Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex

Morgane M Roth1,4, Johannes C Dahmen2–4, Dylan R Muir1,4, Fabia Imhof1, Francisco J Martini1 & Sonja B Hofer1,2

Sensory perception depends on the context in which a stimulus occurs. Prevailing models emphasize cortical feedback as the source of contextual modulation. However, higher order thalamic nuclei, such as the pulvinar, interconnect with many cortical and subcortical areas, suggesting a role for the thalamus in providing sensory and behavioral context. Yet the nature of the signals conveyed to cortex by higher order thalamic remains poorly understood. Here we use axonal calcium imaging to measure sensory signals at the earliest stages of cortical processing. For instance, responses to visual stimuli in primary visual cortex (V1) can be modulated by the surrounding visual scene1, by the behavioral relevance of the stimulus2–3 or by the animal's locomotion4–6. While contextual signals are typically attributed to ‘top-down’ projections from other cortical areas7–10 or even neuromodulation11,12, accumulating evidence suggests that activity in sensory thalamic nuclei can also be modulated by behavioral state13–15. To understand how the thalamus contributes to contextual modulation of cortical sensory processing, it is important to determine what specific contextual signals are broadcast by the thalamus to primary sensory cortices. At present, the identity of these signals remains largely unknown.

There are two main nuclei in the thalamus engaged in visual processing1,6. The dorsal lateral geniculate nucleus (dLGN) is a first order thalamic nucleus that is driven primarily by the retina and that projects to V1. In contrast, the pulvinar, the largest thalamic complex in humans, is a higher order thalamic structure because it receives input from— and provides input to— most visual cortical areas16–21. The pulvinar exhibits complex visual response properties19,22, suggesting that it constitutes a second major visual pathway that parallels direct cortico–cortical projections. Indeed, the pulvinar can exert a strong influence on visual cortical areas22, including V1 (ref. 24), and thus influences visual processing at the earliest cortical stage. The pulvinar also receives input from many association, motor and visuomotor areas, including prefrontal, parietal and cingulate cortex as well as the superior colliculus18,25–28. Consistent with its anatomy, the pulvinar has been implicated in a range of functions, including visual attention, feature binding and spatial perception19. Moreover, pulvinar neurons respond to saccadic eye movements and to intended motor actions such as arm reaching18,26.

By combining diverse information from multiple sources, the pulvinar has the potential to link sensory signals to visual and behavioral context. It could thus act as an internal reference that allows the interpretation of visual information in the context of the visual scene or an individual's motor actions. In such a scheme, visual and motor information may be integrated, for example, to encode signals that distinguish self-generated visual motion (caused by eye movements or locomotion) from that of external objects. However, the properties of visual and non-visual signals the pulvinar conveys to V1 have not been characterized. Specifically, it is not known how V1-projecting pulvinar neurons integrate visual and motor information and whether the nature of this visuomotor integration is different than in the dLGN, where activity is also modulated by locomotion in mice11.

To determine whether the pulvinar is part of a circuit that provides V1 with signals for contextual processing in general and for visuomotor integration in particular, we characterized its homolog in rodents, the lateral posterior thalamic nucleus (LP). We examined the anatomy of mouse LP and determined visual and behavioral signals carried by LP projections into layer 1 (L1) of V1. We compared these signals to those of dLGN projections to the same layer, which might represent a pathway that is distinct from the main dLGN input to L4 (ref. 29–31). We found that LP and dLGN projections were functionally distinct in several fundamental ways. Even in L1, dLGN projections were
retnotopically highly ordered and conveyed spatially precise visual signals. In contrast, LP inputs provided distributed information from an expansive area of the visual scene. Both LP and dLGN projections also carried motor signals related to saccades and locomotion. However, visuomotor signals that differentiate between self-generated and external visual motion were predominantly transmitted by LP. This higher order thalamic nucleus therefore conveys diverse contextual information to the cortex, including purely visual, purely motor and visuomotor interaction signals that concurrently inform V1 neurons of the broader visual scene and the animal’s own actions.

RESULTS

Afferent and efferent connectivity of mouse LP

To identify brain regions and neurons projecting to LP, we injected the retrograde tracer cholera toxin subunit B (CTB) into this thalamic nucleus (Fig. 1a). LP received input from projection neurons in L5 and L6 of higher cortical areas and from L5 and deep L6 neurons in V1 (Fig. 1a). Substantial numbers of retrogradely labeled neurons were also found in cortical association areas, anterior cingulate cortex and superior colliculus (Fig. 1a and Supplementary Fig. 1). Co-injection of AAV-GFP into LP showed that axons from LP targeted predominantly cortical areas from which LP received input, including all visual areas, but axonal projections were also visible in other telencephalic structures (Supplementary Fig. 1). The reciprocal patterns of connectivity between LP and multiple cortical areas suggest that this thalamic nucleus is a central component of the visual processing hierarchy in the mouse32, similar to the pulvinar complex.

As expected, retrogradely labeled neurons of different colors, project-ed predominantly cortical areas from which LP received input, but LP efferent projections were also visible in other telencephalic structures (including all visual areas, but axonal projections were also visible in other telencephalic structures (Supplementary Fig. 1). The reciprocal patterns of connectivity between LP and multiple cortical areas suggest that this thalamic nucleus is a central component of the visual processing hierarchy in the mouse32, similar to the pulvinar complex.

Visual responses properties of thalamic inputs into V1

What information do these two distinct thalamocortical pathways convey to V1? To address this question, we used in vivo two-photon calcium imaging to functionally characterize visual input from dLGN and LP to V1. We used AAV vectors to express the genetically encoded calcium indicator GCaMP5 or GCaMP6 (ref. 34) either in LP or dLGN (Supplementary Fig. 3) and constructed a chronic imaging window over V1 (see Online Methods). We first recorded calcium transients in individual thalamocortical axons and putative axonal boutons35,36 in layer 1 of V1 of lightly anesthetized mice during presentation of gratings drifting in 12 different directions (Fig. 2). While a small subset of both LP and dLGN boutons showed selective responses to the grating stimuli, the majority responded to most grating directions. Consequently, the orientation selectivity index (OSI) for both LP and dLGN bouton populations was low, and slightly lower for LP than dLGN (Fig. 2a,b,d; median OSI: LP, 0.38 ± 0.23; dLGN, 0.44 ± 0.28; P = 0.012, Wilcoxon rank-sum test, Bonferroni-corrected for multiple comparisons here and for all comparisons below). In contrast, layer 2/3 neurons in V1 (AAV-GCaMP6 injection into V1) were much more orientation selective (Fig. 2c; median OSI 0.74 ± 0.27; P < 10−10; Wilcoxon rank-sum test). Similarly, the average direction at different retinotopic locations. Top right, retrogradely labeled neurons in dLGN. Bottom, retrogradely labeled neurons in LP at two positions along the anterior-posterior axis. (c) Projections from LP and dLGN. Double injection of AAV2.1-Ef1α-eGFP into dLGN and AAV2.1-Ef1α-tdTomato into LP (left) and pattern of dLGN (green) and LP (magenta) axons in V1 (middle panels, with an enlarged inset of layer 1). Right, normalized fluorescence intensity (norm. fluoresc.) of LP (magenta) and dLGN axons (green) at different cortical depths in layer 1. Shaded areas denote s.e.m.; dots, weighted median of maximum fluorescence for individual brain slices. Black lines show the median; P = 0.03, Wilcoxon rank-sum test, n = 5 slices, 2 mice. Observations in a and b were reproduced in 11 and 3 mice, respectively. *P < 0.05.

Figure 1 Connectivity of LP. (a) Projections to LP. Retrograde tracer (CTB) injection into LP (insets in top panel: left, schematic of the injection; right, injection site) and areas with substantial numbers of retrogradely labeled cell bodies. Top: V1, primary visual cortex; Hip, hippocampus; SC, superior colliculus; TEa, temporal association area; VisM, medial visual areas; VisL, lateral visual areas. Bottom: ACad, dorsal anterior cingulate cortex; ACAv, ventral anterior cingulate cortex; MO2, secondary motor area; PPC, posterior parietal cortex; SC, superior colliculus; SuG, superficial gray layer; Op, optic layer; InG, intermediate gray layer. Arrows indicate the orientation of the coronal sections (similar for all images in this figure; M, medial; D, dorsal). Distances from bregma are given in mm. (b) Organization of thalamic neurons projecting to V1 in coronal slices. Top left, three retrograde tracer injections in V1 (see inset in bottom left corner: CTB conjugated with Alexa Fluor 488, CTB488; with Alexa Fluor 647, CTB647; with Alexa Fluor 555, CTB555) at different retinotopic locations. Top right, retrogradely labeled neurons in dLGN. Bottom, retrogradely labeled neurons in LP at two positions along the anterior-posterior axis. (c) Projections from LP and dLGN. Double injection of AAV2.1-Ef1α-eGFP into dLGN and AAV2.1-Ef1α-tdTomato into LP (left) and pattern of dLGN (green) and LP (magenta) axons in V1 (middle panels, with an enlarged inset of layer 1). Right, normalized fluorescence intensity (norm. fluoresc.) of LP (magenta) and dLGN axons (green) at different cortical depths in layer 1. Shaded areas denote s.e.m.; dots, weighted median of maximum fluorescence for individual brain slices. Black lines show the median; P = 0.03, Wilcoxon rank-sum test, n = 5 slices, 2 mice. Observations in a and b were reproduced in 11 and 3 mice, respectively. *P < 0.05.
selectivity index (DSI) of both LP and dLGN boutons was substantially lower than that of neurons in V1 (Fig. 2c; median DSI: dLGN, 0.25 ± 0.26; LP, 0.27 ± 0.25; \(P = 0.12 \); V1, 0.51 ± 0.42, all \(P < 10^{-8} \), Wilcoxon rank-sum test).

The similarity in orientation and direction selectivity of LP and dLGN boutons was unexpected given that the two thalamic nuclei receive different combinations of afferent inputs. We therefore characterized their visual response properties in more detail by mapping their spatial receptive field structure with sparse noise stimuli and separately computed ON and OFF receptive field subdomains (Fig. 3a,b and Supplementary Fig. 4; see Online Methods). The receptive fields of the two thalamic projections showed pronounced differences. Receptive fields of LP boutons were much larger than those of dLGN boutons (Fig. 3c; median: LP, 415 ± 258 deg\(^2\); dLGN, 183 ± 88 deg\(^2\); \(P < 10^{-10} \), Wilcoxon rank-sum test) or layer 2/3 neurons in V1 (median area 246 ± 157 deg\(^2\); all \(P < 10^{-10} \), Wilcoxon rank-sum test). LP and dLGN receptive fields also differed in shape. The ON and OFF subfields of LP receptive fields were more elongated than dLGN and V1 subfields (Fig. 3d and Supplementary Fig. 4; median aspect ratio of major over minor axis length: LP, 1.59 ± 0.58; dLGN, 1.26 ± 0.26; \(P < 10^{-10} \); V1, 1.30 ± 0.34; V1 versus LP, \(P < 10^{-10} \); V1 versus dLGN, \(P < 0.001 \), Wilcoxon rank-sum test). In addition, several other receptive field measurements showed significant differences between dLGN and LP projections (Supplementary Fig. 4).

Similar results were obtained with electrophysiological single-unit recordings in the visual thalamus (Supplementary Fig. 5; see Online Methods). In addition, visually evoked response latencies of LP neurons were about twice as long as those of dLGN neurons (Supplementary Fig. 5; mean ± s.e.m. for all means throughout: LP, 187.5 ± 6.3 ms; dLGN, 93.8 ± 5.0 ms; \(P < 10^{-6} \), Wilcoxon rank-sum test). Taken together, these results reveal fundamentally different visual response properties of LP and dLGN inputs in layer 1 of primary visual cortex. LP receptive fields are much larger than those of both dLGN and V1, and their visual responses are delayed, consistent with LP receiving diverse inputs from various visual cortical areas\(^{16,17,19-21} \) (Fig. 1a).

Functional organization of thalamic inputs

A single field of view (120 × 120 \(\mu \text{m}^2 \)) in layer 1 of V1 contained populations of up to a few hundred visually responsive thalamic boutons (Fig. 4a and Supplementary Figs. 3 and 6), carrying signals from several dozen different thalamic neurons (Supplementary Fig. 6). Receptive fields from populations of dLGN boutons within each 120 × 120 \(\mu \text{m}^2 \) imaged region clustered in the same part of the visual field (Fig. 4a), and the scatter of their receptive field centers was only slightly larger than that of layer 2/3 neurons in a V1 imaged region of the same size (Fig. 4c,d; median pairwise distance between receptive field centers: dLGN, 9.30 ± 7.76°; V1, 7.42 ± 8.11°; all \(P < 10^{-10} \), Wilcoxon rank-sum test). The degree of spatial precision of dLGN inputs into L1 was sufficient to observe fine-scale retinotopic organization of dLGN bouton receptive fields on a very local scale, even within individual imaged regions (Supplementary Fig. 7). In contrast, receptive fields of populations of LP boutons were distributed over a much larger area of the visual field (Fig. 4b,d; median pairwise distance 16.89 ± 16.27°; \(P < 10^{-10} \), Wilcoxon rank-sum test), and little fine-scale retinotopic organization was apparent (Supplementary Fig. 7). Given the large scatter and size of LP receptive fields, the area of visual field covered by LP inputs to a given region of V1 was substantial (Fig. 4b,c). For dLGN bouton populations, the visual field coverage increased as a function of the number of receptive fields sampled, but plateaued after a few dozen receptive fields for each dLGN bouton population, with little jitter (Fig. 4e; median covered area, 1,505 ± 380 deg\(^2\), imaged regions with at least 50 receptive fields, \(n = 11 \)). For LP bouton populations, the visual field coverage was much larger and more variable for different imaged regions (median covered area 3,778 ± 1,337 deg\(^2\), \(n = 11 \); \(P = 0.001 \), Wilcoxon rank-sum test), and reached as much as 5,500 deg\(^2\)—nearly three quarters of the visual field probed in our experiments (96° × 80°). Thus, LP input provides distributed information from an expansive area of the visual field to each local region in V1. Taken together, these data indicate that L1 in primary visual cortex receives spatially precise visual input from the dLGN that covers a narrow area of the visual field, carried by boutons with small receptive...
fields that are retinotopically organized. In contrast, input from LP covers a large area of visual field, carried by boutons with receptive fields that do not show clear retinotopic organization on a local scale.

Motor signals in thalamocortical projections

In addition to visual areas, both LP and dLGN receive input from motor-related areas, and motor-related signals have been observed in the dLGN and the pulvinar of higher mammals. Therefore, either thalamic nucleus may be part of a sensorimotor integration circuit that interprets visual information in the context of motion generated by an animal’s own eye, head or body movements. To identify motor and visuomotor signals in thalamic projections, we imaged calcium responses of LP and dLGN boutons in V1 in awake, head-fixed mice running on a cylinder (Fig. 5a).

We first determined whether thalamic boutons carried signals related to saccade-like eye movements (Fig. 5b,c). A small proportion of both LP and dLGN boutons were significantly modulated by saccades (Fig. 5b,c). To test whether this signal was visually evoked or motor-related, we also tracked saccades in darkness (Supplementary Fig. 8). While LP showed a trend toward fewer eye-movement-modulated boutons, the fraction of dLGN boutons with saccade-related activity was significantly reduced in the dark (Fig. 5c; mean proportions light versus dark: dLGN, 6.2 ± 1.4 versus 2.6 ± 0.6, P = 0.03; LP, 9.8 ± 1.5 versus 6.2 ± 1.1; P = 0.06, Wilcoxon rank-sum test). These results indicate that there are motor-related, saccadic signals in LP, consistent with data from the primate pulvinar.

To understand how sensory and motor signals are represented in visual thalamic projections and how these signals interact, it is important to separate the effects of these two variables on neuronal activity.
Eye movements are not the only actions that lead to displacement of the visual scene on the retina. Another salient sensory feedback signal is visual flow caused by whole-body movements—for instance, during locomotion. In our experiments, when animals were trained to run on the cylinder, their running controlled their position in a corridor with patterned walls in a virtual environment. The coupling of running speed to the visual flow enabled active engagement with the visual environment. In some recordings, we then uncoupled the virtual visual flow from locomotion by replaying corridor movies of previous sessions to the animals, irrespective of their running speed\(^{5,6}\) (‘open-loop’ condition). This allowed us to separately assess the effects of running speed and of the visual motion on the retina caused by visual flow that is under normal conditions associated with the animal’s locomotion.

In the open-loop condition, subsets of LP and dLGN boutons responded not only to the visual flow of the virtual environment but also to locomotion (Fig. 6a,b), as has been previously shown for dLGN\(^{14}\). Different boutons preferred specific speeds of visual flow or running: some increased or decreased their activity with increasing speed, and others had more complex, nonlinear activity–speed
Visuomotor mismatch signals are enriched in LP boutons. (a) Calcium traces and inferred (inf.) firing rate (top) of two example boutons aligned to the difference between running speed and visual flow speed (RS − VF, left) or the equal sum of RS and VF (RS + VF, right), over-plotted with model predictions (pred.) for these traces (gray) obtained with a random-forests decoder trained on inferred spike rates from the example boutons above. PP, prediction power. Bottom, aligned running speed and visual flow speed traces. Gray shaded regions reflect periods of elevated RS − VF or RS + VF; horizontal black lines indicate zero. (b) Example imaged regions. Boutons with highest PP for RS, VF, RS − VF or RS + VF (if PP > 0.16) are color-coded. (c) Circular histogram with distributions of interaction angles θ for different groups of dLGN (left) and LP (right) boutons. Like Figure 6e, but boutons were grouped according to which variable they predicted best (groups with highest PP for RS, VF, RS + VF or RS − VF are color-coded). (d) Proportions of dLGN and LP boutons with highest PP for RS − VF or RS + VF (if PP > 0.16) out of all boutons. Wilcoxon rank-sum test. dLGN, n = 18 regions, 8 mice; LP, n = 31 regions, 10 mice. (e) Average change in activity in the closed-loop condition relative to the open-loop condition for boutons most informative about RS − VF or RS + VF in the open-loop condition (thresholded average ∆F/F; see Online Methods). Wilcoxon signed-rank test; dLGN, RS + VF, 334 boutons; RS − VF, 206 boutons; n = 10 session pairs, 7 mice; LP, RS + VF, 99 boutons; RS − VF, 276 boutons; n = 13 session pairs, 8 mice. **P < 0.01; ***P < 10−10. Error bars, s.e.m.

The activity of some boutons was highly informative about running speed (RS) or visual flow speed (VF), and therefore could be used to predict those variables well (Fig. 6c); that is, the correlation coefficient between predicted and observed speed traces was high, which we defined as ‘prediction power’ (PP). The proportions of these boutons were not different between dLGN and LP projections (Fig. 6c; for PP > 0.16; RS mean proportions: dLGN, 14 ± 3%; LP, 11 ± 1.9%; P = 0.27; VF mean proportions: dLGN, 11 ± 1.8%; LP, 11 ± 0.9%; P = 0.94; Wilcoxon rank-sum test). Therefore, excitatory projections from both thalamic nuclei carry specific information about the animal’s motor output, as well as the visual flow normally experienced during self-motion.

Visuomotor mismatch signals are enriched in LP boutons

Next we examined how visual flow and running signals are integrated at the level of individual boutons. We plotted a signed PP, where the sign indicates the preference of a bouton for high (positive) or low (negative) speeds, for visual flow speed against a signed PP for running speed for all boutons (Fig. 6d; see Online Methods). For those boutons highly informative about visual flow and/or running speed (PP > 0.16), we then computed an interaction angle θ, which indicates the relative signed prediction power for those two variables (Fig. 6d,c and Supplementary Fig. 10; see Online Methods). Values of θ close to 0° or 180° indicate that a bouton selectively carries visual flow speed information, increasing its activity with increasing or decreasing visual flow speed, respectively (Fig. 6d,c). Similarly, values of θ close to 90° or 270° indicate that a bouton selectively carries running speed information and is positively (90°) or negatively (270°) correlated with running speed. Values in between signify boutons carrying both visual flow and running speed signals, with θ close to 45° and 225° indicating cooperative interactions and θ close to 135° and 315° opposing interactions, with inverse activity–speed relationships for visual flow and running speed (Fig. 6d,e). Strikingly, a much larger proportion of LP than dLGN boutons showed such opposing interactions (Fig. 6e; LP, 28%; dLGN, 9%; P < 10−10, Z test; see Online Methods). Conversely, boutons with cooperative interactions were more prevalent in dLGN (Fig. 6e; LP, 20%; dLGN, 27%; P = 10−6, Z test). Moreover, a larger proportion of LP than dLGN boutons increased their activity with decreasing visual flow speed (Fig. 6e; LP, 17%; dLGN, 3%; P < 10−10, Z test). Different PP thresholds yielded very similar results (Supplementary Fig. 10e).

The difference in sensorimotor integration by dLGN and LP projections was also evident when comparing visual flow and running speed tuning curves of individual boutons (Fig. 6f). The speed tuning curves of many LP boutons were anticorrelated (Fig. 6f). In contrast, proportionally more dLGN boutons tended to have tuning curves with similar shapes for visual flow and running speed (Fig. 6f; median correlation coefficient: dLGN, 0.28 ± 1.4; LP, −0.26 ± 1.7; P = 10−10, Wilcoxon rank-sum test).

As a consequence of the opposing effects of running and visual flow speed on their responses, LP boutons are expected to exhibit activity related to the instantaneous difference between running and visual flow speed when these are uncoupled in the open-loop condition. This difference signal may be highly relevant for visual processing because in principle, it enables the detection of discrepancies between the visual feedback expected from the animal’s locomotion and the actual visual input. Indeed, many boutons were more informative about the difference between running and visual flow speed than about either...
speed alone (random-forests decoder, Fig. 7a–d). Boutons that preferentially signaled the degree of difference between running and visual flow speed were much more prevalent in LP than in dLGN projections (Fig. 7c,d; mean proportions: LP, 11 ± 1.5%; dLGN, 4.7 ± 0.7%; \(P = 0.0036 \), Wilcoxon rank–sum test; see Online Methods). Conversely, the proportion of boutons that were most informative about an equally weighted sum of running and visual flow speed was much larger in dLGN than in LP projections (Fig. 7c,d; mean proportions: dLGN, 7.2 ± 1.1%; LP, 3.0 ± 0.6%; \(P = 0.0004 \), Wilcoxon rank-sum test).

Boutons signaling the degree of difference between running and visual flow speed showed increased activity with larger visuomotor divergences (Supplementary Fig. 9e). Moreover, these boutons signaling visuomotor discrepancies were less active in the closed-loop condition, when running and visual flow were coupled, as no visuomotor discrepancies occurred in these trials (Fig. 7e; mean change in activity: dLGN, \(-10.2 ± 1.9\%\); LP, \(-4.5 ± 1.9\%\); \(P = 0.0006 \); Wilcoxon signed-rank test). The activity of boutons most informative about the equally weighted sum of running and visual flow speed was not significantly changed when running and visual flow speed were coupled (Fig. 7e; mean change in activity: dLGN, 2.1 ± 1.5%; \(P = 0.67 \); LP, 0.2 ± 2.1%; \(P = 0.96 \); Wilcoxon signed-rank test).

Notably, LP boutons on the whole were more active in response to an onset of visuomotor divergence than during a period of varying but sustained visuomotor discrepancies (mean difference in activity, LP: \(30 ± 7\%\); \(P = 10^{-4} \), Wilcoxon signed-rank test). This was not the case for dLGN boutons (mean difference in activity, dLGN: 6 ± 8%; \(P = 0.55 \), Wilcoxon signed-rank test), supporting the hypothesis that LP specifically might play a role in signaling unexpected visual motion.

In summary, both dLGN and LP projections to V1 signaled information related to an animal’s movement through the visual environment. Neurons in both thalamic nuclei integrated motor information about the speed of locomotion and sensory information about the speed of visual flow. However, while positive combinations of running and visual flow speed were enriched in dLGN boutons, boutons from the higher order nucleus LP predominantly conveyed the difference between self-generated and external visual motion.

DISCUSSION

In this study, we reveal that the inputs from first order and higher order visual thalamus are functionally highly diverse and provide multiple visual, motor and visuomotor signals to L1 of mouse V1. Therefore, thalamic input not only provides feedforward information about the sensory input but also rich contextual signals about the interaction of the animal with its environment.

Visual response properties

Cortical L1 receives prominent input from neurons of several thalamic nuclei\(^{29}\). In mouse V1, these include not only neurons in nucleus LP but also L1-projecting neurons located in the dorsal shell of dLGN, which might represent a pathway that is functionally distinct from the main dLGN input to L4 (refs. 29–31). Even though L1-targeting projections from both dLGN and LP are likely to originate from so-called matrix-type thalamic neurons, which are thought to be topographically nonspecific and diffuse\(^{29}\), they contribute fundamentally different visual information to V1. The properties of the small spatial receptive fields we observed in dLGN boutons were similar to those of the general dLGN neuronal population as assessed with electrophysiological recordings and imaging techniques, including the degree of orientation and direction selectivity\(^{33,38–41}\). A subset of boutons was sharply tuned for orientation and/or direction, as described previously\(^{30}\). Surprisingly, dLGN inputs to L1 were retinotopically highly confined and topographically ordered, indicating that dLGN axons provide spatially organized information from restricted regions in visual space even in L1. In contrast, although the anatomy of LP projections was coarsely topographic in V1, the spatial receptive fields of LP inputs were much larger and emanated from widely dispersed locations in the visual field. This suggests that LP inputs provide contextual information about the visual scene, which extends far beyond the retinotopic preferences of local V1 neurons. LP inputs may therefore contribute to surround modulation of V1 neurons\(^{24}\) or to state-dependent or behavioral modulation of visual responses across visual space (see below).

Motor-related information

By measuring the thalamic input to V1 in mice experienced in traversing a virtual corridor, we found that L1-targeting projections from dLGN and LP signaled rich information related to an animal’s movement through the visual environment. Locomotion has been shown to influence responses in mouse V1 (refs. 4–6). Models suggest that locomotion signals are generated by neuromodulatory mechanisms of disinhibition acting directly in the cortical circuit\(^{11,12}\). However, we found that excitatory projections to V1 from dLGN and LP were strongly modulated by the behavior of the animal and carried specific information about saccades and running speed. Our results are in agreement with electrophysiological evidence for running modulation of responses in mouse dLGN\(^{14}\). These motor signals could be inherited from the superior colliculus, a structure contributing to head and eye movements\(^{20}\) as well as to modulation of locomotion in mice\(^{42}\), which targets LP and the L1-projecting dorsal shell of dLGN\(^{31}\). Alternatively, locomotor signals in the thalamus could arise from cortico-thalamic feedback or from substantial neuromodulatory projections\(^{43,44}\). Irrespective of their source, the existence of motor signals in dLGN and LP indicates that the visual thalamus is likely to contribute to the running modulation of V1 responses.

Sensorimotor interaction signals

What role could motor signals play in the early visual system? They could be combined with visual motion signals to update an estimate of the animal’s own speed through the environment. Indeed, a recent study found that a substantial percentage of neurons in mouse V1 respond to positively weighted combinations of optic flow and running speed\(^{8}\). We found that this positive integration of visual and motor signals was already apparent at an even earlier visual processing stage, in the dLGN, while it was much rarer in the higher order nucleus LP. Interpreting the input from the visual environment in the context of how fast the animal moves may be important for navigation and generating internal representations of space\(^{45}\).

Alternatively, running speed and visual motion signals could be used to detect external visual motion independent of the visual motion generated by the animal’s own movements. By computing the difference between the actual optic flow speed and the speed predicted by the animal’s locomotion (potentially based on an efference copy of the executed motor command), neurons would report instances of visuomotor mismatch. Indeed, such mismatch selective neurons have been observed in mouse V1 (ref. 5). We found that signals reporting discrepancies between optic flow and running speed were also represented at the level of the thalamus, being particularly enriched in LP projections targeting V1.

The theoretical framework of predictive coding suggests that sensory neurons report the difference between their bottom-up inputs and top-down predictions of these inputs\(^{7,8,46}\). Sensorimotor mismatch signals are computationally and ethologically useful because...
they can serve as an error signal that signifies that the intended motor action did not result in the expected sensory feedback. These error signals may help to update movement plans and coordinate visually guided behaviors, in which the pulvinar has been implicated. In addition, activity reporting sensorimotor discrepancies may alert the animal to unpredicted or unexpected sensory signals in the visual scene and enable their processing independent of self-generated sensory input. Our results suggest that the higher order visual thalamus is part of a predictive coding circuit that integrates visual and motor information to calculate divergences between actual and expected visual feedback, and which therefore signals unpredicted visual motion. It remains to be determined whether these signals are computed within the thalamus itself, from separate inputs carrying optic flow and run speed information, or inherited from the mismatch neurons in the cortex.

Irrespective of how discrepancy signals are generated in individual LP neurons, they are likely to be broadcast widely. Since LP boutons have large receptive fields and weak orientation selectivity, this nucleus might not compute and convey the precise properties of unpredicted visual stimuli; these are more likely to be processed in cortical visual areas. Higher order visual thalamus might instead be important for targeting attention to incongruent self-generated and external visual motion—for example, when there is an object moving in the visual scene. Consistent with previous models, LP could increase the saliency of such objects by, for instance, coordinating activity across visual cortical areas and thereby facilitating information flow related to unpredicted visual motion through the cortical processing hierarchy.

Impact on cortical circuits
Cortical L1 receives both thalamic inputs and cortical feedback projections that synapse onto inhibitory cell classes, as well as the distal dendrites of pyramidal cells in this layer. Nevertheless, these inputs can have a strong influence on neuronal activity—for instance, by triggering active dendritic events when these coincide with the feedforward activation of the cell. Cortical feedback to L1 is thought to transmit internal, contextual information and to provide predictions for the interpretation of sensory input. Here we show that the signals from the visual thalamus, in addition to carrying specific signals about the speed of locomotion that might be considered predictive of imminent optic flow, also carry discrepancy signals that reflect the deviation from these visuomotor predictions. Future experiments are required to determine how different cell classes integrate these complex visuomotor signals to inform visual processing in thalamocortical loops.

METHODS
Methods and any associated references are available in the online version of the paper.

Note: Any Supplementary Information and Source Data files are available in the online version of the paper.

ACKNOWLEDGMENTS
We thank J. Poort and A.G. Khan for generous help, software and hardware for the behavioral experiments, data acquisition and analysis, H. Ko for analysis software, M. Pachitariu for related preliminary analysis, A. Nemri for building the intrinsic imaging setup, G.B. Keller and his group (Friedrich Miescher Institute, Basel) for analysis software and AAV vectors, and I. Orsolic for an earlier version of the schematic in Figure 5a. We thank P. Znamensky, J. Poort, A. Blot, A.I. Keller and G.B. Keller for comments on earlier versions of the manuscript, the Hofer and Mrisic-Flogel laboratory for discussions and T.D. Mrisic-Flogel for support, comments and discussions. We thank the Biozentrum Imaging Core Facility (IMCF; Basel) for providing access and maintenance of confocal microscopes, as well as analysis support. We thank the GENIE Program, Janelia Farm Research Campus and Howard Hughes Medical Institute for making GCaMP5 and GCaMP6 material available. This work was supported by the European Research Council (S.B.H., HigherVision 337797) and the Wellcome Trust (S.B.H., 095853; J.C.D., 076508).

AUTHOR CONTRIBUTIONS
J.C.D., M.M.R. and S.B.H. designed the experiments. J.C.D., M.M.R. and F.I. performed the experiments and J.C.D., M.M.R. and D.R.M. analyzed the data. F.I. performed electrophysiological recordings and analysis. S.B.H., J.C.D., M.M.R. and D.R.M. wrote the paper.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

1. Gilbert, C.D. & Wiesel, T.N. The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat. Vision Res. 30, 1689–1701 (1990).
2. Roelfsema, P.R., Lamme, V.A.F. & Spekreijse, H. Object-based attention in the primary visual cortex of the macaque monkey. Nature 395, 376–381 (1998).
3. Lisberger, S.G. & Li, W.K. Top-down influences on visual processing. Nat. Rev. Neurosci. 14, 350–363 (2013).
4. Nieuw, C.M. & Stryker, M.P. Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 65, 472–479 (2010).
5. Keller, G.B., Bonhoeffer, T. & Hubener, M. Sensory mismatch signals in primary visual cortex of the behaving mouse. Neuron 74, 809–815 (2012).
6. Saleem, A.B., Ayaz, A., Jeffery, K.J., Harris, K.D. & Carandini, M. Integration of visual motion and locomotion in mouse visual cortex. Nat. Neurosci. 16, 1864–1869 (2013).
7. Murnford, D. On the computational architecture of the neocortex. II. The role of cortico-cortical loops. Biol. Cybern. 66, 241–251 (1992).
8. Rao, R.P.N. & Ballard, D.H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 73–87 (1999).
9. Makino, H. & Komiyama, T. Learning enhances the relative impact of top-down specific signals about the speed of locomotion that might be considered predictive of imminent optic flow, also carry discrepancy signals that reflect the deviation from these visuomotor predictions. Future experiments are required to determine how different cell classes integrate these complex visuomotor signals to inform visual processing in thalamocortical loops.
28. Gale, S.D. & Murphy, G.J. Distinct representation and distribution of visual information by specific cell types in mouse superficial superior colliculus. *J. Neurosci.* **34**, 13458–13471 (2014).

29. Rubio-Garrido, P., Pérez-de-Manzo, F., Porrero, C., Galazo, M.J. & Clascá, F. Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent. *Cereb. Cortex* **19**, 2380–2395 (2009).

30. Cruz-Martín, A. et al. A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex. *Nature* **507**, 358–361 (2014).

31. Bickford, M.E., Zhou, N., Krahe, T.E., Govindaiah, G. & Guido, W. Retinal and tectal “driver-like” inputs converge in the shell of the mouse dorsal lateral geniculate nucleus. *J. Neurosci.* **35**, 10523–10534 (2015).

32. Tohmi, M., Meguro, R., Tsukano, H., Hishida, R. & Shibuki, K. The extrageniculate visual pathway generates distinct response properties in the higher visual areas of mice. *Curr. Biol.* **24**, 587–597 (2014).

33. Piscopo, D.M., El-Danaf, R.N., Huberman, A.D. & Niell, C.M. Diverse visual features encoded in mouse lateral geniculate nucleus. *J. Neurosci.* **33**, 4642–4656 (2013).

34. Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. *Nature* **499**, 295–300 (2013).

35. De Paola, V. et al. Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex. *Neuron* **49**, 861–875 (2006).

36. Petreanu, L. et al. Activity in motor-sensory projections reveals distributed coding in somatosensation. *Nature* **489**, 299–303 (2012).

37. Huber, D. et al. Multiple dynamic representations in the motor cortex during sensorimotor learning. *Nature* **484**, 473–478 (2012).

38. Grubb, M.S. & Thompson, I.D. Quantitative characterization of visual response properties in the mouse dorsal lateral geniculate nucleus. *J. Neurophysiol.* **90**, 3594–3607 (2003).

39. Marshel, J.H., Kaye, A.P., Nauhaus, I. & Callaway, E.M. Anterior-posterior direction opponency in the superficial mouse lateral geniculate nucleus. *Neuron* **76**, 713–720 (2012).

40. Zhao, X., Chen, H., Liu, X. & Cang, J. Orientation-selective responses in the mouse lateral geniculate nucleus. *J. Neurosci.* **33**, 12751–12763 (2013).

41. Schoff, B., Tan, A.Y.Y., Corey, J. & Priebe, N.J. Emergence of orientation selectivity in the Mammalian visual pathway. *J. Neurosci.* **33**, 10616–10624 (2013).

42. Liang, F. et al. Sensory cortical control of a visually induced arrest behavior via corticocollicular projections. *Neuron* **86**, 755–767 (2015).

43. Sillito, A.M., Cudeiro, J. & Jones, H.E. Always returning: feedback and sensory processing in visual cortex and thalamus. *Trends Neurosci.* **29**, 307–316 (2006).

44. McCormick, D.A. Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. *Prog. Neurobiol.* **39**, 337–388 (1992).

45. Kropp, F., Carmichael, J.E., Moser, M.-B. & Moser, E.I. Speed cells in the medial entorhinal cortex. *Nature* **523**, 419–424 (2015).

46. Friston, K. A theory of cortical responses. *Phil. Trans. R. Soc. Lond. B* **360**, 815–836 (2005).

47. Robinson, D.L. & Petersen, S.E. The pulvinar and visual salience. *Trends Neurosci.* **15**, 127–132 (1992).

48. Guillery, R.W. & Sherman, S.M. Branched thalamic afferents: what are the messages that they relay to the cortex? *Brain Res. Rev.* **66**, 205–219 (2011).

49. Harris, K.D. & Mrsic-Flogel, T.D. Cortical connectivity and sensory coding. *Nature* **503**, 51–58 (2013).

50. Larkum, M. A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex. *Trends Neurosci.* **36**, 141–151 (2013).
ONLINE METHODS

Surgical procedures. All experiments were conducted in accordance with institutional animal welfare guidelines and licensed by the UK Home Office and the Swiss cantonal veterinary office. Animals used in this study were C57BL/6 mice of either sex at least 6 weeks old (anesthetized recordings, 24 mice; awake recordings, 18 mice; anatomy, 14 mice). Prior to surgery, the animals were injected with dexamethasone (2–3 mg kg$^{-1}$), atropine (0.05–0.1 mg kg$^{-1}$) and analgesics (carprofen; 5 mg kg$^{-1}$). General anesthesia was induced with a mixture of fentanyl (0.05 mg kg$^{-1}$), midazolam (5 mg kg$^{-1}$) and medetomidine (0.5 mg kg$^{-1}$). For anesthetized recording, animals were lightly sedated (chlorprothixene, 0.7 mg kg$^{-1}$) then anesthetized with a mixture of propofol and ketamine (25 mg kg$^{-1}$ each) and relaxed with atropine (0.05 mg kg$^{-1}$). After perfusion of the animal, the brain was removed from the head, thoroughly washed in 0.9% saline and then with a fixative of 4% paraformaldehyde in PB. Relevant parts of the brain were sectioned for histological processing (see below for details). The visual stimulus was a white bar 3°–4° in width, which drifted left, right, up or down at 0.09 Hz on a black background. Intrinsic signal imaging. To determine the detailed location and organization of primary visual cortex for retinotopic injections of CTB, mice underwent optical imaging of intrinsic signals. Two to three days before imaging, mice underwent surgeries as described above. A customized headplate was implanted and the skull was carefully thinned to improve the quality of imaging. On the day of imaging, mice were initially sedated (chlorprothixene, 0.7 mg kg$^{-1}$) then lightly anesthetized with a mixture of propofol and ketamine (25 mg kg$^{-1}$ each) and relaxed with atropine (0.05 mg kg$^{-1}$). After perfusion of the animal, the brain was removed from the head, thoroughly washed in 0.9% saline and then with a fixative of 4% paraformaldehyde in PB. Relevant parts of the brain were sectioned for histological processing (see below for details). Data collection was not performed blind to the conditions of the experiment. No sample size calculation was performed, but sample sizes are consistent with those generally employed in the field.

Histology and confocal imaging. After perfusion of the animal, the brain was embedded in 4% agar (Ag9539; Sigma) and slices were cut at a thickness of 100–150 µm using a vibratome (HM650V; Microm). Slices were counterstained either by mounting them in a mounting medium containing DAPI (Vectashield; Vector Laboratories) or by Nissl staining (NeuroTrace 435/455, 1:50 dilution; Molecular Probes) before mounting them with a hard-set mounting medium (2.5% DABCO (D27802; Sigma), 10% polyvinyl alcohol (P8136; Sigma), 5% glycerol, 25 mM Tris buffer pH 8.4). Images of either 512 × 512 pixels or 1,024 × 1,024 pixels were acquired with a confocal microscope (Zeiss point scanning confocal, LSM700 inverted) using a 10× or 25× objective.

Two-photon calcium imaging and visual stimulation. Anesthetized experiments. Imaging in anesthetized animals was performed with a custom galvo-scanning two-photon microscope and a mode-locked Ti:sapphire laser (Mai Tai; SpectraPhysics) at 930 nm through a 40× water-immersion objective (0.8 NA; Olympus). Imaging and acquisition were controlled by custom software written in Labview (Texas Instruments). Frames of 256 × 256 pixels with a field of view of 120 × 120 µm (boutron imaging) or 250 × 250 µm (cell body imaging) were acquired at a rate of ~3.8 Hz. Visual stimuli were generated in Matlab using Psychophysics Toolbox[52] and presented on an LCD monitor (60 Hz refresh rate) positioned 20 cm from the left eye at approximately 45° to the long axis of the animal, such that it covered ~105° × 85° of visual space. Square-wave gratings (0.04 cycles per degree, 2 Hz, 100% contrast) drifting in 12 different directions for 2 s were presented randomly interleaved with a gray screen (~4.2 s) between grating presentations. Each grating direction was repeated eight times. A subset of LD data was obtained with a spatial frequency of 0.02 cycles per degree. The results for 0.02 and 0.04 were almost identical and not statistically significantly different and were therefore pooled. Receptive field mapping stimuli consisted of black and white squares of 8° × 8° on a gray background. The squares were presented one at a time and in random order at one of 120 positions (12 × 10 matrix covering a total area of 96° × 80°; each position was repeated 9–18 times). The presentation rate was ~1.9 Hz and the square presentation duration was ~0.5 s (equivalent to the duration of two imaging frames); that is, there was no gap between presentations. For imaging, the mice were lightly anesthetized with chloroprocaine (0.7 mg kg$^{-1}$) and isoflurane (0.5–1% in O$_2$). Atropine was given to slightly dilate the pupil and reduce mucus secretion. Eyes were covered with eye ointment (Maxitrol); the ointment was reduced to a thin layer during imaging. The ipsilateral eye was covered. Rectal temperature was kept constant at 37 °C with the help of a heating pad (DC Temperature Controller; FHC).

Awake experiments. Mice were housed with an inverted light-dark cycle starting at least 5 d before the first imaging experiments. All experiments were performed during the dark phase. Animals were handled and accustomed to head restraint for 3–5 d. Imaging was performed using a custom-built circuit[54] to present visual stimuli only in between the scanning of two subsequent lines. During recordings, mice were free to run on a 20-cm-diameter Styrofoam cylinder. Their running speed was measured with an optical mouse (Logitech G700). This signal was used to control the speed at which mice moved through a virtual environment that was presented on two monitors (U2312HM; Dell) in front of them. The virtual environment consisted of linear corridors with varying wall patterns as described previously[55] (gratings and black and white circles on a gray background) created in a game engine (Unity), and the position in the environment was controlled by custom software written in Labview (National Instruments). These ‘closed-loop’ recordings, in which the running of the mouse controlled the visual flow of the virtual corridor, were alternated with recordings during which animals ran in the dark (monitors were switched off) and with ‘open-loop’ recordings during which visual flow presented to the mouse was not coupled to the running of the animal, but was a replay of a previous recording. For the analysis presented in this publication, we only included recordings during which mice ran regularly at maximum speeds higher than 10 cm s$^{-1}$. This ensured that only recordings in which animals were habituated and familiar with the virtual environment were included for further analysis. Images of both eyes were recorded with CMOS cameras at 30 Hz (DMKBU030, Imaging Source). Pupil position was computed offline by smoothing and thresholding the images and fitting a circle to the pupil. The filter radius and the image threshold were adapted manually for each experiment. We applied a one-dimensional median filter to the traces of horizontal and vertical pupil position. Eye movements were detected automatically by applying an adapted threshold that had to be passed in the horizontal but not the vertical plane. This criterion

Note: The text is a natural representation of the document content as per the instructions. The full document contains additional details and references not fully captured in this snippet. For the complete context, refer to the original publication. © 2016 Nature America, Inc. All rights reserved.
avoided detecting artifacts due to blinking or grooming and led to few missed saccades. While the occurrence of events was determined using the filtered traces, event timing was corrected using the raw traces. This method was cross-validated in several experiments using manual detection of eye movements.

Data analysis. *Anesthetized experiments.* All analyses were performed in Matlab (MathWorks). Image stacks were registered to a 30-frame average to correct for x-y motion. Regions of interest (ROIs) corresponding to cell somata were determined manually on the basis of frame averages and inspection of movies of calcium activity. ROIs corresponding to putative boutons were selected in an automated procedure. An adaptive local threshold was applied to an image in which each pixel represented the average temporal cross correlation with its eight neighbors. The resulting ROI masks were visually inspected and, if necessary, pixels corresponding to stretches of axons were manually removed. All pixels within each ROI were averaged to give a single time course. Calcium AE/F signals were obtained by using the median between the 10th and 70th percentile over the entire fluorescence distribution as \(F_0 \). This trace was high-pass filtered at a cut-off frequency of 0.02 Hz to remove slow fluctuations in the signal. Only ROIs with clearly visually evoked calcium transients were analyzed: for grating stimuli these were defined as ROIs that showed a significant calcium response (average \(AE/F \) during the grating presentation) to at least one grating direction relative to the gray scale (one-way ANOVA, \(P < 0.0001 \)) and whose average response to their preferred grating direction was at least 0.5 \(AE/F \). The orientation selectivity index (OSI) was defined as \((R_{\text{ortho}} - R_{\text{opp}})/(R_{\text{ortho}} + R_{\text{opp}}) \) where \(R_{\text{opp}} \) is the response to the preferred direction and \(R_{\text{ortho}} \) is the average of the responses to the directions orthogonal to the best direction. DSI was defined as \((R_{\text{opp}} - R_{\text{opp}})/(R_{\text{opp}} + R_{\text{opp}}) \) where \(R_{\text{opp}} \) is the response to the direction opposite the preferred direction.

ON and OFF spatial receptive fields (RFs) were derived separately by analyzing only responses to the white patches or only responses to the black patches, respectively. Raw RFs represent the mean response at each of the 12 \(\times 10 \) stimulus positions. A response was defined as the mean \(AE/F \) in a window of two frames. The first frame that passed a one-way ANOVA across the 120 stimulus positions (\(P < 0.0005 \)) was the first frame of the response window. ROIs that did not pass this test within the first four frames after stimulus onset or whose strongest mean response was <0.5 \(AE/F \) were excluded. If the ROI passed the test for both the black (OFF) and white (ON) patches but with different latencies, only the RF type with the shorter latency was included for further analysis. The raw RF was interpolated at 1° resolution and smoothed with an 11° \(\times \) 11° square filter before being thresholded at the half-maximum response. In the rare cases where more than one region remained after this step, all but the one containing the strongest average response were removed. This thresholded RF subdomain was used to derive parameters such as RF area and centroid for all further analyses. RF scatter was computed by measuring the distance between all combinations of pairs of RF subdomain centroids in an imaging region. Computing RF scatter using the center of mass of the combined RF for neurons or boutons with both an ON and OFF subdomain yielded identical results.

Visual field coverage represents the area of the visual field that is covered by the entire population of RFs within an imaging area. To assess how the visual field coverage increases as a function of the number of RFs in an imaged region, we randomly drew one RF after another from the population of RFs in a region, measured the visual field coverage after each newly added RF, repeated this procedure 100 times and plotted the average visual field coverage as a function of the number of RFs. To examine the retinotopic organization of thalamic boutons and V1 neurons, we correlated the RF positions (separately for elevation and azimuth) with the location of the ROI in cortical space on a series of axes spanning 360° at 1° intervals. For ROIs with both ON and OFF RF subdomains, the average position of the two was taken. The direction with the maximum correlation between RF positions and cortical position of the ROIs of all boutons was taken as the direction of the retinotopic gradient for azimuth and elevation, respectively; For multiple comparisons, a Kruskal–Wallis test was followed by Wilcoxon rank-sum tests. Reported \(P \)-values are Bonferroni-corrected.

In addition to the analysis of visual response properties based on individual boutons or receptive fields, we also carried out a region-based analysis in which each imaged region contributes only a single data point, the median value of all boutons in the imaged region. In the region-based analysis, all averages lay within 10% of the reported results and all reported dLGN versus LP differences were also found to be statistically significant at \(P < 10^{-4} \).

Awake experiments. All analyses were performed in Matlab (MathWorks). Image stacks were registered to a 30-frame average to correct for x-y motion. Frames with large motion artifacts, often due to grooming, were detected by inspecting the x-y displacement obtained by registration and were subsequently removed from analysis. ROIs corresponding to putative axonal boutons were detected semiautomatically using intensity thresholding combined with PCA-ICA refinement and were inspected manually. In experiments where the same boutons were imaged over several conditions, ROIs were selected from a combined time-averaged image stack. Calcium AE/F signals were obtained by using the 25th percentile over the entire fluorescence distribution as \(F_0 \). To identify responsive ROIs, we measured the skewness of AE/F values of individual ROIs over the recording. ROIs with skewness >1 were considered to be responsive. For calculating the difference in activity between open-loop and closed-loop trials for individual boutons (Fig. 7e), AE/F traces were thresholded at 3.29 times the s.d. (0.1% of values outside the confidence interval) above the 50th percentile and data points below were set to zero. For this analysis, recordings and average image stacks were manually inspected, and experiments with any positional drift of the imaging region between recordings of the same boutons were excluded.

Firing rates per imaging frame were inferred from calcium transients using a compressive sensing technique. Parameters for baseline calcium transient templates for GCaMP5- and GCaMP6f-expressing boutons were estimated from published reports and modified as required through visual inspection of observed calcium signals. Baseline calcium templates were given by the function

\[
C(t) = \begin{cases}
1 - \exp\left(-\frac{t}{\tau_{F1}}\right), & t \leq t_1 \\
\exp\left(-\frac{t - t_1}{\tau_{F2}}\right), & t > t_1
\end{cases}
\]

Parameters for the various indicators were as follows, given as \(\Phi_{\text{GCaMP5,bouton}} = \{50 \text{ ms}, 170 \text{ ms}, 450 \text{ ms}, 500 \text{ ms}, 600 \text{ ms}\}; \Phi_{\text{GCaMP6f,bouton}} = \{50 \text{ ms}, 170 \text{ ms}, 450 \text{ ms}, 500 \text{ ms}, 600 \text{ ms}\}; t_1, \text{ time constant of the rising transient}; t_2, \text{ time until initial peak}; t_2, \text{ time constants of the falling transient}; t_3, \text{ time of inflection point of falling transient}.

To determine whether a bouton was significantly modulated by the onset of a saccade-like eye movement (see above), we compared the average inferred firing rate 1.5–0.5 s before the event to the average inferred firing rate 0–1 s after the event using a Wilcoxon signed-rank test at a significance threshold of 1%.

Decoding analysis. We quantified the information contained in a single bouton response about a particular variable (running speed, RS; visual flow speed, \(VF \); the difference between running speed and visual flow speed, RS – VF; or their equally weighted sum, RS + VF) using random forests, a non-parametric machine learning algorithm that forms ensembles of regression trees. Random-forests ensembles were trained using a bootstrap aggregation algorithm, using the Matlab Statistics Toolbox TreeBagger class (MathWorks). Each ensemble consisted of 32 regression trees, with a minimum of 5 observations per leaf node. Ensembles were trained to use inferred firing rates \(x(t) \) of a single bouton over a \(\pm 250 \) ms period to predict instantaneous speed, instantaneous RS – VF or instantaneous RS + VF, denoted \(y(t) \). All signals were binned at 50 ms; 10 time bins of inferred firing rate centered around zero were then used to compose a vector \(X_i(t) = [x_i(t - 250 \text{ ms}), x_i(t - 200 \text{ ms}), \ldots, x_i(t + 250 \text{ ms})] \). Ensembles formed a nonlinear mapping \(X_i(t) \mapsto y(t) \) while minimizing the difference between the predicted and observed instantaneous speed, \(y(t) - y(t) \). Ensembles were trained under a cross-validation procedure: each experimental session was partitioned into 80% training data and 20% testing data, repeated five times. The prediction power \(P \) over the test set was measured as the Pearson’s correlation coefficient \(\rho \) and \(\rho\) (between the predicted and observed variable over test samples) and was averaged over the five test repetitions.

We defined individual boutons as significantly conveying a particular signal when \(P > 0.16 \) for that signal; we classified individual boutons as preferentially conveying a particular signal if the \(P \) for that signal was higher than for any other signal and if \(P > 0.16 \) (Fig. 7). This threshold ensured that activity of the included boutons was highly significantly informative about the tested signal (\(P < 10^{-4} \)) and the influence of potential motion artifacts in the calcium signal was minimized: in animals in which LP was injected with AAV2.1-Ef1a-eGFP and GFP-labeled...
LP boutons in V1 were imaged during the open-loop condition described above, only 4.6% of GFP boutons passed the responsiveness criteria (skewness > 1, 368 out of 7,977 boutons, 22 sessions, 4 mice). Of those boutons, only a few passed the decoding threshold PP > 0.16 (RS, 11%; VF, 0%; RS − VS, 0.5%; RS + VF: 0.8%), constituting less than 0.6% of total boutons that would be scored as significantly informative to any of the tested variables with our analysis. Moreover, 90% of these boutons had negative RS correlations, in clear contrast to calcium signals in both LP and dLGN boutons (LP: 25%; dLGN, 13% negative RS correlations). To test whether movement artifacts could lead to significant prediction power about running speed in active boutons with GCaMP calcium transients, we added surrogage calcium transients to the raw GFP fluorescence traces, modeled on the electrophysiological spike rates as well as the calcium transients observed in the bouton calcium traces of our GCaMP data set. Spikes were drawn from a bursty Poisson distribution (5 Hz average rate for initial distribution, followed by 50% burst probability per spike) and convolved with a calcium transient (amplitude 40% ΔF/ΔF; other parameters as for GCaMP6 described above). We then performed spike estimation and single-bouton decoding on the surrogate traces, as described above. A very small minority of surrogate bouton signals passed the PP threshold of 0.16 (RS, 0.19%; VF, 0%; RS − VF, 0.02%; RS + VF: 0.02% of boutons; compare Figs. 6c and 7d), indicating that potential movement artifacts in the calcium data do not contribute to the presented results. Differences between LP and dLGN boutons were robust over a wide range of PP thresholds (Supplementary Fig. 10e).

To compare bouton responses to the onset of RS and VF divergences with responses during periods of sustained divergence, we identified continuous periods of low and high absolute RS − VF (less and more than 2 cm s−1 of absolute RS − VF difference, respectively). We then compared the average inferred spikes during a 1-s window following RS − VF divergence onset following at least 2 s of low absolute RS − VF, with a 1-s window of high absolute RS − VF at the ends of stretches of high absolute RS − VF of at least 2 s duration, for each bouton.

Tuning curve quantification and analysis. We estimated tuning curves using a kernel density estimate of the inferred firing rate $\hat{x}_i(t)$ of a bouton i, for a given speed $y(t)$. Estimates were computed using a Gaussian window with s.d.

$$\sigma = 2\left(\frac{4}{3\pi s^2}\right)^{1/2}$$

over a given speed $y(t)$, where $s = \text{median}_i|\text{abs}(y(t) - \text{median}_i[y(t)])|$; \text{median}_i[y(t)] denotes the median value of $y(t)$ computed over all time samples t and $[y(t)]$ gives the number of samples in the time series $y(t)$. Tuning curves were divided into twelve bins over speed values, with equal numbers of samples per bin. For running speed and visual flow speed, the first bin consisted of values < 3 cm s$^{-1}$ (the ‘stationary’ bin) and was ignored for determining the significance of tuning curves. Significant modulation of inferred firing rate by specific nonstationary speeds was determined by comparing mean inferred firing rates per bin against a Monte Carlo bootstrap resampling of inferred firing rates, with multiple-comparisons correction over speed bins.

Tuning curves that contained significant bins (for speeds > 3 cm s$^{-1}$) were classified into three broad categories: increasing activity with increasing speed, decreasing activity with increasing speed, and speed band preference (encompassing band-pass and band-cut). Tuning curves were divided into thirds over the whole range of speeds, such that each third contained four speed bins. If at least one bin within a third showed significant positive or negative modulation, then that third was considered significantly positively (1) or negatively (−1) modulated, respectively. The pattern of modulation over these thirds was used to classify the shape of the tuning curve. Tuning curves with patterns $[0 0 1, 1 0 0, -1 1 -1, -1 0 0, 0 1 1, -1 1 1, -1 0 0]$ were classified as increasing; tuning curves with patterns $[1 0 0, 0 1 1, -1 1 -1, -1 0 0, -1 1 1, 1 1 1, 1 1 0, 0 0 0]$ were classified as decreasing; tuning curves with patterns $[0 1 0, 1 0 0, -1 1 -1, -1 0 1, 0 1 0, 1 0 1, 0 1 1]$ were classified as band preference.

Interaction angle. An interaction angle θ between RS and VF PP of the random forests decoder was computed for individual boutons (Figs. 6c and 7c). First, a signed PP measure was determined by modifying the decoding PP for each bouton as follows. The sign of the Pearson’s linear correlation coefficient between inferred firing rate RS and VF was assigned as the sign of the PP. Accordingly, boutons whose activity showed a positive correlation with RS or VF had positive PPs for these variables, while boutons that were negatively correlated with RS or VF had negative PPs. The interaction angle θ was then computed as $\theta = \text{atan}(\text{signPP}_{RS} \cdot \text{signPP}_{VF})$.

To avoid distorting the circular distribution of θ, decoding PP thresholds were applied as follows when calculating circular distributions of interaction angles. The magnitude of the vector composed by $[\text{PP}_{RS}, \text{PP}_{VF}]$ was computed as $|P| = \sqrt{\text{PP}_{RS}^2 + \text{PP}_{VF}^2}$. Only boutons with $|P| > 0.16$ were included in the analysis. The proportions of boutons with opposing interactions between RS and VF (Fig. 6e) were defined as the numbers of boutons with interaction angles θ in bins 45° wide centered around 135° and 315° over all boutons with $|P| > 0.16$. Proportions of boutons with cooperative interactions between RS and VF were defined as numbers of boutons with θ in bins 45° wide centered around 45° and 225° over all boutons with $|P| > 0.16$.

For comparison, the interaction angle was determined using linear correlation coefficients (Supplementary Fig. 10). Pearson’s linear correlation coefficients were measured between the activity of a single bouton and either running speed ($h_{RS} = \text{corr}(x_i(t), y_{RS}(t))$) or visual flow speed ($h_{VF} = \text{corr}(x_i(t), y_{VF}(t))$), with all signals binned at 50 ms and with zero relative lag between signals. A linear interaction angle θ_{lin} was computed as $\theta_{lin} = \text{atan}(h_{RS}/h_{VF})$. Proportions of boutons conveying RS and VF speed interactions were computed as above.

Electrophysiological recordings. Electrophysiological recordings were performed on eight male C57BL/6 mice (age 2–3 months). Mice were anesthetized and prepared for stereotactic surgery as described above. A small (≈1.2–2 mm) craniotomy and a durectomy were performed on the right hemisphere, guided by stereotaxic coordinates 1.6–1.9 mm lateral and 2.2 mm posterior to bregma. During recordings anesthesia was maintained with isoflurane (0.5–1% in O$_2$). Hydration of the exposed cortical surface was prevented by regular administration of cortex buffer (125 mM NaCl, 5 mM KCl, 10 mM HEPES, 2 mM MgSO$_4$, 2 mM CaCl$_2$, 10 mM glucose, pH 7.4). The ipsilateral eye was covered to prevent binocular stimulation. Neural activity was recorded using silicon multisite electrodes arranged in an eight-tetrodes configuration (A4 × 2-tet-10mm-150-200-121, NeuroNexus Technologies) coated with DII (Invitrogen; Life Technologies). Electrodes were lowered to approximately 2.5–3.2 mm below the cortical surface. Positions were confirmed by monitoring responses to 200-ms light flashes. Signals were acquired at 25 kHz using a System 3 workstation (Tucker-Davis Technologies); threshold crossings were detected offline by SpikeDeket and auto-clustered using KlustaKwik followed by manual adjustment using KlustaView51. Single units were further analyzed with custom software in Matlab (MathWorks). Only units exhibiting a clear refractory period (>1.5 ms) and stable amplitude and waveform were considered for analysis.

Visual stimuli consisted of 8° × 8° black and white squares on a gray background, presented randomly at 12 ± 10 positions on the monitor. Black or white squares were either presented separately, randomly interleaved, for 0.3 s every 0.5 s, or alternated four times within 0.8 s (each stimulus duration 0.2 s) every 1 s. For quantifying receptive field size, only responses to alternating stimuli were included since all dLGN units were recorded using this protocol. Visually evoked firing rate and response latency were similar with both protocols and data were pooled. Receptive fields were calculated as described above from the average firing rate 50 ms after stimulus onset to 50 ms after stimulus offset. Response latency was determined from 5-ms bins and was defined as the first of two consecutive bins that exceed the 95% confidence limit of the pre-stimulus (200 ms) firing rate.

At the end of each experiment, the brain was removed and fixed in 4% paraformaldehyde in PBS overnight. Brains were sliced (150μm) with a vibratome, mounted and viewed under a fluorescence stereo microscope (Zeiss Lumar.V12) to reconstruct the positions of recording sites. Images were scaled to account for fixation and/or mounting artifacts on the basis of a stereotaxic atlas52 using hippocampus, midline and thalamic borders as landmarks. Anatomical locations of recording sites were then estimated on the basis of the fluorescent track of the electrode shanks, the recording depth and the defined geometry of the electrode array. Boundaries of dLGN were clearly visible from tissue landmarks. Borders of LPrm (lateral posterior nucleus, rostro-medial section) and LPi (lateral posterior nucleus, lateral section) are

51. Akerboom, J. et al. Optimization of a GCaMP calcium indicator for neural activity imaging. J. Neurosci. 32, 13819–13840 (2012).
52. Brainard, D.H. The psychophysics toolbox. *Spat. Vis.* **10**, 433–436 (1997).
53. Pologruto, T.A., Sabatini, B.L. & Svoboda, K. ScanImage: flexible software for operating laser scanning microscopes. *Biomed. Eng. Online* **2**, 13 (2003).
54. Leinweber, M. et al. Two-photon calcium imaging in mice navigating a virtual reality environment. *J. Vis. Exp.* **84**, e50885 (2014).
55. Poort, J. et al. Learning enhances sensory and multiple non-sensory representations in primary visual cortex. *Neuron* **86**, 1478–1490 (2015).
56. Guizar-Sicairos, M., Thurman, S.T. & Fienup, J.R. Efficient subpixel image registration algorithms. *Opt. Lett.* **33**, 156–158 (2008).
57. Smith, S.L. & Häusser, M. Parallel processing of visual space by neighboring neurons in mouse visual cortex. *Nat. Neurosci.* **13**, 1144–1149 (2010).
58. Mukamel, E.A., Nimmerjahn, A. & Schnitzer, M.J. Automated analysis of cellular signals from large-scale calcium imaging data. *Neuron* **63**, 747–760 (2009).
59. Dyer, E.L., Studer, C., Robinson, J.T. & Baraniuk, R.G. A robust and efficient method to recover neural events from noisy and corrupted data. *Int. IEEE/EMBS Conf. Neural Eng. NER* 593–596 (2013).
60. Gandy, A. & Hahn, G. MMCtest – a safe algorithm for implementing multiple Monte Carlo tests. *Scand. J. Stat.* **41**, 1083–1101 (2014).
61. Harris, K.D., Henze, D.A., Csicsvari, J., Hirase, H. & Buzsáki, G. Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. *J. Neurophysiol.* **84**, 401–414 (2000).
62. Paxinos, G. & Franklin, K.B.J. *The Mouse Brain in Stereotaxic Coordinates* (Academic, 2001).