Incoherent bremsstrahlung in flat and bent crystals

N F Shul’ga\(^1\), V V Syshchenko\(^2\) and A I Tarnovsky\(^2\)

\(^1\) Akhiezer Institute for Theoretical Physics of the NSC “KIPT”, Akademicheskaya Street, 1, Kharkov 61108, Ukraine
\(^2\) Belgorod State University, Pobedy Street, 85, Belgorod 308015, Russian Federation
E-mail: shulga@kipt.kharkov.ua, syshch@bsu.edu.ru, syshch@yandex.ru

Abstract. Incoherent bremsstrahlung by high-energy particles in crystal is due to the thermal spread of atoms in relation to their equilibrium positions in the lattice. The simulation procedure developed earlier for the incoherent radiation is applied to the case of the electrons and positrons motion in the sinusoidally bent crystal. The results of simulation are in agreement with the data of recent experiments carried out at the Mainz Microtron MAMI. The possibility of use of the sinusoidally bent crystals as undulators is discussed.

1. Introduction
The bremsstrahlung cross section for relativistic electrons in a crystal is split into the sum of the coherent part (due to the spatial periodicity of the atoms’ arrangement in the crystal) and the incoherent one (due to the thermal motion of atoms in the crystal) \([1, 2, 3]\). Although the spectrum of incoherent radiation in crystal is similar to one in amorphous medium, the incoherent radiation intensity can demonstrate substantial dependence on the crystal orientation due to the electrons’ flux redistribution in the crystal (channeling etc.). The simulation based on the semiclassical description of the radiation process \([4, 5, 6]\) confirms that viewpoint. The results of simulation are in a good agreement with the corresponding early \([7]\) and recent \([8]\) experimental data.

Here we present the results of simulation using the improved procedure taking into account the crystal deformations. The simulation was carried out under the conditions of the recent experiment performed at the Mainz Microtron MAMI \([9]\) to explore the radiation emission from periodically bent crystal. The possibility of application of such crystals as undulators is discussed during last years \([9, 10, 11, 12]\).

For the reader convenience, in the next section we outline some theoretical ideas of our approach.

2. Computation method
Let us consider the high energy electron incidence on the atomic string in the crystal. The two-dimensional multiple scattering angle \(\vartheta\) is equal to the sum of individual scattering angles on the atoms:

\[
\vartheta = \sum_n \vartheta(\rho_n),
\]

where \(\rho_n\) is the impact parameter of the collision with the \(n\)-th atom of the crystal. The mean square of the multiple scattering angle (averaged over the thermal vibrations of atoms) can be
expressed as the sum of two blocks of terms:

\[
\left\langle \frac{1}{n} \frac{\vartheta(\rho_n)}{\vartheta(\rho)} \right\rangle = \sum_{n,m} \left\langle \vartheta(\rho_n) \right\rangle \left\langle \vartheta(\rho_m) \right\rangle + \sum_{n} \left\{ \left\langle \vartheta(\rho_n)^2 \right\rangle - \left\langle \vartheta(\rho_n) \right\rangle \left\langle \vartheta(\rho_n) \right\rangle \right\}.
\] (2)

The first block describes the coherent scattering which can be interpreted as a motion in the uniform string potential [2, 3, 13]. The second one describes the incoherent scattering of the electron on the thermal vibrations of the lattice atoms.

The bremsstrahlung spectrum of the electrons passing through the crystal also can be expressed as the sum of the coherent and incoherent contributions [1, 2, 3]. For the electrons of the energy \(\varepsilon \sim 1 \text{ GeV} \) the main contribution of the coherent effect is made to the soft range of the spectrum (the photon energy \(\hbar \omega \) is less or of the order of dozens of MeVs). In the medium and hard ranges of the spectrum the incoherent radiation is predominant.

The spectral density of the incoherent radiation from the individual electron moving on the given trajectory is described by the formula [5, 6]

\[
\left(\frac{d\mathcal{E}}{d\omega} \right)_{\text{incoh}} = \frac{2\varepsilon^2(\varepsilon - \hbar \omega)}{3\pi m^2 c^5} \left\{ 1 + 3 \frac{(\hbar \omega)^2}{4 \varepsilon(\varepsilon - \hbar \omega)} \right\} \sum_{n} \left\{ \left\langle \vartheta(\rho_n)^2 \right\rangle - \left\langle \vartheta(\rho_n) \right\rangle \left\langle \vartheta(\rho_n) \right\rangle \right\},
\] (3)

where \(m \) and \(e \) are the electron’s mass and charge, \(c \) is the velocity of light. It is convenient to compare the incoherent radiation intensity of the uniform electron beam in the crystal to the corresponding intensity in the amorphous medium (described by Bethe-Heitler formula). The ratio of these two values is equal to [5, 6]

\[
N_\gamma = \frac{1}{2\pi N R^2 \ln(m Rc/\hbar)} \int d^2 \rho_0 \sum_{n} \left\{ \left\langle \vartheta(\rho_n)^2 \right\rangle - \left\langle \vartheta(\rho_n) \right\rangle \left\langle \vartheta(\rho_n) \right\rangle \right\},
\] (4)

where \(N \) is the total number of the electron’s collisions with atoms under its motion through the crystal, \(R \) is Thomas-Fermi radius of the atom, integration over \(d^2 \rho_0 \) means the integration over all possible points of incidence of the electron on the crystal in the limits of one elementary cell.

The values of the function \(F(\rho) = \left\langle \vartheta(\rho)^2 \right\rangle - \left\langle \vartheta(\rho) \right\rangle^2 \) are determined by linear interpolation of the values pre-calculated on the regular grid of impact parameters. The impact parameters \(\rho_n \) are found using the electron’s trajectory obtained by numerical integration of the equation of motion in the field of the set of parallel uniform strings.

The incoherent scattering of the electron on the thermal vibrations of atoms (described by the second term in (2)) is taken into account in our algorithm as follows. We add to each component of the two-dimensional vector \(\vartheta \) (that describe the electron’s motion direction) the random value with Gaussian distribution with the dispersion \(F(\rho_n)/2 \) after each collision with the lattice atom. In this case the dispersion of the angle of multiple incoherent scattering will be right equal to the second term of (2).

For the further computational details see [5, 6].

3. Results of simulation

The origin of the orientation dependence of the incoherent radiation intensity is illustrated on the figure 1. When the electron is incident to the atomic plane of the crystal under angle \(\theta \) less than some critical angle \(\theta_c \), it can be captured by the attractive potential of the plane. The finite motion in such potential is called as the planar channeling (see, e.g., [2, 3, 13]).

Under planar channeling the electrons collide with atoms under small impact parameters more frequently than in amorphous medium, that leads to the increase of the incoherent
bremsstrahlung intensity; for above-barrier motion the situation is opposite. The account of the incoherent scattering of the particles on the thermal vibrations of the atoms leads to dechanneling and, hence, to the smoothing of the described orientation dependence (compare solid and dotted lines on the figure 1 (c) and (d)).

In the present article the simulation was carried out under the conditions of the experiment [9], where the radiation from $\varepsilon = 855$ MeV electrons under their incidence onto the silicon crystal with sinusoidally bent (110) planes had been studied. The yield of photons with the energy $\hbar \omega = \varepsilon / 2$ (for which the incoherent mechanism of bremsstrahlung is predominant) had been registered.

The results of simulation (figure 2) demonstrate the qualitative agreement with the experimental data [9]. We can see characteristic structures similar to one on the figure 1 (c), generated by different crystallographic planes with the common [110] axis.

Figure 1. (a) Typical trajectories of the electrons and positrons under planar channeling. Pluses mark the positions of atomic strings (perpendicular to the figure plane) forming the atomic planes of the crystal. The horizontal scale of the figure is highly compressed. (b) The same for above-barrier motion. (c) Simulated incoherent bremsstrahlung intensity (in ratio to the Bethe-Heitler intensity in amorphous medium, see (4)) from 1 GeV electrons vs incidence angle θ to (110) plane of 30 μm thick Si crystal [4]. Dotted line corresponds to the trajectories simulated neglecting thermal vibrations of atoms. (d) The same for positrons.
The incoherent bremsstrahlung intensity (in ratio to Bethe-Heitler intensity in amorphous medium) from 855 MeV electrons in flat (upper plot) and sinusoidally bent (lower plot) silicon crystals under scanning of the goniometric angle ϕ like in the experiment [9].

The decrease of the radiation intensity in comparison to the reference flat crystal permits to estimate the reduction of the dechanneling length due to the crystal bending. We can see that the bending of the crystallographic planes increases the dechanneling rate so highly that the scattering on the thermal vibrations of atoms already have no substantial influence on the incoherent radiation intensity (compare solid and dashed curves on the lower panel of the figure 2).

The main cause of the rapid dechanneling in the bent crystal lies in the arising of the centrifugal addition to the planar potential [13]:

$$U_{eff} = U(x) - \frac{\varepsilon x}{R_b} \quad \text{under} \quad |x| \gg R_b$$

(5)

(\text{where } R_b \text{ is the bending radius}) and, as a consequence, to the reduction of the potential barriers between which the channeling could take the place. For the crystal [9] the bending radius $R_b \gtrsim 6.2 \cdot 10^{-3}$ m. Assuming the planar potential has the shape of quadratic parabola with the depth $U_0 \approx -23.5$ eV for (110) plane, the effective potential (5) in the domain of maximal curvature of the crystal would have the shape presented by the curve 2 on the figure 3. We see substantial decrease of the potential wells depth comparing to the reference flat crystal (curve 1). So, only a small part of incident particles could be captured into the channeling regime.
Figure 3. Potential energy of the electron in the planar potentials of the flat (curve 1) and bent (curve 2) crystals.

4. Conclusion
The incoherent bremsstrahlung yield exceedance (deficiency) from the electron (positron) beam in the oriented crystal in comparison to the value predicted by Bethe-Heitler formula for the amorphous medium can be used as an indicator of the relative amount of the particles moving in the channeling regime.

Figure 4. The same as on the figure 2 for positrons.
The results of simulation demonstrate that the planar channeling effect leads to the orientation dependence of the incoherent bremsstrahlung intensity not only in flat, but also in bent crystals. However, in the bent crystal the electrons rapidly leave the planar channels. The figure 4 demonstrates that for the positron beam instead of the electron one the dechanneling rate would be almost the same. The effective capture of particles into planar channels (and so the use of sinusoidally bent crystals as undulators) is possible under changing the bending parameters to ensure smaller curvature than in the crystal [9].

Acknowledgments
We are grateful to Professor Hartmut Backe for the attention to our work and very helpful discussions.
This work is supported in part by internal grant of Belgorod State University and the federal program “Academic and Teaching Staff of innovation Russia”, the government contract 16.740.11.0147 dated 02.09.2010.

References
[1] Ter-Mikaelyan M L 1972 High-Energy Electromagnetic Processes in Condensed Media (New York: Wiley-Interscience)
[2] Akhiezer A I and Shul’ga N F 1996 High-Energy Electrodynamics in Matter (Amsterdam: Gordon and Breach)
[3] Uggerhoj U I 2005 Rev. Mod. Phys. 77 1131
[4] Shul’ga N F and Syschenko V V 2005 Nucl. Instr. and Meth. B 227 125
[5] Shul’ga N F, Syschenko V V and Tarovnisky A I 2008 Nucl. Instr. and Meth. B 266 3863
[6] Shul’ga N F, Syschenko V V and Tarnovsky A I 2010 J. Phys.: Conf. Series 236 012027
[7] Sanin V M, Khaustov V M, Boldyshev V F and Shul’ga N F 1992 Nucl. Instr. and Meth. B 67 251
[8] Backe H, Kunz P, Lauth W and Rueda A 2008 Nucl. Instr. and Meth. B 266 3835
[9] Backe H, Krambrich D, Lauth W, Lundsgaard Hansen J and Uggerhoj U I 2011 Nuovo Cimento C 134 04 157
[10] Bellucci S et al. 2004 Phys. Rev. ST-AB 7 023501
[11] Tabrizi M, Korol A V, Solovyov A V and Greiner W 2007 Phys. Rev. Lett. 98 164801
[12] Backe H, Lauth W, Kunz P, Rueda A, Esberg J, Kirsebom K, Lundsgaard Hansen J and Uggerhoj U I 2010 Charged and Neutral Particles Channeling Phenomena ed S B Dabagov and L Palumbo (Singapore: World Scientific) p 281
[13] Akhiezer A I, Shul’ga N F, Truten’ V I, Grinenko A A and Syschenko V V 1995 Physics-Uspekhi 38 1119