Effective Connectivity Reveals Right-Hemisphere Dominance in Audiospatial Perception: Implications for Models of Spatial Neglect

Martin J. Dietz,1 Karl J. Friston,2 Jason B. Mattingley,3,4,5 Andreas Roepstorff,1 and Marta I. Garrido2,3,4

1Centre for Functionally Integrative Neuroscience, Institute of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark, 2Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, United Kingdom, 3Queensland Brain Institute, The University of Queensland, St Lucia 4072, Brisbane, Australia, 4Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria 3800, Australia, and 5School of Psychology, The University of Queensland, St Lucia 4072, Brisbane, Australia

Detecting the location of salient sounds in the environment rests on the brain’s ability to use differences in sounds arriving at both ears. Functional neuroimaging studies in humans indicate that the left and right auditory hemispheres are coded asymmetrically, with a rightward attentional bias that reflects spatial attention in vision. Neuropsychological observations in patients with spatial neglect have led to the formulation of two competing models: the orientation bias and right-hemisphere dominance models. The orientation bias model posits a symmetrical mapping between one side of the sensorium and the contralateral hemisphere, with mutual inhibition of the ipsilateral hemisphere. The right-hemisphere dominance model introduces a functional asymmetry in the brain’s coding of space: the left hemisphere represents the right side, whereas the right hemisphere represents both sides of the sensorium. We used Dynamic Causal Modeling of effective connectivity and Bayesian model comparison to adjudicate between these alternative network architectures, based on human electroencephalographic data acquired during an auditory location oddball paradigm. Our results support a hemispheric asymmetry in a frontoparietal network that conforms to the right-hemisphere dominance model. We show that, within this frontoparietal network, forward connectivity increases selectively in the hemisphere contralateral to the side of sensory stimulation. We interpret this finding in light of hierarchical predictive coding as a selective increase in attentional gain, which is mediated by feedforward connections that carry precision-weighted prediction errors during perceptual inference. This finding supports the disconnection hypothesis of unilateral neglect and has implications for theories of its etiology.

Key words: audiospatial; Bayesian; connectivity; DCM; EEG; neglect

Introduction

The brain’s ability to use spectral, phase, and energy differences between sounds arriving at the left and right ears is crucial for locating sounds in the environment. The main cue, for inferring the source of a sound in the horizontal plane, is the interaural time delay (ITD) between the two ears (Thompson et al., 2006). Left and right auditory afferents are known to converge early in the auditory hierarchy, at the level of the superior olivary complex in the brainstem, and then project to the medial geniculate nucleus of the thalamus via the inferior colliculus in the midbrain (Irvine, 1986; Heffner and Masterton, 1990). Functional neuroimaging studies in humans have shown that the inferior colliculus (Thompson et al., 2006) and the primary auditory cortex (von Kriegstein et al., 2008) elicit stronger responses in the hemisphere contralateral to the side of space where the stimulus is perceived. This is consistent with the anatomical crossing of fiber pathways up to the level of the cerebral cortex where interhemispheric integration becomes transcallosal. Several neuroimaging studies indicate that the cortical systems that mediate audiospatial perception are organized asymmetrically beyond primary auditory cortex, with a right-hemispheric specialization. Specifically, the right inferior parietal cortex has consistently been shown to respond to both contralateral and ipsilateral stimuli with fMRI (Griffiths et al., 1998; Bushara et al., 1999; Maeder et al., 2001; Krumbholz, 2005; Brunetti et al., 2008), positron emission tomography (Zatorre et al., 2002), and magnetoencephalography (MEG; Kaiser et al., 2000). This functional asymmetry parallels
spatial attention in vision (Corbetta and Shulman, 2002). Converging evidence thus points to the hemispheric specialization of spatial attention as a multimodal property of the brain (Fritz et al., 2007), which dominates current theories of unilateral neglect (Mesulam, 1999). Neglect of the left side of the sensorium after a right-hemisphere lesion is more frequent and severe than vice versa (Driver and Mattingley, 1998). While the etiology of this phenomenal asymmetry remains unresolved, two alternative accounts have been proposed (Fig. 1): the orientation bias model hypothesizes that attention is shifted toward the contralateral hemisphere (Kinsbourne, 1970, 1977) and the right-hemisphere dominance model states that the left hemisphere represents the right side of space, whereas the right hemisphere represents both sides of the sensorium (Mesulam, 1999).

To disambiguate between these two hypotheses, we used an oddball paradigm, where the location of a sound changed sporadically and unpredictably from the midline to the left or to the right side of space. We formulated a set of dynamic causal models (DCMs) that map onto the orientation bias model or the right-hemisphere dominance model, respectively. These models represent alternative hypotheses about the cortical networks that mediate audiospatial perception and make different assumptions about the type neuronal connections that embody hemispheric asymmetries in a frontoparietal network. We used Bayesian model selection to compare the evidence for the orientation bias and the right-hemisphere dominance models with varying levels of complexity in terms of their forward and backward connections.

Materials and Methods

Experimental design and data acquisition. We recorded 64-channel electroencephalography (EEG) from 12 healthy volunteers (seven females, mean age 25 years, range 20–35) using active Ag/AgCl electrodes placed according to the extended 10–20 system (Brain Products). Subjects were presented with an auditory oddball paradigm in which the location of a sound changed unpredictably from midline to the left and right side of egocentric space (Fig. 1C). Stimuli perceived as originating from the midline were repeated between four and seven times and had 80% probability of occurrence. An ITD of 800 μs between left and right ears was used to induce a change in the location of the stimulus to subjective left and right space at $90{}^\circ$ angle in the horizontal plane. Stimuli at left and right locations each had 10% probability of occurrence. All other spectral, amplitude, and duration parameters were kept constant. Stimuli consisted of sinusoidal pure tones with 75 ms duration, including 5 ms fade-in and 5 ms fade-out. We used Presentation software (Neurobehavioral Systems) to deliver stereo stimuli through in-ear headphones (Sennheiser) at a stimulus-onset asynchrony of 500 ms. Each subject was presented with 1400 midline trials, 200 left and 200 right hemispace trials. Participants were instructed to maintain fixation on a central cross (on a black screen) during the experiment. Ethical approval was obtained from the local ethics committee of the Central Denmark Region and subjects gave their informed consent before the experiment.

EEG data preprocessing. Data analysis was performed using Statistical Parametric Mapping (SPM8) academic software (Wellcome Trust Centre for Neuroimaging, UCL; http://www.fil.ion.ucl.ac.uk/spm/) implemented in MATLAB (MathWorks.). EEG data were re-referenced to the average over sensors, high-pass filtered at 0.5 Hz, and low-pass filtered at 30 Hz using a two-pass Butterworth filter and downsampled from 1 kHz to 250 Hz. Experimental trials were epoched from -100 to 400 ms in peristimulus time and baseline corrected using the average over the pre-stimulus time window. Artifacts were rejected by thresholding the signal at 80 μV, leaving a total of 80% trials on average. Trials were averaged using robust averaging (Wager et al., 2005) to form evoked responses (ERPs). To facilitate analysis in sensor space, the ERPs were converted into 3D spatiotemporal images (2D scalp plus the time dimension) and smoothed with a Gaussian kernel of 20 mm FWHM in the spatial and 20 ms in the temporal dimensions. We used a standard statistical parametric mapping (one-sample t test) to test for significant differences between left and midline trials, and between right and midline trials, over the entire 3D scalp-time volume.

Dynamic Causal Modeling. Dynamic Causal Modeling of evoked responses is a model-based method for estimating the coupling between the areas of a cortical network and how this coupling changes with experimental context (David et al., 2006; Kiebel et al., 2006). This context-dependent connectivity is referred to as effective connectivity and is defined as the directed influence one neuronal population exerts over another at the synaptic or laminar level (Friston et al., 2003). DCMs use biologically informed neural-mass models (David et al., 2006) that summarize the neuronal dynamics, within an electromagnetic source, as the average activity over the neuronal populations of the cortical column. Each cortical source comprises excitatory pyramidal cells, as well as excitatory spiny stellate cells and inhibitory interneurons (basket cells) according to the Jansen and Rit model (Jansen and Rit, 1995). The connectivity between cortical areas conforms to the laminar origins and targets described by Felleman and Van Essen (1991) and comprise three types of connections: forward, backward, and lateral. Forward connections are excitatory and drive activity in higher levels of the cortical hierarchy in a feedforward fashion. They originate predominantly from the pyramidal cells in superficial layers (L2/3) and target granular layer 4. Backward connections are inhibitory and provide modulatory feedback to lower levels. They originate mainly in deep layers (L5/6) and target both deep and superficial layers. Lateral connections enable interhemispheric integration between homotopic areas, originate in agranular layers, and target all layers (David et al., 2006). Both extrinsic (between-area) and intrinsic (within-area) connections can change with experimental context (Kiebel et al., 2007).

A DCM is specified in terms of its state equation modeling neuronal dynamics and an observation model generating the measured electromagnetic signal y. The state equation

$$\dot{x} = f(x,u,\theta)$$

describes how the activity x in each neuronal population of the network evolves as a function of activity in another population and experimental manipulations u. This equation is parameterized in terms of the coupling strengths θ of intrinsic and extrinsic forward, backward, and lateral connections. The observation model uses a spatiotemporal formulation of a conventional equivalent current dipole (ECD) forward model

$$y = L(\varphi)x_0 + \epsilon$$

which summarizes the expression of superficial pyramidal cell depolarization x_0 on the EEG sensors with additive Gaussian error ϵ. Each source
in the network is modeled as a dipole whose locations and orientations ϕ parameterize the electromagnetic lead-field matrix L (Kiebel et al., 2006). The ensuing lead field was based on a boundary element method (BEM) head model to describe the cortical sheet and the propagation of the electric voltage through the tissue and cranial layers onto the scalp surface (Mosher et al., 1999).

Bayesian inference. DCMs are estimated using variational Bayes (Friston et al., 2007). Given a model m, specified in terms of its prior density $p(\theta|m)$, and data y, this furnishes both the posterior density $p(\theta|y,m)$ of the connection strengths θ and the marginal likelihood of the model itself, known as the model evidence

$$p(y|m) = \int p(y|\theta,m)p(\theta|m)\,d\theta.$$

Using a Laplace approximation to the posterior density $q(\theta) = p(\theta|y,m)$, the posterior means $\hat{\theta}$ and covariances Σ are estimated iteratively by maximizing a lower bound on the log-evidence $\ln p(y|m)$, formulated as a Newton search on the (negative) free energy F of model m

$$F = \int q(\theta) \ln p(y|\theta)\,d\theta - \int q(\theta) \ln q(\theta)\,d\theta.$$

This renders the free energy an approximation to the log-evidence $F = \ln p(y|m)$. The first term is the expected log joint density of data y and parameters θ. The second term is the (differential) entropy of the model. Both quantities are expectations under the approximate posterior density, leading to a preference for the simpler or more general model, provided the data support it.

Results

Statistical parametric mapping of evoked responses in sensor space

Random-effects group analysis of the scalp maps of evoked responses revealed a negative ERP to both left and right stimuli relative to stimuli perceived in the midline (Fig. 2). This negat-
Evoked Responses

Sensor maps

Statistical t-maps

Figure 2. A, ERPs to left (blue), right (red), and midline (black) stimuli at the EEG sensor with maximal statistical effect. B, ERP scalp maps at the time of the maximal peak for left (148 ms) and right (128 ms) spatial deviancy, respectively. C, Statistical t maps showing the effect of left spatial deviancy (left) and right spatial deviancy (right), thresholded at $p < 0.001$ uncorrected for visualization.

Cortical hierarchy
We also considered an alternative cortical hierarchy, in which the parietal sources received direct connections from the superior temporal gyrus, without passing through the inferior frontal gyrus. Anatomically, this is a plausible model. However, Bayesian model comparison favored the hierarchic family of models, in which the parietal responses were mediated via the inferior frontal gyrus. This was confirmed with a posterior expected probability >0.90 and an exceedance probability >0.99 in favor of the frontoparietal network (Fig. 3).

Left auditory deviancy
The results of Bayesian model selection show that a right-lateralized temporoparietal network best explains the brain responses to changes in sound location from the midline to the left side of auditory space. We found strong evidence in favor of this right-lateralized network compared with the set of alternative hypotheses (models), with a posterior model probability >0.99 (Fig. 4). There was a significant increase in the intrinsic (within-area) coupling in right A1 (16.3%; $t = 4.04, p = 0.001$), consistent with the stronger contralateral activation shown by von Kriegstein et al. (2008).
connections changed in both hemispheres within temporal cortex. Here, an increase in coupling strength from right A1 to right STG (50.6%; \(t = 2.76, p = 0.009\)) provides further evidence of a hemispheric lateralization within temporal cortex. Mediated by the reciprocal connections between temporal cortex and the IFG in both hemispheres, right lateralization was confirmed with a large increase in the forward connection (76.7%; \(t = 4.26, p = 0.0007\)) from right IFG to the IPC. Significant increases in coupling were only present in the right hemisphere, contralateral to the stimulus location. Finally, there was evidence for interhemispheric integration through inferior parietal cortices, as revealed by a large increase in the lateral connection from right to left IPC (59.7%; \(t = 4.00, p = 0.001\)). This finding further supports the existing evidence that a right frontoparietal network exerts modulatory control over the left parietal cortex, as observed in visuospatial attention (Koch et al., 2011). The contralateral change in forward connectivity that drives the cortical responses can be expressed early or late in poststimulus time. To illustrate the temporal expression of connectivity changes, we evaluated the influence that each forward connection has on its target source in the right hemisphere, contralateral to the stimulus location (Fig. 4C). This sensitivity analysis evaluated the change in pyramidal cell activity in each of the temporal, frontal, and parietal sources with respect to a change in its afferent forward connection \(\partial x(t)/\partial \theta\). This effectively discloses the temporal expression of the source activity as a function of the particular connection that drives its responses. The change in the coupling parameter between two regions was set to \(\partial \theta = \exp(-6)\) to provide an appropriate scaling. Note that the responses are normalized for visualization to accommodate differences in scaling among sources. The response in auditory cortex reflects the effect of the thalamic input and is shown for completeness. The activity of superficial pyramidal cells is known to produce the observed EEG/MEG signal and therefore has a direct interpretation in relation to the observed responses. Our results show that the forward connections exert their effects successively later in poststimulus time at progressively higher levels of the cortical hierarchy. Changes in the connectivity between sensory sources within temporal cortex drive early, bottom-up responses.

Figure 3. A. Anatomical structure of the frontoparietal and temporoparietal hierarchies, summarized in terms of the fullest model in each family. The frontoparietal model includes the temporal (black), frontal (blue), and parietal sources (orange) in hierarchical order. The temporoparietal model includes the temporal (black) and parietal sources (orange). B. Family-level inference shows strong evidence in favor of a frontoparietal network with a posterior expected probability > 0.90 and exceedance probability > 0.99.

Figure 4. A. Anatomical architecture of the DCM that best explains the brain responses to changes from midline to the left side of auditory space. This right-lateralized network has the highest log-evidence and a posterior model probability > 0.99. B. Network graph showing percentage changes in effective connectivity that increases selectively in the hemisphere contralateral to sensory stimulation (*\(p < 0.05\), **\(p < 0.05\) Bonferroni corrected). C. Average response of temporal, frontal, and parietal sources in the right hemisphere with respect to a change in its forward connection \(\partial x(t)/\partial \theta\).
that have a temporal correspondence with the classical N100. Conversely, changes in connectivity higher in the cortical hierarchy induce late effects whose temporal expression matches those of the MMN and P3a.

Right auditory deviancy

Bayesian model selection showed that a bilateral temporoparietal-parietal network best explains the brain responses to changes in sound location from the midline to the right side of auditory space. We found very strong evidence in favor of this bilateral network compared with the set of alternative hypotheses, with a posterior model probability > 0.99 (Fig. 5). In terms of its architecture, the network evidenced the same reciprocal connections within temporal cortex and between superior temporal and the inferior frontal cortex reported above. We found a significant increase in the forward connection from left A1 to left STG (49.6%; t = 2.29, p = 0.02), which mirrors the lateralization observed for perception of the left auditory space. Again, this shows a selective increase in the contralateral forward connection within temporal cortex. Consistent with the right-hemisphere dominance model, we found evidence for a bilateral network that increases the strength of forward connectivity from frontal to parietal cortices. Importantly, within this bilateral network, a selective increase in coupling strength (59.1%; t = 3.72, p = 0.001) in the left hemisphere suggests a degree of lateralization. This mirrors the increase in coupling between frontal and parietal cortex observed for perception of the opposite side of auditory space. Finally, there was no evidence for interhemispheric integration between parietal cortices, in contrast to our findings for left spatial deviancy. This is consistent with the hypothesis that only the right frontoparietal network modulates the left parietal cortex during the allocation of spatial attention, in contradistinction to mutual modulation between the two hemispheres (Koch et al., 2011). In short, these findings support the right-hemisphere dominance model of audiospatial perception. To illustrate the temporal expression of connectivity changes contralateral to the stimulus location, we evaluated the influence that each forward connection has on its target area in the left hemisphere using the sensitivity analysis described above (Fig. 5C). The response in auditory cortex reflects the effect of the thalamic input and is shown for completeness. This shows that for both left and right spatial deviancy, the forward connections in the hemisphere contralateral to the side of stimulation exert their effects early and late in poststimulus time at lower and higher levels of the cortical hierarchy, respectively. Note that the early responses in auditory cortex correspond to the classical N100. This reflects the subcortical input from the thalamus that drives the network in a feedforward fashion. The response in the inferior frontal cortex has a temporal expression that matches that of the MMN, which is assumed to reflect the detection of a change in the stimulus location (Paavilainen et al., 1989). Finally, the temporal expression of the parietal response corresponds to the P3a, which is assumed to reflect the attentional reorienting to the left or the right side of auditory space (Friedman et al., 2001). This is in line with previous evidence that the observed P300 arises from the interaction between frontal and parietal regions (Polich, 2007).

Orientation bias versus right-hemisphere dominance

Having established the corticocortical network that mediates responses to deviancy in each auditory hemisphere separately, we compared a DCM that embodies an orientation bias model with a DCM that conforms to the right-hemisphere dominance model. This comparison included the trials from both left and right experimental conditions, where we constrained the changes in coupling to be either contralateral to the side of stimulus deviancy, with mutual modulation of the ipsilateral hemisphere...
(orientation bias model) or to have an asymmetric expression (right-hemisphere dominance model). In the latter model, left auditory stimuli modulated connections in the right hemisphere and right auditory stimuli modulated both left and right hemispheres. We tested these alternative hypotheses against a null model that precluded any changes in connectivity. Bayesian model selection provided very strong evidence in favor of an asymmetric coding of space, which conforms to the right-hemisphere dominance model, with a posterior probability >0.99 and an exceedance probability >0.98 (Fig. 6).

Discussion

We formulated competing hypotheses about the cortical networks that mediate audiospatial perception and tested these alternative models using human EEG data. We induced bottom-up attentional reorienting with an auditory location oddball paradigm. Electrophysiological responses to unpredictable, spatially deviant events showed a classical mismatch negativity reflecting change detection (Paavilainen et al., 1989) and a subsequent P3a reflecting attentional reorienting (Polich, 2007). Bayesian model comparison of a set of increasingly complex networks revealed that responses to the left side of space involved the interaction between frontal and parietal regions in the contralateral hemisphere. However, responses to the right side of space were generated by interactions among frontal and parietal cortices in both hemispheres. These results support the idea of a hemispheric asymmetry in a frontoparietal network that is in accordance with the right-hemisphere dominance model originally proposed by Heilman and Van Den Abell (1979) and Mesulam (1981). Interestingly, we found an increase in the interhemispheric connection from right to left parietal cortex. This is in line with existing evidence for a right parietal inhibitory control over the left parietal cortex in visuospatial attention (Koch et al., 2011). In the formal test of hemispheric asymmetries, we directly compared frontoparietal networks that embodied our two alternative hypotheses. Within this asymmetric network, we show that a selective increase in effective connectivity establishes a crucial role for the contralateral connections in encoding the location of a stimulus in auditory space. In this sense, there is evidence for lateralization within the right-hemisphere dominant network.

Attention, saliency, and precision

In terms of the implications of our results for computational theories of perception and attention, our findings are consistent with the attentional redeployment that would be expected under hierarchical predictive coding. Under this formulation of the brain, perception corresponds to inferring the (hidden) causes of sensory inputs by minimizing a free-energy bound on the surprise $-\ln p(s|m)$ about sensations s given a generative model m of the world (Friston and Kiebel, 2009). This corresponds to maximizing the evidence $\ln p(s|m)$ of a model of the world. Neurophysiologically, the explicitly hierarchical structure of these models is likely implemented in the form of message-passing between higher and lower levels of the cortical hierarchy as described above. Here, backward connections provide lower levels with predictions in the form of prior beliefs about perceptual states, whereas forward connections carry prediction errors to inform higher levels as to the most likely stimulus perception (Bastos et al., 2012). Importantly, both higher-level predictions and lower-level prediction error are weighted by their relative precision. Our main finding was a profound increase in the strength of forward connectivity. In other words, the relative sensitivity or gain of excitatory spiny stellate populations to feedforward afferents increased markedly when unpredicted stimuli appeared in the contralateral hemifield. This finding is entirely consistent with recent proposals that visual attention is mediated by the precision of prediction errors encoded by the postsynaptic gain of pyramidal cells in superficial layers, which receive inputs...
from spiny stellate cells (Feldman and Friston, 2010). The idea is that unanticipated sensory stimuli are surprising and thus induce a redeployment of attentional gain through top-down neuro-modulatory mechanisms. This attentional gain is controlled by the precision (inverse variance) of prediction errors, which enhances the salience of ascending prediction errors that inform higher levels during perceptual inference. Effectively, this increases the effect of sensory prediction errors on hierarchical representations of the sensorium, relative to descending prior predictions. Mathematically, the weighting of data in relation to their precision is central to Bayesian inference and provides a principled way of understanding exogenous attention from a computational perspective: as the optimization of the weight given to forward prediction errors, relative to backward predictions, during perceptual uncertainty. The selective increases in connectivity reported above for left and right spatial deviancy, respectively, can be seen as modeling context-dependent increases in postsynaptic gain, which are expressed in terms of an increase in the strength of forward connections that convey precision-weighted prediction errors. This context-dependent expression of the forward connectivity points to attentional gain modulation as an integral part of the cortical hierarchies that mediate perception. This interpretation fits with recent dynamic causal modeling studies of oddball responses that have been interpreted in terms of changes in connectivity at specific levels of the auditory hierarchy (Garrido et al., 2009). From the point of view of our experiment, the probabilistic nature of stimuli and the specialized neuronal systems that mediate perception are inseparable, in the sense that an unpredictable stimulus is expected to increase connectivity within the particular network that is specialized for processing the stimulus in question. Note that while both left and right deviants are infrequent, only the left (not the right) deviant elicits a right-lateralized response. This cannot be explained on the basis of rarity, as both left and right deviants are equally infrequent. In short, we do not believe that probabilistic stimuli evoke lateralized responses per se, but rather do so within the network that is specialized for predicting and minimizing prediction error (free energy) with respect to a particular sensory context.

Bayesian model inference

Previous noninvasive studies of audiospatial perception in humans have used EEG to describe ERPs at the sensor level (Paavilainen et al., 1989; Deouell et al., 2006) or dipole models that focused on accurate localization of temporally specific responses in auditory cortex (Kaiser et al., 2000; Krumholz et al., 2007). Other studies have investigated audiospatial perception with spatially resolved BOLD fMRI (Griffiths et al., 1998; Maeder et al., 2001; Zatorre et al., 2002; Krumholz, 2005), which effectively low-pass filters fast neuronal processes. The anatomical correspondence between the observed scalp EEG topography and the neuronal sources that generated these observations does not have a unique solution, especially in the case of multiple simultaneous sources. In other words, it is not possible to infer where in the brain signals were generated without prior constraints on the solution (Baillet et al., 2001). We used a Bayesian framework to estimate the log-evidence of a set of alternative network models (hypotheses), summarized in terms of a set of ECDs in source space. This is not possible with traditional ERP analyses because they operate at the level of the EEG channels. With a Bayesian approach to the identification of effective connectivity, we were able to explicitly test alternative network architectures above and beyond voxelwise analyses where statistical inference only pertains to any one region in the brain. More specifically, the formal identification of a network in the brain, given electrophysiologic or neuroimaging data, is possible because of the multivariate nature of the log-evidence used for model selection. This is because the free-energy approximation to the log-evidence summarizes the optimality of a model in explaining the data as a balance between accuracy and complexity (Penny, 2012). We directly address the question of hemispheric asymmetries by comparing a set of well defined alternative hypotheses (models) using their log-evidence. When formulating these alternative hypotheses, we used the results from previous neuroimaging studies to inform our spatiotemporal dipole models in terms of the prior locations of cortical sources (Kieb el et al., 2006). In this way, we have formally incorporated the existing anatomical knowledge in the form of prior beliefs about the cortical network that mediates audiospatial perception and tested our alternative hypotheses given the data in a Bayes-optimal fashion.

Neglect as a disconnection syndrome

Unilateral spatial neglect typically results from a lesion in the right hemisphere that leaves the patient unable to attend to the left side of the sensorium (Mesulam, 1999). Our results suggest that the more frequent and severe left-sided neglect is a consequence of right-hemisphere dominance of spatial attention as a general systems property of the brain. The frontoparietal network identified above is characterized by an asymmetric coding of auditory space, embodied in the effective connectivity that changes as a function of stimulus laterality. Crucially, this asymmetry is predicted by recent anatomical evidence in humans showing that the superior longitudinal fasciculus, which connects frontal and parietal cortices, has a right-hemisphere dominance: the volume of white matter tracts in the right hemisphere correlated positively with performance during detection of targets in the left compared with the right visual hemifield (Thiebaut de Schotten et al., 2011). There is a great heterogeneity in the lesion profiles of neglect patients (Molenberghs et al., 2012) and the fact that lesions in temporal, frontal, or parietal cortex all lead to a similar attentional deficit (Verdon et al., 2010) points to the idea of unilateral neglect as a “disconnection syndrome” (Bartolomeo et al., 2007). This would explain why unilateral neglect, characterized neuropsychologically as a general impairment in the allocation of attention to one particular side of the sensorium, can result from lesions at different anatomical nodes. Or, indeed, as a result of the disruption of fiber pathways of the frontoparietal network that mediates top-down and bottom-up attention (Corbetta and Shulman, 2011) via the superior longitudinal fasciculus (Thiebaut de Schotten et al., 2011). Future studies in neglect patients will test this idea with the sort of connectivity models used here.

References

Baillet S, Mosher JC, Leahy RM (2001) Electromagnetic brain mapping. IEEE Signal Proc Mag 18:14–30. CrossRef
Bartolomeo P, Thiebaut de Schotten M, Doricchi F (2007) Left unilateral neglect as a disconnection syndrome. Cereb Cortex 17:2479–2490. CrossRef Medline
Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ (2012) Canonical microcircuits for predictive coding. Neuron 76:695–711. CrossRef Medline
Brunetti M, Della Penna S, Ferretti A, Del Gratta C, Gianflore F, Belardinelli P, Caulo M, Pizzella V, Olivetti Belardinelli M, Romani GL (2008) A frontoparietal network for spatial attention reorienting in the auditory domain: a human fMRI/MEG study of functional and temporal dynamics. Cereb Cortex 18:1139–1147. CrossRef Medline
Bushara KO, Weeks RA, Ishii K, Catalan MJ, Tian B, Rauschecker JP, Hallett M (1999) Modality-specific frontal and parietal areas for auditory and
