NON-COMMUTATIVE WIDTH AND GOPAKUMAR-VAFA INVARIANTS

YUKINOBU TODA

Abstract. We show that the non-commutative widths for flopping curves on smooth 3-folds introduced by Donovan-Wemyss are described by Katz’s genus zero Gopakumar-Vafa invariants.

1. Introduction

1.1. Result. Let X be a smooth quasi-projective complex 3-fold and $f: X \to Y$ a birational flopping contraction which contracts a single rational curve $\mathbb{P}^1 \cong C \subset X$ to a point $p \in Y$. In the paper [DW], Donovan-Wemyss introduced a new invariant associated to f, the contraction algebra A_{con}, given by the universal non-commutative deformation algebra of the curve C in X. The algebra A_{con} is finite dimensional, and it is commutative if and only if C is not a $(1,-3)$-curve. Furthermore if A_{con} is commutative, the dimension of A_{con} coincides with Reid’s width $[\text{Rei}]$ of C. Based on this observation, Donovan-Wemyss defined the following generalizations of Reid’s width

$$\text{wid}(C) := \dim_{\mathbb{C}} A_{\text{con}}, \quad \text{cwid}(C) := \dim_{\mathbb{C}} A_{\text{con}}^{ab},$$

which they called \textit{non-commutative width} and \textit{commutative width} respectively.

On the other hand, Katz [Kat08] defined genus zero Gopakumar-Vafa (GV) invariants as virtual numbers of one dimensional stable sheaves on X. For $j \geq 1$, the genus zero GV invariant $n_j \in \mathbb{Z}_{\geq 0}$ of curve class $j[C]$ on X is shown in [Kat08] to coincide with the multiplicity of the Hilbert scheme of X at some subscheme $C^{(j)} \subset X$ with curve class $j[C]$. The purpose of this short note is to describe Donovan-Wemyss’s widths in terms of Katz’s genus zero GV invariants. The main result is as follows:

Theorem 1.1. We have the following formulas

$$\text{wid}(C) = \sum_{j=1}^{l} j^2 \cdot n_j, \quad \text{cwid}(C) = n_1.$$

Here l is the scheme theoretic length of $f^{-1}(p)$ at C.

Here we remark that the identity of $c\text{wid}(C)$ is almost obvious from the definitions, and the identity of $\text{wid}(C)$ is more interesting. The result of Theorem 1.1 indicates that one can study non-commutative widths without using non-commutative algebras. Conversely, one may compute genus zero GV invariants by computing contraction algebras. The proof of Theorem 1.1 is an easy application of the main result of [DW], combined with some deformation argument. By [DW], the algebra A_{con} defines the non-commutative twist functor, describing Bridgeland-Chen’s flop-flop autoequivalence of $\text{D}^b\text{Coh}(X)$. On the other hand, after taking the completion at p, the morphism f deforms to flopping contractions of disjoint $(-1, -1)$-curves, such that the number of $(-1, -1)$-curves with curve class $j[C]$ coincides with n_j. Now the flop-flop autoequivalence deforms along the deformation of f, hence the non-commutative twist functor also deforms: the resulting deformation is a composition of Seidel-Thomas’s spherical twists along $(-1, -1)$-curves. We then relate the Hilbert polynomial of a cohomology sheaf of the kernel object of the non-commutative twist functor with that of the above composition of the spherical twists, and obtain the desired identity of $\text{wid}(C)$.

1.2. Examples and a Remark. Here we describe some examples of Theorem 1.1.

Example 1.2. In Theorem 1.1 we have $l = 1$ if and only if C is either a $(-1, -1)$ or a $(0, -2)$-curve. In this case, we have $\text{wid}(C) = c\text{wid}(C)$, and it coincides with Reid’s width (cf. [DW, Example 3.12]). On the other hand, the genus zero GV invariant n_1 also coincides with Reid’s width as indicated in [BKL01, Section 1].

Example 1.3. Suppose that $Y = \text{Spec } R_k$, where R_k is defined by

$$R_k = \mathbb{C}[u, v, x, y]/(u^2 + v^2y = x(x^2 + y^{2k+1})).$$

There is a flopping contraction $f : X \to Y$ with $l = 2$. The contraction algebra A_{con} is computed in [DW] Example 3.14]

$$A_{\text{con}} \cong \mathbb{C}(x, y)/(xy = -yx, x^2 = y^{2k+1})$$

$$A_{\text{con}}^{ab} \cong \mathbb{C}[x, y]/(xy = 0, x^2 = y^{2k+1}).$$

It follows that

$$\text{wid}(C) = 3(2k + 1), \quad c\text{wid}(C) = 2k + 3.$$

The result of Theorem 1.1 indicates that $n_1 = 2k + 3$ and $n_2 = k$.

We also have the following remark:

\footnote{Wemyss pointed out to the author that the non-commutative widths are commutative things, as they are computed using some Ext-groups on commutative algebras. See [DW, Remark 5.2].}
Remark 1.4. We have $n_j \geq 1$ for $1 \leq j \leq l$. So Theorem 1.1 implies that

$$\text{wid}(C) \geq \sum_{j=1}^{l} j^2.$$

The above lower bound is better than the lower bound in [DW, Remark 3.17].

1.3. Acknowledgment. I would like to thank Michael Wemyss and Will Donovan for valuable comments on the manuscript. I would also like to thank Tom Bridgeland for checking a misprint of his paper [Bri02], and allowing me to correct it in Appendix B. This work is supported by World Premier International Research Center Initiative (WPI initiative), MEXT, Japan. This work is also supported by Grant-in Aid for Scientific Research grant (No. 26287002) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

2. Preliminary

2.1. 3-fold flopping contractions. Let X be a smooth quasi-projective complex 3-fold. By definition, a flopping contraction is a birational morphism

$$f : X \to Y$$

which is isomorphic in codimension one, Y has only Gorenstein singularities and the relative Picard number of f equals to one. In what follows, we always assume that the exceptional locus C of f is isomorphic to \mathbb{P}^1, and set

$$p := f(C) \in Y.$$

We say that $C \subset X$ is (a, b) curve if $N_{C/X}$ is isomorphic to $\mathcal{O}_C(a) \oplus \mathcal{O}_C(b)$. It is well-known that (a, b) is either one of the following:

$$(a, b) = (-1, -1), \ (0, -2), \ (1, -3).$$

We denote by l the length of $\mathcal{O}_{f^{-1}(p)}$ at the generic point of C, where $f^{-1}(p)$ is the scheme theoretic fiber of f at p. Then we have

$$l \in \{1, 2, 3, 4, 5, 6\}$$

and $l = 1$ if and only if C is not a $(1, -3)$-curve (cf. [KM92, Section 1]). Moreover if $l = 1$, then we have

$$\tilde{\mathcal{O}}_{Y, p} \cong \mathbb{C} [x, y, z, w] / (x^2 + y^2 + z^2 + w^{2k})$$

for some $k \in \mathbb{Z}_{\geq 1}$. The number k is called width of C in [Rei].
2.2. **Contraction algebras.** In the setting of Subsection 2.1, we set $R = \widehat{O}_{Y,p}$, and take the following completion of (2)

$$\hat{f} : \widehat{X} := X \times_Y \text{Spec } R \to \hat{Y} := \text{Spec } R.$$

Then there is a line bundle \mathcal{L} on \widehat{X} such that $\text{deg}(\mathcal{L}|_C) = 1$. We define the vector bundle \mathcal{N} on \widehat{X} to be the extension

$$0 \to \mathcal{L}^{-1} \to \mathcal{N} \to \mathcal{O}_{\widehat{X}} \to 0$$

given by the minimum generators of $H^1(\widehat{X}, \mathcal{L}^{-1})$. We set $U := O_{\widehat{X}} \oplus N$, $N := \hat{f}_* N$ and

$$A := \text{End}_{\widehat{X}}(U) \cong \text{End}_R (R \oplus N).$$

By Van den Bergh [dB04, Section 3.2.8], we have a derived equivalence

$$R \text{Hom}_{\widehat{X}}(U, -) : D^b \text{Coh}(\widehat{X}) \sim \to D^b \text{mod } A$$

whose inverse is given by $- \otimes_A U$. Here mod A is the category of finitely generated right A-modules.

Definition 2.1. ([DW, Definition 2.11]) The contraction algebra A_{con} is defined to be A/I_{con}, where I_{con} is the two sided ideal of A consisting of morphisms $R \oplus N \to R \oplus N$ factoring through a member of $\text{add}(R)$. Here $\text{add}(R)$ is the set of summands of finite sums of R.

By [DW] Proposition 2.12, the algebra A_{con} is finite dimensional.

Remark 2.2. The algebra A_{con} is commutative if and only if C is not a $(1, -3)$-curve (cf. [DW, Theorem 3.15]). In this case, A_{con} is isomorphic to $\mathbb{C}[t]/(t^k)$, where k is the width of C which appears in (3). See [DW] Example 3.12.

The contraction algebra A_{con} coincides with the universal algebra which represents the non-commutative deformation functor of $O_C(-1)$

$$\text{Def}_{O_C(-1)} : \text{Art}_1 \to \text{Sets}.$$

Here Art_1 is the category of finite dimensional \mathbb{C}-algebras Γ with some additional conditions, and the functor (6) assigns each Γ to the set of isomorphism classes of flat deformation of $O_C(-1)$ to $\text{Coh}(O_X \otimes_{\mathbb{C}} \Gamma)$. We refer [DW] Section 2] for details of the functor (6). Since A_{con} represents the functor (6), there is the universal non-commutative deformation of $O_C(-1)$

$$\mathcal{E} \in \text{Coh}(O_X \otimes_{\mathbb{C}} A_{\text{con}}).$$

Let A_{con}^{ab} be the abelization of A_{con}. The algebra A_{con}^{ab} is a commutative Artinian local \mathbb{C}-algebra, which represents the commutative deformation functor

$$\text{cDef}_{O_C(-1)} : \text{cArt}_1 \to \text{Sets}.$$
Here cArt_1 is the category of commutative Artinian local \mathbb{C}-algebras, and the functor \mathcal{F} is the restriction of the functor \mathcal{G} to cArt_1. We refer [DW, Section 3] for details of the above representabilities.

2.3. **Flop equivalences.** The contraction algebra A_{con} plays an important role in describing Bridgeland-Chen’s flop-flop autoequivalence. Let us consider the flop diagram of (2)

\[
\begin{array}{ccc}
X & \xrightarrow{\phi} & X^\dagger \\
\downarrow f & & \downarrow f^\dagger \\
Y & &
\end{array}
\]

By [Bri02] and [Che02], we have the derived equivalence

\[
\Phi_{X \rightarrow X^\dagger}^\mathcal{O}_{X \times Y \times X^\dagger} : D^b \text{Coh}(X) \xrightarrow{\sim} D^b \text{Coh}(X^\dagger).
\]

Here we use the notation in Appendix A for the Fourier-Mukai functors. Composing (10) twice, we obtain the autoequivalence

\[
\Phi_{X^\dagger \rightarrow X}^\mathcal{O}_{X \times Y \times X^\dagger} \circ \Phi_{X \rightarrow X^\dagger}^\mathcal{O}_{X \times Y \times X^\dagger} : D^b \text{Coh}(X) \xrightarrow{\sim} D^b \text{Coh}(X).
\]

The result of [DW, Proposition 7.18] shows that (11) has an inverse isomorphic to the non-commutative twist functor T_E associated to the universal object (7). Namely T_E is the autoequivalence of $D^b \text{Coh}(X)$ which fits into the distinguished triangle

\[
R \text{Hom}(\mathcal{E}, F) \overset{L}{\otimes}_{A_{\text{con}}} \mathcal{E} \rightarrow F \rightarrow T_E(F)
\]

for any $F \in D^b \text{Coh}(X)$. If C is a $(-1, -1)$-curve, the functor T_E coincides with Seidel-Thomas twist [ST01] along $\mathcal{O}_C(-1)$. If C is a $(0, -2)$-curve, then T_E coincides with the author’s generalized twist [Tod07]². The kernel object of the equivalence T_E is given by

\[
\text{Cone} \left(R \text{Hom}_A(A_{\text{con}}, A) \overset{L}{\otimes}_{A_{\text{con}} \otimes A} (\mathcal{U}' \boxtimes \mathcal{U}) \rightarrow \mathcal{O}_{\Delta_X} \right).
\]

Here $\Delta_X \subset X \times X$ is the diagonal (cf. [DW, Lemma 6.16]).

Lemma 2.3. The object $R \text{Hom}_A(A_{\text{con}}, A) \overset{L}{\otimes}_{A_{\text{con}} \otimes A} (\mathcal{U}' \boxtimes \mathcal{U})$ is isomorphic to $\mathcal{F}[-2]$ for $\mathcal{F} \in \text{Coh}(X \times X)$ satisfying the following: there is a filtration

\[
0 = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_{\dim A_{\text{con}}} = \mathcal{F}
\]

such that each subquotient $\mathcal{F}_j/\mathcal{F}_{j-1}$ is isomorphic to $\mathcal{O}_C(-1) \boxtimes \mathcal{O}_C(-1)$.

²In [Tod07], it was stated that T_E is isomorphic to (11), but it was wrong: the correct statement is T_E is an inverse of (11). We explain details in Appendix B.
Proof. By the definition of Art1 in [DW, Definition 2.1], there is a \mathbb{C}-algebra homomorphism $A_{\text{con}} \to \mathbb{C}$ such that its kernel $n \subset A_{\text{con}}$ is nilpotent. The ideal $n \subset A_{\text{con}}$ is two-sided, and A_{con}/n is a one-dimensional $A^{\text{op}} \otimes A$-module. We have the filtration of $A^{\text{op}} \otimes A$-modules

$$0 = n^m \subset n^{m-1} \subset \cdots \subset n \subset A_{\text{con}}$$

for some $m > 0$ such that each subquotient n^i/n^{i+1} is an A_{con}/n-module. Since $A_{\text{con}}/n = \mathbb{C}$, the object n^i/n^{i+1} is a finite direct sum of A_{con}/n. Therefore it is enough to show that

$$(13) \quad R\text{Hom}_{A}(A_{\text{con}}/n, A) \overset{L}{\otimes}_{A^{\text{op}} \otimes A} (U^\vee \boxtimes U)$$

$$\cong \mathcal{O}_C(-1) \boxtimes \mathcal{O}_C(-1)[-2].$$

Let $S \in \text{mod } A$ be the object given by $S := R\text{Hom}_{\hat{X}}(U, \mathcal{O}_C(-1))$. Note that we have $\text{dim}_\mathbb{C} S = 1$. The object S is the unique simple A_{con}-module (cf. [DW, Section 2.3]), hence A_{con}/n viewed as a right A_{con}-module is isomorphic to S. On the other hand, the vector bundle $U^\vee \boxtimes U$ on $\hat{X} \times \hat{X}$ is a tilting vector bundle. Hence we have a derived equivalence

$${\mathcal{R}}\text{Hom}_{\hat{X} \times \hat{X}}(U^\vee \boxtimes U, -) : D^b(\text{Coh}(\hat{X} \times \hat{X})) \xrightarrow{\sim} D^b(\text{mod}(A^{\text{op}} \otimes A))$$

with inverse given by $- \otimes_{A^{\text{op}} \otimes A} (U^\vee \boxtimes U)$. Let \mathbb{D} be the dualizing functor $R\text{Hom}_{\hat{X}}(-, \mathcal{O}_{\hat{X}})$ on $D^b(\text{Coh}(\hat{X}))$. We have $\mathbb{D}(\mathcal{O}_C(-1)) \cong \mathcal{O}_C(-1)[-2]$, and

$${\mathcal{R}}\text{Hom}_{\hat{X} \times \hat{X}}(U^\vee \boxtimes U, \mathcal{O}_C(-1) \boxtimes \mathcal{O}_C(-1)[-2])$$

$$\cong {\mathcal{R}}\text{Hom}_{\hat{X} \times \hat{X}}(\mathbb{D}(U) \boxtimes U, \mathbb{D}(\mathcal{O}_C(-1)) \boxtimes \mathcal{O}_C(-1))$$

$$\cong {\mathcal{R}}\text{Hom}_{\hat{X}}(\mathcal{O}_C(-1) \boxtimes \mathcal{O}_C(-1)) \otimes_{\mathcal{O}_C} {\mathcal{R}}\text{Hom}_{\hat{X}}(\mathcal{U}, \mathcal{O}_C(-1))$$

$$\cong {\mathcal{R}}\text{Hom}_A(S, A) \otimes_{\mathcal{O}_C} S$$

$$\cong {\mathcal{R}}\text{Hom}_A(A_{\text{con}}/n, A).$$

Therefore we obtain the desired isomorphism (13). □

2.4. Genus zero Gopakumar-Vafa invariants. The genus zero GV invariants defined in [Kat08] count one dimensional stable sheaves F on Calabi-Yau 3-folds satisfying $\chi(F) = 1$. In the setting of Subsection 2.1, the variety X may not be Calabi-Yau, but so in a neighborhood of C. Since C is rigid in X, we can define the genus zero GV invariant with curve class $j[C]$ on X as well. Indeed in [Kat08], the genus zero GV invariants of X are shown to coincide with the multiplicities of the Hilbert scheme of X at some subschemes supported on C. Let $p \in H \subset Y$ be a general hypersurface, and $\overline{T} \subset X$ its proper
transformation. Then we have $C \subset \overline{H}$. Let $I \subset \mathcal{O}_{\overline{H}}$ be the ideal sheaf of C. For $j \geq 1$, we have the subscheme $C^{(j)} \subset X$ given by
\[O_{C^{(j)}} = (\mathcal{O}_{\overline{H}}/I)^j/Q \]
where Q is the maximum zero dimensional subsheaf of $\mathcal{O}_{\overline{H}}/I$. Let $I \subset \mathcal{O}_{\overline{H}}$ be the ideal sheaf of C. For $j \geq 1$, we have the subscheme $C^{(j)} \subset X$ given by
\[O_{C^{(j)}} = (\mathcal{O}_{\overline{H}}/I)^j/Q \]
where Q is the maximum zero dimensional subsheaf of $\mathcal{O}_{\overline{H}}/I$.

Definition 2.4. For $1 \leq j \leq l$, we define $n_j \in \mathbb{Z}_{\geq 1}$ to be
\[n_j := \dim C \mathcal{O}_{\text{Hilb}(X),C^{(j)}}. \]
By convention, we define $n_j = 0$ for $j > l$.

Since $\mathcal{O}_{\text{Hilb}(X),C^{(j)}}$ is a finitely generated Artinian \mathbb{C}-algebra, the number n_j is well-defined. If $l = 1$, the number n_1 equals to the width k in (3) as indicated in [BKL01, Section 1]. In general, Katz [Kat08] shows that n_j coincides with the genus zero GV invariant of X with curve class $j[C]$. The number n_j also appears in the context of deformations in the following way. By [BKL01, Section 2.1], there exists a flat deformation of (4) $X \rightarrow Y$ where T is a Zariski open neighborhood of $0 \in \mathbb{A}^1$ such that $g_0 : X_0 \rightarrow Y_0$ is isomorphic to \hat{f} in (1), and $g_t : X_t \rightarrow Y_t$ for $t \in T \setminus \{0\}$ is a flopping contraction whose exceptional locus is a disjoint union of $(-1,-1)$-curves. Here X_t, Y_t are the fibers of $X \rightarrow T, Y \rightarrow T$ at $t \in T$ respectively. Then the number n_j coincides with the number of g_t-exceptional $(-1,-1)$-curves $C' \subset X_t$ for $t \neq 0$ whose curve class equals to $j[C]$, i.e. for any line bundle L on X, we have
\[\deg(L|_{C'}) = j \deg(L|_C) \]
where we regard C as a curve on the central fiber of $X \rightarrow T$. In what follows, we write the exceptional locus of g_t for $t \neq 0$ as
\[C_{j,k} \subset X_t, \ 1 \leq j \leq l, \ 1 \leq k \leq n_j \]
where $C_{j,k}$ is a $(-1,-1)$-curve with curve class $j[C]$.

3. Proof of Theorem 1.1

Proof. The identity $\text{cwid}(C) = n_1$ is almost obvious from the definitions of both sides. Indeed since A_{con}^{ab} represents the commutative deformation functor (5), the scheme $\text{Spec} A_{\text{con}}^{ab}$ is the component of the moduli scheme of one dimensional stable sheaves on X containing
$\mathcal{O}_C(-1)$. By tensoring the line bundle \mathcal{L} in Subsection 2.2, the scheme $\text{Spec} \ A^{ab}_{\text{con}}$ is isomorphic to the component of the moduli scheme of stable sheaves containing \mathcal{O}_C, which defines the invariant n_1. By the proof of [Kat08, Proposition 3.3], the degree of the virtual fundamental cycle of $\text{Spec} \ A^{ab}_{\text{con}}$ coincides with the dimension of A^{ab}_{con}. Therefore $\text{cwid}(C) = n_1$ holds.

We show the identity of $\text{wid}(C)$. The morphism g in (14) is a flopping contraction, and the argument of [Che02, Section 6] shows that g admits a flop

\[\xymatrix{ \mathcal{X} \ar@/^/[rr]^\psi \ar@/_/[dr]_g & & \mathcal{X}^\dagger \ar@/_/[dl]_{g^\dagger} } \]

such that we have the derived equivalence

\[\Phi_{\mathcal{X} \to \mathcal{X}^\dagger}^{\mathcal{O}_{\mathcal{X} \times Y}, \mathcal{X}^\dagger} : D^b \text{Coh}(\mathcal{X}) \sim D^b \text{Coh}(\mathcal{X}^\dagger). \]

By composing the above equivalence twice, we obtain the autoequivalence

\[(16) \quad \Phi_{\mathcal{X}^\dagger \to \mathcal{X}}^{\mathcal{O}_{\mathcal{X} \times Y}, \mathcal{X}^\dagger} \circ \Phi_{\mathcal{X} \to \mathcal{X}^\dagger}^{\mathcal{O}_{\mathcal{X} \times Y}, \mathcal{X}^\dagger} : D^b \text{Coh}(\mathcal{X}) \sim D^b \text{Coh}(\mathcal{X}). \]

Let Ψ be an inverse of the equivalence (16), and

\[\mathcal{P} \in D^b \text{Coh}(\mathcal{X} \times \mathcal{T} \mathcal{X}) \]

the kernel object of Ψ. By [Che02, Lemma 6.1], for each $t \in T$, we have the commutative diagram

\[\xymatrix{ D^b \text{Coh}(\mathcal{X}) \ar[r]^\Psi & D^b \text{Coh}(\mathcal{X}) \ar[d]^{L_{i^t}} \ar[d]_{L_{i^t}} \ar[r]^{\Phi_\mathcal{X}^t \mathcal{X}^\dagger} & D^b \text{Coh}(\mathcal{X}_t) \ar[d]_{L_{j^t}} \ar[r]^{\Psi_t} & D^b \text{Coh}(\mathcal{X}_t) \ar[d]_{L_{j^t}} \ar[r]^{\Phi_\mathcal{X}^t \mathcal{X}^\dagger} & D^b \text{Coh}(\mathcal{X}_t). \}

Here $i^t : \mathcal{X}_t \hookrightarrow \mathcal{X}$ is the inclusion, and Ψ_t is the Fourier-Mukai functor with kernel $\mathcal{P}_t := L_{i^t} \mathcal{P}$, where j^t is the inclusion

\[j^t := (i^t \times i^t) : \mathcal{X}_t \times \mathcal{X}_t \hookrightarrow \mathcal{X} \times \mathcal{T} \mathcal{X}. \]

The functor Ψ_t is an equivalence, and it has an inverse given by the composition (cf. [Che02, Corollary 4.5])

\[(17) \quad \Phi_{\mathcal{X}_t \to \mathcal{X}_t}^{\mathcal{O}_{\mathcal{X}_t \times \mathcal{Y}_t}, \mathcal{X}_t^\dagger} \circ \Phi_{\mathcal{X}_t \to \mathcal{X}_t}^{\mathcal{O}_{\mathcal{X}_t \times \mathcal{Y}_t}, \mathcal{X}_t^\dagger} : D^b \text{Coh}(\mathcal{X}_t) \sim D^b \text{Coh}(\mathcal{X}_t). \]

Therefore by [DW, Proposition 7.18], the equivalence Ψ_0 is isomorphic to the non-commutative twist functor $T_\mathcal{E}$ in (12). By the uniqueness of Fourier-Mukai kernels in Lemma A.1 below, we have

\[(18) \quad \mathcal{P}_0 \cong \text{Cone} \left(\mathcal{F}_0[-2] \to \mathcal{O}_{\Delta_{x_0}} \right). \]

Here \mathcal{F}_0 is a sheaf \mathcal{F} on $X \times X$ given in Lemma 2.3 restricted to $\tilde{X} \times \tilde{X}$.
For $t \neq 0$, the birational map $\mathcal{X}_t \dashrightarrow \mathcal{X}^t$ is the composition of flops at $(-1, -1)$-curves $C_{j,k}$ for $1 \leq j \leq l$, $1 \leq k \leq n_j$. Hence the equivalence Ψ_t for $t \neq 0$ is isomorphic to the compositions of all the spherical twists along $\mathcal{O}_{C_{j,k}}(-1)$ for $1 \leq j \leq l$, $1 \leq k \leq n_j$. Therefore using Lemma A.1 again, we have

\begin{equation}
(19) \quad \mathcal{P}_t \cong \text{Cone} \left(\mathcal{F}_t[-2] \rightarrow \mathcal{O}_{\Delta \mathcal{X}_t} \right)
\end{equation}

where \mathcal{F}_t is a sheaf on $\mathcal{X}_t \times \mathcal{X}_t$ defined by

\begin{equation}
(20) \quad \mathcal{F}_t := \bigoplus_{j=1}^l \bigoplus_{k=1}^{n_j} \mathcal{O}_{C_{j,k}}(-1) \boxtimes \mathcal{O}_{C_{j,k}}(-1).
\end{equation}

Lemma 3.1. We have $\mathcal{H}^i(\mathcal{P}) = 0$ for $i \neq 0, 1$.

Proof. For any $t \in T$, we have the distinguished triangle

$$\mathcal{P} \rightarrow \mathcal{P} \rightarrow j_{tt}^* \mathcal{P}_t.$$

By (18) and (19), we have $\mathcal{H}^i(\mathcal{P}_t) = 0$ for any $t \in T$ and $i \neq 0, 1$. By taking the long exact sequence of cohomologies of the above triangle, we obtain $j_{tt}^* \mathcal{H}^i(\mathcal{P}) = 0$ for any $t \in T$ and $i \neq 0, 1$. Therefore we have $\mathcal{H}^i(\mathcal{P}) = 0$ for $i \neq 0, 1$.

Lemma 3.2. We have $\mathcal{H}^0(\mathcal{P}) \cong \mathcal{O}_{\Delta \mathcal{X}}$ and $\mathcal{H}^1(\mathcal{P})$ is flat over T. Furthermore we have $j_{tt}^* \mathcal{H}^1(\mathcal{P}) \cong \mathcal{F}_t$ for any $t \in T$.

Proof. By Lemma 3.1 we have the distinguished triangle in $D^b \text{Coh}(\mathcal{X} \times_T \mathcal{X})$

$$\mathcal{H}^0(\mathcal{P}) \rightarrow \mathcal{P} \rightarrow \mathcal{H}^1(\mathcal{P})[-1].$$

Applying Lj_{tt}^*, we obtain the distinguished triangle in $D^b \text{Coh}(\mathcal{X}_t \times \mathcal{X}_t)$

$$Lj_{tt}^* \mathcal{H}^0(\mathcal{P}) \rightarrow \mathcal{P}_t \rightarrow Lj_{tt}^* \mathcal{H}^1(\mathcal{P})[-1].$$

By taking the long exact sequence of cohomologies, we have

$$Lj_{tt}^* \mathcal{H}^0(\mathcal{P}) \cong j_{tt}^* \mathcal{H}^0(\mathcal{P}), \quad \mathcal{F}_t \cong j_{tt}^* \mathcal{H}^1(\mathcal{P})$$

and the exact sequence

\begin{equation}
(21) \quad 0 \rightarrow j_{tt}^* \mathcal{H}^0(\mathcal{P}) \rightarrow \mathcal{O}_{\Delta \mathcal{X}_t} \rightarrow \mathcal{H}^{-1}(Lj_{tt}^* \mathcal{H}^1(\mathcal{P})) \rightarrow 0.
\end{equation}

Below we denote by $\Delta: \mathcal{X} \rightarrow \mathcal{X} \times_T \mathcal{X}$, $\Delta_t: \mathcal{X}_t \rightarrow \mathcal{X}_t \times \mathcal{X}_t$ the diagonal morphisms, and \mathcal{C} the exceptional locus of $g: \mathcal{X} \rightarrow \mathcal{Y}$. The isomorphism $\mathcal{F}_t \cong j_{tt}^* \mathcal{H}^1(\mathcal{P})$ implies that $\mathcal{H}^1(\mathcal{P})$ is supported on $\mathcal{C} \times \mathcal{C}$, hence $\mathcal{H}^{-1}(Lj_{tt}^* \mathcal{H}^1(\mathcal{P}))$ is supported on $\mathcal{C}_t \times \mathcal{C}_t$. The exact sequence (21) also implies that $\mathcal{H}^{-1}(Lj_{tt}^* \mathcal{H}^1(\mathcal{P}))$ is supported on $\Delta_{\mathcal{X}_t}$, hence on $\Delta_{\mathcal{X}_t} \cap (\mathcal{C}_t \times \mathcal{C}_t) = \Delta_{\mathcal{X}_t}(\mathcal{C}_t)$. It follows that $\mathcal{H}^0(\mathcal{P})$ is written as $\Delta_{\mathcal{X}_t}$ for a rank one torsion free sheaf \mathcal{I} on \mathcal{X}_t, and the exact sequence (21) is given by Δ_{tt} of the exact sequence of the following form

\begin{equation}
(22) \quad 0 \rightarrow i_{tt}^* \mathcal{I} \rightarrow \mathcal{O}_{\Delta_{\mathcal{X}_t}} \rightarrow \mathcal{O}_{\mathcal{C}_{tt}} \rightarrow 0
\end{equation}
for some subscheme $C'_t \subset X$ supported on C_t. Also by the generic flatness, there is a non-empty Zariski open subset $U \subset T$ such that $H^{-1}(Lj'_t^*H^1(P)) = 0$ for all $t \in U$. This implies that $C'_t = \emptyset$ for all $t \in U$, hence \mathcal{I} is isomorphic to \mathcal{O}_X away from C_t for $t \in T \setminus U$. By taking the double dual of \mathcal{I}, we obtain the exact sequence

$$0 \to \mathcal{I} \to \mathcal{O}_X \to \mathcal{O}_{C'} \to 0$$

where C' is supported on C_t for $t \in T \setminus U$. If $C' \neq \emptyset$, then $j'_t^*H^0(\mathcal{P}) \cong \Delta_t^*i_t^*\mathcal{I}$ contains the non-zero sheaf $\Delta_t^*i_t^*H^1(O_{C'})$ for some $t \in T \setminus U$ supported on C_t, which contradicts to (21). Therefore $C' = \emptyset$ and $H^0(\mathcal{P}) \cong O_{\Delta_X}$ holds.

Now in the sequence (22), we have $i'_t^*\mathcal{I} \cong O_{X_t}$ for any $t \in T$, hence $C'_t = \emptyset$ as C'_t has codimension bigger than or equal to two in X_t. This implies that $H^{-1}(Lj'_t^*H^1(P)) = 0$ for any $t \in T$, hence $H^1(P)$ is flat over T. □

By the above lemma, the sheaf \mathcal{F}_t for $t \neq 0$ is a flat deformation of \mathcal{F}_0. Since they have compact supports, \mathcal{F}_0 and \mathcal{F}_t have the same Hilbert polynomials. It follows that, for a g-ample line bundle \mathcal{L} on X with $d := \deg(\mathcal{L}|_C) > 0$, we have the equality

$$(23) \quad \chi(\mathcal{F}_0 \otimes (\mathcal{L} \boxtimes \mathcal{L})) = \chi(\mathcal{F}_t \otimes (\mathcal{L} \boxtimes \mathcal{L})).$$

By Lemma 2.3 and the Riemann-Roch theorem, we have

$$\chi(\mathcal{F}_0 \otimes (\mathcal{L} \boxtimes \mathcal{L})) = \dim C \cdot \chi(O_C(-1) \otimes \mathcal{L})^2 = \dim C \cdot d^2.$$

By the definition of \mathcal{F}_t for $t \neq 0$ in (20), we have

$$\chi(\mathcal{F}_t \otimes (\mathcal{L} \boxtimes \mathcal{L})) = \sum_{j=1}^t \sum_{k=1}^{n_j} \chi(O_{C_{j,k}}(-1) \otimes \mathcal{L})^2 = \sum_{j=1}^t j^2 \cdot n_j \cdot d^2.$$

Here we have used the relation (15) for $C' = C_{j,k}$. Since $d > 0$, the equality (23) implies the desired equality for $\text{wid}(C)$. □

APPENDIX A. Uniqueness of Fourier-Mukai kernels

Let Y be a quasi-projective complex variety, or a spectrum of a completion of a finitely generated \mathbb{C}-algebra at some maximum ideal. Suppose that $f_i : X_i \to Y$ are projective morphisms for $i = 1, 2$, and X_i are regular schemes. Given an object

$$\mathcal{P} \in D^b \text{Coh}(X_1 \times X_2)$$

supported on $X_1 \times_Y X_2$, we have the Fourier-Mukai functor

$$\Phi^\mathcal{P}_{X_1 \to X_2} : D^b \text{Coh}(X_1) \to D^b \text{Coh}(X_2)$$
defined by

$$
\Phi_P^{X_1 \to X_2}(-) := \mathbb{R}p_{2*}(Lp_1^*(-) \otimes P)
$$

where $p_i: X_1 \times X_2 \to X_i$ is the projection. The above functor preserves coherence since $p_2|\text{supp}(P)$ is projective. For another regular scheme X_3, a projective morphism $f_3: X_3 \to Y$ and an object $Q \in D^b\text{Coh}(X_2 \times X_3)$ supported on $X_2 \times_Y X_3$, we have

$$
\Phi^Q_{X_2 \to X_3} \circ \Phi^P_{X_1 \to X_2} \simeq \Phi^{Q\circ P}_{X_1 \to X_3}
$$

where $Q \circ P$ is defined by (cf. [Che02, Proposition 2.3])

$$
Q \circ P := \mathbb{R}p_{13*}(p_{12}^*P \otimes p_{23}^*Q).
$$

Here $p_{ij}: X_1 \times X_2 \times X_3 \to X_i \times X_j$ is the projection.

If $Y = \text{Spec } \mathbb{C}$ and $\Phi^P_{X_1 \to X_2}$ is an equivalence, then Orlov [Orl97] showed that the kernel object P is unique up to an isomorphism, i.e. $\Phi^P_{X_1 \to X_2} \simeq \Phi^Q_{X_1 \to X_2}$ implies $P \simeq Q$. It should be well-known that the same claim holds without $Y = \text{Spec } \mathbb{C}$ assumption, but as the author cannot find a reference we include a proof here.

Lemma A.1. For $P, Q \in D^b\text{Coh}(X_1 \times X_2)$ supported on $X_1 \times_Y X_2$, suppose that the following conditions hold:

- We have an isomorphism of functors $\Phi^P_{X_1 \to X_2} \simeq \Phi^Q_{X_1 \to X_2}$.
- The functors $\Phi^P_{X_1 \to X_2}$, $\Phi^Q_{X_1 \to X_2}$ are equivalences.

Then we have $P \simeq Q$.

Proof. Let Q^* be the object of $D^b\text{Coh}(X_1 \times X_2)$ given by

$$
Q^* := \mathbb{R}\text{Hom}_{X_1 \times X_2}(Q, O_{X_1 \times X_2}) \otimes p_1^!*\omega_{X_1}[\dim X_1].
$$

By the Grothendieck duality, the functor $\Phi^{Q^*}_{X_2 \to X_1}$ is the right adjoint of $\Phi^Q_{X_2 \to X_1}$, hence an inverse of it. We have

$$
\Phi^{Q^*}_{X_2 \to X_1} \circ \Phi^P_{X_1 \to X_2} \simeq \Phi^{Q^*\circ P}_{X_1 \to X_1}
$$

and it is isomorphic to the identity functor. Then $\Phi^{Q^*\circ P}_{X_1 \to X_1}$ sends O_x to O_x for any $x \in X_1$, and O_{X_1} to O_{X_1}. Applying the argument of [Huy06 Corollary 5.23], it follows that $Q^* \circ P \simeq O_{\Delta X_1}$. Similarly we have $Q \circ Q^* \simeq O_{\Delta X_2}$. We obtain

$$
P \simeq O_{\Delta X_2} \circ P \simeq Q \circ Q^* \circ P \simeq Q \circ O_{\Delta X_1} \simeq Q
$$

as desired. \qed
Appendix B. Correction on flop-flop autoequivalence

In this occasion, I would correct a wrong statement in [Tod07, Section 3] on the description of flop-flop autoequivalence. Let us consider the equivalence

\[\Phi_{O_{X \times Y}^{\times 1}} \circ \Phi_{O_{X \times Y}^{\times 1}} : D^b \text{Coh}(X) \rightarrow D^b \text{Coh}(X) \]

associated to the flop diagram (9). In [Tod07, Theorem 3.1], it was stated that if \(C \) is either a \((-1, -1)\)-curve or a \((0, -2)\)-curve, then the functor (24) is isomorphic to the generalized (commutative) twist functor \(T_{\bar{E}} \). However this turns out to be wrong: the correct statement is that the equivalence (24) is an inverse of \(T_{\bar{E}} \). Indeed the statement in [Tod07, Section 3] that the equivalence \[\Phi_{O_{X \times Y}^{\times 1}} : D^b \text{Coh}(X) \rightarrow D^b \text{Coh}(X^{\dagger}) \]

takes \(O_C(-1)[1] \) to \(O_{C^{\dagger}}(-1) \) was wrong: it should be corrected that \((25) \) takes \(O_C(-1) \) to \(O_{C^{\dagger}}(-1)[1] \). Then replacing \(T_{\bar{E}} \) with \(T_{\bar{E}}^{-1} \) in the proof of [Tod07, Theorem 3.1], we obtain the statement that (11) is isomorphic to \(T_{\bar{E}}^{-1} \).

We explain why the above statement in [Tod07, Section 3] was wrong. In [Tod07, Section 3], I referred [Tod08, Ver 1, Lemma 5.1], which in turn referred [Bri02, (4.8)] that the equivalence (25) induces the equivalence

\[\text{Per}(X/Y) \rightarrow \text{Per}(X^{\dagger}/Y). \]

(Here we have used the fact that the equivalence (25) coincides with the equivalence \(\Phi \) given in [Bri02, Section 4] by [Che02].) However (25) was not correct: it should be corrected that (25) induces the equivalence

\[\text{Per}(X/Y) \rightarrow \text{Per}(X^{\dagger}/Y). \]

Indeed let \(C_X \subset \text{Coh}(X) \) be the category of sheaves \(F \) with \(Rf_*F = 0 \). Then [Bri02, (4.5)] shows that (25) takes \(C_X \) to \(C_{X^{\dagger}}[1] \). On the other hand, as \(p\text{Per}(X/Y) \) is the gluing of \(\text{Coh}(Y) \) and \(C_X[-p] \) (not \(C_X[p] \)) by the definition, the equivalence (25) should reduce the perversity one. After correcting (26) as (27), the argument of [Tod08, Ver 1, Lemma 5.1] shows that (25) takes \(O_C(-1) \) to \(O_{C^{\dagger}}(-1)[1] \).

References

[BKL01] J. Bryan, S. Katz, and N. C. Leung, Multiple covers and integrality conjecture for rational curves on Calabi-Yau threefolds, J. Algebraic Geom. 10 (2001), 549–568.

[Bri02] T. Bridgeland, Flops and derived categories, Invent. Math 147 (2002), 613–632.

3In the notation of [Bri02, (4.8)], the equivalence \(p\text{Per}(W/X) \cong p+1\text{Per}(Y/X) \) should be corrected as \(p\text{Per}(W/X) \cong p-1\text{Per}(Y/X) \).
[Che02] J-C. Chen, Flops and equivalences of derived categories for three-folds with only Gorenstein singularities, J. Differential. Geom 61 (2002), 227–261.
[dB04] M. Van den Bergh, Three dimensional flops and noncommutative rings, Duke Math. J. 122 (2004), 423–455.
[DW] W. Donovan and M. Wemyss, Noncommutative deformations and flops, preprint. [arXiv:1309.0698]
[Huy06] D. Huybrechts, Fourier-Mukai transforms in algebraic geometry, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, 2006.
[Kat08] S. Katz, Genus zero Gopakumar-Vafa invariants of contractible curves, J. Differential. Geom. 79 (2008), 185–195.
[KM92] S. Katz and D. R. Morrison, Gorenstein threefold singularities with small resolutions via invariant theory for Weyl groups, J. Algebraic Geom. 1 (1992), 449–530.
[Orl97] D. Orlov, On Equivalences of derived categories and K3 surfaces, J. Math. Sci (New York) 84 (1997), 1361–1381.
[Rei] M. Reid, Minimal models of canonical 3-folds, Algebraic Varieties and Analytic Varieties (S. Iitaka, ed), Adv. Stud. Pure Math, Kinokuniya, Tokyo, and North-Holland, Amsterdam 1, 131–180.
[ST01] P. Seidel and R. P. Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. J. 108 (2001), 37–107.
[Tod07] Y. Toda, On a certain generalization of spherical twists, Bulletin de la SMF 135 (2007), 97–112.
[Tod08] Stability conditions and crepant small resolutions, Trans. Amer. Math. Soc. 360 (2008), 6149–6178.

Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8583, Japan.

E-mail address: yukinobu.toda@ipmu.jp