Solution to economic load dispatch using quasi-oppositional based CoDE by considering transmission line losses

B. Vedik¹, Chandan Kumar Shiva² and K. Vamshidhar³

¹Department of Electrical and Electronics Engineering, S R Engineering College, Warangal, Telangana, India. Pin: 506371.
²Department of Electrical and Electronics Engineering, S R University, Warangal, Telangana, India. Pin: 506371.
³Department of Electrical and Electronics Engineering, Sumathi Reddy Institute of Technology for Women, Warangal, Telangana, India. Pin: 506371.

Email: b.vedik@gmail.com

Abstract: The main objective of economic dispatch problem is to optimally allocate the load demand among the generating stations such that there is decrease in production cost of the power generation. In the present paper, a quasi-oppositional based composite differential evolution (QOCoDE) technique is proposed to economic load dispatch (ELD) problem. The suggested method provides optimal solutions by combining various strategies in generating trial vector with suitable control parameter settings. The proposed technique is applied on various generating units by considering fixed boundary conditions and transmission losses. The obtained results are compared with various evolutionary algorithms. The results demonstrate the capability of QOCoDE to provide optimal solutions when compared to other evolutionary techniques.

Keywords: - Economic load dispatch, differential evolution, evolutionary algorithm, fixed boundary constraints.

1. Introduction

In power system operation, ELD problem is one of the most vital constrained optimization problems that distribute the load among the generating units such that the power is generated economically. This ELD problem is highly complex and non-linear input–output characteristics and carries out to allocate power by satisfying various inequality and equality constraints. In literature various conventional techniques such as dynamic programming, lambda iteration technique, and gradient technique has been suggested [1], [2]. However, these conventional techniques are sensitive to initial conditions and frequently converge to local optima [3]. Further, these techniques have an oscillatory response in obtaining solution to solve large scale systems. So as to overcome these shortcomings evolutionary methods have been suggested to solve ED problem in literature.

In [4], an enhanced Hopfield neural network (HNN) technique is suggested to enhance the performance of conventional HNN to solve economic load dispatch problem (ELDP). An artificial bee colony (ABC) technique is proposed by incorporating nonlinearities in cost function to solve ELDP in...
In [6], probability selection ABC (PS-ABC) is presented to solve ELDP by considering various constraints such as transmission losses. The proposed algorithm overcomes the premature convergence of standard ABC technique in obtaining optimum solution by introducing two modifications. The first is by improving the mutation equations and the other is by enhancing the scout bee phase in ABC technique. A pattern search (PS) algorithm is suggested by considering transmission losses, valve point effects, cubic cost functions, multi-area, and environmental dispatch to solve ELDP in [7]. In [8], a particle swarm optimization (PSO) is suggested to solve ELDP. However, this method has slow convergence rate and fall into local optima for high dimensional problems. In [9], [10], a biogeography-based optimization (BBO) technique has been suggested to solve ELDP. The authors in [11] has extended the work suggested in [9] by introducing the concept of oppositional based learning to BBO to enhance the convergence speed of conventional BBO. In [12], the performances of PSO is enhanced by incorporating new features such as bi-population and shake mechanism to solve ELDP problem by considering valve point effects and prohibited operating zones (POZs). In [13], a mutative scale chaos optimization algorithm is presented to solve ELDP by considering the design variables interval of the scale to enhance the process of optimization.

In [14], modified harmonic search algorithm (HSO) (MSHO) is suggested to solve ELDP by hybridizing HSO with PSO. Here the process of HSO is improved by utilizing the velocity based particle updating procedure of PSO algorithm. This process has improved the convergence of the MSHO technique. In [15], the authors extended the ELDP to dynamic ELDP by taking into account of predicted load demand over certain interval of time. This approach is solved using simulated annealing technique to obtain global optimum solution by considering spinning reserve constraint. In [16], an improved exponentially harmony search technique is discussed to improve the performance of standard HS technique to solve static ELDP by considering valve point effect. An enhanced fast evolutionary program technique is discussed by taking into account of consumer load patterns in [17]. Similar to [14], the authors in [1] improved the performance of standard PSO by hybridizing it with conventional ACO to form hybrid PSO-ACO to solve ELDP. The performance of this hybrid technique is verified by applying it to 6-generator unit thermal system by considering various constraints transmission losses, ramp rate limits, and prohibited operating zones. In [18], a multi-objective ELDP is solved by considering both cost and emission dispatch. This multi-objective problem is converted to single objective using weighting methodology. To overcome the disadvantages of conventional genetic algorithm (GA) a directional search GA is suggested to solve ELDP in [2]. In [19], memetic algorithm is developed to solve ELDP. In [20], a modified bat algorithm that enhances the performance of bat algorithm by integrating non-inertia weight and hybridized mutation operation. The efficiency of the technique is tested on 3-unit, 13-unit, and 40-unit test systems. In [3], chaotic electromagnetism like mechanism algorithm (EMA) (CEMA) is operated to solve ELDP by incorporating the chaotic dynamics into conventional EMA. This process helped the EMA to avoid getting trapped into local minima. Further research on ELDP can be found in [21]–[23]. From the above literature it has been observed that researchers have applied various evolutionary techniques to solve ELDP by either improving the conventional evolutionary techniques or applying the new technique to obtain minimum cost. However, it can be observed that the performance of these techniques is highly influenced by control parameters to obtain optimum solution. In order to overcome this drawback a quasi-oppositional based composite differential evolution (QOCoDE) is proposed to solve ELDP. To validate the efficiency, the proposed method is applied on 3-unit, 18-unit, and 40 unit test systems both by considering without and with transmission losses. The rest of the paper is organized as follows: ELDP problem formulation is discussed in Section 2. Solution methodology is explicated in Section 3. Results and discussion is elucidated in Section 4. Finally, conclusion is drawn in Section 5.

2. Economic load dispatch problem formulation
Economic load dispatch problem is expressed as a linear optimization problem where the objective is to reduce the total fuel cost production while satisfying the power demand and generator operating
constraints of the generating units [1], [6]. For instance, the generation cost F of an n generating unit system need to be minimized while supplying the load demand P_D of a given power system. This can be expressed mathematically as follows:

$$\min \, F = \sum_{i=1}^{n} C_i(P_i)$$

$$\sum_{i=1}^{n} P_i = P_D$$

(1)

Where, $C_i(P_i)$ is the cost incurred by the i^{th} unit in generating power P_i and n represents the number of generating units.

The smooth fuel cost function can be represented as a quadratic polynomial of generated power which is given below.

$$\sum_{i=1}^{n} C_i(P_i) = \sum_{i=1}^{n} a_i + b_i P_i + c_i P_i^2$$

(2)

Where, a_i, b_i, and c_i represent the cost coefficients of the i^{th} unit.

Further, the total generated power should not only consider supplying required load demand but also the transmission line losses (TLLs) associated with it [1], [6]. In this case the power balance equation is expressed as

$$\left(\sum_{i=1}^{n} P_i\right) - P_D - P_L = 0$$

(3)

Where, P_L denotes the total TLLs.

These losses are generally calculated using power flow analysis or using Kron’s loss coefficients shown below.

$$P_L = \sum_{i=1}^{n} \sum_{j=1}^{n} P_i B_{ij} P_j + \sum_{i=1}^{n} P_i B_{0i} + B_{00}$$

(4)

Where, B_{ij}, B_{0i}, and B_{00} represent the loss $B –$ coefficients of the given power system network, B_{ij} is the loss coefficient ij^{th} element of the symmetric matrix B, B_{0i} is the loss coefficient vector of i^{th} element, and B_{00} is the loss coefficient constant.

Further, the generated power by each unit should satisfy the maximum P_{max} and minimum P_{min} limits of each generating unit.

$$P_i^{\text{min}} \leq P_i \leq P_i^{\text{max}}, \text{ for } i = 1, 2, 3, \ldots, n.$$

(5)

The equations (2) to (5) makes the ELDP as simplified approximate problem and the characteristic cost curve is considered to be piecewise linear function.

3. Solution methodology using quasi-oppositional based composite differential evolution algorithm

Alike all evolutionary techniques, the initial population of QOCoDE of size NP is randomly generated by sampling across the feasible search space in the following way [24].

$$z_i = \{z_{i,1}, z_{i,2}, \ldots, z_{i,\phi}\}, \quad i = 1, 2, \ldots, NP$$

(6)
Each individual of the parent population is called target vector. Now, for each target vector of the current population another vector known as mutant vector \(v_i = \{v_{i,1}, v_{i,2}, \ldots, v_{i,n}\} \) is obtained by performing difference vector mutation using 3 dissimilar trial vector generation strategies and 3 control parameter settings to form the candidate approach and the parameter pools, respectively [24]. The following candidate parameter pool is considered in the present work.

1. \([F = 1, CR = 0.1]\);
2. \([F = 1, CR = 0.9]\);
3. \([F = 0.8, CR = 0.2]\);

Further, the following three candidate strategies are considered to perform difference vector mutation vectors [24]. Then, binomial crossover process is accomplished between mutant vector and target vector to obtain a trial vector \(u_i \).

1. "\(rand/1/bin\)"
 \[
 u_{i,j} = \begin{cases}
 z_{i,j} + F.(z_{i,j} - z_{r,j}), & \text{if } \text{rand} < CR \text{ or } j = j_{\text{rand}} \\
 z_{i,j} & \text{otherwise}
 \end{cases}
 \]
 \((7) \)

2. "\(rand/2/bin\)"
 \[
 u_{i,j} = \begin{cases}
 z_{1,j} + F.(z_{2,j} - z_{r,j}) + F.(z_{4,j} - z_{5,j}), & \text{if } \text{rand} < CR \text{ or } j = j_{\text{rand}} \\
 z_{i,j} & \text{otherwise}
 \end{cases}
 \]
 \((8) \)

3. "\(current-to-rand/1\)"
 \[
 u_{i,j} = z_i + \text{rand}.(z_{1,i} - z_j) + F.(z_{2j} - z_{r,j})
 \]
 \((9) \)

It is to be noted here that binomial crossover is not performed on third mutation strategy.

After obtaining the three trial vectors for each mutation vector, the best fittest trial vector is selected. Now after obtaining \(NP \) trial vectors, selection operation is performed between trial vector and target vector [24]. The best among trial vector and target vector is selected using equation as shown in \((10) \). This process repeats until the stopping criteria have been achieved.

\[
\hat{z}_i = \begin{cases}
 u_i & \text{if } f(u_i) \leq f(z_i) \\
 z_i & \text{otherwise}
\end{cases}
\]
\((10) \)

After performing selection operation, quasi-opposition based learning (QOBL) concept is applied on each individual of the population. To perform QOBL, opposite vector to the present vector and mean of the search space are required to be calculated [25]-[30]. Here, the opposite vector to the given vector and the mean of the search space are calculated in the following way.

If \(z_j(z_{j1}, z_{j2}, \ldots, z_{jd}) \) is a vector comprising of \(d \)-real numbers whose upper and lower limits are \(z_j = [z_{j1}^{\text{min}}, z_{j1}^{\text{max}}] \) \(\forall j \in \{1, 2, \ldots, d\} \) then its opposite vector \(oz_j(oz_{j1}, oz_{j2}, \ldots, oz_{jd}) \) is obtained using \((11) \).

\[
oz_j = z_{j1}^{\text{max}} + z_{j1}^{\text{max}} - z_j
\]
\((11) \)
The mean \((m_z)\) of the search space limit is calculated as:

\[
m_z = \frac{z_{\min} + z_{\max}}{2}
\]

Mathematically, the QOBL is obtained using (13)

\[
QOZ_j = \text{rand} \left(\frac{z_{j\min} + z_{j\max}}{2} \right) + z_{j\min} - z_j
\]

Now, each vector after performing selection operation is compared with the \(QOZ\) vector obtained above to select the best individual for next generation or iteration.

4. Results and discussion

The proposed QOCoDE methodology to solve ELDP has been programmed in MATLAB 8.1a. The efficiency and reliability to attain optimal solution has been tested on four test systems, namely 3 units, 18 units, 20 units, and 40 units. Further, two case studies namely ELDP with and without transmission losses has been considered. The results thus obtained using the proposed QOCoDE method is compared with directional search genetic algorithm (DSGA) and Hopfield Neural network (HNN) proposed in the literature.

4.1. Case Study 1: Without Transmission loss

Test Case 1: The optimum generated power for unit 3 system against two different load demands, i.e. 1080 MW and 1140 MW has shown in Table 1. The cost coefficients \((a, b, c)\) and the B-Loss coefficients are taken from [2]. Table 1 consists of five columns. Column 1 represents the unit number, Columns 2 and 3 represent the optimum power generated using the proposed QOCoDE and DSGA for 1080 MW load demand, and Columns 4 and 5 represent the optimum power generated using the proposed QOCoDE and DSGA for 1140 MW load demand. From the results it is observed that the suggested method provides better results when compared to DSGA for all the load demands. For example, for load demand of 1140 MW the total cost obtained using the proposed QOCoDE is 10915.16 \$/hr which is less than the total cost obtained using the DSGA, i.e. 10915.41 \$/hr. This shows the efficiency of the proposed method to obtain optimum power generation.

Unit	Load	DSGA [2]	Proposed QOCoDE	DSGA [2]	Proposed QOCoDE
	1080 (MW)	1140 (MW)			
1	517.4950	517.4867	562.8100	562.8016	
2	399.9890	162.5133	399.9800	177.1984	
3	162.5156	400	177.2000	400	
TC (\$/hr)	10338.7700	10338.7165	10915.4100	10915.1611	

Test Case 2: The optimum generated power for unit 18 system against three different load demands, i.e. 346.576 MW, 368.237 MW, and 411.559 MW has shown in Table 2. The cost coefficients \((a, b, c)\) and the B-Loss coefficients are taken from [2]. Table 2 consists of seven columns. Column 1 represents the unit number, Columns 2 and 3 represent the optimum power generated using the proposed QOCoDE and DSGA for 346.576 MW load demand, Columns 4 and 5 represent the optimum power generated using the proposed QOCoDE and DSGA for 368.237 MW load demand, and Columns 6 and 7 represent the optimum power generated using the proposed QOCoDE and
DSGA for 411.559 MW load demand. From the results it is observed that the suggested method provides better results when compared to DSGA for all the load demands. For example, for load demand of 411.559 MW the total cost obtained using the proposed QOCoDE is 29729.2511 $/hr which is less than the total cost obtained using the DSGA, i.e. 29731.39 $/hr. Further, from Table 3 it can also observe that the proposed method provides less total generation cost compared to both GA and DSGA. This shows the efficiency of the proposed method to obtain optimum power generation.

Unit	Load	DSGA [2]	Proposed QOCoDE	DSGA [2]	Proposed QOCoDE	DSGA [2]	Proposed QOCoDE
1	15	45	45	45	45	45	45
2	25	25	25	25	25	25	25
3	25	25	25	25	25	25	25
4	25	25	25	25	25	25	25
5	25	25	25	25	25	25	25
6	3	4.6600	4.6688	13.7000	13.7033		
7	3	4.6600	4.6678	13.7000	13.7114		
8	12.2800	12.2800	12.2800	12.2800	12.2800		
9	12.2800	12.2800	12.2800	12.2800	12.2800		
10	12.2800	12.2800	12.2800	12.2800	12.2800		
11	12.2800	12.2800	12.2800	12.2800	12.2800		
12	20.7200	20.7228	23.2400	23.2454	24		
13	3	3	6.4120	6.4141			
14	30.8600	30.8701	35.0500	35.0564	36.2000		
15	32.3600	32.3654	36.2900	36.2966	45		
16	33.2400	33.2484	37	37	37		
17	33.2400	33.2492	37.1800	37.1820	45		
18	3	3	6.4120	6.4102			
TC ($/hr)	23855.2700	23853.4709	25710.4400	25708.8234	29731.3900	29729.2511	

Table 3. Comparison of optimal power generation cost for unit 18 system with 346.576 MW

Methods	GA [2]	DSGA [2]	Proposed QOCoDE
Total Generation Cost ($/hr)	23857.54	23855.27	23853.4709

Test Case 3: The optimum generated power for unit 40 system against load demand of 9500 MW has shown in Table 4. The cost coefficients \((a, b, c)\) and the B-Loss coefficients are taken from [2]. Table 4 consists of three columns. Column 1 represents the unit number, Columns 2 and 3 represent the optimum power generated using the proposed QOCoDE and DSGA for 9500 MW load demand. From the results it is observed that the suggested method provides better results when compared to DSGA for all the load demands. For example, for load demand of 9500 MW the total cost obtained using the proposed QOCoDE is 107247.6947 $/hr which is less than the total cost obtained using the DSGA, i.e. 128424.26 $/hr. Further, the obtained results are also compared with HNN and classical method in Table 5. From this table it can be seen that the proposed QOCoDE offers better results. This shows the efficiency of the proposed method to obtain optimum power generation.
Table 4. Comparison of optimal power generation levels for unit 40 system

Unit	Load	Optimal Power Generation (MW)	
		DSGA [2]	**Proposed QOCoDE**
1	80	125	
2	120	114	
3	190	113.9999	
4	42	89.7922	
5	42	134.3822	
6	140	97	
7	300	116.2345	
8	300	299.9999	
9	300	299.9999	
10	152.4940	300	
11	171.5710	130	
12	171.9840	94	
13	267.4800	94	
14	393.0840	125.0063	
15	395.1750	125.0005	
16	395.1750	125.0012	
17	395.1750	437.2447	
18	500	440.2112	
19	500	437.6536	
20	550	437.1760	
21	550	549.9999	
22	550	549.9999	
23	550	549.9999	
24	550	550	
25	550	549.9997	
26	550	549.9999	
27	550	549.9999	
28	10.9520	10	
29	10.9520	10	
30	10.9520	97	
31	20	190	
32	20	190	
33	20	190	
34	20	199.9999	
35	18	200	
36	18	200	
37	20	110	
38	25	110	
39	25	110	
40	25	437.2988	

| TC ($/hr) | 128424.3000 | 107247.6947 |
Table 5. Comparison of optimal power generation cost for unit 40 system

No of Units	Load (MW)	DSGA [2]	Classical Method [9]	Hopfield Neural Network [9]	Proposed QOCDE
40	9500	128.4	128.4	129.1	107.247

4.2. Case Study 2: With Transmission loss

The optimum generated power for unit 20 system against load demand of 2500 MW has shown in Table 6. The cost coefficients \((a_i, b_i, c_i)\) and the B-Loss coefficients are taken from [4]. Table 6 consists of four columns. Column 1 represents the unit number, Columns 2, 3 and 4 represent the optimum power generated using the NR, HNN, and proposed QOCODE for 2500 MW load demand. From the results it is observed that the suggested method provides better results when compared to NR and HNN. For example, for load demand of 2500 MW the total cost obtained using the proposed QOCODE is 62,451.5987 $/hr which is less than the total cost obtained using the NR and HNN, i.e. 62,489.5 $/hr and 62,610 $/hr, respectively. Further, it can be observed that total losses obtained using the proposed QOCODE is less when compared to other methods. This shows the reliability of the proposed method to obtain optimum power generation.

Table 6. Comparison of optimal power generation levels for unit 20 system

Unit	Method	Newton-Raphson [9]	HNN [9]	Proposed QOCODE
1	524.0166	403.3043	512.2680	
2	160.9879	134.4348	169.0413	
3	130.2168	134.4348	126.5931	
4	100.4129	134.4348	102.5626	
5	115.2559	107.5478	113.6593	
6	78.7385	67.2174	73.0546	
7	118.1765	84.0217	114.7470	
8	18.939	100.8261	116.2247	
9	104.7037	134.4348	100.5933	
10	113.7706	100.8261	105.7405	
11	148.7055	201.6522	150.3420	
12	295.9623	336.0869	292.0552	
13	118.02	107.5478	120.8808	
14	35.4054	87.3826	30.8607	
15	121.372	124.3522	115.6681	
16	36.0465	53.7739	36.8531	
17	72.453	57.1348	67.9272	
18	42.2129	80.6609	87.8393	
19	102.6087	80.6609	100.6815	
20	55.756	67.2174	54.1207	
TL	93.7615	97.952	91.7132	
TC ($/hr)	62489.5	62610	62451.5987	

5. Conclusions

In the present work, QOCODE has been applied to solve the ELDP by considering various test systems and case studies. The proposed method provides optimal solutions by combining three different mutation vector strategies in generating trial vector along with three different scaling factor and
crossover rate control parameter settings. It has been observed from the results that the proposed method has effectively optimizes power generation that should be scheduled across different generators. It is shown that the proposed QOCoDE method is quite cost-effective and transmission loss saving when compared to GA, DSGA, NR, and HNN algorithms. In future, various operating constraints such as valve point loading, prohibited operating zones, and ramp rate limits will be considered.

6. Reference
[1] Santra D, Sarker K, Mukherjee A and Mondal A 2016 Hybrid PSO-ACO technique to solve multi-constraint economic load dispatch problems for 6-generator system Int J Comput Appl. 38(2-3) 96-115 https://doi.org/10.1080/1206212X.2016.1218241
[2] Theerthamalai A and Maheswarapu S 2008 Directional search genetic algorithm applications to economic dispatch of thermal units Int J Comput Methods Eng Sci Mech. 9(4) 211-6 https://doi.org/10.1080/15502280802069954
[3] Zhang Z 2013 Chaotic electromagnetism-like mechanism algorithm for economic load dispatch of power system J. Exp. Theor. Artif. Intell. 25(4) 493-502 https://doi.org/10.1080/0952813X.2013.782349
[4] Abdelaziz A Y, Mekhamer S F, Badr M A L and Kamh M Z 2008 Economic dispatch using an enhanced Hopfield neural network Electr Power Components Syst. 36(7) 719-732 https://doi.org/10.1080/1532500701881969
[5] Hemamalini S and Simon S P 2010 Artificial bee colony algorithm for economic load dispatch problem with non-smooth cost functions Electr Power Components Syst. 38(7) 786-803 https://doi.org/10.1080/15325000903489710
[6] Abro A G and Mohamad-Saleh J 2014 Enhanced probability-selection artificial bee colony algorithm for economic load dispatch: A comprehensive analysis Eng Optim. 46(10) 1315-30 https://doi.org/10.1080/0305215X.2013.836639
[7] Al-Sumait J S, Sykulski J K and Al-Othman A K 2008 Solution of different types of economic load dispatch problems using a pattern search method Electr Power Components Syst. 36(3) 250-265 https://doi.org/10.1080/1532500701603892
[8] Arididis V 2008 Particle swarm optimization (PSO) techniques solving economic load dispatch (ELD) problem J Stat Manag Syst. 11(4) 761-769 https://doi.org/10.1080/09720510.2008.10701341
[9] Bhattacharya A and Chattopadhyay P K 2010 Solving complex economic load dispatch problems using biogeography-based optimization Expert Syst Appl. 37(5) 3605-15 https://doi.org/10.1016/j.eswa.2009.10.031
[10] Roy P K, Ghoshal S P and Thakur S S 2010 Biogeography-based optimization for economic load dispatch problems Electr Power Components Syst. 38(2) 166-181 https://doi.org/10.1080/15325000903273379
[11] Bhattacharya A and Chattopadhyay P K 2010 Solution of economic power dispatch problems using oppositional biogeography-based optimization Electr Power Components Syst. 38(10) 1139-60 https://doi.org/10.1080/15325001003652934
[12] Cagnina L C, Esquivel S C and Coello C A C 2011 A fast particle swarm algorithm for solving smooth and non-smooth economic dispatch problems Eng Optim. 43(5) 485-505 https://doi.org/10.1080/0305215X.2010.497186
[13] Han F and Lu Q S 2008 An improved chaos optimization algorithm and its application in the economic load dispatch problem Int J Comput Math. 85(6) 969-982 https://doi.org/10.1080/00207160701305388
[14] Pandi V R, Panigrahi B K, Bansal R C, Das S and Mohapatra A 2011. Economic load dispatch using hybrid swarm intelligence based harmony search algorithm. Electr Power Components Syst. 39(8):751-767 https://doi.org/10.1080/15325008.2010.541411
[15] Panigrahi C K, Chattopadhyay P K, Chakrabarti R N and Basu M 2006 Simulated annealing technique for dynamic economic dispatch Electr Power Components Syst. 34(5) 577-586 https://doi.org/10.1080/1532500050360843

[16] Rahmani Dashti D, Ghabeli A and Hosseini S M 2016 Solving static economic load dispatch using improved exponential harmony search optimisation Aust J Electr Electron Eng. 13(2) 142-150 https://doi.org/10.1080/1448837X.2016.1138841

[17] Ravi G, Chakrabarti R and Choudhuri S 2006 Nonconvex economic dispatch with heuristic load patterns using improved fast evolutionary program Electr Power Components Syst. 34(1) 37-45 https://doi.org/10.1080/15325000691001430

[18] Singh L and Dhillon J S 2008 Interactive fuzzy decision making for multiobjective load dispatch Int J Sustain Energy. 27(1) 15-27 https://doi.org/10.1080/14786450802042943

[19] Vlachos A, Petikas I and Kyriakides S 2011 Economic load dispatch (ELD) problem based on a memetic algorithm (MA) J Stat Manag Syst. 14(5) 975-993 https://doi.org/10.1080/09720510.2011.10701596

[20] Wang Y, Cai Z and Zhang Q 2011 Differential evolution with composite trial vector generation strategies and control parameters IEEE Trans Evol Comput. 15(1) 55-66 https://doi.org/10.1109/TEVC.2010.2087271

[21] Abbas G, Gu J, Farooq U, Raza A, Asad M U and El-Hawary M E 2017 Solution of an economic dispatch problem through particle swarm optimization: A detailed survey - Part I IEEE Access 5 24426-45 https://doi.org/10.1109/ACCESS.2017.2723862

[22] Abbas G, Gu J, Farooq U, Raza A, Asad M U and El-Hawary M E 2017 Solution of an economic dispatch problem through particle swarm optimization: A detailed survey - Part II IEEE Access. 5 24426-45 doi:10.1109/ACCESS.2017.2768522

[23] Ganguly S, Shiva C K and Mukherjee V 2018 Frequency stabilization of isolated and grid connected hybrid power system models J Energy Storage. 19 145-159 https://doi.org/10.1016/j.est.2018.07.014

[24] Vedik B, Shiva C K and Harish P 2020 Reverse harmonic load flow analysis using an evolutionary technique SN Appl. Sci. 2 1584 https://doi.org/10.1007/s42452-020-03408-4

[25] Vedik B, Naveen P and Shiva C K 2020 A novel disruption based symbiotic organisms search to solve economic dispatch Evol. Intel. https://doi.org/10.1007/s12065-020-00506-5