AN EXPOSITION ON FINITE DIMENSIONALITY OF CHOW GROUPS

KALYAN BANERJEE

ABSTRACT. In this exposition we understand when the natural map from the Chow variety parametrizing codimension \(p \) cycles on a smooth projective variety \(X \) to the Chow group \(\text{CH}^p(X) \) is surjective. We derive some consequences when the map is surjective.

1. INTRODUCTION

The representability question in the theory of Chow groups is an important question. Precisely it means the following: let \(X \) be a smooth projective variety and let \(\text{CH}^p(X) \) denote the Chow group of codimension \(p \) algebraic cycles on \(X \) modulo rational equivalence. Let \(\text{CH}^p(X)_{\text{hom}} \) denote the subgroup of \(\text{CH}^p(X) \) consisting of homologically trivial cycles. Suppose that there exists a smooth projective curve \(C \) and a correspondence \(\Gamma \) on \(C \times X \) such that \(\Gamma_* \) from \(J(C) \cong \text{CH}^1(C)_{\text{hom}} \) to \(\text{CH}^p(X)_{\text{hom}} \) is surjective. Then we say that the group \(\text{CH}^p(X)_{\text{hom}} \) is representable. The most interesting and intriguing is the case of highest codimensional cycle on a smooth projective variety \(X \), i.e. the zero cycles on \(X \). The first breakthrough result in this direction is the result by Mumford: the group \(\text{CH}^2(S)_{\text{hom}} \) of a smooth projective complex algebraic surface with geometric genus greater than zero is not representable. It was further generalized by Roitman [R1] for higher dimensional varieties proving that: if the variety \(X \) has a globally holomorphic \(i \)-form on it, then the group \(\text{CH}^n(X)_{\text{hom}} \) is not representable. Here \(n \) is the dimension of \(X \) and we have \(i \leq n \). Then there is the famous converse question due to Spencer Bloch saying that: for a smooth projective complex algebraic surface \(S \) with geometric genus equal to zero, the group \(\text{CH}^2(S)_{\text{hom}} \) is representable. This question has been answered for the surfaces not of general type with geometric genus equal to zero by Bloch-Kas-Lieberman, in [BKL]. The conjecture is still open in general for surfaces of general type but it has been solved in many examples in [B], [IM], [V], [VC].
In the case of highest codimensional cycles on a smooth projective variety X, the notion of representability can also be defined in another way. That is we consider the natural map from the symmetric power $\text{Sym}^d X$ to $\text{CH}^n(X)_{\text{hom}}$, for d positive and n being the dimension of X. Suppose that this map is surjective for some d then we say that the group $\text{CH}^p(X)_{\text{hom}}$ is representable. It can be proved as in [Vo], that this notion of representability implies the first notion of representability and vice-versa.

So following the approach of Voisin as in [Vo], it is natural to ask is there a second notion of representability for lower co-dimensions. Precisely it means the following: Let us consider the two-fold product of the Chow variety $C^p_d (X) \times C^p_d (X)$. Consider the natural map from this product two the group $\text{CH}^p(X)_{\text{hom}}$ and we ask the question: does the surjectivity of this map implies the representability in the first sense of $\text{CH}^p(X)_{\text{hom}}$.

First we prove the following in this direction:

The Chow group of codimension p-cycles are generated by linear subspaces. That is there exists a surjective map from $\text{CH}_0(F(X))$ to $\text{CH}^p(X)$. Here $F(X)$ is the Fano variety of linear subspaces of codimension p. Suppose that $\text{CH}^p(X)_{\text{hom}}$ is representable in the sense that the map from the two-fold product of the Chow variety to $\text{CH}^p(X)_{\text{hom}}$ is surjective. Then there exists a smooth projective curve C and a correspondence Γ on $C \times X$, such that $\Gamma_*: \text{CH}^1(C)_{\text{hom}} \to \text{CH}^p(X)_{\text{hom}}$ is surjective.

As an application we show that the natural map from $C^3_d (X) \times C^3_d (X)$ to $\text{CH}^3(X)_{\text{hom}}$ is not surjective for any d, where X is a cubic fourfold embedded in \mathbb{P}^5.

Our argument in this direction is minor modification of the argument present in the approach of Voisin in [Vo], where she deals with the case of zero cycles. First we recall various notions representability in the second sense, denoted as "finite dimensionality" of Chow groups of codimension p-cycles and show their equivalence. The key point is to use the Roitman’s result on the map from the two-fold product of the Chow variety to $\text{CH}^p(X)_{\text{hom}}$ saying that the fibers of this map is a countable union od Zariski closed subsets in the product of Chow varieties. Then after having this equivalent notions of "finite dimensionality" in hand we proceed to the main theorem.

Acknowledgements: The author would like to thank the hospitality of Tata Institute Mumbai, for hosting this project.
2. FINITE DIMENSIONALITY OF THE CHOW GROUP OF CODIMENSION \(i\) CYCLES

Let \(X\) be a smooth projective variety defined over the ground field \(k\). Let \(C^p_d(X)\) denote the Chow variety of \(X\) parametrizing all codimension \(p\) cycles on \(X\) of a certain degree \(d\). To consider the degree we fix an embedding of \(X\) into some projective space \(\mathbb{P}^N\). Consider the \(k\)-points of the variety \(C^p_d(X)\). Then consider the map

\[
\theta^d_p : C^p_d(X) \times C^p_d(X) \to \text{CH}^p(X)
\]

given by

\[
(Z_1, Z_2) \mapsto [Z_1 - Z_2]
\]

where \([Z_1 - Z_2]\) is the class of the cycle \(Z_1 - Z_2\) in the Chow group. By abusing notation we will denote the class \([Z_1 - Z_2]\) as \(Z_1 - Z_2\).

Definition 2.1. We say that the group \(\text{CH}^p(X)\) is representable if there exists \(d\) such that \(\theta^d_p\) is surjective.

Now the natural question is that, what are the fibers of \(\theta^d_p\), for a fixed \(p, d\). Here is a theorem about that:

Theorem 2.2. The fibers of the map \(\theta^d_p\) are countable union of Zariski closed subsets of \(C^p_d(X) \times C^p_d(X)\).

Proof. To prove this we consider the following reformulation of the definition of rational equivalence. Let \(Z_1, Z_2\) be two codimension \(p\)-cycles. They are rationally equivalent if there exists a positive cycle \(Z'\), such that \(Z_1 + Z', Z_2 + Z'\) belong to \(C^p_d(X)\) for some fixed \(d\), and there exists a regular morphism \(f\) from \(\mathbb{P}^1\) to \(C^p_d(X)\), such that

\[
f(0) = Z_1 + Z', \quad f(\infty) = Z_2 + Z'.
\]

Let us consider two cycles \(Z_1, Z_2\) belonging to \(\theta^{p-1}_d(z)\) for some rational equivalence class \(z\). Then \(Z_1, Z_2\) belong to \(\theta^{p-1}_d(z)\) means that \(Z_1, Z_2\) are rationally equivalent. So there exists \(Z', f\) as above such that

\[
f(0) = Z_1 + Z', \quad f(\infty) = Z_2 + Z'.
\]

So it is natural to consider the following subvarieties of \(C^p_d(X) \times C^p_d(X)\) denoted by \(W^u_d\), given as the collection of all \((Z_1, Z_2)\) so that there exist \(Z' \in C^p_d(X)\) \(f\) in \(\text{Hom}^u(\mathbb{P}^1, C^p_d(X))\), for some positive integer \(u\) satisfying

\[
f(0) = Z_1 + Z', \quad f(\infty) = Z_2 + Z'.
\]
Here $\text{Hom}^v(\mathbb{P}^1, C^p_{d+u}(X))$ is the Hom scheme of degree v morphisms from \mathbb{P}^1 to $C^p_{d+u}(X)$. For working purpose denote $\prod_{i=1}^n C^p_{d_i}(X)$ as $C^p_{d_1,\ldots,d_n}(X)$.

Let $e : \text{Hom}^v(\mathbb{P}^1, C^p_{d+u,d+u}(X)) \to C^p_{d+u,d+u}(X)$ be the evaluation morphism sending $f : \mathbb{P}^1 \to C^p_{d+u,d+u}(X)$ to the ordered pair $(f(0), f(\infty))$, and let us consider the diagonal in $C^p_{d,u}(X)$ and multiply with $C^p_{d,d}(X)$, call it F and consider:

$$s : F \to C^p_{d+u,d+u}(X)$$

be the regular morphism sending (Z_1, Z_2) to $(Z_1 + Z', Z_2 + Z')$. The two morphisms e and s allow to consider the fibred product

$$V = \text{Hom}^v(\mathbb{P}^1, C^p_{d+u,d+u}(X)) \times C^p_{d+u,u,d+u}(X) F .$$

This V is a closed subvariety in the product

$$\text{Hom}^v(\mathbb{P}^1, C^p_{d+u,d+u}(X)) \times C^p_{d+u,u,d+u}(X)$$

over $\text{Spec}(k)$ consisting of quintuples (f, Z_1, Z_2, Z') such that

$$e(f) = s(Z, Z_2, Z') ,$$

i.e.

$$(f(0), f(\infty)) = (Z_1 + Z', Z_2 + Z') .$$

The latter equality gives

$$V = W^u_{d,v} .$$

Vice versa, if (Z_1, Z_2) is a closed point of $W^u_{d,v}$, there exists a regular morphism

$$f \in \text{Hom}^v(\mathbb{P}^1, C^p_{d+u,d+u}(X))$$

with $f(0) = Z_1 + Z'$ and $f(\infty) = Z_2 + Z'$. Then (f, Z_1, Z_2, Z') belongs to V.

So the set $W^u_{d,v}$ is itself a quasi-projective variety.

Suppose that (Z_1, Z_2) is in $W^u_{d,v}$. Then there exists f in $\text{Hom}^v(\mathbb{P}^1, C^p_{d+u}(X))$, Z' in $C^p_{d,u}(X)$ such that

$$f(0) = Z_1 + Z', \quad f(\infty) = Z_2 + Z' .$$

Then this immediately imply that $(Z_1 + Z', Z_2 + Z')$ is in $W^{0,v}_{d+u}$. On the other consider the map

$$\bar{s} : C^p_{d,d}(X) \times \Delta_{C^p_{d,u}(X)} \to C^p_{d+u,d+u}(X) .$$
given by

\[(Z_1, Z_2, Z') \mapsto (Z_1 + Z', Z_2 + Z').\]

By the above we have that

\[W^u,v_d \subset \text{pr}_{1,2}(\tilde{s}^{-1}(W^0,v_{d+u})).\]

Conversely suppose that \((Z'_1, Z'_2)\) belongs to \(\text{pr}_{1,2}(\tilde{s}^{-1}(W^0,v_{d+u}))\). Then \((Z'_1, Z'_2)\) is of the form \((Z_1 + Z', Z_2 + Z')\), such that there exists \(f \in \text{Hom}^v(\mathbb{P}^1, C_{d+u}^{0}(X))\) satisfying

\[f(0) = Z_1 + Z', \quad f(\infty) = Z_2 + Z'.\]

This tell us that \((Z_1, Z_2)\) belongs to \(W^u,v_d\). Hence we have that

\[W^u,v_d = \text{pr}_{1,2}(\tilde{s}^{-1}(W^0,v_{d+u})).\]

Since \(\tilde{s}\) is continuous and \(\text{pr}_{1,2}\) is proper,

\[\bar{W}^u,v_d = \text{pr}_{1,2}(\tilde{s}^{-1}(\bar{W}^0,v_{d+u})).\]

This gives that to prove the second assertion of the proposition it is enough to show that \(\bar{W}^0,v_d\) is contained in \(W_d\).

Let \((Z_1, Z_2)\) be a closed point of \(\bar{W}^0,v_d\). If \((Z_1, Z_2)\) is in \(W^0,v_d\), then it is also in \(W_d\). Suppose \((Z_1, Z_2) \in \bar{W}^0,v_d \setminus W^0,v_d\).

Let \(W\) be an irreducible component of the quasi-projective variety \(W^0,v_d\) whose Zariski closure \(\bar{W}\) contains the point \((Z_1, Z_2)\). Let \(U\) be an affine neighbourhood of \((Z_1, Z_2)\) in \(\bar{W}\). Since \((Z_1, Z_2)\) is in the closure of \(W\), the set \(U \cap W\) is non-empty.

Let us show that we can always take an irreducible curve \(C\) passing through \((Z_1, Z_2)\) in \(U\). Indeed, write \(U\) as \(\text{Spec}(A)\). It is enough to show that there exists a prime ideal in \(\text{Spec}(A)\) of height \(n - 1\), where \(n\) is the dimension of \(\text{Spec}(A)\), where \(A\) is Noetherian. Since \(A\) is of dimension \(n\) there exists a chain of prime ideals

\[p_0 \subset p_1 \subset \cdots \subset p_n = p\]

such that this chain can not be extended further. Now consider the sub-chain

\[p_0 \subset p_1 \subset \cdots \subset p_{n-1}.\]

This is a chain of prime ideals and \(p_{n-1}\) is a prime ideal of height \(n - 1\), so we get an irreducible curve.
Let \(\hat{C} \) be the Zariski closure of \(C \) in \(\hat{W} \). Two evaluation regular morphisms \(e_0 \) and \(e_\infty \) from \(\text{Hom}^\nu(\mathbb{P}^1, C_d^p(X)) \) to \(C_d^p(X) \) give the regular morphism
\[
e_0, \infty : \text{Hom}^\nu(\mathbb{P}^1, C_d^p(X)) \to C_d^p(X). \]
Then \(W_{d, d}^\nu \) is exactly the image of the regular morphism \(e_{0, \infty} \), and we can choose a quasi-projective curve \(T \) in \(\text{Hom}^\nu(\mathbb{P}^1, C_d^p(X)) \), such that the closure of the image \(e_{0, \infty}(T) \) is \(\hat{C} \).

For that consider the curve \(C \) in \(W \) so it is contained in \(W_{0, d}^\nu \). We know that the image of \(e_{0, \infty} \) is \(W_{0, d}^\nu \). Consider the inverse image of \(\hat{C} \) under the morphism \(e_{0, \infty} \). Since \(\hat{C} \) is a curve, the dimension of \(e_{0, \infty}^{-1}(C) \) is greater than or equal than 1. So it contains a curve. Consider two points on \(\hat{C} \), consider their inverse images under \(e_{0, \infty} \). Since \(\text{Hom}^\nu(\mathbb{P}^1, C_d^p(X)) \) is a quasi-projective variety, \(e_{0, \infty}^{-1}(\hat{C}) \) is also projective, we can embed it into some \(\mathbb{P}^m \) and consider a smooth hyperplane section through the two points fixed above. Continuing this procedure we get a curve containing these two points and contained in \(e_{0, \infty}^{-1}(C) \). Therefore we get a curve \(T \) mapping onto \(\hat{C} \). So the closure of the image of \(T \) is \(\hat{C} \).

Now, as we have mentioned above, \(\text{Hom}^\nu(\mathbb{P}^1, C_d^p(X)) \) is a quasi-projective variety. This is why we can embed it into some projective space \(\mathbb{P}^m \). Let \(\tilde{T} \) be the closure of \(T \) in \(\mathbb{P}^m \), let \(\tilde{T} \) be the normalization of \(\tilde{T} \) and let \(\tilde{T}_0 \) be the pre-image of \(T \) in \(\tilde{T} \). Consider the composition
\[
f_0 : \tilde{T}_0 \times \mathbb{P}^1 \to T \times \mathbb{P}^1 \subset \text{Hom}^\nu(\mathbb{P}^1, C_d^p(X)) \times \mathbb{P}^1 \xrightarrow{e} C_d^p(X),
\]
where \(e \) is the evaluation morphism \(e_{\mathbb{P}^1, C_d^p(X)} \). The regular morphism \(f_0 \) defines a rational map
\[f : \tilde{T} \times \mathbb{P}^1 \dashrightarrow C_d^p(X)\]
Then by resolution of singularities we get that \(f \) could be extended to a regular map from \((\tilde{T} \times \mathbb{P}^1)' \) to \(C_d^p(X) \), where \((\tilde{T} \times \mathbb{P}^1)' \) denote the blow up of \(\tilde{T} \times \mathbb{P}^1 \) along the indeterminacy locus which is a finite set of points. Continue to call the strict transform of \(\tilde{T} \) in the blow up as \(\tilde{T} \), and the pre-image of \(T \) as \(\tilde{T}_0 \).

The regular morphism \(\tilde{T}_0 \to T \to \hat{C} \) extends to the regular morphism \(\tilde{T} \to \hat{C} \). Let \(P \) be a point in the fibre of this morphism at \((Z_1, Z_2)\). For any closed point \(Q \) on \(\mathbb{P}^1 \) the restriction \(f|_{\tilde{T} \times \{Q\}} \) of the rational map \(f \) onto \(\tilde{T} \times \{Q\} \) is regular on the whole curve \(\tilde{T} \), because \(\tilde{T} \) is non-singular.
Then
\[(f|_{T \times \{0\}})(P) = Z_1 \quad \text{and} \quad (f|_{T \times \{\infty\}})(P) = Z_2 .\]

has the property that
\[f(0) = Z_1, \quad f(\infty) = Z_2 .\]

Hence we have that \(W_{0,v}^{u,v}\) is Zariski closed. So \(W_{u,v}^{u,v}\) is Zariski closed, and hence we have that \(\theta^{-1}_d(Z)\) is a countable union of Zariski closed subsets in the product \(C^p_d(X)\). □

By the previous Theorem 2.2 we can define the dimension of the fiber of \(\theta^p_d\) to be the maximum of the dimensions of the Zariski closed subsets occurring in \(\theta^{-1}_d(Z)\), for \(Z\) in \(\text{CH}^p(X)\). Now consider the subset of \(C^p_{d,d}(X)\) consisting of points such that the dimension of \(\theta^{-1}_d(\theta^p_d(Z))\) is not constant as \(Z\) varies. By the existence of Hilbert schemes this is a countable union of Zariski closed subsets of \(C^p_{d,d}(X)\). Call this subset \(B\). Then for \(Z\) in the complement of \(B\), we have that the dimension of \(\theta^{-1}_d(\theta^p_d(Z))\) is constant and say \(r\).

Definition 2.3. The dimension of the image of \(\theta^p_d\) is defined to be equal to \(2\dim(C^p_d(X)) - r\).

Suppose that there exists a codimension \(p\) prime cycle on \(X\) of degree \(e\). Then this prime cycle gives rise to an embedding of \(C^p_d(X)\) into \(C^p_{d+e}(X)\). Hence we have
\[\dim(C^p_d(X)) \leq \dim(C^p_{d+e}(X)) .\]

Hence we can define the limit superior of the
\[\dim(\text{im}(\theta^p_d)) .\]

We say that \(\text{CH}^p(X)\) is infinite dimensional if
\[\limsup_d \dim(\text{im}(\theta^p_d)) = \infty\]

and finite dimensional otherwise.

Theorem 2.4. The group \(\text{CH}^p(X)\) is representable if and only if it is finite dimensional.
Proof. Suppose that \(\text{CH}^p(D) \) is representable. Then there exists \(d \) such that \(\theta^p_d \) is surjective. For every integer \(n \) consider the subset

\[
R \subset C^p_n(X) \times C^p_n(X) \times C^p_d(X) \times C^p_d(X)
\]

consisting of quadruples

\[
(Z_1, Z_2, Z'_1, Z'_2)
\]

such that

\[
\theta^p_n(Z_1, Z_2) = \theta^p_d(Z'_1, Z'_2).
\]

As we have that \(\theta^p_d \) is surjective, it follows that the projection

\[
\text{pr}_1 : R \to C^p_n(X) \times C^p_n(X)
\]

is surjective. Now by Theorem 2.2, \(R \) is a countable union of Zariski closed subsets in the ambient variety \(C^p_n(X) \times C^p_n(X) \times C^p_d(X) \times C^p_d(X) \). We prove it as a separate lemma:

Lemma 2.5. The set \(R \) is a countable union of Zariski closed subsets in \(C^p_n(X) \times C^p_n(X) \times C^p_d(X) \times C^p_d(X) \).

Proof. To prove this we consider the following reformulation of the definition of rational equivalence. Let \(Z_1, Z_2 \) be two codimension \(p \)-cycles. They are rationally equivalent if there exists a positive cycle \(Z' \), such that \(Z_1 + Z', Z_2 + Z' \) belong to \(C^p_d(X) \) for some fixed \(d \), and there exists a regular morphism \(f \) from \(\mathbb{P}^1 \) to \(C^p_d(X) \), such that

\[
f(0) = Z_1 + Z', \quad f(\infty) = Z_2 + Z'.
\]

Let us consider two cycles \((Z_1, Z_2, Z'_1, Z'_2) \) belonging to \(R \). That would mean that the cycle class of \(Z_1 - Z_2 \) is rationally equivalent to that of \(Z'_1 - Z'_2 \). So there exists a positive cycle \(Z \) and a regular map \(f \) from \(\mathbb{P}^1 \) to \(C^p_d(X) \), such that

\[
f(0) = Z_1 + Z_2 + Z', \quad f(\infty) = Z'_1 + Z_2 + Z'.
\]

So it is natural to consider the following subvarieties of \(C^p_{d+n+u}(X) \times C^p_{d+n+u}(X) \) denoted by \(W^{u,v}_{d+n} \). It is given by the collection of all elements in the image of \(C^p_d(X) \times C^p_d(X) \times C^p_n(X) \times C^p_n(X) \) in \(C^p_{d+n+u}(X) \times C^p_{d+n+u}(X) \), under the natural map, given by

\[
(Z_1, Z_2, Z'_1, Z'_2) \mapsto (Z_1 + Z_2, Z'_1 + Z'_2)
\]

Call this image as \(F \).
so that there exist \(Z \in C^p_{\nu u}(X) \) and \(f \) in \(\text{Hom}^\nu(\mathbb{P}^1, C^p_{\nu u+d+n} X) \), for some positive integer \(u \) satisfying

\[
f(0) = Z_1 + Z'_2 + Z, \quad f(\infty) = Z_2 + Z'_1 + Z'.
\]

Here \(\text{Hom}^\nu(\mathbb{P}^1, C^p_{\nu u+d+n} X) \) is the Hom scheme of degree \(\nu \) morphisms from \(\mathbb{P}^1 \) to \(C^p_{\nu u+d+n} X \). For working purpose denote \(\prod_{i=1}^n C^p_{d_i} X \) as \(C^p_{d_1, \ldots, d_n} X \).

Let

\[
e: \text{Hom}^\nu(\mathbb{P}^1, C^p_{\nu u+d+n} X) \to C^p_{\nu u+d+n} X
\]

be the evaluation morphism sending \(f: \mathbb{P}^1 \to C^p_{\nu u+d+n} X \) to the ordered pair \((f(0), f(\infty)) \), and let us consider the diagonal in \(C^p_{\nu u+d+n} X \) and multiply with \(F \) and consider:

\[
s: F \times \Delta_{C^p_{\nu u+d+n} X} \to C^p_{\nu u+d+n} X
\]

be the regular morphism sending \((Z_1 + Z'_2, Z_2 + Z'_1, Z)\) to \((Z_1 + Z'_2 + Z, Z_2 + Z'_1 + Z')\). The two morphisms \(e \) and \(s \) allow to consider the fibred product

\[
V = \text{Hom}^\nu(\mathbb{P}^1, C^p_{\nu u+d+n} X) \times_{C^p_{\nu u+d+n} X} (F \times \Delta_{C^p_{\nu u+d+n} X} X).
\]

This \(V \) is a closed subvariety in the product

\[
\text{Hom}^\nu(\mathbb{P}^1, C^p_{\nu u+d+n} X) \times F \times \Delta_{C^p_{\nu u+d+n} X}
\]

over \(\text{Spec}(k) \) consisting of tuples \((f, Z_1 + Z'_2, Z_2 + Z'_1, Z)\) such that

\[
e(f) = s(Z_1 + Z'_2, Z_2 + Z'_1, Z),
\]

i.e.

\[
(f(0), f(\infty)) = (Z_1 + Z'_2 + Z, Z_2 + Z'_1 + Z).
\]

The latter equality gives

\[
V = W_{d+n}^{\nu u}.
\]

Vice versa, if \((Z_1 + Z'_2, Z_2 + Z'_1)\) is a closed point of \(W_{d+n}^{\nu u} \), there exists a regular morphism

\[
f \in \text{Hom}^\nu(\mathbb{P}^1, C^p_{\nu u+d+n} X)
\]

with \(f(0) = Z_1 + Z'_2 + Z \) and \(f(\infty) = Z_2 + Z'_1 + Z \). Then \((f(0), f(Z_1 + Z'_2, Z_2 + Z'_1, Z))\) belongs to \(V \).

So the set \(W_{d+n}^{\nu u} \) is itself a quasi-projective variety.

Suppose that \((Z_1 + Z'_2, Z_2 + Z'_1)\) is in \(W_{d+n}^{\nu u} \). Then there exists \(f \) in \(\text{Hom}^\nu(\mathbb{P}^1, C^p_{\nu u+d+n} X) \), \(Z \) in \(C^p_{\nu u} X \) such that

\[
f(0) = Z_1 + Z'_2 + Z, \quad f(\infty) = Z_2 + Z'_1 + Z.
\]
Then this immediately imply that \((Z_1 + Z_2' + Z, Z_2 + Z_1') = W_{d+n}^{0,\nu}\).

On the other consider the map

\[\tilde{s} : F \times \Delta_{c_{1,1}}(X) \to C^p_{d+n+u,d+n+u}(X) \]

given by

\[(Z_1 + Z_2', Z_2 + Z_1', Z) \mapsto (Z_1 + Z_2' + Z, Z_2 + Z_1' + Z). \]

By the above we have that

\[W_{d+n}^{u,\nu} \subset \text{pr}_{1,2}(\tilde{s}^{-1}(W_{d+n+u}^{0,\nu})). \]

Conversely suppose that \((Z_1 + Z_2', Z_2 + Z_1') = \text{pr}_{1,2}(\tilde{s}^{-1}(W_{d+n+u}^{0,\nu})).\)

Then there exists \(f \in \text{Hom}^{\nu}(\mathbb{P}^1, C^p_{d+n+u}(X))\) satisfying

\[f(0) = Z_1 + Z_2' + Z', \quad f(\infty) = Z_2 + Z_1' + Z'. \]

This tells us that \((Z_1 + Z_2', Z_2 + Z_1') \in W_{d+n}^{u,\nu}.\)

Hence we have that

\[W_{d+n}^{u,\nu} = \text{pr}_{1,2}(\tilde{s}^{-1}(W_{d+n+u}^{0,\nu})). \]

Since \(\tilde{s}\) is continuous and \(\text{pr}_{1,2}\) is proper,

\[\tilde{W}_{d+n}^{u,\nu} = \text{pr}_{1,2}(\tilde{s}^{-1}(\tilde{W}_{d+n+u}^{0,\nu})). \]

This gives that to prove the second assertion of the proposition it is enough to show that \(\tilde{W}_{d+n}^{0,\nu}\) is contained in \(W_{d+n}^{0,\nu}\).

Let \((Z_1 + Z_2', Z_1' + Z_2)\) be a closed point of \(\tilde{W}_{d+n}^{0,\nu}\) (here the closure is taken with respect to \(F\)). Suppose

\[(Z_1 + Z_2', Z_1' + Z_2) \in \tilde{W}_{d+n}^{0,\nu} \setminus W_{d+n}^{0,\nu}. \]

Let \(W\) be an irreducible component of the quasi-projective variety \(W_{d+n}^{0,\nu}\) whose Zariski closure \(\tilde{W}\) contains the point \((Z_1 + Z_2', Z_1' + Z_2)\). Let \(U\) be an affine neighbourhood of \((Z_1 + Z_2', Z_2 + Z_1')\) in \(\tilde{W}\). Since \((Z_1 + Z_2', Z_1' + Z_2)\) is in the closure of \(W\), the set \(U \cap W\) is non-empty.

Let us show that we can always take an irreducible curve \(C\) passing through \((Z_1 + Z_2', Z_1' + Z_2)\) in \(U\). Indeed, write \(U\) as \(\text{Spec}(A)\). It is enough to show that there exists a prime ideal in \(\text{Spec}(A)\) of height \(n - 1\), where \(n\) is the dimension of \(\text{Spec}(A)\), where \(A\) is Noetherian. Since \(A\) is of dimension \(n\) there exists a chain of prime ideals

\[p_0 \subset p_1 \subset \cdots \subset p_n = \mathfrak{p} \]
such that this chain can not be extended further. Now consider the sub-chain
\[\mathfrak{p}_0 \subset \mathfrak{p}_1 \subset \cdots \subset \mathfrak{p}_{n-1}. \]
This is a chain of prime ideals and \(\mathfrak{p}_{n-1} \) is a prime ideal of height \(n-1 \), so we get an irreducible curve.

Let \(\tilde{C} \) be the Zariski closure of \(C \) in \(\tilde{W} \). Two evaluation regular morphisms \(e_0 \) and \(e_\infty \) from \(\text{Hom}^v(\mathbb{P}^1, C_{d+n}^p(X)) \) to \(C_{d+n}^p(X) \) give the regular morphism
\[e_{0,\infty} : \text{Hom}^v(\mathbb{P}^1, C_{d+n}^p(X)) \to C_{d+n,d+n}^p(X). \]
Then \(W_{d+n}^{0,v} \) is exactly the image of the regular morphism \(e_{0,\infty} \), and we can choose a quasi-projective curve \(T \) in \(\text{Hom}^v(\mathbb{P}^1, C_{d+n}^p(X)) \), such that the closure of the image \(e_{0,\infty}(T) \) is \(\tilde{C} \).

For that consider the curve \(C \) in \(W \) so it is contained in \(W_{d+n}^{0,v} \). We know that the image of \(e_{0,\infty} \) is \(W_{d+n}^{0,v} \). Consider the inverse image of \(\tilde{C} \) under the morphism \(e_{0,\infty} \). Since \(\tilde{C} \) is a curve, the dimension of \(e_{0,\infty}^{-1}(C) \) is greater than or equal than 1. So it contains a curve. Consider two points on \(\tilde{C} \), consider their inverse images under \(e_{0,\infty} \). Since \(\text{Hom}^v(\mathbb{P}^1, C_{d+n}^p(X)) \) is a quasi-projective variety, \(e_{0,\infty}^{-1}(\tilde{C}) \) is also quasi-projective, we can embed it into some \(\mathbb{P}^m \) and consider a smooth hyperplane section through the two points fixed above. Continuing this procedure we get a curve containing these two points and contained in \(e_{0,\infty}^{-1}(C) \). Therefore we get a curve \(T \) mapping onto \(\tilde{C} \). So the closure of the image of \(T \) is \(\tilde{C} \).

Now, as we have mentioned above, \(\text{Hom}^v(\mathbb{P}^1, C_{d+n}^p(X)) \) is a quasi-projective variety. This is why we can embed it into some projective space \(\mathbb{P}^m \). Let \(\tilde{T} \) be the closure of \(T \) in \(\mathbb{P}^m \), let \(\bar{T} \) be the normalization of \(\tilde{T} \) and let \(\tilde{T}_0 \) be the pre-image of \(T \) in \(\tilde{T} \). Consider the composition
\[f_0 : \tilde{T}_0 \times \mathbb{P}^1 \to T \times \mathbb{P}^1 \subset \text{Hom}^v(\mathbb{P}^1, C_{d+n}^p(X)) \times \mathbb{P}^1 \xleftarrow{e} C_{d+n}^p(X), \]
where \(e \) is the evaluation morphism \(e_{p^1,C_{d+n}^p(X)} \). The regular morphism \(f_0 \) defines a rational map
\[f : \tilde{T} \times \mathbb{P}^1 \dashrightarrow C_{d+n}^p(X) \]
Then by resolution of singularities we get that \(f \) could be extended to a regular map from \((\tilde{T} \times \mathbb{P}^1)' \) to \(C_{d+n}^p(X) \), where \((\tilde{T} \times \mathbb{P}^1)' \) denote the blow up of \(\tilde{T} \times \mathbb{P}^1 \) along the indeterminacy locus which is a finite set of points. Continue to call the strict transform of \(\tilde{T} \) in the blow up as \(\tilde{T} \), and the pre-image of \(T \) as \(\tilde{T}_0 \).
The regular morphism \(\tilde{T}_0 \to T \to \tilde{C} \) extends to the regular morphism \(\tilde{T} \to \tilde{C} \). Let \(P \) be a point in the fibre of this morphism at \((Z_1 + Z'_1, Z_2 + Z'_2)\). For any closed point \(Q \) on \(\mathbb{P}^1 \) the restriction \(f|_{\tilde{T} \times \{ Q \}} \) of the rational map \(f \) onto \(\tilde{T} \times \{ Q \} \equiv \tilde{T} \) is regular on the whole curve \(\tilde{T} \), because \(\tilde{T} \) is non-singular. Then

\[
(f|_{\tilde{T} \times \{ Q \}})(P) = Z_1 + Z'_2 \quad \text{and} \quad (f|_{\tilde{T} \times \{ \infty \}})(P) = Z_2 + Z'_1.
\]

\[
f : \{ P \} \times \mathbb{P}^1 \to C^p_{d+n}(X)
\]

has the property that

\[
f(0) = Z_1 + Z'_2, \quad f(\infty) = Z_2 + Z'_1.
\]

Hence we have that \(W^0_{d+n} \) is Zariski closed. So \(W^i_{d+n} \) is Zariski closed. Therefore we have a countable union of Zariski closed subsets in \(F \), whose pull-back to \(C^p_d(X) \times C^p_d(X) \times C^p_n(X) \times C^p_n(X) \) is exactly \(R \). Therefore \(R \) itself is a countable union of Zariski closed subsets in \(C^p_d(X) \times C^p_d(X) \times C^p_n(X) \times C^p_n(X) \).

\(\Box \)

Write \(R = \bigcup_i R_i \), where each \(R_i \) is a Zariski closed subset in \(C^p_d(X) \times C^p_n(X) \times C^p_d(X) \times C^p_n(X) \). Considering the projection from \(\text{pr}_1 \) from \(R \) to \(C^p_d(X) \times C^p_n(X) \), we have \(\bigcup_i \text{pr}_1(R_i) = C^p_n(X) \times C^p_n(X) \). But \(C^p_d(X) \times C^p_n(X) \) can be uniquely decomposed into finitely many Zariski closed irreducible subsets of maximal dimension. Using the fact that the ground field \(k \) is uncountable, it will follow that there exists finitely many components \(R_1, \ldots, R_m \) of \(R \), such that \(\bigcup_i R_i = R' \) surjects onto \(C^p_n(X) \times C^p_n(X) \). So we have that

\[
\dim R' \geq 2 \dim C^p_d(X).
\]

Now consider \((Z_1, Z_2, Z'_1, Z'_2)\) in \(\bigcup R_i \), then we have

\[
\dim_{(Z_1, Z_2)} R' \cap C^p_d(X) \times C^p_n(X) \times (Z'_1, Z'_2) \geq 2 \dim C^p_n(X) - 2 \dim C^p_d(X),
\]

this number on the right hand side is bigger than zero if we take sufficiently large \(n \) such that \(C^p_n(X) \) contains \(C^p_d(X) \). Then the above is an algebraic set contained in

\[
\theta_n^{p-1}(\theta_d(Z'_1, Z'_2)).
\]

As \((Z_1, Z_2)\) is arbitrary and the projection

\[
R' \to C^p_n(X) \times C^p_n(X)
\]

at 12
is surjective, we have that dimension of $\theta_{n-1}^p(Z_1, Z_2)$ is at least $2(\dim(C^p_d(X)) - \dim(C^p_d(X)))$. Hence the image of θ^p is bounded by $2 \dim C^p_d(X)$. Hence $C^p_d(X)$ is finite dimensional. Now suppose that $C^p_d(X)$ is finite dimensional. We have to prove that there exists d such that θ^p_d is surjective. Let d be such that

$$\dim(\text{im}(\theta^p_d)) = \dim(\text{im}(\theta^p_{d+e}))$$

for some positive integer e. Let V be a subvariety of degree e and codimension p giving an embedding of $C^p_d(X) \times C^p_d(X)$ into $C^p_{d+e}(X) \times C^p_{d+e}(X)$. Call the embedding as i_V, then we have

$$\theta^p_{d+e} \circ i_V = \theta^p_d.$$

Let F be the fiber of θ^p_d passing through a general point (Z_1, Z_2) of $C^p_d(X) \times C^p_d(X)$, let F' be the fiber of θ^p_{d+e} through a general point in $C^p_{d+e}(X) \times C^p_{d+e}(X)$. By assumption we have that

$$2 \dim(C^p_d(X)) - r_1 = 2 \dim(C^p_{d+e}(X)) - r_2$$

where r_1, r_2 are dimensions of F, F'. So we have

$$r_2 - r_1 = 2n$$

where $n = \dim(C^p_{d+e}(X)) - \dim(C^p_d(X))$. Let F'' be the fiber of a θ^p_{d+e} such that it passes through $(Z_1 + V, Z_2 + V) = i_V(Z_1, Z_2)$. Then by the definition of dimension of the fiber of θ^p_{d+e} we have that

$$\dim(F'') \geq \dim(F').$$

Now consider the subset

$$R = \{(Z_1, Z_2, Z'_1, Z'_2) : \theta^p_{d+e}(Z_1, Z_2) = \theta^p_d(Z'_1, Z'_2)\}.$$

The projection from R to $C^p_d(X) \times C^p_d(X)$ is surjective, so there exists finitely many irreducible subsets containing $(Z_1 + V, Z_2 + V, Z_1, Z_2)$ such that there union R' dominates $C^p_d(X) \times C^p_d(X)$. Fiber of this projection from R' is of dimension greater or equal than that of F''. So it is greater than or equal to $\dim(F) + 2 \dim C^p_d(X)$. The fibers of the first projection

$$p : R' \rightarrow C^p_{d+e}(X) \times C^p_{d+e}(X)$$

are of dimension atmost $\dim(F)$. So we have that

$$\dim p(R') \geq \dim R' - \dim F \geq \dim F'' + 2 \dim(C^p_d(X)) - \dim(F)$$

$$\geq \dim F' - \dim F + 2 \dim(C^p_d(X) = \dim(C^p_{d+e}(X)) \times C^p_{d+e}(X))$$

\qed
Now our aim is to detect the kernel of the Abel-Jacobi map for higher dimensional cycles. Let’s recall that the Abel-Jacobi map has domain $\text{CH}_p(X)_{\text{hom}}$ and target the Intermediate Jacobian $IJ^p(X)$ given by

$$H^{2p-1}(X, \mathbb{C})/F^p H^{2p-1}(X, \mathbb{C}) \oplus H^{2p-1}(X, \mathbb{Z}) .$$

The first theorem in this direction is to relate the representability of the Chow group of codimension p cycles with zero cycles on Jacobian.

Theorem 2.6. Suppose that there exists a smooth projective curve C, and a correspondence Γ on $C \times X$ such that

$$\Gamma_* : \text{CH}^1(C)_{\text{hom}} \to \text{CH}^p(X)_{\text{hom}}$$

is surjective. Then $\text{CH}^p(X)_{\text{hom}}$ is representable.

Proof. Note that the natural map from $\text{Sym}^g C \times \text{Sym}^g C$ to $\text{CH}^1(C)_{\text{hom}}$ is surjective, where g is the genus of the curve C. Therefore $\text{CH}^1(C)_{\text{hom}}$ is finite dimensional. Therefore the image of Γ_* is finite dimensional. But Γ_* is surjective. So $\text{CH}^p(X)_{\text{hom}}$ is finite dimensional hence representable. \square

It is difficult to prove the converse, that is: suppose $\text{CH}^p(X)_{\text{hom}}$ is representable then does there exist a curve C and a correspondence Γ on $C \times X$, such that Γ_* is onto. Let us consider the following situation when:

1) The Chow group of codimension p-cycles are generated by linear subspaces. That is there exists a surjective map from $\text{CH}_0(F(X))$ to $\text{CH}^p(X)_{\text{hom}}$.

Theorem 2.7. Let X be as above. Suppose that $\text{CH}^p(X)_{\text{hom}}$ is representable. Then there exists a smooth projective curve C and a correspondence Γ on $C \times X$, such that

$$\Gamma_* : \text{CH}^1(C)_{\text{hom}} \to \text{CH}^p(X)_{\text{hom}}$$

is surjective.

Proof. Consider the map θ^p_d from $C^p_d(X)$ to $\text{CH}^p(X)_{\text{hom}}$ given by

$$Z \mapsto Z - dL_0$$

where L_0 is a fixed linear subspace of X. Since $\text{CH}^p(X)_{\text{hom}}$ is actually generated by linear subspaces. The above map restricted to $\text{Sym}^d F(X)$ is surjective, continue to call it θ^p_d. Let us consider large d such that
\[\dim(\text{im}(\theta^p_d)) \] is constant and equal to \(K \). Then the dimension of a general fiber is equal to
\[\dim(\text{Sym}^d F(X)) - K \]

Now we prove that an irreducible component \(Z \) of maximal dimension of a general fiber of \(\theta^p_d \) cannot be contained in a set of the form
\[\text{Sym}^{d-i} F(X) + W \]
where \(W \) is in \(\text{Sym}^i F(X) \), \(\dim W < i \) and the above + means the image of the natural map from
\[\text{Sym}^{d-i} F(X) \times W \to \text{Sym}^d F(X). \]

If possible assume that \(Z \) is contained in such a set. Note that the dimension of \(Z \) is \(\dim(\text{Sym}^d F(X)) - K \). So we have
\[\dim(\text{Sym}^{d-i} F(X)) \geq \dim(\text{Sym}^d F(X)) - K - i + 1. \]

Let the dimension of \(F(X) \) be \(n \). Then the above says
\[n(d - i) \geq nd - K - i + 1 \]
which implies
\[i < K/n - 1. \]

Consider the subset
\[Z' = \{(z, w) \mid z + w \in Z\} \subset \text{Sym}^{d-i} F(X) \times W. \]
By definition this set dominates \(Z \), hence is of dimension greater or equal than \(nd - K \). So the general fibers of the second projection \(\text{pr}_2 : Z' \to W \)
are of dimension at least
\[nd - K - i + 1. \]

Also note that
\[\theta^p_d(z + w) = \theta^p_{d-i}(z) + \theta^p_i(w). \]
Since \(\theta^p_d \) is constant along \(Z \) we have \(\theta^p_{d-i} \) is constant along \(Z'_w \). So if \(Z \) passes through a very general point of \(\text{Sym}^d F(X) \), then \(Z'_w \) passes through a very general point of \(\text{Sym}^{d-i} F(X) \). So we have \(\dim(Z'_w) \) is less than the dimension of a general fiber of \(\theta^p_{d-i} \) for generic \(w \). Now the dimension of \(Z'_w \) is greater than or equal to
\[nd - K - i + 1 \]
but the dimension of the fiber of \(\theta_{d-i}^p \) is equal to \((d - i)n - K\) because \(d - i > d - K/n - 1\) can be chosen to be arbitrarily large.

Let us assume that \(d \geq 2\), and we have \(nd - K \geq d\). Consider the following lemma.

Lemma 2.8. Let \(Y\) be an ample hypersurface of \(F(X)\) and let \(Z\) be an irreducible subset of \(\text{Sym}^d F(X)\) not contained in any subset of the form

\[\text{Sym}^{d-i} F(X) + W \]

with \(W \subset \text{Sym}^i F(X)\) and dimension of \(W\) is less than \(i\). Then \(Z\) intersects \(\text{Sym}^d Y\), provided that \(\dim(Z) \geq m\).

Therefore by applying the lemma we see that a general fiber of \(\theta_d^p\) intersects \(\text{Sym}^d Y\), for sufficiently large \(d\) and provided that \(n \geq 2\). Therefore \(\theta_d^p\) and \(\theta_d^p|_{\text{Sym}^d Y}\) has same image and the later has image of bounded dimension. So we can apply the lemma again and finally get that \(\theta_d^p\) and \(\theta_d^p|_{\text{Sym}^d C}\) has same image, where \(C\) is a smooth projective curve obtained by intersecting \(n - 1\) many ample hypersurfaces. This proves the theorem.

Proof of Lemma 2.8. Consider the quotient map \(r : F(X)^d \to \text{Sym}^d F(X)\). Let \(r^{-1}(Z) = \widetilde{Z}\), let \(\widetilde{Z}_0\) be a component of \(\widetilde{Z}\) dominating \(Z\). By the hypothesis we have the following:

for every \(i \geq 1\) and every subset \(I\) of cardinality \(i\), we have \(\dim p_I(\widetilde{Z}_0) \geq i\), where \(p_I\) is the projection from \(F(X)^d\) to \(F(X)^I\) corresponding to the set of indices. Since \(\widetilde{Z}_0\) dominates \(Z\), it is sufficient to prove that \(\widetilde{Z}_0\) intersect \(Y^d\), for an ample hypersurface \(Y\) in \(F(X)\). Consider a complete intersection \(V\) in \(\widetilde{Z}_0\), which is obtained by intersecting \(\widetilde{Z}_0\) with finitely many ample hypersurfaces, so that dimension of \(V\) is \(d\). Then the hypotheses on \(\widetilde{Z}_0\) implies that same would be true for \(V\). So without loss of generality we can assume that dimension of \(\widetilde{Z}_0 = d\). Consider a desingularization \(Z'\) of \(\widetilde{Z}_0\). Consider the divisors

\[D_i := (pr_i \circ \tau)^{-1}(Y) \]

where \(\tau\) is the natural map from \(Z'\) to \(\widetilde{Z}_0\). Now \(Y\) is ample, so we have

\[(pr_i \circ \tau)_* ((pr_i \circ \tau)^*(Y).C) = Y.(pr_i \tau)_* C \geq 0 \]

which means that \(D_i\)'s are numerically effective. Our claim will follow from the fact that \(D_1 \cap \cdots \cap D_d\) is non-empty. So we prove that \(D_1 \cap \cdots \cap \)
D_d is non-empty. First suppose that $d = 2$. We have D_1, D_2 two divisors numerically effective. Hence we have

$$D_1^2 \geq 0; \quad D_2^2 \geq 0$$

Suppose that $D_1.D_2 = 0$. Then the intersection matrix of (D_1, D_2) is semi-positive. So by the Hodge index theorem we have $D_1 = rD_2$ for some integer r. Hence $(D_1 + D_2)^2 = 0$. But $D_1 + D_2$ is the pull-back of an ample divisor on $F(X) \times F(X)$, under a generically finite map. So it is ample. Therefore $(D_1 + D_2)^2 > 0$, which is a contradiction. The general case follows from this.

So when, $\text{CH}^p(X)$ is representable and X satisfies the assumption of Theorem 2.7, then the above Theorem 2.7 and arguments present in [Vo] give that there exists an abelian variety A and a correspondence Γ supported on $A \times F(X)$, such that $L_* \Gamma_* : A \to \text{CH}_0(F(X))_{\text{hom}} \to \text{CH}^p(X)_{\text{hom}}$ is surjective, where L_* is the universal incidence correspondence given by

$$\{(x, L) : x \in L\}.$$

This leads us to the following result.

Theorem 2.9. Let X be smooth projective and it satisfies the hypotheses of Theorem 2.7. Suppose that $\text{CH}^2(X)_{\text{hom}}$ is representable. Then the kernel of the Abel-Jacobi map is torsion.

Proof. By Theorem 2.7 there exists a smooth projective curve C in $F(X)$ and a correspondence Γ on $C \times F(X)$ such that $L_* \Gamma_* : J(C) \to \text{CH}^2(X)_{\text{hom}}$ is surjective. This yields further, a correspondence on $J(C) \times F(X)$, such that

$$L_* \Gamma_* : J(C) \to \text{CH}^2(X)_{\text{hom}}$$

is surjective. By Theorem 2.2 we have that kernel of $L_* \Gamma_*$ is a countable union of Zariski closed subsets of $J(C)$. Since kernel of $L_* \Gamma_*$ is a subgroup of $J(C)$ and we work over an uncountable ground field, the kernel is a countable union of translates of an abelian variety A sitting in $\ker(L_* \Gamma_*)$. Now consider the supplementary abelian variety B, such that $A \times B \to J(C)$ is an isogeny. Now replacing $J(C)$ by B, and $L \circ \Gamma$ by $(L \circ \Gamma)_{B \times X}$, we get that the kernel of $L_* \Gamma_*$ is countable.

Fix x_0 in $F(X)$, consider the subset R of $F(X) \times B$ given by

$$\{(x, a) : L_* \Gamma_*(a) = L_*(x) - L_*(x_0)\}.$$
By Theorem 2.2, we have \(R \) is a countable union of Zariski closed subsets in \(F(X) \times B \). Since \(\Gamma_* L_* \) is surjective, the projection from \(R \) onto \(F(X) \) is onto. Hence there exists a component \(R_0 \) of \(R \) surjecting onto \(F(X) \). Since \(\ker(L_* \circ \Gamma_*) \) is countable, the map is actually finite of say degree \(r \). Thus \(R_0 \) gives rise to a correspondence of dimension equal to \(\dim(F(X)) \) between \(F(X) \) and \(B \), this provides a morphism

\[
\alpha : F(X) \to B
\]
given by

\[
\alpha(x) = \text{alb}_B(R_0^*(x - x_0)).
\]

By definition of \(R_0 \) we have that

\[
L_* \Gamma_* \alpha(x) = r(L_* (x) - L_* (x_0)).
\]

Now this \(\alpha \) gives rise to a regular homomorphism from \(\text{CH}^2(X)_{\text{hom}} \) to \(B \). Hence by the universality the intermediate Jacobian \(I^2(J(X)) \), there exists a unique regular map \(\beta : I^2(J(X)) \to B \), such that

\[
\alpha = \beta \circ \Phi_2
\]
where \(\Phi_2 \) is the Abel-Jacobi map. So we have

\[
L_* \Gamma_* \beta \Phi_2(z) = rz.
\]

This proves that kernel of \(\Phi_2 \) is torsion.

\[\square\]

2.10. **Application of the above result.** Consider \(X \) to be a smooth cubic fourfold embedded in \(\mathbb{P}^5 \). Then we know that the group of homologically trivial one cycles \(\text{CH}^3(X)_{\text{hom}} \) is generated by lines on \(X \). So the criterion for Theorem 2.7 is satisfied. We know, by [Sc], that there does not exists a smooth projective curve \(C \) and a correspondence \(\Gamma \) on \(C \times X \), such that \(\Gamma_* \) is surjective. Hence it follows that the natural map from the Chow varieties parametrising one cycles on \(X \) does not surject onto \(\text{CH}^3(X)_{\text{hom}} \).

Theorem 2.11. The group \(\text{CH}^3(X)_{\text{hom}} \) is not representable. That is, the natural map from the product \(C^3_d(X) \times C^3_d(X) \) to \(\text{CH}^3(X)_{\text{hom}} \) is not surjective for any \(d \).

The above Theorem 2.9 gives us a criterion by which we can detect the representability of \(\text{CH}^2(X)_{\text{hom}} \). Precisely when, the Abel-Jacobi kernel is non-trivial, \(\text{CH}^2(X)_{\text{hom}} \) is not representable, in the sense that the natural map from the Chow varieties (infact from the symmetric powers of \(F(X) \))
to $\text{CH}^2(X)_{\text{hom}}$ are not surjective. There are some examples of higher dimensional varieties with non-trivial Abel-Jacobi mappings given in [GG]. So the Theorem 2.9 forces that such varieties cannot have:

$\text{Sym}^d F(X)$ surjecting onto $\text{CH}^2(X)_{\text{hom}}$. So for a threefold X, the non-triviality of the Abel-Jacobi kernel implies that the $\text{CH}^2(X)_{\text{hom}}$ cannot be generated by integral linear combination of lines on the threefold of any fixed degree.

REFERENCES

[B] R.Barlow, *Rational equivalence of zero cycles for some surfaces with $p_g = 0,* Invent. Math. 1985, no. 2, 303-308.

[BKL] S.Bloch, A.Kas, D.Lieberman, *Zero cycles on surfaces with $p_g = 0,* Compositio Mathematicae, tome 33, no 2(1976), page 135-145.

[GG] V.Guletskii, S.Gorchinsky, *Non-trivial elements in the Abel-Jacobi kernels of higher dimensional varieties,* Advances in Mathematics, 241, 2013.

[IM] H.Inose, M.Mizukami, *Rational equivalence of 0-cycles on some surfaces with $p_g = 0,* Math. Annalen, 244, 1979, no. 3, 205-217.

[M] D.Mumford, *Rational equivalence for 0-cycles on surfaces,* J.Math Kyoto Univ. 9, 1968, 195-204.

[R] A.Roitman, *Г-equivalence of zero dimensional cycles (Russian),* Math. Sbornik. 86(128), 1971, 557-570.

[R1] A.Roitman, *Rational equivalence of 0-cycles,* Math USSR Sbornik, 18, 1972, 571-588

[R2] A.Roitman, *The torsion of the group of 0-cycles modulo rational equivalence,* Ann. of Math. (2), 111, 1980, no.3, 553-569

[Sc] C.Schoen, *On Hodge structures and non-representability of Chow groups,* Composition Math. 88, 1993.

[Vo] C.Voisin, *Complex algebraic geometry and Hodge theory II,* Cambridge studies of Mathematics, 2002.

[V] C.Voisin, *Bloch’s conjecture for Catanese and Barlow surfaces,* Journal of Differential Geometry, 2014, no.1, 149-175.

[VC] C.Voisin, *Sur les zero cycles de certaines hypersurfaces munies d’un automorphisme,* Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4), 19, 1992, no.4, 473-492.

E-mail address: kalyan@math.tifr.res.in, kalyan.b@srmmap.edu.in