Black holes in Hořava gravity with higher derivative magnetic terms

Eyal Gruss
Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel
E-mail: eyalgruss@gmail.com

Received 4 December 2010, in final form 28 January 2011
Published 22 March 2011
Online at stacks.iop.org/CQG/28/085007

Abstract
We consider Hořava gravity coupled to Maxwell and higher derivative magnetic terms. We construct static spherically symmetric black hole solutions in the low-energy approximation. We calculate the horizon locations and temperatures in the near-extremal limit, for asymptotically flat and (anti-)de Sitter spaces. We also construct a detailed balanced version of the theory, for which we find projectable and non-projectable, non-perturbative solutions.

PACS number: 04.70.Dy

1. Introduction
Hořava has recently proposed a theory of gravity which is power-counting renormalizable and possibly unitary [1]. This is achieved by assigning different scaling dimensions to time and space, at the cost of breaking Lorentz and diffeomorphism invariance at high energies. In four-dimensional Hořava gravity, one usually considers an anisotropic scaling exponent of $z = 3$, such that $t \sim x^{3z}$. This means that the Lagrangian should include higher spatial derivative terms up to sixth order. One may also consider couplings to scalar [2–5] and vector [2, 5–7] fields with higher derivatives terms. There is an ongoing discussion regarding possible flaws of the theory. We refer to the latest reviews on these subjects [8], and references therein.

The study of black hole solutions and thermodynamics in general relativity with higher curvature corrections has been pioneered by [9]. There, large black hole solutions were obtained by treating the higher curvature terms as a small perturbation. Black hole solutions in Hořava gravity and their thermodynamics have been discussed in [10–17]. In particular, charged black holes in Hořava gravity coupled to the usual Maxwell term are discussed in [11, 16]. In this work, we add higher derivative magnetic terms to the mix, and discuss black hole solutions and thermodynamics.

The paper is organized as follows. In section 2, we discuss Hořava–Maxwell theory with higher derivative magnetic terms. In section 3, we discuss static spherically symmetric...
black hole solutions in the low-energy approximation. In section 3.1, we calculate the horizon locations and temperatures for near-extremal asymptotically flat black holes. In section 3.2, we do the same for near-cold asymptotically (anti-)de Sitter black holes. In section 4, we discuss a detailed balanced version of the theory, and find non-perturbative solutions.

2. Hořava–Maxwell theory

We use the ADM formalism where the metric is parameterized as
\[ds^2 = -N^2 dt^2 + g_{ij}(dx^i + N^i dt)(dx^j + N^j dt), \]
where \(i, j \) run over spatial coordinates. The extrinsic curvature is given by
\[K_{ij} = \frac{1}{2N} (\dot{g}_{ij} - \nabla_i N_j - \nabla_j N_i), \quad K \equiv K^i_i, \]
where ‘dot’ denotes a derivative with respect to \(t \). The four-dimensional Ricci scalar may be decomposed (see e.g. [18]) as
\[(4) R = R + K_{ij}K^{ij} - K^2 + (\text{covariant derivative}), \]
where \(R \) is the three-dimensional Ricci scalar. The last term contributes a total derivative in the Einstein–Hilbert Lagrangian, and may be dropped in this case. Note, however, that this will not be true in general for higher curvature terms. Thus, Hořava gravity, which is of higher curvature in \(R \), will differ from the more common \(R \) higher curvature theories, even for static solutions. The Cotton tensor is given by
\[C_{ij} = \epsilon^{ikl} \sqrt{g} \nabla_k (R_{jl} - \frac{1}{4} R \delta^l_j), \]
where \(\epsilon^{ijl} = 1, g \equiv \det(g_{ij}), \) and \(R_{ij} \) is the three-dimensional Ricci tensor.

Hořava’s ‘detailed balance’ Lagrangian density [1] is given by \(\mathcal{L}_{\text{Hořava}} = \mathcal{L}_0 + \mathcal{L}_1 \), with
\[\frac{1}{N} \sqrt{g} \mathcal{L}_0 = \frac{2}{\kappa^2} (K_{ij}K^{ij} - \lambda K^2) + \frac{\kappa^2 \mu^2}{8(1 - 3\lambda)} \left(\Lambda_W R - 3\Lambda_W^2 \right), \]
\[\frac{1}{N} \sqrt{g} \mathcal{L}_1 = \frac{\kappa^2 \mu^2 (1 - 4\lambda)}{32(1 - 3\lambda)} R^2 - \frac{\kappa^2 \mu^2}{8} R_{ij} R^{ij} + \frac{\kappa^2 \mu}{2w^2} \sqrt{g} R_{ij} \nabla_i R^j - \frac{\kappa^2}{2w^4} C_{ij} C^{ij}, \]
where \(\kappa, \lambda, \mu, \Lambda_W \) and \(w \) are constant parameters. Comparing \(\mathcal{L}_0 \) to the Einstein–Hilbert Lagrangian, these parameters are related to the speed of light, Newton’s constant and the cosmological constant by
\[c = \frac{k^2 \mu}{4} \sqrt{\frac{\Lambda_W}{1 - 3\lambda}}, \quad G_N = \frac{k^2}{32\pi c}, \quad \Lambda = \frac{3}{2} \Lambda_W, \]
respectively. We want this theory to reduce to general relativity in the low-energy limit. We therefore first set \(\lambda = 1 \). Choosing units so that \(c = 1 \) shows the coefficients of the \(R^2, R_{ij} R^{ij} \) terms in \(\mathcal{L}_1 \) to be inversely proportional to \(\Lambda_W \), with no additional free parameters. In order to allow both the cosmological constant term and the higher curvature terms to be small, we must deform the theory to break the relation between these terms [1, 10]. As long as we do not change the form of the six-derivative \(C_{ij} C^{ij} \) term, this is considered as a soft violation of the detailed balance condition. We will write this as \(\mathcal{L}_{\text{deformed}} = \mathcal{L}_0 + \epsilon a_0 \Lambda_W \mathcal{L}_1 \), where \(a_0 \) is a constant parameter, and \(\epsilon > 0 \) will be used later as a small expansion parameter. In this parameterization \(\Lambda_W \) factors out, leaving the now independent usual cosmological constant term (see e.g. (15)).
We now consider electromagnetic interactions. Maxwell's Lagrangian density in the ADM decomposition takes the form
\[
\frac{\gamma}{N\sqrt{\tilde{g}}} L_2 = \frac{2}{N^2} g^{ij} (F_{ii} - N^k F_{ki})(F_{ij} - N^l F_{lj}) - F_{ij} F^{ij},
\]
where \(\gamma = 16\pi G c^{-1}\) fixes the normalization in relation to the gravity part, and with the field strength given by
\[
F_{ii} = \dot{A}_i - \partial_i A_t, \quad F_{ij} = \partial_i A_j - \partial_j A_i,
\]
where \((A_t, A_i)\) is the vector potential. We will add minimally coupled higher derivative magnetic terms as considered in [5, 6]
\[
\frac{\gamma}{N\sqrt{\tilde{g}}} L_3 = -a_1 \nabla_i F_{ij} \nabla^i F^{ij} - a_2 \nabla_i \nabla_j F_{ij} \nabla^i \nabla^j F^{ij},
\]
where \(a_1\) and \(a_2\) are constant parameters. Constraints on the magnitude of \(a_2\) are discussed in [6]. Note that contrary to the case of [5, 6] which consider cosmological backgrounds, terms related by integration by parts to the RHS of (9) are relevant since \(N\) is space dependent (in the non-projectable case). Nevertheless such terms are not considered here. Note also that in the spherically symmetric case considered later, \(\nabla_j F^{ij} = 0\) and \(\Delta F^{ij} = \frac{1}{2} \epsilon^{ijk} \epsilon^{lmn} R_{kl} F_{mn}\).

Therefore, we have not considered here terms containing such derivatives. In section 4, we consider a detailed balanced version of Ho\v{r}ava–Maxwell theory, which does include such terms.

We take our overall Lagrangian to be
\[
\mathcal{L} = L_0 + \epsilon a_0 \Lambda W L_1 + L_2 + \epsilon L_3.
\]
Finally, we make the large black hole (or low-energy) approximation, in the spirit of [9]. We require that the gravitational and magnetic higher derivative terms are small compared to \(R\) and \(F_{ij} F^{ij}\), respectively. In our analysis, this will usually mean
\[
\epsilon |a_0| \ll r_{\text{hor}}^2, \quad \epsilon |a_1| \ll r_{\text{hor}}^4, \quad \epsilon |a_2| \ll r_{\text{hor}}^6,
\]
where \(r_{\text{hor}}\) is the location of the horizon of interest, and \(p\) is the magnetic charge. However, for asymptotically anti-de Sitter solutions with a large (negative) cosmological constant, \(|\Lambda W| r_{\text{hor}}^2 \gg 1\), the conditions instead read
\[
\epsilon |a_0 \Lambda W| \ll 1, \quad \epsilon |a_1| \ll r_{\text{hor}}^4, \quad \epsilon |a_2 \Lambda W| \ll r_{\text{hor}}^6.
\]
This may be seen from (20). We will construct perturbative solutions of this theory to first order in \(\epsilon\). Our calculations were done using Maple with GRTensor.

3. Static spherically symmetric black holes

We consider static spherically symmetric solutions, where the metric takes the form
\[
ds^2 = (-N(r)^2 + N_t(r)^2 f(r))\, dt^2 + 2N_t(r)\, dt\, dr + \frac{1}{f(r)}\, dr^2 + r^2 (d\theta^2 + \sin^2 \theta \, d\phi^2),
\]
where we have retained the shift function \(N_t\) as discussed in [13–15]. The vector potential takes the form
\[
A_t = A(r), \quad A_r = A_\theta = 0, \quad A_\phi = -p \cos \theta.
\]
Substituting the above ansatz into the Lagrangian density, we obtain
\[
\frac{\sqrt{f}}{N} r^6 \mathcal{L}_{\text{reduced}} \propto 3 \Lambda_w r^8 + 2 f' r^7 + 2 f r^6 - r^6 + \epsilon \alpha_0 (2 f' f r^5 - 2 f' r^5 - f'^2 r^4 + 2 f r^4 - r^4)
\]
\[
- \frac{2 f}{N^2} A'^2 r^2 + 2 p^2 r^2 + 12 \epsilon \alpha_1 p^2 f r^2 + 3 \epsilon \alpha_2 p^2 (f'^2 r^2 - 12 f' f r + 60 f^2)
\]
\[
+ \frac{2 f}{c^2 N^2} (2 N' f r^3 + N'^2 f' r^2 + N_r^2 f r^6),
\]
where prime denotes a derivative with respect to \(r \), and we have omitted an overall factor independent of \(r \). Varying \(\mathcal{L}_{\text{reduced}} \) with respect to \(N, N_r, f \) and \(A \) yields the equations of motion, the latter giving
\[
A' = \frac{N q}{\sqrt{f} r^2},
\]
where \(q \) is the electric charge.

The variation by \(N_r \) gives
\[
\frac{N_r f^{3/2} r}{N} \left(\frac{2 N'}{N} - \frac{f'}{f} \right) = 0.
\]
Let us first consider the case \(N_r \neq 0 \). The motivation here is to obtain solutions to the projectable version of Hořava gravity, where \(N = N(t) \) \([1, 13, 16]\). In our static case, \(N \) must then be constant, implying that also \(f \) is constant due to (17). For \(\alpha_1 = \alpha_2 = 0 \), uncharged and charged solutions of \(N_r \) were discussed in \([13]\) and \([16]\), respectively\(^1\). For general \(\alpha_1 \neq 0 \) or \(\alpha_2 \neq 0 \), we find there are no magnetically charged solutions to the equations of motion. Black hole thermodynamics when \(N_r \neq 0 \) is discussed in \([15]\). From here on we assume \(N_r = 0 \).

The zeroth-order solution is the Reissner–Nordström–(anti-)de Sitter black hole:
\[
N_0^2 = f_0 = -\frac{\Lambda_w}{2} r^2 + 1 - \frac{2 m_0}{r} + \frac{q^2 + p^2}{r^2},
\]
where \(m_0 \) is the mass at zeroth order (see however \([17]\)). For \(\alpha_1 = \alpha_2 = 0 \), uncharged and charged non-perturbative solutions were obtained in \([10]\) and \([11, 16]\), respectively\(^2\). For the general case, we will look for solutions to first order in \(\epsilon \), in the form
\[
f = f_0 (1 + \epsilon \psi), \quad N^2 = f (1 + \epsilon \eta).
\]
Note that in the expression for \(N^2 \) we use \(f \) rather than \(f_0 \), and truncate above order \(\epsilon \). The solution reads
\[
\psi = \left[105 \alpha_0 (\Lambda_w^3 r^{12} - 4 \Lambda_w (q^2 + p^2) r^8 + 16 m_0^2 r^6 - 16 m_0 (q^2 + p^2) r^5 + 4 (q^2 + p^2)^2 r^4)
\right.
\]
\[
+ 168 \alpha_1 p^2 (15 \Lambda_w r^8 - 10 r^6 + 15 m_0^2 r^5 - 6 (q^2 + p^2) r^4)
\]
\[
+ 8 \alpha_2 p^2 (1575 \Lambda_w^3 r^8 - 2520 \Lambda_w m_0 r^6 - 4095 \Lambda_w m_0^2 r^5 + 1764 \Lambda_w (q^2 + p^2) r^4 - 1890 r^4)
\]
\[
+ 6930 m_0^2 r^3 - 6570 m_0 q^2 r^2 - 3240 (q^2 + p^2) r^3 + 6300 m_0 (q^2 + p^2) r - 1540 (q^2 + p^2)^2)
\]
\[
+ 1680 m_0 \eta \delta^9 \right] /[420 (\Lambda_w r^{12} - 2 r^{10} + 4 m_0 r^9 - 2 (q^2 + p^2) r^8)],
\]
and
\[
\eta = 3 p^2 \left(\frac{-a_1 + 9 a_2 \Lambda_w}{r^4} - \frac{10 a_2}{r^6} + \frac{96 a_2 m_0}{7 r^7} - \frac{4 a_2 (q^2 + p^2)}{r^8} \right),
\]
where \(\delta \) is an integration constant, and we have assumed that the \(\epsilon \)-corrections vanish at infinity. Since in general \(\eta \neq 0 \), \(N^2 \) is not proportional to \(f \). Thus, there is no transformation

\(^1\) See e.g. \((55)\) with \(\beta = 0 \), assuming \(\epsilon m_0 \Lambda_w = 1 \).

\(^2\) See e.g. \((56)\) with \(\beta = 0 \), assuming \(\epsilon m_0 \Lambda_w = 1 \).
of coordinates that would yield a corresponding projectable solution [13], as indeed expected in light of the above discussion.

Looking at $N(r)^2$, one sees that the δ-term is just an explicit ϵ-correction to the mass $m = m_0(1 + \epsilon \delta)$. We assume that the horizon locations of the black hole are given by the roots of $g_{tt} = N(r)^2 = 0$, as in the relativistic case (see [14] for a discussion of the notion of horizon in Hořava gravity). One may set δ to make $q(r)$ and $\eta(r)$ nonsingular on the unperturbed black hole event horizon, as done in [9]. This would mean that the event horizon location does not get an ϵ-correction. However, the mass then has a fixed ϵ-correction, and this depends nontrivially on the zeroth-order mass m_0. Also, other horizons of the solution do get ϵ-corrections. We will take the alternate route of leaving δ free, and finding all horizon locations perturbatively, designating $r_{\text{hor}} = r_0(1 + \epsilon \rho)$, with $\epsilon |\rho| \ll 1$. Note that in the near-horizon region, $f(r)$ and $N(r)^2$ now get an additional ϵ-correction due to ρ in $f_0(r)$, and it is the overall correction that should be small.

The Hawking temperature of our static spherically symmetric black hole (with $N_r = 0$, otherwise see [15]) is given by

$$T = \frac{|g_{rr}'|}{4\pi \sqrt{-g_{tt}g_{rr}}} \bigg|_{r = r_{\text{hor}}} = \frac{|N'\sqrt{|f|}|}{2\pi \bigg|_{r = r_{\text{hor}}}}. \tag{22}$$

Note that for asymptotically de Sitter black holes, the temperature may need to include the Bousso–Hawking normalization factor [19], not considered here. We do not calculate the Bekenstein–Hawking area law entropy, as it is expected that the entropy would be corrected by the higher derivative terms. In fully diffeomorphism-invariant theories, this is computed by the Wald entropy [20]. However, as mentioned in [14], it is not clear how to do this in our diffeomorphism breaking theory. In the following, we will analyze the horizon locations and temperatures for some simplified cases of black holes.

3.1. Asymptotically flat black holes

We first consider asymptotically flat black holes with $\Lambda_W = 0$ (holding c finite). The zeroth-order inner and outer horizons are given by

$$r_0^{\text{in}} = m_0 - \sqrt{m_0^2 - q^2 - p^2}, \quad r_0^{\text{out}} = m_0 + \sqrt{m_0^2 - q^2 - p^2}. \tag{23}$$

The expressions for the first-order corrections are lengthy, and to be concise we will consider only the extremal and near-extremal cases. The extremal limit is determined by $r_0^{\text{in}} = r_0^{\text{out}}$, which is satisfied at zeroth order by

$$r_0^{\text{ext}} = m_0^{\text{ext}} = \sqrt{q^2 + p^2}. \tag{24}$$

At this extremum point, the first-order correction to the horizon location will not affect $N(r)^2$ to first order in ϵ. In order to satisfy $N(r)^2 = 0$, one must set

$$\delta^{\text{ext}} = -\frac{105a_0(q^2 + p^2)^2 + 42a_1(q^2 + p^2)p^2 + 20a_2p^2}{420(q^2 + p^2)^3}, \tag{25}$$

correcting the extremal mass. It is conjectured that the mass–charge ratio of extremal black holes is decreased by higher curvature corrections [21], implying $\delta^{\text{ext}} < 0$. The first-order correction to the extremal horizon may then be obtained either by taking the limit of the non-extremal case, or by satisfying $(N(r)^2)' = 0$, that is, having the temperature vanish. It reads

$$\rho^{\text{ext}} = -\frac{a_0}{4(q^2 + p^2)}. \tag{26}$$
Note that the extremal horizon does not depend on a_1, a_2.

In the near-extremal approximation, we parameterize the mass as

$$m = m^{\text{extr}} \sqrt{1 + \Delta^2}, \quad m^{\text{extr}} = m_0^{\text{extr}} (1 + \epsilon \delta^{\text{extr}}),$$

and expand all expressions to leading order in $\Delta \ll 1$. The horizon locations satisfying $N(r)^2 = 0 + O(\Delta)$) are given at zeroth order in ϵ by

$$r_0^\text{in} = \sqrt{q^2 + p^2}(1 - \Delta) + O(\Delta^2), \quad r_0^\text{out} = \sqrt{q^2 + p^2}(1 + \Delta) + O(\Delta^2),$$

and at first order in ϵ by

$$\rho^\text{in} = -105a_0(q^2 + p^2)^2 - 336a_1(q^2 + p^2) p^2 \Delta - 100a_2 p^2 \Delta + O(\Delta^2),$$

$$\rho^\text{out} = -105a_0(q^2 + p^2)^2 + 336a_1(q^2 + p^2) p^2 \Delta + 100a_2 p^2 \Delta + O(\Delta^2).$$

The Hawking temperature is

$$T^\text{out} = \frac{\Delta}{2\pi \sqrt{q^2 + p^2}} \left(1 + \epsilon \frac{525a_0(q^2 + p^2)^2 - 294a_1(q^2 + p^2) p^2 - 80a_2 p^2}{420(q^2 + p^2)^3} \right) + O(\Delta^2 + \epsilon^2).$$

3.2. Asymptotically (anti-)de Sitter black holes

We now consider asymptotically (anti-)de Sitter black holes with $\Lambda_W \neq 0$. In the de Sitter case, having $\Lambda_W > 0$ (holding c positive by analytic continuation), there exists a cosmological horizon denoted r^{\cosm}. Let us recall the classification of the limiting cases of Reissner–Nordström–de Sitter black holes [19, 22]:

(a) lukewarm: $r^\text{in} < r^\text{out} < r^{\cosm}$ and $T^\text{out} = T^{\cosm}$;
(b) charged Nariai: $r^\text{in} < r^\text{out} = r^{\cosm}$;
(c) cold: $r^\text{in} = r^\text{out} < r^{\cosm}$;
(d) ultracold: $r^\text{in} = r^\text{out} = r^{\cosm}$.

In the anti-de Sitter case, $\Lambda \ < 0$, and the only relevant limit is the cold black hole: $r^\text{in} = r^\text{out}$. Together with the flat case, these limiting cases (and their ‘near’ versions) have a concise zeroth-order form for the horizon location. We will first consider the cold and ultracold limits. We will then extend to the near-cold black hole: $r^\text{in} \lesssim r^\text{out}$. For the latter to be concise also at first order in ϵ, we will consider the near-flat approximation $|\Lambda_W| (q^2 + p^2) \ll 1$.

The zeroth-order cold black hole metric function is of fourth degree in r and has a double zero. It may be written as

$$(N^\text{cold}_0)^2 = -\frac{\Lambda_W}{2\Delta^2} (r - A)(r - B)(r - C),$$

where A, B, C are constants. Equating (31) with (18) and comparing powers of r, one obtains

\begin{align*}
A + 2B + C &= 0, \\
3\Lambda_W B^2 + 2\Lambda_W BC + \Lambda_W C^2 - 2 &= 0, \\
\Lambda_W B^3 - B + m_0 &= 0, \\
3\Lambda_W B^4 - 2B^2 + 2(q^2 + p^2) &= 0.
\end{align*}

This gives

$$r_0^\text{cold} = B = \sqrt{\frac{2(q^2 + p^2)}{\sqrt{1 - 6\Lambda_W(q^2 + p^2)} + 1}}.$$
and
\[m_0^{\text{cold}} = \frac{B}{3}(2 + \sqrt{1 - 6\Lambda_w (q^2 + p^2)}), \] (34)
where for \(\Lambda_w > 0 \) we have assumed \(B \leq C \), and in that case we have also
\[r_0^{\text{cosm}} = C = -B + \sqrt{\frac{4 + 2\sqrt{1 - 6\Lambda_w (q^2 + p^2)}}{3\Lambda_w}}. \] (35)

As in the extremal flat case, to satisfy \(N(r)^2 = 0 \) to first order in \(\epsilon \), one must correct the cold black hole mass by setting
\[\delta^{\text{cold}} = \left[70a_0(q^2 + p^2)^2(-7 + 12\Lambda_w (q^2 + p^2) - 2\sqrt{1 - 6\Lambda_w (q^2 + p^2)}) + 126a_1(q^2 + p^2)p^2(1 - 18\Lambda_w (q^2 + p^2) + \sqrt{1 - 6\Lambda_w (q^2 + p^2)}) + 3a_2p^2(20 - 318\Lambda_w (q^2 + p^2) + 2844\Lambda_w (q^2 + p^2)^2 - 23\sqrt{1 - 6\Lambda_w (q^2 + p^2)}) + 43(1 - 6\Lambda_w (q^2 + p^2))^{3/2}) \right] \frac{1 + \sqrt{1 - 6\Lambda_w (q^2 + p^2)}}{1680(q^2 + p^2)^3(2 + \sqrt{1 - 6\Lambda_w (q^2 + p^2)})). \] (36)

The first-order correction to the cold horizon location reads
\[\rho^{\text{cold}} = -a_0 1 + \frac{\sqrt{1 - 6\Lambda_w (q^2 + p^2)}}{8(q^2 + p^2)\sqrt{(1 - 6\Lambda_w (q^2 + p^2))}}. \] (37)

Here, again the cold horizon does not depend on \(a_1, a_2 \). The full expressions for the cosmological horizon location and temperature are more cumbersome, and will be given later in the near-flat limit.

The ultracold limit is determined by \(r^{\text{cold}} = r^{\text{cosm}} \), which is satisfied at zeroth order by
\[\Lambda_0^{\text{UC}} = \frac{1}{6(q^2 + p^2)}, \] (38)
and
\[r_0^{\text{UC}} = \frac{m_0^{\text{UC}}}{3} = \sqrt{2(q^2 + p^2)}. \] (39)

where we have denoted \(\Lambda_w = \Lambda_0(1 + \epsilon \upsilon) \), and we expand in \(\epsilon \) before taking the ultracold limit. Note that the first-order corrections to the mass and horizon location now also get a contribution from their respective zeroth-order terms due to \(\upsilon \). Thus, the \(\epsilon \)-correction in the expansion of \((33) \) serves to cancel out the divergency of \((37) \) in limit \((38) \). The overall first-order terms are given by
\[\upsilon^{\text{UC}} = \frac{a_0}{2(q^2 + p^2)}, \]
\[\delta^{\text{UC}} = \frac{-280a_0(q^2 + p^2)^3 - 126a_1(q^2 + p^2)p^2 + 69a_2p^2}{1680(q^2 + p^2)^3}, \]
\[\rho^{\text{UC}} = -\frac{a_0}{4(q^2 + p^2)}. \] (40)

In the near-cold approximation, we parameterize the mass as
\[m = m^{\text{cold}}\sqrt{1 + \Delta^2}, \]
\[m^{\text{cold}} = m_0^{\text{cold}}(1 + \epsilon \delta^{\text{cold}}), \] (41)
and expand all expressions to leading order in \(\Delta \ll 1 \). The horizon locations satisfying \(N(r)^2 = 0 + O(\Delta^3) \) are given at zeroth order in \(\epsilon \) by
\[r_0^{\text{in}} = b(1 - a_0\Delta) + O(\Delta^2), \]
\[r_0^{\text{out}} = b(1 + a_0\Delta) + O(\Delta^2), \]
\[r_0^{\text{cosm}} = c(1 + a_0\Delta^2) + O(\Delta^2), \] (42)
where

\[
\alpha_b = \frac{2}{3\sqrt{1 - 6\Lambda_W(q^2 + p^2)}}
\]

\[
\alpha_c = \frac{2 + S(1 - S - \sqrt{4 - 2S - 2S^2})}{6(8 - 2S^2 - 4\sqrt{4 - 2S - 2S^2} - S\sqrt{4 - 2S - 2S^2})}, \quad S = \sqrt{1 - 6\Lambda_W(q^2 + p^2)}.
\]

(43)

We now take the near-flat approximation by expanding to leading order in \(L = |\Lambda_W| (q^2 + p^2) \ll 1 \). The mass, horizon locations and temperatures of the near-cold near-flat black hole are given by

\[
m_0^{\text{cold}} = \sqrt{q^2 + p^2} \left(1 - \frac{L}{4} \right) + O(L^2),
\]

\[
r_0^{\text{in}} = \sqrt{q^2 + p^2} \left(1 + \frac{3L}{4} - \Delta - \frac{7L\Delta}{4} \right) + O(L^2 + \Delta^2),
\]

\[
r_0^{\text{out}} = \sqrt{q^2 + p^2} \left(1 + \frac{3L}{4} + \Delta + \frac{7L\Delta}{4} \right) + O(L^2 + \Delta^2),
\]

\[
T_0^{\text{cosm}} = \sqrt{2} L^{1/2} \left(1 - \frac{\Delta^2}{2} \right) + O(L^3/2 + \Delta^4).
\]

where \(L = 0 \) designates the near-extremal flat case results of the previous section. For \(\Delta = 0 \), we obtain the cold near-flat limit.

4. A detailed balanced Hořava–Maxwell theory

Detailed balanced Hořava gravity was presented in [1]. A detailed balanced version of the theory coupled to a scalar field was derived in [4]. Here, we discuss a detailed balanced version of Hořava gravity coupled to Maxwell and higher derivative magnetic terms. Detailed balance is a symmetry condition which serves to reduce the number of terms in the Lagrangian. This allows one in our case to yield analytic non-perturbative solutions.
The detailed balance Lagrangian density will be given by \(\mathcal{L} = \mathcal{L}_K - \mathcal{L}_V \). The kinetic part is the same as before:

\[
\frac{1}{N} \sqrt{\mathcal{R}} \mathcal{L}_K = \frac{2}{k^2} (K_{ij} K^{ij} - \lambda K^2) + \frac{2}{\gamma N^2} g^{ij} (F_{ji} - N^k F_{ki})(F_{ij} - N^l F_{lj}). \tag{45}
\]

The potential part is defined to be of the form

\[
\frac{1}{N} \sqrt{\mathcal{R}} \mathcal{L}_V = \frac{\kappa^2}{8} G_{ijkl} E_{ij} E_{kl} + \frac{1}{2\gamma} E_i E^i, \tag{46}
\]

with the generalized de Witt metric

\[
G_{ijkl} = \frac{1}{2} (g_{ik} g_{jl} + g_{il} g_{jk}) + \frac{\lambda}{1 - 3\lambda} g_{ij} g_{kl}, \tag{47}
\]

and where

\[
E_{ij} = \frac{1}{\sqrt{\mathcal{g}}} \delta W \delta g_{ij}, \quad E^i = \frac{1}{\sqrt{\mathcal{g}}} \delta W \delta A_i, \tag{48}
\]

for some three-dimensional Euclidean Lagrangian density \(W \). For \(z = 3 \), \(W \) should include up to three spatial derivatives.

The gravitational part of \(W \), due to [1], is given by

\[
\frac{1}{\sqrt{\mathcal{g}}} W_{\text{Horava}} = -\frac{1}{w^2} \sqrt{\mathcal{g}} A_i \partial_j A_k + b_1 F_{ij} F^{ij} + b_2 \frac{\epsilon^{ijl}}{\sqrt{\mathcal{g}}} (\Delta A_l - R^l_{\text{tem}}) \partial_j A_k, \tag{49}
\]

where \(\Gamma^i_{jk} \) are the Christoffel symbols. This is the Lagrangian density of topological massive gravity [23], with the first term being the gravitational Chern–Simons term. Varying with respect to \(g_{ij} \) yields

\[
E_{\text{Horava}}^{ij} = \frac{1}{\sqrt{\mathcal{g}}} \delta W_{\text{Horava}} \delta g_{ij} = \frac{2}{w^2} C_{ij} - \mu \left(R^{ij} - \frac{1}{2} R g^{ij} + \Lambda W g^{ij} \right). \tag{50}
\]

Using this, one obtains the potential part in \(\mathcal{L}_{\text{Horava}} \).

For the electromagnetic part of \(W \), we take

\[
\frac{1}{\sqrt{\mathcal{g}}} W_{\text{EM}} = \frac{\epsilon^{ijl}}{\sqrt{\mathcal{g}}} A_i \partial_j A_k + b_1 F_{ij} F^{ij} + b_2 \frac{\epsilon^{ijl}}{\sqrt{\mathcal{g}}} (\Delta A_l - R^l_{\text{tem}}) \partial_j A_k, \tag{51}
\]

where \(b_1, b_2 \) are constant parameters. This is the three-dimensional Chern–Simons–Maxwell–extended Chern–Simons Lagrangian density in curved space [24]. Varying with respect to \(g_{ij} \) yields

\[
E_{\text{EM}}^{ij} = \frac{1}{\sqrt{\mathcal{g}}} \delta W_{\text{EM}} \delta g_{ij} = b_1 \left(\frac{1}{2} F_{kl} F^{kl} g^{ij} - 2 g_{kl} F^{kl} F^{ij} \right)
+ b_2 \frac{\epsilon^{ijkl}}{\sqrt{\mathcal{g}}} (F^{lm} \nabla_k F_{jm} + F_{lm} \nabla_k F^{jm} - g_{km} F_{lm} \nabla^j F^{mn}), \tag{52}
\]

where in the spherically symmetric case, the \(b_2 \) term vanishes. Varying with respect to \(A_i \) yields

\[
E^i = \frac{1}{\sqrt{\mathcal{g}}} \delta W_{\text{EM}} \delta A_i = \frac{\epsilon^{ijk}}{\sqrt{\mathcal{g}}} F_{jk} + 4 b_1 \nabla_j F^{ij} + b_2 \frac{\epsilon^{ijkl}}{\sqrt{\mathcal{g}}} (\Delta F_{kl} - R^l_{\text{tem}} F^i_{kl}), \tag{53}
\]

where in the spherically symmetric case, the \(b_1 \) and \(b_2 \) terms vanish. Note that both variations yield gauge-invariant expressions. Other terms may be added to \(W_{\text{EM}} \), which would yield

\[\text{Note that to be consistent with (50) and (4), we find this term to have an opposite sign compared to [1].}\]
gauge-dependent expressions. Nevertheless, some of these may still lead to gauge-invariant equations of motion.

In the static spherically symmetric case, we substitute the ansatze (13) and (14) into the Lagrangian density to obtain
\[
\sqrt{f} L_{\text{reduced}} \propto \frac{3}{\Lambda W} r^8 + 2 f' r^7 + 2 f r^6 - 2 r^6 + \frac{1}{\Lambda W} (2 f f' r^5 - 2 f' r^5 - f^2 r^4 + 2 f r^4 - r^4)
\]
\[
- \frac{2 f}{N^2} \Lambda^2 r^5 + 2 p^2 r^4 + \frac{\beta p^2}{\Lambda W} (2 \Lambda W r^4 - 2 f' r^3 + 6 f r^2 - 6 r^2 - 5 \beta p^2)
\]
\[
+ \frac{2 f}{c^2 N^2} (2 N_f N_r f r^7 + N_2 f^2 r^7 + N_f f r^6),
\]
where \(\beta \equiv \mu^{-1} b_1\), and we have set \(\lambda = 1\) and have omitted an overall factor independent of \(r\).

We now find non-perturbative solutions with higher order magnetic terms. For the projectable case with \(N_r \neq 0, N = 1,\) and constant \(f\), we find the solution
\[
N_r = \pm \frac{c}{f} \sqrt{\frac{\Lambda W}{2} r^2 + f - 1 + \frac{2m}{r} + \frac{(f - 1)^2}{2 \Lambda W r^2} - \frac{q^2 + p^2}{r^2} + \frac{\beta p^2}{r^2} \left(- \frac{1}{r^2} + \frac{1}{\Lambda W r^4} + \frac{\beta p^2}{2 \Lambda W r^6} \right)}.
\]
For the non-projectable case with \(N_r = 0\), we find
\[
N^2 = f = -\Lambda W r^2 + 1 + \beta \frac{p^2}{r^2} - \sqrt{-4 \Lambda W m r + 2 \Lambda W (q^2 + p^2)}.
\]
These generalize the solutions with \(\beta = 0\) of \([11, 16]\).

Acknowledgment
I thank Yaron Oz for his support and guidance.

References
[1] Hořava P 2009 Quantum gravity at a Lifshitz point Phys. Rev. D 79 084008 (arXiv:0901.3775)
[2] Hořava P 2008 Quantum criticality and Yang–Mills gauge theory arXiv:0811.2217
Chen B and Huang Q G 2010 Field theory at a Lifshitz point Phys. Lett. B 683 108 (arXiv:0904.4565)
[3] Calcagni G 2009 Cosmology of the Lifshitz universe J. High Energy Phys. JHEP09(2009)112
[4] Calcagni G 2010 Detailed balance in Hořava–Lifshitz gravity Phys. Rev. D 81 044006 (arXiv:0905.3740)
[5] Kirtisits E and Kofinas G 2009 Hořava–Lifshitz cosmology Nucl. Phys. B 821 467 (arXiv:0904.1334)
[6] Maeda S, Mukohyama S and Shiromizu T 2009 Primordial magnetic field from non-inflationary cosmic expansion in Hořava–Lifshitz gravity Phys. Rev. D 80 123538 (arXiv:0909.2149)
[7] Romero J M, Santiago J A, González-Gaxiola O and Zamora A 2010 Electrodynamics à la Hořava Mod. Phys. Lett. A 25 3381 (arXiv:1006.0956)
[8] Kimpson I and Padilla A 2010 Lessons from the decoupling limit of Hořava gravity J. High Energy Phys. JHEP07(2010)014 (arXiv:1003.5666)
Bellorin J and Restuccia A 2010 On the consistency of the Hořava theory arXiv:1004.0055
Blas D, Pujolas O and Sibiryakov S 2010 Models of non-relativistic quantum gravity: the good, the bad and the healthy arXiv:1007.3503
Padilla A 2010 The good, the bad and the ugly. . . . of Hořava gravity J. Phys. Conf. Ser. 259 012033 (arXiv:1009.4074)
Sotiriou T P 2011 Hořava–Lifshitz: a status report J. Phys. Conf. Ser. 283 012034 (arXiv:1010.3218)
[9] Callan C G, Myers R C and Perry M J 1989 Black holes in string theory Nucl. Phys. B 311 673
(http://ccdb4fs.kek.jp/cgi-bin/img/allpdf?200036442)
[10] Lu H, Mei J and Pope C N 2009 Solutions to Hořava gravity Phys. Rev. Lett. 103 091301 (arXiv:0904.1595)
Nastase H 2009 On IR solutions in Hořava gravity theories arXiv:0904.3604
Kehagias A and Sfetsos K 2009 The black hole and FRW geometries of non-relativistic gravity Phys. Lett. B 678 123 (arXiv:0905.0477)
Park M I 2009 The black hole and cosmological solutions in IR-modified Hořava gravity J. High Energy Phys. JHEP09(2009)123 (arXiv:0905.4480)
[11] Cai R G, Cao L M and Ohta N 2009 The black hole and FRW geometries of non-relativistic gravity Phys. Lett. B 678 123 (arXiv:0904.3670)
Colgán E Ó and Yavartanoo H 2009 The black hole and cosmological solutions in IR-modified Hořava–Lifshitz gravity J. High Energy Phys. JHEP09(2009)123 (arXiv:0905.4480)
Kim S S, Kim T and Kim Y 2009 Surplus solid angle as an imprint of Hořava–Lifshitz gravity Phys. Rev. D 80 024003 (arXiv:0904.3670)
Kim S S, Kim T and Kim Y 2010 Surplus solid angle and sign-flipped Coulomb force in projectable Hořava–Lifshitz gravity Phys. Rev. D 82 103512 (arXiv:1009.1201)
Kim T and Lee C O 2010 Solutions in IR-modified Hořava–Lifshitz gravity arXiv:1002.0784
Lee H W 2010 Global monopole solutions in Hořava–Lifshitz gravity Class. Quantum Grav. 27 247001 (arXiv:1003.1863)
[12] Cai R G, Liu Y and Sun Y W 2009 On the $z=4$ Hořava–Lifshitz gravity J. High Energy Phys. JHEP09(2009)123 (arXiv:0905.0477)
Myung Y S and Kim Y W 2010 Thermodynamics of Hořava–Lifshitz black holes Eur. Phys. J. C 68 265 (arXiv:0905.0179)
Cai R G, Cao L M and Ohta N 2009 Thermodynamics of black holes in Hořava–Lifshitz gravity Phys. Lett. B 679 504 (arXiv:0905.0751)
Ghodsi A 2009 Toroidal solutions in Hořava gravity arXiv:0905.0836
Myung Y S 2009 Thermodynamics of black holes in the deformed Hořava–Lifshitz gravity Phys. Lett. B 678 127 (arXiv:0905.0836)
Ghodsi A and Hateli E 2010 Extremal rotating solutions in Hořava gravity Phys. Rev. D 81 044016 (arXiv:0906.1237)
Castillo A and Larranaga A 2009 Entropy for black holes in the deformed Hořava–Lifshitz gravity arXiv:0906.4380
Lee H W, Kim Y W and Myung Y S 2010 Extremal black holes in the Hořava–Lifshitz gravity Eur. Phys. J. C 68 265 (arXiv:0907.3568)
Myung Y S 2010 Entropy of black holes in the deformed Hořava–Lifshitz gravity Phys. Lett. B 684 158 (arXiv:0908.4132)
Cho I and Kang G 2010 Four-dimensional string solutions in Hořava–Lifshitz gravity J. High Energy Phys. JHEP07(2010)034 (arXiv:0909.3065)
Cai R G and Ohta N 2010 Horizon thermodynamics and gravitational field equations in Hořava–Lifshitz gravity Phys. Rev. D 81 084061 (arXiv:0910.2307)
Harada T, Miyamoto U and Tsukamoto N 2011 Uniqueness of static spherically symmetric vacuum solutions in the IR limit of Hořava-Lifshitz gravity Int. J. Mod. Phys. D 20 111 (arXiv:0911.1187)
Kiritsis E 2010 Spherically symmetric solutions in modified Hořava–Lifshitz gravity Phys. Rev. D 81 044009 (arXiv:0911.3164)
Greenwald J, Papazoglou A and Wang A 2010 Black holes and stars in Hořava–Lifshitz theory with projectability condition Phys. Rev. D 81 084046 (arXiv:0912.0011)
Cai R G and Wang A 2010 Singularities in Hořava–Lifshitz theory Phys. Lett. B 686 166 (arXiv:1001.0155)
Biswas R and Chakraborty S 2010 Geometry of the thermodynamics of the black holes in Hořava–Lifshitz gravity Gen. Rel. Grav. 43 41
Wei S W, Liu Y X, Wang Y Q and Guo H 2010 Thermodynamic geometry of black hole in the deformed Hořava–Lifshitz gravity arXiv:1002.1550
Myung Y S 2010 Lifshitz black holes in the Hořava–Lifshitz gravity Phys. Lett. B 690 534 (arXiv:1002.4448)
Lee T H 2010 Global monopole solutions in Hořava gravity arXiv:1003.1863
Koutsoubaras G, Papantonopoulos E, Pasoupoulides P and Tsoukalas M 2010 Black hole solutions in 5D Hořava–Lifshitz gravity Phys. Rev. D 81 124014 (arXiv:1004.2289)
Janke W, Johnston D A and Kenna R 2010 Geometrothermodynamics of the Kehagias–Sfetsos black hole J. Phys. A: Math. Theor. 43 245206 (arXiv:1005.3392)
Koutsoubaras G and Pasoupoulides P 2010 Black hole solutions in Hořava–Lifshitz gravity with cubic terms Phys. Rev. D 82 044046 (arXiv:1006.3199)
Biswas R and Chakraborty S 2011 Black hole thermodynamics in Hořava–Lifshitz gravity and the related geometry Astrophys. Space Sci. 332 193
Argüelles C R and Grandi N E 2010 Membrane solutions to Hořava gravity arXiv:1008.1915
Lee H W, Kim Y W and Myung Y S 2010 Slowly rotating black holes in the Hořava–Lifshitz gravity Eur. Phys. J. C 70 367 (arXiv:1008.2243)
Ailey A N and Şentürk Ç 2010 Slowly rotating black hole solutions to Hořava–Lifshitz gravity Phys. Rev. D 82 104016 (arXiv:1008.4848)
Alexandre J and Pascoliardis P 2010 Spherically symmetric solutions in covariant Hořava–Lifshitz gravity arXiv:1010.3634
Greenwald J, Satheeshkumar V H and Wang A 2010 Black holes, compact objects and solar system tests in non-relativistic general covariant theory of gravity J. Cosmol. Astropart. Phys. JCAP12(2010)007 (arXiv:1010.3794)
Capasso D 2010 Spherical symmetric solutions in Hořava–Lifshitz gravity and their properties Phys. Rev. D 82 124058 (arXiv:1010.4326)
Cao Q J, Chen Y X and Shao K N 2011 Black hole phase transitions in Hořava–Lifshitz gravity Phys. Rev. D 83 064015 (arXiv:1010.5044)
Wang M, Chen S and Jing J 2011 Second-order phase transition of Kehagias–Sfetsos black hole in deformed Hořava–Lifshitz gravity Phys. Lett. B 695 401 (arXiv:1012.0645)
Quevedo H, Sanchez A, Taj S and Vazquez A 2011 Geometrothermodynamics in Hořava–Lifshitz gravity arXiv:1101.4494
Tang J Z and Chen B 2010 Static spherically symmetric solutions to modified Hořava–Lifshitz gravity with projectability condition Phys. Rev. D 81 043515 (arXiv:0909.4127)
Kiritsis E and Kofinas G 2010 On Hořava–Lifshitz ‘black holes’ J. High Energy Phys. JHEP01(2010)122 (arXiv:0910.5487)
Capasso D and Polychronakos A P 2010 General static spherically symmetric solutions in Hořava–Lifshitz gravity Phys. Rev. D 81 084009 (arXiv:0911.1535)
Tang J Z 2009 Static charged black hole solutions in Hořava–Lifshitz gravity arXiv:0911.3849
Myung Y S 2010 ADM mass and quasilocal energy of black hole in the deformed Hořava–Lifshitz gravity Phys. Lett. B 685 318 (arXiv:0912.3305)
Wang M, Jing J, Ding C and Chen S 2010 First law of thermodynamics in IR-modified Hořava–Lifshitz gravity Phys. Rev. D 81 083006 (arXiv:0912.4832)
Misner C W, Thorne K S and Wheeler J A 1973 Gravitation (San Francisco: Freeman) p 519
Gao C 2010 Modified gravity in Arnowitt–Deser–Misner formalism Phys. Lett. B 684 85 (arXiv:0905.0310)
Bousso R and Hawking S W 1996 Pair creation of black holes during inflation Phys. Rev. D 54 6312 (arXiv:gr-qc/9606052)
Corichi A and Gomberoff A 2004 Black holes in de Sitter space: masses, energies and entropy bounds Phys. Rev. D 69 064016 (arXiv:hep-th/0311030)
Wald R M 1993 Black hole entropy is Noether charge Phys. Rev. D 48 R3427 (arXiv:gr-qc/9307038)
Jacobson T, Kang G and Myers R C 1994 On black hole entropy Phys. Rev. D 49 6587 (arXiv:gr-qc/9312023)
Iyer V and Wald R M 1994 Some properties of Noether charge and a proposal for dynamical black hole entropy Phys. Rev. D 50 846 (arXiv:gr-qc/9403028)
Jacobson T, Kang G and Myers R C 1995 Black hole entropy in higher curvature gravity arXiv:gr-qc/9502009
Arkani-Hamed N, Motl L, Nicolis A and Vafa C 2007 The string landscape, black holes and gravity as the weakest force J. High Energy Phys. JHEP06(2007)060 (arXiv:hep-th/0601001)
Katz Y, Motl L and Padi M 2007 Higher-order corrections to mass–charge relation of extremal black holes J. High Energy Phys. JHEP12(2007)011 (arXiv:0705.2892)
Romans L J 1992 Supersymmetric, cold and lukewarm black holes in cosmological Einstein–Maxwell theory Nucl. Phys. B 383 395 (arXiv:hep-th/9203018)
Mann R B and Ross S F 1995 Cosmological production of charged black hole pairs Phys. Rev. D 52 2254 (arXiv:gr-qc/9504015)
Mann R B 1998 Charged topological black hole pair creation Nucl. Phys. B 516 357 (arXiv:hep-th/9705223)
Cho J H and Nam S 2007 Non-supersymmetric attractor with the cosmological constant J. High Energy Phys. JHEP07(2007)011 (arXiv:0705.2892)
Deser S, Jackiw R and Templeton S 1982 Topologically massive gauge theories Ann. Phys. 140 372
Deser S, Jackiw R and Templeton S 1998 Ann. Phys. 285 406 (erratum)
Deser S, Jackiw R and Templeton S 1982 Three-dimensional massive gauge theories Phys. Rev. Lett. 48 975 (arXiv:hep-th/9901125)