Emergence of simple patterns in many-body systems: from macroscopic objects to the atomic nucleus*

R.F. García Ruiz1,2 a and A. Vernon3,4 b

1 CERN, CH-1211 Geneva 23, Switzerland
2 Massachusetts Institute of Technology, Cambridge, MA 02139, USA
3 KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium
4 School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom

Received: date / Revised version: date

Abstract. Strongly correlated many-body systems often display the emergence of simple patterns and regular behaviour of their global properties. Phenomena such as clusterization, collective motion and appearance of shell structures are commonly observed across different size, time, and energy scales in our universe. Although at the microscopic level their individual parts are described by complex interactions, the collective behaviour of these systems can exhibit strikingly regular patterns. This contribution provides an overview of the experimental signatures that are commonly used to identify the emergence of shell structures and collective phenomena in distinct physical systems. Examples in macroscopic systems are presented alongside features observed in atomic nuclei. The discussion is focused on the experimental trends observed for exotic nuclei in the vicinity of nuclear closed-shells, and the new challenges that recent experiments have posed in our understanding of emergent phenomena in nuclei.

PACS. PACS-key describing text of that key – PACS-key describing text of that key

1 Introduction

Our understanding of the universe is intimately related to our description of many-body systems. The knowledge of the fundamental particles and forces of nature is as important as our ability to understand how these building blocks are organized to form complex systems. Remarkably, the emergence of simple and regular patterns are common features observed in strongly correlated many-body systems [1–9]. At the microscopic level, the individual parts of different physical systems can be described by fundamentally different interactions, however, their collective behaviour can exhibit similar patterns. These seemingly simple regularities of certain properties of a physical system tend to suggest the existence of underlying symmetries and allows simple models to provide a good description of the observed data [9–13]. However, the link between these models and their microscopic interactions is an open question in many fields of physics.

The recent progress of both experimental and theoretical developments have allowed an unprecedented connection between reductionist and emergent views of nature. Advances in many-body methods and the rapid development of computing power have provided new paths towards the ab initio description of macroscopic phenomena. Theoretical developments are motivated by the ambition of a first principles description of emergent phenomena, yet this reductionist approach is deeply motivated by empirical observations [14,15]. The emergence of unexpected phenomena is uniquely accessed through experiments. A deeper understanding of the microscopic origin of the observed physical phenomena is achieved through systematic experimental studies confronted with the theoretical descriptions.

This article presents a short overview of experimental signatures that are commonly used to characterize the emergence of phenomena in different physical systems. Various examples of objects from the human size scale down to the femtometer scale are presented. The discussion is centered on the observables that are used to indicate the emergence of phenomena such as shell structures and “magic” numbers - integer number of constituents with notably different properties. Albeit not exhaustive, an effort is made to include citations that could be useful to direct interested readers to the relevant literature.

The manuscript is divided in two main parts: The first part provides a brief description of selected examples that illustrate the emergence of regular patterns in macroscopic systems and their relation with similar patterns observed
in the atomic nucleus. The second part is focused on the experimental signatures used to discuss the emergence of collective phenomena and shell structures in nuclei. Commonly discussed properties such as binding energies, nuclear charge radii, excitation energies and transition probabilities are presented. The discussion is expanded using recent experimental results obtained for the ground-state properties of nuclei in the neighborhood of nuclear shell closures. Finally, an emphasis is made on the trends and open questions that the new observations pose for our current understanding of nuclear structure in different regions of the nuclear chart.

2 Emergence of simple patterns in many-body systems

Throughout nature, driving forces give rise to optimization problems for the arrangement of constituents in many-body systems at almost every size scale. On biological scales, this manifests in a variety of collective phenomena and pattern formation. Such as in the phyllotaxis of plants, where simply growth patterns appear in the arrangement of leaves or flowers around a plant step. One particularly striking example is observed in the growth of seeds in a sunflower head, in which the number of spirals of seeds follows the Fibonacci sequence. A large variety of patterns emerge in smaller systems as a consequence of the optimal arrangement of their constituents, from the clustering in framboidal pyrite to the crowding of molecules in cells, where simply growth patterns appear in the arrangement of leaves or flowers around a plant step. One particularly striking example is observed in the growth of seeds in a sunflower head, in which the number of spirals of seeds follows the Fibonacci sequence. A large variety of patterns emerge in smaller systems as a consequence of the optimal arrangement of their constituents, from the clustering in framboidal pyrite to the crowding of molecules in cells.

The energetic efficiency of these more stable magic number configurations leads to their prevalence in biological systems also, such as with the magic number of capsid proteins which appear to form virus capsid structures. A summary of different systems in nature which exhibit these magic numbers of stability is shown in Table 1. Experimental signatures and typical size of the different systems are shown in the same table. For non-deformable constituents with their packing constrained by symmetric polyhedral shapes, the magic numbers that appear can be determined for a system with constituents of any size using purely geometric considerations, and they appear in nature with these numbers when this is the case. However, the identification of naturally occurring magic numbers from a

distribution becomes more challenging for greater length scales, as the likelihood of finding ensembles with a similar number of homogenous constituents decreases.

Those constituents between magic numbers, can also be said to belong to a ‘shell’, in analogy to the electronic shells of atoms or for nucleons in atomic nuclei. In some cases this is reflected by the spatial arrangement of the constituents. This has been observed for example in ‘dusty’ plasmas, where charged dust particles (on the micrometer scale) can self assemble into a plasma crystal arrangement with a radial spherical shell distribution of particles, with the total system on the scale of millimeters. Such mesoscopic systems are often called ‘artificial atoms’ due to their close resemblance with atomic systems. The examples enlisted in Table 1 for dust particles, occur for particular experimental conditions. These experiments have several highly tunable parameters, which can result in different sequences of magic numbers. Similar self arrangement and appearance of magic numbers has also been observed in 2-dimensional mesoscopic experiments using micrometer-sized superconducting disks.

At the scale of hundreds of micrometers, polystyrene spheres (colloidal particles) with diameters of around 200 nm have been observed to self assemble into colloidal clusters. While the interaction has a complicated description including surface chemistry, capillary forces and entropy maximization, and the presence of depletants, these clusters were also found to exhibit magic number configurations. These specific numbers of colloidal particles were found to result in a higher thermodynamic stability, as observed through decreased evaporation rates, similar to that of the total energy of an unstable nucleus as reflected in its half-life. Due to the absence of a repulsive force, these colloidal systems can range from a few particles to billions of particles (colloidal crystals).

Perhaps the systems with the most in common with the atomic nucleus are atomic clusters, an area of physics which has historically benefited from analogies with nuclear models. Clusters of atoms were observed to have magic numbers of enhanced stability reflected in their produced mass abundance spectra (see Table 1). The electronic structure of the constituent atom ultimately dictates the properties of the atomic clusters, however phenomenological models have been developed to provide a good description of the observed magic numbers, similar to the shell model of the atomic nucleus. A ‘wine-bottle’ shaped potential used to describe these atomic clusters was adapted from the Woods-Saxon potential. This potential predicted ‘super shells’ to appear as the number of atoms in the clusters approaches $N = 1000$, due to higher-order stabilizing effects, analogous to the predicted islands of stability of heavy nuclei. The predicted super-shell magic numbers were soon observed in sodium clusters. Deformation also has an analogous role in these clusters as in atomic nuclei, where the most stable clusters have spherical deformation and those between shell closures have
Table 1. Experimental signatures of the emergence of shell structures and “magic” numbers in different many-body systems. The size scales and the common observables that are used to characterize the properties of each systems are indicated. Here the ellipses (“...”) are used to denote that additional magic numbers have been omitted for space.

Constituent	Size System	Size Observable(s)	Magic numbers	Refs.
Spheres	Any Spherical confinement	Any Density	6, 12, 21, 25, 38 ...	1
Sunflower seeds	∼ 1 cm Sunflower head	5-50 cm Number of spirals	3, 5, 8, 13, 21, 34, ...	2, 16, 17
Dust particles	µm 3D plasma crystal	mm Radial distribution	2, 21, 60, 107 ..	3
Superconducting disks	µm Vortex shells	5 µm Radial distribution	5, 16, 32	4
Polystyrene spheres	244 nm Colloidal cluster	∼ 2.8 µm Evaporation rate	135, 297, 851, 801, 1283, 2583 ...	5
Spherical capsid protein	∼ 5 nm Virus capsid structure	∼ 50 nm Abundance	15, 17, 18, 42	18, 20
C atoms	170 pm Fullerenes	∼ 6 nm Mass abundance	60, 70, 72, 76, 78, 84 ..	7, 21, 22
H2O	275 pm Electron-bound water clusters	∼ 3-20 Å Mass abundance	2, 6, 7, 11	23
Xe atoms	216 pm Atom clusters	∼ 2-10 Å Mass abundance	13, 16, 19, 25, 55, 71, 87, 147 ...	24, 25
Na atoms	227 pm Atom clusters	∼ 2-10 Å Mass abundance	8, 20, 40, 58, 92 ...	26, 28
Electrons	fm Atoms	31-348 fm Ionization energy	2, 10, 18, 36, 54	30
Nucleons	fm Nuclei	1-10 fm Binding energies, t1/2, < r² >, B(E2), E2+, Q8, μ, Solar abundances, Neutron capture σ	2, 8, 20, 28, 50, 126 ..	31, 35, 36, 37, 38, 39, 40

Oblate or prolate deformation [8,90]. The Nilsson model of the atomic nucleus [91] has been adapted to describe axially deformed clusters, known as the Clemenger-Nilsson model [92]. Giant dipole resonances of atomic nuclei also have a counterpart in these cluster systems, in the form of plasma resonance frequencies [94,95]. Taking the example of the sodium clusters, many of the observables corroborate the same set of magic numbers [26,28,96,98] which are of electronic origin. A modified set of magic numbers was found in the melting temperatures of the clusters [99]. However, this required an additional interpretation considering the geometric shells of the positions of the atomic nuclei alongside the electronic shells, due to the importance of the positions of the atomic nuclei in the melting process [29]. This highlights how experimental observables can probe very different aspects of the same physical system, leading to different sequences of magic numbers for different properties of the same sys-
ties as a function of the neutron and proton numbers are
state, \(S \) open shell [108]. ii. a relatively large two-nucleon separa-
sures, and a larger increase through the filling of the new
of the charge radius as nucleons are added beyond a shell
= 20, 28, 50, 82 and 126, there is a pronounced change
N charge radius, \(\langle r^2 \rangle \).

3.1 Experimental signatures of shell structures

The signatures of nuclear shell structures are manifested in different observables [103,107,114,117]. The numbers of nucleons that completely fill nuclear closed-shells are the so-called “magic” numbers. Nuclei with a magic number of nucleons are commonly observed to have the following signatures: i. a relatively small mean-squared charge radius, \(\langle r^2 \rangle \). As seen in Figure 1 at nucleon number \(N = 20, 28, 50, 82 \) and 126, there is a pronounced change of the charge radius as nucleons are added beyond a shell closure (“kink”), with a smooth increase towards shell closures, and a larger increase through the filling of the new open shell [108]. ii. a relatively large two-nucleon separation energy, \(S_{2n} \); iii. a small quadrupole moment value, \(Q_s \); iv. a high excitation energy of the first \(2^+ \) state, \(E_{2^+} \); and v. a small transition probability to the first \(2^+ \) excited state, \(B(E2) \). A compilation of these experimental properties as a function of the neutron and proton numbers are shown in Figure 1 and Figure 2 respectively. The data corresponding to different isotones are shown in Figure 1 using bars of different colors to indicate the magnitudes of the observables for each isotope, the same is shown in 2 as a function of atomic number.

The changes of the mean square charge radii when two neutrons are added, \(\Delta \langle r^2 \rangle (2n) \), are presented in Figure 1. The analogous differences when two protons are added, \(\Delta \langle r^2 \rangle (2p) \), are shown in Figure 2 however the data in this case is relatively sparse as the charge radii of many elements have not yet been measured. At magic number of nucleons these differences exhibit a minimum value, with local maxima occurring after crossing the closed shell. As the magnitude of \(Q_s \), \(B(E2) \), and \(E_{2^+} \) scales with the atomic number and the nuclear size, these parameters were normalized in order to compare light and heavy nuclei on the same scale. The experimental values of \(Q_s \) and \(B(E2) \) were scaled to the dimensionless values \(Q_s/Z R \) and \(B(E2)/Z^2 R^2 \), with \(Z \) the proton number and \(R = 1.18 A^{1/3} \) the droplet-model radius. Normalized observables present minimum values around the nucleon numbers 28, 50, 82 and 126, with a clear correlation seen in the trends of all observables. For some isotopes, additional local minima appear around nuclear numbers 2, 8, 16, 20, and 40. Figure 1(iv), for example, shows bars of different color at \(N = 20 \), indicating that nuclei with the same number of neutrons, such as \(^{24}\text{Mg} \) and \(^{48}\text{Ca} \), have very different \(E(2^+) \) values [143]. The isotopes with magic nucleon numbers have relatively high binding energy, and their charge distribution exhibit smaller variations with respect to the spherical shapes (small quadrupole moments). The nuclear charge radius commonly increases with the number of nucleons, but the slope of the increase is notably smaller approaching the nuclear closed shells. These nuclei are more difficult to excite than their neighbors, which is evidenced by their relatively high excitation energies and low excitation probabilities.

The properties of light nuclei (\(A<20 \)) exhibit different patterns with respect to the number of nucleons. These nuclei do not display the regular trends observed in heavier isotopes. The addition or removal of a single nucleon can produce drastic changes on the properties of these few-nucleus systems. Common patterns are more evident in heavy nuclei, with a few points outside the general trends. Some particular isotopes, as in the region around \(Z = 40, N = 60 \) and \(Z = 62, N = 90 \), are considered to present a rapid onset of deformation [103,114]. Interestingly, collective phenomena such as shape coexistence and phase transitions observed for nuclei in the region \(Z = 62, N = 90 \) have been suggested to exhibit analogous features as those for silicon clusters, which are governed by very different interactions [145].

3.2 Simple patterns in complex nuclei

Nuclear electromagnetic moments such as the magnetic dipole and electric quadrupole moment provide complementary insights into the microscopic and collective properties of nuclei [146,147]. In fact, electromagnetic moments...
played a key role in motivating the most basic models of nuclear physics: the nuclear shell model [111], and nuclear deformation [148–150]. Systematic experimental studies of isotopes around nuclear closed shells have revealed surprisingly simple trends in the evolution of nuclear ground-state electromagnetic properties as a function of the neutron number [115,118–120,146,151–153].

Nuclei in the vicinity of the tin isotopes give outstanding examples of simple patterns. The electromagnetic properties of these complex nuclei, with around 50 protons and more than 50 neutrons, seem to be described by a single particle in a nuclear orbital. The experimental nuclear γ-factor (the ratio between the dipole magnetic moment and the nuclear spin) and electric quadrupole moments of cadmium ($Z = 48$), indium ($Z = 49$), and tin ($Z = 50$) isotopes are shown in Figure 3, exhibiting simple trends as a function of neutron number. A simplified single-particle model provides a good description of these observations. In the shell model picture, the electromagnetic properties of odd-even indium isotopes are given by a single proton hole in the $\pi h_{11/2}$ orbit [154] [156]. This simple picture of nuclear structure seems to be supported by a rather constant value of their nuclear moments, which present very small variations when neutrons are added. For the even-proton nuclei, cadmium and tin, the naive shell-model expectation is that that the electromagnetic properties of even-odd isotopes are dominated by a single neutron occupying the $\nu h_{11/2}$ neutron orbit. This idea is also supported by a constant value of the magnetic moment, and a linear trend in the nuclear quadrupole moments. In this shell model picture, a particle occupying an orbit around closed shells has a negative quadrupole moment, which is interpreted as polarizing a spherical core towards an oblate deformation ($Q_s < 0$) [146]. If neutrons are added

Fig. 1. Experimental nuclear properties as a function of the neutron number: i. mean-squared charge radii difference when two neutrons are added, $\langle r^2 \rangle(2n)$; ii. derivative of the two-neutron separation energy $dS(2n)$; iii. normalized spectroscopic quadrupole moments $Q_s/Z\sqrt{R}$; iv. scaled inverse of the excitation energy of the first 2^+ state, $1/E_{2^+}/Z$; and v. normalized transition probability to the first 2^+ excited state, $B(E2)/Z^2R^2$. Data taken from [31–33,36–38,103,115,118–142].
Fig. 2. Experimental nuclear properties as a function of the proton number: i. mean-squared charge radii difference when two protons are added, \(\langle r^2 \rangle (2p) \); ii. derivative of the two-proton separation energy \(dS(2p) \); iii. normalized spectroscopic quadrupole moments \(Q_s/ZR \); iv. scaled inverse of the excitation energy of the first \(2^+ \) state, \(1/E_{2}\); and v. normalized transition probability to the first \(2^+ \) excited state, \(B(E2) / Z^2 R^2 \). Data taken from [31–33,36–38,103,115,118–142].

to the same orbit, the values of quadrupole moments cross zero when the orbit is half-filled, and take positive values when more than half of the orbit is occupied. This is interpreted as a “hole” polarizing the core towards prolate deformation \((Q_s > 0) \). Similar trends have been observed in the calcium \((Z = 20) \) [115], nickel \((Z = 28) \) [157] and lead \((Z = 82) \) [146] regions.

3.3 New trends in neutron-rich nuclei

Recent developments in both experimental and theoretical tools have provided a deeper insight in our understanding of nuclear properties at extreme proton-to-neutron ratios. Particular interest has been focused on the evolution of nuclear properties towards the suggested neutron-rich doubly magic nuclei: \(^{52,54}\)Ca \((Z = 20, N = 32,34)\) [103 116 117 123], \(^{78}\)Ni \((Z = 28, N = 50)\) [125 126 158 159], and \(^{132}\)Sn \((Z = 50, N = 82)\) [129 130]. These regions of the nuclear chart are being studied by several experimental techniques providing tests of theoretical descriptions at limits of the nuclear existence. While most of the measured experimental properties \((S_{2n}, E(2^+), B(E2), \) and \(Q_s \) have been described by available nuclear models [115 117 159 160], the description of the nuclear size \(\langle r^2 \rangle \) has posed new challenges for modern nuclear theory [103 130 131 161 162]. This problem has been tackled with density functional theory, where satisfactory description of charge radii have been obtained in the calcium [131] and tin regions [130]. However, a description in the ab-initio framework has not been achieved yet [103 162].

Figure 3 shows the changes of the mean-squared charge radii around the calcium, nickel, and tin regions. The values for each isotopic chain are shown with respect to the value at the closed neutron shells. While a strong ele-
patterns seen in isotopes close to stability. For neutron-rich nuclei in the calcium region, the discontinuities seen in other observables such as S_{2n}, $E(2^+)$ values at neutron number $N = 32$, do not appear to be evident in the nuclear charge radii trends. A compilation of different properties measured in the calcium region is shown in Figure 3. The signatures of closed shells at $N = 20$ and $N = 28$ appears across all observables. For the nuclear charge radii (Figure 3) the signatures at $N = 20$ are present but less pronounced than for $N = 28$. At $N = 32$ and $N = 34$ the clear agreement for the signs of shell closures among the different observables breaks down, and distinct regular patterns appear for different observables.

Only very recently systematic measurements have been achieved for the nuclear charge radii in the vicinity of calcium and tin isotopes beyond $N = 28$ and $N = 82$. The charge radii and electromagnetic moments of 58,70Ni, $^{124−134}$Sn and $^{112−134}$Sb isotopes have been measured by the COLLEPS collaboration at ISOLDE-CERN. Moreover, results for $^{47−52}$K ($Z = 19$), $^{58−76}$Cu ($Z = 29$), $^{101−111}$Sn ($Z = 50$) and $^{101−133}$In ($Z = 49$) isotopes have been obtained by the CRIS collaboration at ISOLDE-CERN. Current efforts to extend these measurements to more exotic calcium, potassium, indium and tin isotopes are underway.

4 Conclusions

Despite the drastic difference in the interactions between their constituents, the collective properties of strongly correlated many-body systems exhibit surprisingly common features. A common feature is the appearance of shell structures and collective phenomena with seemingly simple trends. From dust particles governed by coulomb interactions, atomic clusters interacting by covalent bonds and inter-atomic potentials, up to nuclei governed by short-range nuclear forces. The interactions, length scale and dynamics are very different, but these systems present similar signatures of shell structures and collective phenomena. Perhaps the commonalities between these often seemingly disparate many-body systems may allow further mutual advancements in different fields, as for example was found in the field of atomic nanoclusters by the successful application of modified nuclear structure models.

The recent developments in many-body theory and the continuous increase in computing power have allowed an unprecedented reductionist insight of the emergent of physical phenomena. This connection between reductionist and emergence viewpoints is grounded uniquely through empirical observations.

The microscopic description of strongly correlated many-body systems demands different theoretical challenges. In contrast to other quantum systems, the atomic nucleus is formed by two different constituents (protons and neutrons) that interact mainly by the electromagnetic, strong and weak forces. Recent developments in many-body methods and higher computing power have provided great steps towards the understanding of the microscopic origin of collective phenomena in different regions of the nuclear
Fig. 4. Changes in the mean-square charge radii as a function of the neutron number: i. calcium ($Z = 20$), ii. nickel ($Z = 28$), and iii. tin region ($Z = 50$). Each isotopic chain is shown with respect to the isotope with neutron number at the closed shell. Experimental data were taken from [103,123–132].

Fig. 5. Experimental nuclear properties in the calcium region: i. mean-squared charge radii difference when two neutrons are added, $\langle r^2 \rangle (2n)$; ii. derivative of the two-nucleon separation energy dS_{2n}; iii. normalized spectroscopic quadrupole moments Q_s/ZR; iv. scaled inverse of the excitation energy of the first 2^+ state, $1/E_{2^+}/Z^2$; and v. normalized transition probability to the first 2^+ excited state, $B(E2)/Z^2R^2$. Experimental data were taken from [38,103,115,133,142].

Acknowledgements

This work was supported by ERC Consolidator Grant No.648381 (FNPMLS); STFC grants ST/L005794/1, ST/L005786/1, ST/P004423/1 and Ernest Rutherford Grant No. ST/L002868/1; GOA 15/010 from KU Leuven, BriX Research Program No. P7/12; the FWO-Vlaanderen (Belgium); the European Unions Grant Agreement 654002 (ENSAR2). We thank A. Koszorus and S. Wilkins for helpful comments and suggestions.

References

1. Erin G Teich, Greg van Anders, Daphne Klotsa, Julia Dshemuchadse, and Sharon C Glotzer. Clusters of polyhedra in spherical confinement. Proc. Natl. Acad. Sci. U. S. A., 113(6):E669–78, feb 2016.
2. Didier Reinhardt. Phyllotaxis - A new chapter in an old tale about beauty and magic numbers, oct 2005.
3. Oliver Arp, Dietmar Block, Alexander Piel, and André Melzer. Dust coulomb balls: Three-dimensional plasma crystals. Phys. Rev. Lett., 93(16), oct 2004.
4. I. V. Grigorieva, W. Escoffier, J. Richardson, L. Y. Vinikov, S. Dubonos, and V. Oboznov. Direct observation of vortex shells and magic numbers in mesoscopic superconducting disks. Phys. Rev. Lett., 96(7), 2006.
47. Takashi Hayashi and Richard W. Carthew. Surface mechanics mediate pattern formation in the developing retina. Nature, 431(7009):647–652, oct 2004.
48. J. A. S. Kelso and G. Schöner. Self-organization of coordinate movement patterns. Hum. Mov. Sci., 7(1):27–46, 1988.
49. G. Schöner and J. A. S. Kelso. Dynamic pattern generation in behavioral and neural systems. Science (80-.), 239(4847):1513–1520, 1988.
50. G. J. Mitchison. Phyllotaxis and the fibonacci series. Science (80-.), 196(4287):270–275, 1977.
51. Didier Reinhardt, Eva Rachelle Pesce, Pia Stieger, Therese Mandel, Kurt Baltensperger, Malcolm Bennett, Jan Traas, Jüri Friml, and Cris Kuhlemeier. Regulation of phyllotaxis by polar auxin transport. Nature, 426(6964):255–260, nov 2003.
52. Reza Farhadifar, Jens Christian Röper, Benoît Aigouy, Suzanne Eaton, and Frank Jülicher. The Influence of Cell Mechanics, Cell-Cell Interactions, and Proliferation on Epithelial Packing. Curr. Biol., 17(24):2095–2104, dec 2007.
53. Hiroaki Ohfuji and David Richard. Experimental synthesises of frambois - A review. Earth-Science Rev., 71(3-4):147–170, aug 2005.
54. Hiroaki Ohfuji and Junji Akai. Icosahedral domain structure of framboidal pyrite. Am. Mineral., 87(1):176–180, 2002.
55. S. Elizabeth Norred, Patrick M. Caveney, Gaurav Chauhan, Lauren K. Collier, C. Patrick Collier, Steven M. Abel, and Michael L. Simpson. Macromolecular Crowding Induces Spatial Correlations That Control Gene Expression Bursting Patterns. ACS Synth. Biol., 7(5):1251–1258, may 2018.
56. R. John Ellis and Allen P. Minton. Join the crowd, sep 2003.
57. Cristian Micheletti, Davide Marenduzzo, and Enzo Orlandini. Polymers with spatial or topological constraints: Theoretical and computational results, jul 2011.
58. Ralph A. Alpher and Robert C. Herman. Theory of the origin and relative abundance distribution of the elements. Rev. Mod. Phys., 22(2):153–212, 1950.
59. Edward Anders and Nicolas Grevesse. Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta, 53(1):197–214, 1989.
60. B. E. J. Pagel. Nucleosynthesis and chemical evolution of galaxies. Cambridge University Press, 2009.
61. R. McNeill. Alexander. Optima for animals. Princeton University Press, 1996.
62. J. M. Cherrett, A. D. Bradshaw, F. B. Goldsmith, P. J. Grubb, and J. R. Krebs. Ecological concepts: the contribution of ecology to an understanding of the natural world. Blackwell Scientific, for British Ecological Society; Symposium, 29, 1989.
63. J Maynard Smith. Evolution and the Theory of Games: In situations characterized by conflict of interest, the best strategy to adopt depends on what others are doing. Am. Sci., 64(1):41–45, 1976.
64. G. A. Parker and J. Maynard Smith. Optimality theory in evolutionary biology, 1990.
65. Michael A. Boles, Michael Engel, and Dmitri V. Talapin. Self-assembly of colloidal nanocrystals: From intricate structures to functional materials, sep 2016.
66. R. Rutgers. Packing of spheres. Nature, 193(4814):465–466, 1962.
67. Ignacio Castillo, Frank J. Kampas, and János D. Pintér. Solving circle packing problems by global optimization: Numerical results and industrial applications. Eur. J. Oper. Res., 191(3):786–802, dec 2008.
68. Maria Goepfert Mayer. On Closed Shells in Nuclei. II. Phys. Rev., 75(12):1969–1970, jun 1949.
69. Otto Haxel, J. Hans D. Jensen, and Hans E. Suess. On the ”magic numbers” in nuclear structure, 1949.
70. M. Bonitz, C. Henning, and D. Block. Complex plasmas: A laboratory for strong correlations. Reports Prog. Phys., 73(6), 2010.
71. V. E. Fortov, A. V. Ilev, S. A. Khrapak, A. G. Khrapak, and G. E. Morfill. Complex (dusty) plasmas: Current status, open issues, perspectives, dec 2005.
72. O Arp, D Block, M Bonitz, H Fehske, V Golubnychiy, S Kosse, P Ludwig, A Melzer, and A Piel. 3D Coulomb balls: experiment and simulation. J. Phys. Conf. Ser., 11:234–247, jan 2005.
73. O. Arp, D. Block, M. Klimsdworth, and A. Piel. Confinement of Coulomb balls. Phys. Plasmas, 12(12):1–9, 2005.
74. P. Ludwig, S. Kosse, and M. Bonitz. Structure of spherical three-dimensional Coulomb crystals. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., 71(4), apr 2005.
75. Wen Tau Jean, Zen Hong Huang, Ju Wang Hsu, Yin Ju Lai, and I. Lin. Observation of dust Coulomb clusters in a plasma trap. Phys. Rev. E, 58(6):R9947–R9950, 1998.
76. A. D. Dinsmore, Ming F. Hsu, M. G. Nikolaides, Manuel Marquez, A. R. Bausch, and D. A. Weitz. Colloidosomes: Selectively permeable capsules composed of colloidal particles. Science (80-.), 298(5505):1006–1009, nov 2002.
77. Bart De Nijs, Simone Dussi, Frank Smallenborg, Johannes D. Meeldijk, Dirk J. Groenendijk, Laura Filion, Arnout Imhof, Alfons Van Blaaderen, and Marjolein Dijkstra. Entrap-derive formation of large icosahedral colloidal clusters by spherical confinement. Nat. Mater., 14(1):56–60, jan 2015.
78. Thomas Kister, Marko Mravlak, Tanja Schilling, and Tobias Kraus. Pressure-controlled formation of crystalline, Janus, and core-shell supraparticles. Nanoscale, 8(27):13377–13384, jul 2016.
79. Vinodhan N. Manoharan, Mark T. Elsesser, and David J. Pine. Dense packing and symmetry in small clusters of microspheres. Science (80-.), 301(5632):483–487, jul 2003.
80. Guangnan Meng, Natalie Arkus, Michael P. Brenner, and Vinodhan N. Manoharan. The free-energy landscape of clusters of attractive hard spheres. Science (80-.), 327(5965):560–563, 2010.
81. Noel A. Clark, Alan J. Hurd, and Bruce J. Ackerson. Single colloidal crystals, 1979.
82. Orlin D. Velev, Abraham M. Lenhoff, and Eric W. Kaler. A class of microstructured particles through colloidal crystallization. Science (80-.), 287(5461):2240–2243, mar 2000.
83. T. P. Martin. Shells of atoms. Phys. Rep., 273(4):199–241, aug 1996.
84. Matthias Brack. Metal Clusters and Magic Numbers. 277(6):50–55, 1997.
Charge radii and nuclear moments around 132Sn. *Nuclear Physics A*, 734:437 – 440, 2004.

120. D. T. Yordanov, D. L. Balabanski, J. Bieroń, M. L. Bissell, K. Blaum, I. Budincević, S. Fritzsche, N. Frömgen, G. Georgiev, Ch. Geppert, M. Hammen, M. Kowalska, K. Kreim, A. Krieger, R. Neugart, W. Nörtershäuser, J. Papuga, and S. Schmidt. Spins, electromagnetic moments, and isomers of $^{107-129}$Cd. *Phys. Rev. Lett.*, 110:192501, May 2013.

121. R. F. Garcia Ruiz, A. R. Vernon, C. L. Binnersley, B. K. Sahoo, M. Bissell, J. Billowes, T. E. Cocolios, W. Gins, R. P. de Groot, K. T. Flanagan, A. Kossozor, K. M. Lynch, G. Neyens, C. M. Ricketts, K. D. A. Wendi, S. G. Wilkins, and X. F. Yang. High-precision multiphoton ionization of accelerated laser-ablated species. *Phys. Rev. X*, 8:041005, Oct 2018.

122. M. Lindroos, M. Booth, D. Doran, Y. Koh, I. Oliveira, J. Rikovska, P. Richards, N. J. Stone, M. Veskovc, D. Zákočky, and B. Fogelberg. Magnetic dipole moment of 127Sb and 129Sb by nuclear magnetic resonance on oriented nuclei. *Phys. Rev. C - Nucl. Phys.*, 53(1):124–126, 1996.

123. K. Kreim, M. L. Bissell, J. Papuga, K. Blaum, M. De Rydt, R. F. Garcia Ruiz, S. Goriely, H. Heylen, M. Kowalska, R. Neugart, G. Neyens, W. Nörtershäuser, M. M. Rajabalı, R. Sánchez Alarcón, H.H. Stroke, and D.T. Yordanov. Nuclear charge radii of potassium isotopes beyond $n=28$. *Phys. Rev. C - Nucl. Phys.*, 73(4):134805, 2011.

124. M. L. Bissell, J. Papuga, H. Naïdja, K. Kreim, K. Blaum, M. De Rydt, R. F. Garcia Ruiz, H. Heylen, M. Kowalska, R. Neugart, G. Neyens, W. Nörtershäuser, F. Nowacki, M. M. Rajabalı, R. Sánchez, K. Sieja, and D. T. Yordanov. Proton-neutron pairing correlations in the self-conjugate nucleus 38K probed via a direct measurement of the isomer shift. *Phys. Rev. Lett.*, 113:052502, Jul 2014.

125. X. F. Yang, C. Wraith, L. Xie, C. Babcock, J. Billowes, M. L. Bissell, K. Blaum, B. Cheal, K. T. Flanagan, R. F. Garcia Ruiz, W. Gins, C. Gorges, L. K. Grob, H. Heylen, S. Kaufmann, M. Kowalska, J. Kraemer, S. Malbrunot-Ettenauer, R. Neugart, G. Neyens, W. Nörtershäuser, J. Papuga, R. Sánchez, and D. T. Yordanov. Isomer shift and magnetic moment of the long-lived 29Ni. *Phys. Rev. Lett.*, 116:182502, May 2016.

126. H. Heylen, C. Babcock, R. Beerwerth, J. Billowes, M. L. Bissell, K. Blaum, J. Bonnard, P. Campbell, B. Cheal, T. Day Goodacre, D. Fedorov, S. Fritzsche, R. F. Garcia Ruiz, W. Geithner, Ch. Geppert, W. Gins, L. K. Grob, M. Kowalska, K. Kreim, S. M. Lenzi, I. D. Moore, B. Maass, S. Malbrunot-Ettenauer, B. Marsh, R. Neugart, G. Neyens, W. Nörtershäuser, T. Otsuka, J. Papuga, R. Rossel, S. Rothe, R. Sánchez, Y. Tsunoda, C. Wraith, L. Xie, X. F. Yang, and D. T. Yordanov. Changes in nuclear structure along the mn isotopic chain studied via charge radii. *Phys. Rev. C*, 94:054321, Nov 2016.

127. K. Minamisono, D. M. Rossi, R. Beerwerth, S. Fritzsche, D. Garand, A. Klose, Y. Liu, B. Maass, P. P. Mantica, A. J. Miller, P. Miller, W. Nazarewicz, W. Nörtershäuser, E. Olsen, M. R. Pearson, P.-G. Reinhard, E. E. Sapirstein, C. Sumithrarachchi, and S. V. Tolokonnikov. Charge radii of neutron deficient 52,58Fe produced by projectile fragmentation. *Phys. Rev. Lett.*, 117:252501, Dec 2016.

128. G. J. Farooq-Smith, A. R. Vernon, J. Billowes, C. L. Binnersley, M. L. Bissell, T. E. Cocolios, T. Day Goodacre, R. P. de Groot, K. T. Flanagan, S. Franchoo, R. F. Garcia Ruiz, W. Gins, K. M. Lynch, B. A. Marsh, G. Neyens, S. Rothe, H. H. Stroke, S. G. Wilkins, and X. F. Yang. Probing the 41Ga ground-state properties in the region near $z = 28$ with high-resolution laser spectroscopy. *Phys. Rev. C*, 96:044324, Oct 2017.

129. M. Hammen, W. Nörtershäuser, D. L. Balabanski, M. L. Bissell, K. Blaum, I. Budincević, B. Cheal, K. T. Flanagan, N. Frömgen, G. Georgiev, Ch. Geppert, M. Kowalska, K. Kreim, A. Krieger, W. Nazarewicz, R. Neugart, G. Neyens, J. Papuga, P.-G. Reinhard, M. M. Rajabalı, S. Schmidt, and D. T. Yordanov. From Calcium to Cadmium: Testing the Pairing Functional through Charge Radii Measurements of Cd110–130. *Phys. Rev. Lett.*, 121(10):102501, 2018.

130. C. Gorges, L. V. Rodríguez, D. L. Balabanski, M. L. Bissell, K. Blaum, B. Cheal, R. F. Garcia Ruiz, G. Georgiev, W. Gins, H. Heylen, A. Kannellakopoulos, S. Kaufmann, M. Kowalska, V. Lagaki, S. Lechner, B. Maass, S. Malbrunot-Ettenauer, W. Nazarewicz, R. Neugart, G. Neyens, W. Nörtershäuser, P.-G. Reinhard, S. Sailer, R. Sánchez, S. Schmidt, L. Wehner, C. Wraith, L. Xie, Z. Y. Xu, X. F. Yang, and D. T. Yordanov. Laser spectroscopy of neutron-rich tin isotopes: A discontinuity in charge radii across the $n = 82$ shell closure. *Phys. Rev. Lett.*, 122:192502, May 2019.

131. A. J. Miller, K. Minamisono, A. Klose, D. Garand, C. Ku-jawa, J. D. Lantis, Y. Liu, B. Maaß, P. P. Mantica, W. Nazarewicz, W. Nörtershäuser, S. V. Pineda, P. G. Reinhard, D. M. Rossi, F. Sommer, C. Sumithrarachchi, A. Teigelhifer, and J. Watkins. Proton superfluidity and charge radii in proton-rich calcium isotopes. *Nature Physics*, 15(5), 2 2019.

132. L. Xie, X.F. Yang, C. Wraith, C. Babcock, J. Biero, J. Billowes, M.L. Bissell, K. Blaum, B. Cheal, L. Filippini, K.T. Flanagan, R.F. Garcia Ruiz, W. Gins, G. Gaigalas, M. Godefroid, C. Gorges, L.K. Grob, H. Heylen, P. Jusson, S. Kaufmann, M. Kowalska, J. Krmer, S. Malbrunot-Ettenauer, R. Neugart, G. Neyens, W. Nörtershäuser, T. Otsuka, J. Papuga, R. Sánchez, Y. Tsunoda, and D.T. Yordanov. Nuclear charge radii of $^{62-89}$Zn and their dependence on cross-shell proton excitations. *Physics Letters B*, 797:134805, 2019.

133. National Nuclear Data Center. *NNDC*. https://www.nndc.bnl.gov/, 2019.

134. C. Babcock, H. Heylen, M.L. Bissell, K. Blaum, P. Campbell, B. Cheal, D. Fedorov, R.F. Garcia Ruiz, W. Geithner, W. Gins, T. Day Goodacre, L.K. Grob, M. Kowalska, S.M. Lenzi, B. Maass, S. Malbrunot-Ettenauer, B. Marsh, R. Neugart, G. Neyens, W. Nörtershäuser, T. Otsuka, R. Rossel, S. Rothe, R. Sánchez, Y. Tsunoda, C. Wraith, L. Xie, and X.F. Yang. Quadrupole moments of odd- $^{53-63}$mn: Onset of collectivity towards $n=40$. *Phys. Rev. C*, 760:387 – 392, 2016.

135. X. F. Yang, Y. Tsunoda, C. Babcock, J. Billowes, M. L. Bissell, K. Blaum, B. Cheal, K. T. Flanagan, R. F. Garcia Ruiz, W. Gins, C. Gorges, L. K. Grob, H. Heylen, S. Kaufmann, M. Kowalska, J. Krämer, S. Malbrunot-Ettenauer, R. Neugart, G. Neyens, W. Nörtershäuser, T. Otsuka, J. Papuga, R. Sánchez, C. Wraith, L. Xie, and D. T. Yordanov. Investigating the large deforma-
tion of the $5/2^+$ isomeric state in 79Zn: An indicator for triaxiality. Phys. Rev. C, 97:044324, Apr 2018.

136. M. Mougeot, D. Atanasov, K. Blaum, K. Chrysalidis, T. Day Goodacre, D. Fedorov, V. Fedoseev, S. George, F. Herfurth, J. D. Holt, D. Lunney, V. Manea, B. Marsh, D. Neidherr, M. Rosenbusch, S. Rothe, L. Schweikhard, A. Schwenk, C. Seiffert, J. Simonis, S. R. Stroberg, A. Welker, F. Wienholtz, R. N. Wolf, and K. Zuber. Precision Mass Measurements of Cr 58-63: Nuclear Collective Tendencies Towards the N=40 Island of Inversion. Phys. Rev. Lett., 120(23), Jun 2018.

137. S. Michimasa, M. Kobayashi, Y. Kiyokawa, S. Ota, D. S. Ahn, H. Baba, G. P. A. Berg, M. Dozono, N. Fukuda, T. Furuno, E. Ideguchi, N. Inabe, T. Kawabata, S. Kawase, K. Kisamori, K. Kobayashi, T. Kubo, Y. Kubota, C. S. Lee, M. Matsushita, H. Miya, A. Mizukami, H. Nagakura, D. Nishimura, H. Oikawa, H. Sakai, Y. Shimizu, A. Stolz, H. Suzuki, M. Takaki, H. Takeda, S. Takeuchi, H. Tokieda, T. Uesaka, K. Yako, Y. Yamaguchi, Y. Yanagisawa, R. Yokoyama, K. Yoshida, and S. Shimoura. Magic Nature of Neutrons in Ca 54: First Mass Measurements of Ca 55-57. Phys. Rev. Lett., 121(2), Jul 2018.

138. M. P. Reiter, S. Ayet San Andrés, B. Kootte, J. D. Holt, P. Navrátil, C. Babcock, C. Barbieri, B. R. Barquet, J. Bergmann, J. Bollig, T. Brunner, E. Dunling, A. Finlay, H. Geissel, L. Graham, F. Greiner, H. Hergert, C. Hormung, C. Jesch, R. Klawitter, Y. Lan, D. Lascar, K. G. Leach, W. Lippert, J. E. McKay, S. F. Paul, A. Schwenk, D. Short, J. Simonis, V. Somá, R. Steinbrügge, S. R. Stroberg, R. Thompson, M. E. Wieser, C. Will, M. Yavor, C. Andreoiu, T. Dickel, I. Dillmann, G. Gwinner, W. R. Plaß, C. Scheidenberger, A. A. Kwiatkowski, and J. Dilling. Quenching of the N=32 neutron shell closure studied via precision mass measurements of neutron-rich vanadium isotopes. Phys. Rev. C, 98(2), Aug 2018.

139. A. Klose, K. Minamisono, A. J. Miller, B. A. Brown, D. Garand, J. D. Holt, J. D. Lantis, Y. Liu, B. Maaß, W. Nörtershäuser, S. V. Pineda, D. M. Rossi, A. Schwenk, F. Sommer, C. Sumithrarachchi, A. Teigelhöfer, and J. Watkins. Ground-state electromagnetic moments of Ca 37. Phys. Rev. C, 99(6), Jun 2019.

140. H. N. Liu, A. Obertelli, P. Doormenbal, C. A. Bertulani, G. Hagen, J. D. Holt, G. R. Jansen, T. D. Morris, A. Schwenk, R. Stroberg, N. Achouri, H. Baba, F. Browne, D. Calvet, F. Château, S. Chen, N. Chiga, A. Corsi, M. L. Cortés, A. Delbart, J. M. Gheller, A. Giganon, A. Gillibert, C. Hilaire, T. Isobe, T. Kobayashi, Y. Kubota, V. Lapoux, T. Motobayashi, I. Murray, H. Otsu, V. Panin, N. Paul, W. Rodriguez, H. Sakurai, M. Sasoano, D. Steppenbeck, L. Stuhl, Y. L. Sun, Y. Togano, T. Uesaka, K. Wimmer, K. Yonedda, O. Aktas, T. Aumann, L. X. Chung, F. Flavigny, S. Franchez, I. Gašpari, R. B. Gerst, J. Gibelin, K. I. Hahn, D. Kim, T. Koiwai, Y. Kondo, K. Köseglü, J. Lee, C. Lehr, B. D. Linh, T. Lokottko, M. McCormick, K. Moschner, T. Nakamura, S. Yamao, L. Park, D. Rossi, E. Sahin, D. Sohler, P. A. Söderström, S. Takeuchi, H. Törnyquist, V. Vaquero, V. Wagner, S. Wang, V. Werner, X. Xu, H. Yamada, D. Yan, Z. Yang, M. Yasuda, and L. Zanetti. How Robust is the N=34 Shell Closure? First Spectroscopy of Ar 52. Phys. Rev. Lett., 122(7), Feb 2019.

141. X. Xu, M. Wang, K. Blaum, J. D. Holt, Yu A. Litvinov, A. Schwenk, J. Simonis, S. R. Stroberg, Y. H. Zhang, H. S. Xu, P. Shuai, X. L. Tu, X. H. Zhou, F. R. Xu, G. Audi, R. J. Chen, C. Y. Chen, C. Y. Fu, Z. Ge, W. J. Huang, S. Litvinov, D. W. Liu, Y. H. Lam, X. W. Ma, R. S. Mao, A. Ozawa, B. H. Sun, Y. Sun, T. Uesaka, G. Q. Xiao, Y. M. Xing, T. Yamaguchi, Y. Yamaguchi, X. L. Yan, Q. Zeng, H. W. Zhao, T. C. Zhao, W. Zhang, and W. L. Zhan. Masses of neutron-rich Sc 52-54 and Ti 54-56 nucleides: The N=32 shell closure in scandium. Phys. Rev. C, 99(6), Jun 2019.

142. E. Leistenschneider, M. P. Reiter, S. Ayet San Andrés, B. Kootte, J. D. Holt, P. Navrátil, C. Babcock, C. Barbieri, B. R. Barquet, J. Bergmann, J. Bollig, T. Brunner, E. Dunling, A. Finlay, H. Geissel, L. Graham, F. Greiner, H. Hergert, C. Hormung, C. Jesch, R. Klawitter, Y. Lan, D. Lascar, K. G. Leach, W. Lippert, J. E. McKay, S. F. Paul, A. Schwenk, D. Short, J. Simonis, V. Somá, R. Steinbrügge, S. R. Stroberg, R. Thompson, M. E. Wieser, C. Will, M. Yavor, C. Andreoiu, T. Dickel, I. Dillmann, G. Gwinner, W. R. Plaß, C. Scheidenberger, A. A. Kwiatkowski, and J. Dilling. Dawning of the N=32 Shell Closure Seen through Precision Mass Measurements of Neutron-Rich Titanium Isotopes. Phys. Rev. Lett., 120(6), Feb 2018.

143. T. Motobayashi, Y. Iceda, K. Ieki, M. Inoue, N. Iwasa, T. Kikuchi, M. Kurokawa, S. Moriya, S. Ogawa, H. Murakami, S. Shimoura, Y. Yanagisawa, T. Nakamura, Y. Watanabe, M. Ishihara, T. Teranishi, H. Okuno, and R.F. Casten. Large deformation of the very neutron-rich nucleus 32Mg from intermediate-energy coupled excitation. Physics Letters B, 346(1):9 – 14, 1995.

144. Tomoaki Togashi, Yusuke Tsumoda, Takaharu Otsuka, and Noritaka Shimizu. Quantum phase transition in the shape of 34Ar isotopes. Phys. Rev. Lett., 117:172502, Oct 2016.

145. Mihai Horoi and Koblar A. Jackson. Signature of shape transition and shape coexistence in mesoscopic systems. Chemical Physics Letters, 427(1):147 – 152, 2006.

146. Gerda Neyens. Nuclear magnetic and quadrupole moments for nuclear structure research on exotic nuclei. Reports on Progress in Physics, 66(4):633–689, mar 2003.

147. J. Wood. Simple structure in complex nuclei. Physics, 6:52, 2013.

148. Ben Mottelson. Elementary modes of excitation in the nucleus. Rev. Mod. Phys., 48:375–383, Jul 1976.

149. Aage Bohr. Rotational motion in nuclei. Rev. Mod. Phys., 48:365–374, Jul 1976.

150. James Rainwater. Background for the spheroidal nuclear model proposal. Rev. Mod. Phys., 48:385–391, Jul 1976.

151. J. Papuga, M. L. Bissell, K. Kreim, K. Blaum, B. A. Brown, M. De Rydt, R. F. García Ruiz, H. Heylen, M. Kowalska, R. Neugart, G. Neyens, W. Nörtershäuser, T. Otsuka, M. M. Rajabali, R. Sánchez, Y. Usunou, and D. T. Yordanov. Spins and magnetic moments of 60K and 61K: Establishing the 1/2+ and 3/2+ level ordering beyond n=28. Phys. Rev. Lett., 110:172503, Apr 2013.

152. J. Papuga, M. L. Bissell, K. Kreim, C. Barbieri, K. Blaum, M. De Rydt, T. Duguet, R. F. García Ruiz, H. Heylen, M. Kowalska, R. Neugart, G. Neyens, W. Nörtershäuser, M. M. Rajabali, R. Sánchez, N. Smirnova, V. Somá, and D. T. Yordanov. Shell structure of potassium isotopes deduced from their magnetic moments. Phys. Rev. C, 90:034321, Sep 2014.
153. R. P. de Groote, J. Billowes, C. L. Binnersley, M. L. Bissell, T. E. Cocolios, T. Day Goodacre, G. J. Farooq-Smith, D. V. Fedorov, K. T. Flanagan, S. Franchoo, R. F. Garcia Ruiz, Á. Koszorús, K. M. Lynch, G. Neyens, F. Nowacki, T. Otsuka, S. Rothe, H. H. Stroke, Y. Tsunoda, A. R. Vernon, K. D. A. Wendt, S. G. Wilkins, Z. Y. Xu, and X. F. Yang. Dipole and quadrupole moments of 73,77Cu as a test of the robustness of the $z = 28$ shell closure near 78Ni. *Phys. Rev. C*, 96:041302, Oct 2017.

154. Akito Arima and Hisashi Horie. Configuration Mixing and Magnetic Moments of Odd Nuclei*. *Progress of Theoretical Physics*, 12(5):623–641, 11 1954.

155. Hisashi Horie and Akito Arima. Configuration mixing and quadrupole moments of odd nucleus. *Phys. Rev.*, 99:778–785, Aug 1955.

156. A. de Shalit and I. Talmi. *Nuclear Shell Theory*. Academic Press, New York, 1963.

157. C. Wraith, X.F. Yang, L. Xie, C. Babcock, J. Biero, J. Billowes, M.L. Bissell, K. Blaum, B. Cheal, L. Filippin, R.F. Garcia Ruiz, W. Gils, L.K. Grob, G. Gaigalas, M. Godefroid, C. Gorges, H. Heylen, M. Honma, P. Jusson, S. Kaufmann, M. Kowalska, J. Krmer, S. Malbrunot-Ettenuer, R. Neugart, G. Neyens, W. Ntershuser, F. Nowacki, T. Otsuka, J. Papuga, R. Sanchez, Y. Tsunoda, and D.T. Yordanov. Evolution of nuclear structure in neutron-rich odd-zn isotopes and isomers. *Physics Letters B*, 771:385 – 391, 2017.

158. M. L. Bissell, T. Carette, K. T. Flanagan, P. Vingerhoets, J. Billowes, K. Blaum, B. Cheal, S. Fritzache, M. Godefroid, M. Kowalska, J. Krmer, R. Neugart, G. Neyens, W. Ntershuser, and D. T. Yordanov. Cu charge radii reveal a weak sub-shell effect at $n=40$. *Phys. Rev. C*, 93:064318, Jun 2016.

159. R. Taniuchi et al. 78Ni revealed as a doubly magic stronghold near nuclear deformation. *Nature*, 569:53, 2019.

160. Tomoaki Togashi, Yusuke Tsunoda, Takaharu Otsuka, Noritaka Shimizu, and Michio Honma. Novel shape evolution in zn isotopes from magic numbers 50 to 82. *Phys. Rev. Lett.*, 121:062501, Aug 2018.

161. Kristina D. Launey, Tomas Dytrych, and Jerry P. Draayer. Symmetry-guided large-scale shell-model theory. *Progress in Particle and Nuclear Physics*, 89:101 – 136, 2016.

162. R.F. Garcia Ruiz et al. Laser spectroscopy of neutron-deficient sn isotopes. *Phys. Rev. C*, 96:041302, Oct 2017.

163. R. de Groote, J. Billowes, C. L. Binnersley, M. L. Bissell, T. E. Cocolios, T. Day Goodacre, G. J. Farooq-Smith, D. V. Fedorov, K. T. Flanagan, S. Franchoo, R. F. Garcia Ruiz, Á. Koszorús, K. M. Lynch, G. Neyens, F. Nowacki, T. Otsuka, S. Rothe, H. H. Stroke, Y. Tsunoda, A. R. Vernon, K. D. A. Wendt, S. G. Wilkins, Z. Y. Xu, and X. F. Yang. Precision measurements of the charge radii of potassium isotopes. *Phys. Rev. C*, 100:034304, Sep 2019.

164. A. Koszorús et al. In preparation, 2019.

165. ´A. Koszorús, X. F. Yang, J. Billowes, C. L. Binnersley, M. L. Bissell, T. E. Cocolios, G. J. Farooq-Smith, R. P. de Groote, K. T. Flanagan, S. Franchoo, R. F. Garcia Ruiz, S. Geldhof, W. Gils, A. Kanellopoulos, K. M. Lynch, G. Neyens, H. H. Stroke, A. R. Vernon, K. D. A. Wendt, and S. G. Wilkins. Precision measurements of the charge radii of potassium isotopes. *Phys. Rev. C*, 96:041302, Oct 2017.

166. A. Koszorús et al. In preparation, 2019.

167. R. De Groote et al. Precise measurement and microscopic description of charge radii of exotic copper isotopes: global trends and odd-even variations. *Submitted*, 2019.

168. R.F. Garcia Ruiz et al. Laser spectroscopy of neutron-deficient sn isotopes. *CERN-INTC-2016-006, INTCP-456, 2016.*

169. R F Garcia Ruiz, C Gorges, M Bissell, K Blaum, W Gils, H Heylen, K Koenig, S Kaufmann, M Kowalska, J Krmer, P Lievens, S Malbrunot-Ettenuer, R Neugart, G Neyens, W Ntershuser, D T Yordanov, and X F Yang. Development of a sensitive setup for laser spectroscopy studies of very exotic calcium isotopes. *Journal of Physics G: Nuclear and Particle Physics*, 44(4):044003, apr 2017.