Synthesis, Conformational Analysis, and Complexation Study of an Iminosugar-Aza-Crown, a Sweet Chiral Cyclam Analog

Alexandra Bordes, Ana Poveda, Thibault Troadec, Antonio Franconetti, Ana Ardá, Flavie Perrin, Mickaël Ménand, Matthieu Sollogoub, Jérôme Guillard, Jérôme Désiré, Raphael Tripier, Jesús Jiménez-Barbero,* and Yves Blériot*

ABSTRACT: A new family of chiral C_2 symmetric tetraazamacrocycles, coined ISAC for IminoSugar Aza-Crown, incorporating two iminosugars adopting a C_1 conformation is disclosed. Multinuclear NMR experiments on the corresponding Cd$^{2+}$ complex show that the ISAC is a strong chelator in water and its tetramine cavity adopts a conformation similar to that of the parent Cd$^+$ cyclam complex. Similar behavior is observed with Cu$^{2+}$ in solution, with enhanced stability compared to the Cu$^+$ cyclam complex.

Oxygen- and nitrogen-based macrocycles, often referred to as "crowns", have been long known for their coordinating abilities toward anions and cations. In this context, sugar-based macrocyclic compounds are of high interest and demonstrated, biological, environmental, and medical properties.\(^1\) Several advantages are associated with their glycosidic nature including their availability from natural sources and their polyhydroxylated pattern allowing the modulation of their physicochemical properties. Furthermore, their chirality combined with the geometric constraints brought by the five- or six-membered sugar rings is useful for the design of conformationally restricted chiral cavities. Thus, the design of sugar-based macrocycles bearing a combination of O- and N-donors is appealing and a vast array has been reported,\(^2\) incorporating furanoses, pyranoses, and disaccharides. Depending on the size of the macrocycle and/or the number of oxygen and nitrogen donor atoms, different guests can be accommodated. Large 15- to 19-membered rings bearing up to three nitrogen atoms (1–3, Figure 1) have been used as excellent ligands for large and/or hard (according to HSAB theory) guests, such as amino acids\(^3\) or ammonium\(^4\)–\(^7\) and alkali metal cations.\(^8\)–\(^11\) Smaller 14-membered rings with two oxygen and two nitrogen donors (4–5, Figure 1) have been designed to accommodate softer or smaller transition metal cations, such as cadmium(II), mercury(II), and copper(II).\(^9\)–\(^11\)

Tetra-azamacrocycles, such as cyclam (1,4,8,11-tetraazacyclotetradecane), constitute another specific class of ligands that have been extensively studied for their complexation properties.\(^12,13\) They have been exploited for the selective binding of transition metals, heavy metals, and lanthanides, especially after their mono- or poly-N-functionalization. In particular, cyclam is one of the azamacrocycles that has been

Figure 1. Structures and targeted guests of known and new polyaza sugar-based macrocycles 1–6.
advantageously employed during these past decades in extraction,14 catalysis,15−17 supramolecular,18 sensing19 bio-inorganic,20 and medicinal chemistry.21 Although they have been decorated with appended carbohydrates on side chains, for formulation or medical imaging purposes,22−24 sugar motifs have never been, to the best of our knowledge, directly included within the skeleton of such polyazamacrocycles. In order to take the best of both worlds, we postulated that incorporation of iminosugars, sugar analogues in which the endocyclic oxygen has been replaced by nitrogen, could be of interest to generate new “sweet” constrained cyclam derivatives, which physicochemical properties could be tuned thanks to their polyhydroxylated nature. Iminosugars have thus far been almost exclusively developed as therapeutic candidates25,26 targeting carbohydrate processing enzymes. Herein, we report the synthesis, conformational analysis, and preliminary ion-binding study of a new nitrogen-containing sugar-based macrocycle coined iminosugar azacrown (ISAC) 6 (Figure 1).

To build the tetraazamacrocyclic framework, we explored an intermolecular macrocyclization, relying either on a reductive amination or on a Staudinger-aza-Wittig (SAW) reaction, a strategy successfully applied for the construction of sugar-aza-crown (SAC) ethers.11,27 The required iminosugar-based azidoaldehyde was prepared as follows. The known azidolactol 7 was next studied through the geometry in water of ISAC 6 (Scheme 1), the structure of which is guided by the necessity to have relatively flexible arms provided by the two carbon and three carbon appendages to favor dimerization and disposed in a trans-relationship to avoid intramolecular coupling. The dimerization of 12 was examined next, the crude expected di-imine being further reduced with NaBH(OAc)\textsubscript{3}. Two solvents (THF, CHCl\textsubscript{3}) and three sources of phosphine (supported PPh\textsubscript{3}, PMe\textsubscript{3}, and Ph\textsubscript{2}PCH\textsubscript{2}CH\textsubscript{2}PH)\textsubscript{3} were screened, all leading to the expected ISAC 13 albeit in poor yield (10−40%) that was contaminated with traces of phosphine species in all cases (Scheme 1). To gain insight into this unsatisfactory dimerization, the reaction was monitored by 1H NMR in CDCl\textsubscript{3} at room temperature over a 4.5 h period using PPh\textsubscript{3} as the phosphine source (Figure 2). We observed the progressive consumption of the starting azidoaldehyde 12 (1H at 9.7 ppm) affording the transient iminophosphorane A (1H at 9.6 ppm). This latter converts to the bicyclic imine B (1H at 8.2 ppm) that slowly equilibrates with the detrimental bicyclic enamine C (1H at 6.3 ppm). The ESIMS analysis of the mixture after 195 min confirms the hypothesis, showing not only the different intermediates but also the expected cyclic imine dimer (see Supporting Information (SI)). These results forced us to examine the alternative reductive amination route. Azidoaldehyde 12 was reduced to the crude aminoaldehyde 14 that was directly engaged in a double reductive amination in the presence of NaBH(OAc)\textsubscript{3} identified as the reagent of choice for imine reduction for such a motif.27 Satisfyingly, the protected ISAC 13 was isolated in 60% yield after preparative HPLC purification, its hydrogenolysis affording the target ISAC 6 (Scheme 1).

The geometry in water of ISAC 6 was next studied through extensive NMR analysis, supported by molecular modeling protocols. The relative simplicity of its 1H NMR spectrum associated with the presence of only one set of sugar protons confirmed its C\textsubscript{2} symmetry in the chemical shift NMR time scale. Both iminosugar rings adopts a chair conformation with the OH groups in the equatorial position as deduced from the observed large coupling constants (J\textsubscript{3,4} = J\textsubscript{4,5} = 9.5 Hz) (Figure 3A) and intraresidue NOEs (H1/H2, H2/H4, H3/H5) (see SI). Analysis of the coupling constants of the aminated arms connecting the iminosugar units suggested some flexibility around the C6−C7=N moiety. In fact, larger temperature coefficients were observed for the 1H NMR signals at positions 7 and 8, while the rest of the 1H NMR signals were barely altered (see SI). Moreover, medium size

![Figure 2. Monitoring of the Staudinger–aza-Wittig reaction of azidoaldehyde 12. Top: Proposed reaction pathway for the Staudinger/Aza-Wittig reaction of azidoaldehyde 12. Bottom: selected regions of the 1H NMR monitoring (CDCl\textsubscript{3}, 400 MHz, 300 K) of the reaction of 12 with PPh\textsubscript{3} and graph of the integrals intensity variation during the reaction.](https://dx.doi.org/10.1021/acs.orglett.0c00503)
coupling constants (between 6.5 and 8 Hz) were also deduced (see SI). Indeed, molecular mechanics calculations showed an ensemble of structures differing in the C6−C7 and C7−N torsion angles that could be clustered into four different families (conformers A−D), conformer A being the global energy minimum (Figure 3B).

Because of the structural similarity between ISAC 6 and cyclam, its ability to chelate divalent cations was scrutinized. To gain insight into the metal binding event, we first investigated cadmium(II) coordination as 113Cd is an NMR active nucleus with the potential of providing structural information through coupling constants and chemical shifts analysis. ISAC 6 was titrated with a solution of 113Cd2+ enriched (93.35%) CdCl2 solution until the 1:1 complex was formed. A slow exchange process in the NMR chemical shift time scale was observed (Figure 4). Notably, the 1H NMR signals of the NH groups were visible, but only when the ISAC 6−Cd complex was formed, strongly suggesting that the exchange process with the water solvent is slowed down, the typical nitrogen inversion is blocked, and the NH orientation becomes fixed.

Thus, 1H−13N and 1H−113Cd HSQC NMR experiments were performed (Figure 5). The 1H−113Cd spectrum (Figure 5 red) showed only one signal for the 113Cd-containing complex (δ(113Cd) = −387 ppm). Indeed, the chemical shift of this signal did not change with the addition of more Cd2+ equivalents, strongly suggesting that only one type of complex was generated. Moreover, strong heteronuclear correlations to the 113Cd were found for the two NH’s and for only one proton of each of the two CH2 groups 7 and 8, those close to NH(b), indicating that these methylene protons display an anti orientation with respect to the cation. Interestingly, variable temperature experiments showed that the exposure of the NH protons to the solvent is different. The measured temperature coefficients indicated that NH(a) is more exposed to solvent than NH(b) (see SI).

Additional NOE experiments showed strong NH(a)/H6-ax and NH(a)/H4 cross peaks confirming the axial disposition of the NH(a) further supported by the 1J coupling constants with H5 (12.6 Hz, ax−eq) and H1 (3.4 Hz, ax−eq) (Figure 6). For NH(b), the ax−ax coupling pattern is evident through H5−H6ax−H7ax−NH(b), also assessing the axial orientation for this NH. Thus, the N−H bonds point toward the same face of the molecule as expected for a trans-I (R,S,R,S) type conformation, which is in full agreement with all the experimental NMR data (Figure 6 and SI).

We finally investigated copper(II) coordination by the ISAC ligand. ISAC 6 with 1 equiv of Cu(ClO4)2·6H2O was placed in water at pH 6.4, and the mixture was heated for 2 h at 50 °C while adjusting the pH at 6.4. The dark blue solution suggested rapid formation of the desired complex that was isolated by precipitation in a water/acetone mixture. The targeted ISAC...
mV when scanning from 50 to 1000 mV·s⁻¹. This demonstrates the enhanced stability of the ISAC 6–copper(I) complex compared to its cyclam parent complex, for which an irreversible reduction wave is described in the literature. To further gain insight into this ISAC 6–copper(I) stability, a pseudoelectrolysis was conducted by scanning from 0.3 to −0.1 V and holding this potential for 30 s to trigger local generation of the Cu⁺ complex (Figure 7D). When scanning back to 0.3 V, the current jump and the intact oxidation wave confirmed the stability of the Cu⁺ complex at the cyclic voltammetry scale, which is very promising in this ligand family. Another important factor in the characterization of coordination complexes is the kinetic inertness of the complex when placed in competitive media. As the nitrogen-based macrocycles are highly basic (cyclam pK_a's = 11.29, 10.19, 1.61, 1.91), the kinetic inertness of their complexes can be assessed by competition with protons in acidic solutions and their degradation followed by UV–vis with the typical decrease of the copper d–d transition band over time. ISAC 6–copper(I) complex inertness was assessed at 20 °C in 1.5 M HCl solution in distilled water. It proved very stable, as its UV spectrum did not change after 15 days while a half-life of 42 min was recorded for the cyclam–Cu complex (see SI).

In conclusion, the synthesis of an iminosugar azacrown is disclosed. In the resulting C_2 symmetric macrocycle, some flexibility around the aminated arms has been observed by NMR, which disappears upon binding to Cd²⁺, suggesting an interesting interplay between preorganization and flexibility. Importantly, the ISAC 6–Cu²⁺ complex adopts a geometry comparable to that of the parent cyclam–Cu²⁺ complex, with significantly enhanced coordination ability in solution. This constitutes a first entry in the coordination chemistry of this new class of azamacrocycles.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.0c00503.

Experimental procedures, characterization data for compounds 7–13, copies of 1H and 13C NMR spectra for compounds 6, 12, and 13; monitoring of the Staudinger–aza-Wittig reaction with 12 by NMR and MS; study of the ISAC 6–Cu²⁺ complex (stability, analogy with cyclam–Cu²⁺ complex) by EPR, cyclic voltammetry and UV–vis spectroscopy; NMR conformational study of ISAC 6 and its complex with Cd²⁺ (PDF)

AUTHOR INFORMATION

Corresponding Authors

Yves Bleriot – Université de Poitiers, Equipe “Synthèse Organique”, Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France; orcid.org/0000-0002-3209-9282; Email: yves.bleriot@univ-poitiers.fr

Jesús Jiménez-Barbero – CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio-Bizkaia 48160, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain; Dept. Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; orcid.org/0000-0001-5421-8513; Email: jjbarbero@cibicbiogune.es
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

YB acknowledges financial support from the European Union (ERDF) and “Région Nouvelle Aquitaine”. J.J.B. thanks the European Research Council for financial support (ERC-2017-AdG, Project Number 788143-RECGLYC-ANMR). J.J.B. also thanks Agencia Estatal Investigación of Spain, AEI (Grant RTI2018-094751-B-C21, a Juan de la Cierva contract to A.F., from UBO for EPR measurements, and Dr. Noé AdG, Project Number 788143-RECGLYC-ANMR). J.J.B. also thanks the European Research Council for financial support from the European Union under the Framework Programme for Research and Innovation Horizon 2020 (Grant agreement No. 788143-RECGLYC-ANMR). E.C. thanks financial support from the European Union under the Framework Programme for Research and Innovation Horizon 2020 (Grant agreement No. 788143-RECGLYC-ANMR). The authors declare no competing financial interest.

REFERENCES

(1) Xie, J.; Bogliotti, N. Synthesis and Applications of Carbohydrate-Derived Macroyclic Compounds. Chem. Rev. 2014, 114 (15), 7678–7739.
(2) Potopnyk, M. A.; Jarosz, S. Nitrogen-Containing Macrocycles Having a Carbohydrate Scaffold. In Advances in Carbohydrate Chemistry and Biochemistry; Elsevier: 2014; Vol. 71, pp 227–295. DOI: 10.1016/B978-0-12-801208-8.00003-4.
(3) Pietrasszkiewicz, M.; Kozbial, M.; Pietrasszkiewicz, O. Chiral recognition of amino acids by diazacrown ethers and crowns incorporating a manno-pyranoside unit, immobilized in a supported liquid membrane. Enantiomer 1997, 2, 319–326.
(4) Pietrasszkiewicz, M. Dynamic LH Nuclear Magnetic Resonance Spectroscopic Studies of Complexes Formed between Substituted Ammonium Cations and t w o Chiral Diazacrown Ethers Incorporating Asymmetric Carbohydrate Units. J. Chem. Soc., Perkin Trans. 2 1985, 2, 1559–1562.
(5) Jarosz, S.; Lewandowski, B. Synthesis and Complexation Properties towards the Ammonium Cation of Aza-Coronand Analogues Containing Succrose. Carbohydr. Res. 2008, 343 (5), 965–969.
(6) Lewandowski, B.; Jarosz, S. Chiral Recognition of α-Phenyl-ethylamine by Sucrose-Based Macroyclic Receptors. Chem. Commun. 2008, 47, 6399.
(7) Jarosz, S.; Listkowski, A.; Lewandowski, B.; Ciuńzik, Z.; Bruszskiewicz, A. Macroyclic Receptors Containing Succrose. Tetrahedron 2005, 61 (35), 8485–8492.
(8) Bakó, P.; Vizvári, K.; Toppet, S.; Van der Eycken, E.; Hoornaert, G. J.; Tóke, L. Synthesis, Extraction Ability and Application in Asymmetric Synthesis of Azacrown Ethers Derived from D-Glucose. Tetrahedron 1998, 54 (49), 14975–14988.
(9) Hsieh, Y.-C.; Chir, J.-L.; Wu, H.-H.; Chang, F.-S.; Wu, A.-T. A Sugar-Aza-Crown Ether-Based Fluorescent Sensor for Hg2+ and Cu2+. Carbohydr. Res. 2009, 344 (16), 2236–2239.
(10) Hsieh, Y.-C.; Chir, J.-L.; Yang, S.-T.; Chen, S.-J.; Hu, C.-H.; Wu, A.-T. A Sugar-Aza-Crown Ether-Based Fluorescent Sensor for Cu2+ and Hg2+ Ions. Carbohydr. Res. 2011, 346 (7), 978–981.
(11) Xie, J.; Ménand, M.; Maisonneuve, S.; Métivier, R. Synthesis of Bispyrenyl Sugar-Aza-Crown Ethers as New Fluorescent Molecular Sensors for Cu(II). J. Org. Chem. 2007, 72 (16), 5980–5985.
(12) Izatt, R. M.; Pawlak, K.; Bradshaw, J. S.; Breening, R. L. Thermodynamic and Kinetic Data for Macrocyclic Interactions with Cations and Anions. Chem. Rev. 1991, 91 (8), 1721–2085.
(13) Delgado, R.; Félix, V.; Lima, L. M. P.; Price, D. W. Metal Complexes of Cyclen and Cyclam Derivatives Useful for Medical Applications: A Discussion Based on Thermodynamic Stability Constants and Structural Data. Dalton Transactions 2007, 26, 2734–2745.
(14) Perelay, L.; Louvet, V.; Handel, H.; Appriou, P. Application d’un tétraazamacrocyle greffé sur polymère à l’extraction et au dosage du cuivre en eau de mer. Anal. Chim. Acta 1985, 169, 325–330.
(15) Alves, L. G.; Madeira, F.; Munhá, R. F.; Maulide, N.; Vieiros, L. F.; Martins, A. M. Cooperative Metal–Ligand Hydromation Catalysis Supported by C–H Activation in Cyclam Zr(IV) Complexes. Inorg. Chem. 2018, 57 (20), 13034–13045.
(16) Kuehnel, M. F.; Sahm, C. D.; Neri, G.; Lee, J. R.; Orchard, K. L.; Cowan, A. J.; Reisinger, E. ZnSe Quantum Dots Modified with a Nif(Cyclam) Catalyst for Efficient Visible-Light Driven CO2 Reduction in Water. Chemical Science 2018, 9 (9), 2501–2509.
(17) Liang, X.; Parkinson, J. A.; Parsons, S.; Weisshaupt, M.; Sadler, P. J. Cadmium Cyclam Complexes: Interconversion of cis and Trans Configurations and Fuzzation of CO2. Inorg. Chem. 2002, 41 (17), 4539–4547.
(18) Bartoli, F.; Bencini, A.; Conti, L.; Giorgi, C.; Valtancoli, B.; Paoli, P.; Rossi, P.; Le Bris, N.; Tripier, R. Catching Anions with Coloured Assemblies: Binding of PH Indicators by a Giant-Size Cationic Macrocyclic Radiometal Complex. A Challenge for Coordination Chemists. Biomol. Chem. 2014, 12, 2085–2099.
(19) Su, H.; Chen, X.; Fang, W. ON–OFF Mechanism of a Fluorescent Sensor for the Detection of Zn(II), Cd(II), and Cu(II)/Transition Metal Ions. Anal. Chem. 2014, 86 (1), 891–899.
(20) Kaden, T. A. Labelling Monoclonal Antibodies with Macroyclic Radiometal Complexes. A Challenge for Coordination Chemists. Dalton Transactions 2006, 30, 3617.
(21) Labrosse, B.; Bretel, A.; Heveker, N.; Sol, N.; Schols, D.; De Clercq, E.; Alizon, M. Determinants for Sensitivity of Human Immunodeficiency Virus Coreceptor CXC4R4 to the Bicyclam AMD3100. J. Virol. 1998, 72 (8), 6381–6388.
(22) Larpent, C.; Laplace, A.; Zemb, T. Macro cyclic Sugar-Based Surfactants: Block Molecules Combining Self-Agregation and
(23) Burke, H. M.; Gunnlaugsson, T.; Scanlan, E. M. Glycosylated Lanthanide Cyclen Complexes as Luminescent Probes for Monitoring Glycosidase Enzyme Activity. *Org. Biomol. Chem.* 2016, 14 (38), 9133−9145.

(24) Moats, R. A.; Fraser, S. E.; Meade, T. J. A “Smart” Magnetic Resonance Imaging Agent That Reports on Specific Enzymatic Activity. *Angew. Chem., Int. Ed. Engl.* 1997, 36 (7), 726−728.

(25) Horne, G.; Wilson, F. X. Therapeutic Applications of Iminosugars: Current Perspectives and Future Opportunities. In *Progress in Medicinal Chemistry*; Elsevier: 2011; Vol. 50, pp 135−176. DOI: 10.1016/B978-0-12-381290-2.00004-5.

(26) Nash, R. J.; Kato, A.; Yu, C.-Y.; Fleet, G. W. Iminosugars as Therapeutic Agents: Recent Advances and Promising Trends. *Future Med. Chem.* 2011, 3 (12), 1513−1521.

(27) Menand, M.; Blais, J.-C.; Valery, J.-M.; Xie, J. De Novo Synthesis of Sugar-Aza-Crown Ethers via a Domino Staudinger Aza-Wittig Reaction. *J. Org. Chem.* 2006, 71 (8), 3295−3298.

(28) Gradnig, G.; Legler, G.; Stütz, A. E. A Novel Approach to the 1-Deoxynojirimycin System: Synthesis from Sucrose of 2-Acetamido-1,2-Dideoxynojirimycin, as Well as Some 2-N-Modified Derivatives. *Carbohydr. Res.* 1996, 287 (1), 49−57.

(29) Zoidl, M.; González Santana, A.; Torvisco, A.; Tysoe, C.; Siriwardena, A.; Withers, S. G.; Wrodnigg, T. M. The Staudinger/aza-Wittig/Grignard Reaction as key step for the concise synthesis of 1-C-alkyl-iminoalditol glycomimetics. *Carbohydr. Res.* 2016, 429, 62−70.

(30) Mondon, M.; Fontelle, N.; Desire, J.; Lecornue, F.; Guillard, J.; Marrot, J.; Blériot, Y. Access to L- and D-Iminosugar C-Glycosides from a D-Gluc-6-Azidolactol Exploiting a Ring Isomerization/Alkylation Strategy. *Org. Lett.* 2012, 14 (3), 870−873.

(31) Yu, W.; Mei, Y.; Kang, Y.; Hua, Z.; Jin, Z. Improved Procedure for the Oxidative Cleavage of Olefins by OsO₄−NaIO₄. *Org. Lett.* 2004, 6 (19), 3217−3219.

(32) Lucas, R.; Balbuena, P.; Errey, J. C.; Squire, M. A.; Gurcha, S. S.; McNeil, M.; Besra, G. S.; Davis, B. G. Glycomimetic Inhibitors of Mycobacterial Glycosyltransferases: Targeting the TB Cell Wall. *ChemBioChem* 2008, 9 (14), 2197−2199.

(33) El Majzoub, A.; Cadiou, C.; Déchamps-Olivier, L.; Tinant, B.; Chuburu, F. Cyclam-Methylbenzimidazole: A Selective OFF-ON Fluorescent Sensor for Zinc. *Inorg. Chem.* 2011, 50 (9), 4029−4038.

(34) Prevedello, A.; Bazzan, I.; Dalle Carbonare, N.; Giuliani, A.; Bhardwaj, S.; Africh, C.; Cepek, C.; Argazzi, R.; Bonchio, M.; Caramori, S.; et al. Heterogeneous and Homogeneous Routes in Water Oxidation Catalysis Starting from Cu(II) Complexes with Tetraaza Macrocyclic Ligands. *Chem. - Asian J.* 2016, 11 (8), 1281−1287.

(35) Woodin, K. S.; Heroux, K. J.; Boswell, C. A.; Wong, E. H.; Weisman, G. R.; Niu, W.; Tomellini, S. A.; Anderson, C. J.; Zakharov, L. N.; Rheingold, A. L. Kinetic Inertness and Electrochemical Behavior of Copper(II) Tetraaza macrocyclic Complexes: Possible Implications for in Vivo Stability. *Eur. J. Inorg. Chem.* 2005, 2005 (23), 4829−4833.

(36) Wadas, T. J.; Wong, E. H.; Weisman, G. R.; Anderson, C. J. Coordinating Radiometals of Copper, Gallium, Indium, Yttrium, and Zirconium for PET and SPECT Imaging of Disease. *Chem. Rev.* 2010, 110 (5), 2858−2902.

(37) Havliková, J.; Medová, H.; Víth, T.; Kotek, J.; Cisařová, I.; Hermann, P. Coordination Properties of Cyclam (1,4,8,11-Tetraaza-cyclo-tetrade-cane) Endowed with Two Methylphosphononic Acid Pendant Arms in the 1,4-Positions. *Dalton Transactions* 2008, 39, 5378.