I. INTRODUCTION

The mechanism of high-temperature superconductivity (SC) has remained a puzzle since the initial discovery of copper-based high-temperature superconductors\(^1\). SC emerges for both the copper- and iron-based families of superconductors upon the suppression of antiferromagnetic (AF) order through charge doping or pressure\(^2\).\(^7\). AF spin fluctuations have been put forth as an essential ingredient for high-temperature superconductivity\(^8\). Recently, pressure-induced superconductivity was found in the quasi-one-dimensional (1D) iron-based spin ladder compounds BaFe\(_2\r X_3\) (\(X = S\), Se), placing the 1D Fe spin ladder systems into the iron-based SC family\(^9\).\(^11\). In contrast to the metallic parent compounds of the layered iron-based superconductors, both BaFe\(_2\r S_3\) and BaFe\(_2\r S_e_3\) are insulating. It is speculated that the origin of superconductivity may be tied to a bandwidth-controlled Mott transition resulting from the increased transfer of Fe 3d electrons across the inter-ladder bonds. These findings have prompted extensive experimental and theoretical research to determine the role of magnetism in the superconducting spin ladder compounds and their connection to the layered cuprates and iron chalcogenide superconductors\(^12\).\(^24\).

The two end members of the BaFe\(_2\r S_3\)–xSe\(_x\) phase diagram possess distinct crystal and magnetic structures. BaFe\(_2\r S_3\) crystallizes into an orthorhombic structure with space group \textit{Cmcm}, as shown in Fig. 1. The Fe atoms exhibit a stripe AF ground state\(^17\).\(^25\).\(^27\). In contrast, BaFe\(_2\r S_e_3\) crystallizes a lower symmetry orthorhombic space group \textit{Pnma} in which the Fe ladders are slightly tilted\(^17\).\(^26\).\(^28\). The Fe magnetic moments order into a block AF ground state, as shown in Fig. 1 (c). The Fe magnetic moments order into a block AF ground state, as shown in Fig. 1 (c). The Fe magnetic moments order into a block AF ground state, as shown in Fig. 1 (c). The Fe magnetic moments order into a block AF ground state, as shown in Fig. 1 (c). The Fe magnetic moments order into a block AF ground state, as shown in Fig. 1 (c). The Fe magnetic moments order into a block AF ground state, as shown in Fig. 1 (c). The Fe magnetic moments order into a block AF ground state, as shown in Fig. 1 (c). The Fe magnetic moments order into a block AF ground state, as shown in Fig. 1 (c). The Fe magnetic moments order into a block AF ground state, as shown in Fig. 1 (c). The Fe magnetic moments order into a block AF ground state, as shown in Fig. 1 (c). The Fe magnetic moments order into a block AF ground state, as shown in Fig. 1 (c). The Fe magnetic moments order into a block AF ground state, as shown in Fig. 1 (c). The Fe magnetic moments order into a block AF ground state, as shown in Fig. 1 (c). The Fe magnetic moments order into a block AF ground state, as shown in Fig. 1 (c). The Fe magnetic moments order into a block AF ground state, as shown in Fig. 1 (c). The Fe magnetic moments order into a block AF ground state, as shown in Fig. 1 (c). The Fe magnetic moments order into a block AF ground state, as shown in Fig. 1 (c). The Fe magnetic moments order into a block AF ground state, as shown in Fig. 1 (c). The Fe magnetic moments order into a block AF ground state, as shown in Fig. 1 (c). The Fe magnetic moments order into a block AF ground state, as shown in Fig. 1 (c).
ground state has been achieved, yet this may be related to the superconducting mechanism under high pressure. Hence, it is necessary to elucidate the role of iron vacancies in determining the magnetic ground state.

In this paper, we investigate the magnetic order and spin dynamics of BaFe$_{2-δ}$S$_{1.5}$Se$_{1.5}$ with 6% Fe vacancies. Neutron powder diffraction (NPD) measurements demonstrate that no long-range magnetic order develops, although short-range block AF correlations are observed at low temperature. Inelastic neutron scattering (INS) reveals the existence of both block- and stripe-type magnetic excitations, indicative of competition between these two types of magnetic orders. Using density functional theory (DFT), we calculated the magnetic ground state of BaFe$_{2-δ}$S$_{1.5}$Se$_{1.5}$ for a range of iron vacancy concentrations. We find that a paramagnetic ground state can be ruled out for iron vacancy concentrations below 10%. The calculated ground state for the vacancy-free compound is the block AF state, in agreement with experiments. However, the relative energy of the stripe AF state decreases with increasing iron vacancies, eventually becoming more energetically favorable than the block state for vacancy concentrations above ~6%. Combined with our experimental observations, we thus conclude that the magnetic ground state of our sample consists of both the stripe and block AF short-range orders. The disappearance of long-range magnetic order at such low concentration of iron vacancies appears to be caused by the competition between the two types of magnetic order, which is greatly enhanced with the introduction of iron vacancies.

II. EXPERIMENTAL AND THEORETICAL METHODS

Single crystals with a nominal composition of BaFe$_{2-δ}$S$_{1.5}$Se$_{1.5}$ were grown by the Bridgman method. A sample of single crystals weighing 2.55 g total were ground into powder for neutron scattering experiments. The NPD experiment was conducted on the HB-2A instrument at the High Flux Isotope Reactor, Oak Ridge National laboratory (HFIR, ORNL), using a monochromatic beam with a wavelength of $\lambda = 2.4105$ Å. The powder diffraction patterns were refined by the Rietveld method using the FullProf Suite. Neutron diffraction measurements on single crystals were carried out on the BT7 thermal triple axis spectrometer at the NCNR. A closed cycle refrigerator was used to control the sample temperature. The INS experiment was carried out on the ARCS time-of-flight chopper spectrometer at the Spallation Neutron Source (SNS), ORNL. The measurements were conducted at 5 K with incident beam energies of $E_i = 20$ and 150 meV. The corresponding energy resolutions were $\Delta E = 1.0$ and 7.0 meV, respectively, as determined by the full width at half maximum of the energy cuts at $\Delta E = 0$ meV. The SpinW program was utilized to simulate INS spectra and compare with the experimental results. Magnetic susceptibility and resistivity measurements were performed using a physical property measurement system (PPMS, Quantum Design). Energy-dispersive X-ray spectroscopy (EDS) (EVO, Zeiss) was employed to determine the composition of the crystals.

First-principles calculations were carried out with the Vienna Ab initio Simulation Package (VASP), based on density functional theory. We used the Perdew-Burke-Ernzerhof functional with a spin-polarized generalized gradient approximation (GGA). The projector augmented-wave (PAW) method with a 500 eV plane-wave cutoff was used, and a $6 \times 4 \times 4$ Monkhorst-Pack k-point mesh allows the calculation to converge well. The spin-polarized GGA was used with on-site Coulomb interactions, U, included for Fe 3d orbitals (GGA + U). We employed $U = 1$ eV and $J = 0.4$ eV, which achieved values of the magnetic moments and band gap that are consistent with experiments. We started with the experimental atomic structure and then relaxed the crystal structure until the forces acting on each atom were less than 1 meV/Å. In order to simulate the S substitution of Se, we employed the virtual crystal approximation (VCA) for the same atomic coordinates of Se and S atoms. The supercell we used is a monoclinic crystal cell with 32 Fe atoms, which can accommodate both the block and stripe AF orders. For the block AF order, the Fe1 and Fe2 spins share the same orientation, while the Fe3 and Fe4 spins are antiparallel to Fe1 and Fe2. For the stripe AF order, Fe1 and Fe4 spins share the same orientation, opposite to the Fe2 and Fe3 spins. The effect of iron vacancies was modeled by removing a given number of randomly selected Fe atoms from the supercell, calculating the results, and then aver-
aging the results with those from equivalent calculations performed with the same number of iron atoms removed from other randomly selected positions.

III. RESULTS AND DISCUSSIONS

Figure 2 shows NPD patterns for BaFe$_{2-\delta}$S$_{1.5}$Se$_{1.5}$ measured at 4 and 300 K. Small impurity peaks corresponding to Ba$_2$Fe$_4$S$_5$ were observed. No sharp magnetic peaks are seen in the NPD pattern at 4 K, in clear contrast to our previous measurements on as-grown powder samples with the same nominal composition, where there are strong magnetic peaks corresponding to the block AF order at low temperature. The weak, broad feature centered around 2θ = 16.5° in Fig. 2 (b) corresponds to block-type short-range magnetic order at $Q = (H,K,L) = (0.5,0.5,0.5)$. Here, (H,K,L) are Miller indices for the momentum transfer $|Q| = 2\pi \sqrt{(H/a)^2 + (K/b)^2 + (L/c)^2}$, where the lattice constants and refined structural parameters are listed in Table I. The space group $Pnma$ agrees with previous reports. The structural refinement reveals the presence of ~6% iron vacancies, corresponding to a refined composition of BaFe$_{1.89(2)}$S$_{1.5(1)}$Se$_{1.5(1)}$. We note that the ratio of the S and Se atoms varies depending on the atomic site. The composition determined from EDS, normalized by the Ba content, is Ba$_{1.00(5)}$Fe$_{1.92(9)}$S$_{1.38(12)}$Se$_{1.37(15)}$.

To gain more insight into the short range magnetic structure, we conducted neutron diffraction measurements on a single crystal sample. The data shown in Fig. 3 (a-d) reveal the appearance of broad magnetic order parameter measured at $Q = (0.5,0.5,0.5)$. The order parameter reaches the background (BKG) at 81 K.

![Figure 2](image2.png)

TABLE I. The refined structural parameters for the sample of nominal composition BaFe$_{2-\delta}$S$_{1.5}$Se$_{1.5}$ determined from NPD data at 4 K (goodness of fit $\chi^2 = 19.5$, $R_p = 13.9\%$, $R_{wp} = 16.3\%$, and $R_{exp} = 3.7\%$).

Crystal system	Orthorhombic	
Space group	$Pnma$	
Unit cell parameters	$a = 11.5480(4)$Å, $b = 5.3208(1)$Å, $c = 8.9910(3)$Å, $\alpha = \beta = \gamma = 90\degree$	
Atomic parameters (x, y, z)	Occupancy	
Ba	(0.1919, 0.25, 0.524)	0.50
Fe	(0.4936, 0.0017, 0.3506)	0.945(9)
Se1	(0.3530, 0.25, 0.233)	0.22(2)
Se2	(0.623, 0.25, 0.491)	0.14(1)
Se3	(0.3999, 0.25, 0.8193)	0.40(2)
S1	(0.3530, 0.25, 0.233)	0.28(2)
S2	(0.623, 0.25, 0.491)	0.36(1)
S3	(0.3999, 0.25, 0.8193)	0.10(2)

![Figure 3](image3.png)

FIG. 3. Elastic scans along the (0.5, K, 0.5) direction across (a) $K = 1$ and (b) $K = 0.5$ at 5 and 90 K. (c, d) The temperature differences between 5 and 90 K for $K = 1$ and $K = 0.5$, respectively. The solid lines are Gaussian fits to the data. The bars in (a-d) represent the statistical errors that correspond to one standard deviation. The instrumental resolution at $Q = (0.5,1.0,0.5)$ was determined by measuring the nuclear Bragg peak of $Q = (1.2,1)$. (e) Resistivity measured as a function of temperature. (f) Magnetic susceptibility measured with a 1000 Oe magnetic field parallel to the b axis. The dashed lines mark kinks at 39 and 116 K. The open red diamonds show the temperature dependence of the block AF magnetic order parameter measured at $Q = (0.5,0.5,0.5)$.
FIG. 4. INS spectra $S(Q, \omega)$ for BaFe$_2$Se$_1$S$_{1.5}$Se$_{1.5}$ at 5 K with (a) $E_i = 20$ and (b) 150 meV. Calculated $S_{SWT}(Q, \omega)$ using linear spin wave theory for (c) $E_i = 20$ and (d) 150 meV with intensities from the block and stripe AF orders in a ratio of 4 : 1. The calculations include a convolution with the energy resolution of 1 meV and 7 meV for $E_i = 20$ meV and $E_i = 150$ meV, respectively. (e) Constant energy cuts through $S(Q, \omega)$ integrated over energy intervals of 2 ± 0.5, 4 ± 0.5, and 6 ± 0.5 meV using $E_i = 20$ meV. The black dots are the experimental results and the red curves represent the simulation. (f) Constant momentum cuts through $S(Q, \omega)$ integrated over 4.75 ± 0.25 and 5.75 ± 0.25 Å$^{-1}$. In (e) and (f), the shaded regions represent the calculated magnetic excitation intensities from the block and stripe AF orders as the same ratio in (c) and (d). (g) and (h) show the powder-averaged calculated spin excitation spectra for the block and stripe magnetic orders, respectively.

Nematic peaks centered at $Q = (0.5, 1.0, 0.5)$ and $Q = (0.5, 0.5, 0.5)$, corresponding to the stripe and block AF orders, respectively. Considering that these magnetic peaks were not observable in the powder samples, instead requiring a large single crystal and the high flux at BT7 for unambiguous observation, the magnetic order is expected to be weak and short-range. The domain size of the stripe AF order along the leg direction is determined to be ~47 Å by convoluting the instrumental resolution. The temperature-dependent resistivity shown in Fig. 3(e) exhibits insulating behavior, consistent with the other compositions in this system. The temperature-dependent magnetic susceptibility in Fig. 3(f) displays kinks at 39 and 116 K, indicating multiple magnetic transitions. However, the neutron diffraction intensity measured at $Q = (0.5, 0.5, 0.5)$ (corresponding to the block AF order) shows a broad transition beginning at 81 K. These results suggest that the transition temperature may depend on the resolution and sensitivity of the instrument, as in a short-range cluster spin glass system.

To investigate the magnetic correlations present at low temperature, we conducted INS measurements on the same powder sample. Figures 4(a) and (b) display the INS spectra with incident energies of $E_i = 20$ and 150 meV, respectively. Intense gapless magnetic excitations can be observed at low Q in Fig. 4(a). Representative constant energy cuts at $E = 2, 4, 6$ meV and constant Q cuts at $Q = 4.75$ and 5.75 Å$^{-1}$ are plotted in Fig. 4(e) and (f). Two magnetic excitation modes centered at $Q = 0.75$ and 1.26 Å$^{-1}$ can be identified in Fig. 4(e). The excitation mode at $Q = 0.75$ Å$^{-1}$ is ascribed to the block AF order at the wave vector of $(0.5, 0.5, 0.5)$. The mode at $Q = 1.26$ Å$^{-1}$ is consistent with the stripe AF wave vector at $(0.5, 1.0, 0.5)$, such as that observed in BaFe$_2$S$_3$. Thus, the spin excitations measured by INS demonstrate that both the block and stripe AF correlations exist in BaFe$_2$Se$_{1.8}$S$_{1.5}$Se$_{1.5}$. The magnetic excitations at higher energies in Fig. 4(b) and (f) show broad features, consistent with short-range magnetic correlations.

Using a classical Heisenberg model, we can describe the magnetic interactions in BaFe$_2$Se$_{1.5}$S$_{1.5}$Se$_{1.5}$ with the magnetic Hamiltonian

$$H_{spin} = \sum_{i<j} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j,$$

where the sum runs over magnetic atoms in the compound and J_{ij} are exchange integrals between Fe spins \mathbf{S}_i and \mathbf{S}_j. To describe correctly the magnetic configurations of this system, both intraladder and interladder interactions should be considered. Here, we include 12 nonequivalent exchange interactions with bond lengths less than 7 Å, labeled J_1 through J_{12}, which we illustrate in Fig. 1(a) and (b). Among the 12 Js, J_1–J_7 are intraladder interactions and the rest are interladder interactions. Our choice of the 12 nonequivalent Js contains all the corresponding Js in Ref. 17, which chose 8 exchange parameters to describe magnetic interactions in BaFe$_2$S$_3$. The number of Js increases in the present system because of the lower symmetry. We determined the values of these interactions by fitting all 12 J parameters to the magnetic energies calculated by DFT using 50 randomly generated collinear (RGC) magnetic configurations. The resulting values of $S J_1$ through $S J_{12}$ are -21.7, -24.6, 21.2, 25.5, 40.4, 9.3, 4.2, 0.5, 0.8, 3.8, 0.4, and 0.7 meV, where S is assumed to be 2. Our calculated results are generally consistent with those in Ref. 17. Specifically, to form a block magnetic state, J_1 and J_3 should be different in sign, which is consistent with the corresponding $S J_1$ and $S J_3$ in Ref. 17.
spin configurations. Each black circle represents one of the RGC configurations, and they all lie very close to the line $E_{\text{Heisenberg}} = E_{\text{ab-initio}}$, shown in red. This close agreement demonstrates the completeness of our choice of exchange interactions in BaFe$_{1.80}$S$_{1.5}$Se$_{1.5}$.

With the calculated magnetic exchange integrals, we can simulate the spin wave spectra in linear spin wave theory using the SpinW software package. The six most prominent magnetic exchange interactions, S_J_{1-6}, are included in the simulations of the powder-averaged magnetic spin excitation spectra of the block and stripe AF orders. The other calculated magnetic couplings are below 5 meV and would have negligible observable impact on the spin wave spectra. In Figs. 4 (c-f), we reproduce the spin wave spectra of BaFe$_{1.80}$S$_{1.5}$Se$_{1.5}$ by combining the block AF and stripe AF excitations with spectral weights of 80% and 20%, respectively. As shown in Fig. 4 (e) and (f), the simulated results are in good agreement with the experimental data. The greater width of the observed spin excitations compared to the calculations results from the short-range magnetic order in the sample, as opposed to conventional long-range order. We note that theoretically one set of magnetic couplings would result in a degenerate magnetic ground state. Small deviations of the magnetic couplings could result in different magnetic orders. However, their effect on the magnetic excitation spectra may be negligible given a specific magnetic order.

To explore the effect of iron vacancies on the magnetic properties, we performed DFT calculations for BaFe$_{2-\delta}$S$_{1.5}$Se$_{1.5}$ in the paramagnetic (PM) phase, block AF phase, and stripe AF phase with varying amounts of iron vacancies. First, we must define an appropriate model for the PM phase. Here we employed the magnetic sampling method (MSM). Within the Heisenberg model, a PM phase can be modeled by averaging multiple spin configurations in such a way that individual exchange interactions cancel, i.e., $\varphi = \sum_k (S_i(k) \cdot S_j(k)) = 0$, where k denotes the spin configuration. This MSM method has been reliably used to model the PM phase of ZnCr$_2$O$_4$ and CaBaCo$_2$O$_7$. By considering the 12 inequivalent exchange interactions, the PM phase in BaFe$_{2-\delta}$S$_{1.5}$Se$_{1.5}$ can be modeled with four collinear spin configurations resulting in vanishing exchange integrals between the Fe spins. To validate this approach, we performed calculations on 100 RGC spin configurations, whose average energy is representative of the energy of the PM phase. In Fig. 5 (b), we plot the individual energies of the 100 RGC spin configurations (black dots) and their cumulative average (red curve) relative to the average energy of the four spin configurations selected for the PM model (green dashed line). The cumulative average energy of 100 RGC spin configurations converges to the energy from the four spin configurations representing the PM phase.

Having verified our model for the PM phase, we then calculated the total magnetic energy of BaFe$_{2-\delta}$S$_{1.5}$Se$_{1.5}$ in the block AF, stripe AF, and PM phases as a function of iron vacancy concentration. Our theoretical calcula-
FIG. 6. Variation of the block AF, stripe AF, and PM ground state energies (relative to the block AF energy) as a function of iron vacancy concentration without geometry optimization (a) and with geometry optimization (b).

tions involve comparisons of energies alone. There is no entropy; that is, the calculations correspond to $T = 0$ even for the PM phase. Figure 6 (a) shows the results calculated using the experimentally refined parameters in Table I without geometry and atomic position optimization. The total energy of the PM phase is always well above the other two phases and thus can be ruled out as the ground state. The block AF phase is more stable than the stripe AF phase when the Fe vacancy concentration is less than 12%, above which the trend reverses. The introduction of Fe vacancies may affect the atomic configurations, so we also performed equivalent calculations with geometry and atomic position optimization, with the corresponding results shown in Fig. 6 (b). In this case, the crossing point between the block AF and stripe AF is shifted to $\sim 6\%$, which is very close to the actual composition of the sample used in the present work. Although it is not possible for us to fine tune the concentration of Fe vacancies in the DFT calculations due to the limitations of the supercell size and computational power, the calculated results clearly show that the competition between these two phases can be tuned by iron vacancies. Within a certain range of the vacancy concentrations around 6%, the competition of these two phases may become so strong that the long range order is destroyed, consistent with the sample used in the present study. Microscopically, the disappearance of long-range magnetic order might also be caused by the dilution of exchange interactions due to the introduction of Fe vacancies, similar to the percolation effect in diluted magnetic semiconductors. However, such an effect typically requires a vacancy concentration well above 10%. This dilution effect may explain the absence of the block AF order in severely iron deficient BaFe$_{1.8}S$$_{1.5}Se_{1.5}$.

For a realistic sample, one would not expect the composition exactly locates at the magic concentration where the energies of the two magnetic orders are equal. As the temperature is lowered, the regions with different Fe-vacancy contractions and therefore different preferred phases (block or stripe) would freeze out so that they are simply not able to come to equilibrium with each other. Further, as the clusters freeze they will tend to exert random magnetic fields on each other thus enhancing the spin disorder and causing the time to equilibrate to diverge exponentially with decreasing temperature, forming a novel spin glass state with two short range orders. In other words, the disorder is ultimately a kinetic phenomenon with the system unable to find its true ground state whether it is stripe or block.

IV. SUMMARY

In summary, we have measured the short range magnetic order and spin excitation spectrum of coexisting short-range stripe and block AF order in the quasi-one-dimensional BaFe$_{1.89}$S$_{1.55}$Se$_{1.55}$. The iron vacancies are implicated in the lack of long-range magnetic order in the ground state and the existence of both stripe- and block-type excitation modes. First-principles calculations have confirmed the competition between stripe and block AF order, with maximum concentration expected around an iron vacancy concentration of $\sim 6\%$, very close to the actual composition of the sample used in the present work. Using the calculated exchange interaction parameters, the simulated spin wave spectra match the measured results well. Our findings highlight the unusual sensitivity of the magnetic ground state to the presence of iron vacancies in the quasi-1D spin ladder system BaFe$_2$(S,Se)$_3$. These results are expected to be relevant to other pressure-induced superconductors in the family of quasi-1D iron pnictide and selenide systems.

V. ACKNOWLEDGMENTS

Work at Sun Yat-Sen University was supported by the National Natural Science Foundation of China (Grant No. 11904414, 12174454, 11904416, 11974432), the Guangdong Basic and Applied Basic Research Foundation (No. 2021B1515120015, 2019A1515011337), and National Key Research and Development Program of China (No. 2019YFA0705702, 2018YFA0306001,
The authors contributed equally to this work. caok7@mail.sysu.edu.cn
wangen5@mail.sysu.edu.cn

J. Ying, H. Lei, C. Petrovic, Y. Xiao, and V. V. Struzhkin, Reviews of Modern Physics 115, 14262 (2008).

M. D. Lumsden and A. D. Christianson, Journal of Physics: Condensed Matter 22, 203203 (2010).

D. J. Scalapino, Reviews of Modern Physics 84, 1383 (2012).

T. Yamauchi, Y. Hirata, Y. Ueda, and K. Ohgushi, Physical Review Letters 115, 246402 (2015).

J. Ying, H. Lei, C. Petrovic, Y. Xiao, and V. V. Struzhkin, Physical Review B 95, 241109 (2017).

G. Stewart, Reviews of Modern Physics 83, 1589 (2011).

J. Caron, J. Neilson, D. Miller, K. Arpino, A. Llobet, and T. McQueen, Physical Review B 85, 180405 (2012).

A. Krzton-Maziopa, E. Pomjakushina, V. Pomjakushin, D. Sheptyakov, N. Chernyshov, S. Svitlyk, and K. Conder, Journal of Physics: Condensed Matter 24, 402201 (2011).

R. Arita, H. Ikeda, S. Sakai, and M.-T. Suzuki, Physical Review B 92, 054515 (2015).

S. Dong, J.-M. Liu, and E. Dagotto, Physical Review Letters 113, 187204 (2014).

M. Mourigal, S. Wu, M. Stone, J. Neilson, J. Caron, T. McQueen, and C. Broholm, Physical Review Letters 115, 047401 (2015).

Y. Hirata, S. Maki, J.-i. Yamura, T. Yamauchi, and K. Ohgushi, Physical Review B 92, 205109 (2015).

D. Ootsuki, N. Saini, F. Du, Y. Hirata, K. Ohgushi, Y. Ueda, and T. Mizokawa, Physical Review B 91, 045105 (2015).

M.-T. Suzuki, R. Arita, and H. Ikeda, Physical Review B 92, 085116 (2015).

S. Chi, Y. Uwatoko, H. Cao, Y. Hirata, K. Hashizume, and T. Aoyama, Physical Review Letters 117, 047003 (2016).

N. D. Patel, A. Noceira, G. Alvarez, A. Moro, and E. Dagotto, Physical Review B 96, 024520 (2017).

Y. Zhang, L.-F. Lin, J.-J. Zhang, E. Dagotto, and S. Dong, Physical Review B 97, 045119 (2018).

S. Li, Y. Tang, T. A. Maier, and S. Johnston, Physical Review B 97, 195116 (2018).

K. Klepp, W. Sparlinek, and H. Boller, Journal of alloys and compounds 258, 1 (1996).

M. Wang, S. Jin, M. Yi, Y. Song, H. Jiang, W. Zhang, H. Sun, H. Luo, A. Christianson, E. Bourret-Courchesne, et al., Physical Review B 95, 060502 (2017).

J. Yu, M. Wang, B. A. Frandsen, H. Sun, J. Yin, Z. Liu, S. Wu, M. Yi, Z. Xu, A. Acharya, et al., Physical Review B 101, 235134 (2020).

W. Zheng, V. Balédent, M.-B. Lepetit, P. Retailleau, E. Elslande, C. Pasquier, P. Auben-Senzier, A. Forget, D. Colson, and P. Foury-Leylekian, Physical Review B 101, 020101 (2020).

S. Wu, J. Yin, T. Smart, A. Acharya, C. L. Bull, N. P. Funnell, T. R. Forrest, G. Simutis, R. Khasanov, S. K. Lewin, M. Wang, B. A. Frandsen, R. Jeanloz, and R. J. Birgenau, Physical Review B 100, 214511 (2019).

S. Wu, B. A. Frandsen, M. Wang, M. Yi, and R. Birgeneau, Journal of Superconductivity and Novel Magnetism 33, 143 (2020).

L. Zheng, B. A. Frandsen, C. Wu, M. Yi, S. Wu, Q. Huang, E. Bourret-courchesne, G. Simutis, R. Khasanov, D.-x. Yao, M. Wang, and R. J. Birgeneau, Physical Review B 98, 180402(R) (2018).

F. Du, Y. Ueda, and K. Ohgushi, Physical Review Letters 123, 86601 (2019).

H. Sun, X. Li, Y. Zhou, J. Yu, B. A. Frandsen, S. Wu, Z. Xu, S. Jiang, Q. Huang, E. Bourret-courchesne, L. Sun, J. W. Lynn, R. J. Birgeneau, and M. Wang, Physical Review B 101, 205129 (2020).

B. Saporov, S. Calder, B. Sipos, H. Cao, S. Chi, D. J. Singh, A. D. Christianson, M. D. Lumsden, and A. S. Sefat, Physical Review B 84, 245132 (2011).

J. Rodriguez-Carvajal, Physica B: Condensed Matter 192, 55 (1993).

J. W. Lynn, Y. Chen, S. Chang, Y. Zhao, S. Chi, W. Ratcliff, B. G. Ueland, and R. W. Erwin, J. Research NIST 117, 61 (2012).

S. Toth and B. Lake, Journal of Physics: Condensed Matter 27, 166002 (2015).

G. Kresse and J. Hafner, Physical Review B 47, 558 (1993).

G. Kresse and J. Furthmüller, Physical Review B 54, 11169 (1996).

P. E. Blöchl, Physical Review B 50, 17953 (1994).
41 A. Liechtenstein, V. I. Anisimov, and J. Zaanen, Physical Review B 52, R5467 (1995).
42 L. Bellaiche and D. Vanderbilt, Physical Review B 61, 7877 (2000).
43 X. Lu, D. W. Tam, C. Zhang, H. Luo, M. Wang, R. Zhang, L. W. Harriger, T. Keller, B. Keimer, L.-P. Regnault, T. a. Maier, and P. Dai, Physical Review B 90, 024509 (2014), 1407.0568.
44 N. S. Fedorova, C. Ederer, N. A. Spaldin, and A. Scaramucci, Physical Review B 91, 165122 (2015).
45 D. Morgan, B. Wang, G. Ceder, and A. van de Walle, Physical Review B 67, 134404 (2003).
46 C. J. Fennie and K. M. Rabe, Physical Review Letters 96, 205505 (2006).
47 R. Johnson, K. Cao, F. Giustino, and P. Radaelli, Physical Review B 90, 045129 (2014).