Inhibitory neurotransmission is primarily mediated by γ-aminobutyric acid (GABA) acting synaptic GABA type A receptors (GABA_A). In schizophrenia, presynaptic GABAergic signaling deficits are among the most replicated findings; however, postsynaptic GABAergic deficits are less well characterized. Our lab has previously demonstrated that although there is no difference in total protein expression of the α1–6, β1–3 or γ2 GABA_A subunits in the superior temporal gyrus (STG) in schizophrenia, the α1, β1 and β2 GABA_A subunits are abnormally N-glycosylated. N-glycosylation is a posttranslational modification that has important functional roles in protein folding, multimer assembly and forward trafficking. To investigate the impact that altered N-glycosylation has on the assembly and trafficking of GABA_ARs in schizophrenia, this study used western blot analysis to measure the expression of α1, α2, β1, β2 and γ2 GABA_A subunits in subcellular fractions enriched for endoplasmic reticulum (ER) and synapses (SYN) from STG of schizophrenia (N = 16) and comparison (N = 14) subjects and found evidence of abnormal localization of the β1 and β2 GABA_A subunits and subunit isoforms in schizophrenia. The β2 subunit is expressed as three isoforms at 52 kDa (β252 kDa), 50 kDa (β250 kDa) and 48 kDa (β248 kDa). In the ER, we found increased total β2 GABA_A subunit (β2ALL) expression driven by increased β250 kDa, a decreased ratio of β250 kDa/β2ALL and an increased ratio of β248 kDa/β2 ALL. Decreased ratios of β1/β2ALL and β1/β250 kDa in both the ER and SYN fractions and an increased ratio of β252 kDa/β248 kDa at the synapse were also identified in schizophrenia. Taken together, these findings provide evidence that alterations of N-glycosylation may contribute to GABAergic signaling deficits in schizophrenia by disrupting the assembly and trafficking of GABA_ARs.

INTRODUCTION

Schizophrenia is a chronic psychiatric disorder that affects multiple brain regions, neurotransmitter systems and cell types, and presents with variable combinations of symptoms. Negative and cognitive symptoms associated with this illness have a profound effect on patient outcome, and have been shown to correlate with dysfunctional GABAergic signaling.1,3–12 A consistent finding in schizophrenia research is the decreased expression of GAD67, an enzyme necessary for the synthesis of the neurotransmitter γ-aminobutyric acid (GABA).13–21 Altered inhibitory neurotransmission from GABAergic interneurons onto cortical pyramidal neurons has been shown to disrupt the excitatory:inhibitory balance in the cortex and contribute to disruptions of neural synchrony in schizophrenia13,3–5,6,9,22,23 and other neuropsychiatric disorders.5,6 These presynaptic GABAergic deficits have been extensively studied in schizophrenia, whereas postsynaptic GABA_A receptor (GABA_A) subunit abnormalities have been more difficult to characterize due to extensive homology between subunits and the variety of potential subunits that may be expressed and incorporated into intact receptors.6,24–27

Alterations of transcript and protein expression of several GABA_A subunits in a brain-region, cortical lamina and cell type-specific manner have been described in schizophrenia.13,15,17,28–35

We have previously reported that there is no change to the total protein expression of the α1–6, β1–3 and γ2 GABA_A subunits in the superior temporal gyrus (STG; Brodmann area 22),36 an area that we focused on given prior studies indicating decreased volume, increased GABA_A density and GABAergic signaling abnormalities in this cortical region in schizophrenia.37–40 Although protein expression of these GABA_A subunits was unchanged in STG in schizophrenia, we identified significant alterations in the posttranslational processing of the α1, β1 and β2 GABA_A subunits; specifically, we observed abnormalities of immature N-linked glycosylation of the α1 and β1 GABA_A subunits, and altered total N-glycosylation of the β2 GABA_A subunit in schizophrenia.36

N-glycosylation has an essential role in proper protein folding and assembly, endoplasmic reticulum (ER) quality control mechanisms and forward trafficking from the ER to the plasma membrane.41–48 Previous studies suggested that these functional processes are disrupted in schizophrenia, and we have identified alterations of N-linked glycosylation of multiple neurotransmitter-associated proteins that are consistent with abnormal ER function.36,49–51 A smaller immature N-glycan has been observed attached to the α1 GABA_A subunit in schizophrenia, which suggests that this subunit undergoes early glycoprotein processing and may be retained in the calnexin–calreticulin protein folding cycle in the ER. More of the β149 kDa GABA_A subunit isoform is immaturely glycosylated in schizophrenia, which could result in increased incorporation of this subunit into synaptically targeted GABA_ARs. The abnormal total N-glycosylation of the β2 subunit that we have previously reported may alter receptor targeting after ER exit and result in decreased β2 expression at the synapse. As N-glycosylation abnormalities are evident on isoforms
of both the β1 and β2 GABA\(\alpha\)R subunits, this atypical pattern of posttranslational modifications may serve to ensure preferential incorporation of one β-subunit over the other to compensate for presynaptic GABAergic signaling deficits in the disorder. Accord-
ingly, we predict that the ratio of β1-containing versus β2-
containing GABA\(\alpha\)Rs could be altered at the synapse. On the basis of the previously reported N\-glycosylation deficits in schizophrenia, we hypothesize that deficits in initial protein processing, including abnormal posttranslational protein modifications, may alter neurotransmitter receptor assembly and trafficking and contribute to the pathophysiology of schizophrenia.

To ascertain whether N\-glycosylation alterations contribute to aberrant forward trafficking of GABA\(\alpha\)R\(s\) in schizophrenia, in this study, we examined the subcellular localization of GABA\(\alpha\)R subunits that we previously found to be abnormally N\-glycosyl-
ated in STG in schizophrenia. We also examined the subcellular distribution of the y2 GABA\(\alpha\)R subunit given its role in synaptic targeting of intact receptors, and the a2 GABA\(\alpha\)R subunit, which has been implicated in schizophrenia.

MATERIALS AND METHODS

Subjects and tissue acquisition

MATERIALS AND METHODS

Objectives of study

The objectives of this study were to further examine the subcellular localization of GABA\(\alpha\)R subunits in de
cubular localization or subunit composition of intact GABA\(\alpha\)Rs and to determine the expression of the

Materials and methods

Subjects and tissue acquisition

MATERIALS AND METHODS

Subcellular fractionation

Subcellular fractionation was performed using nitrogen cavitation, differential sucrose gradient ultracentrifugation and Triton solubilization (Figure 1a). This protocol yields fractions enriched for light membrane/ cytosol, ER, and synapses (SYN). It also yields a relatively nonspecific residual fraction containing markers for mitochondria, extrasympathetic membranes, ER lumen and other membrane and vesicle-associated proteins; this triton-soluble fraction, referred to as the ‘other intermediate membrane’ fraction, does not contain nuclear or excitatory synaptic markers (Figure 1b).

For each subject, 50 mg of pulverized tissue was homogenized on ice by 10 strokes in a glass–teflon homogenizer in 1.25 ml of 1× Isotonic Extraction Buffer (Sigma-Aldrich, St. Louis, MO, USA) diluted with sterile water, then transferred into a nitrogen cavitation vessel (Parr Instrument Company, Moline, IL, USA) and pressurized at 450 psi for 8 min for further disruption of cell membranes. The homogenates were collected through the outlet port of the vessel by nitrogen decomposition; 950 μl was used for subcellular fractionation and the remainder reserved as total homogenate.

The homogenate from each subject was centrifuged at 700 g for 15 min at 4 °C. The supernatant (S1) was subsequently centrifuged at 15 000 g for 10 min at 4 °C and the pellet (P1) was resuspended in 75 μl of sucrose homogenization buffer (5 mM Tris-HCl, pH 7.4, 320 mM sucrose and a protease inhibitor tablet (Complete Mini; Roche Diagnostics, Mannheim, Germany)). After the second centrifugation, the supernatant (S2) was loaded on top of a differential sucrose gradient prepared (1 ml each of 1.1 M, 1.0 M, 0.9 M, 0.8 M and 0.7 M sucrose solutions) on a 1 ml ultracentrifuge tube at 126 000 g at 4 °C. After centrifugation for 70 min, the upper layer was aspirated and combined with the resuspended P2. The pellet (P2) was resuspended in 75 μl sucrose homogenization buffer and combined with the resuspended P1.

To the combined P1/P2 resuspension, 1.2 ml of Triton X-100 buffer (10 mM Tris-HCl, pH 7.4, 1 mM Na3VO4, 5 mM NaF, 1 mM EDTA, 1 mM EGTA, 5%v/v Triton X-100) was added and samples were incubated for 20 min at 4 °C on a rotator before being centrifuged for 20 min at 30 000 g at 4 °C. The Triton-insoluble pellet was resuspended in 125–150 μl of 1× phosphate-buffered saline (PBS) with a protease inhibitor tablet (Roche Diagnostics) and sonicated 5 × for 1 s at level 4 (Sonic Dismembrator Model 100, Fisher Scientific, Pittsburgh, PA, USA) to produce the final SYN fraction. The supernatant (S3) was reserved to produce the final other intermediate membrane fraction.

The sucrose gradient was ultracentrifuged at 126 000 g (35 000 r.p.m. in a SW60Ti rotor (Beckman Coulter)) at 4 °C for 70 min. The upper layer was reserved to produce the final light membrane/cytosol fraction. A dense, semi-opaque white band at the interface of the upper layer and the 1.3 M sucrose layer was aspirated and combined with 3.0–3.5 ml of ice-cold 1× MTE+PMSF buffer (270 mM Na-mannitol, 10 mM Tris-base and 0.1 mM EDTA adjusted to pH 7.4, with 1 mM phenylmethylsulfonyl fluoride) and ultracentrifuged in a new polyallomer ultracentrifuge tube (Beckman Coulter, Indianapolis, IN, USA), and the pellet (P2) was resuspended in 75 μl sucrose homogenization buffer and combined with the resuspended P1.

Electron microscopy

To validate enrichment of ER membranes in the ER fraction (Figure 1c) and comparison subjects were prepared as previously described. Briefly, fractions were fixed in 4% glutaraldehyde and 0.1 μl cayodealdehyde buffer (pH 7.4) at 4 °C for at least 24 h. The University of Alabama at Birmingham HRIF Electron Microscopy Core then processed the samples and post-stained with uranyl acetate and lead citrate for EM imaging on a Tecnai F20 FEG transmission electron microscope (FEI, Hillsboro, OR, USA).

Western blot sample preparation

Protein concentration of the homogenate and fraction samples was determined with BCA assays (Thermo Fisher Scientific, Pittsburgh, PA, USA). Western blot samples were prepared by dilution with sucrose homogenization buffer and the addition of 6× loading buffer (0.5 μl Tris-HCl, 36% glycerol, 4.5% sodium dodecyl sulfate and 2% β-mercaptoethanol) to a final protein concentration of 0.556 μg μl−1 (10 μg in 18 μl).

Table 1. Summary of subject demographics

	Comparison	Schizophrenia
n	14	16
Age	79.4 ± 9.3	75.8 ± 11.9
Sex	4 M/10 F	11 M/5 F
PMI (h)	10.0 ± 7.3	11.4 ± 4.4
Tissue pH	6.3 ± 0.2	6.4 ± 0.3
On/off Rx	0/14	11/5

Abbreviations: F, female; M, male; PMI, postmortem interval; Rx, anti-
psychotic medication. Values are expressed as means ± s.d. Off Rx indicates
patients that had not received antipsychotic medications for 6 weeks or
more at the time of death.
Deglycosylation
Peptide N-glycosidase F (PNGase F; New England Biolabs, Ipswich, MA, USA) was used to cleave total N-glycans in samples of total homogenate, ER and SYN fractions. For each fraction, 25 μg of protein was denatured with Denaturation Solution (New England Biolabs) and 10 × PNGase F Reaction Buffer (New England Biolabs) by incubation at 70 °C for 10 min. The deglycosylating enzyme PNGase F and 10% NP40 were added and samples incubated overnight at 40 °C. To each sample, 6 × loading buffer was added and heated at 70 °C for 10 min. Non-enzyme-treated negative control samples with or without NP40 were prepared identically to the enzyme-treated samples with the same buffers, replacing the enzyme and NP40 with water.

Western blot analysis
Fraction samples were run on three 12-well 4–12% Bis-Tris polyacrylamide gels (Life Technologies, Grand Island, NY, USA). For each subject, 10 μg of total homogenate, light membrane/cytosol, ER, SYN and other intermediate membrane fractions were loaded. Novex Sharp Pre-stained Protein Standard (Life Technologies) was run on each gel. Gels were suspended in a bath of 1 × NuPAGE MES sodium dodecyl sulfate running buffer (Life Technologies) and run on a Novex Mini Cell NuPAGE system (Life Technologies) at 55 V for 20 min, followed by 150 V for 80 min. After electrophoresis, proteins were transferred onto 0.45 μm nitrocellulose membranes (Bio-Rad, Hercules, CA, USA) at 16 V for 30 min using a Bio-Rad semi-dry transfer apparatus. Membranes were cut just above 160 kDa, just below 60 kDa, and just above 40 kDa, followed by a brief PBS rinse. For each set of three gels, membranes of the same molecular weight range were incubated using the appropriate primary antibody in the same box, except for the 60–40 kDa range membranes, which were probed separately for GABAAR subunits. Membranes were incubated with primary antibodies against VCP, gephyrin, JM4, DNAJC4 and the α1, α2, β1, β2, γ2 GABAAR subunits (Supplementary Table S2). Conditions for primary antibodies were optimized to be within the linear range of detection for
The β2 GABAAR subunit is abnormally expressed in an isoform-specific manner and the ratios of β1 and β2 subunit isoforms are altered in the ER in schizophrenia. Western blot analysis of total β2 GABAAR subunit (β2ALL) and individual β2 GABAAR subunit 50kDa and 48kDa isoforms (β250kDa and β248kDa, respectively), the ratios of β2 GABAAR subunit isoforms to each other, and the ratio of β1:β2 GABAAR subunit and subunit isoform expression in the ER fraction in schizophrenia and comparison subjects. (a) ER fraction-normalized expression of β2ALL, and specifically the β250kDa GABAAR subunit isoform, is increased in schizophrenia. (b) The ratio of β248kDa:β2ALL GABAAR subunit fraction-normalized expression is decreased in the ER in schizophrenia. (c) The ratio of β250kDa:β248kDa GABAAR subunit fraction-normalized signal intensities is increased in schizophrenia. (d) Representative images of western blots of the β2 GABAAR subunit, VCP and JM4 from the ER fraction from comparison and schizophrenia subjects with the β2ALLO and β2ALL-β1, β2 and β2 ALL GABAAR subunit 50kDa and 48kDa protein bands indicated. (e) The ratio of β1:β2ALL and specifically the ratio of β1:β2 GABAAR subunit expression is significantly less in the ER fraction in schizophrenia. Data are expressed as either the signal intensity of protein targets in the ER fraction normalized to VCP as a loading control and JM4 as an ER marker relative to the VCP-normalized signal intensity of the same target in the total homogenate, or expressed as a ratio of normalized signal intensities, for each data point with means ± s.e.m. for each group indicated in a, b, c and e. *P < 0.05, **P < 0.01. COMP, comparison subject; ER, endoplasmic reticulum; GABAAR, γ-aminobutyric acid type A receptor; SCZ, schizophrenia; VCP, valosin-containing protein.

The Odyssey Infrared Imaging System (LI-COR Biosciences, Lincoln, NE, USA) at a resolution of 169 μm and intensity level of 3. After washing three times with 1 x PBS+0.1% Tween, each membrane was incubated with the appropriate IRDye-labeled secondary antibody (LI-COR Biosciences) for 1 h, then washed twice with PBS+0.1% Tween and once with MilliQ water before being scanned. After scanning, the membranes were stored in MilliQ water at 4 °C.

Antibody specificity for the GABAAR subunits was determined by comparison of the predicted molecular mass of the target protein with the antibody manufacturers observed molecular mass and observed molecular mass of immunoreactive bands from western blots of postmortem cortical homogenate from a non-psychiatrically ill comparison subject. The a1, a2 and y2 GABAAR antibodies strongly associated with protein bands at the expected molecular mass of the respective subunit. Specificity of the GABAAR β1 subunit was determined by incubating the primary antibody with the antigenic peptide (sc-31426P, Santa Cruz Biotechnology, Santa Cruz, CA, USA) for 10 min before probing a western blot of total cortical homogenate. Protein bands, which were not evident after this incubation but were apparent when probed with primary antibody alone were determined to represent the GABAAR β1 subunit. There was no peptide antigen available for the GABAAR β2 subunit; however, similar to the GABAAR β1 subunit, we were able to verify which bands represented GABAAR β3 subunits using the antigenic peptide (sc-31430P, Santa Cruz Biotechnology) incubated with the GABAAR β3 antibody (sc-31430, Santa Cruz Biotechnology) and comparing western blots to identify which bands were specific to β3 subunit expression. We then compared these with a western blot probed with an antibody that recognizes all the three GABAAR β-subunits (sc-28794, Santa Cruz Biotechnology) and identified the immunoreactive bands that were recognized by the GABAAR β2 antibody, but not the β1 or β3 subunit antibodies, as representing the GABAAR β2 subunit.

The Odyssey Infrared Imaging System (LI-COR Biosciences, Lincoln, NE, USA) at a resolution of 169 μm and intensity level of 3. After washing three times with 1 x PBS+0.1% Tween, each membrane was incubated with the appropriate IRDye-labeled secondary antibody (LI-COR Biosciences) for 1 h, then washed twice with PBS+0.1% Tween and once with MilliQ water before being scanned. After scanning, the membranes were stored in MilliQ water at 4 °C.

Antibody specificity for the GABAAR subunits was determined by comparison of the predicted molecular mass of the target protein with the antibody manufacturers observed molecular mass and observed molecular mass of immunoreactive bands from western blots of postmortem cortical homogenate from a non-psychiatrically ill comparison subject. The a1, a2 and y2 GABAAR antibodies strongly associated with protein bands at the expected molecular mass of the respective subunit. Specificity of the GABAAR β1 subunit was determined by incubating the primary antibody with the antigenic peptide (sc-31426P, Santa Cruz Biotechnology, Santa Cruz, CA, USA) for 10 min before probing a western blot of total cortical homogenate. Protein bands, which were not evident after this incubation but were apparent when probed with primary antibody alone were determined to represent the GABAAR β1 subunit. There was no peptide antigen available for the GABAAR β2 subunit; however, similar to the GABAAR β1 subunit, we were able to verify which bands represented GABAAR β3 subunits using the antigenic peptide (sc-31430P, Santa Cruz Biotechnology) incubated with the GABAAR β3 antibody (sc-31430, Santa Cruz Biotechnology) and comparing western blots to identify which bands were specific to β3 subunit expression. We then compared these with a western blot probed with an antibody that recognizes all the three GABAAR β-subunits (sc-28794, Santa Cruz Biotechnology) and identified the immunoreactive bands that were recognized by the GABAAR β2 antibody, but not the β1 or β3 subunit antibodies, as representing the GABAAR β2 subunit.

The Odyssey Infrared Imaging System (LI-COR Biosciences, Lincoln, NE, USA) at a resolution of 169 μm and intensity level of 3. After washing three times with 1 x PBS+0.1% Tween, each membrane was incubated with the appropriate IRDye-labeled secondary antibody (LI-COR Biosciences) for 1 h, then washed twice with PBS+0.1% Tween and once with MilliQ water before being scanned. After scanning, the membranes were stored in MilliQ water at 4 °C.

Antibody specificity for the GABAAR subunits was determined by comparison of the predicted molecular mass of the target protein with the antibody manufacturers observed molecular mass and observed molecular mass of immunoreactive bands from western blots of postmortem cortical homogenate from a non-psychiatrically ill comparison subject. The a1, a2 and y2 GABAAR antibodies strongly associated with protein bands at the expected molecular mass of the respective subunit. Specificity of the GABAAR β1 subunit was determined by incubating the primary antibody with the antigenic peptide (sc-31426P, Santa Cruz Biotechnology, Santa Cruz, CA, USA) for 10 min before probing a western blot of total cortical homogenate. Protein bands, which were not evident after this incubation but were apparent when probed with primary antibody alone were determined to represent the GABAAR β1 subunit. There was no peptide antigen available for the GABAAR β2 subunit; however, similar to the GABAAR β1 subunit, we were able to verify which bands represented GABAAR β3 subunits using the antigenic peptide (sc-31430P, Santa Cruz Biotechnology) incubated with the GABAAR β3 antibody (sc-31430, Santa Cruz Biotechnology) and comparing western blots to identify which bands were specific to β3 subunit expression. We then compared these with a western blot probed with an antibody that recognizes all the three GABAAR β-subunits (sc-28794, Santa Cruz Biotechnology) and identified the immunoreactive bands that were recognized by the GABAAR β2 antibody, but not the β1 or β3 subunit antibodies, as representing the GABAAR β2 subunit.

Data analysis

Image Studio software (LI-COR Biosciences) was used to collect the near-infrared fluorescence value, expressed as signal with left-right median intralane background subtracted, for each protein band under investigation in the total homogenate and subcellular fractions. The number of subjects per group was determined using the previously reported mean and standard deviation of GABAAR α1, β1 and β2 protein expression in STG to detect a 20% difference with statistical power = 0.80. The protein expression of α1, α2, β1, β2 and y2 GABAAR subunits, as well as the protein expression of gephyrin and JM4, was determined by measuring the signal intensity of each band and normalizing to a loading control as well as a marker for each specific fraction. We used VCP as the loading control due to its ubiquitous expression in brain, immunoreactivity in each subcellular fraction, and unchanged expression in multiple brain regions in schizophrenia. We used gephyrin as the normalizing factor for the SYN fraction because of its role as a cytoskeletal scaffold for GABAAR-containing synapses. JM4 is a marker of ER and Golgi membranes expressed in cortical neurons used as the normalizing factor for the ER fraction due to its consistent and uniform expression in that fraction. Before GABAAR subunit normalization, we verified that VCP, gephyrin and JM4 were not different between groups in the total homogenate or subcellular fractions. For the α2 and β2 GABAAR subunits, which are expressed as multiple isoforms, individual protein bands for each isoform and all isoform bands together, were measured. Although the β1 GABAAR subunit is also expressed as a doublet in our western blot conditions, the individual isoforms did not have enough separation between bands to be measured individually.

VCP-normalized signal intensity was used to assess protein expression for each target in the total homogenate lanes to validate our prior finding of unchanged GABAAR subunit expression in schizophrenia STG from a different subject cohort and for use as a within-subject normalizing...
factor for protein expression in subcellular fractions. For the ER fraction, we assessed all the dependent variables. Data were analyzed using Student's t-tests; for dependent measures that were not normally distributed, data were analyzed using the Mann–Whitney U-test. Test statistics which met the threshold for significance (α = 0.05) are listed in bold.

Table 2. α1, α2, β1 and γ2 GABA_A receptor subunit protein expression is unchanged in the total homogenate, ER and synapse-enriched fractions of the STG in schizophrenia

GABA_A subunit	Comparison	Schizophrenia	Test statistic (df.)	P-value
Total				
α1	9.42 ± 13.88	15.91 ± 26.47	U (13,15) = 95	
α2_ALL	0.29 ± 0.23	0.31 ± 0.25	U (14,16) = 105	
α2_β12_3_α2	0.13 ± 0.12	0.12 ± 0.08	U (13,15) = 97	
α2_γ2	0.16 ± 0.13	0.19 ± 0.19	U (14,16) = 104	
β1	3.37 ± 1.86	3.15 ± 1.23	t (27) = 0.39	
β2_ALL	0.43 ± 0.29	0.36 ± 0.25	U (14,16) = 95	
β2_β12_3_α2	0.15 ± 0.10	0.11 ± 0.05	U (14,16) = 90	
β2_γ2	0.25 ± 0.20	0.20 ± 0.12	U (14,16) = 96	
β2_48	0.11 ± 0.07	0.11 ± 0.07	t (28) < 0.01	
γ2	13.64 ± 12.19	20.42 ± 20.43	U (13,16) = 67	
ER				
α1	0.23 ± 0.19	0.26 ± 0.18	U (12,15) = 80	
α2_ALL	0.21 ± 0.24	0.17 ± 0.14	U (13,16) = 99	
α2_β12_3_α2	0.29 ± 0.32	0.25 ± 0.16	U (13,16) = 91	
β1	0.40 ± 0.36	0.34 ± 0.27	U (13,16) = 99	
β2_ALL	0.15 ± 0.12	0.27 ± 0.27	U (14,16) = 61	0.03
β2_β12_3_α2	0.12 ± 0.09	0.21 ± 0.15	U (14,15) = 59	< 0.05
β2_γ2	0.30 ± 0.24	0.40 ± 0.31	U (14,16) = 93	
γ2	1.91 ± 1.49	2.20 ± 0.77	t (25) = 1.03	
Synaptic				
α1	21.83 ± 19.70	25.19 ± 18.32	U (13,14) = 75	
α2_ALL	23.65 ± 23.55	19.71 ± 13.29	t (27) = 0.54	
α2_β12_3_α2	50.41 ± 31.80	49.88 ± 35.37	U (13,15) = 82	
α2_γ2	28.57 ± 31.81	23.06 ± 19.54	U (13,14) = 80	
β1	33.31 ± 33.48	29.93 ± 23.39	U (13, 15) = 94	
β2_ALL	31.00 ± 23.01	39.87 ± 25.53	t (27) = 0.98	
β2_β12_3_α2	22.13 ± 11.82	39.55 ± 25.90	U (13,15) = 64	
β2_γ2	28.09 ± 21.46	37.39 ± 21.84	U (14,15) = 74	
β2_48	39.34 ± 31.59	45.62 ± 35.16	U (14,15) = 96	
γ2	199.80 ± 96.41	232.70 ± 120.50	t (22) = 0.74	

Abbreviations: ER, endoplasmic reticulum; GABA_A receptor; STG, superior temporal gyrus. Values are reported as means ± s.d. for normally distributed dependent measures; data were analyzed using Student's t-tests; for dependent measures that were not normally distributed, data were analyzed using the Mann–Whitney U-test. Test statistics which met the threshold for significance (α = 0.05) are listed in bold.

Translational Psychiatry (2015), 1 – 12
RESULTS

The β2 GABA_R subunit, specifically the β2_{50kDa} isoform, is increased in the ER fraction in schizophrenia.

The β2 GABA_R subunit is visualized as multiple isoforms in a fraction-specific manner, with bands at ~52 and 50 kDa in the total homogenate; 50 and 48 kDa in the ER fraction (Figure 2d); and 52, 50 and 48 kDa in the SYN fraction. ER expression of all β2 isoforms (β2_{ALL}) was 93% higher in schizophrenia (U(14,16) = 61, P = 0.03; Figure 2a, Table 2), and ER expression of the primary 50 kDa β2 isoform (β2_{50kDa}) which is seen in all the subcellular fractions, was 70% higher in the ER in schizophrenia (U(14,15) = 59, P < 0.05; Figure 2a, Table 2). There was no difference in the relative expression of the 48 kDa β2 isoform (β2_{48kDa}) in the ER (Figure 2a, Table 2) and no difference in the relative expression of β2_{ALL}, β2_{50kDa}, β2_{48kDa}, or 52 kDa β2 (β2_{52kDa}) GABA_R subunit isoforms in the total homogenate or SYN fractions between schizophrenia and comparison subjects (Table 2). The ratios of β2 GABA_R subunit isoforms are altered in the ER and SYN fractions in schizophrenia.

In the ER fraction, the ratio of β2_{48kDa} to β2_{ALL} GABA_R subunit expression is decreased in schizophrenia (t(28) = 3.2, P < 0.01, q < 0.01; Figure 2b, Table 3) and is not different in the total homogenate or the SYN fraction (Table 3). The ratio of β2_{50kDa} to β2_{48kDa} GABA_R subunit expression is increased in the ER in schizophrenia (U(14,16) = 45, P < 0.01, q = 0.01; Figure 2c, Table 3) but unchanged in the SYN fraction (Figure 3a, Table 3). The ratio of β2_{52kDa} to β2_{48kDa} GABA_R subunit expression is not different in total homogenate (Table 3), but is increased in the SYN fraction (U(14,15) = 54, P = 0.03, q < 0.01; Figure 3a, Table 3). There is no difference in the ratio of β2_{50kDa} to β2_{ALL} GABA_R subunit expression between diagnostic groups in the ER (Figure 2b, Table 3), nor is there a difference in the total homogenate or SYN fractions for the ratios of β2_{50kDa} to β2_{ALL} or β2_{52kDa} to β2_{50kDa} GABA_R subunit expression (Figure 3a, Table 3).

The ratio of β1 to β2 GABA_R subunit expression is decreased in the ER and SYN fractions in schizophrenia.

There was no difference in the relative amount of the β1 GABA_R subunit expressed in the total, ER or SYN fractions between schizophrenia and comparison subjects (Figure 4, Table 2). However, the ratio of β1_{ALL} GABA_R subunit expression, while not different in total homogenate (Table 3), was significantly reduced in the ER (U(13,16) = 53, P = 0.03, q = 0.03; Figure 2e, Table 3) and SYN fractions (U(13,14) = 49, P = 0.04; Figure 3b, Table 3) in schizophrenia. The ratio of β1_{50kDa} expression was also less in both the ER (U(13,16) = 49, P = 0.02, q = 0.02; Figure 2e, Table 3) and SYN (t(25) = 2.2, P = 0.04; Figure 3b, Table 3) fractions in schizophrenia, with no difference between groups in total homogenate (Table 3). The ratios of β1_{52kDa} and β1_{48kDa} were unchanged in the total homogenate (Table 3) and SYN fractions (Figure 3b, Table 3) in schizophrenia and the ratio of β1_{48kDa} was also unchanged in ER (Figure 2a, Table 3). Post hoc
Higher molecular mass band at ~51 kDa (β deglycosylation (Figure 5). Although the calculated percentage of corresponding increase in signal intensity in the SYN fraction after SYN fraction decreased in schizophrenia subjects relative to comparison subjects (β decrease of the SYN fraction (Supplementary Figure 2). Similarly, the expression of the same targets in total homogenate for each subject; data are means ± s.e.m. *P < 0.05. COMP, comparison subject; GABAAR, γ-aminobutyric acid type A receptor; SCZ, schizophrenia; SYN, synapse; VCP, valosin-containing protein.

Figure 3. The ratio of β1:β2ALL, β1:β2SO, and β2ALL:β248kDa GABAAR subunit expression is increased in the SYN fraction in schizophrenia. Western blot analysis of the ratios of β1 and β2 GABAAR subunit isoform expression in the SYN fraction in schizophrenia and comparison subjects. (a) The ratio of β2ALL:β248kDa GABAAR subunit expression is increased in schizophrenia, with no difference between groups for the ratio of β2ALL:β250kDa or β2SO:β248kDa GABAAR subunit expression in the SYN fraction. (b) The ratio of β1:β2ALL and β1:β2SO GABAAR subunit expression is decreased in the SYN fraction in schizophrenia. Data are expressed as a ratio of the signal intensity of protein targets in the SYN fraction normalized to VCP as a loading control and gephyrin as an inhibitory synaptic marker relative to the VCP-normalized signal intensity of the same targets in total homogenate for each subject; data are means ± s.e.m. *P < 0.05. COMP, comparison subject; GABAAR, γ-aminobutyric acid type A receptor; SCZ, schizophrenia; SYN, synapse; VCP, valosin-containing protein.

The β2SO GABAAR subunit isoform represents an N-glycosylated form of β2.

After cleavage of immature and mature N-glycans with PNGase F from subcellular fractions, the relative contribution of each β2 GABAAR subunit isoform to the total β2 GABAAR subunit protein expression was assessed in each fraction. The signal intensity of the β2SO GABAAR subunit isoform is greatly reduced and the signal intensity of the β2SO GABAAR subunit isoform exhibits a corresponding increase in signal intensity in the SYN fraction after deglycosylation (Figure 5). Although the calculated percentage of β248kDa GABAAR in the ER fraction is also modestly reduced after PNGase F treatment, this is likely an artifact due to the low signal intensity values for protein bands measured in this assay from those lanes.

Protein expression of α1, α2, β1 and γ2 GABAAR subunits is unchanged in the STG in schizophrenia.

The α1 subunit appears as a single band at 52 kDa in the total homogenate, ER and SYN fractions. In the total homogenate and the SYN fraction, the α2 subunit appears as a doublet (α2ALL). The higher molecular mass band at ~51 kDa (α2SO) is expressed discretely in the ER and the lower molecular mass band at 49 kDa (α249kDa) is expressed in the total homogenate and SYN fractions. The β1 GABAAR subunit appears as a doublet at ~50–52 kDa in the total homogenate, ER and SYN fractions. The γ2 GABAAR subunit is present in all the fractions and appears as a single band at ~51 kDa. There is no difference in the protein expression of the α1, β1 and γ2 GABAAR subunits between schizophrenia and comparison subjects in total homogenate, ER or SYN fractions (Figure 4, Table 2). There is also no significant difference between diagnostic groups in the expression of α2ALL (Figure 4, Table 2), nor the α2SO or α249kDa isoforms when assessed individually in any fraction (Table 2).

DISCUSSION

These data indicate abnormal subcellular expression of the β1 and β2 GABAAR subunits in the schizophrenia brain. We have previously reported that the 49 kDa β1 GABAAR subunit is more immaturely N-glycosylated and the total N-glycosylation of the β2 subunit is altered in schizophrenia, suggesting a mechanism underlying abnormal GABAAR subunit assembly, altered cell surface expression and trafficking disruptions in this illness.36 Although we did not find any abnormalities in β1 GABAAR subunit expression in subcellular compartments, we identified increased expression of β2ALL driven by increased β2SO in the ER in schizophrenia.

To assess the relative abundance and localization of the β1 and β2 GABAAR subunits and β2 GABAAR subunit isoforms, we calculated the ratios of β1 and β2 isoforms in the ER and SYN fractions to assess potential differences in GABAAR subunit composition between schizophrenia and comparison subjects. In the ER fraction, we identified a significant decrease in the ratios of β1:β2ALL, β1:β2SO, and β248kDa:β2ALL and a significant increase
in the ratio of $\beta_{250 \text{kDa}}:\beta_{248 \text{kDa}}$. Together, these data suggest a relative reduction in the expression of β_1 GABA$_A$R subunits, as well as a reduction of $\beta_{248 \text{kDa}}$ isoform expression in the ER in schizophrenia. In addition, these data suggest that the $\beta_{250 \text{kDa}}$ isoform is expressed more abundantly in the ER, which may reflect that this isofrom is more likely to be incorporated into intact receptors trafficked to the cell membrane for expression at the synapse.

Consistent with our findings in the ER, the ratios of β_1-$\beta_{2\text{ALL}}$ and β_1-$\beta_{250 \text{kDa}}$ GABA$_A$R subunits were decreased in the SYN fraction, suggesting a relative increase of $\beta_{250 \text{kDa}}$ isoform expression and a relative decrease in β_1 GABA$_A$R subunit expression at the synapse in schizophrenia. We also determined that the ratio of $\beta_{248 \text{kDa}}$-$\beta_{252 \text{kDa}}$ GABA$_A$R subunit isofoms is increased in the SYN fraction in schizophrenia, which we consider to be indicative of increased synaptic $\beta_{252 \text{kDa}}$ and decreased synaptic $\beta_{248 \text{kDa}}$. Because we could not measure the $\beta_{252 \text{kDa}}$ GABA$_A$R isoform in the ER fraction, and the difference associated with $\beta_{252 \text{kDa}}$ is only apparent relative to $\beta_{248 \text{kDa}}$ isoform expression in the SYN fraction, it is unclear whether the $\beta_{248 \text{kDa}}$ isoform is specifically increased at the synapse; however, despite this confound, the altered ratios in the SYN fraction appear to be consistent with a relative increase of the $\beta_{252 \text{kDa}}$ and $\beta_{250 \text{kDa}}$ GABA$_A$R subunit isofoms, and a relative decrease of β_1 and $\beta_{248 \text{kDa}}$ GABA$_A$R subunits incorporated into synaptic GABA$_A$Rs. We have also shown that the $\beta_{252 \text{kDa}}$ GABA$_A$R subunit in the SYN fraction likely represents an N-glycosylated form of β_2 which, consistent with previous in vitro studies, suggests that N-glycosylated forms of the β_2 GABA$_A$R subunit may be preferentially incorporated into intact, synaptically expressed receptors. Interestingly, the decreased ratios of β_1-$\beta_{2\text{ALL}}$ and β_1-$\beta_{250 \text{kDa}}$ in the SYN fraction in schizophrenia appear to be ameliorated by the effects of antipsychotic medications, with schizophrenia subjects ‘on’ medication more closely resembling comparison subjects. This suggests that treatment with antipsychotic medication may result in increased expression of β_1-containing GABA$_A$R subunits expressed at the synapse relative to those subjects ‘off’ medication.

Figure 4. α_1, α_2, β_1 and γ_2 GABA$_A$R subunit expression are not different between diagnostic groups in the total homogenate, ER or SYN fractions. Western blot analysis of α_1, $\alpha_2\text{ALL}$, β_1 and γ_2 GABA$_A$R subunit expression in schizophrenia and comparison subjects. There are no differences between diagnostic groups in the protein expression of α_1, $\alpha_2\text{ALL}$, β_1 or γ_2 GABA$_A$R subunits in (a) the total homogenates, (b) ER fractions or (c) the SYN fractions. Data are expressed as the mean signal intensity (± s.e.m.) of protein targets in the ER fraction normalized to VCP as a loading control, and JM4 as an ER marker or gephyrin as an inhibitory synapse marker, relative to the VCP-normalized signal intensity of the same target in the total homogenate. COMP, comparison subject; ER, endoplasmic reticulum; GABA$_A$R, γ-aminobutyric acid type A receptor; SCZ, schizophrenia; SYN, synapse; VCP, valosin-containing protein.

Translational Psychiatry (2015), 1–12
containing β2 subunits, possibly by inhibiting incorporation of the β2\textsubscript{50 kDa} subunit into synaptically targeted receptors.

In humans, the β2 GABA\textsubscript{A}R subunit protein is expressed as four isoforms (β2\textsubscript{1}, β2\textsubscript{2}, β2\textsubscript{51} and β2\textsubscript{52}) that are the result of mRNA splice variants which can be regulated by epigenetic modifications at key neurodevelopmental time points.4-7 The β2\textsubscript{1} and β2\textsubscript{52} isoforms are distinguished by the inclusion of exon 10 in the β2 subunit, to produce subunits with predicted molecular masses of 60 kDa and 54 kDa, respectively.7.5 The β2\textsubscript{1} and β2\textsubscript{52} isoforms were subsequently identified with predicted molecular masses of 36 kDa and 42 kDa, respectively, and are differentiated from the β2\textsubscript{1} and β2\textsubscript{52} isoforms by the inclusion of the fourth transmembrane domain of the subunit.7.5 On the basis of the predicted molecular masses of β2 GABA\textsubscript{A}R subunit isoforms, we propose that the antibody used in this study labeled posttranslationally with predicted molecular masses of 52 kDa and 42 kDa, respectively, and are differentiated from the β2 GABA\textsubscript{A}R subunit in each lane. In brief, subcellular fractions generated from cortical homogenates were denatured and deglycosylated with PNGase F and corresponding graphs of each lane. The signal intensity of each isoform was then divided by 2 GABA\textsubscript{A}R subunit expressed in the lane.

Figure 5. The β2\textsubscript{50 kDa} GABA\textsubscript{A}R subunit isoform is N-glycosylated in postmortem human cortex. Representative images of western blots probed for the β2 GABA\textsubscript{A}R subunit in total homogenate, ER and SYN fractions with and without N-glycans cleaved by treatment with the deglycosylating enzyme PNGase F and corresponding graphs of β2 GABA\textsubscript{A}R subunit isoform protein expression as a percentage of total β2 GABA\textsubscript{A}R subunit in each lane. In brief, subcellular fractions generated from cortical homogenates were denatured and deglycosylated with PNGase F. Image Studio software was used to measure the signal intensity of protein bands at 52, 50 and 48 kDa in each lane. The signal intensity of each isoform was the divided by the sum of signal intensities for all the three isoforms to determine the percentage of total β2 GABA\textsubscript{A}R subunit expressed in the lane. After deglycosylation with PNGase F, the percentage of β2\textsubscript{50 kDa} GABA\textsubscript{A}R is greatly reduced with a corresponding increase of β2\textsubscript{52 kDa} GABA\textsubscript{A}R expressed in the SYN fraction. The calculated percentage of β2\textsubscript{48 kDa} GABA\textsubscript{A}R in the ER fraction is also reduced after PNGase F treatment; however, it is likely an artifact due to the low signal intensity values for protein bands measured in those lanes. ER, endoplasmic reticulum; GABA\textsubscript{A}R, γ-aminobutyric acid type A receptor; PNGase F, peptide N-glycosidase F; SCZ, schizophrenia; SYN, synapase.

GABRB2 gene. Some GABRB2 single-nucleotide polymorphism haplotypes appear to be subject to regulation by parental imprinting or other epigenetic modifications, which may explain inconsistencies in previous reports examining the role of chromosome 5 in schizophrenia susceptibility risk in different patient populations.74,79,81 The variability of GABRB2 mRNA splice variant expression and corresponding alterations in β2 GABA\textsubscript{A}R subunit protein isoforms expressed as a result of epigenetic or neurodevelopmental changes supports the two-hit model of schizophrenia,84 which posits that genetic predisposition to the disorder in combination with some environmental factor(s) contributes to the onset of psychosis and the conversion from prodromal to symptomatic patient phenotypes. It has been established that the subunit composition of heteropentameric GABA\textsubscript{A}Rs affects the signaling properties of the receptor,75,26,52,85-92 and it has recently been shown that the specific β2 GABA\textsubscript{A}R subunit isoform incorporated into the intact receptor has a significant role in the functional and electrophysiological properties of GABA\textsubscript{A}R.75,82,89 In addition to isoform-specific differences in GABAergic signaling, posttranslational modifications of the β2 GABA\textsubscript{A}R subunit are known to affect heteropentamer assembly, receptor trafficking, cell surface expression, membrane stability, ligand-binding affinity, channel gating properties and receptor kinetics.91,93 N-glycosylation-deficient β2 GABA\textsubscript{A}R subunits expressed in binary α1β2 GABA\textsubscript{A}Rα in the plasma membrane in vitro display reduced current amplitude and decrease in long single-channel openings; N-glycosylation of β2 GABA\textsubscript{A}R at N104 has been shown to affect heteropentamer assembly; and proper immature N-glycosylation at N173 affects the stability of individual β2 GABA\textsubscript{A}R subunits in the ER,93 which together illustrate that early protein processing can substantially affect not only the composition and surface expression of specific β2 GABA\textsubscript{A}R subunit isoforms, but also the signaling properties of intact GABA\textsubscript{A}R.

On the basis of prior findings that the α2 GABA\textsubscript{A}R subunit is expressed more highly in intact GABA\textsubscript{A}Rα in axosomatic synapses of pyramidal neurons in the dorsolateral prefrontal cortex in schizophrenia,60 in conjunction with our prior report demonstrating a smaller immature N-glycan attached to the α1 GABA\textsubscript{A}R subunit in schizophrenia,86 we anticipated finding increased abundance of α1 GABA\textsubscript{A}R subunits in the ER fraction, consistent with retention of this subunit in the calnexin-calreticulin protein-folding cycle, and a decreased ratio of α1:α2 GABA\textsubscript{A}R subunits in both the ER and SYN fractions. Although we found no difference in the abundance of the α1 or α2 GABA\textsubscript{A}R subunits, nor a change in the ratio of α1:α2 GABA\textsubscript{A}R subunits in the ER or SYN fractions in schizophrenia versus comparison subjects, this can be reconciled with the earlier findings. It has been shown in vitro that only 25% of translated subunits are assembled into intact GABA\textsubscript{A}Rs, which are then trafficked to the cell membrane;53,94 and although our previous N-glycosylation findings indicate possible α1 GABA\textsubscript{A}R subunit retention in the ER, it is also possible that aberrantly N-glycosylated α1 GABA\textsubscript{A}R subunits may be rapidly expelled from the ER and undergo ER-associated degradation via the ubiquitin-proteasomal system instead of remaining sequestered in the ER.42,53-55,95

Because α1 and β2 GABA\textsubscript{A}R subunits preferentially co-assemble in intact receptors, and our data suggest relatively more β2 GABA\textsubscript{A}R expression in the ER and SYN fractions, another possible explanation may be that the increased expression of β2 versus β1 GABA\textsubscript{A}R subunits in schizophrenia facilitates α1 versus α2 assembly into intact, synaptically targeted GABA\textsubscript{A}Rs. In addition, because we used specific biochemical methods to isolate a synapse-enriched fraction from cortical homogenate, the SYN fraction is enriched for a combination of excitatory and inhibitory synapses, as well as a combination of axosomatic and dendritic synapses and, as such, we may be unable to identify alterations that are specific to inhibitory axosomatic synapses on pyramidal...
neurons. The possibility that altered ratios of α1:α2 GABAAR subunits may be masked when measured in our assays, or that α-subunit-specific alterations may be more readily evident in the other cortical areas, such as the dorsolateral prefrontal cortex, cannot be ruled out.

We measured the expression of γ2 GABAAR subunits in the fractions as an indirect measure of intact GABAAR localization, owing to the role of the γ2 subunit in synaptic targeting via its interaction with GABAAR-associated protein, GABARAP, an essential component of the GABAAR trafficking machinery.\(^\text{47,53,55–57}\) We found no difference in γ2 GABAAR subunit expression in the ER or SYN fractions between schizophrenia and comparison subjects. This suggests that intact synthaptically targeted heteropentameric GABAARs are being assembled in the ER and localized to the synapse, but does not exclude the possibility that other GABAAR subunits or specific subunit isoforms incorporated into γ2-containing GABAARs may be altered in schizophrenia.

As with all the postmortem studies, there are several limitations to this work. As mentioned previously, the diagnostic groups were not equally matched for sex. Although we did not identify any sex effects for any significant dependent measure (Supplementary Figure 1), the relatively small sample size may not be sufficient to reliably identify sex-specific abnormalities of GABAAR subunit expression and localization in schizophrenia. In addition, the age range of subjects in this study was 53–97 years at the time of death; thus, these findings may not be generalizable to younger patients in the earlier stages of the disorder. Post hoc statistical analyses were performed in an effort to control for these limitations.

Given our previous report of increased immature N-glycosylation of the β1,49 kDa GABAAR subunit and altered total N-glycosylation of the β2,50 kDa GABAAR subunit, our current data indicating increased β2,48 kDa and decreased β1 and β2,48 kDa GABAAR subunits in both the ER and SYN fractions and increased β2,52 kDa in the SYN fraction in schizophrenia provide evidence that proper ER processing and synaptic targeting of β1- and β2-containing GABAARs are affected by N-glycosylation abnormalities in schizophrenia. Our current data suggest that there is an increase of N-glycosylated β2,52 kDa GABAAR subunits expressed synthetically in the STG in schizophrenia. The disparate expression of β2 subunit isoforms at the synapse suggests a GABAAR subunit-mediated postsynaptic abnormality in GABAergic signaling in schizophrenia and, as such, could potentially be a target for pharmacological intervention. The subunit composition of GABAARs is disrupted in multiple brain regions in schizophrenia, and although prior studies have highlighted alterations in membrane expression of the α1 and α2 GABAAR subunits, further investigation of the functional consequences of aberrant β1 and β2 GABAAR subunit isofom membrane expression may provide additional insight into the etiology of GABAergic signaling deficits in schizophrenia.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGMENTS

We thank Jana B Drummond for her assistance in the development of the subcellular fractionation protocol. This work is supported by National Institutes of Health Grant MH53327 (JHM-W), MH064673 (VH) and MH066392 (VH).

REFERENCES

1. Gonzalez-Burgos G, Fish KN, Lewis DA. GABA neuron alterations, cortical circuit dysfunction and cognitive deficits in schizophrenia. *Neural Plast* 2011; **2011**: 723184.
2. Lewis DA, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizophrenia. *Nat Rev Neurosci* 2005; **6**: 312–324.
3. Lewis DA, Curley AA, Glausier JR, Volk DW. Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. *Trends Neurosci* 2012; **35**: 57–67.
4. Uhlhaas PJ, Singer W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. *Neuron* 2006; **52**: 155–168.
5. Nakazawa K, Zisos V, Jiang Z, Nakao K, Kola A, Zhang S et al. GABAergic interneuron origin of schizophrenia pathophysiology. *Neuropsychopharmacology* 2012; **37**: 1574–1583.
6. Charych EI, Liu F, Moss SJ, Brandon NJ. GABAAR receptors and their associated proteins: Implications in the etiology and treatment of schizophrenia and related disorders. *Neuropsychopharmacology* 2009; **37**: 481–495.
7. Lewis DA, Pierri JN, Volk DW, Melchitzky DS, Woo T-UW. Altered GABA neurotransmission and prefrontal cortical dysfunction in schizophrenia. *Biol Psychiatry* 1999; **46**: 616–626.
8. Volk DW, Lewis DA. Early developmental disturbances of cortical inhibitory neurones: contribution to cognitive deficits in schizophrenia. *Schizophr Bull* 2014; **40**: 952–957.
9. Curley AA, Lewis DA. Cortical basket cell dysfunction in schizophrenia. *J Physiol* 2012; **590(Pt 4)**: 715–724.
10. Benes FM. Emerging principles of altered neural circuitry in schizophrenia. *Brain Res Rev* 2000; **31**: 251–269.
11. Green MF, Kern RS, Braff DL, Mintz J. Neurocognitive deficits and functional outcome in schizophrenia: are we measuring the ‘right stuff’? *Schizophr Bull* 2000; **26**: 119–136.
12. Green MF. What are the functional consequences of neurocognitive deficits in schizophrenia? *Am J Psychiatry* 1996; **153**: 321–330.
13. Akbarian S, Kim JJ, Potkin SG, Hagman JQ, Tafazzoli A, Bunney WE et al. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. *Arch Gen Psychiatry* 1995; **52**: 258–266.
14. Guidotti AR, Auto J, Davis JM, Gerevini VD, Diwedi Y, Grayson DR et al. Decrease in reelin and glutamic acid decarboxylase 67 (GAD 67) expression in schizophrenia and bipolar disorder. *Arch Gen Psychiatry* 2000; **57**: 1061–1069.
15. Hashimoto T, Arion D, Unger T, Maldonado-Avilés JG, Morris HM, Volk DW et al. Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia. *Mol Psychiatry* 2008; **13**: 147–161.
16. Hashimoto T, Volk DW, Eggnan SM, Minnics K, Pierri JN, Sun Z et al. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. *J Neurosci* 2003; **23**: 6315–6326.
17. Hashimoto T, Bazmi HH, Minnics K, Wu Q, Sampson AR, Lewis DA. Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia. *Am J Psychiatry* 2008; **165**: 479–489.
18. Hyde TM, Lipska BK, Ali T, Mathew SV, Law AJ, Mettisie OE et al. Expression of GABA signaling molecules KCC2, NKCC1, and GAD1 in cortical development and schizophrenia. *J Neurosci* 2011; **31**: 11088–11095.
19. Benes FM, Lim B, Matalevich D, Walsh JP, Subburaju S, Minnics M. Regulation of the GABA cell phenotype in hippocampal of schizophrenia and bipolars. *Proc Natl Acad Sci USA* 2007; **104**: 10164–10169.
20. Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA. Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. *Arch Gen Psychiatry* 2000; **57**: 234–245.
21. Minnics K, Middleton FA, Marquez A, Lewis DA, Levitt P. Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. *Neuron* 2000; **28**: 53–67.
22. Gonzalez-Burgos G, Lewis DA. GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. *Schizophr Bull* 2008; **34**: 944–961.
23. Benes FM, Berrettia S. GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. *Neuropsychopharmacology* 2001; **25**: 1–27.
24. Mulligan MK, Wang X, Adler AL, Mazuki K, Lu L, Williams RW. Complex control of GABA(A) receptor subunit mRNA expression: variation, covariation, and genetic regulation. *Proc Natl Acad Sci USA* 2009; **106**: 181–234.
25. Siegwart W. Structure and pharmacology of gamma-aminobutyric acid receptor subtypes. *Pharmacol Rev* 1994; **45**: 181–234.
26. McKernan RM, Whiting PJ. Which GABA receptor subtypes really occur in the brain? *Trends Neurosci* 1996; **19**: 139–143.
27. Whiting P, McKernan RM, Iversen LL. Another mechanism for creating diversity in gamma-aminobutyric type A receptors: RNA splicing directs expression of two forms of gamma 2 phosphorylation site. *Proc Natl Acad Sci USA* 1990; **87**: 9966–9970.
28. Beneyto M, Abbott A, Hashimoto T, Lewis DA. Lamina-specific alterations in cortical GABA(A) receptor subunit expression in schizophrenia. *Cereb Cortex* 2011; **21**: 999–1011.
29. Glausier JR, Lewis DA. Selective pyramidal cell reduction of GABA(A) receptor α1 subunit messenger RNA expression in schizophrenia. *Neuropsychopharmacology* 2011; **36**: 2103–2110.
82 Zhao C, Xu Z, Chen J, Yu Z, Tong K-L, Lo W-S et al. Two isoforms of GABA(A) receptor beta2 subunit with different electrophysiological properties: differential expression and genotypical correlations in schizophrenia. Mol Psychiatry 2006; 11: 1092–1105.
83 Pun FW, Zhao C, Lo W-S, Ng S-K, Tsang S-Y, Nimmonkar V et al. Imprinting in the schizophrenia candidate gene GABRB2 encoding GABA(A) receptor (β2) subunit. Mol Psychiatry 2011; 16: 557–568.
84 Bayer TA, Falkai P, Maier W. Genetic and non-genetic vulnerability factors in schizophrenia: the basis of the ‘Two hit hypothesis.’ J Psychiatr Res 1999; 33: 543–548.
85 Zhou C, Huang Z, Ding L, Deel ME, Arain FM, Murray CR et al. Altered cortical GABA(A) receptor composition, physiology, and endocytosis in a mouse model of a human genetic absence epilepsy syndrome. J Biol Chem 2013; 288: 21458–21472.
86 Wu X, Wu Z, Ning G, Guo Y, Ali R, MacDonald RL et al. γ-Aminobutyric acid type A (GABA(A)) receptor α subunits play a direct role in synaptic versus extrasynaptic targeting. J Biol Chem 2012; 287: 27417–27430.
87 Olsen RW, Sieghart W. GABA A receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 2009; 56: 141–148.
88 Klausberger T, Roberts JDB, Somogyi P. Cell type- and input-specific differences in the number and subtypes of synaptic GABA(A) receptors in the hippocampus. J Neurosci 2002; 22: 2513–2521.
89 Hadingham KL, Wingrove PB, Wafford KA, Bain C, Kemp JA, Palmer KJ et al. Role of the beta subunit in determining the pharmacology of human gamma-aminobutyric acid type A receptors. Mol Pharmacol 1993; 44: 1211–1218.
90 Kang SU, Heo S, Lubec G. Mass spectrometric analysis of GABAA receptor subtypes and phosphorylations from mouse hippocampus. Proteomics 2011; 11: 2171–2181.
91 Laha KT, Tran PN. Multiple tyrosine residues at the GABA binding pocket influence surface expression and mediate kinetics of the GABAA receptor. J Neurochem 2013; 124: 200–209.
92 Usui-Osaki M, Korpi ER. Regulation of GABA(A) receptor subunit expression by pharmacological agents. Pharmacol Rev 2010; 62: 97–135.
93 Lo WY, Lagrange AH, Hernandez CC, Harrison R, Dell A, Haslam SM et al. Glycosylation of β2 subunits regulates GABAA receptor biogenesis and channel gating. J Biol Chem 2010; 285: 31348–31361.
94 Gorrie GH, Vallis Y, Stephenson A, Whitfield J, Browning B, Smart TG et al. Assembly of GABA receptors composed of α1 and β2 subunits in both cultured neurons and fibroblasts. J Neurosci 1997; 17: 6587–6596.
95 Chen Z-W, Olsen RW. GABAA receptor associated proteins: a key factor regulating GABAA receptor function. J Neurochem 2007; 100: 279–294.

Supplementary Information accompanies the paper on the Translational Psychiatry website (http://www.nature.com/tp)