Insights into the genome sequence of the glyphosate-degrading bacterium Enterobacter sp. Bisph1

OUFA BENSSERRADI1,2, OUIFED BENSALAMA3,4, SANA GHORRI2
1Institute of Sciences and Technology, Department of Natural and Life Sciences, University Center Abdelhafid Boussouf. Mila 43000, Algeria
2Laboratory of Mycology, Biotechnology and Antimicrobial Activity, Department of Microbiology, University Mentouri of Constantine. Ain Elbeid, Constantine 25017, Algeria
3Laboratory of Natural Substances, Biomolecules and Biotechnological Applications, Department of Natural and Life Sciences, Larbi Ben M’Hidi University. Oumn El Bouaghi, 04000, Algeria. Tel: +213-666481007, *email: benslama.wided@hotmail.fr; ouifed.benslama@univ-oeb.dz

Abstract. Bensserradi O. Benslama O. Ghorri S. 2022. Insights into the genome sequence of the glyphosate-degrading bacterium Enterobacter sp. Bisph1. Biodiversitas 23: 817-882. Glyphosate is by far the most extensively utilized herbicide in the world, and because of its negative effects on the environment and animal health, finding microorganisms with the ability to degrade this herbicide is one of the scientists’ top priorities. Enterobacter sp. Bisph1 was isolated during prospecting glyphosate-degrading bacteria from a sandy soil of the region of Biskra in Algeria. To better understand the involvement of this strain in the degradation of glyphosate, a sequencing of the 4.5 MB genome of Enterobacter sp. Bisph1, as well as an annotation, and analysis of its genome sequence were performed in this study. Genomic DNA was sequenced on a MiSeq sequencer illumina using paired-end sequencing with the Nextera XT protocol. The genome of strain Enterobacter sp. Bisph1 comprises one chromosome of 4,578,487 bp with a GC content of 53.6%. Its 4,330 genes (78.13%) were assigned a putative function. The genome contains two intact phages and no CRISPR was found. The genome inspection also revealed the presence of the carbon-to-phosphorus (C-P) bond lyase coding genes clusters that consists of eight genes phnFHIKLMP. The draft genome of the Enterobacter sp. Bisph1 provides insight into the role of this strain as an important agent of bioremediation of glyphosate by examining the genes known to encode the biodegradation enzymes of this herbicide. The sequencing of the genome of Bisph1 allows a better understanding of the taxonomy of this strain within the Enterobacteriaceae family.

Keywords: Enterobacter sp. Bisph1, genome annotation, genome sequencing, glyphosate biodegradation

INTRODUCTION

Glyphosate [N-(phosphonomethyl) glycine] is the world’s most widely used broad-spectrum herbicide (Duke and Powles 2008). It is a post-emergent and non-selective systemic herbicide (Gill et al. 2016). Glyphosate is a phosphonate compound with a stable carbon-phosphorus (C-P) bond (Sviridov et al. 2015). It is used for the irradiation of weeds in agriculture, forestry, and urban areas (Thiour-Mauprivez et al. 2019). Glyphosate’s mode of action is to inhibit aromatic amino acid biosynthesis in the shikimate pathway by blocking the action of the enzyme 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPS) (Herrmann and Weaver 1999), which leads to the death of target plants (Wang et al. 2014; Sviridov et al. 2015).

The use of glyphosate herbicides has greatly increased in the world over the last decades in particular, because of the Roundup-ready genetically modified crops, that are resistant to glyphosate (Coupe and Capel 2016), like wheat, maize, soy, cotton, and colza (Annett et al. 2014). Extensive use of glyphosate has led to negative effects for humans and environmental ecosystems (Wang et al. 2016). Due to its binding to soil particles, glyphosate was detected in surface and groundwater (Shushkova et al. 2010; Lupi et al. 2015). In addition, the Aminomethyl-phosphonic acid (AMPA), which is the main compound of glyphosate degradation (Grandcoin et al. 2017) has been reported to alter the processes of DNA repair and mRNA synthesis in plants and animals (Guilherme et al. 2014).

In order to prevent the risks of glyphosate on human and animal health, as well as on the environment, finding an efficient and environmentally respectful means of degradation of the residual glyphosate is of crucial importance. Biodegradation of glyphosate by microorganisms is considered to be the most effective bioremediation strategy (Wang et al. 2016). Some previous studies have reported the potential of some bacterial species as an effective bioremediation agent for environments contaminated by glyphosate (Zhan et al. 2018), such as Alcaligenes sp.GL (Lerbs et al. 1990), Rhizobium caemelotii 1021 (Liu et al. 1991), Pseudomonas sp. 4ASW (Dick and Quinn 1995), Bacillus cereus CB4 (Fan et al. 2012), Enterobacter sp. Bisph2 (Benslama and Boulahrout 2016), Achromobacter sp. MPK 7A (Ermakova et al. 2017), and Comamonas odontotermitis P2 (Firdous et al. 2017). Those species were reported as capable to use glyphosate as a source of phosphorus by cleaving its P-C bond.

During the screening for the degradation capacity of the herbicide glyphosate by bacterial strains isolated from Saharan soil from Biskra in Algeria, strain Bisph1 has shown a positive activity by growing on a minimum mineral medium containing glyphosate as the sole source of phosphorus. Results of morphological and physiological studies showed that strain Bisph1 presents the general
characteristics of the genus Enterobacter. MALDI-TOF analysis was showed that Bisph1 was not a member of known species of Enterobacter. Strain Bisph1 demonstrated high 16S rRNA gene sequence similarity with Enterobacter genus members. According to previous studies, assigning a species to the genus Enterobacter is difficult on the basis of 16S rRNA gene sequence analysis (Stephan et al. 2007; Brady et al. 2013).

In order to better understand the genomic and metabolic determinants involved in the glyphosate biodegradation capacity of the strain Enterobacter sp. Bisph1, we performed detailed sequencing and annotation of its genome. This study, therefore, aims to provide insight into the role of this strain as a potential glyphosate bioremediation agent by closely examining the genes known to encode the biodegradation enzymes of this herbicide. On the other hand, this study allows us a better understanding of the taxonomy of the strain Bisph1 within the Enterobacteriaceae family.

MATERIALS AND METHODS

Isolation of glyphosate-degrading strains

Soil samples were taken from a sandy ground in the Biskra province in northeastern Algeria, near the northern edge of the Sahara Desert (Figure 1). In order to isolate bacterial strains capable of degrading glyphosate, the modified method was used as previously described by Benslama and Boulaahrouf (2016). In this method, a minimum medium containing glyphosate as the sole source of phosphorus was prepared and the concentrations of glyphosate were gradually raised until reaching 12 g L⁻¹ of glyphosate. A nutrient agar medium was inoculated and incubated at 37°C for 24 hours. The isolate Bisph1 was purified in order to sequence its genome.

Genomic DNA extraction and purification

Enterobacter sp. strain Bisph1 was inoculated on Columbia agar (bioMérieux) and incubated aerobically at 37°C. After growth, the bacteria were inoculated in a suspension of Tris-EDTA buffer, then treated with lysozyme and proteinase K. The genomic DNA was extracted three times with the phenol-chloroform and then precipitated with the ethanol at -20°C for purification. After centrifugation, the genomic DNA was resuspended in the Tris-EDTA buffer (Wright et al. 2017).

Genome sequencing and assembly

After extraction and purification of the genomic DNA of Bisph1 strain, the sequencing step was carried out using the MiSeq sequencer (Illumina Inc., San Diego, CA, USA) by the Nextera XT paired-end method. In order to prepare the paired-end library, a tagmentation step was performed, the DNA was fragmented with an average size of 1.4 kb, then tag adapters and dual-index barcodes were added to the fragments by a PCR step. The library was then normalized as reported by the protocol of Nextera XT. The paired-end sequencing with dual index reads was executed in a single run of 2x250-bp. Finally, the obtained reads were assembled using the Abyss software with a 10 x coverage cutoff.

Data analysis

The open reading frames (ORFs) were first predicted using the Prodigal program (Hyatt et al. 2010). The Aragorn (Laslett et al. 2004) and RNAmmer programs were then applied for the prediction of tRNA and rRNA, respectively. The functional prediction of the detected ORFs was carried out by the RPS-BLAST (Marchler-Bauer et al. 2002) against the cluster of orthologous groups (COG) database (Tatusov et al. 2000) and the Pfam database (Sonnhammer et al. 2000). The genes encoding the transmembrane helices were predicted by the TMHMM program (Krogh et al. 2001), and the genes with peptide signals were predicted by the signalP program (Bendtsen et al. 2004). To predict the presence of the bacteriophage genomes, the PHAST software has been used (Zhou et al. 2011).

Phenotype microarray (PM) (BIOLOG Inc., Hayward, CA, USA) plates were used to analyze utilization of carbon, pH stress, and chemical sensitivity to a wide variety of antibiotics, antimitabolites, heavy metals, and other inhibitors. PM experiments were conducted according to the manufacturer’s instructions. In brief, fresh overnight cells from an agar plate of the isolate Bisph1 were suspended in the inoculating fluid and the turbidity was adjusted to 85%. All PM plates were placed in an aerobic OmniLog incubator reader (BIOLOG Inc., Hayward, CA, USA) set at 37°C and monitored automatically every 15-min for color changes in the wells. Readings were recorded for 48 hours, and data were analyzed with Omnilog-PM software (release OM_PM_109M), which generated a time course curve for Biolog Redox Dye mixA color formation. The isolate was analyzed in duplicate, and a consensus result was obtained. The exported measurement data were further analyzed for statistically estimating parameters from the respiration

Figure 1. Geographical location of the region of Biskra, Algeria
curves and automatically translated into negative, positive, and weakly positive reactions.

RESULTS AND DISCUSSION

Genome sequencing analysis

The whole-genome Shotgun project of strain Enterobacter sp. strain Bisph1 has been deposited at GenBank with the accession number JXAG00000000. The genome comprises one chromosome of 4,578,487 bp with a GC content of 53.6% (Figure 2). It is composed of 54 large contigs (37 scaffolds). From the 4,339 predicted genes, 4,262 were protein-coding genes and 77 (1.77 %) were RNAs. The total number of genes with a putative function is 4,339, i.e., a percentage of 78.13%. The rest of the genes were annotated as hypothetical proteins or proteins with no known function. The genome sequence of Enterobacter sp. strain Bisph1 reveals that this strain encounters two intact phages, Salmonella phage RE-2010-NC_019488 and Enterobacteria phage P2 NC_001895.1, with the absence of CRISPR. The summary list of the genome properties of the Bisph1 strain is shown in Table 1. The assignment of genes to the different functional categories of COGs is summarized in Table 2.

The comparison of the genome of Enterobacter sp. strain Bisph1 with the closely related species such as E. massiliensis strain JC163T, E. aerogenes strain KCTC 2190, E. asburiae strain LF7a, E. cancerogenus strain YZ1, E. cloacae strain EcWSU1, E. cloacae subsp. dissolvens strain SDM, E. hormaechei strain ATCC49162, and E. lignolyticus SCF1 showed that the draft genome of Enterobacter sp. Bisph1 is smaller than those of E. massiliensis, E. aerogenes, E. cancerogenus, E. cloacae, E. cloacae subsp. dissolvens, E. hormaechei, and E. lignolyticus (4.57, 4.92, 5.28, 4.80, 4.79, 4.96, 4.80, and 4.81Mb, respectively), but larger than that of E. asburiae (3.81Mb). In addition, Enterobacter sp. Bisph1 has a G+C content lower than all species mentioned previously (53.6, 55.1, 54.8, 55.54, 54.54, 55.1, 55.2, 57.02, and 53.8%, respectively) and has the smallest number of predicted genes (4,339, 4,724, 5,021, 4,495, 4,740, 4,646, 4,779, 4,558 and 4,805, respectively) (Table 3).

Table 1. Genome statistics of Enterobacter sp. strain Bisph1

Attribute	Value	Total percentage
Genome size (bp)	4,578,487	100
DNA coding (bp)	4,002,759	87.42
DNA G+C (bp)	2,455,194	53.6
DNA scaffolds	37	100
Total genes	4,339	100
Protein coding genes	4,262	98.23
RNA genes	77	1.77
Genes assigned to COGs	4,330	78.13
Genes with Pfam domains	3,794	89.01
Genes with signal peptides	385	8.8
Genes with transmembrane helices	844	19.45
CRISPR repeats	0	0

Figure 2. Graphical circular map of Enterobacter sp. strain Bisph1 genome. From outside to the center are as follows: genes on the forward strand, genes on the reverse strand, RNA genes (tRNAs green, rRNAs grey), GC content, and GC skew.
Table 2. Number of genes associated with general COG functional categories

Value	Percentage	Description
153	3.59	Translation, ribosomal structure, and biogenesis
1	0.02	RNA processing and modification
258	6.05	Transcription
139	3.36	Replication, recombination, and repair
0	0	Chromatin structure and dynamics
30	0.70	Cell cycle control, cell division, chromosome partitioning
40	0.94	Defense mechanisms
196	3.97	Signal transduction mechanisms
203	4.76	Cell wall/membrane biogenesis
78	1.74	Cell motility
64	1.50	Intracellular trafficking and secretion
122	2.86	Posttranslational modification, protein turnover, chaperones
191	4.48	Energy production and conversion
314	7.37	Carbohydrate transport and metabolism
304	7.13	Amino acid transport and metabolism
73	1.71	Nucleotide transport and metabolism
152	3.57	Coenzyme transport and metabolism
106	2.49	Lipid transport and metabolism
210	4.93	Inorganic ion transport and metabolism
67	1.57	Secondary metabolites biosynthesis, transport and catabolism
383	8.99	General function prediction only
277	6.50	Function unknown
932	21.87	Not in COGs

Note: the total is based on the total number of protein-coding genes in the genome.

Phenotypic microarray analysis

Phenotype microarray analysis showed that the strain Bisph1 seems able to use a wide range of organic and inorganic carbon sources such as D-trehalose, tween 80, adenosine, fumaric acid, bromosuccinic acid, dihydroxyacetone, L-alaninamide, citric acid, lactic acid, glycerol, D-gluconic acid, malonic acid, L-serine, L-alanine, D-psicose, and uridine. Furthermore, strain Bisph1 was resistant to the higher doses of several antibiotics such as amikacin, amoxicillin, bleomycin, capreomycin, erythromycin, ceftriaxone, gentamicin, carbenicillin, rokitetracycline, ampicillin, rifampicin, spiramycin, spectinomycin, polymyxin B, and azlocillin. The isolate is also resistant to certain fungicides such as 1-hydroxy pyridine-2-thione (pyrithione), domiphen bromide, dichlofluanid, and 4-chloro-3,5-dimethyl-phenol, as well as to certain organic acids such as ethylene glycol bis-acid (b-aminoethylether) tetraacetic -NNN’N’, boric acid, and nalidixic acid, and to other toxic compounds such as benzenthionium chloride, dodecyltrimethylammonium bromide, metaborate sodium, sodium cyanate, chloride of cadmium, sanguinarine chloride, nitrite sodium, cesium chloride, sodium selenite, aluminum sulfate, chloride of chromium (III), and ferric chloride. However, the strain Bisph1 was susceptible to the lowest dose of the antibiotic novobiocin, cefepime, ticarcillin-clavulanic acid, and imipenem, of the chelating agent 2,2-dipipridyl, the toxic anion of sodium orthovanadate, and sodium metavanadate. The strain Bisph1 was relatively resistant to acidic pH, tolerating a pH of about 4.0, and can grow under alkaline pH up to 10.

Insights into the genome sequence

A large number of genes assigned to COG functional categories for the transport and metabolism of carbohydrates (7.37%) and amino acids (7.13%) were identified. Genomic analysis of strain Bisph1 showed an abundant presence of gene cluster encoding for enzymes involved in the breakdown, utilization, and biosynthesis of carbohydrates. The result of phenotypic microarray analysis reveals that strain Bisph1 can use a multitude of carbohydrate and amino-acid compounds such as D-mannose, D-sorbitol, L-proline, glycerol, L-rhamnose, thymidine, uridine, and gentiobiose. In addition, analysis of the genome sequence of Enterobacter sp. strain Bisph1 revealed the presence of a high number of genes associated with biosynthesis of exopolysaccharides such as genes putatively associated with cellulose synthesis (BcsA, BcsB, BcsC, and BcsE) (Omadjela et al. 2013).

Glyphosate is a phosphonate compound containing a carbon-to-phosphorus (C-P) bond (Singh and Walker 2006). The C-P linkage is found to be heavily resistant to non-biological degradation in the environment (Hayes et al. 2000). One of the metabolic biodegradation pathways of glyphosate involves the enzyme C-P lyase. This enzyme breaks the C-P bond, producing inorganic phosphate and sarcosine, which is metabolized to glycine by sarcosine oxidase (Dick and Quinn 1995; Sviridov et al. 2011). The inspection of strain Bisph1 genome confirmed the presence of C-P lyase coding genes clusters. The phn operon that governs the C-P lyase activity (Poehlein et al. 2013) in strain Bisph1 consists of 8 genes phnFHIJKLM. This finding supports the ability of strain Bisph1 to grow on a minimal medium containing glyphosate as the sole phosphorus source.

Table 3. Result of Comparative genomics between Enterobacter sp. strain Bisph1 and related species

Related species	Genome size (Mb)	G+C%	Number of predicted genes	Reference
Enterobacter sp. strain Bisph1	4.57	53.6	4,339	This research
E. massiliensis strain IC163 T	4.92	55.1	4,724	Lagier et al. (2013)
E. aerogenes strain KCTC 2190	5.28	54.8	5,021	Shin et al. (2012)
E. aerogenes strain KCTC 2190	5.28	54.8	5,021	Shin et al. (2012)
E. asburiae strain LF7a	3.81	55.5	4,495	Lau et al. (2014)
E. asburiae strain LF7a	3.81	55.5	4,495	Lau et al. (2014)
E. asburiae strain LF7a	3.81	55.5	4,495	Lau et al. (2014)
E. cloacae strain ECWSU1	4.79	55.1	4,646	Humann et al. (2011)
E. cloacae subsp. dissolvens strain SDM	4.96	55.2	4,779	Xu et al. (2012)
E. hormaechei strain ATCC49162	4.80	57.02	4,558	O’Hara et al. (1990)
E. lignolyticus SCFI	4.81	53.8	4,805	DeAngelis et al. (2011)
The investigation of the functional genes of strain Bsp1 revealed the presence of the membrane protein TonB-ExbB-ExbD complex, involved in the synthesis of siderophores and their transport into the cell in its chelated form (Postle 2007). Thus, the strain can ensure its iron requirement. The genome sequence of Enterobacter sp. strain Bsp1 revealed that this strain encounters two intact phages, Salmonella phage RE-2010-NC_019488, and Enterobacteria phage P2 NC_001895.1. This invasive presence is probably due to the absence of a defense system against phages (CRISPR-Cas) (Ratha et al. 2015).

In conclusion, the genome of Enterobacter sp. strain Bsp1 is successfully characterized. This research confirms that the genome of the strain Enterobacter sp. Bsp1 contains genes involved in the biodegradation of glyphosate, which reflects the interest of this strain as a bioremediation agent in environments contaminated by this herbicide. Analysis of the genome of Bsp1 also shows that this strain has a great metabolic potential managed by an entire range of genes and operons.

ACKNOWLEDGEMENTS

Authors gratefully acknowledge the Research Unit on Emerging Tropical Infectious Diseases, Aix Marseille University, Faculty of Medicine, Marseille, France, for the genome sequencing, and Dr. Haiitham Elbir from King Faisal University, Saudi Arabia for his help on genome assembly.

REFERENCES

Annett R, Habibi HR, Hontela A. 2014. Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. J Appl Toxicol 34: 458-479. DOI: 10.1002/jat.2997

Bendsøe JD, Nielsen H, von Heijne G, Brunak S. 2004. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340: 783-795. DOI: 10.1016/j.jmb.2004.05.028

Benslama O, Boulahrouf A. 2016. High-quality draft genome sequence of Enterobacter sp. Bsp1h2, a glyphosate-degrading bacterium isolated from a sandy soil of Biskra, Algeria. Genomics Data 8: 61-66. DOI: 10.1016/j.gdata.2016.03.005

Brady C, Cleenwerck I, Venter S, Coutinho T, De Vos P. 2013. Taxonomical evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): proposal to reclassify E. mimipressuralis and E. ammigerus into Lelliottia gen. nov. as Lelliottianimpressuralis comb. nov. and Lelliottia ammigerana comb. nov., respectively, E. gergoviae and E. pyrini into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrini comb. nov., respectively, E. cowani, E. radicicinctus, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowani comb. nov., Kosakonia radicicincta comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. palveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter palveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter. Syst Appl Microbiol 36: 309-319. DOI: 10.1016/j.symap.2013.03.005

Coupe RH, Capel PD. 2016. Trends in pesticide use on soybean, corn and cotton since the introduction of major genetically modified crops in the United States. Pest Manag Sci 72: 1013-1022. DOI: 10.1002/ps.4082

DeAngelis KM, D’Haezeleele P, Clivian D, Fortney JL, Khudyakov J, Simmons B, Woo H, Arkin AP, Davenport KW, Goodwin L, Chen A, Ivanova N, Kyrpides NC, Movamortis K, Woyte T, Hazen TC. 2011. Complete genome sequence of “Enterobacter lignolyticus” SCF1. Stand Genomic Sci 5: 69-85. DOI: 10.4056/sigs.2104875.

Dick R, Quann J. 1995. Glyphosate-degrading isolates from environmental samples: occurrence and pathways of degradation. Appl Microbiol Biotechnol 43: 545-550. DOI: 10.1007/BF00218464

Duke SB, Powles SB. 2008. Glyphosate: A once-in-a-century herbicide. Pest Manag Sci 64: 319-325. DOI: 10.1002/ps.1518

Elovzeva ET, Shukhova TV, Sviridov AV, Zelenkova NF, Vinokurova NG, Baskunov BP, Leonitsevky AA. 2017. Organophosphonates utilization by soil strains of Ochrobactrum actinovarum and Achromobacter sp. Arch Microbiol 199: 665-675. DOI: 10.1007/s00425-017-1343-8

Fan J, Yang G, Zhao H, Shi G, Gong Y, Hou T, Tao K. 2012. Isolation, identification and characterization of a glyphosate-degrading bacterium, Bacillus cereus CB4, from soil. J Gen Appl Microbiol 58: 263-271. DOI: 10.2323/jgam.58.263

Firdous S, Iqbal S, Anwar S. 2017. Optimization and modeling of glyphosate biodegradation by a novel Comamonas sodomotetermis P2 through response surface methodology. Pedosphere 30: 618-627. DOI: 10.1016/S1002-0160(17)63081-3

Gill JPK, Sethi N, Mohan A. 2016. Analysis of the glyphosate herbicide in water, soil and food using derivatizing agents. Environ Chem Lett 15: 85-100. DOI: 10.1007/s11356-016-0585-z

Grandjean C, Piel S, Baures E. 2017. Ammonium methylphosphonic acid (AMPA) in natural waters: its sources, behavior and environmental fate. Water Res 117: 187-197. DOI: 10.1016/j.watres.2017.03.055

Guilherme S, Santos MA, Gaivao I, Pacheco M. 2014. DNA and chromosomal damage induced in fish (Anguilla anguilla L.) by ammonium methylphosphonic acid (AMPA) the major environmental breakdown product of glyphosate. Environ Sci Pollut Res 21: 8730-8739. DOI: 10.1007/s11356-014-2803-1

Hayes VEA, Ternag NG, McMullan G. 2000. Organophosphat metabolism by a moderately halophilic bacterial isolate. FEMS Microbiol Lett 186: 171-175. DOI: 10.1111/j.1574-6966.2000.00999.x

Herrmann KM, Weaver LM. 1999. The shikimate pathway. Annu Rev Plant Biol 50: 473-503. DOI: 10.1146/annurev.arplant.50.1.473

Humann JL, Wildung M, Cheng CH, Lee T, Stewart JE, Drew JC, Triplet EW, Main D, Schroeder BK. 2011. Complete genome of the onion pathogen Enterobacter cloacae ES47. Stand Genomic Sci 5: 279-286. DOI: 10.4056/sgs.2174950

Hyatt D, Chen GL, Locascio PF, Land ML, Lariar FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. DOI: 10.1186/1471-2105-11-19

Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. 2001. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J Mol Biol 305: 567-580. DOI: 10.1006/jmbi.2000.4315

Lager JC, El Karkouri K, Mishra KA, Robert C, Raoult D, Fourrier PE. 2013. Noncontiguous-finished genome sequence and description of Enterobacter massiliensis sp. nov. Stand Genomic Sci 7: 399-412. DOI: 10.4056/sgs.3996830

Lasslet D, Canback B. 2004. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 32: 11-16. DOI: 10.1093/nar/gkh152

Lau YY, Yin WF, Chan KJ. 2014. Enterobacter asburiae Strain L1: Complete Genome and Whole Genome Optical Mapping Analysis of a Quorum Sensing Bacterium. Sensors 14: 13913-13924. DOI: 10.3390/s140813913

Lerbs W, Stock M, Parthasarath B. 1990. Physiological aspects of glyphosate degradation in Alcaligenes sp. strain GL. Arch Microbiol 153: 146-150. DOI: 10.1007/BF00247812

Liu CM, McLean P, Sookdeo C, Cannon F. 1991. Degradation of the herbicide glyphosate by members of the family rhizobiaceae. Appl Environ Microbiol 55: 1799-1804. DOI: 10.1128/aem.55.7.1799-1804.1991

Lupi L, Miglioranza KS, Aparicio VC, Marino D, Bedmar F, Wunderlin DA. 2015. Occurrence of glyphosate and AMPA in an agricultural watershed from the southeastern region of Argentina. Sci Total Environ 536: 687-694. DOI: 10.1016/j.scitotenv.2015.07.090

Marchler-Bauer A, Panchenko AR, Shoemaker BA, Thiessen PA, Geer LY, Bryant SH. 2002. CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Res 30: 281-283. DOI: 10.1093/nar/30.1.281

O’Hara CM, Steigerwald AG, Hill BC, Farmer J, Fanning GR, Brenner DJ. 1990. Enterobacter hormaechei, a new species of the family

821
Enterobacteriaceae formerly known as enteric group 75. ASM J Clin Microbiol 9: 2046-2049. DOI: 10.1128/JCM.27.9.2046-2049.1989.

Omadjela O, Narahari A, Strumillo J, Mélida H, Mazur O, Bulone V, Zimmer J. 2013. BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis. Proc Natl Acad Sci USA 110: 17856-17861. DOI: 10.1073/pnas.1314063110.

Poehein A, Daniel R, Schink B, Simeonova DD. 2013. Life based on phosphite: a genome-guided analysis of Desulfitotignum phosphitoxidans. MC Genomics 14: 753. DOI: 10.1186/1471-2164-14-753.

Postle K. 2007. Ton B system, in vivo assays and characterization. Meth Enzymol 422: 245-269. DOI: 10.1016/S0076-6879(06)22012-3.

Ratha D, Amlinger L, Rath A, Lundgren M. 2015. The CRISPR-Cas immune system: Biology, mechanisms and applications. Biochimie 177: 119-128. DOI: 10.1016/j.biochi.2015.03.025.

Shin SH, Kim S, Kim JY, Lee S, Um Y, Oh MK, Kim YR, Lee J, Yang KS. 2012. Complete genome sequence of Enterobacter aerogenes KCTC 2190. J Bacteriol 194: 2373-2374. DOI: 10.1128 JB.00028-12.

Shushkova T, Ermakova I, Leontievsky A. 2010. Glyphosate bioavailability in soil. Biodegradation 21: 403-410. DOI: 10.1007/s10533-009-9310-y.

Singh BK, Walker A. 2006. Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30: 428-471. DOI: 10.1111/j.1574-6976.2006.0018.x.

Sonnhammer EL, Eddy SR, Durbin R. 2000. Pfam: a comprehensive database of protein domain families based on seed alignments. Proteins 28: 405-420. DOI: 10.1002/1097-0134(199707)28:3<405::AID-PROT10>3.0.CO;2-I.

Stephan R, Van Trappen S, Cleenwerck I, Vancanneyt M, De Vos P, Lehrer A. 2007. Enterobacter turicensis sp. nov. and Enterobacter helvetica sp. nov., isolated from fruit powder. Int J Syst Evol Microbiol 57: 820-826. DOI: 10.1099/ijs.0.64650-0.

Sviridov AV, Shushkova TV, Ermakova IT, Ivanova EV, Epiktetov DO, Leontievsy AA. 2015. Microbial degradation of glyphosate herbicides (Review). Appl Biochem Microbiol 51: 183-190. DOI: 10.7868/o0555109915020221.

Sviridov AV, Shushkova TV, Zelenkova NF, Vinokurova NG, Morgunov IG, Ermakova IT, Leontievsky AA. 2011. Distribution of glyphosate and methylphosphonate catabolism systems in soil bacteria Ochrobactrum antutropic and Achromobacter sp. Appl Microbiol Biotechnol 93: 787-796. DOI: 10.1007/s00253-011-3485-y.

Tatstov RL, Galperin MY, Natale DA, Koornin EV. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28: 33-36. DOI: 10.1093/nar/28.1.33.

Thiour-Mauprivel C, Martin-Laurent F, Calvayrac C, Barthelmébs L. 2019. Effects of herbicide on non-target microorganisms: Towards a new class of biomarkers? Sci Total Environ 684: 314-325. DOI: 10.1016/j.scitotenv.2019.05.230.

Wang L, Peng R, Tian Y, Han J, Zhao W, Wang, Liu M, Yao Q. 2014. Characterization of a class II 5-enopyruvylshikimate-3-phosphate synthase with high tolerance to glyphosate from Sinorhizobium fredii. World J Microbiol Biotechnol 30: 2967-2973. DOI: 10.1186/s11274-014-1724-y.

Wang S, Seiwert B, Kastner M, Mittner A, Schaffer A, Reemtsma T, Yang, Q, Nowak K, 2016. Biodegradation of glyphosate in water sediment microcosms-a stable isotope co-labeling approach. Water Res 99: 91-100. DOI: 10.1016/j.watres.2016.04.041.

Wright MH, Adelskov J, Greene Bacterial AC. 2017. DNA extraction using individual enzymes and phenol/chloroform separation. J Microbiol Biol EduC18: 18.2.48. DOI: 10.1128/jmbe.v18i2.1348.

Xu Y, Wang A, Tao F, Su F, Tang H, Ma C, Xu P. 2012. Genome Sequence of Enterobacter cloacae subsp. dissolvens SDM, an Efficient Biomass-Utilizing Producer of Platform Chemical 2,3-Butanediol. J Bacteriol 194: 897-898. DOI: 10.1128 JB.06495-11.

Zhan H, Feng Y, Fan X, Chen S. 2018. Recent advances in glyphosate biodegradation. Appl Microbiol Biotechnol 102: 5033-5043. DOI: 10.1007/s00253-018-9035-0.

Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. 2011. PHAST: a fast phage search tool. Nucleic Acids Res 39 (Web Server issue): W347-352. DOI: 10.1093/nar/gke485.