Supporting information for PONE-D-22-03926

1) Project tracking for all animals and preparations. This includes names and genotypes of all animals used. Genotyping, as specified in the Methods, was done independently by Jax Labs in a contract arrangement.

A. Original mouse names and breeding information.

Backcrossed	Mice ID	Gender	Orai1-fl	runx2-cre	Orai1	Birth Date	Parents M/F	Sacrifice			
R9	Rx72A	F	mut/mut	wt/mut	-/-	7/20/16	Rx61A	Rx62A	Rx68A	Oral1KO	1/25/17
	Rx72D	F	mut/mut	wt/mut	-/-	7/20/16	Rx61A	Rx62A	Rx68A	Oral1KO	1/25/16
R9	Rx90A	M	mut/mut	wt/mut	-/-	10/25/16	Rx61A	Rx87A	Rx72D	Oral1KO	2/15/16
R9	Rx90C	M	mut/mut	wt/mut	-/-	10/25/16	Rx61A	Rx87A	Rx72D	Oral1KO	2/15/16
R10	Rx86B	F	mut/mut	wt/wt	+/-	9/12/16	Rx69B	Rx70D			
R9	Rx90A	M	mut/mut	wt/wt	+/-	11/18/16	Rx82B	Rx83E	Rx87B	calcein injections for sacrifice March 13	
R9	Rx83E	F	mut/mut	wt/wt	+/-	9/12/16	OC83B	Rx66B	Rx66C	Calcein injections for sacrifice March 22	
R9	Rx87B	F	mut/mut	wt/wt	+/-	9/14/16	Rx67B	Rx66A		calcein injections for sacrifice March 22	
R9	Rx73A	M	mut/mut	wt/mut	-/-	8/3/16	Rx67B	Rx66A	Rx68D	Oral1KO	
R9	Rx87A	F	mut/mut	wt/mut	-/-	9/14/16	Rx67B	Rx66A		Oral1KO	calcein injections for sacrifice March 29
R9	Rx87C	F	mut/mut	wt/mut	-/-	9/14/16	Rx67B	Rx66A		Oral1KO	calcein injections for sacrifice March 29
R9	Rx87D	F	mut/mut	wt/mut	-/-	9/14/16	Rx67B	Rx66A		Oral1KO	calcein injections for sacrifice March 29
R9	Rx90B	M	mut/mut	wt/wt	+/-	11/18/16	Rx82B	Rx83E	Rx87B	Calcein injections for sacrifice March 22	
R9	Rx91D	F	mut/mut	wt/wt	+/-	11/18/16	Rx82B	Rx83E	Rx87B	Calcein injections for sacrifice March 13	
R10	Rx92A	F	mut/mut	wt/wt	+/-	11/21/16	Rx85E	Rx86B		Calcein injections for sacrifice March 15	
R10	Rx92B	F	mut/mut	wt/wt	+/-	11/21/16	Rx85E	Rx86B		Calcein injections for sacrifice March 15	
R9	Rx93A	M	mut/mut	wt/mut	-/-	12/10/16	Rx73A	Rx72A	Rx87D	Oral1KO	Calcein injections for sacrifice April 10
R9	Rx93B	M	mut/mut	mut/mut	-/-	12/10/16	Rx73A	Rx72A	Rx87D	Oral1KO	Calcein injections for sacrifice April 10

House with Rx83E, Rx87B on February 21

calcein injections for sacrifice March 13

Calcein injections for sacrifice March 22

calcein injections for sacrifice March 22

Calcein injections for sacrifice March 29

calcein injections for sacrifice March 29

calcein injections for sacrifice March 29

Calcein injections for sacrifice March 22

calcein injections for sacrifice March 13

calcein injections for sacrifice March 15

calcein injections for sacrifice March 15

Calcein injections for sacrifice April 10

Calcein injections for sacrifice April 10
R9	Rx94A	F	mut/mut	wt/mut	+/-
	Rx94B	F	mut/mut	wt/mut	+/-
	Rx96D	F	mut/mut	wt/mut	+/-
	Rx95A	M	mut/mut	mut/mut	+/-
	Rx95B	M	mut/mut	wt/mut	+/-
	Rx95C	M	mut/mut	wt/mut	+/-
	Rx95D	M	mut/mut	wt/mut	+/-
	Rx95E	M	mut/mut	wt/mut	+/-
R9	Rx97A	M	mut/mut	wt/wt	+/-
R9	Rx97B	M	mut/mut	wt/wt	+/-
R9	Rx97C	M	mut/mut	wt/wt	+/-
R9	Rx97D	M	mut/mut	wt/wt	+/-
R9	Rx97E	M	mut/mut	wt/wt	+/-
R9	Rx98A	M	mut/mut	wt/wt	+/-
R9	Rx98B	M	mut/mut	mut/mut	+/-
R9	Rx98C	M	mut/mut	wt/wt	+/-
R9	Rx98D	M	mut/mut	mut/mut	+/-
R9	Rx98E	M	mut/mut	wt/wt	+/-
R9	Rx99A	F	mut/mut	wt/mut	+/-
R9	Rx99B	F	mut/mut	wt/wt	+/-
R9	Rx100A	M	mut/mut	wt/wt	+/-
R9	Rx100B	M	mut/mut	wt/wt	+/-
R9	Rx100C	M	mut/mut	wt/wt	+/-
R9	Rx100D	M	mut/mut	wt/wt	+/-
R9	Rx101A	F	mut/mut	wt/wt	+/-
R9	Rx101B	F	mut/mut	wt/wt	+/-
R9	Rx101C	F	mut/mut	wt/wt	+/-
R9	Rx102A	M	mut/mut	wt/wt	+/-

Orai1KO calcein injections for sacrifice April 11

Rx73A calcein injections for sacrifice April 11

Rx72A calcein injections for sacrifice April 12

Rx87D calcein injections for sacrifice April 12

Rx72D calcein injections for sacrifice April 12

Rx90C calcein injections for sacrifice April 13

Rx90C calcein injections for sacrifice April 13

Rx90C calcein injections for sacrifice April 17

Rx90C calcein injections for sacrifice April 17

Rx90C calcein injections for sacrifice April 19

Rx90C calcein injections for sacrifice May 1

Rx90C calcein injections for sacrifice May 1

Rx90C calcein injections for sacrifice May 3

Rx90C calcein injections for sacrifice May 3

Rx90C calcein injections for sacrifice May 4

Rx90C calcein injections for sacrifice May 4

Rx90C calcein injections for sacrifice May 15

Rx90C calcein injections for sacrifice May 15

Rx90C calcein injections for sacrifice May 16

Rx90C calcein injections for sacrifice May 16

Rx90C calcein injections for sacrifice May 17

Rx90C calcein injections for sacrifice May 17

Rx90C calcein injections for sacrifice May 17

Rx90C calcein injections for sacrifice May 31
B. Mice with genotypes and major assays including micro CT.

Notes*	Mouse ID	Orai1-fl	runx2-cre	Orai1	Sex	Birthdate	Date of sac	Age @ sac	# vials BM	# vials non-adh	other	msc
pooled @ Pitt	14A	wt/wt	wt/mut	+/-	M	5/29/14	7/30/14	9 weeks				
pooled @ Pitt	17A	wt/wt	wt/mut	+/-	F	6/2/14	7/30/14	9 weeks				
pooled @ Pitt	17C	wt/wt	wt/mut	+/-	F	6/2/14	7/30/14	9 weeks				
pooled @ Pitt	14D	mut/mut	wt/mut	+/-	M	5/29/14	7/30/14	9 weeks				
pooled @ Pitt	15B	mut/mut	wt/mut	+/-	M	6/4/14	7/30/14	9 weeks				
pooled @ Pitt	15C	mut/mut	wt/mut	+/-	M	6/4/14	7/30/14	9 weeks				
pooled @ Pitt	15C	mut/mut	wt/mut	+/-	M	6/4/14	7/30/14	9 weeks				
pooled @ Pitt	15C	mut/mut	wt/mut	+/-	M	6/4/14	7/30/14	9 weeks				

6mo WT

Mouse ID	Orai1-fl	runx2-cre	Orai1	Sex	Birthdate	Date of sac	Age @ sac	# vials BM	# vials non-adh	other	msc
Rx 72A	mut/mut	wt/mut	+/-	F	7/20/16	1/25/17	27w	1	2		
Rx 72D	mut/mut	wt/mut	+/-	F	7/20/16	1/25/17	27w	2	2		

Rx 90AKO

Mouse ID	Orai1-fl	runx2-cre	Orai1	Sex	Birthdate	Date of sac	Age @ sac	# vials BM	# vials non-adh	other	msc
Rx 90C	mut/mut	wt/mut	+/-	M	10/25/16	2/15/17	16w 1d	1	1	NA	

Rx 90AZ

Mouse ID	Orai1-fl	runx2-cre	Orai1	Sex	Birthdate	Date of sac	Age @ sac	# vials BM	# vials non-adh	other	msc
*snow arr. 3/17	Rx 90AZ	mut/mut	wt/wt	+/-	M	11/18/16	3/13/17	16w 3d	2	0	NA
*snow arr. 3/17	Rx 91D	mut/mut	wt/wt	+/-	F	11/18/16	3/13/17	16w 3d	2	0	NA

Mouse ID	Orai1-fl	runx2-cre	Orai1	Sex	Birthdate	Date of sac	Age @ sac	# vials BM	# vials non-adh	other	msc
Rx 92A	mut/mut	wt/wt	+/-	F	11/21/16	3/15/17	16w 2d	3	0	m-flox-wt	NA
Rx 92B	mut/mut	wt/wt	+/-	F	11/21/16	3/15/17	16w 2d	2 or 3	0	m-het flox-cre	

*snow arr. 3/17
Rx	Genotype 1	Genotype 2	Sex	Start Date	End Date	Age	Notes
Rx 90B	mut/mut	wt/wt	+/-	11/18/16	3/21/17	17w 4d	2 NA
Rx 83E	mut/mut	wt/wt	+/-	9/12/16	3/21/17	27w 1d	5 flox-wt
Rx 87B	mut/mut	wt/wt	+/-	9/14/16	3/21/17	26w 6d	2 NA
Rx 86B	mut/mut	wt/wt	+/-	9/12/16	3/21/17	28w 2d	2 NA
Rx 87A	mut/mut	wt/mut	+/-	9/14/16	3/29/17	27w 1d	3 NA
Rx 87C	mut/mut	wt/mut	+/-	9/14/16	3/29/17	28w	3 NA
Rx 87D	mut/mut	wt/mut	+/-	9/14/16	3/29/17	28w	2 NA
Rx 93A	mut/mut	wt/mut	+/-	12/10/16	4/10/17	17w 2d	3 m-flox-cre
Rx 93B	mut/mut	mut/mut	+/-	12/10/16	4/10/17	17w 2d	3 NA
Rx 94A	mut/mut	wt/mut	+/-	12/10/16	4/10/17	17w 2d	2 NA
Rx 94B	mut/mut	wt/mut	+/-	12/10/16	4/10/17	17w 2d	2 NA
Rx 95A	mut/mut	mut/mut	+/-	12/11/16	4/11/17	17w 2d	2 m-flox-cre
Rx 95B	mut/mut	mut/mut	+/-	12/11/16	4/11/17	17w 2d	3 m-flox-?wt
Rx 95C	mut/mut	mut/mut	+/-	12/11/16	4/11/17	17w 2d	2 s-?fox-cre
Rx 96A	mut/mut	mut/mut	+/-	12/11/16	4/11/17	17w 2d	2 NA
Rx 96D	mut/mut	mut/mut	+/-	12/11/16	4/12/17	17w 1d	2 s-?fox-cre
Rx 97A	mut/mut	wt/wt	+/-	12/28/16	4/17/17	15w 5d	2 NA
Rx 97B	mut/mut	wt/wt	+/-	12/28/16	4/17/17	15w 5d	2 NA
Rx 97C	mut/mut	wt/wt	+/-	12/28/16	4/19/17	16w	2 NA
Rx 97D	mut/mut	wt/wt	+/-	12/28/16	4/19/17	16w	2 NA
Rx 97E	mut/mut	wt/wt	+/-	12/28/16	4/19/17	16w	2 NA
Rx 98A	mut/mut	wt/wt	+/-	1/10/17	5/1/17	15w 6d	2 NA

HCB genotype

aka 96A

Rx	Genotype 1	Genotype 2	Sex	Start Date	End Date	Age	Notes
Rx 95D	mut/mut	wt/mut	+/-	12/11/16	4/12/17	17w 1d	2 s-?fox-cre
Rx 95E	mut/mut	wt/mut	+/-	12/11/16	4/12/17	17w 1d	2 s-?fox-cre

NA: Not applicable
Table: Mouse IDs and Genotypes

MSC	Mouse ID	fox	cre	orai	sex	birth date	sac date	age at sac	genotype	WVU genotype
fl-wt	Rx 98B	mut/mut	mut/mut	+/-	M	1/10/17	5/1/17	15w 6d	orai pres	NA
fl/fl	Rx 98C	mut/mut	wt/wt	+/-	M	1/10/17	5/1/17	15w 6d	orai pres	NA
~fl/wt	Rx 98D	mut/mut	mut/mut	+/-	M	1/10/17	5/3/17	16w 1d	orai pres	NA
wt	Rx 98E	mut/mut	wt/wt	+/-	M	1/10/17	5/3/17	16w 1d	orai pres	NA
fl/fl	Rx 99A	mut/mut	wt/wt	+/-	M	1/10/17	5/4/17	16w 2d	orai pres	NA
fl-wt	Rx 99B	mut/mut	wt/wt	+/-	M	1/10/17	5/4/17	16w 2d	no orai	NA

C. Derived cell lines, MSC first and then differentiated OB (not used in work shown)

MSC	Mouse ID	fox	cre	orai	sex	birth date	sac date	age at sac	genotype	WVU genotype
Rx 94A	mut/mut	wt/mut	+/-	F	12/10/16	4/10/17	17w 2d(s-cre?)			
Rx 95A	mut/mut	mut/mut	+/-	M	12/11/16	4/11/17	17w 2d m-flox-cre			
Rx 95B	mut/mut	wt/mut	+/-	M	12/11/16	4/11/17	17w 2d m-flox-wt			
Rx 95C	mut/mut	wt/mut	+/-	M	12/11/16	4/11/17	17w 2d s-flox-?			
Rx 95D	mut/mut	wt/mut	+/-	M	12/11/16	4/12/17	17w 1d s-flox-?			
Rx 97C	mut/mut	wt/wt	+/-	M	12/28/16	4/19/17	16w			
Rx 98C	mut/mut	wt/wt	+/-	M	1/10/17	5/1/17	15w 6d			
Rx 99A	mut/mut	wt/mut	+/-	M	1/10/17	5/4/17	16w 2d orai pres			
Rx 72A	mut/mut	wt/mut	+/-	F	7/20/16	1/25/17	27w		flox-cre	
Rx 72D	mut/mut	wt/mut	+/-	F	7/20/16	1/25/17	27w		flox-cre	
Rx 83E	mut/mut	wt/wt	+/-	F	9/12/16	3/21/17	27w 1d		flox-cre	
Rx 87B	mut/mut	wt/wt	+/-	F	9/14/16	3/21/17	26w 6d			

Ob Mouse IDs:

Mouse ID	fox	cre	orai	sex	birth date	sac date	age at sac	genotype	WVU genotype
Rx 90AKO	mut/mut	wt/mut	+/-	M	10/25/16	2/15/17	16w 1d		flox-cre
Rx 90AZ	mut/mut	wt/wt	+/-	M	11/18/16	3/13/17	16w 3d		flox-cre
Rx 90B	mut/mut	wt/wt	+/-	M	11/18/16	3/21/17	17w 4d		flox-cre
Rx 95A	mut/mut	mut/mut	+/-	M	12/11/16	4/11/17	17w 2d m-flox-cre		
Rx 95C	mut/mut	wt/mut	+/-	M	12/11/16	4/11/17	17w 2d s-flox-cre		
RX	Genotype 1	Genotype 2	Sex	Start Date	End Date	Age	Notes		
------	------------	------------	-----	------------	----------	-----	--------------		
98B	mut/mut	mut/mut	M	1/10/17	5/1/17	15w 6d orai pres			
98E	mut/mut	wt/wt	M	1/10/17	5/3/17	16w 1d			
99A	mut/mut	wt/mut	F	1/10/17	5/4/17	16w 2d orai pres			
72D	mut/mut	wt/mut	F	7/20/16	1/25/17	27w	fox-cre		
87B	mut/mut	wt/wt	F	9/14/16	3/21/17	26w 6d			
87C	mut/mut	wt/mut	F	9/14/16	3/29/17	28w	fox-cre		
2) Original data plotted in Fig 2 quantification of micro CT images.

Group	ID	Measurements	AVE	SD	Group	ID	Measurements	Ribs	AVE	SD
Gr1	90B (M) (17w)	154			Gr1	90B (M) (17w)	94.3	A		
	154	154				90.38	A			
	154	148				95.9	A			
	166	166				93.93	B			
	166	160				94.5	B			
						96.01	B			
						94.81				
Gr2	95D (M) (17w)	178			Gr2	95D (M) (17w)	73.5	A		
	190	178				71.94	A			
	148	172				73.95	A			
	148	172				74	B			
	172	166				72.53	B			
	178	166				73.65	B			
98D (M) (16w)	160	98D (M) (16w)	84.13	C						
---------------	-----	---------------	-------	---						
166		80.4	C	81.04						
160		78.59	C							
178		87.34	D							
178	162	88.15	D							
172	176	88.42	D	87.97						
99A (F) (16w)	184	99A (F) (16w)	87.26	E						
172		89.15	E							
172	176	89.4	E	88.60						
148		90.22	F							
148		90.89	F							
142	146	90.68	F	90.60						
3) Original uncropped and unprocessed western blots from Fig 3. As per Plos instructions

Figure 4D top panel Western Blot

Method used: Proteins were separated on a 4-12% gradient bis-tris gel and transferred to polyvinylidene difluoride (PVDF) membranes. Target protein was detected by enhanced chemiluminescence on autoradiography film. Primary antibody rabbit anti-Orai1 antibody Alomone Labs (ACC-062, Jerusalem, Israel) (1:200). Secondary antibody horseradish peroxidase conjugated anti-rabbit (1:40,000, Jackson ImmunoResearch)

The position of the standards (colored, not labeled by antibody) is traced from the original pdf membrane. Selected standards shown were identified by color.

Loading order and sample identity are labeled on the blot image
Actin Blot per Plos instructions

Figure 4D bottom panel Western blot

Method used: Proteins were separated on a 4-12% gradient bis-tris gel and transferred to polyvinylidene difluoride (PVDF) membranes. Target protein was detected by enhanced chemiluminescence on autoradiography film.

Mouse monoclonal beta-actin antibody A2228 (1:1,000, Sigma), with secondary horse radish peroxidase conjugated anti-mouse (1:40,000) was used. The actin re-blot was done three days later after removing the antibody with Restore Western Blot stripping solution (Fischer).

The position of the standards (colored, not labeled by antibody) is traced from the original pdf membrane

Selected standards shown were identified by color

Loading order and sample identity are labeled on the blot image
4) Original data for all micro CT measurements shown in Fig 3.

Bone Volume/Total Volume (BV/TV)	Trabecular Thickness (µm; Tb.Th)	Trabecular Number (mm-1; Tb.N)	Trabecular spacing (Tb.Sp)				
Wild Type	Orai1 cKO	Wild Type	Orai1 cKO	Wild Type	Orai1 cKO	Wild Type	Orai1 cKO
25.99	23.86	50.26	49.79	0.0052	0.0048	143.17	158.97
25.61	13.98	49.80	43.19	0.0051	0.0032	144.75	265.45
25.53	22.96	50.16	50.00	0.0051	0.0046	146.31	167.87
23.80	13.49	49.00	42.44	0.0049	0.0032	156.76	272.02
25.37	19.98	51.16	46.62	0.0050	0.0043	150.46	186.48
23.69	19.53	49.23	46.05	0.0048	0.0042	158.67	189.80
21.44	21.71	50.29	46.49	0.0043	0.0047	184.45	167.65

ave | ave | ave | n=7 | sd | sd | sd | n=7 |
24.50 | 19.36 | 49.98 | 46.37 | 0.72 | 2.90 | 0.0077 | graphpad |
1.62 | 4.13 | 24.98 | 19.36 | 0.72 | 2.90 | 0.0077 | graphpad |

p= 0.0099
graphpad

Fraction Surface Labeled	Bone Formation (mm3/d; BFR)		
Wild Type	Orai1 cKO	Wild Type	Orai1 cKO
0.39	0.30	10.29	5.93
0.34	0.30	8.96	5.89
0.30	0.32	7.82	6.29
0.35	0.41	9.25	8.01

ave | ave | n=4 | n=4 | sd | sd |
0.35 | 0.33 | 9.08 | 6.53 | 0.02 | 1.00 |
p= NS | p= 0.0118 | graphpad | graphpad |
5) Original data for PCR measurements in Fig 5, beginning with list of all primers used in [12] and [16] and this manuscript

Table 1. PCR primers (Mouse)

Gene	Primers	Product size	Reference			
ALP	F - 5'-ATCGGAACAACCTGACTGACCTTTT-3' R - 5'-ACCTCATGATGCTGGTTCAAAT-3'	131 bp	[12]			
Col1a1	F - 5'-TCTCTCTGGCAAGAGACGACGTTA-3' R - 5'-AGGAAGCTGAGTCATAACCGCCA-3'	159 bp	[16]			
Osx	F - 5'-GATTGGCGGTCTCTGCTGTT-3' R - 5'-ACCCTCATGATGTCCGTGGTCAAT-3'	146 bp				
RANKL	F - 5'-GCTCCGAGCTGTTGACATA-3' R - 5'-GATGGCTTGGCTCAGTCT-3'	83 bp				
LysM	F - 5'-ATGATGCAACTGCACTGCTAC-3' R - 5'-ACTGAGCTGGTGTGGTGAAGA-3'	105 bp				
Atp1a2	(old name ATPa3) F - 5'-TGACCAGAAGGCTGTGAGCT-3' R - 5'-AGAAGCTGAGACACCT-3'	163 bp				
ATP6v0d2	F - 5'-CCAAGGCTTCACATATGGAGA-3' R - 5'-TCACCGTGATCCTTGCAGAAAT-3'	192 bp				
Cathepsin-K	F - 5'-CAACAGAGGATGGTGTACTATG-3' R - 5'-CGTCCTGCTTATTCGAGC-3'	174 bp				
TRAP	F - 5'-CACGGAGAAGGCTGCTGCTGTC-3' R - 5'-AGTTGGTGTGGCAGTACCTTCCA-3'	174 bp				
PPARBEI	F - 5'-CGCTGATGCACTGCTATGAGA-3' R - 5'-AGAAGCTGAGACACCT-3'	100 bp				
Osteocalcin	F - 5'-ACCCTTTTTGCTCAGTCTGT-3' R - 5'-TTTCCAGTCCTTGGAGCATG-3'	118 bp	[16]			
Actin	F - 5'-GAGATATCGACTGCCTGCTGCTG-3' R - 5'-ACCAGGACGCTTATGAGAAGG-3'	275 bp				
GAPDH	F - 5'-GTGGTCTTCTGACTGGTTC-3' R - 5'-GAGGTTGCTGACATGAGG-3'	184 bp				
Orai1	F - 5'-TACTTAAGCCCGCCAAGCTGATAGA-3' R - 5'-GCAGGTGCTAGTCTGTGTTG-3'	192 bp				
OPG	F - 5'-TACCTTAAAGCCGCGCAACTGCTGTTGAGG-3' R - 5'-GCAGGTGCTGACATGAGG-3'	211 bp				
ATF4	(CREB2) F - 5'-CCTGAACAGGAGTGGTCTGGTTGACTGAGG-3' R - 5'-ACTGAGCTGAG-3'	134 bp				
RunX2	F - 5'-ATGATGACACTGCACTGCGCTTCTGAG-3' R - 5'-ACTGAGCTGAG-3'	105 bp				
	GAPDH	Orai1	OCN	ALP	RUNX2	Col1 A1
-------	-------	-------	-----	-----	-------	---------
cKO						
5A-mut/mut,M	17.54	0.687770909	29.72	0.000215504		
5A-mut/mut,M	17.58	0.668963777	29.82	0.000206725		
95D-wt/mut,M	18.33	0.397768242	28.03	0.001202289		
95D-wt/mut,M	18.3	0.406126198	27.77	0.001410087	26.72	0.001153313
72A-wt/mut,F	19.42	0.186856156	29.41	0.000983355	26.79	0.001145347
72A-wt/mut,F	19.4	0.189464571	29.6	0.000850147	27.83	0.00085606
72D-wt/mut,F	19.62	0.162667332	28.69	0.001860621	27.86	0.000804288
72D-wt/mut,F	19.61	0.163799175	28.72	0.001809742	22.61	0.01897195
95A-CRE	16.96	1.028113827	26.72	0.001153313	22.58	0.01991501
95A-CRE	17.02	0.986232704	26.79	0.001145347	24.13	0.003670011
95C-CRE	17.64	0.641712949	27.83	0.00085606	28.84	0.000372622
95C-CRE	17.58	0.668963777	27.86	0.000804288	28.74	0.000410594
95D-CRE	16.89	1.079228237	22.61	0.01897195	22.4	0.02005353
95D-CRE	16.93	1.049716684	22.58	0.01991501	22.5	0.01991501
WT						
97C	16.32	1.602139755	22.8	0.011202775		
83E	16.71	1.172834949	22.46	0.019370433	21.24	0.03794359
83E-WT	16.72	1.214194884	22.44	0.01897195	21.18	0.040666933
83E-WT	16.52	1.394743666	21.24	0.03794359	19.44	0.211686328
83E-WT	16.56	1.356604327	21.18	0.040666933	19.41	0.207329886
98B-WT	17.2	0.870550563	19.44	0.211686328	18.1	0.757858283
98B-WT	17.14	0.907519155	19.41	0.207329886	18.06	0.768437591
97C-WT	17.7	0.615572207	18.1	0.757858283	20.57	0.038207509
97C-WT	17.68	0.624165274	18.06	0.768437591	20.6	0.038207509

n=14

Av	sd	p	p			
0.88517087	0.19899326	0.003670306	0.006701963	0.009372225	0.20713557	0.194808938
0.003670306	0.006701963	0.009372225	0.20713557	0.000410594	0.020713557	0.209139422

n=10

Av	sd	p	p			
0.874882305	0.343060924	0.208428878	0.038207509	0.389769823	0.045562933	0.369380436

0.0119209207

Note two outliers significant without these.
Replic	Dye	Threshold	Primers	cDNA	Ct (dR)	Proportion
1	SYBR	51.519	GAPDH	97C-WT	16.57	
2	SYBR	51.519	GAPDH	97C-WT	16.65	
3	SYBR	51.519	GAPDH	83E-WT	15.36	
4	SYBR	51.519	GAPDH	83E-WT	15.52	
5	SYBR	51.519	GAPDH	95D-KO	16.91	
6	SYBR	51.519	GAPDH	95D-KO	17.12	
7	SYBR	51.519	GAPDH	95C-KO	18.25	
8	SYBR	51.519	GAPDH	95C-KO	18.52	
9	SYBR	51.519	Osterix	97C-WT	20.8	0.0533
10	SYBR	51.519	Osterix	97C-WT	20.76	0.0579
11	SYBR	51.519	Osterix	83E-WT	18.76	0.0947
12	SYBR	51.519	Osterix	83E-WT	18.63	0.1158
13	SYBR	51.519	Osterix	95D-KO	21.99	0.0296
14	SYBR	51.519	Osterix	95D-KO	22.07	0.0324
15	SYBR	51.519	Osterix	95C-KO	25.04	0.0090
16	SYBR	51.519	Osterix	95C-KO	25.01	0.0111
17	SYBR	51.519	ATF-4	97C-WT	18.73	0.2238
18	SYBR	51.519	ATF-4	97C-WT	18.83	0.2207
19	SYBR	51.519	ATF-4	83E-WT	18.01	0.1593
20	SYBR	51.519	ATF-4	83E-WT	17.95	0.1856
21	SYBR	51.519	ATF-4	95D-KO	19.81	0.1340
22	SYBR	51.519	ATF-4	95D-KO	20.03	0.1330
23	SYBR	51.519	ATF-4	95C-KO	20.93	0.1560
24	SYBR	51.519	ATF-4	95C-KO	20.98	0.1817
25	SYBR	51.519	ATF-4	97C-WT	18.28	0.3057
26	SYBR	51.519	ATF-4	97C-WT	18.45	0.2872
27	SYBR	51.519	ATF-4	83E-WT	17.4	0.2432
28	SYBR	51.519	ATF-4	83E-WT	17.35	0.2813
29	SYBR	51.519	ATF-4	95D-KO	19.73	0.1416
30	SYBR	51.519	ATF-4	95D-KO	19.32	0.2176
31	SYBR	51.519	ATF-4	95C-KO	20.23	0.2535
32	SYBR	51.519	ATF-4	95C-KO	20.36	0.2793
33	SYBR	51.519	H2O	H2O	No Ct	
34	SYBR	51.519	H2O	H2O	No Ct	
ATF PCR data

WT	KO
0.0533	0.0296
0.0579	0.0324
0.0947	0.009
0.1158	0.0111

WT	KO
0.2238	0.134
0.2207	0.133
0.1593	0.156
0.1856	0.1817
Quantitative data for Fig 6

Stain	wt	ko	wt	ko
note -- all are inverses				
VK	direct			
1	146	207	110.00	49.00
2	145	206	111.00	50.00
3	109	209	147.00	47.00
4	120	211	136.00	45.00
mean			126.00	47.75
sd			18.46	2.22

Alk phos				
1	109	183	147.00	73.00
2	114	186	142.00	70.00
3	133	181	123.00	75.00
4	132	181	124.00	75.00
mean			134.00	73.25
sd			12.30	2.36

ORO				
1	185	183	71.00	73.00
2	185	183	71.00	73.00
3	199	206	57.00	50.00
4	208	201	48.00	55.00
mean			61.75	62.75
sd			11.30	12.01