1. Introduction

Various techniques have been successfully used throughout the last 50 years to put insulating SrTiO$_3$ (STO) crystals into a metallic state. With standard chemical doping and high temperature annealing under a vacuum [1, 2], the metallic state extends over the bulk of the crystal. With ion-milling [3–7], UV exposure [8, 9], UHV cleaving [10] and oxide layer deposition [11–16], the metallic state can be confined close to the STO surface. The oxide layer deposition technique was first restricted to the epitaxial growth of oxides by pulsed laser deposition at high temperature, the most famous example being the LaAlO$_3$/SrTiO$_3$ (LAO/STO) heterostructure [12, 13, 17, 18]. But, surface metallic states were also recently observed by using pulsed laser [19–22] and e-beam [23] depositions of amorphous oxides at room temperature. The respective roles of oxides non stoichiometry (oxygen, cations), adsorbates, ions inter-diffusion and electronic reconstruction in the formation of this surface metallic state remain an active and controversial issue [11, 13, 17, 20, 24–34].

In this article, we report on electrical field effect measurements of STO crystals, on which an insulating granular aluminium or oxygen deficient alumina layer (thereafter referred to as the AlO$_x$ layer) was deposited at room temperature by electron gun evaporation. We have recently demonstrated that such deposition can put the STO surface into a metallic state [23]. The simplicity of the manufacturing process (no heating, no specific preparation of the STO surface) makes this method very attractive compared to the more sophisticated techniques currently used. The most likely origin of this metallic state is the formation of oxygen vacancies in the STO substrate close to the AlO$_x$/STO interface, the oxygen being ‘pumped off’ from STO when the AlO$_x$ layer is deposited on top [23]. Oxygen vacancies in STO are known to release electrons for the conduction and can lead to a metallic state if their concentration is large enough. The exact thickness of this metallic state is not known but its electrical parameters (charge carrier surface density and mobility, cations), adsorbates, ions inter-diffusion and electronic reconstruction in the formation of this surface metallic state remain an active and controversial issue [11, 13, 17, 20, 24–34].

In this article, we report on electrical field effect measurements of STO crystals, on which an insulating granular aluminium or oxygen deficient alumina layer (thereafter referred to as the AlO$_x$ layer) was deposited at room temperature by electron gun evaporation. We have recently demonstrated that such deposition can put the STO surface into a metallic state [23]. The simplicity of the manufacturing process (no heating, no specific preparation of the STO surface) makes this method very attractive compared to the more sophisticated techniques currently used. The most likely origin of this metallic state is the formation of oxygen vacancies in the STO substrate close to the AlO$_x$/STO interface, the oxygen being ‘pumped off’ from STO when the AlO$_x$ layer is deposited on top [23]. Oxygen vacancies in STO are known to release electrons for the conduction and can lead to a metallic state if their concentration is large enough. The exact thickness of this metallic state is not known but its electrical parameters (charge carrier surface density and mobility, cations), adsorbates, ions inter-diffusion and electronic reconstruction in the formation of this surface metallic state remain an active and controversial issue [11, 13, 17, 20, 24–34].

In this article, we report on electrical field effect measurements of STO crystals, on which an insulating granular aluminium or oxygen deficient alumina layer (thereafter referred to as the AlO$_x$ layer) was deposited at room temperature by electron gun evaporation. We have recently demonstrated that such deposition can put the STO surface into a metallic state [23]. The simplicity of the manufacturing process (no heating, no specific preparation of the STO surface) makes this method very attractive compared to the more sophisticated techniques currently used. The most likely origin of this metallic state is the formation of oxygen vacancies in the STO substrate close to the AlO$_x$/STO interface, the oxygen being ‘pumped off’ from STO when the AlO$_x$ layer is deposited on top [23]. Oxygen vacancies in STO are known to release electrons for the conduction and can lead to a metallic state if their concentration is large enough. The exact thickness of this metallic state is not known but its electrical parameters (charge carrier surface density and mobility, cations), adsorbates, ions inter-diffusion and electronic reconstruction in the formation of this surface metallic state remain an active and controversial issue [11, 13, 17, 20, 24–34].

In this article, we report on electrical field effect measurements of STO crystals, on which an insulating granular aluminium or oxygen deficient alumina layer (thereafter referred to as the AlO$_x$ layer) was deposited at room temperature by electron gun evaporation. We have recently demonstrated that such deposition can put the STO surface into a metallic state [23]. The simplicity of the manufacturing process (no heating, no specific preparation of the STO surface) makes this method very attractive compared to the more sophisticated techniques currently used. The most likely origin of this metallic state is the formation of oxygen vacancies in the STO substrate close to the AlO$_x$/STO interface, the oxygen being ‘pumped off’ from STO when the AlO$_x$ layer is deposited on top [23]. Oxygen vacancies in STO are known to release electrons for the conduction and can lead to a metallic state if their concentration is large enough. The exact thickness of this metallic state is not known but its electrical parameters (charge carrier surface density and mobility, cations), adsorbates, ions inter-diffusion and electronic reconstruction in the formation of this surface metallic state remain an active and controversial issue [11, 13, 17, 20, 24–34].
sheet resistance value and temperature dependence, etc) are very similar to the 2D electron gas obtained by the pulsed laser deposition of oxides, which strongly suggests that it is confined close to the interface [23].

When STO crystals are doped in the bulk by chemical impurities or oxygen vacancies, the metal-insulator transition occurs at small charge carrier densities compared to other oxides, or even standard doped semi-conductors. The 3D critical charge density, which corresponds to the metal-insulator transition, is not precisely known but metallic states are reported for impurity densities as low as 10^{16} cm$^{-3}$ [2]. The high value of the STO dielectric constant, especially at low temperature, may explain this striking property. At 2D, a metallic-like behaviour is observed for surface charge densities as low as a few 10^{13} cm$^{-2}$ [35]. Such a value corresponds to the surface charge density that can be added or removed in a standard field effect experiment, where a gate voltage is applied between the STO surface and a metallic gate over an insulating material (the gate insulator). STO is thus a system in which large modulations of the electrical resistance are expected upon the application of a gate voltage [36].

A large number of electrical field effect experiments have been performed on STO crystal based devices. Many different situations were explored: the STO surface was in the ‘on’ (metallic or superconducting) state or in the ‘off’ (insulating) state when no gate voltage was applied, the bulk of the STO crystal was used as the gate insulator (‘back gate’ geometry) or another insulating material was deposited on top (‘top gate’ geometry), the temperature of the measurement was 300 K or much lower (4 K), etc. The observed resistance response to gate voltage changes is also quite various: they can be fast or slow, small or with relative changes of many orders of magnitude, associated with memory effects and hysteresis, etc [5, 13, 35, 37–61]. But in all these studies, the electrical properties of the interface are determined by the fabrication parameters. What we show in this article is that the low temperature electrical properties of our AlO$_x$/STO interface can also be changed after its making.

We studied the field effect in AlO$_x$/STO interfaces in the ‘back gate’ geometry from room T to 4 K. Our main results can be summarized as follows. At room temperature, the response to the application of a non-zero gate voltage (V_g) is dominated by slow changes of the resistance, which can increase by three orders of magnitude the resistance of a metallic-like interface. Since this slow response is reversible and practically frozen below ≈ 250 K, it can be used to tune the electronic state (metallic or insulating) of a given starting metallic-like interface, and stabilize a large range of low temperature properties. For example, a state showing a huge field effect at 4K could be obtained (resistance changing by 6 orders of magnitude with a gate field of 0.6 kV cm$^{-1}$). The respective roles of oxygen vacancies electro-migration and standard charge injection processes will be discussed.

2. Elaboration and measurement techniques

The samples were made according to [23]. STO crystals with one side polished, (100) oriented and 0.5 mm thick were purchased from the Neyco company. The polished surface was simply cleaned by successive ultrasonic baths in trichloroethylene, acetone and alcohol before being mounted in an electron beam evaporator. Al contacts, 20 nm thick, were deposited first. Then, 40 nm of insulating granular Al or 5 nm of O$_2$ deficient alumina passivated by 95 nm of stoichiometric alumina was deposited between the Al contacts without breaking the vacuum. The O$_2$ deficient alumina layer was obtained by the evaporation of alumina at 0.5 Å s$^{-1}$ under an O$_2$ pressure of less than 10^{-3} mbar, the stoichiometric alumina layer by the evaporation of alumina at 0.5 Å s$^{-1}$ under an O$_2$ pressure of 2×10^{-4} mbar and the insulating granular Al layer by the evaporation of pure Al at 1.8 Å s$^{-1}$ under an O$_2$ pressure of $4-5 \times 10^{-5}$ mbar. The base pressure of the evaporator is less than 10^{-6} mbar. As long as the sheet resistances of the samples are the same, we did not observe any significant difference between the field effect response of granular Al and O$_2$ deficient alumina / STO interfaces.

The active channel between the Al contacts (i.e. the part of the surface covered by the AlO$_x$ overlayer) has a typical size of 1 mm x 2 mm. Its electrical resistance was measured in a two contact MOSFET-like configuration2 and unless otherwise specified, in the ohmic regime (linear part of the $I - V_b$ curves, V_b being the bias voltage). Depending on the resistance value, either current bias or voltage bias were used. In our electrical field effect measurements, the gate insulator is the STO substrate itself and no leakage currents were detected with the V_b values used (leakage currents below 1 pA, maximum absolute V_b value of 100 V corresponding to an electric field of 2 kV cm$^{-1}$). The bias voltage V_b was usually kept much smaller than V_g in order to avoid any mix up between the two parameters. The gate contact was made on

2For metallic samples, two and four contacts configurations could be used and no significant difference was observed.
the unpolished side of STO crystal with silver paint and its polarity is such that it is connected to the plus terminal of the V_g source (see figure 1).

3. Room temperature modulation of the resistance

Depending on the oxygen pressure (Al/O ratio during the evaporation), we can get samples with room temperature R_s values from ≈ 20 kΩ to unmeasurably large values [23]. Typical $R_s - T$ curves of low and high-R_s samples are plotted on figure 2 in the range 4 K–300 K. The resistance of a $R_{300\,K} = 30$ kΩ sample decreases by a factor of 10 between 300 K and 30 K, with a small resistance increase at lower temperature as observed elsewhere for samples with similar R_s values [27, 48]. The resistance of a $R_{300\,K} = 500$ MΩ sample displays instead a fast increase (close to an exponential) when the temperature is lowered and is already not measurable (R above 100 GΩ) around 150 K. The transition from a room temperature metallic-like (temperature coefficient dR/dT positive around 300 K) to a room temperature insulating-like (dR/dT negative around 300 K) behaviour occurs around $R_{300\,K} \approx 1$ MΩ. We will focus thereafter on metallic-like interfaces, having R_s values in the range 20–30 kΩ at 300 K. A resistance increase of $\approx 10\%$ which saturates within about 2h is observed when the samples are transferred from ambient daylight to darkness, and all the following measurements were thus performed after at least one day in the dark.

Typical behaviours of such low R_s samples submitted to repeated gate voltage cycles ($V_g = 0\,V$, $+30\,V$, $0\,V$, $-30\,V$) are plotted in figure 3. Such V_g cycles are commonly used in STO-based field effect measurements in order to quantify fast and slow responses to V_g changes and to reveal a potential memory of the V_g values experienced by the sample. Apart from a few fast (faster than $\approx 1\,s$) R_s changes occurring when V_g is switched, the R_s response is found to be dominated by slow variations. Each stay $\approx 1000\,s$ long under a positive V_g results in a slow resistance decrease with the opposite trend under a negative V_g. Moreover, during the 0V stay, the resistance keeps a memory of the latest V_g experienced by the sample: when V_g is switched back to 0V, the resistance tends to come back to its value before the latest V_g change. But these drifts are much slower than under positive or negative V_g and the R_s restoration is only partial. The R_s values observed over one V_g cycle are therefore not symmetrical to the initial 0V value. R_s modulations are reproducible over many gate voltage cycles and typical values of slow and fast resistance variations are indicated in the legend of figure 3. Interestingly enough, the resistance modulations are strongly reduced when the samples are exposed to daylight (see supplementary materials A (stacks.iop.org/JPhysD/49/395303/mmedia)).

Much larger R_s changes are obtained when non-zero V_g are applied over longer times. Starting from a ‘fresh’ (no V_g history) low-R_s sample ($R_s = R_{ref} = 30\,k\Omega$), R_s reaches a minimum value about 10% smaller after few hours under $V_g = 30\,V$, while a steady R_s increase is observed over 20h

Figure 2. R_s versus T between 4 K and 300 K for two ‘extreme’ AlO$_x$/STO samples. The high-R_s sample was kept 3 d in the dark before the measurement. The highest resistance measurable in our experimental set-up is of 10^{10}–10^{11} Ω.

Figure 3. (a) R_s as a function of time under repeated V_g cycles 0V, $-30\,V$, 0V, 30V at room temperature. (b) Zoom of the top figure over a reduced time scale. The slow R_s drift is about 3% over 1000s while the fast shifts corresponding to a V_g change of $\pm 30\,V$ are equal to 0.33%.

3 Such samples are not metallic in the strict sense since most of them display a clear diverging resistance at low temperature.
under $V_g = -30$ V, up to a maximum value of ≈ 10 MΩ (see figure 4). Such a value is already beyond the metallic-like to insulating crossover of ≈ 1 MΩ discussed before.

The fast field-effect can be simply understood as a standard V_g induced charge injection or removal in the system. The fact that a V_g increase is associated with a resistance drop, and a V_g decrease with a resistance jump is in qualitative agreement with the negative sign of the charge carriers obtained by Hall effect measurements [23]. We can go one step further and use the amplitude of the resistance jumps or drops to estimate the surface charge carrier density n_s at the interface. If all the charge carriers involved in the conduction have the same mobility\(^4\), the relative amplitudes of resistance jumps or drops $|\Delta R_s/R_s|$ should be equal to the relative changes in the surface charge carrier density $|\Delta n_s/n_s|$ (as long as the relative changes are smaller than 1). Assuming a simple plane-parallel capacitance geometry, $\Delta n_s(\Delta V_g) = (\epsilon/d)\Delta V_g$, where ϵ is the dielectric constant of the STO substrate ($300 \varepsilon_0$ at 300K) and d its thickness (0.5 mm). For the sample of figure 3 ($R_s = 25$ kΩ), $\Delta R_s(30$ V$)/R_s$ and thus $\Delta n_s(30$ V$)/n_s$ are equal to 0.3%. A V_g change of 30V corresponds at 300K to $\Delta n_s(30$ V$) = 1.0 \times 10^{11}$ e cm$^{-2}$, which gives a n_s estimate of 3×10^{13} e cm$^{-2}$. This n_s value is in quantitative agreement with Hall effect measurements on samples of similar R_s [23].

Let’s now discuss the prominent slow part of the field effect. In our samples, the charge carriers are supposed to be electrons released by oxygen vacancies in the STO substrate. When $V_g = 0$, an electrical field exists in the bulk of the STO substrate up to the AlO$_x$/STO interface conducting state. Note that this external field adds to a possible internal field present at the interface when $V_g = 0$. According to different experiments, oxygen vacancies have a significant mobility in STO at room temperature [7, 54, 62]. It is thus tempting to explain the slow R_s changes observed under non-zero V_g as the slow drifts of the oxygen vacancies under this electric field. If $V_g < 0$ (resp. > 0), the electrical field is such that it pulls (resp. pushes) the positively charged oxygen vacancies further from (resp. closer to) the interface. The concentration of oxygen vacancies close to the AlO$_x$/STO interface thus decreases (resp. increases) under negative (resp. positive) V_g. By analogy with what occurs in disordered induced metal-insulator transition, the decrease of the charge carrier concentration is accompanied by a strong suppression of their mobility below some critical concentration [63].

\(^4\)The charge carrier mobilities were found to be in the range 1–10 cm2 V$^{-1}$ s$^{-1}$ for surface and bulk metallic-like states [2, 27]. This approximation should thus be reasonable at least for low-R_s samples.

\(^5\)The fact that the resistance goes through a maximum under negative V_g in low-R_s samples cannot be understood within this simplified picture. It might result from the combined effects of an internal electrical field at the AlO$_x$/STO interface and of a charge mobility dependence with the distance to the interface.
and the resistance shifts are strongly reduced, giving rise to the memory effect described before.

Slow resistance drifts and memory effects are indeed quite common at room temperature in STO-based field effect devices [13, 35, 54]. They are usually attributed to the electro-migration of oxygen vacancies in the STO substrate, an hypothesis which is strengthened by the fact that these features are smaller or absent when top gated insulators are used [35, 53, 55, 56]. But our explanation based on the strong concentration dependence of the charge carriers mobility does not seem to be universal: in amorphous LAO/STO heterostructures, the large and slow R_s changes are accompanied by large changes of the surface charge density, with only a negligible alteration of the mobility [54].

In order to test the oxygen vacancy electro-migration hypothesis in greater detail, we have studied how the slow R_s drifts were affected by temperature changes around 300 K. Our protocol was the following. The sample was first allowed to equilibrate under $30 \, \text{V}$ until R_s reached its minimum value. Then, V_g was changed to $-30 \, \text{V}$ and the subsequent R_s increase was measured as a function of time. The same protocol was repeated at different temperatures between -60°C and -50°C. Typical results are plotted in figure 5. It is clearly seen that the R_s changes are strongly slowed when T is reduced. Moreover, all the curves can be merged together, far from the saturation regime, by normalizing R_s to its value at $30 \, \text{V}$ and the time scale by an ad-hoc characteristic time for each T (see the legend of figure 6 for the exact definition of this characteristic time). Even if the T range is small in kelvin scale, the T dependence of the characteristic times is close to an activated behavior (see figure 6), with an activation energy of 0.7 eV. A similar value was found in a much more resistive sample, having $R_s(300 \, \text{K}) = 800 \, \text{M} \Omega$. This value of 0.7 eV is in agreement with previous experimental and theoretical estimates for oxygen vacancy diffusion coefficient in STO [62, 64, 65], which strengthens our hypothesis that the electro-migration of oxygen vacancies (isolated or as clusters) is responsible of the slow resistance drifts observed under $V_g = 0 \, \text{V}$. In amorphous LAO/STO interfaces [54], no quantitative estimate of the activation energy was done, but the resistance drifts are absent below $\approx 270 \, \text{K}$, in qualitative agreement with the strong temperature dependence highlighted in figures 5 and 6.

4. V_g tuned interfaces measured at low temperature

We are now going to demonstrate how this strong temperature dependence of the slow field effect can be used to tune the low temperature properties of a unique AlO/STO interface.
The protocol is as follows. Starting with a metallic-like sample having \(R_{300\,K} = 20-30 \, k\Omega \), we first apply a negative \(V_g \) of −30 V until the desired \(R_s \) value is obtained (values up to 10 M\(\Omega \) can be achieved, see before). Then, we quickly cool down the sample below \(\approx 250 \, K \), usually under \(V_g = 0 \) V, in order to freeze the sample parameters. At this temperature, the characteristic time of the slow resistance drifts are already so long that they cannot be measured in practice. Typical \(R_s \) values are measurable only under \(V_g = 50 \) V.

The protocol is as follows. Starting with a metallic-like sample having \(R_{300\,K} = 20-30 \, k\Omega \), we first apply a negative \(V_g \) of −30 V until the desired \(R_s \) value is obtained (values up to 10 M\(\Omega \) can be achieved, see before). Then, we quickly cool down the sample below \(\approx 250 \, K \), usually under \(V_g = 0 \) V, in order to freeze the sample parameters. At this temperature, the characteristic time of the slow resistance drifts are already so long that they cannot be measured in practice. Typical \(R_s \) values are measurable only under \(V_g = 50 \) V.

The protocol is as follows. Starting with a metallic-like sample having \(R_{300\,K} = 20-30 \, k\Omega \), we first apply a negative \(V_g \) of −30 V until the desired \(R_s \) value is obtained (values up to 10 M\(\Omega \) can be achieved, see before). Then, we quickly cool down the sample below \(\approx 250 \, K \), usually under \(V_g = 0 \) V, in order to freeze the sample parameters. At this temperature, the characteristic time of the slow resistance drifts are already so long that they cannot be measured in practice. Typical \(R_s \) values are measurable only under \(V_g = 50 \) V.

The protocol is as follows. Starting with a metallic-like sample having \(R_{300\,K} = 20-30 \, k\Omega \), we first apply a negative \(V_g \) of −30 V until the desired \(R_s \) value is obtained (values up to 10 M\(\Omega \) can be achieved, see before). Then, we quickly cool down the sample below \(\approx 250 \, K \), usually under \(V_g = 0 \) V, in order to freeze the sample parameters. At this temperature, the characteristic time of the slow resistance drifts are already so long that they cannot be measured in practice. Typical \(R_s \) values are measurable only under \(V_g = 50 \) V.

The typical \(4\,K \) response of a non \(V_g \)-tuned sample \((R_{300\,K} = 30 \, k\Omega) \) to repeated \(V_g \) cycles (0 V, \(\pm V_{g0}, \) 0 V, \(\pm V_{g0} \)) is plotted in figure 7. The fast field effect now dominates the \(R_s \) modulation and is much larger than at 300 K for the same sample: \(R_s \) is multiplied by more than 2 after a \(V_g \) change from 0 V to −50 V, compared to an increase of less than 1% at 300 K. A memory effect is also present, i.e. the \(R_s \) value at \(V_g = 0 \) V depends on the previous \(V_g \) applied.

But when \(V_g \) tuned samples having larger \(R_s \) values are measured, the electrical field effects change dramatically. The relative \(R_s \) difference is about 50% between \(V_g = –30 \) V and 30 V at 4 K when \(R_{300\,K} = 30 \, k\Omega \) (non \(V_g \)-tuned sample) and it becomes as large as 6 orders of magnitude when \(R_{300\,K} = 60 \, k\Omega \) following \(V_g \) tuning (see figure 9). When \(R_s \) is further increased, the resistance of the interface becomes unmeasurable under \(V_g = 0 \) V (transistor in the ‘off’ state, \(R_s > 10 \, M\Omega \)) and is as low as 10 k\(\Omega \) under \(V_g = 50 \) V. Moreover and like in non \(V_g \)-tuned samples, the large \(R_s \) modulations observed at 4 K are accompanied by memory effects at \(V_g = 0 \) V, which take the form of an hysteresis in the \(R_s \) curves of figure 10. Note that when \(R_s \) increases, the \(R_s – V_g \) values become also strongly bias dependent.

Similarly to room temperature, the amplitude of the instantaneous field effect in non \(V_g \)-tuned low-\(R_s \) samples is compatible with a standard charge injection process by the gate. According to our Hall effect measurements on a low-\(R_s \) sample, we know that the surface charge density \(n_s \) is almost constant with the temperature between 4 K and 300 K\(^7\). But the dielectric constant of STO has a strong temperature dependence: \(\varepsilon_r \) is around 300 at 300 K, 2000 at 77 K, 20000 at 4 K (under a small electric field)\[^{[66, 67]}\] and 10000 for \(V_g = 50 \) V (electrical field of 1 kV cm\(^{-1}\))\[^{[66]}\]. We thus expect the surface charge densities induced by the gate voltage \(\Delta n_s(V_g) \) to be about ten times larger at 77 K and 100 times larger at 4 K than at 300 K (at small enough \(V_g \)). It corresponds roughly to what is indeed measured for the low-\(R_s \) sample.

\(^7\) For a sample having \(R_s = 100 \, k\Omega \) at 300 K, \(n_s \) was found to increase from \(2 \times 10^{13} \, e \, cm^{-2} \) at 300 K up to \(2.4 \times 10^{15} \, e \, cm^{-2} \) at 80 K, before decreasing down to \(1.6 \times 10^{13} \, e \, cm^{-2} \) at 4 K.

Figure 9. \(R_s \) response to \(V_g \) cycles at 4 K for a low-\(R_s \) sample \(V_g \) tuned at room temperature \((R_{300\,K} = 60 \, k\Omega \), bias voltage 10 mV). \(R_s \) is immeasurably large (above 10 G\(\Omega \)) under −30 V and of only 7 k\(\Omega \) under 30 V. \(R_s \) versus \(V_g \) at 4 K for the same low-\(R_s \) sample \(V_g \) tuned to \(R_{300\,K} = 120 \, k\Omega \). \(R_s \) is measurable only under \(V_g = 50 \) V.

Figure 10. \(R_s \) versus \(V_g \) at 4 K for the sample already measured in figure 9 and \(V_g \) tuned at room temperature to three different \(R_{300\,K} \) values: 60 k\(\Omega \), 120 k\(\Omega \) and 160 k\(\Omega \). \(V_g \) was continuously swept from 0 V to 50 V, then to −50 V and then back to 0 V and the bias voltage was fixed to 100 mV. The curves are not plotted when \(R_s \) exceeds the highest measurable value of our set-up (dotted line), which restrains the plotted curves to positive \(V_g \) values for the two most resistive ones.
of figure 8 when \(\Delta R_s/R_s\) is small: \(\Delta R_s/R_s(50 \text{ V}) = 0.5\%\) at 300 K, \(\Delta R_s/R_s(50 \text{ V}) = 6\%\) at 77 K and \(\Delta R_s/R_s(5 \text{ V}) = 5\%\) at 4 K. The fact that the \(R_s\) modulation becomes larger in relative value in the samples with increasing \(R_s\) values can simply be explained by a decrease of their surface charge densities.

As for \(V_g\) tuned high-\(R_s\) samples, large resistance modulations at low temperatures have been reported in many studies on STO-based field effect devices in the back gate configuration \([5, 46, 48]\). Beyond the effect of a \(n\) change, the mobility was also found to play a major role in the resistance modulations \([5, 48, 60]\). Under \(V_g < 0\), the electron gas is compressed closer to the interface and the mobility is lowered, while under \(V_g > 0\), the electron gas is extended towards the STO volume and the mobility is enhanced. The complete understanding of gating effects also requires the inclusion of the permittivity nonlinearities with the electric field \([48]\).

The origin of the memory effect and the hysteresis observed in figures 8 and 9 remains unclear. Dielectric studies have shown that a ferroelectric state can be induced by a strong enough electrical field in STO crystals, due to the proximity of the ferroelectric transition \([67]\). This ferroelectric state was usually found to be suppressed when \(T\) is increased beyond 50–100 K. Hysteresis and remnant polarization were measured at 1 kV cm\(^{-1}\) in \([68, 69]\), but also under smaller fields in LAO/STO interfaces \([46, 48, 70]\). In \([70]\), the resistance hysteresis was found to be related to a field induced polar order localized in the STO substrate about 1 \(\mu\) m below the LAO/STO interface \([70]\). Interestingly enough, small or no hysteresis was found at low \(T\) in field effect measurements in top-gate configuration \([55]\), indicating that the STO substrate plays the dominant role in the effect. In our case, a memory effect is visible at 4 K already at 0.2 kV cm\(^{-1}\) but not at 77 K up to 1 kV cm\(^{-1}\).

5. Conclusion

Our results show how the electrical properties of a metallic-like AlO\(_x\)/STO interface can be tuned by the use of a backgate voltage \(V_g\). At room temperature, a slow increase of the resistance is observed under a negative \(V_g\). This resistance increase can be large (many orders of magnitude) if \(V_g\) is applied for a long enough time and the initial resistance value can be restored with the use of a positive \(V_g\). The sample sheet resistance \(R_s\) can thus be tuned on a controlled and reversible way to any value spanning from a metallic-like \((R_s = 20 \text{ k}\Omega, \text{dR/dT} > 0\) at 300 K) to an insulating-like behavior \((R_s > 1 \text{ M}\Omega, \text{dR/dT} < 0\) at 300 K). The activation energy of these slow resistance change time scales is about 0.7 eV which strongly suggests that they are related to oxygen vacancy electro-migration. By pulling the oxygen vacancies in the volume of the STO crystal (the gate insulator material), the electrical field reduces the charge carriers density and mobility.

If the interface resistance is \(V_g\) tuned at room temperature and then rapidly cooled down below 250 K, a large set of stable interface electrical properties can be obtained. Such a process can be used for example to increase the field effect amplitude at 4 K: fast resistance changes as large as six orders of magnitude can thus be obtained under \(V_g\) cycles. We believe that this \(V_g\) tuning technique at room temperature should also be applicable to the other 2D STO-based metallic systems where similar slow field effects have been reported. Beyond the adjustment of low temperature transistors parameters, it should allow the fine study of the metal-insulator transition or even the transition to the superconducting state as a function of the interface parameters (charge carriers density and mobility) in a single sample.

References

[1] Frederikse H P, Thurber W R and Hosler W R 1964 Phys. Rev. 134 442
[2] Spinelli A, Torija M A, Liu C, Jan C and Leighton C 2010 Phys. Rev. B 81 155110
[3] Reagor D W and Butko V Y 2005 Nat. Mater. 4 593
[4] Kan D et al 2005 Nat. Mater. 4 816
[5] Ngai J, Segal Y, Su D, Zhu Y, Walker F, Ismail-Beigi S, Le Hur K and Ahn C 2010 Phys. Rev. B 81 241307
[6] Herranz G et al 2010 J. Appl. Phys. 107 103704
[7] Gross H, Bansal N, Kim Y S and Oh S 2011 J. Appl. Phys. 110 073704
[8] Kozuka Y, Hikita Y, Susaki T and Hwang H 2007 Phys. Rev. B 76 085129
[9] Meevasana W, King P, He R, Mo S, Hashimoto M, Tamai A, Songsiriritthigel P, Baumberger F and Shen Z 2011 Nat. Mater. 10 114
[10] Santander-Syro A et al 2011 Nature 469 189
[11] Chen Y et al 2013 Nat. Commun. 4 1371
[12] Carretero C 2010 Hétérostructures d’oxydes de structure pérovskite: propriétés structurales et électroniques de l’interface LaAlO\(_3/\)SrTiO\(_3\) PhD Thesis Université Pierre et Marie Curie
[13] Thiel S 2009 Study of Interface properties in LaAlO\(_3/\)SrTiO\(_3\) heterostructures PhD Thesis Universität Augsburg
[14] Basletic M, Maurice J L, Carretero C, Herranz G, Copie O, Bibes M, Jacquet É, Bouzehouane K, Fusil S and Barthélémy A 2008 Nat. Mater. 7 621
[15] Sing M et al 2009 Phys. Rev. Lett. 102 176805
[16] Reyren N et al 2007 Science 317 1196
[17] Ohtomo A and Hwang H 2004 Nature 427 423
[18] Huijben M 2006 Interface engineering for oxide electronics: tuning electronic properties by atomically controlled growth PhD Thesis University of Twente
[19] Chen Y, Pryds N, Kleibeuker J E, Koster G, Sun J, Stamate E, Shen B, Rijnders G and Linderoth S 2011 Nano Lett. 11 3774
[20] Liu Z et al 2013 Phys. Rev. X 3 021010
[21] Fuchs D, Schäfer R, Sleem A, Schneider R, Thelen R and von Löhneysen H 2014 Appl. Phys. Lett. 105 092602
[22] Scigaj M, Gáзовszky J, Varela M, Fontcuberta J, Herranz G and Sanchez F 2015 Solid State Ion. 281 68
[23] Delahaye J and Grenet T 2012 J. Phys. D: Appl. Phys. 45 153105
[24] Nakagawa N, Hwang H Y and Muller D A 2006 Nat. Mater. 5 204
[25] Kalabukhov A, Gunnarsson R, Börjesson J, Olsson E, Claeson T and Winkler D 2007 Phys. Rev. B 75 121404
[26] Siemons W, Koster G, Yamamoto H, Harrison W A, Lucovsky G, Geballe T H, Blank D H and Beasley M R 2007 Phys. Rev. Lett. 98 196802
[27] Herranz G et al 2007 Phys. Rev. Lett. 98 216803
[28] Cancelleri C et al 2010 Europhys. Lett. 91 17004
[29] Herranz G, Sánchez F, Dix N, Scigaj M and Fontcuberta J 2012 Sci. Rep. 2 758
