Most people with Parkinson's disease (PD) fall and many experience recurrent falls. The aim of this review was to examine the scope of recurrent falls and to identify factors associated with recurrent fallers. A database search for journal articles which reported prospectively collected information concerning recurrent falls in people with PD identified 22 studies. In these studies, 60.5% (range 35 to 90%) of participants reported at least one fall, with 39% (range 18 to 65%) reporting recurrent falls. Recurrent fallers reported an average of 4.7 to 67.6 falls per person per year (overall average 20.8 falls). Factors associated with recurrent falls include: a positive fall history, increased disease severity and duration, increased motor impairment, treatment with dopamine agonists, increased levodopa dosage, cognitive impairment, fear of falling, freezing of gait, impaired mobility and reduced physical activity. The wide range in the frequency of recurrent falls experienced by people with PD suggests that it would be beneficial to classify recurrent fallers into sub-groups based on fall frequency. Given that there are several factors particularly associated with recurrent falls, fall management and prevention strategies specifically targeting recurrent fallers require urgent evaluation in order to inform clinical practice.

1. Introduction

Falls are a debilitating and costly problem for many people with Parkinson's disease (PD), with people with PD twice as likely to fall as people with other neurological conditions [1]. The consequences of these falls are significant and far reaching, often resulting in injury [2, 3] and contributing to fear of falling [4], reduced activity levels [2], poor quality of life [2, 5], and caregiver stress [6, 7]. Given that the prevalence of PD in developed countries is expected to double from 2005 to 2030 [8], PD-related falls can be expected to have a major impact on healthcare systems in the coming decades.

While it is well known that recurrent falls are a problem for people with PD, the extent and severity of this problem are not well understood. In the general older population, recurrent falls are said to have occurred when an individual falls more than once in a given time period (usually 12 months). Using this definition, around 15% of people in the general older population are classified as recurrent fallers [9]. However, recurrent falls are frequent amongst people with PD, with one study reporting that over 50% of participants fell recurrently [10]. Furthermore, in a survey of 100 people with PD, 13% reported falling more than once per week, with most of these people falling multiple times a day [11]. This suggests that factors underlying recurrent falls in people with PD are different from those underlying recurrent falls in the general population. Consequently, it may be that methods of assessment and classification of fallers, along with fall prevention interventions implemented in the general population, may not be sufficient or appropriate for people with PD.

There are several risk factors known to be associated with falls in people with PD. These include a history of falls, postural instability, freezing of gait, leg muscle weakness, and cognitive impairment [10, 12–16]. However, there appears to be a wide range in the frequency of falls amongst people with PD [17], and there is some evidence to suggest that the risk factors for single falls may differ from the risk factors for recurrent falls [18].

Despite the fact that recurrent falls are a substantial problem for people with PD, the scope of, and risk factors for, recurrent falls in PD are not clearly understood. Previous reviews of falls in people with PD have addressed the overall scope of and risk factors for falls [12, 19]. However, improving
the understanding of recurrent falls specifically is the first step towards developing effective interventions designed to reduce and manage these falls. Therefore, this paper aimed to examine studies reporting recurrent falls in people with PD to determine the following.

(1) How are recurrent falls classified?
(2) What are the rates of recurrent falls?
(3) What specific factors are associated with recurrent falls?

2. Method

A search was conducted on the 6th and 7th of September 2011 utilizing MEDLINE, EMBASE, CINAHL, AMED, and PsycINFO from the time of their earliest records. The following search terms were used: “PD,” “recurrent falls,” “fall,” “fall risk,” “repeated falls,” “multiple falls,” and “frequent falls.” Studies included were published journal articles of descriptive or intervention studies including at least 15 participants with PD, and reporting information concerning recurrent falls which was collected prospectively. Studies were considered to have collected falls data prospectively if the data pertaining to falls that occurred after the participants entered the study, regardless of the method of falls data collection. Study eligibility was determined in a two-stage process, conducted by one investigator (AKS). Firstly, all study titles and abstracts were screened and studies that clearly did not meet the inclusion criteria were excluded. Secondly, the full article was obtained for the remaining studies and each study was assessed for eligibility. If the investigator was unsure if a study was eligible, a second investigator was consulted (NEA or CGC).

Recurrent falls were defined as having occurred when participants reported more than one fall within the reporting period. Where sufficient data were reported, the number of falls sustained by recurrent fallers (as a group) and the average number of falls per individual recurrent faller were calculated for each study. The reporting period was then used to adjust the data to calculate the number of falls per faller per year (i.e., number of falls divided by the number of fallers, adjusted when necessary to reflect a 12-month reporting period) and falls per participant per year (number of falls divided by the number of participants in the study, adjusted when necessary to reflect a 12-month reporting period). It is acknowledged that this method of adjustment is not ideal as it does not account for the effect of disease progression; however, it facilitates comparison of studies with different reporting periods.

3. Results

The literature search yielded 1217 results, with 22 studies (Table 1) [2, 10, 13, 15, 16, 18, 20–36] containing information relevant to the review questions (Figure 1 [38]). Seven of the included studies provided information concerning factors associated with recurrent falls (Table 2) [2, 15, 18, 23, 28, 33, 34].

3.1. Classifying Falls. Most authors have used aspects of the definition for falls proposed by the Kellogg International Work Group on the prevention of falls by the elderly [37] (Table 1). This definition consists of three components: that a fall is an unintentional or unexpected event, it results in the person coming to rest on the ground or another lower level, and that it is not the result of a major intrinsic event (such as a loss of consciousness) or overwhelming external force. Seven (32%) of the included studies used a definition which incorporated all three components [10, 16, 21, 22, 24, 25, 32, 36], while 3 (14%) of the studies did not provide a definition for falls [23, 27, 31].

Sixteen (73%) of the studies classified fallers into groups which separated out participants who fell more than once in the recording period (i.e., recurrent fallers) from participants who did not fall, or who fell once (Table 1) [2, 10, 15, 16, 18, 21–23, 25, 27, 28, 30–35]. Three studies further classified the recurrent fallers into subgroups [30–32]. The time periods over which falls were reported was variable (Table 1); however the most common reporting time was 12 months (11 studies, 50%) [10, 13, 15, 18, 20, 23, 25, 27, 31, 33, 35]. There was one study that recorded falls for 24 months [34] and one that reported from entry into the study until death, ranging from 6 to 29 months [32].

3.2. Rates of Falls and Recurrent Falls in Parkinson’s Disease. Fourteen (64%) of the studies recorded fall rates using the gold-standard method of a falls diary, calendar or postcard [2, 10, 13, 15, 16, 20–22, 24–26, 29, 30, 35, 36]. Several studies recorded falls via conducting telephone interviews at set intervals, ranging from monthly [18, 33] to three monthly [28, 34] or six monthly [23] intervals. Other studies utilized responses to regular mail queries [27], monthly outpatient follow-up sessions [31], or medical record observation [32].

The proportion of participants who fell at least once during the reporting periods was highly variable (Table 1), ranging from 35% [18] to 90% [20], with an average of 60.5%. Recurrent fallers accounted for between 18% [18] and 65% [31] of participants (average 39%) and made up a large proportion of the fallers, ranging from 50% [2, 16] up to 86% [35] of fallers (average 68%).

The rate of falls per recurrent faller per year was found to be high, ranging from 4.7 [23] to 67.6 [35] falls per recurrent faller per year (average 20.8) (Table 1). An example of the very high rate of falls experienced by some individuals is reported by Goodwin et al. [29], where one participant fell 577 times in 20 weeks, which is approximately equivalent to 1500 falls in 1 year.

3.3. Factors Associated with Recurrent Falls in Parkinson’s Disease. Seven studies were identified which examined potential factors associated with recurrent falls (Table 2). Six of these studies reported univariate and/or multivariable regression analyses [2, 15, 23, 28, 33, 34], with four studies aiming to identify models which can be used to predict future recurrent fallers [2, 28, 33, 34]. One study [15] aimed primarily to identify variables explaining fall frequency in fallers with PD.
First author	Participant number	Inclusion criteria	Exclusion criteria	Reporting period	Classification of falls	Number (%) of fallers	Number of falls	Falls/faller	Falls/faller/yr	Falls/participant/yr
Allan 2009 [20]	40 (40)	PD with dementia, >65 years old	Comorbidities affecting ambulation, MMSE ≤ 8, significant visual impairment	12 months	Fall Y/N	36 (90%) ≥ 1 fall	NR	NR	NR	19
Allcock 2009 [15]	164 (176)	Living in the community	NR	12 months	Fall Y/N	103 (63%) ≥ 1 fall	736	7.1*	71*	4.5*
Ashburn 2007* and Ashburn 2008† [21, 22]	126 (142)	Independently mobile, living in the community, >1 fall in the last 12 months	Gross cognitive impairment, pain affecting participation, acute medical condition requiring treatment	6 months	Fall Y/N	95 (75%) ≥ 1 fall	639	6.7	13.5	10.3
						18 (14%) = 1 fall	18	1.0	2.0	0.3*
						77 (61%) > 1 fall	621	8.1	16.1	10.0
Bloem 2001 [2]	59 (61)	Independently mobile, living in the community, clear response to medication, adequate cognition (MMSE ≥ 24)	Comorbidities affecting balance	6 months	Fall Y/N	30 (51%) ≥ 1 fall	205	6.8*	13.7*	6.9*
						15 (25%) = 1 fall	15*	1.0*	2.0*	0.5*
						15 (25%) > 1 fall	190*	12.7*	25.3*	6.4*
Camicioli 2010 [23]	52 (52)	≥65 years old	Dementia, unstable medical illness, other illness affecting thinking or memory	12 months	Fall Y/N	21 (40%) ≥ 1 fall	76*	3.6*	3.6*	1.5*
						6 (12%) = 1 fall	6	1.0*	1.0*	0.1*
						15 (29%) > 1 fall	70*	4.7*	4.7*	1.3*
Table 1: Continued.

First author year	Participant number	Inclusion criteria	Exclusion criteria	Fall definition^b	Reporting period	Classification of falls	Number (%) of fallers^c	Number of falls^d	Falls/faller^e	Falls/faller/yr^f	Falls/participant/yr^g		
Chung 2010²⁴	19 (23)	Responsive to levodopa, ≥2 falls or near falls per week, walk independently indoors with or without an aid	Freezing, non-CNS contributors to falls, using cholinesterase inhibitors/anticholinergic drugs or sedatives, MMSE < 25, any unstable medical condition	1, 2, 3	6 weeks	Donepezil	NR	NR	104[*]	NR	NR	473[*]	
Cole 2010²⁵	49 (49)	Nil	Recent/recurrent injury or surgery, unable to ambulate independently with/without a walking aid, significant visual or cognitive impairment (MMSE < 24)	1, 2, 3	12 months	Fall Y/N	32 (65%) ≥1 fall	NR	NR	NR	NR	NR	NR
Donovan 2011²⁶	23 (32)	Independently mobile but requiring a walking aid, experience FOG	Syncopal episode in prior 6 months, prior exposure to laserlight visual cueing device	1, 2	1 to 2 months baseline	Fall Y/N	10 (43%) ≥1 fall	NR	NR	168[*]	73[*]		
Fink 2005²⁷	49 (52) men only	≥65 years old, living in the community	Unable to walk independently, bilateral hip replacement	NR	12 months	>1 fall	14 (29%) >1 fall	NR	NR	NR	NR	NR	NR
First author year	Participant number	Inclusion criteria	Exclusion criteria	Fall definition	Reporting period	Classification of falls	Number (%) of fallers	Number of falls	Falls/faller	Falls/faller/yr	Falls/participant/yr		
-------------------	--------------------	--------------------	-------------------	-----------------	-----------------	----------------------	-------------------	----------------	-------------	----------------	-------------------		
Foreman 2011 [28]	36 (36)	>40 years old, independently mobile, gait hypokinesia present, sufficient cognition (MMSE > 23), taking Carbidopa or Levodopa	Had surgical management of PD, uncontrolled motor fluctuations, comorbidities affecting mobility or balance	Person comes to rest on ground	≥6 months	0 or 1 fall >1 fall	22 (61%)	>1 fall	NR	NR	NR		
Goodwin 2011† [29]	122 (130) baseline	>1 fall in previous year, walk independently indoors with or without a walking aid	Comorbidities affecting ability to exercise safely, unable to follow written or verbal instructions in English	1, 2	10 weeks baseline	Fall Y/N	109 (84%) ≥ 1 fall	3453*	31.7*	164.7*	138.1*		
	125 (130) post-baseline				20 weeks after baseline		107 (86%) ≥ 1 fall	5488*	51.3*	133.4*	114.2*		
Gray 2000 ‡ [30]	118 (118)	Able to stand and walk a short distance with or without a walking aid	Comorbidities that could predispose to falls, cognitive or writing deficit unless caregiver able to assist completion of falls diary	included “near falls” as a fall	12 weeks	Fall Y/N	1 fall 2 to 3 falls 4 to 5 falls >5 falls	Unclear as near falls included	144	NR	NR	5.3*	
Hayashi 2010 [31]	20 (20)	Hoehn and Yahr Stage ≥ 2, responsive to levodopa, receiving regular outpatient treatment every month	Other neurological disease, significant dementia, or autonomic dysfunction	NR	12 months	Fall Y/N	13 (65%) >1 fall 6 (30%) >5 falls	NR	NR	NR	NR	NR	

Table 1: Continued.
First author year	Participant number	Inclusion criteria	Exclusion criteria	Fall definition	Reporting period	Classification of falls	Number (%) of fallers	Number of falls	Falls/faller	Falls/faller/yr	Falls/participant/yr
Kerr 2010 [16]	101 (106)	Walking independently without aid, living in the community independently	Nil	1, 2, 3	6 months	Fall Y/N >1 fall 24 (24%) = 1 fall	NR	NR	NR	NR	NR
Latt 2009 [13]	113 (113)	Living in the community	Unable to walk without aid, atypical Parkinsonism, insufficient cognition (MMSE < 24)	1, 2	12 months	Fall Y/N 51 (45%) ≥ 1 fall	2160	42.4∗	42.4∗	19.1∗	19.1∗
Lord 2003 [32]	57 (57)	Living in residential elderly care facility	Bedbound	1, 2, 3	6–29 months	Followed until death or for at least 6 months Mean = 15.3 ± 7.5 months 2 to 4 falls	6 (11%) = 1 fall	NR for PD group alone	6	1.0	NR
Mak 2009 [33]	70 (72)	Living in the community, 40–85 years old, medically stable, walk 3 × 6 m with or without a walking aid	Other neurological conditions, communication deficit, impaired cognition (MMSE < 24), postural hypotension, visual disturbance, vestibular dysfunction, other comorbidities limiting locomotion or balance	2, 3	12 months	0 or 1 fall 15 (21%) > 1 fall	NR	NR	NR	NR	NR
Table 1: Continued.

First author year	Participant number	Inclusion criteria	Exclusion criteria	Reporting period	Classification of falls	Number (%) of fallers	Number of falls	Falls/faller	Falls/faller/yr	Falls/participant/yr	
Mak 2010 [18]	72 (74)	Age ≥ 40 yrs, medically stable, walking independently with or without a walking aid	Other neurological conditions, communication deficit, insufficient cognition (MMSE < 24), visual disturbance, vestibular dysfunction, comorbidities limiting locomotion or balance	12 months	1 fall	25 (35%) ≥ 1 fall	133	5.3	5.3	1.8	
					>1 fall	12 (17%) = 1 fall	12	1.0	1.0	0.2	
					13 (18%) > 1 fall	121	9.3	9.3	1.7		
Matinolli 2011 [34]	125 (125)	Able to stand unsupported	Placed in long-term institutional care	24 months	Fall Y/N	79 (63%) ≥ 1 fall	3125	39.6	19.8	12.5	
					20 (16%) = 1 fall	20	1.0	0.5	0.1		
					59 (47%) > 1 fall	3105	52.6	26.3	12.4		
Nilsson 2011 [35]	19 (20)	Idiopathic PD selected for bilateral DBS of the subthalamic nucleus, responsive to levodopa but with insufficient effect, normal brain MRI	Signs of dementia or severe cognitive decline, severe comorbidity, electrode replacement required within 6 months of surgery	12 weeks prior to Sx	Fall Y/N	10 (53%) ≥ 1 fall	83	8.3	36.0	18.9	
					>1 fall	5 (26%) = 1 fall	5	1.0	4.3	1.1	
					5 (26%) > 1 fall	78	15.6	67.6	17.8		
					14 (74%) ≥ 1 fall	204	14.6	14.6	10.7		
					2 (11%) = 1 fall	2	2.0	2.0	0.1		
					12 (63%) > 1 fall	202	16.8	16.8	10.6		
First author year	Participant number	Inclusion criteria	Exclusion criteria	Fall definition	Reporting period	Classification of falls	Number (%) of fallers	Number of falls	Falls/faller	Falls/faller/yr	Falls/participant/yr
-------------------	--------------------	--------------------	-------------------	----------------	------------------	------------------------	----------------------	----------------	-------------	----------------	---------------------
Smania 2010[36]	55 (64)	Hoehn and Yahr Stage 3 or 4, able to rise from chair or bed independently, MMSE > 23	Other neurological conditions or conditions that could interfere with the study	1, 2, 3	1 month Baseline	NR	NR	1415*	NR	NR	308.7*
					1 month post	NR	1329*	NR	NR	290.0*	
					1 month follow-up	NR	1337*	NR	NR	291.7*	
Wood 2002[10]	101 (109)	Living in the community	Bedbound, severe medical instability	1, 2, 3	12 months	Fall Y/N	69 (68%) ≥ 1 fall	585	8.5*	8.5*	5.8*
						>1 fall	18 (18%) = 1 fall	18	1.0*	1.0*	0.2*
						51 (50%) > 1 fall	567*	11.1*	11.1*	5.6*	

a Participant number—number reported (number recruited).
bFall definition[37]—1 = unintentional/unexpected change in position, 2 = person comes to rest on lower level, 3 = not as a result of a major intrinsic event or overwhelming hazard.
cNumber (%) of fallers—reported for fallers (single + recurrent), single fallers, and recurrent fallers.
dNumber of falls—recurrent falls are shown in bold.
eFalls/faller—number of falls divided by the number of fallers, calculated for each reported fall category.
fFalls/faller/yr—number of falls divided by the number of fallers, adjusted to give an approximate yearly rate.

Bold font indicates data pertaining to recurrent falls; study is an intervention trial; data calculated from published paper; definition of falls included all of the following: near falls (i.e., fall initiated but arrested by support from a wall, railing, other person, etc.), whole body falls, falls to the hand or knee, and falls that were unable to be categorized based on the information reported by the participant. Only data for whole body falls and falls to the hand or knee are reported in this table.

PD: Parkinson’s disease; LOC: loss of consciousness; NR: not reported or insufficient detail to calculate; Y: yes; N: no; FOG: freezing of gait; Sx: surgery.
Examination of these studies revealed that a history of a previous fall or falls was a significant factor associated with recurrent falls in all six of the studies that included it in their analysis [2, 15, 18, 23, 33, 34]. It was also found to be a predictor of future recurrent fallers in three of the four studies which aimed to predict recurrent fallers [2, 33, 34]. Disease severity as measured by Hoehn and Yahr stage [39] or by the Unified Parkinson’s Disease Rating Scale (UPDRS) [40] was found to be significantly associated with recurrent falls in five of the seven studies [2, 15, 23, 33, 34]. It also predicted future recurrent fallers in half of the studies which aimed to identify predictive variables [2, 34]. One study found that the relative risk of recurrent falls was 13.4 (95% CI 0.4 to 27) for people with Hoehn and Yahr stage 1 to 2.5 and was greater than 100 (95% CI 3.1 to 585) for people at stage 3 to 4 [2].

Fall frequency has been analyzed as a continuum in relation to disease severity, age, medications, cognitive variables, orthostatic hypotension, and visual impairment using negative binomial regression in one study [15]. Results showed that disease severity (as measured by the UPDRS), treatment with dopamine agonists, and impaired attention were associated with fall frequency, with associations remaining after adjustment for disease severity. A further study showed an association between fall frequency and cognitive impairment as measured by a Clinical Dementia Scale rated by caregivers [23].

Fear of falling was examined in five of the seven studies [2, 18, 23, 33, 34] and was a significant variable in two of these studies [18, 33]. Fear of falling was shown to be increased in recurrent fallers as compared to single fallers [18], and it was found to be a strong independent predictor of future recurrent fallers utilizing the Activities-Specific Balance Confidence Scale [33]. A cut-off score of 69 on this scale correctly identified 93% of recurrent fallers (sensitivity) and 67% of nonrecurrent fallers (specificity).

Figure 1: PRISMA flow diagram [38] showing flow of information through the review.
First author and year	Participant number	Disease severity	Reporting period	Classification of participants	Number per falls classification	Variables examined	Analyses	Results
Allcock et al. 2009 [15]	164 (176)	Unclear	12 months	0 falls	61 (37%) 1 fall	Cognitive impairment	Negative binomial regression	Significant explanatory variables explaining fall frequency (i) Disease severity (UPDRS) (ii) Dopamine agonists (iii) Cognitive impairment (a) Power of attention (b) Cognitive reaction time (c) Reaction time variability (iv) Fall history
Bloem et al. 2001 [2]	59 (61)	Mild-moderately severe	6 months	0-1 fall	44 (75%)	Activities of daily living	Stepwise forward logistic regression	Recurrent fallers best predicted by the following (i) Disease severity (H&Y) (ii) Fall history
Camicioli and Majumdar 2010 [23]	52 (52)	Mild-moderate	12 months	≥1 fall	21 (40%)	Cognitive impairment	Univariate analysis	Factors associated with an increased risk of recurrent falls (i) Cognitive impairment (CCDRSum) (ii) Fall history (iii) Disease severity (H&Y) (iv) Freezing (UPDRS item)
Foreman et al. 2011 [28]	36 (36)	Mild-moderately severe	≥6 months	0-1 fall	14 (39%)	Demographics	Receiver operating characteristic curve	Interpretation of performance when OFF provided more accurate prediction of fall status than the ON condition Compared to single + nonfallers, recurrent fallers had the following (i) Worse Functional Gait Assessment scores when ON and when OFF (ii) Slower timed up and go when OFF
Table 2: Continued.

First author year study aim	Participant number\(^a\) Tested ON or OFF	Disease severity	Reporting period	Classification of participants	Number per falls classification	Variables examined	Analyses	Results
Mak and Pang 2009 [33]	70 (72)	Moderate	12 months	0-1 fall	55 (79%)	Demographics, Disease duration, Disease severity, Fall history, Fear of falling, Medications, Mobility, Nonmotor impairments	Stepwise discriminant analysis	For predicting future recurrent fallers (i) Fall history strongest predictor (ii) UPDRS motor score and fear of falling (ABC) remain significant after adjusting for fall history
Examine whether fear of falling could independently predict recurrent falls	ON							
Mak and Pang 2010 [18]	72 (74)	Mild-moderate	12 months	0 falls	47 (65%)	21 variables including Anthropometrics, Demographics, Disease duration, Disease severity, Fall history, Fear of falling, Habitual physical activity, Mobility and use of aids, Motor impairments, Nonmotor impairments, PD medications	Receiver operating characteristic curve	For identifying recurrent fallers (i) ABC cut-off score of 69 (sensitivity 93%, specificity 67%) and UPDRS motor score of 32 (sensitivity 47%, specificity 94%) provide the best combination Compared to single + nonfallers, recurrent fallers had the following (i) Increased disease severity (H&Y) (ii) Higher UPDRS motor scores (iii) Increased fear of falling
Compare fall characteristics between single and recurrent fallers	ON						Between-group comparisons	Compared to single fallers, recurrent fallers had the following (i) More previous falls (ii) Increased PD motor impairments (UPDRS) (iii) Reduced walking capacity (6 MWD) (iv) Increased use of walking aids (v) Reduced speed of sit-to-stand (vi) Increased fear of falling (ABC) (vii) A higher proportion of falls occurring indoors at home as opposed to outdoors
First author year study aim	Participant number\(^a\)	Disease severity	Reporting period	Classification of participants	Number per falls classification	Variables examined	Analyses	Results
----------------------------	---------------------------	------------------	------------------	--------------------------------	-------------------------------	-------------------	----------	---------
Matinolli et al. 2011 [34]	125 (125)	Mild-moderate	24 months	0-1 fall	66 (53%)	Comorbidities	Forward stepwise regression	Significant risk factors in the final multivariable model predicting recurrent falls (i) Fall history (ii) Disease severity (UPDRS II) Compared to single + nonfallers, recurrent fallers had the following (i) Longer disease duration (ii) Increased disease severity (H&Y and UPDRS ADL score, motor score and total) (iii) Presence of freezing of gait (iv) More falls unrelated to freezing of gait (UPDRS item 13) (v) Experienced recent falls (vi) Higher levodopa dose (vii) Decreased physical activity (viii) Reduced mobility (slowed walking speed and TUG) (ix) Increased use of walking aids (x) Increased postural sway
Identify balance and mobility related risk factors for recurrent falling	ON			ON			Between-group comparisons	
				0 falls	46 (37%)	Cognitive impairment		
				1 fall	20 (16%)	Demographics		
				2-5 falls	22 (17%)	Disease severity		
				6-10 falls	16 (13%)	Fall history		
				11-100 falls	15 (12%)	Fear of falling		
				>208 falls	6 (5%)	Habitual physical activity		
						Mobility and use of aids		
						Motor impairments		
						Nonmotor impairments		
						Other impairments		
						Other medications		
						PD medications		

\(^a\)Participant number-number reported (number recruited). NR: not reported; UPDRS: Unified Parkinson’s Disease Rating Scale; H&Y: Hoehn and Yahr stage; CDRSum: Caregiver-rated Clinical Dementia Rating Scale; ABC: Activities-Specific Balance Confidence Scale; 6MWD: 6-minute walk distance; ADL: activities of daily living; TUG: timed up and go.
Reduced mobility in recurrent fallers was a common theme emerging from between group comparisons. Compared to single and nonfallers, recurrent fallers demonstrated poorer performance on the Functional Gait Assessment [28], the Timed Up and Go [28, 34], and walking speed measures [34]. Recurrent fallers had increased use of walking aids as compared to a group of single fallers [18] and combined single and nonfallers [34]. Additionally, 31% of falls amongst recurrent fallers occurred when using a walking aid [18]. Recurrent fallers also demonstrated reduced walking capacity in terms of six minute walk distance and had reduced speed of standing up from sitting, compared to single fallers [18].

Increased motor impairment as measured by the UPDRS motor score [40] was found to be a predictor of future recurrent falls [33], and recurrent fallers were shown to have increased motor impairment as compared to single fallers [18]. In particular, freezing of gait as measured by the UPDRS item 14 was associated with increased risk of recurrent falls [23]. Reduced physical activity levels, longer disease duration, and higher doses of levodopa have also been observed in recurrent fallers [34].

4. Discussion

Recurrent falls are a common problem in people with PD affecting around 70% of people with PD who fall (Table 1). However, there is substantial variability in the falling rates reported in the studies included in this paper, with the proportion of fallers (single and recurrent) ranging from 35 to 95%. This high variability in reported falling rates may be attributable in part to the specific inclusion criteria used in different studies. The study with the highest proportion of fallers included only participants who had PD with dementia [20]. The study with the next highest portion of fallers (86%) included only participants who had experienced more than one fall in the past year, meaning that retrospectively the entire sample was recurrent fallers [29].

Differences in the method of monitoring falls could also contribute to the variability seen in fall rates across the included studies. The falls diary is the preferred method of falls monitoring [9] as it enables falls to be recorded immediately after they have occurred, minimizing the chance of participants forgetting to report a fall. Only 14 (64%) of the included studies used a falls diary or similar monitoring system (e.g., postcards or calendars) [2, 10, 13, 15, 16, 20–22, 24–26, 29, 30, 35, 36]. Several other studies used methods, such as telephone interviews, where participants were required to recall the falls they had experienced over a particular time frame [18, 23, 27, 28, 31, 33, 34]. Where the time period to be recalled is long, the number of falls reported may be underestimated. Retrospective studies have reported rates of falls per recurrent faller per year of 3.4 and 5.0 [41, 42]. This is similar to the lowest number of falls per recurrent faller per year (4.7) reported by a prospective study included in the present review [23], which collected falls data using a 6 monthly telephone call. In research involving the general older population it has been suggested that notification of falls should occur at least monthly [43]. However, the high prevalence of cognitive impairment [44, 45] and the high frequency of falls experienced by some individuals with PD suggest that a recording system where falls are documented immediately should be used in this population.

Variations in classifying fallers were attributable to differences in the definition of what constitutes a fall as well as differences in the way fall categories were defined. Most studies adhered to aspects of the definition recommended by the Kellogg International Work Group [37] for use with the older population. However, some studies deviated from this definition or did not stipulate how a fall was defined (Table 1). Additionally, this paper found substantial variability in the way that fallers were categorized. For example, nonfallers and single fallers have been combined under the categories of “nonrecurrent fallers” [33, 34] and “nonfallers” [28, 46–49]. While authors use different categories depending on the purpose of their study, the inconsistent categorization of participants is ambiguous and makes comparisons between studies more difficult. This problem could be addressed by standardizing the categories used in future studies. For example, Thomas et al. [17] categorized recurrent fallers according to the number of falls in three months including; “infrequent fallers” (2 to 4 falls), “frequent fallers” (5 to 15 falls), and “very frequent fallers” (>15 falls). The categories of “nonfallers” (0 falls) and single fallers (1 fall) could be added to this to cover the spectrum of fall rates seen in people with PD.

Substantial variability is also seen in the length of time over which falls data is collected, with the reporting period in the included studies varying from 1 to 29 months. In the present paper, fall rates were adjusted to an approximate yearly rate to facilitate comparison between studies (Table 1). However, this adjustment does not account for disease progression. It seems likely that, as disease severity increases over time, falling rates will also increase [2, 15, 23, 33, 34] until the individual becomes immobile [19]. Consequently, the adjustments used to provide annual fall rates for this review potentially underestimate the rate in studies with a reporting period of less than twelve months [2, 26, 29, 30, 36] and overestimate the rate for the study with a reporting period of longer than twelve months [34]. In order to facilitate comparison of future studies with varied reporting periods, it is recommended that fall data be reported at predetermined intervals. A consensus meeting of experts regarding the general older population recommended that falls be monitored for 12 months [43]. No such review has been undertaken regarding the PD population specifically, although a shorter time period is considered acceptable as people with PD fall more frequently than the general older population [18].

This paper has summarized factors associated more strongly with recurrent fallers than single and nonfallers (Table 2). Disease severity was found to be significantly associated with recurrent falls [2, 15, 23, 33, 34] and to be a predictor of future recurrent fallers [2, 34]. A previous review of prospective studies of falling in PD [12] also found that, as the UPDRS motor score increased, the risk of falling increased until the UPDRS score reached around 50 points. Thereafter the risk of falling largely stabilized, with a possible
slight reduction in risk with severe disease. The authors speculated that the inclusion of more participants from institutionalized care could result in a further decrease in fall risk with severe disease severity due to the limited mobility of these types of participants. Similarly, the participants included in this paper were mostly community dwelling with mild-to-moderate levels of disease severity. Only one of the included studies [32] examined falling in participants in institutional care. The relationship between disease severity and falls in people with more severe disease, including those requiring care in an institution, requires further investigation.

Allcock et al. [15] demonstrated an association between fall frequency and impaired attention. It was suggested that impaired attention may contribute to falls by increasing difficulty with performance of concurrent tasks, which may inhibit the performance of compensatory movements to prevent a fall [15]. However, a recent prospective study with a large sample of people with PD (n = 263) has found that deterioration in gait under dual task conditions was not associated with future falls [50]. Further research is needed to clarify the clinical implications of the association between cognitive impairment and recurrent falls. Increased fear of falling has been associated with recurrent falls [18, 33]. This may occur as fear of falling can lead to self-induced restriction of activity [51] resulting in deconditioning and reductions in muscle strength which may increase fall risk [13, 16]. However, there is some evidence that not all recurrent fallers are fearful of falling. In a recent retrospective study [17] two participants who fell very frequently (falling 210 and 360 times each within 3 months) were found to have the lowest fear of falling, even when compared to those who fell rarely (0-1 fall). It was suggested that the experience of very frequent falling with no significant injury or negative consequences could lead to complacency and a resultant lack of fear of falling. Alternatively, low fear of falling could result in risk taking behavior and so contribute to increased incidence of falls. Future prospective studies could seek to clarify this relationship between fear of falling and fall frequency.

This paper identifies several factors that have been found to be associated with prospectively recorded recurrent falls, including a positive fall history [2, 15, 18, 23, 33, 34], increased disease severity [2, 15, 33, 34], motor impairment [18, 33] and duration [34], treatment with dopamine agonists [15], increased levodopa dosage [34], cognitive impairment [15, 23], fear of falling [18, 33], freezing of gait [23], impaired mobility [18, 28, 34], and reduced physical activity [34]. While these factors are also known to be associated generally with falls in PD [12, 14, 16, 30], the results of the studies included in this paper suggest that as these factors progress there is an increased tendency for recurrent falls to occur. However, the presence of these associations does not explain why a person with PD who falls occasionally begins to fall recurrently. There is a need for further prospective studies to be conducted which use multivariable regression to investigate the factors that were identified to be relevant in the present paper and their contribution to recurrent falling. Such work would aid in developing an understanding of the causes of recurrent falls. In addition, consideration of factors associated with recurrent falling reported in retrospective studies, including lower limb muscle power [52], impaired motor planning [14, 53], and urinary urge incontinence [42], requires prospective investigation to confirm these relationships. Similarly, the role of medication-related side effects, such as dyskinesia [2, 14] and orthostatic hypotension [54], requires further prospective evaluation regarding their role in recurrent falls in PD.

4.1. Clinical Implications. Several risk factors for falls have been found to be more strongly associated with recurrent falls than single falls, suggesting that individuals who fall recurrently may benefit from different fall reduction interventions than single or nonfallers. Some of the factors associated with recurrent falls are potentially modifiable, including cognitive impairment [55, 56], freezing of gait [57], fear of falling [29], reduced mobility [58], reduced physical activity [29, 59], and balance impairment [58]. However, while there is evidence that these factors can be improved with intervention, it remains to be determined whether such improvements would result in reductions in fall frequency, particularly in recurrent fallers.

Given the inconsistent relationship between fear of falling and recurrent falls, it is recommended that if fear of falling be assessed in all recurrent fallers and interventions provided accordingly. For example, where fear of falling is found to be high compared to actual fall risk, intervention to reduce fear of falling may be considered. Cognitive behavioral therapy used in conjunction with physical training has been shown to be effective in decreasing fear of falling in the general older population [60] but has not been investigated in the PD population.

5. Conclusion

Around 70% of people with PD who fall do so recurrently and many fall very frequently. Recurrent fallers reported 4.7 to 67.6 falls per recurrent faller per year confirming that recurrent falling is a substantial problem for this group. The high variability in the rates of recurrent falls seen in the literature may be attributable to variations in the inclusion criteria used, the method of recording falls, and the way that recurrent fallers are classified including variability in the reporting period used. The large number of falls experienced by some individuals suggests that recurrent fallers as a group should be subdivided into smaller groups based on falls frequency. Further research is needed to ascertain why some recurrent fallers fall much more frequently than others and to investigate falls reduction strategies specific to people with PD who fall recurrently.

References

[1] H. Stolze, S. Klebe, C. Baeker et al., “Prevalence of Gait disorder in hospitalized neurological patients,” Movement Disorders, vol. 20, no. 1, pp. 89–94, 2005.
[2] B. R. Bloem, Y. A. M. Grimbergen, M. Cramer, M. Willemsen, and A. H. Zwinderman, “Prospective assessment of falls in Parkinson’s Disease.”
Parkinson’s disease,” *Journal of Neurology*, vol. 248, no. 11, pp. 950–958, 2001.

[3] R. W. Genever, T. W. Downes, and P. Medcalf, “Fracture rates in Parkinson’s disease compared with age- and gender-matched controls: a retrospective cohort study,” *Age and Ageing*, vol. 34, no. 1, pp. 21–24, 2005.

[4] A. L. Adkin, J. S. Frank, and M. S. Jog, “Fear of falling and postural control in Parkinson’s disease,” *Movement Disorders*, vol. 18, no. 5, pp. 496–502, 2003.

[5] F. Franchignoni, E. Martignoni, G. Ferriero, and C. Pasetti, “Balance and fear of falling in Parkinson’s disease,” *Parkinsonism and Related Disorders*, vol. 11, no. 7, pp. 427–433, 2005.

[6] A. Schrag, A. Hovris, D. Morley, N. Quinn, and M. Jahanshahi, “Caregiver-burden in Parkinson’s disease is closely associated with psychiatric symptoms, falls, and disability,” *Parkinsonism and Related Disorders*, vol. 12, no. 1, pp. 35–41, 2006.

[7] C. Davey, R. Wiles, A. Ashburn, and C. Murphy, “Falling in Parkinson’s disease: the impact on informal caregivers,” *Disability and Rehabilitation*, vol. 26, no. 23, pp. 1360–1366, 2004.

[8] E. R. Dorsey, R. Constantinescu, J. P. Thompson et al., “Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030,” *Neurology*, vol. 68, no. 5, pp. 384–386, 2007.

[9] S. R. Lord, C. Sherrington, H. B. Menz, and J. C. Close, *Falls in Older People. Risk Factors and Strategies For Prevention*, Cambridge University Press, Cambridge, UK, 2nd edition, 2007.

[10] B. H. Wood, J. A. Bilclough, A. Bowron, and R. W. Walker, “Incidence and prediction of falls in Parkinson’s disease: a prospective multidisciplinary study,” *Journal of Neurology Neurosurgery and Psychiatry*, vol. 72, no. 6, pp. 721–725, 2002.

[11] W. C. Koller, S. Glatt, B. Vetere-Overfield, and R. Hassanein, “Falls and Parkinson’s disease,” *Clinical Neuropharmacology*, vol. 12, no. 2, pp. 98–105, 1989.

[12] R. M. Pickering, Y. A. M. Grimbergen, U. Rigney et al., “A meta-analysis of six prospective studies of falling in Parkinson’s disease,” *Movement Disorders*, vol. 22, no. 13, pp. 1892–1900, 2007.

[13] M. D. Latt, S. R. Lord, J. G. L. Morris, and V. S. C. Fung, “Clinical and physiological assessments for elucidating falls risk in Parkinson’s disease,” *Movement Disorders*, vol. 24, no. 9, pp. 1280–1289, 2009.

[14] K. Robinson, A. Dennison, D. Roalff et al., “Falling risk factors in Parkinson’s disease,” *NeuroRehabilitation*, vol. 20, no. 3, pp. 169–182, 2005.

[15] L. M. Alcock, E. N. Rowan, I. N. Steen, K. Wesnes, R. A. Kenny, and D. J. Burn, “Impaired attention predicts falling in Parkinson’s disease,” *Parkinsonism and Related Disorders*, vol. 15, no. 2, pp. 110–115, 2009.

[16] G. K. Kerr, C. J. Worringham, M. H. Cole, P. F. Lacher, J. M. Wood, and P. A. Silburn, “Predictors of future falls in Parkinson’s disease,” *Neurology*, vol. 75, no. 2, pp. 116–124, 2010.

[17] A. A. Thomas, J. M. Rogers, M. M. Amick, and J. H. Friedman, “Falls and the falls efficacy scale in Parkinson’s disease,” *Journal of Neurology*, vol. 257, no. 7, pp. 1124–1128, 2010.

[18] M. K. Y. Mak and M. Y. C. Pang, “Parkinsonian single fallers versus recurrent fallers: different fall characteristics and clinical features,” *Journal of Neurology*, vol. 257, no. 9, pp. 1543–1551, 2010.

[19] B. R. Bloem, J. M. Hausdorff, J. E. Visser, and N. Giladi, “Falls and freezing of Gait in Parkinson’s disease: a review of two interconnected, episodic phenomena,” *Movement Disorders*, vol. 19, no. 8, pp. 871–884, 2004.

[20] L. M. Allan, C. G. Ballard, E. N. Rowan, and R. A. Kenny, “Incidence and prediction of falls in dementia: a prospective study in older people,” *PLoS One*, vol. 4, no. 5, Article ID e5521, 2009.

[21] A. Ashburn, L. Fazakarley, C. Ballinger, R. Pickering, L. D. McLellan, and C. Fitzon, “A randomised controlled trial of a home based exercise programme to reduce the risk of falling among people with Parkinson’s disease,” *Journal of Neurology Neurosurgery and Psychiatry*, vol. 78, no. 7, pp. 678–684, 2007.

[22] A. Ashburn, E. Stack, C. Ballinger, L. Fazakarley, and C. Fitzon, “The circumstances of falls among people with Parkinson’s disease and the use of Falls Diaries to facilitate reporting,” *Disability and Rehabilitation*, vol. 30, no. 16, pp. 1205–1212, 2008.

[23] R. Camicioli and S. R. Majumdar, “Relationship between mild cognitive impairment and falls in older people with and without cognitive dysfunction: 1-Year Prospective Cohort Study,” *Gait and Posture*, vol. 32, no. 1, pp. 87–91, 2010.

[24] K. A. Chung, B. M. Lobb, J. G. Nutt, and F. B. Horak, “Effects of a central cholinesterase inhibitor on reducing falls in Parkinson disease,” *Neurology*, vol. 75, no. 14, pp. 1263–1269, 2010.

[25] M. H. Cole, P. A. Silburn, J. M. Wood, C. J. Worringham, and G. K. Kerr, “Falls in Parkinson’s disease: kinematic evidence for impaired head and trunk control,” *Movement Disorders*, vol. 25, no. 14, pp. 2369–2378, 2010.

[26] S. Donovan, C. Lim, N. Diaz et al., “Lasercueg for gait freez- ing in Parkinson’s disease: an open-label study,” *Parkinsonism and Related Disorders*, vol. 17, no. 4, pp. 240–245, 2011.

[27] H. A. Fink, M. A. Kuskowski, E. S. Orwoll, J. A. Cauley, and K. E. Ensrud, “Association between Parkinson’s disease and low bone density and falls in older men: the osteoporotic fractures in men study,” *Journal of the American Geriatrics Society*, vol. 53, no. 9, pp. 1559–1564, 2005.

[28] K. B. Foreman, O. Addison, H. S. Kim, and L. E. Dibble, “Testing balance and fall risk in persons with Parkinson disease, an argument for ecologically valid testing,” *Parkinsonism and Related Disorders*, vol. 17, no. 3, pp. 166–171, 2011.

[29] V. A. Goodwin, S. H. Richards, W. Henley, P. Ewings, A. H. Taylor, and J. L. Campbell, “An exercise intervention to prevent falls in people with Parkinson’s disease: a pragmatic randomised controlled trial,” *Journal of Neurology Neurosurgery and Psychiatry*, vol. 82, no. 11, pp. 1232–1238, 2011.

[30] P. Gray and K. Hildebrand, “Fall risk factors in Parkinson’s disease,” *The Journal of Neuroscience Nursing*, vol. 32, no. 4, pp. 222–228, 2000.

[31] R. Hayashi, J. Aizawa, H. Nagase, and S. Ohara, “Lateral inclination of the trunk and falling frequency in Parkinson’s disease patients,” *Electromyography and Clinical Neurophysiology*, vol. 50, no. 5, pp. 195–202, 2010.

[32] S. R. Lord, L. M. March, I. D. Cameron et al., “Differing risk factors for falls in nursing home and intermediate-care residents who can and cannot stand unaiced,” *Journal of the American Geriatrics Society*, vol. 51, no. 11, pp. 1645–1650, 2003.

[33] M. K. Y. Mak and M. Y. C. Pang, “Fear of falling is independently associated with recurrent falls in patients with Parkinson’s disease: a 1-year prospective study,” *Journal of Neurology*, vol. 256, no. 10, pp. 1689–1695, 2009.

[34] M. Matinolli, J. T. Korpelainen, K. A. Sotaniemi, V. V. Myllylä, and R. Korpelainen, “Recurrent falls and mortality in Parkinson’s disease: a prospective two-year follow-up study,” *Acta Neurologica Scandinavica*, vol. 123, no. 3, pp. 193–200, 2011.
[35] M. H. Nilsson, S. Rehncrona, and G. B. Jarnlo, “Fear of falling and falls in people with Parkinson's disease treated with deep brain stimulation in the subthalamic nuclei,” *Acta Neurologica Scandinavica*, vol. 123, no. 6, pp. 424–429, 2011.

[36] N. Smania, E. Corato, M. Tinazzi et al., “Effect of balance training on postural instability in patients with idiopathic parkinson's disease,” *Neurorehabilitation and Neural Repair*, vol. 24, no. 9, pp. 826–834, 2010.

[37] M. Gibson, R. Andres, B. Isaacs, T. Radebaugh, and J. Wom-Peterson, “The prevention of falls in later life. A report of the Kellogg International Work Group on the Prevention of Falls by the Elderly,” *Danish Medical Bulletin*, vol. 34, supplement 4, pp. 1–24, 1987.

[38] A. Liberati, D. G. Altman, J. Tetzlaff et al., “The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration,” *Journal of Clinical Epidemiology*, vol. 62, no. 10, pp. e1–e34, 2009.

[39] M. M. Hoehn and M. D. Yahr, “Parkinsonism: onset, progression and mortality,” *Neurology*, vol. 17, no. 5, pp. 427–442, 1967.

[40] S. Fahn and R. Elton, “Unified parkinson's disease rating scale,” in *Recent Developments in Parkinson's disease*, S. Fahn, C. Marsden, D. Calne, and M. Goldstein, Eds., pp. 153–164, 293–304, MacMillan Healthcare Information, Florham Park, NJ, USA, 1987.

[41] M. Rudzińska, S. Bukowczan, C. Banaszkiewicz, J. Stozek, K. Zajdel, and A. Szczudlik, “Causes and risk factors of falls in patients with Parkinson's disease,” *Neurologia i Neurochirurgia Polska*, vol. 42, no. 3, pp. 216–222, 2008.

[42] Y. Balash, C. Peretz, G. Leibovich, T. Herman, J. M. Hausdorff, and N. Giladi, “Falls in outpatients with Parkinson's disease: frequency, impact and identifying factors,” *Journal of Neurology*, vol. 252, no. 11, pp. 1310–1315, 2005.

[43] S. E. Lamb, E. C. Jørstad-Stein, K. Hauer, and C. Becker, “Development of a common outcome data set for fall injury prevention trials: the Prevention of Falls Network Europe consensus,” *Journal of the American Geriatrics Society*, vol. 53, no. 9, pp. 1618–1622, 2005.

[44] M. A. Hely, W. G. J. Reid, M. A. Adena, G. M. Halliday, and J. G. L. Morris, “The Sydney Multicenter Study of Parkinson's disease: the inevitability of dementia at 20 years,” *Movement Disorders*, vol. 23, no. 6, pp. 837–844, 2008.

[45] D. Muslimović, B. Post, J. D. Speelman, and B. Schmand, “Cognitive profile of patients with newly diagnosed Parkinson disease,” *Neurology*, vol. 65, no. 8, pp. 1239–1245, 2005.

[46] L. E. Dibble, J. Christensen, D. J. Ballard, and K. B. Foreman, “Diagnosis of fall risk in Parkinson disease: an analysis of individual and collective clinical balance test interpretation,” *Physical Therapy*, vol. 88, no. 3, pp. 323–332, 2008.

[47] M. Morris, R. Iansek, F. Smithson, and F. Huxham, “Postural instability in Parkinson's disease: a comparison with and without a concurrent task,” *Gait and Posture*, vol. 12, no. 3, pp. 205–216, 2000.

[48] F. Smithson, M. E. Morris, and R. Iansek, “Performance on clinical tests of balance in Parkinson's disease,” *Physical Therapy*, vol. 78, no. 6, pp. 577–592, 1998.

[49] A. L. Leddy, B. E. Crowner, and G. M. Earhart, "Functional gait assessment and balance evaluation system test: reliability, validity, sensitivity, and specificity for identifying individuals with parkinson disease who fall," *Physical Therapy*, vol. 91, no. 1, pp. 102–113, 2011.

[50] K. Smulders, R. A. J. Esselink, A. Weiss, R. P. C. Kessels, A. C. H. Geurts, and B. R. Bloem, “Assessment of dual tasking has no clinical value for fall prediction in Parkinson’s disease,” *Journal of Neurology*, vol. 259, no. 9, pp. 1840–1847, 2012.

[51] R. G. Cumming, G. Salkeld, M. Thomas, and G. Szonyi, “Prospective study of the impact of fear of falling on activities of daily living, SF-36 scores, and nursing home admission,” *Journals of Gerontology A*, vol. 55, no. 5, pp. M299–M305, 2000.

[52] N. E. Allen, C. Sherrington, C. G. Canning, and V. S. C. Fung, “Reduced muscle power is associated with slower walking velocity and falls in people with Parkinson's disease,” *Parkinsonism and Related Disorders*, vol. 16, no. 4, pp. 261–264, 2010.

[53] A. C. Dennison, J. V. Noorigan, K. M. Robinson et al., “Falling in Parkinson disease: identifying and prioritizing risk factors in recurrent fallers,” *American Journal of Physical Medicine and Rehabilitation*, vol. 86, no. 8, pp. 621–632, 2007.

[54] M. Matinolli, J. T. Korpelainen, R. Korpelainen, K. A. Sotaniemi, and V. V. Myllylä, “Orthostatic hypotension, balance and falls in Parkinson's disease,” *Movement Disorders*, vol. 24, no. 5, pp. 745–751, 2009.

[55] A. P. París, H. G. Saleta, M. de la Cruz Crespo Maraver et al., “Blind randomized controlled study of the efficacy of cognitive training in Parkinson's disease,” *Movement Disorders*, vol. 26, no. 7, pp. 1251–1258, 2011.

[56] K. Tanaka, A. C. D. Quadros Jr., R. F. Santos, F. Stella, L. T. B. Gobbi, and S. Gobbi, "Benefits of physical exercise on executive functions in older people with Parkinson's disease," *Brain and Cognition*, vol. 69, no. 2, pp. 435–441, 2009.

[57] A. Nieuwboer, G. Kwakkel, L. Rochester et al., “Cueing training in the home improves gait-related mobility in Parkinson’s disease: the RESCUE-trial,” *Journal of Neurology, Neurosurgery and Psychiatry*, vol. 78, pp. 134–140, 2007.

[58] N. E. Allen, C. Sherrington, S. S. Paul, and C. G. Canning, “Balance and falls in Parkinson's disease: a meta-analysis of the effect of exercise and motor training,” *Movement Disorders*, vol. 26, no. 9, pp. 1605–1615, 2011.

[59] M. Munneke, M. van Nimwegen, A. D. Speelman et al., “Efficacy of a multifaceted intervention program to increase physical activity in patients with PD: the ParkFit trial,” *Neurorehabilitation and Neural Repair*, vol. 26, no. 6, p. 704, 2012.

[60] S. Tennstedt, J. Howland, M. Lachman, E. Peterson, L. Kasten, and B. R. Bloem, “Assessment of dual tasking has no clinical value for fall prediction in Parkinson’s disease,” *Journal of Neurology*, vol. 259, no. 9, pp. 1840–1847, 2012.