Genomic disorders are diseases that result from rearrangements of the human genome rather than from DNA sequence base changes. Moreover, such rearrangements occur because of architectural features of the genome that incite genome instability. The idea of genomic disorders emanated from locus-specific studies of the common autosomal dominant peripheral neuropathies: Charcot-Marie-Tooth disease type 1A (CMT1A; Mendelian Inheritance in Man (MIM) database ID 118220 [1]) and hereditary neuropathy with liability to pressure palsies (HNPP; MIM 162500). A careful re-read of the early reports on these conditions reveals nearly all the key concepts of genomic disorders, including genomic duplication [2,3] and deletion [4], gene dosage (PMP22) [5-8] and specific gene copy number variation (CNV) [6-8]. The concepts of genome architecture and low-copy repeats (LCRs) or segmental duplications (SDs) were well described before there was either a draft or a finished reference genome sequence [9,10] (Figure 1). The term LCR was first introduced by Bernice Morrow following her studies of DiGeorge syndrome (MIM 188400) rearrangement breakpoints [11] whereas the term SD was introduced by Evan Eichler [12,13] to explain his observations from genome-wide studies. The concepts of non-allelic homologous recombination (NAHR) [9], although the specific term NAHR was not introduced until later [14], reciprocal recombination resulting in duplication/deletion of the same genomic interval [9,10], recombination hotspots [15,16] and the effects of CNV (such as duplication) on the interpretation of the segregation of marker genotypes [2,17] also began to emerge at this early stage.

Nevertheless, progress was blocked by both technological and conceptual limitations. Technically, we had no way to view the entire human genome simultaneously at a level of resolution that would enable insights into molecular mechanisms. Conceptually, locus-specific thinking had permeated genetics for over a century, with genocentric (gene-specific) views and base-pair changes as the one form of mutation predominant during the latter half of the 20th century and often blindly biasing genetic thinking to this day. The significant heritability and uncertain molecular basis of common disorders has been approached with such genocentric and ‘point mutation’ genetic thinking. Even now, we witness this as a recurrent theme with an excessive focus on genome-wide association studies (GWASs) evaluating ancient SNPs, as contrasted with the potential involvement of recent or new mutations and/or CNV.

At the time of the early studies leading to the concept of genomic disorders, the one way to visualize the entire human genome was through chromosome studies and usually by the G-banded karyotype provided from clinical
cytogenetics. We were thus fascinated and excited to find that our studies of a microdeletion syndrome, the Smith-Magenis syndrome (SMS; MIM 182290), which results from a 3.7 Mb genomic deletion rearrangement large enough to be visualized by microscopy, revealed similar observations to those found for CMT1A/HNPP, including recurrent breakpoints [18-20], a surrounding genomic architecture consisting of LCRs (repeat gene clusters in this case) [21], reciprocal recombination [22,23] and occurrence by NAHR [21] (Figures 1 and 2).

These findings crystallized and solidified the concept of genomic disorders [24]. The concept of genomic disorders is predicated on two general ideas: firstly, that genomic disorders occur by rearrangements of our genome (the human genome is disordered) and not by DNA-sequence-based changes (that is, not by base-pair changes or by SNPs that cause disease); and secondly, that genome architecture incites genome instability. This article stated that structural characteristics of the human genome predispose it to rearrangements that result in human disease traits, and that genome alterations can occur through many mechanisms, including homologous recombination between region-specific LCRs [24]. This first mechanism was later termed NAHR [14]. The term NAHR stresses the mechanism by which these particular rearrangements of the human genome occur, including the requirement for homologous substrates and the observations of gene conversion and recombination hotspots. Furthermore, NAHR can cause duplication, deletion and inversion. In contrast, unequal crossing-over usually

![Figure 1](http://genomemedicine.com/content/1/4/42) Low-copy repeats (LCRs) flanking the Charcot-Marie-Tooth disease type 1A duplication (CMT1A-REP) and the Smith-Magenis deletion (SMS-REP). (a) A somatic cell hybrid panel with a chromosome 17p ideogram (left) and vertical bars representing the regions retained in the individual human hybrid cell lines listed at the top. (b) Southern hybridization with a CMT1A-REP probe. There are two cross-hybridizing signals in human genomic DNA (lane 1), none in the mouse and hamster genomic DNA (lanes 2 and 3), and the same two in a monochromosomal hybrid (MH22-6, lane 4) retaining human chromosome 17. Both copies map to the CMT1A duplication region at 17p12. This is interpreted as showing that there are two copies of CMT1A-REP, both mapping to the CMT1A duplication locus, and both of which evolved late in the mammalian radiation as they are not present in mouse or hamster [9]. (c) Three copies of SMS-REP (arrows) on chromosome 17 [21]. We used the term REP because at the time my laboratory was working with prokaryotic repeated sequences (REP) and had developed a technique we referred to as rep-PCR [157,158].
refers to the segregation of marker genotypes and can lead to duplication or deletion chromosomes [25-27]. Admittedly, almost all of the cases used to bolster the argument for genomic disorders in the original article on the topic [24] occurred mechanistically by NAHR. However, both Pelizaeus-Merzbacher disease (MIM 312080), caused by genomic duplications, and spinal muscular atrophy (MIM 25330), associated with genomic deletion, were mentioned as other diseases commonly caused by DNA rearrangements that might reflect genomic instability due to unique genome structural features [24].

The same article [24] also suggested that for disorders caused by genomic deletion rearrangements, the reciprocal duplications might be under-recognized. Examples were provided of contiguous-gene-deletion syndromes, such as Williams-Beuren (WBS; MIM 194050), Angelman (MIM 105830) and DiGeorge/velocardio-facial syndromes (DG/VCFS; MIM 188400), that

![Diagram](http://genomemedicine.com/content/1/4/42)

Figure 2
Reciprocal recombinations at the Charcot-Marie-Tooth disease type 1A (CMT1A) duplication locus in 17p12 and the Smith-Magenis syndrome (SMS) locus in 17p11.2. (a) The non-allelic homologous recombination (NAHR) in which the low-copy repeat (CMT1A-REP) substrates lead to reciprocal CMT1A duplication and HNPP deletion [15]. (b-d) Analogous data for the SMS deletion and its predicted reciprocal duplication [23]. (e) The model for the crossover and the predicted junction fragments; (f) the Southern analysis supporting this model. Note that these are the same molecular mechanism (NAHR), but it is shown horizontally (as usually depicted by molecular biologists) in (a) and vertically (as usually depicted by cytogeneticists) in (b). Abbreviations: cen, centromeric; dist, distal; mid, middle; prox, proximal; tel, telomeric.
might result from a molecular mechanism similar to that of SMS and suggested the reciprocal duplication, as seen for SMS, may occur [24]. It was also pointed out that such patients with duplications might have different clinical findings and milder phenotypic features than those with deletions, because excess information is usually less detrimental to the organism than deficiency. Therefore, these cases could escape identification through under-ascertainment or be missed by routine cytogenetic analysis because of the further technical challenges required to recognize duplications compared with deletions [24].

The first predicted reciprocal microduplication syndrome was identified shortly thereafter, the duplication of the genomic interval deleted in SMS [28] (Figure 2), but it would take another 7 years to systematically study and describe the phenotypic variability of what has come to be known as the Potocki-Lupski syndrome [29] (PTLS; MIM 610883). Interestingly, these clinical studies showed that autism, as defined by objective psychological testing, was one feature of PTLS [29], thus linking the autism trait to a specific CNV. The apparent predicted reciprocal duplications for both the DG/VCFS [30-32] (MIM 608363) and WBS regions [33-35] (MIM 609757) followed rapidly. Reciprocal duplication syndromes are now being defined for almost all microdeletion syndromes in which the deletion is flanked by LCRs/SDs and that occur by NAHR (for example, dup(17)q21.31q21.31 [36] and duplication of the Sotos syndrome (MIM 117550) region [37]); these are often described within the same year [38-39] or even the same paper [40-44] as the microdeletion syndromes themselves.

After several years of study, the rules for NAHR were elucidated [14,24]. A hallmark experimental approach based on an understanding and implementation of the new knowledge of the NAHR mechanism was executed by Evan Eichler and colleagues. With a reference human genome sequence in hand [45-47] and the technology of genome-wide array comparative genomic hybridization (aCGH) [48], they designed a research array to interrogate genomic intervals flanked by LCRs/SDs and that occur by NAHR (for example, dup(17)q21.31q21.31 [36] and duplication of the Sotos syndrome (MIM 117550) region [37]); these are often described within the same year [38-39] or even the same paper [40-44] as the microdeletion syndromes themselves.

Many other common and complex disorders are being shown to be due to CNV in some fraction of patients. Thus, genomic disorders encompass not only rare multiple congenital anomaly and mental retardation syndromes, but also common and complex traits, such as autism and schizophrenia, as well as other neurobehavioral phenotypes. For instance, deletion and duplication 16p11.2 can also cause autism [40,65]. Both duplications and/or deletion CNVs of the human genome have been associated with HIV susceptibility [66], Crohn's disease [67-69], glomerulonephritis [70], psoriasis [71], systemic lupus erythematosus [72,73], pancreatitis [74] and many other human diseases. Furthermore, animal models for SMS and PTLS show that obesity and several of the objectively assayed behavioral traits can result from a specific gene CNV (i.e. the mouse Rai1 gene [75]).

In the past decade, many important basic science questions have also been addressed through studies of genomic disorders. NAHR hotspots [15,16] had been identified long before allelic homologous recombination (AHR) hotspots [76] were generally appreciated through studies that emerged from the HapMap Project [77-78]. NAHR and AHR hotspots were found to coincide at the two loci where they were studied [79]: the CMT1A duplication/HNPP deletion locus [80] and the neurofibromatosis type 1 deletion locus at 17q11.2 [81]. Fundamental insights into human recombination have been gleaned from studies of genomic rearrangements and genomic disorders [82-86]. Importantly, locus-specific mutation rates for de novo genomic rearrangements that result in CNV were shown both theoretically [87] and experimentally [88] to occur at frequencies of 100 to 10,000 times greater than locus-specific mutation rates for de novo SNPs. Interestingly, the deletions can outweigh duplications about 2:1 at selected autosomal loci and about 4:1 on the Y chromosome at a given locus for rearrangements generated by NAHR [88]. Studies of genomic disorders have also provided fundamental insights into human gene [89-93] and genome [94-100] evolution. Such studies were among the first to provide examples of exon accretion by segmental duplication in the evolution of novel gene functions [91], gene duplication/triplication by de novo CNV formation [92,93], accumulation of LCRs/SDs during primate genome evolution [98,99], and LCRs/SDs at evolutionary chromosome breakpoints [95,98] and at breaks in synteny between the mouse and human genome [94,100].

As genome-wide tools became more readily available after the consecutive completion of the draft, reference, and finished human haploid genome [45-47], many laboratories shifted their experimental approach from locus-specific and genocentric thinking to genomic studies. And as a result, the field of genomic disorders exploded. First, it became apparent that structural variation including CNV [101] of the normal human genome was much greater than anticipated [102-105]. In fact, any two individuals vary more as a result
of CNV in terms of numbers of base-pairs involved than all the SNPs combined [104]. Moreover, the clinical implementation of genomic techniques enables high-resolution human genome analysis and can resolve CNVs 10, 100 and even 1,000 times smaller than the 3.5 Mb resolution afforded by a clinical G-banded karyotype. This has revolutionized medical genetics and bolstered the emerging field of genome medicine [106-121]. Array-based technologies can resolve pathogenic subtelomeric CNV better than can subtelomere fluorescent in situ hybridization [119] and can reveal genomic rearrangements in patients with apparently balanced translocations [120,121]. Moreover, these technologies also enable mosaicism to be detected as a cause of a clinical phenotype [114,115]. Such techniques have also enabled prenatal detection of submicroscopic abnormalities [122-126] and the detection of de novo genomic rearrangement events causing sporadic birth defects [127]. Submicroscopic duplications as a cause of X-linked mental retardation [128,129] and other mental retardation syndromes [130,131] are now revealed. Many new genomic disorders caused by submicroscopic duplications and deletions continue to be described and are catalogued in the DECIPHER database [132].

Continued systematic investigations of rearrangements associated with genomic disorders have uncovered a new mechanism for rearrangements within our genome. As explained above, research on recurrent rearrangements with breakpoint clustering at LCRs/SDs enabled the elucidation of the NAHR mechanism. Recent studies of genomic disorders caused by non-recurrent rearrangements (rearrangements of different sizes and with different breakpoints in each individual) have uncovered a new replication-based human genomic rearrangement mechanism termed FoSTeS (fork stalling and template switching). First unveiled through studies of PLP1 duplications associated with Pelizaeus Merzbacher disease [133], a genomic disorder by the criteria originally defined [24], the mechanism has now been shown to cause some LIS1 duplications [134], MECP2 duplications [93], PMP22 and RAI1 duplications [135], PMP22 exon deletions [135] and some interstitial 9q34 deletions thought to represent terminal deletions [136]. The FoSTeS mechanism, as described based upon the phenomenology of breakpoint/join point sequence analysis in human genomic disorders, has been generalized and the molecular details refined, including through genetic and genomic observations on chromosomal rearrangements in other model organisms (for example, Escherichia coli and yeast), and resulting in the microhomology mediated break induced replication (MMBIR) model that may be operative in all life forms [137]. MMBIR can explain many complex rearrangements [137], such as duplication-triplication-duplication (Figure 3). It may be a novel repair pathway for one-ended, double-stranded DNA generated from collapsed replication forks [137]. Such collapsed forks can occur as a replication fork proceeds through a nick or single-strand region generated by local genome architecture. Furthermore, MMBIR predicts that complex human genomic rearrangements will often be accompanied by extensive loss of heterozygosity and, in some cases, by loss of imprinting because the chromosome that is copied may be either the sister or the homolog [137]. Such loss of heterozygosity could lead to regional uniparental disomy [138] as a novel mechanism for disease.

In addition to NAHR and FoSTeS/MMBIR, other mechanisms may remain to be uncovered that fulfill the original conception of genomic disorders. Genome architecture may be different for individuals as a result of structural variation within a particular population [50-54,139], so particular individuals may be more susceptible than others to having either a genomic disorder or an offspring with one. Furthermore, other mechanisms, such as nonhomologous end joining and retrotransposition, can lead to structural variation that results in genomic disorders [140], and unique genome architectural features other than LCR/SD, such as AT-rich palindromes [141,142] and non-B DNA conformations [86,143], can incite genome instability. Systematic studies of disorders that occur by such mechanisms may provide insights into local genome architecture that could potentially influence susceptibility to rearrangement; they may thus delineate the ‘rules’ for FoSTeS/MMBIR as was done for NAHR.

It was initially not known whether human genomic rearrangements reflected random DNA breaks or perhaps selection/survival of genomic regions that could tolerate the gains and losses of CNV. Over the past decade, our thinking has evolved and we can now speak of specific mechanisms (NAHR, MMBIR/FoSTeS, nonhomologous end joining and retrotransposition), and elucidation of the rules for such mechanisms has enabled powerful predictions that have had a direct clinical impact. We have also learnt some of the ‘rules’ regarding genome architecture. It seems that each rearrangement mechanism can occur anywhere in the human genome, but one mechanism may be preferred over another at a given locus depending on local genome architecture (for example, LCR/SD or non-B DNA). We have realized that CNVs are as important as SNPs to human mutation and perhaps even more important with regard to human sporadic traits [87,127]. Whether CNV or SNP is the more favored mutational event at a given locus may again reflect what the local genome architecture is around that locus [140]. The elucidation of both the mechanisms of CNV formation [144] and how CNVs affect genes to convey phenotypes [145], whether the latter occurs through altered copy number [75,146], gene dysregulation or position effect, has to a large extent come from studies of genomic disorders [147]. The clinical phenotype allows the ascertainment of the genomic rearrangement from the population to enable the molecular studies.
The ‘rules’ for MMBIR/FoSTeS remain to be further defined with respect to the human genome architecture that might stimulate the events [93,133]. Unquestionably, many more genomic disorders are still to be defined and many Mendelian and complex traits may be shown to be caused by CNV, rather than SNPs of a given gene in selected patients. Thus, a potentially more fruitful and cost-efficient approach to the study of human complex traits may be to examine a few hundred patients for CNV associated with the trait, rather than perform SNP-based GWASs. Such an approach recently yielded insights into Wolf-Parkinson-White syndrome, a common pre-excitation phenomenon resulting in a characteristic electrocardiographic pattern [148]. Certainly all GWASs should look for CNV and not just focus on SNPs [149].

Perhaps the most significant findings regarding the human genome that were not anticipated by the human genome project [45-47,77,78] were the elucidation of genomic disorders and the discovery of the extent to which we vary from each other genetically as a result of CNV. In fact, the establishment of a reference haploid versus diploid genome truly reflects our naiveté with regards to the importance of CNV for human traits. With further widespread clinical implementation of high-resolution human genome analysis, submicroscopic genomic duplications and deletions will probably be identified at an increasing rate. Potentially, the vast majority of the human genome could be involved in CNV, perhaps more of the genome will be subject to, or tolerate, duplication CNV than deletion as observed for chromosomal studies [150,151], and ‘reverse genomics’ could be used to systematically delineate genomotype-phenotype correlations [134]. The genomic change accompanying a CNV results in a genomotype that may include either more than one, or no genes involved in conveying the specific phenotype and thus is distinct from a genotype.

Figure 3
Complex genomic rearrangements. Shown are examples of complex duplication-triplication-duplication rearrangements at MECP2 [93] and LIS1 [134]. (a,b) Array CGH using Agilent custom-designed arrays with interrogating oligonucleotides every few hundred base-pairs from the regions of the genome containing (a) MECP2 and (b) LIS1. Red dots indicate gain of copy number in relation to sex-matched reference DNA; black dots, copy number neutral; green dots, loss of copy number. (c,d) fluorescent in situ hybridization confirmation of the triplication of (c) MECP2 and (d) LIS1 (red, probe interrogating the indicated gene; green, control probe from same chromosome). Note that MECP2 (c) is on the one X chromosome in this male patient, whereas LIS1 (d) is on an autosome and shows both the duplicated (two red signals paired with one green control) with the normal chromosome 17 homologue, with only one copy of LIS1 paired with the green control signal.
Such studies will directly address the question: what is the genomic code? This is needed because the genetic code has only addressed the functions of under 2% of the human genome: the coding exons. Systematic analyses of the size, extent and genomic content of CNV and associated phenotypes might lead to a new understanding of ‘cis-genetics’, the phenotypic consequences of CNV encompassing multiple genes and/or regulatory sequences on one chromosome homolog, as opposed to the ‘trans-genetics’ focus of Mendelian segregation and transmission of homologous chromosomes. Furthermore, the extents to which human genomic rearrangements occur somatically in mitotic cells are only beginning to be explored [135,152-156]. Thus, genomic disorders will probably continue to be a fruitful area for ongoing and future research.

Abbreviations

AHR, allelic homologous recombination; CMT1A, Charcot-Marie-Tooth disease type 1A; CGH, comparative genomic hybridization; CNV, copy number variation; DECIPHER, database of chromosomal imbalance and phenotype in humans using Ensembl resources; FoStEs, fork stalling and template switching; GWAS, genome-wide association study; HNPP, hereditary neuropathy with liability to pressure palsies; LCR, low-copy repeat; MMBIR, microhomology mediated break induced replication; NAHR, non-allelic homologous recombination; PTLS, Potocki-Lupski syndrome; SD, segmental duplication; SMS, Smith-Magenis syndrome; SNP, single nucleotide polymorphism.

Competing interests

The author is a consultant for Athena Diagnostics, 23andMe and Ion Torrent Systems, Inc, and holds multiple United States and European patents for DNA diagnostics.

Acknowledgements

I appreciate the critical reviews of Art Beaudet, Weimin Bi, Claudia Carvalho, Evan Eichler, Matt Hurles, Bernice Morrow, Pawel Stankiewicz and Feng Zhang. I apologize, but take full responsibility for, omissions of citations given space limitations. Work in my laboratory has been supported by the Charcot-Marie-Tooth Association, the Muscular Dystrophy Association, the March of Dimes, the Texas Children’s Hospital General Clinical Research Center, Baylor College of Medicine Mental Retardation Research Center, Baylor Intellectual and Developmental Disabilities Research Center, and The National Institutes of Health (National Institute of Neurological Disorders and Stroke, ROI N527042, National Institute of Child Health and Human Development, PO1 HD39420, National Eye Institute, RO1 EY13253, National Cancer Institute, PO1 CA75719, National Institute of Dental and Craniofacial Research, RO1 DE015210).

References

1. Online Mendelian Inheritance in Man [http://www.ncbi.nlm.nih.gov/sites/entrez?db=omim]
2. Lupski JR, de Oca-Luna RM, Slaugenhaupt S, Pentao L, Guzzetta V, Trask BJ, Saucedo-Cardenas O, Barker DF, Killian JM, Garcia CA, Chakravarti A, Patel PI: DNA duplication associated with Charcot-Marie-Tooth disease type 1A. Cell 1991, 64:219-232.
3. Raemyarkers P, Timmerman V, Nielis E, De Jonghe P, Hoogendijk JE, Baai F, Barker DF, Martin JJ, De Visser M, Bolhuis PA: Duplication in chromosome 17q11.2 in Charcot-Marie-Tooth neuropathy type 1A (CMT1A). The HPSN Collaborative Research Group. Neuromuscul Disord 1991, 1:93-97.
4. Chance PF, Alderson MK, Leppert GM, Lensch MW, Matsunami N, Smith B, Swanson PD, Odelberg SJ, Distech CM, Bird TD: DNA deletion associated with hereditary neuropathy with liability to pressure palsies. Cell 1993, 72:143-151.
5. Lupski JR, Wise CA, Kuwano A, Pentao L, Parke JT, Glaze DG, Ledbetter DH, Greenberg F, Patel PI: Gene dosage is a mechanism for Charcot-Marie-Tooth disease type 1A. Nat Genet 1992, 1:229-33.
6. Patel PI, Rao BB, Welter AA, Schoener-Scott R, Trask BJ, Pentao L, Snipes GJ, Garcia CA, Francke U, Shooter EM, Lupski JR, Suter U: The gene for the peripheral myelin protein PMP-22 is a candidate for Charcot-Marie-Tooth disease type 1A. Nat Genet 1992, 1:159-165.
7. Roa BB, Garcia CA, Suter U, Kulpa DA, Wise CA, Mueller J, Welcher AA, Snipes GJ, Shooter EM, Patel PI, Lupski JR: Charcot-Marie-Tooth disease type 1A. Association with a spontaneous point mutation in the PMP22 gene. N Engl J Med 1993, 329:96-101.
8. Nicholson GA, Valentin LJ, Cherrynson AK, Kennerly ML, Bragg TL, DeKroon RM, Ross DA, Pollard JD, Mcleod JG, Bolhuis PA, Baas F: A frame shift mutation in the PMP22 gene in hereditary neuropathy with liability to pressure palsies. Nat Genet 1994, 6:263-269.
9. Pentao L, Wise CA, Chirn J, Patel PI, Lupski JR: Two autosomal dominant neuropathies result from reciprocal DNA duplication/deletion of a region on chromosome 17. Hum Mol Genet 1994, 3:223-228.
10. Edfeldt L, Pantida RK, Spiteri E, Funke B, Goldberg R, Palismany N, Chaganti RS, Magenis E, Shprintzen RJ. Morrow BE: A common molecular basis for rearrangement disorders on chromosome 22q11.1. Hum Mol Genet 1999, 8:1157-1167.
11. Bailey JA, Yavor AM, Masafo HF, Trask BJ, Eichler EE: Segmental duplications: organization and impact within the current human genome project assembly. Genome Res 2001, 11:1005-1017.
12. Bailey JA, Gu Z, Clark RA, Reinert K, Samonte RV, Schwartz S, Adams MD, Myers EW, Li PW, Eichler EE: Recent segmental duplications in the human genome. Science 2002, 297:1003-1007.
13. Stankiewicz P, Lupski JR: Genome architecture, rearrangements and genomic disorders. Trends Genet 2002, 18:74-82.
14. Reiter LT, Murakami T, Keoeth T, Pentao L, Muzny DM, Gibbs RA, Lupski JR: A recombination hotspot responsible for two inherited peripheral neuropathies is located near a murine transposon-like element. Nat Genet 1996, 12:288-292.
15. Timmerman V, Rauenstrauss B, Reiter LT, Koeuth T, Lofgren A, Liehr T, Nielis E, Batkhe KD, De Jonghe P, Grehl H, Martin JJ, Lupski JR, Van Broeckhoven C: Detection of the CMT1A/HNPP recombination hotspot in unrelated patients of European descent. J Med Genet 1997, 34:43-49.
16. Matise TC, Chakravarti A, Patel PI, Lupski JR, Nielis E, Timmerman V, Van Broeckhoven C, Weeks DE: Detection of tandem duplications and implications for linkage analysis. Am J Hum Genet 1994, 54:1110-1121.
17. Greenberg F, Guzzetta V, Montes de Oca-Luna R, Magenis RE, Smith AC, Richter SF, Kondo I, Dobyns WB, Patel PI, Lupski JR: Molecular analysis of the Smith-Magenis syndrome: a possible contiguous-genic syndrome associated with del(17p11.2). Am J Hum Genet 1991, 49:1207-1218.
18. Guzzetta V, Franco B, Trask BJ, Zhang H, Saucedo-Cardenas O, Montes de Oca-Luna R, Greenberg F, Chintalur AC, Lupski JR, Patel PI: Stochastic cell hybrids, sequence-tagged sites, simple repeat polymorphisms, and yeast artificial chromosomes for physical and genetic mapping of proximal 17p. Genomics 1992, 13:551-559.
19. Joyal RC, Figuera LE, Hauge X, Elsha SH, Lupski JR, Greenberg F, Baldini A, Patel PI: Molecular analyses of 17p11.2 deletions in 62 Smith-Magenis syndrome patients. Am J Hum Genet 1996, 58:998-1007.
20. Chakravarti A, Manian P, Koeuth T, Potocki L, Zhao Q, Chintalur AC, Lee CC, Lupski JR: Homologous recombination of a flanking repeat gene cluster is a mechanism for a common contiguous gene deletion syndrome. Nat Genet 1997, 17:154-163.
22. Shaw CJ, Bi W, Lupski JR: Genetic proof of unequal meiotic crossovers in reciprocal deletion and duplication of 17p11.2. Am J Hum Genet 2002, 71:1072-1081.

23. Bi W, Park SS, Shaw CJ, Withers MA, Patel PI, Lupski JR: Reciprocal crossing-over positional preference for strand exchange in recombination events resulting in deletion or duplication of chromosome 17p11.2. Am J Hum Genet 2003, 73:1302-1315.

24. Lupski JR: Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet 1998, 14:417-422.

25. Phillips JA 3rd, Vik TA, Scott AF, Young KE, Kazazian HH Jr, Smith KD, Fairbanks VF, Koenig HM: Unequal crossing-over: a common basis of single alpha-globin genes in Asians and American blacks with hemoglobin-H disease. Blood 1980, 55:1066-1069.

26. Higgs DR, Vickers MA, Wilkie AOO, Pretorius IM, Jarman AP, Freedenberg D, Hannig VL, Prock LA, Miller DT, Raffalli P, Harris DJ, Sprysak K, Christiansen J, Haase S, Elyas B, Lilley M, Bamforth S, man EM, Glaze D, Krull K, Lee JA, Lewis RA, Mendoza-Londono R, Smith WE, Simon-Fayard E, Alexander AA, Kulharya AS, Ketterling KD, Fairbanks VF, Koenig HM: Unique crossing-over events: a common feature of chromosome 17q11.2 duplication syndromes and characterization of the reciprocal microduplication. Mol Genet Genom 2001, 164:267-275.

27. Nathans J, Piantanida TP, Eddy RL, Shows TB, Hogness DS: Molecular genetics of inherited variation in human color vision. Science 1986, 232:203-210.

28. Potokci L, Chen KS, Park SS, Osterholm DE, Withers MA, Kimonis V, Summers AM, Meschino WS, Anyane-Yeboa K, Khashok CD, Shaffer LG, Lupski JR: Molecular mechanism for duplication 17p11.2-the homologous recombination reciprocal of the Smith-Magenis microduplication. Genome Med 2000, 2:494-507.

29. Potokci L, Bi W, Treadwell-Deering D, Carvalho CM, Effert A, Friedman EM, Glaze D, Kroll K, Lee JA, Lewis RA, Mendoza-Londono R, Robbins-Furman P, Shaw CJ, Shi X, Weissenberger G, Withers M, Yatsenko Y, Zhang H, Yeh EH, Staniewicz P, Wang K, Krajewski R: Characterization of Potokci-Lupski duplication syndrome (dup11p11.21.2) and delineation of a dosage-sensitive critical interval that can convey an autism phenotype. Am J Hum Genet 2007, 80:633-649.

30. Ensensynekyi A, Fynn HC, Michels VV, Lindor NM, Dowd DB, Thorland EC, Lorentz CP, Goldstein JL, McDonald MT, Smith WE, Simon-Fayard E, Alexander AA, Kulharya AS, Ketterling CR, Clark JD, Jalil SH: Microduplication 22q11.2, an emerging syndrome: clinical, cytogenetic, and molecular analysis of thirteen patients. Am J Hum Genet 2003, 73:1027-1040.

31. Hassed Sj, Hopcus-Niccum D, Zhang L, Li S, Mulholland JJ: A new genomic duplication syndrome complementary to the velocardiofacial (22q11 deletion) syndrome. Clin Genet 2004, 65:400-404.

32. Yobb TM, Somerville MJ, Willatt L, Firth HV, Harrison K, MacKenzie MJ, Somerville MJ, Mervis CB, Young EJ, Seo EJ, del Campo M, Bamforth S, Vickers MA, Wilkie AO, Pretorius IM, Jarman AP, Freedenberg D, Hannig VL, Prock LA, Miller DT, Raffalli P, Harris DJ, Sprysak K, Christiansen J, Haase S, Elyas B, Lilley M, Bamforth S, man EM, Glaze D, Krull K, Lee JA, Lewis RA, Mendoza-Londono R, Smith WE, Simon-Fayard E, Alexander AA, Kulharya AS, Ketterling KD, Fairbanks VF, Koenig HM: Unique crossing-over events: a common feature of chromosome 17q11.2 duplication syndromes and characterization of the reciprocal microduplication. Mol Genet Genom 2001, 164:267-275.

33. Willatt L, Cox J, Barber J, Cabanas ED, Collins A, Donnai D, FitzPatrick DR, Maher E, Martin H, Parnau J, Pindar L, Ramsay J, Shaw-Smith C, Sistersmans EA, Tettenborn T, Mudpump, D, de Vries WL, Walker K, Devriendt K, Bongers EM, de Leeuw N, Reardon W, Gimelli S, Bena F, Hennekem RC, Male A, Gaunt L, Clayton-Smith J, Simonic I, Park SM, meltz SG, Nik-Zainal S, Woods CG, Firth HY, et al: Recurrent rearrangements of chromosome 17q11.2 and variable pediatric phenotypes. N Engl J Med 2008, 359:1683-1699.

34. International Human Genome Sequencing Consortium: Initial sequencing and analysis of the human genome. Nature 2001, 409: 860-921.

35. International Human Genome Sequencing Consortium: The sequence of the human genome. Science 2001, 291:1304-1351.

36. International Human Genome Sequencing Consortium: Finishing the euchromatic sequence of the human genome. Nature 2004, 431:913-945.

37. Snijders AM, Nowak W, Segraves R, Blackwood S, Brown N, Conroy J, Hamilton G, Hindle AK, Huey B, Kimura K, Law S, Myambo K, Palmer N, Ystrøm JV, Gray JW, Lander ES, Nusbaum C, Sebat J,熊猫 K, de Ravel T, Devriendt K, Bongers EM, de Leeuw N, Reardon W, Gimelli S, Bena F, Hennekem RC, Male A, Gaunt L, Clayton-Smith J, Simonic I, Park SM, meltz SG, Nik-Zainal S, Woods CG, Firth HY, et al: Recurrent rearrangements of chromosome 17q11.2 and variable pediatric phenotypes. N Engl J Med 2008, 359:1683-1699.

38. Sharp AJ, Lniversal JR: Sequence variation in the human genome. Nature 2004, 443:931-945.

39. Ou Z, Berg JS, Yonath H, Enciso VB, Miller DT, Picker J, Lenzi T, Keegan CE, Sutton VR, Belmont J, Chiaunat AC, Lupski JR, Cheung SW, Roeder E, Patel A: Microduplications of 22q11.2 are frequently inherited and are associated with variable phenotypes. Genet Med 2008, 10:103-110.

40. Weiss LA, Shen Y, Korn J, Arking DE, Miller DT, Fossdal R, Saemundsdottir H, Ferrein MA, Green T, Platt OS, Ruderfer DM, Walsh CA, Altschuler D, Chakravarti A, Tanzi RE, Stenkamp S, santangelo SL, Guusela JF, Sklar P, Wu BL, Daly MJ: Autism Consortium: association between microdeletion and microduplication at 16p11.2 and autism. Nat Med 2007, 13:667-675.

41. Brunetti-Pierri N, Berg JS, Scaglia F, Belmont J, Bicaco CA, Sahoo T, Lalani SR, Graham B, Lee B, Shinawi M, Shen J, Kang SH, Puresley A, Lottze T, Kennedy G, Lansky-Sufer S, Weaver C, Roeder ER, Grebe TA, Arnold GL, Hutchison T, Reimschisel T, Amato S, Geraghty MT, Innis JW, Oberswiez E, Nowakowska B, Rosengren SS, Bader PI, Grange DK, et al: Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities. Nat Genet 2008, 40:1466-1471.

42. Ballif BC, Theisen A, Coppinger J, Goans GC, Hersh JH, Madan-Khetarpal S, Schmidt KR, Tervo R, Escobar LA, Friedrich CA, McDonald M, Campbell L, Ming JE, Zatka EH, Beijani BA, Shaffer LG: Expanding the clinical phenotype of the 3q29 microdeletion syndrome and characterization of the reciprocal microduplication. Mol Genet Genom 2008, 1:8.

43. Amato S, Tartaglia N, Berg J, Sutton VR, Lalani SR, Chinault AC, Amato S, Tartaglia N, Berg J, Sutton VR, Lalani SR, Chinault AC, Cheung SW, Lupski JR, Patel A: 22q11.2 deletion: a recurrent genomic disorder distinct from DiGeorge syndrome and velocardiofacial syndrome. Am J Hum Genet 2002, 70:214-221.
L. Van der Au N, Field M, Hackett A, Bell K, Nowack MJ, Mancini GM, Pommidge PJ, Schwartz CE, Rossi E, De Gregori M, Antonacci-Fulton LL, McLeLLan MD 2nd, Garret JM, Wiechter MA, Miner TL, Crosby S, Ciccone R, Willatt L, et al.: Clinical and molecular delineation of the 17q12 microdeletion syndrome. J Med Genet 2008, 45:710-720.

55. Sharp AJ, Selzer RR, Velman JA, Gimelli S, Gimelli G, Striano P, Coppola A, Regan R, Price SM, Knoors NV, Eps BS, Brunner HG, Hennemak RC, Knight SJ, de Vries BB, Zuffardi O, Eichler EE. Characterization of a recurrent 15q4 microdeletion syndrome. Hum Mol Genet 2007, 16:567-572.

56. Mefford HC, Clauin S, Sharp AJ, Molier RS, Ullmann R, Kapur R, Pinkel D, Cooper GM, Ventura M, Ropers HH, Tommerup N, Eichler EE, Bellanne-Chantelot C: Recurrent genomic rearrangements of 17q12 are associated with renal disease, diabetes, and epilepsy. Am J Hum Genet 2007, 81:1057-1069.

57. Sharp AJ, Mefford HC, Li K, Baker C, Skinner C, Stevenson RE, Schroer R, Novara F, De Gregori M, Cricone R, Broomer A, Casuga I, Wang Y, Xiao C, Barbasiou C, Gimelli G, Bernardina BD, Tornier C, Giorda R, Regan R, Murday V, Mansour S, Fichera M, Castiglia L, Faili P, Ventura M, Jiang Z, Cooper GM, Knight SJ, Romano C, et al.: A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures. Nat Genet 2008, 40:322-328.

58. Bellanne-Chantelot C, Clauin S, Chauveau D, Collin P, Daumont M, Mefford HC, Clauin S, Sharp AJ, Moller RS, Ullmann R, Kapur R, Pinkel D, Cooper GM, Ventura M, Ropers HH, Tommerup N, Eichler EE. Bellanne-Chantelot C: Recurrent genomic rearrangements of 17q12 are associated with renal disease, diabetes, and epilepsy. Am J Hum Genet 2007, 81:1057-1069.

International Schizophrenia Consortium: Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008, 455:237-241.

61. Roberts J, Pan SC, Sham PC: An integer QTL model for gene mapping. Ann Hum Genet 2000, 64:285-308.

62. O'Donovan MC, Owen MJ: Genetics of schizophrenia. Nat Rev Genet 2006, 7:405-416.

63. Eley TD, Gottesman II, Building a genome-wide association study resource for psychiatric disorders. Nat Rev Neurosci 2010, 11:722-736.
submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features. J Med Genet 2004, 41:241-248.

107. Beijani BA, Saleki R, Ballif BC, Rorem EA, Sundin K, Theisen A, Shaffer LG, Kashork CD, Shaffer LG: CGH for the clinical diagnosis of chromosomal imbalance: is less more? Am J Med Genet A 2005, 134:259-267.

108. Cheung SW, Shaw CA, Yu W, Li J, Ou Z, Patel A, Yatsenko SA, Cooper ML, Furman P, Stankiewicz P, Lupski JR, Chudin AE, Beaudet AL: Development and validation of a CGH microarray for clinical cytogenetic diagnosis. Genet Med 2005, 7:422-432.

109. Schoumans J, Kuivenkamp C, Holenberg E, Kyllerman M, Anderlid BM, Nordenskjold M: Detection of chromosomal imbalances in children with idiopathic mental retardation by array based comparative genomic hybridisation (array-CGH). J Med Genet 2005, 42:699-705.

110. de Vries BB, Pluimt R, Lestink M, Koolen DA, Visiers LE, Janssen IM, Reijmersdal S, Nillesen WM, Huys EH, Leenew N, Smeets D, Sistermans EA, Feuth T, van Ravenswaaij-Arts CM, van Kessel AG, Schonmakers EF, Brunner HG, Veijman JA: Diagnostic genome profiling in mental retardation. Am J Med Genet 2005, 77:606-616.

111. Shaffer LG, Kashork CD, Saleki R, Rorem E, Sundin K, Ballif BC, Beijani BA: Targeted genomic microarray analysis for identification of chromosomal abnormalities in 130 consecutive clinical cases. J Pediatr 2006, 149:90-102.

112. Schouten B, Maa JJ, Thiennop L, Buyse K, Vandepoel B, Melanne C, De Ley S, Van Koesveld H, Slack B, Stroobants P, Vermeesch JR: Emerging patterns of cryptic chromosomal imbalance in patients with idiopathic mental retardation and multiple congenital anomalies: a new series of 140 patients and review of published reports. J Med Genet 2006, 43:625-633.

113. Rosenberg C, Knijnjenburg B, Bakker E, Vuijana-Morgante AM, Sloos W, Drenberg M, Kriek-Kriessle-Santos AC, Fleger H, Carter NP, Bilsma EK, van Haeringen A, Szuhi K, Tanke HJ: Array-CGH detection of micro rearrangements in mentally retarded individuals: clinical significance of imbalances present both in affected children and normal parents. J Med Genet 2006, 43:180-186.

114. Ballif BC, Rorem EA, Sundin K, Lincicum M, Gaskin S, Coppinger J, Kashork CD, Shaffer LG, Beijani BA: Detection of low-level mosaicism by array CGH in routine diagnostic specimens. Am J Med Genet A 2006, 140:2757-2767.

115. Cheung SW, Shaw CA, Scott DA: Microarray-based CGH detects chromosomal mosaicism not revealed by conventional cytogenetics. Am J Hum Genet 2007, 81:1679-1686.

116. Lu X, Shaw CA, Patel A, Li J, Cooper ML, Wells WR, Sullivan CM, Saoho T, Yatsenko SA, Bacin CA, Stankiewicz P, Ou Z, Chudin AC, Beaudet AL, Lupski JR, Cheung SW, Ward PA: Clinical implementation of chromosomal microarray analysis: summary of 2513 postnatal cases. J Med Genet 2008, 45:318-329.

117. Ou Z, Kang SH, Shaw CA, Carmack CE, White LD, Patel A, Beaudet AL, Cheung SW, Chudin AC: Bacterial artificial chromosome-embryo manipulation oligonucleotide arrays for targeted clinical array-comparative genomic hybridization analysis. J Med Genet 2008, 45:278-289.

118. Ballif BC, Horner SA, Sulphio SG, Lloyd RM, Minier SL, Rorem EA, Theisen A, Beijani BA, Shaffer LG: Development of a high-density pericentromeric region BAC clone set for the detection and characterization of small supernumerary marker chromosomes by array CGH. Genome Med 2007, 9:150-162.

119. Shao L, Shaw CA, Lu XY, Sahoo T, Bacin CA, Lalrani SR, Stankiewicz P, Yatsenko SA, Li Y, Neill S, Pursey AN, Chudin AC, Patel A, Beaudet AL, Lupski JR, Cheung SW: Identification of chromosomal abnormalities in subtelomeric regions by microarray analysis: a study of 5,380 cases. Am J Med Genet A 2008, 146A:2242-2251.

120. Gribble SM, Prigmore E, Burford DC, Porter KM, Ng BL, Douglas EF, Precigoux H, Carr P, Kalitazopoulos D, Clegg S, Sandstorm R, Temple IK, Yousgs SA, Thomas NS, Dennis NR, Jacobs PA, Crolla JA, Carter NP: The complex nature of constitutional de novo apparently balanced translocations in patients presenting with anaphylactic phenotypes. J Med Genet 2008, 45:28-16.

121. Baptista J, Mercer C, Prigmore E, Gribble SM, Carter NP, Maloney V, Thomas NS, Jacobs PA, Crolla JA: Breakpoint mapping and array CGH in translocations: comparison of a phenocopy defective normal and an aneuploid human cell line. Am J Med Genet A 2009, 146A:3369-3371.

122. Rickman L, Fiegler H, Shaw-Smith C, Nash R, Cirigliano V, Voglino G, Ng BL, Scott C, Whitsiker J, Adinolfi M, Carter NP, Bobrow M: Presidential detection of unbalanced chromosomal rearrangements by array CGH. J Med Genet 2009, 46:353-361.
123. Sahoo T, Cheung SW, Darilek S, Patel A, del Gaudio D, Levy T, Shinder V, Peiffer DA, Gunderson KL, Nezarati MM, Shotts A, Stankiewicz P, Weinstock GM: Short, interspersed repetitive DNA microdeletions can cause human genomic, genetic, and exonic complex rearrangements. Nat Genet 2009, 41:217-226.

124. Caso I, Corominas R, Bayes M, Flores R, Rivera-Brugues N, Campana V, Perez-Jurado LA: Copy number variation at the 7q11.23 segmental duplication is a susceptibility factor for the Williams-Beuren syndrome deletion. Genome Res 2008, 18:683-694.

125. Zhang F, Gu W, Hurles M, Lupski JR: Copy number variation in health, disease, and evolution. Annu Rev Genomics Hum Genet 2009, 10:427-456.

126. Edelmann L, Spiteri E, Koren K, Pulijal V, Blaker MG, Sanske A, Goldberg R, Morrow BE: AT-rich palindromes mediate the constitutional t(1:22) translocation. Am J Hum Genet 2001, 68:1-13.

127. Kurahashi H, Emanuel BS: Large AT-rich palindromes and the constitutional t(1:22) breakpoint. Hum Mol Genet 2001, 10:265-267.

128. Bascolla A, Jaworski A, Larson JE, Jakupciak JP, Chuzhanova N, Abeysinghe SS, O'Connell CD, Cooper DN, Wells RD: Breakpoints of gross deletions coincide with non-B DNA conformations. Proc Natl Acad Sci USA 2004, 101:14162-14167.

129. Wu G, Zhang F, Lupski JR: Mechanisms for human genomic rearrangements. Pathogenetics 2008, 1:4.

130. Lupski JR, Stankiewicz P: Molecular mechanisms for rearrangements and their conveyed phenotypes in genomic disorders. PLoS Genet 2005, 1:627-633.

131. Careille-Calmins N, Saugier-veber P, Girard-Lemaire F, Rudolf G, Doray B, Guerin E, Kuhn P, Arrive M, Gilch C, Schmitt E, Fehrenbach S, Schnebelean F, Frebourg T, Flori E: Genetic compensation in a human genomic disorder. N Engl J Med 2009, 360:1211-1216.

132. Lupski JR, Stankiewicz P (Eds): Genomic Disorders - The Genetic Basis of Disease. Totowa: Humana Press; 2006.

133. Sahoo T, Cheung SW, Ward P, Darilek S, Patel A, del Gaudio D, Levy T, Shinder V, Peiffer DA, Gunderson KL, Nezarati MM, Shotts A, Stankiewicz P, Weinstock GM: Short, interspersed repetitive DNA microdeletions can cause human genomic, genetic, and exonic complex rearrangements. Nat Genet 2009, 41:217-226.

134. Caso I, Corominas R, Bayes M, Flores R, Rivera-Brugues N, Campana V, Perez-Jurado LA: Copy number variation at the 7q11.23 segmental duplication is a susceptibility factor for the Williams-Beuren syndrome deletion. Genome Res 2008, 18:683-694.

135. Zhang F, Gu W, Hurles M, Lupski JR: Copy number variation in health, disease, and evolution. Annu Rev Genomics Hum Genet 2009, 10:427-456.

136. Edelmann L, Spiteri E, Koren K, Pulijal V, Blaker MG, Sanske A, Goldberg R, Morrow BE: AT-rich palindromes mediate the constitutional t(1:22) translocation. Am J Hum Genet 2001, 68:1-13.

137. Kurahashi H, Emanuel BS: Large AT-rich palindromes and the constitutional t(1:22) breakpoint. Hum Mol Genet 2001, 10:265-267.

138. Bascolla A, Jaworski A, Larson JE, Jakupciak JP, Chuzhanova N, Abeysinghe SS, O'Connell CD, Cooper DN, Wells RD: Breakpoints of gross deletions coincide with non-B DNA conformations. Proc Natl Acad Sci USA 2004, 101:14162-14167.

139. Wu G, Zhang F, Lupski JR: Mechanisms for human genomic rearrangements. Pathogenetics 2008, 1:4.

140. Lupski JR, Stankiewicz P: Molecular mechanisms for rearrangements and their conveyed phenotypes in genomic disorders. PLoS Genet 2005, 1:627-633.

141. Careille-Calmins N, Saugier-veber P, Girard-Lemaire F, Rudolf G, Doray B, Guerin E, Kuhn P, Arrive M, Gilch C, Schmitt E, Fehrenbach S, Schnebelean F, Frebourg T, Flori E: Genetic compensation in a human genomic disorder. N Engl J Med 2009, 360:1211-1216.

142. Lupski JR, Stankiewicz P (Eds): Genomic Disorders - The Genetic Basis of Disease. Totowa: Humana Press; 2006.

143. Sahoo T, Cheung SW, Ward P, Darilek S, Patel A, del Gaudio D, Levy T, Shinder V, Peiffer DA, Gunderson KL, Nezarati MM, Shotts A, Stankiewicz P, Weinstock GM: Short, interspersed repetitive DNA microdeletions can cause human genomic, genetic, and exonic complex rearrangements. Nat Genet 2009, 41:217-226.

144. Gu W, Zhang F, Lupski JR: Mechanisms for human genomic rearrangements. Pathogenetics 2008, 1:4.