Multidisciplinary approach for surveillance and risk identification of yellow fever and other arboviruses in Colombia

Juan S. Mantilla-Granados, María-Angélica Calderón-Peláez, Myriam Lucía Velandía-Romero, Jaime E. Castellanos, Víctor Alberto Olano

ABSTRACT

Arbovirus, a critical threat to human health, have complex and dynamic life cycles. With reports of Yellow fever virus (YFV) causing spillover from sylvatic transmission cycles, and dengue (DENV), chikungunya (CHIKV), and Zika (ZIKV) viruses expanding from urban to rural areas. We explored a multidisciplinary approach to analyze arbovirus transmission through vectors, and identify biological and sociodemographic determinants associated with their transmission risk in urban and rural areas in a Colombian municipality. We visited 178 urban and 97 rural households, registered sociodemographic characteristics and vaccination status for each of these households, collected adult and immature mosquitoes at the intra-, peri-, and extra-domicile, and surveyed forest patches in rural areas. Infections of YFV, DENV, ZIKV, and CHIKV in the mosquitoes collected in the wild were analyzed using a reverse transcriptase PCR. We identified various risk factors of transmission associated with a high Aedes aegypti infestation in urban areas and their presence in rural settlements and Haemagogus janthinomys and other sylvatic mosquitoes near urban areas. The collected Ae. aegypti females from urban areas had a high infection rate of YFV (5.8%) and CHIKV (58.8%), and those from rural settlements had a high infection rate of DENV (33%), CHIKV (16.7%), and ZIKV (16.7%). The infection rates of YFV in the thorax of the sylvatic mosquitoes H. janthinomys and Ae. serratus collected from the forest patches were 14.3 and 42.1%, respectively. We could discern the transmission determinants associated with climatic, socioeconomic, and anthropogenic factors and YFV vaccination status. This multidisciplinary approach for surveillance of arboviral diseases allowed us to independently detect and integrate factors indicating an early risk of rural transmission of DENV, CHIKV, and ZIKV and rural and urban outbreaks of YFV in the study area. This study provides a helpful tool for designing and focalizing prevention strategies.

1. Introduction

Arboviruses present a significant threat to human health, specifically in tropical and subtropical regions, causing extensive morbidity and mortality [1]. In America, dengue (DENV), Zika (ZIKV), and yellow fever (YFV) viruses have similar urban transmission cycles, with Aedes aegypti being the primary vector. YF is maintained in sylvatic cycles involving non-human primates and sylvatic vectors (Haemagogus and Sabethes) [2]. However, a recent increase of YFV periurban outbreaks is reported in South America, despite the presence of an approved vaccine [3–5]. Furthermore, the transmission of DENV, ZIKV, and CHIKV is expanding its limits to rural settlements [6,7].

Arbovirus transmission is mediated through susceptible vectors (urban or sylvatic mosquitoes) and their ecology, which is affected by climatic and anthropogenic factors [8,9]. Arbovirus detection in mosquitoes is crucial for understanding transmission dynamics, surveillance, and prevention strategies [10]. The socio-demographic characteristics of local communities, and their misperceptions and misconceptions, need to be understood and addressed to engage the population in preventive behavior [11], in this sense a multidisciplinary approach must be implemented to understand the transmission...
The ecological, biological, demographical, socio-economical, and epidemiological characteristics of La Macarena municipality, facilitate arboviral transmission [13, 14]. Factors increasing the risk of changes in arboviral transmission dynamics in the region include international tourism, the extraction of natural resources, and extending the agricultural borders to sylvatic areas, activities amplified after peace agreements [15]. This study explored a multidisciplinary approach to analyze arbovirus transmission through vectors, and identify biological and sociodemographic determinants associated with their transmission risk in urban and rural areas in a Colombian municipality.

2. Methods

2.1. Study area

We conducted visits between August and November 2019 in an urban area and eight rural settlements in La Macarena municipality, Meta, Colombia (Fig. 1), located at 2° 10' 48" N and 73° 46' 49" W, 233 m above sea level. The municipality presents a bimodal rainfall pattern, a dry season from December to May, a rainy peak between June and November, with ~2914 mm annual rainfall, 86% relative humidity, and 25 °C temperature [13].

2.2. Sample size

A cross-sectional study was conducted in which the unit of analysis was the household of each person who agreed to participate. The sample...
The average, minimum and maximum temperature, and total precipitation were obtained from WorldClim [25]. The normalized difference vegetation index (NDVI) was estimated using Sentinel 2B satellite images. The entomological indices CI and PPI were projected, and the BinGroup R package in R program 3.5.2 [24], and compared the final amplification products were separated on 2% agarose gel stained with ethidium bromide. Positive YFV samples were sequenced with primers previously described [21]. Culture-harvested viruses were used as controls.

The final alignment involved 29 nucleotide sequences of 134 bp. Genetic distance was calculated using the Kimura 2-parameter method, with an unrooted phylogenetic tree constructed using neighbor-joining.

2.8. Entomological indices

We used the following Aedes indices: house index (HI), container index (CI), Breetau index (BI), and pupae-per-person index (PPI) as described by the CDC [23]. Female *Ae. aegypti* infestation was estimated as the number of mosquitoes collected over 15 min with one Prokopack trap in the intra-domicile. We calculated the infection rate (IR) using the Firth estimator for unequal pool sizes, using the function PooledBin in the BinGroup R package in R program 3.5.2 [24], and compared the percentage of positive samples with those of other studies.

2.9. Environmental variables and spatial analysis

The average, minimum and maximum temperature, and total precipitation were obtained from WorldClim [25]. The normalized difference vegetation index (NDVI) was estimated using Sentinel 2B satellite images. The entomological indices CI and PPI were projected, and extrapolated using inverse distance weighting in ArcGis Pro 2.8.3.

Table 1

Species	Location	Immature Stages	Total		
		Larvae	Pupae		
Area					
Intra	Aedes aegypti	889	407	1296	
	Culex quinquefasciatus	10	7	17	
	Culex spp.	–	103	2	105
	Toxorhynchites spp.	–	1	–	1
Total Urban		1003	416	1419	
Rural					
Intra	Aedes aegypti	12	27	39	
	Culex spp.	–	6	6	
	Coquillettidix nigricans	–	1	1	
	Culex coronator	–	–	3	
	Culex quinquefasciatus	–	11	34	
	Culex urichi	Extra	71	6	77
	Aedes spp.	–	38	60	
	Haemagogus janthinomys	Extra	10	3	13
	Limatia anisoptera	Extra	–	14	
	Limatia durhamii	Extra	39	34	
	Orthopodomyia spp.	–	4	4	
	Psorophora aegypti	Extra	–	2	
	Psorophora ferox	Extra	–	1	
	Sabethes cyanus	Extra	3	3	
	Sabethes quasicyanus	Extra	–	1	
	Trichoprosopon spp.	–	3		
	Trichoprosopon digitaum	Extra	77	80	
	Toxorhynchites spp.	–	18	18	
	Wymonjia spp.	Extra	11	11	
Total Rural		310	277	587	

* Intra-domicile (Intra), peri-domicile (peri), forest patches at the extra-domicile (extra).

The sample size was determined using SSPropor (http://www.openepi.com/). We sampled 178 urban and 97 rural households (Fig. 1), each house was visited once, and sampling was conducted daily.

2.3. Permits, and ethical considerations

Before data collection, a written informed consent was obtained from the inhabitants, as approved by the Comité Institucional de Ética en Investigaciones de Universidad El Bosque, Bogotá, Colombia (Acta No 006-2019, March 14, 2019). Sampling was authorized by the Autoridad Nacional de Licencias Ambientales (resolution number 01470, November 17, 2017).

2.4. Sociodemographic data collection

Participants were enquired about different sociodemographic, and economic characteristics of their households, vaccination status, the ability to recognize, and report urban and sylvatic vectors or non-human primates near the household. Collected information is presented in the Table S1.

2.5. Mosquito collection

Immature mosquitoes were collected in artificial and natural water-holding containers in three settings: intradomicile, peri (0–10 m from household), and extra-domicile (forest patches located 10–500 m from household). Pupae were allowed to emerge. The following characteristics of the breeding sites were recorded: materials (clay, ceramic, concrete, glass, metal, organic, plastic, and rubber), sunlight exposure (uncovered, partial, or covered), setting (intra-, peri-, or extra-domicile), structure (permanent or temporary), area (urban or rural), and whether inhabitants reported a control strategy (chemical, physical, biological or none).

Adult resting mosquitoes were captured using a Prokopack aspirator [17] in the intra- and peri-domicile areas for 15 min each, while those in forest path areas were captured using entomological nets. Additionally, we used two CDC miniature light trap (Curtis Dyna-Fog’s Ltd., http://www.dynafog.com/) and four BG-sentinel traps baited with BG-Lure (Biogens, https://eu.biogens.com/). GPS coordinates were obtained using Garmin GPS 62 s.

2.6. Mosquito identification

Taxonomic identification of immature and adult mosquitoes was carried out under a stereo microscope Stemi ™ DV4 (Zeiss, http://www.zeiss.com/microscopy/), using different taxonomic keys [18–20]. Representative mosquitoes of each species were deposited in the Science Museum of the Universidad El Bosque (MUCB-R-HE-DI-000518 and MUCB-R-HE-DI-000561). Once identified, 2–30 *Ae. aegypti* individuals were pooled by developmental stage, sex, date, and locality and preserved in RNAlater® (Thermo Fisher Scientific, Waltham, Massachusetts U.S.A). For the females of *Haemagogus janthinomys* and *Aedes serratus*, the abdomen and head-thorax regions were separated using micro-scissors and preserved individually in RNAlater®, whereas males and immature mosquitoes were processed similarly to *Ae. aegypti*.

2.7. RNA extraction and amplification

RNA extraction was performed using the RTP® DNA/RNA Virus Mini Kit (Stratec, Birkenfeld, Germany) based on the protocol provided by the manufacturer, and quantified using a NanoPhotometer® NP80 (Implen, Munich, Germany). Viral RNA retro-transcription and amplification were performed using the Luna® Universal kit One-Step RT-PCR (Thermo Fisher Scientific, Waltham, Massachusetts, U.S.A), with 400 ng of purified RNA, and a multiplex nested RT-PCR procedure was performed. For YFV, we used the primers designed in our lab YFUTRF- GCAATCTAGGTTATGTTGTC and VFAR-GGAACCTTCCTGCTGACCATCA (outer primers) and VFAR- CAAATTGGATGGTACCATGTAAGCAAT and VFAR-GGAACCTTCCTGCTGACCATCA (inner primers), to amplify a 145 bp fragment between positions 36 and 181 in the YFV genome. For DENV, CHIKV, and ZIKV, we used the protocol and primers previously described [21]. Culture-harvested viruses were used as controls.

The final alignment involved 29 nucleotide sequences of 134 bp. Genetic distance was calculated using the Kimura 2-parameter method, with an unrooted phylogenetic tree constructed using neighbor-joining.
2.10. Statistical analysis

The presence of immature *Ae. aegypti* was analyzed based on breeding site characteristics, using a generalized linear model (GLM) with binomial distribution using the MASS package in R program version 3.5.2. The female mosquito density was analyzed using a GLM with Poisson distribution. The predictor variables were: the number of house inhabitants, piped water supply and its periodicity, the primary source of water for drinking, water storage conditions, waste collection service, waste disposal in the household, if received information on yellow fever, the source of information, if yellow fever mosquito spotted inside the house, the type of dwelling). The environmental variables were precipitation, elevation, normalized difference vegetation index, distance to the nearest river, temperature range, maximum, medium and minimum temperatures. The presence of multicollinearity was assessed using the generalized variance inflation factor with the “car” package.

3. Results

3.1. Sociodemographic characteristics

We visited 275 households inhabited by 966 residents, with 478 (49%) men and 488 (51%) women. Several differences existed between urban and rural areas associated with dwelling type, drinking water
sources, public services, and waste disposal (Table S1). For example, the most common option for storing water was a container with a lid (14.2% rural, 46.5% urban), and the most reported frequency of washing the containers was once a week (Table S1).

Of the household members, 75.9% affirmed to have received the yellow fever vaccine (Table S1). However, the vaccination status of 82.9% of these members remained uncorroborated. The primary source of information on yellow fever were health sector institutions and other sources such as radio and the local airport (Table S1). Most participants (63.6%) had not spotted monkeys near their houses. Alouatta seniculus (20% rural, 2.3% urban) was the most reported monkey species near their households. Only 12 participants had seen the corpses of monkeys; of these, seven (2.2% rural, 0.4% urban) and five (0.4% rural, 1.5% urban) had seen monkeys near and far from the household, respectively (Table S1).

3.2. Entomological survey

3.2.1. Immature stages

Of the 776 water-holding containers inspected, 298 (38.4%) [210 (70.4%) in urban areas and 88 (29.5%) in rural areas] were positive for the presence of Culicidae larvae or pupae. In total, 2006 immature individuals were collected (1313 larvae and 693 pupae). Eleven genera and thirteen species were identified, with a higher species richness associated with forest patches in rural areas (Table 1). Ae. aegypti and Trichoprosopon digitatum were the most encountered species in urban and rural areas, respectively (Table 1). Immature stages of H. janthinomys (ten larvae and two pupae) were found only in two tree holes in forest patches of two rural settlements.

In the urban areas, CI was 35% (166/473), HI was 52% (92/178), and BI was 89.9. In rural areas, CI was 2% (6/303), HI was 4% (4/103), and BI was 5.8. CI and PPI in the urban area displayed a differential spatial pattern (Fig. 2). Wash basin was the most common positive breeding place in urban (37.5%) and rural (50%) areas (see Fig. 3). The GLM model could explain the prevalence of immature Ae. aegypti (24%); the significant variables were urban areas, households that did not report any larvae for control measures, and breeding sites in concrete or rubber (Table S2).

3.2.2. Adults

A total of 4828 adult mosquitoes were collected from urban and rural areas, corresponding to 13 genera and 36 Culicidae species (Table 2). Among the six genera and twelve species identified in the urban areas, Culex quinquefasciatus was the most common, followed by Ae. aegypti (Table 2). Among the 11 genera and 30 species collected in the rural areas, Cx. quinquefasciatus was the most frequent, followed by Ae. serratus (Table 2). Ae. aegypti was found in both urban and rural areas (Supplementary Fig. S1), whereas the sylvatic YFV vectors, H. janthinomys and Sabethes chloropterus were prevalent close to urban areas (Supplementary Fig. S1). Ae. serratus mosquitoes were prevalent in intra- and extra-domicile settings in rural areas (Table 2).

3.3. Determinants for female infestation

A 40.7% of Ae. aegypti female infestation, was positively associated with the water sources in households having information about yellow fever, those that burnt or buried waste, and those with a high number of potential breeding places (Table 3). Of the environmental variables, temperature and precipitation were associated with female Ae. aegypti abundance (Table 3). There was not enough data on the infestation of H. janthinomys to conduct a statistical analysis.
African and vaccine strains; a few reportedly could infect *Ae. serratus*. The IR of YFV in-*Ae. aegypti* (Fig. 5). The consensus sequence had a genetic distance of 3.6–5.1% from the American strains (Table S2) isolated from vertebrates and mosquitoes (Fig. 5).

In *Ae. aegypti* females (collected and reared), the highest IR was for CHIKV (190.3%), followed by YFV (37.6%), DENV (22.6%), and ZIKV (14.7%). CHIKV showed a high IR in both females (309.8%) and males (89.4%) from urban areas, whereas, in rural *Ae. aegypti* mosquitoes, DENV had the highest IR among females (77.7%). Only DENV3 was detected in the urban areas, whereas DENV2 and DENV3 were detected in the rural areas (Table 4). Unexpectedly, *H. janthinomys* had the highest IR for CHIKV (126.24) (Fig. 5c), followed by YFV (65.1) and DENV (47.7). All four arboviruses could infect *Ae. serratus*. Notably, the lowest infection rates occurred in the thorax than in the abdominal pools for the viruses (Fig. 4d).

4. Discussion

This study presents a novel integrated approach for the surveillance of arboviral diseases with different ecological transmission dynamics, allowing the identification of transmission risks at the local scale. Although most studies have focused on determining the abundance of immature or adult mosquitoes alone [26–29]; our findings highlight the importance of evaluating immature and adult infestation together. Modeling the spatial distribution of these indices and breeding site characteristics is valuable for designing and focusing on control strategies at fine scales, as evident from our model [30,31], furthermore the observed spatial pattern for immature stage presence was probably associated with breeding places availability and characteristics as was found by our model. This information helps to prioritize interventions and resources for mosquito control mainly because the detected *Ae. aegypti* infestation was higher than the limit proposed to avoid YFV urbanization [32]. The presence of *Ae. aegypti* in rural areas represents an additional risk for the rural and peri-urban transmission of different arboviruses. Entomological and virological surveillance by local health authorities must cover these areas.

The high mosquito richness in the study area was probably associated with modifications in landscapes, e.g., forest patches [33–35] favoring the proximity of sylvatic vectors to humans. The proximity of forest patches with high mosquitoes richness to urban areas and tourist spots in rural settlements increases the transmission risk of known and novel arboviruses with zoonotic potential. Reports of *Alopacta senicus* near households as a risk factor for YFV transmission are associated with landscape modifications and wildlife captivity [3]. These results call for strengthening arbovirus surveillance and YFV vaccination measures to avoid a public health problem due to the risk that the local community and visitors are exposed. La Macarena represents an attractive ecotourism destination for travelers and economic activities favoring large-scale deforestation, including logging to expand the agrarian frontier and cocoa growth [36]. However, it is necessary to conduct broader sampling for better characterization of mosquito ecology.

Environmental factors, such as temperature and rainfall, are crucial determinants of *Ae. aegypti* female infestation and are related to mosquito development and breeding site availability, respectively [34,35,37]. Rains favor the presence of breeding sites by filling containers stored by household inhabitants or resulting from poor waste disposition [34], as indicated by our analysis. Additionally, the dry season has led people to accumulate water and provide potential breeding sites. In urban areas of La Macarena, local communities prefer to obtain water from boreholes in their backyard and rains, despite having a permanent piped water supply, responding more to historical behavior than the necessity [31,38]. Although we only had enough data to analyze female infestation in urban areas, rural settlements reported the lowest access to piped water and waste collection services, increasing the risk for *Ae. aegypti* colonization as was detected. Health authorities could address these determinants through educational approaches or communication campaigns to refresh the information on potential breeding sites inside households.

| Table 3 |

The generalized linear model (GLM), using a Poisson distribution, to assess *Ae. aegypti* female infestation against environmental and sociodemographic variables.

Predictor	Category	Estimate	Std. Error	Z value	P-value
Intercept		-0.001	0.002	-0.5	0.6
Number of People living in the household		0.02	0.03	0.8	0.4
Household with piped water supply		0.09	0.2	3.5	0.0004
Periodicity of the piped water supply	Permanent	0.8	0.4	2.0	0.04
	Scheduled	0.6	0.3	1.8	0.05
primary source of water for drinking	Piped water	0.4	0.9	0.4	0.6
	Well, borehole	0.1	0.9	1.1	0.2
	River, stream	1.8	1.0	1.8	0.07
	Rain water	4.2	1.1	3.6	0.0003
Water storage conditions	Deposit or container with lid	-0.8	0.2	-4.4	0.0000
	Do not store water	-0.8	0.2	-3.6	0.0003
Previously received information on yellow fever		0.3	0.1	2.2	0.02
Yellow fever mosquito spotted inside the house	-0.03	0.01	-0.2	0.8	
Type of dwelling	Room	0.9	0.003	0.008	0.9
	House	0.2	0.002	0.008	0.9
	Cabin	0.2	0.002	0.008	0.9
	Hut	0.2	0.002	0.008	0.9
Waste disposition	Deliver to waste collection service	0.02	0.07	0.02	0.9
	Throw it to a patio, plot, or empty land	-0.1	0.05	-0.03	0.9
	No answer	-0.1	0.03	-0.005	0.9
	Dispose it (burn or bury)	1.4	0.2	7.0	0.0000
Number of potential breeding places in the household	0.05	0.02	2.1	0.03	
NDVI**	-0.7	1.2	-0.6	0.5	
Distance to the nearest river or stream	-0.001	0.0004	-1.1	0.2	
Precipitation	-0.09	0.04	-2.0	0.04	
DTR***	-7.1	1.0	-7.0	0.0000	
Medium temperature	0.6	0.1	5.3	0.0000	

** Significant P values are in bold.
*** Normalized difference vegetation index.
*** Diurnal temperature range.

3.4. Arbovirus detection

The IR was higher in females (IR: 19.4%) than in males (IR: 8.9%) in urban areas, in contrast to the pattern observed in rural areas (Fig. 4 a, b). The IR of YFV in *H. janthinomys* and the thorax and abdomen of *Ae. serratus* females was 65.1, 16.5, and 49%, respectively (Table 4 and Fig. 4c, d). High-quality viral RNA obtained from *Ae. aegypti* males and larvae and RNA isolated from the thorax and abdomen of *Ae. serratus* collected from a rural area yielded the same sequence (accession number ON505821). The consensus sequence belonged to the group of Central African and vaccine strains; a few reportedly could infect *Ae. aegypti* under the experimental conditions (Fig. 5). The consensus sequence had...
We found a high risk of YFV spillover, as demonstrated by the higher percentage of YFV in *H. janthinomys* (14.3% thorax) than those reported in recent Brazilian outbreaks (6.5–8.7%) [39, 40]. We detected YFV circulation in the urban vector *Ae. aegypti*, in contrast to reports from Brazil [3, 40] indicating potential rural and urban transmission. In Colombia, YFV vaccination coverage is high (~95%) in the high-risk categorized regions for YFV transmission [38]. Nevertheless, in our vaccination status survey, only 75.9% of participants claimed to be
Fig. 5. Phylogram of YFV sequences, using the neighbor-joining method using a fragment of 134 pb of SUTR and part of capsid gen. The gray area indicates the clade formed for the central African YFV lineages, while the pointing lines indicate the clade formed by the American YFV lineages.

Table 4
Molecular detection of arbovirus (YFV, CHIKV, DENV, and ZIKV) on the different mosquito pools.

Area	Species	Sex/ stage	Positive Pools/ Processed individuals	Collected individuals	Virus found (positive pools /percentage of positivity)*
Urban	Aedes aegypti	Females	10/17 50	315	YFV(1/5.8%) CHIKV(10/58.8%)
		Males	8/12 111	245	CHIKV (7/58.3%) ZIKV(1/8.3%)
		Larvae	9/13 352	889	YFV (4/30.8%) CHIKV(8/61.5%) ZIKV(1/7.7%) DENV 3 (2/15.4%)
		Reared	10/16 59	407 pupas	YFV(1/25%) CHIKV(8/50%) ZIKV(1/6.25) DENV 3 (1/6.25)
		Reared males	6/10 90	407 pupas	YFV(2/20%) CHIKV(6/60%)
Rural	Aedes aegypti	Females	3/6 11	11	CHIKV (1/16.7%) DENV(2/33%) DENV 2-3(1 16.7%) DENV 2 (1/16.7%) ZIKV(1/16.7%)
		Males	5/6 12	12	YFV (5/83.3%) CHIKV(2/33%) DENV2-3(1/16.7%) DENV 1-3 (2/33%) DENV3 (1/16.7%)
		Larvae	2/2 12	12	YFV (2/100%) CHIKV(2/100%) DENV3(2/100%)
		Pupae	1/1 2	27	YFV (1/100%) CHIKV(1/100%) DENV2(1/100%)
	Haemagogus	Females abdomen	6/14 42	46	CHIKV (2/14.3%)
	janthinomys	Females thorax	5/14 4	46	DENV (6/42.8%) CHIKV 3(2/14.3%) DENV1 (4/28.6%)
		Females thorax	1/3	3	YFV(1/33.3)
		males	1/1 2	2	CHIKV (1/100%) DENV 1, 2, 3 (1/100%)
	Aedes serratus	Females abdomen	19/19 173	421	YFV (8/42.1%) CHIKV(14/73.7%) DENV (18/94.7%) DENV 1 (4/21%)
		Females thorax	7/19 173	421	YFV(3/15.7%) CHIKV(5/26.3%) ZIKV(4/21%)
		Males	6/7 12	18	YFV(4/57.1%) CHIKV (5/71.4%) DENV 1(4/57.1%) DENV1,2,3(1/14.3%) DENV2(1/14.3%) ZIKV(4/57.1%)

* Number of positive samples over the number of processed samples per 100.
vaccinated, indicating the potential lowest vaccination coverage in this area, specifically in rural areas. The reported YFV cases in recent years in the country were associated with unvaccinated people from other regions or countries who enter these high transmission risk areas [41].

The YFV molecular sequence obtained was closer to West African sequences [40] than to American sequences previously reported [42]. This phenomenon could be associated with the continuous introduction of African YFV into the Americas [44]. Studies have reported natural ZIKV infection in H. janthinomys [46]. However, the virus never reaches the salivary glands [47], as could be the case for our finding, but studies for vectorial incrimination of these mosquitoes need to be conducted.

We found an IR in Ae. aegypti similar to that reported in endemic cities in Colombia [48]. Other studies have screened for the presence of YFV in Ae. aegypti females and reported the highest infection rates for DENV (0–40.7% of positive pools) and to a lesser extent for CHIKV (0–12.5% of positive pools) [26,49,50]. However, in this study, the most common infection was CHIKV. In 2019, there were 53 DENV cases with no reports of other arboviruses in the La Macarena municipality (Sivigila, http://portalsivigila.ins.gov.co/). The difference between reported human cases and entomo-virological detection could result from asymptomatic, misdiagnosed, and immunological protection from previous exposure.

5. Conclusion

The multidisciplinary approach explored in this research helped us not only to detect an early risk for YFV spillover and rural circulation of other arboviruses, threatening the local community and visitors. But also, was possible to identify entomological, ecological, and social determinants at the regional scale that could be addressed in educational strategies, to decrease the transmission risk. We propose this approach for surveillance in areas of suspected arbovirus transmission for early and effective responses to reduce adverse impacts of these diseases and avoid potential outbreaks.

Supplementary data to this article can be found online at https://doi. org/10.1016/j.euronoh.2022.100438.

Funding

This project was funded by Universidad El Bosque PCl:2018–10153 and by Minciencias contract 778–2018. The funding sources had no role in study design, data collection, analysis, or preparation of the manuscript.

Declaration of Competing Interest

The authors declare that they have no competing interests.

Data availability

Data will be made available on request.

Acknowledgments

We thank the Secretaría de Salud del Meta, the Macarena mayors’ office, the Plan de Salud Territorial La Macarena and the Health Center of La Macarena for their logistic support during the fieldwork. We want to thank specially to our fieldworkers: Doris Consuelo Rey and Carolina Taborda, and to the local community from La Macarena for receiving us and allowing us to carry out our research. In addition, we acknowledge the Dr. Miguel Otero director of Research, Universidad El Bosque, Bogotá, Colombia for his support and assistance to complete this study. We would like to thank Editage (www.editage.com) for English language editing and the anonymous reviewers for their comments to improve the original manuscript.

References

[1] R.C. Kading, A.C. Brault, J.D. Beckham, Global perspectives on arbovirus outbreaks: a 2020 snapshot, Trop. Med. Infect. Dis. 5 (2020) 124, https://doi.org/10.3390/tropicalmed5030142.
[2] G. Rodriguez, M.P. Velandia, J. Bothell, Fiebre Amarilla la enfermedad y su control, 1a ed., Instituto Nacional de Salud, Colombia, 2003, http://www.scielo. org.science?script=sci_arttext&pid=S0124-0064200800050001-000017&lang=en.
[3] N.I.O. Silva, L. Sacchetto, I.M. de Rezende, De G.S. Trindade, A.D. Laibeau, B. De Theisy, B.P. Drumond, Recent sylvatic yellow fever virus transmission in Brazil: the news from an old disease, Virol. J. 17 (17) (2020) 1–12, https://doi.org/10.1186/ S12985-019-1277-7.
[4] P.M. Rifaik, J.A. Benitez, J. De-La-Paz-Pineda, A.A. Rodriguez-Morales, Epizootics of yellow fever in Venezuela (2004-2005): an emerging zoonotic disease, Ann. N. Y. Acad. Sci. 1081 (2006) 57–60, https://doi.org/10.1196/annals.1373.005.
[5] Y. Ortiz-Martinez, A.M. Patiño-Barboza, A.A. Rodriguez-Morales, Yellow fever in the Americas: the growing concern about new epidemics, F1000Research. 6 (2017) 996, https://doi.org/10.12688/f1000research.996.2.
[6] M.L. Velandia-Romero, C. Coronel-Ruíz, L. Castro-Bonilla, S. Camacho-Ortega, M. A. Calderón-Peláez, A. Castellanos, V.A. Olano, A. Olano, A. Marenas-Roig, W. Villamí-Gómez, J.E. Castellanos, Prevalence of dengue antibodies in healthy children and adults in different Colombian endemic areas, Int. J. Infect. Dis. 91 (2019) 9–16, https://doi.org/10.1016/j.ijid.2019.10.045.
[7] V.A. Olano, Aedes aegypti en el área rural: implicaciones en salud pública, Biomédica. 36 (2016) 169, https://doi.org/10.7705/biomédica.v36i2.3374.
[8] Pan American Health Organization, Integrated Management Strategy for Arboviral Disease Prevention and Control in the Americas, Pan American Health Organization, 2020, https://doi.org/10.37794/979925120491.
[9] O.W. Lwande, V. Obanda, A. Lindström, C. Ahlin, M. Evander, J. Nyström, B. Gucht, Globe-trotting Aedes aegypti and Aedes albopictus: risk factors for arbovirus pandemics, Vector Borne Zoonotic Dis. 20 (2020) 71–81, https://doi.org/10.1089/vbz.2019.2486.
[10] J. Pérez-Pérez, W. Sanabria, C. Restrepo, R. Rojo, E. Henao, O. Triana, A.M. Mejía, S. Castaño, G. Rúa-Uríbe, Vigilancia virológica de Aedes (Stegomyia) aegypti y Aedes (Stegomyia) albopictus como apoyo para la adopción de decisiones en el control del dengue en Medellín, Biomédica. Rev. del Inst. Nac. Salud. 37 (2017) 155–166, https://doi.org/10.7797/biomédica.v37i2.4297.
[11] J.M. Carey, V. Chi, D.J. Flynn, B. Nyhan, T. Zeitzoff, The effects of corrective information about disease epidemics and outbreaks: evidence from Zika and yellow fever in Brazil, Sci. Adv. 6 (2020) eaaw7449, https://doi.org/10.1126/sciadv. awaw7449.
[12] J. Quintero, G. Carrasquilla, R. Suárez, C. González, V.A. Olano, An ecosystemic approach to evaluating ecological, socioeconomic and group dynamics affecting the prevalence of Aedes aegypti in two Colombian towns, Cad. Saúde Pública. 25 (2009) 1043–1050, https://doi.org/10.1590/s1518-87872009000500009.
[13] P. Herrera, F.J. Parra, A. Batista, A. Dáiz-Pulido, C.A. Lasso, E.A. Tenorio, L.M. Mesa S, M. González, M.A. Morales-Betancour, I. Mikolji, C.E. Granados Martínez, L. Barrientos, H. Manilla-Meluk, T. Velásquez-Roa, S. Losada-Prado, J.C. Donato, III. Fuente de Caño Cristales, sierra de La Macarena, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IIAV), Meta, Colombia, 2017, http://repository.humboldt.org.co/handle/20.500/11761/32939.
[14] Ministerio Nacional de Salud y Protección Social, Clasificación Y Categorización De Los Municipios Según El Riesgo 3, 2017 chrome-extension:// efaidnbmnnnibpcajpcglclefindmkaj/viewer.html?pdfurl=https%3A%2F%2Fwww. minsalud.gov.co%3Ffats%3Frid%2Flists%2FBibliotecaDigital%2F%2F%2F% 2F%2F2%7EF%2F%2F%2FClasificacion-actualizada-municipios-fiebre-amarilla. pdf$=–19778%.
[15] J.A. Forero Riano, M.F. Polanco Puerta, Análisis de la deforestación en La Macarena, antes y después de los acuerdos de paz, Colom. For. 24 (2021) 9–13, https://doi.org/10.1186/ s12985-019-1277-7.
[16] Departamento Administrativo Nacional de Estadísticas, Perfil La Macarena, Meta, Colombia general 2005. http://www.dane.gov.co/files/censo2005/PERFIL_PDGF_CG 005/050501770000.PDF, 2010.
[17] G.M. Vazquez-Prokopec, W.A. Galvin, R. Kelly, U. Kitron, A. New, Cost-effective, battery-powered aspirator for adult mosquito collections, J. Med. Entomol. 46 (2009) 1256, https://doi.org/10.1603/033.046.0602.
[18] J. Lane, Neotropical Culicidae vol. 1 and 2, University of São Paulo, Brazil, 1953.
[19] P. Cova-García, Mosquitos de Venezuela, Ministerio de Sanidad y Asistencia Social, Caracas, 1966.
[20] J. Liria, J.C.-Navarro, Clave fotográfica para hembras de Haemagogus Williston 1896 (Diptera: Culicidae) de Venezuela, con nuevo registro para el país, Boletín Malarial. y Salud Ambient 49 (2009) 283–292.
T.L. Fuller, G. Calvet, C. Genaro Estevam, J. Rafael Angelo, G.J. Abiodun, U.-J.A.F. Ria, A.E. Lenhart, C.E. Castillo, M. Oviedo, E. Villegas, Use of the pupal/demographic L. Sanchez, V. Vanlerberghe, L. Alfonso, M. Del C. Marquetti, M.G. Guzman, S.B. Agha, D.P. Tchouassi, A.D.S. Bastos, R. Sang, Dengue and yellow fever virus S.O.F. Silva, C.F. de Mello, R. Figueir B. Talbot, B. Sander, V. Cevallos, C. González, Entomological characterization D.C.P. C, S.E. Fick, R.J. Hijmans, WorldClim 2: new 1-km spatial resolution climate surfaces B. Talbot, B. Sander, V. Cevallos, C. González, D. Casinimiro, M. C. Carrasquilla Ferro, N. Gauto, S. Litwiniuk, K. López, M.I. Ortiz, P. Ponce, S. D. Villota, F. Zelaya, M. Espinel, J. Wu, M. Miretti, M.A. Kulkarni, Determinants of Aedes mosquito density as an indicator of arbovirus transmission risk in three sites affected by co-circulation of globally spreading arboviruses in Colombia, Ecuador, and Argentina, Parasit. Vectors 14 (2021) 1–14, https://doi.org/10.1186/s13071-021-04984-Z. S.O.F. Silva, C.F. de Mello, R. Figueroa, T. Docile, M. Serdeiro, F.F. Fumian, J. Alencar, Oviposition behavior of wild yellow fever vector mosquitoes (Diptera: Culicidae) in an Atlantic Forest fragment, Rio de Janeiro state, Brazil, Sci. Rep. 11 (11) (2021) 1–7, https://doi.org/10.1038/s41598-021-85752-y. S.B. Agha, D.P. Tchouassi, A.D.S. Bastos, R. Sang, Dengue and yellow fever vector viruses: seasonal abundance, diversity and resting preferences in three Kenyan cities, Parasit. Vectors 10 (2017), https://doi.org/10.1186/s13071-017-2598-2. A.E. Hencht, C.A. Castillo, M. Odovio, E. Villegas, Use of the pupal/demographic survey technique to identify the epidemiologically important types of containers producing Aedes aegypti (L.) in a dengue-endemic area of Venezuela, Ann. Trop. Med. Parasitol. 100 Suppl 1 (2006), https://doi.org/10.1179/136485906X105516. A. Vásquez-Trujillo, D. Cardona-Arango, A.M. Segura-Cardona, D.C. Portela-Camara, N. Alves-Honorio, G. Parra-Henao, House-level risk factors for Aedes aegypti infestation in the Urban Center of Castilla la Nueva, Meta state, Colombia, J. Trop. Med. 2021 (2021) 1–12, https://doi.org/10.1155/2021/8485256. L. Sánchez, V. Vanlerberghe, L. Alfonso, M. Del C. Marquetti, M.G. Guzman, J. Bisset, P. van der Stuyft, J. Trop. Med. 2021 (2021) 1–8, https://doi.org/10.1371/journal.pone.0188002. D.C.P. Castro, M.A. Kulkarni, B. Talbot, H. Vanlerberghe, L. Alfonso, M. Del C. Marquetti, M.G. Guzman, S.B. Agha, D.P. Tchouassi, A.D.S. Bastos, R. Sang, Dengue and yellow fever virus surveillance of vaccine adverse events, epizootics and vectors, Pathog 10 (2021) 693, https://doi.org/10.3390/PATHOGENS10060693. M.R. Pizano, V. Mercier, V. Deubel, H. Tolou, Complete nucleotide sequence and phylogeny of an American strain of yellow fever virus, TRIND79A brief report, Arch. Virol. 144 (1999) 1837–1843. P. GG, R. MN, de O. MA, M. LA, A.F. JD, Detection of yellow fever virus in sylvatic mosquitoes during disease outbreaks of 2017–2018 in Minas Gerais state, Brazil, Insects. 10 (2019), https://doi.org/10.3390/INSECTS10050136. J. Da C. Cardoso, M.A.B. De Almeida, E. Dos Santos, D.F. Da Fonseca, M.A. M. Sallum, C.A. Noll, H.A. De O. Monteiro, A.C.R. Cruz, V.L. Carvalho, E.V. Pinto, F.C. Castro, J.P. Nunes Neto, M.N.O. Segura, P.F.C. Vasconcelos, Yellow fever virus in Haemagogus leucocelaenus and Aedes serratus mosquitoes, southern Brazil, 2008, Emerg. Infect. Dis. 16 (2010) 1918–1924, https://doi.org/10.3201/ eid1612.100608. J. Alencar, C.F. de Mello, C.B. Marcondes, A.E. Guimarães, H.K. Tomà, A.Q. Bastos, S.O.F. Silva, S.L. Machado, Natural infection and vertical transmission of Zika virus in sylvatic mosquitoes Aedes albopictus and Haemagogus leucocelaenus from Rio de Janeiro, Brazil, Trop. Med. Prod. Infect. Dis. 6 (2021), https://doi.org/10.3930/PRJC000206. R.S. Fernandes, M.I. Berost, M.G. Castro, E.L. Tellier, A. Ferreira-de-Brito, L. M Raphael, M.C. Bonaldo, R. Lourenço-de-Oliveira, Low vector competence in sylvatic mosquitoes limits Zika virus to initiate an enzootic cycle in South America, Sci. Rep. 9 (2019) 20151, https://doi.org/10.1038/s41598-019-56669-4. V.H. Pérez-García, O. Triana-Chávez, A.M. Mejía-Jaramillo, F.J. Díaz, A. Gómez-Palacio, S. Arboleda-Sánchez, Infection rates by dengue viruses in mosquitoes and the influence of temperature may be related to different endemicity patterns in three Colombian cities, Int. j. environ. res. Public Health 13 (2016) 734, https://doi.org/10.3390/ijerph130707973. A.L. Costa-da-Silva, R.S. Ioshino, V. Petersen, A.F. Lima, M. Dos P. Cunha, M.R. Rosa, S.G. Rodrigues, F.G.C. Silva, S.L. Machado, Natural infection and vertical transmission of Zika virus in sylvatic mosquitoes during disease outbreaks of 2017–2018 in Minas Gerais state, Brazil, Insects. 10 (2019), https://doi.org/10.3390/INSECTS10050136. J.C. dos Reis, G. Gibson, T. Ayllón, A. de Medeiros Tavares, J.M.G. de Araújo, E. Sala, L. Suesdek, P.M. De A. Zanotto, M.L. Capurro, First report of naturally infected Aedes aegypti with chikungunya virus genotype EKSA in the American, PLoS Negl. Trop. Dis. 11 (2017), https://doi.org/10.1371/journal.pntd.0005630. J.S. Mantilla-Granados et al. One Health 15 (2022) 100438 10