RESEARCH ARTICLE

Molecular Taxonomic Evidence for Two Distinct Genotypes of *Mycobacterium yongonense* via Genome-Based Phylogenetic Analysis

Byoung-Jun Kim, Bo-Ram Kim, So-Young Lee, Ga-Na Kim, Yoon-Hoh Kook, Bum-Joon Kim*

Department of Biomedical Sciences, Microbiology and Immunology, Cancer Research Institute, Institute of Endemic Diseases, and Seoul National University Medical Research Center (SNUMRC), Seoul National University College of Medicine, Seoul, Republic of Korea

* kbumjoon@snu.ac.kr

Abstract

Recently, we introduced a distinct *Mycobacterium intracellulare* INT-5 genotype, distantly related to other genotypes of *M. intracellulare* (INT-1 to -4). The aim of this study is to determine the exact taxonomic status of the *M. intracellulare* INT-5 genotype via genome-based phylogenetic analysis. To this end, genome sequences of the two INT-5 strains, MOTT-H4Y and MOTT-36Y were compared with *M. intracellulare* ATCC 13950T and *Mycobacterium yongonense* DSM 45126T. Our phylogenetic analysis based on complete genome sequences, multi-locus sequence typing (MLST) of 35 target genes, and single nucleotide polymorphism (SNP) analysis indicated that the two INT-5 strains were more closely related to *M. yongonense* DSM 45126T than the *M. intracellulare* strains. These results suggest their taxonomic transfer from *M. intracellulare* into *M. yongonense*. Finally, we selected 5 target genes (*argH*, *dnaA*, *deaD*, *hsp65*, and *recF*) and used SNPs for the identification of *M. yongonese* strains from other *M. avium* complex (MAC) strains. The application of the SNP analysis to 14 MAC clinical isolates enabled the selective identification of 4 *M. yongonense* clinical isolates from the other MACs. In conclusion, our genome-based phylogenetic analysis showed that the taxonomic status of two INT-5 strains, MOTT-H4Y and MOTT-36Y should be revised into *M. yongonense*. Our results also suggest that *M. yongonense* could be divided into 2 distinct genotypes (the Type I genotype with the *M. parascrofulaceum* *rpoB* gene and the Type II genotype with the *M. intracellulare* *rpoB* gene) depending on the presence of the lateral gene transfer of *rpoB* from *M. parascrofulaceum*.

Introduction

Members of the *Mycobacterium avium* complex (MAC) are the most important nontuberculous mycobacteria (NTM) in terms of clinical and epidemiological aspects [1]. Traditionally,
MAC includes two species: *M. avium* and *M. intracellulare* [2–4]. In addition to these 2 species, recent advances in molecular taxonomy have fueled the identification of novel species within the MAC [5–10]. Our group introduced a novel species *Mycobacterium yongonense*, which was closely related to *M. intracellulare*, from a Korean patient with pulmonary symptoms [11]. Notably, *M. yongonense* possessed a distinct RNA polymerase gene (*rpoB*) sequence that was identical to *M. parascrofulaceum*, which is a distantly related scotochromogen, suggesting the acquisition of the *rpoB* gene via a potential lateral gene transfer (LGT) event [12, 13]. Recently, *M. yongonense* strains causing pulmonary disease were also isolated from patients in Italy [14]. However, it should be noted that these strains harbored *rpoB* sequences that were almost identical to *M. intracellulare* and not *M. parascrofulaceum*, suggesting the possibility of the existence of another group of *M. yongonense* strains.

Our group reported that *M. intracellulare*-related strains from Korean patients showed genetic diversity. This diversity could be used to divide the strains into a total of five distinct groups (INT-1 to -5) via the molecular taxonomic approach using three independent chromometer molecules: *hsp65*, the internal transcribed spacer 1 (ITS-1) region and the 16S rRNA gene [15]. Of these genotypes, the INT-5 strains were distantly related to other genotypes of *M. intracellulare* (INT-1 to -4). We also introduced the complete genome sequences of two INT-5 strains, MOTT-H4Y and MOTT-36Y [16, 17], showing that they were more closely related to the genome of *M. yongonense* DSM 45126T than *M. intracellulare* ATCC 13950T, despite they have *rpoB* sequences identical to *M. intracellulare*, but not *M. parascrofulaceum*. Furthermore, our recent study indicated that they harbored a novel insertion element (IS) sequence (ISMyo2) specific to *M. yongonense* [18]. Collectively, it suggests that MOTT-H4Y and MOTT-36Y might be variants of *M. yongonense* that were not subject to the *rpoB* LGT event from *M. parascrofulaceum*. Recently, it has been also reported that *M. yongonense* may be mis-identified as one of the *M. intracellulare* strains [14, 19]. Therefore, the establishment of consensus guidelines is needed for the exact species delineation between *M. intracellulare* and *M. yongonense*.

So, the aim of the current study is to determine the exact taxonomic status of the two INT-5 strains, MOTT-H4Y and MOTT-36Y with the *M. intracellulare rpoB* sequences but with genomic sequences closely related to *M. yongonense* via genome-based phylogenetic analysis.

Materials and Methods

Mycobacterial Strains

A total of 16 clinical isolates were used in this study. These clinical isolates were collected from the Asan Medical Center (Seoul, Republic of Korea) and Seoul National University Hospital (Division of Pulmonary & Critical Care Medicine, Seoul, Republic of Korea). These strains were identified into genotypes by phylogenetic analysis based on *hsp65*, ITS1 and 16S rRNA gene sequences [15] and *rpoB* sequence analysis [6, 20] (S1 Table). These strains were grouped [15] as follows: five INT-1 strains (Asan 29591, 29778, 36309, 37128, and 37721), five INT-2 strains (Asan 36638, 37016, 38392, 38402, and 38585), and six INT-5 strains (Asan 36527 and 36912, MOTT-68Y, MOTT-H4Y, MOTT-36Y and Rhu). For genomic DNA extraction, the clinical isolates were cultured on Middlebrook 7H10 agar plates supplemented with OADC (BD GmbH, Heidelberg, Germany) for 7–10 days in a 5% CO₂ incubator at 37°C. Genomic DNA was prepared by the bead beater-phenol extraction method as previously described [21].

Complete Genome Sequence-Based Phylogenetic Analysis

For the phylogenetic analysis of the two INT-5 strains (MOTT-H4Y and MOTT-36Y), their genome sequences [MOTT-H4Y (Genbank accession No. AKIG0000000) and MOTT-36Y
BAA-614T. Then, the patterns were compared. Additionally, the extracted SNP sequences were
software [30]. Using the multiple alignment matrix, phylogenetic trees were constructed
selected gene sequences were multiply aligned using the ClustalW method in the MEGA 4.0
MOTT-02 (GenBank accession No. NC_016947) [22–24]. These genome sequences were subjected to whole-genome multiple sequence alignments using the neighbor-joining method [25] by the Mauve Genome Alignments software (http://darlinglab.org/mauve/mauve.html). A phylogenetic tree was generated using the aligned genome sequences and visualized by the TreeViewX program (http://darwin.zoology.gla.ac.uk/~rpage/treeviewx/); additionally, a Venn diagram was constructed by the BLASTCLUST program. The minimum length coverage and identity threshold in BLASTCLUST were 0.9 and 95%, respectively.

Phylogenetic Analysis Based on rpoB and 35 Selected Target Gene Sequences or Single Nucleotide Polymorphisms (SNPs) of the 35 Selected Target Gene Sequences

To analyze the sequence differences among the 3 *M. intracellulare* strains (*M. intracellulare* ATCC 13950T, *M. intracellulare* MOTT-02, and *M. intracellulare* MOTT-64), 2 INT-5 strains (MOTT-H4Y and MOTT-36Y) and *M. yongonense* DSM 45126T, the rpoB gene and 35 additional gene sequences were selected from the genome sequences. In the selected 35 genes, 10 genes (*argH, cya, glpK, hsp65, murC, pta, recA, secA1 and sodA*) [26–29] were included for mycobacterial MLST analysis, and other 25 genes were randomly selected in the housekeeping genes without any standards. The list of chosen genes is as follows: adenylate kinase (*adk*), argininosuccinate lyase (*argH*), chorismate synthase (*aroC*), shikimate 5-dehydrogenase (*aroE*), F0F1 ATP synthase subunit beta (*atpD*), adenylate cyclase (*cya*), cytochrome b6 (*cytB*), ATP-dependent RNA helicase, dead/death box family protein (*deaD*), chromosomal replication initiation protein (*dnaA*), DNA primase (*dnaG*), molecular chaperone DnaK (*dnaK*), chaperone protein (*dnaJ*), 3-oxoacyl-(acyl-carrier-protein) reductase (*fabG*), cell division protein PtsZ (*ftsZ*), fumarate hydratase (*fumC*), malate synthase G (*glcB*), glutamine synthetase type I (*glnA*), glycerol kinase (*glpK*), fructose 1,6-bisphosphatase II (*glpX*), 6-phosphogluconate dehydrogenase (*gnd*), DNA gyrase subunit B (*gyrB*), heat-shock protein 65 KD (*hsp65*), myo-inositol-1-phosphate synthase (*inhA*), NAD-dependent DNA ligase *LigA* (*ligA*), ATP-dependent DNA ligase (*ligB* and *ligC*), UDP-N-acetylmuramate-L-alanine ligase (*murC*), endonuclease III (*nth*), glucose-6-phosphate isomerase (*pgi*), phosphoglycerate kinase (*pgk*), phosphate acetyltransferase (*pta*), recombinase A (*recA*), recombination protein F (*recF*), preprotein translocase subunit SecA (*secA1*), and [Mn]- superoxide dismutase (*sodA*) (Table 1). The retrieved rpoB gene or the concatenated 35 selected gene sequences were multiply aligned using the ClustalW method in the MEGA 4.0 software [30]. Using the multiple alignment matrix, phylogenetic trees were constructed using the neighbor-joining method [25] in the MEGA 4.0 software [30]. The bootstrap values were calculated from 1,000 replications.

SNPs were extracted from the multiple alignments of rpoB gene sequences and the 35 selected gene sequences from the 3 *M. intracellulare* strains (*M. intracellulare* ATCC 13950T, *M. intracellulare* MOTT-02, and *M. intracellulare* MOTT-64), 2 *M. intracellulare* INT-5 strains (MOTT-H4Y and MOTT-36Y), *M. yongonense* DSM 45126T and *M. parascrofulaceum* ATCC BAA-614T. Then, the patterns were compared. Additionally, the extracted SNP sequences were concatenated and used to construct a phylogenetic tree as described above.
Application of SNP Analysis to MAC Clinical Isolates

To confirm the different SNP patterns between the INT-5 strains and other *M. intracellulare* strains (INT-1 or INT-2 strains), five genes of other *M. intracellulare* clinical isolates, which proved to have more *M. yongonense*-group related signature SNPs than others, were amplified and sequenced for further analysis. The five selected genes were *argH*, *dnaA*, *deaD*, *hsp65* and *recF*. Genomic DNA from each of the five INT-1 strains (Asan 29591, 29778, 36309, 37128, and 37721), five INT-2 strains (Asan 36638, 37016, 38392, 38402, and 38585), and four INT-5 strains (Asan 36527 and 36912, MOTT-68Y and Rhu) was used to amplify the five selected genes. As a positive and a negative control of PCR of 5 genes, genomic DNA of

No.	Genes	Compared nucleotide size (bp)	Total SNPs (n)	*M. yongonense*-group related-SNPs (n)
1	adk	534	49	0
2	argH	1,431	199	10
3	aroC	1,206	134	0
4	aroE	888	134	0
5	atpD	1,461	164	0
6	cya	1,554	207	5
7	cytB	1,704	185	0
8	deaD	1,704	228	14
9	dnaA	1,503	193	11
10	dnaG	1,953	250	5
11	dnaJ	1,149	124	2
12	dnaK	1,860	118	2
13	fabG	768	80	0
14	ftsZ	1,161	108	0
15	fumC	1,407	152	0
16	gicB	2,169	183	0
17	ginA	1,437	106	1
18	gipK	1,527	223	2
19	gipX	987	101	0
20	gnd	1,521	147	0
21	gvrB	2,034	245	4
22	hsp65	1,626	103	6
23	ino1	1,095	81	2
24	ligA	2,082	257	3
25	ligB	1,530	167	0
26	ligC	1,056	173	3
27	murC	1,479	207	0
28	nth	792	84	0
29	pgi	1,665	203	0
30	pgk	1,236	187	0
31	pta	2,160	328	3
32	recA	1,053	49	0
33	recF	1,158	235	18
34	rpoB	3,390	185	0
35	secA1	2,829	268	3
36	sodA	624	118	0

doi:10.1371/journal.pone.0152703.t001
intracellulare ATCC 13950\(^T\) and distilled water were also used. The five primer sets were as follows: argH, argH_F 5\’–TGA GCA AGT CCA CCC ATT TC–3\’ and argH_R 5\’–TGG CGT CGA TGG AGT TGT C–3\’; dnaA, dnaA_F 5\’–ACG AGC CTC AAC CGC C–3\’ and dnaA_R 5\’–CTC ACG GCA CAG GTA CAT CG–R; deaD, deaD_F 5\’–GGA ATA CAA GCA GGT GGC ACT–3’ and DEAD_R 5\’–GCG TTC GTA GTC CTG GAC CA–3’; hsp65, hspF3 5\’–ATC GCC AAG GAG ATC GAG CT–3’ and hspR4 5\’–AAG GTG CCG CGG ATC TTG TT–3’ and recF, recF_F 5\’–GAA ATC CCT GTC TGG CGC–3’ and recF_R 5\’–TCA TGC GCG CAT CTC C–3’.Template DNA and each primer pair (20 pmol) were added to the PCR pre-mix (AccuPower PCR PreMix, Bioneer), and PCR was conducted by subjecting the samples to 5 min at 95°C, followed by 30 cycles of 95°C for 30 s, 58–60°C for 30 s, and 72°C for 1 min, and a final extension at 72°C for 5 min. The PCR reaction was performed in a MyCycler (Bio-RAD). The PCR products were detected and purified using the MEGAquick-Spin Total Fragment DNA Purification kit (iNtRON) for direct sequencing. Sequencing reactions were performed using an MJ Research PTC-225 Peltier Thermal Cycler and ABI PRISM BigDye Terminator Cycle Sequencing kits with the AmpliTaq DNA polymerase (FS enzyme, Applied Biosystems) following the manufacturer’s protocols. The obtained sequences were aligned using the MegAlign software package (DNASTAR), and then the SNPs in the sequences were analyzed.

Results

Genome Sequence-Based Phylogenetic Analysis of Two INT-5 Strains, MOTT-H4Y and MOTT-36Y

The phylogenetic relationships between 3 *M. intracellulare* strains (ATCC 13950\(^T\), MOTT-02, and MOTT-64), 2 INT-5 strains (MOTT-H4Y and MOTT-36Y) and one *M. yongonense* strain (DSM 45126\(^T\)) were analyzed using the genome sequence information (Fig 1). All 6 strains were clustered together in a branch. The strains were separated into two different branches: one including 3 *M. intracellulare* strains (ATCC 13950\(^T\), MOTT-02, and MOTT-64) and the other including *M. yongonense* DSM 45126\(^T\) and the two INT-5 strains, MOTT-H4Y and MOTT-36Y. This result indicated that the two INT-5 strains were more closely related to *M. yongonense*.
yongonense DSM 45126T than the 3 M. intracellulare strains (ATCC 13950T, MOTT-02, and MOTT-64) (Fig 1).

To assess the number of genes shared between each genome, we performed a BLASTCLUST analysis on the four genomes (M. intracellulare ATCC 13950T, MOTT-H4Y, and M. yongonense DSM 45126T or M. intracellulare ATCC 13950T, MOTT-36Y, and M. yongonense DSM 45126T). At the level of 95% identity, M. intracellulare MOTT-36Y or MOTT-H4Y shared more orthologous coding sequences (CDSs) with M. yongonense DSM 45126T (4,271/5,128 CDSs, 83.3% or 4,287/5,020 CDSs, 85.4%, respectively) than M. intracellulare ATCC 13950T (4,101/5,128 CDSs, 80.0% or 4,052/5,020 CDSs, 80.7%, respectively) (Fig 2). This finding supported the results of our phylogenetic study that the two INT-5 strains might belong to M. yongonense rather than to M. intracellulare (Fig 1).

Phylogenetic Analysis of Two INT-5 Strains, MOTT-H4Y and MOTT-36Y Based on the rpoB Gene Sequences and the Sequences of 35 Selected Target Genes

The taxonomic signature of M. yongonense was previously reported to be based on the rpoB gene sequence. The sequence of this gene is identical to the distantly related species M. parascrofulaceum, which enables the separation of the 2 closely related species M. intracellulare and M. yongonense [11, 12]. Therefore, to obtain the exact taxonomic delineation of the two INT-5 strains we compared their taxonomic location by phylogenetic analysis based on the sequences of rpoB and 35 selected target genes.

The entire sequences of rpoB and the 35 selected genes were retrieved from the genome sequences of 6 mycobacterial strains [3 M. intracellulare strains (M. intracellulare ATCC 13950T, MOTT-02, and MOTT-64), 2 INT-5 strains (MOTT-36Y and MOTT-H4Y) and M. yongonense DSM 45126T] (Table 1) and subjected to phylogenetic analysis. In the rpoB gene (3,375 to 3,462 bp)-based phylogenetic analysis, the two INT-5 strains MOTT-H4Y and MOTT-36Y were clustered into the group including the M. intracellulare strains (M. intracellulare ATCC 13950T, MOTT-02, and MOTT-64) and were separated from M. yongonense DSM 45126T and M. parascrofulaceum ATCC BAA-614 (Fig 3A). However, in the phylogenetic analyses based on the sequences of the 35 selected genes, the two INT-5 strains MOTT-H4Y and MOTT-36Y were clustered into M. yongonense DSM 45126T and separated from the other 3
intracellulare strains with a high bootstrap value (> 99%), as shown in the genome sequence-based phylogenetic analysis (Figs 1 and 3B). These results suggest that there may be a distinct *M. yongonense* genotype having an *rpoB* gene sequence that is almost identical to *M. intracellulare*.

Phylogenetic Analysis of Two INT-5 Strains (MOTT-H4Y and MOTT-36Y) Based on Single Nucleotide Polymorphisms (SNPs) of the rpoB and 35 Targeted Genes

Multiple alignments of the *rpoB* and 35 gene sequences from the 3 *M. intracellulare* (M. intracellular, MOTT-02 and MOTT-64), 2 INT-5 (MOTT-H4Y and MOTT-36Y), *M. yongonense* and *M. parascrofulaceum* showed that there were *M. yongonense* group-related SNPs in 17 genes [hsp65 (6 *M. yongonense* group-related SNPs/103 total SNPs), *argH* (10/199), *cya* (5/207), *dnaJ* (2/124), *glpK* (2/223), *pta* (3/328), *recF* (18/235), *secA1* (3/268), *deaD* (14/228), *dnaA* (11/193), *dnaG* (5/250), *dnaK* (2/118), *glmA* (1/106), *gyrB* (4/245), *ino1* (2/81), *lgA* (3/257), and *lgC* (3/173)] (Table 1). Detailed *M. yongonense* group-related SNP signatures are listed in Table 2.

In the case of *rpoB* gene, there was no *M. yongonense* group-related SNPs, however, *rpoB* gene of *M. yongonense* shared identical 151 SNPs with that of *M. parascrofulaceum*. A concatenated phylogenetic tree was constructed using the extracted SNP sequences. The tree showed that the two INT-5 strains were clustered into *M. yongonense* DSM 45126T and separated from the other 3 *M. intracellulare* strains based on the phylogenetic analyses of the complete genome sequences and 35 concatenated gene sequences (Figs 1, 3B and 4A).
Application of the M. yongonense-Related SNP Analysis to MAC Clinical Isolates

To develop SNP analysis to enable the selective identification of M. yongonense strains from the MAC strains, five genes (argH, deaD, dnaA, hsp65 and recF) were selected that possessed a

Table 2. Details of M. yongonense group-related SNP signatures.

Genes	M. yongonense group-related SNP signatures
argH	C105T a C132G C138G C244T G303A C306G C322T G339G T566C C603A
cya	C399G C414G G432C C483G C504T
deaD	G204C G210C G216T G276A A315T C376T C648T G640A A894G T993C G1062C C1068G G1191A C1383T
dnaA	T222C C441G G639A G651C G714C G759A C921T C1035G G1080A A1326G G1341C
dnaG	C897G G921T C1350G C1488T G1560T
dnaJ	C849T C1008T
dnaK	C1476T T1509C
glaA	T1434A
glgK	T30C C723G
gyrB	C297G G375C C660T G702C
hsp65	G198A C555G G633C C726T G1191C G1539C
ino1	G291C G396A
lgaA	A146C C441G G1986A
lgcA	C384T G813A C933T
pTA	C1368T C1371T C1464T
recF	C171T C249A C264T C279T G336A T429C A467G T534G G570C C579T G586C T660C G771T T796C T937C G963A C1009T G1123A
secA1	G645C T717G C1854G

All the nucleotide positions were determined from Mycobacterium intracellulare ATCC 13950T strain. Bold characters represent M. yongonense group-related SNPs.

doi:10.1371/journal.pone.0152703.t002

Application of the M. yongonense-Related SNP Analysis to MAC Clinical Isolates

To develop SNP analysis to enable the selective identification of M. yongonense strains from the MAC strains, five genes (argH, deaD, dnaA, hsp65 and recF) were selected that possessed a

![Neighbor-joining phylogenetic tree based on concatenated SNPs](http://example.com/fig4)

Fig 4. Neighbor-joining phylogenetic tree based on concatenated SNPs. (A) A concatenated SNP-based tree from 35 target genes of 3 M. intracellulare, 2 INT-5 strains, M. yongonense, and M. parascrofulaceum. (B) A concatenated SNP-based tree from 5 selected genes (argH, dnaA, deaD, hsp65 and recF) from 3 M. intracellulare, 2 INT-5 strains, M. yongonense, and M. parascrofulaceum and 14 clinical isolate strains. The indicated INT-groupings were assigned in a previous report [15]. The bootstrap values were calculated from 1,000 replications and values <50% were not shown. The bar indicates the number of substitutions per nucleotide position.

doi:10.1371/journal.pone.0152703.g004
higher number of _M. yongonense_ group (_M. yongonense_ DSM 45126T and two INT-5 strains MOTT-H4Y and MOTT-36Y) -related SNPs compared to the other genes. To explore the usefulness of this assay, sequence analysis of the five genes was applied to a total of 14 MAC clinical isolates from different Korean patients [five _M. intracellulare_ INT-1 strains (Asan 29591, 29778, 36309, 37128 and 37721), five _M. intracellulare_ INT-2 strains (Asan 36638, 37016, 38392, 38402 and 38585), and four INT-5 strains (Asan 36527, 36912, Rhu and MOTT-68Y)] and 7 was subjected to phylogenetic analysis.

All four INT-5 strains had 10 _M. yongonense_ group-related SNPs in the partial _argH_ gene sequence out of 10 _M. yongonense_ group-related SNPs (from 105 nt to 657 nt). However, two INT-1 (Asan 29778 and 37721) and two INT-2 group (Asan 37016 and 38392) strains also shared one _M. yongonense_ group-related SNP (G339C). All four INT-5 strains had 7 _M. yongonense_ group-related SNPs in the partial _dnaA_ gene sequence out of 7 _M. yongonense_ group-related SNPs (from 627 nt to 1257 nt). However, one INT-2 group strain (Asan 38392) also shared one _M. yongonense_ group-related SNP (C921T). All four INT-5 strains had 7 _M. yongonense_ group-related SNPs in the partial _deaD_ gene sequence out of 7 _M. yongonense_ group-related SNPs (from 588 nt to 1191 nt). However, three INT-2 strains also shared one or four _M. yongonense_ group-related SNPs (Asan 36638: C1068G; Asan 38392: C1068G; and Asan 38585: C648T, C681T, G1062C, and C1068G). In the partial _hsp65_ gene sequence with 4 _M. yongonense_ group-related SNPs (from 192 nt to 726 nt), two INT-5 group strains (Asan 36527 and Asan 36912) had only one _M. yongonense_ group-related SNPs (G198A) and the three INT-1 or INT-2 SNPs (C555, G633 and C726), while the other two strains (Rhu and MOTT-68Y) had 4 _M. yongonense_ group-related SNPs. All of the INT-5 group strains had 11 _M. yongonense_ group-related SNPs in the partial _recF_ gene sequence out of 11 _M. yongonense_ group-related SNPs (from 520 nt and 1131 nt). However, one INT-1 (Asan 36309: T660C and G1123A) and one INT-2 strain (Asan 38392: T660C) shared one or two _M. yongonense_ group-related SNPs.

The phylogenetic analysis based on the concatenated SNP sequences (395 bp) extracted from the five target genes showed that all four INT-5 strains of _M. yongonense_ may share were clearly separated from the other _M. intracellulare_ clinical isolates (Fig 4B). These results suggested the usefulness of SNP analysis for the taxonomic separation of _M. yongonense_ from closely related _M. intracellulare_ strains.

Discussion

In the present study, our phylogenetic analysis based on complete genome sequences, multi-locus sequence typing (MLST) of 35 target genes, and single nucleotide polymorphism (SNP) analysis indicated that the two INT-5 strains, MOTT-H4Y and MOTT-36Y were more closely related to _M. yongonense_ DSM 45126T than the _M. intracellulare_ strains. This finding suggests the presence of another distinct genotype in _M. yongonense_ that may not have been subjected to the LGT event of _rpoB_ from _M. parascrofulaceum_. Therefore, _M. yongonense_ could be divided into 2 distinct genotypes: one with the _M. parascrofulaceum_ _rpoB_ gene and the other with the _M. intracellulare_ _rpoB_ gene, depending on the presence of the LGT event of _rpoB_ from _M. parascrofulaceum_ (Figs 1 and 3). Here, we proposed the former and the latter as the _M. yongonense_ Type I and Type II genotypes, respectively.

To date, a total of 3 strains (_M. yongonense_ DSM 45126T, Asan 36912 and Asan 36527) belonging to the _M. yongonense_ Type I genotype have been introduced via our 2 recent reports [11, 12]. The Rhu strain used in this study was also identified as the Type I genotype by _rpoB_ gene analysis (data not shown). In addition to MOTT-H4Y and MOTT-36Y, one additional strain (MOTT-68Y) used in this study was identified as the _M. yongonense_ Type II genotype.
Although detailed taxonomic proof is needed, the *M. yongonense* strains recently isolated in Italy have the potential to be included in the *M. yongonense* Type II genotype.

LGT is the major mechanism by which bacteria can acquire genetic diversity, guaranteeing their survival under harsh environmental conditions [31, 32]. However, it is generally accepted that mycobacteria are more resistant to LGT compared to other bacteria, possibly due to the unusually mycolic acid-rich cell wall structure and the relative scarcity of genetic elements such as plasmids and transposable elements [33–35]. Notably, because the *M. yongonense* strains were demonstrated to possess an *rpoB* gene that might have been laterally transferred from the distantly-related scotochromogenic species *M. parascrofulaceum*, these strains have gained increasing importance in the mycobacterial taxonomic fields. One of the noteworthy findings in this study is the identification of a novel genotype of *M. yongonense* without the *rpoB* gene from the LGT event in its genome. A genome comparison study between 3 mycobacterial groups [the *M. yongonense* Type I (subject to the LGT event) and Type II genotypes (without the LGT event) and *M. parascrofulaceum* (gene donor for LGT)] may provide novel insights into our understandings regarding mycobacterial LGT mechanisms.

In the present study, we developed an SNP analysis targeting 5 genes (*argH, deaD, dnaA, hsp65* and *recF*) for the separation of *M. yongonense* from the closely related *M. intracellulare* strains. The concatenated 395-bp SNP-based phylogenetic analysis clearly separated 7 *M. yongonense* strains from 12 closely related *M. intracellulare* strains belonging to the INT-1 and INT-2 genotypes, which were the first and the second most prevalent genotypes in Korean patients infected with *M. intracellulare*, respectively, with 83% bootstrap values (Fig 4A). This result suggests the feasibility of this assay for the selective identification of *M. yongonense* strains in clinical settings. Interestingly, this assay could not differentiate 4 Type I (DSM 45126T, Asan36527, Asan 36912, and Rhu) and 3 Type II strains (MOTT-H4Y, MOTT-36Y and MOTT-68Y) (Fig 4B), suggesting the potential for gene exchanges by LGT events between the 2 genotypes. Notably, a total of 39 *M. yongonense* signature SNPs out of the 395 selected SNPs were found. These SNPs could be used for the development of *M. yongonense*-specific molecular diagnostic methods.

In conclusion, our genome-based phylogenetic analysis indicated that the taxonomic status of the two INT-5 strains, MOTT-H4Y and MOTT-36Y previously identified as *M. intracellulare* should be revised to *M. yongonense*. Taken together, *M. yongonense* could be divided into 2 distinct genotypes depending on the presence of the LGT event of *rpoB* from *M. parascrofulaceum*: the Type I genotype with the *M. parascrofulaceum rpoB* gene and the Type II genotype with the *M. intracellulare rpoB* gene. Additionally, we developed a novel SNP-based phylogenetic analysis to enable the taxonomic identification of *M. yongonense* clinical strains.

Supporting Information

S1 Table. Strains used in this study. (XLSX)

Author Contributions

Conceived and designed the experiments: Bum-Joon Kim. Performed the experiments: Byoung-Jun Kim BRK SYL GNK. Analyzed the data: Byoung-Jun Kim YHK Bum-Joon Kim. Wrote the paper: YHK Bum-Joon Kim.

References

1. Johnson MM, Odell JA. Nontuberculous mycobacterial pulmonary infections. J Thorac Dis. 2014; 6 (3):210–20. doi: 10.3978/j.issn.2072-1439.2013.12.24 PMID: 24624285
2. Falkinham JO 3rd. Epidemiology of infection by nontuberculous mycobacteria. Clin Microbiol Rev. 1996; 9(2):177–215. PMID: 8694035

3. Inderlied CB, Kemper CA, Bermudez LEM. The Mycobacterium-Avium Complex. Clin Microbiol Rev. 1993; 6(3):266–310. PMID: 8358707

4. Turenne CY, Wallace R Jr., Behr MA. Mycobacterium avium in the postgenomic era. Clin Microbiol Rev. 2007; 20(2):205–29. PMID: 17428883

5. Bang D, Herlin T, Stegger M, Andersen AB, Torkko P, Tortoli E, et al. Mycobacterium arosiensis sp. nov., a slowly growing, scotochromogenic species causing osteomyelitis in an immunocompromised child. Int J Syst Evol Microbiol. 2008; 58(Pt 10):2398–402. doi: 10.1099/ijs.0.65503-0 PMID: 18842863

6. Ben Salah I, Cayrou C, Raoult D, Drancourt M. Mycobacterium-yongonense sp. nov., Mycobacterium-timonense sp. nov. and Mycobacterium bouchedorhonense sp. nov., members of the Mycobacterium avium complex. Int J Syst Evol Microbiol. 2009; 59(Pt 11):2803–8. doi: 10.1099/ijs.0.010637-0 PMID: 19628609

7. Murcia MI, Tortoli E, Menendez MC, Palenque E, Garcia MJ. Mycobacterium-colonbiense sp. nov., a novel member of the Mycobacterium avium complex and description of MAC-X as a new ITS genetic variant. Int J Syst Evol Microbiol. 2006; 56(Pt 9):2049–54. PMID: 16957098

8. Saini V, Raghuvanshi S, Talwar GP, Ahmed N, Khurana JP, Hasnain SE, et al. Polyphasic taxonomic analysis establishes Mycobacterium indicus pranii as a distinct species. PloS One. 2009; 4(7):e6263. doi: 10.1371/journal.pone.0006263 PMID: 19606228

9. Tortoli E, Rindi L, Garcia MJ, Chiaraodonna P, Dei R, Garzelli C, et al. Proposal to elevate the genetic variant MAC-A, included in the Mycobacterium avium complex, to species rank as Mycobacterium-chimaera sp. nov. Int J Syst Evol Microbiol. 2004; 54(Pt 4):1277–85. PMID: 15280303

10. van Ingen J, Boere MJ, Kusters W, Wieland A, Tortoli E, Dekhuijzen PN, et al. Proposal to elevate Mycobacterium avium complex ITS sequevar MAC-Q to Mycobacterium-vulnieri sp. nov. Int J Syst Evol Microbiol. 2009; 59(Pt 9):2277–82. doi: 10.1099/ijs.0.008854-0 PMID: 19620376

11. Kim BJ, Hong SH, Kook YH. Mycobacterium-yongonense sp. nov., a slow-growing non-chromogenic species closely related to Mycobacterium-intracellulare. Int J Syst Evol Microbiol. 2013; 63(1):1–9. doi: 10.1099/ijs.0.037465-0 PMID: 22427442

12. Kim BJ, Hong SH, Kook YH. Molecular evidence of lateral gene transfer in rpoB gene of Mycobacterium-yongonense strains via multilocus sequence analysis. PloS One. 2013; 8(1):e51846. doi: 10.1371/journal.pone.0051846 PMID: 23382812

13. Kim BJ, Kim BR, Lee SY, Seok SH, Kook YH. Whole-Genome Sequence of a Novel Species, Mycobacterium-yongonense DSM 45126¹. Genome Announc. 2013; 1(4). Epub 2013/08/10. doi: 10.1128/genomeA.00604-13

14. Tortoli E, Mariotti A, Pierotti P, Simonetti TM, Rossolini GM. Mycobacterium-yongonense in pulmonary disease, Italy. Emerg Infect Dis. 2013; 19(11):1902–4. doi: 10.3201/eid1911.130919 PMID: 24206761

15. Park JH, Shim TS, Lee SA, Lee H, Lee IK, Kim K, et al. Molecular characterization of Mycobacterium-intracellulare-related strains based on the sequence analysis of hsp65, internal transcribed spacer and 16S rRNA genes. J Med Microbiol. 2010; 59(Pt 9):1037–43. doi: 10.1099/jmm.0.020727-0 PMID: 20522624

16. Lee H, Kim BJ, Kim K, Hong SH, Kook YH. Whole-Genome Sequence of Mycobacterium-intracellulare Clinical Strain MOTT-H4Y, Belonging to INT5 Genotype. Genome Announc. 2013; 1(1). Epub 2013/03/09. doi: 10.1128/genomeA.00006-13

17. Kim BJ, Choi BS, Choi JY, Lee JH, Chun J, Hong SH, et al. Complete genome sequence of Mycobacterium-intracellulare clinical strain MOTT-36Y, belonging to the INT5 genotype. J Bacteriol. 2012; 194(15):4141–2. doi: 10.1128/JB.00752-12 PMID: 22815454

18. Kim BJ, Kim K, Kim BR, Kook YH. Identification of ISMyc2, a novel insertion sequence element of IS21 family and its diagnostic potential for detection of Mycobacterium-yongonense. BMC genomics. 2015; 16(1):794. doi: 10.1186/s12864-015-1978-2 PMID: 26472562

19. Hong SK, Kim EC. Possible misidentification of Mycobacterium-yongonense. Emerg Infect Dis. 2014; 20(6):1089–90. doi: 10.3201/eid2006.131508 PMID: 24856193

20. Adekambi T, Colson P, Drancourt M. rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. J Clin Microbiol. 2003; 41(12):5699–708. PMID: 14662964

21. Kim BJ, Lee SH, Lyu MA, Kim SJ, Bai GH, Kim SJ, et al. Identification of mycobacterial species by comparative sequence analysis of the RNA polymerase gene (rpoB). J Clin Microbiol. 1999; 37(6):1714–20. PMID: 10325313
22. Kim BJ, Choi BS, Lim JS, Choi IY, Kook YH. Complete genome sequence of *Mycobacterium intracellulare* clinical strain MOTT-64, belonging to the INT1 genotype. *J Bacteriol*. 2012; 194(12):3268. doi: 10.1128/JB.00471-12 PMID: 22628501

23. Kim BJ, Choi BS, Lim JS, Choi IY, Lee JH, Chun J, et al. Complete genome sequence of *Mycobacterium intracellulare* strain ATCC 13950(T). *J Bacteriol*. 2012; 194(10):2750. doi: 10.1128/JB.00295-12 PMID: 22535933

24. Kim BJ, Choi BS, Lim JS, Choi IY, Lee JH, Chun J, et al. Complete genome sequence of *Mycobacterium intracellulare* clinical strain MOTT-02. *J Bacteriol*. 2012; 194(10):2771. doi: 10.1128/JB.00365-12 PMID: 22535946

25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Mol Biol Evol*. 1987; 4(4):406–25. PMID: 3447015

26. Macheras E, Konjek J, Roux AL, Thiberge JM, Bastian S, Leao SC, et al. Multilocus sequence typing scheme for the *Mycobacterium abscessus* complex. *Res Microbiol*. 2014; 165(2):82–90. doi: 10.1016/j.resmic.2013.12.003 PMID: 24384536

27. Macheras E, Roux AL, Bastian S, Leao SC, Palaci M, Sivadon-Tardy V, et al. Multilocus Sequence Analysis and rpoB Sequencing of *Mycobacterium abscessus* (Sensu Lato) Strains. *J Clin Microbiol*. 2011; 49(2):491–9. doi: 10.1128/JCM.01274-10 PMID: 21106786

28. Zelazny AM, Root JM, Shea YR, Colombo RE, Shamputa IC, Stock F, et al. Cohort Study of Molecular Identification and Typing of *Mycobacterium abscessus*, *Mycobacterium massiliense*, and *Mycobacterium bolletii*. *J Clin Microbiol*. 2009; 47(7):1985–95. doi: 10.1128/JCM.01688-08 PMID: 19420162

29. Sreevatsan S, Pan X, Stockbauer KE, Connell ND, Kreiswirth BN, Whittam TS, et al. Restricted structural gene polymorphism in the *Mycobacterium tuberculosis* complex indicates evolutionarily recent global dissemination. *Proc Natl Acad Sci USA*. 1997; 94(18):9869–74. PMID: 9275218