LETTER TO THE EDITOR

Is every microorganism detected in the intensive care unit a nosocomial infection? Isn’t prevention more important than detection?

Fatma Yildirim, Irem Karaman, Mehmet Yildirim

Specialty type: Medicine, research and experimental
Provenance and peer review: Invited article; Externally peer reviewed.
Peer-review model: Single blind
Peer-review report’s scientific quality classification
Grade A (Excellent): 0
Grade B (Very good): B
Grade C (Good): C
Grade D (Fair): 0
Grade E (Poor): 0
P-Reviewer: Navarro-Alvarez N, Mexico; Skok K, Austria
A-Editor: Zhu JQ
Received: March 11, 2022
Peer-review started: March 11, 2022
First decision: April 8, 2022
Revised: April 12, 2022
Accepted: May 22, 2022
Article in press: May 22, 2022
Published online: July 16, 2022

Fatma Yildirim, Department of Pulmonary Disease and Critical Care Medicine, Pulmonary Intensive Care Unit, University of Health Sciences, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara 06110, Turkey
Irem Karaman, School of Medicine, Bahcesehir University, Istanbul 34740, Turkey
Mehmet Yildirim, Department of Internal Medicine, Internal Medicine Intensive Care Unit, University of Health Sciences, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara 06110, Turkey

Corresponding author: Fatma Yildirim, MD, Associate Professor, Department of Pulmonary Disease and Critical Care Medicine, Pulmonary Intensive Care Unit, University of Health Sciences, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Gazi University Faculty of Medicine, Ankara 06110, Turkey. fatma_bodur2000@yahoo.com

Abstract
The present letter to the editor is related to the study entitled “Multidrug-resistant organisms in intensive care units and logistic analysis of risk factors.” Not every microorganism grown in samples taken from critically ill patients can be considered as an infectious agent. Accurate and adequate information about nosocomial infections is essential in introducing effective prevention programs in hospitals. Therefore, the development and implementation of care bundles for frequently used medical devices and invasive treatment devices (e.g., intravenous catheters and invasive ventilation), adequate staffing not only for physicians, nurses, and other medical staff but also for housekeeping staff, and infection surveillance and motivational feedback are key points of infection prevention in the intensive care unit.

Key Words: Critical care; Prevention; Intensive care unit; Nosocomial infection; Detection

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
Core Tip: Microorganisms grown from every sample taken from critically ill patients cannot be considered as an infectious agent. Development and implementation of care bundles for frequently used medical devices and invasive treatment devices (e.g., intravenous catheters and invasive ventilation), adequate staffing not only for physicians, nurses and other medical staff but also for housekeeping staff, and infection surveillance and motivational feedback are key points of infection prevention in the intensive care unit. Providing accurate and adequate information about nosocomial infections is essential in introducing effective prevention programs in hospitals.

Citation: Yildirim F, Karaman I, Yildirim M. Is every microorganism detected in the intensive care unit a nosocomial infection? Isn’t prevention more important than detection? World J Clin Cases 2022; 10(20): 7184-7186

URL: https://www.wjgnet.com/2307-8960/full/v10/i20/7184.htm
DOI: https://dx.doi.org/10.12998/wjcc.v10.i20.7184

TO THE EDITOR

We recently read with great interest the manuscript by Han et al.[1] entitled “Multidrug-resistant organisms in intensive care units and logistic analysis of risk factors,” which was published in the last issue of World J Clin Cases. We would like to state that the article is very detailed, and we have benefited from it in many points. However, we would like to humbly highlight some parts of their paper. They analyzed 2070 samples from critically ill patients in the intensive care unit (ICU). They found that 55.1% of the samples were sputum, 25.2% blood, and 5.7% other drainage fluids. Most commonly detected pathogens were Acinetobacter baumannii (A. baumannii), Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Staphylococcus aureus with a detection rate of 35.97% (378/1051). In addition, detection rate of Klebsiella pneumoniae was 9.42% (99/1051), which was generally resistant to multiple antimicrobial drugs. This study pointed out some critical issues; however, there are some practical questions to be answered for a proper clinical extrapolation.

First of all, when we look at the study from the perspective of intensivists, the most important limitation of this study is the lack of definition of infections. In order to distinguish between contamination and colonization, it is necessary to define ventilator-associated pneumonia, blood-catheter-associated infection, and urinary tract infection according to the Centers of Disease Control criteria[2]. Not every microorganism grown in samples taken from critically ill patients can be considered an infectious agent.

Secondly, accurate and adequate information about nosocomial infections is essential in introducing effective prevention programs in hospitals. Therefore, the development and implementation of care bundles for frequently used medical devices and invasive treatment devices (e.g., intravenous catheters and invasive ventilation), adequate staffing not only for physicians, nurses and other medical staff but also for housekeeping staff, and infection surveillance and motivational feedback are key points of infection prevention in the ICU. It is recommended to use infection prevention packages for the prevention of nosocomial ventilator-associated pneumonia, blood-catheter infection, urinary tract infection, and other infections in the ICU and to check compliance with these packages, particularly by the infection control committee[3,4]. In the study of Han et al[1], although one of the authors was affiliated with an infection control committee, the control precautionary packages and the rates of compliance with the precautionary packages in the ICU were not mentioned in the study. If one of the aims of the study was to examine the risk factors for the development of nosocomial infection in the ICU, the rates of compliance with these infection prevention packages should be included in the study.

In the study of Han et al[1] where the rate of intubated patients was 98.1%, resistance rates of A. baumannii to minocycline in 2017 and 2019 were found as 28.41% and 32.42%, respectively; whereas meropenem resistance was 74.6%, and the imipenem resistance rate was 75.66%. Carbapenem resistance of A. baumannii has increased from 2005 to 2018 all over the world, which is an important issue. A study conducted by Talan et al[5] in our country detected A. baumannii in 25.6% of patients between February 2013 and January 2014 in intubated patients, and while all of them were resistant to carbapenems, colistin resistance was found in 27.2%. A. baumannii resistance in Turkey is much higher. The reason for this is the widespread use of antibiotics in the community before admission to the hospital in our country. The discussion of Han et al[1] of this high carbapenem and polymyxin resistance in their study will add strength to their study.
FOOTNOTES

Author contributions: All authors have contributed sufficiently to the manuscript.

Conflict-of-interest statement: The authors declare no conflict of interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Turkey

ORCID number: Fatma Yildirim 0000-0003-3715-3097.

S-Editor: Wang LL
L-Editor: Filipodia
P-Editor: Wang LL

REFERENCES

1 Han Y, Zhang J, Zhang HZ, Zhang XY, Wang YM. Multidrug-resistant organisms in intensive care units and logistic analysis of risk factors. World J Clin Cases 2022; 10: 1795-1805 [PMID: 35317164 DOI: 10.12998/wjcc.v10.i6.1795]
2 Safety P. National Healthcare Safety Network Overview. [cited 20 January 2022]. Available from: https://www.cdc.gov/nhsn/pdfs/pscmanual/pcsmanual_current.pdf
3 Lai CC, Lee CM, Chiang HT, Hung CT, Chen YC, Su LH, Shi ZY, Liu JW, Liu CP, Lu MC, Chuang YC, Ko WC, Tseng SH, Chen YH, Hsueh PR; Infection Control Society of Taiwan. Implementation of a national bundle care program to reduce catheter-associated urinary tract infection in high-risk units of hospitals in Taiwan. J Microbiol Immunol Infect 2017; 50: 464-470 [PMID: 28711430 DOI: 10.1016/j.jmii.2017.01.006]
4 Prakash SS, Rajakshar D, Cherian A, Sastry AS. Care bundle approach to reduce device-associated infections in a tertiary care teaching hospital, South India. J Lab Physicians 2017; 9: 273-278 [PMID: 28966490 DOI: 10.4103/JLP.JLP_162_16]
5 Talan L, Güven G, Altıntaş ND, Yılmaz G. Microorganisms that are Difficult to Control in the Intensive Care Units: Acinetobacter. J Medical Surg Intensive Care Med 2015; 6: 44-47
