A New Sterilization Strategy Using TiO\textsubscript{2} Nanotubes for Production of Free Radicals that Eliminate Viruses and Application of a Treatment Strategy to Combat Infections Caused by Emerging SARS-CoV-2 during the COVID-19 Pandemic

Reham Z. Hamza, Adil A. Gobouri, Hatim M. Al-Yasi, Tarek A. Al-Talhi, and Samy M. El-Megharbel

Abstract: Synthesized titanium oxide nanoparticles (TiO\textsubscript{2}-NPs) nanotubes were used for the disinfection of new emerging coronavirus-19 (SARS-CoV-2) in this study. The newly synthesized TiO\textsubscript{2}-NPs (nanotubes) were characterized by chemical spectroscopic analysis Fourier-transform infrared spectroscopy and ultraviolet FT-IR and UV. The chemical purity and Zeta potential distribution of the TiO\textsubscript{2}-NPs (nanotubes) were evaluated to confirm their nano-range, and their surface morphology was determined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), and energy dispersive X-ray analysis (EDX). The antiviral activity of the TiO\textsubscript{2}-NPs (nanotubes) against SARS-CoV-2 was evaluated using 10% (Dimethyl sulfoxide) DMSO and dist.\textsubscript{H}\textsubscript{2}O using a cytotoxicity assay and inhibitory concentration assay (to determine the cytotoxic half concentration \textit{CC}	extsubscript{50} and half maximal inhibitory concentration \textit{IC}	extsubscript{50}). The current results confirmed that TiO\textsubscript{2}-NPs exhibit strong anti-SARS-CoV-2 activity at very low cytotoxic concentrations in vitro with a non-significant selectivity index (\textit{CC}	extsubscript{50}/\textit{IC}	extsubscript{50} \leq 1). The obtained results indicate that TiO\textsubscript{2}-NPs and nanotubes have potent antiviral activity at a very low concentrations (\textit{IC}	extsubscript{50} = 568.6 ng/mL), with a weak cytotoxic effect on the cellular host (\textit{CC}	extsubscript{50} = 399.1 ng/mL). Thus, we highly recommend the use of TiO\textsubscript{2}-NPs (nanotubes) in vitro and in wall coatings as a potent disinfectant to combat SARS-CoV-2 with little irritation of the cellular hosts. Furthermore, we also recommend more and excessive prospective studies on the complexation of natural active or natural compounds with TiO\textsubscript{2}-NPs (nanotubes) to minimize their cytotoxicity, enhance their antiviral activity, and increase their inhibition of SARS-CoV-2.

Keywords: titanium oxide nanoparticles; COVID-19; SARS-CoV-2; HRTEM; SEM; TEM; cytotoxicity; 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide MTT assay; antiviral activity

1. Introduction

SARS-CoV-2 is considered a Ribonucleic acid “RNA” virus. RNA viruses cause numerous diseases, particularly in mammals, and are considered major pathogens in many diseases including Hepatitis C Virus (HCV), Ebola disease, SARS, influenza, measles and retrovirus, and human immunodeficiency virus (HIV) [1]. CoV infections first affect the upper respiratory tract of mammals. Coughing and fever are considered major symptoms of CoV infection in humans, and breathing difficulty is also evident as a result of SARS-CoV-2. COVID-19’s clinical symptoms include severe respiratory disorders caused by SARS-CoV-2, such as excessive inflammation and oxidation [2].
Viruses are small proteins containing genetic information. In the case of enveloped viruses, viruses can spread via two essential routes: by direct cell contact or through the aqueous environment [3].

SARS viruses appeared globally in 2002 and 2003. About 8000 people were infected by SARS-CoV, resulting in about 800 deaths. The effects of SARS-CoV-2 differ from those of other types of coronaviruses, and SARS-CoV-2 is spreading widely in humans. The SARS-CoV-2 situation is considered to be a pandemic, and the virus has infected millions of patients in the past year [4].

Emerging coronaviruses have drawn major global concern [5]. SARS-CoV-2 viruses are generally spherical, with a diameter varying between 70 and 140 nm, and the surfaces of SARS-CoV-2 viruses are covered in spikes [6]. SARS-CoV-2 can be transmitted from infected persons by the exhalation of SARS-CoV-2 particles, which then attach to surfaces that are touched by receiving persons [5].

Titanium oxide nanostructures (TiO$_2$-NPs) have potent antibacterial and antiviral properties, in addition to the ability to be used as drug carriers, and are widely used in modern medicine [6,7]. In animal production, these NPs are useful as an alternative to antibiotics for combating antibiotic-resistant bacteria and as growth promoters, the application and consumption of which are targeted for reduction in many countries. Additionally, metal NPs are applied to nutrient delivery, increasing meat production, increasing milk and egg quality, and increasing the quality of sperm [8].

TiO$_2$-NPs are widely used nanomaterials in a large number of applications, including painting, skincare, and cosmetic products [9]. The global output of TiO$_2$-NPs is expected to be 2.5 million tons/year by 2025 [10]. This widespread use of TiO$_2$-NPs leads to their accumulation and high release in aquatic environments [10].

Although TiO$_2$-NPs at very low concentrations are speculated to be non-toxic, toxicity has been confirmed at high doses. TiO$_2$-NPs have a strong ability to absorb other toxicants due to their large surface area. Exposure to TiO$_2$-NPs (nanostructures) is reported to inhibit growth and cause oxidative stress, injury, and impairment in some animals [9].

The potency of nanoparticles as a new class of antibacterial and antiviral drug has been considered; however, new studies of nanoparticles for combating bacterial pathogens, and Gram-positive and Gram-negative bacteria, are needed [10–12]. Greener nanoparticle assay combinations with standard drugs are of recent interest to clarify antimicrobial resistance of free toxic ions [13–15]. Various metal oxide nanoparticles are also of importance in studies; in particular, TiO$_2$-NPs (nanostructures) are considered to be safe substance by the United States Food and Drug Administration USFDA, and considered to be an element for the synthesis of nucleic acid and hemopoiesis in tissues of the body.

The current study was designed to evaluate the antiviral activity of synthesized TiO$_2$-NPs against SARS-CoV-2 by the chemical characterization of TiO$_2$ nanoparticles. We aimed to assess the use of TiO$_2$-NPs (nanostructures) as a sterilization compound against SARS-CoV-2 infection, estimate their cytotoxicity, and review prospective studies to elevate their antiviral activity.

2. Materials and Methods
2.1. Ethical Approval

The biological antiviral activity of TiO$_2$-NPs (nanotubes) was performed at the center of Scientific Excellence for Influenza Viruses, National Research Centre, 12311 Dokki, Giza on (SARS-CoV-2) (hCoV-19/Egypt/NRC-03/2020 (Accession Number on GSAID: EPI_ISL_430820). Graphical abstract for the experimental protocol and summarization of the study as shown in (Scheme 1).
2.2. Synthesis of Titanium Oxide Nanostructure

TiO$_2$-NPs were synthesized according to [16] in two steps. In the first, 0.2 M TiO$_2$ was synthesized by adding 0.80 g of TiO$_2$ to 100 mL of H$_2$O dist. and stirring for 2 h. Another solution with 10.32 g of citrate of tri-sodium (50 mL H$_2$O) was synthesized and added dropwise to the first solution. This rate was maintained for about 2 h. Then, a precipitate was produced in the solution; the precipitate was washed 3 times before centrifuging for 15 min. The precipitate was then dried in an oven at 1100 °C for about 24 h, yielding TiO$_2$-NP powder. A quantity of 20 mL HNO$_3$ solution was then mixed with the remaining samples and sonicated for 1 h, before the addition of 0.1 M of sodium tri citrate followed by 2 h sonication. The synthesized samples were then washed 4 times. TNTs were prepared using a hydrothermal process described in [17]. Then, 5 g of TiO$_2$-NPs prepared by the sol-gel method were mixed with 500 mL of a 10 M NaOH aqueous solution, followed by hydrothermal treatment at 150 °C (TNTs) in a Teflon-lined autoclave for 12 h. After the hydrothermal reaction, the treated powders were washed thoroughly with distilled water and 0.1 M HCl, and subsequently filtered and dried at 80 °C for 1 day. To achieve the desired TNT size and crystallinity, the powders were calcined in air at 500 °C for 1 h [16,17]. The resulting TiO$_2$-NPs were used to testing their activity against SARS-CoV-2.

2.3. Chemical Characterization of TiO$_2$-Nanostructures

By using tools of analysis, the shape and size of TiO$_2$-Nps were characterized using images of scanning electron microscopy (Tokyo, Japan), transmission electron microscopy (Tokyo, Japan) and high resolution transmission electron microscopy (Nakagyo-ku, Kyoto, Japan). Ti and O analysis measured using EDX. Electronic spectrum of (Nakagyo-ku, Kyoto, Japan) TiO$_2$-nanostructure was analyzed using UV-Vis spectroscopy (Nakagyo-ku, Kyoto, Japan). The IR analysis performed mixing TiO$_2$-Nanostrucure powder with KBr. The X-ray diffraction patterns were recorded on X’Pert PRO PAN-analytical X-ray powder diffraction (Nakagyo-ku, Kyoto, Japan), target copper with secondary monochromate.
2.4. Zeta Potential Measurements

It is a technique for assessment of the particle surface charge in the solution, which is directly related to the stability of the nanoparticle suspension. Zeta potential values revealed the stability of the prepared nanoparticles and nanotubes. The pH effect on the size of particles and the zeta potential distributions of TiO$_2$-Nps (nanostructures) were evaluated by using pH from 5 to 12 by drop wise addition of solutions of 0.1 M NaOH or HCl.

2.5. Cytotoxicity Assay

To evaluate the cytotoxic half concentration (CC$_{50}$) (maximal) of TiO$_2$-NPs, stock solutions of TiO$_2$-NPs in 10% concentration of DMSO were prepared in “dist.H$_2$O” and diluted to the solutions of Dulbecco’s Modified Eagle Medium DMEM. Cytotoxic activity of TiO$_2$-NPs was evaluated and tested in VERO-E6 cells by using MTT assay. VERO-E6 cells were completely seeded in (3 × 105 cells/mL, about 100 µL/each well) concentration, then incubated for 24 h in CO$_2$ (5%) at 37 °C for (24 h) later, VERO-E6 cells, the host for SARS-CoV-2 were treated with different concentrations of TiO$_2$-NPs in triplicates. Then, the upper supernatants were completely discarded, and the monolayers were excessively washed with sterile (PBS) buffer phosphate saline for (3 times) and addition of (20 µL of TiO$_2$-NPs) of MTT solution to 96 well-plates and incubated for about 4 h at 37 °C. The formed crystals of formazan were dissolved with isopropanol treated with HCl. Their absorbance was measured at λ max 540 nm with 620 nm as a reference λ by using a multi-well plate reader (Nakagyo-ku, Kyoto, Japan). The % of cytotoxicity as compared to the untreated cells was determined by the following Equation (1).

The % cytotoxicity against sample conc. was used to calculate the conc. which exhibited 50% of the cellular cytotoxicity (CC$_{50}$).

\[
\% \text{ cytotoxicity} = \frac{(\text{absorbance of cells without treatment} - \text{absorbance of cells with treatment}) \times 100}{\text{absorbance of cells without treatment}} \quad (1)
\]

2.6. Determination of Inhibitory Concentration 50% (IC$_{50}$)

In plates (96-well) of the tissue cultures, 2.4 × 104 Vero-E6 cells were distributed in the wells and incubated overnight at a humidified 37 °C incubator under 5% CO$_2$. The cellular monolayers were then washed twice with PBS “1×” and subjected to virus adsorption (Accession Number: EPI_ISL_430820) for about 1 h at 37 °C. The cellular monolayers were overlaid with approximately 100 µL of DMEM which containing different concentrations of TiO$_2$-NPs. After the incubation in CO$_2$ incubator for about 72 h, VERO-E6 cells were treated with paraformaldehyde for about 20 min and stained with staining of crystal violet in dist.H$_2$O for about 15 min at 37 °C. A total of 100 µL methanol (100%) was used for each well for dissolving the crystal violet dye and the color optical intensity of TiO$_2$-NPs was measured at 570 nm by using plate reader (Anthos Zenyth 200rt, The Netherlands). IC$_{50}$ of TiO$_2$-NPs (nanotubes) is needed to decrease cytopathic effect of SARS-CoV-2-induced by about 50%, relative to control SRAS-CoV-2.

3. Results and Discussion

3.1. Infrared Spectrum of Synthesized TiO$_2$-NPs

The spectrum of infrared for TiO$_2$-NPs provides spectral peaks started from 551 to 419 cm$^{-1}$; where the strong bands at 433 and 419 cm$^{-1}$ can be attributed to the stretching vibration mode of Ti-O (Figure 1) [18].
3.2. Electronic Spectrum of TiO$_2$-NPs

The UV–Vis absorption spectra of the synthesized TiO$_2$-NPs (nanostructures) yielded a broad absorption spectrum that appeared at a wavelength of 350 nm. This result is consistent with those in the literature [19]. Figure 2 shows the electronic spectrum of TiO$_2$-NPs. The electronic spectrum of TiO$_2$ is shown in Figure 3, after heating at 150 °C. The peak refers to titanium oxide produced, strong peak resulted at wavelength of 350 nm. This was due to the band intrinsic absorption gap for titanium oxide produced due to the electronic transition from the valence band to the conduction band [20]. The band gap energy (E_g) of titanium oxide is estimated according to $E_g = \frac{hc}{\lambda}$, where c is the light speed, equal to 3×10^8 m/s; h is the constant plank, equal to 6.626×10^{-34} Js; and λ is the wavelength (m) [21,22]. The energy of band gap is equal to 3.26 eV.
Figure 3. (a,b) Zeta size distribution and potential of titanium nanostructures TiO$_2$-NPs.

3.3. Zeta Potential and Size Distribution Intensity

The diameter of TiO$_2$-NPs (nanostructures) and Zeta potential in dist. H$_2$O at pH value of ~7.36 determined by ultrasonication using Dynamic light scattering DLS of prepared dispersions using 0.2 mg of TiO$_2$-NPs in 10 mL of H$_2$O deionized. TiO$_2$-NPs (nanostructures) particles’ diameter average of TiO$_2$-NPs was measured to be 470.6 nm with zeta potential of -5.92 mV and Polydispersity index pdI = 0.364. Zeta potential and size of particles TiO$_2$-NPs were determined (Figure 3a,b) using pH 6−12 and the zeta potential decreases while the size of particles increases by increasing the pH. Measurements of TiO$_2$-NPs (nanostructures) surface area attributed to at various TiO$_2$-NPs (nanostructures) burning temperatures occurred by N$_2$-adsorption of N$_2$ at 77 K. As temperature of calcination elevated from (29 m$^2\cdot$g$^{-1}$) for 82 ± 10 nm TiO$_2$-NPs (nanostructures) at 100 °C to (7 m$^2\cdot$g$^{-1}$) for 265 ± 8 nm at 600 °C surface area of TiO$_2$-NPs (nanostructures) decreased which is convenient with a previous study [20].

3.4. Zeta Size Measurements

Table 1 shows the mean particle size or the average dynamic sizes of the TiO$_2$-NPs (nanostructures) were found 953.6 d·nm with pdI equal to 0.526.

Table 1. Zeta potential and particles size analysis.

Aspect	PdI	Z-Average (d·nm)	Zeta Potential (mV)
Value	0.526	953.6	-1.02
3.5. Scanning Electron Microscope (SEM)

Figure 4a,b represents a scanning electron microscopy (SEM) image of TiO$_2$-NPs (nanostructures). The morphology of the TiO$_2$-NPs (nanotubes) was examined, and the size of the grains was nearly uniform. The morphology surfaces of the prepared TiO$_2$-NPs (nanostructures) powders were measured using SEM analytical techniques, such as wide plates and nodes with homogenously sized distributions for TiO$_2$-NPs. Figure 4b shows an FE-SEM image of the sample anatase TiO$_2$-NPs nanotubes, which were grown at 150 °C for 12 h, and exhibit a pure tube-like structure. The length of the TiO$_2$-NPs nanotubes is several micrometers, their diameter is approximately 50 to 100 nm, and they are very uniform, relatively clean, and smooth-surfaced. Figure 3 shows the surface morphology of the electrode film on the FTO glass. Chemical composition analysis by EDX confirmed the Ti and O peaks in the TiO$_2$-NPs (nanostructures). The sample elemental analysis resulted in values of 78% for Ti and 20% for O, which confirms the high purity of TiO$_2$-NPs (nanotubes) [21,22].

![Figure 4a](image1.png)
![Figure 4b](image2.png)

Figure 4. (a,b) Scanning Electron microscope (SEM) of titanium nanostructures TiO$_2$-NPs and TiO$_2$-nanotubes.

3.6. Transmission Electron Microscope (TEM) and High Resolution Transmittance Electron Micrographs (HRTEM) of TiO$_2$-NPs

The morphology of the TiO$_2$-NPs (nanostructures) sample was determined by using TEM. Figure 5a,b shows a typical TEM image of the TiO$_2$-NPs. The size and morphology of the TiO$_2$-NPs (nanostructures) were estimated using HRTEM micrographs. TiO$_2$-NP nanoparticles were found in the 40–60 nm range with a spherical to polygonal medium. HRTEM Figure 6a,b showed a lattice space of 0.22 for TiO$_2$ planes.
3.7. XRD of TiO$_2$-Nanotubes

XRD for TiO$_2$-NPs (nanostructures) is shown in Figure 7a which provides the sol-gel pattern at 450 °C, confirming the presence of anatase and rutile phases' mixture. Prominent anatase peaks and prominent rutile peaks of TiO$_2$-NPs (nanostructures) clearly presented using XRD pattern confirming the nanoparticle structure. The patterns of the TiO$_2$-NPs (nanostructures) clearly presented using XRD pattern confirming the nanoparticle structure. The patterns of the TiO$_2$-NPs (nanostructures) clearly presented using XRD pattern confirming the nanoparticle structure.

Figure 5. (a,b) Transmission Electron microscope (TEM) of titanium nanostructures TiO$_2$-NPs (100 and 200 nm).

Figure 6. (a,b) High resolution transmission electron microscope (HR-TEM) images of titanium nanostructures TiO$_2$-NPs.
3.7. XRD of TiO$_2$-Nanotubes

XRD for TiO$_2$-NPs (nanostructures) which provides the sol-gel pattern at 450 °C, confirming the presence of anatase and rutile phases’ mixture. Prominent anatase peaks and prominent rutile peaks of TiO$_2$-NPs (nanostructures) clearly presented using XRD pattern confirming the nanoparticle structure. The patterns of the TiO$_2$ nanotube films prepared at a hydrothermal temperature of 180 °C for 14 h are shown in Figure 7. By the hydrothermal method, TiO$_2$ nanoparticles were observed to be transformed into the anatase phase. From XRD patterns, the TiO$_2$-NPs (nanostructures) possess crystallized highly anatase structure with high degree of purity. The rutile peaks for TiO$_2$-NPs nanotubes, refers to complete transformation to anatase.

![Figure 7](image_url).

3.8. Cytotoxicity of TiO$_2$-NPs and Inhibition Activity against SARS-CoV-2

TiO$_2$-NPs showed potent antiviral activity against SARS-CoV-2 in very low concentration of 568.6 ng/mL. The MTT assay was used to evaluate potential cell cytotoxicity of TiO$_2$-NPs. The results showed that 399.1 ng/mL of TiO$_2$-NPs significantly reduced the viability of VERO-E6 cells (Figure 8).

3.9. Anti-Viral Activity and Cytotoxicity of Titanium Oxide Nanoparticles and Inhibition Activity Against SARS-CoV-2

TiO$_2$-NPs (nanotubes) showed potent antiviral activity against SARS-CoV-2 in very low concentration of 568.6 ng/mL, by using MTT assay to elucidate the potential cell cytotoxicity of TiO$_2$-NPs. The results showed that 399.1 ng/mL of TiO$_2$-NPs (nanostructures) significantly reduced the viability of VERO-E6 cells as shown in (Figure 8) and images of the host cells “Vero-E6” cell after the incubation with SARS-CoV-2 (after the stage of infection) which showed a high potent anti-viral activity of TiO$_2$-NPs against SARS-Cov-2, the cells’ sheet that was treated with TiO$_2$-NPs showing enlarged holes and patches around SRAS-CoV-2 as shown in (Figure 8A–C).
the host cells “Vero-E6” cell after the incubation with SARS-CoV-2 (after the stage of infection) which showed a high potent anti-viral activity of TiO$_2$-NPs against SARS-CoV-2, the cells’ sheet that was treated with TiO$_2$-NPs showing enlarged holes and patches around SRAS-CoV-2 as shown in (Figure 9A–C).

Figure 9. (A–C) Images for Vero-E6 host cells (After infection) after the incubation with SARS-CoV-2 and treated with TiO$_2$-NPs which showed potent anti-viral activity of TiO$_2$-NPs against SARS–Cov-2, the sheet of cells treated with TiO$_2$-NPs showing high enlarged patches around SRAS-CoV-2 cells, thus demonstrating the ability of TiO$_2$-NPs (nanostructures) to disinfect SARS-CoV-2 and offer a high level of inhibition to its growth. Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) (hCoV-19/Egypt/NRC-03/2020).

Differences between zinc oxide nanoparticles (ZnO-NPs) inhibition activity [23–27] on SARS-CoV-2 cells as cited in our previous work [28] and inhibition activity of titanium oxide nanoparticles and its nanotubes (TiO$_2$-NPs) as shown in Table 2 clarified that TiO$_2$-NPs has more potent antiviral activity against SARS-CoV-2 than ZnO-NPs, and showed a higher CC$_{50}$/IC$_{50}$ ratio in TiO$_2$-NPs (0.7) than ZnO-NPs.

Table 2. Comparison between inhibition activity for SARS-CoV-2 (differences between antiviral activity of both nanoparticles against SARS-CoV-2).

Aspect	Zinc Oxide Nanoparticles	Titanium Oxide Nanoparticles
CC$_{50}$	292.2 ng/mL [28]	399.1 ng/mL
IC$_{50}$	526 ng/mL [28]	568.6 ng/mL
CC$_{50}$/IC$_{50}$ ratio	0.55	0.70

Inhibition activity of SARS-CoV-2 (Antiviral activity)

ZnO-NPs < TiO$_2$-NPs (Titanium oxide nanoparticles possess antiviral activity in concentration 586.6 ng/mL more than Zinc oxide nanoparticles concentration 526 ng/mL, this means that ZnO-NPs induced anti-viral activity in concentration less than TiO$_2$-NPs but TiO$_2$-NPs induced less cytotoxicity than ZnO-NPs and this means that TiO$_2$-NPs has antiviral activity against SARS-CoV-2 and it is safer than ZnO-NPs with less cytotoxicity).
4. Discussion

Viral prevention remains a major objective for the maintenance of human health, and the essential concept is the inhibition of viral replication. Current antivirals have been weakened due to the elevation of drug resistance, particularly during the COVID-19 pandemic [23]. Thus, the release of new effective anti-COVID-19 treatments is urgently needed.

Nanoparticles provide significant benefits because they are highly effective as antiviral agents, even in low concentrations. In addition, nanoparticles have vital characteristics that ensure their suitability for different types of coating [24–27].

The present study reported that TiO$_2$-NPs (nanostructures) have potent anti-SARS-CoV-2 activity with very low cytotoxicity, as indicated by their SI value (IC$_{50}$/CC$_{50}$ ≤ 1). This finding is consistent with [16], who revealed that TiO$_2$-NPs (nanostructures) have stronger antiviral activity and low cytotoxicity when coated with Polyethylene Glycated -NPs, compared to TiO$_2$-NPs alone. Results of the current study thus highlight the use of TiO$_2$-NPs as a disinfecting agent against SARS-CoV-2 with low cytotoxicity. Similarly, we suggest using TiO$_2$-NPs (nanostructures) coated with Polyethylene Glycated (polyethylene Glycated), which plays a major role in enhancing and elevating the antiviral activity against SARS-CoV-2 virus, and may reduce the cellular cytotoxicity of TiO$_2$-NPs (nanostructures) for the host cells.

Additional confirmation of our findings and suggestion to coat TiO$_2$-NPs (nanotubes) was provided in our previous research [28]. A recent explanation is that TiO$_2$-NPs produce Ti$^{2+}$ ions and thus produce a large quantity of reactive oxygen species (ROS); these free radicals can damage proteins, lipids, carbohydrates, and DNA, and eventually lead to cellular apoptosis [29,30]. Therefore, we suggest coating TiO$_2$-NPs (nanostructures) with polyethylene glycol or natural active compounds that can provide strong anti-SARS-CoV-2 activity to reduce cytotoxicity and prevent the release of reactive oxygen by the masking of TiO$_2$-NPs (nanostructures).

Nanoscience has recently identified an essential vital role of nanoparticle agents due to their direct inhibition of a wide range of microbes. Nanoparticles such as TiO$_2$-NPs (nanotubes) are considered to be effective agents for carrying a large number of drugs and vaccines. Additionally, the size of nanomaterials accelerates their drug delivery involvement due to their surface functions. As a result, nanoparticles have the capability to co-transport drugs and numerous agents [31].

The relationship between SARS-CoV-2A and this vital aspect of nanomaterials is evidence of the competitive ability of the host with a viral binding surface cellular receptor because receptors of ACE2 are essential in the action of SARS-CoV-2 entering host cells [32]. Hence, blocking of ACE2 receptors could help in fighting SARS-CoV-2 [33]. Therefore, preventing SARS-CoV-2 infection in host cells plays an important role in combating viral infection. To prevent viruses entering the human body, it is important to prepare nano-formulas using recently developed nanotechnology to prevent viral entry via ACE2 receptors [34]. Additionally, the catalytic activity and stability of ACE can be enhanced using nanoparticles to inhibit entry of SARS-CoV-2 [34,35]. Therefore, if TiO$_2$-NPs (nanotubes) are used in coatings for hospitals walls, the spread of SARS-CoV-2 may be significantly reduced. Thus, we proposed a hypothetical antiviral mechanism for TiO$_2$-NPs [36–39], including ACE2, which is able to block the SARS-CoV-2 entry into the cellular host by inhibiting its attachment to the ACE2 receptors [40].

The current finding broadly supports our previous work [28], which revealed that metal nanoparticles, ZnO-NPs, demonstrated significant activity against different types of microorganisms, including most viruses. The reported mechanism was the same as that shown in the current study; however, TiO$_2$-NPs revealed more antiviral activity with less cytotoxicity than ZnO-NPs.

As indicated in previous studies [17], TiO$_2$-NPs (nanostructures) have attracted increasing attention as an antimicrobial agent. TiO$_2$-NPs (nanostructures) have the ability to bind to the bacterial cellular wall and can enter the cellular membrane via a significant
number of modifications, resulting in bacterial cellular death [41]. Another mechanism is the development of “pits” at the cellular surface, resulting in the accumulation of TiO$_2$-NPs (nanostructures) [42], in turn leading to the accumulation of free radicals that cause cellular death [43,44]. Due to the global COVID-19 pandemic, the transmission of the SARS-CoV-2 virus largely occurs by direct viral attachment to cellular hosts. TiO$_2$ will be of significant benefit by inducing the triggering of free radicals on the viral cell surface and thus causing the death of the virus. This concept confirms our findings relating to the anti-SARS-CoV-2 and inhibition activities in very low concentrations, and is considered to be a promising result.

The results of the current study are consistent with the findings of [45], who demonstrated that TiO$_2$-NPs (nanostructures) have a large number of potential applications due to their high chemical stability, wide photoactivity, high pH range, and the presence of numerous active adsorption sites on their surface, which may help in absorbing pollutants. Due to their high photoactivity, TiO$_2$-NPs (nanostructures) are widely applied to the removal of water pollutants in water treatment.

TiO$_2$ has a wide range of antimicrobial activity, as shown in several studies using TiO$_2$ against different types of microorganisms, such as viruses [46,47]. The efficiency of TiO$_2$-NPs (nanotubes) is related to their surface reactions, surface morphology, and surface size ratio [48]. Researchers have focused on TiO$_2$ synthesis with new features that make it suitable for a large number of green environmental applications, such as the effective control of viral infections. Negatively charged TiO$_2$-NPs (nanostructures) can block viruses and inhibit their attachment to host cells.

It was somewhat unexpected to obtain data that confirm the anti-COVID-19 activity of TiO$_2$-NPs (nanotubes) with low cytotoxicity. These findings verify the anti-SARS-CoV-2 activity of TiO$_2$-NPs at a low concentration (568.6 ng/mL) with low cytotoxicity, which can be alleviated by coating TiO$_2$-NPs (nanotubes) with natural active compounds or polymeric compounds, such as PEGylated. These coatings may reduce the diameter of the particles and moderate the triggering of cytotoxic effects of ROS on the cellular host, thus achieving effective anti-SARS-CoV-2 action in low concentrations. These findings reveal the potential for the use of TiO$_2$-NPs (nanostructures) to combat COVID-19.

The use of metal oxides in nanotechnology represents a new strategy for combatting microorganisms, owing to direct antiviral activity or enhancing an organism’s resistance to the pathogen. In this study, the ability of TiO$_2$-NPs (nanostructures) to inhibit SARS-CoV-2 and, thus, their antiviral activity were tested. The results showed a significant decline in virus activity. In addition, our results also showed the high efficacy of TiO$_2$-NPs nanotubes.

Previous studies showed that hepatic enzymes were elevated in experiments on male rats, indicating that damage had occurred in the plasma membrane structure due to the presence of reactive oxygen species (ROS) produced during the oxidative stress. These results are in agreement with El-Shenawy et al. [49] who found that the elevation of hepatic enzymes could be due to oxidative stress induced by TiO$_2$ nanostructures, which caused an imbalance in the permeability of the plasma membrane. Elevated levels of serum hepatic enzymes are indicative of cellular leakage and the loss of the functional integrity of cell membranes in tissues, which, in turn, signify tissue injury [49].

Different metal oxide nanotubes have been developed using different methodologies, precursors, and fibers. TiO$_2$-NPs nanotubes have been obtained using different techniques [23–25]. However, no development has been carried out with antiviral purposes, particularly against the SARS-CoV-2 virus.

TiO$_2$ is one of the most widely applied nanomaterials and is extensively used in food applications [50]. TiO$_2$-NPs nanostructures have been previously developed with antimicrobial goals. TiO$_2$ nanotubes have been shown to reduce *E. coli* and *S. aureus*. Recently, Jian et al. developed TiO$_2$ and silver loaded-TiO$_2$ antibacterial agents using the sol-assay method with minimal inhibition concentration [51,52].

TiO$_2$-NPs (nanostructures) have been reported to induce the excessive production of free radicals and thus cause oxidative stress and a series of inflammatory processes and
cytotoxicity [53]. These findings are in accordance with the current findings, which showed that prepared TiO$_2$-NPs nanotubes induced excessive free radicals, resulting in oxidative stress that may induce cytotoxicity in the context of SARS-CoV-2.

Despite the promising properties of TiO$_2$-NPs (nanostructures), research is underway to change the NPs’ surfaces’ characteristics in order to elevate the efficiency of reactive oxygen species generation and to improve its chemical properties. Surface-modified TiO$_2$-NPs can make it to be doped with various metal ions [54] or combined with various dyes [55,56] and this will very helpful for coatings of walls with this new synthesized nanotubes of TiO$_2$-NPs (nanostructures) that can give sterilization option for coatings. Surface complexes that enhancing TiO$_2$ as photosensitizers include transition metals. Inorganic ligands, such as CN$^-$, F$^-$, PO$_4^{3-}$ can also link surface titanium. If the molecule absorbs a photon with energy higher than its value, it passes to an excited state and can trigger more electrons that are negatively charged in the conduction band, leaving positively charged holes in the valence band. Free \dot{e} may attack surrounding O$_2$ and H$_2$O molecules to form reactive oxygen species, including superoxide (O$_2^-$), (H$_2$O$_2$), and hydroxyl radical (\bulletOH) [57]. These forms of superoxides are highly unstable in the biological systems and react with the cellular components causing necrotic cell death or apoptotic. It has also been proven that TiO$_2$-NPs (nanostructures) inhibit bacterial multidrug resistance [36]. Human health threats from SARS viruses have been present over time. Uncontrolled bat, avian mouse and human SARS-CoV- dispersal can impact both global public health and economic stability [58]. All these finding confirmed the obtained results and recommend using synthesized (TiO$_2$-NPS) (nanostructures) as a sterilization agent against SARS-CoV-2.

5. Conclusions

TiO$_2$-NPs (nanostructures) were fully chemically characterized using different spectroscopic tools. The synthesized titanium nanotubes have a potent antiviral activity against SARS-CoV-2 at low concentration and can trigger many free radicals that may cause oxidative stress to SARS-CoV-2, which is a very promising result in combating SARS-CoV-2.

Thus, we recommend more prospective studies applied to TiO$_2$-NPs immobilization with other active compounds that may reduce this cytotoxicity and enhance its anti-SARS-CoV-2 activity.

Author Contributions: Conceptualization, R.Z.H., A.A.G., H.M.A.-Y. and S.M.E.-M.; Data curation, A.A.G. and S.M.E.-M.; Formal analysis, R.Z.H., H.M.A.-Y., T.A.A.-T. and S.M.E.-M.; Funding acquisition, R.Z.H. and A.A.G.; Investigation, R.Z.H., A.A.G., H.M.A.-Y. and S.M.E.-M.; Methodology, R.Z.H., H.M.A.-Y. and S.M.E.-M.; Project administration, A.A.G., H.M.A.-Y., T.A.A.-T. and S.M.E.-M.; Resources, R.Z.H., H.M.A.-Y., T.A.A.-T. and S.M.E.-M.; Software, R.Z.H., A.A.G. and S.M.E.-M.; Validation, S.M.E.-M.; Visualization, R.Z.H., A.A.G., H.M.A.-Y., T.A.A.-T. and S.M.E.-M.; Writing—original draft, R.Z.H., A.A.G., H.M.A.-Y. and S.M.E.-M.; Writing—review & editing, R.Z.H., A.A.G., H.M.A.-Y., T.A.A.-T. and S.M.E.-M. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Research Groups program funded by Deanship of the scientific research, Taif University, Ministry of Education, Saudi Arabia, under Grant I-441-24.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Authors acknowledge to Deanship of scientific research in Taif University for support.

Conflicts of Interest: The authors declare that there are no conflict of interest.
References

1. Perlman, S.; Netland, J. Coronaviruses post-SARS: Update on replication and pathogenesis. Nat. Rev. Microbiol. 2009, 7, 439–450. [CrossRef]

2. Zhang, B.; Zhou, X.; Zhu, C.; Feng, F.; Qiu, Y.; Feng, J.; Jia, Q.; Song, Q.; Zhu, B.; Wang, J. Immune phenotyping based on neutrophil-lymphocyte ratio and IgG predicts disease severity and outcome for patients with COVID-19. medRxiv 2020, 7, 157.

3. Tsueno, I. Anti-viral vaccine activity of zinc (II) for viral prevention, entry, replication, and spreading during pathogenesis process. Curr. Trends Biomed. Eng. Biosci. 2019, 1, 1–6.

4. Hamza, R.Z.; Al-Talhi, T.A.; Gobouri, A.; Al-Sanie, W.; El-Megharbel, S.M. Are favipiravir and acyclovir with IgG injections supplemented with vitamin D “suggested therapeutic option” can fight against COVID-19? Adv. Anim. Vet. Sci. 2021, 9, 549–554.

5. Jialiang, Z.; Zexu, H.; Fatemeh, Z.; Zhigang, C.; Meifang, Z. Progress and perspective of antiviral protective material. Adv. Fiber Mater. 2020, 2, 123–139.

6. Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [CrossRef] [PubMed]

7. Baranowska-Wójcik, E.; Szwaigier, D.; Oleszczuk, P.; Winiarska-Mieczan, A. Effects of titanium dioxide nanoparticles exposure on human health—A review. Biol. Trace Elem. Res. 2020, 193, 118–129. [CrossRef] [PubMed]

8. Hamza, R.Z.; Diab, A.A. Testicular protective and antioxidant effects of selenium nanoparticles on monosodium glutamate-induced testicular structure alterations in male mice. Toxicol. Rep. 2020, 7, 254–260. [CrossRef]

9. Hussein, M.M.A.; Gad, E.; Ahmed, M.M.; Arisha, A.A.; Mahdy, H.F.; Swelum, A.A.A.; Tukur, H.A.; Saadeldin, I.M. Amelioration of titanium dioxide nanoparticle reprotoxicity by the antioxidants morin and rutin. Environ. Sci. Pollut. Res. 2019, 26, 29074–29084. [CrossRef]

10. Cheng, H.; Yan, W.; Wu, Q.; Lu, J.; Liu, C.; Hung, T.C.; Li, G. Adverse reproductive performance in zebrafish with increased bioconcentration of microcystin-LR in the presence of titanium dioxide nanoparticles. Environ. Sci. Nano. 2018, 5, 1208–1217. [CrossRef]

11. Ruddaraju, L.K.; Pammi, S.V.N.; Sankar, G.G.; Padavala, V.S.; Kolapalli, V.R.M. A review on anti-bacterials to combat resistance: From ancient era of plants and metals to present and future perspectives of green nano technological combinations. Asian J. Pharm. Sci. 2019. [CrossRef] [PubMed]

12. Raghunath, A.; Perumal, E. Metal oxide nanoparticles as antimicrobial agents: A prospect for the future. Int. J. Antimicrob. Agents. 2017, 49, 137–152. [CrossRef] [PubMed]

13. Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227–1249. [CrossRef] [PubMed]

14. Baker, S.; Pasha, A.; Satish, S. Biogenic nanoparticles bearing antibacterial activity and their synergistic effect with broad spectrum antibiotics: Emerging strategy to combat drug resistant pathogens. Saudi Pharm. J. 2017, 25, 44–51. [CrossRef]

15. Fayaz, A.M.; Balaji, K.; Girilal, M.; Yadav, R.; Kalaichelvan, P.T.; Venketeswan, R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. Biol. Medicine. 2010, 6, 103–109. [CrossRef] [PubMed]

16. Sara, A.; Khuram, S.; Sadaf, M.; Iftikhar, A.; Muhammad, H.R.; Syed Muhammad, F. Antibacterial and antiviral potential of colloidal Titanium dioxide (TiO2) nanoparticles suitable for biological applications. Mater. Res. Express 2019, 6, 105409. [CrossRef]

17. Alexandros, B.; Tracy, De Peralta.; Richard, D.H. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology 2014, 8, 1–16.

18. Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96. [CrossRef]

19. Bagheri, S.; Chandrappa, K.; Hamid, S.B.A. Facile synthesis of nano-sized ZnO by direct precipitation method. Pharm. Chem. 2013, 5, 265–270.

20. Hamza, R.Z.; Al-Salmi, F.A.; El-Shenawy, N.S. Zinc oxide nanoparticles with green tea extract complex in the pancreas of rats against monoclonal glioblastoma metastasis. J. Basic Clin. Physiol. Pharmacol. 2020. [CrossRef]

21. Bagabas, A.; Alshammari, A.; Aboud, M.F.; Kosslick, H. Room temperature synthesis of zinc oxide nanoparticles in different media and their application in cyanide photodegradation. Nanoscale Res. Lett. 2013, 8, 1–10. [CrossRef] [PubMed]

22. Nagarajan, S.; Kuppusamy, K.A. Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar. India. J. Nanobiotechnol. 2013, 11, 39. [CrossRef] [PubMed]

23. Salahuddin, N.A.; El-Kemary, M.; Ibrahim, E.M. Synthesis and characterization of ZnO nanoparticles via precipitation method: Effect of annealing temperature on particle size. Nanosci. Nanotechnol. 2015, 5, 82–88.

24. Makau, J.N.; Watanabe, K.; Mohmed, M.M.; Nishida, N. Antiviral activity of peanut (Arachis hypogaea L.) skin extract against human influenza viruses. J. Med. Food 2018, 21, 777–784. [CrossRef] [PubMed]

25. Tavakoli, A.; Aaehi-Pirkooh, A.; Mm Sadeghi, G.; Bokharaei-Salim, F.; Sahrapour, P.; Kiani, S.J.; Moghooefi, M.; Farahmand, M.; Javanmard, D.; Monavari, S.H. Polyethylene glycol-coated zinc oxide nanoparticle: An efficient nanoweapon to fight against herpes simplex virus type 1. Nanomedicine 2018, 13, 2675–2690. [CrossRef] [PubMed]

26. Reed, L.J.; Muench, H.A. simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [CrossRef]
27. Zhou, J.; Zhao, F.; Wang, Y.; Zhang, Y.; Yang, L. Size-controlled synthesis of ZnO nanoparticles and their photoluminescence properties. J. Lumin. 2007, 122, 195–197. [CrossRef]
28. El-Megharbel, S.M.; Alsawat, M.; Al-Salmi, F.A.; Hamza, R.Z. Utilizing of (zinc oxide nano-spray) for disinfection against “SARS-CoV-2” and testing its biological effectiveness on some biochemical parameters during (COVID-19 pandemic)—“ZnO nanoparticles have antiviral activity against (SARS-CoV-2)”. Coatings 2021, 11, 388. [CrossRef]
29. Ghaffari, H.; Tavakoli, A.; Abdolvahab, M.; Aljain, T.; Bokharaei-Salim, F.; Masoumeh, Z.; Mohammad, F.; Davod, J.; Seyed, J.K.; Esghai, M.; et al. Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: Another emerging application of nanomedicine. J. Biomed. Sci. 2019, 26, 1–10. [CrossRef]
30. Siddiqi, K.S.; Rahman, A.; Husen, A. Properties of zinc oxide nanoparticles and their activity against microbres. Nanoscale Res. Lett. 2018, 13, 141. [CrossRef]
31. Sangiliyandi, G.; Muhammad, Q.; Youngsko, C.; Jeong, T.D.; Chanky, P.; Kwonho, H.; Jin-Hoi, K.; Hyuk, S. Antiviral potential of nanoparticles—Can nanoparticles fight against coronaviruses? Nanomaterials 2020, 10, 1645.
32. Verdeccchia, P.; Angeli, F.; Reboldi, G. Angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers and coronavirus. J. Hypertens. 2020, 5, 1020–1026.
33. Jessup, J.A.; Gallagher, P.E.; Averill, D.B.; Brosnihan, K.B.; Tallant, E.A.; Chappell, M.C.; Ferrario, C.M. Effect of angiotensin II blockade on a new congeneric model of hypertension derived from transgenic Ren-2 rats. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, 2166–2172. [CrossRef]
34. Paolo, V.; Claudio, C.; Antonio, S.; Fabio, A. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur. J. Intern. Med. 2020, 76, 14–20.
35. Kenney, P.; Hilberg, O.; Laursen, A.C.; Peel, R.G.; Sigsgaard, T. Preventive effect of nasal filters on allergic rhinitis: A randomized, placebo-controlled crossover park study. J. Allergy Clin. Immunol. 2015, 136, 1566–1572. [CrossRef]
36. Maness, P.C.; Smolinski, S.; Blake, D.M.; Huang, Z.; Wolfrum, E.J.; Jacoby, W.A. Bactericidal activity of photocatalytic TiO2 reaction: Toward an understanding of its killing mechanism. Appl. Environ. Microbiol. 1999, 65, 4049–4048.
37. Kim, B.; Kim, D.; Cho, D.; Cho, S. Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere 2003, 52, 277–281. [CrossRef]
38. Hajipour, M.J.; Fromm, K.M.; Ashkarran, A.A.; de Aberasturi, D.J.; de Larremendi, I.R.; Rojo, T.; Serpooshan, V.; Parak, W.J.; Mahmoudi, M. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012, 30, 499–511. [CrossRef]
39. Fenoglio, I.; Greco, G.; Livraghi, S.; Fubini, B. Non-UV induced radical reactions at the surface of TiO2 nanoparticles that may trigger toxic responses chemistry. A Eur. J. 2009, 15, 4614–4621. [CrossRef]
40. Li, W.; Hulswit, R.J.G.; Kenney, S.P.; Widijaya, I.; Jung, K.; Alhamo, M.A.; van Dieren, B.; van Kuppeveld, F.J.M.; Saif, L.J.; Bosch, J.B. Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility. Proc. Natl. Acad. Sci. USA 2018, 115, E5135–E5143. [CrossRef]
41. Imai, Y.; Kuba, K.; Rao, S.; Huang, Y.; Guo, F.; Guan, B.; Yang, P.; Sarao, R.; Wada, T.; Leong-Poi, H.; et al. Angiotensin-converting enzyme 2 protease from severe acute lung failure. Nature 2005, 436, 112–116. [CrossRef]
42. Aydemir, D.; Ulusu, N.N. Correspondence: Angiotensin-converting enzyme 2 coated nanoparticles containing respiratory masks, chewing gums and nasal filters may be used for protection against COVID-19 infection. Travel Med. Infect. Dis. 2020, 37, 101697. [CrossRef]
43. Refat, M.S.; Hamza, R.Z.; Adam, A.M.A.; Saad, H.A.; Gobouri, A.A.; Al-Salmi, F.A.; Altalhi, T.A.; El-Meghaber, S.M. Potential Therapeutic Effects of New Ruthenium (III) Complex with Quercetin: Characterization, Structure, Gene Regulation, and Antitumor and Anti-Inflammatory Studies (RuIII/Q Novel Complex Is a Potent Immunoprotective Agent). Crystals 2021, 11, 367. [CrossRef]
44. Hamza, R.Z.; Al-Harbi, M.S.; Al-Hazaa, M.A. Neurological Alterations and Testicular Damages in Aging Induced by D-Galactose and Neuro and Testicular Protective Effects of Combinations of Chitosan Nanoparticles, Resveratrol and Quercetin in Male Mice. Coatings 2021, 11, 435. [CrossRef]
45. Elsharkawy, M.M.; Derbalah, A. Antiviral activity of titanium dioxide nanostructures as a control strategy for broad bean strain virus in faba bean. Pest Manag. Sci. 2018, 75, 828–834. [CrossRef] [PubMed]
46. Blake, D.M.; Maness, P.C.; Huang, Z.; Wolfrum, E.J.; Huang, J.; Jacoby, W.A. Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells. Sep. Purif. Rev. 1999, 28, 1–50. [CrossRef]
47. Makowski, A.; Wardas, W. Photocatalytic degradation of toxins secreted to water by cyanobacteria and unicellular algae and photocatalytic degradation of the cells of selected microorganisms. Curr. Top. Biophys. 2001, 25, 19–25.
48. Adán, C.; Marugán, J.; Sánchez, E.; Pablos, C.; Grieken, R. Understanding the effect of morphology on the photocatalytic activity of TiO2 nanotube array electrodes. Electrochim. Acta 2016, 191, 521–529. [CrossRef]
49. El-Shenawy, N.S.; Al-Harbi, M.S.; Hamza, R.Z. Effect of vitamin E and selenium separately and in combination on biochemical, immunological and histological changes induced by sodium azide in male mice. Exp. Toxicol. Pathol. 2015, 67, 65–76. [CrossRef]
50. De di castillo, C.L.; Patino, C.; Galotto, M.; Palma, J.L.; Alburquerque, D.; Escrig, J. Novel antimicrobial titanium dioxide nanotubes obtained through a combination of atomic layer deposition and electrosprining technologies. Nanomaterials 2018, 8, 128. [CrossRef] [PubMed]
51. Jiang, X.; Lv, B.; Wang, Y.; Shen, Q.; Wang, X. Bactericidal mechanisms and effector targets of TiO2 and Ag-TiO2 against Staphylococcus aureus. J. Med. Microbiol. 2017, 66, 440. [CrossRef]
52. Dudeofi, W.; Moniz, K.; Allen-Vercoe, E.; Ropers, M.-H.; Walker, V.K. Impact of food grade and nano-TiO$_2$ particles on a human intestinal community. *Food Chem. Toxicol.* **2017**, *106*, 242–249. [CrossRef] [PubMed]

53. Reeves, J.F.; Davies, S.J.; Dodd, N.J.F.; Jha, A.N. Hydroxyl radicals (•OH) are associated with titanium dioxide (TiO$_2$) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. *Mutat. Res.* **2008**, *640*, 113–122. [CrossRef]

54. Ziental, D.; Czarczynska-Goslinska, B.; Mlynarczyk, D.T.; Glowacka-Sobotta, A.; Stanisz, B.; Goslinski, T.; Sobotta, L. Titanium dioxide nanoparticles: Prospects and applications in medicine. *Nanomaterials* **2020**, *10*, 387. [CrossRef]

55. Rochkind, M.; Pasternak, S.; Paz, Y. Using dyes for evaluating photocatalytic properties: A critical review. *Molecules* **2014**, *20*, 88–110. [CrossRef]

56. Feng, X.; Zhang, S.; Wu, H.; Lou, X. A novel folic acid-conjugated TiO$_2$-SiO$_2$ photosensitizer for cancer targeting in photodynamic therapy. *Colloids Surf. B Biointerfaces* **2015**, *125*, 197–205. [CrossRef] [PubMed]

57. Zaleska, A. Doped-TiO$_2$: A review. *Recent Pat. Eng.* **2008**, *2*, 157–164. [CrossRef]

58. Aristidis, T.; Demetrious, P.; Taxarchis, K.N.; Anca, O.D.; Daniela, C.; Marco, V.; Marina, G.; Ronald, N.K.; Charalampos, M.; Michael, A.; et al. COVID-19, an opportunity to reevaluate the correlation between long-term effects of anthropogenic pollutants on viral epidemic/pandemic events and prevalence. *Food Chem. Toxicol.* **2020**, *141*, 111418.