Partial $U(1)_A$ Restoration and η Enhancement in High-Energy Heavy-Ion Collisions

Zheng Huanga * and Xin-Nian Wangb

aTheoretical Physics Group and bNuclear Science Division

Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720, USA

(July 12, 1995)

Abstract

We calculate the thermally averaged rates for the η-π conversion and η scattering using the Di Vecchia-Veneziano model and t’Hooft model, which incorporate explicitly the $U(1)_A$ anomaly. Assuming an exponential suppression of the $U(1)_A$ anomaly, we also take into account the partial restoration of $U(1)_A$ symmetry at high temperatures. We find that the chemical equilibrium between η and π breaks up considerably earlier than the thermal equilibrium. Two distinct scenarios for the η freeze-out are discussed and the corresponding chemical potentials are calculated. We predict an enhancement of the thermal η-production as a possible signal of the partial $U(1)_A$ restoration in high-energy heavy-ion collisions.

11.30.Rd, 11.30.Qc, 12.38.Mh

*Address after August 1, 1995: Department of Physics, University of Arizona, Tucson, AZ 85721.
I. INTRODUCTION

At the Lagrangian level, QCD has, in addition to $SU(N_f) \times SU(N_f)$ chiral symmetry, an approximate $U(1)_A$ symmetry, under which all left-handed quark fields are rotated by a common phase while the right-handed quark fields are rotated by an opposite phase. It is well known that the $U(1)_A$ symmetry is violated by the axial anomaly present at the quantum level and thus cannot give rise to the Goldstone boson which would occur when $U(N_f) \times U(N_f)$ chiral symmetry is spontaneously broken. The $U(1)_A$ particle, known as $\eta'(958)$ in the $N_f = 3$ case, acquires an additional mass through the quantum tunneling effects mediated by instantons [1], breaking up the mass degeneracy with pions and η in the chiral limit when all quarks (u, d and s) are massless. The $\eta(547)$ particle also acquires an additional mass through the mixing with η'. It is believed that at high temperatures the instanton effects are suppressed due to the Debye-type screening [2]. Then one expects a practical restoration of $U(1)_A$ at high temperatures. If the restoration occurs at a temperature lower than the chiral phase transition temperature T_χ, there may be some interesting phenomenological implications in high-energy heavy-ion collisions, as suggested first by Pisarski and Wilczek [3] and more recently by Shuryak [4]. One of the consequences of $U(1)_A$ restoration is the enhancement of η particle production at small and intermediate transverse momenta due to the softening of its mass at high temperatures. However, the final yield of the η particles and their p_t distributions both depend crucially on the chemical and thermal equilibrating processes involving the η.

In this paper, we shall examine the rates of various processes relevant for the thermal η particle production, in particular, whether or not the η can decouple early enough from the thermal system expected to be produced in relativistic heavy ion collisions. We shall present a theoretical calculation of the thermal cross sections for the processes $\eta\eta \leftrightarrow \eta\eta$, $\pi\eta \leftrightarrow \pi\eta$ and $\eta\eta \leftrightarrow \pi\pi$, essential to the thermal and chemical equilibration. Our calculations are based on models which explicitly incorporate the $U(1)_A$ anomaly. We also assume an exponential suppression of the $U(1)_A$ anomaly due to the Debye-type screening of the instanton effect...
which leads to the temperature dependence of the η and η' masses. Our results suggest that the chemical equilibrium breaks up for η particles long before the thermal freeze-out. We suggest a modest enhancement of thermal η production as a signal for the relic of $U(1)_A$ restoration.

This paper is organized as follows: In Sec. II, we compute the mass spectrum of η and η' using the Di Vecchia-Veneziano model, which incorporates the $U(1)_A$ anomaly and the η-η' mixing effect. We obtain the low-energy theorems for various scattering amplitudes. In Sec. III, we incorporate the σ and the δ resonances using the t’Hooft model and reevaluate the η scattering cross sections. In Sec. IV, we study the thermal averaged cross sections responsible for maintaining thermal and chemical equilibria, and suggest that the chemical equilibrium between η and π breaks up considerably earlier than the η thermal equilibrium. We discuss two scenarios for the η freeze-out and their corresponding signals for the η production. We briefly comment on the roles of η' and the QCD sphalerons in Sec. V and Sec. VI respectively.

II. NONLINEAR σ-MODEL: LOW-ENERGY THEOREMS

Up to now, there has been no direct experimental measurement of the η scattering cross sections (or the scattering lengths). One has to rely on theoretical models to calculate the interaction rates which are complicated by many uncertainties. Nevertheless, the scattering amplitudes at low energy can be more or less precisely predicted if the meson masses are soft, thanks to the soft-meson theorems which are based on the symmetry of the interactions and depend very little on the detailed dynamics. The current-algebra predictions of these scattering amplitudes have been made very early by Osborn based on $SU(3) \times SU(3)$, where the anomalous $U(1)_A$ and the η and η' mixing are not included. In the light of softening of η and η' masses at high temperatures, we argue that the symmetry can be extended to $U(3) \times U(3)$. We shall rederive the low-energy amplitudes incorporating the anomalous $U(1)_A$ using the nonlinear σ-model that at the lowest order should give us the
low-energy theorems. The standard Di Vecchia-Veneziano model [6,7], which incorporates the explicit $U(1)_A$ anomaly, reads after integrating out the gluon field

$$
\mathcal{L}_{\text{eff}} = \frac{f_\pi^2}{4} \text{Tr}(\partial^\mu U \partial_\mu U^\dagger) + \frac{f_\pi^2}{4} \text{Tr}(MU + MU^\dagger) + \frac{f_\pi^2}{4} \frac{a}{4N_c} (\log \det U - \log \det U^\dagger)^2, \tag{1}
$$

where $U = \exp(i\Phi/f_\pi)$, $f_\pi = 93$ MeV, $M = \text{diag}(m_\pi^2, m_\pi^2, 2m_K^2 - m_\pi^2)$ and

$$
\Phi = \begin{pmatrix}
\pi^0 + \eta_8/\sqrt{3} + \sqrt{2}\eta_1/\sqrt{3} & \sqrt{2}\pi^+ & \sqrt{2}K^+
\\
\sqrt{2}\pi^- & -\pi^0 + \eta_8/\sqrt{3} + \sqrt{2}\eta_1/\sqrt{3} & \sqrt{2}K^0
\\
\sqrt{2}K^- & \sqrt{2}K^0 & -2\eta_8/\sqrt{3} + \sqrt{2}\eta_1/\sqrt{3}
\end{pmatrix}. \tag{2}
$$

The last term in Eq. (1) is the anomaly term which breaks $U(1)_A$ explicitly. It is easy to check that Eq. (1) satisfies the anomalous Ward identity which is crucial for determining the form of $U(1)_A$ breaking [8]. In Eq. (1), a is related to the topological charge correlation function in pure Yang-Mills theory

$$
a = -i \frac{6}{f_\pi^2} \int d^4 x \langle T[F_{\mu\nu} \tilde{F}^{\mu\nu}(x) F_{\mu\nu} \tilde{F}^{\mu\nu}(0)] \rangle_{\text{YM}}, \tag{3}
$$

where $\tilde{F}^{\mu\nu}$ is the dual gluon field strength tensor and $\langle \cdots \rangle$ stands for the vacuum expectation value at zero temperature or the thermal average at finite temperature. The integral a is identically zero in perturbation theory; it only receives nonperturbative contributions arising from the topologically nontrivial instanton configurations. The calculation of a at both zero and finite temperature is done by Gross, Pisarski and Yaffe [2] using a dilute gas approximation, and by Dyakonov and Petrov and by Shuryak [9] using an instanton liquid model. For our purpose, the phenomenological value of a at $T = 0$ can be fixed by the meson mass spectroscopy, while $a(T \neq 0)$ will be modeled by assuming an exponential suppression shown by Pisarski and Yaffe [10] at high T.

The quadratic terms for the octet η_8 and the singlet η_1 from the Lagrangian reads

$$
\mathcal{L}_{\text{mass}} = -\frac{1}{2} \left[\left(-\frac{m_\pi^2}{3} + \frac{4m_K^2}{3}\right) \eta_8^2 + \left(\frac{2m_K^2}{3} + \frac{m_\pi^2}{3} + a\right) \eta_1^2 + \frac{2\sqrt{2}}{3} \left(2m_\pi^2 - 2m_K^2\right) \eta_8 \eta_1 \right]. \tag{4}
$$

Clearly, there is a mixing between the octet η_8 and the singlet η_1. The physical $\eta(547)$ and $\eta'(958)$ are defined by
\[\eta = \eta_s \cos \theta + \eta_1 \sin \theta \quad ; \quad \eta' = -\eta_s \sin \theta + \eta_1 \cos \theta \]

(5)

to diagonalize the quadratic terms with the mixing angle

\[\tan \theta = \frac{4m_K^2 - m_\pi^2 - 3m_\eta^2}{2\sqrt{2}(m_K^2 - m_\pi^2)} , \]

(6)

and the physical masses are

\[m_\eta^2 = (m_K^2 + a/2) - \frac{1}{2} \sqrt{(2m_K^2 - 2m_\pi^2 - a/3)^2 + 8a^2/9} , \]

(7)

\[m_{\eta'}^2 = (m_K^2 + a/2) + \frac{1}{2} \sqrt{(2m_K^2 - 2m_\pi^2 - a/3)^2 + 8a^2/9} . \]

(8)

The mixing angle \(\theta \) as well as \(m_\eta^2 \) and \(m_{\eta'}^2 \) depend on the instanton-induced quantity \(a \) which is a function of temperature. The precise form of \(a(T) \) at low temperature is not known. Nevertheless, if the \(U(1)_A \) breaking becomes soft at a temperature lower than the chiral phase transition temperature \(T_\chi \), one may model the suppression effect by an exponential dependence \[a(T) = a(0)e^{-(T/T_0)^2} , \]

(9)

where \(T_0 \simeq 100 - 200 \) MeV, while keeping the masses of the pion and kaon approximately temperature independent, since they change very slowly with the temperature. It is known that mixing angle \(\theta \), \(m_\eta^2 \) and \(m_{\eta'}^2 \) at \(T = 0 \) cannot be simultaneously fit to their experimental values by a single parameter \(a(0) \). The best fit is to use the measured value of \(m_\eta^2 + m_{\eta'}^2 \) as an input to determine \(a(0) = (m_\eta^2 + m_{\eta'}^2) - 2m_K^2 \) and use this \(a(0) \) to predict \(\theta \), \(m_\eta^2 \) and \(m_{\eta'}^2 \) using Eqs. (8) and (7). At \(T = 0 \), the predicted values are \(\theta = 18.3^0 \), \(m_\eta = 500 \) MeV and \(m_{\eta'} = 984 \) MeV, compared to the measured values \(\theta^{exp} \simeq 20^0 \) from \(\eta, \eta' \to \gamma \gamma \), \(m_{\eta}^{exp} = 547 \) MeV and \(m_{\eta'}^{exp} = 958 \) MeV. The temperature dependence of \(m_\eta \) and \(m_{\eta'} \) is completely determined by a temperature-dependent \(a(T) \) given in Eq. (9). Throughout this paper, we take \(T_0 = 150 \) MeV in Eq. (9). It should be emphasized that in relativistic heavy-ion collisions, the thermal system freezes out at about \(T_{th} = 130 - 150 \) MeV, when the collision time scale exceeds the size of the system mainly determined by the nuclear radius \(R = 4 - 8 \)
for central $S + S$ or $Pb + Pb$ collisions. Below the freeze-out temperature T_{th}, the finite-temperature calculation of $a(T)$ does not make sense and the behavior of a is determined by the nonequilibrium dynamics. Figure 1 schematically plots such a temperature dependence. Clearly, the η becomes soft at high T and eventually is degenerate with the pions. The mass of η' also decreases. However, it does not become degenerate with the pion because of the large strange-quark mass, as is seen from Eq. (8). From Fig. 1 we see that the η' mass at high temperatures is still higher than the η mass at zero temperature. In Fig. 1 we also plot the temperature dependence of the δ resonance mass which we will discuss in the following section. At temperatures higher than T_χ, the masses of these excitation modes will all rise again.

The interaction terms are obtained by expanding U in Eq. (1). In contrast to the pion field, there are no derivative couplings involving η and η'. We shall ignore the interactions of η and η' with kaons since they are heavy compared with pions. To the lowest order, the quartic terms involving π, η and η' are

$$L_{\text{int}} = \frac{1}{2 \times 4! f_\pi^2} \left[2m_\pi^2(\eta\sin\chi + \eta'\cos\chi)^4 + (4m_K^2 - 2m_\pi^2)(\eta'\sin\chi - \eta\cos\chi)^4
ight.$$
$$+ 12m_\pi^2\pi^2(\eta\sin\chi + \eta'\cos\chi)^2 \right], \tag{10}$$

where $\chi = \theta + \arctan\frac{1}{\sqrt{2}}$. At very high T, as $\theta \to \arctan\sqrt{2}$ and $\chi \to \pi/2$, we can see that the η' decouples from interactions with π and η. The low-energy theorems on the two-body scattering amplitudes can be easily derived from Eq. (10):

$$A(\eta\eta \leftrightarrow \eta\eta) = \frac{1}{f_\pi^2} \left[m_\pi^2 \sin^4 \chi + (4m_K^2 - 2m_\pi^2) \cos^4 \chi \right],$$

$$A(\eta\eta \leftrightarrow \pi^0\pi^0) = A(\pi^0\eta \leftrightarrow \pi^0\eta) = \frac{1}{f_\pi^2} m_\pi^2 \sin^2 \chi,$$

$$A(\eta'\eta' \leftrightarrow \pi^0\pi^0) = A(\pi^0\eta' \leftrightarrow \pi^0\eta') = \frac{1}{f_\pi^2} m_\pi^2 \cos^2 \chi,$$

$$A(\eta\eta' \leftrightarrow \pi^0\pi^0) = A(\pi^0\eta' \leftrightarrow \pi^0\eta) = \frac{1}{f_\pi^2} m_\pi^2 \sin \chi \cos \chi,$$

$$A(\eta'\eta' \leftrightarrow \eta'\eta') = \frac{1}{f_\pi^2} \left[m_\pi^2 \cos^4 \chi + (4m_K^2 - 2m_\pi^2) \sin^4 \chi \right],$$

$$A(\eta'\eta' \leftrightarrow \eta\eta) = A(\eta\eta' \leftrightarrow \eta\eta') = \frac{1}{f_\pi^2} \left(4m_K^2 - m_\pi^2 \right) \sin^2 \chi \cos^2 \chi.$$
\[\mathcal{A}(\eta \eta \leftrightarrow \eta \eta') = \frac{1}{f_\pi^2} \left[m_\pi^2 \sin^3 \chi \cos \chi - (4m_K^2 - 2m_\pi^2) \sin \chi \cos^3 \chi \right], \]
\[\mathcal{A}(\eta \eta' \leftrightarrow \eta' \eta') = \frac{1}{f_\pi^2} \left[m_\pi^2 \sin \chi \cos^3 \chi - (4m_K^2 - 2m_\pi^2) \sin^3 \chi \cos \chi \right]. \]

(11)

The results calculated by Osborn [5] based on the current algebra can be recovered by taking \(\theta = 0 \) and using the Gell-Mann-Okubo relation \(4m_K^2 = 3m_\eta^2 + m_\pi^2 \). These low-energy theorems must be satisfied by any dynamical models, because they are solely based on the symmetry properties of the theory.

III. LINEAR \(\sigma \)-MODEL: INCLUSION OF RESONANCES

The amplitudes listed in Eq. (11) grossly underestimate the strength of scatterings at higher energies, especially in the resonance regions. However, the inclusion of resonances introduces many uncertainties, such as which resonances should be included and what are the couplings of these resonances to the mesons. In addition, there is no guarantee that a naive lowest-order calculation will preserve the unitarity because of the strong interactions. Fortunately, the low-energy theorems provide us some guidelines as to how the amplitudes should approach their low-energy limits. The linear \(\sigma \)-model based on the chiral symmetry is known to satisfy the low-energy theorems, and at the same time to be able to incorporate the resonances. To further reduce the input parameters, we consider the \(\sigma \) and \(\delta(980) \) [now called \(a_0(980) \)] resonances, which, together with \(\pi \) and the \(\eta_{ns} \) to be defined below, form a complete representation of \(U(2) \times U(2) \). We shall concentrate on the \(\eta \) particle, since there is no dramatic change of the \(\eta' \) mass with temperature, as shown in Fig. 1. We study the most relevant processes for the \(\eta \) production: \(\eta \eta \leftrightarrow \pi \pi \), \(\pi \eta \leftrightarrow \pi \eta \), and \(\eta \eta \leftrightarrow \eta \eta \). In this case, \(U(3) \times U(3) \) reduces to \(U(2) \times U(2) \) except for the mixing effects which we have already calculated.

Let us introduce the nonstrange mode \(\eta_{ns} = (u\bar{u} + d\bar{d})/\sqrt{2} \) and take \(m_s \) to be heavy. Then \(\eta_{ns} \) is approximately a mass eigenstate, \(\eta_{ns} = \eta \sin \chi + \eta' \cos \chi \), whose mass is determined from Eq. (11) to be \(m_{ns}^2 \approx 2a/3 + m_\pi^2 \). At zero temperature, \(m_{ns} \approx 709 \text{ MeV} \). We then define
the (2,2) representation multiplet of $U(2) \times U(2)$ as

$$\Phi = \frac{1}{2}(\sigma + i\eta_{ns}) + \frac{1}{2}(\delta + i\pi) \cdot \tau .$$ \hspace{1cm} (12)

The most general $U(2) \times U(2)$ invariant potential is

$$V_0 = -\mu^2 \text{Tr}(\Phi^\dagger \Phi) + \frac{1}{2}(\lambda_1 - \lambda_2)(\text{Tr}\Phi^\dagger \Phi)^2 + \lambda_2 \text{Tr}(\Phi^\dagger \Phi)^2$$ \hspace{1cm} (13)

and the mass term is

$$V_m = \frac{m_\pi^2 f_\pi}{4} \text{Tr}(\Phi^\dagger + \Phi),$$ \hspace{1cm} (14)

where λ_1, λ_2 are dimensionless constants. The $U(1)_A$-breaking term, consistent with the Ward identity, is introduced by t’ Hooft [13] as

$$V_a = \frac{a}{3}(\det\Phi^\dagger + \det\Phi),$$ \hspace{1cm} (15)

and the coefficient in V_a is chosen such that it gives the correct mass for η_{ns}. The mass spectrum can be derived from Eqs. (13), (14) and (15) by making a shift $\sigma \rightarrow f_\pi + \sigma$:

$$m_\sigma^2 = \lambda_1 f_\pi^2 + m_\pi^2; \quad m_\delta^2 = \lambda_2 f_\pi^2 + m_{ns}^2.$$ \hspace{1cm} (16)

The decay widths are

$$\Gamma_\sigma = \frac{3}{32\pi}(m_\sigma^2 - 4m_\pi^2)^{1/2}\frac{(m_\sigma^2 - m_\pi^2)^2}{f_\pi^2 m_\sigma^2},$$ \hspace{1cm} (17)

$$\Gamma_\delta = \{(m_\delta^2 - (m_{ns} + m_\pi)^2)(m_\delta^2 - (m_{ns} - m_\pi)^2)\}^{1/2}\frac{(m_\delta^2 - m_{ns}^2)^2}{16\pi f_\pi^2 m_\delta^3}.$$ \hspace{1cm} (18)

At zero temperature, $\Gamma_\sigma \sim 1$ GeV (if $m_\sigma \sim 700$ MeV) and $\Gamma_\delta \sim 200$ MeV. In principle, we should also take into account the temperature dependence of f_π and m_σ below T_χ. Here, we assume the chiral phase transition is very rapid after which f_π and m_σ have very slow temperature dependences. Furthermore, due to the large width of the σ, the slow temperature dependence of m_σ will not change our results significantly. Under such an assumption, the linear σ-model predicts also some softening of the δ resonance as T increases,
because δ is the chiral partner of π and acquires some mass from the $U(1)_A$ anomaly. The temperature dependence of m_δ is plotted in Fig. 1.

The interaction terms are

$$\mathcal{L}_{\text{int}} = \frac{\lambda_1 f_\pi}{2} (\sigma^2 + \eta_{\text{ns}}^2 + \delta^2 + \pi^2) \sigma + \frac{\lambda_1}{8} (\sigma^2 + \eta_{\text{ns}}^2 + \delta^2 + \pi^2)^2$$
$$+ \lambda_2 f_\pi (\sigma \delta + \eta_{\text{ns}} \pi) \cdot \delta + \frac{\lambda_2}{2} (\sigma \delta + \eta_{\text{ns}} \pi)^2 + \frac{\lambda_2}{2} (\delta \times \pi)^2. \quad (19)$$

The coupling constants λ_1 and λ_2 can be obtained from the mass relations of Eq. (16). It is worth pointing out that the above model should not be used to estimate the pion-pion scattering amplitude, because it does not include the important vector resonances such as ρ and A_1. However, since $\eta \eta$ and $\pi \eta$ scatterings cannot go through $J = 1$ channel, they do not directly affect the interaction rates for η. Similarly, we have also neglected the $\eta - \rho$ interaction.

To calculate the scattering amplitudes at the lowest order, we have to remove a pole singularity encountered when a resonance appears in the s-channel. A naive introduction of Breit-Wigner resonance width will spoil the delicate cancellation between the contact interaction and the pole exchange at low energy, leading to the violation of the low-energy theorems. We adopt a minimal prescription to save the low-energy limit developed by Chanowitz and Gaillard [14], making the following replacement

$$\lambda_1 + \frac{\lambda_2 f_\pi^2}{s - m_\pi^2 + im_\sigma \Gamma_\sigma} \rightarrow \lambda_1 (1 - i \Gamma_\sigma/m_\sigma) \left[\frac{s - m_\pi^2}{s - m_\sigma^2 + im_\sigma \Gamma_\sigma} \right] . \quad (20)$$

The scattering amplitudes are calculated as follows:

$$A(\eta \eta \leftrightarrow \eta \eta) = \sin^4 \chi A(\eta \eta \leftrightarrow \eta \eta)$$
$$= \sin^4 \chi \lambda_1 (1 - i \Gamma_\sigma/m_\sigma) \left[\frac{s - m_\pi^2}{s - m_\sigma^2 + im_\sigma \Gamma_\sigma} \right]$$
$$+ \frac{t - m_\pi^2}{t - m_\sigma^2 + im_\sigma \Gamma_\sigma} + \frac{u - m_\pi^2}{u - m_\sigma^2 + im_\sigma \Gamma_\sigma} ,$$

$$A(\eta \eta \leftrightarrow \pi^a \pi^a) = \sin^2 \chi A(\eta \eta \leftrightarrow \pi^a \pi^a)$$
$$= \sin^2 \chi \lambda_1 (1 - i \Gamma_\sigma/m_\sigma) \frac{s - m_\pi^2}{s - m_\sigma^2 + im_\sigma \Gamma_\sigma} .$$
\[+ \sin^2 \chi \lambda_2 (1 - i \Gamma_\delta/m_\delta) \left[\frac{t - m_{ns}^2}{t - m_\delta^2 + i m_\delta \Gamma_\delta} + \frac{u - m_{ns}^2}{u - m_\delta^2 + i m_\delta \Gamma_\delta} \right], \]

\[A(\eta^{a} \leftrightarrow \eta^{a}) = \sin^2 \chi A(\eta^{a} \pi^{a} \leftrightarrow \eta^{a} \pi^{a}) \]

\[= \sin^2 \chi \lambda_1 (1 - i \Gamma_\sigma/m_\sigma) \left[\frac{t - m_\pi^2}{t - m_\sigma^2 + i m_\sigma \Gamma_\sigma} \right] \]

\[+ \sin^2 \chi \lambda_2 (1 - i \Gamma_\delta/m_\delta) \left[\frac{s - m_{ns}^2}{s - m_\delta^2 + i m_\delta \Gamma_\delta} + \frac{u - m_{ns}^2}{u - m_\delta^2 + i m_\delta \Gamma_\delta} \right]. \tag{21} \]

The cross sections for these processes are readily calculated by integrating out the scattering angle in \(u \) and \(t \), most conveniently in the CM frame:

\[\sigma = \frac{f}{32\pi s} \left| \frac{p_{3cm}}{p_{1cm}} \right| \int_{-1}^{1} |A|^2 d\cos \theta, \tag{22} \]

where \(f = (1)1/2 \) for (non-)identical particles in the final state.

IV. THERMAL PRODUCTION OF THE \(\eta \) PARTICLE

We are interested in the production of \(\eta \) from a thermal source. To learn about the thermal history of the \(\eta \), one needs to calculate the thermal averaged cross sections for various reaction channels. Since we are only concerned with the qualitative picture, we assume throughout the rest of this paper Boltzmann distribution functions for thermalized \(\pi \)'s and \(\eta \)'s and ignore the quantum Bose-Einstein enhancement. The thermal averaged cross section for \(i + j \rightarrow k + l \) is

\[\langle v_{ij}\sigma_{ij}(T) \rangle = \frac{1}{8T} \int_{\sqrt{s_0}}^{\infty} d\sqrt{s} \sigma_{ij}(\sqrt{s}) \lambda(s, m_i, m_j) K_1(\sqrt{s}/T) \frac{m_i^2 m_j^2 K_2(m_i/T) K_2(m_j/T)}{m_i^2 m_j^2 K_2(m_i/T) K_2(m_j/T)}, \tag{23} \]

where \(\lambda(s, m_i, m_j) = [s - (m_i + m_j)^2][s - (m_i - m_j)^2] \) and \(\sqrt{s_0} \) is the reaction threshold. The reactions \(\eta\eta \rightarrow \eta\eta \) and \(\pi\eta \rightarrow \pi\eta \) determine the collision time scale responsible for maintaining the thermal equilibrium while \(\eta\eta \rightarrow \pi\pi \) is responsible for the chemical equilibrium between \(\pi \)'s and \(\eta \)'s. We define the time scales \(\tau_{\text{ther}} \) and \(\tau_{\text{chem}} \) as

\[\tau_{\text{ther}}^{-1} = \langle v\sigma(\eta\eta \rightarrow \eta\eta) \rangle n_{\eta} + \langle v\sigma(\eta\pi \rightarrow \pi\pi) \rangle n_{\pi} + \langle v\sigma(\pi\eta \rightarrow \pi\eta) \rangle n_{\pi}, \]

\[\tau_{\text{chem}}^{-1} = \langle v\sigma(\eta\eta \rightarrow \pi\pi) \rangle n_{\eta}, \tag{24} \]

\]
respectively, where \(n_\pi \) and \(n_\eta \) are the number densities for \(\pi \) and \(\eta \), and the summation over different pion states is understood. We have performed a numerical integration in Eq. (23) and plotted \(\tau_{\text{ther}} \) and \(\tau_{\text{chem}} \) as functions of the temperature in Figure 2. In the calculation, we have explicitly taken into account the temperature dependence of \(m_\eta(T) \), \(m_\delta(T) \), \(m_\text{ns}(T) \) and \(\Gamma_\delta(T) \) as calculated in Sections II and III. We take a typical value \(R = 6 \text{ fm} \) for the transverse freeze-out radius of the system. We define the thermal and chemical freeze-out temperatures \(T_{\text{th}} \) and \(T_{\text{ch}} \) respectively as \(\tau_{\text{ther}}(T_{\text{th}}) = R \) and \(\tau_{\text{chem}}(T_{\text{ch}}) = R \). One finds from Fig. 2

\[
T_{\text{th}} \simeq 139 \text{ MeV} \quad \text{and} \quad T_{\text{ch}} \simeq 168 \text{ MeV},
\] (25)

which are the temperatures at which the thermal and chemical equilibria start to break up, respectively. It is worth noting that \(T_{\text{th}} \) is comparable to the decoupling temperature of the thermal pions.

The result that \(T_{\text{ch}} \) is considerably higher than \(T_{\text{th}} \) offers an interesting possibility to detect the suppression of the \(U(1)_A \) anomaly effect at high temperatures caused by the Debye-type screening. At sufficiently high temperatures \(T > T_{\text{ch}} \), the \(\eta \) rescattering and the \(\pi-\eta \) conversion are frequent so that the system possesses both thermal and chemical equilibria. As the system expands and the temperature falls into the range \(T_{\text{th}} < T < T_{\text{ch}} \), the \(\pi-\eta \) conversion process becomes slow and effectively is turned off; the system can no longer maintain the chemical equilibrium. There is an approximate conservation of the total number of \(\eta \)'s since neither \(\eta \eta \rightarrow \eta \eta \) or \(\pi \eta \rightarrow \pi \eta \) can change the total \(\eta \)-number. The number density of \(\eta \) at the chemical break-up temperature \(T = T_{\text{ch}} \) is determined by the mass of \(\eta \) at such a temperature \(m_\eta(T_{\text{ch}}) \):

\[
n_\eta[m_\eta(T_{\text{ch}}), T_{\text{ch}}] = \frac{1}{2\pi^2}m_\eta(T_{\text{ch}})^2T_{\text{ch}}K_2\left[\frac{m_\eta(T_{\text{ch}})}{T_{\text{ch}}}\right],
\] (26)

and the momentum distribution is just the Boltzmann distribution with zero chemical potential. However, this is not the final particle distribution, because the thermal collisions can still alter the momentum distribution. Nevertheless, the total number \(N_\eta \) given by
\[N_\eta = \pi R^2 \tau_c n_\eta [m_\eta(T_{ch}), T_{ch}] \] (27)

is conserved at any time \(\tau < \tau_c \) since \(\eta \pi \leftrightarrow \pi \pi \) is turned off. Here \(m_\eta(T_{ch}) \simeq 360 \text{ MeV} \) and \(\tau_c \) is the proper time when the temperature of the system reaches \(T_{ch} \).

As the system cools down to \(T_{th} \), the mass of \(\eta \) should tend to \(m_\eta(T_{th}) \simeq 413 \text{ MeV} \), according to Fig. 1. If the rate for increasing \(m_\eta(T) \) is comparable to the thermal collision rate, the \(\eta \) particle adiabatically relaxes to \(m_\eta(T_{th}) \). In this case, which we shall call Scenario A, one expects a standard thermal distribution for \(\eta \) at the freeze-out temperature \(T_{th} \) with a mass \(m_\eta(T_{th}) \). The total number conservation requires \(\eta \) to develop a chemical potential \(\mu > 0 \) such that (neglecting the transverse expansion)

\[
\tau_d e^{\mu/T_{th}} n_\eta [m_\eta(T_{th}), T_{th}] = \tau_c n_\eta [m_\eta(T_{ch}), T_{ch}] ,
\] (28)

where \(\tau_d \) is the freeze-out time when \(T = T_{th} \). The momentum distribution function in the local comoving frame is

\[
f(p) = e^{\mu/T_{th}} e^{-\frac{\sqrt{m_\eta^2(T_{th})+p^2}}{T_{th}}} .
\] (29)

The chemical potential \(\mu \) is a function of temperature, whose value at freeze-out can be determined from Eq. (28) once \(\tau_d/\tau_c \) is known. We assume that pions dominate the energy-momentum tensor (in fact we explicitly checked the contribution from \(\eta \) and found it negligible) so that \(\tau_d/\tau_c \) can be estimated by solving the ideal 1+1 dimensional hydrodynamic equation

\[
\frac{d\epsilon}{d\tau} + \frac{\epsilon + P}{\tau} = 0 ,
\] (30)

where \(\epsilon \) is the energy density and \(P \) is the pressure, for massive pions. We find that \(\tau_d/\tau_c \simeq 1.53 \), given \(T_{ch}/T_{th} = 1.21 \). Substituting the ratio back in Eq. (28), one finds \(\lambda_\eta = e^{\mu/T_{th}} = 1.58 \). We thus predict that if there is a partial \(U(1)_A \) restoration at high temperatures, the thermal \(\eta \) production given by Eq. (29) will be enhanced in this scenario due to both the finite chemical potential \(\lambda_\eta \simeq 1.58 \) and a smaller \(\eta \) mass \(m_\eta(T_{th}) \simeq 413 \text{ MeV} \) at the thermal freeze-out temperature \(T_{th} \). To quantify such an enhancement, we use Eq. (29) to calculate
the p_t distribution of η particle, employing the fireball model and taking into account the transverse flow effects as described in Ref. [15]:

$$\frac{dN_\eta}{p_t dp_t} \propto \lambda_\eta \int_0^R rdr \sqrt{m_\eta^2 + p_t^2} I_0(p_t \sinh \rho / T_{th}) K_1(\sqrt{m_\eta^2 + p_t^2} \cosh \rho / T_{th}) ,$$

(31)

where $\rho = \tanh^{-1}(\beta_t)$ and $\beta_t = \beta_s (r/R)^\alpha$ (with $\beta_s = 0.5$, $\alpha = 2$) is the transverse flow velocity profile [15]. To reduce the possible normalization ambiguity, we also calculate the p_t-distribution for pions at the same freeze-out temperature T_{th}, taking into account only the dominant resonance decays, $\rho \rightarrow 2\pi$, and plot the ratio

$$\eta/\pi \equiv \frac{dN_\eta/p_t dp_t}{dN_\pi/p_t dp_t}$$

(32)
as a function of p_t in Figure 3. It should be noted that the thermal ratio is only relevant when p_t is small. At very large p_t, hard processes become important and the fireball model is no longer applicable. For comparison, we also plot the same ratio for a normal case in which the η particles freeze out at the same temperature T_{th} but with the zero-temperature mass $m_\eta = 540$ MeV.

Another situation, which we shall call Scenario B, is that the rate for increasing $m_\eta(T)$ when $T_{th} < T < T_{ch}$ is considerably smaller than the thermal collision rate. In this case, things get more complicated because the screening process is out of equilibrium. The η number conservation still holds, but the momentum distribution is quite different from that in Scenario A. Roughly one may imagine that even though the temperature drops to T_{th} after the chemical breakup, m_η will still have the value $m_\eta(T_{ch})$, in close analogy to a “quenching” situation. The number density at the thermal freeze-out temperature is then $n_\eta[m_\eta(T_{ch}), T_{th}]$, and the chemical potential is determined by

$$\tau_d e^{\mu / T_{th}} n_\eta [m_\eta(T_{ch}), T_{th}] = \tau_c n_\eta [m_\eta(T_{ch}), T_{ch}] ,$$

(33)
yielding $\lambda_\eta = e^{\mu / T_{th}} \simeq 1.24$. The momentum distribution function is

$$f(p) = e^{\mu / T_{th}} e^{-\sqrt{m^2_\eta(T_{ch}) + p^2 T_{th}} / T_{th}} ,$$

(34)
which predicts larger η enhancement at low p_t than at high p_t. We also plot the ratio η/π^0 based on this scenario in Fig. 3.

What happens after the thermal freeze-out? It is clear that there must exist some mechanism for the η to relax from the ‘temporary’ entity whose mass is either $m_\eta(T_{th})$ or $m_\eta(T_{ch})$ to its true identity at zero temperature with $m_\eta = 540$ MeV. A possible picture might be that the η particles still feel a negative potential in the fireball. The height of the potential barrier is determined by the mass difference $\Delta m = m_\eta - m_\eta(T_{ch})$. The η particles with p_t smaller than Δm will be trapped in the potential well until the rarefaction wave reaches the center of the interaction volume. Such a picture has been suggested by Shuryak [4] and is similar to the mechanism of cold kaon production [18]. At this stage, we do not attempt to address this nonequilibrium issue, but just to remark that our calculation here may have underestimated the enhancement effect at small $p_t \lesssim \Delta m \sim 100 - 200$ MeV.

Both Scenarios A and B predict an enhancement of the thermal η production in the light of a partial $U(1)_A$ symmetry restoration. It would be very interesting to test the idea experimentally by measuring the ratio η/π^0, especially its p_t dependence. Although preliminary data from WA80 [16] on η/π^0 ratio in both central and peripheral $S + Au$ collisions at the CERN SPS energy, as indicated in Fig. 3, have shown such a trend of enhancement, one certainly needs better statistics in order to make a definite conclusion. A related matter is the enhanced dilepton pair production via η Dalitz decay $\eta \rightarrow \ell^+\ell^-\gamma$. If the η production is enhanced about 3 times, as we have predicted, the observed dilepton enhancement with the invariant mass below 500 MeV at the CERN SPS [17] may be partially accounted for.

V. ROLE OF THE η'

There should be also some enhancement of the ratio η'/π^0, since the mass of η' also decreases as the temperature increases. Moreover, since the couplings of η' to η and π in our model become small and eventually goes to zero when $U(1)_A$ is completely restored, η'
might decouple from the system earlier than \(\eta \). The decay \(\eta' \to \pi \pi \eta \) can also enhance the \(\eta \)-production. However, in our model, we postulate that the \(U(1)_A \) restoration occurs at a temperature below the chiral phase transition temperature. Therefore, the kaon mass \(m_K \) is large and the \(\eta' \) does not become very soft. At \(T = T_{ch} \), the \(\eta' \) mass \(m_{\eta'} \) is about 750 MeV. Even without the effect of chiral symmetry breaking, the large strange-quark mass can give rise to a large mixing between \(\eta \) and \(\eta' \) according to Eq. (4). This mixing gives \(\eta' \) a mass \(m_{\eta'}^2 = 2m_K^2 - m_\pi^2 \) even if \(U(1)_A \) is completely restored. This mass is significantly larger than the \(\eta \) mass at any temperature. Therefore, in the context of our model, the \(\eta' \) effects are only moderate. The ratio \(\eta'/\pi^0 \) should never exceed that of \(\eta/\pi^0 \).

VI. ROLE OF QCD SPHALERONS

So far we have confined ourselves to the possible suppression of the instanton effects at finite temperature that causes the softening of the masses arising from the topological charge transitions. At very high temperatures, it is known that such transitions can occur without going through the instanton configurations. In fact, they are dominated by sphaleron-like transitions whose electroweak counterparts have been extensively studied in the literature [19]. It is pointed out by McLerran, Mottola and Shaposhnikov [20] that the rate of a QCD sphaleron transition should be estimated in analogy to the electroweak theory for temperatures above the symmetry-restoration, which may not be quite suppressed. In the range of temperatures discussed in this paper, the rate of the QCD sphaleron transition may be unimportant. A rough estimate by Giudice and Shaposhnikov [21] is

\[
\Gamma_{sph}^{QCD} = \frac{8}{3} \left(\frac{\alpha_s}{\alpha_W} \right)^4 \Gamma_{sph}^{EW} = \frac{8\kappa}{3} \left(\frac{\alpha_s}{4\pi} \right)^4 T, \tag{35}
\]

where \(\kappa \) is the strength of the transition. The characteristic time scale of the sphaleron transition is

\[
\tau_{sph} = (192\kappa\alpha_s^4 T)^{-1} \sim \frac{50}{\kappa T}. \tag{36}
\]
There is some evidence for κ to be $\mathcal{O}(1)$ from lattice calculations [21]. Unless κ is really big, greater than 10, the sphalerons should be decoupled from the system in the hadronic phase, where the instanton effect is most dominant.

ACKNOWLEDGEMENTS

We wish to thank M. Suzuki and V. Koch for helpful discussions. This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of High Energy Physics and Nuclear Physics of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098, and by the Natural Sciences and Engineering Research Council of Canada.

Note added: After completing this work we learned of a recent paper by J. Kapusta, D. Kharzeev and L. McLerran on the effect of $U(1)_A$ symmetry restoration on η' particle production [22].
REFERENCES

[1] G. ’t Hooft, Phys. Rev. D14, 3432 (1976).

[2] D. J. Gross, R.D. Pisarski and L.G. Yaffe, Rev. Mod. Phys. 53, 43 (1981).

[3] R. D. Pisarski and F. Wilczek, Phys. Rev. D29, 338 (1984).

[4] E. Shuryak, Comments Nucl. Part. Phys. 21, 235 (1994).

[5] H. Osborn, Nucl. Phys. B15, 501 (1970).

[6] P. Di Vecchia and G. Veneziano, Nucl. Phys. B171, 253 (1980).

[7] H. Chen, Phys. Rev. D44, 166 (1991); A. Pich and E. de Rafael, Nucl. Phys. B367, 313 (1991).

[8] S. Aoki and T. Hatsuda, Phys. Rev. D45, 2427 (1992).

[9] D. I. Dyakonov and V.Yu. Petrov, Nucl. Phys. B245, 259 (1984); ibid, B272, 475 (1986); E. Shuryak, ibid, B302, 559 (1988).

[10] R. D. Pisarski and L. G. Yaffe, Phys. Lett. B97, 110 (1980).

[11] H. Kikuchi and T. Akiba, Phys. Lett. B200, 543 (1988).

[12] T. Kunihiro, Nucl. Phys. B351, 593 (1991).

[13] G. ’t Hooft, Phys. Rep. 142, 357 (1986)

[14] M. Chanowitz and M. K. Gaillard, Nucl. Phys. B261, 379 (1985).

[15] E. Schnedermann, J. Sollfrank and U. Heinz, Phys. Rev. C48, 2462 (1993); E. Schnedermann and U. Heinz, Phys. Rev. C50, 1675 (1994).

[16] A. Lebedev et al., WA80 Collaboration, Nucl. Phys. A566, 355 (1994).

[17] I. Tserruya, CERN preprint, CERN-PPE-95-52 (1995); G. Agakichev et al., CERES Collaboration, CERN Preprint, CERN-PPE-95-026 (1995).
[18] V. Koch Phys. Lett. B351, 29 (1995).

[19] V. Kuzmin, V. Rubakov and M. Shaposhnikov, Phys. Lett. B155, 36 (1985); P. Arnold and L. McLerran, Phys. Rev. D36, 581 (1987); ibid, D37, 1020, (1988).

[20] L. McLerran, E. Mottola and M. Shaposhnikov, Phys. Rev. D43, 2027 (1991).

[21] G. Giudice and M. Shaposhnikov, Phys. Lett. B326, 118 (1994); T. Askarrd, H. Porter and M. Shaposhnikov, Nucl. Phys. B353, 346 (1991).

[22] J. Kapusta, D. Kharzeev and L. McLerran, hep-ph/9507343.
Figure Captions

Fig. 1 The temperature dependence of m_η, $m_{\eta'}$, m_δ. The parameter in the exponential suppression of the instanton effect is taken to be $T_0 = 150$ MeV.

Fig. 2 The characteristic time scales of the thermal and chemical equilibration for the η particle.

Fig. 3 The predicted ratio η/π^0 as a function of the transverse momentum p_t in three scenarios as discussed in the text. The preliminary data from WA80 [16] are also indicated.
Transverse Momentum p_T (GeV)