INTRODUCTION
Globally, colorectal cancer is one of the major causes of morbidity and mortality leading to approximately 10% of the total cancer cases among both males and females [1,2]. The incidence of colorectal cancer has been increasing all over the world with more than 500,000 cases being diagnosed every year [1]. An increasing trend of colon and rectal cancers have been observed among men and women from the Indian subcontinent, the incidence being about 4 per 100,000 population for both sexes together and is the fifth most common cancer [6,332; 6.3%) in this population [3]. The studies from China and Saudi Arabia have identified various risk factors for colorectal cancer such as age >50 years, male gender, literacy, dietary pattern, and genetic factors such as family history of colorectal and other cancers [1,4]. However, there are scant data with regard to this from this coastal region with its unique dietary pattern. This study was therefore undertaken to identify risk factors associated with colorectal cancer among the population in this region and look for any region specific influences.

METHODS
An unmatched case-control study was carried out at a tertiary care hospital attached to a medical college in Southern Karnataka. In view of its geographical situation in the coastal belt of the state, the hospital caters to a population that is largely seafaring and includes the neighboring districts and states.

Considering literacy as a risk factor, with an expected exposure of 12% among the controls and an anticipated odds ratio (OR) of 2.4 [4], the calculated minimum number of cases was 93 for a power of 80% and 5% level of significance. Allowing for a 1:2 allocation ratio, 100 cases and 200 controls were recruited into the study.

Cases were defined as incident cases of colorectal cancer aged ≥30 years attending the surgery department of the hospital (both inpatients and outpatients) during the study period through 9 months. Controls were those individuals aged ≥30 years, who were healthy, having no history of any cancer, and accompanying the patients other than the cases from the same hospital during the study period. The study protocol was approved by the Institutional Ethics Committee.

Data collection
The cases and the selected controls were approached, and a written informed consent was obtained. Using a pre-designed questionnaire, sociodemographic data such as age, gender, literacy level, and employment status were collected. Socioeconomic status was assessed using modified Udai Pareek scale [5].

Dietary habits such as consumption of fruits and vegetables and red meat were assessed. The frequency of consumption of these items was categorized into daily, alternate days, twice, or once a week and occasionally.

The level of physical activity among subjects was assessed using the International Physical Activity Questionnaire (IPAQ)-short version that queries the participants on their involvement in vigorous and moderate physical activities, walking and other job-related physical activity, transportation-related activities, and recreational activities [6]. Each group of activities were measured separately (metabolic equivalent...
task [MET level × minutes of activity/day × days/week] and expressed as total MET-minute/week. Further, based on the total scores, study participants were categorized into those performing low (<600 MET minute/week), moderate (600-3000 MET minute/week), and high (>3000 MET minute/week) level of physical activity.

Details regarding alcohol and tobacco use, family history of colorectal/any other cancers and history of other comorbidities were collected from all the cases and controls.

Data analysis
Data were analyzed using SPSS version 15.0. Univariate and multivariable logistic regressions were used to estimate the ORs and adjusted OR's with corresponding 95% confidence interval (CI). p<0.05 was considered statistically significant.

RESULTS
A total of 100 cases with a confirmed diagnosis of colorectal cancer and 200 controls were recruited into the study.

Baseline characteristics of the participants and their association with colorectal cancer are shown in Table 1. In the present hospital-based study, 64% of the cases were aged ≥50 years (mean age±standard deviation [SD]: 53.28±10.9 years) against 41% of the controls (mean age±SD: 46.7±11.8 years). 63% of the cases and 54.5% of the controls were males, and majority (94%) of the study population was married. About 19.0% of the cases and 9.5% of the controls were illiterate, and nearly one-third of the study population (cases and controls) were unemployed. The majority (70%) of the cases and controls belonged to the middle socioeconomic class. A significant association was observed between age ≥50 years (OR=2.56; 95% CI: 1.56-4.20; p=0.001) and colorectal cancer. A similar association was demonstrated between illiteracy (OR=1.83; 95% CI: 1.05-3.18; p=0.04) and having a family history of other cancers (OR=6.32; 95% CI: 1.25-31.9; p=0.018) with colorectal cancer. However, no association was found with gender or occupation. Association of family history of colon cancer and colorectal cancer could not be determined as none of the controls reported this exposure.

Table 2 shows that 74% of the cases and 64% of the controls were consuming non-vegetarian food with 36.5% and 27.7% being frequent red meat consumers among cases and controls, respectively. Only 27% of the cases were consuming fruits compared to 63.5% of the controls. However, there was not much difference in the vegetable consumption among both the groups except for green leafy vegetables (58.0% of cases vs. 87.6% of controls). Personal habits such as tobacco and alcohol consumption pattern were almost similar in both the groups although tobacco chewers were more among cases (15%) compared to controls (7.0%). Among the comorbidities, diabetes (11.0% and 4.0% among cases and controls, respectively) and hypertension (9.0% and 3.5% among cases and controls, respectively) were found to be more among cases as compared to controls.

Table 2 depicts the strength of association between various lifestyle factors and colorectal cancer. Participants who consumed a mixed diet were at 1.6-fold risk of colorectal cancer compared to those who had only vegetarian food. The frequency of consumption of selected food items was categorized into frequent (twice a week/alternate days/daily) and less frequent (once a week/occasionally). Similarly, the risk of having colorectal cancer was 1.5 folds more among those who consumed red meat frequently, 4.7 times more among those who consumed less fruits, and 5 times higher among those who consumed green leafy vegetables less frequently. It was observed that the risk of colorectal cancer cases being associated with low physical activity was 5.8 times higher compared to controls.

On studying the association between the personal habits and the risk of colorectal cancer, it was found that the risk of having colorectal cancer was 2.3 fold higher among tobacco chewers. However, the study did not show any association between colorectal cancer and alcohol consumption. Of the comorbid conditions, diabetes showed a significant association (OR=2.97; 95% CI: 1.15-7.63; p<0.05) with colorectal cancer and hypertension was found to be an insignificant risk factor.

The factors showing an association with colorectal cancer at a p<0.1 on univariate analysis were further included in the final model for multivariable regression model, and the results are shown in Table 3. Consumption of green leafy vegetables was not considered for regression model in spite of being a significant factor as this data was available only for 242 participants.

A statistically significant association of colorectal cancer was observed with factors such as age ≥50 years (OR=1.88; 95% CI: 1.02-3.45; p<0.05), low physical activity (OR=5.66; 95% CI: 3.10-10.34; p<0.001), low frequency of consumption of fruits (OR=4.07; 95% CI: 2.21-7.50; p<0.001), and having hypertension as a comorbidity (OR=4.65; 95% CI: 1.32-16.44; p<0.05).

Table 1: Baseline characteristics of the study participants

Characteristics	Cases n=100 (%)	Controls n=200 (%)	Univariate OR (95% CI)	p value
Age (years)				
<50	36 (36.0)	118 (59.0)	1	
≥50	64 (64.0)	82 (41.0)	2.56 (1.56-4.20)	0.001
Gender				
Male	63 (63.0)	109 (54.5)	1	
Female	37 (37.0)	91 (45.5)	0.70 (0.43-1.15)	0.159
Education				
Literate	81 (81.0)	181 (91.5)	1	
Illiterate	19 (19.0)	19 (9.5)	1.83 (1.05-3.18)	0.040
Occupation				
Employed	62 (62.0)	132 (66.0)	1	
Unemployed	38 (38.0)	68 (34.0)	1.19 (0.72-1.96)	0.496
Socioeconomic status				
Middle and high	73 (73.0)	154 (77.0)	1	
Low	27 (27.0)	46 (23.0)	1.24 (0.71-2.15)	0.477
Family H/O colon cancer				
Absent	95 (95.0)	200 (100)	1	
Present	5 (5.0)	0 (0)		
Family H/O other cancers				
Absent	94 (94.0)	198 (99.0)	1	
Present	6 (6.0)	2 (1.0)	6.32 (1.25-31.90)	0.018

OR: Odds ratio, CI: Confidence interval
In the present study, mean age (±SD) of cases was 53.28 years (±10.99) compared to controls which are similar to the finding (54.1±11.5 years) reported in a study from Pondicherry, India, but in contrast to the statistics reported from the USA with median age of colorectal cancer cases being 43 years. The same report revealed a male preponderance among the cases which is in conformity to the findings of our study. In the present study, among the sociodemographic characteristics, age ≥50 years was significantly associated with colorectal cancer which is in agreement with the findings of earlier studies from India and Malaysia [7,15]. In contrast to the statistics reported from the USA with median age (54.1±11.5 years) reported in a study from Pondicherry, India, but in contrast to the statistics reported from the USA with median age (54.1±11.5 years) reported in a study from Pondicherry, India, but in contrast to the statistics reported from the USA with median age of colorectal cancer cases being 43 years. The same report revealed a male preponderance among the cases which is in conformity to the findings of our study. In the present study, among the sociodemographic characteristics, age ≥50 years was significantly associated with colorectal cancer which is in agreement with the report from the USA [7,8].

development of colon cells thus enhancing the risk of development of colorectal cancer [19]. However, our report shows an association between alcohol consumption and colorectal cancer on univariate analysis though it was not as an independent risk factor.

DIscussion

The present study did not show an association between smoking status or alcohol consumption and colorectal cancer risk similar to the findings of earlier studies from India and Malaysia [7,15]. In contrast to the findings of the present study, a follow-up study from Europe did show an association between alcohol consumption and colorectal cancer [19]. However, our report shows an association between chewing tobacco and colorectal cancer on univariate analysis though not as an independent risk factor.

Existing literature reports a strong association between diabetes and colorectal cancer [20-22]. This has been explained by the elevated levels of insulin and insulin-like growth factor-1 in diabetes that leads to a proliferation of colon cells thus enhancing the risk of development of colorectal cancer [18]. Our study however failed to appreciate this association. The present study reports an association between...
hypertension and colorectal cancer while clear evidence regarding the same is not available from the existing literature.

There was a significant association between family history of other cancers and colorectal cancer which is consistent with findings obtained in other studies [15,23]. There have been evidence to show that family history of cancers reported by the patients is valuable in their colon cancer risk assessment [24].

The symptoms commonly reported by the cases in this study are similar to those found in another study though the frequencies are different [25].

Our study has certain limitations. As the study was set in a tertiary care hospital, the findings may not reflect the prevailing habits of the local community and therefore generalizing these findings to this region may not be appropriate. Further, the chance of recall bias is a possibility with respect to dietary intake. In this study, physical activity was considered as a surrogate variable for anthropometry. Information regarding tobacco and alcohol consumption may not be complete as these may have been underreported by the participants, and this could have affected the estimation of their association with colorectal cancer.

CONCLUSION

Creating awareness about adopting a lifestyle that incorporates adequate physical activity alongside a healthy diet inclusive of fruits and fibers could be the way forward in reducing the risk of developing colorectal cancer. Further studies could explore if individuals with the risk factors identified in this study would benefit from frequent screening.

ACKNOWLEDGMENTS

This was an Indian Council of Medical Research-Short Term Studentship study (Reference ID: 2013-00768). Authors would like to thank all the study participants.

REFERENCES

1. Chen K, Cai J, Liu XY, Ma XY, Yao KY, Zhong S. Nested case-control study on the risk factors of colorectal cancer. World J Gastroenterol 2003;9(1):99-103.
2. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010;127(12):2893-917.
3. Saranath D, Khanna A. Current status of cancer burden: Global and Indian scenario. Biomed Res J 2014;1(1):1-5.
4. Almurshed KS. Colorectal cancer: Case-control study of sociodemographic, lifestyle and anthropometric parameters in Riyadh. East Mediterr Health J 2009;15(4):817-26.
5. Pareek U, Trivedi G. Manual of Socio-economic Status Scale (Rural). Delhi: Manasayan; 1980.
6. International Physical Activity Questionnaire. Available from: https://www.sites.google.com/site/theipaq/questionnaire_links. [Last accessed on 2016 Jan 14].
7. Iswarya SK, Premaranjan KC, Kar SS, Kumar SS, Kate V. Risk factors for the development of colorectal carcinoma: A case control study from South India. World J Gastrointest Oncol 2016;8(2):207-14.
8. Ries LA, Melbert D, Krapcho M, Mariotto A, Miller BA, Feuer EJ, et al. SEER Cancer Statistics Review, 1975-2005. Bethesda, MD: National Cancer Institute; 2008.
9. Simons CC, Hughes LA, van Engeland M, Goldbohm RA, van den Brandt PA, Weijenberg MP. Physical activity, occupational sitting time, and CRC risk in the Netherlands cohort study. Am J Epidemiol 2013;177:514-30.
10. Huxley RR, Ansary-Moghaddam A, Cliffon P, Czernichow S, Parr CI, Woodward M. The impact of dietary and lifestyle risk factors on risk of colorectal cancer: A quantitative overview of the epidemiological evidence. Int J Cancer 2009;125(1):171-80.
11. Batt D, Thunee I. Does physical activity prevent cancer? Evidence suggests protection against colon cancer and probably breast cancer. BMJ 2000;328(7437):617.
12. Terry P, Giovannucci E, Michels KB, Bergkvist L, Hansen H, Holmberg L, et al. Fruit, vegetables, dietary fiber, and risk of colorectal cancer. J Natl Cancer Inst 2001;93(7):525-33.
13. Murphy N, Norat T, Ferrari P, Jenab M, Bueno-de-Mesquita B, Skeie G, et al. Dietary fibre intake and risks of cancers of the colon and rectum in the European prospective investigation into cancer and nutrition (EPIC). PLoS One 2012;7(6):e39361.
14. Aune D, Chan DS, Lau R, Vieira R, Greenwood DC, Kampman E, et al. Dietary fibre, whole grains, and risk of colorectal cancer: Systematic review and dose-response meta-analysis of prospective studies. BMJ 2013;343:f6617.
15. Ranzi NH, Chahil JK, Lye SH, Munretanam K, Sahadevappia K, Velapasyany S, et al. Role of genetic and environmental risk factors in the aetiology of colorectal cancer in Malaysia. Indian J Med Res 2014;139(6):873-82.
16. Nayak SP, Sasi MP, Sreejayan MP, Mandal S. A case-control study of roles of diet in colorectal carcinoma in a South Indian Population. Asian Pac J Cancer Prev 2009;10(4):565-8.
17. Heber D. Vegetables, fruits and phytoestrogens in the prevention of diseases. J Postgrad Med 2004;50(2):145-9.
18. Chao A, Thun MJ, Mccullough ML, Jacobs EJ, Flanders WD, et al. Meat consumption and risk of colorectal cancer. JAMA 2005;293(2):172-82.
19. Ferrari P, Jenab M, Norat T, Moskal A, Slimani N, Olsen A, et al. Lifetime and baseline alcohol intake and risk of colon and rectal cancers in the European prospective investigation into cancer and nutrition (EPIC). Int J Cancer 2007;121(9):2065-72.
20. Larsson SC, Orsini N, Wolk A. Diabetes mellitus and risk of colorectal cancer: A meta-analysis. J Natl Cancer Inst 2005;97(2):1679-87.
21. Berstler JM, Göke B. Type 2 diabetes mellitus as risk factor for colorectal cancer. Arch Physiol Biochem 2008;114(1):84-98.
22. Nerkar D, Mukherjee A, Mehta BK, Banerjee S. The symptoms commonly reported by the cases in this study are similar to those found in another study though the frequencies are different [25].
23. Aarnio M, Mecklin JP, Aaltonen LA, Nyström-Lahti M, Järvinen HJ. Lifetime and baseline alcohol intake and risk of colon and rectal cancers in the European prospective investigation into cancer and nutrition (EPIC). Int J Cancer 2007;121(9):2065-72.
24. Larsson SC, Orsini N, Wolk A. Diabetes mellitus and risk of colorectal cancer: A meta-analysis. J Natl Cancer Inst 2005;97(2):1679-87.
25. Berstler JM, Göke B. Type 2 diabetes mellitus as risk factor for colorectal cancer. Arch Physiol Biochem 2008;114(1):84-98.
26. Nerkar D, Mukherjee A, Mehta BK, Banerjee S. The symptoms commonly reported by the cases in this study are similar to those found in another study though the frequencies are different [25].