Routine assessment of the gut microbiome to promote preclinical research reproducibility and transparency

The irreproducibility of preclinical, biomedical research is becoming increasingly problematic, as recently highlighted by Omary et al., in the June issue of Gut. As discussed, variations in study design, mouse strain, sex and age are important factors that should be adequately described to promote study reproducibility. In line with recent speculation, authors also emphasised the gut microbiome as a potential confounder underlying inconsistencies in preclinical research data.

Recently, there has been a large influx of studies reporting dysbiotic changes in many preclinical models of human disease, both GI and non-GI. Although informative, much of this research continues to be associative. To dissect causative disease mechanisms, the impact of benign environmental factors relating to study design and rodent husbandry must be acknowledged.

Based on twin studies, it is understood that a core subset of bacteria are hereditary. However, environmental factors are thought to contribute more heavily to the composition of the gut microbiome. For example, in vivo transfer of genetically distinct embryos results in similar microbial profiles regardless of genetic background. Similarly, relocation of infant mice dramatically changes the native microbial community. In adult mice, viable counts of the total bacterial load have shown large differences in the gut microbiome among animals from different facilities and even different breeding rooms within the same facility. This critically highlights the need to routinely characterise the composition of the gut microbiome to promote study reproducibility.

We have previously shown that the genetic knockout of the innate immune receptor, Toll-like receptor 4 (BALB/c-Tlr4−/−billy), alters the composition of the caecal microbiota. Following introduction of a new breeding facility for this genetically modified strain, we assessed the composition of the gut microbiome in this new population. In keeping with previous recommendations, efforts were made to reduce environmental confounders. Female mice (n=12, BALB/c background, 18–20 g, 8–10 weeks) were group housed in ventilated cages, in the same rack/room, with six animals per cage. All animals were allowed to acclimatise for 1 week (at the University of Adelaide) during which they were exposed to the same dark/light conditions (12 hours) and given access to water and food ad libitum. The first population of BALB/c-Tlr4−/−billy mice were obtained from the University of Adelaide Laboratory Animal Service (TLR4KO1). The second population of BALB/c-Tlr4−/−billy mice were sourced from University of Newcastle (TLR4KO2). Both populations were originally sourced from Osaka, Japan. The caecal contents were aseptically collected and sent for genetic sequencing at the Australian Genomics Research Facility.

Consistent with previous in vivo research, our data indicate that breeding facility alters the composition of the gut microbiome. TLR4KO1 has significantly lower levels of Bacteroidetes compared with TLR4KO2 (**p=0.009, figure 1). TLR4KO1 mice
displayed higher levels of gram-positive Actinobacteria (TLR4KO1 2.23±0.63%; TLR4KO2 60.38±0.07%, *p=0.03) and the pathogenic microbe, Proteobacteria (TLR4KO1 3.54±0.90%; TLR4KO2 1.03±0.25%, *p=0.03). Fewer total species were also recorded in TLR4KO1 (total=69) compared with TLR4KO2 (total=104), although no changes were seen in alpha diversity (figure 2). Given efforts to reduce additional confounders, this supports previous research showing altered microbial phenotype in mice from different breeding facilities and even different rooms within the same facility and suggests that the gut microbiome reflects the cumulative effects of various environmental factors. The mechanism(s) underlying these changes are unclear; however, our results highlight the importance of consistent rodent husbandry when designing and conducting preclinical studies, and the need to routinely characterise the composition of the gut microbiome. This is especially important with current calls to address the irreproducibility of preclinical research and to standardise reporting of animal research data presentation.

Hannah R Wardill,1,2 Joanne M Bowen,1 Ysabella ZA Van Sebille,1 Rachel J Gibson3

1School of Medicine, University of Adelaide, Adelaide, South Australia
2Centre for Nutrition and Gastrointestinal Diseases, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia
3Division of Health Sciences, University of South Australia, Adelaide, South Australia

Correspondence to Dr Hannah R Wardill, Department of Nutrition and Metabolism, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, SA 5000, Australia; hannah.wardill@adelaide.edu.au

Twitter Follow Hannah Wardill @hannahwardill

Contributors HRW involved in animal work, sample collection, data analysis and manuscript production. YZA1S involved in animal work, sample collection and manuscript production. JMB involved in supervision of project, Interpretation of data and drafting of the manuscript. R/JG involved in supervision of project, interpretation of data and drafting of the manuscript.

Funding This study was supported by the Ray and Shirl Norman Cancer Trust. HRW and YAZA1S are recipients of Australian Postgraduate Awards and Doctor Chun Chung Wong and Madam So Sau Lam Memorial Postgraduate Cancer Research Top Up Scholarships.

Competing interests None declared.

Provenance and peer review Not commissioned; internally peer reviewed.

CrossMark

To cite: Wardill HR, Bowen JM, Van Sebille Y ZA, et al. Gut 2017;66:1869–1871.

Received 28 November 2016
Revised 20 December 2016
Accepted 21 December 2016
Published Online First 9 January 2017

Gut 2017;66:1869–1871.
doi:10.1136/gutjnl-2016-313486

REFERENCES

1. Omary MB, Cohen DE, El-Omar E, et al. Not all mice are the same: standardization of animal research data presentation. Gut 2016;65:894–5.
2. Hufeldt MR, Nielsen DS, Vogensen FK, et al. Variation in the gut microbiota of laboratory mice is related to both genetic and environmental factors. Comp Med 2010;60:336–47.
3. Tilg H, Mathurin P. Altered intestinal microbiota as a major driving force in alcoholic steatohepatitis. Gut 2010;59:929–38.
4. Schuif T, Lankelma JM, Sőlcüna BP, et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut 2016;65:575–83.
5. Goodrich JK, Davenport ER, Beaumont M, et al. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 2016;19:731–43.

Figure 1 Breeding conditions affect gut microbiome composition in the BALB/c mouse. (A) Relative abundance (%) of bacteria phyla in n=6 TLR4KO1 and n=6 TLR4KO2 mice. (B) Mean percentage of each bacteria phyla in TLR4KO1 and TLR4KO2 populations. Differences were identified in Actinobacteria (TLR4KO1 2.23±0.63%; TLR4KO2 60.38±0.07%, *p=0.03), Bacteroidetes (TLR4KO1 13.34±3.47%; TLR4KO2 27.75±2.75%, *p=0.009) and Proteobacteria (TLR4KO1 3.54±0.90%; TLR4KO2 1.03±0.25%, *p=0.03). Data presented as individual data points with mean±SEM.

Figure 2 Shannon’s diversity index for TLR4KO1 and TLR4KO2 caecal microbiome species. An unpaired t-test with Welch’s correction showed no significant difference between populations of BALB/c-Tlr4−/− mice. Data presented as individual data points with mean±SEM; n=6 per group, p >0.05.
6 Lim MY, You HJ, Yoon HS, et al. The effect of heritability and host genetics on the gut microbiota and metabolic syndrome. *Gut* 2017;66:1031–8.

7 Friswell MK, Gika H, Stratford U, et al. Site and strain-specific variation in gut microbiota profiles and metabolism in experimental mice. *PLoS ONE* 2010;5: e8584.

8 Ericsson AC, Davis JW, Spollen W, et al. Effects of vendor and genetic background on the composition of the fecal microbiota of inbred mice. *PLoS ONE* 2015;10:e0116704.

9 Wardill HR, Gibson RJ, Van Sebille YZ, et al. Irinotecan-induced gastrointestinal dysfunction and pain are mediated by common TLR4-dependent mechanisms. *Mol Cancer Ther* 2016;15:1376–86.

10 Laukens D, Brinkman BM, Raes J, et al. Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design. *FEMS Microbiol Rev* 2016;40:117–32.