ÁCIDO ÚRICO E REPARAÇÃO TECIDUAL

Uric acid and tissue repair

Rodrigo Araldi NERY, Barbara Stadler KAHLOW, Thelma L SKARE, Fernando Issamu TABUSHI, Adham do Amaral e CASTRO

Trabalho realizado no Programa de Pós-Graduação em Princípios da Cirurgia da Faculdade Evangélica do Paraná/Hospital Universitário Evangélico de Curitiba/Instituto de Pesquisas Médicas, Curitiba, PR, Brasil

DESCRITORES - Ácido úrico. Cicatrização. Radicais livres de oxigênio. Inflamação.

RESUMO – O ácido úrico, um produto metabólico das purinas, pode exercer um papel na cicatrização de tecidos. Nesta revisão, será explorado o seu papel no alarme inicial do processo inflamatório que é necessário para o reparo tissular, bem como a sua atuação neutralizadora de radicais livres de oxigênio, mobilizadora de células endoteliais progenitoras e favorecedora da atuação do sistema imunológico adaptativo.

ABSTRACT - Uric acid, a metabolic product of purines, may exert a role in tissue healing. In this review we will explore its role as an alarm initiating the inflammatory process that is necessary for tissue repair, as a scavenger of oxygen free radicals, as a mobilizer of progenitor endothelial cells and as supporter of adaptive immune system.

Correspondência:
Thelma L Skare
E-mail: tskare@onda.com.br

Fonte de financiamento: não há
Conflito de interesses: não há

REcebido para publicação: 10/03/2015
Aceito para publicação: 18/06/2015

INTRODUÇÃO

D anos nos tecidos podem ocorrer a partir de uma variedade de estímulos nocivos: infecções, trauma, insultos químicos, radiação, falta de oxigênio e nutrientes. A cicatrização adequada requer uma resposta coordenada onde os eventos são rapidamente organizados e ocorrem sequencialmente, envolvendo vários tipos de células. Plaquetas, células do sistema imunológico, fibroblastos, células endoteliais e queratinócitos trabalham de forma encadeada para restaurar homeostase.

Logo após o dano tissular, as plaquetas são envolvidas na formação do coágulo para limitar a perda de sangue e fornecer proteção para os tecidos subjacentes; as plaquetas também são um reservatório de fatores de crescimento e de citocinas liberados mediante degranulação. O sistema imune inato desencadeia a inflamação, promovendo infiltração local de leucócitos cujo papel principal é o de eliminar os micro-organismos invasores, fagocitar restos celulares e ativar queratinócitos e fibroblastos.

Sequencialmente, os queratinócitos migram para a derme ferida e proliferam formando o tecido de granulação que tem por finalidade restaurar a função de barreira da pele. Os fibroblastos invadem o coágulo e ocorre a angiogênese. Depois disso, em um processo mais lento, a remodelação de tecidos, comandada pelos fibroblastos que produzem colágeno, leva à formação da cicatriz.

A ocorrência desses eventos requer um trabalho coordenado no qual existe, por primeiro, um sistema de detecção, contenção e reparação dos danos causados às células. Este sistema é composto por sinais que iniciam o processo de aviso e por células que respondem a eles através de receptores e sinalizadores das vias adequadas. Neste sistema o ácido úrico (AU) parece desempenhar vários papéis.

O AU é gerado pelo metabolismo das purinas na maior parte dos mamíferos. Em espécies inferiores, a alantoína é degradada por uma enzima chamada uricase existente no fígado, resultando em níveis muito baixos de ácido úrico no soro. No entanto, nos seres humanos, uma mutação genética ocorrida na escala evolutiva, provavelmente na fase tardia do período do Mioceno, tornou a uricase não funcionante. Acredita-se que esta seleção ocorreu por causa dos efeitos benéficos do ácido úrico como antioxidante e pelo seu papel na defesa contra tumores. Além disso, a capacidade do AU para reter sódio e aumentar a pressão sanguínea pode ter sido considerada benéfica em situações de escassez de alimentos. No entanto, com a mudança dos hábitos alimentares da dieta moderna, que são ricas em precursores de sal e de ácido úrico, tais como a frutose, tem-se observado que AU está associado com hipertensão, doença arterial coronária,
doença vascular periférica, insuficiência renal e acidentes vasculares cerebrais1,16.

Portanto, o AU parece desempenhar um papel duplo no estresse oxidativo: como antioxidante no espaço extracelular e pró-oxidante dentro da célula1,16. O AU é solúvel no interior das células, mas precipita-se facilmente no meio extracelular formando microcristais de urato monossódico (MSU)11. Nesta revisão, será explorada a ação do AU na cicatrização de tecidos.

O ÁCIDO ÚRICO COMO SINÁL DE ALERTA

Nosso organismo precisa distinguir se as suas células estão saudáveis ou danificadas e deve ser capaz de detectar quando existe invasão por micro-organismos para, assim, desencadear os mecanismos de defesa e reparação. Como esses mecanismos são ativados e orquestrados ainda não é completamente compreendido, mas sabe-se que uma série de receptores nas células dendríticas são responsáveis pelo início do processo. Alguns dos receptores melhor estudados são os receptores para PAMPS e DAMPS13.

PAMPS ou Padrão Molecular Associado a Patógeno é um conjunto diversificado de moléculas compartilhadas por vários micro-organismos e que são vitais para a sua sobrevivência. Os PAMPS são reconhecidos principalmente através de receptores toll-like (TLRs), presentes em células apresentadoras de antigêntos e que ativam tanto a resposta imune inata como a adaptativa13.

Quando a lesão não é causada por um micro-organismo, mas por outro agente, tal como um trauma, este processo é iniciado por uma alarmina10,11,13. Assim, as alarminas podem ser consideradas como o “equivalente estétil de dos PAMPS”. O grupo formado por alarminas e PAMPS são reconhecidos, em seu conjunto, como DAMPs ou Padrão Molecular Associados a Danos13.

As alarminas consistem, normalmente, em um grupo de moléculas intracelulares que são liberadas rapidamente após a morte não programada de células (necrose), mas não por apoptose11,13. Elas ativam células que expressam o receptor específico (geralmente uma célula dendrítica) e que recrutam o sistema imune inato levando a inflamação - que é um evento necessário para promover a reconstrução tecidual10,11,13.

O AU é considerado como sendo uma alarmina importante lançada na circulação pelas células necróticas12. Esta molécula estimula a maturação das células dendríticas que desencadeiam a resposta imune inata e adaptativa13. A depleção do AU pelo alopurinol reduz a imunidade ao antígeno12. OAU está associado a um melhor prognóstico no câncer, o que sugere que este oxilipina desempenha um papel inflamatório e imunológico desta molécula13,17.

O ÁCIDO ÚRICO COMO MOBILIZADOR DE CÉLULAS PROGENITORAS ENDOTELIAIS (EPCS)

Tem sido demonstrado que o AU pode acelerar o recrutamento de EPCs (células progenitoras endoteliais)17. Em um estudo muito elegante, Patschan et al.14, utilizando camundongos tratados com diferentes doses de AU identificaram que esta molécula atua como mediadora endógena da mobilização de EPC, atuando rapidamente em resposta à isquemia de tecidos. Este efeito era dependente da dose e do tempo da elevação do AU. Estes autores sugeriram que o AU pode ser usado para o pré-condicionamento farmacológico de EPCs.

O PAPÊL DO ÁCIDO ÚRICO COMO MOBILIZADOR DE CÉLULAS PROGENITORAS ENDOTELIAIS (EPCS)

Tem sido demonstrado que o AU pode acelerar o recrutamento de EPCs (células progenitoras endoteliais)17. Em um estudo muito elegante, Patschan et al.14, utilizando camundongos tratados com diferentes doses de AU identificaram que esta molécula atua como mediadora endógena da mobilização de EPC, atuando rapidamente em resposta à isquemia de tecidos. Este efeito era dependente da dose e do tempo da elevação do AU. Estes autores sugeriram que o AU pode ser usado para o pré-condicionamento farmacológico de EPCs.

OÁCIDO ÚRICO E REPARAÇÃO TECIDUAL

A depleção do AU pelo alopurinol reduz a imunidade aos antígenos de células transplantadas18. Quando o AU é co-injetado com antígenos in vivo, aumenta significativamente a produção de respostas de células T CD8+24. Aumenta-se a imunidade do AU para células CD8+, aumentando significativamente a resposta imune inata e adaptativa. O AU promove aumento de resposta das células T CD8+ ao seu papel na ativação da apresentação de antígeno24.

Os linfócitos desempenham um papel fundamental na defesa tumoral através da indução da morte de células neoplásicas por citototoxicidade e por inibir a proliferação e migração das células tumorais19. Assim, um nível elevado de AU está associado a um melhor prognóstico no câncer, o que, de fato, foi encontrado por Dziaman et al.5. Estes autores demonstraram que o tempo de sobrevida de pacientes com câncer colorretal é maior naqueles com níveis mais elevados de AU no soro. Além disso, eles mostraram em um grande estudo de 1.823 homens com câncer de pulmão, colorretal e próstata que os níveis séricos AU elevados, protegem contra a mortalidade por câncer20. No entanto, esta ação de proteção tumoral do AU não é aceita por todos21.

CONCLUSÕES

Existem várias lacunas no conhecimento sobre o papel do AU no microambiente das feridas. Apesar disso, existem claras sugestões de que a continuidade de estudos sobre o papel inflamatório e imunológico desta molécula pode oferecer...
novas maneiras de compreender a base da cicatrização do tecido e de como manipulá-lo para o benefício dos pacientes.

REFERÊNCIAS

1. Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci USA 1981; 78: 6858–62.

2. Caserta S, Borger JG, Zamoyrka R. Central and effector memory CD4 and CD8 T-cell responses to tumor-associated antigens. Crit Rev Immunol. 2012; 32: 97–126.

3. Chung AW, Radomski A, Alonso-Scolano D, Jurasz P, Stewart MW, Malinski TR et al. Platelet-leukocyte aggregation induced by PAR agonists: regulation by nitric oxide and matrix metalloproteinases. Br J Pharmacol. 2004, 143, 845–55.

4. Daousis D, Kitas GD. Uric acid and cardiovascular risk in rheumatoid arthritis Rheumatology 2011; 50; 1354–5.

5. DC, Bagasra O, Marin JC, Zborek A, Ohnishi ST, et al. Prevention of experimental allergic encephalomyelitis by targeting nitric oxide and peroxynitrite: implications for the treatment of multiple sclerosis. Proc Natl Acad Sci USA 1997; 94: 2528–33.

6. Dizian T, Banaszkiewicz Z, Roszkowski K, Gackowski D, Wniewska E, Rozalski R, et al. Oxo-7,8-dihydroguanine and uric acid as efficient predictors of survival in colon cancer patients- Int J Cancer. 2014; 134: 376-83.

7. Fabbriini E, Serafini M, Baric IC, Hazen SL, Klein S. Effect of plasma uric acid on antioxidant capacity, oxidative stress, and insulin sensitivity in obese subjects. Diabetes 2014; 63:976–81.

8. Feig DI, Kang DH, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med. 2008; 359:1811-21.

9. Galusha SA, Rock KL. Cutting edge: elimination of an endogenous adjuvant reduces the activation of CD8 T lymphocytes to transplanted cells and in an autoimmune diabetes model. J Immunol. 2006; 176: 3905-8.

10. Janeway Jr CA, Medzhitov R. Innate immune recognition. Annu. Rev. Immunol. 2002; 20; 197–216.

11. Keller JN, Kindy MS, Holtsberg FW, St Clair DK, Yen HC, et al. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 1998; 18: 687–97.

12. Maes BC, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant and radical causing aging and cancer. Proc Natl Acad Sci USA, 1981, 78:6658–62.

13. Marco E. Bianchi. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007; 81:1-5.

14. Nakamura H, Herzenberg LA, Bai J, Araya S, Kondo N, Nishinaka Y, Yodoi J. Circulating thioredoxin suppresses lipopolysaccharide induced neutrophil chemotaxis. Proc Natl Acad Sci USA 1998; 98: 15143–8.

15. Ostvar O, Shadvar S, Yahaghi E, Azma K, Fayyaz AF, Ahmadi K et al. Effect of platelet-rich plasma on the healing of cutaneous defects exposed to acute to chronic wounds: a clinico-histopathologic study in rabbits. Diagn Pathol. 2015; 10:85-91.

16. Panoulas VF, Milionis HJ, Douglas KM, Nightingale P, Kita MD, Klocke R, et al. Association of serum uric acid with cardiovascular disease in rheumatoid arthritis. Rheumatology 2007; 46: 1466-70.

17. Patschan D, Patschan S, Gobe GG, Chintala S, Goligorsky MS. Uric acid heralds ischemic tissue injury to mobilize endothelial progenitor cells. J Am Soc Nephrol. 2007; 18:1516-24

18. Peus D, Vasa RA, Mieves A, Pott M, Beyerle A, Squilace K, Pittelkov MR. H2O2 is an important mediator of UVB-induced EGF-receptor phosphorylation in cultured keratinocytes. J Invest Dermatol. 1998, 110, 966–71.

19. S, Mughal MR, Chan SL, Anumugam TV, Baharani A, Tang SC, et al. A synthetic uric acid analog accelerates cutaneous wound healing in mice. PLoS One. 2010. 65:e10044.

20. Scott GS, Cuzzocrea S, Genovese T, Koprowski H, Hooper DC. Uric acid protects against secondary damage after spinal cord injury. Proc Natl Acad Sci USA 2005; 102. 3483–8.

21. Sen CK. The general case for redox control in wound repair. Wound Rep Reg, 2003, 11, 431–438.

22. Shi Y, Evans JE, Rock KL. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 2003; 425: 516–21.

23. Shi Y, Galusha SA, Rock KL. Cutting edge: elimination of an endogenous adjuvant reduces the activation of CD8 T lymphocytes to transplanted cells and in an autoimmune diabetes model. J Immunol. 2006; 176: 905-8.

24. Shi Y, Zheng W, Rock KL. Cell injury releases endogenous adjuvants that stimulate cytotoxic T cell responses. Proc Natl Acad Sci USA. 2000; 97: 14590-5.

25. Soneja A, Dews M, Malinski T. Role of nitric oxide, nitroxidative and oxidative stress in wound healing. Pharmacol Rep. 2005;57 Suppl:108-19.

26. Spangler RA, Demel J,草地 Kok, Seidel J, Stojakovic T, Samonig H, Reitz D, et al. Evaluation of uric acid as a prognostic blood-based marker in a large cohort of pancreatic cancer patients. PLoS One. 2014; 9: e104730.

27. Taghizadeh N, Vonk JM, Boezen HM. Serum uric acid levels and cancer mortality risk among males in a large general population-based cohort study. Cancer Causes Control. 2014; 25: 1075-80.

28. Watanabe S, Kang DH, Feng L, Nakagawa T, Kanellis J, Lan H, et al. Uric acid, hominoid evolution and the pathogenesis of salt hypersensitivity. Hypertension 2002; 40: 555-60.

29. Weinberg BM, Buch RS, Kleiss WK, Hafner G, Hitzler WE, Wagner W. Quantification of thrombocyte growth factors in platelet concentrates produced by discontinuous cell separation. Growth Factors. 2002;2093-7.

30. Yeh-Mellotson S, Stacey MC, Iron and 8-isoprostane levels in acute and chronic wounds. J Invest Dermatol. 2003; 121: 918-25.

31. Yu ZF, Bruce-Keller AJ, Goodman Y, Mattson MP. Uric acid protects neurons against excitotoxic and metabolic insults in cell culture, and against focal ischemic brain injury in vivo. J Neurosci Res 1998; 53:613–25.