The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: tomographic BAO analysis of DR12 combined sample in Fourier space

Gong-Bo Zhao, Yuting Wang, Shun Saito, Dandan Wang, Ashley J. Ross, Florian Beutler, Jan Niklas Grieb, Chia-Hsun Chuang, Francisco-Shu Kitaura, Sergio Rodriguez-Torres, Will J. Percival, Joel R. Brownstein, Antonio J. Cuesta, Daniel J. Eisenstein, Héctor Gil-Marin, Jean-Paul Kneib, Robert C. Nichol, Matthew D. Olmstead, Francisco Prada, Graziano Rossi, Salvador Salazar-Albornoz, Lado Samushia, Ariel G. Sánchez, Daniel Thomas, Jeremy L. Tinker, Rita Tojeiro, David H. Weinberg and Fangzhou Zhu

Affiliations are listed at the end of the paper

Accepted 2016 December 6. Received 2016 December 6; in original form 2016 August 23

ABSTRACT

We perform a tomographic baryon acoustic oscillations (BAO) analysis using the monopole, quadrupole and hexadecapole of the redshift-space galaxy power spectrum measured from the pre-reconstructed combined galaxy sample of the completed Sloan Digital Sky Survey Baryon Oscillation Spectroscopic Survey (BOSS) Data Release12 covering the redshift range of $0.20 < z < 0.75$. By allowing for overlap between neighbouring redshift slices, we successfully obtained the isotropic and anisotropic BAO distance measurements within nine redshift slices to a precision of 1.5–3.4 per cent for D_V/r_d, 1.8–4.2 per cent for D_A/r_d and 3.7–7.5 per cent for $H r_d$, depending on effective redshifts. We provide our BAO measurement of D_A/r_d and $H r_d$ with the full covariance matrix, which can be used for cosmological implications. Our measurements are consistent with those presented in Alam et al., in which the BAO distances are measured at three effective redshifts. We constrain dark energy parameters using our measurements and find an improvement of the Figure-of-Merit of dark energy in general due to the temporal BAO information resolved. This paper is a part of a set that analyses the final galaxy clustering data set from BOSS.

Key words: galaxies: distances and redshifts – cosmological parameters – cosmology: observations – dark energy – distance scale – large-scale structure of Universe.

1 INTRODUCTION

One of key science drivers of large spectroscopic galaxy surveys is to unveil the nature of dark energy (DE), the unknown energy component with a negative pressure to drive the accelerating expansion of the Universe (Riess et al. 1998; Perlmutter et al. 1999). The equation-of-state (EoS) function $w(z)$, which is the ratio of pressure over energy density of DE and is a function of redshift z in general, is a proxy linking the nature of DE and its phenomenological features that can be probed by observations. For instance, a observational confirmation of $w = -1$ may suggest that DE is essentially vacuum energy, while a time-evolving w can be a sign of new physics, e.g. dynamical DE scenarios (Peebles & Ratra 1988; Ratra & Peebles 1988; Armendariz-Picon, Mukhanov & Steinhardt 2000; Caldwell 2002; Feng, Wang & Zhang 2005), or a breakdown of general relativity on cosmological scales (see Clifton et al. 2012 for a recent review of modified gravity theories). Therefore, reconstructing $w(z)$ directly from data is an efficient way for DE studies (Sahni & Starobinsky 2006; Zhao et al. 2012; Weinberg et al. 2013).

The function $w(z)$ of the DE EOS leaves imprints on the cosmic background expansion history, which can be probed by the effect

* E-mail: gbzhao@nao.cas.cn
of baryon acoustic oscillations (BAO) measured from galaxy surveys (Cole et al. 2005; Eisenstein et al. 2005), besides other probes including supernovae Type Ia (SN Ia; Riess et al. 1998; Perlmutter et al. 1999), cosmic microwave background (CMB; Planck Collaboration I 2016) and so forth. BAO is a characteristic 3D clustering pattern of galaxies at about 150 Mpc on the comoving scale, due to sound waves generated by the photon–baryon coupling in the early universe (Peebles & Yu 1970; Sunyaev & Zeldovich 1970; Eisenstein & Hu 1998). The BAO distance is traditionally measured using two-point correlation functions or power spectrum of galaxies. Recent studies find that higher order statistics of galaxies (Slepian et al. 2016) or two-point clustering of voids can also be used for BAO measurements (Kitaura et al. 2016a).1 Since the BAO scale is sensitive to cosmic geometry and it is largely immune to systematics (Ross et al. 2011), BAO is widely used as the ‘standard ruler’ to calibrate the expansion rate of the Universe.

Under assumptions that the BAO scale is the same in all directions with respect to the line of sight (los) of the observer, one can probe the isotropic, one-dimensional (1D) BAO scale \(D_A(z) \equiv [cz/(1 + z)^2D_A(z^2H^{-1}(z))]^{1/3} \), where \(D_A(z) \) and \(H(z) \) are the angular diameter distance and Hubble parameter at an effective redshift \(z \) of the galaxy sample, using the monopole of the correlation function, or power spectrum of galaxies in redshift space.

In fact, \(D_A(z) \) and \(H(z) \) can be separately measured when higher order multipole, e.g. the quadrupole and hexadecapole, are included in the analysis. This is due to the Alcock–Paczynski (AP) effect (Alcock & Paczynski 1979): if one uses a wrong cosmology to convert redshifts into distances for the clustering analysis, the scales along and cross the los will be dilated differently, which produces a measurable effect to break the degeneracy between \(D_A \) and \(H \) in the anisotropic, two-dimensional (2D) BAO analysis. The 2D BAO distances are more challenging to measure, but it is much more informative for DE studies because \(w(z) \) is closely related to the first derivative of \(H(z) \).

The 1D and 2D BAO signals have been detected by a number of large galaxy surveys including the Sloan Digital Sky Survey (SDSS; Eisenstein et al. 2005; Percival et al. 2010; Anderson et al. 2012, 2014; Alam et al. 2016; Beutler et al. 2016, 2017; Cuesta et al. 2016; Gil-Marín et al. 2016; Ross et al. 2017), the two-degree Field Galaxy Redshift Survey (Cole et al. 2005), WiggleZ (Blake et al. 2011; Parkinson et al. 2012), the six-degree Field Galaxy Survey (Beutler et al. 2011) and so on. The Baryon Oscillation Spectroscopic Survey (BOSS; Dawson et al. 2013), part of SDSS-III project (Eisenstein et al. 2011), has reached percent level BAO measurements at \(z_{\text{eff}} = 0.32 \) and \(z_{\text{eff}} = 0.57 \) (Anderson et al. 2014; Cuesta et al. 2016; Gil-Marín et al. 2016; Ross et al. 2017; Beutler et al. 2017) using the ‘low-redshift’ (LOWZ; 0.15 < \(z < 0.43 \)) and ‘constant stellar mass’ samples (CMASS; 0.43 < \(z < 0.7 \)) of Data Release (DR) 12 (Alam et al. 2015).2

It is true that using galaxies across wide redshift ranges can yield a precise BAO measurement at a single effective redshift, but this does not capture the tomographic information in redshift, which is required for the study of \(w(z) \). Subdividing the galaxy sample into a small number of independent redshift slices and perform the BAO analysis in each slice can in principle recover the temporal information to some extent (see Alam et al. 2016 and Chuang et al. 2016 for a three-bin and four-bin BAO analysis of the BOSS DR12 sample, respectively). However, as the slice number increases, galaxies in each slice decrease, and we are at a risk of ending up with a seriously biased measurement due to large systematic uncertainties.

One possible solution is to perform the BAO analysis in overlapping redshift slices. This on one hand guarantees the sufficiency of galaxy numbers in each subsample, on the other hand, it allows for a higher temporal resolution. In this work, we perform such a tomographic BAO analysis in Fourier space using the DR12 galaxy sample, and quantify the gain in DE studies.

This paper is structured as follows. In Section 2, we describe the BOSS DR12 galaxy catalogues used for our analysis, and in Section 3, we perform a Fisher matrix forecast on this sample to determine the redshift binning, and present the power spectrum measurements. We perform the BAO analysis in Section 4, and apply our measurement to DE studies in Section 5, before we conclude in Section 6.

2 THE BOSS DR12 COMBINED SAMPLE

The BOSS program covers near 10 000 deg\(^2\) of the sky using a 2.5-m-aperture Sloan Foundation Telescope (Gunn et al. 2006) at the Apache Point Observatory in New Mexico. The BOSS team has obtained spectra of more than 1.5 million galaxies brighter than \(i = 19.9 \) and approximately 170 000 new quasars with redshifts \(2.1 \leq z \leq 3.5 \) to a depth of \(g < 22 \) using the improved double-armed spectrographs in a wavelength range of 3600 Å < \(\lambda < 10 \ 000 \) Å. The filter, spectrograph and pipeline of BOSS are described in Fukugita et al. (1996), Bolton et al. (2012) and Smee et al. (2013).

The DR12 combined sample is a coherent combination of two distinct targets, LOWZ and CMASS. We refer the stellar-mass incompleteness of the LOWZ and CMASS samples to Leauthaud et al. (2016) and its impact on the clustering to Saito et al. (2016) and Rodríguez-Torres et al. (2016). The DR12 combined catalogue is created from the observational data using the pipeline described in Reid et al. (2016), in which the survey footprint, veto masks and survey systematics are taken into account to produce the data and random catalogues. The redshift range of this sample is 0.2 < \(z < 0.75 \), and it contains ~865 000 and ~330 000 galaxies in the North Galactic Cap (NGC) [~5900 deg\(^2\)] and South Galactic Cap (SGC) [~2500 deg\(^2\)], respectively. The wedge plot (Fig. 1) visualizes the DR12 sample.3 The redshift distribution of the galaxies in the NGC and SGC is shown in Fig. 2. We refer the readers to table 2 of Reid et al. (2016) for more details of the DR12 combined sample.

For each galaxy in the data catalogue, the following information is provided: the right ascension (RA), declination (Dec.), redshift \(z \) and a set of weights including an FKP weight (Feldman, Kaiser & Peacock 1994) \(w_{\text{FKP}} \), which is crucial to optimize the signal-to-noise ratio of power spectrum measurements, a systematic weight, \(w_{\text{sys}} \) to account for systematic effects from the contamination of stars and variations in seeing conditions, a redshift failure weight, \(w_{\text{rf}} \) to avoid using the galaxy without a robust redshift estimate, and a fibre collision weight, \(w_{\text{fc}} \) to correct for the clustering signal on small scales due to the fibre collision. With all the weights accounted for, each individual galaxy is counted as an effective number of \(w_T = w_{\text{FKP}}w_{\text{ci}}; w_L = w_{\text{sys}}(w_{\text{fc}} + w_{\text{rf}} - 1) \).

1 In this work, we focus on galaxies as cosmic tracers thus will only refer to galaxies when discussing BAO measurements.

2 The DR12 data set is publicly available at http://www.sdss.org/dr12/.

3 For the purpose of visualization, only 2 per cent randomly selected galaxies are included in Fig. 1.
Based on a Fisher matrix analysis, we find that allowing for more overlap

\[
\{\Omega_m, \Omega_b, \Omega_k, h, \sigma_8\} = [0.307 \, 115, \ 0.0480, \ 0, \ 0.6777, \ 0.8288],
\]

which is consistent with the results from the Planck collaboration (Planck Collaboration I 2016).\(^4\)

3 TOMOGRAPHIC BAO MEASUREMENTS

3.1 Preparations

To ensure a robust BAO distance measurement within each redshift slice while maximizing the tomographic information, we employ a Fisher matrix forecast following the method developed in Seo & Eisenstein (2007). Using the \(k\) modes up to \(0.3 \, h \, \text{Mpc}^{-1}\) for the BAO analysis without the reconstruction process (Eisenstein et al. 2007b), we require that the precision of the isotropic BAO distance measurement within each redshift bin is better than 3 per cent, while for the anisotropic BAO measurement, the precision on \(D_A\) and \(H\) within each bin is no worse than 4 per cent and 8 per cent, respectively. This is roughly the BAO sensitivity of the SDSS-II DR7 sample (Percival et al. 2010). We allow for the overlapping between neighbouring redshift bins to be 75 per cent maximal, which well balances the redshift resolution and the complementarity of the information between overlapping bins.\(^5\) This yields a binning scheme visualized in Fig. 2 and in Table 1. As shown, the entire sample is subdivided into nine bins, with the maximal overlapping to be 73 per cent. The BAO projection result in Table 1 satisfies the requirement mentioned above, i.e. the worst isotropic and anisotropic BAO distance measurement is predicted to be 2.4 per cent (\(D_A\)), 2.9 per cent (\(D_A\)) and 7 per cent (\(H\)), respectively. The predicted 68 and 95 per cent confidence level (CL) contours between \(D_A\) and \(H\) using galaxies in nine bins are shown in Fig. 3. The black solid curve illustrates the fiducial model.

3.2 The interpolation scheme

The first step for the power spectrum multipole measurement is to assign the galaxies and randoms to a regular Cartesian grid, and choose an interpolation scheme to obtain a smoothed overdensity field for the Fourier analysis in subsequent steps.

In this work, we embed the entire survey volume into a cubic box with \(L = 5000 \, h^{-1} \, \text{Mpc}\) a side,\(^6\) and the box is subdivided into \(N^3 = 1024^3\) cubic cells. To obtain the smoothed overdensity field, an interpolation scheme is needed for the mass assignment. It is well known that the aliasing problem is inevitable in Fourier analysis, but choosing a suitable interpolation scheme (with corrections after

\(^4\) This publication will be referred to as ‘Planck 2015’ in later texts.

\(^5\) Based on a Fisher matrix analysis, we find that allowing for more overlap between neighbouring bins does not further improve the FoM of DE, which means that the BAO information extracted from our binning scheme saturates. On the other hand, a high-level overlap among bins can yield a singular data covariance matrix, which is problematic for the likelihood analysis.

\(^6\) We have tested and found that a box with this size is sufficiently large to cover the entire survey volume.
Table 1. Statistics of the galaxies within nine overlapping redshift bins, and the corresponding Fisher forecast result for the BAO parameters.

Redshift bin index	Redshift range	Effective z	N_{SGC}	N_{SGC}	N_{inj}	σ_{D_A}/D_A	σ_{H}/H	σ_{D_v}/D_V
z bin 1	$0.20 < z < 0.39$	0.31	176 899	75 558	252 457	0.029	0.0705	0.024
z bin 2	$0.28 < z < 0.43$	0.36	194 754	81 539	276 293	0.028	0.0681	0.023
z bin 3	$0.32 < z < 0.47$	0.40	230 388	93 825	324 213	0.025	0.0616	0.021
z bin 4	$0.36 < z < 0.51$	0.44	294 749	115 029	409 778	0.023	0.0553	0.018
z bin 5	$0.40 < z < 0.55$	0.48	370 429	136 117	506 546	0.020	0.0502	0.017
z bin 6	$0.44 < z < 0.59$	0.52	423 716	154 486	578 202	0.019	0.0464	0.016
z bin 7	$0.48 < z < 0.63$	0.56	410 324	149 364	559 688	0.018	0.0441	0.015
z bin 8	$0.52 < z < 0.67$	0.59	331 067	121 145	452 212	0.018	0.0436	0.015
z bin 9	$0.56 < z < 0.75$	0.64	231 505	86 576	318 081	0.019	0.0418	0.014

Figure 3. The 95 per cent CL contour plots for $D_A(r_d^\text{fid}/r_d)$ and $H(r_d^\text{fid}/r_d)$ derived from a Fisher matrix forecast for DR12 galaxies in nine redshift slices. For contours from left to right, the effective redshifts of galaxies used increase from $z_{\text{eff}} = 0.31$ to $z_{\text{eff}} = 0.64$. The black solid curve shows the prediction of the fiducial model used in this analysis.

the Fourier transformation; see discussions later) can largely reduce
the aliasing to a negligible level at the scale for the BAO analysis.

Traditional interpolation schemes include the Nearest-Grid-Point (NGP), Cloud-in-Cell (CIC), Triangular-Shaped-Cloud (TSC) and so on. These correspond to the first-, second- and third-order B-spline interpolations. The higher order it is, the less level of aliasing survives after the correction (Jing 2005; Sefusatti et al. 2016).

Recently, Sefusatti et al. (2016) found that using the fourth-order B-spline, also called the Piecewise Cubic Spline (PCS) interpolation, can suppress the aliasing effect to a level below 0.1 per cent even at the Nyquist scale after the correction. In this work, we follow Sefusatti et al. (2016) and use the PCS interpolation to calculate the overdensity field on the grid, which is equivalent to convolving the underlying overdensity field with the following window function $W_s(r)$ in the configuration space,

$$W_s(r) = \begin{cases}
\frac{1}{6} (4 - 6s^2 + 3|s|^3), & 0 \leq |s| < 1 \\
\frac{1}{8} (2 - |s|^3), & 1 \leq |s| < 2 \\
0, & \text{otherwise},
\end{cases} \quad (3)$$

where s denotes the separation between grids (in unit of number of grids) in one dimension. This means that the overdensity in each cell is contributed by galaxies and randoms in its $N_{\text{PCS}} = 3^3$ neighbouring cells.\(^7\)

After the interpolation, we obtain an overdensity field $\Delta(r)$,

$$\Delta(r) = \frac{w_1(r)}{\sqrt{N}} \left[n_G(r) - \gamma n_R(r) \right], \quad (4)$$

where N is a normalization factor that can be computed using the random catalogue (Feldman et al. 1994),

$$N = \gamma \sum_{i=1}^{N_R} n_G(r_i) w_1(r_i)^2. \quad (5)$$

The summation here is over N_R samples in the random catalogue. The quantity w_1 is the total weight for the concerning galaxy given in equation (1), n_G and n_R are the number density at position r of the galaxy and random catalogues, respectively, γ is the ratio between the total sample numbers of the galaxy (N_G) and random (N_R) catalogues, i.e. $\gamma = N_G/N_R$ and in this work $\gamma \sim 0.02$.

3.3 The estimator for $P_\ell(k)$

To measure the power spectrum multipole, we need to perform Fourier transformations of the overdensity field $\Delta(r)$ defined in equation (4) (Yamamoto et al. 2006). Specifically, we need to calculate the following quantity,

$$F_\ell(k) = \int d^3r \Delta(r) (\hat{k} \cdot \hat{r}) e^{i k \cdot r} \quad (6)$$

for every k mode. This integral was recently found to be evaluable using Fast Fourier transformations (FFTs; Bianchi et al. 2015; Scoccimarro 2015) instead of the expensive direct summation. We

\(^7\) For a reference, $N_{\text{NGP}} = 1$; $N_{\text{CIC}} = 2^3$, $N_{\text{TSC}} = 3^3$.

MNRAS 466, 762–779 (2017)
use the CAPSS package\(^8\) which requires the FFTW library\(^9\) to perform the Fourier transformations to obtain \(F_0\), \(F_2\) and \(F_4\), which is the ingredient for the measurement of the monopole, quadrupole and hexadecapole moments of the galaxy power spectrum in redshift space, respectively.

Given \(F_i(k)\), the power spectrum moments can be calculated as\(^10\)

\[
\hat{P}_0(k) = \int \frac{d\Omega}{4\pi} [F_0(k) F_0^*(k)] - S
\]

(7)

\[
\hat{P}_2(k) = \frac{15}{2} \int \frac{d\Omega}{4\pi} [F_0(k) F_2^*(k)] - \frac{5}{2} \hat{P}_0(k) + S
\]

(8)

\[
\hat{P}_4(k) = \frac{315}{8} \int \frac{d\Omega}{4\pi} [F_0(k) F_4^*(k)] - \frac{9}{2} \hat{P}_2(k) - \frac{63}{8} \hat{P}_0(k) + S
\]

(9)

where \(S\) is the shot noise term, which can be calculated as

\[
S = \sum_{i=1}^{N_{\text{gal}}} \left[\frac{w^2_i}{w_i + w_i - 1} + (1 - \xi) \frac{w^2_i}{w_i} \right] + \gamma^2 \sum_{i=1}^{N_{\text{gal}}} \frac{w_i^2}{w_{\text{FKP}}}. \quad (10)
\]

The quantity \(\xi\) is the probability that a close pair of galaxies corrected by the fibre collision weight is a true pair. We set \(\xi\) to be 0.5 following the study in Guo, Zehavi & Zheng (2012). Note that for brevity, we have dropped the dependence of all the weights on location \(r_i\) for the \(i\)th galaxy or random sample in equation (10).

As mentioned earlier, the aliasing problem exists for all FFT-related manipulations, and it must be corrected for, especially close to the Nyquist scale. Here, we follow Jing (2005) to correct for the aliasing effect analytically, i.e. we divide each \(k\) mode by the following correction factor for the PCS interpolation,

\[
C(k) = \prod_{i=1}^{3} \left[1 - \frac{4}{3} \sin^2 \left(\frac{\tau k_i}{2k_N} \right) + \frac{2}{3} \sin^4 \left(\frac{\tau k_i}{2k_N} \right) - \frac{4}{315} \sin^6 \left(\frac{\tau k_i}{2k_N} \right) \right],
\]

(11)

where \(i\) runs over three dimensions, and \(k_N\) is the Nyquist scale, \(k_N = \pi N_g / L\) which is \(\sim 0.64 h\ Mpc^{-1}\) in our case. After the anti-aliasing correction, the level of aliasing is negligible (<0.1 per cent) on scales of interest \((k < 0.3 h\ Mpc^{-1})\) of our analysis.

3.4 The result of the \(P(k)\) measurement

The measurement of \(P_0(k)\), \(P_2(k)\) and \(P_4(k)\) for the galaxies in nine redshift slices in the NGC and SGC are shown as data points in Figs 4 and 5, respectively. Our measurement is in 30 \(k\) bins linearly spaced between \(k = 0\) and \(k = 0.3 h\ Mpc^{-1}\). To quantify the uncertainty, we perform the same measurement on the MD-Patch mocks, and compute the mean (shown as solid curves) and standard deviation (shown as error bars and shaded error bands) of the \(P_i(k)\) measured in each \(k\) bin of the 2048 mocks. We find that although the measurements in the NGC and SGC are in general consistent with each other, an offset exists. This may be due to slightly different selections used for the observations in two hemispheres. For more details of the discussion on the NGC–SGC discrepancy, we refer the readers to the companion papers of Alam et al. (2016), Beutler et al. (2017) and Grieb et al. (2016).

3.5 The data covariance matrix

The covariance between the \(i\)th \(k\) bin of the \(\ell\)th order multipole in the \(m\)th redshift bin, and the \(j\)th \(k\) bin of the \(\ell\)th order multipole in the \(n\)th redshift bin can be calculated as follows,

\[
C_{ij,mn} = \frac{1}{N_{\text{mock}} - 1} \sum_{q=1}^{N_{\text{mock}}} \left[P_i^q(k, z_m) - \bar{P}_i(k, z_m) \right] \times \left[P_j^q(k, z_n) - \bar{P}_j(k, z_n) \right], \quad (12)
\]

where the overbars denote the average value, i.e.

\[
\bar{P}_i(k, z_m) = \frac{1}{N_{\text{mock}}} \sum_{q=1}^{N_{\text{mock}}} P_i^q(k, z_m),
\]

(13)

Here, \(N_{\text{mock}} = 2048\) is the number of mocks used.

Note that the estimated covariance matrix using mocks needs to be corrected for a bias using the Hartlap factor (Hartlap, Simon & Schneider 2007),

\[
\tilde{C}_{ij} = f_{\text{HI}} C_{ij}^{-1}; \quad f_{\text{HI}} = \frac{N_{\text{mock}} - N_0 - 2}{N_{\text{mock}} - 1},
\]

(14)

where \(N_0\) is the number of \(k\) bins. The correction is unbiased if the error distribution of the data is Gaussian, which is only true when \(N_{\text{mock}} \gg N_0\) so that \(f_{\text{HI}}\) is close to 1. For covariance between \(k\) bins within the same redshift slice, even if \(P_0\), \(P_2\) and \(P_4\) are all included, \(N_0 = 90\) and \(f_{\text{HI}} = 0.956\). For the covariance between \(k\) bins in two different redshift slices, \(f_{\text{HI}}\) reduces to 0.912, which is also sufficiently close to 1.\(^11\)

Figs 6 and 7 show the correlation matrix (the normalized covariance matrix so that all the diagonal elements are 1) for \(P_0\), \(P_2\) and \(P_4\) within the same redshift slice in the NGC and SGC, respectively, and Fig. 8 presents the full correlation matrix among all the redshift slices. The structure of these matrices is as follows:

(i) multipoles with the same order positively correlate in general;
(ii) multipoles with different orders correlate more on the same scales;
(iii) multipoles in the neighbouring redshift slices correlate, and the correlation generally decreases as the separation in redshift decreases;
(iv) multipoles in non-overlapping redshift slices do not correlate at all.

All these observations agree with their expected behaviour: the observables correlate if they are derived using shared galaxies.

4 THE BAO ANALYSIS

In this section, we shall measure the isotropic and anisotropic BAO signals from the \(P(k)\) multipoles and the data covariance matrix. To

\(^8\) Cosmological Analysis Package for Spectroscopic Surveys (CAPSS) is a code package developed by Gong-Bo Zhao. CAPSS is written in fortran 90, and can be used for the measurement of galaxy power spectrum and correlation function multipoles. CAPSS is used for all the BAO analysis in this work.

\(^9\) Publicly available at http://www.fftw.org/.

\(^10\) The formulae presented here are a rearrangement of the original ones in Bianchi et al. (2015) to improve efficiency and to save memory by minimizing large matrix operations.

\(^11\) Using 30 \(k\) bins for each multipole measurement is a balance between the \(k\)-resolution for the BAO, and the requirement that \(f_{\text{HI}} \simeq 1\). This \(k\)-binning choice is also adopted by Alam et al. (2016) and Beutler et al. (2017).
begin with, we describe the theoretical models, i.e. the BAO templates, for the analysis, followed by details of the fitting procedure and results.

4.1 The template for the isotropic BAO analysis

The isotropic BAO position can be parametrized with respect to a fiducial cosmological model using the scale dilation parameter \(\alpha \),

\[
\alpha = \frac{D_{\Lambda}(z) r_{d,\text{fid}}}{D_{\Lambda}(z) r_d},
\]

where the volume distance \(D_{\Lambda}(z) \) is defined in terms of the angular diameter distance \(D_A(z) \) and the Hubble parameter \(H(z) \), and \(r_d \) is the comoving sound horizon at the drag epoch. Quantities with the super or subscript ‘fid’ are for the fiducial model parametrized by equation (2). The template for the isotropic BAO is (Eisenstein, Seo & White 2007a; Beutler et al. 2017),

\[
P_g(k) = P_{nw}(k) \left[1 + O(k) e^{-k^2 \Sigma_{NL}^2/2} \right],
\]

\[
P_{nw}(k) = B^2 P_{nw,\text{lin}}(k) F(k, \Sigma_s)
\]

\[
O(k) = \frac{P_{nw}(k)}{P_{nw,\text{lin}}(k)} - 1, \quad F(k) = \frac{1}{(1 + k^2 \Sigma_s^2/2)}
\]

where \(P_{nw}(k) \) is the linear power spectrum calculated using \texttt{CAMB} (Lewis, Challinor & Lasenby 2000),\(^{12} P_{nw,\text{lin}} \) is the linear power spectrum with the BAO feature removed (Eisenstein & Hu 1998), \(F(k, \Sigma_s) \) is the velocity damping term to account for the small-scale Fingers-of-God effect, \(B \) is an overall constant for the effect of galaxy bias and redshift space distortions (RSD), \(\Sigma_{NL} \) quantifies the non-linear damping scale of the oscillations. We fix \(\Sigma_{NL} \) to be 3.3 \(h^{-1} \) Mpc, which is motivated by numeric simulations (Eisenstein et al. 2007a; Seo et al. 2016). The theoretical model for the monopole is

\[
P_0(k) = \left(\frac{r_{d,\text{fid}}}{r_s} \right)^3 \frac{1}{\alpha^3} P_g(k') + \frac{\alpha_1}{k^2} + \frac{\alpha_2}{k} + \alpha_3 + \alpha_4 k + \alpha_5 k,
\]

\[(19)\]

where \(k' = k/\alpha \). The polynomials are included here to account for systematic effects (Anderson et al. 2014; Alam et al. 2016). Once the parameters \(\alpha, B, \Sigma_s, \alpha_0 \) are known, one can use equation (19) to obtain a theoretical prediction for the monopole for the fitting.

\(^{12}\) Available at \url{http://camb.info}.

Figure 4. The power spectrum monopole (black), quadrupole (red) and hexadecapole (blue) measurements from the galaxy catalogue (data points) and from the MD-Patchy mock catalogue (shaded region) for the NGC. The solid curves are the average of all the mocks, and the error bars and error bands show the standard deviation at each \(k \) bin.
Figure 5. Same as Fig. 4 but for the SGC.

Figure 6. The correlation matrix of $P_\ell(k)$ for the galaxies in the NGC.
4.2 The template for the anisotropic BAO analysis

The BAO feature can also be measured in both the transverse and radial directions, parametrized by α_\perp and $\alpha_{||}$, respectively,

$$\alpha_\perp = \frac{D_A(z) r_{\text{fid}}} {D_A(z) r_{\text{matter}}}, \quad \alpha_{||} = \frac{H(z) r_{\text{fid}}} {H(z) r_{\text{matter}}}.$$ \hfill (20)

The template for the anisotropic BAO is slightly more complicated than the isotropic case due to several los-dependent effects. The template is (Eisenstein et al. 2007a; Beutler et al. 2017)

$$P_g(k, \mu) = P_{nw}(k, \mu) \left\{ 1 + O(k r_{\text{fid}}^2 \mu^2 \Sigma_1^2 / (1-\mu^2) \Sigma_2^2) \right\},$$ \hfill (21)

where μ is the cosine value of the angle between the galaxy pair separation and the los, and

$$P_{nw}(k, \mu) = B^2 (1 + \beta \mu^2)^2 P_{nw, \text{lin}}(k) F(k, \mu)$$ \hfill (22)

and

$$F(k, \mu) = \frac{1}{(1 + k^2 \mu^2 \Sigma_1^2 / 2)}$$ \hfill (23)

$$P_\ell(k) = \left(\frac{r_{\text{fid}}}{r_{\text{matter}}} \right)^3 \frac{2 \ell + 1}{2 \alpha_{||}^2} \int_{-1}^{1} d\mu P_g(k', \mu') \mathcal{L}_\ell(\mu)$$

$$+ a_1 k^3 + a_2 \frac{k^2}{k^2} + a_3 k + a_4 + a_5$$ \hfill (24)

where

$$k' = \frac{k (1 + \epsilon)}{\mu} \left\{ 1 + \mu^2 \left[(1 + \epsilon)^{-6} - 1 \right] \right\}^{1/2}$$

$$\mu' = \frac{\mu}{(1 + \epsilon)} \left\{ 1 + \mu^2 \left[(1 + \epsilon)^{-6} - 1 \right] \right\}^{-1/2}$$ \hfill (25)
The normalized configuration space window function multipole $Q_\ell(s)$ calculated using pair counting of the random catalogues. The solid and dashed curves are for the NGC and the SGC, respectively.

\[Q_\ell(s) \propto \int \frac{d\mu}{2\pi} RR(s, \mu) L_\ell(\mu) \simeq \sum_i RR(s, \mu_i) L_\ell(\mu_i), \]

where \(RR \) is the pair counts of randoms at separation \(s \) with angle \(\mu \), and \(L_\ell \) is the \(\ell \)th order Legendre polynomial. The resultant Q_ℓ’s are shown in Fig. 9. As shown, Q_ℓ vanishes on scales $\gtrsim 3000 \, h^{-1}$ Mpc, and this scale is larger in the NGC than in the SCG due to large volume in the NGC. The higher multipoles contribute less in general, which guarantees a convergence result by keeping the first few Q_ℓ’s.

Given the Q_ℓ’s, we compute the corrected galaxy correlation function multipoles as follows (Wilson et al. 2015; Beutler 2017).

4.3 The survey window function

The theoretical model predictions derived using templates equations (19) or (24) cannot be directly compared to $P_l(k)$ measurements yet since the theoretical templates do not take into account the fact that the survey volume is irregular, and has a finite size. Ignoring these facts can overestimate the power on large scales, which may yield a biased estimate on the BAO signal.

These effects can be accounted for by convolving the theoretical model prediction with the survey window function. The survey window function is generally anisotropic due to the irregular geometry of the survey volume, thus the window function multipoles need to be evaluated even for the isotropic BAO analysis.

Calculating the window function multipoles and performing the 3D convolution with the theoretical model prediction can be technically challenging and costly. Recently, Wilson et al. (2015) developed a new method for the window function evaluation and convolution. This method calculates the window function multipoles in configuration space based on a pair counting using the random catalogue, correct for the windowing effect in real space, and then transform the result back to Fourier space using 1D Hankel transformations. This is a very efficient and accurate method, thus we follow this approach in this analysis.

We first estimate the window function multipoles from the pair counts in configuration space using a parallelized tree code in the CAPSS package,

\[Q_\ell(s) \propto \int \frac{d\mu}{2\pi} RR(s, \mu) L_\ell(\mu) \simeq \sum_i RR(s, \mu_i) L_\ell(\mu_i), \]

where \(RR \) is the pair counts of randoms at separation \(s \) with angle \(\mu \), and \(L_\ell \) is the \(\ell \)th order Legendre polynomial. The resultant Q_ℓ’s are shown in Fig. 9. As shown, Q_ℓ vanishes on scales $\gtrsim 3000 \, h^{-1}$ Mpc, and this scale is larger in the NGC than in the SCG due to large volume in the NGC. The higher multipoles contribute less in general, which guarantees a convergence result by keeping the first few Q_ℓ’s.

Given the Q_ℓ’s, we compute the corrected galaxy correlation function multipoles as follows (Wilson et al. 2015; Beutler 2017).
We constrain the BAO parameters for each redshift slices using a modified version of \texttt{COSMOMC} (Lewis & Bridle 2002), which is a Markov Chain Monte Carlo (MCMC) engine. We sample the parameter space for p, which is a collection of BAO parameters explained in Sections 4.1 and 4.2, by minimizing the following χ^2,

$$\chi^2(p) = \sum_{i,j} \left[P^\text{conv}_i(k_j, p) - P_i(k_j) \right] F_{ij} \left[P^\text{conv}_j(k_i, p) - P_i(k_j) \right],$$

where F_{ij} is the inverse of the data covariance matrix. Note that when using both the NGC and SGC data for the constraint, we use two separate B parameters for the NGC and SGC to account for the offset discussed earlier. We analytically marginalize over the coefficients of polynomials in each MCMC step, i.e. we calculate the optimal values of the coefficients given a set of parameters to minimize the χ^2,

$$\chi^2 = (D + X)^T F(D + X),$$

where the residue vector D is defined as

$$D(k) \equiv P^\text{data}(k) - P^\text{tho}(k)$$

and the polynomial vector X is,

$$X \equiv A \cdot K,$$

where

$$K \equiv \begin{pmatrix} 1 & 1/k & 1/k^2 & \ldots & 1 & k \end{pmatrix}.$$

Given D and F at each MCMC step, our aim is to analytically determine the coefficients vector A to minimize χ^2. To do this, we expand equation (29), and setting $\partial \chi^2/\partial X = 0$ yields,

$$A^T = (K F K^T)^{-1} K F K.$$

This procedure can avoid fitting these weakly constrained nuisance parameters, making the MCMC chains much easier to converge. After the MCMC chains converge, we perform statistics on the chain elements to obtain the posterior distribution of each parameter, and the correlation among parameters. Note that the data covariance matrix estimated from the finite mocks inevitably has errors, which propagate into errors of the parameters. To correct for this, we follow Percival et al. (2014) and rescale the variance of each parameter by

$$M = \sqrt{\frac{1 + B(N_p - N_b)}{1 + A + B(N_p + 1)},}$$

where N_p and N_b are the number of parameters and number of k bins, respectively, and

$$A = \frac{2}{(N_{\text{mock}} - N_b - 1)(N_{\text{mock}} - N_b - 4)},$$

$$B = \frac{N_{\text{mock}} - N_b - 2}{(N_{\text{mock}} - N_b - 1)(N_{\text{mock}} - N_b - 5)}.$$

4.5 Mock tests

We first validate our pipeline by performing the BAO analysis on the MD-Patchy mocks. We fit the isotropic and anisotropic BAO...
Table 2. The constraint on the isotropic BAO parameters α and D_V, from the mocks (left) and the galaxy catalogues (right). For quantities with double error bars, the first and second column, respectively, shows the statistical and systematical error budget.

z bins	$\Delta \alpha^{\text{MC}}$	α	$\Delta \alpha$	D_V	χ^2/dof
z_1	0.0040	0.9925	0.0346		
		0.9765	0.0190	0.0085	
		1208.36	23.51	10.30	43/51
z_2	0.0039	0.9960	0.0308		
		0.9822	0.0332	0.0056	
		1388.36	46.93	7.790	59/51
z_3	0.0039	0.9956	0.0283		
		1.0088	0.0205	0.0058	
		1560.06	31.70	9.120	67/51
z_4	0.0038	0.9955	0.0245		
		0.9992	0.0149	0.0059	
		1679.88	25.05	9.850	69/51
z_5	0.0037	0.9945	0.0231		
		1.0102	0.0149	0.0066	
		1820.44	26.85	12.04	69/51
z_6	0.0036	0.9979	0.0221		
		1.0003	0.0204	0.0041	
		1913.54	39.03	7.930	50/51
z_7	0.0035	0.9994	0.0206		
		0.9923	0.0216	0.0035	
		2001.91	43.58	7.050	56/51
z_8	0.0034	0.9958	0.0209		
		0.9914	0.0175	0.0054	
		2100.43	37.08	11.29	51/51
z_9	0.0032	0.9926	0.0229		
		0.9852	0.0171	0.0081	
		2207.51	38.32	17.80	50/51

Figure 11. The 1D posterior distribution of the isotropic α derived from the observations (black solid) and mock catalogues (red dashed), respectively. The blue dash–dotted lines show $\alpha = 1$ for a reference.

parameters to the average of 2048 mocks. The isotropic BAO test is shown in Table 2 and Fig. 11 (red dashed curves for 1D posterior distribution of α). As shown in the left part of Table 2, the mean value of α’s are consistent with 1, which is the input value of all the mocks, within 0.3σ in the worst case (for redshift bin z_8). The shift from 1 could be due to non-linearities such as the mode-coupling effect on quasi-non-linear scales (Padmanabhan & White 2009), which is not included in our fitting templates, but can be approximately estimated analytically (Seo et al. 2008; Padmanabhan & White 2009). The expected shift in α in nine redshift bins are shown in the $\Delta \alpha^{\text{MC}}$ column in Table 2, which is 0.17σ in the worst case (for redshift bin z_7). To account for this systematic effect conservatively, we include a systematic error budget on α by adding $\Delta \alpha^{\text{MC}}$ and the shift of the mean α from 1 in quadrature, for the BAO measurements using the galaxy sample, which will be presented later.

The mock test results for anisotropic BAO are shown in Table 3 and in Fig. 12. As shown, the hexadecapole improves the constraint in all redshift bins, i.e.

(i) it shrinks the statistical error budget by 9–15 per cent for $\alpha_{||}$, and 8–11 per cent for α_{\perp};

(ii) it generally makes the mean value of both $\alpha_{||}$ and α_{\perp} more consistent with unity;

(iii) it reduces the degeneracy between $\alpha_{||}$ and α_{\perp} by 18–32 per cent.

This means that the hexadecapole from DR12 sample is indeed informative for BAO studies. It is true that given the level of uncertainty of $P_{t}(k)$, the BAO feature is barely visible. However, it can improve the global fitting by providing constraints on the amplitude parameters B and the RSD parameter β, and thus reduce the degeneracy between $\alpha_{||}$ and α_{\perp}, and improve their constraints indirectly. Given the importance of the hexadecapole, we shall include it in all the analysis in this work unless otherwise mentioned.

We quantify the systematic error budget similarly to the isotropic BAO case, i.e. the systematic error is estimated using the quadrature addition between the bias caused by the mode-coupling effect, and the shift from $\alpha_{||}$ and α_{\perp} from unity. The mode-coupling bias is taken to be $\Delta \alpha^{\text{MC}} = 0.001$ and $\Delta \alpha_{\perp}^{\text{MC}} = 0.009$ (Ross et al. 2017). This yields a 0.15–0.76 per cent systematic error on $\alpha_{||}$, and 0.09–0.1 per cent on α_{\perp}.

In summary, we validate our pipeline using mock tests, namely, the bias introduced by the pipeline is small compared to the statistical error in all cases, and the bias is accounted for by the systematic error budget.

4.6 BAO measurements from DR12 sample

In this section, we shall apply our BAO analysis pipeline on the DR12 sample, and present the main results of this paper.

4.6.1 Isotropic BAO measurements

The isotropic BAO fitting result is shown in the right part of Table 2 and in Figs 11 and 13 (black solid). Fig. 13 displays the best-fitting monopole and data points, divided by the smoothed power spectrum. As shown, the BAO signal is well extracted in all the redshift slices. From Table 2 and Fig. 11, which shows the 1D posterior distribution of α, in comparison to those measured from the mocks, we see that the isotropic BAO distance is determined at a precision of 1.5 per cent to 3.4 per cent, depending on the effective redshifts. We also notice that α in three redshift slices deviate from 1 at $\gtrsim 1\sigma$ level. This may suggest that the fiducial cosmology, which is a cold dark matter (ΛCDM) model with parameters listed in equation (2), might be in tension with the DR12 galaxy sample. We shall explore this more in a companion paper (Zhao et al. in preparation).

15 We fit the mean of 2048 mocks in the same way as we fit the observational data.
Table 3. The constraint on the anisotropic BAO signal, \(\alpha_\parallel \) and \(\alpha_\perp \), and their correlation coefficient, \(r_\parallel \perp \).

\(z \) bins	Mock catalogue \((P_0 + P_2)\)	\(\alpha_\parallel \)	\(\alpha_\perp \)	\(r_\parallel \perp \)	Mock catalogue \((P_0 + P_2 + P_4)\)	\(\alpha_\parallel \)	\(\alpha_\perp \)	\(r_\parallel \perp \)
\(z_1 \)	0.9841 ± 0.0855	0.9928 ± 0.0768	−0.44	0.9970 ± 0.0416	−0.30			
\(z_2 \)	0.9985 ± 0.0861	0.9990 ± 0.0449	−0.49	0.9952 ± 0.0405	−0.35			
\(z_3 \)	1.0008 ± 0.0796	1.0024 ± 0.0410	−0.49	1.0072 ± 0.0705	0.9991 ± 0.0370			
\(z_4 \)	0.9942 ± 0.0735	1.0010 ± 0.0344	−0.49	1.0047 ± 0.0641	0.9976 ± 0.0317			
\(z_5 \)	0.9948 ± 0.0702	1.0001 ± 0.0324	−0.50	1.0020 ± 0.0598	0.9977 ± 0.0295			
\(z_6 \)	0.9972 ± 0.0683	1.0021 ± 0.0303	−0.51	1.0069 ± 0.0581	0.9996 ± 0.0269			
\(z_7 \)	1.0034 ± 0.0628	1.0008 ± 0.0296	−0.50	1.0075 ± 0.0548	0.9996 ± 0.0274			
\(z_8 \)	0.9971 ± 0.0659	0.9990 ± 0.0329	−0.55	1.0049 ± 0.0582	0.9962 ± 0.0296			
\(z_9 \)	0.9913 ± 0.0654	0.9994 ± 0.0354	−0.51	0.9989 ± 0.0598	0.9965 ± 0.0324			

Figure 12. The 68 and 95 per cent CL contour plots for \(\alpha_\parallel \) and \(\alpha_\perp \) using \(P(k) \) multipoles (black unfilled contours: \(P_0 + P_2 \); blue filled contours: \(P_0 + P_2 + P_4 \)) measured from the MD-PATCHY mock catalogue in nine redshift slices. The unfilled black and filled blue contours are results using galaxies in the NGC and all galaxies in the catalogue, respectively. The white cross in each panel illustrates the fiducial model \((\alpha_\parallel = \alpha_\perp = 1)\).

4.6.2 Anisotropic BAO measurements

The anisotropic BAO measurements are presented in Table 4 and Figs 16–19. Table 4 shows the constraint on \(\alpha_\parallel \) and \(\alpha_\perp \), \(D_{\Lambda}/r_d \) and \(H r_d \) at nine effective redshifts with the correlation coefficients and the reduced \(\chi^2 \) to quantify the goodness of fit. We can see that the anisotropic BAO distances in terms of \(D_{\Lambda}/r_d \) and \(H r_d \) are measured to a precision of 1.8–4.2 per cent and 3.7–7.5 per cent, respectively, depending on the effective redshifts. The reduced \(\chi^2 \) is sufficiently close to unity in all cases, which means that the fitting result is as expected. We also notice that the \(\alpha \)'s show deviation from 1 at \(\gtrsim 1\sigma \) level, which is consistent with the result of the isotropic BAO measurement.

Fig. 14 shows the contour plots between \(\alpha_\parallel \) and \(\alpha_\perp \) using galaxies in the NGC (unfilled black) and NGC+SGC (filled blue). These results show that the BAO distances measured from the NGC and SGC are in general consistent with each other, and complementary. In the 2D plane, we see the deviation from the fiducial model (shown as white crosses) at \(\gtrsim 1\sigma \) level only in the fourth redshift slice.

Fig. 15 shows the contour plots of \(D_{\Lambda}/r_d \) and \(H r_d \), together with the prediction of the fiducial model. Comparing with Fig. 3, we find that the degeneracy between \(D_{\Lambda}/r_d \) and \(H r_d \) are consistent with the forecast, while the uncertainties are generally larger, especially for the first and last two bins. This is expected as it is well known that the Fisher forecast that assumes the Gaussian distribution of parameters and ignores the systematic effects in the catalogue, can underestimate the errors. Thus, we only take the forecast result as a rough guidance for the analysis.
Figure 13. An overplot of the measured $P(k)$ monopole using the galaxies in the NGC (data with error bars) and the best-fitting model (red solid), rescaled by the best-fitting model without the BAO feature.

Table 4. The mean value with 68 per cent statistical error (first error bar) and systematic error (second error bar) of the anisotropic BAO signal, α_\parallel, α_\perp, H_{rd} and D_A/r_d, the corresponding correlation coefficient, and the reduced χ^2 to quantify the goodness of fit.

z bins	α_\parallel	α_\perp	r_{\perp}	$\left(\frac{H}{\text{km s}^{-1} \text{Mpc}^{-1}}\right)$	(H/27)	(H/30)	χ^2/dof
z_1	1.0214 ± 0.0522 ± 0.0073	0.9592 ± 0.0402 ± 0.0095	-0.43	78.30 ± 4.07 ± 0.57	931.420 ± 39.42 ± 8.840	150/144	
z_2	1.0687 ± 0.0694 ± 0.0047	0.9751 ± 0.0322 ± 0.0102	-0.23	77.20 ± 5.30 ± 0.36	1047.04 ± 33.65 ± 10.68	156/144	
z_3	1.0583 ± 0.0539 ± 0.0073	0.9878 ± 0.0280 ± 0.0090	-0.35	79.72 ± 4.27 ± 0.58	1131.34 ± 34.06 ± 10.23	180/144	
z_4	1.0751 ± 0.0396 ± 0.0048	0.9785 ± 0.0172 ± 0.0093	-0.30	80.29 ± 2.96 ± 0.39	1188.78 ± 30.66 ± 11.07	184/144	
z_5	1.0432 ± 0.0389 ± 0.0022	0.9985 ± 0.0189 ± 0.0093	-0.25	84.69 ± 3.21 ± 0.19	1271.43 ± 24.03 ± 11.81	173/144	
z_6	0.9865 ± 0.0743 ± 0.0070	1.0093 ± 0.0202 ± 0.0090	-0.37	91.97 ± 6.85 ± 0.64	1336.53 ± 26.72 ± 12.04	149/144	
z_7	0.9526 ± 0.0710 ± 0.0076	1.0116 ± 0.0205 ± 0.0090	-0.26	97.30 ± 7.16 ± 0.74	1385.47 ± 28.04 ± 12.48	165/144	
z_8	0.9735 ± 0.0528 ± 0.0050	1.0085 ± 0.0217 ± 0.0098	-0.35	97.07 ± 5.24 ± 0.49	1423.43 ± 30.66 ± 13.91	144/144	
z_9	0.9931 ± 0.0474 ± 0.0015	0.9932 ± 0.0378 ± 0.0097	-0.56	97.70 ± 4.58 ± 0.15	1448.81 ± 55.12 ± 13.99	138/144	

Fig. 16 visualizes the 2D BAO ring in the third redshift slice. The quantity shown in the colours is the 2D power spectrum, which is assembled from our measured P_0, P_2 and P_4 with the Legendre polynomial, i.e.

$$P(k, \mu) = \sum_{\ell=0,2,4} P_\ell(k) L_\ell(\mu).$$

To visualize the BAO ring, we divide $P(k, \mu)$ by the smoothed power spectrum $P_{\text{raw}}(k, \mu)$.

Fig. 17 shows the constraints on the α’s as a function of redshift and in Fig. 18 we compare our measurement to the companion paper performing the same tomographic BAO analysis in configuration space (Wang et al. 2016). The results are in general consistent with each other within the 68 per cent CL bound.

The companion paper Salazar-Albornoz et al. (2016) performs a similar tomographic BAO analysis, but using different observables and pipeline. Salazar-Albornoz et al. (2016) measured the projected 2D angular correlation functions instead in a larger number of redshift slices, and obtained both the BAO and RSD parameters. This 16 We remove the hexadecapole contribution for this comparison as Wang et al. (2016) uses the monopole and quadrupole of the correlation function. 17 Although the correlation function and power spectrum have the same information of BAO in the ideal case (i.e. a survey with an infinite volume without shot noise), a difference is expected for a realistic galaxy survey.
Tomographic BAO analysis in Fourier space

Figure 14. The 68 and 95 per cent CL contour plots for α_\parallel and α_\perp using $P(k)$ multipoles measured from the DR12 galaxy sample in nine redshift slices. The unfilled black and filled blue contours are results using galaxies in the NGC and all galaxies in the catalogue, respectively. The white cross in each panel illustrates the fiducial model ($\alpha_\parallel = \alpha_\perp = 1$).

Figure 15. Shaded contours: the 95 per cent CL contour plots for $D_A (r_{\text{fid}} / r_d)$ and $H (r_{\text{fid}} / r_d)$ derived from DR12 galaxies in nine redshift slices; black unfilled contours: the Fisher matrix forecast. For contours from left to right, the effective redshifts of galaxies used increase from $z_{\text{eff}} = 0.31$ to $z_{\text{eff}} = 0.64$. The black solid curve shows the prediction of the fiducial model used in this analysis.

method avoids the necessity of choosing a fiducial cosmological model to convert redshifts to distances, which can reduce theoretical systematics in principle, but may be subject to the issue of information loss due to the projection effect, unless a large number of tomographic bins are used (Asorey et al. 2012).

Companion papers Alam et al. (2016), Beutler et al. (2017), Ross et al. (2017), Grieb et al. (2016) and Sanchez et al. (2017b) perform the BAO measurements using the same galaxy catalogue but in three redshift slices of $0.2 < z < 0.5, 0.4 < z < 0.6$ and $0.5 < z < 0.75$. We compare our result to the ‘DR12 consensus’ result presented in Alam et al. (2016) since it is coherently compiled from a range of BAO measurements mentioned above, thus we expect it to be least affected by systematics.

An overplot of the DR12 consensus measurement and ours is shown in Fig. 19, with the Planck 2015 measurement (mean and 68, 95 per cent CL errors) shown in blue bands, where $D_m \equiv D_A (1 + z)$. A direct one-to-one comparison is impossible simply because our measurements are performed at six additional effective redshifts. The only way for the comparison is to downgrade the redshift resolution of our measurement into three effective redshifts. We follow the procedure presented in Sanchez et al. (2017a) for the data compression, and find an agreement within 68 per cent CL.
Figure 16. The 68 and 95 per cent CL contour plots for $\alpha_{||}$ and α_{\perp} using $P(k)$ multipoles measured from the DR12 galaxy sample in nine redshift slices. The unfilled black and filled blue contours are results using galaxies in the NGC and all galaxies in the catalogue, respectively. The white cross in each panel illustrates the fiducial model ($\alpha_{||} = \alpha_{\perp} = 1$).

Figure 17. The constraint on the anisotropic BAO dilation parameters $\alpha_{||}$(top panel), α_{\perp}(middle panel) and the isotropic dilation parameter α (bottom panel). The horizontal and vertical error bars illustrate the width of the redshift bin and the 68 per cent CL uncertainty, respectively. The horizontal dashed lines show $\alpha_{||} = \alpha_{\perp} = \alpha = 1$ to guide eyes.

The comparison is also illustrated in table 9 and fig. 13 in Alam et al. (2016).

In order to use our nine-bin tomographic BAO measurement for cosmology, the correlation between redshift bins needs to be quantified. For this purpose, we jointly fit the anisotropic BAO distances in all pairs of overlapping redshift bins, i.e. jointly fit $\alpha_{||}(z_i), \alpha_{||}(z_j), \alpha_{\perp}(z_i), \alpha_{\perp}(z_j)$ with other nuisance parameters marginalized over where $i = 1:8; j = i + 1:9$, and calculate the correlation matrix using the MCMC chain elements. The resultant correlation matrix is shown in Fig. 20. As shown, the correlation of the same quantity between redshift bins is positive, and decreases as the redshift separation increases, which is expected. The electronic data set of measurements presented in this work is available online at https://sdss3.org//science/boss_publications.php.

Figure 18. The comparison of our result with that in Wang et al. (2016), where α_P and α_s denote the measurements of α’s using power spectrum multipoles (this work) and using correlation function multipoles (Wang et al. 2016), respectively.

Figure 19. The constraint on D_M and H as a function of redshift, where $D_M \equiv D_A(1 + z)$, in comparison with the constraints presented in Alam et al. (2016).

5 DARK ENERGY IMPLICATIONS

In this section, we utilize our tomographic BAO measurements to constrain the EoS function of DE, w, parametrized in the CPL form (Chevallier & Polarski 2001; Linder 2003)

$$w(a) = w_0 + w_a (1 - a), \quad (37)$$

where a is the scalefactor of the Universe. We constrain w_0, w_a together with other basic cosmological parameters including the physical baryon energy density $\Omega_b h^2$, the physical CDM energy density $\Omega_c h^2$, the ratio between the angular diameter distance and sound horizon at recombination Θ_s, the amplitude and power index of the primordial power spectrum A_s and n_s, respectively.

Besides the BAO data, we combine with the CMB measurement from the Planck mission (Planck Collaboration I 2016) including the auto- and cross-angular power spectrum of the temperature and
Tomographic BAO analysis in Fourier space

Figure 20. The correlation matrix between α_{\parallel} and α_{\perp} (left) and between $D_\Lambda \left(r_d^{\mathrm{fid}} / r_d \right)$ and $H \left(r_d / r_d^{\mathrm{fid}} \right)$ (right) across all the redshift slices.

Figure 21. The 1D posterior distribution of w_0, w_a and their 2D 68 per cent and 95 per cent CL contour plots derived from the nine-bin tomographic BAO (blue; filled) and the compressed BAO signal at a single redshift (black; unfilled). The Planck 2015 data are combined to complement.

Tomographic BAO measurements are informative in terms of the evolution history of D_Λ and H, which are closely related to the time evolution of $w(z)$. It is true that for the CPL parametrization, the improvement from the current tomographic BAO measurement is not significant, but the tomographic BAO is much more informative for the non-parametric reconstruction of $w(z)$ (Zhao et al. in MNRAS 466, 762–779 (2017)).

The 68 and 95 per cent CL contours of w_0, w_a are plotted for two different data combinations (‘Base’ means a data combination of Planck, JLA, WiggleZ and CFHTLenS). The constraints using our nine-bin tomographic BAO measurements and the three-bin DR12 consensus measurements are consistent well within 68 per cent CL, while tomographic BAO measurements yield a slightly tighter constraint due to the additional tomographic information in redshift, namely,

$w_0 = -0.96 \pm 0.10; \quad w_a = -0.12 \pm 0.32$ (DR12 consensus)

$w_0 = -1.01 \pm 0.09; \quad w_a = -0.02 \pm 0.31$ (Tomographic BAO).

(38)

To quantify the improvement on DE parameters using tomographic BAO measurement, we also compare to a test case, in which we maximally remove the tomographic information by compressing our nine-bin BAO measurements into a single data point at effective redshift $z_{\text{eff}} = 0.475$. We also take out the JLA, WigleZ and CFHTLenS data from the Base data set to investigate the strength of the DR12 BAO data more explicitly. The result is shown in Fig. 22,

$w_0 = -1.20 \pm 0.32; \quad w_a = 0.33 \pm 0.75$ (nine bin)

$w_0 = -1.18 \pm 0.37; \quad w_a = 0.12 \pm 0.89$ (one bin).

(39)

With tomographic BAO, the 68 per cent CL marginalized errors on w_0 and w_a are reduced by 14 per cent and 16 per cent, respectively, and the Figure-of-Merit (FoM), which is the reciprocal of the area of the 68 per cent CL w_0, w_a contour, is improved by 29 per cent.

Figure 22. The 1D posterior distribution of w_0, w_a and their 2D 68 per cent and 95 per cent CL contour plots derived from the nine-bin tomographic BAO (blue; filled) and the compressed BAO signal at a single redshift (black; unfilled). The Planck 2015 data are combined to complement.

With tomographic BAO, the 68 per cent CL marginalized errors on w_0 and w_a are reduced by 14 per cent and 16 per cent, respectively, and the Figure-of-Merit (FoM), which is the reciprocal of the area of the 68 per cent CL w_0, w_a contour, is improved by 29 per cent.

Tomographic BAO measurements are informative in terms of the evolution history of D_Λ and H, which are closely related to the time evolution of $w(z)$. It is true that for the CPL parametrization, the improvement from the current tomographic BAO measurement is not significant, but the tomographic BAO is much more informative for the non-parametric reconstruction of $w(z)$ (Zhao et al. in
6 CONCLUSION

The physics of baryonic acoustic oscillations has been well established to be a robust tool for cosmological studies. Specifically, the BAO measurements make it possible to reconstruct the history of the cosmic expansion, which is the key to revealing the physics of the accelerating expansion of the Universe, and the nature of DE.

Obtaining BAO measurements at as many redshifts as possible is ideal for tracing the cosmic expansion history. However, extracting the time evolution of the BAO signal is technically challenging. Naively subdividing the galaxies into multiple independent redshift slices and performing BAO measurements in each slice is a straightforward solution, but the number of slices has to be limited to a small number, otherwise each individual slice would contain too few galaxies to enable a robust BAO measurement due to the low-signal-to-noise ratio and issues of systematics.

In this work, we solve this problem using multiple overlapping redshift slices, which allows for extracting the redshift information of the BAO signal in a large number of redshift slices. We exploit the completed DR12 combined galaxy sample of the BOSS survey, and obtain tomographic BAO measurements in nine overlapping redshift slices using the pre-reconstructed galaxy power spectrum multipoles up to the hexadecapole, after validating our data analysis pipeline using the MD-Patchy mock galaxy catalogues. Our measurement and likelihood routines compatible with COSMOMC are publicly available.

We compare our measurement to that in a companion paper (Wang et al. 2016), which performs similar analysis using galaxy correlation functions derived from the same data sample, and find consistent results. For a further comparison, we derive a three-bin BAO measurement by coherently combining our tomographic measurements, and then compare to the BAO measurement presented in another companion paper (Alam et al. 2016), and find an agreement.\(^\text{18}\) The BAO measurements including the full covariance matrices presented in this work and a COSMOMC patch is available at https://sdss3.org/science/boss_publications.php.

We use our BAO measurements to constrain DE EOS parameters and find that for the CPL parametrization, the \(\Lambda\)CDM model is favoured by a joint data set of CMB, supernovae, BAO and weak lensing measurement. A more generic approach for DE studies using our measurement will be explored in a separate publication (Zhao et al. in preparation).

For the BOSS DR12 sensitivity, we have seen that the DE FoM can differ by as much as 29 per cent between cases using tomographic and non-tomographic BAO measurements. The ongoing and upcoming galaxy redshift surveys, including the eBOSS\(^\text{19}\) (Dawson et al. 2016), DESI,\(^\text{20}\) Euclid \(^\text{21}\) (Amendola et al. 2016), PFS\(^\text{22}\) (Takada et al. 2014) and so on, cover a larger and larger cosmic volume, thus there is rich tomographic information in redshifts to be exploited. Besides the method developed in this work, alternatives such as the optimal redshift weighting method (Zhu, Padmanabhan & White 2015; Zhu et al. 2016; Ruggeri et al. 2017) are being developed and applied to galaxy surveys.

ACKNOWLEDGEMENTS

GBZ and YW are supported by the Strategic Priority Research Program ‘The Emergence of Cosmological Structures’ of the Chinese Academy of Sciences Grant No. XDB09000000, by National Astronomical Observatories, Chinese Academy of Sciences (NAOC), and by University of Portsmouth. GBZ is supported by the 1000 Young Talents program in China. YW is supported by the NSFC grant No. 11403034. GR is supported by the National Research Foundation of Korea (NRF) through NRF-SGER 2014O55950 funded by the Korean Ministry of Education, Science and Technology (MoEST), and by the faculty research fund of Sejong University in 2016.

Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation and the U. S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington and Yale University.

This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231, the SCIAMA cluster supported by University of Portsmouth and the ZEN cluster supported by NAOC.

REFERENCES

Alam S. et al., 2015, ApJS, 219, 12
Alam S. et al., 2016, preprint (arXiv:1607.03155)
Alcock C., Paczynski B., 1979, Nature, 281, 358
Amendola L. et al., 2016, preprint (arXiv:1606.00180)
Anderson L. et al., 2012, MNRAS, 427, 3435
Anderson L. et al., 2014, MNRAS, 441, 24
Armendariz-Picon C., Mukhanov V., Steinhardt P. J., 2000, Phys. Rev. Lett., 85, 4438
Asorey J., Croce M., Gaztañaga E., Lewis A., 2012, MNRAS, 427, 1891
Ballinger W. E., Peacock J. A., Heavens A. F., 1996, MNRAS, 282, 877
Betoule M. et al., 2014, A&A, 568, A22
Beutler F. et al., 2011, MNRAS, 416, 3017
Beutler F. et al., 2016, preprint (arXiv:1607.03150)
Beutler F. et al., 2017, MNRAS, 464, 3409
Bianchi D., Gil-Marin H., Ruggeri R., Percival W. J., 2015, MNRAS, 453, L1
Blake C. et al., 2011, MNRAS, 418, 1707
Weinberg D. H., Mortonson M. J., Eisenstein D. J., Hirata C., Riess A. G., Rozo E., 2013, Phys. Rep., 530, 87

Wilson M. J., Peacock J. A., Taylor A. N., de la Torre S., 2015, preprint (arXiv:1511.07799)

Yamamoto K., Nakamichi M., Kamino A., Bassett B. A., Nishioka H., 2006, PASJ, 58, 93

Zhao G.-B., Xia J.-Q., Li M., Feng B., Zhang X., 2005, Phys. Rev. D, 72, 123515

Zhao G.-B., Crittenden R. G., Pogosian L., Zhang X., 2012, Phys. Rev. Lett., 109, 171301

Zhu F., Padmanabhan N., White M., 2015, MNRAS, 451, 236

Zhu F., Padmanabhan N., White M., Ross A. J., Zhao G., 2016, MNRAS, 461, 2867

1National Astronomy Observatories, Chinese Academy of Science, Beijing, 100012, P.R.China

2Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth PO1 3FX, UK

3Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, D-85740 Garching bei München, Germany

4Kavli Institute for the Physics and Mathematics of the Universe (IPMU), The University of Tokyo, Kashiwa, Chiba 277-8583, Japan

5Center for Cosmology and AstroParticle Physics, The Ohio State University, Columbus, OH 43210, USA

6Lawrence Berkeley National Lab, 1 Cyclotron Rd, Berkeley, CA 94720, USA

7Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, Giessenbachstr., D-85741 Garching, Germany

8Universität-Sternwarte München, Ludwig-Maximilians-Universität München, Scheinerstraße 1, D-81679 München, Germany

9Instituto de Física Teórica, (IAM/CSIC), Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain

10Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany

11Campus of International Excellence UAM-CSIC, Cantoblanco, E-28049 Madrid, Spain

12Departamento de Física Teórica, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain

13Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Salt Lake City, UT 84112, USA

14Institut de Ciencies del Cosmos (ICCCUB), Universitat de Barcelona (IEEC-UB), Martí i Franquès 1, E-08028 Barcelona, Spain

15Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138, USA

16Institut Lagrange de Paris (ILP), Sorbonne Universités, 98 bis Boulevard Arago, F-75014 Paris, France

17Laboratoire de Physique Nucléaire et de Hautes Energies, Université Pierre et Marie Curie, 4 Place Jussieu, F-75005 Paris, France

18Laboratoire d’Astrophysique, École Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, CH-1290 Versoix, Switzerland

19Department of Chemistry and Physics, King’s College, 133 North River St, Wilkes Barre, PA 18711, USA

20Department of Astronomy and Space Science, Sejong University, Seoul 143-747, Korea

21Universität-Sternwarte München, Ludwig-Maximilians-Universität München, Scheinerstraße 1, D-81679 München, Germany

22Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, Giessenbachstr., D-85741 Garching, Germany

23Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003, USA

24School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, UK

25Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, USA

26Department of Physics, Yale University, New Haven, CT 06511, USA

This paper has been typeset from a TeX/LaTeX file prepared by the author.