INTRODUCTION

In vertebrate, most axons are insulated by myelin sheaths and the action potentials (APs) are regenerated at the nodes of Ranvier which enable the rapid saltatory propagation of the nerve impulses. The myelin is formed by glial cells: Schwann cells in peripheral nervous system (PNS) and oligodendrocytes in central nervous system (CNS). The mechanisms underlying myelin formation are complex and involve interactions between neurons and glial cells. Myelination begins with the contact and recognition of the axon by the glial processes. The glial processes then wrap around the axon, form multiple layers of myelin, and elongate along the axon. Simultaneously, the myelinating glial cells organize the axonal domains: nodes, paranodes, and juxtaparanodes. First, the voltage-gated Na\(^+\) (Nav) channels are aggregated at hemi-nodes which border the myelinated segments (Vabnick et al., 1999). The localization of the Nav channels (VGKCs; Na\(^+\)v) is strongly dependent on cell adhesion molecules (CAMs) expressed at the nodal axolemma only. By contrast, NrCAM exists concentrated at the nodes of Ranvier (Caldwell et al., 2000; Boiko et al., 2001). Neurofascin-186 (NF186) and NrCAM belong to the L1-family of CAMs and are mediating the clustering of Nav channels (Nav1.2 and Nav1.6) at nodes of Ranvier. Several CAMs expressed at nodal axolemma or secreted by Schwann cells at the nodal lumen mediate the axo-glial contact at PNS nodes of Ranvier (Melendez-Vasquez et al., 2001), but also on two scaffolding proteins, ankyrin-G and HIV-spectrin, which links the nodal proteins to the actin cytoskeleton (Jenkins and Bennett, 2002; Komada and Soriano, 2002; Yang et al., 2004; Devaux, 2010). In the PNS, the myelinating Schwann cells form the nodal microvilli which face the nodes of Ranvier. Several CAMs expressed at nodal axolemma or secreted by Schwann cells at the nodal lumen mediate the axo-glial contact and the clustering of Na\(^+\)v channels at nodes of Ranvier or mis-localization of the ion channels along the axons. Node alterations and the failure of APs to propagate correctly from nodes to nodes along the axons both contribute to the disabilities in demyelinating diseases. This article reviews the mechanisms regulating the association of the axo-glial complexes and the role of CAMs in inherited and acquired neurological diseases.

Specific cell adhesion molecules (CAMs) are dedicated to the formation of axo-glial contacts at the nodes of Ranvier of myelinated axons. They play a central role in the organization and maintenance of the axonal domains: the node, paranode, and juxtaparanode. In particular, CAMs are essential for the accumulation of voltage-gated sodium channels at the nodal gap that ensures the rapid and saltatory propagation of the action potentials (APs). The mechanisms regulating node formation are distinct in the central and peripheral nervous systems, and recent studies have highlighted the relative contribution of paranodal junctions and nodal extracellular matrix. In addition, CAMs at the juxtaparanodal domains mediate the clustering of voltage-gated potassium channels which regulate the axonal excitability. In several human pathologies, the axo-glial contacts are altered leading to disruption of the nodes of Ranvier or mis-localization of the ion channels along the axons. Node alterations and the failure of APs to propagate correctly from nodes to nodes along the axons both contribute to the disabilities in demyelinating diseases. This article reviews the mechanisms regulating the association of the axo-glial complexes and the role of CAMs in inherited and acquired neurological diseases.

Keywords: node of Ranvier, ion channel, axon-glial interactions, neurological disease, extracellular matrix

MOLECULAR ORGANIZATION OF THE AXONAL DOMAINS OF MYELINATED FIBERS

NEUROFASCIN-186, NrCAM, AND GLIOMEDIN: STRUCTURE AND FUNCTION AT PNS NODES

During development, the clustering of Nav is strongly dependent on the axo-glial contact at PNS nodes of Ranvier (Melendez-Vasquez et al., 2001), but also on two scaffolding proteins, ankyrin-G and HIV-spectrin, which links the nodal proteins to the actin cytoskeleton (Jenkins and Bennett, 2002; Komada and Soriano, 2002; Yang et al., 2004; Devaux, 2010). In the PNS, the myelinating Schwann cells form the nodal microvilli which face the nodes of Ranvier. Several CAMs expressed at nodal axolemma or secreted by Schwann cells at the nodal lumen mediate the axo-glial contact and the clustering of Na\(^+\)v channels at nodes of Ranvier (Caldwell et al., 2000; Boiko et al., 2001). Neurofascin-186 (NF186) and NrCAM belong to the L1-family of CAMs and are concentrated at the nodes of Ranvier (Davis et al., 1996). NF186 is expressed at the nodal axolemma only. By contrast, NrCAM exists as both an axonal form and a form secreted by the Schwann cell microvilli (Feinberg et al., 2010).

Both NF186 and NrCAM bind Gliomedin, an extracellular matrix component secreted by the Schwann cell microvilli (Figure 1A). Gliomedin contains a coiled-coil, two collagen-like, and one olfactomedin domain (Eshed et al., 2005). Gliomedin exists as both transmembrane and secreted forms (Eshed et al.,...
FIGURE 1 | Organization of CNS and PNS nodes of Ranvier. (A) At PNS nodes, NF186 binds Gliomedin (Gldn) and NrCAM which are secreted by Schwann cells in the nodal gap lumen. The cytoplasmic region of axonal NF186 and NrCAM bind ankyrin-G, which anchors the nodal complex to βIV-spectrin and to the actin cytoskeleton. Ankyrin-G enables the clustering of Nav and Kv7.2/7.3 channels at nodes. (B) In the CNS, Tenascin-R (TN-R), Brevican (Bcan), Versican (Vcan), and Phosphacan (Phcan) are enriched in the extracellular matrix surrounding the nodes, and stabilize the nodal complex. These molecules bind NF186, NrCAM, and Contactin-1 which are expressed at CNS nodes. (C) The complex Contactin-1/Caspr-1/NF155 forms the septate-like junctions at both PNS and CNS paranodes. This complex is stabilized by the cytosolic protein 4.1B which co-localizes with ankyrin-B, αII- and βII-spectrin at both paranodes and juxtaparanodes. (D) The complex Contactin-2/Caspr-2 enables the sequestration of Kv1.1/Kv1.2/Kv1.6 channels at juxtaparanodes, but also of PSD-93 and PSD-95. ADAM22 and Connexin-29 (Cx29) are also enriched at juxtaparanodes.
At CNS nodes, the molecular mechanisms implicated in the nodal clustering of Nav channels are different from those involved in the PNS. In the CNS, myelin sheaths are produced by oligodendrocytes, and the nodal gap is contacted by perinodal astrocyte processes. In addition, the extracellular matrix in the nodal gap differs from that in the PNS. The CNS nodes express NF186 and NrCAM, but lack Glisomedin (Figure 1). The CNS nodal axolemma also expresses a high molecular weight form of Contactin-1 (Rios et al., 2000), an Ig CAM implicated in the assembly of the septate-like junctions at paranodes (see below). In addition, several secreted proteins are found in the perinodal extracellular matrix surrounding the CNS nodes: Tenascin-R, Brevican, phosphacan, Bral, and Neurocan (Weber et al., 1999; Bekku et al., 2009; Dours-Zimmermann et al., 2009; Susuki et al., 2013; Figure 1). Brevican and Versican are chondroitin-sulfate proteoglycans that bind hyaluronic acid to form a negatively charged complex with Bral, the brain-specific hyaluronan-binding link protein. Phosphacan is a chondroitin-sulfate-proteoglycan which is the secreted form of the receptor-like protein tyrosine-phosphatase-δ, and which binds to the receptor-like protein tyrosine-phosphatase-

As crucial for their heterophilic interaction (Volkmer et al., 1996). Particularly, NF186 interacts with NrCAM in trans via its Ig1–4 domains (Labasque et al., 2011). Deletion of the Ig domains of NF186 abolishes its accumulation at nodes (Dhulipala et al., 2007), indicating that the Ig domains are crucial for the targeting at nodes. In addition, the fulllength domains of both NF186 and NrCAM are implicated in Glisomedin binding (Labasque et al., 2011). Soluble fulllength domains of NF186 have been shown to inhibit the clustering of Nav channels at hemi-nodes in myelinating co-cultures (Figure 2). This indicates that the nodal complex assemble via multiple locking modules.

Other extracellular matrix components and their receptors may be necessary for the proper formation or stability of the Schwann cell microvilli, such as laminins and dystroglycan. Specific laminin isoforms (α2, α5, γ5) are expressed in the basal lamina above the nodes of Ranvier (Feltre and Wabretz, 2005). In addition, members of the dystrophin-dystroglycan complex are present at nodes. Mice deficient in laminin-α2 or dystroglycan show severe alteration of microvilli and Nav channel clusters (Saito et al., 2003; Occhi et al., 2005). Similar alterations are also observed in patients with merosin-deficient congenital muscular dystrophy, associated with a mutation in the gene encoding laminin-α2 (Occhi et al., 2005). Because Glisomedin and NrCAM are secreted in the extracellular lumina, it is plausible that the extracellular matrix may stabilize the organization of the nodal components. The proteoglycans syndecan-3 and -4 and Perlecan may be necessary for the proper formation or stability of the Schwann cell microvilli, such as laminins and dystroglycan. Specific laminin isoforms (α2, α5, γ5) are expressed in the basal lamina above the nodes of Ranvier (Feltre and Wabretz, 2005). In addition, members of the dystrophin-dystroglycan complex are present at nodes. Mice deficient in laminin-α2 or dystroglycan show severe alteration of microvilli and Nav channel clusters (Saito et al., 2003; Occhi et al., 2005). Similar alterations are also observed in patients with merosin-deficient congenital muscular dystrophy, associated with a mutation in the gene encoding laminin-α2 (Occhi et al., 2005). Because Glisomedin and NrCAM are secreted in the extracellular lumina, it is plausible that the extracellular matrix may stabilize the organization of the nodal components. The proteoglycans syndecan-3 and -4 and Perlecan are also enriched in the perinodal processes of Schwann cells early during development (Goutebroze et al., 2003; Melendez-Vasquez et al., 2005; Bangratz et al., 2012). However, the function of these latter components remains to be determined.

NF186, NrCAM, and Brevican/Versican Complex: Structure and Function at CNS Nodes

At CNS nodes, the molecular mechanisms implicated in the nodal clustering of Nav channels are different from those involved in the PNS. In the CNS, myelin sheaths are produced by oligodendrocytes, and the nodal gap is contacted by perinodal astrocyte processes. In addition, the extracellular matrix in the nodal gap differs from that in the PNS. The CNS nodes express NF186 and NrCAM, but lack Glisomedin (Figure 1). The CNS nodal axolemma also expresses a high molecular weight form of Contactin-1 (Rios et al., 2000), an Ig CAM implicated in the assembly of the septate-like junctions at paranodes (see below). In addition, several secreted proteins are found in the perinodal extracellular matrix surrounding the CNS nodes: Tenascin-R, Brevican, phosphacan, Bral, and Neurocan (Weber et al., 1999; Bekku et al., 2009; Dours-Zimmermann et al., 2009; Susuki et al., 2013; Figure 1). Brevican and Versican are chondroitin-sulfate proteoglycans that bind hyaluronic acid to form a negatively charged complex with Bral, the brain-specific hyaluronan-binding link protein. Phosphacan is a chondroitin-sulfate-proteoglycan which is the secreted form of the receptor-like protein tyrosine-phosphatase-δ, and which binds to the receptor-like protein tyrosine-phosphatase-

Figure 1 Soluble fulllength domains of NF186 inhibit the clustering of Glisomedin and Nav channels at hemi-nodes. These are PNS myelinating co-cultures of DRG neurons with Schwann cells that have been triple-transfected for MBP (blue), Caspr or Glisomedin (red), and Nav channels (green). Maxivation was induced with ascorbic acid after 7 days in vitro. Co-cultures were treated with control Fc or with the fulllength domains of NF186 fused with Fc (1’MFeN-Fc) from day 7 to day 24.
rather be implicated in the maintenance of the nodal structure. In keeping, Nav channels are properly clustered at CNS nodes in Tenascin-R-, Versican-, and Bral-1-deficient mice, despite the loss or dispersion of Tenascin-R and Phosphacan at nodes (Weber et al., 1999; Dours-Zimmermann et al., 2009; Bekku et al., 2010). By contrast, the disruption of the paranodal complex and of the perinodal matrix in Caspr-1/Braxton/Versican triple knock-out mice induces a significant decrease in the number of Nav channel clusters (Susuki et al., 2013). These results lead to the suggestion that the formation of the paranodal diffusion barrier is the primary mechanism enabling the clustering of Nav channels at CNS nodes, whereas nodal axo-glial contact may be a secondary mechanism which allows the maintenance of Nav clusters at nodes or their formation in absence of paranodes.

CASPR-1, CONTACTIN-1, AND NF155: STRUCTURE AND FUNCTION AT PARANODES

A peculiar type of cell-cell junctions named the septate-like junctions are encountered at paranodes in both the CNS and PNS (Einheber et al., 1997). The septate-like junctions seal the terminal loops of myelinated segments to the axolemma on both sides of the nodal gap. These paranodal junctions are characterized by intermembrane transverse bands and derive from an ancestral type of the nodal gap. These paranodal junctions are involved in the maintenance of Nav channels and Caspr-1, respectively. Contactin-2 is expressed at the axonal membrane (Faivre-Sarrailh et al., 2000). This complex is addressed to the cell surface with ER-type mannose-rich N-glycans that favor its interaction with NF155 (Bonnen et al., 2007). In addition, selective modules are required for the association of NF155 with the Contactin-1/Caspr-1 complex. The Ig domains of Contactin-1 mediate its interaction with NF155 and Caspr-1. Also, the Ig domains 5 and 6 of Neurofascin are implicated in its interaction with Contactin-1. Mutant mice with deletion of these Ig domains show a disruption of the paranodal septate-like junctions (Thaxton et al., 2010).

Worth noting, paranodal proteins are lipid raft-associated proteins and this localization may favor the maintenance of paranodal junctions (Ogawa and Rasband, 2009; Duba and Faivre-Sarrailh, 2010). Indeed, the deletion of MAL, a raft-associated protein, results in the disorganization of the paranodal septate-like junctions (Scharen-Wiemers et al., 2004). Also, the maintenance of paranodal junctions appears to be dependent on myelin galactolipids (Poyko, 2000; Ibibuchi et al., 2002). Mice lacking raft gangliosides, notably GM1 and GD1a, show alterations in Caspr-1/NF155 aggregation at paranodes (Susuki et al., 2007a). In mice lacking Casp-1 or gangliosides, the partition of NF155 into lipid rafts is strongly attenuated.

CONTACTIN-2 AND CASPR-2 AT JUXTAPARANODES

The juxtaparanodal regions are adjacent to the paranodes and are recovered by compact myelin. The juxtaparanodes are enriched in Shaker-type Kv1 channels, mainly Kv1.1, Kv1.2, and Kv1.6 subunits, but also Kv1.4 in a subtype of sensory fibers (Rasband et al., 1998; Rasband and Trimmer, 2001). These channels may stabilize conduction by dampening repetitive firing and maintaining the interondal resting potential, particularly during development and in small diameter axons (Rasband et al., 1998; Devaux et al., 2002; Devaux and Gow, 2008). A heteromeric complex of Contactin-2 (also known as TAG-1) and Caspr-2 is implicated in the formation of juxtaparanodes in both CNS and PNS (Poliak et al., 2003; Traka et al., 2003). These molecules are homologs of Contactin-1 and Caspr-1, respectively. Contactin-2 is expressed at the axonal and glial membranes at juxtaparanodes and displays homophilic binding activity which mediates adhesive contact. Contactin-2 exists as a glycosyl-phosphatidylinositol-moiotol anchored form, as well as a released form (Durley et al., 1990). Within the axonal membrane, Contactin-2 forms a cis-complex with Caspr-2 via its Ig domains which allows the formation of a ternary complex with the glial-secreted Contactin-2 (Savvaki et al., 2010). Disruption of Contactin-2 or Caspr-2 in knock-out mice prevents the accumulation of Kv1 channels at juxtaparanodes and induces their diffusion along the internodes. Albeit, the mis-localization of Kv1 channels does not affect nerve conduction (Poliak et al., 2003; Traka et al., 2003), it was reported that Contactin-2-deficient animals show behavioral deficits and deficits in sensory-motor gating and motor coordination (Savvaki et al., 2008). Strikingly, the transgenic expression of Contactin-2 exclusively in oligodendrocytes is sufficient to rescue juxtaparanode formation and the behavioral deficits in Contactin-2-deficient mice (Savvaki et al., 2010). These data highlight the importance of glial-secreted Contactin-2.

A number of scaffolding proteins (4.1B, ankyrin-B, and Fll-spectrin) are expressed at juxtaparanodes with Caspr-2, but also at paranodes (Doutournier-Nebehay et al., 2003; Ogawa et al., 2006). In 4.1B-null mice, the accumulation of Caspr-2, Contactin-2, and Kv1.1/Kv1.2 at juxtaparanodes is abolished, indicating that 4.1B...
protein is crucial for the formation of juxtaparanodal domains (Horresh et al., 2010; Buttersroe et al., 2011; Cifuentes-Díaz et al., 2011a; Einheber et al., 2013). In addition, the membrane-associated guanylate kinases PSD-93 and PSD-95 are concentrated at juxtaparanodes (Ogawa et al., 2010). However, these proteins are not required for Kv1 and Caspr-2 clustering at juxtaparanodes (Horresh et al., 2010; Ogawa et al., 2010).

The juxtaparanodal complex also comprises disintegrin and metalloproteinase 22 (ADAM22). The deletion of ADAM22 results in the loss of PSD-93 and -95 at juxtaparanodes, but does not affect the localization of Kv1 channels and Caspr-2. The exact function of disintegrin and ADAM22 at juxtaparanodes, thus, remains to be determined.

Of interest, the loss of the paranodal septate-like junctions in Caspr-1 and Contactin-1 deficient mice re-directs the re-location of the juxtaparanodal proteins near the nodes (Bhat et al., 2001; Boyle et al., 2001). The role of 4.1B in paranode formation or maintenance is uncertain. Nonetheless, the transgenic expression of Caspr-1 lacking the 4.1-binding module in Caspr-null mice restores paranode formation, but does not restore the accumulation of Kv1 channels at juxtaparanodes (Horresh et al., 2010).

Altogether, these studies indicate that the organization and maintenance of juxtaparanodes depend on the combination of three distinct processes: assembly of an axo-glial complex at juxtaparanodes, the linkage of this complex to the cytoskeleton, and the sequestration of this complex by the paranodal diffusion barrier.

IMPLICATIONS OF CAMs IN INHERITED AND ACQUIRED NEUROLOGICAL DISORDERS

NODE ALTERATIONS IN INHERITED DEMYELINATING DISORDERS

Although nodal paranodal CAMs are not the priming factors in human inherited demyelinating pathologies, it has came to light during the last decade that demyelination not solely affects the biophysical properties of the myelinated axons but also results in the redistribution or disorganization of the nodal and paranodal components. These latter changes likely participate to the conduction deficits and give important clues about the mechanisms dictating node formation or re-formation during remyelination. Here, we will focus on two human pathologies: the demyelinating forms of Charcot-Marie-Tooth (CMT) disease and Pelizaeus–Merzbacher disease.

Charcot–Marie–Tooth type 1 are inherited demyelinating diseases affecting peripheral nerves which are caused in most patients by mutations in Pmp22 (CMT1A), MPZ (CMT1B), and GJB1 genes (CMT1X; see for review Suter and Scherer, 2003). Tmnb-1 mice are an animal model of CMT1A and show a point mutation in Pmp22 that is also found in a family with CMT1A (Suter et al., 1992; Valentinj et al., 1992). In these animals, peripheral axons show important segmental demyelination, a reduction in the internodal length, but also a shortening of the paranodal components (Brevican, Phosphacan, and Versican) maintain these node-like structures, even in regions devoid of oligodendrocytes (Mathis et al., 2001; Arroyo et al., 2002). By contrast, paranodal regions are severely impacted in the spinal cord of these animals. Caspr-1/Contactin-1/NF155 clusters are not detected, and no septate-like junctions are observed by electron microscopy. Hence, the localization of the Kv1.1/Kv1.2 subunits is strongly altered in md rats and jimpy mice, and Kv1.1/Kv1.2 subunits abutted the node-like clusters of Nav, Kv7.2/Kv7.3, and Kv3.1b channels (Mathis et al., 2001; Arroyo et al., 2002; Devaux et al., 2003, 2004). These results show that node-like clusters of Nav channels can maintain, at least temporarily, in the absence of myelin sheaths and paranodal junctions in jimpy and md animals. The mechanisms responsible for the maintenance of these node-like structures are, however, unclear. It is plausible that the presence of astrocyte processes contacting the node or the preservation of the extracellular matrix components (Breivicin, Phosphacan, and Versican) maintain these node-like clusters.

ANTIBODIES AGAINST CASPR-2 AND CONTACTIN-2 IN PERIPHERAL NERVE HYPEREXCITABILITY AND AUTOIMMUNE ENCEPHALITIS

Numerous studies have implicated the molecular complex found at juxtaparanodes, named the VGKC complex, as an autoimmune disease marker.
target in generalized neuromyotonia (Isaac’s syndrome), persistent facial myokymia, Morvan’s syndrome, and in limbic encephalitis. Neuromyotonia and myokymia are peripheral nerve hyperexcitabilities characterized by repetitive muscle contractions (Gutmann and Gutmann, 2004). Neuromyotonia and myokymia are often linked to impaired function of the Kv1 channels. Neuromyotonia is also observed in Morvan’s syndrome in which it is associated to confusion, autonomic disturbance, and delirium or insomnia (Newsom-Davis et al., 2003). By contrast, limbic encephalitis are characterized by amnesia, confusion, seizures, and psychosis (Buckley et al., 2001; Vincent et al., 2004). Originally, it was suspected that antibodies targeting Kv1.1/Kv1.2/Kv1.6 subunits may be the causal agents in these disorders (Shillito et al., 1995; Hart et al., 1997; Buckley et al., 2001; Vincent et al., 2004; Kleopa et al., 2006). However, recent investigations revealed that most patients with anti-VGKC-complex antibodies present antibodies against Leucine-rich glioma inactivated 1 (LGI-1), a secreted protein associated with presynaptic Kv1 channels (Irani et al., 2010; Lai et al., 2010). In addition, many patients present antibodies against the juxtaparanodal CAMs Caspr-2 and Contactin-2 (Irani et al., 2010; Lancaster et al., 2011). These findings further emphasized that axonal CAMs are implicated in excitability disorders. Worth noting, sera from patients with neuromyotonia, Morvan’s syndrome, or limbic encephalitis recognize cell surface antigens and stain the juxtaparanodes in the PNS (Kleopa et al., 2006; Lancaster et al., 2011). In addition, most of these patients responded to immunotherapy (Irani et al., 2010; Lai et al., 2010; Lancaster et al., 2011), suggesting that the autoantibodies are pathogenic and may induce the down-regulation of the Caspr-2/Contactin-2/Kv1 channel complex. In keeping with this view, sera from patients with neuromyotonia and anti-VGKC-complex antibodies significantly decreased the density of the potassium currents in PC-12, NB-1, or CHO-K1 cells expressing Kv1.1/Kv1.6 cells when the cells were incubated for 3 days with the sera (Sonoda et al., 1996; Nagado et al., 1999). However, these sera did not directly block the potassium currents in these cells.

The fact that antibodies to Caspr-2 or Contactin-2 are associated with peripheral nerve hyperexcitabilities originating in motor axons suggest that these antibodies are susceptible to diffuse across the paranodal barrier and act on the juxtaparanodal Kv1 channels. Recent studies indicate that the paranodal regions is not as tightly sealed as originally thought (Devaux and Gow, 2008; Mierzwia et al., 2010), thus it is plausible that serum IgG in patients with Morvan’s syndrome may slowly diffuse toward the juxtaparanodes. Moreover, the exact pathogenic mechanisms remain to be clarified as well as the epitopes recognized by the antibodies. In some patients, antibodies to Caspr-2 are associated with thymomas (Vincent and Irani, 2010), suggesting a reaction against tumor antigens.

NODAL ALTERATIONS AND AUTOIMMUNITY AGAINST CAMs IN MULTIPLE SCLEROSIS

Multiple sclerosis (MS) is an immune-mediated disease characterized by CNS demyelination, inflammation, axonal degeneration, and cortical lesions which may lead to numbness, paralysis, blindness, and other deficits. Alterations of the nodes of Ranvier have been documented in MS, and Nav channels appear to diffuse along the demyelinated axons in white matter lesions (Moll et al., 1991; Cramer et al., 2004; Coman et al., 2006). In addition, the paranodal length is increased within demyelinating lesions, and NF155 immunoreactivity spreads along the internodes, particularly in damaged or stressed axons (Howell et al., 2006). Worth noting, paranodal alterations precede the dismantling of the node, and result in the incursion of the juxtaparanodal Kv1 channels at nodes and paranodes both in MS and in animal models of MS, the experimental autoimmune encephalomyelitis (EAE, Howell et al., 2006; Zoupi et al., 2013). It is very likely that the disruption of the nodal aggregates of Nav channels participates to the conduction and locomotor deficits in MS patients. Similarly, the alterations of the paranodal a xo-glial junctions and the redistribution of the Kv1 channels might contribute to the conduction defects. Seveal mechanisms may be responsible for these alterations. First, microglia infiltration has been found to correlate with nodal and paranodal alterations in MS patients and in EAE (Howell et al., 2010). Particularly, the inhibition of microglia activation minimized the nodal/paranodal alterations in animal model of MS. This indicates that inflammation can participate in MS etiology by affecting node organization.

Secondly, autoimmune attack against the nodal/paranodal compartments may favor node disruption. Autoantibodies against Neurofascin (NF186 and NF155) have been detected in a few patients with MS (Mathey et al., 2007; Elliott et al., 2012). The immunosorption of MS sera over immobilized NF155 abolished the demyelinating and axopathic activities of the serum in one patient (Elliott et al., 2012). Hence, antibodies to NF155 may participate to the nodal/paranodal alterations. However, the prevalence of such antibodies appears to be low in MS patients, as three recent studies indicate that Neurofascin is not the dominant target of antibodies in MS (Devaux et al., 2012; Elliott et al., 2012; Kawamura et al., 2013). Interestingly, the prevalence of antibodies against NF155 is very high (86%) in patients presenting combined central and peripheral demyelination (Kawamura et al., 2013). These patients show a good response to intravenous Ig injection (IVlg) and plasma exchange, suggesting that these antibodies may participate in the demyelination process. The passive transfer of anti-NF155 antibodies in rats does not exert pathogenic effects (Lindner et al., 2013). However, the passive transfer of anti-NF186 antibodies in rats exacerbates the clinical signs of EAE and induces axonal loss (Mathey et al., 2007; Lindner et al., 2013). It is thus likely that antibodies to Neurofascin are pathogenic and participate to the etiology of MS and other demyelinating disorders.

In addition to the humoral response, T-cell response against Contactin-2 has also been reported in MS (Derfuss et al., 2009). The adoptive transfer of Contactin-2-reactive T-cells induces EAE in rats characterized by inflammation of the gray matter. Moreover, Contactin-2-reactive T-cells enhance the demyelinating activity of anti-MOG antibodies by damaging the blood-brain barrier. Taken together, these findings suggest that reactive T-cells may contribute to the pathology of MS. It now appears essential to determine whether other axonal or glial CAMs are the targets of autoimmunity in MS.
AUTOIMMUNITY TO CAMs IN IMMUNE-MEDIATED DEMYELINATING NEUROPATHIES

A large catalog of neurological disorders affecting peripheral nerves is suspected to be immune-mediated. Among these, autoimmune reaction against the nodes of Ranvier is implicated in Guillain–Barre syndrome (GBS) and chronic inflammatory demyelinating polyradiculoneuropathies (CIDP; Santoro et al., 1990; Griffin et al., 1996; Hafer-Macko et al., 1996a,b; Cifuentes-Diaz et al., 2011b). The causes and pathogenesis of GBS and CIDP remain largely unknown. The presence of inflammatory infiltrates, the deposition of IgG and IgM in nerve biopsies, and the response to IVIg and steroids suggest an autoimmune origin (Dalakas and Engel, 1980; Schmidt et al., 1996; Bouchard et al., 1999; also see for review Hughes and Cornblath, 2005; Mehndiratta and Singh, 2007). In particular, the deposition of complement on the axonal surface of the Schwann cells in GBS patients (Hafer-Macko et al., 1996b; Lu et al., 2000; Wanschitz et al., 2003) has suggested that the pathology is humorally mediated.

Several recent studies have revealed that autoantibodies in GBS and CIDP patients target CAMs located at the nodes of Ranvier and paranodes (Pruss et al., 2011; Devaux et al., 2012; Ng et al., 2012; Querol et al., 2012). In particular, serum IgG in nearly 40% of GBS and 30% of CIDP patients from a Japanese cohort bind the nodal or paranodal regions of peripheral nerve fibers (Devaux et al., 2012). Also, the serum IgG in nearly 40% of CIDP patients from a French cohort label the nodal or paranodal regions (our unpublished observations). These results indicate that the node of Ranvier is the target of the immune attack in many GBS and CIDP patients. Gliomedin, Neurofascin, Caspr-1, and Contactin-1 have been identified as the target antigens in some GBS and CIDP patients (Pruss et al., 2011; Devaux et al., 2012; Ng et al., 2012; Querol et al., 2012). The proportion of patients with antibodies against these CAMs is relatively low and ranges from 1 to 8%. Nevertheless, antibodies to Gliomedin and Contactin-1 are mostly associated with the demyelinating form of GBS, acute inflammatory demyelinating polyneuropathy (AIDP), and with CIDP (Devaux et al., 2012; Querol et al., 2012). Particularly, Querol et al. (2012) have shown that antibodies to Contactin-1 are associated with a specific sub-form of CIDP characterized by an aggressive onset and a poor response to IVIg. In their study, Ng et al. (2012) have examined the prevalence of antibodies against Neurofascin and found that the reactivity against NF155 is more frequent in patients with CIDP. Worth noting, the CIDP patients had IgG4 against NF155. These antibodies may have an antigen-blocking function, as IgG4 does not bind Fc receptors and does not activate the complement pathway (Nirula et al., 2011). Altogether, this suggests that immune attack against nodal or paranodal CAMs could be a common mechanism mediating paranodal demyelination in some sub-forms of demyelinating neuropathies.

FIGURE 3 | Antibodies target nodal CAMs in GBS patients and animal models. (A) Mouse sciatic nerve fibers were incubated with sera (green) from AIDP (left panel) or AMAN (right panel) patients which are reactive against Contactin-1 and Neurofascin, respectively. Fibers were stained for Caspr (red) to label the paranodes. Pre-incubation of the sera with soluble Contactin-1-Fc or NF186-Fc abolished the binding of the IgG at nodes (arrowheads) and paranodes (double arrowheads). (B) Animal models of GBS were used to evaluate the pathogenic action of anti-Gliomedin antibodies. In animals immunized against P2 peptide (EAN-P2), Nav channels (green) are clustered at nodes (arrowheads) and at hemi-nodes bordering the Schwann cells in demyelinated axons (bar with arrow). The injection of anti-Gliomedin IgG (here 6 days after IgG injection) induces the dispersion of Nav channels in demyelinated segments (between arrows). (C) Node disruption is associated with an important conduction slowing and loss in ventral roots of EAN-P2 animals injected with anti-Gliomedin IgG. The amplitude of the nerve potentials progressively decreased 1, 3, and 6 days post-injection (dpi) of anti-Gliomedin IgG. Gray arrows indicate the latency of control nerves. Scale bars: 10 μm. Adapted from Lonigro and Devaux (2009); Devaux (2012), and Devaux et al. (2012).
Animal models of GBS have further confirmed that autoantibodies to nodal/paranodal CAMs have pathogenic functions. Experimental allergic neuritis (EAN) is induced by immunization of Lewis rats against the P2 peptid (EAN-P2) or purified myelin fraction (EAN-PM) that causes a demyelinating pathology reminiscent of AIDP (Uyemura et al., 1982; Hahn et al., 1988, 1991). Of interest, node disruptions are observed in EAN-PM animals and are associated with antibodies against NF186 and Gliomedin (Lonigo and Devaux, 2009). In these animals, the disappearance of NF186 and Gliomedin at nodes precedes demyelination, and results in the loss of NaV channels in demyelinated segments and in severe conduction defects (Novakovic et al., 1998; Lonigo and Devaux, 2009). By contrast, EAN-P2 animals do not exhibit nodal alterations and antibodies to nodal components, despite the presence of segmental demyelination. This work emphasizes that antibodies to nodal CAMs may participate to conduction defects by dismantling axo-glial attachment at nodes and paranodes. Further, it was found that immunization against Gliomedin, but not NF186, induces a chronic neuropathy with conduction block and nodal dysfunctions (Devaux, 2012). Most importantly, the passive transfer of anti-Gliomedin IgG in EAN-P2 animals induced demyelination, nodal disruption, and an important conduction loss (Figure 3; Devaux, 2012). These results showed that primary immune reaction against a nodal CAM can be responsible for the initiation or progression of a demyelinating form of peripheral neuropathy. The passive transfer of antibodies to Neurofascin has also been found to exacerbate the pathology of EAN-P2 (Ng et al., 2012), indicating that these antibodies are pathogenic. In animals injected with anti-Gliomedin IgG, an important deposition of IgG was found at nodes preceding demyelination, but no important deposition of complement (Devaux, 2012). These results suggest that anti-CAMs IgG may induce demyelination by directly blocking the antigen or through the recruitment of macrophages.

The pathogenic mechanisms responsible for the production of anti-CAM antibodies in GBS and CIDP patients are still elusive. Thus far, no clear correlation has been drawn between infectious agents and the presence of anti-CAM antibodies. It is worth noting that an outbreak of polyradiculoneuropathy has been reported in a swine abattoir and was caused by aerosolized brain tissue (Meessen et al., 2012). Nineteen of these patients presented antibodies to the VGKC-complex, and 2 out of 19 recognized Caspe-2. This emphasizes that the mechanisms leading to the production of anti-CAM IgG may be very broad as well as the number of target antigens, and the sub-forms of GBS and CIDP.

NODAL ALTERATIONS IN IMMUNE-MEDIATED AXONAL NEUROPATHIES

Antibodies against NF186 have also been reported in patients with acute motor axonal neuropathy (AMAN; Devaux et al., 2012). AMAN is the most predominant form of GBS in China and Japan, and is characterized by extensive axonal degeneration. Most patients with AMAN show antibodies against the gangliosides GM1, GD1a, and GaNAc-GD1a (Toki et al., 1997; Kowabara et al., 1998; Ho et al., 1999). It is currently suspected that these antibodies bind the nodes of Ranvier and fix complement, then induce node elongation and axonal degeneration (Hafer-Macko et al., 1996a; Paparounas et al., 1999; O’Hanlon et al., 2003). In keeping, rabbits sensitized against GM1 develop an axonal neuropathy similar to AMAN (Susuki et al., 2003). In these animals, the deposition of anti-GM1 antibodies and complement at nodes results in the disruption of the NaV channel clusters and in conduction block (Susuki et al., 2007b). In addition, anti-GD1a antibodies can induce node disruption in vivo and in vitro (McGonigal et al., 2010; Susuki et al., 2012). These findings indicate that autoimmune attack against the nodes of Ranvier can induce conduction deficits and cause human neuropathies. Thus far, it is unclear whether anti-NF186 antibodies also participate to the etiology of AMAN. The passive transfer of anti-NF186 IgG has been found to exacerbate the axonal loss in EAE (Machery et al., 2007; Lindner et al., 2013). Because NF186 is located on the axolemma at PNS nodes, we can suspect that antibodies directed against this protein might also induce nodal disruption and axonal degeneration in peripheral nerves. It is thus plausible that in AMAN patients, a broad immune reaction against nodal glycolipids and glycoproteins is responsible for the pathology.

It is worth noting that many axonal neuropathies are associated with node dysfunctions, and are now classified as nodo-paranodopathies (Uncini et al., 2013). For instance, antibodies to GD1b are associated with acute sensory ataxic neuropathy (Fan et al., 2001; Nottirno et al., 2008) and result in nodal disruption and axonal degeneration of sensory axons in rabbits (Susuki et al., 2012). Also, alterations of the nodes of Ranvier have been documented in biopsies from patients with chronic idiopathic axonal polyneuropathies (Cifuentes-Diaz et al., 2011b). It would thus be interesting to determine the prevalence of antibodies against nodal/paranodal CAMs in these, but also in other idiopathic neuropathies.

CONCLUDING REMARKS

Over the last decade, important works have unraveled the nature of the CAMs underlying the axo-glial contacts at nodes, paranodes, and juxtaparanodes. It appears that CAMs participate in the formation and in the stabilization of the axonal sub-domains in a very complex way, and require the cooperation of intracellular anchoring proteins, signaling molecules, and of the extracellular matrix. In the CNS and PNS, the mechanisms regulating the formation of the nodes are different, albeit the composition of the nodal membrane is very similar.

As reviewed here, the node of Ranvier is the epicenter of numerous neurological disorders. This is not surprising owing to the importance of the nodal and paranodal regions in the propagation of nerve impulse. Subtle changes in the biophysical properties or excitability of nerve fibers are likely to lead to broad neurological symptoms such as pain, numbness, confusion, ataxia, or epilepsy. In addition, immune attack against the nodes of Ranvier might be responsible for conduction loss and paralysis in demyelinating disorders and nodo-paranodopathies. Some of the target antigens have been identified, but many still remain to be unraveled. Future works should investigate the pathogenic mechanisms leading to autoimmunity toward nodal antigens.

ACKNOWLEDGMENTS

This work was supported by the Association Française contre les Myopathies (AMM) 2012-14380 and the Association pour la Recherche sur la Sclérose en Plaques.
REFERENCES
Arroyo, E. J., Xu, T., Giuspina, J., Lambert, S., Levinson, S. R., Brophy, P. J., et al. (2002). Genetic demyelination alters the molecular architecture of the nodal region. J. Neurosci. 22, 1727–1737.

Bai, Y., Iwasawa, E., Pa, Q., Ghanem, E., Levinson, R., Martin, J. J., et al. (2006). Effect of an IRG1 mutation in the myelin protein zero gene on myelination and axon channel phenotype. Arch. Neurol. 63, 1787–1794. doi: 10.1001/archneur.63.12.1787

Bangratz, M., Sarrailh, N., Devaux, J., Zamboni, D., Echaniz-Laguna, A., Bono, F., et al. (2012). A mouse model of Schwann cell lamination and perinuclear axonal deposition in vitro and in the peripheral nerve hyperexcitability when podocin is lacking. Am. J. Pathol. 180, 2040–2055. doi: 10.1016/j.ajpath.2012.03.017

Barnes, G., Grumet, M., Miller, P., Silbester, O., Levy, J. B., Sap, J., et al. (1994). Receptor tyrosine phosphatase beta in expressed in the form of proteins and binds to the extracellular matrix protein tenascin. J. Biol. Chem. 269, 14348–14352.

Bekki, Y., Rauch, U., Ninomiya, Y., and Oshita, T. (2009). Brevican distinctively assembles extracellular tumors at the large diameter nodes of Ranvier. Proc. Natl. Acad. Sci. U.S.A. 106, 1266–1270. doi: 10.1073/pnas.0810249106

Bekki, Y., Yagura, L. G., Goto, Y., Visnak, I., Dmytryzko, L., Narasaki, M., et al. (2013a). Contactin-1 interacts in diffusion barrier formation and conduction velocity in the CNS. J. Neurosci. 33, 3115–3123. doi: 10.1523/JNEUROSCI.3988-09.2010

Bhat, M. A., Rios, J. C., Lu, Y., Bangratz, M., Sarrazin, N., Devaux, J., Bai, Y. H., Ianokova, E., Pu, Q., Ghanem, E., Levinson, R., Martin, J. J., and Scherer, S. (2010). The C-terminal domain of the neurofascin-155 transmembrane protein regulates the domain organization of nodal gap junctions. J. Neurosci. 30, 365–377. doi: 10.1523/JNEUROSCI.2548-09.2009

Buttorem, E. D., Dupree, J. L., Cheng, J., An, X., Tournel, L., and Bhat, M. A. (2011). The cytoplasmic adaptor protein band 4.1B is required for the maintenance of paranodal mossy fiber junctions in myelinating mouse. J. Neurosci. 31, 8013–8024. doi: 10.1523/JNEUROSCI.1503-11.2011

Calderón, J. F., Schaller, K. L., Rols, S. P., Leos, E., and Levinson, S. R. (2002). Nodes of Ranvier and paranodes are localized at nodes of Ranvier, dendrites, and synapses. Proc. Natl. Acad. Sci. U.S.A. 99, 9166–9170. doi: 10.1073/pnas.152092799

Caldwell, J. H., Schaller, K. L., Lasher, M., Buck, Y., Xu, T., and Levinson, S. R. (2003). K V3.1b is a novel component of CNS nodes. J. Neurosci. 23, 4159–4166. doi: 10.1523/JNEUROSCI.1015-11.2011

Devaux, J. (2010). The C-terminal FNIII domain- and N-glycan binding properties of small CNS myelinated axon components Schwann cell-axon interaction alters the molecular architecture of the nodal region. J. Neurosci. 30, 3115–3123. doi: 10.1523/JNEUROSCI.3988-09.2010

Devaux, J. (2012). Antibodies to perlecan are target antigens in Guillain-Barré syndrome. J. Peripher. Nerv. Syst. 17, 62–71. doi: 10.1111/j.1529-8384.2011.00346.x

Devaux, J. J., Craner, M. J., Newcombe, J., Black, J. A., Hartle, C., Gunter, M. L., and Waxman, S. G. (2004). Molecular changes in neurons in multiple sclerosis alter axonal expression of Nav1.2 and Nav1.6 sodium channels and N-Ca(V)2+ channel. Proc. Natl. Acad. Sci. U.S.A. 101, 8166–8173. doi: 10.1073/pnas.0427815101

Devaux, J. J., and Gow, A. (2008). Tight contacts between the extracellular matrix and the molecular assembly of the nodes of Ranvier. Neuron 61, 240–253. doi: 10.1016/j.neuron.2008.05.020

Devi, J. Q., Lambert, S., and Bennett, V. (1996). Molecular composition of the node of Ranvier: identification of ankyrin-binding cell adhesion molecules neurofascin and neurofascin-155. Mol. Biol. Cell 7, 415–429. doi: 10.1083/jcb.101587.2010

Dosi, J. A., Hartle, C., Gunter, M. L., and Waxman, S. G. (2004). Molecular changes in neurons in multiple sclerosis alter axonal expression of Nav1.2 and Nav1.6 sodium channels and N-Ca(V)2+ channel. Proc. Natl. Acad. Sci. U.S.A. 101, 8166–8173. doi: 10.1073/pnas.0427815101

Dolakia, M. C., and Engel, W. K. (1990). Immunogold and complement deposits in nerves of patients with chronic relapsing polyneuropathy. Arch. Neurol. 47, 587–591. doi: 10.1001/archneurol.1990.009101041010

Dorfler, W., Fahlke, K., Valin, S., Bruns, M., Mathes, R., Krambeck, M., et al. (2009). Contactin-1/Tag-1 directs autoimmunity is identified in multiple sclerosis patients and patients with multiple sclerosis. Proc. Natl. Acad. Sci. U.S.A. 106, 8302–8307. doi: 10.1073/pnas.0901496106

Ecker, P., and Munk, E. (2000). Sodium channel NaV1.6 is regulated by the extracellular matrix protein tenascin. J. Biol. Chem. 275, 18165–18173. doi: 10.1074/jbc.M002765200

El-Deiry, W. S., and Gorbman, A. (1997). The extracellular matrix component Perlecain/B3GAT3 is a component of the lipoidal membrane junctions that assemble during myelination. J. Cell Biol. 139, 1495–1506. doi: 10.1083/jcb.139.4.1495

Elliot, C., Lindner, M., Arber, A., Bronnum, K., Jutarn, S., Blayney, J., et al. (2012). Functional identification of p63 and p63b as lesional lymphocyte and multinucleate giant cell co-receptors in the molecular assembly of the nodes of Ranvier. Neuron 74, 215–227. doi: 10.1016/j.neuron.2012.03.003

Einheber, S., Zhang, Y., Galinka, J., Lam, I., Granert, M., and Saher, J. L. (2007). Nodules of Ranvier and paranodal segments are, respectively, assembles extracellular tumors and paranodal components Schwann cell-axon interaction alters the molecular architecture of the nodal region. J. Neurosci. 27, 7775–7782. doi: 10.1523/JNEUROSCI.2243-06.2007

Einheber, S., Moin, X., Rubin, M., Lam, I., Mulkern, R., Aron, A., et al. (2013). The 4.1B cytoplasmic scaffold protein regulates the domain organization and thickness of myelinated axons. Glia 61, 240–253. doi: 10.1002/glia.22540

Einheber, S., Zanoni, G., Ching, W., Scher, S. S., Miller, T. A., Peles, E., et al. (1997). The intracellular component Protein Casp5/Muslin IV is a component of the lipoidal membrane junctions that assemble during myelination. J. Cell Biol. 139, 1495–1506. doi: 10.1083/jcb.139.4.1495

Eriksson, E., Fonberg, K., Pelck, S., Sabban, M., Ii, J., Nagata, H., et al. (2005). Glutamin mediates Schwann cell-axon interaction and the molecular assembly of the nodes of Ranvier. Neuron 47, 215–227.
Faivre-Sarrailh, C., Banerjee, S., Li, J., Faivre-Sarrailh and Devaux Neuro-glial interactions at nodes A., Rougon, G., and Girault, J. A. (2003). Syndecan-1 expression and cell adhesion of neuroblastoma cells to the extracellular matrix at the axon initial segment. J. Neurocytol. 32, 675–686. doi: 10.1023/A:1024412124794

Griffin, J. W., Li, C. Y., Macko, C., Ho, T. W., White, T. Y., Sapp, P., et al. (1996). Early nodal changes in the acute motor axonal neuropathy pattern of the Guillain-Barré syndrome. J. Neurosci. 16, 5796–5803. doi: 10.1523/JNEUROSCI.16-14-05796.1996

Hohlfeld, R., Dong, P., Liu, D., and Lu, J. L. (2002). Neurofascin 186 specific autoimmune encephalomyelitis. J. Neurosci. 22, 6907–6914. doi: 10.1523/JNEUROSCI.22-23-06907.2002

Lai, M., Huizinga, M. A., Aster, J. C., and Faivre-Sarrailh, C. (2010). GPCR-induced polarization of immune cells in the CNS. Biochim. Biophys. Acta. 1799, 1709–1718. doi: 10.1016/j.bbamcr.2009.11.012

Lai, M., Huizinga, M. A., Aster, J. C., and Faivre-Sarrailh, C. (2011). Syndecan-1 and syndecan-2 are enriched in the motor endplates of the sympathetic nerves. J. Neurocytol. 40, 557–561. doi: 10.1007/s10872-011-9219-3

Liu, I., Ito, H., Nishimura, H., Inoue, H., Kitamura, T., Terakita, T., Nose, Y., Kaibara, N., Yonehara, S., Nagayama, S., et al. (2013). Anti-neurofascin antibody in patients with combined central and peripheral demyelinating polyneuropathy. J. Neurol. Neurosurg. Psychiatry. 84, 255–262. doi: 10.1136/jnnp-2012-304468

Lindner, M., Ng, K. J., Hochmeister, S., Meixl, E., and Luttinger, C. (2013). Neurofascin 186-specific autoimmune antibodies induce axonal injury and exacerbate disease severity in experimental autoimmune encephalomyelitis. Exp. Neurol. 247, 256–266. doi: 10.1016/j.expneurol.2013.05.005

Lomerio, A., and Devaux, J. J. (2009). Disruption of neurofascin and gliomedin at nodes of Ranvier provokes demyelination in experimental allergic neuritis. Brain Res. 1259, 206–217. doi: 10.1016/j.brainres.2009.08.021

Lu, I. L., Shioda, K. A., Wu, H. S., Zhang, J., Jiang, Z. F., Cornblath, D. R., et al. (2006). Neuron-specific enolase regulates sodium channel clustering through Shc and its impact on early changes preceding demyelination and remyelination in multiple sclerosis. Brain Res. 1097, 315–318. doi: 10.1016/j.brainres.2005.11.030

Miyake, M., Armstrong, M. B., and Schachner, M. (2001). Disruption of neurofascin localization reveals early changes preceding demyelination and remyelination in multiple sclerosis. Brain Res. 907, 251–258. doi: 10.1016/S0006-8993(01)02514-0

Norris, D. H., Sisery, G. A., and Berry, J. (1988). Early nodal changes in the acute motor axonal neuropathy pattern of the Guillain-Barré syndrome. Acta Neuropathol. 75, 281–301. doi: 10.1007/BF00362693
Neuro-glial interactions at nodes

Mierzwa, A., Shroff, S., and Rosenbluth, J. (2013). "Nodes of Ranvier form in association with macrophage cell clusters." J. Comp. Neurol. 520, 339–349. doi:10.1002/cne.23485

Maertens, B., Hopkins, D., Franzke, C., Maertens, B., Hopkins, D., Franzke, C. (2013). "Neurofascin as a novel target for autoimmune-mediated demyelination." J. Neurosci. 33, 10312–10326. doi:10.1523/JNEUROSCI.1421-13.2013

Parasu, L., Cereghetti, M., Schachner, M., et al. (2010). "Autoimmune disease in a mouse model of anti-ganglioside antibody-mediated chronic inflammatory demyelinating polyneuropathy." Proc. Natl. Acad. Sci. U.S.A. 107, 6674–6679. doi:10.1073/pnas.0913828107

Rasband, M. N., Keizer, J. T., Pritts, S. M., et al. (2012). "Antigen-glutamate antibodies activate complement and calcium in injured motor nodes of Rattner in mice." Brain 135, 1954–1965. doi:10.1093/brain/awr045

Rasband, M. N., Keizer, J. T., Pritts, S. M., et al. (2012). "Antigen-glutamate antibodies activate complement and calcium in injured motor nodes of Rattner in mice." Brain 135, 1954–1965. doi:10.1093/brain/awr045

Sadanay, H., Kiernan, B., Pevny, L., and Salzer, J. L. (2005). "Differential expression of myelinating glia-specific and glial proteins in human and mouse spinal cord." J. Neurosci. 25, 1134–1147. doi:10.1523/JNEUROSCI.4047-10.2010

Shroff, S., and Rosenbluth, J. (2015). "Unique role of gliodendrocytes in the formation and maintenance of central nervous system myelin nodal regions." Development 142, 4881–4893.

Tina, S., Moore, S. A., Bateman, R., Henry, M. D., Manning, A., Rosenthal, B. S., et al. (2005). "Unique role of gliodendrocytes in the formation and maintenance of central nervous system myelin nodal regions." Development 142, 4881–4893.
Acquired neuromyelitis: evidence for autoantibodies directed against K+ channels of peripheral nerves. *Ann. Neurol.* 38, 714–722. doi: 10.1002/ana.410380505

Sonoda, Y., Arikawa, K., Kamano, A., Sando, Y., Akamatsu, M., Kusama, K., Kusakihara, S., Hiraoka, H., et al. (2004). Gangliosides contribute to stability of paranodal junctions and ion channel clusters in myelinated nerve fibers. *GLIA* 43, 75–86. doi: 10.1002/glia.20503

Susuki, K., Baba, H., Tohyama, K., et al. (2007a). Gangliosides contribute to paranodal remyelination in a patient with amyotrophic lateral sclerosis. *J. Neurosci.* 27, 857–867. doi: 10.1523/JNEUROSCI.2084-06.2006

Susuki, K., Yuki, N., Takeda, M., and Yuki, N. (2015). Neurodegeneration beyond the demyelinating and axonal classification in anti-ganglioside antibody-mediated neuropathies. *Cyt. Neurobiol.* 52:308-317. doi: 10.1002/cyt.21603 [Epub ahead of print].

Susuki, K., Yuki, N., Takeda, M., Kita, K., Ogaw, Y., Yuki, N., et al. (2002). Altered expression of ion channel isoforms at the node of Ranvier in P0-deficient myelin mutants. *J. Neurosci.* 22, 4848–4857. doi: 10.1523/JNEUROSCI.0107-02.2002

Susuki, K., Shima, M., Kitamura, K., Watanabe, K., et al. (2007b). Ganglioside antibody-mediated disruption of sodium channel distributions in peripheral motor nerve fibers J. Neurosci. 27, 996-997. doi: 10.1523/JNEUROSCI.0171-10.2010

Suzuki, S. R., Schachner, M., and Sondek, J. (1999). F11, and tenascin-R, which promote axonal development prevent aberrant sodium channel stabilization. *J. Cell Biol.* 146, 1059–1066. doi: 10.1083/jcb.146.4.1059

Talbot, S. T., Tollefsen, C. E., Price, V., and Vincent, C. (1995).}
Zoupi, L., Markoullis, K., Kleopa, K. A., and Karagogeos, D. (2013). Alterations of juxtaparanodal domains in two rodent models of CNS demyelination. Glia 61, 1236–1249. doi: 10.1002/glia.22511

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 21 August 2013; accepted: 08 October 2013; published online: 29 October 2013.

Citation: Faivre-Sarrailh C and Devaux JJ (2013) Neuro-glial interactions at the nodes of Ranvier: implication in health and diseases. Front. Cell. Neurosci. 7:196. doi: 10.3389/fncel.2013.00196

This article was submitted to the journal Frontiers in Cellular Neuroscience.

Copyright © 2013 Faivre-Sarrailh and Devaux. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.