ABSTRACT

Present review article explains ant venom components and its allergic and biological effects in man and animals. Red ants or small fire ants secrete venom of the ruby ant (Myrmica rubra) linear toxins, which show antibacterial and insecticidal activity. The techniques revealed that most peptide toxins are small polycationic, generate about 1.17 µg/day. Ant venom toxins can be used for insecticidal and pain-producing pharmacologies. Worker ants of activities including antimicrobial, haemolytic, cytolytic, paralytic, activity against Staphylococcus aureus and hydrocarbons. It also contains protease inhibitors as aprotinin, and back pain. Venom from venom is also used for the treatment of asthma, rheumatism, earache such as antinociceptive, neuroprotective and antimicrobial effects. Ant venom contains a range of activities including antimicrobial, haemolytic, cytolytic, paralytic, insecticidal and pain-producing pharmacologies. Worker ants generate about 1.17 µg/day. Ant venom toxins can be used to generate bioinsecticides and therapeutic agents [1]. Members of sixteen ant families possess stinger and inflict toxic venom for defense against predators, competitors and microbial pathogens, as well as for social communication (fig. 1). Hymenoptera venoms, mainly ants secrete natural toxins which could be used to synthesize novel therapeutic agents. Ant secretes toxic venom that shows diverse bioactive molecules. Ant Odontomachus bauri crude venom presents several protein bands, with higher staining for six proteins with gelatinolytic activity venom showed high proteolytic activity on azocasein at optimal pH 8.0 and 37 °C. The South American giant ant, Dinoponera quadripes produces proteinaceous venom. Its toxins are polycationic linear toxins which show multiple biological activities such as antinociceptive, neproprotective and antimicrobial effects. Ant venom is also used for the treatment of asthma, rheumatism, earache and back pain. Venom from D. quadripes shows anticoagulant antplatelet and anti-inflammatory activities [2].

INTRODUCTION

Ants represent a taxonomically diverse group of hymenopterans (formicidae) with over 13,000 extant species, the majority of which inject or spray secretions from a venom gland. Ants is mostly due to the unique eusociality that has permitted them to develop complex collaborative strategies, partly involving their venom secretions, to defend their nest against predators, microbial pathogens, ant competitors, and to hunt the prey. Ant venom composition, allergic and toxic effects with important biological activity and therapeutic use.

Source of Information

For writing this comprehensive research review on ant toxins/allergens, various databases were searched. For the collection of relevant information, specific terms such as medical subject headings (MeSH) and key text words, such as “ant venom allergens”, “biological and pharmaceutical effects”, therapeutic uses” published till 2021 were used in MEDLINE. Most specially for retrieving all articles pertaining to the use of VIT for insect venom allergy, electronic bibliographic databases were searched and abstracts of published studies with relevant information on the venoms toxins/allergens were collected. Furthermore, additional references were included through searching the references cited by the studies done on the present topic. Relevant terms were used individually and in combination to ensure an extensive literature search. For updating the information about a subject and incorporation of recent knowledge, relevant research articles, books, conferences proceedings’ and public health organization survey reports were selected and collated based on the broader objective of the review. This was achieved by searching databases, including SCOPUS, Web of Science, and EMBASE, PubMed, Swissprot, Google searches. From this common methodology, discoveries and findings were identified and summarized in this final review.

Ant venom composition

Ant species Odontomachus bauri contains six proteins that possess mol wt. e.g. 17, 20, 26, 29, 43 and 48 kDa) its non-toxic fraction is used in chemical communication involving trail and sex phenomes, deterrents, and aggregators. Ant venom also contains several enzymes i.e. hydrolases, oxidoreductases, proteases, Kunitz-like polypeptides, and the less abundant inhibitor cysteine knot (ICK)-like (knottin) neurotoxins and insect defensins. Few of them showed high proteolytic [5]. The venom is 95% water-insoluble alkaloid, with the remaining 5% being an aqueous protein solution. Ant venom contains a range of noncovalent, homodimeric and heterodimeric peptides with one or two inter-chain disulfide bonds possessing pore-forming, allergenic and paralytic actions. The crude venom contains volatile and non-volatile compounds such as alkaloids and hydrocarbons [6]. The fire ant (Solenopsis invicta) contains Solenopis, the alkaloidal
component that is an inhibitor of phosphatidylinositol-3-kinase signaling and angiogenesis [7]. More often, alkaloids in the ant venom causes a sterile pustule at the sting site and show cytotoxic and hemolytic properties [8] (fig. 2).

Ant species belong to family formiciæ possess formic acid (methanoic acid) as a predominant compound. By self-grooming their acidopore, Lasius neglectus (Formiciæ) workers uptake venom into their mouth and spray acid on brood in their colony to inhibit the growth of fungal pathogens [9]. These also contain formic acid, at a concentration of up to 70% (v/v). It also functions as an alarm pheromone. Both formic acid and acetic acid, work as efficient defensive compounds against competitors and predators, including vertebrates [10]. The major precursors for its biosynthesis are the amino acids serine and glycine [11] (fig. 2).

Over 95% of the venom components are water-insoluble piperidine alkaloids. Piperidines include trans-2-methyl-6-n-undecylpiperidine, trans-2-methyl-6-n-tridecylpiperidine, trans-2-methyl-6-(cis-4-trideceny1) piperidines, trans-2-methyl-6-n-pentadecylpiperidine, and trans-2-methyl-6-(cis-6-pentadecenyl) piperidine and 2,6-dialkylpiperidines. The ant venom is possesses trans-stereoisomers as specific ingredient [12], trans-2-Methyl-6-n-undecylpiperidine (solenopsin) has been shown to have cytotoxic, hemolytic, necrotic, insecticidal, antibacterial, antifungal, and anti-HIV properties [13]. From Solenopsis invicta four protein allergens have been characterized, so far i.e. Sol i 1-4. These also contain formic acid at a concentration of up to 70% (v/v). It also functions as an alarm pheromone. Both formic acid and acetic acid, work as efficient defensive compounds against competitors and predators, including vertebrates [10]. The major precursors for its biosynthesis are the amino acids serine and glycine [11] (fig. 2).

The crude venom of D. quadriceps shows an anti-inflammatory effect in mice and in vitro [15]. Ant venom express surface molecules that participate in antigen presentation involving pro-and anti-inflammatory cytokines. Samsun Ant Venom treatment restores the normal biochemical and oxidative stability by improving the TNF-α/NF-κB mediated inflammation in CCLA-treated rats [16]. SAV-treated animals significantly reduce concentrations of both IFN-γ and IL-17 in comparison with the control group. However, intraperitoneal and subcutaneous SAV-treated rats were able to upregulate the expressions of MHC-I, CD80 and CD86 on PMNs in comparison with the control, respectively [17]. The subcutaneous SAV-treated rats presented decreased levels of glutathione with increased cholesterol and triglyceride levels. SAV also significantly lower down Fas gene expression comparing to the LPS group and restore the level of IFN-γ mRNA expression [18]. Ant venom also removes of CCH-induced acute liver toxicity in an animal (rat) model (fig. 3).

### Anti-inflammatory activity

Ant venom contains pharmacologically active compounds that are capable of protein synthesis inhibition, induction of angiogenesis and show apoptosis [19], Samsun ant venom (SAV) *Pachycondyla sennaaraeensis* shows anti-neoplastic activity in different cell lines HepG2, MCF-7, and LoVo. It shows the differential dose-dependent antineoplastic effect with an increased level of significant cytokines, including Interleukin (IL)-1β, IL-6, and IL-8 and transcription factor, nuclear factor-kappa B (NF-κB). It can be used to treat certain types of cancer [20]. SAV injection also restore oxidative stability, anti-inflammatory, and show hypolipidemic bioactivity in rats after induced disruption of these parameters by LPS injection [21]. This improvement by SAV was mediated by upregulation of AKT1 signaling in rats at the dose of 100 μg/kg body weight (fig. 3).
**Proteolytic activity**

The crude venom showed high proteolytic activity on azocasein at optimal pH 8.0 and 37 °C. In the presence of protease inhibitors as aprotinin, leupeptin and EDTA, the azocaseinolytic activity was reduced by 45%, 29% and 9%; respectively. It clears that the enzymes present in the crude venom is serine proteases [22].

**Allergic and immune hypersensitivity**

Australian ant *Myrmecia pilosula* sting causes allergy a gives rise to immune hypersensitivity reactions that become severe and results in death of patients. *M. pilosula* venom contain Pilosulin 3, pilosulin 1 and Pilosulin 4.1. Among which as a major is major allergen while pilosulin 1 and Pilosulin 4.1 are minor allergens. Venom toxins impose minor skin reactions to severe and sometimes fatal anaphylaxis with high allergenic activities [23]. Fire ant stings induce eosinophil recruitment and production of Th2 cytokines [24]. WBE of fire ants was found useful for skin test diagnosis of sensitive individuals. It shows cross-reactive or shared antigens between fire ant venom, It show the passive transfer of skin reactivity to non-sensitive individuals through sera from sensitive individuals [25.] *Ectomomyrmex* spp. show sting hypersensitivity with many incidents of allergic reactions synthesis of the high level of specific
worsening of pre-existing cardiopulmonary disease, and anaphylaxis is a response to the aqueous protein solution. Fire ant stings also are capable of causing serum sickness, nephrotic syndrome, seizures, worsening of pre-existing cardiopulmonary disease, and anaphylaxis (fig. 3).

**Hemolytic and histamine-releasing activities**

A pilosulin-like toxin peptide 1-6, isolated from the predatory ant *Odontomachus monticola* displays hemolytic, and histamine-releasing activities (fig. 3) [28].

**Analgesic activity**

*D. quadriceps* is a predatory giant ant, its venom toxins damage cell membranes and tissue, to cause neurotoxicity, induce allergic reactions, causing long-lasting local pain, involuntary shaking, lymphadenopathy, and cardiac arrhythmias, among other symptoms (fig. 3) [29].

**Fibrinogenolytic activity**

Ant *Odontomachus bauri* crude venom degraded the fibrinogen α-chain faster than the β-chain, while the fibrinogen γ-chain remained unchanged. It is due to presence of serine protease Silva (fig. 3) [30].

**Bacteriostatic and bactericidal effects**

The predatory giant ant *Dinoponera quadriceps* secretes a complex mixture of bioactive peptides in its venom. It contains five classes e. g., dermaseptin-, defensin-, ICK-, pilosulin- and ponericin-like antimicrobial peptides [31]. Its synthetic templates sDq-2562 and sDq-3162 are ponericin-like dinoponera toxins. The most effective peptide, the 28-residue sDq-3162 displayed a significant bacteriostatic and bactericidal effect with minimal inhibitory concentrations. Similarly, venom peptide bicarinalin, from the ant *Tetramorium bicarinatum*, shows strong antimicrobial activity with a broad spectrum of activity against *Helicobacter pylori* [32]. Bicarinalin can significantly decrease the density of *Helicobacter pylori* with a broad spectrum of activity against *Staphylococcus aureus* [33] (fig. 4). Bicarinalin shows low cytotoxicity against human lymphocytes at bactericidal concentrations and its long half-life in human serum [33] (fig. 4). Bicarinalin broad antibacterial activity was much similar in concentrations and its long half-life in human serum [33] (fig. 4).

**Mode of action**

*Dinoponera quadriceps* venom (DqV) toxins significantly alter membrane permeability in *Staphylococcus aureus* and show bactericidal action [47]. AMPs from ant venom interact with microbial membranes [48]. M-PONTX-Dq3a could be used in prevention of biofilm formation through the development of anti-adhesive surface coatings on medical devices. These are most effective against drug-resistant strains which cause skin or soft tissue infections. This remarkable activity is only after the diffusion of venom toxins through cell wall and membrane [49]. Similarly, the insecticidal activity of *M. rubida* venom is due also to absorption of toxins through insect cutant [50]. These results indicate that C11 causes initial permeability changes in the plasma membrane followed by lytic release of histamine and other cell components. Moreover, diallylpiperidine component of the venom provides from fire ants act as a defense and may nonspecific in action and quickly inlet in the membrane [51].

**Ant venom immunotherapy**

Jack Jumper ant venom is quite toxic, for neutralization of its effect, antibody immunotherapy (JJA VIT) is used. However, for the production of antibodies, purified ant venom toxins are used with Advax adjuvant, and injected in experimental animals for immunogenicity [43]. Similarly, whole-body extract (WBE) of fire ant *Solenopsis invicta* is used immunotherapy mainly to cut down hypersensitivity in sting patients [44]. Only one sting episode in this group (2.1%) produced an anaphylactic reaction. WBE therapy was found highly effective and lower down the risk of allergic and systemic reactions [45]. Fire ant venom immunotherapy is not recommended for children with large local reactions. These reactions were in range from local pustules and large, late-phase responses to life-threatening anaphylaxis [46].

**Phospholipid ethers have been demonstrated to have activity against Akt, as well as potential alternative targets [52]. Solenopsin shares the long alky side chains seen in phospholipid ethers and resembles mifepristone and perfosine by having a positively charged amine group and alkyl chain. Which quickly pass in side muscle cells of the human being [52]. Solenopsin makes permeability changes in the plasma membrane followed by lytic release of histamine and other cell components, while diallylpiperidine shows nonspecific action and provides the fire ants with a sizable defense of general applicability. Due to membrane pore formation and channel binding inhibition, most of the activities of ant venom are paralytic, cytolytic, haemolytic, allergenic, pro-inflammatory, insecticidal, antimicrobial, and pain-producing in nature, while non-toxic functions include roles in chemical communication involving trail and sex pheromones, deterrents, and aggregators [53]. Within ants, alkaloids are found in venom and function as potent weapons against heterospecific species, which show membrane lytic activity [54]. Besides, this solenopsin also inhibits a group of cellular kinases and Akt selectively in an ATP-competitive manner, without affecting

**Antifungal activity**

Venoms from *Dinoponera quadriceps* ant possess five known classes of antimicrobial peptides e. g., dermaseptin-, defensin-, ICK-, pilosulin- and ponericin-like types). Pilosulin-and ponericin-like peptides were active against bacteria, fungi, and parasites. Synthetic phospholipids (Dq-2562, Dq-1503, and Dq-1319) and ponericin-like (Dq-3162) peptides showed fungicidal and fungistatic activities against different species of *Candida* [39] (fig. 3).

**Cardio depressant and neurologic effects**

The fire ant (*Solenopsis invicta*) venom possesses alkaloid components which produce cardiovascular and central nervous system toxic effects in mammals. But synthetic *S. invicta* alkaloids i.e. isosolenopsin A and solenopsin A show cardiorespiratory depressant effects in rodent models. Moreover, solenopsin A injection (30 mg/kg ivintra venously) caused seizures, respiratory arrest, and death. Two alkaloid components of fire ant venom possess the cardiorespiratory depressant activity and elicit seizures in the rat [40] (fig. 4).

**Insecticidal activity**

The crude venom of the predatory ant, *Manica rubida*, control pea aphid (*Acrithosiphon pisum*), a common agricultural pest developed through parthenogenesis. *M. rubida* venom possesses decapeptide U-MYRTX-MAN1 (NH2-IPKVLSELY-CONH2) Both crude venom and U-MYRTX-MAN1 reversibly paralyzed injected aphids and induced a loss of body fluids, reduced the survival and heavily affects its reproduction [4]. This remarkable insecticidal activity of *M. rubida* venom can be used as a resource of bio-insecticides. Fire ant venom shows strong insecticidal activity against *Plutella xylostella* (Lepidoptera: Plutellidae) Larvae [41]. Myrmicine ants mainly *plant-ant* Tetraponera athiops' synthetic defensive venom toxins which protect host plants is an association (fig. 4) [42].
its upstream activator PDK1 or PI3K [54]. However, in cells, solenopsin prevented the activation of PI3K, the phosphorylation of Akt-1 at both Thr308 and Ser473, and the phosphorylation and subsequent subcellular localization of forehead box 01a (FOXO1a) [55]. Solenopsin exerts its effects on Akt activity in cells by inhibiting a step in the signaling. Various ant species possess unique natural bioactive toxin peptides, which show diverse biological activities [56], much similar to defense molecules found mainly in venomous animals [57].

**CONCLUSION**

Fire ants or red ants are invasive and venomous arthropod pests. They synthesize and secrete a biological cocktail of organic compounds, including peptide and polypeptide toxins. Ant venom possesses several hydrolyses, oxidoreductases, proteases, Kunitz-like polypeptides, and cysteine knot (ICK)-like (knottin) neurotoxins and insect defensins in a very low concentration. These could become the solution of the environment and human health because these could replace synthetic chemicals and can be used as a potential source of pharmaceutics, insecticides and bio-insecticides.

These could become the solution of the environment and human health because these could replace synthetic chemicals and can be used as a potential source of pharmaceutics, insecticides and bio-insecticides.

Ant venom toxins have agricultural importance; they could be used for the control of insect pests of various crops. These could be used as a source of alternative, environmentally-friendly bio-insecticides.

**ACKNOWLEDGEMENT**

I thank HOD department of Zoology, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, for its facilities.

**FUNDING**

Nil

**AUTHORS CONTRIBUTIONS**

All the authors have contributed equally.

**CONFLICT OF INTERESTS**

Declared none

**REFERENCES**

1. Aili SR, Touchard A, Escoubas P, Padula MP, Orivel J, Dejean A, Nicholson GM. Diversity of peptide toxins from stinging ant venoms. Toxicon. 2014;92:166-78. doi: 10.1016/j.toxicon.2014.10.021, PMID 25448389.

2. Madeira Jda C, Quinet YP, Nonato DT, Sousa PL, Chaves EM, Jose Eduardo Ribeiro Honorio Junior, Pereira MG, Assreuy AM. Novel pharmacological properties of Dinoponera quadriceps giant ant venom. Nat Prod Commun. 2015;10(9):1607-9. doi: 10.1177/1934578X1501000930, PMID 26594770.

3. Silva MF, Moto OM, Miranda Vidos S, Cunha Ade O, Silva MC, Naves KS, de Oliveira F, Silva DA, Mineo TW, Santiago FM. Biological and enzymatic characterization of peptides from crude venom of the ant Odontomachus bauri. Toxins (Basel). 2015;7(12):5114-28. doi: 10.3390/toxins7124869, PMID 26633501.

4. Heep J, Skaljac M, Grotmann J, Kessel T, Seip M, Schmidtberg H, Vilčinskas A. Identification and functional characterization of a novel insecticidal decapetide from the myrmicine ant manica rubida. Toxicon. 2011;58(10):562. doi: 10.1016/j.toxicon.2011.10.056, PMID 21557881.

5. Tang Y, Hou S, Li X, Wu M, Ma B, Wang Z, Jiang J, Deng M, Duan Z, Tang X, Liu Y, Wang W, Han X, Jiang L. Anti-parasitic effect on toxoplasma gondii induced by a spider peptide lyocysin-I. Exp Parasitol. 2019;198:27-35. doi: 10.1016/j.exppara.2019.01.009, PMID 30682337.

6. Touchard A, Labrèvre N, Roux O, Petitcrue F, Orivel J, Escoubas P, Koh JMS, Nicholson GM, Dejean A. Venom toxicity and composition in three Pseudomyrmex ant species having different nesting modes. Toxicon. 2014;88:67-76. doi: 10.1016/j.toxicon.2014.05.022, PMID 24292139.

7. Howell G, Butler J, Deshazo RD, Farley JM, Liu H, Nanayakkara NP, Yates A, Yi GB, Rockhold RW. Cardio depressant and neurologic actions of Solenopsis invicta (imported fire ant) venom alkaloids. Ann Allergy Asthma Immunol. 2005;94(3):380-5. doi: 10.1016/S1081-1206(05)60991-X, PMID 15901250.

8. Arbiser JL, Kau T, Konar M, Narra K, Ramchandran R, Summers SA, Vlahos CJ, Ye K, Perry BN, Matter W, Fischl A, Cook J, Silver PA, Bain J, Cohen P, Whitmire D, Farness S, Govindarajan B, Bowen JP. Solenopsis, the alkaloidal component of the fire ant (Solenopsis invicta), is a naturally occurring inhibitor of phosphatidylinositol-3-kinase signaling and angiogenesis. Blood. 2007;109(2):560-5. doi: 10.1182/blood-2006-06-029934, PMID 16990598.

9. Tragust S, Ugelvig LV, Chauvat P, Heinke J, Cremer S. Pupal cocoons affect sanitary brood care and limit fungal infections in ant colonies. BMC Evol Biol 2013;13:225. doi: 10.1186/1471-2148-13-225, PMID 24212481.

10. Attygalle AB, Morgan ED. Identification of trail pheromone of the ant Tetramorium caespitum L. (Hymenoptera: Myrmicidae). J Chem Ecol. 1984;10(10):1453-68. doi: 10.1007/BF00990315, PMID 24318345.

11. Brand JM, Blum MS, Barlin MR. Fire ant venoms: intraspecific and interspecific variation among castes and individuals. Toxicon. 1973;11(4):325-31. doi: 10.1016/0040-4039(73)90029-9, PMID 47511111.

12. Johnson SR, Rikli HG, Schmidt J0, Evans MS. A reexamination of poneroatxin from the venom of the bullet ant Parapana clavata. Peptides. 2017;98:51-62. doi: 10.1016/j.peptides.2016.05.012, PMID 27266841.

13. Chen L, Fadamiro HY. Re-investigation of venom chemistry of Solenopsis fire ants II. Identification of novel alkaloids in S. invicta. Toxicon. 2009;53(5):479-86. doi: 10.1016/j.toxicon.2009.01.016, PMID 19673093.

14. Hoffman DR, Skell RL, Schmidt M, M. Sol I. L. (Hymenoptera: Myrminidae) . Toxicon. 2016;117:22-9. doi: 10.1016/j.toxicon.2016.03.009, PMID 27018043.

15. Al-Tamimi J, Ebaid H, Hassan I, Alhazza IM, Hailan W, Al-Khalifa M, Rady A, Rahboudi AM, Mashaly AMA. Thymoquinone ameliorates carbon tetrachloride-induced acute spleen toxicity in mice. BMC Pharmacol Toxicol. 2019;20(1):84. doi: 10.1186/s40360-019-0375-x, PMID 31847893.
31. Roy A, Bharadvaja N. Venom-derived bioactive compounds as potential anticancer agents: a review. Int J Pept Res Ther. 2021;27(1):1-19. doi: 10.1007/s10918-020-1073-a.

26. Jameel AI, Adelabu SC, Semlali A, Htakhar Hassan, Hosam Ebaid, Ibrahim M Alhazza, Syed H Mehdi, Mohammed Al-Khalifa, Mohammad S. Al-Anazi. Cancer biotherapy & radiopharmaceuticals; 2018. p. 65-73.

21. Ebaid H, Al-Tamimi J, Hassan I, Alhazza I, Al-Khalifa M. Antioxidant bioactivity of Samsum ant (Brenthis albicincta) venom against CCL4-induced nephropathy in mice. Oxid Med Cell Longev. 2014;2014:763061. doi: 10.1155/2014/763061.

20. Estrada Gomez S, Cupitra NI, Arango WM, Munoz LJ. Intraspacific variation of centruroides edwardsii venom from two regions of colombia.Toxins (Basel). 2014;6(7):2082-96. doi: 10.3390/toxins6070208. PMID 25025710.

19. Natsui K, Mizuno Y, Tani N, Yabuki M, Komoru S. Retraction Note to: identification of CYP3A4 as the primary cytochrome P450 responsible for the metabolism of tandospirone by human liver microsomes. Eur J Drug Metab Pharmacokinet. 2019;44(6):385. doi: 10.1007/s13318-019-00585-5, PMID 31643024.

18. Zamith Miranda D, Fox EGP, Monteiro AP, Gama D, Poubian LE, de Araujo AF, Araujo MFC, Atella GC, Machado EA, Diaz BL. The allergic response mediated by fire ant venom proteins. Sci Rep. 2018;8(1):14427. doi: 10.1038/s41598-018-32327-z, PMID 30258210.

17. James FK Jr, Pence HL, Driggers DP, Jacobs RL, Horton DE. Imported fire ant hypersensitivity. Studies of human reactions to fire ant venom. J Allergy Clin Immunol. 1976;58(1 PT 1):110-20. doi: 10.1016/0091-6749(76)90112-3, PMID 947974.

16. Kim SC, Hong CS. A case of anaphylaxis by ant (Hymenoptera: Formicidae) venom and measurements of specific IgE and IgG subclasses. Yonsei Med J. 1992;33(3):281-7. doi: 10.3339/ymj.1992.33.3.281, PMID 12922523.

15. Chen J, Rashad T, Feng G. Toxicity of formic acid to red imported fire ants, Solenopsis invicta Buren. Pest Manag Sci. 2012;68(9):1399-405. doi: 10.1002/ps.3319, PMID 22674812.

14. Tani N, Kazuma K, Ohtsuka Y, Shigeri Y, Masuko K, Konno K, Inagaki H. Mass spectrometry analysis and biological characterization of the predatory ant Odontomachus monticola venom and venom sac components. Toxins (Basel). 2019;11(15):150. doi: 10.3390/toxins11050150, PMID 30565410.

13. Ceolin Mariano DO, de Oliveira UC, Zaharenko AJ, Pimenta DC, Canuto JA, de Silva J, Freire VN, Quinet YP, Hatt A, Monteiro HS, Nogueira NA, Martins AM. Antimicrobial effect of Dinoponera quadriceps (Hymenoptera: Formicidae) venom against Staphylococcus aureus strains. J Appl Microbiol. 2014;117(2):390-6. doi: 10.1111/jam.12546, PMID 24846589.

12. Dodu Lima IV, de Paula Cavalcante CS, Radias-Baptista G. Antifungal in vitro activity of pilosulins- and pederin-like peptides from the giant ant Dinoponera quadriceps and synergistic effects with antimycotic drugs. Antibiotics (Basel). 2020;9(6):354. doi: 10.3390/antibiotics9060354, PMID 32585811.

11. Park J, Kaufmann GF, Bowen JP, Arbiser JL, Janda KD. Solenopsis A. A venom alkaloid from the fire ant Solenopsis invicta, inhibits quorum-sensing signaling in Pseudomonas aeruginosa. J Infect Dis. 2008;198(8):198-201. doi: 10.1086/591916, PMID 18715055.

10. Drayer SE, Evans PD, Gill SS, Hildebrandt LG, Hildebrandt JG, James AA. Fourth international symposium on molecular insect science. Tucson, Arizona, USA. J Insect Sci. 2002:2:17.

9. Lai LC, Kuo TC, Huang RN, Wu WJ. The insecticidal activities of fire ant (Hymenoptera: Formicidae) venoms against Plutella xylostella (Lepidoptera: Plutellidae) larvae. J Econ Entomol. 2012;105(5):1519-6. doi: 10.1603/ec1075, PMID 23156154.

8. Barasse V, Touchard A, Tene N, Tindo M, Kenne M, Klop C, Dejean A, Bonnaffe E, Treilhou M. The peptide venom composition of the fierce stinging ant Ectatomma quadridens. Toxicon. 2018;153:112-23. doi: 10.1016/j.toxicon.2018.05.001, PMID 29922527.

7. Freeman TM, Hylander R, Ortiz A, Martin ME. Imported fire ant immunotherapy: effectiveness of whole-body extracts. J Allergy Clin Immunol. 1992;90(2):210-5. doi: 10.1016/0091-6749(92)90073-b, PMID 1500625. Stafford CT. Fire ant allergy. Allergy Proc. 1992;13(1):11-6. doi: 10.1016/0196-025X(92)90178-8, PMID 1577260.

6. Paul E. Bradyrhizobium sp. R. Perspec. On diagnosis and treatment of food poisoning. Postgraduate Medicine. 1984;76(1):162-155. doi: 10.3109/003254184.1984.11696872, PMID 6739381.

5. Aruldass CA, Masalamany SRL, Venil CK, Ahmad WA. Antimicrobial mode of action of violacin from chromobacterium violaceum UTM5 against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). Environ Sci Pollut Res Int. 2018;25(6):5164-80. doi: 10.1007/s11356-017-8855-2, PMID 2836140.

4. Cardoso Jodos S, Jourdan E, Deugdure M, Upert G, Gilles N, Cologna CT, Cardoso Jodos S, Jourdan E, Deugdure M, Upert G, Gilles N, Uetanabaro AF, Costa Neto EM, Thonart P, Deoue P, Quinton L. Peptidomic comparison and characterization of the
major components of the venom of the giant ant Dinoponera quadripекс collected in four different areas of Brazil. J Proteomics. 2013;94:413-22. doi: 10.1016/j.jprot.2013.10.017, PMID 24157790.

50. Rocha LQ, Orzaez M, Garcia Jareho AB, Nunes JVS, Duque BR, Sampaio TL, Alves RS, Lima DB, Martins AMC. Dinoponera quadripекс venom as a source of active agents against staphylococcus aureus. Toxicon. 2021;189:33-8. doi: 10.1016/j.toxicon.2020.11.003, PMID 33108023.

51. Heep J, Klaus A, Kessel T, Seip M, Vilcinskas A, Skaljac M. Proteomic analysis of the venom from the ruby ant Myrmica rubra and the isolation of a novel insecticidal decapptide. Insects. 2019;10(2):42. doi: 10.3390/insects10020042, PMID 30717163.

52. Lind NK. Mechanism of action of fire ant (Solenopsis) venoms. I. Lytic release of histamine from mast cells. Toxicon. 1982;20(5):831-40. doi: 10.1016/0041-0101(82)90070-9, PMID 6184853.

53. Touchard A, Dauvois M, Arguel MJ, Petticlerc F, Leblanc M, Dejean A, Orivel J, Nicholson GM, Escoubas P. Elucidation of the unexplored biodiversity of ant venom peptidomes via MALDI-TOF mass spectrometry and its application for chemotaxonomy. J Proteomics. 2014;105:217-31. doi: 10.1016/j.jprot.2014.01.009, PMID 24456813.

54. Sozanski K, Prado LPdD, Mularo AJ, Sadowski VA, Jones TH, Adams RMM. Venom function of a new species of Megalomymex forel, 1885 (Hymenoptera: Formicidae). Toxins. 2020;12(11):679. doi: 10.3390/toxins12110679, PMID 33137918.

55. Ernst DS, Eisenhauer E, Wainman N, Davis M, Lohmann R, Baetz T, Belanger K, Smylie M. Phase II study of perifosine in previously untreated patients with metastatic melanoma. Invest New Drugs. 2005;23(6):569-75. doi: 10.1007/s10637-005-1157-4, PMID 16034524.

56. Ebaid H, Al-Khalifa M, Isa AM, Gadoa S. Bioactivity of samsum ant (Pachycondyla sennaarensis) venom against lipopolysaccharides through antioxidant and upregulation of Akt1 signaling in rats. Lipids Health Dis 2012;11:93. doi: 10.1186/1476-511X-11-93, PMID 22824368.

57. Kumar RB, Suresh MX. Neurotox: a unique database for animal neurotoxins. Int J Pharm Pharm Sci. 2015;7:351-4.

58. Asawale KY, Mehta MC, Uike PS. Drug utilization analysis of anti-snake venom at a tertiary care center in central Maharashtra: a 3-year retrospective study. Asian J Pharm Clin Res. 2018;11(8):134-7. doi: 10.22159/ajpcr.2018.v11i8.26174.