Using the Health Belief Model to Analyse Nurses’ Perception Towards their Behaviours for Keeping Surgical Instruments Moist

Yanhua Chen
Central Sterile Supply Dept, West China Second University Hospital/West China School of Nursing, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan Uni)

Juan Hu
Central Sterile Supply Dept, West China Second University Hospital/West China School of Nursing, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan Uni)

Yan Huang (✉ 402888515@qq.com)
Central Sterile Supply Dept, West China Second University Hospital/West China School of Nursing, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan Uni)

Liangying Yi
Central Sterile Supply Dept, West China Second University Hospital/West China School of Nursing, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan Uni)

Ruixue Hu
Central Sterile Supply Dept, West China Second University Hospital/West China School of Nursing, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan Uni)

Research Article

Keywords: Keeping surgical instruments moist, Nurse, Health belief model

DOI: https://doi.org/10.21203/rs.3.rs-116945/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Because of conflicts with work schedule of central sterile supply department (CSSD), surgical instruments might not be immediately cleaned or sterilized by CSSD staff members after use. If surgical instruments are not kept appropriately moist, tarnish or rusting may occur on the instruments, which will not only affect cleaning quality, but also shorten the normal service life of the instruments. Nurses’ perception towards their behaviours for keeping surgical instruments moist has been rarely studied. We aimed to use the health belief model to analyse nurses’ perception towards their behaviours for keeping surgical instruments moist.

Methods: The survey utilising a general information questionnaire, and a self-designed nurses’ perception-behaviour scale for keeping surgical instruments moist was conducted with 360 nurses from the West China Second University Hospital, Sichuan University. Data was gathered with cluster sampling, and analysed in SPSS20.0.

Results: Total score of nurses’ perception-behaviour scale for keeping surgical instruments moist was 139.93±15.145, among which mean score for perceived severity, perceived susceptibility, perceived benefits, perceived barriers, and self-efficacy was 4.49±0.57, 4.62±0.48, 4.57±0.52, 3.47±0.94 and 4.16±0.66, respectively. Single factor analysis showed that score of nurses’ perception-behaviour scale for keeping surgical instruments moist varied with age, length of service and job title, with a statistically significant difference (P < 0.05). Multivariable linear regression analysis showed that length of service was the main factor affecting nurses’ perception towards their behaviours for keeping surgical instruments moist.

Conclusion: Nurses should be offered intensive training on keeping surgical instruments moist due to their inadequate perception on it. However, an increase in knowledge does not necessarily bring behavior change. The nurses’ change in health beliefs and behaviours must be based upon developing the right attitude. As a result, they could realize the benefits of keeping surgical instruments moist, identify the barriers, and finally obtain the solutions.

Background

Health Industrial Standard (WS 310.2–2016) of the People's Republic of China provides that the user shall timely remove visible contaminants from medical instruments, implements and articles, and keep them moist as required after use. Guidelines of US Association of Perioprative Registered Nurses also expressly require keeping instruments moist before cleaning [1]. Failure in timely keeping instruments moist will lead to biofilm formation. Biofilm refers to a collective of bacteria attached to the surface of living or non-living objects and enclosed with bacterial extracellular macromolecules. Biofilm is very difficult to remove after formation [2–3]. According to reference materials, bacteria may develop on dry contaminants in 4–20 minutes and biofilm will appear in 2 hours. Therefore, contaminants shall be timely removed from surgical instruments after use, and subsequently the instruments shall be sent to
CSSD for cleaning within 30 minutes. If it is not available, it will be necessary to keep instruments moist [4–5]. However, because of conflicts with work schedule of CSSD, surgical instruments may not be immediately cleaned or sterilized by CSSD staff members after use. If surgical instruments are not kept appropriately moist, tarnish or rusting may occur on the instruments, which will not only affect cleaning quality, but also shorten the normal service life of the instruments [6–7]. According to the initial investigation, only 57.59% of the surgical instruments were kept moist in our hospital, and nurses did not have adequate perception towards their behaviours for keeping instruments moist. We aimed to use the health belief model to analyse the nurses’ perception towards their behaviours for keeping surgical instruments moist.

Methods

Participants

The survey was conducted with 360 nurses from the West China Second University Hospital, Sichuan University between June 1 and August 31, 2019. Data was gathered with cluster sampling.

Survey tools

The health belief model (HBM), first proposed by Hochbaum, and revised by Rosenstock [8], was the theoretical base of this study. HBM includes 5 components, i.e. perceived susceptibility, perceived severity, perceived benefits, perceived barriers and self-efficacy. The application of HBM in analysing nurses’ perception towards their behaviours for keeping surgical instruments moist was defined as perceiving susceptibility to instruments not kept moist, emphasizing severity of instruments not kept moist, analysing benefits of keeping instruments moist, perceiving barriers for keeping instruments moist, and improving self-efficacy intervention [9-10].

The survey utilised a general information questionnaire and a self-designed nurses’ perception-behaviour scale for keeping surgical instruments moist. The general information questionnaire was used to gather information about departments where the nurses were working in, and their age, length of service, educational backgrounds and job titles. The nurses’ perception-behaviour scale for keeping surgical instruments moist was designed based on the HBM, with Cronbach's alpha of 0.911, and the great overall consistency. Validity test was conducted through the use of content experts. After two rounds of expert consultation, the content validity index of each item ranged from 0.833 to 1.000, and that of universal agreement was 0.852. The nurses’ perception-behaviour scale for keeping surgical instruments moist covered 5 components and 36 items, i.e. perceived susceptibility (6 items), perceived severity (6 items), perceived benefits (8 items), perceived barriers (9 items) and Self-efficacy (7 items). The 5-point Likert scale was used for scoring, namely 5 = Strongly agree, 4 = Agree, 3 = Neither agree or disagree, 2 = Disagree, and 1 = Strongly disagree.
All methods were performed in accordance with the relevant guidelines and regulations. This study was performed in accordance with the Declaration of Helsinki. Ethics approval of this study was obtained from the Medical Ethics Committee of West China Second University Hospital, Sichuan University (No.: YXKY2020LSP(163)). Informed consent to participate in this study was obtained from all participants. This study was carried out based on the online questionnaires which were voluntarily and anonymously completed by participants. Purpose and significance of this study was clearly mentioned in the questionnaire. Completion of the questionnaire was regarded as verbal consent to participate in this study. Medical Ethics Committee of West China Second University Hospital, Sichuan University reviewed and approved the research proposal and procedure of verbal consent of this study, and thought written consents from participants were not necessary. All data collected were confidential and used only by this study.

Data collection

The electronic questionnaire was distributed through WJX. The nurses scanned a QR code to complete the questionnaire voluntarily and anonymously. A total of 360 questionnaires were distributed, and 360 questionnaires were returned, among which 351 questionnaires were valid. The valid response rate was 97.5%.

Statistical methods

Data was analysed in SPSS20.0. The enumeration data was described with frequency (rate), and the measurement data was described with mean (±) and standard deviation (SD). A statistically significant difference (P < 0.05) was found through t-test, variance analysis and multivariable linear regression analysis.

Results

General information acquired from the nurses

The 351 nurses’ average length of service was 7.60 ± 8.204 years, their average age was 30.14 ± 7.327 years. Two hundred and seventy-five (78.35%) of them had bachelor’s degree qualifications, and one hundred and sixty-nine (48.15%) of them were nurse practitioners, as shown in Table 1.
Table 1
General demographic characteristics (n = 351)

Item	Number	Assignment	Percentage (%)
Age			
< 25	68	1	19.37
25–30	160	2	45.58
31–35	54	3	15.39
36–40	36	4	10.26
41–45	12	5	3.42
46–50	12	6	3.42
> 50	9	7	2.56
Length of service			
< 1 yr	15	1	4.27
1–5 yrs	185	2	52.71
6–10 yrs	57	3	16.24
11–15 yrs	39	4	11.11
16–20 yrs	25	5	7.12
> 20 yrs	30	6	8.55
Educational background			
Junior college diploma or below	60	1	17.09
Bachelor	275	2	78.35
Master or above	16	3	4.56
Job title			
Nurse	94	1	26.78
Nurse Practitioner	169	2	48.15
Supervising nurse	86	3	24.50
Associate senior nurse	2	4	0.57

Score of nurses’ perception-behaviour scale for keeping surgical instruments moist
For the 351 nurses, total score of nurses' perception-behaviour scale for keeping surgical instruments moist was 139.93 ± 15.145, and the mean scale score was 4.21 ± 0.423. The HBM components placed in ascending order of their mean scores were perceived barriers, self-efficacy, perceived severity, perceived benefits, and perceived susceptibility. Details are shown in Table 2.

Table 2
Score of nurses' perception-behaviour scale for keeping surgical instruments moist ($\bar{x} \pm S$)

Mean score of perceived barriers	Mean score of perceived susceptibility	Mean score of perceived benefits	Mean score of perceived barriers	Mean score of self-efficacy	Mean scale score
4.50 ± 0.574	4.62 ± 0.484	4.57 ± 0.523	3.47 ± 0.945	4.16 ± 0.666	4.21 ± 0.423

Impact of age on nurses’ perception towards their behaviours for keeping surgical instruments moist

Single factor analysis showed that age had an impact on perceived barriers, with a statistically significant difference ($P = 0.001 < 0.05$), as shown in Table 3.
Table 3
Impact of age nurses’ perception towards their behaviours for keeping surgical instruments moist

Item	Perceived severity	Perceived susceptibility	Perceived benefit	Perceived barriers	Self-efficacy
< 25	27.2 ± 3.012	24.38 ± 2.144	36.90 ± 4.023	22.57 ± 7.522	28.96 ± 4.180
25–30	27.04 ± 3.633	24.66 ± 1.958	36.81 ± 4.132	20.97 ± 8.645	29.21 ± 4.893
31–35	27.13 ± 3.108	24.46 ± 1.910	36.09 ± 4.319	25.13 ± 8.239	29.22 ± 4.521
36–40	27.03 ± 3.211	24.61 ± 1.793	36.53 ± 4.074	23.47 ± 8.365	29.47 ± 4.313
41–45	26.08 ± 4.033	24.17 ± 2.250	35.42 ± 4.122	26.50 ± 8.274	27.50 ± 4.719
46–50	25.92 ± 4.231	23.67 ± 2.015	35.33 ± 4.997	25.83 ± 8.032	27.92 ± 5.435
> 50	25.67 ± 4.387	23.89 ± 2.619	34.89 ± 5.183	30.56 ± 7.828	30.44 ± 5.615
t-value	0.652	0.454	0.834	4.033	0.553
P-value	0.689	0.842	0.544	0.001	0.767

Impact of length of service on nurses’ perception towards their behaviours for keeping surgical instruments moist

Single factor analysis showed that length of service had an impact on perceived benefits and perceived barriers, with a statistically significant difference (P < 0.05), as shown in Table 4.
Table 4
Impact of length of service on nurses’ perception towards their behaviours for keeping surgical instruments moist

Item	Perceived severity	Perceived susceptibility	Perceived benefit	Perceived barriers	Self-efficacy
Length of service					
<1 yr	28.00 ± 3.464	25.33 ± 1.633	39.13 ± 2.134	19.87 ± 5.986	29.60 ± 3.795
1–5 yrs	27.30 ± 3.320	24.56 ± 2.018	36.88 ± 4.130	21.74 ± 8.636	29.37 ± 4.614
6–10 yrs	26.35 ± 3.533	24.47 ± 1.919	35.95 ± 3.988	22.89 ± 8.010	28.70 ± 4.953
11–15 yrs	27.05 ± 3.464	24.62 ± 2.021	36.13 ± 4.714	24.62 ± 8.359	29.13 ± 4.691
16–20 yrs	26.72 ± 3.234	24.24 ± 1.877	36.04 ± 3.889	23.00 ± 8.495	28.76 ± 3.919
>20 yrs	26.00 ± 4.009	23.87 ± 2.193	35.23 ± 4.651	27.87 ± 8.080	28.40 ± 5.462
t-value	1.483	0.833	2.396	3.547	0.397
P-value	0.195	0.527	0.037	0.004	0.851

Impact of educational background on nurses’ perception towards their behaviours for keeping surgical instruments moist

Single factor analysis showed that educational background had no impact on nurses’ perception towards their behaviours for keeping surgical instruments moist, as shown in Table 5.
Table 5
Impact of educational background on nurses’ perception towards their behaviours for keeping surgical instruments moist

Item	Perceived severity	Perceived susceptibility	Perceived benefit	Perceived barriers	Self-efficacy
Educational background					
Junior college diploma or below	27.13 ± 3.332	24.32 ± 2.103	36.35 ± 4.173	22.67 ± 8.136	29.28 ± 5.256
Bachelor	26.89 ± 3.466	24.49 ± 1.992	36.49 ± 4.211	22.87 ± 8.651	29.04 ± 4.519
Master or above	28.29 ± 3.405	25.47 ± 1.463	38.24 ± 3.597	20.88 ± 8.108	29.41 ± 5.075
t-value	1.124	2.011	1.232	0.167	0.253
P-value	0.326	0.135	0.293	0.846	0.777

Impact of job title on nurses’ perception towards their behaviours for keeping surgical instruments moist

Single factor analysis showed that job title had an impact on perceived susceptibility, perceived benefits and self-efficacy, with a statistically significant difference (P < 0.05), as shown in Table 6.

Table 6
Impact of job title on nurses’ perception towards their behaviours for keeping surgical instruments moist

Item	Perceived severity	Perceived susceptibility	Perceived benefits	Perceived barriers	Self-efficacy
Job title					
Nurse	27.90 ± 2.915	24.89 ± 1.769	37.86 ± 3.304	21.61 ± 8.751	30.01 ± 4.287
Nurse practitioner	26.67 ± 3.587	24.31 ± 2.150	36.09 ± 4.440	22.05 ± 8.266	28.72 ± 4.783
Supervising nurse	26.67 ± 3.582	24.45 ± 1.883	36.00 ± 4.279	25.48 ± 8.304	29.02 ± 4.733
Associate senior nurse	25.00 ± 1.414	24.00 ± 2.828	35.50 ± 4.950	23.00 ± 5.657	24.50 ± 2.121
t-value	3.199	1.992	4.422	3.987	2.245
P-value	0.083	0.008	0.005	0.115	0.024
Multivariable linear regression analysis on influencing factors of nurses’ perception towards their behaviours for keeping surgical instruments moist

Total score of nurses’ perception-behaviour scale for keeping surgical instruments moist was considered as the dependent variable. Age, length of service, and job title were considered as the independent variable. Stepwise regression (Alpha-to-Enter = 0.05, Alpha-to-Remove = 0.10) of multivariable linear regression analysis was carried out on the data. The analysis showed that 1 variable was entered into the regression equation, i.e. length of service. A statistically significant difference existed, as shown in Table 7.

Variable	B-value	Standard error	\(\beta\)-value	t-value	P-value	95% CI
Age	1.597	1.326	0.147	1.204	0.229	-1.011 ~ 4.206
Length of service	-2.923	1.466	-0.261	-1.993	0.047	-5.807 ~ -0.039
Job title	-2.380	1.711	-0.114	-1.391	0.165	-5.745 ~ 0.985

Note: \(R^2 = 0.055\), adjusted \(R^2 = 0.047\), \(F = 6.721\), \(P = 0.001\)

Discussion

As revealed in the results of this study, the mean score of nurses’ perception-behaviour scale for keeping surgical instruments moist was 4.21 ± 0.423. According to score assignment in the survey, the score above 4 meant ‘agree’ [8]. This indicated that the nurses had positive health belief in keeping surgical instruments moist, possibly because 78.35% of them had bachelor’s degree qualifications. The nurses with high levels of education had greater ability to learn and master many new skills, and had higher-level perception. Their score for perceived barriers was low, possibly due to the nature of obstetric and gynecologic operations in our hospital. The time for preparing each operation was short, the turnover time of operating rooms was short, the operating room nurses were unable to timely moisten surgical instruments, and CSSD staff members were unable to timely receive the surgical instruments. All of these led to low score for perceived barriers [7].

The single factor analysis showed that age, length of service and job title affected nurses’ perception towards their behaviours for keeping surgical instruments moist. With an increase of experience and knowledge, nurses’ perception and behaviours also changed. Nurses with shorter length of service perceived more benefits of keeping surgical instruments moist than those with longer length of service, but had significantly less perceived barriers than those with longer length of service, possibly because nurses with shorter length of service had less clinical experience and insufficient basic knowledge on
keeping surgical instruments moist, and were not familiar with the relevant procedures. However, nurses with longer length of service experienced occupational fatigue due to long period of working, and had decreasing perception to benefits of keeping surgical instruments moist, which affected their handling of keeping instruments moist.

Multivariable regression analysis showed that length of service had an impact on nurses’ perception towards their behaviours for keeping surgical instruments moist. The shorter the length of service was, the greater perception of nurses to keeping instruments moist. Nurses with longer length of service had poorer attitude for keeping instruments moist than newly employed nurses, possibly because such new nurses were full of enthusiasm in work but had less experience, and they handled surgical instrument moistening strictly according to requirements. In contrast, nurses with longer length of service were insensitive to perception of the severity and benefits of keeping surgical instruments moist due to their long period of working, which led to poor health belief in keeping surgical instruments moist.

Conclusion

In summary, training on basic knowledge for keeping surgical instruments moist should be enhanced for nurses with shorter length of service, including regularly attending seminars, reading brochures, watching relevant videos, and weekly post-training follow-up should be strengthened. For nurses with longer length of service, their awareness to benefits of keeping surgical instruments moist and their confidence in overcoming barriers should be enhanced, and eventually they could fulfill their task for keeping surgical instruments moist.

Abbreviations

CSSD: Central sterile supply department; HBM: Health belief model

Declarations

Ethics approval and consent to participate

This study was performed in accordance with the Declaration of Helsinki. Ethics approval of this study was obtained from the Medical Ethics Committee of West China Second University Hospital, Sichuan University (No.: YKKY2020LSP(163)). Informed consent to participate in this study was obtained from all participants. This study was carried out based on the online questionnaires which were voluntarily and anonymously completed by participants. Purpose and significance of this study was clearly mentioned in the questionnaire. Completion of the questionnaire was regarded as verbal consent to participate in this study. Medical Ethics Committee of West China Second University Hospital, Sichuan University reviewed and approved the research proposal and procedure of verbal consent of this study, and thought written consents from participants were not necessary for this study. All data collected were confidential and used only by this study.
Consent for publication

Not applicable

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding authors on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Author details

1 Central Sterile Supply Department, West China Second University Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China

2 Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China

Funding

This study was supported by Sichuan Provincial Health Department (No. 100374). The funder was not involved in the questionnaire design, data collection, data analysis or preparation of this manuscript.

Authors' contributions

YC, JH and YH contributed to the questionnaire design. LY and RH carried out the data collection. YC, JH and YH conducted the data analysis. YC drafted the manuscript. JH revised the manuscript. All the authors read and approved the final manuscript.

Acknowledgements

The authors would like to thank the 360 nurses who participated in this survey.

References
1. Guideline for cleaning and care of surgical instruments. In: Guidelines for Perioperative Practice. Denver, CO: AORN, Inc; 2019:401-440.

2. Pacific Northwest National Laboratory. Just how fast can bacteria grow? It depends. Proteomics data validate model of bacteria growth. https://www.pnnl.gov/science/highlights/highlight.asp?id=879. Accessed May 1, 2019.

3. Evangelista, SS, Guimaraes NR, Garcia NB, Santos SG, Oliveria AC. Effectiveness of manual versus automated cleaning on Staphylococcus epidermidis biofilm removal from the surface of surgical instruments. American Journal of Infection Control. 2020; 48(3): 267-274.

4. Nancy Chobin RN, AAS, ACSP, CSPM, CFER. Surgical Instrument Decontamination: A Multistep Process. AORN Journal. 2019; 110(3):253-262.

5. National Health Commission of the People's Republic of China. Health Industrial Standard (WS310.2-2016) of the People's Republic of China - Central sterile supply department (CSSD)-Part 2: Standard for operating procedure of cleaning, disinfection and sterilization. 2016. http://www.nhc.gov.cn/ewebeditor/uploadfile/2017/01/20170105090606684.pdf. Accessed 24 November 2020.

6. Cui X, Xiao H, Wang C. Influence of different pretreatment methods on effect of cleaning of surgical instruments. Chinese Journal of Nosocomiology. 2015; 25(2):461-463.

7. Luo W, Xu R, Wang W, Xu Y, Zhou T. Investigation on cleaning effect to contaminated instruments after different pretreatment and storage time. Chinese Journal of Disinfection. 2015; 32(12):1188-1190.

8. Wu H. Health beliefs in feeding, the feeding behaviors and the related factors in primary caregivers of infants and young children aged 6-24 months. Chinese Nursing Management. 2019; 19(10):1496-1501.

9. Zhang Q, Xing F, Chen L, Wang F, Zhang X, Tang H. Impact of intervention based on health belief model to cardiovascular rehabilitation compliance of patients after percutaneous coronary intervention. Chinese Journal of Gerontology.2019; 39(14):3352-3355.

10. Zhang X, Yang X, Sun J, Ren F, Lyu J. Analysis of the effect of health education intervention for breast cancer patients. Chinese Journal of Health Statistics. 2019; 36(2):226-228.