In-depth Proteomic Analysis of Six Types of Exudative Pleural Effusions for Nonsmall Cell Lung Cancer Biomarker Discovery*§

Pei-Jun Liu‡, Chi-De Chen‡‡¶¶, Chih-Liang Wang§§¶¶¶, Yi-Cheng Wu§§, Chia-Wei Hsu‡‡¶¶, Chien-Wei Lee‡, Lien-Hung Huang‡, Jau-Song Yu‡¶¶, Yu-Sun Chang‡‡, Chih-Ching Wu**¶¶, and Chia-Jung Yu‡¶¶

Pleural effusion (PE), a tumor-proximal body fluid, may be a promising source for biomarker discovery in human cancers. Because a variety of pathological conditions can lead to PE, characterization of the relative PE proteomic profiles from different types of PEs would accelerate discovery of potential PE biomarkers specifically used to diagnose pulmonary disorders. Using quantitative proteomic approaches, we identified 772 nonredundant proteins from six types of exudative PEs, including three malignant PEs (MPE, from lung, breast, and gastric cancers), one lung cancer paramalignant PE, and two benign diseases (tuberculosis and pneumonia). Spectral counting was utilized to semiquantify PE protein levels. Principal component analysis, hierarchical clustering, and Gene Ontology of cellular process analyses revealed differential levels and functional profiling of proteins in each type of PE. We identified 30 candidate proteins with twofold higher levels (q<0.05) in lung cancer MPEs than in the two benign PEs. Three potential markers, MET, DPP4, and PTPRF, were further verified by ELISA using 345 PE samples. The protein levels of these potential biomarkers were significantly higher in lung cancer MPE than in benign diseases or lung cancer paramalignant PE. The area under the receiver-operator characteristic curve for three combined biomarkers in discriminating lung cancer MPE from benign diseases was 0.903. We also observed that the PE protein levels were more clearly discriminated in effusions in which the cytological examination was positive and that they would be useful in rescuing the false negative of cytological examination in diagnosis of nonsmall cell lung cancer-MPE. Western blotting analysis further demonstrated that MET overexpression in lung cancer cells would contribute to the elevation of soluble MET in MPE. Our results collectively demonstrate the utility of label-free quantitative proteomic approaches in establishing differential PE proteomes and provide a new database of proteins that can be used to facilitate identification of pulmonary disorder-related biomarkers. Molecular & Cellular Proteomics 14: 10.1074/mcp.M114.045914, 917–932, 2015.

The lungs are covered by parietal and visceral pleural membranes, including a small amount of fluid (10–20 ml) in the pleural cavity that helps the lungs expand and contract smoothly. Pleural effusions (PE)¹, an accumulation of pleural fluid, contain proteins originating from the plasma filtrate and are released by inflammatory or epithelial cells. PE is triggered by a variety of etiologies, including malignancies and benign diseases such as pneumonia (PN), tuberculosis (TB), pulmonary embolism, heart failure, renal dysfunction, and autoimmune disease (1). Based on their biochemical characteristics, PEs are classified as transudative or exudative; determination of the PE type is a crucial step in the differential diagnosis and management of PEs. Transudative effusions, generally caused by systemic diseases, can be effectively distinguished

From the ‡Graduate Institute of Biomedical Sciences, §§School of Medicine, ¶¶Department of Cell and Molecular Biology, and ¶¶§Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; **Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan; ¶¶Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, §§Department of Thoracic Surgery, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan
Received, October 29, 2014, and in revised form, January 23, 2015
Published, MCP Papers in Press, January 31, 2015, DOI 10.1074/mcp.M114.045914

Author contributions: C.C.W. and C.J.Y. designed research; P.J.L. and C.D.C. performed research; C.L.W., Y.C.W., J.S.Y., and Y.S.C. contributed new reagents or analytic tools; P.J.L., C.D.C., C.L.W., C.W.H., C.W.L., and L.H.H. analyzed data; P.J.L., C.C.W., and C.J.Y. wrote the paper.

The abbreviations used are: PE, pleural effusion; NSCLC, nonsmall cell lung cancer; TB, tuberculosis; PN, pneumonia; BC, breast cancer; GC, gastric cancer; MPE, malignant pleural effusion; PMPE, paramalignant pleural effusion; GeLC-MS/MS, one-dimensional SDS-PAGE combined nano-LC-MS/MS; FDR, false discovery rate; MET, hepatocyte growth factor receptor; PTPRF, receptor type tyrosine protein phosphatase F; DPP4, dipeptidyl peptidase IV; RT, room temperature; PCA, principle component analysis; HCL, hierarchical clustering algorithm; HRP, horseradish peroxidase; SD, standard deviation; ROC, receiver-operator characteristic; AUC, areas under curves; PPV, positive predictive value; NPV, negative predictive value; sMET, soluble MET; mMET, membrane-bound MET; EGFR, epidermal growth factor receptor; HGF, hepatocyte growth factor; scD26, soluble CD26; CV, coefficient of variation.

1 The abbreviations used are: PE, pleural effusion; NSCLC, nonsmall cell lung cancer; TB, tuberculosis; PN, pneumonia; BC, breast cancer; GC, gastric cancer; MPE, malignant pleural effusion; PMPE, paramalignant pleural effusion; GeLC-MS/MS, one-dimensional SDS-PAGE combined nano-LC-MS/MS; FDR, false discovery rate; MET, hepatocyte growth factor receptor; PTPRF, receptor type tyrosine protein phosphatase F; DPP4, dipeptidyl peptidase IV; RT, room temperature; PCA, principle component analysis; HCL, hierarchical clustering algorithm; HRP, horseradish peroxidase; SD, standard deviation; ROC, receiver-operator characteristic; AUC, areas under curves; PPV, positive predictive value; NPV, negative predictive value; sMET, soluble MET; mMET, membrane-bound MET; EGFR, epidermal growth factor receptor; HGF, hepatocyte growth factor; scD26, soluble CD26; CV, coefficient of variation.
from exudative PEs using the established modified Light’s criteria (2, 3). However, further discrimination among different exudate types such as malignant and nonmalignant effusions (e.g. paramalignancies or acute and chronic inflammatory diseases) is sometimes diagnostically challenging because of similar biochemical and/or cellular profiles. For example, neutrophil-rich fluid is generally observed in patients with bacterial PN whereas lymphocytic effusions are generally observed in cancer or chronic inflammatory diseases such as TB (4).

PEs caused by cancer are generally divided into two categories, malignant (MPE) and paramalignant (PMPE). MPEs result when cancer cells metastasize to the pleural cavity (stage IV), wherein exfoliated malignant cells are observed in pleural fluid by cytological examination or detected in percutaneous pleural biopsy, thoracoscopy, thoracotomy, or at autopsy (5). PMPE occurs in cancer patients with no evidence of tumor invasion in the pleural space and may be caused by airway obstruction with lung collapse, lymphatic obstruction, or the systemic effects of cancer treatment (5). A high percentage of MPEs (>75%) arise from lung, breast, and ovarian cancer or lymphoma leukemia. Lung cancer is a major etiology underlying MPE (6); however, only 40–87% patients with MPE can be accurately diagnosed upon initial examination (7). Inaccurate diagnosis of MPE and PMPE underestimates or overestimates the disease stage and leads to inappropriate therapy. Thus, it is important to identify a specific and powerful biomarker to distinguish MPE from benign diseases and PMPE.

Notably, tumor-proximal body fluids are promising sources for biomarker discovery because they represent a reservoir of in vivo tumor-secreted proteins without a large dynamic range or complexity of plasma or serum (8). Tumor-proximal fluids include PEs, nipple aspirate, stool, saliva, lavage, and ascites fluid. Previously, we utilized the powerful analytical capability of high-abundance protein depletion followed by one-dimensional SDS-PAGE combined with nano-LC-MS/MS (GeLC-MS/MS) for biomarker discovery to generate a comprehensive MPE proteome data set from 13 pooled nonsmall cell lung cancer (NSCLC) patients (9). Because a variety of pathological conditions can lead to exudative effusions, generating different PE proteome profiles would accelerate discovery of potential PE biomarkers that can be used to discriminate between malignant and nonmalignant pulmonary disorders. The aim of this study is to establish differential PE proteomes from six types of exudative PEs, including three MPEs (from NSCLC, breast, and gastric cancers), one PMPE from NSCLC, and two benign diseases (TB and PN), using a label-free semiquantitative proteomics approach. Our results were verified by clinical validation of three potential biomarkers using an enzyme-linked immunosorbent assay (ELISA; Fig. 1).

EXPERIMENTAL PROCEDURES

Patient Population and Clinical Specimens—This study was approved by the Institutional Review Board for Research Ethics at the Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan. Written informed consent was received from all patients prior to sample collection. Medical records of patients were reviewed, and all patient identities were protected. All PE samples were obtained from patients subjected to PE aspiration at Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan. Patients with PMPE were radiologically monitored regularly over 6 months to exclude the possibility of occult malignancy within the effusion. For biomarker discovery, we used 60 PEs: 10 lung adenocarcinoma MPEs, 10 lung adenocarcinoma PMPEs, 10 TB PEs, 10 PN PEs, 10 gastric cancer (GC) PEs, and 10 breast cancer (BC) PEs. Demographics of these 60 patients are summarized in supplemental Table S1. To validate potential biomarkers by ELISA, 345 PE samples from six types of PE were used: 109 MPEs and 43 PMPEs from NSCLC, 61 TB, 68 PN, 45 breast cancer, and 19 gastric cancer. Demographics of these individuals, including age, gender, and smoking behavior are summarized in supplemental Table S2. PE samples were centrifuged at 2000 × g for 15 min at 4 °C. The cell-free supernatants were transferred to a new tube with a protease inhibitor mixture (Roche, Mannheim, Germany, cat. no. 11836145001) and stored at −80 °C until analysis. To detect the protein expressions in lung cancer tissues by Western blotting, four pairs of specimens of surgically resected primary lung adenocarcinoma lesions and adjacent noncancerous tissues were obtained from four patients (two stage IA and two stage IV). The fresh frozen tissues were stored at −80 °C until analysis.

PE Sample Preparation—PE samples (40 μl) from each patient (n = 60) were depleted of six high-abundance proteins (albumin, IgG, IgA, transferrin, antitrypsin, and haptoglobin) using a Multiple Affinity Removal System affinity column (Hu-6HC, 4.6 × 50 mm; Agilent Technologies, Wilmington, DE) via AKTA purifier-10 fast performance LC (GE Healthcare, Uppsala, Sweden). AKTA binding and elution procedures were performed according to the manufacturer’s instructions (Agilent Technologies). Unbound fractions were collected, concentrated, and desalted by centrifugation in Amicon Ultra-4 tubes (molecular weight cut off, 3 kDa; Millipore, Billerica, MA). The resulting protein concentration was determined by Bradford protein assay (Bio-Rad Laboratories, Inc., Hercules, CA).

1D-SDS-PAGE and In-gel Protein Digestion—After depletion of high-abundance proteins, equal protein amounts obtained from each PE sample type were pooled (10 patients/group), and 40 μg protein samples were resolved on 10% SDS-PAGE and stained by Coomassie Brilliant Blue G-250 (AppiChem GmbH, Darmstadt, Germany). The entire gel lane was cut into 30 pieces and subjected to in-gel trypic digestion as described previously (9). Briefly, gel pieces were destained in 50 mM NH₄HCO₃/ACN (3:2, v/v) three times for 25 min each and then dehydrated in ACN and dried in a SpeedVac. In-gel proteins were reduced with 10 mM dithiothreitol in 25 mM NH₄HCO₃ at 56 °C for 45 min, allowed to stand at room temperature (RT) for 10 min, and then alkylated with 55 mM iodoacetamide in the dark for 30 min at RT. After the proteins were digested by sequencing grade modified porcine trypsin (1:100; Promega, Madison, WI) overnight at 37 °C, peptides were extracted from the gel with ACN to a final concentration of 50%, dried in a SpeedVac, and then stored at −20 °C until further use.

Reverse-Phase LC-MS/MS—After trypsin digestion, each peptide mixture was reconstituted in high-performance LC buffer A (0.1% formic acid; Sigma, St. Louis, MO), loaded into the trap column (Zorbax 300SB-C18, 0.3 × 5 mm; Agilent Technologies) at a flow rate of 20 μl/min, and washed with buffer A at a flow rate of 20 μl/min for 10 min. Desalted peptides were then separated by 10 cm analytic C₁₈ column (75 μm inner diameter; New Objective, Woburn, MA). The peptides were eluted by a linear gradient of 5–30% buffer B (99.9% ACN containing 0.1% formic acid) for 47 min, 30–45% buffer B for 5 min, 45–95% buffer B for 2 min, and 95% buffer B for 4 min at a flow rate of 300 nl/min. The resulting fractions were desalted, dried, and spotted on the 24-well nanoliter plate (PicoTip, Arcturus, Mountain View, CA) for MS/MS analysis. MS/MS spectra were acquired using an LTQ-Orbitrap Velos (ThermoFisher Scientific, Waltham, MA) with a normalized collision energy of 30% and collision energy at 5%. The precursor ions were selected for sequencing analysis by Xcorr and minimum charge of 2 and 3 for monoisotopic and deisotopic ions, respectively. Peptides were searched against the human reference database and true peptide ion scores were calculated using Mascot software (Matrix Science, Oxford, UK). A total of 423469 sequences were searched, and the false discovery rate was calculated to be ≤1%.
rate of 0.25 μl/min. The LC setup was coupled with a 2D-linear ion trap LTQ-Orbitrap MS (Thermo Fisher, San Jose, CA) operated by Xcalibur 2.0.7 software (Thermo Fisher). The MS full-scan was performed over a range of 400–2000 Da and at a resolution of 60,000 at m/z 400. Internal calibration was performed using a (Si(CH₃)₂O)₆H⁺ ion signal at m/z 445.120025 as a lock mass (10). The data-dependent procedure that alternated between one MS scan followed by 10 MS/MS scans for the 10 most abundant precursor ions in the MS survey scan was applied. The m/z values selected for MS/MS were dynamically excluded for 40 s; the electrospray voltage applied was 1.8 kV. Both MS and MS/MS spectra were acquired using a microscan with maximum fill times of 1000 and 150 ms for MS and MS/MS analyses, respectively. Automatic gain control was used to prevent overfilling the ion trap; 5 × 10⁶ ions were accumulated in the ion trap for generation of MS/MS spectra. For triplicate GeLC-MS/MS analysis, PE samples were subjected to three independent 1D-SDS-PAGE in-gel protein digestion followed by reverse-phase LC-MS/MS analysis.

Database Searching—Resulting MS/MS spectra were searched using the Mascot algorithm (version 2.2.06, Matrix Science, London, U.K.) against the Swiss-Prot database (released Jun 15, 2010, selected for Homo sapiens, 20367 entries). The search parameters were set as follows: carbamidomethylation (C) as the fixed modification, oxidation (M) as variable modification, 10 ppm for MS tolerance, 0.5 Da for MS/MS tolerance, and one for missing cleavage. Validation of MS/MS-based peptides and protein identification were completed with Scaffold proteome software (version 3.3.2, Proteome Software Inc., Portland, OR), in which peptide and protein threshold cut offs were at a minimum of 95.0% with a minimum of two peptides.

Calculation of Spectral Counts and Bioinformatic Analysis—To generate comparative PE proteome databases, label-free semiquantitation of protein levels was determined by spectral counts. The number of spectra assigned for each protein was exported from the Scaffold software. The total spectral counts were calculated by totaling the spectral counts obtained in each experiment (30 LC-MS/MS runs). The normalized spectral count of each protein in the experiment was obtained by dividing the spectral count of a given protein by the total spectral counts of the experiment. After normalization, a q value was used to evaluate significant differences between different types of PEs. First, we determined the p value by β-binomial modeling (11), followed by the calculation of a q value according to Storey et al. (12); a q < 0.05 between different PE sample types was considered significantly different. The fold change was determined by dividing the average spectrum count from any two different PE sample types. We failed to identify all proteins in all experiments (triplicate for each PE sample type); unidentified proteins or missing values in a particular example were assigned a spectral count of one to avoid dividing by zero and to prevent overestimation of fold changes. After quantification analysis, differentially expressed proteins of interest were converted into Swiss-Prot accession numbers and uploaded into MetaCore Version 6.13 build 61585 (GeneGo, St. Joseph, MI) for Gene Ontology (GO) of cellular processes analysis.

Cluster Analysis of PE Proteomes—All spectral counts were imported into Microsoft Excel and transformed to Z-scores, a common normalization approach used in microarray data analysis (13). Z-scores were calculated as Z = (X – μ)/σ, where X represents individual spectral counts, μ represents the mean of spectral counts for an identified protein across different PE types, and σ is the standard deviation associated with μ. A spreadsheet containing the Z-scores was uploaded to Partek® Genome Suite (Partek Inc., St. Louis, MO) and analyzed using principal component analysis (PCA) as well as a two-way hierarchical clustering algorithm (HCL); the parameter used in HCL was according to Pearson distance and Ward’s aggregation method. All quantified proteins were arranged into mock phylogenetic trees (dendrograms), wherein the y axis displays PE triplicates and the x axis shows proteins.

ELISA—Hepatocyte growth factor receptor (MET) and dipeptidyl peptidase IV (DPP4) protein levels in PEs were determined by sandwich ELISA (R&D Systems, Minneapolis, MN). Receptor-type tyrosine-protein phosphatase F (PTPRF) levels in PEs were determined by homemade ELISA as described by Whitmore (14). Briefly, monoclonal rat anti-human PTPRF antibodies (MAB3004; R&D Systems), polyclonal goat anti-human PTPRF antibodies (AF3004; R&D Systems), and purified NSO-derived recombinant human PTPRF (aa27–1251; R&D Systems) were used. Monoclonal rat anti-human PTPRF antibodies were coated on ELISA plates (250 ng per well) overnight at 4 °C, followed by six washes using wash buffer (0.05% Tween 20 in PBS) and blocking with reagent diluents (1% bovine serum albumin in PBS) for 2 h at room temperature (RT). PE samples with 1:50 dilution in reagent diluents and various amounts of recombinant PTPRF (standards; 0.3125–20 ng/ml) were added to the wells followed by incubation for 1 h at RT. After another six washes, polyclonal goat anti-human PTPRF antibodies (1:400) were added and incubated on a shaker for 1 h at RT. After washing, horseradish peroxidase (HRP)-labeled donkey anti-goat IgG antibodies (Santa Cruz Biotechnology, Santa Cruz, CA) were added to wells and incubated for 1 h at RT. After six washes, tetramethylbenzidine substrate was added to wells for 10 min on a shaker in the dark, and the reaction was finally stopped with the addition of 2 N H₂SO₄. The resulting signals were measured by SpectraMax® M5 Multi-Mode Microplate Reader (Molecular Devices, Sunnyvale, CA) at 540 and 450 nm, respectively. The performance of the ELISA assay was examined by coefficient of variation (CV%) values determined in the intra-plate and inter-plate of ELISA assays using five individual PE samples. The results are shown in supplemental Fig. S1. All of the ELISA assays were performed twice for each sample. In addition, four PE samples were used as the internal standards in every ELISA plate, and all the protein levels determined in each batch were normalized based on these internal standards.

Cell Culture—CL1–0 and CL1–5 cells were kindly provided by Dr. P.C. Yang (Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China). The CL1 cell line was established from a 64-year-old man with a poorly differentiated adenocarcinoma, and the subpopulations CL1–0 and CL1–5 from CL1 cells were selected according to their differential invasiveness and metastatic ability in vitro and in vivo (15). The human breast cell line, MDA-MB231 was obtained from the American Type Culture Collection (ATCC, Rockville, MD). CL1–0 and CL1–5 cells were cultured in RPMI 1640 (Invitrogen, Grand Island, NY) supplemented with 10% FBS, MDA-MB231 cells were cultured in DMEM (Invitrogen) supplemented with 10% FBS. All cells were cultured at 37 °C with a humidified atmosphere of 95% air/5% CO₂, Conditioned media (CM) from the various cancer cell lines were collected and processed as previously described (16).

Lung Cancer Tissue Extraction—The fresh frozen tissues were dissolved in 200 μl of cold lysis buffer (20 mM Tris-HCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 50 mM NaF, 200 mM sodium pyrophosphate, 1 mM sodium orthovanadate, protease and inhibitor mixture [Roche]), and the protein extractions were prepared using a Precellys 24 homogenizer according to the manufacturer’s instructions (Bertin Technology, France, MD).

Western blot—Protein samples prepared from CL1–0, CL1–5, and MD-AMB 231 cancer cell lines were separated on a 7.5% SDS-PAGE gel, then transferred onto a PVDF membrane, blocked with skim milk for 1 h, and incubated for 16 h at 4 °C with goat anti-MET polyclonal (R&D systems, cat. BAFF358) or rabbit anti-MET monoclonal (Spring Bioscience, Pleasanton, CA, cat. M3440) antibodies. Bound primary antibodies were detected by HRP-labeled donkey anti-goat (Santa Cruz Biotechnology, Santa Cruz, CA) or HRP-labeled donkey anti-
rabbit IgG secondary antibodies (GE Healthcare), respectively. Target proteins were visualized using an enhanced chemiluminescence system (Millipore).

Statistical Analysis—All data were processed using SPSS 12.0 (SPSS Inc., Chicago, IL). All continuous variables were expressed as the mean ± standard deviation (S.D.). To compare protein levels in different PE types, we used the nonparametric Mann-Whitney U test and linear regression to analyze variations in ELISA results for different clinical parameters; a \(p \leq 0.05 \) was considered statistically significant. Receiver-operator characteristic (ROC) curves were constructed by plotting sensitivity versus 1-specificity, and the areas under curves (AUC) were analyzed by the Hanley and McNeil method (17). The optimal cut off for establishing an accuracy score in each case was determined using Youden’s index \((J) \) (18). The ROC and AUC values of combined biomarker candidates were calculated using binary logistic regression. Briefly, we applied the binary logistic regression to calculate the probability of combined biomarkers according to their protein concentrations, and then the probability was used to obtain the ROC and AUC values for combined biomarkers. To analyze the AUC performance of individual marker and combined markers, we applied PanelComposer, a web-based panel construction tool developed by Professor Young-Ki Paik’s research team for multivariate analysis of disease biomarker candidates (19). In this method, pairwise comparison between a panel of biomarkers and the individual proteins is performed using the Mann-Whitney U test and represented with a \(p \) value.

RESULTS

Generation of Proteomic Data sets from Six PE types—To accelerate discovery of potential PE biomarkers, we performed quantitative PE proteomics analysis (immunodepletion and GeLC-MS/MS) on samples from patients with six different PE types, including MPE and PMPE from NSCLC, TB, PN, breast cancer, and gastric cancer (Fig. 1). Validation of depletion efficacy and homogeneity of fractionated PE samples are shown in supplemental Fig. S2. Ten samples from each PE type were pooled and subjected to 1D-SDS-PAGE analysis and in-gel protein digestion followed by reverse-phase LC-MS/MS analysis; spectral searching identified 772 nonredundant proteins with high confidence (95.0% minimum peptide probability, 95.0% minimum protein probability and a minimum of two peptides). The reliability of the PE data sets was confirmed by the protein and peptide false discovery rate (supplemental Table S3). The highest FDRs for protein and peptide identification were 0.74% and 0.13%, respectively. The overlap of identified proteins between any two of three independent LC-MS/MS experiments for each type of PE was ~84% (supplemental Table S3). Detailed information for proteins identified in triplicate experiments of six pleural effusion samples is shown in supplemental Table S4; this information includes name, gene symbol, protein probability, best peptide probability, unique peptide number, unique spectral number, spectral counts, sequence coverage, best Mascot ion score, and peptide sequence. A list of 772 nonredundant proteins identified in the different PE sample types is summarized in supplemental Table S5. The overlap and intersection of the PE proteomes were analyzed.
A total of 721 proteins were identified in NSCLC-MPE or benign disease (TB and PN); 472 were common in these two types of PEs (supplemental Fig. S4A). There were 559 proteins identified in NSCLC-MPE or NSCLC-PMPE. Of these, 387 were detected in both types of PEs, yielding an overlap of 69.2% (supplemental Fig. S4B). We identified 633 proteins in NSCLC or nonlung cancer (BC and GC), and 477 were overlapping in these two PE types (supplemental Fig. S4C). Furthermore, the identified proteins of five PE types (NSCLC-MPE, TB, PN, NSCLC-PMPE, and nonlung cancer) were analyzed for the overlap. Among the 772 unique proteins identified in the present study, 363 (47.0%) were common to all types of PEs (supplemental Fig. S4D).

PCA and HCL Analysis of Identified Proteins—To generate differential proteome data sets, we used spectral counts to build label-free semiquantitative proteomic data sets for the six PE types. To examine the accuracy of quantification and reproducibility, we analyzed the correlation (r value) and CV% values among the three independent GeLC-MS/MS experiments. For each PE type, the r value between any two of three independent GeLC-MS/MS experiments was higher than 0.987 (Supplemental Fig. S5). The average CV% values of 772 quantified proteins obtained from the three independent GeLC-MS/MS experiments of six PE types was 20.87%, and the CV% value for each quantified protein was shown in supplemental Table S6. For the PCA and HCL analysis, 772 proteins were totally included; none was excluded. The different PE types clearly separated into six groups in addition to the grouping of triplicate experiments of each PE type in PCA (Fig. 2A). The resulting heat map and HCL dendrogram also showed a similar separation of the six PE types as well as a clustering of triplicate experiments (Fig. 2B). Notably, the PEs from different cancers were clustered together (lung, breast, and gastric cancers) but were separated from benign diseases (TB and PN), demonstrating distinct protein profiling in each PE type. Furthermore, these results support the high reproducibility of our triplicate experiments, suggesting that GeLC-MS/MS combined with spectral counting is a reliable method for generating both quantitative and qualitative PE proteomic data sets.

Comparison of Differentially Expressed Proteins in Pulmonary Disorders—Multiple lines of evidence indicate a link between inflammation and cancer. Additionally, inflammatory microenvironments produced by chronic infections have been suggested to lead to cancer-related inflammation. Consequently, discovery of specific PE biomarkers that distinguish between lung cancer and benign diseases is necessary to assist in the diagnosis of pulmonary disorders. Therefore, we focused our analysis on differentially expressed proteins in MPE from NSCLC (NSCLC-MPE), TB, and PN. We identified 153 differentially expressed proteins with twofold changes (q<0.05) between NSCLC-MPE and TB (63 up- and 90 down-regulated in NSCLC-MPE; supplemental Fig. S6; supplemental Table S7) and 237 differentially expressed proteins with twofold changes (q<0.05) between NSCLC-MPE and PN (42 up- and 195 down-regulated in MPE; supplemental Fig. S6; supplemental Table S8). The pathophysiological status and potential pulmonary disorder diagnostic value for these proteins was assessed using Metacore bioinformatic software to analyze the GO of cellular processes involved in chronic (TB) and acute (PN) inflammatory diseases. The top three most significant cellular processes for the 90 up-regulated TB compared with NSCLC-MPE proteins were those related to stress, immune system process, and defense response (Fig. 2C) whereas for the 195 up-regulated PN compared with NSCLC-MPE proteins, the processes were response to stress and catabolic and immune processes. However, the three most significant cellular processes of the 75 up-regulated proteins in NSCLC-MPE compared with benign diseases (TB and PN) (Fig. 3) were related to cell adhesion, biological adhesion, and regulation of anatomical structure morphogenesis. These results further confirm that integration of multiple quantitative PE proteomes coupled with bioinformatic analysis is altogether feasible and invaluable to the discovery of potential pulmonary disorder biomarkers. Detailed information pertaining to GO cellular processes, p values and the protein list are summarized in supplemental Table S9.

Selection of Potential MPE Biomarkers for NSCLC—To identify malignancy-related proteins in NSCLC, we first combined 63 proteins that were increased in NSCLC-MPE compared with TB (Fig. 3; supplemental Table S7) with 42 proteins that were increased in NSCLC-MPE relative to PN (Fig. 3; supplemental Table S8). Accordingly, we identified 30 potential proteins that had higher protein levels (twofold change, q<0.05) in NSCLC-MPE compared with these two benign diseases (Table I). To narrow down the possible candidates that could be used for efficient NSCLC diagnostics, we established the following protein candidate selection criteria: First, we selected proteins with a twofold increase (q<0.05) in NSCLC-MPE relative to NSCLC-PMPE (supplemental Fig. S6C); discrimination between MPE and PMPE has profound implications in the therapy and prognosis of lung cancer. Second, we stipulated that mRNA levels of candidates should be up-regulated in NSCLC tissues compared with normal tissues to establish expression levels of secreted proteins in primary cancer and noncancerous tissues. Third, the biological functions of candidates were correlated to tumorigenesis. Finally, candidates had to represent novel PE biomarkers for NSCLC and have commercially available antibodies or ELISA kits (Fig. 3). Following application of the first selection criteria, 25 candidates were identified as NSCLC biomarkers (Table I; supplemental Table S10). Next, 10 mRNA data sets of lung adenocarcinoma deposited on the Oncomine 4.4.4.4 database, a cancer microarray database with web-based data-mining characteristics (20), were examined. These data sets included Beer (21), Bhattacharjee (22), Garber (23), Hou (24), Landi (25), Okayama (26), Selamat (27), Stearman (28), Su (29), and Yamagata (30) lung. We observed that 19 of the 25
Candidate proteins were dysregulated in human cancers (supplemental Table S10), which suggests that our integrated approach provides a reliable method for identifying multiple potential NSCLC biomarkers. Among these 25 candidate proteins, the mRNA levels of 11 candidates were overexpressed in NSCLC tissues compared with noncancerous tissues in at least five data sets ($p < 0.05$; Table I; supplemental Table S10). Upon application of the remaining selection criteria, three of the 11 candidates were selected for further verification by ELISA: MET, PTPRF, and DPP4.

Validation of MET, PTPRF, and DPP4 as Potential PE Biomarkers for NSCLC—Clinical verification of MET, PTPRF, and DPP4 was conducted using 345 PE samples from six PE types (supplemental Table S2; Table II). The average CV% values of ELISA assays for duplicate 345 PE samples of MET, PTPRF, and DPP4 were 1.75%, 3.23%, and 2.15%, respectively.
The mean protein concentrations of MET, PTPRF, and DPP4 in NSCLC-MPE were 527.71 ± 542.56, 114.73 ± 100.6, and 264.46 ± 141.62 ng/ml, respectively (Fig. 4A–4C; Table II; supplemental Table S11). PE levels of these three proteins in PN (MET, 146.29 ± 81.53 ng/ml; PTPRF, 77.27 ± 32.50 ng/ml; DPP4, 188.59 ± 88.83 ng/ml) were significantly lower (p < 0.0001) than in NSCLC-MPE. PE levels of MET and PTPRF in TB (MET, 132.76 ± 47.15 ng/ml; PTPRF, 86.30 ± 20.36 ng/ml) were also significantly lower than in NSCLC-MPE. However, DPP4 levels in NSCLC-MPE and TB (264.46 ± 141.62 ng/ml compared with 227.75 ± 75.88 ng/ml) were not significantly different. Nevertheless, results demonstrated that PE levels of MET, PTPRF, and DPP4 were elevated in NSCLC-MPE compared with benign lung diseases (TB and PN). Statistical analysis showed that malignancy was an independent factor of MET, PTPRF, and DPP4 levels (all p < 0.001) in 238 lung-disease PEs (supplemental Table S12). There was no significant correlation between the PE level of MET and sex, age, or smoking history; a similar result was also observed with PTPRF. However, both age and malignancy were independent factors of DPP4 level (p = 0.017 and p < 0.001, respectively) in patients with lung diseases. Thus, these findings collectively indicate that MET and PTPRF are effective PE biomarkers that distinguish NSCLC-MPE from benign inflammatory lung diseases. The ROC curves discriminating between NSCLC-MPE and benign diseases revealed that the AUC values of MET, PTPRF, and DPP4 were 0.892, 0.803, and 0.612, respectively (p < 0.05 for all three proteins; Fig. 4D; Table III). The combination of these three markers exhibited higher diagnostic capacity than any marker alone (AUC = 0.903; Fig. 4D; Table III). To analyze the AUC performance of MET and combined markers, we applied PanelComposer, a web-based panel construction tool developed by Professor Young-Ki Paik’s research team for multivariate analysis of disease biomarker candidates (19). Supplemental Table S13 shows the comparison of the effectiveness of combined markers (MET, PTPRF, and DPP4) compared with the MET protein alone in distinguishing NSCLC-MPE from benign diseases, NSCLC-PMPE, or nonlung MPE. We observed that the AUC of A (combined markers) in distinguishing NSCLC-MPE from benign diseases or NSCLC-PMPE was better than that of B (MET), and the significance of the difference is denoted by the p value. For example, with a given specificity of 90%, the sensitivities of using MET, PTPRF, and DPP4 alone to distinguish NSCLC-MPE from benign diseases were 73.39%, 60.55%, and 29.36%, respectively. Signifi-
were significantly different (\(p < 0.05\)) in NSCLC-MPE and NSCLC-PMPE compared for NSCLC-MPE detection (78.90\%, supplemental Table S13). Notably, combining the three markers enhanced the sensitivity (supplemental Fig. S7).

Table I

Protein name	Gene symbol	Swiss-Prot Acc. No.	M.W. (kDa)	NSCLC-MPE/TB \(\log_2\) ratio	NSCLC-MPE/PN \(\log_2\) ratio	NSCLC-MPE/NSCLC-PMPE \(\log_2\) ratio	mRNA Data set number	Up-regulated mRNA data set number (\(p < 0.05\))
Mucin-1	MUC1	MUC1_HUMAN	122	4.77	4.70	3.33	10	4
Pulmonary surfactant-associated protein B	SPFPB	SPFPB_HUMAN	42	3.80	1.86	2.40	9	1
Mimecan	OGN	MME_HUMAN	34	3.71	1.19	0.57	6	0
Receptor-type tyrosine-protein phosphatase F	PTPTRF	PTPTRF_HUMAN	213	3.62	3.99	2.44	10	8
CD166 antigen	ALCAM	CD166_HUMAN	65	3.41	3.34	3.21	10	10
Carcinogenic antigen-related cell adhesion molecule 5	CEACAM5	CEACAM5_HUMAN	77	3.11	3.03	0.31	9	9
Kunitz-type protease inhibitor 1	SPINT1	SPINT1_HUMAN	58	2.02	2.85	2.72	7	6
Polymeric immunoglobulin receptor	PIGR	PIGR_HUMAN	83	2.38	1.92	2.74	8	2
Intelectin-1	ITLN1	ITLN1_HUMAN	35	2.26	1.18	1.08	5	0
Sushi, von Willebrand factor type A, EGF	SVEP1	SVEP1_HUMAN	390	1.89	1.82	1.69	9	7
Membrane primary amine oxidase	AOC3	AOC3_HUMAN	85	2.22	1.32	0.67	9	0
Antileukoproteinase	DCI	DCI_HUMAN	33	2.18	2.11	1.97	9	5
Interleukin-1 receptor accessory protein	IL1RAP	IL1RAP_HUMAN	65	2.05	1.97	1.84	8	4
Thy-1 membrane glycoprotein	THY1	THY1_HUMAN	18	2.00	1.92	2.50	9	8
CD9 antigen	CD9	CD9_HUMAN	25	1.93	1.85	1.72	10	3
Mucin-5B	MUC5B	MUC5B_HUMAN	591	1.89	1.82	1.69	9	7
Carbonic anhydrase 3	CA3	CA3_HUMAN	30	1.89	1.40	2.24	10	0
Cartilage intermediate layer protein 1	CILP	CILP_HUMAN	133	1.74	3.20	3.07	7	7
Neogenin	NEO1	NEO1_HUMAN	160	1.66	1.16	2.46	10	0
Hepatocyte growth factor receptor	MET	MET_HUMAN	156	1.66	1.58	1.45	9	5
Claudin-4	CLDN4	CLDN4_HUMAN	22	1.65	1.57	1.44	8	8
Tyrosine-protein kinase-like 7	PTK7	PTK7_HUMAN	118	1.64	1.56	1.43	10	9
Intercellular adhesion molecule 1	ICAM1	ICAM1_HUMAN	58	1.48	1.67	3.47	8	0
Deleted in malignant brain tumors 1 protein	DMAT1	DMAT1_HUMAN	261	1.48	1.41	1.27	7	7
Latent-transforming growth factor beta-binding protein 2	LTBP2	LTBP2_HUMAN	195	1.38	3.84	1.31	9	0
Thrombospondin-4	THBS4	THBS4_HUMAN	106	1.33	3.18	1.62	9	6
Alpha-amylose 1	AMY1A	AMY1A_HUMAN	58	1.27	1.19	1.06	5	2
Mesothelin	MSLN	MSLN_HUMAN	69	1.25	1.18	-0.37	9	0
Dipeptidyl peptidase 4	DPP4	DPP4_HUMAN	88	1.12	1.01	1.65	9	7

\(\text{a}\) The data were taken from the Oncomine 4.4.4.4 Research Edition (https://www.oncomine.org/resource/login.html).

\(\text{b}\) The regulation of expression indicate the mRNA levels in NSCLC tissues Compared to noncancerous tissues.

The protein concentrations of MET, PTPRF, and DPP4 in NSCLC-PMPE were 157.57 ± 88.75, 96.33 ± 88.17, and 154.31 ± 54.00 ng/ml, respectively. The protein levels of these three candidates in NSCLC-MPE and NSCLC-PMPE were significantly different (\(p < 0.05\); Table II; supplemental Table S11 and supplemental Table S15). The AUC values of MET, PTPRF, and DPP4 in distinguishing NSCLC-MPE from NSCLC-PMPE were 0.875, 0.789, and 0.761, respectively (\(p < 0.05\) in all three proteins; Fig. 4E; Table III). The AUC that best discriminates between NSCLC-MPE and benign diseases or NSCLC-PMPE is MET, with cut offs of 200.755 and 186.093 ng/ml, respectively; corresponding specificity and sensitivity are shown in Table III. Unexpectedly, the AUC values of a combination of any two or all three candidates did not improve or improved only slightly relative to MET alone in distinguishing between NSCLC-MPE and benign diseases or NSCLC-PMPE (supplemental Table S14). To confirm the reliable validation for these three potential PE biomarkers used in distinguishing malignant (NSCLC-MPE) from nonmalignant pulmonary disorders (TB, PN, and NSCLC-PMPE), we performed the ELISA assays using an independent sample set, including 59 NSCLC-MPE, 30 benign diseases, and 28 NSCLC-PMPE. We examined the clinical characteristics between the three sample groups before performing the ELISA verification. Supplemental Table S17 shows that there was no significant difference (\(p < 0.05\)) in age, sex and gender between NSCLC-MPE and NSCLC-PMPE or benign disease (TB and PN) patients. Consistent with the results shown in Table II, MET, PTPFR, and DPP4 were validated as the potential PE biomarkers for NSCLC-
MPE using the second independent cohort (Table IV). Notably, we observed that the levels of these three potential PE biomarkers were significantly associated with malignancy (lung MPE compared with TB and PN; lung MPE compared with lung PMPE) and lung cancer histology (adenocarcinoma compared with nonadenocarcinoma). Although the sample population of adenocarcinoma (n = 181) and nonadenocarcinoma (n = 58) is asymmetrical in the current study (Table II and Table IV), we used multivariate analysis to analyze the independent factors of these three potential biomarkers. Table V shows that both MPE (p < 0.001) and histology (p = 0.032) were independent factors of MET levels; however, whether a patient had MPE was the only independent factor of PTPRF and DPP4 levels. Based on these results, we conclude that the three PE protein levels may be used as potential PE biomarkers. However, we emphasize that MET was a potential PE biomarker used in distinguishing adenocarcinoma MPE, the most common histology type of NSCLC-MPE, from nonmalignant pulmonary diseases.

The Specificity of Potential Biomarker Used in Lung Cancer MPE Diagnosis—To examine whether increased PE levels of MET, PTPRF, and/or DPP4 were specific to NSCLC, we performed ROC analysis to measure the PE levels of candidates used to discriminate NSCLC-MPE from nonlung cancer MPE (breast and gastric cancers, n = 43). We observed that the concentrations of MET, PTPRF, and DPP4 in nonlung cancer MPEs were 274.51 ± 432.80, 244.66 ± 162.94, and 213.61 ± 100.38 ng/ml, respectively (Fig. 4 and Table II). Notably, significant alternation of MET and PTPRF in lung malignancy (n = 109) compared with other malignancies (n = 43) was observed (Fig. 4A–4C; Table II; supplemental Table S16). The AUC values of MET, PTPRF, and DPP4 used to distinguish between NSCLC-MPE and nonlung cancer MPE were 0.787, 0.656, and 0.600, respectively (Table II). In addition, we showed that the AUC values of MET, PTPRF, and DPP4 used to distinguish NSCLC-MPE from all other tested pleural types (TB, PN, NSCLC-PMPE, BC, and GC) were 0.870, 0.709, and 0.642, respectively. These results imply that MET may be a specific lung cancer MPE biomarker; however, we require more samples from nonlung cancer MPE to warrant this conclusion.

Considering its potential as a PE biomarker for lung cancer, we investigated the source of MET production in PEs. The MET protein contains a disulfide link between the α- (50 kDa) and β-subunits (145 kDa), forming a α/β-heterodimer (31–33). Notably, soluble MET (sMET) is generated via ectodomain shedding, in which the β-subunit is proteolytically cleaved and released (34). We confirmed that the molecular weight of the MET isoform detected in our PE sample was equivalent to sMET (90 kDa; Fig. 5A). Because met gene overexpression has been reported in lung cancer (35, 36), we posited that increased sMET results from overexpression and/or proteolysis of membrane-bound MET (mMET) in lung cancer tissues. To confirm this hypothesis, we examined the expression of
Validation of three biomarker candidates by ELISA. The pleural effusion (PE) levels of A, MET, B, PTPRF, and C, DPP4 from 345 patients with lung cancer, benign diseases (TB and PN), and nonlung cancers (breast and gastric cancers) were determined by sandwich ELISA. Horizontal lines represent median values. ***p < 0.05, indicates statistical significance using the nonparametric Mann-Whitney U test. N.S., not significant. Receiver-operator characteristic (ROC) curve analysis was used to examine the diagnostic efficacy of the protein candidates. ROC curve analyses of MET (blue line), PTPRF (red line), DPP4 (green line), and a combination of all three proteins (purple line) for discrimination D, between nonsmall cell lung cancer malignant PE (NSCLC-MPE) and benign diseases (TB and PN), E, between NSCLC-MPE and nonsmall cell lung cancer paramalignant PE (NSCLC-PMPE), and F, between NSCLC-MPE and nonlung cancer MPE. AUC, area under the ROC curve.

Table III

Category	MET	PTPRF	DPP4	MET & PTPRF & DPP4								
AUC	Specif./sensitivity	Cut off (ng/ml)	AUC	Specif./sensitivity	Cut off (ng/ml)	AUC	Specif./sensitivity	Cut off (prob.)				
NSCLC-MPE vs. Benign*	0.892	0.899/0.752	200.755	0.803	0.930/0.596	116.716	0.612	0.767/0.459	257.793	0.903	0.907/0.596	0.421
NSCLC-MPE vs. NSCLC-PMPE	0.875	0.884/0.789	186.093	0.789	0.628/0.853	78.113	0.761	0.860/0.651	191.036	0.883	0.860/0.844	0.561
NSCLC-MPE vs nonlung cancer MPE**	0.787	0.651/0.844	172.520	0.656	0.605/0.697	170.104	0.600	0.884/0.294	316.047	0.666	0.581/0.908	0.565
NSCLC-MPE vs. all other tested pleural types***	0.870	0.852/0.761	199.020	0.709	0.674/0.688	100.745	0.642	0.784/0.459	257.793	0.840	0.881/0.706	0.299

* Tuberculosis and pneumonia.
** Malignant pleural effusions obtained from breast and gastric cancers.
*** Pleural effusions obtained from tuberculosis, pneumonia, NSCLC-PMPE, breast and gastric cancers.
**** Probability.
mMET in lung cancer cell lines and tissues. Western blot analysis showed that mMET levels in crude extracts and sMET in conditioned media of CL1–5 lung adenocarcinoma cells (high malignancy) were higher than in CL1–0 lung adenocarcinoma cells (low malignancy; Fig. 5A). Advanced stage cancer tissues (stage IV) also showed high levels of mMET compared with adjacent normal tissue (Fig. 5B). These results suggest that sMET was derived from cancerous cells and tissues and supports the positive correlation we observed between MET levels and cancer malignancy.

The PE protein Levels as a Useful Adjunct if Combined with Cytological Evaluation in Diagnosis of NSCLC with Pleural Cavity Metastasis—Considering that cytological examination is one of the gold standards for diagnosis of pleural cavity metastasis in NSCLC, it is worthwhile to examine the potential clinical applications of PE biomarkers if combined with cytological examination. We observed that the sensitivity of cytological examination for NSCLC-MPE diagnosis in the present study was 73.80%, indicating that only 124 of 168 NSCLC-MPE were examined as positive cytological samples. When any one of three biomarkers with a given cut-off value (MET: 186.093 ng/ml; PTPRF: 78.113 ng/ml; DPP4: 191.036 ng/ml) was applied for NSCLS-MPE diagnosis, the sensitivity was 97.02% (Table VI). Significantly, the protein levels of these three potential PE markers (MET, PTPRF, and DPP4) in NSCLC-MPE patients with negative cytology results (n = 44) were significantly higher than in patients with positive cytology results (false negative, n = 124) (Table VI). These results suggest that the PE protein markers were more discriminated in effusions in which the cytology sample was positive. Accordingly, we propose that PE protein levels would provide a useful adjunct if combined with cytological evaluation in diagnosis of NSCLC with pleural cavity metastasis.

DISCUSSION

Lung cancer is the most common malignancy in humans and the leading cause of cancer-related death worldwide (37). Previous studies collectively demonstrate the utility of PE proteomics in biomarker discovery for human cancers (8). The first proteomics study on MPE was published in 2004; in this study, Bard et al. focused on identification of protein components derived from MPE exosomes in three cancer types (mesothelioma, lung, and breast cancer) by MALDI-TOF. This study reported 18 proteins identified in exosomes isolated from the PE of one lung cancer patient (38). Previously, we created a comprehensive PE proteome data set with 482 proteins and established the clinical relevance of potential biomarkers in NSCLC (9). Wang et al. recently also identified 16 differentially expressed proteins between lung adenocarcinoma and benign inflammatory PEs by two-dimensional difference gel electrophoresis combined with MALDI-TOF (39). We identified/quantified 15 of 16 (93.75%) differentially expressed proteins reported by Wang et al., and only one protein, Jumonji domain containing five, has not been identified in our PE proteome (supplemental Table S18). The present study is the first comprehensive, label-free, quantitative

Table IV

Variables	No.	MET (ng/ml)	p value	PTPRF (ng/ml)	p value	DPP4 (ng/ml)	p value
Lung disease							
TB, PN	30	144.78 ± 41.07	<0.001	72.23 ± 26.32	<0.001	195.71 ± 105.62	0.114
PMPE	28	156.05 ± 86.87	<0.001	92.27 ± 74.37	<0.001	167.73 ± 83.31	0.003
MPE	59	483.58 ± 527.98		174.23 ± 163.05		293.26 ± 421.60	
Lung cancer histology							
Adenocarcinoma	53	516.63 ± 546.64	<0.001	174.66 ± 165.95	0.02	308.47 ± 442.20	<0.001
Nonadenocarcinoma	34	168.57 ± 112.62		106.05 ± 93.62		166.17 ± 79.53	

The data are presented as the mean ± S.D.

The p value presents the difference between NSCLC-MPE and benign diseases (TB and PN).

The p value presents the difference between NSCLC-MPE and NSCLC-PMPE.

Table V

Variables	No.	MET (ng/ml)	p value	PTPRF (ng/ml)	p value	DPP4 (ng/ml)	p value
Lung disease							
TB, PN	30	144.78 ± 41.07	<0.001	72.23 ± 26.32	<0.001	195.71 ± 105.62	0.114
PMPE	28	156.05 ± 86.87	<0.001	92.27 ± 74.37	<0.001	167.73 ± 83.31	0.003
MPE	59	483.58 ± 527.98		174.23 ± 163.05		293.26 ± 421.60	
Lung cancer histology							
Adenocarcinoma	53	516.63 ± 546.64	<0.001	174.66 ± 165.95	0.02	308.47 ± 442.20	<0.001
Nonadenocarcinoma	34	168.57 ± 112.62		106.05 ± 93.62		166.17 ± 79.53	
TABLE V
Univariate and multivariate analyses of MET, PTPRF, and DPP4 levels in patients with NSCLC in first and second cohort (n = 239)

Variables	Univariate analysis	Multivariate analysis	Univariate analysis	Multivariate analysis	Univariate analysis	Multivariate analysis		
	No.	MET (ng/ml)	p value					
Age	151	387.19 ± 467.18	0.688	-	-	-	-	
	88	440.13 ± 502.55	0.688	-	-	-	-	
Gender	145	49.49 ± 49.68	0.989	-	-	-	-	
Male	94	402.34 ± 476.61	0.756	-	-	-	-	
Female	151	405.13 ± 49.68	0.989	-	-	-	-	
Smoking status	106	415.08 ± 514.17	0.928	-	-	-	-	
Ex-current smoker	139	399.98 ± 453.07	0.928	-	-	-	-	
Never				-	-	-	-	
Lung cancer	168	512.21 ± 563.61	<0.001	-	-	-	-	
MPE	71	156.97 ± 87.39	<0.001	-	-	-	-	
PMPE				-	-	-	-	
Lung cancer histology	181	486.96 ± 524.97	<0.001	0.032	175.60 (15.66-335.53)	0.001	0.811	5.22 (-37.77-48.21)
Adenocarcinoma	158	167.30 ± 130.59	<0.001	0.032	175.60 (15.66-335.53)	0.001	0.811	5.22 (-37.77-48.21)
Nonadenocarcinoma	58	156.14 ± 89.23	0.001	0.032	175.60 (15.66-335.53)	0.001	0.811	5.22 (-37.77-48.21)
	111.14 ± 98.17	0.001	0.032	175.60 (15.66-335.53)	0.001	0.811	5.22 (-37.77-48.21)	

*The data are presented as the mean ± S.D.

b Mann-Whitney U test.

c Linear regression.
soluble MET in PEs. Regardless of the underlying mechanisms, our results were consistent with recent findings by Fu et al., who reported that the shedding of the MET ectodomain was detected in human plasma, and sMET correlated with MET expression levels and tumor size in NSCLC. The authors concluded that a high MET expression led to an increased potential for tumor metastasis and consequently a poor prognosis (47). These phenomena were similar to those shown in a breast cancer study in which MET shedding correlated with malignancy in cultured cells and tumor burden in tumor xenograft mouse models (48). Conversely, Yang et al. demonstrated the beneficial effects of high sMET concentrations in human plasma, showing that the overall median plasma concentration of sMET in patients with gastric cancer was lower than in controls, and sMET levels decreased as the onset of cancer drew nearer (49). This study also investigated the interactions between CagA-related genes and sMET protein concentration in the development of gastric cancer, suggesting that the genetic background of different cancer types may influence the application of MET concentration in the diagnosis/prognosis of human cancers.

A second biomarker candidate in this study was PTPRF, a member of the receptor protein tyrosine phosphatase type IIa subfamily, which exclusively comprise extracellular Ig do-

TABLE VI

The protein levels of MET, PTPRF, and DPP4 in 239 NSCLC patients

Category	No.	MET (ng/ml)	p value[^a]	PTPRF (ng/ml)	p value[^a]	DPP4 (ng/ml)	p value[^a]
NSCLC-PMPE	71	156.97 ± 87.39	<0.001[^c]	94.73 ± 82.47	<0.001[^c]	159.60 ± 66.86	<0.001[^c]
NSCLC-MPE with positive cytology result	124	555.49 ± 563.23	0.016[^d]	187.16 ± 147.30	0.005[^d]	292.50 ± 312.69	0.299[^d]
NSCLC-MPE with negative cytology result	44	390.26 ± 434.79	117.26 ± 56.84	224.04 ± 87.48			

[^a]: The data are presented as the mean ± S.D.
[^b]: Mann-Whitney U test.
[^c]: The p value presents the difference between NSCLC-MPE with negative cytology result and NSCLC-PMPE.
[^d]: The p value presents the difference between NSCLC-MPE with negative cytology result and NSCLC-MPE with positive cytology result.

FIG. 5. Detection of MET expression in lung cancer tissues and cell lines by Western blot. A, Cell extracts (CE; 50 μg) and conditioned media (CM; 20 μg) prepared from two lung adenocarcinoma cell lines (CL1–0 and CL1–5) and one pooled malignant pleural effusion (pooled MPE) sample with high-abundance protein depletion (20 μg) were resolved on 7.5% SDS-PAGE. Both membrane-bound MET (mMET) and soluble MET (sMET) were detected by Western blot using a goat anti-MET polyclonal antibody (R&D system, cat. BAF358). CM prepared from breast cancer cell line MDA-MB 231 was used as a positive control of sMET. Actin was used as a loading control. B, CE obtained from the CL1–5 cell line (20 μg) or lung adenocarcinoma tissues (50 μg) were separated by SDS-PAGE. mMET was detected by Western blot using a rabbit anti-MET monoclonal antibody (Spring Bioscience, cat. M3440). Actin was used as a loading control. T, tumor parts. N, adjacent normal tissues.
mains and fibronectin III repeats (50). This phosphatase family has been implicated in several signaling pathways by regulating receptors such as EGFR, RET, and MET (51). PTPRF is expressed in various cell types, including epithelial cells, neuronal cells, and fibroblasts (52), and plays an important role in cell adhesion and migration by directly interacting with integrins in focal adhesions (53). In addition, PTPRF expression was observed to be associated with the potential for metastasis in the well-characterized 13762NF rat mammary adenocarcinoma clones (54).

Another protein candidate herein was DPP4, also known as CD26, a widely distributed 110 kDa transmembrane glycoprotein with peptidase activity. DPP4 is expressed as a cell surface antigen in melanocytes, epithelial cells, and lymphocytes (55–57), is a functional receptor for collagen, and is essential for normal immune function (58). Moreover, there are significant levels of DPP4 activity in plasma, serum (sCD26), and urine (59). Similar to sMET, sCD26 originates from the shedding of surface-bound CD26. Overexpression of DPP4 is observed in various human cancers, including thyroid, breast, prostate, and ovarian cancers and is involved in tumor development, invasion, and metastasis (60, 61). However, previous studies have also observed that sCD26 was deficient in total homogenates of colon, kidney, lung, and liver tumors (62, 63) as well as in different transformed and cancer-derived cell lines (64).

To further explore the clinical application of PE markers, we examined the positive correlation between PE and serum protein levels obtained from the same individuals; the levels of MET and DPP4 in PE and serum positively correlated (p < 0.05; n = 36, supplemental Fig. S10). It is notable that MET levels in PEs (475.879 ± 650.286 ng/ml) were higher than levels in paired serum samples (228.711 ± 66.725 ng/ml), supporting the benefits of using PEs for pulmonary disease-related biomarker discovery. Although future work is warranted to identify and validate additional protein biomarker candidates using a large cohort of PE and serum/plasma samples, the 30 proteins identified as associated with malignancy in the present study (Table I) are viable candidates to establish a useful panel of biomarkers used in diagnosis and/or prognosis of NSCLC.

Acknowledgments—We thank Lichieh Julie Chu for analyzing the overlap of proteins identified in five PE types. We would like to thank all members of the Chang Gung Memorial Hospital Cancer Center (Linkou, Tao-Yuan, Taiwan) for clinical patient sample and tissue collection and management. We also thank the Taiwan Lung Cancer Tissue/Specimen and Information Resource Center (MOST 103-2325-B-400-011) at the National Health Research Institute, Taiwan, for samples/data support. This center was supported by grants from the National Research Program for Biopharmaceuticals of the Ministry of Science and Technology, Taiwan.

This work was supported by grants from the Chang Gung Medical Research Fund (CMRPD1C0091-2, CMRPG3A0661, CMRPD2B00053, and CLRPD190013), the Ministry of Science and Technology, Taiwan (101-2320-B-182-035-MY3, 102-2320-B-182-029-MY3, and 103-2325-B-182-007), and the Ministry of Education, Taiwan (EMRPD1C0021).

This article contains supplemental Figs S1 to S10 and Tables S1 to S19.

To whom correspondence should be addressed: Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan. Tel.: 886-3-2118800, ext. 3424; Fax: 886-3-2118042; E-mail: luckywu@mail.cgu.edu.tw; or Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan. Tel.: 886-3-2118800, ext. 5093; Fax: 886-3-2118800, ext. 5497; E-mail: luckywu@mail.cgu.edu.tw.

REFERENCES

1. Andrews, C. O., and Gora, M. L. (1994) Pleural effusions: pathophysiology and management. Ann. Pharmacother. 28, 894–903.
2. Light, R. W. (1997) Diagnostic principles in pleural disease. Eur. Respir. J. 10, 476–481.
3. Lee, Y. C., and Light, R. W. (2004) Management of malignant pleural effusions. Respirology 9, 148–156.
4. Porcel, J. M., and Light, R. W. (2006) Diagnostic approach to pleural effusion in adults. Am. Fam. Physician. 73, 1211–1220.
5. Sahn, S. A. (1997) Pleural diseases related to metastatic malignancies. Eur. Respir. J. 10, 1907–1913.
6. Johnston, W. S. (1985) The malignant pleural effusion. A review of cytologic diagnoses of 584 specimens from 472 consecutive patients. Cancer 56, 905–909.
7. Maskell, N. A., Butland, R. J., and Pleural Diseases Group, S. o. C. C. B. T. (2003) BTS guidelines for the investigation of a unilateral pleural effusion in adults. Thorax 58, iii–iii.
8. Schiaji-Visser, T. B., de Wit, M., Lam, S. W., and Jime´ nez, C. R. (2013) The cancer secretome, current status and opportunities in the lung, breast and colorectal cancer context. Biochim. Biophys. Acts 1834, 2242–2258.
9. Yu, C. J., Wang, C. L., Wang, C. I., Chen, C. D., Dan, Y. M., Wu, C. C., Wu, Y. C., Lee, I. N., Tsai, Y. H., Chang, Y. S., and Yu, J. S. (2011) Comprehensive proteome analysis of malignant pleural effusion for lung cancer biomarker discovery by using multidimensional protein identification technology. J. Proteome Res. 10, 4671–4682.
10. Olsen, J. V., de Godoy, L. M., Li, G., Macek, B., Mortensen, P., Pesch, R., Makarov, A., Lange, O., Horning, S., and Mann, M. (2005) Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol. Cell. Proteomics 4, 2010–2021.
11. Ong, K. C., Indumathi, V., Poh, W. T., and Ong, Y. Y. (2000) The diagnostic yield of pleural fluid cytology in malignant pleural effusions. Singapore Med. J. 41, 19–23.
12. Storey, J. D., and Tibshirani, R. (2003) Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. U.S.A. 100, 9440–9445.
13. Cheadle, C., Vawter, M. P., Freed, W. J., and Becker, K. G. (2003) Analysis of microarray data using Z score transformation. J. Mol. Diagn. 5, 73–81.
14. Whitmore, T. E., Peterson, A., Holzman, T., Eastham, A., Amon, L., Mcintosh, M., Ozinsky, A., Nelson, P. S., and Martin, D. B. (2012) Integrative analysis of N-linked human glycoproteome data sets reveals PTPFR ectodomain as a novel plasma biomarker candidate for prostate cancer. J. Proteome Res. 11, 2653–2665.
15. Chu, Y. W., Yang, P. C., Yang, Y. C., Shyu, Y. C., Hendrix, M. J., Wu, R., and Wu, C. W. (1997) Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am. J. Respir. Cell Mol. Biol. 17, 353–360.
16. Wang, C. L., Wang, C. I., Liao, P. C., Chen, C. D., Liang, Y., Chuang, W. Y., Tsai, Y. H., Chen, H. C., Chang, Y. S., Yu, J. S., Wu, C. C., and Yu, C. J. (2009) Discovery of retinoblastoma-associated binding protein 46 as a novel prognostic marker for distant metastasis in nonsmall cell lung cancer by combined analysis of cancer cell secretome and pleural effusion proteome. J. Proteome Res. 8, 4428–4440.
17. Hanley, J. A., and McNeil, B. J. (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148, 839–843.
18. Youder, W. J. (1950) Index for rating diagnostic tests. Cancer 3, 32–35.
Comparative Pleural Effusion Proteomes for Marker Discovery

19. Jeong, S. K., Na, K., Kim, K. Y., Kim, H., and Paik, Y. K. (2012) PanelComposer: a web-based panel construction tool for multivariate analysis of disease biomarker candidates. J. Proteome Res. 11, 6277–6281

20. Rhodes, D. R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., Barret, T., Pandey, A., and Chinnaiyan, A. M. (2004) ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6, 1–6

21. Beer, D. G., Kardia, S. L., Huang, C. C., Giordano, T. J., Levin, A. M., Misek, D. E., Lin, L., Chen, G., Gharib, T. G., Thomas, D. G., Liyénzé, M. L., Kulick, R., Hayasaka, S., Taylor, J. M., Iannettoni, D. M., Orringer, M. B., and Hanash, S. (2002) Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat. Med. 8, 816–824

22. Bhattacharjee, A., Richards, W. G., Staunton, J., Li, C., Monti, S., Vasa, P., Ladd, C., Beheshti, J., Bueno, R., Oillette, M., Loda, M., Weber, G., Mark, E., Le, Q., Venter, J. C., Albertson, D. G., Pinkel, D., Johnsson, R., de Gramont, A.,33. Giordano, S., Di Renzo, M. F., Narsimhan, R. P., Cooper, C. S., Rosa, C., and Comoglio, P. M. (1995) Suramin modulates cellular levels of hepatocyte growth factor receptor by inducing shedding of a soluble form. Biochem. Pharmacol. 50, 959–966

23. Sadiq, A. A., and Salgia, R. (2013) MET as a possible target for nonsmall-cell lung cancer. J. Clin. Oncol. 31, 1089–1096

24. Salgia, R. (2009) Role of c-Met in cancer: emphasis on lung cancer. Semin. Oncol. 36, 535–58

25. Kawakami, M., Morita, S., Sunohara, M., Amano, Y., Ishikawa, R., Watanabe, K., Hamano, E., Ohishi, N., Nakajima, J., Yatomi, Y., Nagase, T., Fukuyama, M., and Takai, D. (2013) FER overexpression is associated with poor postoperative prognosis and cancer-cell survival in nonsmall cell lung cancer. Int. J. Clin. Exp. Pathol. 6, 598–612

26. Bard, M. P., Hegmans, J. P., Hemmes, A., Luider, T. M., Willemsen, R., Severijnen, L. A., van Meerbeeck, J. P., Burgers, S. A., Hoogsteden, H. C., Grosfeld, F., and Philipsen, S. (2010) Gene expression-based classification of nonsmall cell lung carcinomas and survival prediction. PLoS One 5, e10312

27. Garber, M. E., Troyanskaya, O. G., Schluens, K., Petersen, S., Thaesler, Z., Pacyna-Gengelbach, M., van de Rijn, M., Rosen, G. D., Perou, C. M., Whyte, R. I., Altman, R. B., Brown, P. O., Botstein, D., and Petersen, I. (2001) Selection of differentially expressed genes in expression analysis of lung adenocarcinoma. Proc. Natl. Acad. Sci. U.S.A. 98, 13784–13789

28. Hou, J., Aerts, J., den Hamer, B., van IJcken, W., den Bakker, M., Rieger, P., van der Leest, C., van der Spek, P., Foeckens, J. A., Hoogsteden, H. C., Grosfeld, F., and Philipsen, S. (2010) Gene expression-based classification of nonsmall cell lung carcinomas and survival prediction. PLoS One 5, e1651

29. Lax, F. G., Drachman, T., Rotunno, M., Figueroa, J. D., Liu, H., Dasgupta, A., Mann, F. E., Fukuoka, J., Hames, B. M., Amr, A. W., Murphy, S. E., Yang, P., Pesatori, A. C., Consonni, D., Bertazzi, P. A., Wacholder, S., Shih, J. H., Caporaso, N. E., and Jen, J. (2008) Gene expression signature of cigarette smoking and its role in lung adenocarcinoma development and survival. PLoS One 3, e1651

30. Okayama, H., Kohno, T., Ishii, Y., Shimada, Y., Shiraki, K., Iwakawa, R., Furutu, K., Tatsa, K., Shibata, Y., Yamamoto, S., Watanabe, S., Saka, M., H., Kuma, T., Kurose, K., Watanabe, S., Ishii, S., Mizuno, S., Sara, A., Kawanoto, S., Yamaguchi, R., Miyano, S., and Yokota, J. (2012) Identification of genes up-regulated in ALK-positive and EGFR/KRAS/ALK-mutant nonsmall cell lung cancer. Proc. Natl. Acad. Sci. U.S.A. 109, 1050–1056

31. Yang, J. H., Kim, J., Ma, S. H., Cho, L. Y., Ko, K. P., Shin, A., Athauda, G., Giubellino, A., Coleman, J. A., Horak, C., Steeg, P. S., Lee, M. J., Trepel, J., Wimberly, J., Sun, J., Coxon, A., Burgess, T. F., and Park, M. (2005) Met/Hepatocyte growth factor receptor ubiquitination suppresses transformation and is required for Hsp phosphorylation. Mol. Cell. Biol. 25, 9632–9645

32. Feng, Y., Thiagarajan, P. S., and Ma, P. C. (2013) MET signaling: novel targeted inhibition and its clinical development in lung cancer. J. Thorac. Oncol. 7, 459–467

33. Abella, J. V., Peschard, P., Naujokas, M. A., Lin, L., Saucier, C., Urbé, S., and Park, M. (2006) Met/Hepatocyte growth factor receptor c-Met ectodomain shedding rate correlates with Hsp expression. Cell 125, 49–51

34. Birchmeier, C., Birchmeier, W., Gherardi, E., and Vande Woude, G. F. (2003) Met, metastasis, motility, and more. Nat. Rev. Mol. Cell Biol. 4, 915–929

35. Landi, L., Minuti, G., D’Incecco, A., and Cappuzzo, F. (2013) Targeting c-Met in the battle against advanced nonsmall-cell lung cancer. Curr. Opin. Oncol. 25, 130–136

36. Fu, L., Guo, W., Liu, B., Sun, L., Bi, Z., Zhu, L., Wang, X., Liu, B., Xie, Q., and Li, K. (2013) Shedding of c-Met ectodomain correlates with c-Met expression in nonsmall cell lung cancer. Biomarkers 18, 126–135

37. Athauda, G., Giubellino, A., Coleman, J. A., Horak, C., Steeg, P. S., Lee, M. J., Trepel, J., Wimberly, J., Sun, J., Coxon, A., Burgess, T. F., and Park, D. P. (2006) c-Met ectodomain shedding rate correlates with malignant potential. Cancer Res. 62, 4154–4162

38. Yang, J. J., Yang, J. H., Kim, J., Ma, S. H., Cho, L. Y., Ko, K. P., Shin, A., Choi, B. Y., Kim, H. J., Han, D. S., Eun, C. S., Song, K. S., Kim, Y. S., Chang, S. H., Shin, H. R., Kang, D., Yoo, K. Y., and Park, S. K. (2013) Soluble c-Met protein as a susceptible biomarker for gastric cancer risk: a nested case–control study within the Korean Multicenter Cancer Cohort. Int. J. Cancer 132, 2148–2156

39. Craig, S. E., and Brady-Kalnay, S. M. (2011) Tumor-derived extracellular fragments of receptor protein tyrosine phosphatases (RPTPs) as cancer molecular diagnostic tools. Anticancer Agents Med. Chem. 11, 133–140

40. Stewart, K., Uetani, N., Hendriks, W., Tremblay, M. L., and Bouchard, M. (2013) Inactivation of LAR family phosphatase genes Ptprs and Ptprf causes craniofacial malformations resembling Pierre-Robin sequence. J. Curr. Oncol. 30, 3413–3422

41. Streuli, M. (1998) Protein tyrosine phosphatases in signaling. Curr. Opin. Cell Biol. 8, 182–188

42. Zheng, W., Lennartsson, J., Hendriks, W., Heldin, C. H., and Hellberg, C. (2011) The LAR protein tyrosine phosphatase enables PDGF beta-receptor activation through attenuation of the c-Abl kinase activity. Cell. Signal. 23, 1050–1056
54. Levea, C. M., McGary, C. T., Symons, J. R., and Mooney, R. A. (2000) PTP LAR expression compared to prognostic indices in metastatic and non-metastatic breast cancer. *Breast Cancer Res. Treat.* 64, 221–228
55. Iwata, S., and Morimoto, C. (1999) CD26/dipeptidyl peptidase IV in context. The different roles of a multifunctional ectoenzyme in malignant transformation. *J. Exp. Med.* 190, 301–306
56. Cordero, O. J., Ayude, D., Nogueira, M., Rodriguez-Berrocal, F. J., and de la Cadena, M. P. (2000) Preoperative serum CD26 levels: diagnostic efficiency and predictive value for colorectal cancer. *Br. J. Cancer* 83, 1139–1146
57. Cordero, O. J., Imbernon, M., Chiara, L. D., Martinez-Zorzano, V. S., Ayude, D., de la Cadena, M. P., and Rodriguez-Berrocal, F. J. (2011) Potential of soluble CD26 as a serum marker for colorectal cancer detection. *World J. Clin. Oncol.* 2, 245–261
58. De Meester, I., Korom, S., Van Damme, J., and Scharpé, S. (1999) CD26, let it cut or cut it down. *Immunol. Today* 20, 367–375
59. Scharpé, S., De Meester, I., Vanhoof, G., Hendriks, D., van Sande, M., Van Camp, K., and Yaron, A. (1988) Assay of dipeptidyl peptidase IV in serum by fluorometry of 4-methoxy-2-naphthylamine. *Clin. Chem.* 34, 2299–2301
60. Amatya, V. J., Takeshima, Y., Kushitani, K., Yamada, T., Morimoto, C., and Inai, K. (2011) Overexpression of CD26/DPP IV in mesothelioma tissue and mesothelioma cell lines. *Oncol. Rep.* 26, 1369–1375
61. Yamada, K., Hayashi, M., Madokoro, H., Nishida, H., Du, W., Ohnuma, K., Sakamoto, M., Morimoto, C., and Yamada, T. (2013) Nuclear localization of CD26 induced by a humanized monoclonal antibody inhibits tumor cell growth by modulating of POLR2A transcription. *PloS One* 8, e62304
62. Ten Kate, J., Wijnen, J. T., Boldewijn, J., Khan, P. M., and Bosman, F. T. (1985) Immunohistochemical localization of adenosine deaminase complexing protein in intestinal mucosa and in colorectal adenocarcinoma as a marker for tumour cell heterogeneity. *Histochem. J.* 17, 23–31
63. Ten Kate, J., Dinjens, W. N., Meera Khan, P., and Bosman, F. T. (1986) Adenosine deaminase complexing protein in cancer studies. *Anticancer Res.* 6, 983–988
64. Ten Kate, J., van den Ingh, H. F., Khan, P. M., and Bosman, F. T. (1986) Adenosine deaminase complexing protein (ADCP) immunoreactivity in colorectal adenocarcinoma. *Int. J. Cancer* 37, 479–485