HYgienic substantiation of calculating models for prognosis of toxicity of different classes insecticides (second part)

O.P. Vavrinevych 1, B.I. Shpak 3, A.M. Antonenko 1, S.T. Omelchuk 2, T.I. Zinchenko 1

Bogomolets National Medical University
Department Hygiene and Ecology No. 1 1
Institute of Hygiene and Ecology of Bogomolets National Medical University 2
Peremohy av., 34, Kyiv, 03057, Ukraine
«Syngenta» LCC 3, Kozatska str., 120/4, Kyiv, 02000, Ukraine
Національний медичний університет ім. О.О. Богомольца № 1
(зав. – член-кор. НАМН України, д. мед. н., проф. В.Г. Бардов)
Інститут гігієни та екології Національного медичного університету ім. О.О. Богомольца
пр. Перемоги, 34, Київ, 03057, Україна
ООО «Сингента»
ул. Козацька, 120/4, Київ, 02000, Україна
e-mail: antonenko1985@ukr.net

Key words: insecticide, toxicology, calculation models, regression equations

Abstract. Hygienic substantiation of calculating models for prognosis of toxicity of different classes insecticides (second part). Vavrinevych O.P., Shpak B.I., Antonenko A.M., Omelchuk S.T., Zinchenko T.I. This work is the second part of our study to develop alternative experimental mathematic models for predicting toxicity of insecticides, where we carried out a statistical analysis and comparative estimation of the toxicometric parameters obtained experimentally and calculated according to the proposed equations. In the first stage calculations were carried out and the most reliable models were proposed. The purpose of the research is the scientific substantiation and statistical analysis of the calculation models for predicting the toxicity of insecticides of different classes. For research we took the insecticides of the following chemical classes: neonicotinoids, pyrethroids, organophosphorus compounds. Statistical analysis of the linear and nonlinear regression equations obtained for insecticides was conducted. The equations described the dependence of subthreshold doses in the chronic experiment of all insecticides, the median lethal doses at oral admission of pyrethroids and neonicotinoids from molecular weight; and toxicometry parameters of all insecticides and their individual groups (pyrethroids, neonicotinoids, organophosphorus compounds) on melting temperature and the octanol-water partition coefficient. On the basis of a comparison of the toxicometry parameters obtained experimentally (actual parameters) and calculated according to the proposed equations checking of possibility of using of the calculating models for predicting the danger of the investigated groups of insecticides was performed. For substantiated pairs of resultant and factorial variables for pyrethroids, neonicotinoids, and organophosphorus pesticides a reliable correlation was established (ractual> rtable at p = 0.05) or trend (ractual> rtable at p = 0.1). A good and very good consistency of the features selected for the calculations according to the Cronbach’s alpha (index ranged from 0.8 and above) was indicated. The developed algorithm makes it possible to significantly simplify the conduction of toxicological studies of the studied classes of insecticides.

реферат. Гігієнічне обґрунтування розрахункових моделей прогнозування токсичності інсектицидів різних класів (друга частина). Вавріневич О.П., Шпак Б.І., Антоненко А.М., Омельчук С.Т., Зінченко Т.І. Ця робота є другою частиною нашого дослідження щодо розробки альтернативних експериментальних математичних моделей прогнозування токсичності інсектицидів, де ми провели статистичний аналіз та порівняли оцінку токсикометричних параметрів, отриманих експериментально та обчислені згідно з запропонованими рівняннями. На першому етапі були проведені розрахунки та запропоновані достовірні моделі. Метою дослідження було наукове обґрунтування та статистичний аналіз розрахункових моделей...
This work is the continuation of our project on development of calculation models for toxicological assessment of pesticides in silico. Nowadays specialists of Hygiene and Ecology Institute of Bogomolets National Medical proposed calculating models for predicting fungicides and herbicides toxicity [4, 8, 10]. In the previous article we have proposed alternative experimental mathematical models for insecticides [5]. In the first stage, calculations will be carried out and the most reliable models will be proposed. And it is second part of our study on development of alternative experimental mathematical models for predicting insecticides toxicity.

Methods of mathematical modeling are in accordance with modern principles of bioethics. They are, in comparison with laboratory experiments, fast, labor-saving, cost-effective [3, 7, 9]. However, when developing such methods, care must be taken to evaluate their adequacy and the reliability of the possible results.

That is why we have subjected the calculated equations to a careful statistical analysis.

The purpose of the research was scientific substantiation and statistical analysis of the calculation models for predicting toxicity of insecticides of different classes.

MATERIALS AND METHODS OF RESEARCH

We conducted a statistical analysis of the linear and nonlinear regression equations obtained for insecticides [5].

The equation described the dependence of NO(A)EL in the chronic experiment of all insecticides, the median lethal doses at oral admission (LD50 per os) of pyrithoids and neonicotinoids from molecular weight; toxicometry parameters of all insecticides and their individual groups (pyrithoids, neonicotinoids, organophosphorus compounds) on melting temperature and the octanol-water partition coefficient, log P_{ow}.

Only those equations were used for further analysis which were adequate for Fisher's criterion, and the coefficients of its regression were reliable according to Student's criterion (p<0.05).

Statistical processing of the results was performed using the package of licensed statistical software IBM SPSS StatisticsBase v.22 and MS Excel (v. 14.0.4760.1000; license 02260-018-0000106-4863).

The standardized Cronbach's alpha coefficient (α) was calculated by the formula:

$$\alpha_{st} = \frac{N \cdot r}{1 + (N - 1) \cdot r}$$

where N – the number of observation components; r – average correlation coefficient between components.

When the Cronbach's alpha coefficient is α_{st}>0.9 – consistency of characteristics is very good; >0.8 – consistency of characteristics is good; >0.7 – consistency of characteristics is acceptable; >0.6 – consistency of characteristics is questionable; >0.5 – consistency of characteristics is poor; ≤0.5 – consistency of characteristics is not sufficient.

Cronbach's alpha may take values from -∞ to 1, but only positive values have been interpreted. If the coefficient takes the value 1, then the test results are completely identical.

RESULTS AND DISCUSSION

Previously [5] the following significant correlations (at p<0.05) have been established:

- with increasing molecular weight of pyrithoids and neonicotinoids values of NO(A)ELs in the chronic experiment of all insecticides and the median lethal doses at oral admission also increased:

- with increasing melting temperature and the octanol-water partition coefficient, log P_{ow} toxicometry parameters values of all insecticides and their individual groups (pyrithoids, neonicotinoids, organophosphorus compounds) decreased.

The checking of using possibility of the calculating models for predicting the danger of the
На умовах ліцензії CC BY 4.0

іншених груп інсектицидів було проведено на основі порівняння параметрів токсикометрії отриманих експериментально (актуальні параметри) і розрахованих за вказаними умовами рівняннями (рис. 1-4).

В більшості випадків, розраховані значення кореляційно пов'язані з експериментально встановленими (Таблиця). Для різних пар результативних та факторних чинників для піретрідів, ноніктіноїдів та органофосфорних пестицидів, встановлено стабільну кореляцію (ractual>rtable при p=0.05) або тенденцію (ractual>rtable при p=0.1).

Додатково, внутрішня когерентність описових характеристик оцінювалась за допомогою Cronbach’s alpha. Для всіх викладених рівнянь, значення цього індексу змінювалися від 0.8 та більше, що свідчить про добру та дуже добру когерентність вибранних для розрахунків ознак.

В більшості випадків, розраховані перкутанні LD50 індекси були вищими за експериментально встановлені, але це зумовлено тим, що практично всі експериментально встановлені індекси цих значень представлені як “більш…”. Тобто, це можуть бути досить високими.

Відомо, що кореляції, що ми отримали (Таблиця) між критеріями токсичності і фізико-хімічними характеристиками, як підтверджено інверсними обчислювальними експериментами (Рис. 1-4), подібні до тих, що раніше встановлені для ноніктіноїдних інсектицидів [1].

Ми також виконали подібні обчислювальні обчислення для 3 речовин класу спіримесіфен (спірідінклофен та спіротетрамат); 3 азотистих іуд(діфлубензурон, навалурон, телфубензурон); 4 речовин класу карбаматів (карбосульфан, метхоміл, карбарат, феноксикарб); 2 авермектини (абамектин і емаектин бензоат) [6], але не відзначено надійної кореляції між їх токсикологічними параметрами з фізико-хімічними характеристиками.

В разі карбаматів, це може бути пояснено тим, що пороги токсичності, які були визначені вище 30 роками тому, часто істотно дотримувалися старовинних методів, на різних видах тварин (водяни, миші). І при перегляді за сучасними методами, ми можемо отримати інші значення. Для решти класів, здебільшого, є проблема з маленьким кількістю пройденої нами інформації. Під час збільшення кількості представників класів, кореляційний аналіз потребує повторення.

Notes: “* – the results are reliable at p<0.05; ** – trend, 0.05<p<0.1; l – linear; nl – non linear.
Fig. 1. A comparative analysis of the experimentally established LD$_{50}$ per cut (A) and NO(A)EL (B) values calculated for insecticides.
Fig. 2. A comparative analysis of the experimentally established LD50 per os values calculated for pyrethroids class compounds.
B

Fig. 3. A comparative analysis of the experimentally established LC50 inhal (A) and NO(A)EL (B) values calculated for organophosphorus class compounds

Fig. 4. A comparative analysis of the experimentally established LD50 per os values calculated for neonicotinoid class compounds
The same situation (which proves the above explanations) was with methoxyacrylates fungicides (dimoxystrobin, trifloxystrobin, fluoxystrobin, picoxystrobin, kresoxim-methyl, azoxystrobin, pyraclostrobin). There was no significant relationship between their toxicological parameters and physicochemical properties. Given that for most of the active substances in this chemical class the toxicity thresholds were justified in the 1990s, often according to outdated approaches, for different species of animals (rats, mice, dogs), such an exception only confirms the established links for molecules of modern groups of fungicides.

CONCLUSIONS
1. For substantiated pairs of resultant and factorial variables for pyrethrroids, neonicotinoids, and organophosphorus pesticides a reliable correlation was established (ractucal> rtable at p = 0.05) or trend (ractucal> rtable at p = 0.1).
2. It was indicated a good and very good consistency of the features selected for the calculations according to the Cronbach’s alpha (index ranged from 0.8 and above).
3. The developed algorithm makes it possible to significantly simplify the conduction of toxicological studies of the studied classes of insecticides.

Conflict of interests. The authors declare no conflict of interest.

REFERENCES
1. Yermolova LV, Prodanchuk MG, Lep’oshkin IV. [Development of calculation models for forecasting the risk of neonicotinoid insecticides]. Sovremennye problemy toksikologii. 2007;1:27-29. Ukrainian. Available from: http://medved.kiev.ua/web_journals/arch/toxicology/2007/1/27.pdf.
2. Petri A, Sebin K. Naglyadnaya medicinskaya statistika:uchebnoe posobie. [Visual Medical Statistics: A Training Manual]. editor V.P. Leonova. Moskva: GEOTAR-Media; 2015. p. 216. Russian.
3. Anton C. Modeling and simulation for toxicity assessment. Math Biosci Eng. 2017;14(3):581-606. doi: https://doi.org/10.3934/mbe.2017034
4. Antonenko AM, Vavrinevych OP. Forecasting of triazole, amide, piperidinyle thiazol isoxazoline, oxazole fungicides hazardous effect on human health in consumption of vegetables grewed in their application. Technology transfer: innovative solutions in medicine: proceedings of 2nd Annual Conference. Tallinn. 2018;2-5. doi: https://doi.org/10.21303/2585-663.2018.00763
5. Antonenko AM, Vavrinevych OP, Omelchuk ST, Shpak BI. Hygienic substantiation of calculating models for prognosis of toxicity of different classes insecticides (first part). Medichni perspektivy. 2019;24(3):106-12. doi: https://doi.org/10.26641/2307-0404.2019.3.181892
6. EU – Pesticides database: Maximum Residue Levels. [cited 2020 June 03]. Available from: http://ec.europa.eu/food/plant/pesticides/max_residue_levels/index_en.htm.
7. Knudsen TB, Keller DA, Sander M, et al. FutureTox II: in vitro data and in silico models for predictive toxicology. Toxicological Sciences. 2015 143(2):256-67. doi: https://doi.org/10.1093/toxsci/kfu234
8. Antonenko AM, Vavrinevych OP, Korshun MM, et al. Hygienic substantiation of calculation models for toxicity prognosis of different herbicides classes. Shbormik nauchnykh trudov «Zdorove i okruzhayushchaya sreda». 2018;28:168-75. http://spch.by/Docs/v28_sbornik.pdf.
9. Raies AB, Bajic VB. In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdiscip Rev. Comput. Mol. Sci. 2016;6(2):147-72. doi: https://doi.org/10.1002/wcms.1240
10. Vavrinevych OP, Antonenko AM, Korshun MM, Omelchuk ST. Hygienic substantiation of calculating models for fungicides of different classes toxicity prognosis. Environment and health. 2017;4(84):52-57. doi: https://doi.org/10.32402/dovkil2017.04.052

СПИСОК ЛІТЕРАТУРИ
1. Єрмолова Л. В., Проданчук М. Г., Лєпєшкін І. В. Розробка розрахункових моделей прогнозу небезпеки неонікотиноїдних інсектицидів. Совр. проблеми токсикології. 2007. № 1. С. 27–29. http://medved.kiev.ua/web_journals/arch/toxicology/2007/1/27.pdf.
2. Петри А., Єбін К. Наглядна медична статистика: учеб. пособие. ред. пер. с англ. : В. П. Леонова. Москва: ГЭОТАР-Медиа, 2015. 216 с.
3. Anton C. Modeling and simulation for toxicity assessment. Math Biosci Eng. 2017. Vol. 14, No. 3. P. 581-606. DOI: https://doi.org/10.3934/mbe.2017034
4. Antonenko A.M., Vavrinevych O.P. Forecasting of triazole, amide, piperidinyle thiazol isoxazoline, oxazole fungicides hazardous effect on human health in consumption of vegetables grewed in their application. Technology transfer: innovative solutions in medicine: proceedings of
5. Antonenko A. M., Vavrinevych O. P., Omelchuk S. T., Shpak B. I. Hygienic substantiation of calculating models for prognosis of toxicity of different classes insecticides. Part 1. Медичні перспективи. 2019. T. 24. № 3. С. 106-112. DOI: https://doi.org/10.26641/2307-0404.2019.3.181892

6. EU - Pesticides database: Maximum Residue Levels. URL: http://ec.europa.eu/food/plant/pesticides/max_residue_levels/index_en.htm. (date of access 03.06.2020).

7. FutureTox II: in vitro data and in silico models for predictive toxicology / T. B. Knudsen et al. Toxicological Sciences. 2015. Vol. 143, No. 2. P. 256-267. DOI: https://doi.org/10.1093/toxsci/kfu234

8. Hygienic substantiation of calculation models for toxicity prognosis of different herbicides classes / A. M. Antonenko et al. Сб. научных трудов «Здоровье и окружающая среда». 2018. No. 28. P. 168-175. http://rspch.by/Docs/v28_sbornik.pdf.

9. Raies A. B., Bajic V. B. In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdiscip Rev. Comput. Mol. Sci. 2016. Vol. 6, No. 2. P. 147-172. DOI: https://doi.org/10.1002/wcms.1240

10. Vavrinevych O. P., Antonenko A. M., Korschun M. M., Omelchuk S. T. Hygienic substantiation of calculating models for fungicides of different classes toxicity depend on their physical and chemical properties prognosis. Довкілля і здоров’я. 2017. Vol. 84, No. 4. P. 52-57. DOI: https://doi.org/10.32402/dovkil2017.04.052

Стаття надійшла до редакції 12.03.2020