S5 Table. KEGG pathways of *A. anophagefferens* genes differentially expressed in both the CCMP1850 transcriptome [25] and the CCMP1984 infection cycle transcriptome [11].
Columns denote whether all of these genes differentially expressed over the course of the infection cycle at every time point are overexpressed (+), underexpressed (-), or a mixed (+/-).

KEGG Pathway	Down in LowL	Up in LowL	KEGG Pathway	Down in LowL	Up in LowL
ABC transporters	+ 2 +/- 1	1 1	Glyoxylate and dicarboxylate metabolism	+ 1	
Amino sugar and nucleotide sugar metabolism	1 1 1	1	Metabolic pathways	7 4 2 14	
Aminoacyl-tRNA biosynthesis	1 1	1	Monobactam biosynthesis	1	
Arachidonic acid metabolism	1 1	1	Nitrogen metabolism	1 1	
Arginine and Proline metabolism	1 1	1	One carbon pool by folate	1	
Ascorbate and aldarate metabolism		1	Pentose and glucuronate interconversions	1 1	
Biosynthesis of amino acids	2 1 1	1	Pentose phosphate pathway	1 3	
Biosynthesis of antibiotics	1 3 2	7	Peroxisome/Oxidative stress	2	
Biosynthesis of secondary metabolites	3 2 4	2	Phagosome	2 1	
Biotin metabolism		2	Phosphatidylinositol signaling system	1	
Carbon metabolism	1 1 2 3		Porphyrin and chlorophyll metabolism	1	
Cyanona amino acid metabolism	1		Protein Export	1	
Cysteine and methioine metabolism	1		Protein processing in endoplasmic reticulum	3	
DNA replication	3 1		Purine metabolism	3 1	
Endocytosis	1 3 1		Ribosome	1	
Ether lipid metabolism	1		Ribosome biogenesis in eukaryotes	13 2	
Fatty acid biosynthesis	2 3		RNA degradation	2 1	
Fatty acid metabolism	2 3		RNA polymerase	1 1	
Fructose and mannose metabolism	1 1		RNA transport	2 2	
Galactose metabolism	1		Selenocompound metabolism	1 1	
Glutathione metabolism	2		Spliceosome	3 1	
Glycerol lipid metabolism	1 2		Starch and sucrose metabolism	1 1	
Glycerophospholipid metabolism	2		Sulfur metabolism	1 1	
Glycine, serine and threonine metabolism	1		Terpenoid backbone biosynthesis	1	
Glycolysis/Gluconeogenesis	1 2		Ubiquitin mediated proteolysis	2	
Glycosaminoglycan degradation	1		Valine, Leucine, and isoleucine biosynthesis	1	