DISCOVERY OF X-RAY EMISSION FROM SUPERNOVA 1970G WITH CHANDRA: FILLING THE VOID BETWEEN SUPERNOVAE AND SUPERNOVA REMNANTS

Stefan Immler1,2 and K. D. Kuntz1,3
Received 2005 June 1; accepted 2005 September 8; published 2005 October XX

1. INTRODUCTION

Since the launch of the Chandra and XMM-Newton observatories, the number of supernovae (SNe) detected in X-rays in their near aftermath has more than doubled (see Immler & Lewin [2003] for a review). The high-quality X-ray spectra have confirmed the validity of the circumstellar interaction models (see Fransson et al. 1996, and references therein), which predict a hard spectral component (\(\geq 10\) keV) for the forward-shock emission during the early epoch (\(\leq 100\) days) and a soft thermal component (\(\leq 1\) keV) for the reverse-shock emission after the expanding shell has become optically thin. The soft emission component dominates the X-ray output of the interaction regions due to its higher emission measure and higher electron densities. This expected “softening” of the X-ray spectrum has been observationally confirmed for a number of young SNe, such as SNe 1978K (Schlegel et al. 2004), 1979C (Immler et al. 2005), 1993J (Zimmermann & Aschenbach 2003), 1999em, and 1998S (Pooley et al. 2002).

Where sufficient data are available, X-ray light curves could be established over significant timescales (e.g., \(\approx 25\) yr for SNe 1978K and 1979C; Schlegel et al. 2004, Immler et al. 2005; \(\approx 8\) yr for 1993J; Immler et al. 2001, Zimmermann & Aschenbach 2003). However, little is known about the transition from a young SN into its supernova remnant (SNR) phase, as there have been only a few detections of intermediate-age (25–300 yr) SNe in the radio and none in X-rays. While the X-ray emission of SNe is dominated by the interaction of the shock with the ambient circumstellar matter (CSM), likely deposited by the progenitor’s stellar wind, the emission from a SNR is thought to originate in the shocked interstellar medium (ISM). At an age of \(\approx 35\) yr, SN 1970G is the oldest SN detected in X-rays and closes this gap, allowing one, for the first time, to witness the transition from a SN to its SNR phase.

As the first SN detected in the radio band (Gottesman et al. 1972), just 1 month after its peak optical brightness (1970 July 30; Detre 1970), SN 1970G held the key to our understanding of SN events and the interaction of a SN shock with its environment. Twenty years after the explosion, SN 1970G was rediscovered at 3.5 cm and 20 cm at flux densities similar to other radio SNe, such as SNe 1950B, 1957D, 1961V and 1968D at the same epochs in their evolution, but showed a remarkably fast rate of decline, with a power-law index of \(-1.95 \pm 0.17\) (Cowan et al. 1991). Subsequent radio monitoring confirmed this fast rate of decline, followed by a flattening of the radio light curve at an epoch of \(\approx 30\) yr, which was discussed in the context of the SN shock running into the denser ISM, indicating the onset of the SNR phase (Stockdale et al. 2001).

In this paper we report on the Chandra X-ray observation of SN 1970G, as well as previous X-ray data from ROSAT and XMM-Newton. In § 2 we briefly describe the data and analysis thereof and report on the X-ray spectrum and multimission X-ray light curve in § 3. We discuss the results in the context of the CSM interaction model and put SN 1970G in the context of the evolution from a SN to a SNR in § 4, followed by a summary in § 5.

2. DATA PROCESSING AND ANALYSIS

SN 1970G has been observed with the Chandra X-Ray Observatory as part of the 1 Ms observation of the host galaxy M101 (NGC 5457; K. D. Kuntz 2005, in preparation). Five individual Chandra ACIS observations (sequence numbers 600389, 600389, 600389, 600389, 600389) from 2004 July 5–11 were merged into a single observation, resulting in a cleaned and exposure-corrected on-source exposure time of 139.5 ks for the ACIS-S2 chip. Details of the data calibration and analysis will be explained in K. D. Kuntz (2005, in preparation).

The high-resolution (\(\approx 0.5\) FWHM) Chandra data were used to search for X-ray emission from the position of SN 1970G, and to examine the contamination by nearby X-ray sources. A Chandra ACIS-S2 image of SN 1970G and its environment is given in Figure 1.

We further constructed the long-term X-ray light curve of SN 1970G by extracting source counts from previous ROSAT
were not used due to the large aperture (=1' FWHM) and chival XMM-Newton EPIC observations (ObsID 0104260101, tions (sequence number RP600 108N00; exposure 34.5 ks). Ar-
results by Wang et al. (1999; ROSAT) and Jenkins et al. (2005; in the XMM-Newton ABC Guide, version 2.01.5
analyzed according to standard analysis procedures described
contamination by nearby X-ray sources. The ROSAT and XMM-
merged exposure time 176.1 ks) and ROSAT PSPC observa-
0.6)
0.6 keV thermal plasma spectrum typical of the emission. Since no information is available about the spectral evolution of SN 1970G or other SNe at this age, we used the same spectral template to convert ROSAT and XMM-Newton count rates into fluxes and luminosities to construct the long-term (∼20–35 yr) X-ray light curve.
An X-ray source is visible in the ROSAT HRI images of M101 at the position of SN 1970G (see Fig. 2 in Wang et al. 1999). The source, however, is not included in the ROSAT HRI catalog since it is slightly below the employed detection threshold (S/N = 3.5; Wang et al. 1999). Extraction of source counts within the HRI aperture and subtraction of emission from the nearby H II region NGC 5455 (L_{\text{H II}} = (2.2 \times 10^{36} \text{ ergs s}^{-1}) gives a luminosity of L_{\text{H II}} = (2.6 \pm 0.6) \times 10^{37} \text{ ergs s}^{-1}.
An X-ray source is also listed in the ROSAT PSPC catalog at the position of SN 1970G (source P12; Wang et al. 1999), with a signal-to-noise ratio of S/N = 4.5. We used the high-resolution Chandra observation and subtracted the integrated flux of all detected Chandra sources from the ROSAT PSPC flux within the PSPC aperture (∼25" FWHM). Assuming that the residual emission arises from the SN itself, we obtain a luminosity of L_{\text{Chandra}} = (4.9 \pm 1.1) \times 10^{37} \text{ ergs s}^{-1}.

3. RESULTS
A pointlike X-ray source is detected at the radio position of SN 1970G (Cowan et al. 1991), with an offset (∼0.5") similar to the spatial resolution and astrometry of the Chandra observation. Extracting X-ray source counts from the position of SN 1970G gives a count rate of (4.3 \pm 0.6) \times 10^{-3} \text{ counts s}^{-1}. While the limited photon statistics do not allow a detailed characterization of the energy distribution of the recorded photons, spectral analysis shows that the emission is soft, with the bulk of the emission being confined to the ∼2 keV band.
Adopting a kT = 0.6 keV thermal plasma spectrum typical for the late-time (∼100 days) emission of SNe and assuming a Galactic foreground column density with no intrinsic absorption (N_H = 1.16 \times 10^{20} \text{ cm}^{-2}; Dickey & Lockman 1990) gives a 0.3–2 keV flux and luminosity of f_{0.3-2} = (1.8 \pm 0.3) \times 10^{-15} \text{ ergs cm}^{-2} \text{ s}^{-1} and L_{0.3-2} = (1.1 \pm 0.2) \times 10^{37} \text{ ergs s}^{-1}, respectively, for a distance of 7.2 Mpc (Stetson et al. 1998).
Since no information is available about the spectral evolution of SN 1970G or other SNe at this age, we used the same spectral template to convert ROSAT and XMM-Newton count rates into fluxes and luminosities to construct the long-term (∼20–35 yr) X-ray light curve.

A faint X-ray source is visible in each of the nine XMM-Newton pn, MOS1, and MOS2 images at low energies (<2 keV). No photons were recorded in the hard (2–6 keV) band. The source, however, is extended (∼20") and shows no concentration of the recorded photons at the radio position of SN 1970G. Since it is likely that the emission is contaminated by the nearby H II region and other soft emission components inside the Galactic disk due to the larger aperture of the EPIC instruments (∼6") FWHM), we only use the inferred count rates as upper limits. Discrepancies between the published pn and MOS count rates for source 44 (factor of 16.5; Jenkins et al. 2005), corresponding to SN 1970G, for one of the published XMM-Newton data (ObsID 0104260101) make a comparison problematic.
We calculated the mass-loss rate of the progenitor as a function of the stellar wind age using the relationship L_x =
The source is spatially resolved from the nearby H I region NGC 5455. Using the subarcsecond Chandra imaging capability, in combination with the deep exposure time (140 ks), we detect soft (5 keV) X-ray emission from SN 1970G with a luminosity of $L_{0.5-2} \approx 1 \times 10^{37}$ ergs s$^{-1}$, 35 yr after its outburst. The source is spatially resolved from the nearby H II region NGC 5455 ($\approx 5''$), which is observed at a \approx20% flux level compared to SN 1970G.

4. DISCUSSION

Previous X-ray observations of SN 1970G with ROSAT, ASCA, and XMM-Newton lacked the spatial resolution needed to separate the SN from the nearby ($\approx 5''$) H II region NGC 5455. Using the subarcsecond Chandra imaging capability, in combination with the deep exposure time (140 ks), we detect soft (≈ 2 keV) X-ray emission from SN 1970G with a luminosity of $L_{0.5-2} \approx 1 \times 10^{37}$ ergs s$^{-1}$, 35 yr after its outburst. The source is spatially resolved from the nearby H II region NGC 5455 ($\approx 5''$), which is observed at a \approx20% flux level compared to SN 1970G.

Given the spatial information from the high-resolution Chandra imaging, we recover X-rays from SN 1970G in the ROSAT HRI and PSPC observations. SN 1970G is not conclusively detected in three recent (2002-2005) XMM-Newton observations due to the extent of the source ($\approx 20''$) as imaged by the pn and MOS instruments, and positional offsets larger than the instrumental uncertainties ($\approx 5''$).

In combination, the multimission X-ray data show a constant rate of decline which confirms that the emission is due to the SN itself. The rate of decline of $L \propto t^{-3}$ with index $s = 2.7 \pm 0.9$ is rather steep and similar to the X-ray rates of decline observed for the Type II SN 1986J ($L_{0,3} \propto t^{-3}$; Temple et al. 2005) and 1988Z (t^{-3}; Arzoumanian et al. 1999). Since we cannot conclusively exclude additional contamination of the earlier ROSAT data with unresolved X-ray emission components in M101, our inferred rate of decline is rather conservative.

The rate of decline inferred from the X-ray data is consistent with the slope of the radio decay (-1.95 ± 0.17; Stockdale et al. 1991), which confirms that the emission probes similar regions in the shocked CSM. The X-ray data, however, do not show the flattening of the decay at an age of ≈ 30 yr, as seen in the 20 cm radio data (-0.29 ± 0.13). This might be due to the limited number of X-ray data points, it could also indicate that the reverse shock, which produces the X-rays and travels at a speed of some 1000 km s$^{-1}$ slower than the forward shock, has not yet reached the dense ISM, which is probed by the radio emission originating in the forward shock.

The lack of X-rays above 2 keV confirms that the emission is soft and likely thermal. Such a soft spectrum is expected for the late emission of a SN, where the shocked plasma emission is the product of the reverse shock interaction.

Assuming that the emission arises from shock heated plasma deposited by the progenitor’s stellar wind, the mass-loss rate of $M = (2.6 \pm 0.4) \times 10^{-5}$ M_\odot yr$^{-1}$ ($v_{\text{w}}/10$ km s$^{-1}$) is inferred for the late epoch observed with Chandra. The mass-loss rates inferred from the ROSAT PSPC and HRI data (3.2 ± 0.7 and 2.7 ± 0.6) are consistent with a constant mass-loss rate over a period of $\approx 20-35$ yr after the peak optical brightness. This corresponds to $\approx 19,000-31,000$ yr in the stellar wind age, using the conversion $t_u = t_0/v_u$, and assuming a stellar wind speed of 10 km s$^{-1}$ and a shock front velocity of 9000 km s$^{-1}$.

Our inferred mass-loss rate is consistent with that derived from radio monitoring (2×10^{-5} M_\odot yr$^{-1}$ ($v_{\text{w}}/10$ km s$^{-1}$); Weiler 1993). Furthermore, the measured mass-loss rate for SN 1970G is similar to those inferred for other young (≤ 20 yr) Type II SNe, which typically range from 10^{-5} to 10^{-4} M_\odot yr$^{-1}$ (see Immler & Lewin 2003). This indicates that the X-ray emission arises from shock-heated CSM deposited by the progenitor rather than shock-heated ISM, even at this late epoch after the outburst.

In the absence of a dense ISM, the X-ray evolution of a core-collapse SN into a SNR can be described by a simple power law. X-ray luminous SNe, such as SN 1993J, can therefore evolve into X-ray–luminous SNRs such as Cas A ($L_{0,3} \approx 2.8 \times 10^{37}$ ergs s$^{-1}$ at an age of ≈ 320 yr) with a swept-up gas mass around $4 M_\odot$ (Dunne et al. 2003) if the measured mass-loss rate of $\approx 10^{-4}$ M_\odot yr$^{-1}$ is sustained over a period of $\approx 10^7$ yr.

In Figure 2 we plot the X-ray evolution of all SNe detected to date, as well as the X-ray luminosities of historical SNRs in the Galaxy, LMC, SMC (as observed with Chandra), M31 (Super et al. 2001; Kong et al. 2003), and M33 (Ghavamian et al. 2005). A comparison of the X-ray luminosities of the core-collapse SNe (visible in the left part of Fig. 2) with well-evolved SNRs (right part of Fig. 2) shows that the transition from a SN to a SNR appears to be rather smooth (see also Fig. 2 in Stockdale et al. 2001). If the evolution of SN 1970G continues as observed to date, it will be similar to X-ray–faint Galactic SNRs such as SNRs 1181 and 1006 ($L_{\text{X}} \approx 10^{37}$ ergs s$^{-1}$). If the light curve flattens significantly after encountering a dense ISM (as in the case of SNRs as a result from Type Ia SNe such as Tycho), SN 1970G might evolve into a more luminous SNR such as Kepler or the Crab ($=10^{38}$ ergs s$^{-1}$). The observed flattening of the radio

*See http://hevwww.gsfc.nasa.gov/users/immler/supernovae_list.html

*See http://lheawww.gsfc.nasa.gov/users/i~er/supernovae-list.html
Key results based on our deep (140 ks) X-ray observation of SN 1970G in M101 are:

1. SN 1970G is detected with a luminosity of $L_{0.3-8} = (1.1 \pm 0.2) \times 10^{38} \text{ergs s}^{-1}$, 35 yr after its outburst in our deep Chandra observation of M101.

2. SN 1970G is recovered in previous ROSAT HRI and PSPC observations and shows a best-fit linear rate of decline of $L \propto t^{-s}$ with index $s = 2.7 \pm 0.9$ over the observed period of 20-35 yr after its outburst, consistent with the observed radio decay for an epoch ≤ 30 yr.

3. The emission of SN 1970G is soft ($\lesssim 2$ keV) and indicates that it originates in the reverse-shocked region, as expected for the late emission in the evolution of a SN.

4. A mass-loss rate of $M = (2.6 \pm 0.4) \times 10^{-5} M_{\odot} \text{yr}^{-1}$ is inferred consistent with being constant over a period of 19,000-31,000 yr in the evolution of the progenitor.

5. At an age of 35 yr, the SN shock has not yet encountered a denser ISM, which would mark the start of the SNR phase and is likely to occur at a later stage in the evolution ($\approx 50-100$ yr).

6. Comparison of the X-ray light curves of all SNe detected to date with the X-ray luminosities of SNRs indicates a smooth transition of SNe into their SNR phases.

The authors wish to thank R. Petre and the anonymous referee for helpful suggestions. K. D. K. was supported by the Chandra grant SAO GO-5600587.

REFERENCES

Aretxaga, I., et al. 1999, MNRAS, 309, 343
Cowin, J. J., Goss, W. M., & Sramek, R. A. 1991, ApJ, 379, L49
Denne, L. 1970, IAU Circ. 2269
Dickey, J. M., & Lockman, F. J. 1990, ARA&A, 28, 215
Dunne, L., Eales, S., Ivison, R., Morgan, H., & Edmunds, M. 2003, Nature, 424, 285
Fransson, C., Lundqvist, P., & Chevalier, R. A. 1996, ApJ, 461, 993
Ghavamian, P., Blair, W. P., Long, K. S., Sasaki, M., Guetz, T. J., & Ptusinsky, P. P. 2005, AJ, 130, 539
Gottesman, S. T., Broderick, J. J., Brown, Robert L., Balick, B., & Palmer, P. 1972, ApJ, 174, 383
Houck, J. C., Bregman, J. N., Chevalier, R. A., & Tomisaka, K. 1998, ApJ, 493, 431
Immler, S., Aschenbach, B., & Wang, Q. D. 2001, ApJ, 561, L107
Immler, S., & Lewin, W. 2003, in Supernovae and Gamma-Ray Bursters, ed. K. Weiler (Berlin: Springer), 91
Immler, S., Wilson, A. S., & Terashima, Y. 2002, ApJ, 573, L27
Immler, S., et al. 2005, ApJ, 623, 283
Jenkins, L. P., Roberts, T. P., Warwick, R. S., Kilgard, R. E., & Ward, M. J. 2005, MNRAS, 357, 401
Kong, A. K. H., DiStefano, R., Garcia, M. R., & Greiner, J. 2003, ApJ, 585, 298
Marcade, J. M., et al. 2002, A&A, 384, 408
Pooley, D., et al. 2002, ApJ, 572, 932
Schlegel, E. M., Kong, A., Kaaret, P., DiStefano, R., & Murray, S. 2004, ApJ, 603, 644
Stetson, P. B., et al. 1998, ApJ, 508, 491
Stockdale, L., Goss, W. M., Cowan, J. J., & Sramek, R. A. 2001, ApJ, 559, L139
Supper, R., Hasinger, G., Lewin, W. H. G 2001, A&A, 373, 63
Temple, R., Raychaudhury, S., & Stevens, I. 2005, MNRAS, in press (astro-ph/0506557)
Wang, Q. D., Immler, S., & Pietsch, W. 1999, ApJ, 523, 121
Weiler, K. W. 1993, in ASP Conf. Ser. 33, Massive Stars: Their Lives in the Interstellar Medium, ed. J. P. Cassinelli & E. B. Churchwell (San Francisco: ASP), 436
Zimmermann, H.-U., & Aschenbach, B. 2003, A&A, 406, 969