Introduction

Percutaneous image-guided biliary procedures are the common nonvascular radiological interventions performed in the management of various benign and malignant pathologies of the biliary system. The commonly performed biliary interventions are percutaneous transhepatic biliary drainage (PTBD), biliary stenting (BS), and percutaneous cholecystostomy (PC). Other procedures include performing PTBD in postoperative bile leaks and various treatment procedures in benign postoperative biliary strictures, like biloenteric and post-liver transplant anastomotic strictures. These procedures are safe and effective, particularly if appropriate steps are followed while performing them. Hence, formulating suitable guidelines based on the current published evidence and recommending them accordingly is necessary.

Methods

The Indian College of Radiology and Imaging (ICRI), after recognizing the necessity of framing these guidelines, adhered to the following process. The Interventional Radiology subspecialty head of the ICRI along with the committee identified an expert in the field to serve as the principal author. The principal author was allowed to assign other experts in the field as deemed necessary. The prospective authors performed extensive literature search and framed the guidelines in the form of statements and assigned the grade of recommendation (1 = strong, 2 = weak) and quality of evidence (A = high, B = moderate, C = low) as defined by UpToDate grading guide [https://www.uptodate.com/home/grading-guide].

The guidelines with the grade of recommendations were then reviewed by the committee of ICRI along with the interventional radiology subspecialty head. The draft was finalized after incorporating the comments of the committee. The statements and discussions have been broadly divided into two parts: Part 1 discussing the preprocedure evaluation and Part 2 discussing the details of various percutaneous image-guided biliary procedures.
ICRI Guidelines for Biliary Interventions

Guidelines

Summary

Part 1: Preprocedure evaluation

1.1. Clinical presentation of patients requiring biliary drainage

1. The common presenting symptoms are jaundice and pruritus, recurrent fever due to cholangitis, and abdominal pain (1A).

2. Patients with post-traumatic bile leak present with increasing bile output in the drain (1B).

3. Patients with benign biliary strictures, may be asymptomatic with altered liver function tests and/or present with episodes of suspected cholangitis (1A).

1.2. Investigations required prior to performing biliary drainage

4. Laboratory investigations needed before biliary drainage include liver function tests, renal function tests, hemoglobin, prothrombin time, international normalized ratio (INR), and platelet count (1A).

5. Imaging is necessary with either computed tomography (CT) scan or magnetic resonance imaging (MRI) (1A).

6. Ultrasonography alone may be sufficient in cases of biliary stone disease (1B).

1.3. Management options of patients requiring biliary drainage

7. The approaches commonly used for biliary drainage are endoscopic and percutaneous. Endoscopic drainage is performed for mid and lower bile duct obstructions and PTBD is performed for high or hilar obstruction. PC is an option in nondilated bile ducts with lower bile duct obstruction. Surgical drainage is rarely performed, especially during a definitive treatment procedure for the cause of obstruction (1A).

8. Antibiotics are necessary in patients with cholangitis (1A).

Part 2: Interventional radiology management

2.1. Indications and contraindications

9. Common indications for PTBD include (a) Malignant hilar biliary obstruction; (b) Clinical features of cholangitis; (c) Postoperative bile leak; (d) Benign biliary strictures; (e) Failed endoscopic drainage; (f) Removal of calculi; (g) Cases where endoscopy is not possible due to altered anatomy after surgery (1A).

10. There are no absolute contraindications for biliary drainage. The relative contraindications for biliary drainage are (a) Deranged coagulation parameters; (b) Ascites; (c) Poor performance status; (d) Stage IV malignant disease (1A).

11. Indications for PC are: (a) Acute cholecystitis with sepsis or with surgical comorbidities; (b) Obstructive jaundice with cholangitis due to common duct block where ERCP or PTBD is not feasible; (c) as an access route for biliary interventions (1A).

12. Contraindications for PC are relative and include deranged coagulation parameters and ascites (1A).

2.2. Patient preparation prior to biliary procedures

13. Patients should be fasting for 4–6 h prior to the procedure (1A).

14. Adequate hydration should be maintained (1C).

15. Broad spectrum antibiotics should be administered prior to the procedure and continued for 3–5 d (1A).

16. Ascites, when present, should be drained (1A).

2.3. Procedure of PTBD

17. Initial puncture of the bile duct should be preferably performed under ultrasonography (USG) guidance (1A).

18. Subsequent steps follow Seldinger technique under fluoroscopy (1A). Bedside PTBD is performed completely under USG guidance with external drainage (1B).

19. Unilobar drainage is usually adequate. Other lobe is drained if the bilirubin is persistently high or when there is cholangitis (1B).

20. Either right- or left-sided approach may be chosen if there are no contraindications to drain a lobe (1B).

21. Biliary stent is preferred over catheter in malignancies for palliation (1A).

2.4. Procedure of percutaneous cholecystostomy

22. PC should be performed under ultrasonography guidance, either through direct peritoneal or transhepatic routes, bedside or in interventional suite (1A).

23. Both Seldinger and trocar techniques may be used (1B).

2.5. Expected outcomes of PTBD

24. There is decrease in serum bilirubin values, thereby preparing the patient for surgery or chemotherapy whichever is appropriate; reduction or resolution of cholangitis, pain and pruritus (1A).

25. There is decrease in the bile output in the surgical drainage catheter (1B).
2.6. Complications of PTBD and their management

26. Most common major complication is cholangitis. It is treated with antibiotics, uncapping the internal/external drainage catheter, repositioning the displaced catheter, exchange or upgradation of the drainage catheter and/or draining the undrained system (1A).

27. Abdominal pain is another common complication, managed by analgesics (1A).

28. Percatheter leak is managed by repositioning a displaced catheter, upgrading the catheter, draining ascites when present, and placing a stoma bag (1B).

29. Catheter-related complications include partial or complete displacement or fracture of catheter. They are managed by repositioning the catheter, replacing the catheter through the previous tract or performing a new procedure immediately or later depending on the extent of biliary dilatation and urgency of the drainage (1B).

30. Hemorrhagic complications present in the form of bleeding from or around the catheter, hematemesis or melena or hypotension and shock. They are managed, depending on the severity, by capping the catheter for tamponade, doing cholangiogram or CT angiography followed by digital subtraction angiography (DSA) and embolization wherever necessary (1A).

31. Pancreatitis is an uncommon complication. It is managed similar to acute pancreatitis occurring due to other etiologies (1B).

2.7. Follow-up of patients of PTBD

32A. Regular clinical evaluation should be done by evaluating patient’s performance status, jaundice, and fever (1B).

32B. Laboratory parameters like serum bilirubin and alkaline phosphatase should be regularly done (1B).

32C. Ultrasonography and/or cholangiogram, should be performed whenever necessary (1B).

32D. Catheter exchanges must be done at regular intervals (1B).

2.8. Complications and outcomes of percutaneous cholecystostomy

33. Common complications include catheter displacement, bile leak, biliary peritonitis, and hemorrhage. Management is by repeat procedure, catheter replacement, drainage, and embolization. (1B)

34. The aim of PC is relief of acute symptoms and infrequently, biliary obstruction (1B).

2.9. Indications for biliary stenting

35. Malignant biliary obstruction is the most common indication, particularly in the palliative setting (1A).

36. The role of stents in benign biliary strictures is not well established (1B).

2.10. Types of biliary stents and their indications

37. The widely used stent for malignant biliary obstruction is uncovered self-expandable metallic stent; covered stents are still not routinely recommended for malignant biliary obstruction (1A).

38. Metallic stents are always better than plastic stents for malignant strictures (1B).

39. retrievable covered stents are promising in benign biliary strictures (1B).

40. Bioabsorbable stents are used in research settings, particularly in benign strictures (1B).

41. The role of drug eluting stents is not established (1C).

2.11. Biliary stenting technique in malignant biliary obstruction

42. Both one-stage and two-stage deployment of the stents can be done (1B).

43. Between suprapapillary and transpapillary stent placement neither has distinctly shown benefit over the other (1B).

44. Bilobar stents may be stent-in-stent or parallel stent and in T or Y configuration (1B).

2.12. Technique for PTBD in benign strictures or bile leaks

45. Benign strictures and bile leaks are associated with minimally dilated or nondilated bile ducts which increase the difficulty of the procedure and complications; there is no difference in the procedural steps of PTBD (1B).

46. Benign strictures are managed by balloon dilatation, serial upgradation to large bore catheters and stents (1B).

47. Endoscopic stenting is the preferred option in case of biliary strictures or bile leaks in post-transplant patients; if endoscopic attempt is unsuccessful or there is altered anatomy (bilioenteric anastomosis), percutaneous biliary drainage is the next option (1B).

2.13. Brush cytology or brush biopsy in malignant biliary strictures

48. Intrabiliary brush cytology or biopsy should be obtained whenever possible, particularly when other methods of tissue sampling are not possible or fail (1B).

2.14 Current status of intrabiliary treatment techniques for malignant strictures

49. Intrabiliary radiofrequency ablation (RFA) has been shown to increase patency rates of biliary stent and may be used (1B).

50. Intrabiliary radiation therapy improves patency of the stent and patient survival (1C).
Q1. What are the common clinical presentation of patients requiring biliary drainage?

The most common symptoms are obstructive jaundice and pruritus, recurrent fever due to cholangitis, and abdominal pain (1A).

Remarks
Jaundice is the most common presentation of biliary obstruction. Even though most causes of obstructive jaundice are benign in nature, the common indications for biliary drainage procedure are due to malignant lesions producing biliary obstruction. In malignant causes, periampullary carcinoma is the most common, followed by hilar cholangiocarcinoma. In addition to jaundice, patients may present with pruritus which occurs in 50 to 80% of malignant cases. Abdominal pain occurs in majority of benign cases, while in malignancy it is seen in 50 to 60% and occurs late. Cholangitis occurs in both benign and malignant cases and presents with fever and can complicate into sepsis and multiorgan failure.

Q2. How do patients of post-traumatic bile leak manifest?

Patients with post-traumatic bile leak present with increasing bile output in the drain (1B).

Remarks
Post traumatic bile leak occurs after laparoscopic cholecystectomy (0.3–0.5%), open cholecystectomy, liver resection (3–11%), and liver transplantation (LT) (4–5%). It should be suspected when there is persistent bile in drainage catheter, abdominal distention or with features of biliary peritonitis, in the postoperative period. Liver transplant recipients may present with early and delayed biliary leak due to biliary ductal injury and also due to hepatic arterial thrombosis. Patients with grades 3 to 5 blunt liver injury frequently present with biliary leak after 5 to 6 days of trauma which require a drainage procedure.

Q3. What are the symptoms of patients with benign biliary strictures?

Patients with benign biliary strictures, may be asymptomatic with altered liver function tests and/or present with episodes of suspected cholangitis (1A).

Q4. What laboratory investigations are required from patients prior to performing biliary drainage?

Liver function tests with prothrombin time and INR are required in all cases prior to any hepatic interventional procedure. Like in a general surgical procedure, hemoglobin needs to be ideally above 10 g/dL, and hemoglobin levels below 6 g/dL require packed red-blood cell transfusion. In patients with hemoglobin levels between 6 and 10 g/dL, the decision of transfusion depends on hemodynamic condition of the patient. Platelet count is required in all patients and counts below 50,000/mL require platelet transfusion.

Q5. What imaging modalities are necessary before biliary drainage?

Imaging is necessary with either CT scan or MRI (1A).

Remarks
The main aims of imaging are to assess the cause and level of obstruction, and stage the disease. Imaging with either CT scan or MRI is necessary in almost all patients prior to biliary drainage. In the diagnosis of malignant hilar stricture, accuracy of CT scan and MRI is comparable, although, CT scan shows the vascular involvement better while MRI better depicts biliary tree. Magnetic resonance cholangiopancreatography (MRCP) provides a better delineation of the bile ducts than CT, and is comparable to ERCP. A study comparing MRI with MRCP and CT in periampullary tumors showed that MRI with MRCP is better than CT scan with AUROC of 0.96 and 0.81.
Q8. What is the role of antibiotics in cholangitis?

Antibiotics are necessary in patients with cholangitis (1A).

Remarks
Patients in cholangitis have an increased mortality rate, with a 30-day “all-cause mortality rate” of approximately 10%.26 Hence, such patients should be treated with antibiotics within one hour of onset of fever and hypotension in cases of septic shock and within six hours of diagnosis in others.20,23 Empirical antibiotics like ampicillin/sulbactam can be used as initial therapy.28

Part II: IR Management

2.1. Indications and contraindications

Q9. What are the indications for PTBD?

Remarks
Biliary drainage in malignant resectable cases is performed to reduce the bilirubin levels and improve liver function. PTBD is usually not recommended in operable, uncomplicated periampullary mass, if the bilirubin is below 10 mg/dL in view of procedure-related complications which reduce a good surgical outcome.31,32 If neoadjuvant chemotherapy is required, the bilirubin levels need to be decreased to less than 2 to 5 mg/dL for adequate functioning of the various chemotherapeutic drugs.33 Biliary drainage in unresectable malignancies is primarily performed to prepare the patient for palliative chemotherapy, reduce intractable pruritus, cholangitis, access for brachytherapy and improve the quality of life.12,34-36 In perihilar mass, since there is partial hepatectomy involved, the target bilirubin threshold is lower and so presurgical PTBD is indicated to reduce bilirubin levels to 2 to 3 mg/dL.27,38 Cholangitis warrants urgent biliary decompression.28,35,39-41 Elevated bilirubin with signs of systemic toxicity should be treated as cholangitis unless proven otherwise. In elderly and malnourished, fever may not be prominent and so elevated total leucocyte counts, erythrocyte sedimentation rate, and C-reactive protein are taken as markers of sepsis.42 In postoperative biliary leak, the preferred approach is endoscopic or surgical after the drainage of symptomatic biloma, if present.5,43,44 Percutaneous biliary drainage is performed if endoscopy fails or is contraindicated or in cases of intrahepatic biliary injury with biloma.44,45 The biliary system is nondilated in a majority of such cases and PTBD needs expert hands. In bilioenteric anastomotic strictures, higher adhesions around the anastomotic site make the field hostile for surgeons, and hence PTBD with balloon dilatation is the preferred option to prevent recurrent cholangitis and late liver atrophy.46,47 In surgeries
which alter the upper gastrointestinal tract anatomy, like Roux-en-Y anastomosis and Billroth procedure, standard endoscopic access to the bile ducts is limited, unless surgeon deliberately places an anterior abdominal pouch. In such cases, percutaneous or enteroscopy or EUS-guided options assist in biliary access.

Q10. What are the contraindications of PTBD?

 a. Absolute contraindications—none.
 b. Relative contraindications:
 i. Deranged coagulation parameters
 ii. Ascites
 iii. Poor performance status
 iv. Stage IV malignant disease

 Level of evidence—1A

Remarks

PTBD is a procedure with “significant risk” of bleeding. There are no absolute contraindications for PTBD. However, there are multiple precautions which need to be taken while performing a safe procedure. The coagulation profile should be reasonably good. The INR should be ideally below 1.5. There are new recommendations suggesting an INR of below 1.7 as cut-off for a safe biliary procedure. Gupta et al, has shown less complication rates with PTBD in cases with deranged INR. In elective cases with deranged INR, oral vitamin K (5–10 mg) should be administered for 3 days in adults and then reviewed. In emergency cases, fresh frozen plasma (FFP) is infused for immediate correction. The FFP infusion should be started prior to the procedure and continued through the procedure. Prothrombin concentrates are also recommended to restore coagulopathy in acute cases. Platelet count should be above 50,000/mL. Platelet rich plasma transfusion should be done if counts are less than 50,000. One unit of random donor platelet increases platelet count by around 6,000/mL and one unit of single donor platelet, by around 30,000/mL. Ascites is a relative contraindication. Ascites increases the risk of hemoperitoneum, and causes difficulty in tracking the dilators and catheters with increased chance of catheter malposition. Patel et al, showed higher rate of complications in the presence of diffuse ascites (26%) compared with the presence of perihepatic fluid (7.3%) only. Ascites needs to be drained completely prior to the procedure. However, Sofue et al, successfully placed percutaneous biliary stents in 16 patients with massive ascites with coil embolization of the track. There are studies showing that ascites is not a contraindication in case of cholecystostomy.

Q12. What are the contraindications for PC?

There are no absolute contraindications. Relative contraindications include deranged coagulation parameters and ascites (1A).

Remarks

The most common indication for PC is acute calculous cholecystitis, occurring in individuals with high surgical risk. A study by Akyürek et al, found that PC followed by early cholecystectomy resulted in significantly early improvement and shorter hospital stay compared with conservative management and delayed cholecystectomy. The authors concluded that PC assists in resolution of sepsis and prepares patient for early cholecystectomy. Similar results were found by another study by Narayanan et al. In a randomized controlled trial (RCT) by Hatzidakis et al, in 2002, the authors found that, in high-risk patients, PC was not better than conservative management in terms of clinical improvement and 30-day mortality. However, they suggested to perform PC in patients who fail to respond to conservative treatment within 3 days. Interestingly, a recent multicenter RCT from Netherlands (CHOCOLATE trial), comparing PC with laparoscopic cholecystectomy in high-risk patients with acute calculous cholecystitis, showed that PC was associated with significantly higher rate of major complications (65 vs. 12%). Ito et al, found that PC is significantly better than gallbladder aspiration in patients of acute cholecystitis in terms of technical success and clinical response with no difference in complications. Two large retrospective studies also found that PC was associated with higher mortality and did not offer any advantage over emergent cholecystectomy in acute cholecystitis. Hence, they suggested that PC should not be routinely used. Other indications include acute cholangitis, gallbladder mucocele, or biliary obstruction and biliary interventions (stenting or stone removal) when ERCP or PTBD is not possible or has failed. It is important to understand that PC benefits the patients with obstruction below the level of cystic duct insertion. Li et al, found that PC for acute cholangitis in high-risk patients significantly improved the clinical symptoms in 91% and had a 30-day mortality of 9%. Gallstone removal through transcholecystic route is technically successful in 85 to 94% cases with low rate of complications.

Q11. What are the indications for PC?

Acute cholecystitis with sepsis or with surgical comorbidities; obstructive jaundice with cholangitis due to common duct block where ERCP or PTBD are not feasible; as an access route for biliary interventions (1A).
2.2. Patient preparation prior to the procedure.

Q13. How long should the patients fast prior to biliary procedures?

Patients should be fasting for 4 to 6 hours prior to the procedure (1A).

Remarks
Patient should be kept fasting for 4 to 6 hours prior to the procedure. Since some of the patients may require conscious sedation, American Society of Anaesthesiology recommends at least 2 hours of fasting for clear fluids and 6 hours for light meal prior to the procedure to avoid the risk of aspiration during sedation.

Q14. How should hydration be maintained?

Adequate hydration should be maintained (1C). No data are available on the protocol.

Remarks
Adequate hydration needs to be maintained by intravenous fluids since patients often suffer from inadequate nutrition and fluid imbalance in low intravascular volume making them vulnerable to any episode of pain-induced vasovagal shock or inadvertent bleeding during procedure. Although no data are available, patients are usually infused with approximately 500 mL of fluids intravenously prior to the procedure.

Q15. What is the protocol for the administration of antibiotics?

Broad spectrum antibiotics should be administered prior to the procedure and continued for 3 to 5 days (1A).

Remarks
Prophylactic antibiotics should be given 1 hour prior to the procedure in patients without cholangitis. The SIR guidelines recommend prophylaxis with ceftriaxone 1 g or ampicillin/sulbactam intravenously prior to fresh puncture and catheter exchanges. In patients with cholangitis, broad spectrum antibiotics should be administered during the complete episode of cholangitis as mentioned vide supra.

Q16. Should ascites be drained prior to the procedure?

Ascites, when present, should be drained to reduce the incidence of complications (1A).

Remarks
As mentioned previously, ascites is a relative contraindication due to the increased risks of bleeding and difficulties in catheter manipulation and warrants complete drainage prior to the procedure. Antiplatelet drugs like aspirin and clopidogrel preferably need to be withheld for at least 5 days prior to the procedure since it doubles the bleeding risk.

2.3. Basic procedure of PTBD

Q17. Under what imaging guidance should the bile duct be punctured?

Initial puncture of the bile duct should preferably be performed under USG guidance (1A).

Remarks
The initial puncture can be done under USG or fluoroscopic guidance depending on the individual's preference and institute protocol. USG guided puncture is suggested to reduce procedure time, radiation dose, and the amount of use of contrast agent. However, in a recent study by Nennstiel et al, comparing fluoroscopic and USG-guided PTBD, the authors found that overall procedure success, complication rates, fluoroscopy times, and procedure times were not significantly different between the groups. In this study, fluoroscopic PTBD (n = 207) was mostly done on the right side and USG guidance (n = 44) was mostly used for the left. Further, the numbers were not comparable. Wagner et al, found that USG-guided PTBD resulted in lower incidence of complications compared with fluoroscopic PTBD. The EFSUMB guidelines in 2016, recommended the use of USG for initial duct puncture with 100% consensus. After initial puncture, remaining steps are performed under fluoroscopy. However, when the procedure is performed bedside, it is done completely under USG guidance.

Q18. What technique should be followed for steps after puncture?

Subsequent steps should follow Seldinger technique under fluoroscopy (1A). Bedside PTBD is done completely under USG guidance with external drainage (1B).

Remarks
The procedure is performed using the standard Seldinger technique after the initial puncture under fluoroscopy. If the obstruction is crossed, an 8F-sized ring biliary catheter for combined internal and external drainage is placed. If not, an 8F external biliary catheter is placed and manipulation is tried few days later. When performing a bedside procedure, fluoroscopy and internalization are not possible and hence the procedure is performed under USG guidance and an external drainage catheter is placed.

Q19. Should the drainage of one or both lobes be performed?

Unilobar drainage is usually adequate. Other lobe is drained if the bilirubin is persistently high or when there is cholangitis.
was also shown in other studies.89,90 Bilobar drainage has been suggested in cases of cholangitis developing after unilobar drainage and when serum bilirubin does not decrease adequately after unilobar drainage.91

Q20. Is left-sided approach better than right-sided one?

Either right- or left-sided approach may be chosen if there are no contraindications to drain a lobe (1B).

Remarks
In a patient with patent primary biliary confluence, either right or left lobe of the liver can be used to access the biliary system without any significant difference in radiation dose, procedure time, or complications.92,93 Even in cases with blocked primary confluence, absence of lobar atrophy or cholangitis and vascular invasion by the malignancy, either right- or left-sided drainage can be performed.

Q21. Is biliary stent better than placement of catheter?

Biliary stent is preferred over catheter in malignancies for palliation (1A).

Remarks
In palliative setting, biliary stent is preferred as it provides better long-term patency than catheter or plastic stents. Studies comparing plastic stents and metallic stents have shown that metallic stents have significantly longer patency rates and significantly lesser reintervention rates, but similar procedure-related complication rates.94,95 The PTBD catheter is associated with problems like early occlusion, pericatheter leakage, and partial or complete dislocation of the catheter.96 Stents are not associated with these complications. Occasionally, the percutaneous catheter may be replaced by a plastic stent over the wire.97

2.4. Procedure of PC

Q22. What image guidance and technique are used for PC?

PC should be done under ultrasonography guidance, either through direct peritoneal or transhepatic routes, bedside or in interventional suite (1A).

Remarks
Ultrasound guidance should be used for puncturing the gallbladder. USG is the best modality to perform PC safely and comfortably.98 Although other modalities like CT scan and fluoroscopy are occasionally used, they cannot be done bedside, are associated with radiation and increase the cost. Infrequently, after puncture under USG guidance, subsequent steps can be performed under fluoroscopy.99 CT guidance has been used in cases when gallbladder is poorly visualized on USG.100 Either transhepatic or transperitoneal route can be used to perform PC. A recent large study by Beland et al showed that there are no differences between transhepatic and transperitoneal routes in terms of pain, procedure-related complications, catheter occlusion, and catheter replacement.99 Another study comparing these techniques also found no difference in complication rate.101 It has been suggested that transhepatic route be preferred in patients with ascites and transperitoneal route in patients with liver disease or coagulopathy.98,102 Some have suggested the use of a sub-costal route than an intercostal route to avoid injury to the pleura and neurovascular bundle.93

Q23. What technique should be used for PC?

Either trocar or Seldinger technique can be used for PC (1B).

Remarks
The technique used can either be trocar or Seldinger technique. No studies are available comparing the two techniques for PC. Both techniques are considered safe although Seldinger technique reduces the chances of injury due to the use of thin initial needle and trocar technique is associated with lesser steps.63,98 Many authors have suggested the use of Seldinger technique although there is no evidence to prefer one over the other.27,63,98 However, with trocar technique there is a tendency to use smaller catheter.99 Either 8F or 10F catheters are used for biliary drainage. Larger catheters can be used to improve drainage of thick material.99

2.5. Expected outcomes of PTBD

Q24. What are the expected clinical and laboratory outcomes of PTBD?

There is decrease in serum bilirubin values, thereby preparing the patient for surgery or chemotherapy whichever is appropriate; reduction or resolution of cholangitis, pain and pruritus (1A).

Remarks
The outcome of PTBD depends on the indication for which biliary drainage is performed. Most of the procedures are performed for biliary obstruction and thus to relieve jaundice and pruritus and to improve liver function tests. Clinical success is defined as reduction of the bilirubin levels by 20% of the baseline value at the end of 1 week or by 75% at the end of 1 month after PTBD.87,103 The clinical success after PTBD ranges from 75 to 98% in the studies published.36,104 Studies have shown that the bilirubin reaches below 1 mg/dL in one-third of patients and below 2 mg/dL in up to 60% of the patients requiring chemotherapy.105,106 The decreasing bilirubin relieves the symptoms like jaundice and pruritus. The survival of the patients depends on the type and stage of the malignancy and PTBD prepares the patient for subsequent step of treatment and thus indirectly improves survival.104 In patients with cholangitis, after PTBD, success is defined when there is resolution of fever, with or without reduction in the serum bilirubin levels.107

Q25. How do patients of bile leak respond after PTBD?

There is decrease in the bile output in the surgical drainage catheter (1B).

Remarks
There is limited data on the evaluation of the outcomes of PTBD performed in the setting of bile leak. When PTBD
is performed for bile leak, clinical success is defined as reduction of bile in the surgical drain and absence of contrast leak in the follow-up cholangiograms. There is no clear evidence that biliary drainage improves quality of life in patients with malignancies or biliary injury.

2.6 Complications of PTBD and their management

Q26. Which is the most common complication and how is it managed?

The most common major complication is cholangitis. It is treated with antibiotics, uncapping the internal/external drainage catheter, repositioning the displaced catheter, exchange or upgradation of the drainage catheter and/or draining the undrained system (1A).

Remarks
Cholangitis is a common major complication of PTBD. The incidence of cholangitis ranges from 3 to 9%. Earlier studies have shown the incidence to be 28 to 30%. The Society of Interventional Radiology has recommended a threshold of 10% for all major complications. It is said that up to 85% of the patients have their bile contaminated with bacteria after initial PTBD, which increases to 100% during later catheter exchanges. The diagnosis of cholangitis is based on the presence of fever and elevated total leucocyte counts. A definition of post-PTBD raise in temperature above 38.5 degrees for 24 hours and elevation of total leucocyte count by 20% in the absence of other evidence of sepsis has been suggested. Lucatelli et al, suggested that age, previous cholecystectomy and bilo-enteric anastomotic surgery, mildly dilated or nondilated bile ducts, malignancy and unsatisfactory drainage on imaging are predictors for the development of cholangitis after PTBD.

Management of cholangitis is initially similar to other types of cholangitis, which involves patient resuscitation, intravenous fluid supplements, and antibiotics. Next step is to assess the status of the biliary system and catheter to identify catheter or stent occlusion, biliary dilatation, undrained lobes or segments, displaced catheter and liver abscesses. This is done with a combination of USG or CT scan and cholangiogram. Occluded catheters should be exchanged, displaced catheters may be repositioned or repeat PTBD may be performed; undrained segments require drainage through PTBD, and liver abscesses need to be aspirated or drained. Unclamping of the internal–external drainage catheter temporarily is also helpful. The incidence of cholangitis can be reduced by prophylactic dose of antibiotics whenever biliary procedure is performed and by regular exchange of catheters (every 2–3 months) under antibiotic cover.

Q27. How is abdominal pain managed?

Abdominal pain is another common complication, managed by analgesics (1A).

Remarks
Pain is a minor complication of PTBD. Procedure-related pain is a common complication of PTBD, seen in up to 55% of patients. This occurs due to stretching of the liver capsule during initial puncture or dilatation of the tract, due to stricture dilatation and due to the presence of the catheter. The inprocedure pain can be reduced or avoided by adequate sedation and occasionally by general anesthesia. A combination of midazolam and fentanyl has been shown to be effective in controlling procedure-related pain. Thoracic paravertebral block has also been shown to be beneficial in controlling pain during PTBD.

Management of post procedure pain is usually by analgesics. They are adequate in most of the cases. Occasionally, the catheter may need to be replaced by stent or moved to a newer access location with repeat procedure.

Q28. How is pericatheter leak managed?

Pericatheter leak is managed by repositioning a displaced catheter, upgrading the catheter, draining ascites when present, and placing a stoma bag (1B).

Remarks
Pericatheter leak is a morbid complication of PTBD. It is seen in up to 33% of patients of PTBD. The causes of leak include occlusion of the catheter due to sludge, clots or tumor, displacement of the catheter, pericatheter tissue necrosis and ascites. Management includes flushing of the catheter forcefully with warm saline, probing the catheter with hydrophilic guidewire, upgrading and/or repositioning the catheter, and replacement with internal stent and stoma bag to collect leaked bile. Bile leak may also result in perihepatic collection which requires drainage.

Q29. What are the catheter-related complications and how are they managed?

Catheter-related complications include partial or complete displacement or fracture of catheter. They are managed by repositioning the catheter, replacing the catheter through the previous tract or performing a new procedure immediately or later depending on the extent of biliary dilatation and urgency of the drainage (1B).

Remarks
Catheter displacement is an important complication, often associated with long-term indwelling. Partially displaced catheters should be replaced over the wire. If the catheter is fully displaced, management depends on the duration after the initial PTBD. If the catheter dislocates after approximately 10 days, a mature tract is usually formed, and it can be cannulated using a catheter and hydrophilic wire. Subsequently, a larger catheter may be inserted. If catheter dislocates earlier, then repeat procedure may be necessary. Sometimes, displacement may result in biloma formation which may need drainage if large and symptomatic. Catheter fracture is an uncommon complication, which occurs particularly when it is connected to a bag for a long time. If the fracture site is external, then the catheter should be replaced over a wire. If it is deep, then steps should be taken to remove or push the fracture fragment and replace it with new catheter.
Q30. What are the manifestations and management options for hemorrhagic complications?

Hemorrhagic complications present in the form of bleeding from or around the catheter, hematemesis or melena or hypotension and shock. They are managed, depending on the severity, by capping the catheter for tamponade, doing cholangiogram or CT angiography followed by DSA and embolization wherever necessary (1A).

Remarks
Hemorrhagic complications after PTBD are uncommon but are potentially lethal. The incidence of these complications ranges from 2 to 3%. In a large study involving 3,110 patients by Choi et al, the incidence of severe hemorrhage was 1.9%. Most common presentation is bleeding in the catheter or blood mixed with bile. Other presentations include pericatheter bleeding, gastrointestinal bleeding like hematemesis or melena, hemodynamic instability and shock. Delayed bleeding (after 3–7 days of PTBD) is usually due to arterial injury. Bleeding may occur into the peripancreatic space and peritoneal cavity. Since PTBD is an invasive procedure, some amount of blood in the drain is normal during the initial 24 to 48 hours.

Management of minor hemorrhage, in a hemodynamically stable patient is conservative. If the bleeding is persistent, cholangiogram without or with CT angiogram is necessary to identify any bleeding source. Venous communication on cholangiogram can be managed by temporary clamping of the catheter or upgrading the catheter. Occasionally, coil embolization of the vein or placement of stent graft may be necessary. Sometimes, bleeding may occur due to a malpositioned catheter with holes communicating with portal vein branches and hence may need repositioning. Arterial communication or arterioportal fistula and any pseudoaneurysm (hepatic, intercostal, or abdominal wall arteries) are treated by embolization. Angiography should be performed, preferably with the catheter removed over a wire, for better demonstration of the site of bleeding. The standard “sandwich technique,” i.e., closure of distal and proximal openings, is used for embolization, usually with coils. If this is not possible, n-butyl cyanoacrylate glue may be used, either endovascularly or by direct percutaneous route, if the pseudoaneurysm is seen on USG.

Q31. How common is pancreatitis after PTBD and how is it managed?

Pancreatitis is an uncommon complication. It is managed similar to acute pancreatitis occurring due to other etiologies (1B).

Remarks
Acute pancreatitis occurring after biliary intervention is an uncommon complication with a prevalence ranging from 0.48 to 6%. It is defined as new onset of epigastric pain after PTBD with the elevation of serum amylase or lipase more than three times normal within 24 hours of the procedure. Asymptomatic hyperamylasemia is common after PTBD and is seen in up to one-fifth of the patients. The risk is higher whenever the distal bile duct or ampulla is manipulated as with placement of internal–external drainage catheter or stent. Majority of them will develop mild pancreatitis. Management is similar to acute pancreatitis developing due to other etiologies.

2.7. Follow-up of patients of PTBD

Q32. How are patients of PTBD followed up?

- Regular clinical evaluation should be done by evaluating patient’s performance status, jaundice and fever.
- Laboratory parameters like serum bilirubin and alkaline phosphatase should be regularly done.
- Ultrasonography and/or cholangiogram, should be performed whenever necessary.
- Catheter exchanges must be done at regular intervals.

Level of evidence: 1B.

Remarks
No standard follow-up protocol has been recommended after PTBD. However, many studies have suggested that the patients with internal–external drainage catheters be reviewed every 2 to 3 months for any delayed complications and perform check of cholangiogram and catheter exchange. Patients should be evaluated clinically for improvement in jaundice and fever. Liver function tests should be evaluated once in 1 to 2 weeks to assess the clinical response of PTBD or stenting, more frequently in the initial 2 weeks. If the serum bilirubin is stagnant or increasing, then repeat evaluation should be done to look for any undrained segments and procedure should be performed to drain them. The patients should be advised to flush the catheters with 20 mL of sterile saline two to three times every day to prevent clogging of the catheter; In patients who are on external drainage, adequate hydration should be advised. In the event of any symptoms related to the procedure like fever, pericatheter leak, catheter displacement, abdominal distension or bleeding, they should be advised to visit the hospital for further evaluation according to the symptoms. If an imaging becomes necessary, USG or CT scan should be performed. MRI is occasionally necessary.

2.8. Complications and outcomes of PC.

Q33. What are the complications of PC?

Common complications include catheter displacement, bile leak, biliary peritonitis, and hemorrhage; management is by repeat procedure, catheter replacement, drainage, and embolization (1B).

Remarks
The incidence of complications after PC ranges from 2.4 to 16%. The complications associated with transhepatic route of PC include pain, sepsis, bleeding from the liver, biliary fistula, and pneumothorax. Pain can be managed by parenteral analgesics. Biliary infection is managed...
mostly with antibiotics.143 Mild bleeding usually settles on conservative management.27 Severe bleeding may need CT angiogram and embolization. Catheter dislodgement, occurring in up to 9% of the patients, may be asymptomatic or may result in bile leak which requires repeat procedure or drainage of biloma or both.142,144 Procedure-related mortality is seen in <1% cases.100,145

Q34. What are the outcomes of PC?

The aim of PC is relief of acute symptoms and infrequently, biliary obstruction (1B).

\textbf{Remarks}

The response to PC, depending on the indication, is considered positive, when the symptoms resolve, the body temperature decreases to below 37.5 degrees and there is decrease in total leucocyte count by 25% within 72 hours of the procedure.146 Follow-up is done by clinical and laboratory parameters and if necessary, by imaging, usually USG. After PC, the catheter should be left in situ for at least 4 to 6 weeks to allow maturation of the tract.98,147 The catheter should be flushed with sterile saline twice a day to prevent clogging. Clogged catheters can be cleared by passing a guide wire through them or they may be replaced with newer catheters.96

2.9. Indications for BS

Q35. What are the indications for BS?

Malignant biliary obstruction is the most common indication, particularly in the palliative setting (1A).

\textbf{Remarks}

Metallic stents are the standard palliative forms of treatment of malignant biliary strictures.148 Metallic stents provide better long-term patency rates compared with plastic stents in inoperable malignant strictures.149 The median patency rates are in the range of 7 to 9 months.150,151 Stenting may be unilobar or bilobar, but the former is usually adequate as described earlier for unilobar biliary drainage.138,139 A recent randomized controlled trial also confirmed that bilobar drainage does not offer benefit over unilobar drainage.152 Similarly, a recent meta-analysis also found that efficacy and safety of unilobar and bilobar endoscopic stenting are comparable.153

Q36. What is the role of biliary stents in benign biliary strictures?

The role of stents in benign biliary strictures is not well established (1B).

\textbf{Remarks}

Although, stents are not usually advised for benign biliary strictures, retrievable covered self-expandable metallic stents (SEMS) are increasingly being used with clinical success rates ranging from 75 to 90%.154-156 Stent migration rates were 14 to 20% in these patients. In addition, biodegradable stents, which spontaneously dissolve in 3 to 6 months, are finding place in the management of benign strictures with promising results.157,158

2.10. Types of biliary stents and their indications.

Q37. What is the type of stent used in malignant biliary obstruction?

The widely used stent for malignant biliary obstruction is uncovered self-expandable metallic stent. Covered stents are still not routinely recommended for malignant biliary obstruction (1A).

\textbf{Remarks}

Various types of biliary stents available include uncovered SEMS, covered stents which may or may not be retrievable, bioabsorbable stents, and drug eluting stents.134,148 Uncovered SEMS are routinely recommended for malignant biliary strictures. Covered stents have been suggested to reduce tumor ingrowth and improve patency; however, they are associated with increased migration rates and possibility of isolation of biliary, cystic and pancreatic ducts.148 Studies comparing uncovered and covered SEMS for malignant strictures have shown no distinct advantage of covered over uncovered stent.151 This was shown in a meta-analysis of 20 randomized controlled trials.159 Another large randomized controlled study by Kullman et al showed no difference in stent patency or survival of patients between covered and uncovered SEMS.160 Absence of survival benefit with covered SEMS was also shown in a meta-analysis evaluating 2,239 patients.161 Further, since covered SEMS are expensive, it is currently recommended to use uncovered SEMS routinely.

Q38. Are metallic stents better than plastic stents?

Metallic stents are always better than plastic stents for malignant strictures (1B).

\textbf{Remarks}

Metallic stents are associated with longer patency rates compared with plastic stents due to their larger calibre.89,95,96,101,149 The recommended size of the metallic stent is 8 to 10 mm.162 Plastic stents are typically placed endoscopically for benign conditions and preoperatively for malignant pathologies.22,25 Although, plastic stents may be exchanged when necessary endoscopically, removing a metallic stent is challenging.

Q39. What types of stents are used in benign biliary strictures?

Retrievable covered stents are promising in benign biliary strictures (1B).

\textbf{Remarks}

Retrievable covered stents have been successfully used in the management of benign biliary strictures.154-156 Covered stents have a larger diameter and maintain dilatation as long as they are in place.148,155 With a mean indwelling period of 6 to 12 months, these stents provide a clinical success of 75 to 90% and mean duration patency of the stricture after stent removal of 36 months.154-156 The covered stents offer significantly longer patency rates...
of benign bilioenteric anastomotic strictures compared with balloon dilatation (3-year patency 85 vs. 53%).

Q40. What is the current role of bioabsorbable stents?

Bioabsorbable stents are used in research settings, particularly in benign strictures (1B).

Remarks
Biodegradable stents, as described in the previous section, have shown promising results in the management of benign biliary strictures.157,158 They have been used in cases which fail standard treatment. A recent meta-analysis comparing biodegradable stents and multiple plastic stents in benign biliary strictures showed that clinical success rate was similar in both groups (83 vs. 84%), but the incidence of cholangitis was higher in the plastic stent group.164

Q41. What is the status of drug eluting stents for malignant biliary strictures?

The role of drug eluting stents is not established (1C).

Remarks
Drug eluting stents, like paclitaxel coated stents, have been proposed to improve patency and survival in malignant strictures, but have not been proven in small studies evaluating its use.165,166 Hence, its use is not established.

2.11. BS technique in malignant biliary obstruction

Q42. Should biliary stent be deployed in one stage or two stages?

Both one-stage and two-stage deployment of the stents can be performed (1B).

Remarks
Biliary stent placement may be performed either in a single stage (primary) or in two stages (PTBD followed by stent; secondary).167,168 Both the techniques are effective. However, in view of shorter hospital stay and reduced cost, primary stenting is preferable.167,168 Predilatation of the stricture prior to stenting is not advisable.169 Although balloon dilatation prior to stenting is feasible, it has no effect on the long-term outcomes.169

Q43. Is suprapapillary stent placement better than transpapillary position?

Between suprapapillary and transpapillary stent placement neither has distinctly shown benefit over the other (1B).

Remarks
In cases with strictures involving the hila and proximal bile duct, it is not clear whether the distal end of the stent should be across the papilla or remain proximal to it.134,170 Few studies have shown that suprapapillary stenting results in reduced incidence of pancreatitis and ascending cholangitis.171,172 However, other studies have shown no significant difference between the two techniques in effectiveness and safety.170,173

Q44. How should bilobar stents be placed?

Bilobar stents may be placed as stent-in-stent or parallel stent and in T or Y configuration (1B).

Remarks
When draining both lobes, either T stent or Y stent may be deployed. T-stent allows drainage of both lobes through a single access site whereas Y-stent requires two separate access to the bile ducts.151 Both techniques are safe and provide effective biliary drainage.174-176 Deployment may be simultaneous or sequential and stent-in stent or parallel, with no difference between the techniques.177-180

2.12. Technique for PTBD in benign strictures or bile leaks

Q45. What is the difference in technique for PTBD in benign strictures or bile leaks?

Benign strictures and bile leaks are associated with minimally dilated or nondilated bile ducts which increase the difficulty of the procedure and complications. There is no difference in the procedural steps of PTBD (1B).

Remarks
The major group encompassing benign biliary strictures (BBS) includes postoperative anastomotic strictures, typically post LT bile duct stricture, and bilioenteric (hepaticojejunostomy) anastomotic stricture. In the presence of dilated ducts due to benign stricture, no additional challenges are encountered in performing PTBD. However, a good number of patients with benign strictures or and majority with bile leaks, do not show dilated intrahepatic bile ducts.181,182 In view of this, obtaining access to the bile ducts requires more skill and experience. Studies have suggested a combination of USG and fluoroscopy as guidance to puncture the bile ducts.183,184 The technical success rate of PTBD in nondilated system is in the range of 90 to 100%.108,183,186

Q46. What are the percutaneous methods of treating benign biliary strictures?

Benign strictures are managed by balloon dilatation, serial upgradation to large bore catheters and stents (1B).

Remarks
No standard protocol has been defined for the management of benign biliary strictures as these are frequently difficult to treat and require long-term and repeated interventions.148,147 Percutaneous balloon dilatation is a simple, safe, and effective technique for the treatment of BBS.188 A study by Janssen et al suggested that balloon dilatation with long-term drainage resulted in >85% clinical success.189 Another study by Bonnel and Fingerhut, studying percutaneous balloon dilatation for bilioenteric (hepaticojejunostomy) anastomotic strictures showed a patency of 90.9% and recurrence rate of 15%.190 Cutting balloons may be used for recalcitrant strictures.191,192 Another technique of treatment in post-transplant bile duct strictures is serial upgradation of catheter from 8F to 18 to 20 F which is then left in situ for at least 3 to 6 months.193 This
resulted in primary patency rates of 81 to 89%. Other techniques are the use of covered and biodegradable stents with good results. They have been described in the previous section (Q-39,40). The studies available are retrospective with no randomized controlled trials.

Q47. What is the role of percutaneous biliary intervention in liver transplant patients?

Endoscopic stenting is the preferred option in case of biliary strictures or bile leaks in post-transplant patients; if endoscopic attempt is unsuccessful or there is altered anatomy (bilioenteric anastomosis), percutaneous biliary drainage is the option (1B).

Remarks

Biliary complications are common (10–25%) after LT and more common with living donor LT compared with deceased donor LT.194 Biliary leak comprises of the majority of post-transplant biliary complications (2–25%) and is due to anastomotic dehiscence, ischemia, and sphincter of Oddi hypertension.195 Biliary strictures usually present late (after 3 months) and can be anastomotic or nonanastomotic. Endoscopic plastic stenting is the preferred treatment option in managing these complications.195 However, in cases where bilioenteric anastomosis has been performed (LT in patients with biliary disease like primary sclerosing cholangitis) and in unsuccessful endoscopic attempts, percutaneous biliary drainage is attempted. PTBD is technically challenging as the bile ducts are either nondilated or minimally dilated. Mukund et al, described salvage PTBD in LT patients (n = 32) with failed endoscopic approach and showed complete and sustained clinical and biochemical improvement in 82% of the patients.196 The technique failed to resolve sepsis in 18% of patients. Another study by Jegadeesan et al, evaluating 39 patients who underwent PTBD after failed ERCP for post LT biliary stricture, found PTBD successful in 87% cases with 15% morbidity.197 Studies have shown that endoscopic stenting has a success rate of 75 to 80% in biliary complications after LT and PTBD is used as a second line option.198

2.13. Brush cytology or brush biopsy in malignant biliary strictures

Q48. What is the role of brush cytology or brush biopsy in cases of malignant biliary strictures?

Intrabiliary brush cytology or biopsy should be obtained whenever possible, particularly when other methods of tissue sampling are not possible or fail (1B).

Remarks

Sampling of the endobiliary tissue may be in the form of cytology or biopsy, which may be done by percutaneous or endoscopic route.81 The standard fine needle aspiration cytology is less sensitive for small tumors of the biliary system.199 Cytology with biopsy is more effective in diagnosis than cytology alone.199 The technique involves insertion of a vascular sheath (6F) across the stricture over a wire and then inserting the cytology brush through the sheath followed by repeated movements of the brush at the level of stricture.81 The diagnostic sensitivity and specificity of brush cytology are 68 and 100%, respectively.200,201 Forceps biopsy is better than cytology in the diagnosis of malignancy.202,203

2.14. Current status of intrabiliary treatment techniques for malignant strictures

Q49. What is the current status of intrabiliary RFA for malignant strictures?

Intrabiliary RFA has been shown to increase the patency rates of biliary stent and may be used (1B).

Remarks

Biliary RFA uses an over-the-wire bipolar electrode which has been shown to create an ablation zone depth of 1.3 to 4.4 mm.204 In a retrospective study of 50 patients of unresectable malignant biliary obstruction, percutaneous RFA and biliary stent placement were found to be a safe and feasible palliative option.205 It has also been shown to improve stent patency.206 In patients developing stent obstruction, few short series have shown the benefit of RFA and balloon sweep in recanalization.207-209 One recent randomized controlled trial from China showed that endoscopic RFA with stenting significantly increases stent patency and survival in patients with extrahepatic cholangiocarcinoma.210

Q50. What is the role of intrabiliary radiation therapy for malignant biliary strictures?

Intrabiliary radiation therapy improves patency of the stent and patient survival (1C).

Remarks

Two recent retrospective studies have shown that biliary stent with intracavitary radiation with Iodine-125 particles improves the stent patency and patient survival.211,212 Zhou et al showed that, in patients with malignant biliary strictures, stent with I-125 particles had significantly better patency (194d vs. 86d) and overall survival (194d vs. 96d) compared with the control group.212 In another large multicenter study by Zhu et al, irradiation stents were associated with lower stent restenosis rate (21 vs. 33%) and longer survival (202d vs. 140d) when compared with standard uncovered SEMS.213 However, no randomized controlled trials have proven their undisputable benefit.

2.15. Other methods of biliary drainage and their indications

Q51. What are the other methods of biliary drainage?

Other methods of biliary drainage include endoscopic drainage, surgical drainage, and endoscopic ultrasound-assisted drainage (1A).

Remarks

In patients requiring biliary drainage, various approaches include percutaneous, endoscopic, endoscopic ultrasound, and surgical approach.214 Surgical method of drainage is associated with higher morbidity and mortality and...
Q52. What is the indication for endoscopic drainage and is it better than PTBD?

Endoscopic drainage is suggested as the initial choice in cases of mid and lower bile duct obstruction and with normal upper gastrointestinal anatomy (1A).

Remarks

Many studies have compared endoscopic and percutaneous biliary drainage in the treatment of malignant biliary strictures. A meta-analysis evaluating three RCTs and 11 retrospective studies compared 2,246 patients who underwent PTBD and 8,100 patients who underwent EBD for malignant obstructive jaundice.216 They found no difference between PTBD and EBD in terms of clinical success, complication, and 30-day mortality and suggested that the choice of approach should depend on the level of obstruction, purpose of drainage, and level of expertise. Another meta-analysis comparing both techniques for preoperative drainage in operable hilar cholangiocarcinoma found that PTBD was associated with lower rate of complications (cholangitis and pancreatitis).217 These results were also confirmed by another meta-analysis evaluating six trials.25

Q53. What is the role of endoscopic ultrasound-guided biliary drainage?

Endoscopic ultrasound-assisted drainage is increasingly being used, but its role is yet to be established (1B).

Remarks

Endoscopic ultrasound-guided biliary drainage (EUSBD) is increasingly being used in cases where standard endoscopic route fails.218 Two recent meta-analysis comparing EUSBD with ERCP-BD found that EUSBD has similar efficacy and safety as ERCP-BD in cases of distal malignant biliary obstruction.219,220 An RCT studying 125 patients also confirmed that EUSBD and ERCPBD provide comparable technical and clinical success rates.221 However, EUSBD was associated with longer stent patency, lower complications, and more preserved quality of life. A retrospective study comparing EUSBD and PTBD for distal malignant biliary stricture showed that both have similar levels of efficacy.222 But, EUSBD had fewer complications and intervention rates. Similar results were found in another retrospective study by Sharaiha et al.223 However, another recent study showed that EUSBD did not offer advantage over PTBD.224 Thus EUSBD may be an option in patients with distal biliary obstruction, when ERCP fails, provided the expertise is available. Also, a study has shown that it is better in patients who have ascites.225

Q54. When is surgical biliary drainage indicated?

Surgical drainage is indicated in patients who fail minimally invasive procedures or who need definitive treatment (1A).

Remarks

Surgical method of drainage is associated with higher morbidity and mortality and hence is used as a last resort, when other minimally invasive techniques have failed, in the palliative setting.215 However, in patients with resectable tumors, this is the curative treatment of choice.25,217

Funding
None.

Conflict of Interest
None declared.

References

1 Sharma MP, Ahuja V. Aetiological spectrum of obstructive jaundice and diagnostic ability of ultrasonography: a clinician’s perspective. Trop Gastroenterol 1999;20(4):167–169
2 Yadav A, Condati NK, Mukund A. Percutaneous transhepatic biliary interventions. J Clin Interv Radiol ISVR 2018;2(1):27–37
3 Bassari R, Koea JB. Jaundice associated pruritis: a review. World J Gastroenterol 2015;21(5):1404–1413
4 Kapoor V, Baron RL, Peterson MS. Bile leaks after surgery. AJR Am J Roentgenol 2004;182(2):451–458
5 Ahmad F, Saunders RN, Lloyd GM, Lloyd DM, Robertson GS. An algorithm for the management of bile leak following laparoscopic cholecystectomy. Ann R Coll Surg Engl 2007;89(1):51–56
6 Altman A, Zangan SM. Benign biliary strictures. Semin Intervention Radiol 2016;33(4):297–306
7 Singh A, Gelrud A, Agarwal B. Biliary strictures: diagnostic considerations and approach. Gastroenterol Rep (Oxf) 2015;3(1):22–31
8 Lundsgaard-Hansen P. Safe hemoglobin or hematocrit levels in surgical patients. World J Surg 1996;20(9):1182–1188
9 American Society of Anesthesiologists Task Force on Perioperative Blood Transfusion and Adjuvant Therapies. Practice guidelines for perioperative blood transfusion and adjuvant therapies: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Blood Transfusion and Adjuvant Therapies. Anesthesiology 2006;105(1):190–208
10 Patel IJ, Rahim S, Davidson JC, et al. Society of Interventional Radiology Consensus Guidelines for the periprocedural management of thrombotic and bleeding risk in patients undergoing percutaneous image-guided interventions-part II: recommendations: endorsed by the Canadian Association for Interventional Radiology and the Cardiovascular and Interventional Radiological Society of Europe. J Vasc Interv Radiol 2019;30(8):1168–1184.e1
11 Patel IJ, Davidson JC, Nikolic B, et al. Standards of Practice Committee, with Cardiovascular and Interventional Radiological Society of Europe (CIRSE) Endorsement. Consensus guidelines for periprocedural management of coagulation status and hemostasis risk in percutaneous image-guided interventions. J Vasc Interv Radiol 2012;23(6):727–736
12 Madhusudhan KS, Gamanagatti S, Srivastava DN, Gupta AK. Radio logical interventions in malignant biliary obstruction. World J Radiol 2016;8(5):518–529
13 Madhusudhan KS, Gamanagatti S, Gupta AK. Imaging and interventions in hilar cholangiocarcinoma: a review. World J Radiol 2015;7(2):28–44
14 Wu XP, Ni JM, Zhang ZY, et al. Preoperative evaluation of malignant hilar biliary obstruction: negative-contrast CT cholangiopancreatography and CT angiography versus MRCP and MR angiography. AJR Am J Roentgenol 2015;205(4):780–788

15 Park MS, Kim TK, Kim KW, et al. Differentiation of extrapancreatic bile duct cholangiocarcinoma from benign stricture: findings at MRCP versus ERCP. Radiology 2004;233(1):234–240

16 Andersson M, Kostic S, Johansson M, Lundell L, Asztély M, Hellström M. MRI combined with MR cholangiopancreatography versus helical CT in the evaluation of patients with suspected periampullary tumors: a prospective comparative study. Acta Radiol 2005;46(1):16–27

17 Katabathina VS, Dasyam AK, Dasyam N, Hosseinzadeh K. Adult bile duct strictures: role of MR imaging and MR cholangiopancreatography in characterization. Radiographics 2014;34(3):565–586

18 Girometti R, Cerevalli L, Bazzocchi M, Zuiani C. Magnetic resonance cholangiography in the assessment and management of biliary complications after OLT. World J Radiol 2014;6(7):424–436

19 Zenouzi R, Welle CL, Venkatesh SK, Schramm C, Eaton JE. Magnetic resonance imaging in primary sclerosing cholangitis-current state and future directions. Semin Liver Dis 2019;39(3):369–380

20 Maurea S, Caleo O, Mollica C, et al. Comparative diagnostic evaluation with MR cholangiopancreatography, ultrasonography and CT in patients with pancreatobiliary disease. Radiol Med (Torino) 2009;114(3):390–402

21 Min J, Li H, Zhao F, Zhou J. Percutaneous transhepatic biliary drainage vs. endoscopic biliary drainage in peripancreatic cancer patients undergoing pancreaticoduodenectomy—a systematic review and meta-analysis. Int J Clin Exp Med 2018;11(2):12870–12879

22 Wiggers JK, Coelen BJ, Rauws EA, et al. Preoperative endoscopic versus percutaneous transhepatic biliary drainage in potentially resectable perihilar cholangiocarcinoma (DRAINAGE trial): design and rationale of a randomized controlled trial. BMC Gastroenterol 2015;15:20

23 Moole H, Dharmapuri S, Duvvuri A, et al. Endoscopic versus percutaneous biliary drainage in palliation of advanced malignant hilar obstruction: a meta-analysis and systematic review. Can J Gastroenterol Hepatol 2016;2016:4726078

24 Tang Z, Yang Y, Meng W, Li X. Best option for preoperative biliary drainage in Klatskin tumor: a systematic review and meta-analysis. Medicine (Baltimore) 2017;96(43):e8372

25 Liu JG, Wu J, Wang J, et al. Endoscopic biliary drainage versus percutaneous transhepatic biliary drainage in patients with resectable hilar cholangiocarcinoma: a systematic review and meta-analysis. J Laparoendosc Adv Surg Tech A 2018;28(9):1053–1060

26 Hatzidakis A, Venetucci P, Krokidis M, Iaccarino V. Magnetic resonance imaging in primary sclerosing cholangitis-current state and future directions. Semin Liver Dis 2019;39(3):369–380

27 Gulaya K, Desai SS, Sato K. Percutaneous cholecystostomy: evidence-based current clinical practice. Semin Intervent Radiol 2016;33(4):291–296

28 Gomi H, Solomkin JS, Schlossberg D, et al. Tokyo Guidelines 2018: antimicrobial therapy for acute cholangitis and cholecytitis. J Hepatobiliary Pancreat Sci 2018;25(1):3–16

29 Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 2017;43(3):304–377

30 van den Hazel SJ, Speelman P, Tytgat GN, Dankert J, van Leeuwen DJ. Role of antibiotics in the treatment and prevention of acute and recurrent cholangitis. Clin Infect Dis 1994;19(2):279–286

31 Lee H, Han Y, Kim JR, Kwon W, Kim SW, Jang JY. Preoperative biliary drainage adversely affects surgical outcomes in periampullary cancer: a retrospective and propensity score-matched analysis. J Hepatobiliary Pancreat Sci 2018;25(3):206–213

32 van der Gaag NA, Rauws EA, van Eijck CH, et al. Preoperative biliary drainage for cancer of the head of the pancreas. N Engl J Med 2010;362(2):129–137

33 Eklund JW, Trifilio S, Mulcahy MF. Chemotherapy dosing in the setting of liver dysfunction. Oncology (Williston Park) 2005;19(8):1057–1063, discussion 1063–1064, 1069

34 Covey AM, Brown KT. Percutaneous transhepatic biliary drainage—Tech Vasc Interv Radiol 2008;11(1):14–20

35 Crosara Teixeira M, Mak MF, Marques DF, et al. Percutaneous transhepatic biliary drainage in patients with advanced solid malignancies: prognostic factors and clinical outcomes. J Gastrointest Cancer 2013;44(4):389–403

36 van Delden OM, Laméris JS. Percutaneous drainage and stenting for palliation of malignant bile duct obstruction. Eur Radiol 2008;18(3):448–456

37 Lee SH, Park JK, Yoon WJ, et al. Optimal biliary drainage for inoperable Klatskin’s tumor based on Bismuth type. World J Gastroenterol 2007;13(29):3948–3955

38 Paik WH, Loganathan N, Hwang JH. Preoperative biliary drainage in hilar cholangiocarcinoma: When and how? World J Gastroenterol Endosc 2014;6(3):68–73

39 Jain MK, Jain R. Acute bacterial cholangitis. Curr Treat Options Gastroenterol 2006;9(2):113–121

40 Bin OY, Zeng KW, Hua HW, Zhang XQ, Chen FL. Endoscopic nasobiliary drainage and percutaneous transhepatic biliary drainage for the treatment of acute obstructive suppurative cholangitis: a retrospective study of 37 cases. Hepatogastroenterology 2012;59(120):2454–2456

41 Mukai S, Itoi T, Baron TH, et al. Indications and techniques of biliary drainage for acute cholangitis in updated Tokyo Guidelines 2018. J Hepatobiliary Pancreat Sci 2017;24(10):537–549

42 Talebi-Taheer M, Babazadeh S, Barati M, Latifinia M. Serum inflammatory markers in the elderly: are they useful in differentiating sepsis from SIRS? Acta Med Iran 2014;52(6):438–442

43 Liguory C, Vitale GC, Lefebre JF, Bonnel D, Cornud F. Endoscopic treatment of postoperative biliary fistulae. Surgery 1991;110(4):779–783, discussion 783–784

44 Popat B, Thakkar D, Deshmukh H, Rathod K. Percutaneous transhepatic biliary drainage in the management of post-surgical biliary leaks. Indian J Surg 2017;79(1):24–28

45 Zuidema GD, Cameron JL, Sitzmann JV, et al. Percutaneous transhepatic management of complex biliary problems. Ann Surg 1983;197(5):584–593

46 Azemuddin M, Turab N, Chaudhry MBH, Hamid S, Hasan M, Sayani R. Percutaneous management of biliary enteric anastomotic strictures: an institutional review. Cureus 2018;10(2):e2228

47 Lee AT, Gregorius J, Kerlan RK Jr, Gordon RL, Fidelman N. Percutaneous transhepatic balloon dilation of biliary-enteric anastomotic strictures after surgical repair of iatrogenic bile duct injuries. PLoS One 2012;7(10):e46478

48 Parsa N, Ichkhaniyan Y, Khashab MA. Endoscopic retrograde cholangiopancreatography in patients with surgically altered anatomy. Curr Treat Options Gastro 2020;18:212–231

49 De Cobelli F, Marra P, Diana P, Brembilla G, Venturini M. Therapeutic EUS: biliary drainage—the interventional radiologist’s perspective. Endosc Ultrasound 2017;6(suppl 3):S127–S131

50 Mailloy PC, Grassi CJ, Kundu S, et al. Standards of Practice Committee with Cardiovascular and Interventional Radiological Society of Europe (CIRSE) Endorsement. Consensus guidelines for periprocedural management of
coagulation status and hemostasis risk in percutaneous image-guided interventions. J Vasc Interv Radiol 2009;20(suppl 7): S240–S249

51 Gupta P, Maralakunte M, Rathee S, et al. Percutaneous transhepatic biliary drainage in patients at higher risk for adverse events: experience from a tertiary care referral center. Abdom Radiol (NY 2020;45(8):2547–2553

52 Drebès A, de Vos M, Gill S, et al. Prothrombin complex concentrates for coagulopathy in liver disease: single-center, clinical experience in 105 patients. Hepatol Commun 2019;3(4):513–524

53 Lesmana CR, Cahyadinata L, Pakasi LS, Lesmana LA. Efficacy of prothrombin complex concentrate treatment in patients with liver coagulopathy who underwent various invasive hepatobiliary and gastrointestinal procedures. Case Rep Gastroenterol 2016;10(2):315–322

54 Quencer KB, Tadros AS, Marashi KB, et al. Bleeding after percutaneous transhepatic biliary drainage: incidence, causes and treatments. J Clin Med 2018;7(5):94

55 Houghton EJ, Zeledón M, Acquafresca P, Finger C, Palermo M, Giménez ME. Prospective comparison of bleeding complications between right and left approaches in percutaneous biliary drainage. Surg Laparosc Endosc Percutan Tech 2019;29(1):7–12

56 Nikpour AM, Knebel RJ, Cheng D. Diagnosis and management of postoperative biliary leaks. Semin Intervent Radiol 2016;33(4):307–312

57 Mohanty D. Current concepts in platelet transfusion. Asian J Transfus Sci 2009;3(1):18–21

58 Patel V, McLaughlin SW, Shlansky-Goldberg R, et al. Complication rates of percutaneous biliary drainage in the presence of ascites. Abdom Rad (NY 2019;44(5):1901–1906

59 Sofue K, Arai Y, Takeuchi Y, Fujihara H, Tokue H, Sugimura K. Safety and efficacy of primary metallic biliary stent placement with tract embolization in patients with massive ascites: a retrospective analysis of 16 patients. J Vasc Interv Radiol 2012;23(4):521–527

60 Duncan C, Hunt SJ, Gade T, Shlansky-Goldberg RD, Nadolski GJ. Outcomes of percutaneous cholecystostomy in the presence of ascites. J Vasc Interv Radiol 2016;27(4):562–6.e1

61 Venara A, Carretier V, Lebigot J, Lermite E. Technique and indications of percutaneous cholecystostomy in the management of cholecystitis in 2014. J Visc Surg 2014;151(6):435–439

62 Anderson JE, Chang DC, Talamini MA. A nationwide examination of outcomes of percutaneous cholecystostomy compared with cholecystectomy for acute cholecystitis, 1998–2010. Surg Endosc 2013;27(9):3406–3411

63 Little MW, Briggs JH, Tapping CR, et al. Percutaneous cholecystostomy: the radiologist’s role in treating acute cholecystitis. Clin Radiol 2013;68(7):654–660

64 Akyürek N, Salman B, Yüksel O, et al. Management of acute calculous cholecystitis in high-risk patients: percutaneous cholecystectomy followed by early laparoscopic cholecystectomy. Surg Laparosc Endosc Percutan Tech 2005;15(6):315–320

65 Narayanan S, Keshava SN, Moses V, Ahmed M, Padmanabhan A, Joseph P. Image guided percutaneous cholecystostomy—a single centre experience. J Clin Interv Radiol ISVIR 2020;4(1):20–26

66 Hatzidakis AA, Prassopoulos P, Petinarakis I, et al. Acute cholecystitis in high-risk patients: percutaneous cholecystostomy vs conservative treatment. Eur Radiol 2002;12(7):1778–1784

67 Loozen CS, van Santvoort HC, van Duijvenjind J, et al. Laparoscopic cholecystectomy versus percutaneous catheter drainage for acute cholecystitis in high risk patients (CHOLECATE): multicentre randomised clinical trial. BMJ 2018;363:k3965

68 Ito K, Fujita N, Noda Y, et al. Percutaneous cholecystostomy versus gallbladder aspiration for acute cholecystitis: a prospective randomized controlled trial. AJR Am J Roentgenol 2004;183(1):193–196

69 Garcés-Albir M, Martín-Gorgojo V, Perdomo R, et al. Acute cholecystitis in elderly and high-risk surgical patients: is percutaneous cholecystostomy preferable to emergency cholecystectomy? J Gastrointest Surg 2020;24(11):2579–2586

70 La Grecia A, Di Grezia M, Magalini S, et al. Comparison of cholecystectomy and percutaneous cholecystostomy in acute cholecystitis: results of a retrospective study. Eur Rev Med Pharmacol Sci 2017;21(20):4668–4674

71 Li YL, Wong KH, Chiu KW, et al. Percutaneous cholecystostomy for high-risk patients with acute cholangitis. Medicine (Baltimore 2018;97(19):e0735

72 Patel N, Chick JFB, Gemmee JJ, et al. Interventional radiology-operated cholecystectomy for the management of symptomatic cholelithiasis: approach, technical success, safety, and clinical outcomes. AJR Am J Roentgenol 2018;210(5):1164–1171

73 Kim YH, Kim YJ, Shin TB. Fluoroscopy-guided percutaneous gallstone removal using a 12-Fr sheath in high-risk surgical patients with acute cholecystitis. Korean J Radiol 2011;12(2):210–215

74 Pomerantz BJ. Biliary tract interventions. Tech Vasc Interv Radiol 2009;12(2):162–170

75 Dinhurst C, Kane RA, Muhrichertaght JN, Brook O, Sun M, Siewert B. Complication rate of ultrasound-guided percutaneous cholecystostomy in patients with coagulopathy. AJR Am J Roentgenol 2012;199(6):W753–60

76 Tuite C, Rosenberg EJ. Sedation and analgesia in interventional radiology. Semin Intervent Radiol 2005;22(2):114–120

77 Practice guidelines for preoperative fasting and the use of pharmacologic agents to reduce the risk of pulmonary aspiration: application to healthy patients undergoing elective procedures: an updated report by the American Society of Anesthesiologists Task Force on preoperative fasting and the use of pharmacologic agents to reduce the risk of pulmonary aspiration. Anesthesiology 2017;126(3):376–393

78 Venkatesan AM, Kundu S, Sacks D, et al. Society of Interventional Radiology Standards of Practice Committee. Practice guidelines for adult antibiotic prophylaxis during vascular and interventional radiology procedures. Written by the Standards of Practice Committee for the Society of Interventional Radiology and endorsed by the Cardiovascular and Interventional Radiological Society of Europe and Canadian Interventional Radiology Association [corrected]. J Vasc Interv Radiol 2010;21(11):1611–1630, quiz 1631

79 Chehab MA, Thakor AS, Tulun-Silver S, et al. Adult and pediatric antibiotic prophylaxis during vascular and IR procedures: a society of interventional radiology practice parameter update endorsed by the Cardiovascular and Interventional Radiological Society of Europe and the Canadian Association for Interventional Radiology. J Vasc Interv Radiol 2018;29(11):1483–1501.e2

80 Hamada T, Yasunaga H, Nakai Y, et al. Severe bleeding after percutaneous transhepatic drainage of the biliary system: effect of antithrombotic agents--analysis of 34 606 cases from a Japanese nationwide administrative database. Radiology 2015;274(2):605–613

81 Ahmed O, Mathewosan S, Arslan B. Biliary interventions: tools and techniques of the trade, access, cholangiography, biopsy, cholangioscopy, cholangioplasty, stenting, stone, and brachytherapy. Semin Intervent Radiol 2016;33(4):283–290

82 Kozlov AV, Polikarpov AA, Oleshchuk NV, Tarazov PG. Comparative assessment of percutaneous transhepatic cholangioendoscopy for the management of symptomatic choledocholithiasis. Vestn Rengontol Radiol 2002;4(4):30–33

83 Nennstiel S, Treiber M, Faber A, et al. Comparison of ultrasound and fluoroscopically guided percutaneous transhepatic biliary drainage. Dig Dis 2019;37(1):77–86
Reference	Title
84 Wagner A, Mayr C, Kiesslich T, Berr F, Friesenbichler P, Wolkersdörfer GW	Reduced complication rates of percutaneous transhepatic biliary drainage with ultrasound guidance. J Clin Ultrasound 2017;45(7):400–407
85 Dietrich CF, Lorentzen T, Appelbaum L, et al. EFSUMB Guidelines on Interventional Ultrasound (INVUS), Part III—abdominal treatment procedures (long version. Ultraschall Med 2016;37(1):E1–E32	
86 Dowsett JF, Vaira D, Hatfield AR, et al. Endoscopic biliary therapy using the combined percutaneous and endoscopic technique. Gastroenterology 1989;96(4):1180–1186	
87 De Palma GD, Pezzullo A, Rega M, et al. Unilateral placement of metallic stents for malignant hilar obstruction: a prospective study. Gastrointest Endosc 2003;58(1):50–53	
88 Inal M, Akgül E, Aksungur E, Seydağlǔ G. Percutaneous placement of biliary metallic stents in patients with malignant hilar obstruction: unilobar versus bilobar drainage. J Vasc Inter Radiol 2003;14(11):1409–1416	
89 Liberato MJ, Canena JM. Endoscopic stenting for hilar cholangiocarcinoma: efficacy of unilateral and bilateral placement of plastic and metal stents in a retrospective review of 480 patients. BMC Gastroenterol 2012;12:103	
90 Lee TH, Kim TH, Moon JH, et al. Bilateral versus unilateral placement of metal stents for inoperable high-grade malignant hilar biliary strictures: a multicenter, prospective, randomized study (with video. Gastrointest Endosc 2017;86(5):817–827	
91 Nagino M, Takada T, Miyazaki M, et al; Japanese Association of Biliary Surgery; Japanese Society of Hepato-Biliary-Pancreatic Surgery; Japan Society of Clinical Oncology. Preoperative biliary drainage for biliary tract and ampullary carcinomas. J Hepatobiliary Pancreat Surg 2008;15(1):25–30	
92 Giurazza F, Corvino F, Contegiacomo A, et al; Italian College of Interventional Radiology (ICIR) Rising Stars Group. Safety and effectiveness of ultrasound-guided percutaneous transhepatic biliary drainage: a multicenter experience. J Ultrasound 2019;22(4):437–445	
93 Kim YH, Cha SJ. US-guided percutaneous transhepatic biliary drainage: comparative study of right-sided and left-sided approach. J Korean Radiol Soc 2002;46(2):115–118	
94 Perdue DG, Freeman ML, DiSario JA, et al; ERCP Outcome Study ERCOST Group. Plastic versus self-expanding metallic stents for malignant hilar biliary obstruction: a prospective multicenter observational cohort study. J Clin Gastroenterol 2008;42(9):1040–1046	
95 Raju RP, Jagannohan SR, Ross WA, et al. Optimum palliation of inoperable hilar cholangiocarcinoma: comparative assessment of the efficacy of plastic and self-expanding metal stents. Dig Dis Sci 2011;56(5):1557–1564	
96 Born P, Rösch T, Triptrap A, et al. Long-term results of percutaneous transhepatic biliary drainage for benign and malignant bile duct strictures. Scand J Gastroenterol 1998;33(5):544–549	
97 Keshava SN, Mammen S. Percutaneous placement of a biliary plastic stent. Indian J Radiol Imaging 2011;21(3):231–233	
98 Blanco PA, Do Pico JJ. Ultrasound-guided percutaneous cholecystostomy in acute cholecystitis: case vignette and review of the technique. J Ultrasound 2015;18(4):311–315	
99 Beland MD, Patel L, Ahn SH, Grand DJ. Image-guided cholecystostomy tube placement: short- and long-term outcomes of transhepatic versus transperitoneal placement. AJR Am J Roentgenol 2019;212(1):201–204	
100 Katabathina VS, Zafar AM, Suri R. Clinical presentation, imaging, and management of acute cholecystitis. Tech Vasc Interv Radiol 2015;18(4):256–265	
101 Loberant N, Notes Y, Eitan A, Yakir O, Bickel A. Comparison of early outcome from transperitoneal versus transhepatic percutaneous cholecystostomy. Hepatogastroenterology 2010;57(97):12–17	
102 Ginat D, Saad WEA. Cholecystostomy and transcholecystic biliary access. Tech Vasc Interv Radiol 2008;11(1):2–13	
103 Schmassmann A, von Gunten E, Knuchel J, Scheurer U, Fehr HF, Halter F. Wallstents versus plastic stents in malignant biliary obstruction: effects of stent patency of the first and second stent on patient compliance and survival. Am J Gastroenterol 1996;91(4):654–659	
104 Zhang GY, Li WT, Peng WJ, Li GD, He XH, Xu LC. Clinical outcomes and prediction of survival following percutaneous biliary drainage for malignant obstructive jaundice. Oncol Lett 2014;7(4):1185–1190	
105 Thornton RH, Ulrich R, Hsu M, et al. Outcomes of patients undergoing percutaneous biliary drainage to reduce bilirubin for administration of chemotherapy. J Vasc Interv Radiol 2012;23(1):89–95	
106 Robson PC, Heffernan N, Gonen M, et al. Prospective study of outcomes after percutaneous biliary drainage for malignant biliary obstruction. Ann Surg Oncol 2010;17(9):2303–2311	
107 van Lent AU, Bartelsman JF, Tytgat GN, Speelman P, Prins JM. Duration of antibiotic therapy for cholangitis after successful endoscopic drainage of the biliary tract. Gastrointest Endosc 2002;55(4):518–522	
108 de Jong EA, Moelker A, Leerentouwer T, Sprook S, Van Dijk M, van Eijck CH. Percutaneous transhepatic biliary drainage in patients with postsurgical bile leakage and nondilated infrahepatic bile ducts. Dig Surg 2013;30(4-6):444–450	
109 Barkay O, Mosler P, Schmitt CM, et al. Effect of endoscopic stenting of malignant bile duct obstruction on quality of life. J Clin Gastroenterol 2013;47(6):526–531	
110 Gamanagatti S, Singh T, Sharma R, Srivastava DN, Dash NR, Garg PK. Unilobar versus bilobar biliary drainage: effect on quality of life and bilirubin level reduction. Indian J Palliat Care 2016;22(1):50–62	
111 Rees J, Myron J, Evison F, Mangat KS, Patel P, Trudgill N. The outcomes of biliary drainage by percutaneous transhepatic cholangiography for the palliation of malignant biliary obstruction in England between 2001 and 2014: a retrospective cohort study. BMJ Open 2020;10(1):e033576	
112 Nennstiel S, Weber A, Frick G, et al. Drainage-related complications in percutaneous transhepatic biliary drainage: an analysis over 10 years. J Clin Gastroenterol 2015;49(9):764–770	
113 Morita S, Kitanosono T, Lee D, et al. Comparison of technical success and complications of percutaneous transhepatic cholangiography and biliary drainage between patients with and without transplanted liver. AJR Am J Roentgenol 2012;199(5):1149–1152	
114 Liu YS, Lin CY, Chuang MT, Tsai YS, Wang CK, Ou MC. Success and complications of percutaneous biliary drainage are influenced by liver entry segment and level of catheter placement. Abdom Radiol (NY) 2018;43(3):713–722	
115 Nomura T, Shirai Y, Hatakeyama K. Bacteribilia and cholangitis after percutaneous transhepatic biliary drainage for malignant biliary obstruction. Dig Dis Sci 1999;44(3):542–546	
116 Rösch T, Triptrap A, Born P, et al. Bacteriobilia in percutaneous transhepatic biliary drainage: occurrence over time and clinical sequelae. A prospective observational study. Scand J Gastroenterol 2003;38(11):1162–1168	
117 Saad WE, Wallace MJ, Wojak JC, Kundra S, Cardella JF. Quality improvement guidelines for percutaneous transhepatic cholangiography, biliary drainage, and percutaneous cholecystostomy. J Vasc Interv Radiol 2010;21(6):789–795	
118 Lucentelli P, Corradi SN, Corona M, et al. Risk factors for immediate and delayed-onset fever after percutaneous transhepatic biliary drainage. Cardiovasc Intervent Radiol 2016;39(5):746–755	
119 Weber A, Gaa J, Rosca B, et al. Complications of percutaneous transhepatic biliary drainage in patients with	
dilated and nondilated intrahepatic bile ducts. Eur J Radiol 2009;72(3):412–417

120 Cohan RH, Illescas FF, Saeed M, et al. Infectious complications of percutaneous biliary drainage. Invest Radiol 1986;21(9):705–709

121 Miura F, Okamoto K, Takada T, et al. Tokyo Guidelines 2018: initial management of acute biliary infection and flow-chart for acute cholangitis. J Hepatobiliary Pancreat Sci 2018;25(1):31–40

122 Garca-Durán J, Guzinski M, Janczak D, Sasiadek M. Ten years single center experience in percutaneous transhepatic decompression of biliary tree in patients with malignant obstructive jaundice. Adv Clin Exp Med 2012;21(5):621–632

123 Mueller FR, van Sonnenberg E, Ferrucci JJ Jr. Percutaneous biliary drainage: technical and cathether-related problems in 200 procedures. AJR Am J Roentgenol 1982;138(1):17–23

124 Ginat D, Saad NE, Waldman DL. Incidence of cholangitis and sepsis associated with percutaneous transhepatic biliary drain cholangiography and exchange: a comparison between liver transplant and native liver patients. AJR Am J Roentgenol 2011;196(1):W73–7

125 Günther RW, Schild H, Thelen M. Percutaneous transhepatic biliary drainage: experience with 311 procedures. Cardiovasc Intervent Radiol 1988;11(2):65–71

126 Venkatanarassimha N, Damodharan K, Gogna A, et al. Diagnosis and management of complications from percutaneous biliary tract interventions. Radiographics 2017;37(2):665–680

127 Sutter CM, Ryu RK. Percutaneous management of malignant biliary obstruction. Tech Vasc Interv Radiol 2015;18(4):218–226

128 Hatzidakis AA, Charonitakis E, Athanasiou A, et al. Sedations and analgesia in patients undergoing percutaneous transhepatic biliary drainage. Clin Radiol 2003;58(2):121–127

129 Culp WC, McGowan TC, DeValdenegro M, Wright LB, Workman JL, Culp WC Jr. Paravertebral block: an improved method of pain control in percutaneous transhepatic biliary drainage. Cardiovasc Intervent Radiol 2006;29(6):1015–1021

130 Hsien-Tzu L, Hsiao Shan T, Yi Yang L, Yi You C, Chien An L. Percutaneous transhepatic techniques for retrieving fractured and intrahepatically dislodged percutaneous transhepatic biliary drainage catheters. Diagn Interv Radiol 2017;23(6):461–464

131 Saad WE, Davies MG, Darcy MD. Management of bleeding after percutaneous transhepatic cholangiography or transhepatic biliary drain placement. Tech Vasc Interv Radiol 2008;11(1):60–71

132 Choi SH, Gwon DI, Ko GY, et al. Hepatic arterial injuries in 3110 patients following percutaneous transhepatic biliary draining. Radiology 2011;261(3):969–975

133 Fidelman N, Bloom AI, Kerlan RK Jr, et al. Hepatic arterial injuries after percutaneous biliary interventions in the era of laparoscopic surgery and liver transplantation: experience with 930 patients. Radiology 2008;247(3):880–886

134 Desaiy AK, Covey AM. Palliative percutaneous biliary interventions in malignant high bile duct obstruction. Semin Intervent Radiol 2017;34(4):361–368

135 Chanaputhipong J, Lo RH, Tan BS, Chow PK. Portobiliary fistula: successful transcatheter treatment with embolisation coils. Singapore Med J 2014;55(3):e34–e36

136 Madhusudhan KS, Dash NR, Afsan A, Gamanagatti S, Srivastava DN, Gupta AK. Delayed severe hemobilia due to bilio-venous fistula after percutaneous transhepatic biliary drainage: treatment with covered stent placement. J Clin Exp Hepatol 2016;6(3):241–243

137 Lynskey GE, Banovac F, Chang T. Vascular complications associated with percutaneous biliary drainage: a report of three cases. Semin Intervent Radiol 2007;24(3):316–319

138 Madhusudhan KS, Venkatesh HA, Gamanagatti S, Garg P, Srivastava DN. Interventional radiology in the management of visceral artery pseudoaneurysms: a review of techniques and embolic materials. Korean J Radiol 2016;17(3):351–363

139 Al-Bahrazi AZ, Holt A, Hamade AM, et al. Acute pancreatitis: an under-recognized risk of percutaneous transhepatic distal biliary intervention. HPB (Oxford 2006;8(6):446–450

140 Khosla A, Xi Y, Toomay S. Predicting success in percutaneous transhepatic biliary drainage. Cardiovasc Intervent Radiol 2017;40(10):1586–1592

141 Yeo CS, Tay VV, Low JK, Woon WW, Punamiya SJ, Shelat VG. Outcomes of percutaneous cholecystostomy and predictors of eventual cholecystectomy. J Hepatobiliary Pancreat Sci 2016;23(1):65–73

142 vanSonnenberg E, D'Agostino HB, Goodacre BW, Sanchez RB, Casola G. Percutaneous gallbladder puncture and cholecystostomy: results, complications, and caveats for safety. Radiology 1992;183(1):167–170

143 Yasumoto T, Yokoyama S, Nagaika K. Percutaneous transcholecystic metallic stent placement for malignant obstruction of the common bile duct: preliminary clinical evaluation. J Vasc Interv Radiol 2010;21(2):252–258

144 Chou CK, Lee KC, Chan CC, et al. Early percutaneous cholecystostomy in severe acute cholecystitis reduces the complication rate and duration of hospital stay. Medicine (Baltimore 2019;4(27):e1096

145 Winbladh A, Gullstrand P, Svanvik J, Sandström P. Systematic review of cholecystostomy as a treatment option in acute cholecystitis. HPB (Oxford 2009;11(3):183–193

146 England RE, McDermott VG, Smith TP, Suhocki PV, Payne CS, Newman GE. Percutaneous cholecystostomy: who responds? AJR Am J Roentgenol 1997;168(5):1247–1251

147 Sanjay P, Mittapalli D, Marioud A, White RD, Ram R, Aljani A. Clinical outcomes of a percutaneous cholecystostomy for acute cholecystitis: a multicentre analysis. HPB (Oxford 2019;11(8):511–516

148 Kapoor BS, Mauri G, Lorenz JM. Management of biliary strictures: state-of-the-art review. Radiology 2018;289(3):590–603

149 Yeoh KG, Zimmerman MJ, Cunningham JT, Cotton PB. Comparative costs of metal versus plastic biliary stent strategies for malignant obstructive jaundice by decision analysis. Gastrointest Endosc 1999;49(4 Pt 1):466–471

150 Maybody M, Brown KT, Brody LA, et al. Primary patency of Wallstents in malignant bile duct obstruction: single vs. two or more noncoaxial stents. Cardiovasc Intervent Radiol 2009;32(4):707–713

151 Shim DJ, Gwon DI, Han K, et al. Percutaneous metallic stent placement for palliative management of malignant biliary hilar obstruction. Korean J Radiol 2018;19(4):597–605

152 Fu YF, Zhou WJ, Shi YB, Cao W, Cao C. Percutaneous stenting of benign biliary strictures: state-of-the-art review. Radiology 2018;289(3):590–603

153 Al-Bahrazi AZ, Holt A, Hamade AM, et al. Acute pancreatitis: an under-recognized risk of percutaneous transhepatic distal biliary intervention. HPB (Oxford 2006;8(6):446–450

154 Khosla A, Xi Y, Toomay S. Predicting success in percutaneous transhepatic biliary drainage. Cardiovasc Intervent Radiol 2017;40(10):1586–1592

155 Kim JH, Gwon DI, Ko GY, et al. Temporary placement of retrievable fully covered metallic stents versus percutaneous balloon dilation in the treatment of benign biliary strictures. J Vasc Interv Radiol 2011;22(6):893–899

156 Gwon DI, Ko GY, Ko HK, Yoon HK, Sung KB. Percutaneous transhepatic treatment using retrievable covered stents in patients with benign biliary strictures: mid-term outcomes in 68 patients. Dig Dis Sci 2013;58(11):3270–3279
with use of a combined cutting and conventional balloon protocol: technical safety and efficacy. J Vasc Interv Radiol 2006;17(5):837–843

192 Mukund A, Rajesh S, Agrawal N, Arora A, Arora A. Percutaneous management of resistant biliary-enteric anastomotic strictures with the use of a combined cutting and conventional balloon cholangioplasty protocol: a single-center experience. J Vasc Interv Radiol 2015;26(4):560–565

193 Ludvig JM, Webber GR, Knechtje SL, Spivey JR, Xing M, Kim HS. Percutaneous management of benign biliary strictures with large-bore catheters: comparison between patients with and without orthotopic liver transplantation. J Vasc Interv Radiol 2016;27(2):219–225.e1

194 Moy BT, Birk JW. A review on the management of biliary complications after orthotopic liver transplantation. J Clin Transl Hepatol 2019;7(1):61–71

195 Kochhar G, Parunagao JM, Hanouneh IA, Parsi MA. Biliary complications following liver transplantation. World J Gastroenterol 2013;19(19):2841–2846

196 Mukund A, Choudhury A, Das S, Pamecha V, Sarin SK. Salvage PTBD in post living donor liver transplant patients with biliary complications—a single centre retrospective study. Br J Radiol 2020;93(1108):20191046

197 Jegadeesan M, Goyal N, Rastogi H, Gupta S. Percutaneous transhepatic biliary drainage for biliary stricture after endotherapy failure in living donor liver transplantation: a single-centre experience from India. J Clin Exp Hepatol 2019;9(6):684–689

198 Wadhawan M, Kumar A. Management issues in post living donor liver transplant biliary strictures. World J Hepatol 2016;8(10):461–470

199 Jung GS, Huh JD, Lee SU, Han BH, Chang HK, Cho YD. Bile duct: analysis of percutaneous transmural forceps biopsy in 130 patients suspected of having malignant biliary obstruction. Radiology 2002;224(3):725–730

200 Govil H, Reddy V, Kluskens L, et al. Brush cytology of the biliary tract: retrospective study of 278 cases with histopathologic correlation. Diagn Cytopathol 2002;26(5):273–277

201 Navaneethan U, Njei B, Lourdusamy V, Konjeti R, Vargo JJ, Parsi MA. Comparative effectiveness of biliary brush cytology and intraductal biopsy for detection of malignant biliary strictures: a systematic review and meta-analysis. Gastrointest Endosc 2015;81(1):168–176

202 Yamamoto K, Tsuchiya T, Itoi T, et al. Evaluation of novel slim biopsy forceps for diagnosis of biliary strictures: single-institutional study of consecutive 360 cases (with video). World J Gastroenterol 2017;23(35):6429–6436

203 Fohlen A, Bazille C, Menahem B, et al. Transhepatic forceps biopsy combined with biliary drainage in obstructive jaundice: safety and accuracy. Eur Radiol 2019;29(5):2426–2435

204 Itoi T, Isayama H, Sofumi A, et al. Evaluation of effects of a novel endoscopically applied radiofrequency ablation biliary catheter using an ex-vivo pig liver. J Hepatobiliary Pancreat Sci 2012;19(5):543–547

205 Cui W, Fan W, Lu M, et al. The safety and efficacy of percutaneous intraductal radiofrequency ablation in unresectable malignant biliary obstruction: a single-institution experience. BMC Cancer 2017;17(1):288

206 Li TF, Huang GH, Li Z, et al. Percutaneous transhepatic cholangiography and intraductal radiofrequency ablation combined with biliary stent placement for malignant biliary obstruction. J Vasc Interv Radiol 2015;26(5):715–721

207 Pai M, Valek V, Tomas A, et al. Percutaneous intraductal radiofrequency ablation for clearance of occluded metallic stent in malignant biliary obstruction: feasibility and early results. Cardiovasc Interv Radiol 2014;37(1):235–240

208 Xia N, Gong J, Lu J, Chen ZJ, Zhang LY, Wang ZM. Percutaneous intraductal radiofrequency ablation for treatment of biliary stent occlusion: a preliminary result. World J Gastroenterol 2017;23(10):1851–1856

209 Betgeri S, Rajesh S, Arora A, Panda D, Bhadoria AS, Mukund A. Percutaneous endobiliary RFA combined with balloon-sweep for re-opening occluded metallic biliary stents. Minim Invasive Ther Allied Technol 2017;26(2):124–127

210 Yang J, Wang J, Zhou H, et al. Efficacy and safety of endoscopic radiofrequency ablation for unresectable extrahepatic cholangiocarcinoma: a randomized trial. Endoscopy 2018;50(8):751–760

211 Pang Q, Zhou L, Hu XS, et al. Biliary stenting alone versus biliary stenting combined with 125I particles intracavitary irradiation for the treatment of advanced cholangiocarcinoma. Sci Rep 2019;9(1):11348

212 Zhou WZ, Fu YM, Yang ZQ, et al. Study of percutaneous stent placement with iodine-125 seed strand for malignant biliary obstruction. Cardiovasc Intervent Radiol 2019;42(2):268–275

213 Zhu HD, Guo JH, Huang M, et al. Irradiation stents vs. conventional metal stents for unresectable malignant biliary obstruction: a multicenter trial. J Hepatol 2018;68(5):970–977

214 Lorenz JM. Management of malignant biliary obstruction. Semin Intervent Radiol 2016;33(4):259–267

215 Arshad SA, Phuc VH. Surgical palliation of biliary obstruction: bypass in the era of drainage. J Surg Oncol 2019;120(1):65–66

216 Duan F, Cui L, Bai Y, Li X, Yan J, Liu X. Comparison of efficacy and complications of endoscopic and percutaneous biliary drainage in malignant obstructive jaundice: a systematic review and meta-analysis. Cancer Imaging 2017;17(1):27

217 Al Mahjoub A, Menahem B, Fohlen A, et al. Preoperative biliary drainage in patients with resectable perihilar cholangiocarcinoma: is percutaneous transhepatic biliary drainage safer and more effective than endoscopic biliary drainage? A meta-analysis. J Vasc Interv Radiol 2017;28(4):576–582

218 Mishra A, Tyberg A. Endoscopic ultrasound guided biliary drainage: a comprehensive review. Transl Gastroenterol Hepatol 2019;4:10

219 Jin Z, Wei Y, Lin H, et al. Endoscopic ultrasound-guided versus endoscopic retrograde cholangiopancreatography-guided biliary drainage for primary treatment of distal malignant biliary obstruction: a systematic review and meta-analysis. Dig Endosc 2020;32(1):16–26

220 Hathorn KE, Bazarbashi AN, Sack JS, et al. EUS-guided biliary drainage is equivalent to ERCP for primary treatment of malignant distal biliary obstruction: a systematic review and meta-analysis. Endosc Int Open 2019;7(11):E1432–E1441

221 Paik WH, Lee TH, Park DH, et al. EUS-guided biliary drainage versus ERCP for the primary palliation of malignant biliary obstruction: a multicenter randomized clinical trial. Am J Gastroenterol 2018;113(7):987–997

222 Lee TH, Choi JH, Park H, et al. Similar efficacies of endoscopic ultrasound-guided transmural and percutaneous drainage for malignant distal biliary obstruction. Clin Gastroenterol Hepatol 2016;14(7):1011–1019.e3

223 Sharaizy RZ, Kumta NA, Desai AP, et al. Endoscopic ultrasound-guided biliary drainage versus percutaneous transhepatic biliary drainage: predictors of successful outcome in patients who fail endoscopic retrograde cholangiopancreatography. Surg Endosc 2016;30(12):5500–5505

224 Lesmana CRA, Gani RA, Hasan I, et al. Palliative endoscopic ultrasound-guided biliary drainage for malignant biliary obstruction. Curr Gastroenterol Rep 2016;18(4):1011–1019.e3

225 Alvarez-Sanchez MV, Luna OB, Oria I, et al. Feasibility and Safety of Endoscopic Ultrasound-Guided Biliary Drainage (EUS-BD) for malignant biliary obstruction associated with ascites: results of a pilot study. J Gastrointest Surg 2018;22(7):1213–1220