Phuah and collaborators examined the effect of lipids in the time preceding intracranial hemorrhage. They found that carriers of an ApoE4 allele had a greater decline in lipids prior to ICH. This effect was specific to total cholesterol and low-density lipoproteins.

Chan et al. used a novel approach to examine shared genetic risks for Alzheimer and Parkinson disease. They found that genetic variants increasing risk for Parkinson disease had an effect on AD-associated protein levels in peripheral blood monocytes. The strongest association was found for a variant in the RIT2 locus.

George and friends examined the effect of common genetic variants on disease severity in patients with multiple sclerosis. Despite combining several large data sets and several analysis methods, no genetic variant rose to a prespecified significance level.

As of June 10, 2016, there are 80 articles listed in PubMed that can be found using the search term “NeurOn Genet” [Journal]. All authors and editorialists who contributed to the first 7 issues can rest assured that electronic searches will lead investigators to their contributions. Our eighth issue adds 2 editorials, 4 full-length articles, and 4 Clinical/Scientific Notes.

As of April 8, 2016, articles in Neurology Genetics can be searched using PubMed. Launched in 1996, PubMed is a search engine that accesses citations and abstracts of more than 26 million articles. Its primary sources include the MEDLINE database, which was started in the 1960s, and biomedical and life sciences journal articles that date back to 1946. In addition, PubMed accesses other sources, for example, citations to those life sciences journals that submit full-text articles to PubMed Central (PMC). PubMed Central was launched in 2000 as a free archive of biomedical and life science journals.

To be listed in PMC, a journal has to meet specific scientific and technical standards. These include a review of the scientific quality of published manuscripts and editorial team, as well as an assessment of the technical quality of the digital files. The decision regarding acceptance is based on published criteria and expert consultation. The editorial staff and Associate Editors of Neurology: Genetics deserve my thanks for achieving this milestone in the shortest possible time.

Harris and colleagues describe a large multicenter observational study of patients with dysferlinopathy. They found significant clinical variability that was not explained by the type of mutation or steady-state levels of dysferlin. The results are further discussed by Wicklund in an accompanying editorial.

There is a well-known decline of specific serum lipids in the time preceding intracranial hemorrhage. Phuah and collaborators examine the effect of APOE alleles on this phenomenon. Carriers of an ApoE4 allele had a greater decline in lipids prior to ICH. This effect was specific to total cholesterol and low-density lipoproteins.

George and friends examined the effect of common genetic variants on disease severity in patients with multiple sclerosis. Despite combining several large data sets and several analysis methods, no genetic variant rose to a prespecified significance level.
2. Wicklund MP. Rare disease clinical trials: power in numbers. Neurol Genet 2016;2:e92. doi: 10.1212/NXG.000000000000092. Editorial.

3. Phuah CL, Raffeld MR, Ayres AM, et al. APOE polymorphisms influence longitudinal lipid trends preceding intracerebral hemorrhage. Neurol Genet 2016;2:e81. doi: 10.1212/NXG.000000000000081.

4. Chan G, White CC, Winn PA, et al. Trans-pQTL study identifies immune crosstalk between Parkinson and Alzheimer loci. Neurol Genet 2016;2:e90. doi: 10.1212/NXG.000000000000090.

5. George MF, Briggs FBS, Shao X, et al. Multiple sclerosis risk loci and disease severity in 7,125 individuals from 10 studies. Neurol Genet 2015;2:e87. doi: 10.1212/NXG.000000000000087.

6. Kantarci OH. A new dawn for genetic association studies in multiple sclerosis. Neurol Genet 2016;2:e93. doi: 10.1212/NXG.000000000000093. Editorial.