Pseudomonas Luteola Infection: First Case Report of Urinary Tract Infection and Review of Literature

Salma Ben Hmida 1*, Ichrak Boughariou 1, Fatma Gassara 1, Majdi Maazoun 1, Emna Eleuch 1, Chakib Marrakchi 1, Dorra Lahieni 1, Adnen Hammami 2, Mounir Ben Jmeaa 1

1 Département des Maladies Infectieuses, Hôpital Universitaire Hedi Chaker, Sfax, TUNISIA
2 Microbiology Laboratory, Habib Bourguiba University Hospital, Sfax, TUNISIA
*Corresponding Author: salmabenhmida@gmail.com

Citation: Ben Hmida S, Boughariou I, Gassara F, Maazoun M, Eleuch E, Marrakchi C, Lahieni D, Hammami A, Ben Jmeaa M. Pseudomonas Luteola Infection: First Case Report of Urinary Tract Infection and Review of Literature. Electron J Gen Med. 2021;18(5):em313. https://doi.org/10.29333/ejgm/11101

INTRODUCTION

P. luteola is a gram-negative non fermentative and motile bacillus [1]. It is a rare saprophyte commensal in humans, but it may cause severe infections, especially in patients with health disorders [1]. We report the first case of urinary tract infection due to P. luteola in a 69-year-old patient with chronic renal failure.

CASE REPORT

A 69-year-old male, with prior history of diabetes mellitus treated with insulin therapy, benign prostatic hyperplasia, and end stage renal failure requiring hemodialysis 3 times a week, presented to the hospital with dysuria, burning miction and intermittent left lumbar fossa pain for 6 days. Physical examination revealed a blood pressure of 128/80 mmHg, pulse of 95 beats/min and body temperature of 38.7 °C. The arteriovenous fistula was clean. The heart sounds were normal and there was no murmur. Abdominal examination revealed tenderness in left flank. The prostate is painless in the rectal examination. Results of Laboratory investigations included hemoglobin (9.1 g/dl), white cells count (6150/mm³), C-reactive protein (32 mg/L), blood urea (14.2 mmol/l) and creatininemia (795 µmol/l). Abdomino-pelvic ultrasonography was normal. Urine microscopy showed countless leukocytes. The patient was treated by empirical intravenous antibiotic therapy: ceftriaxone and ciprofloxacin for 2 days but no clinical improvement was noted. Blood cultures were negative. On 3th day, P. luteola was identified in urine. It was sensitive to pipericillin- tazobactam, ceftazidine, cefepime, aztreonam, imipenem, fosfomycin and colistin and resistant to ampicillin, augmentin, cefotaxim, ceftriaxone, norfloxacin, ciprofloxacin, gentamicin, amikacin, tobramycin, tigecycline and cotrimoxazole.

According to the results of the antibiotic susceptibility testing, ceftazidime (1g/day after dialysis) was administered parenterally. After 48 hours, the fever disappeared, urinary disorders subsided and CRP decreased. Ceftazidime was prescribed for a total duration of 11 days with good outcome. After one month, the patient was admitted again with a severe sepsis (hypotension 68/48, pulse 110 bpm). He has reported left flank pain with burning miction and vomiting since 6 days, without fever. Physical examination revealed apyrexia, tenderness in left lumbar fossa, and an arterial oxygen saturation equal to 94% without respiratory signs. Pulmonary auscultation was normal and the arteriovenous fistula was functional and clean. Laboratory findings included a hemoglobin of 9 g/dl, a white blood cell count of 11000/mm³ and a C-reactive protein level of 112 mg/L. The serum level of urea was 28.9 mg/dl and of creatinine was 799 µmol/l. Serum protein, bilirubin, electrolytes and liver enzyme profile were all normal. Electrocardiogram and chest X-ray were normal. His breathing and heart were monitored. At this time, the patient had urine output, so a urine sample was taken showing countless leukocytes. Considering the P. luteola’s anterior urinary tract infection, an association of gentamicin (3 mg/kg/day) and imipenem (500 mg/day) was started. In the following 4 hours, the patient’s state worsed and he presented a cardiopulmonary arrest. The patient was dead despite resuscitative efforts. We were not able to do a post-mortem examination but we thought that our patient had presented multivisceral failure due to severe sepsis caused by urinary tract infection. Unfortunately, the urine culture returned contaminated after two days.
DISCUSSION

P. luteola, a gram-negative aerobic bacillus, was first described by Tatum et al. and was previously known by Centers for Disease Control and Prevention (CDC) as group Ve-1 and Chryseomonas luteola [1]. Due to the close phylogenetic relatedness between Chryseomonas and Pseudomonas, this bacterium was reassigned to the genus Pseudomonas as P. luteola [2]. Its habitat is not determined, but it is usually found in water, soil, and moist environments [3,4]. All the previously reported cases suggest that P. luteola, although a rare saprophyte, could emerge as a potential pathogen [5]. The predisposing factors for infection with P. luteola include immunosuppressive conditions like use of corticosteroids and other immunosuppressive therapy, malignancy tumors and chronic renal failure such as our case [2]. In other cases, the infection is associated with indwelling catheters and prostheses [6,7]. Nosocomial infections are more frequent than community acquired ones, especially in immunocompromised patients [1]. In our case, the patient had a community acquired urinary tract infection by this bacterium. P. luteola has a variable sensitivity to penicillins, cephalosporins, tetracyclines, and cotrimoxazole and is often sensitive to imipenem, aminoglycosides and fluoroquinolones such as ciprofloxacin [4,8,9]. In our case, P. luteola was sensitive to piperacillin/ tazobactam, ceftazidime, cefepime, aztreonam and imipenem, but resistant to ampicillin, augmentin, cefotaxim, ceftaxinone, tigecycline, cotrimoxazole, amikacin, gentamicin, tobramycin and ciprofloxacin. According to our research on Pub Med from 1980 until November 2020, we found only 19 cases of P. luteola’s infection in adults. A summary of main features of these cases is put in Table 1 [1, 4-21]. This

Table 1. Summary of all reported cases with Pseudomonas luteola’s infection
References
Connor et al. (1987) [16]
Su et al. (2014) [14]
Rastogi and Sperber (1998) [12]
Tsakis et al. (2002) [13]
Dalamaga et al. (2004) [7]
Jayagopal et al. (2004) [14]
Ramana et al. (2010) [15]
Roberts et al. (2018) [16]
Casalta et al. (2005) [15]
Goteeri et al. (2010) [17]
Anuradha et al. (2010) [17]
Ngob et al. (2011) [19]
Jacob et al. (2015) [18]
Dharmayanti et al. (2017) [19]
microorganism was reported to produce septicemia [4-7,9,12], endocarditis [15], pleuritic empyema [1], mediastinal abscess [16], pneumonia [9,18,19], peritonitis [10, 11], biliary tract infection [17], endophthalmitis [20,21] and cutaneous infection [5,7,8,12,14]. To the best of our knowledge, our case is the first reported case of urinary tract infection caused by *P. luteola*. The majority of cases in the literature review (15/20) had progressed favourably under adequate antibiotic treatment. Ngoh et al. [9] reported a fatal case of *P. luteola*'s pneumonia in a patient with multiple comorbidities. The patient was admitted to the Intensive Care Unit and he had received an aggressive therapy (imipenem, amikacin, teicoplanin, and fluconazole) but he was died three days later after multivisceral failure. The strain was resistant to imipenem, and amikacin.

Table 1 (continued). Summary of all reported cases with *Pseudomonas luteola*'s infection

References	Infection	Cases number	Risk Factors	Susceptibility status	Treatment	Outcomes
Otto et al. (2013) [6]	Lung carcinoma	2	S: third-generation cephalosporins, aminoglycosides, ureidopenicillins, ciprofloxacin R: first and second-generation cephalosporins	Intraocular piperacillin 16 g/day (14 days)	No data	No data
Balew et al. (2017) [4]	Hodgkin lymphoma				Topical medication + intravitreal injection of piperacillin/tazobactam + oral cotrimoxazole	Alive
Harvey et al. (2007) [20]	Endophthalmitis	2	S: piperacillin/tazobactam, trimethoprim/sulfamethoxazole, cefepime R: amikacin		Ocular surgery + Ciprofloxacin	Alive
Naik et al. (2018) [21]	Urinary tract infection	1	S: piperacillin/tazobactam, cefazidime, cefepime, aztreonam, imipenem, fosfomycin, colistin R: ampicillin, augmentin, cefotaxim, ceftriaxone, ciprofloxacin, gentamicin, amikacin, tobramycin, tigecycline and cotrimoxazole.	First episode: cefazidime (1 g after dialysis), 11 days	Second episode: gentamicin (3 mg/kg/day) + imipenem (500 mg/day)	Recovery

|##sensitive| R= resistant |

CONCLUSION

In this work we have reported on the main aspects of *P. luteola* infections in adults. Due to the gravity associated with infection by *P. luteola* in such cases, we believe it is useful to report on our experience for the purpose of increasing knowledge in *P. luteola* and its pathological complications and improving the treatment of this infection especially for those already infected.

Author contributions: All authors have sufficiently contributed to the study, and agreed with the results and conclusions.

Funding: No funding source is reported for this study.

Declaration of interest: No conflict of interest is declared by authors.

REFERENCES

1. Yousefi F, Shoja S, Honarvar N. Empyema Caused by *Pseudomonas luteola*: A Case Report. Jundishapur J Microbiol. 2014; 7(7):e10923. https://doi.org/10.5812/jjm.10923 PMid:25368791 PMCid:PMC4216571

2. Chihab W, Alaoui AS, Amar M. Chrseomons luteola pneumonia Identified as the Source of Serious Infections in a Moroccan University Hospital. J Clin Microbiol. 2004; 42(4):1837-9. https://doi.org/10.1128/JCM.42.4.1837-1839.2004 PMid:15071064 PMCid:PMC387548

3. Doublet B, Robin F, Casin I, Fabre L, Le Fleche A, Bonnet R. Molecular and biochemical characterization of the natural chromosome-encoded class A beta-lactamase from *Pseudomonas luteola*. Antimicrob Agents Chemother. 2010; 54(1):45-51. https://doi.org/10.1128/AAC.00427-09 PMid:19884377 PMCid:PMC2798517

4. Balew A, Yimtubezinash W-A, Kelemework A, Ezra B, Abdulaziz A, Daniel A. Rare bacterial isolates causing bloodstream infections in Ethiopian patients with cancer. Infect Agent Cancer. 2017; 12:40. https://doi.org/10.1186/s13027-017-0150-9 PMid:28702079 PMCid:PMC5504797

5. Ramana KV, Kareem MA, Sarada CHV, Sebastian S, Lebaka R, Ratnamani MS, et al. Chryseomonas luteola bacteremia in a patient with left pyocele testis with Fournier's scrotal gangrene. Indian J Pathol Microbiol. 2010; 53(3):568. https://doi.org/10.4101/AAC.00427-09 PMid:20699531

6. Otto MP, Foucher B, Dardare E, Gerome P. Severe catheter related bacteremia due to *Pseudomonas luteola*. Med Mal Infect. 2013; 43:170-1. https://doi.org/10.1016/j.medmal.2013.01.013 PMid:23473706

7. Dalamaga M, Karmanilos K, Chavelas C, Liatis S, Matekivots H, Migdalis I. *Pseudomonas luteola* cutaneous abscess and bacteraemia in a previously healthy man. Scand J Infect Dis. 2004; 36(6-7):495-7. https://doi.org/10.1080/036554031016196 PMid:15307579
8. Roberts W, Roessler C, Francis PJ, Noel D, Loukas M. Postsurgical Gangrene with Pseudomonas luteola Resulting in Limb Amputation: A Case Review. Cureus. 2018;10(10):e3441. https://doi.org/10.7759/cureus.3441
9. Ngoh E, Zohoun A, Ghazouani M, El Hamzaoui S, El Ouennass M. A fatal case of Pseudomonas luteola infection. Med Mal Infect. 2011; 41(7):399-400. https://doi.org/10.1016/j.medmal.2010.12.018 PMid:21439742
10. Connor BJ, Kopecky RT, Frymoyer PA, Forbes BA. Recurrent Pseudomonas luteola (CDC group Ve-1) peritonitis in a patient undergoing continuous ambulatory peritoneal dialysis. J Clin Microbiol 1987;25:1113-14. https://doi.org/10.1128/jcm.25.6.1113-1114.1987 PMid:3597754
11. Su SY, Chao CM, Lai CC. Peritoneal dialysis peritonitis caused by Pseudomonas luteola. Perit Dial Int J Int Soc Perit Dial. 2014;34(1):138-9. https://doi.org/10.3747/peri.2012.00265 PMid:24525608 PMCid:PMC3923710
12. Rastogi S, Sperber SJ. Facial cellulitis and Pseudomonas luteola bacteremia in an otherwise healthy patient. Diagn Microbiol Infect Dis. 1998;32:303-5. https://doi.org/10.1016/S0732-8893(98)00082-0
13. Tsakris A, Hassappopoulou H, Skoura L, Pournaras S, Douboyas J. Leg ulcer due to Pseudomonas luteola in a patient with sickle cell disease. Diagn Microbiol Infect. 2002; 42:141-3. https://doi.org/10.1016/S0732-8893(01)00336-4
14. Jayagopal S, Berry MG, Ross G, Howcroft AJ. Hand infection caused by Chryseomonas luteola. Br J Plast Surg. 2004; 57(7):694-5. https://doi.org/10.1016/j.bjps.2004.05.028 PMid:15380711
15. Casalta, J.P, Fournier, P.E, Habib, G, Riberi, A, Raoult, D. Prosthetic valve endocarditis caused by Pseudomonas luteola. BMC Infect Dis 2005; 5: 82. https://doi.org/10.1186/1471-2334-5-82 PMid:16221303 PMCid:PMC1274313
16. Goteri G, Dorrestein GM, Manso E, Giantomassi F, Rubini C, Zizzi A. Chryseomonas luteola: an unusual clinical infection mimicking a mediastinal malignant lymphoma. Pathol Lab Med Int. 2010; 2:137-9. https://doi.org/10.2147/PLMII.S13645
17. Anuradha S De, Salunke PP, Parikh HR, Baveja SM. Chryseomonas luteola from Bile Culture in an adult male with sever jaundice. J Lab Physicians 2010; 240-1. https://doi.org/10.4103/0974-2727.66708 PMid:21814406 PMCid:PMC3147085
18. Jacob N, Weeraporn S, Shannon Y. Round pneumonia with Pseudomonas luteola and Escherichia vulneris bacteremia. The Southwest Respiratory and Critical Care Chronicles. 2015; 3 (12). https://doi.org/10.12746/swrrcc.2015.0312.153
19. Dharmayanti A, AstraWinate D. Ventilator-Associated Pneumonia (VAP) in a Patient with Guillain-Barre Syndrome. Acta Medica Indones. 2017; 49 (2):151.
20. Uy Harvey,S, Leuenberger E.U, de Guzman, B.B, Natividad, F.F. Chronic, postoperative Pseudomonas luteola endophthalmitis. Ocul Immunol Inflamm 2007; 15: 359-61. https://doi.org/10.1080/09273940701396697 PMid:17763136
21. Naik AU, Prakash VJ, Susvar P, Therese KL, Parameswari CK. Postoperative endophthalmitis due to Pseudomonas luteola: First reported case of acute and virulent presentation from a tertiary eye care center in South India. Indian J Ophthalmol. 2018; 66(8):1200. https://doi.org/10.4103/ijo.IJO_242_18 PMid:30038182 PMCid:PMC6080441