CONVERGENCE RATES OF THE ALLEN-CAHN EQUATION TO MEAN CURVATURE FLOW: A SHORT PROOF BASED ON RELATIVE ENTROPIES

JULIAN FISCHER, TIM LAUX, AND THILO SIMON

Abstract. We give a short and self-contained proof for rates of convergence of the Allen-Cahn equation towards mean curvature flow, assuming that a classical (smooth) solution to the latter exists and starting from well-prepared initial data. Our approach is based on a relative entropy technique. In particular, it does not require a stability analysis for the linearized Allen-Cahn operator. As our analysis also does not rely on the comparison principle, we expect it to be applicable to more complex equations and systems.

1. Introduction

The Allen-Cahn equation

$$\frac{d}{dt} u_\varepsilon = \Delta u_\varepsilon - \frac{1}{\varepsilon^2} W'(u_\varepsilon)$$

with a suitable double-well potential W like for instance $W(s) = c (1 - s^2)^2$, $c > 0$ – is the most natural diffuse-interface approximation for (two-phase) mean curvature flow: It is well-known that in the limit of vanishing interface width $\varepsilon \to 0$, the solutions u_ε to the Allen-Cahn equation (1) converge to a characteristic function $\chi : \mathbb{R}^d \times [0, T] \to \{-1, 1\}$ whose interface evolves by motion by mean curvature. For a proof of this fact in the framework of Brakke solutions to mean curvature flow, we refer to [8], while for the convergence towards the viscosity solution of the level-set formulation under the assumption of non-fattening we refer to [5]. Provided that the total energy converges in the limit $\varepsilon \to 0$, one may prove that the limit is a distributional solution [10]. For a general compactness statement using the gradient-flow structure of (1) and the identification of the limit in the radially symmetric case, we refer the reader to [2]. Under the assumption of the existence of a smooth limiting evolution, rates of convergence may be derived based on a strategy of matched asymptotic expansions and the stability of the linearized Allen-Cahn operator [3, 4].

The Allen-Cahn equation corresponds to the L^2 gradient flow of the Ginzburg-Landau energy functional

$$E_\varepsilon[v] := \int_{\mathbb{R}^d} \frac{\varepsilon}{2} |\nabla v|^2 + \frac{1}{\varepsilon} W(v) \, dx.$$

Solutions to the Allen-Cahn equation (1) satisfy the energy dissipation estimate

$$\frac{d}{dt} \int_{\mathbb{R}^d} \frac{\varepsilon}{2} |\nabla u_\varepsilon|^2 + \frac{1}{\varepsilon} W(u_\varepsilon) \, dx = - \int_{\mathbb{R}^d} \frac{1}{\varepsilon} |\varepsilon \Delta u_\varepsilon - \frac{1}{\varepsilon} W'(u_\varepsilon)|^2 \, dx.$$
In the present work, we pursue a strategy of deriving a quantitative convergence result in the sharp-interface limit \(\varepsilon \to 0 \) based purely on the energy dissipation structure. In particular, we give a short proof for the following quantitative convergence of solutions of the Allen-Cahn equation towards a smooth solution of mean curvature flow.

Theorem 1. Let \(d \in \mathbb{N} \). Let \(I(t) \subset \mathbb{R}^d \), \(t \in [0, T] \), be a compact interface \(I(t) = \partial \Omega(t) \) evolving smoothly by mean curvature, and let \(\chi : \mathbb{R}^d \times [0, T] \to \{-1, 1\} \) be the corresponding phase indicator function

\[
\chi(x, t) := \begin{cases}
1 & \text{if } x \in \Omega(t), \\
-1 & \text{if } x \notin \Omega(t).
\end{cases}
\]

Let \(W \) be a standard double-well potential as described below and denote by \(\theta \) the corresponding one-dimensional interface profile. Let \(u_\varepsilon \) be the solution to the Allen-Cahn equation (1) with initial data given by \(u_\varepsilon(x, 0) = \theta(\varepsilon^{-1} \text{dist}^+(x, I(0))) \), where \(\text{dist}^+(x, I(0)) \) is the signed distance function to \(I(0) \) with the convention \(\text{dist}^+(x, I(0)) > 0 \) for \(x \in \Omega(0) \). Define \(\psi_\varepsilon(x, t) := \int_0^{u_\varepsilon(x, t)} \sqrt{2W(s)} \, ds \). Then the error estimate

\[
\sup_{t \in [0, T]} ||\psi_\varepsilon(\cdot, t) - \chi(\cdot, t)||_{L^1(\mathbb{R}^d)} \leq C(d, T, (I(t))_{t \in [0, T]}) \varepsilon
\]

holds.

We note that this error estimate is of optimal order, as \(\varepsilon \) is the typical width of the diffuse interface in the Allen-Cahn approximation (i.e. the typical width of the region in which the function \(\psi_\varepsilon \) takes values in the range \([-1 + \delta, 1 - \delta]\) for any fixed \(\delta > 0 \)).

The assumptions required for the double-well potential \(W \) are standard: We require \(W \) to satisfy \(W(1) = W(-1) = 0 \) and \(W(s) \geq c \min\{|s-1|^2, |s+1|^2\} \); furthermore, we require \(W \) to be twice continuously differentiable, symmetric around the origin, and subject to the normalization \(\int_{-1}^{1} \sqrt{2W(s)} \, ds = 2 \). The simplest example is the normalized standard double-well potential \(W(s) := \frac{2}{\sqrt{\pi}} (1 - s^2)^2 \). Under these assumptions, we may define the one-dimensional equilibrium profile \(\theta : \mathbb{R} \to \mathbb{R} \) to be the unique odd solution of the ODE \(\theta'(s) = \sqrt{2W(\theta(s))} \) with boundary conditions \(\theta(\pm \infty) = \pm 1 \); the profile \(\theta \) then approaches its boundary values \(\pm 1 \) at \(\pm \infty \) with an exponential rate, see [11].

As our quantitative convergence analysis does not rely on the comparison principle, it may be applicable to more complex models, such as systems of Navier-Stokes-Allen-Cahn type [1]; note that a weak-strong uniqueness theorem for the two-fluid free boundary problem for the Navier-Stokes equation (i.e. the corresponding sharp-interface model) has already been obtained in [6]. We note that a relative entropy concept related to the one in [6] had already been employed by Jerrard and Smets [9] to deduce weak-strong uniqueness of solutions to binormal curvature flow. In the forthcoming work [7], we employ an energy-based strategy to deduce a weak-strong uniqueness theorem for multiphase mean curvature flow.

2. Definition of the Relative Energy and Gronwall Estimate

2.1. Extending the unit normal vector field of the surface evolving by mean curvature.

Let \(I = I(t) \) be a surface that evolves smoothly by motion by mean curvature. Fix \(r_c > 0 \) small enough depending on \((I(t))_{t \in [0,T]}\). For each
For instance, one can define \(\eta(s) := (1 - cr^2 s^2)\tilde{\eta}(s) \), where \(\tilde{\eta} \) is a standard cut-off which is identically 1 in a neighborhood of 0.

To see that (6a) and (6b) hold, one makes use of the formulas \(n_I(x) = \nabla \text{dist}^\pm(x, I) \) and \(\partial_t \text{dist}^\pm(x, I) = -H_I \cdot n_I(P_Ix) \) valid in a neighborhood of \(I(t) \). Formula (6c) is an immediate consequence of the equality \(H_I = -(\nabla \cdot n_I)n_I \) valid on the interface \(I(t) \) and the Lipschitz continuity of both sides of the equation.

2.2. The relative energy inequality.

Our argument is based on a relative energy method. As the Modica-Mortola trick will play an important role in the definition of the relative energy, we introduce the function

\[
\psi_\varepsilon(x, t) := \int_0^{u_\varepsilon(x, t)} \sqrt{2W(s)} \, ds.
\]

Given a smooth solution \(u_\varepsilon \) to the Allen-Cahn equation (1) and a surface \(I(t) \) which evolves smoothly by mean curvature flow, we define the relative energy \(E[u_\varepsilon|I] \) as

\[
E[u_\varepsilon|I] := \int_{\mathbb{R}^d} \frac{\varepsilon}{2} |\nabla u_\varepsilon|^2 + \frac{1}{\varepsilon} W(u_\varepsilon) - \xi \cdot \nabla \psi_\varepsilon \, dx.
\]

Introducing the short-hand notation

\[
n_\varepsilon := \frac{\nabla u_\varepsilon}{|\nabla u_\varepsilon|}
\]

(with \(n_\varepsilon(x, t) \in \mathbb{S}^{d-1} \) arbitrary but fixed in case \(|\nabla u_\varepsilon| = 0 \)) and writing

\[
E[u_\varepsilon|I] := \int_{\mathbb{R}^d} \frac{\varepsilon}{2} |\nabla u_\varepsilon|^2 + \frac{1}{\varepsilon} W(u_\varepsilon) - |\nabla \psi_\varepsilon| \, dx + \int_{\mathbb{R}^d} (1 - \xi \cdot n_\varepsilon)|\nabla \psi_\varepsilon| \, dx,
\]
we see that the relative energy consists of two contributions: The first term
\[
\int_{\mathbb{R}^d} \frac{\varepsilon}{2} |\nabla u_\varepsilon|^2 + \frac{1}{\varepsilon} W(u_\varepsilon) - |\nabla \psi_\varepsilon| \, dx = \int_{\mathbb{R}^d} \frac{1}{2} \sqrt{\varepsilon} |\nabla u_\varepsilon| - \frac{1}{\sqrt{\varepsilon}} \sqrt{2 W(u_\varepsilon)} \, dx
\]
controls the local lack of equipartition of energy between the terms \(\frac{\varepsilon}{2} |\nabla u_\varepsilon|^2\) and \(\frac{1}{\varepsilon} W(u_\varepsilon)\), while the second term
\[
\int_{\mathbb{R}^d} (1 - \xi \cdot n_\varepsilon) |\nabla \psi_\varepsilon| \, dx \geq \frac{1}{2} \int_{\mathbb{R}^d} |n_\varepsilon - \xi|^2 |\nabla \psi_\varepsilon| \, dx
\]
controls the local deviation of the normals \(n_\varepsilon\) and \(n_I\). Note that the latter term also controls the distance to the interface \(I(t)\) (since \(|\xi| \leq \max\{1 - c \text{dist}^2(x, I), 0\}\).

We furthermore introduce the notation
\[
H_\varepsilon := -\left(\varepsilon \Delta u_\varepsilon - \frac{1}{\varepsilon} W'(u_\varepsilon)\right) \frac{\nabla u_\varepsilon}{|\nabla u_\varepsilon|},
\]
motivated by the fact that \(H_\varepsilon\) will play a role of a curvature vector.

The key step in our analysis is the following Gronwall-type estimate for the relative energy.

Theorem 2. Let \(I(t), t \in [0, T]\), be an interface evolving smoothly by mean curvature. Let \(u_\varepsilon\) be a solution to the Allen-Cahn equation (11) with initial data given by \(u_\varepsilon(x, 0) = \theta(\varepsilon^{-1} \text{dist}^2(x, I(0)))\). Then for any \(t \in [0, T]\) the estimate
\[
\frac{d}{dt} E[u_\varepsilon|I] + \int_{\mathbb{R}^d} \frac{1}{4\varepsilon} |H_\varepsilon - H_I| |\nabla u_\varepsilon|^2 + \frac{1}{4\varepsilon} |n_\varepsilon \cdot H_\varepsilon - (-\nabla \cdot \xi) \sqrt{2 W(u_\varepsilon)}|^2 \, dx \\
\leq C(d, I(t)) E[u_\varepsilon|I]
\]
holds.

2.3. Coercivity properties of the relative energy functional.

For the proof of the Gronwall-type inequality of Theorem 2 we shall need the following coercivity properties of the relative energy.

Lemma 3. We have the estimates
\[
\begin{align*}
(10a) & \quad \int_{\mathbb{R}^d} \left(\sqrt{\varepsilon} |\nabla u_\varepsilon| - \frac{1}{\sqrt{\varepsilon}} \sqrt{2 W(u_\varepsilon)}\right)^2 \, dx \leq 2E[u_\varepsilon|I], \\
(10b) & \quad \int_{\mathbb{R}^d} |n_\varepsilon - \xi|^2 |\nabla \psi_\varepsilon| \, dx \leq 2E[u_\varepsilon|I], \\
(10c) & \quad \int_{\mathbb{R}^d} |n_\varepsilon - \xi|^2 \varepsilon |\nabla u_\varepsilon|^2 \, dx \leq 12E[u_\varepsilon|I], \\
(10d) & \quad \int_{\mathbb{R}^d} \min\{\text{dist}^2(x, I), 1\} \left(\frac{\varepsilon}{2} |\nabla u_\varepsilon|^2 + \frac{1}{\varepsilon} W(u_\varepsilon)\right) \, dx \leq CE[u_\varepsilon|I].
\end{align*}
\]

Proof. We complete the square to get
\[
E[u_\varepsilon|I] = \int_{\mathbb{R}^d} \frac{1}{2} \left(\sqrt{\varepsilon} |\nabla u_\varepsilon| - \frac{1}{\sqrt{\varepsilon}} \sqrt{2 W(u_\varepsilon)}\right)^2 + (1 - \xi \cdot n_\varepsilon) |\nabla \psi_\varepsilon| \, dx.
\]
In particular, we directly obtain (10a) and (10b) by \(|\xi| \leq 1\). By the property (5a) of the cutoff \(\eta\) (and hence \(1 - \xi \cdot n_\varepsilon \geq c \varepsilon \text{dist}^2(x, I)\)), we deduce (10d) with \(|\nabla \psi_\varepsilon|\) instead of the energy density, which we may replace upon using (10a).
Lemma 4. Let \(u_\varepsilon \) be a solution to the Allen-Cahn equation \((1)\) and let \(I = I(t) \) be a smooth solution to mean curvature flow. Let \(\xi \) be as defined in \((3)\). The time evolution of the relative energy functional is then given by

\[
\frac{d}{dt} E[u_\varepsilon | I] = - \int_{\mathbb{R}^d} \frac{1}{2\varepsilon} |H_\varepsilon - H \varepsilon - \xi| \varepsilon |v_\varepsilon| |H_\varepsilon - (\nabla \cdot \xi) \sqrt{2W(u_\varepsilon)}|^2 dx \\
+ \int_{\mathbb{R}^d} |H_\varepsilon| \frac{\varepsilon}{2} |v_\varepsilon|^2 + |\nabla \cdot \xi| \varepsilon |W_\varepsilon + H_\varepsilon \cdot n_\varepsilon (\nabla \cdot \xi)| \varepsilon |v_\varepsilon|^2 dx \\
+ \int_{\mathbb{R}^d} \nabla \cdot H_\varepsilon \left(\frac{\varepsilon}{2} |v_\varepsilon|^2 + \frac{1}{\varepsilon} W(u_\varepsilon) - |\nabla \psi_\varepsilon| \right) dx \\
- \int_{\mathbb{R}^d} \nabla H_\varepsilon : n_\varepsilon \otimes n_\varepsilon (\varepsilon |v_\varepsilon|^2 - |\nabla \psi_\varepsilon|) dx \\
- \int_{\mathbb{R}^d} \nabla H_\varepsilon : (n_\varepsilon - \xi) \otimes (n_\varepsilon - \xi)| \nabla \psi_\varepsilon| dx \\
+ \int_{\mathbb{R}^d} \nabla \cdot H_\varepsilon (1 - \xi \cdot n_\varepsilon) | \nabla \psi_\varepsilon| dx \\
- \int_{\mathbb{R}^d} |\nabla \psi_\varepsilon|(n_\varepsilon - \xi) \cdot \left(\frac{d}{dt} \xi + (H_\varepsilon \cdot \nabla) \xi + (\nabla H_\varepsilon) \right) dx \\
- \int_{\mathbb{R}^d} |\nabla \psi_\varepsilon| \xi \cdot \left(\frac{d}{dt} \xi + (H_\varepsilon \cdot \nabla) \xi \right) dx.
\]

Proof. By direct computation, we obtain

\[
\frac{d}{dt} E[u_\varepsilon | I] = \frac{d}{dt} \int_{\mathbb{R}^d} \frac{\varepsilon}{2} |v_\varepsilon|^2 + \frac{1}{\varepsilon} W(u_\varepsilon) - \xi \cdot \nabla \psi_\varepsilon dx \\
= \int_{\mathbb{R}^d} \frac{1}{\varepsilon} |\Delta u_\varepsilon - \frac{1}{\varepsilon} W'(u_\varepsilon)|^2 dx \\
- \int_{\mathbb{R}^d} \nabla \psi_\varepsilon \cdot \frac{d}{dt} \xi dx + \int_{\mathbb{R}^d} \sqrt{2W(u_\varepsilon)} \left(\Delta u_\varepsilon - \frac{1}{\varepsilon^2} W'(u_\varepsilon) \right) \nabla \cdot \xi dx.
\]
With the definitions (9a) and (9b), we obtain
\[
\frac{d}{dt} E[u_\varepsilon|I] = \int_{\mathbb{R}^d} -\frac{1}{\varepsilon} |H_\varepsilon|^2 + n_\varepsilon \cdot H_\varepsilon (-\nabla \cdot \xi) \frac{1}{\varepsilon} \sqrt{2W(u_\varepsilon)} dx
\]
\[
+ \int_{\mathbb{R}^d} \nabla H_I : \xi \otimes n_\varepsilon |\nabla \psi_\varepsilon| dx
\]
\[
+ \int_{\mathbb{R}^d} (H_I \cdot \nabla)\xi \cdot \nabla \psi_\varepsilon dx
\]
\[
- \int_{\mathbb{R}^d} \nabla \psi_\varepsilon \cdot \left(\frac{d}{dt} \xi + (H_I \cdot \nabla)\xi + (\nabla H_I)^T \xi \right) dx.
\]
We exploit the symmetry of the Hessian $\nabla^2 \psi_\varepsilon$
\[
\int_{\mathbb{R}^d} (H_I \cdot \nabla)\xi \cdot \nabla \psi_\varepsilon dx
\]
\[
= - \int_{\mathbb{R}^d} \nabla \cdot H_I \xi \cdot \nabla \psi_\varepsilon dx - \int_{\mathbb{R}^d} H_I \otimes \xi : \nabla^2 \psi_\varepsilon dx
\]
\[
= \int_{\mathbb{R}^d} (\nabla \cdot H_I - \nabla \cdot H_I \xi) \cdot \nabla \psi_\varepsilon dx + \int_{\mathbb{R}^d} (\xi \cdot \nabla) H_I \cdot \nabla \psi_\varepsilon dx,
\]
which yields
\[
\frac{d}{dt} E[u_\varepsilon|I] = \int_{\mathbb{R}^d} -\frac{1}{\varepsilon} |H_\varepsilon|^2 + n_\varepsilon \cdot H_\varepsilon (-\nabla \cdot \xi) \frac{1}{\varepsilon} \sqrt{2W(u_\varepsilon)} dx
\]
\[
+ \int_{\mathbb{R}^d} \nabla H_I : \xi \otimes n_\varepsilon |\nabla \psi_\varepsilon| dx
\]
\[
+ \int_{\mathbb{R}^d} (\nabla \cdot H_I - \nabla \cdot H_I \xi) \cdot \nabla \psi_\varepsilon dx
\]
\[
+ \int_{\mathbb{R}^d} (\xi \cdot \nabla) H_I \cdot n_\varepsilon |\nabla \psi_\varepsilon| dx
\]
\[
- \int_{\mathbb{R}^d} \nabla \psi_\varepsilon \cdot \left(\frac{d}{dt} \xi + (H_I \cdot \nabla)\xi + (\nabla H_I)^T \xi \right) dx.
\]
The computation (13) below then implies by adding zero
\[
\frac{d}{dt} E[u_\varepsilon|I] = \int_{\mathbb{R}^d} -\frac{1}{\varepsilon} |H_\varepsilon|^2 + H_\varepsilon \cdot H_I |\nabla u_\varepsilon| + n_\varepsilon \cdot H_\varepsilon (-\nabla \cdot \xi) \frac{1}{\varepsilon} \sqrt{2W(u_\varepsilon)} dx
\]
\[
+ \int_{\mathbb{R}^d} \nabla \cdot H_I |\nabla \psi_\varepsilon| dx
\]
\[
+ \int_{\mathbb{R}^d} \nabla \cdot H_I \left(\frac{\varepsilon}{2} |\nabla u_\varepsilon|^2 + \frac{1}{\varepsilon} W(u_\varepsilon) - |\nabla \psi_\varepsilon| \right) dx
\]
\[
- \int_{\mathbb{R}^d} \nabla H_I : n_\varepsilon \otimes n_\varepsilon (\varepsilon |\nabla u_\varepsilon|^2 - |\nabla \psi_\varepsilon|) dx
\]
\[
- \int_{\mathbb{R}^d} \nabla H_I : (n_\varepsilon - \xi) \otimes (n_\varepsilon - \xi) |\nabla \psi_\varepsilon| dx
\]
\[
+ \int_{\mathbb{R}^d} (\nabla \cdot H_I - \nabla \cdot H_I \xi) \cdot \nabla \psi_\varepsilon dx
\]
\[
+ \int_{\mathbb{R}^d} (\xi \cdot \nabla) H_I \cdot \xi |\nabla \psi_\varepsilon| dx
\]
Indeed, due to definition (9b) we have
\[2.5. \]
Auxiliary computation. Completing the squares and adding zero, we obtain (12).
\[\square \]
the formula
\[\hat{\|\nabla \psi_x \|} \]
on the right-hand side of the identity (12). Using (6a), (6b), and the bound
\[2.6. \]
Proof of Theorem 2. Derivation of the Gronwall inequality.
\[I \]
\[\|\nabla \cdot \mathbf{H}_t \| \leq C(I(t)), \]
the last four lines of (12) may be estimated by
\[C(I(t)) \int_{R^d} \min\{\text{dist}^2(x, I), 1\} |\nabla \psi_x| + |n_x - \xi| |\nabla \psi_x| + (1 - n_x \cdot \xi) |\nabla \psi_x| \, dx, \]
which by (10) and (10) is bounded by \(C(I(t))E[u_x | I] \).
\[\text{The third line on the right-hand side of (12) can be estimated as} \]
\[2.6. \]
Derivation of the Gronwall inequality.
\[\text{Proof of Theorem 2. Using the estimates of Lemma 3 we can control the terms on the right-hand side of the identity (12). Using (6a), (6b), and the bound } \|\nabla \mathbf{H}_t\|_{L^\infty} \leq C(I(t)), \text{ the last four lines of (12) may be estimated by} \]
\[\int_{R^d} \nabla \cdot \mathbf{H}_t \left(\frac{\xi}{2} |\nabla u_x|^2 + \frac{1}{\varepsilon} W(u_x) - |\nabla \psi_x| \right) \, dx \leq \|\nabla \cdot \mathbf{H}_t\|_{L^\infty} E[u_x | I]. \]
Thus, it only remains to estimate the second and the fourth term on the right-hand side of (12).

Concerning the second term, we use the fact that $(\xi \cdot \nabla)H_I \equiv 0$ holds in a neighborhood of $I(t)$, Young’s inequality, and (7) to deduce

$$
\int_{\mathbb{R}^d} |\nabla H_I : n_\varepsilon \otimes n_\varepsilon (\varepsilon |\nabla u_\varepsilon|^2 - |\nabla \psi_\varepsilon|)| \, dx
$$

$$
\leq \int_{\mathbb{R}^d} |\nabla H_I : n_\varepsilon \otimes (n_\varepsilon - \xi) (\varepsilon |\nabla u_\varepsilon|^2 - |\nabla \psi_\varepsilon|)| \, dx
$$

$$
+ C \int_{\mathbb{R}^d} \min\{\text{dist}^2(x, I), 1\} (\varepsilon |\nabla u_\varepsilon|^2 + |\nabla \psi_\varepsilon|) \, dx
$$

$$
\leq \|\nabla H_I\|_\infty \left(\int_{\mathbb{R}^d} |n_\varepsilon - \xi|^2 \varepsilon |\nabla u_\varepsilon|^2 \, dx \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}^d} \left(\varepsilon |\nabla u_\varepsilon| - \frac{1}{\sqrt{\varepsilon}} \sqrt{2W(u_\varepsilon)} \right)^2 \, dx \right)^{\frac{1}{2}}
$$

$$
+ C \int_{\mathbb{R}^d} \min\{\text{dist}^2(x, I), 1\} (\varepsilon |\nabla u_\varepsilon|^2 + |\nabla \psi_\varepsilon|) \, dx.
$$

Consequently, Lemma 3 implies that the fourth line on the right-hand side of (12) is bounded by $CE[u_\varepsilon |I|$.

It only remains to bound the term in the second line of the right-hand side of (12). To this aim, we complete the square and estimate

$$
\int_{\mathbb{R}^d} |H_I|^2 \frac{\varepsilon}{2} |\nabla u_\varepsilon|^2 + |\nabla \cdot \xi|^2 \frac{1}{\varepsilon} W(u_\varepsilon) + H_I \cdot n_\varepsilon \nabla \cdot \xi |\nabla \psi_\varepsilon| \, dx
$$

$$
= \int_{\mathbb{R}^d} \frac{1}{2} \left| \sqrt{\varepsilon} |\nabla u_\varepsilon| H_I + \frac{1}{\sqrt{\varepsilon}} \nabla \cdot \xi \sqrt{2W(u_\varepsilon)} n_\varepsilon \right|^2 \, dx
$$

$$
\leq \frac{3}{2} \int_{\mathbb{R}^d} \left| \nabla \cdot \xi n_\varepsilon \left(\sqrt{\varepsilon} |\nabla u_\varepsilon| - \frac{1}{\sqrt{\varepsilon}} \sqrt{2W(u_\varepsilon)} \right) \right|^2 \, dx
$$

$$
+ \frac{3}{2} \int_{\mathbb{R}^d} \left| \nabla \cdot \xi (n_\varepsilon - \xi) \sqrt{\varepsilon} |\nabla u_\varepsilon| \right|^2 \, dx
$$

$$
+ \frac{3}{2} \int_{\mathbb{R}^d} \left| H_I + (\nabla \cdot \xi) \xi \sqrt{\varepsilon} |\nabla u_\varepsilon| \right|^2 \, dx.
$$

Inserting the estimates (6c) and (6d) and using the fact that $H_I = (H_I \cdot \xi) + O(\text{dist}^2(x, I))$, we obtain

$$
\int_{\mathbb{R}^d} |H_I|^2 \frac{\varepsilon}{2} |\nabla u_\varepsilon|^2 + |\nabla \cdot \xi|^2 \frac{1}{\varepsilon} W(u_\varepsilon) + H_I \cdot n_\varepsilon \nabla \cdot \xi |\nabla \psi_\varepsilon| \, dx
$$

$$
\leq C \int_{\mathbb{R}^d} \left| \sqrt{\varepsilon} |\nabla u_\varepsilon| - \frac{1}{\sqrt{\varepsilon}} \sqrt{2W(u_\varepsilon)} \right|^2 \, dx
$$

$$
+ C \int_{\mathbb{R}^d} \min\{\text{dist}^2(x, I), 1\} (\varepsilon |\nabla u_\varepsilon|^2 + |n_\varepsilon - \xi|^2 \varepsilon |\nabla u_\varepsilon|^2) \, dx.
$$

By Lemma 3, we see that these terms are estimated by $CE[u_\varepsilon |I]$.

\[\square\]
3. Estimate for the Interface Error

Proof of Theorem 4. Step 1: Estimate for the relative energy. In view of Theorem 2, in order to prove

\begin{equation}
\sup_{t \in [0,T]} E[u_\varepsilon | I] + \int_0^T \int_{\mathbb{R}^d} \frac{1}{\varepsilon} |H_\varepsilon - H_I \varepsilon [\nabla u_\varepsilon]|^2 + \frac{1}{\varepsilon} |n_\varepsilon \cdot H_\varepsilon - (\nabla \cdot \xi) \sqrt{2W(u_\varepsilon)}|^2 \, dx \, dt \\
\leq C(d,T, (I(t))_{t \in [0,T]}) \varepsilon^2
\end{equation}

it only remains to show that the initial relative energy satisfies \(E[u_\varepsilon | I](0) \leq C(d,I(0)) \varepsilon^2 \). To this aim, we compute using \(u_\varepsilon(x,0) = \theta(\varepsilon^{-1} \text{dist}^\pm(x,I(0))) \) and the fact that \(\nabla \text{dist}^\pm(x,I(0)) \cdot \xi = |\nabla \text{dist}^\pm(x,I(0))| \xi | \geq |\xi|^2 \)

\begin{align*}
E[u_\varepsilon | I](0) & \leq \int_{\mathbb{R}^d} \frac{|\xi|^2}{2\varepsilon} |\theta'(\varepsilon^{-1} \text{dist}^\pm(x,I(0)))|^2 + \frac{|\xi|^2}{\varepsilon} W(\theta(\varepsilon^{-1} \text{dist}^\pm(x,I(0)))) \\
& \quad - \frac{1}{\varepsilon} \sqrt{2W(\theta(\varepsilon^{-1} \text{dist}^\pm(x,I(0))))} \theta'(\varepsilon^{-1} \text{dist}^\pm(x,I(0))) |\xi|^2 \, dx \\
& \quad + \int_{\mathbb{R}^d} \frac{1}{2\varepsilon}(1 - |\xi|^2) \left(|\theta'(\varepsilon^{-1} \text{dist}^\pm(x,I(0)))|^2 + W(\theta(\varepsilon^{-1} \text{dist}^\pm(x,I(0)))) \right) \, dx.
\end{align*}

Using the defining equation \(\theta'(s) = \sqrt{2W(\theta(s))} \) as well as the fact that \(|\theta'(s)| \) decays exponentially in \(s \) and that \(|\xi|^2 \geq 1 - c \text{dist}^2(x,I) \), we deduce \(E[u_\varepsilon | \chi](0) \leq C(d,I(0)) \varepsilon^2 \).

Step 2: Interface error estimate. We now perform an additional computation to obtain a more explicit control on the interface error. We may write

\(\partial_t \psi_\varepsilon = \sqrt{2W(u_\varepsilon)} \partial_t u_\varepsilon = -\varepsilon^{-1} \sqrt{2W(u_\varepsilon)} H_\varepsilon \cdot n_\varepsilon. \)

Choosing \(\tau : \mathbb{R} \to [-1,1] \) to be a smooth monotone truncation of the identity map (with \(\tau(s) \geq \min\{s, \frac{1}{2}\} \) for \(s > 0 \) and \(\tau(s) \leq \max\{s, -\frac{1}{2}\} \) for \(s < 0 \) and fixing \(s_0 > 0 \) to be determined later, we obtain

\(\frac{d}{dt} \int_{\mathbb{R}^d} (\psi_\varepsilon - \chi) \tau \left(\frac{1}{s_0} \text{dist}^\pm(x,I) \right) \, dx \)

\begin{align*}
&= - \int_{\mathbb{R}^d} \varepsilon^{-1} \sqrt{2W(u_\varepsilon)} H_\varepsilon \cdot n_\varepsilon \tau \left(\frac{1}{s_0} \text{dist}^\pm(x,I) \right) \, dx \\
& \quad + \int_{\mathbb{R}^d} (\psi_\varepsilon - \chi) \frac{1}{s_0} \tau' \left(\frac{1}{s_0} \text{dist}^\pm(x,I) \right) \partial_t \text{dist}^\pm(x,I) \, dx \\
&= - \int_{\mathbb{R}^d} \varepsilon^{-1} \sqrt{2W(u_\varepsilon)} H_\varepsilon \cdot n_\varepsilon \tau \left(\frac{1}{s_0} \text{dist}^\pm(x,I) \right) \, dx \\
& \quad - \int_{\mathbb{R}^d} (\psi_\varepsilon - \chi) H_I \cdot \nabla \left(\tau \left(\frac{1}{s_0} \text{dist}^\pm(x,I) \right) \right) \, dx \\
& \quad + \int_{\mathbb{R}^d} (\psi_\varepsilon - \chi) \frac{1}{s_0} \tau' \left(\frac{1}{s_0} \text{dist}^\pm(x,I) \right) \left(\partial_t \text{dist}^\pm(x,I) + H_I \cdot \nabla \text{dist}^\pm(x,I) \right) \, dx \\
&= - \int_{\mathbb{R}^d} \varepsilon^{-1} \sqrt{2W(u_\varepsilon)} H_\varepsilon \cdot n_\varepsilon - \nabla \psi_\varepsilon \cdot H_I \tau \left(\frac{1}{s_0} \text{dist}^\pm(x,I) \right) \, dx.
\end{align*}
\[
+ \int_{\mathbb{R}^d} (\psi_\varepsilon - \chi) \tau \left(\frac{1}{s_0} \text{dist}^\pm(x,I) \right) \nabla \cdot H_I \, dx \\
+ \int_{\mathbb{R}^d} (\psi_\varepsilon - \chi) \frac{1}{s_0} \tau' \left(\frac{1}{s_0} \text{dist}^\pm(x,I) \right) (\partial_t \text{dist}^\pm(x,I) + H_I \cdot \nabla \text{dist}^\pm(x,I)) \, dx
\]

where in the last step we have used integration by parts and \(\tau(\text{dist}^\pm(x,I(t)) = 0 \) on supp \(\nabla \chi(\cdot,t) \).

This may be rewritten using the definition of \(\psi_\varepsilon \) and \(n_\varepsilon \) as

\[
\frac{d}{dt} \int_{\mathbb{R}^d} (\psi_\varepsilon - \chi) \tau \left(\frac{1}{s_0} \text{dist}^\pm(x,I) \right) \, dx \\
= - \int_{\mathbb{R}^d} \varepsilon^{-1} \sqrt{2W(u_\varepsilon)(H_\varepsilon - H_I \varepsilon |\nabla u_\varepsilon|)} \cdot n_\varepsilon \tau \left(\frac{1}{s_0} \text{dist}^\pm(x,I) \right) \, dx \\
+ \int_{\mathbb{R}^d} (\psi_\varepsilon - \chi) \tau \left(\frac{1}{s_0} \text{dist}^\pm(x,I) \right) \nabla \cdot H_I \, dx \\
+ \int_{\mathbb{R}^d} (\psi_\varepsilon - \chi) \frac{1}{s_0} \tau' \left(\frac{1}{s_0} \text{dist}^\pm(x,I) \right) (\partial_t \text{dist}^\pm(x,I) + H_I \cdot \nabla \text{dist}^\pm(x,I)) \, dx.
\]

Since \(\partial_t \text{dist}^\pm(x,I) = -H_I \cdot \nabla \text{dist}^\pm(x,I) \) holds in a neighborhood of the interface, the last integral vanishes identically if we chose \(s_0 > 0 \) sufficiently small. Using Cauchy-Schwarz we deduce

\[
\frac{d}{dt} \int_{\mathbb{R}^d} (\psi_\varepsilon - \chi) \tau \left(\frac{1}{s_0} \text{dist}^\pm(x,I) \right) \, dx \\
\leq \int_{\mathbb{R}^d} \varepsilon^{-1} |H_\varepsilon - H_I \varepsilon |\nabla u_\varepsilon| \right)^2 \, dx + \int_{\mathbb{R}^d} \varepsilon^{-1} 2W(u_\varepsilon) \left| \tau \left(\frac{1}{s_0} \text{dist}^\pm(x,I) \right) \right|^2 \, dx \\
+ \| (\nabla \cdot H_I -) \|_{L^\infty} \int_{\mathbb{R}^d} |\psi_\varepsilon - \chi| \left| \tau \left(\frac{1}{s_0} \text{dist}^\pm(x,I) \right) \right| \, dx.
\]

By the Gronwall inequality and (16) (note that the relative entropy \(E[u_\varepsilon|I](t) \) controls \(c \int_{\mathbb{R}^d} \varepsilon^{-1} W(u_\varepsilon) \text{dist}^2(x,I) \, dx \)), this shows that

(17) \[\sup_{t \in [0,T]} \int_{\mathbb{R}^d} |\psi_\varepsilon - \chi| \min\{\text{dist}(x,I),1\} \, dx \leq C(d,T,(I(t))_{t \in [0,T]}) \varepsilon^2. \]

Note that Fubini’s theorem for the square \([0,\delta]^2\) yields

\[
\left(\int_0^\delta |\psi_\varepsilon(w + yn_I(w),t) - \chi(w + yn_I(w),t)| \, dy \right)^2 \\
\leq 2 \int_0^\delta |\psi_\varepsilon(w + yn_I(w),t) - \chi(w + yn_I(w),t)| \int_0^y 2 \, ds \, dy.
\]
This allows to estimate for a small δ-neighborhood of $I(t)$
\[
\left(\int_{I(t)+B_\delta} |\psi_\varepsilon(x,t) - \chi(x,t)| \, dx\right)^2 \\
\leq C(d, I(t)) \left(\int_{I(t)} \int_0^\delta |\psi_\varepsilon(w + yn_I(w),t) - \chi(w + yn_I(w),t)| \, dy \\
+ \int_0^\delta |\psi_\varepsilon(w - yn_I(w),t) - \chi(w - yn_I(w),t)| \, dy \, dS(w) \right)^2 \\
\leq C(d, I(t)) \left(\int_{I(t)} \int_{-\delta}^\delta |\psi_\varepsilon(w + yn_I(w),t) - \chi(w + yn_I(w),t)| \\
\times \text{dist}(w + yn_I(w), I(t)) \, dy \, dS(w) \right) \\
\leq C(d, I(t)) \int_{I(t)+B_\delta} |\psi_\varepsilon(x,t) - \chi(x,t)| \text{dist}(x, I) \, dx,
\]
which in view of (17) yields Theorem 1. \qed

References

[1] H. Abels and Y. Liu. Sharp interface limit for a Stokes/Allen-Cahn system. Arch. Ration. Mech. Anal., 229(1):417–502, 2018.
[2] L. Bronsard and R. V. Kohn. Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics. J. Differential Equations, 90(2):211–237, 1991.
[3] X. Chen. Generation and propagation of interfaces for reaction-diffusion equations. J. Differential Equations, 96(1):116–141, 1992.
[4] P. de Mottoni and M. Schatzman. Geometrical evolution of developed interfaces. Trans. Amer. Math. Soc., 347(1):116–141, 1995.
[5] L. C. Evans, H. M. Soner, and P. E. Souganidis. Phase transitions and generalized motion by mean curvature. Comm. Pure Appl. Math., 45(9):1097–1123, 1992.
[6] J. Fischer and S. Hensel. Weak-strong uniqueness for the Navier-Stokes equation for two fluids with surface tension. to appear in Arch. Ration. Mech. Anal., 2019. arXiv:1901.05433, doi:10.1007/s00205-019-01486-2.
[7] J. Fischer, S. Hensel, T. Laux, and T. M. Simon. The local structure of the energy landscape in multiphase mean curvature flow: Weak-strong uniqueness and stability of evolutions. Preprint, 2020.
[8] T. Ilmanen. Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature. J. Differential Geom., 38(2):417–461, 1993.
[9] R. L. Jerrard and D. Smets. On the motion of a curve by its binormal curvature. J. Eur. Math. Soc., 17(6):1487–1515, 2015.
[10] T. Laux and T. M. Simon. Convergence of the Allen-Cahn equation to multiphase mean curvature flow. Comm. Pure Appl. Math., 71(8):1597–1647, 2018.
[11] P. Sternberg. The effect of a singular perturbation on nonconvex variational problems. Arch. Ration. Mech. Anal., 101(3):209–260, 1988.