Abelian varieties with prescribed embedding degree

David Freeman1, Peter Stevenhagen2 and Marco Streng2

1University of California, Berkeley
Supported by a National Defense Science and Engineering Graduate Fellowship

2Universiteit Leiden
Supported by the European Commission under contract MRTN-CT-2006-035495

ANTS-VIII, Banff, Alberta (Canada)
May 20, 2008
We construct *Weil numbers* that correspond to abelian varieties with prescribed *embedding degree*.

Overview:
- What is the embedding degree?
- What are Weil numbers and how to construct the corresponding abelian varieties?
- Our actual construction.
Let A be an abelian variety over a finite field $\mathbb{F} = \mathbb{F}_q$ and let $r \nmid q$ be a prime dividing $\#A(\mathbb{F})$.

Two pairings:

- **Weil**: $A(\mathbb{F})[r] \times \hat{A}(\mathbb{F})[r] \to \mu_r(\mathbb{F})$,

- **Tate**: $A(\mathbb{F})[r] \times \hat{A}(\mathbb{F})/r\hat{A}(\mathbb{F}) \to \mathbb{F}^*/(\mathbb{F}^*)^r \cong \mu_r(\mathbb{F})$.

The embedding degree k of A with respect to r is the degree of the field extension $\mathbb{F}(\zeta_r)/\mathbb{F}$.

For random r and q, the embedding degree grows like r.

If k is small and the discrete logarithm problem is hard in both $A(\mathbb{F})[r]$ and $\mathbb{F}(\zeta_r)^*$, then these pairings can be used for pairing-based cryptography.
The embedding degree of A with respect to $r \mid \#A(\mathbb{F})$ is the degree of $\mathbb{F}(\zeta_r)/\mathbb{F}$.

Lemma

The embedding degree of A with respect to r is equal to the order of $(q \mod r)$ in \mathbb{F}_r^.*

Proof: The embedding degree is the smallest number k such that $r \mid \#\mathbb{F}_q^* = q^k - 1$.

So the embedding degree is k if and only if $(q \mod r)$ is some primitive k-th root of unity in \mathbb{F}_r.

David Freeman, Peter Stevenhagen and Marco Streng
UC Berkeley and Universiteit Leiden
Abelian varieties with prescribed embedding degree
Weil numbers

- Let \(q \) be a prime power. A **Weil q-number** is an algebraic integer \(\pi \) such that \(\pi \overline{\pi} = q \) for every embedding of \(\pi \) into \(\mathbb{C} \).

- Honda-Tate theory gives a bijection

\[
\begin{align*}
\{\text{simple abelian varieties over } \mathbb{F}_q\} & \quad \leftrightarrow \quad \{\text{Weil } q\text{-numbers}\} \\
isogeny & \quad \text{conjugation} \\
A & \quad \mapsto \quad \text{Frob}_q.
\end{align*}
\]

If \(q \) is prime and \(\pi \neq \pm \sqrt{q} \) is a Weil \(q \)-number, then

- \(K = \mathbb{Q}(\pi) \) is a **CM field**, i.e. a non-real number field with a unique complex conjugation automorphism,

- the corresponding abelian variety \(A \) has dimension \(g \), where \(2g \) is the degree of \(K \) and

- \(\#A(\mathbb{F}_q) = N_{K/\mathbb{Q}}(\pi - 1) \).
The CM method

Given a Weil q-number π, the corresponding abelian variety can be constructed using the *complex multiplication* method:

- List the isogeny classes of abelian varieties over $\overline{\mathbb{Q}}$ with CM by the ring of integers of $\mathbb{Q}(\pi)$.
- Reduce them modulo a prime dividing q.
- Some twist of one of the reduced varieties will have Frobenius π. Select the one of the correct order.

This method is only well-developed for dimensions 1 and 2 and some special cases of higher dimension and takes time exponential in the bit size of the discriminant of $\mathbb{Q}(\pi)$.
About our algorithm

We give an algorithm with

input:

- a positive integer \(k \),
- a CM field \(K \) of degree \(2g \) with a ‘primitive CM type’ and
- a prime \(r \equiv 1 \pmod{k} \) that splits completely in \(K \).

output:
a prime number \(q \) and a Weil \(q \)-number \(\pi \in K \) corresponding to an abelian variety of dimension \(g \) with embedding degree \(k \) with respect to \(r \).

Heuristic expected run time polynomial in \(\log r \) (for fixed \(K \)).

For \(g = 1 \), we recover the Cocks-Pinch algorithm, so we assume \(g \geq 2 \) for simplicity.
Special case: K cyclic

- Suppose ϕ generates $\text{Gal}(K/\mathbb{Q})$ and τ is a prime of K dividing r. Let $\tau_i = \phi^{-i}(\tau)$, so $r\mathcal{O}_K = \prod_{i=1}^g \tau_i \bar{\tau}_i$.

- We want $\pi \in \mathcal{O}_K$ with $q = \pi \bar{\pi} \in \mathbb{Z}$ prime such that
 1. $r \mid N_{K/\mathbb{Q}}(\pi - 1)$, e.g. $(\pi \mod \tau) = 1 \in \mathbb{F}_r$ and
 2. $(q \mod r) = \zeta_k$ in \mathbb{F}_r.

- Idea: take $\pi = \prod_{i=1}^g \phi^i(\xi)$ with $\xi \in \mathcal{O}_K$, so $q = \pi \bar{\pi} = N_{K/\mathbb{Q}}(\xi) \in \mathbb{Z}$. Then

 $$(\pi \mod \tau) = \prod_{i=1}^g (\phi^i(\xi) \mod \tau) = \prod_{i=1}^g (\xi \mod \tau_i) \quad \text{in} \quad \mathbb{F}_r$$

 and similarly $(q \mod r) = \prod_{i=1}^g (\xi \mod \tau_i)(\xi \mod \bar{\tau}_i)$ in \mathbb{F}_r.

- So all we need to do is find $\xi \in \mathcal{O}_K$ with prime norm and
 1. $\prod_{i=1}^g (\xi \mod \tau_i) = 1$ and
 2. $\prod_{i=1}^g (\xi \mod \bar{\tau}_i) = \zeta_k$ in \mathbb{F}_r.

David Freeman, Peter Stevenhagen and Marco Streng
UC Berkeley and Universiteit Leiden
Abelian varieties with prescribed embedding degree
Special case: K cyclic

Algorithm

1. Let $\langle \phi \rangle = \text{Gal}(K/\mathbb{Q})$, $\tau \mid r$ a prime of K and $\tau_i = \phi^{-i}(\tau)$.

2. Choose α_i and β_i randomly in \mathbb{F}_r^* such that $\prod \alpha_i = 1$ and $\prod \beta_i = \zeta_k$.

3. Compute $\xi \in \mathcal{O}_K$ with $(\xi \mod \tau_i) = \alpha_i$ and $(\xi \mod \overline{\tau}_i) = \beta_i$.

4. If $q = N_{K/\mathbb{Q}}(\xi)$ is prime and $\pi = \prod_{i=1}^{g} \phi^i(\xi)$ generates K, return π and q. Otherwise, go to step (2).

The heuristic expected run time is polynomial in $\log r$ (fixed K).

Proof: As ξ is a lift of a random element modulo $r\mathcal{O}_K$, we expect its norm q to behave like r^{2g}. By the prime number theorem, we thus expect to need $\log(r^{2g})$ iterations before we find a prime q. Moreover, π generates K with probability tending to 1. □
The type norm

- The analogue of the map $\xi \mapsto \prod_{i=1}^{g} \phi^i(\xi)$ for general CM fields is the type norm.

- A CM type of a CM field K of degree $2g$ is a set $\Phi = \{\phi_1, \ldots, \phi_g\}$ of embeddings of K into a normal closure L such that $\Phi \cup \overline{\Phi}$ is the complete set of embeddings.
 - We call Φ primitive if there is no proper CM subfield K' of K such that $\Phi|_{K'}$ is a CM type of K'.

- The type norm N_{Φ} with respect to Φ is the map $\xi \mapsto \prod_{i=1}^{g} \phi^i(\xi)$.
 - Notice that for $\pi = N_{\Phi}(\xi)$, we have $\pi\overline{\pi} = N_{K/Q}(\xi) \in \mathbb{Q}$.

- The image of N_{Φ} does not lie in K but in a field called the reflex field.
The reflex field

- Given a pair \((K, \Phi)\) of a CM field and a CM type, there is a reflex pair \((\hat{K}, \Psi)\).
 - The image of \(N_\Phi\) lies inside \(\hat{K}\).
 - If \(\Phi\) is primitive, then the reflex of \((\hat{K}, \Psi)\) is \((K, \Phi)\).
- We construct \(\pi\) as \(N_\Psi(\xi)\) for some \(\xi \in \mathcal{O}_{\hat{K}}\).
- Remarks about the reflex field: (assume \(\Phi\) is primitive)
 - If \(K\) is normal, then \(\hat{K} = K\).
 - In general, \(K\) and \(\hat{K}\) don’t even have to have the same degree!
 - Denote the degree of \(\hat{K}\) by \(2\hat{g}\).
 - If \(g = 2\), then \(\hat{g} = 2\). If \(g = 3\), then \(\hat{g} \in \{3, 4\}\).
The general case

- Let $\Psi = \{\psi_1, \ldots, \psi_g\}$ be the reflex type.
- Let τ be a prime of \mathcal{O}_L dividing r and $\tau_i = \psi_i^{-1}(\tau) \cap \mathcal{O}_\hat{K}$. Then

$$r\mathcal{O}_\hat{K} = \prod_{i=1}^{g} \tau_i \bar{\tau}_i.$$

Algorithm

1. Choose α_i and β_i randomly in \mathbb{F}_r^* such that $\prod_{i=1}^{g} \alpha_i = 1$ and $\prod_{i=1}^{g} \beta_i = \zeta_k$ in \mathbb{F}_r.
2. Compute $\xi \in \mathcal{O}_\hat{K}$ with $(\xi \mod \tau_i) = \alpha_i$ and $(\xi \mod \bar{\tau}_i) = \beta_i$.
3. If $q = N_{\hat{K}/\mathbb{Q}}(\xi)$ is prime and $\pi = N_{\Psi}(\xi)$ generates K, return π and q. Otherwise, go to step (1).
Heuristics

Consider the value

\[\rho = \frac{\log q^g}{\log r} \sim \frac{\log \#A(\mathbb{F}_q)}{\log r} \geq 1, \]

which we want to be small.

We expect our output to satisfy \(\rho \sim 2g\hat{g} \).

Proof: As \(\xi \) is a lift of a random element modulo \(r\mathcal{O}_K \), we expect its norm \(q \) to behave like \(r^{2\hat{g}} \), so \(\log q \sim 2\hat{g}\log r \).

For fixed \(K, k \) and \(r \), the optimal \(\xi \) gives \(\rho \sim 2g \).

Proof: We have \((r - 1)^{2\hat{g} - 2} \) choices for \(\alpha_i \) and \(\beta_i \), so we expect the minimal norm for a \(\xi \) to be approximately \(r^2 \).

Open question: can we find it efficiently?

A method by Freeman based on our algorithm, in which \(r \) is not prescribed, achieves \(\rho < 2g\hat{g} \) for some \(K \) and \(k \).
Experimental results

\[K = \mathbb{Q}(\zeta_5) \]

Histograms of \(\rho \)-values produced by our algorithm:

- For \(k = 2, r = 1021 \)
 - All possible \(\alpha_1, \beta_1 \)
 - Minimal \(\rho \): 4.19

- For \(k = 10, r = 2^{160} + 685 \)
 - \(2^{20} \) random \(\alpha_1 \) and \(\beta_1 \)

Notice that \(g = \hat{g} = 2 \).

David Freeman, Peter Stevenhagen and Marco Streng

UC Berkeley and Universiteit Leiden

Abelian varieties with prescribed embedding degree
Example

\[K = \mathbb{Q}(\zeta_7), \ k = 17, \ r = 2^{180} - 7427 \]

- Absolutely simple abelian varieties with CM by \(K \) are Jacobians of curves of the form \(y^2 = x^7 + a \).
- Our algorithm found a suitable Weil \(q \)-number for

\[
q = \begin{array}{c}
1575584138119771535917878020143687930577769468671374639550678761402500812 \\
1759749726349377162542168169176007186988081292604570406371468028127020440 \\
6861277269259077188966205156107806823000096120874915612017184924206843204 \\
6217592329462633576371925169798774026389116897144108553148110927632874029 \\
911153126048408269857121431033499 \end{array} \quad (1077 \text{ bits})
\]

in 51 seconds.

- It has \(\rho = 17.95 \) and \(g = \hat{g} = 3 \).
- The corresponding curve is given by \(y^2 = x^7 + 10 \).
Our algorithm constructs Weil numbers corresponding to abelian varieties over finite fields with prescribed embedding degree with respect to a subgroup of prescribed order r.

- We fix our CM field K in advance.
- The algorithm is polynomial in $\log r$.
- We get

$$\frac{\log \# A(\mathbb{F})}{\log r} \sim 2g\hat{g}.$$