Freestyle, a randomized version of ChaCha for resisting offline brute-force and dictionary attacks

P. Arun Babu and Jithin Jose Thomas

Abstract—This paper introduces Freestyle, a randomized and variable round version of the ChaCha cipher. Freestyle uses the concept of hash based halting condition where a decryption attempt with an incorrect key is likely to take longer time to halt. This makes Freestyle resistant to key-guessing attacks i.e. brute-force and dictionary based attacks. Freestyle demonstrates a novel approach for ciphertext randomization by using random number of rounds for each block, where the exact number of rounds are unknown to the receiver in advance. Freestyle provides the possibility of generating 2^{128} different ciphertexts for a given key, nonce, and message; thus resisting key and nonce reuse attacks. Due to its inherent random behavior, Freestyle makes cryptanalysis through known-plaintext, chosen-plaintext, and chosen-ciphertext attacks difficult in practice. On the other hand, Freestyle has costlier cipher initialization process, typically 3.2 times slower than ChaCha20. Freestyle is suitable for applications where ciphertext randomization and resistance to key-guessing and key reuse attacks over performance and ciphertext size. Freestyle is ideal for applications where ciphertext can be assumed to be in full control of an adversary, and an offline key-guessing attack can be carried out.

Index Terms—Brute-force resistant ciphers, dictionary based attacks, key-guessing, probabilistic encryption, Freestyle, ChaCha.

I. INTRODUCTION

A randomized (aka probabilistic) encryption scheme involves a cipher that uses randomness to generate different ciphertexts for a given key, nonce (aka. initial vector), and message. The goal of randomization is to make cryptanalysis difficult and a time consuming process. This paper presents the design and analysis of Freestyle, a randomized and variable-round version of ChaCha cipher [1]. ChaCha20 (i.e. ChaCha with 20 rounds) is one of the modern, popular (for TLS [2] and SSH [3], [4]), and faster symmetric stream cipher on most machines [5], [6]. Even on lightweight ciphers, realistic brute-force attacks with key sizes ≥ 128 bits is not feasible with current computational power. However, algorithms and applications that have lower key-space due to: (i) generation of keys from a poor (pseudo-)random number generator [7]–[12]; (ii) weak passwords being used to derive keys; and, (iii) poor protocol or cryptographic implementations [13]–[15] are prone to key-guessing attacks (brute-force and dictionary based attacks). Also, steady advances are being made in the areas of GPUs [16]–[18], specialized hardware for cryptography [19]–[24], and memories in terms of storage and in-memory processing [25]–[27] to speedup key-guessing attacks.

Techniques such as introducing a delay between incorrect key/password attempts, multi-factor authentication, and CAPTCHAs (Completely Automated Public Turing test to tell Computers and Humans Apart) are being used to resist brute-force attacks over the network (i.e. on-line brute-force attack). However, such techniques cannot be used if the ciphertext is available with the adversary (i.e. offline brute-force attack); for example: encrypted data gathered from a wireless channel, or lost/stolen encrypted files/disks. To resist offline brute-force attacks, key-stretching and slower algorithms [28] are preferred. Although, such techniques are useful, they are much slower on low-powered devices, and also slow down genuine users.

This paper makes three main contributions: (i) We demonstrate the use of bounded hash based halting condition, which makes key-guessing attacks less effective by slowing down the adversary, but remaining relatively computationally simpler for genuine users. We introduce the key guessing penalty, which is a measure for a cipher’s resistance to key-guessing attacks. The physical significance of KGP is that the adversary would require at least KGP times computational power than a genuine user to launch an effective key-guessing attack; (ii) We demonstrate a novel approach for ciphertext randomization by using random number of rounds for each block of message; where the exact number of rounds are unknown to the receiver in advance; (iii) We introduce the concept of non-deterministic CTR mode of operation and demonstrate the possibility of using the random round numbers to generate 2^{128} different ciphertexts - even though the key, nonce, and message are the same. The randomization makes the cipher resistant to key re-installation attacks such as KRACK [13] and cryptanalysis by XOR of ciphertexts in the event of the key and nonce being reused.

Freestyle attempts to address the following two issues: (i) reuse of a key and nonce combination is not secure in deterministic stream ciphers, as demonstrated attacks such as Key installation attack (KRACK) [13]. And maintaining a list of used keys and nonces is an overhead, especially for constrained and low-powered devices, (ii) Existing ciphers take nearly the same amount of time to decrypt a message irrespective of whether the key used is correct or not. This makes lightweight ciphers prone to key-guessing attacks. The proposed decryption algorithm in Freestyle is designed to be computationally simpler for a user with a correct key; but, for an adversary with an incorrect key, the decryption algorithm is likely to take longer time to halt. Thus, each brute-force or dictionary attack attempt is likely to be computationally expensive and time consuming.

The rest of the paper is structured as follows: Table [1]
TABLE I
LIST OF SYMBOLS

Notation	Description		
R_{min}	The minimum number of rounds to be used for encryption, $R_{\text{min}} \in [1, 2^{16}]$.		
R_{max}	The maximum number of rounds to be used for decryption, $R_{\text{max}} \in [1, 2^{16}]$ and $R_{\text{max}} \geq R_{\text{min}}$.		
R	Number of rounds used to encrypt the current block of message, $R = \text{random}(R_{\text{min}}, R_{\text{max}})$.		
R_i	Number of rounds used to encrypt i^{th} block of message. $R_i = \text{random}(R_{\text{min}}, R_{\text{max}})$ and $i \geq 0$.		
r	The current round number, $r \in [R_{\text{min}}, R]$.		
h_t (Freestyle hash function)	Freestyle hash function which generates a 16-bit hash.		
H_t (Round intervals at which a 16-bit hash has to be computed)	Round intervals at which a 16-bit hash has to be computed. $H_t \in [1, R_{\text{min}}], R_{\text{min}} \geq	H_t	$.
H_C (The complexity of Freestyle’s hash function)	The complexity of Freestyle’s hash function to be used. $H_C \in \{1, 2, 3\}$.		
I_C (The log2 (iterations) or the number of pepper bits)	The log2 (iterations) or the number of pepper bits to be used in during initialization. $I_c \in [8, 32]$.		
pepper	The pepper value indicating the number of iterations required during initialization.		
C_{R_i} (The number of rounds computed using an expected hash and pepper for i^{th} block of message)	The number of rounds computed using an expected hash and pepper for i^{th} block of message.		
E_{R_W} (The expected number of rounds executed by an adversary during cipher initialization)	The expected number of rounds executed by an adversary during cipher initialization.		
E_R (The expected number of rounds used by a genuine user to encrypt/decrypt a message)	The expected number of rounds used by a genuine user to encrypt/decrypt a message. If a uniform distribution is used, then $E_R = \frac{R_{\text{min}} + R_{\text{max}}}{2}$.		
v (in red color)	An input variable.		
v (in green color)	A variable derived from one or more input variables.		
v (in blue color)	An output variable.		
$v^{(t)}$	The value of v after t rounds of Freestyle.		
$v[n]$	n^{th} element of v.		
$v_1 \| v_2$ (Concatenation of v_1 and v_2)	Concatenation of v_1 and v_2.		
$v_1 \oplus v_2$ (Bit-wise XOR of v_1 and v_2)	Bit-wise XOR of v_1 and v_2.		
$v_1 \odot v_2$ (Addition of v_1 and v_2 modulo 2^{32})	Addition of v_1 and v_2 modulo 2^{32}.		
$v_1 \oslash v_2$ (Subtraction of v_1 and v_2 modulo 2^{32})	Subtraction of v_1 and v_2 modulo 2^{32}.		
mod	The modulo operator.		
v^u	Set of values guessed by an adversary for v.		
$c_f(v_1, v_2)$	A set containing common factors of integers v_1 and v_2.		
$	v	$	The length of v in bits.
N_b (The number of blocks in a message)	The number of blocks in a message. $N_b = \left\lceil \text{message} \right\rceil + 1$.		
$P_{R_\text{min}}(X = 1)$	The probability of collision of a 16-bit hash at the n^{th} trial when using an incorrect key.		
N_c (The total number of ciphertexts possible for a given: key, nonce, and message)	The total number of ciphertexts possible for a given: key, nonce, and message.		
N_r (The number of ways a block of message can be encrypted by using random number of rounds)	The number of ways a block of message can be encrypted by using random number of rounds. $N_r = \left\lceil \frac{R_{\text{max}} - R_{\text{min}}}{	H_t	} + 1 \right\rceil$.
$T(\alpha)$ (The expected time taken to execute the operation α)	The expected time taken to execute the operation α.		
S (The 512-bit cipher state for a given block of message)	The 512-bit cipher state for a given block of message.		
counter (The counter in CTR mode of operation)	The counter in CTR mode of operation.		
null (An empty string)	An empty string.		

and Table II lists the notations and abbreviations used in the paper; section II presents the background information on ChaCha cipher and its variants; section III describes the Freestyle cipher; section IV presents results and cryptanalysis of Freestyle cipher; section V presents related work; and section VI concludes the paper.

II. CHACHA CIPHER AND VARIANTS

ChaCha20 [1] is a variant of Salsa20 [29, 30], a stream cipher. ChaCha20 uses 128-bit constant, 256-bit key, 64-bit counter, and 64-bit nonce to form an initial cipher state denoted by $S^{(0)}$, as:

$$S^{(0)} = \begin{bmatrix}
constant[0], & constant[1], & constant[2], & constant[3] \\
key[0], & key[1], & key[2], & key[3] \\
key[4], & key[5], & key[6], & key[7] \\
counter[0], & counter[1], & nonce[0], & nonce[1]
\end{bmatrix}$$

ChaCha20 uses 10 double-rouns (or 20 rounds) on $S^{(0)}$; where each of the double-round consists of 8 quarter rounds (QR) defined as:

$$QR(S^0[0], S^4[4], S^8[8], S^{12})$$

The 16 elements of the cipher-state matrix are denoted by using an index in range [0,15], and the quarter-round $QR(a, b, c, d)$ is defined as:

$$a \leftarrow a \oplus b; \
d \leftarrow d \oplus a; \quad d \leftarrow d \ll 16;$$

$$c \leftarrow c \oplus d; \
b \leftarrow b \oplus c; \quad b \leftarrow b \ll 12;$$

$$a \leftarrow a \oplus b; \
d \leftarrow d \oplus a; \quad d \leftarrow d \ll 8;$$

$$c \leftarrow c \oplus d; \
b \leftarrow b \oplus c; \quad b \leftarrow b \ll 7;$$

After 20 rounds, the initial state $(S^{(20)})$ is added to the current state $(S^{(20)})$ to generate the final state. The final state is serialized in the little-endian format to form the 512-bit key-stream, which is then XOR-ed with a block (512 bits) of plaintext/ciphertext to generate a block of ciphertext/plaintext. The above operations are performed for each block of message to be encrypted/decrypted.

ChaCha is a simple and efficient ARX (Add-Rotate-XOR) cipher, and is not sensitive to timing attacks. ChaCha has two main flavors with reduced number of rounds i.e. with 8 and 12 rounds. ChaCha8 is considered secure enough as there are no known attacks against it yet. ChaCha20 has two main variants: (i) IETF’s version of ChaCha20 [2, 31] which uses a 32-bit counter (instead of 64-bit) and 96-bit nonce (instead of 64-bit); and (ii) XChaCha20 [32], which uses 192-bit nonce (instead of 64-bit), where a randomly generated key is used to form the current key-state.
nonce is considered safe enough \[33\]. The large **nonce** in XChaCha20 makes the probability of **nonce** reuse low.

III. The Freestyle cipher

A. Hash based halting condition

Traditionally ciphers are designed to use fixed number of rounds in the encryption and decryption process. This makes the cipher to take nearly the same amount of time to execute the decryption function irrespective of the key being correct or incorrect. This is advantageous for an adversary if the cipher is lightweight and parallelizable. To resist such attacks, we use the concept of hash based halting condition.

The purpose of hash based halting condition is to make decryption take longer time to halt if an incorrect key is used. It works on the principle that the exact number of rounds to decrypt a block of message is not shared with the receiver, but can be computed by the receiver using the correct key and one or more hashes. The hashes must be shared by the sender in cleartext along with the ciphertext. The number of rounds (R) to be used to encrypt a given block is generated randomly by the sender from the range \([R_{\text{min}}, R_{\text{max}}]\); and only an expected hash of the state of the cipher after running \(R\) rounds are shared. The expected hash acts as a stop condition for decrypting a block of message; and the receiver has to execute the decryption algorithm till the computed hash equals the expected hash. For an adversary using brute-force or dictionary based attack, since the key is incorrect, during the decryption process the hash is expected to take longer time to match (with high probability). This property makes offline brute-force and dictionary based attacks less efficient. The hash based halting condition is only applicable to ciphers having a symmetric structure (e.g. use of feistel network).

Remark 1 For better security, \(R\) must be generated using a good uniform random number generator like hardware random number generator or cryptographically secure pseudo-random number generator (e.g. arc4random \[34\]).

Remark 2 The proposed approach makes the assumption that the hash function is secure enough, that from the hash it is computationally infeasible to compute the number of rounds, key, or any other secret information.

B. Cipher parameter

The Freestyle cipher is formally defined as Freestyle(\(R_{\text{min}}, R_{\text{max}}, H_C, H_I, IC\)); where \(R_{\text{min}}, R_{\text{max}}\) indicate the minimum and maximum number of rounds to be used for encryption/decryption respectively. \(H_C \in \{1, 2, 3\}\), indicates the level of complexity of hash function to be used; where 1 indicates the lowest complexity, the highest performance, and the lowest security; and 3 indicates the highest complexity, the lowest performance, and the highest security. \(H_I\) is also used to determine the number of quarter rounds (QRs) to be used to compute the hash. \(H_I\) indicates the round intervals at which a 16-bit hash of cipher-state must be computed. And \(IC \in [8, 32]\) indicates the number of bits used to generate a random number (pepper) which is chosen between \([0, 2^{IC}]\). The pepper value is used as number of iterations performed to initialize the cipher. The pepper in general is a number which has the same function as salt, but is usually of fewer bits, and is not stored along with the hash or ciphertext (i.e. can be forgotten by the sender after use) \[35, 36\]. At initialization, Freestyle concatenates \(R_{\text{min}}, R_{\text{max}}, H_C,\) and \(H_I\) to generate a unique 64-bit cipher parameter as shown in the figure \[1\].

![Fig. 1. The 64-bit cipher parameter](image)

The cipher parameter is to be XOR-ed with the key \(\text{(equation } 5\text{)}, \) which makes encryption with one cipher parameter incompatible with other cipher parameters by design; thus cryptanalysis data collected for a weaker cipher parameter cannot be used directly for other parameters. For a given cipher parameter, the total number of ways a block of message can be encrypted using random number of rounds (in the range \([R_{\text{min}}, R_{\text{max}}]\)) which is denoted by \(N_r\), given as:

\[
N_r = \frac{R_{\text{max}} - R_{\text{min}} + 1}{H_I} \quad (4)
\]

Remark 3 While choosing a cipher parameter, it must be noted that the performance of Freestyle is \(\propto \frac{H_I}{R_{\text{max}} - R_{\text{min}}}\). The value of \(R_{\text{min}}\) must be chosen carefully based on the required security level, and is recommended that \(R_{\text{min}}\) be at least 8 as there are no known attacks for ChaCha8. For security-critical applications though, \(R_{\text{min}} \geq 12\) is preferred. To have better randomization, it is recommend that \(N_r \geq 4\); also, as there are only \(2^{10}\) unique possible hashes represented by a 16-bit unsigned integer; \(R_{\text{min}}, R_{\text{max}},\) and \(H_I\) must be chosen such that the following relationship holds (from equation \[4\]):

\[
3 \leq \frac{R_{\text{max}} - R_{\text{min}}}{H_I} \leq 65535 \quad (5)
\]

Also, for better security, the recommended values for \(H_C\) is 3 or 2, and for \(H_I\) it is 1 or 2. \(IC\) must be chosen based on performance and the security level required, and \(IC \geq 20\) is recommended for security-critical applications.

C. The initial cipher state

The initial cipher state of Freestyle, denoted by \(S^{(0)}\) \(\text{(equation } 6\text{)}\) is a \(4 \times 4\) matrix of 32-bit words consisting of 128-bit constant, 256-bit key, 32-bit counter, and 96-bit nonce. Unlike ChaCha, the counter size has been reduced to 32-bit as in practice most of the protocols such as the SSH transport protocol \[37\] recommend re-keying after 1GB of data sent/received.

The initial cipher state acts the input for generating a keystream for a block of message. The cipher state of Freestyle is similar to the IETF’s version of ChaCha, except that the constant, key, and counter is modified as shown in equation \(6\). The initial-state has been modified in such a way that: either a publicly known value is XOR-ed with a secret element of the matrix, or a secret value is XOR-ed with a publicly known element of the matrix.
Here, we introduce the non-deterministic CTR mode of operation where, the counter is XOR-ed with a random value that is independent of the key or nonce (unlike randomized-CTR mode where the random number is derived from key and/or nonce). Hence, the property of CTR mode of operation: that the difference between the counters of \((n+1)^{th}\) block and \(n^{th}\) block is equal to 1 may no longer hold. The random number to be XOR-ed with counter in Freestyle is denoted by random_word[3], and its value is initialized during cipher initialization (section III-E and figure 4). The Freestyle cipher starts with the plain CTR mode of operation and shifts to non-deterministic CTR mode after 28 blocks (i.e. after random number initialization), thus making cryptanalysis difficult.

In equation 5 the random_words indicate the 128-bit random number generated by the sender, which can be computed by the receiver using the correct key. The random_words are initially set to 0 by both sender and receiver and must be computed while initializing the cipher (section III-E). Using the initial cipher state, Freestyle uses ChaCha’s approach to generate the final state (equations 1, 2, and 3); however unlike ChaCha, Freestyle supports both even and odd number of rounds.

D. Hash function

Freestyle’s hash function is used to generate the hash based halting condition described in section III-A. The hash function (figure 3) generates a 16-bit hash using: (i) the current round number \((r)\), (ii) the first \(128 \times (H_C + 1)\) bits of current cipher state \(S(r^\prime)\), (iii) the 128-bit random_words, and (iv) the previous hash (i.e. \(hash(r-1)\)).

To resist timing-based or side-channel attacks, the hash function uses Add-Rotate-XOR (ARX) operations, the same set of operations used by Freestyle quarter-round (QR). Also, unlike a typical cryptographic hash function, Freestyle does not require high collision-resistant hash function. The probability of \(2^{-16}\) for collision is enough for its purpose.

E. Random number initialization

As mentioned earlier in section III-A, Freestyle uses random number of rounds to encrypt a message (equation 4). To randomize ciphertext even further, Freestyle requires the sender to generate a 128-bit random number denoted by random_words; that will act as one of the inputs for encryption and decryption. Freestyle enables a sender to securely send random_words to the receiver even though the key and nonce may be reused.

After the cipher_parameter is computed (section III-B), the following temporary configuration is set irrespective of the cipher_parameter:

\[
R_{min} = 12, \quad R_{max} = 36, \quad H_C = 3, \quad H_I = 1
\]

This is done to ensure there is enough entropy even if weaker values of \(R_{min}\) and \(R_{max}\) are provided by the user; and also in cases where the parameters can be downgraded in Man in the middle (MITM) attacks such as Logjam [15].

The sender then sets random_words to 0 and generates a random pepper \((p)\) in the range \([0, 2^{16}]\), which is added to the initial cipher-state. The sender then generates 28 random numbers \((R_0 \text{ to } R_{27})\) in the range \([12, 36]\) using a uniform distribution. Each of the 28 random numbers is then used as number of rounds (equations 12 and 3) in Freestyle cipher to generate 28 hashes after executing \(R_i\) rounds, where \(i \in [0, 27]\) (figure 3). It must be noted that for each of the 28 round numbers, no encryption is performed, only expected hashes are generated. The sender also ensures that hash collisions are handled correctly, which is a crucial step for correct decryption by the receiver. The sender then sends the 28 hashes to the receiver, and computes random_words from \(R_i\) values as shown in figure 4.

On the other hand, the receiver first sets the random_words to 0; and increments \(S(0)[3]\) (i.e. the constant[3]) and for each increment, computes 28 hashes, until the computed hashes equals with the received 28 hashes. Receiver then computes the \(R_0\) to \(R_{27}\) from: \(key, nonce,\) and 28 hashes. Using which, random_words are computed as shown in figure 4.

Finally, both sender and receiver will: reset the counter to 0, set \(R_{min}, R_{max}, H_C,\) and \(H_I\) to their original values, and the new initial cipher state is computed using equation 6. From now on, the new initial cipher state will be used for encryption/decryption (section III-F). The steps to initialize the Freestyle cipher are described in Algorithm 1 and 2.

Remark 4 The rationale behind using 28 random number of rounds to generate a 128-bit random_words is: as the total possible random numbers that a sender can choose between \([12, 36]\) using \(H_I = 1\) is 25 (equation 4). Thus, if the sender has to generate \(n\) random numbers, and as the random_words is a 128-bit value, \(25^n > 2^{128}\) to be a good random number generator. Thus, \(n\) must be at least 28. The random_words provide the possibility of generating \(2^{128}\) different ciphers for a given key, nonce, and message.

Remark 5 The proposed approach is different from generating a 128-bit random number \((R)\) and sending it in encrypted form. For example:

\[
encrypt(R, key) || encrypt(message, key, R)
\]

In the latter case, for stream-ciphers, if the key and nonce are reused, there is a possibility of cryptanalysis by XOR-ing ciphertexts.

F. Encryption and decryption

After the computation of random_words and the new initial cipher state \(S(0)\); to encrypt a block of message, the sender generates a random number \((R)\) in the range \([R_{min}, R_{max}]\), using which a key-stream and a hash are generated after \(R\) rounds of Freestyle. The plaintext is XOR-ed with the key-stream to generate the ciphertext. The ciphertext along with the expected hash is sent to the receiver.

On the other hand, to decrypt a block of message, the receiver computes the \(S(r)\) using \(n\) number of \(H_I\) rounds of Freestyle until \(R_{max}\) rounds or until the computed hash at the end of each \(H_I\) rounds equals with the received hash. After which, a key-stream is generated which is then XOR-ed with the ciphertext to generate the plaintext. The steps to
encrypt/decrypt a block (512 bits) of message is described in Algorithm 3 and 4, and are to be performed for each block of message to be exchanged.

Remark 6 If both sender and receiver have used the same cipher_parameter, random_words, key, and nonce, then the sender and receiver would have taken same number of steps and operations (i.e. R rounds) to generate the key-stream for a given block of message.

Remark 7 During initialization, Freestyle’s hash function uses 512 bits of $S^{(R)}$ and 16 bit value of current round number r as inputs to generate a 16-bit hash. Whereas during encryption/decryption the hash function uses at least 256-bits of $S^{(R)}$ and 128-bit random_words. It is computationally infeasible to compute the key or key-stream using brute-force approach, as it would require at least 2^{320} operations (i.e. 256 bits of $S^{(R)}$ and at least 64 bits of Add-Rotate-XOR result of r, $hash^{(r-HI)}$, and random_words) to generate all possible cipher states (or partial cipher-states in case of encryption/decryption) that may collide with a given hash (figure 3). Also, assuming the 16-bit hashes are equally spread over 2^{16} buckets, there are likely to be 2^{204} collisions.

IV. Results and Discussions

A. Number of possible ciphertexts

For a given message of length $|message|$ bits, the $message$ is divided into $N_b = \lceil \frac{|message|}{512} \rceil$ blocks. Since, each block can be encrypted with a random number (R) of rounds in the range $[R_{\text{min}}, R_{\text{max}}]$. And since all the blocks of the $message$ use the 128-bit random_words as input, the total number of possible ciphertexts are:

$$N_c = 2^{128} \times (N_r)^{N_b} \quad (9)$$

From equation 9, as the number of blocks in a message increases, the number of possible ciphertext increases exponentially.

B. Resisting cryptanalysis

1) **Known-plaintext attacks (KPA), Chosen-plaintext attacks (CPA), and differential cryptanalysis:** For a known or chosen plaintext, due to the random behavior of Freestyle, even if the nonce is controlled by the adversary, there are N_c possible ciphertexts. Hence, the effort required in cryptanalysis using known plaintext, chosen plaintext, differential analysis increases N_c times.

2) **Chosen-ciphertext attacks (CCA):** In chosen-ciphertext attacks we consider two cases based on the adversary’s ability to control the nonce.

 a) **If nonce cannot be controlled by the adversary:**

 To generate a ciphertext, an adversary while initializing the cipher (section III-E) has to provide 28 valid hashes, and at least one valid hash for sending block(s) of ciphertext. As a random round is chosen between [12,36] to initialize the random_words (equation 4), there are only 25 valid values for hash. While performing decryption, the total possible hashes that can be accepted by the receiver for a block of ciphertext is $N_r = \left(\frac{R_{\text{max}} - R_{\text{min}}}{I} + 1 \right)$. And as there are 2^{16} possible values for hash, to send a valid ciphertext, the...
Algorithm 1 Freestyle initialization for the sender

1: procedure FREESTYLE_INIT_SENDER
 Inputs: $S^{(0)}_n, R_{min}, R_{max}, H_I, H_C$

2: Save the values of $R_{min}, R_{max}, H_C,$ and H_I
3: Set $R_{min} \leftarrow 12, R_{max} \leftarrow 36, H_C \leftarrow 3, H_I \leftarrow 1$
4: Set $random_word[i] \leftarrow 0, \forall i \in [0, 3]$
5: $pepper \leftarrow random(0, 2^C - 1)$
6: $S^{(0)}[3] \leftarrow S^{(0)}[3] \oplus pepper$

▷ Generate 28 hashes using 28 random number of rounds
7: for $i \leftarrow 0$ to 27 do
8: $\{R_i, hash[i]\} \leftarrow freestyle_encrypt_block (S^{(0)}_n,$
9: null, $random_word,$
10: $R_{min}, R_{max}, H_I, H_C,$
11: $i \quad \triangleright$ the counter
12: end for

▷ Check if the receiver will find a hash collision between 0 and $(pepper - 1).$ If yes, update $R_i, \forall i \in [0, 27]$
13: $S^{(0)}[3] \leftarrow S^{(0)}[3] \oplus pepper \quad \triangleright$ Restore constant
14: for $p \leftarrow 0$ to $(pepper - 1)$ do
15: for $i \leftarrow 0$ to 27 do
16: $C_{R_i} \leftarrow freestyle_decrypt_block (S^{(0)}_n,$
17: null, $hash[i], \quad \triangleright$ expected hash $random_word,$
18: $R_{min}, R_{max}, H_I, H_C,$
19: $i \quad \triangleright$ the counter
20: end for
21: end for
22: end for
23: if $C_{R_i} = 0$ then
24: goto step 20 \triangleright Increment pepper and retry
25: end if
26: end procedure

\[r \quad hash^{(r-H_I)} \]
\[\begin{array}{c}
\text{random_word[0]} \\
\text{random_word[1]} \\
\text{random_word[2]} \\
\text{random_word[3]}
\end{array} \]
\[\begin{array}{c}
\text{S'}[0] \\
\text{S'}[1] \\
\text{S'}[2] \\
\text{S'}[3]
\end{array} \]
\[\begin{array}{c}
\text{16 bits} \\
\text{16 bits}
\end{array} \]
\[\text{hash}^{(r)} \]

Fig. 3. The Freestyle hash function - $h()$, for the round r (the size of variables are in bits). Note that the value of $hash^{(R_{min} - H_I)}$ is always 0.

adversary has to send $(28 + N_b)$ valid hashes. By brute-force approach, the probability of such an event occurring is:

\[
\left(\frac{25}{2^{16}} \right)^{28} \times \left(\frac{N_b}{2^{16}} \right) < \frac{1}{2^{317}}
\]

Assuming a constant time cryptographic implementation to check the validity of $(28 + N_b)$ hashes, it is infeasible to generate a ciphertext that can be accepted by a receiver. This
makes chosen-ciphertext attacks difficult in practice if nonce cannot be controlled by the adversary.

b) If nonce can be controlled by the adversary: In this case, the adversary can launch CPA which can reveal \((28 + N_0)\) valid hashes. Thus, the adversary can replay them to make the receiver accept arbitrary ciphertext of \(N_0\) blocks.

In either of the two cases, after successfully sending a valid ciphertext, the adversary still has to guess the 128-bit random_words. It is computationally infeasible to know which combination of key and random_words the 28 hashes map to.

Remark 8 It must be noted that Freestyle’s hash function does not use message as an input. Hence, cannot prevent ciphertext tampering. In practice, Freestyle like ChaCha must be used with a message authentication code (MAC) such as Poly1305 [38].

3) XOR of ciphertexts when key and nonce are reused: Let us consider two messages \(M_1\) and \(M_2\) which when encrypted, produce ciphertexts \(C_1\) and \(C_2\). In the event of key and nonce being reused, in a deterministic stream cipher, \(C_1 \oplus C_2 = M_1 \oplus M_2\). Whereas in Freestyle, for \(|M_1|\) and \(|M_2|\) \(\geq \log_2(N_c)\):

\[
Pr(C_1 \oplus C_2 = M_1 \oplus M_2) = \frac{1}{N_c}
\]

The equation 12 indicates that Freestyle is resistant to key re-installation attacks like KRACK [13]. Also, in existing approaches of ciphertext randomization, in case of key and nonce being reused, the random bytes to be shared with receiver are prone to XOR attacks. However, this is not possible with Freestyle, as only hashes are sent to the receiver. And the random bytes are never sent to the receiver neither in plain or encrypted form.

C. Resisting brute-force and dictionary attacks

Freestyle cipher can resist brute-force and dictionary attacks in three ways: (i) By keeping the cipher_parameter secret, (ii) Restricting pre-computation of stream, (iii) Wasting adversary’s time and computational power.

1) By keeping cipher_parameter a secret: In Freestyle cipher, the secrecy of the plaintext depends only on the secrecy of the key; and the cipher_parameter in general need not be kept secret. The main purpose of cipher_parameter (figure

Algorithm 2 Freestyle initialization for the receiver

1: **procedure** FREESTYLE_INIT_RECEIVER
 Inputs: \(S^{(0)}, cipher_parameter, hash\)

2: Save the values of \(R_{min}, R_{max}, H_C,\) and \(H_I\)

3: Set \(R_{min} \leftarrow 12, R_{max} \leftarrow 36, H_C \leftarrow 3, H_I \leftarrow 1\)

4: Set random_word\([i]\) \(\leftarrow 0, \forall i \in [0, 3]\)

5: **for** \(pepper \leftarrow 0\) to \((2^{12} - 1)\) **do**

6: **for** \(i \leftarrow 0\) to \(27\) **do**

7: \(C_{R_i} \leftarrow freestyle_decrypt_block\((\)

 \(S^{(0)},\)

 \(null,\)

 \(hash[i],\)

 \(\triangleright \) expected hash

 \(random_word,\)

 \(R_{min},\)

 \(R_{max},\)

 \(H_I,\)

 \(H_C,\)

 \(i\)

 \(\triangleright \) the counter

 \()\)

8: **if** \(C_{R_i} = 0\) **then**

9: **goto** step 13 \(\triangleright \) Increment pepper and retry

10: **end if**

11: **end for**

12: **break \triangleright \text{Found all 28 valid round numbers (R_i)}\)

13: \(S^{(0)}[3] \leftarrow S^{(0)}[3] \oplus 1\) \(\triangleright \text{Retry}\)

14: **end for**

15: Compute random_words (as given in figure 4)

16: Restore the original values of \(R_{min}, R_{max}, H_C, H_I\)

17: \(S^{(0)}[12] \leftarrow 0\) \(\triangleright \text{Reset counter}\)

18: **end procedure**
is to discourage reuse of cryptanalysis data collected from weaker cipher parameters. However, if kept secret, it can resist brute-force attacks. Assuming the adversary guesses that R_{min} and R_{max} values are in the range $[a, b]$, where a and b are divisible by H_I and $a \leq b$. Then, the total possible values of $(R_{\text{min}}, R_{\text{max}})$ adversary has to try is:

$$
\left(\frac{b-a}{H_I} + 1\right) + \left(\frac{b-a}{H_I} - 1\right) + \ldots + 1
$$

(13)

or

$$
\left(\frac{b-a}{H_I} + 1\right) \left(\frac{b-a}{H_I} + 2\right)
$$

(14)

As $H_C \in \{1, 2, 3\}$ the number of possible values of $(R_{\text{min}}, R_{\text{max}}, H_C)$ the adversary has to try is:

$$
\frac{3}{2} \times \left(\frac{b-a}{H_I} + 1\right) \left(\frac{b-a}{H_I} + 2\right)
$$

(15)

Algorithm 3 Encryption of a block of message

1: procedure FREESTYLE_ENCRYPT_BLOCK

2: Inputs: $S(0)$, plaintext, random_word, $R_{\text{min}}, R_{\text{max}}, H_I, H_C$, counter

3: $hash \leftarrow 0$

4: $collided[h] \leftarrow \text{false}, \forall h \in [0, 2^{16})$

5: $S(0)[12] \leftarrow \text{counter} \oplus \text{random_word}[3]$

6: $R \leftarrow \text{random}(R_{\text{min}}, R_{\text{max}})$

7: for $r \leftarrow 1$ to R do

8: if $r \geq R_{\text{min}}$ and $r|H_I$ then

9: $hash \leftarrow h(S(r), r, \text{random_words}, hash)$

10: while $collided[hash] = \text{true}$ do

11: $hash \leftarrow (hash + 1) \mod (2^{16})$

12: end while

13: $collided[hash] = \text{true}$

14: end if

15: end for

16: if plaintext $= \text{null}$ then \textbf{▷} While initialization

17: return $\{R, hash\}$

18: else

19: keystream $\leftarrow \text{little_endian}(S^{(R)} \oplus S^{(0)})$

20: ciphertext $\leftarrow \text{plaintext} \oplus \text{keystream}$

21: return $\{R, hash, ciphertext\}$

22: end if

23: end procedure

Algorithm 4 Decryption of a block of message

1: procedure FREESTYLE_DECRYPT_BLOCK

2: Inputs: $S(0)$, plaintext, expected_hash, random_word, $R_{\text{min}}, R_{\text{max}}, H_I, H_C$, counter

3: $R \leftarrow 0$

4: $hash \leftarrow 0$

5: $collided[h] \leftarrow \text{false}, \forall h \in [0, 2^{16})$

6: $S(0)[12] \leftarrow \text{counter} \oplus \text{random_word}[3]$

7: for $r \leftarrow 1$ to R_{max} do

8: if $r \geq R_{\text{min}}$ and $r|H_I$ then

9: $hash \leftarrow h(S^{(r)}, r, \text{random_words}, hash)$

10: while $collided[hash] = \text{true}$ do

11: $hash \leftarrow (hash + 1) \mod (2^{16})$

12: end while

13: if $hash = \text{expected_hash}$ then

14: $R \leftarrow r$

15: break

16: end if

17: $collided[hash] = \text{true}$

18: end if

19: end for

20: if plaintext $= \text{null}$ then \textbf{▷} While initialization

21: return R

22: else

23: keystream $\leftarrow \text{little_endian}(S^{(R)} \oplus S^{(0)})$

24: plaintext $\leftarrow \text{ciphertext} \oplus \text{keystream}$

25: return $\{R, plaintext\}$

26: end if

27: end procedure

If the adversary’s guesses for R_{min}, R_{max} is represented as R^*_{min} and R^*_{max}, then:

$$
R^*_{\text{min}} = \{a, a+1, \ldots, b\}
$$

(16)

$$
R^*_{\text{max}} = \{a, a+1, \ldots, b\}
$$

(17)

Such that the guessed $R_{\text{min}} \leq R_{\text{max}}$, and the value of $H_I \in c_f(R_{\text{min}}, R_{\text{max}})$, where $c_f(R_{\text{min}}, R_{\text{max}})$ is a set containing common factors of R_{min} and R_{max}. Also, as $I_C \in [12, 36]$ there are 25 possible values of I_C. Then, the total possible values of $(R_{\text{min}}, R_{\text{max}}, H_C, H_I, I_C)$ or cipher parameters are:
\[
\sum_{n \in R_{\min}} \sum_{m \in R_{\max}} \sum_{h \in \mathcal{H}(m,n)} \frac{75}{2} \left(\frac{m-n}{h} + 1 \right) \left(\frac{m-n}{h} + 2 \right)
\]

(18)

For example, if an adversary guesses \(a = 8\) and \(b = 32\), then using the equation (18) the effort required for the brute-force attack increases by 42525 (\(\approx 2^{15}\)) times. Thus, for an effective attack, the adversary must to wait for the data. For an adversary, pre-computation of keys-stream with various keys is ideal to perform brute-force and dictionary attacks.

In Freestyle, since the key-stream depends on the \(\text{random}_{\text{words}}\) and \(\text{hash}\), the exact key-stream cannot be pre-computed unless the sender sends expected \(\text{hashes}\). This however, also restricts pre-computation of key-stream for a genuine receiver.

2) Restricting pre-computation of key-stream: In ChaCha, the key-stream can be pre-computed for various keys if nonce is known. Pre-computation of stream is advantageous for a genuine receiver, as there is no need to wait for the data. However, for an adversary, pre-computation of streams with various keys is useful in scenarios where the adversary has higher computational power (e.g., a high-end laptop) than the attacked system (e.g., a low powered IoT device). Such ciphers forces the adversary to use a machine that is at least KGP times faster than the attacked system, to launch an effective attack.

Definition: Key-guessing penalty (KGP) - The ratio of expected time taken for attempting to decrypt a message using an incorrect key and the expected time taken to decrypt a message using a correct key (equation 19).

\[
\frac{T(\text{attempt to decrypt a message using a incorrect key})}{T(\text{decrypt a message using the correct key})}
\]

(19)

KGP is the measure of a cipher’s resistance to brute-force and dictionary attacks. Based on KGP, a cipher can be classified in to two categories (i) Ciphers with KGP \(\leq 1\), which are not resistant to brute-force and dictionary attacks; and (ii) KGP > 1, ciphers that are brute-force and dictionary attack resistant. Ciphers with KGP > 1 are useful in scenarios where an adversary has higher computational power (e.g., a high end laptop) than the attacked system (e.g., a low powered IoT device). Such ciphers forces the adversary to use a machine that is at least KGP times faster than the attacked system, to launch an effective attack.

Remark 9 While computing KGP, the probability that an adversary can detect if the guessed key is incorrect must be taken into account. For ciphers with KGP > 1, for a given length of message, the amount of time required by an adversary to detect if the attempted key is incorrect must be greater than the time taken to attempt decryption using the incorrect key.

Remark 10 KGP > 1 may also be achieved by using delays and CAPTCHAs for each incorrect key attempt. However, this this not due to the property of the cipher itself. Also, such techniques are not useful in resisting offline brute-force and dictionary attacks.

If the sender uses uniform distribution to select the \(\text{pepper}\) value, the \(E_{\text{pepper}}\) will be \(2^{14c-1}\); however, for an adversary, since the hashes are unlikely to match, would require \(2^{14c}\) attempts. Hence, the maximum KGP one can expect using uniform distribution is \(\approx 2\). To improve KGP, the sender must use a right-skewed distribution which is kept secret and is not needed to be shared with the receiver. A right-skewed distribution is the one which tends to use smaller values for \(\text{pepper}\).

Remark 11 Irrespective of the distribution used to generate \(\text{pepper}\) and the number of rounds for encryption/decryption, to generate \(\text{random}_{\text{words}}\) a good (pseudo-)random number generator with uniform distribution must be used.

As mentioned earlier in section III-E, during initialization a temporary configuration of \(R_{\min} = 12, R_{\max} = 36, H_1 = 1, H_C = 3\) is set. When an adversary uses an incorrect key, the probability of having a collision for a 16-bit hash changes in each trial, and not all hashes have equal probability of occurring. Also, it must be noted that hashes are picked without replacement i.e., if a collision occurs, the hash is incremented until there is no collision. Then, in the worst-case scenario, the maximum difference between the probability of getting two hashes which may occur at the \(24^{th}\) trial is:

\[
\left(\frac{25}{2^{16} - 24} \right) - \left(\frac{1}{2^{16} - 24} \right) = 0.0003
\]

which is negligible value for all practical purposes. Hence, for simplicity, we present approximate results assuming that all the hashes at a given trial are equally likely. Then, the probability of colliding a 16-bit hash at the \(n^{th}\) trial when an incorrect key or \(\text{pepper}\) is used (denoted by \(Pr_n(X = 1)\)) is given as:

\[
\begin{cases}
\frac{1}{2^{16}}, & \text{if } n = 1 \\
\left(\frac{1}{2^{16} - n + 1} \right) \times \prod_{i=0}^{n-1} \left(\frac{2^{16} - i - 1}{2^{16} - i} \right), & \text{Otherwise}
\end{cases}
\]

(21)

Then, the expected number of rounds a user with an incorrect key or \(\text{pepper}\) will execute is denoted by \(E_{R_u}\) can be computed as given in equation (22) i.e., \(E_{R_u} \approx 36.0095\).

During the cipher initialization, for a correct key and \(\text{pepper}\), the expected number of rounds a user will execute is 24 (i.e., average of 12 and 36). After initialization, \(R_{\min}, R_{\max}, \text{ and } H_C\) are set to their original values, and while decryption, if the expected number of rounds a genuine user executes is denoted by \(E_R\). To compute KGP using equation 19 the adversary has to execute \(2^{14c} \times E_{R_u}\) rounds during initialization, and \(E_R\) rounds to decrypt a single block of message. Where as a genuine user has to run \(E_{\text{pepper}} \times E_{R_u}\) rounds during initialization, and \(28 \times 24\) rounds when using the correct \(\text{pepper}\), and \(N_b \times E_R\) rounds to decrypt a message of \(N_b\) blocks. Hence KGP is computed as:
\[E_{R_w} \approx \sum_{h=1}^{28} \left(\sum_{n=1}^{N_r} Pr_n(X = 1) \right)^h \cdot \left[\left(\sum_{n=1}^{N_r} (R_{\min} + nH_I) Pr_n(X = 1) \right) + R_{\max} \left(1 - \sum_{n=1}^{N_r} Pr_n(X = 1) \right) \right] \approx 36.0095 \]

(22)

\[\text{KGP} = \frac{2^{lC} \times E_{R_w} + E_R \times \left(\sum_{n=1}^{N_r} Pr_n(X = 1) \right)^{28}}{E_{\text{pepper}} \times E_{R_w} + 28 \times 24 + N_b \times E_R} \]

(23)

The probability of getting all the 28 hashes correct and attempting to decrypt the first block of message using an incorrect key is:

\[\left(\sum_{n=1}^{N_r} Pr_n(X = 1) \right)^{28} \approx 10^{-96} \]

which is negligible for all practical purposes. Hence:

\[\text{KGP} \approx \frac{2^{lC} \times E_{R_w}}{E_{\text{pepper}} \times E_{R_w} + 28 \times 24 + N_b \times E_R} \]

(25)

i.e. for KGP > 1:

\[E_{\text{pepper}} < 2^{lC} - \left(\frac{672 + N_b \times E_R}{36.0095} \right) \]

(26)

The value of \(E_{\text{pepper}}, E_R, \) and \(lC \) can be chosen considering the performance, security level, and the required KGP. The figure 5 shows the result of KGP vs. \(E_{\text{pepper}} \) for \(R_{\min} = 8, R_{\max} = 32, H_C = 3, H_I = 1, E_R = 20, I_C \in \{20, 24, 28, 32\}, \) and various message sizes 64 bytes to 4GB.

D. Better security for 128-bit keys

Though, not recommended, ChaCha supports 128-bit keys by concatenating the key with itself to form a 256-bit key. In Freestyle, \(\text{cipher_parameter} \) and \(\text{random_words} \) are used to modify the initial state of cipher to provide an additional 128-bit random secret (in the form of \(\text{random_words} \)). The \(\text{random_words} \) are statistically independent of the key and \(\text{nonce} \) (equation 4), hence, for applications where 128-bit keys have to be used, Freestyle offers better security than ChaCha.

E. Overheads

1) Computational overhead: Freestyle has two main overheads when compared to ChaCha: (i) Overhead in generating a random number for each block of message; (ii) Computation of a hash after every \(H_I \) rounds, which uses \(H_C + 2 \) quarter rounds of Freestyle. Hence, the computational overhead for encryption is:

\[= T(\text{generate } N_b \text{ random numbers}) + \sum_{i=1}^{N_b} \left(R_i - R_{\min} \right) (H_C + 2) \times T(1 \text{ QR of Freestyle}) \]

(27)

The worst case performance overhead is when \(R_i = R_{\max} \forall i \). The figure 4 shows the comparison of performance between optimized versions of and ChaCha20\(^\text{[3]}\) and Freestyle\(^\text{[4]}\) with various configurations without accounting for the time taken for initialization. The results were obtained on Intel Core i5-6300HQ processor with arc4random\(^\text{[34]}\) as the random number generator on OpenBSD. For the performance tests, \(R_{\min} = 8, R_{\max} = 32 \) has been used to make the cipher performance comparable to ChaCha20, as an uniformly distributed random number generator is used. The results indicate that Freestyle could be 1.6 to 3.2 times slower than ChaCha20 (figure 6).

2) Bandwidth overhead: Freestyle algorithm requires a sender to send the final round 16-bit hash; i.e. requiring to send extra 8 bits for each block of message to be sent. Also, for initialization of \(\text{random_word} \), it requires extra 28 \(\times \) 16 bits. Hence, the total bandwidth overhead in bits is \(16 N_b + 28 \times 16 \), i.e.

\[\text{Bandwidth overhead (in %)} = \frac{16 N_b + 512}{|\text{message}|} \times 100 \]

(28)

For a message of length in multiples of 512 bits, the bandwidth overhead is \(\approx 3.125\% \).

F. Side-channel attacks

Freestyle uses Add-Rotate-XOR instructions to resist timing and side channel attacks. However, if a device leaks information related to randomness, Freestyle is at least as secure as ChaCha with \(R_{\min} \) rounds. This is because, from hash at least \(2^{256} \) operations are required to generate possible cipher states \((S^R)\), and since hash is a 16 bit value, there are likely to be \(2^{248} \) cipher states that collide a given hash. For devices that have weak or insecure (pseudo-)random number generator, we recommend a conservative configuration of \(H_C = 3 \); in which case at least \(2^{512} \) operations are required to generate the cipher states colliding a given hash.

Another potential attack in Freestyle could be to gather intermediate hashes. While performing encryption, Freestyle requires maintaining the hash collision information for various hashes. One of the simplest implementation is to use a look-up table implementations which are prone to timing attacks. Although, by leaking intermediate hashes is it computationally infeasible to compute the key or key-stream. However, with the leaked hash, the adversary can detect if the attempted key is correct or not after \(R_{\min} \) rounds; making KGP < 1. Also, some cryptanalysis advantage may be gained by observing consecutive hashes. Although, this would also require knowledge of \(\text{cipher_parameter} \) and 128-bit \(\text{random_words} \).

\[^{[1]}\text{http://cvsweb.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/chacha.c?rev=1.}\]
\[^{[2]}\text{https://github.com/arun-babu/freestyle}\]
Such attacks can be resisted by obscuring look-up table indices by XOR-ing it with a 16-bit random mask. The random mask is to be generated for each block of message to be encrypted/decrypted and provides 2^{16} different timing variations. Though, such techniques may resist timing attacks; but do not guarantee protection against such attacks. Also, computation and memory overheads must be taken into account before considering such implementations.

Fig. 6. Performance comparison of Freestyle with $R_{\min} = 8$, $R_{\max} = 32$ vs ChaCha20 on Intel Core i5-6300HQ processor without accounting for the time taken for cipher initialization

KGP. To prevent such attacks, the pepper value can be shared with the receiver through a secure channel. However, this approach is equivalent to increasing the key size by I_C bits.

V. RELATED WORK

A. Randomized encryption schemes

Use of randomized encryption schemes have been in practice for many years, and a taxonomy of randomized ciphers is presented in [39]. Also, some approaches to randomized encryption for public-key cryptography was proposed in [40]–[42]. Approaches based on chaotic systems for probabilistic encryption were also proposed [43]. However, the main concern with some of the existing approaches are high bandwidth expansion factor and computational overhead [39], [44].

The key difference between existing approaches and the current work is: the random bytes are never sent to the receiver in plain nor in the encrypted form. The random bytes are to be computed by the receiver from the initial 28 hashes. The initial 28 hashes also serve the purpose of preventing an adversary from sending arbitrary ciphertext, thus resisting CCA if the nonce cannot be controlled by the adversary. Also, Freestyle offers the possibility of generating 2^{128} different ciphertexts even if key, nonce, and other cipher parameters are reused. Also unlike some of the existing randomized ciphers, Freestyle has a low bandwidth overhead of $\approx 3.125\%$.

B. Approaches based on difficulty and proof of work

Several algorithms have been proposed in literature to increase the difficulty in key and password guessing using an
C. Freestyle vs ChaCha

When compared to ChaCha, Freestyle offers better security for 128-bit keys (section IV-D). It also provides the possibility of generating \(2^{128}\) different ciphertexts for a given message even if nonce and key is reused (section IV-A). This makes Freestyle resistant to XOR of ciphertext attacks if key and nonce is reused. Randomization also makes Freestyle resistant to CPA, CPA, and CCA (section IV-B). Freestyle offers the possibility of KGP > 1, which makes it resistant to brute-force and dictionary based attacks (section IV-C).

On the other hand, Freestyle is 1.6 to 3.2 times slower than ChaCha (section IV-E), and also has a higher cost of initialization (section III-E). In terms of bandwidth overhead, Freestyle generates \(\approx 3.125\%\) larger ciphertext. And, in implementation overhead, Freestyle’s encryption and decryption logic differ slightly. ChaCha is a simple constant time algorithm, whereas Freestyle is a randomized algorithm, and assumes that the sender has a good source of random numbers.

VI. CONCLUSION

In this paper we have introduced Freestyle, a novel randomized cipher capable of generating \(2^{128}\) different ciphertexts for a given key, nonce, and message; making known-plaintext (KPA), chosen-plaintext(CPA) and chosen-ciphertext(CCA) attacks difficult in practice. We have introduced the concepts of bounded hash based halting condition and key-guessing penalty (KGP), which are helpful in development and analysis of ciphers resistant to key-guessing attacks. Freestyle has demonstrated KGP > 1 which makes it run faster on a low-powered machine having the correct key, and is KGP times slower (with high probability) on an adversary’s machine. Freestyle is ideal for applications where the ciphertext is assumed to be in full control of the adversary i.e. where an offline brute-force or dictionary attack can be carried out. Example use-cases include disk encryption, encrypted databases, password managers, sensitive data in public facing IoT devices, etc. The paper has introduced a new class of ciphers having KGP > 1. There is further scope for research on other possible and simpler ways to achieve KGP > 1, and study the properties of such ciphers. The possibility of forcing an adversary to solve a NP-hard problem for every decryption attempt with an incorrect key could be an attractive topic of research. The key challenge however is to make the time taken for decryption attempt with an incorrect key, greater than the time taken to detect if the problem is NP-hard.

ACKNOWLEDGMENTS

This work was supported in part by the Bosch Research and Technology Centre - India under the project titled “E-sense - Sensing and Analytics for Energy Aware Smart Campus”, and in part by the Robert Bosch Centre for Cyber-Physical Systems, Indian Institute of Science, Bengaluru. The authors thank Sagar Gubbi, Rajesh Sundaresan, Navin Kashyap, and Sanjit Chatterjee for helpful discussions.

REFERENCES

[1] D. J. Bernstein, “ChaCha, a variant of Salsa20,” in Workshop Record of SASC, vol. 8, pp. 3–5, 2008.
[2] A. Langley, W. Chang, N. Mavrogiannopoulos, J. Strombergson, and S. Josefsson, “Chacha20-poly1305 cipher suites for transport layer security (tls),” tech. rep., 2016.
[3] D. Miller and S. Josefsson, “The chacha20-poly1305@openssl cipher authenticated encryption cipher draft-josefsson-ssh-chacha20-poly1305openssl-00,” Network Working Group Internet-Draft, https://tools.ietf.org/html/draft-josefsson-ssh-chacha20-poly1305openssl-00. Last accessed 1.12.2018.
[4] D. Miller, “chacha20poly1305 protocol,” https://cvsweb.openssl.org/cgi-bin/cvsweb/src/usr/bin/ssh/PROTOCOL_chacha20poly1305? annotate=HEAD, Last accessed 1.12.2018.
[5] eBACS: ECRYPT Benchmarking of Cryptographic Systems.” https://bench.cr.yp.to/results-stream.html
[6] E. Bursztein, “Speeding up and strengthening HTTPS connections for Chrome on Android,” Apr. 2014. Google security blog, https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html.
“Vulnerability Note VU#307015, Infineon RSA library does not properly generate RSA key pairs,” Oct 2017. CVE-2017-15361. https://www.kb.cert.org/vuls/id/307015

S. H. Kim, D. Han, and H. D. Lee, “Predictability of android openssl's pseudo random number generator,” in Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security, pp. 659–668, ACM, 2013.

L. Bello, M. Bertacchini, and B. Hat, “Predictable prg in the vulnerable openssl package: the what and the how,” in the 2nd DEF CON Hacking Conference, 2008.

S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S. Savage, “When private keys are public: Results from the 2008 debian openssl vulnerability,” in Proceedings of the 9th ACM SIGCOMM conference on Internet measurement, pp. 15–27. ACM, 2009.

A. Lenstra, J. P. Hughes, M. Augier, J. W. Bos, T. Kleinjung, and C. Wachtler, “Ron was wrong, whit is right,” tech. rep., IACR, 2012.

N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman, “Mining your ps and qs: Detection of widespread weak keys in network devices,” in USENIX Security Symposium, vol. 8, 2012.

M. Vanhoef and P. Piessens, “Key reinstallation attacks: Forcing nonce reuse in wpa2,” in Proceedings of the 24th ACM Conference on Computer and Communications Security (CCS), ACM, 2017.

B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, A. Pironti, P.-Y. Strub, and J. K. Zinzindohoue, “A messy state of the union: Taming the composite state machines of tls,” in Security and Privacy (SP), 2015 IEEE Symposium on, pp. 535–552. IEEE, 2015.

D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halderman, N. Heninger, D. Springall, E. Thomé, L. Valetta, et al., “Imperfect forward secrecy: How diffie-hellman fails in practice,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 5–17, ACM, 2015.

W. Gu, Y. Huang, R. Qian, Z. Liu, and R. Gu, “Attacking crypto-1 cipher based on parallel computing using gpu,” in International Conference on Applications and Techniques in Cyber Security and Intelligence, pp. 293–303, Springer, 2017.

A. Sebastian, T. Tuma, N. Pappadreou, M. L. Gallo, L. Kull, T. Parnell, and E. Eleftheriou, “Temporal correlation detection using computational phase-change memory,” Nature Communications, 2017.

S. Jain, A. Ranjan, K. Roy, and A. Raghunathan, “Computing in memory with spin-transfer torque magnetic ram,” arXiv preprint arXiv:1703.02725, 2017.

P. Arun Babu is currently a Member of Technical Staff at Robert Bosch Center for Cyber-physical Systems at the Indian Institute of Science, Bengaluru, India. Arun holds a Ph.D in Engineering Sciences from Indira Gandhi Centre for Atomic Research, Kalpakkam, India. His areas of research include cyber-security and software engineering.

Jithin Jose Thomas is currently a Senior systems software engineer at the Trairay Innovation, Bengaluru, India. Jithin holds a B.Tech degree in Electronics and Communications Engineering from National Institute of Technology, Calicut, India. He was with the Department of Electrical Communication Engineering, Indian Institute of Science, Bengaluru at the time of this work. His areas of research include cryptography, wireless networks, and data analytics.