Medicinal plant compounds as promising inhibitors of coronavirus (COVID-19) main protease: an in silico study

Navid Jamalia,b, Ehsan Heidari Soureshjanic, Gholam-Reza Mobinic, Mohammad Samare-Najafaa,b, c, Cain C. T. Clarkd and Javad Saffari-Chaleshtorie

aBiochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; bStudent Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; cCellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; dCentre for Intelligent Healthcare, Coventry University, Coventry, UK; eClinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran

Communicated by Ramaswamy H. Sarma

ABSTRACT

The novel Coronavirus (COVID-19) has spread rapidly across the globe and has involved more than 215 countries and territories. Due to a lack of effective therapy or vaccine, urgent and concerted efforts are needed to identify therapeutic targets and medications. COVID-19 main protease represents a major target for drug treatment to inhibit viral function. The present study sought to evaluate medicinal plant compounds as potential inhibitors of the COVID-19 main protease using molecular docking and molecular dynamic analysis. The PDB files of COVID-19 main protease and some medicinal plant compounds were retrieved from the Protein Data Bank (http://www.rcsb.org) and Pubchem server, respectively. The Gromacs software was used for simulation studies, and molecular docking analysis was done using Autodock 4.2. The COVID-19 main protease simulation, compared with some phytochemicals docked to the COVID-19 main protease, were analyzed. Glabridin, catechin, and fisetin had the greatest tendency to interact with the COVID-19 main protease by hydrogen and hydrophobic interactions. Docking of these phytochemicals to COVID-19 main protease led to an increase in the radius of gyration (Rg), decrease in the Root mean square fluctuation (RMSF), and induced variation in COVID-19 main protease secondary structure. The high tendency interaction of glabridin, catechin, and fisetin to COVID-19 main protease induced conformational changes on this enzyme. These interactions can lead to enzyme inhibition. This simulated study indicates that these phytochemicals may be considered as potent inhibitors of the viral protease; however, more investigations are required to explore their potential medicinal use.

ARTICLE HISTORY

Received 7 September 2020
Accepted 15 March 2021

KEYWORDS

COVID-19 main protease; medicinal plant compounds; inhibitors; molecular docking

1. Introduction

At the end of December 2019, a novel Coronavirus was identified in Wuhan, China. Since then, this virus has spread rapidly throughout China, and the world, primarily via human-to-human transmission (World Health Organization, 2020a). On March 11, 2020, the World Health Organization (WHO) declared the novel coronavirus (COVID-19) outbreak as a pandemic, and by August 16, 2020, a total of 21,294,845 confirmed cases and 761,779 deaths had been reported in 215 countries and territories (World Health Organization, 2020b). COVID-19 (now known as SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2)) is a zoonotic virus and etiologic agent of severe respiratory diseases. It has been reported that the novel virus not only infects respiratory tracts but can also cause damage in the liver, kidney, heart, and digestive tracts (Huang, 2020).

On January 11, 2020, scientists isolated and sequenced the novel coronavirus genome (Lu et al., 2020), and identified two proteases (Mpro), 3C-like protease (3Cpro) and papain-like protease (P1pro), which are essential for its survival (Li & De Clercq, 2020). Polyprotein1 a/b are encoded by SARS-CoV-2, and following proteolytic cleavage by 3Cpro and P1pro, the resulting proteins are involved in viral infection, transcription, and replication (Goswami, 2020). The 3C-like protease (also called the main protease) is a vital protein for the proteolytic processing and maturation of the virus. In addition, Liu et al. showed the crystallized structure of the COVID-19 main protease and found that targeting and inhibition of the main protease may be a potential treatment against SARS-CoV-2 infection (Jin, 2020). previous molecular dynamic simulation studies on nelfinavir, praziquantel, pitavastatin, and perampanel, have predicted their inhibitory effects on COVID-19 main protease, however nelfinavir has the greatest inhibitory potential among these 4 drugs on COVID-19 main protease (Xu, 2020). Despite promising recent advances in the development of COVID-19 vaccines, based on previous modeling studies,
several major limitations, including; the time-consuming process of the approval and global mass production, the potentially high price of the vaccine during initial release, the determination of vaccination strategies, such as location-specific ring-vaccination, age-specific vaccination, and assessing long-term risks and benefits of dengue vaccination, are faced by health care providers and government officials, particularly in less-developed countries. Therefore, due to the deteriorating, global, situation, urgent and concerted efforts are needed to identify more readily available therapeutic targets and medications (McBryde et al., 2020; Saif, 2020).

Medicinal plants have gained increasing prominence for the treatment of a wide variety of infectious and noninfectious diseases; indeed, it is estimated that ~25% of routine drugs are derived from plant compounds. In contemporary practice, due to significant progress in separation techniques and the spread of a number of emerging infectious diseases, plants and their bioactive compounds could be promising candidates for drug discovery (Mukhtar et al., 2008). A recent study showed that oral administration of black raspberry seed, and its gallic acid, to influenza virus infected-mice significantly increased the survival rate, and decreased the viral titers in the lungs (Lee et al., 2016). Moreover, monoterpenes thymol, carvacrol, and p-cymene are reported to have antiviral activity and can inhibit replication of herpes simplex virus type, probably via interaction with the viral envelope (Sharifi-Rad, 2017).

In silico-based screening is one of the most useful approaches to discover new antiviral drugs. Computational screening of natural compounds and phytochemicals using molecular docking study reduces time, money, and possible errors corresponding to the clinical trials (Grinter & Zou, 2014; Mukesh & Rakesh, 2011). In the preceding decade, a large number of active phytochemicals with therapeutic activity have been discovered, and it has been explicated that they exert antiviral effects through scavenging capacities, antioxidant activities, or the inhibition of RNA/DNA replication. Moreover, these compounds present low cytotoxicity and high bioavailability, which makes them desirable candidates for antiviral drug development (Naithani, 2010). Therefore, the present study screened bioactive compounds from medicinal plants, including; carvacrol, catechin, cinnamonaldehyde, coumarin, cyanidin, delphinidin, fisetin, genistein, glabridin, isorhamnetin, liquiritigenin, nelfinavir, p-cymene, piperine, pterostilbene, silibinin, and thymoquinone, against the COVID-19 main protease, using molecular docking and molecular dynamic simulation.

2. Materials and methods

2.1. Pdb files preparation

The protein data bank (PDB) file of COVID-19 main protease (PDB ID: 6LU7) was obtained from the protein data bank server (http://www.rcsb.org/pdb/). Subsequently, the water and inhibitor N3 were removed.

The structure of the Mpro was optimized with Swiss-PdbViewer (aka DeepView) software (Johansson et al., 2012) and all the Missing atoms were removed with this software and the final output structure was obtained.

In the next step, the medicinal plant compound files, including carvacrol (CID; 10364), catechin (CID; 9064.), cinnamonaldehyde (CID; 637511), coumarin (CID; 323), cyanidin (CID; 128861), delphinidin (CID; 128853), fisetin (CID; 5281614), genistein (CID; 5280961), glabridin (CID; 124052), isorhamnetin (CID; 5281654), liquiritigenin (CID;114829), nelfinavir (CID; 64143), p-cymene (CID; 7463), piperine (CID; 638024), pterostilbene (CID; 5281727), silibinin (CID; 31553), and thymoquinone (CID; 10281) were obtained from PubChem server (www.pubchem.ncbi.nlm.nih.gov). Ultimately, the mentioned files were optimized and converted to PDB files using Avogadro software (Rayan & Rayan, 2017). The obtained PDB structure of the compounds was optimized with Chimera UCSF 1.13.1 software (Pettersen et al., 2021) with gas- teiger charges.

2.2. Molecular dynamic (MD) simulation in water

The MD simulation of the 3CLpro structure that had been removed inhibitor N3 was studied in pure water with the forcefield of G43A1 and the SPC216 model using the GROMACS 2018 simulation package. The grid boxes with a dimension of $60 \times 120 \times 90 \text{nm}^3$ ($x \times y \times z$) were designed for protein. Through estimation of the electrical charge of each protein, appropriate amounts of chloride and sodium ions were used to neutralize the molecules to prepare 140 mM concentration of Na$^+$ and Cl$^-$ in water for protein (Project et al., 2010). The energy of the systems was minimized for 50000 steps by steepest descent method and equilibrated for 2 nanoseconds (ns) in the NVT ensemble. The time of simulation was 50 ns and the temperature was maintained at 300 K for all the simulation intervals. Finally, the output PDB file was used as an input receptor file for molecular docking.

2.3. Molecular docking

The molecular docking study was performed using Autodock software version 4.2. All the above-mentioned ligands were docked on the simulated COVID-19 main protease to find the best binding sites for the ligand–receptor and to determine the most stable free energy state of ligand–receptor. In the current study, a grid box with dimensions of $60 \times 120 \times 90 \text{nm}^3$ ($x \times y \times z$) was created for the COVID-19 main protease protein and ligands docked to it. The PDBQ and PDBQT files were created for each of the mentioned molecules and defined as ligand and for the COVID-19 main protease molecule was defined as a receptor. Autogrid4 –p n.gpf –l n.gle Linux command was used to generate the n.gle text file. After 200 runs of molecular docking on ligands, the Genetic Algorithm and Lamarckian GA parameters were used. The autodock4–p n.dpf–l n.dlg Linux command was used to generate the n.dlg text file. The obtained data from the n.dlg file was analyzed (Morris et al., 1998).
In this study, LigPlot plus v.2.1 software was used to specify the number of hydrophobic and hydrogen interactions between the COVID-19 main protease with each of the ligands. Furthermore, the type and number of existed amino acids in the binding site were determined (Saffari Chaleshtori, 2016).

Docking of all compounds was performed with the inhibitory region of N3 to COVID-19 main protease with grid box with dimensions of $60 \times 120 \times 90$ nm3 and spacing 0.375 as targeted docking.

2.4. MD simulation of 3CLpro-N3 and 3CLpro with ligands

Phytochemicals with the most affinity for binding to the 3CLpro enzyme that have been determined in docking, such as catechin, fisetin, and glabridin, were selected to evaluate their inhibitory impact on the 3CLpro enzyme using molecular dynamics simulation.

Therefore, the molecular dynamics simulation of the 3CLpro, as a receptor, was carried out with catechin, fisetin, and glabridin as ligands, and parameterization was performed using the PRODRG server (http://prodrg1.dyndns.org/submit.html). The MD simulation was performed at 140 mM concentration of Na$^+$ and Cl$^-$ in water according to the above-mentioned procedure. As previously mentioned, the paths stored in the simulation were applied to analyze the structural parameters of the complex. The simulation results of the 3CLpro molecule, with and without ligands and also simulation of 3CLpro with N3 inhibitor, were comparatively analyzed using the Grapher version 15 software (Saffari Chaleshtori et al., 2019).

3. Results

3.1. Molecular docking

Figure 1 depicts the three-dimensional (3D) structure of glabridin, catechin, and fisetin docked to the COVID-19 main protease and amino acid residues at the binding site. According to Table 1, Catechin is attached to the protease by hydrogen bonds associated with the Tyr57, Glu166, Asp187, and Gin192 amino acid residues and hydrophobic interactions that involved the His41, His164, Met165, Pro168, Arg188, Gin189, and Thr190 amino acid residues. Accordingly, fisetin and glabridin had a high tendency for binding to the COVID-19 main protease at the binding site, by interaction with amino acid residues via hydrogen bonds (four amino acid residues for fisetin including Tyr57, Glu166, Asp187, and Gin192 amino acid residues and hydrophobic interactions (including His41, His164, Met165, Leu167, Pro168, Arg188, Gin189, Thr190, and Ala191 for fisetin and Thr26, Leu27, His41, Gin139, Leu141, Asn142, Cys145, His164, Met165 for glabridin).

In addition, Table 1 details the molecular interaction of different plant compounds with the COVID-19 main protease. Interestingly, the interaction of catechin, nelfinavir, and glabridin with the COVID-19 main protease released a high binding energy (BE) of -8.12, -13.26, and -8.25 Kcal/mol, respectively. Moreover, Table 1 demonstrates the final intermolecular energy (FIE) (kcal/mol), estimated inhibition constant (EIC) (μM), and hydrogen and hydrophobic interactions of all ligands at the binding site.

3.2. MD simulation

3.2.1. Root mean-square deviation (RMSD)

Figure 2 depicts the changes in the root mean-square deviation (RMSD) in the simulation of 3CLpro, alone (black graph), and its complexes with catechin, fisetin, and glabridin (red graph), at 50 ns simulation time. Although an oscillation and instability was observed at the beginning of the simulation time, the system reached a steady-state after 30 ns, and the amount of RMSD fluctuations decreased. As shown in Figure 2, during simulation time, mean RMSD decreased for the protein in complex with catechin and increased for the protein in combination with glabridin and fisetin. Also in Figure 2d, comparisons were made between RMSF of 3CLpro alone (black graph) and 3CLpro complex (red graph).

3.2.2. Total energy (TE)

Figure 3 demonstrates the alterations in total energy (TE) in the simulation of the COVID-19 main protease protein alone (black graph) and its complexes with catechin, fisetin, and glabridin also 3CLpro-N3 (red graphs) at 50 ns simulation time. Binding of ligands to protein results in the release of energy, which facilitates the effect of this compound on the receptor protein.

3.2.3. The radius of gyration (Rg)

Figure 4 describes the rate of radius of gyration (Rg) alterations of protease protein alone (black graph) and protease protein binding to catechin, fisetin, glabridin, and N3 inhibitor (red graph) throughout 50 ns from the simulation time. Figure 4 reveals an oscillation in the Rg rate during the simulation time. However, the mean rotational radius for the duct proteins with all three compounds catechin, fisetin, and glabridin increased during the simulation time. Interestingly, Figure 4 shows that fisetin and glabridin, when bound to protease proteins, increase Rg levels more than Catechin.

3.2.4. Hydrogen bonds (H-bound)

Figure 5 demonstrates the rate of alterations in hydrogen bonds of protease protein alone (black graph), and protease protein binding to catechin, fisetin, glabridin and N3
inhibitor (red graph), over 50 ns of the simulation time. Accordingly, Figure 5 shows that during the simulation time, a slight increase in hydrogen bonds was induced in the docked protein to all three compounds catechin, fisetin, and glabridin compared to the protein alone.

3.2.5. Root mean square fluctuation (RMSF)
Figure 6 shows the rate of root mean square fluctuation (RMSF) changes for each of the amino acid residues of the protease protein alone (black graph) and the protease protein docked with the catechin, fisetin, glabridin and N3 inhibitor (red graph) throughout 50 ns. As Figure 6 describes, the greatest reduction in RMSF fluctuations occurred in catechin-docked protein. The inhibitory effects of catechin, fisetin, glabridin on the fluctuations of amino acid residues of protease proteins, that were evaluated using the RMSF parameter, demonstrated that these compounds could inhibit amino acid residues of 120 to 146, as well as 180–200 amino acid residues in the protease protein. The results showed that the effect of the compound could have the same effect as the N3 inhibitor on RMSF.

3.2.6. Secondary structure
Figure 7 demonstrates the rate of alterations in the secondary structures of the protease protein, alone (black graph), and the protease protein docked with catechin, fisetin,

![Figure 1](image_url). The three-dimensional structures and binding sites of (A) Catechin, (B) Fisetin, and (C) Glabridin in COVID-19 main protease (above) and amino acid residues of protease interacted with (a) Catechin, (b) Fisetin, and (c) Glabridin in the binding site.
that these compounds stabilize the structure of protease by increasing the β-sheet structure and the results show that these compounds stabilize the structure of protease by increasing β-sheet structure.

Table 1. Molecular interaction of different herbal plant compounds with COVID-19 main protease.

Ligand receptor	BE kcal/mol	FIE kcal/mol	EIC μM	Glu166	Hydrogen bonding	Hydrophobic interactions
Carvacrol	−5.11	−5.79	180.80	Glu166	Arg188, Gln189, His164, His41, Met165	
Catechin	−8.12	−9.90	1.13	Glu166, Gln192, Glu166, Tyr57, Asp187		
Cinnamaldehyde	−4.56	−5.16	454.11	Glu166	His41, Asp187, Tyr54, Arg188, His164, Glu189, Met165	
Coumarin	−5.26	−5.26	139.43	Val68, Val77	Asn63, His64, Phe66, Gln74, Leu75, Leu67, Arg76	
Cyanidin	−7.89	−9.68	1.64	Asp187, Tyr54, Glu166, Glu162, Gly192		
Delphinidin	−7.69	−9.78	2.31	Tyr54, Asp187, Glu162, Glu192		
Fisetin	−8.11	−9.60	1.14	Tyr54, Asp187, Glu162, Glu192		
Genistein	−6.80	−7.99	10.36	His41, Glu192, Thr190		
Glabridin	−8.25	−9.14	0.90	Glu163, Arg188, Gly143		
Isorhamnetin	−7.61	−9.40	2.63	Tyr54, Glu192, Glu166, Asp187		
Liquiritigenin	−7.58	−8.48	2.77	Tyr54, Glu192,		
Nelfinavir	−9.68	−13.26	0.08	Glu192, Thr190, Glu189, Glu166		
p-cymene	−4.79	−5.09	306.35	−	Arg217, Thr257, Ile213, Val303, Gln256, Thr304, Gln306, Phe305, Val212	
Piperine	−7.89	−8.78	1.65	Gly143		
Pterostilbene	−7.62	−9.11	2.60	Gly143, His167		
Silibinin	−7.55	−10.24	2.91	Glu166, Asp187, Tyr54		
Thymoquinone	−5.49	−5.79	94.45	Lys5, Trp207		

BE, estimated free energy of binding (kcal/mol); FIE, final intermolecular energy (kcal/mol); EIC, estimated inhibition constant (μM).

Table 2. Molecular interaction of different herbal plant compounds with the area where N3 is connected to COVID-19 main protease (PDB: 6LU7).

Ligand receptor	BE kcal/mol	FIE kcal/mol	EIC μM	Glu192, Tyr54, Glu166	Hydrogen bonding	Hydrophobic interactions
Carvacrol	−5.22	−5.82	148.45	−	Tyr54, Met49, His41, Met165, Glu166, Arg188, Gln189, Asp187	
Catechin	−8.45	−10.24	643.92	Glu192, Tyr54, Glu166		
Cinnamaldehyde	−4.81	−5.81	297.39	Glu166, Met165, Gln189, Met49, His41, Tyr54, Asp187, His164		
Coumarin	−5.20	−5.20	207.47	Glu166, Met165, Gln189, Arg188, Asp187, His41, His164		
Cyanidin	−8.44	−10.23	649.87	Leu50, Glu47, Asn51, Asn53, Asp56, Leu57, Asp48, Pro52		
Delphinidin	−8.03	−10.11	1.31μM	Arg188, Asn51, Arg40, Met82, Pro52, Glu55, Asn53, Tyr54		
Fisetin	−8.51	−10.01	574.24	Asn51, Arg60, Asn53, Asp56, Glu50, Pro52, Leu57		
Genistein	−7.20	−8.39	5.27	Asn51, Pro52, Asp56, Leu57, Asn53, Asp56, Glu50, Gly170		
Glabridin	−6.11	−7.01	33.01	Arg188, Arg40, Asn84, Asn53, Pro52, Tyr54, Asn84, Glu55, Met82		
Isorhamnetin	−6.53	−8.33	16.45	Tyr54, Arg40, Asn84, Glu53, Met82, Asn53, Pro52		
Liquiritigenin	−7.82	−8.72	1.85	Gln192, Glu166, Leu167, Thr190, Glu189, His41, His164, Met165		
Nelfinavir	−6.88	−10.46	9.07	Asn51, Leu50, Glu47, Asn53, Arg60, Asp48, Pro52, Leu57		
p-cymene	−4.90	−5.25	234.93	−	Asp187, Tyr54, Arg188, His41, Met165, Glu166, Gln189, Met49, Tyr54	
Piperine	−7.11	−8.01	6.10	Asn51, Pro52, Arg40, Glu55, Met82, Asn84, Tyr54, Arg188, Asn53		
Pterostilbene	−7.82	−9.31	1.86	Gln192, Tyr54,		
Silibinin	−5.90	−8.59	47.22	Asn51, Glu55, Tyr54, Asn53, Pro52		
Thymoquinone	−5.17	−5.46	163.51	−	His41, Asp187, Arg188, Gln189, Glu166, Met165, His164, Tyr54	

BE, estimated free energy of binding (kcal/mol); FIE, final intermolecular energy (kcal/mol); EIC, estimated inhibition constant (μM).

4. Discussion

Currently, there is a limited arsenal available to help combat coronaviruses, as no drug or vaccine has yet been approved. Although several options including vaccines, peptides, interferon therapies, and monoclonal antibodies could be developed to control or prevent emerging infections of COVID-19,
it requires months to years for ultimate approval (Li & De Clercq, 2020; Saif, 2020). Interestingly, over 1800 years ago, traditional Chinese medicine was considered to be the mainstay of infectious diseases treatment (Zhang et al., 2020), indeed, in addition to antiviral properties, this historical disease management strategy has been considered by researchers in recent years for managing and/or treating cancer, inflammatory and cardiovascular diseases, diabetes, infertility, and other pathological conditions (Jamali, 2019, 2020; Samare-Najaf et al., 2020). Generally, phytochemicals, particularly polyphenols, possess antiviral activities against several viral components and actions (Levy et al., 2020). Herbal compounds could be applied in a variety of formats, including diet, coating on masks, using as an air disinfectant, and as a surface sanitizing agent to combat novel COVID-19 (Panyod et al., 2020).

Currently, computer-aided drug design is considered a pivotal approach in modern drug discovery due to its beneficial properties, such as minimizing costs, accelerating drug development process, and nonrequirement of specialist operators (Islam, 2020).

Interestingly, in the recent pandemic, the use of such technology has been able to well determine the ability of various drugs and compounds as well as their potential mechanism to inhibit the cytotoxicity of the SARS-CoV-2 (Ellinger, 2020).

Molecular docking reliably predicts the prevailing binding trends between a ligand and a protein, and thereby indicates how the ligand might inhibit the protein. The findings of the present molecular docking study revealed that some phytochemical compounds, such as catechin, fisetin, and glabridin, may be potential inhibitors for the COVID-19 main protease. Glabridin, with three hydrogen bonds and 9 hydrophobic interactions in the binding site, had the highest binding affinity to the protease among the studied compounds (Figure 1; Table 1). The binding free energy between the glabridin and COVID-19 main protease was -8.25 kcal/mol, which is extremely close to nelfinavir (-9.68 kcal/mol) as a
potent inhibitor of the protease (Table 1). More importantly, the minimum effective concentration of glabridin for this binding is 0.90 μM, which is too low to elicit toxic effects on the human body cells. Glabridin is a prenylated isoflavonoid and main component in the root of Glycyrrhiza glabra L. (commonly known as licorice). Several studies have reported that glabridin possesses a various range of biological properties, such as anti-inflammatory, antioxidant, antiatherogenic, antitumorigenic, antimicrobial, and antibacterial activities (Simmler et al., 2013; Wang et al., 2013). It has also been reported that glabridin possesses potent antihepatitis C virus (HCV) activity, with an IC50 value of 6.2 μg/mL, suggesting that glabridin could be considered an appropriate candidate for developing an anti-HCV drug (Adianti, 2014). Importantly, the minimum effective concentration for glabridin binding to the viral main protease is much lower than its toxic concentrations for normal cells.

Catechin was the second most effective compound among the studied natural products, with a binding energy value of −8.12 kcal/mol. Catechin is the main polyphenol present in green tea and many fruits, including grapes, cacao, and apples (Liu et al., 2018). Green tea catechins have been shown, both in vivo and in vitro, to possess antiviral activities against the influenza virus. Chang et al. reported that catechin can inhibit the growth of the influenza A (H1N1) virus with EC50 of 18.4 μg/mL in the MDCK cell line;
further delineating that catechin could be considered a potent inhibitor of virus mRNA replication and neuraminidase activity of influenza virus (You et al., 2018). Furthermore, the clinical trial by Matsumoto et al. showed that the incidence of influenza infection among the participants who had consumed catechin/theanine for 5 months was significantly lower than the placebo group, suggesting that green tea catechins might be effective prophylactic agents for influenza infection (Matsumoto et al., 2011). In accord with the present study, a recent molecular docking investigation showed that catechin can bind to the spike protein of COVID-19 (S-Protein) and its cellular receptor (ACE2), with a great affinity (−10.5 Kcal/mol and −8.9 Kcal/mol), and it can be considered as a potential molecule for developing a new drug against viral infection (Dandapat, 2020).

Among the analyzed compounds, Fisetin had the highest affinity for the COVID-19 main protease, after glabridin and catechin, with a binding energy value of −8.1 Kcal/mol. Fisetin is a naturally occurring flavonoid found in many fruits and vegetables, such as kiwis, grapes, persimmons, apples, strawberries, cucumbers, and onions (Rengarajan & Yaacob, 2016). It has also been stated that Fisetin has several anti-inflammatory, antitumoral, and antioxidant activities (Kim et al., 2015). Indeed, Zandi et al. revealed that Fisetin has antiviral activity against dengue virus and exerts its activity by blocking the replication of the virus (Zandi, 2011). In addition, it has been documented that fisetin significantly inhibits the enzymatic activity and replication of enterovirus A71, in a dose-dependent pattern (Lin et al., 2012). Furthermore, in Rane et al., it was demonstrated that fisetin interacts strongly with the spike protein of the COVID-19 with binding energy of −8.5 Kcal/mol; thereby suggesting that this bioactive compound has the potential ability to be considered as a novel drug candidate (Rane, 2020). Also, other studied chemicals in the current investigation demonstrated a high tendency to bind to the binding site of the viral main protease.

Ellinger et al. (2020) have shown the inhibitory effects of some phytochemical compounds on human epithelial

Figure 4. Changes in the Radius of gyration (Rg) during 50 ns simulation time. (A) Catechin, (B) Fisetin, (C) Glabridin and (D) 3CLpro-N3. The black lines correspond to Rg of protein alone and the red lines correspond to the Rg of protein docked with the ligands.
Previous studies have identified the two amino acid residues, His41 and Cys145, as catalytic residues in the binding site of the COVID-19 main protease (Islam, 2020). The results of the present study showed that catechin and fisetin interact with His41 via hydrophobic interaction. Interestingly, glabridin interacts with both catalytic amino acid residues and bears the strongest resemblance to nelfinavir. Indeed, these phytochemicals appear to be promising main protease inhibitors, as they bond to catalyzing residues of the protease binding site.

The present simulation study revealed that binding of the functional catechin, fisetin, and glabridin compounds yields a remarkable impact on the protein protease 3CLpro of COVID-19. The simulated systems in the current study stabilized in terms of the RMSD changes rate after 30 ns, as the changes in RMSD per time were minimized from 30 ns onwards (Figure 2). However, the present findings demonstrated a sharp decrease in the mean RMSD in the protein docked with glabridin, and a slight increase in the RMSD in the protein docked with catechin and fisetin. These changes in RMSD markedly affected the structural fluctuations of the 3CLpro protein (Carugo, 2003).

The current findings demonstrated that the high affinity of the binding of all three active compounds (catechin, fisetin, and glabridin) tend to binding with 3CLpro protease protein. This high tendency to bind causes the rotational radius of the protein to be drastically affected. Indeed, binding of all three studied compounds to the protein, particularly glabridin, resulted in an increase in the rotational radius of the protein (Figure 4), which indicates the rigorous alterations induced by these compounds on the spatial structure of the protein (Lobanov et al., 2008).

The inhibitory effects of catechin, fisetin, glabridin on the fluctuations of amino acid residues of protease proteins, that were evaluated using the RMSF parameter (Figure 6), demonstrated that these compounds could inhibit amino acid residues of 120–146, as well as 180–200 amino acid residues in the protease protein. In particular, catechin and fisetin
decreased the Cys 145 residue fluctuation of the COVID-19 main protease from 0.12 to 0.10 nm, while glabridin decreased the Cys 145 residue fluctuation of the COVID-19 main protease RMSF from 0.12 nm to 0.90 nm. Indeed, such reductions in RMSF can be a sign of the inhibitory effects of these phytochemical compounds on the COVID-19 main protease.

In the present study, we noted that the binding of catechin, fisetin, glabridin elicited drastic changes in the secondary structure of the protein (Figure 7). These alterations include a sharp decrease in the secondary structure of the coil, and a sharp increase in the secondary structure of the β-sheet. Since the coil regions are considered as the functional regions of the protein, decreasing the amount of these secondary structures greatly reduces the flexibility of the protein, and increasing the β-sheet regions severely limits the flexibility of the protein; therefore, the studied chemicals appear to be able to reduce the activity of this enzyme dramatically.

The MD results of this study showed that the catechin, fisetin, and glabridin compounds affect on COVID-19 main protease as similar as N3 inhibitor. However, in some parameters such H-bound in the complex of N3-inhibitor docked to COVID-19 main protease increased significantly in comparison other three phytochemical compounds. This could be due to N3-inhibitor’s peptide structure.

The current findings indicated that a number of herbal compounds could directly affect the structure of the main protease protein of the Coronavirus through their high tendency to bind and interact with this enzyme. These interactions elicit fundamental changes in the protein second and third structures, subsequently disrupting the function of this enzyme. This simulated study indicates that the induced alterations in enzyme structure could lead to inhibition of its activity. However, the present findings reveal the necessity to conduct further in vitro and in vivo studies for confirmation of the inhibitory role of these known compounds.

Figure 6. Changes in root mean square fluctuation (RMSF) during 50 ns simulation time. (A) Catechin, (B) Fisetin, (C) Glabridin and (D) 3CLpro-N3. The black lines correspond to the RMSF of the protein alone and the red lines correspond to the RMSF of the protein docked with ligands.
5. Conclusion

The results of the present study showed that glabridin, catechin, and fisetin have a high tendency to bind to the COVID-19 main protease, and this binding can cause changes in protein structure, leading to inhibition of the virus function and subsequent limitation of the virus activity. Moreover, glabridin, catechin, and fisetin may be potent inhibitors of the virus protease and considered as attractive candidates for drug discovery; however, further in vivo and in vitro instigations are needed to confirm the veracity of these in silico findings.

Disclosure statement

The authors declare no conflicts of interest.

This study was based on a research project (no: 3279) funded by the Deputy of Research and Technology of Shahrekord University of Medical Sciences, Shahrekord, Iran. We gratefully thank this deputy.

ORCID

Mohammad Samare-Najaf http://orcid.org/0000-0002-1741-503X
Cain C. T. Clark http://orcid.org/0000-0002-6610-4617

References

Adianti, M. (2014). Anti-hepatitis C virus compounds obtained from Glycyrrhiza uralensis and other Glycyrrhiza species. Microbiology & Immunology, 58(3), 180–187. https://doi.org/10.1111/1348-0421.12127
Carugo, O. (2003). How root-mean-square distance (rmsd) values depend on the resolution of protein structures that are compared. Journal of Applied Crystallography, 36(1), 125–128. https://doi.org/10.1107/S0021889802020502
Dandapat, J. (2020). Catechin and Curcumin interact with corona (2019-nCoV/SARS-CoV2) viral S protein and ACE2 of human cell membrane: insights from computational study and implication for intervention. Ellinger, B. (2020). Identification of inhibitors of SARS-CoV-2 in vitro cellular toxicity in human (Caco-2) cells using a large scale drug repurposing collection.
Goswami, D. (2020). Natural product compounds in Alpinia officinarum and ginger are potent SARS-CoV-2 papain-like protease inhibitors. Grinter, S. Z., & Zou, X. (2014). Challenges, applications, and recent advances of protein–ligand docking in structure-based drug design. Molecules (Basel, Switzerland), 19(7), 10150–10176. https://doi.org/10.3390/molecules190710150
Huang, Z. (2020). Clinical characteristics of patients with 2019 Coronavirus disease in a non-Wuhan area of Hubei province: A retrospective study. Islam, R. (2020). A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. Journal of Biomolecular Structure & Dynamics, 1–12. https://doi.org/10.1080/07391102.2020.1761883
Jamali, N. (2019). Combination effect of caffeine and caffeic acid treatment on the oxidant status of ectopic endometrial cells separated from patients with endometriosis. Iranian Journal of Medical Sciences, 44(4), 315.
Jamali, N. (2020). Effect of cinnamon supplementation on blood pressure and anthropometric parameters in patients with type 2 diabetes: A systematic review and meta-analysis of clinical trials. Diabetes and metabolic syndrome. Clinical Research & Reviews, 14(2), 119–125.
Jin, Z. (2020). Structure of Mpro from COVID-19 virus and discovery of its inhibitors. BioRxiv.
Johansson, M. U., Zoete, V., Michielin, O., & Guex, N. (2012). Defining and searching for structural motifs using DeepView/Swiss-PdbViewer. BMC Bioinformatics, 13(1), 173. https://doi.org/10.1186/1471-2105-13-173
Kim, J. H., Kim, M.-Y., Kim, J.-H., & Cho, J. Y. (2015). Fisetin suppresses macrophage-mediated inflammatory responses by blockade of Src

Figure 7. Changes in the secondary structures during 50 ns simulation time.
