DENSITY OF DIAGONALIZABLE MATRICES IN SETS OF STRUCTURED MATRICES DEFINED FROM INDEFINITE SCALAR PRODUCTS

Abstract
For an (indefinite) scalar product $[x, y]_B = x^H By$ for $B = \pm B^H \in \text{GL}_n(\mathbb{C})$ on $\mathbb{C}^n \times \mathbb{C}^n$ we show that the set of diagonalizable matrices is dense in the set of all B-selfadjoint, B-skewadjoint, B-unitary and B-normal matrices.

1. Introduction
Whenever $B \in \text{GL}_n(\mathbb{C})$ is some arbitrary (nonsingular) matrix, the function $[\cdot, \cdot]_B : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$, $(x, y) \mapsto x^H By$ ($x^H := x^T$) defines a nondegenerate sesquilinear form on $\mathbb{C}^n \times \mathbb{C}^n$. In case B is not necessarily Hermitian positive definite, such forms are also referred to as indefinite scalar products [12, Sec. 2]. In this work, we particularly consider such products for the cases $B = B^H$, $B = -B^H$ (with B^H denoting the conjugate transpose of B) and $B^H B = I_n$ (i.e. B is unitary). Indefinite scalar products with $B = \pm B^H$ are called orthosymmetric while those with $B^H = B^{-1}$ are called unitary [12, Def. 3.1, 4.1].

Several classes of matrices $A \in \text{M}_n(\mathbb{C})$ are naturally related to $[\cdot, \cdot]_B$:

(a) A matrix $J \in \text{M}_n(\mathbb{C})$ is called B-selfadjoint if $[Jx, y]_B = [x, Jy]_B$ holds for all $x, y \in \mathbb{C}^n$. It follows that $x^H J^H By = x^H BJy$ holds for all $x, y \in \mathbb{C}^n$ if J is B-selfadjoint. This means we have $J^H B = BJ$, that is, $J = B^{-1}J^H B$. The set of B-selfadjoint matrices is denoted by $\mathcal{J}(B)$.

(b) A matrix $L \in \mathbf{M}_n(\mathbb{C})$ is called B-skewadjoint if $[Lx, y]_B = [x, -Ly]_B$ holds for all $x, y \in \mathbb{C}^n$. It follows from this equation as in (a) that L is B-skewadjoint if and only if $-L = B^{-1}L^HB$. The set of all B-skewadjoint matrices is denoted by $\mathbb{L}(B)$.

(c) A matrix $G \in \mathbf{M}_n(\mathbb{C})$ is called B-unitary if $[Gx, Gy]_B = [x, y]_B$ holds for all $x, y \in \mathbb{C}^n$. This means that $x^HB^HBy = x^HBy$ has to hold for all $x, y \in \mathbb{C}^n$ and implies that $G^HBG = B$. The set of all B-unitary matrices is denoted by $\mathbb{G}(B)$.

(d) A matrix $N \in \mathbf{M}_n(\mathbb{C})$ is called B-normal if $NB^{-1}N^H = B^{-1}N^HBN$ holds. The set of all B-normal matrices is denoted by $\mathcal{N}(B)$.

A great many of problems in control systems theory, matrix equations or differential equations involve matrices from the classes of matrices defined above (see, e.g., [10, 12] and the references therein). The monograph [4] contains a comprehensive treatment and applications for the Hermitian case $B = B^H$.

Assume $B = I_n$ is the $n \times n$ identity matrix. Then the sets of B-selfadjoint, B-skewadjoint, B-unitary and B-normal matrices $A \in \mathbf{M}_n(\mathbb{C})$ coincide with the sets of Hermitian ($A = A^H$), skew-Hermitian ($A = -A^H$), unitary ($A^HA = I_n$) and normal ($AA^H = A^HA$) matrices. It is a well-known fact that every matrix belonging to any of these four sets of matrices is semisimple, i.e., diagonalizable [6]. In case $B \neq I_n$ the situation is different: for instance, consider the $n \times n$ reverse identity matrix R_n (which is Hermitian but not positive definite) and some basic $n \times n$ Jordan block $J(\lambda)$ for some λ, i.e.

$$J(\lambda) = \begin{bmatrix}
\lambda & 1 & & \\
& \lambda & 1 & \\
& & \ddots & \ddots \\
& & & \lambda & 1 \\
& & & & \lambda \\
\end{bmatrix}, \quad R_n = \begin{bmatrix}1 & \cdots & \\
& \ddots & \ddd \\
& & 1 \\
\end{bmatrix}. \quad (1)$$

If $\lambda \in \mathbb{R}$, then $J(\lambda) \in \mathcal{J}(R_n)$. However, $J(\lambda)$ is the prototype of a matrix which is not diagonalizable (see also [4] Ex. 4.2.1). Similar examples can be found for the other types of matrices and other B. In general, for a (skew)-Hermitian matrix B, a matrix $A \in \mathbf{M}_n(\mathbb{C})$ belonging to $\mathcal{J}(B), \mathbb{L}(B), \mathbb{G}(B)$ or $\mathcal{N}(B)$ need not be semisimple. Thus, given some (skew)-Hermitian $B \in \mathbf{Gl}_n(\mathbb{C})$, the following question arises: “How large is the subset of semisimple matrices in the sets $\mathcal{J}(B), \mathbb{L}(B), \mathbb{G}(B)$ and $\mathcal{N}(B)$?” The answer to this question is simply “every matrix is semisimple” in case $B = I_n$ (and whenever B is Hermitian positive definite), but seems to be unknown for general indefinite or skew-Hermitian B.

\footnote{Notice that the set $\mathcal{N}(B)$ includes the sets $\mathcal{J}(B), \mathbb{L}(B)$ and $\mathbb{G}(B)$.}
In this work we consider the question raised above from a topological point of view. Recall that $M_n(\mathbb{C})$ can be considered as a topological space with basis $B_R(A) = \{ A' \in M_n(\mathbb{C}) : \|A - A'\| < R \}$ for $A \in M_n(\mathbb{C})$ and $R \in \mathbb{R}$, $R > 0$ (see, e.g. [7, Sec. 11.2]). The sets $J(B), L(B), G(B)$ and $N(B)$ can thus be interpreted as topological spaces on their own equipped with the subspace topology [1, Sec. 1.5]. For instance, a subset $S \subset N(B)$ is open (in this subspace topology) if S is the intersection of $N(B)$ with some open subset of $M_n(\mathbb{C})$. If a property does not hold for all elements in a topological space, it is usually reasonable to ask whether it holds for a dense subset. Thus, a second question, in this context naturally related to the first one, is “As not all matrices in $J(B), L(B), G(B)$ or $N(B)$ are semisimple, is the subset of semisimple matrices in these sets at least dense?”

Since the sets $J(B), L(B), G(B)$ and $N(B)$ are defined by matrix equations, they are (topologically) closed subsets of $M_n(\mathbb{C})$ (for instance, $N(B)$ is B-normal if and only if it satisfies the equation $NB^{-1}N^HB = B^{-1}N^HB$). Consequently, although the set of semisimple matrices is dense in $M_n(\mathbb{C})$ [11, Cor. 7.3.3], there is no direct reasoning why this fact should carry over to $J(B), L(B), G(B)$ or $N(B)$. In fact, a closed subset of $M_n(\mathbb{C})$ need not contain any diagonalizable matrix at all (see [7] for an example). This work is devoted to the second question raised above and gives a positive answer. Our main result can be stated as follows:

Main result. Let $B = \pm B^H \in GL_n(\mathbb{C})$. Then the set of diagonalizable matrices is dense in $J(B), L(B), G(B)$ and $N(B)$.

Here we will work with the 2-norm of matrices\footnote{Our results hold in the same way for any submultiplicative and unitarily invariant matrix norm.}, i.e.

$$\|A\|_2 := \max_{\|x\|_2 = 1} \|Ax\|_2.$$

The density result stated above is thus equivalent to the fact that, for any $A \in J(B), L(B), G(B)$ or $N(B)$ and any $\varepsilon > 0$ there exists some diagonalizable A' from the same class of matrices such that $\|A - A'\|_2 < \varepsilon$. Our motivation for the analysis of density stems from the fact that, for certain B such as $B = R_n$ (with R_n as in (1)) or

$$B = J_{2n} = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix} \in M_{2n}(\mathbb{R}),$$

semisimple matrices in $J(B), L(B), G(B)$ or $N(B)$ can all be transformed to a sparse and nicely structured (canonical) form by a B-unitary similarity transformation as shown in [2]. From this point of view our results imply that, even if the transformation established in [2] does not exists for some specific matrix $A \in J(B), L(B), G(B)$ or $N(B)$, it will exist for matrices arbitrarily close to A from the same structure class.
In Section 2 some preliminaries and basic results are given. Section 3 gives the proofs for the main results on the density of semisimple matrices in \(J(B), L(B), G(B) \) and \(N(B) \). We focus on the case \(B = B^H \) in Sections 3.1 to 3.3 and discuss the case \(B = -B^H \) in Section 3.4. Some conclusions are given in Section 4.

2. Preliminaries and Basic Results

The set of all \(j \times k \) matrices over \(\mathbb{F} = \mathbb{R}, \mathbb{C} \) is denoted by \(M_{j \times k}(\mathbb{F}) \). Whenever \(j = k \), we use the short-hand-notation \(M_k(\mathbb{F}) = M_{k \times k}(\mathbb{F}) \). The notation \(\text{GL}_k(\mathbb{F}) \) refers to the general linear group over \(\mathbb{F}^k \) (i.e. the set of \(k \times k \) nonsingular matrices over \(\mathbb{F} \)). The set of all eigenvalues of a matrix \(A \in M_k(\mathbb{C}) \) is called the spectrum of \(A \) and is denoted \(\sigma(A) \). The multiplicity of an eigenvalue \(\lambda \in \mathbb{C} \) as a root of \(\det(A - xI_k) \) is called its algebraic multiplicity and is denoted by \(m(A, \lambda) \). For each \(\lambda \in \sigma(A) \) any vector \(v \in \mathbb{C}^k \) that satisfies \(Av = \lambda v \) is called an eigenvector for \(\lambda \). The set of all those vectors corresponding to \(\lambda \in \sigma(A) \) is called the eigenspace for \(\lambda \). It is a subspace of \(\mathbb{C}^k \) and its dimension is called the geometric multiplicity of \(\lambda \).

The conjugate transpose of a vector/matrix is denoted with the superscript \(^H \) while \(^T \) is used for the transposition without complex conjugation. A matrix \(A \in M_n(\mathbb{C}) \) is called semisimple (or diagonalizable), if there exists some \(S \in \text{GL}_n(\mathbb{C}) \) such that \(S^{-1}AS \) is a diagonal matrix.

Let \(B \in \text{GL}_n(\mathbb{C}) \). For any \(A \in M_n(\mathbb{C}) \) let \(A^* := B^{-1}A^H B \). The matrix \(A^* \) is usually referred to as the adjoint for \(A \), cf. [12, Sec.2]. The sets of all \(B \)-selfadjoint, \(B \)-skewadjoint, \(B \)-unitary and \(B \)-normal matrices as introduced in Section 1 can now be characterized by the equations \(A = A^* \), \(A = -A^* \), \(A^* = A^{-1} \) and \(AA^* = A^*A \), respectively. Notice that the mapping \(^* : A \mapsto A^* \) is \(\mathbb{R} \)-linear, that is, for any \(A, C \in M_n(\mathbb{C}) \) and any \(\alpha, \gamma \in \mathbb{R} \) it holds that

\[
(\alpha A + \gamma C)^* = \alpha A^* + \gamma C^*.
\]

Moreover, \((AC)^* = C^*A^* \) holds, so \(^* \) is antihomomorphic.

Lemma 1. Let \(B \in \text{GL}_n(\mathbb{C}) \). Then the sets \(J(B) \) and \(L(B) \) are \(\mathbb{R} \)-subspaces of \(M_n(\mathbb{C}) \). Moreover, \(G(B) \) is a subgroup of \(\text{GL}_n(\mathbb{C}) \).

Proof. The first statement follows immediately since \(^* : A \mapsto A^* \) is \(\mathbb{R} \)-linear.

Now let \(G \in G(B) \). Then, as \(G^H BG = B \) holds, \(\det(G^H) \det(G) = 1 \) follows, so \(G \) is nonsingular. Moreover, \(G^{-H} BG^{-1} = B \) follows, so \(G^{-1} \in G(B) \). Finally, for \(G, F \in G(B) \), we obtain

\[
(FG)^H B (FG) = G^H (F^H BF) G = G^H BG = B.
\]

Therefore, \(FG \in G(B) \). Since \(I_n \in G(B) \), the proof is complete. \(\square \)
The sets $J(B)$ and $\mathbb{L}(B)$ are often referred to as the Jordan and Lie algebras (cf. [12, Sec. 2]) for $[\cdot, \cdot]_B$ since $J(B)$ is closed under the operation $A \odot C := \frac{1}{2}(AC + CA)$ whereas $\mathbb{L}(B)$ is closed under the Lie bracket $[A, C] := AC - CA$. The following Corollary 1 shows that $J(B)$ and $\mathbb{L}(B)$ can never be \mathbb{C}-subspaces of $\mathbb{M}_n(\mathbb{C})$. In fact, multiplication by i gives a possibility to easily switch between the sets $J(B)$ and $\mathbb{L}(B)$.

Corollary 1. Let $B \in \text{Gl}_n(\mathbb{C})$. If $J \in J(B)$, then $iJ \in \mathbb{L}(B)$. On the other hand, if $L \in \mathbb{L}(B)$, then $iL \in J(B)$.

Proof. Let $J \in J(B)$. Notice that

$$B^{-1}(iJ)^H B = B^{-1}(-iJ^H)B = -i(B^{-1}J^H B) = -iJ$$

for any $J \in J(B)$. Thus $iJ \in \mathbb{L}(B)$. On the other hand, if $L \in \mathbb{L}(B)$, then $B^{-1}(iL)^H B = -iB^{-1}L^H B = iL$, so $iL \in J(B)$. \(\Box\)

The following Lemma 2 can easily be verified by a straightforward calculation (see also [13, Sec. 1]). Therefore, the proof is omitted.

Lemma 2. Let $B \in \text{Gl}_n(\mathbb{C})$ and $A \in \mathbb{M}_n(\mathbb{C})$. Furthermore, let $T \in \text{Gl}_n(\mathbb{C})$ and consider

$$A' := T^{-1}AT \quad \text{and} \quad B' := T^HBT.$$

Then A is B'-selfadjoint/B'-skewadjoint/B'-unitary/B'-normal if and only if A' is B'-selfadjoint/B'-skewadjoint/B'-unitary/B'-normal.

Let $B \in \text{Gl}_n(\mathbb{C})$. Then any $A \in \mathbb{M}_n(\mathbb{C})$ can always be expressed as $A = S + K$ with

$$S = \frac{1}{2}(A + A^*) \in \mathbb{M}_n(\mathbb{C}), \quad K := \frac{1}{2}(A - A^*) \in \mathbb{M}_n(\mathbb{C}). \quad (2)$$

Assuming that $B = \pm B^H$, it is easy to see that $S \in J(B)$ and $K \in \mathbb{L}(B)$. In this case, $A = S + K$ can be interpreted as a B-analogue of the Toeplitz decomposition stated in [8, Thm. 4.1.2]. The next Lemma 3 shows that, in case $B^H B = I_n$ additionally holds, S and K in (2) are the best approximations to A from $J(B)$ and $\mathbb{L}(B)$ with respect to any unitarily invariant matrix norm. The proof of Lemma 3 is similar to [3, Thm. 2] (see also [15, Lem. 8.3]).

Lemma 3. Let $B = \pm B^H \in \text{Gl}_n(\mathbb{C})$ with $B^H B = I_n$ and let $\| \cdot \|$ be any unitarily invariant matrix norm.

(a) Let $A \in \mathbb{M}_n(\mathbb{C})$ and $S := \frac{1}{2}(A + A^*)$. Then $S \in J(B)$ and it holds that $\|A - S\| \leq \|A - C\|$ for any other matrix $C \in J(B)$.

(b) Let $A \in \mathbb{M}_n(\mathbb{C})$ and $K := \frac{1}{2}(A - A^*)$. Then $K \in \mathbb{L}(B)$ and it holds that $\|A - K\| \leq \|A - C\|$ for any other matrix $C \in \mathbb{L}(B)$.

5
Proof. (a) Let $\| \cdot \|$ be some unitarily invariant matrix norm and let $A \in M_n(\mathbb{C})$ be given. It follows from $B = \pm B^H$ that $(A^*)^* = A$. Therefore, we have $S^* = \frac{1}{2}(A + A^*)^* = \frac{1}{2}(A^* + A) = S$, so $S \in \mathcal{J}(B)$.

Now let $C \in \mathcal{J}(B)$ be arbitrary. Then
\[
\| A - S \| = (1/2)\| A - A^* \| = \| (A - C) - (A^* - C) \|
\]
\[
= (1/2)\| (A - C) - (A - C)^* \| \leq (1/2)(\| A - C \| + \| (A - C)^* \|)
\]
\[
= (1/2)(\| A - C \| + \| (A - C)^H \|) = \| A - C \|.
\]

In conclusion we have $\| A - S \| \leq \| A - C \|$. The proof for (b) proceeds along the same lines. \qed

Let
\[
J_k(\lambda) := \begin{bmatrix}
\lambda & 1 \\
\lambda & 1 \\
\vdots & \ddots \\
\lambda & 1 \\
\end{bmatrix} \in M_k(\mathbb{C})
\]
denote a basic Jordan block for λ if $\lambda \in \mathbb{R}$ and define $J_k(\lambda) = J_k(\lambda) \oplus J_k(\bar{\lambda})$ with $2k = k$ in case $\lambda \in \mathbb{C} \setminus \mathbb{R}$. Here and in the following, the notation \oplus is used to denote the direct sum of two matrices, i.e. $X \oplus Y = \text{diag}(X, Y)$. The next two theorems for the case when $B = B^H$ are taken from [4] and will be useful for some proofs in Section 3. For convenience, we omit the subscript k for the Jordan blocks in Theorem 1.

Theorem 1 ([4] Thm. 5.1.1). Let $B = B^H \in \text{Gl}_n(\mathbb{C})$ and $A \in \mathcal{J}(B)$. Then there is some $T \in \text{Gl}_n(\mathbb{C})$ such that $T^{-1}AT = J$ and $T^HBT = \tilde{B}$ where
\[
J = J(\lambda_1) \oplus \cdots \oplus J(\lambda_\alpha) \oplus J(\lambda_{\alpha+1}) \oplus \cdots \oplus J(\lambda_\beta)
\]
is a Jordan normal form for A where $\lambda_1, \ldots, \lambda_\alpha$ are the real eigenvalues of A and $\lambda_{\alpha+1}, \ldots, \lambda_\beta$ are the nonreal eigenvalues of A from the upper half-plane. Moreover,
\[
\tilde{B} := T^HBT = \eta_1 P_1 \oplus \cdots \eta_\alpha P_\alpha \oplus P_{\alpha+1} \oplus \cdots \oplus P_\beta
\]
where, for $k = 1, \ldots, \beta$, $P_k = R_p$ is the $p \times p$ reverse identity matrix (see also [1]) with $p \times p$ being the size of $J(\lambda_k)$ and $\eta = \{\eta_1, \ldots, \eta_\alpha\}$ is an ordered set of signs ± 1.

The transformation defined in Theorem 2 can be interpreted as a B-analogue of the well-known Cayley transform [5].

Theorem 2 ([4] Prop. 4.3.4). Let $B = B^H \in \text{Gl}_n(\mathbb{C})$ and $A \in \mathcal{J}(B)$. Let $w \in \mathbb{C}$ be a nonreal number with $w \notin \sigma(A)$ and let $\alpha \in \mathbb{C}$ with $|\alpha| = 1$. Then
\[
U = \alpha(A - wI_n)(A - wI_n)^{-1} \in \mathcal{G}(B)
\]
and \(\alpha \notin \sigma(U) \). Conversely, if \(U \in \mathbb{G}(B) \), \(|\alpha| = 1 \) and \(\alpha \notin \sigma(U) \), then for any \(w \neq \overline{w} \) we have

\[
A = (wU - \overline{w}\alpha I_n)(U - \alpha I_n)^{-1} \in \mathbb{J}(B)
\]

and \(w \notin \sigma(A) \). The formulas (3) and (4) are inverse to one other.

2.1 Symmetric Polynomials and 1-Regularity

A matrix \(A \in M_n(\mathbb{C}) \) is called 1-regular\(^3\), if the eigenspace for any \(\lambda \in \sigma(A) \) is one-dimensional. In particular, \(A \) is 1-regular if and only if there is only one basic Jordan block for each eigenvalue \(\lambda \) in the Jordan decomposition of \(A \). This implies that a diagonalizable matrix is 1-regular if and only if all its eigenvalues are (pairwise) distinct. Moreover, it follows directly that 1-regularity is preserved under similarity transformations.

The following Theorem\(^3\) characterizes 1-regular matrices and is of central importance in the further discussion.

Theorem 3 ([14 Prop. 1.1.2]). Let \(A \in M_n(\mathbb{C}) \). Then each of the following statements is equivalent to \(A \) being 1-regular.

(a) The centralizer of \(A \) in \(M_n(\mathbb{C}) \) coincides with \(\mathbb{C}[A] \). That is, for all \(A' \in M_n(\mathbb{C}) \) commuting with \(A \), there is some polynomial \(p(x) \in \mathbb{C}[x] \) such that \(A' = p(A) \).

(b) The dimension of \(\mathbb{C}[A] \) equals \(n \), i.e. the matrices \(I_n, A, A^2, \ldots, A^{n-1} \) are linearly independent over \(\mathbb{C} \).

The next Proposition\(^1\) shows that, for any given \(A \in \mathbb{J}(B) \) we can always find a 1-regular matrix from \(\mathbb{J}(B) \) that commutes with \(A \). From now one we confine ourselves to the case \(B = B^H \) and postpone the discussion of the situation for \(B = -B^H \) to Subsection 3.4.

Proposition 1. Let \(B = B^H \in \text{Gl}_n(\mathbb{C}) \) and \(A \in \mathbb{J}(B) \). Then there exists a 1-regular matrix \(C \in \mathbb{J}(B) \) such that \(A \) and \(C \) commute.

Proof. We apply Theorem\(^1\) to \(A \) and \(B \) (the subscript indicating the size of the Jordan blocks is omitted). So, there exists some \(T \in \text{Gl}_n(\mathbb{C}) \) such that

\[
\tilde{A} := T^{-1}AT = J(\lambda_1) \oplus \cdots \oplus J(\lambda_\alpha) \oplus J(\lambda_{\alpha+1}) \oplus \cdots \oplus J(\lambda_\beta)
\]

where \(\lambda_1, \ldots, \lambda_\alpha \in \mathbb{R} \) are the real eigenvalues of \(A \) and \(\lambda_{\alpha+1}, \ldots, \lambda_\beta \in \mathbb{C} \) are the nonreal eigenvalues of \(A \) from the upper half-plane. Moreover,

\[
\tilde{B} := T^HBT = \eta_1 P_1 \oplus \cdots \eta_\alpha P_\alpha \oplus P_{\alpha+1} \oplus \cdots \oplus P_\beta
\]

\(^3\)A 1-regular matrix is sometimes also called nonderogatory.
where, for \(k = 1, \ldots, \beta \), \(P_k = R_p \) (the \(p \times p \) reverse identity matrix, see (1)) with \(p \times p \) being the size of \(J(\lambda_k) \), and each \(\eta_j \) is either +1 or −1. According to Lemma 2 we have \(\tilde{A} \in \mathbb{J} (\tilde{B}) \) since \(A \in \mathbb{J} (B) \). Now let \(a_1, \ldots, a_\alpha \in \mathbb{R} \) and \(a_{\alpha+1}, \ldots, a_\beta \in \mathbb{C} \setminus \mathbb{R} \) be arbitrary and pairwise distinct values and consider

\[
\tilde{C} := J(a_1) \oplus \cdots \oplus J(a_\alpha) \oplus J(a_{\alpha+1}) \oplus \cdots \oplus J(a_\beta)
\]

where each \(J(a_k) \) has the same size as \(J(\lambda_k) \), \(k = 1, \ldots, \beta \). Observe that \(\tilde{C} \in \mathbb{J} (\tilde{B}) \) and that \(\tilde{A} \tilde{C} = \tilde{C} \tilde{A} \) holds. Moreover, \(\tilde{C} \) is 1-regular since the values \(a_k \) are all distinct. We now apply the reverse transformation to obtain

\[
A = T \tilde{A} T^{-1}, \quad C := T \tilde{C} T^{-1}, \quad B = T^{-H} \tilde{B} T^{-1}.
\]

Note that now \(AC = CA \) holds and that \(C \in \mathbb{J} (B) \) (according to Proposition 2 since we had \(\tilde{C} \in \mathbb{J} (\tilde{B}) \)). Finally, as \(\tilde{C} \) was 1-regular so is \(C \).

Using Corollary 1 the result from Proposition 1 can easily be extended to \(\mathbb{L}(B) \).

Corollary 2. Let \(B = B^H \in \textbf{GL}_n(\mathbb{C}) \) and \(A \in \mathbb{L}(B) \). Then there exists a 1-regular matrix \(C \in \mathbb{L}(B) \) such that \(A \) and \(C \) commute.

Proof. This follows immediately from Corollary 1 and Proposition 1. Additionally, notice that \(C \in \textbf{M}_n(\mathbb{C}) \) is 1-regular if and only if \(iC \) is 1-regular.

A polynomial \(p(x_1, \ldots, x_n) \in \mathbb{C}[x_1, \ldots, x_n] \) in \(n \geq 1 \) unknowns is called symmetric if

\[
p(x_1, \ldots, x_n) = p(x_{\tau(1)}, \ldots, x_{\tau(n)})
\]

holds for all permutations \(\tau \) of \(1, 2, \ldots, n \). The following Theorem 4 will be central in the next section.

Theorem 4 ([14] Prop. 7.1.10). Let \(p(x_1, \ldots, x_n) \in \mathbb{C}[x_1, \ldots, x_n] \) be a symmetric polynomial and \(f : \textbf{M}_n(\mathbb{C}) \to \mathbb{C} \) be a function given by

\[
f(A) = p(\lambda_1(A), \lambda_2(A), \ldots, \lambda_n(A)) =: p(A)
\]

where \(\lambda_k(A), k = 1, \ldots, n \), denote the eigenvalues of \(A \). Then there is a polynomial \(q(x_{11}, x_{12}, \ldots, x_{nn}) \in \mathbb{C}[x_{11}, x_{12}, \ldots, x_{nn}] \) in \(n^2 \) unknowns such that

\[
f(A) = q(a_{11}, a_{12}, \ldots, a_{nn}) \quad \forall \ A = [a_{i,j}]_{i,j} \in \textbf{M}_n(\mathbb{C}).
\]

Proof. The proof follows the one from [14]. Let \(A = [a_{i,j}]_{i,j} \in \textbf{M}_n(\mathbb{C}) \) and let \(\chi_A(x) = \det(xI_n - A) \) be the characteristic polynomial of \(A \). Assume that

\[
\chi_A(x) = x^n + c_1 x^{n-1} + \cdots + c_{n-1} x + c_n.
\]

for some \(c_k \in \mathbb{C}, k = 1, \ldots, n \). It is well known that \(c_1, \ldots, c_n \) are polynomials in the entries \(a_{ij}, 1 \leq i, j \leq n \), of \(A \).
Furthermore, let \(\lambda_1, \ldots, \lambda_n \in \mathbb{C} \) denote the eigenvalues of \(A \). Then \(\chi_A(x) = (x - \lambda_1)(x - \lambda_2) \cdots (x - \lambda_n) \) and its expansion gives

\[
\chi_A(x) = x^n - s_1 x^{n-1} + s_2 x^{n-2} + \cdots + (-1)^n s_n
\]

(6)

for the coefficients \(s_1, \ldots, s_n \in \mathbb{C} \). A closer inspection reveals that \(s_1, \ldots, s_n \) are given by the \(n \) elementary symmetric polynomials in \(\lambda_1, \ldots, \lambda_n \) (see also [9, Sec. 2]), that is

\[
s_1 = \sum_i \lambda_i, \quad s_2 = \sum_{i < j} \lambda_i \lambda_j, \quad s_3 = \sum_{i < j < k} \lambda_i \lambda_j \lambda_k, \ldots, \quad s_n = \prod_i \lambda_i.
\]

(7)

A comparison of coefficients in (5) and (6) yields: each elementary symmetric polynomial \(s_k = s_k(\lambda_1, \ldots, \lambda_n) \) in (7) in the eigenvalues of \(A \) agrees with a certain polynomial \(c_k = p_k(a_{11}, a_{12}, \ldots, a_{nn}) \) in the entries \(a_{ij} \) of \(A \). In consequence, this is true for any symmetric polynomial \(q(\lambda_1, \ldots, \lambda_n) \) since \(q \) can always be expressed as a polynomial in \(s_1, \ldots, s_n \) (cf. [9, Thm. 2.20]).

\[
\mathbf{Example \, 1.} \quad \text{We give three applications of Theorem 4 that will be important in the further discussion. Each of these examples can be found in [14, Sec. 7].}
\]

First, let \(A = [a_{ij}]_{ij} \in \mathbf{M}_n(\mathbb{C}) \) with eigenvalues \(\lambda_1(A), \ldots, \lambda_n(A) \).

(i) The function \(p : \mathbf{M}_n(\mathbb{C}) \to \mathbb{C} \) given by

\[
p(A) := p(\lambda_1(A), \ldots, \lambda_n(A)) = \prod_k \lambda_k(A)
\]

determines whether \(A \) is invertible. That is, \(p(A) = 0 \) if \(A \) is singular and \(p(A) \neq 0 \) otherwise. As \(p \) is a symmetric polynomial in \(\lambda_1(A), \ldots, \lambda_n(A) \), there is some \(q(x_{11}, \ldots, x_{nn}) \) is \(n^2 \) unknowns with \(q(A) := q(a_{11}, a_{12}, \ldots, a_{nn}) = p(A) \) for all \(A \in \mathbf{M}_n(\mathbb{C}) \). The polynomial \(q \) in \(a_{11}, a_{12}, \ldots, a_{nn} \) is given by the determinant.

(ii) The function \(p : \mathbf{M}_n(\mathbb{C}) \to \mathbb{C} \) given by

\[
p(A) := p(\lambda_1(A), \ldots, \lambda_n(A)) = \prod_{k \neq j} (\lambda_k(A) - \lambda_j(A)),
\]

determines whether \(A \) has a multiple eigenvalue. That is, \(p(A) \neq 0 \) if all eigenvalues of \(A \) are (pairwise) distinct and \(p(A) = 0 \) otherwise. Notice that \(p(\lambda_1(A), \ldots, \lambda_n(A)) \) is a symmetric polynomial in \(\lambda_1(A), \ldots, \lambda_n(A) \). According to Theorem 4 there exists a polynomial \(q \in \mathbb{C}[x_{11}, \ldots, x_{nn}] \) in \(n^2 \) unknowns such that

\[
q(A) = q(a_{11}, a_{12}, \ldots, a_{nn}) = p(\lambda_1(A), \ldots, \lambda_n(A)) = p(A)
\]

for all \(A = [a_{ij}]_{ij} \in \mathbf{M}_n(\mathbb{C}) \).
Now assume \[A = [a_{ij}]_{ij} \in \mathbf{M}_{m \times n}(\mathbb{C}). \] Recall that a \(k \times k \) minor of \(A \) is the determinant of a submatrix \(A' \in \mathbf{M}_{k \times k}(\mathbb{C}) \) obtained from \(A \) by deleting \(m-k \) rows and \(n-k \) columns. Thus (the value of) each minor is expressible as a polynomial in some entries of \(A \) according to \((i) \).

Now note that for \(A \) the fact \(\text{rank}(A) \leq r < \min\{m,n\} \) is equivalent to the vanishing of all \((r+1) \times (r+1)\) minors of \(A \). As there are \(s := mn(r+1) \) such minors of \(A \), according to Theorem 4, there are \(s \) polynomials \(q_k(x_{11}, \ldots, x_{mn}) \), \(1 \leq k \leq s \), in \(mn \) unknowns \(x_{11}, x_{12}, \ldots, x_{mn} \) such that \(q_k(A) := q_k(a_{11}, a_{12}, \ldots, a_{mn}) = 0 \) holds for all \(k = 1, \ldots, s \) if and only if \(\text{rank}(A) \leq r \). In particular, if \(\text{rank}(A) > r \), there is at least one \(q_k \) such that \(q_k(A) = q_k(a_{11}, \ldots, a_{mn}) \neq 0 \).

Do not overlook that, in each case considered in Example 1, the polynomials that have been determined do not depend on a special matrix.

Recall that, according to Theorem 3, \(A \in \mathbf{M}_n(\mathbb{C}) \) is 1-regular if and only if \(I_n, A, A^2, \ldots, A^{n-1} \) are linearly independent. In turn this is the case if and only if the matrix

\[
M := \begin{bmatrix}
I_n & A & A^2 & \cdots & A^{n-1}
\end{bmatrix} \in \mathbf{M}_{n^2 \times n}(\mathbb{C}),
\]

whose columns are \(I_n, A, A^2, \ldots \) written in vectorized fashion as \(n^2 \times 1 \) column vectors, has full rank (i.e. \(\text{rank}(M) = n \)). Certainly, the entries of \(M \) are polynomials in the entries of \(A \). The matrix \(M \) has rank \(\leq n-1 \) if and only if all \(n \times n \) minors of \(M \) vanish simultaneously. Taking Example 1 (iii) into account we have the following result:

Corollary 3. There exists a collection of \(s \geq 1 \) (nonzero) polynomials \(w_k(x_{11}, \ldots, x_{nn}) \in \mathbb{C}[x_{11}, x_{12}, \ldots, x_{nn}] \) in \(n^2 \) unknowns such that \(w_k(A) = w_k(a_{11}, \ldots, a_{nn}) = 0 \) holds for \(A = [a_{ij}]_{ij} \in \mathbf{M}_n(\mathbb{C}) \) and all \(w_k, k = 1, \ldots, s \) if and only if \(A \) is not 1-regular.

In other words, Corollary 3 states that \(w_\ell(A) \neq 0 \) for at least one \(\ell, 1 \leq \ell \leq s \), is sufficient for \(A \in \mathbf{M}_n(\mathbb{C}) \) to be 1-regular. This fact will be very useful for the proofs in the upcoming section.

3. Density of Diagonalizable Matrices

In this section we prove our main theorems on the density of diagonalizable matrices in the sets \(\mathcal{J}(B), \mathcal{L}(B), \mathcal{G}(B) \) and \(\mathcal{N}(B) \). For \(B = B^H \) the Lie and Jordan algebras are treated in Subsection 3.1 whereas the set of \(B \)-unitary matrices and the set of \(B \)-normal matrices are considered in Subsections 3.2 and 3.3 respectively. The case \(B = -B^H \) is considered in Subsection 3.4.
3.1 The Lie and Jordan Algebras

We begin by considering the density of diagonalizable matrices in the sets \(\mathbb{J}(B) \) and \(\mathbb{L}(B) \) of \(B \)-selfadjoint and \(B \)-skewadjoint matrices. The result of Proposition 2 will be central for the proof of Theorem 5.

Proposition 2. Let \(B = B^H \in M_n(\mathbb{C}) \) be nonsingular. Then \(\mathbb{J}(B) \) and \(\mathbb{L}(B) \) contain a matrix with pairwise distinct eigenvalues.

Proof. Let \((m_-, m_+)\) be the inertia\(^4\) of \(B \), that is, denote the number of positive real eigenvalues of \(B \) by \(m_+ \) and the number of negative real eigenvalues of \(B \) by \(m_- \). According to a Theorem of Sylvester (cf. [8, Thm. 4.5.7]) there exists some \(Q \in \text{Gl}_n(\mathbb{C}) \) such that

\[
B' := Q^H B Q = \begin{bmatrix} -I_{m_-} & \ast \\ \ast & I_{m_+} \end{bmatrix}.
\]

Now for any \(n \) distinct values \(\alpha_1, \ldots, \alpha_n \in \mathbb{R} \) the matrix

\[
D = \text{diag}(\alpha_1, \ldots, \alpha_n) \in M_n(\mathbb{C})
\]

is in \(\mathbb{J}(B') \). Thus \(A := Q D Q^{-1} \) is in \(\mathbb{J}(Q^{-H}(Q^H B Q)Q^{-1}) = \mathbb{J}(B) \) according to Lemma 2 and has pairwise distinct eigenvalues. The same statement for \(\mathbb{L}(B) \) follows by taking the diagonal entries \(i\alpha_1, \ldots, i\alpha_n \) for \(D \).

We now prove the main theorem of this section. Its proof makes use of the fact observed in Example 1 (ii). With the use of Proposition 2 it would also follow from [7, Cor. 1].

Theorem 5. Let \(B = B^H \in \text{Gl}_n(\mathbb{C}) \).

(a) For any \(J \in \mathbb{J}(B) \) and any \(\varepsilon > 0 \) there exists some diagonalizable \(J' \in \mathbb{J}(B) \) such that \(\|J - J'\|_2 < \varepsilon \). Moreover, \(J' \) can be chosen to have pairwise distinct eigenvalues.

(b) For any \(L \in \mathbb{L}(B) \) and any \(\varepsilon > 0 \) there exists some diagonalizable \(L' \in \mathbb{L}(B) \) such that \(\|L - L'\|_2 < \varepsilon \). Moreover, \(L' \) can be chosen to have pairwise distinct eigenvalues.

Proof. Let \(A = [a_{ij}]_{ij} \in M_n(\mathbb{C}) \). Recall that, according to Example 1 (ii), there is some polynomial

\[
q(x_{11}, \ldots, x_{nn}) \in \mathbb{C}[x_{11}, x_{12}, \ldots, x_{nn}]
\]

in \(n^2 \) unknowns \(x_{ij}, 1 \leq i, j \leq n \), such that \(q(A) = q(a_{11}, \ldots, a_{nn}) = 0 \) if and only if \(A \) has a (i.e. at least one) multiple eigenvalue. Otherwise, that is if all eigenvalues of \(A \) are (pairwise) distinct, \(q(A) \neq 0 \).

\(^4\)As \(B \in \text{Gl}_n(\mathbb{C}) \), we have \(0 \notin \sigma(B) \). Moreover, as \(B = B^H \), all eigenvalues of \(B \) are real. In conclusion \(B \) has only positive and negative real eigenvalues.
(a) Now assume \(J \in \mathbb{J}(B) \). According to Proposition 2 there is some \(E \in \mathbb{J}(B) \) with distinct eigenvalues. Now consider the family of matrices \(M(z) := zJ + E, z \in \mathbb{C}, \) and the polynomial \(\tilde{q}(z) := q(M(z)) = q(zJ + E) \in \mathbb{C}[z] \) that only depends on the single variable \(z \). Certainly \(\tilde{q}(0) = q(E) \neq 0 \) since the eigenvalues of \(E \) are distinct. Therefore, \(\tilde{q} \neq 0 \) and \(\tilde{q} \) is not the zero-polynomial. As \(\tilde{q}(z) \) has only a finite number of roots, almost all matrices \(M(z_0), z_0 \in \mathbb{C}, \) have distinct eigenvalues. Consequently, the same holds for all \(J + cE = c(c^{-1}J + E), c \in \mathbb{C} \). To guarantee that \(J + cE \in \mathbb{J}(B) \), we confine ourselves to the case \(c \in \mathbb{R} \) (see Lemma 1).

Now let \(\varepsilon > 0 \) be given and choose some \(c_0 \in \mathbb{R} \) with \(|c_0| < \varepsilon/\|E\|_2 \) such that \(\tilde{q}(c_0^{-1}) \neq 0 \). Then \(J' := J + c_0E \in \mathbb{J}(B) \), \(J' \) has \(n \) distinct eigenvalues and
\[
\|J - J'\|_2 = |c_0| \cdot \|E\|_2 < \frac{\varepsilon}{\|E\|_2} \cdot \|E\|_2 = \varepsilon.
\]
Moreover, as \(J' \) has pairwise distinct eigenvalues it is diagonalizable.

(b) The proof for \(L \in \mathbb{L}(B) \) proceeds along the same lines.

Corollary 4. Let \(B = B^H \in \mathbb{G}_n(\mathbb{C}) \). The set of matrices with pairwise distinct eigenvalues is dense in \(\mathbb{J}(B) \) and \(\mathbb{L}(B) \).

The proof of Theorem 5 also reveals that any matrix from \(\mathbb{J}(B) \) or \(\mathbb{L}(B) \) can always be expressed as a sum of matrices with pairwise distinct eigenvalues from the same class.

Corollary 5. Let \(B = B^H \in \mathbb{G}_n(\mathbb{C}) \). Then every matrix in \(\mathbb{J}(B) \) can be expressed as a sum of two diagonalizable matrices from \(\mathbb{J}(B) \) with pairwise distinct eigenvalues. The same holds for \(\mathbb{L}(B) \).

Proof. Using the notation from the proof of Theorem 5 (a), \(E \in \mathbb{J}(B) \) and \(c_0 \in \mathbb{R} \) can be chosen such that \(E \) and \(J + c_0 E \) both have \(n \) distinct eigenvalues. Then \(J = (J + c_0E) - c_0E \) is a sum of two matrices \(J + c_0E, -c_0E \in \mathbb{J}(B) \) which both have pairwise distinct eigenvalues. The proof follows analogously for \(\mathbb{L}(B) \).

Let \(A \in \mathbb{M}_n(\mathbb{C}) \). Using the decomposition \(A = S + K \) with \(S = (1/2)(A + A^*) \) and \(K = (1/2)(A - A^*) \), see 2, accompanied by Corollary 5 we end this section with the following observation related to the set \(\mathcal{N}(B) \) of \(B \)-normal matrices.

Proposition 3. Let \(B = B^H \in \mathbb{G}_n(\mathbb{C}) \). Any matrix \(A \in \mathbb{M}_n(\mathbb{C}) \) can be expressed as a sum of four matrices from \(\mathcal{N}(B) \) with each having pairwise distinct eigenvalues.

Proof. As any matrix from \(\mathbb{J}(B) \) and \(\mathbb{L}(B) \) can be expressed as a sum of two matrices with \(n \) distinct eigenvalues from the same class, Corollary 5 can be applied to \(A = S + K \) with \(S = (1/2)(A + A^*) \in \mathbb{J}(B) \) and \(K = (1/2)(A - A^*) \in \mathbb{L}(B) \).

\[\square \]
3.2 The set $\mathbb{G}(B)$ of B-unitary matrices

In this section we analyze the set $\mathbb{G}(B)$ and show that it contains a dense subset of diagonalizable matrices. The proof relies on the Cayley transformation (cf. Theorem 2) and uses the result from Theorem 5(a).

Theorem 6. Let $B = B^H \in \mathfrak{gl}_n(\mathbb{C})$. For any $G \in \mathbb{G}(B)$ and any $\varepsilon > 0$ there exists some diagonalizable $G' \in \mathbb{G}(B)$ such that $\|G - G'\|_2 \leq \varepsilon$.

Proof. Assume $G \in \mathbb{G}(B)$ is given. Let $\alpha \in \mathbb{C}$, $|\alpha| = 1$, be chosen such that $\alpha \notin \sigma(G)$ and let $w \neq \overline{w}$ be some fixed number. Then, according to Theorem 2

$$G' := (wG - \overline{w}I_n)(G - \alpha I_n)^{-1} \in \mathbb{J}(B)$$

with $w \notin \sigma(G')$. By Theorem 5 we may construct a sequence $(F'_k)_k \in \mathbb{J}(B)$ of diagonalizable matrices with $F'_k \to G'$ for $k \to \infty$. Again according to Theorem 2, $F_k : = \alpha(F'_k - \overline{w}I_n)(F'_k - wI_n)^{-1} \to G$ for $k \to \infty$ since the transformation is continuous (and both transformations in Theorem 2 are inverse to each other). Certainly, $w \notin \sigma(F'_k)$ has to hold for F_k to be defined. However, $w \notin \sigma(G')$ implies that $w \notin \sigma(F'_k)$ will hold if F'_k is close enough to G' (this can be interpreted as a consequence of the Bauer-Fike Theorem, cf. [5] Thm. 7.2.2], since all F'_k are diagonalizable). Formally, there is some $\eta > 0$ such that $w \notin \sigma(F'_k)$ for all $F'_k \in \mathfrak{M}_n(\mathbb{C})$ with $\|G' - F'_k\|_2 < \eta$. From now on, it suffices to consider only those F'_k from the sequence which are close enough to G' such that F_k is defined.

Now let $\varepsilon > 0$ be given. Then there exists some $\delta > 0$ such that

$$\|F_k - G\|_2 < \varepsilon \quad \text{for all } F_k \text{ such that } \|F'_k - G'\|_2 < \delta$$

due to the continuity of the transformation. Now choose some F'_j from the sequence with $\|F'_j - G'\|_2 < \min\{\delta, \eta\}$ (so, in particular, $w \notin \sigma(F'_j)$). Then $F_j \in \mathbb{G}(B)$ is defined and $\|F_j - G\|_2 < \varepsilon$. As F'_j is diagonalizable, assume $S^{-1}F'_jS = D$ for some diagonal $D \in \mathfrak{M}_n(\mathbb{C})$. Then it follows from a direct calculation that

$$S^{-1}F_jS = \alpha(D - \overline{w}I_n)(D - wI_n)^{-1} \quad (8)$$

is a diagonalization of F_j and the proof is complete. \hfill \qed

Corollary 6. Let $B = B^H \in \mathfrak{gl}_n(\mathbb{C})$. The set of matrices with pairwise distinct eigenvalues is dense in $\mathbb{G}(B)$.

Proof. This follows from the proof of Theorem 6 and Corollary 4 since the sequence of matrices $(F'_k)_k \in \mathbb{J}(B)$ constructed in the proof of Theorem 6 can be chosen such that all matrices have pairwise distinct eigenvalues. Then, if $S^{-1}F'_jS = D$ for some diagonal $D \in \mathfrak{M}_n(\mathbb{C})$ with n distinct eigenvalues, the matrix $S^{-1}F_jS$ in (8) has distinct eigenvalues, too. \hfill \qed
3.3 The set $\mathcal{N}(B)$ of B-normal matrices

We now consider the density of diagonalizable matrices in the set $\mathcal{N}(B)$ of B-normal matrices. The following Lemma 4 will be helpful to prove Theorem 7. It shows how to construct B-normal matrices from pairs of commuting B-selfadjoint matrices.

Lemma 4. Let $B = B^H \in \text{GL}_n(\mathbb{C})$. If $F, G \in \mathcal{J}(B)$ and F and G commute, then $A = F \pm iG \in \mathcal{N}(B)$.

Proof. Note that

$$A^* = (F \pm iG)^* = B^{-1}(F \pm iG)^H B = B^{-1}F^H B \pm B^{-1}(iG)^H B = F \mp iG$$

so $AA^* = (F \pm iG)(F \mp iG)$ and $A^*A = (F \mp iG)(F \pm iG)$. Since $FG = GF$ we see that $AA^* = A^*A$ holds. \hfill \square

Theorem 7 states that the density result obtained for $\mathcal{J}(B), \mathcal{L}(B)$ and $\mathcal{G}(B)$ before is true for $\mathcal{N}(B)$ under the additional assumption that B is a unitary matrix.

Theorem 7. Let $B \in \text{GL}_n(\mathbb{C})$ with $B = B^H$ and $B^H B = I_n$. For any $N \in \mathcal{N}(B)$ and any $\varepsilon > 0$ there exists some diagonalizable $N' \in \mathcal{N}(B)$ such that $\|N - N'\|_2 \leq \varepsilon$.

Proof. Let $N \in \mathcal{N}(B)$ be arbitrary. We define $S := \frac{1}{2}(N + N^*) \in \mathcal{J}(B)$, $K := \frac{1}{2}(N - N^*) \in \mathcal{L}(B)$ as in (2) and express N as

$$N = S + K = S - i^2 K = S - iK_H$$ \hspace{1cm} (9)

with $K_H := iK$. Notice that $K_H \in \mathcal{J}(B)$ according to Corollary 1. It follows straightforward that $SK_H = K_HS$ holds, that is

$$SK_H = (1/2)(A + A^*) \cdot (i/2)(A - A^*) = (i/4)(A + A^*)(A - A^*)$$

$$= (i/4)(A - A^*)(A + A^*) = (i/2)(A - A^*) \cdot (1/2)(A + A^*)$$

$$= K_HS,$$

so S and K_H commute.

According to Proposition 1 there exists some 1-regular $E = [e_{ij}]_{ij} \in \mathcal{J}(B)$ such that K_H and E commute, that is, $K_H E = E K_H$ holds. Now, we consider the family of all matrices $M = M(z) = zS + E \in \text{M}_n(\mathbb{C})$ for $z \in \mathbb{C}$. As both S and E commute with K_H, so does each $M(z)$. In particular, note that $M(0) = E$ is 1-regular.

According to Corollary 3 there is some $w_\ell(x_{11}, \ldots, x_{nn})$ (from the set of polynomials w_k, $k = 1, \ldots, s$, that vanish simultaneously for matrices that are not 1-regular) such that $w_\ell(E) = w_\ell(e_{11}, e_{12}, \ldots, e_{nn}) \neq 0$. Now, as S and E are fixed, consider $\tilde{w}(z) := w_\ell(M(z)) = w_\ell(zS + E) \in \mathbb{C}[z]$ as a single-variable-polynomial and notice that $\tilde{w}(0) = w_\ell(E) \neq 0$. Thus $\tilde{w} \neq 0$.
is not the zero-polynomial. Recall that \(\tilde{w}(z_0) \neq 0 \) is a sufficient condition for \(M(z_0) = z_0 S + E \) to be 1-regular. Consequently, as \(\tilde{w}(z) \) does only have a finite number of roots, \(M(z_0) = z_0 S + E \) will be 1-regular for almost all \(z_0 \in \mathbb{C} \). Therefore \(S + cE = c(c^{-1} S + E) \) is also 1-regular for all but a finite number of nonzero \(c \in \mathbb{C} \).

Now let \(\varepsilon = 2\varepsilon > 0 \) be given. Choose some \(c \in \mathbb{R} \) with \(|c| \leq \varepsilon/(2\|E\|_2) \) such that \(S_c := S + cE \in \mathcal{J}(B) \) is 1-regular. Then

\[
\|S - S_c\|_2 = \|cE\|_2 = |c|\|E\|_2 \leq \frac{\varepsilon}{2\|E\|_2} \|E\|_2 = \frac{\varepsilon}{2}.
\]

As \(S_c \) and \(K_H \) commute (recall that \(S \) and \(E \) both commute with \(K_H \)) and \(S_c \) is 1-regular, there exists some polynomial \(p(x) \in \mathbb{C}[x] \) with \(p(S_c) = K_H \) according to Theorem 3 (a). Moreover, from Theorem 5 (see also Corollary 4), there exists a sequence \((F_k)_k \in \mathcal{J}(B), k \in \mathbb{N}, \) of diagonalizable matrices with \(F_k \to S_c \). Thus, \(p(F_k) \to K_H \) for \(k \to \infty \) since \(p(x) \) is continuous. Now, for \(\varepsilon/2 \) there exists some \(\delta > 0 \) such that

\[
\|p(S_c) - p(F_k)\|_2 = \|K_H - p(F_k)\|_2 < \frac{\varepsilon}{2} \quad \text{if} \quad \|S_c - F_k\|_2 < \delta \quad (10)
\]

due to the continuity of \(p(x) \). Next, choose some \(F_{\ell} \in \mathcal{J}(B) \) from the sequence \((F_k)_k \) with \(\|S_c - F_{\ell}\| < \min\{\varepsilon/2, \delta\} \). Then we obtain that

\[
\|S - F_{\ell}\|_2 = \|S - S_c + S_c - F_{\ell}\|_2 \\
\leq \|S - S_c\|_2 + \|S_c - F_{\ell}\|_2 < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \quad (11)
\]

As \(p(x) \in \mathbb{C}[x] \) may have complex coefficients, it might be the case that \(p(F_{\ell}) \notin \mathcal{J}(B) \). However, \(G := (1/2)(p(F_{\ell}) + p(F_{\ell})^*) \in \mathcal{J}(B) \) (recall (2)). Assume \(p(x) \) is given by \(\sum_{k=0}^{t} a_k x^k \) for complex coefficients \(a_k \in \mathbb{C}, k = 0, \ldots, t \). Then

\[
p(F_{\ell})^* = B^{-1} \left(\sum_{k=0}^{t} a_k F_{\ell}^k \right)^H B = B^{-1} \left(\sum_{k=0}^{t} \overline{a_k} \left(F_{\ell}^k \right)^H \right) B \\
= B^{-1} \left(\sum_{k=0}^{t} \overline{a_k} \left(F_{\ell}^k \right)^H \right) B = \sum_{k=0}^{t} \overline{a_k} \left(B^{-1} F_{\ell}^k \right)^k = \sum_{k=0}^{t} \overline{a_k} F_{\ell}^k,
\]

so \(p(F_{\ell})^* = q(F_{\ell}) \) with \(q(x) = \sum_{k=0}^{t} \overline{a_k} x^k \). In particular, \((1/2)(p(F_{\ell}) + q(F_{\ell})) = r(F_{\ell}) = \sum_{k=0}^{t} 2\Re(a_k) F_{\ell}^k \) is a (real) polynomial in \(F_{\ell} \) (where \(\Re(a_k) \) denotes the real part of the complex number \(a_k \)). As

\[
\|p(F_{\ell}) - \frac{1}{2}(p(F_{\ell}) + p(F_{\ell})^*)\|_2 = \|p(F_{\ell}) - r(F_{\ell})\|_2 \leq \|p(F_{\ell}) - X\|_2
\]

holds for any \(X \in \mathcal{J}(B) \) according to Lemma 8 and \(\|p(F_{\ell}) - K_H\|_2 < \varepsilon/2 \) (recall (10) and the choice of \(F_{\ell} \)) we conclude \(\|p(F_{\ell}) - r(F_{\ell})\|_2 \leq \varepsilon/2 \). In
analogy to (11) we obtain

\[\| K_H - G \|_2 = \| K_H - p(F_\ell) + p(F_\ell) - G \|_2 \]
\[\leq \| K_H - p(F_\ell) \|_2 + \| p(F_\ell) - G \|_2 < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \]

Finally, we arrived at \(\| S - F_\ell \|_2 < \epsilon \) and \(\| K_H - r(F_\ell) \|_2 < \epsilon \). As \(F_\ell, r(F_\ell) \in \mathbb{J}(B) \), note that \(N' := F_\ell - ir(F_\ell) \in \mathcal{N}(B) \) according to Lemma 4. Moreover, we have

\[\| N - N' \|_2 = \| (S - iK_H) - (F_\ell - ir(F_\ell)) \|_2 = \| (S - F_\ell) - i(K_H - r(F_\ell)) \|_2 \]
\[\leq \| S - F_\ell \|_2 + \| K_H - r(F_\ell) \|_2 \leq \epsilon + \epsilon = 2\epsilon = \epsilon. \]

As \(F_\ell \) is diagonalizable, so is \(r(F_\ell) \). In addition, as \(F_\ell \) and \(r(F_\ell) \) commute, they are simultaneously diagonalizable [8, Thm. 1.3.21]. This certainly implies \(N' = F_\ell - ir(F_\ell) \) to be diagonalizable (in particular, \(N' \) is a polynomial in \(F_\ell \)). Thus we have found a diagonalizable matrix \(N' \in \mathcal{N}(B) \) with distance at most \(\epsilon \) from \(N \) and the proof is complete. \(\square \)

Applying Lemma 2 and using the result of Theorem 7 we may now prove the density of diagonalizable matrices in \(\mathcal{N}(B) \) without the assumption of \(B \) being unitary.

Theorem 8. Let \(B \in \text{Gl}_n(\mathbb{C}) \) with \(B = B^H \). For any \(N \in \mathcal{N}(B) \) and any \(\epsilon > 0 \) there exists some diagonalizable \(N' \in \mathcal{N}(B) \) such that \(\| N - N' \|_2 \leq \epsilon \).

Proof. According to Theorem 7 the statement is true if \(B \) is unitary, so assume \(B \in \text{Gl}_n(\mathbb{C}) \) is not unitary. According to [8, Thm. 4.5.7] there exists some \(Q \in \text{Gl}_n(\mathbb{C}) \) such that

\[B' := Q^H B Q = \begin{bmatrix} -I_{m_-} & \ast \\ \ast & I_{m_+} \end{bmatrix} \]

where \(m_- \) (\(m_+ \)) is the number of negative (positive) eigenvalues of \(B \). According to Lemma 2 we have \(Q^{-1} \mathcal{N}(B) Q = \mathcal{N}(B') \). Since \(B' \) is unitary, Theorem 7 applies and the set of diagonalizable matrices is dense in \(\mathcal{N}(B') \). As any matrix \(A \in \mathcal{N}(B') \) is diagonalizable if and only if \(QAQ^{-1} \in \mathcal{N}(B) \) is diagonalizable the density result follows for \(\mathcal{N}(B) \). \(\square \)

In Sections 3.1, 3.2 and 3.3 we showed the density results of semisimple matrices for \(B = B^H \). Hereby, \(B \) was an arbitrary (indefinite) Hermitian matrix. Before we pass on to the case \(B = -B^H \), do not overlook the special case of \(B \) being positive definite (and \([\cdot, \cdot]_B \) defining a scalar product). Due to Lemma 2 the same situation as for \(B = I_n \) takes place and all matrices in \(\mathbb{J}(B), \mathbb{L}(B), \mathbb{G}(B) \) and \(\mathcal{N}(B) \) are semisimple. In fact, for a Hermitian positive definite matrix \(B \in \text{Gl}_n(\mathbb{C}) \) there exists some \(Q \in \text{Gl}_n(\mathbb{C}) \) such that \(Q^H B Q = I_n \). Whenever \(A \in \mathbb{J}(B) \), then \(A' := Q^{-1} AQ \in \mathbb{J}(I_n) \) is
Hermitian and, in consequence, semisimple. As semisimplicity is preserved under similarity transformation, \(A \) must have been semisimple, too. The same reasoning holds in an analogous way for \(\mathbb{L}(B), \mathbb{G}(B) \) and \(\mathcal{N}(B) \) using Lemma 2.

3.4 Skew-Hermitian Sesquilinear Forms

We now consider the case where \(B = -B^H \in \text{Gl}_n(\mathbb{C}) \) is a skew-Hermitian matrix. Fortunately, this situation can be completely traced back to the analysis from Sections 3.1, 3.2 and 3.3.

First note that, if \(B = -B^H \) holds, then \(iB \) is Hermitian (i.e. \((iB)^H = -iB^H = iB\)). Moreover we have that

\[
(iB)^{-1} A^H (iB) = -iB^{-1} A^H (iB) = -i^2 B^{-1} A^H B = B^{-1} A^H B.
\]

This shows that \(A \in \mathbb{J}(B) \) (\(A \in \mathbb{L}(B) \), resp.) if and only if \(A \in \mathbb{J}(iB) \) (\(A \in \mathbb{L}(iB) \), resp.). Moreover

\[
A^H (iB) A = iB \Leftrightarrow i(A^H BA) = iB \Leftrightarrow A^H BA = B,
\]

so \(A \in \mathbb{G}(B) \) if and only if \(A \in \mathbb{G}(iB) \). Finally, the same reasoning reveals that \(\mathcal{N}(B) = \mathcal{N}(iB) \). Therefore, some matrix in any of these sets corresponding to \(B \) can always be interpreted as a matrix from the same set corresponding to \(iB \). The main theorems obtained in the previous sections thus apply directly when \(B = -B^H \).

Theorem 9. Let \(B \in \text{Gl}_n(\mathbb{C}) \) with \(B = -B^H \). For any \(A \in \text{M}_n(\mathbb{C}) \) in any of the sets \(\mathbb{J}(B), \mathbb{L}(B), \mathbb{G}(B), \mathcal{N}(B) \) and any \(\varepsilon > 0 \) there exists some diagonalizable \(A' \in \text{M}_n(\mathbb{C}) \) belonging to the same set such that \(\|A - A'\|_2 \leq \varepsilon \). In addition, the set of matrices with pairwise distinct eigenvalues is dense in \(\mathbb{J}(B), \mathbb{L}(B) \) and \(\mathbb{G}(B) \).

Proof. Any matrix \(A \in \text{M}_n(\mathbb{C}) \) from \(\mathbb{J}(B), \mathbb{L}(B), \mathbb{G}(B) \) or \(\mathcal{N}(B) \) can be interpreted as a matrix from \(\mathbb{J}(iB), \mathbb{L}(iB), \mathbb{G}(iB) \) or \(\mathcal{N}(iB) \), respectively, and Theorems 5, 6, and 8 apply.

Certainly, there are analogous results for the case \(B = -B^H \) as stated in Corollary 5 and Proposition 3.

4. Conclusions

In this work we considered the structure classes of \(B \)-selfadjoint, \(B \)-skewadjoint, \(B \)-unitary and \(B \)-normal matrices defined by an (indefinite) scalar product \([x, y] = x^H By\) on \(\mathbb{C}^n \times \mathbb{C}^n \) for some \(B \in \text{Gl}_n(\mathbb{C}) \). We showed that, if \(B = \pm B^H \), the set of semisimple (i.e. diagonalizable) matrices is dense in the set of all \(B \)-selfadjoint, \(B \)-skewadjoint, \(B \)-unitary and \(B \)-normal matrices.

\[\text{Notice that } n \text{ needs to be even for } B = -B^H \text{ to be nonsingular.}\]
REFERENCES

[1] A. V. Arkhangel’skii and L. S. Pontryagin (Eds.). *General Topology I*. Springer Berlin, Heidelberg, 1990.

[2] R. J. de la Cruz and P. Saltenberger *Generic canonical forms for per-plectic and symplectic normal matrices*. Preprint ArXiv 2006.16790v1, 2020.

[3] K. Fan and A. J. Hoffmann. *Some metric inequalities in the space of matrices*. Proceedings of the American Mathematical Society 6, pp. 111-116, 1955.

[4] I. Gohberg, P. Lancaster and L. Rodman. *Indefinite Linear Algebra and Applications*. Birkhäuser Verlag, Basel, 2005.

[5] G. H. Golub and C. F. Van Loan. *Matrix Computations (3rd Edition)*. Johns Hopkins University Press, Baltimore, 1996.

[6] R. Grone, C. R. Johnson, E. M. Sa and H. Wolkowicz. *Normal matrices*. Linear Algebra and its Applications 87, pp. 213–225, 1987.

[7] D. J. Hartfiel. *Dense sets of diagonalizable matrices*. Proceedings of the American Mathematical Society 123, pp. 1669–1672, 1995.

[8] R. A. Horn and C. R. Johnson. *Matrix Analysis (2nd Edition)*. Cambridge University Press, New York, 2013.

[9] N. Jacobson. *Basic Algebra 1 (2nd Edition)*. H. W. Freeman and Company, New York, 1985.

[10] P. Lancaster and L. Rodman. *Algebraic Riccati Equations*. Clarendon Press, Oxford, 1995.

[11] D. W. Lewis. *Matrix Theory*. World Scientific Publishing, Singapore, 1991.

[12] D. S. Mackey, N. Mackey and F. Tisseur. *On the definition of two natural classes of scalar product*. MIMS Eprint 2007.64, Manchester Institute for Mathematical Sciences, Manchester, 2007.

[13] C. Mehl. *On classification of normal matrices in indefinite inner product spaces*. The Electronic Journal of Linear Algebra 15 (1), pp. 50–83, 2006.

[14] K. C. O’Meara, J. Clark and C. I. Vinsonhaler. *Advanced Topics in Linear Algebra*. Oxford University Press, Oxford, 2011.
[15] P. Saltenberger. *On different concepts for the linearization of matrix polynomials and canonical canonical decompositions of structured matrices with respect to indefinite sesquilinear forms*. Logos Verlag, Berlin, 2019.