The Rustenburg Layered Suite formed as a stack of mush with transient magma chambers

Zhuosen Yao¹, James E. Mungall¹✉ & M. Christopher Jenkins¹

The Rustenburg Layered Suite of the Bushveld Complex of South Africa is a vast layered accumulation of mafic and ultramafic rocks. It has long been regarded as a textbook result of fractional crystallization from a melt-dominated magma chamber. Here, we show that most units of the Rustenburg Layered Suite can be derived with thermodynamic models of crustal assimilation by komatiitic magma to form magmatic mushes without requiring the existence of a magma chamber. Ultramafic and mafic cumulate layers below the Upper and Upper Main Zone represent multiple crystal slurries produced by assimilation-batch crystallization in the upper and middle crust, whereas the chilled marginal rocks represent complementary supernatant liquids. Only the uppermost third formed via lower-crustal assimilation-fractional crystallization and evolved by fractional crystallization within a melt-rich pocket. Layered intrusions need not form in open magma chambers. Mineral deposits hitherto attributed to magma chamber processes might form in smaller intrusions of any geometric form, from mushy systems entirely lacking melt-dominated magma chambers.

¹Department of Earth Sciences, Carleton University, 2115 Herzberg Laboratories, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
✉email: JamesMungall@cunet.carleton.ca
Layered mafic intrusions represent portions of the plumbing systems of many large igneous provinces and are principal repositories of several critically important ore elements, including Cr, Ti, V, and the platinum-group elements (PGE)\(^1\). Layered mafic intrusions, such as the iconic Rustenburg Layered Suite (RLS) of South Africa, have historically been considered to represent the solidified remnants of vast liquid-dominated reservoirs of magma called magma chambers where crystallization-differentiation has occurred by fractional crystallization\(^2\). However, an emerging consensus in igneous petrology views magmatic plumbing systems as being dominated by interconnected bodies of mush (here we consider mush to be partially molten material containing anywhere from a few percent suspended solids with fluid-like rheology up to almost entirely solidified material with a yield strength) extending from the base to top of the lithosphere and only rarely containing more than a few volume percent of liquid at ephemeral and isolated locations\(^3\). It is still problematic whether mafic–ultramafic layered intrusions represent shallow, large-scale melt pockets or crystal-dominated mush zones within transcrustal plumbing systems.

The paradigm of magmatic evolution by fractional crystallization has dominated igneous petrology since Bowen’s revolutionary advances a century ago\(^9\), subject to recognition half a century later of the importance of crustal assimilation to result in the process of assimilation–fractional crystallization (AFC)\(^9\). The fundamental processes driving the evolution of magma composition in AFC are dissolution of host rock or xenoliths, accompanied by cooling and crystal growth, and the immediate removal of crystals from the possibility of continued reaction with the melt (Fig. 1a). Given that AFC is explicitly defined as a fractional process, it is inherent in all AFC models that the thermodynamically defined system at any given time is composed almost exclusively of melt, into which infinitesimal amounts of contaminant may be titrated, and out of which the consequent solids derived by incremental crystallization must be removed. An AFC process may also be understood to occur via a reactive transport process where melt reacts with solids while migrating through a largely solid matrix and is driven to a new composition; this process may occur in deep crustal processing zones akin to the classical MASH (melting, assimilation, storage, homogenization) zone under magmatic arcs\(^9,10\). However when the concept of fractional crystallization is applied to layered intrusions, with or without a prior episode of assimilation, the conventional view is that magmatic evolution occurs within large, liquid-dominated melt reservoirs in the crust (i.e., magma chambers)\(^2,4\). This viewpoint has previously driven petrologists to search for the existence of the solidified remnants of such bodies in the rock record. A quintessential small example of closed-system fractional crystallization processes is the Skaergaard Intrusion of East Greenland\(^2,11\); however, the assumption that all large layered mafic intrusions must therefore also represent the solidified remnants of vast open chambers filled with melt is a reflexive model-driven extension of these ideas that has faced some recent challenges\(^12\)–\(^15\).

A simple conceptual alternative to AFC is that of assimilation in conjunction with the textbook process of batch, or equilibrium, crystallization (i.e., ABC; Fig. 1b). Although the conceptual differences between fractional and equilibrium crystallization may appear arbitrary and purely academic, they drive fundamentally different processes if they occur in large-scale magmatic systems. In the simplest expression of this concept, during ABC a magma becomes progressively more contaminated by the ongoing dissolution of wall rock or xenoliths; a hypothetical isenthalpic contamination drives the continuous crystallization of an increasing load of suspended solids which may remain broadly at equilibrium with the enclosing melt via intracrystalline chemical diffusion given sufficient time and high enough temperature\(^16\). As the proposed reason for fractional crystallization, the scenario of

Fig. 1 Schematic illustration of temporal evolution of magmas from left to right. Bulk assimilation mostly occurs on the wallrock-magma boundaries via dissolution and/or from the crustal xenoliths induced by magmatic stopping. **a** Classical AFC model; heat for crustal assimilation is supplemented by concurrent fractional crystallization\(^8\) while newly formed crystals are immediately sequestered from an almost entirely crystal-free liquid. **b** In the ABC model, during assimilation a steadily increasing amount of precipitated solids remains suspended by forced convection during magma flow and is continuously re-equilibrated with magma until it comes to rest and the solids are deposited all at once.
Gravitational sinking of dense solids in static magmas does not universally hold true in magmatic systems, e.g., crystallizing phases may not separate from an evolved magma with high viscosity caused by crystallization and SiO₂ enrichment. Additionally, heat exchange and crystallization in assimilation provide destabilizing buoyancy fluxes to drive forcefully disordered convection of mafic magma, where solids can be passively advected by vigorous convection instead of sinking. In most turbulent komatiite flows, dense crystals can be carried by energetic eddies and remain in suspension without rapid separation. Although equilibrium may not be attained at moderate temperatures, it is likely to occur rapidly in ultramafic magmas due to fast diffusions of elements in high-temperature, less-viscous liquids. The success of a hypothetical dimensionless thermodynamic black box process has been demonstrated numerous times, reproducing the observed compositions of ultramafic cumulate rocks and their supernatant magmatic liquids in intrusions both large and small.

A logical place to test the applicability of the ABC process to igneous petrogenesis at large scales is the RLS of South Africa. Although much has been written about the genesis of the RLS, most published petrogenetic models represent qualitative interpretations motivated by the concept of the melt-dominated magma chamber. Recent development of the concept of transcrustal, mush-dominated magmatic plumbing systems combined with geochronology and thermal modeling of the RLS invites the proposition that major parts of the RLS may have formed as mushes that were dominated by liquid only during transient episodes of magma migration. Here we propose quantitative forward thermodynamic models that recreate the observed bulk rock, mineral, and isotopic compositions of all major constituents of the entire RLS via assimilation processes occurring throughout the crust. The spectrum of bulk cumulate macrolayer compositions observed in the RLS can be described as the first-order products of magma evolution during processes ranging from simple ABC in the upper crust for the ultramafic rocks of the Lower Zone and Critical Zone, through a two-stage ABC process in the mid-crust to generate the mafic rocks of the Upper Critical and Main Zones, to classical AFC in the lower crust to form the parental melt for the Upper and Upper Main zones, which then evolved by fractional crystallization in an essentially closed magma chamber affected by a small number of recharge events. We infer that the internal differentiation of macrolayers into subsidiary layers of different modal proportions, including monomineralic units like chromitites and anorthosites, resulted from second-order effects like crystal sorting during emplacement.

Results
Application to the RLS. The Paleoproterozoic (~2.055 ± 0.001 Ga) RLS is the world’s largest layered mafic intrusive complex, containing ~600,000 km³ of mafic–ultramafic cumulates and extensive reserves of PGE, chromium, and vanadium that dominate global resources of these elements. The RLS intruded the 2.6–2.3 Ga sedimentary Pretoria Group and 2.061 Ga felsic lavas of the Rooiberg Group (~200,000–300,000 km³) at upper-crustal...
levels (~0.06–0.24 GPa)24,25. In conjunction with the overlying Rashaop Granophyre and Lebowa Granite Suites (~205,000 km3), they together constitute the Bushveld Complex, comprising an enormous bimodal continental large igneous province in the Kaapvaal Craton (Fig. 2). If there exists a larger magmatic plumbing system in the middle Kaapvaal crust beneath the RLS, its host rocks probably resemble the nearby Archean basement of amphibolite- to granulite–facies thondihtjemitic–granodioritic–granitic gneisses, orthogneisses and metasedimentary rocks exposed in the Vredefort impact structure near Johannesburg26 and in the Southern Marginal Zone of the Limpopo belt to the north of the RLS27, whereas the information regarding the regional lower crust is highly limited in the literature.

The RLS is shaped like a dinner plate about 7–9 km thick and ~400 km in diameter (Fig. 2), with moderately inward-dipping marginal zones and flat-lying central portions. Based on lithological and geochemical investigations, the RLS is traditionally subdivided into five major and laterally continuous stratigraphic zones (Fig. 2):2,24,28,29 (1) the fine-grained, noritic to peridotitic Marginal Zone (~100–750 m-thick), which flanks the other zones outside the main layered series and overlies a Basal Ultramac siege sequence (~750 m) encountered only in drill core beneath the other zones29; (2) discontinuous trough-like bodies of ultramac~(~0.06–0.24 GPa)24,25. In conjunction with the overlying granulite facies of radiogenic Sr isotopes, exemplified by (~87Sr/86Sr),4 it is necessarily regarded as being composed of cumulates.

Magma compositions. Cumulate rocks in the complex can be subdivided into plagioclase-rich mafic units that have been postulated to be mafic crystallization products of tholeiitic magmas referred to as A-type magmas and ultramac~(~12–14 wt% MgO), corresponding to quench-textured norites exposed in the Marginal Zone surrounding the Lower Main Critical Zone and referred to as the B1 marginal sills (Fig. 2)25,40–42. It has been presumed that the mafic sills of the Marginal Zone represent samples of the parental magmas that generated the RLS25,40,41. However, the most primitive olivine and orthopyroxene observed in the Lower Critical Zone cannot be crystallized from the melts with the composition of the recognized B1 magma24, and the mineral compositions and geochemical characteristics of the newfound Basal Ultramac siege sequence beneath the Marginal Zone require a komatite as the true parental magma (~>19 wt% MgO)29. The Bushveld U-type magmas are compositionally similar to modern boninites formed by hydrous melting of metasomatized upper mantle40, but Barnes42 proposed a better analog in the silicic high magnesium basalts derived from the crustal contamination of komatiites in Archean greenstone belts.

The A-type magmas, thought to have contained ~7–8 wt% MgO, are tentatively correlated with fine-grained gabbronorites of the Marginal Zone where it abuts the Upper Critical Zone and Lower Main Zone, respectively, termed the B2 and B3 tholeiitic magmas (Fig. 2)39–41. The origins of the A-type magmas have had less attention than that of the U-type, with most investigators apparently assuming that they are commonplace tholeiitic basaltic magmas41 somehow derived from the upper mantle. Since the mantle does not directly produce the lherzolites containing such low MgO contents, there must have been some processing of their parental magmas, though this process has not been clearly defined in the past1. B2 and B3 are also unconforming parental magmas due to their partial cumulative characteristics and discrepant crystallization order compared to their interpreted tholeiitic cumulates in the RLS24,25. The bulk composition of the lower portion of the RLS is too rich in compatible elements including Cr and the PGE to represent the composition of a liquid—it is necessarily regarded as being composed of cumulates.
deposited from larger volumes of through-going magma that are not presently exposed within the RLS.6,8

The bulk composition of the parental magma that was injected to form the Upper and Upper Main Zone has been modeled by adding ~15–25% of a hypothetical missing segregated component into a weighted average Upper and Upper Main Zone bulk composition, to form a basaltic andesite with ~4–6 wt% MgO 28,37, but a modeled fractional crystallization sequence from this magma still does not closely resemble the natural occurring cumulates.37

Recently discovered spinifex olivine margins chilled at the base of the Lower Zone44 or from the Basal Ultramafic Sequence19 strongly argue for a komatiitic parent magma that, at least locally, was chilled against the quartzitic floor. From this perspective, the remarkable similarities of mantle-normalized trace-element patterns have led to suggestions that the B1 and B2-3 magmas were derived from komatiite via >40% contamination of upper and lower crust, respectively12,25,44. Sr- and Nd isotopic data of cumulates were used to support the proposition that primitive melt assimilation ~15–30% partial melt of upper crust to produce the Lower and Lower Critical Zones, whereas ~40–50% contamination with the depleted relict in a staging chamber beneath RLS is required for the Upper Critical and Main Zones45.

Cr enrichment and cyclic compositional reversals in the Lower Zone have been attributed to episodic influxes of crystal–liquid slurries derived from komatiite contaminated by 20% crust at 0.45–1.0 GPa43. Consideration of the Cr budget during chromitite formation indicates that the parental liquids must have been komatiitic12,22,43. Contamination in deep-seated chambers before final crystal-slurry-type emplacement into the RLS was also proposed on the basis of stable and radiogenic isotope systems27,46.

In contrast to the various suggestions of crustal contamination, radiogenic 187Os/188Os of sulfide47 and unradiogenic εHf of zircon from the RLS 48 have been used to suggest that the parental magmas instead inherited their lithophile element compositions from ancient eclogite-bearing subcontinental lithospheric mantle. However, newer data have demonstrated a limited range of Hf isotopic composition in both the RLS and its plausible local crustal contaminant sources.49 The Zr–Hf budget and associated unradiogenic εHf in the RLS require the addition of crustal components.

A role for refractory subcontinental lithosphere was also proposed as a possible explanation for the exceptionally high Pt/Pd of Bushveld U-type magmas and mineral deposits50, but it must be noted that a large degree of melt production is highly unlikely from relatively cool and previously melt-depleted subcontinental lithosphere.51 Partial melting of an ancient subduction-affected, eclogitic component in subcontinental lithosphere is a possible explanation for the exceptionally high Pt/Pd and Os concentrations in the Bushveld U-type magmas and mineral deposits.50

Thermodynamic modeling. To test the applicability of ABC and AFC to the petrogenesis of the RLS, we have modeled the processes using alphaMELTS thermodynamic software44, supplemented by models of isotopic mass balance constrained by the alphaMELTS results. The working hypothesis was that it might be possible to produce representative of each cumulate rock type preserved as individual macrolayers in the RLS by transcristal assimilation processes. We chose to model average compositions for each of several major magmatic–sedimentary lithologies and the B1–3 marginal sills (Fig. 3) on the assumption that, once contaminated magmas had formed with compositions close to average compositions of the major units of the RLS, grain sorting on the macrolayer or hand specimen scale led to internal differentiation of the larger macrolayers into sublayers having widely varied modal proportions of the incoming minerals, accounting for the existence of some monomineralic rocks and for much of the observed scatter about the mean values.22

We have considered two distinct scenarios to address the possible origins of the integration stage cumulates beneath the base of the Upper and Upper Main Zone and a third for the Upper and Upper Main Zone, illustrated in Fig. 3. In Scenario 1, following the one-stage ABC approach we have already successfully applied to several ultramafic suites worldwide12,20–22, komatiite is combined with a upper-crustal assimilant in an isenthalpic process, creating a relatively cooler equilibrated mixture of liquid and crystals which then undergoes some degree of cooling while remaining internally at equilibrium. Given the extremely low viscosity (~0.05–0.2 Pa s), ascent rate as great as m/s and high liquidus temperature (>1550°C) of komatiite18, its emplacement into cooler host rocks (~200 to 300°C) approximates to forced turbulent convection during the early assimilation process, where solids are passively advected by chaotic flow and remain in suspension (Fig. 1b).17,18 This first stage represents a single batch process of assimilation and cooling during shallow transport. After the flow is emplaced into a sill-like body at the level of the RLS, the vigorous momentum of turbulent flow is dissipated by assimilation and emplacement, and the crystal–melt mixture is eventually separated by gravity into a cumulate comprising mostly solids and some trapped liquid, and a supernatant magma comprising mostly liquid and some entrained solids. During the resulting dumping of most of the entrained crystal load to form a macrolayer, internal layering forms in a manner analogous to the stratifications of bed-load sediment in water in upper plane bed flow regimes. These successive sill-like magma pulses can be vertically stacked in any order to build up a thick layered pluton consistent with field observations, geophysical data, and numerical models.55 Hence, the model cumulate in this upper-crustal assimilation stage is compared with ultramafic cumulates of the RLS, and the supernatant magma leaving the system is compared with B1 marginal sill compositions.

In Scenario 2, representing two successive batch steps, it is assumed that a first ABC process occurs in a mid-crustal reservoir, after which the supernatant liquid rises and undergoes a second batch crystallization as it cools and is emplaced at the level...
of the RLS to form a mushy macrolayer (Supplementary Fig. 2). During emplacement, this new batch of crystals and melt then separates into cumulates comprising mostly solids and some trapped liquid to represent part of the RLS, and a supernatant separates into cumulates comprising mostly solids and some trapped liquid (Supplementary Table 1 and Supplementary Fig. 2). Removal of first-stage solids as described in the text generates a new bulk composition (Bulk-2) that is emplaced in the RLS and crystallized to form the illustrated solid and liquid compositions. Inset diagrams zoom in on the specific area where crystal sorting between model liquid (L) and solid (S) would generate the observed cumulates and corresponding phenocryst-bearing marginal rocks. The white and gray pentagrams represent the modeled B1 and UG2 cumulate, respectively, from the one-stage ABC approach of Mungall et al. The proposed parental magma for the Upper and Upper Main Zone (UUMZ) is exhibited as yellow pentagons, and also shown in the Supplementary Table 3. Hz harzburgite, Dun dunite, Px pyroxenite, No norite, Gg gabbronorite, Ave. average compositions of the corresponding lithologies based on the thermodynamic models. All data collected from multiple sources cited in the text and provided as a Source Data file.

approximate to AFC as classically understood, presumably occurring during melt percolation through a complex lower-crustal magma reservoir that may have comprised multiple interconnected sill- and dike-like bodies largely composed of mush. Liquid that has been processed through this AFC mush zone is extracted and emplaced into a sill-like magma chamber where it subsequently evolves by fractional crystallization, subject to some subsequent magma replenishment events during the formation of the Upper and Upper Main Zone.

The parameters used in the models are provided in Supplementary Tables 1–4. Compositions of endmember magmas, contaminants, solids, liquids, cumulates, and ejected magmas are all shown in Figs. 3–6. The parental mantle-derived melt is an Al-undepleted komatiite. Major and trace element and Sr, Nd, and O isotopic compositions of the magmas and contaminants were estimated by comparison with upper-crustal and mid-crustal rocks exposed in the Pretoria Supergroup, Vredefort impact structure, and Limpopo Belt as documented in detail in Supplementary Table 4 and Supplementary Figs. 3 and 4.

Ultramafic cumulates of the Lower Zone, Lower Critical Zone, and B1 marginal sill compositions were modeled under Scenario 1, assuming an upper-crustal assimilant at 0.2 GPa, following a previous Scenario 1 model for the UG2 pyroxenite of the Upper Critical Zone and complementary B1 magma. After assimilation of 17.4% upper crust, Lower Zone dunite could form as an acumulate comprising 4.5% trapped liquid; Lower Zone harzburgites require 22.5% assimilation and are modeled as mesocumulates comprising 17.8% trapped liquid, whereas Lower Zone and Lower Critical Zone pyroxenites could have formed after 27–34% assimilation of upper crust to leave a cumulate containing ~15% trapped liquid (Supplementary Table 1 and
Supplementary Fig. 1). The B1 magma is modeled as a mixture of 22% solids equivalent to Lower Critical Zone pyroxenite with 78% liquid. The trace-element compositions of these cumulates and B1 marginal sills coincide with the modeled results (Fig. 4a, b). Because the B1 marginal sills that envelope the Lower Zone and Lower Critical Zone of the RLS range in thickness from 100 to 400 m and can further penetrate ~100 km into the floor rocks40,41, their total volume may be regarded as supernatant magmas complementary to emplacement of all of the Lower Zone and Critical Zone pyroxenites. If the AFC model is adopted under the same settings, the peritectic reaction between olivine, orthopyroxene, and liquid forbids the formation of the commonly observed coexistences of olivine and orthopyroxene in cumulates (i.e., granular harzburgites), while also failing to match observed whole-rock compositions.

Mafic rocks of the noritic portions of the Upper Critical Zone and gabbronoritic Main Zone are modeled under Scenario 2, with the same komatiite parent melt but a mid-crustal assimilant at 0.45 GPa that corresponds to the mean depth of middle continental crusts. The corresponding temperature of the contaminant was estimated as 390 °C via the geothermal model.

Critical Zone pyroxenites. If the AFC model is adopted under the same settings, the peritectic reaction between olivine, orthopyroxene, and liquid forbids the formation of the commonly observed coexistences of olivine and orthopyroxene in cumulates (i.e., granular harzburgites), while also failing to match observed whole-rock compositions.

Fig. 4 Primitive mantle-normalized trace-element concentrations for natural and model rocks from the RLS. Solid symbols joined by solid lines represent average compositions of rocks from the RLS, while open symbols joined by dashed lines represent alphaMELTS models. The ABC model accounts for the trace-element patterns of B1-Px (Critical Zone) lineage and other Lower Zone and Critical Zone ultramafic macrolayers. Additionally, the trace-element compositions of the B2-No (Critical Zone) lineage and B3-Gn (Main Zone) lineage coincide with the modeling results of two-stage ABC processes. Compositions of upper crust, middle crust, and komatiite are shown in Supplementary Table 3. Source data are provided as a Source Data file.
Upper and Upper Main Zone (Fig. 3) by a process of 43.5% AFC contamination in the lower crust plus a further 24% fractional crystallization during slow upward ascent. After emplacement of this magma in the upper crust, the observed paragenetic sequence and mineral modes of the cumulate rocks can be reproduced via a closed-system fractional crystallization model until ~21% melt remains (Fig. 5a). Despite its overall success, the simple fractional crystallization model cannot account for the enigmatic magnetitite layers of the Upper Zone, which may require the operation of exceptional and poorly constrained processes such as double diffusive convection or liquid immiscibility. Replenishment by ~1.2% initial parental magma at the boundary of cycles V and VI drives apparent reversals of mineral modes and compositions, which coincide with the observed data (reversals in olivine Fo%, plagioclase An%, and pyroxene Mg#) and model results of b plagioclase (An%, 100Ca/(Ca + Na)), c high-Ca pyroxene (Mg#, 100Mg/(Mg + Fe)), d low-Ca pyroxene (Mg#) and e olivine (Fo%, 100Mg/(Mg + Fe)) with stratigraphic position. Cycles I–VI are identified by marked reversal in An% number of plagioclase from the Bierkraal drill cores, western limb. A further three cycles (VII–IX) are defined by the disappearance of apatite without apparent reversal in An%, but have still been explained in the same way as cycles I–VI. The Upper Zone contains ~30 magnetitite and nelsonite (magnetite-ilmenite-apatite cumulate) layers that hosts world-class V, Ti, and P sources. Compositional variations of major minerals crystallized from the incoming parental magma are shown as the black lines, and meanwhile the trapped liquid shifts (red lines) represent compositional modifications of minerals induced by the reduction of trapped interstitial melt fraction from 25 to 5% in the post-cumulate stage. Olivine in cycle II is crystallized from the intercumulus melt in this stage, corresponding to its low modal proportion (~26–53, Fig. 5c), orthopyroxene Mg# (~27–42, Fig. 5d), and olivine Fo% (Fo4 to Fo30, Fig. 5e) across the boundary between cycles V and VI, for instance, can be modeled by a small-scale (~1.2%) magma replenishment (Fig. 5).

We have modeled isotopic compositions of the cumulate rocks by tracking isotopic mass balances in the various mixtures of primary magma and assimilants according to the alphaMELTS models. The isotopic compositions observed in the RLS are compared with the results of our model of the transcrustal assimilation processes in Fig. 6. The measured inverse correlation between (87Sr/86Sr) and εNd values of RLS (Fig. 5a) is matched well by all models except for the B3 magma, which is represented by very few samples. Restricted ranges of (87Sr/86Sr) in B1, B2, and B3 marginal sills have been widely used to support assertions that these were samples of the U-type and A-type parental liquids of the RLS, but these observations are equally consistent with our proposition that the sills represent the liquid residue from deposition of the corresponding cumulates (Fig. 5a). The newfound in situ Sr isotope disequilibrium between coexisting minerals and within plagioclase crystals from the RLS can be attributed to the mixing and sorting of variably contaminated crystal grains and/or local percolations of multiple, isotopically distinct melts in the post-cumulate stage, which has recently been demonstrated in the Rum layered intrusion. High δ18O (average 7.1‰) in the RLS without apparent systematic changes is consistent with isotopic compositions of the proposed crustal...
The application of the ABC concept to magmatic systems in lieu of AFC requires a fundamentally different perspective on the physical form of the magmatic systems in space and time and relaxes some constraints that would be imposed by the idea of fractional crystallization. For crystals to be able to re-equilibrate continuously with the melt during ABC it must be very hot and less viscous, tending to favor the process in ultramafic magmas but less so in mafic magmas. Furthermore, they must remain suspended and the melt must be well-mixed; both conditions require that the system is undergoing vigorous convection17 and/or turbulent flow18, where the fluid dynamics is dominated by inertial forces and violent swirls/eddies in both vertical dykes and sill-like bodies during magma transport and emplacement. Free, smooth convection or laminar flow cannot accomplish this, especially in offering enough vertical component of flow velocity to offset the settling of dense grains. Free magma convection in a hot sill emplaced between cooler host rocks is sluggish and entirely driven by the descent of cool crystal-laden drips to a stagnant base61,62. Once they reach the cool lower boundary, crystals cannot be re-entrained in the convective flow. Except in the exceptional case that a mafic or ultramafic magma reservoir is being heated from below, the requirement of vigorous stirring instead demands that the process is occurring as forced convection in a dynamic flowing magmatic setting like a network of dikes and sills5-7. Confinement to a dynamic conduit setting therefore also implies that ABC occurs quickly during transit of magma through the lithosphere rather than during quiescent evolution of a large melt-dominated magma chamber. It is implicit in an ABC model that as soon as the magma comes to rest, dense crystals will separate from the melt, arresting the process and forming masses of cumulates at any point where magma velocity slows due to the energy expenditure via assimilation and viscous dissipation related to emplacement.

The notion of complete internal chemical and isotopic equilibrium is a convenient starting point to consider ABC processes; however, the ABC concept is also able to accommodate observations of isotopic disequilibrium between crystals in a macrolayer46,63. If the crystals were amassed from sites along a dynamic transcrustal conduit where the isotopic properties of assimilants vary widely but the major element compositions and mineral modes were driven by the same fundamental reactions, assimilants vary widely but the major element compositions and mineral modes were driven by the same fundamental reactions, the system is given a long time to homogenize before deposition of the slurry. The alternative notion of slow fractional crystallization from a well-mixed and homogeneous reservoir of liquid in a long-lived magma chamber seems to demand a high degree of isotopic homogeneity within a given layer.

AFC and ABC therefore offer extremely different views on the mechanism of delivery of crystals to layered intrusions and consequently on the mode of formation of the intrusions themselves. In classic fractional crystallization models the crystals form slowly in small numbers in cool zones near the margins, either settling2,8 or remaining in situ62, to form layers, whereas in ABC the crystals form rapidly during transit through the lithosphere and are dumped in intrusions as masses that may subsequently undergo some crystal sorting into layers12,22,24,64,65. There can be no doubt that both mechanisms operate, exemplified by the record of fractional crystallization in, e.g., the small box-like Skaergaard Intrusion2,62, and that of batch emplacement of crystal-rich loads in, e.g., olivine-rich Hawaiian picrite lavas66. Assembly of a large volume of mush through multiple emplacements of magmas generated by the ABC process is a viable alternative mechanism for the creation of a thick accumulation of mafic or ultramafic crystal mush that will later be recognized as a layered intrusion65. This mechanism crucially does not require the layers to have been emplaced in a younging-upward series at

Discussion

Our results show that the bulk of the RLS below Upper Main Zone, about 2/3 of its total thickness, appears to have been generated by either one-stage or at most, two-stage episodes of batch assimilation and crystallization and emplacement in their current locations as crystal mushes (Fig. 3). The melts left over from these processes can be represented by the marginal sills.

 assimilants (Fig. 6b), but not with the composition of the eclogite-bearing lithospheric mantle of Kaapvaal Craton (mode δ^{18}O \approx ~5.9‰) which contains some of the most 18O-depleted (<4.5‰) garnets in the global database60.

Fig. 6 Isotope correlation diagrams comparing RLS rocks to assimilation models. Curves represent modeled isotopic mixing between primary, mantle-derived magma and different end-members from the Kaapvaal Craton: dashed orange line, upper crust; dashed blue line, middle crust; dashed green line, lower crust; purple line, eclogite-bearing subcontinental lithospheric mantle (E-SCLM). a $\epsilon_{Nd}(^{87}Sr/^{86}Sr)$, Horizontal bars in the top-right region exhibit the larger ($^{87}Sr/^{86}Sr$), ranges that also include the Sr isotopic compositions of samples and minerals without the coupled Nd isotopic data in marginal rocks and cumulate zones of RLS. b δ^{18}O-$^{87}Sr/^{86}Sr$ average plus its standard deviation of potential assimilants in upper, middle, and lower crusts are shown schematically by vertical orange, blue, and green bars, respectively; averages for various contaminants are shown by circles and pentagram. ($^{87}Sr/^{86}Sr$), average plus its standard deviation for eclogite-bearing lithospheric mantle is exhibited by purple horizontal bar, and δ^{18}O distribution of mantle eclogite xenoliths from the Kaapvaal Carton is shown by vertical blue color bar with deep tone corresponding to a higher frequency. Garnets with δ^{18}O > 7.1‰ represent only ~5.7% of the total of 157 available samples from Kaapvaal Craton60. All data are collected from multiple sources cited in the Supplementary References. LB Limpopo Belt, VD Vredefort Dome. Source data are provided as a Source Data file.
the bottom of a classic magma chamber and accommodates recent geochronological12,21,13 and field23,35,67 evidence for out-of-sequence layer formation in major layered mafic intrusions and the brittle emplacement of residual melts extracted from the Upper Critical Zone into the overlying Main Zone68. It is also consistent with the contradictory observations of regionally correlated chromitite-bearing macrolayers that occur within host silicate cumulate sequences that cannot be correlated over the same regions33,34, if the chromitite-bearing macrolayers were intruded as sheets within older and regionally variable cumulates. Wholesale wallrock assimilation and thorough internal equilibration is difficult or impossible for multiply-saturated basaltic magmas, in which large degrees of solidification are experienced over small ranges in liquidus temperature. In contrast, hot and primitive MgO-rich magmas like komatiites are able to assimilate relatively fusible crustal rocks, including granitoids, basalts, and common sedimentary rocks, in large proportions, because their liquidus surfaces are very steep, aided by the latent heat of fusion liberated by the simultaneous crystallization of large volumes of the mafic minerals olivine and pyroxene12,20,69, especially if the crustal rocks are already hot. Indeed, if crustal rocks are hot enough, they act as a solvent and can be added without limit to a komatiite without ever causing the system to solidify fully unless it is cooled. This is true regardless whether the process is one of AFC or ABC. A typical komatiite melt with as little as 18 wt% MgO can assimilate masses of warm crustal rock exceeding 50% of its original mass, generating a mass of cumulus olivine and pyroxene approximately equal in mass to the original mass of assimilant12,20,69. The resulting contaminated magma will therefore comprise approximately one-third ultramafic solids and two thirds low-MgO basaltic liquid. This solid fraction is well within the range of mobile crystal suspensions that can travel through the crust with essentially Newtonian rheology and density lower than most crustal rocks70. The assimilation process occurs so easily that uncontaminated komatiites are rare, and it works to prevent the existence of superheated magmas, which cannot fail to react with and dissolve their containers of host rock. Meanwhile, the extremely high temperatures and low viscosities of komatiites easily drive fast ascent and turbulent flow during emplacement, in which the dense crystals remain in suspension and at equilibrium with the host magma18—approximating to the conceptual ABC model.

It is especially noteworthy that modal proportions of cumulus minerals in ultramafic cumulates such as olivine–chromite or olivine–orthopyroxene mixtures in layered mafic intrusions generally do not conform to the instantaneous cotectic modal proportions expected during fractional crystallization, positively requiring that many such cumulates were deposited and mechanically sorted into layers from polyphase suspensions that were broadly at internal equilibrium32,71. The common occurrence of granular harzburgites (i.e., olivine–orthopyroxene cumulate rocks) and pyroxene–chromite cumulates are explicitly forbidden during fractional crystallization by the peritectic relations among olivine, orthopyroxene, and chromite but are entirely consistent with equilibrium phase relations.

As our modeling of the Upper and Upper Main Zone indicates, our goal here is not to argue that AFC and fractional crystallization alone are not valid petrogenetic processes, but instead to demonstrate that the idealized ABC concept represents a process sufficient to account for much of the spectrum of rock types observed in the world’s premier layered mafic intrusion, especially those world-class mineral deposits that are hosted by ultramafic macrolayers, and therefore cannot be ignored. Furthermore, in those cases where cumulates of contaminated magmas display modal proportions departing from expected cotectic proportions, some form of ABC must be accepted as having occurred. Indeed, a batch process is directly implied by several previous assertions that emplacement of the basal series dunites and harzburgites23, Critical Zone chromite-bearing pyroxenites45, and Main Zone gabbro-norites43 must have involved deposition of thick mushy layers, but these previous studies did not explore the implication that their mushy emplacement models are fundamentally inconsistent with AFC processes.

The implications for the mechanism of formation of layered mafic intrusions by injection of crystal mushes are far-reaching because the emplacement of each batch of magma, to form each macrolayer, is entirely independent from all of the other batches. Even in the Peridotite Zone of the Stillwater Complex, which has been regarded as the type locality for cyclic units representing the idealized products of fractional crystallization, no evidence can be found for genuine cyclicity due to fractional crystallization processes22. Rather, the compositions, textures, and modal variations in the Peridotite zone unequivocally require that a mixture of different mineral phases in cotectic proportions was mechanically sorted into layers including some that were nearly monomineralic within each larger-macrolayer22. The ABC process does not require a large magma chamber to explain the sequence of rock types or to account for the lack of cyclicity; neither is the hypothetical existence of a magma chamber denied. We can consider layered mafic intrusions as products of numerous separate intrusive events in a long-lived magma column dominated by mushy zones punctuated by rare events when liquid-dominated magmas are transported and emplaced5–7,35. Macrolayers do not need to have formed in a younging sequence from bottom to top, although they might have. The hypothesis of mixing of fresh U-type magmas into resident A-type magmas of uncertain provenance to account for the sharp reversals in mineral assemblages that are associated with the major deposits of Cr and PGE5,32–35 is not necessary, and the apparently random sequence of mafic and ultramafic layers in the Upper Critical Zone can be regarded as the consequence of injection of crystal-rich magma batches that experienced different paths through the lithosphere either (a) in the observed stratigraphic sequence or (b) out of stratigraphic sequence—either scenario is consistent with the observed occurrence of alternating mafic and ultramafic layers. Emplacement of one mushy macrolayer into still-hot older cumulates that may or may not remain partially molten need not produce easily recognizable chilled margins14,71. On the other hand, the level at which these crystal mushes are emplaced and ponded is mostly but not exclusively sensitive to the depth in a crustal column at which they achieve neutral buoyancy. Notwithstanding the effects of local stress fields13, higher density ultramafic mixtures are likely to be emplaced beneath less-dense mafic zones, resulting in the general bottom-to-top sequence: ultramafic Lower Zone, pyroxenitic Lower Critical Zone, noritic Upper Critical Zone, gabbro-noritic Main Zone, and noritic/dioritic Upper Zone below the pre-existing low-density volcanioclastic Rooiberg Group (Fig. 2). The operation of this density filter leads broadly to the overall trends of vertical changes in mineral compositions, e.g., MgO in mafic minerals and An% in plagioclase that superficially resemble the results of fractionation within individual magmatic lineages even if the denser ultramafic layers are in some cases younger than the mafic rocks above them12,13. However, many complicated and apparently stochastic reversals in mineral compositions are common in detailed profiles24,43,46, which can be attributed to the disordered emplacements of mushy macrolayers from similar but temporally discrete magmatic lineages, especially given that their emplacements are not determined by neutral buoyancy alone70.

A profound implication for ore genesis is that chromitite and sulfide reef deposits in macrolayers of the RLS may each represent one relatively small batch of magma. The komatiitic parental
magma for the RLS contained a relatively high Cr$_2$O$_3$, and the upper-crustal ABC model proposes that the solid phases from the modeled pyroxenitic mushy Critical Zone include ~2% chromite. In 100 m of pyroxenite we might therefore expect to see a total of 2 m of chromitite, perhaps dispersed among several thinner layers, a proportion roughly in accordance with what is observed. Excess amounts of dense chromite could result from its preferential deposition while magma still laden with lighter silicate crystals passed overhead and exited the system.

Traditional models for deposition of stratiform PGE-rich sulﬁdes depend on mixing within a large deep magma chamber of resident A-type magma with a new injection of PGE-rich sulﬁde-undersaturated U-type magma. The model is fundamentally dependent on the existence of a magma chamber. However crustal assimilation by komatiite also easily triggers the segregation of sulﬁdes, which scavenge PGE from hosting magma during vigorous transport and emplacement; a sheet of the B1 U-type magma as little as 250-m-thick contains sufﬁcient PGE to account for the composition and grade-thickness of the Merensky Reef if it has assimilated enough crustal material to attain a small degree of sulﬁde oversaturation. Once the sulﬁde-bearing, possibly chromite-rich crystal slurry is emplaced within the RLS and deﬂected into a sill-like body, lateral ﬂow of the mush rapidly drives viscous segregation of minerals in which almost all of dense sulﬁde and/or chromite grains are deposited at the base. Where chromite is abundant, it can form a near-monomineralic chromitite layer above a thermally eroded hard substrate, and simultaneously the ﬂotation of less-dense plagioclase at the top of the sill body can produce norite or anorthosites. The chromitite layer could be further thickened due to subsequent multiple injections before its consolidation. The lateral transport of dense slurries transgressively eroded their footwall rocks, accounting for the formation of potholes and regional magmatic unconformities. Subsequent compaction and annealing, coupled with percolation of residual liquid in the post-cumulate stage, may have persisted for hundreds of thousands of years below the zircon closure temperature. These late processes could further enhance the development of annealed and compacted monomineralic layers lacking intercumulus melt, and also drive local isotopic disequilibrium.

The same type of contaminated and crystal-rich magma batches we envision in the formation of macrolayers in the RLS could equally well have formed smaller and less regularly-shaped intrusions containing high-grade chromitites like those of the Ring of Fire, Ontario, Sukinda, India, or Kemi, Finland or PGE-rich sulﬁde deposits like the Lac Des Iles Pd deposit of Ontario that occur in intrusions with irregular morphology but rock types effectively identical to those observed in the RLS. Recognition that the processes involved do not require the existence of a magma chamber would open many new areas to exploration for these deposits of critically important strategic metals, areas previously overlooked purely because they do not contain vast layered mafic intrusions like the RLS. In contrast to the classical paradigm of fractional crystallization within liquid-dominated magma chambers, the state of the RLS as it grew may be better understood as a thick mushy reservoir containing transient pooled melt pockets, built by transcrustal assimilation processes including ABC and AFC, concepts which can be extrapolated to other large layered intrusions such as the Stillwater Complex and to smaller irregularly shaped intrusions anywhere in the world.

Methods

Isenthalpic assimilation simulations were carried out using the AlphaMELTS software, version 1.9, and more information about these thermodynamic models can be found in the Supplementary Tables where we provide copies of the melts and environment files used. Model results appear in the Supplementary Data 1 file. We collected the major oxide contents of country rocks (Supplementary Fig. 3) and the crustal exposures of middle crust (Supplementary Fig. 4) beneath the RLS, and identiﬁed potential representatives of the complex lithological association in this region (Supplementary Table 3). The estimated composition of granulate terrains from the interior of the North China Craton was considered to be representative of lower crustal continental crust in general and used as the assimilant at lower crust levels. Based on similarities in major oxides, the trace-element compositions of upper- and middle-crustal contaminants (Supplementary Table 3) were mostly assumed according to the global average values of upper continental crust and Archean gray gneisses, respectively. Initial enthalpies and phase assemblages of these crustal assimilants were estimated under the suitable pressure-temperature conditions (upper crust, 0.2 GPa, 300 °C; middle crust, 0.45 GPa, 390 °C; lower crust, 1 GPa, 770 °C). In alphaMELTS, crustal material is incrementally added to the system, and an isenthalpic calculation employs entropy maximization to solve for thermodynamic equilibrium between silicate liquid and solid phases at constant pressure. Any resultant crystals can be equilibrated with or discarded from residual liquid (ABC or AFC, respectively), and the remaining system becomes the starting point for the next increment of assimilation. Following wholesale crustal assimilation at middle (0.45 GPa) and lower crust levels (1 GPa), further cooling of ascending magmas in the conduit was represented by an isobaric crystallization at 0.2 GPa and fayalite–magnetite–quartz solid oxygen buffer. Variable rare-earth element partition coefﬁcients of clinopyroxene/melt and feldspar/melt were calculated based on lattice strain theory, while constant partition coefﬁcients for remaining elements and melt-solid pairs were taken from a comprehensive review. Because slight differences in the Gibbs free energy among various candidate model pyroxenes may confuse the choice of the second pyroxene after orthopyroxene, we corrected the pyroxene/melt partitioncoefﬁcients when the algorithm improperly terms a high-Ca clinopyroxene as the second orthopyroxene in the B3-Gn (Main Zone) lineage.

Based on evolution model of depleted mantle at 2055 Ma, the (87Sr/86Sr)$_i$ and ε$_\text{Nd}$ of mantle-derived magma are calculated to be 0.7036 and 3.97, respectively. The ε$_\text{Nd}$ of an uncontaminated mantle-derived magma is widely considered as 5.7‰ in light of the global range of 5.4–6.0‰ in fresh MORB glasses. Values of middle crust and lower crust are the averages of extensive collected data in this region (Supplementary Table 4). Limited to rare data of sedimentary Pretoria Group, the O isotopic data of upper crust are assumed mainly with reference to the overlying Roosberg Group and adjacent Dolomite. Pretoria Group rocks have the higher δ18O (~9–15‰) than the averages of overlying volcanites (7.36‰), granophyres (6.6‰), and granites (7.35‰), and a moderate value (9.6‰) was set for the upper-crustal materials (Supplementary Table 4). Average δ18O values of the Vredefort Dome and Limpopo belt mostly fall in the range 9–10‰, but we adopted a slightly larger δ18O for middle crust assimilant (10.6‰) assuming a possible greater contribution from δ18O-enriched metapelites. The proposed lower crust has moderate Mg$^2+$ and SiO$_2$/Al$_2$O$_3$ ratios, corresponding to the features of intermediate-type lower-crustal granulite xenoliths that has an average δ18O of 9.2‰.

Data availability

The authors declare that all relevant data necessary to reproduce the ﬁgures presented in this paper are available within the article and its supplementary information ﬁles. A Supplementary Information ﬁle provides tables and ﬁgures in support of the main text as well as copies of the alphaMELTS melts ﬁles and environment ﬁles. A Supplementary Data 1 ﬁle contains all the model results from alphaMELTS. Source data are provided with this paper.

Code availability

AlphaMELTS is available for free download from the Caltech Magmasource website at https://magmasource.caltech.edu/alphamelts where support can be found for installation and execution of the software. Environment and input ﬁles and a summary of the steps taken to conduct the models using alphaMELTS are available in the Supplementary ﬁles for this article.

Received: 19 June 2020; Accepted: 10 December 2020;
Published online: 21 January 2021

References

1. Naldrett, A. J. Secular variation of magmatic sulﬁde deposits and their source magmas. Econ. Geol. 105, 669–688 (2010).
2. Wager, L. R. & Brown, G. M. Layered Igneous Rocks (Olive & Boyd, Edinburgh London, 1968).
3. Davies, G., Cawthorn, R. G., Barton, J. M. Jr. & Morton, M. Parental magma to the Bushveld Complex. Nature 287, 33–35 (1980).
4. Kruger, F. J. Filling the Bushveld Complex magma chamber: lateral expansion, roof and floor interaction, magmatic unconformities, and the formation of

Nature Communications | (2021) 12:505 | https://doi.org/10.1038/s41467-020-20778-w | www.nature.com/naturecommunications
20. Mungall, J. E. Crustal contamination of picritic magmas during transport and crystallization. *Science* 355, eaag3055 (2017).

23. Zeh, A., Ovtcharova, M., Wilson, A. H. & Schaltegger, U. The Bushveld Complex: a primary magmatic hypothesis based on a wide reef facies. *Econ. Geol.* 102, 971–1009 (2007).

25. Barnes, S. J., Maier, W. D. & Curl, E. A. Composition of the marginal rocks of the Bushveld Complex as exemplified by its marginal border groups. *J. Geol. Soc. Lond.* 138, 307–326 (1981).

30. Ashwal, L. D., Webb, S. J. & Knoper, M. W. Magmatic stratigraphy in the Upper Zone of the Bushveld Complex: constraints on crustal contamination. *Contrib. Mineral. Petrol.* 171, 57 (2016).

31. Yuan, Q. et al. Pulses of plagioclase-laden magmas and stratigraphic evolution in the Upper Zone of the Bushveld Complex. *South Africa. J. Petrol.* 58, 1619–1644 (2017).

32. Scoon, R. N. & Teigler, B. Platinum-group element mineralization in the critical zone of the western Bushveld Complex: I. Sulfide poor-chromitites below the UG-2. *Econ. Geol.* 89, 1094–1121 (1994).

33. Naldrett, A. J., Wilson, A., Kinnaird, J. & Chunnett, G. PGE tenor and metal ratios and below the Merensky Reef, Bushveld Complex: implications for its genesis. *J. Petrol.* 50, 625–659 (2009).

34. Mitchell, A. A. & Scoon, R. N. The Merensky Reef at Wimpershoek, Eastern Bushveld Complex: a primary magmatic hypothesis based on a wide reef facies. *Econ. Geol.* 102, 971–1009 (2007).

35. Mitchell, A. A. & Scoon, R. N. The Platreef of the Bushveld Complex, South Africa: a new hypothesis of non-sequential magma replenishment based on observations at the Akanji project, North-West of Mokopane. *S. Afr. J. Geol.* 115, 535–550 (2012).

36. Kruger, F. J., Cawthorn, R. G. & Walsh, K. L. Strontium isotopic evidence against magma addition in the Upper Zone of the Bushveld Complex. *Earth Planet. Sci. Lett.* 84, 51–58 (1987).

37. Vantongeren, J. A., Mathez, E. A. & Kelemen, P. B. A. Felsic end to Bushveld differentiation. *J. Petrol.* 51, 1891–1912 (2010).

38. Zeh, A., Wilson, A. H., Gudelius, D. & Gerdes, A. Hafnium isotopic constraints on the late evolution of the Bushveld Complex. *Earth Planet. Sci. Lett.* 472, 418–430 (2017).

39. Zirakparvar, N. A., Mathez, E. A., Scoates, J. S. & Wall, C. J. Zircon Hf isotope constraints on the late evolution of the Bushveld Complex. *Earth Planet. Sci. Lett.* 472, 408–417 (2017).

40. Ashwal, L. D. & Barnes, S. J. A chilled margin of komatiite sills beneath the Eastern Bushveld Complex: evidence from Nd isotopic analyses of the cumulate sills. *Contrib. Mineral. Petrol.* 180, 59–71 (2015).

41. Barnes, S. J. & Kro et al. Formation and dynamics of magma reservoirs. *Philos. Trans. R. Soc. A* 377, 20180019 (2019).

42. Bowen, N. L. *The Evolution of the Igneous Rocks* (Oxford Univ. Press, London, 1928).

43. Sparks, R. S. J. et al. Out-of-sequence emplacement of ultramafic layers in the Bushveld Complex: evidence from Nd isotopic analyses of the cumulate sills. *Contrib. Mineral. Petrol.* 180, 59–71 (2015).

44. Maier, W. D., Barnes, S. J. & Karykowski, B. T. A chilled margin of komatiite sills beneath the Eastern Bushveld Complex: evidence from Nd isotopic analyses of the cumulate sills. *Contrib. Mineral. Petrol.* 180, 59–71 (2015).

45. Zeh, A., Wilson, A. H., Mathez, E. A. & Kelemen, P. B. Felsic end to Bushveld differentiation. *J. Petrol.* 51, 1891–1912 (2010).

46. Roelofse, F. & Ashwal, L. D. The Lower Main Zone in the Northern Limb of the Bushveld Complex: constraints on crustal contamination. *Contrib. Mineral. Petrol.* 116, 949–971 (1993).

47. Sharp, M. R. The chronology of magma influxes to the eastern compartment of the Bushveld Complex as exemplified by its marginal border groups. *J. Geol. Soc. Lond.* 138, 307–326 (1981).

48. Barnes, S. J. Are Bushveld U-type parent magmas boninitic or contaminated komatiitic? *Contrib. Mineral. Petrol.* 101, 447–457 (1989).

49. Eales, H. V. & Costin, G. Crustally contaminated komatiitic primary source of the chromitites and Marginal Lower, and Critical Zone magmas in a staging chamber beneath the Bushveld Complex. *Econ. Geol.* 107, 645–665 (2012).

50. Maier, W. D., Barnes, S. J. & Karykowski, B. T. A chilled margin of komatiite sills beneath the Eastern Bushveld Complex: evidence from Nd isotopic analyses of the cumulate sills. *Contrib. Mineral. Petrol.* 180, 59–71 (2015).

51. Zeh, A., Wilson, A. H., Mathez, E. A., Scoates, J. S. & Wall, C. J. Zircon Hf isotope constraints on the late evolution of the Bushveld Complex. *Earth Planet. Sci. Lett.* 472, 418–430 (2017).

52. Zeh, A., Wilson, A. H., Gutdelius, D. & Gerdos, A. Hafnium isotopic composition of the Bushveld Complex requires mantle melt-upper crust mixing: New evidence from zirconology of mafic, felsic and metasedimentary rocks. *J. Petrol.* 60, 2169–2200 (2019).

53. Zeh, A., Wilson, A. H., Gutdelius, D. & Gerdos, A. Hafnium isotopic composition of the Bushveld Complex requires mantle melt-upper crust mixing: New evidence from zirconology of mafic, felsic and metasedimentary rocks. *J. Geol.* 105, 1491–1511 (2010).

54. Zeh, A., Wilson, A. H., Mathez, E. A. & Kelemen, P. B. A. Felsic end to Bushveld differentiation. *J. Petrol.* 51, 1891–1912 (2010).

55. Zeh, A., Wilson, A. H., Mathez, E. A. & Kelemen, P. B. A. Felsic end to Bushveld differentiation. *J. Petrol.* 51, 1891–1912 (2010).

56. Zeh, A., Wilson, A. H., Mathez, E. A. & Kelemen, P. B. A. Felsic end to Bushveld differentiation. *J. Petrol.* 51, 1891–1912 (2010).

57. Zeh, A., Wilson, A. H., Mathez, E. A. & Kelemen, P. B. A. Felsic end to Bushveld differentiation. *J. Petrol.* 51, 1891–1912 (2010).

58. Zeh, A., Wilson, A. H., Mathez, E. A. & Kelemen, P. B. A. Felsic end to Bushveld differentiation. *J. Petrol.* 51, 1891–1912 (2010).

59. Zeh, A., Wilson, A. H., Mathez, E. A. & Kelemen, P. B. A. Felsic end to Bushveld differentiation. *J. Petrol.* 51, 1891–1912 (2010).

60. Zeh, A., Wilson, A. H., Mathez, E. A. & Kelemen, P. B. A. Felsic end to Bushveld differentiation. *J. Petrol.* 51, 1891–1912 (2010).

61. Zeh, A., Wilson, A. H., Mathez, E. A. & Kelemen, P. B. A. Felsic end to Bushveld differentiation. *J. Petrol.* 51, 1891–1912 (2010).
57. Gao, S. et al. Chemical composition of the continental crust as revealed by studies in East China. *Geochim. Cosmochim. Acta* **62**, 1959–1973 (1998).

58. Fischer, L. A. et al. Immiscible iron- and silica-rich liquids in the Upper Zone of the Bushveld Complex. *Earth Planet. Sci. Lett.* **443**, 108–117 (2016).

59. Karykowski, B. T. et al. In situ Sr isotope compositions of plagioclase from a complete stratigraphic profile of the Bushveld Complex, South Africa: evidence for extensive magma mixing and percolation. *J. Petrol.* **58**, 2285–2308 (2017).

60. Korolev, N. M., Melnik, A. E., Li, X. H. & Skublov, S. G. The oxygen isotope composition of mantle eclogites as a proxy of their origin and evolution: a review. *Earth Sci. Rev.* **185**, 288–300 (2018).

61. Bergantz, G. W. & Ni, J. A numerical study of sedimentation by dripping instabilities in viscous fluids. *Int. J. Multiph. Flow.* **25**, 307–320 (1999).

62. McBirney, A. R. & Noyes, R. M. Crystalization and layering of the Skaergaard Intrusion. *J. Petrol.* **20**, 487–534 (1979).

63. Schoenberg, R., Kruger, F. J., Nägler, T. F., Meisel, T. & Kramers, J. D. PGE enrichment in chromitite layers and the Merensky Reef of the western Bushveld Complex: a Re-Os and Rb-Sr isotope study. *Earth Planet. Sci. Lett.* **172**, 49–64 (1999).

64. Mondal, S. K. & Mathez, E. A. Origin of the UG2 chromitite layer, Bushveld Complex. *J. Petrol.* **48**, 495–510 (2007).

65. Forien, M., Tremblay, J., Barnes, S. J., Burgisser, A. & Pagé, P. The role of viscous particle segregation in forming chromite layers from slumped crystal slurries: insights from analogue experiments. *J. Petrol.* **56**, 2425–2444 (2015).

66. Baker, M. B., Alves, S. & Stolper, E. M. Petrography and petrology of the Bushveld Complex: a Re-Os and Rb-Sr isotope study. *J. Petrol.* **20**, 487–534 (1979).

67. Mitchell, A. A., Scoon, R. N. & Sharpe, M. R. The Upper Critical Zone in the Upper Zone of the Bushveld Complex: a Re-Os and Rb-Sr isotope study. *Earth Planet. Sci. Lett.* **172**, 49–64 (1999).

68. Hayes, B., Bybee, G. M., Mawela, M., Nex, P. A. M. & van Niekerk, D. Residual melt extraction and out-of-sequence differentiation in the Bushveld Complex, South Africa. *J. Petrol.* **59**, 2413–2434 (2018).

69. Sparks, R. S. J. The role of crustal contamination in magma evolution through geological time. *Earth Planet. Sci. Lett.* **78**, 211–223 (1986).

70. Yao, Z. S., Mungall, J. E. & Qin, K. Z. A preliminary model for the migration of sulfide droplets in a magmatic conduit and the significance of volatiles. *J. Petrol.* **60**, 2285–2308 (2017).

71. Bédard, J. H. J., Marsh, B. D., Hersum, T. G., Naslund, H. R. & Mukasa, S. B. Large-scale mechanical redistribution of orthopyroxene and plagioclase in the Basement Sill, Ferrar Dolerites, McMurdo Dry Valleys, Antarctica: petrological, mineral-chemical and field evidence for channelized movement of crystals and melt. *J. Petrol.* **48**, 2289–2326 (2007).

72. Djon, M. L., Olivo, G. R., Miller, J. D., Peck, D. C. & Joy, B. Stratiform platinum-group element mineralization in the layered Northern Ultramafic Center of the Lac des Iles Intrusive Complex, Ontario, Canada. * Ore Geol. Rev.* **90**, 697–722 (2017).

73. Rudnick, R. L. & Gao, S. *In Treatise on Geochemistry* 2nd edn (eds Turekian, K. K. & Holland, H. D.), 1–52 (Elsevier-Oxford, 2014).

74. Moyen, J. E. & Martin, H. Forty years of TTG research. *Lithos* **148**, 312–336 (2012).

75. Kempton, P. D. & Harmon, R. S. Oxygen isotope evidence for large-scale hybridization of the lower crust during magmatic underplating. *Geochim. Cosmochim. Acta* **56**, 971–986 (1992).

Acknowledgements

J.E.M. acknowledges funding from NSERC Discovery Grant program.

Author contributions

J.E.M., Z.Y., and M.C.J. developed the ideas and shared initial pilot-scale modeling efforts. Z.Y. and J.E.M. compiled literature and data sources. Z.Y. performed the modeling in depth with frequent inputs from J.E.M. and M.C.H. and produced all the figures and tables. J.E.M. and Z.S.Y. wrote the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-20778-w.

Correspondence and requests for materials should be addressed to J.E.M.

Peer review information *Nature Communications* thanks James Day, Ben Hayes and Brian O’Driscoll for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021