Leaflet plication with neochordae implantation: A novel technique for mitral valve repair

Haige Zhao, MD, Xiaoyi Dai, MD, and Liang Ma, MD, Hangzhou, China

CENTRAL MESSAGE
We proposed leaflet plication with neochordae implantation as a novel technique for repairing the redundant prolapsing P2 segment.

The middle scallop of the posterior leaflet (P2) is the most common site of mitral valve prolapse, and mitral valve repair is superior to mitral valve replacement in the treatment of degenerative mitral valve prolapse.¹ Carpentier’s method of quadrangular resection with annular plication² is considered the gold standard for the treatment of mitral valve prolapse of the posterior leaflet; moreover, this revolutionary nonresection method conducted using artificial chordae has long-term effects comparable with those of leaflet resection.³ However, for redundant posterior leaflets, an extra “sliding leaflet plasty”⁴ or the “butterfly resection technique”⁵ is warranted to decrease the height of the posterior leaflet and avoid systolic anterior motion (SAM). Sliding leaflet plasty and butterfly resection are somewhat complicated and time-consuming. Herein, we introduce a novel, simplified mitral valve repair technique involving leaflet plication using artificial chordae implantation for the redundant prolapsing P2 segment.

SURGICAL TECHNIQUE
The technique was performed in 10 patients, and all of them provided written informed consent. A minimally invasive approach was employed, and cardiopulmonary bypass was established by femoral arterial and venous cannulation. A right minithoracotomy with a 5-cm-long incision was performed over the fourth intercostal space. After we temporarily arrested the heart using antegrade cold blood cardioplegia, the left atrium was accessed via the interatrial groove. The prolapsed P2 was gently lifted with forceps; then, each mitral valve segment and successively the subvalvular apparatus—including the anterior leaflet, P1, P3, chordae tendineae, and anterolateral and posteromedial papillary muscles—were checked carefully.

Figure 1 shows the key procedures involved in this novel technique. The height of the prolapsed P2 segment was measured using a small scale; then, 2 dots on the P2 segment located approximately 1.5 to 2 cm perpendicular to the mitral annulus were made, and these were set as the artificial chordae implantation sites. A polytetrafluoroethylene (PTFE) suture (CV-4 Gore-Tex; WL Gore & Associates Inc) was passed through the fibrous tip of the anterolateral papillary muscle using the figure-of-eight suture technique. Each arm of the PTFE suture was passed through the left target dot twice via the plicated double-layer leaflet to create length-adjustable neochordae. The same process was repeated for the posteromedial papillary muscle using the figure-of-eight suture technique. Each arm of the PTFE suture was passed through the left target dot twice via the plicated double-layer leaflet to create length-adjustable neochordae.

A semirigid annuloplasty ring was then implanted, and saline solution was injected into the left ventricle to assess valvular competence. The

From the Department of Cardiovascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.

Disclosures: The authors reported no conflicts of interest. The Journal policy requires editors and reviewers to disclose conflicts of interest and to decline handling or reviewing manuscripts for which they may have a conflict of interest. The editors and reviewers of this article have no conflicts of interest.

Received for publication May 9, 2022; revisions received July 7, 2022; accepted for publication July 10, 2022; available ahead of print July 16, 2022.

Address for reprints: Liang Ma, MD, Department of Cardiovascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79#, Qingchun Rd, Hangzhou, China, 310003 (E-mail: ml1402@zju.edu.cn).

JTCVS Techniques 2022;15:81-3
2666-2507
Copyright © 2022 The Author(s). Published by Elsevier Inc. on behalf of The American Association for Thoracic Surgery. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
https://doi.org/10.1016/j.xjtc.2022.07.010
neochordal length was regulated in case of residual mitral regurgitation (MR). A saline test was performed to verify whether the coaptation height was satisfactory, and the 2 PTFE sutures were then tied respectively with at least 10 knots on the atrial plane of the posterior leaflet. Finally, the atrium was closed, and the patient was weaned from cardiopulmonary bypass after we confirmed the absence of residual regurgitation using transesophageal echocardiography (Video 1).

RESULTS
Of the 10 patients, 7 (70.0%) were male, and the mean patient age was 55.5 ± 6.6 years. Severe, moderate-to-severe, and moderate MR were observed in 4 (40.0%), 4 (40.0%), and 2 (20.0%) patients, respectively. All of the patients underwent mitral valve repair using our novel technique. No deaths or major adverse events occurred after surgery, and all the patients had an uneventful recovery. A 3-month follow-up was conducted in all patients after the surgery, and none of the patients developed recurrent MR.

TABLE 1. Detailed change of echocardiographic data of all patients

Variable	Preoperation	Follow-up	P value
LVEDV, mL	134 ± 34	100 ± 25	.004
LVESV, mL	42 ± 14	34 ± 8	.039
LVDd, mm	58 ± 7	51 ± 5	.013
LVDs, mm	37 ± 5	34 ± 3	.034
LVEF, %	69 ± 5	66 ± 4	.317

Values are presented as mean ± standard deviation. LVEDV, left ventricular end-diastolic volume; LVESV, left ventricular end-systolic volume; LVDd, left ventricular end-diastolic diameter; LVDs, left ventricular end-systolic diameter; LVEF, left ventricular ejection fraction.
Detailed changes in the transthoracic echocardiographic data before surgery and at follow-up are presented in Table 1.

DISCUSSION

Leaflet resection followed by either annular plication or sliding leaflet plasty demonstrated excellent long-term outcomes and is hence the classic approach for repairing posterior leaflet prolapse.6,7 However, both the resection techniques share the following drawbacks8: (1) chordae elongation caused by long-term MR may result in residual prolapse; (2) excess posterior leaflet tissue may cause SAM; and (3) extensive resection of P2 may result in an insufficient coaptation height. Thus, unsatisfactory repair results are inevitable. The “respect approach” for mitral valve repair, which preserves the leaflet tissue, is being widely used in recent years and presents long-term outcomes comparable with those of resection techniques.3,9 Although the artificial chordae length can be adjusted to an extent, dealing with a redundant posterior leaflet seems ineffective. One derived technique10 that reduced the length of the P2 segment through longitudinal plication in the leaflet root showed outstanding early outcomes; however, the method was complicated and time-consuming.

Our technique is easy to perform and presents excellent outcomes in the repair of redundant prolapsing P2 segment. Unlike the technique of Calafiore and colleagues,10 which demands 3 to 6 interrupted “U” sutures passing from the annulus to P2 to decrease the height of the prolapsed P2 segment, our technique allowed us to directly implant the artificial chordae on the P2 segment approximately 1.5 to 2 cm perpendicular to the mitral annulus and plicate the prolapsed leaflet. Our technique not only prevents left ventricular outflow tract obstruction with SAM by means of the excess posterior leaflet tissue but also reduces the tension between the leaflet tissue and artificial chordae to avoid avulsion. Moreover, our technique can be used to repair other leaflets; in fact, the technique has shown remarkable results in several of our previous cases. Nevertheless, a longer follow-up duration and a larger patient cohort are needed to demonstrate the durability and stability of our novel technique.

References

1. Suri RM, Clavel MA, Schaff HV, Michelena HI, Hubner M, Nishimura RA, et al. Effect of recurrent mitral regurgitation following degenerative mitral valve repair: long-term analysis of competing outcomes. J Am Coll Cardiol. 2016;67: 488-98.
2. Carpentier A. Cardiac valve surgery—the “French correction.” J Thorac Cardiovasc Surg. 1983;86:323-37.
3. Perier P, Hohenberger W, Lakew F, Ratz G, Urbanski P, Zacher M, et al. Toward a new paradigm for the reconstruction of posterior leaflet prolapse: midterm results of the “respect rather than resect” approach. Ann Thorac Surg. 2008;86:718-25.
4. Perier P, Clausnizer B, Mistarz K. Carpentier “sliding leaflet” technique for repair of the mitral valve: early results. Ann Thorac Surg. 1994;57:383-6.
5. Asai T. The butterfly technique. Ann Cardiothorac Surg. 2015;4:370-5.
6. Perier P, Stumpf J, Gotz C, Lakew F, Schneider A, Clausnizer B, et al. Valve repair for mitral regurgitation caused by isolated prolapse of the posterior leaflet. Ann Thorac Surg. 1997;64:445-50.
7. Johnston DR, Gillinov AM, Blackstone EH, Griffin B, Stewart W, Sabik JF III, et al. Surgical repair of posterior mitral valve prolapse: implications for guidelines and percutaneous repair. Ann Thorac Surg. 2010;89:1385-94.
8. Perier P, Hohenberger W, Lakew F, Diegeler A. Prolapse of the posterior leaflet: resect or respect. Ann Cardiothorac Surg. 2015;4:273-7.
9. Lawrie GM, Earle EA, Earle NR. Feasibility and intermediate term outcome of repair of prolapsing anterior mitral leaflets with artificial chordal replacement in 152 patients. Ann Thorac Surg. 2006;81:849-56.
10. Calafiore AM, Di Mauro M, Actis-Dato G, Iaco AL, Centofanti P, Forssmanni P, et al. Longitudinal plication of the posterior leaflet in myxomatous disease of the mitral valve. Ann Thorac Surg. 2006;81:1909-10.