Implications of a class of neutrino mass matrices with texture zeros for non-zero θ_{13}

Sanjeev Kumar

Department of Physics and Astrophysics, University of Delhi, Delhi -110007, INDIA.
email: skverma@physics.du.ac.in

Abstract

A class of neutrino mass matrices with texture zeros realizable using the group Z_3 within the framework of type (I+II) seesaw mechanism naturally admits a non-zero θ_{13} and allows for deviations from maximal mixing. The phenomenology of this model is reexamined in the light of recent hints for non-zero θ_{13}.

The observation of neutrino oscillations has provided us important information about neutrino masses and mixings. It has been known for a long time from the studies of atmospheric and solar neutrinos that the mixing angle θ_{23} can be maximal while the mixing angle θ_{12} is large but well below the maximal value. The smallest mixing angle θ_{13} is allowed to take any value from zero to an upper bound given by the accelerator and reactor neutrino experiments. However, the global analysis of neutrino data has provided hints for a non-zero θ_{13} at a small statistical significance not exceeding 2σ level [1, 2, 3]. The first direct observational hint for a non-zero θ_{13} has come from the Tokai-to-Kamioka (T2K) experiment which has rejected $\theta_{13} = 0$ at 2.5σ [4]. Shortly after T2K results, the Main Injector Neutrino Oscillation Search (MINOS) experiment has disfavored $\theta_{13} = 0$ at 1.5σ [5]. A recent global analysis taking into account the recent T2K and MINOS results provides an evidence for $\theta_{13} > 0$ at a confidence level greater than 3σ [6]. The observation of a non zero θ_{13} may further lead to the measurement of CP violation in the lepton sector enriching our understanding of fermion mass generation and CP violation.

Many successful phenomenological patterns for the neutrino mass matrix have been postulated which predict $\theta_{13} = 0$ as a natural prediction without any fine tuning of parameters. These ansätze or symmetries for the neutrino mass matrix force certain relations on the elements of neutrino mass matrix leading to increase in predictability and testability. Some popular examples of such ansätze are $\mu-\tau$ symmetry [7, 8, 9, 10], TBM mixing [11] and scaling [12]. All these phenomenological patterns follow from some discrete flavor symmetries within the context of see-saw mechanism. These mass models can explain small non-zero values of θ_{13} as corrections or deviations from the exact symmetry. However, it may not be
possible to accommodate sufficiently large value of θ_{13} in this way. If the recent hints for a large non-zero θ_{13} are confirmed in future, many such ansatze of neutrino mass matrix will be overruled. Even if a model survives this experimental test, one may need to overstretch the model parameters in order to get a sufficiently large θ_{13}.

Another important phenomenological pattern is neutrino mass matrix with texture zeros\[^{13}\] which is also realizable from discrete abelian flavor symmetries within the context of see-saw mechanism. There are seven patterns of texture zeros, further divided into three classes (A, B and C), which are consistent with the present experimental data. The phenomenology of these classes of neutrino mass matrices has already been studied in details\[^{14,15}\] (and references cited therein). The main emphasis of the above studies was on finding the allowed parameter space and correlations among mixing angles and CP violating phases by restricting θ_{13} less than 6 degrees as required by the CHOOZ bound at 1σ\[^{14,15}\]. It was found that the classes B and C can give a large θ_{13} only for nearly maximal CP violation. This conclusion should not change even after the T2K results which point out to larger values of θ_{13}. However, the restriction of $\theta_{13} < 6$ degrees selects only a small portion of the full parameter space and provides only a partial understanding of the phenomenology of class A. The aim of present communication is to explore the phenomenology of class A for non-zero θ_{13} in the light of recent T2K and MINOS results.

It is possible to have the symmetry realization of this class of two texture zero mass matrices in the context of type (I+II) seesaw using the family symmetry Z_3 without assuming the dominance of either type of contributions keeping only the Standard Model scalar doublet which transforms trivially under the family symmetry thus effectively suppressing the undesired flavor changing neutral currents. An additional advantage of a single scalar doublet is the stability of zero textures in the neutrino mass matrix under renormalization group evolution. These texture zeros are enforced by extending the SM with one scalar SU(2) triplet. A complex scalar singlet which transforms nontrivially under the family symmetry is also introduced to get correct type I seesaw contribution\[^{16}\].

The neutrino mass matrix M in the flavor basis where the charged lepton mass matrix is diagonal can be parametrized in terms of neutrino masses (m_1, m_2 and m_3), mixing angles (θ_{12}, θ_{23} and θ_{13}) and CP violating phases (α, β and δ) as

$$M = V M^{\text{diag}} V^T$$

where $M^{\text{diag}} = \text{Diag}\{m_1, m_2, m_3\}$. The mixing matrix V is given as

$$V = \begin{pmatrix}
c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\
-s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\
s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13}
\end{pmatrix} \begin{pmatrix}
1 & 0 & 0 \\
0 & e^{i\alpha} & 0 \\
0 & 0 & e^{i(\beta+\delta)}
\end{pmatrix},$$

where $s_{ij} = \sin \theta_{ij}$ and $c_{ij} = \cos \theta_{ij}$. The class A of neutrino mass matrices with two texture zeros has two sub-categories: A_1 and A_2. In class A_1, $M_{ee} = 0$ and $M_{e\mu} = 0$ and in class A_2, $M_{ee} = 0$ and $M_{e\tau} = 0$\[^{13}\].

The existence of two texture zeros in the neutrino mass matrix give four constraints on the neutrino mixing parameters. These constraints can be rewritten in the form of two
predictions on the mixing angles θ_{13} and θ_{23} and two predictions on the CP violating phases β and δ in terms of the two unknown parameters m_1 and α [14] using the experimental values [6] of θ_{12} and two mass squared differences Δm^2_{12} and Δm^2_{23} which are used to express m_2 and m_3 in terms of m_1.

The predictions for the two mixing angles in class A_1 are [14]

$$\tan^2 \theta_{13} = \frac{M}{m_3}$$

(3)

and

$$\tan^2 \theta_{23} = \frac{\mu_3^2 \sin^2 2\theta_{12}}{4M(M + m_3)}$$

(4)

where

$$M = \sqrt{m_1^2 c_{12}^2 + m_2^2 s_{12}^2 + 2m_1 m_2 c_{12}^2 s_{12}^2 \cos 2\alpha}$$

(5)

and

$$\mu_3 = \sqrt{m_1^2 + m_2^2 - 2m_1 m_2 \cos 2\alpha}.$$

(6)

The mixing angle θ_{13} is same in class A_1 and class A_2. However, the value of θ_{23} in class A_2 is given by [14]

$$\tan^2 \theta_{23} = \frac{4M(M + m_3)}{\mu_3^2 \sin^2 2\theta_{12}}.$$

(7)

The element m_{ee} can only be zero for normal ordering of neutrino mass spectrum [17]. Therefor, the lightest neutrino mass is m_1 which is considered as a free parameter whereas m_2 and m_3 are expressed in terms of m_1, Δm^2_{12} and Δm^2_{23}.

The predicted values of θ_{23} and θ_{13} span a bounded region on the $(\theta_{23}, \theta_{13})$ parameter space depicted in Fig. 1. The dashed (red) line corresponding to $\alpha = 0$ and the dotted (blue) line corresponding to $\alpha = 90$ degrees form the lower boundaries of the region while the line $m_1 = 0.1$ eV forms the upper boundary of the region. This bounded region is in a way natural prediction of this class of texture zeros as no fine tuning of the parameters have been done till now. The experimentally allowed values of θ_{23} and θ_{13} [6] at 3σ C.L. are shown as the solid contours. The predictions for classes A_1 and A_2 are mirror images of one another and are related through the transformation $\theta_{23} \rightarrow \pi/2 - \theta_{23}$. It can be seen from Fig. 1 that θ_{13} can be arbitrarily large irrespective of α in class A_1 (A_2) if θ_{23} is below (above) its maximal value. The only constraint which bounds θ_{13} from above in this region is an upper bound on the overall neutrino mass scale which has been arbitrarily fixed here at $m_1 = 0.1$ eV for the sake of illustration. However, the dotted line corresponding to $\alpha = 90$ degrees forms both lower and upper bounds on θ_{13} in the region where θ_{23} is above (below) maximality in class A_1 (A_2). Moreover, the vanishingly small values of θ_{13} are unnatural in the sense that for these values the deviations of θ_{23} from maximality become too large. A non-zero value of θ_{13} consistent with the latest neutrino data [6] corresponds to nearly maximal θ_{23} and, therefore, is a natural prediction of this class of texture zero mass models. The above conclusions become more apparent in Figs. 2 and 3 where the contours of constant θ_{13} and θ_{23} have been plotted on the (α, m_1) parameter space. It is implicit from these figures that the innermost region where deviations of θ_{23} from maximal mixing becomes too large corresponds to $\theta_{13} < 6$ degrees and, therefore, is disfavored.
The above analysis has been done for the central values of θ_{12}, Δm^2_{12} and Δm^2_{13}. If the errors in these parameters are taken into account, the small values of θ_{13} become marginally allowed at 3σ. This can be seen by calculating θ_{13} and θ_{23} as functions of m_1 for $\alpha = 90$ degrees by randomly sampling θ_{12}, Δm^2_{12} and Δm^2_{13} [6]. The resulting plots have been depicted in Figs. 4 and 5. The central (red) regions show predictions for the mixing angles at 1σ while the outer (green) regions give the 3σ predictions. The experimental values [6] at 3σ have also been depicted for comparison as the horizontal lines. It is evident from from Fig. 4 that θ_{13} becomes zero for $\alpha = 90$ degrees at 3σ. Moreover, θ_{13} is non-zero at 1σ and a considerable overlap exits between the model predictions and the experimental values for $\alpha = 90$ degrees.

Figs. 3 and 5 also depict the complementarity between classes A_1 and A_2 in their predictions for θ_{23} in the sense that the predictions of one class are related to the predictions of the other class by the transformation $\theta_{23} \rightarrow \pi/2 - \theta_{23}$.

It has been shown in one of the earlier analyses [14] that predictions of classes A_1 and A_2 for θ_{23} differ at 3σ if $\theta_{13} < 5$ degrees. In such a case, θ_{23} will be above maximal in class A_1 and below maximal in class A_2 [14]. Since the new lower bound on θ_{13} at 3σ is about 4 degrees [6], such a distinction between classes A_1 and A_2 cannot be made using the latest experimental results. The earlier experimental data allowed for this distinction between classes A_1 and A_2 as there was no lower bound on θ_{13}.

In conclusion, it has been shown that $\theta_{13} = 0$ is disfavored for neutrino mass matrices of class A since this requires α to be fine tuned near 90 degrees which leads to large deviations from the maximal value of θ_{23}. If θ_{23} is below (above) maximal in class A_1 (A_2), θ_{13} can be arbitrarily large as it is bounded from above only by the upper bound on absolute neutrino mass scale. Therefore, large values of θ_{13} can arise naturally in this class of neutrino mass models. Moreover, it is no longer possible to restrict θ_{23} to above maximality in class A_1 and below maximality in class A_2 which was the case when there were no lower bounds on θ_{13}.

References

[1] G. L. Fogli et al., Phys. Rev. Lett. 101, 141801 (2008).
[2] M. C. Gonzalez-Garcia, M. Maltoni and J. Salvodo, JHEP 04 056 (2010).
[3] T. Schwetz, M. Tortola and J. W. F. Valle, New J. Phys. 13 063004 (2011).
[4] K. Abe et al [T2K Collaboration], arXiv:1106.2822 [hep-ex].
[5] L. Whitehead et al. [MINOS Collaboration], Joint Experimental-Theoretical Seminar, (24 June 2011, Fermilab, USA).
[6] G. L. Fogli et al., arXiv:1106.6028 [hep-ph].
[7] T. Fukuyama and H. Nishiura, hep-ph/9702253.
[8] R. N. Mohapatra and S. Nussinov, Phys. Rev. D 60, 013002 (1999).
[9] E. Ma and M. Raidal, Phys. Rev. Lett. 87, 011802 (2001).

[10] C. S. Lam, Phys. Lett. B 507, 214 (2001).

[11] P. F. Harrison, D. H. Perkins and W. G. Scott, Phys. Lett. B 530, 167 (2002).

[12] Anjan S. Joshipura and Werner Rodejohan, Phys. Lett. B 678, 276 (2009).

[13] Paul H. Frampton, Sheldon L. Glashow and Danny Marfatia, Phys. Lett. B 536, 79 (2002).

[14] S. Dev, Sanjeev Kumar, Surender Verma and Shivani Gupta, Nucl. Phys. B 784, 103 (2007).

[15] S. Dev, Sanjeev Kumar, Surender Verma and Shivani Gupta, Phys. Rev. D 76, 013002 (2007).

[16] S. Dev, Shivani Gupta and Radha Raman Gautam, Phys. Lett. B. 701, 605 (2011).

[17] S. Dev and Sanjeev Kumar, Mod. Phys. Lett. A 22, 1401 (2007).
Figure 1: The regions spanned by predicted values of θ_{23} and θ_{13} for classes (a) A_1 and (b) A_2. The dashed (red) line corresponds to $\alpha = 0$, the dotted (blue) line corresponds to $\alpha = 90$ degrees and the upper dot-dashed (green) line corresponds to $m_1 = 0.1 \text{ eV}$. The solid (orange) contour shows the 3σ region allowed by present experimental data.

Figure 2: The contours for constant θ_{13} on (α, m_1) plane.
Figure 3: The contours for constant θ_{23} on (α, m_1) plane for (a) class A_1 and (b) class A_2.

Figure 4: The variation of θ_{13} with m_1 for $\alpha = 90$ degree. The central (red) region is at 1σ and the outer (green) region is at 3σ.
Figure 5: The variation of θ_{23} with m_1 for $\alpha = 90$ degree for the classes (a) A_1 and (b) A_2. The central (red) region is at 1σ and the outer (green) region is at 3σ.