Research Article

Downregulation of miR-146a-5p Promotes Acute Pancreatitis through Activating the TLR9/NLRP3 Signaling Pathway by Targeting TRAF6 In Vitro Rat Model

Dehai Deng, Zhou Su, Biwei Wei, Jie Zhou, Huiying Yang, and Zhihai Liang

Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

Correspondence should be addressed to Zhihai Liang; ahhai@163.com

Received 23 August 2022; Revised 9 September 2022; Accepted 19 September 2022; Published 14 October 2022

Academic Editor: Min Tang

Copyright © 2022 Dehai Deng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Acute pancreatitis (AP) is mainly caused by acinar cells releasing various inflammatory factors, causing inflammatory storms and leading to severe pancreatitis. Detection methods and treatment targets for pancreatitis are lacking, raising the urgency of identifying diagnostic markers and therapeutic targets for AP. MicroRNAs (miRNAs) have recently been identified as molecular markers for various biological processes such as tumors, immunity, and metabolism, and the involvement of miRNAs in inflammatory responses has been increasingly studied. To explore the role of miRNAs in AP is the primary objective of this study. By using qPCR on our cerulein-induced pancreatitis cell model, it is worth noting that the change of miR-146a-5p expression in inflammation-related miRNAs in AP was predominant. Next, ELISA, CCK8, and flow cytometry were used to inspect the impact of miR-146a-5p on pancreatitis. BiBiServ bioinformatics anticipated binding ability of miR-146a-5p and 3′-untranslated region (3′UTR) of TNF receptor-associated factor 6 (TRAF6), and the dual-luciferase assay verified the combination of the two. TRAF6 knockdown verified the effect of TRAF6 on the progression of pancreatitis. Finally, rescue experiments verified the capability of miR-146a-5p and TRAF6 interaction on the Toll-like receptor 9 (TLR9)/NOD-like receptor protein 3 (NLRP3) signaling pathway and cell function. The expression of miR-146a-5p decreased in cerulein-induced AR42J pancreatic acinar cells. Functional experiments verified that miR-146a-5p facilitated the proliferation of AR42J pancreatic acinar cells and inhibited their apoptosis. Bioinformatic predictions and dual-luciferase experiments verified the actual binding efficiency between miR-146a-5p and 3′UTR of TRAF6. Our study confirmed that knockdown of TRAF6 restrained the progression of pancreatitis, and knockdown of TRAF6 rescued pancreatitis caused by miR-146a-5p downregulation by the TLR9/NLRP3 signaling pathway. Therefore, downregulation of miR-146a-5p in the induced pancreatitis cell model promotes the progression of pancreatitis via the TLR9/TRAF6/NLRP3 signaling pathway. There is potential for miR-146a-5p to serve as a diagnostic marker and therapeutic nucleic acid drug for AP.

1. Introduction

Acute pancreatitis (AP) is a common acute abdominal condition in gastroenterology. It is characterized by rapid onset, severe illness, and rapid change. If not actively treated, it can be life-threatening [1]. Pancreatitis is mainly diagnosed by detecting serum amylase and lipase. However, this diagnosis is often missed, especially if the patient has this triglyceride [2]. Therefore, there is an urgent need to identify more accurate pancreatitis-related molecular markers.

Recently, continuously increasing researches have expounded that microRNAs (miRNAs) play important roles in acinar cell damage and inflammation [3]. Hu et al. found that microRNA-19b (miR-19b) mimic inhibited the survival rate of AR42J cells and increased their expression in AP tissues [4]. Zhang et al. showed that miR-216a activates phosphoinositide-3-kinase (PI3K)/AKT signaling via the target phosphatase-and-tensin homolog to cause pancreatic tissue damage and inflammation [5]. By constructing an miR-21 knockout mouse model, Ma et al. proved that
Figure 1: Continued.
many studies have shown that TRAF6 regulates the activity associated with the occurrence of AP [15]. At the same time, nephropathy, and autoimmune diseases [12–14]. Hoque et al. found that the NLRP3 in downstream protein caspase-1 [11]. NLRP3 in activated speck-like protein containing a CARD (ASC), and in cells, mainly composed of the NLR protein family, associating with various inflammatory pathways, and including inflammasomes LPS can bind to the TLR4 receptor on the cell membrane, recruiting myeloid differentiation factor 88 (MyD88) and TRAF6, activating a series of signaling pathways, and including inflammation [10].

Inflammasomes are a type of macromolecular complex in cells, mainly composed of the NLR protein family, associated speck-like protein containing a CARD (ASC), and downstream protein caspase-1 [11]. NLRP3 inflammasome refers to various inflammatory bowel diseases, inflammatory nephropathy, and autoimmune diseases [12–14]. Hoque et al. found that the NLRP3 inflammasome is highly correlated with the occurrence of AP [15]. At the same time, many studies have shown that TRAF6 regulates the activity of NLRP3 inflammasome to regulate neuroinflammation, gouty arthritis, and other inflammatory responses [16–18]. However, the relationship between TRAF6 and NLRP3 inflammasome in pancreatitis has not yet been studied.

In light of the existing state of knowledge, the present study elucidated that miR-146a-5p regulates the NLRP3 signaling pathway through the target TRAF6 to stimulate the development of pancreatitis.

2. Materials and Methods

2.1. Cell Culture and Transfection. AR42J rat acinar cells (purchased from ATCC) and 293T cell lines (from own laboratory) were preserved in DMEM medium, and AR42J pancreatic cells were treated with 0 nM, 2.5 nM, 5 nM, and 10 nM cerulein (Solarbio, C6660) to construct a pancreatitis model. 50 nM of miR-146a-5p mimic or inhibitor and si-TRAF6 were transfected into AR42J acinar cells using Lipofectamine 2000 (Invitrogen). See Supplementary Table I for RNA sequence. 293T cells were used for the dual-luciferase experiments.
2.2. Enzyme-Linked Immunosorbent Assay (ELISA). The standard protein and supernatant were added to the coated ELISA plates. Perform corresponding operations according to the ELISA kit and the 450 nm reading recorded with an enzyme-linked immunoassay. The detection indicators are TNF-α (Beyotime, PT518), IL-1β (Thermo, BMS224-2), and IL-18 (Abcam, ab215539).

2.3. RT-qPCR. The total RNA of cerulein-treated AR42J acinar cells was extracted with TRIzol reagent. The extracted RNA was reverse-transcribed into cDNA using Random Primer (hexadeoxyribonucleotide mix; pd(N)6; Takara Bio, Japan). PCR experiments were carried out under the following conditions: 95°C for 10 min, 55°C for 2 min, 72°C for 2 min, followed by 40 cycles of 95°C for 15 s and 60°C for 20 s.

![Image](https://via.placeholder.com/150)

Figure 2: miR-146a-5p targets TRAF6. (a) miR-146a-5p and TRAF6-3′UTR binding site as indicated by prediction software BiBiServ and RNAfold. (b) Dual-luciferase detection of miR-146a-5p and TRAF6-3′UTR binding. (c, d) qPCR and WB detection of the expression of TRAF6 after adding miR-146a-5p mimics. Band analysis software is ImageJ (version 1.8.0_172). (e, f) qPCR and WB inspection of the expression of TRAF6 in AR42J cells treated with 0, 2.5, 5, and 10 nM cerulein. Band analysis software is ImageJ (version 1.8.0_172). *p < 0.05, **p < 0.01, and ***p < 0.001. The experiments were repeated three times, the statistical test was a two-tailed test, and errors bars in the figures represent standard deviation (SD).
Relative expression of TRAF6

(a)

Relative protein level of TRAF6

(b)

Relative protein level of TRAF6

(c)

Relative protein level of TRAF6

(d)

Relative protein level of TRAF6

(e)

Relative protein level of TRAF6

(f)

Figure 3: Continued.
knockdown efficiency of siRNA on TRAF6 in 10 nM cerulein-induced AR42J cells. Band analysis software is ImageJ (version 1.8.0_172). (c–e) The levels of inflammatory factors in the culture medium were detected by ELISA in 10 nM cerulein-induced AR42J cells. (f) CCK8 detected the effect of TRAF6 knockdown on cell proliferation in 10 nM cerulein-induced AR42J cells. (g) FCM detected the influence of TRAF6 knockdown on cell death in 10 nM cerulein-induced AR42J cells. *p < 0.05, **p < 0.01, and ***p < 0.001. The experiments were repeated three times, the statistical test was a two-tailed test, and errors bars in the figures represent standard deviation (SD).

2.4. Western Blotting (WB). According to the instructions, cerulein-treated AR42J acinar cells with RIPK buffer (Beyotime) and 30 μg denatured proteins were subjected to detect protein expression. Membrane with protein attached was incubated with primary antibodies against TRAF6 (1:1000, AB137452, Abcam), TLR9 (1:200, ab134368, Abcam), NLRP3 (1:1000, ab260017, Abcam), caspase-1 (1:1000, ab179515, Abcam), ASC (1:1000, ab283684, Abcam), and GSDMD (1:1000, ab210070, Abcam). The loading control was GAPDH (1:10000, ab181602, Abcam). Band analysis software is ImageJ (version 1.8.0_172).

2.5. Dual-Luciferase Assay. The TRAF6-3′UTR sequence (WT) and the TRAF6-3′UTR mutant sequence (MUT) were subcloned into the psiCHECK2 vector (SinoBio Technologies). psiCHECK2-TRAF6-WT or psiCHECK2-TRAF6-MUT and miR-146a-5p mimics or control (mimics NC) was cotransfected to 293T cells with Lipofectamine 2000 (Invitrogen). After 48 h, the dual-luciferase reporter kit (Promega, A6002) was used on handling transfected cells. Firefly fluorescence and Renilla fluorescence values were estimated with a microplate reader (Varioskan LUX, Thermo).

2.6. Cell Proliferation Rate Assays. 10 μL Cell Counting Kit-8 regent (Beyotime, C0038) was added to 5 × 10³ cells per well at 0, 24, 48, and 72 h. Cells were collected, centrifuged at a low speed (JIDI-5R, Guangzhou JiDi Instrument Co., Ltd., China). The optical density was measured with an enzyme-labeled instrument (Thermo Fisher Scientific) at 450 nm.

2.7. Cell Apoptosis Assay. According to the procedure of Annexin V-FITC Apoptosis Detection Kit (Beyotime, C1062S). FITC Annexin V (5 μL) was added to cells (10⁶ cells/mL) for incubation, followed by the addition of propidium iodide (5 μL). The experiment was conducted under incubation conditions—dark, 15 min, and 23 ± 2°C. Apoptosis was assessed by flow cytometry (FCM; BD Biosciences).

2.8. Statistical Analysis. Data are expressed as the mean ± standard deviation. Where there were more than two groups of data, statistical analysis was performed using one-way analysis of variance (ANOVA) and Dunnett’s post hoc test, and Student’s t-test was used to analyze the means of two groups. All experiments were repeated three times.

3. Results

3.1. miR-146a-5p Is Highly Expressed in Cerulein-Induced Pancreatitis. In order to find microRNAs associated with acute pancreatitis, first, AR42J acinar cells were dealt with 0, 2.5, 5, and 10 nM cerulen to construct a cerulein-induced pancreatitis model. 10 μg/ml LPS and 10 mM ATP were positive controls. IL-1β, IL-18, and TNF-α inflammatory factors were raised in the AR42J acinar cells with the concentration of cerulein (Figures 1(a)–1(c)). And the expression of miR-146-5p had the most significant reduction in cerulein-induced pancreatitis in inflammation-related miRNAs—miR-34a-5p, miR-146a-5p, miR-150-5p, and miR-181b-5p (Figures 1(d) and 1(e)).

3.2. miR-146a-5p Suppresses the Development of Pancreatitis. To explore the effect of miR-146a-5p on the progression of pancreatitis, we transfected mimics NC and miR-146a-5p mimics into AR42J acinar cells treated with 10 nM cerulein.
Figure 4: Continued.
After the addition of the mimics, the expression of miR-146a-5p was obviously exalted (Figure 1(f)). miR-146a-5p overexpression inhibited the expression of IL-1β, IL-18, and TNF-α inflammatory factors in cerulein-treated AR42J acinar cells (Figures 1(g)–1(i)). Upregulated miR-146a-5p boosted the proliferation of AR42J acinar cells treated with cerulein (Figure 1(j)). Moreover, the results of FCM presented that miR-146a-5p overexpression curbed apoptosis in cerulein-treated AR42J acinar cells (Figure 1(k)). In summary, miR-146a-5p restrained the development of pancreatitis.

3.3. The miR-146a-5p miRNA Targets TRAF6. Next, we needed to study the mechanism by which miR-146a-5p inhibits pancreatitis. It is known that the mechanism of LPS-induced acute inflammation is mainly through the activation of the inflammatory pathway by TRAF6 protein to release inflammatory factors [19]. Therefore, we supposed that TRAF6 was activated in cerulein-induced pancreatitis. The BiBiServ biological analysis software results exhibited miR-146a-5p binding to the TRAF6 protein 3′ UTR, and RNAfold software predicted the secondary structure of the miR-146a-5p binding TRAF6 (Figure 2(a)). Dual-luciferase experiment certified the binding site of miR-146a-5p to TRAF6 3′ UTR (Figure 2(b)). The results of qPCR and WB presented that miR-146a-5p can effectively subside the expression of TRAF6, and miR-146a-5p inhibitor can significantly increase the expression of TRAF6 (Figures 2(c) and 2(d)). At the same time, we tested the expression of TRAF6 in the cerulein induction model, and the results showed that TRAF6 increased with an increase in treatment concentration (Figures 2(e) and 2(f)), which was negatively correlated with the previous expression of miR-146a-5p.

3.4. TRAF6 Knockdown Inhibits the Development of Pancreatitis. To verify that TRAF6 knockdown can inhibit the development of pancreatitis, we designed three siRNAs and transfected them into cerulein-induced AR42J acinar cells. qPCR and WB detection results showed three siRNAs had knockdown effects on TRAF6, and the knockdown effects of siRNA2 and siRNA3 were more significant (Figures 3(a) and 3(b)). Therefore, we chose siRNA2 and siRNA3 for the follow-up experiments.

ELISA detected the levels of inflammatory factors in the culture medium. (d) The CCK8 assay detected proliferation. (e) FCM detected inflammatory factors in the culture medium. (f) Western blot detected the levels of TRAF6, TLR9, ASC, NLRP3, pro-caspase-1, cleaved-caspase-1 and GSDMD. Band analysis software results exhibited miR-146a-5p binding to the TRAF6 3′ UTR, and RNAfold software predicted the secondary structure of the miR-146a-5p binding TRAF6 (Figure 2(a)). Dual-luciferase experiment certified the binding site of miR-146a-5p to TRAF6 3′ UTR (Figure 2(b)). The results of qPCR and WB presented that miR-146a-5p can effectively subside the expression of TRAF6, and miR-146a-5p inhibitor can significantly increase the expression of TRAF6 (Figures 2(c) and 2(d)). At the same time, we tested the expression of TRAF6 in the cerulein induction model, and the results showed that TRAF6 increased with an increase in treatment concentration (Figures 2(e) and 2(f)), which was negatively correlated with the previous expression of miR-146a-5p.
results showed that TRAF6 knockdown inhibited the expression of IL-1β, IL-18, and TNF-α inflammatory factors in AR42J acinar cells induced by cerulein (Figures 3(c)–3(e)). The results of CCK8 showed that TRAF6 knockdown could promote the proliferation of cerulein-induced AR42J acinar cells (Figure 3(f)). The results of apoptosis experiments exhibited that knockdown of TRAF6 inhibited the apoptosis of AR42J acinar cells induced by cerulein (Figure 3(g)). In summary, TRAF6 knockdown inhibited the development of pancreatitis.

3.5. Downregulation of miR-146a-5p Promotes the Progression of Pancreatitis via the TLR9/TRAF6/NLRP3 Signaling Pathway. To confirm that TRAF6 advanced the progression of pancreatitis, we designed a rescue experiment. In the AR42J acinar cells induced by cerulein, the miR-146a-5p antagonist was transfected, and TRAF6 was knocked down on this basis. The function of the miR-146a-5p/TRAF6 axis on apoptosis was verified by ELISA, CCK8, and cell apoptosis experiments. Knockdown of TRAF6 restored that miR-146a-5p suppressed the release of IL-1β, IL-18, and TNF-α inflammatory factor in AR42J acinar cells with cerulein (Figures 4(a)–4(e)). Therefore, we deduced that miR-146a-5p downregulation could accelerate the progression of pancreatitis through the target TRAF6. Furthermore, we wanted to identify the signaling pathway by which miR-146a-5p/TRAF6 regulates pancreatitis. Hoque et al. found that acute pancreatitis and pancreatic acinar cell death are related to TLR9 and NLRP3 inflammasomes [15]. Therefore, in the rescue experiment, we used WB to detect the expression of the TLR9 and NLRP3 inflammasome-associated proteins (NLRP3, ASC, GSDMD, pro-caspase-1, and cleaved-caspase-1). Knockdown of TRAF6 restored the miR-146a-5p inhibitor to the NLRP3 signaling pathway in cerulein-induced AR42J acinar cells (Figure 4(f)). Our observations therefore confirmed that the missing miR-146a-5p pushed the progression of pancreatitis via the TLR9/TRAF6/NLRP3 signaling pathway (Figure 5(a)).

4. Discussion

AP is characterized by the destruction of acinar cells, which contributes to the release of several inflammatory factors [20]. Inflammatory cells are then recruited to the pancreas, activating digestive proteases prematurely and triggering a systemic inflammatory response and, potentially, life-threatening multiple organ failure [13]. Pancreatic acinar cell damage may be caused by the programmed death of acinar cells, including apoptosis, autophagy, pyroptosis, and necrosis [20–22]. Pyroptosis is highly related to the inflammatory response. Therefore, pancreatic acinar cell pyroptosis may be a key factor in the pathogenesis of AP.

In our study, we first constructed a model of cerulein-induced acinar cell pyroptosis. The upregulated expression of TNF-α, IL-18, and IL-1β indicated that cerulein successfully induced acinar cell pyroptosis. Given that microRNAs are involved in multiple inflammations as a regulator, we selected 4 miRNAs related to pancreatitis and relatively conservative sequences based on literature reports—comprising miR-34a-5p, miR-146a-5p, miR-150-5p, and miR-181b-5p, which were induced by cerulein detection in AR42J cells [23, 24]. miR-146a-5p is obviously repressing in the pancreatitis group, and subsequent functional experiments have testified that miR-146a-5p can inhibit the progression of pancreatitis. This is consistent with our results. Stem cell–derived exosomal miR-146a-5p reduces microglial-mediated neuroinflammation via suppression of the IRAK1/TRAF6 signaling pathway after ischemic stroke [25].

The function of miRNA is to pair the target mRNA 3′UTR through base complementation and form a silencing to degrade mRNA [26]. Bioinformatics is a reliable method for candidate gene analysis. Wenjie et al. utilized computer algorithms to discover that sensory ion channels TRPC3 and TRPC7 could be the potential therapeutic targets in pancreatic cancer [27]. So, we used biological analysis prediction software, BiBiServ, to predict that miR-146a-5p can bind to TRAF6 and that miR-146a-5p can significantly downregulate the expression of TRAF6. At the same time, we utilized RNAfold software to predict the secondary structure of TRAF6 mRNA and illustrated the binding sites of miR-146a-5p and TRAF6 in the structure. Furthermore, we confirmed that downregulation of TRAF6 can inhibit the progression of pancreatitis. Similarly, Chen et al. also unearthed that TRAF6 expedites the development of pancreatitis [28]. Xing et al. confirmed that TRAF6 can mediate the initiation of the NLRP3 inflammasome [18]. Sensory ion channels TRPC3 and TRPC7 could be the potential
therapeutic targets in pancreatic cancer and TRPC3 might be involved in dysregulating mitochondrial functions during pancreatic adenocarcinoma genesis.

Studies have shown that acinar cell apoptosis does not lead to pancreatitis, whereas acinar cell pyroptosis or necrosis can induce pancreatitis [29, 30]. Our results also show that the process of cerulein-induced pancreatitis mainly activates the NLRP3 inflammasome, cleaves caspase-1, activates GSDMD, and leads to the development of pancreatitis. Gao et al. confirmed that the activation of NLRP3 inflammasome and GSDMD in acinar cells triggers acute pancreatitis and systemic inflammation [31]. Our rescue experiment testified that miR-146a-5p downregulation can activate the further exacerbation of pancreatitis and activate the NLRP3 signaling pathway through the target TRAF6. Other studies have also confirmed that downregulation of TRAF6 by miR-146a-5p regulates pyroptosis and autophagy [17, 32, 33]. Therefore, miR-146a-5p may become a nucleic acid drug for inhibiting acute pancreatitis, which requires us to further conduct animal experiments and clinical trials.

Meanwhile, our study also revealed that the expression of TLR9 was upregulated in cerulein-induced pancreatitis. Zhao et al. also found that TLR9 can activate the NLRP3 inflammasome in mice with allergic airway inflammation [34]. However, how TLR9 and inflammasomes are activated in AP requires further study.

Authors’ Contributions
Liang Zhihai conceived and designed the study and developed the methodology. Deng Dehai, Su Zhou, Wei Biwei, Zhou Jie and Yang Huiying performed experiments and collected the data. Liang Zhihai wrote the original draft of the manuscript. All authors read and approved the final manuscript. Deng Dehai and Su Zhou contributed to the work equally and should be regarded as co-first authors.

Acknowledgments
This study was supported by the National Natural Science Foundation of China (No. 81960126) and the Nanning Qingxiu District Science and Technology Project (No. 2019026).

Supplementary Materials
Supplementary Table I: the sequence of siRNAs targeting TRAF6 and miR-146a-5p mimics/inhibitor. Supplementary Table II: the primer sequences used to analyze the expression of various RNAs and miRNAs. (Supplementary Materials)

References
[1] T. Tran and N. Lee, “Recurrent hypertriglyceridemic pancreatitis (HTGP); and the use of insulin drip as treatment,” The Journal of the Louisiana State Medical Society: Official Organ of the Louisiana State Medical Society, vol. 169, no. 2, pp. 55-56, 2017.
[2] M. Dinda, C. Quirt, W. Mackillop, and M. Singer, “Freeze fracturing properties of native and heat-adapted Chinese hamster ovary (CHO) cells,” Biochemistry and Cell Biology, vol. 67, pp. 473–476, 1989.
[3] Y. Yang, Q. Huang, C. Luo et al., “MicroRNAs in acute pancreatitis: From pathogenesis to novel diagnosis and therapy,” Journal of cellular physiology, vol. 235, pp. 1948–1961, 2020.
[4] M. X. Hu, H. W. Zhang, Q. Fu et al., “Functional role of MicroRNA-19b in acinar cell necrosis in acute necrotizing pancreatitis,” Journal of Huazhong University of Science and Technology [Medical Sciences], vol. 36, pp. 221–225, 2016.
[5] J. Zhang, X. Ning, W. Cui, M. Bi, D. Zhang, and J. Zhang, “Transforming growth factor (TGF)-beta-induced microRNA-216a promotes acute pancreatitis via Akt and TGF-beta pathway in mice,” Digestive diseases and sciences, vol. 60, pp. 127–135, 2015.
[6] X. Ma, D. J. Conklin, F. Li et al., “The oncogenic microRNA miR-21 promotes regulated necrosis in mice,” Nature communications, vol. 6, p. 7151, 2015.
[7] Y. Min, M. J. Kim, S. Lee, E. Chun, and K. Y. Lee, “Inhibition of TRAF6 ubiquitin-ligase activity by PRDX1 leads to inhibition of NFKB activation and autophagy activation,” Autophagy, vol. 14, no. 8, pp. 1347–1358, 2018.
[8] S. Akira, K. Takeda, and T. Kaisho, “Toll-like receptors: critical proteins linking innate and acquired immunity,” Nature Immunology, vol. 2, no. 8, pp. 675–680, 2001.
[9] X. Li, C. Ye, M. Mulati, L. Sun, and F. Qian, “Ellipticine blocks synergistic effects of IL-17A and TNF-alpha in epithelial cells
and alleviates severe acute pancreatitis-associated acute lung injury,” Biochemical pharmacology, vol. 177, article 113992, 2020.

[10] P. Zhang, M. Yang, C. Chen, L. Liu, X. Wei, and S. Zeng, "Toll-like receptor 4 (TLR4)/opioid receptor pathway cross-talk and impact on opioid analgesia, immune function, and gastrointestinal motility," Frontiers in Immunology, vol. 11, p. 1455, 2020.

[11] M. Lamkanfi and V. M. Dixit, "Mechanisms and functions of inflammasomes," Cell, vol. 157, pp. 1013–1022, 2014.

[12] Y. Zhen and H. Zhang, "NLRP3 inflammasome and inflammatory bowel disease," Frontiers in immunology, vol. 10, p. 276, 2019.

[13] M. S. J. Mangan, E. J. Olhava, W. R. Roush, H. M. Seidel, G. D. Glick, and E. Latz, "Erratum: Targeting the NLRP3 inflammasome in inflammatory diseases," Nature Reviews. Drug Discovery, vol. 17, no. 9, p. 688, 2018.

[14] H. L. Hutton, J. D. Ooi, S. R. Holdsworth, and A. R. Kitching, "The NLRP3 inflammasome in kidney disease and autoimmunity," Nephrology, vol. 21, pp. 736–744, 2016.

[15] R. Hoque, M. Sohail, A. Malik et al., “TLR9 and the NLRP3 inflammasome link acinar cell death with inflammation in acute pancreatitis," Gastroenterology, vol. 141, pp. 358–369, 2011.

[16] S. Y. Wan, G. S. Li, C. Tu et al., "MicroNAR-194-5p hinders the activation of NLRP3 inflammasomes and alleviates neuroinflammation during intracerebral hemorrhage by blocking the interaction between TRAF6 and NLRP3," Brain Research, vol. 1752, article 147228, 2021.

[17] Q. B. Zhang, Y. F. Qing, C. C. Yin et al., “Mice with miR-146a deficiency develop severe gouty arthritis via dysregulation of TRAF 6, IRAK 1 and NALP3 inflammasome," Arthritis research & therapy, vol. 20, p. 45, 2018.

[18] X. Xing, X. Yao, H. Li et al., "Cutting edge: TRAF6 mediates TLR/IL-1R signaling-induced nontranscriptional priming of the NLRP3 inflammasome," Journal of Immunology, vol. 199, no. 5, pp. 1561–1566, 2017.

[19] T. Kawai and S. Akira, “TLR signaling," Cell Death & Differentiation, vol. 13, pp. 816–825, 2006.

[20] S. Bedoui, M. J. Herold, and A. Strasser, “Emerging connectivity of programmed cell death pathways and its physiological implications," Nature Reviews Molecular Cell Biology, vol. 21, pp. 678–695, 2020.

[21] M. A. Mederos, H. A. Reber, and M. D. Girgis, "Acute pancreatitis: a review," JAMA, vol. 325, pp. 382–390, 2021.

[22] J. Mayerle, M. Sendler, E. Hegyi, G. Beyer, M. M. Lerch, and M. Sahin-Toth, "Genetics, cell biology, and pathophysiology of pancreatitis," Gastroenterology, vol. 156, no. 7, pp. 1951–1968.e1, 2019.

[23] X. Y. Li, Y. F. Wang, and N. Li, "Circulating microRNA-146a and microRNA-146b exhibit potential to serve as markers for acute pancreatitis management and prognosis," European Review for Medical and Pharmacological Sciences, vol. 24, pp. 12770–12780, 2020.

[24] J. G. Hijmans, K. J. Diehl, T. D. Bammert et al., "Influence of overweight and obesity on circulating inflammation-related microRNA," Microrna, vol. 7, no. 2, pp. 148–154, 2018.

[25] Z. Zhang, X. Zou, R. Zhang et al., "Human umbilical cord mesenchymal stem cell-derived exosomal miR-146a-5p reduces microglial-mediated neuroinflammation via suppression of the IRAK1/TRAf6 signaling pathway after ischemic stroke," Aging, vol. 13, pp. 3060–3079, 2021.

[26] J. Krol, I. Loedige, and W. Filipowicz, "The widespread regulation of microRNA biogenesis, function and decay," Nature Reviews Genetics, vol. 11, pp. 597–610, 2010.

[27] W. Shi, C. Li, T. Wartmann et al., "Sensory ion channel candidates inform on the clinical course of pancreatic cancer and present potential targets for repurposing of FDA-approved agents," Journal of Personalized Medicine, vol. 12, no. 3, pp. 478, 2022.

[28] Z. Chen, W. H. Dong, Q. Wu, and J. Wang, "Two-layer regulation of <i>TRAf6</i> mediated by both TLR4/NF-kB signaling and miR-589-5p increases proinflammatory cytokines in the pathology of severe acute pancreatitis," American Journal of Translational Research, vol. 12, no. 6, pp. 2379–2395, 2020.

[29] M. Pasparakis and P. Vandenberghe, "Necroptosis and its role in inflammation," Nature, vol. 517, pp. 311–320, 2015.

[30] A. M. Kaiser, A. K. Saluja, A. Sengupta, M. Saluja, and M. L. Steer, "Relationship between severity, necrosis, and apoptosis in five models of experimental acute pancreatitis," American Journal of Physiology-Cell Physiology, vol. 269, pp. C1295–C1304, 1995.

[31] L. Gao, X. Dong, W. Gong et al., "Acinar cell NLRP3 inflammasome and gasdermin D (GSDMD) activation mediates pyroptosis and systemic inflammation in acute pancreatitis," British journal of pharmacology, vol. 178, pp. 3533–3552, 2021.

[32] T. Hua, M. Yang, H. Song et al., "Huc-MSCs-derived exosomes attenuate inflammatory pain by regulating microglia pyroptosis and autophagy via the miR-146a-5p/TRAF6 axis," Journal of nanobiotechnology, vol. 20, p. 324, 2022.

[33] Q. Meng, C. Liang, J. Hua et al., "A miR-146a-5p/TRAF6/NF-kB p65 axis regulates pancreatic cancer chemoresistance: functional validation and clinical significance," Theranostics, vol. 10, no. 9, pp. 3967–3979, 2020.

[34] C. C. Zhao, Q. M. Xie, J. Xu, X. B. Yan, X. Y. Fan, and H. M. Wu, "TLR9 mediates the activation of NLRP3 inflammasome and oxidative stress in murine allergic airway inflammation," Molecular Immunology, vol. 125, pp. 24–31, 2020.