Overexpression of KDM4 lysine demethylases disrupts the integrity of the DNA mismatch repair pathway

Samah W. Awwad and Nabieh Ayoub*

ABSTRACT

The KDM4 family of lysine demethylases consists of five members, KDM4A, -B and -C that demethylate H3K9me2/3 and H3K36me2/3 marks, while KDM4D and -E demethylate only H3K9me2/3. Recent studies implicated KDM4 proteins in regulating genomic instability and carcinogenesis. Here, we describe a previously unrecognized pathway by which hyperactivity of KDM4 demethylases promotes genomic instability. We show that overexpression of KDM4A-C, but not KDM4D, disrupts MSH6 foci formation during S phase by demethylating its binding site, H3K36me3. Consequently, we demonstrate that cells overexpressing KDM4A-C members are defective in DNA mismatch repair (MMR), as evident by the instability of four microsatellite markers and the remarkable increase in the spontaneous mutations frequency at the HPRT locus. Furthermore, we show that the defective MMR in cells overexpressing KDM4C is mainly due to the increase in its demethylase activity and can be mended by KDM4C downregulation. Altogether, our data suggest that cells overexpressing KDM4A-C are defective in DNA MMR and this may contribute to genomic instability and tumorigenesis.

KEY WORDS: DNA damage, KDM4 proteins, Mismatch repair, Chromosomal instability, Lysine demethylation

INTRODUCTION

A decade ago, two families of lysine demethylases (KDM) have been identified, confirming that lysine methylation is a reversible and dynamically regulated process (Klose et al., 2006a; Shi et al., 2004; Whetstine et al., 2006). One family is referred to as the Jumonji C (JmjC)-domain-containing proteins. The crystal structure of the JmjC catalytic domain was solved and found to form an enzymatically active pocket that coordinates the two main co-factors needed for the radical-based oxidative demethylation reaction, ferrous oxide (Fe(II)) and α-ketoglutarate (Chen et al., 2006; Shi and Whetstine, 2007; Tsukada et al., 2006).

The human KDM4-E family (also known as JMJD2A-E) consists of five members, which specifically catalyze the demethylation of H3K9me2/me3. Furthermore, KDM4A, -B and -C, but not KDM4D and -E, demethylate H3K36me2/me3 and H1.4K26me2/me3 (Chen et al., 2006; Labbé et al., 2013; Trojer et al., 2009). KDM4A-E proteins are involved in multiple cellular processes including gene expression regulation (Kim et al., 2012; Mallette and Richard, 2012; Shin and Janknecht, 2007a; Wissmann et al., 2007; Zhang et al., 2005), DNA replication (Black et al., 2010; Black et al., 2012), and DNA damage response (Khoury-Haddad et al., 2014; Mallette et al., 2012; Palomera-Sanchez et al., 2010; Young et al., 2013; Black, 2012), worm development and germ cell apoptosis (Whetstine et al., 2006), renewal of embryonic stem cells (Loh et al., 2007), and male life span in drosophila (Lorbeck et al., 2010). Interestingly, increasing number of reports implicate KDM4 misregulation in promoting genomic instabilities and carcinogenesis (Berdel et al., 2012; Berry and Janknecht, 2013; Black et al., 2013; Cloos et al., 2006; Ehrbrecht et al., 2006; Italiano et al., 2006; Kawazu et al., 2011; Labbé et al., 2013; Li et al., 2011; Liu et al., 2009; Luo et al., 2012; Northcott et al., 2009; Shi et al., 2011; Vinatzer et al., 2008; Wissmann et al., 2007; Yang et al., 2000; Zack et al., 2013).

A recent report implicated H3K36me3 mark in DNA mismatch repair (MMR). It demonstrated that the mismatch recognition protein hMutSξ binds H3K36me3 during early S phase to ensure intact DNA MMR (Li et al., 2013). These observations prompted us to investigate the role of KDM4 proteins in DNA MMR. Here, we describe a previously unrecognized pathway by which upregulation of KDM4 proteins promotes genomic instability. We show that overexpression of KDM4 impairs the integrity of DNA mismatch repair (MMR) and thus leading to microsatellite instability (MSI) and to an increase in the frequency of spontaneous mutations. Interestingly, we show that downregulation of KDM4C expression restores the integrity of DNA MMR. Collectively, our data provide a new pathway by which KDM4A-C amplification may lead to genomic instability and tumorigenesis.

RESULTS AND DISCUSSION

KDM4A-C overexpression disrupts MSH6 foci formation during S-phase

KDM4A-C proteins, but not KDM4D, demethylate H3K36me3 mark as we and others have shown (Couture et al., 2007; Hillringhaus et al., 2011; Klose et al., 2006b; Kupershmit et al., 2014; Shin and Janknecht, 2007b; Whetstine et al., 2006). H3K36me3 is involved in DNA MMR as it provides a binding site for the MMR protein MSH6 and enables MSH6 foci formation during S phase (Li et al., 2013). Therefore, we sought to assess whether overexpression of KDM4A-C proteins affects MSH6 foci during S phase. Toward this end, we used U2OS-TetON cell lines that conditionally express functional EGFP-KDM4A-C fusions upon the addition of doxycycline (Ipenberg et al., 2013; Kupershmit et al., 2014). Importantly, the expression levels of EGFP-KDM4A-C fusions are comparable to the levels of the endogenous KDM4A-C proteins found in human
breast adenocarcinoma cell line, MCF7, known to have elevated levels of KDM4 proteins (Berry and Janknecht, 2013; Berry et al., 2012) (Fig. 1A). The cells were synchronized at G1/S border using double-thymidine block; samples were collected at 3 hr after the removal of thymidine and subjected to both fluorescence-activated cell sorter (FACS) and immunofluorescence (IF). Results show that 3 hr after thymidine removal the majority of the cells (83%) were at S phase (supplementary material Fig. S1). IF analysis shows that overexpression of EGFP-KDM4A-C fusions (green) diminished the intensity of H3K36me3 signal (gray) and impaired MSH6 foci during S phase (red) (Fig. 1B–D). On the other hand, U2OS-TetON cells expressing EGFP-KDM4D fusion (Khoury-Haddad et al., 2014), which does not demethylate H3K36me3, show no detectable effect on H3K36me3 levels and MSH6 foci (Fig. 1E). Quantitative measurements of the MSH6 foci reveal that KDM4A-C overexpression leads to 6–9 fold decrease comparing to control U2OS cell line or cells overexpressing KDM4D (Fig. 1F). We concluded therefore that EGFP-KDM4A-C overexpression leads to a dramatic reduction in H3K36me3 and impair MSH6 foci during the S phase of the cell cycle. Our results are consistent with a recent report showing that MSH6 foci during S phase is impaired following the inhibition of H3K36me3 methylation by knocking down SETD2 methyltransferase (Li et al., 2013).

Overexpression of KDM4 members impairs the integrity of DNA mismatch repair

It was shown that H3K36me3-MSH6 interaction is essential for intact DNA MMR (Li et al., 2013). We predicted therefore that the removal of H3K36me3 mark following KDM4A-C overexpression should disrupt the integrity of DNA MMR. Given that microsatellite instability (MSI) is a common hallmark of MMR-defective cells (Boland et al., 1998; Bocker et al., 1997; Ellegren, 2004; Hsieh and...
Yamane, 2008), we sought to test the stability of the mononucleotide (BAT25, BAT26) and the dinucleotide (D2S123, D5S346) microsatellite markers in U2OS-TetON cell lines overexpressing EGFP-KDM4A-D proteins. MSI assay was performed on genomic DNA, which was extracted from 20 clones derived from different single cells of each cell line. Results show that cells overexpressing KDM4A-C, but not KDM4D, exhibit MSI as evidence by the appearance of new repeat species (marked by *) and complete deletions of the tested markers (marked by Δ). As shown in Fig. 2A, 40% (8/20 clones), 55% (11/20) and 30% (6/20) of the clones expressing KDM4A, B and C respectively, show either deletion or novel microsatellite mark. On the other hand, no detectable alterations in the length of the four tested microsatellite markers were obtained in clones expressing KDM4D.

Fig. 2. Overexpression of KDM4A-C, but not KDM4D, displays MSI phenotype. (A–E) Microsatellite instability (MSI) assay showing the analysis of PCR product patterns of four microsatellite markers in subclones derived from U2OS-TetON expressing EGFP fused to KDM4A (A), KDM4B (B), KDM4C (C), KDM4D (D) and U2OS-TetON control cells (E). To determine the microsatellite stability, genomic DNA was extracted from 20 single clones derived from different single cells of each cell line. The indicated microsatellite markers were then amplified using specific primers pairs, resolved by polyacrylamide-urea electrophoresis and visualized by SYBR-Gold staining. Δ and * show clones exhibiting complete deletion of the tested microsatellite markers or new repeat species, respectively.
overexpressing KDM4D (Fig. 2D) and only one clone shows deletion in the control U2OS-TetON cells (Fig. 2E).

Clones with two or more abnormal microsatellite marker are scored as MSI-high (MSI-H), while MSI-low clones have only one unstable marker (Boland et al., 1998; Hayden and Jass, 2002; Merok et al., 2013). Based on this classification, we observed that U2OS-TetON-EGFP-KDM4A cells contain two MSI-H clones, clone #7 (shows instability in 2 out of 4 markers) and clone#17 (shows instability in 3 out of 4 markers) (Fig. 2A). Further, U2OS-TetON-EGFP-KDM4B cells contain 4 MSI-H clones, clone #2, clone#13, clone#15 and clone#18 (each shows instability in 2 out of 4 markers) (Fig. 2B). Further, clone#20 of U2OS-TetON-EGFP-KDM4C cells shows instability in all four tested markers (Fig. 2C). On the other hand, no MSI-H clones were observed in U2OS-TetON-EGFP-KDM4D (Fig. 2D) and in U2OS-TetON control cells (Fig. 2E).

Notably, the sizes of the observed new microsatellite alleles are similar (Fig. 2). This could be due to continuous overexpression of KDM4A-C protein for long time (2–3 weeks) which leads to selective growth advantage of clones with a certain length of microsatellite markers. To address this possibility, we repeated the MSI assay on cells that overexpressed EGFP-KDM4A-D fusions (Supplementary material Fig. S4) and in U2OS-TetON-EGFP-KDM4C (Fig. 2C). These findings suggest that the defective DNA MMR proteins levels of the four key MMR genes MSH6, MSH2, MLH1 and PMS2 are not reduced in cells overexpressing KDM4 proteins (Supplementary material Fig. S4), suggesting that the defective DNA MMR is not due to decrease in the levels of the tested key MMR proteins. Notably, overexpression of KDM4A-D proteins leads to 1.9 and 1.5 fold increase in the protein levels of MLH1 and MSH6, respectively.

Altogether, our data suggest that overexpression of KDM4A-C, but not KDM4D, disrupts the integrity of DNA MMR and leads to MSI.

A second readout of a defective DNA MMR is the increase in the spontaneous mutation frequency (Albertini, 2001; Branch et al., 1995; Eshleman et al., 1995). Therefore we performed HPRT mutability assay to determine the mutation frequency at the HPRT locus in cells overexpressing KDM4A-D members (see Materials and Methods; supplementary material Fig. S3). Results show that KDM4A-C overexpression leads to a dramatic increase in the mutation frequency which is between ~500–1000 folds comparing to the control U2OS-TetON cells (Table 1). Surprisingly, cells overexpressing KDM4D show also significant increase in the mutation frequency (32.5 fold increase), however it is at least 15 fold less than the increase observed in cells overexpressing KDM4A-C fusions (Table 1). Altogether, we concluded that overexpression of KDM4A-C proteins leads to a remarkable increase in the mutation frequency, highlighting the key role of H3K36me3 in regulating the DNA MMR pathway. In addition, the increased mutation frequency in cells overexpressing KDM4D suggests that methylation marks other than H3K36me3 might be also implicated in regulating the fidelity of DNA MMR. Interestingly, the proteins levels of the four key MMR genes MSH6, MSH2, MLH1 and PMS2 are not reduced in cells overexpressing KDM4 proteins (Supplementary material Fig. S4), suggesting that the defective DNA MMR is not due to decrease in the levels of the tested key MMR proteins.

Table 1. KDM4A-D overexpression increases the mutation frequency at the HPRT locus

Cell line	Mutation frequency (×10⁻⁷)	Fold of increase in mutation frequency	P value
U2OS-TetON	3±1.7	1	
U2OS-TetON-KDM4A	2376.3±74.3	781.7	<0.0001
U2OS-TetON-KDM4B	3160.2 ±63.3	1039.5	<0.0001
U2OS-TetON-KDM4C	1505.0±22.5	495.1	<0.0001
U2OS-TetON-KDM4D	98.8±8.9	32.5	0.0001
U2OS-TetON-KDM4C-S198M	227.1±22.9	74.7	0.0002
U2OS-TetON-KDM4C(after dox removal)	56.9±17.3	18.7	0.0029

Shows the mutations frequency at the HPRT locus in control U2OS-TetON cells, U2OS-TetON cells expressing either EGFP-KDM4A-D fusions or EGFP-KDM4C-S198M catalytically inactive mutant and in U2OS-TetON-EGFP-KDM4C after doxycycline removal. The indicated cell lines were cultured in media containing HAT to select for HPRT wild-type cells. Next, cells were treated with doxycycline to induce the expression of EGFP-KDM4A-D fusions and subjected to 6-thioguanine (6-TG) selection, which eliminates HPRT wild-type cells. The plating efficiency was determined by culturing cells in the absence of 6-TG. After 2–3 weeks HPRT mutant colonies were visualized by staining with crystal violet. The mutation frequency was determined by dividing the number of 6-TG-resistant colonies by the total number of plated cells after being corrected for the colony-forming ability. All data are presented as means± standard deviation (SD). The P values were determined by one-tailed unpaired Student t test.
molecule inhibitors of KDM4C may restore the integrity of DNA MMR and alter the sensitivity to anticancer drugs.

Here we reveal a previously unrecognized role of KDM4A-C upregulation in modulating the fidelity of DNA MMR pathway. The model that emerges from our results suggests that defective MMR in cells overexpressing KDM4A-C is primarily due to the elevation of their demethylase activity, which is accompanied by a dramatic decrease in the levels of H3K36me3 and loss of MSH6 foci formation during S phase (Fig. 4C). Our observations are consistent with previous report showing that depletion of SETD2 methyltransferase reduces H3K36me3 levels, impairs MSH6 foci formation and disrupts DNA MMR (Li et al., 2013).

Interestingly, while KDM4D overexpression has no detectable effect on the stability of the four tested microsatellite markers (Fig. 2D), it leads to 32.5 fold increase in the mutation frequency at the HPRT locus (Table 1). This increase is independent of H3K36me3-MSH6 interactions because H3K36me3 levels are not affected by KDM4D overexpression (Fig. 1E). The KDM4D-dependent increase in the mutation frequency might be related to: (i) changes in the methylation marks of either histone other than H3K36me3 and/or non-histone proteins. Indeed, it was recently shown that KDM4D demethylates H3K56me3 (Jack et al., 2013) and non-histone substrates (Ponnaluri et al., 2009; Yang et al., 2011). (ii) Changes in the expression patterns of KDM4D target genes that might be implicated in the DNA MMR pathway. Future studies will be required to further clarify this issue.

MATERIALS AND METHODS

Cell lines and growth conditions

All cell lines were grown in Dulbecco’s modified Eagle’s medium (DMEM) as previously described (Ipenberg et al., 2013; Khoury-Haddad et al., 2014; Kupershmit et al., 2014).

Cell synchronization

U2OS-TetON-EGFP-KDM4A-D cells were synchronized at G1/S by double thymidine block as previously described (Lee et al., 2004).

Flow cytometry

FACS analysis was performed as previously described (Khoury-Haddad et al., 2014). DNA content was analyzed using flow cytometry of 10,000 events on a BD LSR-II flow cytometer (Becton Dickinson), equipped with FCS Express software. Data were analyzed using ModFit LT 3.3 software.

Western blotting

Western blotting was performed as previously described (Khoury-Haddad et al., 2014). Briefly, protein lysates were prepared using hot-lysis and immunoblotted using the appropriate antibodies (a complete list of antibodies and their dilutions used in this study are described in supplementary material Table S1). Membranes were developed using Quantum ECL detection kit (K-12042-D20, Advansta).

Immunofluorescence

Cells were grown on coverslips and subjected to immunofluorescence as previously described (Khoury-Haddad et al., 2014). Cells were stained with the appropriate antibodies (supplementary material Table S1). Slides were visualized using the inverted Zeiss LSM 700 confocal microscope with 40x oil EC Plan Neofluar objective.

Microsatellite instability assay (MSI)

U2OS-TetON control cell line and U2OS-TetON cell lines expressing EGFP-KDM4A-D and EGFP-KDM4C-S198M fusions were plated at limiting dilutions for an average density of 100–500 cells into 15 cm plates. By 2–3 weeks after plating, genomic DNA was extracted from 20 single clones of each cell line using the NucleoSpin Tissue XS kit. MSI

result suggests that one mechanism by which KDM4C-S198M interferes with MMR might be by competing with MSH6 on binding to H3K36me3.

The KDM4C-dependent MMR defect is mended by KDM4C downregulation

Here, we asked whether the defective MMR in cell overexpressing KDM4C could be repaired by KDM4C downregulation. To address this question, we treated cells with doxycycline for five days to trigger EGFP-KDM4C overexpression and disrupt DNA MMR. Next, EGFP-KDM4C expression was shutdown by doxycycline removal and cells were subjected to HPRT mutability assay (Fig. 4A). To validate the shutting down of EGFP-KDM4C expression, we performed western blot before and after doxycycline removal (Fig. 4B). The HPRT mutability showed that the removal of doxycycline leads to a decrease of ~26 fold in the mutation frequency comparing to cells overexpressing KDM4C protein (Table 1). This result strongly suggests that KDM4C downregulation restores the integrity of DNA MMR. Given that Microsatellite-stable (MSS) and MSI tumors display distinct responses to certain antitumor agents (Merok et al., 2013; Ribic et al., 2003; Vilar et al., 2008; Vilar and Tabernero, 2013), we speculate that small clones exhibiting complete deletion of the tested microsatellite markers.
Fig. 4. Downregulation of KDM4C restores the integrity of DNA mismatch repair. (A) An outline describing the experimental flow to assess the effect of KDM4C downregulation on the rate of mutation frequency at the HPRT gene. Cells were cultured with doxycycline for 7 days to induce EGFP-KDM4C expression, then the doxycycline was removed to shutdown the expression of EGFP-KDM4C and subsequently the mutation frequency at the HPRT gene was determined. (B) Western blot showing that doxycycline removal suppresses the expression of EGFP-KDM4C fusion. Protein lysates from untreated and doxycycline-treated U2OS-TetON-EGFP-KDM4C cells were immunoblotted using the indicated antibodies. (C) A model showing that KDM4A-C overexpression diminishes H3K36me3 signal, impairs MSH6 foci and impairs the integrity of DNA MMR pathway.

HPRT mutability assay

The HPRT mutability assay was performed as described in (Glaab et al., 1998; Glaab and Tindall, 1997; Kat et al., 1993), except for the following changes. Cells were cultured in growth medium containing 100 μM hypoxanthine, 0.4 μM aminopterin and 16 μM Thymidine (HAT) for 5 days to eliminate the pre-existing HPRT mutant cells. Next, the cells were transferred to HAT-free medium and treated with doxycycline for 3 days to trigger the expression of the EGFP-KDM4 fusions. Afterward, 9×10^6 cells were plated in medium containing 5 μM 6-Thioguanine (6-TG; Sigma#A4660) and 1 μg/ml doxycycline at a density of 3×10^6 per 10 cm dish. In addition, 1.5×10^5 cells were plated at a density of 500 cells per 6 cm dish containing doxycycline but without 6-TG to determine plating efficiency. The plates were incubated at 37°C in humidified incubator for 21–30 days. The colonies were visualized by staining with 0.005% crystal violet and colonies containing more than ~50 individual cells are counted using a stereomicroscope. The mutation frequency (MF) was calculated according to the following equation: MF=a/(9×10^6×b×1.5×10^3)), a=total number of 6-TG resistant colonies and b=total number of colonies observed in the plating efficiency plates.

Acknowledgements

We thank Hanan Khoury-Haddad for her critical reading of the manuscript, Yehuda Assaraf for his support and critical advice. We thank Maayan Duvshani-Eshet, Nitzan Dahan and Efrat Barak, from the Life Sciences and Engineering Infrastructure Unit at the Technion, for their help in the microscopy and flow-cytometry-related works. We are grateful for Rotem Kami for the generous gift of MSH2 antibody.

Competing interests

The authors declare no competing or financial interests.

Author contributions

S.W.A. planned and performed all the experiments described in this study, wrote the materials and methods and helped in proofreading the manuscript. N.A. conceived the study, planned the experiments and wrote the paper.

Funding

This study is supported from grants from the Israel Science Foundation (2014673); the Israel Cancer association (2019404); the H. Blechman Memorial Cancer Research Fund; and Eliahu Pen Research Fund (2018025).

References

Albertini, R. J. (2001). HPRT mutations in humans: biomarkers for mechanistic studies. Mutat. Res. 489, 1-16.

Berdel, B., Nieminen, K., Soini, Y., Tengström, M., Malinen, M., Kosma, V. M., Palvimo, J. J. and Mannermäki, A. (2012). Histone demethylase GASC1 – a potential prognostic and predictive marker in invasive breast cancer. BMC Cancer 12, 516.

Berry, W. L. and Janknecht, R. (2013). KDM4/JMJD2 histone demethylases: epigenetic regulators in cancer cells. Cancer Res. 73, 2363-2342.

Berry, W. L., Shin, S., Lightfoot, S. A. and Janknecht, R. (2012). Oncogenetic features of the JMJD2A histone demethylase in breast cancer, Int. J. Oncol 41, 1701-1706.

Black, J. C., Allen, A., Van Rechem, C., Forbes, E., Longworth, M., Tschöp, K., Rinehart, C., Quilton, J., Walsh, R., Smallwood, A. et al. (2010). Conserved antagonism between JMJD2A/KDM4A and HP1γ during cell cycle progression. Mol. Cell 40, 736-748.

Black, J. C., Van Rechem, C. and Whetstone, J. R. (2012). Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol. Cell 48, 491-507.

Black, J. C., Manning, A. L., Van Rechem, C., Kim, J., Ladd, B., Cho, J., Pineda, C. M., Murphy, N., Daniels, D. L., Montagna, C. et al. (2013). KDM4A lysine demethylase induces site-specific copy gain and reereplication of regions amplified in tumors. Cell 154, 541-555.

Bocker, T., Diermann, J., Friedl, W., Gebert, J., Holinski-Feder, E., Karner-Hanusch, J., von Knebel-Doebertz, M., Koebel, K., Moelein, G., Schackert, H. K. et al. (1997). Microsatellite instability analysis: a multicenter study for reliability and quality control. Cancer Res. 57, 4739-4743.

Boland, C. R., Thibodeau, S. N., Hamilton, S. R., Sidransky, D., Eshleman, J. R., Burt, R. W., Meltzer, S. J., Rodriguez-Bigas, M. A., Fodde, R., Ranzani, G. N. et al. (1998). A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 58, 5248-5257.

Branch, P., Hampson, R. and Karran, P. (1995). DNA mismatch binding defects, DNA damage tolerance, and mutator phenotypes in human colorectal carcinoma cell lines. Cancer Res. 55, 2304-2309.

Chen, Z., Zang, J., Whetstone, J., Hong, X., Davrazou, F., Kutateladze, T. G., Simpson, M., Mao, Q., Pan, C. H., Dai, S. et al. (2006). Structural insights into histone demethylation by JMJD2 family members. Cell 125, 691-702.

Cloos, P. A., Christensen, J. A., Agger, K., Maiolica, A., Rapp, S., Antal, T., Hansen, K. H. and Helin, K. (2006). The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 442, 307-311.

Couture, J. F., Collazo, E., Ortiz-Tello, P. A., Brunelle, J. S. and Trievel, R. C. (2007). Specificity and mechanism of JMJD2A, a trimethyllysine-specific histone demethylase. Nat. Struct. Mol. Biol. 14, 689-695.
Ehrbracht, M., Müller, U., Wolter, M., Hoischen, A., Koch, A., Radlwwimmer, B.,
Actor, B., Mincheva, A., Plettsch, T., Lichter, P. et al. (2006). Comprehensive
genomic analysis of desmoplastic medulloblastomas: identification of novel
amplified genes and separate evaluation of the different histological
components. J. Pathol. 208, 554-563.

Ellegren, H. (2004). Microsatellites: simple sequences with complex evolution.
Nat. Rev. Genet. 5, 435-445.

Eshelman, J. R., Lang, W. M., Boweford, G. K., Parsons, R., Vogelstein, B.,
Watters, J. K., Wannier, M. L., Sedwick, D. W. and Markowitz, S. D. (1995).
Increased mutation rate at the hprt locus accompanies microsatellite instability
in colon cancer. Oncogene 10, 33-37.

Glab, W. E. and Tindall, K. R. (1997). Mutation rate at the hprt locus in human
cancer cell lines with specific mismatch repair-gene defects. Carcinogenesis 18,
1-8.

Glab, W. E., Risinger, J. I., Umah, A., Barrett, J. K., Kuncl, T. A. and Tindall,
K. R. (1997). Resistant thymidine in mismatch repair-deficient human
cancer cell lines correlates with an increase in induced mutations at the HPRT
locus. Carcinogenesis 19, 1931-1937.

Haydon, A. M. and Jass, J. R. (2002). Emerging pathways in colorectal-cancer
development. Lancet Oncol. 3, 83-92.

Hillringhaus, L., Yue, W. W., Rose, N. R., Ng, S. S., Gileadi, C., Loenarz, C.,
Bello, S. H., Bray, J. E., Schofield, C. J. and Opperman, U. (2011). Structural
volutionary and direction for the basis of subspecies selectivity of human
KDM4 histone demethylase family. J. Biol. Chem. 286, 141616-141625.

Hsieh, P. and Yamane, K. (2008). DNA mismatch repair: molecular mechanism,
cancer, and ageing. Mech. Ageing Dev. 129, 391-407.

Ipenberg, I., Kuttman-Ravin, N., Khoury, H. P., Suprersmith, I. and Ayoub, N.
(2015). The JAK2 MRN pathway activates the JAK2 and JMD2C. Cancer
Genet. Cytogeten. 167, 122-130.

Jack, A. P., Bussemer, S., Hahn, M., Pünzeler, S., Snyder, M., Wells, M.,
Csankovszki, G., Solovei, I., Schotta, G. and Hake, S. B. (2006). Molecular
cytogenetic characterization of a metastatic lung cancer with a chromosomal
amplification including JAK2 and JMJD2C. Am. J. Hum. Genet. 80, 438-448.

Kawazu, M., Saso, K., Tong, K. I., McQuire, T., Goto, K., Son, D. O., Wakeham,
Kat, A., Thilly, W. G., Fang, W. H., Longley, M. J., Li, G. M. and Modrich, P.
(2004). Amelioration of the mismatch repair-deficient phenotype in
radiosensitive human colorectal cell lines. Nat. Genet. 36, 459-465.

Kupershmit, I., Khoury-Haddad, H., Awwad, S. W., Guttmann-Raviv, N. and
Willson, J. K., Veigl, M. L., Sedwick, W. D. and Markowitz, S. D.
(2011). Heat shock protein 90 (Hsp90) selectively regulates the stability of
components.

Li, W., Zhao, L., Zang, W., Liu, Z., Chen, L., Liu, T., Xu, D. and Jia, J. (2006).
Histone demethylase by JMJD2C and LSD1 promotes androgen receptor-dependent
cellular transformation. Proc. Natl. Acad. Sci. USA 103, 20173-20178.

Li, F., Mao, G., Tong, D., Huang, J., Gu, L., Yang, W. and Li, G. M. (2012).
JMD2B functions as a co-factor of estrogen receptor in breast cancer
break repair.

Csankovszki, G., Solovei, I., Schotta, G. and Hake, S. B. (2006). Reversal of histone
lysine 9 trimethylation by the JMJD2 family of histone demethylases.
Proc. Natl. Acad. Sci. USA 103, 7774-7779.

Li, W., Zang, W., Liu, Z., Chen, L., Liu, T., Xu, D. and Jia, J. (2011). Histone demethylase
JMD2B is a novel, conserved histone demethylase mark that largely but not completely overlaps
with H3K9me3 in both regulation and localization. PLOS ONE 6, e15765.

Kat, A., Thilly, W. G., Fang, W. H., Longley, M. J., Li, G. M. and Modrich, P.
(1993). An alkylaton-tolerant, mutator human cell line is deficient in strand-
separating mismatch repair. Proc. Natl. Acad. Sci. USA 90, 5447-5451.

Kawazu, M., Saso, K., Tong, K. I., McQuire, T., Goto, K., Son, D. O., Wakeham,
Kat, A., Thilly, W. G., Fang, W. H., Longley, M. J., Li, G. M. and Modrich, P.
(2004). Amelioration of the mismatch repair-deficient phenotype in
radiosensitive human colorectal cell lines. Nat. Genet. 36, 459-465.

Khoury-Haddad, H., Guttman-Ravin, N., Ipenberg, I., Huggins, D.,
Jeyasekaran, A. D. and Ayoub, N. (2014). PARPi-dependent recruitment of
KDM4 histone demethylase to DNA damage sites promotes double-strand
brack repair. Proc. Natl. Acad. Sci. USA 111, E728-E737.

Kim, T. D., Oh, S., Shin, S. and Janknecht, R. (2012). Regulation of tumor
suppressor p53 and HCT116 cell biology by histone demethylase JMD2D/
JMD2C. PLoS ONE 7, e42618.

Klose, R. J., Kallin, E. M. and Zhang, Y. (2006a). JmC-domain-containing
proteins and histone demethylation. Nat. Rev. Genet. 7, 715-727.

Klose, R. J., Yamane, K., Bae, Y., Zhang, D., Erdjumb-Bromage, H., Tempst,
P., Wong, J. and Zhang, Y. (2006b). The transcriptional repressor JMDNSA
demethylates histone H3 lysine 9 and lysine 36. Nature 442, 312-316.

Kupershmit, I., Khoury-Haddad, I., Awwad, S. W., Guttman-Ravin, N.
and Ayoub, N. (2014). KDM4C (GASC1) lysine demethylase is associated with
mitotic chromatin organization and regulates chromosome segregation during mitosis.
Nucleic Acids Res. 42, 6186-6192.

Labbé, R. R., Holowatyi, A. and Yang, Z. Q. (2013). Histone lysine demethylase
(KDM) subfamily: 4 structures, functions and therapeutic potential. Am.
J. Transl. Res. 6, 1-15.

Lee, M., Daniels, M. J. and Venkitaraman, A. R. (2004). Phosphorylation of
BRCA2 by the Polo-like kinase Plk1 is regulated by DNA damage and mitotic
progression. Oncogene 23, 865-872.

Li, W., Zhang, Y., Liu, Z., Chen, L., Liu, T., Xu, D. and Jia, J. (2011).
Histone demethylase JMD2B is required for tumor cell proliferation and
survival and is overexpressed in gastric cancer. Biochem. Biophys. Res.
Commun. 416, 372-378.

Li, F., Mao, G., Tong, D., Huang, J., Gu, L., Yang, W. and Li, G. M. (2013).
The histone mark H3K36me3 regulates human DNA mismatch repair through its
interaction with MutSx. Cell 153, 590-600.

Liu, G., Bollig-Fischer, A., Kreike, B., van de Vijver, M. J., Abrams, J., Ethier, S.
P. et al. (2010). Genomic amplification of the
GASCI histone gene in breast cancer. Oncogene 28, 4491-4500.

Loh, Y. H., Zhang, W., Chen, X., George, J. and Ng, H. H. (2007). Jm1d1a
and Jm1d2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem
cells. Dev. Cell 13, 275-286.

Lorbeck, M. T., Singh, N., Zervos, A., Dhatta, M., Lapchenko, M., Yang, C.
and Elefant, F. (2010). The histone demethylase DmeA controls genes required
for life span and male-specific sex determination in Drosophila. Gene 450, 8-17.

Lou, X., Zhang, R., Pandey, R. and Garg, P. S. (2012). Jmd2 histone
demethylase JMD2C is a coactivator for hypoxia-inducible factor 1 that is required
for breast cancer progression. Proc. Natl. Acad. Sci. USA 109, E3367-E3376.