and purified the colonies to obtain a pure culture.

We isolated a bacterium which formed yellow colonies on the plate, named it L7, and preserved it in Tryptic Soy Broth (TSB, Qingdao Rishui Biotechnologies Co., Ltd) with 15% (v/v) glycerol at −80 °C. *C. vietnamense* GIMN1.005T
Table 1. 16S rRNA similarity and genomic differences between strain L7T and reference type strains

Strain	16S rRNA similarity (%)	ANI (%)	DDH (%)
C. vietnamense GIMN1.005T	98.1	79.5	23.6
C. bernardetii NCTC 13530T	98.0	79.3	23.3
C. vrysaatense LMG 22846T	97.9	83.4	27.3
C. nakagawae NCTC 13529T	97.7	79.0	23.1
C. obigenae DSM 17126T	97.6	83.7	27.6
C. rhizosphaerae RS83-1T	97.5	79.5	23.5
C. angetaditi KMT	97.5	83.8	27.6
C. carnipullorum DSM 25581T	97.5	83.8	27.4
C. aurantiacum F30T	97.5	79.0	23.1
C. oleate DSM 25575T	97.4	84.8	29.3
C. candidae JCS07T	97.4	79.8	23.6
C. culicis DSM 23031T	97.4	79.2	23.2
C. jejuaense DSM 19299T	97.4	79.1	23.1
C. pennipullorum 7_F195T	97.3	78.8	22.9
C. kwangsiense KJ1R5T	97.2	85.6	30.6
C. lutetum DSM 18605T	97.2	84.1	28.5
C. indologenes NBRC 14944T	97.2	79.0	22.9
C. lactis NCTC 11390T	97.0	79.2	23.1
C. arthrophaga CC-VM-7T	96.9	79.3	23.5
C. urelyticum DSM 18017T	96.9	79.3	23.1
C. viscerum 687B-08T	96.8	79.4	23.3
C. ammonis DSM 19055T	96.8	84.1	28.1
C. gleum ATCC 35910T	96.8	79.5	23.4
C. cuscumeris GSE06T	96.7	79.5	23.3
C. aureum 1751E7T	96.7	79.3	23.5
C. artocarpi UTM-3T	96.7	79.2	22.9
C. oncorynchi 701B-08T	96.6	79.2	23.1
C. sediminis IMT-174T	96.6	79.6	23.4
C. gallinarum DSM 27622T	96.5	79.2	23.0
C. contaminans DSM 27621T	96.2	79.2	23.0
C. daecheongense DSM 15235T	96.2	78.6	22.1

16S rRNA gene phylogeny

The genomic DNA of strain L7T was extracted using TIANamp Bacteria DNA Kit (TIANGEN Biotech Co., Ltd.) according to the protocol. Using the genomic DNA of L7T as a template the 16S rDNA was amplified with Taq PCR Master Mix (Sangon Biotech Co., Ltd.) and universal bacterial primers 27F/1492R [10]. The PCR product was purified using TIANgel Mini Purification Kit (TIANGEN Biotech Co., Ltd.), and sequencing was done by Sangon Sequencing (Sangon Biotech Co., Ltd.). The 16S rRNA gene sequence analysis of strain L7T and closely related strains from the EZ BioCloud (https://www.ezbiocloud.net/) [11] were aligned using CLUSTAL W programme [12]. Phylogenetic trees were reconstructed according to the neighbour-joining and maximum-likelihood methods [13, 14] using MEGA X software [15], bootstrap analyses were performed using 1000 replications.

Genome features

The whole-genome of strain L7T was sequenced and assembled by Majorbio Whole Genome Analysis Service (Majorbio Co., Ltd.) using the Illumina Hiseq ×10 platform and SOAPdenovo2 [16], respectively. The assembled genome was annotated using NCBI Prokaryotic Genome Annotation Pipeline (PGAP) [17]. To confirm the taxonomic status of strain L7T, average nucleotide identity (ANI) and digital DDH (dDDH) values were analysed using the ANI online tool of Chunlab (http://www.ezbiocloud.net/ezgenome/ani) [18] and Genome-to-Genome Distance Calculator version 2.1 (http://ggdc.dsmz.de/ggdc.php#) [19], respectively. The genome sequences of reference strains were downloaded from GenBank database.

Morphological and physiological analysis

The morphology of strain L7T was observed by transmission electron microscopy (JEM-1230; JEOL), and the production of flexirubin-type pigments was tested using 20% (w/v) KOH [20]. Gram-staining was performed using a Gram-staining kit (Solarbio). The range of growth temperatures was tested in TSB over the range of 5–50 °C (4, 10, 15, 20, 25, 28, 30, 35, 40, 45 and 50). The pH range for growth was tested from pH 5.0 to pH 10.0 (in 0.5 pH unit intervals) at 28 °C. The pH was adjusted using MES (pH 4.0–6.0), PIPES (pH 7.0–8.0), HEPES (pH 8.0–9.0), and Gly-NaOH (pH 9.0–10.0) [21]. The catalase and oxidase activities were tested from pH 5.0 to pH 10.0 (in 0.5 pH unit intervals) at 28 °C. The pH was adjusted using MES (pH 4.0–6.0), PIPES (pH 7.0–8.0), HEPES (pH 8.0–9.0), and Gly-NaOH (pH 9.0–10.0) [21]. The catalase and oxidase activities were tested using 3% (w/v) H\textsubscript{2}O\textsubscript{2} and 1% (w/v) dimethylaniline (pH 9.0–10.0) [22]. The catalase and oxidase activities were tested using 3% (w/v) H\textsubscript{2}O\textsubscript{2} and 1% (w/v) dimethylaniline (pH 9.0–10.0) [22]. The catalase and oxidase activities were tested using 3% (w/v) H\textsubscript{2}O\textsubscript{2} and 1% (w/v) dimethylaniline (pH 9.0–10.0) [22]. The catalase and oxidase activities were tested using 3% (w/v) H\textsubscript{2}O\textsubscript{2} and 1% (w/v) dimethylaniline (pH 9.0–10.0) [22]. The catalase and oxidase activities were tested using 3% (w/v) H\textsubscript{2}O\textsubscript{2} and 1% (w/v) dimethylaniline (pH 9.0–10.0) [22]. The catalase and oxidase activities were tested using 3% (w/v) H\textsubscript{2}O\textsubscript{2} and 1% (w/v) dimethylaniline (pH 9.0–10.0) [22]. The catalase and oxidase activities were tested using 3% (w/v) H\textsubscript{2}O\textsubscript{2} and 1% (w/v) dimethylaniline (pH 9.0–10.0) [22]. The catalase and oxidase activities were tested using 3% (w/v) H\textsubscript{2}O\textsubscript{2} and 1% (w/v) dimethylaniline (pH 9.0–10.0) [22].

Chemotaxonomic analysis

Cellular fatty acids were analysed using biomass of strain L7T and reference strains which were obtained by culturing in nutrient broth at 28 °C. The fatty acid methyl esters were prepared, separated and identified according to the instructions of the Microbial Identification System (MIDI) [23].
The respiratory quinone content of strain L7T was analysed by following the method of Lee [5]. Polar lipids were extracted and analysed by two-dimensional TLC (silica gel plates, layer thickness 0.2 mm; Merck) according to the method modified by Indu [24]. Relevant data of strains C. bernardetii NCTC13530T, C. vrystaatense LMG 22846T, C. nakagawai NCTC 13529T, and C. shigense DSM 17126T were quoted from database and literature.

RESULTS AND DISCUSSION

Phylogenetic characteristics

Analysis of the 16S rRNA gene sequence of strain L7T (accession no. MT810475) revealed that L7T belonged to the genus Chryseobacterium, the most closely related strain was Chryseobacterium vietnamense GIMN1.005T, with 98.1% 16S rRNA gene sequence similarity, followed by C. bernardetii NCTC13530T (98.0%), C. vrystaatense LMG 22846T (97.9%), C. nakagawai NCTC 13529T (97.7%), C. shigense DSM 17126T (97.6%), and C. rhizosphaerae RSB3-1T (97.5%) (Table 1).

Phylogenetic trees of representative members in the genus Chryseobacterium were reconstructed. In Fig. 1, strain L7T was separated from the most similar sequences, forming a distinct lineage within the genus Chryseobacterium and the neighbour-joining phylogenetic tree shows a similar structure (Fig. S1) considering the 16S rRNA gene sequence similarities below the established thresholds [25], it was concluded strain L7T as a potential novel species of the genus Chryseobacterium.

Genomic features

The assembled draft genome sequence of strain L7T was 4931506 bp, and was composed of ten contigs. The NCBI PGAP revealed three copies of the 5S, 16S, 23S rRNA gene, respectively, and 83 RNA genes (nine rRNA, 71 tRNA and three ncRNA). Among a total of 4371 predicted genes, 4288 genes were identified as protein-coding sequences. The genomic information of strain L7T and 31 reference species are shown in Table S1. The ANI values between strain L7T and the 31 type strains were 78.6–85.6%. DNA–DNA hybridization between strain L7T and the 31 type strains were <31% (Table 1). The low ANI and DDH values indicated that strain L7T represents a novel species in the genus Chryseobacterium.

Morphological and physiological analysis

Strain L7T was shown to be rod-shaped (2–3 µm×0.5–0.6 µm) and non-flagellated, Gram-stain-negative, non-spore forming, produced flexirubin-type pigments (Fig. S2). The temperature range for growth was 10–37 °C (optimum 28 °C). The pH range for growth was 6.0–8.5 (optimum 7.0). The NaCl range for growth was 0–3% (optimum 1%). Activities of catalase and oxidase were positive. Carbon substrate utilization was positive for: dextrin, trehalose, gentiobiose, α-D-glucose, D-fructose, D-mannitol, glycerol, D-glucose-6-phosphate,
Chemotaxonomic analysis

Major fatty acids (>10 %) of strain L7ᵀ were iso-C₁₅:₀ (23.56 %), iso-C₁₇:₀ 3-OH (22.9 %), C₁₆:₁ ω7c and/or C₁₆:₁ ω6c (13.7 %), isoC₁₇:₁ ω9c and/or 10-methyl C₁₆:₀ (11.9 %). The fatty acid composition of strain L7ᵀ was significantly different from those of C. vietnamense GIMN1.005ᵀ, C. bernardetii NCTC13530ᵀ, C. vrystaatense LMG22846ᵀ, C. nakagawai NCTC 13529ᵀ, C. shigense DSM 17126ᵀ, C. rhizosphaerae RSB3-1ᵀ, and C. gleum ATCC35910ᵀ. Menaquinone-6 (MK-6) was found as the only respiratory quinone of strain L7ᵀ. The major polar lipids of strain L7ᵀ were phosphatidylethanolamine, phosphatidylglycerol, three unidentified aminophospholipids, two unidentified aminolipids,
Zhang et al., Int. J. Syst. Evol. Microbiol. 2021;71:005077

Fig. 2. Two-dimensional TLC of polar lipids photographs from strain L7T. A, total lipids of strain L7T; B, glycolipids of strain L7T; C, aminophospholipids and phosphatidylethanolamine of strain L7T; D, phospholipids of strain L7T. AL, unidentified aminolipid; APL, unidentified aminophospholipid; GL, unidentified glycolipid; L, unidentified lipid; PL, phospholipid; PE, phosphatidylethanolamine.

three unidentified glycolipids and two unidentified lipids (Fig. 2, Table 2).

The phenotypic and chemotaxonomic characteristics of the isolate, summarized in Tables 1–3, in additional to the 16S rRNA gene phylogenetic analyses, suggest that strain L7T represents a novel species of genus Chryseobacterium, for which the name Chryseobacterium endalhagicum sp. nov. is proposed.

DESCRIPTION OF CHRYSEOBACTERIUM ENDALHAGICUM SP. NOV.

Chryseobacterium endalhagicum (end. al. ha' gi. cum. Gr. pref. endo- within; N.L. fem. n. Alhagi, a botanical genus name; N.L. neut. adj. endalhagicum, living inside Alhagi).

Cells are Gram-stain-negative, rod-shaped, 0.5–0.6 µm wide, 2.0–3.0 µm long, non-motile. Colonies on TSA are slimy, round, have a smooth margin, and bright yellow in colour, produce flexirubin-type pigments. Growth occurs at 10–37 °C, with optimum growth at 28 °C. pH range for growth is 6.0–8.5, with optimum growth at pH 7.0. Tolerates up to 3% NaCl (w/v), optimum growth occurs at 1%. Catalase and oxidase activities are positive. Carbon substrate utilized were dextrin, trehalose, gentiobiose, α-d-glucose, d-fructose, d-mannitol, glycerol, d-glucose-6-phosphate, d-fructose-6-phosphate, gelatin, glycyrl-l-proline, l-arginine, l-aspartic acid, l-glutamic acid, l-serine, d-glucuronic acid, methyl pyruvate, d-lactic acid methyl ester, l-lactic acid, citric acid, α-keto-glutaric acid, Tween 40, acetoacetic acid, acetic acid. Enzyme activity (API ZYM) positive for: alkaline phosphatase, esterase (C4), esterase lipase (C8), lipase (C14), leucine arylamidase, valine arylamidase, cystine arylamidase, trypsin, a-chymotrypsin, acid phosphatase, naphtol-AS-BI-phosphohydrolase, α-galactosidase, β-galactosidase, β-glucuronidase, α-glucosidase, β-glucosidase, N-acetyl-β-glucosaminidase. MK-6 is the

Fatty acid	1	2	3*	4†	5‡	6§	7	8
iso-C_{15:0}	23.6	28.2	29.7	46.8	35.3	41.7	29.7	24.0
iso-C_{15:0} 3-OH	2.9	2.8	2.9	3.2	3.0	2.4	3.2	3.2
iso-C_{16:0}	4.0	3.0	–	TR	–	TR	3.0	3.1
C_{16:0}	2.6	4.1	4.0	1.3	2.0	1.0	–	2.3
iso-C_{16:0} 3-OH	3.7	1.5	1.1	TR	–	ND	2.4	2.4
iso-C_{17:0} 3-OH	22.9	26.3	17.8	12.9	–	16.3	24.4	26.0
Summed feature 3¶	13.7	10.1	14.1	9.4	12.9	9.9	9.6	14.8
Summed feature 8¶	–	–	1.4	–	–	ND	–	–
Summed feature 9¶	11.9	9.8	16.8	14.4	21.3	ND	12.1	10.9

*Data from Kim et al. [33].
†Data from https://www.ccg.se/strain?id=50970
‡Data from https://www.ccg.se/strain?id=60563
§Data from Montero-Calasanz et al. [32].
¶Summed features are fatty acids that can not be resolved reliably from another fatty acid using the chromatographic conditions chosen. The MIDI system groups these fatty acids together as one feature with a single percentage of the total. Summed feature 3 contains C_{16:1}ω₇c and/or C_{16:1}ω_{6c}; summed feature 8 contained C_{15:0}ω₇c and/or C_{16:0}; summed feature 9 contains isoC_{17:1}ω_{9c} and/or C_{16:0} 10-methyl.
only quinone. Phosphatidylethanolamine, an unidentified phospholipid, two unidentified aminolipids, three unidentified aminophospholipids, three unidentified glycolipids and two unidentified lipids are the polar lipids. Major fatty acids (>10%) are iso-C_{15:0}, iso-C_{17:0} 3-0H, C_{16:1}ω7c and/or C_{16:1}ω6c, isoC_{17:1}ω9c and/or 10-methyl C_{16:0}. The genomic DNA G+C content is 38.58 mol%.

The type strain is L7^T (=MCCC 1K05687^T =JCM 34506^T), which was isolated from seeds of *Alhagi sparsifolia* Shap., a leguminous plant. The GenBank accession number for the *Chryseobacterium endalhagicum* L7^T were MT810475 and JAELVM0000000000, respectively.

References

1. Vandamme P, Bernardet JF, Segers P, Kersters K, Holmes B. NOTES: New Perspectives in the Classification of the Flavobacteria. Description of *Chryseobacterium* gen. nov., *Bergeyella* gen. nov., and *Empe- do bacter* nom. rev. International Journal of Systematic Bacteriology 1994;44:827–831.
2. Yang F, Liu H-M, Zhang R, Chen D-B, Wang X, et al. *Chryseobacterium* shandongense sp. nov., isolated from soil. Int J Syst Evol Microbiol 2015;65:1860–1865.
3. Chaudhary DK, Kim J. *Chryseobacterium nepalense* sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2017;67:646–652.
4. Luo T, Liu Y, Chen C, Luo Q, Rao Q, et al. *Chryseobacterium aurantium* sp. nov., isolated from a freshwater pond used for murray cod (*Maccullochella peeli* peeli) culture. Int J Syst Evol Microbiol 2018;68:3397–3403.
5. Lee JE, Hwang EM, Cha CJ, Kim GB. *Chryseobacterium aureum* sp. nov., isolated from the Han River, Republic of Korea. Int J Syst Evol Microbiol 2019;69:1628–1633.
6. Loch TP, Faisal M. *Chryseobacterium aahii* sp. nov., isolated from lake trout (*Salvelinus namaycush*) and brown trout (*Salmo trutta*), and emended descriptions of *Chryseobacterium ginsenosidumutans* and *Chryseobacterium gregarium*. Int J Syst Evol Microbiol 2014;64:1573–1579.
7. Lin S-Y, Hameed A, Liu Y-C, Hsu Y-H, Hsieh Y-T, et al. *Chryseobacterium endophyticum* sp. nov., isolated from a maize leaf. Int J Syst Evol Microbiol 2017;67:570–575.
8. Yoon SH, Lee JE, Han RH, Kwon M, Kim GB. *Chryseobacterium mulctiae* sp. nov., isolated from raw cow’s milk. Int J Syst Evol Microbiol 2019;69:3478–3484.
9. Zhihui Y, Qiongfeng J, Fulin H. Review on the research of plant endophytic microbes and dark matter’s exploring techniques. Natural Product Research and Development 2016:028:1156.
10. Winker S, Woese CR. A definition of the domains archaea, bacteria and eucarya in terms of small subunit ribosomal RNA characteristics. Syst Appl Microbiol 1991;14:305–310.
11. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M, et al. Introducing Eztaxon-e: A prokaryotic 16S rRNA gene sequence database with phylogroups that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721.
32. Montero-Calasanz M del C, Göker M, Rohde M, Spröer C, Schumann P, et al. Chryseobacterium oleae SP. nov., an efficient plant growth promoting bacterium in the rooting induction of olive tree (Olea europaea L.) cuttings and emended descriptions of the genus Chryseobacterium, C. daechongense, C. gambrini, C. gleum, C. joostei, C. jejuense, C. luteum, C. shigense, C. taiwanense, C. ureilyticum and C. vrystaatense. Syst Appl Microbiol 2014;37:50723-2020(14)00060-5.

33. Kim T, Kim M, Kang O, Jiang F, Chang XL, et al. Chryseobacterium frigidum sp nov., isolated from high-Arctic tundra soil, and emended descriptions of Chryseobacterium bernardetii and Chryseobacterium taklimakanense. Int J Syst Evol Microbiol 2016:609–615.

34. Shimomura K, Kaji S, Hiraishi A. Chryseobacterium shigense sp. nov., a yellow-pigmented, aerobic bacterium isolated from a lactic acid beverage. Int J Syst Evol Microbiol 2005;44:1903–1906.

Five reasons to publish your next article with a Microbiology Society journal

1. The Microbiology Society is a not-for-profit organization.
2. We offer fast and rigorous peer review – average time to first decision is 4–6 weeks.
3. Our journals have a global readership with subscriptions held in research institutions around the world.
4. 80% of our authors rate our submission process as ‘excellent’ or ‘very good’.
5. Your article will be published on an interactive journal platform with advanced metrics.

Find out more and submit your article at microbiologyresearch.org.