May peppery wines be the spice of life? A review of research on the ‘pepper’ aroma and the sesquiterpenoid rotundone

Olivier Geffroy*, Didier Kleiber and Alban Jacques
Physiologie, Pathologie et Génétique Végétales (PPGV), Université de Toulouse, INP-PURPAN, 75 voie du TOEC, BP57611, 31076 Toulouse Cedex 3, France
*corresponding author: olivier.geffroy@purpan.fr

ABSTRACT
Rotundone is the main aroma compound responsible for peppery notes in wines. Since its discovery in 2008, this potent and fascinating odorant has been the subject of many research studies worldwide. The aim of this review is to summarize these works. Rotundone is a rather ubiquitous molecule that has been detected in many grape varieties. As with other sesquiterpenes, the proposed biosynthetic scheme for rotundone involves both the methylerythritol phosphate (MEP) and the mevalonate (MVA) pathways. The production of the compound by the plant, which could be a response to biotic stress, is also affected by abiotic factors. In most cases, studies showed that rotundone was neutrally or positively perceived by consumers, which makes the peppery note a desirable character in vine. Practical ways were identified to modulate rotundone levels in wines using viticultural and enological techniques. Climate change, through the expected alteration of precipitation regime and a rise in temperature over the grape maturation period, should have a depressive impact on rotundone accumulation. Adaptation strategies in this context, together with other perspectives of research, are discussed in concluding this review.

KEYWORDS
peppery aroma, rotundone, occurrence, biosynthesis, consumer acceptance, modulation techniques
INTRODUCTION

The aromatic component of a wine is a key element in its appreciation by consumers, as the olfactory assessment takes place just after the visual examination, which is seldom discriminatory. Aromas are also perceived in the palate through the retronasal olfaction as the oral and nasal cavities are connected to each other. Thus, the persistence of the aromas in the mouth, which is one of the last sensory memories left by the wine after swallowing or spitting it out, also contributes to the overall appreciation. With more than 800 compounds according to Robinson et al. (2014), or more than 1000 according to other authors (IFV 2013), wine is one of the food products richest in volatile molecules. All these volatile compounds do not necessarily have an odorant property and odorants are often characterized by a moderate molecular weight, low polarity, good water solubility, high vapor pressure and a lipophilic character (Meierhenrich et al., 2005). The bouquet of wine may involve 80 molecules (Dagan, 2006), originating from grapes for the varietal aroma fraction or synthesized during pre-fermentation operations, alcoholic and malolactic fermentations and aging. Most contributors to the varietal aroma of white wines have been widely studied, for example the monoterpenols responsible for floral notes in Muscat-like varieties (Terrier and Boidron, 1972), or the varietal thiols imparting passion fruit and grapefruit aroma in Sauvignon wines (Tominaga et al., 1998). Until 2008, knowledge of the aromatic compounds that account for the varietal character of red wines, especially free compounds directly extracted from grapes without being released from a precursor, was limited to methoxypyrazines, responsible for undesirable green notes in wines (Lacey et al., 1991). The discovery in an Australian Syrah wine of rotundone, a sesquiterpene responsible for peppery notes (Wood et al., 2008), made a major contribution to this knowledge. Despite its sensory significance, this molecule has remained undetected for a long time in wine and other food products, including pepper. Rotundone has been the subject of much research since its discovery, notwithstanding the lack of availability of commercial standards, a constraint that involves achieving its organic synthesis. This review article addresses the state of the literature on ‘pepper’ aroma and especially on rotundone. In light of the factors affecting rotundone concentration, adaptation strategies are proposed that will assist in producing wines with consistent rotundone levels in the context of climate change.

1. Generalities on pepper and pepper aroma

Black pepper (Piper nigrum), native to the Southeast coast of India, is one of the most widely used spices in the world, with sensory qualities that have been recognized for millennia. It was the main spice imported by the Romans and during the siege of Rome at the end of the Western Roman Empire, the Visigoths claimed 3000 pounds of pepper as a ransom payment (Bury, 1889). In the Middle Ages, pepper was an essential commodity in the European economy, as tolls were paid in pepper in the South of France, Germany, Italy and Poland (Schoell, 1834). This strong demand for pepper led to the trade development toward the East. In search of alternatives to the long and perilous spice routes, Vasco de Gamma crossed the Cape of Good Hope and Christopher Columbus discovered America (Demolins, 1901). Today Vietnam, India, Brazil and Indonesia are the main pepper producers in the world.

Green, black, gray and white pepper are different forms of pepper products on the market (Variyar et al., 1988). Green and black peppercorns are produced using green berries harvested before full ripeness is reached. The green peppercorn berries are usually boiled, treated with sulfur dioxide and frozen or dried to preserve their color. Black pepper, the most noble pepper, is obtained by fermenting these green berries. Red pepper is made of red-orange berries harvested at full maturity. White pepper is traditionally obtained from red pepper that has been immersed in water for several days to eliminate the pericarp. The powdered gray pepper comes from crushing lower-quality black pepper berries.

Other species from the genus Piper are also used to produce pepper. The berries of P. longum produce long pepper, P. cubeba gives cubeb or tailed pepper and P. borbonense is used to make Voatsiperifery pepper. By analogy, other spices misuse the vernacular name of ‘pepper’. These berries are obtained from species with different botanical characteristics and that do not belong to the genus Piper. Sichuan pepper (Zanthoxylum piperitum) and pink pepper (Schinus terebinthifolius) are among the best-known of these ‘fake’ peppers. Because of their distinctive peppery flavor some plant species are sometimes also described as ‘peppery’, such as peppermint (Mentha piperita), which results from a spontaneous hybridization between water mint (Mentha aquatica) and spearmint (Mentha spicata).
Piperine and its stereoisomer chavicine are the main active compounds of pepper (De Cleyn and Verzele, 1972). These cyclic secondary amines belonging to the piperidine family are the alkaloids responsible for the pungent character of pepper. This sensation relies on the trigeminal nerve and is independent of the chemical receptors located in the buccal cavity responsible for the five basic tastes (sweet, salty, sour, bitter and umami). This nerve provides both a sensory function and the motor function for biting, chewing and swallowing. In addition to the pungent sensation, it is also involved in the sensations of touch, pain and freshness. During the storage of peppercorns, chavicine is slowly transformed into piperine, which leads to a decrease in the pungent character (Kozukue et al., 2007). Pepper also contains many volatile compounds, mostly monoterpenes and sesquiterpenes (SQT) (Table 1). Before the discovery of rotundone (Wood et al., 2008), Jagella and Grosch (1999) concluded that α-pinene, β-pinene, myrcene, α-phyllandrene, limonene, linalol, 2-methylpropanal, 2- and 3-methylbutanal, butyric acid and 3-methylbutyric acid, were the main odorants of Piper nigrum. Other research highlighted that the volatile composition of black and white peppers differed slightly (Chen et al., 2011).

The spicy or peppery character has always been associated with the world of wine. Spices were commonly used at the time of the Roman Empire to elaborate the conditum paradoxum. The recipe for this spicy wine is given in the book De Re Coquinaria, written in the 1st century AD by the gourmet Apicius. A wine, usually of poor quality, was boiled with honey and then supplemented with spices (pepper, mastic, nard, laurel and saffron) and dried fruits (dates). The product obtained was diluted with quality wine and hot coals were added to promote conservation. This tradition also existed in the Middle Ages with hypocras which was a beverage made from wine, honey, spices and herbs. Nowadays, the spicy dimension has an important place in the aromatic description of wine. The work led by Noble et al. (1987) classified the aroma of wine into 12 aromatic families, including a spicy family. These spicy notes (licorice/anize, black pepper and clove) imply a varietal origin clearly dissociable from the woody notes.

TABLE 1. Main volatile compounds identified in pepper (Piper nigrum).

Monoterpenes	Sesquiterpenes	Other compounds
α-Thujene	α-Copane	Eugenol
α-Pinene	β-Caryophyllene	Methyl eugenol
Sabinene	β-Bisabolene	Myristicine
β-Pinene	Caryophyllene oxide	Safrole
1,8-Cineole	α-Cis-Bergamotene	Benzaldehyde
Limonene	α-Trans-Bergamotene	Trans-Anethole
Linalol	B-Bisabolene	Piperonal
Camphene	δ-Cadinene	2-Methylpropanal
δ-3-Carene	γ-Cadinene	2-Methylbutanal
Myrcene	Calamenene	3-Methylbutanal
Cis-Ocimene	α-Copaene	m-Methyl acetophorene
α-Phellandrene	α-Cubenene	p-Methyl acetophorene
β-Phellandrene	β-Cubenene	n-Butyrophorene
α-Tepinolene	α-Curcumene	Phenylacetic acid
γ-Terpine	β-Elmenes	Cinnamic acid
Terpinolene	α-Selenenes	Piperonic acid

Adapted from Jagella et Grosch (1999), Plessi et al. (2002), Wood et al. (2008) and Chen et al. (2011)
2. Toward the discovery of rotundone, the pepper aroma compound

It is well known that some grape varieties can develop spicy or peppery notes. Notably, this is the case for red wines made from international cultivars, such as Syrah grown in the northern Rhône Valley or in the state of Victoria in Australia, or Gamay from the Massif Central and some Beaujolais crus from France or Switzerland. Other French regional grape varieties such as Duras, Mondeuse or Mourvèdre planted within the Protected Designation of Origins Gaillac, Savoie and Bandol, respectively, may also exhibit particularly pronounced pepperiness notes. These notes often appear more pronounced in fresh vintages or in cool areas and there are ‘peppery’ vineyards that consistently produce ‘peppery’ wines (Iland and Gago, 1995). Despite the importance of Syrah in France (grown on more than 65,592 ha in 2011 according to http://plantgrape.plantnet-project.org), the aroma of this variety has received little attention from the French researchers. The most consistent work was conducted on Syrah wines produced under hot climatic conditions. This work highlighted that glycosidic precursors responsible for fruity and black olive aromas were the main contributors to the aromatic character of Syrah wines from the southern Rhône Valley (Segurel et al., 2004; Segurel, 2005). These observations are consistent with other studies held 15 years earlier on the role of these precursors in the earthy, tobacco/cigar notes of Syrah wines (Abbott et al., 1991).
The earlier research on the molecule responsible for the peppery character in wine was conducted in Australia. As part of a specialization thesis, Brightman (2000) studied the volatile composition of Syrah bunches using gas chromatography (GC) coupled with olfactometry (O) and mass spectrometry (MS). This work was unable to identify a single spectral zone associated with peppery or spicy notes. A few years later, Parker et al. (2007) used an untargeted metabolomic approach. Samples of Syrah bunches, whose intensity of peppery character was assessed by an expert panel, were analyzed using headspace and GC-MS methods. Multivariate analysis of 13,000 mass spectra per bunch identified α-ylangene, a sesquiterpene, as the best marker/predictor of these peppery notes. This work also highlighted that this marker, which could not be detected in the wines, did not have any aromatic impact.

It was only in 2008 that the main compound responsible for the peppery notes of red wines was formally identified in an Australian Syrah wine (Wood et al., 2008). This molecule is an oxygenated sesquiterpene (SQT) of molecular formula C_{15}H_{22}O (3S, 5R, 8S) -5-isopropenyl-3,8-dimethyl-3,4,5,6,7,8-hexahydro-1 (2H) -azulenone, better known as rotundone (Figure 1). One of the most surprising discoveries is that this compound had never been detected in pepper despite the substantial number of publications dealing with the volatile composition of P. nigrum (Jagella and Grosch, 1999; Plessi et al., 2002). Until then, the distinctive aromatic character of pepper was attributed to the complex interaction of several odorants (Jagella and Grosch, 1999). The fact that rotundone was identified so late deserves some explanation. First, the molecule is present at concentration levels in the ng/L range and is likely to co-elute with other SQT, which complicates its detection. In addition, rotundone has a strong affinity with the stationary phase in GC and a high retention time. This means that rotundone appears late during GC-O sessions, at a time when judges are usually less attentive because no molecule of interest is expected (Herderich et al., 2012). Finally, the fact that a specific anosmia has been reported for this compound (Wood et al., 2008) must have complicated its detection.

3. Analysis methods of rotundone in wines and grapes

Since 2008, several research groups around the world have developed analytical methods for the quantitative determination of rotundone in grapes and wines. These methods are based on SPE-GC-MS (Culleré et al., 2016), SPE-SPME-GC-MS (Siebert et al., 2008; Mattivi et al., 2011; Geffroy et al., 2014; Nauer et al., 2018) or SBSE-GC-MS (Takase et al., 2015, Escudero et al., 2019) and mostly on stable isotope dilution analysis (SIDA). SIDA is a quantification method for which the internal standard is an analog of the analyte labeled with stable isotopes. As the physicochemical properties of the standard and the analyte are very similar, biases related to preparation and injection can be avoided. In the case of rotundone analysis, d5-rotundone, in which five hydrogen atoms have been replaced by five deuterium atoms, is used as an internal standard. In these quantification methods, sample preparation essential for increasing the trace amount of rotundone (ng/L) is achieved by solid phase extraction (SPE) and/or solid phase microextraction (SPME) or stir bar sorptive extraction (SBSE). SPE is a preparation method in which compounds in solution in a liquid phase are selectively adsorbed onto a solid phase, depending on their physicochemical properties (Simpson, 2000). The stationary phase is contained in a cartridge in the form of a syringe often made of a polymeric resin. Then, the analytes are recovered by elution, usually using dichloromethane. SPME is a more recent SPE technique (Arthur and Pawliszyn, 1990) and is easy to implement, powerful and does not require any solvent. This method relies on the use of a silica or molten glass fiber disposed inside a removable hollow needle. A stationary phase, generally a polymer film determining the extraction capacity, is grafted onto this fiber. SBSE is a variant of SPME introduced in the late 1990s (Baltussen et al., 1999). The extraction support is a magnetic bar coated with a polymer acting as an absorbent resin, generally polydimethylsiloxane (PDMS). This technique, which is slightly harder to implement than SPME, makes it possible to increase the quantity of polymer, to decrease the phase ratio and thus to increase the theoretical recovery.

In order to limit co-elution phenomena and optimize separation, two-dimensional gas chromatography (GC-GC) has also been used for the determination of rotundone (Geffroy et al., 2014, Takase et al., 2015; Escudero et al., 2019). This approach consists in coupling two capillary columns with distinct polarity properties. The second column allows the separation of a poorly resolved part of the first chromatogram. The transfer of the fraction of the chromatogram to the second column is called ‘heart cutting’.
Several solvents were used for the extraction and quantification of rotundone in grapes: ethanol (Siebert et al., 2008); acetone (Mattivi et al., 2011); and n-pentane or acetate of ethyl (Takase et al., 2015). The maximum rotundone levels were found in Vespola grapes (6.13 μg/kg) and in Schioppettino wines (561 ng/L) (Table 2).

4. Occurrence of rotundone in plants, wines and spirits

Rotundone owes its name to the plant species in which it was first discovered, *Cyperus rotundus*, more commonly known as the Asian nutgrass (Kapadia et al., 1967). The molecule has also been detected in many Mediterranean aromatic species (Wood et al., 2008), such as rosemary (*Rosmarinus officinalis*), thyme (*Thymus vulgaris*), marjoram (*Origanum majorana*), basil (*Ocimum basilicum*) and in *Atriplex cineria*, a persistent shrub found in Australia. Rotundone has been shown to significantly contribute to the aroma of roasted chicory (Wu and Cadwallader, 2019) and many fruit juices such as grapefruit, orange, apple and mango (Nakanishi et al., 2017a, Nakanishi et al., 2017b). In these fruit juices, 3-epi-rotundone, a novel stereoisomer of rotundone has been identified and characterized (Nakanishi et al. 2017c). This stereoisomer has a much higher odor threshold determined at 19,100 ng/kg. Recently, two hydroxylated forms of rotundone, (+)5,14-dihydroxyrotundone-9-(2′-methylbut-2′-enoate) and (-)5,14-dihydroxyrotundane-9-benzoate, were isolated from the roots of *Croton hirtus*, a species of *Euphorbiaceae* distributed in Mexico and the Caribbean (Rosandy et al., 2019).

Rotundone is a rather ubiquitous aroma compound that has been found in many grape varieties (Table 2). Researches carried out in Australia has shown rotundone at concentrations exceeding its perception threshold in Syrah, Durif (the Californian ‘Petite Syrah’ which results from the cross of Syrah and Peloursin), Mourvèdre and Graciano, a variety widely planted in the Spanish vineyard of La Rioja (Herderich et al., 2012).

In Italy, rotundone has been found in Vespola, Schioppetino and in Grüner Veltliner, a white cultivar widespread in the northeast of the country and in Austria (Caputi et al., 2011; Nauer et al., 2018). More recently, rotundone has been identified in wines made from Duras, Fer, Négrette and Prunelard from south-west France (Geffroy et al., 2014, Geffroy et al., 2019b; Geffroy, 2018) and from Gamay from cool climate vineyards (Culleré et al., 2016; Geffroy et al., 2016a).

It has also been detected in Cot (Malbec), Abouriou and Castets (Maturana tinta) (Culleré et al., 2016; Geffroy, 2018) and Mondeuse and Arani (Geffroy, 2018). Takase et al. (2015) showed that Japanese Syrah wines had remarkable levels of rotundone, while grapes from Koshu, Muscat Bailey-A, Cabernet-Sauvignon and Merlot contained negligible concentrations. Similarly, wines made from Tannat, Manseng noir and Touriga Nacional showed rotundone levels below the odor threshold of the compound (Geffroy, 2018).

The clone, which is defined by the International Office of Vine and Wine (OIV) as the certified vegetative descent of one vine chosen for its identity, its phenotypic characteristics and its sanitary condition, also has an impact on rotundone concentration in wines. In Australia, clone 2626 is renowned for producing spicy Syrah wines and this empirical knowledge was confirmed analytically. Indeed, this clone showed greater rotundone concentrations at harvest in comparison with clone 1127 (Siebert and Solomon, 2011). Clonal variations have also been described in Italy for Grüner Veltliner (Caputi et al., 2011). In south-west France, higher rotundone concentrations were reported during two consecutive seasons in Duras wines made from clones 554 and 654, compared with 555 (Geffroy et al., 2015a).

In addition to wine, rotundone has also been detected in many spirits (bourbon, tequila, rum, whiskey and brandy) and notably those aged in oak barrels (Genthner, 2014). Rotundone concentrations usually increase with the duration of aging.

5. Sensory aspects and appreciation of rotundone by consumers

Rotundone is an extremely potent aroma compound with an odor threshold of 8 ng/L in water and 16 ng/L in red wine (Wood et al., 2008). A specific anosmia has been reported for this compound, as during the first sensory tests 20–25 % of the panelists were unable to detect rotundone in water, even at very high concentrations (>4000 ng/L). In another study conducted in France, anosmic respondents represented 31 % of the panelists (Geffroy et al., 2017b). The molecule has also been described as one of the most impactful aroma compounds in wine (Ferreira, 2012). Its sensory contribution to the peppery character of cool Margaret River Syrah wines has been proved through aroma reconstitution studies (Mayr et al., 2014). In this study, the omission of rotundone resulted in a lower rating for the ‘pepper’ attribute.
TABLE 2. Rotundone concentration in grapes at harvest and in commercial (C) or experimental (E) single-variety wines.

Grape variety	Reference	Region from where the grapes/wines were sourced	Range of concentration	Grape (mg/kg)	Wine (mg/L)
Arani	Geffroy (2018)	Armenia	–	68 (C)	
Arrat	Geffroy et al. (2016)	South-west France	–	47 (E)	
Abouriou	Geffroy et al. (2016)	Côteaux du Marmandais, France	–	58 (C)	
Cabernet Franc	Logan (2015)	Hawke’s Bay, New Zealand	243	–	
Cabernet-Sauvignon	Takase et al. (2015)	Koshi, Japan	21	–	
Castets (Maturana Tinta)	Geffroy et al. (2016)	La Rioja, Spain	–	8-112 (C)	
Geffroy et al. (2017b)	Logue et al. (2017)	La Rioja, Spain	–	50 (C)	
Cot (Malbec)	Geffroy et al. (2016)	Cahors, France	–	16 (E)	
Geffroy (2018)	Cahors, France	51 (E)	–		
Logan (2015)	Hawke’s Bay, New Zealand	7	–		
Durif	Herderich et al. (2012)	Several regions of Australia	–	2-35 (C)	
Fer	Geffroy et al. (2013)	Marcillac, France	–	7-49 (E)	
Gamay	Geffroy et al. (2016)	Central France	–	19-85 (C)	
Gertrud	Geffroy et al. (2016a)	Several regions of France	–	12-109	
Graciano	Geffroy et al. (2016)	La Rioja, Spain	–	< 0.6-17 (C)	
Gruner Veltliner	Mattivi et al. (2011)	Several regions of Austria	–	63-266 (C)	
Nayer et al. (2018)	Several regions of France	–	9-85 (C)	–	
Koslu	Takase et al. (2015)	Nissaki, Japan	60	–	
Manseng noir	Geffroy (2018)	Saint Mont, France	–	4-13 (E)	
Merlot	Takase et al. (2015)	Ueda, Japan	62	–	
	Logan (2015)	Hawke’s Bay, New Zealand	18	–	
		Monduze	–	54-62 (C)	
		Mourvèdre	–	11 (C)	
		Gruner Veltliner	–	32 (C)	
		Muscat Bailey-A	–	16	
		Negrina	–	38 (E)	
		Noiset	–		
		Hunter et al. (2019)	109-1176	–	
Pinotage	Logan (2015)	Hawke’s Bay, New Zealand	6	–	
Pinot noir	Herderich et al. (2012)	Several regions of Australia	–	3-11 (C)	
	Geffroy (2018)	Central France	–	38 (C)	
Prunelard	Geffroy (2018)	Guillac, France	–	85 (E)	
Riesling	Herderich et al. (2012)	Frankland river, Australia	–	9 (C)	
Sangiovese	Logan (2015)	Hawke’s Bay, New Zealand	16	–	
Sauvignon	Takase et al. (2015)	Ueda, Japan	27	–	
	Logan (2015)	Hawke’s Bay, New Zealand	n.d.	–	
Schioppettino	Culleré et al. (2016)	Friuli, Italy	–	19-35 (C)	
	Mattivi et al. (2011)	Friuli, Italy	–	457-561 (C)	
Syrah	Wood et al. (2008)	Several regions of Australia	620	150 (C)	
	Herderich et al. (2012)	Several regions of Australia	–	7-161 (C)	
	Scarlet et al. (2014)	Grampians, Australia	73-1082	–	
	Drew et al. (2016)	Adelaide Hills, Australia	2-29 (E)	–	
	Zhang et al. (2015a)	Grampians, Australia	15-493	–	
	Zhang et al. (2015b)	Grampians, Australia	2-116 (C)	–	
	Logan (2015)	Hawke’s Bay, New Zealand	13-300	17-90 (C)	
	Takase et al. (2015)	Northern Rhône Valley	39-142 (C)	–	
	Takase et al. (2015)	Several regions of Japan	1033-2342	152-235 (C)	
	Culleré et al. (2016)	Southern France, Australia	2-18 (C)	–	
Tardif	Geffroy (2018)	Saint Mont, France	–	88-204 (E)	
Touriga Nacional	Geffroy (2018)	Douro, Portugal	–	9 (C)	
Tannat	Geffroy (2018)	Madiran, France	–	6-8 (E)	
Veramadina	Mattivi et al. (2011)	Northern Italy	278-560 (C)	–	
Caputi et al. (2011)	Northern Italy	1420-6130	101-503 (E)	–	
Zinfandel	Logan (2015)	Hawke’s Bay, New Zealand	30	–	

n.d., non-detected; –, data not available
Several research works highlighted a significant positive correlation between perceived pepper intensity at tasting and rotundone concentration in wine (Herderich et al., 2012; Geffroy et al., 2016). The rotundone biosynthetic pathway has not yet been completely elucidated. However, as with other SQT, this non-glycosylated molecule could be synthesized in the plastid through the methylerthritol phosphate pathway (MEP) and/or in the cytosol via the mevalonate pathway (MVA), in response to herbivore attacks (May et al., 2013). These two processes are mutually exclusive in most living organisms but coexist in plants. While monoterpenes are produced in grapevine leaves exclusively through the MEP pathway, the biosynthesis of SQT involved both pathways, with possible exports between chloroplast and cytoplasm (Hampel et al. 2005). Indeed, D’Onofrio et al. (2009) showed that ethyl jasmonate (MeJa) and jasmonic acid (JA) had the ability to stimulate SQT synthesis in cells of Cabernet Sauvignon and Riesling. The regulation of SQT synthesis is ensured by the genes of the VvTPS family (Vitis vinifera terpenoid synthase), of which 45 out of 89 are located on chromosome 18 (Martin et al., 2010). As part of a program aiming at breeding new grape varieties that are resistant to cryptogamic diseases and that express peppery notes, an Austrian research team demonstrated that the heredity associated with rotundone production was supported by chromosomes 5 and 9 (Regner et al., 2016). For rotundone, the biosynthetic pathway presented in Figure 1 has been proposed by Takase et al. (2016a).

α-guaiene has been identified as the precursor of rotundone (Huang et al., 2014). In grapevines there are at least two alleles of the VvTPS24 gene (Drew et al., 2016) that encode distinct SQT synthetases (VvGuaS and VvPNSelInt) and the VvGuaS enzyme has the ability to convert farnesyl diphasphate (FPP) to α-guaiene (Figure 1) (Drew et al., 2016). This polymorphism could explain why rotundone production only occurs in the berries of some grape varieties. Rotundone can be synthesized...
from α-guaiene by simple oxidation (Huang et al., 2014; Huang et al., 2015) or enzymatically in the grapes using an α-guaiene 2-oxidase (CYP71BE5) belonging to the cytochrome P450 family (Figure 1) (Takase et al., 2016b). The same authors highlighted that transcription levels of CYP71BE5 were greater both in berry skin than in the flesh and in Syrah than in Merlot. Other work has shown that the expression of the VvTPS24 and CYP71BE5 genes did not differ between two vineyards of Syrah exposed to different environmental conditions and exhibiting distinct rotundone production levels (Takase et al., 2016a). In this study, the main factor that allowed discrimination between the two vineyards was the level of transcription of the FPP synthetase-associated gene (FPPS). The same authors also reported different levels of expression for this gene between Syrah and Merlot. The regulation of rotundone synthesis in berries seems complex and is dependent on the VvTPS24, CYP71BE5 and FPPS genes. If these three genes are likely to explain differences in genotype predisposition, the expression of the FPPS gene could also be regulated by environmental conditions.

Rotundone synthesis exclusively occurs in grape skins. It has been shown that the compound is absent from the flesh and seeds (Caputi et al., 2011; Siebert and Solomon, 2011), but has been detected in leaves and stems, which suggests that rotundone concentration in red wines could be influenced by the presence of these herbaceous organs within the crop (Capone et al., 2012). Other studies have shown that the molecule was also present in flower buds and that pedicels, pedicels and shoots contained larger rotundone concentrations than those measured in berries (Zhang et al., 2016a). However, in the same study these authors excluded the hypothesis of rotundone translocation from these organs to the berries through the phloem. Geffroy et al. (2016b) came to the same conclusion, as cutting the fruit-bearing cane 18 days before harvest did not stop rotundone accumulation. This *in situ* production is consistent with other works highlighting that the modulation of source-sink relationship did not significantly impact rotundone levels in wines (Geffroy et al., 2014). Indeed, rotundone concentration is not affected by grape thinning and crop load (Geffroy et al., 2014).

7. Kinetics of accumulation

Contrasting results have been obtained for the kinetics of rotundone accumulation, from inflorescence to harvest. While rotundone is detected at high concentrations prior to veraison in floral caps on Syrah (Zhang et al., 2016a), the molecule remains undetectable on Noiret at bunch closure (Homich et al., 2017). While Zhang et al. (2016a) and Luo et al. (2019) reported a U-shaped accumulation pattern for rotundone, Homich et al. (2017) showed that the accumulation only started from veraison. However, there is a consensus for the last few weeks before maturity, which are characterized by a fast accumulation of the molecule in berries (Caputi et al., 2011; Siebert and Solomon, 2011; Geffroy et al., 2014; Logan, 2015). In south-west France, concentrations reached a plateau from 44 days after mid-veraison (Geffroy et al., 2014). Thus, the date of harvest appears to be a significant lever to control rotundone level in wines. In Fer grapes from the PDO Marcillac, a 7-day delay in harvest resulted in a two-fold increase in rotundone (Geffroy et al., 2019b). Trials were conducted in Australia to delay maturity by spraying a 50-ppm solution of naphthalene acetic acid, a synthetic auxin (Davies et al., 2015). By delaying the maturity by 23 days, this practice proved to be beneficial for improving the rotundone concentration of the wines. Other studies have modeled the kinetics of accumulation of rotundone in grapes from veraison (Zhang et al., 2015b). The best model looks like a sigmoid whose parameters (slope at inflection point, plateau height, etc.) depend on the climatic characteristics of the vintage.

8. Biological function and impact of biotic environment

The biological function of rotundone is still unknown, but like other SQT, the molecule could be involved in defense mechanisms, particularly in response to insect attacks (D’Onofrio et al., 2009). The exogenous foliar application of JA, a phytohormone involved in the defense mechanisms against herbivores, did not increase the concentration of rotundone in wines during a field trial (Geffroy et al., 2014). According to these authors, it remains difficult to draw firm conclusions, as the effectiveness of the spraying is highly dependent on the conditions of applications and notably the penetration of the canopy. In the same way, the physical or chemical activity of herbivores on grape leaves had a very limited impact on rotundone production (Zhang et al., 2016b). Other results might have been observed on bunches.

A positive correlation was found between the severity of powdery mildew (PM caused by *Erysiphe necator*) on bunches and the concentration...
of rotundone in wines, which indicates that PM might provoke a defense response leading to the production of rotundone (Geffroy et al., 2015a). According to the same authors, the clonal difference in PM susceptibility could also explain the differences in rotundone levels among the four certified Duras clones. Bunch rot and acid rot do not induce the same defense reactions. On the contrary, while modeling rotundone concentration within several Duras blocks (Geffroy et al., 2019a), gluconic acid, a secondary metabolite of Botrytis cinerea, was identified as a key variable negatively correlated with rotundone. Other works highlighted that acid rot (Drosophila melanogaster and/or D. suzukii) may not have an impact on rotundone biosynthesis (Geffroy et al., 2016b).

9. Inter-vintage and intra-block variability

As with other grape-derived aroma compounds, rotundone is strongly impacted by the climatic characteristics of the vintage. Cool and wet vintages enhance rotundone accumulation and are particularly favorable for obtaining wines with greater rotundone levels (Caputi et al., 2011; Zhang et al., 2015b). The same Duras block, harvested at the same time point after mid-veraison and monitored for rotundone between 2008 and 2015 (Figure 2), shows a concentration ranging from 7 ng/L to 179 ng/L (Geffroy and Descôtes, 2017). Similarly, Zhang et al., (2015b) reported variations from 2 ng/L to 116 ng/L between 15 vintages (from 1996 to 2014) for a wine made from the same vineyard located in the Australian Grampians wine region (Figure 2). For grapes, a 40-fold inter-vintage variation in rotundone concentration was also established (Bramley et al., 2017).

It has been shown that rotundone distribution within the same vineyard block was spatially organized and that structural patterns were stable from one year to the next (Scarlett et al., 2014; Bramley et al., 2017). The observed variations are related to soil properties and topography (Scarlett et al., 2014), grape microclimate and especially the percentage of hours above 25 °C (DH25) (Zhang et al., 2015a), the cool night index (Geffroy et al., 2019c) and δ¹³C (Geffroy et al., 2014), a proxy for water constraint experienced by the vine plant over the maturation period. These findings make it possible to organize differential harvesting, with the aim of producing with distinct levels of rotundone concentration from the same vineyard block wines.

![Figure 2](image_url)

FIGURE 2. Impact of the vintage on rotundone concentration in Duras and Syrah wines made from two commercial vineyards located in the Gaillac (south-west France) and Grampians (Victoria, Australia) wine regions, respectively. Adapted from Geffroy and Descôtes (2017) and Zhang et al. (2015b). *, not determined. Error bars represent the 5 % uncertainty of the measurement.
It has been demonstrated that trunk circumference (TC) could be used to approximate rotundone spatial distribution (Geffroy et al., 2015b). Recent work has attempted to link soil microbial diversity with rotundone concentration in grapes (Vadakattu et al., 2019). Without being able to prove the causality between the microbiome and the fruit composition, these authors have shown that, in areas favorable to high levels of rotundone, soils had a greater diversity of bacteria but a lower diversity of fungi.

10. Impact of defoliation, bunch surface temperature and exposure

Researchers have emphasized that berry temperatures above 25 °C (Zhang et al., 2015a) or above 30 °C (Harner et al., 2019) over the maturation period negatively affect rotundone accumulation. Beyond the maturation period, air temperature over the whole vine vegetative cycle, as reflected by the Huglin index or growing degree day (GDD), also appear to be a key variable to explain differences in rotundone concentrations between sites and vintages (Geffroy et al., 2019a; Harner et al. 2019).

As a consequence, rotundone biosynthesis is in most cases negatively affected by defoliation. Indeed, defoliation performed on both sides of the row significantly penalized rotundone concentration in Duras wines from south-west France (Geffroy et al., 2014) and in New Zealand defoliation led to a reduction in berry rotundone content (Logan, 2015).

However, contradictory results were obtained in north-east USA on Noiret, as exposure of the fruit had no effect on rotundone or led to an increase in the pepper aroma compound (Homich et al., 2017). A similar trend was also observed on Fer produced in a temperate climate vineyard with very cool nights (Geffroy et al., 2019b) which deserves further explanation. It is important to note that the most damaging impact of defoliation was observed when the technique was implemented on both sides of the row under warm climatic conditions (Geffroy et al., 2014). It is known that bunch exposure to solar radiation can greatly increase berry surface temperature (Spayd et al., 2002); we can assume that, in this warmer situation, leaf removal contributed to limiting, in exposed berries, rotundone production whose biosynthesis can be inhibited from 25 °C (Zhang et al. 2015a, Zhang et al., 2015b). Under cooler climatic conditions (Homich et al. 2017; Geffroy et al. 2019b), it can be hypothesized that the rise in grape surface temperature was not enough to compromise rotundone biosynthesis.

It is also possible to assume that the physical injury caused by defoliation might have stimulated rotundone production through the MVA pathway, as discussed previously. However, this assumption seems implausible because the removal of lateral shoots did not produce the same effect on rotundone as defoliation (Geffroy et al., 2019b). Furthermore, a significant gain in rotundone was observed when newly formed leaves were removed to maintain a good sun exposure until harvest (Homich et al., 2017), which suggests that light and ultra-violet radiation might stimulate the production of rotundone. This hypothesis is consistent with other observations demonstrating a positive contribution of mean irradiation, hours of sunshine and cumulative solar exposure (CSEv) over the maturation period, to predict rotundone levels in Duras and Noiret wines (Geffroy et al., 2019a; Harner et al. 2019). This is also in accordance with several studies emphasizing the light dependency of some sesquiterpene emission (Duhl et al., 2008).

11. Impact of irrigation and water budget variables

Wines made from vines irrigated just before veraison have a greater rotundone concentration than those made from non-irrigated vines (Geffroy et al., 2014; Geffroy et al., 2016b). These findings are in accordance with other works highlighting an impact of cumulative rainfall (Geffroy et al., 2019a) and water status (Geffroy et al., 2014) on rotundone accumulation. Indeed, under the French context, the contribution of water budget variables appears to be greater than that of thermal variables, as over maturation in the hottest and rainiest vintages always mean higher levels of rotundone (Geffroy et al., 2014; Geffroy et al., 2016b; Geffroy et al., 2019b). The importance of water supply was also emphasized in the north-east USA as calcium concentration in leaf petiole, a variable that correlated with δ13C, had a strong influence on rotundone accumulation (Harner et al., 2019). In Australia, Zhang et al. (2015b) demonstrated that water balance explained inter-vintage differences in rotundone concentrations. However according to these authors, DH25 remains the main determinant of rotundone in wines. The fact that water budget variables did not have a larger contribution to rotundone models for Australian vineyards could be explained by a lower interannual coefficient of variation for these parameters, as vineyard blocks are usually
irrigated. However, differences in topography and soil resistivity, some variables that explain variations in rotundone within a single Australian vineyard block (Scarlett et al. 2014), could lead to distinct level of vine water status. Vadakattu et al. (2019) recently proposed the hypothesis that soil microbiome could have a direct impact on berry rotundone concentration. We can also assume that variations in soil composition are responsible for differences in microbiome and vine water status and that this latter component may have an impact on rotundone production. It is also interesting to note that Geffroy et al. (2015b) showed rotundone correlated with TC, an indicator of the level of nitrogen and water constraints experienced by the vine since it was planted. As TC is likely to be temporally stable indicator over a few consecutive seasons, it is not surprising that rotundone spatial distribution patterns also exhibited a temporal stability in Australia between 2012 and 2015 (Bramley et al., 2017).

However, it is not always possible to exclude that irrigation might have an indirect impact related to a cooler and shade bunch microclimate as a result of higher plant vigor. This hypothesis is unlikely as under the climatic conditions in south-west France water constraint is generally not limiting and vine vigor is often disconnected from water status (Geffroy et al., 2019a). Measurements made on irrigated and non-irrigated vines grown in this viticultural area tends to strengthen this hypothesis, as irrigation had no impact on berry surface temperature (Geffroy et al., 2016b).

Consequently, irrigation is more likely to have a direct effect on rotundone accumulation. By modifying the hormonal status of the berry, particularly the concentrations in indole 3-acetic acid, jasmonic acid, salicylic acid and abscisic acid (Niculea et al., 2014), irrigation could enhance the production of rotundone by stimulating the MVA pathway.

If irrigation appears to be an effective practice to promote rotundone accumulation in grapes, it could have a depreciative effect on wine phenolic compounds through dilution and limitation of biosynthesis (Ojeda et al., 2002). A viticultural system combining pre-veraison irrigations equivalent to 60 mm of rainfall and ‘Passerillage Eclaircissage sur Souche’ (PES) was successfully investigated to enhance rotundone while mitigating this effect (Geffroy et al., 2016b). The PES technique consists in cutting the fruit-bearing cane on a Guyot-trained vineyard two to three weeks prior to harvest. In comparison with the control, grapes and wines produced using this system showed a significant gain in grape sugar concentration (+3.0 °Brix) and in anthocyanins (+138 ppm), TPI (+15.4) and rotundone (+45 %) in the wine.

12. Impact of winemaking techniques and enological variables

Unlike other aroma compounds derived from odorless precursors or formed during fermentation, rotundone is directly extracted from berry skins during winemaking. Most of this compound is extracted between the second and fifth day of fermentation, when the yeast activity and the ethanol production are at a maximum (Siebert and Solomon, 2011). Around 10–12 % of the rotundone present in grapes is extracted during fermentation (Caputi et al., 2011; Zhang et al., 2017). The addition of ethanol or sugar during fermentation, to increase the alcohol content of the finished wine by 4 %, led to an extraction rate of 19 % (Zhang et al., 2017).

Only 6 % of the grape rotundone is found in bottled wine (Caputi et al., 2011). Indeed, significant rotundone losses are observed during racking, filtration and fining of the wine, likely in relation to its hydrophobic nature (predicted LogP = 4.98) and its likelihood to bind to other particles (Caputi et al., 2011). LogP, also known as Log Kow, is a measure of the differential solubility of a molecule in octanol and in water. A positive and large value means that the molecule is more soluble in octanol than in water and therefore has a hydrophobic/lipophilic character.

Given its localization in the grape pericarp, the final concentration of rotundone in wines is likely to be affected by the winemaking technique used. A study by Geffroy et al. (2017a) compared the impact of several winemaking techniques and fermentation variables on rotundone. None of the investigated techniques, including the addition of pectolytic enzymes during maceration or a cold pre-fermentation maceration performed at 4 °C for 72 h, made it possible to enhance rotundone in comparison with a control wine fermented at 25 °C for 8 days. On the contrary, a decrease of 20 % was observed for the semi-carbonic maceration treatment, for the wines fermented with Saccharomyces uvarum and when maceration was extended for 6 days after fermentation, indicating practical opportunities for reducing the pepper aroma in wine. We can suppose that the two latter treatments induced a greater rotundone absorption by the lees. The low concentrations of
rotundone observed for the thermovinified and the rosé wines reached 20 % and 13 % of that of the control wine, respectively, which can be explained by the pre-ferment removal of skins. This suggests that rotundone is not likely to have a large sensory contribution to the aroma of rosé wines, unless it is present in unusually high concentrations in sourced grapes.

It has also been demonstrated that rotundone was very stable in bottled wines even after several years of storage and was not ‘scalped’ by the closure (Herderich et al., 2012).

13. What next?

Since the discovery of rotundone in 2008, information on this key and fascinating aroma compound has grown. Levers have been proposed to help winegrowers and winemakers modulate the rotundone levels of their wines. However, some aspects such as the molecular mechanisms involved in specific anosmia to rotundone or its biological function still deserve investigation. The hierarchy between abiotic and biotic factors affecting rotundone and particularly the influence of temperature, water supply and light, also remains unclear. All the trials referring to these factors were conducted under field conditions and studies on model plants in controlled conditions could shed new light. This model could be a microvine (Pellegrino et al., 2019), a natural mutant that bears simultaneously, on the same plant, all the phenological stages of inflorescence development, or a fruiting cutting (Ollat et al., 1998).

In the future, one of the main issues for researchers will be to provide the wine industry with sustainable strategies to enhance rotundone in the context of climate change. Climate change is already affecting wine production and induces a large variability in wine aroma composition between vintages (van Leeuwen and Darriet, 2016). In most cases, this may take the form of altered precipitation regimes and higher temperatures during maturation, which are conditions unfavorable to obtaining high levels of rotundone in wines. While irrigation and the spraying of synthetic auxin (Geffroy et al. 2014, 2016b; Davies et al., 2015) have proved their effectiveness in enhancing rotundone in wines, these strategies are not sustainable in the long term due to the scarcity of water resources and the consumer demand for wines made without chemicals.

Adaptation to climate change is presently the subject of several researches and some strategies should be tested to enhance rotundone accumulation or limit its degradation. For example, the spraying of a white kaolin-based protective film could help reduce the grape surface temperature and limit heat stress (Shellie and King, 2013). Late pruning, a practice used more than 50 years ago (Antcliff et al., 1957) and is increasingly popular (Friend and Trought, 2007; Gatti et al., 2016), could shift the maturation period toward cooler conditions. However, as the phenology is only delayed by a few days, the expected impact of this practice on the average temperature during maturation should remain limited.

Plant material seems to be a more promising adaptation strategy. The rootstock, due to the vigor imparted to the scion and its impact on bunch microclimate (Koundouras et al., 2008), is likely to affect rotundone levels. Indeed, preliminary work carried out on nine rootstocks showed that Fercal and 196-17 Castel tended to produce wines with enhanced rotundone concentrations (Olivier Geffroy, unpublished data, 2019). The scion transpiration is genetically regulated by the rootstock and quantitative trait loci (QTL) associated with these traits have been identified (Marguerit et al., 2012). This paves the way for the development of programs aiming at breeding rootstocks adapted to drought. By enhancing vigor and limiting the level of water constraint, these rootstocks of the future should favor rotundone accumulation in grapes. The cultivar is another key lever of adaptation. Most of the research conducted worldwide on rotundone concerns early maturation grape varieties such as Syrah, Duras and Gamay. The maturation of such varieties generally occurs from late-July to mid-September in the northern hemisphere, under warm conditions not favorable to the production of rotundone. The identification of genotypes that can produce rotundone and ripen late (e.g. in October) should make it possible to manage the peppery potential by blending with more traditional cultivars. The example of Tardif, an almost extinct grape variety from south-west France recently registered in the French Catalogue Official, tends to reinforce this hypothesis. Wines made from Tardif express particularly high rotundone levels (Table 2), even during hot and dry vintages (Geffroy, 2018). Indeed, as its name suggests (Tardif means ‘late’ in French), its maturity occurs in mid-October, one month after that of the other ‘peppery’ varieties planted in the area.
REFERENCES

Abbott N.A., Coombe B.G. and Williams P.J., 1991. The contribution of hydrolyzed flavor precursors to quality differences in shiraz juice and wines: an investigation by sensory descriptive analysis. American Journal of Enology and Viticulture, 42(3).

Antcliff A., Webster W. and May P., 1957. Studies on the sultana vine. V. further studies on the course of bud burst with reference to time of pruning. Australian Journal of Agricultural Research, 8(1), 15. doi:10.1071/AR9570015.

Arthur C.L. and Pawlisyn J., 1990. Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical Chemistry, 62(19), 2145–48. doi:10.1021/ac01021a019.

Baltussen E., Sandra P., David F. and Cramers C., 1999. Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles. Journal of Microcolumn Separations, 11(10), 737–47. doi:10.1002/(SICI)1520-667X(1999)11:10<737::AID-MCST>3.0.CO;2-4.

Bramley R.G.V., Siebert T.E., Herderich M.J. and Krstic M.P., 2017. Patterns of within-vineyard spatial variation in the “pepper” compound rotundone are temporally stable from year to year. Australian Journal of Grape and Wine Research, 23(1), 42–47. doi:10.1111/ajgw.12245.

Brightman L., 2000. Black pepper in shiraz grape berries. University of Adelaide, Australia.

Bury J.B., 1889. A history of the later roman empire from arcadius to irene. In A History of the Eastern Roman Empire, 531–32. Cambridge: Cambridge University Press. doi:10.1017/CBO9781139171711.030.

Capone D.L., Jeffery D.W. and Sefton M.A., 2012. Vineyard and fermentation studies to elucidate the origin of 1,8-Cineole in Australian Red Wine. Journal of Agricultural and Food Chemistry, 60(9), 2281–87. doi:10.1021/jf204499h.

Caputi L., Carlin S., Ghiglione I., Stefanini M., Valenti L., Vehoveck U. and Mattivi F., 2011. Relationship of changes in rotundone content during grape ripening and winemaking to manipulation of the “peppery” character of wine. Journal of Agricultural and Food Chemistry, 59(10), 5565–71. doi:10.1021/jf200786u.

Chen W.X., Dou H.G., Ge C. and Li C.F., 2011. Comparison of volatile compounds in pepper (Piper nigrum L.) by simultaneous distillation extraction (SDE) and GC-MS. Advanced Materials Research, 236–238(May), 2643–46. doi:10.4028/www.scientific.net/AMR.236-238.2643.

Cullerè L., Onţaţon I., Escudero A. and Ferreira V., 2016. Straightforward strategy for quantifying rotundone in wine at ng/l level using solid-phase extraction and gas chromatography-quadrupole mass spectrometry. Occurrence in different varieties of spicy wines. Food Chemistry, 206(September), 267–73. doi:10.1016/j.foodchem.2016.03.039.

D’Onofrio C., Cox A., Davies C. and Boss P.K., 2009. Induction of secondary metabolism in grape cell cultures by jasmonates. Functional Plant Biology, 36(4), 323. doi:10.1071/fp08280.

Dagan L., 2006. Potentiel aromatique des raisins de Vitis vinifera L. Cv. Petit Manseng et Gros Manseng. Contribution à l’arôme des vins de Pays Côtes de Gascogne. École Nationale Supérieure Agronomique de Montpellier, France.

Davies C., Nicholson E.L., Böttcher C., Burbidge C.A., Bastian S.E.P., Harvey K.E., Huang A.-C., Taylor D.K. and Boss P.K., 2015. Shiraz wines made from grape berries (Vitis vinifera) delayed in ripening by plant growth regulator treatment have elevated rotundone concentrations and “pepper” flavor and aroma. Journal of Agricultural and Food Chemistry, 63(8), 2137–44. doi:10.1021/jf505491d.

De Cleyn R. and Verzele M., 1972. Constituents of peppers. Chromatographia, 5(6), 346–50. doi:10.1007/BF02315254.

Demolins E., 1901. Les grandes routes des peuples; essai de géographie sociale, comment la route crée le type social. Paris: Firmin-Didot & cie.

Drew D.P., Andersen T.B., Sweetman C., Möller B.L., Ford C. and Simonsen H.T., 2016. Two key polymorphisms in a newly discovered allele of the Vitis vinifera tps24 gene are responsible for the production of the rotundone precursor α-guaiene. Journal of Experimental Botany, 67(3), 799–808. doi:10.1093/jxb/erv491.

Duhl T.R., Helmig D. and Guenther A., 2008. Sesquiterpene emissions from vegetation: a review. Biogeosciences, 5(3), 761–77. doi:10.5194/bg-5-761-2008.

Escudero A., Arias I., Lacau B., Astrain J., Barón C., Fernandez-Zurbano P. and Ferreira V., 2019. Effects of vineyard “potential” and grape maturation on the aroma-volatile profile of grenache wines. OENO One, 53(4). doi:10.20870/oeno-one.2019.53.4.2381.

Ferreira V., 2012. Bases moléculaires de l’arôme du vin. In International Symposium on Wine Aroma (VINAROMAS Project), 5–6. Toulouse, France (IFV Sud-Ouest: Lisle Sur Tarn, France).

Friend A.P. and Trought M.C.T., 2007. Delayed winter spur-pruning in New Zealand can alter yield components of merlot grapevines. Australian Journal of Grape and Wine Research, 13(3), 157–64. doi:10.1111/j.1755-0238.2007.tb00246.x.

Gatti M., Pirez F.J., Chiari G., Tombesi S., Palliotti A., Merli M.C. and Poni S., 2016. phenology, canopy aging and seasonal carbon balance as related to delayed winter pruning of Vitis vinifera L. cv. Sangiovese grapevines. Frontiers in Plant Science, 7(May), 659. doi:10.3389/fpls.2016.00659.
Geffroy O., Dufourcq T., Carcenac D., Siebert T., Herderich M. and Serrano E., 2014. Effect of ripeness and viticultural techniques on the rotundone concentration in red wine made from Vitis vinifera L. cv. Duras. *Australian Journal of Grape and Wine Research*, 20(3), 401–8. doi:10.1111/ajgw.12084.

Geffroy O., Yobrédat O., Dufourcq T., Siebert T. and Serrano E., 2015a. Certified clone and powdery mildew impact rotundone in red wine from Vitis vinifera L. cv. Duras N. *OENO One*, 49(4), 231. doi:10.20870/oeno-one.2015.49.4.46.

Geffroy O., Scholasch T., Dufourcq T. and Serrano E., 2015b. Understanding and mapping rotundone spatial variability in Vitis vinifera L. cv Duras. In *19th International Meeting GiESCO*, 589–592. Gruissan, France.

Geffroy O., Buisserè C., Lempereur V. and Chatelé B., 2016a. A sensory, chemical and consumer study of the peppery typicality of French Gamay wines from cool-climate vineyards. *OENO One*, 50(1), 35. doi:10.20870/oeno-one.2016.50.1.53.

Geffroy O., Siebert T., Herderich M., Mille B. and Serrano E., 2016b. On-vine grape drying combined with irrigation allows to produce red wines with enhanced phenolic and rotundone concentrations. *Scientia Horticulturae*, 207, 208–17. doi:10.1016/j.scienta.2016.05.031.

Geffroy O., Siebert T., Silvano A. and Herderich M., 2017a. Impact of winemaking techniques on classical enological parameters and rotundone in red wine at the laboratory scale. *American Journal of Enology and Viticulture*, 68(1), 141–46. doi:10.5344/ajev.2016.16060.

Geffroy O. and Descôtés J., 2017. Rotundone et arômes poivrés des vins : ce que l’on sait aujourd’hui. *Revue Des Œnologues*, 162, 47–52.

Geffroy O., Descôtés J., Serrano E., Li Calzi M., Dagan L. and Schneider R., 2017b. Can a certain concentration of rotundone be undesirable in duras red wine? a study to estimate a consumer rejection threshold for the pepper aroma compound. *Australian Journal of Grape and Wine Research*, 24(1), 88–95. doi:10.1111/ajgw.12299.

Geffroy O., 2018. Rotundone et arôme poivré des vins rouges. In *1ère Journée R&D en viticulture et l’alchimie de l’Ecole d’Ingénieurs de PURPAN*. Toulouse, France.

Geffroy O., Descôtés J., Levasseur-Garcia C., Debord C., Denux J.-P. and Dufourcq T., 2019. A 2-year multisite study of viticultural and environmental factors affecting rotundone concentration in duras red wine. *OENO One*, 53(3). doi:10.20870/oeno-one.2019.53.3.2341.

Geffroy O., Li Calzi M., Ilpffeil K., Yobregat O., Feilhes C. and Dufourcq T., 2019. Using common viticultural practices to modulate the rotundone and 3-isobutyl-2-methoxypyrazine composition of *Vitis vinifera* L. cv. Fer n red wines from a temperate climate wine region with very cool nights. *OENO One*, 53(4). doi:10.20870/oeno-one.2019.53.4.2459.

Geffroy O., Prezman F., Dufourcq T., Denux J. and Clenet H., 2019. An intra-block study of bunch zone air temperature and its impact on berry and wine attributes. In *21st International Meeting GiESCO*, 671–72. Thessaloniki, Greece.

Genthner E.R., 2014. Identification of Rotundone as an Important Contributor to the Flavor of Oak Aged Spirits. University of Illinois, USA.

Hampel D., Mosandl A. and Wüst M., 2005. induction of de novo volatile terpene biosynthesis via cytosolic and plastidial pathways by methyl jasmonate in foliage of *Vitis vinifera*. *Journal of Agricultural and Food Chemistry*, 53(7), 2652–57. doi:10.1021/jf040421q.

Harner A.D., Heuvel J.E. Vanden, Marini R.P., Elias R.J. and Centinari M., 2019. Modeling the impacts of weather and cultural factors on rotundone concentration in cool-climate noiret wine grapes. *Frontiers in Plant Science*, 10(October), 1255. doi:10.3389/fpls.2019.01255.

Herderich M.J., Siebert T.E., Parker M., Capone D.L., Jeffery D.W., Osdazec P. and Francis I.L., 2012. Spice up your life: analysis of key aroma compounds in shiraz. *ACS Symposium Series*. American Chemical Society. doi:10.1021/bk-2012-1104.ch001.

Homich L.J., Elias R.J., Heuvel J.E. Vanden and Centinari M., 2017. Impact of fruit-zone leaf removal on rotundone concentration in Noiret. *American Journal of Enology and Viticulture*, 68(4), 447–57. doi:10.5344/ajev.2017.16106.

Huang A.C., Burrett S., Sefton M.A. and Taylor D.K., 2014. Production of the pepper aroma compound, (−)-rotundone, by aerial oxidation of α-guaiene. *Journal of Agricultural and Food Chemistry*, 62(44), 10809–15. doi:10.1021/jf504693e.

Huang A.C., Sefton M.A. and Taylor D.K., 2015. Comparison of the formation of peppery and woody sesquiterpenes derived from α-guaiene and α-bulnesene under aerial oxidative conditions. *Journal of Agricultural and Food Chemistry*, 63(7), 1932–38. doi:10.1021/jf505537s.

IFV, 2013. *Les Vins Blancs de La Démarche Marketing à La Vinification: Les Clés d’un Pilotage Réussi*. Dunod. Vigne & Vin. Editions France Agricole. https://books.google.fr/books?id=zpHUngEACAAJ.

Iland P. and Gago P., 1995. Discovering Australian wine: a tasters guide. Campbelltown, S.A: Patrick Iland Books.

Jeffery D.W., Osidacz P. and Francis I.L., 2012. Spice up your life: analysis of key aroma compounds in shiraz. *ACS Symposium Series*. American Chemical Society. doi:10.1021/bk-2012-1104.ch001.

Yobrédat O., Genthner E.R., Geffroy O., and Dufourcq T., 2019. Using common viticultural practices to modulate the rotundone and 3-isobutyl-2-methoxypyrazine composition of *Vitis vinifera* L. cv. Fer n red wines from a temperate climate wine region with very cool nights. *OENO One*, 53(4). doi:10.20870/oeno-one.2019.53.4.2459.
Cyperus rotundus. Tetrahedron Letters, 8(47), 4661–67. doi:10.1016/s0040-4039(01)89576-9.

Koundouras S., Tsialtas I.T., Zioziou E. and Nikolaou N., 2008. Rootstock effects on the adaptive strategies of grapevine (Vitis vinifera L. cv. Cabernet-Sauvignon) under contrasting water status: Leaf physiological and structural responses. Agriculture, Ecosystems & Environment, 128(1–2), 86–96. doi:10.1016/j.agee.2008.05.006.

Kozukue N., Park M.S., Choi S.H., Lee S.U., Ohnishi-Kameyama M., Levin C.E. and Friedman M., 2007. Kinetics of Light-Induced cis-trans isomerization of four piperines and their levels in ground black peppers as determined by HPLC and LC/MS. Journal of Agricultural and Food Chemistry, 55(17), 7131–39. doi:10.1021/jf070831p.

Lacey M.J., Allen M.S., Harris R.L. and Brown W.V., 1991. Methoxypyrazines in Sauvignon blanc grapes and wines. American Journal of Enology and Viticulture, 42, 103–108.

Logan G.A., 2015. Rotundone in New Zealand Vitis vinifera L. Syrah: fruit, fermentation and functional food chemistry. Université d’Auckland, Nouvelle-Zélande.

Luo J., Brotchie J., Pang M., Marriott P.J., Howell K. and Zhang P., 2019. Free terpene evolution during the berry maturation of five Vitis vinifera l. cultivars. Food Chemistry, 299, 125101. doi:10.1016/j.foodchem.2019.125101.

Marguerit E., Brendel O., Lebon E., van Leeuwen C. and Ollat N., 2012. Rootstock Control of Scion Transpiration and Its Acclimation to Water Deficit Are Controlled by Different Genes. New Phytologist, 194(2), 416–29. doi:10.1111/j.1469-8137.2012.04059.x.

Martin D.M., Aubourg S., Schouvey M.B., Daviet L., Schalk M., Toub O., Lund S.T. and Bohlmann J., 2010. Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FlcDNA cloning and enzyme assays. BMC Plant Biology, 10(October), 226. doi:10.1186/1471-2229-10-226.

Mattié F., Caputi L., Carlin S., Lanza T., Minozzi M., Nanni D., Valenti L. and Vrhovsek U., 2011. Effective analysis of rotundone at below-threshold levels in red and white wines using solid-phase microextraction gas chromatography/Tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 25(4), 483–88. doi:10.1002/rcm.4881.

May B., Lange B.M. and Wüst M., 2013. Biosynthesis of sesquiterpenes in grape berry exocarp of Vitis vinifera L.: evidence for a transport of farnesyl diphasphate precursors from plastids to the cytosol. Phytochemistry, 95(November), 135–44. doi:10.1016/j.phytochem.2013.07.021.

Mayr C.M., Geue J.P., Holt H.E., Pearson W.P., Jeffery D.W. and Francis I.L., 2014. Characterization of the key aroma compounds in shiraz wine by quantitation, aroma reconstitution and omission studies. Journal of Agricultural and Food Chemistry, 62(20), 4528–36. doi:10.1021/jf405731v.

Meierhenrich U.J., Golebiowski J., Fernandez X. and Cabrol-Bass D., 2005. de la molécule à l’odeur: les bases moléculaires des premières étapes de l’olfaction. Actualite Chimique, no. 289, 29–40.

Nakanishi A., Fukushima Y., Miyazawa N., Yoshikawa K., Maeda T. and Kurobayashi Y., 2017a. Quantitation of rotundone in grapefruit (Citrus paradisi) peel and juice by stable isotope dilution assay. Journal of Agricultural and Food Chemistry, 65(24), 5026–33. doi:10.1021/acs.jafc.7b01319.

Nakanishi A., Fukushima Y., Miyazawa N., Yoshikawa K., Maeda T. and Kurobayashi Y., 2017b. Identification of rotundone as a potent odor-active compound of several kinds of fruits. Journal of Agricultural and Food Chemistry, 65(22), 4464–71. doi:10.1021/acs.jafc.7b00929.

Nakanishi A., Ito M., Yoshikawa K., Maeda T., Ishizaki S. and Kurobayashi Y., 2017c. identification and characterization of 3-epi-rotundone, a novel stereoisomer of rotundone, in several kinds of fruits. Journal of Agricultural and Food Chemistry, 65(25), 5209–14. doi:10.1021/acs.jafc.7b01696.

Nauer S., Brandes W., Patzl-Fischerleitner E., Hann S. and Eder R., 2018. analysis of (-)-rotundone by means of spe-spe-mg-cs in austrian quality wines of the “grüner veltliner” variety. Mitteilungen Klosterneburg, Rebe und Wein, Obstbau und Früchteverwertung, 68(2), 107–19. http://weinobstklosterneuburg.at/.

Niculcea M., López J., Sánchez-Díaz M. and Carmen Antolin M., 2014. involvement of berry hormonal content in the response to pre- and post-veraison water deficit in different grapevine (Vitis vinifera L.) Cultivars. Australian Journal of Grape and Wine Research, 20(2), 281–91. doi:10.1111/ajgw.12064.

Noble A.C., Arnold R.A., Buechsenstein J., Leach E.J., Schmidt J.O. and Stern P.M., 1987. Modification of a standardized system of wine aroma terminology. American Journal of Enology and Viticulture, 38(2), 143–46.

Ojeda H., Andary C., Kraeva E., Carbonneau A. and Deloire A., 2002. Influence of pre- and postveraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. Shiraz. American Journal of Enology and Viticulture, 53(4), 261–67.

Ollat N., Geny L. and Soyer J.-P., 1998. Grapevine fruiting cuttings: validation of an experimental system to study grapevine physiology. I. Main Vegetative Characteristics. OENO One, 32(1), 1. doi:10.20870/oeno-one.1998.32.1.1061.

Parker M., Pollnitz A.P., Cozzolino D., Francis I.L. and Herderich M.J., 2007. Identification and quantification of a marker compound for “pepper” aroma and flavor
in shiraz grape berries by combination of chemometrics and gas chromatography–mass spectrometry.” *Journal of Agricultural and Food Chemistry*, 55(15), 5948–55. doi:10.1021/jf0705320.

Plessi M., Bertelli D. and Miglietta F., 2002. Effect of microwaves on volatile compounds in white and black pepper. *LWT - Food Science and Technology*, 35(3), 260–64. doi:10.1016/S0023-6438(01)001853.

Regner F., Hack R., Nauer S. and Zöch B., 2016. Breeding of fungal resistant varieties derived from gruner veltliner by chromosomal selection. *BIO Web of Conferences*, 7, 1014. doi:10.1051/bioconf/20160701014.

Robinson A.L., Boss P.K., Solomon P.S., Trengove R.D., Heymann H. and Ebeler S.E., 2014. Origins of grape and wine aroma. Part 1. Chemical Components and Viticultural Impacts. *American Journal of Enology and Viticulture*, 65(1), 1–24. doi:10.5344/ajev.2013.12070.

Rosandy A.R., Azman A.A., Khalid R., Othaman R., Lazim A.M., Choudary I.M., Syah Y.M., Latip J., Said I.M. and Bakar M.A., 2019. Isolation of new rotundone from the roots of *Croton hirtus* (*Euphorbiaceae*). *Malaysian Journal of Analytical Sciences*, 23(4), 677–81. doi:10.17576/mjas-2019-2304-14.

Scarlett N.J., Bramley R.G.V. and Siebert T.E., 2014. Within-vineyard variation in the “pepper” compound rotundone is spatially structured and related to variation in the land underlying the vineyard. *Australian Journal of Grape and Wine Research*, 20(2), 214–22. doi:10.1111/ajgw.12075.

Schoell M.S.F., 1834. *Cours d’histoire Des États Européens*: de l’imprimerie royale et chez Duncker et Humblot. *Depuis Le Bouleversement de l’empire Romain d’occident Jusqu’en 1789*. Ouvrages de “Cours d’histoire Des États Européens: Depuis Le Bouleversement de l’empire Romain d’occident Jusqu’en 1789. https://books.google.fr/books?id=XvX1pO8PGV4C.

Segurel M., 2005. Contribution des précurseurs glycosidiques et du sulfure de diméthyle des baies de *Vitis vinifera* cv. g. cv grenade noir et syrah à l’arôme des vins de la vallée du rhône. École Nationale Supérieure Agronomique de Montpellier, France.

Segurel M.A., Razungles A.J., Riou C., Salles M. and Baumes R.L., 2004. Contribution of dimethyl sulfide to the aroma of Syrah and Grenache noir wines and its potential in grapes of these varieties. *Journal of Agricultural and Food Chemistry*, 52(23), 7084–93. doi:10.1021/jf049160a.

Shellie K.C. and King B.A., 2013. Kaolin-based foliar reflectant and water deficit influence malbec leaf and berry temperature, pigments and photosynthesis. *American Journal of Enology and Viticulture*, 64(2), 214–22. doi:10.5344/ajev.2012.12115.

Siebert T. and Solomon M., 2011. Rotundone: development in the Grape and extraction during fermentation. In *14th Australian Wine Industry Technical Conference*, 307–8. Adelaide, Australia. (Australian Wine Industry Technical Conference Inc.: Adelaide, Australia). Siebert T.E., Wood C., Elsey G.M. and Pollnitz A.P., 2008. Determination of rotundone, the pepper aroma impact compound, in grapes and wine. *Journal of Agricultural and Food Chemistry*, 56(10), 3745–48. doi:10.1021/jf800184t.

Simpson N., 2000. *Solid-phase extraction: principles, techniques and applications*. CRC Press. doi:10.1201/9781420056242.

Spayd S.E., Tarara J.M., Mee D.L. and Ferguson J.C., 2002. Separation of sunlight and temperature effects on the composition of *Vitis vinifera* cv. merlot berries. *American Journal of Enology and Viticulture*, 53(3), 171–82.

Takase H., Sasaki K., Shinmori H., Shinohara A., Mochizuki C., Kobayashi H., Saito H., Matsuo H., Suzuki S. and Takata R., 2015. Analysis of rotundone in japanese syrah grapes and wines using stir bar sorptive extraction (SBSE) with heart-cutting two-dimensional GC-MS. *American Journal of Enology and Viticulture*, 66(3), 398–402. doi:10.5344/ajev.2015.14118.

Takase H., Sasaki K., Ikoma G., Kobayashi H., Matsuo H., Suzuki S. and Takata R., 2016. Farnesyl diphenate synthase may determine the accumulation level of (-)-rotundone in “syrah” grapes. *Vitis - Journal of Grapevine Research*, 55(3), 99–106. doi:10.5073/vitis.2016.55.99-106.

Takase H., Sasaki K., Shinmori H., Shinohara A., Mochizuki C., Kobayashi H., Ikoma G. Saito H., Matsuo H., Suzuki S. and Takata R., 2016. Cytochrome P450 CYP71BE5 in grapevine (*Vitis vinifera*) catalyzes the formation of the spicy aroma Compound (-)-Rotundone. *Journal of Experimental Botany*, 67(3), 787–98. doi:10.1093/jxb/erv496.

Takeuchi H., Kato H. and Kurahashi T., 2013. 2,4,6-trichloroanisole is a potent suppressor of olfactory signal transduction. *Proceedings of the National Academy of Sciences of the United States of America*, 110(40), 16235–40. doi:10.1073/pnas.1300764110.

Terrier A. and Boidron J.N., 1972. Identification des dérivés terpéniques dans les raisins de certaines variétés de *Vitis vinifera*: O- Techniques expérimentales. *OENO One*, 6(1), 69–85. doi:10.20870/oeno-one.1972.6.1.2052.

Tominaga T., Peyret des Gachons C. and Dubourdieu D., 1998. A new type of flavor precursors in *Vitis vinifera* L. cv. Sauvignon blanc: S-Cysteine Conjugates. *Journal of Agricultural and Food Chemistry*, 46(12), 5215–19. doi:10.1021/jf800481u.

Torregrosa L.J.M., Rienth M., Romieu C. and Pellegrino A., 2019. The microvine, a model for studies in grapevine physiology and genetics. *OENO One* 53, 373–391. doi:10.20870/oeno-one.2019.53.3.2409
Vadakattu G.V., Bramley P., Greenfield P., Yu J. and Herderich M.J., 2019. Vineyard soil microbiome composition related to rotundone concentration in australian cool climate “peppery” shiraz grapes. *Frontiers in Microbiology*, 10(July), 1607. doi:10.3389/fmicb.2019.01607.

van Leeuwen C. and Darriet P., 2016. The impact of climate change on viticulture and wine quality. *Journal of Wine Economics*, 11(1), 150–67. doi:10.1017/jwe.2015.21.

Variyar P.S., Pendharkar M.B., Banerjee A. and Bandyopadhyay C., 1988. Blackening in green pepper berries. *Phytochemistry*, 27(3), 715–17. doi:10.1016/0031-9422(88)84081-0.

Williamson P.O., Robichaud J. and Francis I.L., 2012. Comparison of chinese and australian consumers’ liking responses for red wines. *Australian Journal of Grape and Wine Research*, 18(3), 256–67. doi:10.1111/j.1755-0238.2012.00201.x.

Wood C., Siebert T.E., Parker M., Capone D.L., Elsey G.M., Pollnitz A.P., Eggers M., Meier M., Vössing T., Widder S., Krammer G., Sefton M.A. and Herderich M.J., 2008. From wine to pepper: rotundone, an obscure sesquiterpene, is a potent spicy aroma compound. *Journal of Agricultural and Food Chemistry*, 56(10), 3738–44. doi:10.1021/jf800183k.

Wu T. and Cadwallader K.R., 2019. Identification of characterizing aroma components of roasted chicory “coffee” brews. *Journal of Agricultural and Food Chemistry*, 67(50), 13848–59. doi:10.1021/acs.jafc.9b00776.

Zhang P., Barlow S., Krstic M., Herderich M., Fuentes S. and Howell K., 2015a. Within-vineyard, within-vine and within-bunch variability of the rotundone concentration in berries of *Vitis vinifera* L. cv. shiraz. *Journal of Agricultural and Food Chemistry*, 63(17), 4276–83. doi:10.1021/acs.jafc.5b00590.

Zhang P., Howell K., Krstic M., Herderich M., Barlow E.W.R. and Fuentes S., 2015b. Environmental factors and seasonality affect the concentration of rotundone in *Vitis vinifera* L. cv. Shiraz Wine. *PloS One*, 10(7), e0133137–e0133137. doi:10.1371/journal.pone.0133137.

Zhang P., Fuentes S., Siebert T., Krstic M., Herderich M., Barlow E.W.R. and Howell K., 2016a. Terpene evolution during the development of *Vitis vinifera* L. cv. Shiraz grapes. *Food Chemistry*, 204, 463–74. doi:10.1016/j.foodchem.2016.02.125.

Zhang P., Fuentes S., Wang Y., Deng R., Krstic M., Herderich M., Barlow E.W.R. and Howell K., 2016b. Distribution of rotundone and possible translocation of related compounds amongst grapevine tissues in *Vitis vinifera* L. Cv. Shiraz. *Frontiers in Plant Science*, 7(June), 859. doi:10.3389/fpls.2016.00859.

Zhang P., Luo F. and Howell K., 2017. Fortification and elevated alcohol concentration affect the concentration of rotundone and volatiles in *Vitis vinifera* cv. Shiraz wine. *Fermentation*, 3(3), 29. doi:10.3390/fermentation3030029.