Supplemental Material

Ionic liquids to monitor the nano-structuration and the surface functionalization of material electrodes: a proof of concept applied to cobalt oxyhydroxide

Jacob Olchowka*,1,2 Tiphaine Tailliez,1 Lydie Bourgeois,3 Marie Anne Dourges,3 Liliane Guerlou-Demourgues* 1,2

1 CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB UMR 5026, F-33600 Pessac, France.
2 RS2E, Réseau Français sur le Stockage Electrochimique de l’Energie, FR CNRS 3459, F-80039 Amiens Cedex 1, France.
3 Institut des Sciences Molaires, Univ. Bordeaux, UMR 5255, F-33405 Talence, France

Corresponding Author: jacob.olchowka@icmcb.cnrs.fr

Supplementary Information

S1. Representation of the ionic liquids and localization of the Carbon “C2” with an acidic hydrogen

\[
\text{PMIMBr} \quad \text{EMIMBF}_4
\]
S2. Evolution of weight vs temperature during thermogravimetric analyses (TGA) of HCoO$_2$, HCoO$_2$-EMIMBF$_4$, HCoO$_2$-PMIMBr and of the pure ionic liquids for comparison sake.

The TGA analyses show that the weight loss is calculated to be $\sim 21\%$ for HCoO$_2$-EMIMBF$_4$ and HCoO$_2$-PMIMBr, and 20% for HCoO$_2$ at 700°C. This result reveals that the quantity of ionic liquid is very low, as expected with a surface functionalization.

S3. Cyclic voltammetry curves of HCoO$_2$ in 5M-KOH at 5 mV/s

For HCoO$_2$ electrode material, the second oxidation peak relative to the Co(III)/Co(IV) redox couple is centered around 0.51 V and is overlapped with the oxygen evolution peak.
S4. Equivalent circuit used for the fitting of the EIS data

R_1 represents the bulk solution resistance, R_2 represents the faradic charge transfer resistance across the electrode/electrolyte interface, W_2 the Warburg element and C_2 a capacitor whereas a double layer capacitance Q_2 (Constant Phase Element) is connected parallel with R_2.
S5. Cyclic voltammetry curves at different scan rates:
a) HCoO$_2$ in 5M-KOH
b) HCoO$_2$ in 0.5M-K$_2$SO$_4$

a) HCoO$_2$-EMIMBF$_4$ in 5M-KOH
b) HCoO$_2$-EMIMBF$_4$ in 0.5M-K$_2$SO$_4$

c) HCoO$_2$-PMIMBr in 5M-KOH
d) HCoO$_2$-PMIMBr in 0.5M-K$_2$SO$_4$