One Universal Common Endpoint in Mouse Models of Amyotrophic Lateral Sclerosis

Jesse A. Solomon1, Mark A. Tarnopolsky2,3, Mazen J. Hamadeh1,2

1 School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada, 2 Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada, 3 Department of Medicine, McMaster University, Hamilton, Ontario, Canada

Abstract
There is no consensus among research laboratories around the world on the criteria that define endpoint in studies involving rodent models of amyotrophic lateral sclerosis (ALS). Data from 4 nutrition intervention studies using 162 G93A mice, a model of ALS, were analyzed to determine if differences exist between the following endpoint criteria: CS 4 (functional paralysis of both hindlimbs), CS 4+ (CS 4 in addition to the earliest age of body weight loss, body condition deterioration or righting reflex), and CS 5 (CS 4 plus righting reflex >20 s). The age (d; mean ± SD) at which mice reached endpoint was recorded as the unit of measurement. Mice reached CS 4 at 123.9±10.3 d, CS 4+ at 126.6±9.8 d and CS 5 at 127.6±9.8 d, all significantly different from each other (P<0.001). There was a significant positive correlation between CS 4 and CS 5 (r = 0.95, P<0.001), CS 4 and CS 4+ (r = 0.96, P<0.001), and CS 4+ and CS 5 (r = 0.98, P<0.001), with the Bland-Altman plot showing an acceptable bias between all endpoints. Logrank tests showed that mice reached CS 4 24% and 34% faster than CS 4+ (P = 0.046) and CS 5 (P = 0.006), respectively. Adopting CS 4 as an endpoint would spare a mouse an average of 4 days (P<0.001) from further neuromuscular disability and poor quality of life compared to CS 5. Alternatively, CS 5 provides information regarding proprioception and severe motor neuron death, both could be important parameters in establishing the efficacy of specific treatments. Converging ethics and discovery, would adopting CS 4 as an endpoint compromise the acquisition of insight about the effects of interventions in animal models of ALS?

Introduction
The endpoints used in research studies involving mouse models of amyotrophic lateral sclerosis (ALS) vary widely between laboratories around the world [1–97]. Not all endpoints are in perfect agreement with each other; that is, depending on the endpoint, the age at which mice are euthanized (time point at which age is used to establish lifespan) may differ independently of the intervention treatment used in research studies (Table 1). Because specific endpoints inherently occur early or later in disease progression, researchers may not be able to directly compare the effectiveness of treatments on disease severity and progression, as well as functional outcomes, in animal models of ALS conducted in one research laboratory with similar treatments conducted in different laboratories. Identifying the proper endpoint is important, because it impacts lifespan and marks the end of data collection. A solution would be a universal endpoint which would allow researchers to follow disease progression and identify the effectiveness of an intervention treatment, while still meeting stringent ethical standards.

Symptoms of ALS begin with muscle weakness, ultimately leading to paralysis and death [100]. The first mouse model used to study ALS was created by Gurney et al in 1994 [100] who discovered that a glycine to alanine substitution on the 93rd position in the human Cu/Zn superoxide dismutase gene (Cu/Zn-SOD) produced the phenotype of ALS. Mice testing positive for this mutation begin to overtly exhibit signs of motor degeneration through a change in gait between 85–110 d of life [15,82,83]. As the disease progresses, the hindlimbs become paralyzed, paw grip strength and endurance deteriorate, bony structures become palpable due to severe muscle and tissue loss, mobility is limited, and an inability to groom and scavenge for food and water become apparent [20,49,54,73,82]. Researchers conducting intervention studies in mouse models of ALS monitor the above changes to track the effectiveness of their intervention, however at what point is it no longer ethical to keep these mice alive?

Research ethics committees and animal care organizations/agencies serve to maintain standards for the care and use of animals used in research, including transgenic mice used in models of ALS [101]. Standards of care include the selection of “endpoint” which is the point at which an experimental animal is killed humanely to terminate pain, distress and/or suffering [101]. Hence, research ethics committees and animal care organizations/agencies must consult with ALS researchers to decide on a case-by-case basis which endpoint is suitable for a specific intervention study, while...
maintaining compatibility with the objectives and the integrity of the research project. Different laboratories using mouse models of ALS have chosen varying endpoints, some reflecting more advanced stages of the disease, including the righting reflex (mice are placed on their sides and are euthanized if they cannot right themselves to sternum in 3–30 s, time chosen depends on the laboratory), an inability to splay the hindlimbs due to paralysis, a percentage decrease in motor performance or grip strength from initial values, an inability to obtain food or water, a defined percentage of body weight loss from peak weight, serious eye infection, an inability to self-groom, no spontaneous breathing or movement for a predetermine time with no response to pain, complete hindlimb paralysis, or combinations of two or more of these criteria. The most commonly used endpoint is a righting reflex of at least 3 s [1,4,5,7,10–15,17–23,25,27,28,30–32,36,38–47,49–51,53,57–59,61,62,64,65,68,70–72,74,77,79–83,84–86,89,91,94–97], however some studies did not specify the length of time used as the cutoff for the righting reflex [26,54,60,73,85,90,93]. The popularity of the righting reflex is possibly due to its relative simplicity, value as an indicator of proprioceptive deterioration [102,103], and/or history as the first endpoint used in an intervention study in this particular disease model [79].

To date, a universal endpoint has not been established among researchers using rodent models of ALS. An ideal endpoint would meet strict ethical standards, could be adopted by all research laboratories, and would allow researchers to properly study the progression of ALS and the effectiveness of treatments tested. A consistent endpoint across research laboratories would reduce inter-laboratory variability that may be attributed at least partially to the selection of endpoint. Thus, our objective was to determine whether an earlier endpoint could replace the righting reflex, sparing mice undue suffering, while preserving the integrity of research in rodent models of ALS. To do this, we used the G93A transgenic mouse model of ALS to validate if functional paralysis in both hindlimbs (CS 4) could replace other later endpoints, including the righting reflex (CS 5).

Materials and Methods

Ethics Statement

The experimental protocols of all 4 studies followed the guidelines of the Canadian Council of Animal Care and were approved by the McMaster University Animal Research Ethics Board. All necessary steps were taken to minimize suffering and distress to the mice in the studies.

Animals

Raw data for clinical score (CS), body condition and body weight were compiled from 4 previously published [15,82,83,104,105] nutrition intervention studies using a total of 162 B6SJL-TgN-(SOD1-G93A)1Gur autosomal hemizygous mice (100 females, 62 males) that reached endpoint at a clinical score of 5 (CS 5). All mice expressed the phenotype of ALS due to the G93A mutation in the SOD1 (Cu/Zn-SOD) gene. Raw data were used to determine the following endpoint criteria, with age (d) at which mice reached endpoint as the unit of measurement:

1. **CS 4** = both hindlimbs are functionally paralyzed
2. **CS 4+** = CS 4 plus the earliest time mice attained one of the following:
 a. weight loss ≥20% vs. body weight immediately prior to a clinical score of 2 (CS 2 is considered disease onset) = 20%CS2
 b. weight loss ≥20% vs. peak body weight = 20%Peak
 c. body condition score <2 = BC<2
 d. righting reflex >20 s (clinical score of 5) = CS 5
3. **CS 5** = CS 4 plus a righting reflex >20 s (considered as the endpoint in the previous 4 studies)

Body Weight and Body Condition

Body weights of mice in the 4 intervention studies were measured starting at age 35–40 d until mice reached CS 5. Body condition was assessed following a 5-point scale: 5 = obese mice, 4 = overconditioned mice (spine is a continuous column and the vertebrae are palpable only with firm pressure), 3 = well-conditioned mice (the vertebrae and dorsal pelvis are not prominent and are palpable with slight pressure), 2 = underconditioned mice (the segmentation of the vertebral column is evident and the dorsal pelvic bones are easily palpable), and 1 = emaciated mice (the skeletal structure is extremely prominent and the vertebrae are distinctly segmented). Body condition was recorded starting at age 35–40 d until mice reached CS 5.

Clinical Score

Using an 8-point scale, clinical score measurements for mice in the 4 intervention studies started at age 35–40 d until mice reached CS 5. The clinical score was based on signs exhibited by the mice to identify the severity of the disease: 0 = no evidence of

Table 1. Raw data and summary of endpoint criteria for 162 B6SJL-TgN-(SOD1-G93A)1Gur autosomal hemizygous female (F) and male (M) mice.
Endpoint Criteria
CS 4
20%CS2
20%Peak
BC<2
CS 4+
CS 5

*Significantly different from each other (P<0.001). Data for Mean Age (d) are presented as means ± SD.

DOI: 10.1371/journal.pone.0020582.t001

Using an 8-point scale, clinical score measurements for mice in the 4 intervention studies followed the following:

1) **CS 4** = both hindlimbs are functionally paralyzed
2) **CS 4+** = CS 4 plus the earliest time mice attained one of the following:
 a) weight loss ≥20% vs. body weight immediately prior to a clinical score of 2 (CS 2 is considered disease onset) = 20%CS2
 b) weight loss ≥20% vs. peak body weight = 20%Peak
 c) body condition score <2 = BC<2
 d) righting reflex >20 s (clinical score of 5) = CS 5
3) **CS 5** = CS 4 plus a righting reflex >20 s (considered as the endpoint in the previous 4 studies)
There was a strong positive correlation between CS 4 and CS 5 ($r = 0.95; \text{ slope } = 0.91; P < 0.001; \text{ Figure 1A}$), CS 4 and CS 4+ ($r = 0.96; \text{ slope } = 0.92; P < 0.001; \text{ Figure 2A}$), and CS 4+ and CS 5 ($r = 0.90; \text{ slope } = 0.98; P < 0.001; \text{ Figure 3A}$). The Bland-Altman plot revealed acceptable bias between CS 4 and CS 5 (3.0 ± 2.5%; lower limit = −2.0%, upper limit = 7.9%; Figure 1B), between CS 4 and CS 4+ (2.2 ± 2.3%; lower limit = −2.4%, upper limit = 6.7%; Figure 2B), and between CS 4+ and CS 5 (0.8 ± 1.7%; lower limit = −2.5%, upper limit = 4.1%; Figure 3B).

A logrank test showed a significant difference in the rate at which endpoint was reached between CS 4, CS 4+ and CS 5 ($P = 0.021$; Figure 4). Mice reached CS 4 at a rate 34% faster vs. CS 5 (HR = 1.34; 95% CI 1.10, 1.74; $P = 0.006$) and 24% faster vs. CS 4+ (HR = 1.24; 95% CI 1.00, 1.59; $P = 0.046$). Mice reached CS 4+ at a non-significant rate of 9% faster vs. CS 5 (HR = 1.09; 95% CI 0.68, 1.38; $P = 0.410$).

Statistical analyses were conducted for the same 3 endpoints within each sex. Differences between endpoints within each sex were similar as above.

Discussion

Our objective was to determine whether an earlier endpoint could replace the most commonly used righting reflex in a transgenic mouse model of ALS. This was done to validate the use of an endpoint that would meet the strict standards set by research ethics boards to decrease suffering and distress in mice, as well as to allow researchers from different laboratories the use of a uniform and consistent endpoint to directly compare the effectiveness of treatments in this particular animal model. We found strong positive correlations between all endpoints with an acceptable mean bias as measured by a Bland-Altman plot. Using CS 4+ and CS 5 would prolong life span by 2% and 3%, respectively, as compared to CS 4. Additionally, mice reached CS 4 at a rate 24% faster compared to CS 4+ and 34% faster compared to CS 5.

Figure 1. Correlation between CS 4 and CS 5 and the Bland-Altman plot for CS 4 vs. CS 5. (A) Correlation between CS 4 (clinical score of 4 = functional paralysis of both hindlimbs) and CS 5 (clinical score of 5 = CS 4 plus a righting reflex ≥ 20 s). There was a strong positive relationship between CS 4 and CS 5 ($r = 0.95, \text{ slope } = 0.91, P < 0.001$). CS 5 ($d = (14.80 ± 2.83) + (0.91 ± 0.02) \times (\text{CS 4 in d})$, mean ± SEM. Dashed line indicates line of identity. (B) A Bland-Altman plot comparing CS 4 to CS 5. Mean bias ± SD = 3.0 ± 2.5%, lower limit = −2.0%, upper limit = 7.9%.

doi:10.1371/journal.pone.0020582.g001
Once mice reach CS 4, they must rely on the strength of their forelimbs to obtain food and water which may place them at risk of starvation and dehydration [43]. Some studies have used the inability to scrounge for food and water as endpoint [11,13,28,43,63,67,73,106], however establishing this is time consuming and indicates an advanced disease state possibly well beyond CS 5. As well, research ethics committees may institute policy requiring mice to have access to food and water-based gels at cage floor level.

Figure 2. Correlation between CS 4 and CS 4+ and the Bland-Altman plot for CS 4 and CS 4+. (A) Correlation between CS 4 (clinical score of 4 = functional paralysis of both hindlimbs) and CS 4+ (CS 4 plus the earliest of a) weight loss ≥20% vs. body weight immediately prior to a clinical score of 2, b) weight loss ≥20% vs. peak body weight, c) body condition score <2, or d) a righting reflex >20 s (CS 5)). There was a strong positive relationship between CS 4 and CS 4+ (r = 0.96, slope = 0.92, P < 0.001). CS 4+ (d) = (12.79 ± 2.56) + (0.92 ± 0.02) × (CS 4 in d), mean ± SEM. Dashed line indicates line of identity. (B) A Bland-Altman plot comparing CS 4 to CS 4+. Mean bias ± SD = 2.2 ± 2.3%, lower limit = −2.4%, upper limit = 6.7%. doi:10.1371/journal.pone.0020582.g002

Figure 3. Correlation between CS 5 and CS 4+ and the Bland-Altman plot for CS 5 and CS 4+. (A) Correlation between CS 5 (clinical score of 5 = CS 4 and righting reflex >20 s) and CS 4+ (CS 4 plus the earliest of a) weight loss ≥20% vs. body weight immediately prior to a clinical score of 2, b) weight loss ≥20% loss vs. peak body weight, c) body condition score <2, or d) a righting reflex >20 s (CS 5)). There was a strong positive relationship between CS 5 and CS 4+ (r = 0.98, slope = 0.98, P < 0.001). CS5 (d) = (3.93 ± 2.15) + (0.98 ± 0.02) × (CS 4+ in d), mean ± SEM. Dashed line indicates line of identity. (B) A Bland-Altman plot comparing CS 5 to CS 4+. Mean bias ± SD = 0.8 ± 1.7%, lower limit = −2.5%, upper limit = 4.1%. doi:10.1371/journal.pone.0020582.g003
when mice reach a pre-defined disease severity, which actually prolongs disease exposure of mice due to easier access to nutrients.

Paw grip endurance and motor performance scores will have decreased precipitously by the time mice reached CS 4, as compared to scores prior to disease onset, due to hindlimb paralysis and weakness in the forelimbs [15,82,83]. A decrease in motor performance and/or paw grip strength has been previously used as endpoint in mouse models of ALS [3,20]. Adoption of such endpoints requires expensive, specialized equipment such as the rotarod apparatus [20] and commercial grip strength meters [3]. Also, there is no standardization for the percent decrease in paw grip strength among laboratories using this as a criterion for endpoint [3,20].

All mice in our analyses met the criteria for CS 4+, however when each additional criterion was assessed in isolation from CS 4, that is, as standalone criterion for endpoint (data collection ended at CS 5), only 29% of mice lost greater than 20% body weight versus their weight immediately prior to disease onset (20%CS2), 43% lost greater than 20% body weight versus peak weight (20%Peak); 26% had a body condition score of less than 2 (BC<2), while 100% met the criteria for CS 5 (Table 1). These results suggest that studies using any one of 20%CS2, 20%Peak, or BC<2 as a standalone criterion to establish endpoint would be keeping at least 57% of their mice alive past CS 5, prolonging disease exposure beyond what is considered humane. Alternatively, another interpretation of these results is that mice could die past CS 5 without meeting the standalone criteria 20%CS2, 20%Peak, or BC<2. Past CS 5, motor neuron degeneration is so far advanced that mice can no longer right themselves to scrounge for food and water and would be at a pronounced risk of starvation and dehydration. Our analyses also reveal that fewer than 9% of all mice met the standalone criteria 20%CS2, 20%Peak, or BC<2 prior to reaching CS 4 (Table 2). Hence, we conclude that CS 4 does not prolong disease exposure compared to 20%CS2, 20% Peak, or BC<2 in a mouse model of ALS. More male mice met 20%CS2, 20%Peak, or BC<2 prior to reaching CS 4 compared to females, however this result is expected since male mice have greater muscle mass than females and muscle atrophy is a result of disease progression [107].

The righting reflex, either as a standalone criterion or used in conjunction with other parameters, has long been used to establish endpoint in a mouse model of ALS [1,4,5,7,10–15,17–23,25–26, 30–32,36,38–47,49–51,53,54,57–62,64,65,68,70–74,77–91,93–97]. The righting reflex has its advantages. Failure to right within a pre-defined period of time (at least >3 s) demonstrates severe muscle weakness, an indication of advanced motor neuron degeneration, as mice must use their strength to right themselves when placed on their side. The righting reflex may also be a measure of declining proprioception. Evidence suggests the dorsal root [102], dorsal root ganglia [102,106–110], dorsal funiculus [102], Clarke’s nuclei [103,109,111,112] and spinocerebellar tract [103,109,111–113], the regions of the spinal cord responsible for processing proprioception, may be affected in humans with ALS [103,108–112] and animal models of ALS [102,113], however some researchers failed to ascertain this association [113]. It is important to note that the magnitude of diminished proprioception and muscle loss may be different depending on the time used as the cutoff for the righting reflex, with greater atrophy of motor neurons occurring when longer cutoffs are used [113]. Although the righting reflex may provide insight into muscle wasting and proprioception deficits, no studies have used the righting reflex to quantify proprioception and motor neuron loss. Rather, the righting reflex is simply used to identify endpoint. Moreover, the time used to establish the righting reflex is not standardized (at least 3 s), introducing a confounding within the righting reflex methodology. Some studies did not specify the length of time mice were required to right themselves [113].

Table 2. Raw data and summary of 162 B6SJL-TgN-(SOD1-G93A)1Gur autosomal hemizygous female (F) and male (M) mice meeting the additional endpoint criteria prior to reaching CS 4.

Endpoint Criteria	N Prior to CS 4 (F, M)	% of Mice Meeting Criteria Prior to CS 4 (F, M)	Mean Age (d) (F, M)
20%CS2	1 (0, 1)	0.6% (9%, 1.6%)	106.0 (NA, 106.0)
20%Peak	7 (3, 4)	4.3% (3%, 6.5%)	119.9 ± 11.0 (123.7 ± 15.2, 117.0 ± 8.0)
BC<2	9 (1, 8)	5.6% (1%, 12.9%)	110.6 ± 15.7 (108.0, 110.9 ± 16.8)
Any of 20%CS2, 20%Peak or BC<2*	14 (3, 11)	8.6% (3%, 17.7%)	115.6 ± 15.0 (123.0 ± 16.1, 113.6 ± 14.8)

20%CS2, weight loss ≥20% vs. body weight immediately prior to a clinical score of 2; 20%Peak, weight loss ≥20% vs. peak body weight; BC<2, body condition score ≤2.

*Earliest age (d) of 20%CS2, 20%Peak and BC<2 was used to calculate mean age. Data for Mean Age (d) are presented as means ± SD.

doi:10.1371/journal.pone.0020582.g004
follow a similar disease progression, including hindlimb weakness and paralysis, and use similar endpoint criteria as mouse models of ALS, suggesting our findings may be used in mouse models of EAE.

Is CS 4 the “ideal” endpoint? The righting reflex may provide information regarding muscle loss and proprioception deficits beyond that of CS 4. For those specific studies whereby severe muscle loss and compromised proprioception are inherent outcome measures reflecting the effectiveness of a specific intervention, CS 5 should be adopted as an endpoint. Alternatively, we have shown that CS 4, occurring on average 4 days sooner than CS 5, can predict the age at CS 4+ or CS 5. These 4 days will lessen the suffering and distress experienced by mice used in mouse models of ALS. Adapting CS 4 as an endpoint negotiates an acceptable agreement between scientific discovery and ethics, a partnership that serves to protect scientific integrity and ethical standards in the humane treatment of research animals. At the forefront is the strength of the data extrapolated from animal-based research to serve as the background for potential recommendations adopted for people with ALS.

Acknowledgments

We thank Bart Hettinga for technical support, Dabin Jones for research assistance, Babitha Thampinathan for data confirmation, and Hailey Cho for supplementary research.

Author Contributions

Conceived and designed the experiments: MJH. Performed the experiments: MJH. Analyzed the data: JAS MJH. Contributed reagents/materials/analysis tools: MAT MJH. Wrote the paper: JAS MJH.

References

1. Mahoney DJ, Rodriguez C, Desvres M, Vausala N, Tarnopolsky MA (2004) Effects of high-intensity endurance exercise training in the G93A mouse model of amyotrophic lateral sclerosis. Muscle Nerve 29: 656–662.

2. Lee J, Ryu H, Kowell NW (2009) Motor neuronal protection by L-arginine prolongs survival of mutant SOD1 (G93A) ALS mice. Biochem Biophys Res Commun 384: 524–529.

3. Liebetanz D, Hagemann K, von Lewinski F, Kahler E, Paulus W (2004) Extensive exercise is not harmful in amyotrophic lateral sclerosis. Eur J Neurosci 20: 3115–3117.

4. Martinez JA, Francis GJ, Liu WQ, Pradzinsky N, Fine J, et al. (2008) Intranasal Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc Natl Acad Sci U S A 95: 8892–8897.

5. Matthews RT, Yang L, Browne S, Baik M, Beal MF (1998) Coenzyme Q10 supplementation does not delay disease onset or increase survival in a mouse model of amyotrophic lateral sclerosis. J Neurosci Res 51: 52–59.

6. Mattson MP, Butler RG, Camandola S (2007) Energy intake and amyotrophic lateral sclerosis. Neurodegeneration Med 9: 17–20.

7. Merges H, Vaconcelos OM, Campbell WW, Burke RC, McCoy JA, et al. (2009) Light therapy and supplementary Riboflavin in the SOD1 transgenic mouse model of familial amyotrophic lateral sclerosis (FALS). Lasers Surg Med 41: 52–59.

8. Nagan S, Fujii Y, Yamamoto T, Taniyama M, Fukuda K, et al. (2003) The efficacy of trientine or ascorbate alone compared to that of the combined treatment with these two agents in familial amyotrophic lateral sclerosis model mice. Exp Neurol 179: 176–180.

9. Nagan S, Ogawa Y, Yanahara T, Sakoda S (1999) Benefit of a combined treatment with trientine and ascorbate in familial amyotrophic lateral sclerosis model mice. Neurosci Lett 265: 159–162.

10. Neymotin A, Petri S, Calingasan NY, Wille E, Calingasan NY, et al. (2009) Leucileucine-Biflavin administration at symptom onset is neuroprotective in a mouse model of amyotrophic lateral sclerosis. Exp Neurol 220: 191–197.

11. Ohnishi S, Ito H, Suzuki Y, Adachi Y, Wate R, et al. (2009) Intra-bone marrow-barrow marrow transplantation slows disease progression and prolongs survival in G93A mutant SOD1 transgenic mice, an animal model mouse for amyotrophic lateral sclerosis. Brain Res 1296: 216–224.

12. Ohto Y, Kamiya T, Nagai M, Nagata T, Morimoto N, et al. (2008) Therapeutic benefits of intrahepatic protein therapy in a mouse model of amyotrophic lateral sclerosis. J Neurosci Res 86: 3028–3037.

13. Pamphlett R, Todd E, Vink R, McQuilley R, Clewes SA (2003) Magnesium supplementation does not delay disease onset or increase survival in a mouse model of familial ALS. J Neurosci 23: 95–98.

14. Park JH, Hong YH, Kim HJ, Kim SM, Kim MJ, et al. (2007) Pyrroline slows disease progression in a G93A SOD1 mutant transgenic mouse model. Neurosci Lett 413: 265–269.

15. Patel BP, Saifald A, Raha S, Tarnopolsky MA, Hamadheh MJ (2010) Caloric restriction shortens lifespan through an increase in lipid peroxidation, inflammation and apoptosis in the G93A mouse, an animal model of ALS. PLoS One Feb 24;5(2): e9386.

16. Pedersen WA, Mattson MP (1999) No benefit of dietary restriction on disease onset or progression in amyotrophic lateral sclerosis Cu/Zn-superoxide dismutase mutant mice. Brain Res 833: 117–120.

17. Petri S, Kiaei M, Wille E, Calingasan NY, Beal MF (2006) Loss of Fas ligand-function improves survival in G93A-transgenic ALS mice. J Neurol Sci 241: 44–49.

18. Petri S, Calingasan NY, Akaied OA, Wille E, Kiaei M, et al. (2007) The lipophilic metal chelators DP-109 and DP-460 are neuroprotective in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurochem 102: 991–1000.

19. Petri S, Kiaei M, Kipiani K, Chen J, Calingasan NY, et al. (2006) Additive neuroprotective effects of a histone deacetylase inhibitor and a catalytic antioxidant in a transgenic mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 22: 40–49.

20. Pizner C, Kruger C, Fias C, Kirsch F, Dittgen T, et al. (2008) Granulocyte-colony stimulating factor improves outcome in a mouse model of amyotrophic lateral sclerosis. Brain 131: 3335–3347.

21. Piazzaoglu C, Caron I, Daleno C, Ronchi A, Minoia C, et al. (2009) Treatment with lithium carbonate does not improve disease progression in two different strains of SOD1 mutant mice. Amyotroph Lateral Scler 10: 221–228.

22. Podusi JF, Whelan SL, Curran GL, Wengenack TM (2000) Therapeutic benefit of polyamine-modified catalase as a scavenger of hydrogen peroxide and nitric oxide in familial amyotrophic lateral sclerosis transgenics. Ann Neurol 48: 943–947.

23. Reinholt MM, Merkle CM, Poduslo JF (1999) Therapeutic benefits of putrescine-modified catalase in a transgenic mouse model of familial amyotrophic lateral sclerosis. Exp Neurol 159: 204–216.

24. Renbach A, Turner BJ, Bruce S, Cleah IK, Scott RL, et al. (2004) Antisense peptide nucleic acid targeting GluR3 delays disease onset and progression in the SOD1 G93A mouse model of familial ALS. J Neurosci Res 77: 573–582.

25. Ryu H, Smith K, Canelo SI, Carreras I, Lee J, et al. (2005) Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice. [Erratum appears in J Neurochem. 2006 Feb;96(3):900.] J Neurochem 93: 1087–1098.
26. Seika M, Ichiyangai T, Bishirio Y, Yokozawa T (2009) The Chinese prescription Wen-Pi-Tang extract delays disease onset in amyotrophic lateral sclerosis model mice while attenuating the activation of glial cells in the spinal cord. Biol Pharm Bull 32: 302–308.

27. Shimoyo Y, Koi K, Noda Y, Shimizu T, Shirasawa T (2010) Effect of rosmarinic acid in motor dysfunction and life span in a mouse model of familial amyotrophic lateral sclerosis. J Neurosci Res 88: 896–904.

28. Shoemaker JL, Serly KA, Reed KL, Cross RW, Prather PL (2007) The CR2 cannabinoid agonist AM-1241 prolongs survival in a transgenic mouse model of amyotrophic lateral sclerosis when initiated at symptom onset. J Neurochem 101: 87–98.

29. Snow RJ, Turnbull J, da Silva S, Jiang F, Tarnopolsky MA (2003) Creatine supplementation and riluzole treatment provide additive similar beneficial effects in copper, zinc superoxide dismutase (G93A) transgenic mice. Neuroscience 119: 661–667.

30. Suchy J, Lee S, Ahmed A, Shoa IB (2010) Dietary supplementation with Sadenosyl methionine delays the onset of motor neuron pathology in a murine model of amyotrophic lateral sclerosis. Neurourol Urodysl 97: 155–158.

31. Tokuda O, Ono S, Ishige K, Watanabe S, Okawa E, et al. (2008) Ammonium tetrathiomolybdate delays onset, prolongs survival, and slows progression of disease in a mouse model for amyotrophic lateral sclerosis. Exp Neurol 213: 122–129.

32. Turner BJ, Parkinson NJ, Davies KE, Talbot K (2008) Therapeutic effects of cholinesterase in a murine model of amyotrophic lateral sclerosis. Neuron Lett 387: 153–156.

33. Turner BJ, Murray SS, Piccenna LG, Lopes EC, Kilpatrick TJ, et al. (2004) Opposing effects of low and high dose clozapine on survival of transgenic amyotrophic lateral sclerosis. J Neurosci Res 74: 605–613.

34. Turner BJ, Murray SS, Pecicena IG, Lopes EC, Kilpatrick TJ, et al. (2004) Effect of p73 receptor antagonist NRBOX prolongs survival in a transgenic mouse model of familial amyotrophic lateral sclerosis. Neurosci Lett 345: 81–84.

35. Veldink JH, Bar PR, Joosten EAJ, Otten M, Wokke JHJ, et al. (2003) Sexual differences in onset of disease and response to exercise in a transgenic model of ALS. Neuroimmunol Disord 13: 737–743.

36. Vercelli A, Mereuta OM, Garbossa D, Muraca G, Mareschi K, et al. (2008) Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 31: 395–405.

37. Waibel S, Reus A, Malasse S, Blaugrund E, Ludolph AC (2004) Rasagiline alone and in combination with riluzole prolongs survival in an ALS mouse model. J Neurosci 24: 1080–1084.

38. Wang R, Zhang D (2003) Memantine prolongs survival in an amyotrophic mouse model of amyotrophic lateral sclerosis. Exp Neurol 177: 2557–2560.

39. Weisshaupt JH, Bartels C, Polking E, Dietrich J, Rohde G, et al. (2006) Reduced oxidative damage in ALS by high-dose enteral melatonin treatment. J Neurol Sci 315: 312–313.

40. Wen MT, Mhamde M, Ceballos A, Floyd RA, Grammas P, et al. (2007) The arachidonic acid 5-lipoxygenase inhibitor nordihydroguaiaretic acid inhibits tumor necrosis factor alpha activation of microglia and extends survival of G93A-SOD1 transgenic mice. J Neurochem 91: 133–143.

41. Yin K, Kiae S, Aguirre N, Cross JP, Crow JP, and Lansbury PN, et al. (2003) Iron chelator treatment extends survival in a transgenic animal model of amyotrophic lateral sclerosis. J Neurosci Res 83: 142–150.

42. Xu Z, Chen S, Li X, Luo G, Li L, et al. (2006) Neuroprotective effects of (+)-epigallocatechin-3-gallate in a transgenic mouse model of amyotrophic lateral sclerosis. Neurosci Res 56: 1112–1119.

43. Zhao Z, Lange DJ, Voustianiouk A, MacGrogan D, Ho L, et al. (2006) A ketogenic diet as a potential novel therapeutic intervention in amyotrophic lateral sclerosis. BMC Neurosci 7: 29.

44. Shimojo Y, Kosaka K, Noda Y, Shimizu T, Shirasawa T (2010) Effects of an inhibitor of poly(ADP-ribose) polymerase, desmethylselegiline, on survival and histopathology in a mouse model of familial amyotrophic lateral sclerosis. Exp Neurol 223: 128–134.

45. Derave W, Van Den Bosch L, Lemmens G, Eijnde BO, Robberecht W, et al. (2007) Ammonium tetrathiomolybdate delays mortality in a mouse model of amyotrophic lateral sclerosis: effects of creatine treatment. Neurobiol Dis 26: 267–272.

46. Ferrante RJ, Klein AM, Dedeoglu A, Beal MF (2001) Therapeutic efficacy of creatine supplementation and riluzole treatment provide additive similar beneficial effects in copper, zinc superoxide dismutase (G93A) transgenic mice. Neuroscience 119: 661–667.
One Universal Endpoint in Mouse Models of ALS

78. Gurney ME, Fleck TJ, Himes CS, Hall ED (1998) Riluzole preserves motor function in a transgenic model of familial amyotrophic lateral sclerosis. Neurology 50: 62-66.

79. Gurney ME, Cutting FB, Zhan P, Dohle A, Taylor CP, et al. (1996) Benefit of vitamin E, riluzole, and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann Neurol 39: 147–157.

80. Habsch HF, Schwabenstock R, Danzeisen R, Neuhaus O, Hartung HP, et al. (2007) Limited effects of glatiramer acetate in the high-copy number iSOD1-G93A mouse model of ALS. Exp Neurol 206: 288-295.

81. Hacqueugni C, Julien JP, Moseley RL, Perez N, Dhar A, et al. (2007) Therapeutic immunization with a glatiramer acetate derivative does not alter survival in G93A and G37R SOD1 mouse models of familial ALS. Neurobiol Dis 26: 146-152.

82. Hamadhe M, Tarnopolsky MA (2006) Transient caloric restriction in early adulthood hastens disease endpoint in male, but not female, Cu/Zn-SOD1 mutant G93A mice. Muscle Nerve 34: 709-719.

83. Hamadhe M, Rodriguez MC, Kaczor JJ, Tarnopolsky MA (2005) Caloric restriction transiently improves motor performance but hastens clinical onset of disease in the Cu/Zn-superoxide dismutase mutant G93A mouse. Muscle Nerve 31: 214-220.

84. Ito H, Wabe R, Zhang J, Ohuashi S, Kaneko S, et al. (2008) Treatment with edaravone, initiated at symptom onset, slows motor decline and decreases SOD1 deposition in ALS mice. Exp Neurol 213: 440-453.

85. Joo IS, Hwang DH, Seok J, Shin SK, Kim SU (2007) Oral administration of N-acetylcysteine increases the onset of neuromuscular degeneration and increases the life span of mice transgenic for human copper-zinc-superoxide dismutase. Exp Neurol 205: 336–346.

86. Kieran D, Kalmar B, Dick JR, Riddoch-Contreras J, Burnstock G, et al. (2004) Late treatment with arimoclomol delays disease progression and prevents protein aggregation in the SOD1 mouse model of ALS. J Neurochem 107: 539-550.

87. Kaizh M, Kipiani K, Chen J, Callansans NV, Beal MF (2005) Peroxisome proliferator-activated receptor-gamma agonist extends survival in transgenic mouse model of amyotrophic lateral sclerosis. Exp Neurol 191: 311-336.

88. Kieran D, Kablar B, Dick JR, Riddoch-Contreras J, Burnstock G, et al. (2004) Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nat Med 10: 402-405.

89. Kim K, Moore DH, Makryiamnis A, Abood ME (2006) AM214, a cannabinoid CB2 receptor selective compound, delays disease progression in a mouse model of amyotrophic lateral sclerosis. Eur J Pharmacol 542: 100-105.

90. Kira Y, Nishikawa M, Ochi A, Sato E, Inoue M (2006) L-carnitine suppresses the onset of neuromuscular degeneration and increases the life span of mice with familial amyotrophic lateral sclerosis. Brain Res 1070: 206-214.

91. Kirkesnes RG, Hernandez D, Bradley WG, Moraes CT (2003) Regular exercise is beneficial to a mouse model of amyotrophic lateral sclerosis. Ann Neurol 53: 804-807.

92. Khiveny P, Ferrante RJ, Matthews RT, Bogdanov MB, Klein AM, et al. (1999) Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat Med 5: 347-350.

93. Koh SH, Kim Y, Kim HY, Cho GW, Kim KS, et al. (2007) Recombinant human erythropoietin suppresses symptom onset and progression of G93A-SOD1 mouse model of ALS by preventing motor neuron death and inflammation. Eur J Neurosci 25: 1925-1930.

94. Koh SH, Kim Y, Kim HY, Hwang S, Lee CH, et al. (2007) Inhibition of glycogen synthase kinase-3 suppresses the onset of symptoms and disease progression of G93A-SOD1 mouse model of ALS. Exp Neurol 205: 336-346.

95. Koh SH, Lee SM, Kim HY, Lee KY, Lee YJ, et al. (2006) The effect of epigallocatechin gallate on suppressing disease progression of ALS model mice. Neurosci Lett 393: 103-107.

96. Shaw PJ (1999) Motor neuron disease. BMJ 318: 1118–1121.

97. Martin LJ (1999) Neuronal death in amyotrophic lateral sclerosis is apoptosis: possible contribution of a programmed cell death mechanism. J Neuropathol Exp Neurol 58: 439–471.

98. Sugai F, Yamamoto Y, Miyazaki K, Zhou Z, Sumi H, et al. (2004) Benefit of valproic acid in suppressing disease progression of ALS model mice. Eur J Neurosci 20: 3179–3183.

99. Holzbaeur EL, Howland DS, Wei R, Wallace K, She Y, et al. (2006) Myostatin inhibition slows muscle atrophy in rodent models of amyotrophic lateral sclerosis. Neurobiol Dis 23: 697–707.

100. Kawamura Y, Dyck PJ, Shimomo M, Okazaki H, Tateishi J, et al. (1981) Morphometric comparison of the vulnerability of peripheral motor and sensory neurons in amyotrophic lateral sclerosis. J Neurol Sci 50: 437–475.

101. Tanaka T, Hekimohara T, Yamazaki R, Miura S, Kikuchi H, et al. (2010) Multiple system degeneration with basophilic inclusions in Japanese ALS patients with FUS mutation. Acta Neuropathol 119: 335–364.

102. Sasaki S, Hori Y, Iwata M (2007) Mitochondrial alterations in dermal root ganglion cells in sporadic amyotrophic lateral sclerosis. Acta Neuropathol (Berl) 114: 603–618.

103. Hirano A, Kurland LT, Sayre GP (1967) Familial amyotrophic lateral sclerosis. A subgroup characterized by posterior and spinocerebellar tract involvement and hyaline inclusions in the anterior horn cells. Arch Neurol 16: 232-243.

104. Suzuki M, Irie T, Watanabe T, Miwaki H, Yamazaki T, et al. (2008) Familial amyotrophic lateral sclerosis with G93A/SOD1 mutation in Cu/Zn superoxide dismutase: a clinical and neuropathological study. J Neurol Sci 268: 140–144.

105. Seevaratnam R, Raha S, Tarnopolsky MA, Hamadhe M (2009) Caffeine increases antioxidant enzyme capacity in the brain of male G93A mice, an animal model of amyotrophic lateral sclerosis (ALS). FASEB J 23: 109-6.

106. Seevaratnam R, Raha S, Tarnopolsky MA, Hamadhe M (2009) Coffee increases antioxidant enzyme capacity in the brain of female G93A mice, an animal model of amyotrophic lateral sclerosis (ALS). FASEB J 23: 963.3.

107. Orrell RW, King AW, Hilton DA, Campbell MJ, Lane RJ, et al. (1999) Familial amyotrophic lateral sclerosis with a point mutation of SOD1: intrafamilial heterogeneity of disease duration associated with neurofilibrillary tangles. J Neurol Neurosurg Psychiatry 59: 266–270.

108. Sasaki S, Hori Y, Iwata M (2007) Mitochondrial alterations in dermal root ganglion cells in sporadic amyotrophic lateral sclerosis. Acta Neuropathol (Berl) 114: 633-639.

109. Carraro A, Kurland LT, Sayre GP (1967) Familial amyotrophic lateral sclerosis. A subgroup characterized by posterior and spinocerebellar tract involvement and hyaline inclusions in the anterior horn cells. Arch Neurol 16: 232-243.

110. Suzuki M, Irie T, Watanabe T, Miwaki H, Yamazaki T, et al. (2008) Familial amyotrophic lateral sclerosis with G93A/SOD1 mutation in Cu/Zn superoxide dismutase: a clinical and neuropathological study. J Neurol Sci 268: 140–144.

111. Dal Canto MC, Gurney ME (1994) Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis. Ann J Pathol 145: 1271–1279.

112. Butterfield DJ, Blankenhorn EP, Reper RJ, Zachary JF, Doerge RW, et al. (1997) Genetic Analysis of Disease Subtypes and Sexual Dimorphisms in Mouse Experimental Allergic Encephalomyelitis (EAE): Relapsing/Remitting and Monophasic Remitting/Nonrelapsing EAE. J Immunogenet 24: 109-6.

113. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, et al. (1994) Motor neuron degeneration in mice that express a human Cu/Zn superoxide dismutase mutation.[Erratum appears in Science 1996;274(5664):1499]. Science 264: 1772–1773.

114. Canadian Council on Animal Care (1998) CCAC guidelines on: choosing an appropriate endpoint in experiments using animals for research, teaching and testing.

115. Fleming KK, Bovaird JA, Mosier MC, Emerson MR, LeVine SM, et al. (2005) Sensory involvement in the SOD1-G93A mouse model of amyotrophic lateral sclerosis. Exp Mol Med 37: 140–150.

116. Thakker P, Leach MW, Kuang W, Benoit SE, Leonard JP, et al. (2007) IL-23 is Critical in the Induction but Not in the Efferent Phase of Experimental Autoimmune Encephalomyelitis. J Immunol 178: 2589-2598.