Addendum to
“Flavour Covariant Transport Equations: an Application to Resonant Leptogenesis”

P. S. Bhupal Deva, Peter Millingtonb, Apostolos Pilaftsisa, Daniele Teresia

aConsortium for Fundamental Physics, School of Physics and Astronomy,
University of Manchester, Manchester M13 9PL, United Kingdom.
bPhysik Department T70, James-Franck-Straße, Technische Universität München, 85748 Garching, Germany.

Abstract

In this note, we amend the incorrect discussion in Nucl. Phys. B \textbf{886} (2014) 569 \cite{1} concerning the numerical examples considered there. In particular, we discuss the viability of minimal radiative models of Resonant Leptogenesis and prove that no asymmetry can be generated at $O(h^4)$ in these scenarios. We present a minimal modification of the model considered in \cite{1}, where electroweak-scale right-handed Majorana neutrinos can easily accommodate both successful leptogenesis and observable signatures at Lepton Number and Flavour Violation experiments. The importance of the fully flavour-covariant rate equations, as developed in \cite{1}, for describing accurately the generation of the asymmetry is reconfirmed.

Keywords: Radiative Resonant Leptogenesis, Lepton Flavour Violation, Lepton Number Violation.

In this note, we discuss the viability of minimal radiative Resonant Leptogenesis (RL) scenarios, where the mass splitting between heavy Majorana neutrinos, responsible for both the generation of the observed Baryon Asymmetry of the Universe and the low-energy neutrino data, is generated \textit{entirely} by the renormalization-group (RG) running from some high mass scale μ_X (of the order of the GUT scale) down to the relevant heavy-neutrino mass scale m_N, which we take to be of the order of the electroweak scale. This is the scenario used in the numerical examples of \cite{1} and here we amend some incorrect discussions presented in Sections 5 and 6 of this article. The incorrectness of some of the numerical results given...
there is related to the usage, in our numerical analysis, of the incorrect formulae (2.9) and (2.13) of [2], reported in (5.10) of [1].

1. No-go theorem for minimal radiative RL at $\mathcal{O}(h^4)$

The relevant heavy-neutrino Lagrangian is given by

$$-\mathcal{L}_N = h_l^\alpha \bar{\Phi} N_{R,\alpha} + \frac{1}{2} N_{R,\alpha}^C [M_N]^{\alpha\beta} N_{R,\beta} + \text{H.c.} ,$$

(1)

where $\bar{\Phi} = i\sigma_2 \Phi^*$ is the isospin conjugate of the Higgs doublet Φ and the superscript C denotes charge conjugation. In minimal radiative scenarios, the masses of these heavy neutrinos N_α ($\alpha = 1, 2, 3$) are assumed to be degenerate at a high scale $\mu_X \sim 10^{16}\text{GeV}$, thanks to an approximate $O(3)$ symmetry: $M_N(\mu_X) = m_N \mathbf{1}_3$. At the scale m_N, relevant for leptogenesis, the mass matrix M_N is obtained by the RG evolution from μ_X to m_N:

$$M_N = m_N \mathbf{1}_3 + \Delta M_{N}^{\text{RG}} ,$$

(2)

where, in the minimal radiative RL scenario, ΔM_{N}^{RG} is taken to be the only $O(3)$-breaking correction to the mass matrix and is given by

$$\Delta M_{N}^{\text{RG}} \simeq -\frac{m_N}{8\pi^2} \ln \left(\frac{\mu_X}{m_N} \right) \text{Re} \left[\hat{h}^\dagger(\mu_X) h(\mu_X) \right] .$$

(3)

However, as we are going to show below, this minimal scenario is not viable at $\mathcal{O}(h^4)$, because of the following no-go theorem for minimal radiative RL at $\mathcal{O}(h^4)$. The right-handed (RH) neutrino mass matrix given by (2) and (3) is real and symmetric and, as long as one is in the perturbative regime $|\Delta M_{N}^{\text{RG}}|_{\alpha\beta}/m_N \ll 1$, it can be diagonalized with positive eigenvalues by a real orthogonal matrix $O \in O(3) \subset U(3)$:

$$M_N = O \tilde{M}_N O^T ,$$

(4)

where the caret ($\hat{\cdot}$) denotes the mass eigenbasis. At leading order, i.e. $\mathcal{O}(h^2)$, the Yukawa couplings in (3) can be taken at the scale m_N. Since O is real and orthogonal, both $O^T \Delta M_{N}^{\text{RG}} O$ and

$$\text{Re}(\hat{h}^\dagger \hat{h}) = \text{Re} \left[(O^T h^\dagger)(h O) \right] = O^T \text{Re}(h^\dagger h) O \propto O^T \Delta M_{N}^{\text{RG}} O$$

(5)

are also separately diagonal. On the other hand, the leptonic asymmetry ε_{la} in the decay $N_\alpha \rightarrow L_l \Phi$ is proportional to the quantity (cf. (A.2) in [1])

$$\text{Im} \left[\hat{h}_{\alpha \beta}^* \hat{h}_{\alpha \beta} (\hat{h}^\dagger \hat{h})_{\alpha \beta} \right] + \frac{m_{N,\alpha}}{m_{N,\beta}} \text{Im} \left[\hat{h}_{\alpha \beta}^* \hat{h}_{\alpha \beta} (\hat{h}^\dagger \hat{h})_{\beta \alpha} \right] = 2 \text{Im} \left[\hat{h}_{\alpha \beta}^* \hat{h}_{\beta \alpha} \right] \text{Re} \left[(\hat{h}^\dagger \hat{h})_{\alpha \beta} \right] + \mathcal{O}(h^6) ,$$

(6)

where $m_{N,\alpha}$ is the physical mass of N_α and $\alpha \neq \beta$. Therefore, the leptonic asymmetry $\varepsilon_{la} \propto \text{Re}[\hat{h}^\dagger \hat{h}]_{\alpha \beta}$, being proportional to the off-diagonal entries of a diagonal matrix, vanishes identically at $\mathcal{O}(h^4)$ in minimal radiative models, where no other source of $O(3)$ flavour breaking is present. □
2. A next-to-minimal radiative RL model

To avoid the no-go theorem of suppressed leptonic asymmetries as derived in Section 1, we proceed differently from [1, 2]. We include a new source of flavour breaking ΔM_N, which is not aligned with Re(h^ih) at the input scale μ_X. More explicitly, the heavy-neutrino mass matrix takes on the following form:

$$M_N = m_N 1 + \Delta M_N + \Delta M_N^{RG}. \quad (7)$$

For the purposes of this note, we consider a minimal breaking matrix ΔM_N of the form

$$\Delta M_N = \begin{pmatrix} \Delta M_1 & 0 & 0 \\ 0 & \Delta M_2/2 & 0 \\ 0 & 0 & -\Delta M_2/2 \end{pmatrix}, \quad (8)$$

where ΔM_2 is needed to make the light-neutrino mass matrix rank-2, thus allowing us to fit successfully the low-energy neutrino data. Instead, ΔM_1 governs the mass difference between N_1 and $N_{2,3}$, and its inclusion is sufficient to obtain successful leptogenesis.

In order to protect the lightness of the left-handed neutrinos in a technically natural manner, we consider a RL$_\tau$ model that possesses a leptonic symmetry $U(1)_l$. In this scenario, the Yukawa couplings h^l_α have the following structure [3, 4]:

$$h = \begin{pmatrix} 0 & ae^{-i\pi/4} & ae^{i\pi/4} \\ 0 & be^{-i\pi/4} & be^{i\pi/4} \\ 0 & ce^{-i\pi/4} & ce^{i\pi/4} \end{pmatrix} + \delta h, \quad (9)$$

where, in order to protect the τ asymmetry from an excessive washout and at the same time guarantee observable effects in low-energy neutrino experiments, we take $|c| \ll |a|, |b| \approx 10^{-3} - 10^{-2}$. The leptonic flavour-symmetry-breaking matrix is taken to be

$$\delta h = \begin{pmatrix} \epsilon_e & 0 & 0 \\ \epsilon_\mu & 0 & 0 \\ \epsilon_\tau & 0 & 0 \end{pmatrix}. \quad (10)$$

To leading order in the symmetry-breaking parameters of ΔM_N and δh, the tree-level light-neutrino mass matrix is given by the seesaw formula

$$M_\nu \simeq -\frac{v^2}{2} h M_N^{-1} h^\dagger \simeq \frac{v^2}{2m_N} \begin{pmatrix} \frac{\Delta m_{12}}{m_N} a_2 - \epsilon_e & \frac{\Delta m_{13}}{m_N} ab - \epsilon_e \epsilon_\mu & -\epsilon_e \epsilon_\tau \\ \frac{\Delta m_{13}}{m_N} ab - \epsilon_e \epsilon_\mu & \frac{\Delta m_{23}}{m_N} b_2 - \epsilon_\mu & -\epsilon_\mu \epsilon_\tau \\ \epsilon_e \epsilon_\mu & -\epsilon_\mu \epsilon_\tau & -\epsilon_\tau^2 \end{pmatrix}, \quad (11)$$

where

$$\Delta m_N \equiv 2[\Delta M_N]_{23} + i ([\Delta M_N]_{33} - [\Delta M_N]_{22}) = -i \Delta M_2 \quad (12)$$
and we have neglected subdominant terms \(\frac{\Delta m_{\nu}}{m_N} c \times (a, b, c) \). Assuming a particular mass hierarchy between the light-neutrino masses \(m_\nu \) and for given values of the \(CP \) phases \(\delta, \varphi_{1,2} \), we determine the following model parameters appearing in the Yukawa coupling matrix (9):

\[
\begin{align*}
a^2 &= \frac{2m_N}{v^2} \left(M_{\nu,11} - \frac{M_{\nu,13}^2}{M_{\nu,33}} \right) \frac{m_N}{\Delta m_N}, \\
b^2 &= \frac{2m_N}{v^2} \left(M_{\nu,22} - \frac{M_{\nu,23}^2}{M_{\nu,33}} \right) \frac{m_N}{\Delta m_N}, \\
\epsilon_e &= -\frac{2m_N}{v^2} \frac{M_{\nu,13}}{M_{\nu,33}}, \\
\epsilon_\mu &= -\frac{2m_N}{v^2} \frac{M_{\nu,23}}{M_{\nu,33}}, \\
\epsilon_\tau &= -\frac{2m_N}{v^2} \frac{M_{\nu,33}}{M_{\nu,33}}.
\end{align*}
\]

Therefore, the Yukawa coupling matrix (9) in the RL\(_r\) model can be completely fixed in terms of the heavy neutrino mass scale \(m_N \) and the input parameters \(c \) and \(\Delta M_2 \). Notice that, whereas (11) and (13) coincide formally with the corresponding formulae in [1, 2], the latter are incorrect for the model considered therein.

We amend the three benchmark points considered in [1] as detailed in Table 1. The input parameters \(\Delta M_1 \) and \(c \) are easily chosen such that leptogenesis is successful. Instead, \(\Delta M_2 \) has been tuned in order to reproduce exactly the predictions for the Lepton Number and Flavour Violation (LNV and LFV) observables discussed in [1]. In particular, Table 4 of [1] is unaltered, thus confirming the observable effects in LNV and LFV experiments predicted by this class of models, while simultaneously allowing for successful leptogenesis. The \(CP \) phases of the light neutrinos have been chosen as \(\phi = -\pi \) and \(\phi_2 = \delta = 0 \).

The discussion in Section 5.3.2 of [1], concerning the approximate analytic solution for the charged-lepton decoherence effect, requires modifications. In particular, some of the

Parameters	BP1	BP2	BP3
\(m_N \)	120 GeV	400 GeV	5 TeV
\(c \)	2 \times 10^{-6}	2 \times 10^{-7}	2 \times 10^{-6}
\(\Delta M_1/m_N \)	-5 \times 10^{-6}	-3 \times 10^{-5}	-4 \times 10^{-5}
\(\Delta M_2/m_N \)	(-1.59 - 0.47 \times 10^{-8})	(-1.21 + 0.10 \times 10^{-9})	(-1.46 + 0.11 \times 10^{-8})
\(a \)	(5.54 - 7.41 \times 10^{-4})	(4.93 - 2.32 \times 10^{-3})	(4.67 - 3.43 \times 10^{-4})
\(b \)	(0.89 - 1.19 \times 10^{-3})	(8.04 - 3.79 \times 10^{-3})	(7.53 - 6.97 \times 10^{-3})
\(\epsilon_e \)	3.31 \times 10^{-8}	5.73 \times 10^{-8}	2.14 \times 10^{-7}
\(\epsilon_\mu \)	2.33 \times 10^{-7}	4.30 \times 10^{-7}	1.50 \times 10^{-6}
\(\epsilon_\tau \)	3.50 \times 10^{-7}	6.39 \times 10^{-7}	2.26 \times 10^{-6}

Table 1: The numerical values of the free \((m_N, c, \Delta M_{1,2}) \) and derived parameters \((a, b, \epsilon_e, \epsilon_\mu, \epsilon_\tau) \) in the RL\(_r\) model for three chosen benchmark points.
approximations adopted there are no longer valid. In light of this, (5.22) of [1] becomes

\[
\frac{d}{dz} \left[\delta \tilde{\eta}^L \right]_{lm} = \frac{z^3 K(z)}{2} \left(\sum_a [\tilde{n}^N]_{aa} [\delta \tilde{K}_L^N]_{lmaa} - \frac{1}{3} \{ \delta \tilde{\eta}^L, \tilde{K}_{\text{eff}} \}_{lm} \right) - \frac{2}{3} [\delta \tilde{\eta}^L]_{kn} [\hat{K}_{-}]_{nlkm} - \frac{2}{3} \{ \delta \tilde{\eta}^L, \hat{K}_{\text{dec}} \}_{lm} + \frac{2}{3} [\delta \tilde{\eta}^L]_{kn} [\hat{K}_{-}]_{nlkm} \right),
\]

where \(\{ , \} \) denotes anti-commutators in flavour space and we need to introduce also the K-factor \([\hat{K}_{-}]_{nlkm} = \kappa [\hat{\gamma}^L_{\phi \phi \phi} - \hat{\gamma}^L_{\phi \phi}]_{nlkm} \), which is no longer subdominant. Correspondingly, (5.26) of [1] is modified to

\[
\frac{1}{3} \{ \delta \tilde{\eta}^L, \tilde{K}_{\text{eff}} \}_{lm} + 2 \hat{K}_{\text{dec}} \}_{lm} - \left[\delta \tilde{\eta}_{\text{mix}} \right]_{lm} + \frac{2}{3} [\delta \tilde{\eta}^L]_{kn} [\hat{K}_{-}]_{nlkm} \right) \right) \simeq \frac{\tilde{\epsilon}_{lm}}{z}. \]

It is not easy to perform further approximations in this equation and so it is convenient to solve the linear system for the variables \([\delta \tilde{\eta}^L]_{lm} \) numerically. We then obtain the semi-analytic contribution of mixing and charged-lepton (de)coherence to the asymmetry in the strong-washout regime

\[
\delta \tilde{\eta}^L \supset \delta \tilde{\eta}_{\text{mix}}^L + \delta \tilde{\eta}_{\text{dec}}^L \simeq \sum_l [\delta \tilde{\eta}^L]_{ll}, \]

where the diagonal asymmetries \([\delta \tilde{\eta}^L]_{ll} \) are obtained by solving the linear system (15).

Finally, Figures 8–11 of [1] are modified too. The amended numerical results are shown in Figures 1–4 of this note. The main qualitative difference with respect to those given in [1] is that the contribution of the charged-lepton off-diagonal number densities now suppresses the total asymmetry for the three benchmark points considered here, rather than enhancing it, as in Figures 10-11 of [1]. Nevertheless, successful leptogenesis is still comfortably realized. Thus, we may conclude that the salient features discussed in Sections 5 and 6 of [1] remain valid, namely the joint possibility of successful leptogenesis and observable signatures in LNV and LFV experiments. Moreover, as is evidenced by the disparity between the asymmetries predicted by the partially flavour off-diagonal treatments in Figures 3 and 4 of [1], the use of fully flavour-covariant rate equations, as developed in [1], remains of paramount importance for obtaining accurate quantitative predictions in this class of models.

Acknowledgements

We thank Jonathan Da Silva for pointing out the incorrectness of (2.13) in [2], reported as (5.10) in [1]. The work of P.S.B.D. and A.P. is supported by the Lancaster-Manchester-Sheffield Consortium for Fundamental Physics under STFC grant ST/L000520/1. The work of P.M. is supported by a University Foundation Fellowship (TUFF) from the Technische Universität München and the Deutsche Forschungsgemeinschaft (DFG) cluster of excellence Origin and Structure of the Universe. The work of D.T. has been supported by a fellowship of the EPS Faculty of the University of Manchester.
Figure 1: The deviation of the heavy-neutrino number densities $\hat{\eta}_N^{\alpha\beta} = \frac{\hat{\eta}_N^{\alpha\beta}}{\eta_{eq}^{N}} - \delta_{\alpha\beta}$ from their equilibrium values for the three benchmark points given in Table 1. The different lines show the evolution of the diagonal (solid lines) and off-diagonal (dashed lines) number densities in the fully flavour-covariant formalism. The numerical values of $\hat{\eta}_{22}^N$ and $\hat{\eta}_{33}^N$ coincide with each other in all three cases.
Figure 2: Lepton flavour asymmetries as predicted by the BP1 parameters given in Table 1. The top panel shows the comparison between the total asymmetry obtained using the fully flavour-covariant formalism (thick solid lines, with different initial conditions) with those obtained using the flavour-diagonal formalism (dashed lines). Also shown (thin solid line) is the semi-analytic result (16). The bottom panel shows the diagonal (solid lines) and off-diagonal (dashed lines) elements of the total lepton number asymmetry matrix in the fully flavour-covariant formalism. $\delta\eta_{\mu\mu}^L$ and $\delta\eta_{ee}^L$ are coincident. For details, see the text and [1].
Figure 3: Lepton flavour asymmetries as predicted by the BP2 RL$_{\tau}$ model parameters given in Table 1. The labels are the same as in Figure 2. $\delta\hat{\eta}_{\text{ee}}^L$ and $\delta\hat{\eta}_{\mu\mu}^L$ are coincident.
Figure 4: Lepton flavour asymmetries as predicted by the BP3 RLτ model parameters given in Table 4. The labels are the same as in Figure 2. $\delta \hat{\eta}_{ee}^L$ and $\delta \hat{\eta}_{\mu\mu}^L$ are coincident.
References

[1] P. S. B. Dev, P. Millington, A. Pilaftsis and D. Teresi, Nucl. Phys. B 886, 569 (2014) [arXiv:1404.1003 [hep-ph]].
[2] F. F. Deppisch and A. Pilaftsis, Phys. Rev. D 83 (2011) 076007 [arXiv:1012.1834 [hep-ph]].
[3] A. Pilaftsis, Phys. Rev. Lett. 95, 081602 (2005) [hep-ph/0408103].
[4] A. Pilaftsis and T. E. J. Underwood, Phys. Rev. D 72, 113001 (2005) [hep-ph/0506107].