Prevalence and genotypic characterization of *Salmonella* spp. from chicken meats marketed in the province of Skikda, Algeria

Djeffal Samia1, Mamache Bakir2, Elgroud Rachid1, Bentchouala Chaffia3, Bouaziz Omar1, Jean-Marc Rolain4, Seydina Mouhamadou Diene4

1 GSPA Research Laboratory (Management of Animal Health and Productions), Institute of Veterinary Sciences, University Frères Mentouri Constantine-1, Constantine, Algeria

2 Institute of Veterinary and Agronomic Sciences, University Hadj Lakhdar Batna-1, Batna, Algeria

3 Microbiology Laboratory of the University Teaching Hospital of Constantine, Constantine, Algeria

4 MEPHI, IRD, APHM, IHU-Méditerranée Infection, Faculté de Pharmacie, Aix-Marseille Université, Marseille, France

Abstract

Here, we aim to determine the prevalence of *Salmonella* contamination of poultry meat from butcheries of the province of Skikda and to investigate antibiotic resistance. *Salmonella* spp. isolates were screened from 70 samples, including chicken breasts (n = 40 samples) and chicken thighs (n = 30 samples) collected from 14 butcheries. All suspected *Salmonella* colonies from selective media were confirmed by MALDI-TOF MS and serotyped. The susceptibility profile to 16 antibiotics was studied. According to the antibiotic susceptibility results, resistance genes were investigated by standard PCR targeting various genes such as *bla*_{SHV}, *bla*_{TEM}, *aac3*, *aac6-Ibcr*, *aad*, *qnrA* and *qnrB*. Of the 14 butcheries studied, samples from eight butcheries were contaminated with *Salmonella* (57.14%). 19 *Salmonella* strains were isolated, including five serotypes with a predominance of Kentucky serotype (n = 9), Enteridis (n = 3), followed by Heidelberg (n = 3), Virchow (n = 3), and Manhattan (n = 1). All isolates were resistant to Rifampicin (100%; n = 19), and to other antibiotics such as Ciprofloxacin (47.36%), Amoxicillin-clavulanic acid (47.36%; n = 9), Amoxicillin, (47.36%; n = 9), Ticarcillin-clavulanic acid (47.36%; n = 9), and Gentamycin (47.36%; n = 9). All isolates showing multidrug resistance (47.36%; n = 9) were positive by PCR to the *bla*_{TEM-1} β-lactamase gene, from which 8 strains carried the aminoglycoside resistance *aad7* gene. However, none was positive for the tested *bla*_{SHV}, *Aac3*, *Aac6-Ibcr*, *qnrA*, *qnrB*, *ArmA* and *ArmB* genes. Our findings show a worrying rate of *Salmonella* contamination of poultry meats.

Key words: Antibiotic resistance; butcheries; *Salmonella*; white meat, Algeria.

J Infect Dev Ctries 2021; 15(4):523-529. doi:10.3855/jidc.13986

(Received 23 September 2020 – Accepted 17 November 2020)

Copyright © 2021 Samia et al. This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction

Salmonella is one of the most important causes of foodborne diseases worldwide. It is frequently associated with consumption of contaminated products such as poultry, eggs, meat, milk and seafood [1]. *S. enterica* infection leads to severe public health consequences and significant economic losses [2]. Algeria has seen a significant development of the poultry industry over the last decade and chicken meat is the most popular because of its relatively low price and easy digestibility [3,4]. According to the statistics of the Ministry of Agriculture, Algeria produces about 460,000 tons of white meat and 6 billion eggs annually [5]. In Algeria, the poultry meat contamination occurs during the transport of live birds, their housing, slaughter and marketing without compliance with basic hygiene criteria. This meat is generally implicated in human salmonellosis outbreaks causing acute gastroenteritis, especially in young and immunodeficient patients [6]. Furthermore, poultry has been reported as a source of non-typhoidal *Salmonella* resistant to clinically relevant antibiotics with a higher incidence in middle-income countries [7]. The emergence and spread of antimicrobial-resistant *Salmonella* strains, particularly multi-drug resistant (MDR), is a major public health concern [7]. Genes conferring resistance to these antibiotics have been found on different plasmid types. The latter carry multiple antibiotic resistance genes that are transferable to other *Salmonella* strains and other bacterial species [7]. In this scope, the present study was undertaken to study the prevalence of *Salmonella* contamination in marketed poultry meat in Skikda province and to...
characterize the antibiotic resistance mechanisms of the *Salmonella* isolates.

Methodology

Study locations

The present study was carried out from 14 butcheries, located in the province of Skikda (northeastern Algeria), over a period from December 2014 to February 2016. We have tried to cover the most accessible municipalities of the province. For technical reasons, including purchase of poultry meats, a total of 70 samples were collected. Samples consisted of three breasts and two thighs. All samples were transported to the laboratory into ice packs within a period not exceeding two hours to be treated on the same day or kept in the refrigerator overnight.

Data collection and analysis

Bacteriological analyses were performed according to the EN/ISO 6579-2002/Amd1:2007 protocol for *Salmonella* detection in food and animal feedstuffs [8]. Samples (25g) of meat and skin of breast and thigh were individually pre-enriched with 225 mL of buffered peptone water broth (PWB) (Fluka, Sigma Aldrich, St. Quentin Fallavier, France). All samples were incubated at 37°C for 18-20 hours. From each pre-enrichment solution, 1 mL and 0.1 mL were respectively transferred into 10 mL of enrichment Muller-Kauffmann tetraionate / novobiocin broth (AES Chemunex Combourg, Bretagne, France) and 10 mL of Rappaport Vassiliadis broth (Merck Darmstadt, Land Hessen, Germany) and incubated at 37 °C and 42 °C for 24 hours, respectively. Both enriched samples were then streaked on XLD (Fluka analytical Steinheim, Buchs, Switzerland) and Hektoen agars (Pasteur Institute of Algeria) and incubated at 37 °C for 24 hours. Suspected colonies were first identified with the API 20E System (bioMérieux, Crappone, France), then confirmed with MALDI-TOF MS (Matrix Assisted Laser Desorption Ionization Time OF light Mass Spectrometry) (Bruker Daltonics GmbH, Germany) [9]. The protein mass profiles were obtained using the Microflex LT MALDI-TOF mass spectrometer (Bruker Daltonics, Brême, Germany), with Flex Control software (Bruker Daltonics, Brême, Germany). The spectrum profiles obtained were visualized with Flex analysis v.3.3 software and exported to MALDI-Biotyper v.3.0 (Bruker Daltonics, Germany) for data processing (smoothing, baseline subtraction and spectra selection). The phyloproteomic analysis of *Salmonella* strains was assessed through construction and comparison of their reference spectra (main spectra) with the MALDI-Biotyper v.3.0 software (Bruker Daltonics, Germany). Cluster analysis was performed based on a pairwise comparison of specific main spectra (MSP: mean spectra projection dendrogram) of the different strains to generate a dendrogram of similarities among spectra profiles using the software default correlation function.

Confirmed *Salmonella* isolates were serotyped according to the Kauffmann-White-Le Minor’s scheme [10]. Antibiotic susceptibility test was determined on Mueller-Hinton agar by standard disk diffusion procedure, as described by the European Committee on Antimicrobial Susceptibility Testing [11]. The *Salmonella* isolates were tested for amoxicillin (25μg), amoxicillin / clavulanic acid, ticarcillin / clavulanic acid, ceftriaxone, cefoxitin, cefotaxime, imipenem, ertapenem, aztreonam, gentamicin, amikacin, ciprofloxacin, colistin, rifampicin, trimethoprim / sulfamethoxazole and fosfomycin.

PCR Detection and sequencing of ESBL genes

Screening for resistance genes focused on a subset of isolates selected according to their resistance phenotype. The presence of the resistance genes in these isolates was determined by different PCR assays. Total nucleic acids were extracted using a BioRobot EZ1 Advanced XL instrument (QIAGEN, Hilden, Germany) according to the manufacturer’s instructions. Detection of β-lactamase genes (including *bla*TEM, *bla*SHV, and *bla*CTX-M), fluoroquinolones genes (*qnr*A, *qnr*B), aminoglycoside genes (AG)-modifying enzymes (*aac (3)and aac(6’)-Ib-cr*) was carried out by polymerase chain reaction (PCR) using specific primers: *bla*CTX-M-1 group [12], *bla*CTX-M-9 group [13], *bla*TEM group [14], *bla*SHV [15], *qnr*A, *qnr*B [16], AME-encoding genes [armA, *aad*, *aac(6)-Ib*] [17] and for MCR-1 encoding gene [18]. Positive PCRs were verified by electrophoresis using agarose gels containing SYBR safe (Invitrogen, Leek, the Netherlands), along with a DNA molecular weight marker (Benchtop pGEM®DNA Marker, Promega, Madison, Wisconsin, USA). Visualization of gels was carried out using the Benchtop pGEM® DNA Marker (Promega, Madison, Wisconsin, USA) under ultraviolet illumination. Positive PCR products were purified using the NucleoFast 96 PCR plate (Machery-Nagel EURL, RIORGES, France) and sequenced using the BigDye terminator chemistry on an ABI3730 automated sequencer (Applied Biosystems, Foster City, California, USA). The obtained sequences were blasted against the ARG-ANNOT database [19].
Results
Prevalence of poultry meat contamination by Salmonella

Of the 14 butcher shops studied, eight had poultry meat contaminated with Salmonella, resulting in a prevalence rate of 57.14%. The number of contaminated samples with Salmonella varied according to the nature of the sample: 10 breasts (n = 40), and 9 thighs (n = 30).

Distribution and antimicrobial resistance of Salmonella serotypes

Nineteen Salmonella strains were isolated from poultry meat samples and confirmed by MALDI-TOF MS and gave very good scores ranging from 2.00 to 3.00. The phyloproteomic analysis of the multidrug resistant Salmonella strains (n = 9) from poultry meats of the present study and isolates from human and poultry of our previous study [20] was assessed through the construction and comparison of their characteristic reference spectra (main spectra). As shown on Figure 1, we noted that all Salmonella strains from poultry meats and five poultry farms avian strains clustered together (A distance level of 150). Interestingly, we observe that Salmonella strains of the present study (in red) clustered together with strains of our previous study, suggesting the presence of a Salmonella clone which contaminate poultry meats and farm environment.

Five serotypes from nineteen Salmonella strains were identified with a predominance of the serotypes Kentucky (n = 9), Enteritidis (n = 3) followed by Heidelberg (n = 3), Virchow (n = 3) and Manhattan (n = 1). Butchery isolates were found to be resistant to Rifampicin (100%). Among 19 isolates, only nine isolates exhibited antibiotic resistance phenotype. We also noted resistance to other antibiotics (Table 1), such as Ciprofloxacin (n = 9, 47.36%), Amoxicillin-clavulanic acid (n = 9, 47.36%), Amoxicillin (n = 9, 7.36%), Ticarcillin-clavulanic acid (n = 9, 47.36%), and Gentamycin (n = 9, 47.36%). All tested isolates were susceptible to colistin. Nine strains carried blaTEM gene while eight strains (10%) carried aad genes. Sequencing of blaTEM and aad PCR products and Blast analysis of these sequences reveals the presence the β-lactamase blaTEM-1 and the aminoglycoside resistance aadA7 gene. However, PCR search was negative for the

Figure 1. Dendrogram of resistant Salmonella strains isolated from chicken meat, farms, slaughterhouses and human. The multidrug resistant Salmonella isolates in the present study (colored in red) are compared with isolates of our previous study [20].

Isolate name	Year	Serotype	Source
Salmonella 192	2016	Kentucky	Meat
Salmonella 191	2016	Kentucky	Meat
Salmonella 172	2012	Heidelberg	Poultry
Salmonella 174	2012	Heidelberg	Poultry
Salmonella 167	2012	Heidelberg	Poultry
Salmonella 162	2012	Heidelberg	Poultry
Salmonella 193	2016	Kentucky	Meat
Salmonella 190	2016	Kentucky	Meat
Salmonella 195	2016	Kentucky	Meat
Salmonella 189	2016	Kentucky	Meat
Salmonella 196	2016	Kentucky	Meat
Salmonella 188	2016	Kentucky	Meat
Salmonella 171	2012	Heidelberg	Poultry
Salmonella 186	2016	Virchow	Meat
Salmonella 169	2012	Newport	Poultry
Salmonella 884	2015	Heidelberg	Human
Salmonella YFA	2015	Infantis	Human
Salmonella 178	2012	Heidelberg	Poultry
Salmonella 170	2012	Heidelberg	Poultry
Salmonella 165	2012	Heidelberg	Poultry
Salmonella 164	2015	Heidelberg	Poultry
Salmonella 476	2015	Infantis	Human
Salmonella 305	2015	Serftenberg	Human
Salmonella 177	2012	Heidelberg	Poultry
Salmonella 163	2012	Heidelberg	Poultry
Salmonella 883	2015	Heidelberg	Human
Salmonella 1577	2015	Serftenberg	Human
Antimicrobial resistance and resistant genes profiles of MDR *Salmonella enterica* strains isolated from poultry meat.

Strain ID N°	Origin	Antimicrobial resistance pattern	Serotype	Resistance genes
179	Breast	RA	Heidelberg	/
180	Breast	RA	Heidelberg	/
181	Breast	RA	Heidelberg	/
182	Breast	RA	Manhattan	/
183	Breast	RA	Enteritidis	/
184	Breast	RA	Enteritidis	/
185	Thigh	RA	Enteritidis	/
186	Breast	AMX, AMC, TIM, CN, CIP, RA	Virchow	*bla*TEM-1
187	Thigh	RA	Kentucky	/
188	Thigh	AMX, AMC, TIM, CN, CIP, RA	Kentucky	*bla*TEM-1, aadA7
189	Breast	AMX, AMC, TIM, CN, CIP, RA	Kentucky	*bla*TEM-1, aadA7
190	Breast	AMX, AMC, TIM, CN, CIP, RA	Kentucky	*bla*TEM-1, aadA7
191	Thigh	AMX, AMC, TIM, CN, CIP, RA	Kentucky	*bla*TEM-1, aadA7
192	Breast	AMX, AMC, TIM, CN, CIP, RA	Kentucky	*bla*TEM-1, aadA7
193	Thigh	AMX, AMC, TIM, CN, CIP, RA	Kentucky	*bla*TEM-1, aadA7
194	Thigh	RA	Virchow	/
195	Thigh	AMX, AMC, TIM, CN, CIP, RA	Kentucky	*bla*TEM-1, aadA7
196	Thigh	AMX, AMC, TIM, CN, CIP, RA	Virchow	*bla*TEM-1, aadA7
197	Thigh	RA	Kentucky	/

AMX: Amoxicillin; AMC: Amoxicillin/Clavulanic acid; CRO: Ceftriaxone; TIM: Ticarcillin/Clavulanic acid; RA: Rifampicin; CN: Gentamicin; CIP: Ciprofloxacin; RA: Rifampicin.
carrying resistance genes was *Salmonella* Kentucky. It has become the most commonly detected serovar in chickens, while *S. Typhimurium* remains the most common cause of human infections. The prevalence of multidrug resistance (MDR) *S. Kentucky* isolates from poultry is significant [37].

The present study demonstrates the presence of TEM genes. This finding is partly consistent with the results of previous studies, which confirmed the presence of β-lactamase encoding the *blaTEM* gene conferring resistance to penicillins and first-generation cephalosporins [38,39]. ESBLs are mostly located on mobile genetic elements (plasmids or integrons) that can facilitate their mobility from a bacterial species to another by horizontal gene transfer [38]. We have reported the presence of *aad* genes that confer resistance to streptomycin, gentamicin and tobramycin. Aminoglycoside resistance in *Salmonella* is generally associated with the expression of aminoglycoside-modifying enzymes [40]. Our results are in accordance with those of Djeghout et al., who reported the presence of *aadA7*, *aadA2* and *aadA3* genes on most of streptomycin-resistant strains of *Salmonella* isolated from human and poultry in four Algerian cities [41]. Moawad et al. [38] and Sheng et al. [42] reported the presence of *aadA2* gene in isolates from retail meats in Egypt and Japan respectively [38,42]. Moreover, in Algeria, several studies have reported various contaminations of avian products by *Salmonella* spp. These contaminations may take place through the food chain, occupational exposure or direct contact with live animals and their environment in the broiler chicken industry [41,43,44,45].

Conclusions

The results of the present study demonstrate the existence of a worrying rate of *Salmonella* contamination in poultry meat that is sold in butcheries of the Skikda province. The potential implications of contaminated surfaces (slaughteringhouses, kitchens and butcher shops) in the direct transmission of highly pathogenic micro-organisms such as *Salmonella* spp. to poultry meat are very frequent. The emergence of antimicrobial resistance of *S. enterica* isolates is a serious public concern in Algeria. Significantly, high rates of resistance have been detected to penicillin, cephalosporins, fluoroquinolones and aminoglycosides. Presence of genes encoding for antibiotic resistance was confirmed. In perspective, it would be interesting to carry out similar or more extensive studies on much larger samples in order to compare the results and evaluate these circulating clones with those of the study we previously performed on farms and slaughterhouses in the same region [20].

Acknowledgements

The authors would like to thank Dr Gharbi W., Dr Bougrioua R. and Dr Bouragba N.W. for their technical assistance during the bacteriological analysis. We thank also CookieTrad for English proof reading of the manuscript.

Authors’ contributions

SD has actively worked on the isolation of *Salmonella* strains, identification of strains by mass spectrometry and their characterization (antibiotic-susceptibility testing, molecular typing of genes, sequencing), data interpretation, drafting the paper and revising it. BM participated actively in drafting the paper and critically revising it. RE conceptualization, methodology, supervision. OB conceived and designed the study. BC contributed in part to the study design and data analysis (Serotyping and antibiotic-susceptibility testing of meat strains). J-MR conceived and designed the study and contributed to the revision of the article. SMD conceived and designed the study and actively in drafting the paper and critically revising it.

Ethical approval

This study was conducted according to ethical guidelines that were controlled and approved by the scientific council of the Institute of Veterinary Sciences (Mentouri Brothers University, Constantine - 1, Algeria) and complied with the guidelines for animal care and use in research and teaching. It is worth noting that no live birds were used in this study.

Funding

This work was supported by the Algerian Ministry of Higher Education and Scientific Research and by the French Government under the «Investissements d’avenir» (reference: Méditerranée Infection 10-IAHU-03).

References

1. Pui CF, Wong C, Chai LC, Lee HY, Noorlis A, Zainazor C, Tang FY, Ghazali FM, Cheah YK, Nakaguchi Y, Nishibuchi M, Radu S (2011) Multiplex PCR for the concurrent detection and differentiation of *Salmonella* spp., *Salmonella Typhi* and *Salmonella Typhimurium*. Trop Med Health 39: 9-15.
2. Rabch W, Tschape H, Baumler AJ (2001) Non-typhoidal salmonellosis: emerging problems. Microbes Infect 3: 237-247.
3. Mekademi K, Saidani K (2013) Contamination of broilers by *Salmonella* non Typhi in Mitidja. Curr Res Sci: 213-217.
4. Khalafalla FA, Abdel-Atty NS, Abdel-Wanis SA, Hanafy AS (2015) Food poisoning microorganisms in chiken broiler meat. Glob Vet 14: 211-218.
5. Le soir d’Algérie (2015) Survey on the poultry market in Algeria, the staggering weight of clandestine networks [Article in French]. Available:
http://www.lesoirdalgerie.com/articles/2015/10/26/article.php?sid=186204&cid=2. Accessed: 28 February 2017.

6. Pieskus J, Milius J, Michalskiene I, Zagrebeniene G (2006) The distribution of Salmonella serovars in chicken and human in Lithuania. J Vet Med Assoc 53: 12-16.

7. Antunes P, Mourao J, Campos J, Peixe L (2016) Salmonellosis: the role of poultry meat. Clin Microbiol Infect 22: 110-121.

8. International Organization for Standardization (ISO) (2007) Microbiology General Guidance on methods for the detection of Salmonella –2002/Amendment 1, Annex D: Detection of Salmonella spp. in animal feces and in environmental samples from the primary production stage. AW/9 ISO6579.

9. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, Rolain JM, Raoult D (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49: 543-551.

10. Guibourdenche M, Roggentin P, Mikoleit M, Fields PI, Bockemuhl J, Grimont PA, Weill FX (2010) Supplement 2003-2007 (No. 47) to the White-Kaufmann-Le Minor scheme. Res. Microbiol 161: 26-29.

11. European Comitee on Antimicrobial Susceptibility Testing (EUCAST) (2015) Breakpoint tables for interpretation of MICs and zone diameters. Version 5.0. Available: http://www.eucast.org. Accessed 10 March 2016.

12. Roschanski N, Fischer J, Guerra B, Roesler U (2014) Development of a Multiplex Real-Time PCR for the Rapid Detection of the Predominant Beta-Lactamase Genes CTX-M, SHV, TEM and CIT-Type AmpCs in Enterobacteriaceae. PLOS ONE 7: e100956.

13. Edelstein M, Pimkin M, Palagin I, Edelstein I, Stratchounski L (2003) Prevalence and molecular epidemiology of CTX-M extended-spectrum β-lactamase producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrob Agents Chemother 12: 3724-3732.

14. Kruger T, Szabo D, Keddy KH, Deeley K, Marsh W, Hujer AM, Bonomo RA, Paterson DL (2004) Infections with non-typhoidal Salmonella species producing TEM-63 or a novel TEM enzyme, TEM-131, in South Africa. Antimicrob Agents Chemother 41: 4263-4270.

15. Touati A, Brasme L, Benallaloua S, Gharout A, Madoux J, De Champs C (2008) First report of qnrB-producing Enterobacter cloacae and qnrA-producing Acinetobacter baumannii recovered from Algerian hospitals. Diagn. Microbiol Infect Dis 60: 287-290.

16. Kim JY, Park J, Kwon HJ, Han K, Kang MW, Woo GJ (2008) Occurrence and mechanisms of amikacin resistance and its association with beta-lactamases in Pseudomonas aeruginosa: a Korean nationwide study. Antimicrob Agents Chemother 62: 479-483.

17. Chabou S, Leangapichart T, Okdah L, Le Page S, Hadjadj L, Rolain JM (2016) Real-time quantitative PCR assay with Taqman(R) probe for rapid detection of MCR-1 plasmid-mediated colistin resistance. New Microbes New Infect 13: 71-74.

18. Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M, Landraud L, Rolain JM. (2014) ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemoth 58: 212-220.

19. Djefal S, Bakour S, Mamache B, Elgroud R, Agabou A, Chabou S, Hiereche S, Bouaziz O, Rahal K, Rolain M (2017) Prevalence and clonal relationship of ESBL-producing Salmonella strains from humans and poultry in northeastern Algeria. BMC Vet Res 13: 132.

20. Miranda JM, Mondragon AC, Martinez B, Guarddon M, Rodriguez JA (2009) Prevalence and antimicrobial resistance patterns of Salmonella from different raw foods in Mexico. J Food Prot 72: 966-971.

21. Adeyanju GT, Ishola O (2014) Salmonella and Escherichia coli contamination of poultry meat from a processing plant and retail markets in Ibadan, Oyo State, Nigeria. Springerplus 3: 139.

22. Moussa IM, Gassem MA, Al-Doss AA, Sadik WAM, Mawood AAL (2010) Using molecular techniques for rapid detection of Salmonella serovars in frozen chicken and chicken products collected from Riyadh, Saudi Arabia. Afr J Biotechnol 9: 612-619.

23. Harrison WA, Griffith CJ, Tennant D, Peters AC (2001) Incidence of Campylobacter and Salmonella isolated from retail chicken and associated packaging in South Wales. Lett Appl Microbiol 33: 450-454.

24. Meldrum RJ, Tucker ID, Smith RM, Edwards C (2005) Survey of Salmonella and Campylobacter contamination of whole, raw poultry on retail sale in Wales in 2003. J Food Prot 68: 1447-1449.

25. Wong TL, Whyte RJ, Cornielius AJ, Hudson JA (2004) Enumeration of Campylobacter and Salmonella on chicken packs. Br Food Journal 106: 651-662.

26. Wong TL, Hollis L, Cornielius A, Nicol C, Cook R, Hudson JA (2007) Prevalence, numbers, and subtypes of Campylobacter jejuni and Campylobacter coli in Uncooked Retail Meat Samples. J Food Prot 70: 566-573.

27. Kegode RB, Doektott DK, Khaita LS, Wesley IV (2008) Occurrence of Campylobacter species, Salmonella species and generic Eschirichia coli in meat products from retail outlets in the Fargo metropolitan area. J Food Saf 28: 111-125.

28. Bornek G (2000) Salmonella-free chicken meat: myth or reality? Rev Med Vet 151: 1883-1094. [Article in French]

29. De Boer E, Hahne M (1990) Cross-contamination with Campylobacter jejuni and Salmonella spp. from raw chicken products during food preparation. J Food Prot 53: 1067-1068.

30. De Wit JC, Broekhuizen G, Kampelmacher E (1979) Cross contamination during the preparation of frozen chickens in the kitchen. J Food Prot 83: 27-32.

31. European Food Safety Authority (EFSA) (2013) Scientific Report of EFSA and ECDC the European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2001. EFSA, Journal 11: 3129.

32. Abdeltwab AA, Ahmed A, Nasif SA, El-Hofy FI, Nehal N (2015) Molecular studies on antimicrobial resistance genes in Salmonella isolated from poultry flocks in Egypt. Benha Vet Med J 28: 176-187.

33. Hayes JR, English LL, Carr LE, Wagner DD, Joseph SW (2004) Multiple-antibiotic resistance of Enterococcus spp. isolated from commercial poultry production environments. Appl. Environ. Microbiol 70: 6005-6011.

34. Castanon JI (2007) History of the use of antibiotic as growth promoters in European poultry feeds. Poult Sci 86: 2466-2471.
36. Shea KM (2004) Nontherapeutic use of antimicrobial agents in animal agriculture: implications for pediatrics. Pediatrics 114: 862-868.

37. Foley SL, Nayak R, Hanning IB, Han J, Ricke SC (2011) Population dynamics of Salmonella enterica serotypes in commercial egg and poultry production. Appl Environ Microbiol 77: 4273-4279.

38. Moawad AA, Hotzel H, Awad O, Tomaso H, Neubauer H, Hafez HM, El-Adawy H (2017) Occurrence of Salmonella enterica and Escherichia coli in raw chicken and beef meat in northern Egypt and dissemination of their antibiotic resistance markers. Gut Pathog 9: 57.

39. Qiao J, Zhang Q, Alali WQ, Wang J, Meng L, Xiao Y, Yang H, Chen S, Cui S, Yang B (2017) Characterization of extended-spectrum beta-lactamases (ESBLs)-producing Salmonella in retail raw chicken carcasses. Int. J Food Microbiol 248: 72-81.

40. Alcaine SD, Warnick LD, Wiedmann M (2007) Antimicrobial resistance in nontyphoidal Salmonella. J Food Prot 70: 780-790.

41. Djeghout B (2017) Diversity of non-typhoidal Salmonella in Algeria. Doctorate thesis in Life Sciences and Biotechnologies. Departement of biomedical Sciences, University of Sassari, 100 p.

42. Sheng C, Shaohua Z, David GW, Carl M, Ran L, Anchun Y, Trick F, Dermott S, Anghong M (2004) Characterization of multiple antibiotic resistant Salmonella serovars Isolated from Retail. Appl Environ Microbiol 70: 1-7.

43. Elgroud R, Zerdoumi F, Benazzouz M, Bouzitouna-Benchouala C, Granier SA, Fremy S, Brisabois A, Dufour B, Millemann Y (2009) Characteristics of Salmonella contamination of broilers and slaughterhouses in the region of Constantine (Algeria). Zoonoses Public Health 56: 84-93.

44. Ayachi A, Alloui N, Benmoune O, Kassah-Laouar A (2010) Survey of Salmonella serovars in broilers and laying breeding reproducers in East of Algeria. J Infect Dev Ctries 4: 103-106. doi: 10.3855/jidc.562.

45. Bouzidi N, Aoun L, Dekhil M, Granier S, Poirel L, Brisabois A, Nordmann P Millemann Y (2011) Co-occurrence of aminoglycoside resistance gene armA in non-Typhi Salmonella isolates producing CTX-M-15 in Algeria. J Antimicrob Chemother 66: 2180-2181

Corresponding author
Seydina M. Diene, PhD, Associate-professor
MEPHI, IRD, APHM, IHU-Méditerranée Infection, Faculté de Pharmacie, Aix-Marseille Univ, 19-21 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France.
Phone: +33 4 91 32 43 75
Email: seydina.diene@univ-amu.fr

Conflict of interests: No conflict of interests is declared.