日本語ラベル	エングリッシュラベル	内容
タイトル	Title	Association between Parathyroid Hormone and Cardiovascular Disease
著者	Author(s)	Fujii, Hideki
掲載誌・巻号・ページ	Citation	Therapeutic Apheresis and Dialysis, 22(3):236-241
刊行日	Issue date	2018-06
資源タイプ	Resource Type	Journal Article / 学術雑誌論文
版区分	Resource Version	publisher
権利	Rights	© 2018 The Authors. Therapeutic Apheresis and Dialysis published by John Wiley & Sons Australia, Ltd on behalf of International Society for Apheresis, Japanese Society for Apheresis, and Japanese Society for Dialysis Therapy. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
DOI		10.1111/1744-9987.12679
JaLCDOI		
URL		http://www.lib.kobe-u.ac.jp/handle_kernel/90005011

PDF issue: 2020-05-05
Abstract: Although parathyroid hormone is known to be related with calcium and phosphate metabolism, it has been also reported to have several effects on the cardiovascular system including heart and vessels. However, the detailed pathophysiological mechanisms remain unclear. Clinical studies have indicated that parathyroid hormone is associated with cardiovascular events and mortality not only in patients with chronic kidney disease but also in those without chronic kidney disease. As a possible mechanism, it is thought that parathyroid hormone is associated with the renin-angiotensin-aldosterone system and has direct effects on the cardiovascular system. Therefore, we should pay attention to not only the control of serum phosphate and calcium levels but also the control of serum parathyroid hormone levels, especially in patients with chronic kidney disease. Key Words: Aldosterone, Cardiovascular Disease, Chronic Kidney Disease, Parathyroid Hormone, Renin-angiotensin-Aldosterone System.

Parathyroid hormone (PTH), produced by parathyroid cells, is a crucial regulator related to calcium, phosphate, and vitamin D metabolism. This hormone is one of the key players in the field of chronic kidney disease-mineral bone disorder (CKD-MBD) (1). With declining kidney function, the production of PTH in the parathyroid increases, leading to various clinical problems. One of the most serious clinical problems is cardiovascular disease (CVD) because it is a major cause of death in patients with chronic kidney disease (CKD) (2,3). It is known that PTH can affect the cardiovascular system not only in patients with CKD but also in those without CKD. In 1925, Collip et al. found that PTH is included in the extraction of digested parathyroid tissues and demonstrated that PTH could increase serum calcium levels and decrease blood pressure in their experimental study (4). Since then, various studies have examined the effects of PTH on vascular endothelial cells, vascular smooth muscle cells, and cardiomyocytes. This review summarizes recent data on the effects of PTH on the cardiovascular system.

ROLE OF PARATHYROID HORMONE IN CARDIORENAL ASSOCIATION

PTH and cardiomyocyte

It is known that there are two types of calcium channels, L-type and T-type, on cardiomyocytes, and that PTH acts on an L-type calcium channel (5). An L-type calcium channel is strongly associated with the contraction of cardiomyocytes and the cardiac electrical conduction system. As the detailed mechanisms, PTH increases the entry of calcium ions into the cell by acting on an L-type calcium channel (6,7). Experimental studies using rat cardiomyocytes have shown that the administration of PTH alters cardiac contraction by a change in intracellular calcium concentration and that PTH promotes apoptosis of cardiomyocytes (8,9). These findings indicated that PTH induces oxidative stress and necrotic cell death by promoting mitochondrial
Ca2+ excess, which in the long-term causes or exacerbates myocardial fibrosis.

As a mechanism of PTH-induced cardiac hypertrophy, an activation of protein kinase C (PKC) by this hormone is proposed (10). PTH increases cellular cyclic adenosine monophosphate (cAMP) concentrations via PKC-dependent phosphodiesterase activity and thereby promotes the progression of cardiac hypertrophy through increase in expressions of several cardiac hypertrophy-related genes.

PTH and atherosclerosis

There are various studies concerning the effects of PTH on the vascular system. PTH increases cAMP production in vascular smooth muscle cells and leads to vasodilatation through decrease in calcium entry into the cells. PTH receptors also exist on the cell surface membrane of vascular endothelial cells and PTH increases endothelial nitric oxide synthase mRNA and protein expressions and its activity through increased activity of both protein kinase A and PKC pathways (11). As a result, increased nitric oxide production contributes to vasodilatation. Additionally, previous studies have shown that PTH and PTH-related protein suppress the expression of osteogenic markers and calcium deposition (12–14). It is suggested that PTH prevents the progression of vascular calcification by inhibiting BMP2-Msx2-Wnt signal (14,15). Conversely, many clinical studies have demonstrated that high PTH levels are associated with vascular calcification and with higher mortality (16). It is thought that not only PTH but also phosphate, calcium, vitamin D, and other minerals affect the vascular system in clinical settings.

PTH and renin-angiotensin-aldosterone system

In addition, there has been recent focus on and clarification of the mechanisms of the association between PTH and the renin-angiotensin-aldosterone system (RAS) (17,18). It has been reported that PTH affects the adrenal gland and thereby increases secretion of aldosterone (19). In contrast, aldosterone increases the secretion of PTH by stimulating mineral corticoid receptor in the parathyroid (20). Furthermore, it is known that aldosterone increases urinary excretion of calcium and thereby decreases serum calcium levels (21). The decrease in serum calcium levels also stimulates the elevation of serum PTH levels.

Parathyroid hormone also increases 1,25 (OH)2D3 by activating 1-alfa-hydroxylase in the proximal tubules of the kidney. 1,25 (OH)2D3 has a direct and indirect cardio-protective effects. As one of the indirect cardio-protective effects, its inhibitory effect on renin is well known (22). Thus, PTH also has the opposite effects on RAS.

Correlation between parathyroid hormone and cardiovascular disease in the clinical settings

Japanese national data have shown that the impact of PTH on mortality is weaker compared with that of serum phosphate or calcium levels in Japanese hemodialysis patients (23). However, because these patients have various risk factors, it is very difficult to examine a pure impact of PTH on CVD and mortality in clinical settings. Serum PTH levels are remarkably elevated in these patients; therefore, whether slight elevations in serum PTH levels in patients not on dialysis, patients without CKD, or the general population compared with patients on hemodialysis affect the cardiovascular system remains unknown. To date, there are several clinical studies on the association between PTH and CVD, which give interesting and variable information.

A Swedish study of 958 participants from the general population has reported that elevation of serum PTH levels by 1 SD was associated with a 38% increase in CVD death (24). Other research including two independent community-based cohort studies has reported that PTH was associated with the degree of atherosclerosis and risk of clinically overt atherosclerotic disease after adjustment for established vascular risk factors and mineral metabolism (25).

Furthermore, there is a significant study on the relationship between serum PTH level and number of stenotic coronary arteries (26). The study was cross-sectional and included 476 patients who had undergone coronary angiography according to documented indications and had a coronary lesion greater than 50% stenosis in at least one main vessel. Among the study patients, 183 (38.4%) had PTH ≥ 40 pg/mL, and a significant association between PTH level and severity and number of coronary lesions was observed. In patients with CKD, PTH level was also shown to be associated with an increased incidence of cardiovascular events independent of calcium-phosphorous level (27).

As shown by many experimental studies, the correlation between PTH and cardiac hypertrophy is well known. There are several clinical studies regarding this issue (28,29). Our previous study demonstrated that remarkably higher serum PTH level (≥500 pg/mL) was associated with an increase...
in left ventricular mass index and intraventricular thickness in hemodialysis patients without coronary artery disease (29).

In addition, the results of a meta-analysis regarding the association between serum PTH levels and CVD events also has shown that PTH excess indicated an increased risk for total CVD events: pooled HR (95% CI), 1.45 (1.24–1.71) (Fig. 1) (30). Taken together, even with slight elevations in serum PTH levels, these levels are related to an increased risk for CVD.

Correlation between parathyroid hormone and the renin-angiotensin-aldosterone system in clinical settings

To explain the complex association between PTH and CVD, it is essential to consider the link between PTH and RAS. It has been reported that in patients with primary aldosteronism, serum PTH levels decrease after either adrenalec-tomy or administration of mineralocorticoid receptor antagonists (31). Conversely, another study has revealed that parathyroidectomy for patients with primary hyperparathyroidism decreases not only serum calcium level but also plasma renin and aldosterone levels (32). Taken together, aldosterone is associated with serum PTH elevation; conversely, PTH is associated with plasma aldosterone level elevation. These results suggest that there is a close interaction between the two hormones. A study including 3074 patients referred for coronary angiography, demonstrated that plasma aldosterone concentration and aldosterone to renin ratio were independently and significantly correlated with serum PTH levels regardless of CKD-MBD parameters and kidney function (33). Furthermore, the results of this study have also revealed that both PAC and PTH were independently associated with cardiovascular mortality, with a potential synergistic interaction. It is well known that RAS is activated in patients with heart failure. In this situation, elevation of plasma aldosterone increases urinary excretion of calcium and thereby increases serum PTH levels. In fact, serum PTH levels were reported to be associated with both all-cause and cardiovascular mortality in that population, independent of left ventricular ejection fraction, NT-proBNP levels, eGFR, and 25-hydroxyvitamin D levels (34).

Effect of inhibition of parathyroid hormone on CVD

Considering the results of various studies noted above, it is supposed that suppressing serum PTH levels elevation might prevent the progression and occurrence of CVD. Calcimimetics are useful in the suppression of serum PTH level elevation, and there

Study or Subgroup	Log [Risk Ratio]	SE	Weight	Risk Ratio	Risk Ratio
Anderson et al., 2011	0.38526	0.100486	17.1%	1.47 [1.21, 1.79]	
Cawthon et al., 2010	0.41211	0.307715	5.4%	1.51 [0.83, 2.76]	
Grandi et al., 2011	0.52473	0.284223	6.1%	1.69 [0.97, 2.95]	
Hagström et al., 2009	0.60432	0.25895	7.0%	1.83 [1.10, 3.04]	
Jassal et al., 2010	0.09531	0.108252	16.4%	1.10 [0.89, 1.36]	
Kestenbaum et al., 2011	0.14842	0.131145	14.5%	1.16 [0.90, 1.50]	
Kritchevsky et al., 2012	0.57661	0.300846	5.6%	1.78 [0.99, 2.63]	
Pilz et al., 2010	0.7031	0.134636	14.2%	2.02 [1.55, 2.63]	
Schierbeck et al., 2011	0.64185	0.379817	3.9%	1.90 [0.90, 4.00]	
Taylor et al., 2011	0.18232	0.195404	10.0%	1.20 [0.82, 1.76]	
Total (95% CI)			100.0%	1.45 [1.24, 1.71]	

Heterogeneity: Tau² = 0.03; Chi² = 18.14, df= 9 (P= 0.03); I² = 50%
Test for overall effect: Z = 4.57 (P < 0.0001)

Van Ballegooijen AJ, et al. Am Heart J. 2013;165:655-664

FIG. 1. Meta-analysis of the correlation between parathyroid hormone and cardiovascular disease events (29).
are some clinical trials using this agent. A previous study has revealed that vascular endothelial function, cardiac diastolic function, and cardiac hypertrophy were improved with treatment using cinacalcet for 20 weeks in hemodialysis patients (35). It is suggested that the improvement was due to decrease in oxidative stress and increase in nitric oxide as the mechanisms. An experimental study using a CKD animal model has shown that cinacalcet treatment prevented the progression of cardiac fibrosis (36). Furthermore, other experimental studies using a rat CKD model have demonstrated that cinacalcet and etelcalcetide proved to halt the progression of vascular calcification (37–39). Other clinical studies have shown that cinacalcet ameliorated vascular abnormalities, such as abdominal aortic calcification and arterial stiffness (40–42). Taken together, the control of serum PTH levels is crucial in clinical settings. In addition to a PTH-lowering effect, calcimimetics can decrease serum FGF23 levels and thereby reduce CVD events (43). Therefore, calcimimetics also have favorable indirect effects on the cardiovascular system by lowering serum FGF23 levels (44).

CONCLUSION
Japanese Society of Dialysis Therapy guideline recommend that serum concentrations of phosphorus, corrected calcium, and PTH are kept within the target ranges and that control of serum phosphorus should have the highest priority, followed by control of calcium, and then by control of PTH (45). This recommendation is based on the evidence regarding clinical factors related to mortality in Japanese dialysis patients (23). However, this guideline is not meant to minimize the control of PTH. Because PTH is strongly associated with control of serum phosphate and calcium levels, its impact on CVD and mortality is not emphasized in the clinical study. As noted in this review, PTH has several direct and indirect effects on the cardiovascular system (Fig. 2); therefore, it is also crucial to take account of appropriate control of PTH in clinical settings.

Acknowledgments: The contents of this article were presented in part at the annual meeting of Japanese Society of Dialysis Therapy, 2017.
The Article Processing Charge for this proceeding was paid for by Ono Pharmaceutical Co., Ltd., as part of an unrestricted educational grant.

Conflict of interest: H.F. received lecture fees and grants from Ono Pharmaceutical Co., Ltd. and Kyowa Hakko Kirin Pharmaceutical Co., Ltd.
REFERENCES

1. Fukagawa M, Nakanishi S, Fuji H, Hamada Y, Abe T. Regulation of parathyroid hormone in chronic kidney disease (CKD). Clin Exp Nephrol 2006;10:175–9.
2. Moe S, Drüke T, Cunningham J et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDOQI). Kidney Int 2006;69:1945–53.
3. U.S. Renal Data System, USRDS 2014 Annual Data Report. Atlas of chronic kidney disease and end-stage renal disease in the United States, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2014.
4. Collip JB, Clark EP. Further studies on the physiological action of a parathyroid hormone. J Biol Chem 1925;64:481–8.
5. Wang R, Karpinski E, Pang PK. Parathyroid hormone selectively inhibits L-type calcium channels in single vascular smooth muscle cells of the rat. J Physiol 1991;441:325–46.
6. Rampe D, Lacerda AE, Dage RC, Brown AM. Parathyroid hormone: an endogenous modulator of cardiac calcium channels. Am J Physiol 1991;261:H1945–50.
7. Wang R, Wu LY, Karpinski E, Pang PK. The effects of parathyroid hormone on L-type voltage-dependent calcium channel currents in vascular smooth muscle cells and ventricular myocytes are mediated by a cyclic AMP dependent mechanism. FEBS Lett 1991;282:331–4.
8. Tastan I, Schreckenberg R, Mutfi S, Abdallah Y, Piper HM, Schlüter KD. Parathyroid hormone improves contractile performance of adult rat ventricular cardiomycocytes at low concentrations in a non-acute way. Cardiovasc Res 2009;82:77–83.
9. Bogin E, Massry SG, Harary I. Effect of parathyroid hormone on rat heart cells. J Clin Invest 1981;67:1215–27.
10. Schlüter KD, Weber M, Piper HM. Parathyroid hormone induces protein kinase C but not adenylate cyclase in adult cardiomycocytes and regulates cyclic AMP levels via protein kinase C-dependent phosphodiesterase activity. Biochem J 1995;310:439–44.
11. Rashid G, Bernheim J, Green J, Benchetrit S. Parathyroid hormone stimulates the endothelial nitric oxide synthase through protein kinase A and C pathways. Nephrol Dial Transplant 2007;22:2831–7.
12. Shao JS, Cheng SL, Charlton-Kachigian N, Loewy AP, Towler DA. Teriparatide (human parathyroid hormone (1–34) i.v.) inhibits osteogenic vascular calcification in diabetic low density lipoprotein receptor-deficient mice. J Biol Chem 2003;278:50195–202.
13. Gracioli FG, Neves KR, dos Reis LM et al. Phosphorus overload and PTH induce aortic expression of Runx2 in experimental uremia. Nephrol Dial Transplant 2009;24:1416–21.
14. Cheng SL, Shao JS, Halstead LR, Distelhorst K, Sierra O, Towler DA. Activation of vascular smooth muscle parathyroid hormone receptor inhibits Wnt/beta-catenin signaling and aortic fibrosis in diabetic atherosclerosis. Circ Res 2010;107:271–82.
15. Goettsch C, Iwata H, Aikawa E. Parathyroid hormone: critical bridge between bone metabolism and cardiovascular disease. Arterioscler Thromb Vasc Biol 2014;34:1333–5.
16. Block GA, Klassen P, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM. Mineral metabolism, mortality and morbidity in maintenance hemodialysis. J Am Soc Nephrol 2004;15:2208–18.
17. Tomaszitz A, Ritz E, Pieske B et al. Aldosterone and parathyroid hormone interactions in models of metabolic and cardiovascular disease. Metabolism 2014;63:20–31.
18. Tomaszitz A, Ritz E, Pieske B et al. Aldosterone and parathyroid hormone: a precarious couple for cardiovascular disease. Cardiovasc Res 2012;94:10–9.
19. Mazzocchi G, Aragona F, Malendowicz LK, Nussdorfer GG. PTH and PTH-related peptide enhance steroid secretion from human adrenocortical cells. Am J Physiol Endocrinol Metab 2001;280:E209–13.
20. Maniero C, Fassina A, Guzzardo V et al. Primary hyperparathyroidism with concurrent primary aldosteronism. Hypertension 2011;58:341–6.
21. Chhokar VS, Sun Y, Bhattacharya SK et al. Loss of bone minerals and strength in rats with aldosteronism. Am J Physiol Heart Circ Physiol 2004;287:H2023–6.
22. Li YC, Kong J, Wei M, Chen ZF, Liu SQ, Cao LP. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest 2002;110:229–38.
23. Taniguchi M, Fukagawa M, Fuji N et al. Committee of Renal Data Registry of the Japanese Society for Dialysis Therapy. Serum phosphate and calcium should be primarily and consistently controlled in prevalent hemodialysis patients. Ther Apher Dial 2013;17:221–8.
24. Hagström E, Hellman P, Larsson TE et al. Plasma parathyroid hormone and the risk of cardiovascular mortality in the community. Circulation 2009;119:2765–71.
25. Hagström E, Michaelsson K, Melhus H et al. Plasma parathyroid hormone is associated with subclinical and clinical atherosclerotic disease in 2 community-based cohorts. Arterioscler Thromb Vasc Biol 2014;34:1567–73.
26. Shekhar S, Foroughi M, Moatamedi M, Gachkar L. The association of serum parathyroid hormone and severity of coronary artery diseases. Coron Artery Dis 2014;25:339–42.
27. Lishmanov A, Dorairajan S, Pak Y, Chaudhary K, Chokalingam A. Elevated serum parathyroid hormone is a cardiovascular risk factor in moderate chronic kidney disease. Int Urol Nephrol 2012;44:541–7.
28. Laflamme MH, Mahjoub H, Mahmut A et al. Parathyroid hormone is associated with the LV mass after aortic valve replacement. Heart 2014;100:1859–64.
29. Fuji H, Kim JI, Abe T, Umezut M, Fukagawa M. Relationship between parathyroid hormone and cardiac abnormalities in chronic dialysis patients. Intern Med 2007;46:907–12.
30. van Ballegooijen AJ, Reinders I, Visser M, Brouwer LA. Parathyroid hormone and cardiovascular disease events: a systematic review and meta-analysis of prospective studies. Am Heart J 2013;165:655–64.
31. Pilz S, Kienreich K, Drechsler C et al. Hyperparathyroidism in patients with primary aldosteronism: cross-sectional and interventional data from the GECOH study. J Clin Endocri- nol Metab 2012;97:E75–9.
32. Kovács L, Göth MI, Szaboles I, Dohán O, Ferencz A, Szilágyi G. The effect of surgical treatment on secondary hyperaldosteronism and relative hyperinsulinemia in primary hyperparathyroidism. Eur J Endocrinol 1998;138:543–7.
33. Tomaszitz A, Pilz S, Rus-Machan J et al. Interrelated aldosterone and parathyroid hormone mutations modify cardiovascular mortality risk. Int J Cardiol 2015;184:710–6.
34. Schierbeck LL, Jensen TS, Bang U, Jensen G, Køber L, Jensen JE. Parathyroid hormone and vitamin D–markers for cardiovascular and all cause mortality in heart failure. Eur J Heart Fail 2011;13:626–32.
35. Choi SR, Lim JH, Kim MY et al. Cinacalcet improves endothelial dysfunction and cardiac hypertrophy in patients on hemodialysis with secondary hyperparathyroidism. Nephron Clin Pract 2012;122:1–8.
36. Wu M, Tang RN, Liu H et al. Cinacalcet ameliorates cardiac fibrosis in uremic hearts through suppression of endothelial-mesenchymal transition. Int J Cardiol 2014;171:e65–9.
37. Kawata T, Nagano N, Obi M et al. Cinacalcet suppresses calcification of the aorta and heart in uremic rats. Kidney Int 2008;74:1270–7.
38. Ivanovski O, Nikolov IG, Joki N et al. The calcimimetic R-568 retards uremia-enhanced vascular calcification and atherosclerosis in apolipoprotein E deficient (apoE–/–) mice. Atherosclerosis 2009;205:55–62.
39. Yu L, Tomlinson JE, Alexander ST et al. Etelcalcetide, a novel Calcimimetic, prevents vascular calcification in a rat model of renal insufficiency with secondary hyperparathyroidism. *Calcif Tissue Int* 2017;101:641–53.

40. Nakayama K, Nakao K, Takatori Y et al. Long-term effect of cinacalcet hydrochloride on abdominal aortic calcification in patients on hemodialysis with secondary hyperparathyroidism. *Int J Nephrol Renovasc Dis* 2013;7:25–33.

41. Bonet J, Bayés B, Fernández-Crespo P, Casals M, López-Ayerbe J, Romero R. Cinacalcet may reduce arterial stiffness in patients with chronic renal disease and secondary hyperparathyroidism - results of a small-scale, prospective, observational study. *Clin Nephrol* 2011;75:181–7.

42. Raggi P, Chertow GM, Torres PU et al. The ADVANCE study: a randomized study to evaluate the effects of cinacalcet plus low-dose vitamin D on vascular calcification in patients on hemodialysis. *Nephrol Dial Transplant* 2011;26:1327–39.

43. de Francisco AL, Piñera C, Palomar R, Arias M. Impact of treatment with calcimimetics on hyperparathyroidism and vascular mineralization. *J Am Soc Nephrol* 2006;17(12 Suppl 3):S281–5 Review.

44. Moe SM, Chertow GM, Parfrey PS et al. Cinacalcet, fibroblast growth Factor-23, and cardiovascular disease in hemodialysis: the evaluation of Cinacalcet HCl therapy to lower cardiovascular events (EVOLVE) trial. *Circulation* 2015;132:27–39.

45. Fukagawa M, Yokoyama K, Koiwa F et al. Clinical practice guideline for the management of chronic kidney disease-mineral and bone disorder. *Ther Apher Dial* 2013;17:247–88.