Predicting eating disorder and anxiety symptoms using disorder-specific and transdiagnostic polygenic scores for anorexia nervosa and obsessive-compulsive disorder

Zeynep Yilmaz¹,²,³,⁴, Katherine Schaumberg²,⁵, Matthew Halvorsen³, Erica L. Goodman⁶, Leigh C. Brosof⁷, James J. Crowley²,³,⁸, Anorexia Nervosa Genetics Initiative, Eating Disorders Working Group of the Psychiatric Genomics Consortium, Tourette Syndrome/Obsessive-Compulsive Disorder Working Group of the Psychiatric Genomics Consortium, Carol A. Mathews⁹, Manuel Mattheisen⁸,¹⁰,¹¹,¹², Gerome Breen¹³,¹⁴, Cynthia M. Bulik²,⁴,¹⁵, Nadia Micali¹⁶,¹⁷,¹⁸, * and Stephanie C. Zerwas²,*

¹National Centre for Register-based Research, Aarhus BSS, Aarhus University, Aarhus, Denmark; ²Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA; ³Department of Genetics, University of North Carolina, Chapel Hill, NC, USA; ⁴Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; ⁵Department of Psychiatry, University of Wisconsin, Madison, WI, USA; ⁶Department of Psychology, University of North Dakota, Grand Forks, ND, USA; ⁷Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, USA; ⁸Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; ⁹Department of Psychiatry, Genetics Institute, University of Florida, Gainesville, FL, USA; ¹⁰Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, Aarhus, Denmark; ¹¹The Lundbeck Foundation Initiative of Integrative Psychiatric Research (IIPSyCH), Aarhus, Denmark; ¹²Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany; ¹³Institute of Psychiatry, Psychology and Neuroscience, MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, King’s College London, London, UK; ¹⁴National Institute for Health Research Biomedical Research Centre, South London and Maudsley National Health Service Trust, London, UK; ¹⁵Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; ¹⁶Department of Psychiatry, Faculty of Medicine, University of Geneva, HUG, Geneva, Switzerland; ¹⁷Institute of Child Health, University College London, London, UK and ¹⁸Department of Paediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, HUG, Geneva, Switzerland

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

Original Article

*These authors contributed equally to this work.

Cite this article: Yilmaz Z et al (2023). Predicting eating disorder and anxiety symptoms using disorder-specific and transdiagnostic polygenic scores for anorexia nervosa and obsessive-compulsive disorder. Psychological Medicine 53, 3021–3035. https://doi.org/10.1017/S0033291721005079

Received: 15 December 2020
Revised: 9 November 2021
Accepted: 19 November 2021
First published online: 4 March 2022

Keywords:
Eating disorders; obsessive-compulsive disorder; polygenic scores; anxiety; developmental cohort

Author for correspondence:
Nadia Micali,
E-mail: Nadia.Micali@unige.ch

Abstract

Background. Clinical, epidemiological, and genetic findings support an overlap between eating disorders, obsessive-compulsive disorder (OCD), and anxiety symptoms. However, little research has examined the role of genetics in the expression of underlying phenotypes. We investigated whether the anorexia nervosa (AN), OCD, or AN/OCD transdiagnostic polygenic scores (PGS) predict eating disorder, OCD, and anxiety symptoms in a large developmental cohort in a sex-specific manner.

Methods. Using summary statistics from Psychiatric Genomics Consortium AN and OCD genome-wide association studies, we conducted an AN/OCD transdiagnostic genome-wide association meta-analysis. We then calculated AN, OCD, and AN/OCD PGS in participants from the Avon Longitudinal Study of Parents and Children to predict eating disorder, OCD, and anxiety symptoms, stratified by sex (combined N = 3212–5369 per phenotype).

Results. The PGS prediction of eating disorder, OCD, and anxiety phenotypes differed between sexes, although effect sizes were small. AN and AN/OCD PGS played a more prominent role in predicting eating disorder and anxiety risk than OCD PGS, especially in girls. AN/OCD PGS provided a small boost over AN PGS in the prediction of some anxiety symptoms. All three PGS predicted higher compulsive exercise across different developmental time-points [β = 0.03 (s.e. = 0.01) for AN and AN/OCD PGS at age 14; β = 0.05 (s.e. = 0.02) for OCD PGS at age 16] in girls.

Conclusions. Compulsive exercise may have a transdiagnostic genetic etiology, and AN genetic risk may play a role in the presence of anxiety symptoms. Converging with prior twin literature, our results also suggest that some of the contribution of genetic risk may be sex-specific.

Introduction

Eating disorders and obsessive-compulsive disorder (OCD) are serious psychiatric conditions with high social, psychological, and physical impact (American Psychiatric Association, 2013;
Clinical, epidemiological, and genetic findings support an overlap between eating disorders and anxiety disorders, particularly anorexia nervosa (AN), and OCD (Anttila et al., 2018; Cederlof et al., 2015; du Toit, van Kradenburg, Niehaus, & Stein, 2001; Godart, Flament, Perdereau, & Jeammet, 2002; Kaye, Bulik, Thornton, Barbarich, & Masters, 2004; Lilenfeld et al., 1998; Meier et al., 2015; Rubenstein, Pigott, L’Heureux, Hill, & Murphy, 1992; Strober, Freeman, Lampert, & Diamond, 2007; Swinburne & Touyz, 2007; Watson et al., 2019; Yilmaz et al., 2020). While research on eating disorders and OCD comorbidity has primarily focused on diagnoses, many symptoms and behaviors are common to both diagnoses, spanning diagnostic categories, and their presence often precedes disorder onset (Nolen-Hoeksema & Watkins, 2011; Stice, 2016). Little research has examined these associations – or symptom phenotypes – in a developmental context. Premorbid OCD symptoms and anxiety disorders or symptoms are common in patients with AN (Cederlof et al., 2015; Schaumberg et al., 2019). Childhood anxiety may precede eating disorder symptoms and AN in adolescence (Schaumberg et al., 2019), and shared genetic and environmental influences play a role in anxiety and disordered eating symptoms (Silberg & Bulik, 2005). Though no longer classified as an anxiety disorder (American Psychiatric Association, 2013), OCD is highly comorbid with anxiety disorders and includes anxiety symptoms, especially in children (Anagnostopoulos et al., 2016). An improved understanding of the overlap among eating disorders, OCD, and intermediate phenotypes such as anxiety symptoms could aid in conceptualizing mechanisms and processes contributing to the clinical and genetic overlap among these disorders. Additionally, symptom dimensions may transition over development, shifting from childhood obsessive-compulsive symptoms to adolescent eating disorders (Anderluh, Tchanturia, Rabe-Hesketh, & Treasure, 2003; Micali et al., 2011) and vice versa. Thus, shared and unique risk factors may contribute to the symptoms of OCD and eating disorders across development.

Genome-wide association studies (GWAS) of AN (Watson et al., 2019) and OCD (International Obsessive Compulsive Disorder Foundation Genetics Collaborative (IOCDF-GC) & OCD Collaborative Genetics Association Studies (OCGAS), 2018) have provided important insights into the highly polygenic architecture of these disorders and their positive genetic correlation (Watson et al., 2019). Application of polygenic scores (PGS) – the weighted sum of common risk variants per individual – examine the genetic architecture of complex traits using evidence for association from variants below the stringent threshold for genome-wide significance (Wray et al., 2014). The use of PGS has been validated across psychiatric diagnoses and symptom-level measures (Axelrud et al., 2018; Cross-Disorder Group of the Psychiatric Genomics Consortium et al., 2013; Lee et al., 2013; Mistry, Harrison, Smith, Escott-Price, & Zammit, 2018; Psychiatric GWAS Consortium Bipolar Disorder Working Group, 2011; Ripke et al., 2013, 2014), demonstrating that genetic variants associated with risk are often shared across diagnostic categories (Mistry et al., 2018). Moreover, transdiagnostic PGS (determined by either AN or OCD case status) of genetically correlated disorders may enhance predictive power for either disorder (Maier et al., 2015).

Sex differences in the prevalence and presentation of eating disorders, anxiety disorders, and OCD warrant sex-specific examination of risk factors. While the majority of AN cases are female (Hudson, Hiripi, Pope, & Kessler, 2007; Swanson, Crow, Le Grange, Swendsen, & Merikangas, 2011), AN in males often has an earlier age of onset and is likely to be more severe (El Ghoch, Calugi, Milanese, Bazzani, & Dalle Grave, 2017; Kinasz, Accurso, Kass, & Le Grange, 2016; Voderholzer et al., 2019). Similarly, the lifetime prevalence of eating disorders is much higher in females than males (Hudson et al., 2007; Swanson et al., 2011), possibly with the exception of subthreshold binge eating (Hudson et al., 2007). Furthermore, the twin literature has reported differences in the heritability estimates for disordered eating in boys and girls (Klump et al., 2012). The lifetime prevalence of anxiety disorders is up to 60% higher in women than in men (Kessler, Chiu, Demler, Merikangas, & Walters, 2005). In the case of OCD, childhood onset is more common among males and adolescent onset is more common among females (Ruscio, Stein, Chiu, & Kessler, 2010). Importantly, sex differences in the presentation of symptoms such as restraint and weight and shape concern in eating disorders (Kinasz et al., 2016) and contamination/cleaning and sexual/religious symptoms in OCD (Torresan et al., 2013) have also been reported. Given these discrepancies, we could expect: (a) notable sex differences in the role of genetic risk and eating disorders, OCD, and anxiety symptom phenotypes; and (b) that genetic risk may be more impactful and predictive for boys, especially in the case of eating disorders.

This study examined whether the AN, OCD, or AN/OCD PGS predicts eating disorders, OCD, and anxiety symptom dimensions or diagnoses using a developmental framework in male and female participants from a population-based cohort. Our main hypothesis was that AN/OCD PGS would demonstrate better statistical power than AN or OCD PGS, and the transdiagnostic PGS would evidence the most benefit compared with single-trait PGS when predicting intermediate phenotypes shared across the two disorders, such as generalized anxiety or worrying. We also hypothesized that symptom dimensions specific to each disorder would be predicted by disorder-specific PGS (e.g., thin ideal internalization by AN, or symmetry/checking behavior by OCD). Importantly, in light of the differences in lifetime prevalence and/or age of onset of eating disorders, OCD, and anxiety disorders between sexes, we hypothesized that there would be sex-specific differences in the prediction of AN, OCD, and AN/OCD PGS, and high AN genetic risk would play a larger role in predicting eating disorder symptoms in boys than girls.

Methods
Participants
The Avon Longitudinal Study of Parents and Children (ALSPAC) is a longitudinal, population-based study of women and their children (Boyd et al., 2013). All pregnant women living in Avon, United Kingdom who were expected to deliver between 1 April 1991 and 31 December 1992 were invited to participate. Children from 14,541 pregnancies were enrolled, 13,988 of whom were alive at one year. An additional 713 children were enrolled at or after age 7 (Boyd et al., 2013). The study website contains details of all the data that are available through a fully searchable data dictionary and variable search tool (http://www.bristol.ac.uk/alspac/researchers/our-data/). Ethical approval was obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics Committees. Briefly, informed consent for the use of data collected via questionnaires and clinics was
obtained from participants following the recommendations of the ALSPAC Ethics and Law Committee at the time. Mothers provided written consent for the participation of their children, and children were invited to give assent whenever it was appropriate. Study participants have the right to withdraw their consent for elements of the study or from the study entirely at any time. Full details of the ALSPAC consent procedures are available on the study website (http://www.bristol.ac.uk/alspac/researchers/research-ethics/).

For genetic analyses, we used post-quality control (QC) dosage files for 7977 unrelated participants (Martin, Hamshere, Stergioulis, O’Donovan, & Thapar, 2014; Paternoster et al., 2012), 7779 of whom passed additional QC performed as a part of this study (3787 girls and 3992 boys; see online Supplementary Information). The final number of participants with genotype and at least one phenotype information was 3270 girls and 3297 boys.

Measures

Table 1 provides a list of all measures, assessment timepoints, and methods of administration. Measures assessing psychopathology at younger ages (before age 14) were primarily assessed via parent-report. Those assessing psychopathology during adolescence (age 14 or older) were primarily assessed via self-report.

Eating disorder symptoms for the previous year were evaluated at ages 14 and 16 using questions adapted from the Youth Risk Behavior Surveillance System Questionnaire (Kann et al., 1996), validated in a population-based study of adolescents (Field, Taylor, Celio, & Colditz, 2004). Binge-eating, purging, fasting, and compulsive exercise were characterized and categorized as described previously (Micali, Daniel, Ploubidis, & De Stavola, 2018; Micali et al., 2015) (online Supplementary Information). Eating disorder diagnoses at ages 14 and 16 were derived using DSM-5 criteria (American Psychiatric Association, 2013) as detailed in a previous publication by our group (Schaumberg et al., 2019). Eating disorder cognitions, including body image distortion, emotional eating, external eating, body dissatisfaction, thin ideal internalization, dietary restraint, weight concern, and shape concern, were assessed by validated, age-appropriate self-report measurements (online Supplementary Information).

OCD and anxiety symptoms at age 7, 10, 13, and 15 were collected using the Development and Wellbeing Assessment (DAWBA; online Supplementary Information) (Goodman, Ford, Richards, Gatward, & Meltzer, 2000; Goodman, Heiervang, Collishaw, & Goodman, 2011). Probabilities of anxiety disorder diagnoses at ages 7 (specific phobia and separation anxiety), 10 (OCD), 13 (OCD, social phobia, and generalized anxiety disorder), and 15 (generalized anxiety disorder) were determined using computer-generated DAWBA band variables (Goodman et al., 2011), which assign the probability of the participant meeting DSM-IV criteria for an anxiety disorder. We defined likely cases as those where likelihood of case status based on response pattern was ≥50%. We also defined five latent OCD or anxiety factors for ages 10 and 13: (1) OCD-symmetry; (2) OCD-dirt/germs; (3) physical anxiety; (4) worrying; and (5) social phobia (Schaumberg et al., 2019) (online Supplementary Information).

Data analysis

We calculated AN, OCD, and AN/OCD PGS to predict 27 eating disorder, six OCD, and 11 anxiety phenotypes in the ALSPAC target sample using PRS-CS (Ge, Chen, Ni, Feng, & Smoller, 2019). AN PGS was constructed using the Anorexia Nervosa Genetics Initiative & Psychiatric Genomics Consortium (PGC) Eating Disorder Working Group Freeze 2 AN GWAS (Watson et al., 2019), and OCD PGS was calculated using the Freeze 1 PGC OCD GWAS [International Obsessive Compulsive Disorder Foundation Genetics Collaborative (IOCDF-GC) & OCD Collaborative Genetics Association Studies (OCGAS), 2018]. The AN/OCD summary statistics file was obtained from a GWAS meta-analysis of the AN and OCD datasets (see online Supplementary Information, Table S1, and Fig. S1). All of the discovery samples and the ALSPAC target sample included in our analysis were of European ancestry, determined using genomic ancestry principal components through comparison with a European ancestry (CEU) reference panel. We examined how well each of the eating disorder, OCD, and anxiety symptom phenotypes were predicted by: (1) AN; (2) OCD; and (3) AN/OCD PGS in girls and boys separately to elucidate whether sex-specific differences existed. Additional results for the combined sample with and without sex as a covariate are summarized in online Supplementary Tables S3 and S4. Due to insufficient power, only binary phenotypes with ≥50 cases are reported.

Results

Eating disorder symptom phenotypes and diagnoses

In girls, AN PGS predicted eating disorders not otherwise specified/purging eating disorder at age 14 [β = 0.1130 (0.0552), p = 0.041], presence of a threshold or subthreshold eating disorder at age 14 [β = 0.1214 (0.0498), p = 0.015], and compulsive exercise at age 14 [β = 0.0336 (0.0143), p = 0.019] (Table 2). OCD PGS predicted thin ideal internalization at age 14 [β = 0.1264 (0.0487), p = 0.010] and compulsive exercise at age 16 [β = 0.0535 (0.0240), p = 0.025]. AN/OCD PGS predicted pressure to lose weight at age 14 [β = 0.0839 (0.0423), p = 0.047], the presence of a threshold or subthreshold eating disorder at age 14 [β = 0.1146 (0.0493), p = 0.020], fasting at age 14 [β = 0.0148 (0.0064), p = 0.020], and compulsive exercise at age 14 [β = 0.0287 (0.0142), p = 0.043].

In boys, emotional eating at age 14 was predicted by AN PGS [β = 0.2583 (0.1096), p = 0.019] as well as AN/OCD PGS [β = 0.2371 (0.1109), p = 0.033] (Table 3). None of the eating disorder phenotypes were predicted by OCD PGS in boys.

OCD and anxiety symptom phenotypes and diagnoses

In girls, AN PGS predicted a higher score for OCD latent factor dirt/germs at age 13 [β = 0.0281 (0.0129), p = 0.030] and an increased likelihood of separation anxiety at age 7 [β = 0.4342 (0.1246), p = 0.001] (Table 2). AN/OCD PGS predicted an increased likelihood of separation anxiety [β = 0.4868 (0.1246), p < 0.001] as well as higher scores for latent factors OCD dirt/germs [β = 0.0277 (0.0128), p = 0.031], worrying [β = 0.0334 (0.0164), p = 0.042], and social phobia at age 13 [β = 0.0367 (0.0155), p = 0.018], OCD PGS did not predict any of the OCD or anxiety phenotypes.

In boys, AN PGS predicted a higher score for latent factor worrying at age 10 [β = 0.0292 (0.0133), p = 0.028] but a lower score for OCD latent factor dirt/germs at age 13 [β = −0.0297 (0.0132), p = 0.025] (Table 3). AN/OCD PGS also negatively predicted OCD latent factor dirt/germs at age 13 [β = −0.0300 (0.0133), p = 0.025], whereas OCD PGS predicted a lower score for latent factor social phobia at age 10 [β = −0.0254 (0.0125), p = 0.042].
In this exploratory study, we were able to predict eating disorder, OCD, and anxiety phenotypes using AN, OCD, and AN/OCD PGS in girls and boys separately during different developmental points in a large population sample. The majority of phenotypes predicted by AN PGS were also predicted by AN/OCD PGS (e.g. emotional eating at age 14 in boys; separating anxiety at age 7 in girls). However, this overlap was not 100% (e.g. latent factor worrying at age 10 in boys predicted by AN and not AN/OCD PGS), and none of the phenotypes predicted by OCD PGS were also predicted by AN/OCD PGS, suggesting that the genetic risk associated with some phenotypes may be more OCD-specific than being based on a transdiagnostic common factor. Notably, there were no phenotypes predicted separately by both AN and OCD PGS. Considering the notably smaller sample size of the OCD GWAS compared to the AN GWAS (2688 v. 16992 cases), OCD PGS is likely to be underpowered, and some phenotypes associated with a higher genetic load for OCD may be predicted by the AN/OCD PGS. There were also phenotypes only predicted by the transdiagnostic PGS (e.g. thin ideal internalization at age 14 in girls), further demonstrating the likely boost in statistical power for both AN and OCD with the use of the transdiagnostic genotype.

Compulsive exercise was the only intermediate phenotype that was positively predicted by more than one disorder-specific PGS in girls, suggesting it may be a key intermediate phenotype that, although commonly associated with eating disorders, is influenced by genetic risk for both AN and OCD. Together with evidence for shared genetic risk between a broad AN phenotype and OCD, these findings highlight the importance of considering a transdiagnostic approach in genetic studies of eating disorders and anxiety disorders.

Table 1. Eating disorder, obsessive-compulsive disorder, and anxiety diagnostic and symptom-based constructs

Age(s)	Construct	Scale	Report	
10	Body image distortion	Stunkard Figure Rating Scale	Self	
14	Fear of weight gain	Youth Risk Behavior Surveillance System Questionnaire	Self	
	Pressure to lose weight	Perceived Sociocultural Pressure Scale	Self	
	Restraint	Dutch Eating Behavior Questionnaire	Self	
	Emotional eating			
	External eating			
	Thin-ideal internalization	Ideal-Body Stereotype Scale-Revised	Self	
	Body dissatisfaction	Satisfaction and Dissatisfaction With Body Parts Scale	Self	
	Weight and shape concern	McKnight Risk Factor Survey	Self	
14 and 16	Anorexia nervosa	Youth Risk Behavior Surveillance System Questionnaire	Self	
	Bulimia nervosa or subthreshold bulimia nervosa			
	Binge-eating disorder or subthreshold binge-eating disorder			
	Eating disorders not otherwise specified or purging disorder			
	Any threshold/subthreshold eating disorder			
	Fasting			
	Purging			
	Binge eating			
	Compulsive exercise			
10 and 13	Obsessive-compulsive disorder	Development and Wellbeing Assessment	Parent	
	Obsessive-compulsive disorder latent factor symmetry			
	Obsessive-compulsive disorder latent factor dirt/germs			
Anxiety	7	Separation anxiety	Development and Wellbeing Assessment	Parent
10 and 13	Social phobia	Development and Wellbeing Assessment	Parent	
	Latent factor physical anxiety			
	Latent factor worrying			
	Latent factor social phobia			
13	Generalized anxiety disorder	Development and Wellbeing Assessment	Parent	
15		Development and Wellbeing Assessment	Self	
Table 2. Prediction of eating disorder, obsessive-compulsive disorder, and anxiety symptom dimensions and diagnoses using polygenic scores in girls

Phenotype	Sample size	PGS	β	s.e.	Test statistic b	P
Eating disorder symptom dimensions and diagnoses						
Body image distortion at age 10	2512	AN	-0.0039	0.0138	-0.283	0.777
		OCD	0.0078	0.0133	0.587	0.557
		AN/OCD	-0.0052	0.0137	-0.381	0.703
Fear of weight gain at age 14	2277	AN	0.0200	0.0164	1.222	0.222
		OCD	0.0099	0.0159	0.624	0.533
		AN/OCD	0.0242	0.0162	1.489	0.137
Pressure to lose weight at age 14	2263	AN	0.0813	0.0428	1.900	0.057
		OCD	0.0201	0.0414	0.486	0.627
		AN/OCD	0.0839	0.0423	1.984	**0.047**
Restraint at age 14	2257	AN	0.0478	0.0269	1.774	0.076
		OCD	0.0091	0.0259	0.350	0.726
		AN/OCD	0.0501	0.0267	1.880	0.060
Emotional eating at age 14	2167	AN	-0.0006	-0.1294	0.005	0.996
		OCD	0.0361	0.1248	0.289	0.772
		AN/OCD	-0.0447	0.1279	-0.349	0.727
External eating at age 14	2068	AN	0.0621	0.0732	0.849	0.396
		OCD	0.0003	0.0709	0.004	0.990
		AN/OCD	0.0322	0.0726	0.444	0.657
Thin ideal internalization at age 14	2283	AN	0.0755	0.0505	1.495	0.135
		OCD	0.1264	0.0487	2.593	**0.010**
		AN/OCD	0.0796	0.0500	1.592	0.112
Body dissatisfaction at age 14	2297	AN	0.2948	0.1677	1.758	0.079
		OCD	0.2531	0.1620	1.562	0.118
		AN/OCD	0.2899	0.1661	1.745	0.081
Weight and shape concern at age 14	2299	AN	0.0331	0.0417	0.794	0.428
		OCD	0.0392	0.0404	0.970	0.332
		AN/OCD	0.0481	0.0413	1.164	0.245
AN at age 14	78 cases, 2242 controls	AN	0.1734	0.1180	1.470	0.142
		OCD	0.0624	0.1136	0.550	0.583
		AN/OCD	0.1845	0.1167	1.582	0.114
Bulimia nervosa or subthreshold bulimia nervosa at age 14*	44 cases, 2276 controls	AN	$-$	$-$	$-$	$-$
		OCD	$-$	$-$	$-$	$-$
		AN/OCD	$-$	$-$	$-$	$-$
Binge-eating disorder or subthreshold binge-eating disorder at age 14*	17 cases, 2303 controls	AN	$-$	$-$	$-$	$-$
		OCD	$-$	$-$	$-$	$-$
		AN/OCD	$-$	$-$	$-$	$-$
Eating disorders not otherwise specified or purging disorder at age 14*	419 cases, 1901 controls	AN	0.1130	0.0552	2.045	**0.041**
		OCD	-0.0157	0.0534	-0.294	0.769
		AN/OCD	0.1026	0.0546	1.878	0.060
Any threshold/subthreshold eating disorder at age 14*	558 cases, 1762 controls	AN	0.1214	0.0498	2.439	**0.015**
		OCD	-0.0003	0.0480	-0.007	0.994

(Continued)
Table 2. (Continued.)

Phenotype	Sample size	PGS	β	s.e.	Test statistic	P
AN/OCD		AN/OCD	0.1146	0.0493	2.327	0.020*
Fasting at age 14	2074	AN/OCD	0.0122	0.0064	1.897	0.058
Purging at age 14	2278	AN/OCD	−0.0031	0.0062	−0.497	0.619
Binge eating at age 14	2289	AN/OCD	0.0148	0.0064	2.327	0.020*
Compulsive exercise at age 14	2240	AN/OCD	0.0336	0.0143	2.349	0.019*
AN at age 16^c	56 cases, 2035 controls	AN/OCD	−0.0151	0.1370	−0.110	0.912
Bulimia nervosa at age 16^c	121 cases, 1970 controls	AN/OCD	0.0785	0.1333	0.589	0.556
Binge-eating disorder at age 16^{c,d}	48 cases, 2043 controls	AN/OCD	0.0390	0.1351	−0.288	0.773
Eating disorders not otherwise specified or purging disorder at age 16^c	843 cases, 1248 controls	AN/OCD	0.0455	0.0450	1.012	0.312
Any threshold/subthreshold eating disorder at age 16^c	1068 cases, 1023 controls	AN/OCD	0.0415	0.0440	0.329	0.742
Fasting at age 16	1972	AN/OCD	−0.0040	0.0180	−0.220	0.826
Purging at age 16	1990	AN/OCD	0.0133	0.0140	0.954	0.340
Binge eating at age 16	1715	AN/OCD	0.0169	0.0183	0.923	0.356
Compulsive exercise at age 16	1840	AN/OCD	0.0262	0.0248	1.058	0.290
OCD at age 10^{c,d}	<5 cases	AN/OCD	0.0179	0.0245	0.731	0.465

Obsessive-compulsive disorder symptom dimensions and diagnosis

(Continued)
Table 2. (Continued.)

Phenotype	Sample size	PGS	β	s.e.	Test statistic	P
OCD	2590	AN	0.0037	0.0094	0.397	0.691
AN/OCD		OCD	0.0106	0.0090	1.173	0.241
OCD latent factor – symmetry, checking at age 10	2590	AN	−0.0002	0.0083	−0.027	0.979
AN/OCD		OCD	0.0127	0.0080	1.585	0.113
OCD latent factor – dirt/germs at age 10	2590	AN	−0.0010	0.0083	−0.110	0.913
OCD at age 13c,d	<5 cases	AN	–	–	–	–
OCD		AN/OCD	–	–	–	–
OCD latent factor – symmetry, checking at age 13	2421	AN	−0.0208	0.0151	−1.381	0.167
AN/OCD		OCD	0.0183	0.0147	1.246	0.213
OCD latent factor – dirt/germs at age 13	2421	AN	0.0281	0.0129	2.175	0.030*
AN/OCD		OCD	−0.0157	0.0126	−1.248	0.212
Anxiety symptom dimensions and diagnoses		AN/OCD	0.0277	0.0128	2.160	0.031*
Separation anxiety at age 7c	68 cases, 2544 controls	AN	0.4342	0.1246	3.485	0.001*
OCD		AN/OCD	0.4868	0.1246	3.906	<0.001*
Specific phobia at age 7c	53 cases, 2564 controls	AN	0.2390	0.1406	1.699	0.089
OCD		AN/OCD	0.2519	0.1400	1.799	0.072
Latent factor – physical anxiety at 10	2590	AN	0.0287	0.0147	1.953	0.051
OCD		AN/OCD	0.0150	0.0142	1.056	0.291
Latent factor – worrying at age 10	2590	AN	0.0078	0.0148	0.526	0.599
OCD		AN/OCD	0.0065	0.0143	0.450	0.652
Latent factor – social phobia at 10	2590	AN	0.0114	0.0119	0.958	0.338
OCD		AN/OCD	0.0131	0.0115	1.139	0.255
Social phobia at age 13c,d	30 cases, 2396 controls	AN	–	–	–	–
OCD		AN/OCD	–	–	–	–
Generalized anxiety disorder at age 13	100 cases, 2317 controls	AN	0.1078	0.1040	1.036	0.300
OCD		AN/OCD	0.1597	0.1019	1.567	0.117
Latent factor – physical anxiety at age 13	2421	AN	−0.0012	0.0132	−0.092	0.927
OCD		AN/OCD	0.0042	0.0129	0.325	0.746
Latent factor – physical anxiety at age 13	2421	AN	−0.0032	0.0131	−0.241	0.810

(Continued)
general propensity for physical activity (Watson et al., 2019), this finding suggests that genetic factors may be particularly relevant to understanding the development of compulsive exercise in eating disorders. Compulsive exercise encompasses many of the hallmark symptoms of AN (e.g. weight and shape concern) and OCD (e.g. compulsive behavior) (Davis & Kaptein, 2006). Furthermore, comorbid OCD symptoms are especially pronounced in the subpopulation of AN patients with compulsive exercise (Blachnio et al., 2016; Davis & Claridge, 1998; Davis & Kaptein, 2006; Davis, Katzman, & Kirsh, 1999; Naylor, Mountford, & Brown, 2006), which has significant clinical relevance since the presence of compulsive exercise in AN is an established predictor of treatment outcomes, including higher pathology at discharge from inpatient treatment (Dalle Grave, Calugi, & Marchesini, 2008), relapse (Carter, Blackmore, Sutandar-Pinnock, & Woodside, 2004), and greater energy requirements for weight gain (Kaye, Gwirtsman, Obarzanek, & George, 1988). Treatments for this symptom are currently lacking, and our preliminary results point to the need for additional investigation of the habitual and compulsive nature of exercise behavior in girls, which may lead to targeted intervention development for this symptom that derives from a modern biobehavioral understanding of both eating disorders and OCD. It is not clear why this association was not present in boys, but one potential explanation is the lack of statistical power (0.52 in boys vs. 0 in girls) (Klump et al., 2012), suggesting that AN genetic load could manifest itself earlier in boys, which is not what we observed in our study. Except for body image distortion at age 10, all eating disorder phenotypic data were collected at age 14 onward, so we cannot rule out the possibility that AN PGS may predict eating disorder phenotypes in boys at an earlier age than we have data available for. Another possible explanation is that the risk for disordered eating in boys could be attributed to a higher genetic load for other eating disorders – for which currently no large GWAS results exist – or other phenotypes independent of AN. Additionally, PGS is designed to account for common genetic variation, therefore genetic risk for eating disorders in males could be potentially driven by other types of variation such as copy number variants, rare variants, epigenetic factors, or other genetic mechanisms that PGS does a poor job of capturing.

Genetic prediction of anxiety symptoms and diagnoses also showed notable differences in boys and girls. For instance, AN PGS predicted separation anxiety at age 7 in girls and increased worrying at age 10 in boys. Epidemiological studies show over a 10-fold increase in AN risk among girls with separation anxiety disorder (Bulik, Sullivan, Fear, & Joyce, 1997), and a twin-based study reported a shared genetic effect influencing liability to AN, separation anxiety, and childhood overanxious disorder (which is very similar to generalized anxiety disorder in adults) during different stages of development (Silberg & Bulik, 2005), supporting our findings about the presence of a shared genetic pathway between anxiety and AN. We unexpectedly observed that lower OCD-specific genetic risk predicted lower scores on the latent factor indexing social phobia at age 13 in boys. While anxiety symptoms are common in patients with OCD, OCD is distinct from anxiety disorders phenotypes – in fact it is now a separate diagnostic chapter in DSM – and our results suggest

Phenotype	Sample size	PGS	β	s.e.	Test statistic	P
Latent factor – worrying at age 13	2421	AN	0.0303	0.0165	1.832	0.067
		OCD	0.0019	0.0161	0.116	0.908
		AN/OCD	0.0334	0.0164	2.035	0.042
Latent factor – social phobia at age 13	2421	AN	0.0306	0.0156	1.961	0.050
		OCD	0.0032	0.0152	0.209	0.834
		AN/OCD	0.0367	0.0155	2.374	0.018
Generalized anxiety disorder at age 15	154 cases, 1899 controls	AN	0.1188	0.0858	1.385	0.166
		OCD	0.0656	0.0835	0.786	0.432
		AN/OCD	0.0895	0.0850	1.054	0.292

Abbreviations: PGS, polygenic score; β, standardized beta regression coefficient; s.e., standard error; AN, anorexia nervosa; OCD, obsessive-compulsive disorder; AN/OCD, anorexia nervosa/obsessive-compulsive transdiagnostic phenotype.

*Genomic principal components 1-5 were used as covariates to account for population stratification.

*We report t-values for continuous phenotypes and z-values for binary phenotypes.

*Binary phenotype.

Due to insufficient statistical power, any binary measure with less than 50 cases is not included in the final analysis.

(Also bolded) Statistically significant at p < 0.05.
Table 3. Prediction of eating disorder, obsessive-compulsive disorder, and anxiety symptom dimensions and diagnoses using polygenic scores in boys*

Phenotype	Sample size	PGS	β	s.s.	Test statisticb	pb
Eating disorder symptom dimensions and diagnoses						
Body image distortion at age 10	2246	AN	0.0059	0.0136	0.430	0.667
		OCD	−0.0260	0.0137	−1.898	0.058
		AN/OCD	0.0103	0.0138	0.746	0.456
Fear of weight gain at age 14	1850	AN	0.0073	0.0113	0.643	0.520
		OCD	−0.0010	0.0114	−0.090	0.928
		AN/OCD	0.0123	0.0115	1.073	0.283
Pressure to lose weight at age 14	1853	AN	0.0490	0.0324	1.512	0.131
		OCD	−0.0260	0.0137	−1.898	0.058
		AN/OCD	0.0103	0.0138	0.746	0.456
Restraint at age 14	1817	AN	0.0221	0.0206	1.070	0.285
		OCD	−0.0054	0.0208	−0.260	0.795
		AN/OCD	0.0193	0.0209	0.923	0.356
Emotional eating at age 14	1760	AN	0.2583	0.1096	2.357	0.019*
		OCD	−0.0289	0.1110	−0.260	0.795
		AN/OCD	0.2371	0.1109	2.139	0.033*
External eating at age 14	1540	AN	0.0720	0.0866	0.832	0.406
		OCD	0.1174	0.0885	1.327	0.185
		AN/OCD	0.0562	0.0871	0.645	0.519
Thin ideal internalization at age 14	1770	AN	0.0792	0.0707	1.121	0.262
		OCD	0.0002	0.0708	0.002	0.998
		AN/OCD	0.0847	0.0715	1.184	0.237
Body dissatisfaction at age 14	1872	AN	0.2237	0.1620	1.381	0.168
		OCD	−0.0538	0.1633	−0.330	0.742
		AN/OCD	0.2364	0.1637	1.444	0.149
Weight and shape concern at age 14	1865	AN	0.0366	0.0338	1.083	0.279
		OCD	−0.0323	0.0340	−0.951	0.342
		AN/OCD	0.0305	0.0342	0.892	0.372
AN at age 14c,d	28 cases, 1887 controls	AN	–	–	–	
		OCD	–	–	–	
		AN/OCD	–	–	–	
Bulimia nervosa or subthreshold bulimia nervosa at age 14c,d	19 cases, 1896 controls	AN	–	–	–	
		OCD	–	–	–	
		AN/OCD	–	–	–	
Binge-eating disorder or subthreshold binge-eating disorder at age 14c,d	8 cases, 1907 controls	AN	–	–	–	
		OCD	–	–	–	
		AN/OCD	–	–	–	
Eating disorders not otherwise specified or purging disorder at age 14c	174 cases, 1741 controls	AN	0.1147	0.0808	1.421	0.155
		OCD	0.0455	0.0805	0.566	0.572
		AN/OCD	0.1395	0.0817	1.707	0.088
Any threshold/subthreshold eating disorder at age 14c	229 cases, 1686 controls	AN	0.1107	0.0715	1.548	0.122
		OCD	−0.0200	0.0712	−0.279	0.780

(Continued)
Table 3. (Continued.)

Phenotype	Sample size	PGS	β	s.e.	Test statistic b	p
AN/OCD		0.1151	0.0723	1.591	0.112	
Fasting at age 14	1858	AN	−0.0009	0.0036	−0.243	0.808
OCD		0.0020	0.0036	0.561	0.575	
AN/OCD		0.0007	0.0036	0.183	0.855	
Purging at age 14	1854	AN	−0.0030	0.0034	−0.878	0.380
OCD		−0.0011	0.0034	−0.326	0.744	
AN/OCD		−0.0007	0.0035	−0.188	0.851	
Binge eating at age 14	1878	AN	0.0080	0.0083	0.963	0.336
OCD		0.0111	0.0083	0.133	0.894	
AN/OCD		0.0099	0.0084	1.185	0.236	
Compulsive exercise at age 14	1787	AN	0.0155	0.0132	1.176	0.240
OCD		0.0164	0.0133	1.230	0.219	
AN/OCD		0.0168	0.0134	1.257	0.209	
AN at age 16	15 cases, 1476 controls	AN	–	–	–	–
OCD		–	–	–	–	–
AN/OCD		–	–	–	–	–
Bulimia nervosa at age 16	25 cases, 1466 controls	AN	–	–	–	–
OCD		–	–	–	–	–
AN/OCD		–	–	–	–	–
Binge-eating disorder at age 16	10 cases, 1481 controls	AN	–	–	–	–
OCD		–	–	–	–	–
AN/OCD		–	–	–	–	–
Eating disorders not otherwise specified or purging disorder at age 16	236 cases, 1255 controls	AN	0.0317	0.0712	0.445	0.656
OCD		0.0926	0.0719	1.287	0.198	
AN/OCD		0.0121	0.0721	0.167	0.867	
Any threshold/subthreshold eating disorder at age 16	286 cases, 1205 controls	AN	0.0402	0.0660	0.609	0.543
OCD		0.0618	0.0667	0.928	0.354	
AN/OCD		0.0338	0.0669	0.504	0.614	
Fasting at age 16	1407	AN	0.0010	0.0084	0.114	0.909
OCD		−0.0010	0.0084	−0.113	0.910	
AN/OCD		−0.0021	0.0085	−0.248	0.804	
Purging at age 16	1412	AN	0.0024	0.0047	0.505	0.614
OCD		0.0073	0.0046	1.582	0.114	
AN/OCD		0.0025	0.0047	0.529	0.597	
Binge eating at age 16	1214	AN	0.0132	0.0128	1.033	0.302
OCD		−0.0171	0.0129	−1.325	0.185	
AN/OCD		0.0223	0.0129	1.723	0.085	
Compulsive exercise at age 16	1346	AN	0.0169	0.0197	0.860	0.390
OCD		0.0152	0.0195	0.782	0.435	
AN/OCD		0.0124	0.0199	0.620	0.535	

Obsessive-compulsive disorder symptom dimensions and diagnosis

| OCD at age 10c,d | 15 cases, 2610 controls | AN | – | – | – | – |

(Continued)
Table 3. (Continued.)

Phenotype	Sample size	PGS	β	s.e.	Test statisticb	p
OCD	–	–	–	–	–	–
AN/OCD	–	–	–	–	–	–
OCD latent factor – symmetry, checking at age 10	2607	AN	0.0187	0.0104	1.794	0.073
	OCD	–0.0073	0.0105	–0.699	0.484	
	AN/OCD	0.0193	0.0105	1.830	0.067	
OCD latent factor – dirt/germs at age 10	2607	AN	0.0157	0.0087	1.798	0.072
	OCD	–0.0014	0.0088	–0.155	0.877	
	AN/OCD	0.0160	0.0089	1.804	0.071	
OCD at age 13c,d	6 cases, 2419 controls	AN	–	–	–	–
OCD	–	–	–	–	–	–
AN/OCD	–	–	–	–	–	–
OCD latent factor – symmetry, checking at age 13	2411	AN	0.0139	0.0144	0.961	0.337
	OCD	–0.0183	0.0145	–1.262	0.207	
	AN/OCD	0.0154	0.0145	1.062	0.288	
OCD latent factor – dirt/germs at age 13	2411	AN	–0.0297	0.0132	–2.243	0.025*
	OCD	–0.0177	0.0133	–1.327	0.185	
	AN/OCD	–0.0300	0.0133	–2.246	0.025*	
Anxiety symptom dimensions and diagnoses						
Separation anxiety at age 7c	80 cases, 2670 controls	AN	0.0521	0.1152	0.452	0.651
OCD	–0.0697	0.1127	–0.619	0.536		
AN/OCD	0.0571	0.1163	0.491	0.624		
Specific phobia at age 7c	51 cases, 2701 controls	AN	0.1224	0.1430	0.856	0.392
OCD	–0.0699	0.1407	–0.497	0.619		
AN/OCD	0.1510	0.1444	1.046	0.296		
Latent factor – physical anxiety at age 10	2607	AN	0.0181	0.0143	1.264	0.206
OCD	–0.0147	0.0145	–1.020	0.308		
AN/OCD	0.0111	0.0145	0.763	0.445		
Latent factor – worrying at age 10	2607	AN	0.0292	0.0133	2.197	0.028*
OCD	0.0057	0.0134	0.424	0.671		
AN/OCD	0.0171	0.0134	1.274	0.203		
Latent factor – social phobia at age 10	2607	AN	0.0117	0.0124	0.947	0.344
OCD	–0.0254	0.0125	–2.037	0.042*		
AN/OCD	0.0061	0.0125	0.486	0.627		
Social phobia at age 13c	25 cases, 2399 controls	AN	–	–	–	–
OCD	–	–	–	–	–	–
AN/OCD	–	–	–	–	–	–
Generalized anxiety disorder at age 13c	54 cases, 2370 controls	AN	0.1184	0.1376	0.861	0.390
OCD	0.1169	0.1389	0.841	0.400		
AN/OCD	0.1658	0.1386	1.196	0.232		
Latent factor – physical anxiety at age 13	2411	AN	–0.0118	0.0140	–0.838	0.402
OCD	–0.0052	0.0141	–0.371	0.710		
AN/OCD	–0.0091	0.0141	–0.643	0.520		

(Continued)
that OCD may be distinct from anxiety disorders at a genetic level, especially for men. Replication of these associations is required to better understand the nature of these relationships and the importance of potential sex differences in the biological pathways associated with anxiety risk.

Notably, significant PGS predictions did not always fall cleanly in accordance with hypothesized disorder-specific symptom phenotypes, especially in the case of anxiety phenotypes. For instance, AN – but not OCD – PGS predicted higher scores for OCD-dirt/germs and worrying during different developmental timepoints in girls. While contamination fears are often associated with OCD, they are not unique to OCD and have a cross-disorder component. In fact, it is not uncommon for individuals with AN to present with food-related contamination fears (Drummond & Kolb, 2008). In our previous ALSPAC study, we found that the latent factor worrying significantly predicts eating disorder symptoms at ages 14 and 16 as well as AN diagnosis at age 16 (Schaumberg et al., 2019). This may suggest that uncontrolled worrying may be an underlying early symptom of AN and disordered eating that precedes the manifestation of an eating disorder.

Our study has notable strengths that merit consideration. This is the first study to use AN, OCD, or AN/OCD PGS to predict eating disorder and anxiety intermediate phenotypes in a large population sample through a developmental perspective and also to examine how genetic risk may manifest differently in boys and girls. We augmented the diagnostic approach by including intermediate phenotypes measured continuously to capture the full range of these underlying traits in the general population. Furthermore, studying these associations in the general population allows a finer understanding of intermediate phenotypes and broader psychopathology as treatment-seeking individuals might have notable differences from the general population (e.g. increased comorbid psychopathology).

Limitations of our study include reliance on self- or parent-report symptoms instead of clinical diagnoses, phenotype data being available for only a subset of participants with the potential for response bias, and potential Type 2 error due to lack of statistical power for PGS in the prediction of genetic risk. The effect sizes observed were relatively small, and due to the exploratory nature of our study with the aim of elucidating sex differences using transdiagnostic prediction and symptom-level data, we did not correct for multiple testing with the hopes of generating potential hypotheses for future work. Of note, few participants met diagnostic criteria for AN, bulimia nervosa, or binge-eating disorder, whereas we had better statistical power for the non-specific eating disorder statuses (especially in girls), which likely explains why PGS did not predict AN diagnoses in either sex and none of the eating disorder diagnoses in boys. Similarly, a high probability (50% or higher) for anxiety disorder diagnoses was uncommon despite our attempt to increase power through dichotomizing these items, and even with dichotomizing, we did not have enough cases to include OCD diagnosis in our outcomes. Additionally, we did not address the presence of comorbid psychiatric diagnoses, therefore we cannot account for the role of comorbidities or the genetic risk associated with these additional diagnoses. However, as comorbidity is the norm and not the exception, our results are likely to capture associations that are more likely to be present in clinical and population settings, as pure forms of eating disorders and OCD are not common. With the exception of body image distortion at age 10, all eating disorder data were collected at age 14 onward, therefore we were unable to examine the potential association between PGS and eating behavior in early childhood. From a genetic perspective, whether all of the eating disorder-related symptom phenotypes examined as a part of our study actually fall on an etiological continuum with AN is not clear (Dinkler et al., 2021). Finally, the AN PGS was constructed using a much larger GWAS than the OCD GWAS, which may have translated to OCD PGS being more heavily skewed by AN PGS than OCD PGS. Taken together, results of our study provide preliminary support for utilizing the high positive genetic correlation between AN and OCD (Watson et al., 2019), leading to a small boost in predictive power through the use of a transdiagnostic PGS.

Table 3. (Continued.)

Phenotype	Sample size	PGS	β	s.e.	Test statistic^b	p
Latent factor – worrying at age 13	2411	AN	0.0012	0.0153	0.077	0.939
		OCD	0.0017	0.0154	0.109	0.914
		AN/OCD	−0.0022	0.0154	−0.143	0.886
Latent factor – social phobia at age 13	2411	AN	0.0200	0.0147	1.364	0.173
		OCD	−0.0023	0.0148	−0.154	0.877
		AN/OCD	0.0078	0.0148	0.527	0.598
Generalized anxiety disorder at age 15^c	42 cases, 1813 controls	AN	–	–	–	–
		OCD	–	–	–	–
		AN/OCD	–	–	–	–

Abbreviations: PGS, polygenic score; β, standardized beta regression coefficient; s.e., standard error; AN, anorexia nervosa; OCD, obsessive-compulsive disorder; AN/OCD, anorexia nervosa/obsessive-compulsive transdiagnostic phenotype.

^aGenomic principal components 1-5 were used as covariates to account for population stratification.

^bT-values for continuous phenotypes and z-values for binary phenotypes.

^cBinary phenotype.

^dDue to insufficient statistical power, any binary measure with less than 50 cases is not included in the final analysis.

^e(also bolded) Statistically significant at p < 0.05.
anticipate this statistical boost to become more notable as AN and (especially) OCD GWAS sample sizes continue to increase. Furthermore, our findings also point to differences in the manifestation of genetic risk for eating disorder and anxiety symptoms in boys and girls. Genetic risk associated with AN may be a stronger predictor of eating disorder symptoms earlier in development, whereas OCD genetic risk—albeit limited based on current GWAS data—may increase in effect across adolescence. Another significant observation was that compulsive exercise may be an intermediate phenotype or clinical manifestation of shared genetic risk factors for both AN and OCD. Compulsive exercise might be a distinct AN subphenotype, and clinical research should continue to explore habitual and compulsive processes associated with this symptom. Finally, this study opens up new avenues for a clearer understanding of biology of behaviors and intermediate phenotypes in eating disorders.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/S0033291721005079

Acknowledgements. We are deeply grateful to all the families who took part in this study, the midwives for their help in recruiting them, and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, and nurses. The UK Medical Research Council and the Wellcome Trust (Grant ref: 217065/Z/19/Z) and the University of Bristol provide core support for ALSPAC. This publication is the work of the authors and Dr Micali will serve as guarantor for the contents of this paper. Dr Micali had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Author contributions. ZY was responsible for genetic study design, quality control of genotype data, genetic analyses, and manuscript preparation. KS, EIL, and LCB were responsible for study design, quality control and preparation of phenotype data, statistical analysis of phenotype data, and manuscript preparation. MH was responsible for carrying out the transdiagnostic AN/OCD GWAS. JJC, MM, CAM, and GB were responsible for genetic study design, oversight of genetic analyses, and manuscript preparation. CMB oversaw and participated in the development of the research question, study design, and manuscript preparation. NM and SCZ were responsible for the development of the research question and provided oversight for all aspects of the study.

Financial support. This research was specifically funded by the National Institute of Mental Health (NIMH) R01MH073842 and R21MH109917. ZY is funded by NIMH (K01MH109782; R01MH105500; R01MH120170) and a Brain and Behavior Research Foundation NARSAD Young Investigator Award (grant # 28799). KS is supported by NIMH K01MH123914 and L30MH120619. JJC and MM acknowledge grant funding from NIMH (R01MH105500; R01MH110427). CMB acknowledges funding from NIMH (R01MH120170; R01MH124871; R01MH119084; R01MH118278), the Swedish Research Council (VR Dnr: 538-2013-8664), and the Klarman Family Foundation. NM acknowledges grant funding from the Medical Research Council (MR/R004803/1), NIMH (R01MH80595; R21MH113397), the Swiss National Fund (320030_182486), and a Brain and Behavior Research Foundation Independent Investigator Award (grant # 24608). SCZ is supported by NIMH K01MH004353. PGC-ED AN and the AN/OCD transdiagnostic GWAS was included controls from the jPSYCH Initiative, funded by the Lundbeck Foundation (grant # R102-A9118 and R155-2014-1724). The UK Medical Research Council and the Wellcome Trust (grant ref: 217065/Z/19/Z) and the University of Bristol provide core support for ALSPAC. This publication is the work of the authors and they will serve as guarantors for the contents of this paper. A comprehensive list of grant funding is available on the ALSPAC website.

Conflict of interest. CAM has received funding for a book contract with W.W. Norton, Inc., serves as a co-chair of the Tourette Association of America scientific advisory board, is a member of the International OCD Foundation scientific and clinical advisory board, as well as a member of the steering committee for the Family Foundation for OCD Research. GB received grant funding and consultancy fees in preclinical genetics from Eli Lilly, consultancy fees from Otsuka, and has received honoraria from Illumina. CMB has received grant support and served on Shire Scientific Advisory Board, is a consultant for Idorsia, and receives author royalties from Pearson. All other authors have no conflicts of interest to disclose.

References

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: American Psychiatric Association.

Anagnostopoulos, D. C., Koroulou, S., Kakellariou, K., Kondylis, V., Sarafidou, J., Tzanakiotis, E.,… Liakopoulou, M. (2016). Comorbid psychopathology and clinical symptomatology in children and adolescents with obsessive-compulsive disorder. Psychiatrki, 27(1), 27–36.

Anderluh, M. B., Tchanturia, K., Rabe-Hesketh, S., & Treasure, J. (2003). Childhood obsessive-compulsive personality traits in adult women with eating disorders: Defining a broader eating disorder phenotype. American Journal of Psychiatry, 160(2), 242–247. doi:10.1176/ajp.160.2.242

Antilia, V., Bulik-Sullivan, B., Finucane, H. K., Walters, R. K., Bras, J., Duncan, L. … Murray, R. (2018). Analysis of shared heritability in common disorders of the brain. Science (New York, N.Y.), 360(6395). doi:10.1126/science.aap8757

Axelrud, L. K., Santoro, M. L., Pine, D. S., Talarico, F., Gadelha, A., Manafro, G. G. … Salum, G. A. (2018). Polygenic risk score for Alzheimer’s disease: Implications for memory performance and hippocampal volumes in early life. American Journal of Psychiatry, 175(6), 555–563. doi:10.1176/ajp.17050529

Blachno, M., Bryńska, A., Tomaszewicz-Libudzic, C., Jagielska, G., Srebnicki, T., Winiarski, A., & Wolanický, T. (2016). Obsessive-compulsive symptoms and physical activity in patients with anorexia nervosa–possibly related to anorexia nervosa. Psychiatry Polska, 50(1), 55–64.

Boyd, A., Golding, J., Macleod, J., Lawlor, D. A., Fraser, A., Henderson, I. … Davey Smith, G. (2013). Cohort profile: The ‘children of the 90s’ – the index offspring of the Avon Longitudinal Study of Parents and Children. International Journal of Epidemiology, 42(1), 111–127. doi:10.1093/ije/dys064

Bulk, C. M., Sullivan, P. F., Fear, J. L., & Joyce, P. R. (1997). Eating disorders and antecedent anxiety disorders: A controlled study. Acta Psychiatr. Scandinav. 96(2), 101–107.

Carter, J. C., Blackmore, E., Sutton-Pinnock, K., & Woodside, D. B. (2004). Relapse in anorexia nervosa: A survival analysis. Psychological Medicine, 34(4), 671–679. doi:10.1017/s0033291704001168

Cederlof, M., Thornton, L. M., Baker, J., Lichtenstein, P., Larsson, H., Ruck, C. … Mataix-Cols, D. (2015). Etiological overlap between obsessive-compulsive disorder and anorexia nervosa: A longitudinal cohort, multigenerational family and twin study. World Psychiatry, 14(3), 333–338. doi:10.1002/wps.20251

Dalle Grave, R., Calugi, S., & Marchesini, G. (2008). Compulsive exercise to control shape or weight in eating disorders: Prevalence, associated features, and treatment outcome. Comprehensive Psychiatry, 49(4), 346–352. doi:10.1016/j.comppsych.2007.12.007

Davis, C., & Claridge, G. (1998). The eating disorders as addiction: A psychological perspective. Addictive Behaviors, 23(4), 463–475. doi:10.1016/s0306-4603(98)00009-4

Davis, C., & Kaptein, S. (2006). Anorexia nervosa with excessive exercise: A phenotype with close links to obsessive-compulsive disorder. Psychiatry Research, 142(2–3), 209–217. doi:10.1016/j.psychres.2005.11.006

Davis, C., Katzman, D. K., & Kirsh, C. (1999). Compulsive physical activity in adolescents with anorexia nervosa: A psychobehavioral spiral of pathology. Journal of Nervous and Mental Disease, 187(6), 336–342. doi:10.1097/00005053-199906000-00002

Dinkler, L., Taylor, M. J., Rastam, M., Hadjikhani, N., Bulik, C. M., Lichtenstein, P. … Lundstrom, S. (2021). Association of etiological factors of the brain. Science (New York, N.Y.), 369(6495). doi:10.1126/science.aay9389

Dinkler, L., Taylor, M. J., Rastam, M., Hadjikhani, N., Bulik, C. M., Lichtenstein, P. … Lundstrom, S. (2021). Association of etiological factors across the extreme end and continuous variation in disordered eating in female Swedish twins. Psychological Medicine, 51(S), 750–760. doi:10.1017/s0033291719003672

https://doi.org/10.1017/S0033291721005079 Published online by Cambridge University Press
Rubenstein, C. S., Pigott, T. A., L’Heureux, F., Hill, J. L., & Murphy, D. L. (1992). A preliminary investigation of the lifetime prevalence of anorexia and bulimia nervosa in patients with obsessive compulsive disorder. *Journal of Clinical Psychiatry, 53*(9), 309–314.

Ruscio, A. M., Stein, D. J., Chiu, W. T., & Kessler, R. C. (2010). The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication. *Molecular Psychiatry, 15*(1), 53–63. doi:10.1038/mp.2008.94

Schaumberg, K., Zerwas, S., Goodman, E., Yilmaz, Z., Bulik, C. M., & Micali, N. (2019). Anxiety disorder symptoms at age 10 predict eating disorder symptoms and diagnoses in adolescence. *Journal of Child Psychology and Psychiatry, 60*(6), 686–696. doi:10.1111/jcpp.12984

Silberg, J. L., & Bulik, C. M. (2005). The developmental association between eating disorders symptoms and symptoms of depression and anxiety in juvenile twin girls. *Journal of Child Psychology and Psychiatry, 46*(12), 1317–1326. doi:10.1111/j.1469-7610.2005.01427.x

Cross-Disorder Group of the Psychiatric Genomics Consortium, Smoller, J. W., Craddock, N., Kendler, K., Lee, P. H., Neale, B. M., … Sullivan, P. F. (2013). Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis. *Lancet (London, England), 381*(9875), 1371. doi:10.1016/s0140-6736(12)62129-1

Stice, E. (2016). Interactive and mediational etiologic models of eating disorder onset: Evidence from prospective studies. *Annual Review of Clinical Psychology, 12*, 359–381. doi:10.1146/annurev-clinpsy-021815-093317

Strober, M., Freeman, R., Lampert, C., & Diamond, J. (2007). The association of anxiety disorders and obsessive compulsive personality disorder with anorexia nervosa: Evidence from a family study with discussion of nosological and neurodevelopmental implications. *International Journal of Eating Disorders, 40*(Suppl), S46–S51. doi:10.1002/eat.20429

Swanson, S. A., Crow, S. J., Le Grange, D., Swendsen, J., & Merikangas, K. R. (2011). Prevalence and correlates of eating disorders in adolescents. Results from the national comorbidity survey replication adolescent supplement. *Archives of General Psychiatry, 68*(7), 714–723. doi:10.1001/archgenpsychiatry.2011.22

Swinbourne, J. M., & Touyz, S. W. (2007). The co-morbidity of eating disorders and anxiety disorders: A review. *European Eating Disorders Review, 15*(4), 253–274. doi:10.1002/erv.784

Torresan, R. C., Ramos-Cerqueira, A. T., Shavitt, R. G., do Rosario, M. C., de Mathis, M. A., Miguel, E. C., & Torres, A. R. (2013). Symptom dimensions, clinical course and comorbidity in men and women with obsessive-compulsive disorder. *Psychiatry Research, 209*(2), 186–195. doi:10.1016/j.psychres.2012.12.006

Voderholzer, U., Hessler, J. B., Naab, S., Fichter, M., Graetz, A., Greetfeld, M., … Schlegl, S. (2019). Are there differences between men and women in outcome of intensive inpatient treatment for anorexia nervosa? An analysis of routine data. *European Eating Disorders Review, 27*(1), 59–66. doi:10.1002/erv.2624

Watson, H. J., Yilmaz, Z., Thornton, L. M., Hubel, C., Coleman, J. R. I., Gaspar, H. A., … Bulik, C. M. (2019). Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa. *Nature Genetics, 51*(8), 1207–1214. doi:10.1038/s41588-019-0439-2

World Health Organization. (2008). *The Global Burden of Disease: 2004 Update*. Retrieved from https://www.who.int/healthinfo/global_burden_disease/GBD_report_2004update_full.pdf

Wray, N. R., Lee, S. H., Mehta, D., Vinkhuyzen, A. A., Dudbridge, F., & Middeldorp, C. M. (2014). Research review: Polygenic methods and their application to psychiatric traits. *Journal of Child Psychology and Psychiatry, 55*(10), 1068–1087. doi:10.1111/jcpp.12295

Yilmaz, Z., Halvorsen, M., Bryois, J., Yu, D., Thornton, L. M., Zerwas, S., … Crowley, J. I. (2020). Examination of the shared genetic basis of anorexia nervosa and obsessive-compulsive disorder. *Molecular Psychiatry, 25*(9), 2036–2046. doi:10.1038/s41380-018-0115-4