Like-sign Di-lepton Signals in Higgsless Models at the LHC

Tao Han a, Hai-shan Liu b, Ming-xing Luo b, Kai Wang c,d and Wei Wu b

a Department of Physics, University of Wisconsin, Madison, WI 53706, USA
b Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, CHINA
c Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568, JAPAN
d Kavli Institute for Theoretical Physics China, CAS, Beijing 100190, CHINA

Abstract

We study the potential LHC discovery of the Z_1 KK gauge boson unitarizing $W^+_LW^-_L$ scattering amplitude. In particular, we explore the decay mode $Z_1 \rightarrow t\bar{t}$ along with $Z_1 \rightarrow W^+W^-$ without specifying the branching fractions. We propose to exploit the associated production $pp \rightarrow WZ_1$, and select the final state of like-sign dileptons plus multijets and large missing energy. We conclude that it is possible to observe the Z_1 resonance at a 5σ level with an integrated luminosity of 100 fb$^{-1}$ at the LHC upto 650 GeV for a dominant WW channel, and 560 GeV for a dominant $t\bar{t}$ channel.
I. INTRODUCTION

Weak gauge boson masses are electroweak symmetry breaking (EWSB) effects and how they arise still remains an open question in particle physics. The minimal Higgs boson model provides a simple solution to the electroweak symmetry breaking as well as fermion masses. Without a scalar Higgs boson, the scattering amplitudes for the longitudinally polarized gauge bosons (W_L and Z_L) grow with energy as E^2 and they violate the (perturbative) partial wave unitarity at the energy scale $4\pi M_W/g \sim 1.5$ TeV \footnote{Unitarity bounds are also reached at $16\pi/\sqrt{2} G_F M_f \xi$ for massive fermion scattering amplitudes $f\bar{f} \rightarrow W_L^+ W_L^-$ \footnote{Unitarity bounds are also reached at $16\pi/\sqrt{2} G_F M_f \xi$ for massive fermion scattering amplitudes $f\bar{f} \rightarrow W_L^+ W_L^-$, where $\xi = 1$ for leptons and $\xi = \sqrt{3}$ for quarks. Due to the large top quark mass, the scale of mass generation for the top quark yields the strongest bound, to be about 3.5 TeV \footnote{Unitarity bounds are also reached at $16\pi/\sqrt{2} G_F M_f \xi$ for massive fermion scattering amplitudes $f\bar{f} \rightarrow W_L^+ W_L^-$.}}. Unitarity bounds are also reached at $16\pi/\sqrt{2} G_F M_f \xi$ for massive fermion scattering amplitudes $f\bar{f} \rightarrow W_L^+ W_L^-$ \footnote{Unitarity bounds are also reached at $16\pi/\sqrt{2} G_F M_f \xi$ for massive fermion scattering amplitudes $f\bar{f} \rightarrow W_L^+ W_L^-$.}.

Recently there have been attempts to generate EWSB without Higgs bosons in the framework of extra dimension models \footnote{Unitarity bounds are also reached at $16\pi/\sqrt{2} G_F M_f \xi$ for massive fermion scattering amplitudes $f\bar{f} \rightarrow W_L^+ W_L^-$.}. In the so-called “Higgsless” models, unitarity is restored by contributions from a tower of Kaluza-Klein (KK) gauge bosons. The E^2 dependence in the scattering amplitude of W_L and Z_L is cancelled by the Kaluza-Klein (KK) modes Z_n, W_n. The unitarity in massive fermion scattering will also be protected by allowing $Z_n t \bar{t}$.

There have been several studies regarding the LHC search of the first KK W_n boson (W_1) via weak boson fusion (WBF) \footnote{Unitarity bounds are also reached at $16\pi/\sqrt{2} G_F M_f \xi$ for massive fermion scattering amplitudes $f\bar{f} \rightarrow W_L^+ W_L^-$.} and associated production \footnote{Unitarity bounds are also reached at $16\pi/\sqrt{2} G_F M_f \xi$ for massive fermion scattering amplitudes $f\bar{f} \rightarrow W_L^+ W_L^-$.}. These studies all focused on the decay channel $W_1 \rightarrow WZ$ and chose multilepton final states. Despite the small Z leptonic decaying branching fraction (BR), the SM backgrounds are always under control. In WBF $jjW_1 \rightarrow jjW^{\pm}Z$ through the $3\ell + jj + E_T$ final state, the claimed reach is 1 TeV for 5σ discovery at 100 fb$^{-1}$ integrated luminosity \footnote{Unitarity bounds are also reached at $16\pi/\sqrt{2} G_F M_f \xi$ for massive fermion scattering amplitudes $f\bar{f} \rightarrow W_L^+ W_L^-$.}. For the associated production $ZW_1 \rightarrow W^{\pm}ZZ \rightarrow 4\ell + jj$ final state had been proposed and the claimed reach is about 620 GeV at 5σ for 100 fb$^{-1}$ integrated luminosity \footnote{Unitarity bounds are also reached at $16\pi/\sqrt{2} G_F M_f \xi$ for massive fermion scattering amplitudes $f\bar{f} \rightarrow W_L^+ W_L^-$.}.

In this paper, we will explore another aspect of this class of model. Given the large top quark mass, we argue that Z_1 should couple to $t \bar{t}$ significantly \footnote{Unitarity bounds are also reached at $16\pi/\sqrt{2} G_F M_f \xi$ for massive fermion scattering amplitudes $f\bar{f} \rightarrow W_L^+ W_L^-$.} if Z_1 is the dominant contribution of unitarizing the scattering amplitudes involving top pairs. We take a phenomenological approach to the Z_1 boson, and allow it to decay to both W^+W^- and $t \bar{t}$ channels without specifying the decaying BRs. Focusing on the $W^+W^-Z_1$ coupling, the Z_1 can be produced through WBF channel jjZ_1 and associated production WZ_1\footnote{Associated production of a strongly interacting vector (V) with heavy quarks has been considered in Ref. \footnote{Unitarity bounds are also reached at $16\pi/\sqrt{2} G_F M_f \xi$ for massive fermion scattering amplitudes $f\bar{f} \rightarrow W_L^+ W_L^-$.}. The perspectives for its observation at the LHC look promising.}. Al-

1 Associated production of a strongly interacting vector (V) with heavy quarks has been considered in Ref. \footnote{Unitarity bounds are also reached at $16\pi/\sqrt{2} G_F M_f \xi$ for massive fermion scattering amplitudes $f\bar{f} \rightarrow W_L^+ W_L^-$.}. The perspectives for its observation at the LHC look promising.
ollowing $Z_1 \rightarrow W^+W^-/Z_1 \rightarrow t\bar{t}$ decays, the final states will contain $jjt\bar{t}/jjW^+W^-$ and $W^±t\bar{t}/W^±W^+W^-$. Unlike the W_1 case in [3, 4], the WBF channel jjZ_1 suffers from huge irreducible Standard Model (SM) background of $t\bar{t}$ plus jets. Our studies focus on the leptonic decays of like-sign Ws via associated production. Consequently, the final states to be studied consist of multijet $+\ell^±\ell^± + E_T$. In comparison with previous studies, we can reach a mass of 550 GeV−650 GeV for $t\bar{t}$ and WW modes, at a 5σ level with 100 fb$^{-1}$ of the integrated luminosity.

This paper is organized as follows. In Sec.II, we discuss the parameters in the model, bounds on KK gauge boson masses and their couplings to SM particles due to unitarity requirement in scattering amplitudes and precision electroweak tests. In Sec.III, we discuss the search of Z_1 gauge boson at the LHC allowing both $Z_1 \rightarrow W^+W^-$ and $Z_1 \rightarrow t\bar{t}$ decays and focus on the multijet $+\ell^±\ell^± + E_T$ final states. We will conclude in Sec. IV.

II. MODEL PARAMETERS

In Higgsless models, it is shown [4] that the scattering amplitude of the longitudinal components of massive W and Z bosons can be unitarized by the KK excitations of the gauge bosons Z_n and W_n. The cancellation of E^2 and E^4 terms lead to the following sum rules of Z_n as [4]

$$g^2_{WWW} = g^2_{WWZ} + g^2_{WW\gamma} + \sum_n (g_{WWZ_n})^2,$$

$$4g^2_{WWW}M_W^2 = 3 \left[g^2_{WWZ}M_Z^2 + \sum_n (g_{WWZ_n})^2M_{Z_n}^2 \right],$$

where $g_{WWW} = g^2 = e^2/\sin \theta_W$ is the SM four W contact interaction coupling, $g_{WWZ}/g_{WW\gamma}$ are the SM coupling between WW and Z/γ respectively.

We focus on the first KK excitation Z_1 boson and assume other higher KK excitations to be less relevant to the collider search. However, such a truncation will lead to a violation of partial wave unitarity at a scale $\Lambda \simeq 4\pi M_{Z_1}/g$ [4]. For instance, if $M_{Z_1} = 500$ GeV, then Λ is of $\mathcal{O}(10 \text{ TeV})$, which should not affect our phenomenological considerations.

In principle, the introduction of new gauge boson will also modify the SM couplings. We keep $g_{WW\gamma}$ and g_{WWW} to their SM value and g_{WWZ_1} and g_{WWZ} can be computed through
Eq. 1 and Eq. 2. We obtain the couplings as
\[
g^2_{WWZ_1} = \frac{(4M_W^2 - 3M_Z^2)g^2_{WWWW} + 3M_Z^2g^2_{WWY}}{3(M_{Z_1}^2 - M_Z^2)},
\]
\[
g^2_{WWWZ} = \frac{3M_Z^2(g^2_{WWWW} - g^2_{WWY}) - 4M_W^2g^2_{WWWW}}{3(M_{Z_1}^2 - M_Z^2)}.
\]
The Z_1 mass M_{Z_1} will then be the only input parameter in the analysis. If $M_{Z_1} = 500$ GeV, the deviation of g^2_{WWWZ} from its SM value is smaller than 1%, which is consistent with the current experimental bound.

Previous studies have shown that it is hard to accommodate precision electroweak data if Z_1 couples to the SM fermions. Even if Z_1 only couples to the third family, it is disfavored by the strong constraints on the $Zb\bar{b}$ coupling. A fermiophobic Z_1/W_1 have been studied in Refs. [10, 11]. A few viable models have been suggested to incorporate this Ref. [7, 12]. In this paper, we will take Z_1 to couple mainly to $t\bar{t}$ and W^+W^- but without specifying the values of the branching fractions $BR(Z_1 \rightarrow t\bar{t})$ and $BR(Z_1 \rightarrow W^+W^-)$ a priori.

III. Z_1 AT THE LHC

For a vector state, the dominant production mechanism is the Drell-Yan process, $q\bar{q} \rightarrow Z_1$, if there are sizable couplings to light quarks [13]. With highly suppressed couplings to light fermions as preferred in Higgsless models, the dominant production channel for Z_1 is commonly considered as the weak boson fusion (WBF) mechanism $pp \rightarrow Z_1jj$. We extend the calculation by including the the associated production $pp \rightarrow WZ_1$. Fig. 1 shows the total cross sections of Z_1 from associated production and WBF production at the LHC for 10 (dotted curves) and 14 TeV (solid curves). We have chosen the PDF CTEQ6L and the factorization scale $\mu_F = \sqrt{s}/2$. As expected, we see that the associated production is larger at smaller value of M_{Z_1} and the WBF mechanism takes over at higher values. The two curves cross near $M_{Z_1} \sim 400 - 600$ GeV, where the cross sections are quite sizable, about 100−200 fb.

The WBF processes for W_LW_L scattering have unique kinematic features: two forward/backward energetic jets with large dijet invariant mass and lack of central jet activities. However, the $Z_1 \rightarrow t\bar{t}$ and $Z_1 \rightarrow W^+W^-$ channels via WBF suffer from huge backgrounds, mainly from $t\bar{t}$ plus jets of order several hundreds pb, while the Z_1 WBF production rate is only of a few hundreds fb which is $O(10^3)$ smaller. The WZ_1 associated production,
FIG. 1: Z_1 Production rates at the LHC for 10 (dotted curves) and 14 TeV (solid curves).

however, benefits from the additional handle of W^\pm. We therefore focus on this associated production channel. The processes under consideration are

$$pp \to W^\pm Z_1 \to W^\pm t \bar{t} \text{ and } W^\pm W^+W^-.$$ \hfill (5)

As for the final state reconstructions, although the hadronic decay of t or W will help to fully reconstruct the Z_1 resonance, these channels suffer from huge standard model background from $t\bar{t}$ plus jets. To effectively suppress the backgrounds, we look for the signal of like-sign di-leptons. We choose the W^\pm associated with the Z_1 production always decaying into leptons ($\ell = e, \mu$) and take the W^\pm from Z_1 decay of the like-sign as the previous W^\pm, which also decays leptonically. The third W^\mp decays hadronically. The final states that we are looking for are

$$pp \to W^\pm Z_1 \to \begin{cases} W^\pm W^+W^- \to \ell^\pm\ell^\pm + jj + E_T, \\ W^\pm t\bar{t} \to \ell^\pm\ell^\pm + b\bar{b} jj + E_T, \end{cases}$$ \hfill (6)

with jj always reconstruct on-shell W. The BR then carries a factor of

$$\left(\frac{2}{9}\right)^2 \times \frac{2}{3} = 3.29\%,$$ \hfill (7)

to be multiplied by BR($Z_1 \to t\bar{t}$) or BR($Z_1 \to W^+W^-$) in addition.
To simulate detector effects on energy-momentum measurements, we smear the electromagnetic energy and lepton momenta by a Gaussian distribution whose width is parameterized as [15]

$$\frac{\Delta E}{E} = \frac{a_{cal}}{\sqrt{E/\text{GeV}}} \oplus b_{cal}, \quad a_{cal} = 5\%, \quad b_{cal} = 0.55\%. \quad (8)$$

We did not separately smear the muon p_T by tracking resolution, since separate smearing do not affected the results practically. The jet energies are also smeared using the same Gaussian formula as in Eq. (8), but with [15]

$$a_{cal} = 100\%, \quad b_{cal} = 5\%. \quad (9)$$

A. $Z_1 \rightarrow WW$

We first consider the $Z_1 \rightarrow W^+W^-$ channel for the like-sign dilepton plus dijet $\ell^\pm\ell^\pm + jj + E_T$ final state. We propose the basic cuts for the event selection as:

$$p_T^j > 25 \text{ GeV} ; \quad |\eta_j| < 3.0$$
$$p_T^\ell > 15 \text{ GeV} ; \quad |\eta_\ell| < 2.5$$
$$\Delta R(j,j) > 0.4 ; \quad \Delta R(j,\ell) > 0.4. \quad (10)$$

We further demand that the dijet in our signal reconstruct an on-shell W boson

$$|M_{jj} - M_W| < 15 \text{ GeV}. \quad (11)$$

After these selection cuts, the leading QCD background ($uu, \bar{d}d \rightarrow W^\pm W^\pm jj$) is reduced to a negligible level. The remaining background is mostly the electroweak WWW production with two like-sign W decaying leptonically and the third W decaying hadronically. At this stage, this WWW background rate is already smaller than that of the signal if BR($Z_1 \rightarrow W^+W^-$) $\sim 100\%$. We note that the decay products from a heavy resonance Z_1 will be fairly energetic, with a typical transverse momentum $p_T^j \sim 0.5M_{Z_1}\sqrt{1 - 4M_W^2/M_{Z_1}^2}$. This is shown in Fig. 2 where we plot the hardest jet p_T. We can further improve the signal purity by imposing a cut, for instance,

$$\max(p_T^j) > 150 \text{ GeV}. \quad (12)$$
FIG. 2: Normalized max(p_T^j) distribution for $2j + \ell^+\ell^- + \not{E}_T$ final states of $W^\pm Z_1 \rightarrow W^\pm W^+ W^-$ and the SM $W^\pm W^+ W^-$ at $M_{Z_1} = 500$ GeV after M_{jj} cut.

We show the results for the signal with $M_{Z_1} = 500$ GeV and $\text{BR}(Z_1 \rightarrow W^+ W^-) = 100\%$ and backgrounds in Table II. With a given number of events for the signal (S) and background (B), we conservatively estimate the statistical significance by

$$S/\sqrt{S + B}. \quad (13)$$

We see that the signal observability is quite convincing with $10-30$ fb$^{-1}$ even before the final cut of Eq. (12). However, with this additional cut, the S/B is significantly improved from 2 to 8, making the systematics of the measurement much less a concern. If we take the $\text{BR}(Z_1)$ as a free parameter, we can see that requiring a 5σ signal sensitivity, one is able to probe the $\text{BR}(Z_1 \rightarrow WW)$ to a level of 54% with 30 fb$^{-1}$.

There are two missing neutrinos in the final states that we propose and only one of them is from the resonance. Consequently, the reconstruction of the resonance Z_1 is very challenging. The like-sign dilepton final states will also cause combinatorial problem as it is difficult to distinguish a lepton from the W^\pm in $W^\pm Z_1$ or from the Z_1. Between the two reconstructed invariant masses M_{jj}, we propose to use the smaller one since this will be bounded by the resonance mass M_{Z_1}. Figure 3 shows the distribution of the smaller M_{jj} for $M_{Z_1} = 500$ GeV after M_W reconstruction and max(p_T^j) cut. We see a clear endpoint near M_{Z_1}. Because of the limited statistics, we would not impose further cut on this variable,
TABLE I: Signal/Background Comparison in \(pp \to \ell^\pm \ell^\pm + 2j + \not{E}_T \) final states \(M_{Z_1} = 500 \) GeV and \(\text{BR}(Z_1 \to W^+W^-) = 100\% \).

	No Cut	Basic Cut Eq. (10)	\(+ M_{jj} \) Eq. (11)	\(+ \text{max}(p_T^j) \) Eq. (12)
Signal (fb)	6	2.8	2.7	1.7
\(W^\pm W^\pm jj \) BG (fb)	41	17	0.33	0.03
\(W^\pm W^\mp W^\mp \) BG (fb)	4.1	1.1	1.1	0.18
Total BG (fb)	45	18	1.5	0.21

FIG. 3: \(M_{\ell jj} \) distribution for signal at \(M_{Z_1} = 500 \) GeV and background after \(M_{jj} \) and \(\text{max}(p_T^j) \) cuts.

although it could help to determine the mass of \(Z_1 \).

B. \(Z_1 \to t\bar{t} \)

In the case where \(Z_1 \to t\bar{t} \) has significant decay branching fraction, we will look for \(\ell^\pm \ell^\pm + bbjj + \not{E}_T \) final states. We adopt the same event selection as in Eq. (10). The
FIG. 4: Normalized $\max(p_T^j)$ distribution of $pp \rightarrow W^\pm Z_1 \rightarrow t\bar{t}W^\pm \rightarrow 4j + \ell^\pm \ell^\pm + E_T$ at $M_{Z_1} = 500$ GeV and SM $t\bar{t}W^\pm$ background.

	No Cut	Basic Cuts	$\max(p_T^j) > 150$ GeV	$+M_{\ell\ell j}$ cut
Signal(fb)	6	1.4	0.91	0.64
SM BG(fb)	14	3.6	1.1	0.25
S/B	0.40	0.84	2.5	
$S/\sqrt{S+B}$ at 30 fb$^{-1}$	3.4	3.5	3.7	
$S/\sqrt{S+B}$ at 100 fb$^{-1}$	6.2	6.4	6.8	

TABLE II: Summary Table of $pp \rightarrow W^\pm Z_1 \rightarrow W^\pm t\bar{t} \rightarrow 4j + \ell^\pm \ell^\pm + E_T$ for $M_{Z_1} = 500$ GeV and its leading SM background $t\bar{t}W^\pm$.

leading irreducible SM background comes from the process $t\bar{t}W^\pm$ which also contains two b-jets. Therefore, a requirement of b-tagging in our study would not help to reduce this background. The first handle we exploit is again the boost effects from heavy resonance Z_1. Fig. 4 shows the $\max(p_T^j)$ distributions for SM $t\bar{t}W^\pm$ and $W^\pm Z_1 \rightarrow t\bar{t}W^\pm$. We thus impose the same cut as in Eq. (12) on $\max(p_T^j)$.

As for the Z_1 mass reconstruction from $t\bar{t}$, we encounter the same problem of the combinatorics as before. The two on-shell top quarks provide extra handle in reconstruction. One can first try to reconstruct the hadronic top quark then the Z_1 resonance. We first
require one of the reconstructed M_{jjj}’s to be close to top quark mass to reconstruct the hadronic decaying top. The other jet will be combined with the two leptons to make $M_{\ell j}$ invariant mass. Similar to the $Z_1 \rightarrow WW$ search, we propose to explore the invariant mass distribution for one of the leptons plus the fourth jet, and choose the smaller invariant mass between the two $M_{\ell j}$ to reconstruct the leptonic decaying top quark. We wish to consider the reconstructed top pair invariant mass M_{tt} with the endpoint related to M_{Z_1}. We plot the smaller $M_{\ell 4j}$ distribution in Fig. 5 after the $\max(p_T^j)$ cut. This motivates us to select the mass window to estimate the accessible sensitivity to the signal, and we choose

$$0.8M_{Z_1} < M_{\ell 4j} < M_{Z_1}.$$ \hfill (14)

The results are summarized in Table II with variety of cuts. We see that the statistical significance is also convincing with 50–100 fb$^{-1}$.

To summarize this section, in Fig. 6(a) we plot the integrated luminosity needed to reach a 3σ (solid lines) and 5σ (dashed lines) statistical significance versus M_{Z_1}, with a reconstruction window $0.6M_{Z_1} < M_{\ell 2j} < M_{Z_1}$, which helps more for a heavier Z_1. To claim a 3σ discovery of the $Z_1 \rightarrow W^+W^-$ for $M_{Z_1} = 1$ TeV, it would require 500 fb$^{-1}$ integrated luminosity. We also plot the BR parameter reached at 3σ (solid lines) and 5σ (dashed lines) level with a 100 fb$^{-1}$ integrated luminosity in Fig. 6(b), again versus M_{Z_1}. One can reach
FIG. 6: (a) Integrated luminosities required for 3σ and 5σ significance of detection after Z_1 reconstruction; (b) Accessibility to BR($Z_1 \to WW$) and BR($Z_1 \to t\bar{t}$) at the 5σ level with 100 fb$^{-1}$.

60% BR with 3σ significance for 700 GeV and 580 GeV of Z_1 decay to WW and $t\bar{t}$ channels, respectively. We adopt the criterion of Eq. (13) for estimations.

If the Z_1 is heavier, for the $Z_1 \to W^+W^-$ channel, the hadronic decaying W from Z_1 will be highly boosted and one may define one fat W-jet, of which the jet mass is within M_W window. The signature will then become $\ell^\pm \ell^\pm + J_W + E_T$. Although it would be challenging to quantify this background without detailed simulation of the detector effects, one may expect that the background should be smaller as studied in [16], and in particular there will be no leading process $W^\pm W^\pm j$ in the SM. If $Z_1 \to t\bar{t}$ is dominant, the coverage is only up to 650 GeV or so for 100 fb$^{-1}$ integrated luminosity. The top quarks decaying from the Z_1 are not boosted into one top-jet cone. For larger Z_1 mass, if top decay becomes highly boosted, the discovery will become more challenging as we won’t have the isolated like-sign dilepton any more.

IV. CONCLUSION

We have studied the LHC phenomenology of Z_1 that unitarize the WW scattering amplitude. Z_1 does not couple to light fermions but we allow it to couple to the top quark.
We choose the associated production $W^\pm Z_1$ and study both $Z_1 \to W^+W^-$ and $Z_1 \to t\bar{t}$ without specifying the decaying BRs. By choosing the multijet $+ \ell^\pm \ell^\pm + E_T$ final state, we find that it is quite feasible for the signal to be larger than the SM irreducible background. Even though it is hard to fully reconstruct the resonance Z_1, we propose to use the edge of jets plus lepton invariant mass $M_{\ell nj}$ to get some information of the resonance Z_1 mass. For 100 fb$^{-1}$ integrated luminosity, assuming 100% decay BR, for 5σ discovery significance, the $Z_1 \to t\bar{t}$ can be searched upto 560 GeV and $Z_1 \to W^+W^-$ search can reach 650 GeV respectively.

Acknowledgement

T.H. is supported in part by the U.S. DOE under Grants No.DE-FG02-95ER40896, W-31-109-Eng-38, and in part by the Wisconsin Alumni Research Foundation. HL, ML and WW are supported in part by the National Science Foundation of China (10425525) and (10875103). KW is supported by the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan and in part by the Project of Knowledge Innovation Program (PKIP) of the Chinese Academy of Sciences.

[1] C. H. Llewellyn Smith, Phys. Lett. B 46, 233 (1973).
D. A. Dicus and V. S. Mathur, Phys. Rev. D 7, 3111 (1973). J. M. Cornwall, D. N. Levin and G. Tiktopoulos, Phys. Rev. Lett. 30, 1268 (1973) [Erratum-ibid. 31, 572 (1973)].
Phys. Rev. D 10, 1145 (1974) [Erratum-ibid. D 11, 972 (1975)].
B. W. Lee, C. Quigg and H. B. Thacker, Phys. Rev. Lett. 38, 883 (1977).
Phys. Rev. D 16, 1519 (1977).
M. S. Chanowitz and M. K. Gaillard, Nucl. Phys. B 261, 379 (1985).
[2] T. Appelquist and M. S. Chanowitz, Phys. Rev. Lett. 59, 2405 (1987) [Erratum-ibid. 60, 1589 (1988)].
[3] F. Maltoni, J. M. Niczyporuk and S. Willenbrock, Phys. Rev. D 65, 033004 (2002) [arXiv:hep-ph/0106281]. D. A. Dicus and H. J. He, Phys. Rev. D 71, 093009 (2005) [arXiv:hep-ph/0409131].
[4] C. Csaki, C. Grojean, H. Murayama, L. Pilo and J. Terning, Phys. Rev. D 69, 055006 (2004) [arXiv:hep-ph/0305237].

[5] A. Birkedal, K. Matchev and M. Perelstein, Phys. Rev. Lett. 94, 191803 (2005) [arXiv:hep-ph/0412278].

[6] H. J. He et al., Phys. Rev. D 78, 031701 (2008) [arXiv:0708.2588 [hep-ph]].

[7] C. Schwinn, Phys. Rev. D 71, 113005 (2005) [arXiv:hep-ph/0504240].

[8] T. Han, G. Valencia and Y. Wang, Phys. Rev. D 70, 034002 (2004) [arXiv:hep-ph/0405055].

[9] R. S. Chivukula, D. A. Dicus and H. J. He, Phys. Lett. B 525, 175 (2002) [arXiv:hep-ph/0111016].

[10] R. Sekhar Chivukula, B. Coleppa, S. Di Chiara, E. H. Simmons, H. J. He, M. Kurachi and M. Tanabashi, Phys. Rev. D 74, 075011 (2006) [arXiv:hep-ph/0607124].

[11] R. S. Chivukula, E. H. Simmons, H. J. He, M. Kurachi and M. Tanabashi, Phys. Rev. D 72, 015008 (2005) [arXiv:hep-ph/0504114].

[12] G. Cacciapaglia, C. Csaki, G. Marandella and J. Terning, Phys. Rev. D 75, 015003 (2007) [arXiv:hep-ph/0607146].

[13] For a Higgsless model with 4-sites, see, e.g., E. Accomando, S. De Curtis, D. Dominici and L. Fedeli, arXiv:0807.5051 [hep-ph]; For a study in a generic dynamical electroweak symmetry breaking model, see, e.g., A. Belyaev, R. Foadi, M. T. Frandsen, M. Jarvinen, F. Sannino and A. Pukhov, Phys. Rev. D 79, 035006 (2009) [arXiv:0809.0793 [hep-ph]].

R. S. Chivukula, D. A. Dicus, H. J. He and S. Nandi, Phys. Lett. B 562, 109 (2003) [arXiv:hep-ph/0302263].

Y. Nomura, JHEP 0311, 050 (2003) [arXiv:hep-ph/0309189].

[14] A. S. Belyaev, R. S. Chivukula, N. D. Christensen, E. H. Simmons, H. J. He, M. Kurachi and M. Tanabashi, arXiv:0907.2662 [hep-ph].

[15] CMS TDR: CMS Physics: Technical Design Report V.2: Physics Performance, CERN-LHC C-2006-021. ATLAS TDR: ATLAS detector and physics performance. Technical design report. Vol. 2, CERN-LHCC-99-15

[16] T. Han, B. Mukhopadhyaya, Z. Si and K. Wang, Phys. Rev. D 76, 075013 (2007) [arXiv:0706.0441 [hep-ph]].