THICK COVERINGS FOR THE UNIT BALL OF A BANACH SPACE

JESUS CASTILLO, PIER LUIGI PAPINI, AND MARILDA SIMões

ABSTRACT. We study the behaviour of Whitley’s thickness constant of a Banach space with respect to \(\ell_p \)-products and we compute it for classical \(L_p \)-spaces.

1. Introduction and basic results

This paper contains a study of Whitley’s thickness constant and its computation in classical \(L_p \) spaces and \(\ell_p \)-products of Banach spaces. Unless otherwise stated, we shall assume that \(X \) is a real infinite-dimensional Banach space, but most results also hold in finite-dimensional spaces. We shall denote by \(B(x, r) \) the ball centered at \(x \), with radius \(r \). The symbols \(B_X \) and \(S_X \) will denote the unit ball and the unit sphere of \(X \). A finite set \(F \) is said to be an \(\varepsilon \)-net for a subset \(A \subset X \) if for any \(a \in A \) there exists \(f \in F \) such that \(||a - f|| \leq \varepsilon \).

Whitley introduced in [16] the thickness constant \(T_W(X) \) as follows:

\[
T_W(X) = \inf \{ \varepsilon > 0 : \text{there exists an } \varepsilon\text{-net } F \subset S_X \text{ for } S_X \}.
\]

To study the thickness constant, it will be helpful to consider the following equivalent formulation (see [12, Prop. 3.4]):

\[
T(X) = \inf \{ \varepsilon > 0 : \exists \{x_1, \ldots, x_n\} \subset S_X : B_X \subset \bigcup_{i=1}^{n} B(x_i, \varepsilon) \}.
\]

Lemma 1. If \(X \) is an infinite dimensional Banach space then \(T(X) = T_W(X) \).

Proof. That \(T_W(X) \leq T(X) \) is clear. The converse inequality follows from [14] Prop. 2, which we reproduce here for the sake of completeness: Let \(A \) be a subset of a Banach space \(X \) which is weakly dense in its convex hull \(\operatorname{conv}(A) \). If a finite family of convex closed sets covers \(A \) they also cover the closed convex hull of \(A \). Indeed, assume \(A \subset \bigcup_{i=1}^{n} C_i \) for some closed convex sets \(C_i \). Taking the weak*-closures in \(X^* \) one gets \(\overline{\operatorname{conv}^w}(A) = \overline{A}^{w^*} \subset \bigcup_{i=1}^{n} \overline{C_i}^{w^*} \). Now, intersection with \(X \) yields

\[
\overline{\operatorname{conv}}(A) = X \cap \overline{\operatorname{conv}^w}(A) \subset X \cap \bigcup_{i=1}^{n} \overline{C_i}^{w^*} = \bigcup_{i=1}^{n} C_i.
\]

This research has been supported in part by project MTM2010-20190-C02-01 and the program Junta de Extremadura GR10113 IV Plan Regional I+D+i, Ayudas a Grupos de Investigación.

Keywords and phrases: Thickness, Nets, Uniform non squareness.

MR(2010) Subject Classification 46B20, 46B99.
This result can be considered a generalization (see [15]) of the antipodal theorem of Ljusternik and Šnirel’man (see [11, p. 180] or else [7]): Let X be an infinite dimensional Banach space; if finitely many balls cover the unit sphere of X, then at least one of them must contain an antipodal pair $(y, -y)$.

Note that if X is any finite-dimensional space, then one has $T(X) = 1$, while $T_{W}(X) = 0$ due to the compactness of S_{X}. It is also clear that $T(X) \in [1, 2]$ for every infinite-dimensional space. Generalizations of $T(\cdot)$ were considered and studied in [12, 11, 5]; while relations with other parameters can be seen in [14, 13, 3]. Spaces X for which $T(X) = 2$ have been considered in [2, 9, 10]. In particular, a Banach space X for which $T(X) = 2$ must contain ℓ_{1} (2); hence it cannot be reflexive (see also [9 Thm. 1.2]). Thus, reflexive spaces X have $T(X) < 2$. Upper and lower estimates for $T(X)$ in uniformly convex spaces, as well as upper estimates in terms of the modulus of smoothness, follow from results in [13]. A reasonable characterization of the spaces X with $T(X) = 1$ seems to be unknown.

The value of $T(\cdot)$ in many spaces is known (see [14]); in particular: $T(c_{0}) = 1$ and $T(\ell_{p}) = 2^{1/p}$ for $1 \leq p < \infty$. Our results in Section 3 can be considered the vector-valued generalization of these estimates.

2. Whitley Constant of L_{p}-Spaces

While it is known that $T(L_{1}) = 2$ (see [1] Ex. 3.6), to the best of our knowledge the thickness of $L_{p}[0, 1]$ for $p > 1$ is unknown.

Theorem 1. For $1 \leq p < \infty$ one has $T(L_{p}[0, 1]) = 2^{1/p}$.

Proof. Denote by I the interval $[0, 1]$. Let $\{f_{1}, ..., f_{n}\}$ be a finite subset of S_{X}. Take $0 < \varepsilon < 1$. By the absolute continuity of integrals, there exists $\sigma > 0$ such that

\[
(1) \quad \int_{A} |f_{i}|^{p} < \varepsilon^{p} \quad \text{for } i = 1, ..., n \quad \text{whenever } \mu(A) < \delta.
\]

Take $A \subset I$ according to (1) and let $f = \frac{\chi(A)}{(\mu(A))^{1/p}}$ ($f \in S_{X}$). We have (for $i = 1, ..., n$):

\[
||f - f_{i}|^{p} = \int_{I - A} |f_{i}|^{p} + \int_{A} |\chi(A)(\frac{1}{(\mu(A))^{1/p}} - f_{i})|^{p} \geq 1 - \int_{A} |f_{i}|^{p} + ||f - \chi(A)f_{i}||^{p} > 1 - \varepsilon^{p} + ||f|| - ||\chi(A)f_{i}||^{p} > 1 - \varepsilon^{p} + (1 - \varepsilon)^{p}.
\]

Since $\varepsilon > 0$ is arbitrary, this shows that $T(L_{p}[0, 1]) \geq 2^{1/p}$.

Let $1 \leq p \leq 2$ and recall Clarkson’s inequality:

\[
||f + g||^{q} + ||f - g||^{q} \leq 2(||f||^{p} + ||g||^{p})^{q/p} \quad \text{where } 1/p + 1/q = 1.
\]

Taking $f_{0}, f \in S_{X}$ one has

\[
||f + f_{0}||^{q} + ||f - f_{0}||^{q} \leq 2(||f||^{p} + ||f_{0}||^{p})^{q/p} = 2^{1+q/p} = 2^{q},
\]

and thus

\[
\min\{||f + f_{0}||, ||f - f_{0}||\} \leq \left(\frac{2^{q}}{2}\right)^{1/q} = 2^{\frac{q-1}{q}} = 2^{1/p},
\]

so $T(X) \leq 2^{1/p}$ and the result is proved for $1 \leq p \leq 2$.

Let now $2 \leq p < \infty$. For $i = 1, \ldots, n$ consider the norm one functions $\pm f_1, \ldots, \pm f_n$ with $f_i = n^{1/p} x |_{\left[\frac{i-1}{n}, \frac{i}{n}\right]}$. Take any $f \in S_X$; there exists i such that $\int_{\left[\frac{i-1}{n}, \frac{i}{n}\right]} |f|^p \leq \frac{1}{n}$ (since $\sum_{i=1}^n \int_{\left[\frac{i-1}{n}, \frac{i}{n}\right]} |f|^p = 1$). Denote by $I_f = \left[\frac{i-1}{n}, \frac{i}{n}\right]$ the interval corresponding to f. Recall Hanner’s inequality (see [8]): for $p \geq 2$ one has
\[
\|f + g\|^p + \|f - g\|^p \leq (\|f\| + \|g\|)^p + \|\|f\| - \|g\|\|^p.
\]

Apply this to the space $L_p(I_f)$: consider the restrictions of f and the f_i to I_f, that we still denote in the same way, to obtain
\[
\|f_i + f\|^p + \|f_i - f\|^p \leq (\|f_i\| + \|f\|)^p + \|\|f_i\| - \|f\|\|^p \leq (1 + \frac{1}{n^{1/p}})^p + (1 - \frac{1}{n^{1/p}})^p;
\]
thus
\[
\min \left\{ \int_{I_f} |f_i + f|^p, \int_{I_f} |f_i - f|^p \right\} \leq \frac{1}{2} \left[(1 + \frac{1}{n^{1/p}})^p + (1 - \frac{1}{n^{1/p}})^p \right].
\]
Therefore:
\[
\min \left\{ \int_{f} |f_i + f|^p, \int_{f} |f_i - f|^p \right\} \leq \frac{1}{2} \left[(1 + \frac{1}{n^{1/p}})^p + (1 - \frac{1}{n^{1/p}})^p \right] + 1;
\]
and then
\[
\min \{ \min(\|f_i + f\|, \|f_i - f\|) : i = 1, \ldots, n \} \leq \left(\frac{1}{2} \left[(1 + \frac{1}{n^{1/p}})^p + (1 - \frac{1}{n^{1/p}})^p \right] + 1 \right)^{1/p}.
\]
Since we can take n arbitrarily large, we obtain $T(L_p(0,1]) \leq 2^{1/p}$, which concludes the proof. \hfill \Box

3. Whitley’s constant in product spaces

Whitley’s constant is strongly geometric, hence it is not strange that thickness constants of $X \oplus_p Y$ can be different for different values of p. A bit more surprising is that the thickness constant of a product space $\ell_p(X_n)$ also depends on whether there is a finite or infinite number of factors: indeed, it follows from next theorem (part (1)) that $T(c_0 \oplus c_0) = 1$, while it follows from Corollary 1 below that $T(\ell_2(c_0)) = \sqrt{2}$.

Theorem 2. Let $1 \leq p \leq \infty$.

1. $T(X_1 \oplus_p \cdots \oplus_p X_N) \leq \max \{ T(X_n), 1 \leq n \leq N \}$;
2. $2^{1/p} \leq T(\ell_p(X_n)) \leq (\inf \{ T(X_n) \})^{1/p} + 1$, for $1 \leq p < \infty$. The upper estimate is also valid for finite sums.
3. $T(\ell_\infty(X_n)) = \inf \{ T(X_n) \}$.

Proof. To prove (1), assume $p < \infty$; indeed, for $p = \infty$ it is contained in (3). Let us call, just for simplicity, $Z = X_1 \oplus_p \cdots \oplus_p X_N$. Given $\varepsilon > 0$, let $\{x_1^n, \ldots, x_N^n\}$ ($n = 1, \ldots, N$) be a $(T(X_n) + \varepsilon)$-net for B_{X_n} with $\|x_1^n\| = 1$. Take in $(\mathbb{R}^N, \|\cdot\|_p)$ a finite ε-net $\{\lambda_1^k, \ldots, \lambda_N^k\}$, $1 \leq k \leq M$ for its unit ball with $\sum_{j=1}^N |\lambda_j^k|^p = 1$ for every k. Consider all points $\{\lambda_1^k x_1^1, \ldots, \lambda_N^k x_N^1\}$ with $1 \leq k \leq M$, $1 \leq j_n \leq k_n$, $1 \leq n \leq N$. They form a finite subset of norm one points of Z. Let us show they form a $\max \{ T(X_n) + 2 \varepsilon : 1 \leq n \leq N \}$-net. Take $z = (z_1, \ldots, z_N) \in B_Z$. Choose an index $k(z)$ such that
\[
\|(\|z_1\|, \ldots, \|z_N\|) - (\|\lambda_1^k(z)\|, \ldots, \|\lambda_N^k(z)\|)\|_p \leq \varepsilon.
\]
Also, for each \(n \) choose some index \(i_n \) so that
\[
\| - x^n_{i_n} - T(X_n) + \varepsilon. \]

Thus
\[
\| - (\lambda^{k(z)} x^n_{i_n}) \|_Z \leq \| - (\| z_n \| x^n_{i_n}) \|_Z + \| (\| z_n \| x^n_{i_n}) - (\lambda^{k(z)} x^n_{i_n}) \|_Z \leq \| z_n \| (T(X_n) + \varepsilon)_p + \varepsilon \leq \max\{T(X_n)\} + 2\varepsilon.
\]

Since \(\varepsilon > 0 \) is arbitrary, this proves (1).

The lower estimate in (2) is as follows. Let \(y_i = (y_i(n))_n \) be for \(i = 1, 2, ..., k \) a finite set of elements of the unit sphere of \(Y = \ell_p(X_n) \). Given \(\varepsilon > 0 \), let \(j \) be such that \(\| y_i(n) \| x_i < \varepsilon \) for \(n \geq j \) and all \(i \). Take a norm one element \(x \in X_j \) and form the element \(y = (0, ..., 0, x, 0, ..., 0) \) with \(x \) at the \(j \)-th position. One then has
\[
\| y_i - y \|_Y^p = \| (y_i^{(1)}, \ldots, y_i^{(j-1)}, y_i^{(j)} - x, y_i^{(j+1)}, \ldots, y_i^{(k)}) \|_Y^p = \| y_i^{(1)} \|_{X_1} + \ldots + \| y_i^{(j-1)} \|_{X_{j-1}} + \| y_i^{(j)} - x \|_{X_j} + \| y_i^{(j+1)} \|_{X_{j+1}} + \ldots \\
> 1 - \| y_i^{(j)} \|_{X_j} + \| y_i^{(j)} - x \|_{X_j}^p.
\]

This proves that \((T(\ell_p(X_n)))^p \geq 1 - \varepsilon^p + |1 - \varepsilon|^p \). Since \(\varepsilon > 0 \) is arbitrary, the result follows.

To obtain the upper estimate in (2), given \(\varepsilon > 0 \) fix \(m \) and let \(\{u_1, \ldots, u_t\} \) be a \((T(X_m) + \varepsilon)-\)net for \(B_{X_m} \) with \(\|u_i\| = 1 \) for all \(1 \leq i \leq t \). Consider as a net for the unit ball of \(Y = \ell_p(X_n) \) the points \(v_i = (0, \ldots, u_i, \ldots, 0) \), for \(1 \leq i \leq t \) (\(u_i \) is in the \(m \)-th position). If \((x_m) \in B_Y \) then in particular \(\|x_m\|_{X_m} \leq 1 \); fix \(i \) so that \(\|x_m - u_i\|_{X_m} = T(X_m) + \varepsilon \). If \(p < \infty \), then \(\| (x_m) - v_i \|_Y^p \leq \|x_m - u_i\|_Y^p + 1 \leq (T(X_m) + \varepsilon)^p + 1 \). This proves that \(T(\ell_p(X_n))^p \leq (T(X_m))^p + 1 \). Since \(m \) is arbitrary, the upper estimate follows.

The upper estimate in (3) is immediate from the arguments above since when \(p = + \infty \) one gets \(T(\ell_p(X_n)) \leq \max\{T(X_m), 1\} = T(X_m) \). For the lower estimate, assume that \(T(\ell_\infty(X_n)) < \inf\{T(X_n)\} \). Take \(\varepsilon' > 0 \) and \(\alpha \) such that
\[
T(\ell_\infty(X_n)) < \alpha - \varepsilon' < \alpha < \alpha + \varepsilon' < \inf\{T(X_n)\}
\]
and fix \(\varepsilon \) so that \((1 - \varepsilon)(\alpha + \varepsilon') > \alpha \). Take a finite \(\alpha \)-net \(\{z_1, \ldots, z_t\} \) for \(B_{\ell_\infty(X_n)} \) verifying \(||z_i|| = 1 \) for each \(i \). This in particular means that for each \(i, \) given \(\varepsilon > 0 \) there is some index \(n \) for which \(1 - \varepsilon \leq ||z_i(n)||_{X_n} \leq 1 - \varepsilon \). Set \(I_n(\varepsilon) = \{i : ||z_i(n)||_{X_n} \geq 1 - \varepsilon\} \). The elements \(z_i(n)/||z_i(n)||, i \in I_n(\varepsilon) \) cannot form an \((\alpha + \varepsilon')\)-net for \(B_{X_n} \) and thus there must be \(x_n \in B_{X_n} \) such that \(||z_i(n)/||z_i(n)|| - x_n|| > \alpha + \varepsilon' \) for all \(i \in I_n(\varepsilon) \). Since \(\bigcup I_n(\varepsilon) = \{1, \ldots, t\} \), for each \(i \in \{1, \ldots, t\} \) there is some \(n \) so that \(i \in I_n(\varepsilon) \). Form (for each \(i \)) one of the element(s) \(x \in \ell_\infty(X_n) \) as \(x(n) = ||z_i(n)||/x_n \) to get the contradiction:
\[
||z_i - x||_{\ell_\infty(X_n)} = \sup_n \left\{ ||z_i(n)|| \left(||z_i(n)||/||x_n|| - x(n) \right) \right\} > (1 - \varepsilon)(\alpha + \varepsilon') > \alpha.
\]
As a consequence of (2) in the previous theorem we obtain.

Corollary 1. Let \(X_n \) be a family of Banach spaces so that \(T(X_n) = 1 \) for at least one index \(i \). Then \(T(\ell_p(X_n)) = 2^{1/p} \).

It is simple to see that estimates (1) and (2) (right inequality) in Theorem 2 are independent for \(1 < p < \infty \): for example, consider a pair of spaces \(X, Y \) with \(T(X) = 1 \): if \(T(Y) = 1 \), then (1) is better; if \(T(Y) = 2 \), then (2) is better. The upper estimate in (2) is meaningful only if \(\min\{T(X), T(Y)\} < (2^p - 1)^{1/p} \). Both estimates are sharp: see Proposition 1 below (where they coincide if we take \(p \) in (2) is meaningful only if \(\min\{T(X), T(Y)\} < (2^p - 1)^{1/p} \). The same corollary shows that, in general, one can have \(T(\ell_p) = 2^{1/p} \) and \(T(\mathbb{R}) = 1 \). The same corollary shows that, in general, one can have \(T(Y) > \sup\{T(X_n) : n \in N\} \). Corollary 1 is not true for the sum of two spaces: for example, according to (1) in Theorem 2, \(T(c_0 \oplus c_0) = 1 \). This also shows that the lower estimate in (2) of Theorem 2 does not apply in general to finite sums. The same corollary shows that, in general, one can have \(T(Y) > \sup\{T(X_i) : i \in N\} \).

The aim of the following example is twofold: first, it shows that for \(1 < p < \infty \) one can have \(T(X \oplus_p Y) > 2^{1/p} \). Then, it shows that it is possible to have \(T(X \oplus_p Y) < \min\{T(X), T(Y)\} \).

Lemma 2. \(T(\ell_1 \oplus_2 \ell_1) = \sqrt{2 + \sqrt{2}} < 2 \).

Proof. Let \(Z = \ell_1 \oplus_2 \ell_1 \). Consider the first element, \(e_1 \), of the natural basis in \(\ell_1 \); take in \(Z \) the four points \(z_1 = (e_1, 0) \); \(z_2 = (-e_1, 0) \); \(z_3 = (0, e_1) \); \(z_4 = (0, -e_1) \). Let \(z = (x, y) \in S_Z \); \(\|x\|_1 = a \); \(\|y\|_1 = b \); \(a^2 + b^2 = 1 \); this implies \(1 \leq a + b \leq \sqrt{2} \). We want to prove that \(\min_{i=1,2,3,4} \|z - z_i\|_Z \leq \sqrt{2 + \sqrt{2}} \). One has

\[
\min_{i=1,2} \|z - z_i\|_Z^2 \leq (1 + a)^2 + b^2; \quad \min_{i=3,4} \|z - z_i\|_Z^2 \leq a^2 + (1 + b)^2;
\]

therefore

\[
\min_{i=1,2,3,4} \|z - z_i\|_Z^2 \leq ((1 + a)^2 + b^2 + a^2 + (1 + b)^2)/2 = 2 + a + b
\]

and thus

\[
T(Z) \leq \sup_{z \in S_Z} \min_{i=1,2,3,4} \|z - z_i\|_Z \leq \sqrt{2 + a + b} \leq \sqrt{2 + \sqrt{2}}.
\]

Now assume that \((x_1, y_1), \ldots, (x_n, y_n) \) is a finite net of norm one elements for \(B_Z \). Given \(\varepsilon > 0 \), there exists \(k \) large enough such that all sequences \((x_i), (y_i) \) have the \(k^{th} \) component, in modulus, smaller than or equal to \(\varepsilon \). Take \((x, y) \in S_Z \), such that both \(x \) and \(y \) have all
components equal to 0, except the k^{th} component equal to $1/\sqrt{2}$. One has that for all i:

$$\|(x, y) - (x_i, y_i)\|^2_Z = \|x - x_i\|^2_1 + \|y - y_i\|^2_1$$

$$= (a - |x_k| + \frac{1}{\sqrt{2}} - x_k)^2 + (b - |y_k| + \frac{1}{\sqrt{2}} - y_k)^2$$

$$\geq (a - \varepsilon + \frac{1}{\sqrt{2}} - \varepsilon)^2 + (b - \varepsilon + \frac{1}{\sqrt{2}} - \varepsilon)^2.$$

Since ε is arbitrary, this proves that

$$T(Z) \geq \sqrt{a^2 + b^2 + 1 + 2(a + b)} \geq \sqrt{2 + \sqrt{2}},$$

and the assertion follows. □

Proposition 1. Let $Z = \ell_p \oplus_p Y$, $1 \leq p < \infty$; then $T(Z) = 2^{1/p}$.

Proof. Set $X = \ell_p$; let $z = (x, y) \in B_Z : x \in \ell_p$; $y \in Y$; $a^p + b^p = 1$ where $a^p = \|x\|^p_X$; $b^p = \|y\|^p_Y$. Consider the net given by the two points in $S_Z : z_1 = (e_1, 0)$; $z_2 = -z$. In ℓ_p we have either $||e_1 - x||^p_X \leq 1 + a^p$ or $||e_1 - x||^p_X \leq 1 + a^p$. Thus $||z_1 - z||^p_Z = ||\pm e_1 - x||^p_X + ||y||^p_Y \leq 1 + a^p + b^p$ for either $i = 1$ or $i = 2$. This proves that $T(Z) \leq 2^{1/p}$.

Let $z_1 = (x_1, y_1), ..., z_n = (x_n, y_n)$ be a net for S_Z from S_Z: we have $||x_i||^p_X + (||y_i||^p_Y)^p = 1$ for all i. Given $\varepsilon > 0$, there is an index j such that $\|x_j\| < \varepsilon$ for $i = 1, ..., n$. Consider the point $z_j = (e_j, 0) \in Z$. Then we have, for every $i : ||z_i - z_j||^p_Z = (||x_i - e_j||^p_X + (||y_i||^p_Y)^p \geq (||x_i||^p_X)^p - \varepsilon^p + (1 - \varepsilon)^p + (||y_i||^p_Y)^p$. Since ε is arbitrary, this proves that $T(Z) \geq 2^{1/p}$, so the equality. □

4. Further Remarks and Open Questions

The core of the strange behaviour of $T(\cdot)$ is the following result:

Lemma 3. Every Banach space X can be embedded as a 1-complemented hyperplane in a space Y with $T(Y) = 1$.

Proof. Set $Y = X \oplus_{\infty} \mathbb{R}$ and consider in Y the points $\pm y_0 = (0, \pm 1)$. Clearly $||\pm y_0|| = 1$ and, for $y = (x, c) \in B_Y$, we have $||y \pm y_0|| = \max\{||x||, ||c| \pm 1||\}$, and so $\min\{||y - y_0||, ||y + y_0||\} \leq 1$.

Thus, while $T(\ell_\infty) = 1$, $T(L_\infty([0, 1})) = 2$ since $T(C(K)) = 2$ whenever K is an infinite compact Hausdorff space without isolated points (see [16]) and thus ℓ_∞ can be renormed to have $T(\cdot) = 2$. This also follows from the following result proved in [21], Thm. 1.2: A space Y admits a renorming with $T(Y) = 2$ if and only if it contains an isomorphic copy of ℓ_1. Which also means that there is a renorming of $Y = \ell_1 \oplus_{\infty} \mathbb{R}$ for which $T(Y) = 2$. Since $T(X) < 2$ for every reflexive space, no renorming of $Y = X \oplus \mathbb{R}$ with $T(Y) = 2$ exists when X is reflexive.

Recall that a Banach space X is said to be polyhedral if the unit ball of any two-dimensional subspace is a polyhedron. Obviously, c_0 is polyhedral and $T(c_0) = 1$. Moreover, every subspace of a polyhedral space contains almost-isometric copies of c_0. Nevertheless, there are polyhedral renormings of c_0 with $T(\cdot)$ as close to 2 as desired (it cannot
be 2 by the comments above). Consider the following renorming of \(c_0 \): for \(k \in \mathbb{N} \) set
\[
\|(x_n)_n\|_k = \max_k \left\{ \frac{1}{k} \sum_{j=1}^{k} |x_{n_j}| \right\}
\]
where the maximum is taken over all choices of \(k \) different indexes \(n_1, \ldots, n_k \). It is easy to check that this space is polyhedral (see [6, p.873]). Moreover, given a finite net from its unit sphere, let \(j \) be an index such that every element of the net have all components in modulus less than \(\varepsilon \) from \(j \) onwards. We see that the distance from \(ke_j \) to all elements of the net is at least \((k - \varepsilon + k - 1)/k \); thus, \(T(X) \geq \frac{2k-1}{k} \). Since \(k \) can be as large as we like, \(T(X) \) can approach 2 as much as one wants.

An interesting class of Banach spaces with \(1 < T(X) < 2 \) is formed by the uniformly nonsquare (UNS is short) spaces. Recall that a Banach space \(X \) is said to be (UNS), if sup \{ \min\{||x - y||, ||x + y||\} : x, y \in S_X \} < 2. If a space is (UNS), then \(1 < T(X) < 2 \) (see [12, Cor. 5.4 and Thm. 5.10]). Next example shows that the converse fails.

Example The space \(X = \mathbb{R} \oplus \ell_p \) \((1 \leq p < \infty)\) is not (UNS); we want to show that \(T(X) = 2^{1/p} \). By Theorem 2 (1), \(T(X) \leq 2^{1/p} \); now take a finite net in \(S_X \) and \(\varepsilon > 0 \). Let the modulus of the \(j \)-th component, for the part in \(\ell_p \), be smaller than or equal to \(\varepsilon \) for all elements in the net. Assume that an element of the net \((c_i, x_i)\) has \(||x_i|| = b \), so \(|c_i| = 1 - b \); for \(z = (0, e_j) \), the distance from it is at least \(1 - b + (b^p - \varepsilon^p + (1 - \varepsilon)^p)^{1/p} \), so \(T(X) \geq 1 - b + (b^p + 1)^{1/p} \). In \(\mathbb{R}^2 \), for any \(x \) we have \(\|x\|_p/\|x\|_1 \geq 2^{1/p-1} \); so, by taking \(x = (1, b) \), we see that \((b^p + 1)^{1/p} \geq (b + 1)(\frac{2^{1/p}}{2}) \). An easy computation then shows that \(T(X) \geq 2^{1/p} \).

The equalities \(T(\ell_p) = T(L_p) = 2^{1/p} \) for \(1 \leq p \leq \infty \) suggest that spaces with the same “isometric local structure” -whatever this may mean- have the same thickness. A trying question posed in [3] is whether \(T(X) = T(X^{**}) \).

References

[1] M. Baronti, E. Casini and P.L. Papini, On the average distance property and the size of the unit sphere, Atti Sem. Mat. Fus. Univ. Modena Suppl. Vol. 46 (1998), 427-446.
[2] M. Baronti, E. Casini and P.L. Papini, On average distances and the geometry of Banach spaces, Nonlinear Anal.-TMA 42 (2000), 533-541.
[3] J. M. F. Castillo and P.L. Papini, On Kottman’s constant in Banach spaces, Function Spaces IX, Banach Center Publ. Vol. 92 (2011), 75-84.
[4] J. M. F. Castillo and P.L. Papini, Smallness and the covering of a Banach space, Milan J. Math. (to appear).
[5] R. Demazeux, Almost Daugavet centers, Bull. Sci. Math. 136 (2012), 317-327.
[6] R.Durier and P.L. Papini, Polyhedral norms in infinite-dimensional Banach spaces, Rocky Mountain J. Math. 23 (1993), 863-875.
[7] M. Furi and A. Vignoli, On a property of the unit sphere in a linear normed space, Bull. Acad. Polon. Sci. Sr. Math. Astronom. Phys. 18 (1970), 333–334.
[8] O. Hanner, On the uniform convexity of \(L^p \) and \(\ell^p \), Ark. Mat. 3 (1965), 239-244.
[9] V. Kadets, V. Shepelska and D. Werner. Thickness of the unit sphere, \(\ell_1 \)-types, and the almost Daugavet property, Houston J. Math. 37 (2011), 867-878.
[10] S. Lücking, Subspaces of almost Daugavet spaces, Proc. Amer. Math. Soc. 139 (2011), 2777-2782.
[11] L. Ljusternik and J.G. Šnirel’man, Topological methods in variational problems and their application to the differential geometry of surfaces. (Russian) Uspehi Matem. Nauk (N.S.) 2 (1947), no.1(17), 166-217.
[12] E. Maluta and P.L. Papini, Relative centers and finite nets for the unit ball and its finite subsets, Boll. Un. Mat. Ital. B (7) 7 (1993), no. 2, 451-472.
[13] E. Maluta and P.L. Papini, Estimates for Kottman’s separation constant in reflexive Banach spaces. Colloq. Math. 117 (2009), no. 1, 105-119.
[14] P.L. Papini, Some parameters of Banach spaces, Geometry of Banach spaces and related topics (Milan, 1983). Rend. Sem. Mat. Fis. Milano 53 (1983), 131-148 (1986).
[15] P.L. Papini, Covering the sphere and the ball in Banach spaces, Communications in Applied Analysis 13 (2009), 579-586.
[16] R. Whitley, The size of the unit sphere, Canad. J. Math. 20 (1968), 450-455.

Author’s address: Departamento de Matematicas, Universidad de Extremadura, 06071 Badajoz, Spain; e-mail: castillo@unex.es

Author’s address: Via Martucci, 19, 40136 Bologna, Italia; e-mail: plpapini@libero.it

Author’s address: Dipartimento di Matematica ”G. Castelnuovo”, Universitá di Roma ”La Sapienza”, P.le A. Moro 2, 00185 Roma, Italia; e-mail: simoes@mat.uniroma1.it