Effect of Mesostructured Zirconia Support on the Activity and Selectivity of 4,6-Dimethyldibenzothiophene Hydrodesulfurization

Sylvette Brunet, Lebeau Bénédicte, Issam Naboulsi, Jean-Dominique Comparot, Marichal Claire, Severinne Rigolet, Magalie Bonne, Jean Luc Blin

To cite this version:
Sylvette Brunet, Lebeau Bénédicte, Issam Naboulsi, Jean-Dominique Comparot, Marichal Claire, et al.. Effect of Mesostructured Zirconia Support on the Activity and Selectivity of 4,6-Dimethyldibenzothiophene Hydrodesulfurization. Catalysts, MDPI, 2020, 10.3390/catal10101162 . hal-03012958

HAL Id: hal-03012958
https://hal.archives-ouvertes.fr/hal-03012958
Submitted on 18 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Effect of Mesostructured Zirconia Support on the Activity and Selectivity of 4,6-Dimethyldibenzothiophene Hydrodesulfurization

Sylvette Brunet 1, Bénédicte Lebeau 2,3, Issam Naboulsi 4, Laure Michelin 2,3, Jean Dominique Comparot 1, Claire Marichal 2,3, Séverinne Rigolet 2,3, Magali Bonne 2,3 and Jean-Luc Blin 4*

1 Université de Poitiers, CNRS, IC2MP, UMR 7285, 86073 Poitiers Cedex 9 France; sylvette.brunet@univ-poitiers.fr (S.B.); jean-dominique.comparot@univ-poitiers.fr (J.D.C.)
2 Université de Haute Alsace (UHA), CNRS, IS2M, UMR 7361, F-68100 Mulhouse, France; benedicte.lebeau@uha.fr (B.L.); laure.michelin@uha.fr (L.M.); Claire.Marichal@uha.fr (C.M.); severinne.rigolet@uha.fr (S.R.); magali.bonne@uha.fr (M.B.)
3 Université de Strasbourg, 67000 Strasbourg, France
4 Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; issam_naboulsi@hotmail.com
* Correspondence: Jean-Luc.Blin@univ-lorraine.fr; Tel.: +33 3 83 68 43 70

Received: 30 August 2020; Accepted: date; Published: date

Abstract: In contrast with the conventional CoMoS/alumina catalyst, the use of amorphous mesostructured ZrO2 as support for the dispersion of the CoMoS active phase in deep hydrodesulfurization (HDS) of 4,6-dimethyldibenzothiophene leads to a higher promotion rate and a better sulfidation of the cobalt species. The CoMoS dispersed over mesostructured amorphous ZrO2 as catalyst also induces a modification of the main desulfurization way, in that case a shift towards direct desulfurization selectivity is observed. This result is unexpected regarding the literature. Indeed, the hydrogenated route is observed for commercial zirconia. The designed catalysts are therefore more eco-friendly since they consume less hydrogen. This implies a better use of the fossil resources.

Keywords: mesostructured zirconia; amorphous; hydrodesulfurization catalysts; 4,6-Dimethyldibenzothiophene; direct desulfurization

1. Introduction

Because it can cause health problems (cancer, etc.), air quality in cities is a major issue; the latter is affected by atmospheric pollution to which the gas emissions from vehicles contribute in a significant way, in particular by the emission of sulfur oxides. In order to limit this impact, standards have been fixed to have fuels that are more respectful of the environment. For example, in Europe since 2009 the maximum sulfur content is limited to 10 ppm [1]. Considering the increase consumption of fuels in particular in emerging countries and the diversity of the origin of the raw material (mainly from fossil material but also from lipidic or lignocellulosic biomass in a less extent), the hydrotreatment processes have a great interest. For diesel cuts, it is admitted that 4,6-dimethyldibenzothiophene (46DMDBT) is the most representative compound of the most refractory sulfated molecules [2–5]. Hydrotreating catalysis is a highly mature field and catalyst manufacturers have improved and optimized the preparation of alumina-supported, Co- or Ni-promoted MoS2 catalysts over decades. However, one aspect that has been somewhat neglected in industrial development is the important role of the support. Industrial hydroprocessing catalysts are almost exclusively supported on alumina [6].

However, because of the strong interaction between alumina and the support, the formation of the active phase during the sulfidation process is not optimal, especially when catalysts are
promoted [7]. Different activities and selectivities can be noticed when alumina is replaced by silica, titania or zirconia [8–13]. Indeed, since the interactions of the support with Mo will modify the electronic properties of the coordinately unsaturated sites (CUS) [14], which are well identified as the active phases, the support plays an important role in improving the properties of a catalyst in terms of activity, selectivity, and stability. For example, it has been reported that the intrinsic activity of MoS₂ deposited on titanium oxide is greater than that of MoS₂ supported on alumina [15,16]. In addition, studies performed in Raman spectroscopy and X photoelectron spectroscopy (XPS) reveal that molybdate anions are strongly and uniformly bound to the surface of titanium oxide. This homogeneous dispersion is related to the distribution of hydroxyl groups at the surface of TiO₂ [17]. Shimada [18] has shown that the structure of TiO₂ facilitates the formation of MoS₂ slabs, which contribute to the increase in the catalytic activity. Ishihana et al. [19] highlighted the role of Ti³⁺, which could have an electronic effect on the active phase. More recently, by comparison with conventional catalysts, we have shown that a change of selectivity for the HDS of 46DMDDBT is obtained when the active phase is dispersed on mesostructured titania [20]. This behavior has been correlated for one part to the intrinsic properties of the mesostructured titania [20].

Among the different oxides, zirconia is also of peculiar interest for hydrodesulfurization (HDS) of gazole [12,21–25]. It is reported that for the same amount of molybdenum atom per nm², the activity of the catalyst deposited on a zirconia support is three times higher than when it is deposited on alumina [24]. Regarding the promoted catalyst by Ni, due to a better promotion on ZrO₂ than on Al₂O₃, an enhancement of the NiMoS activity is noted [25]. Another study, reported by Li et al. [23] evidenced that on a zirconia support, nickel is sulfided much more easily than on alumina, making the catalyst more efficient in term of activity [23]. Therefore, ZrO₂ appears as an interesting material for the dispersion of the active phase to prepare HDS catalyst with high activity and selectivity [12]. However, the specific surface area of ZrO₂ (≈ 100 m²/g) is quite low comparing to silica or γ-alumina (≈ 250 m²/g) and it is thermally unstable. To overcome these drawbacks zirconia is usually used in mixture with alumina or silica. Since good textural properties are considered to be the most important criterion that any catalyst support should fulfill for the hydrotreating of heavy feeds [26–28], an increase in the specific surface area of zirconia could have beneficial effect on the activity of the ZrO₂-based catalyst. Thanks to their properties, mesostructured metal oxides are excellent candidates to meet the criterion required; i.e., high specific surface area, well-ordered uniform pore structure containing mesopores stable to thermal treatments, and narrow pore size distribution, for an efficient hydrotreatment catalyst support. Recently, we have reported the preparation of mesostructured amorphous zirconia with high specific surface area (> 300 m²/g) and thermal stability (> 480°C). ZrO₂ is obtained by combining the surfactant templating pathway and the sol-gel process from an EISA-derivate method [29]. Here, due to the interest of zirconia for hydrotreatment, the mesostructured amorphous zirconia has been used as support to design MoS₂/ZrO₂ catalyst promoted by cobalt, which have been tested for the hydrodesulfurization of 46DMDDBT. In particular, we have investigated the effect of the ZrO₂ on the selectivity of the catalyst. Catalytic results are compared with the ones obtained by dispersing the active phase on the conventional alumina support.

2. Results and Discussion

2.1. Characterization of the Mesostructured ZrO₂-based Catalyst

Before sulfidation to get the active phase, the support has been impregnated with cobalt and molybdenum precursors. At each step materials have been characterized. The SAXS (Small Angle X-ray Scattering) pattern of the bare zirconia exhibits one broad peak centered at around 8.1 nm (Figure 1a), meaning that the mesopore network adopts a wormhole-like structure analogous to the one reported for the silica MSU (Michigan State University) materials [30], which presents a lack of long-range crystallographic order. The position of the broad peak corresponds to the sum of the pore diameter and the wall thickness. A type IV isotherm, characteristic of mesoporous material according to the IUPAC (International Union of Pure and Applied Chemistry) classification [31] is
obtained by nitrogen adoption-desorption analysis (Figure 1b). The values of the specific surface area and of the pore volume are equal to 420 m²/g and 0.43 cm³/g, respectively. The mesopore size distribution is homogeneous with a maximum at 4.6 nm. The wall thickness is thus around 3.5 nm. After impregnation the wormhole-like mesostructure is preserved as confirmed by the presence of a broad peak centered at 7.2 nm (Figure 1a). According the broadness of the peaks the difference in the maxima before and after impregnation is not significant and one can conclude that the structural properties are barely influenced by the wet impregnation. The shapes of the isotherm and of the mesopore size distribution are not modified neither (Figure 1b and 1c). However, comparing with the bare ZrO₂, lower quantity of adsorbed nitrogen (Figure 1b) and lower dV/dD values (Figure 1c) are noticed. These decreases can be correlated to the drop of the BET (Brunauer, Emmett et Teller) specific surface area to 255 m²/g, pore volume to 0.25 cm³/g and pore diameter to 3.9 nm. The variation of textural characteristics is mainly due to the mesopores filling by the molybdenum and cobalt species. Moreover, the similitude in the shape of both N₂ sorption and pore size distribution shape reflects a homogeneous dispersion of Mo and Co species.

![Figure 1](image.png)

Figure 1. SAXS pattern (a), nitrogen adsorption-desorption isotherms (b) and mesopores size distribution (c) of the bare and of the impregnated amorphous mesostructured ZrO₂.

The acidity properties of the impregnated zirconia material have been investigated by pyridine adsorption followed by Infra-red (Figure 2). Obtained spectra are in accordance with those reported in literature [32–35]. The intensities of the band at around 1540 and 1447–1452 cm⁻¹ are used to quantify the Lewis and Brønsted acidity. From Figure 2, no significant Brønsted site is detected and the Lewis acidity of CoMo/ZrO₂ (0.90 µmol.m⁻²) is similar to the one measured for the impregnated alumina (≈ 1.1 µmol.m⁻²), which will be used as the benchmark catalyst for HDS.
Figure 2. Infrared spectra of pyridine adsorbed on CoMo/Al$_2$O$_3$ and CoMo/ZrO$_2$.

After sulfidation two peaks located at 182.1 eV and 184.5 eV are observed on the XPS Zr 3d spectrum (Figure 3a). They are characteristic of ZrO$_2$ [36]. XPS also evidences the success of the sulfidation process (Figure 3). Indeed, on the molybdenum spectrum we can observe at 231.9 (Mo 3d$_{3/2}$) and 228.8 eV (Mo 3d$_{5/2}$) the +IV oxidation state of Mo bonded with the sulfur atoms (Figure 3b). Three peaks at 778.7, 778.0 and 780.8 eV with the associated satellites are detected on the Co 2p$_{3/2}$ spectrum. They are due to CoMoS, Co$_9$S$_8$ and CoOx, respectively [37]. The formation of the active phase is also supported by the presence of the peak S 2p$_{1/2}$ and S 2p$_{3/2}$ located around 162.7 and 161.2 eV (Figure 3d). In a sake of comparison, the impregnated commercial Al$_2$O$_3$ was sulfided under the same conditions than the mesostructured zirconia. No significant difference in the formation of the various phases is noted between ZrO$_2$ and Al$_2$O$_3$ after sulfidation (Table 1). However, the proportion of CoMoS obtained on ZrO$_2$ (33%) is slightly higher than the one observed on Al$_2$O$_3$ (26%), suggesting a better sulfidation of cobalt on mesostructured zirconia.
Figure 3. Zr 3d (a), Mo 3d (b), Co 2p (c) and S 2p (d) XPS spectra of the CoMoS/ZrO₂ catalyst.

Table 1. Percentage obtained by XPS analysis of the phases formed after sulfidation.

Oxide	Mo distribution (at.%)	Co distribution (at.%)	S distribution (at.%)					
	Mo⁹⁺	MoO₅	CoMoS	Co₉S₈	CoO	Sulfur	Sulfates	
ZrO₂	65	20	16	33.0	48.7	18.3	90.7	9.3
Al₂O₃*	70	15	15	25.7	52.3	22	100	0

*used as reference for 46DMDBT hydrodesulfurization.

From Table 1, data characterizing the active phase have been determined from the relations reported in reference [21].

The obtained values are given in Table 2. The sulfidation degree of Mo is similar for both supports since the amount of MoS₂ obtained at the surface of alumina (70%) and mesostructured zirconia (65%) are very closed, suggesting that interactions between Mo and Zr are in the same range of order than the ones between Mo and Al [38]. The better sulfidation of the cobalt species on mesostructured ZrO₂ is also reflected by a higher value of the promotion ratio and of the promotion rate (0.3 and 33%, respectively, against 0.1 and 26% for the alumina support).

Table 2. Parameters characterizing the active.

Oxide	TSMo (%)	TSG (%)	PR (%)	S/Mo	Co/Mo	(Co/Mo)slabs
ZrO₂	65	56	33	1.6	0.6	0.3
Al₂O₃*	70	53	26	1.5	0.3	0.1

*used as reference for 46DMDBT hydrodesulfurization.

2.2. Catalytic Activity for Hydrodesulfurization of 46DMDBT HDS

The obtained catalysts have been tested for the hydrodesulfurization of 46DMDBT, which is the model molecule representative of the most refractory ones contained in gazole cuts. According to literature [5], it is well established that the transformation of 46DMDBT converts via three pathways: the hydrogenation (HYD), the direct desulfurization (DDS) and the acidic ways (Figure 4). Acidic route is observed for catalysts such as zeolites, which present Bronsted acid sites at their surface [40,41].

Activities of CoMoS/Al₂O₃ and of CoMoS/mesostructured ZrO₂ catalysts are given in Table 3. We can consider that the total activity is in the same range of order for both catalysts: 0.73 and 0.61 mmol.h⁻¹.g⁻¹ for CoMoS/Al₂O₃ and CoMoS/ZrO₂, respectively. The conventional alumina-based catalyst is highly selective (75%) for the hydrogenated route. This result is in good accordance with literature [6]. The situation is quite different when mesostructured amorphous zirconia is used as
support. Indeed, in that case the contribution of the HYD pathway to the total activity falls to 41%. The direct desulfurization pathway predominates (59%). A detailed analysis of the DDS activity highlights that the direct C-S bond rupture (green route in Figure 4) mainly contributes to the total DDS activity (85%). We note also a slight participation (15%) of the acidic way blue pathway in Figure 4 (dismutation and isomerization), which is unexpected regarding the acidic properties of the CoMo impregnated ZrO$_2$. Indeed, as mentioned above CoMo/ZrO$_2$ exhibits only Lewis acidity similar to the one of CoMo/Al$_2$O$_3$.

![Figure 4](image)

Figure 4. Transformation ways of 46DMDBT (HYD: Hydrogenation route, DDS: Direct desulfurization route, sulf: sulfide phase, acid: acid properties, Dism: Dismutation, Isom: Isomerization. 4,6-DMDBT: 4,6-dimethyldibenzothiophene, MCHMB: methylcyclohexylmethylbenzene, MBPh: methylbiphenyl, DMDBT: dimethyldibenzothiophene, DMBPh: dimethylbiphenyl, TMDBT: trimethylbiphenyl, MBP: methylbiphenyl).

![Diagram](image)

Table 3. 46DMDBT HDS activities (A mmol.h$^{-1}$.g$^{-1}$) and selectivity (%) obtained for CoMoS/Al$_2$O$_3$ and CoMoS/ZrO$_2$ materials (T = 340°C, P = 40 bars, H$_2$/feed = 475 NL/L).

Materials	A_{total}	A_{acid}	A_{HYD}	$A_{total DDS}$	A_{HYD}/A_{DDS}
CoMoS/Al$_2$O$_3$	0.73	0.00	0.55(75%)	0.18(25%)	3.1
CoMoS/ZrO$_2$	0.61	0.17	0.18(41%)	0.26(59%)	0.7

A_{total} represents the total activity. A_{acid}, A_{HYD} and $A_{total DDS}$ stand for the activity obtained from the acidic, the hydrogenated and the direct desulfurization routes, respectively.

To explain the appearance of the desulfurization products through the dismutation and isomerization reactions, we can assume that during the sulfidation and/or HDS reaction a part of the amorphous phase is transformed into monoclinic structure. Indeed, in a paper dealing with the surface characterization of zirconia polymorphs, by infrared analysis after pyridine adsorption, Sun et al. [41] have shown that Lewis acid sites are present on amorphous, monoclinic and tetragonal ZrO$_2$ with a variation of their intensity in the order amorphous ZrO$_2$ > monoclinic ZrO$_2$ > tetragonal ZrO$_2$. By contrast, using this probe Brønsted sites are detected only for the monoclinic zirconia. Tao et al. [42] have also reported similar conclusions in a study concerning a comparison of the surface acidic properties of tetragonal and monoclinic nanostructured zirconia. Moreover, a higher amount of Lewis acid sites is obtained for the monoclinic ZrO$_2$ [43].

The inversion of selectivity observed for the CoMoS/ZrO$_2$ catalyst is quite unexpected regarding the literature. For example, for HDS of 46DMDBT Ninh et al. [44] have obtained a
HYD/DDS ratio of 1.43 and 0.60 for CoMoS dispersed on ZrO$_2$ and Al$_2$O$_3$, respectively. In their study the authors used a commercial monoclinic ZrO$_2$ ($S_{\text{BET}} = 96 \text{ m}^2/\text{g}$) as support. Orozco et al. have reported that the HYD activity of MoS$_2$ deposited on ZrO$_2$ is twice the one of MoS$_2$ dispersed on Al$_2$O$_3$ [45]. In our case, even if the acidic route contributes to the DDS pathway, the change of selectivity cannot be explained only by this contribution. Indeed, in that case the main contribution arises from the direct cleavage of the C-S bond. From Table 4, it can be seen that for the zirconia-based catalyst, the activity per m2 is lower. This could be expected since the amorphous ZrO$_2$ has a higher specific surface area than Al$_2$O$_3$. However, the same tendency is noted for the activity per atom of Mo, we can thus assume that the difference in activity and selectivity may be due to a modification of the active sites which are the molybdenum atoms. This involves different interactions with the support because of the presence of amorphous phase, which will lead to modifications of the electronic properties as already observed with TiO$_2$ [20]. Indeed, in a recent study [29], we have shown that the prepared amorphous mesostructured ZrO$_2$ exhibit a high thermal stability up to 400°C, so we can assume that the change in selectivity is mainly due to the presence of this amorphous phase, which likely modifies the intermediates of reaction by favoring the ones involved in the direct rupture of the C-S bond [5] and/or by modifying the properties of the active phase.

Materials	A_{total}	A_{acid}	A_{HYD}	$A_{\text{total DDS}}$
CoMoS/Al$_2$O$_3$	2.5	0.9	0.68	0.72
CoMoS/ZrO$_2$	6	2	0.68	0.72

A_{total}: represents the total activity. A_{acid}, A_{HYD} and $A_{\text{total DDS}}$ stand for the activity obtained from the acidic, the hydrogenated and the direct desulfurization routes, respectively.

3. Materials and Methods

3.1. Materials Preparation

Amorphous mesostructured ZrO$_2$ was prepared according the procedure described in reference [29] and wet impregnated using CoN$_2$O$_6$, 6H$_2$O, 99.00% Si (Sigma-Aldrich Chemie S.a.r.l., Saint-Quentin Fallavier, France) and (NH$_4$)$_6$Mo$_7$O$_{24}$, 6H$_2$O, 99.98% (Sigma-Aldrich Chemie S.a.r.l., Saint-Quentin Fallavier, France) precursors under the same conditions than the ones reported in reference [20].

As reported in previous papers [20], the catalyst is sulfided in situ before the catalytic reaction in the presence of hydrogen by the hydrogen sulfide resulting from the decomposition of dimethyl disulfide (DMDS). The sulfurizing charge consists of a mixture of n-heptane and DMDS (5 by weight). The sulfurizing feed and hydrogen flow rates are respectively 8 mL/h and 4.7 L/h for an H$_2$/feed ratio of 587 NL/L. The sulfurizing charge is injected at 150°C. After 1 h of sulfidation at 150°C, the temperature is raised to 350°C at a rate of 5 °C/min then maintained at 350°C for 14 h. After this plateau, the temperature is lowered to 340°C.

3.2. Characterization

SAXS measurements were carried out using on a SAXSess mc2 (Anton Paar, Vienna, Austria), equipped with a classical tube (λ Cu, K$_\alpha = 0.1542$ nm) operating at 40 kV and 50 mA. Textural properties were evaluated from Micromeritics (Company, Merignac, France) TRISTAR 3000 sorptometer. The BET the BJH (Barrett, Joyner et Halenda) equations were applied to determine the specific surface area and the repartition of the mesopores diameters.
XPS spectra were collected on a Kratos Axis Ultra (Kratos Analytical, Manchester, United Kingdom) spectrometer with a hemispherical energy analyzer and using a monochromatic Al Ka source (1486.6 eV). The peak at 284.6 eV is taken as reference for the bending energies.

3.3. Catalytic Tests

The transformation of 4.6DMDBT was studied under HDS conditions of a diesel cut at a temperature of 340 °C under a total pressure of 4.0 MPa while maintaining the H2/HC ratio constant and equal to 475 NL/L. The model charge, containing 1% by weight of sulfur, consists of 500 ppm S from (4.6DMDBT) and 9500 ppm S of H2S generated by dimethyl disulfide (DMDS) diluted in n-heptane. The transformation of 46DMDBT was measured for a conversion of 25%, which corresponds to liquid feed and hydrogen flow rates of 48 mL/h and 22.8 L/h, respectively while keeping the H2/HC ratio constant (equal to 475 NL/L). Organic products are analyzed by gas chromatography (Varian 3400 GC, Agilent, Paris, France), using a flame ionization detector (FID). The different products were separated on a non-polar DB 1 type capillary column (Agilent, Paris, France) 30 m in length, with an internal diameter of 0.32 mm and a film thickness of 5 μm. The experiment conditions are as follows: a plateau of 30 s at 50°C, followed by a rise in temperature at 2 °C/min up to 60°C, then at 7 °C/min to end at a temperature of 250°C which is maintained for 18 min. The temperatures of the injector and the detector were set at 320°C. The samples taken over time are injected (2 μL) into the chromatograph using a micro-syringe.

4. Conclusions

Mesostructured amorphous ZrO2 have been wet impregnated and sulfided to prepared catalyst for the 46DMDBT hydrodesulfurization.

Comparing with the conventional alumina support, a higher promotion rate and an enhancement of the sulfidation of Co species is observed.

Compared to CoMoS supported over conventional Al2O3 a similar total activity was measured but the direct desulfurization pathway predominates over the hydrogenated route when amorphous mesostructured zirconia is used as support. This result is unexpected since according to literature commercial zirconia favors the hydrogenated route. This study emphasis the role of the amorphous phase on the selectivity.

Author Contributions: I.N.: Investigation; L.M.: Investigation; J.D.C.: Investigation; S.R.: Investigation; M.B.: Investigation; C.M.: Formal analysis; S.B.: Resources, Formal analysis; B.L.: Resources, Supervision; J.B.: Writing - Original Draft, Supervision.

Funding: This research received no external funding.

Acknowledgments: We would like to thank the platform “Spectroscopies et Microscopies des Interfaces” and Aurélien Renard and Matine Mallet (LCPME, Laboratoire de Chimie, Physique et Microbiologie pour les Matériaux et l’Environnement, Vandoeuvre-lès-Nancy, France) for XPS analyses.

Conflicts of Interest: The authors declare that they have no competing interests

References
1. https://www.transportpolicy.net/standard/eu-fuels-diesel-and-gasoline.
2. Whitehurst, D.D.; Isoda, T.; Mochida, I. Present state of the art and future challenges in the hydrodesulfurization of polyaromatic sulfur compounds. Adv. Catal. 1998, 42, 345–471.
3. Landau, M.V. Deep hydrotreating of middle distillates from crude and shale oils. Catal. Today 1997, 36, 393–429.
4. Ma, X.; Sakanishi, K.; Mochida, I. Hydrodesulfurization reactivities of various sulfur compounds in vacuum gas oil. Ind. Eng. Chem. Res. 1996, 35, 2487–2494.
5. Bataille, F.; Lemberton, J.L.; Michaud, P.; Péro, G.; Vrinat, M.; Lemaire, M.; Schulz, E.; Breysse, M.; Kasztelan, S. Alkyldibenzothiophenes hydrodesulfurization-promoter effect, reactivity, and reaction mechanism. J. Catal. 2000, 191, 409–422.

6. Bej, S.K.; Maity, S.K.; Turaga, U.T. Search for an efficient 4, 6-DMDBT hydrodesulfurization catalyst: A review of recent studies. Energy Fuels 2004, 5, 1227–1237.

7. Stanislaus, A.; Marafi, A.; Rana, M.S. Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catal. Today 2010, 153, 1–68.

8. Sundaramurthy, V.; Eswaranamoorthi, I.; Dalai, A.K.; Adjaye, J. Hydrotreating of gas oil on SBA-15 supported NiMo catalysts. Microporous and Mesoporous Mater. 2008, 111, 560–568.

9. Klimova, T.; Peña, L.; Lizama, L.; Salcedo, C.; Gutiérrez, O.Y. Modification of activity and selectivity of NiMo/SBA-15 HDS catalysts by grafting of different metal oxides on the support surface. Ind. Eng. Chem. Res. 2009, 48, 1126–1133.

10. Duchet, J.C.; Tilliette, M.J.; Cornet, D.; Vivier, L.; Perot, G.; Bekakra, L.; Moreau, C.; Szabo, G. Catalytic properties of nickel molybdenum sulphide supported on zirconia. Catal. Today 1991, 10, 579–592.

11. Kumaran, G.M.; Garg, S.; Soni, K.; Prasad, V.V.D.N.; Sharma, L.D.; Murali Dhar, G. Catalytic functionalities of H-fβ-zeolite-supported molybdenum hydrotreating catalysts. Energy & Fuels 2006, 20, 1784–1790.

12. Breysse, M.; Afanasiev, P.; Geantet, C.; Vrinat, M. Overview of support effects in hydrotreating catalysts. Catal. Today 2003, 86, 5–16.

13. Prabhu, N.; Dalai, A.K.; Adjaye, J. Hydrodesulfurization and hydrodenitrogenation of light gas oil using NiMo catalyst supported on functionalized mesoporous carbon. Appl. Catal. A Gen. 2011, 401, 1–11.

14. Ramireza, J.; Macas, G.; Cedenoa, L.; Gutierrez-Alejandre, A.; Cuevasa, R.; Castilloc, P. The role of titania in supported Mo, CoMo, NiMo, and NiW hydrodesulfurization catalysts: Analysis of past and new evidences. Catal. Today 2004, 98, 19–30.

15. Platanitisa, P.; Panagiotoua, G.D.; Bourikasb, K.; Kordulisac, C.; Fierroad, J.L.G.; Lycourghiotisa, A. Preparation of un-promoted molybdenum HDS catalysts supported on titania by equilibrium deposition filtration: Optimization of the preparative parameters and investigation of the promoting action of titania. J. Mol. Catal. A Chem. 2016, 412, 1–12.

16. Castillo-Villalón, P.; Ramírez, J.; Cuevas, R.; Vázquez, P.; Castaña, R. Influence of the support on the catalytic performance of Mo, CoMo, and NiMo catalysts supported on Al2O3 and TiO2 during the HDS of thiophene, dibenzothiophene, or 4,6-dimethyldibenzothiophene. Catal. Today 2016, 259, 140–149.

17. Shimada, H.; Sato, T.; Yoshimura, Y.; Hiraishi, J.; Nishijima, A. Support effect on the catalytic activity and properties of sulfided molybdenum catalysts. J. Catal. 1988, 110, 275–284.

18. Shimada, H. Morphology and orientation of MoS2 clusters on Al2O3 and TiO2 support and their effect on catalytic performance. Catal. Today 2003, 86, 17–29.

19. Wang, D.; Qian, W.; Ishihara, A.; Kabe, T. Elucidation of Sulfidation State and Hydrodesulfurization Mechanism on TiO2 Catalysts Using 82S Radioisotope Tracer Methods. J. Catal. 2001, 203, 322–328.

20. Roy, T.; Rousseau, J.; Daudin, A.; Pirmgruber, G.; Lebeau, B.; Blin, J.L.; Brunet, S. Deep hydrodesulfurization of 4,6-dimethylbenzothiophene over CoMoS/TiO2 catalysts: Impact of the TiO2 treatment. Catal. Today 2020, https://doi.org/10.1016/j.cattod.2020.05.052.

21. Mazurelle, J.; Lamonier, C.; Lancelot, C.; Payen, E.; Pichon, C.; Guillaume, D. Use of the cobalt salt of the heteropolyanion [CoMo3O11(H2O)5]7+ for the preparation of CoMo HDS catalysts supported on Al2O3, TiO2 and ZrO2. Catal. Today 2008, 130, 41–49.

22. Orozco, E.O.; Vrinat, M. Kinetics of dibenzothiophene hydrodesulfurization over MoS2: supported catalysts: Modelization of the H2S partial pressure effect. Appl. Catal. A Gen. 1998, 170, 195–206.

23. Ji, Y.; Afanasiev, P.; Vrinat, M.; Li, W.; Li, C. Promoting effects in hydrogenation and hydrodesulfurization reactions on the zirconia and titania supported catalysts. Appl. Catal. A Gen. 2004, 257, 157–164.

24. Breysse, M.; Portefaix, J.L.; Vrinat, M. Support effects on hydrotreating catalysts. Catal. Today 1991, 10, 489–505.

25. Hamon, D.; Vrinat, M.; Breysse, M.; Durand, B.; Beauchesne, F.; Des Courieres, T. Surface structure and catalytic activities of Mo/ZrO2-Y2O3 catalysts. Bull. Soc. Chim. Belg. 1991, 100, 933–943.

26. Grange, P.; Vanhaeren, X. Hydrotreating catalysts, an old story with new challenges. Catal. Today 1997, 375-391.
27. Ancheyta, J.; Speight, J.G. Hydroprocessing of Heavy Oil and Residuum; CRC Press, Taylor and Francis Group: Boca Raton, FL, 2007.
28. Furimsky, E. Catalyst for Upgrading Heavy Petroleum Feeds. Stud. Surf. Sci. Catal. 2007, 169, 1–387.
29. Lebeau, B.; Naboulsi, I.; Michelin, L.; Marichal, C.; Rigolet, S.; Carteret, C.; Brunet, S.; Bonne, M.; Blin, J.L. Amorphous Mesoporous Zirconia with High (Hydro)Thermal Stability. RSC Adv. 2020, 10, 26165–26176.
30. Bagshaw, S.A.; Prouzet, E.; Pinnavaia, T.J. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science 1995, 269, 1242–1244.
31. Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), IUPAC, Pure and Appl. Chem. 1985, 57, 603–619.
32. Lavalley, J.C.; Anquetil, R.; Czyziewska, J.; Ziolek, M. Use of pyridine as a probe for the determination, by IR spectroscopy, of the Brønsted acid strength of MFHNAY zeolites. J. Chem. Soc. Trans. 1996, 92, 1263–1266.
33. Soni, K.K.; Mouli, K.C.; Dalai, A.K.; Adjaye, J. Effect of Ti loading on the HDS and HDN activity of KLGO on NiMo/TiSBA-15 catalysts. Microporous and Mesoporous Mater. 2012, 152, 224–234.
34. Du, P.; Zheng, P.; Song, S.; Wang, X.; Zhang, M.; Chi, K.; Xu, C.; Duan, A.; Zhao, Z. Synthesis of a novel micro/mesoporous composite material Beta-FDU-12 and its hydro-upgrading performance for FCC gasoline. RSC Adv. 2016, 6, 1018–1026.
35. Zakharova, M.V.; Kleitz, F.; Fontaine, F.G. Lewis acidity quantification and catalytic activity of Ti, Zr and Al-supported mesoporous silica. Dalton Trans. 2017, 46, 3864–3876.
36. Marakatti, V.; Marappa, S.; Gaigneaux, E.M. Sulfated zirconia: An efficient catalyst for the Friedel-Crafts monoalkylation of resorcinol with methyl tertiary butyl ether to 4-tertiary butylresorcinol. New J. Chem. 2019, 43, 7733–7742.
37. Bui, V.N.; Laurenti, D.; Delichère, P.; Geantet, C. Hydrodeoxygenation of guaiacol Part II: Support effect for CoMoS catalysts on HDO activity and selectivity. Appl. Catal. B 2011, 101, 246–255.
38. Han, W.; Yuan, P.; Fan, Y.; Shi, G.; Liu, H.; Bai, D.; Bao, X. Preparation of supported hydrodesulfurization catalysts with enhanced performance using Mo-based inorganic–organic hybrid nanocrystals as a superior precursor. J. Mater. Chem. 2012, 22, 25340–25353.
39. Farag, H.; Mochida, I.; Sakanishi, K. Fundamental comparison studies on hydrodesulfurization of dibenzothiophenes over CoMo-based carbon and alumina catalysts. Appl. Catal. A Gen. 2000, 194-195, 147-157.
40. Zhou, W.; Zhou, Y.; Wei, Q.; DU, L.; Ding, S.; Jiang, S.; Zhang, Y.; Zhang, Q. Gallium modified HUSY zeolite as an effective co-support for NiMo hydrodesulfurization catalyst and the catalyst’s high isomerization selectivity. Chem. Eur. J. 2017, 23, 9369–9382.
41. Ma, Z.Y.; Yang, C.; Wei, W.; Li, W.H.; Sun, Y.H. Surface properties and CO adsorption on zirconia polymorphs. J. Mol. Catal. A: Chem. 2005, 227, 119–124.
42. Zhao, Y.; Li, W.; Zhang, M.; Tao, K. A comparison of surface acidic features between tetragonal and monoclinic nanostructured zirconia. Catal. Commun. 2002, 3, 239–245.
43. Liu, C.; Wang, W.; Xu, Y.; Li, Z.; Wang, B.; Ma, X. Effect of zirconia morphology on sulfur-resistant methanation performance of MoO3/ZrO2 catalyst. Appl. Surf. Sci. 2018, 441, 482–490.
44. Ninh, T.K.T.; Laurenti, D.; Leclerc, E.; Vrinat, M. Support effect for CoMoS and CoNiMoS hydrodesulfurization catalysts prepared by controlled method. Appl. Catal. A Gen. 2014, 487, 210–218.
45. Orozco, E.O.; Vrinat, M. Kinetics of dibenzothiophene hydrodesulfurization over MoS2 supported catalysts: Modellization of the H2S partial pressure effect. Appl. Catal. 1998, 170, 195–206.