Perioperative steroids for lumbar disc surgery: A meta-analysis of randomized controlled trials

Muhammad Waqas
Aga Khan University, muhammad.waqas@aku.edu

Hussain Shallwani
Aga Khan University

Muhammad Shahzad Shamim
Agha Khan University, shahzad.shamim@aku.edu

Khabir Ahmed
Aga Khan University, khabir.ahmed@aku.edu

Follow this and additional works at: https://ecommons.aku.edu/pakistan_fhs_mc_surg_surg

Part of the Neurology Commons, Neurosurgery Commons, and the Surgery Commons

Recommended Citation

Waqas, M., Shallwani, H., Shamim, M., Ahmed, K. (2017). Perioperative steroids for lumbar disc surgery: A meta-analysis of randomized controlled trials. *Surgical Neurology International, 8*, 42.

Available at: https://ecommons.aku.edu/pakistan_fhs_mc_surg_surg/512
Review Article

Perioperative steroids for lumbar disc surgery: A meta-analysis of randomized controlled trials

Muhammad Waqas, Hussain Shallwani, Muhammad S. Shamim, Khabir Ahmad

Department of Surgery, Section of Neurosurgery, The Aga Khan University Hospital, Karachi, Pakistan

E-mail: Muhammad Waqas - shaiq_waqas@hotmail.com; Hussain Shallwani - hshallwani1@gmail.com; *Muhammad S. Shamim - shahzad.shamim@aku.edu; Khabir Ahmad - khabir.ahmad@aku.edu

*Corresponding author

Received: 12 December 16 Accepted: 20 January 17 Published: 05 April 17

Abstract

Background: Our review question was “Does perioperative steroids administration, in comparison with other treatments or placebo, improve either postoperative pain control, length of hospital stay, or return to work in patients undergoing lumbar disc surgery?”

Methods: We searched PubMed, CINAHL PLUS, and Cochrane databases for randomized control trials (RCTs) studying the role of steroids for lumbar disc surgery. Studies that compared perioperative steroids with other treatments or placebo were included. Study outcomes included postoperative back pain, leg pain, length of hospital stay, and return to work. Data was extracted through a proforma. Means and mean differences were calculated for continuous data, whereas odds ratios were calculated for dichotomous data. Data were analyzed with the help of Rev Man 5.

Results: Twenty RCTs were included in the review. Quantitative analysis could be performed on 19 RCTs. Intraoperative steroids improve control of back pain at 24–48 hours. Although there was some benefit of steroid administration in controlling postoperative leg pain, it disappeared at 1 year and in the overall pooled analysis. The length of hospital stay was much shorter in the steroid group. The frequency of adverse events and complications also favored steroid administration.

Conclusion: Intraoperative epidural steroid administration offers some benefit in pain control with a significant reduction in the length of hospital stay. However, there is insufficient evidence to support the routine use of oral and intravenous steroids in the perioperative period.

Key Words: Lumbar surgery, lumbar surgery outcomes, microdiscectomy, perioperative steroids, randomized control trials

INTRODUCTION

The incidence of lumbosacral radiculopathy is estimated to be approximately 3–5%, and therefore, lumbar disc surgery is one of the most common procedures performed by spine surgeons in United States[17,18]. Because radicular pain may be partially attributed to inflammatory mediators, some surgeons have utilized
perioperative steroids(8) (e.g., strong anti-inflammatory effect, modulation of pain receptors).(8) Here, we reviewed the current randomized controlled trial (RCT) literature regarding the use of perioperative steroids in lumbar disc surgery.

MATERIALS AND METHODS

The study included an analysis of RCT studies for adult patients undergoing surgery for lumbar disc herniation who received preoperative, intraoperative, or postoperative steroids, administered through any route, i.e., oral, intravenous, or epidural. We searched PubMed, CINAHL PLUS, and Cochrane databases for randomized control trials (RCTs) studying the role of steroids for lumbar disc surgery. A detailed search strategy is given in Appendix 1. We identified the differences in the mean pain scores [e.g., visual analog scale (VAS) at 24 hours, 48 hours, 72 hours, 1 week, 1 month, and 1 year], mean length of hospital stay (LOS), mean number of days to return to work, and the percentage of adverse events (AE) in patients receiving perioperative steroids vs. control patients (who received no steroids).

Data extraction

Two reviewers separately and independently extracted the data, which was then recorded in Microsoft Excel. In cases where desired data was not reported by authors, the corresponding authors were contacted for more details or missing data.

Risk of bias assessment

Risk of bias was assessed for each of the selected RCT on six quality parameters, i.e., comparability of treatment groups, standardization of care protocol, blinding of care, adequacy of outcomes, blinding of outcomes, and completeness of follow-up. Each parameter was given a score of 1-point if it was adequately described in the article. No score was given for absence of quality parameter or inadequate description of the same. Study quality level was obtained by adding the scores of each parameter to grade the studies from a total of 6 points.

RESULTS

Twenty RCTs were included in this systematic review, and quantitative analysis was performed on 19 studies [Table 1]. The process of study selection is shown in Figure 1.

Two RCTs by Ludin \textit{et al}.(12) and Hurlbert \textit{et al}.(10) had maximum quality level of 6, whereas RCT by Debi \textit{et al}.(5) showed the lowest quality score of 1. Most studies had quality level of 3 or 4. Summary of study characteristics is presented in Table 2.

Postoperative back pain

Six studies assessed postoperative back pain at 24 hours. The analysis favored the use of steroids, with a mean difference of −0.16 [95% confidence interval (CI) = −0.26, −0.05]. This difference was

Study author and year	Comparable	Standardization of care protocol	Blinding of care	Adequate outcomes	Blinding of outcome	Completeness of Follow up	Study quality level
Abrishamkar \textit{et al}. (2011)	Y	Y	Can’t tell	N	Y	Y	4
Aljabi \textit{et al}. (2015)	Y	Y	N	N	Y	Can’t tell	3
Aminmansour \textit{et al}. (2006)	Y	Y	Y	N	Y	Can’t tell	4
Bahari \textit{et al}. (2010)	Y	Y	Y	N	Can’t tell	Can’t tell	3
Debi \textit{et al}. (2002)	Can’t tell	Y	N	N	Can’t tell	N	1
Diaz \textit{et al}. (2012)	Y	Y	Y	Y	Y	Y	6
Dikmen \textit{et al}. (2005)	Y	Y	Can’t tell	N	Can’t tell	Y	3
Glasser \textit{et al}. (1993)	Y	Y	N	N	Y	N	3
Hurlbert \textit{et al}. (1999)	Y	Y	Y	Y	Y	Y	6
Jirarattanaphochai \textit{et al}. (2007)	Y	Y	Y	N	Y	N	4
Langmary \textit{et al}. (1995)	Y	Y	Y	N	Y	N	4
Lotfinia \textit{et al}. (2007)	Y	Y	Y	N	Y	Y	5
Lundin \textit{et al}. (2003)	Y	Y	Y	Y	Y	Y	6
Manniche \textit{et al}. (1994)	Y	Y	Y	N	Y	N	4
McNeill \textit{et al}. (2005)	Can’t tell	Y	N	N	Y	N	3
Mirzai \textit{et al}. (2002)	Y	Y	N	N	Y	Y	4
Modi \textit{et al}. (2009)	Y	Y	Y	N	N	N	3
Poberoskin \textit{et al}. (1999)	Y	Y	Y	N	Y	Can’t tell	4
Rasmussen \textit{et al}. (2008)	Y	Y	N	Y	Y	Y	5
Watters \textit{et al}. (1989)	Y	N	Y	N	Y	Y	4
Table 2: Summary of methods and clinical characteristic of studies include in the review

Author and year	Location	Follow-up	No. of patients	Age in years (Mean±std or median/range)	Males (%)	Operative procedure	Steroid formulation	Route of administration
Abrishamkar et al. (2011)	Iran	2 weeks	66	45.4±10.33	47	MD	40 mg MP acetate	EPI
Aljabi et al. (2014)	United Arab Emirates	1 month	150	45.1±13.7	43.33	MD	80 mg MP Acetate	EPI
Aminmansour et al. (2006)	Iran	2 months	61	38.5±10.39	57.4	MD	DMZ 40 mg in 20 cc syringe	IV
Bahari et al. (2010)	Ireland	8 weeks	100	39.3 (group 1); 42.7 (group 2); 41.8 (Group 3); 39.2 (Group 4)	0.40	MD	10 mg of TAC acetone or 10 mg of TAC acetone	EPI
Debi et al. (2002)	Israel	1 year	61	40.9±12.14	70.5	MD, LM	MP 80 mg acetate in 2 ml	EPI
Diaz et al. (2012)	Canada	3 years	201	51	59.70	MD, LM	MP 80 mg acetate in 2 ml	EPI
Dikmen et al. (2005)	Turkey	NR	31	42.5	52	MD, LM	DMZ 8 mg	EPI
Glasser et al. (1993)	USA	1 month	32	46.1±4.2	NR	MD, LM	250mg IV MP + 160mg IM MP + 30 ml of 0.25% bupivacaine with 1:200,000,80 mg MP	IV, IM, EPI
Hurlbert et al. (1999)	USA	3 months	60	51±3.3	61.67	MD, LM	MP 80 mg, 1 mg morphine	EPI
Jirratannaphochai et al. (2007)	Thailand	3 months	103	52.0±11.6	46.60	MD, LM, PSF	MP 80 mg, 0.375% bupivacaine infiltrated	EPI
Langmayr et al. (1995)	Austria	6 months	26	43	76.92	MD	Betamethasone 2 ml of IT	IT
Lotfinia et al. (2007)	Iran	96 hours	150	38.09±0.86	44.67	MD	MP 40 mg	EPI
Lundin et al. (2003)	Sweden	2 years	80	41.15	55	MD	MP 160 mg IM and 250 mg IV MP sodium succinate + 80 mg MP	IV, IM, EPI
Manniche et al. (1994)	Denmark	156 weeks	93	40.47	68.82	MD	PD 50 mg daily for fourteen days of surgery, then 25 mg daily for the following fourteen days	PO
McNeill et al. (2005)	USA	48 hours	166	NR	60.20	MD, LM	MP 40 mg or 40 mg MP acetate + 5 mg morphine	EPI
Mirzai et al. (2002)	Turkey	12 hours	44	39.3±8.26	56.81	MD	40 mg of MP	EPI
Modi et al. (2009)	Korea	Variable	57	29.82±7.16 intervention; 30.14±8.15 (control)	80.70	MD	40 mg of MP	EPI
Pobereskin et al. (2000)	United Kingdom	24 hours	93	44.5 (Control); 44.8 (Group 1); 46.3 (Group 2)	50.53	MD	TAC 40 mg/ml or 20 mg/ml OR 40 mg MP acetate + 5 mg Morphine	EPI
Rasmussen et al. (2008)	Denmark	2 years	200	42.5±7.02	61	MD	40 mg MP acetate	EPI
Watters et al. (1989)	USA	1d	20	NR	80	MD	6 mg of DMZ IV just before surgery and every 6 hours postop for four doses, followed by 4 mg orally every 6 hours for four doses, and finally 2 mg orally every 6 hours for four doses	IV, PO

Abbreviations: MD, Microdiscectomy; PSF, pedicle screw fixation; EPI, epidural; IV, Intravenous; IT, Intrathecal; IM, intramuscular; PO, oral; MP, methylprednisolone; DMZ, Dexamethasone; Tramcinolone, TAC; prednisolone, PD; N/M, not mentioned; USA, United States of America

Statistically significant with a P value of 0.003 [Figure 2]. Analysis showed similar trend at 1 month and for overall analysis.

Postoperative leg pain
The overall analysis favored the use of epidural steroids for reduction of leg pain. The analysis
showed significant pain reduction with epidural steroids at 1 week and 1 year. The overall effect favored steroid group with mean difference of -0.18 (-0.29, -0.07). Test for effect Z was 3.32 (P value $= 0.001$).

Length of hospital stay
The overall mean difference on LOS favored steroid group with a value of -0.93 (-1.31, -0.55), with a P value of 0.00001.

Return to work
The mean number of days for return to work favored the steroid group with a mean difference of -2.90 (95% CI: -3.94, -1.86).

Adverse events
Fifteen RCTs reported AEs and an odds ratio of 0.71 (95% CI: 0.41, 1.26) favored steroid group [Figure 3].

DISCUSSION
Perioperative steroids better control back and leg pain. The administration of perioperative steroids resulted in improved postoperative back pain and postoperative leg pain. The overall mean difference in postoperative back pain between the two groups was small and not statistically significant, i.e., -0.11 ($CI = 0.25$, 0.02), with a P value of 0.1. RCTs by Pobereskin et al.,[14] Bahari et al.,[4] and Aminmansour et al.[3] had two intervention groups assessing different regimens of steroids in comparison to controls. Each of the regimens by these three trials were analyzed separately [Figure 2]. Only one study by Lutfina et al.[11] assessed postoperative back pain at 48 and 72 hours, with a mean difference of $+0.06$ and $+0.19$ favoring control groups. One RCT by Glasser et al. assessed postoperative back pain at one week with a mean difference of -0.43 ($CI = -3.03$, 2.17).
The overall effect Z was 0.32 (P value = 0.75). Two RCTs by Glasser et al.[7] and Modi et al.[13] assessed postoperative back pain at 1 month, with a mean difference of −0.49 (CI = −0.58, −0.39) favoring steroid group. Two RCTs by Rasmussen et al.[16] and Modi et al.[13] assessed postoperative back pain at 1 year, with a mean difference 0.07 (CI = −0.03, 0.16).

Analysis favored the steroid group for better postoperative leg pain control at 1 week and 1 year postoperatively [Figure 4].

RCT by Aminmansour et al.[1] studied two steroid regimens, which we analyzed separately. Mean difference was −0.19 (CI = −0.42, 0.04). Overall effect Z was 1.59 (P value = 0.11). Three RCTs assessed postoperative leg pain at 48 hours. Mean difference between steroid and control group was 0.07 (CI = −0.30, 0.45). The effect Z was 0.59 (P value = 0.70). Three RCTs assessed postoperative leg pain at 1 week, with a mean difference of −0.05 (−0.07, −0.03). Test for overall effect Z was 4.25 with a significant P value of <0.001. Mean differences for postoperative leg pain at 72 hours and 1 month were not statistically significant between the groups. Rasmussen et al. assessed postoperative leg pain at 1 year, with a mean difference of −2.33 (CI = −2.58, −2.08).

Perioperative steroids reduce length of stay

Patients receiving perioperative steroids exhibited shorter LOS. Eight of the nine RCTs included in analysis showed shorter hospital stay in steroid group with mean difference of −0.95 (−1.31, −0.55) [Figure 5].

Perioperative steroids reduced time to return to work

Only one RCT by Aljabi et al.[2] evaluated time for return to activity and favored steroid group [Figure 6]. Fifteen RCTs did not show an increase in adverse
Figure 3: Forest plot – meta-analysis of adverse effects

Study or Subgroup	Steroid	Control	Mean Difference	Mean Difference IV, Random, 95% CI
24-hour post-op				
Glasser et al	1.67	3.54	-1.54 [-4.56, 1.48]	
Langmore et al	0.15	0.04	-0.14 [-0.18, -0.10]	
Aminmansour et al (40mg)	1.15	1.14	0.36 [0.28, 0.44]	
Aminmansour et al (80mg)	2.88	2.22	6.5%	
Loftinia et al	0.51	0.51	-0.03 [0.15, 0.10]	
Jirrattanaphochal et al	2.05	2.05	0.69 [0.30, 0.97]	
Abushamkal et al	0.63	0.78	-0.21 [-0.95, 0.23]	
Subtotal (95% CI)				
	184	267	-0.19 [-0.45, 0.07]	

Heterogeneity: Tau² = 0.05; Chi² = 66.19, df = 6 (p < 0.000001); I² = 91%
Test for overall effect: Z = 1.59 (p = 0.11)

Figure 4: Forest plot – meta-analysis of postoperative leg pain

Study or Subgroup	Steroid	Control	Mean Difference	Mean Difference IV, Random, 95% CI
24-hour post-op				
Glasser et al	1.67	2.5	-1.19 [-3.76, 1.38]	
Langmore et al	0.05	0.013	-0.05 [-0.07, -0.03]	
Jirrattanaphochal et al	1.25	1.25	7.0%	
Subtotal (95% CI)				
	114	165	-0.04 [-0.38, 0.09]	

Heterogeneity: Tau² = 0.01; Chi² = 18.70, df = 2 (p < 0.00001); I² = 89%
Test for overall effect: Z = 0.62 (p = 0.53)

Additional Figures
- Figure 3: Forest plot – meta-analysis of adverse effects
- Figure 4: Forest plot – meta-analysis of postoperative leg pain
events for patients receiving steroid (e.g., indicating the safety of epidural steroids in surgery). However, there were considerable differences in what was defined as an adverse event by different RCTs.

Quality of randomized controlled trials
The quality of RCTs was assessed using a standardized 6-point scale specifically designed for systematic reviews. Only three RCTs conducted by investigators Diaz,[6] Hurlbert,[10] and Lundin et al.[12] had the maximum score. Another limitation of the RCTs was heterogeneity of outcomes. Most RCTs focused on short-term control of back and leg pain, and only two RCTs by Rasmussen et al.[16] and Modi et al.[13] assessed pain control at 1 year. Moreover, the method of reporting different variables also varied between different RCTs. For numerical data, some trials reported medians, which required conversion into means for analysis. This statistical problem was solved with the help of Cochrane Collaboration guidelines and article by Hozo.[9,18]

Previous systematic reviews on the topic had several limitations. The review by Ranguis et al. in 2010 missed several key trials,[13] and did not distinguish microdiscectomy from laminectomy, which are two different procedures. It also did not analyze steroids administered intravenously or in oral form.

Another review by Akinduro et al.[1] only examined the complications related to steroid use[1] addressing postoperative pain as a secondary outcome with no meta-analysis.

CONCLUSION
Intraoperative epidural steroid administration offers some benefit in pain control with a significant reduction in LOS. However, there is insufficient evidence to support the routine use of oral and intravenous steroids in the perioperative period.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES
1. Akinduro OO, Miller BA, Haussen DC, Pradilla G, Ahmad FU. Complications of intraoperative epidural steroid use in lumbar discectomy: A systematic review and meta-analysis. Neurosurg Focus 2015;39:E12.
2. Aljabi Y, El-Shawarby A, Cawley DT, Aherne T. Effect of epidural methylprednisolone on post-operative pain and length of hospital stay in patients undergoing lumbar microdiscectomy. Surgeon 2015;13:245-9.
3. Aminmansour B, Khalili HA, Ahmadi J, Nourian M. Effect of high-dose intravenous dexamethasone on postlumbar discectomy pain. Spine 2006;31:2415-7.
4. Bahari S, El-Dahab M, Cleary M, Sparkes J. Efficacy of triamcinolone acetonide and bupivacaine for pain after lumbar discectomy. Eur Spine J 2010;19:1099-103.
5. Debi R, Halperin N, Mirovsy Y. Local application of steroids following lumbar discectomy. J Spinal Disord Tech 2002;15:273-6.
6. Diaz RJ, Myles ST, Hurlbert RJ. Evaluation of epidural analgesic paste components in lumbar decompressive surgery: A randomized double-blind controlled trial. Neurosurgery 2012;70:414-24.
7. Glasser RS, Knego RS, Delashaw JB, Fessler RG. The perioperative use of corticosteroids and bupivacaine in the management of lumbar disc disease. J Neurosurg 1993;78:383-7.
8. Grönlund M, Virri J, Tolonen J, Seitsalo S, Kääpä E, Kankare J, et al.
A controlled immunohistochemical study of inflammatory cells in disc herniation tissue. Spine. 1994;19:2744-51.

9. Hozo S, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Method 2005;5:1.

10. Hurlbert RJ, Theodore N, Drabier JB, Magwood AM, Sonntag VK. A prospective randomized double-blind controlled trial to evaluate the efficacy of an analgesic epidural paste following lumbar decompressive surgery. J Neurosurg Spine 1999;90:191-7.

11. Lotfinia I, Khalaghi E, Meshkini A, Shakeri M, Shima M, Safaeian A. Interscapular use of epidural methylprednisolone or bupivacaine for postsurgical lumbar discectomy pain relief. A randomized, placebo-controlled trial. Ann Saudi Med 2007;27:279.

12. Lundin A, Magnuson A, Axelsson K, Kogler H, Samuelsson L. The effect of perioperative corticosteroids on the outcome of microscopic lumbar disc surgery. Eur Spine J 2003;12:625-30.

13. Modi H, Chung KJ, Yoon HS, Yoo HS, Yoo JH. Local application of low-dose Depo-Medrol is effective in reducing immediate postoperative back pain. Int Orthop 2009;33:737-43.

14. Pobereskin L, Sneyd J. Does wound irrigation with triamcinolone reduce pain after surgery to the lumbar spine? Br J Anaesth 2000;84:731-4.

15. Ranguis SC, Li D, Webster AC. Perioperative epidural steroids for lumbar spine surgery in degenerative spinal disease: A review. J Neurosurg Spine 2010;13:745-57.

16. Rasmussen S, Krum-Møller DS, Lauridsen LR, Jensen SEH, Mandee H, Gerlif C, et al. Epidural steroid following discectomy for herniated lumbar disc reduces neurological impairment and enhances recovery: A randomized study with two-year follow-up. Spine 2008;33:2028-33.

17. Tarulli AW, Raynor EM. Lumbosacral radiculopathy. Neurol Clin 2007;25:387-405.

18. Weinstein JN, Lurie JD, Tosteson TD, Tosteson AN, Blood E, Abdu WA, et al. Surgical versus non-operative treatment for lumbar disc herniation: Four-year results for the Spine Patient Outcomes Research Trial (SPORT). Spine 2008;33:2789.

APPENDIX 1: SEARCH STRATEGY

- NLM PubMed:
 - ((“lumbar disc surgery”[All Fields] AND (“prednisolone”[MeSH Terms] OR “prednisolone”[All Fields]) OR (“methylprednisolone”[MeSH Terms] OR “methylprednisolone”[All Fields])) OR (“dexamethasone”[MeSH Terms] OR “dexamethasone”[All Fields]))) OR (“lumbar disc surgery”[All Fields] AND ((“postoperative period”[MeSH Terms] OR (“postoperative”[All Fields] AND “period”[All Fields]) OR “postoperative period”[All Fields] OR (“post”[All Fields] AND “operative”[All Fields]))) OR (“lumbar disc surgery”[All Fields] AND ((“postoperative period”[MeSH Terms] OR (“postoperative”[All Fields] AND “period”[All Fields]) OR “postoperative period”[All Fields] OR (“postoperative”[All Fields]))) OR (“lumbar disc surgery”[All Fields] AND ((“lumbosacral region”[MeSH Terms] OR (“lumbosacral”[All Fields] AND “region”[All Fields])) OR (“lumbosacral region”[All Fields] OR “lumbar”[All Fields]) AND disc[All Fields] AND (“surgery”[Subheading] OR “surgery”[All Fields] OR “surgical procedures, operative”[MeSH Terms] OR (“surgical”[All Fields] AND “procedures”[All Fields] AND “operative”[All Fields]) OR “operative surgical procedures”[All Fields] AND (“surgery”[All Fields] AND “general surgery”[MeSH Terms] OR (“general”[All Fields] AND “surgery”[All Fields]) OR (“general surgery”[All Fields]) AND (“steroids”[MeSH Terms] OR “steroids”[All Fields])) OR (“lumbar disc surgery”[All Fields] AND (“pain”[MeSH Terms] OR “pain”[All Fields]))

- CENTRAL (Cochrane)
 - Lumbar disc surgery AND steroid

- CINAHL PLUS (EBSCOHOST)
 - Lumbar disc surgery AND steroid