A study of the genetic diversity in the world soybean collection using microsatellite markers associated with fungal disease resistance

DOI: 10.30901/2227-8834-2020-3-81-90
УДК 581.1:577.21: 631.527: 635.655
Поступление/Received: 25.07.2020
Принято/Accepted: 21.09.2020

A. K. ZATYBEKOV 1, Y. T. TURUSPEKOV 1, 2, B. N. DOSZHANOVA 1, S. I. ABUGALIEVA 1, 2*

1 Institute of Plant Biology and Biotechnology, 45 Timiryazev St., Almaty 050040, Kazakhstan
alibek.zatybekov@gmail.com; yerald@yahoo.com; sybanbaeva_bota@mail.ru; absaule@yahoo.com
2 Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050040, Kazakhstan

Abstract. Soybean (Glycine max (L.) Merr.) gradually becomes one of the leading legume crops in Kazakhstan. The area under soybeans in the country has been increasing annually and requires the development of adapted cultivars with a higher yield, improved quality characters, and resistance to emerging fungal diseases. The enlargement of the crop’s gene pool also suggests the need to study and document local soybean accessions to meet the standards of the soybean crop’s gene pool also suggests the need to study and document local soybean accessions to meet the standards of the world soybean collection by using reliable and informative types of DNA markers. Materials and methods. In this study, the soybean collection consisting of 288 accessions from different countries, including 36 cultivars and promising lines from Kazakhstan, was studied. The molecular genetic analysis was performed using nine polymorphic SSR (simple sequence repeats) markers, seven of which (Satt244, Satt565, Satt038, Satt309, Satt371, Satt570 and Sat_308) were associated with resistance to three main fungal diseases of soybean – frogeye leaf spot, fusarium root rot, and purple seed stain. Results. The average PIC (polymorphism information content) value of the analyzed SSR markers constituted 0.66 ± 0.07, confirming their high level polymorphism. The principal coordinate analysis suggested that the local accessions were genetically most close to the accessions from East Asia. As the collection showed a robust resistance to three studied fungal diseases in Almaty Region during 2018–2019, the distribution of the studied SSR markers in the population was not significantly associated with resistance to the analyzed diseases under field conditions. Conclusion. SSR genotyping of the soybean collection helped to identify accessions that potentially possess resistance-associated alleles of fungal disease resistance genes. The data obtained can be further used for the development of DNA documentation and the breeding the promising cultivars and lines of soybean.

Key words: Glycine max, SSR markers, frogeye leaf spot, fusarium root rot, purple seed stain.

Изучение генетического разнообразия мировой коллекции сои с использованием микросателлитных маркеров, связанных с устойчивостью к грибным болезням

А. К. ЗАТЫБЕКОВ 1, Е. К. ТУРУСПЕКОВ 1, 2, В. Н. ДОСЖАНОВА 1, С. И. АБУГАЛИЕВА 1, 2*

1 Институт биологии и биотехнологии растений, 050040 Казахстан, г. Алматы, ул. Тимирязева, 45
alibek.zatybekov@gmail.com; yerald@yahoo.com; sybanbaeva_bota@mail.ru; absaule@yahoo.com
2 Казахский национальный университет имени аль-Фараби, 050040 Казахстан, г. Алматы, пр. аль-Фараби, 71

Актуальность. Соя (Glycine max (L.) Merr.) становится одной из ведущих зернобобовых культур в Казахстане, что в свою очередь требует создания адаптированных сортов, характеризующихся более высокой урожайностью, улучшенными признаками качества и устойчивостью к новым грибным болезням. В связи с расширением генофонда культуры местные образцы, вовлекаемые в селекционные программы, необходимо изучать и документировать с использованием надежных и информативных типов ДНК-марккеров. Материалы и методы. В настоящем исследовании изучена коллекция сои, включающая 288 образцов, в том числе 36 сортов и перспективных линий из Казахстана. Молекулярно-генетический анализ выполнен с использованием девяти полиморфных SSR-марккеров, семь из которых (Satt244, Satt565, Satt038, Satt309, Satt371, Satt570 и Sat_308) были связаны с устойчивостью к трем основным грибным болезням сои: церкоспорозу, корневой гнили и пурпурному церкоспорозу. Результаты. Среднее значение индекса PIC (polymorphism information content) анализируемых SSR-маркеров составило 0,66 ± 0,07, что подтверждает высокий уровень их полиморфизма. Анализ методом главных координат показал, что местные образцы генетически наиболее близки к сортам из Восточной Азии. В 2018 и 2019 годах в условиях Алматинской области наблюдали высокую устойчивость образцов коллекции к трем изученным грибным болезням. Распределение полиморфных вариантов изученных SSR-маркеров в популяции не было статистически значимо связано с наличием устойчивости в полевых условиях. Заключение. SSR-генетирование коллекции сои позволило выявить образцы, обладающие аллелями SSR-локусов, ассоциированных с генами устойчивости к грибным болезням. Результаты исследований могут быть в дальнейшем использованы для ДНК-паспортизации и селекции перспективных сортов и линий сои.

Ключевые слова: Glycine max, SSR-маркеры, церкоспороз, корневая гниль, пурпурный церкоспороз.

PROCEEDINGS ON APPLIED BOTANY, GENETICS AND BREEDING 181 (3), 2020
2020
Introduction

Soybean (Glycine max (L.) Merrill) is one of the economically important legume crops, which provides plant protein for more than a quarter of all food and feed in the world (Garcia et al., 1997). Over the past ten years, the worldwide soybean production increased 1.2 times due to the ever-rising demand for this crop. In 2019, it was at the level of 358,650 million metric tons, and the major part of this yield belonged to Brazil, USA, and Argentina (U.S. Department of Agriculture..., 2020). Soybean is considered a highly profitable, export-oriented crop in Kazakhstan. Nowadays, over 90% of soybean production has been concentrated in Almaty Region (Makulbekova et al., 2017). In 2019, Kazakhstan harvested 229,000 metric tons of soybean. For further development of the soybean industry, the Government of Kazakhstan has declared a new program “Northern Soybean” for diversification of soybean to the north part of the country. Implementation of this program would make it possible over five years to enlarge grown areas to 1.5 million ha, raise productivity, and increase the production over 3 million tons (North Kazakhstan..., 2020).

The important factor that severely limits the soybean productivity worldwide is susceptibility to harmful diseases (Wrather et al., 1996). In Kazakhstan, more than ten fungal diseases of soybean have been identified (Maui et al., 2016; Zatybekov et al., 2018). Due to the expanding area under this crop, it is an obvious necessity to study the genetic potential of soybean associated with the tolerance to harmful pathogens. In general, the total yield loss due to susceptibility to fungal diseases can reach 40% (Wrather et al., 1996). Frogeye leaf spot (FLS, caused by Cercospora sojina Hara), fusarium root rot (FRR, caused by Fusarium solani (Mart.) Sacc. f. sp. glycines Roy), and purple seed stain (PSS, caused by Cercospora kikuchii (Tak. Matsumoto & Tomoy.) M.W. Gardner) are the most dangerous and widespread fungal diseases of soybean worldwide (Zatybekov et al., 2017).

In local breeding programs targeted for soybean resistance to fungal diseases, phenotypic analysis is mainly carried out on the basis of field observations; there are practically no studies at the molecular level. Therefore, along with field assessment of the various gene pools for resistance to fungal diseases, the analysis of genetic diversity is also required.

The genetic marker is a DNA sequence with a known chromosome localization which is linked with a particular gene or is a part of a gene of interest (Idrees et al., 2014). They are useful tools to differentiate individuals in a population or to classify individuals representing different varieties or cultivars within a species. To date, there are a number of various classes of DNA markers applied for different purposes in plant molecular genetics, breeding, biotechnology, etc. (Idrees et al., 2014; Singh et al., 2010). Simple sequence repeats (SSRs), or microsatellites, have become the most widely used markers for DNA fingerprinting or genotyping plant accessions. SSRs were applied in many studies due to their high informativeness, codominance, multiallelism, reproducibility in different laboratories, and transferability among related species (Cregan et al., 1999). In particular, SSRs are considered as a reliable tool to identify the genetic diversity and relationships among soybean genotypes in different populations (Wang et al., 2006).

Assessment of genetic divergence and relatedness among genetic resources (as potential breeding material) has significant implications for the improvement of crop plants. Knowledge of genetic diversity could help soybean geneticists and breeders to understand the structure of germplasm, predict which combinations would produce the best offspring, and facilitate widening of the genetic base of breeding material for selection (Bisen et al., 2015). The survey of recent reports demonstrated the successful use of SSR markers for screening soybean in relation with resistance to fungal diseases (Zhong et al., 2018; Ghorbanipour et al., 2019).

Rouf Mian et al. (1999) used the NILs (near-isogenic lines) population created by backcrossing the Rcs3 gene from cv. Davis to the FLS-susceptible cultivar Wright. In the cultivar Davis (showing complete resistance to all isolates of FLS causative agent), the donor parent of the Rcs3 allele for FLS resistance, a 154 bp fragment of Satt244 was amplified (Rouf Mian et al., 1999). Iqbal with co-authors identified six QTLs responsible for SDS resistance and reported five of them to be related to the SSR markers Satt214, Satt309, Satt570 (on the linkage group G), Satt371 (LG E2), and Satt354 (LG I) (Iqbal et al., 2001). Closely located to the Rfs gene is the SSR marker Satt309, which produced a 165 bp band in cv. Forrest resistant to SDS. Jointly, these QTLs explained about 90% of the total variation in SDS disease incidence of RILs (recombinant inbred lines) from the Forrest × Essex cross, and they showed only the presence of additive genetic action (Iqbal et al., 2001).

Jackson et al. (2008) carried out genetic mapping of resistance to PSS in the F1 population from crossing the susceptible cultivar Agripro 350 and resistant PI 80837. The candidate gene has been mapped between Sat_308 and Satt594 loci on molecular linkage group G. The Sat_308 primers produced a band of approximately 310 bp both in PI 80837 and the resistant bulk (Jackson et al., 2008). Hence, the involvement of polymorphic informative SSR markers into breeding is important for crop improvement programs, including targeting resistance to diseases. The purpose of this work was to study the genetic diversity in the soybean collection, consisting of 288 accessions, using microsatellite markers associated with resistance to common fungal diseases – FLS, FRR, and PSS.

Materials and methods

Plant material and field observations

The objects of this study were 288 soybean accessions from different countries, including 36 released cultivars and prospective lines from Kazakhstan (Zatybekov et al., 2018). The world collection was represented by the soybean accessions originated from 5 geographic regions, including Eastern Europe (n = 122), Western Europe (n = 23), East Asia (n = 57), North America (n = 50), and Kazakhstan (n = 36). Cv. ‘Zhansaya’ was used as a check cultivar Almaty Region. Field trials were conducted on the experimental plots of the Kazakhstan Research Institute of Agronomy and Plant Industry (KRIAPI) in 2018 and 2019 (Zatybekov et al., 2018). The soybean collection was grown in three randomized replicates on one-meter plots. The resistance to FLS, FRR, and PSS was studied under natural infection. A nine-point scale was used, where point 1 denoted high resistance (no symptoms); 3 – resistance (5 – 19% affected); 5 – partial resistance (20–49% affected); 7 – susceptibility (50–79% affected); and 9 – high susceptibility (up to 80% affected) (Hnetkovsky et al., 1996). The data were used to study the relationships between the disease resistance of the collection accessions and the following 8 major agronomic traits: plant height (PH), the height of lowest pod (HLP), number of lateral branches (NLB), number of fertile nodes (NFn), number of seeds per plant (NSP), thousand seeds weight (TSW), yield per plant (YP), and yield per plot (YPp). The field trials were conducted in 2018, and 2019: the analyzed traits were evaluated according to Korsakov et al. (1968).
DNA extraction and SSR genotyping
Total DNA was isolated from seedlings of all soybean accessions, according to Dellaporta et al. (1983). The soybean collection was genotyped using nine SSR markers, with appropriate optimization of polymerase chain reaction (PCR) conditions for specific primer pairs (Cregan et al., 1999). PCR was conducted in a 20 μl total volume containing 20 ng of genomic DNA, 1U Taq DNA polymerase, 0.2 mM of each dNTP, 10 pmol of each primer, 1.5 mM MgCl2 in the 1× Taq Buffer. The list of SSR markers used for the analysis is presented in Table 1.

Table 1. The list of simple sequence repeat (SSR) markers used for screening the soybean collection

SSR marker	Disease	Chromosome	Linkage group	Forward sequence 5’ – 3’	Reverse sequence 5’ – 3’	Motif
Satt565	FLS	4	C1	GCACCCGGAATGTAATAACTTAAT	GCAGCTCTCCTATGATGTTCTAATAA	(AAT) 19
Satt371	FRR	6	C2	TGCAAACTAATCTGATGTTCTCA	GACATCCGAGGATTTGTTGTAACA	(TAA) 11
Satt244	FLS	16	J	GACCCCAATAGTTAATATATGAGGAG	GCGATGGGATTTGTTTATTATCAG	(ATT) 27
Satt529	FLS	16	J	GCACACTAAGGACTATAAAGGATA	GCCAAACTGACAATGACATACAACA	(ATT) 13
Satt308	PSS	18	G	GCCGCTGACTTCAGATTATATTAATGTT	GCGGTTCATTGTATTCCAATCTTGGT	(ATA) 19
Satt038	FRR	18	G	GGAATTTTTTTTTTTCTTATTAGTT	GGCATTGAAATGGTTTAGTCA	(ATA) 17
Satt115	PSS	18	G	GTCTCCTTTTTTTTATTGAGT	AGCAGAAATATGGATGAA	(TAT) 18
Satt309	FRR	18	G	GCGCTTCAAATTTGTGGCCTTTG	GGGGCTAAATAGACCAGACTCA	(ATA) 13
Satt570	FRR	18	G	CTCATATGGGTTCCTAGGACTCA	GCTATGCTTTCTTGTTCG	(TAT) 11

The markers Satt244, Satt529 and Satt565 are known to be associated with FLS resistance (Ruf Mian et al., 1999); Satt038, Satt309, Satt371 and Satt570 with FRR resistance (Iqbal et al., 2001); Satt308 and Satt115 with resistance to PSS (Jackson et al., 2008). PCR, including preliminary denaturation of total DNA at 94°C for 1 min, subsequent 30–40 cycles (94°C – 1 min, 50–65°C – 30–60 s, 72°C – 1 min) and elongation at 72°C – 7 min, was carried out using a Veriti™ Thermal Cycler (Thermo Fisher Scientific, USA). PCR products were separated on 6% polyacrylamide gels (Amresco, Solon, OH) run in 0.5× TBE buffer, pH 8.0 at 250 V for 1.5 h. Gels were stained with ethidium bromide, and the images were recorded with a Bio-Rad Image System (Bio-Rad, Hercules, CA). Allele sizes were estimated in comparison with the DNA molecular weight marker (100 bp ladder, Fermentas).

Statistical analysis
Statistical analyses of field data were done using SPSS 22.0 and STATISTICA 13.5 software.

The effective number of alleles per locus was determined using the GenAlex, ver.6.5 software (Peakall et al., 2012). The values of the PIC index (polymorphism information content) suggested the effectiveness of the markers used, given that markers with a value of PIC > 0.5 were considered as highly informative; 0.5 > PIC > 0.25 as informative; and PIC ≤ 0.25 as marginally informative (Botstein et al., 1980). Genetic diversity was assessed on the basis of Nei’s genetic diversity index and Shannon Information Index, using the GenAlex, ver.6.5 program (Peakall et al., 2012). The resulting similarity matrix was further analyzed using the unweighted pair-group method with arithmetic mean (UPGMA) clustering algorithm for the construction of the dendrogram. Variation among populations was studied using Principal Coordinate Analysis (PCoA) with the soft-

Results
Phenotypic variation of the soybean resistance to fungal diseases
Results of the two-year field trials of 288 soybean accessions revealed variations in their resistance to FLS, FRR, and PSS caused by three fungal pathogens – Cercospora sojina, Fusarium solani, and Cercospora kikuchii respectively (Table 2).

In 2018, symptoms of infection by the FRR causative agent were not observed. More than 90% of the analyzed soybean collection showed high resistance to the studied fungal diseases (Table 2). The Pearson correlation analysis based on the average values of 2018 and 2019 field trials helped to reveal...
a highly positive relationship between morphological traits and yield components (P < 0.01) (Fig. 1). The disease resistance traits had negative correlations with agronomic traits. Most of them were observed in the relations between FLS resistance and major agronomic traits. The resistance to FRR had negative correlations with TSW and PH, while resistance to PSS was negatively correlated with YpP (Fig. 1).

Microsatellite analysis of soybean accessions

Soybean collection was studied using 9 SSR markers associated with resistances to frogeye leaf spot, fusarium root rot, and purple seed stain. Figures 2–4 present the results of electrophoresis of PCR products with primers Satt244, Satt309 and Sat_308. The Satt244 marker is known to be associated with resistance to FLS (Rouf Mian et al., 1999). The Satt244-154 allele linked to the \textit{Rcs3} gene on chromosome 4 (linkage group C1) was detected for 50 accessions (Fig. 2). According to Ding et al. (2012), the Satt565 marker is closely linked to the gene \textit{Rcs1} controlling the resistance to FLS. In our study, the resistance-associated allele Satt565-208 was identified in 32 soybean accessions. Analysis of the studied collection using SSR markers associated with the resistance to FRR made it possible to identify 48 accessions with the Satt309-165 allele (Fig. 3) described by Iqbal et al. (2001).

Table 2. Evaluation of 288 soybean accessions for resistance to frogeye leaf spot, fusarium root rot, and purple seed stain

Resistance type	Accessions resistant to fungal diseases, %					
	2018	2019	2018	2019	2018	2019
	FLS	FRR	PSS	FLS	FRR	PSS
R	97.2	0	91.7	98.6	98.9	98.9
MR	1.4	0	6.9	1.4	1.1	0.7
S	1.4	0	1.4	0	0	0.4

Note: FLS – frogeye leaf spot, FRR – fusarium root rot, PSS – purple seed stain; R – resistance, MR – moderate resistance, S – susceptibility

Fig. 1. The Pearson correlation analysis of the two-year average values (2018–2019)

in disease resistance: frogeye leaf spot (FLS), fusarium root rot (FRR), and purple seed stain (PSS); morphological characters: plant height (PH), the height of lowest pod (HLP), number of lateral branches (NLB), and number of fertile nodes (NFN); yield components (number of seeds per plant (NSP), thousand seeds weight (TSW), yield per plant (YP), yield per plot (YpP)

Рис. 1. Корреляционный анализ Пирсона по средним значениям двухлетних данных (2018–2019):

по устойчивости к болезням: церкоспороз (FLS), корневая гниль (FRR), пурпурный церкоспороз (PSS); морфологическим признакам: высота растения (PH), высота прикрепления нижнего боба (HLP), число боковых ветвей (NLB), число продуктивных узлов (NFN); компонентам урожайности: количество семян с растения (NSP), масса тысячи семян (TSW), урожайность с растения (YP), урожайность с делянки (YpP)
Also, soybean collection was analyzed on Satt570 (Iqbal et al., 2001), the marker closely linked to the \(Rfs\) gene that controls resistance to FRR. Seventy accessions with the Satt570-110 allele were identified. The analysis of the studied soybean collection using Sat_308 (Fig. 4) associated with resistance to PSS revealed 28 accessions carrying the Sat_308-310 allele, previously described by Jackson et al. (2008).

The frequencies for the alleles of SSR loci known to be related to disease resistance were detected for each group of soybean accessions (Table 3).

Fig. 2. Electrophoregrams of PCR products amplified with primers Satt244:
M – DNA molecular weight marker (100 bp ladder, Fermentas), C – check cultivar Zhansaya, 223–234 – soybean cultivars: 223 – Ken Fen 20; 224 – 551; 225 – Dong Dow 29; 226 – Jing Xin 2; 227 – Dong Dow 339; 228 – Hei Hye 47; 229 – Hay Fen 50; 230 – Dong Dou 027; 231 – May Fen 18; 232 – Xu Xiong 1; 234 – Klaxxon.

The arrow indicates marker fragment Satt244-154, associated with resistance to frogeye leaf spot

Fig. 3. Electrophoregrams of PCR products amplified with primers Satt309:
M – DNA molecular weight marker (100 bp ladder, Fermentas), C – check cultivar Zhansaya, 77–209 – soybean cultivars and lines: 77 – Prikarpatska 81; 78 – Chernovickaya 7; 79 – Spritna; 202 – 1082; 203 – 1028; 204 – 1055; 205 – 1095; 206 – 1026; 207 – 1071; 208 – 1003; 209 – 1022.

The arrow indicates marker fragment Satt309-165, associated with resistance to fusarium root rot

Also, soybean collection was analyzed on Satt570 (Iqbal et al., 2001), the marker closely linked to the \(Rfs\) gene that controls resistance to FRR. Seventy accessions with the Satt570-110 allele were identified. The analysis of the studied soybean collection using Sat_308 (Fig. 4) associated with resistance to PSS revealed 28 accessions carrying the Sat_308-310 allele, previously described by Jackson et al. (2008).
Fig. 4. Electrophoregrams of PCR products amplified with primers Sat_308:

M – DNA molecular weight marker (100 bp ladder, Fermentas), C – check cultivar Zhansaya, 142–152 – soybean cultivars: 142 – Sava; 143 – Venera; 144 – Zen; 145 – Protina; 146 – Sponsor; 147 – Isidor; 148 – Shama; 149 – Safrfna; 150 – Santana; 151 – Lada; 152 – Lira.

The arrow indicates marker fragment Sat_308-310 associated with resistance to purple seed stain.

Table 3. The number of accessions carrying the alleles of SSR loci associated to three fungal diseases resistance, pcs

Origin group	Satt244-154	Satt565-208	Satt038-182	Satt570-110	Satt309-165	Satt371-272	Sat_308-310
Eastern Europe	12	21	9	21	17	23	11
Western Europe	3	1	7	4	5	2	4
East Asia	9	3	7	11	7	5	7
North America	3	5	9	20	7	10	1
Kazakhstan	23	2	1	14	12	10	5
Total	50	32	33	70	48	50	28

Table 4. Assessment of the genetic diversity level of SSR loci associated with resistance to FLS, FRR and PSS in the global soybean collection

Diseases	Marker	na	ne	Nei	PIC
FLS	Satt244	5.2	3.72	0.64	0.83
	Satt565	5.0	3.16	0.68	0.78
	Satt529	4.0	2.59	0.57	0.76
FRR	Satt038	5.0	3.09	0.66	0.79
	Satt570	5.0	2.68	0.61	0.74
	Satt309	3.4	2.05	0.46	0.55
	Satt371	5.4	3.29	0.63	0.83
PSS	Sat_308	3.0	1.38	0.27	0.32
	Satt115	3.8	1.42	0.29	0.34
Mean		4.42	2.6	0.54	0.66
SE		0.44	0.34	0.06	0.07

Note: na – the number of alleles per locus; ne – the effective number of alleles; I – Shannon information index; Nei – Nei’s diversity index; PIC – polymorphic information content

Примечание: na – количество аллелей на локус; ne – эффективное количество аллелей; I – индекс информативности Шеннона; Nei – индекс разнообразия Нея; PIC – индекс полиморфизма.
3 (Sat_308) to 7 (Satt244). Each of the four microsatellite loci (Satt038, Satt371, Satt565, and Satt570) was represented by 6 alleles. The average number of alleles ranged from 3.0 for Sat_308 to 5.4 for Satt371 (Table 4). The effective number of alleles varied from 1.38 to 3.72, with a mean value of 2.6. Nei’s genetic diversity index averaged 0.54 (Table 4). The average value of polymorphism information content (PIC) was 0.66, ranging from 0.32 for Sat_308 to 0.83 for Satt371.

The PCoA analysis based on the variability data for nine microsatellite markers in soybean populations demonstrated that genotypes from Western Europe are genetically more distant from the other four groups of origin. The PCoA2 coordinate effectively separated groups of North America and Eastern Europe from groups of East Asia and Kazakhstan. The local soybean accessions were close to the East Asian genotypes (Fig. 5).

Associations with alleles linked to disease resistance genes

Seven out of nine SSR loci were located close to the known resistance genes that controlled immune response to three studied fungal diseases (Fig. 7). The polymorphism observed at Satt244 and Satt565 associated with resistance to FLS showed that 78 accessions had at least one allele related to disease resistance. The analysis of polymorphism at four SSR loci (Satt038, Satt309, Satt371, and Satt570) related to FRR resistance helped to identify 154 accessions with at least one allele. There were no accessions carrying alleles of all four SSR marker loci related to disease resistance. The screening suggested that 38 out of 154 accessions had at least two alleles, and 4 accessions had three alleles associated with disease resistance. The Sat_308-310 allele associated with the resistance to PSS was found in 28 soybean accessions.

In total, the study made it possible to identify four genotypes which had at least one allele associated with resistance to one of the three studied fungal diseases. The application of the t-test did not reveal statistically significant differences between accessions with positive and negative alleles of SSR markers associated with resistance to three diseases under field conditions.
The results of field trials of the global soybean collection in the environments of Southeastern Kazakhstan showed high levels of resistance in a majority of the accessions to common fungal diseases in the tested environments. The two-year study of the resistance to FLS, FRR and PSS suggested that more than 97% of the collection were resistant to these diseases. The correlation analysis revealed significant positive correlations between agronomic characters and their negative correlations with resistance to fungal diseases. The soybean collection consisting of 288 accessions from different parts of the world was studied using nine microsatellite markers related to the genes of resistance to three fungal diseases, FLS, FRR and PSS. The SSR markers used in this study were highly polymorphic and informative, with the average PIC equal to 0.66. Two markers linked to PSS, Sat_308 and Satt115, showed moderate PIC values: 0.32 and 0.34, respectively (Table 4). At the same time, PIC for the entire soybean collection of 288 accessions, using the other seven SSR markers (Satt244, Satt565, Satt529, Satt530, Satt570, Satt309 and Satt371) related to FLS and FRR resistances, was higher (0.75), confirming high informativeness of these markers. The SSR loci with more than five alleles and PIC over 0.6 would be informative for genetic structure analysis and marker-assisted selection.

The PCoA analysis using nine SSR markers showed that local genotypes were genetically closer to East Asian cultivars, compared with accessions from other regions. The result confirms the field test data, suggesting that they have higher adaptability to the environments of Southeastern Kazakhstan.

Screening of the global soybean collection with nine polymorphic SSR markers made it possible to identify genotypes carrying 7 marker alleles associated with resistance to three fungal diseases. They were Satt244-154 and Satt565-208 associated with resistance to FLS; Satt038-182, Satt309-165, Satt371-272 and Satt570-110 associated with resistance to FRR; and Sat_308-310 associated with the response PSS. The accessions Slaviya, Amantai, OO533, and 10991 had the alleles Satt244-154 and Satt565-208 associated with FLS resistance. Satt244 was localized almost at the same position as the QTL controlling resistance to FLS in this study. Fig. 7 shows the localization of nine SSR markers related to resistance to the three studied fungal diseases on the chromosomes of soybean. The localization of the QTLs controlling resistance to FLS, FRR and PSS is presented in pink according to the Soybase.org database.

Table 5. Distribution of accessions from 5 groups of origin among the obtained populations, pcs

Origin group	Population 1	Population 2	Population 3
Eastern Europe	43	51	28
Western Europe	7	10	6
East Asia	21	19	17
North America	5	37	8
Kazakhstan	11	2	23

Discussion

The results of field trials of the global soybean collection in the environments of Southeastern Kazakhstan showed high levels of resistance in a majority of the accessions to common fungal diseases in the tested environments. The two-year study of the resistance to FLS, FRR and PSS suggested that more than 97% of the collection were resistant to these diseases. The correlation analysis revealed significant positive correlations between agronomic characters and their negative correlations with resistance to fungal diseases. The soybean collection consisting of 288 accessions from different parts of the world was studied using nine microsatellite markers related to the genes of resistance to three fungal diseases, FLS, FRR and PSS. The SSR markers used in this study were highly polymorphic and informative, with the average PIC equal to 0.66. Two markers linked to PSS, Sat_308 and Satt115, showed moderate PIC values: 0.32 and 0.34, respectively (Table 4). At the same time, PIC for the entire soybean collection of 288 accessions, using the other seven SSR markers (Satt244, Satt565, Satt529, Satt530, Satt570, Satt309 and Satt371) related to FLS and FRR resistances, was higher (0.75), confirming high informativeness of these markers. The SSR loci with more than five alleles and PIC over 0.6 would be informative for genetic structure analysis and marker-assisted selection.

The PCoA analysis using nine SSR markers showed that local genotypes were genetically closer to East Asian cultivars, compared with accessions from other regions. The result confirms the field test data, suggesting that they have higher adaptability to the environments of Southeastern Kazakhstan.

Screening of the global soybean collection with nine polymorphic SSR markers made it possible to identify genotypes carrying 7 marker alleles associated with resistance to three fungal diseases. They were Satt244-154 and Satt565-208 associated with resistance to FLS; Satt038-182, Satt309-165, Satt371-272 and Satt570-110 associated with resistance to FRR; and Sat_308-310 associated with the response PSS. The accessions Slaviya, Amantai, OO533, and 10991 had the alleles Satt244-154 and Satt565-208 associated with FLS resistance. Satt244 was localized almost at the same position as the QTL controlling resistance to FLS in this study. Fig. 7 shows the localization of nine SSR markers related to resistance to the three studied fungal diseases on the chromosomes of soybean. The localization of the QTLs controlling resistance to FLS, FRR and PSS is presented in pink according to the Soybase.org database.

Table 5. Распределение образцов по популяциям из 5 групп происхождения, шт.

Оригинальная группа	Популяция 1	Популяция 2	Популяция 3
Восточная Европа	43	51	28
Западная Европа	7	10	6
Восточная Азия	21	19	17
Северная Америка	5	37	8
Казахстан	11	2	23

Fig. 7. Локализация 9 SSR-маркеров, связанных с устойчивостью к трем изученным грибным болезням

(SSR-маркеры, связанные с устойчивостью к церкоспорозу, выделены красным, к корневой гнили – зеленым и к пурпурному церкоспорозу – синим цветом соответственно. Локализация известных генов устойчивости к болезням и локусов количественных признаков (QTL) показаны розовым цветом на основе базы данных Soybase.org)
several disease resistance genes were identified on linkage group G (chromosome 18), which indicated the location of the cluster of resistance genes (Wang et al., 2001). The results can be used to effectively discriminate soybean accessions from different parts of the world suggested that over 20% of the collection was resistant to FLS, FRR and PSS in the studied period. The usage of accessions using nine SSR markers associated with the resistance to FLS, FRR and PSS differentiated local samples from soybean accessions from other regions and indicated that they are genetically closer to cultivars from East Asia. The usage of the t-test did not show significant differences between the accessions with alleles linked to resistance and those with other alleles, which could be explained by low infection spreads of the three studied diseases in 2018 and 2019. The assessment of the SSR genotyping results revealed that FLS and FRR had a negative effect on TSW, while resistance to soybean sudden death syndrome (SDS) in Essex × Forrest RILs. Genetic mapping of loci under field conditions revealed a high level of polymorphism and suggested that a majority of the applied markers can be successfully used in DNA documentation of soybean collections and breeding programs.

Conclusion

Field trials of the soybean collection consisting of 288 accessions from different parts of the world suggested that over 97% of the collection was resistant to FLS, FRR and PSS fungal diseases in the studied period. Still, the correlation analysis showed that FLS and FRR had a negative effect on TSW, while FRR and PSS negatively correlated with yield. The evaluation of accessions using nine SSR markers associated with the resistance to FLS, FRR and PSS differentiated local samples from soybean accessions from other regions and indicated that they are genetically closer to cultivars from East Asia. The usage of the t-test did not show significant differences between the accessions with alleles linked to resistance and those with other alleles, which could be explained by low infection spreads of the three studied diseases in 2018 and 2019. The assessment of the SSR genotyping results revealed a high level of polymorphism and suggested that a majority of the applied markers can be successfully used in DNA documentation of soybean collections and breeding programs.

This research has been funded by Project AP05131592 supported by the Ministry of Education and Sciences of the Republic of Kazakhstan.

References/Literatura

Bisen A., Khare D., Nair P., Tripathi N. SSR analysis of 38 genotypes of soybean (Glycine max (L.) Merr.) genetic diversity in Iran. Physiology and Molecular Biology of Plants. 2015;21(1):109-115. DOI: 10.1007/s12298-014-0269-9

Botstein D., White R.L., Skolnick M., Davis R.W. Construction of a genetic map in man using restriction fragment length polymorphisms. American Journal of Human Genetics. 1980;32(3):314-331.

Cregan P.B., Jarvik T., Bush A.L., Shoemaker R.C., Lark K.G., Kahler A.L. et al. An integrated genetic linkage map of the soybean genome. Crop Science. 1999;39:1464-1490.

Dellaporta S.L., Wood J., Hicks J.B. A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter. 1983;3(4):19-21. DOI: 10.1007/BF02712670

Ding J.J., Jiang C.L., Gu X., Yang X.H., Zhao H.H., Sheng H.B. et al. Establishment of molecular ID of soybean varieties (lines) using SSR markers linked to resistance genes against Cercospora sojina. Acta Agronomica Sinica. 2012;38(12):2206-2216. DOI: 10.3724/SP.J.1006.2012.0223

Earl D.A., von Holdt B.M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetic Resources. 2012;4(2):359-361. DOI: 10.1007/s12686-011-9548-7

Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology. 2005;14(8):2611-2620. DOI: 10.1111/j.1365-294X.2005.02553.x

Garcia M.C., Torre M., Marina M.L., Laborda F., Rodriguez A.R. Composition and characterization of soybean and related products. Critical Reviews In Food Science and Nutrition. 1997;37(4):361-391. DOI: 10.1080/01040399709527779

Ghorbanipour A., Rabiei B., Rahmanpour S., Khodaparast S.A. Association analysis of charcoal rot disease resistance in soybean. Plant Pathology Journal. 2019;35(3):189-199. DOI: 10.5423/PPJ.OA.12.2018.0289

Hnetkovsky N., Chang S.J.C., Doubler T.W., Gibson P.T., Lightfoot D.A. Genetic mapping of loci underlying field resistance to soybean sudden death syndrome (SDS). Crop Science. 1996;36(2):393-400. DOI: 10.2135/cropsci1996.0011183X003600020030x

Idrees M., Irshad M. Molecular markers in plants for analysis of genetic diversity: A review. European Academic Research. 2014;2(1):1513-1540.

Iqbal M.J., Meksem K., Ntiti V.N., Kassem M.A., Lightfoot D.A. Microsatellite markers identify three additional quantitative trait loci for resistance to soybean sudden-death syndrome (SDS) in Essex x Forrest RILs. Theoretical and Applied Genetics. 2001;102:187-192. DOI: 10.1007/s001220051634

Jackson E.W., Feng C., Fenn P., Chen P. Genetic mapping of resistance to purple seed stain in PI 80837 soybean. Journal of Heredity. 2008;99(3):319-322. DOI: 10.1093/jhered/esm123

Korsakov N.I., Makasheva R.H., Adamova O.P. Methodology for studying the collection of legumes (Metodika izucheniya kollektiv zernobobykh kultur). Leningrad: VIR; 1968. [in Russian] (Corsakow N.I., Makasheva R.X., Adamova O.P. Methodika izucheniya zernobobykh kultur. Leningrad: VIR; 1968).

Makulbekova A., Iskakov A., Kulkarni K.P., Song J.T., Lee J.D. Current status of future prospects of soybean production in Kazakhstan. Plant Breeding and Biotechnology. 2017;5:55-66. DOI: 10.9787/PBB.2017.5.2.5

Mauri A.A., Sauranbaev B.N., Ozrabaev V.I. Soybean pathogens in the south-east of Kazakhstan. Journal of Humanities and Administrative Sciences. 2016;5:20-26. DOI: 10.26443/JOSHAS.19

North Kazakhstan Region has started implementation of the Northern Soybean Program (V SKO nachata realizatsiya programmy “Seyernaya Soya”). 2019. [in Russian] (V SKO nachata realizatsiya programmy "Северная Соя". 2019). Available from: https://www.zakon.kz/4971028-v-sko-nachata-realizatsiya-programmy.html [accessed May 20, 2020].
A study of the genetic diversity in the world soybean collection using microsatellite markers associated with fungal disease resistance. Proceedings on Applied Botany, Genetics and Breeding. 2020;181(3):81-90. DOI: 10.30901/2227-8834-2020-3-81-90

Zatybekov A.K., Turuspekov Y.T., Doszhanova B.N., Abugalieva S.I. Genetic bases of soybean resistance to fungal diseases (Geneticheskkiye osnovy ustoichivosti soi k gribkovym boleznym). Issledovaniya, rezul'taty. KazNAU = Research, Results. KazNAU. 2017;1(73):128-140. [in Russian] (Zatybekov A.K., Abugalieva S.I., Didorenko S.B., Turuspekov E.K. Geneticеские основы устойчивости сои к грибковым болезням. Исследования, результаты. КазНАУ. 2017;1(73):128-140).

Zatybekov A.K., Agibaev A.Z., Didorenko S.V., Abugalieva S.I., Turuspekov Y.K. Analysis of resistance to Septoria glycines in soybean world collection harvested in South-Eastern Kazakhstan. News of the National Academy of Sciences of the Republic of Kazakhstan. Series of Agricultural Sciences. 2018;5(47):44-52. DOI: 10.32014/2018.2224-526X.6

Zhong C., Sun S., Yao L., Ding J., Duan C., Zhu Z. Fine mapping and identification of a novel Phytophthora root rot resistance locus RpsZS1B on chromosome 2 in soybean. Frontiers in Plant Science. 2018;9:44. DOI: 10.3389/fpls.2018.00044

Peakall R., Smouse P.E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics. 2012;28(19):2537-2539. DOI: 10.1093/bioinformatics/bts460

Rouf Mian M.A., Wang T., Phillips D.V., Alvernaz J., Boerma H.R. Molecular mapping of the Rcs3 gene for resistance to frog-eye leaf spot in soybean. Crop Science. 1999;39(6):1687-1691. DOI: 10.2135/cropsci1999.3961687x

Singh R.K., Bhatia V.S., Bhat K.V., Mohapatra T., Singh N.K., Bansal K.C. et al. SSR and AFLP based genetic diversity of soybean germplasm differing in photoperiod sensitivity. Genetics and Molecular Biology. 2010;33(2):319-324. DOI: 10.1590/s1415-475720100005000024

U.S. Department of Agriculture. An official website of the United States government. 2020. Available from: http://usda.gov/ [accessed May 20, 2020].

Voorrips R.E. MapChart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity. 2002;93(1):77-78. DOI: 10.1093/jhered/93.1.77

Wang D., Diers B.W., Arelli P.R., Shoemaker R.C. Loci underlying resistance to Race 3 of soybean cyst nematode in Glycine soja plant introduction 468916. Theoretical and Applied Genetics. 2001;103(4):561-566. DOI: 10.1007/pl00002910

Wang L.X., Guan R., Zhangxiong L., Chang R., Qiu L. Genetic diversity of Chinese cultivated soybean revealed by SSR markers. Crop Science. 2006;46(3):1032-1038. DOI: 10.2135/cropsci2005.0051

Wrather J.A., Anderson T.R., Arsyad D.M., Gai J., Ploper L.D., Porta-Puglia A. et al. Soybean disease loss estimates for the top 10 soybean producing countries in 1994. Plant Diseases. 1997;81(1):107-110. DOI: 10.1094/PDIS.1997.811.107

Zatybekov A., Abugalieva S., Didorenko S., Rsaliyev A., Turuspekov Y. GWAS of a soybean breeding collection from South East and South Kazakhstan for resistance to fungal diseases. Vavilov Journal of Genetics and Breeding. 2018;22(5):536-543. DOI: 10.18699/VJ18.392

ORCID
Zatybekov A.K. https://orcid.org/0000-0003-4310-5753
Turuspekov Y.T. https://orcid.org/0000-0001-8590-1745
Doszhanova B.N. https://orcid.org/0000-0002-5085-7657
Abugalieva S.I. https://orcid.org/0000-0002-9748-507X

Прозрачность финансовой деятельности / The transparency of financial activities
Авторы не имеют финансовой заинтересованности в представленных материалах или методах.
The authors declare the absence of any financial interest in the materials or methods presented.

Для цитирования / How to cite this article
Zatybekov A.K., Turuspekov E.K., Dosjanaova B.N., Abugaliyeva S.I. Наследственные основы устойчивости к грибным болезням. Труды по прикладной ботанике, генетике и селекции. 2020;181(3):81-90. DOI: 10.30901/2227-8834-2020-3-81-90

Zatybekov A.K., Turuspekov Y.T., Doszhanova B.N., Abugalieva S.I. A study of the genetic diversity in the world soybean collection using microsatellite markers associated with fungal disease resistance. Proceedings on Applied Botany, Genetics and Breeding. 2020;181(3):81-90. DOI: 10.30901/2227-8834-2020-3-81-90

Авторы благодарят рецензентов за их вклад в экспертную оценку этой работы / The authors thank the reviewers for their contribution to the peer review of this work.

Дополнительная информация / Additional information
Полные данные этой статьи доступны для this paper at https://doi.org/10.30901/2227-8834-2020-3-81-90

Мнение журнала нейтрально к изложенным материалам, авторам и их месту работы / The journal’s opinion is neutral to the presented materials, the authors, and their employer.

Авторы одобрили рукопись / The authors approved the manuscript.

Конфликт интересов отсутствует / No conflict of interest.