Original Research Article

Thyroid lesions reporting using TBSRTC reporting system and cytohistopathological correlation- An experience at a tertiary care hospital

Swarupa Ravuri¹, Saritha Karre², Venu Patel³, Jayashankar Erukkambattu³,*

¹ Dept. of Pathology, Government Medical Collage, Suryapet, Telangana, India
² Dept. of Pathology, Gandhi Medical College, Secunderabad, Telangana, India
³ Dept. of Pathology, ESIC Medical College, Hyderabad, Telangana, India

A R T I C L E I N F O

Article history:
Received 03-02-2020
Accepted 08-05-2020
Available online 19-11-2020

Keywords:
TBSRTC
(ND /UNS)
Benign
(AUS/FLUS)
(FN /SFN)
(SFM)
Malignant

A B S T R A C T

Background: Thyroid lesions are the most common head and neck lesions and a study was conducted to analyze thyroid aspiration smears by using The Bethesda System for Reporting Thyroid Cytopathology (TBSRTC), it has standardized reporting and cytological criteria in thyroid aspiration smears.

Aims and Objectives: To analyze the thyroid aspiration cytology smears by using TBSRTC and categorize, subcategorize thyroid lesions according to the TBSRTC monograph and to correlate cytopathology and histopathology, wherever surgery was performed.

Material and Methods: The retrospective study of 390 patients who presented with various thyroid presentations. FNAC was performed, smears were stained and evaluation of smears and categorisation was done as per TBSRTC into non diagnostic/unsatisfactory (ND/UNS), Benign Atypia of undetermined significance/follicular lesions of undetermined significance (AUS/FLUS), Follicular neoplasms / suspicious of follicular neoplasms (FN /SFN), Suspicious of malignancy(SFM), and Malignant. Cytohisto correlation was done.

Results: Out of 390 thyroid FNAC’s ND/UNS 14(3.5%), Benign 357(91.3%), AUS/FLUS 01 (0.23%), FN /SFN08 (2.05%), SFM04(1.02%), Malignant 06 (1.53%). Cytohisto correlation was done in 53 patients sensitivity, specificity were calculated.

Conclusion: TBSRTC is an excellent reporting system for thyroid which avoids the unnecessary surgeries for the benign thyroids and gives proper guidelines to the clinicians about the patient management.

© This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

1. Introduction

Thyroid lesions are the most common lesions manifested particularly in country like India where it is endemic for iodine deficiency disorders and with goitre prevalence of about 40%.¹ Patients clinically present with solitary thyroid nodule, multiple thyroid nodules, diffuse thyroid nodule, pressure symptoms and other clinical symptoms. The majority of clinically diagnosed thyroid nodules are nonneoplastic and neoplastic lesions constitutes 5-30% and these requires surgical intervention for further management.²-⁶ Thyroid malignancy is the most common endocrine malignancy. Papillary carcinoma is most common among the malignancies followed by follicular carcinoma, medullary carcinoma, anaplastic carcinoma followed by lymphoma.⁷ Most common benign lesion is colloid goiter. FNAC is a safe procedure which is easily available in low cost, simple, reliable and results are quickly obtained.⁸ It doesn’t need any prior preparation of the patients and anaesthesia. FNAC is performed on clinically palpable thyroid nodules and also using ultrasonographically in cases of abnormal thyroid nodules which enhances the diagnostic accuracy.⁹,¹⁰ FNAC procedure plays a major role in decreasing the unwanted surgeries for benign lesions and increasing the need of surgical management for the malignant thyroid lesions upto 50%.¹¹ This procedure have
its own limitations also, its accuracy is lowers in suspicious lesions like follicular neoplasms. These limitations are mainly due to the sampling technique from the variable thyroid regions, skill of the person in performing the procedure and interpretation of the thyroid smears.

The cytopathologists were facing a problem to communicate thyroid FNAC interpretation to referring physician in terms of succinct, unambiguous, and clinically helpful. There are various reporting formats for thyroid reporting system, which made it very difficult to clinicians in understanding the thyroid reports. To address these issues National cancer institute (NCI) hosted a state conference at Bethesda, Maryland. There are six committees dealt with different areas regarding thyroid cytopathology. Diagnostic terminology and morphological criteria was dealt in committee IV 2(2). The Bethesda system for Reporting thyroid cytopathology TBSRTC which includes definitions, diagnostic criteria/ morphological criteria, explanatory notes and a brief management plan for each category shown in Table 1. Aim of current study is to report the thyroid cytology smears by using TBSRTC and help the clinician for the better management of the patient and to study cytohisto correlation.

2. Materials and Methods

The present study was conducted in department of pathology ESIC Medical College, Hyderabad, India during study period April 2016 to April 2018. Patients with thyroid nodule referred to the cytology department from General medicine, General Surgery, Endocrinology departments. After the local examination of swelling and detailed explanation of FNAC procedure aspiration, consent was taken and procedure was done carefully with 23G needle, smears were prepared and fixed in 95% alcohol solution and stained with haematoxylin and eosin stain. Air dried smears were studied using May–Grunwalds Giemsa. If the aspirate yields fluid it was cytocentrifuzed and the smears prepared from sediment and those are stained with haematoxylin and eosin stains. Cytological features were evaluated and reporting was done according to TBSRTC (Table 1) whenever histopathological specimen available collected in 10% formalin in fresh state and allowed to fix for 24 hours. Detailed gross examination was done and bits were given paraffin embedded H&E stained sections were obtained and studied under light microscopy. Correlation of histopathological findings was performed with FNAC. Sensitivity, Specificity and Accuracy were calculated.

3. Results

The present study includes a total number of 390 cases. Patients age range from 11years to 75 years, most patients with female predominance. In the present study non-neoplastic lesions were more common than neoplastic lesions. Cytological categorization was done by using BETHESDA SYSTEM shown in Table 2. Of the 390 cases, surgery was done for 53 cases only, it includes 2/14 category I cases, 42/357 category II cases, 0/1 category III cases, 3/8 category IV, 3/4 of category V cases, 3/6 category VI cases. Table 3 represents the Histopathology diagnosis of each category. There were 2 cases of Bethesda I category (nondiagnostic) with histological follow up both are benign. Bethesda II category includes 357 cases of which histological follow up in 42 cases, 40 were benign, except 2-one case was focal papillary thyroid carcinoma, one case papillary thyroid carcinoma showing the malignancy rate of 4.7%. Bethesda III category includes 1 case with no histopathology followup. Bethesda IV category includes 8 cases of which histological follow up in 3 cases 2 follicular carcinomas and one case was adenomatoid goiter with malignancy rate of 66%. Bethesda V category includes 4 of which histopathology followup in 3 cases all of them show papillary thyroid carcinoma with malignancy rate of 100%. Bethesda VI category includes 6 cases of which histopathology follow up in 3 cases all of them show papillary thyroid carcinoma with malignancy rate 100%.

4. Discussion

Thyroid cytopathology reporting requires standard, consistent and reproducible reporting system. There are many classification systems were there before adapting the TBSRTC. Main advantage of this system is the standardization of terminologies used for thyroid reporting. The 6 Categories of TSBRTC clearly specify the implied risk of malignancy rate in each category, and recommendation for surgical and clinical management. TSBRTC does not recommend surgery for the category I, II, III. It recommends excision of nodule or nodules, partial, complete thyroidectomy for category IV, V, VI.

In the present study among total of 53 patients 40 (77%) were female and 13(22%) were males with F:M ratio 3:1 and most of the patients belongs to 21-40 years. Mechanism underlying thyroid lesions most common in female patients not understood. Based on thyroid cytological findings these Thyroid lesions have been divided into two major groups, Non –Neoplastic 44(88%) and Neoplastic 6(12%). Most of them are Non neoplastic lesions it include colloid goiter 23(50%), adenomatoid nodule 11(6%). Lymphocytic Thyroiditis 8(16%), Neoplastic lesions includes follicular neoplasms 3(6%), Papillary carcinoma 3(6%), Unsatisfactory 2(4%).

These findings are corrrating with the other studies in Gopal Krishna damle study of 54 patients histopathological correlation 36 cases were goiters, 4 hurthle cell thyroiditis, 3 thyroiditis, follicular neoplasms 4, papillary carcinoma 3, thyroid neoplasms 2 cases. Handa U et al. reported a study of FNAC in 434 thyroidswelling
cases, out of which 57.60% FNAC reports was Colloid goiter followed by 27.41% thyroiditis, 2.30% adenomatous goiter. In 7.14% neoplastic group, 1.38% reported as follicular neoplasm and 3.91% as malignant.

Present study had 14 cases in ND/UNS Category. The number of cases in this category is dependent on the aspirator experience. These cases are repeated after 3 month to prevent false positive interpretations due to reparative changes, reactive changes. Histopathology specimen were available for 2 cases with diagnosis of colloid goiter on histopathology.

The Benign category had 357 cases with (91.3%), in recent studies with 7-14. The diagnostic criteria for this category was clearly mentioned in TBSRTC monograph. 42 cases were operated 40 cases were benign and 2 cases turned out into malignant.

Most of the lesions which are benign colloid nodules were correctly identified in cytology only 2 cases on histology which are turned to be nodular goiter with lymphocytic thyroiditis may be because of aspirate from the cystic areas of the lesion and also sample is not aspirated from multiple sites because of this we missed out the diagnosis. One previous study on the solitary thyroid lesion Gagneten study \(^\text{19}\) enlightens the importance of performing multiple aspirations to obtain representative material from different areas since the thyroid can be affected by more than one disease process.

False negative cases constitutes about 4% in our study 2 cases of adenomatoid goiter histology one case turned out to be focal papillary thyroid carcinoma and one case papillary
thyroid carcinoma both these cases also show cystic areas in the thyroid lesions. Over all 40% of cystic neoplastic lesions missed in FNAC mainly cystic papillary carcinoma of thyroid. In Amatya et al. study and Fernandes H et al Shakuntala Sunil Aramani et al. study also found a similar misdiagnosis.

Maral Mokhtari et al. in his study mention that cystic lesions in thyroid caused by both benign and malignant conditions. Adenomatoid (nodular) colloid goiter is the most common cause of benign cystic lesion of the thyroid gland and 23% of the thyroid cystic lesions are caused by malignancy. Suspicious cystic thyroid evaluation done carefully, if needed guided FNAC shall be done on cystic lesions. 25% of primary papillary carcinomas, 20% of follicular neoplasms and in 26% of follicular carcinomas of thyroid show cystic change and/or haemorrhage in neoplasms.

Cytologic differentiation of Cystic Papillary Thyroid Carcinoma from cystic adenomatoid nodules was very difficult. Maral Mokhtari et al. in his study mention that presence of monolayer sheets and papillary clusters with central hyaline cores were seen only in CPTC, nuclear grooves and inclusions, foamy macrophages, atypical histiocytes, anisonucleosis, multinucleated giant cells, and calcification and the other findings specific to CPTC were as follows- small clusters with scalloped margins, cellular swirls, and clusters with a cartwheel pattern.

The false negative results are the poorly cellular sample in a cystic papillary carcinoma due to the thick fibrous capsule. The diagnostic error was most commonly due to inadequate specimens and cystic lesions.
Table 1: The Bethesda System for reporting thyroid cytopathology: recommended diagnostic categories, implied risk of malignancy, and recommended clinical management

Diagnostic category	Risk of malignancy (%)	Usual management
(I) Nondiagnostic or unsatisfactory (ND/UNS)		
Cyst fluid only		Repeat FNA with ultrasound guidance
Virtually acellular specimen		
Other (obsuring blood, clotting artifacts etc.)		
(II) Benign		
Consistent with a benign follicular nodule (includes adenomatoid nodule, colloid nodule etc.)	0-3%	Clinical follow up
Consistent with lymphocytic (Hashimoto) thyroiditis in the proper clinical context		
Consistent with granulomatous (subacute) thyroiditis		
Others		
(III) Atypia of undetermined significance or follicular lesion of undetermined significance (AUS / FLUS)	5-15%	Repeat FNAC
(IV) Follicular neoplasm or suspicious for follicular neoplasm (FN/SFN) -specify if Hurthle cell (oncocytic) type	15–30%	Surgical lobectomy
(V) Suspicious for malignancy (SFM)		
Suspicious for papillary carcinoma	60–75%	Near-total thyroidectomy or surgical lobectomy
Suspicious for medullary carcinoma		
Suspicious for metastatic carcinoma		
Suspicious for lymphoma		
Other		
(VI) Malignant		
Papillary thyroid carcinoma	97–99%	Near-total thyroidectomy
Poorly differentiated carcinoma		
Medullary thyroid carcinoma		
Undifferentiated (anaplastic) carcinoma		
Squamous cell carcinoma		
Carcinoma with mixed features (specify)		
Metastatic carcinoma		
Non-Hodgkin lymphoma		
Other		

a: Actual management may depend on other factors (e.g., clinical and sonographic) besides the FNA interpretation. b: Estimate extrapolated from histopathologic data from patients with “repeated atypicals” c: In the case of “suspicious for metastatic tumor” or a “malignant” interpretation indicating metastatic tumor rather than a primary thyroid malignancy, surgery may not be indicated.

In one study 3 PTC was incidental finding because it was less than 1cm and no abnormality in ultrasonography, no lymphnodes it was missed during aspiration. Incidentalomas remain silent. In an autopsy study conducted by Harach et al. found that there was 30% prevalence of these incidentalomas.

Lymphocytic thyroiditis seen in 8 cases, all were confirmed histologically.

The Bethesda category III AUS /FLUS is reserved for specimens that meet the one of the following criteria cells with architectural and/ or nuclear atypia that not sufficient to be classified as suspicious for malignancy, according to 2009 Bethesda Criteria, sparse cellular smears cells that are arranged predominantly in microfollicles, sparse cellularity and scant colloid predominance of hurthle cells. Drying, preparation artifacts that hinders the interpretation of cells but atypia still present, moderate or marked cellularity with vast majority being hurthle cells but clinically has lymphocytic thyroiditis or nodular goiter, benign appearing sample with focal features suggestive of papillary carcinoma, smears with atypical cyst lining cells, follicles with large nuclei and prominent nucleoli due to treatment change, reparative changes due to cystic degeneration or haemorrhage, atypical lymphoid population, not otherwise specified. 5-15% of Malignancy risk and these cases were repeated after three months.In our study only one case was reported with no histopathology followup. An AUS result has been reported in 3.2-29% of thyroid cases.TBSRTC suggested the range of AUS approximately 7% all thyroid neoplasms but no literature
Table 2: Cytological distribution of cases

Bethesda classification	Total number of cases	Percentage
1. Non – diagnostic or unsatisfactory		
Cystic fluid only Virtually acellular smears Other (obscuring	07	3.5%
blood, clotting artifacts etc)	02	
05		
2. Benign		
Adenomatoid nodule	40	10.2%
Colloid nodule	187	47.9%
Lymphocytic thyroiditis	130	33.3%
Granulomatous thyroiditis		
Others		
3. Atypia of undetermined significance or follicular lesion	01	0.23%
of undetermined significance (aus / flus)		
4. Follicular neoplasm or suspicious for follicular neoplasm	08	2.05%
5. Suspicious for malignancy	04	1.02%
Suspicious for papillary carcinomas		
Suspicious for medullary carcinomas		
Suspicious for metastatic carcinomas		
Suspicious for lymphomaother		
6. Malignancy	06	1.53%
Papillary thyroid carcinoma poorly differentiated		
carcinomas medullary thyroid carcinoma ana: differentiated		
(anaplastic) carcinomas guamous cell carcinoma carcinoma		
with mixed features (specify)		
metastatic carcinomanon-hodgkin lymphomaother		
Total	390	100%

Table 3: Comparison between results of FNAC and histopathology diagnosis

Bethesda Classification	FNAC Diagnosis	Histopathology Diagnosis	False negative & positive percentage
1. Non – diagnostic or unsatisfactory	02	02 cases turned to colloid goiter	02 true negatives
2. Benign			
Adenomatoid goiter	11	09 adenomatoidgoiter, 01 focal papillary thyroid carcinoma, 01 ptc	02 false negative 09 true positive
Colliod goiter	23	21 colloid goiter, 02 nodular goiter with lymphocytic thyroiditis	20 true positive, 03 true negative
Lymphocytic thyroiditis	08	08 lymphocytic thyroiditis	08 true positive
Granulomatous thyroiditis			
3. Atypia of undetermined significant			
4. Follicular neoplasm or suspicious for follicular neoplasm	03	02 follicular carcinoma, 01 adenomatoidgoiter	2 true positives 01 false positive, 03 true positives
5. Suspicious for malignancy	03 pct	03 pct	03 true positives
6. Malignancy	03 pct	03 pct	03 true positives
Total	53	53	

Table 4: Comparison of present study with other studies

Studies	Year	Sensitivity	Specificity	Accuracy
C Gupta et al	2010	80	86.6	84
Pinkey Panday et al	2012	57.14	90	80.28
Parik et al	2012	71.43	100	90.24
Ranjan et al	2014	82.14	86.8	83.60
Gamit et al	2015	92.85	98.48	97.5
Sarathbabu Kumara rama	2016	80-100%	100	94.0
Shakuntala Sunilaramani	2017	96.36	100	96.66
Gopalkrishna Damle	2017	87.5	95.6	94.4
Present study	2018	95%	83%	94%
to support this recommendations.

The Bethesda category IV FN/SFN recent studies shown that 2.2-16.1% in this category. In our study we received 1 case of goiter misdiagnosed as follicular neoplasm in FNAC, it is because smears from the microfollicular areas in a goiter may show a repetitive pattern of microfollicles similar to follicular neoplasm, in this cases differentiation from follicular neoplasms is very difficult. 31

In another study they found that the majority of FN/SFN cases turn out to be FAs or adenomatoid nodules of multinodular goiter, both of which are more common than FC. Of those that prove to be malignant, many are follicular carcinoma but a significant proportion are follicular variants of papillary carcinoma. 32–35

The Bethesda V SFM we had 3 cases suspicious for papillary carcinoma thyroid. On histopathology all are confirmed. Recent studies its range varies from 1.3-10. 7–14

The Bethesda VI Malignant we had 3 cases of papillary carcinoma thyroid. 3 papillary carcinoma all are confirmed histologically. Different studies by Heimann A and Gritsman A suggest that different criteria for cytological diagnosis of papillary carcinoma of thyroid, combination of a intranuclear cytoplasmic inclusion, papillary structure with or without adherent blood vessels and dense metaplastic cytoplasm were the three most important variables. 31

In the present study cytohistological correlation found to be, statistical analysis also shows sensitivity, specificity, positive productive value, negative productive value respectively.

5. Source of Funding

None.

6. Conflict of Interest

None

References

1. Agarwal S. Diagnostic accuracy and role of fine needle aspiration cytology in management of thyroid nodules. J Surg Oncol. 1995;58:168–72.
2. Khanzada TW, Sanmad A, Kumar B, Memon W. The diagnostic value of fine needle aspiration cytology in thyroid nodules. Pak J Otalaryngol. 2009;25:39–41.
3. Ahuja A, Ying M, King W, Metreweli C. A practical approach to ultrasound of cervical lymph nodes. J Laryngol Otol. 1997;111(3):245–6.
4. Ali H, Scanas QJ. Fine Needle Aspiration Biopsy of Salivary Glands. Year Book of Cancer. Acta Cytol. 1986;p. 439–40.
5. Herle AJV. The Thyroid Nodule. Ann Intern Med. 1982;96(2):221–32.
6. Depmek A, Lindholm K. Fine Needle AspirationBiopsy of cystic lesions of the head and neck excluding the thyroid. Acta Cytol. 1990;34:443–8.
7. Gupta M, Gupta S, Gupta VB. Correlation of Fine Needle Aspiration Cytology with Histopathology in the Diagnosis of Thyroid Swellings. Bengal J Otalaryngol Head Neck Surg. 2016;24(2).
8. Guinit MJ, Talwelkar SR, Dhruv GA. Histocytological Correlation Study of Thyroid Gland Lesions. Int J Sci Res. 2015;4:777–80.
9. Bennedbaek FN, Hegedus L. Management of the solitary thyroid nodule: Results of a North American survey. J Clin Endocrinol Metab. 2000;85:2493–8.
10. Chow LS, Gharib H, Goellner JR, Heerden JAV. Nondiagnostic Thyroid Fine-Needle Aspiration Cytology: Management Dilemmas. Thyroid. 2001;11(12):1147–51.
11. Yassa L, Cibas ES, Benson CB, Frates MC, Doubilet PM, Gawande AA. Long-term assessment of a multidisciplinary approach to thyroid nodulesdiagnostic evaluation. Cancer Cytopathol. 2007;25(1):508–16.
12. Applling D, Miller RH. Mycobacterial cervical lymphadenopathy: 1981 update. Update Laryngoscope. 1981;91(8):1259–66.
13. Sisamanis AM, Strong S. Fine Needle Aspiration Biopsy, Diagnosis of Neck Masses. Otos Clin North Am. 1990;13(3).
14. Ashcraft MW, Herle AJV. Management of thyroid nodules. II: Scanning techniques, thyroid suppressive therapy, and fine needle aspiration. Head Neck Surg. 1981;3(4):297–322.
15. Atula TS, Grénman R, Varpula MJ, Kurki TJI, Klemi PJ. Palpation, ultrasound, and ultrasound-guided fine-needle aspiration cytology in the assessment of cervical lymph node status in head and neck cancer patients. Head Neck. 1996;18:545–51.
16. Shere SK, Kulkarni AS, Phulgirikar PP, Anjum S, Patil SP, Bindi R. Correlation of fine needle aspiration cytology with histopathology in diagnosis of thyroid lesions. J Evol Med Dent Sci. 2013;2(26):4826–31.
17. Damle GK, Daharwal AV. AjitVikram Daharwal2 Diagnostic accuracy of fine-needle aspiration cytology in diagnosis of thyroid nodulesInternational Journal of Research in Medical Sciences Damle GK et al. Int J Res Med Sci. 2017;5:106–12.
18. Garg S, Mohan H, Nagarkar N, Handa U. Role of fine needle aspiration cytology in diagnosis and -management of thyroid lesions: A study on 434 patients. J Cytol. 2008;25(1):13–7.
19. Gaggeten CB, Roccagatlinga G, Lowenstein A. The role of fine needle aspiration biopsy cytology in the evaluation of the clinically solitary thyroid nodule. Acta Cytol. 1987;31:595–8.
20. Amata BB, Joshi AR, Singh SK, Panth R, Basnet RB. A study of fine needle aspiration cytology of head and neck masses and their corroboration by histopathology. Postgrad Med J Natl Acad Med Sci. 2009;6.
21. Fernandes H, Souza D, Thejaswini C, N B. The role of fine needle aspiration cytology in palpable head and neck masses. 2009.p. 1719–25.
22. Aramani SS. A Cytohistopathological Correlation of Thyroid Lesions with Critical Evaluation of Discordant Cases: An Experience at a tertiary care Hospital. Acta Cytol. 2005;105(2):71–9.
23. Chandanwale SS, Kumar H, Buch AC, Vimal SS, Soraisham A. Correlation of fine needle aspiration cytology in diagnosis of thyroid nodulesInternational Journal of Research in Medical Sciences Damle GK et al. Int J Res Med Sci. 2017;5:106–12.
24. Mokhtari M, Kumar PV, Hayati K. Fine-needle aspiration study of cystic papillary thyroid carcinoma: Rare cytological findings. J Cytol. 2016;33:120–4.
25. Faquin WC, Cibas ES, Renshaw AA. “Atypical” cells in fine-needle aspiration biopsy specimens of benign thyroid cysts. Cancer. 2005;105(2):71–9.
26. Chandanwale SS, Kumar H, Buch AC, Vimal SS, Soraisham A. Papillary thyroid carcinoma, a diagnostic approach in fine needle aspiration: Review of literature. Clin Cancer Investig J. 2013;2(4):339–43.
27. Tilak V, Dhaded AV, Jam R. Fine needle aspiration cytology of head and neck masses. Indian J Pathol Microbiol. 2002;45(1):23–9.
28. Gupta M, Gupta S, Gupta VB. Correlation of fine needle aspiration cytology with histopathology in the diagnosis of solitary thyroid nodule. Thyroid Res. 2010;3(1). doi:10.1186/1756-9567-3-1
29. Pandey P, Mahajan NC, Dixit A. Fine-needle aspiration of the thyroid: A cytohistologic correlation with critical evaluation of discordant cases. Thyroid Res Pract. 2012;9(2):32–9.
30. Parikh UR, Goswami HM, Shah AM, Mehta NP, Gonsai RN. Fine needle aspiration cytology (FNAC) study of thyroid lesions (study of...
30. Agrawal R, Saxena M, Kumar P. A Study of Fine Needle Aspiration Cytology of Thyroid Lesions with Histopathological Correlation. *Indian J Pathol Oncol*. 2015;7(4):277–283.

31. Oreil SR, Sterrett GF, Walters M, Whitaker D. Manual and atlas of fine-needle aspiration cytology, The thyroid gland. 3rd ed. Churchill Livingstone; 2003.

32. Yassa L, Cibas ES, Benson CB, Frates MC, Doubilet PM, Gawande AA, et al. Long-term assessment of a multidisciplinary approach to thyroid nodule diagnostic evaluation. *Cancer*. 2007;111:508–16.

33. Ravetto C, Colombo L, Dottorini ME. Usefulness of fine-needle aspiration in the diagnosis of thyroid carcinoma. *Cancer*. 2000;90(6):357–63.

34. Amrikachi M, Ramzy I, Rubenfeld S, Wheeler T. Accuracy of fine-needle aspiration of thyroid: a review of 6226 cases and correlation with surgical or clinical outcome. *Arch Pathol Lab Med*. 2001;125:484–8.

35. Baloch ZW, Fleisher S, LiVolsi VA, Gupta PK. Diagnosis of “follicular neoplasm”: a gray zone in thyroid fine-needle aspiration cytology. *Diagn Cytopathol*. 2002;26(1):41–4.

Author biography

Swarupa Ravuri, Assistant Professor

Saritha Karre, Assistant Professor

Venu Patel, Tutor

Jayashankar Erakkambattu, Associate Professor

Cite this article: Ravuri S, Karre S, Patel V, Erukkambattu J. Thyroid lesions reporting using TBSRTC reporting system and cytohistopathological correlation- An experience at a tertiary care hospital. *Indian J Pathol Oncol* 2020;7(4):593-600.