Assessment of Continuous Gas Resources in the Horn River Basin, Cordova Embayment, and Liard Basin, Canada, 2019

Using a geology-based assessment methodology, the U.S. Geological Survey estimated undiscovered, technically recoverable mean resources of 135.4 trillion cubic feet of continuous gas in Devonian–Mississippian shales in the Horn River Basin, Cordova Embayment, and Liard Basin of Canada.

Introduction

The U.S. Geological Survey (USGS) quantitatively assessed the potential for undiscovered, technically recoverable continuous, or unconventional, gas resources in Devonian–Mississippian organic-rich shales in the Horn River Basin, Cordova Embayment, and Liard Basin of the Alberta Basin Province in Canada (fig. 1). From the Middle Devonian to Early Mississippian, carbonate platforms and adjacent deepwater basins were located along the western passive margin of North America, with open-marine conditions to the west and northwest. Carboniferous through Triassic subduction and collision of several terranes along the western margin of North America resulted in a long period of uplift, erosion, or nondeposition. The Late Jurassic development of an east-verging, fold/thrust belt and foreland basin (Price, 1994), and its continued subsidence into the Late Cretaceous through Paleogene, provided the necessary burial for adequate thermal maturity for oil and gas generation (Creaney and Allan, 1990; Fowler and others, 2001).

This study focuses on the assessment of organic-rich shales that were deposited in the deep, oxygen-deficient basins adjacent to the carbonate platforms (Ross and Bustin, 2008; Chen and Hannigan, 2016; Ayranci and others, 2018). These shales include the Evie Member and Otter Park Member of the Horn River Formation, the Muskwa Formation, and the Exshaw Formation in the Horn River Basin (British Columbia Oil and Gas Commission, 2014); Evie Member, Otter Park Member, Muskwa Formation, and Exshaw Formation in the Cordova Embayment; and the Besa River Formation in the Liard Basin (fig. 2). The Besa River Formation is equivalent to the stratigraphic interval from the Evie Member through the Exshaw Formation. Several hundred meters of Middle Devonian to Mississippian shales were deposited within these basins, but organic-rich shales only constitute part of the total shale thickness. Placing the shales in a sequence-stratigraphic context defines the intervals of organic-rich shales for the assessment (Jonk and others, 2013; Kam and others, 2015; Ayranci and others, 2018). The Evie Member represents a transgressive shale deposited across the underlying Keg River carbonate platform and is a distal, condensed, low-clay percentage siliceous shale that is a primary target for shale-gas development. The overlying Otter Park Member is a complex stratigraphic unit. The lower and upper parts of the Otter Park Member are lowstand wedges that are organically lean and are not petroleum source rocks. The middle part of the Otter Park Member is a transgressive, organic-rich shale that drapes the lowstand wedge and is a source rock. The Muskwa Formation, like the Evie Member, is an organic-rich transgressive shale that thins landward. The Exshaw Formation, an equivalent to the Bakken Formation, is a transgressive organic-rich shale (Smith and Bustin, 2000). The clinooinform of the Fort Simpson Formation (and equivalent strata of the Besa River Formation) is an organic-lean interval that is generally not a source rock, but opinions vary as to source rock potential (Ross and Bustin, 2008; National Energy Board, 2016).

The Evie Member is a specific target shale reservoir for horizontal drilling. However, because fractures within the Otter Park Member propagate up into the Muskwa Formation (Kam and others, 2015), the Otter Park Member and Muskwa Formation shales together form a horizontal drilling target (Virués and others, 2013; Mack and others, 2016; Teklu and others, 2018; Urban-Rascon and others, 2018; Agar and others, 2019). The overlying Exshaw Formation, like the Evie Member, is a single horizontal drilling target. The importance of natural and induced fractures to the production of shale gas in these...
units has been the subject of intensive study (Reynolds and Munn, 2010; Rogers and others, 2010; Novlesky and others, 2011; Ehlig-Economides and others, 2012; Khan and others, 2012; Dong and others, 2017; Yang and others, 2018; Agar and others, 2019). These studies have shown that the organic-rich shales are lithologically and structurally heterogeneous, which can affect spacing, length, orientation, and conductivity of natural and induced fractures and can also affect shale-gas production.

Total Petroleum Systems and Assessment Units

The USGS defined a Middle–Upper Devonian Total Petroleum System (TPS) encompassing the (1) Horn River Basin Evie Shale Gas Assessment Unit (AU), (2) Horn River Basin Muskwa-Otter Park Shale Gas AU, (3) Cordova Embayment Evie Shale Gas AU, and the (4) Cordova Embayment Muskwa-Otter Park Shale Gas AU. Shales of the Evie Member, Otter Park Member, Muskwa Formation, and their equivalents are generally within the dry-gas generation window in these three basins (Ross and Bustin, 2008; Dong and Harris, 2013; Chen and Hannigan, 2016; Dong and others, 2017, 2018); so, standard geochemical parameters such as total organic carbon and hydrogen index are of limited use because of the high level of thermal alteration of organic matter. The geologic model for the Middle–Upper Devonian TPS is for oil and gas to have been generated from Middle to Late Devonian source rocks; oil was cracked to gas from Late Cretaceous–Paleogene foredeep burial, and gas was partially retained within the shales following expulsion and migration.

The USGS defined an Upper Devonian–Mississippian TPS to encompass the Horn River Basin Exshaw Shale Gas AU and the Cordova Embayment Exshaw Shale Gas AU. The Upper Devonian–Lower Mississippian Exshaw Formation in the Horn River Basin and Cordova Embayment is equivalent to the organic-rich shales in the upper part of the Besa River Formation in the Liard Basin (Ross and Bustin, 2008). The geologic model is for gas to have been retained within the shales following generation, migration, and structural deformation.

The Middle Devonian–Mississippian TPS was defined in the Liard Basin to include potential gas resources within organic-rich shales of the Besa River Formation (fig. 2). The Liard Basin Besa River Shale Gas AU was defined within this TPS. The Liard Basin is located on the western downdropped side of the regional Bovie Fault, and the Besa River Formation shales have been buried more than several hundred meters compared to the Horn River Basin (National Energy Board, 2016). Deeper burial and high thermal maturity in Besa River Formation shales in the Liard Basin may have adversely affected the quantities of recoverable gas.

Assessment input data are summarized in table 1. Input data for distributions of estimated ultimate recovery and drainage area were based on Chen and Hannigan (2016) and Yousefzadeh and others (2016).

Undiscovered Resources Summary

The USGS quantitatively assessed continuous gas resources in seven AUs in the Horn River Basin, Cordova Embayment, and Liard Basin of the Alberta Basin Province in Canada (table 2). For undiscovered, technically recoverable continuous gas resources, the estimated mean cumulative resources are 135,350 billion cubic feet of gas (BCFG), or 135.4 trillion cubic feet of gas, with an F95–F5 fractile range from 38,096 to 254,252 BCFG and 335 million barrels of natural gas liquids (MMBNGL) with an F95–F5 fractile range from 83 to 710 MMBNGL. Of the potential continuous gas resources of 135,350 BCFG, about 107,036 BCFG—or 79 percent—is estimated to be in the Horn River Basin.
Table 1. Key input data for seven continuous assessment units in the Horn River Basin, Cordova Embayment, and Liard Basin of the Alberta Basin Province in Canada.

[Well drainage area, success ratio, and estimated ultimate recovery are defined partly using U.S. shale-gas analogs. The average estimated ultimate recovery input is the minimum, median, maximum, and calculated mean. Gray shading indicates not applicable. AU, assessment unit; %, percent; EUR, estimated ultimate recovery (per well); BCFG, billion cubic feet of gas; NGL, natural gas liquids; MMBNGL, million barrels of natural gas liquids]

Assessment input data—Continuous AUs	Horn River Basin Evie Shale Gas AU	Horn River Basin Muskwa-Otter Park Shale Gas AU		
Potential production area of AU (acres)	Minimum 1,000	Mode 2,368,000	Maximum 4,736,000	Calculated mean 2,368,333
Average drainage area of wells (acres)	Minimum 80	Mode 120	Maximum 160	Calculated mean 120
Area untested in AU (%)	Minimum 90	Mode 94	Maximum 98	Calculated mean 94
Success ratio (%)	Minimum 40	Mode 60	Maximum 80	Calculated mean 60
Average EUR (BCFG)	Minimum 2	Mode 4	Maximum 6	Calculated mean 4.067
AU probability	Minimum 1.0	Mode 1.0	Maximum 1.0	Calculated mean 1.0

Assessment input data—Continuous AUs	Cordova Embayment Evie Shale Gas AU	Cordova Embayment Muskwa-Otter Park Shale Gas AU		
Potential production area of AU (acres)	Minimum 1,000	Mode 502,000	Maximum 1,004,000	Calculated mean 502,333
Average drainage area of wells (acres)	Minimum 80	Mode 120	Maximum 160	Calculated mean 120
Area untested in AU (%)	Minimum 99	Mode 100	Maximum 100	Calculated mean 99.7
Success ratio (%)	Minimum 10	Mode 50	Maximum 90	Calculated mean 50
Average EUR (BCFG)	Minimum 2	Mode 4	Maximum 6	Calculated mean 4.067
AU probability	Minimum 1.0	Mode 1.0	Maximum 1.0	Calculated mean 1.0

Assessment input data—Continuous AUs	Horn River Basin Exshaw Shale Gas AU	Cordova Embayment Exshaw Shale Gas AU		
Potential production area of AU (acres)	Minimum 1,000	Mode 2,368,000	Maximum 4,736,000	Calculated mean 2,368,333
Average drainage area of wells (acres)	Minimum 80	Mode 120	Maximum 160	Calculated mean 120
Area untested in AU (%)	Minimum 100	Mode 100	Maximum 100	Calculated mean 100
Success ratio (%)	Minimum 10	Mode 50	Maximum 90	Calculated mean 50
Average EUR (BCFG)	Minimum 0.1	Mode 1	Maximum 2	Calculated mean 1.036
AU probability	Minimum 1.0	Mode 0.9	Maximum 1.0	Calculated mean 1.0

Assessment input data—Continuous AUs	Liard Basin Besa River Shale Gas AU			
Potential production area of AU (acres)	Minimum 1,000	Mode 1,836,000	Maximum 3,673,000	Calculated mean 1,836,667
Average drainage area of wells (acres)	Minimum 80	Mode 120	Maximum 160	Calculated mean 120
Area untested in AU (%)	Minimum 100	Mode 100	Maximum 100	Calculated mean 100
Success ratio (%)	Minimum 10	Mode 50	Maximum 90	Calculated mean 50
Average EUR (BCFG)	Minimum 0.1	Mode 1	Maximum 2	Calculated mean 1.036
AU probability	Minimum 1.0	Mode 1.0	Maximum 1.0	Calculated mean 1.0

Table 2. Results for seven continuous assessment units in the Horn River Basin, Cordova Embayment, and Liard Basin of the Alberta Basin Province in Canada.

[Results shown are fully risked estimates. F95 represents a 95-percent chance of at least the amount tabulated; other fractiles are defined similarly. Gray shading indicates not applicable. BCFG, billion cubic feet of gas; NGL, natural gas liquids; MMBNGL, million barrels of natural gas liquids]

Total petroleum systems and assessment units (AUs)	AU probability	Accumulation type	Total undiscovered resources	Gas (BCFG)	NGL (MMB NGL)
Middle–Upper Devonian Total Petroleum System					
Horn River Basin Evie Shale Gas AU	1.0	Gas	F95 13,680	F50 44,144	F5 82,957
Horn River Basin Muskwa-Otter Park Shale Gas AU	1.0	Gas	F95 15,286	F50 49,592	F5 92,273
Cordova Embayment Evie Shale Gas AU	1.0	Gas	F95 2,092	F50 7,842	F5 17,579
Cordova Embayment Muskwa-Otter Park Shale Gas AU	1.0	Gas	F95 2,906	F50 9,519	F5 17,855
Upper Devonian–Mississippian Total Petroleum System					
Horn River Basin Exshaw Shale Gas AU	1.0	Gas	F95 2,302	F50 9,042	F5 21,991
Cordova Embayment Exshaw Shale Gas AU	0.9	Gas	F95 0	F50 1,747	F5 4,546
Middle Devonian–Mississippian Total Petroleum System					
Liard Basin Besa River Shale Gas AU	1.0	Gas	F95 1,830	F50 7,084	F5 17,051
Total undiscovered continuous resources					
