Calcified peripancreatic lymph nodes in pancreatic and hepatic tuberculosis mimicking pancreatic malignancy

A case report and review of literature

Xi Liang, MD, a, Xuequan Huang, MD, PhD, b Qian Yang, MD, PhD, c Jianming He, MD, PhD, a,*

Abstract

Rationale: Tuberculosis remains a serious menace to the health of people. Isolated hepatic tuberculosis is rare and pancreatic tuberculosis is extremely rare. The preoperative diagnosis of pancreatic tuberculosis remains a great challenge.

Patient concerns: A 58-year-old Asian woman was referred to our hospital for evaluation of low back pain for 4 years and abdominal pain for 1 month.

Diagnoses: Computed tomography (CT) of the abdomen showed a hypodense mass in the pancreatic head and neck with abundant calcifications, a hypodense lesion in the liver without calcification, peripancreatic lymphadenopathy, calcifications in some lymph nodes. CT-guided fine needle aspiration biopsy of the hepatic lesion was carried out and the cytological examination revealed hepatic tuberculosis.

Interventions: The patient was treated with antituberculous therapy for 1 year.

Outcomes: Low back pain and abdominal pain disappeared 3 months after initial treatment and after 2 years of follow-up, the patient was asymptomatic.

Lessons: Our data hint that calcifications in both pancreatic lesions and peripancreatic lymph nodes may suggest pancreatic tuberculosis rather than pancreatic malignancy.

Abbreviation: CT = computed tomography.

Keywords: calcification, hepatic tuberculosis, pancreatic carcinoma, pancreatic tuberculosis

1. Introduction

Mycobacterium tuberculosis, still a serious menace to human health, can infect almost any organ in the human body.[1,2] Nevertheless, hepatic involvement is rare and pancreatic involvement is extremely rare.[3–4] Majority of cases of pancreatic tuberculosis occur as a part of disseminated tuberculosis, particularly in those with immunodeficiency.[4–5] The diagnosis of pancreatic tuberculosis can easily be missed or significantly delayed because of its rarity and lack of specificity.[3,1,4–7] Two articles reported the isolated tuberculosis lesion at liver or around the head of pancreas involved both liver and pancreas.[8,9] One article reported pancreatic and hepatic tuberculosis without involvement of other organs in an infant.[10] Here we reported a case of pancreatic and hepatic tuberculosis without involvement of other organs in an immunocompetent person. To our knowledge, similar cases have not been reported. Diagnostic value of calcifications in pancreatic lesions and peripancreatic lymph nodes was discussed here.

2. Case presentation

A 58-year-old Asian woman was referred to our hospital for evaluation of low back pain and abdominal pain. The patient’s symptom history was detailed as follows: intermittent low back pain with a tendency to spontaneous regression for 4 years, progressive aggravation of low back pain for 1 month, abdominal pain localized to the epigastrium unrelated to meals for 1 month. The patient denied fever, night sweat, weight loss, cough, vomiting, and jaundice. She denied a history of tuberculosis. Ultrasonography revealed a heteroechoic mass lesion with an unclear irregular border in the pancreatic head, several peripancreatic lymph nodes. Plain computed tomography (CT) of the abdomen showed a mass in the pancreatic head with a slightly low density, an unclear irregular border. Calcifications in the mass were very abundant. Several peripancreatic lymph nodes...
and calcifications in some were noted. A hypodense lesion in the liver without calcification was observed. Contrast-enhanced CT showed moderate enhancement in the pancreatic mass and a hypodense lesion in the liver with a mild enhancement. Chest x-ray was normal. At the time of admittance to our hospital, physical examination was unremarkable, with epigastric tenderness without guarding. The initial diagnosis was pancreatic malignancy, hepatic and lymphatic metastasis. CT-guided fine needle aspiration biopsy of the hepatic lesion was carried out and the cytological examination revealed hepatic tuberculosis (Fig. 1). The diagnosis of pancreatic and hepatic tuberculosis was confirmed based on the above findings. Subsequently, the patient was treated with antituberculous therapy for 6 months (rifampicin, isoniazid, pyrazinamide, and ethambutol for 2 months, followed by rifampicin and isoniazid for 4 months). Low back pain and abdominal pain were disappeared 3 months after initial of treatment and after 2 year of follow-up, the patient was asymptomatic.

This study was approved by the Ethics Committee of Southwest Hospital, the Third Military Medical University. Informed consent was obtained from the patient for publication of this case report and accompanying images.

3. Discussion
Tuberculosis is still a major public health problem worldwide. In 2015, there were an estimated 10.4 million new (incident) tuberculosis cases, highest incidence being in developing countries.[11] Isolated hepatic tuberculosis is rare and isolated pancreatic tuberculosis is extremely rare.[3,4] Although majority of cases occurred as a part of disseminated tuberculosis, about half of patients denied a previous history of tuberculosis infection and more than half showed normal findings on chest radiographs.[4,5,13,12]

Several excellent articles summarized and reviewed clinical manifestations of pancreatic tuberculosis previously.[2,7,12–15] The clinical manifestations can be diverse and are commonly caused by the mass in pancreas and/or tuberculous toxemia. They include abdominal or back pain/discomfort, palpable abdominal lump, jaundice, weight loss, anorexia, fever, night sweats, malaise/weakness/fatigue.[2,7,12–15] The diagnosis of pancreatic tuberculosis can easily be missed or significantly delayed because of its rarity and lack of specific manifestations.[2,7,11] Kim et al.[11] reported that in about 52% of cases, first impression was wrong as pancreatic or peripancreatic malignancy. Some of these patients underwent unnecessary or improper surgery.[15,16] Saluja et al.[16] reported that even 2 of 7 pancreatic tuberculosis patients were considered for palliative chemoradiotherapy because of misdiagnosis.

Accurate diagnosis may avoid delays in treatment and unnecessary surgery. Imaging features are helpful for diagnosis of pancreatic tuberculosis.[3,6,7,15,17] Pancreatic tuberculosis may present with a wide range of imaging findings.[3,6,7,15,17] It may present with masses or cystic lesions, mostly in the head or neck of the pancreas. Both solitary lesion and multiple lesions can be

Figure 1. (A) The computed tomographic (CT) scout view showed the chest was normal. (B) The pancreas was evaluated with abdominal window settings (width, 350 HU; level, 50 HU). A hypodense mass in the pancreatic neck (the black arrowhead) and calcifications in the lesion (white arrowheads) are observed. (C) The upper abdomen was evaluated with abdominal window settings (width, 350 HU; level, 50 HU). A hypodense mass in the pancreatic head (the black arrowhead) and calcified peripancreatic lymph nodes (white arrowheads) are observed. (D) The upper abdomen was evaluated with liver window settings (width, 150 HU; level, 50 HU). A hypodense mass in the liver (the black arrowhead) and calcified peripancreatic lymph nodes (white arrowheads) are observed. (E) The upper abdomen CT image shows CT-guided fine needle aspiration biopsy of the hepatic lesion (the black arrowhead) was carried out. Calcified peripancreatic lymph nodes (white arrowheads) are observed. (F) H&E staining of hepatic lesion.
observed. Mass lesions in most of cases mimic pancreatic carcinoma.\cite{1,6,7,15,17} CT scans of mass lesions usually demonstrate homogeneous or inhomogeneous consistency with a slightly low density, irregular poorly defined borders. Necrotic cystic areas can be observed in some of patients. Following enhanced scanning, images demonstrate marked enhancement, moderate enhancement, or mild enhancement; they exhibit homogeneous enhancement or inhomogeneous enhancement. Other signs include dilation of the main pancreatic duct and/or upstream biliary, lymphadenopathies surrounding the pancreas, evidence of active tuberculosis in the form of infiltrates, pleural effusion, and so on.\cite{1,6,7,15,17} Vascular invasion of abdominal vessels was often reported as point of distinction between pancreatic tuberculosis and malignancy.\cite{18} Nevertheless, vascular involvement cannot be used as a criterion to discriminate pancreatic tuberculosis from malignancy, as there are multiple reports of vascular invasion in pancreatic tuberculosis.\cite{12,18,20} Therefore, these imaging findings are nonspecific.

Calcifications in pancreatic lesions were reported as characteristic in diagnosis of pancreatic tuberculosis.\cite{3,6,7,15,17} Although Xia et al reported that the presence of calcification in numbers as high as 36% patients, others reported a lower ratio of calcification in the lesions.\cite{6,15,17} Nagar et al\cite{12} reported that in their study, no parenchymal or ductal calcification was seen in pancreatic tuberculosis on CT scan in 32 patients. However, calcifications may be seen in pancreatic malignancies, too (Table 1). More than 80% of pancreatic malignancies are ductal adenocarcinoma.\cite{21} Some reports indicate the presence of calcification in numbers as high as 21% patients and others have not reported any calcification in the tumors.\cite{21,22,23} Acinar cell carcinoma is the second most common type.\cite{24,26,27} The ratio of calcification in tumor is from 0 to 50%\cite{24,26,27}. Neuroendocrine neoplasms account for 1% to 2% of all pancreatic tumors.\cite{28,31} Calcification in neuroendocrine neoplasms is not rare, especially in nonfunctioning and larger neoplasms.\cite{28,30,31} Calcification in other rare types of pancreatic tumors is not rare.\cite{32,33,34} For example, intratumoral calcification has been described as a common feature of solid pseudopapillary carcinomas and the ratio of calcification is >28%.\cite{32,33} Morphological pattern of calcifications is thought as characteristic in pancreatic tuberculosis.\cite{3} The morphologies are inconsistent, including irregular, striped, speckled, focal, sand-like calcifications, calcifications forming polycyclic structures, and so on.\cite{2,5,6,11,13,15,17,18,34,35} Calcifications in pancreatic malignancies have been well described previously,\cite{21,22,28,30} although there is a lack of summaries of calcifications in pancreatic tuberculosis, partly because of its rarity. Based on these reports, calcifications may be useful, but not specific imaging criteria for the differentiation of pancreatic tuberculosis from malignancy.\cite{3,6,7,15,17,21,22,28,30

In the case reported here, calcifications in the pancreatic mass were very abundant; moreover, abundant calcifications in several peripancreatic lymph nodes were observed. We searched the literature and no reports on diagnostic value of calcified peripancreatic lymph nodes in pancreatic tuberculosis or malignancy were found. We analyzed case reports on pancreatic tuberculosis and found that majority of cases of pancreatic tuberculosis with calcifications accompanied calcified peripancreatic lymph nodes. From 2010, >50 cases of pancreatic tuberculosis were reported\cite{2,3,5,6,11,13,15,17,18,20,24,36,37,38,39} Calcifications in pancreatic lesions were observed in 5 cases in limited images provided in articles.\cite{5,13,17,20,48} In 3 of these 5 cases, calcifications in peripancreatic lymph nodes were observed.\cite{5,17,48} One case should very likely have calcifications in peripancreatic lymph nodes. Because only 1 contrast CT image was provided in the article, it was difficult to distinguish calcified

Table 1
Ratio of calcifications in pancreatic lesions in literature.
Year, reporter
Tuberculosis
2003, Xia et al\cite{6}
2009, Song et al\cite{15}
2009, Nagar et al\cite{12}
2011, Ibrahim and Al-Nakshabandi\cite{7}
2014, Kim et al\cite{17}
Malignancies
Ductal adenocarcinoma
2006, Amin et al\cite{21}
2008, Ogawa et al\cite{23}
2011, Lv et al\cite{24}
Acinar cell carcinoma
2004, Chiong et al\cite{25}
2010, Hsu et al\cite{26}
2013, Raman et al\cite{27}
Pure acinar cell carcinoma
2005, Tatli et al\cite{28}
Neuroendocrine neoplasm
2012, Poultsides et al\cite{29}
2015, Kim et al\cite{23}
2017, Hu et al\cite{30}
Solid pseudopapillary carcinomas
1996, Bostick et al\cite{31}
2008, Lee et al\cite{32}

*Average.

U = unreported.
peripancreatic lymph nodes from blood vessels.\(^{[13]}\) In the left 1 case, it was uncertain whether there were peripancreatic lymphadenopathies with calcifications because of lack of images.\(^{[20]}\) We collected all cases of pancreatic tuberculosis with calcifications as we could and collected 6 cases of pancreatic ductal adenocarcinoma with calcifications as control (Table 2). Calciﬁed peripancreatic lymph nodes accompanied calcifications in pancreatic tuberculosis in 3 of 4 patients. No calciﬁed peripancreatic lymph nodes were observed in 6 cases of pancreatic ductal adenocarcinoma with calcifications. Collectively, these hint that calcifications in both pancreatic lesions and peripancreatic lymph nodes may suggest pancreatic tuberculosis rather than pancreatic malignancy. Tuberculous lymphadenopathy is the most common manifestation of abdominal tuberculosis and majority of cases of pancreatic tuberculosis occur as a part of disseminated tuberculosis.\(^{[4,5,76]}\) It is not surprising that majority of cases of pancreatic tuberculosis with calciﬁcations accompanied calciﬁed peripancreatic lymph nodes. Owing to the limited sample size, further experiments should be carried out to make the conclusion convincing.

4. Conclusion

Pancreatic tuberculosis is extremely rare, with a wide range of nonspeciﬁc clinical presentation and image features. The diagnosis of pancreatic tuberculosis can easily be missed or signiﬁcantly delayed. More than half of cases of pancreatic tuberculosis were initially diagnosed as pancreatic malignancy. Although the presence of calcifications should not dissuade the doctor from raising concern for malignancy and the diagnosis of pancreatic tuberculosis should be bacteriologically or cytologically conﬁrmed, calcifications in both pancreatic lesions and peripancreatic lymph nodes may suggest pancreatic tuberculosis rather than pancreatic malignancy.

Author contributions

Conceptualization: Jianming He.
Data curation: Xi Liang, Xuequan Huang, Jianming He.
Funding acquisition: Xi Liang, Jianming He.
Writing – original draft: Xi Liang, Qian Yang, Jianming He.
Writing – review & editing: Xi Liang, Qian Yang, Jianming He.

References

[1] Organization WH. Global Tuberculosis Report 2016. 2016.
[2] Sharma V, Rana SS, Kumar A, et al. Pancreatic tuberculosis. J Gastroenterol Hepatol 2016;31:310–8.
[3] McMullan GS, Lewis JH. Tuberculosis of the liver, biliary tract, and pancreas. Microbiol Spectr 2017;5.
[4] Franco-Paredes C, Leonard M, Jurado R, et al. Tuberculosis of the pancreas: report of two cases and review of the literature. Am J Med Sci 2002;323:54–8.
[5] Yang YJ, Li YX, Liu XQ, et al. Pancreatic tuberculosis mimicking pancreatic carcinoma during antituberculosis therapy: a case report. World J Clin Cases 2014;2:167–9.
[6] Xia F, Poon RT, Wang XG, et al. Tuberculosis of pancreas and peripancreatic lymph nodes in immunocompetent patients: experience from China. World J Gastroenterol 2003;9:1361–4.
[7] Chaudhary P, Bhidana U, Arora MP. Pancreatic tuberculosis. Indian Surg 2015;77:517–24.
[8] Liu H, Zhu J, Dong H, et al. Isolated hepatic tuberculosis in the caudate lobe mimicking intrahepatic carcinoma. Clin Res Hepatol Gastroenterol 2017;41:65–7.
[9] Ito T, Ang TL, Seewald S, et al. Endoscopic ultrasonography-guided drainage for tuberculous liver abscess drainage. Dig Endosc 2011;23 (Suppl 1):138–61.
[10] Kacem L, Daﬁri R. [Imaging of pancreatic and hepatic tuberculosis in an infant presenting with jaundice]. J Radiol 2006;87(4 pt 1):396–8.
[11] Kim JB, Lee SS, Kim SH, et al. Peripancreatic tuberculöus lymphade-nopathy masquerading as pancreatic malignancy: a single-center experience. J Gastroenterol Hepatol 2014;29:409–16.
[12] Nagar AM, Raut AA, Morani AC, et al. Pancreatic tuberculosis: a clinical and imaging review of 32 cases. J Comput Assist Tomogr 2009;33:136–41.
[13] Kumar PA, Singh G, Joseph JB, et al. Pancreatic tuberculosis: a puzzle for physicians. a rare case and review of literature. J Clin Diagn Res 2016;10:ZC–39.
[14] Khaniya S, Koirala R, Shaka VA, et al. Isolated pancreatic tuberculosis mimicking carcinoma: a case report and review of the literature. Cases J 2010;3:118.
[15] Song TJ, Lee SS, Park DH, et al. Yield of EUS-guided FNA on the diagnosis of pancreatic/peripancreatic tuberculosis. Gastrointest Endosc 2009;69(3 pt 1):484–91.
[16] Saluja SS, Ray S, Pal S, et al. Hepatobiliary and pancreatic tuberculosis: a two decade experience. BMC Surg 2007;7:10.
[17] Ibrahim GF, Al-Nakshbandi NA. Pancreatic tuberculosis: role of multi-detector computed tomography. Can Assoc Radiol J 2011;62:260–4.
[18] Gupta D, Patel J, Rathie C, et al. Primary pancreatic head tuberculosis: great masquerader of pancreatic adenocarcinoma. Gastroenterology Res 2015;8:193–6.
[19] Zhu M, Zhang N, Tao W, et al. Pancreatic tuberculosis with vascular involvement and peritoneal dissemination in a young man. Case Rep Med 2017;2017:4396759.
[20] Rana SS, Sharma V, Sampath S, et al. Vascular invasion does not discriminate between pancreatic tuberculosis and pancreatic malignancy: a case series. Ann Gastroenterol 2014;27:395–8.
[21] Amin Z, Theis B, Russell RC, et al. Diagnosing pancreatic cancer: the role of percutaneous biopsy and CT. Clin Radiol 2006;61:996–1002.
[22] Lv P, Mahyoub R, Lin X, et al. Differentiating pancreatic ductal adenocarcinoma from pancreatic serous cystadenoma, mucinous cystadenoma, and a pseudocyst with detailed analysis of cystic features on CT scans: a preliminary study. Korean J Radiol 2011;12:87–95.
[23] Ongava H, Inok S, Ikeda S, et al. Intraductal papillary mucinous neoplasm of the pancreas: assessment of the likelihood of invasiveness using multiphasic CT. Radiology 2008;248:876–86.
[24] Raman SP, Hruban RH, Cameron JL, et al. Acinar cell carcinoma of the pancreas: computed tomography features—a study of 15 patients. Abdom Imaging 2013;38:137–43.
[25] Tatlı S, Mortele KJ, Levy AD, et al. CT and MRI features of pure acinar cell carcinoma of the pancreas in adults. AJR Am J Roentgenol 2005;184:511–9.
[26] Hsu MY, Pan KT, Chu SY, et al. CT and MRI features of acinar cell carcinoma of the pancreas with pathological correlations. Clin Radiol 2010;65:223–9.
[27] Chiou YY, Chiang JH, Hwang JI, et al. Acinar cell carcinoma of the pancreas: clinical and computed tomography manifestations. J Comput Assist Tomogr 2004;28:180–6.
[28] Hu J, Hu Q, Hu H. Characterization of single lesion nonfunctioning pancreatic neuroendocrine carcinoma via computed tomography. Oncol Lett 2017;13:2186–90.
[29] Kim DW, Kim HJ, Kim KW, et al. Neuroendocrine neoplasms of the pancreas at dynamic enhanced CT: comparison between grade 3 neuroendocrine carcinoma and grade 1/2 neuroendocrine tumour. Eur Radiol 2015;25:1375–83.
[30] Verde F, Fishman EK. Calciﬁed pancreatic and peripancreatic neoplasms: spectrum of pathologies. Abdom Radiol (NY) 2017;42:2686–97.
[31] Poultsides GA, Huang LC, Chen Y, et al. Pancreatic neuroendocrine tumors: radiographic calciﬁcations correlate with grade and metastasis. Ann Surg Oncol 2012;19:2295–303.
[32] Lee JH, Yu JS, Kim H, et al. Solid pseudopapillary carcinoma of the pancreas: differentiation from benign solid pseudopapillary tumour using CT and MRI. Clin Radiol 2008;63:1006–14.

[33] Buetow PC, Buck JL, Pantongrag-Brown L, et al. Solid and papillary epithelial neoplasm of the pancreas: imaging-pathologic correlation on 56 cases. Radiology 1996;199:707–11.

[34] Lee YJ, Hwang JY, Park SE, et al. Abdominal tuberculosis with periporal lymph node involvement mimicking pancreatic malignancy in an immunocompetent adolescent. Pediatr Radiol 2014;44:1450–3.

[35] Cwik G, Solecki M, Wallner G. Applications of intraoperative ultrasound in the treatment of complicated cases of acute and chronic pancreatitis and pancreatic cancer—own experience. J Ultrason 2015;13:56–71.

[36] Sontalia N, Ray S, Pal P, et al. Fine needle aspiration diagnosis of isolated pancreatic tuberculosis: a case report. World J Clin Cases 2013;1:181–6.

[37] Mohamadnejad M, Sotoudeh M, Malekzadeh R. Education and imaging. Gastrointestinal: pancreatic tuberculosis masquerading as malignancy. J Gastroenterol Hepatol 2014;29:418.

[38] Puri R, Thandassery RB, Eloubeidi MA, et al. Diagnosis of isolated pancreatic tuberculosis: the role of EUS-guided FNA cytology. Gastrointest Endosc 2012;75:900–4.

[39] Zacharia GS, Antony R, Kolassery S, et al. Isolated pancreatic tuberculosis masquerading as pancreatic cancer. Gastroenterol Rep (Oxf) 2014;2:154–7.

[40] Catalya S, Tulpule S, Arshed S, et al. A rare case of pancreatic tuberculosis. Pancreas 2017;46:964–5.

[41] Fikowski AL, Graber J, Haack HG, et al. Isolated pancreatic tuberculosis: a case report and radiological comparison with cystic pancreatic lesions. J Radiol Case Rep 2013;7:1–10.

[42] Morz Cuadrado N, Berroa de la Rosa E, Velayos Jimenez B, et al. Tuberculosis, one more consideration in the differential diagnosis of a pancreatic mass. Gastroenterol Hepatol 2017;40:619–21.

[43] Kaur M, Dalal V, Bhatnagar A, et al. Pancreatic tuberculosis with periportal lymph node involvement mimicking inoperable pancreatic cancer. J Coll Physicians Surg Pak 2013;23:211–3.

[44] Raghavan P, Raja D. Isolated pancreatic tuberculosis mimicking malignancy in an immunocompetent host. Case Rep Med 2012;2012:501246.

[45] Arora A, Mukund A, Garg H. Isolated pancreatic tuberculosis: a rare occurrence. Am J Trop Med Hyg 2012;87:1–2.

[46] Assenza M, Simonelli L, Romeo V, et al. Isolated pancreatic tuberculosis: a diagnostic challenge. Clin Ter 2012;163:e327–329.

[47] Huang CT, Lo CY, Lee TH. Isolated peripancreatic tuberculosis mimicking pancreatic cystic neoplasm. J Dig Dis 2013;14:105–8.

[48] Ray S, Das K, Mrudha AR. Pancreatic and peripancreatic nodal tuberculosis in immunocompetent patients: report of three cases. JOP 2012;13:667–70.

[49] Patel D, Loren D, Kowalski T, et al. Pancreatic tuberculosis mimicking malignancy diagnosed with endoscopic ultrasound-guided fine needle aspiration. Endosc Ultrasound 2013;2:38–40.

[50] Samuel DO, Majid Mukhtar AA, Philip IO. A diagnostic pitfall: pancreatic tuberculosis, not pancreatic cancer. J Coll Physicians Surg Pak 2013;23:211–3.

[51] Mansoor J, Umair B. Primary pancreatic tuberculosis: a rare and elusive diagnosis. J Coll Physicians Surg Pak 2013;23:226–8.

[52] Vata H, Arvanitakis M, Matsos C, et al. Pancreatic tuberculosis diagnosed by EUS: one disease, many faces. JOP 2013;14:236–40.

[53] Sportses A, Kossou R, Bernardin S. Isolated pancreatic tuberculosis mimicking inoperable pancreatic cancer: a diagnostic challenge resolved using endoscopic ultrasound-guided fine-needle aspiration. Can J Gastroenterol 2013;27:445–7.

[54] Rana SS, Chaudhary V, Gupta N, et al. Pancreatic tuberculosis presenting as an unusual head mass. Endoscopy 2013;45(suppl 2): UCTN:E317–318.

[55] Laxmiani FZ, Dafiri R. A rare pediatric case of pancreatic tuberculosis with venous thrombosis. Diagn Interv Imaging 2014;95:455–6.

[56] Sun SL, Gao F, Cui DX, et al. Isolated pancreatic tuberculosis in non-immunocompromised patient treated by Whipple’s procedure: a case report. Chin Med Sci J 2014;29:58–60.

[57] Salahuddin A, Sait MW. Pancreatic tuberculosis or autoimmune pancreatitis. Case Rep Med 2014;2014:410142.

[58] Sharma V, Chhabra P, Rana SS, et al. Pancreatic tuberculosis: look at the kidney!. Dig Liver Dis 2015;47:e1.

[59] Pawar S, Rakesh R, Nischal N, et al. Disseminated tuberculosis masquerading as metastatic pancreatic carcinoma. J Assoc Physicians India 2015;63:66–8.

[60] De Backer AI, Mortele KJ, Deeren D, et al. Abdominal tuberculosis lymphadenopathy: MRI features. Eur Radiol 2005;15:2104–9.