Vitamin C as prophylaxis and adjunctive medical treatment for COVID-19?

Adam F. Feyaertsa,b,c,* and Walter Luytend

aVIB Center for Microbiology, KU Leuven, 3001, Leuven, BELGIUM
bLaboratory of Molecular Cell Biology, KU Leuven, 3001, Leuven, BELGIUM
cDepartment of Technology, UCLL, 3001, Leuven, BELGIUM
dDepartment of Biology, KU Leuven, 3000, Leuven, BELGIUM

*Corresponding author:
Adam F. Feyaerts
Laboratory of Molecular Cell Biology, KU Leuven
VIB-KU Leuven Center for Microbiology
Kasteelpark Arenberg 31 bus 2438
3001 Heverlee, Belgium
Tel.: (0032) 479 334963
E-Mail: adamfeyaerts@gmail.be

Keywords: vitamin C, COVID-19, SARS-CoV-2, IL-6, drug discovery

Abstract

SARS-CoV-2 causes the potentially fatal COVID-19 disease. Already during the outbreak of SARS-CoV-1, the use of vitamin C was suggested. Many severe COVID-19 patients have elevated levels of the mediators interleukin-6 and endothelin-1. These mediators may explain the age-dependence of COVID-19 pneumonia, the preponderance of male and obese or hypertensive patients, as well as of persons of colour, and smokers. There is clear evidence that vitamin C can reduce these mediators. Vitamin C is cheap and safe. Hence using a relatively low dose of vitamin C as prophylaxis, and in case of severe COVID-19 disease, an (intravenous) high-dose regimen may be beneficial. Ongoing clinical trials are expected to provide more definitive evidence.
A novel human coronavirus has recently been identified, i.e. SARS-CoV-2, which causes the potentially fatal COVID-19 disease \(^1\). SARS-CoV-2 is only the latest of three human coronavirus strains (the others being: SARS-CoV-1 and MERS-CoV) that can cause severe illness, but it is the first to cause a pandemic \(^2\). Major efforts are under way worldwide in the search for pharmaceutical interventions, but no therapies with proven efficacy to treat COVID-19 are currently available, although (hydroxy-)chloroquine with and without zinc supplementation is being used off-label as prophylaxis or treatment \(^3\)-\(^{11}\). Approximately 5\% of the patients diagnosed with COVID-19 become critically ill and require advanced respiratory support with (non-)invasive mechanical ventilation and added oxygen as the standard of care \(^4\),\(^12\),\(^13\). A recent report suggests that hyperbaric oxygen therapy could be a promising alternative, which is interesting in light of the suggestion that some SARS-CoV-2 proteins may interfere with haemoglobin function \(^14\),\(^15\).

According to the latest intensive care national audit & research center (ICNARC) report on COVID-19 in critical care, approximately 52\% of critically ill patients with confirmed COVID-19 do not survive \(^16\).

Already during the outbreak of SARS-CoV-1 (2003); the use of vitamin C, an essential micronutrient for humans and a free radical scavenger, was suggested as a non-specific treatment for severe viral respiratory tract infections \(^4\),\(^17\),\(^18\). Indeed, it is known that vitamin C supports various cellular functions of both the innate and the adaptive immune system, including modifying susceptibility to various viral infections, and by influencing inflammation \(^19\),\(^20\). Moreover, in chick embryo tracheal organ cultures, vitamin C increased resistance to infection by a coronavirus \(^21\). Additionally, vitamin C treatment restores the stress response and improves the survival of stressed humans \(^22\). However, a recent preliminary open-label study in patients with sepsis and acute respiratory distress syndrome showed that a 96-hour infusion of vitamin C compared to placebo did not significantly improve organ dysfunction scores or change markers of inflammation \(^23\). In contrast, early use of intravenous vitamin C in combination with corticosteroids and thiamine proved effective in preventing progressive organ dysfunction and in reducing the mortality of patients with severe sepsis and septic shock \(^24\). Intravenous hydrocortisone alone, however, did not significantly improve the survival of patients with septic shock compared to high-dose vitamin C, hydrocortisone and thiamine combined \(^25\), suggesting no added value of vitamin C in sepsis, although vitamin C may have beneficial effects in adults and children with pneumonia \(^26\). A Cochrane Systematic Review concludes that vitamin C is safe, inexpensive and has a consistent effect on the duration and severity of the common cold \(^27\),\(^28\). It furthermore concludes that mega-dose
prophylaxis is not rationally justified for community use, although it may be justified at times e.g. in periods of heavy physical exercise.

Evidence is accumulating that many severely ill COVID-19 patients have elevated cytokine levels, including of the multifunctional inflammatory key molecule interleukin-6 (IL-6), resembling the cytokine storm described in SARS and MERS \(^{1,29-34}\). This may indicate that high mortality is due to virus-driven hyperinflammation. Preliminary data suggest that COVID-19 pneumonia is a late-stage complication caused by the hyperactivation of immune effector cells, and treatment with (intravenous) high-dose vitamin C has been proposed to suppress these effectors \(^{35}\). Treatment with vitamin C decreases IL-6 and it blocks \textit{in vivo} the release of IL-6 in the endothelium induced by endothelin-1 (ET-1) in humans \(^{22,36}\). ET-1 is a potent vasoconstrictor peptide, but it is also recognized as a pro-inflammatory cytokine, including in the lung, and increased expression has been associated with pneumonia, pulmonary hypertension, interstitial lung fibrosis and acute respiratory distress syndrome \(^{37-39}\). In severe COVID-19 patients who survive the disease, cytokine levels, including IL-6, gradually return later in the course of the disease to levels comparable to those in mild cases \(^{31}\). Additionally, preliminary data from a Chinese study treating COVID-19 pneumonia with tocilizumab, a humanized recombinant monoclonal antibody blocking the IL-6 receptor, supports the pathogenic role of IL-6, although the treatment itself is controversial (ChiCTR2000029765, chinaXiv:202003.00026v1) \(^{40,41}\). Several clinical studies to test safety, tolerability and efficacy of tocilizumab for COVID-19 pneumonia are under way (NCT04317092, NCT04332913, NCT04320615). Also, a similar study is ongoing with another human monoclonal antibody, sarilumab, that targets the same IL-6 receptor (NCT04315298).

It is clear that older patients have an increased risk to develop (severe forms of) COVID-19 pneumonia \(^{16}\), which is thought to be a late response of the immune system to the viral infection. This may seem counterintuitive since many aspects of the immune response decrease in the elderly. However, both in mice and humans, serum levels of IL-6 increase with age \(^{42-44}\). Overexpression of IL-6 in older mice is harmful, and during systemic inflammation IL-6 strongly increases; moreover, this increase is prolonged with age in multiple tissues (e.g. lungs, heart, and plasma) \(^{45}\). Elevated levels of IL-6 are associated with a higher frequency of multiple organ failure \(^{34,46}\). Genomic analysis revealed that older people mount a stronger immune response, including IL-6, to SARS-CoV-1, and there is no reason to assume this would be different for SARS-CoV-2 \(^{30,47}\).
IL-6 or ET-1 may not only explain the age-dependence of COVID-19 pneumonia, but also the preponderance of male and obese or hypertensive patients, as well as of persons of colour, and smokers. Almost three out of four critically ill COVID-19 patients are male (72.5%; n=2,811) 16. Men have on average higher plasma IL-6 levels than women 43,46,48,49. In addition, under basal conditions, oestradiol induces a decrease, and testosterone an increase in the number of cells secreting ET-1 when stimulated with angiotensin-II 50. Long-term hormone replacement therapy users and premenopausal woman have lower systemic levels of IL-6 than their non-using co-twins or postmenopausal woman, respectively 51. Higher mortality was observed in COVID-19 patients with severe comorbidities 12, such as hypertension, diabetes and obesity. COVID-19 patients receiving angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor blockers for their hypertension had a lower rate of severe disease and a lower level of IL-6 in peripheral blood 52. Adipocytes also produce IL-6 and this may explain why obese individuals have higher endogenous levels of C-reactive protein 49,53. It seems that more non-white than white people become critically ill 16. There is some evidence that ET-1 levels are significantly increased in black men compared to white men 54. Also, COVID-19 patients who smoke seem to be more susceptible, and it is known that ET-1 potentiates smoke-induced acute lung inflammation 55. Finally, there is some preliminary evidence that a need for mechanical ventilation was very strongly associated with elevated IL-6 levels, and that moderately elevated IL-6 levels are sufficient to identify COVID-19 patients at high risk of respiratory failure 1,56.

Given the critical role of IL-6 in severe COVID-19 disease, and the demonstrated ability of vitamin C to prevent the rise of IL-6 in several (pro)inflammatory conditions 57, it is logical to assume that vitamin C may benefit COVID-19 patients. Moreover, since vitamin C inhibits the increase of a range of inflammatory cytokines 20,58, it may be therapeutically superior to blockers of individual cytokine mediators. A randomized placebo-controlled study showed that vitamin C (500 mg twice daily) alleviates the inflammatory status by reducing, amongst others, IL-6 and C-reactive protein in hypertensive and/or diabetic obese patients 59. This suggests that vitamin C may also be of use in severe forms of COVID-19. Vitamin C may also inhibit the ability of neutrophils to form neutrophil extracellular traps, which may contribute to organ damage and mortality in COVID-19 60. Finally, vitamin C may have beneficial effects on the thrombotic or thromboembolic disease commonly found in COVID-19 patients 61-63.

A clinical trial is ongoing in which vitamin C (6 to 12 g /day) is being administered intravenously for moderate and severe cases of COVID-19 pneumonia (NCT04264533). At least 10 new COVID-19
related clinical trials have been started or are announced since February 2020 to investigate the therapeutic effect of vitamin C alone or in combination with one or more other substances e.g. vitamin D, zinc (gluconate), hydroxycholoquine (sulphate), azithromycin.

Conclusion

COVID-19 pneumonia and its progression to respiratory failure appear to be driven by an immune hyperreaction in which IL-6 and ET-1 play an important role. Vitamin C can reduce these (and other) inflammatory mediators in various inflammatory conditions, and this is clinically beneficial in (non-COVID-19) hypertensive and/or diabetic obese adult patients. Considering the weight of the evidence, and because vitamin C is cheap and safe, an oral low dose (500 mg/day) may be useful prophylactically, and in case of severe COVID-19 disease, an (intravenous) high-dose regimen may be beneficial. Ongoing clinical trials are expected to provide more definitive evidence.

Acknowledgements

We thank Dr. Patrick Van Dijck for proofreading the manuscript and Alan Feyaerts for his suggestions in the creation of this article.

Contributions

A.F.F. conceived and coordinated the study; A.F.F. and W.L. contributed to the writing of the manuscript.

References

1. Wang, Z., Yang, B., Li, Q., Wen, L. & Zhang, R. Clinical Features of 69 Cases with Coronavirus Disease 2019 in Wuhan, China. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America*, doi:10.1093/cid/ciaa272 (2020).
2. Gabutti, G., d'Anchera, E., Sandri, F., Savio, M. & Stefanati, A. Coronavirus: Update Related to the Current Outbreak of COVID-19. *Infectious diseases and therapy*, 1-13, doi:10.1007/s40121-020-00295-5 (2020).
3. Prajapat, M. et al. Drug targets for corona virus: A systematic review. *Indian J Pharmacol* 52, 56-65, doi:10.4103/ijp.IJP_115_20 (2020).
4. Arabi, Y. M., Fowler, R. & Hayden, F. G. Critical care management of adults with community-acquired severe respiratory viral infection. *Intensive care medicine* 46, 315-328, doi:10.1007/s00134-020-05943-5 (2020).
5. Touret, F. & de Lamballerie, X. Of chloroquine and COVID-19. *Antiviral research* 177, 104762, doi:10.1016/j.antiviral.2020.104762 (2020).
6. Colson, P., Rolain, J. M. & Raoult, D. Chloroquine for the 2019 novel coronavirus SARS-CoV-2. *International journal of antimicrobial agents* 55, 105923, doi:10.1016/j.ijantimicag.2020.105923 (2020).
Xue, J. et al. Chloroquine is a zinc ionophore. *PloS one* **9**, e109180, doi:10.1371/journal.pone.0109180 (2014).

Gao, J., Tian, Z. & Yang, X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. *Bioscience trends* **14**, 72-73, doi:10.5582/bst.2020.01047 (2020).

te Velthuis, A. J. et al. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. *PLoS Pathog* **6**, e1001176, doi:10.1371/journal.ppat.1001176 (2010).

Scholz, M. D., R. Does Zinc Supplementation Enhance the Clinical Efficacy of Chloroquine/Hydroxychloroquine to Win Todays Battle Against COVID-19? *Preprints* **2020040124**, doi:10.20944/preprints202004.0124.v1 (2020).

Fact sheet for health care providers Emergency Use Authorization (EUA) of hydroxychloroquine sulfate supplied from the strategic national stockpile for treatment of COVID-19 in certain hospitalized patients, <https://www.fda.gov/media/136537/download> (2020).

Wu, Z. & McGoogan, J. M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. *JAMA : the journal of the American Medical Association* **323**, 1239-1242, doi:10.1001/jama.2020.2648 (2020).

Brochard, L. Mechanical ventilation: invasive versus noninvasive. *Eur Respir J Suppl* **47**, 31s-37s, doi:10.1183/09031936.03.00050403 (2003).

liu, w. & Li, h. COVID-19: Attacks the 1-Beta Chain of Hemoglobin and Captures the Porphyrin to Inhibit Human Heme Metabolism. (2020).

Demonstration report on inclusion of hyperbaric oxygen therapy in treatment of COVID-19 severe cases. (Naval Specialty Medical Center Program Team, 2020).

ICNARC report on COVID-19 in critical care (2020).

Hemila, H. Vitamin C and SARS coronavirus. *The Journal of antimicrobial chemotherapy* **52**, 1049-1050, doi:10.1093/jac/dkh002 (2003).

Hemila, H. Vitamin C intake and susceptibility to pneumonia. *The Pediatric infectious disease journal* **16**, 836-837, doi:10.1097/00006454-199709000-00003 (1997).

Ang, A., Pullar, J. M., Currie, M. J. & Vissers, M. C. M. Vitamin C and immune cell function in inflammation and cancer. *Biochemical Society transactions* **46**, 1147-1159, doi:10.1042/BST20180169 (2018).

Carr, A. C. & Maggini, S. Vitamin C and Immune Function. *Nutrients* **9**, doi:10.3390/nu9111211 (2017).

Atherton, J. G., Kratzing, C. C. & Fisher, A. The effect of ascorbic acid on infection chick-embryo ciliated tracheal organ cultures by coronavirus. *Archives of virology* **56**, 195-199, doi:10.1007/bf01317848 (1978).

Marik, P. E. Vitamin C: an essential "stress hormone" during sepsis. *Journal of thoracic disease* **12**, S84-S88, doi:10.21037/jtd.2019.12.64 (2020).

Fowler, A. A., 3rd et al. Effect of Vitamin C Infusion on Organ Failure and Biomarkers of Inflammation and Vascular Injury in Patients With Sepsis and Severe Acute Respiratory Failure: The CITRIS-ALI Randomized Clinical Trial. *JAMA : the journal of the American Medical Association* **322**, 1261-1270, doi:10.1001/jama.2019.11825 (2019).

Marik, P. E., Khangoora, V., Rivera, R., Hooper, M. H. & Catravas, J. Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Severe Sepsis and Septic Shock: A Retrospective Before-After Study. *Chest* **151**, 1229-1238, doi:10.1016/j.chest.2016.11.036 (2017).

Fujii, T. et al. Effect of Vitamin C, Hydrocortisone, and Thiamine vs Hydrocortisone Alone on Time Alive and Free of Vasopressor Support Among Patients With Septic Shock: The VITAMINS Randomized Clinical Trial. *JAMA : the journal of the American Medical Association*, doi:10.1001/jama.2019.22176 (2020).
Gombart, A. F., Pierre, A. & Maggini, S. A Review of Micronutrients and the Immune System-Working in Harmony to Reduce the Risk of Infection. *Nutrients* **12**, 236, doi:10.3390/nu12010236 (2020).

Hemila, H. & Chalker, E. Vitamin C for preventing and treating the common cold. *The Cochrane database of systematic reviews*, CD000980, doi:10.1002/14651858.CD000980.pub4 (2013).

Douglas, R. M., Hemila, H., Chalker, E. & Treacy, B. Vitamin C for preventing and treating the common cold. *The Cochrane database of systematic reviews*, CD000980, doi:10.1002/14651858.CD000980.pub3 (2007).

Brandt, C. & Pedersen, B. K. The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases. *Journal of biomedicine & biotechnology* **2010**, 520258, doi:10.1155/2010/520258 (2010).

Mehta, P. *et al.* COVID-19: consider cytokine storm syndromes and immunosuppression. *Lancet* **395**, 1033-1034, doi:10.1016/S0140-6736(20)30628-0 (2020).

Liu, J. *et al.* Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. *medRxiv*, 2020.2002.2016.20023671, doi:10.1101/2020.02.16.20023671 (2020).

Zhang, W. *et al.* The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. *Clin Immunol* **214**, 108393, doi:10.1016/j.clim.2020.108393 (2020).

Gao, Y. *et al.* Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. *J Med Virol* **n/a**, doi:10.1002/jmv.25770 (2020).

Liu, B., Li, M., Zhou, Z., Guan, X. & Xiang, Y. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? *J Autoimmun*, 102452, doi:10.1016/j.jaut.2020.102452 (2020).

Erol, A. *High-dose intravenous vitamin C treatment for COVID-19.* (2020).

Bohm, F., Settergren, M. & Pernow, J. Vitamin C blocks vascular dysfunction and release of interleukin-6 induced by endothelin-1 in humans in vivo. *Atherosclerosis* **190**, 408-415, doi:10.1016/j.atherosclerosis.2006.02.018 (2007).

Freeman, B. D., Machado, F. S., Tanowitz, H. B. & Desruisseaux, M. S. Endothelin-1 and its role in the pathogenesis of infectious diseases. *Life Sci* **118**, 110-119, doi:10.1016/j.lfs.2014.04.021 (2014).

Teder, P. & Noble, P. W. A cytokine reborn? Endothelin-1 in pulmonary inflammation and fibrosis. *American journal of respiratory cell and molecular biology* **23**, 7-10, doi:10.1165/ajrcmb.23.1.f192 (2000).

Silver, R. M. Endothelin and scleroderma lung disease. *Rheumatology (Oxford, England)* **47 Suppl 5**, v25-26, doi:10.1093/rheumatology/ken283 (2008).

Bersanelli, M. Controversies about COVID-19 and anticancer treatment with immune checkpoint inhibitors. *Immunotherapy* **0**, imt-2020-0067, doi:10.2217/imt-2020-0067 (2020).

Xu, X. H., Mingfeng; Li, Tiantian; Sun, Wei; Wang, Dongsheng; Fu, Binqing; Zhou, Yonggang; Zheng, Xiaohu; Yang, Yun; Li, Xiyong; Zhang, Xiaohua; Pan, Aijun; Wei, Haiming Effective Treatment of Severe COVID-19 Patients with Tocilizumab. (2020).<http://www.chinaxiv.org/abs/202003.00026>.

Raynor, J. *et al.* IL-6 and ICOS Antagonize Bim and Promote Regulatory T Cell Accrual with Age. *J Immunol* **195**, 944-952, doi:10.4049/jimmunol.1500443 (2015).

Young, D. G., Skibinski, G., Mason, J. I. & James, K. The influence of age and gender on serum dehydroepiandrosterone sulphate (DHEA-S), IL-6, IL-6 soluble receptor (IL-6 sR) and transforming growth factor beta 1 (TGF-beta1) levels in normal healthy blood donors. *Clinical and experimental immunology* **117**, 476-481, doi:10.1046/j.1365-2249.1999.01003.x (1999).

Kiecolt-Glaser, J. K. *et al.* Chronic stress and age-related increases in the proinflammatory cytokine IL-6. *Proceedings of the National Academy of Sciences of the United States of America* **100**, 9090-9095, doi:10.1073/pnas.1531903100 (2003).
Starr, M. E., Evers, B. M. & Saito, H. Age-associated increase in cytokine production during systemic inflammation: adipose tissue as a major source of IL-6. *The journals of gerontology. Series A, Biological sciences and medical sciences* **64**, 723-730, doi:10.1093/gerona/glp046 (2009).

Sperry, J. L. et al. Male gender is associated with excessive IL-6 expression following severe injury. *The Journal of trauma* **64**, 572-578; discussion 578-579, doi:10.1097/TA.0b013e3181650df (2008).

Baas, T. et al. Genomic analysis reveals age-dependent innate immune responses to severe acute respiratory syndrome coronavirus. *Journal of virology* **82**, 9465-9476, doi:10.1128/JVI.00489-08 (2008).

Wei, J., Xu, H., Davies, J. L. & Hemmings, G. P. Increase of plasma IL-6 concentration with age in healthy subjects. *Life Sci* **51**, 1953-1956, doi:10.1016/0024-3205(92)90112-3 (1992).

Starr, M. E., Saito, M., Evers, B. M. & Saito, H. Age-Associated Increase in Cytokine Production During Systemic Inflammation-II: The Role of IL-1beta in Age-Dependent IL-6 Upregulation in Adipose Tissue. *The journals of gerontology. Series A, Biological sciences and medical sciences* **70**, 1508-1515, doi:10.1093/gerona/glu197 (2015).

Pearson, L. J., Yandle, T. G., Nicholls, M. G. & Evans, J. J. Regulation of endothelin-1 release from human endothelial cells by sex steroids and angiotensin-II. *Peptides* **29**, 1057-1061, doi:10.1016/j.peptides.2008.02.003 (2008).

Ahtiainen, M. et al. Age and estrogen-based hormone therapy affect systemic and local IL-6 and IGF-1 pathways in women. *Age (Dordr)* **34**, 1249-1260, doi:10.1007/s11357-011-9298-1 (2012).

Meng, J. et al. Renin-angiotensin system inhibitors improve the clinical outcomes of COVID-19 patients with hypertension. *Emerging microbes & infections* **9**, 757-760, doi:10.1080/22221751.2020.1746200 (2020).

Bastard, J. P. et al. Evidence for a link between adipose tissue interleukin-6 content and serum C-reactive protein concentrations in obese subjects. *Circulation* **99**, 2221-2222 (1999).

Evans, R. R., Phillips, B. G., Singh, G., Bauman, J. L. & Gulati, A. Racial and gender differences in endothelin-1. *Am J Cardiol* **78**, 486-488, doi:10.1016/s0002-9149(96)00344-x (1996).

Blavars, T. M., Liu, X., Cerreta, J. M., Liu, M. & Cantor, J. O. Endothelin-1 potentiates smoke-induced acute lung inflammation. *Experimental lung research* **34**, 707-716, doi:10.1080/01902140802389701 (2008).

Herold, T. et al. Level of IL-6 predicts respiratory failure in hospitalized symptomatic COVID-19 patients. *medRxiv*, 2020.2004.2001.20047381, doi:10.1101/2020.04.01.20047381 (2020).

Canali, R. et al. Vitamin C supplementation modulates gene expression in peripheral blood mononuclear cells specifically upon an inflammatory stimulus: a pilot study in healthy subjects. *Genes Nutr* **9**, 390, doi:10.1007/s12263-014-0390-x (2014).

Russell, B. et al. Associations between immune-suppressive and stimulating drugs and novel COVID-19-a systematic review of current evidence. *Ecancermedicalscience* **14**, 1022, doi:10.3332/ecancer.2020.1022 (2020).

Eilulu, M. S., Rahmat, A., Patimah, I., Khaza’ai, H. & Abed, Y. Effect of vitamin C on inflammation and metabolic markers in hypertensive and/or diabetic obese adults: a randomized controlled trial. *Drug design, development and therapy* **9**, 3405-3412, doi:10.2147/DDDT.S83144 (2015).

Barnes, B. J. et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. *J Exp Med* **217**, doi:10.1084/jem.20200652 (2020).

Bikdeli, B. et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-up. *Journal of the American College of Cardiology*, doi:10.1016/j.jacc.2020.04.031 (2020).

Sathler, P. C. et al. The antithemostatic profile of vitamin c: mechanisms that underlie the technical application of a physiological molecule. *Arch Biol Sci.* **68**, 325-331, doi:10.2298/ABS150413024S (2016).
Parahuleva, M. S. *et al.* Vitamin C suppresses lipopolysaccharide-induced procoagulant response of human monocyte-derived macrophages. *European review for medical and pharmacological sciences* **20**, 2174-2182 (2016).

ClinicalTrials.gov, <https://clinicaltrials.gov/ct2/results?term=vitamin+c+AND+COVID-19&Search=Search> (2020).