Anionic Phospholipids and the Albino3 Translocase Activate Signal Recognition Particle-Receptor Interaction during Light-harvesting Chlorophyll a/b-binding Protein Targeting*

Received for publication, August 9, 2016, and in revised form, October 14, 2016 Published, JBC Papers in Press, November 28, 2016, DOI 10.1074/jbc.M116.752956

Sowmya Chandrasekar and Shou-ou Shan1

From the Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125

Edited by Thomas Söllner

The universally conserved signal recognition particle (SRP) co-translationally delivers newly synthesized membrane and secretory proteins to the target cellular membrane. The only exception is found in the chloroplast of green plants, where the chloroplast SRP (cpSRP) post-translationally targets light-harvesting chlorophyll a/b-binding proteins (LHCP) to the thylakoid membrane. The mechanism and regulation of this post-translational mode of targeting by cpSRP remain unclear. Using biochemical and biophysical methods, here we show that anionic phospholipids activate the cpSRP receptor cpFtsY to promote rapid and stable cpSRP54-cpFtsY complex assembly. Furthermore, the stromal domain of the Alb3 translocase binds with high affinity and regulates GTP hydrolysis in the cpSRP54-cpFtsY complex, suggesting that cpFtsY is primarily responsible for initial recruitment of the targeting complex to Alb3. These results suggest a new model for the sequential recruitment, remodeling, and unloading of the targeting complex at membrane translocate sites in the post-translational cpSRP pathway.

Localization of proteins to their correct cellular destinations is essential for proper cellular function. The universally conserved signal recognition particle (SRP)2 is responsible for co-translationally targeting newly synthesized membrane and secretory proteins to the eukaryotic endoplasmic reticulum or the bacterial plasma membrane (1–3). The conserved functional core of SRP consists of a 54-kDa SRP54 protein and an SRP RNA. SRP54 contains an N-terminal N-domain and a GTP-binding G-domain that together form a structural and functional unit termed the NG-domain. SRP54 also contains a methionine-rich M-domain, which binds to signal sequences on nascent proteins as they emerge from the ribosome (4–6). Upon cargo recognition, SRP bound to the translating ribosome is brought to the membrane via the GTP-dependent interaction of its NG-domain with a highly homologous NG-domain in the SRP receptor (SR) (7, 8). At the membrane, the SRP-SR complex unloads its cargo to the SecYEG or Sec61p translocase, which mediates the integration or translocation of the nascent protein across the membrane (9, 10). In addition, GTP hydrolysis is activated in the SRP-SR complex to drive their disassembly, allowing SRP and SR to enter the next round of targeting (11–13).

Nevertheless, a large portion of membrane proteins cannot use the co-translational SRP pathway and instead must use post-translational modes of targeting (14, 15). An example is found in the chloroplast of green plants, where a chloroplast SRP (cpSRP) pathway post-translationally targets the light-harvesting chlorophyll a/b-binding family of proteins (LHCPs) to the thylakoid membrane (16, 17). LHCPs are nuclearly encoded and initially synthesized in the cytosol. Upon import into the chloroplast stroma, fully synthesized LHCPs are recognized by and forms a soluble “transit complex” with cpSRP. The cpSRP pathway preserves the chloroplast homologues of SRP54 and SR (cpSRP54 and cpFtsY, respectively), whose GTP-dependent interaction mediates the delivery of LHCPs to the thylakoid membrane (18, 19). At the membrane, LHCPs are unloaded onto the Alb3 translocase, which mediates the insertion of LHCPs into the thylakoid membrane (20–24). LHCPs are the most abundant membrane proteins on earth and comprise over 30% of the proteins in the thylakoid membrane. Their sheer abundance and crucial role in energy generation of green plants demand a highly efficient and robust targeting machinery and make cpSRP a major protein-targeting pathway in nature.

Besides the universally conserved SRP54 and SR GTpases, cpSRP provides a notable exception to the classic cytosolic SRP pathway. The otherwise universally conserved SRP RNA is no longer present; in our previous work and our accompanying paper (51), we described how the M-domain of cpSRP54 replaces the SRP RNA to enable efficient interaction between the cpSRP54 and cpFtsY GTpases (25–29). In addition, the transition to a post-translational mode of targeting necessitated the evolution of a novel SRP subunit, cpSRP43, which binds with high affinity and specificity to LHCPs and provides an effective chaperone that prevents these multipass integral membrane proteins from aggregation (30, 31). cpSRP43 con-

1 To whom correspondence should be addressed. Tel.: 626-395-3879; Fax: 626-568-9430; E-mail: sshan@caltech.edu.

2 The abbreviations used are: SRP, signal recognition particle; SR, SRP receptor; cp, chloroplast; LHCP, light-harvesting chlorophyll a/b-binding protein; DPCM, N-(7-dimethylamino-4-methylcoumarin-3-ylo)-maleimide; acrylo-dan, 6-acryloyl-2-dimethylaminonaphthalene; GppNHp, guanosine 5’-5-hydroxy-imido|triphosphate; PG, phosphorylcerol; RNC, ribosome-nascent chain complex; CTD, C-terminal domain; SQDG, sulfoquinovosydlacylglycerol; DGDG, digalactosylacylglycerol.

© 2017 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A.
Activation of SRP-Receptor Interaction during LHCP Targeting

tains a substrate binding domain that recognizes LHCPs and two chromodomains, CD2 and CD3 (32, 33). CD2 binds the C-terminal tail of the cpSRP54 M-domain to form the cpSRP, and CD3 provides an interaction site with the Alb3 translocase (see below) (34, 35).

Studies of the bacterial SRP showed that to achieve efficient and accurate protein localization, the SRP and SR GTPases must be actively regulated by their spatial and temporal cues. Kinetic analyses of these GTPases from bacteria and chloroplast showed that, in the absence of effector molecules, SRP and SR undergo GTPase cycles that are not conducive to efficient protein targeting. Complex assembly between the SRP and SR GTPases in both systems is extremely slow, on the order of 10^2–10^3 M$^{-1}$ s$^{-1}$ (this study and Refs. 27, 28, 36), and is insufficient to support the demands of protein targeting in vivo. Once a stable SRP-SR GTPase complex is formed, GTP hydrolysis occurs at a rate constant of 30–50 min$^{-1}$ (27, 36), giving the targeting complex a lifetime of 1–2 s$^{-1}$ before its disassembly. If recruitment of the translocase and unloading of cargo protein onto the translocase were not completed before GTP hydrolysis, abortive reactions would ensue. With bacterial SRP, we have shown that the ribosome-nascent chain complex (RNC) extensively regulates the SRP-FtsY GTPase cycle to overcome these barriers. RNCs bearing SRP-dependent substrate proteases accelerate SRP-FtsY complex assembly 10^2–10^3-fold, thus ensuring rapid cargo delivery to the membrane (37). RNC also delays GTPase activation in the SRP-FtsY complex to minimize abortive reactions (38). These cargo-induced allosteric regulations are critical for the efficiency and fidelity of the co-translational SRP pathway. This raises the following question. In the absence of RNC, what are the biological cues that regulate the interaction, activity, and timing of the chloroplast SRP and SR GTPases during LHCP targeting?

Previous work showed that bacterial FtsY preferentially binds anionic phospholipids, such as phosphoglycerol (PG) and cardiolipin, using an amphiphilic lipid-binding helix at the very N terminus of its N-domain (39, 40). Interaction of PG and cardiolipin with this motif stimulates complex assembly between bacterial SRP and SR by pre-organizing SR into a more active conformation (41). This lipid-binding motif is conserved in cpFtsY and is necessary for targeting LHCP to the thylakoid membrane (42). Although the composition of the thylakoid membrane is different from the bacterial plasma membrane, it also contains ~25% of anionic phospholipids such as PG and sulfoglycolipid (SQDG). Total soybean extract liposomes were observed to enhance the basal GTPase activity of cpFtsY by 2-fold (42). Nevertheless, these previous experiments were carried out under conditions that do not detect the interaction between the cpSRP54 and cpFtsY GTPases. The roles of the target membrane in the cpSRP-cpFtsY GTPase cycle remain elusive.

The mechanism by which the targeting complex is recruited to the Alb3 translocase on the thylakoid membrane is also incompletely understood. Alb3 belongs to the YidC/Oxa/Alb3 family of membrane protein insertases required for the proper biogenesis of multiple membrane proteins (22, 43). Alb3 contains five transmembrane helices and a long unstructured C-terminal stromal domain (Alb3-CTD). Full-length Alb3 expresses poorly and is prone to proteolysis (44); nevertheless, a direct interaction between conserved basic motifs on Alb3-CTD and CD3 of cpSRP43 has been demonstrated (20, 35, 44–46). This suggests that Alb3-CTD can contact interaction partners in the absence of its transmembrane domains. Nevertheless, this interaction is fairly weak, with a dissociation constant of 11–17 μM, and it is further weakened by the binding of cpSRP54 to cpSRP43 (35, 47). This and the predominantly stromal localization of cpSRP43 (42) raise questions as to whether the cpSRP43-Alb3 interaction is primarily responsible for recruiting the targeting complex to the Alb3 translocase. Whether and how Alb3 also interacts with and regulates the cpSRP54 or cpFtsY GTPases also remain unclear.

In this work, we address these questions and test the role of phospholipids and Alb3 in regulating the cpSRP54/cpFtsY GTPase cycle. Using biochemical, biophysical, and enzymatic assays, we showed that anionic phospholipids activate cpFtsY for efficient interaction with cpSRP54 and stabilize the cpSRP54/cpFtsY complex. Alb3-CTD binds with submicromolar affinity to the cpSRP54/cpFtsY complex and regulates GTP hydrolysis in this complex. These results demonstrate extensive spatial regulation of the SRP and SR GTPases in the cpSRP system and suggest a new model for the recruitment of the targeting complex to the membrane translocase during LHCP targeting.

Results

Anionic Phospholipids Stimulate cpSRP54-cpFtsY Complex Assembly—To test whether cpFtsY is activated by anionic phospholipids to better interact with cpSRP, we measured the stimulated GTPase reaction between cpSRP54 and cpFtsY. In this well-established assay, the reaction is rate-limited by complex formation between cpSRP54 and cpFtsY at sub-saturating cpFtsY concentrations (27). Hence, the value of k_{cat}/K_m in this reaction reflects k_{cat}, the rate constant for cpSRP54-cpFtsY complex assembly (27). Interestingly, the value of k_{cat}/K_m is increased 150-fold in the presence of PG liposomes (Fig. 1A). This suggests that, analogous to the bacterial SRP system, complex assembly between the chloroplast SRP and SR GTPases is strongly enhanced by anionic phospholipids.

To test how strongly FtsY interacts with PG, we titrated PG liposomes in the stimulated GTPase reaction (Fig. 1B). Reactions were carried out at sub-saturating FtsY concentrations so that the observed rate constant (k_{obsd}) is rate-limited by cpSRP54-cpFtsY complex assembly. The PG concentration required to reach half-maximal stimulation is 0.09 mg/ml for cpFtsY (Fig. 1B). In comparison, 0.5–1 mg/ml PG was required to attain half-maximal stimulation in the analogous reaction with Escherichia coli SRP and FtsY (41). This suggests that cpFtsY binds anionic phospholipids more tightly than its bacterial homolog.

To test whether anionic phospholipids also enhance the stability of the cpSRP54-cpFtsY complex, we carried out equilibrium titrations for formation of the cpSRP54-cpFtsY complex in the absence and presence of PG. Complex formation in the absence of PG was monitored by Förster resonance energy transfer (FRET) between donor N-(7-dimethylamino-4-methylcoumarin-3-yl)maleimide (DADM) labeled at cpFtsY...
Phospholipids stimulate cpSRP54-cpFtsY complex formation. A, representative data for the stimulated GTP hydrolysis reaction between cpSRP54 and cpFtsY, measured in the presence (○) and absence (○) of PG liposomes as described under “Experimental Procedures.” Reactions contained 0.1 μM cpSRP54 and the indicated amounts of cpFtsY, 100 μM GTP, and 0.1 mg/ml plant PG liposomes where applicable. The data were fit to Equation 1 and gave k_{obsd}/K_v values of 9×10^{-10} and $1.25 \times 10^{-9} \text{s}^{-1}$ in the absence and presence of PG, respectively, and a k_{cat} value of 100 min$^{-1}$ for the reaction in the presence of PG. The k_{cat} value for the reaction in the absence of PG could not be determined, and a low limit of 10 min$^{-1}$ (k_{out} at the highest [cpFtsY] tested) is reported. Error bars indicate S.E. B, stimulated GTP hydrolysis reaction was measured as a function of PG concentration. The data were fit to Equation 2 and yielded a K_v value of 0.09 mg/ml for PG liposomes. Error bars indicate S.E. C, equilibrium titrations for cpSRP54-cpFtsY complex formation in the presence (○) and absence (○) of PG, measured using fluorescence assays as described under “Experimental Procedures.” Titrations in the presence of PG used 20 nm DACM-labeled cpFtsY, indicated concentrations of unlabeled cpSRP54, and 2 mM GTP. The data were fit to Equation 5 and gave a K_v value of 130 nM. Titrations in the absence of PG were measured by FRET using 50 nm DACM-labeled cpFtsY, indicated concentrations of BODIPY-labeled cpSRP54, and 2 mM GTP. The data were fit to Equation 6 assuming a K_m value of 130 nM. Titrations in the absence of PG could not be determined, and a low limit of 10 mm$^{-1}$ (k_{out} at the highest [cpFtsY] tested) is reported. Error bars indicate S.E.

FIGURE 2. PG-induced stimulation of cpSRP54-cpFtsY assembly requires the N-terminal region of cpFtsY and the M-domain of cpSRP54. A, sequences for the N-terminal region of wild type and N-terminal deletion mutants of cpFtsY. The amphiphilic lipid-binding motif of cpFtsY is highlighted in green. B, representative data for the stimulated GTP hydrolysis reaction of wild type cpSRP54 with cpFtsY (black), cpSRP54-NG with cpFtsY (red), and cpSRP54 with cpFtsY-NG (green). The reactions used 0.1 μM cpSRP54 or cpSRP54-NG, 0.3 μM cpFtsY or cpFtsY-NG, and indicated amounts of PG. The data were fit to Equation 2. C, apparent rate constants for cpSRP54-cpFtsY complex formation for wild type and N-terminal deletion mutants of cpFtsY. Stimulated GTPase reactions were measured using 0.1 mg/ml PG, 0.1 μM cpSRP54, 0.3 μM cpFtsY, and 100 μM GTP.

Results demonstrate that anionic phospholipids strongly accelerate and stabilize the formation of the cpSRP54-cpFtsY complex.

cpSRP54 M-domain and N-terminal Region of cpFtsY Are Required for Lipid-mediated Stimulation—In both bacterial and chloroplast FtsYs, an important lipid-binding motif has been mapped to an amphiphilic helix at the N terminus of the NG-domain (Fig. 2A, green residues (40–42)). Importantly, one phenylalanine in E. coli FtsY and two phenylalanines in cpFtsY preceding this motif play critical roles in inducing helix formation in this motif and are hence required for membrane binding of these receptors (40, 42, 48). Consistent with these results, we found that truncation of the N-terminal residues of cpFtsY (to yield cpFtsY-NG) abolished the PG-induced stimulation of GTPase assembly (Fig. 2A, green). To further understand the role of the N-terminal residues in regulating the cpSRP54-cpFtsY interaction, we sequentially deleted pairs of residues N-terminal to the NG-domain (Fig. 2A). Most of the deletion mutants exhibited reaction rates similar to full-length cpFtsY in (Cys-321) and acceptor (BODIPY-fluorescein-N-(2 aminoethyl)-maleimide) labeled at cpSRP54(Cys-234) (Fig. 1C, open circles) (29). Complex formation in the presence of PG was monitored by the fluorescence enhancement of DACM labeled at cpFtsY(Cys-321) (Fig. 1C, closed circles). In the presence of GTP, the equilibrium dissociation constant (K_d) for cpSRP54-cpFtsY binding was 130 nM in the presence of PG, ~20-fold lower than that in the absence of PG (Fig. 1C). Together, these results demonstrate that anionic phospholipids strongly accelerate and stabilize the formation of the cpSRP54-cpFtsY complex.
Activation of SRP-Receptor Interaction during LHCP Targeting

the presence of PG (Fig. 2C). Only when the two phenylalanine residues immediately preceding the NG-domain were deleted did we observe a significant reduction in reaction rate (Fig. 2C). Thus, cpFtsY(NG+2) is the minimal construct required for lipid-induced stimulation of cpSRP54-cpFtsY assembly. These mutational results closely mirror those observed in the binding of cpFtsY to thylakoid membrane or liposomes (42), indicating that the PG-induced activation of the cpSRP54-cpFtsY complex assembly is mediated by this lipid interaction motif of cpFtsY.

As described in the accompanying paper (51), the cpSRP54 M-domain provides a platform to coordinate rapid and stable complex assembly between cpSRP54 and cpFtsY, thus replacing the otherwise conserved SRP RNA (28). Interestingly, deletion of the cpSRP54 M-domain abolished the stimulatory effect of PG on complex assembly (Fig. 2B, red). Thus, both the M-domain of cpSRP54 and the lipid-binding helix of cpFtsY are required for PG-induced stimulation of complex assembly between cpSRP54 and cpFtsY.

Complex Formation with cpSRP54 Enhances Lipid Binding of cpFtsY—If anionic phospholipids enhance the stability of the cpSRP54-cpFtsY complex, then reciprocally, complex formation with cpSRP54 should enhance the lipid binding of cpFtsY. To test this prediction, we semi-quantitatively measured the binding of cpFtsY to PG liposomes using density gradient lipid flotation (40, 41). Interestingly, only 60% of free cpFtsY floated with liposomes to the top of the gradient (Fig. 3A). Consistent with previous work and the results in Fig. 2, cpFtsY-NG did not float with PG liposomes (Fig. 3B). In contrast, when a stable cpFtsY-cpSRP54 complex is formed in the presence of the non-hydrolyzable GTP analog, GppNHp, over 90% of the complex floated with lipids to the top of the gradient (Fig. 3C). Consistent with the results in Fig. 2, the cpSRP54-NG-cpFtsY complex lacking the cpSRP54 M-domain showed much less enhancement in lipid binding (Fig. 3D). These results provide independent evidence that the interaction of cpFtsY with phospholipid membranes and with cpSRP54 enhance one another; further, the M-domain of cpSRP54 plays an important role in this cooperativity.

In addition, we tested the effect of another anionic phospholipid, SQDG, as well as a neutral lipid, digalactosyldiacylglycerol (DGDG), that are found in the thylakoid membrane of chloroplasts. Analogous to observations with PG, the cpFtsY-cpSRP54 complex exhibited enhanced binding to SQDG compared with free cpFtsY (Fig. 3, E and F), although cpFtsY by itself binds less strongly to SQDG than to PG (Fig. 3, A versus E). Neither free cpFtsY nor the cpSRP54-cpFtsY complex floated with the neutral lipid DGDG (Fig. 3, G and H). These results strongly suggest that the membrane interactions of cpFtsY and the cpSRP54-cpFtsY complex are specific to anionic phospholipids.

Stromal Domain of Alb3 Translocase Regulates GTP Hydrolysis—Alb3-CTD directly binds the cpSRP43 subunit of cpSRP (20, 44, 45). To better understand the role of Alb3-CTD, we tested whether it can regulate the GTPase cycle of cpSRP54 and cpFtsY. To this end, we carried out the stimulated GTP hydrolysis reaction of cpSRP54 with cpFtsY at saturating cpFtsY and GTP concentrations, such that GTP hydrolysis from the cpSRP54-cpFtsY complex (kcat) was monitored. In the presence of PG liposomes, we found that Alb3-CTD strongly inhibited the GTP hydrolysis reaction from this complex, reducing the value of kcat from 35 to 1.0 min⁻¹ (Fig. 4A). The apparent inhibition constant (Ki, app) was 0.47 μM (Fig. 4A), suggesting that Alb3-CTD binds strongly to the GTP-cpSRP54-cpFtsY complex.

To test whether Alb3 also affects assembly of the GTP-cpSRP54-cpFtsY complex, we performed equilibrium titrations for this complex in the absence and presence of Alb3-CTD. Complex formation was measured by using the environmentally sensitive increase in the fluorescence of acrylodan labeled-cpSRP54(Cys-234) upon binding cpFtsY, as described earlier (29). The binding affinities of cpSRP54 for cpFtsY were the same, within error, with and without Alb3-CTD present (Fig. 4B). In contrast, Alb3-CTD did not affect the basal GTPase activity of free cpSRP54 (Fig. 4C) and only reduced the basal GTPase reaction of cpFtsY by 4-fold in the presence of liposomes (Fig. 4D). The rate constants for the basal GTPase reactions of free cpSRP54 and cpFtsY were over 100-fold slower and thus cannot significantly contribute to the stimulated GTPase reaction of the cpSRP54-cpFtsY complex (cf. Fig. 4, C and D, versus A). Thus, Alb3-CTD inhibits the activated GTP hydrolysis reaction after a stable cpSRP54-cpFtsY complex is formed.

Molecular Requirements for the Regulatory Effect of Alb3—To understand the mechanism by which Alb3-CTD delays GTP hydrolysis in the cpSRP54-cpFtsY complex, we first tested the molecular requirements for this effect. To ask whether the cpSRP54 M-domain was required for the Alb3-mediated delay of GTP hydrolysis, we tested the effect of Alb3-CTD on GTP hydrolysis from the cpSRP54-NG-cpFtsY complex (which lacks the cpSRP54 M-domain). No Alb3CTD-induced changes in GTP hydrolysis rates were observed with cpSRP54-NG (Fig. 5A). Analogously, the effect of Alb3-CTD on GTP hydrolysis of the cpSRP54-cpFtsY complex was abolished in the absence of
Activation of SRP-Receptor Interaction during LHCP Targeting

PG liposomes (Fig. 5B). In contrast, the same inhibitory effect of Alb3-CTD on GTPase activation was observed with and without cpSRP43 present (Figs. 4A and 5C). Together, these results demonstrate that the regulatory effect of Alb3 is specific and only occurs in a cpSRP54–cpFtsY complex formed in the presence of anionic phospholipids and in which the cpSRP54 M-domain is properly positioned near the FtsY GTPase site, but is independent of cpSRP43.

We further asked whether specific interaction motifs in Alb3-CTD mediate its interaction with and regulation of the cpSRP54–cpFtsY complex. Although Alb3-CTD is predicted to be largely unstructured, previous analyses identified several conserved motifs in this domain. Among these, motifs II and IV are enriched in basic residues and have been implicated in binding with cpSRP43 (35, 45). To test whether these motifs are involved in the interaction with the cpSRP54–cpFtsY complex, we mutated conserved lysine residues in motif II (Lys-367, Lys-377) or motif IV (Lys-444, Lys-445) to aspartate residues. We found that anionic phospholipids, specifically PG, induce rapid and stable cpSRP54–cpFtsY complex assembly. On the one hand, this lipid-mediated stimulation of GTPase assembly is analogous to observations in the bacterial SRP pathway, providing a physiological mechanism for efficient protein targeting.

Discussion

Accurate timing of complex assembly, GTPase activation, and hydrolysis of the SRP and SR GTPases is crucial for efficient protein targeting. Previous studies of the bacterial SRP pathway showed that RNCs bearing SRP-dependent substrate proteins extensively regulate the SRP-SR GTPase cycle, by accelerating SRP-SR complex assembly while also delaying their GTP activation in the complex (38). These cargo-induced allosteric regulations are critical for enhancing the efficiency and fidelity of the co-translational SRP pathway (37, 49). Here, we address whether and how biological cues regulate the GTPase cycles of cpSRP and cpFtsY during the post-translational targeting of LHCPs. Our results strongly suggest that the GTPase cycle of cpSRP54 and cpFtsY is extensively driven by spatial cues from the target membrane and the Alb3 translocase.

We found that anionic phospholipids, specifically PG, induce rapid and stable cpSRP54–cpFtsY complex assembly. On the one hand, this lipid-mediated stimulation of GTPase assembly is analogous to observations in the bacterial SRP pathway,
where anionic phospholipids such as PG and cardiolipin also activate FtsY for efficient complex assembly with SRP (41). The lipid-binding motifs that mediate this stimulation, located at the N terminus of the FtsY or cpFtsY NG-domain, are also highly conserved between the bacterial and chloroplast SRP receptors. On the other hand, both lipid flotation and GTPase assays here showed that free cpFtsY binds PG liposomes much more strongly than its bacterial homolog. Previous work also showed that although a large fraction of bacterial FtsY was found in the cytosol in cell fractionation experiments (50), cpFtsY predominantly sediments with thylakoid membrane (42). These observations suggest that cpFtsY associates with its target membrane with much higher affinity than bacterial FtsY.

We speculate that a large fraction of the cpFtsY molecules are bound at the thylakoid membrane, where it is pre-organized into an active conformation that can efficiently interact with cpSRP54 and thus ensure rapid delivery of cargo proteins to the thylakoid membrane.

Once cpSRP54 and cpFtsY assemble a stable complex with one another, the targeting complex must be recruited to the Alb3 translocase, which mediates the insertion of LHCPs into the thylakoid membrane. Previously, the observations that cpSRP43 can bind the stromal domain of Alb3 have led to models in which the cpSRP43-Alb3 interaction localizes the targeting complex to the Alb3 translocase (44, 45). However, the low affinity of this interaction (K_D values of 11–17 μM) and the predominantly stromal localization of cpSRP43 render such a recruitment mechanism highly inefficient (35, 42, 45). The observation here that Alb3-CTD binds with high affinity and efficiency to the G-domain of cpSRP54 in the LHCP-cpSRP complex, bringing the targeting complex to the vicinity of Alb3. Step 3, interaction of Alb3-CTD with the GTPase complex enhances the local effective concentration of cpSRP43, enabling it to also form contacts with the second Alb3-CTD in the Alb3 dimer. Alb3-CTD triggers the selective release of the transmembrane domains of LHCP from cpSRP43 (35), initiating its insertion. Alb3-CTD also delays GTP hydrolysis that would drive cpSRP54-cpFtsY complex disassembly (3), giving the targeting and translocation complexes a prolonged time window for substrate unloading and insertion.

As shown in previous work and in the preceding paper (51), the M-domain of cpSRP54 interacts with conserved basic residues in the cpFtsY G-domain; this interaction is required for rapid assembly of a stable cpSRP54-cpFtsY complex that was previously observed only when an artificial stimulant, Nikkol, was used (28). Intriguingly, here we found that both the liposome-induced stimulation of the cpSRP54-cpFtsY complex assembly and the Alb3-mediated regulation of GTP hydrolysis in this complex also require the M-domain of cpSRP54. These results suggest that the phospholipid membrane and the Alb3 translocase selectively recognize the same active conformation of the GTPase complex, in which the cpSRP54 M-domain is properly positioned at the cpFtsY G-domain.

Mutational analysis of conserved basic residues in motifs II and IV of Alb3-CTD showed that these motifs, especially motif IV, are important for the ability of Alb3 to bind and/or regulate the cpSRP-cpFtsY GTPase complex. These same motifs also mediate the interaction of Alb3-CTD with cpSRP43 (35, 44, 45). A potential resolution to these observations is provided by the work of Dunschede et al. (44), which showed that full-length Alb3 forms dimers in blue native PAGE. The bacterial homolog of Alb3, YidC, has also been observed to form dimers (52–55). Thus, a plausible model that accommodates the previously identified Alb3-cpSRP43 interaction and the Alb3-GTPase interaction found here is that a dimeric Alb3 complex in the thylakoid membrane can use two CTDs to interact with both cpFtsY and cpSRP43.

Collectively, our results suggest a revised model for the targeting of LHCP mediated by the post-translational cpSRP pathway (Fig. 6). A productive round of targeting likely occurs with cpFtsY molecules that are bound at the thylakoid membrane and can interact with high affinity with Alb3-CTD (Fig. 6, step 1). Phospholipids promote an active conformation of cpFtsY that enables its rapid and stable assembly with cpSRP54, allowing the recruitment and anchoring of the targeting complex at
the translocase site (Fig. 6, step 2). This increases the local effective concentration of cpSRP43 and allows it to establish interactions with the other CTD in the dimeric Alb3 complex (Fig. 6, step 3). As shown recently, interaction with Alb3-CTD remodels the conformation of cpSRP43 (35); this triggers the selective release of the transmembrane domains of LHCP from cpSRP43 and potentially initiates their insertion, although a loop sequence of LHCP remains bound to cpSRP43 (Fig. 6, step 3) (35). Alb3-induced delay in GTP hydrolysis of the cpSRP54-cpFtsY complex prevents the premature disassembly of the targeting complex during this concerted substrate handover and insertion process and thus minimizes abortive targeting reactions.

In contrast to the extensive regulatory effects of phospholipid membrane and the Alb3 translocase, experiments to probe for regulatory effects of cpSRP43 and the cpSRP43-LHCP complex on the cpSRP54/cpFtsY GTPase cycle have largely yielded negative results. The most pronounced effect reported thus far is a 2-fold enhancement of GTPase rate by a truncated mutant of cpSRP43 (42). This is in contrast to the bacterial SRP pathway, in which the cargo extensively regulates complex assembly and GTPase activation between the SRP and SR GTPases. It is attractive to speculate that this difference is related to the greater challenge in achieving fidelity in the co-translational cytosolic SRP pathway. The use of the cargo protein to exert allosteric regulations on the GTPase cycle allows the latter to also impose fidelity checkpoints that discriminate against incorrect cargos and hence improve the specificity of substrate selection by the co-translational SRP (37, 49, 56). In contrast, specific substrate recognition is more easily achieved by the cpSRP43 chaperone in the cpSRP pathway, which allows this pathway to bypass these checkpoints. Continued efforts to explore the similarities and differences between the different SRP systems will allow us to gain a deeper understanding of the mechanism, regulation, and evolution of the novel class of GTPases represented by SRP and the SRP receptor.

Experimental Procedures

Protein Expression and Purification—Wild type cpSRP54 and cpFtsY from *Arabidopsis thaliana* were overexpressed and purified as described previously (29). N-terminal deletion mutants of cpFtsY and cpSRP54-NG were constructed using the QuikChange mutagenesis protocol following the manufacturer’s instructions (Agilent Technologies) and were expressed and purified as for wild type proteins. Residues 339–462 of Alb3 (Alb3-CTD) were cloned into pET28b (Novagen) and potentially initiates their insertion, although a loop sequence of LHCP remains bound to cpSRP43 (Fig. 6, step 3) (35). Alb3-induced delay in GTP hydrolysis of the cpSRP54-cpFtsY complex prevents the premature disassembly of the targeting complex during this concerted substrate handover and insertion process and thus minimizes abortive targeting reactions.

in which k_{cat} is the rate constant at saturating cpFtsY concentrations, and K_m is the concentration of cpFtsY required to reach the half-maximal rate.

Effects of PG on the stimulated GTPase reaction were measured at sub-saturating concentrations of cpSRP54 (0.1 μM) and cpFtsY (≤0.3 μM), at which the observed reaction is rate-limited by complex assembly. The PG concentration dependence of the observed rate constants (k_{obsd}) were fit to Equation 2,

$$k_{obsd} = k_{max} \times \frac{[PG]}{K_{1/2} + [PG]}$$

in which k_{max} is the maximal rate constant at saturating PG concentration, and $K_{1/2}$ is the PG concentration required to reach the half-maximal rate.

Basal GTPase reactions of free cpSRP54 or cpFtsY were measured under single turnover conditions with trace [γ-32P]GTP and protein in excess over GTP, as described previously (36). The protein concentration dependence of observed rate constants (k_{obsd}) were fit to Equation 3,

$$k_{obsd} = k_{max} \times \frac{[protein]}{K_{1/2} + [protein]}$$

in which k_{max} is the maximal rate constant at saturating protein concentrations, and $K_{1/2}$ is the protein concentration required to reach the half-maximal rate.

The Alb3-CTD concentration dependence of the observed GTPase rate constant ($k_{cat,obsd}$) was fit to Equation 4,

$$k_{cat,obsd} = k_1 + (k_2 - k_1) \times \frac{[G] + [A] + K_1 - \sqrt{[G] + [A] + K_1^2 - 4[A][G]}}{2[G]}$$

in which k_1 is the GTPase rate constant in the absence of Alb3-CTD; k_2 is the GTPase rate constant with Alb3-CTD bound to the GTPase complex, [G] and [A] denote the initial concentra-
tions of the cpSRP54-cpFtsY complex and Alb3-CTD, respectively, and K_i is the inhibition constant for Alb3-CTD.

Fluorescence Measurements—Single cysteine mutants of cpSRP54 and cpFtsY were labeled and purified as described previously (29). Labeling efficiency was typically >80% for all dyes, with <10% background. All fluorescence measurements were performed at 25 °C in assay buffer (50 mM KHEPES (pH 7.5), 150 mM KOAc, 2 mM Mg(OAc)$_2$, 10% glycerol) on a FluoroLog 3-22 spectrofluorometer (Jobin Yvon). To form the GDP-bound cpSRP54-cpFtsY complex, 2 mM GTP (Sigma) was used; GDP released during the course of the reaction was minimal, as explained previously (29). FRET and fluorescence measurements based on DACM-labeled cpFtsY used an excitation wavelength of 380 nm and an emission wavelength of 450 nm. Fluorescence measurements based on acrylodan-labeled cpSRP54 were measured using an excitation wavelength of 370 nm and an emission wavelength of 450 nm.

Equilibrium titrations for cpSRP54-cpFtsY complex formation in the presence of plant PG liposomes were carried out using fluorescence enhancement of DACM labeled at cpFtsY Cys-321 upon binding unlabeled cpSRP54. The cpSRP54 concentration dependence of observed fluorescence change (ΔF_{obsd}) was fit to Equation 5,

$$\Delta F_{\text{obsd}} = \Delta F \times \left(\frac{[Y] + [54] + K_d}{2[Y]} \right) - \sqrt{\left(\frac{[54]}{2[Y]} \right)^2 + \frac{[Y][54]}{2[Y]^2}}$$

(Eq. 5)

in which Y is cpFtsY; 54 is cpSRP54; ΔF is the fluorescence change at saturating cpSRP54 concentrations; and K_d is the equilibrium dissociation constant of the complex.

Titrations in the absence of PG were carried out using FRET between DACM labeled at cpFtsY Cys-321 and BODIPY labeled at cpSRP54 Cys-234. The FRET efficiency (E) was calculated as described previously (29, 57). The cpSRP54 concentration dependence of observed FRET (E_{obsd}) was fit to Equation 6,

$$E_{\text{obsd}} = E_1 \times \frac{[\text{cpSRP54}]}{K_d + [\text{cpSRP54}]}$$

(Eq. 6)

in which E_1 is the FRET value with saturating protein and K_d is the equilibrium dissociation constant of the complex.

Equilibrium titrations for formation of the cpSRP54-cpFtsY complex in the absence and presence of Alb3-CTD were carried out using fluorescence enhancement of acrylodan labeled at cpSRP54 Cys-234 upon binding cpFtsY. The cpFtsY concentration dependence of observed fluorescence change (ΔF_{obsd}) was fit to Equation 5, except that the term [cpFtsY] in the denominator is replaced by [cpSRP54].

Lipid Flotation Assays—Flotation assays were performed as described previously (41). Briefly, cpSRP54 and cpFtsY at 20 μm were incubated for 2 h at room temperature in the presence of 1 mM GppNHP to enable complex formation. Freshly extruded liposomes were added to proteins or pre-formed complexes and further incubated at 37 °C for 30 min. The sample was then loaded on a 20–40% OptiPrep TM (Sigma) gradient and ultracentrifuged at 42,000 rpm in a Beckman SW28 55 rotor for 3 h. Immediately after centrifugation, 600-μl fractions were collected, precipitated with 15% trichloroacetic acid (Sigma), and analyzed by SDS-PAGE. The data were quantified using the ImageJ program (58).

Author Contributions—S. S. conceived and coordinated the study and wrote the paper. S. C. designed, performed, and analyzed the experiments and wrote the paper. All authors reviewed the results and approved the final version of the manuscript.

Acknowledgment—We thank members of the Shan laboratory for comments on the manuscript.

References
1. Akopian, D., Shen, K., Zhang, X., and Shan, S. O. (2013) Signal recognition particle: an essential protein-targeting machine. Annu. Rev. Biochem. 82, 693–721
2. Koch, H. G., Moser, M., and Müller, M. (2003) Signal recognition particle-dependent protein targeting, universal to all kingdoms of life. Rev. Physiol. Biochem. Pharmacol. 146, 55–94
3. Walter, P., and Johnson, A. E. (1994) Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu. Rev. Cell Biol. 10, 87–119
4. Zopf, D., Bernstein, H. D., Johnson, A. E., and Walter, P. (1996) The methionine-rich domain of the 54 kd protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence. EMBO J. 9, 4511–4517
5. Zopf, D., Bernstein, H. D., and Walter, P. (1993) GTPase domain of the 54-kD subunit of the mammalian signal recognition particle is required for protein translocation but not for signal sequence binding. J. Cell Biol. 120, 1113–1121
6. Keenan, R. J., Freydmann, D. M., Stroud, R. M., and Walter, P. (2001) The signal recognition particle. Annu. Rev. Biochem. 70, 755–775
7. Bourne, H. R., Sanders, D. A., and McCormick, F. (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349, 117–127
8. Halic, M., Blau, M., Becker, T., Mielke, T., Pool, M. R., Wild, K., Sinning, I., and Beckmann, R. (2006) Following the signal sequence from ribosomal tunnel exit to signal recognition particle. Nature 444, 507–511
9. Angelini, S., Deitermann, S., and Koch, H. G. (2005) FtsY, the bacterial signal-recognition particle receptor, interacts functionally and physically with the SecYEG translocon. EMBO Rep. 6, 476–481
10. Mandon, E. C., Trueman, S. F., and Gilmore, R. (2009) Translocation of proteins through the Sec61 and SecYEG channels. Curr. Opin. Cell Biol. 21, 501–507
11. Connolly, T., and Gilmore, R. (1993) GTP hydrolysis by complexes of the signal recognition particle and the signal recognition particle receptor. J. Cell Biol. 123, 799–807
12. Connolly, T., and Gilmore, R. (1989) The signal recognition particle receptor mediates the GTP-dependent displacement of SRP from the signal sequence of the nascent polypeptide. Cell 57, 599–610
13. Egea, P. F., Shan, S. O., Napetschnig, J., Savage, D. F., Walter, P., and Stroud, R. M. (2004) Substrate twinning activates the signal recognition particle and its receptor. Nature 427, 215–221
14. Schuennemann, D., Gupta, S., Persello-Cartieaux, F., Klimyk, V. I., Jones, J. D., Nussaume, L., and Hoffmann, N. E. (1998) A novel signal recognition particle targets light-harvesting proteins to the thylakoid membranes. Proc. Natl. Acad. Sci. U.S.A. 95, 10312–10316
15. Eichacker, L. A., and Henry, R. (2001) Function of a chloroplast SRP in thylakoid protein export. Biochim. Biophys. Acta 1541, 120–134
16. Delille, J., Peterson, E. C., Johnson, T., Moore, M., Kight, A., and Henry, R. (2000) A novel precursor recognition element facilitates posttranslational binding to the signal recognition particle in chloroplasts. Proc. Natl. Acad. Sci. U.S.A. 97, 1926–1931
17. Tu, C. J., Schuennemann, D., and Hoffmann, N. E. (1999) Chloroplast FtsY, chloroplast signal recognition particle, and GTP are required to reconsti...
Activation of SRP-Receptor Interaction during LHCP Targeting

enables spatially regulated substrate capture and release. Proc. Natl. Acad. Sci. U.S.A. 113, E1615–1624

36. Peluso, P., Shan, S. O., Nock, S., Herschlag, D., and Walter, P. (2001) Role of SRP RNA in the GTGase cycles of Ffh and FtsY. Biochemistry 40, 15224–15233

37. Zhang, X., Rashid, R., Wang, K., and Shan, S. O. (2010) Sequential checkpoints govern substrate selection during co-translational protein targeting. Science 328, 757–760

38. Zhang, X., Schaffitzel, C., Ban, N., and Shan, S. O. (2009) Multiple conformational switches in a GTGase complex control co-translational protein targeting. Proc. Natl. Acad. Sci. U.S.A. 106, 1754–1759

39. de Leeuw, E., te Kaat, K., Moser, C., Menestrina, G., Demel, R., de Kruijf, B., Oudega, B., Luirink, J., and Sinning, I. (2000) Anionic phospholipids are involved in membrane association of FtsY and stimulate its GTGase activity. EMBO J. 19, 531–541

40. Parlitz, R., Eitan, A., Stepanovic, G., Bahari, L., Bange, G., Bibi, E., and Sinning, I. (2007) Escherichia coli signal recognition particle receptor FtsY contains an essential and autonomous membrane-binding amphipathic helix. J. Biol. Chem. 282, 32176–32184

41. Lam, V. Q., Akopian, D., Rome, M., Henningsen, D., and Shan, S. O. (2010) Lipid activation of the signal recognition particle receptor provides spatial coordination of protein targeting. J. Cell Biol. 190, 623–635

42. Marty, N. J., Rajalingam, D., Kight, A. D., Daily, R. L., Rajalingam, D., Arvind, K., Ye, J. L., Chou, J., Henry, R., and Yu, C. (2005) Three-dimensional solution structures of the chromodomains 2 and 3 of cpSRP43. J. Biol. Chem. 280, 35187–35195

43. Dalbey, R. E., and Kuhn, A. (2000) Evolutionarily related insertion pathways of bacterial, mitochondrial, and thylakoid membrane proteins. Annu. Rev. Cell Dev. Biol. 16, 51–87

44. Dünschede, B., Bals, T., Funke, S., and Schümann, D. (2011) Interaction studies between the chloroplast signal recognition particle subunit cpSRP43 and the full-length translocase Alb3 reveal a membrane-embedded binding region in Alb3 protein. J. Biol. Chem. 286, 35187–35195

45. Falk, S., and Sinning, I. (2010) The C terminus of Alb3 interacts with the chimeromodains 2 and 3 of cpSRP43. J. Biol. Chem. 285, 1e25–26

46. Bals, T., Dünschede, B., Funke, S., and Schümann, D. (2010) Interplay between the cpSRP pathway components, the substrate LHCP and the translocase Alb3: an in vivo and in vitro study. FEBS Lett. 548, 4138–4144

47. Falk, S., Ravaud, S., Koch, J., and Sinning, I. (2010) The C terminus of the Alb3 membrane insertase recruits cpSRP43 to the thylakoid membrane. J. Biol. Chem. 285, 5954–5962

48. Bahari, L., Parlitz, R., Eitan, A., Stepanovic, G., Bochkareva, E. S., Sinning, I., and Bibi, E. (2007) Membrane targeting of ribosomes and their release require distinct and separable functions of FtsY. J. Biol. Chem. 282, 32168–32175

49. Saraogi, I., Akopian, D., and Shan, S. O. (2014) Regulation of cargo recognition, commitment, and unloading drives co-translational protein targeting. J. Cell Biol. 205, 693–706

50. Luijirk, J., ten Hagen-Jongman, C. M., van der Weijden, C. C., Oudega, B., High, S., Dobberstein, B., and Kusters, R. (1994) An alternative protein targeting pathway in Escherichia coli: studies on the role of FtsY. EMBO J. 13, 2289–2296

51. Chandrasekar, S., Sweredoski, M. J., Sohn, C. H., Hess, S., and Shan, S. O. (November 28, 2016) Co-evolution of two GTPases enables efficient protein targeting in an RNA-less chloroplast signal recognition particle pathway. J. Biol. Chem. 292, 10.1074/jbc.M116.752931

52. Lotz, M., Haase, W., Kühlbrandt, W., and Collinson, I. (2008) Projection structure of yidC:a conserved mediator of membrane protein assembly. J. Mol. Biol. 375, 901–907

53. Nargang, F. E., Preuss, M., Neupert, W., and Herrmann, J. M. (2002) The Oxal1 protein forms a homologimeric complex and is an essential part of the mitochondrial export translocase in Neurospora crassa. J. Biol. Chem. 277, 12846–12853

54. van der Laan, M., Houwen, E. N., Nouwen, N., Luijirk, J., and Driessen, A. J. (2001) Reconstitution of Sec-dependent membrane protein insertion: nascent FtsQ interacts with YidC in a SecYEG-dependent manner. EMBO Rep. 2, 519–523
Activation of SRP-Receptor Interaction during LHCP Targeting

55. Kohler, R., Boehringer, D., Greber, B., Bingel-Erlenmeyer, R., Collinson, I., Schaffitzel, C., and Ban, N. (2009) YidC and Oxa1 form dimeric insertion pores on the translating ribosome. *Mol. Cell* **34**, 344–353
56. Shen, K., Zhang, X., and Shan, S. O. (2011) Synergistic actions between the SRP RNA and translating ribosome allow efficient delivery of the correct cargos during co-translational protein targeting. *RNA* **17**, 892–902
57. Zhang, X., Kung, S., and Shan, S. O. (2008) Demonstration of a multi-step mechanism for assembly of the SRP x SRP receptor complex: implications for the catalytic role of SRP RNA. *J. Mol. Biol.* **381**, 581–593
58. Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012) NIH Image to ImageJ: 25 years of image analysis. *Nat. Methods* **9**, 671–675
Anionic Phospholipids and the Albino3 Translocase Activate Signal Recognition Particle-Receptor Interaction during Light-harvesting Chlorophyll a/b-binding Protein Targeting
Sowmya Chandrasekar and Shu-ou Shan

J. Biol. Chem. 2017, 292:397-406.
doi: 10.1074/jbc.M116.752956 originally published online November 28, 2016

Access the most updated version of this article at doi: 10.1074/jbc.M116.752956

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 58 references, 34 of which can be accessed free at http://www.jbc.org/content/292/1/397.full.html#ref-list-1