Rare B Decays into States Containing a J/ψ Meson and a Meson with $s\bar{s}$ Quark Content

B. Aubert,1 D. Boutigny,1 J.-M. Gaillard,1 A. Hicheur,1 Y. Karyotaki,1 J. P. Lees,1 P. Robbe,1 V. Tisserand,1 A. Zghiche,1 A. Palano,2 A. Pompli,2 J. C. Chen,3 N. D. Qi,3 G. Rong,3 P. Wang,3 Y. S. Zhu,3 G. Eigen,4 I. Ofte,4 B. Stugu,4 G. S. Abrams,5 A. W. Borgland,5 A. B. Breon,5 D. N. Brown,5 J. Button-Shafer,5 R. N. Cahn,5 E. Charles,5 M. S. Gill,5 A. V. Gritsan,5 Y. Groysman,5 R. G. Jacobsen,5 R. W. Kadel,5 J. Kadyk,5 L. T. Kerth,5 Yu. G. Kolomensky,5 J. F. Krahl,5 C. LeClerc,6 M. E. Levi,6 G. Lynch,6 L. M. Mir,5 P. J. Oddone,5 T. J. Orimoto,5 M. Pripstein,5 N. A. Roe,5 A. Romosan,5 M. T. Ronan,5 V. G. Shelkov,5 A. V. Telnov,5 W. A. Wenzel,5 T. J. Harrison,6 C. M. Hawkes,6 D. J. Knowles,6 S. W. O’Neale,6 R. C. Penny,6 A. T. Watson,6 N. K. Watson,6 T. Deppermann,7 K. Goetzenni,5 H. Koch,7 B. Lewandowski,7 K. Peters,7 H. Schmuecker,7 M. Steinke,7 N. R. Barlow,8 W. Bhini,8 J. T. Boyd,8 N. Chevalier,8 P. J. Clark,8 W. N. Cottingham,8 C. Mackay,8 F. F. Wilson,8 K. Abe,9 C. Hearty,9 T. S. Mattison,9 J. A. McKenna,9 D. Thiessen,9 S. Jolly,10 A. K. McKenney,10 V. E. Blinov,11 A. D. Bukin,11 A. R. Buzykaev,11 V. B. Golubev,11 V. N. Ivanchenko,11 A. A. Korol,11 E. A. Kravchenko,11 A. P. Onuchin,11 I. S. Serednyakov,11 Yu. I. Skovpen,11 A. N. Yushkov,11 D. Best,12 M. Chao,12 D. Kirkby,12 A. J. Lankford,12 M. Mandelkern,12 S. McMahon,12 D. P. Stoker,12 K. Arisaka,13 C. Buchanan,13 S. Chun,13 D. B. MacFarlane,14 S. Prell,14 Sh. Rahatlou,14 G. Raven,14 V. Sharma,14 J. W. Berryhill,15 C. Campagnari,15 B. Dahmes,15 P. A. Hart,15 N. Kuznetsova,15 S. L. Levy,15 O. Long,15 A. Lu,15 M. A. Mazur,15 J. D. Richman,15 W. Verkerke,15 J. Beringer,16 A. M. Eising,16 M. Grothe,16 C. A. Heusch,16 W. S. Lockman,16 T. Pulliam,16 T. Schale,16 R. E. Schmitz,16 B. A. Schumm,16 A. Seiden,16 M. Turri,16 W. Walkowiak,16 D. C. M. Wilson,16 E. Chen,17 G. P. Dubois-Felsmann,17 A. Dvoretskii,17 D. G. Hitlin,17 F. C. Porter,17 A. Ryd,17 A. Samuel,17 S. Yang,17 S. Jayatilleke,18 G. Mancinelli,18 B. T. Meadows,18 M. D. Sokoloff,18 T. Barillari,19 P. Bloom,19 W. T. Ford,19 U. Nauenberg,19 A. Olivas,19 P. Rankin,19 J. Roy,19 J. G. Smith,19 W. C. van Hoek,19 L. Ziang,19 J. Blouw,20 J. L. Harton,20 M. Krishnamurthy,20 A. Soffer,20 W. H. Toki,20 R. J. Wilson,20 J. Zhang,20 D. Altenburg,21 T. Brandt,21 J. Brose,21 T. Colberg,21 M. Dickopp,21 R. S. Dubitzky,21 A. Hauke,21 E. Maly,21 R. Müller-Pfefferkorn,21 S. Otto,21 K. R. Schubert,21 R. Schierz,21 B. Spaan,21 L. Wilden,21 D. Bernard,22 G. R. Bonneaud,22 F. Broechardt,22 J. Cohen-Tanugi,22 S. Ferrag,22 S. T’Jampens,22 Ch. Thiebaux,22 G. Vasileiadis,22 M. Verderi,22 Anjumohova,23 B. Antarctic,23 A. Khan,23 D. Lavin,23 F. Muheim,23 S. Player,24 J. E. Swain,23 J. Tinslay,23 M. Falbo,24 C. Boreans,25 C. Bozzi,25 L. Piemontese,25 A. Sarti,25 E. Treadwell,26 F. Anulli,27 R. Baldini-Ferroli,27 A. Calcetta,27 R. de Sangro,27 D. Falciai,27 G. Finocchiaro,27 P. Patteri,27 I. M. Peruzzi,27 M. Piccolo,27 A. Zallo,27 S. Bagnasco,28 A. Buzza,28 R. Conti,28 G. Crosetti,28 M. Lo Vetere,28 M. Macri,28 R. Monge,28 S. Passaggio,28 F. C. Pastore,28 C. Patrignani,28 E. Robutti,28 A. Santroni,28 S. Tosi,28 M. Morii,29 R. Bartoldus,30 G. J. Grenier,30 U. Mallik,30 J. Cochran,31 H. B. Crawley,31 J. Lamsa,31 W. T. Meyer,31 E. I. Rosenberg,31 J. Yi,31 M. Davier,32 G. Grosdidier,32 A. Hörcher,32 H. M. Lacker,32 S. Laplace,32 F. Le Diberder,32 V. Lepeltier,32 A. M. Lutz,32 T. C. Petersen,32 S. Plaszczynski,32 M. H. Schune,32 L. Tantot,32 S. Trincas-Duvoid,32 G. Wormser,32 R. M. Bionta,33 V. Brigeljevic,33 D. J. Lange,33 M. Mugge,33 K. van Bibber,33 D. M. Wright,33 A. J. Bevan,34 J. R. Fry,34 E. Gabathuler,34 R. Gamet,34 M. George,34 M. Kay,34 D. J. Payne,34 R. J. Slaone,34 C. Touramanis,34 M. L. Aspinwall,35 D. A. Bowerman,35 P. D. Dauncey,35 U. Egede,35 I. Eschrich,35 G. W. Morton,35 J. A. Nash,35 P. Sanders,35 D. Smith,35 G. P. Taylor,35 J. J. Back,35 G. Bellodi,36 P. Dixon,36 P. F. Harrison,36 R. J. L. Potter,36 H. W. Shorthouse,36 P. Strother,36 P. B. Vidal,36 G. Cowan,37 H. U. Flaecher,37 S. George,37 M. G. Green,37 A. Kurup,37 C. E. marker,37 T. R. McMahon,37 S. Riccardi,37 F. Salvatore,37 G. Vaitiunas,37 M. A. Winter,37 D. Brown,38 C. L. Davis,38 J. Allison,39 R. J. Barlow,39 A. C. Forti,39 F. Jackson,39 G. D. Lafferty,39 N. Savvas,39 J. H. Weatherall,39 J. C. Williams,39 A. Farbin,40 A. Jawahery,40 V. Lillard,40 D. A. Roberts,40 J. R. Schieck,40 G. Blaylock,41 C. Dallapiccola,41 K. T. Flood,41 S. S. Hertzbach,41 R. Koller,41 V. B. Koptchhev,41 T. B. Moore,41 H. Staengle,41 S. Willcock,41 B. Braun,42 R. Cowan,42 G. Sciolla,42 F. Taylor,42 R. K. Yamamoto,42 M. Milek,43
We report a study of the B meson decays $B^+ \to J/\psi \phi K^+$, $B^0 \to J/\psi \phi K^0_S$, $B^0 \to J/\psi \eta$ and $B^0 \to J/\psi \eta^*$ using 56 million $B\bar{B}$ events collected at the $\Upsilon(4S)$ resonance with the BABAR detector at the PEP-II e^+e^- asymmetric-energy storage ring. We measure the branching fractions $B(B^+ \to J/\psi \phi K^+) = (4.4 \pm 1.4 \pm 0.5 \pm 0.5 \pm 0.5) \times 10^{-6}$ and $B(B^0 \to J/\psi K^0_S) = (5.1 \pm 1.9 \pm 0.5 \pm 0.5 \pm 0.5) \times 10^{-6}$, and set upper limits at 90% confidence level for the branching fractions $B(B^0 \to J/\psi \eta) < 9.2 \times 10^{-6}$, $B(B^0 \to J/\psi \eta^*) < 2.7 \times 10^{-5}$, and $B(B^0 \to J/\psi \eta) < 6.3 \times 10^{-5}$.

PACS numbers: 13.25.Hw, 12.15.Hh, 11.30.Er

Recent observations of the B meson decays $B \to J/\psi \pi$ \cite{1} and $J/\psi \rho$ \cite{2} are evidence for the Cabibbo-
The suppressed transition $b \to c\bar{c}d$ via the color-suppressed diagram shown in Fig. 1(a). Here we present a search for color-suppressed modes with hidden strangeness, $s\bar{s}$, in the final state: $B \to J/\psi \eta, J/\psi \eta', J/\psi \phi$ and $J/\psi \phi K$. The decays $B^0 \to J/\psi \eta$ and $B^0 \to J/\psi \eta'$ occur via the same diagram, Fig. 1(a), and should have a rate comparable to $B \to J/\psi \pi$. If large enough samples can be isolated, these CP eigenstates could be used to test CP violation [3]. Models based on the heavy quark factorization approximation by A. Deandrea et al. [4] are used to predict that the branching fraction for $B^0 \to J/\psi \eta$ is a factor of 4 smaller than that for $B^0 \to J/\psi \pi$. Assuming that the decay $B^0 \to J/\psi \phi K$ is a Cabibbo-allowed and color-suppressed decay via the absence of a signal would indicate that the rescattering mode with rescattering as shown in Fig. 1(b), then the B production from sea quarks or are connected via gluons as shown in Figs. 1(c) and (d), respectively. This particular three-body decay would be of interest in the search for hybrid charmonium states that decay to the final state $J/\psi K$ [3]. In this paper we report on branching fractions or upper limits for $J/\psi \eta$, $J/\psi \eta'$, $J/\psi \phi$, $J/\psi \phi K^+$, and $J/\psi \phi K_S^0$.

The data used in this analysis were collected at the PEP-II asymmetric-energy e^+e^- storage ring with the BABAR detector, fully described elsewhere [5]. The BABAR detector contains a five-layer silicon vertex tracker (SVT) and a forty-layer drift chamber (DCH) in a 1.5-T solenoidal magnetic field. These devices detect charged particles and measure their momentum and energy loss. Photons and neutral hadrons are detected in a CsI(Tl) crystal electromagnetic calorimeter (EMC). The EMC detects photons with energies as low as 20 MeV and identifies electrons by their energy deposition. An internally reflecting ring-imaging Cherenkov detector (DIRC) of quartz bars is dedicated to charged particle identification (PID). Penetrating muons and neutral hadrons are identified by the steel flux return (IFR), which is instrumented with 18-19 layers of resistive plate chambers.

The data correspond to a total integrated luminosity of 50.9 fb^{-1} taken on the $\Upsilon(4S)$ resonance and 6.3 fb^{-1} taken off-resonance at an energy 0.04 GeV below the $\Upsilon(4S)$ mass and below the threshold for $B\bar{B}$ production. In this sample, there are 55.5 ± 0.6 million $B\bar{B}$ events ($N_{B\bar{B}}$).

In this analysis, all charged track candidates are required to have at least 12 DCH hits and transverse momentum greater than 100 MeV/c. The track candidates not associated with a K_S^0 decay must also originate near the nominal beam spot. The muon, electron, and kaon candidates must have a polar angle in radians of $0.3 < \theta_\mu < 2.7$, $0.410 < \theta_e < 2.409$, and $0.45 < \theta_K < 2.50$, respectively. In addition, all charged kaon candidates are required to have a laboratory momentum greater than 250 MeV/c. These requirements ensure the selection of tracks in the regions where the acceptance is well understood by the PID systems.

Photon candidates are identified from energy deposited in contiguous EMC crystals, summed together to form a cluster with total energy greater than 30 MeV and a shower shape consistent with that expected for electromagnetic showers.

Electron candidates are required to have a good match between the expected and measured energy loss (dE/dx) in the DCH, and between the expected and measured Cherenkov angle in the DIRC. The measurements of the ratio of EMC shower energy to DCH momentum, and the number of EMC crystals associated with the track candidate must be appropriate for an electron.

Muons are selected based on the energy deposited in the EMC, the number and distribution of hits in the IFR, the match between the IFR hits and the extrapolation of the DCH track into the IFR, and the depth of penetration of the track into the IFR.

Charged kaon and pion candidates are selected based on energy loss information from the SVT and DCH and the Cherenkov angle measured by the DIRC.

The intermediate states in the indicated decay modes used in this analysis, $J/\psi(ee,\mu\mu)$, $\phi(K^+K^-)$, $\eta(\gamma\gamma,\pi^+\pi^-\pi^0)$, $\eta'(\gamma\gamma,\pi^+\pi^-)$, $\pi^0(\gamma\gamma)$, and $K_S^0(\pi^+\pi^-)$, are selected with the mass intervals in Table II. Since $B^0 \to J/\psi \eta$ and $B^0 \to J/\psi \eta'$ involve decays of a pseudoscalar meson into a vector and a pseudoscalar meson, the angular distribution is proportional to $\sin^2 \theta_\ell$, where θ_ℓ is the helicity angle of the lepton from the J/ψ. Hence an additional requirement of $|\cos \theta_\ell|<0.8$ is applied to reject continuum and other backgrounds. The η candidates are rejected if either of the associated photons, in combination with any other photon in the event, forms a $\gamma\gamma$ mass within 20 MeV/c^2.
of the \(\pi^0 \) mass. For the mode \(B^0 \rightarrow J/\psi \eta (\gamma \gamma) \), the \(\eta \) candidate is required to have \(|\cos \theta_\eta^0| < 0.8 \), where \(\theta_\eta^0 \) is the photon helicity angle in the \(\eta \) rest frame. This rejects combinatoric background due to random pairs of photons that typically have a photon helicity angle that peaks at 0 or 180 degrees. For the \(\eta' \rightarrow \eta (\gamma \gamma) \pi^+ \pi^- \) candidates, we use the same \(\eta \) selection criteria for the \(\eta \) described above, including the \(\pi^0 \) veto.

An additional requirement is applied to separate two-jet continuum events from the more spherical \(B \) meson decays. The angle \(\theta_T \) between the thrust direction of the \(B \) meson candidate and the thrust direction of the remaining tracks in the event is calculated. We require \(|\cos \theta_T| < 0.8 \), since these thrust axes are uncorrelated and the distribution in \(\cos \theta_T \) is flat for \(B \bar{B} \) events, while the distribution is peaked at \(\cos \theta_T = \pm 1 \) for continuum events.

Table I: Mass regions for selection of intermediate particles.

Mode	Mass Range (GeV/c^2)
\(J/\psi \rightarrow e^+ e^- \)	\(2.95 < M(e^+ e^-) < 3.14 \)
\(J/\psi \rightarrow \mu^+ \mu^- \)	\(3.06 < M(\mu^+ \mu^-) < 3.14 \)
\(\phi \rightarrow K^+ K^- \)	\(1.004 < M(K^+ K^-) < 1.034 \)
\(K_S^0 \rightarrow \pi^+ \pi^- \)	\(0.489 < M(\pi^+ \pi^-) < 0.507 \)
\(\eta \rightarrow \gamma \gamma \)	\(0.529 < M(\gamma \gamma) < 0.565 \)
\(\eta \rightarrow \pi^+ \pi^- \pi^0 \)	\(0.529 < M(\pi^+ \pi^- \pi^0) < 0.565 \)
\(\eta' \rightarrow \eta \pi^+ \pi^- \)	\(0.938 < M(\eta \pi^+ \pi^-) < 0.978 \)
\(\pi^0 \rightarrow \gamma \gamma \)	\(0.120 < M(\gamma \gamma) < 0.150 \)

The intermediate candidates are combined to construct the \(B \) candidates for the six decay modes under study. The estimation of the signal and the background employs two kinematic variables: the energy difference \(\Delta E \) between the energy of the \(B \) candidate and the beam energy \(E_B^0 \) in the \(\Upsilon(4S) \) rest frame; and the energy-subtracted mass \(m_{ES} = \sqrt{(E_B^0)^2 - (P_B^*)^2} \), where \(P_B^* \) is the reconstructed momentum of the \(B \) candidate in the \(\Upsilon(4S) \) frame. Typically these two weakly correlated variables form a two-dimensional Gaussian distribution for the \(B \) meson signal but not for background. The resolutions in \(\Delta E \) and \(m_{ES} \) are decay mode dependent. A signal region for each mode is defined as a rectangular region in the \(\Delta E \) versus \(m_{ES} \) plane, listed in Table III. The \(m_{ES} \) range is given in term of \(m_{ES} - m_B \), where \(m_B \) is the mass of \(B \) meson. The number of data events, \(n_b \), observed in the signal region for each mode is listed in Table III.

The efficiencies for each mode are determined by Monte Carlo simulation. The simulations of \(J/\psi \phi \bar{K} \) and \(J/\psi k \) decays assumed three- and two-body phase space, respectively, with unpolarized \(J/\psi \) and \(\phi \) decays. The \(J/\psi \eta \) and \(J/\psi \eta' \) simulations used the angular correlations determined by the helicity amplitude.

The backgrounds in the \(m_{ES} \) distribution are composed of two components: a combinatoric background, whose shape is described by an ARGUS function \(\text{ARGUS} \), and a peaking background that peaks in the signal region and is described by a Gaussian function. The sources of combinatoric background are the continuum events and two categories of \(B \bar{B} \) events: decays with a leptonic \(J/\psi \) decay, and those without. Monte Carlo simulation studies show that the source of the peaking background is \(B \bar{B} \) events that contain a leptonic \(J/\psi \) decay.

The shape of the ARGUS function is determined mode by mode by fitting to the \(m_{ES} \) distribution of candidates in an enhanced fake \(J/\psi \) sample, which is obtained by reversing the normal lepton identification requirements.

The normalization of the combinatoric background for each mode is obtained from a fit to the \(m_{ES} \) distributions in the \(\Delta E \) signal region of the on-peak data. The integral of the ARGUS function in the signal region is \(n_C \), the number of combinatoric background events.

The peaking background is determined from a fit to the \(m_{ES} \) distribution of Monte Carlo \(B \bar{B} \) events with leptonic \(J/\psi \) decays using the sum of a Gaussian and an ARGUS function. The number of peaking background events \(n_P \) is the integral of the Gaussian function in the signal region.

The total number of background events \(\langle n_b \rangle \) and the uncertainty on this number \(\langle \sigma_b \rangle \) are calculated from the fit value of \(n_C \) and \(n_P \) and their errors. The values of \(n_b \) and \(\sigma_b \) are listed in Table III for all modes. The combinatoric background is by far the dominant background in all modes except the \(B^0 \rightarrow J/\psi \eta (\pi^+ \pi^- \pi^0) \) mode, where the peaking component is \(\sim 20\% \) of the total background.

In Table III we list the contribution to the systematic error from the uncertainty on each of the following quantities: \(N_{B \bar{B}} \): secondary branching fractions \(\mathcal{B} \); Monte Carlo statistics; PID, tracking, and photon detection efficiencies, which are based on the study of control samples; and background parameterization, which is estimated using \(\Delta E \) sideband information.

Additional systematic uncertainties due to the decay model dependence are estimated for the modes \(J/\psi \phi \), \(J/\psi \phi K^+ \), and \(J/\psi \phi K_0^* \). Monte Carlo simulations are used to determine how much the efficiency depends on assumptions about intermediate resonances and angular distributions. Two samples are generated for each of the three modes with decay distributions determined by the assumed polarization of the vector daughter mesons, rather than by phase space. One sample is generated with 100% transversely polarized \(J/\psi \) and \(\phi \) mesons, and the other with 100% longitudinally polarized \(J/\psi \) and \(\phi \) mesons. The resulting relative change in efficiency is entered as a fractional systematic error in Table III. An additional check based on Monte Carlo samples with an intermediate state gives negligible effect.

The total systematic error for each mode combines all these separate errors in quadrature and is listed (Total) in Table III.

There is evidence for signals in the \(J/\psi \phi K^+ \) and
The Poisson probability that the background \(n_b \) fluctuates up to the observed number of events, \(n_0 \), or higher is \(7.7 \times 10^{-6} \) for \(J/\psi \phi K^+ \) and \(4.2 \times 10^{-5} \) for \(J/\psi \phi K_S^0 \). The branching fraction for these modes is determined by a simple subtraction of events in the signal region that yields the number of signal events, \(n_s = n_0 - n_b \). The calculation of the branching fraction is based on the efficiency, \(n_s N_{ES} \), and the secondary branching fractions for the \(J/\psi, \phi, \) and \(K_S^0 \) from Ref. [3]. The results are summarized in Table II where the first error is the statistical error and the second is the systematic error, listed in Table III. The derived result for \(B^0 \to J/\psi K^0 \) is also shown in Table III.

![Fig. 2: The \(\Delta E \) and \(m_{ES} \) distributions for \(B^+ \to J/\psi \phi K^+ \). The \(\Delta E \) vs. \(m_{ES} \) event distribution is shown in (a) with a small rectangle corresponding to the signal region selection defined in Table II. The \(\Delta E \) projection with a \(m_{ES} \) signal region selection is shown in (b). The \(m_{ES} \) projection with a \(\Delta E \) signal region selection is shown in (c). The solid line in (c) is the fit described in the text. The Gaussian component includes both the signal and peaking background.]

For modes with no signal or limited statistical evidence \((J/\psi \phi, J/\psi \eta, J/\psi \eta')\), we determine both a central confidence interval and an upper limit interpretation for the branching fraction. The upper limit method uses \(n_0, n_b, \) and \(\sigma_b \), in the signal region, and the total systematic uncertainty \(\sigma_T \). Assuming the two uncertainties \((\sigma_b, \sigma_T)\) are uncorrelated and Gaussian, the Bayesian upper limit on the number of events \((N_{90\%}) \) is obtained by folding the Poisson distribution with two normal distributions for these two uncertainties and integrating it to the 90% confidence level (C.L.). In Table III, we list for each mode the efficiency, the number of observed events, the expected number of background events, the 90% C.L. upper limit for observed events, the corresponding branching fraction limit and a central interval for the branching fraction. The upper limit obtained from the combination of the two \(B^0 \to J/\psi \phi K^+ \) modes is shown in Table III. The mean value of the branching fraction is calculated for \(B^0 \to J/\psi \phi \) and \(B^0 \to J/\psi \eta \). We also combine the observed numbers of events for the two \(B^0 \to J/\psi \eta \) modes to calculate a branching fraction of \((1.6 \pm 0.6(\text{stat.}) \pm 0.1(\text{syst.})) \times 10^{-5}\). The Poisson probability that the background fluctuates up to the observed number of events or higher is \(2.5 \times 10^{-5} \) for the combined result.

In summary, we determine the branching fraction of \(B \to J/\psi \phi K \) in two modes, \(B(B^+ \to J/\psi \phi K^+) = (4.4 \pm 1.4 \pm 0.5) \times 10^{-5} \) and \(B(B^0 \to J/\psi \phi K_{S}^0) = (5.1 \pm 1.9 \pm 0.5) \times 10^{-5} \). The branching fraction of \(B \to J/\psi K \) is consistent with a CLEO [11] result, \((8.8^{+3.5}_{-3.0} \pm 1.3) \times 10^{-5}\). Upper limits have been determined for the modes \(B^0 \to J/\psi \phi, J/\psi \eta, \) and \(J/\psi \eta' \). The upper limit on \(B^0 \to J/\psi \eta \) is a significant improvement over the previous best limit of \(<1.2 \times 10^{-3} \) at 90% C.L., from the L3 Collaboration [9]. The combined branching fraction for \(B^0 \to J/\psi \eta \) is comparable to the \(B^0 \to J/\psi \pi^0 \) branching fraction [1]. The search and resulting upper limits on the branching fractions for \(B^0 \to J/\psi \eta' \) and \(B^0 \to J/\psi \phi \) are presented.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMDF and DFG (Germany), INFN (Italy), NFR (Norway), MIST (Russia),
TABLE II: Branching fractions and 90% C.L. upper limits.

| Mode | ΔE (MeV) | Signal Region $|m_{ES} - m_B|$ (MeV/c^2) | Efficiency n_0 | $n_b \pm \sigma_b$ | $N_{90\%}$ | 90% C.L. Upper Limit $N_{90\%}$ Branching Fraction $N_{90\%}$ |
|------------|------------------|--|------------------|---------------------|-------------|-------------------------------|
| $J/\psi K^+$ | 57.0 | 8.0 | 10.6% | 23 | 7.8 ± 0.6 | $4.4 \pm 1.4 \pm 0.5$ |
| $J/\psi K^0_S$ | 57.0 | 8.0 | 8.6% | 13 | 3.3 ± 0.4 | $5.1 \pm 1.9 \pm 0.5$ |
| $J/\psi K^0_S$ | 102.0 | 3.8 | 12.1% | 1 | 0.3 ± 0.2 | $0.18 \pm 0.26 \pm 0.03$ |
| $J/\psi' (\gamma\gamma)$ | 100.0 | 10.0 | 2.5% | 0 | 0.5 ± 0.3 | < 0.9 |
| $J/\psi (\pi^+\pi^-\pi^0)$ | 72.0 | 10.0 | 15.5% | 8 | 1.7 ± 0.4 | < 2.9 |
| $J/\psi (\pi^+\pi^-\pi^0)$ | 72.0 | 10.0 | 8.7% | 4 | 1.5 ± 0.9 | < 5.1 |

and PPARC (United Kingdom). Individuals have received support from the A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

* Also with Università di Perugia, I-06100 Perugia, Italy

[1] BABAR Collaboration, B. Aubert et al., Phys. Rev. D65, 32001 (2002).
[2] CLEO Collaboration, M. Bishai et al., Phys. Lett. B369, 186 (1996); BABAR Collaboration, hep-ex/0209013, submitted to Phys. Rev. Lett.
[3] M. Beneke, G. Buchalla, and I. Dunietz, Phys. Lett. B393, 132 (1997).
[4] A. Deandrea et al., Phys. Lett. B318, 549 (1993).
[5] F. E. Close et al., Phys. Rev. D57, 5653 (1998).
[6] BABAR Collaboration, B. Aubert et al., Nucl. Instr. and Methods A479, 1 (2002).
[7] ARGUS Collaboration, H. Albrecht et al., Z. Phys C48, 543 (1990).
[8] Particle Data Group, D.E. Groom et al., Eur. Phys. J. C 15, 1 (2000).
[9] L3 Collaboration, M. Acciarri et al., Phys. Lett. B391, 481 (1997).
[10] CLEO Collaboration, A. Anastassov et al., Phys. Rev. Lett. 84, 1393 (2000).
[11] In the reaction, $Z \rightarrow X + Y, X \rightarrow a + b$, the helicity angle of particle a is defined as the angle measured in the particle X rest frame between the direction of particle a and the direction opposite to particle Z.

TABLE III: Systematic error summary on the branching fractions. All are fractional uncertainties in percent.

Mode	$N_{B\pi\pi}$ Relative Contributions
$J/\psi K^+$	1.1 Branching Fractions 2.2 Statistics 1.6 PID, Tracking 8.2 Parameterization 5.9 Total 10.4
$J/\psi K^0_S$	2.2 Branching Fractions 2.1 Statistics 8.3 Total 9.3
J/ψ'	1.1 Branching Fractions 2.2 Statistics 6.7 Total 14.1
$J/\psi (\gamma\gamma)$	1.1 Branching Fractions 3.8 Statistics 9.3 Total 13.3
$J/\psi (\pi^+\pi^-\pi^0)$	1.1 Branching Fractions 1.8 Statistics 6.0 Total 9.5
$J/\psi (\pi^+\pi^-\pi^0)$	1.1 Branching Fractions 2.4 Statistics 7.7 Total 11.6