Effect of silane and phosphate primers on the adhesive performance of a tri-n-butylborane initiated luting agent bonded to zirconia

Yusuke OBA1, Hiroyasu KOIZUMI2,3, Daisuke NAKAYAMA2, Takaya ISHI1, Nobutaka AKAZAWA1 and Hideo MATSUMURA2,3

1 Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
2 Department of Fixed Prosthodontics, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
3 Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
4 Department of Oral and Maxillofacial Surgery, Juntendo Tokyo Koto Geriatric Medical Center, 3-3-20, Shinsuna, Koto-ku, Tokyo 136-0075, Japan

Corresponding author, Hiroyasu KOIZUMI; E-mail: Koizumi.Hiroyasu@nihon-u.ac.jp

The purpose of this study was to evaluate the effects of primers on the bond strength and durability of an acrylic resin luting agent bonded to zirconia. Disk specimens were fabricated from zirconia partially stabilized with yttrium oxide. The disks were primed with one of the following materials: Alloy Primer (AP), Ceramic Primer (CP), Liquid A of the Porcelain Liner M (PLM-A), Liquid B of Porcelain Liner M (PLM-B), Porcelain Liner M (PLM-A+PLM-B), Monobond Plus (MP), and mixture of AP and PLM-B. The specimens were bonded with a tri-n-butylborane (TBB)-initiated luting agent. The shear bond strengths were determined both before and after thermocycling. The results were statistically analyzed with a non-parametric procedure. The highest post-thermocycling bond strength was generated from the groups primed with MP, CP, and AP. It can be concluded that the application of three phosphate primers is recommended for bonding the zirconia with the TBB-initiated luting agent.

Keywords: Bonding, Phosphate, Silane, Tri-n-butylborane, Zirconia

INTRODUCTION

Over the last decade, several all-ceramic systems have become established on the market, from metal-free restoration alternatives to wide spread metal-ceramic composite structures. Silica-based ceramics (leucite-reinforced feldspatic porcelain and lithium disilicate glass-ceramic) and oxide ceramics (glass-infiltrated aluminum-oxide ceramic, densely sintered aluminum-oxide, and glass-infiltrated zirconium-oxide ceramic) have been widely applied for conventional ceramic restorations6-9.

High-strength ceramic zirconia is the latest development in ceramic framework materials9. Zirconia has better mechanical properties than all of the previously introduced ceramics9. Furthermore, much clinical research into zirconia-based all-ceramic restorations has confirmed that zirconia ceramics exhibit high stability as a framework material for full coverage crowns7-11, fixed partial dentures (FPDs)5,8-11, and implant abutments12-14.

It has often been reported that full-coverage zirconia ceramic restoration and FPDs might not require adhesive cementation and that they can be cemented with conventional cements, including zinc phosphate4,6,8,11 or glass ionomer cement4,10. However, the advantages of resin luting agents, e.g., marginal seal, good retention, and improvement of fracture resistance have made them increasingly frequently used, even for high-strength ceramics4,6,9. Moreover, a sufficient resin bond has the aforementioned advantages and can become necessary in some clinical situations, such as for compromised retention and short abutment teeth.

Derand et al. suggested that present surface treatments (silica coating, air borne particle abrasion, and hydrofluoric acid treatment) have no positive effects on the resin bonds to zirconia ceramics5,13. However, several studies have proved that the application of luting cements and primers containing 10-methacryloyloxydecyl dihydrogen phosphate (MDP) results in a significantly greater bond strength to zirconia than with agents not containing MDP11,16,19.

The current silane coupling agents (one-liquid or two-liquid type primers) contain some acidic monomers, including 4-methacryloyloxyethyl trimellitate anhydride (4-META) or MDP activated γ-MPTS20. Therefore, acidic monomers have improved the wettability of the ceramic surface and have also enhanced bond strength21,22. However, there have been frequent discussions about how silane coupling agents can affect the resin bond to conventional silica-based dental ceramics, resulting in unsatisfactory resin bonds to oxide-based dental ceramics23,24. Similarly, the silanization of zirconia can improve the wetting ability of the surface and thereby result in small but increased bond strength values25.

The aims of this study were to evaluate the effects of the chemical ingredients in primers on the bond strength and durability of a tri-n-butylborane (TBB)-initiated acrylic resin joined to a zirconia restorative...
material and to investigate the effects of the addition of a combination of a silane coupling agent and a phosphate monomer to zirconia on adhesion. The following hypotheses were tested: (1) phosphate monomer MDP would enhance the bond strength to zirconia; (2) in determining the strength of bonding to zirconia, silane coupling treatment would be uninfluential; and (3) in terms of the bonding to zirconia, silane coupling treatment would inhibit the effects of phosphate monomer MDP.

MATERIALS AND METHODS

Materials

Yttrium oxide partially stabilized zirconia (YPS zirconia, 94.4% ZrO$_2$ and 5.4% Y$_2$O$_3$, Katana, Kuraray Noritake Dental, Tokyo, Japan), designed for fixed prosthesis frameworks, was used as the adherend material (Table 1). Five priming agents, including Alloy Primer, Clearfil Ceramic Primer (Kuraray Noritake Dental), Porcelain Liner M (Liquids A and B, Sun Medical, Moriyama, Japan), and Monobond Plus (Ivoclar Vivadent, Schaan, Liechtenstein) were assessed as bonding promoters. Porcelain Liner M is a two-component ceramic primer, whereas the other primers are single-liquid and contain at least one adhesive functional monomer, i.e., MDP, VTD, γ-MPTS, and 4-META, respectively (Table 1). A methyl methacrylate (MMA)-based self-polymerizing resin initiated with partially oxidized tri-n-butylborane (TBB) was used as the luting agent. The TBB initiator and the powder component of this material were the same as those of Super-Bond C&B resin (Sun Medical). A 99.8% MMA (Wako Pure Chemical, Osaka, Japan), which did not contain any functional monomers, was chosen as the monomer liquid of the MMA-TBB resin used in this study because the purpose of the current study was to evaluate the functional monomers in the priming agents.

Specimen preparation and shear bond strength

Figure 1 shows the procedure for the preparation of the specimens and shear bond testing.

A total of 154 disk specimens (11.4 mm in diameter, 3 mm in thickness) were prepared from zirconia and were divided into seven sets of 22 disks (groups 1 through 7, Table 2). All the disks were wet-ground with 1500-grit silicon carbide (Wet or Dry Tri-M-ite, 3M, St. Paul, MN, USA) abrasive paper, ultrasonically cleaned in distilled water, and then dried in a vacuum desiccator. A piece of double-coated tape with a circular hole 5 mm in diameter was placed on the disk surface of the 11.4 mm-diameter-zirconia disk to define the bonding area.

The specimen disks were primed with one of the following systems: Alloy Primer (AP), Ceramic Primer (CP), Liquid A of the Porcelain Liner M (PLM-A), Liquid B of Porcelain Liner M (PLM-B), Liquids A and B of Porcelain Liner M (PLM-A+PLM-B), Monobond Plus (MP), and a mixture of AP and PLM-B (AP+PLM-B) (Table 2).

A stainless steel ring (SUS303) with an inner diameter of 6 mm, and a 2-mm-high and 1-mm-thick wall was positioned around the 5-mm-diameter circular

Material	Product name (Abbr.)	Manufacturer	Lot number	Composition (%)
Adherend material	Noritake Katana	Kuraray Noritake Dental Inc., Tokyo, Japan	200218	94.4 ZrO$_2$, 5.4 Y$_2$O$_3$
Primer	Monobond Plus (MP)	Ivoclar Vivadent AG, Schaan, Liechtenstein	M44233	MDP, γ-MPTS, Sulfide methacrylate, Ethanol
Porcelain Liner M	Clearfil Ceramic Primer (CP)	Kuraray Noritake Dental Inc.	00012D	MDP, VTD, Ethanol
Liquid A of Porcelain Liner M	TV2	TV2	PMMA, TiO$_2$	
Liquid B of Porcelain Liner M	V1	V1	MMA, γ-MPTS	
Luting agent	Super-Bond C&B Catalyst	Sun Medical Co., Ltd.	VK33F	TBB
MMA	Super-Bond C&B Polymer	Sun Medical Co., Ltd	TV2	PMMA, TiO$_2$
	Wako Pure Chemical Ind., Ltd.	Osaka, Japan	EPQ4043	99.8 MMA

MDP, 10-methacryloyloxydecyl dihydrogen phosphate; γ-MPTS, 3-(trimethoxysilyl)propyl methacrylate; VTD, 6-(4-vinylbenzyl-n-propyl)amino-1,3,5-triazine-2,4-dithione, -ditiol tautomer; MMA, methyl methacrylate; 4-META, 4-methacryloyloxyethyl trimellitate anhydride; TBB, tri-n-butylborane; PMMA, polymethyl methacrylate.
hole. The steel ring was filled with the MMA-TBB self-polymerizing resin, using a brush-dip technique.

After 30 min of bonding, the prepared specimens were immersed in water at 37°C for 24 h. This state was defined as 0 thermocycles, and half of the specimens (seven sets of 11 pairs) were tested at this stage. The remaining half of the specimens (seven sets of 11 pairs) were subsequently thermocycled in water between 5°C and 55°C for 10,000 cycles, with a 60-s dwell time per bath (Thermal Shock Tester TTS-1 LM, Thomas Kagaku, Tokyo, Japan). The specimens were fixed in a steel mold and were seated in a bond test jig. The shear bond strength was determined with a mechanical testing device (Type 5567, Instron, Caton, MA, USA) at a crosshead speed of 0.5 mm/min. The average shear bond strengths and standard deviations of eleven replications were calculated for each group.

Debonded surface analysis

After the shear bond testing, the debonded surface was observed through an optical microscope (8×, SZX9, Olympus, Tokyo, Japan). The failure modes were classified into the following two categories: A, adhesive failure at the luting agent/adherent interface; and CA, combination of adhesive and cohesive failures.

Cohesive fracture ratios were calculated using surface analysis software (LM eye, Lasertec, Tokyo,

Table 2: Adhesive primers assessed

Group	Primer (monomers)
Group 1	Monobond Plus (MDP, γ-MPTS)
Group 2	Clearfil Ceramic Primer (MDP, γ-MPTS)
Group 3	Alloy Primer (MDP, VTD)
Group 4	Alloy Primer+Porcelain Liner M Liquid B (MDP, VTD, γ-MPTS)
Group 5	Porcelain Liner M Liquid A+Liquid B (4-META, γ-MPTS)
Group 6	Porcelain Liner M Liquid A (4-META)
Group 7	Porcelain Liner M Liquid B (γ-MPTS)

Fig. 2 Representative debonded specimens.
(a) Debonded surface of the zirconia specimen. This specimen was primed with the Clearfil Ceramic Primer material. The circular area represents the actual adhesive area. (b) The debonded surface was binarized by software and was cohesive in the resin area (CR) and adhesive area (Ad).
Table 3 Shear bond strength mean, standard deviation and median in MPa

Group	Primer	0 thermocycle	10,000 thermocycles	Post-/Pre-bs ratio (%)	p-value
		Mean (SD) Median IQR	Mean (SD) Median IQR		
Group 1	MP	28.6 (0.9) 28.8a 1.5	7.7 (2.9) 7.4e 5.1	25.7	p<0.01*
Group 2	CP	29.6 (0.9) 29.7a, b 2.0	7.6 (1.7) 7.4e, f 3.2	24.9	p<0.01*
Group 3	AP	26.8 (2.1) 27.9b 2.4	5.5 (2.3) 6.6e, f 4.4	23.7	p<0.01*
Group 4	AP+PLM-B	28.4 (1.1) 28.5c 1.5	3.9 (1.6) 4.1f 2.8	14.4	p<0.01*
Group 5	PLM-A+PLM-B	22.8 (2.4) 22.5d 4.6	0.3 (0.2) 0.3e 0.3	1.3	p<0.01*
Group 6	PLM-A	20.7 (2.0) 20.4e 3.3	0.1 (0.1) 0h 0.2	0.5	p<0.01*
Group 7	PLM-B	15.5 (3.8) 17.1f 8.4	0.2 (0.1) 0.2e, h 0	1.2	p<0.01*

n=11; SD, Standard deviation; Post-/Pre-bs ratio, Post-/Pre-thermocycling bond strength ratio (%); IQR, interquartile range; Identical letters indicate that the values are not significantly (p>0.05). * Significant difference between the pre- and post-thermocycling bond strengths (p<0.05) according to the Mann-Whitney U-test.
Table 4 Failure modes after shear bond testing

Group	Primer / Mode	0 thermocycle	Cohesive fracture ratio	10,000 thermocycles	Cohesive fracture ratio				
		A CA	Mean (SD)	Median	IQR	A CA	Mean (SD)	Median	IQR
Group 1	MP	0 11	78.4% (4.0)	80.0	7.0	0 11	50.4% (6.4)	48.0	10.0
Group 2	CP	0 11	91.1% (3.4)	92.8	3.7	0 11	52.3% (5.7)	53.0	4.3
Group 3	AP	0 11	71.4% (3.1)	70.0	5.7	1 10	37.1% (14.0)	40.0	15.4
Group 4	AP+PLM-B	0 11	76.6% (3.0)	77.0	1.8	1 10	23.8% (11.9)	24.0	10.7
Group 5	PLM-A+PLM-B	4 7	22.3% (26.4)	18.9	50.2	11 0	0% (0)	0	0
Group 6	PLM-A	5 6	18.3% (24.4)	13.6	23.7	11 0	0% (0)	0	0
Group 7	PLM-B	5 6	10.3% (21.8)	0.4	6.3	11 0	0% (0)	0	0

n=11; A, Adhesive failure at the resin-zirconia interface; CA, combination of cohesive and adhesive failures; SD, Standard deviation; IQR, interquartile range; Identical letters indicate that the values are not significantly (p>0.05). Optical microscope: 8× magnification and an analyzing software.

groups 2, 4, and 7, post-thermocycling groups 5–7). The Kruskal-Wallis test and Steel-Dwass multiple comparisons were further performed. The Kruskal-Wallis test showed that the χ² value was 61.464 for the pre-thermocycling group and 67.494 for the post-thermocycling group. The p-value was less than 0.01 for both the pre- and post-thermocycling bond strengths. The pre- and post-thermocycling results were therefore analyzed separately using Steel-Dwass multiple comparisons.

The results of the failure mode analysis and the cohesive fracture ratios are summarized in Table 4. The 24-h median cohesive fracture ratios varied from a minimum of 0.4% (group 7) to a maximum of 92.8% (group 2), and they were categorized into four groups (categories i–l). Among the pre-thermocycling groups, group 2 (Clearfil Ceramic Primer) showed the greatest cohesive fracture ratio (category i), whereas groups 5–7 showed the least cohesive fracture ratio (category l). The post-thermocycling median cohesive fracture ratios varied from a minimum of 0% (groups 5–7) to a maximum of 53.0% (group 2) and were again categorized into three groups (categories m–o). Among the post-thermocycling groups, groups 1 and 2 showed the greatest cohesive fracture ratio (category m), whereas groups 5–7 showed the least cohesive fracture ratio (category o). The cohesive fracture ratio generally decreased after the application of thermal stress.

DISCUSSION

This study evaluated the bonding characteristics of various surface treatment methods for YPS zirconia materials, using seven surface conditioning methods and a TBB-initiated luting agent. The TBB-initiated resin did not contain any adhesive monomer. This composition enabled evaluation of the effects of functional monomers on the primers. The purpose of this study was to investigate the effects of the application of a combination of a silane coupling agent and a phosphoric acid ester monomer to zirconia on adhesion.

The choice of a chemical bonding system for prosthodontic application can depend on factors such as expense, availability time requirements, and the shelf life of the perishable components. The primers used in this study —Alloy Primer, Clearfil Ceramic Primer, and Monobond Plus— contain MDP, whereas Porcelain Liner M consists of two components: liquid A contained 4-META, and the liquid B component contained γ-MPTS. Regarding the monomer, γ-MPTS, it is not included in the Alloy Primer. Therefore, the interaction between MDP and the silane coupling agent would be indicated by mixing the alloy primer and liquid B.

In the present study, significant differences were observed between primers containing MDP and those not containing MDP; in addition, the silane coupling agent (PLM-B) showed the least bond strength before and after thermocycling. Thus, the first and second hypotheses were accepted. The third hypothesis was substantially rejected, as there were no significant differences between the MDP/silane coupling agent mixture and the silane coupling agent.

This study used shear bond strength determination in combination with thermocycling. Shear testing is a superior evaluation method for the shear bond strength of various resin cements. In this study, the steel ring was filled with the MMA-TBB self-polymerizing resin using a brush-dip technique. Compared with another method of bonding a pair of disk specimens, the ring filling method clearly resulted in low bond strength. Matsumura et al. suggested that the difference in the coefficient of thermal expansion between resin and
metal affects the shear bond strength26. Therefore, the greater the volume of filled TBB-resin is, the less bond strength would be detected.

Past studies have suggested that silane coupling agents improve the shear bond strength between silica-based ceramics and resin luting agents15,16,19,22,25. Zirconium oxide ceramic is different from conventional silica-based ceramic, and it has no silica phase or resistance to various types of surface conditioning1,16-19,24. Previous studies have reported that the application of an MDP-containing bonding/silane agent mixture increased the shear bond strength between zirconium oxide ceramics and resin luting agents1,16-19. In contrast, Derand \textit{et al.} reported that a silane coupling agent inhibited bonding to zirconium oxide25. In this study, comparing group 3 and group 4, the author predicted that AP+PLM-B would show bond strength similar to that of MP and CP. In contrast, group 4 showed less bond strength than group 3, although there were no significant differences between group 3 and 4 after 10,000 thermal cycles. Two possibilities were considered: (1) the effect of MDP was inhibited by \(\gamma\)-MPTS; and (2) the concentration of MDP was diluted by the increase in the quantity of solvent (Ethanol, MMA, Aceton).

This study evaluated the percentage of cohesive failure area in the prescribed bonded area using surface analysis software (LM eye). As shown in Table 4, primers containing MDP (MP, CP, AP, AP+PLM-B) demonstrated a combination of cohesive and adhesive failures, whereas the others exhibited adhesive failures after thermocycling. Significant differences were shown between primers containing MDP and those not containing MDP. The authors suspect that the adhesive failure of the primers not containing MDP after application of thermocycling is a result of the penetration of water into the adhesive interface. It is also speculated that \(\gamma\)-MPTS and 4-META monomers are not effective for bonding zirconium oxide.

Within the limitations of this study, it can be concluded that the application of a silane coupling agent did not improve the shear bond strength. In contrast, it is possible that MDP was inhibited by the addition of \(\gamma\)-MPTS. Therefore, primers that contain MDP are recommended for the bonding of Katana zirconia material with a tri-\(n\)-butylborane (TBB)-initiated acrylic resin.

\textbf{ACKNOWLEDGMENTS}

This work was supported in part by a Grant-in-Aid for Scientific Research (C) 24592934 (2013) from the Japan Society for the Promotion of Science (JSPS), a grant from the Dental Research Center Nihon University School of Dentistry (2013), and a grant from the Promotion and Mutual Aid Corporation for Private Schools of Japan (2013).

\textbf{REFERENCES}

1. Blatz MB, Sadan A, Kern M. Resin-ceramic bonding: a review of the literature. J Prostheth Dent 2003; 89: 268-274.
2. Al-Amleh B, Lyons K, Swain M. Clinical trials in zirconia: a systematic review. J Oral Rehabil 2010; 37: 641-652.
3. Piconi C, Maccarou G. Zirconia as a ceramic biomaterial. Biomaterials 1999; 20: 1-25.
4. Ortorp A, Kihl ML, Carlsson GE. A 3-year retrospective and clinical follow-up study of zirconia single crowns performed in a private practice. J Dent 2009; 37: 731-736.
5. Beuer F, Stimmelmayr M, Gernet W, Edelhoff D, Guh JF, Naumann M. Prospective study of zirconia-based restorations: 3-year clinical results. Quintessence Int 2010; 41: 631-637.
6. Ortorp A, Kihl ML, Carlsson GE. A 5-year retrospective study of survival of zirconia single crowns fitted in a private clinical setting. J Dent 2012; 40: 527-530.
7. Rinke S, Schafer S, Lange K, Gersdorff N, Roediger M. Practice-based clinical evaluation of metal-ceramic and zirconia molar crowns: 3-year results. J Oral Rehabil 2013; 40: 228-237.
8. Roediger M, Gersdorff N, Huelas A, Rinke S. Prospective evaluation of zirconia posterior fixed partial dentures: four-year clinical results. Int J Prosthodont 2010; 23: 141-148.
9. Sax C, Hammerle CH, Sailer I. 10-year clinical outcomes of fixed dental prostheses with zirconia frameworks. Int J Comput Dent 2011; 14: 183-202.
10. Schmitter M, Mussotter K, Rammelsberg P, Gabbert O, Ohlmann B. Clinical performance of long-span zirconia frameworks for fixed dental prostheses: 5-year results. J Oral Rehabil 2012; 39: 552-567.
11. Rinke S, Gersdorff N, Lange K, Roediger M. Prospective evaluation of zirconia posterior fixed partial dentures: 7-year clinical results. Int J Prosthodont 2013; 26: 164-171.
12. Vanlioglu BA, Ozkan Y, Evren B, Ozkan YK. Experimental custom-made zirconia abutments for narrow implants in esthetically demanding regions: a 5-year follow-up. Int J Oral Maxillofac Implants 2012; 27: 1239-1242.
13. Lops D, Bressan E, Chiapasco M, Rossi A, Romeo E. Zirconia and titanium implant abutments for single-tooth implant prostheses after 5 years of function in posterior regions. Int J Oral Maxillofac Implants 2013; 28: 281-287.
14. Di Alberti L, Di Alberti C, Donini F, Lo Muzio L, Cadrobbi F, D’Agostino A, De Santis D, Bertossi D. Clinical and mechanical evaluation of screw-retained implant-supported zirconia restorations. A 36 months prospective clinical study. Minerva Stomatol 2013; 62: 25-32.
15. Derand P, Derand T. Bond strength of luting cements to zirconium oxide ceramics. Int J Prosthodont 2009; 22: 135-139.
16. Kern M, Wegner SM. Bonding to zirconia ceramic: adhesion methods and their durability. Dent Mater 1998; 14: 64-71.
17. Blatz MB, Sadan A, Martin J, Lang B. \textit{In vitro} evaluation of shear bond strengths of resin to densely-sintered high-purity zirconium-oxide ceramic after long-term storage and thermal cycling. J Prostheth Dent 2004; 91: 356-362.
18. Wegner SM, Kern M. Long-term resin bond strength to zirconium oxide ceramics. Int J Prosthodont 2000; 13: 131-135.
19. Nothdurft FP, Motter PJ, Pospiech PR. Effect of surface treatment on the initial bond strength of different luting cements to zirconium oxide ceramic. Clin Oral Investig 2009; 13: 229-235.
20. Sato K, Matsumura H, Atsuta M. Effect of three-liquid bonding agents on bond strength to a machine-milled ceramic material. J Oral Rehabil 1999; 26: 570-574.
21. Kato H, Matsumura H, Ido T, Atsuta M. Improved bonding of adhesive resin to sintered porcelain with the combination of acid etching and a two-liquid silane conditioner. J Oral Rehabil 2001; 28: 102-108.
22) Nogami T, Tanoue N, Atsuta M, Matsumura H. Effectiveness of two-liquid silane primers on bonding sintered feldspathic porcelain with a dual-cured composite luting agent. J Oral Rehabil 2004; 31: 770-774.

23) Matinlinna JP, Heikkinen T, Ozcan M, Lassila LV, Vallittu PK. Evaluation of resin adhesion to zirconia ceramic using some organosilanes. Dent Mater 2006; 22: 824-831.

24) Piascik JR, Swift EJ, Thompson JY, Grego S, Stoner BR. Surface modification for enhanced silanation of zirconia ceramics. Dent Mater 2009; 25: 1116-1121.

25) Derand T, Molin M, Kvam K. Bond strength of composite luting cement to zirconia ceramic surfaces. Dent Mater 2005; 21: 1158-1162.

26) Matsumura H, Tanaka T, Atsuta M. Effect of acidic primers on bonding between stainless steel and auto-polymerizing methacrylic resins. J Dent 1997; 25: 285-290.