Cardiotrophin-1 Activates a Distinct Form of Cardiac Muscle Cell Hypertrophy

ASSEMBLY OF SARCOMERIC UNITS IN SERIES VIA gp130/LEUKEMIA INHIBITORY FACTOR RECEPTOR-DEPENDENT PATHWAYS*

(Received for publication, July 26, 1995, and in revised form, February 7, 1996)

Kai C. Wollert†‡§, Tetsuya Taga†, Mikiyoshi Saito†, Masashi Narazaki†, Tadamitsu Kishimoto†, Christopher C. Glembotski**, Ann B. Vernallis‡‡, John K. Heath‡‡, Diane Pennica§§, William I. Wood§§, and Kenneth R. Chien†‡†

From the †Department of Medicine, Center for Molecular Genetics, and the American Heart Association-Bugher Foundation Center for Molecular Biology, University of California, San Diego, School of Medicine, La Jolla, California 92093, ‡Institute for Molecular and Cellular Biology, Osaka University, Osaka, Japan, §Department of Medicine, Osaka University Medical School, Osaka, Japan, ¶Department of Molecular Biology, Osaka University, Osaka, Japan, **Department of Molecular Biology, San Diego State University, San Diego, California 92182, ††Department of Biochemistry, University of Oxford, Oxford, United Kingdom, and the §§Department of Molecular Biology Genentech, Inc., South San Francisco, California 94080

Cardiotrophin-1 (CT-1) was recently isolated by expression cloning based on its ability to induce an increase in cell size in neonatal rat ventricular cardiomyocytes. Sequence similarity data suggested that CT-1 is a novel member of a family of structurally related cytokines sharing the receptor component gp130. The present study documents that gp130 is required for CT-1 signaling in cardiomyocytes, by demonstrating that a monoclonal anti-gp130 antibody completely inhibits c-fos induction by CT-1. Similarly, a leukemia inhibitory factor receptor subunit β (LIFRβ) antagonist effectively blocks the CT-1 induction of c-fos, indicating a requirement for LIFRβ in the hypertrophic response, as well. Upon stimulation with CT-1, both gp130 and the LIFRβ are tyrosine-phosphorylated, providing further evidence that CT-1 signals through the gp130/LIFRβ heterodimer in cardiomyocytes. CT-1 induces a hypertrophic response in cardiomyocytes that is distinct from the phenotype seen after α-adrenergic stimulation, both with regard to cell morphology and gene expression pattern. Stimulation with CT-1 results in an increase in cardiac cell size that is characterized by an increase in cell length but no significant change in cell width. Confocal laser microscopy of CT-1 stimulated cells reveals the assembly of sarcomeric units in series rather than in parallel, as seen after α-adrenergic stimulation. CT-1 induces a distinct pattern of immediate early genes, and up-regulates the atrial natriuretic factor (ANF) gene, but does not affect skeletal α-actin or myosin light chain-2v expression. As evidenced by nuclear run-on transcription assays, both CT-1 and α-adrenergic stimulation lead to an increase in ANF gene transcription. Transient transfection analyses document that, in contrast to α-adrenergic stimulation, the CT-1 responsive cis-regulatory elements are located outside of the proximal 3 kilobase pairs of the ANF 5′-flanking region. These studies indicate that CT-1 can activate a distinct form of myocardial cell hypertrophy, characterized by the promotion of sarcomere assembly in series, via gp130/LIFRβ-dependent signaling pathways.

Hypertrophy is one of the most important compensatory responses of the myocardium, as it is critical for the maintenance of normal cardiac function in response to pressure overload in the setting of hypertension or volume overload during valvular insufficiency. However, the mechanical stimuli of pressure versus volume overload produce distinct cardiac muscle phenotypes, with the former resulting in a concentric pattern of hypertrophy, and the latter promoting an eccentric form of hypertrophy with cardiac chamber dilation. On a single cell level, cardiac myocytes isolated from concentric hypertrophic hearts display an increase in cell diameter with the addition of new myofibrils in parallel (1, 2), while myocytes derived from dilated hearts exhibit an increase in cell length, reflecting the addition of new sarcomeric units in series (3, 4). These distinct morphological phenotypes are associated with different effects on global cardiac function. Chronic volume overload hypertrophy can result in an irreversible loss of cardiac function, while pressure overload hypertrophy is usually associated with the preservation of contractile function, and can often be reversible. While both forms of hypertrophy can lead to the induction of the atrial natriuretic factor gene, distinct molecular phenotypes have also recently been observed (5). Although it has long been accepted that there are distinct morphologic forms of hypertrophy in the setting of pressure or volume overload, the signaling pathways which mediate these distinct cardiac phenotypes remain unclear. One of the critical questions is whether divergent signaling pathways are responsible for the activation of these distinct forms of hypertrophy that display clear differences with respect to cell morphology, physiology, and the induction of molecular markers.

Our current insight into the mechanisms controlling cardiomyocyte hypertrophy has primarily been obtained from an in vitro model employing neonatal rat ventricular myocytes. A number of growth factors signaling through G-protein coupled receptors, including α-adrenergic agonists (6–11), endothelin 1 (12, 13), and angiotensin II (14), promote a hypertrophic response in this in vitro system. Following activation of the

* This work was supported in part by National Institutes of Health, NHLBI Grants 1 RO1 HL51549, PO1 HL46345, HL53773, and AHA 91-022170 (to K. R. C.), and by a fellowship from the Deutsche Forschungsgemeinschaft (Wo 552/1-1) (to K. C. W.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† Present address: Universität Freiburg, Medizinische Klinik, Abt. Kardiologie, Hugstetterstr. 55, 79106 Freiburg, Germany.

‡ To whom correspondence should be addressed: Dept. of Medicine and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0613. Tel.: 619-534-6835; Fax: 619-534-0801.
G-protein-dependent pathways, cardiomyocytes display a uniform enlargement of cell size, with increases in cell width and length, resulting from the assembly of new myofibrils in parallel (12, 15, 16). ras-dependent pathways appear to be both necessary and sufficient to activate the hypertrophic response following \(\beta\)-adrenergic stimulation in the in vitro model system (17), and a recent study in transgenic mice documented that the overexpression of a constitutively active ras protein in the ventricular chambers results in a concentric form of cardiac hypertrophy (18). Taken together, these studies indicate that G-protein coupled receptors and ras-dependent pathways activate a form of cardiac hypertrophy that resembles the hypertrophy seen in the setting of pressure overload. The question arises as to whether divergent signaling pathways would mediate a volume overload like hypertrophic phenotype, characterized by sarcomere assembly in series and myocyte enlargement primarily due to an increase in cell length versus width.

By coupling expression cloning to a miniaturized version of the in vitro hypertrophy assay, we have recently isolated a novel 21.5-kDa protein that induces an increase in cell size and atrial natriuretic factor (ANF) \(^1\) release in cardiomyocytes (19). The protein was designated cardiotrophin-1 (CT-1). Sequence similarity data and structural considerations suggest that CT-1 is a new member of a family of structurally related cytokines including interleukin (IL)-6 and IL-11, leukemia-inhibitory factor (LIF), ciliary neurotrophic factor (CNTF), and oncostatin M (OSM). The receptors of this cytokine family are multimeric and share the class-specific transmembrane signal transducing component gp130 (20–23). Signaling is triggered through the homodimerization of gp130 (24), or the heterodimerization of gp130 with a related transmembrane signal transducer, the LIF receptor subunit \(\beta\) (LIF\(\beta\)) (25, 26). The gp130/LIF\(\beta\) heterodimer constitutes the functional bipartite LIF receptor complex (22, 27). Other members of this cytokine family first bind to a private receptor component and subsequently induce gp130 dimerization. For example, IL-6 binds to the receptor component IL-6-R, and the IL-6L1-6R complex then induces the homodimerization of gp130 (28, 29); CNTF binds to the receptor component CNTF-R\(\alpha\) and induces gp130/LIF\(\beta\) heterodimerization (26, 30, 31). Consequently, the expression pattern of the various receptor components defines the spectrum of action of different members of the gp130 cytokine family.

The cloning of CT-1 based on its ability to induce an increase in cell size in cardiomyocyte culture (19) suggested that gp130-dependent signaling pathways may be coupled to cardiomyocyte hypertrophy. In the present study we define the receptor system used by CT-1 in cardiomyocytes, and we examine the effects of CT-1 and two other members of the IL-6 cytokine family, LIF and CNTF, on morphological and molecular features defining a hypertrophic response in cultured cardiomyocytes. By using a monoclonal anti-gp130 antibody and a LIF\(\beta\) antagonist, we establish that both gp130 and LIF\(\beta\) are required for CT-1 signaling in cardiomyocytes. Immunoprecipitation and immunoblotting data show that CT-1 induces the tyrosine phosphorylation of gp130 and a higher molecular weight protein, corresponding in size to LIF\(\beta\). Using confocal laser microscopy of cells stained for both thick and thin filament markers, our studies further indicate that gp130/LIF\(\beta\)-dependent signaling pathways induce a hypertrophic phenotype in cardiomyocytes that is distinct from the response seen after \(\beta\)-adrenergic stimulation, and that shows resemblance to volume overload cardiac hypertrophy both with regard to cell morphology and gene expression pattern.

EXPERIMENTAL PROCEDURES

Murine LIF was produced at Genentech, Inc. Murine LIF was used throughout the study, except for the experiment employing the LIF\(\beta\) antagonist (hLIF\(\beta\)-04), in which both murine LIF and human LIF were used. Rat CNTF and human IL-6 were purchased from Boehringer Mannheim and from Genzyme, respectively. Human IL-6-R was prepared as outlined previously (21). The \(\beta\)-adrenergic agonist phenylephrine (PE) was obtained from Sigma.

Expression and Purification of the CT-1 Fusion Protein—The reading frame of murine CT-1 was cloned C-terminal to the sequence encoding the herpes simplex virus glycoprotein D followed by a factor Xa cleavage site. Following expression in 293 cells and cleavage of the herpes simplex virus glycoprotein D-specific monoclonal antibody and quantified by a colorimetric assay (Bio-Rad).

The LIFR\(\beta\) Antagonist hLIF-04—The LIFR\(\beta\) antagonist hLIF-04 was used to assess the requirement of the LIFR\(\beta\) for CT-1 signaling. Human LIF (hLIF) and the hLIF mutant, hLIF-04, were expressed as glutathione-S-transferase fusions proteins, as described previously (32). hLIF-04 contains three amino acid substitutions (Q25A, S25A, and Q32A), within the A-helix of the hLIF molecule, resulting in a selective disruption of the gp130 binding site, but no impairment in LIFR\(\beta\) binding. A detailed characterization of the LIFR\(\beta\) antagonist hLIF-04 will be presented elsewhere.\(^2\)

Cell Culture—Hearts from 1–3-day-old Sprague-Dawley rats were removed, the ventricles were pooled, and the ventricular cells were dispersed by digestion with collagenase II (Warthington) and pancreatic digest of pronase E (Life Technologies, Inc.). The cell suspension was purified by centrifugation through a discontinuous Percoll gradient to obtain myocardial cell cultures with \(>95\%\) myocytes, as assessed by immunofluorescence with an anti-\(\alpha\)-actin antibody (32). MLC-2v, ventricular myosin light chain-2; jMHC, \(\beta\)-myosin heavy chain; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; DMEM, Dulbecco’s modified Eagle’s medium; Tricine, N-(2-hydroxyethyl)-1-bis(hydroxymethyl)ethyl glycine; I.E., immediate early; PAGE, polyacrylamide gel electrophoresis; RSV, Rous sarcoma virus; bp, base pair(s); kb, kilobase pair(s).

\(^1\) The abbreviations used are: ANF, atrial natriuretic factor; CT-1, cardiotrophin-1; LIF, leukemia inhibitory factor; hLIF, human LIF; IL, interleukin; CNTF, ciliary neurotrophic factor; CNTF, CNTF receptor; OSM, oncostatin M; PE, phenylphosphonic acid; 4G10, soluble IL-6 receptor; LIF\(\beta\), LIF receptor subunit \(\beta\); MLC-2v, ventricular myosin light chain-2; jMHC, \(\beta\)-myosin heavy chain; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; DMEM, Dulbecco’s modified Eagle’s medium; Tricine, N-(2-hydroxyethyl)-1-bis(hydroxymethyl)ethyl glycine; I.E., immediate early; PAGE, polyacrylamide gel electrophoresis; RSV, Rous sarcoma virus; bp, base pair(s); kb, kilobase pair(s).

\(^2\) K. R. Hudson, A. B. Vernalis, and J. K. Heath, manuscript submitted for publication.
were dual-stained for 1 h in 3% bovine serum albumin with 1) a polyclonal anti-TrpE/MLC-2v antiserum from rabbit (12), and 2) a monoclonal mouse anti-rat ANF antibody (35, 36), or

RNA was isolated from the cytosolic fractions and subjected to Northern blot analysis using prepro-ANF, GAPDH, and 28S cDNA probes. The RNA was extracted once with phenol/chloroform, ethanol-precipitated, and purified over a RNase-free Sephadex G50 column (Boehringer Mannheim). The total amount of z32P-labeled RNA recovered from each reaction was determined by liquid scintillation counting (Beckman). Five micrograms of linearized, alkali-denatured pBluescript (Stratagene), pBluescript harboring the rat prepro-ANF cDNA (44), and pBluescript harboring the human GAPDH cDNA (47) were spotted onto nylon filters in advance. The filters were prehybridized for 1 h in 50% formamide, 0.25 M sodium phosphate, pH 7.2, 0.25 % NaCl, 1 mg EDTA, 7% SDS. An equal number of counts from each run-on reaction were added to the prehybridization solution, and hybridizations were carried out for 48 h at 42°C. Finally, the filters were washed under stringent conditions and exposed to x-ray film. The amount of ANF and GAPDH-specific hybridization was determined by densitometry. No hybridization to the empty pBluescript control was detectable (data not shown).

Animyosins—The concentration of immunoreactive ANF in cell culture supernatants was determined by radioimmunoassay, using the monoclonal mouse anti-rat ANF antibody with synthetic ANF-(99-126) as the standard and 125I-ANF-(99-126) (Amer sham) as the trace (35).

Isolation and Hybridization of RNA—Total cellular RNA was isolated by a modification of the acid guanidinium thiocyanate phenol/chloroform extraction method (38) using the RNA STAT 60 RNA isolation reagent (Tel-Test “B”). RNA was size-fractionated by formaldehyde agarose gel electrophoresis, transferred to nylon filters (Magna NT) by overnight capillary blotting, and hybridized with cDNA probes labeled with [z-32P]dCTP by random priming (Life Technologies, Inc.). The filters were washed under stringent conditions and exposed to X-ray film (Kodak X-Omat AR). Signal intensities were determined by densitometry (UltraScan XL, Pharmacia). The following cDNA probes were used: mouse c-fos (1.2 kb fragment) (39), mouse c-egr-1 (z/AP) (1.7 kb fragment) (40), human c-myc (1.6 kb fragment), a generous gift of Dr. H. H. R. Hershman (43), rat prepro-ANF (0.6 kb of coding region) (44), rat skeletal a-actin (0.6 kb of 3-translated region generated by reverse transcriptase-polymerase chain reaction from skeletal muscle poly(A) RNA) (45) and rat MLC-2v (0.6 kb of coding region) (46). Human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (1.2 kb fragment) (47) and rat beta-galactosidase (285 kb fragment) cDNA probes were used to control for loading and transfer efficiency.

Statistical Analysis—Data are presented as means ± S.E. p values were determined using one-way analysis of variance.

RESULTS

Induction of a Distinct Pattern of Immediate Early Genes following CT-1 versus zAdrenergic Stimulation of Cultured Myocardial Cells—The induction of immediate early (I.E.) genes precedes the late phenotypic changes in cardiomyocytes following the stimulation of G-protein-coupled receptors in vitro (12-15) and cardiac hypertrophy in vivo (52, 53). We therefore determined whether stimulation of cardiomyocytes with CT-1, LIF, or CNTF would induce I.E. gene expression (Fig. 2). Stimulation with CT-1 resulted in the rapid and transient induction of a panel of I.E. genes, including c-fos, egr-1, c-myc, c-jun, jun-B, and sis11. The pattern of I.E. gene expression in response to stimulation with LIF was virtually indistinguishable from the pattern induced by CT-1. CNTF displayed a relatively weak induction of the same panel of I.E. genes as did CT-1 and LIF. As compared to stimulation with PE, CT-1, and LIF induced >10 fold higher levels of c-myc and sis11.
Involvement of gp130 and LIFRβ in CT-1 Induction of c-fos—Previous studies have employed blocking antibodies directed against gp130 to demonstrate that IL-6, LIF, OSM, CNTF, and IL-11 utilize the common receptor component gp130 (21–23). Sequence similarity data, as well as structural considerations, suggest that CT-1 might be a new member of this cytokine family, and might therefore share the receptor component gp130 (19). To directly test this hypothesis, we examined the effect of an anti-gp130 antibody on the CT-1 induction of c-fos in cardiomyocytes. A monoclonal anti-gp130 antibody (RX435) was generated by immunizing rats with recombinant murine gp130.3 RX435 specifically blocks the action of LIF, IL-6, IL-11, and OSM on mouse myeloid leukemia M1 cells and inhibits the binding of CT-1 to M1 cells (54). Since RX435 does not cross-react with rat gp130, we used neonatal mouse cardiomyocytes in this set of experiments. Similar to the rat system, murine cardiomyocytes responded to stimulation with CT-1, LIF, and PE with an induction of immediate early genes and typical morphology changes. However, CT-1, LIF, and PE did not induce ANF gene expression in murine cardiomyocytes (data not shown). This might relate to the fact that in mice, in sharp contrast to rats, the ventricular expression of ANF is down-regulated after birth, but instead remains at high levels from embryogenesis through adulthood (55). We first examined the effects of different concentrations of CT-1, LIF and PE on the induction of c-fos in murine cardiomyocytes. CT-1, LIF, and PE induced c-fos expression in a dose-dependent manner (Fig. 3A and B). In subsequent experiments, cardiomyocytes were incubated for 1 h with RX435 or, as a control, with immunopurified rat IgG prior to stimulation with CT-1, LIF, or PE. RX435 was used at a concentration that has previously been shown to inhibit ~80% of CT-1 (0.12 nM) binding to murine M1 cells (54). CT-1, LIF, and PE were used at concentrations that resulted in an approximately 4–5-fold induction of c-fos expression. As shown in Fig. 3, C and D, RX435 completely abolished the induction of c-fos by CT-1 and LIF. By contrast, the c-fos induction by PE was not abolished by RX435 (although somewhat suppressed), confirming the specificity of the antibody (Fig. 3D).

To determine whether LIFRβ is required for CT-1 signaling, we studied the effect of a LIFRβ antagonist, hLIF-04, on c-fos induction by CT-1. hLIF-04 was generated by introducing three amino acid substitutions in the human LIF molecule, thereby abrogating the gp130 binding site. hLIF-04 has been shown to antagonize the action of hLIF in a Ba/F3 cell line, stably transfected with human gp130 and LIFRβ (see "Experimental Procedures"). As shown in Fig. 3E, pretreatment with hLIF-04 blocked the c-fos induction by human LIF, murine LIF, and by CT-1. By contrast, c-fos induction by PE was not affected by hLIF-04. Taken together, the results obtained with the anti-gp130 blocking antibody and the LIFRβ antagonist strongly suggest that CT-1, like LIF, requires both gp130 and LIFRβ to activate downstream signaling pathways leading to the induction of c-fos in cardiomyocytes.

3 M. Saito and T. Taga, unpublished data.
phorylation. By contrast, no gp130 phosphorylation was detectable after stimulation with PE, and with IL-6 or sIL-6R alone. To compare the pattern of protein tyrosine phosphorylation induced by the various agonists, cell lysates were subjected to SDS-PAGE and immunoblotting with the anti-phosphotyrosine antibody (Fig. 4B). Stimulation with the IL-6/sIL-6R complex, LIF, and CT-1 resulted in the tyrosine phosphorylation of a protein, corresponding in size to gp130 (compare to Fig. 4A). An additional, higher molecular mass protein (approximately 200 kDa) was tyrosine-phosphorylated in response to LIF and CT-1 only, but not in response to the IL-6/sIL-6R complex.

CT-1 Induces a Morphologically Distinct Hypertrophic Response Characterized by the Assembly of Sarcomeric Units in Series—Neonatal rat ventricular cardiomyocytes respond to various hypertrophic stimuli by an increase in individual cell size, assembly of myofibrils, and perinuclear accumulation of ANF. To assess the effects of gp130/LIFR-dependent cytokines on these morphological features of a hypertrophic response, cardiomyocytes were treated with CT-1, LIF, or CNTF and dual-stained with an anti-TrpE/MLC-2v antiserum and a monoclonal anti-ANF antibody. Unstimulated cells and PE-treated cells served as negative and positive controls, respectively. The effects of CT-1, LIF, CNTF, and PE on cardiomyocyte area, length, and width and the percentage of cells displaying perinuclear accumulation of ANF are summarized in Table 1A. CT-1 and LIF induced a hypertrophic response, as evidenced by increases in cardiomyocyte area and the percentage of cells with perinuclear accumulation of immunoreactive ANF. As compared to PE stimulation, CT-1 and LIF had a more pronounced effect on cardiomyocyte length but did not significantly affect cardiomyocyte width. Treatment of cardiomyocytes with CNTF did not induce significant morphology changes as compared to control. Cardiomyocytes were dual-stained with a monoclonal anti-βMHC antibody and rhodamine phalloidin, to allow a simultaneous assessment of thick filament (βMHC) and thin filament (F-actin) assembly (56). Images were obtained by confocal laser microscopy. Representative high power fields are depicted in Fig. 5. Cardiomyocytes stimulated with CT-1 (Panels E and F) and LIF (Panels G and H) displayed a high degree of sarcomeric organization: myofibrils were oriented along the longitudinal cell axis, and extended into the tips of the cytoplasmic projections. As compared with PE stimulation (Panels C and D), sarcomeric units were assembled predominantly in series, rather than in parallel (most striking in cytoplasmic projections containing only a few myofibrils (see Panels E–H)). As shown in Table 1B, the average sarcomeric length did not differ significantly among the experimental groups.

CT-1 Induces ANF Gene Expression—The reactivation of an embryonic pattern of gene expression is a hallmark of cardiac hypertrophy. We therefore determined whether stimulation of cardiomyocytes with CT-1, LIF, or CNTF would induce embryonic gene expression (Fig. 6). As shown previously (11), stimulation of neonatal rat ventricular cardiomyocytes with PE resulted in a significant (5.1-fold) increase in prepro-ANF mRNA levels. Likewise, treatment with CT-1 or LIF stimulated prepro-ANF mRNA expression (5.1- and 5.0-fold, respectively). By contrast, CNTF did not significantly affect prepro-ANF mRNA levels. As previously reported (8), PE stimulation resulted in an increase (4.5-fold) in skeletal α-actin mRNA expression. CT-1, LIF, and CNTF, however, did not significantly affect skeletal α-actin steady state mRNA levels. Finally, we examined the effects of CT-1, LIF, and CNTF, and PE on the expression of MLC-2v, a constitutively expressed contractile protein.

Table 1

Cell	Control	PE	CT-1	LIF	CNTF
Area (µm²)	345 ± 17	635 ± 42*	543 ± 17*,#	508 ± 24*,#	305 ± 14§
Length (µm)	38 ± 1	56 ± 3*	74 ± 3*,§	79 ± 3*,§	38 ± 15
Width (µm)	22 ± 1	29 ± 1*	23 ± 1§	23 ± 15	21 ± 15
ANF positive (%)	6	51	32	26	6
Sarcomere					
Length (µm)	1.72 ± 0.07	1.73 ± 0.07	1.72 ± 0.06	1.70 ± 0.05	1.71 ± 0.08

* Neonatal rat ventricular cardiomyocytes were plated into chamber slides and incubated with no additions (control), PE (100 µM), CT-1, LIF, or CNTF (1 nM each). After 48 h, the cells were immunostained against MLC-2v and ANF. Cell area, length, and width were measured in 50–60 MLC-2v-positive cells from six randomly chosen high power fields per condition. Values are means ± S.E.; * p < 0.0001 versus control; # p < 0.01 versus PE; § p < 0.0001 versus PE. In addition, 250 cells from each group were scored for MLC-2v and ANF expression, and the percentage of MLC-2v positive cells that displayed perinuclear staining for immunoreactive ANF was calculated.

§ Twenty sarcomere segments were measured in each of 8–10 randomly chosen cardiomyocytes stained against βMHC, and viewed by confocal laser microscopy. Values are means ± S.E.; p = not significant.
FIG. 5. Sarcomeric organization. Neonatal rat ventricular cardiomyocytes were plated into chamber slides and incubated for 48 h with no additions (Panels A and B), 100 μM PE (Panels C and D), 1 nM CT-1 (Panels E and F), 1 nM LIF (Panels G and H), or 1 nM CNTF (Panels I and J). Cells were dual-labeled with an anti-βMHC antibody (Panels A, C, E, G, and I) and rhodamine phalloidine (Panels B, D, F, H, and J), and viewed by confocal laser microscopy. The bar (Panel A) represents 10 μm.
ile protein gene. PE stimulation resulted in a marginal 1.5-fold induction of MLC-2v mRNA levels. By contrast, CT-1, LIF, and CNTF did not induce MLC-2v mRNA expression (data not shown). We next determined whether the increase in prepro-ANF mRNA expression in response to CT-1 and LIF is accompanied by an increase in secretion of immunoreactive ANF. As noted in the initial study reporting the cloning of CT-1 (19), CT-1 induced ANF release from cardiomyocytes in a dose-dependent manner (Fig. 7). Likewise, LIF increased the secretion of ANF; maximum ANF release was observed with CT-1 and LIF concentrations of 0.1–10 nM. Consistent with the ANF Northern blot results, stimulation with CNTF did not induce ANF release at any of the concentrations tested (Fig. 7).

CT-1 Activates the Transcription of the ANF Gene—To determine whether the induction of ANF by CT-1 results from an increased ANF gene transcription, we performed nuclear run-on transcription assays. We compared the ANF gene transcription rate during stimulation with CT-1 and PE. A typical experiment is presented in Table II and Fig. 8. Cardiomyocyte nuclei were isolated at various time points during stimulation with CT-1 or PE. Unstimulated cells served as a control. CT-1 and PE increased the overall RNA transcription rate, as measured by the total amount of 32P incorporation into purified run-on RNA (Table II). ANF transcription reached a maximum 2.0-fold (CT-1) and 2.1-fold (PE) increase versus control at 24 h and returned to control levels at 48 h. By contrast, GAPDH gene transcription was not affected by CT-1 or PE (not shown). The
CT-1- and PE-induced increase in ANF gene transcription was accompanied by a time-dependent accumulation of prepro-ANF mRNA in the cytosol, reaching maximum levels between 24 and 48 h (Fig. 8C). By contrast, CT-1 and PE did not affect GAPDH mRNA expression (not shown).

CT-1 Responsive cis-regulatory Sequences Are Located Outside a 3003-bp ANF Promoter Fragment—The transcriptional up-regulation of the ANF gene in response to a number of G-protein coupled receptor agonists, including PE, is mediated by cis-regulatory elements, which are located within the proximal 3 kb of ANF 5′-flanking region (11, 12, 57). We performed transient transfection analyses to determine whether gp130/ LIFRβ-dependent cytokines and PE utilize common cis-acting elements within the ANF promoter region. Cardiomyocytes were transfected with an ANF-luciferase reporter construct containing 3003 bp of the rat ANF 5′-flanking region. Cardiomyocytes transfected with a RSV-luciferase construct or a promotorless construct were used as positive and negative controls, respectively. To control for transfection efficiency, cells were cotransfected with a β-galactosidase expression vector. The cells were then stimulated with PE, CT-1, LIF, or CNTF; unstimulated cells served as controls. At various time points, cardiomyocytes were harvested for luciferase and β-galactosidase assays. As previously reported (11), the 3003-bp ANF promoter fragment conferred PE-inducible expression to the luciferase reporter gene (maximum 23.7-fold induction at 48 h) (Fig. 9). Luciferase activities in cells transfected with the RSV-luciferase construct were on average 80-fold higher as compared to unstimulated cells transfected with the ANF-luciferase construct and were not induced by any of the treatments (not shown). Cells transfected with the promotorless reporter construct displayed luciferase activities that were not different from background values and were not affected by any of the treatments (not shown). Considering that CT-1 as well as PE increase the ANF gene transcription rate (as demonstrated by nuclear run-on assays), the transfection analyses suggest that, in contrast to PE, the CT-1 responsive cis-regulatory elements are located outside of 3 kb of ANF 5′-flanking region. Thus, divergent pathways appear to mediate the induction of the ANF gene in response to CT-1 as compared to α-adrenergic stimulation.

Discussion

CT-1 Signaling through the gp130/LIFRβ Heterodimer—Cardiotrophin-1 was recently isolated by expression cloning based on its ability to induce an increase in cell size in cardiomyocyte culture (19). The deduced amino acid sequence suggested that CT-1 is a novel member of the IL-6, IL-11, LIF, CNTF, and OSM family of structurally related cytokines, that trigger downstream signaling pathways in multiple cell types through the homodimerization of gp130 or the heterodimerization of gp130 and LIFRβ (22, 24, 26, 27). To determine whether CT-1 shares the receptor components gp130 and/or LIFRβ with the other members of the IL-6 cytokine family, we employed a
monodonal anti-gp130 antibody and a mutated human LIF protein, acting as a LIFRβ antagonist. The c-fos induction by CT-1 and LIF in cardiomyocytes was antagonized by the monodonal anti-gp130 antibody as well as the LIFRβ antagonist, strongly suggesting that CT-1, like LIF, utilizes the receptor components gp130 and LIFRβ. As demonstrated by gp130 immunoprecipitation and subsequent anti-phosphotyrosine immunoblots, stimulation of cardiomyocytes with CT-1, LIF, and a combination of IL-6 and sIL-6R resulted in the rapid tyrosine phosphorylation of gp130. These data indicate that tyrosine phosphorylation of gp130 is an early step in CT-1 signaling, as it has previously been shown for the other members of the IL-6 cytokine family (21-23). As determined by immunoblotting with an anti-phosphotyrosine antibody, LIF induced the tyrosine phosphorylation of an additional ~200 kDa protein, which was not phosphorylated upon stimulation with the IL-6/sIL-6R complex. Based on previous results, this protein most likely corresponds to LIFRβ (22, 26, 58). Stimulation of cardiac cells with CT-1 resulted in the tyrosine phosphorylation of a protein, indistinguishable in size from LIFRβ, as well. Considering the ability of the LIFRβ antagonist to block the action of CT-1 in cardiomyocytes, the immunoblotting results strongly suggest that CT-1, like LIF, induces the tyrosine phosphorylation of LIFRβ. In support of this conclusion, CT-1 has recently been shown to bind to purified LIFRβ in solution with about the same affinity as LIF, and to interact with a cell surface protein in M1 cells with a mobility expected for LIFRβ (54). In summary, the present study indicates that CT-1 signals through and induces tyrosine phosphorylation of the gp130/LIFRβ heterodimer in cardiomyocytes.

CT-1 Induces a Hypertrophic Phenotype in Cultured Myocardial Cells Characterized by Sarcomere Assembly in Series and a Selective Up-regulation of ANF Gene Expression—The present study provides clear evidence that the CT-1 induced hypertrophic phenotype is distinct from the hypertrophic phenotype observed following G-protein-dependent stimulation. On a single cell level, G-protein-dependent pathways induce a form of hypertrophy with a relatively uniform increase in myocyte size and the addition of new myofibrils in parallel (12, 15, 16). By contrast, as noted in the present study, the gp130/LIFRβ-dependent cytokines CT-1 and LIF induce an increase in myocyte size characterized by a marked increase in cell length, but little or no change in cell width. To characterize the effects of gp130/LIFRβ-dependent stimulation on the myofibrillar cytoarchitecture, cardiomyocytes were dual-stained against thick (β-MHC) and thin (F-actin) myofilaments, and viewed by confocal laser microscopy (56). Cardiomyocytes stimulated with CT-1 and LIF displayed a high degree of myofibillar organization; myofibrils were organized in a strictly sarcomeric pattern, were oriented along the longitudinal cell axis, and extended to the cell periphery. Importantly, the increase in cell size and length was associated with no change in the average sarcomere length, strongly suggesting that the cell elongation in response to gp130/LIFRβ-dependent stimulation results from an addition of new sarcomeric units in series. The morphologic changes induced by gp130/LIFRβ-dependent stimulation in vitro are reminiscent of the changes observed in cardiac myocytes isolated from hearts subjected to chronic volume overload (3, 4). By contrast, the pattern of cardiomyocyte hypertrophy induced by α-adrenergic stimulation more closely resembles a pressure overload-like phenotype (1, 2).

On a molecular level, gp130/LIFRβ-dependent stimulation and α-adrenergic stimulation resulted in distinct patterns of embryonic gene. MLC-2v, and immediate early gene expression. Stimulation of cardiomyocytes with CT-1 and LIF induced pro-pre-ANF mRNA expression, and perinuclear accumulation and secretion of immunoreactive ANF. However, in contrast to α-adrenergic stimulation, CT-1 and LIF did not induce skeletal α-actin expression. Growth factors, signaling through G-protein coupled receptors induce ANF and skeletal α-actin in a coordinate fashion (8, 11-14). A recent study compared the expression pattern of distinct members of the embryonic gene program in pressure overload versus volume overload hypertrophy in vivo in the rat myocardium (5). As shown previously (52), pressure overload resulted in the coordinate induction of ANF and skeletal α-actin. However, volume overload hypertrophy was associated with a selective increase in ANF expression, and no induction of skeletal α-actin, suggesting that the regulation of distinct embryonic genes in vivo is related to the hypertrophic stimulus (5). The pattern of embryonic gene expression induced by CT-1 and LIF in cardiomyocyte culture therefore resembles the pattern observed in volume overload hypertrophy in vivo.

Nuclear run-on transcription assays revealed that the induction of pre-pre-ANF mRNA by CT-1 and α-adrenergic stimulation is mediated, at least in part, by an increased transcription of the ANF gene. The fact that the ANF mRNA levels increased 5-fold, whereas the ANF gene transcription rate increased only 2-fold, suggests that post-transcriptional mechanisms(s) participate in the up-regulation of ANF gene expression in response to CT-1 and PE (59). In agreement with previous results (11), a 3003-bp ANF promoter fragment conferred PE-inducible expression to a luciferase reporter gene. Likewise, the cis-regulatory elements mediating ANF inducibility in response to endothelin 1 and α-thrombin reside within the proximal 3 kb of the ANF 5′-flanking region, suggesting that G-protein-coupled receptor agonists may utilize common signaling pathways for the induction of ANF (12, 57). By contrast, none of the gp130/LIFRβ-dependent cytokines (CT-1, LIF, and CNTF) activated the 3003-bp ANF promoter fragment. Considering the increased ANF gene transcription rate in response to CT-1 and PE, we conclude that in contrast to α-adrenergic stimulation, the CT-1 responsive cis-regulatory elements are located outside of the proximal 3 kb of the ANF 5′-flanking region. In recent studies, transgenic mice harboring 3003 bp of ANF 5′-flanking region upstream of a luciferase reporter gene were subjected to
transverse aortic banding. Despite a marked increase in left ventricular prepro-ANF mRNA expression, no significant increase in reporter activity was observed (60). These findings demonstrate that the induction of ANF during cardiac hypertrophy in vivo occurs through a distinct mechanism as compared to G-protein-mediated cardiac hypertrophy in vitro. Unraveling the mechanisms of ANF induction in response to gp130/LIFRβ-dependent stimulation may therefore provide insight into the mechanisms governing the induction of ANF during in vivo cardiac hypertrophy.

CT-1 and LIF did not induce MLC-2v mRNA expression, whereas phenylephrine stimulation resulted in a marginal induction of MLC-2v. The induction of MLC-2v on the mRNA level may be a feature unique to G-protein-coupled receptor stimulation of cardiomycocytes in vitro (10, 12); MLC-2v mRNA expression is not up-regulated in the hypertrophic ventricles of transgenic mice overexpressing a constitutively active α-adrenergic receptor in the myocardium (62).

A distinct response to gp130/LIFRβ-dependent versus α-adrenergic stimulation was also observed at the level of immediate early gene induction. As compared to α-adrenergic stimulation, CT-1 and LIF induced >10-fold higher levels of c-myc and tis111 expression. Immediate early genes encode known or putative transcription factors, and potential binding sites have been identified in the promoter regions of a number of cardiac genes (for review, see Ref. 63). The distinct combinatorial expression of immediate early genes may therefore relate to the differences in cell morphology and gene expression pattern in response to gp130/LIFRβ-dependent versus α-adrenergic stimulation.

Taken together, these studies indicate that gp130/LIFRβ-dependent pathways can activate a hypertrophic phenotype in cardiac muscle cells which is distinct both at a morphological and a molecular level from the phenotype seen following G-protein-dependent stimulation, and that is more consistent with a volume overload, as opposed to pressure overload, hypertrophic phenotype. Future studies in transgenic mice will be required to rigorously test whether gp130/LIFRβ-dependent signaling pathways are implicated in volume overload and/or pressure overload ventricular hypertrophy in vivo, in a manner analogous to recent studies exploring the in vivo role of ras-dependent pathways (18). In this regard, double transgenic mice overexpressing IL-6 and IL-6R have recently been generated (64). These mice display a constitutive tyrosine phosphorylation (i.e. activation) of gp130 in the myocardium and left ventricular hypertrophy with increases in cardiac weights and cardiomyocyte volumes. These results suggest that the induction of cardiomyocyte hypertrophy through gp130-dependent signaling pathways is not confined to the in vitro hypertrophy assay, but may also be observed in the in vivo context.

The question arises as to the relative role of individual members of the IL-6 cytokine family in the activation of a hypertrophic response in vivo. The expression of IL-6R in the heart of wild type mice is extremely low, making IL-6 an unlikely mediator of cardiac hypertrophy in vivo. Accordingly, a combination of IL-6 with sIL-6R was required to induce tyrosine phosphorylation of gp130 in cardiomyocytes in the present study. Likewise, the myocardium does not express substantial levels of CNTFRα (65, 66). Alternatively, low level expression of CNTFRα in cardiomyocytes may account for a weak responsiveness to CNTF. The CT-1 mRNA is expressed in the heart from adult mice (19). RNase protection analysis of cardiac muscle cells and cardiac-derived fibroblasts from neonatal rats reveals a >10-fold higher level of CT-1 mRNA expression in cardiac muscle cells versus cardiac fibroblasts, and CT-1 is expressed primarily in cardiac muscle cells during murine cardiogenesis (67). By contrast, the expression of LIF mRNA in the adult murine heart is extremely low as documented by RNase protection analysis (68, 69). These data would suggest that CT-1 is a candidate cytokine activating gp130/LIFRβ-dependent signaling pathways within the myocardium, potentially through an autocrine pathway. The generation of mice containing a null-mutation of the CT-1 gene should provide a more definitive understanding of the in vivo role of CT-1 in development and in cardiac hypertrophy in the adult animal.
Cardiotrophin-1 Activates Cardiac Muscle Cell Hypertrophy

31. Ip, N. Y., McClain, J., Barrezzueta, N. X., Aldrich, T. H., Pan, L., Li, Y., Wiegand, S. J., Friedman, B., Davis, S., and Yancopoulos, G. D. (1993) Neuron 10, 89–102
32. Robinson, R. C., Grey, L. M., Staunton, D., Vankelecom, H., Vernallis, A. B., Moreau, J. F., Stuart, D. I., Heath, J. K., and Jones, E. Y. (1994) Cell 77, 1101–1116
33. Henderson, S. A., Spencer, M., Sen, A., Kumar, C., Siddiqui, M. A. Q., and Shields, P. P., and Seidman, C. C. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 8646–8647
34. Ryder, K., Lau, L. F., and Nathans, D. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 1487–1491.
35. Lim, R. W., Varnum, B. C., and Herschman, H. R. (1987) Oncogene 1, 263–270.
36. Seidman, C. E., Duby, A. D., Choi, E., Graham, R. M., Haber, E., Homcy, C., Shani, M., Nudel, U., Zevin-Sonkin, D., Zakut, R., Givol, D., Katcoff, D., and Seidman, J. G. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 1109–1113.
37. Boulton, T. G., Stahl, N., and Yancopoulos, G. D. (1994) Proc. Biol. Chem. 269, 11648–11655
38. Field, L. J., Ross, J., and Chien, K. R. (1994) J. Clin. Invest. 93, 1119–1123.
39. Hargrove, J. L. (1993) FASEB J. 7, 1163–1170.
40. Knowlton, K. U., Rockman, H. A., Itani, M., Vovan, A., Seidman, C. E., and Chien, K. R. (1995) J. Biol. Chem. 270, 10915–10922.
41. Rockman, H. A., Ono, S., Ross, R. S., Jones, L. R., Karimi, M., Bhargava, V., Ross, J., and Chien, K. R. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 2694–2698.
42. Milano, C. A., Dolber, P. C., Rockman, H. A., Bond, R. A., Venable, M. E., Allen, L. F., and Lefkowitz, R. J. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 10109–10113.
43. Chien, K. R., Zhu, H., Knowlton, K. U., Miller-Hance, W., van Bilsen, M., O’Brien, T. X., and Evans, S. (1993) Annu. Rev. Physiol. 55, 77–95.
44. Gearing, D. P., Ziegler, S. F., Comeau, M. R., Friend, D. Thoma, B., Cosman, D., Park, L., and Mosley, B. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 1119–1123.
45. Taylor, W. F., and Huang, R. C. C. (1985) in Transcription and Translation: A Practical Approach (Harnes, B. D., and Higgins, S. J., eds) pp. 89–129, IRL Press, Oxford.
46. deWet, J. R., Wood, K. V., Deluca, M., Helsinki, D. R., and Subramani, S. (1987) Mol. Cell. Biol. 7, 725–737.
47. Cherrington, J. M., and Mocarski, E. S. (1989) J. Virol. 63, 1435–1440.
48. Shani, M., Nudel, U., Zevin-Sonkin, D., Zakut, R., Givol, D., Katcoff, D., and Seidman, J. G. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 4862–4866.
49. Davis, S., Aldrich, T. H., Ip, N. Y., Stahl, N., Scher, S., Farrugella, T., DiStefano, P. S., Curtis, R., Panayotatos, N., Gasic, H., Chevalier, S., and Yancopoulos, G. D. (1993) Science 259, 1736–1739.
50. Seidman, C. E., Schmidt, E. V., and Seidman, J. G. (1991) Cell 70, 11648–11655.
51. Hargrove, J. L. (1993) FASEB J. 7, 1163–1170.
52. Knowlton, K. U., Rockman, H. A., Itani, M., Vovan, A., Seidman, C. E., and Chien, K. R. (1995) J. Clin. Invest. 93, 1119–1123.
Cardiotrophin-1 Activates a Distinct Form of Cardiac Muscle Cell Hypertrophy: ASSEMBLY OF SARCOMERIC UNITS IN SERIES VIA gp130/LEUKEMIA INHIBITORY FACTOR RECEPTOR-DEPENDENT PATHWAYS

Kai C. Wollert, Tetsuya Taga, Mikiyoshi Saito, Masashi Narazaki, Tadamitsu Kishimoto, Christopher C. Glembotski, Ann B. Vernallis, John K. Heath, Diane Pennica, William I. Wood and Kenneth R. Chien

J. Biol. Chem. 1996, 271:9535-9545.
doi: 10.1074/jbc.271.16.9535

Access the most updated version of this article at http://www.jbc.org/content/271/16/9535

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 68 references, 44 of which can be accessed free at http://www.jbc.org/content/271/16/9535.full.html#ref-list-1