Effect of high hydrostatic pressure on selected red wine quality parameters

S. Christofi, D. Malliaris, Y. Kotseridis, E. Panagou, N. Proxenia, and S. Kallithraka

Department of Food Science & Human Nutrition, Laboratory of Enology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece

Abstract. The aim of this work was to examine the possible use of High Hydrostatic Pressure (HHP) as an alternative method for wine preservation, which could also lead to the production of wines with reduced amounts of SO₂. For this purpose, red wine samples containing 0 ppm, 10 ppm, 20 ppm, 40 ppm and 100 ppm of sulphur dioxide (SO₂) were subjected to pressure of 350 MPa for 10 min at 8 °C. A second set of samples containing only SO₂ was used as control. Colour parameters, acetic acid, total anthocyanin and phenolic content and antioxidant activity were determined over a period of twelve months. During the first four months, most of the differences observed regarding the chemical composition of the pressurized and unpressurized wines were not statistically significant. However, after the period of six months, the pressurized samples in general were characterized by higher average values % yellow colour and acetic acid and lower % red colour, total anthocyanin and phenolic content compared to the non-pressurized ones. The results obtained could be a possible indication that HHP could accelerate the polymerization reactions reducing the time needed for wine ageing. HHP combined with reduced SO₂ contents might be a promising technology for wine industry.

1. Introduction

Sulfur dioxide (SO₂) is used as food preservative since the 18th century and it has been validated as an exemplary choice for food with low pH such as wine. Due to its potent and multifaceted character acquired an important role in wine industry as an antioxidant and antiseptic additive. This compound also prevents the wine browning role in wine industry as an antioxidant and antiseptic potent and multifaceted character acquired an important choice for food with low pH such as wine. Due to its

18th century and it has been validated as an exemplary choice for food with low pH such as wine. Due to its potent and multifaceted character acquired an important role in wine industry as an antioxidant and antiseptic additive. This compound also prevents the wine browning role in wine industry as an antioxidant and antiseptic potent and multifaceted character acquired an important choice for food with low pH such as wine. Due to its

Abstract. The aim of this work was to examine the possible use of High Hydrostatic Pressure (HHP) as an alternative method for wine preservation, which could also lead to the production of wines with reduced amounts of SO₂. For this purpose, red wine samples containing 0 ppm, 10 ppm, 20 ppm, 40 ppm and 100 ppm of sulphur dioxide (SO₂) were subjected to pressure of 350 MPa for 10 min at 8 °C. A second set of samples containing only SO₂ was used as control. Colour parameters, acetic acid, total anthocyanin and phenolic content and antioxidant activity were determined over a period of twelve months. During the first four months, most of the differences observed regarding the chemical composition of the pressurized and unpressurized wines were not statistically significant. However, after the period of six months, the pressurized samples in general were characterized by higher average values % yellow colour and acetic acid and lower % red colour, total anthocyanin and phenolic content compared to the non-pressurized ones. The results obtained could be a possible indication that HHP could accelerate the polymerization reactions reducing the time needed for wine ageing. HHP combined with reduced SO₂ contents might be a promising technology for wine industry.

1. Introduction

Sulfur dioxide (SO₂) is used as food preservative since the 18th century and it has been validated as an exemplary choice for food with low pH such as wine. Due to its potent and multifaceted character acquired an important role in wine industry as an antioxidant and antiseptic additive. This compound also prevents the wine browning role in wine industry as an antioxidant and antiseptic potent and multifaceted character acquired an important choice for food with low pH such as wine. Due to its

Abstract. The aim of this work was to examine the possible use of High Hydrostatic Pressure (HHP) as an alternative method for wine preservation, which could also lead to the production of wines with reduced amounts of SO₂. For this purpose, red wine samples containing 0 ppm, 10 ppm, 20 ppm, 40 ppm and 100 ppm of sulphur dioxide (SO₂) were subjected to pressure of 350 MPa for 10 min at 8 °C. A second set of samples containing only SO₂ was used as control. Colour parameters, acetic acid, total anthocyanin and phenolic content and antioxidant activity were determined over a period of twelve months. During the first four months, most of the differences observed regarding the chemical composition of the pressurized and unpressurized wines were not statistically significant. However, after the period of six months, the pressurized samples in general were characterized by higher average values % yellow colour and acetic acid and lower % red colour, total anthocyanin and phenolic content compared to the non-pressurized ones. The results obtained could be a possible indication that HHP could accelerate the polymerization reactions reducing the time needed for wine ageing. HHP combined with reduced SO₂ contents might be a promising technology for wine industry.

1. Introduction

Sulfur dioxide (SO₂) is used as food preservative since the 18th century and it has been validated as an exemplary choice for food with low pH such as wine. Due to its potent and multifaceted character acquired an important role in wine industry as an antioxidant and antiseptic additive. This compound also prevents the wine browning role in wine industry as an antioxidant and antiseptic potent and multifaceted character acquired an important choice for food with low pH such as wine. Due to its

Abstract. The aim of this work was to examine the possible use of High Hydrostatic Pressure (HHP) as an alternative method for wine preservation, which could also lead to the production of wines with reduced amounts of SO₂. For this purpose, red wine samples containing 0 ppm, 10 ppm, 20 ppm, 40 ppm and 100 ppm of sulphur dioxide (SO₂) were subjected to pressure of 350 MPa for 10 min at 8 °C. A second set of samples containing only SO₂ was used as control. Colour parameters, acetic acid, total anthocyanin and phenolic content and antioxidant activity were determined over a period of twelve months. During the first four months, most of the differences observed regarding the chemical composition of the pressurized and unpressurized wines were not statistically significant. However, after the period of six months, the pressurized samples in general were characterized by higher average values % yellow colour and acetic acid and lower % red colour, total anthocyanin and phenolic content compared to the non-pressurized ones. The results obtained could be a possible indication that HHP could accelerate the polymerization reactions reducing the time needed for wine ageing. HHP combined with reduced SO₂ contents might be a promising technology for wine industry.

1. Introduction

Sulfur dioxide (SO₂) is used as food preservative since the 18th century and it has been validated as an exemplary choice for food with low pH such as wine. Due to its potent and multifaceted character acquired an important role in wine industry as an antioxidant and antiseptic additive. This compound also prevents the wine browning role in wine industry as an antioxidant and antiseptic potent and multifaceted character acquired an important choice for food with low pH such as wine. Due to its

Abstract. The aim of this work was to examine the possible use of High Hydrostatic Pressure (HHP) as an alternative method for wine preservation, which could also lead to the production of wines with reduced amounts of SO₂. For this purpose, red wine samples containing 0 ppm, 10 ppm, 20 ppm, 40 ppm and 100 ppm of sulphur dioxide (SO₂) were subjected to pressure of 350 MPa for 10 min at 8 °C. A second set of samples containing only SO₂ was used as control. Colour parameters, acetic acid, total anthocyanin and phenolic content and antioxidant activity were determined over a period of twelve months. During the first four months, most of the differences observed regarding the chemical composition of the pressurized and unpressurized wines were not statistically significant. However, after the period of six months, the pressurized samples in general were characterized by higher average values % yellow colour and acetic acid and lower % red colour, total anthocyanin and phenolic content compared to the non-pressurized ones. The results obtained could be a possible indication that HHP could accelerate the polymerization reactions reducing the time needed for wine ageing. HHP combined with reduced SO₂ contents might be a promising technology for wine industry.

1. Introduction

Sulfur dioxide (SO₂) is used as food preservative since the 18th century and it has been validated as an exemplary choice for food with low pH such as wine. Due to its potent and multifaceted character acquired an important role in wine industry as an antioxidant and antiseptic additive. This compound also prevents the wine browning role in wine industry as an antioxidant and antiseptic potent and multifaceted character acquired an important choice for food with low pH such as wine. Due to its
3. Results and discussion

3.1. Colour

The evolution of the colour parameters (%yellow and red) calculated for the wine samples (without the HHP treatment and pressurised) is presented in Figs. 1 and 2.

At the beginning of storage, no significant differences were observed among the different treatments of the wine samples indicating that pressure treatment did not affect the colour parameters of the wines immediately after the pressure treatment and up to a period of 4 months. This is in agreement with the findings of Santos et al. (2016) [8] who observed that the physicochemical characteristics of the pressurised red wines started showing significant differences after five months in storage. In accordance with the findings of other researchers [7,8] the percentage of red colour decreases while that of yellow increases with time in both sample groups. However, after six months the pressurised wines were characterized by significantly lower percentages of red and higher of yellow colour.

3.2. Acetic acid

Figure 3 shows the evolution of the acetic acid content of the wines during the twelve months storage period. Significant differences were observed only after 12 months of storage with the pressurised wines containing higher amounts of acetic acid compared to the unpressurised.

3.3. Phenolic compounds

3.3.1. Total Phenols

Figure 4 presents the evolution of total phenolic concentration of the pressurised and unpressurised wine samples. As it can be seen, there is a decreasing trend in the total wine phenolic content with time in agreement with other authors [8].

However, after six months of storage the pressurised samples contained significantly less polyphenols when compared with the non-pressurised samples in agreement with Santos et al. (2016) [8] and Tao et al. (2012) [11]. The decrease of these polyphenolic compounds may be related with the enhancement of chemical oxidation, polymerization and/or precipitation of phenolic compounds during storage [7].

3.3.2. Total Anthocyanin content

Figure 5 presents the evolution of total anthocyanin content of the pressurised and unpressurised wine samples. As it can be seen, there is a decreasing trend in the total anthocyanin content with time in agreement with other authors [8].

Generally, the contents of total phenols and anthocyanins decrease during storage due their potential polymerization, condensation and precipitation [11].
However, this tendency is significantly enhanced when pressure is applied to the wines probably due to specific chemical reactions among the phenolic compounds that take place during pressurization.

Tao et al. (2012) [11] reported a similar higher decrease in monomeric anthocyanin content of pressurised wines in comparison with the non-pressurised ones. However, at the same time the content of copigmented and polymerized anthocyanins increased indicating that the HHP treatment of the wines may accelerate anthocyanin condensation reactions and promote the formation of more complex and stable anthocyanin pyruvic acid adducts. Thus, the decrease of total monomeric anthocyanin content in HHP treated wines may be associated with the condensation reactions induced by HHP.

3.4. Antioxidant activity

Figure 6 shows the evolution of antioxidant activity of the pressurised and unpressurised wine samples.

As it can be observed, wine antioxidant activity in both wine groups, did not show a clear trend. Both increasing and decreasing trends were observed through the period of 12 months. After six months the pressurised wine samples had significantly lower antioxidant activity when compared with the unpressurised ones. A similar increase in wine antioxidant activity after 9 months of storage was observed by Kallithraka et al. (2009) [12] and was attributed to the oxidative transformation of the phenolic compounds. The lower antioxidant activity observed in the pressurised samples is in accordance with the lower content of total phenols reported previously.

4. Conclusions

This work demonstrated that high pressure treatment influence the phenolic composition of red wines leading probably to simultaneous alterations in wine organoleptic characteristics. Most of these effects are only noticeable after 4 months of storage. The lower content of total phenols and monomeric anthocyanins observed in the pressurized samples after 6 months of storage is probably due to an increase of condensation and oxidation reactions. Moreover, the pressurised samples were characterised by lower antioxidant activity. This is also confirmed by the decrease in % red colour and the increase in % yellow and acetic acid content. It seems possible that HHP increased the reactions that are associated with those observed during the ageing of the wine. HHP could be potentially applied to the production of young red wines accelerating the wine ageing process and giving a distinct organoleptic character.

The authors wish to express their gratitude to “BIODYNAMICS S.A.” company for providing the “One Wine Analyser” and “Creta farm”, for the HHP treatment of the wines.

References

[1] P. Ribereau-Gayon, P. Dubourdieu, D. Doneche, B. Lonvaud, A. Handbook of Enology The Microbiology of Wine and Vinifications, 2nd ed., vol. 1 (John Wiley & Sons, Ltd., 2006)
[2] H. Vally, P. Thompson, Thorax, Role of sulfite additives in wine induced asthma: single dose and cumulative dose studies 56, 763 (2001)
[3] A. Puig, P. Olmos, J. Quevedo, B. Guarnis, S. Minguiez, Food Sci. Technol. Int. 14, 5 (2008)
[4] C. Mok, K. Song, Y. Park, S. Lim, R. Ruan, P. Chen, Food Microbiol. Safety 71, 265 (2006)
[5] A. Morata, S. Benito, M. Gonzalez, F. Palomo, W. Tesfaye, J. Suarez-Lepe, Eur. Food Res. Technol. 235, 147 (2012)
[6] A. Morata, I. Loira, R. Vejarano, M. Bañuelos, P. Sanz, L. Otero, J. Suárez-Lepe, Food Bioprocess Tech. 8, 277 (2015)
[7] M. Santos, C. Nunes, J. Cappelle, F. Gonçalves, A. Rodríguez, J. Saraiva, M. Coimbra, Food Chem. 141, 2558 (2013)
[8] M. Santos, C. Nunes, M. Jourdes, P. Teissedre, A. Rodrigues, O. Amado, M. Coimbra, Innov. Food Sci. Emerg. Technol. 33, 76 (2016)
[9] M. Santos, C. Nunes, M. Rocha, A. Rodrigues, S. Rocha, J. Saraiva, M. Coimbra, Food Chem. 188, 406 (2015)
[10] Y. Glories, Connaissance Vigne Vin 18, 253 (1984)
[11] W. Brand-Williams, M. Cuvelier, C. Berset, Food Sci. Technol. 28, 25 (1995)
[12] Y. Tao, D. Sun, A. Górecki, W. Błaszczak, G. Lamparski, R. Amarowicz, J. Fornal, T. Jeliński, Innov. Food Sci. Emerg. Technol. 16, 409 (2012)
[13] S. Kallithraka, M. Salacha, I. Tzourou, Food Chem. 113, 500 (2009)