Abstract. Background/Aim: Cabazitaxel is recommended as first-line treatment after docetaxel for metastatic castration-resistant prostate cancer. However, the efficacy, adverse events and prognostic factors associated with cabazitaxel are unclear. Patients and Methods: This single-centre retrospective study including 30 patients with CRPC treated with cabazitaxel between 2014 and 2020 investigated efficacy, outcomes and prognostic factors. Results: Fourteen patients had visceral metastases. The median cabazitaxel dose was 20 mg/m². The prostate-specific antigen response rate, time to prostate-specific antigen response, and overall survival were 13.3%, 3.48 months, and 7.92 months, respectively. The rates of grade 3 or more neutropenia and febrile neutropenia were 20% and 6.7%, respectively. By multivariate analysis, sarcopenia and visceral metastasis at the time of cabazitaxel initiation were independent and significant factors conferring a poor prognosis. Conclusion: The early introduction of cabazitaxel, prior to the development of sarcopenia and visceral metastasis, might contribute to improved prognosis in CRPC.

This article is freely accessible online.

Correspondence to: Hiroaki Iwamoto, Department of Integrative Cancer Therapy and Urology, Graduate School of Medical Science, Kanazawa University, Takaramachi13-1, Kanazawa, Ishikawa, 920-8640, Japan. Tel: +81 762652393, Fax: +81762344263, e-mail: hiroaki017@yahoo.co.jp

Key Words: Sarcopenia, visceral metastasis, castration-resistant prostate cancer, cabazitaxel.

Sarcopenia and Visceral Metastasis at Cabazitaxel Initiation Predict Prognosis in Patients With Castration-resistant Prostate Cancer Receiving Cabazitaxel Chemotherapy

HIROAKI IWAMOTO, HIROSHI KANO, TAKAFUMI SHIMADA, RENATO NAITO, TOMOYUKI MAKINO, SUGURU KADOMOTO, HIROSHI YAEGASHI, KAZUYOSHI SHIGEHARA, KOUJI IZUMI, YOSHIFUMI KADONO and ATSUSHI MIZOKAMI

Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
We retrospectively reviewed the charts of all patients and collected medical data, including age, serum PSA level, bone scan index (BSI), levels of C-reactive protein, alkaline phosphatase and lactate dehydrogenase, neutrophil-to-lymphocyte ratio, prostate biopsy pathology, adverse events, sarcopenia, clinical stage and treatment progress. BSI was calculated as the percentage of bone metastatic hotspots based on artificial neural network values using BONENAVI version 2 (FujiFilm RI Pharma, Tokyo, Japan; Exini Bone, Exini Diagnostics, Lund, Sweden) (17, 18). Sarcopenia was defined as a skeletal muscle index (SMI) <43 cm²/m² in patients with a body mass index (BMI) <25 cm²/m² or an SMI <53 cm²/m² in patients with a BMI ≥25 cm²/m² (19). SMI and BMI were calculated as follows: BMI (kg/m²)=weight/height²; SMI (cm²/m²)=skeletal muscle cross-sectional area at L3/height² (20, 21).

Clinical cancer stage was determined based on the eighth edition of the TNM classification published in 2017 (22). Diagnostic imaging studies such as computed tomography, magnetic resonance imaging, and bone scintigraphy were performed at the time of PC diagnosis or CRPC occurrence and before changes in treatment. Thereafter, the imaging studies were left to the discretion of the attending physician. The interval between subsequent imaging studies and all therapeutic decisions were left to the discretion of the attending physician.

The follow-up was terminated on December 31, 2020. Survival was measured from the time of cabazitaxel administration until death or last follow-up. Time to PSA progression (TTP) and OS were retrospectively analysed using the Kaplan-Meier method, and the log-rank test was used for the comparison of survival distributions. The Cox proportional hazards model was used for multivariate analyses. All statistical analyses were performed using the commercially available SPSS software, version 25.0 (SPSS, Chicago, IL, USA) and Prism 5 (GraphPad, San Diego, CA, USA). In all analyses, a p-value of less than 0.05 was considered to indicate statistical significance. The present study was approved by the Institutional Review Board of Kanazawa University Hospital (2016-328).

Results

The characteristics of the study cohort of 30 patients with PC treated with cabazitaxel are shown in Table I. The median age at the time of cabazitaxel administration was 69.5 (range=48-80) years. The median PSA at the start of cabazitaxel treatment was 63.75 (range=0.24-22141) ng/ml. In the study cohort, 18 patients had a Gleason score ≥9, two patients had neuroendocrine PC, and 14 patients were in stage M1c indicating visceral metastasis (VM). A median of six (range=3-8) pretreatment lines and a median of four (range=1-10) cabazitaxel cycles were administered, with a
median cabazitaxel dose of 20 (range=15-20) mg/m². Grade 3 or higher neutropenia and febrile neutropenia (FN) were observed in six and two patients, respectively.

The waterfall plot of the maximum percentage change in PSA level from baseline after cabazitaxel administration is shown in Figure 1. Specifically, 16 out of the 30 patients (53.3%) exhibited a decrease in PSA and four patients (13.3%) exhibited PSA response. The waterfall plot of the maximum percentage change in BSI from baseline after cabazitaxel administration is shown in Figure 2. Briefly, 13 out of the 18 patients (72.2%) for whom BSI data were available exhibited a decrease in BSI. Finally, the waterfall plot showing the relationship between the maximum percentage change in PSA and the maximum percentage change in BSI (Figure 3) revealed that there was no correlation between the decrease in BSI and PSA.

Table II shows the results of univariate and multivariate analyses of factors associated with OS from the time of cabazitaxel administration. Multivariate analysis showed that the presence of sarcopenia and VM at the time of cabazitaxel initiation were independent and significant factors indicating a poor prognosis. The median TTP and OS from the initiation of cabazitaxel administration were 3.48 months and 7.92 months, respectively (Figure 4A and B). As shown in Figure 4C, the median OS rates of patients with and without sarcopenia were 5.45 and 16.82 months, respectively ($p<0.0001$, log-rank test). As shown in Figure 4D, the median OS rates of patients with and without VM were 5.45 and 12.02 months, respectively ($p=0.017$, log-rank test). These results indicate that the OS was significantly shorter in patients with sarcopenia and in those with VM.

Discussion

Based on the results of the phase III TROPIC trial, 25 mg/m² cabazitaxel in combination with prednisone was approved in 2010 for the treatment of patients with CRPC after docetaxel treatment (9). In the TROPIC trial, the median OS rates were 15.1 and 12.7 months for the cabazitaxel-treated and mitoxantrone-treated groups, respectively, showing a significantly longer OS for the cabazitaxel-treated group ($p<0.0001$) (9). The PSA response rate for the cabazitaxel group was 39.2%. Based on these results, the 2020 National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology for Prostate Cancer recommend cabazitaxel as first-line treatment for metastatic CRPC after docetaxel (23). In the TROPIC trial, 82% of patients had grade 3 or higher neutropenia and 8% of patients had FN (9). In a phase I trial from Japan, 100% of patients had grade 3 or higher neutropenia and 24.6% of patients had FN (24). Compared with patients from Western countries, disease in patients from Asian countries has generally been reported to exhibit stronger resistance to chemotherapeutic agents, and the cabazitaxel dosage for Japanese patients should be considered with caution (9, 24, 25). The phase III PROSELICA trial was conducted to investigate the safety and efficacy of low-dose cabazitaxel [20 mg/m² (C20)] to 25 mg/m² cabazitaxel (C25) (26). The PSA response rate was significantly higher for the C25 group compared to the C20 group (42.9% vs. 29.5%;
but there was no significant difference in TTP (3.5 and 2.9 months, respectively; hazard ratio=1.099) and OS (14.5 and 13.4 months, respectively, hazard ratio=1.024) (26).

The C20 group had a lower rate of grade 3 or higher neutropenia (42% vs. 73% in the C25 group) and FN (2.1% vs. 9.2% in the C25 group). Based on these results, treatment

Table II. Univariate and multivariate analyses of factors associated with overall survival from the initiation of cabazitaxel administration.

Factor	Univariate HR (95% CI)	p-Value	Multivariate HR (95% CI)	p-Value
Age* ≥70 vs. <70 Years	0.83 (0.35-2.01)	0.68	3.80 (1.23-11.75)	0.02
Visceral metastasis*	2.84 (1.16-6.95)	0.02	4.40 (0.98-19.82)	0.05
PSA* ≥100 vs. <100 ng/ml	3.68 (1.44-9.43)	<0.01	2.87 (0.78-10.61)	0.11
BSI* ≥2 vs. <2	1.55 (0.49-4.89)	0.46	0.66 (0.16-2.75)	0.56
CRP* ≥2 vs. <2 mg/l	4.00 (1.43-11.12)	<0.01	1.88 (0.42-8.33)	0.41
ALD* ≥270 vs. <270 IU/l	3.74 (1.37-10.25)	0.01	0.69 (0.24-1.49)	0.27
NLR* ≥3 vs. ≤3	1.90 (0.69-5.25)	0.21	2.11 (0.78-5.67)	0.14
Total dose of docetaxel	≥1,000 vs. <1,000 mg	0.60	1.08 (0.45-2.59)	0.86
Neutropenia grade 3/4	Yes vs. no	2.11	1.08 (0.45-2.59)	0.86
Time to CRPC ≥1 vs. <1 Year	Yes vs. no	1.90	2.11 (0.78-5.67)	0.14
Sarcopenia Yes vs. no	9.50 (2.92-30.97)	<0.001	12.19 (2.91-51.06)	0.001

ALP: Alkaline phosphatase; BSI: bone scan index; CI: confidence interval; CRP: C-reactive protein; LDH: lactate dehydrogenase; NLR: neutrophil-to-lymphocyte ratio; PSA: prostate-specific antigen. *At initiation of cabazitaxel administration.

Figure 4. Kaplan-Meier curves for time to prostate-specific antigen (PSA) progression (A), and overall survival (OS) of the whole cohort (B) and of patients according to the presence of sarcopenia (C) and visceral metastasis (D). HR: Hazard ratio.
with 20 mg/m² cabazitaxel is desirable due to improved prognosis with a lower rate of side-effects. For all patients in the present study, lower cabazitaxel doses of 15-20 mg/m² were initiated.

In the present study, the rates of PSA response, grade 3 or higher neutropenia, and FN were 13.3%, 20%, and 6.7%, respectively, and the OS and TTP were 7.92 and 3.48 months, respectively. The reported rates of PSA response, grade 3 or higher neutropenia, and FN are 19.37%-18-100%, and 6.4-54.6%, respectively, with TTP and OS of 1.4-4.3 and 12.2-20.7 months, respectively (10-13, 15, 16, 24). Therefore, compared with the previous reports, the patients in the present study experienced a lower PSA response rate, shorter OS and lower incidence of grade 3 or higher neutropenia and FN. The lower incidence of grade 3 or higher neutropenia and FN might be due to use of the reduced cabazitaxel dose. In this study, sarcopenia and VM at the time of cabazitaxel initiation were independent and significant factors conferring a poor prognosis. The Eastern Cooperative Oncology Group performance status and VM have been reported to be factors of poor prognosis for OS after treatment with cabazitaxel, consistent with the current study results (27). It is known that cancer cachexia and sarcopenia develop as cancer progresses, and this was observed in about half of patients with advanced cancer (28). VM at the time of prostate cancer diagnosis is very rare but has been found to increase as treatment progresses (5). These results suggest that cabazitaxel should be introduced at an early stage of PC, without sarcopenia and VM. Several studies have reported that cabazitaxel is effective in patients with grade 3 or higher neutropenia, low neutrophil-to-lymphocyte ratio, and low BSI, but in this study, there were no significant differences in OS and TTP related to these factors (27, 29-31). There are several limitations to the current study. This was a retrospective study with a short observation period and included a small number of patients. Furthermore, PC treatment and the interval between imaging assessments were at the discretion of the attending physician. Therefore, the current study findings should be confirmed in large, long-term prospective studies.

Conclusion

In the present study, we found that sarcopenia and VM at the time of cabazitaxel initiation were independent and significant factors indicating a poor prognosis. Early introduction of cabazitaxel might contribute to improved prognosis in patients with CRPC.

Conflicts of Interest

All Authors declare that there are no potential conflicts of interest relevant to this article.

Authors’ Contributions

H.I. designed the experiments. H.I., H.K., T.S., R.N., T.M., S.K., H.Y., S.K., K.I. and Y.K. collected clinical data. H.I., R.N., T.M., S.K., K.I. and A.M. analyzed the data. H.I., K.I., and A.M. drafted and revised the manuscript. All Authors read and approved the final version of the manuscript.

References

1 Siegel RL, Miller KD and Jemal A: Cancer statistics, 2019. CA Cancer J Clin 69(1): 7-34, 2019. PMID: 30620402. DOI: 10.3322/caac.21551
2 Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin 65(2): 87-108, 2015. PMID: 25651787. DOI: 10.3322/caac.21262
3 Byers T, Barrera E, Fontham ET, Newman LA, Runowicz CD, Sener SF, Thun MJ, Winborn S, Wender RC and American Cancer Society Incidence and Mortality End Committee.: A midpoint assessment of the American Cancer Society challenge goal to halve the U.S. cancer mortality rates between the years 1990 and 2015. Cancer 107(2): 396-405, 2006. PMID: 16770789. DOI: 10.1002/cncr.21990
4 Schröder FH, Hugosson J, Roobol MJ, Tammela TL, Ciatto S, Nelen V, Kwiatkowski M, Lujan M, Lilja H, Zappa M, Denis LJ, Recker F, Páez A, Määtäinen L, Bangma CH, Aus G, Carlsson S, Villers A, Rebillard X, van der Kwast T, Kujala PM, Blijenberg BG, Stenman UH, Huber A, Taari K, Hakama M, Moss SM, de Koning HJ, Auvinen A and ERSPC Investigators.: Prostate-cancer mortality at 11 years of follow-up. N Engl J Med 366(11): 981-990, 2012. PMID: 22417251. DOI: 10.1056/NEJMoa1113135
5 Iwamoto H, Izumi K, Shimada T, Kano H, Kadomoto S, Makino T, Naito R, Yagashiki H, Shigehara K, Kadono Y and Mizokami A: Androgen receptor signaling-targeted therapy and taxane chemotherapy induce visceral metastasis in castration-resistant prostate cancer. Prostate 81(1): 72-80, 2021. PMID: 33047850. DOI: 10.1002/pros.24082
6 Sharifi N, Gulley JL and Dahut WL: An update on androgen deprivation therapy for prostate cancer. Endocr Relat Cancer 17(4): R305-R315, 2010. PMID: 20861285. DOI: 10.1677/ERC-10-0187
7 Harris WP, Mostaghel EA, Nelson PS and Montgomery B: Androgen deprivation therapy: Progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat Clin Pract Urol 6(2): 76-85, 2009. PMID: 19198621. DOI: 10.1038/ncpuro1296
8 Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, Oudard S, Théodore C, James ND, Turesson I, Rosenthal MA, Eisenberger MA and TAX 327 Investigators.: Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 351(15): 1502-1512, 2004. PMID: 15470213. DOI: 10.1056/NEJMoa040720
9 de Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, Kokcak I, Gravis G, Bodrog I, Mackenzie MJ, Shin L, Roessner M, Gupta S, Sartor AO and TROPIC Investigators.: Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: A randomised open-label trial. Lancet 375(9747): 1147-1154, 2010. PMID: 20888992. DOI: 10.1016/S0140-6736(10)61389-X
No significant impact of patient age and prior treatment profile on the efficacy of cabazitaxel in patients with castration-resistant prostate cancer. Cancer Chemother Pharmacol 82(6): 1061-1066, 2018. PMID: 30283980. DOI: 10.1007/s00280-018-3698-1

Miyake H, Matsushita Y, Watanabe H, Tamura K, Suzuki T, Motoyama D, Itō T, Sugiyama T and Otsuka A: Significance of de riis (Aspartate Transaminase/Alanine Transaminase) ratio as a significant prognostic but not predictive biomarker in Japanese patients with metastatic castration-resistant prostate cancer treated with cabazitaxel. Anticancer Res 38(7): 4179-4185, 2018. PMID: 29970547. DOI: 10.21873/anticancer.12711

Terada N, Kamoto T, Tsukino H, Muka S, Akamatsu S, Inoue T, Ogawa O, Narita S, Habuchi T, Yamashita S, Mitsuzuka K, Arai Y, Kandori S, Kojima T, Nishiyama H, Kawamura Y, Shimizu Y, Terachi T, Sugi M, Kinoshita H, Matsuda T, Yamada Y, Yamamoto S, Hirama H, Sugimoto M, Kakehi Y, Sakurai T and Tsuchiya N: The efficacy and toxicity of cabazitaxel for treatment of docetaxel-resistant prostate cancer correlating with the initial doses in Japanese patients. BMC Cancer 19(1): 156, 2019. PMID: 30770773. DOI: 10.1186/s12885-019-5342-9

Yasuoka S, Yuasa T, Ogawa M, Komai Y, Numao N, Yamamoto S, Kondo Y and Yonese J: Risk factors for poor survival in metastatic castration-resistant prostate cancer treated with cabazitaxel in Japan. Anticancer Res 39(10): 5803-5809, 2019. PMID: 31570485. DOI: 10.21873/anticancer.13784

Shiotani M, Nakamura M, Yokomizo A, Tomoda T, Sakamoto N, Seki N, Hasegawa S, Yonuki T, Harano M, Kuroiwa K and Eto M: Prognostic significance of lactate dehydrogenase in cabazitaxel chemotherapy for castration-resistant prostate cancer: A multi-institutional study. Anticancer Drugs 31(3): 298-303, 2020. PMID: 31913197. DOI: 10.1097/CAD.0000000000001884

Takai M, Kato S, Nakano M, Fujimoto S, Inuuma K, Ishida T, Taniguchi M, Tamaki M, Uno M, Takahashi Y, Komeda H and Koi T: Efficacy of cabazitaxel and the influence of clinical factors on the overall survival of patients with castration-resistant prostate cancer: A local experience of a multicenter retrospective study. Asia Pac J Clin Oncol 2020. PMID: 32970933. DOI: 10.1111/ajco.13441

Yamamoto T, Ishizuka O, Oike H, Shiozaki M, Haba T, Oguchi T, Iijima K and Kato H: Safety and efficacy of cabazitaxel in Japanese patients with castration-resistant prostate cancer. Prostate Int 8(1): 27-33, 2020. PMID: 32257975. DOI: 10.1016/j.pri.2019.10.005

Kadomoto S, Yaegashi H, Nakashima K, Iijima M, Kagawuchi S, Nohara T, Shigehara K, Izumi K, Kadono Y, Nakajima K and Mizokami A: Quantification of bone metastasis of Castration-resistant prostate cancer correlating with survival benefit in men with metastatic castration-resistant prostate cancer (mCRPC): A local experience of a multicenter retrospective study. Acta Oncol 59(9): 1198-1205, 2020. PMID: 32970933. DOI: 10.1111/ajco.13441

Kadomoto T, Yamashita K, Tsuchiya T, Kondori S, Kojima T, Nishiyama H, Kawamura Y, Shimizu Y, Terachi T, Sugi M, Kinoshita H, Matsuda T, Yamada Y, Yamamoto S, Hirama H, Sugimoto M, Kakehi Y, Sakurai T and Tsuchiya N: The efficacy and toxicity of cabazitaxel for treatment of docetaxel-resistant prostate cancer correlating with the initial doses in Japanese patients. BMC Cancer 19(1): 156, 2019. PMID: 30770773. DOI: 10.1186/s12885-019-5342-9

Terada N, Kamoto T, Tsukino H, Muka S, Akamatsu S, Inoue T, Ogawa O, Narita S, Habuchi T, Yamashita S, Mitsuzuka K, Arai Y, Kandori S, Kojima T, Nishiyama H, Kawamura Y, Shimizu Y, Terachi T, Sugi M, Kinoshita H, Matsuda T, Yamada Y, Yamamoto S, Hirama H, Sugimoto M, Kakehi Y, Sakurai T and Tsuchiya N: The efficacy and toxicity of cabazitaxel for treatment of docetaxel-resistant prostate cancer correlating with the initial doses in Japanese patients. BMC Cancer 19(1): 156, 2019. PMID: 30770773. DOI: 10.1186/s12885-019-5342-9

Shigeta K, Kosaka T, Yazawa S, Yasumizu Y, Mizuno R, Nagata H, Shinoda K, Morita S, Miyajima A, Kikuchi E, Nakagawa K, Hagase S and Oya M: Predictive factors for severe and febrile neutropenia during docetaxel chemotherapy for castration-resistant prostate cancer. Int J Clin Oncol 20(5): 1026-1034, 2015. PMID: 25809824. DOI: 10.1007/s10147-015-0820-9

Eisenberger M, Hardy-Bessard AC, Kim CS, Geczi L, Ford D, Mourey L, Carles J, Parente P, Font A, Kacso G, Chadjaa M, Zhang W, Bernard J and de Bono J: Phase III study comparing a reduced dose of cabazitaxel (20 mg/m 2) and the currently approved dose (25 mg/m 2) in postdocetaxel patients with metastatic castration-resistant prostate cancer-PROSELICA. J Clin Oncol 35(28): 3198-3206, 2017. PMID: 28809610. DOI: 10.1200/JCO.2016.72.1076

Otto T, Krege S, Suhr J and Rübben H: Impact of surgical resection of bladder cancer metastases refractory to systemic therapy on performance score: A phase II trial. Urology 57(1): 55-59, 2001. PMID: 11164143. DOI: 10.1016/s0090-4295(00)00867-0

Nipp RD, Fuchs G, El-Jawahri A, Mario J, Troschel FM, Greer JA, Gallagher ER, Jackson VA, Kambadakone A, Hong TS, Temel JS and Fintelmann FJ: Sarcopenia Is associated with quality of life and depression in patients with advanced cancer. Oncologist 23(1): 97-104, 2018. PMID: 28935775. DOI: 10.1634/theoncologist.2017-0255

Meisel A, von Felten S, Vogt DR, Liewen H, de Bono J, Sartor O and Stenner-Liewen F: Severe neutropenia during cabazitaxel treatment is associated with survival benefit in men with metastatic castration-resistant prostate cancer (mCRPC): A post-hoc analysis of the TROPIC phase III trial. Eur J Cancer 56: 93-100, 2016. PMID: 26829012. DOI: 10.1016/j.ejca.2015.12.009

Uemura K, Kawahara T, Yamashita D, Kikuya R, Abe K, Tatenuma T, Yokomizo Y, Izumi K, Teranishi JI, Makiyama K, Vivien S and Cipolla C: Impact of BMI on preoperative quality of life and depression in patients with advanced cancer. BMJ Support Palliat Care 5(2): 132-137, 2015. DOI: 10.1136/bmjspcare-2014-000247

Saraceni V: Cancer cachexia in the age of obesity: Skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol 31(12): 1539-1543, 2013. PMID: 23530101. DOI: 10.1200/JCO.2012.45.2722

Amanuma M, Nagai H and Igarashi Y: Sorafenib might induce sarcopenia in patients with hepatocellular carcinoma by inhibiting carnitine absorption. Anticancer Res 40(7): 4173-4182, 2020. PMID: 32620667. DOI: 10.21873/anticancer.14417

Macarone I, Galvano A, Graceffa G, Lupo S, Latteri M, Russo A, Vieni S and Cipolla C: Impact of BMI on preoperative axillary ultrasound assessment in patients with early breast cancer. Anticancer Res 40(12): 7083-7088, 2020. PMID: 33288606. DOI: 10.21873/anticancer.14736
Yumura Y, Kishida T, Udagawa K, Kobayashi K, Miyoshi Y, Yao M and Uemura H: Neutrophil-to-lymphocyte ratio predicts prognosis in Castration-resistant prostate cancer patients who received cabazitaxel chemotherapy. Biomed Res Int 2017: 7538647, 2017. PMID: 28948170. DOI: 10.1155/2017/7538647

Uemura K, Miyoshi Y, Kawahara T, Ryosuke J, Yamashita D, Yoneyama S, Yokomizo Y, Kobayashi K, Kishida T, Yao M and Uemura H: Prognostic value of an automated bone scan index for men with metastatic castration-resistant prostate cancer treated with cabazitaxel. BMC Cancer 18(1): 501, 2018. PMID: 29716525. DOI: 10.1186/s12885-018-4401-y

Received February 3, 2021
Revised February 24, 2021
Accepted February 25, 2021