Construction of an artificial symbiotic community using a Chlorella–symbiont association as a model

Masato Imase¹, Keiji Watanabe², Hideki Aoyagi¹ & Hideo Tanaka³

¹Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, Japan; ²Ibaraki Kasumigaura Environmental Science Center, Tsuchiura, Ibaraki, Japan; and ³Tsukuba Industrial Liaison and Cooperative Research Center, University of Tsukuba, Ibaraki, Japan

Abstract

Chlorella sorokiniana IAM C-212 produces a polysaccharide gel, termed a sheath, under photoautotrophic conditions. The C. sorokiniana sheath is a suitable habitat for several symbiotic microorganisms because it ensures close proximity between the C. sorokiniana and symbionts. In this study, we established a method for increasing the volume of the sheath produced by C. sorokiniana, and proposed a method for constructing artificial communities of Chlorella and symbiotic microorganisms. The C. sorokiniana sheath was increased by addition of calcium chloride solution. The sheath resulted in coflocculation of C. sorokiniana and the associated symbiotic bacteria, thus strengthening the bacterial–Chlorella symbiotic association. An application of this technique was demonstrated by constructing a complex of C. sorokiniana and a propionate-degrading bacterium (PDS1). Although propionate inhibited the growth of axenic C. sorokiniana, the C. sorokiniana–PDS1 complex showed good growth in a medium containing a high concentration of propionate.

Introduction

Symbiotic associations of microorganisms have various applications and are being used efficiently in many fields such as fermented food industries and wastewater treatment. However, their utilization has been based solely on empirical knowledge owing to the complexity of the symbiotic interactions. In other words, application of natural symbiotic associations has been limited.

Microorganisms in natural ecosystems coexist with, and live in symbiotic relationships with, other organisms. Examples of such symbiotic associations include plant root–microorganism (Hirsch et al., 2001; Whipps, 2001), termite–enterobacterium (Brune & Friedrich, 2000; Ohkuma, 2003) and lichens (Ahmadjian & Jacobs, 1981). These natural symbiotic relationships are usually very stable for long periods of time. In natural environments, close proximity is very important for maintaining the symbiotic associations. Thus, some microorganisms have acquired the capacity for chemotaxis, mobility (Paerl, 1982; Paerl & Galluci, 1985) and adhesion with the host (Koblier et al., 1981; Skvortsov & Ignatov, 1998).

Cyanobacteria produce polysaccharide gels that form a sheath. The sheath helps cyanobacteria to attach to other organisms (Robins et al., 1986; Gantar et al., 1995), and vice versa (Caldwell, 1977; Caldwell & Caldwell, 1978). In cyanobacteria–bacteria associations, the cyanobacteria provide photosynthetic products to the heterotrophic bacteria. By contrast, the heterotrophic bacteria use the oxygen produced by the cyanobacteria to degrade organic compounds, thereby maintaining the nitrogenase activity of the cyanobacteria (Paerl & Galluci, 1985; Paerl, 1988). This mutual relationship is facilitated by the environment created by the cyanobacterial sheath. Microalgae also produce a sheath. It was reported that this sheath was related to formation of algal cell aggregations in aquatic ecosystems (Leppard, 1995). Uptake of the metal by microalgal cells (Knauer et al., 1997; Lombardi et al., 2002) and the symbiotic association with bacteria (Croft et al., 2005) have been reported. However, there have been few studies on the relationship between the microalgal sheath and symbiosis. Chlorella is a genus of unicellular green algae belonging to the phylum Chlorophyta, and members of the genus generally inhabit the hydrosphere. There are several reports of
symbiotic associations involving this genus, such as Chlorella–Paramecium (Summerer et al., 2007) and Chlorella–hydra (Rahat & Reich, 1986). However, there are few reports on symbionts of Chlorella. The sheath produced by Chlorella and their chelating properties have been discussed (Kaplan et al., 1987). However, the relationship between the Chlorella sheath and symbionts has not been studied. In our earlier studies, we analysed symbiotic associations in C. sorokiniana cultures. The results showed that C. sorokiniana and its symbionts adhered together, while some binding through the sheath produced by C. sorokiniana was also observed (Watanabe et al., 2005). The results also showed that one of the symbionts (CSSB-3) in the algal sheath promotes growth of C. sorokiniana, but the growth-promoting factor was not fully resolved.

Some previous reports have suggested the importance of the sheath in symbiotic systems. In this study, a method for constructing a close and stable artificial complex of microorganisms using an algal sheath was developed.

In our previous work, the mechanism of sheath formation was studied by analysing the composition of the sheath produced by C. sorokiniana IAM C-212. The results showed that the major components of the sheath were carbohydrate, protein and metal cations that were found in the cultivation media (Watanabe et al., 2006). It was reported previously that metal cations affect the characteristics and productivity of extracellular polysaccharides (Bonet et al., 1993; Parker et al., 1996). In another study, it was shown that algal polysaccharides absorb metal ions (Kaplan et al., 1988; Mehta & Gaur, 2001). Based on these reports, we presented a hypothesis that the sheath of C. sorokiniana was composed of a metal and algal photosynthetic.

Although axenic C. sorokiniana is very efficient in wastewater treatment, it cannot degrade propionate contained in high-strength organic wastewater. To complement the ability of C. sorokiniana, a mixed culture system of C. sorokiniana and Rhodobacter sphaeroides was studied (Ogbonna et al., 2000). However, R. sphaeroides requires extraneous nutrients for its growth. Furthermore, immobilization of the microorganisms is important for their practical application in wastewater treatment, because it allows the biomass to settle for harvesting of sludge or for retaining high-density biomass for further processing (Mallick, 2002). In the present study, we establish a simple method of constructing a Chlorella–bacteria complex that can degrade propionate without addition of extraneous nutrients.

Materials and methods

Microorganisms

An axenic strain of C. sorokiniana IAM C-212 made axenic by the addition of antibiotics (Watanabe et al., 2005) and one of its bacterial symbionts (CSSB-3) isolated from the contaminated strain were used. Strain CSSB-3 (AB167383) showed 98.6% 16S rRNA gene sequence similarity to Microbacterium trichotecenolyticum (Y17240), belonging to the high-G+C Gram-positive bacteria (Watanabe et al., 2005).

Cultivation of Chlorella

Preculture of C. sorokiniana was carried out according to the method described by Ogbonna et al. (1995). Subculturing was carried out every 4 weeks by transferring 5 mL of the precultured broth into a 500-mL Erlenmeyer flask containing 200 mL MM4N medium composed of the following salts (per litre of distilled water): 5.0 g KNO₃, 1.25 g KH₂PO₄, 0.1 g K₂HPO₄, 2.5 g MgSO₄·7H₂O, 1.8 g of NaCl, 0.04 g FeSO₄·7H₂O, 0.03 g EDTA and 1 mL A₅ solution (containing, per litre of distilled water, 2.86 g H₃BO₃, 1.81 g MnCl₂·4H₂O, 0.22 g ZnSO₄·7H₂O, 0.08 g CuSO₄·5H₂O and 0.021 g Na₂MoO₄·2H₂O), and incubating on a rotary shaker (120 r.p.m.) at 30 °C under continuous illumination (50 μmol m⁻² s⁻¹). The preculture was done by inoculating Roux flasks containing 1 L MM4N medium with 10 mL of the stock culture. It was then incubated at 37 °C for 2 weeks under continuous illumination (360 μmol m⁻² s⁻¹). Aeration and mixing were achieved by sparging air enriched with 5% CO₂ through a glass-ball filter (Kinosita Rika, Tokyo, Japan), which was inserted to the bottom of the Roux flask, at 0.3 v v⁻¹ min⁻¹ (vvm).

Preparation of Chlorella culture broth for saccharide aggregation tests

Chlorella culture broth was prepared by cultivating C. sorokiniana under photoautotrophic conditions for 2 weeks. The culture broth was centrifuged (5000 g, for 15 min at 4 °C), and the supernatant was filtered through a sterile 0.2-μm pore size filter (Millex GV, Millipore, Billerica, MA). Five grams of Chelex-100 cation exchange resin (Nippon Bio-Rad Laboratories, Tokyo, Japan) was added to 100 mL of this filtrate. It was gently shaken for 1 h to remove cations from the filtrate. Residual metals in Chelex-treated filtrate were assayed using a sequential plasma spectrometer (ICPS-8100, Shimazu, Shiga, Japan). They comprised the following (mg L⁻¹): Na, < 0.1; K, < 0.1; Mg, 0.1; Ca, < 0.05; Mn, < 0.05; Fe, 0.2; Cu, < 0.1; Zn, 0; Mo, < 0.05.

Saccharide aggregation with metallic ions

The metals used in aggregation tests were aqueous solutions of KCl, NaCl, MgCl₂·6H₂O, CaCl₂·2H₂O and SrCl₂·6H₂O. Each chloride salt was dissolved in MilliQ water at various concentrations. Five hundred microlitres of the filtered Chlorella culture broth and required volumes of the metal solutions were mixed to yield the desired final
concentrations (0, 1, 2, 5, 10, 20, 50 mM). After incubation at 25 °C for 15 min, the mixtures were centrifuged at 12 000 g for 10 min at 4 °C. The pellet was washed five times in 1 mL of each concentration of the metals and then suspended in 500 μL of 50 mM EDTA. The total amount of carbohydrate in the pellet was determined using the phenol/sulphuric acid method with glucose as a standard (Dubois et al., 1956). Results are expressed in mg equivalent of glucose per litre of Chlorella culture broth. These experiments were performed in triplicate and the results are expressed as the mean ± SE.

Floculation and cultivation of axenic Chlorella

Floculated C. sorokiniana culture was examined after addition of 50 mM CaCl2 to the medium. The precultured C. sorokiniana (10 mL) was inoculated to a Roux flask containing 490 mL MM4N medium and incubated at 37 °C for 10 days under continuous illumination. The light intensity, aeration and mixing were achieved as described above. After 3 days of cultivation, 10 mL of 2.5 M CaCl2 aqueous solution was added to the culture broth through a 0.2-μm pore size filter. A culture to which 10 mL of distilled water was added was used as the control. Growth of C. sorokiniana was monitored by cell counting under a microscope, after addition of 50 mM EDTA to disintegrate cell flocculation. The amount of dissolved polysaccharide in C. sorokiniana culture broth was determined as follows. Algal cells were removed by centrifugation and 3 mL of the supernatant was obtained. Seven millilitres of cold 100% ethanol was added to the supernatant, and this was then incubated overnight at 4 °C. After incubation, the mixture was centrifuged at 8000 g for 10 min to precipitate the polysaccharides. The polysaccharide pellet was washed twice with 80% (v/v) ethanol and finally with 100% ethanol. After evaporating the residual alcohol under vacuum, the polysaccharide pellet was dissolved in an appropriate volume of distilled water to adjust the sugar concentration. Determination of the total saccharide content was examined using the phenol/sulphuric acid method with glucose as a standard.

Coflocculation of Chlorella and the symbiont

The symbiont was precultured in diluted Luria-Bertani (DLB) medium (per litre distilled water: 1.0 g peptone, 0.5 g yeast extract and 1.0 g NaCl, pH 6.8) at 30 °C for 24 h and used after washing in sterile saline solution (0.85% NaCl).

Chlorella sorokiniana was cultured axenically in a 500-mL Roux flask as described above and incubated at 37 °C. After 3 days of cultivation, 10 mL of washed cultures (1.0 × 10⁶ cells mL⁻¹) of symbiotic bacteria (CSSB-3) was inoculated to C. sorokiniana culture followed by addition of 10 mL of 2.5 M CaCl2 solution to yield a final concentration of 50 mM. The resulting microbial floc was incubated for 7 days under light conditions. The final cell concentration of C. sorokiniana in the culture broth was determined by cell counting. The experimental conditions are detailed in Table 1. These experiments were performed in triplicate.

Effects of flocculated symbiont on growth of C. sorokiniana were evaluated via ANOVA. Significant results were subjected to Tukey–Kramer’s test for multiple comparisons between groups. The calculations were carried out using MICROSOFT EXCEL 2003 with STATCEL2 as add-in software (OMS Publishing, Tokorozawa, Japan).

Observation of the Chlorella–symbiont complex via SEM

Two hundred and fifty microlitres of Chlorella–symbiont complex culture was fixed using 250 μL of 0.2 M sodium cacodylate, 250 μL of 4% (v/v) glutaraldehyde and 250 μL of 0.2 M phosphate buffer (per litre distilled water: 5.28 g NaH₂PO₄·H₂O and 43.46 g Na₂HPO₄× 7H₂O, pH 7.4) and again fixed with 250 μL of 0.2 M sodium cacodylate and 4% osmic acid, and 250 μL of 0.2 M phosphate buffer (pH 7.4). The fixed sample was dehydrated sequentially with 50%, 70%, 80%, 90% and 100% (v/v) ethanol. Finally, 100% ethanol was exchanged with 2-methyl-2-propanol. This sample was freeze-dried (VD-800F, Taitec, Tokyo, Japan), and coated with Pt – Pd (E102, Hitachi, Tokyo, Japan). The sample was observed with a field-emission scanning electron microscope (JSM-6330F, JEOI, Tokyo, Japan) at an accelerating voltage of 5 kV. Micrographs were taken at ×10 000 magnification.

Isolation and identification of a propionate-degrading bacterium

Chlorella culture broth was used for isolation of a propionate-degrading bacterium. The culture broth contained extracellular organic carbon (EOC), which is excreted during C. sorokiniana culture (Watanabe et al., 2005). The filtered culture broth was mixed with an equal volume of photoaotrophic medium, and the pH was adjusted to 6.0 with 1 N HCL. One gram of soil sample was incubated in EOC medium containing 1.0 g L⁻¹ sodium propionate at 30 °C for 3 days. Thereafter, 1 mL of the culture medium was

| Table 1. Experimental conditions in examining the effect of coflocculation of Chlorella sorokiniana and the symbiont on C. sorokiniana growth |
|-----------------|-----------------|-----------------|-----------------|
| Culture type | Mixed microorganism | CaCl2 addition | Abbreviation* |
| Control culture | NA | NA | Control |
| Mixed culture | CSSB-3 | NA | SB |
| Coflocculated culture | CSSB-3 | Added | SBCa |

*Abbreviation used in Fig. 5. NA, not added.
The oven temperature was maintained at 40 °C, and cultivating on an EOC agar plate (2.0% agar) containing sodium propionate and incubated at 30 °C for 24 h. Bacterial cells were isolated from the resultant culture by spreading 5.0 g L⁻¹ of propionate for 3 days. A propionate-degrading bacterial strain (PDS1) was obtained from this procedure.

Strain PDS1 was characterized based on 16S rRNA gene sequence analysis. DNA was extracted from samples using the Instagene matrix (Bio-Rad) according to the manufacturer’s protocol. Amplification of the 16S rRNA gene was carried out using universal primers 27F and 1492R (primers are listed in Table 2). The PCR products were sequenced directly on a CEQ 2000 DNA sequencer using a CEQ Dye Terminator Cycle Sequencing (DTCS) Quick Start Kit (Beckman Coulter, Fullerton, CA). The 16S rRNA gene sequence primers 27F, 341F, 518R, 530F, 764F, 911R, 1100R, 1390F, and 1492R were used. Sequences of all primers in this study are listed in Table 2. The sequences obtained were evaluated via ANOVA and significant results were subjected to Tukey–Kramer’s test for multiple comparisons between groups. Calculations were carried out using MIRROF EXCEL 2003 with statcel2 as add-in software (OMS Publishing).

Results

Effect of metal concentration on saccharide precipitation from culture broth of C. sorokiniana

The amount of saccharide precipitated from the culture broth increased with increase in the concentration of calcium and strontium chlorides. Maximum amounts of

Culture type	Mixed micro-organism	Propionate addition	CaCl₂ addition	Abbreviation*
Control culture	NA	NA	NA	Control
Axenic culture	NA	Added	NA	PP
Axenically flocculated culture	NA	Added	Added	PPSc
Coflocculated culture	PDS1	Added	Added	PDS Ca

Abbreviation used in Fig. 8. NA, not added.

Table 2. PCR and sequence primers used in identification of a propionate-degrading bacterium

Primer name	Primer sequence (5'→3')	References
27F	AGGTATGATCCATGCTGCTCAG	Hiraiishi (1992)
1492R	GGTTACCTTGTTACGACCA	Hiraiishi (1992)
341F	CTTAGGGAGGCGACGACAG	Muyzer et al. (1993)
518R	ATACACCGCCGGTCTGAGG	Muyzer et al. (1993)
530F	GTGACGCAGCGCGCAGG	Lane (1991)
764F	CAAACAGGATTAGATACCC	This study
907R	CGGTCATTATTCGACGGTTT	Lane (1991)
1100R	GGTTACCTTGTTACGACCA	Lane (1991)
1390R	ACGGGCGGTGTGGTCA	Lane (1991)

Propionate-degrading activity of the isolated bacterial strain

PDS1 was precultured in DLB medium with shaking at 30 °C for 24 h. This bacterial cell suspension was added to fresh EOC medium containing 5.0 g L⁻¹ sodium propionate and incubated at 30 °C for 24 h. Bacterial cells were isolated from the resultant culture by spreading 5.0 g L⁻¹ propionate for 3 days. A propionate-degrading bacterial strain (PDS1) was obtained from this procedure.

Strain PDS1 was characterized based on 16S rRNA gene sequence analysis. DNA was extracted from samples using the Instagene matrix (Bio-Rad) according to the manufacturer’s protocol. Amplification of the 16S rRNA gene was carried out using universal primers 27F and 1492R (primers are listed in Table 2). The PCR products were sequenced directly on a CEQ 2000 DNA sequencer using a CEQ Dye Terminator Cycle Sequencing (DTCS) Quick Start Kit (Beckman Coulter, Fullerton, CA). The 16S rRNA gene sequence primers 27F, 341F, 518R, 530F, 764F, 911R, 1100R, 1390F, and 1492R were used. Sequences of all primers in this study are listed in Table 2. The sequences obtained were evaluated via ANOVA and significant results were subjected to Tukey–Kramer’s test for multiple comparisons between groups. Calculations were carried out using MIRROF EXCEL 2003 with statcel2 as add-in software (OMS Publishing).

Results

Effect of Chlorella – PSD1 flocculation on Chlorella growth in a medium containing propionate

An appropriate volume of the precultured C. sorokiniana was taken to obtain 2.5 × 10⁷ cells, and the volume was adjusted to 450 μL with MM4N medium. Fifty microlitres of the washed PDS1 culture (containing 2.5 × 10⁷ cells) was mixed with the Chlorella culture and 500 μL of 500 mM CaCl₂ solution was added for flocculation. The microbial floc obtained was inoculated to 4 mL MM4N medium containing 125 mg L⁻¹ sodium propionate. The Chlorella cell concentration was determined on the 3rd day by cell counting. The experimental conditions are detailed in Table 3. These experiments were performed in triplicate. Effects of flocculated PDS1 on C. sorokiniana cell growth were evaluated via ANOVA and significant results were subjected to Tukey–Kramer’s test for multiple comparisons between groups. Calculations were carried out using MIRROF EXCEL 2003 with statcel2 as add-in software (OMS Publishing).

Table 3. Experimental condition in examining the effect of coflocculation of Chlorella sorokiniana and a propionate-degrading bacterial strain (PDS1) on C. sorokiniana growth in a medium containing propionate

Culture type	Mixed micro-organism	Propionate addition	CaCl₂ addition	Abbreviation*
Control culture	NA	NA	NA	Control
Axenic culture	NA	Added	NA	PP
Axenically flocculated culture	NA	Added	Added	PPSca
Coflocculated culture	PDS1	Added	Added	PDS Ca

*Abbreviation used in Fig. 8. NA, not added.
saccharide were achieved when 20 mM of Sr\(^{2+}\) or 50 mM of Ca\(^{2+}\) was added to the culture broth (Fig. 1). There were no saccharide precipitates when NaCl, KCl or MgCl\(_2\) was added to the culture.

Effect of cation on Chlorella growth and flocculation

Addition of CaCl\(_2\) solution resulted in flocculation of *C. sorokiniana*. Each floc comprised tens of *C. sorokiniana* cells within a gelatinous matrix. The Chlorella-flocs were observed even 7 days after cation addition (Fig. 2). When CaCl\(_2\) solution was added to the culture, the amount of polysaccharide in the *C. sorokiniana* culture broth decreased from 2.02 to 0.89 mg L\(^{-1}\) (Fig. 3). In the control culture, the quantity of polysaccharide in the culture broth increased linearly, reaching 8.34 mg L\(^{-1}\) on day 10. In the Ca\(^{2+}\) addition culture, only 3.45 mg L\(^{-1}\) of polysaccharide was produced by day 10. The quantity of polysaccharide in the culture with CaCl\(_2\) was always lower than those in cultures without addition of CaCl\(_2\). In the flocculated *C. sorokiniana* culture, cell numbers increased from an initial value of 2.85 \(\times\) 10\(^8\) to 5.26 \(\times\) 10\(^8\) cells mL\(^{-1}\) at the end of the culture. However, this value was lower than the value obtained in the control experiment (7.69 \(\times\) 10\(^8\) cells mL\(^{-1}\)).

Coflocculation of *C. sorokiniana* and the symbiont

Coflocculated *C. sorokiniana* and its symbiont were studied as an example of artificial symbiotic microorganisms. *Chlorella sorokiniana* and its symbiont (CSSB-3) were coflocculated within the gel matrix produced by *C. sorokiniana* in a medium containing CaCl\(_2\). These flocs were observed immediately after addition of CaCl\(_2\). Electron microscopic observation revealed that *C. sorokiniana* and the symbiont were coflocculated within the algal sheath even 1 week after the addition of CaCl\(_2\) (Fig. 4).

Effect of coflocculated symbiont on growth of Chlorella

The number of *C. sorokiniana* cells was counted 7 days after addition of symbionts and CaCl\(_2\). The *C. sorokiniana* cell...
number obtained in the coflocculated culture (SBCa, mean 7.14×10^8 cells mL$^{-1}$) was significantly ($P < 0.01$) higher than the number obtained in the control culture (Control, mean 5.39×10^8 cells mL$^{-1}$). It was also higher than the number of *C. sorokiniana* obtained in the mixed culture (SB, mean 6.24×10^8 cells mL$^{-1}$, $P < 0.05$; Fig. 5).

Isolation and characterization of a propionate-degrading bacterium

The results of axenic cultivation of *C. sorokiniana* in the medium containing sodium propionate showed that propionate inhibited growth of *C. sorokiniana* (Fig. 6). A complex of *C. sorokiniana* and propionate-degrading bacterium that can grow in the presence of propionate was therefore constructed. Screening for propionate-degrading bacteria was done using the EOC medium containing sodium propionate. The bacterial strain isolated (PDS1) was able to degrade 94% of the propionate in the medium within 24 h (Fig. 7). PDS1 grew in EOC medium with or without propionate, but it did not grow in the photoautotrophic medium containing propionate as the sole carbon source (data not shown). Identification of the bacteria isolated was carried out by 16S rRNA gene sequence analysis. Strain PDS1 (AB302851) showed 99.9% similarity to *Microbacterium oxydans* (AJ717357) belonging to the Actinobacteria.

Effect of coflocculated PDS1 on growth of Chlorella

A coflocculated complex of *C. sorokiniana* and PDS1 was constructed by addition of CaCl$_2$ to a mixture of PDS1 and
C. sorokiniana. This floc was cultured in a medium containing propionate, and **C. sorokiniana** cell number was counted on the third day. In axenic culture (PP), average cell **C. sorokiniana** number was 8.9 \(\times 10^6 \) cells mL\(^{-1} \), which is significantly lower (\(P < 0.01 \)) than the 15.1 \(\times 10^6 \) cells mL\(^{-1} \) obtained in the control culture without addition of propionate (Control; Fig. 8). By contrast, in the coflocculated culture of **C. sorokiniana** and PDS1 (PDSCa), mean cell number (13.9 \(\times 10^6 \) cells mL\(^{-1} \)) was higher than that obtained in axenic culture (PP). There was no significant difference between the cell concentrations obtained in coflocculated culture (PDSCa) and control cultures (Control). At the end of the coflocculated culture, the propionate concentration in the medium decreased below the measurement limits (15 mg L\(^{-1} \)) of our HPLC system. However, there was no significant decrease in the concentration of propionate in the control culture (data not shown). There was no significant difference in the cell concentrations of **C. sorokiniana** in the axenically flocculated culture (PPCa) and axenic culture (PP).

Discussion

This study was aimed at developing a method for construction of a close and stable artificial complex of microorganisms. The amount of **C. sorokiniana** sheath was artificially controlled and microorganisms were incorporated into the sheath.

Addition of either CaCl\(_2\) or SrCl\(_2\) to the filtered culture broth of **C. sorokiniana** resulted in sedimentation of gelatinous saccharides. The results showed that microorganisms can be incorporated into the gel formed in the **C. sorokiniana** culture broth. We have previously shown that Mg\(^{2+}\) is the main metal ion in the **C. sorokiniana** sheath (Watanabe et al., 2006). However, in the present study, addition of MgCl\(_2\) to **C. sorokiniana** culture broth did not result in saccharide sedimentation. The apparent discrepancy may be due to differences in the affinity between the secreted saccharide and the metal ions. The effects of cations on gelation of saccharide have been extensively studied. For example, it was reported that differences in the type of metal influence the gelation of alginate (Haug & Smidsrod, 1965). The medium used for photoautotrophic cultivation of **C. sorokiniana** contains abundant Mg\(^{2+}\). During the cultivation, a part of the saccharide secreted by **C. sorokiniana** was gelled by the abundant Mg\(^{2+}\) in the medium, and only those saccharides that were not gelled by magnesium remained in the culture broth. It was these ungelled saccharides that were precipitated by addition of Ca\(^{2+}\) or Sr\(^{2+}\).

Calcium chloride was used to flocculate **C. sorokiniana** in the present study. Calcium chloride is cheaper than SrCl\(_2\), and it has only minor detrimental effects on the environment (calcium dichloride is used as a snow melting agent in Japan). Addition of metal solution increased the amount of sheath produced by **C. sorokiniana**. *Chlorella* cells were immediately flocculated by the gelatinous matter after addition of metal cations while the amount of saccharide dissolved in culture broth decreased. The decrease in saccharide concentration in the broth was equal to the amount of gelled saccharides that adhered to algal cells. On day 10 of culture, a large proportion of **C. sorokiniana** cells were in the gelatinous flocs. The difference in sugar concentrations between the control and the Ca\(^{2+}\)-supplemented cultures remained constant during the incubation period. These results suggest that saccharide gelation and increase in the **C. sorokiniana** sheath by calcium salt solution continued.
throughout the period of cultivation. The above results showed that it was feasible to increase *C. sorokiniana* sheath by addition of metal cations. This is the first report of immobilization of microorganisms (flocculation) by addition of metal cations using saccharides produced by the same microorganism.

We constructed a coflocculated symbiotic community of *C. sorokiniana* and its symbiont as an example of an artificial microorganism complex using the immobilization method described here. Strain CSSB-3 is a symbiotic bacterium isolated from *C. sorokiniana* culture. This bacterium promoted the growth of *C. sorokiniana* (Watanabe et al., 2005). Using this bacterium as a model microorganism, we constructed a close symbiotic community within the extracellular polysaccharide augmented artificially by addition of metal solution. Electron microscopic observation of the constructed floc showed that the symbionts were attached to the surface of *C. sorokiniana* cells by gelatinous matter. The enhanced growth of *C. sorokiniana* in the Chlorella and CSSB-3 coflocculated culture is an indication that attachment through algal sheath enhances interaction of *C. sorokiniana* and the symbiont. It was reported that coimmobilization of Chlorella and plant-growth-promoting bacteria (PGPR) within the same alginate beads enhanced algal growth and pigment production (Gonzalez & Bashan, 2000). These authors reported that keeping the microorganisms close together was effective in promoting interactions between them. The coflocculation method described herein is a simple means of facilitating interactions between Chlorella and its associated microorganisms.

We employed the same method for coflocculation of *C. sorokiniana* and microorganisms isolated from the environment, and showed that the method is applicable to various microorganisms. An application of this method was demonstrated by constructing a complex of *C. sorokiniana* and propionate-degrading bacteria (PDS1). The complex can degrade propionate. Propionate, depending on its concentration, inhibited *C. sorokiniana* growth (Fig. 6). In the Chlorella–PDS1 complex, *C. sorokiniana* was able to grow in the presence of a high concentration of propionate. This complex was able to degrade propionate in the medium. When strain PDS1 was cultivated on EOC medium, it grew well with or without propionate (data not shown). In terms of nutrient utilization under photoautotrophic conditions, PDS1 depends on EOC released by *C. sorokiniana*. In microalgal–bacterial symbiotic associations, the microalgae generally provide O₂ and photosynthetic products to bacteria, and bacteria provide CO₂ by degrading photosynthetic. Moreover, the bacteria also act as algal growth-promoters (Munoz & Guieysse, 2006). It was reported that indole-3-acetic acid, produced by *Azospirillium brasilense*, worked as a growth factor when *Chlorella vulgaris* was coimmobilized and cocultured in alginate beads with *A. brasilense* (Gonzalez & Bashan, 2000). In the coflocculated complex of Chlorella and PDS1, the following mutualisms exist under light conditions: *C. sorokiniana* provides PDS1 with photosynthetic products, while PDS1 degrades propionate which inhibits algal growth, and also provides CO₂ to Chlorella by degrading EOC and propionate. However, we have not clarified the growth factor in this study.

Chlorella sorokiniana has the ability to remove elements contained in high-concentration wastewater except the propionate (Ogbonna et al., 2000). This Chlorella–PDS1 complex can be used for treatment of wastewater containing propionate without addition of extraneous nutrients. It may be feasible to construct symbiotic communities of *C. sorokiniana* and suitable microorganisms for various applications. Production of extracellular polysaccharides is a general phenomenon in photosynthetic microorganisms (Lewin, 1956; O’Colla, 1963). In addition, it is known that the gellan gums produced by *Pseudomonas* sp. form gels in the presence of cations (Kang et al., 1982). The method described herein can be applied to a wide range of algae, and can also be applied to heterotrophic microorganisms.

Several methods for immobilization such as adsorption, entrapment and coupling have been developed (Kolot, 1981). Our method has some analogy with the entrapment method, but it is unique in constructing the carrier using the immobilized microorganism itself. In this method, only addition of metal solution is required for cell immobilization. It is therefore simple compared with the other methods. In addition, the number and size of the aggregation increase with the culture process as long as the metal cation exists in the culture broth and the microorganism produces the soluble polysaccharide. By contrast, the properties of the carrier depend on the polysaccharide produced by microorganism. Therefore, cell leakage and a physical vulnerability might become problems dependent on the type of microorganism. Also, it is difficult to control the size of the flocculated complex. To meet the requirements for an ideal immobilization matrix (Mallick, 2002) further study is necessary. In conclusion, a simple procedure for construction of close and stable artificial communities of microorganisms is proposed in this study.

Acknowledgements

This study was supported by the Grants-in-Aid for Scientific Research B (no. 17310042) from the Japan Society for the Promotion of Science (JSPS), and the 21st Century COE Program from the Ministry of Education, Culture, Sports, Science and Technology (MEXT). We are indebted to Prof. James C. Ogbonna of the Department of Microbiology, University of Nigeria Nsukka, Nigeria, for many helpful discussions.
Statement

Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.

References

Ahmadjian V & Jacobs JB (1981) Relationship between fungus and alga in the lichen Cladonia crustatella Tuck. Nature 289: 169–172.

Bonet R, Simon-Pujol MD & Congregado F (1993) Effects of nutrients on exopolysaccharide production and surface properties of Aeromonas salmonicida. Appl Environ Microbiol 59: 2437–2441.

Brun A & Friedrich M (2000) Microecology of the termite gut: structure and function on a microscale. Curr Opin Microbiol 3: 263–269.

Caldwell DE (1977) The planktonic microflora of lakes. CRC Crit Rev Microbiol 5: 305–370.

Caldwell DE & Caldwell SJ (1978) A Zoogloea sp. associated with blooms of Anabaena flos-aquae. Can J Microbiol 24: 922–931.

Croft MT, Lawrence AD, Raux-Deery E, Warren MJ & Smith AG (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438: 90–93.

Dubois M, Gilles KA, Hamilton JK, Robers PA & Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28: 350–356.

Gantar M, Rowell P, Kerby NW & Sutherland IW (1995) Role of extracellular polysaccharide in the colonization of wheat (Triticum vulgare L.) roots by N2-fixing cyanobacteria. Biol Fertil Soils 19: 41–48.

Gonzalez LE & Bashan Y (2000) Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense. Appl Environ Microbiol 66: 1527–1531.

Haug A & Smidsrod O (1965) The effect of divalent metals on the properties of algate solutions. Acta Chemica Scandinavica 19: 341–351.

Hiraishi A (1992) Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial culture without DNA purification. Lett Appl Microbiol 15: 210–213.

Hirsch AM, Lum MR & Downie JA (2001) What makes the rhizobia–legume symbiosis so special? Plant Physiol 127: 1484–1492.

Kang KS, Veeder GT, Mirrasoul PJ, Kaneko T & Cottrell IW (1982) Agar-like polysaccharide produced by a Pseudomonas species: production and basic properties. Appl Environ Microbiol 43: 1086–1091.

Kaplan D, Christiaen D & Arad S (1987) Chelating properties of extracellular polysaccharides from Chlorella spp. Appl Environ Microbiol 53: 2953–2956.

Kaplan D, Christiaen D & Arad S (1988) Binding of heavy metals by algal polysaccharides. Algal Biotechnology (Stadler T, Mollion J, Verdus MC, Karamanas Y, Morvan H & Christiaen D, eds), pp. 179–187. Elsevier Applied Science, UK.

Knauer K, Behra R & Sigl L (1997) Adsorption and uptake of copper by the green alga Scenedesmus subsipicatus (Chlorophyceae). J Phycol 33: 596–601.

Kobler D, Cohen-Sharon A & Tel-Or E (1981) Recognition between the N2-fixing Anabaena and the water fern Azolla. FEBS Lett 133: 157–160.

Kolot FB (1981) Microbial carriers strategy for selection. Proc Biochem 16: 2–9.

Lane DJ (1991) 16S/23S rRNA sequencing. Nucleic Acid Techniques in Bacterial Systematics (Stackebrandt E & Goodfellow M, eds), pp. 115–175. John Wiley and Sons, New York.

Leppard GG (1995) The characterization of algal and microbial mucilages and their aggregates in aquatic systems. Sci Total Environ 165: 103–131.

Lewin RA (1956) Extracellular polysaccharides of green algae. Can J Microbiol 2: 665–672.

Lombardi AT, Vieira AAH & Sartori AL (2002) Mucilaginous capsule adsorption and intracellular uptake of copper by Kirchneriella aperta (Chlorococcales). J Phycol 38: 332–337.

Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15: 377–390.

Mehta SK & Gaur JP (2001) Concurrent sorption of Ni2+ and Cu2+ by Chlorella vulgaris from a binary metal solution. Appl Microbiol Biotechnol 55: 379–382.

Munoz R & Guieysse B (2006) Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40: 2799–2815.

Muyzer G, Dewaal EC & Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59: 695–700.

O’Colla PS (1963) Murulages. Studies on Microalgae and Photosynthetic Bacteria (Japanese Society of Plant Physiologists, eds), pp. 337–356. University of Tokyo Press, Tokyo.

Ogbonna JC, Yada H & Tanaka H (1995) Effect of cell movement by random mixing between the surface and bottom of photobio reactors on algal productivity. J Ferment Bioeng 79: 152–157.

Ogbonna JC, Yoshizawa H & Tanaka H (2000) Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms. J Appl Phycol 12: 277–284.

Ohkuma M (2003) Termite symbiotic system: efficient biorecycling of lignocellulose. Appl Microbiol Biotechnol 61: 1–9.

Paerl HW (1988) Interactions with bacteria. The Biology of Cyanobacteria (Carr NG & Whitton BA, eds), pp. 441–461. Blackwell Scientific Publications, Oxford.

Paerl HW (1988) Growth and reproductive strategies of freshwater bluegreen algae (cyanobacteria). Growth and
Reproductive Strategies of Freshwater Phytoplankton (Sandgren CD, ed), pp. 261–315. Cambridge University Press, Cambridge.

Paerl HW & Galluci KK (1985) Role of chemotaxis in establishing a specific nitrogen-fixing cyanobacterial association. Science 227: 647–649.

Parker DL, Schran BR, Plude JL & Moore RE (1996) Effect of metal cations on the viscosity of a pectin-like capsular polysaccharide from the cyanobacterium Microcystis flos-aquae C3-40. Appl Environ Microbiol 62: 1208–1213.

Rahat M & Reich V (1986) Algal endosymbiosis in brown hydra: host/symbiont specificity. J Cell Sci 86: 273–286.

Robins RJ, Hall DO, Shi DJ, Turner RJ & Rhodes MJC (1986) Mucilage acts to adhere cyanobacteria and cultured plant cells to biological and inert surfaces. FEMS Microbiol Lett 34: 155–160.

Skvortsov IM & Ignatov VV (1998) Extracellular polysaccharides and polysaccharide-containing biopolymers from Azospirillum species: properties and the possible role in interaction with plant roots. FEMS Microb Lett 165: 223–229.

Summerer M, Sonntag B & Sommaruga R (2007) An experimental test of the symbiosis specificity between the ciliate Paramecium bursaria and strains of the unicellular green alga Chlorella. Environ Microbiol 9: 2117–2122.

Watanabe K, Takihana N, Aoyagi H, Hanada S, Watanabe Y, Ohmura N, Saiki H & Tanaka H (2005) Symbiotic association in Chlorella culture. FEMS Microbiol Ecol 51: 187–196.

Watanabe K, Imase M, Sasaki K, Ohmura N, Saiki H & Tanaka H (2006) Composition of the sheath produced by green alga Chlorella sorokiniana. Lett Appl Microbiol 42: 538–543.

Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52: 487–511.