Dexamethasone Attenuates Cyclophosphamide-induced Hepatotoxicity in Albino Rats

Elias Adikwu¹, Chidi Emmanuel Ezerioha², and James Kemelayefa¹

¹Department of Pharmacology and Toxicology, Faculty of Pharmacy, Niger Delta University, Bayelsa State, Nigeria
²Department of Pharmacology, Faculty of Basic Medical Sciences, University of Port Harcourt, Rivers State, Nigeria

Corresponding Author: Dr. Elias Adikwu; adikwuelias@gmail.com

Dates: Received 2 January 2020, Accepted 7 March 2020

Editor: Abdel-Hamid Elhawary

Copyright © 2020 Elias Adikwu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. Cyclophosphamide (CP) has appreciably improved survival rate in cancer patients, but the occurrence of hepatotoxicity may undermine its use. This study assessed the potential of dexamethasone (DEXA) to prevent CP-induced hepatotoxicity in albino rats. Thirty-six adult male albino rats were randomised in to six groups of n = 6. Group I (Control) was treated with a dose of normal saline (0.3mL) intraperitoneally (i.p.) for 24 hr. Group II was treated with a dose of DEXA (1mg/kg) ip for 24 hr. Group III was treated with a dose of CP (150mg/kg) i.p for 24 hr. Group IV was treated with a dose of CP (150 mg/kg) for 24hr before treatment with a dose of DEXA (1mg/kg) ip for 24 hr. Group IV was treated i.p with a dose of CP (150 mg/kg) for 24hr before treatment with a dose of DEXA (1mg/kg) for 24 hr. Group V was co-treated with a dose of DEXA (1mg/kg) and a dose of CP (150mg/kg) i.p for 24 hr. Group VI was pre-treated with a dose of DEXA (1mg/kg/ day) for 24 hr before treatment with a dose of CP (150mg/kg) ip for 24 hr. The rats were anesthetized after treatment; liver samples were excised and evaluated for histology and biochemical markers. Sera were obtained from blood samples and assessed for liver function markers. Liver glutathione, catalase, superoxide dismutase and glutathione peroxidase levels were decreased significantly (p < 0.001) whereas malondialdehyde levels were increased significantly (p < 0.001) in CP-treated rats when compared to control. Significant (p < 0.001) elevations in serum and liver aminotransferases, alkaline phosphatase, gamma-glutamyl transferase, conjugated bilirubin, lactate dehydrogenase and total bilirubin levels occurred in CP-treated rats when compared to control. The liver of CP-treated rats showed hepatocyte necrosis. Interestingly, the aforementioned alterations were significantly reversed in rats post-treated (p < 0.05), co-treated (p < 0.01) and pre-treated (p < 0.001) with DEXA when compared to CP. DEXA may be re-purposed as treatment for CP associated hepatotoxicity.

Keywords: Cyclophosphamide, Liver, Toxicity, Dexamethsone, Rat

1. Introduction

Cyclophosphamide (CP) is a derivative of alkylating agents which has been used over the years as an effective anti-neoplastic agent. It is also effective against non-neoplastic diseases such as systemic lupus erythematosus and rheumatoid arthritis [1, 2]. The use of CP has been characterized by array of toxicities including hepatotoxicity, pulmonary fibrosis, cardiotoxicity, nephrotoxicity and urotoxicity [3, 4]. Hepatotoxicity is a major adverse effect associated with the use of CP. It is metabolized in the liver by hepatic cytochrome p450 to its active metabolites (acrolein and phosphoramidemustard) [5]. Acrolein is highly reactive and reduces hepatic glutathione (GSH) sulphydryl groups’ thus inducing oxidative stress (OS) and causing hepatic damage [6]. CP can damage mitochondria and impairs cellular respiration [8]. Mitochondria is a repertoire for reactive oxygen species (ROS) hence, damage will increases more ROS attack, distortion of hepatic intracellular oxidant/antioxidant balance and increase OS [8]. In addition, CP causes up-regulation in lipid peroxidation (LPO) indices and nuclear transcription factor kappa-B (NF-κB) which have been associated with the stimulation of
2. Materials and Methods

2.1. Drugs, chemicals and animals. The rats were sourced from the animal unit of the Department of Pharmacology and Toxicology, Faculty of Pharmacy, Niger Delta University, Nigeria. The rats were placed in metal cages under natural condition and fed with rat diet and water \textit{ad libitum}. The rats were allowed for two weeks prior to the experiment for acclimatization and were handled according to the guideline on animal handling by National Academy of Science. DEXA (Ranbaxy Laboratory Ltd, India) and CP (Biochem Pharmaceutical Industries Ltd, India).

2.2. Dose selection and animal treatment.

- This study used CP (150 mg/kg) [15] and modified dose of DEXA (1mg/kg) [16] diluted with normal saline
- Thirty-six adult male albino rats (200 ± 50g) randomised into six groups (I-VI) of n = 6 were used.
- Group I (Control) was treated with a dose of normal saline (0.3mL) intraperitoneally i.p for 24 hr
- Group II was treated i.p with a dose of DEXA (1mg/kg) for 24 hr
- Group III was treated i.p with a dose of CP (150 mg/kg) for 24 hr
- Group IV (Post-treatment) was treated i.p with a dose of CP (150 mg/kg) for 24hr before treatment with a dose of DEXA (1mg/kg) for 24 hr.
- Group V (Co-treatment) was co-treated i.p with a dose of DEXA (1 mg/kg) and a dose of CP (150 mg/kg) for 24 hr.
- Group VI (Pre-treatment) was pre-treated i.p with a dose of DEXA (1 mg/kg) for 24 hr before treatment with a dose of CP (150 mg/kg) for 24 hr.

2.3. Sacrifice of animals and biochemical analyses. After treatment, the rats were exposed to diethyl ether in a chamber and blood samples were taken from the heart. Blood samples were allowed to clot, centrifuged and serum samples were separated for biochemical analyses. Liver specimens were collected rinsed in cold saline and homogenized in buffered (pH 7.4) 0.1 M Tris-HCl solution. The homogenates were centrifuged at 2000 g for 20 min and the supernatants were decanted and used for biochemical analyses. Alanine aminotransferase, lactate dehydrogenase, total bilirubin, aspartate aminotransferase conjugated bilirubin, gamma-glytamyltransferase activities were determined using diagnostic laboratory test kits (Randox Laboratories Ltd., Crumlin, UK). Liver glutathione (GSH) was measured as described by Sedlak and Lindsay, 1968 [17]. Superoxide dismutase (SOD) was measured as described by Sun and Zigman, 1979 [18]. Glutathione peroxidase (GPx) was evaluated according to Rotruck et al. 1973 [19]. Catalase (CAT) was assessed according to Aebi, 1984 [20]. Protein was determined as reported by Gonall et al. 1949 [21].Malondialdehyde (MDA) was assayed as described by Buege and Aust, 1978 [22].

2.4. Histological assessment of the liver. Liver specimens were collected, rinsed and fixed in 10% neutral buffered formalin for 24hr. Liver specimens were dehydrated in ascending degree of ethanol. Liver tissues were processed, paraffin embedded and 5 µm sections were obtained using a microtome. The sections were stained with haematoxylin and eosin dye and assessed for histological changes using a light microscope

2.5. Statistical analysis. All data were analyzed with Graph Pad Prism (Version 5.0, Graph Pad Software Inc., La Jolla, California, U.S.A.) and values were presented as mean ± SEM. Differences between the control and experimental groups were analysed using one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test. Probability value less than 0.05, 0.01 and 0.001 was considered significant.
Table 1: Effect of dexamethasone on serum liver biochemical indices of cyclophosphamide-treated rats.

Treatments	AST (U/L)	ALP (U/L)	ALT (U/L)	LDH (U/L)	GGT (U/L)	TB (g/dL)	CB (g/dL)
CONTROL	32.0 ± 2.08a	34.0 ± 2.11a	35.3 ± 3.03a	37.8 ± 3.05a	13.5 ± 1.65a	4.52 ± 0.19a	3.63 ± 0.19a
DEXA	31.3 ± 2.11a	33.8 ± 2.25a	31.8 ± 3.17a	35.3 ± 3.32a	12.8 ± 1.09a	4.50 ± 0.29a	3.57 ± 0.19a
CP	121.5 ± 14.0c	128.5 ± 13.3c	115.4 ± 12.4c	120.5 ± 10.2c	49.3 ± 4.29c	19.3 ± 1.25c	18.3 ± 1.35c
DEXA+CP (Post)	85.5 ± 7.90d*	81.3 ± 8.35d*	79.0 ± 7.87d*	80.8 ± 8.03d*	34.3 ± 3.18d*	15.0 ± 1.27d*	14.0 ± 1.36d*
CP+DEXA (Cotr)	62.3 ± 6.21e*	61.0 ± 6.96e*	56.5 ± 4.41e*	61.8 ± 5.18e*	23.5 ± 2.25e*	10.5 ± 0.53e*	10.5 ± 0.65e*
CP+DEXA (Pre)	40.8 ± 3.37f*	52.8 ± 4.32f*	41.8 ± 3.44f*	51.5 ± 5.45f*	17.0 ± 1.13f*	7.54 ± 0.65f*	6.88 ± 0.48f*

Data presented as mean ± SEM, n = 6, CP: Cyclophosphamide, DEXA: Dexamethasone, Post: Post-treatment, Cotr: Co-treatment, Pret: Pre-treatment, AST: Aspartate aminotransferase, CB: Conjugated bilirubin, GGT: Gamma glutamyl transferase, ALT: Alanine aminotransferase, LDH: Lactate dehydrogenase, TB: Total bilirubin, ALP: Alkaline phosphatase. Values with different alphabets down the column differ at p < 0.05, *p < 0.05 in comparison to CP, #p < 0.001 in comparison to CP.

Table 2: Effect of dexamethasone on liver tissue biochemical indices of cyclophosphamide-treated rats.

Group	AST (U/L)	ALT (U/L)	ALP (U/L)	GGT (U/L)	LDH (U/L)
Control	200.3 ± 14.7a	227.7 ± 16.2a	191.9 ± 15.0a	30.3 ± 2.12a	175.1 ± 13.7a
DEXA	198.1 ± 16.3a	210.6 ± 19.0a	185.4 ± 17.5a	28.7 ± 2.00a	160.7 ± 10.8a
CP	891.3 ± 23.2c	811.1 ± 24.8c	760.8 ± 22.7c	107.9 ± 10.3c	780.3 ± 20.2c
CP+DEXA (Post)	650.6 ± 17.7d*	610.8 ± 28.5d*	510.6 ± 20.1d*	70.8 ± 6.33d*	560.8 ± 16.1d*
CP+DEXA (Cotr)	530.7 ± 19.1e*	500.6 ± 17.1e*	370.7 ± 14.3e*	50.4 ± 4.32e*	400.1 ± 15.0e*
DEXA+CP (Pret)	390.1 ± 18.9f*	370.5 ± 13.8f*	240.1 ± 12.0f*	33.5 ± 2.37f*	251.4 ± 11.2f*

Data presented as mean ± SEM, n = 6, CP: Cyclophosphamide, DEXA: Dexamethasone, Post: Post-treatment, Cotr: Co-treatment, Pret: Pre-treatment, AST: Aspartate aminotransferase, GGT: Gamma-glutamyl transferase, ALT: Alanine aminotransferase, ALP: Alkaline phosphatase, LDH: Lactate dehydrogenase. Values with different alphabets down the column differ at p < 0.05, #p < 0.05 in comparison to CP, *p < 0.001 in comparison to CP.

Table 3: Effect of dexamethasone on liver oxidative stress indices of cyclophosphamide treated rats.

Treatments	SOD (U/mg protein)	CAT (U/mg protein)	GSH (µmole /mg protein)	GPx (U/mg protein)	MDA (nmol /mg protein)
Control	20.0 ± 2.00a	31.9 ± 2.70a	15.0 ± 1.00a	15.4 ± 1.33a	0.15 ± 0.07a
DEXA	21.1 ± 2.22a	33.7 ± 2.42a	16.1 ± 1.27a	15.9 ± 2.21a	0.13 ± 0.09a
CP	8.70 ± 0.63c	12.0 ± 1.20c	4.10 ± 0.20c	4.13 ± 0.32c	0.89 ± 0.01c
CP+DEXA (Post)	11.8 ± 0.57d*	17.1 ± 2.01d*	6.51 ± 0.19d*	6.00 ± 0.25d*	0.55 ± 0.06d*
CP+DEXA (Cotr)	14.9 ± 1.33e*	22.8 ± 2.42e*	9.75 ± 0.17e*	9.32 ± 0.06e*	0.32 ± 0.07e*
DEXA+CP (Pret)	19.4 ± 1.27f*	30.7 ± 2.31f*	14.6 ± 1.54f*	13.0 ± 1.32f*	0.20 ± 0.04f*

Data presented as mean ± SEM, n = 6, CP: Cyclophosphamide, DEXA: Dexamethasone Post: Post-treatment, Cotr: Co-treatment, Pret: Pre-treatment, SOD: Superoxide dismutase, MDA: Malondialdehyde, GSH: Glutathione, GPx: Glutathione peroxidase, CAT: Catalase. Values with different alphabets down the column differ at p < 0.05, #p < 0.05 in comparison to CP, *p < 0.01 in comparison to CP, #p < 0.001 in comparison to CP.
Figure 1: Normal hepatocytes (G) were observed in the liver of control rat (Figure A) whereas hepatocyte necrosis (P) (Figure B) and inflammatory cell infiltration (H) (Figure C) were observed in the liver of rat treated with CP (150mg/kg). Hepatocyte necrosis (L) and inflammatory cell infiltration (M) were observed in the liver of rats post-treated with DEXA (Figure D) whereas inflammatory cell infiltration (E) was observed in the liver of rat co-treated with DEXA (Figure E). Normal liver hepatocytes (K) were observed in the liver of rat pre-treated with DEXA (Figure F).
3. Results

3.1. Result on liver biochemical indices. DEXA treatment had no significant (P > 0.05) effects on serum ALT, AST, , CB, TB, LDH, GGT, TB, ALP and CB levels in relation to control (Table 1). However, the aforementioned parameters were elevated significantly (P < 0.001) in CP-treated rats in relation to control (Table 2). In contrast, ALT, AST, CB, TB, LDH, GGT, TB, ALP and CB levels were significantly decreased in rats post-treated (P < 0.05), co-treated (P < 0.01), and pre-treated (P < 0.001) with DEXA when compared to CP (Table 2). Furthermore, liver AST, ALP, ALT, GGT and LDH levels were normal (P > 0.05) in DEXA-treated rats, but were significantly (p < 0.001) elevated in CP-treated rats when compared to control (Table 3). However, the aforementioned parameters were decreased significantly in rats post-treated (P < 0.05), co-treated (P < 0.01), and pre-treated (P < 0.001) with DEXA when compared to CP (Table 3).

3.2. Results on liver oxidative stress markers and liver histology. Normal (P > 0.05) liver antioxidants (SOD, GSH, CAT, GPX) and MDA levels were observed in DEXA-treated rats in relation to control. In contrast, liver antioxidant levels were reduced significantly (p < 0.001) whereas MDA levels were increased significantly (p < 0.001) in CP-treated rats in relation to control (Table 4). However, liver antioxidant levels were elevated whereas MDA levels were reduced significantly in DEXA post-treated (P < 0.05), co-treated P < 0.01), and pre-treated (P < 0.001) rats when compared to CP (Table 4). Furthermore the liver of control rat showed normal histology (Figure A). The liver of treated with CP-treated rats showed hepatocyte necrosis (Figure B) and inflammatory cell infiltration (Figure C). The liver of rats post-treated with DEXA showed hepatocyte necrosis and inflammatory cell infiltration (Figure D). The liver of rats co-treated DEXA showed inflammatory cell infiltration (Figure E). On the other hand, normal liver histology was observed in rat pre-treated with DEXA (Figure F).

4. Discussion

Hepatotoxicity caused by drugs is responsible for about 5% of admissions in hospitals and 50% of cases of liver failure. About 75% of hepatotoxicity caused by drugs result to transplantation of liver or death [23] hence, the need for continuous screening of new substances for possible hepatoprotective property. Established drugs can also be assessed for possible repurposing as hepatoprotective agents. This study assessed the potential of DEXA to be repurposed as a hepatoprotective agent against CP-induced hepatotoxicity in albino rats. The alterations in the physiologic and metabolic functions of the liver accompanied by elevations in serum ALT, AST, ALP, LDH, GGT, CB and TB levels are basic features of hepatotoxicity caused by CP[24]. In this study, notable hepatotoxicity occurred in CP-treated rats marked by remarkable elevations in serum and liver levels of the aforementioned parameters. However, the effects of CP on ALT, AST, ALP, LDH, GGT, CB and TB were down-regulated in rats post-treated and co-treated with DEXA with most down-regulation observed in rats pre-treated with DEXA. One of the primary functions of antioxidants is to protect biomolecules from assaults caused by free radicals. However, assaults may become inevitable in the face of insurmountable pressure from free radicals especially ROS leading to OS and decreased antioxidant concentrations [25]. OS causes LPO which has been associated with some disease states and drug-induced hepatotoxicity. MDA is among the low-molecular-weight by-products produced as a result of LPO. Its measurement gives vivid idea on the participation of LPO in biological processes [25]. This study observed decreased hepatic antioxidants (GPx, CAT, GSH, SOD, and GSH) with increased MDA levels in CP-treated. This observation is in unison with earlier reports [26, 27]. However, hepatic antioxidants were up-regulated whereas MDA levels were down-regulated in rats post-treated and co-treated with DEXA with most remarkable effects observed in rats pre-treated with DEXA. Histological examination is one of the techniques used to ascertain the impact of drugs on the architecture of the liver. Histological assessment of CP-treated rats showed hepatocyte necrosis and inflammatory cell infiltration. This observation supports earlier reports [28]. On the other hand, CP-induced changes in hepatic structure were attenuated in rats post-treated, co-treated and pre-treated with DEXA. The observation in this study correlates with the reported hepatoprotective effect of DEXA against Yondelis (ET-743) a promising antitumor drug in rats [29]. The mechanism by which CP causes hepatotoxicity has been speculated to be associated with acrolein produced during its hepatic activation and biotransformation [30]. Acrolein is a highly reactive metabolite that triggers the production of ROS. ROS can provoke LPO, protein carbonylation and the oxidation of DNA and other biomolecules. Acrolein can also activate pro-inflammatory mediators and multiple signalling pathways that can facilitate cell death [31]. Furthermore, acrolein can bind to cellular antioxidants, leading to their depletions thereby increasing vulnerability to assault by ROS [32]. The mechanism by which DEXA attenuates CP-induced nephrotoxicity may not be far from its anti-inflammatory effect. Also, through its antioxidant effect because it has been associated with increased antioxidant expression and decreased LPO in humans and animals [33, 34]. Conclusion: DEXA attenuates CP-induced hepatotoxicity in rats with most attenuation observed in rats pre-treated with DEXA. This study suggests that DEXA may be effective against cyclophosphamide-induced hepatotoxicity.

Competing Interests

The authors declare no competing interests.
References

[1] C. Dollery, Therapeutic Drugs. Churchill Livingstone, Edinburgh, UK, 1999.

[2] Malcolm Lawson, Arthur Vasilaras, Annamarie De Vries, Peter MacTaggart, and David Nicol, “Urolological implications of cyclophosphamide and ifosfamide,” Scandinavian Journal of Urology and Nephrology, vol. 42, no. 4, pp. 309–317, 2008.

[3] P. Morandi, P. A. Ruffini, G. M. Benvenuto, R. Raimondi, and V. Fossler, “Cardiac toxicity of high-dose chemotherapy,” Bone Marrow Transplantation, vol. 35, no. 4, pp. 323–334, 2004.

[4] Paola Papaldo, Massimo Lopez, Paolo Marolla et al., “Impact of Five Prophylactic Filgrastim Schedules on Hematologic Toxicity in Early Breast Cancer Patients Treated With Epirubicin and Cyclophosphamide,” Journal of Clinical Oncology, vol. 23, no. 28, pp. 6908–6918, 2005.

[5] Sm Ludeman, “The chemistry of the metabolites of cyclophosphamide,” Current Pharmaceutical Design, vol. 5, p. 0, 1999.

[6] A. J. Marinello, H. L. Gurtoo, R. F. Struck, and B. Paul, “Denaturation of cytchrome P-450 by cyclophosphamide metabolites,” Biochemical and Biophysical Research Communications, vol. 83, no. 4, pp. 1347–1353, 1978.

[7] Abdul-Kader Souid, Kirk A. Tacka, Karen A. Galvan, and Harvey S. Penefsky, “Immediate effects of anticancer drugs on mitochondrial oxygen consumption,” Biochemical Pharmacology, vol. 66, no. 6, pp. 977–987, 2003.

[8] Sohair R. Fahmy, Ahmed I. Amien, Fathi M. Abd-Elgleel, and Sara M. Elskalany, “Antihepatotoxic efficacy of Mangifera indica L. polysaccharides against cyclophosphamide in rats,” Chemico-Biological Interactions, vol. 244, pp. 113–120, 2016.

[9] Ayman M. Mahmoud and Hussein S. Al-Dera, “18β-Glycyrrhetinic acid exerts protective effects against cyclophosphamide-induced hepatotoxicity: potential role of PPARγ and Nrf2 upregulation,” Genes & Nutrition, vol. 10, no. 6, 2015.

[10] Yy Le and Rb Xu, “The molecular mechanism of the action of the pharmacological doses of glucocorticoids. Studies on the low affinity glucocorticoid receptor,” Receptor, vol. 5, pp. 63–69, 1995.

[11] H. Eiler and J. Oliver., “Combined dexamethasone suppression and cosyntropin (synthetic ACTH) stimulation test in the dog: new approach to testing adrenal gland function,” American Journal of Veterinary Research, vol. 41, pp. 1243–1246, 1980.

[12] Ruth Abaya, Laura Jones, and Joseph J. Zorc, “Dexamethasone Compared to Prednisone for the Treatment of Children With Acute Asthma Exacerbations,” Pediatric Emergency Care, vol. 34, no. 1, pp. 53–58, 2018.

[13] Kohtaro Asayama, Hidemasa Hayashibe, Kazushige Dobashi, Norihiko Uchida, and Kohtaro Asayama, “Effect of Dexamethasone on Antioxidant Enzymes in Fetal Rat Lungs and Kidneys,” Neonatology, vol. 62, no. 2-3, pp. 136–144, 1992.

[14] M. Turgay, F. Turgay, E. Devrim, O. Kucukshahin, M. Caydere, and I. Durak, “The effects of dexamethasone on oxidant/antioxidant status in kidneys of rats administered mercuric chloride,” Bratislava Medical Journal, vol. 113, no. 01, pp. 10–13, 2012.

[15] Fereshhtealbepour Amiri, Maedeh Hamzeh, Seyyedjalal Hosseiminehr, Alireza Khalatbari, Hamidreza Mohammadi, and Ayat Dashi, “Atorvastatin mitigates cyclophosphamide-induced hepatotoxicity via suppression of oxidative stress and apoptosis in rat model,” Research in Pharmaceutical Sciences, vol. 13, no. 5, p. 440, 2018.

[16] S. Kumar, D. A. Allen, J. E. Kieswich et al., “Dexamethasone Ameliorates Renal Ischemia-Reperfusion Injury,” Journal of the American Society of Nephrology, vol. 20, no. 11, pp. 2412–2425, 2009.

[17] Jozef Sedlak and Raymond H. Lindsay, “Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent,” Analytical Biochemistry, vol. 25, pp. 192–205, 1968.

[18] Ming Sun and Seymour Zigman, “An improved spectrophotometric assay for superoxide dismutase based on epinephrine autoxidation,” Analytical Biochemistry, vol. 90, no. 1, pp. 81–89, 1978.

[19] J. T. Rotruck, A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafeman, and W. G. Hoekstra, “Selenium: Biochemical Role as a Component of Glutathione Peroxidase,” Science, vol. 179, no. 4073, pp. 588–590, 1973.

[20] Hugo Aebi, in Methods in Enzymology, pp. 121–126, Elsevier, 1984.

[21] Ag Gornall, Cj Bardwill, and Mn David, “Determination of serum proteins by means of the biuret reaction,” Journal of Biological Chemistry, vol. 177, pp. 751–66, 1949.

[22] John A. Buege and Steven D. Aust, in Methods in Enzymology, pp. 302–310, Elsevier, 1978.

[23] George Ostapowicz, “Results of a Prospective Study of Acute Liver Failure at 17 Tertiary Care Centers in the United States,” Annals of Internal Medicine, vol. 137, no. 12, p. 947, 2002.

[24] Elias Adikwu and Bonsome Bokolo, “Effect of cimetidine on cyclophosphamide-induced liver toxicity in albino rats,” Asian Journal of Medical Sciences, vol. 9, no. 5, p. 50, 2018.

[25] Elias Adikwu, N. C. Ebinyo, and H. Aagbadabina, “Coenzyme Q 10 “Abrogates Flutamide- Induced Hepatotoxicity in Albino Rats,” Journal of Medical Science and Health, vol. 5, pp. 1–8, 2019.

[26] Dina F. Mansour, Dalia O. Saleh, and Rasha E. Mostafa, “Genistein Ameliorates Cyclophosphamide - Induced Hepatotoxicity by Modulation of Oxidative Stress and Inflammatory Mediators,” Open Access Macedonian Journal of Medical Sciences, vol. 5, no. 7, p. 836, 2017.

[27] Fereshhtealbepour Amiri, Maedeh Hamzeh, Seyyedjalal Hosseinimehr, Alireza Khalatbari, Hamidreza Mohammadi, and Ayat Dashi, “Atorvastatin mitigates cyclophosphamide-induced hepatotoxicity via suppression of oxidative stress and apoptosis in rat model,” Research in Pharmaceutical Sciences, vol. 13, no. 5, p. 440, 2018.

[28] Mohammad Shokrzadeh, Amirhossein Ahmadi, Farshad Naghshvar, Aroona Chabra, and Mehdi Jafarinejad, “Pharmacologic Efficacy of Melatonin on Cyclophosphamide-Induced Liver Toxicity in Mice,” BioMed Research International, vol. 2014, pp. 1–6, 2014.

[29] S. Donald, R. D. Verschoyle, P. Greaves, T. W. Gant, T. Colombo, M. Zaffaroni et al., “Complete protection by high-dose dexamethasone against the hepatotoxicity of the novel antitumor drug yondelis (ET-743) in the rat,” Cancer Research, vol. 63, no. 18, pp. 5902–8, 2003.

[30] I. Honjo, T. Suou, and C. Hirayama, “Hepatotoxicity of cyclophosphamide in man: pharmacokinetic analysis,” Research Communications in Chemical Pathology and Pharmacology, vol. 61, no. 2, pp. 149–165, 1988.

[31] S. H. Aladaileh, M. H. Abukhalil, S. M. Saghira, H. Hanieh, and M. A. Alfwuaires, “Galangin Activates Nrf2 Signaling and Attenuates Oxidative Damage, Inflammation, and Apoptosis in...
a Rat Model of Cyclophosphamide-Induced Hepatotoxicity,” *Biomolecules*, vol. 9, no. 346, pp. 1–19, 2019.

[32] James D. Adams and Lori K. Klaidman, “Acrolein-induced oxygen radical formation,” *Free Radical Biology and Medicine*, vol. 15, no. 2, pp. 187–193, 1993.

[33] N. A. Nounou, M. Deif, and M. J. Arafah, “The influence of dexamethasone and the role of some antioxidant vitamins in the pathogenesis of experimental bronchial asthma,” *Journal of Experimental Pharmacology*, pp. 93–103, 2010.

[34] Hajar Khosravanian, Mazdak Razi, Farah Farokhi, and Narges Khosravanian, “Simultaneous Administration of Dexamethasone and Vitamin E Reversed Experimental Varicocele-induced Impact in testicular tissue in Rats; Correlation with Hsp70-2 Chaperone Expression,” *International braz j urol*, vol. 41, no. 4, pp. 773–790, 2015.