Modeling Spatial Correlation of Transcripts With Application to Developing Pancreas

Ruishan Liu, Marco Mignardi, Robert Jones, Martin Enge, Seung K Kim, Stephen R Quake, James Zou

Supplementary Information
Supplementary Notes

1 In Situ RNA Sequencing Data of Pancreas

To demonstrate the use of our computational analysis tool, we study in situ RNA sequencing of human fetal pancreatic tissue. The study was performed on tissues from de-identified donors with informed consent, and was approved by the ethics committee of the Stanford University Institutional Review Board (IRB). All methods were performed in accordance with the relevant guidelines and regulations. The data are collected at three developmental ages — 80, 87 and 117 days post-fertilization.

Experimental procedure. Anonymized fetal pancreas tissues were OCT-embedded and immediately frozen in liquid nitrogen upon arrival and stored at -80°C. Before tissue staining, blocks were cut in 10 µm-thick sections which were collected on superfrost plus slides and stored at 80°C.

All the solution used for tissue staining were prepared using DEPC-treated or RNase-free reagents. Slides were let air dry before fixation in 4% (w/v) paraformaldehyde in PBS for 45 min at room temperature. After fixation sections were washed in PBS for 5 min at room temperature and permeabilized with 0.01% (w/v) pepsin in 0.1 M HCl for 5 min at 37°C followed by wash in PBS (5 min room temperature) and a wash in EtOH 70, 85 and 100% for one min each at room temperature.

Slides were let air dry before mounting a silicon hybridization chamber (Secure-seal, SIGMA) of different size depending on the size of the tissue section. Tissues were washed once with PBST (1x PBS, 0.05% tween-20) at room temperature before incubation in 1x RT buffer (ThermoFisher) until reverse transcription.

In situ reverse transcription was carried out adding all the cDNA primers together (Supplementary Table 7) at a final concentration of 0.3 µM each, 1x RT buffer (ThermoFisher), 0.2 µg/µl BSA (NEB), 0.5 mM dNTPs (ThermoFisher), 1 U/µl RiboLock RNase Inhibitor (ThermoFisher) and 10 U/µl Revert AID H Minus Reverse Transcriptase (ThermoFisher) and incubating the tissue at 37°C overnight. After reverse transcription, slides were washed twice in PBST and post-fixation was done with 4% (w/v) paraformaldehyde in PBS for 10 min at room temperature followed by two washes in PBST 5 min at room temperature and incubation in 1x Ampligase buffer.

Ligation was carried out adding all the 5-end phosphorylated padlock probes together (Supplementary Table 8) at a final concentration of 0.05 µM each, 1x Ampligase buffer (Epicentre), 0.2 µg/µl BSA (NEB), 50 mM KCl, 20% Formamide, 0.4 U/µl RNase H (ThermoFisher) and 0.75 U/µl Ampligase DNA ligase (Epicentre) and incubating the tissue 30 min at 37°C followed by 60 min at 45°C. After ligation slides were washed twice in PBST and incubated in 1x Phi29 DNA Polymerase buffer. Rolling circle amplification (RCA) was carried out adding 5% glycerol, 0.2 µg/µl BSA (NEB), 0.25 mM dNTPs (ThermoFisher),
1x Phi29 DNA polymerase buffer (ThermoFisher) and 1 U/µl of Phi29 DNA polymerase (ThermoFisher) and incubating the tissue at 30°C overnight. After RCA slides were washed twice in PBST and detection mix consisting of 1x hybridization buffer (2x SSC, 20% formamide), 0.1 µM of each detection probe (Supplementary table XXX) and 10 ng/µl DAPI (ThermoFisher) was added for 30 min at 37°C.

Slides were washed twice in PBST before removing the hybridization chamber and washed in EtOH 70, 85 and 100% for 5 min each at room temperature. Stained sections were air-dried and mounted with SlowFade Antifade Gold mountant (ThermoFisher) and a coverslip before imaging.

Following staining cycles were done as follow: slides were dip in 70% EtOH until the coverslip fell off. Section were then washed in 85 and 100% EtOH 5 min each and air dried. UNG treatment was done adding 1x UNG buffer (ThermoFisher), 0.2 µg/µl BSA (NEB) and 0.05 U/µl UNG (ThermoFisher) for 30 min at 37°C. Uracil cleavage was followed by was in pre-warmed 65% formamide in water for 5 min at 55°C and two washes in PBST. Second and third staining cycles and nuclear staining were performed as described above.

Image acquisition and analysis. Imaging was carried out on a Zeiss Axiosplan epifluorescence microscope equipped with an Axiocam 506 mono camera (Zeiss) and filter-cubes for DAPI, FITC, Cy3 and Cy5. Each sample was imaged after every round of hybridization with a 20x/0.8 Plan-Apochromat objective (Zeiss) for a total of three rounds. Multiple fields of view were acquired with 10% overlapping and 10-15 z-stacks (about 0.5 µm step size). The resulting images were projected (maximum intensity projection, MIP) and automatically stitched using DAPI staining. MIP images were shade corrected using the automatic function in Zen Acquisition software (Zeiss) feeding a minimum intensity projection. Images were exported as 16bit grayscale images. Background subtraction was done using ImageJ software by measuring the fluorescence intensity outside the signals and removing it from the corresponding image.

Image registration was done in ImageJ as follow: images from the same round of hybridization, except for the DAPI staining, were combined (MIP). A first registration between images from different rounds of hybridization was done using the nuclei staining (DAPI images). A second registration was done using the MIPs from the other channels. Image alignment was done using MultiStackReg plugin in ImageJ using one round of hybridization (typically the first) as a reference and aligning the other rounds to the first. For every alignment a rigid transformation was applied, and a transformation matrix was saved and applied to the rest of the images.

Pre-aligned and background-corrected images were analyzed with CellProfiler 2.1.1 (rev 6c2d896) to identify nuclei, cells and fluorescent spots (RCA). The intensity and position of RCA products were measured using the same pipeline as in Mignardi et al. (2015) [1]. The barcode decoding was obtained using the same MATLAB script as described before (Ke et al., 2013) [2] and a quality threshold was applied to the detected barcodes as described above. All the
raw images, CellProfiler pipelines and oligonucleotide sequences are accessible in Supplementary Table 7, Supplementary Table 8 and Supplementary Table 9.

Basic statistics. The spatial distributions of transcripts from 25 different genes are retrieved. For samples collected at age 80, 87 and 117 days after fertilization, the 2D positions of SST, GLUC and INS are plotted in Supplementary Figure 1a, Supplementary Figure 1c and Figure 1a. The total number of reads after quality control is given in Supplementary Table 1.

The positions of nuclei are identified at the same time, illustrated in Supplementary Figure 1b, Supplementary Figure 1d and Figure 1b for samples at age 80, 87 and 117 days post fertilization. The total number of counts is recorded in Supplementary Table 1.

2 Algorithm for Identifying of Endocrine Islets

The endocrine islets are identified according to Algorithm 1. In this analysis, we set number of possible radius $m = 10$, maximum possible islet radius $r_{\text{max}} = 110 \mu m$, minimum possible islet radius $r_{\text{min}} = 10 \mu m$ which is around the averaged nuclei spacing.

Algorithm 1 Identification of Endocrine Islets

Input: Nuclei positions (x_i, y_i), total number of SST, GLUC and INS transcripts in ith cell n_i ($i = 1, \ldots, N$), maximum possible radius r_{max}, minimum possible radius r_{min} and number of radius steps m.

Initiate islets region set $C = \emptyset$ and exocrine nuclei set $P_{\text{exo}} = \{i \mid 1 \leq i \leq N, n_i \geq 1\}$

for $t = 0$ to m do

Islet radius $r = (1 - t/m)r_{\text{max}} + (t/m)r_{\text{min}}$.

Get the number of neighboring nuclei n^{neighbor}_i within a radius r for ith nucleus, $i \in P_{\text{exo}}$.

The temporary islets set $P_t = \{i \mid i \in P_{\text{exo}}, n^{\text{neighbor}}_i > (1/\#P_{\text{exo}}) \sum_{j \in P_{\text{exo}}} n^{\text{neighbor}}_j\}$

while P_t is not \emptyset do

$i^* = \text{arg max}_{i \in P_t} n^{\text{neighbor}}_i$, remove i^* from P_t

circle c^* has center (x_{i^*}, y_{i^*}) and radius r.

if c^* do not intersect with C then

Add c^* to islets set C.

$P_{\text{exo}} = \{i \mid i \in P_{\text{exo}}, (x_i, y_i) \not\in c^*\}$

end if

end while

end for

We then identified clusters of endocrine cells for all three samples. Within
each sample we identified clusters of different size and the distribution of cluster size for each sample is plotted in Supplementary Figure 2. The total number of reads inside identified endocrine regions is given in Supplementary Table 5.

3 Density Profile-based Analysis

The density profile-based analysis is carried out to capture the relation between transcripts and other morphological features of the tissue such as nuclei’s position or developing pancreatic islets.

The density profiles are calculated based on kernel density estimation. Given the characteristic distance of each transcript \(x_i\) \((i = 0, ..., n)\), the density \(\rho\) at distance \(x\) is estimated as

\[
\rho(x) = \frac{1}{nw} \sum_{i=1}^{n} K \left(\frac{x_i - x}{w} \right),
\]

where \(n\) is the transcripts number, \(K\) is a kernel with bandwidth \(w\). For example, when analyzing the relation between gene expression and endocrine regions, the characteristic distance \(x\) could be the distance between the transcript and the boundary of its closest endocrine islet. For a good approximation at short distance, we use a 1D kernel with linear combination correction [3].

The difference between two density profiles \(\rho_1(x)\) and \(\rho_2(x)\) is characterized by symmetric Kullback-Leibler (KL) divergence

\[
D(\rho_1, \rho_2) = \frac{1}{2} \left(\int_{0}^{\infty} \rho_1(x) \log \frac{\rho_1(x)}{\rho_2(x)} dx + \int_{0}^{\infty} \rho_2(x) \log \frac{\rho_2(x)}{\rho_1(x)} dx \right),
\]

which averages the KL divergence from \(\rho_1\) to \(\rho_2\) and the divergence from \(\rho_2\) to \(\rho_1\).

4 Statistical Model for Spatial Correlations

4.1 Islet shape analysis.

In the experiment, the boundaries for endocrine islets can be nicely approximated by circles and the model characterizes the spatial correlations in the circular areas. We note that the statistical model does not rely on particular boundary shape and can be readily applied to non-circular cases.

To illustrate the model’s performance when fitted on non-circular regions, we repeat the spatial correlation analysis on pancreatic islets approximated by squared shapes. The endocrine islets are identified as squares, following Algorithm [3] with the radius of circles replaced by the side length of squares. Supplementary Figure [5] shows that the squared boundaries do not capture the shapes of islets well and tend to include more exocrine pancreas compared to circular boundaries. We again fit the statistical model and summarize the typical results in Supplementary Table [2] in correspondence with Table 2 in the...
most spatial correlations among genes are fitted to be close to 1 and three pairs of genes with positive spatial correlation are identified.

4.2 Evaluation on synthetic data

In this section, we evaluate our statistical model on synthetic datasets and demonstrate its power in characterizing the spatial distribution of the expression level among different genes.

Other methods. The computational analysis on the gene-gene spatial correlations has not been addressed in literature. Recent methods such as SpatialIDE identifies the spatial variation of individual genes on their own and the gene-gene spatial correlations are not discussed [4].

We propose two other methods as comparison — a baseline model with preliminary statistics and a pairwise Strauss process model.

In the baseline, the spatial correlation between type i and type j transcripts is defined as

$$\gamma_{ij, \text{baseline}} = \frac{\rho_i(j)}{\overline{\rho}(j)},$$

(3)

where $\rho_i(j)$ denotes the mean density of type j transcripts in the neighborhood of type i within radius r and $\overline{\rho}(j)$ is the mean density of type j transcripts in the whole analyzed region. The case $\gamma_{ij, \text{baseline}} > 1$ indicates that type j transcripts are more likely to appear near type i, thus a clustering effect is expected. Similarly, $0 < \gamma_{ij, \text{baseline}} < 1$ represents an inhibition effect and $\gamma_{ij, \text{baseline}} = 1$ corresponds to an independent relation.

We further compare our multitype Strauss model with a pairwise Strauss model. The spatial correlation between type i and j are modeled with Strauss process for gene i and j only, ignoring the effects of other genes.

Synthetic datasets. We generate two toy spatial transcriptome datasets I and II with known gene-gene spatial correlations, as shown in Supplementary Figure 5. Here the interaction radius is set to be 1 unit and the analyzed region is a 20 units × 20 units square. The scale unit can be related to different length measure. Taking the pancreas transcriptomic dataset as an example, 1 unit can correspond to 20µm.

In dataset I, three genes A, B and C are correlated following Supplementary Figure 5a. There is a clustering effect between pairs (A, B) and (B, C), while the generation of gene B and C are independent. In the experiment, gene A is randomly sampled from a Poisson process on the squared region. Gene B and C are randomly generated in the neighborhood of gene A following Poisson process independently. The intensities for A, B and C are 0.1, 0.09 and 0.08, respectively. An example of generated spatial transcriptomic data are plotted in Supplementary Figure 5b.

In dataset II, two more genes D and E are added, as shown in Supplementary Figure 5c. There is a clustering effect between gene D and E, which are both
independent on the rest three genes. Genes A, B and C are generated following the same procedure as in dataset I. We sample gene D from a Poisson process on the whole region with intensity 0.1 and sample gene E from a Poisson process in the neighborhood of gene D with intensity 0.09, as illustrated in Supplementary Figure 5d.

Performance. Our model successfully captures the spatial correlations among genes and significantly outperforms the other two methods. The performance of fitting the baseline method, pairwise Strauss model and our proposed model on dataset I and II are given in Supplementary Table 3 and Supplementary Table 4, respectively.

Our statistical model is able to distinguish between spatial correlation and spatial co-occurrence, while the other two methods cannot. In the synthetic dataset I, gene B and C are independently generated, but they both correlate with gene A. Thus the two independent genes are also more likely to appear close to each other because of their common neighbor gene A. As shown in Supplementary Table 3, our statistical model correctly captures their independence as $\gamma_{ij} = 1.00 \pm 0.02$. However, the other two methods directly contribute the co-occurrence of B and C to their spatial correlation and yield $\gamma_{ij} > 1$ indicating a clustering effect.

When more types of transcripts are considered in synthetic dataset II, our statistical model continues to learn the correct correlations, as indicated by Supplementary Table 4. The independence between the two groups (A, B, C) and (D, E) is characterized by $\gamma_{ij} = 1$ with gene i and j from each group. The other two methods still mistakenly concludes that there is a clustering effect between the two independent genes B and C.

5 Full Results for Gene Correlation

In the experiment, the spatial correlation γ_{ij} among genes within endocrine islets are fitted with our statistical model. The full results are summarized in Supplementary Table 6.
Supplementary Figure 1: In situ sequencing. (a)(c) Detected SST, GLUC and INS transcripts are plotted on xy coordinates for fetal pancreas sample at age (a) 80 days and (c) 87 days post fertilization. Identified pancreatic islets are identified by black circles. (b)(d) Identified and segmented nuclei are plotted on xy coordinates at age (b) 80 days and (d) 87 days post fertilization.
Supplementary Figure 2: Histogram of islets radius. The samples are collected at age (a) 80 days (b) 87 and (c) 117 days post fertilization.
Supplementary Figure 3: **Pancreatic islets approximated by squares.** The sample is from fetal pancreas at age 117 days post fertilization. Detected SST, GLUC and INS transcripts are plotted on xy coordinates. Computationally identified pancreatic islets are identified by black squares.
Supplementary Figure 4: **Synthetic datasets.** (a)(c) The illustration of gene correlations for (a) dataset I and (b) dataset II. The double-headed arrows connect two genes which have clustering effect with each other. If two genes are not directly connected, they are generated independently. (b)(d) The spatial transcriptomic data in (b) dataset I and (d) dataset II.
Supplementary Tables

Supplementary Table 1: Total number of different transcripts reads and nuclei at age 80, 87 and 117 days after fertilization.

	OGG1	VEGFB	TP53	SST	ARX
Day 80	1346	1151	909	28053	4952
Day 87	773	587	779	26107	12220
Day 117	875	890	601	19481	2769

	GLUC	MUC15	MUC6	MUC20	NEUROD1
Day 80	58203	12	38018	987	107
Day 87	22557	22	6182	1328	160
Day 117	50267	18	16306	725	148

	PROM1	INS	VEGFC	CDKN1A	MKI67
Day 80	3994	2642	931	231	1839
Day 87	2936	3062	841	145	7565
Day 117	2140	3412	733	99	1402

	MUTYH	PDX1	MUC16	EPCAM	MUC1
Day 80	125	452	60	5200	136
Day 87	221	1030	129	3445	208
Day 117	86	344	11	3097	75

	NEUROG3	MUC13	CDKN2A	SOD1	TOP2A
Day 80	104	103	334	2094	984
Day 87	147	31	204	1124	2067
Day 117	101	26	146	1516	515
Supplementary Table 2: When the boundaries for endocrine islets are approximated by squares, spatial correlation γ_{ij} (mean \pm std) at age 80, 87 and 117 days after fertilization.

Correlation Intensity	Day 80	Day 87	Day 117
Typical			
SST \leftrightarrow INS	1.00 \pm 0.02	1.00 \pm 0.01	1.000 \pm 0.005
INS \leftrightarrow MUC6	1.00 \pm 0.04	1.00 \pm 0.03	0.95 \pm 0.01
INS \leftrightarrow ARX	1.00 \pm 0.11	1.00 \pm 0.03	0.89 \pm 0.04
ARX \leftrightarrow MUC6	1.00 \pm 0.03	1.04 \pm 0.02	1.00 \pm 0.03
Strongest			
EPCAM \leftrightarrow PROM1	1.22 \pm 0.08	1.25 \pm 0.07	1.25 \pm 0.06
MUC6 \leftrightarrow EPCAM	1.16 \pm 0.03	1.14 \pm 0.06	1.13 \pm 0.03
MUC6 \leftrightarrow PROM1	1.13 \pm 0.03	1.13 \pm 0.08	1.17 \pm 0.04

Supplementary Table 3: Spatial correlation γ_{ij} (mean \pm std) for synthetic dataset I, fitted with three methods — the preliminary statistics baseline, the pairwise Strauss process model and our proposed statistical model. The true spatial correlation $\hat{\gamma}_{ij}$ equals to 1 when gene i and j are independent and is larger than 1 when there is a clustering effect. We randomly generate dataset I for 20 times and average the results.

Correlation Type	Baseline	Pairwise Model	Our Model	
Clustering ($\hat{\gamma}_{ij} > 1$)	A \leftrightarrow B	1.37 \pm 0.01	1.30 \pm 0.01	1.30 \pm 0.02
	A \leftrightarrow C	1.38 \pm 0.01	1.33 \pm 0.01	1.33 \pm 0.02
Independent ($\hat{\gamma}_{ij} = 1$)	B \leftrightarrow C	**1.21 \pm 0.02**	**1.13 \pm 0.02**	**1.00 \pm 0.02**
Supplementary Table 4: Spatial correlation γ_{ij} (mean ± std) for synthetic dataset II with three methods. The true spatial correlation $\hat{\gamma}_{ij}$ equals to 1 when gene i and j are independent and is larger than 1 when there is a clustering effect. We randomly generate dataset II for 20 times and average the results.

Correlation Type	Baseline	Pairwise Model	Our Model
Clustering ($\hat{\gamma}_{ij} > 1$)			
A ↔ B	1.37 ± 0.01	1.30 ± 0.01	1.31 ± 0.02
A ↔ C	1.38 ± 0.01	1.33 ± 0.01	1.34 ± 0.02
D ↔ E	1.38 ± 0.02	1.32 ± 0.02	1.33 ± 0.02
Independent ($\hat{\gamma}_{ij} = 1$)			
A ↔ D	1.049 ± 0.006	1.008 ± 0.006	1.008 ± 0.006
A ↔ E	1.04 ± 0.02	1.00 ± 0.02	1.00 ± 0.01
B ↔ C	1.21 ± 0.02	1.13 ± 0.02	1.00 ± 0.02
B ↔ D	1.03 ± 0.01	1.00 ± 0.01	1.00 ± 0.01
B ↔ E	1.01 ± 0.03	1.00 ± 0.02	1.00 ± 0.02
C ↔ D	1.02 ± 0.01	1.00 ± 0.01	1.00 ± 0.01
C ↔ E	0.99 ± 0.03	0.97 ± 0.02	1.00 ± 0.03

Supplementary Table 5: Total number of reads inside endocrine regions at age 80, 87 and 117 days post fertilization.

	OGG1	VEGFB	TP53	SST	ARX	GLUC	MUC15	MUC6	MUC20	NEUROD1
Day 80	316	183	145	14098	906					
Day 87	142	121	130	13006	1937					
Day 117	387	262	146	11611	697					
PROM1										
Day 80	41274	2	6514	208	34					
Day 87	14448	4	1372	280	65					
Day 117	37171	4	4665	169	75					
MUTYH										
Day 80	31	123	19	1252	18					
Day 87	43	265	19	998	27					
Day 117	23	129	5	1056	18					
NEUROG3										
Day 80	24	10	69	418	188					
Day 87	36	7	38	208	349					
Day 117	40	1	37	394	118					
Supplementary Table 6: Spatial correlation γ_{ij} (mean ± std) at age 80, 87 and 117 days after fertilization.

	Day 80	Day 87	Day 117
SST ↔ INS	1.00 ± 0.02	1.00 ± 0.01	1.00 ± 0.01
INS ↔ GLUC	1.000 ± 0.004	1.00 ± 0.02	1.011 ± 0.002
GLUC ↔ SST	1.005 ± 0.001	1.003 ± 0.002	1.008 ± 0.001
EPCAM ↔ PROM1	1.26 ± 0.08	1.26 ± 0.07	1.33 ± 0.09
MUC6 ↔ EPCAM	1.15 ± 0.03	1.17 ± 0.08	1.12 ± 0.02
MUC6 ↔ PROM1	1.09 ± 0.02	1.13 ± 0.09	1.19 ± 0.04
SST ↔ MUC6	1.000 ± 0.005	1.00 ± 0.01	0.99 ± 0.01
SST ↔ PROM1	0.95 ± 0.02	0.99 ± 0.01	1.00 ± 0.03
SST ↔ EPCAM	1.00 ± 0.02	1.00 ± 0.01	1.02 ± 0.01
GLUC ↔ MUC6	0.996 ± 0.002	1.000 ± 0.008	1.000 ± 0.003
GLUC ↔ PROM1	1.005 ± 0.003	0.990 ± 0.007	1.000 ± 0.005
GLUC ↔ EPCAM	0.98 ± 0.01	1.000 ± 0.004	1.000 ± 0.004
INS ↔ MUC6	1.00 ± 0.04	1.00 ± 0.03	0.94 ± 0.03
INS ↔ PROM1	1.00 ± 0.08	0.91 ± 0.05	1.12 ± 0.06
INS ↔ EPCAM	1.2 ± 0.2	1.00 ± 0.04	1.17 ± 0.07
ARX ↔ MUC6	1.00 ± 0.03	1.07 ± 0.03	1.00 ± 0.04
ARX ↔ PROM1	1.2 ± 0.1	1.00 ± 0.04	1.1 ± 0.1
ARX ↔ EPCAM	1.4 ± 0.3	1.00 ± 0.04	1.2 ± 0.1
ARX ↔ SST	1.00 ± 0.02	1.000 ± 0.005	1.00 ± 0.01
ARX ↔ GLUC	1.000 ± 0.004	1.000 ± 0.004	1.01 ± 0.01
ARX ↔ INS	1.0 ± 0.2	1.00 ± 0.04	0.89 ± 0.05
Supplementary Table 7: cDNA primers. Here m = 2-O-Me base, + = LNA base.

Gene	Reference number	Probe name	Probe sequence (5′→3′)	
VEGFB	NM_001243733.1	VEGFB₁	cmugmucmugmugmamtcm gumcactgtctt	
VEGFB	NM_001243733.1	VEGFB₂	gcactgaggtgaggtggcggagca	
VEGFB	NM_001243733.1	VEGFB₃	cagctgggagcaggtggccatg	
VEGFB	NM_001243733.1	VEGFB₄	gtgcggcagctgacacactcc	
VEGFB	NM_001243733.1	VEGFB₅	tcaccccgagctggcagacggtg	
VEGFC	NM_005429.4	VEGFC₁	gmgcmtmugmamgmggactc陪同tgaat	
VEGFC	NM_005429.4	VEGFC₂	gaaactcagggagggaggggg	
VEGFC	NM_005429.4	VEGFC₃	ctgttagtgaccagctctccttcg	
VEGFC	NM_005429.4	VEGFC₄	ctgttagctctcccgacatcgc	
VEGFC	NM_005429.4	VEGFC₅	gctctcgggctgtgacatgcccc	
MUC1	NM_001018016.2	MUC1₁	tmugmngmumagmagnmagnmgactgctggccac	
MUC1	NM_001018016.2	MUC1₂	tgtagaggtgaggtgagagcage	
MUC1	NM_001018016.2	MUC1₃	agtagtcggtggtggatctcctgtc	
MUC1	NM_001018016.2	MUC1₄	ttttagttacgtaactgtgtgtc	
MUC1	NM_001018016.2	MUC1₅	actgcagagcagccaaagcagtag	
MUC6	NM_005961.2	MUC6₁	gmgtnnggntggmngcmctgmggtgcttgg	
MUC6	NM_005961.2	MUC6₂	gacactggagggagtactggacagaggg	
MUC6	NM_005961.2	MUC6₃	ttcgaggcctgtggctcctggg	
MUC6	NM_005961.2	MUC6₄	gttgggacacgggcaaacggttg	
MUC6	NM_005961.2	MUC6₅	ggaactgttgatggcacgctctggct	
MUC6	NM_005961.2	MUC6₆	gcctgtgctgctggcctgtggtggtg	
MUC6	NM_005961.2	MUC6₇	gtagctgctgtcgtgaacggtggggg	
MUC13	NM_033049.3	MUC13₁	tmacngmcmagmcmagmamcmagmctggcttgg	
MUC13	NM_033049.3	MUC13₂	tgggtatatctgtcagctgtaggg	
MUC13	NM_033049.3	MUC13₃	ggtctccaataaagcgggtccatg	
MUC13	NM_033049.3	MUC13₄	atccgatgtaaacattgtggcag	
MUC13	NM_033049.3	MUC13₅	aaatattgaggtcagctgaattttgtg	
MUC15	NM_001135091.1	MUC15₁	cmacngammacngmngmuatgggctgcttgct	
MUC15	NM_001135091.1	MUC15₂	tttaaaaacttctgtcaatgtcctg	
MUC15	NM_001135091.1	MUC15₃	ttgatgctccaagaaatgtcctg	
MUC15	NM_001135091.1	MUC15₄	gttttatggggtatgttcagacaaag	
MUC15	NM_001135091.1	MUC15₅	gaattattgtggttaatatttaaggtagg	
Gene	Accession	Sample	Sequence	
--------	-----------	--------	-----------------------------------	
MUC16	NM_024690.2	MUC16_1	anmutmccmcamgtntnamagmg getcattcttg	
MUC16	NM_024690.2	MUC16_2	catccatgacttagatgtagagatac	
MUC16	NM_024690.2	MUC16_3	ggaaccatttgagatgtgttagtg	
MUC16	NM_024690.2	MUC16_4	catttgcagcatcatttgtaggaattg	
MUC16	NM_024690.2	MUC16_5	gagggagtgttgatgtgtctaatg	
MUC16	NM_024690.2	MUC16_6	aatcenaagatcagaggagagatg	
MUC16	NM_024690.2	MUC16_7	agtgtacagctgtgaccacaccttc	
MUC16	NM_024690.2	MUC16_8	tagctcagagcagccagcttatttc	
MUC16	NM_024690.2	MUC16_9	actagaactagtgaccagagagctc	
MUC16	NM_024690.2	MUC16_10	cagaactagtagctgtgaagcttac	
MUC16	NM_024690.2	MUC16_11	ccagcttttggtggctattgctag	
MUC16	NM_024690.2	MUC16_12	aggtcagttctgagcagcagactag	
MUC16	NM_024690.2	MUC16_13	ccagcttttggtggctattgctag	
MUC20	NM_152673.3	MUC20_1	gmganamgmgagmaggmgcgmg tgggagtggag	
MUC20	NM_152673.3	MUC20_2	ttcccaggagcgtggccgcgtgc	
MUC20	NM_152673.3	MUC20_3	tggagtggtttttctctctctcag	
MUC20	NM_152673.3	MUC20_4	tttcctctgtgagcttagcagagc	
MUC20	NM_152673.3	MUC20_5	cagcnaaggaagttggactggccac	
SOD1	NM_000454.4	SOD1_1	ccmcmccmccamcmcmctcmctag	
SOD1	NM_000454.4	SOD1_2	atagagatccttgcgtgacctg	
SOD1	NM_000454.4	SOD1_3	ctgagagtctttctactctcc	
SOD1	NM_000454.4	SOD1_4	caccacacagcacaagctccacagc	
MUTYH	NM_001048171.1	MUTYH_1	tmaacmgagmtmccmcttmctggctctg gttccctgg	
MUTYH	NM_001048171.1	MUTYH_2	tggcctgactgtgcttcagatg	
MUTYH	NM_001048171.1	MUTYH_3	tcactctctccgtcctctccat	
MUTYH	NM_001048171.1	MUTYH_4	aatagtacccagccggacctggg	
MUTYH	NM_001048171.1	MUTYH_5	gctgggaacaggtctgtgctggg	
MUTYH	NM_001048171.1	MUTYH_6	gttgccagcttcagttgtggag	
OGG1	NM_002542.5	OGG1_1	emacmcacmcmcmcmcmagmugmu gcagaatttg	
OGG1	NM_002542.5	OGG1_2	aacactctagtgaagagtacttgcgc	
OGG1	NM_002542.5	OGG1_3	tggcaacagcctcaccatgcgcag	
OGG1	NM_002542.5	OGG1_4	aggccagagcatcagggccttggg	
OGG1	NM_002542.5	OGG1_5	cccgaaaaattttcctttctcctg	
TP53	NM_000546.5	TP53_1	tmmutmtmcmgmegmgagmmsgmg tagactgacc	
TP53	NM_000546.5	TP53_2	aaagttgttttcaggaagtagtttc	
TP53	NM_000546.5	TP53_3	gtgtgaatcaacccacactgcac	
TP53	NM_000546.5	TP53_4	agttttttgtcatcacaatatctc	
Gene	Accession	Accession	Sequence	
------------	-----------	-----------	---------------------------------	
TP53	NM_000546.5	TP53_5	cctcaagctgttccgtccagtag	
CDKN2A	NM_000077.4	CDKN2A_1	amggunmutmucmemagmangmctetctggte	
CDKN2A	NM_000077.4	CDKN2A_2	ccgggcccggcggctggccagcaa	
CDKN2A	NM_000077.4	CDKN2A_3	gtgccccacatcatgagctggacc	
CDKN2A	NM_000077.4	CDKN2A_4	gcaccacacgcttgccaggaacgc	
CDKN2A	NM_000077.4	CDKN2A_5	aggttacctctgccatgegatggc	
CDKN1A	NM_000389.4	CDKN1A_1	gmgmgamgamtagmcmagmcmgcggcgtttggag	
CDKN1A	NM_000389.4	CDKN1A_2	gcggatcagactggcggctcgactg	
CDKN1A	NM_000389.4	CDKN1A_3	taggaggtgccccagcaaggggcccc	
CDKN1A	NM_000389.4	CDKN1A_4	tgacgagcagcagaggtacagacg	
TOP2A	NM_001067.3	TOP2A_1	cmattmtmummumtmtgmmgaattacatgcg	
TOP2A	NM_001067.3	TOP2A_2	ataccttttcatatttcatctacatactac	
TOP2A	NM_001067.3	TOP2A_3	ttagctgctcttttttagctgtgtgtg	
TOP2A	NM_001067.3	TOP2A_4	gggcaacccctttctcgcctgctgc	
TOP2A	NM_001067.3	TOP2A_5	gttgaaaaagctctcttagaatct	
MKI67	NM_001145966.1	MKI67_1	amcmttmtmummutmummtmcmmgatgttggag	
MKI67	NM_001145966.1	MKI67_2	aacgataaatagtatttacatact	
MKI67	NM_001145966.1	MKI67_3	gtgatttttcagcaagtgcgttc	
MKI67	NM_001145966.1	MKI67_4	cccttatgtctcaaaaggtcttttctc	
MKI67	NM_001145966.1	MKI67_5	gatttccatataatgcttttaagtc	
MKI67	NM_001145966.1	MKI67_6	ttagcctgctgtttagcctgtggc	
MKI67	NM_001145966.1	MKI67_7	ctatagtgttgcccttctcctcagg	
MKI67	NM_001145966.1	MKI67_8	cttgtgcttttgggtgctcagggc	
MKI67	NM_001145966.1	MKI67_9	ttccactgtggttctttttagtggg	
MKI67	NM_001145966.1	MKI67_10	tggagcgcggcttattctctctattt	
EPCAM	NM_002354.2	EPCAM_1	T+TA+CG+GC+CA+GC+TTGTAAGTTTTTCA	
EPCAM	NM_002354.2	EPCAM_2	ccaagtgtttgagccattctttcttg	
EPCAM	NM_002354.2	EPCAM_3	gtttctactcgtgcagcagggta	
EPCAM	NM_002354.2	EPCAM_4	aagaattttgaacgactaataatagtg	
EPCAM	NM_002354.2	EPCAM_5	tcagggtgtttttttcactaataat	
EPCAM	NM_002354.2	EPCAM_6	ttatatattgttgctgtggttctcc	
PROM1	NM_001145848.1	PROM1_1	T+GA+TT+TG+CG+ACAAAACCATAGAAAGA	
PROM1	NM_001145848.1	PROM1_2	attttgtgaggcaattccataatttc	
PROM1	NM_001145848.1	PROM1_3	aatccctgttcatactagtagacaatc	
-------	----------------	----------	-------------------------------	
PROM1	NM_001145848.1	PROM1_4	gctctttagctctttgatgcctg	
PROM1	NM_001145848.1	PROM1_5	gtgtcatattcagctgtagtaagagc	
PROM1	NM_001145848.1	PROM1_6	tggataataacaccttttgatacc	
PROM1	NM_001145848.1	PROM1_7	taatccaactcaacactagaggaag	
PROM1	NM_001145848.1	PROM1_8	atttaatataagttccagaggaag	
PROM1	NM_001145848.1	PROM1_9	cagaagaatattaagatttaccttct	
PROM1	NM_001145848.1	PROM1_10	ttgtagagttctgagcnnatcc	
PROM1	NM_001145848.1	PROM1_11	gtcgataatgtagttacagaggaag	
PROM1	NM_001145848.1	PROM1_12	gatctttatgataacattatattc	
SST	NM_001048.3	SST_1	C+AG+AC+AG+CA+GC +TC+TGCCAAGAAGTA	
SST	NM_001048.3	SST_2	acageccccaggacaggagatggac	
SST	NM_001048.3	SST_3	cactgacagcactgagcagatc	
SST	NM_001048.3	SST_4	cttaacaggattgaaaatctttcag	
ARX	NM_139058.2	ARX_1	GG+CCGCG+GT+CG +ACGGGCTGTCAGG	
ARX	NM_139058.2	ARX_2	cagtaggaggagcacaagttgag	
ARX	NM_139058.2	ARX_3	cagggcgcgcactgtggggtgcag	
ARX	NM_139058.2	ARX_4	gtctacctgcgccgctgtgactc	
ARX	NM_139058.2	ARX_5	cgtgcgctctccagagctctcctc	
ARX	NM_139058.2	ARX_6	cgccgtcttcgctctagctgctc	
ARX	NM_139058.2	ARX_7	ctctcctgctgctgagtggaggc	
ARX	NM_139058.2	ARX_8	cggaggcggaggttagctgggagag	
ARX	NM_139058.2	ARX_9	tttagaacacctctctgcggctgtctg	
PDX1	NM_000209.3	PDX1_1	T+GT+TC+CT+CC +GGCTCCGCAGCCTA	
PDX1	NM_000209.3	PDX1_2	gtaggcacgcctcgcacacgg	
PDX1	NM_000209.3	PDX1_3	tttccacctcatgagggtctttg	
PDX1	NM_000209.3	PDX1_4	gggcgccggcgggacgcaccagag	
PDX1	NM_000209.3	PDX1_5	gtaggcacgcctacgagggagcgag	
NEUROD1	NM_002500.4	NEUROD1_1	amutmutmagmggmaggmacmg gaaagaacctta	
NEUROD1	NM_002500.4	NEUROD1_2	gctctgtgcctctctgtctgagaac	
NEUROD1	NM_002500.4	NEUROD1_3	tcggtgatggttgctgccg	
NEUROD1	NM_002500.4	NEUROD1_4	taagcccttgcaaacgtctgagac	
NEUROD1	NM_002500.4	NEUROD1_5	gaagggctccacgctgctgcttag	
NEUROD1	NM_002500.4	NEUROD1_6	tgatcctgcctttggccctgcc	
NEUROG3	NM_020999.3	NEUROG3_1	gmngmnmgtnngmnacmgagagggctttaa	
NEUROG3	NM_020999.3	NEUROG3_2	cgcgtcgtctctacgggctgtctg	
NEUROG3	NM_020999.3	NEUROG3_3	cattgattgctgcggctgctgtg	
NEUROG3	NM_020999.3	NEUROG3_4	cgcgtcgtcgggctgcggctgctg	
	Description	Accession	Description	Accession
---	-------------	-----------	-------------	-----------
NEUROG3	NM_020999.3	NEUROG3_5	ccttcacagaaatctgaaage	
INS	NM_000207.2	INS	G+CA+CC+AG+GGC+CCC+CGCCCAGCTCCA	
GCG	NM_002054.4	GCG	G+TC+TC+TC+AA+AT+TC+ATCGTGACGTTT	
Gene	Reference number	Probe name	Probe sequence (5’ –>3’)	
--------	------------------	------------	--------------------------	
VEGFB	NM_001243733.1	VEGFB_1	acctaaaaaaagacacT	
			GTGTCTATTTTAGGGAT	
			CCCCTAGATGTAACGCT	
			ATCGTCTTTGCTGTTAT	
			GATCGTCCagccagttg	
			gaatgcag	
VEGFB	NM_001243733.1	VEGFB_2	gcgcctgtgctgctggT	
			GTGTCTATTTTAGGGAT	
			CCCCTAGATGTAACGCT	
			ATCGTCTTTGCTGTTAT	
			GATCGTCCatgagctccttgctc	
VEGFB	NM_001243733.1	VEGFB_3	gactgtggagtcatggT	
			GTGTCTATTTTAGGGAT	
			CCCCTAGATGTAACGCT	
			ATCGTCTTTGCTGTTAT	
			GATCGTCCaggtggcggtgccct	
VEGFB	NM_001243733.1	VEGFB_4	ctgcagatgctggagtT	
			GTGTCTATTTTAGGGAT	
			CCCCTAGATGTAACGCT	
			ATCGTCTTTGCTGTTAT	
			GATCGTCCgtggtggctgctgcc	
VEGFB	NM_001243733.1	VEGFB_5	gacacctgcaacctggT	
			GTGTCTATTTTAGGGAT	
			CCCCTAGATGTAACGCT	
			ATCGTCTTTGCTGTTAT	
			GATCGTCCgttagagctcaacctc	
VEGFC	NM_005429.4	VEGFC_1	ttatggaattacagtC	
			CTCAATGCTGCTGCTGCTT	
			ACCCTAGATGTAACGCT	
			ATCGTCTTTAGATGGTTCC	
			GCTATTGTgctacctca	
			gcaagacg	
VEGFC	NM_005429.4	VEGFC_2	ctcggagaggcccgccgC	
			CTCAATGCTGCTGCTGCTT	
			ACCCTAGATGTAACGCT	
			ATCGTCTTTAGATGGTTCC	
			GCTATTGTgctgctgcct	
			cccgggct	
Gene	Accession	Gene	Accession	Sequence
--------	------------	--------	------------	-----------
VEGFC	NM_005429.4	VEGFC	NM_005429.4	agtgtcagctaaaggaacC
				CTCAATGCTGCTGCTGT
				ACCCTAGATGTAACGCT
				ATCGTCTAGATGTACC
				GCTATTGTatattggaa
				aatgtaca
		VEGFC	NM_005429.4	ttagtgttctcggatC
				CTCAATGCTGCTGCTGT
				ACCCTAGATGTAACGCT
				ATCGTCTAGATGTACC
				GCTATTGTctctggtca
				ggaagatt
		VEGFC	NM_005429.4	gctgttacagacggccaC
				CTCAATGCTGCTGCTGT
				ACCCTAGATGTAACGCT
				ATCGTCTAGATGTACC
				GCTATTGTccaccacca
				aacatgca
		MUC1	NM_001018016.2	gtttctgcaggtaatggA
				GTCGGAAGTACTACTCT
				CTTCTACGATTTTACCA
				GTTGCCCTAGATGTACC
				GCTATTGTgtagcccct
				atgagaag
		MUC1	NM_001018016.2	ctttcttcctgctgctgA
				GTCGGAAGTACTACTCT
				CTTCTACGATTTTACCA
				GTTGCCCTAGATGTACC
				GCTATTGTaccgggcac
				ccagctctc
		MUC1	NM_001018016.2	tttaattctctctggagA
				GTCGGAAGTACTACTCT
				CTTCTACGATTTTACCA
				GTTGCCCTAGATGTACC
				GCTATTGTctactgaga
				agaatgct
		MUC1	NM_001018016.2	gttccacgacgtggagacA
				GTCGGAAGTACTACTCT
				CTTCTACGATTTTACCA
				GTTGCCCTAGATGTACC
				GCTATTGTgagaaggtac
				ccaatcat

22
MUC1	NM_001018016.2	MUC1_5
	gccattgtctatctcatA	
	GTCGGAAGTACTACTCT	
	CTTCTACGATTTTAACCA	
	GTTGCCCTAGATGTTCC	
	GCTATTGTgttgttgtgcttg	
	ttgcgtgtgctg	
MUC6	NM_005961.2	MUC6_7
------	-------------	--------
MUC13	NM_033049.3	MUC13_1
MUC13	NM_033049.3	MUC13_2
MUC13	NM_033049.3	MUC13_3
MUC13	NM_033049.3	MUC13_4
MUC13	NM_033049.3	MUC13_5
MUC13	NM_033049.3	MUC13_6
MUC15	NM_001135091.1	MUC15_1
-------	---------------	---------
MUC15	NM_001135091.1	MUC15_2
MUC15	NM_001135091.1	MUC15_3
MUC15	NM_001135091.1	MUC15_4
MUC15	NM_001135091.1	MUC15_5
MUC16	NM_024690.2	MUC16_1
MUC16	NM_024690.2	MUC16_2
MUC16	NM_024690.2	MUC16_3
CTCAATGCTGCTGCTGT		
ACCGTGCGCCTGGTAGC		
AATTACCTAGATGTTCC		
GCTATTGTCtcactctcc		
cagtcagc		
-------	-------------	---------
MUC16	NM_024690.2	MUC16_4
CTCAATGCTGCTGCTGT		
ACCGTGCGCCTGGTAGC		
AATTACCTAGATGTTCC		
GCTATTGTagcactgaaa		
ageccaca		
MUC16	NM_024690.2	MUC16_5
CTCAATGCTGCTGCTGT		
ACCGTGCGCCTGGTAGC		
AATTACCTAGATGTTCC		
GCTATTGTctggtgcta		
catcagag		
MUC16	NM_024690.2	MUC16_6
CTCAATGCTGCTGCTGT		
ACCGTGCGCCTGGTAGC		
AATTACCTAGATGTTCC		
GCTATTGTcetteccag		
aaactatg		
MUC16	NM_024690.2	MUC16_7
CTCAATGCTGCTGCTGT		
ACCGTGCGCCTGGTAGC		
AATTACCTAGATGTTCC		
GCTATTGTagtcactacaa		
tgtcacta		
MUC16	NM_024690.2	MUC16_8
CTCAATGCTGCTGCTGT		
ACCGTGCGCCTGGTAGC		
AATTACCTAGATGTTCC		
GCTATTGTctccaante		
tgatgcc		
MUC16	NM_024690.2	MUC16_9
CTCAATGCTGCTGCTGT		
ACCGTGCGCCTGGTAGC		
AATTACCTAGATGTTCC		
GCTATTGTctgtttcace		
tgaggtta		
Gene	Accession	10th
--------	-------------	------
MUC16	NM_024690.2	MUC16_10
MUC16	NM_024690.2	MUC16_11
MUC16	NM_024690.2	MUC16_12
MUC16	NM_024690.2	MUC16_13
MUC20	NM_152673.3	MUC20_1
MUC20	NM_152673.3	MUC20_2
MUC20	NM_152673.3	MUC20_3
Genes	Accession	Genes
--------	------------	---------
MUC20	NM_152673.3	MUC20_4
MUC20	NM_152673.3	MUC20_5
SOD1	NM_000454.4	SOD1_1
SOD1	NM_000454.4	SOD1_2
SOD1	NM_000454.4	SOD1_3
SOD1	NM_000454.4	SOD1_4
MUTYH	NM_001048171.1	MUTYH_1
MUTYH	NM_001048171.1	MUTYH_2
MUTYH	NM_001048171.1	MUTYH_3
MUTYH	NM_001048171.1	MUTYH_4
MUTYH	NM_001048171.1	MUTYH_5
MUTYH	NM_001048171.1	MUTYH_6
OGG1	NM_002542.5	OGG1_1
OGG1	NM_002542.5	OGG1_2

29
Gene	Accession	Sample	Sequence
OGG1	NM_002542.5	OGG1_3	gcccgeatcaetggcaT
			GTGTCTATTTAGTGGAAT
			CCTCTACGATTTTACCA
			GTTGCGCTCCACTGTGA
			CTAGATTGtctccaaac
			aaccaacat
OGG1	NM_002542.5	OGG1_4	atatgaggagcccaacT
			GTGTCTATTTAGTGGAAT
			CCTCTACGATTTTACCA
			GTTGCGCTCCACTGTGA
			CTAGATTGcagtaacga
			gagctctc
OGG1	NM_002542.5	OGG1_5	cccagaccaacagaT
			GTGTCTATTTAGTGGAAT
			CCTCTACGATTTTACCA
			GTTGCGCTCCACTGTGA
			CTAGATTGggcgaaggg
			acceggecc
TP53	NM_000546.5	TP53_1	cacctgaagtcacaT
			GTGTCTATTTAGTGGAAT
			CCCCTAGATGTAACGCT
			ATCGTGCTCCACTGTGA
			CTAGATTGgcaggtctc
			actccaggc
TP53	NM_000546.5	TP53_2	ttcagacatggaacT
			GTGTCTATTTAGTGGAAT
			CCCCTAGATGTAACGCT
			ATCGTGCTCCACTGTGA
			CTAGATTGgtgagtcag
			gaaacatt
TP53	NM_000546.5	TP53_3	gacctgccctgtgacT
			GTGTCTATTTAGTGGAAT
			CCCCTAGATGTAACGCT
			ATCGTGCTCCACTGTGA
			CTAGATTGttttgcaca
			cttggccaa
TP53	NM_000546.5	TP53_4	aaatttcgctggtgagT
			GTGTCTATTTAGTGGAAT
			CCCCTAGATGTAACGCT
			ATCGTGCTCCACTGTGA
			CTAGATTGtttatccga
			gtgggaagg
Gene	Accession	Exon	Sequence
---	---	---	---
TP53	NM_000546.5	5	ctcagttgtaatctacT GTGTCCTATTAGTGGAT CCCCTAGATGAACGCT ATCGTGCTCCACTGTTA CTAGATTGactactaca ctggaaga
TP53	NM_000546.5	6	ggatggagaatatteaT GTGTCCTATTAGTGGAT CCCCTAGATGAACGCT ATCGTGCTCCACTGTTA CTAGATTGcecaaaagaa aaaccact
CDKN2A	NM_000077.4	1	acatccccgattgaaagA GTCGGAAGTACTACTCT CTAGTAGCCGGTGACTAT CGTCTGCTCCACTGTTA CTAGATTGcgcggaagg tccctcag
CDKN2A	NM_000077.4	2	cggctgactggctggccA GTCGGAAGTACTACTCT CTAGTAGCCGGTGACTAT CGTCTGCTCCACTGTTA CTAGATTGagcagcatg gagcctt
CDKN2A	NM_000077.4	3	ggtccggagccgatcgaA GTCGGAAGTACTACTCT CTAGTAGCCGGTGACTAT CGTCTGCTCCACTGTTA CTAGATTGacgcacgca atagttac
CDKN2A	NM_000077.4	4	gctgcgcggagggtttA GTCGGAAGTACTACTCT CTAGTAGCCGGTGACTAT CGTCTGCTCCACTGTTA CTAGATTGcgcgacgca tcgaacgac
CDKN2A	NM_000077.4	5	ctggagagtgggcecaA GTCGGAAGTACTACTCT CTAGTAGCCGGTGACTAT CGTCTGCTCCACTGTTA CTAGATTGtcgtgcgcg ggacgtgg
Gene	Accession	Description	Sequence 1
---------	-----------	-------------	--
CDKN1A	NM_000389.4	CDKN1A_1	gacagatttacactCTCAATGCTGCTGCTGTACAGTAGCCCTGAGTATCGTCTCCTAGATGTTCCGCTATTGTCggeggegcat
CDKN1A	NM_000389.4	CDKN1A_2	tggacagcgacgacgacgACCTCAATGCTGCTGCTGTACAGTAGCCCTGAGTATCGTCTCCTAGATGTTCCGCTATTGTCcgcctcttgcatgcgccccag
CDKN1A	NM_000389.4	CDKN1A_3	gctctgggccgtgctgcgCTCAATGCTGCTGCTGTACAGTAGCCCTGAGTATCGTCTCCTAGATGTTCCGCTATTGTCcactggaggttgacttc
CDKN1A	NM_000389.4	CDKN1A_4	gacgtcgtcactgtcttgCTCAATGCTGCTGCTGTACAGTAGCCCTGAGTATCGTCTCCTAGATGTTCCGCTATTGTCacagaggaagaccatgta
TOP2A	NM_001067.3	TOP2A_1	agctttttgtcttcggctgtcTGTCGGGAGTACTACTCTCTCTGGGCGCCTGCTGTAGCATTAGCCCTTACTGTAATCTAGATTCaatgtctctaattataggtatgA
TOP2A	NM_001067.3	TOP2A_2	aattttataaattttatgATGTCGGGAGTACTACTCTCTCTGGGCGCCTGCTGTAGCATTAGCCCTTACTGTAATCTAGATTCaatgtctctaattataggtatgA
TOP2A	NM_001067.3	TOP2A_3	aaagcttttttaattggATGTCGGGAGTACTACTCTCTCTGGGCGCCTGCTGTAGCATTAGCCCTTACTGTAATCTAGATTCaatgtctctaattataggtatgA
Gene	Accession	Segment	Sequence
------	-----------	---------	----------
TOP2A	NM_001067.3	TOP2A_4	tgggtgaagttaaggeA GTCGGAAGTACTACTCT CTCGTGCAGCCTGTTAGC AATTAGCTCCACTGTGTA CTAGATTGtagaaagca tactaaacr
TOP2A	NM_001067.3	TOP2A_5	aaagtttggaaccagA GTCGGAAGTACTACTCT CTCGTGCAGCCTGTTAGC AATTAGCTCCACTGTGTA CTAGATTGggaagactca aatattacr
TOP2A	NM_001067.3	TOP2A_6	ttcaaacgggaatgacaaA GTCGGAAGTACTACTCT CTCGTGCAGCCTGTTAGC AATTAGCTCCACTGTGTA CTAGATTGggttaagta ttacttgcc
TOP2A	NM_001067.3	TOP2A_7	acgggtttgatatctA GTCGGAAGTACTACTCT CTCGTGCAGCCTGTTAGC AATTAGCTCCACTGTGTA CTAGATTGgttaaggag taatgact
TOP2A	NM_001067.3	TOP2A_8	gaactagaaggcctaaA GTCGGAAGTACTACTCT CTCGTGCAGCCTGTTAGC AATTAGCTCCACTGTGTA CTAGATTGctcaagaga atggtgtg
MKI67	NM_001145966.1	MKI67_1	atcaaggaacagccctaaA GTCGGAAGTACTACTCT CTCGTGCAGCCTGTTAGC AATTAGCTCCACTGTGTA CTAGATTGggttaagta agaaaact
MKI67	NM_001145966.1	MKI67_2	ctaaaacatggagatgaGTCGGAAGTACTACTCT CTCGTGCAGCCTGTTAGC AATTAGCTCCACTGTGTA CTAGATTGggttaagtagctagtaaccg

33
MKI67	NM_001145966.1	MKI67_3
	gcaagatgtagtaaaactC	CTCAATGCTGCTGCTGCTGT
		ACCGTGCGCCTGGTAGC
		AATTACTTGCTGCTGTAT
		GATCGTCCtgttgtgcaaa
		aatcatgg

MKI67	NM_001145966.1	MKI67_4
	atgaaaggaatagaagC	CTCAATGCTGCTGCTGCTGT
		ACCGTGCGCCTGGTAGC
		AATTACTTGCTGCTGTAT
		GATCGTCCaaaggagag
		aaggagag

MKI67	NM_001145966.1	MKI67_5
	ggtgatgagaagacatC	CTCAATGCTGCTGCTGCTGT
		ACCGTGCGCCTGGTAGC
		AATTACTTGCTGCTGTAT
		GATCGTCCcgccecaac
		cagcagga

MKI67	NM_001145966.1	MKI67_6
	cccacaaaaaccacagC	CTCAATGCTGCTGCTGCTGT
		ACCGTGCGCCTGGTAGC
		AATTACTTGCTGCTGTAT
		GATCGTCCaatetac
		aaccagac

MKI67	NM_001145966.1	MKI67_7
	tcgccaaagacactaaC	CTCAATGCTGCTGCTGCTGT
		ACCGTGCGCCTGGTAGC
		AATTACTTGCTGCTGTAT
		GATCGTCCaactggga
		tggagaggg

MKI67	NM_001145966.1	MKI67_8
	tcgccagggcaacactC	CTCAATGCTGCTGCTGCTGT
		ACCGTGCGCCTGGTAGC
		AATTACTTGCTGCTGTAT
		GATCGTCCtcagggaaac
		gaacacca

MKI67	NM_001145966.1	MKI67_9		
	tttaacagcgctccaaC	CTCAATGCTGCTGCTGCTGT		
		ACCGTGCGCCTGGTAGC		
		AATTACTTGCTGCTGTAT		
		GATCGTCCatggtgctg		
Gene	Reference ID	Symbol	Sequence 1	Sequence 2
--------	--------------	--------	------------	------------
MKI67	NM_001145966.1	MKI67_10	tcggctcctgaaataaAC	CTCAATGCTGCTGCTGCTGACCTGACGCTGATAATCTTTGCTGCTGATGATCGTCACACAAAAATcacaagac
EPCAM	NM_002354.2	EPCAM_1	AAATGTGTCGTGAAAACATGTCGGAAAGTACTACTCCTCTCACTAGATTATACCAGTTGCGCTCCACTGTAGTACTGATTGTTGCCAGCA	GCTCAGGAAG
EPCAM	NM_002354.2	EPCAM_2	ggtagaagggagaattAGTCGGAAGTACTACTCTCTTCCTACAGTATTTACCACTTTGCGCTCCACTGTAGTACTGATTGTTGCCAGCA	aatgttttaaatgttatctacttc
EPCAM	NM_002354.2	EPCAM_3	actgaataaactgtaeeAGTCGGAAGTACTACTCTCTTCCTACAGATTTTACCACTTTGCGCTCCACTGTAGTACTGATTGTTGCCAGCA	acaaggacactgtaaatgttatcactaatcg
EPCAM	NM_002354.2	EPCAM_4	gaaaaattgtattgttgtAGTCGGAAGTACTACTCTCTTCCTACAGATTTTACCACTTTGCGCTCCACTGTAGTACTGATTGTTGCCAGCA	tattgtatatgtatatgtaaaaatggatatgat
EPCAM	NM_002354.2	EPCAM_5	tttaattttataagtgAAGTCGGAAGTACTACTCTCTTCCTACAGATTTTACCACTTTGCGCTCCACTGTAGTACTGATTGTTGCCAGCA	ggtcacaacagtggatcctgttgtaaatgag
EPCAM	NM_002354.2	EPCAM_6	gtagcagaggaactcaAGTCGGAAGTACTACTCTCTTCCTACAGATTTTACCACTTTGCGCTCCACTGTAGTACTGATTGTTGCCAGCA	atgagtgatcctggttatgtaaatgag

35
PROM1	NM_001145848.1	PROM1_1	CATTGGCATCTTCTATGG CCTCAATGCTGCTGCTG TACTCTACGATTACCC AGTTGCGCTCCACTGTT ACTAGATTTGACTTGTA TAATAATAAG	
PROM1	NM_001145848.1	PROM1_2	tcctaaggcttggaattC CTCAATGCTGCTGCTG GTACTCTACGATTTTACCA GTTGCGCTCCACTGTGA CTAAGATTGccttcatec acagagt	
PROM1	NM_001145848.1	PROM1_3	tggattatgacaagattgC CTCAATGCTGCTGCTG GTACTCTACGATTTTACCA GTTGCGCTCCACTGTGA CTAAGATTGcttcatggac cc	
PROM1	NM_001145848.1	PROM1_4	gtccatggcaacagcgaC CTCAATGCTGCTGCTG GTACTCTACGATTTTACCA GTTGCGCTCCACTGTGA CTAAGATTGgcatatgaa actccaaat	
PROM1	NM_001145848.1	PROM1_5	cagcatcagattgtctcC CTCAATGCTGCTGCTG GTACTCTACGATTTTACCA GTTGCGCTCCACTGTGA CTAAGATTGtcaagtgaa acctgcaaa	
PROM1	NM_001145848.1	PROM1_6	tgtctgtcaggttctcC CTCAATGCTGCTGCTG GTACTCTACGATTTTACCA GTTGCGCTCCACTGTGA CTAAGATTGcagcttgttacctgcaaa accagac	
PROM1	NM_001145848.1	PROM1_7	caacggagggcgtctccC CTCAATGCTGCTGCTG GTACTCTACGATTTTACCA GTTGCGCTCCACTGTGA CTAAGATTGcaggctgttacctc	
PROM1	NM_001145848.1	PROM1_8	ctgggaactatcctctCC	
			CTCAATGCTGCTGCTGT	
			ACTCTACGATTTTACCA	
			GTTGGCGCTCCACTGTTA	
			CTAGATTGtacttaacctacta	
			aataattgaaga	
PROM1	NM_001145848.1	PROM1_9	attggaactatgtaaggC	
			CTCAATGCTGCTGCTGT	
			ACTCTACGATTTTACCA	
			GTTGGCGCTCCACTGTTA	
			CTAGATTGggaagcataagcagtga	
PROM1	NM_001145848.1	PROM1_10	agcttctctggatttttgC	
			CTCAATGCTGCTGCTGT	
			ACTCTACGATTTTACCA	
			GTTGGCGCTCCACTGTTA	
			CTAGATTGagagtaactaggattct	
PROM1	NM_001145848.1	PROM1_11	tgttgtgtgtatttttcC	
			CTCAATGCTGCTGCTGT	
			ACTCTACGATTTTACCA	
			GTTGGCGCTCCACTGTTA	
			CTAGATTGgccaaccgetc	
			ctagataac	
PROM1	NM_001145848.1	PROM1_12	aaatatggaatgtgttaC	
			CTCAATGCTGCTGCTGT	
			ACTCTACGATTTTACCA	
			GTTGGCGCTCCACTGTTA	
			CTAGATTGgaaactatacccagttga	
SST	NM_001048.3	SST_1	GAACTGGCCAAGTACTTC	
			TGTGTCTATTTTAGTGGGA	
			TCCAGTAGCCCGTGACTA	
			TCCTCTTGTGCTGTGA	
			TGATCGTGCTCCGCGCC	
			GGGGAAGCAG	
SST	NM_001048.3	SST_2	gctggctgegttgtccatT	
			GTGTCATATTTAGTGGAAT	
			CCAGTAGCCGCTGACTAT	
			CGTCTCTTGTGCGTGTA	
			GATCGTGCTCgctgcctc	
			cagtgege	

37
Gene	Accession	Description	Sequence 1	Sequence 2
SST	NM_001048.3	SST_3	cctggaacctgaagacgatcT	
			GTGTCTATTTTAGTGGAT	
			CCAATAGCCGTGACTAT	
			CGTCTCTTTGTGCTGTAT	
			GATCGTCCacgaaggagag	
			aatgatgc	
SST	NM_001048.3	SST_4	aagattttctggaagacgatcT	
			GTGTCTATTTTAGTGGAT	
			CCAATAGCCGTGACTAT	
			CGTCTCTTTGTGCTGTAT	
			GATCGTCCacgcaagacgag	
			tggctgc	
ARX	NM_139058.2	ARX_1	GCTTTTTTCACAATGGAGT	
			TGTCTATTTTAGTGGAT	
			CGTCTCTTTGTGCTGTAT	
			GATCGTCCacgcaagacgag	
			tggctgc	
ARX	NM_139058.2	ARX_2	ccaaaagtaaatctccaaagcT	
			GTGTCTATTTTAGTGGAT	
			CCGTGCCGCTGTGAGC	
			AATTACTTTGTGCTGTAT	
			GATCGTGCCcagcneagcag	
			cccgagag	
ARX	NM_139058.2	ARX_3	ggccgagctcagcacaactgcT	
			GTGTCTATTTTAGTGGAT	
			CCGTGCCGCTGTGAGC	
			AATTACTTTGTGCTGTAT	
			GATCGTGCCcagcneagcag	
			ccgttcca	
ARX	NM_139058.2	ARX_4	ggacagctcaagagctcaagcT	
			GTGTCTATTTTAGTGGAT	
			CCGTGCCGCTGTGAGC	
			AATTACTTTGTGCTGTAT	
			GATCGTGCCcagcneagcag	
			ccgctcgc	
ARX	NM_139058.2	ARX_5	tggaggaaggagagagagagT	
			GTGTCTATTTTAGTGGAT	
			CCGTGCCGCTGTGAGC	
			AATTACTTTGTGCTGTAT	
			GATCGTGCCcagcneagcag	
			gaagangag	
Gene	Accession	Gene	Accession	Sequence
------	-----------	------	-----------	----------
ARX	NM_139058.2	ARX_6		gctgacccggaagagcT GGTGCATTTTAGTGGAT CCGTGCACCCTGGTACG AATTACTTGCTGTAT GATCGTCACGcaaggag gagctgtct
ARX	NM_139058.2	ARX_7		ccagaacgctegggaT GGTGCATTTTAGTGGAT CCGTGCACCCTGGTACG AATTACTTGCTGTAT GATCGTCACGcaagctcag gtcggttc
ARX	NM_139058.2	ARX_8		cgcgcgcgcgcgttcT GGTGCATTTTAGTGGAT CCGTGCACCCTGGTACG AATTACTTGCTGTAT GATCGTCACGcgcgcgct gcgcgcgcg
ARX	NM_139058.2	ARX_9		cgggacacccggaagggT GGTGCATTTTAGTGGAT CCGTGCACCCTGGTACG AATTACTTGCTGTAT GATCGTCACGcgcgcgctca acatcctg
PDX1	NM_000209.3	PDX1_1		GCGGCGCCCTACGCTGGG GCCGCAAATCTGCTGCTG TACCGTCACCCTGGTACG GATTTAGCTCACAAGTTT ACTAGATTGGGAAGGCG CAGTGGCGG
PDX1	NM_000209.3	PDX1_2		ccgggacacccggaagggC CTCAATGCTGCTGCTG TACCGTCACCCTGGTACG GATTTAGCTCACAAGTTT CTAGATTGgcgcgcgcgc gcgcgcgcgc
PDX1	NM_000209.3	PDX1_3		aagatcctggccacaaaaC CTCAATGCTGCTGCTG TACCGTCACCCTGGTACG GATTTAGCTCACAAGTTT CTAGATTGgcgcgcgcgc gcgcgcgcgc
Gene	Accession	Position	Sequence	
-------	------------	----------	-----------------------------------	
PDX1	NM_000209.3	PDX1_4	tcggcgaggagttctgC	
			CTCAATGCTGCTGCTGT	
			ACCGTGCGCCTGTTGTC	
			AATTAGCTCCACTGTTGTA	
			CTAGATTGGaggtgcgtgagctggcC	
			cccggcacc	
PDX1	NM_000209.3	PDX1_5	ccttcaacgtgcggtcgcC	
			CTCAATGCTGCTGCTGT	
			ACCGTGCGCCTGTTGTC	
			AATTAGCTCCACTGTTGTA	
			CTAGATTGGttagccgcggtgcgctggcC	
			cgcaccac	
NEUROD1	NM_002500.4	NEUROD1_1	AATTCAATTTCTACTTTAAA	
			AGTACGCAAT GAATCCGTA	
			AGTCGTGCGCCTGTTGTA	
			GAATTATCTGTCTGTTGTA	
			AGTTAGTCCAAAT TGGCA	
			CAATTTGAGC	
NEUROD1	NM_002500.4	NEUROD1_2	cgaggtgctctgtgctctgctc	
			GTACGCATGAATCCGTA	
			GTCGTGCGCCTGTTGTA	
			AAATTATCTGTCTGTTGTA	
			AGTTAGTCCcttcaacgcgggtcggcC	
			tggacaga	
NEUROD1	NM_002500.4	NEUROD1_3	gaaggctacagccgggA	
			GTACGCATGAATCCGTA	
			GTCGTGCGCCTGTTGTA	
			AAATTATCTGTCTGTTGTA	
			AGTTAGTCCtttaaatttg	
			agacgcgctcagctctctcagctctcagctc	
NEUROD1	NM_002500.4	NEUROD1_4	cctgtgtctctgtgctctgtc	
			GTACGCATGAATCCGTA	
			GTCGTGCGCCTGTTGTA	
			AAATTATCTGTCTGTTGTA	
			AGTTAGTCCgggtcgcgggtcgc	
			gggcagggtcgcgggtcgcgggtcgc	
NEUROD1	NM_002500.4	NEUROD1_5	tccggcgcagctcagctacA	
			GTACGCATGAATCCGTA	
			GTCGTGCGCCTGTTGTA	
			AAATTATCTGTCTGTTGTA	
			AGTTAGTCCgttccacgcgggtcggcC	
			gtttaagc	
Gene	Accession	Exon	Sequence	
--------	-----------	------	---------------------------------	
NEUROD1	NM_002500.4	6	tgcccgacactggcagA	
			GTCGCAATGAAATCCCTA	
			GTCGTGGGCTTGGTACG	
			AATTATCTGTCTGTTGA	
			GTTAGCCTtttaacctg	
			cactatcc	
NEUROG3	NM_020999.3	1	TGCGCTCATTTTAGGgCCT	
			AGTCCGAAGTACTACTCT	
			TCTCCTAGATGTAACCGC	
			TATCGCTTTGGCTTGTA	
			TGATCGTCGGGAAGTGggG	
			CATTGCAAAAG	
NEUROG3	NM_020999.3	2	cgccccactgtccaagtggA	
			GTCGGAAGTACTACTCTCT	
			ATCTCTAGATGTAACCGCT	
			ATTCGTCTTGTGCTGTAT	
			GATCGTCGCgccctacaacc	
			ctcggggtg	
NEUROG3	NM_020999.3	3	cgaagaagggcccaacgaA	
			GTCGGAAGTACTACTCTCT	
			CTCTCTAGATGTAACCGCT	
			ATTCGTCTTGTGCTGTAT	
			GATCGTCGCgccctacaacc	
			ctcggggtg	
NEUROG3	NM_020999.3	4	agcttgtacgcgtggaA	
			GTCGGAAGTACTACTCTCT	
			ATCTCTAGATGTAACCGCT	
			ATTCGTCTTGTGCTGTAT	
			GATCGTCGCgccctacaacc	
			ctcggggtg	
NEUROG3	NM_020999.3	5	ccagcgactgctgcttA	
			GTCGGAAGTACTACTCTCT	
			ATCTCTAGATGTAACCGCT	
			ATTCGTCTTGTGCTGTAT	
			GATCGTCGCgccctacaacc	
			ctcggggtg	
INS	NM_000207.2		AGGTGGGGGAGGTGGGAGC	
			CTCAATGCTGCTGCTGCTGT	
			ACTCTAGATGTTTACCA	
			GTTGCCCTAGATGTGCC	
			GCTATTTGTCCGGGAGGTC	
			AGAGGACCTGC	
GCG	NM_002054.4	GCG		
-----	-------------	-----		
		GAATAACATTGCCAAACG		
		TGTGTCTATTTAGTGGA		
		TCCGTGCCTGGTAG		
		CAATTAGCTCCACTGTT		
		ACTAGATTGGAAATACCA		
		AGAGGAACAG		
Supplementary Table 9: Detection Probes

Hybridization Cycle	Probe name	Probe sequence (5’→3’)
1	DO_1.1	AGUCGGAAGUAUCTACTCUCT_FITC
1	DO_1.2	CCUCAATGCUGCTGCTGUAC_Cy3
1	DO_1.3	TGUGTCTATUTAGTGGAUCC_Cy5
1	DO_1.4	AGUACGCAUGAAUCCGUAGT_TR
2	DO_2.1	CGUGCAGCCUGGTAGCAAUTA_FITC
2	DO_2.2	AGUAGCCGUGACTATCGUGT_Cy3
2	DO_2.3	TCUACGATUTTACCAGTG_Cy5
2	DO_2.4	CCUAGATGUACGCUAUCGT_TR
3	DO_3.1	CCUAGATGTUCCGCTAFUGT_FITC
3	DO_3.2	GCUCACGTGTGACGTAUTG_Cy3
3	DO_3.3	CTUGTCGTGUATGATCGUCC_Cy5
3	DO_3.4	TCUGTCTGUTGAGUTAGUCC_TR
Supplementary References

[1] Mignardi, M. et al. Oligonucleotide gap-fill ligation for mutation detection and sequencing in situ. *Nucleic acids research* **43**, e151–e151 (2015).

[2] Ke, R. et al. In situ sequencing for rna analysis in preserved tissue and cells. *Nature methods* **10**, 857 (2013).

[3] Jones, M. C. Simple boundary correction for kernel density estimation. *Statistics and Computing* **3**, 135–146 (1993).

[4] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. *Nature methods* **15**, 343 (2018).