Vitamin A, Retinoic acid and Tamibarotene, A front toward its advances
George Zhu, The Institute of Oncology, Tehran University of Medical Sciences, Tehran

Abstract
Vitamin A and its derivative retinoic acid (13-cis RA, 9-cis RA, all-trans RA) and recent tamibarotene have been shown a broad variety of biological active in human, such as vision, embryonic development, cell growth and cellular differentiation and immune function. These precise functions of RA are mediated by their retinoic acid receptors (RARs). In the past five decades, retinoic acid (RA) proved therapeutic benefits in cancer prevention, in skin diseases and in acute promyelocytic leukemia (APL). The elucidation of the molecular basis of vitamin A acid and its retinoid pharmacology in APL has been illustrated in several publications, the detail molecular model of gene regulation had also been proposed by Zhu in earlier 90s (see figure by Zhu, September 1990-January 1991, revised in 2012). A molecular model is further revised. As an approach to APL treatment, one possible the action of retinoic acid (RA), a consensus sequence (TCAGGGTCA motif) has been postulated for thyroid hormone (TRE) and retinoic acid responsive element (RARE)-containing in the promoter region of target genes. High dose of RA-RARE-PML/RARa complexes in intracellular localization appears to relieve repressors from DNA-bound receptor, including the dissociation of corepressor complexes N-CoR, SMRT and HDACs from PML-RARa or PML-RARa/RXR. Also release PML/RARa-mediated transcription repression. This transcriptional derepression occurs at RARa target gene promoter. Consequentially, PML-RARa chimera converted receptor from a repressor to a RA-dependent activator of transcription. The resulting pml-RARA oncprotein proteolytic degradation occurs through the autophagy-lysosome pathway and the ubiquitin SUMO-proteasome system (UPS) as well as caspase 3, or lysosomal protease (cathepsin D) enzyme or and E1-like ubiquitin-activating enzyme (UBE1L) induction. An effect is to relieve the blockade of pml/RARa-mediated RA dependent promyelocytic differentiation, and retinoic acid (9-cis RA, ATRA, Am80) in APL therapy. Here, oncogenic pml/RARa as constitutive transcriptional repressor that block myeloid differentiation at promyelocytic phenotype. RA can overcome the transcriptional repressor activity of pml/RARa. The oncogenic pml/RARa uncover a pathogenic role in leukemogenesis of APL through blocking promyelocytic differentiation. This oncogenic receptor derivative pml/RARa chimera is locked in their "off" regular mode thereby constitutively repressing transcription of target genes (such as AP-1, PTEN, DAPK2, UP.1.1, g21WAF/CCKN1A) or key enzymes (such as myeloblastin /proteinase-3) that are critical for differentiation of hematopoietic cells. This is first described in eukaryotes.

Keywords: Vitamin A; retinoic acid and retinoid pharmacology; gene transcription; molecular model of RA.

The physiology and biochemistry of retinoic acid
The biologic potency of vitamin A has been known for near one century. In 1912, Frederick Gowland Hopkins demonstrated that a unknown accessory factors found in milk, other than carbohydrates, proteins, and fats were necessary for growth in rats. Hopkins received a Nobel prize for this discovery in 1929 [1-2]. By 1913, office of these substances was independently discovered by Elmer McCollum and Merguerite Davis at the University of Wisconsin Madison and Lafayette Mendel and Thomas Burr Osborne at Yale University who studied the role of fats in the diet [4]. The "accessory factors" were termed "fat soluble" in 1918 [5] and later "Vitamin A" in 1920 [6]. In 1931, Swiss chemist Paul Karrer described the chemical structure of vitamin A. Vitamin A was first synthesized in 1947 by two Dutch chemists, David Adriaan Van Dorn and Jozef...
Ferdinand Arens. In the early 1960s, retinoids were introduced in dermatology for treatment of ichthyosis [7] and later for psoriasis and acne [8,9]. In 1975, Vitamin A acid, and the development of the synthetic retinoids are the pioneering work of Bollag W and Ott F in Sweden [10].

In vivo, the fat-soluble vitamin A (retinol) can be reversibly metabolised to the aldehyde (retinal) which can in turn be further oxidised in a non-reversible manner to retinoic acid (RA). Enzymes that oxidise retinol to retinaldehyde belong to two classes: the cytosolic alcohol dehydrogenases (ADHs) belonging to the medium-chain dehydrogenases/reductase family; and microsomal short-chain dehydrogenases/reductases (retinol dehydrogenases, RDHs) [11]. The next step in RA synthesis is the oxidation of retinaldehyde to RA, which is carried out by three retinaldehyde dehydrogenases (RALDHs): RALDH1, RALDH2 and RALDH3 [11,12]. The orange pigment of carrots (beta-carotene) can be represented as two connected retinyl groups, which are used in the body to contribute to vitamin A levels [13]. The physiological and biological actions of this class of substances centre on vision, embryonic development and production, cellular growth and differentiation, skin health, and maintenance of immune function. Initial studies had focused on vitamin A deficiency and its major consequences: night blindness and xerophthalmia. Fridericia and Holm [14] investigated the influence of dietary A in the rhodopsin of the retina. Clearly, the rats lacking the fat-soluble vitamin A had a defect in the function of visual purple. Yudkin [15] achieved one of the earliest identifications of vitamin A as a component of the retina. Subsequently, Wald [16] determined the amount of vitamin A present in pig retinas. Wald G [17,18] was well established the visual cycle: light decomposed rhodopsin to retinal and opsin. Retinal could either recombine with opsin to reform rhodopsin or it converted to free retinol. Retinol could reform rhodopsin, but only in the presence of the RPE (Kuhne). The further structure and metabolism of retinoids implicated that retinaldehyde was the visual pigment. More recently, vitamin A and its metabolites play a key importance in embryo morphogenesis, cell differentiation and clinical practice. Figure 1, chemical structure of retinol, one of the major forms of vitamin A [19].

Figure 1. Chemical structure of retinol, one of the major forms of Vitamin A

Vision cycle

Vitamin A is needed by the eye retina, 11-cis-retinal (a derivative of vitamin A) is bound to the protein “opsin”, to form rhodopsin (visual purple) in rods cells [18], the molecule necessary for both low light (scotopic vision). As light enters the eye, the 11-cis-retinal is isomerized to all-trans retinal in photoreceptor cells of the retina. This isomerization induces a nervous signal (a type of G regulatory protein) along the optic nerve to the visual center of the brain. After separating from opsin, the all-trans-retinal is recycled and converted back to the 11-cis-retinal form via a series of enzymatic reactions. The all-trans-retinal dissociates from opsin in a series of steps called photo-bleaching. The final stage is conversion of 11-cis-retinal to rhodopsin, which is only regenerated when the retina is attached to retinal pigmented epithelium (RPE) [18]. As the retinal component of
rhodopsin is derived from vitamin A. A deficiency of vitamin A inhibits the reformation of rhodopsin and leads to night blindness. Within this cycle, all-trans retinal is reduced to all-trans retinol in photoreceptors via RDH8 and possible RDH12 in rods, and transported to RPE. In the RPE, all-trans retinol is converted to 11-cis retinol, then 11-cis retinol is oxidized to 11-cis-retinal via RDH5 with possible RDH11 and RDH11 [11]. This represents each RDH for the roles in the visual cycle.

Embryonic development, cell growth and differentiation

The inclusion of retinoic acid in the superfamily of steroid and thyroid hormones underlines its importance in development and differentiation in normal tissues. Retinoic acid (RA) is a lipophilic molecule that acts as a ligand for nuclear RA receptors (RARs), converting them from transcriptional repressors to activators [12, 20] in the RA signaling pathway. It has been demonstrated that retinoic acid was identified as a morphogen (teratogen) responsible for the determination of the orientation of the limb outgrowth in chicken [21, 22], and its retinoic acid receptors (RARs) appear at an early stage of human embryonic development in certain types of tissues [23]. Vitamin A plays a role in the differentiation of this cerebral nerve system in Xenopus laevi. The other molecules that interact with RA are FGF-8, Cdx and Hox genes, all participating in the development of various structures within the fetus. For instance, this molecule plays an important role in hindbrain development. Both too little or too much vitamin A results in embryonic defect in the central nervous system, various abnormalities in head and neck, heart, limb, and the urogenital system [24]. With an accumulation of these malformations, an individual can be diagnosed with DeGeorge syndrome [12].

Vitamin A, in the retinoic acid form, plays an important role in maintaining normal skin health through differentiating keratinocytes (immature skin cells) into immature epidermal cells. In earlier studies, Frazier and Hu [1931] [25] made the observation that both hypovitaminosis A and hypervitaminosis A provoke epithelial alterations together with decreased keratinization and hair loss. At present, 13-cis retinoic acid (isotretinoin) is used in clinical treatment. The mechanism was shown to reducing secretion of the sebaceous glands, triggering NGAL (neutrophil gelatinase-associated lipocalin) and other gene expression, and selectively inducing apoptosis [26]. But precise action of retinoid therapeutic agents in dermatological diseases are being researched.

In addition to T cells, vitamin A is important for the regulation of hematopoietic stem cell dormancy [27]. Mice maintained on a vitamin A-free diet lose HSCs (hematopoietic stem cells), showing a disrupted re-entry into dormancy after exposure to inflammatory stress stimuli. This condition highlights the impact of dietary vitamin A on the regulation of cell-cycle mediated stem cell plasticity [28]. In vitro, all-trans retinoic acid (ATRA) stimulates at least two-fold the clonal growth of normal human CD133+ cells [29]. Cis-RA stimulates clonal growth of some myeloid leukemia cells. In suspension culture, there was an increase in cell number at day 5 in the presence of RA in half of 31 samples, which suggests that RA may play a role in the proliferation and survival of certain leukemia clones in vitro [30, 31]. In contrast to the enhancement of normal hematopoietic proliferation (RA 10-6 - 10-9 mol/l) is capable of inducing differentiation of the F9 mouse teratocarcinoma, HL-60 cells [32, 33] and some blasts from patients with promyelocytic leukemia [32]. Maximum HL-60 differentiation (90% of cells) occurs after a 6 day exposure to 10-6 mol/l retinoic acid. Further in vitro studies found that retinoic acid induced differentiation of leukemic blast cells in only 2 of 21 patients with AML, both of these patients had promyelocytic variant [33]. These data suggest that retinoids may induce maturation of promyelocytes. Retinoic acid also inhibits the proliferation of other dermatological malignant cells (Myger, 1975; Peck, 1975).

Maintenance of Immune homeostasis
There is a link between retinoid and immune homeostasis. In the presence of retinoic acid, dendritic cells located in the gut are able to mediate the differentiation of T cells into regulatory T cells [34,35], which implicates that vitamin A exerts its areas of immune response via its "self" and the prevention of host damage. Vitamin A metabolite retinoic acid acts as a key regulator of TGF-beta-dependent immune responses. Vitamin A is capable of inducing the IL-6-driven induction of proinflammatory T(H)17 cells, promoting anti-inflammatory Treg cells differentiation, thus regulating the balance between pro- and anti-inflammatory immunity [35].

Retinoic acids in APL treatment

Acute promyelocytic leukemia (APL, M3 in the FAB subtype) represent 5% to 15% of cases of acute promyelocytic leukemia [38], with characteristic t(15;17) translocation. APL treatment was initially for 13-cis RA [39-43], later currently all-trans RA [44], and recently tamibarotene [45]. In retrospective analysis, 3 of 5 (60%) of these initial reported cases with 13-cis RA obtained complete remission (CR). Two of five CR obtained for 11 months [40] and 1 year [43], respectively, the similar to 20 months in isolated CR APL for all-trans RA then observation [46,47]. Another one patient with 13-cis RA early died from disseminated candidiasis, while the peripheral blood count rose from 0.3x10^9/l to 6.7x10^9/l with 2.3x10^9/l mature cells [39]. Moreover, Castaigne S and Chomienne C [44] reported that treatment with all-trans RA alone (45mg/m2/day) produced CR in 14 of 22 (63.6%) cases of APL. The results confirmed Chinese investigations. This also confirmed previous isolated case reports of remission induction with 13-cis RA. In literature, an isolated APL obtained CR after treatment with 13-cis retinoic acid first and repeated CR with ATRA in relapse [48]. Accordingly, ATRA plus chemotherapy or ATRA plus ATO regimen is the standard of care [49]. And more, 80% (4/5) CR in newly APL and 33% (4/12) CR in relapsed APL were achieved after treatment with 9-cis retinoic acid (L-GD1057) alone [50]. The data suggest that 9-cis RA is also an effective agent for remission induction.

Long-term follow up data, the rates of CR were found from 72% [51,52] - 94.3% [53] following ATRA treatment. Unlike other leukemias, APL has a very good prognosis, with long-term survival rates up to near 70%-90% [54,55]. Based on the total of 2080 APL with ATRA combination protocol from seven larger cohorts of study [47,52,53,56-60], the 3-year (range 1-115 months) disease-free survival (DFS) and overall survival (OS) were 87.7% and 90.6% respectively [56,57], 6-year overall survival and disease-free survival in CR patients 83.9% and 68.5% respectively [60]. 10-year survival about 68.9 - 77%(66.4 - 71.4%) [53,58]. But inclusion of early death [61], a total of another 1400 APL between 1992 and 2007, the overall early death rate was 17.3%. The 3-year OS improved from 54.6% to 70.1% and a significantly lower in patients aged over 55 years (only 46.4%) [62]. 5-year overall and disease-free survival rates of 51.6% and 50.1% respectively [73]. APL unpublished data in 501 army hospital, Tehran, 1995-2015; 6 year OS 62% rates [63]. Thus, the 10-year cumulative incidence of deaths in CR was 5.7%, 15.4% and 21.7% in younger than 55, 55 to 65, and older than 65 years, respectively [58].

Nowadays, a lot of cohort trials on using tamibarotene, 61.5% (24/39) achieved CR including 5 newly APL and 13 relapse APL twice or more [45]. Among 269 APL with CR underwent remission maintenance random, 4-year relapse-free survival rate was 84% (ATRA) and 91% (Tamibarotene). In 52 high risk patients, this become significant: 50% for ATRA, 87% for tamibarotene [64]. In comparative analysis among those relapsed APL [65], 80% (28/35) achieved CR and 22.86% CRm in tamibarotene - ATO versus 54.2% (19/35) CR with only 2.86-3.7% CRm in ATRA - ATO regimen. From another 20 patients with relapsed APL, ATRA did not seem to significantly improve the response to ATO in patients relapsing from APL [66]. In particular, appreciable benefits of tamibarotene-ATO regimen might occur at significantly lower frequency of leukocytosis with development of retinoic acid syndrome, an important adverse reaction during treatment of APL. Therefore, Tamibarotene demonstrated more efficacy in both untreated APL.
patients and relapsed who have been treated with ATRA and chemotherapy, especially as novel strategy in relapsed APL in Japan and others [65,67-68]. This is encouraging perspective.

Retinoic acids in skin disease
Vitamin A is necessary for normal epithelial cell differentiation and maturation [10,69-72]. Retinoids influence on skin keratocyte proliferation, epidermal differentiation and keratinisation. Those retinoids including natural and chemically synthesized vitamin A derivatives are common used as systemic and topical treatment of various skin disorders. At present there have well developed three generations; the naturally occurring retinoids (all-trans retinol, Aretinoin, Isoretinoin, Alitretinoin), the monoaromatic retinoid derivatives (Acitretin, etretinate) and the polyaromatic retinoid derivatives (Bexarotene, topical tazarotene) [73].

Isoretinoin is an orally active retinoic acid derivative for the treatment of acne (papulo-pustular, nodulo-cystic, conglobata) [74], since it shows an excellent efficacy against severe refractory nodulocystic acne. Peck's [75,76] original observation in 1978-79 of the effectiveness of 13-cis RA in cystic acne has been well supported. In double-blind studies using small doses of 13-cis RA regimen, Farrell [77] in 15 patients, Jones [78] in 76 patients, Plewig [79,80] in 79 patients and Rapini [81] 150 patients reporting have confirmed this results. The drug action involves an inhibition of sebum excretion rate (SER) in sebaceous glands and production rate of free fatty acids [76,77,80,82-87] through triggering NGAL (neutrophil gelatinase-associated lipocalin) expression [26], normalise follicular keratinisation [88] and the decrease in colonisation of propionibacterium acnes and associated inflammation in skin surface microflora [89,90]. This response, mediated by toll-like-receptor 2 (TLR2), is increased in acne patients due to high expression of TLR2 [90].

Encouraging results have also been used 13-cis RA in small numbers of patients with rosacea, Gram-negative folliculitis, Darier’s disease, ichthyosis and pityriasis rubra pilaris [76,91-93]. In the treatment of rosacea, isotretinoin led to a significant reduction of erythema, papules, and pusules in several studies [92,94]. During treatment of rosacea, 13-cis RA act as a potent anti-inflammatory and sebum-suppressive agent. Long-lasting remission can be reported for first patient over 12 months [91]. The use of low dose isotretinoin (0.15-0.3 mg/kg bw daily) showed high efficacy and was well tolerated. Isotretinoin is only partially effective in psoriasis in contrast to etretinate which is effective in psoriasis but ineffective in severe acne. Promising results have reported with isotretinoin in patients with squamous and basal cell carcinomas [95,96], cutaneous T-cell lymphoma [70], recurrent malignant glioma [97], malignant eccrine poroma [98], and keratoacanthomas [99,100], and xeroderma pigmentosum with squamous cell carcinoma [100]. In literature, there were at least 10 CR patients with squamous cell carcinoma (SCC). Skroza et al. [95] reported a CR patient with well-differentiated SCC following the daily dosage of 0.5 mg/kg/day for 5 months. Dring 1-year follow up, he remained all in normal range. Using combination chemotherapy and isotretinoin for 4 months, Zaman [101] reported a complete clinical remission of tumors in a case of 15 year old female of xeroderma pigmentosum with SCC. Another collection of four SCC of skin obtained CR through isotretinoin at daily dose of 1 mg/kg/day twice a day for 4 months. The mechanism may involve the modification of epidermal growth factor receptor (EGFR) and certain protein kinase. At present, it has clearly known the results that amplified (50-fold EGF receptor in SCC relative to normal skin keratinocytes) or mutant EGFR is oncogenic in origin of some SCC [102,103]. This oncogenic receptor EGFRvIII has also been found in malignant glioma and invasive breast carcinoma [102-107]. Zhu [105-107] conduct a short CR using chemotherapy and topical 5% Fu of retinoic acid ointment in a 75-year old patient with SCC. She had a 8x5cm rodent ulcer in her left ear and facial area. A shrinkage of irregular and harden marginal valgus converted to flat, and superficial
red and scar noted after one month treatment. These findings suggest that retinoids may be effective and well-tolerated therapy for advanced epidermoid SCCs in some studies.

RARs structure

The retinoic acid receptors (RAR) belong to the large family of ligand responsive gene regulatory proteins that includes receptors for steroid and thyroid hormones [113]. There are three retinoic acid receptors (RAR), RARα, RARβ and RARγ which are conserved throughout vertebrates encoded by their different RAR (chr 17q21, chr 3p24 and chr 12q13) gene, respectively. The RARA contains 462 amino acids (aa) [114,115], RARB consists of 455 aa [116] and RARG contains 454 aa [117], respectively. The RAR is a type of nuclear receptor which act as a transcription factor that is activated by both all-trans RA and 9-cis RA. The RARs have different functions and may activate distinct target genes. The RARA is expressed in a wide variety of different hematopoietic cells [114,115]; the RARβ in a variety of epithelial cells [116]; and the RARs in differentiation of squamous epithelia and human skin tissue [117,118].

All RARs contain a variable N-terminal region (A/B), a highly conserved cysteine-rich central domain (C) responsible for the DNA binding activity, and a relatively well-conserved C-terminal half (E) functionally its role in ligand binding and nuclear translocation. These three main domain are separated by a hinge region (D) [20,113,119]. The central DNA binding domain (88-153 aa) exhibits an array of cysteine residues compatible with the formation of two so-called zinc fingers [Miller, 1985]. Each of them a zinc atom tetrahedrically coordinated to four cysteine, and each of the hypothetical zinc finger is encoded by a separate exon of the receptor gene [see figure 2, Zinc finger 1, 88-108 aa, Zinc finger 2, 124-148 aa] [113-119]. The N-terminal zinc finger of the DNA binding domain confers hormone responsiveness to HREs, determining target gene specificity, and responsible for functional discrimination between HREs whereas the C-terminal finger contains the sugar-phosphamide backbone of the flanking sequences [119,120].

![Figure 2. Amino acid sequence of the DNA binding domain of the hRARa into two putative zinc-binding finger (Figure from George Zhu a feeling for scientific drawing based on Evans RM, Science, 1988, 240: 899-895; Beato M, Cell, 1989, 56: 335-344; Giguere V, Nature, 1987; 330: 624-29; Petkovich M, Nature, 1987, 330: 444-450).](image)

The molecular basis of retinoic acid action and the RAR gene transcription

Retinoic acid (RA) is a lipophilic signal molecule which is able to induce acute and direct activation of the expression of specific genes supports its molecular model of action that resembles that of steroid hormones [121,122]. The cellular retinoic acid-binding protein (CRABP) may be involved in this transfer [36,37]. In the nucleus, RA receptors (RAR) function as a heterodimer with retinoid X receptors (RXRs) [123-127]. RAR/RXR can bind to DNA motif at RA-response elements (RAREs, also HRE) in the regulatory sequences of target genes in the absence of ligand, thereby interacting with multiple protein complexes that include co-repressors N-CoR [128], SMRT [129] and histone deacetylases (HDACs), and maintaining gene repression. Here, RAREs consist of a direct repeat of a core hexameric sequence 5′ (A/G)G(G/T)TC-3′ [130].
or of the more relaxed 5’-(A/G)(G/T)(G/T)(G/C)A-3’ motif, separated by 1,2,5 bp [131]. A corepressor represses expression of genes by binding to and activating a repressor transcription factor, the repressor in turn bind to target gene's operator including RARE sequence, then blocking transcription of that gene (see corepressor-wikipedia). Transcriptional regulation thus drives from the binding of hormone-receptor complexes to RARE sites on target DNA [20,113,119]. In the presence of RA(all-trans RA, 9-cis RA), binding of the RA ligand to RAR alter the conformation of the RAR, a conformational change in the DNA-bound receptor leads to the release of co-repressor complexes associated with the RAR/RXR dimer and the recruitment of co-activator complexes. These induce chromatin remodeling and facilitate assembly of the transcription pre-initiation complex including RNA polymerase II (Pol II) [132], TATA-binding protein (TBP) and TBP-associated factors (TAFs) [12, 20, 113, 119, 123, 133, 134, see figure 3]. Subsequently, transcription of target genes is initiated. This also represent ligand-dependent transcriptional activation which mediated by nuclear receptors. Like thyroid hormone receptor (THR) [135, 137], retinoic acid act as ligand for RARs, converting RARa from transcriptional repressor to activators [12, 20, 138-143]. Numerous RAR target genes after RA induction have been identified including genes within retinoid pathway, such as RARB, Crbp1/2 (Rbp1/2), Crabp1/2 and CYP26a1. And also, several members of HOX gene family, including HOXa1, HOXb1, HOXb4 and HOXd4, and other genes Tshz1 and Cdx1 [144-145], the function of which has been demonstrated in vivo in the normal roles of retinoids in patterning vertebrate embryogenesis, early neurogenesis, cell growth and differentiation.

Figure 3. At top figure: Retinoid receptor-dependent gene regulation (Figure from Bechenbach L et al., Eur J Dermatol, 2015, 25(5):384-91) [134]; At bottom figure: Gene regulation by retinoic acid signaling (Figure from Rhinn & Döll, Development, 2012, 139(5):843-58) [12]

Oncogenic pml/RARA act as constitutive transcriptional repressor that blocks neutrophil differentiation at the promyelocyte stage

Acute promyelocytic leukemia (APL) is a clonal expansion of hematopoietic precursors blocked at the promyelocytic stage [146]. Approximately 98% of APL, RARA translocates and fuses with the
The PML gene on chromosome 15. The resulting RAR chimeric genes encode pml/RARa fusion protein, which is specifically expressed in the promyelocytic lineage [20,147-150]. In addition to oncogenic receptor derivative pml/RARa [20,126, 151-154], the translocation involves oncogenic TBL1XR1-RARB [155], and NUP98/RARG [156], and oncogenic PML-RARG [157] which share high homology (90%) of three RAR family that were also detected in APL rare cases.

Most studies have shown that PML-RARA is an oncogenic transcription factor forming in APL [158]. Without its ligand, retinoic acid (RA), PML-RARA functions as a constitutive transcriptional repressor, abnormally associated with NcoR/HDACs complex and blocking hematopoietic differentiation. In the presence of pharmacological concentration of RA, RA induces the corepressors NcoR/HDACs dissociation from PML-RARA, thereby PML-RARA activates transcription and stimulates differentiation [20,126,159]. In vitro by using a dominant negative RAR construct transfected with interleukin 3 (IL-3)-dependent multipotent hematopoietic cell line (FDCP mix A4) and normal mouse bone marrow cells, GM-CSF induced neutrophil differentiation was blocked at the promyelocyte stage. The blocked promyelocytes could be induced to terminally differentiate into neutrophils with supraphysiological concentration of ATRA [160]. Similarly, overexpression of normal RARa transduced cells displayed promyelocyte-like morphology in semisolid culture and immature RARa transduced cells differentiate into mature granulocytes under high dose of RA (10-6M) [161]. Moreover, mutation of the N-CoR binding site abolishes the ability of PML-RARA to block differentiation [162,163]. Therefore, ectopic expression of RAR fusion protein in hematopoietic precursor cells blocks their ability to undergo terminal differentiation via recruiting nuclear corepressor N-CoR/histone deacetylase complex and histone methyltransferase SUV39H1 [164]. In vivo, transgenic mice expressing PML-RARA fusion can disrupt normal hematopoiesis, give sufficient time, develop acute leukemia with a differentiation block at the promyelocytic stage that closely mimics human APL-like syndrome, see figure 4) even in its response to RA in many studies. These results are conclusive in vivo evidence that PML-RARA is etiology of APL pathogenesis [165-172].

Figure 4 shows pml/RARa fusion in differentiation block at promyelocytic stage in transgenic mice (Figure from He LZ, et al, Proc Natl Acad Sci USA, 1997, 94:5302-07) [166].

Structure and function analysis of pml/RARA uncovered that RAR component of the fusion protein is indispensable for its ability to impair terminal differentiation, and resolved the pml/RARA as constitutive repressor in differentiation block [20,126,164,173-187]. PML-RARA retains both DNA binding domains and ligand binding domains of RARa. RARA is a member of nuclear receptors that bind to specific-RARE as heterodimers with RXR. By using RARa promoter-driven receptor plasmid containing RARE, the chimeric pml/RARa fusion reduces the induction of transcription by RA from a RARE by 50-90% in Hepa G cells [148]. Many other two groups have further shown that PML-RARA act as strong transcriptional repressor in inhibiting transcription from RAREs to a great content than RARa, which may be critical for differentiation block in APL.
In Rousselot's group experiments, HL-60 cells transfected with 15-30ug of PML-RARa fusion in culture show no features of granulocytic differentiation after 7 days of incubation with 10-7,10-6 M RA(5.5-9.5% of differentiated cells by the NBT test). At 5ug of PML-RARa plasmid concentration, the blockage of RA-dependent myeloid differentiation could be overcomes with high doses(10-6M) of RA(99% of differentiated cells by NBT test) [See figure 5, Rousselot,1994,173]. The results clearly indicate that PML-RARa mediated transcriptional repression, as well as PML-RARa oncoprotein blocks RA-mediate promyelocyte differentiation.

By using Xenopus oocyte system to uniquely the comparison of the transcriptional properties of RAR and PML-RAR is due to the lack of endogenous nuclear receptors and the opportunity to evaluate the role of chromatin in transcriptional regulation. The experimental results demonstrated that indeed PML-RARA is a stronger transcriptional repressor that is able to impose its silencing effect on chromatin state even in the absence of RXR. Only pharmacological concentration of RA,pml/RARA become transcriptional activator function [159].

Moreover, ATRA treatment overcomes the differentiation block through dissociation of corepressor complexes from pml/RARa and transcription activation, thereby induces pml-RARA degradation. In vitro experiments, ATRA induce pml-RARA itself cleavage into a 85-97kd delta PML-RARA (a truncated pml/RARA form) in RA sensitive NB4 [188-191, see figure 6]. Delta PML-RARA is not formed in ATRA differentiation resistant NB4 subclones [188,191], which indicate that the loss of PML/RARa may be directly linked to ATRA-induced differentiation [188,191]. This induction of of PML-RARA cleavage and degradation by RA(4TRA,9-cis RA,Am80) involve the proteasome-dependent [188-190] and caspase mediated pathway [192],or independent of proteasome and caspase cleavage[191],and possibly ubiquitin-activating enzyme El-like(UBEIL) induction in NB4 cells. This is reason that proteasome inhibitor MG-132 and caspase inhibitor ZVAD do not block ATRA-induced pml/RARa cleavage and differentiation whereas this delta pml/RARA is blocked by RARA itself antagonist Ro-41-5253 [191]. The proteasome-dependent pml/RARA degradation, by using proteasome inhibitor lactacystin test, allows APL cells to differentiation by relieving the differentiation block [189]. These data suggest a set of multiple molecular mechanisms for restoration by RA induced myeloid differentiation in APL cells.
Figure 6 shows delta pml/RARa cleavage products independent of proteasome and caspase in the presence of ATRA(a,b), and pml/RARa act as transcriptional repressor even in the presence of ATRA(0.01uM,1uM) in RARE-0.01uM assay while delta pml/ RARa is less potent activator of RARE-tk-leu activation than wildtype RARa(c) in NB4 cells(Figure from Jing Y,Oncogene,2003,22:4083-91)[191].

Next we further examine the pml/RARa three region functions,in vitro deletion of the RARa DNA binding domain decreased the ability of pml/RARa to inhibit vitD3 and TGF-induced the myeloid precursor U937and TF-1 cell differentiation [162]. This is also supported by functional analysis of DNA binding domain mutation in vitro. The RARa zinc finger is a sequence-specific DNA binding through which RARa contacts the RA target genes. Moreover, deletion of PML coiled-coil region also blocked the differentiation capacity of TF-1 cells [162]. The coiled-coil region directs the formation of pml/RARa homodimers tightly interact with the N-CoR/HDACs complex, so that transcriptional de-repression can not occur at RARA target gene promoter even if the presence of ATRA [RA resistant,20,185]. In the resistant cases, mut PML stabilizes PML-RARA [193]. PML-RARA with ligand-binding domain(LBD) mutation,ligand RA binding with LBD is impaired. Trichostatin A(TSA), known as HDAC inhibitor, antagonize HDAC activity and thereby enhance histone acetylation resulting open chromatin state [181]. TSA proved useful in therapeutic targeting of transcription in two APL patients [194,195]. These results have clearly shown that PML protein dimerization and RARa DNA binding domain is indispensible for the myeloid precursors differentiation which was blocked by PML/RARA, and eventually leukemic transformation.

In accordance, the pml/RARa/RXR target genes is though to block differentiation by constitutively silencing a set of RA-responsive genes in the control of hematopoietic precursor cells. These
The molecular mechanism of retinoic acid action in APL has been proposed in several publications. Based on review more research publications, the detail mechanism has also been described by Zhu. In the absence of RA, RARα acts as a nuclear receptor that binds to specific DNA sequence called RA responsive element (RARE: AGGTCA motif) in target gene promoter, normally as heterodimer with RXR. RAR-RXR heterodimer induces transcriptional repression throughout chromatin remodeling by recruiting corepressor N-CoR/SMRT, and histone deacetylases (HDACs) and histone methyltransferases. Physiological levels of RA induce the dissociation of corepressor complexes and allow for the recruitment of coactivators, including histone acetylases. Consequently, RA treatment leads to transcriptional activation, thereby triggering expression of genes involved in myeloid differentiation, such as Gr-1, Mac-1, and M-CSFR. In special APL, oncogenic pML/RARα binds to consensus sequence of target gene promoter primarily as homodimer, and also as a heterodimer with RXR. PML-RARα behaves as a constitutive transcriptional repressor of RARE-containing genes through tightly binding with the corepressor complexes, and interfering with RARα and retinoid acid signaling, thereby inducing a differentiation block at promyelocytic stage which can be overcome with supraphysiological doses of 9cis or/and ATRA ligand.

As an approach to APL treatment, one possible action of retinoic acid (RA), a consensus sequence (TCAGGTCA motif) has been postulated for thyroid hormone (TRE) and retinoic acid responsive element (RARE)-containing in the promoter region of target genes. High dose of RA-RARE-PML/RARα complexes in intracellular localization appears to relieve repressors from DNA-bound receptor, including the dissociation of corepressor complexes N-CoR/SMRT and HDACs from PML-RARα or PML-RARα/RXR, through tightly binding with the corepressor complexes, and interfering with RARα and retinoid acid signaling, thereby inducing a differentiation block at promyelocytic stage which can be overcome with supraphysiological doses of 9-cis or/and ATRA ligand.
enzyme (UBEIL) induction [177]. An effect is to relieve the blockade of pml/RARa-mediated RA dependent promyelocytic differentiation, and retinoic acid (9-cis RA, ATRA, Am80) in APL therapy [20,173,179-184,186,187] (See figure 7, Zhu, September 1990-January 1991, revised in 2012). Here, RA can overcome the transcriptional repressor activity of pml/RARa [20,126,164,173-187,198-200]. The oncogenic pml/RARa uncover a pathogenic role in leukemogenesis of APL through blocking promyelocytic differentiation. This oncogenic receptor derivative pml/RARa chimera is locked in their "off" regular mode thereby constitutively repressing transcription of target genes (such as AP-1, PTEN, DAPK2, UP.1,p21WAF/CCKN1A) [174,198-200] or key enzymes (such as myeloblastin/protease-3, Aurora A kinase) [208-210] that are critical for differentiation of hematopoietic cells. This is first described in eukaryotes.

Figure 7. Molecular model of the gene regulation of retinoic acid (RA) action (George Zhu, January 1991, revised in 2012). Schematic alignment of the receptor protein. The two highly conserved regions identified as the putative DNA-binding (C) and hormone-binding (E), a hinge region (D) and the non-conserved variable NH2-terminus (A/B) as described above. CAT: CAAT box, CCAAT-enhancer binding proteins (or C/EBPs); GC: GC box, TATA: TATA box. (Figure from Zhu G, Curr Pharm Biotechnol, 2013, 41(9): 849-858) [20,207]

Conclusion

To date, the discovery of the fat-soluble vitamin A has been known for over 100 years, more scientists have made their contribution in this field. Vitamin A and its derivative retinoic acids (RA) have been shown a broad variety of biological actives in human, such as vision, embryonic development, cellular growth and differentiation, and immune function. These precise functions of RA are mediated by their RA receptors (RAR). Retinoic acids have therapeutic benefits in the past five decades the advances in treatment of skin diseases and acute promyelocytic leukemia (APL). More than ten to twenty laboratories are try to uncovering the molecular model of RA action in APL, the detail mechanism had also been proposed by Zhu in January 1991. This earlier hypothesis have now been demonstrated by structure and functional analysis of oncogenic pml/RARa chimera protein in vitro and in vivo in numerous studies, and partially mentioned above in this paper. This appears to be its centre and its main aim in this researching review. This is key important useful paradigm and perspective in our ‘genetic dissection of gene regulation in clinical cancer biology’, Professor LP Wu says 5 years ago. “your thought is that of mine”, also says by Professor Philip Leder in earlier 1993, a famous geneticist at Harvard Medical School.

References

1. Semba RD. On the 'discovery' of vitamin A. Annals of Nutrition & Metabolism, 2012, 61(3):192-8
2. Wolf G. Discovery of Vitamin A. Encyclopedia of life Sciences, 2001, doi:10.1038/npg.els.0003414
3. Osborne TB & Mendel LR. The relation of growth to the chemical constituents of the diet. 1913, 15:311-26
4. McCollum EV & Davis M. The necessary of certain lipins in the diet during growth. 1913, 15:167-175
5. McCollum EV & Davis M. The nature of dietary deficiencies of rice loss. J Biol Chem, 1915, 181-230
6. Drummond JC. The nomenclature of so-called accessory food factors (vitamins). Biochem J, 1920;14:660-661

7. Stuettgen G. On the local therapy of keratosis with vitamin A acid. Dermatologica, 1962;124:65-80

8. Kligman AM, Fulton JE Jr, Plewig G. Topical vitamin A acid in acne vulgaris. Arch Dermatol, 1969;99:469-76

9. Orfanos CE, Mahrle G, Goertz G, et al. Laboratory investigations in patients with generalized psoriasis under oral retinol treatment: A multicenter study of computerized data. Dermatologica, 1979;159:62-70

10. Bollag W and Ott F. Vitamin A acid in benign and malignant epithelial tumours of the skin. Acta Dermato-Venereol, 1975;4:163.

11. Parker RO, Crouch RK. Retinol dehydrogenases (RDHs) in the visual cycle. Exp Eye Res, 2010;91(6):788-92

12. Rhinn M, Dolle P. Retinoic acid signaling during development. Development, 2012;139(5):843-58

13. De Man J. Principles of food chemistry (3rd ed). Maryland: Aspen Publication Inc. P358. ISBN 083421234

14. Fridericia LS & Holm E. Experimental contribution to the study of the relation between night blindness and malnutrition. Am J Physiol, 1925;73:63-78

15. Yudkin AM. The presence of vitamin A in the retina. Arch Ophthalmol, 1931;6:510-517

16. Wald G. Vitamin A in eye tissues. J Gen Physiol, 1935;18:908-915

17. Wald G. Carotenoids and the visual cycle. J Gen Physiol, 1935;19:351-71

18. Wolf G. The discovery of the visual function of vitamin A. The Journal of Nutrition, 2001;131(6):1647-50

19. Vitamin A - Wikipedia

20. Zhu G, Mische SE, and Seigneres B. Novel treatment of acute promyelocytic leukemia: As2O3, retinoic acid and retinoid pharmacology. Curr Pharm Biotechnol 2013, 13(9):849-858

21. Maden M, Ong DE, Summerbell D, Chytil F. Spatial distribution of cellular protein binding to retinoic acid in the chick limb bud. Nature, 1988;335:733-35

22. Sharma RP, Kim YW. Localization of retinoic acid receptors in anterior human embryo. Experimental & Molecular Pathology (Exp Med Pathol), 1995;62(3):180-89

23. Paulsen DF. Retinoic acid in limb-bud outgrowth: Review and hypothesis. Anat Embryol, 1994;191:399-415

24. Maden M. The role of retinoids in developmental mechanisms in embryos. Fat-Soluble Vitamins, 1995;20:pp81-111

25. Frazier CN, Hu CK. Cutaneous lesions associated with a deficiency in vitamin A in man. Arch Intern Med, 1931;48:507-14

26. Nelson AM, Zhao W, Gilliland KL, et al. Neutrophil gelatinase-associated lipocalin mediates 13-cis retinoic acid-induced apoptosis of human sebaceous gland cells. The Journal of Chemical Investigation, 2008;118(4):1468-78

27. Cabezas-Wallscheid N, Buettner F, Sommerkamp P, et al. Vitamin A-retinoic acid signaling regulates hematopoietic stem cell dormancy. Cell, 2017;169(5):807-23

28. Fuchs E, Green H. Regulation of terminal differentiation of cultured human keratinocytes by vitamin A. Cell, 1981;25(3):617-25

29. Dou D, Koeffler HP. Retinoic acid enhances growth of human early erythroid progenitor cells in vitro. J Clin Invest, 1982;69:1039

30. Lawrence HJ, Conner K, Keller MA, Haussler MR, Wallace P, et al. Cis-retinoic acid stimulates the clonal growth of some myeloid leukemia cells in vitro. Blood, 1987;69:102
31. Chomienne C, Ballerini P, Balitrand N, Daniel MT, Fenaux P, Castaigne S, Degos L. All-trans retinoic acid in acute promyelocytic leukemia II. In vitro studies. Structure-function relationship. Blood, 1990;76:1710
32. Dour D, Koeffler HP. Retinoic acid inhibition of the clonal growth of human myeloid leukemia cells. J Clin Invest, 1982;69:277
33. Breitman TR, Selonic SE, Collins SJ. Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc Natl Acad Sci USA, 1981;78:10000-10001
34. Sun CM, Hall JA, Blank KB, et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 Treg cells via retinoic acid. J Exp Med, 2007;204(8):1775-85
35. Macida D, Park Y, Kim G, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science, 2007;317:250-60
36. Shroo B. Round table conference. Retinoic acid Nour Rev Fr Hematol, 1990;32
37. Hashimoto Y, Kagechika H, Kawachi E, Shudo K. Specific uptake of retinoids into human promyelocytic leukemia cells HL-60 by retinoid-specific binding protein, possibly the true retinoid receptor. Jpn J Cancer Res, 1988;79:473-83
38. Bennett JM, Catovsky D, Daniel MT, et al. Proposal for the classification of the acute leukemias. Br J Haematol, 1976;33:451-58
39. Flynn TJ, Miller WJ, Weissdorf DJ, Arthur DC, Bruning RF. Retinoic acid treatment of acute promyelocytic leukemia: in vitro and in vivo observation. Blood, 1983;62:1211-17
40. Nilsson B. Probable in vivo induction of differentiation, retinoic acid of promyelocytes in acute promyelocytic leukemia. Br J Haematol, 1984;57:365-71
41. Lie SO, Slordahl SH. Vitamin A and/or high dose Ara-C in the maintenance of remission in acute myelogenous leukemia in children. Scand J Hematol, 1984;33:256
42. Daenen S, Vellenga E, Dobbenburgh OA, Halie MR. Retinoic acid as antileukemic therapy in a patient with acute promyelocytic leukemia and aspergillus pneumonia. Blood, 1986;67:559-61
43. Fontana JA, Rogers HS, Durham JP. The role of 13-cis retinoic acid in the remission induction of a patient with acute promyelocytic leukemia. Cancer, 1986;57:209-217
44. Castaigne S, Chomienne C, Daniel MT, Ballerini P, Berger R, Fenaux P, Degos L. All-trans-retinoic acid as a differentiation therapy for acute promyelocytic leukemia. I. clinical results. Blood, 1990;76:17
45. Tobita T, Takashita A, Kitamura K, et al. Treatment with a new synthetic retinoid, Am80, of acute promyelocytic leukemia relapsed from complete remission induced by all-trans retinoic acid. Blood, 1993;82(9):967-973
46. Zhu G, Saboohi Paraghi A, Dharmadhikari D, et al. A pilot study of chemotherapy and traditional plant medicines in hematologic malignancy: report of thirty-four cases. Hematol Med Oncol, 2017;2(2):1-3 Available from: www.oatext.com
47. Estey E, Garcia-Manero G, Ferrajoli A, et al. Use of all-trans retinoic acid plus arsenic trioxide ad an alternative to chemotherapy in untreated acute promyelocytic leukemia. Blood, 2006;107(9):3469-73
48. Haferiach T, Löffler H, Glass B, et al. Repeated complete remission in a patient with acute promyelocytic leukemia after treatment with 13-cis-retinoic acid first and with all-trans-retinoic acid in relapse. Clin Investig, 1993;71(10):774-79
49. Tallman MS, Altman JK. How I treat acute promyelocytic leukemia. Blood, 2009;114(25):5126-35
50. Soignet SL, Benedetti F, Fleischauer A, et al. Clinical study of 9-cis retinoic acid (LGD 1057) in acute promyelocytic leukemia. Leukemia, 1998;12:1518-21
51. Hernandez P, Caruot J, Dorticos E, Rodriguez I. All-trans retinoic acid in acute promyelocytic leukemia: preliminary results in Cuba. Annals of Hematology, 1992;65(3):121-3.
52. Tallman MS, Andersen JW, Schiffer CA, Appelbaum FR, et al. All-trans-retinoic acid in acute promyelocytic leukemia. N Engl J Med, 1997;337:1021-28
53. Avvisate G, Lo-coco F, Paoloni FP. And for the GIMEMA, AIEOP, and EIRTC cooperative groups. AIDA0493 protocol for newly diagnosed acute promyelocytic leukemia: very long-term results and role of maintenance. Blood, 2011, 117(18): 4716-25.

54. Sanz MA, Lo-coco F. Modern approaches to treating acute promyelocytic leukemia. Journal of Clinical Oncology, 2011, 29(5): 495-503.

55. Cicconi L, Lo-coco F. Current management of newly diagnosed acute promyelocytic leukemia. Ann Oncol, 2016, 27(8): 1474-81.

56. Au WY, Kumana CR, Lee HK, et al. Oral arsenic trioxide-based maintenance regimens for first complete remission of acute promyelocytic leukemia: a 10-year follow-up study. Blood, 2011, 118: 6535.

57. Au WY, Chim CS, Liang KW, et al. Combined arsenic trioxide and all-trans retinoic acid treatment for acute promyelocytic leukemia recurring from previous relapses successfully treated using arsenic trioxide. Br J Haematol, 2002, 117: 130.

58. Akes L, Guerci A, Raffoux E, and for the European APL Group. Very long-term outcome of acute promyelocytic leukemia after treatment with all-trans retinoic acid and chemotherapy: the European APL group experience. Blood, 2010, 115: 1690-96.

59. Iland H, Bradstock K, Seymour J. The Australasian Leukemia and lymphoma group. Results of the APML3 trial incorporating all-trans retinoic acid and idarubicin in both induction and consolidation as initial therapy for patients with acute promyelocytic leukemia. Haematologica, 2011, 97: 227-234.

60. Asou N, Kishimoto YJ, Kiyoi H, and for Japan Adult leukemia study Group. A randomized study with or without intensified maintenance chemotherapy in patients with acute promyelocytic leukemia who have become negative for PML-RARA transcript after consolidation therapy. the Japan adult leukemia study group (JALSG) APL97 study. Blood, 2007, 110: 59-66.

61. Estey EH. Newly diagnosed acute promyelocytic leukemia. Arsenic moves front to center. J Clin Oncol, 2011, 29: 2743.

62. Park JH, Qiao BZ, Panageas KS, et al. Early death rate in acute promyelocytic leukemia remains high despite all-trans retinoic acid. Blood, 2011, 118: 1248-54.

63. Lehmann S, Ravn A, Carlsson L. Continuing high early death rate in acute promyelocytic leukemia: a population-based report from the Swedish Adult Acute leukemia Registry. Blood, 2011, 118: 1128-33.

64. Shinagawa K, Yanada M, Sakura T, et al. Tamibarotene as maintenance therapy for acute promyelocytic leukemia: results from a randomized controlled trial. J Clin Oncol, 2011, 29: 3729-35.

65. Wang J, Li Y, Jiang B, et al. Tamibarotene compared to all-trans retinoic acid (ATRA) as add-on to arsenic trioxide (ATO) in subjects with relapsed acute promyelocytic leukemia (APL). Blood, 2015.

66. Raffoux E, Rousselot P, Poupon J, et al. Combined treatment with arsenic trioxide and all-trans retinoic acid in patients with relapsed acute promyelocytic leukemia. J Clin Oncol, 2003, 21: 2326-34.

67. Kojima M, Ogiya D, Ichiki A, et al. Refractory acute promyelocytic leukemia successfully treated with combination therapy of arsenic trioxide and tamibarotene. Leuk Res Rep, 2016, 5: 11-13.

68. Asou N. Retinoic acid, all-trans retinoic acid (ATRA) and Tamibarotene. Chemotherapy for leukemia, 2017: 183.

69. Lotan R. Effects of vitamin A and its analogs (retinoids) on normal and neoplastic cells. Biochim Biophys Acta, 1980, 605: 33-91.

70. Kessler JF, Meyskens FL, Jr, Levine N, et al. Treatment of cutaneous T-cell lymphoma (mycosis fungoides) with 13-cis-retinoic acid. The Lancet, 1983, 1345-47.

71. Lippman SM, Meyskens FL, Jr. Treatment of advanced squamous cell carcinoma of the skin with isotretinoin. Ann Intern Med, 1987, 107: 499-502.
72. Lippman SM, Kessler JF, Al-Sarraf M, et al. Treatment of advanced squamous cell carcinoma of the head and neck with isotretinoin: a phase II randomized trial. Investigational New Drug, 1988; 6: 51-56
73. Beekenbach L, Baron JM, Merk HF, Loffler H, Amann PM. Retinoid treatment of skin diseases. Eur J Dermatol, 2015; 25: 384-91
74. Ward A, Brogden RN, Heel RC, et al. Isotretinoin: A review of its pharmacological properties and therapeutic efficacy in acne and other skin disorders. Drugs, 1984; 28: 6-37
75. Peck GL, Yoder FW, Osen TG, et al. Treatment of Darier’s disease, lamellar ichthyosis, pityriasis rubra pilaris, cystic acne, and basal cell carcinoma with 13-cis-retinoic acid. Dermatologica, 1978; 52: 1-2
76. Peck GL, Osen TG, Yoder FW, et al. Prolonged remission of cystic and conglobate acne with 13-cis-retinoic acid. N Engl J Med, 1979; 300: 329-333
77. Farrell LN, Strauss JJ, and Stranieri AM. The treatment of severe cystic acne with 13-cis-retinoic acid. J Am Acad Dermatol, 1980; 3: 602
78. Jones DH, King K, Miller AI, Cunliffe WJ. A dose-response study of 13-cis-retinoic acid in acne vulgaris. Br J Dermatol, 1983; 108(3): 333-43
79. Plewig G, Wagner A, Nikolowski J, et al. Treatment of severe acne, rosacea, and sebaceous folliculitis with 13-cis-retinoic acid. Scientific Exhibits. Am Acad Dermatol, Dec 6-10, 1980, New York
80. Plewig G, Wagner A, Nikolowski J, et al. Effects of two retinoids in animal experiment and after clinical application in acne patients: 13-cis-retinoic acid Ro 4-3980 and Aromatic retinoid Ro 9359. Retinoids pp 219-235, 1981, Springer Berlin Heidelberg
81. Rapini RR, Konecky EA, Schillinger B, Comite H, et al. Effect of varying dosages of isotretinoin on nodulocystic acne. J Invest Dermatol, 1983; 80: 357
82. Goldstein JA, Socha-Szott A, Thomsen RJ. Comparative effect of isotretinoin and etretinate on acne and sebaceous gland secretion. J Am Acad Dermatol, 1982; 6: 760-5
83. Prendiville JS, Logan RA, Russell-Jones R. Comparative effect of isotretinoin and etretinate on acne and sebaceous gland secretion. J Am Acad Dermatol, 1982; 6: 760-5
84. Strauss JS, Thomsen RJ, Farrell LN, Strauss JJ. Oral retinoids: effects on human sebaceous glands and nodulocystic acne. Retinoids, pp 237-243, 1981, Springer Berlin Heidelberg (supported in part by a grant from Hoffman-La Roche, Inc.
85. Schmidt JB, Spatha J, Niebauer G, et al. Skin lipids in 13-cis-retinoic acid therapy of acne. Z Hautkr, 1981; 56: 735-55
86. Landthaler M, Kammermehr J, Wagner A, Plewig G. Inhibitory effects of 13-cis-retinoic acid on human sebaceous glands. Arch Dermatol Res, 1980; 269(3): 297-309
87. King K, Jones DH, Dautrey DC, Cunliffe WJ. A double-blind study of the effects of 13-cis-retinoic acid on acne, sebum excretion rate and microbial population. Br J Dermatol, 1982; 107: 583-90
88. DeLuca L, Bonnani F, et al. Maintenance of epithelial cell differentiation: the mode of actions of vitamin A. Cancer, 1972; 30: 1326-31
89. Fisher GL, Voorhees JJ. Molecular mechanisms of retinoid actions in skin. FASEB J, 1996; 10: 1002-13
90. Dispensa MC, Wolpert EB, Gilliland KL, et al. Systemic isotretinoin therapy normalizes exaggerated TLR2-mediated innate immune responses in acne patients. J Invest Dermatol, 2012; 132: 2198-205
91. Nikolowski J, Plewig G. Oral treatment of rosacea with 13-cis-retinoic acid. Hautarzt, 1981; 32: 575-84
92. Goldsmith LA, Weinrich AE, Shupack J. Pityriasis rubra pilaris response to 13-cis-retinoic acid (Isotretinoin). J Am Acad Dermatol, 1982; 6: 710-5
93. Amann PM, Susic M, Gluder F, et al. Alitretinoin (9-cis retinoic acid) is effective against pityriasis rubra pilaris: a retrospective clinical study. Acta Derm Venereol, 2015, 95(3):329-31
94. Schaller M, Belge K. Systemic therapy of rosacea. Hautarzt, 2013, 64:500-5
95. Sroza N, Proietti I, Tolino E, et al. Isotretinoin for the treatment of squamous cell carcinoma arising on an epidermoid cyst. Dermatol Ther, 2014, 27(2):94-6
96. Sankowski A, Janik P, Bogacka-Zatorska E. Treatment of basal cell carcinoma with 13-cis retinoic acid. Neoplasma, 1984, 31(5):615-8
97. Yung WK, Kyritsis AP, Gleason MJ. Treatment of recurrent malignant gliomas with high-dose 13-cis retinoic acid. Clin Cancer Res, 1996, 2(12):1931-5
98. Roach M. A malignant eccrine poroma responds to isotretinoin (13-cis-retinoic acid). Ann Intern Med, 1983, 99(4):486-8
99. Haydey RP, Reed ML, Shupak JL. Treatment of keratoacanthomas with oral 13-cis-retinoic acid. N Engl J Med, 1980, 303:560-2
100. Levine N, Miller RC, Meyskens FL Jr. Oral isotretinoin therapy. Use in patient with multiple cutaneous squamous cell carcinomas and keratoacanthomas. Arch Dermatol, 1984, 120(9):1215-7
101. Zaman S, Gilliani JA, Khattak R, et al. Role of isotretinoin in cancer prevention and management in malignancies associated with xeroderma pigmentosum. J Ayub Med Coll Abbottabad, 2014, 26(2):255-7
102. Kamata N, Chida K, Rikimaruk, Horikoshi M, et al. Growth-inhibitory effects of epidermal growth factor and overexpression of its receptors on human squamous cell carcinomas in culture. Cancer Res, 1986, 46:1648-53
103. Lee JC, Vivanco I, Beroukhim R, et al. Epidermal growth factor receptor activation in glioblastoma through novel missensr mutations in the extracellular domain. Plos medicine, 2006, 3:e485
104. De Vecchio CA, Jensen KC, et al. Epidermal growth factor receptor variant III contribute to cancer stem cell phenotypes in invasive breast carcinoma. Cancer Res, 2012,
105. Zhu G. Treatment of patients with advanced cancer following chemotherapy and traditional medicine - Long term follow up of 75 cases. Univ J Pharm Res, 2018, 3(3):10-18 Available from: www.uipr.org
106. Zhu G. Clinical prolonged follow up of patients with advanced cancers after chemotherapy with traditional medicine (85 cases). Trend Cancer Res Chemother, 2018, 1(2):1-8. Available from: www.oatext.com
107. Zhu G, Cheon Yaraghi AA, Yarden Y, Santos J and Neil JC. Downregulating oncogenic receptor from bench to clinic. Hematol Med Oncol, 2016, 1(1):30-40. Available from: www.oatext.com
108. Gansdola M. Therapy of severe acne and acne rosacea with oral 13-cis-retinoic acid (Isotretinoin). Acta Vitaminol Enzymol, 1984, 6:325-37
109. Leyden JJ, McGinley KJ. Effects of 13-cis-retinoic acid on sebum production and propionibacterium acnes in severe nodulocystic acne. Arch Dermatol Res, 1982, 272:331-7
110. Hennes R, Mack A, Schell H, Vogt HJ. 13-cis-retinoic acid in congloate acne. A follow-up study of 14 trial centers. Arch Dermatol Res, 1984, 276:209-15
111. Ligatto PD, Fironi A, Moroni P. Effects of 13-cis-retinoic acid (Ro4-3780) in the therapy of severe cystic acne. Acta Vitaminol Enzymol, 1983, 5(1):23-8
112. Ott F, Geiger JN. Long-term treatment of severe nodulo-cystic acne with 13-cis retinoic acid. Ann Dermatol Venereol, 1982, 109:849-53
113. Evans RM. The steroid and thyroid hormone receptor superfamily. Science, 1988, 240:899-95
114. Giguere V, Ong ES, Segui P, Evans RM. Identification of a receptor for morphogen retinoic acid. Nature, 1987, 330:624-29
115. Petkovich M, Brand N, Krust A, Chambon P. A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature, 1987;330:444-450

116. Brand N, Petkovich M, Krust A, Chambon P, de The H, Marchio A, Tiollais P, Dejean A. Identification of a second human retinoic acid receptor. Nature, 1988;332:850-53

117. Lehmann JM, Hoffmann B, Pfahl M. Genomic organization of the retinoic acid receptor gamma gene. Nucleic Acids Res, 1991;19(3):573-8

118. Krust A, Kastner PH, Petkovich M, Zelent A, Chambon P. A third human retinoic acid receptor, hRAR-γ. Proc Natl Acad Sci USA, 1989;86:5310-14

119. Beato M. Gene regulation by steroid hormone. Cell, 1989;56:335-344

120. Chalepakis G, Postma JPM, Beato M. A two-step mechanism for the interaction of estradiol with rat uterus. Proc Natl Acad Sci USA, 1968;59:632-37

121. Lehmann JM, Jong L, Fanjul A, Cameron JF, Lu XP, Haeffner P, Paoletti ML, Pfahl M. Retinoids selective for retinoid X receptor response pathways. Science, 1992;258:1944-46

122. Zhang XK, Hoffmann B, Tran PBV, Graupner G, Pfahl M. Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptors. Nature, 1992;325(30):441-46

123. Hauksdotti H, Privalsky ML. DNA recognition by the aberrant retinoic acid receptors implicated in human acute promyelocytic leukemia. Cell Growth Differ, 2001;12:85-98

124. Mitchell P, Tjian R. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science, 1989;245:371-78

125. Dilworth FJ, Chambon P. Nuclear receptors coordinate the activation of chromatin remodeling complexes and coactivators to facilitate initiation of transcription. Oncogene, 2001;20:3047-54

126. Beckenbach L, Baran YM, Merk HF, Loffler H, Amann PM. Retinoid treatment of skin diseases. Eur J Dermatol, 2015;25(5):384-91

127. Damm K, Thompson CC, Evans RM. Protein encoded by v-erbA functions as a thyroid-hormone receptor antagonist. Nature, 1989;339:263

128. Balmer JE, Hallman M. A robust characterization of retinoic acid response elements based on a comparison in diverse species. J Steroid Biochem Mol Biol, 2005;96(5):347-54

129. Mitchell P, Tjian R. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science, 1989;245:371-78

130. Lazar MA. Nuclear receptor corepressors. Nucl Recept Signal, 2003;1:e001
140. Goodson M, Jonas BA, Privalsky MA. Corepressors: custom tailoring and alterations while you wait. Nucl Recept Signal, 2005; 3:e003

141. Kornberg RD. Eukaryotic transcriptional control. Trends Cell Biol, 1999; 9(12): M46-9

142. Onate SA, Tsai SY, Tsai MJ, O'Malley BW. Sequence and characterization of a coactivator for the steroid hormone receptor family. Science, 1995; 270: 1354-57

143. Torchia J, Rose DW, Inostroza J, Kamei Y, Westin S, Glass CK, Rosenfeld MG. The transcriptional co-activator p/CIP binds CBP and mediates nuclear receptor function. Nature, 1997; 387: 677-684

144. Mahony S, Mazzoni EO, McCuine S, et al. Ligand-development dynamics of retinoic acid receptor binding during early neurogenesis. Genome Biol, 2011; 12(1): R2

145. Walkley CR, Yuan YD, Chandraratna RAS and McArthur GA. Retinoic acid receptor antagonism in vivo expands the numbers of precursor cells during granulopoiesis. Leukemia, 2002; 16: 1763-72

146. Casorelli IT, Tenfani E, Tagliafico E, Blasi MF, Giuliani A, et al. Identification of a molecular signature for leukemic promyelocytes and their normal counterparts: focus on DNA repair genes. Leukemia, 2006; 20: 1978-88

147. The H, Chomienne C, Lanotte M, Degos L, & Dejean A. The t(15;17) translocation of acute promyelocytic leukemia fuses the retinoic acid receptor alpha to a novel transcribed locus. Nature, 1990; 347: 558

148. de The H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A. The PML-RARA fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell, 1991; 66: 675-84

149. Alcalay M, Zangrilli O, Pandolfi PA, Longo L, Menarelli A, Grignani F, Pelicci PG. Translocation breakpoint of acute promyelocytic leukemia lies within the retinoic acid receptor alpha gene. Proc Natl Acad Sci USA, 1991; 88: 1977-81

150. Kakizuka A, Miller WH, Umesono K, Warrell RP, Frankel SR, Murly VV, Dmitrovsky E, Evans RM. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARa with a novel putative transcription factor, PML. Cell, 1991; 66: 663-74

151. Zhu G. Oncogenic receptor hypothesis (1989-91). VOA (Voice of America), 1992; 12: 31

152. Zhu G. EpCAM—an old cancer antigen, turned oncogenic receptor and its targeting immunotherapy. Urog J Pharm Res, 2018; 3(2): 43-48

153. Lin RJ, Nagy L, Inoue S, Shao W, Miller WH Jr, Evans RM. Role of the hostone deacetylase complex in acute promyelocytic leukemia. Nature, 1998; 391: 811-4

154. Marinelli A, Ross D, Pelicci PG, Minucci S. A redundant oncogenic potential of the retinoic acid receptor (RAR) alpha, beta and gamma isoforms in acute promyelocytic leukemia. Leukemia, 2007; 21: 647-50

155. Osumi T, Tsujimoto SI, Tamura M, et al. Recurrent RARB-translocations in acute promyelocytic leukemia lacking RARA translocation. Cancer Res, 2018; 78(16): 4452-8

156. Such E, Cervera J, Valencia A, et al. A novel NUP98/RSRG fusion in acute myeloid leukemia resembling acute promyelocytic leukemia. Blood, 2011; 117(1): 242-45

157. Ha JS, Do YR, Ki CS, Jeon DS, et al. Identification of a novel PML-RARG fusion in acute promyelocytic leukemia. Leukemia, 2017; 31(9): 1992-95

158. Arteaga MF, Mikesch JH, Fung TK and So CWE. Epigenetics in acute promyelocytic leukemia pathogenesis and treatment response: A TRAnsition to targeted therapeutics. Br J Cancer, 2015; 112: 413-18

159. Segalla S, Rinaldi L, Kalstrup-Nielsen C, et al. Retinoic acid receptor alpha fusion to PML affects its transcriptional and chromatin-remodeling properties. Mol Cell Biol, 2003; 23(23): 8795-8808

160. Tsai S and Collins SJ. A dominant negative retinoic acid receptor blocks neutrophil differentiation at promyelocytic stages. PNAS, 1993; 90(15): 7153-57
161. Onodera M, Kunisada T, Nishikawa S, et al. Overexpression of retinoic acid receptor alpha suppresses myeloid cell differentiation at the promyelocyte stage. Oncogene, 1995, 11(7): 1291-8.

162. Grignani F, Testa U, Rogaia D, et al. Effects on differentiation by the promyelocytic leukemia pml/RAR alpha protein dimerization and RARalpha DNA binding domains. EMBO J, 1996, 15(18): 4949-58.

163. Grignani F, De Matteis S, Nervi C, Tomassoni L, Pelicci PG, et al. Fusion proteins of the retinoic acid receptor-a recruit histone deacetylase in promyelocytic leukemia. Nature, 1998, 391: 815-18.

164. Carbone R, Botrugno OA, Ronzoni S, Insgina A, Pelicci PG, et al. Recruitment of the histone methyltransferase SUV39H1 and its role in the oncogenic properties of the leukemia-associated PML-retinoic acid receptor fusion protein. Mol Cell Biol, 2006, 26(4): 1288-96.

165. Brown S, Kogan S, Lagasse E, Weissman L, Alcalay M, et al. A PML/RARa transgenic initiates murine acute promyelocytic leukemia. Proc Natl Acad Sci USA, 1997, 94: 2551.

166. He LZ, Tribolet C, Rivi P, Peruzzi D, Pelicci PG, et al. Acute leukemia with promyelocytic features in pml/RARa transgenic mice. Blood, 1997, 94: 5302.

167. Grisolano JL, Wesselschmidt RL, Pelicci PG, and Ley TJ. Altered myeloid development and acute leukemia in transgenic mice expressing pml-RARα under control of Cathepsin G regulatory sequences. Blood, 1997, 89: 376-87.

168. Kelly LM, Kutok JL, Williams LR, Boulton CL, Amaral SM. PML-RARα and FLT3-ITD induces APL-like disease in a mouse model. Proc Natl Acad Sci USA, 1997, 94(22): 9828-38.

169. Minucci S, Monesi B, Giarola A, Ronzoni S, Pelicci PO. PML-RARα induces promyelocytic leukemias with high efficiency following retroviral gene transfer into purified murine hematopoietic progenitors. Blood, 2002, 100(8): 2989-95.

170. Westervelt P, Lane AA, Pollock JL, Oldfather K, Holt MS, et al. High penetrance mouse model of acute promyelocytic leukemia with very low levels of PML-RARα expression. Blood, 2002, 100(5): 1857-65.

171. Sukhai MA, Wu X, Xuan Y, Zhang T, Reis PP, Dabbe K, Pandolfi PP. Myeloid leukemia with promyelocytic features in transgenic mice expressing hCG-NuMA-RARα. Oncogene, 2004, 23(3): 665-76.

172. Deepa S, Belair CD, Barry-Hosford KO, Lin HJ, Kogan SC, et al. PML-RARα and Dnmt3a1 cooperate in vitro to promote acute promyelocytic leukemia. Cancer Res, 2010, 70: 8792-801.

173. Rousselot P, Hargas BJ, Reis PP, et al. The PML-RARα gene products of the t(15;17) translocation inhibit retinoid acid-induced granulocytic differentiation and mediated transactivation in human myeloid cells. Oncogene, 1994, 9(2): 545-51.

174. Douces Y, Duches JP, Yaniv M, de The H, Dejean A. The PML-retinoic acid alpha translocation converts the receptor from an inhibitor to a retinoic acid-dependent activator of transcription factor AP-1. Proc Natl Acad Sci USA, 1993, 90: 9345-9.

175. Grignani F, Ferrucci P, Testa U, et al. The acute promyelocytic leukemia-specific PML-RARα fusion protein inhibits differentiation and promotes survival of myeloid precursor cells. Cell, 1993, 74(3): 423-31.

176. He LZ, Guidez F, Tribolet C, Peruzzi D, Pandolfi PP, et al. Distinct interactions of PML-RARα and PLZF-RARα with Co-repressors determine differential responses to RA in APL. Nature Genetics, 1998, 18: 126-135.

177. Kitareewan S, Pitha-Rowe LS, Sekula D, Lowrey CH, Nemeth MJ, et al. UBE1L is a retinoid target that triggers PML/RARα alpha degradation and apoptosis in acute promyelocytic leukemia. Proc Natl Acad Sci USA, 2002, 99(6): 3806-11.

178. Atsumi A, Tomita A, Kiyoi H, Naoe T. Histone deacetylase 3 (HDAC3) is recruited to target promoters to repress transcriptiin in vivo. Biochem Biophys Res Commun, 2006, 345(4): 1471-80.

179. Villa R, Morey L, Raker VA, Burchbeck M, Gutierrez A, et al. The methyl-CpG binding protein MBD3 is required for PML-RARa fusion. Proc Natl Acad Sci USA, 2006, 103(5): 1400-05.
180. Nasr R, Guillemin MC, Ferhi O, Soilihi H, Peres L, de The H, et al. Eradication of acute promyelocytic leukemia-initiating cells through PML-RARA degradation. Nature Medicine, 2008, 14:1333-42

181. Marstrand TT, Borup R, Willer A, Borregaard N, Sandelin A, et al. A conceptual framework for the identification of candidate drugs and drug targets in acute promyelocytic leukemia. Leukemia, 2010, 24(7):1265-75

182. Lallemand BV, de The H. A new oncoprotein catabolism pathway. Blood, 2010, 116:2200-2201

183. Podhorecka M, Macheta A. Acute promyelocytic leukemia—modern approach to disease pathogenesis and differentiation treatment. Postepy Hig Med Dosw, 2013, 67:1083-89

184. Dos Santos GA, Kats L, Pandolfi PP. Synergy against PML-RARa targeting transcription, proteolysis, differentiation, and self-renewal in acute promyelocytic leukemia. J Exp Med, 2013, 210(13):2793-802

185. Tomita A, Kiyoi H, Naoe T. Mechanisms of action and resistance to all-trans retinoic acid (ATRA) and arsenic trioxide (As2O3) in acute promyelocytic leukemia. Int J Hematol, 2013, 97(6):717-725

186. De Braekeleer E, Dout-Guilbert N, De Braekeleer M. RARA fusion gene in acute promyelocytic leukemia: A review. Expert Rev Hematol, 2014, 7(3):347-57

187. Jing Y. The PML-RARa fusion protein and target therapy for acute promyelocytic leukemia. Leuk Lymphoma, 2004, 45:639-48

188. Raelson JV, Nervi C, Rosenauer A, Benedetti L, Monza M, et al. The PML/RAR alpha oncoprotein is a direct molecular target of retinoic acid in acute promyelocytic leukemia cells. Blood, 1996, 88:2826-32

189. Yoshida H, Kitamura K, Tanaka K, et al. Accelerated degradation of PML-RARA oncoprotein by ATRA in APL: possible role of the proteasome pathway. Cancer Res, 1996, 56(13):2945-48

190. Fanelli M, Minucci S, Gelmetti V, Nervi C, Pelicci PG. Constitutive degradation of pml/RAR through the proteasome pathway mediates retinoic acid resistance. Blood, 1999, 93:1477-81

191. Jing Y, Xia L, Lu M, Waxman S. The cleavage product delta PML-RARa contributes to all-trans retinoic acid-mediated differentiation in acute promyelocytic leukemia cells. Oncogene, 2003, 22:4083-91

192. Nervi C, Ferrara FF, Pandolfi PP, Tomassini B, et al. Caspases mediate retinoic acid-induced degradation of the acute promyelocytic leukemia PML/RARa fusion protein. Blood, 1998, 92(7):2244-51

193. Bellodi C, Kindle K, Bernassola F, Binsdale D, Cossarizza A, et al. Cytoplasmic function of mutant promyelocytic leukemia (PML) and PML-retinoic acid receptor alpha. J Biol Chem, 2006, 281:14465-73

194. Warrell JR, He LZ, Richon V, Calleja E, Pandolfi PP. Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor histone deacetylase. J Natl Cancer Inst, 1998, 90:1621-25

195. McMullin MF, Nugent E, Thompson A, Hull D, Grimwade D. Prolonged molecular remission in PML-RARA-positive acute promyelocytic leukemia treated with minimal chemotherapy followed by maintenance including the histone deacetylase inhibitor sodium valproate. Leukemia, 2005, 19:1676-77

196. Park DJ, Chumakov AM, Vuong PT, Chih DY, Koellner HP, et al. CCAAT/enhancer binding protein epsilon is a potential retinoid target gene in acute promyelocytic leukemia treatment. J Clin Invest, 1999, 103(10):1399-408

197. Yamanaka R, et al. Impaired granulopoiesis, myelodysplasia, and early lethality in CCAAT/enhancer binding protein epsilon-deficient mice. Proc Natl Acad Sci USA, 1998, 94:13187-192
198. Humbert M, Federzoni EA, Britschgi A, et al. The tumor suppressor gene DAPK2 is induced by the myeloid transcript factors PU.1 and C/EBPα during granulocytic differentiation but repressed by PML–RARα in APL. J Leuk Biol, 2014;95:83–93

199. Noguera NI, Piredda ML, Taulli R, Catalano G, Angelini G, et al. PML–RARα inhibits PTEN expression in hematopoietic cells by competing with PU.1 transcriptional activity. Oncotarget, 2016;7(41):66386–397

200. Choi W-II, Yoon JH, Kim MY, Koh DL, Litch JD, et al. Promyelocytic leukemia zinc finger–retinoic acid receptor a (PLZF–RARα), an oncogenic transcriptional repressor of cyclin-dependent kinase inhibitor 1A (p21WAF1/CCKN1A) and tumor protein p53 (TP53) gene. J Biol Chem, 2014;289:18641–656

201. Yilmaz QH, Valdez R, Theisen BK, Guo W, Feruson DO, et al. Pten dependence distinguishes haematopoietic stem cells from leukemia-initiating cells. Nature, 2006;441:475–82

202. Mueller BU, Pabst T, Fos J, Petkovic V, Asou N. ATRA resolves the differentiation block in t(15;17) acute promyelocytic leukemia by restoring PU.1 expression. Blood, 2006;107:3330–38

203. Seshire A, Jger TR, French M, Beez S, Hagermeyer H. Direct interaction of PU.1 with oncogenic transcription factors reduces its serine phosphorylation and promoter binding. Leukemia, 2012;26:1338–47

204. Isakson P, Bjoras M, Boe SO, Simonsen A. Autophagy contributes to therapy-induced degradation of the PML–RARα oncoprotein. Blood, 2010;116:2324–31

205. Melnick A, Litcht JD. Deconstructing a disease: RAR, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood, 1999;93:10316–215

206. Zhu G. A pilot study of small dosage of chemotherapy and traditional medicine in advanced cancers: report of twenty four cases (Abstract). Proceedings of 2nd biotechnology world congress, Dubai, UAE, February 18–21, 2013, pp:98

207. Zhu G. Discovery of the molecular basis of retinoic acid action (retinoid signaling): A genetic regulation of eukaryotes in transcription (Abstract). Proceedings of 3rd biotechnology world congress, Dubai, UAE, February 10–12, 2014, pp:97–98

208. Luebbert M, Tobler A, Roennlund I, Mertelsmann R. The myeloblastin/proteinase-3 is differentially expressed and methylated in myeloid cell lines. Br J Haematol, 1994;87(supple 1):201

209. Luebbert M, Tobler A, Fiskanidis M. Cytosine demethylation of the proteinase-3/myeloblastin primary granule protease gene during phagocyte development. Leukemia, 1999;13(9):1420–7

210. Dengler R, Mentzenmann U, al-Batran S, Hausner I, Faderi S, et al. Immunocytochemical and flow cytometric detection of proteinase 3 (myeloblastin) in normal and leukemic myeloid cells. Br J Haematol, 1995;89(2):250–57