Abstract

We offer a formula for the probability distribution of the number of misseated airplane passengers resulting from the presence of multiple absent-minded passengers, given the number of seats available and the number of absent-minded passengers. This extends the work of Henze and Last on the absent-minded passenger problem.

1 Introduction

A recent article by Henze and Last, Absent-Minded Passengers [2], considers the problem of \(k \) absent-minded passengers on an airplane with \(n \) passengers assigned to \(n \) seats. The absent-minded passengers are assigned seats \(\{1, 2, \ldots, k\} \), with the other passengers assigned seats \(\{k+1, \ldots, n\} \). The passengers are seated in order of passenger number. When it is time for one of the absent-minded passengers to choose a seat, that passenger chooses an unoccupied seat at random, with an equal likelihood for each of the unoccupied seats. When it is time for a non-absent-minded passenger to choose a seat, that passenger sits where assigned, if the assigned seat is available, otherwise choosing an unoccupied seat at random. The authors of [2] determine the probability distribution in the case where \(k \), the number of misseated passengers, is one, as well as the expected value and variance for all \(k \geq 1 \). In this paper, we find the probability distribution for all positive integers \(k \).

We claim that, with \(n \) passengers, the first \(k \) of whom are absent-minded, the probability that exactly \(m \) of them will be misseated is given by the following result.

Theorem 1 (Main Result). The probability of \(m \) misseated passengers is

\[
P_{n,k}(m) = \frac{(-1)^m(n-k)!}{n!} \binom{k}{m} + \frac{1}{n!} \sum_{s=1}^{k} \left[\begin{array}{c} n-k+1 \\ m-s+1 \end{array} \right] \frac{k}{s!} \sum_{\ell=1}^{s} \frac{(-1)^{s-\ell}(m-s)}{(s-\ell)!}.
\]

Here, \(\left[\begin{array}{c} i \\ j \end{array} \right] \) is the unsigned Stirling number of the first kind, which is the number of permutations of \(i \) elements with \(j \) disjoint cycles, with the convention that \(\left[\begin{array}{c} p \\ 0 \end{array} \right] = 0 \) and \(\left[\begin{array}{c} p \\ q \end{array} \right] = 0 \) for positive \(p \) and \(q \) [1] page 259]. The formula includes the assertion that the probability of exactly one misseated passenger is 0.

For \(k = 1, 2, \) and 3 misseated passengers this gives, respectively,

\[
P_{n,1}(m) = \frac{1}{n!} \left[\begin{array}{c} n \\ m \end{array} \right], \text{ for } m \geq 2
\]

\[
P_{n,2}(m) = \frac{(-1)^m}{n(n-1)} \left(\frac{2}{m} \right) + \frac{1}{n!} \left(2 \left[\begin{array}{c} n-1 \\ m \end{array} \right] + (2^{m-1} - 2) \left[\begin{array}{c} n-1 \\ m-1 \end{array} \right] \right)
\]

\[
P_{n,3}(m) = \frac{(-1)^m}{n(n-1)(n-2)} \left(\frac{3}{m} \right) + \frac{1}{n!} \left(3 \left[\begin{array}{c} n-2 \\ m \end{array} \right] + 3 (2^{m-1} - 2) \left[\begin{array}{c} n-1 \\ m-1 \end{array} \right] + (2 \cdot 3^{m-2} - 3 \cdot 2^{m-2} + 3) \left[\begin{array}{c} n-2 \\ m-2 \end{array} \right] \right).
\]

MSC: Primary 60C05, Secondary 00A08
2 How the passengers can be misseated

In preparation for the proof of the theorem, we prove the following lemma.

Lemma 1.

\[
\sum_{k<i_1<i_2<\cdots<i_{m-s}\leq n} \left(\prod_{j=1}^{m-s} \frac{1}{n-(i_j-1)} \right) = \frac{1}{(n-k)!} \left[\frac{n-k+1}{m-s+1} \right].
\]

Proof. To prove this, set \(\ell_j = n - (i_j - 1) \). Then the original sum becomes

\[
\frac{1}{(n-k)!} \sum_{1\leq \ell_1<\ell_2<\cdots<\ell_{m-s}\leq n-k} (n-k)! \ell_1 \ell_2 \cdots \ell_{m-s}.
\]

For a fixed positive integer \(N \), let \(g_N(x) \) be the generating function of the Stirling numbers of the first kind \[page 263 \]; that is,

\[
g_N(x) = x(x+1) \cdots (x+N-1) = \sum_{i=0}^{N} \left[N \atop i \right] x^i.
\]

By equating coefficients of \(x^t \) in this equation, we find that

\[
\left[N \atop i \right] = \sum_{0\leq a_1<a_2<\cdots<a_{N-i}<N} a_1 a_2 \cdots a_{N-i},
\]

and therefore

\[
\frac{1}{(n-k)!} \sum_{1\leq \ell_1<\ell_2<\cdots<\ell_{m-s}\leq n-k} (n-k)! \ell_1 \ell_2 \cdots \ell_{m-s} = \frac{1}{(n-k)!} \left[\frac{n-k+1}{m-s+1} \right].
\]

Before proving the main theorem, we first prove the formula below. We later simplify this result to give Theorem \[\]

Theorem 2.

\[
P_{n,k}(m) = \frac{1}{n!} \sum_{s=0}^{k} \binom{k}{s} \sum_{t=0}^{s} (t!)^2 \binom{m-s}{t} \left[\frac{n-k+1}{m-s+1} \right] \sum_{r=t}^{s} \binom{s}{r} L(r,t) d_{s-r}.
\]

Here, \(\left[\begin{array}{c} i \\ j \end{array} \right] \) is the Stirling number of the second kind, which counts the number of ways to partition a set of \(i \) labeled objects into \(j \) nonempty unlabeled subsets \[page 258 \]; \(L(i,j) \) is the Lah number, which counts the number of ways a set of \(i \) elements can be partitioned into \(j \) nonempty linearly-ordered subsets \[3, 4 \]; and \(d_i \) is the number of derangements of a set of \(i \) elements, that is, the number of permutations with no fixed points \[page 194 \]. Following \[pages 262 \], we adopt the following conventions for positive integers \(p \) and \(q \):

\[
\left\{ \begin{array}{c} -p \\ q \end{array} \right\} = 0, \left\{ \begin{array}{c} -p \\ 0 \end{array} \right\} = 0, \left\{ \begin{array}{c} 0 \\ q \end{array} \right\} = 0, \left\{ \begin{array}{c} 0 \\ 0 \end{array} \right\} = 1, \left[\begin{array}{c} p \\ 0 \end{array} \right] = 0 \text{ and } \left[\begin{array}{c} p \\ -q \end{array} \right] = 0.
\]

Proof. Since the absent-minded passengers are those with the lowest numbers, we associate them with the first-class cabin and the non-absent-minded passengers with the main cabin. The probability that exactly \(m \) passengers are misseated is the sum over \(s \) of the probabilities that a total of exactly \(m \) passengers, including \(s \) from first class and \(m-s \) from the main cabin, are misseated.

The probability of a specific arrangement of the \(k \) first-class passengers is

\[
\frac{1}{n} \cdot \frac{1}{n-1} \cdots \frac{1}{n-(k-1)} = \frac{(n-k)!}{n!},
\]
Figure 1: Airplane passengers are misseated in threads. Here, $n = 30$, $k = 5$ and $m = 13$. Furthermore, $s = 4$ and $r = 2$. The threads terminate when passenger 19 sits in either seat 1 or 2. Passenger 30 must then sit in whichever of these two seats remain.

and the probability of a specific sequence $i_1 < i_2 < \cdots < i_{m-s}$ of misseated main cabin passengers is given by

$$\prod_{j=1}^{m-s} \frac{1}{n-(i_j-1)},$$

since when it is time for passenger i_j to be seated, there are $n-(i_j-1)$ seats available.

The total probability of the outcome is thus

$$\frac{(n-k)!}{n!} \cdot \prod_{j=1}^{m-s} \frac{1}{n-(i_j-1)}.$$

We now count the number of outcomes with exactly m misseated passengers including exactly s first-class passengers and the particular passengers $i_1 < i_2 < \cdots < i_{m-s}$ from the main cabin. There are $\binom{k}{s}$ ways of choosing which first-class passengers are misseated.

The misseating of main cabin passengers $i_1, i_2, \ldots, i_{m-s}$ occurs in threads, with a thread consisting of a non-empty sequence of first-class passengers followed by a non-empty sequence of main cabin passengers. The number of threads is at least zero (in the case that no main-cabin passengers are misseated) and at most s. For a given number t of threads, at least t and at most s of the misseated first-class passengers are elements of these threads. Let the number of these absent-minded passengers be r. There are then $s-r$ misseated first-class passengers who are not part of a thread.

There are $\binom{s}{r}$ choices for the r first-class passengers who are in threads. These r passengers can be placed into t threads in $L(r,t)$ ways. The i_1, \ldots, i_{m-s} passengers can be placed into these t threads in $(t!)\binom{m-s}{t}$ ways.

Each thread ends with a main cabin passenger sitting in the seat of a first-class passenger who is seated first in a thread. This can happen in $t!$ ways. The remaining $s-r$ misseated passengers permute their seats, with none fixed. This can happen in d_{s-r} ways. A visualization of this can be seen in Figure 1. Thus,
\[
\mathbb{P}(m \text{ misseated, including the main-cabin passengers } i_1, i_2, \ldots, i_{m-s})
\]

\[
= \left(\sum_{l=0}^{s} \sum_{r=t}^{s} \binom{k}{s} \binom{s}{r} (r, t) (t!)^2 \binom{m-s}{t} d_{s-r} \right) \frac{(n-k)!}{n!} \frac{m-s}{\prod_{j=1}^{m-s} \frac{1}{n-(i_j-1)}}.
\]

and

\[
\mathbb{P}(m \text{ misseated, including } s \text{ first-class passengers})
\]

\[
= \left(\sum_{l=0}^{s} \sum_{r=t}^{s} \binom{k}{s} \binom{s}{r} (r, t) (t!)^2 \binom{m-s}{t} d_{s-r} \right) \frac{(n-k)!}{n!} \sum_{k<i_1<i_2<\ldots<i_{m-s}} \left(\prod_{j=1}^{m-s} \frac{1}{n-(i_j-1)} \right)
\]

\[
= \frac{1}{n!} \left(\sum_{l=0}^{s} \sum_{r=t}^{s} \binom{k}{s} \binom{s}{r} (r, t) (t!)^2 \binom{m-s}{t} d_{s-r} \right) \left[n-k+1 \right] \left[m-s+1 \right].
\]

Summing over \(s \) gives

\[
P_{n,k}(m) = \frac{1}{n!} \sum_{s=0}^{k} \binom{k}{s} \left[n-k+1 \right] \left[m-s+1 \right] \sum_{l=0}^{s} (t!)^2 \binom{m-s}{t} \sum_{r=t}^{s} \binom{s}{r} L(r, t) d_{s-r},
\]

as claimed. \(\square \)

3 Proof of main result

We proceed to obtain Theorem 1 from Theorem 2. To do so, we begin with the sum over \(r \) using formulas for the Lah numbers [4] and the derangements [1, page 195]. For \(t \geq 1 \), we have

\[
\sum_{r=t}^{s} \binom{s}{r} (r, t) L(r, t) d_{s-r} = \sum_{r=t}^{s} \binom{s}{r} (r-1) t! (s-r)! \sum_{j=0}^{s-r} (-1)^j \frac{1}{j!}
\]

\[
= \frac{s!}{t!} \sum_{j=0}^{s-t} \frac{(-1)^j}{j!} \sum_{r=t}^{s-j} \binom{r-1}{t-1}
\]

\[
= \frac{s!}{t!} \sum_{j=0}^{s-t} \frac{(-1)^j}{j!} \binom{s-j}{t}.
\]

We note that if \(t = 0 \), then \(\sum_{r=t}^{s} \binom{s}{r} (r, t) L(r, t) d_{s-r} \) and \(\frac{s!}{t!} \sum_{j=0}^{s-t} \frac{(-1)^j}{j!} \binom{s-j}{t} \) both equal \(d_s \), so we can use the result of the above calculation in that case as well.

The following result is simple but useful. We record it as a lemma.

Lemma 2. For positive integers \(J, K, L \), with \(L \leq K \),

\[
\sum_{J=L}^{K} (-1)^J \binom{K-L}{J-L} = (-1)^L \delta_{L,K},
\]

where \(\delta_{L,K} \) is 1 if \(L = K \) and 0 otherwise.

Proof. Make the change of variables \(I = J - L \) to get

\[
(-1)^L \sum_{I=0}^{K-L} (-1)^I \binom{K-L}{I};
\]

the sum is the expansion of \((1 - 1)^{K-L} \), which is 0 unless \(L = K \). \(\square \)
We now consider the sum over \(t \) in the equation of Theorem \([2]\) substituting the result obtained in equation \([1]\) above. For \(s < m \), a formula for the Stirling numbers of the second kind \([1\text{ page 265}]\) gives
\[
\sum_{t=0}^{s} \binom{m-s}{t} t! L(r,t) = (s!) \sum_{t=0}^{s} \sum_{j=0}^{s-t} (-1)^{s-t-j} \frac{m!}{j!} \binom{s-j}{t} (s-j)^{t} (t-j)^{s-j}.
\]

Using trinomial revision \([1\text{ page 174}]\) gives
\[
\binom{t}{\ell} \binom{s-j}{t} = \binom{s-j}{t} \binom{s-j}{t-\ell},
\]
so that the above becomes
\[
= (s!) \sum_{\ell=0}^{s} (-1)^{s} \frac{m!}{j!} \sum_{\ell=0}^{s-t} (-1)^{s-t-j} \frac{m!}{j!} \binom{s-j}{t} (s-j)^{t} (t-j)^{s-j}.
\]

We now address the case \(s = m \). We have
\[
\sum_{t=0}^{s} \binom{m-s}{t} t! \sum_{j=0}^{s-t} (-1)^{j} \frac{(m-j)!}{j!} \binom{n-k+1}{s} \binom{s}{t} (s-j)^{t} (t-j)^{s-j} = \sum_{t=0}^{m} \binom{n-k+1}{s} \binom{s}{t} (m-j)^{t} (t-j)^{m-j}.
\]

The above is
\[
\sum_{t=0}^{m} \binom{n-k+1}{s} \binom{s}{t} (m-j)^{t} (t-j)^{m-j} = m! \sum_{t=0}^{m} \frac{(-1)^{j}}{j!} \frac{(m-j)!}{j!} = m! \sum_{\ell=0}^{n-k} \frac{(-1)^{\ell}}{(m-\ell)!}.
\]

Substituting in the original equation now gives
\[
P_{n,k}(m) = \frac{1}{n!} \sum_{s=0}^{k} \binom{n-k+1}{m-s+1} \binom{k}{s} (s!) (-1)^{s} \frac{\delta_{s,m}}{m!} + \sum_{\ell=1}^{n-k} \frac{(-1)^{\ell} e^{m-s}}{(s-\ell)!}.
\]

Interpreting \(\binom{k}{m} \) as 0 when \(k < m \), and noting that \(n-k+1 = (n-k)! \), we can rewrite this last result as
\[
P_{n,k}(m) = \frac{(-1)^{m}(n-k)!}{n!} \binom{k}{m} + \frac{1}{n!} \sum_{s=0}^{k} \binom{n-k+1}{m-s+1} \binom{k}{s} s! \sum_{\ell=1}^{n-k} \frac{(-1)^{s-\ell} e^{m-s}}{(s-\ell)!},
\]
as required. This proves Theorem \([1]\).

For a visual interpretation of this function for several \(k \) when the number of passengers, \(n \), is 100, we direct the reader to Figure \([2]\)
Figure 2: A graph of the probability as a function of m given by our formula $P_{n,k}(m)$, for an $n = 100$ passenger plane, with $k = 1, 2$ and 3 absent-minded passengers.

References

[1] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. *Concrete Mathematics*. Addison-Wesley, Boston, 1994.

[2] Norbert Henze and Gnter Last. Absent-minded passengers. *The American Mathematical Monthly*, 126(10):867–875, 2019.

[3] Ivo Lah. Eine neue art von zahlen, ihre eigenschaften und anwendung in der mathematischen statistik. *Mitteilungsbl. Math. Statist*, 7:203–212, 1955.

[4] Marko Petkovek and Toma Pisanski. Combinatorial interpretation of unsigned stirling and lah numbers. *Pi Mu Epsilon Journal*, 12(7):417–424, 2007.