Rationale of Orthosiphon aristatus for Healing Diabetic Foot Ulcer

Farah Izana Abdullah¹,², Lee Suan Chua¹,², Siti Pauliena Mohd Bohari³, and Eka Sari⁴

Abstract
Orthosiphon aristatus (Blume) Miq. is traditionally used for wound healing in South East Asia and scientifically proven for its antidiabetic potential. Wounds due to diabetes, especially diabetic foot ulcer (DFU), always involve a complicated healing process. The present work aims to review the information on the rationale of the phytochemicals from O. aristatus in promoting DFU healing. The findings showed that the DFU healing potential of O. aristatus was characterized by a reduction in the blood glucose level, mainly attributed to the significant concentration of constituents such as caffeic acid, rosmarinic acid, and sinensetin in the plant extract. These phytochemicals possibly induce insulin secretion and sensitivity, improve the lipid profile, and stimulate glucose uptake. Furthermore, the healing effect may also be contributed to the antioxidant, anti-inflammatory, and antihyperglycemic properties of the plant. The roles of phytochemicals have been systematically postulated in the 4 phases of the healing process. Moreover, no adverse toxic sign or abnormality has been reported upon oral administration of the plant extract. This suggests that O. aristatus extract could be a potential diabetic wound healing phytomedicine for further preclinical and clinical studies.

Keywords
Orthosiphon aristatus, phytochemicals, bioactivity, wound healing, antidiabetic potential

Introduction
About 10% of 250 000 plant species have been scientifically studied and found to have potential uses in healthcare.¹,² Some of the plant-derived compounds such as vinblastine, vincristine, taxol, and digoxin have been synthesized because of the high demand and limited supply from natural resources.³,⁴ Recent development of traditional medicines has led to the extensive use of natural products and their derivatives which contribute to more than half of the total medicines consumed worldwide.⁵

One of the widely used medicinal plants in Asia is Orthosiphon aristatus (Blume) Miq. This herb, belonging to the family Lamiaceae, is a traditional medicinal plant originating from tropical East Asian countries such as Thailand, Indonesia, Vietnam, and Malaysia.⁶ The leaves of the herb are popularly consumed as tea to promote overall well-being. A decoction of the herb is traditionally prepared as a remedy for arteriosclerosis, kidney stones, diabetes, and nephritis.⁷ The herb is also extensively used as an ethnomedicine to treat rheumatism, hypertension, tonsilitis, epilepsy, menstrual disorder, gonorrhea, syphilis, renal calculus, gallstone, lithiasis, edema, eruptive fever, influenza, hepatitis, and jaundice.⁸-¹²

Many pharmacological studies have demonstrated that this herb exhibits antimicrobial, antioxidant, hepatoprotective, antigonotoxic, antiplasmodial, cytotoxic, cardioactive, antidiabetic, and anti-inflammatory activities.¹³ The pharmacological properties are most probably attributable to the presence of various groups of phenolic acids,¹⁴-¹⁹ terpenoids (diterpenes and triterpenes),⁷,²⁰-²² flavonoids,¹⁴,¹⁵,²³ benzochromenes.²³ Phenolic compounds, such as caffeic acid, rosmarinic acid, sinensetin, and eupatorin, have been frequently reported to be chemically bioactive constituents of O. aristatus.²⁴-²⁷ These compounds are likely
responsible for the wound contraction and enhancement of the rate of epithelialization.28-33 Moreover, \textit{O. aristatus} is popularly known as an alternative antidiabetic medicine, specifically for type II diabetes.34 Many in vitro and in vivo studies have also been conducted to evaluate the antidiabetic activity and toxicity of \textit{O. aristatus}.35-39 Hence, this current review aims to rationalize the potential of \textit{O. aristatus} as a phytomedicine for the healing of diabetic food ulcer (DFU), mainly focusing on the role of bioactive phytochemicals, their mechanisms of action, and toxicity studies on diabetic-induced animal models.

An intensive literature survey was conducted using the following databases: PubMed, Google Scholar, Scopus, and Science Direct. The keywords used for the search were \textit{“Orthosiphon aristatus,” its synonym “Orthosiphon stamineus,” “phytochemical,” “caffeic acid,” “rosmarinic acid,” “sinensetin,” “antimicrobial,” “antidiabetic” and “diabetic foot ulcer healing.”} No limit was set for the time frame of published articles in order to retrieve all relevant papers, and the last search was performed on February 21, 2020.

Wound Formation and Healing

Skin is the body’s largest organ and plays a crucial role as a protective barrier against environmental insult.40 Wounds are a type of injury that results in either the opening or breaking in the epidermis layer of skin.41,42 An acute wound is a tissue injury for which the reparative process follows an orderly process to sustain restoration and functional integrity. Usually, an acute wound can be healed within 3 weeks, starting from the initial insult.40,45 Possibly, an acute wound can progress into a chronic wound when the healing process is delayed by up to 12 weeks. This will result in the interruption of all skin layers and a delay in closing the wound gap. A chronic wound does not follow the normal stages of healing and requires a prolonged time to heal or it will recur frequently.44-46 Chronic wounds usually happen due to the complication of some diseases such as diabetes, spinal cord injuries, and Pick’s disease.40,47

Wound healing is a natural body reaction in response to an injury involving biochemical and physiological phenomena that behave in a synergistic manner. Wound healing occurs in 4 stages. The 4 overlapping distinct phases of healthy wound healing can be categorized as homeostasis, inflammation, proliferation, and remodeling.48,49 The first phase is homeostasis, which controls excessive blood loss from the damaged vessels. During the homeostasis stage, the body will release chemical mediators and intercellular messengers (growth factors) to begin the wound cleaning and healing process.

The second phase of the wound healing process is inflammation and debridement. After stopping blood loss (coagulating), the body will immediately send plasma proteins, blood cells, and antibodies to the wound area as a defense mechanism at the inflammatory phase. This causes swelling, pain, fever, and redness around the wound site, and the symptoms could last for up to 2-4 days.46,48,50

The proliferation stage starts when the inflammation subsides. Dermal fibroblasts migrate to the wound site and start granulating until the wound is healed.46,48,50 The scab sloughs off when the epidermis has been restored to standard thickness during the remodeling or maturation phase. Therefore, the third phase is re-epithelialization, which includes proliferation, migration, and differentiation of squamous epithelial cells in the epidermis. The final stage of wound healing involves collagen deposition and remodeling within the dermis layer of skin.51 Ultimately, collagen fibers become more organized, fibroblasts decrease in number, and blood vessels are restored to normal.46,48,50 Understanding the process of wound formation and healing would be of importance in the search for natural alternatives for addressing this complication.

Complications of Diabetic Foot Ulcer

Diabetic patients are facing a complicated wound healing cascade. The healing process is delayed and disrupted from following the normal wound-healing process.44,52 The healing process of diabetic wounds is relatively slow. Previous studies explained that a high glucose concentration was the main factor inhibiting the wound-healing process and was always associated with a prolonged inflammatory phase.46 This is because the cell walls become rigid, which causes difficulty for blood flow through small vessels at the wound surface. This also obstructs the permeability and flow of red blood cells. Such a condition will deteriorate oxygen release and nutrient deficit at the wound site.53 When this happens, blood glucose will be elevated, and chemotaxis and phagocytosis are being agonized to control the infection in the wound area. Consequently, this delays macrophage introduction and diminishes leukocyte migration, as well as prolonging the inflammatory stage in the wound healing cascade.53

DFU is characterized by the presence of a full-thickness, prolonged wound below the ankle of people with diabetes, or a lesion of the foot penetrating through the dermis layer.54 DFU does not follow the orderly process of wound healing. It is always associated with poor glycemic (blood glucose) control. A study showed that 49% of participants who had foot ulcers had a glycated hemoglobin (glycemic measure) level above 8.4%.55 Thus, chronic hyperglycemia appears to be one of the most important factors in the development and delayed healing of DFUs.56-59

Hyperglycemia results in the activation of the polyol pathway, nonenzymatic glycosylation, and formation of advanced glycation end products (AGEs), diacetylglycerol-(DAG) protein kinase C pathway, and overactivity of the hexosamine pathway.60,61 All 4 mechanistic pathways will lead to mitochondrial overproduction of reactive oxygen species (ROS).62 ROS are known to promote cellular dysfunction, thus leading to damage of deoxyribonucleic acid synthesis, lipid and amino acid
Low Glycemic Index Helps Diabetic Foot Ulcer

It is known that the glycemic measure is frequently poor in people with diabetes, and, therefore, normoglycemia is important for managing foot ulcer, in the belief that it will enhance healing. The adverse effects on cellular immunity and infection can be reduced by controlling the blood glucose level.

Several observational studies found a positive correlation of glycemic control and wound healing. Type 2 diabetic patients with proper glycemic control could have a 35% reduction of amputation risk in the lower extremity of the body. Intensive glycemic control also leads to a reduction in the progression and development of microvascular (small vessel) complications, including diabetic peripheral neuropathy. The wound morphology and proliferation of fibroblasts is abnormal for people with DFU. There is also a glucose-dependent reduction of keratinocyte proliferation and differentiation. Both insulin and insulin-like growth factor-1 were observed to have a beneficial effect on wound healing in experimental animals. Therefore, a low glycemic index is strongly recommended for wound healing. This is because hyperglycemia, insulin resistance, dyslipidemia, and oxidative stress play a dominant function in the pathogenesis of DFU.

Herbs With Diabetic Foot Ulcer Healing Potential

The wound healing potential of a plant extract may be due to the presence of bioactive phytochemicals which have been reported to improve its repair mechanism. Many medicinal plant species synthesize equivalent or closely related compounds with similar biological properties and share the same biological targets and pathways. For example, acemannan from Aloe vera, hydroxysafflor yellow A from Carthamus tinctorius, polysaccharides from Ganoderma lucidum and Sanguisorba officinalis, phthalide lactones and alkaloids from Ligusticum striatum, saponins from Panax ginseng, shikonin and arnbin-1 from Lithospermum erythrorhizon, salvianolic acid from Salvia miltiorrhiza, and alkaloid and stilbenoid from Stemona tuberosa have been well characterized and demonstrated to exhibit the properties of wound healing. Salvianolic acid was also detected in O. aristatus in the study of Nuengchamnong et al. The compounds mostly target mitogenic pathways (e.g., phosphokinase B, phosphatidylinositol-3-kinase, SMAD, and cyclins), proinflammatory NF-κB pathways (e.g., caspases, interleukins, tumor necrosis factor-α, and tumor growth factor-β1), angiogenesis pathways (e.g., vascular endothelial growth factor), extracellular matrix synthesis (e.g., matrix metalloproteinases), and differentiation pathways (e.g., α-smooth muscle actin), which are the key routes in the mammalian wound healing cascade.

As suggested by the Chinese Pharmacopoeia, the combination of Cornus officinalis (dried ripe sarcocarp of Fructus Corni), Schisandra chinensis (dried ripe fruit of Fructus Schisandraceae Chinensis), Poria cocos (dried sclerotium of Poria), Alisma orientalis (dried tuber of Rhizoma alismatis), and Dioscorea opposita (dried rhizome of Rhizoma dioscoreae) are traditionally used for diabetic treatment, either as a single herb or a cluster of herbs in a traditional formula (Liweidihuang Wan) for diabetes treatment. They are also commonly used in traditional Chinese medicine for the treatment of antidiabetic foot ulcer with proven clinical efficacy. The effectiveness was associated with the normalization of glycemic control in diabetes. A simple herbal formula consisting of Astragalus spp. (Astragali Radix) and Rehmannia glutinosa (Rehmanniae Radix) could expedite the healing of DFUs by inducing gene expression implicated in fibroblast regeneration, angiogenesis, and anti-inflammation, thus promoting vascularization and granulation, as well as modulating the inflammatory response.

Involvement of Phytochemicals in the Healing Mechanism

The majority of phytochemicals found in O. aristatus are phenolic acids, flavonoids, and terpenes, as presented in Table 1. The major constituents are rosmarinic acid, eupatorin, and sinensetin. Flavonoids (sinensetin) and terpenoids (limonene, borneol, linalool, camphor, and eugenol) are known to promote wound healing due to their antimicrobial properties. These compounds have remarkable antioxidant and antiulcer activities. The contribution of phytochemicals in O. aristatus in wound healing can be explained in Figure 1. The figure postulates and explains the role of each class of phytochemicals in detail. In the homeostasis phase, triterpenes (oleanolic acid and ursolic acid) help in wound healing by producing and activating inflammatory mediators and growth factors, and thus enhancing wound contraction and the rate of epithelialization. Since the inflammatory phase is overlapping with the proliferative phase, the presence of excessive ROS may delay the wound-healing process. Plant-derived antioxidants, such as triterpenes, flavonoids, and phenolics, can be potent radical scavengers, and thereby preventing the damage due to free radicals during the wound-healing process. Triterpenes also function to modulate the production of ROS in the wound microenvironment and induce cell migration, cell proliferation, and collagen deposition, thus accelerating the process of tissue repair.
Table 1. Phytochemicals of Orthosiphon aristatus and Their Reported Bioactivities.

Plant part	Group	Compound	Bioactivities	Reference
Leaves	Phenolic acid	Rosmarinic acid	Antihyperglycemic, anti-inflammatory, antioxidant, antibacterial	14-18
		Caffeoyl tartrate	Antioxidant	15
		Aurantiamide acetate	Anti-inflammatory	15
		2,3-Dicaffeoyl tartrate	Antioxidant	15
		Caffeic acid	Antioxidant	15,17
		Danshensu	Antihyperglycemic, anti-inflammatory, antioxidant	17
		Sagerinic acid	Antioxidant	17
		Salvianolic acid B	Antioxidant, anti-inflammatory	17
		Caftaric acid	Antioxidant, anti-inflammatory	17
		Lithospermic acid	Antioxidant, anti-inflammatory	19
		Chicoric acid	Antioxidant, anti-inflammatory	19
	Triterpene	Ursolic acid	Antioxidant, anti-inflammatory	7,20
		Oleanolic acid	Antioxidant, anti-inflammatory	7,20
		Betulanic acid	Antioxidant, anti-inflammatory	20
		Hydroxybetulunic acid	Antioxidant, anti-inflammatory	20
		α-Amyrin	Antioxidant, anti-inflammatory	20
		β-Amyrin	Antioxidant, anti-inflammatory	20
		Maslinic acid	Antioxidant, anti-inflammatory	20
	Flavonoid	3′-Hydroxy-5,6,7,4′-tetramethoxyflavone	Antihyperglycemic, anti-inflammatory, antioxidant	7
		Vomifoliol	Anti-inflammatory, antioxidant	7
		Sinensetin	Antihyperglycemic, anti-inflammatory, antioxidant	19,21,22,103
		Eupatorin	Antihyperglycemic, anti-inflammatory, antioxidant	21,103
		Ladanein	Anti-inflammatory, antioxidant	7
		7′,3′,4′-Tri-O-methyluteolin	Antioxidant	7
		6-Hydroxy-5,7,4′-trimethoxyflavone	Antioxidant	7
		Tetramethylscutellarein	Antioxidant	21
		5-Hydroxy-6,7,3′,4′-tetramethoxyflavone	Antioxidant	21
		3′-Hydroxy-5,6,7,4′-tetramethoxyflavone	Antioxidant	21,22,68,103
		5,6,7,4′-Tetrahydroxyflavone	Antioxidant	19
		5,6,7,3′,4′-Pentahydroxyflavone	Antioxidant	19
		Pillion	Antioxidant	21
		Salvegenin	Antioxidant	21
		Cirsimaritin	Antioxidant	21
		Rhamnazin	Antioxidant	21
		Apigenin trimethyl ether	Antioxidant	21
		Luteolin tetramethyl ether	Antioxidant	21

(Continued)
Plant part	Group	Compound	Bioactivities	Reference
Aerial part	Diterpene	Orthosiphols A–Z	Anti-inflammatory	15,24
		Staminols A–D	Anti-inflammatory	15,24
		Staminolactones A	Anti-inflammatory	15
		Staminolactones B	Anti-inflammatory	15
		Norstaminol A	Antioxidant, anti-inflammatory	15
		Orthosipholl S	Anti-inflammatory	15
		Seccoorthosiphols A–C	Anti-inflammatory	10,23
		Nororthosphonolide	Anti-inflammatory	23
		Norstaminolactone A	Anti-inflammatory	23
		Norstaminols A–C	Anti-inflammatory	7,23,104,105
		Norstamitone A	Anti-inflammatory	25
		Neoorthosiphols A–B	Anti-inflammatory	9,10,106,107
		Niphonols A–E	Anti-inflammatory	104
		Orthochromene A	Anti-inflammatory	107
Triterpene		Oleanolic acid	Antioxidant, anti-inflammatory	15
		Ursolic acid	Antioxidant, anti-inflammatory	15
		Betulinic acid	Antioxidant, anti-inflammatory	15
		β-Sitosterol	Antioxidant, anti-inflammatory	15
Flavonoid		7,3,4-Tri-O-methylluteolin	Antioxidant	15
		Eupatorin	Antioxidant, antihyperglycemic, anti-inflammatory	14,15
		Sinensetin	Antioxidant, antihyperglycemic, anti-inflammatory	14,15
		3′-Hydroxy-5,6,7,4′-tetramethoxyflavone	Antioxidant	15
		Salvigenin	Antioxidant	15
		Ladanein	Anti-inflammatory, antioxidant	15
		Tetramethylscutallarein	Antioxidant	15
		6-Hydroxy-5,7,4′-trimethoxyflavone	Antioxidant	15
		Kaempferol-3-O-β-glucoside	Anti-inflammatory, antioxidant	15
		Quercetin-3-O-β-glucoside	Anti-inflammatory, antioxidant	15
Essential oil	Terpene	β-Caryophyllene	Antifungal	28
		α-Humulene	Antifungal	28
		β-Elemene	Antifungal	28
		1-Octen-3-ol	Antifungal	28
		β-Bourbonene	Antifungal	28
		β-Pinene	Antifungal	28
		Caryophyllene oxide	Antifungal	28
		Camphene	Antifungal	28
		Limonene	Antifungal	28
		α-Pinene	Antifungal	28
		1,8-Cineol	Antifungal	28
		Bornecol	Antifungal	28
		Linalool	Antifungal	28
		Camphor	Antifungal	28
		Eugenol	Antifungal	28
		p-Cymene	Antifungal	28
		Barvone	Antifungal	28
		Bornyl acetate	Antifungal	28
		δ-Badinene	Antifungal	28
Leaves and	Benzochromene	Bethylriparichromene A	Anti-inflammatory	108
flower				

Table 1. Continued
rosmarinic acid) and flavonoids (eupatorin) have been shown to significantly reduce tissue lipid peroxidation level. This will enhance the viability of collagen fibrils by increasing the strength of collagen fibers, preventing cell damage, and accelerating DNA synthesis. During the remodeling phase, caffeic acid was found to help increase collagen synthesis in fibroblast cells and controlling melanin production by inhibiting tyrosinase activity.

A group of researchers from Indonesia prepared an O. aristatus-based functional drink and reported that it could restrain the increase in blood glucose and inhibit the damaging rate of pancreatic beta cells in diabetic mice. One of the reported bioactive compounds in the functional drink was sinensetin, besides other plant constituents from the polyherbal formulation.

Antihyperglycemic Property of Plant Extract

Orthosiphon aristatus is popularly known as an antidiabetic alternative medicine for type II diabetes. Many in vitro and in vivo studies have been conducted to evaluate the antidiabetic activity and toxicity of *O. aristatus,* mostly using aqueous or aqueous ethanol extract of the plant leaves. The 50% ethanolic extract of the herb was found to exert in vitro antidiabetic activity by inhibiting α-glucosidase (half-maximal inhibitory concentration [IC₅₀] 4.63 mg/mL) and α-amylase (IC₅₀ 36.70 mg/mL). Earlier, a 14-day oral treatment was carried out using an aqueous extract of the herb. Investigation was conducted on plasma glucose and lipid profile in normal and streptozotocin-induced diabetic Wistar rats. The results showed that the administration of *O. aristatus* aqueous extract at 1000 mg/kg exerted hypoglycemic and antihyperglycemic effects. The reduction of plasma glucose levels in both euglycemic and hyperglycemic animals was also observed when the plant extract was administrated orally at 200-1000 mg/kg. A similar finding was also obtained from the study conducted by Sriplang et al who used an aqueous extract of *O. aristatus* to alleviate hyperglycemia and improve the lipid profile in diabetic rats. The extract at 1 g/kg was effective in decreasing the plasma glucose concentration, and the response was close to the result of glibenclamide (5 mg/kg). By the end of the study, plasma triglyceride concentration was lower in the extract-treated diabetic rats than untreated rats. Furthermore, plasma high-density lipopolysaccharide-cholesterol concentration was significantly increased in diabetic rats treated with the extract. Moreover, the plant extract (100 µg/mL) could stimulate glucose-induced insulin secretion. Therefore, the use of *O. aristatus* extract is beneficial to diabetic patients, especially for those who have a defect in insulinotropic response.

Orthosiphon aristatus aqueous extract was given orally to streptozotocin-induced Sprague Dawley rats. The experiments were conducted to evaluate the potential of the extract for managing maternal hyperglycemia and to understand the mechanism of actions in lowering blood glucose levels. The extract was effective in lowering the blood glucose level in both nonpregnant and pregnant rats, partly via the stimulation of insulin release which could

Figure 1. The contribution of phytochemicals in *Orthosiphon aristatus* extract in wound healing. In the homeostasis phase, triterpenes in *O. aristatus* are believed to enhance wound contraction and the rate of epithelialization. The inflammatory phase is overlapping with the proliferative phase, and thus, triterpenes, flavonoids, and phenolics can be potent radical scavengers to enhance the wound-healing process by inducing cell migration, cell proliferation, and collagen deposition, enhancing the viability of collagen fibrils to increase the strength of collagen fibers and accelerate the process of tissue repair. In the remodeling phase, caffeic acid helps to increase collagen synthesis in fibroblast cells and control melanin production by inhibiting tyrosinase activity.
probably be triggered by several peptide interactions such as ghrelin and glucagon-like peptide 1. Moreover, no sign of toxicity and mortality was recorded on nonpregnant and pregnant rats throughout the study. This indicated that *O. aristatus* did not induce systematic toxicity.\(^{35}\) The researchers also suggested that this herb is likely to be a potential antidiabetic agent to treat glucose intolerance during pregnancy. The antidiabetic activity of *O. aristatus* extract was most probably due to the presence of rosmarinic acid and eupatorin. Chemical screening of the extract showed it to have phenolic and flavonoid contents of 13.24 ± 0.33 mg/g and 1.73 ± 0.14 mg/g, respectively.\(^{110}\) The researchers suggested that sinensetin could be the compound responsible for the glucose reduction with an IC\(_{50}\) value (50% inhibition) of 0.66 g/mL for α-glucosidase and 1.13 mg/mL for α-amylase. They also stated that sinensetin outperformed the reference drug, acarbose.\(^{66}\) However, the blood glucose reduction might not be caused by sinensetin only because the water extract has an almost undetectable amount of sinensetin.\(^{14,24}\)

Based on bioactivity-guided fractionation, the chloroform fraction of the plant exhibited a blood glucose-lowering effect in fasting, treated rats, when compared with controls, after glucose loading at 150 mg/kg.\(^{35}\) Terpenoids and flavonoids, including sinensetin, were identified in the crude and the chloroform fraction. Hence, these compounds either acted separately or synergistically. Sinensetin and other compounds in the chloroform fraction were also found to be responsible for the antihyperglycemic effect.\(^{35}\) Another team of researchers reported that the rosmarinic rich fraction of the ethanol extract could achieve up to 100% inhibition of α-amylase and α-glucosidase; this was about 5 times more active than the antidiabetic drug, acarbose.\(^{113}\)

Antioxidant Property of Plant Extract

Rosmarinic acid, which is an ester of caffeic acid with 3,4-dihydroxyphenylactic acid (danshensu), is the characteristic plant constituent of *O. aristatus*.\(^{14}\) Its content was found to be in the range of 5.1%-29.9% of the total dry leaf weight.\(^{15}\) Rosmarinic acid is well known for its potential to improve insulin sensitivity, lower plasma lipid level,\(^{115}\) and its antidiabetic effect.\(^{113,116}\) The compound is also popular for its anti-inflammatory, antioxidative, antiviral, and antibacterial activities, which had been proven in many in vitro and in vivo studies.\(^{117}\) In line with the review of Shahidi and Chandraselara,\(^{118}\) compounds with a hydroxycinnamyl group are potent antioxidants. Both caffeic acid and rosmarinic acid have a hydroxycinnamyl molecular structure with 2 and 4 hydroxyl groups, respectively. This explains the higher antioxidant activity of rosmarinic acid than caffeic acid.\(^{119}\)

The pharmacological properties of the compounds are important to understand the wound-healing mechanism. Detailed studies demonstrated the inhibitory effects of rosmarinic acid on 5-lipoxygenase and 12-lipoxygenase and gene expression of cyclooxygenase-2 (COX-2).\(^{120,122}\) The IC\(_{50}\) value of the rosmarinic acid-rich extract on 5-lipoxygenase was 0.69 μg/mL and 3.25 μg/mL for p38α; the compound had only moderate inhibitory effects on TNFα release.\(^{117}\) Moreover, rosmarinic acid (5-20 mmol/L) showed an anti-inflammatory effect by reducing 12-O-tetradecanoylphorbol-13-acetate-induced COX-2 promoter activity and protein levels.\(^{120}\)

Orthosiphon stamineus has also been proven to have excellent antioxidative properties. The methanol extract of the herb showed a variation in total phenolics ranging from 6.7 to 10.1 mg caffeic acid/g dry weight, in line with the antioxidative activities, which ranged from 55.5% to 84.2%. The antioxidative potency of the methanol extract was comparable to that of quercetin and the synthetic antioxidant, butylated hydroxyanisole (BHA).\(^{118}\) Research conducted by Akouma\(^{115}\) also found that different solvent systems with varied polarities resulted in different radical scavenging activities based on the in vitro 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The acetone extract showed the highest activity. The free radical-scavenging activities of the extracts were also comparable to those of quercetin and BHA.

The antioxidative potency of the methanol/water extract of *O. stamineus* has been demonstrated in terms of DPPH radical scavenging, Fe\(^{3+}\)-induced lipid peroxidation inhibition, and Trolox equivalent antioxidant capacity in vitro models.\(^{121}\) An aqueous extract of *O. stamineus* exhibited significant free radical scavenging activity with an IC\(_{50}\) of 9.6 μg/mL, whereas the IC\(_{50}\) of a 50% ethanol extract was 21.4 μg/mL. These results showed that *O. stamineus* possessed high antioxidant activity and could be considered as an immunomodulatory agent.\(^{30}\)

Ultrasound-assisted extraction was used to extract antioxidative compounds from *O. stamineus*. The antioxidative activities of the extract were evaluated using 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging and DPPH radical scavenging assays. The results were found to be 1961.3 and 2423.3 μmol Trolox Equivalent Antioxidant Capacity (TEAC)/100 g dry weight (DW), respectively. Rosmarinic acid, kaempferol-rutinoside, and sinensetin were identified by high-performance liquid chromatography-mass spectrometry in the study.\(^{124}\) This shows again that the high antioxidative capacity of the plant extract could be due to the presence of these phenolic compounds.

Polymethoxy and polyhydroxy flavonoids were found to possess remarkable health-promoting benefits.\(^{125-127}\) It is believed that most of the bioactivities are attributed to the chemical structure of the compounds, especially the polyhydroxyl groups as radical scavengers.\(^{128}\) Polymethoxylated flavonoids are also readily absorbed in the intestine and have been shown to have a wide tissue distribution and metabolic stability.\(^{129}\)

Polyhydroxy flavonoids were found to have better antioxidative activity than their monohydroxy derivatives. This is because polyhydroxy substituted flavonoids can easily donate electrons to scavenge free radicals and have remarkable inhibitory actions on lipid peroxidation and significantly to be more potent antioxidants, being about 2.5-4 times higher than the reference compound Trolox.\(^{127}\)

The polymethoxylated and/or polyhydroxylated flavonoids in *O. aristatus* are sinensetin, eupatorin, and 3′-hydroxy-5,6,7,4′-tetra-methoxyflavone (TMF). These compounds were found to be the dominant compounds in the chloroform fractions.
and were chosen as markers to standardize various leaf extracts.16,24,68,103,130 Eupatorin and sinensetin were found to have in vivo anti-inflammatory properties. The expression of inflammatory genes such as inducible nitric oxide synthase (iNOS), COX-2, and TNF-\(\alpha\), as well as the production of inflammatory mediators like nitric oxide (NO) and prostaglandin E2 (PGE2), were suppressed in vitro, probably by inhibiting the enzyme activity and the transcription factor STAT1.131

Moreover, an ethanolic extract of \textit{O. stamineus} containing 1.02\% TMF, 3.76\% sinensetin, and 3.03\% eupatorin possessed an inhibitory activity toward \(\alpha\)-glucosidase.132 In addition, the 50\% ethanolic extract of \textit{O. stamineus}, and isolated sinensetin, were shown to have equal preference for both \(\alpha\)-glucosidase and \(\alpha\)-amylase. The 50\% inhibitory activities were 4.63 and 0.66 mg/mL, respectively for \(\alpha\)-glucosidase, and 36.7 mg/mL and 1.13 mg/mL, respectively for \(\alpha\)-amylase.66 Therefore, the presence of polymethoxylated and/or polyhydroxylated flavonoids is very important for the potential of the plant extract as a DFU remedy.

\textit{Anti-inflammatory Property of Plant Extract}

Previous in vitro and in vivo studies revealed that \textit{O. aristatus} possesses remarkable anti-inflammatory activity.131 Its ethanolic extract inhibited lipopolysaccharide (LPS)-stimulated NO, PGE2, and intracellular ROS production in RAW 264.7 cells. Moreover, the plant extract was able to inhibit protein and messenger ribonucleic acid expression of iNOS and COX-2 in LPS-stimulated RAW 264.7 cells. Ursolic acid, detected in the extract by high-performance liquid chromatography, was shown to suppress LPS-induced NO and PGE2 production by inhibiting ROS generation, along with reducing the expression of iNOS and COX-2 in RAW 264.7 cells. Therefore, the ethanol extract of \textit{O. aristatus} is likely to have promising effects on the metabolic pathway of inflammatory-mediated diseases.133

The NO inhibitory activity was probably due to the presence of 47 diterpenes isolated from \textit{O. stamineus}.134 All the diterpenes displayed significant concentration-dependent inhibition of NO production in macrophage-like J774.1 cells. The activities of the compounds varied depending upon the chemical structure. Although NO is an important signaling molecule, its excessive production triggers tissue damage and the release of proinflammatory cytokines such as tumor necrosis factor, interferon, and interleukin-1.71

The findings reported by Yam et al.80 justified the traditional use of \textit{O. aristatus} in treating pain and inflammation. The 50\% methanol extract of \textit{O. stamineus} was found to possess anti-inflammatory and analgesic activities. Oral administration at doses of 500 and 1000 mg/kg significantly reduced hind paw edema in rats at 3 and 5 hours after carrageenan administration and produced significant analgesic activity (\(P < 0.05\)) in both the acetic acid-induced writhing test and the formalin-induced licking test.

\textbf{No Adverse Effects of Plant Extract}

Till now, no sign of toxicity has been reported in the literature for \textit{O. aristatus} extract. Previously, 4 test groups of female Sprague-Dawley rats were treated up to 14 days with a methanolic extract of the plant at concentrations from 0.5 to 5 g/kg body weight.135 No lethality nor adverse toxic signs were noticed during the experimental period. Abdullah et al.136 also reported similar results, with no death record. The animals that were administered with 5000 mg/kg body weight of the plant extract did not show signs of toxicity during the experimental period. The median lethal dose (LD\(_{50}\)) was estimated to be more than 5000 mg/kg body weight, with no relative change in the general behavior, body weight, food and water intake, relative organ weight per 100 g body weight, and hematological and clinical biochemistry analyses.137 The methanolic extract of \textit{O. aristatus} was also reported to produce no sign of toxicity.86 With oral administration at doses of 1250, 2500, and 5000 mg/kg/day for 28 days, no abnormality of internal organs was observed between the treatment and control groups. The oral lethal dose was more than 5000 mg/kg and the no-observed-adverse-effect level (NOAEL) of the methanol extract for both male and female rats was considered to be 5000 mg/kg/day.36,45 The standardized aqueous extract with a concentration up to 2000 mg/kg/day did not alter pregnancy body weight gain, food and water consumption, and any other sign of maternal toxicity.137 Therefore, \textit{O. aristatus} extract was considered to have a NOAEL of up to 5000 mg/kg/day.

\textbf{Conclusion}

DFUs continue to be a significant burden for people with diabetes, caregivers, and the health care system. Traditional Chinese medicines have been used for diabetes treatment and antidiabetic foot ulcer with proven clinical efficacy. The effectiveness was associated with the normalization of glycemic control in diabetes. Thus, proper management of blood glucose levels is the key factor to heal DFUs. Many phytochemicals in \textit{O. aristatus} have been postulated to promote DFU healing, mainly due to their capability of lowering blood glucose. The presence of compounds such as phenolic acids, flavonoids, and triterpenes are postulated to be involved in the 4 phases of wound healing, due to their remarkable antioxidant, anti-inflammatory, and antihyperglycemic properties. No adverse toxic effect of the plant extract was observed and the LD\(_{50}\) was estimated to be more than 5000 mg/kg body weight. Therefore, \textit{O. aristatus} extract could be a potential DFU phytomedicine for further pre-clinical and clinical studies.

\textbf{Declaration of Conflicting Interests}

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

\textbf{Funding}

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The authors thank the Ministry of Higher Education, Malaysia,
References

1. Cragg GM, Newman DJ. Drugs from nature: past achievements, future prospects. In: Advances in Phytomedicine. 1. Elsevier; 2002:23-37.

2. Heinrich M, Barnes J, Gibbons S, Williamson EM. Fundamentals of Pharmacognosy and Phytotherapy E-Book. Elsevier Health Sciences; 2012.

3. Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery. Environ Health Perspect. 2001;109(1):69-75. doi:10.1289/ehp.01109s169

4. Getahun T, Sharma V, Gupta N. The genus Lagenes (Asteraceae)—ethnobotanical and ethnopharmacological information, chemical composition as well as biological activities of its essential oils and extracts: A review. Chem Biodivers. 2019;16(8):e1900131. doi:10.1002/cbdv.201900131

5. Shedoeva A, Leavesley D, Upton Z, Fan C. Wound healing and anti-inflammatory activity of methanol extracts in rats. Food Hydrocoll. 2014;37:159-165. doi:10.1016/j.foodhyd.2013.10.022

6. Pan Y, Abd- Rashid BA, Ismail Z, et al. In vitro modulatory effects of Andrographis paniculata, Centella asiatica and Orthosiphon stamineus on cytochrome P450 2C19 (CYP2C19). J Ethnopharmacol. 2011;133(2):881-887. doi:10.1016/j.jep.2010.11.026

7. Awale S, Tezuka Y, Banskota AH, et al. Constituents of the Vietnamese medicinal plant Orthosiphon stamineus. Chem Pharm Bull. 2000;48(11):1711-1719. doi:10.1248/cpb.48.1711

8. Tran K. Medicinal Plants in Vietnam. WHO Regional Office for the Western Pacific Manila, and Institute of Materia Medica Hanoi, Science and Technology Publishing House; 1970.

9. Asoe Benth. Effect of extraction temperature on stability of major polyphenols and antioxidant activity of Orthosiphon stamineus leaf extracts by LC-ESI-MS/MS coupled to DPPH assay. Food Chem. 2010;122(4):1168-1172. doi:10.1016/j.foodchem.2009.09.065

10. Akowuah GA, Zhari I. Effect of extraction temperature on stability of major polyphenols and antioxidant activity of Orthosiphon stamineus leaf. J Herbs Spices Med Plants. 2010;16(3-4):160-166. doi:10.1080/10496475.2010.509652

11. Pang SF, Lau MZ, Yusoff MM. Evaluation of the anti-inflammatory and antioxidant activities of Orthosiphon stamineus. Food Chem. 2010;11(2):1168-1172.
30. Alshawsh MA, Abdulla MA, Ismail S, et al. Free radical scavenging, antimicrobial and immunomodulatory activities of Orthosiphon stamineus. Molecules. 2012;17(5):5385-5395. doi:10.3390/molecules17055385
31. Reena L, Devi MD, Singh SR. Anti-bacterial efficacy of elite medicinal plants on urolithiasis inducing flora. J Food, Agric Environ. 2009;7(2):40-45.
32. Akowuah GA, Ismail Z, Norhayati I, Sadikun A. The effects of different extraction solvents of varying polarities on polyphenols of Orthosiphon stamineus and evaluation of the free radical-scavenging activity. Food Chem. 2005;93(2):311-317. doi:10.1016/j.foodchem.2004.09.028
33. Juneca K, Mishra R, Chauhan S, Gupta S, Roy P, Sircar D. Metabolite profiling and wound-healing activity of Boehmeria diffusa leaf extracts using in vitro and in vivo models. J Tradit Complement Med. 2020;10(1):52-59. doi:10.1016/j.jtcm.2019.02.002
34. Sekar M, Abdullah MZ, Nor Azlan AYH, Nasir SN, Zakaria Z, Abdullah MS. Ten commonly available medicinal plants in Malaysia used for the treatment of diabetes - A review. Asian J Pharm Clin Res. 2014;7(1):1-5.
35. Mohamed EAH, Mohamed AJ, Asmawi MZ, Sadikun A, Ebrika OS, Yam MF. Antihyperglycemic effect of Orthosiphon stamineus Benth leaves extract and its bioassay-guided fractions. Molecules. 2011;16(5):3787-3801. doi:10.3390/molecules16053787
36. Yam MF, Lim CP, Fung Ang L, et al. Antioxidant and toxicity studies of 50% methanolic extract of Orthosiphon stamineus Benth. Biomed Res Int. 2013;2013:1-10. doi:10.1155/2013/351602
37. Lokman EF, Saparuddin F, Muhammad H, Omar MH, Zulkapli A. Orthosiphon stamineus as a potential antidiabetic drug in maternal hyperglycemia in streptozotocin-induced diabetic rats. Integr Med Res. 2019;8(3):173-179. doi:10.1016/j.imr.2019.05.006
38. Mohamed EAH, Siddiqi MJA, Ang LF, et al. Potent α-glucosidase and α-amylase inhibitory activities of standardized 50% ethanolic extracts and sinensetin from Orthosiphon stamineus Benth as anti-diabetic mechanism. BMC Complement Altern Med. 2012;12(1):176. doi:10.1186/1472-6882-12-176
39. Ching SM, Zakaria ZA, Paimin F, Jalalian M. Complementary alternative medicine use among patients with type 2 diabetes mellitus in the primary care setting: a cross-sectional study in Malaysia. BMC Complement Altern Med. 2013;13(1):1-7. doi:10.1186/1472-6882-13-148
40. Drefke MB, Jayasuriya AA, Jayasuriya AC. Current wound healing procedures and potential care. Mater Sci Eng C. 2015;48:651-662. doi:10.1016/j.msec.2014.12.068
41. Fletcher J. Wounds. S. Lower Extremity Wounds: A Problem-Based Learning Approach. 23. Oxford University Press; 2008:139-160.
42. Wang J, Windbergs M. Functional electrospun fibers for the treatment of human skin wounds. Eur J Pharm Biopharm. 2017;119:283-299. doi:10.1016/j.ejpb.2017.07.001
43. Korting HC, Schöllmann C, White RJ. Management of minor acute cutaneous wounds: importance of wound healing in a moist environment. J Eur Acad Dermatol Venereol. 2011;25(2):130-137. doi:10.1111/j.1468-3083.2010.03775.x
44. Alam G, Singh MP, Singh A. Wound healing potential of some medicinal plants. Int J Pharm Sci Rev Res. 2011;9:136-145.
45. Karri V, Kuppusamy G, Talluri SV, et al. Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int J Biol Macromol. 2016;93(Pt B):1519-1529. doi:10.1016/j.ijbiomac.2016.05.038
46. Tam JCW, Lau KM, Liu CIX, et al. The in vivo and in vitro diabetic wound healing effects of a 2-herb formula and its mechanisms of action. J Ethnopharmacol. 2011;134(3):831-838. doi:10.1016/j.jep.2011.01.032
47. Singh S, Young A, McNaught CE. The physiology of wound healing. Surg (United Kingdom). 2017;35(9):473-477. doi:10.1016/j.jsurg.2017.06.004
48. Martin P. Wound healing - Aiming for perfect skin regeneration. Science (80-). 1997;276(5309):73-81. doi:10.1126/science.5309.75
49. Shukla R, Kashaw SK, Jain AP, Lodhi S. Fabrication of apigenin loaded gellan gum–chitosan hydrogels (GGCH-HGs) for effective diabetic wound healing. Int J Biol Macromol. 2016;91:1110-1119. doi:10.1016/j.ijbiomac.2016.06.075
50. Vug K, Chaudhri A, Tripathi S, et al. Advances in skin regeneration using tissue engineering. Int J Mol Sci. 2017;18(4):789. doi:10.3390/ijms18040789
51. Geethalakshmi R, Sakravarthi C, Kritika T, Arul Kirubakaran M, Sarada DVL. Evaluation of antioxidant and wound healing potentials of Boerhavia diffusa in streptozotocin-induced diabetic rats. J Tradit Complement Med. 2019;8(3):173-179. doi:10.1016/j.jtcm.2019.05.006
52. Moura LIF, Dias AMA, Carvalho E, De Sousa HC. Recent advances on the development of wound dressings for diabetic foot ulcer treatment - a review. Acta Biomater. 2013;9(7):7093-7114. doi:10.1016/j.actbio.2013.03.033
53. Ekmektzoglou KA, Zografos GC. A concomitant review of the effects of diabetes mellitus and hyperthyroidism in wound healing. World J Gastroenterol WJG. 2006;12(17):2721-2729. doi:10.3748/wjg.v12.i17.2721
54. Fernando ME, Seneviratne RM, Cunningham M, et al. Intensive versus conventional glycaemic control for treating diabetic foot ulcers. Cochrane Database Syst Rev. 2013;2013(10).
55. Schaper NC. Diabetic foot ulcer classification system for research purposes: a progress report on criteria for including patients in research studies. Diabetes Metab Res Rev. 2004;20(S1):90-S95. doi:10.1002/dmrr.464
56. Rafehi H, El-Osta A, Karagiannis TC. Genetic and epigenetic pathways in diabetic foot ulcers. 2019. doi:10.3748/wjg.v12.i17.2721
57. Morey M, O’Gaora P, Pandit A, Hélary C. Hyperglycemia acts in synergy with hypoxia to maintain the pro-inflammatory...
phenotype of macrophages. PLoS One. 2019;14(8):e0220577. doi:10.1371/journal.pone.0220577
60. Luong KVQ, Nguyen LTH. The impact of thiamine treatment in the diabetes mellitus. J Clin Med Res. 2012;4(3):153-160. doi: 10.4021/jocm89ow
61. Panda S, Gupta SK, Singh SK. The etiopathogenesis of the diabetic foot: an unrelenting epidemic. Int J Low Extrem Wounds. 2010;9(3):127-131. doi:10.1177/1534734610380029
62. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615-1625. doi:10.2337/diabetes.54.6.1615
63. Giacco F, Brownlee M. Mechanisms of hyperglycemic damage in diabetes. In: Atlas of Diabetes. Springer; 2012;217-231.
64. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058-1070. doi:10.1161/CIRCRESAHA.110.223545
65. D'Souza DR, Salib MM, Bennett J, et al. Hyperglycemia regulates RUNX2 activation and cellular wound healing through the aldose reductase polyol pathway. J Biol Chem. 2009;284(27):17947-17955. doi:10.1074/jbc.M109.002378
66. Mohamed EAH, Siddiqui MJA, Ang LF, et al. Potent α-glucosidase and α-amylase inhibitory activities of standardized 50% ethanolic extracts and sinensetin from Orthosiphon stamineus Benth as anti-diabetic mechanism. BMC Complement Altern Med. 2012;12(1) doi:10.1186/1472-6882-12-176
67. Ahmad FB, Holdsworth DK, Sekar M, et al. Ten commonly available medicinal plants in Malaysia used for the treatment of diabetes - A review. Asian J Pharm Clin Res. 2014;7(5):378-383.
68. Akowuah GA, Zhari I, Norhayati I, Sadikun A, Khamsah SM. Sinensetin, eupatorin, 3′-hydroxy-5,6,7,4′-tetramethoxyflavone and rosmarinic acid contents and antioxidative effect of Orthosiphon stamineus from Malaysia. Food Chem. 2004;87(4):559-566. doi:10.1016/j.foodchem.2004.01.008
69. Yam MF, Lim V, Salman IM, et al. HPLC and anti-inflammatory studies of the flavonoid rich chloroform extract fraction of Orthosiphon stamineus leaves. Molecules. 2010;15(6):4452-4466. doi:10.3390/molecules15064452
70. Yam MF, Asmawi MZ, Basir R. An investigation of the anti-inflammatory and analgesic effects of Orthosiphon stamineus leaf extract. J Med Food. 2008;11(2):362-368. doi:10.1089/jmf.2006.065
71. Kuo PC, Schroeder RA. The emerging multifaceted roles of nitric oxide. Ann Surg. 1995;221(3):220-235. doi:10.1097/00000656-199503000-00003
72. Idris I, Game F, Jeffcoate W. Does close glycaemic control promote healing in diabetic foot ulcers? Report of a feasibility study. Diabet Med. 2005;22(8):1060-1063. doi:10.1111/j.1464-5491.2005.01606.x
73. Estelle E, Mathioudakis N. Update on management of diabetic foot ulcers. Physiol Behav. 2017;176(3):139-148.
74. Christman AL, Selvin E, Margolis DJ, Lazarus GS, Garza LA. Hemoglobin A1c predicts healing rate in diabetic wounds. J Invest Dermatol. 2011;131(10):2121-2127. doi:10.1038/jid.2011.176
75. Markuson M, Hanson D, Anderson J, et al. The relationship between hemoglobin A1c values and healing time for lower extremity ulcers in individuals with diabetes. Adv Skin Wound Care. 2009;22(8):365-372. doi:10.1097/01.ASW.0000358639.45784:cd
76. Fernando MF, Seneviratne RM, Tan YM, et al. Intensive versus conventional glycaemic control for treating diabetic foot ulcers. Cochrane Database Syst Rev. 2016;1:CD010764. doi:10.1002/14651858.CD010764.pub2
77. Hemmingsen B, Lund SS, Gluud C, et al. Targeting intensive glycaemic control versus targeting conventional glycaemic control for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2013;11:1-173. doi:10.1002/14651858.CD008143.pub3
78. Mattila TK, de Boer A. Influence of intensive versus conventional glucose control on microvascular and macrovascular complications in type 1 and 2 diabetes mellitus. Drugs. 2010;70(17):2229-2245. doi:10.2165/11585220-000000000-00000
79. Loots MAM, Lamme EN, Mekkes JR, Bos JD, Middelkoop E. Cultured fibroblasts from chronic diabetic wounds on the lower extremity (non-insulin-dependent diabetes mellitus) show disturbed proliferation. Arch Dermatol Res. 1999;291(2-3):93-99. doi:10.1007/s00403050389
80. Spravchikov N, Szyjak G, Gartsbein M, Accili D, Tennenbaum T, Wertheimer E. Glucose effects on skin keratinocytes: implications for diabetes skin complications. Diabetes. 2001;50(7):1627-1635. doi:10.23237/diabetes.50.7.1627
81. Pierre EJ, Perez-Polo JR, Mitchell AT, Matin S, Foyt HL, Herndon DN. Insulin-like growth factor-I liposomal gene transfer and systemic growth hormone stimulate wound healing. J Burn Care Rehabil. 1997;18(4):287-291. doi:10.1097/00004630-199704000-00002
82. Weringer EJ, Kelso JM, Tamai Y, Arquilla ER. The effect of antisera to insulin, 2-deoxyglucose-induced hyperglycemia, and starvation on wound healing in normal mice. Diabetes. 1981;30(5):407-410. doi:10.2337/dbiab.30.5.407
83. Soleimani Z, Hashemolkh F, Bahnani F, Taghiazedeh M, Memarzadeh MR, Asemi Z. Clinical and metabolic response to flaxseed oil omega-3 fatty acids supplementation in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. J Diabetes Complications. 2017;31(9):1394-1400. doi:10.1016/j.jdiacomp.2017.06.010
84. Ko CH, Yi S, Ozaki R, et al. Healing effect of a two-herb formulae (NF3) on foot ulcers in Chinese patients with diabetes: A randomized, double-blind, placebo-controlled study. J Diabetes Complications. 2014;28(3):233-238. doi:10.1016/j.jdiacomp.2013.11.007
85. Pharmacopoeia N. Pharmacopoeia of the People's Republic of China. China People's Med Publ House; 2005.
86. Lau CH, Chan CM, Chan YW, et al. In vitro anti diabetic activities of five medicinal herbs used in Chinese medicinal formulae. Phytother Res. 2008;22(10):1384-1388. doi:10.1002/ptr.2513
87. Wong MW, Leung PC, Wong WC. Limb salvage in extensive diabetic foot ulceration-a preliminary clinical study using simple debridement and herbal drinks. Hong Kong Med J. 2001;7(4):403-407.
88. Tsuchiya H, Sato M, Miyazaki T, et al. Comparative study on the antibacterial activity of phytochemical flavanones against methicillin-resistant Staphylococcus aureus. J Ethnopharmacol. 1996;50(1):27-34. doi:10.1016/0378-8741(96)85514-0

89. Villegas LF, Fernández ID, Maldonado H, et al. Evaluation of the wound-healing activity of selected traditional medicinal plants from Peru. J Ethnopharmacol. 1997;55(3):193-200. doi:10.1016/S0378-8741(96)01500-0

90. Guimarães AC, Meireles LM, Lemos MF, et al. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules. 2019;24(13):1-12. doi:10.3390/molecules24132471

91. Rodríguez JA, Astudillo L, Schmeda-Hirschmann G. Oleanolic acid in vitro antioxidant activities of Jasminum grandiflorum. J Ethnopharmacol. 2007;110(3):464-470. doi:10.1016/j.jep.2006.10.017

92. Umamaheswari M, Asokkumar K, Rathidevi R, Sivashanmugam AT, SubhadraDevie V, Ravi TK. Antituizer and in vitro antioxidant activities of Orthosiphon grandiflorum L. J Ethnopharmacol. 2007;110(3):464-470. doi:10.1016/j.jep.2006.10.017

93. Rodríguez JA, Astudillo L, Schmeda-Hirschmann G. Oleanolic acid promotes healing of acetic acid-induced chronic gastric lesions in rats. Pharm Res. 2003;48(3):291-294. doi:10.1016/S0040-4039(03)00155-5

94. Mulkerjee H, Ohja D, Bhartikar YP, et al. Evaluation of the wound healing activity of Shorea robusta, an Indian ethnomedicine, and its isolated constituent(s) in topical formulation. J Ethnopharmacol. 2013;149(1):335-343. doi:10.1016/j.jep.2013.06.045

95. Byun-McKay A, Godard K-A, Toudefallah M, et al. Wound-induced terpene synthase gene expression in Sitka spruce that exhibit resistance or susceptibility to attack by the white pine weevil. Plant Physiol. 2006;140(3):1009-1021. doi:10.1104/pp.105.071803

96. Song HS, Park TW, Sohn UD, et al. The effects of caffeic acid on wound healing in skin-incised mice. Korean J Physiol Pharmacol. 2008;12(6):343-347. doi:10.4196/kjpp.2008.12.6.343

97. Agra LC, Ferro JNS, Barbosa FT, Barreto E. Triterpenes with healing activity: a systematic review. J Dermatolog Treat. 2015;26(5):465-470. doi:10.3109/09546634.2015.1021663

98. Abdelwahab SI, Mohan S, Mohamed Elhassan M, et al. Antiapoptotic and antioxidant properties of Orthosiphon aristatus Benth (Car's whiskers): intervention in the Bel-2-mediated apoptotic pathway. Evid Based Complement Altern Med. 2011;2011(13):156765. doi:10.1155/2011/156765

99. Chan KWK, Ho WS. Anti-oxidative and hepatoprotective effects of linoleic acid against carbon tetrachloride-induced liver oxidative damage in vitro and in vivo. Oncol Rep. 2015;34(2):673-680. doi:10.3892/or.2015.4068

100. Xiao H, Xie G, Wang J, et al. Chicoric acid prevents obesity by attenuating hepatic steatosis, inflammation and oxidative stress in high-fat diet-fed mice. Food Res Int. 2013;54(1):345-353. doi:10.1016/j.foodres.2013.07.033

101. Chen YS, Lee SM, Lin YJ, Chiang SH, Lin CC. Effects of danshensu and salvianolic acid B from Salvia miltiorrhiza Bunge (Lamiaceae) on cell proliferation and collagen and melanin production. Molecules. 2014;19(2):2029-2041. doi:10.3390/molecules19022029

102. Indariani S, Hanny Wijaya C, Rahminiwati M, Wien Winarno M. Antihyperglycemic activity of functional drinks based on java tea (Orthosiphon aristatus) in streptozotocin induced diabetic mice. Int Food Res J. 2014;21(1):349-355.

103. Yam MF, Mohamed EAH, Ang LF, et al. A Simple isocratic HPLC method for the simultaneous determination of sinensetin, eupatorin, and 3'-hydroxy-5,6,7,4'-tetramethoxyflavone in Orthosiphon aristatus extracts. JAMS J Acupunct Meridian Stud. 2015;26(5):465-470. doi:10.3109/09546634.2015.1021663

104. Stampoulis P, Tezuka Y, Banskota AH, Saiki I, Kadota S. Nitric oxide inhibitory isopimarane-type diterpenes from Orthosiphon aristatus of Indonesia. J Nat Prod. 2003;66(2):255-258. doi:10.1012/np020455x

105. Awale S, Tezuka Y, Banskota AH, Adnyana IK, Kadota S. Nitric oxide inhibitory isopimarane-type diterpenes from Orthosiphon aristatus of Indonesia. J Nat Prod. 2003;66(2):255-258. doi:10.1012/np020455x

106. Ohashi K, Bohgaki T, Matsubara T, Shibuya H. Indonesian medicinal plants. XXIII. Chemical structures of two new migrated pimarane-type diterpenes, neooxorphin A and B, and suppressive effects on rat thoracic aorta of chemical constituents isolated from the leaves of Orthosiphon aristatus (Lamiaceae). Chem Pharm Bull. 2000;48(3):433-443. doi:10.1248/cpb.48.433

107. Shibuya M, Hoshino M, Katsube Y, Hayashi H, Kushto T, Ebizuka Y. Identification of β-amyrin and sophoradiol 24-hydroxylation by expressed sequence tag mining and functional expression assay. FEMS J. 2006;273(5):948-959. doi:10.1111/j.1742-4658.2006.05120.x

108. Guerin JC, Reveillere HP, Ducrey P, Toupet L. Orthosiphon aristatus as a potent source of methylriboflavonocromene A. J Nat Prod. 1989;52(1):171-173. doi:10.1021/jp50061a023

109. Mariam A, Asmawi MZ, Sadikun A. Hypoglycaemic activity of the aqueous extract of Orthosiphon aristatus. Fitoterapia. 1996;67(5):465-468.

110. Sripang L, Adisakwattana S, Rungsipipat A, Yibchok-anun S. Effects of Orthosiphon aristatus aqueous extract on plasma glucose concentration and lipid profile in normal and streptozotocin-induced diabetic rats. J Ethnopharmacol. 2007;109(3):510-514. doi:10.1016/j.jep.2006.08.027

111. Adnyana K, Setiawan F, Insanu M. From ethnopharmacology to clinical study of Orthosiphon aristatus Benth. Int J Pharm Sci. 2013;5(3):66-73.

112. Singh MK, Gidwani B, Gupta A, Dhongade H, Kashyap PP, Tripathi DK. A review of the medicinal plants of genus Orthosiphon (Lamiaceae). Int J. Biol Chem. 2015;9(6):318-331. doi:10.3923/ijbc.2015.318.331

113. Ngo YL, Chua LS. Antidiabetic activity of rosmarinic acid rich fractions from Orthosiphon aristatus (Lamiaceae). Int J. Biol Chem. 2015;9(6):318-331.

114. Ngu YL, Chua IS. Anti-diabetic activity of rosmarinic acid rich fractions from Orthosiphon aristatus (Lamiaceae). Curr Enzym Inhib. 2018;14(2):97-103.

115. Trute A, Nahrstedt A. Separation of rosmarinic acid enantiomers by three different chromatographic methods (HPLC, CE, GC) and the determination of rosmarinic acid in Hedera helix L. Phytochem Anal. 1996;7(4):204-208.
