Observational Study

Prevalence of depression and anxiety and associated factors among geriatric orthopedic trauma inpatients: A cross-sectional study

Jia-Lei Chen, Rong Luo, Ming Liu

ORCID number: Jia-Lei Chen 0000-0001-6029-765X; Rong Luo 0000-0001-7662-6569; Ming Liu 0000-0002-7987-4100.

Author contributions: Chen JL performed study design, data collection and manuscript drafting and revision; Luo R performed data analysis and interpretation; Liu M performed language editing and data collection; all authors have read and approved the manuscript.

Institutional review board statement: This study was reviewed and approved by the Biomedical Research Ethical Committee of West China Hospital of Sichuan University (Approval No. 2020-29).

Informed consent statement: Patients were not required to give informed consent to the study because the analysis used anonymous clinical data that were obtained after each patient agreed to treatment by written consent.

Conflict-of-interest statement: The authors declare that they have no conflict of interest to disclose.

Data sharing statement: The data used and/or analyzed during the current study are available from the corresponding author on request.

Abstract

BACKGROUND
Common mental disorders such as anxiety and depression in geriatric orthopedic trauma patients have received little attention in research.

AIM
To investigate the prevalence of emotional disorders among geriatric orthopedic trauma patients and identify demographic, social and clinical risk factors.

METHODS
This cross-sectional study was performed in geriatric patients (aged ≥ 60 years, both sexes) with orthopedic trauma admitted to a level I trauma center between May 2015 and December 2017. Demographic, social, and clinical characteristics were described. Huaxi Emotional-Distress Index (HEI) was used to evaluate the severity of anxiety and depression status. Differences in continuous variables were tested using the t-test, and differences in categorical variables were assessed using the Pearson χ^2 test. Binary logistic regression analyses were used to identify the factors associated with a HEI score > 8.

RESULTS
Among the 966 patients, 487 were male and 479 were female, with a mean age of 70.2 ± 7.1 years. The age ranged from 60 to 90 years. Seventy-five patients had an HEI score > 8, accounting for about 7.8% of all patients. A higher Injury Severity Score (4.17 ± 3.10 vs 7.96 ± 6.68, $P < 0.001$), higher Visual Analog Score (5.05 ± 1.09 vs 6.89 ± 1.23, $P < 0.001$), number of chronic diseases ($P < 0.001$), injury type ($P = 0.038$), and education level ($P = 0.001$) were significantly associated with HEI score > 8. On logistic regression, a higher education level was a protective factor for emotional disorders ($P = 0.047$), whereas Injury Severity Score ($P = 0.024$), Visual Analog Score ($P < 0.001$), two or more chronic diseases ($P < 0.001$) were the related independent risk factors.
Emotional disorders are common in geriatric patients with orthopedic trauma. Clinicians should remain vigilant of emotional disorders in geriatric patients and screen for anxiety and depression in higher risk groups.

Key Words: Anxiety; Depression; Geriatric; Trauma; Orthopedic

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Citation: Chen JL, Luo R, Liu M. Prevalence of depression and anxiety and associated factors among geriatric orthopedic trauma inpatients: A cross-sectional study. World J Clin Cases 2022; 10(3): 919-928

URL: https://www.wjgnet.com/2307-8960/full/v10/i3/919.htm
DOI: https://dx.doi.org/10.12998/wjcc.v10.i3.919

INTRODUCTION

Throughout the lifespan, orthopedic trauma patients are often accompanied by anxiety and depression. In previous studies, the incidence of anxiety was 4.8%-39.8%[1-3] and the incidence of depression was 22.3%-87.6%[1,2,4,5]. From the perspective of age stratification, anxiety and depression are common in elderly people. The incidence of generalized anxiety disorder was reported at 0.7%-12%[6-9] and depression was 9%-11%[7,8]. In addition, anxiety and depression can occur separately or often together in elderly people[8]. However, until the last decade, common mental disorders such as anxiety and depression in geriatric orthopedic trauma patients received little attention in research, not to mention the huge burden of mental illness on families, society and the economy[6]. Therefore, it is urgent to understand, develop and evaluate evidence-based treatments for anxiety and depression among this specific group of patients. Before treatment, it is a top priority to establish the psychological characteristics and related factors of geriatric orthopedic trauma patients.

There are currently many scales assessing anxiety and depression among various target groups, such as the 15-item Geriatric Depression Scale[8], State-Trait Anxiety Inventory[10], Hospital Anxiety and Depression Scale[11], EuroQol (Quality of life)-5 Dimensions[12] and 7-item Generalized Anxiety Disorder Scale[8]. However, due to the time-consuming and professional evaluation, they have not been widely used in clinical practice. Therefore, based on the large size and unique cultural characteristics of Chinese people, Wang et al.[13] designed a new screening scale [Huaxi Emotional-Distress Index, (HEI)] for identifying emotional disorders such as anxiety, depression and suicidal tendency.

HEI is extensively used in the West China Hospital of Sichuan University, Chengdu, China. HEI has shown good effect when used in non-psychiatric clinical settings. Therefore, the purpose of this study was to investigate the prevalence of emotional disorders among geriatric orthopedic trauma patients and identify demographic, social, and clinical risk factors for anxiety and depression.
MATERIALS AND METHODS

Study design
This cross-sectional study was performed in geriatric patients with orthopedic trauma admitted to West China Hospital between May 2015 and December 2017. Inclusion criteria were as follows: (1) Aged ≥ 60 years, both sexes; and (2) Musculoskeletal injury (including closed or open fracture, joint isolation, muscle/vessel/nerve soft tissue injury). Exclusion criteria were: (1) Cognitive impairment or consciousness disorder; (2) Refusal to participate; (3) Incomplete questionnaire; (4) Unable to communicate; (5) Central nervous system disorder due to acute trauma; and (6) Significant symptoms or a history of mental illness. The demographic, social and clinical data including age, sex, marital status, education level, Injury Severity Score (ISS), Visual Analog Score (VAS), injury type, surgery type and number of chronic diseases were collected from the Hospital Information System of West China Hospital.

HEI was used to evaluate the severity of anxiety and depression. The Cronbach’s α of HEI was 0.90, and sensitivity and specificity were 0.880 and 0.766, respectively[13]. There are nine self-reported items in total and all items are 5-point Likert-scaled with scale points 0-4. There are four grades based on the sum of the scores of nine items: normal (0-8 points), mild (9-12 points), moderate (13-16 points) and severe (17-36 points). The tenth and 11th item is not included in the total score (expanded to 11 items only in serious cases), but the results serve as a reference for medical staff. Details of HEI are presented in Supplementary material.

Assessment of variables
Age, sex, marital status, education level, and HEI were assessed using the standard version of questionnaires. Pain was measured with a VAS ranging from 0 (no pain) to 10 (worst pain). The VAS and HEI were calculated by trained nurses after patients filling in the results according to their actual situation. The ISS was used to measure the severity of the injury during the time of enrollment. Injury type, surgery type, and number of chronic diseases were determined by surgeons’ reports and patients’ reports of medical history–diagnosed hypertension, diabetes, cardiovascular disease, chronic lung disease, cerebrovascular disease, hepatic dysfunction, and renal dysfunction. For patients with an emotional disorder, psychological or psychiatric consultations were conducted for specialized treatment. The detailed process and response strategies are shown in Figure 1.

Statistical analysis
Continuous variables are expressed as mean ± SD, and categorical variables are expressed as absolute values and percentages. Differences in continuous variables were tested using the t-test, and differences in categorical variables were assessed using the Pearson χ^2 test. Binary logistic regression analyses were used to evaluate anxiety and depression, adjusted for age (continuous), sex (categorical), marital status (categorical), education level (categorical), ISS (continuous), VAS (continuous), injury type (categorical), surgery type (categorical), and number of chronic diseases (categorical). Odds ratios and 95% confidence intervals were calculated. All statistical analyses were carried out using SPSS version 21.0 (IBM, Chicago, IL, United States). A P value < 0.05 was regarded as statistically significant. The statistical methods of this study were reviewed by a member of the Clinical Study Design and Statistics Service from the West China Hospital, Sichuan University.

RESULTS

Patients’ characteristics
Among the 966 patients, 487 were male and 479 were female, with a mean age of 70.2 ± 7.1 years. The age ranged from 60 to 90 years. Of this sample, 89.2% of patients were married. Nearly two-thirds of the patients were admitted to the hospital with fractures. The average ISS was 4.47 ± 3.65. Illiteracy (12.9%) and semi-illiteracy (33.6%) accounted for almost half of the total number of patients. The vast majority (87.3%) of patients required elective surgery. Almost two-thirds of elderly patients suffered from chronic diseases. The basic demographic, clinical and social characteristics of the enrolled patients are shown in Table 1.
Table 1 Baseline data of the enrolled patients

Variable	n (%)
Age (yr)	
60-69	477 (49.4)
70-79	397 (41.1)
≥ 80	92 (9.5)
ISS (points)	4.47 ± 3.65
VAS (points)	5.20 ± 1.20
Sex	
Male	487 (50.4)
Female	479 (49.6)
Injury types	
Fracture	645 (66.8)
Joint dislocation¹	65 (6.7)
Soft tissue injury	256 (26.5)
Marital status	
Married	862 (89.2)
Unmarried	7 (0.7)
Divorced or widowed	97 (10.0)
Educational level	
Illiterate	125 (12.9)
Primary school	325 (33.6)
High school	407 (42.1)
Junior college² and above	109 (11.3)
Surgery	
Emergency	94 (9.7)
Elective	843 (87.3)
None	29 (3.0)
Number of chronic diseases	
0	326 (33.7)
1	438 (45.3)
≥ 2	202 (20.9)
HEI score	
≤ 8	891 (92.2)
> 8	75 (7.8)
Total	966 (100)

¹Joint dislocation: If fracture and joint dislocation occurred at the same time, it was considered joint dislocation.
²Junior college: general college and technical secondary school.

EISS: Injury Severity Score; VAS: Visual Analog Score; HEI: Huaxi Emotional-distress Index. Values are expressed as the mean ± SD or n (%).

Prevalence of anxiety and depression and related factors
Among the 966 elderly patients, 75 had an HEI score > 8, suggesting that about 7.8% of patients with orthopedic trauma had emotional disorders (Table 1). A higher ISS (4.17 ± 3.10 vs 7.96 ± 6.68, P < 0.001), higher VAS (5.05 ± 1.09 vs 6.89 ± 1.23, P < 0.001), number of chronic diseases (P < 0.001), injury type (P = 0.038), and education level (P = 0.001) were significantly associated with HEI score > 8 (Table 2). Binary logistic regression analysis indicated that a higher ISS (P = 0.024), higher VAS (P < 0.001), two or more chronic diseases (P < 0.001), and junior college education or above (P = 0.047) were independently associated with anxiety and depression (Table 3).

DISCUSSION
More than 70% of adults have experienced different traumatic events in their lifetime, and trauma such as traffic accidents, falling from height, and power tool injuries are common in China[14,15]. In addition, the global population is growing older.
Table 2 Association between Huaxi Emotional-distress Index score and related factors

Variable	HEI ≤ 8	HEI > 8	t/χ²	P value	Exp (B)/OR
	(n = 891)	(n = 75)			
Age (yr)	70.15 ± 7.08	70.32 ± 7.46	-0.2	0.842	
ISS (points)	4.17 ± 3.10	7.96 ± 6.68	-4.862	< 0.001	
VAS (points)	5.05 ± 1.09	6.89 ± 1.23	-13.92	< 0.001	
Sex, n (%)					
Male	448 (50.3)	39 (52.0)	0.082	0.775	
Female	443 (49.7)	36 (48.0)			
Injury types, n (%)					
Fracture	602 (67.6)	43 (57.3)	6.526	0.038	
Joint dislocation	62 (7.0)	3 (4)			
Soft tissue injury	227 (25.5)	29 (38.7)			
Marital status, n (%)					
Married	795 (89.2)	67 (89.3)	0.621	0.733	
Unmarried	7 (0.8)	0			
Divorced or widowed	89 (10.0)	8 (10.7)			
Educational level, n (%)					
Illiteracy	105 (11.8)	20 (26.7)	17.652	0.001	
Primary school	303 (34.0)	22 (29.3)			
High school	376 (42.2)	31 (41.3)			
Junior college and above	107 (12.0)	2 (2.7)			
Surgery, n (%)					
Emergency	87 (9.8)	7 (9.3)	0.049	0.976	
Elective	777 (87.2)	66 (88)			
None	27 (3.0)	2 (2.7)			
Number of chronic diseases, n (%)					
0	325 (36.5)	1 (1.3)	213.385	< 0.001	
1	429 (48.1)	34 (12.0)			
≥ 2	137 (15.4)	65 (86.7)			

Values are expressed as the mean ± SD or n (%). ISS: Injury Severity Score; VAS: Visual Analog Score; HEI: Huaxi Emotional-distress Index.

Table 3 Relationship of significant emotional distress predictors with Huaxi Emotional-distress Index score > 8

Variable	B	SE	Wald	P value	Exp (B)/OR	95%CI
						Lower
						Upper
ISS	0.105	0.047	5.074	0.024	1.111	1.014
VAS	1.335	0.194	47.287	< 0.001	3.8	2.597
Educational level						
Junior college and above	-1.778	1.032	3.959	0.047	0.169	0.029
Number of chronic diseases						
≥ 2	4.547	0.894	19.397	< 0.001	94.376	12.474
Constant	-13.545	1.59	72.583	< 0.001	< 0.001	

ISS: Injury Severity Score; VAS: Visual Analog Score; SE: Standard error; OR: Odds ratio; CI: Confidence interval.

According to a UN report, as of 2020, the total population > 60 years old exceeded 1 million and by 2050, the number will peak at 1.6 million[16]. Therefore, the number of elderly orthopedic trauma patients has also increased annually as the population has shifted to older age.
Orthopedic trauma research in the past has been substantially focused on implant development and technique improvement involved in the treatment of these injuries [17]. The biopsychosocial model proposed by George Engel [18] in 1977 has not been fully applied in orthopedic trauma practice and research. Orthopedic trauma is often accompanied by various psychiatric symptoms, such as negative emotions, intrusion, and avoidance symptoms. According to the Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-V), the psychiatric symptoms could manifest as acute stress disorder (ASD), post-traumatic stress disorder, depression, or anxiety [19]. Several studies have assessed the influence of the superimposed factors of old age and trauma on patients’ emotions. A study found that a few social and biological factors were related to the occurrence of ASD in elderly patients with osteoporotic fractures [20]. Unfortunately, orthopedic surgeons have paid insufficient attention to this.

The present study offers an introduction to the understanding of anxiety and depression and their associated factors affecting the recovery and healing among geriatric patients with orthopedic trauma in China. In the present study, the prevalence of emotional disorders was 7.8%. Our result was lower than 12.4% in Australia among hospitalized orthopedic trauma patients using Generalized Anxiety Disorder Scale Two item instrument [21], and 31.2% in the United States among orthopedic trauma patients using State-Trait Anxiety Inventory-S instrument [10], but higher than 6.25% in the UK among pelvic trauma patients using EuroQol (Quality of life)-5 Dimensions instrument [22]. This was most likely due to differences in sample size, timing and instruments used to measure these psychological parameters. In addition, most studies included adults of all ages and did not individually screen out elderly patients.

It needs to be emphasized that the ratio of male to female patients was almost equal in the present study, which was different from the high proportion of male patients in many previous studies [12,22,23]. Although a few studies indicated that the prevalence of depression and anxiety in women was higher than in men, no similar result was found in the present study [3,5]. This indicates that, in the Chinese elderly population, the prevalence of emotional disorders is not significantly different between men and women.

The present study revealed that independent variables like higher ISS, higher VAS, having two or more chronic diseases, and receiving a junior college education or above were statistically significant for HEI score > 8. The ISS score is often used to assess the severity of multiple traumas. A prospective cohort study found no association between depression and ISS [24]. However, the present study revealed that the severity of injury among geriatric orthopedic patients was significantly positively associated with HEI score > 8. The finding was in line with the study of Giannoudis et al. [25] in the UK. The present study was conducted in a level I trauma center; therefore, this finding may be related to the various injury types, such as open fractures, polytrauma, and amputation, among the elderly patients. These severely injured patients often have to face multiple pressures of long hospitalizations, high costs, and even mutilation. Therefore, they are susceptible to negative emotions. Hawamdeh et al. [26], found that factors associated with a high prevalence of anxiety and depression among amputees, included female sex, lack of social support, unemployment, and traumatic...
amputation.

Pain plays an important role in the quality of life. Many studies have found that pain is closely related to depression and anxiety[3,11,24,27]. Srahbzu et al[3] found that those who had pain within the last 24 h were 2.02 and 2.75 times more likely to develop depression and anxiety, respectively, than those without pain. In our study, those who had a higher VAS after orthopedic injury were 3.8 times more likely to develop anxiety and depression than those who had a lower VAS. In our experience, most elderly people have reduced tolerance to pain, so the severity and persistence of pain are more likely to lead to depression and anxiety. Most elderly people have sleep disorders. Pain can aggravate sleep disorders, which in turn exacerbate the pain. This vicious cycle is more likely to cause depression and anxiety.

Older adults with anxiety and depression frequently present with a variety of comorbid chronic illnesses[28,29]. In the present study, the number of chronic diseases was found to be associated with HEI > 8 on logistic regression. Those who had two or more chronic diseases had a higher risk of developing anxiety and depression when compared to those who did not have a chronic disease. A few studies indicated the presence of dysregulated homeostatic biological pathways in patients with depressed and anxiety, such as increased inflammation and disrupted energy-regulating neuroendocrine signaling (e.g., leptin, insulin)[29-31]. However, the causal relationship between chronic diseases and emotional disorders seems to need clarification in the future. In addition, they are more like a pair of reciprocal relationships[28].

A few studies have found no association between education level and emotional disorders[24,32]. However, in the present study, the education level among geriatric orthopedic patients was significantly positively associated with HEI score > 8. Those with a junior college education or above had a lower risk of developing anxiety and depression than those who were illiterate. In China, receiving better education and skill training increases job opportunities, and work brings better economic and social support so that people have more strength and resources to counteract frustrations and difficulties. This may explain why a higher educational level was a protective factor for emotional disorders. Lack of socioeconomic support and unemployment are risk factors for depression and anxiety[3,5,26].

Depression involves an entire clinical spectrum from mild to severe[33]. Therefore, depression should be considered in the patients with HEI score < 8. Importance should be attached to the dynamic evaluation of emotions in elderly patients with orthopedic trauma as changes in disease progression or other serious stress events, such as loss of family members and appearance of malignant tumors, may occur during treatment.

This study had some limitations. First, it was a single-center study. Therefore, there must have been some selective bias. Second, this study did not investigate other possible risk factors, such as ethnicity, religion, insurance type, and substance abuse, that may have significantly affected the psychological condition of the patients. Third, this was a cross-sectional study, lacking longitudinal data, so it was difficult to confirm the causality. Hence, future studies need to be conducted to clarify these issues.

CONCLUSION

Emotional disorders, especially anxiety and depression, were common findings in geriatric patients who sustained orthopedic trauma. We would encourage clinicians to remain vigilant for emotional disorders and screen for emotional disorders in geriatric patients during the evaluation and treatment of other conditions. Psychological intervention or psychiatric treatment should be carried out.

ARTICLE HIGHLIGHTS

Research background
Common mental disorders such as anxiety and depression in geriatric orthopedic trauma patients have received little attention in research.

Research motivation
It is urgent to understand, develop and evaluate evidence-based treatments for anxiety and depression among geriatric orthopedic trauma patients. Before treatment, it is a top priority to establish the psychological characteristics and related factors.
Research objectives
This study aimed to analyze the data of geriatric orthopedic trauma patients from our hospital in order to investigate the prevalence of emotional disorders and identify demographic, social and clinical risk factors.

Research methods
This study was performed in elderly patients aged of 60 years or older with orthopedic trauma admitted to a level I trauma center between May 2015 and December 2017. Demographic, social, and clinical characteristics were described. Huaxi Emotional-Distress Index (HEI) was used to evaluate the severity of anxiety and depression status.

Research results
Among the 966 patients, 75 patients had an HEI score > 8, accounting for about 7.8% of all patients. A higher Injury Severity Score, higher Visual Analog Score, number of chronic diseases, injury type, and education level were significantly associated with HEI score > 8. On logistic regression, a higher education level was a protective factor for emotional disorders, whereas Injury Severity Score, Visual Analog Score, two or more chronic diseases were the related independent risk factors.

Research conclusions
Anxiety and depression are common in geriatric patients with orthopedic trauma. Clinicians should remain vigilant of emotional disorders in geriatric patients and screen for anxiety and depression in higher risk groups.

Research perspectives
Further investigations on larger samples are needed to confirm whether the results of our study are applicable on a broader scale.

ACKNOWLEDGEMENTS
The authors would like to thank the database manager for the technical support.

REFERENCES
1 McQueen M. Psychological Distress and Orthopaedic Trauma: Commentary on an article by Douglas S. Weinberg, MD, et al. "Psychiatric Illness Is Common Among Patients with Orthopaedic Polytrauma and Is Linked with Poor Outcomes". J Bone Joint Surg Am. 2016; 98: e19 [PMID: 26935467 DOI: 10.2106/JBJS.15.01261]
2 Weinberg DS, Narayanan AS, Boden KA, Breslin MA, Vallier HA. Psychiatric Illness Is Common Among Patients with Orthopaedic Polytrauma and Is Linked with Poor Outcomes. J Bone Joint Surg Am. 2016; 98: 341-348 [PMID: 26935455 DOI: 10.2106/JBJS.15.00751]
3 Srahbzu M, Yigizaw N, Fanta T, Assefa D, Tirfeneh E. Prevalence of Depression and Anxiety and Associated Factors among Patients Visiting Orthopedic Outpatient Clinic at Tikur Anbessa Specialized Hospital, Addis Ababa, Ethiopia, 2017. J Psychiatry. 2018; 21: 450 [DOI: 10.4172/2378-5756.1000450]
4 Muscatelli S, Spurr H, O’Hara NN, O’Hara LM, Sprague SA, Slobogean GP. Prevalence of Depression and Posttraumatic Stress Disorder After Acute Orthopaedic Trauma: A Systematic Review and Meta-Analysis. J Orthop Trauma. 2017; 31: 47-55 [PMID: 27997466 DOI: 10.1097/BOT.0000000000000664]
5 Jain R, Rishi R, Sharma B, Kiyawat V. Role of depression and its associating factors in indoor orthopaedic patients. Asian J Med Sci. 2015; 6: 70-76 [DOI: 10.3126/ajms.v6i6.12478]
6 Bower ES, Wetherell JL, Mon T, Lenze EJ. Treating Anxiety Disorders in Older Adults: Current Treatments and Future Directions. Harv Rev Psychiatry. 2015; 23: 329-342 [PMID: 26332216 DOI: 10.1097/HRP.0000000000000641]
7 Monroe DC, McDowell CP, Kenny RA, Herring MP. Dynamic associations between anxiety, depression, and tobacco use in older adults: Results from The Irish Longitudinal Study on Ageing. J Psychiatr Res. 2021; 139: 99-105 [PMID: 34058656 DOI: 10.1016/j.jpsychires.2021.05.017]
8 Zhao W, Zhang Y, Liu X, Yue J, Hou L, Xiao X, Zuo Z, Liu Y, Jia S, Dong B, Ge N. Comorbid depressive and anxiety symptoms and frailty among older adults: Findings from the West China health and aging trend study. J Affect Disord. 2020; 277: 970-976 [PMID: 33065841 DOI: 10.1016/j.jad.2020.08.070]
9 Villagrasa B, Olaya B, Lopez-Anton R, de la Cámara C, Lobo A, Santabárbara J. Prevalence of...
anxiety disorder among older adults in Spain: A meta-analysis. *J Affect Disord* 2019; 246: 408-417 [PMID: 30597930 DOI: 10.1016/j.jad.2018.12.087]

10 Vincent HK, Hagen JE, Zdziarski-Horodycki LA, Patrick M, Sadasivan KK, Guenther R, Vasilopoulou T, Shariffar S, Horodycki M. Patient-Reported Outcomes Measurement Information System Outcome Measures and Mental Health in Orthopaedic Trauma Patients During Early Recovery. *J Orthop Trauma* 2018; 32: 467-473 [PMID: 30130365 DOI: 10.1097/BOT.0000000000001245]

11 Gerbershagen HJ, Dagtekin O, Isenberg J, Martens N, Ozgür E, Kroep H, Sabatowski R, Petzke F. Chronic pain and disability after pelvic and acetabular fractures—assessment with the Mainz Pain Staging System. *J Trauma* 2010; 69: 128-136 [PMID: 20993984 DOI: 10.1097/TA.0b013e3181bd703]

12 Salah Eldin W, Hirshon JM, Smith GS, Kamal AA, Abou-El-Fetouh A, El-Setouhy M. Health-related quality of life after serious occupational injury in Egyptian workers: a cross-sectional study. *BMJ Open* 2012; 2 [PMID: 23187968 DOI: 10.1136/bmjopen-2011-000413]

13 Wang J, Guo WJ, Zhang L, Deng W, Wang HY, Yu JY, Luo SX, Huang MJ, Dong ZQ, Li DJ, Song JP, Jiang Y, Cheng NS, Liu XH, Li D. The development and validation of Huaxi emotional-distress index (HEI): A Chinese questionnaire for screening depression and anxiety in non-psychiatric clinical settings. *Compr Psychiatry* 2017; 76: 87-97 [PMID: 28445837 DOI: 10.1016/j.comppsych.2017.04.001]

14 Jiang Y, Wu XB. The current situation and future of trauma epidemiology in China. Zhongguo Chuangshang Guke Zazhi 2014; 16: 165-168 [DOI: 10.3760/cma.j issn.1671-7600.2014.02.015]

15 Shaley A, Liberzon I, Marmar C. Post-Traumatic Stress Disorder. *N Engl J Med* 2017; 376: 2459-2469 [PMID: 28636846 DOI: 10.1056/NEJMra1612499]

16 United Nations. Department of Economic and Social Affairs, Population Division. World population prospects 2019. Online Edition 2019; Rev. 1. 2019 August 28 [Cited 1 June, 2021]. In: UN web site [Internet]. Available from: https://population.un.org/wpp/Download/Standard/Population/

17 Schemitsch C, Nauth A. Psychological factors and recovery from trauma. *Injury* 2020; 51 Suppl 2: S64-S66 [DOI: 10.1016/j.injury.2019.10.081]

18 Ayers DC, Franklin PD, Ring DC. The role of emotional health in functional outcomes after orthopaedic surgery: extending the biopsychosocial model to orthopaedics: AOA critical issues. *J Bone Joint Surg Am* 2013; 95: e165 [PMID: 24196477 DOI: 10.2106/JBJS.L.00799]

19 Regier DA, Kuhl EA, Kupfer DJ. The DSM-5: Classification and criteria changes. *World Psychiatry* 2013; 12: 92-98 [PMID: 23737408 DOI: 10.1002/wps.20050]

20 Xiao Q, Ran J, Lu W, Wan R, Dong L, Daz Y. Analysis of the Point Prevalence and Influencing Factors of Acute Stress Disorder in Elderly Patients with Osteoporotic Fractures. *Neuropsych Dis Treat* 2020; 16: 2795-2804 [PMID: 33254554 DOI: 10.2147/NDT.S261444]

21 McCrраб S, Baker AL, Atia J, Balogh ZJ, Lott N, Palazzi K, Naylor J, Harris IA, Doran CM, George J, Wolfenden L, Skelton E, Boneseko B. Comorbid tobacco and other substance use and symptoms of anxiety and depression among hospitalised orthopaedic trauma patients. *BMC Psychiatry* 2019; 19: 28 [PMID: 30654783 DOI: 10.1186/s12888-019-1921-y]

22 Harvey-Kelly KF, Kanakaris NK, Obaponevose O, West RM, Giannoudis PV. Quality of life and sexual function after traumatic pelvic fracture. *J Orthop Trauma* 2014; 28: 28-35 [PMID: 23481925 DOI: 10.1097/BOT.0b013e31828c063]

23 Giannarrella MJ, Cameron PA, Ponsford J, Ioannou L, Gibson SJ, Jennings PA, Georgiou-Karistianis N. Return to Work After Traumatic Injury: Increased Work-Related Disability in Injured Persons Receiving Financial Compensation is Mediated by Perceived Injustice. *J Occup Rehabil* 2017; 27: 173-185 [PMID: 27150733 DOI: 10.1007/s10926-016-9642-5]

24 Kumar S, Verma V, Kushwaha U, Calvello Hynes EJ, Arya A, Agarwal A. Prevalence and association of depression in in-patient orthopaedic trauma patients: A single centre study in India. *J Clin Orthop Trauma* 2020; 11: S573-S577 [PMID: 32774031 DOI: 10.1016/j.jcot.2019.12.010]

25 Giannoudis PV, Harwood PJ, Kontakis G, Allami M, Macdonald D, Kay SP, Kind P. Long-term quality of life in trauma patients following the full spectrum of tibial injury (fasciotomy, closed fracture, grade IIIB-IIIC open fracture and amputation). *Injury* 2009; 40: 213-219 [PMID: 19078047 DOI: 10.1016/j.injury.2008.05.024]

26 Hawamdeh ZM, Othman YS, Ibrahim AI. Assessment of anxiety and depression after lower limb amputation in Jordanian patients. *Neuropsychiatr Dis Treat* 2008; 4: 627-633 [PMID: 18830394 DOI: 10.2147/nbd.s2541]

27 Yang Y, Tang TT, Chen MR, Xiang MY, Li LL, Hou XL. Prevalence of association and anxiety and depression among orthopaedic trauma inpatients: a retrospective analysis of 1994 cases. *J Orthop Surg Res* 2020; 15: 587 [PMID: 32387842 DOI: 10.1186/s13018-020-01232-4]

28 Roy-Byrne PP, Davidson KW, Kessler RC, Asmundson GJ, Goodwin RD, Kubzansky L, Lydiard RB, Massie MJ, Katon W, Laden SK, Stein MB. Anxiety disorders and comorbid medical illness. *Gen Hosp Psychiatry* 2008; 30: 208-225 [PMID: 18433653 DOI: 10.1016/j.genhosppsych.2007.12.006]

29 Milaneschi Y, Lamers F, Berk M, Penninx BWJH. Depression Heterogeneity and Its Biological Underpinnings: Toward Immunometabolic Depression. *Biol Psychiatry* 2020; 88: 369-380 [PMID: 32247527 DOI: 10.1016/j.biopsych.2020.01.014]

30 Kathol RG, Delahunt JW. The relationship of anxiety and depression to symptoms of hyperthyroidism using operational criteria. *Gen Hosp Psychiatry* 1986; 8: 23-28 [PMID: 3943712 DOI: 10.1016/0163-8343(86)90060-5]
31 **Garfield LD**, Scherrer JF, Hauptman PJ, Freedland KE, Chrusciet T, Balasubramanian S, Carney RM, Newcomer JW, Owen R, Bucholz KK, Lustman PJ. Association of anxiety disorders and depression with incident heart failure. *Psychosom Med* 2014; 76: 128-136 [PMID: 24434950 DOI: 10.1097/PSY.0000000000000027]

32 **Nota SP**, Bot AG, Ring D, Kloen P. Disability and depression after orthopaedic trauma. *Injury* 2015; 46: 207-212 [PMID: 25015790 DOI: 10.1016/j.injury.2014.06.012]

33 **Ng QX**, Lim DY, Chee KT. Reimagining the spectrum of affective disorders. *Bipolar Disord* 2020; 22: 638-639 [PMID: 32557983 DOI: 10.1111/bdi.12960]
