LETTERS AND COMMENTS

An exact lower energy bound for the infinite square well potential

M Ögren\(^1\) and M Carlsson\(^2\)

\(^1\) ARC Centre of Excellence for Quantum-Atom Optics, School of Mathematics and Physics, University of Queensland, Brisbane, Queensland 4072, Australia
\(^2\) Mathematics Department, Purdue University, 150 N. University St, West Lafayette, IN 47907, USA

Received 21 October 2010, in final form 25 November 2010
Published 5 January 2011
Online at stacks.iop.org/EJP/32/L3

Abstract

We give a lower bound for the energy of a quantum particle in the infinite square well. We show that the bound is exact and identify the well-known element that fulfils the equality. Our approach is not directly dependent on the Schrödinger equation and illustrates an example where the wavefunction is obtained directly by energy minimization. The derivation presented can serve as an example of a variational method in an undergraduate level university course in quantum mechanics.

1. Introduction

In the introductory study of quantum mechanics the three probably most basic examples to master for the student are the infinite square well, the harmonic oscillator and the (non-relativistic) hydrogen atom, see e.g. [1]. These can all be solved exactly from the Schrödinger equation with moderate knowledge in mathematics. Their solutions illustrate the emergence of (bound) quantized states, hence a dramatic deviation from the classical picture. The energy spectrum for these three integrable examples can also be solved by semiclassical quantization methods [2]. Remarkably all exact energies can be obtained analytically, relying on the fact that their Hamilton functions are quadratic forms (after a coordinate transformation in the hydrogen case [3]). These simple concepts are still very important ingredients in today’s research frontier in (many-body) quantum physics, see e.g. [4, 5] and [6] respectively, for a heuristic model of a Fermi gas at unitarity, to see the emergence of super-shell structures in a harmonic trap and to model quantum information processing with Rydberg atoms.

There are not so many other examples of potentials that allow for an exact analytic treatment. For example the finite square well is of great practical importance and it helps in understanding the physics of modern man-made low-dimensional structures and quantum well devices. However, it cannot be solved exactly although many practical (some also analytic)
approximations exist [7]. In the following, we discuss the obviously more artificial infinite square well; while the present comment does not provide any new results, it highlights an alternative path [8] and can be used as a simple example of a variational method.

2. The infinite square well

The infinite square well potential is defined here as

\[V(x) = \begin{cases} 0 & \text{if } 0 \leq x \leq L, \\ \infty & \text{else} \end{cases} \tag{1} \]

where the wavefunctions to the potential of equation (1) obey

\[\psi(0) = \psi(L) = 0. \tag{2} \]

This agrees with the probability interpretation that the particle cannot be found in finite regions where \(V = \infty \). The usual way to obtain the lowest energy (eigenvalue) is to solve the following Schrödinger equation:

\[-\frac{\hbar^2}{2m} \frac{d^2\psi}{dx^2} = E\psi, \quad 0 \leq x \leq L. \tag{3} \]

The point of this comment, however, is to show how to accurately estimate the lowest energy \(\min(E) \) without explicit use of the Schrödinger equation or its eigenvalues.

3. Heisenberg inequality

A standard approach is to start from the Heisenberg uncertainty relation for the momentum and position [9]:

\[\Delta p \Delta x \geq \frac{\hbar}{2}. \tag{4} \]

This gives an approximate bound for the ground state energy [10] in the potential of equation (1), where \(\Delta x \sim L/2 \):

\[E = \frac{\langle \hat{p}^2 \rangle}{2m} \sim \frac{(\Delta p)^2}{2m} \geq \frac{\hbar^2}{2mL^2}. \tag{5} \]

Since the energy spectrum to equation (3) is

\[E_n = \frac{\hbar^2 \pi^2 n^2}{2mL^2}, \quad n = 1, 2, \ldots \Rightarrow \min(E) = E_1. \tag{6} \]

The lower bound of the estimate in equation (5) is hence predicting the true lowest energy \(E_1 \) incorrectly by a factor \(\pi^2 \). This is only acceptable for very crude estimates\(^3\), such as comparing the energy of systems of different sizes \(L \) (e.g. nuclei [MeV] and atoms [eV]).

4. An exact inequality

We now derive a stricter lower bound of the ground state energy to the infinite square well potential defined in equation (1). Let us denote the wavefunction of the ground state by

\(^3\) A refined analysis gives \(\Delta p \Delta x = \sqrt{\pi^2/12 - 1/2}\hbar \approx 0.57\hbar > \hbar/2 \) for the infinite square well. For a discussion of the convergence of the moments \(\langle \hat{p}^2 \rangle \), see e.g. [11].
ψ₀; this should obey the boundary conditions of equation (2) together with the normalization condition
\[\int_0^L |\psi(x)|^2 \, dx = 1. \tag{7} \]
Under those subsidiary conditions the ground state ψ₀ should minimize the energy functional (here \(\dot{H} = |\dot{p}|^2/2m \), where we use \(\dot{p} = -\hbar \, d/\, dx \) \cite{12} and integration by parts):
\[E(\psi) = \langle \psi | \dot{H} | \psi \rangle = \hbar^2 \frac{2m}{L} \int_0^L \left| \frac{d\psi(x)}{dx} \right|^2 \, dx. \tag{8} \]
Our main task here is to prove the following inequality:
\[E(\psi) \geq \frac{\hbar^2 \pi^2}{2mL^2}, \tag{9} \]
without using the Schrödinger equation (3), which is the Euler–Lagrange equation to (8). We then find the element ψ₀ which gives the equality in equation (9). Combining equations (7) and (8) we can write the inequality of equation (9):
\[\int_0^L \left| d\psi(x)/dx \right|^2 \, dx \geq \frac{\pi^2}{L^2} \int_0^L |\psi(x)|^2 \, dx. \tag{10} \]
We remark that a related inequality was proved with geometrical methods by Wilhelm Wirtinger in the 19th century; see e.g. \cite{13}.

5. Proof of the inequality

We expand ψ to an odd function \(\tilde{\psi} \) on the interval \(-L \leq x \leq L\); hence \(\tilde{\psi}(-L) = \tilde{\psi}(L) = 0 \) (equation (2)). It is natural to express \(\tilde{\psi} \) as a Fourier series \(\tilde{\psi} = \sum k a_k \phi_k \), with \(\phi_k = \exp(\pi i k x/L) / \sqrt{2L} \). It then follows that
\[\frac{d\tilde{\psi}}{dx} = \sum_k \frac{\pi i k}{L} a_k \phi_k \tag{11} \]
(using that dψ/ dx is a continuous function in \(0 < x < L \), that \(\tilde{\psi}(-L) = \tilde{\psi}(L) \) and integration by parts). This transforms equation (10) into
\[\int_{-L}^L \left(\sum_{k \neq 0} k a_k \phi_k \right)^2 - \sum_{k \neq 0} |a_k|^2 \, dx \geq 0, \tag{12} \]
since \(a_0 = \int_{-L}^L \psi \phi_0 \, dx = 0 \) as \(\tilde{\psi} \) is odd. Using the orthogonality of the \(\phi_k \) gives
\[\sum_{k \neq 0} (k^2 - 1)|a_k|^2 \geq 0, \tag{13} \]
and hence the inequality (≥) is proved. The equality (=) is seen to be fulfilled for the elements \(\psi_0 \) such that \(a_{-1} = -a_1 \neq 0 \) (since \(\tilde{\psi} \) is odd) and \(a_k = 0 \) for all other \(k \). Since we choose \(\psi_0 \) to be positive and real, this means that the normalized wavefunction on \(0 \leq x \leq L \) which minimizes the energy is
\[\psi_0(x) = e^{3\pi i/2} (\phi_1 - \phi_{-1}) = \sqrt{2/L} \sin(\pi x/L), \tag{14} \]
as desired. The ground state momentum relation \(p = \hbar \pi /L = \sqrt{2mE} \) then also follows from equation (9). We finally remark that other bases can be used to prove equation (10) by expanding \(\tilde{\psi} \), but the equality with equation (14) then, in general, has to be checked by projection.
6. Conclusions

We have obtained the well-known ground state of the infinite square well analytically without directly solving the Schrödinger equation. This derivation can serve as a neat pedagogical tool in undergraduate quantum mechanics classes. It stresses the view that the shape of the wavefunction is such that the energy is minimized, which is widely used for approximations to more complicated (many-body) systems.

References

[1] Bransden B H and Joachain C J 2000 Quantum Mechanics 2nd edn (Englewood Cliffs, NJ: Prentice-Hall)
[2] Keller J B 1958 Ann. Phys. 4 180
[3] Kustaanheimo P and Stiefel E 1965 J. Reine Angew. Math. 218 204
[4] Pricoupenko L and Castin Y 2004 Phys. Rev. A 69 051601
[5] Ögren M and Heiselberg H 2007 Phys. Rev. A 76 021601
[6] Lukin M D et al 2001 Phys. Rev. Lett. 87 037901
[7] de Alcántara Bonfim O F and Griffiths D J 2008 Am. J. Phys. 74 43–8
[8] Goodman M 1981 Am. J. Phys. 49 843–7
[9] Kennard E H 1927 Z. Phys. 44 326
[10] Yue Z 1990 Am. J. Phys. 58 554–6
[11] Cummings F E 1977 Am. J. Phys. 45 158–60
[12] Levich B G, Vdovin Y A and Myamlin V A 1973 Theoretical Physics 3, An Advanced Text Quantum Mechanics vol 3 (Amsterdam: North-Holland)
[13] Pressly A 2002 Elementary Differential Geometry (London: Springer)