Decomposition of planar graphs with forbidden configurations

Lingxi Li*, Huajing Lu†, Tao Wang‡, Xuding Zhu§

Abstract

A \((d, h)\)-decomposition of a graph \(G\) is an ordered pair \((D, H)\) such that \(H\) is a subgraph of \(G\) of maximum degree at most \(h\) and \(D\) is an acyclic orientation of \(G - E(H)\) with maximum out-degree at most \(d\). In this paper, we prove that for \(l \in \{5, 6, 7, 8, 9\}\), every planar graph without 4- and \(l\)-cycles is \((2, 1)\)-decomposable. As a consequence, for every planar graph \(G\) without 4- and \(l\)-cycles, there exists a matching \(M\), such that \(G - M\) is 3-DP-colorable and has Alon-Tarsi number at most 3. In particular, \(G\) is 1-defective 3-DP-colorable, 1-defective 3-paintable and 1-defective 3-choosable. These strengthen the results in [Discrete Appl. Math. 157 (2) (2009) 433–436] and [Discrete Math. 343 (2020) 111797].

Keywords: decomposition; list coloring; defective coloring; Alon-Tarsi number; DP-coloring

1 Introduction

A proper \(k\)-coloring of a graph \(G\) is a mapping \(\phi : V(G) \to [k]\) such that \(\phi(u) \neq \phi(v)\), whenever \(uv \in E(G)\), where and herein after, \([k] = \{1, 2, \ldots, k\}\). The least integer \(k\) such that \(G\) admits a proper \(k\)-coloring is the chromatic number \(\chi(G)\) of \(G\). Let \(h\) be a non-negative integer. An \(h\)-defective \(k\)-coloring of \(G\) is a mapping \(\phi : V(G) \to [k]\) such that each color class induces a subgraph of maximum degree at most \(h\). In particular, a 0-defective coloring is a proper coloring of \(G\).

A \(k\)-list assignment of \(G\) is a mapping \(L\) that assigns a list \(L(v)\) of \(k\) colors to each vertex \(v\) in \(G\). An \(h\)-defective \(L\)-coloring of \(G\) is an \(h\)-defective coloring \(\psi\) of \(G\) such that \(\psi(v) \in L(v)\) for all \(v \in V(G)\). A graph \(G\) is \(h\)-defective \(k\)-choosable if \(G\) admits an \(h\)-defective \(L\)-coloring for each \(k\)-list assignment \(L\). In particular, if \(G\) is 0-defective \(k\)-choosable, then we call it \(k\)-choosable. The choice number \(ch(G)\) is the smallest integer \(k\) such that \(G\) is \(k\)-choosable.

Cowen, Cowen, and Woodall [2] proved that every outerplanar graph is 2-defective 2-colorable, and every planar graph is 2-defective 3-colorable. Eaton and Hull [6], and independently, Škreklovski [12] proved that every outerplanar graph is 2-defective 2-choosable, and every planar graph is 2-defective 3-choosable. Cushing and Kierstead [3] proved that every planar graph is 1-defective 4-choosable. Let \(\mathcal{G}_{4, l}\) be the family of planar graphs which contain no 4-cycles and no \(l\)-cycles. Lih et al. [10] proved that for each \(l \in \{5, 6, 7\}\), every graph \(G \in \mathcal{G}_{4, l}\) is 1-defective 3-choosable. Dong and Xu [4] proved that for each \(l \in \{8, 9\}\), every graph \(G \in \mathcal{G}_{4, l}\) is 1-defective 3-choosable.

Note that a graph being \(h\)-defective \(k\)-choosable means that for every \(k\)-list assignment \(L\) of \(G\), there exists a subgraph \(H\) (depending on \(L\)) of \(G\) with \(\Delta(H) \leq h\) such that \(G - E(H)\) is \(L\)-colorable. The subgraph \(H\) may be different for different \(L\). As a strengthening of the above results, the following problem is studied in the literature: For \((h, k) \in \{(2, 3), (1, 4)\}\), is it true that every planar graph \(G\) has a subgraph of maximum

*School of Mathematics and Statistics, Henan University, Kaifeng, 475004, P. R. China
†College of Basic Science, Ningbo University of Finance and Economics, Ningbo, 315000, P. R. China
‡Center for Applied Mathematics, Henan University, Kaifeng, 475004, P. R. China. Email: wangtao@henu.edu.cn
§School of Mathematical Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China. This research is supported by Grants: NSFC 11971438, U20A2068.
neighbors. It is well-known and easy to see that
matching \(M \) of a graph \(G \) of maximum
degree \(h \) creates the above mentioned linear ordering and the corresponding coloring is easily obtained by using a
We just note here that for any graph \(G \) larger than each of
et al. [1] proved that every planar graph is
AT
such that
AT
Tarsi number
Fig. 1 and Fig. 2, and if \(G \) has no subgraph isomorphic to any configuration in
−
−
−

Indeed, stronger results were proved in [7, 11]. The results concern two other graph parameters: The Alon-
Tarsi number \(AT(G) \) of \(G \) and the paint number \(\chi_P(G) \) of \(G \). The reader is referred to [7] for the definitions.
We just note here that for any graph \(G \), \(ch(G) \) ≤ \(\chi_P(G) \) ≤ \(AT(G) \), and the differences \(\chi_P(G) - ch(G) \) and \(AT(G) - \chi_P(G) \) can be arbitrarily large. It was proved in [7] that every planar graph \(G \) has a matching \(M \) such that \(AT(G - M) \) ≤ 4, and proved in [11] that for \(l \) ∈ \{5, 6, 7\}, every graph \(G \) ∈ \(G_{4,l} \) has a matching \(M \) such that \(AT(G - M) \) ≤ 3.
In this paper, we consider further strengthening of the results concerning graphs in \(G_{4,l} \) for \(l \) ∈ \{5, 6, 7, 8, 9\}. (Note that the result in [11] does not cover the cases for \(l = 8 \) and 9). We strengthen the above results in two aspects: a larger class of graphs with a stronger property.
Given two non-negative integers \(d, h \) and a graph \(G \), a \((d, h)\)-decomposition of \(G \) is a pair \((D, H)\) such that \(H \) is a subgraph of \(G \) of maximum degree at most \(h \) and \(D \) is an acyclic orientation of \(G - E(H) \) with maximum out-degree at most \(d \). We say \(G \) is \((d, h)\)-decomposable if \(G \) has a \((d, h)\)-decomposition. Cho et al. [1] proved that every planar graph is \((4, 1)\)-decomposable, \((3, 2)\)-decomposable and \((2, 6)\)-decomposable.
Note that a graph \(H \) which has an acyclic orientation of maximum out-degree at most \(d \) if and only if \(H \) is \(d\)-degenerate, i.e., the vertices of \(H \) can be linearly ordered so that each vertex has at most \(d \) backward neighbors. It is well-known and easy to see that \(d\)-degenerate graphs not only have choice number, paint number, Alon-Tarsi number and DP-chromatic number at most \(d + 1 \), there is a linear time algorithm that creates the above mentioned linear ordering and the corresponding coloring is easily obtained by using a greedy coloring algorithm. The reader is referred to [5] for the definition of DP-chromatic number \(\chi_{DP}(G) \) of a graph \(G \). We just mention here that \(ch(G) \) ≤ \(\chi_{DP}(G) \), and there are graphs \(G \) for which \(\chi_{DP}(G) \) are larger than each of \(AT(G) \) and \(\chi_P(G) \), there are also graphs \(G \) for which \(\chi_{DP}(G) \) are smaller than each of \(AT(G) \) and \(\chi_P(G) \) [9]. This paper proves the following result:

Theorem 1.1. Assume \(G \) is a plane graph. Then \(G \) is \((2, 1)\)-decomposable if one of the following holds:

1. \(G \) has no subgraph isomorphic to any configuration in Fig. 1 and Fig. 2.
2. \(G \) has no subgraph isomorphic to any configuration in Fig. 1 and Fig. 3.
3. \(G \) ∈ \(G_{4,9} \).

Note that if \(G \) ∈ \(G_{4,l} \) for some \(l \) ∈ \{5, 6, 7\}, then \(G \) has no subgraph isomorphic to any configuration in
Fig. 1 and Fig. 2, and if \(G \) ∈ \(G_{4,8} \), then \(G \) has no subgraph isomorphic to any configuration in Fig. 1 and
Fig. 2: Forbidden configurations in (1) of Theorem 1.1.

Fig. 3: Forbidden configurations in (2) of Theorem 1.1.

All graphs in this paper are finite and simple. For a plane graph G, we use $V(G)$, $E(G)$ and $F(G)$ to denote the vertex set, edge set and face set of G, respectively. For any element $x \in V(G) \cup F(G)$, the degree of x is denoted by $d(x)$. A vertex v in G is called a k-vertex, or k^+-vertex, or k^--vertex, if $d(v) = k$, or $d(v) \geq k$, or $d(v) \leq k$, respectively. Analogously, one can define k-face, k^+-face, and k^--face. An n-face $[x_1x_2\ldots x_n]$ is a (d_1, d_2, \ldots, d_n)-face if $d(x_i) = d_i$ for $1 \leq i \leq n$. Let D be an orientation of a graph G, we use $d^+_D(v)$ and $d^-_D(v)$ to denote the out-degree and in-degree of a vertex v in D, respectively. Let $\Delta^+(D)$ denote the maximum out-degree of vertices in D. Two cycles (or faces) are adjacent if they have at least one common edge. Two cycles (or faces) are normally adjacent if they intersect in exactly two vertices. Let G be a plane graph and xy be a given boundary edge of G. A vertex $v \neq x, y$ is called a normal vertex. A vertex v is special if v is a 5^+-vertex or $v \in \{x, y\}$. A face is internal if it is not the outer face f_0. A face is special if it is an internal 7^+-face or the outer face f_0. A normal vertex v is minor if $d(v) = 3$ and it is incident with an internal 4^--face. A good 5-face is an internal 5-face adjacent to at least one internal 3-face. An edge contained in a triangle is a triangular edge. Note that in all three cases, there are no adjacent triangles. So every triangular edge is contained in a unique triangle.

2 Proof of Theorem 1.1

For the purpose of using induction, we prove the following result. Assume G is a plane graph and $e = xy$ is a boundary edge of G. A nice decomposition of (G, e) is a pair (D, M) such that M is a matching and D is an acyclic orientation of $G - M$ with $d^+_D(x) = d^-_D(y) = 0$ and $\Delta^+(D) \leq 2$. Note that in a nice decomposition (D, M) of (G, e), since $d^+_D(x) = d^-_D(y) = 0$, we conclude that $e = xy \in M$.

Theorem 2.1. If G is a plane graph satisfying the condition of Theorem 1.1 and e is a boundary edge of G, then (G, e) has a nice decomposition.

Assume Theorem 2.1 is not true and G is a counterexample with minimum number of vertices. We shall
derive a sequence of properties of G that lead to a contradiction. It is obvious that G is connected, for otherwise we can consider each component of G separately.

Lemma 2.2. G is 2-connected.

Proof. Assume to the contrary that G has a cut-vertex x'. Let $G = H_1 \cup H_2$, $V(H_1 \cap H_2) = \{x'\}$ and $e = xy \in E(H_1)$. Let $e' = x'y'$ be a boundary edge of H_2. By the minimality of G, there is a nice decomposition (D_1, M_1) of (H_1, e) and a nice decomposition (D_2, M_2) of (H_2, e'). Let $M = (M_1 \cup M_2) \setminus \{x'y'\}$ and $D = D_1 \cup D_2 \cup \{x'y'\}$. It is straightforward to verify that (D, M) is a nice decomposition of (G, e). \hfill \Box

Lemma 2.3. For any $v \in V(G) \setminus \{x, y\}$, $d(v) \geq 3$.

Proof. Assume $v \in V(G) \setminus \{x, y\}$ and $d(v) \leq 2$. By the minimality of G, there exists a nice decomposition (D, M) of $(G - v, e)$. Let D' be obtained from D by orienting edges incident with v as out-going edges from v. Then (D', M) is a nice decomposition of (G, e). \hfill \Box

Lemma 2.4. If u and v are two adjacent 3-vertices, then $\{u, v\} \cap \{x, y\} \neq \emptyset$.

Proof. Suppose that u and v are two adjacent 3-vertices with $\{u, v\} \cap \{x, y\} = \emptyset$. By the minimality of G, there is a nice decomposition (D, M) of $(G - \{u, v\}, e)$. Let $M' = M \cup \{uv\}$, and D' be obtained from D by orienting the other edges incident with u, v as out-going edges from u, v. Then (D', M') is a nice decomposition of (G, e). \hfill \Box

For an internal face f, let t_f be the number of incident normal 3-vertices and let s_f be the number of adjacent internal 3-faces. Note that each 3-vertex of f is incident with at most one 3-face adjacent to f. Thus we have the following corollary.

Corollary 2.5. For any internal face f, $t_f \leq d(f)/2$ and $t_f + s_f \leq d(f)$.

The following four lemmas first appeared in [11], although the hypotheses and some definitions are slightly different. For the completeness of this paper, we include the short proofs with illustration figures.

![Fig. 4: (a) A bad 5-cycle and an adjacent triangle. (b) For the proof of Lemma 2.6. Here and in figures below, a solid triangle represents a 3-vertex, a solid square represents a 4-vertex, a thick line represents an edge in the matching M.](image)

A 5-cycle $[u_1 u_2 u_3 u_4 u_5]$ is a bad 5-cycle if it is adjacent to a triangle $[u_1 u_5 u_6]$ with $u_i \notin \{x, y\}$, where $1 \leq i \leq 6$, and $d(u_1) = d(u_3) = 3$, and $d(u_2) = d(u_4) = d(u_5) = d(u_6) = 4$, as depicted in Fig. 4(a).

Lemma 2.6 (Lemma 5.2 in [11]). There are no bad 5-cycles in G. -

4
Proof of Lemma 2.6. Assume $C = [u_1u_2u_3u_4u_5]$ is a bad 5-cycle and $T = [u_1u_5u_6]$ is a triangle adjacent to C, where $d(u_1) = d(u_3) = 3$ and $d(u_i) = 4$ for $i \in \{2, 4, 5\}$, as depicted in Fig. 4(a). A nice decomposition of $G - \{u_1, u_2, \ldots, u_6\}$ is extended to a nice decomposition as in Fig. 4(b).

A triangle T is minor if T is a $(3, 4, 4)$-triangle and $T \cap \{x, y\} = \emptyset$. A triangle chain in G is a subgraph of $G - \{x, y\}$ consisting of vertices $w_1, w_2, \ldots, w_{k+1}, u_1, u_2, \ldots, u_k$ in which $[w_iw_{i+1}u_i]$ is a $(4, 4, 4)$-cycle for $1 \leq i \leq k$, as depicted in Fig. 5. We denote T_i the triangle $[w_iw_{i+1}u_i]$ and denote such a triangle chain by $T_1T_2\ldots T_k$. If a triangle T has exactly one common vertex with a triangle chain $T_1T_2\ldots T_k$ and the common vertex is in T_1, then we say T intersects the triangle chain $T_1T_2\ldots T_k$.

![Fig. 5: A triangle chain.](image)

Lemma 2.7 (Lemma 2.10 in [11]). If a minor triangle $T_0 = [w_0w_1u_0]$ intersects a triangle chain $T_1T_2\ldots T_k$, then every 3-vertex adjacent to a vertex in T_k belongs to $\{x, y\} \cup V(T_0)$.

The $k = 0$ case of the above lemma asserts that every 3-vertex adjacent to a vertex in T_0 belongs to $\{x, y\}$.

Proof of Lemma 2.7. Assume G has a minor triangle $T_0 = [w_0w_1u_0]$ intersecting a triangle chain $T_1T_2\ldots T_k$, and $z \notin \{x, y\} \cup V(T_0)$ is a 3-vertex adjacent to a vertex in T_k, as depicted in Fig. 6(a). A nice decomposition of $G - (\bigcup_{i=0}^k V(T_i) \cup \{z\})$ is extended to a nice decomposition of G as in Fig. 6(b).

Lemma 2.8 (Lemma 2.11 in [11]). If a minor triangle T_0 intersects a triangle chain $T_1T_2\ldots T_k$, then the distance between T_k and another minor triangle is at least two.
Proof of Lemma 2.8. Assume to the contrary that $T_1 T_2 \ldots T_k$ with $T_i = [w_i w_{i+1} u_i], 1 \leq i \leq k$, is a triangle chain that intersects a minor triangle $T_0 = [w_0 w_1 u_0]$, and the distance between T_k and another minor triangle $T_0' = [z_1 z_2]$ with $d(z_1) = 3$ is less than 2. By Lemma 2.7, we may assume $w_{k+1} z$ is a $(4, 4)$-edge connecting T_k and T_0', as depicted in Fig. 7(a). A nice decomposition of $G - (\bigcup_{i=0}^{k} V(T_i) \cup V(T_0'))$ is extended to a nice decomposition of G as in Fig. 7(b).\hfill\square

Lemma 2.9 (Lemma 3.1 in [11]). Assume that f is a 6-face adjacent to five 3-faces, and none of the vertices on these 3-faces is in \{x, y\}. If f is incident with a 3-vertex, then there is at least one 5$^+$-vertex on these five 3-faces.

Proof of Lemma 2.9. Let $f = [v_1 v_2 v_3 v_4 v_5 v_6]$ be a 6-face, v_1 be a 3-vertex and $T_i = [v_i v_{i+1} u_i], 1 \leq i \leq 5$, be the five 3-faces. Assume to the contrary that there is no 5$^+$-vertex on T_i. By Lemma 2.7, we may assume all v_{i+1} and u_i are 4-vertices for $1 \leq i \leq 5$, as depicted in Fig. 8(a). A nice decomposition of $G - (\bigcup_{i=1}^{5} V(T_i))$ is extended to a nice decomposition of G as in Fig. 8(b).\hfill\square
The above lemmas present some reducible configurations. We use standard discharging method to prove that there must be some reducible configurations in a minimum counterexample, which leads to a contradiction.

First, we define an initial charge function by \(\mu(x) = d(x) - 4 \), \(\mu(y) = d(y) - 4 \), \(\mu(f_0) = d(f_0) + 4 \), and \(\mu(v) = d(v) - 4 \) for each vertex \(v \in V(G) \setminus \{x, y\} \), \(\mu(f) = d(f) - 4 \) for each face \(f \) other than \(f_0 \). By Euler’s formula and handshaking theorem, we obtain that the sum of all the initial charges is zero, i.e.,

\[
(d(x) - 4) + (d(y) - 4) + (d(f_0) + 4) + \sum_{v \neq x, y} (d(v) - 4) + \sum_{f \neq f_0} (d(f) - 4) = 0.
\]

Next, we design some discharging rules to redistribute the charges, such that the sum of the final charges is not zero, which leads to a contradiction.

Discharging Rules

R1. Every internal 3-face \(f \) receives \(\frac{1}{3} \) from each adjacent face.

R2. Assume \(v \) is a normal 3-vertex. If \(v \) is incident with an internal 4\(^{-}\)-face, then it receives \(\frac{1}{2} \) from each of the other two incident faces. Otherwise it receives \(\frac{1}{3} \) from each incident face.

R3. Let \(v \) be a normal 5-vertex. Then \(v \) sends \(\frac{1}{3} \) to each incident 4\(^{+}\)-face. If \(v \) is incident with a 3-face \(g = [uvw] \), then \(v \) sends \(\frac{1}{6} \) to the other face \(g' \) incident with uw. Moreover, if \(v \) is incident with three consecutive faces \(f_1, f_2, f_3 \) and \(f_1, f_3 \) are 3-faces, then \(v \) sends an extra \(\frac{1}{6} \) to \(f_2 \).

R4. Let \(v \) be a normal 6\(^{+}\)-vertex. Then \(v \) sends \(\frac{1}{3} \) to each incident 4\(^{+}\)-face. If \(v \) is incident with a 3-face \(g = [uvw] \), then \(v \) sends \(\frac{1}{4} \) to the other face \(g' \) incident with uw.

R5. Let \(v \) be a vertex in \(\{x, y\} \). Then it sends \(\frac{1}{3} \) to every incident internal 4\(^{+}\)-face. If \(v \) is incident with a 3-face \(g = [uvw] \), then \(v \) sends \(\frac{1}{3} \) to the other face \(g' \) incident with uw.

R6. \(f_0 \) sends \(\frac{1}{3} \) to each adjacent 4\(^{+}\)-face.

R7. In Case 2 (i.e., \(G \) has no subgraph isomorphic to any configuration in Fig. 1 and Fig. 3), every internal 5-face receives \(\frac{1}{8} \) from adjacent internal 6\(^{+}\)-faces via each common edge.

R8. In Case 3 (i.e., \(G \in \mathcal{G}_{4,9} \)), every good 5-face receives \(\frac{1}{3} \) from adjacent internal 7\(^{+}\)-faces via each common edge.

For \(z \in V(G) \cup F(G) \), let \(\mu'(z) \) be the final charge of \(z \). In the remainder of this paper, we prove that

\[
\sum_{z \in V(G) \cup F(G)} \mu'(z) > 0,
\]

which contradicts the fact that \(\sum_{z \in V(G) \cup F(G)} \mu'(z) = \sum_{z \in V(G) \cup F(G)} \mu(z) = 0 \).

Note that R7 only applies to Case 2 and R8 only applies to Case 3. Moreover, R7 and R8 only involve 5\(^{+}\)-faces.

It follows from R5 that for \(v \in \{x, y\} \)

\[
\mu'(v) \geq \mu(v) - (d(v) - 1) \times \frac{1}{3} = \frac{2d(v) - 11}{3} \geq -\frac{7}{3}.
\]

Note that \(f_0 \) sends \(\frac{1}{2} \) to each adjacent internal face by R1 and R6, and sends at most \(\frac{1}{7} \) to each incident normal 3-vertex by R2. It follows from Lemma 2.4 that \(f_0 \) is incident with at most \(\frac{d(f_0)}{12} \) normal 3-vertices. Then

\[
\mu'(f_0) \geq \mu(f_0) - \frac{d(f_0)}{2} \times \frac{1}{2} - d(f_0) \times \frac{1}{3} \geq \frac{5d(f_0)}{12} + 4 \geq \frac{21}{4}.
\]

Hence, \(\mu'(x) + \mu'(y) + \mu'(f_0) > 0 \).

7
Assume \(v \) is a normal 3-vertex. If \(v \) is incident with an internal 4\(^{-}\)-face, then the other two incident faces are 5\(^{+}\)-faces or the outer face \(f_0 \). Hence \(\mu'(v) = \mu(v) + 2 \times \frac{1}{2} = 0 \). Otherwise each face incident with \(v \) is a 5\(^{+}\)-face or \(f_0 \), and \(\mu'(v) = \mu(v) + 3 \times \frac{1}{3} = 0 \) by R2.

If \(v \) is a normal 4-vertex, then \(\mu'(v) = \mu(v) = 0 \). If \(v \) is a normal 5-vertex, then it is incident with at most two 3-faces, and then \(\mu'(v) \geq \mu(v) - 5 \times \frac{1}{5} - \frac{1}{6} = 0 \) by R3. If \(v \) is a normal 6\(^{+}\)-vertex, then \(\mu'(v) = \mu(v) - d(v) \times \frac{1}{3} = \frac{2(d(v) - 6)}{3} \geq 0 \) by R4.

If \(f \) is an internal 3-face, then it receives \(\frac{1}{3} \) via each incident edge, and \(\mu'(f) = \mu(f) + 3 \times \frac{1}{3} = 0 \) by R1. If \(f \) is an internal 4-face, then \(\mu'(f) \geq \mu(f) = 0 \).

It remains to show that \(\mu'(f) \geq 0 \) for internal 5\(^{+}\)-faces \(f \).

In the remainder of the paper, we consider the three cases separately in three subsections.

2.1 \(G \) has no subgraph isomorphic to any configuration in Fig. 1 and Fig. 2

Assume that \(f = [v_1v_2v_3v_4v_5] \) is an internal 5-face. By Corollary 2.5, \(t_f \leq 2 \). If \(f \) is not adjacent to any internal 3-face, then \(\mu'(f) \geq \mu(f) - 2 \times \frac{1}{2} = 0 \) by R2. So we may assume that \(f \) is adjacent to at least one internal 3-face. Since the configurations Fig. 2(a)–2(d) are forbidden, \(f \) is adjacent to exactly one internal 3-face \(f^* \) and no 4-faces. If \(t_f \leq 1 \), then \(\mu'(f) \geq \mu(f) - \frac{1}{3} - \frac{1}{2} = 0 \) by R1 and R2. Assume \(t_f = 2 \) and \(f^* = [w_1w_2v_3] \) is an internal 3-face. If there are some special vertices in \(\{u, v_1, v_2, \ldots, v_5\} \), then \(f \) receives at least \(\frac{1}{6} \) from special vertices, and then \(\mu'(f) \geq \mu(f) - \frac{1}{3} - \left(\frac{1}{3} + \frac{1}{2}\right) + \frac{1}{6} = 0 \) by R1, R2, R3, R4 and R5. So we may assume that none of \(\{u, v_1, v_2, \ldots, v_5\} \) is a special vertex. It follows that \(f \) is incident with two 3-vertices and three 4-vertices. If neither \(v_1 \) nor \(v_2 \) is a 3-vertex, then \(\mu'(f) \geq \mu(f) - \frac{1}{3} - 2 \times \frac{1}{4} = 0 \) by R1 and R2.

Without loss of generality, assume that \(d(v_2) = 3 \) and \(d(v_1) = d(v_3) = d(u) = 4 \). If \(d(v_4) = 3 \) and \(d(v_5) = 4 \), then it contradicts Lemma 2.6. If \(d(v_4) = 4 \) and \(d(v_5) = 3 \), then it contradicts Lemma 2.7.

Assume that \(f = [v_1v_2v_3v_4v_5] \) is an internal 6-face. By Corollary 2.5, \(t_f \leq 3 \).

- \(t_f = 3 \). Without loss of generality, assume that \(v_1, v_3 \) and \(v_5 \) are normal 3-vertices.

By Corollary 2.5, \(s_f \leq 3 \). If \(s_f \leq 1 \), then \(\mu'(f) \geq \mu(f) - \frac{1}{3} - 3 \times \frac{1}{4} = 0 \) by R1 and R2.

Assume that \(s_f = 2 \). By symmetry, assume that one of the adjacent internal 3-face is \([v_1v_2u] \). By Lemma 2.7, one vertex in \(\{u, v_2\} \) is a special vertex. Thus, \(\mu'(f) \geq \mu(f) - 2 \times \frac{1}{3} - 3 \times \frac{1}{4} + \frac{1}{6} = 0 \) by R1, R2, R3, R4 and R5.

Assume that \(s_f = 3 \).

(i) \(v_i v_{i+1} \) is incident with an internal 3-face \([v_{i+1}u_i] \) for \(i \in \{1, 3, 5\} \). For each \(i \in \{1, 3, 5\} \), by Lemma 2.7, there is a special vertex in \(\{u_i, v_{i+1}\} \). Thus \(f \) receives at least \(\frac{1}{3} \) from \(\{u_i, v_{i+1}\} \) by R3, R4 and R5. Hence, \(\mu'(f) \geq \mu(f) - 3 \times \frac{1}{3} - 3 \times \frac{1}{4} + \frac{1}{6} = 0 \) by R1, R2, R3, R4 and R5.

(ii) \(v_i v_{i+1} \) is incident with an internal 3-face \([v_{i+1}u_i] \) for \(i \in \{1, 2, 5\} \). If \(v_2 \) is a special vertex, then \(f \) receives \(\frac{1}{4} \) from \(v_2 \). Otherwise, \(v_2 \) is a normal 4-vertex. By Lemma 2.7, both \(u_1 \) and \(u_2 \) are special vertices. Then \(f \) receives at least \(\frac{1}{3} \) from \(u_1 \) and \(u_2 \) by R3, R4 and R5. In any way, \(f \) receives at least \(\frac{1}{6} \) from \(\{u_1, u_2, v_2\} \). On the other hand, one of \(u_3 \) and \(v_6 \) is also a special vertex, and \(f \) receives at least \(\frac{1}{3} \) from \(\{u_3, v_6\} \) by R3, R4 and R5. Thus, \(\mu'(f) \geq \mu(f) - 3 \times \frac{1}{3} - 3 \times \frac{1}{4} + \frac{1}{6} + \frac{1}{6} = 0 \).

- \(t_f = 2 \). By Corollary 2.5, \(s_f \leq 4 \). If \(s_f \leq 3 \), then \(\mu'(f) \geq \mu(f) - 3 \times \frac{1}{3} - 2 \times \frac{1}{2} = 0 \) by R1 and R2.

Assume \(s_f = 4 \). We claim that \(f \) will receive at least \(\frac{1}{3} \) from vertices. If \(f \) is incident with a 2-vertex, then the 2-vertex must be in \(\{x, y\} \), and \(f \) receives at least \(\frac{1}{3} \) from incident 2-vertices by R5. So we may assume that \(f \) is not incident with any 2-vertex. By symmetry, it suffices to consider five cases.

(1) The four adjacent internal 3-faces are \([v_i v_{i+1} u_i] \) for \(1 \leq i \leq 4 \). Thus, the two normal 3-vertices must be \(v_1 \) and \(v_5 \). If one of \(v_2, v_3 \) and \(v_4 \) is a special vertex, then \(f \) receives \(\frac{1}{3} \) from it by R3, R4 and R5. So we may assume that \(v_2, v_3 \) and \(v_4 \) are normal 4-vertices. By Lemma 2.7 and Lemma 2.8, there are at least two special vertices in \(\{u_1, u_2, u_3, u_4\} \), thus \(f \) receives at least \(2 \times \frac{1}{6} = \frac{1}{3} \) from these vertices by R3, R4 and R5.
(2) The four adjacent internal 3-faces are \([v_i v_{i+1} u_i] \) for \(i \in \{1, 2, 3, 5\} \), while \(v_1 \) and \(v_4 \) are normal 3-vertices. Similarly, if \(v_2 \) or \(v_3 \) is a special vertex, then \(f \) receives at least \(\frac{1}{6} \) from it. So we may assume that \(v_2 \) and \(v_3 \) are normal 4-vertices. By Lemma 2.7 and Lemma 2.8, there are at least two special vertices in \(\{u_1, u_2, u_3\} \), thus \(f \) receives at least \(2 \times \frac{1}{6} = \frac{1}{3} \) from these vertices by R3, R4 and R5.

(3) The four adjacent internal 3-faces are \([v_i v_{i+1} u_i] \) for \(i \in \{1, 2, 3, 5\} \), while \(v_1 \) and \(v_4 \) are normal 3-vertices. By Lemma 2.7, \(u_2 \) and \(u_5 \) is a special vertex; one of \(\{v_2, v_3, u_1, u_2, u_3\} \) is a special vertex. Thus, \(f \) receives at least \(2 \times \frac{1}{6} = \frac{1}{3} \) from \(\{u_1, u_2\} \) by R3, R4 and R5.

(4) The four adjacent internal 3-faces are \([v_i v_{i+1} u_i] \) for \(i \in \{1, 2, 4, 5\} \), while \(v_1 \) and \(v_3 \) are normal 3-vertices. If \(v_2 \) is a special vertex, then \(f \) receives \(\frac{1}{6} \) from it by R3, R4 and R5. Otherwise, \(v_2 \) is a normal 4-vertex. By Lemma 2.7, each of \(u_1 \) and \(u_2 \) is a special vertex, thus \(f \) receives at least \(2 \times \frac{1}{6} = \frac{1}{3} \) from \(\{u_1, u_2\} \) by R3, R4 and R5.

(5) The four adjacent internal 3-faces are \([v_i v_{i+1} u_i] \) for \(i \in \{1, 2, 4, 5\} \), while \(v_1 \) and \(v_4 \) are normal 3-vertices. By Lemma 2.7, there is at least one special vertex in \(\{u_1, u_2, v_2, v_3\} \), and there is at least one special vertex in \(\{u_4, u_5, v_5, v_6\} \). Thus, \(f \) receives at least \(2 \times \frac{1}{6} = \frac{1}{3} \) from these vertices by R3, R4 and R5.

To sum up, \(f \) always receives at least \(\frac{1}{3} \) from some vertices in the above five cases. Therefore, \(\mu'(f) \geq \mu(f) - 4 \times \frac{1}{3} - 2 \times \frac{1}{2} + \frac{1}{3} = 0 \) by R1 and R2.

- \(t_f = 1 \). By Corollary 2.5, \(s_f \leq 5 \). If \(s_f \leq 4 \), then \(\mu'(f) \geq \mu(f) - \frac{1}{2} - 4 \times \frac{1}{3} > 0 \). Assume that \(s_f = 5 \) and for \(1 \leq i \leq 5 \), \(v_i v_{i+1} u_i \) is an internal 3-face. Let \(X = \{v_1, \ldots, v_6, u_1, \ldots, u_5\} \). By Lemma 2.9, there is a special vertex in \(X \). Therefore, \(f \) receives at least \(\frac{1}{6} \) from the special vertices in \(X \), and \(\mu'(f) \geq \mu(f) - \frac{1}{2} - 5 \times \frac{1}{3} + \frac{1}{6} = 0 \) by R3, R4 and R5.

- \(t_f = 0 \). Then \(f \) sends nothing to incident vertices, and \(\mu'(f) \geq \mu(f) - 6 \times \frac{1}{3} = 0 \).

If \(f \) is an internal 7+ face, then \(f \) sends out charges by R1 and R2. As \(t_f + s_f \leq d(f) \), we have

\[
\mu'(f) \geq \mu(f) - \frac{s_f}{3} - \frac{t_f}{2} \geq \frac{2}{3} d(f) - 4 - \frac{t_f}{6} \geq \frac{7}{12} d(f) - 4 > 0.
\]

This completes the proof of Case 1 of Theorem 1.1.

2.2 \(G \) has no subgraph isomorphic to any configuration in Fig. 1 and Fig. 3

Lemma 2.10 below follows easily from the fact that configurations in Fig. 1 and Fig. 3 are forbidden.

Lemma 2.10. If two 5-faces have two consecutive common edges on their boundaries, then one of the 5-face is the outer face \(f_0 \) (see Fig. 9).

Now we calculate the final charge of internal 5+ faces.

Assume \(f \) is an internal 6-face. If \(f \) is incident with a 2-vertex, then the 2-vertex belongs to \(\{x, y\} \), and \(f \) is adjacent to at most \(d - 2 \) internal faces. By R5, \(f \) receives \(\frac{1}{3} \) from each of \(x \) and \(y \). By R6, \(f \) receives \(\frac{1}{3} \) via each common edge with the outer face \(f_0 \). By R1 and R7, \(f \) sends at most \(\frac{1}{4} \) to each adjacent internal face. By R2,
By Lemma 2.4, $\mu'(f) \geq d - 4 + 2 \times \frac{1}{9} + 2 \times \frac{1}{9} - (d - 2) \times \frac{1}{3} - \lfloor \frac{d}{2} \rfloor \times \frac{1}{3} \geq \frac{5d - 24}{12} > 0$.

Assume that f is not incident with any 2-vertex. By Lemma 2.10, there are no adjacent internal 5-faces. By Lemma 2.4, f is adjacent to at most $d - t_f$ internal 5-faces.

d = 5. Assume that $f = [v_1v_2v_3v_4v_5]$. Since adjacent triangles and a triangle normally adjacent to a 7-cycle are forbidden, $s_f \leq 2$. By Corollary 2.5, $t_f \leq 2$. It follows that f is incident with at most two minor 3-vertices.

If $s_f = 0$, then $\mu'(f) \geq \mu(f) - 2 \times \frac{1}{3} = 0$ by R2.

Assume $s_f \geq 1$. Since Fig. 1 and Fig. 3(c) are forbidden, f is not adjacent to any 4-face. It follows that every face adjacent to f is a 3-face or a 6^+-face. Thus, f is adjacent to at least three 6^+-faces (the number of adjacent 6^+-faces is counted by the number of common edges). If f is incident with at most one minor 3-vertex, then $\mu'(f) \geq 5 - 4 - 2 \times \frac{1}{9} - (\frac{1}{3} + \frac{1}{3}) + 3 \times \frac{1}{6} - 2 \times \frac{1}{3} - 2 \times \frac{1}{3} = 0$ by R1, R2 and R7. Assume f is incident with exactly two minor 3-vertices. That is $t_f = 2$ and $s_f = 2$. By symmetry, we have three subcases to consider:

- f is adjacent to two internal 3-faces $[v_1v_2u_1]$, $[v_3v_4u_3]$, and v_1, v_3 are minor 3-vertices.
- f is adjacent to two internal 3-faces $[v_1v_2u_1]$, $[v_3v_4u_3]$, and v_1, v_4 are minor 3-vertices.
- f is adjacent to two internal 3-faces $[v_1v_2u_1]$, $[v_3v_4u_3]$, and v_1, v_3 are minor 3-vertices.

By Lemma 2.7 and Lemma 2.8, the two 3-faces are incident with at least one special vertex. By R3, R4 and R5, f receives at least $\frac{1}{6}$ from these special vertices. Hence, $\mu'(f) \geq 5 - 4 + \frac{1}{6} + 3 \times \frac{1}{6} - 2 \times \frac{1}{3} - 2 \times \frac{1}{3} = 0$.

d = 6. Assume that $f = [v_1v_2v_3v_4v_5]$. If $s_f = 0$, then it sends at most $\frac{1}{6}$ to each incident normal 3-vertex, and sends $\frac{1}{6}$ to each adjacent 5-face, thus $\mu'(f) \geq 6 - 4 - t_f \times \frac{1}{3} - (6 - t_f) \times \frac{1}{6} = 1 - \frac{t_f}{3} \geq 0$ by R2 and R7.

Suppose that f is adjacent to an internal 3-face. Then they are normally adjacent. Since the configurations in Fig. 1 and Fig. 3(c) are forbidden, $s_f = 1$. By Corollary 2.5, $t_f \leq 3$. If $t_f \leq 2$, then $\mu'(f) \geq 6 - 4 - \frac{1}{3} - t_f \times \frac{1}{6} - (6 - t_f) \times \frac{1}{6} = 2 \times \frac{t_f}{3} \geq 0$ by R1, R2 and R7.

Assume $t_f = 3$ and the 3-face is $[uv_1v_2]$. By Lemma 2.4, we may assume v_1, v_3 and v_5 are the three normal 3-vertices. By Lemma 2.7, there is a special vertex in $\{u, v_2\}$, thus f receives at least $\frac{1}{6}$ from $\{u, v_2\}$. Since the configurations in Fig. 1 and Fig. 3 are all forbidden, v_3 cannot be incident with an internal 4$^-$-face. Thus, f is incident with at most two minor 3-vertices, which implies that $\mu'(f) \geq 6 - 4 - (2 \times \frac{1}{3} + \frac{1}{6}) - \frac{1}{3} - (6 - 3) \times \frac{1}{6} + \frac{1}{3} = 0$.

d = 7. Let f be a 7-face. As Fig. 3(c) is forbidden, $s_f = 0$. By Corollary 2.5, $t_f \leq 3$. By R2, f sends at most $\frac{1}{6}$ to each incident normal 3-vertex. By R7, f sends $\frac{1}{6}$ to each adjacent internal 5-face. Hence, $\mu'(f) \geq 7 - 4 - t_f \times \frac{1}{6} - (7 - t_f) \times \frac{1}{6} = \frac{11 - 2t_f}{6} > 0$.

d \geq 8. Let f be a 8^+-face. Then f sends at most $\frac{1}{6}$ to each incident normal 3-vertex, and $\frac{1}{6}$ to each adjacent internal 3-face, and $\frac{1}{6}$ to each adjacent internal 5-face. Combining with Corollary 2.5, we have that

$$\mu'(f) \geq d - 4 - t_f \times \frac{1}{2} - s_f \times \frac{1}{3} - (d - s_f) \times \frac{1}{6} = \frac{5}{6}d - \frac{1}{2}t_f - \frac{1}{6}s_f - 4 \geq \frac{d}{2} - 4 \geq 0.$$

This completes the proof of Case 2.

2.3 $G \in \mathcal{G}_{4,9}$

Lemma 2.11. A 5-cycle contains at most three triangular edges.

Proof. Assume $[x_1x_2x_3x_4x_5]$ is a 5-cycle, and $[x_1x_2x_6],[x_2x_3x_7],[x_3x_4x_8]$ and $[x_4x_5x_9]$ are four triangles. Since there is no 4-cycle in G, x_1,x_2,\ldots,x_9 are nine distinct vertices. Thus, $[x_1x_6x_2x_7x_3x_8x_4x_9x_5]$ is a 9-cycle, a contradiction.

□
Lemma 2.12. Let $f = [x_1 x_2 x_3 x_4 x_5]$ and $g = [x_5 x_1 u v w]$ be two adjacent 5-faces. If $d(x_1) \geq 3$ and $d(x_5) \geq 3$, then f and g are normally adjacent, and neither $x_2 x_3$ nor $x_3 x_4$ is adjacent to a 3-face. Moreover, if $x_1 x_2$ is incident with a 3-face, then x_1 is a 3-vertex and the 3-face is $[x_1 x_2 u]$.

Proof. Since $d(x_1) \geq 3$ and $d(x_5) \geq 3$, we have that $x_2 \neq u$ and $x_4 \neq w$. Since G has no 4-cycle, $x_1, x_2, \ldots, x_5, u, v, w$ are distinct. Therefore, f and g are normally adjacent.

By the symmetry of $x_2 x_3$ and $x_3 x_4$, suppose that $x_2 x_3$ is incident with a 3-face $[x_2 x_3 x_7]$. Since there are no 4-cycles in G, x_7 is not incident with f or g. Thus, $[x_5 x_4 x_3 x_7 x_2 x_1 u v w]$ is a 9-cycle, a contradiction. Hence, neither $x_2 x_3$ nor $x_3 x_4$ is incident with a 3-face.

Let $x_1 x_2$ be incident with a 3-face $[x_1 x_2 x_6]$. Since f has no chord, $x_6 \notin \{x_3, x_4, x_5, v, w\}$. If $x_6 \neq u$, then $[x_5 x_4 x_3 x_2 x_6 x_1 u v w]$ is a 9-cycle, a contradiction. Thus $x_6 = u$ and x_1 is a 3-vertex.

Lemma 2.13. Let $f = [x_1 x_2 x_3 x_4 x_5]$ and $g = [x_5 x_1 u p q w]$ be two adjacent faces. If $d(x_1) \geq 3$ and $d(x_5) \geq 3$, then $\{u, w\} \cap \{x_1, \ldots, x_5\} = \emptyset$, while $\{p, q\} \cap \{x_2, x_3, x_4\} = \{p\}$ or $\{p, q\} \cap \{x_2, x_3, x_4\} = \{q\} = \{x_4\}$.

Proof. Since G has no 9-cycle, $\{x_2, x_3, x_4\} \cap \{u, p, q, w\} \neq \emptyset$. For $d(x_1) \geq 3$ and $d(x_5) \geq 3$, we have that $x_2 \neq u$ and $x_4 \neq w$. Note that there are no 4-cycles, it follows that $\{x_2, x_3, x_4\} \cap \{u, w\} = \emptyset$, $x_3 \notin \{p, q\}$, $x_4 \neq p$ and $x_2 \neq q$. Therefore, $\{p, q\} \cap \{x_2, x_4\} = \{p\} = \{x_2\}$ or $\{p, q\} \cap \{x_2, x_4\} = \{q\} = \{x_4\}$.

Lemma 2.14. Let $f = [x_1 x_2 x_3 x_4 x_5]$ be a 5-face adjacent to two 3-faces, that are either $[x_1 x_2 x_6]$ and $[x_2 x_3 x_7]$, or $[x_1 x_2 x_6]$ and $[x_3 x_4 x_8]$ (see Fig. 10(a) and Fig. 10(b)). If $d(x_1) = 3$, $d(x_5) \geq 3$ and $d(x_6) \geq 3$, and $x_3 x_1 x_6$ is incident with a 6-face g, then g is a 6-face $[x_5 x_1 x_6 u v w]$, where $\{u, w\} \cap \{x_1, x_2, \ldots, x_8\} = \emptyset$, $v = x_4$ and $d(x_4) \geq 4$ ($d(x_4) \geq 5$ for the case of Fig. 10(b)).

Proof. We only consider the case of Fig. 10(a) here, the case of Fig. 10(b) is quite similar. Suppose that $g = [x_5 x_1 x_6 u v w]$. Since $d(x_5) \geq 3$ and $d(x_6) \geq 3$, x_1, x_2, x_5, u are four distinct vertices, and x_1, x_4, x_5, w are four distinct vertices. As there is no 4-cycle in G, $x_1, x_2, \ldots, x_7, u, w$ are distinct. It follows that g must be a 5- or 6-face. If g is a 5-face, then $g = [x_5 x_1 x_6 u v w]$ and $[x_5 x_4 x_3 x_7 x_2 x_1 x_6 u v w]$ is a 9-cycle, a contradiction. Let $g = [x_5 x_1 x_6 u v w]$ be a 6-face. If $v \notin \{x_2, x_3, x_4\}$, then $[u v w x_5 x_4 x_3 x_2 x_1 x_6]$ is a 9-cycle, a contradiction. If $v = x_2$, then $[u x_6 x_1 x_2]$ is a 4-cycle, a contradiction. If $v = x_3$, then $[u x_6 x_2 x_3]$ is a 4-cycle, a contradiction. Hence, $v = x_4$ and $[x_3 x_5 x_6]$ is a triangle.

Lemma 2.15. Let $f = [x_1 x_2 x_3 x_4 x_5]$ be a 5-face adjacent to two 3-faces $[x_1 x_2 x_6]$ and $[x_3 x_4 x_8]$. If $d(x_2) = 3$, $d(x_3) \geq 4$ and $d(x_6) \geq 3$, then $x_3 x_2 x_6$ is incident with a 7-face.
Proof. Suppose that \(x_3x_2x_6 \) is incident with a face \(g = [x_3x_2x_6w \ldots w] \). Since \(d(x_3) \geq 4 \) and \(d(x_6) \geq 3 \), we have that \(x_2, x_3, x_4, x_8, w \) are five distinct vertices, and \(x_1, x_2, x_6, u \) are four distinct vertices. Since there are no 4-cycles, we have that \(x_1, x_2, \ldots, x_6, x_8, u, w \) are distinct. It follows that \(g \) must be a 5\(^{+}\)face. If \(g \) is a 5-face, then \(g = [x_3x_2x_6wu] \) and \([x_3x_8x_4x_5x_1x_2x_6uw] \) is a 9-cycle, a contradiction. Let \(g \) be a 6-face \([x_3x_2x_6uvw]\). If \(v \notin \{x_1, x_4, x_5\} \), then \([uwux_3x_4x_5x_1x_2x_6]\) is a 9-cycle, a contradiction. If \(v = x_1 \), then \([ux_6x_2x_1]\) is a 4-cycle, a contradiction. If \(v = x_4 \), then \([ux_3x_8x_4]\) is a 4-cycle, a contradiction. If \(v = x_5 \), then \([ux_6x_1x_5]\) is a 4-cycle, a contradiction. Therefore, \(x_3x_2x_6 \) is incident with a 7\(^{+}\)-face.

Lemma 2.16. Let \(f = [x_1x_2x_3 \ldots] \) be a 7\(^{+}\)-face. If \(x_2 \) is a normal 3-vertex, then at most one of \(x_1x_2 \) and \(x_2x_3 \) is incident with a good 5-face.

Proof. Suppose to the contrary that \(x_1x_2 \) is incident with a good 5-face \(g_1 = [x_1x_2v_3v_4v_5] \) and \(x_2x_3 \) is incident with a good 5-face \(g_2 = [x_3x_2v_4u_4u_5] \). Note that \(g_1 \) and \(g_2 \) are all internal faces. By Lemma 2.3, \(v_3 \) cannot be a 2-vertex. By Lemma 2.12, \(g_1 \) and \(g_2 \) are normally adjacent. Moreover, \(v_3 \) is a 3-vertex, and \(g_3 = [v_3v_4u_4] \) is an internal 3-face. It is observed that \(g_1, g_2, \) and \(g_3 \) are all internal faces. It follows that \(v_3 \) does not belong to \(\{x, y\} \), but this contradicts Lemma 2.4.

Let \(\tau(\rightarrow f) \) be the number of charges that \(f \) receives from other elements.

Claim 1. If \(f \) is an internal 5-face and \(s_f = 1 \), then \(\tau(\rightarrow f) \geq \frac{1}{3} \).

Proof. Let \(f = [v_1v_2v_3v_4v_5] \) be an internal 5-face, and let \([v_1v_2v_6]\) be an internal 3-face. Since \(f \) has no chord, \(v_1, v_2, \ldots, v_6 \) are six distinct vertices. If \(v_i \in \{x, y\} \) for any \(1 \leq i \leq 6 \), then \(v_i \) sends \(\frac{1}{3} \) to \(f \) by R5, we are done. Assume \([v_1, v_2, \ldots, v_6] \cap \{x, y\} = \emptyset \). By Lemma 2.3, \(d(v_i) \geq 3 \) for \(1 \leq i \leq 6 \).

Next, we show that \(f \) is adjacent to a special face. By the hypothesis, neither \(v_3v_4 \) nor \(v_4v_5 \) is incident with an internal 4\(^{-}\)-face. By Lemma 2.12, neither \(v_3v_4 \) nor \(v_4v_5 \) is incident with a 5-face. If \(v_3v_4 \) or \(v_4v_5 \) is incident with an internal 7\(^{+}\)-face or \(f_0 \), we are done. So we may assume that each of \(v_3v_4 \) and \(v_4v_5 \) is incident with an internal 6-face. By Lemma 2.13, \(v_3v_4 \) is incident with a 6-face \([v_3v_4uwv_2]\). If \([v_2v_3w]\) bounds a 3-face, then \(d(w) = 2 \) and \(v_2v_3 \) is incident with the outer face \([v_2v_3w]\), we are done. Hence, we can assume that \(v_2v_3 \) is not incident with a 3-face. By Lemma 2.12, \(v_2v_3 \) cannot be incident with a 5-face. Since there are no 9-cycles, \(v_2v_3 \) cannot be incident with a 6-face. Hence, \(v_2v_3 \) is incident with a 7\(^{+}\)-face. Therefore, \(f \) is adjacent to at least one specific face in any case. By R6 and R8, \(f \) receives \(\frac{1}{3} \) from each adjacent special face, thus \(\tau(\rightarrow f) \geq \frac{1}{3} \).

Claim 2. Let \(f \) be an internal 5-face and \(s_f = 2 \). If \(f \) is incident with one minor 3-vertex, then \(\tau(\rightarrow f) \geq \frac{1}{3} \).

Proof. Assume that \(f = [x_1x_2x_3x_4x_5] \). If \(x \) or \(y \) is incident with \(f \) or one of the adjacent 3-faces, then it sends at least \(\frac{1}{3} \) to \(f \) by R5. So we may assume that neither \(x \) nor \(y \) is incident with \(f \) or the adjacent 3-faces. Now we show that \(f \) is adjacent to at least one 7\(^{+}\)-face sending \(\frac{1}{3} \) to \(f \) by R6 and R8.

Case 1. Let \([x_1x_2x_6]\) and \([x_2x_3x_7]\) be internal 3-faces, and let \(x_1 \) be a minor 3-vertex. By Lemma 2.3 and Lemma 2.4, \(d(x_5) \geq 4 \) and \(d(x_6) \geq 4 \). By Lemma 2.14, if \(x_5x_1x_6 \) is incident with a 6\(^{-}\)-face, then \([x_4x_5w]\) is a triangle but it does not bound a 3-face, thus \(x_4x_5 \) is incident with a 7\(^{+}\)-face. Hence, either \(x_3x_1x_6 \) or \(x_4x_5 \) is incident with a 7\(^{+}\)-face.

Case 2. Let \([x_1x_2x_6]\) and \([x_3x_4x_8]\) be internal 3-faces, and let \(x_1 \) be a minor 3-vertex. By Lemma 2.3, Lemma 2.4 and Lemma 2.14, we also get that either \(x_3x_1x_6 \) or \(x_4x_5 \) is incident with a 7\(^{+}\)-face.

Case 3. Let \([x_1x_2x_6]\) and \([x_3x_4x_8]\) be internal 3-faces, and let \(x_2 \) be a minor 3-vertex. By Lemma 2.3 and Lemma 2.4, \(d(x_3) \geq 4 \) and \(d(x_8) \geq 4 \). By Lemma 2.15, \(x_2x_3 \) is incident with a 7\(^{+}\)-face.

Claim 3. Let \(f \) be an internal 5-face and \(s_f \geq 2 \). If \(f \) is incident with two minor 3-vertices, then \(\tau(\rightarrow f) \geq 1 \).
Lemma 2.12, Lemma 2.14, neither vertex in
assume that g_i for $i \in \{1, 2, 3, 4, 5\}$.

Proof. Assume $f = [x_1x_2x_3x_4x_5]$. If x_i is a 2-vertex, then $x_i \in \{x, y\}$ and x_{i-1}, x_{i+1} is incident with the outer face f_0. By R5, f receives $\frac{1}{3}$ from each of x and y. By R6, f receives $\frac{1}{3}$ via each of x_i-1, x_{i+1}. Thus, $\tau(\rightarrow f) \geq 2 \times \frac{1}{3} + 2 \times \frac{1}{3} > 1$. So we may assume that $d(x_i) \geq 3$ for any $1 \leq i \leq 5$. Denote the adjacent face incident with x_ix_{i+1} by g_i.

Case 1. Let $[x_1x_2x_6]$ and $[x_2x_3x_7]$ be internal 3-faces, and let x_1 and x_3 be minor 3-vertices. Suppose that x_6 is a 2-vertex. It follows that $\{x_2, x_6\} = \{x, y\}$ and $g_5 = f_0$. By R5, f receives $\frac{1}{3}$ from each of x_2 and x_6. By R6, f receives at least $\frac{1}{3}$ from the outer face f_0. Thus, $\tau(\rightarrow f) \geq 3 \times \frac{1}{3} = 1$.

So we may assume that $d(x_6) \geq 3$, and by symmetry, $d(x_7) \geq 3$. Firstly, we claim that f receives at least $\frac{1}{3}$ from $\{x_2, x_6, x_7\}$. If x_2 is a special vertex, then f receives $\frac{1}{3}$ from x_2 by R3, R4 and R5. So we may assume that x_2 is a normal 4-vertex. It follows from Lemma 2.7 that both x_6 and x_7 are special vertices. By R3, R4 and R5, f receives at least $\frac{1}{6} \times 2 = \frac{1}{3}$ from x_6 and x_7.

Next, we show that f is adjacent to at least two special faces. Since f receives at least $2 \times \frac{1}{3} = \frac{2}{3}$ from adjacent special faces by R6 and R8, we are done. By Lemma 2.14, we get that both g_3 and g_4 are 6+-faces, and g_3, g_5 cannot be 6-face simultaneously. If both g_3 and g_5 are 7+-faces, then we are done. By symmetry, assume that g_5 is a 6-face and g_3 is a 7+-face. It follows that g_4 is the outer 3-face or a 7+-face. That is, g_3 and g_4 are the special faces, we are done.

Case 2. Let $[x_1x_2x_6]$ and $[x_3x_4x_8]$ be internal 3-faces, and let x_1 and x_4 be minor 3-vertices. Similar to Case 1, we may assume that $d(x_6) \geq 3$ and $d(x_8) \geq 3$. Note that x_1 and x_4 are 3-vertices. Since there are no 4-cycles, neither g_1 nor g_5 is a 4-vertex. By Lemma 2.12, neither g_4 nor g_5 is a 5-face. By Lemma 2.13 and Lemma 2.14, neither g_1 nor g_5 is a 6-face. So both g_4 and g_5 are 7+-faces. Thus, f receives at least $\frac{1}{3} \times 2 = \frac{2}{3}$ from these 7+-faces. Next we show that f will receive at least $\frac{1}{3}$ from others.

If g_2 is a 7+-face, then we are done. By Lemma 2.13, g_2 cannot be a 6-face. Assume g_2 is a 5-face. By Lemma 2.12, $d(x_2) = d(x_3) = 3$. By Lemma 2.4, we have that $\{x_2, x_3\} = \{x, y\}$. By R5, f receives $\frac{1}{3}$ from each of x_2 and x_3, we are done. It is clear that g_2 cannot be a 4-face. Suppose that g_2 is a 3-face $[x_2x_3x_7]$. If there is one special vertex in $\{x_2, x_3\}$, then we are done by R3, R4 and R5. So we may assume that both x_2 and x_3 are normal 4-vertices. By Lemma 2.7 and Lemma 2.8, at least two of x_6, x_7 and x_8 are special vertices, thus f receives at least $2 \times \frac{1}{6} = \frac{1}{3}$ from these special vertices, we are done.

Case 3. Let $[x_1x_2x_6]$ and $[x_3x_4x_8]$ be internal 3-faces, and let x_1 and x_3 be minor 3-vertices. Similar to Case 1, assume $d(x_6) \geq 3$ and $d(x_8) \geq 3$. By Lemma 2.7, one of $\{x_2, x_6\}$ is a special vertex. By R3, R4 and R5, f receives at least $\frac{1}{3}$ from $\{x_2, x_6\}$.

Since there are no 4-cycles, we have that g_2 cannot be a 4-vertex. Suppose that g_2 is a 5-face. By Lemma 2.12, we have that $d(x_2) = d(x_3) = 3$. By Lemma 2.4, x_2 belongs to $\{x, y\}$. As a consequence, $\{x, y\} \subseteq \{x, y\}$ and g_2 is the outer face f_0. By R5 and R6, $\tau(\rightarrow f) \geq 2 \times \frac{1}{3} + \frac{1}{3} = 1$, we are done. By Lemma 2.13, g_2 cannot be a 6-face. Thus, we may assume that g_2 is a 7+-face. By R8, f receives $\frac{1}{3}$ from g_2.

Next we show that f receives at least $\frac{1}{3}$ from others. By Lemma 2.12 and Lemma 2.13, g_4 cannot be a 5- or 6-face. Thus, g_4 is a 3- or 7+-face. Suppose that g_4 is a 3-face $[x_4x_5x_9]$. If x_9 is a 2-vertex, then $\{x, y\} \subseteq \{x, y\}$, and then f receives at least $2 \times \frac{1}{3} = \frac{1}{3}$ from x and y by R5. So we may assume that $d(x_9) \geq 3$. By Lemma 2.12 and Lemma 2.13, g_5 is a 7+-face sending $\frac{1}{3}$ to f. By Lemma 2.7, there is a special vertex in $\{x_4, x_5, x_8, x_9\}$ sending at least $\frac{1}{3}$ to f. Thus, f receives at least $\frac{1}{3} + \frac{1}{3} = \frac{1}{3}$ from g_5 and the special vertex. Suppose that g_4 is a 7+-face. If g_5 is also a 7+-face, then f receives at least $2 \times \frac{1}{3} = \frac{1}{3}$ from g_4 and g_5, we are done. So we may assume that g_5 is a 6-vertex. By Lemma 2.14, $d(x_4) \geq 5$. By R3, R4 and R5, f receives at least $\frac{1}{6}$ from x_4. Therefore, f still receives at least $\frac{1}{6} + \frac{1}{3} = \frac{1}{3}$ from g_4 and x_4.

Claim 4. Let f be an internal 5-face and $s_f = 2$. If $t_f = 2$, and exactly one of the two normal 3-vertices is minor, then $\tau(\rightarrow f) \geq \frac{1}{2}$.

13
Proof. Assume \(f = [x_1x_2x_3x_4x_5] \). By the definition of normal 3-vertex and minor 3-vertex, we only need to consider two cases.

Case 1. Let \([x_1x_2x_6]\) and \([x_2x_3x_7]\) be internal 3-faces, and let \(x_1 \) and \(x_4 \) be normal 3-vertices. If \(x_5 \) or \(x_6 \) is a 2-vertex, then \(x_5 \) or \(x_6 \) belongs to \(\{x, y\} \). It follows that \(x_1x_5 \) is incident with the outer face \(f_0 \). By R5, \(f \) receives at least \(\frac{1}{3} \) from \(\{x, y\} \). By R6, \(f \) receives \(\frac{1}{3} \) from the outer face \(f_0 \). Thus, \(\tau(\rightarrow f) \geq 2 \times \frac{1}{3} = \frac{2}{3} \).

So we may assume that \(d(x_5) \geq 3 \) and \(d(x_6) \geq 3 \). Note that \(x_4 \) is a 3-vertex. By Lemma 2.14, \(x_1x_5 \) cannot be incident with a 6-face. That is, \(x_1x_5 \) is incident with a 7+ face which sends \(\frac{1}{3} \) to \(f \). On the other hand, by Lemma 2.7, one vertex in \(\{x_2, x_3, x_6, x_7\} \) is a special vertex which sends at least \(\frac{1}{6} \) to \(f \). Thus, \(\tau(\rightarrow f) \geq \frac{1}{3} + \frac{1}{6} = \frac{1}{2} \).

Case 2. Let \([x_1x_2x_6]\) and \([x_3x_4x_8]\) be internal 3-faces, and let \(x_2 \) and \(x_5 \) be normal 3-vertices. If \(x_6 \) is a 2-vertex, then \(x_6 \in \{x, y\} \). Since \(x_2 \) is a normal vertex, \(\{x, y\} = \{x_1, x_6\} \). Thus, \(f \) receives \(\frac{1}{3} \) from each of \(x_1 \) and \(x_6 \) by R5, and thus \(\tau(\rightarrow f) \geq \frac{1}{4} + \frac{1}{4} \geq \frac{1}{2} \). Assume \(d(x_6) \geq 3 \). By Lemma 2.7, at least one of \(x_1 \) and \(x_6 \) is a special vertex. By R3, R4 and R5, \(f \) receives at least \(\frac{1}{3} \) from these special vertices. If \(x_3 \) is a 3-vertex, then \(x_3 \in \{x, y\} \) by Lemma 2.4. By R5, \(f \) receives \(\frac{1}{3} \) from \(x_3 \). Thus, \(\tau(\rightarrow f) \geq \frac{1}{3} + \frac{1}{3} = \frac{1}{2} \).

So we may assume that \(d(x_3) \geq 4 \). By Lemma 2.15, \(x_2x_3 \) is incident with a 7+ face. By R8, \(f \) receives \(\frac{1}{3} \) from each adjacent 7+ face. Thus, \(\tau(\rightarrow f) \geq \frac{1}{6} + \frac{1}{3} = \frac{1}{2} \). \(\Box \)

Claim 5. If \(f \) is an internal 5-face and \(s_f = 3 \), then \(\tau(\rightarrow f) \geq \frac{4}{5} \).

Proof. Assume \(f = [x_1x_2x_3x_4x_5] \). According to symmetry, we only need to consider two cases.

Case 1. Let \([x_1x_2x_6], [x_2x_3x_7] \) and \([x_4x_5x_9] \) be internal 3-faces. Assume \(d(x_6) = 2 \). By Lemma 2.4, \(\{x, y\} = \{x_1, x_6\} \) or \(\{x, y\} = \{x_2, x_6\} \). By R5, \(f \) receives \(\frac{1}{4} \) from each of \(x \) and \(y \), thus \(\tau(\rightarrow f) \geq 2 \times \frac{1}{4} = \frac{1}{2} \).

So we may assume that \(d(x_6) \geq 3 \). Similarly, we can assume that \(d(x_7) \geq 3 \) and \(d(x_9) \geq 3 \). It is clear that neither \(x_1x_5 \) nor \(x_3x_4 \) is incident with a 4-face. By Lemma 2.12, neither \(x_1x_5 \) nor \(x_3x_4 \) is incident with a 5-face. By Lemma 2.13, neither \(x_1x_5 \) nor \(x_3x_4 \) is incident with a 6-face. Hence, \(f \) is adjacent to two 7+ faces. By R6 and R8, \(\tau(\rightarrow f) \geq 2 \times \frac{1}{4} = \frac{2}{3} \).

Case 2. Let \([x_1x_2x_6], [x_2x_3x_7] \) and \([x_3x_4x_8] \) be internal 3-faces. If \(d(x_i) = 2 \) for \(i \in \{5, 6, 7, 8, \} \), then \(x_i \in \{x, y\} \) by Lemma 2.3. Since \(x \) and \(y \) are adjacent, we have that \(\{x, y\} \subset \{x_1, x_2, \ldots, x_8\} \). By R5, \(f \) receives \(\frac{1}{4} \) from each of \(x \) and \(y \), thus \(\tau(\rightarrow f) \geq 2 \times \frac{1}{4} = \frac{1}{2} \).

So we may assume that \(x_3, x_6, x_7 \) and \(x_8 \) are all 3+ vertices. It is clear that neither \(x_4x_5 \) nor \(x_1x_5 \) is contained in a 4-face. By Lemma 2.12, neither \(x_1x_5 \) nor \(x_3x_4 \) is incident with a 5-face. Recall that \(x_6 \) is a 3+ vertex and \(x_4x_5 \) is not contained in a triangle. By Lemma 2.13, \(x_1x_5 \) cannot be incident with a 6-face. Hence, \(x_1x_5 \) is incident with a 7+ face. By symmetry, \(x_4x_5 \) is also incident with a 7+ face. By R6 and R8, \(\tau(\rightarrow f) \geq 2 \times \frac{1}{3} = \frac{2}{3} \). \(\Box \)

Now we calculate the final charge of internal 5+ faces. Let \(f = [v_1v_2 \ldots v_d] \) be an internal d-face for \(d \geq 5 \). By Lemma 2.2, every face in \(\mathcal{G} \) is bounded by a cycle. Since there are no 9-cycles, \(d \neq 9 \).

If \(v_i \) is a 2-vertex, then \(v_i \in \{x, y\} \) and \(v_{i-1}v_iv_{i+1} \) is incident with the outer face \(f_0 \). Thus, \(f \) is adjacent to at most \(d-2 \) internal faces. By Corollary 2.5, \(t_f \leq \frac{d}{2} \). By R1 and R8, \(f \) sends at most \(\frac{1}{2} \) to each adjacent internal face. By R2, \(f \) sends at most \(\frac{1}{3} \) to each incident normal 3-vertex. By R5, \(f \) receives \(\frac{1}{3} \) from each of \(x \) and \(y \). By R6, \(f \) receives \(\frac{1}{3} \) via each of \(v_{i-1}v_i \) and \(v_iv_{i+1} \). Hence, \(\mu'(f) \geq d-4+4 \times \frac{1}{3}-(d-2) \times \frac{1}{3} \approx \frac{d}{2} \times \frac{1}{2} > 0 \).

So we may assume that there is no 2-vertex incident with \(f \).

• \(d = 5 \).

By Corollary 2.5 and Lemma 2.11, \(t_f \leq 2 \) and \(s_f \leq 3 \). If \(s_f = 0 \), then \(\mu'(f) \geq 5-4-2 \times \frac{1}{3} = \frac{2}{3} > 0 \) by R2.

If \(s_f = 1 \), then \(f \) is incident with at most one minor 3-vertex. By Claim 1, R1 and R2, \(\mu'(f) \geq 5-4+\frac{1}{3} - \frac{1}{3} (\frac{1}{2} + \frac{1}{2}) = 0 \).

Assume \(s_f = 2 \). If \(t_f = 0 \), then \(\mu'(f) \geq 5-4-2 \times \frac{1}{3} = \frac{1}{3} > 0 \) by R1. Let \(t_f = 1 \). If the normal 3-vertex is not minor, then \(\mu'(f) \geq 5-4-2 \times \frac{1}{3} = \frac{1}{3} > 0 \) by R1 and R2. If the normal 3-vertex is
minor, then $\mu'(f) \geq 5 - 4 + \frac{1}{3} - 2 \times \frac{1}{3} - \frac{1}{2} > 0$ by Claim 2, R1 and R2. Let $t_f = 2$. It is observed that f is incident with at least one minor 3-vertex. If f is incident with exactly one minor 3-vertex, then $\mu'(f) \geq 5 - 4 + \frac{1}{2} - 2 \times \frac{1}{2} - (\frac{1}{2} + \frac{1}{3}) = 0$ by Claim 4, R1 and R2. The other situation, f is incident with exactly two minor 3-vertices. Thus, $\mu'(f) \geq 5 - 4 + 1 - 2 \times \frac{1}{3} - 2 \times \frac{1}{2} - \frac{1}{2} > 0$ by Claim 3, R1 and R2.

Assume $s_f = 3$. If $t_f = 0$, then $\mu'(f) \geq 5 - 4 - 3 \times \frac{1}{3} = 0$ by R1. If $t_f = 1$, then $\mu'(f) \geq 5 - 4 + \frac{2}{3} - 3 \times \frac{1}{3} - \frac{1}{2} > 0$ by Claim 5, R1 and R2. If $t_f = 2$, then it is incident with two minor 3-vertices, and then $\mu'(f) \geq 5 - 4 + 1 - 3 \times \frac{1}{3} - 2 \times \frac{1}{2} = 0$ by Claim 3, R1 and R2.

• $d = 6$.

Note that there are no 4-cycle in G. If f is adjacent to a 3-face, then it must be normally adjacent to the 3-face. Since there are no 9-cycles in G, f is adjacent to at most two 3-faces. It follows that f is incident with at most two minor 3-vertices. By R1 and R2, $\mu'(f) \geq 6 - 4 - 2 \times \frac{1}{3} - (2 \times \frac{1}{2} + \frac{1}{3}) = 0$.

• $d = 7$.

If f is adjacent to a 3-face, then it must be normally adjacent to the 3-face. Otherwise, there is a 4-cycle in G. Since there are no 9-cycles in G, f is adjacent to at most 3-face. It follows that f is incident with at most one minor 3-vertex. By Corollary 2.5, $t_f \leq 3$. If $t_f = 3$, then f is adjacent to at most four good 5-faces by Lemma 2.4 and Lemma 2.16, and then $\mu'(f) \geq 7 - 4 - (1 + 4) \times \frac{1}{3} - (\frac{1}{2} + 2 \times \frac{1}{3}) > 0$ by R1, R2 and R8. If $t_f = 2$, then f is adjacent to at most five good 5-faces by Lemma 2.4 and Lemma 2.16, and then $\mu'(f) \geq 7 - 4 - (1 + 5) \times \frac{1}{3} - (\frac{1}{2} + \frac{1}{3}) > 0$ by R1, R2 and R8. If $t_f = 1$, then f is adjacent to at most six good 5-faces by Lemma 2.4 and Lemma 2.16, and then $\mu'(f) \geq 7 - 4 - (1 + 6) \times \frac{1}{3} - \frac{1}{2} > 0$ by R1, R2 and R8. If $t_f = 0$, then $\mu'(f) \geq 7 - 4 - 7 \times \frac{1}{3} > 0$ by R1 and R8.

• $d = 8$.

Similar to the above cases, if f is adjacent to a 3-face, then it must be normally adjacent to the 3-face. Since there are no 9-cycles, f is not adjacent to any 3-face. Thus, f is not incident with any minor 3-vertex. By R2 and R8, $\mu'(f) \geq 8 - 4 - 4 \times \frac{1}{3} - 4 \times \frac{1}{3} = 0$.

• $d \geq 10$.

By R1 and R8, f sends at most $\frac{1}{3}$ via each incident edge. It follows that $\mu'(f) \geq d - 4 - d \times \frac{1}{3} - \frac{1}{2} \times \frac{1}{2} > 0$.

This completes the proof of Theorem 2.1.

References

[1] E.-K. Cho, I. Choi, R. Kim, B. Park, T. Shan and X. Zhu, Decomposing planar graphs into graphs with degree restrictions, J. Graph Theory 101 (2) (2022) 165–181.

[2] L. J. Cowen, R. H. Cowen and D. R. Woodall, Defective colorings of graphs in surfaces: partitions into subgraphs of bounded valency, J. Graph Theory 10 (2) (1986) 187–195.

[3] W. Cushing and H. A. Kierstead, Planar graphs are 1-relaxed, 4-choosable, European J. Combin. 31 (5) (2010) 1385–1397.

[4] W. Dong and B. Xu, A note on list improper coloring of plane graphs, Discrete Appl. Math. 157 (2) (2009) 433–436.

[5] Z. Dvořák and L. Postle, Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8, J. Combin. Theory Ser. B 129 (2018) 38–54.

[6] N. Eaton and T. Hull, Defective list colorings of planar graphs, Bull. Inst. Combin. Appl. 25 (1999) 79–87.
[7] J. Grytczuk and X. Zhu, The Alon-Tarsi number of a planar graph minus a matching, J. Combin. Theory Ser. B 145 (2020) 511–520.

[8] R. Kim, S.-J. Kim and X. Zhu, The Alon-Tarsi number of subgraphs of a planar graph, arXiv:1906.01506, http://arxiv.org/abs/1906.01506v1.

[9] S.-J. Kim, A. V. Kostochka, X. Li and X. Zhu, On-line DP-coloring of graphs, Discrete Appl. Math. 285 (2020) 443–453.

[10] K.-W. Lih, Z. Song, W. Wang and K. Zhang, A note on list improper coloring planar graphs, Appl. Math. Lett. 14 (3) (2001) 269–273.

[11] H. Lu and X. Zhu, The Alon-Tarsi number of planar graphs without cycles of lengths 4 and \(l \), Discrete Math. 343 (5) (2020) 111797.

[12] R. Škrekovski, List improper colourings of planar graphs, Combin. Probab. Comput. 8 (3) (1999) 293–299.