THE EULER CHARACTERISTIC OF THE GENERALIZED KUMMER SCHEME OF AN ABELIAN THREEFOLD

Martin G. Gulbrandsen Andrea T. Ricolfi

Abstract

Let \(X \) be an Abelian threefold. We prove a formula, conjectured by the first author, expressing the Euler characteristic of the generalized Kummer schemes \(K^n X \) of \(X \) in terms of the number of plane partitions. This computes the Donaldson-Thomas invariant of the moduli stack \([K^n X/X_\alpha]\).

1 Introduction

Let \(n > 0 \) be an integer. The \(n \)-th generalized Kummer scheme \(K^n X \) of an Abelian variety \(X \) is the fibre over \(0_X \) of the composite map

\[
\text{Hilb}^n X \to \text{Sym}^n X \to X,
\]

where the first arrow is the Hilbert-Chow morphism and the second arrow takes a cycle to the weighted sum of its supporting points. The purpose of this note is to prove the following formula, which is the three-dimensional case of a conjecture from [7]:

\[\chi(K^n X) = n^5 \sum_{d | n} d^2.\]

Simultaneously with and independent of our work, Shen [8] has proven the conjecture in [7] for \(X \) an Abelian variety of arbitrary dimension \(g \), stating that

\[
\sum_{n \geq 0} P_{g-1}(n)q^n = \exp\left(\sum_{n \geq 1} \frac{\chi(K^n X)}{n^5} q^n \right),
\]

where \(P_d(n) \) denotes the number of \(d \)-dimensional partitions of \(n \). In fact, Shen proves a further generalization of this to the case of a product \(X \times Y \), where one factor \(X \) is an Abelian variety, and the other factor \(Y \) is an arbitrary quasi-projective variety. For \(g = 3 \), the formula in Theorem 1 is recovered from (1) by applying MacMahon’s product formula for plane partitions (cf. [9, Cor. 7.20.3]).

One motivation for the computation of \(\chi(K^n X) \) is as a test case for Donaldson–Thomas invariants for Abelian threefolds, as developed in [7]. In particular (see loc. cit.), the Donaldson-Thomas invariant of the moduli stack \([K^n X/X_\alpha]\) is the rational number

\[
\frac{(-1)^{n+1}}{n^6} \chi(K^n X) = \frac{(-1)^{n+1}}{n} \sum_{d | n} d^2.
\]
The formula (1) could be motivated by formally expanding Cheah’s formula, for the Euler characteristic of Hilbert schemes of points (cf. [2], and also [5] for a motivic refinement) up to first order in \(\chi(X) \), as follows:

\[
1 + \sum_{n \geq 1} \chi(\text{Hilb}^n X) q^n = 1 + \chi(X) \sum_{n \geq 1} \frac{\chi(K^n X)}{n^2} q^n \\
\exp\left(\chi(X) \log \sum_{n \geq 1} P_{g-1}(n) q^n\right) = 1 + \chi(X) \log \sum_{n \geq 0} P_{g-1}(n) q^n.
\]

The top equality comes from the étale cover \(X \times K^n X \to \text{Hilb}^n X \) of degree \(n^6 \), given by the translation action of \(X \) on the Hilbert scheme. The vertical equality is Cheah’s formula (cf. [2], and also [5] for a motivic refinement). For the bottom equality, we treat \(\chi(X)^2 \) as zero when expanding exp.

1.1 Conventions

We work over \(\mathbb{C} \). The symbol \(\chi \) denotes the topological Euler characteristic. We denote by \(\alpha \vdash n \) (one-dimensional) partitions of \(n = \sum_i i \alpha_i \), corresponding to classical Young tableaux. The number of \(d \)-dimensional partitions of \(n \) is denoted \(P_d(n) \). A higher dimensional partition can be seen as a generalized Young tableau, with \((d+1) \)-dimensional boxes taking the rôle of squares. The convention is to set \(P_d(0) = 1 \).

2 Proving the conjecture

2.1 Stratification

The Hilbert scheme of points of any quasi-projective variety \(X \) admits a natural stratification by partitions,

\[
\text{Hilb}^n X = \bigsqcup_{\alpha \vdash n} \text{Hilb}^\alpha_n X
\]

where \(\text{Hilb}^\alpha_n X \) denotes the (locally closed) locus of subschemes of \(X \) having exactly \(\alpha_i \) components of length \(i \). Let \(X \) be an Abelian variety. Letting \(K^n X = K^n X \cap \text{Hilb}^\alpha_n X \), we get an induced stratification of the Kummer scheme:

\[
K^n X = \bigsqcup_{\alpha \vdash n} K^n_\alpha X.
\]

For each partition \(\alpha \vdash n \), let us define the subscheme

\[
V_\alpha = \{ \xi \in \text{Sym}^n_\alpha X \mid \Sigma \xi = 0 \} \subset \text{Sym}^n_\alpha X
\]

where \(\Sigma \) denotes addition of zero cycles under the group law on \(X \). The Hilbert-Chow morphism \(\text{Hilb}^n X \to \text{Sym}^n X \) restricts to morphisms

\[
\pi_\alpha : K^n_\alpha X \to V_\alpha.
\]
Fixing a point in V_α amounts to fixing the supporting points of the corresponding cycle and their multiplicities. Thus, each fibre of π_α is isomorphic to a product of punctual Hilbert schemes:

$$F_\alpha \cong \prod_i \text{Hilb}^i(A^3; 0)^{a_i}.$$

Hence, using (2), we find

$$\chi(K^n X) = \sum_{\alpha \vdash n} \chi(V_\alpha) \prod_i P_2(i)^{a_i},$$

where we have used $P_d(n) = \chi(\text{Hilb}^n(A^d; 0))$ (see [4] for $d = 2$ and [2], [5] for the general case).

2.2 Strategy of proof

Let $\sigma_2(n) = \sum_{d \mid n} d^2$ denote the square sum of divisors of an integer n. As is well known [1], these are related to the number of plane partitions by

$$nP_2(n) = \sum_{k=1}^n \sigma_2(k)P_2(n-k).$$

Let us define, for $\alpha \vdash n$, integers $c(\alpha) \in \mathbb{Z}$ by the recursion

$$c(\alpha) = \begin{cases}
 n & \text{if } \alpha = (n^1), \\
 -\sum_{\ell,d,\ell_i \neq 0} c(\hat{\alpha}^i) & \text{otherwise},
\end{cases}$$

where, for a partition $\alpha = (1^{a_1} \ldots i^{a_i} \ldots \ell^{a_\ell}) \vdash n$, with $a_i \neq 0$, we let

$$\hat{\alpha}^i = (1^{a_1} \ldots i^{a_i-1} \ldots \ell^{a_\ell}) \vdash n-i.$$

We shall prove Theorem [1] in two steps, given by the two Lemmas that follow.

Lemma 1. The square sum of divisors σ_2 can be expressed in terms of the number of plane partitions P_2 as follows:

$$\sigma_2(n) = \sum_{\alpha \vdash n} c(\alpha) \prod_i P_2(i)^{a_i}. $$

Lemma 2. The Euler characteristics $\chi(V_\alpha) / n^3$ equal the numbers $c(\alpha)$ defined by recursion (5).

Assuming the two Lemmas, the main theorem follows:

Proof of Theorem [1] Equation (3) gives

$$\frac{\chi(K^n X)}{n^3} = \sum_{\alpha \vdash n} \frac{\chi(V_\alpha)}{n^3} \prod_i P_2(i)^{a_i} = \sum_{\alpha \vdash n} c(\alpha) \prod_i P_2(i)^{a_i} = \sigma_2(n).$$

We have applied Lemma [2] in the second equality, and Lemma [1] in the last equality.

2.3 Proof of Lemma 1: a recursion

Let us introduce the shorthand
\[f(\alpha) = \prod_i P_2(i)^{\alpha_i}. \]
Expand the right hand side of (7), using the definition of \(c(\alpha) \):
\[
(8) \quad \sum_{\alpha \vdash n} c(\alpha) f(\alpha) = n P_2(n) - \sum_{\alpha \vdash n \ j \geq 1 \ \alpha_i \neq 0} c(\hat{\alpha}_j) f(\hat{\alpha}_j)
\]
On the other hand, by induction on \(n \), the identity (4) gives
\[
(9) \quad \sigma_2(n) = n P_2(n) - n - 1 \sum_{k=1}^{n-1} \sigma_2(k) P_2(n-k) = n P_2(n) - \sum_{k=1}^{n-1} \frac{n}{k} \sum_{\beta \vdash k} c(\beta) f(\beta) P_2(n-k).
\]
The sets over which the double sums in (8) and (9) run are clearly identified via \((k, \beta) = (n-j, \hat{\alpha}_j)\). Since \(f(\alpha) = \prod_i P_2(i)^{\alpha_i} \), it follows that the two expressions (8) and (9) are identical. Lemma 1 is established.

2.4 Proof of Lemma 2: an incidence correspondence

In this section we prove Lemma 2. The technique used is very similar to the one adopted in [4].

Later on, we will need the following:

Remark 2.1. Let \(\alpha = (n^1) \). Then \(V_\alpha \) is in bijection with the subgroup \(X_n \subset X \) of \(n \)-torsion points in \(X \). This implies that \(\chi(V_\alpha) = \chi(X_n) = n^6 \). In other words, \(\chi(V_\alpha)/n^5 = n = c(\alpha) \).

Now we fix a partition \(\alpha \vdash n \) different from \((n^1)\), and an index \(i \) such that \(\alpha_i \neq 0 \). We will compute \(\chi(V_\alpha) \) in terms of the partition \(\hat{\alpha}_i \vdash n - i \), thanks to an incidence correspondence between the spaces \(V_\alpha \subset \text{Sym}_n X \) and \(V_{\hat{\alpha}_i} \subset \text{Sym}_{n-i} X \).

Let us define the subscheme
\[
I = \{ (a, b; \xi) \in X^2 \times V_\alpha \mid \text{mult}_a \xi = i, (n-i)b = ia \text{ in } X \} \subset X^2 \times V_\alpha.
\]
We use the incidence correspondence
\[
\begin{array}{ccc}
I & \xrightarrow{\phi} & V_\alpha \\
\downarrow & & \downarrow \\
V_{\hat{\alpha}_i} & \xrightarrow{\psi} & V_\alpha
\end{array}
\]
where the map \(\phi \) is the one induced by the second projection, and \(\psi \) sends \((a, b; \xi)\) to the cycle \(T_b(\xi - ia) \), where \(T_b \) is translation by \(b \in X \).

The strategy is to compute \(\chi(I) \) twice: by means of the fibres of \(\phi \) and \(\psi \) respectively. This will enable us to compare \(\chi(V_\alpha) \) and \(\chi(V_{\hat{\alpha}_i}) \).
Fibres of ϕ. Let $\zeta \in V_a$. This means $\zeta \in \text{Sym}^n X$ and $\sum \zeta = 0$ in X. We have

$$\phi^{-1}(\zeta) = \{ (a, b) \in X^2 \mid \text{mult}_a \zeta = i, (n-i)b = ia \} \subset X^2.$$

Let a_1, \ldots, a_n be the a_i points, in the support of ζ, having multiplicity i (recall that i is fixed). Then

$$\phi^{-1}(\zeta) = \bigcup_{1 \leq j \leq a_i} H_j,$$

where $H_j = \{ b \in X \mid (n-i)b = ia_j \}$. Each H_j is the kernel of the translated isogeny $b \mapsto (n-i)b - ia_j$, which has degree $(n-i)^6$, so $\chi(H_j) = (n-i)^6$. This yields $\chi(\phi^{-1}(\zeta)) = a_i(n-i)^6$. Hence,

$$\chi(I) = \chi(V_a)a_i(n-i)^6.$$

Fibres of ψ. Let $C \in V_a$. A point $(a, b; \zeta) \in \psi^{-1}(C)$ determines ζ as

$$\zeta = T_b^{-1}(C) + ia,$$

and the condition $\text{mult}_a \zeta = i$ translates into $\text{mult}_a(T_b^{-1}(C) + ia) = i$, which means $a \notin \text{Supp}(T_b^{-1}(C))$, i.e. $a + b \notin \text{Supp}(C)$.

Let us define the subscheme

$$B = \{ (a, b) \mid (n-i)b = ia \} \subset X^2.$$

Then we note that

$$\psi^{-1}(C) = \{ (a, b) \in B \mid a + b \notin \text{Supp}(C) \} = B \setminus \bigcup_{c \in \text{Supp}(C)} Y_c,$$

where

$$Y_c = \{ (a, b) \in B \mid a + b = c \} \cong \{ b \in X \mid nb = ic \} \cong X_n.$$

Now, if we map $B \to X$ through the second projection, we see that the fibres are all isomorphic (to X_n the group of i-torsion points in X). Hence, as $\chi(X) = 0$, we find that $\chi(B) = 0$. Thus, remembering that $\text{Supp}(C)$ consists of $(\sum a_i) - 1$ distinct points, we find

$$\chi(\psi^{-1}(C)) = - \sum_{c \in \text{Supp}(C)} \chi(Y_c) = -n^6 \cdot \left(\sum a_i - 1 \right).$$

Finally,

$$\chi(I) = -\chi(V_a)n^6 \cdot \left(\sum a_i - 1 \right).$$

Compare (10) and (11) to get

$$\chi(V_a) = -\frac{a_i(n-i)^6}{n^6(\sum a_i - 1)} \chi(V_a).$$
We now conclude by showing that the numbers \(\chi(V_\alpha)/n^5 \) satisfy the same recursion (5) fulfilled by the \(c(\alpha)'s \). If \(\alpha = (n^1) \), we know by Remark 2.1 that
\[
\frac{1}{n^5}\chi(V_\alpha) = n.
\]
For \(\alpha \neq (n^1) \), we can use the above computations to find (the sums run over all indices \(i \) for which \(\alpha_i \neq 0 \)):
\[
-\sum_i \frac{1}{(n-i)^5}\chi(V_\hat{\alpha}_i) = \sum_i \frac{1}{(n-i)^5} \frac{\alpha_i(n-i)^6}{n^6} \cdot (\sum_i \alpha_i - 1) \chi(V_\alpha)
= \frac{1}{n^5} \sum_i \alpha_i(n-i) \chi(V_\alpha)
= \frac{1}{n^5} \sum_i \alpha_i - \sum_i i\alpha_i \chi(V_\alpha)
= \frac{1}{n^5} \chi(V_\alpha).
\]
Lemma 2 is proved. As noted in Section 2.2, this completes the proof of Theorem 1.

REMARK 2.2. For an Abelian variety \(X \) of arbitrary dimension \(g \), Shen [8] observes that from an equality of formal power series in \(q \),
\[
\sum_{n \geq 0} P_{g-1}(n)q^n = \exp\left(\sum_{n \geq 1} s_n q^n\right),
\]
defining the sequence \(\{s_n\}_{n \geq 1} \), one obtains by application of the operator \(q \frac{d}{dq} \) the identity
\[
nP_{g-1}(n) = \sum_{k=1}^n ks_k P_{g-1}(n-k).
\]
Starting with this equality, our proofs of Lemmas 1 and 2 with \(\chi(V_\alpha)/n^5 \) replaced by \(\chi(V_\alpha)/n^{2g-1} \), go through without change, and we recover the identity (1).

REFERENCES
[1] G. E. Andrews, The theory of partitions, Cambridge University Press, Cambridge (1998).
[2] J. Cheah, On the cohomology of Hilbert schemes of points, J. Algebraic Geom. 5 (1996), no. 3, 479–511.
[3] O. Debarre, On the Euler Characteristic of Generalized Kummer Varieties, American Journal of Mathematics Vol. 121, No. 3 (Jun., 1999), pp. 577-586.
[4] G. Ellingsrud, S. A. Strømme, On the homology of the Hilbert scheme of points in the plane, Invent. Math. 87, 343-352 (1987).
[5] S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, Power structure over the Grothendieck ring of varieties and generating series of Hilbert schemes of points, Michigan Math. J. Volume 54, Issue 2 (2006), 353-359.
[6] M. G. Gulbrandsen, *Computing the Euler characteristic of generalized Kummer varieties*, Arkiv för Matematik April 2007, Volume 45, Issue 1, pp 49-60.

[7] M. G. Gulbrandsen, *Donaldson-Thomas invariants for complexes on abelian threefolds*, Mathematische Zeitschrift, Volume 273, Issue 1-2 (February 2013), pp 219-236.

[8] J. Shen, *The Euler characteristics of generalized Kummer schemes*, arXiv:1502.03973.

[9] R. P. Stanley, *Enumerative Combinatorics*, Volume 2, Cambridge University Press 1999.