Some deep-marine ichnofossils from Labuan and Klias Peninsula, west of Sabah

BASIR JASIN¹*, MOHD. SHAFIQ FIRDAUS²

¹ No. 22 Jalan 2/4F, Seksyen 2, 43650 Bandar Baru Bangi, Selangor, Malaysia
² Energy Quest Sdn. Bhd., Level 18, Office Suite, UOA Centre, Kuala Lumpur, Malaysia
*Corresponding author email address: basirjasin@gmail.com

Abstract: The Temburong Formation comprises fine grain flysch, deposited in a distal part of a submarine fan system. Twenty five taxa of ichnofossils were identified. The ichnofossils are grouped into the *Nereites* ichnofacies. The ichnofacies was further divided into two subichnofacies namely *Paleodictyon* and *Ophiomorpha rudis* subichnofacies. The *Paleodictyon* subichnofacies is characterized by a high diversity of ichnofossils, discovered in the medium to thinly bedded turbidite at a distal lobe of a submarine fan. The *Ophiomorpha rudis* subichnofacies contains low diversity and is commonly found in thick-bedded sandstone channels and proximal lobes of a submarine fan system.

INTRODUCTION

Ichnofossils in Malaysia are not well studied compared to other fossils. Occurrence of Miocene ichnofossils in the Temburong Formation, in Labuan has been briefly reported by Lee & Yap (2006). They noted fifty eight forms belonging to forty-two ichnogenera. Early research on ichnofossils of North Borneo has been carried out by Keij (1965). He described two new species from the Belait Formation in Brunei and Labuan. Recently, Norzita & Lambiase (2014) studied the relationship between ichnofossils and depositional environments of the Belait Formation in Brunei. They recognized two ichnofacies; *Skolithos* and *Cruziana* ichnofacies representing shallow marine shoreface environment.

The Temburong and the Belait Formations are two lithostratigraphic units which are based on the rock sequences exposed in the Temburong and Belait Districts in Brunei Darussalam. Geologists simply adopt the name as Malaysian lithostratigraphic units.

During our fieldwork to Labuan and Klias Peninsulas, we discovered abundant ichnofossils exposed in two outcrops in Labuan Island and Klias Peninsula. The ichnofossil assemblages are very much different from those of the Belait Formation. The growing knowledge on the study of trace fossils provides up to date information about the taxonomy, distribution, and the importance of ichnofossils in sedimentology. The information enables us to explore the ichnofossils which are quite abundant especially in the Temburong Formation. The aims of this study are to identify the ichnofossils and their significance in sedimentology.
formations (Madon, 1994). The Klias Peninsula comprises six lithostratigraphic units i.e. the West Crocker, Temburong, Setap Shale, Meligan, Belait and Liang formations (Wilson & Wong, 1964). The rock sequence in Klias Peninsula exhibits very complex structures. The geology of the area needs to be re-examined especially the Setap Shale and Meligan formations.

Our observation suggests that the previously known the Setap Shale and Meligan formations in Klias Peninsula (Wilson & Wong, 1964) are actually belonging to the Temburong Formation. The Temburong and West Crocker formations are of the same age. Both formations were deposited in a submarine fan system. The sandstone dominated West Crocker Formation was deposited at the proximal part of the fan and fining towards the distal part where the mudstone dominated Temburong Formation was deposited (Jackson et al., 2009; Zakaria et al., 2013). The Temburong Formation is more argillaceous compared to the West Crocker Formation. It comprises intercalation of dark indurated mudstone and thin bedded sandstone with rare occurrence of limestone lenticles. The thickness of the sandstone and the mudstone varies. It is difficult to draw the boundary between the two formations. Hutchison (2005) grouped them together as the West Crocker Formation.

In present study, we focus only on the Temburong Formation which contains a lot of ichnofossils. The Temburong Formation is unconformably overlain by the Middle to Late Miocene shallow marine Belait Formation. The Belait Formation is unconformably overlain by the Liang Formation which forms small isolated outcrops in Klias Peninsula.

DESCRIPTION OF THE OUTCROPS

The Temburong Formation is well-exposed at Kampung Bebuluh, Labuan Island (5°16′44.57″N, 115°11′24.02″E) and Batu Luang, Klias Peninsula (5°31′18.37″N, 115°31′15.09″E) (Figure 1). The outcrops exhibit some variations in lithology. The outcrop at Kampung Bebuluh generally comprises thinly bedded turbidite sandstones and mudstones with a strike and dip 065/68. The sandstone has a sharp base and exhibits incomplete Bouma sequence from Tb or Tc to Te. The mudstone is more dominant than sandstone in some parts (Figure 2). The outcrop at Batu Luang exhibits similar rock association comprises interbedded sandstone and mudstone with a Lower Miocene lenticular limestone (Junaidi et al., 2018). The thick sandstone shows a Bouma sequence Tb to Te. The sandstone is almost horizontal and contains a lot of ichnofossils belonging to the ichnogenera Ophiomorpha (Figure 3). The Temburong Formation at this locality exhibits very complex structures.

CLASSIFICATION OF ICHNOFOSSILS

Ichnofossils are initially classified mainly based on morphology (Książkiewicz, 1977; Uchman, 1998). This is the simplest classification and easy to utilize but it does not conform to the rules of the International Code of Zoological Nomenclature (ICZN). Today many researchers have adopted an ethological classification based on the behavior of the animals that produce ichnofossils (Seilacher, 1953; Häntzschel, 1975; Rindsberg, 2012; Vallon et al., 2016). It is important for taphonomic interpretation and for reconstruction of depositional environments. Twenty five taxa of ichnofossils are identified and classified into five ethological categories (Uchman & Wetzel, 2012; Vallon et al., 2016).

1. **Agrichnia** (Farming traces): delicate ichnofossils consist of mostly shallow, regularly patterned burrow systems. Agrichnia are typically produced in deep-sea environments, just below the sediment surface of hemipelagic mud. They are usually preserved in positive hyporelief at the lower surface of turbidite sandstones. Their morphologies range from network structures to branched winding and meandering structures (Ekdale et al., 1984; Uchman, 2003; Rindsberg, 2012; Vallon et al., 2016).

 a. **Network structures.** Ten ichnotaxa are identified.
 - **Megagrapton submontanum** (Azpeitia Moros) (Figure 4, nos. 1, 2)
 - **Megagrapton irregulare** Książkiewicz (Figure 4, nos. 3, 4)
 - **Protopaleodictyon spinata** (Geinitz) (Figure 4, no. 5)

 b. **Ophiomorpha** (in the sandstone at the surface of sandstone. Small holes in the box indicate Ophiomorpha burrows).
Some deep-marine ichnofossils from Labuan and Klias Peninsula, west of Sabah

Paleodictyon italicum Vyialov & Golev (Figure 4, no. 6)
Paleodictyon majus Meneghini (Figure 4, no. 7)
Paleodictyon miocenicum Sacco (Figure 4, no. 8)

Paleodictyon strozzii Sacco (Figure 5, no. 2)
Paleodictyon imperfectum Seilacher (Figure 5, no. 3)
Paleodictyon isp (Figure 5, no. 4)

b) Branched winding and meandering structures; Two ichnospecies are recognized.

Helminthoraphe flexuosa Uchman (Figure 5, no. 5)
Cosmoraphe lobata Seilacher (Figure 5, no. 6)

2 Repichnia (Locomotion traces) structures produce during the movement of organisms (Seilacher, 1953; Rindsberg, 2012; Vallon et al., 2016).

Helminthopsis isp. (Figure 5, no. 7)

3 Domichnia (Dwelling traces), open burrows occupied by tracemakers and created as permanent or semi-permanent domiciles (Seilacher, 1953; Bromley, 1996; Rindsberg, 2012; Vallon et al., 2016). Three ichnospecies were identified.

Ophiomorpha rudis (Książkiewicz) (Figure 6, no. 1, 2)
Ophiomorpha annulata (Książkiewicz) (Figure 6, no. 3)
Thalassinoides isp. (Figure 6, no. 4)

4 Fodinichnia (Feeding traces) traces of deposit-feeding within the substrate (Seilacher, 1953; Rindsberg, 2012; Vallon et al., 2016).

Halopoa isp. (Figure 6, no. 5)
Phycosiphon hamata (Fischer-Oostar) (Figure 6, no. 6)
Zoophycos insignis Squinabol (Figure 6, no. 7)
Zoophycos isp. (Figure 6, no. 8)

5 Pascichnia (Grazing traces): mostly horizontal burrows produced by vagile deposit-feeding organisms (Seilacher, 1953; Rindsberg, 2012; Vallon et al., 2016).

Scolicia vertebralis Książkiewicz (Figure 7, no.1)
Scolicia isp (Figure 7, no. 2, 3)
Protovirgularia dzulynskii (Książkiewicz) (Figure 7, No. 4)
Desmograpton cf. dertonensis (Socco), (Figure 7, no.5)
Nereites isp (Figure 7, no. 6)

Figure 4: Agrichnia (Scale bar = 1cm)
1. & 2. Megagrapton submontanum (Azpeitia Moros); 3. & 4. Megagrapton irregularis Książkiewicz; 5. Protopaleodictyon spinata (Giniz); 6. Paleodictyon italicum Vyialov & Golev; 7. Paleodictyon majus Meneghini; 8. Paleodictyon miocenicum Sacco

Figure 5: Agrichnia (1-6), Repichnia (7). (Scale bar = 1cm).
1. Paleodictyon minimum Sacco; 2. Paleodictyon strozzii Sacco; 3. Paleodictyon imperfectum Seilacher; 4. Paleodictyon isp.; 5. Helminthoraphe flexuosa Uchman; 6. Cosmoraphe lobata Seilacher; 7. Helminthopsis isp.

Bulletin of the Geological Society of Malaysia, Volume 67, June 2019
ICHNOFACIES

The ichnofacies model was introduced by Seilacher (1967) to distinguish between the different ichnofossil associations that characterized their depositional environments. Deep-marine flysch deposits are characterized by the *Nereites* ichnofacies which includes complex agrichnial burrow systems produced by unknown invertebrates, in which they trap meio-benthos or farm micro-organisms in generally oligotrophic deep-sea environments. The ichnofossils are known as graphoglyptids (Seilacher, 1977; Miller, 1991; Uchman, 2003).

Seilacher (1974) subdivided the *Nereites* ichnofacies into two subichnofacies for distal deep-water environment i.e. *Paleodictyon* subichnofacies for sandy deposits and *Nereites* subichnofacies for muddy deposits. Uchman (2001, 2009) added *Ophiomorpha rudis* subichnofacies for thick-bedded sandstones in channels and proximal lobes in a deep-sea fan system. The *Ophiomorpha rudis–Paleodictyon–Nereites* subichnofacies represent a trend from proximal to distal lobe of a submarine fan system (Uchman & Wetzel, 2012).

The ichnofossil assemblage in this study represents the *Nereites* ichnofacies which was deposited in the distal part of a deep-sea fan system. The assemblage can further be divided into two subichnofacies namely *Paleodictyon* subichnofacies and *Ophiomorpha rudis* subichnofacies (Uchman & Wetzel, 2012).

The *Paleodictyon* subichnofacies is characterized by the occurrence of high diversity of ichnofossils including *Megagrapton, Protopaleodictyon, Paleodictyon, Helminthoraphe*, and *Cosmoraphe*. This assemblage is found in the upper part of thin bedded mudstone just below the thin bedded turbidite sandstone successions at the Kampung Bebuloh, Labuan. The subichnofacies represents the distal part of lobes of a submarine fan (Uchman, 2007; Uchman & Wetzel, 2012). The *Ophiomorpha rudis* subichnofacies contains a very low diversity of ichnofossils mainly *Ophiomorpha rudis*, and *Ophiomorpha annulata*. The assemblage is discovered from the thick sandstone at Batu Luang, Klias. The sandstone probably represents channels or proximal lobes in a turbidite succession (Uchman, 2001; 2009). Generally, the *Paleodictyon* and *Ophiomorpha rudis* subichnofacies indicate a lobe of a submarine fan environment (Uchman & Wetzel, 2012).

The ichnofacies of the Temburong Formation are essentially different from those of the Belait Formation. The different ichnofacies suggests both formations were deposited in two different depositional environments. The Temburong Formation characterized by the *Paleodictyon* and *Ophiomorpha rudis* subichnofacies indicates a lobe of the submarine fan environment while the Belait Formation characterized by the *Skolithos* and *Cruziana* ichnofacies represents a shallow marine shoreface environment (Norzita & Lambiase, 2014). The ichnofacies concept is very useful...
in determining the depositional environments. It can be used to differentiate between the deep-water Temburong and the shallow-water Belait formations.

CONCLUSIONS

The Temburong and the West Crocker Formations form a submarine fan system. The mudstone dominant Temburong Formation was entirely deposited in the distal part of a submarine fan. Twenty-five taxa of trace-fossils were identified from two outcrops at Kampung Bebuloh, Labuan and Batu Luang, Klias. Trace fossils were grouped into the *Paleodictyon* and *Ophiomorpha rudis* ichnofacies. The *Paleodictyon* ichnofacies characterises the distal lobe of deep-sea environment and the *Ophiomorpha rudis* ichnofacies represents the sandstone channel or proximal lobe of a submarine system. Ichnofossils are good indicators for depositional environments.

ACKNOWLEDGEMENTS

We would like to thank (MPM/PETH) PETRONAS and Energy Quest Sdn. Bhd. for their permission to publish this paper. We thank Dr. Lee Chai Peng and Dr. Mior Hakif Amir Hassan for their comments and suggestions to improve the manuscript.

REFERENCES

Bromley, R.G., 1996. Trace Fossils: Biology, Taphonomy and Applications. Chapman and Hall, London. 361 p.
Ekdale, A. A., Bromley, R. G. & Pemberton, S.G., 1984. Ichnology: The use of trace fossils in sedimentology and stratigraphy. Society of Economic Paleontologists and Mineralogists, Short Course, 15, 1–317.
Häntzschel, W., 1975. Trace fossils and problematica. In: Teichert, C. (Ed.), Treatise on Invertebrate Paleontology, Part W. Miscellaneous, Supplement I. Geological Society of America and University of Kansas Press, Boulder & Lawrence. 269 p.
Hutchison, C.S., 2005. Geology of North-West Borneo: Sarawak. Brunei and Sabah. Elsevier, Amsterdam. 421 p.
Jackson, C.A.-L., Zakaria, A.A., Johnson, H.D., Tongkul, F. & Crevello, P.D., 2009. Sedimentary facies analysis and depositional model of the Palaeogene West Crocker submarine fan system, NW Borneo. Jounal Asian Earth Science, 76, 283-300.
Junaidi Asis, Sanudin Tahir, Basir Jasin & Baba Musta, 2018. Lower Miocene, larger benthic foraminifera and depositional environment of limestone facies from Batu Luang, Klias Peninsula, Sabah. Bulletin of the Geological Society of Malaysia, 65, 125-130.
Keij, A.K., 1965. Miocene Trace Fossils from Borneo. Paläon. Z., 34, 3/4, 220-228.
Książkiewicz, M., 1977. Trace fossils in the flysch of the Polish Carpathians. Palaeont. Polon., 36, 1–208.
Lee, C. P. & Yap, K.T., 2006. The Amazing Miocene Trace Fossils of Labuan Island, off West Sabah, Malaysia. In: Yang, Q., Wang, Y. & Weldon, E.A. (Eds.), Ancient Life and Modern Approaches. Abstracts of the Second International Palaeontological Congress. June 17-21, 2006, Beijing, China. University of Science and Technology of China Press, Beijing. p. 190.
Madon, M., 1994. The stratigraphy of northern Labuan, NW Sabah Basin, East Malaysia. Bulletin of the Geological Society of Malaysia, 36, 19-30.
Miller, W., III, 1991. Paleoecology of graphoglyptids. Ichnos, 1, 305-312.
Norzita Mat Fiah & Lambiase, J.J., 2014. Ichnology of shallow marine clastic facies in the Belait Formation, Brunei Darussalam. Bulletin of the Geological Society of Malaysia, 60, 55-63.
Rindsberg, A.K., 2012. Ichnotaxonomy: finding patterns in a welter of information. In: Knaust, D., Bromley, R.G. (Eds.), Trace Fossils as Indicators of Sedimentary Environments. Developments in Sedimentology 64. Elsevier, Amsterdam. 45–78.
Seilacher, A., 1953. Studien zur Palichnologie. I. Über die Methoden der Palichnologie. N. Jb. Geol. Paläont. Abh., 96, 421–452.
Seilacher, A., 1967. Bathymetry of trace fossils. Mar. Geol., 5, 413–428.
Seilacher, A., 1974. Flysch trace fossils: evolution of behavioural diversity in the deep-sea. Neues Jb. Geol. Paläontol. Monat., 1974, 233–245.
Seilacher, A., 1977. Pattern analysis of Paleodicritid and related trace fossils. In: Trace Fossils II (Eds. T.P. Crimes and J.C. Harper), Geol. J., 9, 289–334.
Uchman, A., 1998. Taxonomy and ethology of flysch trace fossils: a revision of the Marian Książkiewicz collection and studies of complementary material. Ann. Soc. Geol. Polon., 68, 105–218.
Uchman, A., 2001. Eocene flysch trace fossils from the Hecho Group of the Pyrenees, northern Spain. Beringeria, 28, 3–41.
Uchman, A., 2003. Trends in diversity, frequency and complexity of graphoglyptid trace fossils: evolutionary and palaeoenvironmental aspects. Palaeoecogr. Palaeoclimatol. Palaeoecol., 192, 123–142.
Uchman, A., 2007. Deep-sea ichnology: development of major concepts. In: Miller III, W. (Ed.), Trace Fossils. Concepts, Problems, Prospects. Elsevier, Amsterdam. 248–267.
Uchman, A., 2009. The *Ophiomorpha rudis* ichnofacies: characteristics and constraints. Palaeoecogr. Palaeoclimatol. Palaeoecol., 276, 107–119.
Uchman, A. & Wetzel, A., 2012. Deep-sea fans. In: Knaust, D., Bromley, R.G. (Eds.), Trace Fossils as Indicators of Sedimentary Environments. Developments in Sedimentology, 64. Elsevier, Amsterdam. 643–672.
Vallon, L.H., Rindsberg, A.K. & Bromley, R.G., 2016. An updated classification of animal behaviour preserved in substrates. Geodinamica Acta, 28(1-2), 5-20.
Wilson, R.A.M., Wong, N.P.Y., 1964. The geology and mineral resources of the Labuan and Padas valley area, Sabah, Malaysia. Geol. Surv. Mem. 17, 150 p.
Zakaria, A. A., Johnson, H.D., Jackson, C. A.-L. & Tongkul, F., 2013. Sedimentary facies analysis and depositional model of the Palaeogene West Crocker submarine fan system, NW Borneo. Jounal Asian Earth Science, 76, 283-300.