Functional Antagonism of WRI1 and TCP20 Modulates GH3.3 Expression to Maintain Auxin Homeostasis in Roots

Que Kong 1, Pui Man Low 1, Audrey R. Q. Lim 1, Yuzhou Yang 1, Ling Yuan 2 and Wei Ma 1,* 1

Abstract: Auxin is a well-studied phytohormone, vital for diverse plant developmental processes. The GH3 genes are one of the major auxin responsive genes, whose expression changes lead to modulation of plant development and auxin homeostasis. However, the transcriptional regulation of these GH3 genes remains largely unknown. WRI1 is an essential transcriptional regulator governing plant fatty acid biosynthesis. Recently, we identified that the expression of GH3.3 is increased in the roots of wri1-1 mutant. Nevertheless, in this study we found that AtWRI1 did not activate or repress the promoter of GH3.3 (proGH3.3) despite of its binding to proGH3.3. Cross-family transcription factor interactions play pivotal roles in plant gene regulatory networks. To explore the molecular mechanism by which WRI1 controls GH3.3 expression, we screened an Arabidopsis transcription factor library and identified TCP20 as a novel AtWRI1-interacting regulator. The interaction between AtWRI1 and TCP20 was further verified by several approaches. Importantly, we found that TCP20 directly regulates GH3.3 expression via binding to TCP binding element. Furthermore, AtWRI1 repressed the TCP20-mediated transactivation of proGH3.3. EMSAs demonstrated that AtWRI1 antagonized TCP20 from binding to proGH3.3. Collectively, we provide new insights that WRI1 attenuates GH3.3 expression through interaction with TCP20, highlighting a new mechanism that contributes to fine-tuning auxin homeostasis.

Keywords: Arabidopsis; gene regulation; protein-protein interaction; transcription factor; WRI1; TCP20

1. Introduction

The phytohormone auxin (indole-3-acetic acid; IAA) plays a pivotal role in plant developmental processes, such as embryogenesis, organogenesis, shoot and root growth, and organ patterning [1–3]. The Aux/IAA (AUXIN/INDOLE-3-ACETIC ACID), SAUR (small, auxin-induced RNA), and GH3 (Gretchen Hagen 3) are the major auxin responsive genes [2,4,5]. Changes in GH3 gene expression affect the plant developmental processes, such as the growth of hypocotyl, root, and shoot [6–9]. The GH3 gene family in Arabidopsis comprises 20 members [9]. Several GH3 genes control the formation of IAA-amino acid conjugates which play roles in storing, transporting, compartmentalizing, and metabolizing auxins [7,10]. These findings suggest that GH3s are essential for mediating auxin homeostasis and auxin-associated growth responses [11,12]. A majority of the GH3 gene promoters have been found to contain cis-acting auxin responsive elements (AuxREs) that are recognized by auxin response factors (ARFs) [2,4,13]. In addition, bZIP transcription factors (e.g., Arabidopsis bZIP11) have been found to bind the G-box-related element (GRE) in the GH3 promoter to activate GH3 expression [11,14].
2. Results and Discussion

We recently found that the GH3.3 gene is upregulated in the roots of Arabidopsis WRINKLED1 (AtWR1) loss-of-function mutant (wri1-1) [15]. WRI1 is a member of APETALA2 (AP2) transcription factor family, well known for transcriptional regulation of plant oil accumulation [16,17]. WRI1 functions as a transcriptional activator of genes involved in oil biosynthetic pathways [18–21]. However, how AtWR1 regulates the expression of GH3.3 is unclear. AtWR1 is differentially expressed in Arabidopsis embryo over other vegetative tissues. AtWR1 also displays significant expression in roots [15,16]. Interestingly, although AtWR1 is able to bind to proGH3.3 [15], our dual-luciferase (LUC) transactivation assay showed that AtWR1 did not activate or repress the promoter of GH3.3 (proGH3.3) (Supplementary Figure S1). We hence hypothesized that AtWR1 regulates the expression of GH3.3 through the coordination with an alternative transcriptional regulator. To investigate the molecular mechanism by which WRI1 controls GH3.3 expression, we performed yeast-two-hybrid (Y2H) assay to screen an Arabidopsis transcription factor library [22], using truncated AtWR1 variants (AtWR11-306 and AtWR158-240) as baits. The truncated AtWR1 variants as baits are necessary to avoid high transactivation activity mediated by the C-terminus of AtWR1 [23]. We identified a class I TEOSINTE BRANCHED1/CYCLOIDEA/ PROLIFERATING CELL FACTOR (TCP) family transcription factor TCP20 as a previously unknown interacting partner of AtWR1. We confirmed that AtWR1 physically interacts with TCP20 in yeast cells (Figure 1A). In the pull-down assays, His-tagged TCP20 was pulled down by the GST agarose-coupled AtWR1 (Figure 1B), providing further evidence for the interaction between AtWR1 and TCP20. To further validate the AtWR1-TCP20 interaction in vivo, we conducted bimolecular fluorescence complementation (BiFC) assays by co-producing the split YFP fusions of the two proteins, nYFP-AtWR1 and cYFP-TCP20, in Nicotiana benthamiana leaves. We detected YFP fluorescence in leaf samples that co-produced nYFP-AtWR1 and cYFP-TCP20 (Figure 1C). Taken together, our results verified the physical interaction between AtWR1 and TCP20.

Figure 1. Physical interaction of AtWR1 with TCP20. (A) TCP20 interacts with AtWR1 variants in yeast cells. Yeast growth on either permissive (-Leu/-Trp) or stringent selective (-Leu/-Trp/-His) medium was shown. The numbers in the plates indicate the co-expression of DNA binding domain (BD) fusions of AtWR1 with varied amino acid length and activation domain (AD)-TCP20 fusion (indicated in shaded box). (B) GST pull-down assay showing the interaction of TCP20 with AtWR1. The bottom panel shows Coomassie blue stained SDS-PAGE gel of GST pull-down using E. coli expressed protein. Red asterisk indicates the pull-down product of His-TCP20 that has identical molecular mass as the purified His-TCP20 in the far-right lane. The upper panel shows the immunoblotting of the pull-down products using anti-His antibody, verifying the presence of the His-TCP20. (C) A BiFC assay showing the physical interaction of AtWR1 with TCP20 in plant cells. Confocal images show N. benthamiana epidermal cells transiently co-producing nYFP-AtWR1 and cYFP-TCP20. Scale bar is 20 μM.
Previous studies show that TCP20 is highly expressed in Arabidopsis roots to regulate numerous genes that are important for plant development and signaling pathways [24–26]. However, the molecular mechanism underlying TCP20 working with AtWRI1 to regulate GH3.3 expression remains unknown. We thus analyzed proGH3.3 and found four putative TCP binding motifs in the promoter (Supplementary Figure S2). To test whether TCP20 binds to proGH3.3, we synthesized four DNA probes (Probe 1–4), each containing an individual putative TCP binding motif with flanking sequences on both sides (Figure 2A and Supplementary Figure S2) and performed electrophoretic mobility shift assay (EMSA) using TCP20 protein. Our result showed that TCP20 bound to all four DNA probes (probe 1–4; Figure 2A); however, TCP20 failed to bind to the DNA probes with nucleotide mutations at the TCP20 binding element (probe 1M–4M; Figure 2A), implying the binding specificity to the TCP motifs in the proGH3.3.

To explore the transcriptional regulation of GH3.3 by TCP20, we subsequently characterized two homozygous Arabidopsis tcp20 T-DNA insertional lines (tcp20-2 (SALK_088460) and tcp20-4 (SALK_041906)). We examined the expression of GH3.3 in roots of tcp20 loss-of-function mutants and found significant downregulation of GH3.3 in both lines compared to wild-type (WT) (Figure 2B). We also examined the transactivation of TCP20 on proGH3.3 using dual-LUC transient expression assay in N. benthamiana leaves (Figure 2C). TCP20 significantly activated the LUC expression driven by proGH3.3 in the transient assay (Figure 2D). Taken together, these results indicate that TCP20 directly regulates GH3.3 expression through binding to the TCP binding motifs in its promoter.

We next examined whether the transactivation activity of TCP20 on proGH3.3 is attenuated by interaction with AtWRI1. The reporter vector, in which the LUC gene expression is driven by proGH3.3, was transformed into N. benthamiana leaves, alone or in combination with the effectors in which TCP20 or AtWRI1 is controlled by the CaMV 35S promoter (Figure 3A). While TCP20 significantly activated proGH3.3, the activation was greatly reduced when AtWRI1 was co-expressed (Figure 3B), suggesting that AtWRI1 antagonizes TCP20 upon the interaction. We also conducted a promoter deletion assay to identify the regions in proGH3.3 critical for TCP20-AtWRI1 mediated expression. We generated three 5′-deletions in proGH3.3-LUC (Supplementary Figure S3). The full-length and truncated proGH3.3-LUC were transformed into N. benthamiana leaves alone, with AtWRI1, or with AtWRI1 and TCP20. The 1 kb deletion (from −1940 to −941 bp including one TCP binding motif) caused a significant reduction of LUC activity compared to the full-length promoter (Supplementary Figure S3). The 1.5 kb deletion (from −1940 to −441 bp) did not result in additional loss of activity compared to the 1 kb deletion. When all TCP binding motifs were deleted (−80 bp), less than 10% of the activity remained compared to the full-length promoter. In all cases except the −80 deletion, co-expression of TCP20 and AtWRI1 significantly reduced the transactivation of proGH3.3 by TCP20 (Supplementary Figure S3). These results indicated that the deletion of motif 4 resulted in approximately 70% reduction of TCP20 activation, although the activation of the promoter fragment containing motifs 1–3 was still 15-fold higher than the reporter-alone control. Further removal of motifs 1–3 greatly reduced the activation and abolished the antagonizing effect of AtWRI1. Therefore, while motif 4 contributes most to the TCP20-mediated activation, all four TCP binding motifs contribute to the TCP20 regulation of proGH3.3. This conclusion is consistent with the EMSA results showing TCP20 binding to all four TCP binding motifs (Figure 2A).
Figure 2. Direct promoter binding and regulation of GH3.3 by TCP20. (A) EMSA showing TCP20 binding to the TCP binding motifs in the GH3.3 promoter (proGH3.3). As indicated in the schematic representation of proGH3.3, four biotin-labelled DNA probes (dark boxes indicated by underlined numbers 1–4), containing consensus TCP binding motifs, and their corresponding mutant (M) probes (Supplementary Figure S2) were used for EMSA experiments to test the interaction with purified His-TCP20 protein. The shifted DNA-protein complexes are indicated by an arrow. (B) Quantitative real-time PCR (qRT-PCR) analysis of GH3.3 transcript in the roots of wild-type (WT), tcp20-2 (SALK_088460), and tcp20-4 (SALK_041906) mutants. Results are shown as means ± SE (n = 3). ** indicates a significant difference (p < 0.05, Student’s t-test) compared with WT. (C) Schematic representation of the constructs used in a transient expression assay in N. benthamiana leaves. The LUC reporter gene was driven by a 2kb proGH3.3. The Renilla luciferase (REN) reporter gene was controlled by the CaMV 35S promoter. (D) Transactivation of the LUC reporter by TCP20 in N. benthamiana leaves. Relative reporter activity in N. benthamiana, infiltrated either using the reporter alone or in combination with the effector, was shown. The LUC activity was normalized to the REN activity. Results are shown as means ± SE (n = 5–6). ** indicates a significant difference (p < 0.01, one-way ANOVA) between reporter alone and co-transformation of TCP20 and reporter.
Plants 2022, 11, 454

Figure 3. Interference of TCP20 binding to proGH3.3 by AtWRI1. (A) Schematic representation of the constructs used in a transient expression assay in N. benthamiana. (B) Co-expression of AtWRI1 with TCP20 repressed the transactivation activity of TCP20 on proGH3.3. Results are shown as means ± SE (n = 5–6). ** indicates a significant difference (p < 0.05, Student’s t-test) between sole expression of TCP20 and co-expression of AtWRI1 with TCP20 as indicated. (C) EMSA demonstrated the TCP20 binding to proGH3.3 fragments (probe 1 and 2; also see Supplementary Figure S2) in the presence of increasing amount of AtWRI11–302 (0.53, 0.71, 1.06, and 2.12 pmol, respectively). The decreasing amount of the protein-DNA complex is indicated by an arrow. (D) A proposed model for co-regulation of GH3.3 expression by TCP20 and WRI1. TCP20 activates GH3.3 expression by direct binding to proGH3.3; however, the activation is attenuated by WRI1 through 1) co-occupation of the promoter and 2) formation of a possible non-DNA binding heterodimer. In any case, the TCP20-AtWRI1 complex exhibits reduced TCP20 target transactivation activity because of the TCP20-AtWRI1 interaction. Hence, in WT, WRI1 fine-tunes TCP20 activation of GH3.3. In wr1-1 that lacks WRI1, TCP20 exhibits stronger activation of GH3.3 (represented by thicker arrow and increased size of GH3.3) compared to WT.

We demonstrated AtWRI1 attenuating the TCP20 activity on proGH3.3 possibly by interacting and sequestering TCP20. Our previous work shows the binding of AtWRI1 to proGH3.3. Additionally, WRI1 did not activate or repress proGH3.3 in a transactivation assay suggesting that WRI1 likely requires a partner to function [15]. We therefore investigated whether AtWRI1 antagonizes TCP20 from binding to proGH3.3 in EMSA. The results revealed that AtWRI1 bound to probes 1, 2, and 3 in a TCP binding site-independent manner, as AtWRI1 bound the mutant probes (1M, 2M, and 3M) with equal affinity as the...
Since there is no recognizable WRII binding motif AW-box found in probes 1–3, AtWRII likely recognizes cryptic motifs that are close to the TCP binding motifs. Moreover, upon the addition of an increasing amount of AtWRII1-302, we detected reduced binding of TCP20 to probe 1 and 2 (Figure 3C), but not probe 3 and 4 (Supplementary Figure S5A), in a dose-dependent manner (Supplementary Figure S5B). We therefore speculate that AtWRII antagonizes the function of TCP20 through two potential mechanisms: 1) both transcription factors co-occupy proGH3.3, resulting in reduced activity of TCP20, and 2) the AtWRII1-TCP20 heterodimer reduces the amount of free TCP20 to activate proGH3.3 (Figure 3D). In the absence of AtWRII, e.g., in wri1-1 mutant, GH3.3 is significantly upregulated (Figure 3D), leading to the increased production of IAA-Asp conjugates.

TCP20 is known to be involved in cell division, immunity, jasmonic acid biosynthesis, and nitrate foraging [27–29]. The regulation of auxin-responsive gene expression in this study defines a new role for TCP20 in Arabidopsis. Prior to this work, it was unclear how AtWRII affected auxin homeostasis through regulation of GH3.3 expression. By demonstration of the direct binding of both AtWRII and TCP20 to proGH3.3 and the protein-protein interaction of the two factors, we elucidate a previously unknown mechanism by which AtWRII antagonized the activity of TCP20 on GH3.3 to modulate auxin homeostasis.

3. Materials and Methods

3.1. Plant Materials

Arabidopsis and N. benthamiana plants were grown in a growth chamber at 23 °C with a photoperiod of 16 h light (100–150 μmol m−2 s−1 illumination)/8 h dark. Arabidopsis wild-type (Columbia ecotype) was used in this work. Seeds of the tcp20-2 (SALK_088460) and tcp20-4 (SALK_041906) mutants, which have been previously described [26], were obtained from the Arabidopsis Biological Resource Center (ABRC). Genotyping assay was conducted to confirm the homozygosity of tcp20-2 and tcp20-4 mutants. Reverse transcription-polymerase chain reaction assay was subsequently conducted to verify that the TCP20 expression was disrupted in tcp20-2 and tcp20-4 mutants. Seed sterilization and germination were performed as previously described [30].

3.2. Bioinformatic Analysis

In silico analysis of TCP binding sites was performed using AthaMap [31].

3.3. Plasmid Construction

Entry constructs subcloning and recombination with destination vectors [Y2H vectors, BiFC vectors (pSITE-nEYFP-C1 and pSITE-cEYFP-C1 [32]), and pEarleyGate binary vectors [33] were via Gateway LR reactions (Life Technologies, Waltham, MA, USA). To generate constructs for epitope-tagged recombinant protein production in E. coli, the full-length AtWRII and TCP20 were sub-cloned into pET41a-GST and pET41a-6×His vectors, respectively, [34]. AtWRII1-302 was sub-cloned into pNIC28-Bsa4 to produce an N-terminal 6×His-tagged protein (Protein Production Platform, Nanyang Technological University). To generate proGH3.3:LUC reporter constructs, various lengths of PCR amplified proGH3.3 were subcloned into the pGreenII 0800-LUC vector [35]. A list of the primers used for plasmid construction in this study is provided in Table S1.

3.4. Yeast Two-Hybrid Assay (Y2H)

For screening Arabidopsis transcription factor library, transcription factors were subcloned into the pDEST22 vector (prey) and transformed into yeast strain Y187 (Clontech, San Jose, CA, USA). AtWRII (AtWRII1-306 and AtWRII158-240) variants were sub-cloned into pDEST32 vector (bait) and introduced into yeast strain AH109. The prey and bait were mated and spotted on permissive (-Leu/-Trp) medium. After 3 days, the colonies were streaked onto stringent selective (-Leu/-Trp/-His) medium to screen positive interactions. TCP20 was subcloned into pDEST22 as the prey and AtWRII variants were subcloned into
pDEST32 as the bait. The prey and bait constructs were transformed into Y187 and AH109, respectively. Then the prey and bait were mated and plated on -Leu/-Trp medium. To evaluate the interaction, transformants were streaked onto stringent selective (-Leu/-Trp/-His) medium.

3.5. Transient Expression in N. benthamiana, BiFC, and Confocal Microscopy

For BiFC assay, *Agrobacterium tumefaciens* cells carrying the nYFP and cYFP fusion constructs were resuspended in MMA medium (10 mM MgCl₂, 10 mM MES, 100 µM acetosyringone) to an OD₆₀₀ of 1.2 and adjusted to an OD₆₀₀ of 0.4 before infiltration into *N. benthamiana* leaves. The plasmid pEAQ HT producing the P19 protein was co-infiltrated with other constructs to maintain high expression in *N. benthamiana* leaves [36]. Healthy leaves of *N. benthamiana* plants were infiltrated with *A. tumefaciens* suspensions carrying nYFP and cYFP fusion constructs using a 1 mL blunt-end syringe. After agroinfiltration, plants were placed in a growth chamber. YFP fluorescence signals were detected by a confocal microscope 2–3 days post agroinfiltration.

3.6. Recombinant Protein Production, In Vitro Pull-Down Assays, and EMSA

Recombinant proteins, including the GST-AtWRI1 variants and His-TCP20, were produced in *E. coli* strain BL21 (DE3). Protein induction, extraction and purification were conducted as described previously [23,34]. For in vitro pull-down assay, purified His-TCP20 protein was incubated with GST beads coupled with purified GST-AtWRI1 or GST protein in binding buffer [20 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM DTT, 0.1 mM EDTA (pH 8.0), 0.1% IGEPAL CA-630] at 4 °C overnight, followed by washing for 5 times with washing buffer (same as binding buffer). Then the samples were boiled in SDS-PAGE sample buffer at 95 °C for 5 min, followed by SDS-PAGE. The proteins were detected by immunoblot probed with anti-His antibody (Proteintech, Rosemont, IL, USA). EMSA was performed as described previously [34]. In brief, the 5’end biotin-labeled WT probes (1–4) and mutated probes (1M–4M) were used for EMSA. The standard binding reaction (20 µL) contained 0.05 µg/µL poly(dI-dC), 15 mM HEPES-KOH (pH 7.5), 7.5 mM KCl, 0.5 mM EDTA, 5% glycerol, 2 mM dithiothreitol, 1 µg/µL BSA, 2 fmol/µL of the hot DNA probe and ~1 pmol of His-TCP20. The binding competition assays were performed using ~1 pmol of His-AtWRI11-302 as described in the figure legend. The reaction mixture was incubated at room temperature for 30 min. The DNA-protein complexes were resolved on 5% (w/v) non-denaturing polyacrylamide gels and subsequently transferred to nylon membranes. The band shifts were detected by a chemiluminescent nucleic acid detection module (Thermo Fisher Scientific, Waltham, MA, USA).

3.7. RNA Extraction, Quantitative Real-Time PCR (qRT-PCR)

Roots from 1-week-old Arabidopsis seedlings grown vertically on the regular growth medium were harvested, immediately frozen in liquid nitrogen, and stored at −80 °C freezer until use for RNA extraction. Total RNA was extracted using the Monarch Total RNA Miniprep Kit (New England Biolabs, Ipswich, MA, USA) following the supplier’s instructions. First-strand cDNA was synthesized using the qScript cDNA Synthesis Kit (Quantabio, Beverly, MA, USA). Quantitative real-time PCR (qRT-PCR) was conducted using Luna Universal qPCR Master Mix (New England Biolabs, Ipswich, MA, USA) according to the supplier’s instructions. *Isopentenyl pyrophosphate:dimethylallyl pyrophosphate isomerase 2 (IPP2)* gene was used as an internal control to normalize the gene expression. The primers used for qRT-PCR is provided in Table S2.

3.8. Transient Dual-Luciferase (Dual-LUC) Assays

Transient dual-LUC assays in *N. benthamiana* were conducted as described previously [37,38], with minor modifications. After agroinfiltration, plants were placed in a plant growth chamber, and leaf samples were harvested 3 d after infiltration for the dual-LUC assay using Dual-Luciferase Reporter 1000 Assay System (Promega, Madison, WI, USA).
In brief, three leaf discs at agroinfiltration areas (5–6 mm in diameter) were excised and ground in liquid nitrogen to fine powder and homogenized in 100 µL Passive Lysis buffer (Promega, Madison, WI, USA). Subsequently, 5 µL of the extract was mixed with 40 µL Luciferase Assay Buffer, and the firefly LUC activity was measured by a cell imaging multimode plate reader (BioTek Cytation 5, Santa Clara, CA, USA). The reaction was stopped by addition of 40 µL Stop and Glo Buffer (Promega, Madison, WI, USA), and the Renilla (REN) LUC activity was measured. The firefly LUC activity was normalized to the REN LUC activity.

3.9. Accession Numbers

Accession numbers are as following: WRI1 (AT3G54320), TCP20 (AT3G27010), GH3.3 (AT2G23170).

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/plants11030454/s1. Figure S1. Transactivation of the firefly luciferase (LUC) reporter by AtWRI1. Figure S2. In silico analysis of TCP binding sites in proGH3.3. Figure S3. The transactivation activity of TCP20 on the proGH3.3 deletion fragments in N. benthamiana leaves. Figure S4. Examination of AtWRI1 binding to proGH3.3 fragments that are also recognized by TCP20. Figure S5. Effects of AtWRI1 on TCP20 binding to proGH3.3. Table S1. Primers used for plasmid construction in this study. Table S2. Primers used for quantitative real-time PCR (qRT-PCR) in this study.

Author Contributions: Q.K. and W.M. conceived and designed the experiments. Q.K., P.M.L., A.R.Q.L. and Y.Y. performed the experiments. Q.K., L.Y. and W.M. analyzed the data. Q.K., L.Y. and W.M. wrote the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by a Nanyang Technological University Startup grant to W.M. and a Ministry of Education (MOE) of Singapore Tier 1 to W.M. (grant number: RG140/18).

Data Availability Statement: All data supporting the findings of this study are available within the paper and within its Supplementary Materials published online.

Acknowledgments: We thank Michael Thomashow (Michigan State University) for the Arabidopsis transcription factor library, Hao Yu and Chengxiang Li (National University of Singapore) for the vector of dual-luciferase assay, and Sitakanta Pattanaik (University of Kentucky) for critical reading of the manuscript. We also thank the NTU Protein Production Platform for His-AtWRI11-302 protein expression and purification for the EMSA experiment.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhao, Y. Auxin biosynthesis and its role in plant development. Annu. Rev. Plant Biol. 2010, 61, 49–64. [CrossRef] [PubMed]
2. Woodward, A.W.; Bartel, B. Auxin: Regulation, action, and interaction. Ann. Bot. 2005, 95, 707–735. [CrossRef] [PubMed]
3. Lavy, M.; Estelle, M. Mechanisms of auxin signaling. Development 2016, 143, 3226–3229. [CrossRef] [PubMed]
4. Hagen, G.; Guilfoyle, T. Auxin-responsive gene expression: Genes, promoters and regulatory factors. Plant Mol. Biol. 2002, 49, 373–385. [CrossRef]
5. Paponov, I.A.; Paponov, M.; Teale, W.; Menges, M.; Chakrabortee, S.; Murray, J.A.; Palme, K. Comprehensive transcriptome analysis of auxin responses in Arabidopsis. Mol. Plant 2008, 1, 321–337. [CrossRef]
6. Nakazawa, M.; Yabe, N.; Ichikawa, T.; Yamamoto, Y.Y.; Yoshizumi, T.; Hasunuma, K.; Matsui, M. DFL1, an auxin-responsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length. Plant J. 2001, 25, 213–221. [CrossRef]
7. Park, J.E.; Park, J.Y.; Kim, Y.S.; Staswick, P.E.; Jeon, J.; Yun, J.; Kim, S.Y.; Kim, J.; Lee, Y.H.; Park, C.M. GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J. Biol. Chem. 2007, 282, 10036–10046. [CrossRef]
8. Khan, S.; Stone, J.M. Arabidopsis thaliana GH3.9 influences primary root growth. Planta 2007, 226, 21–34. [CrossRef]
9. Takase, T.; Nakazawa, M.; Ishikawa, A.; Manabe, K.; Matsui, M. DFL2, a new member of the Arabidopsis GH3 gene family, is involved in red light-specific hypocotyl elongation. Plant Cell Physiol. 2003, 44, 1071–1080. [CrossRef]
10. Staswick, P.E.; Serban, B.; Rowe, M.; Tiryaki, I.; Maldonado, M.T.; Maldonado, M.C.; Suza, W. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 2005, 17, 616–627. [CrossRef]
11. Weiste, C.; Droge-Laser, W. The Arabidopsis transcription factor bZIP11 activates auxin-mediated transcription by recruiting the histone acetylation machinery. *Nat. Commun.* 2014, 5, 3883. [CrossRef] [PubMed]

12. Chapman, E.J.; Estelle, M. Mechanism of auxin-regulated gene expression in plants. *Annu. Rev. Genet.* 2009, 43, 265–285. [CrossRef] [PubMed]

13. Earley, K.W.; Haag, J.R.; Pontes, O.; Opper, K.; Juehne, T.; Song, K.; Pikaard, C.S. Gateway-compatible vectors for plant functional genomics and proteomics. *Plant Methods* 2006, 4, 616–629. [CrossRef] [PubMed]

14. Kong, Q.; Pattanaik, S.; Feller, A.; Werkman, J.R.; Chai, C.; Wang, Y.; Grotewold, E.; Yuan, L. Regulatory switch enforced by basic helix-loop-helix and ACT-domain mediated dimerizations of the maize transcription factor R. *Proc. Natl. Acad. Sci. USA* 2015, 112, E2091–E2097. [CrossRef] [PubMed]

15. Kong, Q.; Ma, W.; Yang, H.; Ma, G.; Mantyla, J.J.; Benning, C. The Arabidopsis WRINKLED1 transcription factor affects auxin homeostasis in roots. *J. Exp. Bot.* 2017, 68, 4627–4634. [CrossRef] [PubMed]

16. Kong, Q.; Singh, S.K.; Mantyla, J.J.; Pattanaik, S.; Guo, L.; Yuan, L.; Benning, C.; Ma, W. TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR4 Interacts with WRINKLED1 to Mediate Seed Oil Biosynthesis. *Plant Physiol.* 2020, 184, 658–665. [CrossRef]

17. Kong, Q.; Yuan, L.; Ma, W. WRINKLED1 transcription factor: How much do we know about its regulatory mechanism? *Plant Sci.* 2018, 272, 153–156. [CrossRef]

18. Maeo, K.; Tokuda, T.; Ayame, A.; Mitsui, N.; Kawai, T.; Tsukagoshi, H.; Ishiguro, S.; Nakamura, K. An AP2-type transcription factor, WRINKLED1 of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. *Plant J.* 2009, 60, 476–487. [CrossRef]

19. Kong, Q.; Singh, S.K.; Mantyla, J.J.; Pattanaik, S.; Guo, L.; Yuan, L.; Benning, C.; Ma, W. TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR4 Interacts with WRINKLED1 to Mediate Seed Oil Biosynthesis. *Plant Physiol.* 2020, 184, 658–665. [CrossRef]

20. Baud, S.; Mendoza, M.S.; To, A.; Harsoecot, E.; Lepiniec, L.; Dubreucq, B. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. *Plant J.* 2007, 50, 825–838. [CrossRef]

21. Kong, Q.; Yuan, L.; Ma, W. WRINKLED1, a “Master Regulator” in Transcriptional Control of Plant Oil Biosynthesis. *Plants* 2019, 8, 238. [CrossRef]

22. Kim, W.C.; Reca, I.B.; Kim, Y.; Park, S.; Thomashow, M.F.; Keegstra, K.; Han, K.H. Transcription factors that directly regulate the expression of CSLA9 encoding mannan synthase in Arabidopsis thaliana. *Plant Mol. Biol.* 2014, 84, 577–587. [CrossRef] [PubMed]

23. Ma, W.; Kong, Q.; Grix, M.; Mantyla, J.J.; Yang, H.; Benning, C.; Ohlrogge, J.B. Deletion of a C-terminal intrinsically disordered region of WRINKLED1 affects its stability and enhances oil accumulation in Arabidopsis. *Plant J.* 2015, 83, 864–874. [CrossRef] [PubMed]

24. Herve, C.; Dabos, P.; Badet, C.; Jaunieau, A.; Auriac, M.C.; Ramboer, A.; Lacout, F.; Tremouaysague, D. In vivo interference with AtTCP20 function induces severe plant growth alterations and deregulates the expression of many genes important for development. *Plant Physiol.* 2009, 149, 1462–1477. [CrossRef]

25. Guan, P.; Ripoll, J.J.; Wang, R.; Vuong, L.; Bailey-Steinitz, L.J.; Ye, D.; Crawford, N.M. Interacting TCP and NLP transcription factors control plant responses to nitrate availability. *Proc. Natl. Acad. Sci. USA* 2017, 114, 2419–2424. [CrossRef] [PubMed]

26. Guan, P.; Wang, R.; Nacry, P.; Breton, G.; Kay, S.A.; Pruneda-Paz, J.L.; Davani, A.; Crawford, N.M. Nitrate foraging by Arabidopsis roots is mediated by the transcription factor TCP20 through the systemic signaling pathway. *Proc. Natl. Acad. Sci. USA* 2014, 111, 15267–15272. [CrossRef]

27. Lopez, J.A.; Sun, Y.; Blair, P.B.; Mukhtar, M.S. TCP three-way handshake: Linking developmental processes with plant immunity. *Trends Plant Sci.* 2015, 20, 238–245. [CrossRef]

28. Li, S. The Arabidopsis thaliana TCP transcription factors: A broadening horizon beyond development. *Plant Signal. Behav.* 2015, 10, e1044192. [CrossRef]

29. Danisman, S. TCP Transcription Factors at the Interface between Environmental Challenges and the Plant’s Growth Responses. *Front. Plant Sci.* 2016, 7, 1930. [CrossRef]

30. Ma, W.; Kong, Q.; Arondel, V.; Kilaru, A.; Bates, P.D.; Thrower, N.A.; Benning, C.; Ohlrogge, J.B. Wrinkled1, a ubiquitous regulator in oil accumulating tissues from Arabidopsis embryos to oil palm mesocarp. *PLoS ONE* 2013, 8, e68887. [CrossRef]

31. Steffens, N.O.; Galuschka, C.; Schindler, M.; Bulow, L.; Hehl, R. AthaMap web tools for database-assisted identification of combinatorial cis-regulatory elements and the display of highly conserved transcription factor binding sites in Arabidopsis thaliana. *Nucleic Acids Res.* 2005, 33, W397–W402. [CrossRef] [PubMed]

32. Martin, K.; Kopperud, K.; Chakrabarty, R.; Banerjee, R.; Brooks, R.; Goodin, M.M. Transient expression in Nicotiana benthamiana fluorescent marker lines provides enhanced detailed protein localization, movement and interactions in plants. *Plant J.* 2007, 59, 150–162. [CrossRef] [PubMed]

33. Earley, K.W.; Haag, J.R.; Pontes, O.; Opper, K.; Juehne, T.; Song, K.; Pikaard, C.S. Gateway-compatible vectors for plant functional genomics and proteomics. *Plant J.* 2006, 45, 616–629. [CrossRef] [PubMed]

34. Kong, Q.; Pattanaik, S.; Feller, A.; Werkman, J.R.; Chai, C.; Wang, Y.; Grotewold, E.; Yuan, L. Regulatory switch enforced by basic helix-loop-helix and ACT-domain mediated dimerizations of the maize transcription factor R. *Proc. Natl. Acad. Sci. USA* 2012, 109, E2091–E2097. [CrossRef] [PubMed]

35. Hellens, R.P.; Allan, A.C.; Friel, E.N.; Bolitho, K.; Grafton, K.; Templeton, M.D.; Karunairatnam, S.; Gleave, A.P.; Laing, W.A. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. *Plant Methods* 2005, 1, 13. [CrossRef] [PubMed]
36. Sainsbury, F.; Thuenemann, E.C.; Lomonossoff, G.P. pEAQ: Versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. *Plant Biotechnol. J.* 2009, 7, 682–693. [CrossRef] [PubMed]

37. Li, J.; Li, G.; Gao, S.; Martinez, C.; He, G.; Zhou, Z.; Huang, X.; Lee, J.H.; Zhang, H.; Shen, Y.; et al. Arabidopsis transcription factor ELONGATED HYPOCOTYL5 plays a role in the feedback regulation of phytochrome A signaling. *Plant Cell* 2010, 22, 3634–3649. [CrossRef]

38. Liu, H.; Yu, X.; Li, K.; Klejnot, J.; Yang, H.; Lisiero, D.; Lin, C. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. *Science* 2008, 322, 1535–1539. [CrossRef]