Exome sequencing study revealed novel susceptibility loci in subarachnoid hemorrhage (SAH)

Xiwa Hao†, Jiangxia Pang†, Ruiming Li, Lin Lv, Guorong Liu, Yuechun Li, Guojuan Cheng and Jingfen Zhang*

Abstract
Aim: To expand our current understanding of the genetic basis of subarachnoid hemorrhage (SAH), and reveal the susceptibility genes in SAH risk.
Methods: We conducted whole-exome sequencing (WES) in a cohort of 196 individuals, including 94 SAH patients and 94 controls, as well as 8 samples that belong to two pedigrees. Systematically examination for rare variations (through direct genotyping) and common variations (through genotyping and imputation) for SAHs were performed in this study.
Results: A total of 16,029 single-nucleotide polymorphisms (SNPs) and 108,999 short indels were detected in all samples, and among them, 30 SNPs distributed on 17 genes presented a strong association signal with SAH. Two novel pathogenic gene variants were identified as associated risk loci, including mutation in TPO and PALD1. The statistical analysis for rare, damaging variations in SAHs identified several susceptibility genes which were involved in degradation of the extracellular matrix and transcription factor signal pathways. And 25 putative pathogenic genes for SAH were also identified basic on functional interaction network analysis with the published SAH-associated genes. Additionally, pedigree analysis revealed autosomal dominant inheritance of pathogenic genes.
Conclusion: Systematical analysis revealed a key role for rare variations in SAH risk and discovered SNPs in new complex loci. Our study expanded the list of candidate genes associated with SAH risk, and will facilitate the investigation of disease-related mechanisms and potential clinical therapies.
Keywords: Subarachnoid hemorrhage (SAH), Whole-exome sequencing (WES), Genome-wide association analysis (GWAS), Rare variations, Pedigree analysis

Introduction
Subarachnoid hemorrhage (SAH), the rarest but most fatal type of stroke, has shown an annual incidence of 8–10/100,000 persons (2007), 30-day case fatality of 35–45% in western countries [17, 20]. In China, annual incidence (per 100,000 persons) of SAH was 6.2, which is slightly lower than in western countries [40]. The majority of patients with SAH usually suffered from ruptured intracranial aneurysm (IA). SAH risk was considered to be related to smoking, hypertension, and poor socioeconomic status [2, 14]. Moreover, studies based on molecular mechanisms have shown that genetic factors also play an important role in the formation, growth and rupture of IA [6, 11, 24, 32, 38]. Therefore, IA is identified as a complex disease that influenced by various genes and environmental factors. Conducting early detection and intervention by identifying risk factors may facilitate to avoid the formation and rupture of IA, and is crucial for the reduced...
incidence of SAH [12]. However, comprehensive knowledge of pathogenic and ruptured mechanisms of IA has not yet been defined.

Some studies have focused on the pathogenic mechanisms of IA in China, and several susceptibility genes have been identified. Due to the limitation of technology and small sample size, it is still necessary to further study the genetic factors of IA in China. Although genome-wide association analysis (GWAS) studies have found some novel gene loci related to IAs, they can only explain part of the genetic risk. Most of the GWAS studies have focused on both unruptured and ruptured IAs, thus, the gene loci highly related to ruptured IAs have not been completely detected. Moreover, rare, damaging variants also play an important role in complex diseases. With advances in sequencing technology, genetic analysis is gradually extending to rare variants, which often have more obvious functional consequences of harmful phenotypes [13, 29].

In this study, we set out to systematically examine rare variation (through direct genotyping) and common variation (through genotyping and imputation) for SAHs by whole-exome sequencing (WES) in a cohort of 196 samples. Mendelian inheritance analysis for the SAH pedigrees was also performed to identify the susceptibility genes. Our study constitutes a detailed simultaneous assessment of causal variations in a large sample of SAHs, offer an opportunity to better understand both the biological and genetic architecture of this type of complex disease.

Materials and methods
Study cohorts
We prospectively collected 196 samples, including 8 samples that belong to two pedigrees from Central Hospital of Baotou. The cohorts included 94 SAH cases(with ruptured intracranial aneurysm confirmed by Digital Subtraction Angiography, DSA and computed tomography, CT) and 94 controls(for each case, 1 control without SAH will be sort for interview. Controls will be matched on the basis of the following criteria:

- gender (sex)
- 10-year age strata (ie 10–19, 20–29, etc)
- sector of suburb of residence in Baotou (North, East, etc).

Controls will be chosen from the spouse, relative or friend of patients without SAH who are currently in the same hospital as the case.). This study was approved by the Human Research Ethics Committee of Central Hospital of Baotou, and all participants provided written informed consent. Comprehensive clinical information was provided in Table S1, including height, weight, BMI, gender and age etc.

Whole-exome sequencing
Genomic DNA was isolated from peripheral whole blood samples of participants by using Genomic DNA Extraction Kit (Invitrogen, South San Francisco, CA, USA). The Qubit 3.0 fluorometer and gel electrophoresis were used to evaluate DNA quantity and integrity, respectively. The sequencing paired-end libraries were constructed for each sample and captured using SureSelect Human All Exon V6 kit (Agilent Technologies, Santa Clara, CA, USA) following the manufacturer’s instructions. All libraries were sequenced on BGI-SEQ 500 platform at BGI to obtain a desired depth of ~100X. The sequencing depths of each sample are listed in Table S2.

Whole-exome sequencing (WES) data processing and variant calling
To get high quality data, Trimmomatic [5] was used to filter out low-quality reads which contained adapters, high base error rate (> 50%), and highly unknown base proportion (>10%) from the raw sequencing data. The cleaned reads were aligned to human reference genome (UCSC hg19) by the Burrows-Wheeler Aligner-MEM (v.0.7.15) [26] with default parameters. All the aligned reads were further processed using Picard tools (v2.5.0) and Genome Analysis Toolkit (GATK, v3.7) [28] with default parameters, which included deduplication, base quality recalibration, and multiple-sequence realignment prior to mutation detection.

Variant calling was performed for all the samples by using the Haplotype Caller algorithm in GATK with the parameters “-stand_call_conf 30 -stand_emit_conf 10 -minPruning 3”. Each variant was filtered using GATK hard filters with the parameters “QD<2.0 || FS>60 || MQ<40 || MQRankSum<-12.5 || ReadPosRankSum<-8.0” for SNPs and “QD < 2.0 || FS > 200 || ReadPosRankSum < -20” for Indels to reduce the false positive rate. We then called genotypes jointly across all samples at the remaining sites, followed by genotype refinement using the BEAGLE imputation software (v5.0) [7]. The variants were subsequently annotated by multiple databases using the ANNOVAR tool [37].

Sample quality control
The standard quality screening conducted independently in each sample included SNP and sample call rates (> 90%), Hardy–Weinberg equilibrium, Mendelian errors, gender inconsistencies and checks for population stratification. To obtain a high-quality set of samples, the outlier samples discovered using principal-component analysis in GCTA [39] were removed from further analysis.
Association testing
The single marker association analyses with SAH were performed using an additive genetic model implemented in SNPTEST (http://www.stats.ox.ac.uk/~marchini/software/gwas/snptest.html) for the common SNPs (MAF > 10%). Age, sex, BMI, smoking, drinking, body fat, and diabetes were used as covariates in the analysis.

Rare SNP filtering
We used different allele frequency threshold in several public population databases: 1000G (http://browser.1000genomes.org/index.html), ExAC, ESP etc., to filter out common variants. Then, only variants with frequency less than the thresholds in all these databases were considered as the rare SNPs of SAHs.

Functional impact prediction
Each variant category has to be assessed with a specific set of tools to predict their functional impact. Here, we assumed that synonymous variants have no functional impact, and all the stop gain and stop loss variants were considered as the deleterious mutations. The functional predictions of missense variants were performed by seven computational methods (SIFT (Ng, 2001 #4097), Polyphen2 [1], MutationTaster [33], CADD [27], REVEL [21], M-CAP [22], LRT [10]). The pathogenicity of missense mutations was assumed if predicted pathogenic by at least five out of the computational methods. The dpsj score were employed to determine the pathogenicity of splicing mutations.

Gene-based burden analysis
Gene-base test were performed for the rare, damaging variants. For each gene, we computed the burden of rare, damaging variants in SAH cases and controls, respectively. Fisher’s exact test was applied to determine the significantly associated genes in SAHs. Those genes with a P-value of less than 0.05 were identified as susceptibility genes in SAHs. SKAT-O [25] was also applied for burden test, which allowing for variants with opposite directions of effect to reside in the same gene.

Inheritance analysis in pedigrees
The SNPs were called from the 2 pedigrees, and were further filtered as the filtering criterion of rare SNPs. Then, all the SNPs were subjected to functional impact prediction. Mendelian inheritance analysis was performed for the disaeing causing SNPs with 4 inheritance patterns, including (1) dominant inheritance pattern; (2) recessive inheritance pattern; (3) semidominant inheritance pattern; (4) compound heterozygote inheritance pattern.

The network analysis
The SAH-associated genes were collected from the published studies. The STRING database and associated search tools [35] were used for identifying interacting partners of a list of SAH-associated genes. We employed the identified interacting partners as the candidate pathogenic genes in SAHs.

Results
Cohorts description and whole-exome sequencing
In this study, we performed ~100x whole-exome sequencing (WES) for 94 SAH cases, 94 controls, and 2 pedigrees. Comprehensive description of the height, weight, sex, age and the other clinical variables of the cohort are provided in Table S1. In brief, the SAH group included 55 hypertension, 10 diabetic, 11 hyperlipidemia, 46 smoker/former-smoker, and 22 drinker/former-drinker. The control group included 37 hypertension, 9 diabetic, 9 hyperlipidemia, 42 smoker/former-smoker, and 23 drinker/former-drinker. The statistics of the WES data was provided in Table S2 and S3, including effective bases, SNPs numbers, Indel numbers and Ti/Tv rate etc. for each sample. We totally discovered 716,029 single-nucleotide polymorphisms (SNPs) and 108,999 short indels in all the samples. We then applied Genome Analysis Toolkit (GATK) VQSR for SNVs to distinguish true sites of genetic variation from sequencing artifacts. Then, 549,553 SNPs were remained, including 148,967 exonic SNPs, for the further analysis (See Method section, Table S4). Following sample quality control, the whole-exome sequences of 93 patients with SAH and 92 controls were jointly analyzed (See Method section).

Imputation into GWAS
For imputation purposes, we conducted a genome-wide single-variant analysis of the common SNPs (minor allele frequency, MAF > 0.1) comparing the 93 SAH cases and 92 controls. The associations with SAH risk were tested using logistic regression adjusted for sex, BMI, smoking, drinking, body fat, and diabetes as covariates. The genomic inflation factor ($\lambda = 1.006$) showed no evidence of inflated test statistics. There were 30 SNPs distributed on 17 genes presented a strong association signal with SAH (Table 1, Fig. 1). In these SNPs, three of them were in exon, and one in UTR3, and the other in intron. We obtained two loci reached genome-wide significance, within the introns of two genes TPO and $PALD1$, respectively (Fig. 2), implies a putative functional role in the pathogenesis of SAHs.

TPO encodes a membrane-bound glycoprotein that plays a major role in thyroid gland function. Mutations in this gene are associated with several disorders of thyroid hormonogenesis, i.e., congenital hypothyroidism,
and congenital goiter [31, 34]. As depicted in Fig. 2, another SNP within Phosphatase Domain Containing Paladin 1 (PALD1) also showed a significant signal. PALD1 is thought to be involved in the formation of vascular endothelium [36].

The role of rare variations in SAH risk
It is plausible that analysis of rare variants could explain additional disease risk or trait variability. We next investigated the rare variants across the cohorts by applying the frequency filtering (see Method section). The variants were defined as rare if their frequency in various databases were less than the corresponding threshold (Table S5). Each rare variant was assessed with a specific set of tools to predict their functional impact (see Method section).

The 30,651 potential damaging rare variants remained for further analysis.

We employed two gene-based methods to identify the susceptibility genes in SAHs. Rare variants burden testing was performed between SAH cases and control samples by Fisher’s exact test, and 38 susceptibility genes, such as gene OBSCN, TJP1, ADGRV1, and FBN3 etc., were obtained (Table 2). However, when variants with opposite directions of effect in the same gene, the testing power will be reduced. We then employed another analysis with SKAT-O [25] to identify the signals, which both allowed for variants with opposite directions of effect to reside in the same gene. The SKAT-O identified 37 signals (Table 3), which were highly overlap with the results from the burden test (92.3%, Fig. 3), which suggested that these genes could be directly involved in ALS risk.

Chr	Pos	Ref	Alt	Cases MAF	Controls MAF	OR	P value	Function	Gene
10	72,300,743	G	C	0.087	0.274	3.97	6.94E-07	intronic	PALD1
2	1,437,410	C	T	0.245	0.484	2.90	1.16E-06	intronic	TPO
2	31,189,236	A	G	0.212	0.425	2.75	2.37E-06	intronic	GALNT14
2	31,189,345	T	G	0.212	0.425	2.75	2.37E-06	intronic	GALNT14
2	31,189,401	G	A	0.212	0.425	2.75	2.37E-06	intronic	GALNT14
2	31,189,439	A	G	0.212	0.425	2.75	2.37E-06	intronic	GALNT14
10	72,306,967	T	C	0.174	0.366	2.74	3.33E-06	intronic	PALD1
10	72,306,978	A	C	0.174	0.366	2.74	3.33E-06	intronic	PALD1
19	50,189,818	C	G	0.098	0.016	0.15	1.05E-05	intronic	PRMT1
20	3,846,843	T	C	0.348	0.172	0.39	1.34E-05	UTR3	MAV5
10	72,289,778	T	C	0.109	0.269	3.01	1.82E-05	exonic	PALD1
19	50,195,455	A	G	0.092	0.016	0.16	2.38E-05	intronic	CPT1C
4	1.85E+08	A	G	0.147	0.032	0.19	2.65E-05	intronic	TRAPPC11
7	28,449,965	C	T	0.033	0.140	4.82	2.73E-05	intronic	CREBS
2	1,442,417	T	C	0.163	0.355	2.82	2.80E-05	intronic	TPO
2	1,442,476	C	T	0.163	0.355	2.82	2.80E-05	intronic	TPO
5	58,334,645	G	A	0.054	0.199	4.32	3.43E-05	intronic	POE4D
10	72,307,101	C	T	0.603	0.398	2.30	3.58E-05	exonic	PALD1
14	35,062,166	T	C	0.114	0.263	2.78	4.50E-05	intronic	SNX6
18	14,796,080	A	G	0.234	0.382	2.02	5.39E-05	intronic	ANKRD30B
2	1,426,621	A	G	0.332	0.532	2.29	6.31E-05	intronic	TPO
9	1.02E+08	T	C	0.196	0.065	0.28	6.60E-05	intronic	GALNT12
15	23,049,369	A	G	0.337	0.177	0.42	8.36E-05	intronic	NIPA1
5	75,427,935	A	G	0.272	0.452	2.21	9.06E-05	exonic	SV2C
10	72,288,900	G	A	0.397	0.591	2.20	0.000103	intronic	PALD1
10	50,683,438	C	T	0.277	0.118	0.35	0.000104	intronic	ERCC6
6	70,970,299	T	C	0.223	0.091	0.35	0.000106	intronic	COL9A1
Fig. 1 Quantile-quantile (Q–Q) plots of the meta-analyses of genome-wide association studies (GWAS) results for SAH.

Fig. 2 Manhattan plot depicting the GWAS results for SAH. Each dot represents a single-nucleotide polymorphism (SNP), with the chromosomal position on the x axis and the P-value on the y axis.
The overlapped genes were further subjected to functional enrichment analysis. These genes were overrepresented in some pathways related to cellular organization, i.e., adherens junction, and degradation of the extracellular matrix; and transcription factor signal, i.e., TGF-beta signal pathway (Table 4).

Pedigree analysis

We performed Mendelian inheritance analysis for two SAH pedigrees with probable inheritance patterns, including (1) dominant inheritance pattern; (2) recessive inheritance pattern; (3) semi-dominant inheritance pattern; (4) compound heterozygote inheritance pattern. Pathogenicity of missense mutations was assumed if
predicted pathogenic by at least five out of seven computational methods (SIFT, PolyPhen2, LRT, MutationTaster, M-CAP, CADD, and REVEL). The potential disease causing variants were only performed in dominant inheritance pattern, and there were 35 and 15 SNPs identified in these two pedigrees, respectively (Table 5 and 6). Twelve and seven candidate genes were identified in pedigree 1 and 2, respectively (Table 7). The gene COL1A2, a pathogenic gene in pedigree 2, was also reported to be associated with SAH phenotype [15].

Table 3 Candidate genes in SAH identified by SKAT-O analysis

Gene	P value	Number of Marker All	Number of Marker Test	MAC	m	Method bin	MAP
OBSCN	0.005	37	36	40	37	ER.A	−1.000
ABCG8	0.010	8	7	7	7	ER	0.003
PIGG	0.010	9	7	7	7	ER	0.003
GOLGA2	0.021	6	6	6	6	ER	0.007
MTMRA4	0.021	7	7	7	6	ER	0.007
MYH1	0.021	6	6	6	6	ER	0.007
TCF3	0.021	6	6	6	6	ER	0.007
KMT2C	0.026	9	9	9	9	ER	0.001
FBON3	0.039	13	12	12	11	ER	0.000
ABCG5	0.044	5	5	5	5	ER	0.014
BCL9	0.044	5	5	5	5	ER	0.014
Clorf94	0.044	5	5	5	5	ER	0.014
CCDC102A	0.044	7	7	5	5	ER	0.014
CEBPZ	0.044	5	5	5	5	ER	0.014
COG3	0.044	4	4	5	5	ER	0.014
CTC1	0.044	5	5	5	5	ER	0.014
FDXR	0.044	5	5	5	5	ER	0.014
GRIK3	0.044	5	5	5	5	ER	0.014
INCENP	0.044	3	3	5	5	ER	0.014
IQGAP3	0.044	6	5	5	5	ER	0.014
KND1	0.044	5	5	5	5	ER	0.014
LETMD1	0.044	4	4	5	5	ER	0.014
METTL22	0.044	4	4	5	5	ER	0.014
NCOA6	0.044	5	5	5	5	ER	0.014
OTGGL	0.044	5	4	5	5	ER	0.014
PDZD7	0.044	3	3	5	5	ER	0.014
PIF1	0.044	6	5	5	5	ER	0.014
PLXNA4	0.044	4	4	5	5	ER	0.014
RAPGFL1	0.044	3	3	5	5	ER	0.014
RGS14	0.044	4	4	5	5	ER	0.014
SCN7A	0.044	5	5	5	5	ER	0.014
THEG	0.044	5	5	5	5	ER	0.014
VEPH1	0.044	5	5	5	5	ER	0.014
ZFP90	0.044	4	4	5	5	ER	0.014
LENG8	0.050	8	8	8	8	ER	0.002
NIPBL	0.050	8	8	8	8	ER	0.002
TECPR2	0.050	9	8	8	8	ER	0.002

Putative pathogenic genes for SAHs

Protein–protein interactions were known as mediating many cellular functions, including cell cycle progression,
Table 4 The enriched pathways for the overlapped genes between burden test and SKAT-O analysis

Pathways	Genes
Adherens_junction	TJP1 PTPRM
Angiogenesis	FGFR2 UNC5B NOTCH3 FGFR4 FLT4
Apelin_signaling_pathway	NOTCH3 ADCY8
Cell_cycle_Role_of_SCF_complex_in_cell_cycle_regulation	FZR1 MAPK8
Degradation_of_the_extracellular_matrix	FBN3 ADAMTS18 NCAM1 NTN4
	LAMB2 LAMB1 CAPN1 COL20A1 FBLN2
	COL14A1 ITGA2 NCAN P4HA2
	FZR1
Development_TGF-beta_receptor_signaling	FBN3 FBLN2
Elastic_fibre_formation	RUNX2
Endochondral_Ossification	MYH1 TCF3 FB2 ECM2 FGFR2 PRKCG RPS6KA1 FLT4
	TCF19 LAMB2 LAMB1 CAPN1 COL20A1 RASGRP1
	NOTCH3 ADCY8 ARHGEF16 CDH12 CDH19 COL14A1 FGFR4
	IL12RB1 ITGA2 MAPK8 NCAN NTRK3 PLCD4 ARHGEF2
Elastic_fibre_formation	TCF3 POLE ADCY8 CRTC3 HLA-DPA1 MAPK8
Integrin_Pathway	MYH1 FB2 ECM2 PRKCG LAMB2 LAMB1 CAPN1
	COL20A1 ADCY8 CD36 COL14A1 ITGA2 MAPK8 NCAN
PAK_Pathway	MYH1 TCF3 TJP1 FGFR2 NOX4 PRKCG PTPRH
	TCF19 NOTCH3 FGFR4 FLT4 IL12RB1
	MAPK8 NTRK3 PLCD4 PTPRM MAPK8 GPD1
Sertoli-Sertoli_Cell_Junction_Dynamics	MYH1 TJP1 SAFB ITGA2 MAPK8 RAB17 RAB34 ARHGEF2
SMAD_Signaling_Network	PSMB8 PSMD5
Smooth_Muscle_Contraction	NULL
TGF-beta_receptor_signaling_activates_SMADs	MTMR4
TGF-beta_receptor_signaling	ZFYVE16
TGF-beta_signaling_pathway_KEGG	ID4 INHBA SMAD6 ZFYVE16
TGF-beta_Signaling_Pathways	MAPK8 RUNX2
signal transduction, and metabolic pathways. The genes that interacted with the known SAH genes may influence the SAH phenotypes by participating in the same network/pathway. Based on previous studies, we collected 28 SAH associated genes (Table S6), and these genes were further assessed the direct and indirect associations with other genes by STRING [35]. In total, we identified 47 putative interacted genes with the SAH (Table S7). To look deep into the pathogenic genes associated with SAH, we selected the overlapped genes among the results from the burden test, SKAT-O analysis and putative interacted genes (Table 8). Finally, we identified 25 putative pathogenic genes for SAH.

Among these genes, FBLN2 has been identified a member of fibulin family, and is responsible for maintenance of the adult vessel wall after injury [8]. BMP7 was reported to play an important role in facilitating recovery after stroke in rat [9]. ITGA2 is responsible for adhesion of platelets and other cells to collagens

Chr	Pos	Function	Gene	SIFT	Pp2	LRT	MT	M-CAP	CADD	REVEL
1	2.18E+08	exonic	GPATCH2	0.00	1.00	D	D	0.23	34.0	0.65
1	2.24E+08	exonic	CCDC185	0.04	1.00	.	D	0.02	196.6	0.35
1	2.25E+08	exonic	DNAH14	0.01	0.56	U	D	0.04	230.0	0.09
2	54,609,069	intergenic	C2orf73	0.00	.	.	N	0.00	0.2	0.03
2	55,795,456	exonic	PPP4R3B	0.39	.	D	D	0.03	23.6	0.72
2	1.79E+08	exonic	TTN	0.23	0.02	.	N	0.05	14.1	0.12
2	1.8E+08	exonic	TTN	0.16	0.80	.	D	0.03	19.0	0.44
2	2.2E+08	exonic	CFAP65	0.00	0.98	N	D	0.01	34.0	0.19
2	2.2E+08	exonic	STK11P	.	.	N	A		390.0	
2	2.23E+08	exonic	PAX3	0.02	0.22	D	D	0.07	21.4	0.48
3	49,169,107	exonic	LAMB2	0.03	0.15	N	D	0.02	22.2	0.11
3	1.83E+08	intronic	ATP11B	0.03	.	.	N	0.01	5.8	0.02
3	1.94E+08	intronic	ATP13A3	0.32	0.15	N	N	0.03	6.8	0.25
4	871,443	exonic	GAK	0.06	0.42	D	D	0.07	26.3	0.53
4	6,873,370	exonic	KIAA02232	0.04	0.20	D	D	0.01	25.1	0.23
4	74,276,089	exonic	ALB	0.03	1.00	N	N	0.05	22.4	0.02
7	72,397,374	exonic	POM121	0.07	0.51	N	N	0.01	23.2	0.03
7	87,179,859	exonic	ABCB1	0.18	0.01	D	D	0.05	14.0	0.26
7	1.17E+08	exonic	CTTNBP2	0.01	0.99	D	D	0.04	27.4	0.36
7	1.29E+08	exonic	IRF5	0.21	0.00	N	N	0.03	15.1	0.25
7	1.3E+08	exonic	CPA4	0.00	0.89	D	D	0.30	25.1	0.31
7	1.31E+08	exonic	COIF2	0.00	0.99	D	D	0.02	28.3	0.31
12	6,458,130	exonic	SCNN1A	0.15	.	.	D	0.10	13.7	0.09
14	95,562,384	exonic	DCER1	0.18	0.00	N	N	0.05	0.5	0.02
16	89,865,550	intronic	FANCA	0.00	.	.	N	0.01	3.8	
17	7,231,013	exonic	NEURL4	0.00	0.01	D	D	0.04	22.7	0.26
17	7,483,148	exonic	CD68	0.00	0.19	N	D	0.02	22.5	0.19
17	7,691,426	exonic	DNAH2	0.08	0.43	N	D	0.01	22.5	0.06
17	73,564,902	exonic	LLGL2	0.01	0.71	D	D	0.04	27.4	0.53
17	74,085,300	exonic	EXOC7	0.22	0.02	D	D	0.00	17.8	0.08
20	55,777,539	exonic	BMP7	0.01	0.74	D	D	0.08	29.0	0.22
21	46,929,308	exonic	COL18A1	0.14	0.16	N	N	0.10	10.5	0.12
22	30,074,259	exonic	NF2	0.59	0.02	D	D	0.08	18.4	0.43
22	50,721,594	exonic	PLXN82	0.51	0.00	N	N	0.05	14.3	0.27
22	50,945,311	exonic	LMF2	0.00	0.99	D	D	0.67	28.0	0.41
and organizations of extracellular matrix. Previous study demonstrated \textit{ITGA2}-deficient mice overexpressed transforming the growth factor TGF\(\beta\)\([16, 19]\), which was known to be highly associated with aortic aneurysm and IA. Moreover, both \textit{ITGA2} and \textit{TTN} were involved in hemostasis \([3, 30]\). Notably, Notch signaling plays a pivotal role during vascular development \([4, 18]\). Mutations in \textit{NOTCH3} have been identified as the underlying cause of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), the most common inherited stroke and dementia syndrome in the group of degenerative small vessel diseases \([23]\). Our findings demonstrated the therapeutic potential of modifying these signaling in SAHs.

Discussion

Subarachnoid hemorrhage (SAH) is the rarest but most fatal type of stroke, identification of genetic variants that confer susceptibility to SAH is clinically important to prevent it \([20]\). In the present study, we performed WES for SAH cases and controls, to identify causal variations that associated with SAH risk in China, which enabled us to systemically evaluate protein-altering variants and candidate functional genes.

Across GWAS with a total of 188 samples, we found a genome-wide significant association of SNPs in \textit{TPO} and \textit{PALD1} with SAH risk. These two genes are involved in disorders of thyroid hormonogenesis and formation of

Table 6

Chr	Pos	Function	Gene	SIFT	Pp2	LRT MT	M-CAP	CADD	REVEL
1	1.5E+08	exonic	HIST2H2AC	0.00	0.10	N	0.024	8.0	0.15
1	1.52E+08	exonic	RPTN	0.01	0.02	.	0.003	16.3	0.01
1	1.57E+08	exonic	IQGAP3	0.00	1.00	D	0.154	35.0	0.84
1	1.62E+08	exonic	DUSP12	0.10	1.00	D	0.009	23.4	0.16
6	56,471,328	intronic	DTA	0.01	0.17	N	0.033	12.0	0.10
7	20,782,555	exonic	ABCB5	0.00	0.99	D	0.039	27.8	0.70
7	29,132,261	exonic	CPVL	0.04	0.99	N	0.142	26.6	0.47
7	94,057,039	exonic	COL1A2	0.10	0.98	D	0.082	26.2	0.44
7	1.01E+08	exonic	MUC17	0.02	0.61	.	0.003	5.6	0.04
7	1.51E+08	exonic	CHAF2	0.03	0.89	D	0.049	23.3	0.32
8	90,936,937	exonic	OSGN2	0.38	0.03	D	0.01	11.3	0.07
17	3,030,476	exonic	ORIG1	0.05	0.01	.	0.00	13.6	0.03
17	4,619,845	exonic	ARBB2	0.04	0.90	D	0.034	32.0	0.15
17	6,683,525	exonic	FBXO39	0.14	0.09	D	0.024	19.8	0.17
17	7,733,695	exonic	DNAH2	0.01	0.89	N	0.004	23.8	0.11

Table 7

Candidate genes in pedigree 1	Candidate genes in pedigree 2
GPATCH2	IQGAP3
CFAP65	DUSP12
PAX3	ABCBS
GAK	CPVL
KIAA0232	COL1A2
CTTPNBP2	CHAF2
CPA4	ARBB2
QDF	NEURL4
LLGL2	BMP7
LMF2	

Table 8

Candidate pathogenic genes
MYH1
CD36
TJF1
COL14A1
FGF2
FGFR4
NCAM1
FLT4
NOX4
FZK1
RPS6KA1
ID4
LAMB2
IL12RB1
LAMB1
ITG2A
COL20A1
MAPK8
FBLN2
NCAN
POLE
P4HA2
NOTCH3
RUNX2
ADCY8
vascular endothelium, respectively. Previous studies of IA have identified SERPINA3 (rs4934) as associated risk loci in the Finnish population, and CSPG2 (rs251124) and HSPG2 (rs3767137) loci as susceptibility sites in the Dutch population. However, in our cohorts, there was no significantly associated signal in these genes, which may due to the different genetic background among the populations.

We then investigated the role of low-frequency variants of intermediate effect in SAH risk through rare SNPs analysis. The pathogenic genes with rare, damaging SNPs were enriched in some pathways related to cell organization, i.e., degradation of the extracellular matrix; and transcription factor signal, i.e., TGF-beta signaling pathway. TGF-beta signaling plays a vital role in vasculogenesis and maintenance of blood vessel, and is involved in aortic aneurysm and IA. These results highlight the functional importance of rare variations in SAH risk.

The two pedigree samples were mainly used to performed Mendelian inheritance analysis, and it revealed autosomal dominant inheritance of pathogenic genes. In the same time, some potential disease causing variants were also found, such as the gene COL1A2 which was reported to be associated with SAH phenotype [15]. Combining the results from the network analysis of known SAH-associated genes, we obtained a list of candidate susceptibility genes. Among these genes, several were demonstrated to be associated with maintainance of blood vessel, including FBLN2, ITGA2, BMP7, and NOTCH3. NOTCH3 is known to be associated with the most common inherited stroke, CADASIL. These potential targets needed to be further validated in experiment models both in vivo and in vitro, which may facilitate to develop clinical strategies for early detection and intervention.

In conclusion, we have identified a key role for rare variations in SAH and discovered SNPs in complex loci. However, there are still some limitations to our current study due to the small sample size and availability of family genetic data. In future, the identified candidate genes, i.e., TPO, PALD1 and ITGA2, will be necessary to validate in independent study populations or a larger sample size for Chinese population. Determination of genotypes for SNPs in these genes will guide the development of therapeutic strategies for SAH.

Supplementary information

Supplementary information accompanies this paper at https://doi.org/10.1186/s13041-020-00620-6.

Acknowledgements

We thank the scientific, data management and statistical teams associated with the study.

Authors’ contributions

Not Applicable. The author(s) read and approved the final manuscript.

Funding

This study was financed by the National Natural Science Foundation of China (Project No: 81460189).

Availability of data and materials

All data and materials mentioned in this article are available. The original data have been submitted to the public data depository CNSB Nucleotide Sequence Archive (CNSA; https://db.cngb.org/cnsa/) of the China National GeneBank Database (CNGBdb) with accession number CNP0000954.

Ethics approval and consent to participate

This study was approved and authored by the Theoretical committee of baotou central hospital. Ethical review approval number: IRB00001052–11085.

Consent for publication

The authors declare that there are Consent for publication.

Competing interests

The authors declare that there are no conflict of commercial interest related to this paper.

Received: 30 December 2019 **Accepted:** 11 May 2020

Published online: 25 May 2020

References

1. Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet, Chapter 7, Unit7 20; 2013.

2. Anderson CS, Feigin V, Bennett D, Lin RB, Hankey G, Jamrozik K, G. Australasian Cooperative Research on Subarachnoid Hemorrhage Study (2004) Active and passive smoking and the risk of subarachnoid hemorrhage: an international population-based case-control study. Stroke. 2004;35:633–7.

3. Anton AI, Gonzalez-Conjeevo R, Roldan V, Quiroga T, Sanchez-Vega B, Corral J, Vicente V, Mezzano D. Study of 18 functional hemostatic polymorphisms in mucocutaneous bleeding disorders. Ann Hematol. 2010;89:1147–54.

4. Baron-Menguy C, Domenga-Denier V, Ghelizzi L, Faraci JM, Joulet A. Increased Notch3 activity mediates pathological changes in structure of cerebral arteries. Hypertension. 2017;69:60–70.

5. Bolger AM, Lohse M, Usadel B. Trimmmomatic: a flexible trimmer for illumina sequence data. Bioinformatics, btu70.2014;30(15):2114–20.

6. Bromberg JE, Rinkel GJ, Algra A, van Duyon CM, Grebe P, Ramos LM, van Gin J. Famillarial subarachnoid hemorrhage: distinctive features and patterns of inheritance. Ann Neurol. 1995;38:929–34.

7. Browning BL, Zhou Y, Browning SR. A one-penny imputed genome from next-generation reference panels. Am J Hum Genet. 2018;103:338–48.

8. Chapman SL, Sicot FX, Davis EC, Huang J, Sasaki T, Chu ML, Yanagisawa H. Fibulin-2 and fibulin-5 cooperatively function to form the internal elastic lamina and protect from vascular injury. Atheroscler Thomb Vasc Biol. 2010;3068–74.

9. Chou L, Harvey BK, Chang CF, Shen H, Morales M, Wang Y. Neuroregenerative effects of BMP7 after stroke in rats. J Neurol Sci. 2006;240:21–9.

10. Chun S, Fay JC. Identification of deleterious mutations within three human genomes. Genome Res. 2009;19:1533–61.

11. De Braekeleer M, Peruse L, Cantin L, Bouchard JM, Mathieu A. A study of intrebreeding and kinship in intracranial aneurysms in the Saguenay lac-saint-jean region (Quebec, Canada). Ann Hum Genet. 1996;60:99–104.

12. de Rooij NK, Linn FH, van der Plas JA, Algra A, Rinkel GJ. Incidence of subarachnoid haemorrhage: a systematic review with emphasis on region, age, gender and time trends. J Neurol Neurosurg Psychiatry. 2007;78:1365–72.

13. Do R, Kathiresan S, Abecasis GR. Exome sequencing and complex disease: practical aspects of rare variant association studies. Hum Mol Genet. 2012;21:R1–9.

14. Feigin VL, Rinkel GJ, Lawes CM, Algra A, Bennett DA, van Gin J, Anderson CS. Risk factors for subarachnoid hemorrhage: an updated systematic review of epidemiological studies. Stroke. 2005;36:2773–80.
15. Gan Q, Liu Q, Hu X, You C. Collagen type I alpha 2 (COL1A2) polymorphism contributes to intracerebral aneurysm susceptibility: a meta-analysis. Med Sci. Mont. 2017;23:3240–6.

16. Gigeret R, Martin M, Kruegel J, Miose N, Temme J, Eckes B, Muller GA, Gross O. Integris alpha2-deficient mice provide insights into specific functions of collagen receptors in the kidney. Fibrogenesis Tissue Repair. 2010;3:19.

17. Hackett ML, Anderson CS. Health outcomes 1 year after subarachnoid hemorrhage: an international population-based study. Australian Cooperative Research on Subarachnoid Hemorrhage Study Group. Neurology. 2000;55:658–62.

18. Henshall TL, Keller A, He L, Johansson BR, Wallgard E, Rachapenger E, Mae MA, Jin S, Betholzitz C, Lendahl U. Notch3 is necessary for blood vessel integrity in the central nervous system. Arterioscler Thromb Vasc Biol. 2015;35:499–20.

19. Holtkotter O, Nieswandt B, Smyth N, Muller W, Schulte V, Krieg T, Eckes B. Integris alpha 2-deficient mice develop normally, are fertile, but display partially defective platelet interaction with collagen. J Biol Chem. 2002;277:10789–94.

20. Hop JW, Rinkel GJ, Algra A, van Gijn J. Case-fatality rates and functional outcome after subarachnoid hemorrhage: a systematic review. Stroke. 1997; 28:660–4.

21. Ioannidis NM, Rothstein JH, Pejerav V, Middha S, McDonnell SK, Baheti S, Hackett ML, Anderson CS. Health outcomes 1 year after subarachnoid hemorrhage: a community-based study. J Neurosurg. 1995;93:426–9.

22. Schwarz JM, Rodolph E, Schulte M, Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods. 2010;7:575–6.

23. Stoupas A, Chaabane R, Guerrouz M, Raynaud-Ravin C, Nitschke P, Boles-Feyzos C, Molf M, Ammar Keskes L, Hachicha M, Belguith N, Polak M, Carre A. Thyroid hypoplasia in congenital hypothyroidism associated with thyroid peroxidase mutations. Thyroid. 2018;28:941–4.

24. Szkarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mervin C. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2018;46:D607–13.

25. Wallgard E, Nitzsche A, Larsson J, Guo X, Dieterich LC, Dimberg A, Olofsson T, Ponten FC, Makinen T, Kallen M, Hellstrom M. Paladin (X99384) is expressed in the vasculature and shifts from endothelial to vascular smooth muscle cells during mouse development. Dev Dyn. 2012;241:770–86.

26. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38: e164.

27. Wang PS, Longstreth WT Jr, Koepsell TD. Subarachnoid hemorrhage and family history. A population-based case-control study. Arch Neurol. 1995;52:202–4.

28. Yang J, Lee SH, Gaddam ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88:76–82.

29. Zhang J, Li G, Arima H, Li Y, Cheng G, Shiue I, Lv L, Wang H, Zhang C, Zhao J, Anderson CS, Investigators C. Incidence and risks of subarachnoid hemorrhage in China. Stroke. 2013;44:2891–3.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:
- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress. Learn more [biomedcentral.com/submissions]