Strigolactones interact with nitric oxide in regulating root system architecture of

Arabidopsis thaliana

Dóra Oláh¹, Gábor Feigl¹, Árpád Molnár¹, Attila Ördög¹, Zsuzsanna Kolbert¹*

¹Department of Plant Biology, University of Szeged, Szeged, Hungary

*Correspondence:
Zsuzsanna Kolbert
kolzs@bio.u-szeged.hu

Keywords: *Arabidopsis thaliana*, nitric oxide, root, S-nitrosoglutathione reductase, strigolactone

Abstract

Both nitric oxide (NO) and strigolactone (SL) are growth regulating signal components in plants; however, regarding their possible interplay our knowledge is limited. Therefore, this study aims to provide new evidence for the signal interplay between NO and SL in the formation of root system architecture using complementary pharmacological and molecular biological approaches in the model *Arabidopsis thaliana* grown under control conditions. Deficiency of SL synthesis or signalling (*max1* and *max2-1*) resulted in elevated NO and S-nitrosothiol (SNO) levels due to decreased S-nitrosoglutathione (GSNO) reductase (GSNOR) protein abundance and activity indicating that there is a signal interaction between SLs and GSNOR-regulated levels of NO/SNO. This was further supported by the down-regulation of SL biosynthetic genes (*CCD7, CCD8* and *MAX1*) in GSNOR-deficient *gsnor1-3*. Based on the more pronounced sensitivity of *gsnor1-3* to exogenous SL (*rac*(GR24, 2 µM), we suspected that functional GSNOR is needed to control NO/SNO levels during SL-induced primary root (PR) elongation. Additionally, SLs may be involved in GSNO-regulated PIN1-dependent auxin distribution and PR shortening as suggested by the relative insensitivity of *max1* and *max2* mutants to exogenous GSNO (250 µM). Collectively, our results indicate a connection between SL and GSNOR-regulated NO/SNO signals in roots of *A. thaliana* grown in stress-free environment.

Running title: **SL-NO interplay in *Arabidopsis* roots**
1. Introduction

Strigolactones (SLs) have been first identified as germination inducers of parasite plants in the 1960s (Cook et al. 1966) and since then, they have been found to be phytohormones due to their multiple roles in regulating growth and developmental processes of higher plants (Umehara et al. 2008, Zwanenburg and Blanco-Ania 2018, Bouwmeester et al. 2019).

SLs as terpenoid lactones can be categorized as canonical SLs containing ABC ring and noncanonical SLs lacking such a ring (Waters et al. 2017). Strigolactones are synthetized from carotenoids in the plastids with the involvement of enzymes such as beta-carotene-isomerase (D27), two carotenoid cleavage dioxygenases (CCD7/MAX3 and CCD8/MAX4), cytochrome P450 (MAX1) and lateral branching oxidoreductase (Alder et al. 2012, Brewer et al. 2016). Following its transport into the cytoplasm, carlactone is converted into 5-deoxystrigol or orobanchol the main precursors of the naturally occurring SLs (Jia et al. 2019). However, our knowledge about the details of SL biosynthesis after carlactone is limited (Bouwmeester et al. 2019). It has been shown that SLs are synthetized in both the root and the shoot and that the strigolactone signal spreads from the root to the shoot system (Foo et al. 2001).

The perception of SLs involves the SL receptor DWARF14 (D14) protein having α/β fold hydrolase activity. Upon SL binding, the strigolactone ligand is hydrolysed and the conformation of D14 changes. Consequently, it can bind the MORE AXILLARY GROWTH2 (MAX2/D3) F-box type protein which assigns DWARF53 and SMXLs repressors for proteasomal degradation resulting in the induction of gene expression (Bouwmeester et al. 2016, Waters et al. 2017, Marzec and Melzer 2018). Furthermore, SLs have been implicated in plant stress responses to diverse abiotic factors (reviewed by Mostofa et al. 2018) like nutrient deficiency (Bouwmeester and Ruyter-Spira 2011), salinity and drought (Ha et al. 2014, Wang et al. 2019, reviewed by Mostofa et al. 2018) or chilling (Cooper et al. 2018).

Similar to SLs, research over the past 40 years has revealed that the gaseous signal molecule nitric oxide (NO) is a multifunctional growth regulator in plants (Kolbert et al. 2019a). While, the ability of SL synthesis is a unique feature of plants (Walker et al. 2019), any living organism is capable of the synthesis of NO. Algae utilize nitric oxide synthase (NOS)-like enzyme system for producing NO (Foresi et al. 2010, 2015, Weisslocker-Schaetzel et al. 2017) while in higher land plants NOS gene homologue to animal gene has not been found (Jeandroz et al. 2016, Santolini et al. 2017, Hancock and Neill 2019). The ability of NO liberation via...
NOS-system may be lost during evolution of land plants (Fröhlich and Durner 2011) having nitrate-dependent metabolism. A key process in nitrate-dependent NO synthesis of plants indirectly involves nitrate reductase (NR) activity which transfers electron from NAD(P)H to the NO-forming nitrite reductase (NOFNiR). This enzyme catalyses the reduction of nitrite to NO (Chamizo-Ampudia et al. 2016, 2017). Nitric oxide is synthetized endogenously within the plant body in a wide variety of tissues and NO can also be taken up from the atmosphere or from the soil (Cohen et al. 2009). In biological systems, NO reacts with glutathione to form S-nitrosoglutathione (GSNO) being less reactive and more stable molecule than NO itself. GSNO is able to release NO and can achieve long distance movement of NO signal via the xylem (Durner et al. 1999, Díaz et al. 2003, Barroso et al. 2006). Intracellular levels of GSNO are controlled by the activity GSNO reductase (GSNOR) enzyme (Feechan et al. 2005, Lee et al. 2008, Chen et al. 2009) catalysing the conversion of GSNO to GSSG and NH₃ in the presence of NADH (Jahnová et al. 2019).

Unlike SLs, the signal of NO isn’t perceived by specific receptor but the transfer of NO bioactivity is achieved by direct modification of target proteins. Cysteine S-nitrosation, tyrosine nitration and metal nitrosylation are three major NO-dependent posttranslational modifications being physiologically relevant (Astier and Lindermayr 2012). Additionally, the link between NO-related signalling and Ca²⁺-, cGMP-, MAPK-, and PA-dependent signalling has also been revealed in diverse physiological processes (Pagnussat et al. 2004, Lanteri et al. 2008, Astier et al. 2011, Jiao et al. 2018). The physiological effects of NO can be categorized similar to that of SLs. Nitric oxide regulates growth processes at stages of seed development, vegetative and generative development like pollen tube growth, seed germination, root growth, gravitropism, flowering, fruit ripening (reviewed in Kolbert and Feigl 2017). Additionally, NO participates also in responses of plants to abiotic stresses like salinity, drought, heavy metal, low oxygen availability or temperature stresses (Fancy et al. 2017).

Based on the stimulating effect of NO on plant germination, vegetative growth or fruit ripening, NO-releasing substances such as nanoparticles could be effectively applied in agricultural practice (Rodríguez-Ruiz et al. 2019). Similarly, SLs and their agonists and antagonists may have a great potential for agricultural applications. Beyond plant protection, SLs may be used to improve the structure of crops as well (Vurro et al. 2016, Takahasi and Asami 2018).

It is sure that both NO and SL are important growth regulating signals of practical significance in plants, their interplay; however, been poorly examined. The majority of the few articles dealing with SL-NO interplay focuses on the root system of crops like sunflower (Barthi...
and Bathla 2015), maize (Manoli et al. 2016) and rice (Sun et al. 2014) grown in the presence of different nutrient supply. To clarify the role of SLs in root development, Marzec and Melzer (2018) recommended to perform experiments with plants grown under stress-free conditions. Because of the above reasons, this study aims to provide new evidence for the signal interplay between NO and SL in the formation of root system architecture using complementary pharmacological and molecular biological approaches in the model Arabidopsis thaliana grown under control conditions.
2. Materials and Methods

2.1. Plant material and growth conditions

Seeds of Arabidopsis thaliana wild-type (WT, Col-0), and their mutant lines gsnor1-3 (Chen et al. 2009), 35S:FLAG-GSNOR1 (Frungillo et al. 2014), max1, max2-1 (Stirmberg et al. 2002) were surfaced sterilized with 70% (v/v) ethanol for 1 min, and with 30% sodium hypochlorite solution (1:3) for 15 min then washed five times with sterile distilled water. Seeds (approx. 30 seeds/Petri dish) were then transferred to half strength Murashige and Skoog medium (1% sucrose, 0.8% agar). Petri dishes were kept in a greenhouse at a photon flux density of 150 µmol m⁻² s⁻¹ (12/12 h light and dark cycle) at a relative humidity of 55-60% and 25 ± 2 ºC for 7 days.

2.2. Treatments

Stock solution of (rac)-GR24 and TIS108 (both purchased from Chiralix B.V., Nijmegen, Netherlands) was prepared in acetone or in DMSO, respectively. Appropriate volumes of stock solutions were added to the medium following sterilization through sterile syringe yielding 2 µM GR24 or 5 µM TIS108 concentrations in the media. These concentrations were chosen in pilot experiments using several doses (1, 2, 5 µM for GR24 and 1, 5, 10 µM for TIS108). Stock solutions of GSNO and 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) were prepared in DMSO and were diluted to the final concentrations (250 µM GSNO and 800 µM cPTIO) with distilled water. Four days after placing the seeds on the media, GSNO and cPTIO solutions were added to the surface of the agar containing the root system. One milliliter of GSNO or cPTIO was added per Petri dish using 2-ml syringe and sterile filter.

2.3. Morphological measurements

Primary root lengths of Arabidopsis seedlings were measured and expressed in mm. Lateral roots within the primary root (smaller than stage VII) were considered as lateral root primordia (LRₚᵣᵢₘ), whereas visible laterals which have already grown outside the PR were considered as emerged LRs (LRₑᵣᵢₘ, larger than stage VII, Malamy and Benfey 1997, Feigl et al. 2019). Number of LRₚᵣᵢₘ and LRₑᵣᵢₘ was determined by using Zeiss Axiovert 200 inverted microscope and 20x objective (Carl Zeiss, Jena, Germany). Lateral root density (pieces mm⁻¹) was calculated by dividing total number of LRs with PR length.
2.4. Detection of NO levels

Levels of NO were detected with the fluorophore, 4-amino-5-methylamino2'7'-difluorofluorescein diacetate (DAF-FM DA). *Arabidopsis* seedlings were incubated in 10 µM dye solution for 30 min, in darkness, at room temperature and washed two times with TRIS-HCl buffer (10 mM, pH 7.4) according to Kolbert et al. (2012). Stained root samples were observed under Axiovert 200M (Carl Zeiss, Jena, Germany) fluorescent microscope equipped with digital camera (Axiocam HR) and filter set 10 (excitation 450-490 nm, emission 515-565 nm). Fluorescence intensities in the primary roots were measured on digital images using Axiovision Rel. 4.8 software within circles of 38 µm radii.

2.5. Determination of S-nitrosothiol (SNO) contents

The amount of SNO was quantified by Sievers 280i NO analyser (GE Analytical Instruments, Boulder, CO, USA) according to Kolbert et al. (2019b). Briefly, 250 mg of *Arabidopsis* seedlings were mixed with double volume of 1x PBS buffer (containing 10 mM N-ethylmaleimide and 2.5 mM EDTA, pH 7.4) and were grounded using Fast Prep ® Instrument (Savant Instruments Inc., Holbrook, NY). Samples were centrifuged twice for 15 min (20 000 g, 4 ºC). The supernatants were incubated with 20 mM sulphanilamide. 250 µL of the samples were injected into the reaction vessel filled with potassium iodide. SNO concentrations were quantified with the help of NO analysis software (v3.2).

2.6. Western blot analysis of GSNOR protein abundance

Whole *Arabidopsis* seedlings were grounded with extraction buffer (50 mM TRIS-HCl, pH 7.6-7.8) and centrifuged (4 ºC, 9300 g, 20 min). Protein extract was treated with 1% proteinase inhibitor and stored at -80 ºC. Protein concentrations were determined using the Bradford (1976) assay.

Fifteen microliters of denaturated protein extract was subjected to SDS-PAGE on 12 % acrylamid gel. Proteins were transferred to PVDF membranes using the wet blotting procedure (25 mA, 16h). After that, membranes were used for cross-activity assays with rabbit polyclonal antibody against GSNOR (1:2000). Immunodetection was performed by using affinity, isolated goat anti-rabbit IgG-alkaline phosphatase secondary antibody at a dilution of 1:10000, and bands were visualized by using the NBT/BCIP reaction.

2.7. Spectrophotometric measurement of GSNOR activity
The specific activity of GSNOR was measured by monitoring the NADH oxidation in the presence of GSNO at 340 nm (Sakamoto et al. 2002). Plant homogenate was centrifuged (14 000 g, 20 min, 4 °C) and 100 µg of protein extract was incubated in 1 ml reaction buffer (20 mM Tris-HCl pH 8.0, 0.5 mM EDTA, 0.2 mM NADH). Data are expressed as nmol NADH min⁻¹ mg protein⁻¹.

2.8 Quantitative real time PCR analysis

The expression rates of Arabidopsis genes (NIA1, NIA2, GLB1, GLB2, GSNOR1, CCD7, CCD8, D14, MAX1, MAX2) were determined by quantitative real-time reverse transcription PCR (RT-qPCR). RNA was purified from 90 mg of 7-days-old seedlings by using a NucleoSpin RNA Plant mini spin kit (Macherey-Nagel) according to the manufacturer’s instruction. Furthermore, an additional DNAase digestion and purifying step was applied (ZYMO Research) and cDNA was synthetized using RevertAid reverse transcriptase. Primer3 software was used for designing primers. The primers used for RT-qPCR analyses are listed in Table S1. The expression rates of the NO- an SL associated genes were detected by quantitative real time PCR machine (qTOWER 2.0, Jena Instruments) using SYBR Green PCR Master Mix (Thermo Mix) (Gallé et al. 2019). Data were analysed by using qPCRsoft3.2 software (Jena Instruments). Data were normalized to the transcript levels of the control samples, ACTIN2 (At3918780) and GAPDH2 (At1913440) were used as internal controls (Papdi et al. 2008). Each reaction was carried out in three replicates using cDNA synthesized from independently extracted RNAs.

2.9 Measurement of NO liberation capacity of GSNO

Nitric oxide-sensitive electrode (ISO-NOP 2 mm, World Precision Instrument) was calibrated using a method of Zhang (2004). Donor solution (1 ml 250 µM GSNO in distilled water) was prepared and placed under illumination (150 µmol m⁻² s⁻¹) in the greenhouse in order to stimulate conditions similar to treatment conditions. To ensure constant mixing of the solution magnetic stirrer was applied during the measurement. NO concentration (nM) was calculated from a standard curve. The standard curve and the results are presented in Fig S1.

2.10 Statistical analysis

All results are expressed as mean ± SE. Graphs were prepared in Microsoft Excel 2010 and in SigmaPlot 12. For statistical analysis, Duncan’s multiple range test (one-way ANOVA, P≤0.05) was used in SigmaPlot 12. For the assumptions of ANOVA, we used Hartley’s Fmax test for homogeneity and the Shapiro-Wilk normality test.
3. Results and Discussion

3.1. Root system of GSNOR- and SL mutant Arabidopsis seedlings

Compared to the wild-type (Col-0), the primary root of gsnor1-3 mutant was 57% shorter, its root system contained very few lateral roots, and consequently its LR density was low indicating that GSNOR activity is necessary for normal root development (Lee et al. 2008, Holzmeister et al. 2011, Kwon et al. 2012). Similarly, 35S:FLAG-GSNOR1 seedlings had shortened primary roots and reduced numbers of laterals resulting in WT-like LR density, and the LR primordia to emerged LR ratio was similar to that of Col-0. This means that not only the reduced GSNOR activity but also the overexpression of GSNOR enzyme negatively affect root elongation and lateral root development. As for the max1 mutant, WT-like PR length was accompanied by increased number of emerged lateral roots and by consequently enhanced LR density compared to Col-0. The primary root of max2-1 mutant proved to be slightly (by 14%) shorter than in Col-0 and the LR number was significantly increased. The branched root systems of max1 and max2-1 suggest that MAX1-dependent SL biosynthesis and MAX2-associated SL-signalling inhibits LR development as was published previously by others (Kapulnik et al. 2011, Ruyter-Spira et al. 2011, Villaécija-Aguilar et al. 2019). The LR\textsubscript{prim} : LR\textsubscript{em} ratio was similar in Col-0 and the mutants suggesting that SLs similarly influence both the initiation and the emergence of LRs.

3.2. Levels of NO and SNO in GSNOR- and SL mutant Arabidopsis seedlings

As shown in Fig 2, the level of NO and SNO in gsnor1-3 was higher than in Col-0, while in 35S:FLAG-GSNOR1 plants, the increased endogenous NO level was accompanied by lower SNO levels than in the WT (Kolbert et al. 2019b). Additionally, in max1 and max2-1 significantly increased NO level and SNO content was detected compared to Col-0 (Fig 2).

Expressions of genes involved in NO metabolism (NIA1, NIA2, GLB1, GLB2) in max1 mutants were similar to Col-0 but all examined genes were slightly down-regulated in max2-1 (Fig 3). However, the changes were small and were not detectable in both max mutants, suggesting that these genes may not play a significant role in the regulation of NO in the absence of SLs.

Higher NO levels of the max mutants may be associated with higher SNO levels. GSNOR is a key regulator of SNO metabolism (Lindermayr 2018), thus we assumed that max
mutants show differences in association with GSNOR enzyme. Although, there were no relevant differences in the rates of GSNOR1 expression in the plant lines (Fig 4A), the GSNOR protein abundance was significantly lower in max mutants compared to Col-0 (Fig 4 BC) and also the activity of the enzyme was decreased in max1 and max2-1 mutant seedlings (Fig 4D) which may provide explanation for the elevated SNO and NO levels (Fig 3). These results indicate that SL deficiency posttranscriptionally influence GSNOR enzyme, therefore we examined the responses of GSNOR deficient and -overexpressing Arabidopsis lines to exogenous application of SL analogue GR24 and SL synthesis inhibitor TIS108.

3.3. The effect of SL analogue and inhibitor on root system and NO-associated genes in Arabidopsis

Similar to previously published results, GR24 treatment induced PR elongation in Col-0 Arabidopsis plants (Ruyter-Spira et al. 2011, Sun et al. 2014, Marzec 2016), while TIS108 caused 50% inhibition of it (Fig 5A). In case of gsnor1-3, SL analogue did not trigger PR elongation and TIS108 reduced PR length by 67% compared to the control. These suggest that the root system of gsnor1-3 is more sensitive to modifications of SL levels meaning that functional GSNOR enzyme is needed to control NO/SNO levels and to the positive effect of GR24 on PR elongation. Presumably, in case of GSNOR deficiency, NO/SNO levels are not properly regulated and high NO/SNO levels may cause PR shortening instead of elongation (Fernández-Marcos et al. 2011). The root elongation response of 35S:FLAG-GSNOR1 to SL analogue or inhibitor did not differ from that of Col-0 indicating that overexpressing GSNOR enzyme has no effect on SL-induced elongation (Fig 5A). Treatment with GR24 resulted in reduced LRem number and unchanged LRprim number (Fig 5B) suggesting that SLs influence LR emergence but not LR initiation. Jiang and co-workers (2016) published contrasting results in rice where GR24 treatment reduced only the number of LR primordia. It is conceivable that the effect of GR24 on LR development depends, inter alia, on the plant species. In GSNOR overexpressing line, GR24-induced inhibition of LR emergence proved to be more pronounced than in Col-0. Additionally, in the stunted root system of gsnor1-3, the number of LR primordia was completely reduced by GR24. These results regarding the inhibitory effect of SL analogue GR24 support previously published results (Kapulnik et al. 2011, Ruyter-Spira et al. 2011, Arite et al. 2012, Marzec 2016, De Cuyper et al. 2015). In Col-0 roots, TIS108 decreased the number of both staged-lateral roots, but in 35S:FLAG-GSNOR1 it increased the number of LR primordia. Based on these we can assume that in case of normal GSNOR level reduced SL level inhibits LR initiation, while in the presence of increased GSNOR activity SL inhibition leads
to the induction of LR initiation. These signal interactions may be complex and the knowledge of other contributing factors would be necessary to fully explain the observed effects. It can be a concern that the effect of the analogue and the inhibitor is not always the opposite. At the same time, it is conceivable that an optimal SL level is needed for normal root growth. Increasing (by the addition of GR24) or lowering (by the addition of TIS108) the optimal SL level may result in similarly inhibited growth processes.

Treatment with GR24 resulted in significantly increased NO content in *Arabidopsis* roots (Kolbert 2019c). As for NO-associated genes, the expressions of *NIA1* and *NIA2* as well as *GSNOR1* didn’t show any relevant modification in the presence of GR24 (Fig 6). In contrast, nitrogen regulatory protein P-II homolog (*GLB1*) and non-symbiotic hemoglobin 2 (*GLB2*) genes were upregulated by GR24. The *GLB* genes encode plant hemoglobins which may act as NO scavengers (Hebelstrup and Jensen 2008, Hebelstrup et al. 2012, Mira et al. 2015). In this experimental system; however, *GLB1* and *GLB2* upregulation induced by GR24 did not lead to NO scavenging, but instead GR24 induced NO production (Kolbert 2019c). This seems to be an interesting contradiction that needs further research.

3.4. The effect of NO donor and scavenger on SL-associated genes and root system of *Arabidopsis*

We were interested also in reverse interplay, i.e., whether under- or overproduction of GSNOR enzyme affects the expression of SL-associated genes (Fig 7). The examined genes (*CCD7, CCD8, MAX1*) involved in the synthesis of SLs showed down-regulation in GSNOR-deficient *Arabidopsis* compared to Col-0. This indicates that in case of low GSNOR activity, SL biosynthesis is inhibited. This further supports the interaction between GSNO metabolism and SL production in *Arabidopsis*. In addition, *CCD7* was down-regulated also in GSNOR overproducing 35S:FLAG-*GSNOR1* seedlings. In contrast, the expressions of SL signalling genes (*D14* and *MAX2*) were not altered by GSNOR deficiency or overproduction. However, this was not supported by pharmacological treatments (GSNO or cPTIO), because we didn’t observe relevant up- or downregulation of SL-associated genes (*CCD7, CCD8, MAX1, MAX2, D14*) in the presence of NO donor (GSNO) or scavenger (cPTIO) treatments (Fig 8). From the applied 250 µM GSNO solution approx. 220 nM NO liberated over 15 min during the same circumstances as the plant treatments took place (Fig S1).

To further investigate this interaction, GSNO and cPTIO treatments were applied and responses of *max* mutants were examined (Fig 9). Exogenous GSNO treatment resulted in 50%
root shortening in Col-0, whereas this effect was absent in max mutants suggesting that the examined SL mutants are GSNO-insensitive and that SLs are needed for GSNO-induced root shortening. According to Fernández-Marcos et al. (2011) GSNO inhibits root meristem activity through the reduction of PIN1-dependent auxin transport. Since SLs were proved to negatively regulate PIN proteins in Arabidopsis roots (Ruyter-Spira et al. 2011), we can assume that GSNO may exert its effect on PINs via inducing SL synthesis and/or signalling. The NO scavenger cPTIO shortened primary roots to a similar extent in all three plant lines (Col-0, max1, max2-1). Moreover, GSNO inhibited LR initiation and slightly increased LR emergence of Col-0, while cPTIO supplementation decreased the number of both types of LR. In max1 and max2-1 seedlings, LR emergence seemed to be insensitive to NO donor or scavenger. However, GSNO treatment caused reduction in the number of LR primordia of the max1 mutant, and cPTIO treatment decreased LR initiation in both max mutants. Just like the matching effects of SL analogue and inhibitor, the effects of NO donor and scavenger proved also to be often similar to each other, indicating the necessity of an optimal NO level for optimal root development.
4. Conclusion

This study combines molecular biological and pharmacological approaches in order to reveal interactions between NO and SLs as growth regulating signals in the model plant *Arabidopsis thaliana*. We observed that SL-deficiency resulted in elevated NO and SNO levels due to decreased GSNOR protein abundance and activity indicating that there is a signal interaction between SLs and GSNOR-regulated levels of NO/SNO. This was further supported by the down-regulation of SL biosynthetic genes (*CCD7, CCD8, and MAX1*) in *gsnor1-3* containing elevated NO/SNO levels. Based on the more pronounced sensitivity of *gsnor1-3* to exogenous SL (GR24), we suspected that functional GSNOR is needed to control NO/SNO levels during SL-induced PR elongation. Furthermore, SLs may be involved in GSNO-regulated PIN1-dependent auxin distribution and PR shortening as suggested by the relative insensitivity of *max1* and *max2* mutants to exogenous GSNO. Collectively, our results indicate a connection between SL and NO/SNO signals in *Arabidopsis thaliana* roots and the details of this interaction should be examined in the future.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author contribution

D. O. performing the experiments, writing the manuscript draft; G. F. performing experiments, reviewing the manuscript; Á. M. performing experiments; A. Ö. performing experiments, reviewing the manuscript; Zs. K. conceptualizing the research, designing and directing the project, reviewing manuscript draft and wrote the final manuscript.

Funding

This work was financed by the National Research, Development and Innovation Fund [Grant no. NKFI-6, K120383]. Zs. K. was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences [Grant no. BO/00751/16/8]. D. Oláh was supported by UNKP-19-3-SZTE-201 New National Excellence Program of the Ministry for Innovation and
Some of the experiments were carried out by Zs.K. during a 3-month-long visit at the Institute of Biochemical Plant Pathology, Helmholtz Zentrum München supported by TEMPUS Foundation in the frame of the Hungarian Eötvös Scholarship (MAEÖ-1060-4/2017).

Acknowledgements

The Authors thank Éva Kapásné Török and Elke Mattes for her valuable assistance during the experiments.
Figure legends

Fig 1 Primary root length (mm, A), lateral root number (pieces root$^{-1}$, B) and lateral root density (pieces mm$^{-1}$) in 7-days-old Col-0, GSNOR- and SL mutant *Arabidopsis* lines grown under control conditions. Different letters indicate significant differences according to Duncan’s test (n=20, P≤0.05). (D) Representative photographs taken from 7-days-old *Arabidopsis* seedlings of different mutant lines grown on ½ MS medium under control conditions. Bars=1 cm.

Fig 2 Nitric oxide levels (pixel intensity, A) and SNO levels (pmol mg protein$^{-1}$, C) in Col-0, GSNOR- and SL mutant *Arabidopsis* seedlings grown under control conditions for 7 days. Different letters indicate significant differences according to Duncan’s test (n=10 or 5, P≤0.05). (B) Representative microscopic images showing DAF-FM DA-stained root tips of examined *Arabidopsis* lines. Bar=100 µm.

Fig 3 Relative transcript level of selected NO-associated genes (*NIA1, NIA2, GLB1, GLB2*) in control Col-0, *max1* and *max2-1* *Arabidopsis* seedlings. Different letters indicate significant differences according to Duncan’s test (n=3, P≤0.05). Data were normalized using the *A. thaliana ACTIN2* and *GAPDH2* genes as internal controls. The relative transcript level in Col-0 control samples was arbitrarily considered to be 1 for each gene.

Fig 4 Relative transcript level (A) of *GSNOR1* in Col-0, *max1* and *max2* seedlings. (B-C) Protein abundance of GSNOR in *max* mutants and 35S:FLAG-GSNOR1 (as a positive control). Anti-actin was used as a loading control. (E) GSNOR activity (nmol NADH min$^{-1}$ mg protein$^{-1}$) in Col-0, *max1* and *max2* seedlings. Different letters indicate significant differences according to Duncan’s test (n=3 or 5, P≤0.05).

Fig 5 Primary root length (mm, A), lateral root number (pieces root$^{-1}$, B) and lateral root density (pieces mm$^{-1}$, C) in Col-0, gsnor1-3 and 35S:FLAG-GSNOR1 *Arabidopsis* seedlings grown in the absence (-GR24/-TIS108) or in the presence of GR24 (1 µM) or TIS108 (5 µM). Different letters indicate significant differences according to Duncan’s test (n=20, P≤0.05).

Fig 6 Relative transcript level of selected NO-associated genes (*NIA1, NIA2, GSNOR1, GLB1, GLB2*) in Col-0 *Arabidopsis* grown under control conditions (-GR24/-TIS108) or in the presence of GR24 (1 µM) or TIS108 (5 µM). Different letters indicate significant differences according to Duncan’s test (n=3, P≤0.05). Data were normalized using the *A. thaliana ACTIN2* and *GAPDH2* genes as internal controls. The relative transcript level in Col-0 control samples was arbitrarily considered to be 1 for each gene.
Fig 7 Relative transcript level of selected SL-associated genes in Col-0, *gsnor1-3* and 35S:FLAG-*GSNOR1* Arabidopsis seedlings grown under control conditions. Different letters indicate significant differences according to Duncan’s test (n=3, P≤0.05). Data were normalized using the *A. thaliana ACTIN2* and *GAPDH2* genes as internal controls. The relative transcript level in Col-0 control samples was arbitrarily considered to be 1 for each gene.

Fig 8 Relative transcript level of selected SL-associated genes (*CCD7, CCD8, MAX1, MAX2, D14*) in Col-0 Arabidopsis grown under control conditions or supplemented with GSNO (250 µM) or cPTIO (800 µM). Data were normalized using the *A. thaliana ACTIN2* and *GAPDH2* genes as internal controls. The relative transcript level in Col-0 control samples was arbitrarily considered to be 1 for each gene.

Fig 9 Primary root length (mm, A), lateral root number (pieces root\(^{-1}\), B) and lateral root density (number mm\(^{-1}\), C) in Col-0, *max1, max2-1* Arabidopsis seedlings grown in the absence (-GSNO/-cPTIO) or in the presence of GSNO (250 µM) or cPTIO (800 µM) for 3 days. Different letters indicate significant differences according to Duncan’s test (n=20, P≤0.05).

Fig S1 Concentration (nM) of liberated NO by 250 µM GSNO solution following different duration of illumination (0, 15, 30, 45, 60, 90, 120, 180, 360 min). Insert: Calibration curve of ISO-NOP electrode. Calibration was carried out using different concentrations of SNAP according to Zhang (2004).

Table S1 Primers used in this study. (*Papdi et al. 2008*)
References

Alder, A., Jamil, M., Marzorati, M., Bruno, M., Vermathen, M., Bigler, P., Ghisla, S., Bouwmeester, H., Beyer, P., Al-Babili, S. (2012). The path from beta-carotene to carlactone, a strigolactone-like plant hormone. Science. 335, 1348-1351.

Arite, T., Kameoka, H., Kyozuka, J. (2012). Strigolactone Positively Controls Crown Root Elongation in Rice. J. Plant. Growth. Regul. 31, 165–172.

Astier, J., Besson-Bard, A., Wawer, I., Parent, C., Rasul, S., Jeandroz, S., Dat, J., Wendehenne, D. (2011). “Nitric Oxide Signalling in Plants: Cross-Talk with Ca$^{2+}$, Protein Kinases and Reactive Oxygen Species” in Annual Plant Reviews book series, Volume 42: Nitrogen Metabolism in Plants in the Post-genomic Era (Wiley).

Astier, J., Lindermayr, C. (2012). Nitric oxide-dependent posttranslational modification in plants: An update. Int. J. Mol. Sci. 13, 15193-15208.

Barroso, J.B., Corpas, F.J., Carreras, A., Rodríguez-Serrano, M., Esteban, F.J., Fernández-Ocaña, A., Chaki, M., Romero-Puertas, M.C., Valderrama, R., Sandalio, L.M., del Río, L.A. (2006). Localization of S-nitrosoglutathione and expression of S-nitrosoglutathione reductase in pea plants under cadmium stress. J. Exp. Bot. 57, 1785–1793.

Bharti, N., and Bhatla, S.C. (2015). Nitric oxide mediates strigolactone signaling in auxin and ethylene-sensitive lateral root formation in sunflower seedlings. Plant Signal. Behav. 10: e1054087. doi: 10.1080/15592324.2015.1054087.

Bouwmeester, H., Ruyter-Spira, C. (2011). Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol. 155, 974–987.

Bouwmeester, H.J., Fonne-Pfister, R., Screpanti, C., De Mesmaeke, Alain. (2019). Strigolactones: Plant Hormones with Promising Features. 58, 12778-12786.

Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

Brewer, P.B., Yoneyama, K., Filardo, F., Meyers, E., Scaffidi, A., Frickey, T., Akiyama, K., Seto, Y., Duna, E.A., Cremer, J.E., Kerr, S.C., Waters, M.T., Flematti, G.R., Mason, M.G., Weiller, G., Yamaguchi, S., Nomura, T., Smith, S.M., Yoneyama, K., Beveridge, C.A. (2016). LATERAL BRANCHING OXIDOREDUCTASE acts in the final stages of strigolactone biosynthesis in Arabidopsis. Proc. Natl. Acad. Sci. 113, 6301–6306.
Chamizo-Ampudia, A., Sanz-Luque, E., Llamas, Á., Ocaña-Calahorro, F., Mariscal, V., Carreras A., Barroso, J.B., Galván, A., Fernández, E. (2016). A dual system formed by the ARC and NR molybdoenzymes mediates nitrite-dependent NO production in Chlamydomonas. Plant Cell Environ. 39, 2097-2107.

Chamizo-Ampudia, A., Sanz-Luque, E., Llamas, A., Galvan, A., Fernandez, E. (2017). Nitrate reductase regulates plant nitric oxide homeostasis. Trend. Plant Sci. 22, 163-174.

Chen, R., Sun, S., Wang, C., Li, Y., Liang, Y., An, F., Li, C., Dong, H., Yang, X., Zhang, J., Zuo J. (2009) The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death, Cell Res. 19 (2009) 1377–1387.

Cohen, M.F., Lamattina, L., Yamasaki, H. (2009). „Nitric Oxide Signaling by Plant-Associated Bacteria” in Nitric Oxide in Plant Physiology, eds. S. Hayat, M. Mori, J. Pichtel and A. Ahmad (Weinheim, Germany: Wiley-VCH Verlag GmbH & Co.), 161-172.

Cook, C.E., Whichard, L.P., Turner, B., Wall, M.E., Egley, G.H. (1966). Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science. 154, 1189–90.

Cooper, J.W., Hu, Y., Beyyoudh, L., Yildiz Dasgan, H., Kunert, K., Beveridge, C.A., Foyer, C.H. (2018). Strigolactones positively regulate chilling tolerance in pea and in Arabidopsis. Plant Cell Environ. 41, 1298-1310.

De Cuyper, C., Fromentin, J., Yocgo, R.E., De Keyser, A., Guillotin, B., Kunert, K., Boyer, F.-D., Goormachtig, S. (2015). From lateral root density to nodule number, the strigolactone analogue GR24 shapes the root architecture of Medicago truncatula. J. Exp. Bot. 66, 137–146.

Díaz, M., Achkor, H., Titarenko, E., Martínez, M.C. (2003). The gene encoding glutathione-dependent formaldehyde dehydrogenase/GSNO reductase is responsive to wounding, jasmonic acid and salicylic acid. FEBS Lett. 543, 136-139.

Durner, J., Gow, A.J., Stamler, J.S., Glazebrook, J. (1999). Ancient origins of nitric oxide signaling in biological systems. Proc. Nat. Acad. Sci. USA, 96, 14206-14207.

Fancy, N.N., Bahlmann, A.-K., Loake, G.J. (2017). Nitric oxide function in plant abiotic stress. Plant Cell Physiol. 40, 462-472.

Feechan, A., Kwon, E., Yun, B.W., Wang, Y., Pallas, J.A., Loake, G.J. (2005). A central role for S-nitrosothiols in plant disease resistance. Proc. Natl. Acad. Sci. USA. 102, 8054-8059.
Feigl, G., Horváth, E., Molnár, Á., Oláh, D., Poór, P., Kolbert, Zs. (2019). Ethylene-Nitric Oxide Interplay During Selenium-induced Lateral Root Emergence in Arabidopsis. J. Plant Growth Regul. 38, 1481–1488.

Fernández-Marcos, M., Sanz, L., Lewis, D.R., Muday, G.K., Lorenzo, O. (2011). Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport. Proc. Natl. Acad. Sci. USA. 108, 18506-11.

Foo, E., Turnbull, C.G., Beveridge, C.A. (2001). Long-distance signaling and the control of branching in the rms1 mutant of pea. Plant Physiol. 126, 203–209.

Foresi, N., Correa-Aragunde, N., Parisi, G., Caló, G., Salerno, G., Lamattina, L. (2010). Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Plant Cell 22, 3816-3830.

Foresi, N., Mayta, M.L., Lodeyro, A.F., Scuffi, D., Correa-Aragunde, N., García-Mata, C., Casalongué, C., Carrillo, N., Lamattina, L. (2015). Expression of the tetrahydrofolate-dependent nitric oxide synthase from the green alga Ostreococcus tauri increases tolerance to abiotic stresses and influences stomatal development in Arabidopsis. Plant J. 82, 806-821.

Fröhlich, A., Durner, J. (2011). The hunt for plant nitric oxide synthase (NOS): is one really needed? Plant Sci. 181, 401–404.

Frungillo, L., Skelly, M.J., Loake, G.J., Spoel, S.H., Salgado, I. (2014). S-nitrosothiols regulate nitric oxide production and storage in plants through the nitrogen assimilation pathway. Nat. Comm. 5:5401. doi: 10.1038/ncomms6401

Gallé, Á., Csiszár, J., Secenji, M., Guóth, A., Cseuz, L., Tari, I., Györgyey, J., Erdei, L. (2009). Glutathione transferase activity and expression patterns during grain filling in flag leaves of wheat genotypes differing in drought tolerance: response to water deficit. J. Plant Physiol. 166, 1878-1891.

Ha, C.V., Leyva-Gonzáles, M.A., Osakabe, Y., Tran, U.T., Nishiyama, R., Watanabe, Y., Tanaka, M., Seki, M., Yamaguchi, S., Van Dong, N., Yamaguchi-Shinozaki, K., Shinozaki, K., Herrera-Estrella, L., Tran, L.S. (2014). Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc. Natl. Acad. Sci. 111, 851-856.

Hancock, J.T., Neill, S. (2019). Nitric Oxide: its generation and interactions with other reactive signaling compounds. Plants. 8, E41. https://doi: 10.3390/plants8020041.
Hebelstrup, K.H., Jensen, E.O. (2008). Expression of NO scavenging hemoglobin is involved in the timing of bolting in *Arabidopsis thaliana*. Planta. 227, 917-927.

Hebelstrup, K.H., van Zanten, M., Mandon, J., Voesepek, L.A.C.J., Harren, F.J.M., Cristescu, S.M., Møller, I.A., Mur, L.A.J. (2012). Haemoglobin modulates NO emission and hyponasty under hypoxia-related stress in Arabidopsis thaliana. J. Ex. Bot., 63, 5581–5591.

Holzmeister, C., Fröhlich, A., Sarioglu, H., Bauer, N., Durner, J., Lindermayr, C. (2011). Proteomic analysis of defense response of wildtype Arabidopsis thaliana and plants with impaired NO-homeostasis. Proteom. 11, 1664–1683.

Jahnová, J., Luhová, L., Petřivalský, M. (2019). S-Nitrosoglutathione Reductase—The Master Regulator of Protein S-Nitrosation in Plant NO Signaling. Plants. 8:48. https://doi:10.3390/plants8020048 2019.

Jeandroz, S., Wipf, D., Stuehr, D.J., Lamattina, L., Melkonian, M., Tian, Z., Zhu, Y., Carpenter, E.J., Wong, G.K., Wendehenne, D. (2016). Occurrence, structure, and evolution of nitric oxide synthase-like proteins in the plant kingdom. Sci. Signal. 9, re2. https://doi:10.1126/scisignal.aad4403.

Jiao, C., Yang, R., Wang, P., Tian, L., Gu, Z. (2018). Mitogen-activated protein kinase mediates nitric oxide-induced isoflavone accumulation in soybean sprouts under UVB radiation. Can. J. Plant Sci. 98, 54-61.

Kapulnik, Y., Delaux, P.M., Resnick, N., Mayzlish-Gati, E., Winingher, S., Bhattacharya, C., Séjalon-Delmas, N., Combier, J.P., Bécard, G., Belaïsoy, E., Beeckman, T., Dor, E., Hershenhorn, J., Koltaï, H. (2011). Strigolactones affect lateral root formation and root-hair elongation in *Arabidopsis*. Planta. 233, 209-216.

Kolbert, Zs., Pető, A., Lehotai, N., Feigl, G., Ördög, A., Erdei, L. (2012). *In vivo and in vitro* studies on fluorophore-specificity. Acta Biol. Szeged. 56, 37–41.

Kolbert, Zs., Feigl, G. (2017). “Cross-talk of Reactive Oxygen Species and Nitric Oxide in Various Processes of Plant Development” in Reactive Oxygen Species in Plants: Boon
Or Ban - Revisiting the Role of ROS eds. V. P. Singh, S. Singh, D. K. Tripathi, S. M. Prasad and D. K. Chauhan (Chichester, UK: John Wiley & Sons, Ltd), 261-289.

Kolbert, Zs., Barroso, J.B., Brouquisse, R., Corpors, F.J., Gupta, K.J., Lindermayr, C., Loake, G.J., Palma, J.M., Petřivalský, M., Wendehenne, D., Hancock, J.T. (2019a). A forty-year journey: The generation and roles of NO in plants. Nitric Oxide. 93, 53-70.

Kolbert, Zs., Molnár, Á., Oláh, D., Feigl, G, Horváth, E., Erdei, L., Ördög, A., Rudolf, E., Barth, T., Lindermayr, C. (2019b). S-Nitrosothiol Signaling Is involved in Regulating Hydrogen Peroxide Metabolism of Zinc-Stressed Arabidopsis. Plant Cell Physiol. 60, 2449-2463.

Kolbert, Zs. (2019c). Strigolactone-nitric oxide interplay in plants: The story has just begun. Physiol. Plant. 165, 487-497.

Kwon, E., Feechan, A., Yun, B.-W., Hwang, B.-H., Pallas, J.A., Kang, J.-G., Loake, G.J. (2012). AtGSNOR1 function is required for multiple developmental programs in Arabidopsis, Planta 236, 887–900.

Lanteri, M.L., Laxalt, A.M., Lamattina, L. (2008). Nitric oxide triggers phosphatidic acid accumulation via phospholipase d during auxin-induced adventitious root formation in cucumber. Plant Physiol. 147, 188–198.

Lee, U., Wie, C., Fernandez, B.O., Feelisch, M., Vierling, E. (2008). Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in Arabidopsis. Plant Cell 20, 786–802.

Lindermayr, C. (2018). Crosstalk between reactive oxygen species and nitric oxide in plants: Key role of S-nitrosoglutathione reductase. Free Rad. Biol. Med. 122, 110-115.

Malamy, J.E. and Benfey, P.N. (1997). Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Dev. 124, 33-44.

Manoli, A., Trevisan, S., Voigt, B., Yokawa, K., Baluška, F., Quaggiotti, S. (2016). Nitric oxide-mediated maize root apex responses to nitrate are regulated by auxin and strigolactones. Front. Plant. Sci. 6:1269. doi: 10.3389/fpls.2015.01269

Marzec, M. (2016). Perception and signaling of strigolactones. Front. Plant. Sci. 7:1260. doi: 10.3389/fpls.2016.01260

Marzec, M., and Melzer, M. (2018). Regulation of root development and architecture by strigolactones under optimal and nutrient deficiency conditions. Int. J. Mol. Sci. 19:1887. doi: 10.3390/ijms19071887

Mira, M.M., Adel, E.-S., Stasolla, C. (2015). Ethylene is integrated into the nitric oxide regulation of Arabidopsis somatic embryogenesis. J. Genet. Eng. Biotechnol. 13, 7-17.
Mostofa, M.G., Weiqiang Li, W., Nguyen, K.H., Fujita, M., Phan Tran L.-S. (2018). Strigolactones in plant adaptation to abiotic stresses: An emerging avenue of plant research. Plant Cell Environ. 41, 2227-2243.

Pagnussat, G.C., Lanteri, M.L., Lombardo, M.C., Lamattina, L. (2004). Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol. 135, 279–286.

Pandey, A., Sharma, M., Pandey, G.K. (2016). Emerging Roles of Strigolactones in Plant Responses to Stress and Development. Front. Plant Sci. 7:434. doi: 10.3389/fpls.2016.00434

Papdi, C., Ábrahám, E., Joseph, M.P., Popescu, C., Koncz, C., Szabados, L. (2008). Functional identification of Arabidopsis stress regulatory genes using the controlled cDNA overexpression system. Plant Physiol. 147, 528-542.

Rodríguez-Ruiz, M., Zuccarelli, R., Palma, J.M., Corpas, F.J., Freschi, L. (2019). “Biotechnological Application of Nitric Oxide and Hydrogen Peroxide in Plants” in Nitric Oxide and Hydrogen Peroxide Signaling in Higher Plants eds. D. Gupta, J. Palma, F. Corpas (Springer, Cham), 245-270.

Ruyter-Spira, C., Kohlen, W., Charnikhova, T., van Zeijl, A., van Beuzouwen, L., de Ruijter, N., et al. (2011). Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol. 155, 721–734.

Sakamoto, A., Ueda, M., Morikawa, H. (2002). Arabidopsis glutathione-dependent formaldehyde dehydrogenase is an S-nitrosoglutathione reductase. FEBS Lett. 515, 20–24.

Santolini, J., Andre, F., Jeandroz, S., Wendehenne, D. (2017). Nitric oxide synthase in plants: Where do we stand? Nitric Oxide 63, 30-38.

Stirnberg, P., van De Sande, K., Leyser, H.M.O. (2002). MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Dev. 129, 1131–1141.

Sun, H., Tao, J., Liu, S., Huang, S., Chen, S., Xie, X., Yoneyama, K., Zhang, Y., Xu, G. (2014). Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice. J. Exp. Bot. 65, 6735–6746.

Takahashi, I., and Asami, T. (2018). Target-based selectivity of strigolactone agonists and antagonists in plants and their potential use in agriculture. J. Exp. Bot. 69, 2241–2254.
Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., Takeda-Kamiya, N., Magome, H., Kamiya, Y., Shirasu, K., Yoneyama, K., Kyozuka, J., Yamaguchi S. (2008). Inhibition of shoot branching by new terpenoid plant hormones. Nature. 455, 195-200.

Villaécija-Aguilar, J.A., Hamon-Josse, M., Carbonnel, S., Kretschmar, A., Schmidt, C., Dawid, C., Bennett, T., Gutjahr, C. (2019). SMAX1/SMXL2 regulate root and root hair development downstream of KAI2-mediated signalling in Arabidopsis. PLoS Genet 15:e1008327. doi: 10.1371/journal.pgen.1008327

Vurro, M., Prandi, C., Baroccio, F. (2016). Strigolactones: how far is their commercial use for agricultural purposes? Pest Manage Sci. 72, 2026–2034.

Walker, C.H., Siu-Ting, K., Taylor, O’Connell, A.M.J., Bennett T. (2019). Strigolactone synthesis is ancestral in land plants, but canonical strigolactone signalling is a flowering plant innovation. BMC Biol. 17, 70. https://doi.org/10.1186/s12915-019-0689-6

Wang, Q., Ni, J., Shah, F., Liu, W., Wang, D., Yao, Y., Hu, H., Huang, S., Hou, J., Fu, S., Wu, L. (2019). Overexpression of the Stress-Inducible SsMAX2 Promotes Drought and Salt Resistance via the Regulation of Redox Homeostasis in Arabidopsis. Int. J. Mol. Sci. 20:837. doi:10.3390/ijms20040837

Waters, M.T., Gutjahr, C., Bennett, T., Nelson, D.C. (2017). Strigolactone signaling and evolution. Annu. Rev. Plant. Biol. 68, 291-322.

Weisslocker-Schaetzel, M., Andre, F., Touazi, N., Foresi, N., Lembrouk, M., Dorlet, P., Frelet-Barrand, A., Lamattina, L., Santolini, J. (2017) The NOS-like protein from the microalgae Ostreococcus tauri is a genuine and ultrafast NO-producing enzyme. Plant Sci. 265, 100-111.

Zhang, X. (2004). Real time and in vivo monitoring of nitric oxide by electrochemical sensors from dream to reality. Front. Biosci. 9, 3434-3446.

Zwanenburg, B., and Blanco-Ania, D. (2018). Strigolactones: new plant hormones in the spotlight. J. Exp. Bot. 69, 2205-2218.

22