QUADRICS VIA SEMIGROUPS

V. N. KRISHNACHANDRAN

Abstract. Let M_2 be the semigroup of linear endomorphisms of a plane. We show that the space of idempotents in M_2 is a hyperboloid of one sheet, the set of semigroup-theoretic inverses of a nonzero singular element in M_2 is a hyperbolic paraboloid, and the set of nilpotent elements in M_2 is a right circular cone.

This is the story of the rediscovery of classical three-dimensional geometry, especially the geometry of quadric surfaces, while studying the semigroup $M_2(\mathbb{R})$ of linear endomorphisms of a real plane. One of the surfaces that appears prominently in this context is the hyperboloid of one sheet, referred to as spaghetti bundle in [8]. In this story the spaghetti presents itself as the set of idempotents in $M_2(\mathbb{R})$, the cone emerges as the set of nilpotent elements and the hyperbolic paraboloid as the set of semigroup-theoretic inverses of a singular element.

This rediscovery was briefly announced in [5]. Generalizations of some of the ideas presented here to semigroups of linear endomorphisms of higher dimensional vector spaces are discussed in [6]. The little bit of semigroup theory quoted below is based on [3].

1. The Semigroup $M_2(\mathbb{R})$

A set S together with an associative binary operation in S is called a semigroup. An element e in S is called an idempotent if $e^2 = e$. If $X \subseteq S$, the set of idempotents in X is denoted by $E(X)$. In any semigroup S we can define certain equivalence relations, denoted by \mathcal{L}, \mathcal{R}, \mathcal{J}, \mathcal{D}, and \mathcal{H}, and called Green’s relations. Let S^1 denote S if S has an identity element. Otherwise, let it denote S with an identity element 1 adjoined. For $a, b \in S$ the first three are defined by

$$a \mathcal{L} b \iff aS^1 = bS^1$$

$$a \mathcal{R} b \iff S^1a = S^1b$$

$$a \mathcal{J} b \iff S^1aS^1 = S^1bS^1$$

and the remaining ones by $\mathcal{D} = \mathcal{L} \circ \mathcal{R} = \mathcal{R} \circ \mathcal{L}$, $\mathcal{H} = \mathcal{L} \cap \mathcal{R}$.

If $a \in S$, the set of all elements in S which are \mathcal{L}-equivalent to a is denoted by L_a and is called the \mathcal{L}-class containing a. The notations R_a, J_a, D_a, H_a have similar meanings. These are the Green classes in S. Two elements a, a' in a semigroup S are called inverse elements if $aa'a = a, a'aa' = a'$. A semigroup in which every element has an inverse is called a regular semigroup.

A well-known example of a regular semigroup is $M_n(\mathbb{K})$ (where $\mathbb{K} = \mathbb{R}$, or $\mathbb{K} = \mathbb{C}$) of linear endomorphisms of an n-dimensional vector space V over \mathbb{K} under
composition of mappings. The set S_n of singular elements in $M_n(\mathbb{K})$ is a regular subsemigroup of $M_n(\mathbb{K})$. Treating functions as right operators we see that, for $a, b \in M_n(\mathbb{K})$, $a \mathcal{L} b$ if and only if a and b have the same range, and, $a \mathcal{D} b$ if and only if a and b have the same null space. Further, $a \mathcal{D} b$ if and only if a and b have the same rank, and, $a \mathcal{J} b$ is equivalent to $a \mathcal{D} b$.

As already indicated, the semigroup having special interest to us is $M_2(\mathbb{R})$, denoted by M_2 in the sequel. We shall represent elements of M_2 as square matrices of order 2 relative to some fixed ordered orthonormal basis for V. Listing out the entries in the elements of M_2 row-wise we get vectors in \mathbb{R}^4. In this way we may identify M_2 with \mathbb{R}^4. The usual inner product in \mathbb{R}^4 can be represented using the trace function, defined by $\text{tr}(x) = x_1 + x_4$. If $x = (x_1, \ldots, x_4)$ and $y = (y_1, \ldots, y_4)$ then

$$\langle x, y \rangle = x_1y_1 + \cdots + x_4y_4 = \text{tr}(x^*y).$$

where x^* is the transpose of x.

2. Geometry of the Green Classes in M_2

M_2 has three \mathcal{D}-classes, namely, D_0, D_1 and D_2, where D_k is the set of endomorphisms of rank k. Obviously we have $D_0 = \{0\}$ which is simply a point. From the well-known fact (p.168 [1]) that the space $M(m, n, k)$ of $m \times n$ matrices of rank k is a manifold of dimension $k(m + n - k)$ we immediately deduce that D_1 is a three-dimensional submanifold of \mathbb{R}^4. What this means is that sufficiently small neighborhoods of every point in D_1 ‘looks like’ a three-dimensional euclidean space. Lastly D_2 is the set $\text{GL}(2)$ of all invertible elements in M_2. It is well known that $\text{GL}(2)$ is a four-dimensional submanifold of \mathbb{R}^4.

To describe the \mathcal{L}- and \mathcal{R}-classes in M_2, we require some geometric terminology. A line in a linear space U is an affine subspace of U generated by two distinct points (that is, vectors) in U and a plane \mathcal{P} in U is an affine subspace generated by three non-collinear points in U. If \mathcal{P} passes through the origin in U then the set $\mathcal{P} \setminus \{0\}$ is called a punctured plane in U. In a similar way we may define a punctured line in U.

If $0 = a \in M_2$, then $L_a = R_a = \{0\}$. Also, if $a \in \text{GL}(2)$ then $L_a = R_a = \text{GL}(2)$. The classes L_a and R_a, when $a \neq 0$ and $a \notin \text{GL}(2)$, are the nontrivial \mathcal{L}- and \mathcal{R}-classes in M_2. If $e = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, a simple argument involving range and null space shows that

$$L_e = \left\{ \begin{bmatrix} \alpha & 0 \\ \beta & 0 \end{bmatrix} : \alpha, \beta \in \mathbb{R}, (\alpha, \beta) \neq (0, 0) \right\},$$

$$R_e = \left\{ \begin{bmatrix} \alpha & \beta \\ 0 & 0 \end{bmatrix} : \alpha, \beta \in \mathbb{R}, (\alpha, \beta) \neq (0, 0) \right\}.$$

These are obviously punctured planes. That this is true for any $0 \neq a \in S_2$ can be easily verified.

Proposition 1. If $0 \neq a \in S_2$, then L_a and R_a are punctured planes lying in S_2.

Surprisingly, the converse of Proposition [1] is also true, that is, every punctured plane in S_2 is a nontrivial \mathcal{L}-class or \mathcal{R}-class in S_2. A nontrivial \mathcal{H}-class, being the intersection of a nontrivial \mathcal{L}-class and a nontrivial \mathcal{R}-class, is a punctured line in S_2.

V. N. KRISHNACHANDRAN
3. Intersection of S_2 with $x_1 + x_4 = \lambda$

We have seen that D_1 is a three-dimensional manifold sitting in \mathbb{R}^4. To know more about this manifold we consider intersections of S_2 with hyperplanes in M_2. A hyperplane in M_2 is the set of all $x = [x_1, x_2, x_3, x_4]$ satisfying an equation of the form

$$a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4 = \lambda$$

where $a = \left[\begin{array}{c} a_1 \\ a_2 \\ a_3 \\ a_4 \end{array} \right] \in M_2$. This equation can be expressed in the form $\text{tr}(ax) = \lambda$.

We denote this hyperplane by $P(I; \lambda)$ and its intersection with S_2 by $SP(a; \lambda)$. We first consider the special case $SP(I; \lambda)$ where $I = \left[\begin{array}{c} 1 \\ 0 \end{array} \right]$.

Proposition 2. If $\lambda \neq 0$ then $SP(I; \lambda)$ is a hyperboloid of one sheet. Also, $SP(I; 0)$ is a right circular cone with vertex at the origin in M_2.

Proof. Consider the following points in $P(I; \lambda)$:

$$O'(\frac{1}{\sqrt{2}}, 0, 0, \frac{1}{\sqrt{2}}), \ A(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0), \ B(0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), \ C(0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}).$$

Using the inner product and the induced norm in \mathbb{R}^4, we can see that the vectors $\overrightarrow{O'A}$, $\overrightarrow{O'B}$, $\overrightarrow{O'C}$ form an orthonormal system in $P(I; \lambda)$. We choose O' as the origin and the directed lines joining O' to the points A, B, C as the coordinate axes. We shall refer to the coordinates of a point in $P(I; \lambda)$ relative to these axes as the Bell-coordinates of the point.

Let the Bell-coordinates of any point $Q(x_1, x_2, x_3, x_4)$ in $P(I; \lambda)$ be (X, Y, Z) so that we have

$$\overrightarrow{O'P} = X\overrightarrow{O'A} + Y\overrightarrow{O'B} + Z\overrightarrow{O'C}.$$

Since $\overrightarrow{O'I} = \overrightarrow{O'O}$, etc., we must have

\begin{equation}
\begin{align*}
x_1 &= \frac{1}{\sqrt{2}} + \frac{X}{\sqrt{2}}, \\
x_2 &= \frac{Y}{\sqrt{2}}, \\
x_3 &= \frac{Z}{\sqrt{2}}, \\
x_4 &= \frac{1}{\sqrt{2}} - \frac{Z}{\sqrt{2}}.
\end{align*}
\end{equation}

If we substitute the above expressions in the equation defining the space S_2, namely, $x_1x_4 - x_2x_3 = 0$, we get

\begin{equation}
X^2 + Y^2 - Z^2 = \frac{\lambda^2}{2}.
\end{equation}

If we consider any set of numbers (X, Y, Z) satisfying Eq. (2), then using the relations in Eq. (1), we can see that (X, Y, Z) are the Bell-coordinates of a point on $SP(I; \lambda)$. Therefore Eq. (2) is the equation of $SP(I; \lambda)$ relative to the Bell-axes. When $\lambda \neq 0$, this equation represents a hyperboloid of one sheet ($\S 64 \[2\]$).

When $\lambda = 0$, Eq. (2) reduces to $X^2 + Y^2 - Z^2 = 0$, which represents a right circular cone with vertex at the origin and semi-vertical angle $\frac{\pi}{4}$. Note that this cone lies in the hyperplane $P(I; 0)$.

By direct computation or otherwise one can easily see that $SP(I; 0)$ is the set of nilpotent elements in M_2.

We now explore the relations between the geometrical properties of $SP(I; \lambda)$ and the algebraic properties of M_2. Obviously the center of $SP(I; \lambda)$ is O' which is a point on the line joining $O = [0 \ 0 \ 0 \ 0]$ and $I = [1 \ 0 \ 0 \ 0]$. Since this line is independent of the choice of λ, the centers of the hyperboloids $SP(I; \lambda)$, for various values of λ, all lie on a fixed line. The axis of rotation of the hyperboloid is given by $X = 0$, $Y = 0$. These equations produce a matrix of the form

\[
\begin{bmatrix}
\frac{1}{2} & x_2 \\
-x_2 & \frac{1}{2}
\end{bmatrix} = \begin{bmatrix}
\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{bmatrix} + \begin{bmatrix}
0 & x_2 \\
-x_2 & 0
\end{bmatrix}.
\]
The set of all such elements form a line through the center of the hyperboloid parallel to the line formed by the set of skew-symmetric elements in M_2. The asymptotic cone of $SP(I; \lambda)$ from its center ($\S 78 [2]$) is $X^2 + Y^2 - Z^2 = 0$, which is independent of λ.

From the above discussion we can construct an image of S_2. If we imagine λ as ‘time’, S_2 can be thought of as a space generated by the ‘moving’ hyperboloid $SP(I; \lambda)$. Initially, that is when $\lambda = 0$, we have a degenerate hyperboloid, namely, the right circular cone $SP(I; 0)$ with vertex at O and axis the line $\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} : \alpha \in \mathbb{R} \}$. As time advances numerically, the center of the hyperboloid moves along the line $\{ \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} : \alpha \in \mathbb{R} \}$. The axis of rotation of the moving hyperboloid is a line through the center parallel to the axis of the ‘initial’ hyperboloid. Further, at time λ, the radius of the principal circular section of the hyperboloid is $\sqrt{\lambda}$. Clearly, this increases as λ increases numerically. Thus, the hyperboloid $SP(I; \lambda)$ expands simultaneously as it moves away from the origin.

4. The Space of Idempotents

Let $E(k)$ be the set of idempotents of rank k. Obviously, $E(0) = \{0\}$ and $E(2) = \{I\}$. Also, it is easy to see that $E(1) = SP(I; 1)$. The next result follows from this.

Proposition 3. The space $E(1)$ of idempotents of rank 1 in M_2 is a hyperboloid of one sheet.

The generators of $E(1)$ through e turn out to be the sets $E(L_e)$ and $E(R_e)$. To see this it is enough to show that these sets are lines through e, for if a line lies wholly on a conicoid it must belong to a system of generating lines of the conicoid ($\S 97 [2]$). That $E(L_e)$ and $E(R_e)$ are lines follows from

$$E(L_e) = e + (1 - e)S_2e \quad E(R_e) = e + eS_2(1 - e),$$

which can be verified by direct computation.

Having found the generating lines on $E(1)$, we next determine how these are organized into two systems of generators as in [2]. Let L_1 be the family of all lines of the form $E(L_e)$ and L_2, the family of all lines of the form $E(R_e)$. Since V is 2-dimensional, no two distinct members of L_1 (or, of L_2) intersect. Also, every member of L_1 intersects every member (except one) of L_2, and vice versa. Thus L_1 and L_2 are the two families of generating lines of $E(1)$. Though it is not an intrinsic property of $E(1)$, it is interesting to see that members of L_1 are members of the λ-system and those of L_2 are members of the μ-system of generators of $E(1)$ (in the terminology of [2]).

The equation of the plane of the principal circular section of $SP(I; 1)$ is $Z = 0$, which is equivalent to $x_2 = x_3$, which, in turn, is equivalent to the statement that the element $x \in M_2$ is symmetric. Thus the principal circular section of $E(1)$ consists of the symmetric elements in $E(1)$.

5. Intersections of S_2
with Arbitrary Hyperplanes

The first thing we notice is that the coordinates (X, Y, Z) of any point on $SP(a; \lambda)$ relative to some rectangular Cartesian axes in $P(a; \lambda)$ satisfy a second degree equation. Hence $SP(a; \lambda)$ is a quadric surface in $P(a; \lambda)$. The nature of this
surface depends, naturally, on \(a \) and \(\lambda \). If \(\lambda \neq 0 \), then dividing the equation of the plane \(P(a; \lambda)\) by \(\lambda \), we see that the planes \(P(a; \lambda) \) and \(P(\frac{1}{\lambda} a; 1) \) coincide. Hence we need consider only the special surface \(SP(a;1) \).

Let \(a \) be nonsingular. If \(x \in SP(a;1) \) then \(\text{tr}(ax) = 1 \) and so \(ax \in E(1) \). Hence \(x \in a^{-1}E(1) \). The converse is obvious and so \(SP(a;1) = a^{-1}E(1) \). Since \(E(1) \) is a hyperboloid of one sheet and since the map \(x \mapsto a^{-1}x \) is an affine map of \(P(I;1) \) onto \(P(a;1) \), \(SP(a;1) \) must be a hyperboloid of one sheet.

Proposition 4. If \(a \) is nonsingular \(SP(a;1) \) is a hyperboloid of one sheet.

Any regular semigroup \(S \) is equipped with a natural partial order \([7]\) defined by

\[
x \leq y \quad \text{if and only if} \quad R_x \leq R_y \text{ and } x = fy \text{ for some } f \in E(R_x).
\]

If \(a \in M_2 \) is nonsingular then, it can be shown that \(SP(a;1) \) is the set of nonzero elements in \(S_2 \) which are less than \(a \) under the natural partial order in \(M_2 \).

Let \(a \in S_2 \). If \(x \in S_2 \) is an inverse of \(a \) then we have \(axa = a \) and so \(ax \in E(1) \) which implies that \(x \in SP(a;1) \). The converse also holds. Thus, if \(0 \neq a \in S_2 \), then \(SP(a;1) \) is the set of inverses of \(a \). To understand the geometry of \(SP(a;1) \), we consider the special case \(e = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \). Clearly, \(x \in P(e;1) \) if and only if \(x_1 = 1 \). Let \(O', A, B, C \) denote \(\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix} \) and \(\begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} \) respectively. Then the vectors \(O'A, O'B, O'C \) form an orthonormal basis in \(P(e;1) \). If \(Q \) denotes \(\begin{bmatrix} 1 & x_2 & x_3 & x_4 \end{bmatrix} \) then

\[
O'Q = x_2O'A + x_3O'B + x_4O'C
\]

so that the coordinates \((X, Y, Z)\) of \(Q \) relative to this system of axes are \(X = x_2, Y = x_3, Z = x_4 \). Now \(x \) is in \(P(e;1) \) if and only if \(x_1 = 1 \) and \(x_4 = x_2x_3 \) and so \(SP(e;1) \) is determined by the cartesian equation \(XY = Z \) which is the equation of a hyperbolic paraboloid. This argument can be modified for arbitrary \(a \in S_2 \) to yield the following result.

Proposition 5. Let \(a \) be singular. Then \(SP(a;1) \) is the set of inverses of \(a \) and is a hyperbolic paraboloid.

We next consider intersections of \(S_2 \) with hyperplanes passing through the origin. These are sets of the form \(SP(a;0) \). If \(a \) is nonsingular then \(SP(a;0) = a^{-1}SP(I;0) \). Since \(SP(I;0) \) is a cone with vertex at the origin, \(SP(a;0) \) is also a cone. If \(a \) is singular and nonzero then using some technical arguments, we can show that \(SP(a;0) \setminus \{0\} \) is the union of an \(\mathcal{F} \)-class and an \(\mathcal{R} \)-class in \(S_2 \), that is, a union of two punctured planes.

References

[1] Yu. Borisovich et al., *Introduction to topology*, Mir Publishers, Moscow, 1985. First published in Russian in 1980. English translation by Oleg Efimov in 1985

[2] R. J. T. Bell, *Elementary treatise on coordinate geometry of three dimensions*, Macmillan and Co., London, 1960, Third Edition.

[3] A. H. Clifford and G. B. Preston, *Algebraic theory of semigroups* Vol. I, American Mathematical Society, Providence, Rhode Island, 1979.

[4] V. N. Krishnachandran, *The topology and geometry of the biordered set of idempotent matrices*, Ph. D. thesis submitted to University of Kerala, Thiruvananthapuram, 2001.

[5] V. N. Krishnachandran and K. S. S. Nambooripad, *Topology of the semigroup of singular endomorphisms*, Semigroup Forum (2000), 224-248.

[6] V. N. Krishnachandran and K. S. S. Nambooripad, *Geometry of the biordered set of idempotent endomorphisms*, Southeast Asian Bull. Math. (to appear)
[7] K. S. S. Nambooripad, *The natural partial order on a regular semigroup*, Proc. Edinburgh Math. Soc. **23** (1980), 249–260.

[8] P. Samuel, *Projective Geometry*, Springer-Verlag, New York, 1988.

Vidy Academy of Science and Technology, THRISSUR - 680 501, KERALA, INDIA.

E-mail address: krishnachandran.v.n@vidyaacademy.ac.in