bammds: a tool for assessing the ancestry of low-depth whole-genome data using multidimensional scaling (MDS).

Permalink
https://escholarship.org/uc/item/9qr8q2t1

Journal
Bioinformatics, 30(20)

Authors
Malaspinas, Anna-Sapfo
Tange, Ole
Moreno-Mayar, José
et al.

Publication Date
2014-10-15

DOI
10.1093/bioinformatics/btu410

Peer reviewed
bammds: a tool for assessing the ancestry of low-depth whole-genome data using multidimensional scaling (MDS)

Anna-Sapfo Malaspinas¹,* , Ole Tange¹,* , José Víctor Moreno-Mayar¹ , Morten Rasmussen¹,2, Michael DeGiorgio³ , Yong Wang⁴,5 , Cristina E. Valdiosera¹,6 , Gustavo Politis⁷,8 , Eske Willerslev¹ and Rasmus Nielsen¹,4

¹Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen K, Denmark, ²Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, ³Department of Biology, Pennsylvania State University, Wartik Laboratory, University Park, PA 16802, ⁴Centre for Theoretical Evolutionary Genomics, Departments of Integrative Biology and Statistics, University of California, Berkeley, CA 94720-3140, ⁵Ancestry.com DNA LLC, San Francisco, CA 94107, ⁶Department of Archaeology, Environment and Community Planning Faculty of Humanities and Social Sciences, La Trobe University, Melbourne, VIC 3086, Australia, ⁷INCUAPA-CONICET, Universidad del Centro de la Provincia de Buenos Aires, 7600 Olavarría, Argentina and ⁸Facultad de Ciencias Naturales y Museo de La Plata, 1900 La Plata, Argentina

Received on April 10, 2014; revised on June 16, 2014; accepted on June 23, 2014

1 INTRODUCTION

Population structure plays an important role in determining the evolutionary history of a group. A great deal has been learned from single nucleotide polymorphism (SNP) array technology providing unmatched information of the population structure of several species [for humans, see (Novembre and Ramachandran, 2011)]. The advent of new sequencing platforms, which can deliver millions to billions of sequencing reads within days, has shifted the focus from SNP array data to whole-genome shotgun (WGS) data. While the cost has steadily decreased (Sboner et al., 2011), obtaining many high-depth genomes remains prohibitive for many laboratories, in particular when working with ancient DNA (aDNA) samples where it is

often desirable to screen many samples of potential interest while keeping the cost at a minimum.

Methods based on non-parametric multidimensional statistics (more specifically principal components analysis, PCA) were first applied to genetic data more than 30 years ago (Menozzi et al., 1978). PCA has since become a standard tool in population genetics (Patterson et al., 2006; Wang et al., 2014) owing in particular to (i) the low computational demand of such analyses, (ii) the appealing graphical result and (iii) its ease of use.

Here, we describe a tool that allows to assign an ancestry to low-depth mapped WGS data when compared with an existing reference panel of genotype data using multidimensional scaling (MDS) based on genetic distances, a related method that provides results similar to those of PCA (Cox and Cox, 2000).

2 METHODS

In what follows, we assume that WGS data have been mapped to a reference genome and that files in BAM format are available (Li et al., 2009). Calling genotypes for low-depth data is a challenging task (Nielsen et al., 2011), particularly for aDNA, as ancient damage (Briggs et al., 2007) and contamination are not incorporated into sequence data error models.

To avoid calling genotypes, we sample a read at every position for the WGS data, similar in spirit to previous aDNA approaches (Green et al., 2010). Specifically, for the reference set of individuals, we randomly sample one of the alleles from each individual, and for the WGS data, we choose an allele from a randomly selected read covering that site. If no read covers that site or if the sampled allele is not the minor or the major allele in the reference panel, we then assume that the data for this site are missing for that sample. In other words, the data in both the reference panel and the WGS samples become either one allele (A, C, G or T) or missing data. Then, the allele-sharing distance between individuals i and j
is as follows:

$$d_{ij} = \frac{1}{K} \sum_{k=1}^{K} d_{ik}$$

A matrix $D = (d_{ij})$ of allele-sharing distances between all pairs of individuals is computed. We then apply classical MDS to this matrix [e.g. (Cox and Cox, 2000)].

Our implementation has three major features:

- it is user friendly and is intended to be used by biologists with limited familiarity with a UNIX system,
- it is flexible in terms of formats of the reference panel and in terms of the visual output,
- it runs in ~20 min on a machine with four 2.2 GHz cores with a depth of coverage around 0.001x, 0.01x, 0.1x, 0.5x, 1x and 5x, assuming ~100 bp sequence reads. For each sub-sampled genome, we ran bammds with the HGDP reference panel.

We summarized the simulation results using dimension 1 and 2 only of the MDS output, as we expect this to be the common usage. For each population in HGDP, we defined its centroid (or center of gravity) based on the coordinates of its members for those two dimensions. We then evaluated the results using two criteria: (i) by assessing which population was the closest when comparing the position of the WGS sample with the population centroid, and (ii) by determining if the position of the genome is within a two-dimensional 99% confidence region. We built the confidence region by assuming that the points follow a bivariate normal distribution centred around the centroid of the population to which it belongs (population ellipse).

We present a practical example on how to use the tool to determine whether a library is heavily contaminated by processing a newly sequenced ~10000 year BP old phalange (‘Gus’) from Argentina that clusters with the Europeans (Supplementary data).

![MDS Plot](image)

Fig. 1. First two dimensions of an MDS plot including the ten 0.1X modern human genomes and the HGDP SNP data
which is assigned to the correct geographic region (Oceania) as a population ellipse.

From a depth of 0.1 American population is among the three closest populations the geographic region as the first hit. On the other hand, a Native closest population. For the Anzick-1 individual, presumably be-

that in 9/10 of the cases, the WGS sample was within the popu-

alual (was a depth of 1/C24 0.01). For the second criteria, we find a depth above 0.01 (7/10 cases). For the second criteria, we find a depth above 0.01 (7/10 cases).

For the ancient data, we get similar results for the Aborigine, and above. Only in one case (San individ-

ual) was a depth of 1/C24 0.01 and above. At a depth higher 0.01/C24, Table 1). In the remaining two cases, the Sardinian and the Karitiana individual, a depth of 0.1/C24 and 0.01/C24, respectively, is enough. The true nearest population was also identified in most cases within the three closest centroids for a depth above 0.01 (7/10 cases). For the second criteria, we find that in 9/10 of the cases, the WGS sample was within the population ellipse at 0.5× and above. Only in one case (San individ-

ual) was a depth of 1× necessary to be placed within the population ellipse.

For the ancient data, we get similar results for the Aborigine, which is assigned to the correct geographic region (Oceania) as a first hit with a depth of ~0.001× and above. At a depth higher than 0.01×, we also recover the expected population as the closest population. For the Anzick-1 individual, presumably because of increased damage, a depth of 1× is needed to recover the geographic region as the first hit. On the other hand, a Native American population is among the three closest populations from a depth of 0.1× and above. The results for Gus are given in Supplementary data.

3 RESULTS

The graphical result with all 10 modern individuals at a depth of 0.1× can be seen on Figure 1.

We find in the simulations that for all but two cases, we recover the geographic region as the first hit for as few as 30,000 reads (~0.001×, Table 1). In the remaining two cases, the Sardinian and the Karitiana individual, a depth of 0.1× and 0.01×, respectively, is enough. The true nearest population was also identified in most cases within the three closest centroids for a depth above 0.01 (7/10 cases). For the second criteria, we find that in 9/10 of the cases, the WGS sample was within the population ellipse at 0.5× and above. Only in one case (San individual) was a depth of 1× necessary to be placed within the population ellipse.

For the ancient data, we get similar results for the Aborigine, which is assigned to the correct geographic region (Oceania) as a first hit with a depth of ~0.001× and above. At a depth higher than 0.01×, we also recover the expected population as the closest population. For the Anzick-1 individual, presumably because of increased damage, a depth of 1× is needed to recover the geographic region as the first hit. On the other hand, a Native American population is among the three closest populations from a depth of 0.1× and above. The results for Gus are given in Supplementary data.

4 CONCLUSION

The tool we present in this article is based on classical MDS, a technique that originated in the 1930s and is commonly used in other fields [see, e.g. (Borg and Groenen, 1997) and citations therein]. We present a tool that was designed to be practical to assess the ancestry of mapped WGS data for samples sequenced at low depth, assuming that a relevant reference panel in terms of ancestry is provided. We show through simulations that useful ancestry information can be recovered for as few as 30,000 reads—corresponding to a fraction (~1/60 in early 2014) of a HiSeq 2000 lane (www.illumina.com) for a sample with 1% endogenous content (or ~1/4800 of a lane for a typical modern sample).

ACKNOWLEDGMENTS

The authors thank María C. Ávila-Arcos, Amhed Missael Vargas Velázquez, Morten E. Allentoft, Hannes Schroeder, Kerttu Majander, Maanasa Raghavan and Johannes Krause for helpful discussions and testing, and the National high-throughput DNA Sequencing Center for assistance with the sequencing.

Funding: A.-S.M. was supported by a Swiss NSF, J.V.M.-M. by the ‘Consejo Nacional de Ciencia y Tecnología’ (Mexico) and M.D. by the US NSF (DBI-1103639). GeoGenetics members were supported by the Lundbeck Foundation and the Danish National Research Foundation (DNRF94).

Conflict of Interest: none declared.