Abstract: The crude ethanolic extract of the seeds of *Hyptis suaveolens* was evaluated for its analgesic, antidiarrhoeal and cytotoxic activities. The extract significantly and dose dependently inhibited the acetic acid induced writhing in mice (69.7%, *P* < 0.001 and 60.6%, *P* < 0.001 for 500 and 250 mg/kg body weight, respectively), comparable to the standard drug diclofenac sodium. The extract also decreased the frequency of defecation and increased mean latent period significantly (*P* < 0.05) at the doses of 250 and 500 mg/kg body weight respectively compared with the control group. Moreover, it displayed considerable general toxicity towards brine shrimps. The LC$_{50}$ value of the extract was 80 µg/ml which was comparable to that of standard drug chloramphenicol (43 µg/ml). All the results tend to justify the traditional uses of the seeds of *Hyptis suaveolens*.

Keywords: *Hyptis suaveolens*, analgesic activity, antidiarrhoeal activity, cytotoxic activity

Introduction

Hyptis suaveolens (Family- Labiatae) locally known as Tokma, Ganja Tulsi, Bilati Tulsi, etc. is an annual herb grows in Southeast Asia, Western Australia, Northern Territory, Queensland, alien to Western Australia. In Bangladesh, it grows in all parts of the country especially in Jessore, Khulna, Bogra and Lakshimpur (Ghani, 2003). The plant is used as emetic, tonic, diuretic, and for pains in the joints. Flowers are used for treating lumbago, neuralgia, burns scalds. The flavonoids and anthraquinones isolated from the petals possess marked antibiotic activity against some pathogenic fungi and bacteria and show anti-anaphylactic effects. Powdered seeds are given in difficult labour. Ethanolic extract of the plant is reported to possess anticancer and wound healing properties (Ghani, 2003; Shirwaikar et al., 2003). Literature review revealed that the leaves of *H. suaveolens* contain α-Pinene, β-pinene α-terpinene, sabinene, p-cymene and terpinen-4-ol, 1,8-cineole (Eshilokun et al., 2003). The objective of our present study was to investigate the analgesic, antidiarrhoeal and cytotoxic activities of the ethanolic extract of seeds of *H. suaveolens*.

Materials and Method

Plant material collection and extraction: The seeds of *H. suaveolens* were collected from Khulna, Bangladesh and were identified by the experts at Bangladesh National Herbarium, Mirpur, Dhaka (Accession No. DACB- 33879). About 100 gm of powered material was taken in a clean, flat bottomed glass container and drenched in 500 ml of 90% ethanol. The container with
its contents was sealed and kept for a period of 7 days accompanying occasional shaking and stirring. The whole mixture then underwent a coarse filtration by a piece of clean, white cotton material. The filtrate thus obtained was evaporated in open air to get a viscous mass. The viscous mass was then dried to get crude ethanolic extract (yield: 10% w/w). The extract thus obtained was used for experimental purposes.

Drugs: Diclofenac sodium (Drug International Ltd.), Loperamide (Drug International Ltd.) and Chloramphenicol (Square Pharmaceuticals Ltd.).

Preliminary phytochemical screening: The ethanolic extract of the seeds was subjected to preliminary phytochemical test for the detection of major chemical groups. In each test 10% (w/v) solution of extract in ethanol was taken unless otherwise mentioned in individual test (Evans, 1989; Wagner et al., 1984, Ghani, 2003).

Animals: The experimental animals, Swiss-albino mice of either sex (weighing 20-25 g) were purchased from the Animal Research Branch of the International Centre for Diarrhoeal Disease and Research, Bangladesh (ICDDR, B). The animals were kept at animal house (Pharmacy Discipline, Khulna University) for adaptation after their purchase under standard laboratory conditions (relative humidity 55-65%, room temperature 21.0 ± 2.0 °C and 12 h light/dark cycle) and fed with standard diets and had free access to tap water.

Analgesic activity: Analgesic activity of the ethanolic extract of the seeds of *H. suaveolens* was tested using the model of acetic acid induced writhing in mice (Whittle, 1964; Ahmed et al., 2004). Experimental animals were randomly selected and divided into four groups denoted as group-I, group-II, group-III, group- IV consisting of 5 mice in each group. Group I was treated as ‘control group’ which received 1% (v/v) Tween-80 in water at a dose of 10 mg/kg of body weight; group II was treated as ‘positive control’ and given the standard drug diclofenac sodium at a dose of 25mg/kg of body weight; group III and group IV were test groups and treated with the extract at the doses of 250 and 500 mg/kg of body weight respectively. Control vehicle, standard drug and extract were administered orally, 30 minutes prior to acetic acid (0.7%) intraperitoneal injection. After an interval of 5 minutes, the number of wriths (squirms) was counted for 15 minutes.

Antidiarrhoeal Activity: Antidiarrhoeal activity of *H. suaveolens* was tested by using the model of castor oil induced diarrhoea in mice (Chatterjee, 1993). The mice were all screened initially by giving 0.5 ml of castor oil and only those showing diarrhoea were selected for the final experiment. The test animals were randomly chosen and divided into three groups having five mice in each. Group-I was kept as ‘control’ and received only distilled water containing 1% Tween-80; group-II was treated as 'positive control' and received standard antimotility drug loperamide at a dose of 50 mg/ kg; group III was 'test group' and treated with EtOH extract at the dose of 500 mg/kg. Control vehicle, standard drug and the extract were administered orally, 1 h prior to the oral administration of castor oil at a dose of 0.5 ml per mouse. Individual animals of each group were placed in separate cages having absorbent paper beneath and examined for the presence of diarrhoea every hour in 5 h study after the castor oil administration. Number of stools or any fluid material that stained the absorbent paper was counted at each successive hour during the experiment (5 h). The latent period of each mouse was also counted. At the beginning of each hour new papers were placed for the old ones.

Cytotoxic activity: The method of Meyer et al. (1982) with some modifications was adapted to study the general toxicity of seeds of *H. suaveolens*. The brine shrimp eggs were hatched in a conical flask containing brine shrimp medium (300 ml). The flasks were well aerated with the aid of an air pump, and kept in a water bath at 29 – 30 °C. A bright light was left on. The nauplii hatched within 48 h. The extract was dissolved in brine shrimp medium with addition of few drops of 5% DMSO to obtain a concentration of 5, 10, 20, 40, 80 and 160 µg/ml. Each preparation was dispensed into clean test tubes in 10 ml volumes and tested in duplicates. For
control, same procedure was followed except test samples. A series of the same concentration as of the sample was prepared for positive control, chloramphenicol (Rahman et al., 2007). After marking the test tubes properly, 10 living shrimps were added to each of the test tubes with the help of a Pasteur pipette. The test tubes containing the sample, control and positive control were then incubated at 29°C for 24 h in a water bath, after which each tube was examined and the surviving brine shrimps counted and recorded. From this, the percentage of mortality was calculated at each concentration. The LC50 values were calculated with best fit line by using Microsof Excel 2007.

Results

Preliminary phytochemical screening: Phytochemical studies showed the presence of alkaloids, glycoside, tannins, saponins & flavonoids in the extract (Table 1).

Table 1. Results of preliminary phytochemical analysis

Plant Extract	Alkaloids	Glycosides	Steroids	Gums	Tannins	Saponins	Flavonoids
Ethanolic extract of H. suaveolens	+	+	-	-	+	+	+

+ = Presence - = Absence

Analgesic activity: Table 2 showed the effect of the ethanolic extract of H. suaveolens on acetic acid-induced writhing model in mice. It produced about 60% and 69% (P<0.001) writhing inhibition at dose of 250 and 500 mg/kg respectively, which was comparable to the standard drug diclofenac sodium where the inhibition was about 80% (P<0.001) at the dose of 25 mg/kg.

Table 2. Effect of H. suaveolens on acitic acid induced writhing in mice

Animal Group	Treatment	Writhing Count (% Writhing)	% Writhing Inhibition
Group I n=5	1% tween-80 solution in water	13.2 ± 0.59* (100)	0
Group II n=5	Diclofenac sodium 25mg/kg	2.6 ± 0.51* (19.70)	80.30
Group III n=5	Et. Extract (250mg/kg)	5.2 ± 0.37* (39.40)	60.60
Group IV n=5	Et. Extract (500mg/kg)	4.0 ± 0.59* (30.30)	69.70

Values are expressed as mean±SEM, SEM=Standard error of Mean, n=No. of mice, Et=Ethanolic, *P < 0.001 vs. control
Antidiarrhoeal Activity: Antidiarrhoeal activity of the ethanolic extract of *H. suaveolens* was tested by castor oil induced diarrhoea in mice. It caused an increase in latent period (1.58 h) i.e. delayed the onset of diarrhoeal episode at the dose of 500 mg/kg body weight significantly (*P*<0.05) which was comparable to the standard drug loperamide at the dose of 50 mg/kg body weight in which the value was 1.57 h (*P*<0.05) (Table 3a). The extract also decreased the frequency of defecation at the same dose where the mean numbers of stool at the 1*st*, 2*nd*, 3*rd*, 4*th* and 5*th* h of study were 0.6, 1.2, 1.4, 0.6 and 0.4 respectively and in standard drug the values were 0.4, 1.6, 2.2, 0.8 and 0.4 respectively (Table 3b).

Table 3a. Effect of *H. suaveolens* on castor oil induced diarrhoea in mice (Latent period)

Animal Group/Treatment	Dose (/kg, p.o.)	Latent period (h)	
Group-I (Control)	10 ml	0.766±0.128	
(1% tween-80 solution in water)			
Group-II (Positive control)	Loperamide.	50 mg	1.57±0.191*
Group-III Et. Extract	500 mg	1.58±0.330*	

Values are expressed as mean ± SEM (n=5); * indicates *P*<0.05 vs. control; Et., ethanol p.o., per oral.

Table 3b. Effect of *H. suaveolens* on castor oil induced diarrhoea in mice (Number of stools)

Animal Group/Treatment	Dose (/kg, p.o.)	Period of study (h)	Total number of stool
Group-I (Control)	10 ml	1	1.8±0.374
(1% tween-80 solution in water)			
Group-II (Positive control)	Loperamide	50 mg	2.8±0.800
Group-III Et. Extract	500 mg	3	3.0±0.447

Values are expressed as mean ± SEM (n=5); * indicates *P*<0.05 vs. control; Et., ethanol p.o., per oral.
Islam, M.A., Parvin, S., Rahman, M. M., Ahmed, M.I., Biswas, N.N., Karmakar, U.K. and Naher, K. 2010. Phytochemical and biological investigation of seeds of Hyptis suaveolens. Khulna University Studies 10 (1&2): 185-190

Cytotoxic activity: Table 4 illustrated the results of activity of the extract against brine shrimp nauplii. The LC_{50} of the test sample and standard drug chloramphenicol were found to 80 µg/ml and 43 µg/ml, respectively.

Test Sample	Conc. of test sample (µg/ml)	No. of alive shrimps	% mortality	LC$_{50}$ (µg/ml)
Ethanolic extract of HS	5	10	0	
	10	9	10	
	20	8	20	
	40	7	30	80
	80	5	50	
	160	0	100	
Chloramphenicol	5	9	10	
	10	7	30	
	20	6	40	
	40	4	60	43
	80	1	90	
	160	0	100	

Discussion

Analgesic activity of the ethanol extract of *H. suaveolens* was tested by acetic acid induced writhing model in mice. Acetic acid induced writhing model represents pain sensation by triggering localized inflammatory response. Acetic acid, which is used to induce writhing, causes algesia by liberation of endogenous substances, which in turn excite the pain nerve endings (Taesotikul et al., 2003). Increased levels of PGE$_2$ and PGF$_{2α}$ in the peritoneal fluid have been reported to be responsible for pain sensation caused by intraperitoneal administration of acetic acid (Derardt et al., 1980). The ethanol extract of seeds of *H. suaveolens* produced significant writhing inhibition comparable to the standard drug diclofenac sodium. On the basis of this result it can be concluded that the ethanol extract of *H. suaveolens* possesses analgesic activity.

Preliminary phytochemical screening showed the presence of various classes of constituents, such as alkaloids, glycoside, tannins, saponins and flavonoids. Since several flavonoids and tannins isolated from medicinal plants have been discovered for their significant antinociceptive and/or anti-inflammatory activity (Pathak et al., 1991; Bittar et al., 2000; Duke, 1992), it is, therefore, possible that the antinociceptive effects observed with this extract in the present study may be attributing to its flavonoids and tannins component.

Antidiarrhoeal activity of the ethanol extract of *H. suaveolens* was tested by using the model of castor oil induced diarrhoea in mice. Castor oil, which is used to induce diarrhoea in mice, mixes with bile and pancreatic enzymes and liberates ricinoleic acid from the triglycerides upon oral administration. Most of the ricinoleic acid remains in the intestine and produces its anti absorptive or secretory effect. The ricinoleic acid thus liberated readily forms ricinoleate salts with sodium and potassium in the lumen of the intestine. The salt formed as such behaves like a soap or surfactant within the gut and at the mucosal surface. Most agreed view is that ricinoleate salts stimulates the intestinal epithelial cell’s adeny cyclase (Racusen et al., 1979) or release prostaglandin (Beubler et al., 1979). The extract caused an increase in latent period (1.58 h) i.e. delayed the onset of diarrhoeal episode and decreased the frequency of defecation as well as the number of stool. On the basis of the result of castor oil induced diarrhoea, it can be concluded that the ethanol extract of *H. suaveolens* possesses antidiarrhoeal activity.

The brine shrimp lethality bioassay can be recommended as a guide for the detection and evaluation of pharmacological activities such as antimicrobial, pesticidal, antitumor, etc. of the
The authors are grateful for the activity.

and suggests for further investigation and isolation of biologically active constituents responsible for the activity.

Conclusion

The results obtained in this study indicate that the ethanolic extract of *H. suaveolens* possess considerable analgesic, antidiarrhoeal and cytotoxic activity at the investigated doses on the experimental laboratory animal. This could provide a rationale for traditional uses of this plant and suggests for further investigation and isolation of biologically active constituents responsible for the activity.

Acknowledgement

The authors are grateful to Professor Dr. Samir Kumar Sadhu, Head, Pharmacy Discipline and Professor Dr. Ayaz Hasan Chisty, Fisheries and Marine Resources Technology Discipline, Khulna University, Khulna, Bangladesh for providing technical support and valuable advice.

References

Ahmed, F., Selim, M.S.T., Das, A.K. and Choudhuri, M.S.K. 2004. Anti-inflammatory and antinociceptive activities of *Lippia nodiflora* Linn. Pharmazie 59: 329-333

Beubler, E. and Juan, H. 1979. Effect of ricinoleic acid and other laxatives in net water flux and prostaglandin E release by the rat colon. *J. Pharm. Pharmacol.* 31: 681-685

Bittar, M., De Souza, M.M., Yunes, R.A., Lento, R., Delle Monache, F. and Cechinel, F.V. 2000. Antinociceptive activity of *D.* linnaeana, a b flavonoid present in plants of the Guttiferae. *Planta Medica* 66 (1): 84-86

Chatterjee, T.K. 1993. *Handbook of laboratory Mice and Rats.* Jadavpur University, India

Derardt, R., Jougney, S., Delevalce, F. and Falhout, M. 1980. Release of prostaglandins E and F in an algogenic reaction and its inhibition. *European Journal of Pharmacology* 51: 17–24

Duke, J.A. 1992. *Handbook of biologically active phytochemicals and their activities.* CRC Press, Boca Raton, FL

Eshilokun, A.O., Kasali, A.A. and Giwa- Ajeniya, A.O. 2003. Chemical composition of essential oils of *Hyptis suaveolens* (Linn.) poit leaves from Nigeria. *Flavour and Fragrance Journal* 45: 211-321

Evans, W.C. 1989. *Trease and Evans’s Pharmacognosy.* Cambridge University Press, London

Ghani, A. 2003. *Medicinal Plants of Bangladesh.* The Asiatic Society of Bangladesh

McLaughlin, J.L., Anderson, I.E. and Chang, C.J. 1988. Bioactive components of *Allamanda schottii.* *Journal of Natural Products* 51(2): 307-308

Meyer, S. 1982. *Phytochemical methods* (a guide to modern techniques to plant analysis). Champan and Hall, USA

Pathak, D., Pathak, K. and Singla, A.K. 1991. *Flavonoids as medicinal agents: recent advances.* *Fitoterapia* 62(5): 371-389

Racusen, L.C. and Binder, H.J. 1979. Ricinoleic acid stimulation of active anion secretion in colonic mucosa of the rat. *Journal of Clin. Invest* 63: 743-749

Rahman, S., Ali, E. and Haque, R. 2007. Pharmacological profiles of *Holarhena antidisenterica* (L.) wall bark. *Ori. Pharm. and Exper. Med.* 7(2): 157-161

Shirwaikar, A., Shenoy, R., Udupa, A.L., Udupa, S.L. and Shetty, S. 2003. Wound healing property of ethanolic extract of leaves of *Hyptis suaveolens* with supportive role of antioxidant enzymes. *Indian Journal of Experimental Biology* 34: 523-526

Taesotikul, T., Panthong, A., Kanjanapothi, D., Verpoort, R. and Scheffer, J.J.C. 2003. Antiinflammatory, antipyretic and antinociceptive activities of *Tabernaemontana pandacaquii* *Poir.* *Journal of Ethnopharmacology* 84: 31-35

Wagner, H., Bladt, S. and Zgainski, E.M. 1984. *Plant drug analysis.* Springer, Berlin

Whittle, B.A. 1964. The use of changes in capillary permeability in mice to distinguish between narcotic and non-narcotic analgesic. *British Journal of Pharmacological Chemotherapy* 22: 246