Interaction of HaNPVs with two novel insecticides against Helicoverpa armigera Hubner (Noctuidae: Lepidoptera)

Allah Ditta Abida,a,b,⇑ Shafqat Saeeda,c,⇑ Syed Muhammad Zaka,a Muhammad Ali,d,e, Muhammad Sohail Shahzad,b, Muhammad Iqbal,f, Umbreen Shahzad,g, Naeem Iqbalc, Suliman M. Alghanemh

aDepartment of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
bDepartment of Plant Protection, Karachi Ministry of National Food Security, Pakistan
cInstitute of Plant Protection, MNS-University of Agriculture, Multan 60800, Pakistan
dInstitute of Pure and Applied Biology, Multan 60000, Pakistan
eCotton Research Institute, Multan 60000, Pakistan
fQauid-i-Azam University, Islamabad, Pakistan
gCollege of Agriculture, Bahauddin Zakariya University, Bahadur Sub-Campus, Layyah, Pakistan
hBiology Department, Faculty of Science, Tabuk University, Tabuk 71491, Saudi Arabia

A R T I C L E I N F O

Article history:
Received 11 May 2020
Revised 12 June 2020
Accepted 12 June 2020
Available online 20 June 2020

Keywords:
Synergistic effect
Combination
Spinetoram
Emamectin benzoate
HaNPV

A B S T R A C T

Nucleopolyhedrosis viruses can be utilized for effective management of agriculture pests. Their efficacy can be increased if they are mixed with certain insecticides. In the current study, HaNPV was mixed with two insecticides: spinetoram and emamectin benzoate in various combinations and applied to larvae of H. armigera in laboratory conditions. There were a total of 15 combinations of HaNPV with each of the two insecticides in addition to five doses of HaNPV and three doses of insecticides alone. The synergistic and antagonistic effects of combinations were explored. The results revealed that there was synergistic effect of HaNPV @ 0.5 × 10⁶ PIB/ml × Spinetoram @ 40, 20, 10 ml/100 L of water. In case of emamectin benzoate, synergistic effects were recorded at 1 × 10⁶ PIB/ml HaNPV × emamectin benzoate @ 100 ml/100 L of water. However, 0.5 × 10⁶ PIB/ml HaNPV has synergistic effects with all three doses of emamectin benzoate. The results suggested that HaNPV can be used in combination with spinetoram and emamectin benzoate for the management of resistant population of H. armigera.

© 2020 Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae), is a serious pest of agriculture in Asia, Europe, Africa, USA and Oceania (Guo, 1997; Czepak et al., 2013). It has been reported to damage about 200 plant species including some important agriculture crops like cotton, maize, beans and tomato (Pogue, 2004; Moral-Garcia, 2006; Baker et al., 2008, 2010) and is mainly controlled by insecticides (Brevault and Achaleke, 2005). However, due to the over-reliance on insecticides, this pest has shown resistance against many insecticides that is major cause of sporadic outbreaks of this pest (Ahmad et al., 2001, Torres-Vila et al., 2002, Ahmad et al., 2003, Rajagopal et al., 2009, Alvi et al., 2012, Qayyum et al., 2015, Ahmad et al., 2019).

The entomopathogens can be very effective alternatives of synthetic insecticides to manage lepidopterous insect pests. The efficiency of the entomopathogens can be increased by adding small quantities of synergistic substance like optical brighteners, inorganic acids or sub-lethal concentrations of synthetic insecticides (Peters and Coaker, 1993; Shapiro and Dougherty, 1994; Cisneros et al., 2002). However, the interaction between pathogen and other compounds could be either antagonistic or additive (Pingel and Lewis, 1999; Koppenhofer and Kaya, 2000). Such interactions have been studied between spinetoram insecticide and nucleopolyhedrovirus for various Spodoptera species (Lepidoptera: Noctuidae) (El-Helaly and El-Bendary, 2013; Mendez et al., 2002). But
extensive studies involving the interaction between NPVs and insecticides with novel mode of actions (e.g. spinetoram, emamectin benzoate etc.) are lacking for *H. armigera*.

Spinetoram is primarily a stomach poison with some contact toxicity. It is a mixture of two spinosyns A and D and is obtained from soil actinomycete *Saccharopolyspora spinosa* Mertz and Yao (*Actinomycetales: Pseudonocardiaceae*) after fermentation (Sparks et al., 1998). Spinetoram targets the binding sites on nico- tinic acetylcholine receptors (nAChRs) and GABA receptors of insect nervous system (Salgado, 1998). After exposure to spinetoram, the insect stops feeding followed by paralysis and death. It is usually used against Lepidoptera and Diptera but its novel mode of action makes it relatively safer for non-target organisms and environment (Bret et al., 1997; Saunders and Bret, 1997).

Emamectin benzoate is a mixture of avermectins containing about 80% avermectin B1a and 20% avermectin B1b and is produced after fermentation of soil bacterium *Streptomyces avermitilis* (Lankas and Gordon 1989; Hayes and Laws, 2013). Emamectin benzoate is a selective insecticide, acaricide and nematicide which kills the target organisms by disrupting γ-aminobutyric acid (GABA) gated chloride channels, glutamate-gated chloride channel and other chloride channels in nervous system (Xu et al., 2016). This insecticide is classified as an environment friendly insecticide and is less toxic to beneficial insects (MacConnell et al., 1989; Jansson and Dybas, 1998).

Based on the need for designing effective and sustainable management strategy for *H. armigera*, it is very important to evaluate the toxicity of two insecticides spinetoram and emamectin, and NPV as alone and in combination with NPV. From this, we will be able to conclude whether or not these two insecticides play a role in protecting NPV. The aim of this work was to enhance the efficacy of NPVs by combining it with sub-lethal concentrations of spinetoram and emamectin in order to have complete and economical control of *H. armigera*.

2. Materials and methods

2.1. Collection and rearing of Helicoverpa armigera

The larvae of *H. armigera* were collected from gram field and shifted to glass jars containing artificial diet (Table 1). The jars were placed in laboratory under controlled temperature (25 ± 2 °C) and relative humidity (60 ± 5%). They were reared until pupation. After that the pupae were identified to male and female and shifted to glass jar containing napiliner for egg laying. In each glass jar, one pair of male and female was released with 2% honey solution as diet. The eggs were collected from napiliner and shifted to their natural diet as describe above. After hatching, 2nd instar larvae were used in the experiment.

2.2. Treatment of *H. armigera* larvae with insecticides and HaNPV

Second instar *H. armigera* larvae were inoculated with HaNPV by incorporating HaNPV @ in the diet with following treatments at five doses of NPV: 4 × 10⁹ PIB/ml, 2 × 10⁹ PIB/ml, 1 × 10⁹ PIB/ml, 0.5 × 10⁹ PIB/ml, 0.25 × 10⁹ PIB/ml. About 100 larvae were treated at each HaNPV concentration for 24 h. The HaNPV used in our previous experiments was also used in this study (Abid et al., 2020). After 24 h of exposure to HaNPV, the larvae were transferred to a diet containing either spinetoram @ 40, 20, 10 ml/100 L of water or emamectin @ 400, 200, 100 ml/100 L of water. There were a total 42 combinations as given in Table 2. Each combination was replicated 12 times (each replication contained two larvae). After 72 hrs mortality was recorded.

2.3. Data analysis

The data of mean mortality was subjected to Analysis of Variance and means were separated by Tukey’s HSD test using Statistix 8.1v (Analytical software, 2005). The mortality data were corrected using Abbott’s formula (Abbott, 1925), if the mortality rate in the control was more than 5%. Median lethal concentrations (LC₅₀) were determined by probit analysis using SPSS software (Version 23.0 for windows, SPSS Inc., Chicago, USA).

3. Results

3.1. Effect of sole and combination of HaNPV and insecticides

The results of various insecticides alone and in combination with HaNPV are given in Table 2. Higher doses of HaNPV showed antagonistic effects with both of the insecticides. However, synergistic effect was recorded of HaNPV @ 0.5 × 10⁹ PIB/ml × Spinetoram @ 40, 20, 10 ml/100 L of water. In case of emamectin benzoate, synergistic effects were recorded at 1 × 10⁹ PIB/ml HaNPV × emamectin benzoate @ 100 ml/100 L of water. However, 0.5 × 10⁹ PIB/ml HaNPV has synergistic effects with all three doses of emamectin benzoate.

3.2. Lethal concentration

The Table 3 showed the LC₅₀ values of HaNPV, spinetoram, emamectin benzoate and their combinations. It was observed that LC₅₀ values of spinetoram, emamectin benzoate were decreased with the increase in concentration of HaNPV. However, LC₅₀ values were lower for HaNPV + Spinetoram as compared to HaNPV + Emamectin combinations. The lowest LC₅₀ value were observed in 4 × 10⁹ HaNPV + Spinetoram combination (61.12 mg/l) followed by 2 × 10⁹ HaNPV + Spinetoram (67.53 mg/l), 1 × 10⁹ HaNPV + Spinetoram (75.34 mg/l) and 0.5 × 10⁹ HaNPV + Spinetoram (91.47 mg/l) and 0.25 × 10⁹ HaNPV + Spinetoram (241.19 mg/l). These LC₅₀ values were lower than spinetoram alone (332.37 mg/l). Similarly, in case of HaNPV + Emamectin combinations, the lowest LC₅₀ value was recorded by 4 × 10⁹ HaNPV + Emamectin benzoate (372.13 mg/l), 2 × 10⁹ HaNPV + Emamectin benzoate (418.87 mg/l), 1 × 10⁹ HaNPV + Emamectin benzoate (527.42 mg/l), 0.5 × 10⁹ HaNPV + Emamectin benzoate (641.72 mg/l), 0.25 × 10⁹ HaNPV + Emamectin benzoate (1709.91 mg/l).

Table 1

Component	Quantity
Chickpea flour	100 g*
Yeast	30 g
Wesson's salt mix	7 g
Methyl Para ben	2 g
Sorbic acid	1 g
Ascorbic acid	3 g
Agar	13 g
Vanderzant vitamin solution	8 ml
Streptomycin sulphate	40 mg
Carbendazim	675 mg
Formalin	2 ml
Water	720 ml

*Whole chickpea seeds could also be used (soak in distilled water overnight).
**28% solution in distilled water.

* not included in diets used for inoculation of larvae with virus and post-inoculation rearing.
Table 2
Antagonistic and synergistic effect of HaNPV with spinetoram and emamectin benzoate.

Treatment	Average Mortality (%) ± SEM	Synergistic/Antagonistic Effect
HaNPV @ 4 x 10^9 PIB/ml	71 ± 9.64 A-E	
HaNPV @ 2 x 10^9 PIB/ml	75 ± 7.53 A-D	
HaNPV @ 1 x 10^9 PIB/ml	62.5 ± 8.97 A-G	
HaNPV @ 0.5 x 10^9 PIB/ml	29 ± 11.44F-I	
HaNPV @ 0.25 x 10^9 PIB/ml	165 ± 7.11 I	
HaNPV @ 4 x 10^9 PIB/ml + Spinetoram @40 ml/100 l of water	100 ± 0.00 A	
HaNPV @ 2 x 10^9 PIB/ml + Spinetoram @20 ml/100 l of water	91.5 ± 5.61 AB	
HaNPV @ 2 x 10^9 PIB/ml + Spinetoram @10 ml/100 l of water	75 ± 7.53 A-D	
HaNPV @ 2 x 10^9 PIB/ml + Spinetoram @40 ml/100 l of water	100 ± 0.00 A	
HaNPV @ 2 x 10^9 PIB/ml + Spinetoram @20 ml/100 l of water	87.5 ± 6.52 AB	
HaNPV @ 2 x 10^9 PIB/ml + Spinetoram @10 ml/100 l of water	71 ± 7.43 A-E	
HaNPV @ 1 x 10^9 PIB/ml + Spinetoram 480 SC @40 ml/100 l of water	100 ± 0.00 A	
HaNPV @ 1 x 10^9 PIB/ml + Spinetoram @20 ml/100 l of water	83.5 ± 7.11 ABC	
HaNPV @ 1 x 10^9 PIB/ml + Spinetoram @10 ml/100 l of water	67 ± 7.11 A-F	
HaNPV @ 0.5 x 10^9 PIB/ml + Spinetoram @40 ml/100 l of water	100 ± 0.00 A	
HaNPV @ 0.5 x 10^9 PIB/ml + Spinetoram @20 ml/100 l of water	79 ± 9.64 A-D	
HaNPV @ 0.5 x 10^9 PIB/ml + Spinetoram @10 ml/100 l of water	58.5 ± 12.05B-H	
HaNPV @ 0.25 x 10^9 PIB/ml + Spinetoram 480 SC @40 ml/100 l of water	75 ± 9.73 A-D	
HaNPV @ 0.25 x 10^9 PIB/ml + Spinetoram @20 ml/100 l of water	33.5 ± 9.40 E-I	
HaNPV @ 0.25 x 10^9 PIB/ml + Spinetoram @10 ml/100 l of water	21 ± 9.65 HI	
Spinetoram @40 ml/100 l of water	46 ± 7.43C-I	
Spinetoram @20 ml/100 l of water	25 ± 7.54 GHI	

Table 3
Lethal concentration estimation of HaNPV, spinetoram, emamectin benzoate and their combinations against H. armigera.

Treatment	LC25 (mg/l) (95% CL)	LC50 (mg/l) (95% CL)	LC50 (mg/l) (95% CL)	Slope	\(\chi^2 \)	df	P	N
HaNPV	0.32 (0.12–0.52) x 10^9	0.97 (0.63–1.48) x 10^9	7.94 (3.98–37.48) x 10^9	0.02 (±0.12)	3.97	0	0.264	144
4 x 10^9 HaNPV + Spinetoram	36.25 (0.22–68.34)	61.12 (2.66–94.53)	164.87 (115.73–644.80)	5.31 (±2.57)	0.37	1	0.541	96
2 x 10^9 HaNPV + Spinetoram	39.19 (1.19–71.10)	67.53 (8.52–101.19)	189.89 (137.40–509.61)	5.22 (±2.78)	0.76	1	0.382	96
1 x 10^9 HaNPV + Spinetoram	43.54 (3.28–75.15)	75.34 (17.09–108.84)	213.52 (156.18–553.08)	5.31 (±2.12)	1.22	1	0.269	96
0.5 x 10^9 HaNPV + Spinetoram	55.41 (12.51–84.96)	91.47 (40.49–122.75)	237.12 (177.18–525.42)	5.67 (±2.09)	1.44	1	0.239	96
0.25 x 10^9 HaNPV + Spinetoram	129.51 (66.79–175.01)	241.19 (179.11–364.01)	786.14 (469.35–3638.22)	5.95 (±1.56)	1.18	1	0.276	96
Spinetoram	192.39 (62.49–519.49)	332.37 (231.29–904.07)	1462.49 (653.29–57150.77)	5.02 (±0.56)	0.25	1	0.613	96
4 x 10^9 HaNPV + Emamectin benzoate	254.77 (16.89–388.69)	372.13 (78.10–499.53)	764.46 (592.23–1805.04)	10.54 (±4.09)	0.04	1	0.834	96
2 x 10^9 HaNPV + Emamectin benzoate	280.73 (59.60–411.32)	418.87 (173.87–547.91)	895.97 (697.99–1799.58)	10.17 (±5.57)	0.16	1	0.689	96
1 x 10^9 HaNPV + Emamectin benzoate	323.29 (116.01–467.90)	527.42 (302.45–687.41)	1336.74 (1002.38–2660.45)	8.64 (±2.44)	0.15	1	0.701	96
0.5 x 10^9 HaNPV + Emamectin benzoate	393.26 (183.50–542.75)	641.72 (428.54–820.07)	1627.08 (1208.53–3191.75)	8.90 (±2.24)	0.84	1	0.359	96
0.25 x 10^9 HaNPV + Emamectin benzoate	890.09 (501.88–1217.92)	1709.91 (1247.19–3569.89)	5911.49 (3066.06–63172.92)	7.69 (±2.17)	0.36	1	0.547	96
Emamectin benzoate	834.32 (480.16–1116.25)	1541.06 (1151.37–2691.30)	4944.94 (2785.88–11224.05)	8.06 (±2.16)	0.61	1	0.435	96

a LC25 = Lethal concentration to kill 25% population.
b CL = Confidence limits.
c LC50 = Lethal concentration to kill 50% population.
d LC50 = Lethal concentration to kill 90% population.
e \(\chi^2 \) = Chi-square.
f = Total numbers exposed.
4. Discussion

In Pakistan, farmers usually rely on synthetic insecticides to manage lepidopterous pests which have caused insecticide resistance and very harmful effects on non-target organisms and the environment (Ferré and van Rie, 2002; Sayyed and Wright, 2006). Therefore, sole reliance on synthetic chemicals should be avoided to prevent such negative effects. On the other hand, use of microbial organisms for management of insect pests is safer but it requires long time to reduce their population as their action is very slow. The findings of the current study revealed that mixing of NPV with synthetic chemicals could be very effective, quicker in action and safer to manage insect pests. However, this mixture is not suitable for use at every ratio of both ingredients: some ratio will cause antagonistic effects while some synergistic effect. Our study revealed that there is synergistic effect between HaNPV and spinetoram at higher doses while antagonistic effect at higher doses.

The combination of HaNPV with spinetoram was caused higher mortalities of H. armigera as compared to spinetoram, emamectin benzoate, HaNPV alone and combination of HaNPV with emamectin benzoate. In the current study, both additive and antagonistic effects were observed between HaNPV and two insecticides. There was antagonistic interaction between HaNPV and two insecticides. There was antagonistic interaction between spinetoram with 0.5 mg/C2 and emamectin benzoate. In the current study, both additive and antagonistic effects were observed between HaNPV and two insecticides. There was antagonistic interaction between HaNPV and two insecticides. There was antagonistic interaction between spinetoram with 0.5 mg/C2 and emamectin benzoate. In the current study, both additive and antagonistic effects were observed between HaNPV and two insecticides.

Ahmad, M., Arif, M.I., Ahmad, Z., 2001. Resistance to carbamate insecticides in Helicoverpa armigera (Lepidoptera: Noctuidae) in Pakistan. Crop Prot. 20, 427–432.

Ahmad, M., Arif, M.I., Ahmad, Z., 2003. Susceptibility of Helicoverpa armigera (Lepidoptera: Noctuidae) to new chemistries in Pakistan. Crop Prot. 22, 539–544.

Alvi, A.H.K., Sayeed, A.H., Naee, M., Ali, M., 2012. Field Evolved Resistance in Helicoverpa armigera (Lepidoptera: Noctuidae) to bacillus thuringiensis toxin Cry1Ac in Pakistan. PLoS One 7, 1–9. https://doi.org/10.1371/journal.pone.0047309.

Analytical software, 2005. Statistix 8.1 for Windows. Analytical Software, Tallahassee.

Baker, G.H., Tann, C.R., Fitt, C.P., 2008. Production of Helicoverpa ssp. (Lepidoptera: Noctuidae) from different refuge crops to accompany transgenic cotton plantings in eastern Australia. Aust. J. Agric. Res. 59, 723–732.

Baker, G.H., Tann, C.R., Fitt, C.P., 2010. A tale of two trapping methods: Helicoverpa ssp. (Lepidoptera: Noctuidae) in pheromone and light traps in Australian cotton production systems. Bull. Entomol. Res. 101 (1), 9–23.

Breault, T., Achaleke, J., 2005. Status of pyrethroid resistance in the cotton bollworm, Helicoverpa armigera, in Cameroon. Resistant Pest Manage. Newsletter 4, 1–7.

Breit, B.L., Larson, L.L., Schoonover, J.R., Sparks, T.C., Thompson, G.D., 1997. Biological properties of spinosad. Down Earth 52, 6–13.

Cisneros, J., Perez, J.A., Penagos, D.I., Ruiz, V.J., Goulson, D., Caballero, P., Cave, R.D., Williams, T.F., 2002. Formulation of a baculovirus with boric acid for control of Spodoptera frugiperda (Lepidoptera: Noctuidae) in maize. Biol. Control 23, 87–95.

Czepak, C., Albernaz, K.C., Vivian, L.M., Guzmáneas, H.O., Carvalhais, T., 2013. First reported occurrence of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) in Brazil. Pesq. Agropec. Trop. 43 (1), 110–113.

El-Helaly, A.A., El-bendary, H.M., 2013. Impact of Spinosad and nucleopolyhedrosis virus alone and in combination against the cotton leaf worm Spodoptera litura litura under laboratory. App. Sci. Rep. 2 (1), 17–21.

Ferré, J., van Rie, J., 2002. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 47, 501–533.

Guo, Y.Y., 1997. Progress in the researches on migration regularity of cotton bollworm and relationships between the pest and its host plants. Acta Entomol. Sin. 40, 1–6.

Hayes, W.J., Laws, E.R., 2013. Handbook of pesticide toxicity, classes of pesticides. J. Elsevier 3, 1451–1453.

Jansson, R.K., Dybas, R.A., 1998. Avermectins: Biochemical mode of action, biological activity and agricultural importance. In: Isahaya, I., Deghéele, D., Insecticides with Novel Modes of Action—Mechanisms and Application. Springer, Berlin, Heidelberg, New York, pp. 153–170.

Koppenhofer, A.M., Kaya, H.K., 2000. Interactions of a nucleopolyhedrovirus with azadirachtin and imidacloprid. J. Invertebr. Pathol. 73, 84–86.

Lanks, R.G., Gordon, 1989. Toxicology. In: Campbell, W.C. (Ed.), Verminct and Abamectin, Springer Verlag, New York, NY. pp. 10–142.

MacConnell, J.G., Demchak, R.J., Preiser, F.A., Dybas, R.A., 1989. Relative stability, toxicity, and penetrability of abamectin and its 8,9-oxide. J. Agric. Food Chem. 37, 1498–1501.

Mendez, W.A., Valle, J., Ibarra, J.E., Cisneros, J., Penagos, D.S., Williams, T., 2002. Spinosad and nucleopolyhedrovirus mixtures for control of Spodoptera frugiperda (Lepidoptera: Noctuidae) in maize. Biol Control 23, 195–206.

Moral-Garcia, F.J., 2006. Analysis of the spatiotemporal distribution of Helicoverpa armigera (Hubner) in a tomato field using a stochastic approach. Biosyst. Eng. 93, 253–259.

Nasution, D.E., Miranti, M., Melanie, M., 2015. Biological Test of Formulation of Sustained Release Helicoverpa armigera Nuclear Polyhedrosis Virus (HaNPV) on Mortality of Spodoptera litura Litava Infested to cabbage (Brassica oleracea Var. capitata Linn.) Plantation. Knowl. Publ. Serv. 2, 646–648.

Peters, S.E.O., Cuuker, T.H., 1993. The enhancement of Pieris brassicae (L.) (Lep., Pieridae) granulosis virus infection by microbial and synthetic insecticides. J. Appl. Entomol. 116, 72–79.

Pingel, R.L., Lewis, L.C., 1999. Effect of Bacillus thuringiensis, Anagaphra falcifera multiple nucleopolyhedrovirus, and their mixture on three lepidopteran corn ear pests. J. Econ. Entomol. 92, 91–96.

Pogue, M.G., 2004. A new synonym of Helicoverpa zea (Boddie) and differentiation of adult males of H. zea and H. armigera (Hubner) (Lepidoptera: Noctuidae: Heliothinae). Ann. Entomol. Soc. Am. 97, 1222–1226.

Qayyum, M.A., Wakil, W., Arif, M.I., Sahi, S.T., 2015. Bacillus thuringiensis and nuclear polyhedrosis virus for the enhanced biocontrol of Helicoverpa armigera. Int. J. Agric. Biol. 17, 1043–1048.

Rajagopal, R., Arora, N., Sivakumar, S., Rao, N.G.V., Nimbalkar, S.A., Bhatnagar, R.K., 2009. Resistance of Helicoverpa armigera to cry1Ac toxin from Bacillus thuringiensis is due to improper processing of the protoxin. Biochem. J. 419, 309–316.

Salgado, V.L., 1998. Studies on the mode of action of spinosad: insect symptoms and larval development. Appl. Entomol. 116, 72–79.

Sayeed, A.H., Wright, D.J., 2006. Genetics and evidence for an esterase-associated mechanism of resistance to indoxacarb in a field population of diamondback moth (Lepidoptera: Plutellidae). Pest Manage. Sci., New York 62 (11), 1045–1051.

Senthil, S.N., Kalavani, K., Chung, P.G., 2005. The effects of azadirachtin and nucleopolyhedrovirus on midgut enzymatic proWle of Spodoptera litura Fab.
Shapiro, M., Dougherty, E.M., 1994. Enhancement in activity of homologous and heterologous viruses against the gypsy moth (Lepidoptera: Lymantriidae) by an optical brightener. J. Econ. Entomol. 87, 361–365.

Shaurub, E.H., Meguid, A.A., Aziz, N.M.A., 2014. Effect of individual and combined treatment with Azadirachtin and Spodoptera littoralis multicapsid nucleopolyhedrovirus (SpliMNPV, Baculoviridae) on the Egyptian cotton leafworm Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). Ecol. Balkanica 6, 93–100.

Singh, H., Singh, H.R., Yadav, R.N., Yadav, K.G., Yadav, A., 2009. Efficacy and economics of some bio-pesticide in management of Helicoverpa armigera (HUB) on chickpea. Pestology 33, 36–37.

Sparks, T.C., Thompson, C.D., Kirst, H.A., Hertlein, M.B., Larson, L.L., Worden, T.V., Thibault, S.T., 1998. Biological activity of the spinosyns, new fermentation derived insect control agents, on tobacco budworm (Lepidoptera: Noctuidae) larvae. J. Econ. Entomol. 91, 1277–1283.

Torres-Vila, L.M., Rodriguez Molina, M.C., Lacasa Plasencia, A., Bielza-Lino, P., Rodriguez-del-Rincón, A., 2002. Pyrethroid resistance of Helicoverpa armigera in Spain: current status and agroecological perspective. Agric. Ecosyst. Environ. 93, 55–66.

Trang, T., Kieu, T., Chaudhari, S., 2002. Bioassay of nuclear polyhedrosis virus (NPV) and in combination with insecticide on Spodeptera litura (Fab). Omerica 10, 45–53.

Walil, W., Ghazanfar, M.U., Nasir, F., Qayyum, M.A., Tahir, M., 2012. Insecticidal efficacy of Azadirachta indica, nucleopolyhedrovirus and chlorantraniliprole singly or combined against field populations of Helicoverpa armigera Hübner (Lepidoptera: noctuidae). Chilean J. Agric. Res. 72 (1), 53.

Xu, X., Sepich, C., Lukas, R.J., Zhu, G., Chang, Y., 2016. Emamectin is a non-selective allosteric activator of nicotinic acetylcholine receptors and GABA/C receptors. Biochem. Biophys. Res. Commun. 473 (4), 795–800.