A Tour of Unsupervised Deep Learning for Medical Image Analysis

Khalid Raza* and Nripendra Kumar Singh
Department of Computer Science, Jamia Millia Islamia, New Delhi
kraza@jmi.ac.in

December 13, 2018

Abstract

Interpretation of medical images for diagnosis and treatment of complex disease from high-dimensional and heterogeneous data remains a key challenge in transforming healthcare. In the last few years, both supervised and unsupervised deep learning achieved promising results in the area of medical imaging and image analysis. Unlike supervised learning which is biased towards how it is being supervised and manual efforts to create class label for the algorithm, unsupervised learning derive insights directly from the data itself, group the data and help to make data driven decisions without any external bias. This review systematically presents various unsupervised models applied to medical image analysis, including autoencoders and its several variants, Restricted Boltzmann machines, Deep belief networks, Deep Boltzmann machine and Generative adversarial network. Future research opportunities and challenges of unsupervised techniques for medical image analysis have also been discussed.

Keywords: Unsupervised learning; medical image analysis; autoencoders; restricted Boltzmann machine; Deep belief network

1. Introduction

Medical imaging techniques, including magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), mammography, ultrasound, X-ray and digital pathology images, are frequently used diagnostic system for the early detection, diagnosis, and treatment of various complex diseases (Wani & Raza, 2018). In the clinics, the images are mostly interpreted by human experts such as radiologists and physicians. Because of major variations in pathology and the potential fatigue of human experts, scientists and doctors have started using computer-assisted interventions. The advancement in machine learning techniques, including deep learning, and availability of computing infrastructure through cloud computing, have given fuel to the field of computer-assisted medical image analysis and computer-assisted diagnosis (CAD). Deep learning is about learning representations, i.e, learning intermediate concept or features which are important to capture dependencies from input variables to output variables in supervised learning, or between subsets of variables in unsupervised learning. Both supervised and unsupervised machine learning approaches are widely applied in medical image analysis; each of them has their own pros and cons. Some of widely used supervised (deep) learning algorithms are Feedforward Neural Network (FFNN), Recurrent Neural Network (RNN), Convolutional Neural Network (CNN), Support Vector Machine (SVM) and so on (Jabeen et al., 2018). There are many
scenarios where human supervisions are unavailable, inadequate or biased and therefore, supervised learning algorithm cannot be directly used. Unsupervised learning algorithms, including its deep architecture, give a big hope with lots of advantages and have been widely applied in several areas of medical and engineering problems including medical image analysis.

This chapter presents unsupervised deep learning models, its applications to medical image analysis, list of software tools/packages and benchmark datasets; and discusses opportunities and future challenges in the area.

2. Why Unsupervised Learning?

In the majority of machine learning projects, the workflow is designed in a supervised way, where the algorithm is guided by us what to do and what not to! In such supervised architecture the potential of the algorithms are limited in three ways, (i) A huge manual effort to create labels and (ii) Biases related to how it is being supervised, which probabilities the algorithm to think for other corner cases during problem solving, and (iii) Reduce the scalability of target function at hand.

To intelligently solve these issues, unsupervised machine learning algorithm can be used. Unsupervised machine learning algorithms not only derives insights directly from the data and group the data, but also uses these insights for data-driven decisions making. Also, unsupervised models are more robust in the sense that they act as a base for several different complex tasks where these can be utilized as the holy grail of learning and classification. In fact, the classification is not the only task that we do; rather, other tasks such as compression, dimensionality reduction, denoising, super resolution and some degree of decision making are also performed. Therefore, it is rather more useful to construct a model without knowing what tasks will be at hand and we will use representation (or model) for. In a nutshell, we can think of unsupervised learning as preparation (preprocessing) step for supervised learning tasks, where unsupervised learning of representation may allow better generalization of a classifier (Jabeen et al., 2018).

3. Taxonomy of Unsupervised Learning Tasks

In unsupervised learning, we group the unlabeled data set on the basis of underlying hidden features. By grouping data through unsupervised learning, at least we learn something about raw data.

3.1 Density estimation

Density estimation is one of the popular categories of unsupervised learning which discovers the intrinsic feature and structure of large and complex unlabeled data set via another non-probabilistic approach. Density estimation is a non-parametric method which doesn’t possess much restriction and distributional assumption unlike parametric estimation.
Estimation of univariate or multivariate density function without any prior functional assumptions get almost limitless function from data. There are some widely used non-parametric methods of estimation.

3.1.1 Kernel density estimation

Kernel density estimation (KDE) uses statistical model to produce a probabilistic distribution that resembles an observed variable as a random variable. Basically, KDE is used for data smoothing, exploratory data analysis and visualization. A large number of kernels have been proposed, namely normal Gaussian mixture model and multivariate Gaussian mixture model. Some of the advantages of Kernel density estimation are:

- No need for model specification (data speaks itself).
- Estimation converges to any density, shape with sufficient sample.
- Easily generalizes to higher dimension.
- Densities are multivariate and multimodal with irregular cluster shape.

3.1.2 Histogram density estimation

Histogram based technique mainly adds smoothness of the density curve of reconstruction which can be optimized by kernel parameters and closely related to KNN density estimation algorithm (Bishop et al., 2006).

3.2 Dimensionality reduction

Why dimensionality reduction? There has been a tremendous increase in deployment of sensors and various imaging technique’s which are being used in industry and medical diagnosis continuously record data and store it to be analyzed later. Lots of redundancy or noises are present initially when data are captured. For example, let us take a case of a patient having bone fracture. Initially doctors suggested for X-ray images which is a 2D/3D imaging, but when they do not find it helpful in diagnosis, then a CT scan and/or MRI (magnetic resonance imaging) may be taken which gives more detailed results for further right diagnosis. Now assume that an analyst sits with all this data to analyze and identified all important variables/dimensions which have most significant information’s and left all unwanted parts of data. This is the problem of high unwanted dimension removal and needs treatment of dimension reduction. Dimension reduction is the process of reducing higher dimension data set into a lesser dimension, ensuring that final reduced data must convey equivalent information concisely.

Let’s look at figure shown below. It shows two-dimensional x and y which are measurement of several objects in cm \((x_1)\) and inches \((y_1)\), if you continue to use both dimensions in machine learning problems it will introduce lots of noise in the system. So, it is better to just use one-dimension \((z_1)\) and they will convey similar information.
Fig 1. Representation of data in two dimensional and one dimensional space

There are some common methods to perform dimensionality reduction:

3.1.2 **Factor analysis**

Some variables in given data are highly correlated. These variables can be grouped on the basis of their correlations. This means a particular group can have highly correlated variable, but have low correlation with variables of other groups. Each group represents single inherent construct or factor. As compared to data having large number of dimensions, these factors are small in number, while these factors are difficult to find. There are two methods for doing factor analysis: (i) **Exploratory Factor Analysis**, (ii) **Confirmatory Factor Analysis**

3.2.2 **Principal component analysis**

A set of variables, which are linear combination of the original set of variables, performs higher dimensional space mapped to lower dimensions in such a way that variance of data in lower dimensional space is maximized. These new set of variables is known as principle components.

Let’s consider a situation of two-dimensional data set, there can be only two principal components, first principal component is the most possible variation of original data and second principal component is orthogonal to the first principal component, as shown in Fig. 2.
In practice, a simple principal component analysis (PCA) can be used to construct the covariance or correlation matrix of the data and compute the eigenvectors. The eigenvectors correspond to the largest eigenvalues (principal component) are used to reconstruct a large fraction of variance of original data. As a result, it is left with lesser number of eigenvector and original space has been reduced. There might be chances of loss of data, but it is retained by most important eigenvectors.

Consider a matrix $U(m)$ which stored empirical mean of input matrix R,

$$U(m) = \frac{1}{N} \sum_{n=1}^{N} R(m, n), \text{where } m = (1, 2, 3, \ldots, M) \quad (1)$$

Calculate a normalized matrix X, $X = (R - U_e)$, where e is a unitary vector matrix of size N. Finally, the mean square error (E^2) is calculated in which smallest eigenvalues are removed,

$$E^2 = \text{trace}(cov(x)) - \sum_{i=1}^{L} \lambda_i = \sum_{i=\lambda+1}^{N} \lambda_i \quad (2)$$

The $\text{trace}(A)$ is the sum of all eigenvalues. Simple PCA is not capable of constructing nonlinear mapping, however, can implement nonlinear classification by using kernel techniques.

3.2.3 Kernel PCA

Kernel PCA is a nonlinear extension of conventional PCA, which is designed for dimensionality reduction of nonlinear subspaces depending on magnitude of input data and problem setup. In medical image analysis, hybrid kernel PCA is frequently used to get better results in unsupervised deep learning training model. Fischer et al. (2017) proposed an unsupervised deep learning illumination invariant kernel PCA, which is applied to each patch of respiratory signal extraction from X-ray fluoroscopy images leading to a set of low-dimensional embedding.
A kernel PCA comprised a kernel matrix K and kernel function $k(.)$ is a Mercer kernel (Minh et al. 2006), defined as $K_{ij} = k(x^{(i)}, x^{(j)})$, such that $k(.)$ return dot product of feature space. Now mapping of an eigenvalue of the kernel matrix, the Eigen decomposition and respected eigenvectors are computed as,

$$\lambda^{(i)} e^{(i)} = K e^{(i)}$$ (3)

$$D(x) = \frac{1}{e^{(i)}} \sum_{t=1}^{T} e^{(i)} k(x^{(t)}, x)$$ (4)

where $\lambda^{(i)}$ is eigenvalues and $e^{(i)}$ is eigenvectors of K; T is the number of training sample x to the principal component “i”. Fischer et al. (2017) analyzed different methods like PCA, KPCA and Multi-Resolution PCA to Diaphragm tracking correlation coefficient between different versions of the same sequence and agreed that Multi-Resolution PCA produce the best result among most of the parameters. Principal component analysis network (PCANet) is a simple network architecture and one of the benchmark frameworks (Chan et al. 2015) for the unsupervised deep learning in recent time. However, Shi et al. (2017) propose an encoding as C-RBH-PCANet which is improved PCANet to effectively integrate the color pattern extraction and random binary hashing method for learning feature from color histopathological images.

3.3 Clustering

Clustering is an unsupervised classification of unlabeled data (patterns, data item or feature vectors) into similar groups (clusters) (Fig. 3). Cluster analysis is explanatory in nature to find structure in data (Jain, 2008). Some model of clustering includes semi-supervised clustering, ensemble clustering, simultaneous feature selection and large-scale data clustering were emerging as a hybrid-clustering. It involves analysis of multivariate data and applied in various scientific domains where clustering technique is utilized, such as machine learning, image analysis, bioinformatics, pattern recognition, computer vision and so on.

Fig. 3 An illustration of data clustering
Clustering algorithm is broadly divided into two groups: *hierarchical clustering* and *partitional clustering*, as described below.

3.3.1 Hierarchical clustering

Hierarchical clustering algorithms find clusters recursively (using previously established cluster). These algorithms can be either in the agglomerative mode (bottom-up) in which begin with each element as a separate cluster, merge the most similar pair of clusters successively into large clusters, or in divisive (top-down) mode which begin with all elements in one cluster, recursively divide into smaller clusters. A hierarchical clustering algorithm yields a dendrogram representing group of patterns and similarity level (Jain et al., 1999). A detailed discussion can be found in Jain et al. (1999).

3.3.2 Partitional (k-means) clustering

One of the most popular partitioning clustering algorithms is k-means. In spite of several clustering algorithms published in over 50 years, k-means is still widely used (Jain, 2010). The most frequently used functions in partitional clustering is squared error criterion, which applied to isolate and compact clusters. Let \(X = \{x_i: i = 1, 2, 3, \ldots N\} \) be the set of \(n \) \(d \)-dimensional elements clustered into set of \(K \) clusters as \(C = \{c_k : k = 1, 2, 3 \ldots K\} \). To find partitions, squared error between empirical mean of a cluster and elements in the cluster is minimized. Let \(\mu_k \) be the mean of the cluster \((c_k) \), the squared error between mean and elements in a cluster is defined as:

\[
E(ck) = \sum_{x \in c_k} \|x_i - \mu_k\|^2
\]

The main objective of K-means is to minimize the sum of squared error for all \(k \) clusters (Drineas et al., 1999).

\[
E(c) = \sum_{k=1}^{K} \sum_{x \in c_k} \|x_i - \mu_k\|^2
\]

Minimizing objective function is an NP-hard problem even for \(k = 2 \). Thus, k-means is a greedy algorithm and it can only be expected to converge to local minima.

4. Unsupervised deep learning models

This section introduces a formal introduction of unsupervised deep learning concepts, models and architectures that are used in medical image analysis. The unsupervised deep learning models can be roughly classified as shown in Fig. 4.
4.1 Auto-encoders and its variants

In the literature, autoencoders and its several variants are reported and are being extensively applied in medical image analysis.

4.1.1 Autoencoders and Stacked autoencoder

Autoencoders (AEs) (Bourlard et al., 1988) are simple unsupervised learning model consist single-layer neural network that transforms the input into a latent or compressed representation by minimizing the reconstruction errors between input and output values of the network. By constraining the dimension of latent representation (may be from different input) it is possible to discover relevant pattern from the data. AEs framework defines a feature extraction function with specific parameters (Bengio et al., 2013). Basically, AEs are trained with specific function f_θ is called encoder and $h = f_\theta(x)$ is feature vector or representation from input x, another parameterized function g_θ called decoder, producing input space back from feature space. In short, basic AEs are trained to minimize reconstruction error in finding a value of parameter θ, given by,

$$T_{AE}(\theta) = \sum L(x, g_\theta(f_\theta(x)))$$ (7)

This minimization optionally followed by a non-linearity (most commonly used for encoder and decoder) as given by,
where S_f and S_g are encoder and decoder activation function (normally, sigmoid, hyperbolic tangent or an identity function), respectively; parameters of model $\theta = \{W, b, W', d\}$, where W and W' are encoder decoder weight matrices, and b and d are encoder and decoder bias vector, respectively. Moreover, regularization or sparsity constraints may be applied in order to boost the discovery process. In case, hidden layer has the same input as the input layer, and no any non-linearity is added, the model would simply learn an identity function. Fig. 5(a) illustrates the basic structure of AE.

Stacked autoencoders (SAEs) are constructed by organizing AEs on top of each other also known as deep AEs. SAEs consist of multiple AEs stacked into multiple layers where the output of each layer is wired to the inputs of the successive layers Fig. 5(b). To obtain good parameters, SAE uses greedy layer-wise training. The benefit of SAE is that it can enjoy the benefits of deep network, which has greater expressive power. Furthermore, it usually captures a useful hierarchical grouping of the input (Shin et al., 2013).

4.1.2 Denoising autoencoder

Denoising autoencoder (DAEs) is another variant of the auto-encoder. Denoising investigated as a training criterion for learning to constitute better higher-level representation and extract useful features (Vincent et al. 2010). DAEs prevent the model from learning a trivial solution (Litjens G. et al., 2017) where the model is trained to reconstruct a clean input from the corrupted version from noise or another corruption. This is done by corrupting the initial input x into \hat{x} by using a stochastic function $\hat{x} \sim q_{D}(\hat{x} | x)$. The corrupted input \hat{x} is then mapped to a hidden representation $y = f_{\theta}(\hat{x}) = s(W_{\hat{x}} b)$ and reconstruct $z = g_{\theta'}(y)$. A schematic representation of DAE is shown in Fig.5(c). Parameter θ and θ' are initialized randomly and trained using stochastic gradient descent in order to minimize average reconstruction error. The denoising autoencoders continue minimizing same reconstruction loss between clean X and reconstruction from Y. This continues maximizing a lower bound on the mutual information between input x and representation y, and difference is obtained by applying mapping f_{θ} to a corrupted input. Hence, such learning is cleverer than the identity, and it extracts features useful for denoising.

Stack denoising autoencoder (SDAE) is a deep network utilizing the power of DAE (Bengio et al., 2007; Vincent et al., 2010) and RBMs in the deep belief network (Hinton & Salakhutdinov, 2006; Hinton et al., 2006).

4.1.3 Sparse autoencoder

The limitation of autoencoders to have only small numbers of hidden units can be overcome by adding a sparsity constraint, where a large number of hidden units can be introduced usually more than one input. The aim of sparse autoencoder (SAE) is to make a large number of neurons to have low average output so that neurons may be inactive most of the time.
Sparsity can be achieved by introducing a loss function during training or manually zeroing few strongest hidden unit activations. A schematic representation of SAE is shown in Fig. 5(d).

If the activation function of hidden neurons is \(a_j \), the average activation function of each hidden neuron \(j \) is given by

\[
P_j = \frac{1}{m} \sum_{i=1}^{m} [a_j x_i]
\]

The objective of sparsity constraints is to minimize \(P_j \) so that \(P_j = P \), where \(P \) is a sparsity constraint very close to 0 such as 0.05.

To enforce sparsity constraints, a penalty term is added to cost function which penalizes \(\tilde{P}_j \), de-weighting significantly from \(P \). The penalty term is the Kullback-Leibler (KL) divergence between Bernoulli random variables, can be calculated as (Ng, 2013; Makhzani & Frey, 2013),

\[
\text{Penalty term} = \sum_{j=1}^{N_2} KL(P \mid \mid \tilde{P}_j)
\]

where \(N_2 \) is number of neurons in the hidden layers, and index \(j \) is summing over the hidden units in the network.

\[
KL(P \mid \mid \tilde{P}_j) = P \log \frac{P}{\tilde{P}_j} + (1 - P) \log \frac{1 - P}{1 - \tilde{P}_j}
\]

The property of penalty function is that \(KL(P \mid \mid \tilde{P}_j) = 0 \), if \(P_j = \tilde{P}_j \), otherwise it increases gradually as \(\tilde{P}_j \) diverses for \(P \).

The k-sparse autoencoder (Makhzani & Frey 2013) is a form of sparse AE where k neurons having the highest activation function are chosen and the rest is ignored. The advantage of k-sparse AE is that they allow better exploration on a data set in terms of percentage activation of the network. The advantage of SAE is the sparsity constraints which penalize the cost function and as a result degrees of freedom is reduced. Hence, it regularizes and maintains the complexity of the network by preventing over-fitting.

4.1.4 Convolutional autoencoder

The most popular and widely used network model in deep unsupervised architecture is stacked AE. Stacked AE requires layer-wise pre-training. When layers go deeper during the pre-training process, it may be time consuming and tedious because of stacked AE is built with fully connected layers. Li et al. (2017) propose first trial to train convolutional directly an end-to-end manner without pre-training. Guo et al. (2017) suggested convolutional autoencoder (CAE) that is beneficial to learn feature for images and preserving the local structure of data and avoid distortion of feature space. A general architecture of CAE is depicted in Fig. 5(c).
Fig. 5 (a)-(g) Diagrams showing networks of autoencoders and its different variants.
4.1.5 Variational autoencoder

Another variant of autoencoder, called variational autoencoder (VAE), was introduced as a generative model (Kingma & Welling, 2013). A general architecture of VAE is given in Fig. 4(f). VAEs utilize the strategy of deriving a lower bond estimator from the directed graphical models with continuous distribution of latent variables. The generative parameter θ in the decoder (generative model) assist the learning process of the variational parameter, ϕ as encoder in the variational approximation model. VAEs apply the variational approach to latent representation, learning as additional loss component training estimators, known as stochastic gradient variational Bayes (SGVB) and Autoencoding variational Bayes (AEVB) (Kingma & Welling, 2013). It Optimizes the parameter ϕ and θ for probabilistic encoder $q_\phi(z|x)$, which is an approximation to the generative model $p_\theta(x, z)$, where z is latent variable and x is continuous or discrete variable. Its aim is to maximize the probability of each x in the training data set under entire generative process. However, alternative configuration of generative latent variable modeling rises to give deep generative models (DGMs) instead of existing assumption of symmetric Gaussian posterior (Partaourides at el., 2017).

4.1.6 Contractive autoencoder

Rifai (2011) presented a novel approach for training deterministic autoencoder. Contractive autoencoder is additional of explicit regularizer in the objective function that enables the model to learn a function having slight variations of input values. This additional regularizer corresponds to the squared Forbenius norm of the Jacobian matrix of given activation with respect to the input. The contractive autoencoder is obtained with the regularization term in following equation yield final objective function,

$$f_{c,AE}(\theta) = \sum_{x \in D_n} \left(L(x, g(f(x)) + \lambda \| J_f(x) \|^2_F \right)$$

The difference between contractive AE and DAE stated by (Vincent et al., 2010) as contractive AE explicitly encourage robustness of representation, whereas DAE stressed on the robustness of reconstruction this property make sense of contractive AE a better choice than DAЕs to learn useful feature extraction. Table 1 presents a summary of autoencoders and its variants, and Table 2 presents its applications for medical image analysis.

Table 1. Summary of autoencoders and its variants

Types	Descriptions	References
Autoencoder	One of the simplest form which aims to learn a representation (encoding) for a set of data.	Ballard (1987); Bourlard & Kamp (1988)
Stacking autoencoder	An autoencoder having multiple layers where the outputs of each layers are given as inputs of the successive layer.	Zabalza et al. (2016)
Sparse autoencoder	Encourages hidden units to be zero or near to zero	Goodfellow et al. (2009)
Denosing autoencoder	Capable to predict true inputs from noisy data	LeCun & Gallinari, (1987); Vincent et al. (2008)
Convolutional autoencoder	Learn feature, preserve the local structure of data and avoid distortion of feature space	Guo et al. (2017)
Variational autoencoder	A generative model utilizing strategy of deriving a lower bond estimator from directed graphical models with continuous distribution of latent variables.	Kingma & Welling (2013)
Contractive autoencoder	Forces encoder to take small derivatives	Rifai et al. (2011)
Table 2 Applications of autoencoders and its variants for medical image analysis. [Abbreviations: H&E: hematoxylin and eosin staining; AD: Alzheimer’s disease; MCI: Mild cognitive impairment; fMRI: Functional magnetic resonance imaging; sMRI: Structural magnetic resonance imaging; rs-fMRI: Resting-state fMRI; DBN: Deep belief network; RBM: Restricted Boltzmann machine]

Method	Task	Image type	Remarks	References
SAE	AD/MCI classification	MRI	SAE accompanied by supervised fine tuning	Suk & Shen (2013)
SAE	AD/MCI/HC classification	MRI & PET	Extraction of latent features on a huge set of features obtained from MRI and PET images using SAE	Suk et al. (2013a)
SAE	AD/MCI/HC classification	MRI	SAE used to pre-train 3D CNN	Payan & Montana (2015)
SAE	MCI/HC classification	tMRI	SAE used for feature extraction, HMM as a generative model on top	Suk et al. (2016)
SAE	Hippocampus segmentation	MRI	SAE used for representation learning and measure target/atlas patch	Guo et al. (2014)
SAE	Visual pathway segmentation	MRI	SAE used to learn appearance features to steer the shape model for segmentation	Mansoor et al. (2016)
SAE	Denoising DCE-MRI	MRI	Uses an ensemble of denoising SAE (pre-trained with RBMs). Denoising contrast-enhanced MRI sequences using expert DNNs (pre-trained with RBMs)	Benou et al. (2016)
SSAE	Nucleus detection	Digital pathology image	detection of nuclei on breast cancer digital histopathological images	Xu et al. (2016)
SAE	Stain normalization	Digital pathology image	SAE is applied to classify tissues and their subsequent histogram Matching	Janowczyk et al. (2017)
SAE	Density classification	Mammography	Unsupervised CNN with SAE to learn features from unlabeled data for breast texture and density classification	Kallenberg et al. (2016)
SAE	Lesion classification	MRI	Learn to extract features from multi-parametric MRI data, subsequently creates a hierarchical classification to detect prostate cancer	Zhu et al. (2017)
SAE	Detection of Heart, kidney and liver location	MRI	SAE used for acquisition of spatio-temporal features on 2D along with time DCE-MRI	Shin et al. (2013)
SAE	Cell segmentation	Digital pathology image	Learning spatial relationships	Hatipoglu, N. 2017
SAE	Segmentation right ventricle in cardiac MRI	MRI	SAE applied to obtain an initial right ventricle segmentation.	Avendi, M. 2017
SDAE	Cell segmentation	Digital pathology image	The SDAE trained with data and their structured labels for cell segmentation	Su. H. at el 2018
SSAE	AD	MRI	SSAE for early detection of Alzheimer’s disease from brain MRI	Liu et al. (2014)
SDAE	Breast lesion	Ultrasound and CT	Stacked Denoising AE for Diagnosis of breast nodules and lesions	Cheng et al. (2016)
SDAE	Patient clinical events	Patient clinical history	SDAE for an unsupervised early prediction of patients’ future clinical events and disease.	Miotto et al. (2016)
SDAE	--	CT/MRI	Multi-modal SDAE used to pre-train the DNN.	Cheng et al. (2018)
DCAE	Modeling task IMRI	tMRI	Deep Convolutional AE to model tMRI.	Huang et al. (2018)
CAE	AD/MCI/HC classification	fMRI	CAE used to pre-train 3D CNN.	Hosseini-Asl et al. (2016)
CAE	Nucleus detection	Digital pathology image	Sparse CAE to detect and encode nuclei and feature extraction from tissue section images.	Hou et al. (2019)
4.2. Restricted Boltzmann Machines

Restricted Boltzmann Machines (RBMs) are a variant of Markov Random Field (MRF), constitute of single layer undirected graphical model with an input layer or visible layer $x = (x_1, x_2, ..., x_N)$ and a hidden layer $h = \{h_1, h_2, ..., h_M\}$. The connection between nodes/units are bidirectional, so each given input vector x can take the latent feature representation h and vice-versa. An RBM is a generative model which learns probability distribution over the given input space and generates new data point (Yoo, et al. 2014). Illustration of a typical RBM is shown in Fig. 6(a). In fact, RBMs are restricted version of Boltzmann machines where neurons must form an arrangement of bipartite graphs. Due to this restriction, pairs of nodes belonging to each of the visible and hidden nodes have a symmetric connection between them, and nodes within a group have no internal connections. This restriction makes RBM more efficient training algorithm than the general case of Boltzmann machine. Hinton et al. (2010) proposed a practical guide to train RBMs.

RBMs have been utilized in various aspects of medical image analysis such as detection of variations in Alzheimer disease (Brosch, et al. 2013), image segmentation (Yoo et al. 2014), dimensionality reduction (Cheng et al. 2016), feature learning (Pereira et al. 2018) and so on. A brief account for the application of RMBs in medical image analysis is shown in Table 3.

Method	Task	Image type	Remarks	References
RBM	AD	MRI	Uses a large dataset of MRI to rule out the mode of variations in AD brains.	Brosch et al. (2013)
RBM	Multiple sclerosis	3DMRI	Uses multi-channel 3D MR images of multiple sclerosis (MS) lesion for MS segmentation	Yoo et al. (2014)
RBM	AD/MCI/HC classification	MRI, PET	DBMs on multimodal images from MRI and PET scans for disease classification.	Suk et al. (2014)
RBM	Mass detection in breast cancer	Mammography	RBM based method for oversampling and semi-supervised learning to solve classification of imbalanced data with a few labeled samples	Cao et al. (2015)
RBM	fMRI blind source separation	fMRI	RBM used for both internal and functional interaction-induced latent source detection	Huang et al. (2016)
RBM	Vertebrae localization	CT, MRI	RBMs to locate the exact position of the vertebrae.	Cai et al. (2016b)
RBM	Benign/Malignant classification	Ultrasound	Shear wave elastography for class indication of benign and malignant mammary gland tumors using RBM.	Zhang et al. (2016a)
RBM	Tongue contour extraction	Ultrasound	Analysis of tongue motion during speech, using auto encoders in combination with RBM.	Jaumard-Hakoun et al. (2016)
CRBM	Lung tissue classification and airway detection	CT	Discriminative and generative learning by CRBM to develop filters for data training as well classification.	Van Tulder & de Bruijne (2016)
RBM	Cardiac arrhythmia classification	ECG	Achieves average recognition accuracy for ventricular and supraventricular ectopic beats (93.63% and 95.57%, respectively) for Cardiac arrhythmia classification.	Mathews et al. (2018)
RBM	Brain lesion segmentation	MRI	RBM is used for feature learning, and a Random Forest as a classifier.	Pereira et al. (2018)
4.3. Deep Belief Networks

Deep Belief Networks (DBN) is a kind of neural network proposed by Bengio (2009). It is a greedy layer-wise unsupervised learning algorithm with several layers of hidden variables (Hinton et al., 2016). Layer-wise unsupervised training (Bengio 2007) help the optimization and weight initialization for better generalization. In fact, DBN is a hybrid single probabilistic generative model, like a typical RBM. In order to construct a deep architecture like SAEs where AEs layers are replaced by RBMs, DBN has one lowest visible layer \(v \), representing state of input data vector and a series of hidden layers \(h^1, h^2, h^3, \ldots h^L \). When multiple RBMs are stacked hierarchically, an undirected generative model is formed by top two layers and directed generative model is formed by lower layers. Fig. 6(b), illustrates the
structure of DBN. The following function in DBN represents the joint distribution of visible unit \(v \), hidden layers \(h^l \) (\(l = 1, 2, \ldots, L \)):

\[
P(V, h^1, h^2, \ldots, h^L) = \left(\prod_{l=2}^{L} P(h^l | h^{l+1}) P(h^{L-1}, h^{(L)}) \right) \tag{14}
\]

Hinton et al. (2006a) applied layer-wise training procedure, where lower layers learns low-level features and subsequently higher layers learns high-level features (Hinton et al. 1995). DBN are used to extract features from fMRI images (Plis et al., 2014), temporal ultrasound (Azizi et al. 2016), classify Autism spectrum disorders (Aghdam et al. 2018), and so on. Some of the applications of DBNs are presented in Table 4.

Table 4. Applications of DBNs for medical image analysis

Method	Task	Image type	Remarks	References
DBN	AD/HC classification	MRI	DBNs with convolutional RBMs for manifold learning	Brosch & Tam (2013)
DBN, Convolutional RBM	Manifold Learning	MRI	DBM along with convolutional RBM layers to efficiently train DBMs in order to detect morphological changes in brain in normal as well as disease conditions	Brosch et al. (2014)
DBN	MRI	Evaluation of DBN to estimate brain networks in neurocognitive disorders like Huntington’s disease and Schizophrenia	Plis et al. (2014)	
DBN	AD/MCI/HC classification	MRI	A group of voting schemes clubbed using an SVM to better classify AD and MCI from brain’s 3D gray mater images.	Ortiz et al. (2016)
DBN	Left ventricle segmentation	Ultrasound	DBN assisted system exploiting non-rigid registration, landmarks and patches to maneuver multi atlas segmentation.	Carneiro et al. (2012); Carneiro & Nascimento (2013)
DBN	Schizophrenia/NH classification	MRI	Characterizing differences in morphology of various brain regions in schizophrenia using DBN and supervised fine tuning.	Pinaya et al. (2016)
DBN	Lesion classification	Ultrasound	Training DBN to extract features from prostate ultrasonography images to classify benign and malignant lesions.	Azizi et al. (2016)
DBN	Left ventricle segmentation	MRI	The combination of DBN and level set method to yield automated segmentation of the left ventricle from cardiac cine MRI	Ngo et al. (2017)
DBN	Cardiac arrhythmia classification	ECG	Achieves average recognition accuracy of ventricular and supraventricular ectopic beats (93.63% and 95.57%, respectively) for cardiac arrhythmia classification.	Mathews et al. (2018)
DBN	Autism spectrum disorders classification	rs-fMRI, sMRI	Classifies Autism spectrum disorders (ASDs) in children using rs-fMRI and sMRI data on the basis of Random Neural Network clustering.	Aghdam et al. (2018)
4.4. Deep Boltzmann Machine

Deep Boltzmann machine (DBM) is a robust deep learning model proposed by Salakhutdinov et al. (2009) and Salakhutdinov et al. (2012). They stacked multiple RBMs in a hierarchal manner to handle ambiguous input robustly. Fig. 6(c) represents the architecture of DBM as a composite model of RBMs which clearly shows how DBM differ from DBN. Unlike DBNs, DBMs form undirected generative model combining information from both lower and upper layers which improves the representation power of DBMs. Training of layer-wise greedy algorithm for DBM (Salakhutdinov et al., 2015; Goodfellow et al., 2013b) is calculated by modifying in procedure of DBN.

Recently, a three-layer DBM was presented by Salakhutdinov et al. (2015) and Dinggang et al. (2017). In this three-layer DBM, to learn parameters $\theta = \{w^1, w^2\}$, the values of neighbour layer(s) and probability of visible and hidden units are computed using logistic sigmoidal function. The derivative of log likelihood of the observation (V) with respect to the model parameter(θ) is computed as,

$$\frac{\partial}{\partial w(l)} \ln P(V; \theta) = E_{data}[h^{l-1}(h^l)^T] \sim E_{model}[h^{l-1}(h^l)^T]$$

Where $E_{data}[.]$ denote data-dependent obtained from visible units and $E_{model}[.]$ denote data-independence obtained from the model. Some of the applications of DBMs are shown in Table 5.

Method	Task	Image type	Remarks	References
DBM	Heart motion tracking	MRI	Using three-layered Deep Boltzmann Machine to guide frame-by-frame heart segmentation during radiation therapy of cancer patient on cine MRI images.	Wu, et al., (2018)
DBN	AD/HC classification	MRI	DBN combined with convolutional RBMs for manifold learning.	Brosch & Tam (2013)
RBM	Breast-image classification	MRI	Restricted Boltzmann machine with backpropagation have been used for histopathological breast-image classification	Nahid et al., (2018)
DBM	Medical image retrieval	Multi digital image	DBM based multi model learning to learn joint density model.	Cao, et al., (2014)

4.5. Generative Adversarial Network (GAN)

Generative Adversarial Network (GAN) (Goodfellow, et al. 2014) is one of recent promising technique for building flexible deep generative unsupervised architecture. Goodfellow et al. (2014) proposed two models generative model G and Discriminative model D, where G capture data distribution (p_x)over real data t, and D estimates the probability of a sample coming from training data (m) not from G. In every iteration, backpropagation generator and discriminator competing with each other. The training procedure the probability of D is
maximized. This framework functions like a mini-max two-player game. The value function \(V(G, D) \) establishes following two-player mini-max game is given by,

\[
\min_G \max_D V(G, D) = \mathbb{E}_{t \sim p_{\text{data}}} [\log D(t)] + \mathbb{E}_{m \sim p_m(m)} [\log (1 - D(G(m)))]
\]

(16)

Where \(D(t) \) represents the probability of \(t \) from data \(m \) and \(p_{\text{data}} \) is distribution of real-world data. This model seems to be stable and improved as \(p_g = p_{\text{data}} \). A typical architecture of GAN is depicted in Fig. 6(d). In fact, these two adversaries, Generator and Discriminator, continuously battle during the processing of training. GAN have been applied to generate samples of photorealistic images to visualize new designs. Some of the applications of GAN for medical image analysis are presented in Table 6.

Table 6. Applications of GAN for medical image analysis

Method	Task	Image type	Remarks	References
GAN	Synthesis of retinal images	Retinal images	MI-GAN generates precise segmented images for the application of supervised learning of retinal images.	Iqbal & Ali (2018)
GAN	Chest X-ray	X-ray	GAN used to produce photorealistic images which retain pathological quality	Canas, et al, (2018)
Dual GAN-FCN	Segmentation of regions of interest (ROIs)	---	Improve GAN using dual-path adversarial learning for Fully Convolutional Network based image segmentation	Bi, et al., (2018)
GAN	Simulation of B-mode ultrasound images	Ultrasound	Conditional generative adversarial networks used to simulate ultrasound images at given 3D spatial locations.	Hu et al., (2017)
GAN	Treatment of lymphomas and lung cancer	PET	Multi-channel generative adversarial networks used to synthesize PET data.	Bi, et al., (2017)

5. **List of software tools/packages and benchmark datasets**

A plethora of software tools and packages implementing unsupervised learning models (as discussed in the paper) has been developed and made available to the research community and data analysts. Some of the tools/packages and medical images benchmark datasets are listed in Table 7 and Table 8, respectively.
S. No.	Tools/ Packages Name	Models/ Methods	Description	Language /Technology	URL	
1.	deeplearning4j	Autoencoders	Deep learning APIs for Java having an implementation of several deep learning techniques.	Java	https://deeplearning4j.org/	
2.	unsup under torch7	Autoencoder, etc.	A scientific computing framework with good support for machine learning algorithms that puts GPUs first. Unsup package provides few unsupervised learning algorithms such as autoencoders, clustering, etc.	Lua	https://github.com/torch/torch7	
3.	DeepPy	Autoencoders	MIT licensed deep learning framework that runs on CPU or GPUs and implements autoencoders, in addition to other supervised learning algorithms.	Python	https://github.com/andersbll/deeppy	http://andersbll.github.io/deeppy-website/
4.	SAENET.train	Stacked autoencoder	Build a stacked autoencoder in R environment for pre-training of feed-forward NN and dimension reduction of features.	R package	https://rdrr.io/cran/SAENET/man/SAENET.train.html	
5.	kdsb17	Convolutional autoencoder	Gaussian Mixture Convolutional Autoencoder (GMCAE) used for CT lung scan using Keras/TensorFlow	Python, Keras, Tensor-flow-gpu	https://github.com/alegonz/kdsb17	
6.	autoencoder	Deep autoencoder	Training a deep autoencoder for MNIST digits datasets	Matlab	http://www.cs.toronto.edu/~hinton/code/Autoencoder_Code.tar	
7.	H2O	Deep autoencoder	Parallelized implementations of many supervised and unsupervised machine learning algorithms, including GLM, GBM, RF, DNN, K-Means, PCA, Deep AE, etc.	R package	https://cran.r-project.org/web/packages/h2o/	
8.	dbn	DBN	Deep belief network pre-train in unsupervised manner with stacks of RBM, which in return fine-tuned DBN.	R package	https://rdrr.io/github/TimoMatzen/RBM/src/R/DBN.R	
9.	darch	DBN, RBM	Restricted Boltzmann machine, deep belief network implementation	R package	https://github.com/maddin79/darch	
10.	deepnet	DBN, RBM, deep autoencoders	Implementation of RBM, DBN, deep stacked autoencoders	R package	https://cran.r-project.org/web/packages/deepnet/	
11.	Vulpes	DBN	DBN and other deep learning implementation in F#.	Visual Studio	https://github.com/tsproje cts/Vulpes	
12.	pydbm	DBM/ RBM	RBM/DBM are implemented in python for pre-learning or dimension reduction	Python	https://pypi.org/project/pydbm/	
13.	RBM	RBM	Simple RBM implementation in Python	Python	https://github.com/echen/rstricted-boltzmann-machines	
14.	xRBM	RBM and its variants	Implementation of RBM and its variants in Tensorflow	Python	https://github.com/omimo/xRBM	
15.	DCGAN.torch	GAN	Unsupervised representation learning using Deep Convolutional GAN	Lua	https://github.com/soumit h/dcgan.torch	
16.	pix2pix	GAN	Conditional Adversarial Networks for Image-to-image translation synthesizing from the image.	Linux Shell Script	https://github.com/phillipi/pix2pix	
17.	ebgan	GAN	Energy-based GAN equivalent to probabilistic GANs produces high resolution images.	Python	https://github.com/eriklindernoen/PyTorch-GAN/tree/master/impleme ntations/ebgan	
Table 8. List of benchmark medical image datasets

S. No.	Data set	Modalities	Medical condition	Accessibility	URL
1.	ABIDE	MRI	Autism spectrum disorder	Open access	http://fcon_1000.projects.nitrc.org/indi/abide/
2.	ADNI	MRI	Alzheimer’s disease	Paid	http://adni.loni.usc.edu/data-samples/access-data/
3.	BCDR	Mammography	Breast cancer	Open access	https://bcdr.eu/
4.	CIVM	3D-MRM	Histology of the Embryonic and Neonatal Mouse	Limited access	http://www.civm.duhs.duke.edu/devatlas/
5.	DDSM	Mammography	Breast cancer	Open access	http://marathon.csee.usf.edu/Mammography/Database.html
6.	DermNet	Photo dermatology	A huge database of various skin diseases	Limited access	http://www.dermnet.com/
7.	DICOM	MRI, CT, etc.	A variety of medical images, videos and signal files	Open access	https://www.dicomlibrary.com
8.	DRIVE	2D color images of retina	Retinal blood vessel segmentation to study diabetic retinopathy	Open access	http://www.isi.uu.nl/Research/Databases/DRIVE/download.php
9.	IDA		An online resource for neuroscience images	Open access	https://ida.loni.usc.edu/
10.	ISDIS	Dermoscopy, teledermatology, spectroscopy etc.	Skin disease	Paid	https://isdis.org/
11.	MedPix	Variety of imaging data	Online database of medical images, teaching cases, and clinical topics	Open access	https://medpix.nlm.nih.gov
12.	NBIA	CT, PT, MRI, etc.	A database of the National Cancer Institute proving medical images of various conditions and anatomical sites.	Limited/ open access	https://imaging.nci.nih.gov
13.	OASIS	MRI and PET	Normal aging or mild to moderate Alzheimer's Disease	Open access	http://www.oasis-brains.org/
14.	TCIA	Collection of MRI, CT etc.	Multimodal image archive for various types of cancer	Limited/ open access	http://www.cancerimagingarchive.net/
15.	TCGA	Histopathology slide images	Histopathology slide images from sample portions of various types of cancers	Open	https://cancergenome.nih.gov/
6. Discussion, opportunities and challenges

Medical imaging and diagnostic techniques are one of the most widely used for early detection, diagnosis and treatment of complex diseases. After significant advancement in machine learning and deep learning (both supervised and unsupervised), there is a paradigm shift from the manual interpretation of medical images by human experts such as radiologists and physicians to an automated analysis and interpretation, called computer-assisted diagnosis (CAD). As unsupervised learning algorithms can derive insights directly from data, use them for data-driven decisions making, and are more robust, hence they can be utilized as the holy grail of learning and classification problems. Furthermore, these models are also utilized for other important tasks including compression, dimensionality reduction, denoising, super resolution and some degree of decision making.

Unsupervised learning and CAD, both being in its infancy, researchers and practitioners have much opportunity in this area. Some of them are: (i) Allow us to perform exploratory analysis of data (ii) Allow to be used as preprocessing for supervised algorithm, when it is used to generate a new representation of data which ensure learning accuracy and reduces memory time overheads. (iii) Recent development of cloud computing, GPU-based computing, parallel computing and its cheaper cost allow big data processing, image analysis and execute complex deep learning algorithms very easily.

Some of the challenges and research directions are:

(i) Difficult to evaluate whether algorithm has learned anything useful: Due to lack of label in unsupervised learning, it is nearly impossible to quantify its accuracy. For instance, how can we access whether K-means algorithm found the right clusters? In this direction, there is a need to develop algorithms which can give an objective performance measure in unsupervised learning.

(ii) Difficult to select right algorithm and hardware: Selection of right algorithm for a particular type of medical image analysis is not a trivial task because performances of the algorithm are highly dependent on the types of data. Similarly, hardware requirement also varies from problem to problem.

(iii) Will unsupervised learning work for me? It is mostly asked question, but its answer totally depends on the problem at hand. In image segmentation problem, clustering algorithm will only work if the images do fit into naturals groups.

(iv) Not a common choice for medical image analysis: Unsupervised learning is not a common choice for medical image analysis. However, from literature it is revealed that these (autoencoders and its variants, DBN, RBM, etc.) are mostly used to learn the hierarchy level of features for classification tasks. It is expected that unsupervised learning will play pivotal role in solving complex medical imaging problems which are not only scalable to large amount of unlabeled data, but also suitable for performing unsupervised and supervised learning tasks simultaneously (Yi et al., 2018).
(v) Development of patient-specific anatomical and organ model: Anatomical skeletons play crucial role in understanding diseases and pathology. Patient-specific anatomical model is frequently used for surgery and interventions. They help to plan procedure, perform measurement for device surging, and predict the outcome of post-surgery complexities. Hence, the algorithm needs to be developed to construct patient-specific anatomical and organ model from medical images.

(vi) Heterogeneous image data: In the last two to three decades, more emphasis was given to well-defined medical image analysis applications, where developed algorithms were validated on well-defined types of images with well-defined acquisition protocol. The algorithms are required, which can work on more heterogeneous data.

(vii) Semantic segmentation of images: Semantic segmentation is task of complete scene understanding, leading to knowledge inference from imagery. Scene understanding is a core of computer vision problems which has several applications, including human-computer interaction, self-driving vehicles, virtual reality, and medical image analysis. The semantic segment of medical images with acceptable accuracy is still challenging.

(viii) Medical video transmission: Enabling 3D video in recently adopted telemedicine and U-healthcare applications result in more natural viewing conditions and better diagnosis. Also, remote surgery can be benefited from 3D video because of additional dimensions of depth. However, it is crucial to transmit data-hungry 3D medical video stream in real-time through limited bandwidth channels. Hence, efficient encoding and decoding techniques for 3D video data transmission is required.

(ix) Need extensive inter-organizational collaborations: Inter-professional and inter-organizational collaboration is important for better functioning of the health care system, eliminating some of the pitfalls such as limited resources, lack of expertise, aging populations, and combat chronic diseases (Karam et al., 2017). Medical image based CAD needs extensive inter-organizational collaborations among doctors, radiologists, medical image analysts, and computational data analysts.

(x) Need to capitalize big medical imaging market: According to IHS Markit report (https://technology.ihs.com), medical imaging market has total global revenue of $21.2 billion in 2016, which is forecasted to touch $24.0 billion by 2020. According to WHO, global population will rise from 12% to 22% from 2015 to 2050. Population aging lead to increased rate of chronic diseases globally and hence there is a need to capitalize a big medical imaging market worldwide.

(xi) Black-box and its acceptance by health professionals: Machine learning algorithms are boon which solves the problems earlier thought to be unsolvable, however, it suffers from being “black-box”, i.e., how output arrives from the model is very complicated to interpret. Particularly, deep learning models are almost non-interpretable and but still being used for complex medical image analysis. Hence, its acceptance by health professionals is still questionable.
Will technology replace radiologists? For the processing of medical images, deep learning algorithms help select and extract important features and construct new ones, leading to new representation of images, not seen before. For image interpretation side, deep learning helps identify, classify, quantify disease patterns, allow measure predictive targets, and make predictive models, and so on. So, will technology “replace radiologists”, or migrate to “virtual radiologist assistant” in near future? Hence, following slogan is quite relevant in this context: “Embrace it, it will make you stronger; reject it, it may make you irrelevant”.

In a nutshell, unsupervised learning is very much open topic where researchers can make contributions by developing a new unsupervised method to train how network (e.g. Solve a puzzle, generate image patterns, image patch comparison, etc.) and re-thinking of creating a great unsupervised feature representation, (e.g. What is the object and what is the background?), nearly analogous to the human visual system.

7. Conclusion

Medical imaging is one of the important techniques for early detection, diagnosis and treatment of complex diseases. Interpretation of medical images is usually performed by human experts such as radiologists and physicians. After the success of machine learning techniques, including deep learning, availability of cheap computing infrastructure through cloud computing, there has been a paradigm shift in the field of computer-assisted diagnosis (CAD). Both supervised and unsupervised machine learning approaches are widely applied in medical image analysis, each of them with their own pros and cons. Due to the fact that human supervisions are not always available or inadequate or biased, therefore, unsupervised learning algorithms, including its deep architecture, give a big hope with lots of advantages. Unsupervised learning algorithms derive insights directly from data, and use them for data-driven decisions making. Unsupervised models are more robust and they can be utilized as the holy grail of learning and classification problems. These models are also used for other tasks including compression, dimensionality reduction, denoising, super resolution and some degree of decision making. Therefore, it is better to construct a model without knowing what tasks will be at hand and we would use representation (or model) for. In a nutshell, we can think of unsupervised learning as preparation (preprocessing) step for supervised learning tasks, where unsupervised learning of representation may allow better generalization of a classifier.

Acknowledgements

Authors would like to thank Ms. Sahar Qazi, Ms. Almas Jabeen, and Mr. Nisar Wani for necessary support.

Conflicts of Interest Statement

Authors declare that there is no any conflict of interest in the publication of this manuscript.
References

Aghdam, M. A., Sharifi, A., & Pedram, M. M. (2018). Combination of rs-fMRI and sMRI Data to Discriminate Autism Spectrum Disorders in Young Children Using Deep Belief Network. Journal of digital imaging, 1-9. https://doi.org/10.1007/s10278-018-0093-8

Avendi, M. R., Kheradvar, A., & Jafarkhani, H. (2017). Automatic segmentation of the right ventricle from cardiac MRI using a learning-based approach. Magnetic Resonance in Medicine, 78(6), 2439–2448. https://doi.org/10.1002/mrm.26631

Azizi, S., Imani, F., Ghavidel, S., Tahmasebi, A., Kwak, J.T., Xu, S., Turkbey, B., Choyke, P., Pinto, P., Wood, B., Mousavi, P., Abolmaesumi, P. (2016). Detection of prostate cancer using temporal sequences of ultrasound data: a large clinical feasibility study. Int. J. Comput. Assist. Radiol. Surg. 11 (6), 947–956. https://doi.org/10.1007/s11548-016-1395-2

Ballard, D. H. (1987). Modular Learning in Neural Networks. In AAAI (pp. 279-284).

Bengio Y, Courville A, Vincent P. (2013). Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell. 35:1798–828. https://doi.org/10.1109/TPAMI.2013.50

Bengio, Y. (2009). Learning Deep Architectures for AI. Foundations and Trends in Machine Learning, 2(1), 1-127. https://doi.org/10.1561/2200000006

Bengio, Y., Lamblin, P. , Popovici, D., Larochelle, H. (2007). Greedy layer-wise training of deep networks. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 153–160.

Benou, A., Veksler, R., Friedman, A., Raviv, T.R. (2016). De-noising of contrast-enhanced MRI sequences by an ensemble of expert deep neural networks. In: Deep Learning and Data Labeling for Medical Applications (pp. 95-110). Springer, Cham. https://doi.org/10.1007/978-3-319-46976-8_11

Bi, L., Kim, J. (2018). Dual-Path Adversarial Learning for Fully Convolutional Network (FCN)-Based Medical Image Segmentation, Visual Computer, 34(6-8), 1043-1052. https://doi.org/10.1007/s00371-018-1519-5

Bi, L., Kim, J., Kumar, A., Feng, D., Fulham, M. (2017). Synthesis of positron emission tomography (PET) images via multi-channel generative adversarial networks (GANs). Lecture Notes in Computer Science, 10555, pp. 43-51. https://doi.org/10.1007/978-3-319-67564-0_5

Bishop CM. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics), 1st edn. Springer, New York.

Bourlard H, Kamp Y. (1988). Auto-association by multilayer perceptrons and singular value decomposition. Biological Cybernetics, 59, 291–94. https://doi.org/10.1007/BF00332918

Brosch, T., Tam, R. (2013). Manifold learning of brain MRIs by deep learning. In: Proceedings of the Medical Image Computing and Computer-Assisted Intervention: In: Lecture Notes in Computer Science, 8150, pp. 633–640. https://doi.org/10.1007/978-3-642-40763-5_78

Brosch, T., Yoo, Y., Li, D. K. B., Trabousee, A., Tam, R. (2014). Modeling the variability in brain morphology and lesion distribution in multiple sclerosis by deep learning. In: Med Image Comput Comput Assist Interv. Lecture Notes in Computer Science, 8674 (pp. 462–469).

Cai, Y., Landis, M., Laidley, D. T., Kornecki, A., Lum, A., Li, S. (2016b). Multi-modal vertebrae recognition using transformed deep convolution network. Comput Med Imaging Graph, 51, 11–19.

Canas, K., Liu X., Ubiera, B., Liu, Y. (2018). Scalable biomedical image synthesis with GAN. ACM International Conference Proceeding Series, art. no. a95. https://doi.org/10.1145/3219104.3229261

Cao, P., Liu, X., Bao, H., Yang, J., & Zhao, D. (2015). Restricted Boltzmann machines based oversampling and semi-supervised learning for false positive reduction in breast CAD. Bio-medical materials and engineering, 26(s1), S1541-S1547. https://doi.org/10.3233/BME-151453

Cao, Y., Steffey, S., He, J., Xiao, D., Tao, C., Chen, P., Müller, H. (2014). Medical image retrieval: A multimodal approach. Cancer Informatics, 125-136. https://doi.org/10.4137/CIN.S14053
Carneiro, G., Nascimento, J.C. (2013). Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2592–2607. https://doi.org/10.1109/TPAMI.2013.96

Carneiro, G., Nascimento, J.C., Freitas, A. (2012). The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods. IEEE Transactions on Image Processing, 21(3), 968–982. https://doi.org/10.1109/TIP.2011.2169273

Chan, T. H., Jia, K., Gao, S., Lu, J., Zeng, Z., & Ma, Y. (2015). PCANet: A simple deep learning baseline for image classification?. IEEE Transactions on Image Processing, 24(12), 5017-5032. https://doi.org/10.1109/TIP.2015.2475625

Cheng J-Z, Ni D, Chou Y-H, et al. (2016). Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Scientific Reports, 6, 24454. https://doi.org/10.1038/srep24454

Cheng, Li Zhang & Yefeng Zheng. (2018). Deep similarity learning for multimodal medical images, Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 6:3, 248-252. https://doi.org/10.1080/21681163.2015.1135299

Dinggang S. & Wu, Guorong& Suk, Heung-Ill. (2017). Deep Learning in Medical Image Analysis. Annual review of biomedical engineering, 19. https://doi.org/10.1146/annurev-bioeng-071516-044442

Drineas, Petros & Frieze, Alan & Kannan, Ravindran & Vempala, Santosh & Vinay, V. (1999). Clustering in Large Graphs and Matrices. In Proceedings of the 10th ACM-SIAM Symposium on Discrete Algorithms(pp. 291-299).

Fischer, P. Pohl, T. Faranesh, A., Maier, A. and Hornegger, J. (2017). Unsupervised Learning for Robust Respiratory Signal Estimation From X-Ray Fluoroscopy, IEEE Transactions on Medical Imaging, 36(4), 865-877. https://doi.org/10.1109/TMI.2016.2609888

Gallinari, Y. LeCun, S. Thiria, and F. Fogelman-Soulie. Memoires associatives distribuees. In Proceedings of COGNITIVA 87, Paris, La Villette, 1987

Goodfellow, I. J., Mirza, M., Courville, A., and Bengio, Y. (2013b). Multi-prediction deep Boltzmann machines. In NIPS’2013.

Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. (2014). Generative adversarial nets. In Advances in Neural Information Processing Systems. Curran Associates, 2672–2680.

Goodfellow, Quoc Le, Andrew Saxe, and Andrew Ng. (2009). Measuring invariances in deep networks. In Yoshua Bengio, Dale Schuurmans, Christopher Williams, John Lafferty, and Aron Culotta, editors, Advances in Neural Information Processing Systems 22 (NIPS’09), pages 646–654.

Guo, X., Liu, X., Zhu, E., & Yin, J. (2017, November). Deep clustering with convolutional autoencoders. In International Conference on Neural Information Processing (pp. 373-382). Springer, Cham.

Guo, Y., Wu, G., Commander, L. A., Szary, S., Jewells, V., Lin, W., & Shent, D. (2014). Segmenting hippocampus from infant brains via sparse patch matching with deep-learned features. Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention, 17(Pt 2), 308-15.

Hatipoglu, N., & Bilgin, G. (2017). Cell segmentation in histopathological images with deep learning algorithms by utilizing spatial relationships. Medical & Biological Engineering & Computing, 55(10), 1829–1848. https://doi.org/10.1007/s11517-017-1630-1

Hinton G, Dayan P, Frey B,NealR. (1995). The “wake–sleep” algorithm for unsupervised neural networks. Science, 268:1158–61. https://doi.org/10.1126/science.7761831

Hinton GE, Salakhutdinov RR. (2006). Reducing the dimensionality of data with neural networks. Science 313:504–7. https://doi.org/10.1126/science.1127647

Hinton, G., 2010. A practical guide to training restricted boltzmann machines. Momentum 9 (1), 926
Hinton, G.E., Osindero, S., Teh, Y.-W., 2006a. A fast learning algorithm for deep belief nets. *Neural Comput.*, 18, 1527–1554. https://doi.org/10.1162/neco.2006.18.7.1527

Hosseini-Asl, E., Gimel’farb, G., El-Baz, A. (2016). Alzheimer’s disease diagnostics by a deeply supervised adaptable 3D convolutional network. *arxiv*: 1607.00556.

Hou, L., Nguyen, V., Kanevsky, A. B., Samaras, D., Kurc, T. M., Zhao, T., ... & Saltz, J. H. (2019). Sparse Autoencoder for Unsupervised Nucleus Detection and Representation in Histopathology Images. *Pattern Recognition*, 86: 188-200. https://doi.org/10.1016/j.patcog.2018.09.007

Hu, Y., Gibson, E., Lee, L.-L., Xie, W., Barratt, D.C., Vercauteren, T., Noble, J.A. (2017). Freehand ultrasound image simulation with spatially-conditioned generative adversarial networks. *Lecture Notes in Computer Science*, 10555 (pp. 105-115). https://doi.org/10.1007/978-3-319-67564-0_11

Huang, H., Hu, X., Han, J., Lv, J., Liu, N., Guo, L., Liu, T., 2016. Latent source mining in FMRI data via deep neural network. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, pp. 638–641. https://doi.org/10.1109/ISBI.2016.7493348

Huang, H., Hu, X., Zhao, Y., Makkie, M., Dong, Q., Zhao, S., ... & Liu, T. (2018). Modeling task fMRI data via deep convolutional autoencoder. *IEEE transactions on medical imaging*, 37(7), 1551-1561.

Iqbal, T., Ali, H. Generative Adversarial Network for Medical Images (MI-GAN) (2018) Journal of Medical Systems, 42 (11), art. no. 231. https://doi.org/10.1007/s10916-018-1072-9

Jabeen, A., Ahmad, N., & Raza, K. (2018). Machine Learning-Based State-of-the-Art Methods for the Classification of RNA-Seq Data. In *Classification in BioApps* (pp. 133-172). Springer, Cham. https://doi.org/10.1007/978-3-319-65981-7_6

Jain K. (2010). Data clustering: 50 years beyond K-means. *Pattern Recogn. Lett.*, 31, 8 (June 2010), 651-666. https://doi.org/10.1016/j.patrec.2009.09.011

Jain K., Karthik Nandakumar, and Abhishek Nagar. (2008). Biometric Template Security. EURASIP Journal on Advances in Signal Processing Volume 2008, Article ID 579416, 17 pages. https://doi.org/10.1155/2008/579416

Jain K., Murty, M & J. Flynn, Patrick. (1999). Data clustering: a review. *ACM Comput Surv.* *ACM Comput. Surv.*, 31. 264-323. https://doi.org/10.1145/331499.331504

Janowczyk, A., Basavanahally, A., Madabhushi, A. (2017). Stain normalization using sparse autoencoders (STANOSA): application to digital pathology. *Comput. Med. Imaging Graph* 57, 50–61. https://doi.org/10.1016/j.compmedimag.2016.05.003

Jaumard-Hakoun, A., Xu, K., Roussel-Ragot, P., Dreyfus, G., Denby, B. (2016). Tongue contour extraction from ultrasound images based on deep neural network. *arxiv*: 1605.05912 .

Junbo Zhao, Michael Mathieu and Yann LeCun, (2017). Energy-Based Generative Adversarial Networks. *ICLR* 2017, arXiv:1609.03126v4

Kallenberg, M., Petersen, K., Nielsen, M., Ng, A., Diao, P., Igel, C., Vachon, C., Hol- land, K., Karssemeijer, N., Lillholm, M., 2016. Unsupervised deep learning ap- plied to breast density segmentation and mammographic risk scoring. *IEEE Trans. Med. Imaging* 35, 1322–1331. https://doi.org/10.1109/TMI.2016.2532122

Karam, M., Brault, I., Van Durme, T., & Macq, J. (2017). Comparing interprofessional and interorganizational collaboration in healthcare: A systematic review of the qualitative research. *International journal of nursing studies*.

Karim Armanious, Chenming Yang, Marc Fischer, Thomas K’ustner, Konstantin Nikolaou, Sergios Gatidis, and Bin Yang. MedGAN: Medical Image Translation using GANs. *Journal Of Latex Class Files*, Vol. 14, No. 8, August 2015.

Kingma and Max Welling. 2013. Auto-encoding variational bayes. *CoRR*abs/1312.6114 (2013). Retrieved from http://arxiv.org/abs/1312.6114
Li, F., Qiao, H., Zhang, B., Xi, X. (2017). Discriminatively boosted image clustering with fully convolutional auto-encoders. *arXiv preprint arXiv:1703.07980*.

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., ... & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. *Medical image analysis, 42*, 60-88.. https://doi.org/10.1016/j.media.2017.07.005

Liu, S., Liu, S., Cai, W., et al. Early diagnosis of Alzheimer’s disease with deep learning. In: *International Symposium on Biomedical Imaging*, Beijing, China 2014, 1015–18.

Makhzani, A. & Frey, B. (2013). k-Sparse Autoencoders. *arxiv: preprint: 1312.5663*.

Mansoor, A., Cerrolaza, J., Idrees, R., Biggs, E., Alsharid, M., Avery, R., Linguraru, M.G., 2016. Deep learning guided partitioned shape model for anterior visual path- way segmentation. IEEE Trans. Med. Imaging 35 (8), 1856–1865. https://doi.org/10.1016/j.media.2016.2535222

Mathews, S. M., Kamblamettu, C., & Barner, K. E. (2018). A novel application of deep learning for single-lead ECG classification. *Computers in biology and medicine, 99*:53-62. https://doi.org/10.1016/j.compbiomed.2018.05.013

Miotto, R., Li, L., Kidd, B.A., et al. (2016). Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. *Scientific Reports, 6*:26094. https://doi.org/10.1038/srep26094

Ng, A. (2013). Sparse autoencoder lecture notes. Source: web.stanford.edu/class/cs294a/sparseAutoencoder.pdf

Ngo, T.A., Lu, Z., Carneiro, G. (2017). Combining deep learning and level set for the au- tomated segmentation of the left ventricle of the heart from cardiac cine mag- netic resonance. *Med. Image Anal. 35*, 159–171. https://doi.org/10.1016/j.medica.2016.05.009

Ortiz, A., Munilla, J., Górriz, J.M., Ramírez, J. (2016). Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease. *International Journal of Neural Systems, 26*(7), 1650025. https://doi.org/10.1142/S0129065716500258

Partaourides, Harris; Chatzis, Sotirios P. (2017). Asymmetric deep generative models. *Neurocomputing, 241*, 90. https://doi.org/10.1016/j.neucom.2017.02.028

Payan, A., Montana, G. (2015). Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural network arXiv preprint arXiv:1502.02506.

Pereira, S., Meier, R., McKinley, R., Wiest, R., Alves, V., Silva, C. A., & Reyes, M. (2018). Enhancing interpretability of automatically extracted machine learning features: application to a RBM-Random Forest system on brain lesion segmentation. *Medical image analysis, 44*, 228-244. https://doi.org/10.1016/j.media.2017.12.009

Pinaya, W.H.L., Gadelha, A., Doyle, O.M., Noto, C., Zugman, A., Cordeiro, Q., Jack- owski, A.P., Bressan, R.A., Sato, J.R., 2016. Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia. *Nat. Sci. Rep. 6*, 38897. https://doi.org/10.1038/srep38897

Plis, S.M., Hjelm, D.R., Salakhutdinov, R., Allen, E.A., Bockholt, H.J., Long, J.D., John- son, H.J., Paulsen, J.S., Turner, J.A., Calhoun, V.D., 2014. Deep learning for neu- roimaging: a validation study. *Front. Neurosci.* https://doi.org/10.3389/fnins.2014.00229

Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and YoshuaBengio. 2011. Contractive auto-encoders: explicit invariance during feature extraction. In *Proceedings of the 28th International Conference on
International Conference on Machine Learning (ICML‘11), LiseGetoor and Tobias Scheffer (Eds.). Omnipress, USA, 833-840.

Salakhutdinov R, and Geoffrey Hinton. 2009. Deep Boltzmann machines. In Artificial Intelligence and Statistics. PMLR, 448–455.

Salakhutdinov R, and Geoffrey Hinton. 2012. An efficient learning procedure for deep Boltzmann machines. *Neural Computation* 24, 8 (2012), 1967–2006.

Salakhutdinov R. 2015. Learning deep generative models. Annu. Rev. Stat. Appl. 2:361–85

Shi, J. Wu, Y. Li, Q. Zhang and S. Ying, "Histopathological Image Classification WithColor Pattern Random Binary Hashing-Based PCANet and Matrix-Form Classifier," in IEEE Journal of Biomedical and Health Informatics, vol. 21, no. 5, pp. 1327-1337, Sept. 2017. https://doi.org/10.1109/JBHI.2016.2602823

Shin, H. C., Orton, M. R., Collins, D. J., Doran, S. J., & Leach, M. O. (2013). Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data. *IEEE transactions on pattern analysis and machine intelligence*, 35(8), 1930-1943. https://doi.org/10.1109/TPAMI.2012.277

Su H., Xing F., Kong X., Xie Y., Zhang S., Yang L. (2018). Robust Cell Detection and Segmentation in Histopathological Images Using Sparse Reconstruction and Stacked Denoising Autoencoders. *IEEE Transactions on Medical Imaging*, 37(3), 1327-1337, Sept. 2018. https://doi.org/10.1109/TMI.2016.2526687

Suk, H. I., Lee, S. W., Shen, D., (2013a). Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. *Brain structure & function*, 220(2), 841-59. https://doi.org/10.1007/s00429-013-0687-3

Suk, H.-I., Lee, S.-W., Shen, D. (2014). Hierarchical feature representation and multi-modal fusion with deep learning for AD/MCI diagnosis. *Neuroimage* 101, 569–582. https://doi.org/10.1016/j.neuroimage.2014.06.077

Suk, H.-I., Shen, D. (2013). Deep learning-based feature representation for AD/MCI classification. In: Proceedings of the Medical Image Computing and Computer-Assisted Intervention. In: *Lecture Notes in Computer Science*, 8150 (pp. 583–590). https://doi.org/10.1007/978-3-642-40763-5_72

Suk, H.-I., Wee, C.-Y., Lee, S.-W., Shen, D. (2016). State-space model with deep learning for functional dynamics estimation in resting-state fMRI. *Neuroimage*, 129, 292–307. https://doi.org/10.1016/j.neuroimage.2016.01.005

Van Tulder, G., & de Bruijne, M. (2016). Combining generative and discriminative representation learning for lung CT analysis with convolutional restricted boltzmann machines. *IEEE transactions on medical imaging*, 35(5), 1262-1272. https://doi.org/10.1109/TMI.2016.2526687

Vincent P, Larochelle H, Lajoie I, (2010) Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. *Journal of Machine Learning Research*, 11, 3371-3408

Vincent, H. Larochelle, Y. Bengio, and P.A. Manzagol. Extracting and composing robust features with denoising autoencoders. In W.W. Cohen, A. McCallum, and S.T. Roweis, editors, Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML’08), pages 1096–1103. ACM, 2008.

Wani, N., & Raza, K. (2018). Multiple Kernel-Learning Approach for Medical Image Analysis. In *Soft Computing Based Medical Image Analysis* (pp. 31-47). https://doi.org/10.1016/B978-0-12-813087-2.00002-6

Wu, J., Ruan, S., Mazur, T.R., Daniel, N., Lashmett, H., Ochoa, L., Zoberi, I., Lian, C., Gach, H.M., Mutic, S., Thomas, M., Anastasio, M.A., Li, H. (2018). Heart motion tracking on cine MRI based on a deep Boltzmann machine-driven level set method. In *Proceedings of International Symposium on Biomedical Imaging* (pp. 1153-1156). https://doi.org/10.1109/ISBI.2018.8363775

Xu, J., Xiang, L., Liu, Q., Gilmore, H., Wu, J., Tang, J., Madabhushi, A. (2016). Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. *IEEE Trans. Med. Imaging* 35, 119–130. https://doi.org/10.1109/TMI.2015.2458702
Yi, W., Tsang, K. K., Lam, S. K., Bai, X., Crowell, J. A., & Flores, E. A. (2018). Biological plausibility and stochasticity in scalable VO$_2$ active memristor neurons. *Nature Communications*, 9(1), 4661. https://doi.org/10.1038/s41467-018-07052-w

Yoo, Y., Brosch, T., Traboulsee, A., Li, D. K., & Tam, R. (2014). Deep learning of image features from unlabeled data for multiple sclerosis lesion segmentation. In *International Workshop on Machine Learning in Medical Imaging* (pp. 117-124). Springer, Cham. https://doi.org/10.1007/978-3-319-10581-9_15

Zabalza, J., Ren, J., Zheng, J., Zhao, H., Qing, C., Yang, Z., ... & Marshall, S. (2016). Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging. *Neurocomputing*, 185, 1-10. https://doi.org/10.1016/j.neucom.2015.11.044

Zhang, Q., Xiao, Y., Dai, W., Suo, J., Wang, C., Shi, J., Zheng, H., (2016a). Deep learning based classification of breast tumors with shear-wave elastography. *Ultrasonics*, 72, 150–157. https://doi.org/10.1016/j.ultras.2016.08.004

Zhao, Wei & Jia, Zuchen & Wei, Xiaosong & Wang, Hai. (2018). An FPGA Implementation of a Convolutional Auto-Encoder. *Applied Sciences*. 8. 504. https://doi.org/10.3390/app8040504

Zhu, Y., Wang, L., Liu, M., Qian, C., Yousuf, A., Oto, A., Shen, D. (2017). MRI Based prostate cancer detection with high-level representation and hierarchical classification. *Med. Phys.* 44 (3), 1028–1039. https://doi.org/10.1002/mp.12116