Evaluation of skeletal muscle activity during foot training exercises using positron emission tomography

Tomoyuki Kanayama, Junsuke Nakase, Takafumi Mochizuki, Kazuki Asai, Rikuto Yoshimizu, Mitsuhiro Kimura, Seigo Kinuya & Hiroyuki Tsuchiya

The foot exercises “rock-paper-scissors” and “towel gathering” are widely used in patients with lower limb disorders; however, there are no detailed reports on muscle activity during such training. We quantitatively evaluated the difference in skeletal muscle activity between the two exercises using positron emission tomography. Eight university student athletes were included. Four participants each were assigned to the foot rock-paper-scissors and towel gathering groups. Participants in each group underwent continuous training for 15 min, and received an intravenous injection of 18F-fluorodeoxyglucose. After retraining for 15 min, participants rested for 45 min. Regions of interest were defined in 25 muscles. The standardized uptake value (SUV) in the trained limb was compared with that in the non-trained control limb. SUVs increased in four skeletal muscles (tibialis anterior, peroneus brevis, extensor hallucis brevis, and abductor hallucis) in the rock-paper-scissors group, and in four muscles (flexor digitorum longus, extensor hallucis brevis, extensor digitorum brevis, and quadratus plantae) in the towel gathering group. Thus, foot rock-paper-scissors and towel gathering involved skeletal muscles related to the medial longitudinal arch and toe grip strength, respectively. Given that the two exercises target different skeletal muscles, they should be taught and implemented according to their respective purposes.

The foot is a complex structure consisting of 26 bones, 20 intrinsic and nine extrinsic muscles, 108 ligaments, and more than 30 joints. All these structures act in unison and enable bipedal walking. When these intrinsic foot muscles weakness, these roles are impaired, increasing the load on other passive foot structures and leading to foot deformities and injuries.

Ihara et al. first reported the effectiveness of dynamic joint control training for lower limb disorders. In Japan, the foot exercises “rock-paper-scissors” and “towel gathering” are commonly used for dynamic joint control training during non-weight-bearing periods. The rock-paper-scissors exercise for the foot involves folding the toes, spreading the toes out, and extending the first toe (Fig. 1). An electromyography (EMG) study reported that the act of spreading-out the toes required activation of the abductor hallucis muscle, while that of extending the first toe required activation of the flexor hallucis brevis and the flexor digitorum brevis muscles.

Towel gathering refers to the action of using one’s toes to pull a towel towards the foot (Fig. 2). While no studies have investigated skeletal muscle activity during towel gathering, some have examined a similar exercise known as the “toe curl.” As toe curls strengthen the flexor digitorum longus, brevis, lumbricals, and flexor hallucis longus, they are thought to be useful mainly for flexion of the toes. The medial longitudinal arch is supported by the flexor hallucis longus, flexor digitorum longus, abductor hallucis, flexor digitorum brevis, and tibialis posterior muscles. When the medial longitudinal arch of the foot is decreased, the load is not distributed correctly, resulting in worsened balance.

1Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa-city 920-8641, Japan. 2Kanazawa Advanced Medical Center, Kanazawa, Japan. 3Department of Nuclear Medicine/Biotracer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan. 5email: nakase1007@yahoo.co.jp
EMG, which detects electric potentials caused by transmembrane currents in muscle fibers, has been used to obtain electrophysiological recordings of muscle activity during training. Such recordings make it possible to compare skeletal muscle activity during different exercises. However, EMG has some limitations. In general, the use of surface electrodes allows for recording from a limited number of superficial muscles. Though needle electrodes can be used to observe deeper muscles, they are somewhat invasive. In addition, the cables connected to the electrodes interfere with exercise, disrupting the activity level and limiting the types of exercise that can be evaluated.

Glucose metabolism during exercise is dependent on the power output of the muscle and the recruited muscle mass; thus, the tissue uptake of plasma glucose increases with increasing exercise intensity. Fujimoto et al. focused on the mechanism of glucose metabolism in skeletal muscle using positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG), reporting levels of glucose uptake in individual skeletal muscles during

Figure 1. The foot rock-paper-scissors exercise. Repetition of the following movement sequence: fold the toes (a), spread the toes out (b), and extend the first toe (c).

Figure 2. The towel-gathering exercise. With the heels on the floor, grasp the towel with the toes and repeat the movement of pulling it toward oneself and releasing it.
aerobic exercise. Subsequent studies have shown that glucose metabolism measured by FDG-PET is highly correlated with the intensity of skeletal muscle activity18,19.

However, few studies have examined skeletal muscle activity during foot training exercises. Among them, most EMG studies have focused on the flexor muscle group5–8,10, while MRI studies have examined the area distal to the ankle joint9. No study has quantitatively evaluated the skeletal muscle activity of the whole lower limb during each exercise.

In the present study, we hypothesized that (i) the activity of the muscle groups involved in the medial longitudinal arch would increase during the rock-paper-scissors exercise, and that (ii) the activity of the muscle groups involved in toe grip strength, especially that of the flexor group, would increase in the towel gathering exercise.

Materials and methods
This research complies with the principles of the Helsinki Declaration. The study design was approved by the Kanazawa University Clinical Trials Ethics Review Committee (approval #6132). The purpose and potential risks of this study were explained to all the participants, following which they provided written informed consent. We obtained approval of the study protocol and informed the participants prior to the trial start date. We prospectively registered the trial in the Infrastructure for Academic Activities University Hospital Medical Information Network (UMIN000044554). We performed this study at the Kanazawa Advanced Medical Center, Kanazawa, Japan. All participants were recruited in June 2021, and all trials were performed in June 2021.

Eight healthy university athletes participated in the study after four declined to participate. Four participants were randomly assigned (allocation ratio 1:1) to the rock-paper-scissors (RPS) group, while the remaining four were assigned to the towel gathering (TG) group. For each group, the right foot was assigned for training, while the left foot took no part in the exercise and was designated as the control. All participants were considered healthy after a careful review of their medical history and physical examination.

All participants refrained from strenuous exercise the day before the test and were not allowed to eat or drink anything except water for 6 h prior to the test, to allow for maximum glucose uptake and utilization by the muscles. The participants in each group underwent continuous training for 15 min. They received an intravenous injection of 37 MBq of FDG and retrained for 15 min, following which they remained seated and at rest for 45 min. Voluntary muscles that actively contracted during the FDG uptake phase (primarily 30 min after tracer administration) would have had increased FDG accumulation. FDG-PET is usually performed at least 50 min after intravenous administration of FDG. This interval allows for enhanced tracer activity due to the intracellular capture of FDG (as FDG6-phosphate). Concomitantly, the pooling of the tracer in the blood is decreased, and the overall background tracer activity is lowered, thereby improving the background ratio. Although the background ratio can be improved even after 1 h post-injection, most facilities start emission image acquisition at about 1 h-mark post-injection, because of the reduction in counting statistics given the short physical half-life of 18F (110 min)10. In the present study, following a previous report by our group14, imaging was performed at 60 min after the injection. Before FDG injection, plasma glucose levels were confirmed to be normal, and PET-computed tomography (CT) was performed. During the training session, an orthopedic surgeon with more than 6 years of experience monitored participants to ensure that there were no problems with their exercise regimen.

PET analysis
Following the post-training 45-min rest period, the participants lied in a supine position in the gantry of the PET-CT system (Discovery PET/CT 690; GE Healthcare, Milwaukee, WI, USA). The scan was performed with a 60-cm axial field-of-view and a transaxial resolution of 6.4 mm (full-width at half maximum at the center of the field-of-view without a scattering medium). Prior to emission scanning, an unenhanced CT scan was performed for attenuation correction and muscle orientation. Emission scanning was performed in the three-dimensional mode, 60 min after 18F-FDG administration at 3 min/bed station. The total emission time was 15–21 min. The three-dimensional ordered subset expectation maximization method was used to reconstruct the images, with two iterations and 16 subsets. A 6.4-mm full-width at half-maximum Gaussian post-filter was applied after reconstruction.

Twenty-five skeletal muscles identified by plain CT axial imaging were used for the evaluation. The gastrocnemius muscle was evaluated in two parts, each for the medial and lateral heads. When evaluating each skeletal muscle, landmarks were stipulated to minimize the deviation of the slices to be evaluated. As in previous reports21,22, SUV values were measured in the slice with the maximum skeletal muscle belly. The combinations of the stipulated landmarks and the 25 skeletal muscles evaluated were as follows: tibialis anterior, extensor hallucis longus, extensor digitorum longus, peroneus tertius, peroneus longus, peroneus brevis, gastrocnemius, soleus, plantaris, popliteus, flexor digitorum longus, flexor hallucis longus, tibialis posterior, extensor hallucis brevis, extensor digitorum brevis, abductor hallucis, flexor hallucis brevis, flexor digitorum brevis, adductor hallucis, abductor digitii minimi, flexor digiti minimi brevis, opponens digiti minimi, quadratus plantae, lumbrical, and interosseous.

Regions of interest (ROIs) were manually drawn for the 25 skeletal muscles. An experienced orthopedic surgeon defined all ROIs using plain CT images and calculated the standardized uptake value (SUV) for FDG. The SUV was calculated according to the following equation to quantify the FDG uptake of the muscle tissue per unit volume:

\[
SUV = \frac{\text{mean region of interest count} \times \text{calibration factor}}{\frac{\text{injected dose}}{\text{body weight}}}
\]

Scientific Reports | (2022) 12:7076 | https://doi.org/10.1038/s41598-022-11202-y
ROIs were defined on the right and left sides of the skeletal muscles, as described above. The mean SUV was calculated using the following equation:

$$\text{mean SUV} = \frac{\text{left (mean SUV } \times \text{ muscle area)} + \text{right (mean SUV } \times \text{ muscle area)}}{\text{left muscle area + right muscle area}}$$

Sample size calculation and statistical analysis

Sample size was calculated using G-power 3.1 (effect size: 1.6, α-error: 0.05, and target power: 0.95). A minimum of four participants per group was recommended based on a previous study\(^{22}\), and four participants were thus enrolled in each group to account for unexpected injuries and withdrawal of consent.

All data are presented as the mean and standard deviation. All statistical analyses were performed using IBM SPSS for Windows ver. 25.0 (IBM Corp., Armonk, NY, USA). The independent-samples t-test was used to evaluate differences in the mean SUV between the RPS training and TG training groups and the RPS control and TG control groups. The differences between the SUVs of the RPS training and RPS control groups and those between the TG training and TG control groups were evaluated using a paired-samples t-test. Statistical significance was set at P < 0.05.

Ethical approval

This research complies with the principles of the Helsinki Declaration. The study title was as follows: “Examination of the effect of foot training using positron emission tomography (PET) on the intrinsic muscles of the foot -to update the anterior cruciate ligament injury preventive program.” The study design was approved by the Kanazawa University Clinical Trials Ethics Review Committee (approval #6132). The purpose and potential risks of this study were explained to the participants, and written informed consent was obtained from all participants. We obtained approved the protocol of the study and provided information to participants before the trial start date. We prospectively registered the trial in the Infrastructure for Academic Activities University Hospital Medical Information Network (UMIN000044554).

Consent for publication

The research participation agreement form also included an item of public consent.

Results

There were no significant differences in baseline characteristics (age, height, body weight, and Body mass index) between the RPS and TG groups (Table 1).

	RPS group	TG group	p-value
No. of participants	4	4	
Age, years	20.5 ± 0.6	20.8 ± 1.0	0.67
Height, cm	173.1 ± 10.3	176.4 ± 10.4	0.67
Weight, kg	73.5 ± 12.7	79.7 ± 6.9	0.42
Body mass index, kg/m\(^2\)	24.5 ± 3.8	25.7 ± 2.1	0.61

Typical lower-body PET images of the RPS and TG groups are shown in Fig. 3. In the RPS group, four muscles (flexor digitorum longus, extensor hallucis brevis, extensor digitorum brevis, and quadratus plantae) exhibited a significant increase in the SUV in the training limb compared with that in the control limb (Table 2). In the TG group, four other muscles (tibialis anterior, peroneus brevis, extensor hallucis brevis, and abductor hallucis) exhibited a significant increase in the SUV in the training limb compared with that in the control limb (Table 3). For all skeletal muscles, there were no differences between SUVs in the RPS control and TG control groups (Table 4). Only the SUV of the extensor hallucis longus muscle exhibited a significant difference between the RPS training and TG training groups (Table 5).

Discussion

This is the first study to apply FDG-PET to investigate comprehensive lower-body skeletal muscle activity during intrinsic foot muscle training. The authors attempted a detailed investigation of the contribution of each muscle of the lower extremity, and collected precise measurements to visualize relatively complex tasks of the lower extremity. The most important findings of this study were that the rock-paper-scissors exercise involves the medial longitudinal arch of the foot, while the towel-gathering exercise involves the muscles involved in toe-grip. As these findings indicate that the two exercises target different skeletal muscles, it is necessary to incorporate them into training according to their respective purposes.

Glucose is one of the energy sources for skeletal muscle. Like glucose, 18F-FDG is taken up by myocytes, and since it is not metabolized, it remains in the myocytes as FDG-6-phosphate (“metabolic trapping”)\(^{16,17,19}\). Since metabolic trapping is maintained for approximately 2 h after injection\(^{20}\), FDG-PET reflects skeletal muscle
glucose metabolism during exercise. Fujimoto et al. used PET to evaluate muscle activity during exercise in one of the first PET-based studies on muscle activity during running. Other studies have investigated PET during more complex tasks requiring endurance, such as running and double-poling. In a previous study, our group applied FDG-PET to the FIFA 11+ training program and reported on changes in muscle activity during training. We have also evaluated muscle activity in the lower limb using a belt-electrode skeletal muscle electrical stimulation system to demonstrate the effectiveness of FDG-PET in passive exercise. These findings provide a rationale for assessing skeletal muscle activity using FDG-PET.

For isometric strengthening of the intrinsic foot muscle, the most recognized exercise is the short foot exercise, in which volitional control of the intrinsic foot muscles elevates the foot arches and shortens the foot. This exercise is described as part of the core paradigm introduced by McKeon et al. The short foot exercise is typically challenging to teach and learn; therefore, three gradual training steps have been recommended. Meanwhile, foot rock-paper-scissors is a complex exercise that consists of toe clenching, spreading the toes out, and extension of the first toe in succession, but it is easy to learn. When the toes are spread out, circumferential motion occurs at the first and fifth toes, activating muscles that extend and abduct these digits.

The results of the present study showed that, as in previous investigations, foot rock-paper-scissors produced significant skeletal muscle activity in the extensor hallucis brevis, flexor digitorum longus, and quadratus plantaris muscles. During towel gathering, significant skeletal muscle activity was observed in the tibialis anterior, peroneus brevis, extensor hallucis brevis, and abductor hallucis muscles. Significantly more activity in the extensor hallucis longus muscle was observed during towel gathering than during foot rock-paper-scissors (P = 0.046). There was also a tendency for skeletal muscle activity to occur in the tibialis anterior, extensor hallucis longus, extensor digitorum brevis, flexor hallucis brevis, adductor hallucis, and abductor digiti minimi muscles during the foot rock-paper-scissors exercise. However, there was large variation among individuals, and no significant difference was observed. In the towel gathering group, skeletal muscle activity tended to occur in the flexor digitorum longus, flexor hallucis longus, abductor hallucis, flexor digitorum brevis, quadratus plantae, lumbral, and intersosseous muscles. Towel gathering effectively involved not only the flexors of the toes, but also the extensors.

During towel gathering, all toes are flexed via contraction of the flexor digitorum longus and flexor hallucis longus muscles to enable grasping the towel. Next, the tibialis posterior and tibialis anterior muscles contract by dorsiflexing the ankle joint while grasping the towel. Finally, when releasing the towel, the toes are extended and abducted. Although we speculated that the abductor hallucis longus muscle was used, we observed that...
the extensor muscle group contracted at the same time. Previous studies using EMG focused only on the flexor muscle group because of its characteristics, which are yet to be clarified.

The present results indicate that foot rock-paper-scissors is effective for exercising the medial longitudinal arch, while towel gathering is effective for improving the toe grip force. Furthermore, Kelly et al. revealed a positive correlation between the activities of the abductor hallucis, flexor digitorum brevis, and quadratus plantae. These muscles which are crucial for postural control, and are recruited in a highly coordinated manner for stabilizing the foot and maintaining balance in the mediolateral direction, particularly during single-leg positions. This suggests that continued training with towel gathering may also be effective in reducing the sway due to the center of gravity.

This study had several limitations. First, the FDG-PET method captures only the muscle glucose uptake. Although other substrates such as free fatty acids, muscle glycogen, and lactate are also metabolized in active myocytes, glucose oxidation increases with exercise intensity, and glucose uptake increases in proportion to glycogen utilization when exercise intensity rises. In addition, previous reports have shown that FDG uptake is higher in muscles composed of type I fibers than in muscles composed of type II fibers. Therefore, this result may not completely reflect all skeletal muscle activity. Second, the study included only a single session of training and experimentation, preventing us from examining continuous effects. Future studies should aim to evaluate the effects of continuous training sessions on skeletal muscle activity, changes in toe muscle strength, and improvements in static balance ability. Indeed, the comprehensive patterns of skeletal muscle activity during commonly performed foot exercises are unknown, and the skeletal muscles related to the control of static balance and extent of their contributions are yet to be clarified. Third, since a manual method was used to measure the SUV, the

Table 2. Mean SUVs in the RPS training and control groups. Values are presented as the mean ± standard deviation. RPS: rock-paper-scissors; SUV: standardized uptake value. The paired-samples t-test was used to evaluate differences in the mean SUV between the RPS training and control groups. Statistical significance was set at P < 0.05.

Muscles	Mean SUVs (RPS training group)	Mean SUVs (RPS control group)	p-value
Tibialis anterior muscle	2.26 ± 1.74	0.87 ± 0.44	0.125
Extensor hallucis longus muscle	1.96 ± 1.00	0.82 ± 0.27	0.076
Extensor digitorum longus muscle	0.89 ± 0.21	0.63 ± 0.10	0.100
Peroneus tertius muscle	0.73 ± 0.21	0.68 ± 0.26	0.395
Peroneus longus muscle	0.76 ± 0.18	0.60 ± 0.03	0.155
Peroneus brevis muscle	0.82 ± 0.18	0.54 ± 0.10	0.056
Medial head of gastrocnemius muscle	0.62 ± 0.11	0.60 ± 0.14	0.471
Lateral head of gastrocnemius muscle	0.64 ± 0.13	0.58 ± 0.09	0.111
Soleus muscle	0.74 ± 0.15	0.73 ± 0.14	0.565
Plantaris muscle	0.61 ± 0.09	0.53 ± 0.13	0.150
Popliteus muscle	0.98 ± 0.51	0.69 ± 0.13	0.228
Flexor digitorum longus muscle	0.66 ± 0.11	0.60 ± 0.13	0.012
Flexor hallucis longus muscle	0.74 ± 0.15	0.58 ± 0.13	0.055
Tibialis posterior muscle	0.76 ± 0.21	0.64 ± 0.12	0.147
Extensor hallucis brevis muscle	0.96 ± 0.34	0.65 ± 0.22	0.022
Extensor digitorum brevis muscle	1.77 ± 0.9	0.60 ± 0.18	0.049
Abductor hallucis muscle	0.75 ± 0.32	0.73 ± 0.22	0.855
Flexor hallucis brevis muscle	0.88 ± 0.38	0.59 ± 0.23	0.287
Flexor digitorum brevis muscle	1.00 ± 0.40	0.68 ± 0.24	0.069
Adductor hallucis muscle	1.91 ± 1.53	0.74 ± 0.15	0.204
Abductor digit minimi muscle	1.94 ± 1.80	0.64 ± 0.18	0.231
Flexor digit minimi brevis muscle	1.92 ± 1.60	0.78 ± 0.19	0.208
Opponens digit minimi muscle	0.97 ± 0.37	0.72 ± 0.17	0.090
Quadratus plantae muscle	0.99 ± 0.32	0.71 ± 0.18	0.033
Lumbrical muscle	1.23 ± 0.80	0.64 ± 0.13	0.200
Interosseous muscle	1.3 ± 0.65	0.58 ± 0.16	0.072
ROI range may not be accurate. Fourth, the measurement was performed in one slice using the landmark as an index, meaning that it does not reflect the activity of the entire muscle. However, data from our previous studies suggest that the difference is not significant. Fifth, because of the low spatial resolution of PET, it needs to be combined with another imaging modality that can more accurately spatially identify lesions that show abnormal high absorption on PET. Typically, PET is combined with CT to provide this anatomical map. Since the PET/CT system used in this study used time of flight, it was impossible to obtain a higher spatial resolution, which is a limitation of PET cameras. In order to optimally assess the role of PET in various situations, it is necessary to take into account a phenomenon known as partial volume effect (PVE), which is greater in areas with low FDG accumulation than in areas with high accumulation. However, we evaluated areas of high FDG accumulation in this study, and we believe that the effect of PVE is not as great as in areas of low FDG accumulation. Lastly, this study was conducted on trained athletes. The results of this study may not be generalizable to patients with lower extremity disorders.

Conclusion

This is the first study to apply FDG-PET to comprehensively investigate lower-limb skeletal muscle activity during foot exercise, despite the aforementioned limitations. Given that the foot rock-paper-scissors and towel gathering exercises target different skeletal muscles, the two techniques should be taught and implemented according to their respective purposes.

Muscles	Mean SUVs	TG training group	TG control group	p-value
Tibialis anterior muscle	0.79 ± 0.03	0.64 ± 0.13	0.026	
Extensor hallucis longus muscle	0.70 ± 0.15	0.61 ± 0.12	0.413	
Extensor digitorum longus muscle	0.72 ± 0.11	0.55 ± 0.04	0.048	
Peroneus tertius muscle	0.62 ± 0.10	0.52 ± 0.06	0.050	
Peroneus longus muscle	0.62 ± 0.05	0.52 ± 0.06	0.127	
Peroneus brevis muscle	0.72 ± 0.05	0.57 ± 0.08	0.016	
Medial head of gastrocnemius muscle	0.56 ± 0.07	0.54 ± 0.05	0.289	
Lateral head of gastrocnemius muscle	0.56 ± 0.06	0.51 ± 0.01	0.172	
Soleus muscle	0.78 ± 0.13	0.63 ± 0.04	0.054	
Plantaris muscle	0.63 ± 0.16	0.53 ± 0.10	0.160	
Popliteus muscle	0.73 ± 0.53	0.70 ± 0.03	0.486	
Flexor digitorum longus muscle	0.73 ± 0.09	0.63 ± 0.07	0.210	
Flexor hallucis longus muscle	1.07 ± 0.59	0.60 ± 0.07	0.243	
Tibialis posterior muscle	0.92 ± 0.21	0.68 ± 0.15	0.234	
Extensor hallucis brevis muscle	0.94 ± 0.11	0.79 ± 0.08	0.046	
Extensor digitorum brevis muscle	1.28 ± 0.53	0.79 ± 0.08	0.139	
Abductor hallucis muscle	0.94 ± 0.12	0.68 ± 0.09	0.007	
Flexor hallucis brevis muscle	1.13 ± 0.57	0.64 ± 0.23	0.120	
Flexor digitorum brevis muscle	1.41 ± 0.65	0.70 ± 0.12	0.124	
Adductor hallucis muscle	1.03 ± 0.54	0.64 ± 0.09	0.232	
Abductor digit minimi muscle	1.78 ± 1.51	0.60 ± 0.10	0.222	
Flexor digit minimi brevis muscle	1.56 ± 0.88	0.70 ± 0.20	0.151	
Opponens digit minimi muscle	1.64 ± 1.47	0.68 ± 0.07	0.274	
Quadratus plantae muscle	1.92 ± 1.44	0.61 ± 0.08	0.168	
Lumbrical muscle	1.15 ± 0.29	0.89 ± 0.12	0.151	
Interosseous muscle	2.18 ± 1.69	0.58 ± 0.14	0.160	

Table 3. Mean SUVs in the TG training and TG control groups. Values are presented as the mean ± standard deviation. TG: towel gathering; SUV: standardized uptake value. The paired-samples t-test was used to evaluate differences in the mean SUV between the TG training and control groups. Statistical significance was set at P < 0.05.
Muscles	Mean SUVs			p-value
	RPS control group	TG control group		
Tibialis anterior muscle	0.87 ± 0.44	0.64 ± 0.13	0.370	
Extensor hallucis longus muscle	0.82 ± 0.27	0.61 ± 0.12	0.203	
Extensor digitorum longus muscle	0.63 ± 0.10	0.55 ± 0.04	0.201	
Peroneus tertius muscle	0.68 ± 0.26	0.52 ± 0.06	0.260	
Peroneus longus muscle	0.60 ± 0.03	0.52 ± 0.06	0.056	
Peroneus brevis muscle	0.54 ± 0.10	0.57 ± 0.08	0.667	
Medial head of gastrocnemius muscle	0.60 ± 0.14	0.54 ± 0.05	0.456	
Lateral head of gastrocnemius muscle	0.58 ± 0.09	0.51 ± 0.01	0.176	
Soleus muscle	0.73 ± 0.14	0.63 ± 0.04	0.206	
Plantaris muscle	0.53 ± 0.13	0.53 ± 0.10	0.984	
Popliteus muscle	0.69 ± 0.13	0.70 ± 0.03	0.836	
Flexor digitorum longus muscle	0.60 ± 0.13	0.63 ± 0.07	0.616	
Flexor hallucis longus muscle	0.58 ± 0.13	0.60 ± 0.07	0.717	
Tibialis posterior muscle	0.64 ± 0.12	0.68 ± 0.15	0.680	
Extensor hallucis brevis muscle	0.65 ± 0.22	0.79 ± 0.08	0.262	
Extensor digitorum brevis muscle	0.60 ± 0.18	0.79 ± 0.08	0.112	
Abductor hallucis muscle	0.73 ± 0.22	0.68 ± 0.09	0.646	
Flexor hallucis brevis muscle	0.59 ± 0.23	0.64 ± 0.23	0.761	
Flexor digitorum brevis muscle	0.68 ± 0.24	0.70 ± 0.12	0.889	
Adductor hallucis muscle	0.74 ± 0.15	0.64 ± 0.09	0.299	
Abductor digiti minimi muscle	0.64 ± 0.18	0.60 ± 0.10	0.712	
Flexor digiti minimi brevis muscle	0.78 ± 0.19	0.70 ± 0.20	0.572	
Opponens digiti minimi muscle	0.72 ± 0.17	0.68 ± 0.07	0.669	
Quadratus plantae muscle	0.71 ± 0.18	0.61 ± 0.08	0.353	
Lumbrical muscle	0.64 ± 0.13	0.89 ± 0.12	0.051	
Interosseous muscle	0.58 ± 0.16	0.58 ± 0.14	0.966	

Table 4. Comparison of mean SUVs in the RPS control and TG control groups. Values are presented as the mean ± standard deviation. RPS: rock-paper-scissors; TG: towel gathering; SUV: standardized uptake value. The paired-samples t-test was used to evaluate differences in the mean SUV between the RPS control and TG control groups. Statistical significance was set at P < 0.05.
Data availability

The datasets generated and/or analyzed during the current study are not publicly available due to further analysis of data for upcoming publications, but are available from the corresponding author on reasonable request.

Received: 7 October 2021; Accepted: 30 March 2022

Published online: 30 April 2022

References

1. Holowka, N. B. & Lieberman, D. E. Rethinking the evolution of the human foot: Insights from experimental research. J. Exp. Biol. 221, 17. https://doi.org/10.1242/jeb.174425 (2018).
2. Miller, E. E., Whitcome, K. K., Lieberman, D. E., Norton, H. L. & Dyer, R. E. The effect of minimal shoes on arch structure and intrinsic foot muscle strength. J. Sport Health Sci. 3, 74–85. https://doi.org/10.1016/j.jshs.2014.03.011 (2014).
3. Mickle, K. J., Munro, B. J., Lord, S. R., Menz, H. B. & Steele, J. R. ISB clinical biomechanics award 2009. Clin. Biomech. 24, 787–791. https://doi.org/10.1016/j.clinbiomech.2009.08.011 (2009).
4. Ihara, H. & Nakayama, A. Dynamic joint control training for knee ligament injuries. Am. J. Sports Med. 14, 309–315. https://doi.org/10.1177/036354658601400412 (1986).
5. Mortka, K., Wiertel-Krawczuk, A. & Lisiński, P. Muscle activity detectors—surface electromyography in the evaluation of abductor hallucis muscle. Sensors (Basel) 20, 2162. https://doi.org/10.3390/s20082162 (2020).
6. Kim, M. H., Kwon, O. Y., Kim, S. H. & Jung, D. Y. Comparison of muscle activities of abductor hallucis and adductor hallucis between the short foot and toe-spread-out exercises in subjects with mild hallux valgus. J. Back Musculoskelet. Rehabil. 26, 163–168. https://doi.org/10.3233/BMR-2012-0063 (2013).
7. Hashimoto, T. & Sakuraba, K. Strength training for the intrinsic flexor muscles of the foot: effects on muscle strength, the foot arch, and dynamic parameters before and after the training. J. Phys. Ther. Sci. 26, 373–376. https://doi.org/10.1589/jpts.26.373 (2014).
8. Lee, D. R. & Choi, Y. E. Effects of a 6-week intrinsic foot muscle exercise program on the functions of intrinsic foot muscle and dynamic balance in patients with chronic ankle instability. J. Exerc. Rehabil. 15, 799–714. https://doi.org/10.12965/jer.1938488.244 (2019).
9. Gooding, T. M., Feger, M. A., Hart, J. M. & Hertel, J. Intrinsic foot muscle activation during specific exercises: a T2 time magnetic resonance imaging study. J. Athl. Train. 51, 644–650. https://doi.org/10.4085/1062-605-51.10.07 (2016).
10. Jung, D. Y. et al. A comparison in the muscle activity of the abductor hallucis and the medial longitudinal arch angle during toe curl and short foot exercises. Phys. Ther. Sport. 12, 30–35. https://doi.org/10.1016/j.ptsp.2010.08.001 (2011).

Muscles	Mean SUVs	p-value
Tibialis anterior muscle	2.26 ± 1.74	0.045
Extensor hallucis longus muscle	1.96 ± 1.00	0.145
Extensor digitorum longus muscle	0.89 ± 0.21	0.378
Peroneus tertius muscle	0.73 ± 0.21	0.357
Peroneus longus muscle	0.76 ± 0.18	0.258
Peroneus brevis muscle	0.82 ± 0.18	0.241
Medial head of gastrocnemius muscle	0.62 ± 0.11	0.170
Lateral head of gastrocnemius muscle	0.64 ± 0.13	0.046
Soleus muscle	0.74 ± 0.15	0.714
Plantaris muscle	0.61 ± 0.09	0.321
Popliteus muscle	0.98 ± 0.51	0.358
Flexor digitorum longus muscle	0.66 ± 0.11	0.321
Flexor hallucis longus muscle	0.74 ± 0.15	0.330
Tibialis posterior muscle	0.76 ± 0.21	0.321
Extensor hallucis brevis muscle	0.96 ± 0.34	0.358
Extensor digitorum brevis muscle	1.77 ± 0.9	0.358
Abductor hallucis muscle	0.75 ± 0.32	0.358
Flexor hallucis brevis muscle	0.88 ± 0.38	0.358
Flexor digitorum brevis muscle	1.00 ± 0.40	0.358
Adductor hallucis muscle	1.91 ± 1.53	0.358
Abductor digiti minimi muscle	1.94 ± 1.80	0.358
Flexor digiti minimi brevis muscle	1.92 ± 1.60	0.358
Opponens digiti minimi muscle	0.97 ± 0.37	0.358
Quadratus plantae muscle	0.99 ± 0.32	0.358
Lumbriual muscle	1.23 ± 0.80	0.358
Intersosseus muscle	1.3 ± 0.65	0.358

Table 5. Differences in mean SUVs between the RPS training and TG training groups. Values are presented as the mean ± standard deviation. RPS: rock-paper-scissors; TG: towel gathering; SUV: standardized uptake value. The paired-samples t-test was used to evaluate differences in the mean SUV between the RPS training and TG training groups. Statistical significance was set at P < 0.05.
Acknowledgements
This study would not have been possible without the participants’ cooperation. I am grateful to Editage for carefully proofreading the manuscript.

Author contributions
The study was designed by T.K., J.N., T.M., R.Y., M.K., S.K., and T.H. All data were analyzed by T.K. Data interpretation and manuscript preparation were undertaken by all authors. All authors read and approved the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.N.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022