A promising microbial use on cocoa: decomposing cocoa waste and controlling *Lasiodiplodia theobromae* in-vitro

T Kuswinanti¹, M Junaid¹, Melina², U Surapati² and Ratnawaty²

¹Cocoa Research Group Faculty of Agriculture, Universitas Hasanuddin, Makassar, Indonesia
²Universitas Hasanuddin, Makassar, Indonesia

Email: koeswinanti@yahoo.com

Abstract. This study aimed to test the effectiveness of number of potential microbes to decompose cocoa pod husk and to control the pathogen *Lasiodiplodia theobromae* in-vitro. This research consisted of several activities; investigating the ability of microbes to decompose cocoa pod husk while to test its effectiveness in controlling *L. theobromae* in both solid and liquid medium. The findings suggest that *Trichoderma sp.*, *Trametes sp.*, *Pleurotus ostreatus*, and bacterial consortium Microbat shown to perform an effectiveness in decomposing cocoa pod husk and in limiting filamentous growth of *L. theobromae* on both medium. Amongst trials, only isolate *Trichoderma sp.* shown to have a much higher restriction (66.84%) and performed a more considerable complete interaction i.e. antibiosis, competition for space and nutrients, mycoparasitism and lysis before other Microbial isolate shown to restrict filamentous growth of pathogen on both medium.

1. Introduction

Cocoa (*Theobroma cacao* L.) is one of the most global exported commodities and has become an engine of rural economic growth wherever it is grown. In terms of global bean supply, the only three main bean producer countries is consistently to supply over 400,000 tonnes annum i.e. Cote Ivory, Ghana and Indonesia [1]. In Indonesia, about 65% of area and national production is from Sulawesi [2, 3]. However, behind tremendous pod resource, most of farmers still see that only beans are valuable part of pod while others remain as waste and unfortunately this constraint begins. As the greatest component of pod consisting of 70% weight after placenta and beans, husk and shell can press environment. The farmer collects pods, separates beans before discharges the husk and shell on the ground and this way seems to be impractical and pest and pathogen take opportunity to complete their life cycle. To reduce the waste and to cut the life cycle, microbial decomposer was potentially used driven by native group of fungi whose capable of decomposing lignin, cellulose and hemicellulose compounds and of controlling the pathogen. Fungi produce extracellular enzymes to depolymerize large-sized compounds into small water solutions (substrate for microbes), and the microbes transfer the subtract into cells through the cytoplasmic membrane to complete the process of decomposition [20]. *Trichoderma sp.*, *Trametes sp.* oyster and *Pleurotus ostreatus* are potential fungal decomposer [23, 36].

In addition, together with waste issue in cocoa orchards, cocoa disease caused by fungal pathogens is another critical constrain and one of them is *Lasiodiplodia theobromae* [4-7]. *L. theobromae* has a wide-range of host [6, 8, 9] and in Indonesia and Latin America, its role is a new and non-prominent
pathogen [6, 7, 10]. In Sulawesi, the pathogen was found to associate with the cause of vascular streak dieback symptoms, Ceratobasidium theobromae [11]. While dealing with waste issue on cocoa farm is important, controlling L. theobromae is not apart and therefore, to manage both issues this research is proposed.

2. Research Methods
This research was carried out at the Lab Agricultural Biotechnology of Research Centre and Plant and Pest disease Department, Faculty of Agriculture Hasanuddin University, Makassar, started from August 2013 to January 2014. The lab instruments included autoclave, oven, petri-dish, laminar air flow, shaker, hot plate, incubator, analytical scales, scales, microscopes, Erlenmeyer, basins, cameras, jam bottles, measuring cups, goblets, flame, sprayers, rods stirrers, carbohydrates, needles, glass preparations, haemocytometers, filters, spatulas, plastic cups, Eppendorf pipettes and stationery. The materials used were cocoa husk, bran, agricultural lime, baglog plastic wrap, rubber bands, infected cocoa, Trichoderma sp., PCKs, Pleurotus ostreatus, Microbials, potatoes, jelly, granulated sugar, chloramphenicol, distilled water, 70% alcohol, wrapping plastic, tissue, filter paper, aluminium foil, spirits and label paper. The cocoa husk was collected from Soppeng South Sulawesi Province and the isolate effectivity test was carried out after the cocoa pod husk being processed into a substrate of organic material. For more detail as follows:

a. Preparation and isolation
6.5 kg cocoa husk was washed and grounded before it was dried. Grounded husk was mixed with 1.3 kg and 5.6 g lime (with ratio 5: 1: 0.05). All mixture was added water until glued tightly. The mixture was put into a 100-gram culture bottle and covered with plastic coated with aluminium foil, then tied using rubber bands and autoclave 2x for 2 hours. For fungal other microbe isolation, Trichoderma sp., Trametes sp., P. ostreatus and microbes were grown on the PDA culture. The microbials with a total concentration of 10% were dripped on the substrate of organic matter and the 20% concentration were used on the effectiveness test of isolates against pathogens. Microbials with 20% concentration were dropped on culture then flattened with a spatula before being incubated at room temperature (28°C - 31°C) for 5 days.

b. Inoculation and dual culture test
The trials consisted of inoculating Trichoderma sp., Trametes sp., P. ostreatus and microbials, 10% with 11 treatments and four replications including control. In each treatment, five isolates were used, then being put in a bottle containing sterilized organic material before being incubated at room temperature and observed in a three days observation for a month. Combination trial consisted of Control; Trichoderma sp.; Trametes sp.; P. ostreatus; 10% microbial; Trichoderma sp. + Trametes sp.; Trichoderma sp. + P. ostreatus; Trichoderma sp. + 10% microbial; Trichoderma sp. + 10% mikrobat; Trametes sp. + P. ostreatus; Trametes sp. + 10% microbial; and P. ostreatus + mikrobat 10%.
In dual culture test, trials were by growing altogether fungi and mikrobat and pathogen (L. theobromae) on PDA culture, which was inhibition zone was main parameter on this test. Also, interaction pathway between antagonist and pathogen was undertaken by looking at physical appearance on dual culture (Figure 1).

Figure 1. Matrix of dual culture test in liquid phase
Information:
(a) Control (r1) P: Pathogen
(b) Pathogenic fungus isolates with antagonist fungus isolates A: Antagonists
(c) Isolates of pathogenic fungi with microbial antagonists r1: Diameter of pathogenic colonies on control
r2: Diameter of pathogenic colonies in multiple cultures

For the use of experimental design, a completely randomized design was applied consisting of five combination isolate trials with four replications including Control (L. theobromae); L. theobromae + Trichoderma sp.; L. theobromae + Pleurotus ostreatus; L. theobromae + Trametes sp.; and L. theobromae + Microbials. Inhibitory role of isolates against the pathogen L. theobromae was formulated as following:

\[P = \frac{r_1 - r_2}{r_1} \times 100\% \]

Information:
P: percentage of inhibitor r1: Diameter of pathogenic colonies in the control r2: Diameter of pathogenic colonies in dual culture

For making liquid media, the procedure was almost the same with PDA by adding jelly as compactor. Materials which were mixed and heated, were poured into a 100 mL bottle of culture and covered by aluminum foil. It was then sterilized in an autoclave for 2 hours before being stored into culture bottles then shackled for a week. A complete randomized design was used consisting of 9 combination isolate trials with 3 replications. Combination trial consisted of Control (L. theobromae); Trichoderma sp.; Pleurotus ostreatus; Trametes sp.; Mikrobat; L. theobromae + Trichoderma sp.; L. theobromae + Pleurotus ostreatus; and L. theobromae + Trametes sp. The observation commenced in the 7th and 9th day after inoculation with amount of conidia/ ml as parameter. Subsequently, spore concentration was calculated after stored by using a set of haemocytometer squares as following [15]:

\[C = \frac{t}{n \times 0.25} \times 10^6 \]

Information:
C: spore density per ml of solution
t: total number of spores in every set of squares
n: number of spores in the squares
0.25: a correction factor for using Haemocytometer squares

In addition, mass mycelium measurement was subsequently undertaken by counting dry and wet filaments using the thermogravimetric method, ovening for overnight at 105°C and cooling down for a day to obtain a constant weight. The experimental design used was a randomized design consisting of 9 trials with 3 replications. Trial combination was shown Control (L. theobromae); Trichoderma sp.; Pleurotus ostreatus; Trametes sp.; L. theobromae + Trichoderma sp.; L. theobromae + Pleurotus ostreatus; and L. theobromae + Trametes sp. For antagonistic mechanism, interaction biocontrol and fungal pathogen was illustrated as follows;
Table 1. Matrix of interaction between potential biocontrol agent and fungal pathogen in vitro; a = biocontrol agent and p = pathogen

Interaction	Role	Information
p a	Antibiosis	There is a distance in the resistance area. In the area, pathogenic hyphae are seen to enlarge and experience lysis. Pathogenic colonies are covered by fungal test. In the contact area, hyphal pathogens undergo lysis.
p a	Competition for nutrients and space	In the contact area of hyphae, the test fungus convolves pathogenic hyphae, then pathogenic hyphae enlarge and experience lysis. In addition, they are capable of producing enzymes that can degrade cell walls. Pathogens then enter the lumen of the target fungus.
p a	Mycoparasitism	Mycoparasitism is the mechanism of parasitizing other fungus mycelium by penetrating the cell wall and entering the cell to take food substances causing the death of fungus [12].

Antibiosis such as alametichin, paracelsin, and trichotoxin can destroy fungal cells by damaging the permeability of cell membranes, chitinase, and laminarinase lysing cell wall [12]. Competitions for nutrients and space refer to the ability to compete with pathogens, especially in terms of extracting nutrients in the soil such as carbon, nitrogen, macro elements and other microelements. The ability of such competition causes inhibition of pathogen to grow. Meanwhile, mycoparasitism is the mechanism of parasitizing other fungus mycelium by penetrating the cell wall and entering the cell to take food substances causing the death of fungus [12].

3. Results and Discussion
One of the parameters to examine effective isolates is structure of compost maturity including color and presence of mass mycelium performed to decompose organic waste of cocoa. Table 2 depicts that mycelium growth of all trials varied to respond to growth culture. Mikrobat alone and mixed with Trichoderma sp. seemed to grow faster to cover the culture from the beginning to the end of observation while other mycelium trials were somewhat slow to grow. In terms of mycelium appearance by the time, only Trametes sp. mixed with P. ostearotus and microbat trials and P. ostearotus combined with microbat trial underwent consistently color transformation from white brownish to dark brown appearance. The observation with intervals of three days basis shown that Trichoderma sp. alone and combined with other trials were able to grow and played its role in a better decomposing cocoa husk, containing enormous nutrients [36]. Once Trichoderma sp. encounters appropriate nutrient on growth medium, it can perform a better penetration and lysis of the cell wall [12,22]. Trichoderma sp. is a superior fungal decomposer since it is equipped with enormous enzymes i.e. cellulase and chitinase as well as Trametes sp. and Pleurotus ostreatus [22,23,26, 29, 32, 35,36].

Table 2. Morphological appearance of compost maturity made from cocoa husk and decomposed by isolate Trichoderma sp., PCKs, Pleurotus ostreatus and microbials in culture bottles

Trials	Parameter of compost maturity	Week 1	Week 2	Week 3	Week 4
	Mycelium Color				
Control	-	-	-	-	Brown
Trichoderma sp.	** White	*** White	**** White	**** White	**** White, brownish
No Trametes sp.	** White	*** White	**** White	**** White	**** White, brownish
Pleurotus ostreatus	* White	*** White	**** White	**** White	**** White, brownish
Mikrobat *** White *** White *** White, brownish *** White, brownish *** White, brownish

Trichoderma sp. + * White ** White, brownish **** White, brownish **** White, brownish

Trametes sp.

Pleurotus ostearotus

Trichoderma sp. + * White *** White **** White, brownish **** White, brownish

Trichoderma sp. + Mikrobat

Trametes sp. + * White *** White, brownish **** White, brownish **** White, brownish

Trametes sp. + Pleurotus ostearotus

Trametes sp. + Pleurotus ostearotus + Mikrobat ** White *** White **** White, brownish **** White, brownish

Mikrobat

Trametes sp.

Pleurotus ostearotus

Information:
- : No mycelium growth and no discoloration
** : 26%-50% mycelium growth in culture
**** : 76%-100% mycelium growth in culture

Table 3. Compost performance was made from cocoa husk

Trial	Aroma	Color	Texture	Weight (g)
Control	Cocoa	Brown	Hard	7.25
Trichoderma sp	Fragrant	Brownish white	Mild	4.25
Trametes sp.	Fragrant	Blackish	Mild	11.25
Pleurotus ostearotus	Fragrant	Brownish white	Mild	5.75
Mikrobat	Fragrant	Brownish white	Mild	9.75
Trichoderma sp. + Trametes sp.	Fragrant	Darken	Mild	9.00
Trichoderma sp. + Pleurotus ostearotus	Fragrant	Blackish white	Mild	2.00
Trichoderma sp. + Mikrobat	Fragrant	Blackish white	Soft	3.25
Trametes sp. + Pleurotus ostearotus	Fragrant	Blackish	Mild	0.75
Trametes sp. + Mikrobat	Fragrant	Blackish white	Soft	1.75
Pleurotus ostearotus + Mikrobat	Fragrant	Blackish white	Soft	9.50

In addition, aroma, color, texture, weight of grounded cocoa husk (initial - final weight) are important parameters of determining the level of maturity and success of composting process. Table 3 suggests that all parameters to determine maturity of husk compost decomposed by trials varied. No different trials were to perform aroma. Besides color and soft texture, a better composting process can be also examined from its weight. Once the weight of cocoa husk is big change to origin during fermentation process, the maturity level of compost seems to complete. The finding shows that Trichoderma sp., Trametes sp. and Mikrobat shown a considerable change to original weight of cocoa husk (6.5 kg) and these trials could decompose a better cocoa husk. Especially, Trichoderma sp. produces cellulase consisting of β-1.4 glucidrolase and β-glucosidase [12] which lyse cellulose, starch, lignin, gum and soluble organic compounds. Trametes sp. is capable of lysing lignin more rapidly and breaks up of chains between cellulose and hemicellulose with lignin. Lignocellulose bonds can be broken by liginase, such as lignin peroixidase and cupanese peroixidase produced by PCKs [22, 24]. P. ostreatus causes structure loss by lysing lignin [31-32] and this fungus is not merely capable of lignin break up, but also able to penetrate the substrate such as wood chips.

3.1. Testing isolates against L. theobromae in dual culture test
Dual culture is one of important part of understanding isolate achievement to restrict pathogen in vitro. Inhibitory activity of isolates against to L. theobromae was shown in Figure 2.
Figure 2. Inhibitory activity of isolates against L. theobromae in vitro

It is noted that figure 2 shows a better restriction to mycelium growth of L. theobromae in vitro with Trichoderma sp. trial. According to a trendline analysis during observation that the only Trichoderma sp. isolate was nearly to 1.0 value of R square coefficient (or up to 80% of inhibitory activity) while the other trendlines of Trametes sp., Mikrobat and P. ostearotus performed farer from 1.0 value of R square coefficient, indicating a slow restricted activity of mycelium pathogen. No inhibitory activity in Control for entire observation.

Table 4. Matrix of antagonistic role of isolates
Trial
L. theobromae + Trichoderma sp.
L. theobromae + Trametes sp.
L. theobromae + Pleurotus ostearotus
L. theobromae + Mikrobat

Interaction between fungal trials and L. theobromae shows that a greater inhibitor to pathogen mycelium occurred in the trial of Trichoderma sp. which performed all parameters of competition, antibiosis, mycoparasite and lysis. Only P. ostearotus shown mutualism interaction to L. theobromae and Trametes sp. seemed to have less capable of antagonism. In addition, Mikrobat trial was capable of expressing antibiosis and parasitic and it was able to lyse pathogen mycelium even if competition of nutrient abstained in vitro. The role of Trichoderma sp. in controlling crop pathogen with parasitism pathway while boost yield was undoubted. The evolutionary biocontrol convinced with scientific evidence and changed in knowledge about biocontrol [12] and since then, the study on biocontrol agents become more and more developed. Trichoderma sp. has been widely tested to control fungal pathogens in many crop orchards and shown to have effectiveness [18,21]. The study of Hakkar et al., [13] revealed that Trichoderma asperellum was able to reduce disease incidence up to 40% compared without trial (80%) for 12 weeks observation. Concentration also affects to achieve a successful control of pathogen, the more diluted volume, the lesser effective suppressing the black pod pathogen.
3.2. Testing isolates in dual culture against L. theobromae

Another two parameters connecting to perform the ability of isolates to control pathogen is by examining formation of spore density and mass mycelium (dry and fresh weight). For more detail as follows;

Table 5. Formation of spore density of L. theobromae per ml solution and mass mycelium (dry and wet weight)

Trial	Average spore density	Weight (g)
L. theobromae	4.91×10^6 a	24.69
L. theobromae + Trichoderma sp.	0 c	4.97
L. theobromae + Trametes sp.	5.33×10^5 c	3.26
L. theobromae + Pleurotus ostearotus	9.6×10^5 c	18.6
L. theobromae + Mikrobat	2.93×10^6 b	0.87

Table 5 shows that the spore density formation in each trial varied. In this case, the smaller spore density of pathogen performed, which means that, the better inhibitory pathogen formation occurred. Therefore, trial of Trichoderma sp. isolate shown to have much greater spore suppression of L. theobromae as spore pathogen failed to develop. The finding suggests that the parameter of spore density formation of pathogen considerably associates with a complete interaction role of antagonism being performed by Trichoderma sp. (Table 3). The success of Trichoderma sp. as biocontrol has been wider reports [12-15] due mainly to producing hydrolytic enzymes β-1,3 glucanase, chitinase and cellulase, which these enzymes functions to lyse cell walls consisting of β-1,3 glucan (linamirin) and chitin polymers. The study on several isolates of Trichoderma sp. applying on the cocoa flower and pod layers was undertaken and the result evidenced that β-1,3 glucanase and chitinase were released to vary in environmental condition [16]. In contrast to Trichoderma sp. isolate, most of isolates shown to have less effective to restrict spore development.

The final parameter to examine the effectiveness of trials to limit fungal pathogen is by assessing dry and fresh weight. Table 5 depicts that combination between Pathogen and trials varied to respond mass mycelium of pathogen. If combination of pathogen and trials performed to have less mass mycelium, the trials were likely to capable of reducing mass mycelium of pathogen [14] and this happen to most isolates showing much lesser weight than L. theobromae alone.

4. Conclusion

Based on the results of the study, it concludes that all isolates such as Trichoderma sp., Trametes sp., Pleurotus ostearotus and Microbat shown to be capable of decomposing cocoa husk but not all trial performed to restrict pathogen mycelium in vitro. In dual culture test, a much more effective restriction of filamentous L. theobromae in vitro was performed by Trichoderma sp. (66.84%). Furthermore, the only Trichoderma sp. performed a complete interaction role; antibiosis, competition for nutrients and space, mycoparasitism and lysis before mikrobat isolate.

References

[1]. ICCO. Cocoa production by year Netherlands 2016 [cited 2016 10 March]. Available from: http://www.icco.org
[2]. Murray DL. 1982 A Modified Procedure for Fruiting Rhizoctonia solani on Agar. Trans Br mycol Soc. 79 129-35
[3]. Machmud M 2014 Indonesia Cocoa Development World cocoa conf. Amsterdam ICCO:. p. 1-27
[4]. Alvindia DG and Gallema FLM 2017 Lasiodiplodia theobromae causes vascular streak dieback (VSD)-like symptoms of cacao in Davao Region, Philippine. Australasian Plant Dis Notes. 12 54
[5] Mbenoun M, Momo Zeutsa EH, Samuels G, Nsouga Amououg F and Nyasse S 2008 Dieback due to Lasiodiplodia theobromae, a new constraint to cocoa production in Cameroon. Plant Pathology. 57 381

[6] Mohali SR, Castro-Medina F, Urbez-Torres JR and Gubler WD 2017 First report of Lasiodiplodia theobromae and L. venezuelensis associated with blue stain on Ficus insipida wood from the Natural Forest of Venezuela. Forest Pathology. 47 e12355.

[7] Asman, Rosmana A, Bailey BA, Shahin AS and Stream MD 2019 Lasiodiplodia Theobromae: An emerging threat to cocoa causes dieback and canker disease in Sulawesi. Asia/Pacific Reg. Cocoa IPM Symp.: Increasing the resilience of cacao to the major threats of pests and diseases in the 21st Century

[8] Zhang J 2011 Chapter 10 - Lasiodiplodia theobromae in Citrus Fruit (Diplodia Stem-End Rot) In: Bautista-Baños, A, Academic Press; p. 309-35

[9] Siriphanich J. 5 - Durian (Durio zibethinus Merr.). In: Yahia EM, editor. Postharvest Biology and Technology of Tropical and Subtropical Fruits: Woodhead Publishing; p. 80-116e

[10] Marelli J-P 2019 IPDM cocoa Asia and Pacific

[11] Junaid M, Purwantara A and Guest D 2018 Geographic Distribution of 'Old' and 'New' Symptoms of Vascular Streak Dieback (VSD) Disease of Cocoa in Sulawesi Sydney: University of Sydney:.

[12] Harman GE 2000 Myths and Dogmas of Biocontrol: Changes in Perceptions derived from Research on Trichoderma harzianum T-22. Plant Disease. 84 377-93

[13] Hakkar AA, Rosmana A and Rahim MD 2014 Control of Phytophthora Pod Rot Disease on Cacao using Endophytic Fungi Trichoderma asperellum. J. Fito. Indo. 10 139-44

[14] Samuels G and Ismaiel A 2009 Trichoderma evansi and T. lieckfeldtiae: two new T. hamatum-like species. Mycologia. 101 142–56

[15] Mills PR, S.Sreenivasaprasad and Muthmumeenakshi S 1998 Assessing Diversity in Colletotrichum and Trichoderma Species Using Molecular Markers. In: Bridge PD, Couteaudier Y, Clarkson JM, editors. Molecular variability of fungal pathogens. London, UK: Cab. Inter. 105-20

[16] Muhammad J 2006 The Ability of Trichoderma spp. isolates in producing beta 1,3 glucanase, chitinase and cutinase on the flower and pod surfaces

[17] Perez-Nadales E, Almeida Nogueira MF, Baldin C, Castanheira S, El Ghalid M and Grund E 2014 Fungal model systems and the elucidation of pathogenicity determinants. Fung. Gen. and Bio. 70 42-67

[18] Sahai, A. S. and M. S. Manocha 1993 Chitinases of Fungi and Plants: Their Involvement in Morphogenesis and Host-Parasite Interaction. FEMS Microbiol. Rev. 11: 317 – 338.

[19] Salma S dan Gunarto L 1999 Enzim Selulase dari Trichoderma spp. http://www.indobioen.or.id.

[20] Saraswati 2005 Organisme Perombak Bahan Organik. http://balittanah.litbang.deptan.go.id

[21] Soesanto 2006 Pengantar Pengendalian Hayati Penyakit Tanaman. PT. Raja Grafindo Persada, Jakarta.

[22] Sun Y and J Cheng 2002 Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83 1-11

[23] Suriawiria U 2002 Budidaya Jamur Tiram. Yayasan Kanisius, Jogjakarta. 104

[24] Takano M, M Nakamura, A Nishida and M Ishihara 2004 Manqanase peroxidase from Phanerochaete crassa WD1694 Bull FFPRI 3 7-13

[25] Tandion, H 2008 Pengaruh Jamur Antagonis Trichoderma harzianum dan Papuk Organik Untuk Mengendalikan Patogen Tulur Tanah Sclerotium rolfsii Sacc. Pada Tanaman Kedelai (Glycine max L.) di Rumah Kasa

[26] Zhang X, H Yu, Huang Y and Liu 2007 Evaluation of biological pre-treatment with white rot fungi for the enzymatic hydrolysis of bamboo culms. Inter. Bioted. & Biodegrad. 60 159–164
[27] FAOSTAT 2017 Food and Agricultural Commodities Production. Retrieved from http://faostat.fao.org/
[28] Copur, Y and A. Tozluoglu 2007 *The effect of AQ and NaBH4 on bio-kraft delignification (Ceriporiopsis subvermispora) of brutia pine chips*. Inter. Biodet. & Biodeg. 60 126–131
[29] Fujita K, R Kondo, K Sakai, Y Kashino, T Nishida and Y. Takahara 1993 Biobleaching of softwood Kraft pulp with white rot fungus IZU-154. *Tappi J*. 76 81-84
[30] Gultom J M 2008 Pengaruh Pemberian Beberapa Jamur Antagonis dengan Berbagai Tingkat Konsentrasi Untuk Menekan Perkembangan Jamur Phytium sp Penyebab Rebah Kecambah pada Tanaman Tembakau (Nicotiana tabaccum L.) http://repository.usu.ac.id.pdf
[31] Hossain S M and N. Anantharaman 2006 Activity enhancement of ligninolytic enzymes of Trametes versicolor with bagasse powder. *Afri. J. of Biotech* 5 189-194
[32] Islam M N, M R Karim and R O Malinen 2008 Beneficial effects of fungal treatment before pulping and bleaching of Acacia mangium and Eucalyptus camaldulensis. *Turk. J.Agric. For* 32 331-338
[33] Kuswinanti T 2012 Penanganan Limbah Tanaman Kakao Melalui Pemanfaatan Isolat Putih dan Coklat Isolat Lokal Sebagai Dekomposer. Laporan Penelitian Berbasis Prodi. Universitas Hasanuddin. Makassar
[34] Lilik R, Wibowo B S and Irwan C 2010 Pemanfaatan Agens Antagonis dalam Pengendalian Penyakit Tanaman Pangan dan Hortikultura. http://www.bbopt.litbang.deptan.go.id
[35] Lim Y W, K S Baik, S K Han, S B Kim and K S Bae 2008 Burkholderia sordidicola sp. nov., isolated from the white-rot fungus Phanerochaete sordida. *Inter. J. of System. and Evolut. Micro*. 53 1631–1636
[36] Mufarrihah L, 2009 Pengaruh Penambahan Bekatul Dan Ampas Tahu Pada Media Terhadap Pertumbuhan Dan Produksi Jamur Tiram Putih (Pleorotus Ostreatus). Skripsi Universitas Islam Negeri Malang. Malang