Usefulness of blood supply visualization by indocyanine green fluorescence for reconstruction during esophagectomy

Yutaka Shimada · Tomoyuki Okumura · Takuya Nagata · Shigeaki Sawada · Koshi Matsu · Ryota Hori · Isaku Yoshioka · Toru Yoshida · Ryusuke Osada · Kazuhiro Tsukada

Abstract
Background Adequate blood supply for the reconstructed organ is important for safe esophagogastric anastomosis during esophagectomy. Recently, indocyanine green (ICG) has been used for visualization of the blood supply when anastomosis is performed in vascular surgery. To visualize the blood supply for reconstruction, we employed ICG fluorescence during esophagectomy.

Methods From August 2008, 40 patients received cervical or thoracic esophagectomy. They consisted of 33 patients having esophagectomy for thoracic esophageal cancer, 3 being treated for cervical esophageal cancer, and 4 with double cancer of the thoracic and cervical regions. Before and after pulling up the reconstructed organ, 2.5 mg of ICG was injected as a bolus. Then ICG fluorescence was detected by a camera and recorded.

Results ICG fluorescence was easily detected in all patients at 1 min after injection. The vascular network was well visualized in the gastric wall, colonic grafts, and free jejunal grafts. In five patients, we also performed anastomosis between the short gastric vein and the external cervical vein or superficial cervical vein. The intraoperative and postoperative course of all patients was uneventful apart from three anastomotic leakages.

Conclusions ICG fluorescence can be employed to evaluate the blood supply to reconstructed organs and can be useful in selecting the patients who do not need additional vessel anastomosis. However, anastomotic leakage was not reduced, so the microcirculation detected by ICG fluorescence did not necessarily provide appropriate blood supply for a viable anastomosis.

Keywords Anastomotic leakage · Vessel anastomosis · Microcirculation

Introduction
Reconstruction of the gastrointestinal tract is still a major issue in patients with gastrointestinal malignancies. In esophageal cancer surgery, anastomotic leakage is one of the important causes of death [1], and the rate of anastomotic leakage ranges from 6.2 to 27% [2–8]. Among several causes of anastomotic leakage, ensuring an adequate blood supply is the most important point for performing anastomosis safely after esophagectomy. In 1986, we introduced the EEA stapler for esophago-gastrostomy after resection of part of the sternum following subtotal esophagectomy [9], and the average anastomotic leakage rates from 1994 to 2008 were 4.8% (20/416).

Although all of these patients recovered, a method for effective evaluation of the blood supply to the reconstructed organs would be useful.

To assess the blood supply in reconstructed organs, laser Doppler flowmetry has been used, but sufficiently reliable measurements are not obtained [10, 11]. Indocyanine green (ICG) has long been used for the evaluation of liver function. Recently, ICG fluorescence has also been used for the detection of sentinel lymph
nodes in breast cancer surgery, gastrectomy, or colorectal cancer surgery, and for visualization of the blood supply after anastomosis during vascular surgery [12–17]. To visualize the blood supply of reconstructed organs during esophagectomy, we started to use ICG fluorescence in July 2008. This study was done to evaluate the efficacy of ICG fluorescence based on our experience so far.

Methods

Patient characteristics

The patients consisted of 33 having esophagectomy for thoracic esophageal cancer, 3 who were treated for cervical esophageal cancer, and 4 with double cancer of the thoracic and cervical regions. (Table 1). There were 32 men and 8 women with an average age of 66 years (range 49–81 years). Ten patients received preoperative chemotherapy, one patient received preoperative chemo-radiotherapy, and two patients had received radiotherapy several years before surgery.

Table 1 Characteristics of the patients
Number
Age 66 (49–81)
Sex
Male 32
Female 8
Tumor location
PhMt 2
CeMt 2
Ce 3
Ut 2
Mt 19
Lt 12
TNM stagea
1 10
2a 5
2b 5
3 18
4 2
Preoperative treatment
Chemotherapy 10
Chemoradiotherapy 1
Radiotherapy 2
None 27

Ph pharynx, Ce cervical esophagus, Ut upper thoracic esophagus, Mt middle thoracic esophagus, Lt lower thoracic esophagus, Ae abdominal esophagus

Results

Twenty-three patients underwent thoracoscopic-assisted right thoracotomy in the left lateral position, 1 patient...
received left thoracotomy because of a right aortic arch. 14 patients had esophagectomy in the prone position, and 2 patients received cervical esophagectomy in the supine position. With regard to the method used for reconstruction of the esophagus, a gastric tube was employed in 36 patients, a gastric tube plus free jejunal graft in 1 patient, a free jejunal graft in 2 patients, and an ileo-colonic graft in 1 patient. In 2 patients, reconstruction was done via the posterior mediastinal route, while 5 patients were treated by the subcutaneous route, and the retrosternal route was used in 31 patients (Table 2).

Fluorescence of the reconstructed esophagus was easily detected in all patients at 1 min after ICG injection. Both arteries and veins were effectively visualized (Fig. 2a, b). Furthermore, microvessels of the gastric wall were well visualized about 2 min after ICG injection (Fig. 3a, b). The blood supply of the free jejunal grafts was also well visualized (Fig. 4a, b). In five patients, an anastomosis was added between the short gastric vein and vessels in the neck based on the ICG fluorescence findings. Subsequently, one patient required re-anastomosis because poor circulation was revealed by ICG fluorescence (Fig. 5a, b). We could also effectively visualize blood flow in the colonic graft (Fig. 6a, b).

During this study we evaluated ICG fluorescence using the detection of microcirculation; however, retrospective re-evaluation of the fluorescence status after the period of this study revealed that small vessels were observed in the stump of the reconstructive organ’s wall in 22 cases, (Table 3).

There were no severe complications in this series, but two minor and one major anastomotic leakage. In all of the leakage patients, the subcutaneous route was used for reconstruction. Retrospective analysis revealed that there was no anastomotic leakage in the cases where we could observe small vessels in the reconstructive organ’s wall. On the other hand, in 15 out of 18 cases in which we could not observe small vessels in the organ’s wall, anastomotic leakage did not occur. (Table 3).

Discussion

Although surgical techniques have improved in recent decades and the incidence of anastomotic leakage has decreased to less than 10%, leakage is still one of the factors that influences the postoperative course and

Table 2 Summary of the operative procedures

Reconstruction method	Number
Gastric tube	36
Free jejunal graft + gastric tube	1
Free jejunal graft	2
Ileo-colonic graft	1
Reconstruction route	
Retrosternal	31
Posterior mediastinal	2
Subcutaneous	5
Cervical	2
Additional vascular anastomosis	
Yes	5
No	35
Surgical position	
Lateral	24
Prone	14
Supine	2

Fig. 1 Near-infrared camera system

Fig. 2 ICG fluorescence image of a gastric tube before anastomosis. Blood flow in the arteries and veins is well visualized. a The gastric tube. b ICG fluorescence image. A closed arrow indicates an artery and an open arrow indicates a vein.
survival after en bloc resection of esophageal cancer [19]. Thus, in order to improve the outcome, reducing the occurrence of anastomotic leakage is a major issue in the field of esophageal surgery. The most important predictors of anastomotic leakage are ischemia of the gastric conduit and a low blood oxygen level [20]. Several reports have also suggested that tissue blood flow is worse during the intra-operative and postoperative periods among patients with leakage than those without leakage [10, 11]. Epidural anesthesia may improve blood flow to the gastric tube and reduce the occurrence of anastomotic leakage [20].

To assess the blood supply of reconstructed organs, several studies have employed laser Doppler flowmetry [10, 11, 21]. Recent progress has led to intraoperative fluorescent imaging (IFI) using the SPY system, which allows the evaluation of coronary artery bypass graft patency intraoperatively based on the detection of indocyanine green (ICG) fluorescence [15, 22–24].

In the gastrointestinal field, ICG fluorescence has already been used for navigation surgery and for...
Patient no.	Age/ gender	Stage	Tumor location	Reconstruction method	Pull-up route	Method of thoracotomy	Preoperative treatment	Associated conditions	Vascular anastomosis	Anastomotic leakage	ICG (microcirculation in the stump)	ICG (small vessel in the stump)	
1	59/M	T3N0M0 stage 2a	Mt	G	R	L	–	–	–	–	–	Observed	Observed
2	59/M	T3N1M0 stage 3	Mt	G	P	L	FP × 2	Funnel chest	–	–	–	Observed	Observed
3	66/M	T3N0M0 stage 2a	Lt	G	R	L	–	Obesity (BMI 30)	–	–	–	Observed	Observed
4	70/M	T1N0M0 stage 1	PhMt	G	R	L	–	Pharyngeal cancer, DM	–	–	–	Observed	Observed
5	62/M	T1N1M0 stage 2b	Lt	G	R	L	–	Renal failure	+	–	–	Observed	Not observed
6	70/M	T3N1M0 stage 3	Mt	G	R	L	FP × 2	–	–	–	Observed	Not observed	
7	76/F	T3N1M0 stage 3	Mt	G	R	L	FP + 40 Gy	–	–	–	Observed	Not observed	
8	58/M	T3N1M0 stage 3	Lt	G	R	L	–	–	–	–	–	Observed	Not observed
9	70/M	T3N1M0 stage 3	Lt	G	S	L	–	Colon cancer	+	+	+	Observed	Not observed
10	78/M	T3N1M0 stage 3	Mt	G	R	L	–	–	–	–	–	Observed	Not observed
11	56/F	T4N1M0 stage 3	Mt	G	R	L	–	–	–	–	–	Observed	Observed
12	76/M	T1N0M0 stage 1	Ce	J	–	–	60 Gy (9 years before)	–	+	+	Observed	Observed	
13	56/F	T2N0M0 stage 2a	Ce	J	–	–	FP	–	+	–	Observed	Observed	
14	68/M	T1N1M0 stage 2b	Mt	G	R	L	FP	–	–	–	Observed	Observed	
15	62/M	T1N1M0 stage 2b	PhMt	G + J	R	L	FP	Pharyngeal cancer	+	–	–	Observed	Observed
16	71/M	T2N0M0 stage 2a	Mt	G	S	R	–	Right aortic arch	–	+	–	Observed	Not observed
17	81/M	T3N1M0 stage 3	Lt	G	R	L	–	–	–	–	–	Observed	Observed
18	67/M	T4N1M0 stage 3	CeMt	G	R	L	–	–	–	+	–	Observed	Not observed
19	54/M	T1N0M0 stage 1	Mt	G	R	L	–	–	–	–	–	Observed	Observed
20	67/M	T1N0M0 stage 1	Mt	C	S	L	–	–	–	–	–	Observed	Observed
21	76/M	T1N1M0 stage 2b	Mt	G	R	L	–	–	–	–	–	Observed	Observed
22	79/M	T2N0M0 stage 2a	Mt	G	R	L	–	Lung cancer	–	–	–	Observed	Not observed
23	61/F	T1N0M0 stage 1	Mt	G	R	L	–	–	–	–	–	Observed	Observed
24	60/M	T1N1M1 stage 4	CeMt	G	R	L	60 Gy	–	+	–	Observed	Not observed	
25	67/M	T1N0M0 stage 1	Ce	G	P	L	–	–	–	+	–	Observed	Not observed
26	64/M	T2N1M0 stage 2b	AeLt	G	R	L	–	–	–	–	–	Observed	Not observed
27	58/M	T3N1M0 stage 3	Lt	G	R	P	–	–	–	–	–	Observed	Observed
28	74/M	T1N0M0 stage 1	Mt	G	R	P	–	–	–	–	–	Observed	Not observed
29	68/F	T1N0M0 stage 1	AeLt	G	R	P	–	–	–	–	–	Observed	Observed
intraoperative detection of hepatocellular carcinoma [18, 25, 26]. In addition, Sekijima et al. [27] introduced ICG fluorescence for organ transplantation. However, detection of the microcirculation in gastrointestinal organs has not been studied much so far [28, 29].

Our results revealed that ICG fluorescence could detect organ blood flow before reconstruction and assist in evaluating the appropriate anastomatic sites. However, the incidence of anastomatic leakage was not reduced. Thus, the microvessels detected by ICG fluorescence did not always provide enough blood for a viable anastomosis. On the other hand, retrospective re-analysis revealed that there was no anastomatic leakage in cases in which we could observe small vessels in the stump of the reconstructive organ’s wall. Thus, observation of microcirculation and small vessels indicates an appropriate organ for anastomosis. However, we could observe microcirculation and small vessels in only about half of our series.

Intraoperative prostaglandin E1 treatment is also not effective for preventing anastomotic insufficiency [10]. Furthermore, gastric perfusion of less than 70% can predict the occurrence of anastomotic stricture but does not predict leakage [21]. Factors other than perfusion may also influence the process of anastomotic healing [21]. Thus, not only the blood supply, but also factors such as the route of anastomosis (retrosternal vs. posterior mediastinal or subcutaneous), the type of gastric tube (narrow or wide), the method of anastomosis (hand sewing, circular stapler, or triangulating stapling) and the tension at the anastomotic site may influence the healing of an anastomosis [10, 11, 20, 30–32].

In our series, the subcutaneous route was used in five patients because of the condition of the gastric tube or various anatomical problems, and three of these five patients had leakage. Thus, the need to employ the subcutaneous route may be one of the risk factors for anastomotic leakage [7].

With regard to additional microvascular anastomosis, a significant increase of tissue blood flow was observed after additional venous anastomosis (mean 19%) and also after combined arterial and venous anastomosis (mean 43%) [33]. Thus, additional anastomosis between the short gastric vessels and vessels in the neck resulted in the reduction of anastomotic leakage [34]. We had a good outcome in the present series, so ICG fluorescence may provide useful information to the surgeon about whether patients require additional microvascular anastomosis or not.

Finally, imaging with the photodynamic eye has the following benefits. First, ICG is almost completely washed out within 20 min after injection, so ICG fluorescence can be assessed several times during surgery. Second, we can detect the microcirculation of a target organ as well as the adjacent organs. Third, we can select the patients who do not need additional vessel anastomosis.
In conclusion, imaging of ICG fluorescence can be used to evaluate the blood supply of reconstructed organs and can be useful in selecting the patients who do not need additional vessel anastomosis. However, the microcirculation detected by ICG fluorescence does not necessarily provide enough blood flow to maintain a viable anastomosis. In order to establish more detailed and appropriate ICG fluorescence criteria, an additional and larger study is needed.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

1. Alanezi K, Urschel JD. Mortality secondary to esophageal anastomotic leak. Ann Thorac Cardiovasc Surg. 2004;10:71–5.
2. Udagawa H, Akiyama H. Surgical treatment of esophageal cancer: Tokyo experience of the three-field technique. Dis Esophagus. 2001;14:110–4.
3. Ando N, Ozawa S, Kitagawa Y, Shinozawa Y, Kitajima M. Improvement in the results of surgical treatment of advanced squamous esophageal carcinoma during 15 consecutive years. Ann Surg. 2000;232:225–32.
4. Tachimori Y, Kanamori N, Uemura N, Hokamura N, Igaki H, Kato H. Salvage esophagectomy after high-dose chemoradiotherapy for esophageal squamous cell carcinoma. J Thorac Cardiovasc Surg. 2009;137:49–54.
5. Korst R, Port JL, Lee PC, Altorki NK. Intrathoracic manifestations of cervical anastomotic leaks after transthoracic esophagectomy for carcinoma. Ann Thorac Surg. 2005;80:1185–90.
6. Atkins BZ, Shah AS, Hutcheson KA, Mangum JH, Pappas TN, Harpole DH, et al. Reducing hospital morbidity and mortality following esophagectomy. Ann Thorac Surg. 2004;78:1170–6.
7. Lee Y, Fujita H, Yamana H, Kakegawa T. Factors affecting leakage following esophageal anastomosis. Surg Today. 1994;24:24–9.
8. Sarela AI, Tolan DJ, Harris K, Dexter SP, Sue-Ling HM. Anastomotic leakage following esophageal anastomosis: a mortality-free experience. J Am Coll Surg. 2008;206:516–23.
9. Shimada Y, Ohishi K, Mizutani N, Yanagibashi K, Naito M, Shimada Y, et al. Retrosternal esophagectomy with EEA stapler after subtotal resection of the esophagus: application and results. Dig Surg. 1987;4:101–5.
10. Miyazaki T, Kuwano H, Kato H, Yoshikawa M, Ojima H, Tsukada K, et al. Predictive value of blood flow in the gastric tube in anastomotic insufficiency after thoracic esophagectomy. World J Surg. 2002;26:1319–23.
11. Ikeda Y, Niimi M, Kan S, Shatari T, Takami H, Kodaira S. Clinical significance of tissue blood flow during esophagectomy by laser Doppler flowmetry. J Thorac Cardiovasc Surg. 2001;122:1101–6.
12. Kitai T, Inomoto T, Miwa M, Shikayama Y. Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer. Breast Cancer. 2005;12:211–5.
13. Tajima Y, Yamazaki K, Masuda Y, Kato M, Yasuda D, Aoki T, et al. Sentinel node mapping guided by indocyanine green fluorescence imaging in gastric cancer. Ann Surg. 2009;249:58–62.
14. Nomura S, Ohue M, Seki Y, Tanaka K, Mottori M, Kishi K, et al. Feasibility of a lateral region sentinel node biopsy of lower rectal cancer guided by indocyanine green using a near-infrared camera system. Ann Surg Oncol. 2010;17:144–51.
15. Taggart DP, Choudhary B, Anastasiadis K, Abu-Omar Y, Balcumaraswami L, Pigott DW. Preliminary experience with a novel intraoperative fluorescence imaging technique to evaluate the patency of bypass grafts in total arterial revascularization. Ann Thorac Surg. 2003;75:870–3.
16. Kuroiwa T, Kajimoto Y, Ohta T. Development and clinical application of near-infrared surgical microscope: preliminary report. Minim Invasive Neurosurg. 2001;44:240–2.
17. Unno N, Suzuki M, Yamamoto N, Inuzuka K, Sagara D, Nishiyama M, et al. Indocyanine green fluorescence angiography for intraoperative assessment of blood flow: a feasibility study. Eur J Vasc Endovasc Surg. 2008;35:205–7.
18. Kusano M, Tajima Y, Yamazaki K, Kato M, Watanabe M, Miwa M. Sentinel node mapping guided by indocyanine green fluorescence imaging: a new method for sentinel node navigation surgery in gastrointestinal cancer. Dig Surg. 2008;25:103–8.
19. Mariette C, Taillier G, Seuningen IV, Triboulet JP. Factors affecting postoperative course and survival after en bloc resection for esophageal carcinoma. Ann Thorac Surg. 2004;78:1177–83.
20. Michelet P, Jounou XBD, Roch A, Papazian L, Ragni J, Thomas P, et al. Perioperative risk factors for anastomotic leakage after esophagectomy. Chest. 2005;128:3461–6.
21. Pierjeau JP, De Graaf PW, Poen H, Van der Tweel I, Obertop H. Impaired healing of cervical oesophagastrotomies can be predicted by estimation of gastric serosal blood perfusion by laser Doppler flowmetry. Eur J Surg. 1994;160:599–603.
22. Balcumaraswami L, Abu-Omar Y, Choudhary B, Pigott D. Taggart DP. A comparison of transit-time flowmetry and intraoperative fluorescence imaging for assessing coronary artery bypass graft patency. J Thorac Cardiovasc Surg. 2005;130:315–20.
23. Rubens FD, Ruel M, Femes SE. A new and simplified method for coronary and graft imaging during CABG. Heart Surg Forum. 2002;5:141–414.
24. Detter C, Russ D, Illland A, Wipper S, Schurr MO, Reischenspurner H, et al. Near-infrared fluorescence coronary angiography: a new noninvasive technology for intraoperative graft patency control. Heart Surg Forum. 2002;5:364–9.
25. Ishizawa T, Bandai Y, Harada N, Muraoka A, Iijichi M, Kusaka K, et al. Indocyanine green-fluorescent imaging of hepatocellular carcinoma during laparoscopic hepatectomy: an initial experience. J Gastroenterol. 2003;38:42–5.
26. Aoki T, Tasuda D, Shimizu Y, Odaira M, Niiya T, Kusano T, et al. Image-guided liver mapping using fluorescence navigation system with indocyanine green for anatomical hepatic resection. World J Surg. 2008;32:1763–7.
27. Sekijima M, Tojimbara T, Sato S, Nakamura M, Kawase T, Kai K, et al. An intraoperative fluorescent imaging system in organ transplantation. Transpl Proc. 2004;36:2188–90.
28. Okamoto K, Muguruma S, Kimura T, Yan H, Imoto Y, Takagawa M, et al. A novel diagnostic method for evaluation of vascular lesions in the digestive tract using infrared fluorescence endoscopy. Endoscopy, 2005;37:52–7.
29. Ebihara Y, Okushima S, Miyasaka D, Sasaki T, Kawarada Y, Kitashiro S, et al. Technical device for reconstruction after thoracic esophagectomy. Geka Chiryo. 2010;102:156–60. (in Japanese).
30. Toh Y, Sakaguchi Y, Ikeda O, Adachi E, Ohgaki K, Yamashita Y, et al. The triangulating stapling technique for cervical esophagogastric anastomosis after esophagectomy. Surg Today. 2009;39:201–6.
31. Pierjeau JP, De Graaf PW, van Vroonhoven TJ, Obertop H. The vascularization of a gastric tube as a substitute for the esophagus can be used in the treatment of esophageal cancer: Tokyo experience of the three-field technique. Dis Esophagus. 2001;14:110–4.
32. Toh Y, Sakaguchi Y, Ikeda O, Adachi E, Ohgaki K, Yamashita Y, et al. The triangulating stapling technique for cervical esophagogastric anastomosis after esophagectomy. Surg Today. 2009;39:201–6.
33. Murakami M, Sugiyama A, Ikegami T, Aruga H, Matsushita K, Ishida K, et al. Additional microvascular anastomosis in reconstruction after total esophagectomy for cervical esophageal carcinoma. Am J Surg. 1999;178:263–6.

34. Murakami M, Sugiyama A, Ikegami T, Ishida K, Maruta F, Shimizu F, et al. Revascularization using the short gastric vessels of the gastric tube after subtotal esophagectomy for intrathoracic esophageal carcinoma. J Am Coll Surg. 2000;190:71–7.