The limited DNA sequence data of the polychaetes species are available from the Eastern Arabian Sea. We have sequenced 18S rDNA gene from 54 polychaetes species and 37 species identified up to the species level. The DNA bar-coding data provides for molecular identification of benthic polychaetes that will provide imminent into drivers of species diversity in the Eastern Arabian Sea. The 18S rDNA sequence data set is made publicly available to enable critical or extended analyzes of DNA bar-coding.

© 2018 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Value of the data

- These data are the first generated using 18S rRNA genes of polychaetes in west coast of India.
- This project presents the diversity of benthic polychaetes communities by using 18S rRNA gene sequencing.
- This data provides other researchers to extend the molecular identification (DNA barcoding).

1. Data

The molecular taxonomy is refreshing traditional taxonomy and helps to increase the taxonomic crisis, alternative and complementary approaches, particularly successful in the identification and delimitation of new species from various groups [1]. Recently, the increased identification of abundance and importance of cryptic species, those are morphologically identical but genetically different [2]. Moreover, the molecular identification has been reformed the exploration of biodiversity for which traditional taxonomy is difficult [3]. There has been increased numbers of unidentified specimens in our collection which limits their use in future studies involving the biogeography. The most commonly occurring polychaete species are shown in the Fig. 1. A total 54 polychaete species were newly sequenced based on the 18S rDNA gene together with 88 sequences submitted to NCBI GenBank (Table 1) including Paraprionospio cristata Zhou, Yokoyama and Li, 2008, and Paraprionospio patiens Yokoyama, 2007. They are most dominant and opportunistic species along the study area.

Fig. 1. Commonly occurring polychaete species-A: Lysidice sp., B: Eteone heteropoda, C: Haplosyllis sp., D: Thornera sp., E: Sternapsis suchtta, F: G: Perinereis cultrifera, H: Lumbrineris funchalensis, I: Pareurythoe borealis, J: Ceratonereis japonica, K-L: Scolelepis sp., M: Pomatoceros triqueter, N: Parasabella saxicola, O: Magelona cincta, P: Pomatostegus actinoceros, Q: Euclymene sp., R: Terebella sp., S: Paraprionospio cordifolia, T: Spiochaetopterus sp.
Table 1
NCBI Accession number for benthic polychaetes species along the west coast of India.

Specimen voucher	Morphological ID	NCBI Accession number
GP0161–GP0163	Eurythoe complanata	KT900265–KT900267
GP0164	Notopygogcaribea	KT900268
GP0165	Eurythoe complanata	KT900269
GP0166	Pareurythoe borealis	KT900270
GP0167–GP0168	Thomora sp.	KT900271–KT900272
GP0169–GP0170	Chloiaviridis	KT900273–KT900274
GP0171–GP0173	Eurythoe complanata	KT900275–KT900277
GP0174	Hermina verruculosa	KT900278
GP0175	Chloea viridis	KT900279
GP0176–GP0177	Notopygog ornate	KT900280–KT900281
GP0178	Haplosylis sp.	KT900282
GP0179	Pseudonereis sp.	KT900283
GP0180	Perinereis cultifera	KT900284
GP0181–GP0182	Platynereis dumerlii	KT900285–KT900286
GP0183	Namalycastis abiuma	KT900287
GP0184	Dendronereis aestuaria	KT900288
GP0185	Namalycastis abiuma	KT900289
GP0186	Platynereis australis	KT900290
GP0187	Nereis sandersi	KT900291
GP0188	Glycera capitata	KT900292
GP0189	Glycera alba	KT900293
GP0190	Eunicice miurai	KT900294
GP0191–GP0192	Lysidice sp.	KT900295–KT900296
GP0193	Lumbrineris funchalensis	KT900297
GP0194	Marphysa viridis	KT900298
GP0195	Ninoe nigripes	KT900299
GP0196–GP0197	Marphysa sp.	KT900300–KT900301
GP0198	Diopatra sp.	KT900302
GP0199	Eunicice miurai	KT900303
GP0200–GP0202	Paraprinoposio cordifolia	KT900304–KT900306
GP0203–GP0204	Paraprinoposio patians	KT900307–KT900308
GP0205	Paraprinoposio cordifolia	KT900309
GP0206–GP0207	Scolelepis sp.	KT900310–KT900311
GP0208	Magelona cincta	KT900312
GP0209–GP0212	Neosabelaria indica	KT900313–KT900316
GP0212–GP0214	Sabellaria chandrae	KT900317–KT900318
GP0215	Sabellaria intoshi	KT900319
GP0216–GP0217	Terebella sp.	KT900320–KT900321
GP0218	Paraempolymniaaspiana	KT900322
GP0219–GP0220	Parasabella saxicola	KT900323–KT900324
GP0221	Hydroides sanctaeccrus	KT900325
GP0222	Chitinopomaserrula	KT900326
GP0223	Pomatoceros triquetra	KT900327
GP0224	Spirobranchuslatiscapus	KT900328
GP0225	Thomora sp.	KX290696
GP0226–GP0227	Bhawaniacryptopocephala	KX290697–KX290698
GP0228–GP0229	Perinereis sp.	KX290699–KX290700
GP0230	Nectoneanthes oxyoda	KX290701
GP0231–GP0232	Hermeniave ruculosa	KX290702–KX290703
GP0233	Hedisteatoka	KX290704
GP0234–GP0235	Terebellides sp.	KX290705–KX290706
GP0236–GP0237	Paralacydonia paradoxa	KX290707–KX290708
GP0238	Hesione sp.	KX290709
GP0239–GP0240	Spirochaetopterus sp.	KX290710–KX290711
GP0241	Euclymene sp.	KX290712
2. Experimental design, materials and methods

The sediment samples were collected at the following localities. Sediment samples were collected using 0.04 m² van Veen grabs. Samples were sieved on a 500 μm mesh. In the laboratory, the sediment samples were washed again, sorted, and stored in 95% ethanol. Some of middle segments of polychaete species were removed from these specimens and kept in vials containing absolute ethanol until further use for DNA isolation. Identification of polychaete species was done by observing diagnostic characters parapodia-bearing chitinous chaetae under stereo zoom microscope using keys [4,5].

2.1. DNA extraction, PCR amplification, purification, and sequencing

Genomic DNA was extracted from the specimens using the Qiagen DNeasy Tissue Kit according to manufacturer’s instructions. The 18S rRNA gene amplifications were carried out using primer pair 18F/18R1843 [6]. PCR amplification of the 18S rDNA gene changed into done in overlapping fragments of ~1800 bp length each with modified primer pairs with standard cycle sequencing protocols. Amplifications had been carried out using an Eppendorf Master Cycler Gradient. The following PCR temperature file was used: 95°C for 3 min; 35 cycles at 95°C for 45 s, 60°C for 1 min, and 72°C for 2 min; final extension at 72°C for 5 min. After detection by gel electrophoresis, the products had been purified using the Qiagien PCR Purification Kit (Qiagen). Sequences were produced using the same primers and determined on an Applied Biosystems (ABI) 3730xl. All sequences were submitted to NCBI GenBank (Table 1).

Acknowledgements

The authors are grateful to the Director, CSIR-National Institute of Oceanography Goa, for encouragement and facilities. The authors also wish to thank Mr. Ram Murty Meena, Biology Division for providing sequencing facilities. We also acknowledge the financial support from Maharashtra Gene bank project GAP 2871.

Funding sources

This work is part of a Ph.D. thesis of Periasamy Rengaiyan and was funded by MoES (Govt. of India) under COMAPS project (No. GAP-2741).

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.09.015.

References

[1] F. Valentini, P. Pompanon, Taberlet, DNA barcoding for ecologists, Trends Ecol. Evol. 24 (2009) 110–117.
[2] M.J. Brasier, H. Wiklund, L. Neal, R. Jeffreys, K. Linse, H. Ruhl, A.G. Glover, DNA barcoding uncovers cryptic diversity in 50% of deep-sea Antarctic polychaetes, R. Soc. Open Sci. 3 (11) (2016) 160432.
[3] C.Q. Tang, F. Leasi, U. Obertegger, A. Kieneke, T.G. Barraclough, D. Fontaneto, The widely used small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna, Proc. Natl. Acad. Sci. 109 (40) (2012) 16208–16212.
[4] P. Fauvel, The Fauna of India Including Pakistan, Ceyalon, Burma and Malaya, The Indian Press, Allahabad (1953) 408.
[5] J.H. Day, A Monograph on the Polychaete of Southern Africa, Part I and II. (Trustees of British Museum, Natural History, London (1967) 842.
[6] D.M. Hillis, M.T. Dixon, Ribosomal DNA: molecular evolution and phylogenetic inference, Q. Rev. Biol. 66 (4) (1991) 411–453.