Effect of MDR1 gene polymorphisms on mortality in paraquat intoxicated patients

Hak Jae Kim1, Hyung-Ki Kim1, Jun-Tack Kwon1, Sun-hyo Lee2, Sam el Park2, Hyo-Wook Gil2, Ho-yeon Song3 & Sae-yong Hong2

Paraquat is a fatal herbicide following acute exposure. Previous studies have suggested that multidrug resistance protein 1 (MDR1) might help remove paraquat from the lungs and the kidney. MDR1 single-nucleotide polymorphisms (SNPs) are involved in the pharmacokinetics of many drugs. The purpose of this study was to determine whether MDR1 SNPs were associated with the mortality in paraquat intoxicated patients. We recruited 109 patients admitted with acute paraquat poisoning. They were genotyped for C1236T, G2677T/A, and C3435T single-nucleotide polymorphisms (SNPs) of MDR1 gene. Their effects on mortality of paraquat intoxicated patients were evaluated. Overall mortality rate was 66.1%. Regarding the C1236T of the MDR1 gene polymorphism, 21 (19.3%) had the wild type MDR1 while 88 (80.7%) had homozygous mutation. Regarding the C3435T MDR1 gene polymorphism, 37 (33.9%) patients had the wild type, 23 (21.1%) had heterozygous mutation, and 49 (45.0%) had homozygous mutation. Regarding the G2677T/A MDR1 gene polymorphism, 38 (34.9%) patients had the wild type, 57 (52.3%) had heterozygous mutation, and 14 (12.8%) had homozygous mutation. None of the individual mutations or combination of mutations (two or three) of MDR1 SNP genotypes altered the mortality rate. The mortality rate was not significantly different among SNP groups of patients with <4.0 μg/mL paraquat. In conclusion, MDR1 SNPs have no effect on the mortality rate of paraquat intoxicated patients.
Genotyping conditions for the MDR1 gene polymorphisms.

SNP	Primer sequence	Annealing temperature (°C)	Enzyme	Cleavage products(bp)
C1238T	F: TATCCGTGTCGTGAATTGCC	54	HaeIII	370 (272, 98/272, 98, 63, 35/272, 63, 35)
(rs1128503)	R: CGCTGACATCAACACCAATG			
C3435T	F: GTGTTTCAGCTGCTTGATG	53	San3AI	197 (197/197, 158, 39/158, 39)
(rs1045642)	R: AGAGGCTATGTGTGGCGCTC			
G2677T	F: TGCAGGCTATAGGTCAGG	58	BanI	224 (224/224, 198, 26/198, 26)
(rs2032582)	R: TTTAGTTGACTACCTTCCGG			
G2677A	F: TGCAGGCTATAGGTCAGG	58	BsrI	220 (220/220, 206, 14/206, 14)
(rs2032582A)	R: GTGGTACCTACCTTCAGG			

Table 1.

Three MDR1 SNPs (rs2032582, rs1045642, and rs1128503) were genotyped in PQ intoxicated patients to evaluate the association between ATP-binding cassette sub-family B member 1 gene (ABCB1/MDR1) and PQ intoxication. These SNPs were selected from a previous study and the National Center for Biotechnology Information (NCBI) website (http://www.ensembl.org; www.ncbi.nlm.nih.gov/SNP). DNA was extracted from peripheral blood using a PureHelix Genomic DNA Prep kit (NanoHelix Co., Ltd., Daejeon, Korea) as described previously.

Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) protocols are summarized in Table 1. Primer sequences and annealing temperatures used for the analysis of each polymorphism are also listed in Table 1. Each reaction consisted of a single denaturation step at 95 °C for 5 min, 35 cycles of denaturation at 95 °C for 30 sec, annealing with appropriate primer pair at annealing temperature for 30 sec, and extension at 72 °C for 30 sec. A final extension step at 72 °C was performed at the end of the PCR program for 10 min. Following PCR amplification, products were digested overnight with corresponding restriction enzymes (Table 1) according to the manufacturer's instructions. The digested products were electrophoresed on 3.0% agarose gels and stained with SYBR-Green (Invitrogen, Carlsbad, CA, USA). All restriction enzymes used in this study were purchased from New England Biolabs (Ipswich, MA, USA). Reproducibility of genotyping was assured by conducting duplicate experiments. Genotype analysis was conducted by blinding the case and control status.
Statistical analysis. Continuous variables are expressed as mean ± standard deviation with or without the median value and range. Categorical variables are shown as frequencies (number of cases and percentages). Differences between groups were detected using chi-square test or Fisher’s exact test for categorical variables. Binary logistic regression analysis was used to identify the risk of mortality according to gene polymorphism. Results of the logistic regression analyses are reported as relative risks or odds ratios with 95% confidence intervals. Statistical analyses were performed using SPSS ver. 14.0 software (SPSS Inc., Chicago, IL, USA). Statistical significance was considered when P-value was less than 0.05.

Results
Baseline characteristics of the study population. A total of 109 patients were included in this study. Baseline laboratory parameters and initial patient information recorded at hospital arrival are summarized in Table 2. Overall mortality rate was 66.1%, similar to the mortalities rates in previous studies. \(^1\,^2\,^3\) Semi-quantitative dithionite tests revealed that 27 patients had grade 1+ (blue color), 22 patients had grade 2+ (tender blue), and 60 patients had grade 3+ (dark blue) paraquat levels. The mean time to death was 4.67 ± 5.11 days. The frequencies of the three MDR1 SNP genotypes (C3435T, C1236T, and G2677T/A) in PQ intoxicated patients are shown in Table 3.

Effect of MDR1 gene polymorphisms on mortality. Regarding the frequencies of C1236T MDR1 gene polymorphism, 21 (19.3%) patients had the wild type, 88 (80.7%) patients had the homozygous mutation, and none had the heterozygous mutation. The frequencies of C1236T MDR1 polymorphism in survivors were not significantly different from those in non-survivors (\(\chi^2 = 3.604, P\)-value = 0.165). Regarding the frequencies of C3435T MDR1 polymorphism, 37 (33.9%) patients had the wild type, 23 (21.1%) patients had heterozygous mutation, and 49 (45.0%) patients had homozygous mutation. The frequency distributions of the C3435T MDR1 SNP were not significantly different between survivors and non-survivors either (\(\chi^2 = 0.004, P\)-value = 0.947). Regarding the frequencies of G2677T/A MDR-1 polymorphism, 38 (34.9%) patients had the wild type, 57 (52.3%) patients had the heterozygous mutation, and 14 (12.8%) patients had homozygous mutation. The frequency distributions of the C2677T/A MDR1 polymorphism were not significantly different between survivors and non-survivors (\(\chi^2 = 1.506, P\)-value = 0.471). Neither heterozygous nor homozygous mutation of the three MDR1 gene polymorphisms had any effect on the mortality of PQ intoxicated patients (Table 3).

Effect of MDR1 gene polymorphism on mortality in patients with <4.0 μg/mL paraquat. Patients with high plasma PQ concentrations were included in this study. We reanalyzed the 67 patients with <4.0 μg/mL PQ concentration. However, none of the mutations in MDR1 gene affected the mortality of these patients (Table 4). The genotype frequencies of MDR1 SNPs were not associated with mortality either.
Synergistic effect of two or three MDR1 SNP genotypes on mortality. We analyzed the frequency distributions of genotypes of two or three MDR1 SNPs between survivors and non-survivors to investigate the synergistic effect of two or three MDR1 SNPs on mortality (Table 5). When the effect of two or three SNPs in different combinations was evaluated among patients with wild or heterozygous mutant (represented as 0) or homozygous mutant genotype (represented as 1), the frequencies of the SNP combinations bearing the mutant genotype were not significantly different between survivors and non-survivors.

Discussion
P-gp is a glycosylated membrane-bound efflux pump protein that removes substrates from the inside to the outside of the cell. Some reports have shown that inducing P-gp can protect cells against PQ-induced toxicity in vivo and in vitro. Silva et al. have demonstrated that inducing P-gp in Caco-2 cells using newly synthesized thiioxanthones can prevent PQ cytotoxicity. Mice treated with dexamethasone display increased MDR1 expression in the lungs associated with decreased PQ accumulation and pneumotoxicity. In addition to the lungs and liver, MDR1 and Mdr1a/1b are also expressed in human and rodent kidneys, respectively. Xia et al. have shown MDR1/Mdr1 participates in the elimination of PQ from the kidneys and protects against subsequent toxicity. These results suggest that P-gp is involved in the PQ intoxication mechanisms.

MDR1 gene polymorphisms have been associated with altered drug absorption, disposition, and toxicity responses. Among MDR1 SNPs, C1236T in exon 12, G2677T/A in exon 21, and C3435T in exon 26 have been investigated extensively. For example, renal transplant recipients with homozygous mutation in G2677T/A require higher tacrolimus dose than recipients without such mutation to receive the same therapeutic effect. The MDR1 C3435T and G2677T/A polymorphisms are risk factors for increased susceptibility to nephrotic syndrome and steroid resistance. It is currently unclear whether MDR1 genetic polymorphisms can affect the pharmacokinetics and toxicities of PQ. However, variations in MDR1 expression between individuals may alter susceptibility to PQ-induced toxicity. This is the first study to investigate the effect of MDR1 SNPs on mortality of PQ intoxicated patients. In this study, the frequency distributions of homozygous and heterozygous mutation for the G2677T/A, C3435T, and C1236T SNPs were not different between non-survivors and survivors of PQ intoxication.

Table 3. Distribution of the MDR1 gene polymorphisms in paraquat intoxicated patients.

SNP	Survival N(%)	Non-survival N(%)	OR	95% CI	P-value
C1236T					
CC	7 (18.9%)	14 (19.4%)	0.967	0.335–2.655	0.947
TT	30 (81.1%)	58 (80.6%)			
C3435T					
CC	15 (40.5%)	22 (30.6%)			
CT	10 (27%)	13 (18.1%)	0.866	0.309–2.542	0.822
TT	12 (32.4%)	37 (51.4%)	2.102	0.834–5.299	0.155
CT+TT	22 (59.4%)	50 (69.5%)	1.155	0.678–3.539	0.299
G2677T/A					
GG	15 (40.5%)	23 (31.9%)			
GT or A	19 (51.4%)	38 (52.8%)	1.304	0.556–3.059	0.541
TT or A	5 (8.1%)	11 (15.3%)	2.391	0.571–10.020	0.233
GT or A+TT or A	22 (59.5%)	49 (68.1%)	1.453	0.638–3.306	0.374

Table 4. Distribution of the MDR-1 gene polymorphisms in patients with <4.0 μg/mL plasma paraquat concentration.

SNP	Survival N(%)	Non-survival N(%)	OR	95% CI	P-value
C1236T					
CC	7 (19.4%)	7 (22.6%)	0.828	0.255–2.691	0.753
TT	29 (80.6%)	24 (77.4%)			
C3435T					
CC	14 (38.9%)	10 (32.3%)	0.98	0.278–3.460	0.975
CT	10 (27.8%)	7 (22.6%)	1.633	0.533–5.003	0.39
TT	12 (33.3%)	14 (45.2%)	1.336	0.488–3.662	0.573
G2677T/A					
GG	15 (41.7%)	13 (41.9%)	0.705	0.245–2.026	0.517
GT or A	18 (50.0%)	11 (35.5%)	0.757	0.245–2.026	0.517
TT or A	3 (8.3%)	7 (22.6%)	2.692	0.575–12.596	0.208
GT or A+TT or A	21 (58.3%)	18 (58.1%)	0.989	0.374–2.618	0.982
that patients with toxicity. We reanalyzed these patients with a PQ concentration (CC), 37.9–44.6% (CT) of heterozygous, and 43.5–52.1% of homozygous mutants (TT)\(^30,31\). The CT type was mutants compared to that of a previous study. The C1236T frequencies in Asians are 8.3–13.8% of wild type not show pharmacokinetics changes according to MDR1 gene SNPs. Third, our study population included more sion might have affected the function of lung P-gp regardless of the MDR1 polymorphism. Second, we could cant difference in the mortality of these patients. In addition, two or three SNPs in different combinations did not exhibit signifi- cell type \(^132\), it is necessary to reveal the relationship between SNPs and P-gp function in the lung in the future. might be different compared to that in rodents. Therefore, these gene polymorphisms of MDR1 might be able to not included in our study, which might have produced selection bias. Fourth, P-gp expression in human organ intoxicated patients.

In conclusion, our observations suggest that the MDR1 SNPs do not have any effect on the mortality of PQ intoxicated patients.

References

1. Hong, S. Y ., Lee, J. S ., Sun, I. O ., Lee, K. Y . & Gil, H. W. Prediction of patient survival in cases of acute paraquat poisoning. \textit{PLoS One} \textbf{9}, e111674 (2014).
2. Chang, S. S. \textit{et al}. Factors associated with the decline in suicide by pesticide poisoning in Taiwan: a time trend analysis, 1987–2010. \textit{Clin. Toxicol. (Phila.)} \textbf{50}, 471–480 (2012).
3. Hong, S. Y . \textit{et al}. Clinical implications of the ethane in exhaled breath in patients with acute paraquat intoxication. \textit{Chest} \textbf{128}, 1506–1510 (2005).
4. Chyi, J. S. \textit{et al}. Ratio of angiopoietin-2 to angiopoietin-1 predicts mortality in acute lung injury induced by paraquat. \textit{Med. Sci. Monit.} \textbf{19}, 28–33 (2013).
5. Yeo, C. D. \textit{et al}. The role of pentraxin-3 as a prognostic biomarker in paraquat poisoning. \textit{Toxicol. Lett.} \textbf{212}, 157–160 (2012).
6. del Moral, R. G., Olmo, A., Aguilar, M., & O’Valle, F. P-glycoprotein: a new mechanism to control drug-induced nephrotoxicity. \textit{Exp. Ther. Med.} \textbf{15}, 1506–1510 (2012).
7. Sugawara, I. \textit{et al}. Tissue distribution of P-glycoprotein encoded by a multidrug-resistant gene as revealed by a monoclonal antibody, MRK 16. \textit{Cancer Res.} \textbf{48}, 1926–1929 (1988).
8. Lee, S. H. \textit{et al}. P-Glycoprotein Induction Ameliorates Colistin Induced Nephrotoxicity in Cultured Human Proximal Tubular Cells. \textit{PLoS One} \textbf{10}, e0136075 (2015).
9. Dinis-Oliveira, R. J. \textit{et al}. Single high dose dexamethasone treatment decreases the pathological score and increases the survival rate of paraquat-intoxicated rats. \textit{Toxicology} \textbf{227}, 73–85 (2006).
10. Zerin, T., Kim, Y. S., Hong, S. Y . & Song, H. Y. Protective effect of methylprednisolone on paraquat-induced A549 cell cytoxicity via induction of efflux transporter, P-glycoprotein expression. \textit{Toxicol. Lett.} \textbf{208}, 101–107 (2012).
11. Chen, Z. \textit{et al}. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. \textit{Cancer Lett.} (2015).
12. Wei, X. \textit{et al}. MDR1 transporter protects against paraquat-induced toxicity in human and mouse proximal tubule cells. \textit{Toxicol. Sci.} \textbf{141}, 475–483 (2014).
13. Lacher, S. E. \textit{et al}. Absence of P-glycoprotein transport in the pharmacokinetics and toxicity of the herbicide paraquat. \textit{J. Pharmacol. Exp. Ther.} \textbf{348}, 336–345 (2014).

Table 5. Combined distribution of the MDR-1 gene polymorphisms in paraquat intoxicated patients.

	Survival N(%)	non-survival N(%)	OR	95% CI	P-value
C3435T and C1236T					
C3435T(0) + C1236T(0)	6	11			
C3435T(1) + C1236T(0)	1	3	1.636	0.138–19.387	0.696
C3435T(0) + C1235T(1)	30	58	1.055	0.355–3.130	0.924
C3435T and G2677TA					
C3435T(0) + G2677TA(0)	24	32			
C3435T(1) + G2677TA(0)	10	29	2.175	0.891–5.310	0.088
C3435T(0) + G2677TA(1)	3	11	2.750	0.690–10.952	0.151
C1236T and G2677TA					
C1236T(0) + G2677TA(0)	7	12			
C1236T(1) + G2677TA(0)	27	49	1.059	0.373–3.007	0.915
C1236T(0) + G2677TA(1)	3	11	2.139	0.440–10.391	0.346
C3677T, C1236T and G2677TA					
C3677T(0) + C1236T(0) + G2677TA(0)	6	9			
C3677T(1) + C1236T(0) + G2677TA(0)	1	3	2.000	0.166–24.069	0.585
C3677T(0) + C1236T(0) + G2677TA(1)	0	2			
C3677T(0) + C1236T(1) + G2677TA(0)	18	23	0.852	0.256–2.837	0.794
C3677T(1) + C1236T(0) + G2677TA(0)	1	1	0.667	0.035–12.840	0.788
C3677T(1) + C1236T(1) + G2677TA(0)	9	26	1.926	0.535–6.936	0.316
C3677T(1) + C1236T(1) + G2677TA(1)	2	8	2.667	0.414–17.169	0.302
14. Silva, R. et al. Induction and activation of P-glycoprotein by dihydroxylated xanthones protect against the cytotoxicity of the P-glycoprotein substrate paraquat. Arch. Toxicol. 88, 937–951 (2014).
15. Silva, R. et al. P-glycoprotein induction in Caco-2 cells by newly synthesized thioxanthones prevents paraquat cytotoxicity. Arch. Toxicol. 89, 1783–1800 (2015).
16. Silva, R. et al. Modulation of P-glycoprotein efflux pump: induction and activation as a therapeutic strategy. Pharmacol. Ther. 149, 1–123 (2015).
17. Ferrare, M. et al. Long-term effects of ABCB1 and SXR SNPs on the systemic exposure to cyclosporine in pediatric kidney transplant patients. Pharmacogenomics 14, 1605–1613 (2013).
18. Hoffmeyer, S. et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc. Natl. Acad. Sci. USA 97, 3473–3478 (2000).
19. Marzolini, C., Paux, E., Buclin, T. & Kim, R. B. Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin. Pharmacol. Ther. 75, 13–33 (2004).
20. Ryu, H. C., Kwon, H. Y., Choi, I. K. & Rhee, D. K. Analyses of single nucleotide polymorphisms and haplotype linkage of the human ABCB1 (MDR1) gene in Korean. Arch. Pharm. Res. 29, 1132–1139 (2006).
21. Dong, L., Mao, M., Luo, R., Tong, Y. & Yu, D. Common ABCB1 polymorphisms associated with susceptibility to infantile spasms in the Chinese Han population. Genet. Mol. Res. 10, 2569–2577 (2011).
22. Lee, H. et al. Changes in Dpyd2 expression are associated with prenatally stressed rat offspring and susceptibility to schizophrenia in humans. Int. J. Mol. Med. 35, 1574–1586 (2015).
23. Shi, Y. et al. The value of plasma paraquat concentration in predicting therapeutic effects of haemoperfusion in patients with acute paraquat poisoning. PLoS One 7, e40911 (2012).
24. Asakura, T. et al. Relationship between expression of drug-resistance factors and drug sensitivity in normal human renal proximal tubular epithelial cells in comparison with renal cell carcinoma. Oncol. Rep. 14, 601–607 (2005).
25. Cui, Y. J., Cheng, X., Weaver, Y. M. & Klaassen, C. D. Tissue distribution, gender-divergent expression, ontogeny, and chemical induction of multidrug resistance transporter genes (Mdr1a, Mdr1b, Mdr2) in mice. Drug Metab. Dispos. 37, 203–210 (2009).
26. Ishikawa, T. et al. Emerging new technologies in Pharmacogenomics: rapid SNP detection, molecular dynamic simulation, and QSAR analysis methods to validate clinically important genetic variants of human ABC Transporter ABCB1 (P-gp/MDR1). Pharmacol. Ther. 126, 69–81 (2010).
27. Turolo, S. et al. Frequencies and roles of CYP3A5, CYP3A4 and ABCB1 single nucleotide polymorphisms in Italian teenagers after kidney transplantation. Pharmacol. Rep. 62, 1159–1169 (2010).
28. Youssef, D. M., Attia, T. A., El-Shal, A. S. & Abdelometty, F. A. Multi-drug resistance-1 gene polymorphisms in nephrotic syndrome: impact on susceptibility and response to steroids. Gene 530, 201–207 (2013).
29. Matthew, H., Logan, A., Woodruff, M. F. & Heard, B. Paraoquat poisoning—lung transplantation. Br. Med. J. 3, 759–763 (1968).
30. Chowbay, B., Cumaraswamy, S., Cheung, Y. B., Zhou, Q. & Lee, E. I. Genetic polymorphisms in MDR1 and CYP3A4 genes in Asians and the influence of MDR1 haplotypes on cyclosporin disposition in heart transplant recipients. Pharmacogenetics 13, 89–95 (2003).
31. Choi, J. H. et al. Influence of the CYP3A5 and MDR1 genetic polymorphisms on the pharmacokinetics of tacrolimus in pediatric kidney transplant patients. Pharmacogenomics 14, 1605–1613 (2013).
32. Campbell, L. et al. Constitutive expression of p-glycoprotein in normal lung alveolar epithelium and functionality in primary alveolar epithelial cultures. J. Pharmacol. Exp. Ther. 304, 441–452 (2003).

Acknowledgements
This study was supported by Soonchunhyang University Research Fund.

Author Contributions
H.J.K., H.-K.K., and J.-T.K. coordinated the experimental work; H.-W.G. coordinated data-analysis and contributed to the writing of the manuscript; S.-H.L., S.E.P., H.-Y.S. and S.-Y.H. contributed to the design of the research plan and organization of the study.

Additional Information

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Kim, H. J. et al. Effect of MDR1 gene polymorphisms on mortality in paraquat intoxicated patients. Sci. Rep. 6, 31765; doi: 10.1038/srep31765 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016