The Alon-Tarsi number of planar graphs without cycles of lengths 4 and \(l \)

Huajing Lu\(^*\) Xuding Zhu\(^{\dag\ddagger}\)

October 29, 2019

Abstract

This paper proves that if \(G \) is a planar graph without 4-cycles and \(l \)-cycles for some \(l \in \{5, 6, 7\} \), then there exists a matching \(M \) such that \(\text{AT}(G - M) \leq 3 \). This implies that every planar graph without 4-cycles and \(l \)-cycles for some \(l \in \{5, 6, 7\} \) is 1-defective 3-paintable.

Keywords: planar graph; choice number; paint number; Alon-Tarsi number.

1 Introduction

Assume \(G \) is a graph and \(d \) is a non-negative integer. A \(d \)-defective coloring of \(G \) is a coloring of the vertices of \(G \) such that each color class induces a subgraph of maximum degree at most \(d \). A 0-defective coloring of \(G \) is also called a proper coloring of \(G \). In a coloring of the vertices of \(G \), we say an edge \(e \) is a fault edge if the end vertices of \(e \) receive the same color. A coloring of \(G \) is 1-defective if and only if the set of fault edges is a matching.

A \(k \)-list assignment of a graph \(G \) is a mapping \(L \) which assigns to each vertex \(v \) a set \(L(v) \) of \(k \) permissible colors. Given a \(k \)-list assignment \(L \) of \(G \), a \(d \)-defective \(L \)-coloring of \(G \) is a \(d \)-defective coloring \(c \) of \(G \) with \(c(v) \in L(v) \) for every vertex \(v \) of \(G \). A graph \(G \) is \(d \)-defective \(k \)-choosable if for any \(k \)-list assignment \(L \) of \(G \), there exists a \(d \)-defective \(L \)-coloring of \(G \). We say \(G \) is \(k \)-choosable if \(G \) is 0-defective \(k \)-choosable. The choice number \(\text{ch}(G) \) of \(G \) is the minimum \(k \) for which \(G \) is \(k \)-choosable.

Defective list coloring of planar graphs has been studied in a few papers. Eaton and Hall [4], and Škrekovski [12] proved independently that every planar graph is 2-defective 3-choosable. Cushing and Kierstead [2] proved...
that every planar graph is 1-defective 4-choosable. The above results can be reformulated as follows:

Assume G is a planar graph. (1) For every 3-list assignment L of G, there is a subgraph H of G with $\Delta(H) \leq 2$ and $G - E(H)$ is L-colorable. (2) For every 4-list assignment L of G, there is a subgraph H of G with $\Delta(H) \leq 1$ and $G - E(H)$ is L-colorable.

In the proofs of [2], [4] and [12], the subgraph H depends on the list assignment L. A natural question is whether there is a subgraph H that does not depend on L. In other words, we ask the following questions:

(1) Is it true that every planar graph G has a subgraph H with $\Delta(H) \leq 2$ such that $G - E(H)$ is 3-choosable?

(2) Is it true that every planar graph G has a subgraph H with $\Delta(H) \leq 1$, such that $G - E(H)$ is 4-choosable?

It turns out that the answer to (1) is negative and the answer to (2) is positive. Very recently, it is shown in [9] that there is a planar graph G such that (this number 3 is not a typo), $G - E(H)$ is not 3-choosable. On the other hand, as a consequence of the main result in [9], every planar graph G has a matching M such that $G - M$ is 4-choosable.

The main result in [9] is about the Alon-Tarsi number of $G - M$. We associate to each vertex v of G a variable x_v. The graph polynomial $P_G(x)$ of G is defined as $P_G(x) = \prod_{v \in V(G)} (x_v - x_u)$, where $x = \{x_v : v \in V(G)\}$ and $<$ is an arbitrary fixed ordering of the vertices of G. It is easy to see that a mapping $\phi : V \to R$ is a proper coloring of G if and only if $P_G(\phi) \neq 0$, where $P_G(\phi)$ means to evaluate the polynomial at $x_v = \phi(v)$ for $v \in V(G)$. Thus to find a proper coloring of G is equivalent to find an assignment of x so that the polynomial evaluated at the assignment is non-zero.

For a mapping $\eta : V(G) \to \{0,1,\ldots\}$, let $c_{P_G,\eta}$ be the coefficient of the monomial $\prod_{v \in V(G)} x_v^{\eta(v)}$ in the expansion of P_G. It follows from the Combinatorial Nullstellensatz that if $c_{P_G,\eta} \neq 0$, and L is a list assignment of G for which $|L(v)| = \eta(v) + 1$, then G is L-colorable. (Note that P_G is a homogeneous polynomial, and all the monomials with nonzero coefficient are of highest degree.) In particular, if $c_{P_G,\eta} \neq 0$ and $\eta(v) < k$ for all $v \in V(G)$, then G is k-choosable. Jensen and Toft [8] defined the Alon-Tarsi number of G as

$$AT(G) = \min\{k : c_{P_G,\eta} \neq 0 \text{ for some } \eta \text{ with } \eta(v) < k \text{ for all } v \in V(G)\}.$$

Thus for any graph G, $\text{ch}(G) \leq AT(G)$. The following is the main result in [9].

Theorem 1.1 Every planar graph G has a matching M such that $AT(G - M) \leq 4$.

2
This theorem actually implies the online version of 1-defective 4-choosability of planar graphs. The online version of d-defective k-choosable is called d-defective k-paintable and is defined through a two-person game.

Given a graph G and non-negative integers k, d, the d-defective k-painting game on G is played by two players: Lister and Painter. Initially, each vertex has k tokens and is uncolored. In each round, Lister selects a nonempty set M of uncolored vertices and takes away one token from each vertex in M. Painter colors a subset X of M such that the induced subgraph $G[X]$ has maximum degree at most d. If at the end of a certain round, there is an uncolored vertex with no tokens left, then Lister wins. Otherwise, at the end of some round, all vertices are colored, Painter wins. We say G is d-defective k-paintable if Painter has a winning strategy in the d-defective k-painting game. The 0-defective k-painting game is also called the k-painting game, and we say G is k-paintable if it is 0-defective k-paintable. The paint number $\chi_P(G)$ of G is the minimum k such that G is k-paintable.

It follows from the definition that d-defective k-paintable implies d-defective k-choosable. The converse is not true. Indeed, although every planar graph is 2-defective 3-choosable, it was shown in [5] that there are planar graphs that are not 2-defective 3-paintable.

On the other hand, it was proved by Schauz [11] that for any graph G, $\chi_P(G) \leq AT(G)$. So for any graph G, $ch(G) \leq \chi_P(G) \leq AT(G)$. Both gaps $\chi_P(G) - ch(G)$ and $AT(G) - \chi_P(G)$ can be arbitrarily large [3]. Thus Theorem 1.1 implies that every planar graph is 1-defective 4-paintable. We observe that “having a matching M so that $AT(G - M) \leq 4$” is much stronger than “being 1-defective 4-paintable”. One may compare this to the following results: It is shown in [5] that every planar graph is 3-defective 3-paintable. However, as mentioned earlier, there are planar graphs G such that for any subgraph H of G with $\Delta(H) \leq 3$, $G - E(H)$ is not 3-choosable [9] (and hence $AT(G - E(H)) \geq 4$).

In this paper, we are interested in the Alon-Tarsi number of some subgraphs of planar graphs without cycles of lengths 4 and l for some $l \in \{5, 6, 7\}$. We denote by $\mathcal{P}_{k,l}$ the family of planar graphs G which contains no cycles of length k or l. It was proved in [10] that for $l \in \{5, 6, 7\}$, every graph $G \in \mathcal{P}_{4,l}$ is 1-defective 3-choosable. We strengthen this result and prove that for $l \in \{5, 6, 7\}$, every graph $G \in \mathcal{P}_{4,l}$ has a matching M such that $G - M$ has Alon-Tarsi number at most 3. As discussed above, this implies that for $l \in \{5, 6, 7\}$, every graph $G \in \mathcal{P}_{4,l}$ is 1-defective 3-paintable.

For a plane graph G, we denote its vertex set, edge set and face set by $V(G), E(G)$ and $F(G)$, respectively. For a vertex v, $d_G(v)$ (or $d(v)$ for short) is the degree of v. A vertex v is called a k-vertex (respectively, a k^+-vertex or a k^--vertex) if $d(v) = k$ (respectively, $d(v) \geq k$ or $d(v) \leq k$). For $e = uv \in E(G)$, we say e is an (a, b)-edge if $d(u) = a$ and $d(v) = b$. For $f \in F(G)$, we denote $f = [u_1u_2\cdots u_n]$ if u_1, u_2, \cdots, u_n are the boundary
vertices of f in cyclic order. A 3-face $[u_1u_2u_3]$ is a (d_1, d_2, d_3)-face if $d(u_i) = d_i$ for $i = 1, 2, 3$.

2 The main result

The following is the main result of this paper.

Theorem 2.1 For $l \in \{5, 6, 7\}$, every graph $G \in \mathcal{P}_{4,l}$ has a matching M such that $AT(G - M) \leq 3$.

For the proof of Theorem 2.1, we use an alternate definition of Alon-Tarsi number. A digraph D is Eulerian if $d_D^+(v) = d_D^-(v)$ for every vertex v. Note that an Eulerian digraph needs not be connected. In particular, a digraph with no arcs is an Eulerian digraph. Assume G is a graph and D is an orientation of G. Let $\mathcal{E}_e(D)$ (respectively, $\mathcal{E}_o(D)$) be the set of spanning Eulerian sub-digraphs of D with an even (respectively, an odd) number of arcs. Let

$$\text{diff}(D) = |\mathcal{E}_e(D)| - |\mathcal{E}_o(D)|.$$

An orientation D of G is Alon-Tarsi (AT) if $\text{diff}(D) \neq 0$. Alon and Tarsi [1] proved that if D is an orientation of G, and $\eta(x) = d_D^+(x)$, then $c_{PG,\eta} = \pm \text{diff}(D)$. Hence the Alon-Tarsi number of G can be defined alternatively as

$$AT(G) = \min\{k : G \text{ has an AT orientation } D \text{ with } \Delta_D^+(v) < k\}.$$

The proof of Theorem 2.1 is by induction. For the purpose of using induction, instead of proving Theorem 2.1 directly, we shall prove a stronger and more technique result.

Definition 2.2 Assume G is a plane graph and v_0 is a vertex on the boundary of G. A valid matching of (G, v_0) is a matching M which does not cover v_0.

Definition 2.3 Let G be a plane graph and v_0 be a vertex on the boundary of G. An orientation D of G is good, if D is AT with $\Delta_D^+(v) < 3$ and $d_D^+(v_0) = 0$.

We shall prove the following result, which obviously implies Theorem 2.1.

Theorem 2.4 Assume $l \in \{5, 6, 7\}$, $G \in \mathcal{P}_{4,l}$, and v_0 is a vertex on the boundary of G. Then (G, v_0) has a valid matching M such that there is a good orientation D of $G - M$.

4
The proof of Theorem 2.4 uses discharging method. We shall first describe a family of reducible configurations, i.e., configurations that cannot be contained in a minimum counterexample of Theorem 2.4. Then describe a discharging procedure that leads to a contradiction to the Euler’s formula.

We shall frequently use the following lemma in the later proofs.

Lemma 2.5 Assume D is a digraph with $V(D) = X_1 \cup X_2$ and $X_1 \cap X_2 = \emptyset$. If all the arcs between X_1 and X_2 are from X_1 to X_2. Then D is AT if and only if $D[X_1]$ and $D[X_2]$ are both AT.

Proof. Denote by D_1 and D_2 the sub-digraphs $D[X_1]$ and $D[X_2]$ of D, respectively. Note that the set of arcs of an Eulerian digraph can be decomposed into arc disjoint union of directed cycles. Since all the arcs between X_1 and X_2 are from X_1 to X_2, and hence none of them is contained in a directed cycle, we conclude that none of these arcs is contained in an Eulerian sub-digraphs of D. Hence each Eulerian sub-digraph H of D is the arc disjoint union of an Eulerian sub-digraph H_1 of D_1 and an Eulerian sub-digraph H_2 of D_2. Now H is even if and only if H_1, H_2 have the same parity. Hence $|E_e(D)| = |E_o(D)| = |E_o(D_1)| \times |E_o(D_2)| + |E_o(D_1)| \times |E_o(D_2)|$. This implies that $\text{diff}(D) = \text{diff}(D_1) \times \text{diff}(D_2)$. Thus, D is AT if and only if D_1 and D_2 are both AT.

Assume Theorem 2.4 is not true and G is a counterexample with minimum number of vertices. Let f_0 denote the outer face of G.

Lemma 2.6 G is 2-connected. Moreover, $d_G(v) \geq 3$ for all $v \in V(G) - \{v_0\}$.

Proof. Assume G is not 2-connected. Let B be a block of G that contains a unique cut vertex z^* and does not contain v_0. Let $G_1 = G - (B - \{z^*\})$. By the minimality, (G_1, v_0) has a valid matching M_1 and there is a good orientation D_1 of $G_1 - M_1$. (B, z^*) has a valid matching M_2 and there is a good orientation D_2 of $B - M_2$. Let $M = M_1 \cup M_2$ and $D = D_1 \cup D_2$. Applying Lemma 2.5 (with $X_1 = V(B) - \{z^*\}$ and $X_2 = V(G_1) - \{v_0\}$), D is AT. So M is a valid matching of (G, v_0), and $G - M$ has a good orientation, a contradiction.

For the moreover part, assume to the contrary that $v \in V(G) - \{v_0\}$ and $d_G(v) \leq 2$. By induction hypothesis, $G' = G - \{v\}$ has a valid matching M such that $G' - M$ has a good orientation D'. Extend D' to an orientation D of $G - M$ in which v is a source vertex. It is obvious that D is a good orientation of $G - M$.

Lemma 2.7 $G - \{v_0\}$ does not contain two adjacent 3-vertices.
Proof. Assume to the contrary that $uv \in E(G)$ with $d(u) = d(v) = 3$ and $u, v \neq v_0$. Let $G^* = G - \{u, v\}$. Then (G^*, v_0) has a valid matching M^* such that there exists a good orientation D^* of $G^* - M^*$. Let $M = M^* \cup \{uv\}$. Then M is a valid matching of (G, v_0). Extend D^* to an orientation D of $G - M$ in which u, v are sources. Then D is a good orientation of $G - M$. \hfill \square

Definition 2.8 A 3-face f is called a minor triangle if f is a $(3, 4, 4)$-face and v_0 is not on f. A 3-vertex v is called a minor 3-vertex if v is incident to a triangle and $v \neq v_0$.

Definition 2.9 A triangle chain in G of length k is a subgraph of $G - \{v_0\}$ consisting of vertices $w_1, w_2, \ldots, w_{k+1}, u_1, u_2, \ldots, u_k$ in which $[w_iw_{i+1}ui]$ is a $(4, 4, 4)$-face for $i = 1, 2, \ldots, k$, as depicted in Figure 1(a). We denote by T_i the triangle $[w_iw_{i+1}ui]$ and denote such a triangle chain by $T_1T_2 \ldots T_k$. For convenience, a single 4-vertex is a triangle chain with 0 triangles. We say a triangle T intersects a triangle chain $T_1T_2 \ldots T_k$, if T has one common vertex with T_1.

Lemma 2.10 If a minor triangle T_0 intersects a triangle chain $T_1T_2 \ldots T_k$, then no vertex of T_k is adjacent to a 3-vertex, except possibly v_0. In particular, the $k = 0$ case implies that no vertex of a minor triangle T_0 is adjacent to a 3-vertex $v \in V(G) - (V(T_0) \cup \{v_0\})$.

Proof. Assume to the contrary that $T_0 = [w_0w_1u_0]$ is a minor triangle that intersects a triangle chain $T_1T_2 \ldots T_k$, with $T_i = [w_iw_{i+1}ui]$ (1 ≤ i ≤ k), and w_{k+1} has a neighbour x with $d(x) = 3$, as in Figure 1(b). Assume w_0 is a 3-vertex. Let $X = \bigcup_{i=0}^k V(T_i) \cup \{x\}$ and $G' = G - X$. By the minimality of G, (G', v_0) contains a valid matching M' and there is a good orientation D' of $G' - M'$.

Let $M = M' \cup \{w_0u_0, w_1u_1, \ldots, w_ku_k, w_{k+1}x\}$. Then M is a valid matching of (G, v_0). Let D be an orientation of $G - M$ obtained from D' by adding arcs (w_i, w_{i+1}) and (w_{i+1}, u_i) for $i = 0, 1, \ldots, k$, and all the edges between X and $V - X$ are oriented from X to $V - X$, as depicted in Figure 1(c). Since $D[X]$ is acyclic, $D[X]$ is AT. By Lemma 2.5, D is AT. It is easy to see that $\Delta_D(v) < 3$ and $d^D_D(v_0) = 0$. Thus D is a good orientation of $G - M$. \hfill \square

Lemma 2.11 If a triangle chain $T_1T_2 \ldots T_k$ intersects a minor triangle T_0, then the distance between T_k and another minor triangle is at least 2. In particular, the $k = 0$ case implies that any two minor triangles have distance at least 2.

Proof. Assume to the contrary that $T_1T_2 \ldots T_k$ with $T_i = [w_iw_{i+1}ui]$ (1 ≤ i ≤ k) is a triangle chain that intersects a minor triangle $T_0 = [w_0w_1u_0]$, and the distance between T_k and another minor triangle $T'_0 = [xyz]$ with
Figure 1: (a) A triangle chain. (b) The configuration in Lemma 2.10. (c) For the proof of Lemma 2.10, where a thick line is an edge in the matching M.

$d(x) = 3$ is less than 2. By Lemma 2.10, we may assume $w_{k+1}y$ is a $(4,4)$-edge connecting T_1 and T_0^*, as in Figure 2(a). Let $X = \cup_{i=0}^{k}V(T_i) \cup V(T_0^*)$ and $G' = G - X$. Then (G', v_0) has a valid matching M' and there is a good orientation D' of $G' - M'$.

Let $M = M' \cup \{w_0u_0, w_1u_1, \ldots, w_ku_k, w_{k+1}y, xz\}$. Then M is a valid matching of (G, v_0). Let D be an orientation of $G - M$ obtained from D' by adding arcs $(x,y), (y,z), (w_i, w_{i+1})$ and (w_{i+1}, u_i) for $i = 0, 1, \ldots, k$, and all the edges between X and $V - X$ are oriented from X to $V - X$, as in Figure 2(b). Obviously, $D[X]$ is acyclic, so $D[X]$ is AT. By Lemma 2.5, D is AT. Additionally, $\Delta_{D^*}(v) < 3$ and $d_{D^*}^X(v_0) = 0$. That is to say, D is a good orientation of $G - M$, a contradiction.

The remainder of the proofs use a discharging procedure. The initial charge ch is defined as: $ch(x) = d(x) - 4$ for $x \in V(G) \cup F(G)$. Applying equalities $\sum_{v \in V(G)} d(v) = 2|E(G)| = \sum_{f \in F(G)} d(f)$ and Euler’s formula $|V(G)| - |E(G)| + |F(G)| = 2$, we conclude that

$$\sum_{x \in V(G) \cup F(G)} ch(x) = -8.$$

In a discharging procedure, $ch(x \rightarrow y)$ denotes the charge discharged
from an element x to another element y, $ch(x \rightarrow)$ and $ch(\rightarrow x)$ denote the charge totally discharged from or to x, respectively. The final charge $ch^*(x)$ of $x \in V(G) \cup E(G)$ is defined as $ch^*(x) = ch(x) - ch(x \rightarrow) + ch(\rightarrow x)$. By applying appropriate discharging rules, we shall arrive at a final charge that $ch^*(x) \geq 0$ for all $x \in V(G) \cup E(G) \setminus \{v_0, f_0\}$, and $ch^*(v_0) + ch^*(f_0) > -8$. As the total charge does not change in the discharging process, this is a contradiction.

The discharging rules for graphs $G \in P_{4,l}$ for $l \in \{5, 6, 7\}$ are different. We use three sections to discuss graphs $G \in P_{4,l}$ for $l \in \{5, 6, 7\}$, respectively.

3 Planar graphs without 4- and 5-cycles

This section considers plane graphs without 4- and 5-cycles. We first derive more properties of a minimal counterexample G to Theorem 2.4, where $G \in P_{4,5}$.

Lemma 3.1 Assume f is a 6-face of G which is adjacent to five triangles, and none of the vertices in these triangles is v_0. If f has one 3-vertex, then there is at least one 5^+-vertex on the five triangles.

Proof. Let $f = [v_1v_2v_3v_4v_5v_6]$, v_1 be a 3-vertex and $T_i = [v_iv_{i+1}u_i]$ ($i = 1, 2, \ldots, 5$) be the five triangles (see Figure 3(a)). Assume to the contrary that there is no 5^+-vertex on T_i. By Lemma 2.10, we may assume all v_{i+1} and u_i are 4-vertices for $i = 1, 2, \ldots, 5$. Let $X = \cup_{i=1}^5 V(T_i)$ and $G' = G - X$. Then (G', v_0) has a valid matching M' and there is a good orientation D' of $G' - M'$.

Let $M = M' \cup \{v_1u_1, v_2u_2, \ldots, v_5u_5\}$. Then M is a valid matching of (G, v_0). Let D be the orientation of $G - M$ obtained from D' by adding arcs
(v_1, v_6) and (v_{i+1}, u_i), (v_i, v_{i+1}) for i = 1, \ldots, 5, and all the edges between X and V - X are oriented from X to V - X (see Figure 3(b)). Clearly, \(\Delta_D^+(v) < 3 \) and D is AT by Lemma 2.5, a contradiction.

The discharging rules are as follows:

R1 Assume \(f \neq f_0 \) is a 3-face. Then each face adjacent to \(f \) transfers \(\frac{1}{3} \) charge to \(f \).

R2 Assume \(v \neq v_0 \) is 3-vertex. If \(v \) is contained in a triangle, then each of the other two faces incident to \(v \) transfers \(\frac{1}{2} \) charge to \(v \); otherwise each face incident to \(v \) transfers \(\frac{1}{3} \) charge to \(v \).

R3 Assume \(u \neq v_0 \) is a 5*-vertex and \(f \neq f_0 \) is a 6-face. If \(f \) is adjacent to \(s \) triangles that are incident to \(u \), then \(u \) transfers \(\frac{s}{6} \) charge to \(f \).

R4 \(f_0 \) transfers \(\frac{1}{3} \) charge to each adjacent triangle, and \(\frac{1}{3} \) charge to each incident 3-vertex \(v \neq v_0 \). \(v_0 \) transfers \(\frac{1}{2} \) charge to each 6-face \(f \neq f_0 \) which is either incident to \(v_0 \), or is not incident to \(v_0 \) but adjacent to a triangle \(T \) which is incident to \(v_0 \).

Claim 3.2 If a 6-face \(f \) has three minor 3-vertices, then \(\text{ch}(\to f) \geq \frac{1}{2} \).

Proof. Assume \(f = [v_1v_2v_3v_4v_5v_6] \). By Lemma 2.7 we may assume that \(v_1, v_3, \) and \(v_5 \) are the three minor 3-vertices. Then each of \(v_1, v_3, v_5 \) is incident to exactly one triangle. Hence at most two of the three triangles intersect each other. Thus we may assume that the three triangles adjacent to \(f \) are either \(T_1, T_2, T_4 \), or \(T_1, T_3, T_5 \), where \(T_i = [v_iv_{i+1}u_i] \).
Case 1 The three triangles incident to \(f \) are \(T_1, T_2, T_4 \).

If \(v_0 \) is a vertex of \(f \) or \(T_1, T_2 \) or \(T_4 \), then \(v_0 \) transfers \(\frac{1}{6} \) charge to \(f \) by R4. By Lemma 2.10, at least one of the three triangles have a 5-vertex \(v \neq v_0 \) which sends at least \(\frac{1}{6} \) charge to \(f \). So \(ch(\rightarrow f) \geq \frac{1}{6} + \frac{1}{6} = \frac{1}{3} \).

Assume \(v_0 \) is not a vertex of \(f, T_1, T_2 \) or \(T_4 \). By Lemma 2.10, either \(v_2 \) is a 5-vertex or both of \(u_1 \) and \(u_2 \) are 5-vertices. In both cases, \(f \) receives \(\frac{1}{3} \) charge in total from \(v_2, u_1 \) and \(u_2 \). Moreover, by Lemma 2.10, either \(v_4 \) or \(u_4 \) is a 5-vertex, which transfers \(\frac{1}{6} \) charge to \(f \). Hence, \(ch(\rightarrow f) \geq \frac{1}{3} + \frac{1}{6} = \frac{1}{2} \).

Case 2 The three triangles incident to \(f \) are \(T_1, T_3, T_5 \).

By Lemma 2.10, each of the three triangles has either a 5-vertex or \(v_0 \) which transfers at least \(\frac{1}{6} \) charge to \(f \). Thus, \(ch(\rightarrow f) \geq \frac{1}{2} \). \(\square \)

Claim 3.3 If a 6-face \(f \) has two 3-vertices other than \(v_0 \) and is adjacent to four triangles, then \(ch(\rightarrow f) \geq \frac{1}{3} \).

Proof. Assume \(f = [v_1v_2v_3v_4v_5v_6] \) and \(T \) is a triangle adjacent to \(f \). If \(v_0 \) is a vertex of \(f \) or \(T \), then \(v_0 \) transfers \(\frac{1}{6} \) charge to \(f \) by R4. Assume \(v_0 \) is neither a vertex of \(f \) nor a vertex of any triangle \(T \) adjacent to \(f \).

By Lemma 2.7, we may assume that either \(v_1 \) and \(v_4 \) or \(v_1 \) and \(v_3 \) are the two 3-vertices. For \(i = 1, 2, \ldots, 6 \), if \(v_iv_{i+1} \) is contained in a triangle, then let \(T_i = [v_i v_{i+1} u_i] \) be the triangle. We need to consider five cases.

Case 1 The four triangles incident to \(f \) are \(T_1, T_2, T_3, T_5 \) while the two 3-vertices are \(v_1 \) and \(v_3 \).

If at least one of \(v_2 \) and \(v_3 \) is a 5-vertex, then by R3, \(ch(\rightarrow f) \geq \frac{1}{3} \).

Assume both \(d(v_2) \) and \(d(v_3) \) are 4-vertices. By Lemma 2.10 and Lemma 2.11 at least two of \(u_1, u_2 \) and \(u_3 \) are 5-vertices each of which transfers \(\frac{1}{6} \) charge to \(f \). So \(ch(\rightarrow f) \geq \frac{1}{3} \).

Case 2 The four triangles incident to \(f \) are \(T_1, T_2, T_4, T_5 \) while the two 3-vertices are \(v_1 \) and \(v_4 \).

By Lemma 2.10 and R3, at least one of \(u_1, u_2, v_2 \) and \(v_3 \) is a 5-vertex transferring at least \(\frac{1}{6} \) charge to \(f \). By symmetry, at least one of \(u_4, u_5, v_5 \) and \(v_6 \) transfers at least \(\frac{1}{6} \) charge to \(f \). Thus, we are done.

Case 3 The four triangles incident to \(f \) are \(T_1, T_2, T_4, T_5 \) while the two 3-vertices are \(v_1 \) and \(v_3 \).

If \(v_2 \) is a 5-vertex, then \(v_2 \) transfers \(\frac{1}{6} \) charge to \(f \) by R3. Assume \(v_2 \) is a 4-vertex. By Lemma 2.10, both \(u_1 \) and \(u_2 \) are 5-vertices each of which transfers \(\frac{1}{6} \) charge to \(f \).

Case 4 The four triangles incident to \(f \) are \(T_1, T_3, T_4, T_5 \) while the two 3-vertices are \(v_1 \) and \(v_3 \).

By Lemma 2.10 at least one of \(v_2 \) and \(u_1 \) is a 5-vertex transferring \(\frac{1}{6} \) charge to \(f \). Moreover, using Lemma 2.10 again, at least one of \(v_4, v_5, v_6, u_3, u_4 \) and \(u_5 \) is a 5-vertex transferring at least \(\frac{1}{6} \) to \(f \). So \(ch(\rightarrow f) \geq \frac{1}{3} \).

Case 5 The four triangles incident to \(f \) are \(T_3, T_4, T_5, T_6 \) while the two 3-vertices are \(v_1 \) and \(v_3 \).
If one of \(v_4, v_5 \) and \(v_6 \) is a \(5^+ \)-vertex, then such a \(5^+ \)-vertex sends \(\frac{1}{3} \) charge to \(f \) by R3. Assume all of \(v_4, v_5, v_6 \) are \(4 \)-vertices. Then at least two of \(u_3, u_4, u_5, u_6 \) are \(5^+ \)-vertices each sending \(\frac{1}{6} \) to \(f \). Otherwise, it will contradict to Lemma 2.10 or Lemma 2.11. Again \(ch(\rightarrow f) \geq \frac{1}{3} \).

\[\square \]

Check charge on vertices \(v \neq v_0 \)

Let \(v \) be a \(3 \)-vertex. By R2, \(v \) gets 1 from incident \(6^+ \)-faces. That is \(ch^*(v) = ch(v) - ch(v \rightarrow) + ch(\rightarrow v) = -1 - 0 + 1 = 0 \).

Let \(v \) be a \(4 \)-vertex. \(ch^*(v) = ch(v) = 0 \).

Let \(v \) be a \(5^+ \)-vertex. By R3, \(v \) only transfers charge to \(6 \)-faces that are adjacent to a triangle incident to \(v \). Assume \(v \) is incident with \(t \) triangles, then \(0 < t \leq \lfloor \frac{\text{deg}(v)}{2} \rfloor \). Each triangle incident with \(v \) is adjacent to at most three \(6 \)-faces, and \(v \) transfers \(\frac{1}{6} \) to each of the three \(6 \)-faces (note that if a \(6 \)-face \(f \) is adjacent to two triangles that are incident to \(v \), then \(v \) transfers \(2 \times \frac{1}{6} \) charges to \(f \)). Hence \(v \) sends out at most \(\frac{1}{3}t \) charge. So we have \(ch^*(v) = ch(v) - ch(v \rightarrow) \geq d(v) - 4 - \frac{1}{3}t \geq d(v) - 4 - \frac{1}{2} \times \lfloor \frac{\text{deg}(v)}{2} \rfloor \geq 0 \).

Check charge on faces \(f \neq f_0 \)

Let \(f \) be a \(3 \)-face. R1 guarantees \(ch^*(f) \geq 0 \).

Let \(f \) be a \(6 \)-face. Assume that \(f \) has \(s \) \(3 \)-vertices other than \(v_0 \). Then \(s \leq 3 \) by Lemma 2.7, and \(f \) is adjacent to at most \((6 - s) \) triangles.

If \(s = 0 \), then \(f \) sends at most \(\frac{1}{3} \) to each adjacent triangle, and hence \(ch(f \rightarrow) \leq \frac{1}{3} \times 6 = 2 \) and \(ch^*(f) \geq 0 \).

Assume \(s = 3 \). If \(f \) is adjacent to at most two triangles, then \(f \) has at most two minor \(3 \)-vertices. So \(ch(f \rightarrow) \leq \frac{1}{2} \times 2 + \frac{1}{3} \times 1 = 2 \) and \(ch^*(f) \geq 0 \). Assume \(s = 3 \) is adjacent to at most three triangles, then all these three \(3 \)-vertices are minor. By Claim 3.2, we have \(ch^*(f) = d(f) - 4 - ch(f \rightarrow) + ch(\rightarrow f) \geq 2 - (\frac{1}{2} \times 3 + \frac{1}{3} \times 3) + \frac{1}{2} = 0 \).

Assume \(s = 2 \). If \(f \) is adjacent to at most three triangle, then \(ch(f \rightarrow) \leq \frac{1}{2} \times 2 + \frac{1}{3} \times 3 = 2 \) and \(ch^*(f) \geq 0 \). If \(f \) is adjacent to four triangles, then by Claim 3.3, \(ch^*(f) = d(f) - 4 - ch(f \rightarrow) + ch(\rightarrow f) \geq 2 - (\frac{1}{2} \times 2 + \frac{1}{3} \times 4) + \frac{1}{3} = 0 \).

Assume \(s = 1 \). If \(f \) is adjacent to at most four triangles, then \(ch(f \rightarrow) \leq \frac{1}{2} \times 2 + \frac{1}{3} \times 4 = \frac{11}{6} < 2 \). Assume \(f \) is adjacent to five triangles. Then \(ch(f \rightarrow) = \frac{1}{2} + \frac{1}{3} \times 5 = \frac{13}{6} \). On the other hand, either at least one vertex of the five triangles is a \(5^+ \)-vertex transferring \(\frac{1}{6} \) charge to \(f \) by Lemma 3.1, or \(v_0 \) is a vertex of the five triangles transferring \(\frac{1}{6} \) to \(f \) by R4. Hence \(ch^*(f) \geq 2 - \frac{13}{6} + \frac{1}{6} = 0 \).

Let \(f \) be a \(7^+ \)-face. Assume \(f \) has \(s \) \(3 \)-vertices other than \(v_0 \), then \(s \leq \lfloor \frac{\text{deg}(f)}{2} \rfloor \) and \(f \) is adjacent to at most \((d(f) - s) \) triangles. Hence \(ch^*(f) = d(f) - 4 - \lfloor \frac{1}{2} \times s + \frac{1}{3} \times (d(f) - s) \rfloor = \frac{2}{3}d(f) - \frac{1}{3}s - 4 \geq (\frac{2}{3} - \frac{1}{12})d(f) - 4 > 0 \).

Check charge on \(f_0 \) and \(v_0 \)

By R4, it is clear that \(v_0 \) transfers at most \((d(v_0) - 1) \times \frac{1}{6} \) charge to others. That is, \(ch^*(v_0) \geq d(v_0) - 4 - (d(v_0) - 1) \times \frac{1}{3} = \frac{2}{3}d(v_0) - \frac{11}{3} \geq -\frac{7}{3} \)(as \(d(v_0) \geq 2 \)).
Since f_0 is incident with at most $\lfloor \frac{d(f_0)}{2} \rfloor$ 3-vertices each getting $\frac{1}{3}$ charge from it, and f_0 is adjacent to at most $d(f_0)$ triangles each getting $\frac{1}{3}$ charge from it. We have $ch^*(f_0) \geq d(f_0) - 4 - \frac{1}{2} \lfloor \frac{d(f_0)}{2} \rfloor - \frac{1}{3}d(f_0) \geq \frac{5}{12}d(f_0) - 4 \geq - \frac{11}{4}$.

Consequently, we obtain the following contradiction, and the proof is complete.

$$0 \leq \sum_{x \in V \cup F \setminus \{v_0, f_0 \}} ch^*(x) = -8 - ch^*(v_0) - ch^*(f_0) \leq - \frac{35}{12}.$$

4 Planar graphs without 4- and 6-cycles

This section shows plane graph without 4- and 6-cycles. We list our discharging rules as follows:

R1 Assume $f \neq f_0$ is a 3-face. Then each face adjacent to f transfers $\frac{1}{3}$ charge to f.

R2 Assume $v \neq v_0$ is 3-vertex. If v is contained in a triangle, then each of the other two faces incident to v transfers $\frac{1}{2}$ charge to v; otherwise each face incident to v transfers $\frac{1}{3}$ charge to v.

R3 f_0 transfers $\frac{1}{2}$ charge to each adjacent triangle, and $\frac{1}{2}$ charge to each incident 3-vertex $v \neq v_0$.

■ Check charge on vertices $v \neq v_0$

For $d(v) = 3$, R2 ensures that the final charge of v is non-negative. For $d(v) \geq 4$, no transference on v, we have $ch^*(v) = ch(v) \geq 0$.

■ Check charge on faces $f \neq f_0$

Let f be a 3-face. R1 guarantees $ch(\rightarrow f) = 1$. So $ch^*(f) = -1 + 1 = 0$.

Let f be a 5-face. Since G does not contain 6-cycle, f is not adjacent to any triangle. Thus f only discharges to the non-minor 3-vertices each of which gets $\frac{1}{3}$ charge from f. On the other hand, f is incident with at most two such 3-vertices by Lemma 2.7. It concludes that $ch^*(f) = 1 - \frac{1}{3} \times 2 > 0$.

Let f be a 7-face. Assume f is incident with s 3-vertices besides v_0. Then by Lemma 2.7, $s \leq \lfloor \frac{d(f)}{2} \rfloor$. By R1 and R2, f transfers at most $\frac{1}{2}s$ to 3-vertices and $(d(f) - s) \times \frac{1}{3}$ to triangles. Hence, we have $ch^*(f) \geq d(f) - 4 - \frac{1}{2}s - \frac{1}{3}(d(f) - s) = \frac{2}{3}d(f) - \frac{1}{6}s - 4 \geq \frac{7}{12}d(f) - 4 > 0$.

■ Check charge on f_0 and v_0

It is obvious that $ch^*(v_0) = ch(v_0) = d(v_0) - 4 \geq -2$.

Since f_0 is incident with at most $\lfloor \frac{d(f_0)}{2} \rfloor$ 3-vertices each getting $\frac{1}{3}$ charge from it, and f_0 is adjacent to at most $d(f_0)$ triangles each getting $\frac{1}{3}$ charge from it. We have $ch^*(f_0) \geq d(f_0) - 4 - \frac{1}{2} \lfloor \frac{d(f_0)}{2} \rfloor - \frac{1}{3}d(f_0) \geq \frac{5}{12}d(f_0) - 4 \geq - \frac{11}{4}$.
Consequently, we obtain the following contradiction, and the proof is complete.

\[0 \leq \sum_{x \in V \cup F \setminus \{v_0, f_0\}} ch^*(x) = -8 - ch^*(f_0) - ch^*(v_0) \leq -\frac{13}{4}. \]

5 Planar graphs without 4- and 7-cycles

In this section, we consider plane graphs without 4- and 7-cycles. First we derive more properties of a minimal counterexample \(G \) to Theorem 2.4 for \(G \in \mathcal{P}_{4,7} \).

| Figure 4: (a) A special 5-cycle and an adjacent triangle. (b) For the proof of Lemma 5.2 where a thick line is an edge in the matching \(M \).

Definition 5.1 A 5-cycle \(f = [u_1 u_2 u_3 u_4 u_5] \) is called special if it is adjacent to a triangle \(T = [u_1 u_5 u_6] \) with \(u_i \neq v_0 \) (\(i = 1, 2, \ldots, 6 \)), and all the vertices are 4-vertices except that \(u_1 \) and \(u_3 \) are 3-vertices, as depicted in Figure 4(a).

Lemma 5.2 \(G \) has no special 5-cycle.

Proof. Assume \(f = [u_1 u_2 u_3 u_4 u_5] \) is a special 5-cycle and \(T = [u_1 u_5 u_6] \) is a triangle adjacent to \(f \), where \(d(u_1) = d(u_3) = 3 \) and \(d(u_i) = 4 \) for \(i = 2, 4, 5, 6 \). Let \(X = \{u_1, u_2, \ldots, u_6\} \) and \(G' = G - X \). Then, by the minimality, \((G', v_0) \) has a valid matching \(M' \) and there is a good orientation \(D' \) of \(G' - M' \).

Let \(M = M' \cup \{u_1 u_2, u_3 u_4, u_5 u_6\} \), then \(M \) is a valid matching of \((G, v_0) \). Let \(D \) be an orientation of \(G \) obtained from \(D' \) by adding arcs \((u_1, u_6) \),
(u_1, u_5), (u_5, u_4) and (u_3, u_2), and all the edges between X and V − X are oriented from X to V − X, as depicted in Figure 3(b). It is obvious that \(D[X]\) is AT. Then, by Lemma 2.5, \(D\) is AT. As \(\Delta_D(v) < 3\) and \(d_D^+(v_0) = 0\), \(D\) is a good orientation of \(G − M\), a contradiction. \(\square\)

The discharging rules are defined as follows:

R1 Assume \(f \neq f_0\) is a 3-face. Then each face adjacent to \(f\) transfers \(\frac{1}{3}\) charge to \(f\).

R2 Assume \(v \neq v_0\) is 3-vertex. If \(v\) is contained in a triangle, then each of the other two faces incident to \(v\) transfers \(\frac{1}{2}\) charge to \(v\); otherwise each face incident to \(v\) transfers \(\frac{1}{3}\) charge to \(v\).

R3 Assume \(u \neq v_0\) is a \(5^+\)-vertex and \(f \neq f_0\) is a 5-face. Then \(u\) transfers \(\frac{1}{6}\) charge to \(f\) either \(f\) is incident to \(u\), or \(f\) is not incident to \(u\) but adjacent to a triangle which is incident to \(u\).

R4 \(f_0\) transfers \(\frac{1}{4}\) charge to each adjacent triangle, and \(\frac{1}{2}\) charge to each incident 3-vertex \(v \neq v_0\). \(v_0\) transfers \(\frac{1}{2}\) charge to each 5-face \(f \neq f_0\) which is either incident to \(v_0\), or is not incident to \(v_0\) but adjacent to a triangle \(T\) which is incident to \(v_0\).

\[\text{\underline{Check charge on vertices} } v \neq v_0\]
Let \(v\) be a 3-vertex. By R2, \(ch^*(v) \geq 0\).
Let \(v\) be a 4-vertex. We have \(ch^*(v) = ch(v) = 0\).
Let \(v\) be a \(5^+\)-vertex. By R3, \(v\) transfers at most \(\frac{1}{6} \times d(v)\) charge to 5-faces. It follows that \(ch^*(v) \geq d(v) - 4 - \frac{1}{6}d(v) = \frac{5}{6}d(v) - 4 > 0\).

\[\text{\underline{Check charge on faces} } f \neq f_0\]
Let \(f\) be a 3-face. R1 guarantees \(ch^*(f) \geq 0\).
Let \(f\) be a 5-face. By Lemma 2.7, \(f\) has at most two 3-vertices other than \(v_0\). Since \(G\) has no 7-cycle, \(f\) is adjacent to at most one triangle. Namely, \(f\) has at most one minor 3-vertex. If \(f\) has at most one 3-vertex other than \(v_0\), then \(ch(f \rightarrow) \leq \frac{7}{3} + \frac{1}{3} < 1\). Assume \(f\) has two 3-vertices other than \(v_0\).
Firstly, if \(f\) does not have any minor 3-vertex, then \(f\) transfers at most \(\frac{1}{3}\) charge to the unique triangle and \(\frac{1}{3} \times 2\) to the non-minor 3-vertices. That is, \(ch^*(f) = ch(f) - ch(f \rightarrow) \geq 1 - 1 = 0\).
Assume \(f\) has a minor 3-vertex. Assume \(f = [v_1v_2v_3v_4v_5]\) with \(d(v_1) = 3\) and \(T = [v_1v_2v_6]\). In this case, \(ch(f \rightarrow) = \frac{1}{2} + \frac{1}{3} + \frac{1}{3} = \frac{7}{6}\). If one of \(v_i\) \((i = 2, 3, \ldots, 6)\) is \(v_0\) or a \(5^+\)-vertex, then such \(v_i\) transfers at least \(\frac{1}{6}\) charge to \(f\) by R4 and R3. Thus, \(ch^*(f) = ch(f) - ch(f \rightarrow) + ch(\rightarrow f) \geq 1 - \frac{2}{6} + \frac{1}{6} \geq 0\).
Assume \(f\) and \(T\) does not contain \(v_0\) and \(5^+\)-vertex. By Lemma 2.7 and Lemma 2.10, another 3-vertex must be \(v_4\). Thus, there is a special 5-cycle in \(G\), contradicting to Lemma 5.2.
Let f be a 6-face. By Lemma 2.7, f has at most three 3-vertex other than v_0. Since G has no 4- and 7-cycles, f is adjacent to at most one triangle T which shares two common edges with f. If f is not adjacent to any triangle, f only sends charge to non-minor 3-vertices each getting $\frac{1}{3}$ from f. Hence, $ch^*(f) \geq d(f) - 4 - \frac{1}{2} \times 3 > 0$. If f is adjacent to one triangle, then f has at most one minor 3-vertex. Thus, $ch^*(f) \geq d(f) - 4 - \frac{1}{2} \times 2 - \frac{1}{3} > 0$.

Let f be a 8+ face. If f is incident with s 3-vertices other than v_0 where $0 \leq s \leq \lfloor \frac{d(f)}{2}\rfloor$. Then f transfers at most $\frac{1}{2} \times s$ charge to 3-vertices and $(d(f) - s) \times \frac{1}{3}$ charge to triangles. Hence, we have $ch^*(f) \geq d(f) - 4 - \frac{1}{2} s - \frac{1}{3}(d(f) - s) = \frac{2}{3}d(f) - \frac{1}{6}s - 4 \geq \frac{7}{12}d(f) - 4 > 0$.

Check charge on f_0 and v_0
For this checking procedure is the same as the last part in Section 3, we omit the details. That is $ch^*(v_0) \geq -\frac{7}{4}$ and $ch^*(f_0) \geq -\frac{11}{4}$.

Thus, we will have $0 \leq \sum_{x \in V \cup F \setminus \{v_0, f_0\}} ch^*(x) = -8 - ch^*(v_0) - ch^*(f_0) \leq -\frac{35}{12}$, a contradiction.

References

[1] N. Alon and M. Tarsi, Colorings and orientations of graphs, Combinatorica 12 (2) (1992) 125-134.

[2] W. Cushing and H. A. Kierstead, Planar graphs are 1-relaxed, 4-choosable, European J. Combin. 31(5) (2010) 1385-1397.

[3] L. Duraj, G. Gutowski and J. Kozik, Chip games and paintability, Electron. J. Combin. 23 (2016), no. 3, Paper 3.3, 12 pp.

[4] N. Eaton and T. Hall, Defective list colorings of planar graphs, Bull. Inst. Combin. Appl. 25(1999) 79-87.

[5] G. Gutowski, M. Han, T. Krawczyk and X. Zhu, Defective 3-paintability of planar graphs, Electron. J. Combin. 25 (2018), no. 2, Paper 2.34, 20 pp.

[6] J. Grytczuk and X. Zhu, The Alon-Tarsi number of a planar graph minus a matching, arXiv:1811.12012.

[7] M. Han and X. Zhu, Locally planar graphs are 2-defective 4-paintable, European J. Combin. 54 (2016) 35-50.

[8] T. Jensen and B. Toft, Graph Coloring Problems, Wiley, New York, 1995.

[9] R. Kim, S-J. Kim, X. Zhu. The Alon-Tarsi number of subgraphs of a planar graph, manuscript.
[10] K-W. Lih, Z. Song, W. Wang and K. Zhang, A note on list improper coloring planar graphs, Appl. Math. Lett. 14 (2001) 269-273.

[11] U. Schauz, Flexible color lists in Alon and Tarsi’s theorem, and time scheduling with unreliable participants, Electron. J. Combin. 17 (2010):R13:1–18.

[12] R. Škrekovski, List improper colourings of planar graphs, Combin. Probab. Comput. 8 (1999) 293-299.