Communication Cost in Parallel Query Processing*

PAUL BEAME, UNIVERSITY OF WASHINGTON
PARASCHOS KOUTRIS, UNIVERSITY OF WISCONSIN-MADISON
DAN SUCIU, UNIVERSITY OF WASHINGTON

Abstract

We study the problem of computing conjunctive queries over large databases on parallel architectures without shared storage. Using the structure of such a query q and the skew in the data, we study tradeoffs between the number of processors, the number of rounds of communication, and the per-processor load – the number of bits each processor can send or can receive in a single round – that are required to compute q. Since each processor must store its received bits, the load is at most the number of bits of storage per processor.

When the data is free of skew, we obtain essentially tight upper and lower bounds for one round algorithms and we show how the bounds degrade when there is skew in the data. In the case of skewed data, we show how to improve the algorithms when approximate degrees of the (necessarily small number of) heavy-hitter elements are available, obtaining essentially optimal algorithms for queries such as skewed simple joins and skewed triangle join queries.

For queries that we identify as tree-like, we also prove nearly matching upper and lower bounds for multi-round algorithms for a natural class of skew-free databases. One consequence of these latter lower bounds is that for any $\epsilon > 0$, using p processors to compute the connected components of a graph, or to output the path, if any, between a specified pair of vertices of a graph with m edges and per-processor load that is $O(m/p^{1-\epsilon})$ requires $\Omega(\log p)$ rounds of communication.

Our upper bounds are given by simple structured algorithms using MapReduce. Our one-round lower bounds are proved in a very general model, which we call the Massively Parallel Communication (MPC) model, that allows processors to communicate arbitrary bits. Our multi-round lower bounds apply in a restricted version of the MPC model in which processors in subsequent rounds after the first communication round are only allowed to send tuples.

1 Introduction

Most of the time spent during big data analysis today is allocated in data processing tasks, such as identifying relevant data, cleaning, filtering, joining, grouping, transforming, extracting features, and evaluating results [8, 11]. These tasks form the main bottleneck in big data analysis, and it is a major challenge to improve the performance and usability of data processing tools. The

*This work is partially supported by NSF IIS-1115188, IIS-0915054, IIS-1247469 and CCF-1217099.
motivation for this paper comes from the need to understand the complexity of query processing in big data management.

Query processing on big data is typically performed on a shared-nothing parallel architecture. In this setting, the data is stored on a large number of independent servers interconnected by a fast network. The servers perform local computations, and can also communicate with each other to exchange data. Starting from MapReduce [10], the last decade has seen the development of several massively parallel frameworks that support big data processing, including PigLatin [25], Hive [27], Dremmel [23] and Shark [31].

Unlike traditional query processing, the time complexity is no longer dominated by the number of disk accesses. Typically, a query is evaluated by a sufficiently large number of servers such that the entire data can be kept in main memory. In these systems, the new complexity parameter is the communication cost, which depends on both the amount of data being exchanged and the number of global synchronization barriers (rounds).

Contributions We define the Massively Parallel Communication (MPC) model, to analyze the trade-off between the number of rounds and the amount of communication required in a massively parallel computing environment. We include the number of servers p as a parameter, and allow each server to be infinitely powerful, subject only to the data to which it has access. The computation proceeds in rounds, where each round consists of local computation followed by global exchange of data between all servers.

An algorithm in the MPC model is characterized by the number of servers p, the number of rounds r, and the maximum number of bits L, or maximum load, that each server receives at any round. There are no other restrictions on communication between servers. Though the storage capacity of each server is not a separate parameter, since a server needs to store the data it has received in order to operate on it, the load L is always a lower bound on the storage capacity of each server. An ideal parallel algorithm with input size M would distribute the input data equally among the p servers, so each server would have a maximum load of M/p, and would perform the computation in a single round. In the degenerate case where $L = M$, the entire data can be sent to a single server, and thus there exists no parallelism.

The focus of the MPC model on the communication load captures a key property of the system architectures assumed by MapReduce and related programming abstractions. Since there is no restriction on the form of communication or the kinds of operations allowed for processing of local data, the lower bounds we obtain in the MPC model apply much more generally than those bounds based on specific assumed primitives or communication structures such as those for MapReduce.

We establish both lower and upper bounds in the MPC model for computing a full conjunctive query q, in three different settings.

First, we restrict the computation to a single communication round and to input data without skew. In particular, given a query q over relations S_1, S_2, \ldots such that that an input relation S_j has size M_j (in bits), we examine the minimum load L for which it is possible to compute q in a single round.
round. We show that any algorithm that correctly computes \(q \) requires a load

\[
L \geq \max_u \left(\frac{\prod_j M_j^u}{u_j} \right)^{1/\sum_j u_j}
\]

where \(u = (u_1, \ldots, u_\ell) \) is a fractional edge packing for the hypergraph of \(q \). Our lower bound applies to the strongest possible model in which servers can encode any information in their messages, and have access to a common source of randomness. This is stronger than the lower bounds in [1, 20], which assume that the units being exchanged are tuples. We further show that a simple algorithm, which we call the HyperCube algorithm, matches our lower bound for any conjunctive query when the input data has no skew. As an example, for the triangle query \(C_3 = S_1(x,y), S_2(y,z), S_3(z,x) \) with sizes \(M = |S_1| = |S_2| = |S_3| \), we show that the lower bound for the load is \(\Omega(M/p^{2/3}) \), and the HyperCube algorithm can match this bound.

Second, we study how skew influences the computation. A value in the database is skewed, and is called a heavy hitter when it occurs with much higher frequency than some predefined threshold. Since data distribution is typically done using hash-partitioning, unless they are handled differently from other values, all tuples containing a heavy hitter will be sent to the same server, causing it to be overloaded. The standard technique that handles skew consists of first detecting the heavy hitters, then treating them differently from the other values, e.g. by partitioning tuples with heavy hitters on the other attributes.

In analyzing the impact of skew, we first provide bounds on the behavior of algorithms that are not given special information about heavy hitters and hence are limited in their ability to deal with skew. We then consider a natural model for handling skew which assumes that at the beginning of the computation all servers know the identity of all heavy hitters, and the (approximate) frequency of each heavy hitter. (It will be easy to see that there can only be a small number of heavy hitters and this kind of information can be easily obtained in advance from small samples of the input.) Given these statistics, we present upper and lower bounds for the maximum load for full conjunctive queries. In particular, we present a general lower bound that holds for any conjunctive query. We next give matching upper bounds for the class of star joins, which are queries of the form \(q(z, x_1, \ldots, x_k) = S_1(z, x_1), S_2(z, x_2), \ldots, S_k(z, x_k) \) (this includes the case of the simple join query for \(k = 2 \)), as well as the triangle query.

Third, we establish lower bounds for multiple communication rounds, for a restricted version of the MPC model, called tuple-based MPC model. The messages sent in the first round are still unrestricted, but in subsequent rounds the servers can send only tuples, either base tuples in the input tables, or join tuples corresponding to a subquery; moreover, the destinations of each tuple may depend only on the tuple content, the message received in the first round, the server, and the round. We note that any multi-step MapReduce program is tuple-based, because in any map function the key of the intermediate value depends only on the input tuple to the map function. Here, we prove that the number of rounds required is, essentially, given by the depth of a query plan for the query, where each operator is a subquery that can be computed in one round with the required load. For example, to compute a length \(k \) chain query \(L_k \), if we want to achieve \(L = O(M/p) \), the optimal computation is a bushy join tree, where each operator is \(L_2 \) (a two-way join) and the optimal number of rounds is \(\log_2 k \). If \(L = O(M/p^{1/2}) \), then we can use \(L_4 \) as
operator (a four-way join), and the optimal number of rounds is $\log_4 k$. More generally, we show nearly matching upper and lower bounds based on graph-theoretic properties of the query.

We further show that our results for conjunctive path queries imply that any tuple-based MPC algorithm with load $L < M$ requires $\Omega(\log p)$ rounds to compute the connected components of sparse undirected graphs of size M (in bits). This is an interesting contrast to the results of [19], which show that connected components (and indeed minimum spanning trees) of undirected graphs can be computed in only two rounds of MapReduce provided that the input graph is sufficiently dense.

By being explicit about the number of processors, in the MPC model we must directly handle issues of load balancing and skew in task (reducer) sizes that are often ignored in MapReduce algorithms but are actually critical for good performance (e.g., see [22]). When task sizes are similar, standard analysis shows that hash-based load balancing works well. However, standard bounds do not yield sharp results when there is significant deviation in sizes. In order to handle such situations, we prove a sharp Chernoff bound for weighted balls in bins that is particularly suited to the analysis of hash-based load balancing with skewed data. This bound, which is given in Appendix A, should be of independent interest.

Organization We start by presenting the MPC model and defining important notions in Section 2. In Section 3, we describe the upper and lower bounds for computation restricted to one round and data without skew. We study the effect of data skew in Section 4. In Section 5, we present upper and lower bounds for the case of multiple rounds. We conclude by discussing the related work in Section 6. In Table 1, the reader can view a more detailed roadmap for the results of this article.

2 Model

In this section, we present in detail the MPC model.
2.1 Massively Parallel Communication

In MPC model, computation is performed by \(p \) servers, or processors, connected by a complete network of private channels. The computation proceeds in steps, or rounds, where each round consists of two distinct phases:

Communication Phase The servers exchange data, each by communicating with all other servers (sending and receiving data).

Computation Phase Each server performs only local computation.

The input data of size \(M \) bits is initially uniformly partitioned among the \(p \) servers, i.e. each server stores \(M/p \) bits of the data: this describes the way the data is typically partitioned in any distributed storage system. There are no assumptions on the particular partitioning scheme. At the end of the execution, the output must be present in the union of the \(p \) processors.

The execution of a parallel algorithm in the MPC model is captured by two basic parameters:

The number of rounds \(r \) This parameter denotes the number of synchronization barriers that an algorithm requires.

The maximum load \(L \) This parameter denotes the maximum load among all servers at any round, where the load is the amount of data received by a server during a particular round.

Normally, the entire data is exchanged during the first communication round, so the load \(L \) is at least \(M/p \). On the other hand, the load is strictly less than \(M \): otherwise, if we allowed a load \(L = M \), then any problem can solved trivially in one round, by simply sending the entire data to server 1, then computing the answer locally. Our typical loads will be of the form \(M/p^{1-\varepsilon} \), for some \(0 \leq \varepsilon < 1 \) that depends on the query. For a similar reason, we do not allow the number of rounds to reach \(r = p \), because any problem can be solved trivially in \(p \) rounds by sending at each round \(M/p \) bits of data to server 1, until this server accumulates the entire data. In this paper we only consider \(r = O(1) \).

Input Servers As explained above, the data is initially distributed uniformly on the \(p \) servers; we call form of input *partitioned input*. When computing queries over a fixed relational vocabulary \(S_1, \ldots, S_\ell \), we consider an alternative model, where each relation \(S_i \) is stored on a separate server, called an *input server*; during the first round the \(\ell \) input servers distribute their data to the \(p \) workers, then no longer participate in the computation. The input-server model is potentially more powerful, since the \(j \)’th input server has access to the entire relation \(S_j \), whose size is much larger than \(M/p \). We state and prove all our lower bounds for the input-server model. This is w.l.o.g., because any algorithm in the partitioned-input model with load \(L \) can be converted into an input-server algorithm with the same load, as follows. Denote \(f_j = |S_j|/(\sum_i |S_i|) \) for all \(j = 1, \ldots, \ell \): we assume these numbers are known by all input servers, because we assume the statistics \(|S_j| \) known to the algorithm. Then, each input server \(j \) holding the relation \(S_j \) will partition \(S_j \) into \(f_jp \) equal fragments, then will simulate \(f_jp \) workers, each processing one of the fragments. Thus, our lower bounds for the input-sever model immediately apply to the partitioned-input model.
Randomization The MPC model allows randomization. The random bits are available to all servers, and are computed independently of the input data. The algorithm may fail to produce its output with a small probability $\eta > 0$, independent of the input. For example, we use randomization for load balancing, and abort the computation if the amount of data received during a round would exceed the maximum load L, but this will only happen with exponentially small probability.

To prove lower bounds for randomized algorithms, we use Yao’s Lemma [32]. We first prove bounds for deterministic algorithms, showing that any algorithm fails with probability at least η over inputs chosen randomly from a distribution μ. This implies, by Yao’s Lemma, that every randomized algorithm with the same resource bounds will fail on some input (in the support of μ) with probability at least η over the algorithm’s random choices.

2.2 Conjunctive Queries

In this paper we consider a particular class of problems for the MPC model, namely computing answers to conjunctive queries over a database. We fix an input vocabulary S_1, \ldots, S_ℓ, where each relation S_j has a fixed arity a_j; we denote $a = \sum_{j=1}^\ell a_j$. The input data consists of one relation instance for each symbol.

We consider full conjunctive queries (CQs) without self-joins, denoted as follows:

$$q(x_1, \ldots, x_k) = S_1(\bar{x}_1), \ldots, S_\ell(\bar{x}_\ell)$$ (1)

The query is full, meaning that every variable in the body appears in the head (for example $q(x) = S(x, y)$ is not full), and without self-joins, meaning that each relation name S_j appears only once (for example $q(x, y, z) = S(x, y), S(y, z)$ has a self-join). The first restriction, to full conjunctive queries, is a limitation: our lower bounds do not carry over to general conjunctive queries (but the upper bounds do carry over). The second restriction, to queries without self-joins, is w.l.o.g.\(^2\)

The hypergraph of a query q is defined by introducing one node for each variable in the body and one hyperedge for each set of variables that occur in a single atom. We say that a conjunctive query is connected if the query hypergraph is connected. For example, $q(x, y) = R(x), S(y)$ is not connected, whereas $q(x, y) = R(x), S(y), T(x, y)$ is connected. We use $\text{vars}(S_j)$ to denote the set of variables in the atom S_j, and atoms(x_i) to denote the set of atoms where x_i occurs; k and ℓ denote the number of variables and atoms in q, as in (1). The connected components of q are the maximal connected subqueries of q.

Characteristic of a Query The characteristic of a conjunctive query q as in (1) is defined as $\chi(q) = a - k - \ell + c$, where $a = \sum_j a_j$ is the sum of arities of all atoms, k is the number of variables, ℓ is

\(^2\)To see this, denote q' the query obtained from q by giving distinct names to repeated occurrences of the same relations. Any algorithm for q' is automatically an algorithm for q, with the same load. Conversely, any algorithm A for q can also be converted into an algorithm for q', having the same load as A has on an input that is ℓ times larger. The algorithm A is obtained as follows. For each atom $S(x, y, z, \ldots)$ occurring in the query, create a copy of the entire relation S by renaming every tuple (a, b, c, \ldots) into $((a, "x"), (b, "y"), (c, "z"), \ldots)$. That is, each value a in the first column is replaced by the pair $(a, "x")$ where x is the variable occurring in that column, and similarly for all other columns. This copy operation can be done locally by all servers, without communication. Furthermore, each input relation is copied at most ℓ times. Finally, run the algorithm A' on the copied relations.
the number of atoms, and \(c \) is the number of connected components of \(q \).

For a query \(q \) and a set of atoms \(M \subseteq \text{atoms}(q) \), define \(q/M \) to be the query that results from contracting the edges in the hypergraph of \(q \). As an example, if we define

\[
L_k = S_1(x_0, x_1), S_2(x_1, x_2), \ldots, S_k(x_{k-1}, x_k)
\]

we have that \(L_5/\{S_2, S_4\} = S_1(x_0, x_1), S_3(x_1, x_3), S_5(x_3, x_5) \).

Lemma 2.1. The characteristic of a query \(q \) satisfies the following properties:

(a) If \(q_1, \ldots, q_c \) are the connected components of \(q \), then \(\chi(q) = \sum_{i=1}^{c} \chi(q_i) \).

(b) For any \(M \subseteq \text{atoms}(q) \), \(\chi(q/M) = \chi(q) - \chi(M) \).

(c) \(\chi(q) \geq 0 \).

(d) For any \(M \subseteq \text{atoms}(q) \), \(\chi(q) \geq \chi(q/M) \).

Proof. Property (a) is immediate from the definition of \(\chi \), since the connected components of \(q \) are disjoint with respect to variables and atoms. Since \(q/M \) can be produced by contracting according to each connected component of \(M \) in turn, by property (a) and induction it suffices to show that property (b) holds in the case that \(M \) is connected. If a connected \(M \) has \(k_M \) variables, \(\ell_M \) atoms, and total arity \(a_M \), then the query after contraction, \(q/M \), will have the same number of connected components, \(k_M - 1 \) fewer variables, and the terms for the number of atoms and total arity will be reduced by \(a_M - \ell_M \) for a total reduction of \(a_M - k_M - \ell_M + 1 = \chi(M) \). Thus, property (b) follows.

By property (a), it suffices to prove (c) when \(q \) is connected. If \(q \) is a single atom \(S_j \) then \(\chi(S_j) \geq 0 \), since the number of variables is at most the arity \(a_j \) of the atom. If \(q \) has more than one atom, then let \(S_j \) be any such atom: then \(\chi(q) = \chi(q/S_j) + \chi(S_j) \geq \chi(q/S_j) \), because \(\chi(S_j) \geq 0 \). Property (d) follows from (b) using the fact that \(\chi(M) \geq 0 \).

For a simple illustration of property (b), consider the example above \(L_5/\{S_2, S_4\} \), which is equivalent to \(L_3 \). We have \(\chi(L_5) = 10 - 6 - 5 + 1 = 0 \), and \(\chi(L_3) = 6 - 4 - 3 + 1 = 0 \), and also \(\chi(M) = 0 \) (because \(M \) consists of two disconnected components, \(S_2(x_1, x_2) \) and \(S_4(x_3, x_4) \), each with characteristic 0). For a more interesting example, consider the query \(K_4 \) whose graph is the complete graph with 4 variables:

\[
K_4 = S_1(x_1, x_2), S_2(x_1, x_3), S_3(x_2, x_3), S_4(x_1, x_4), S_5(x_2, x_4), S_6(x_3, x_4)
\]

and denote \(M = \{S_1, S_2, S_3\} \). Then \(K_4/M = S_4(x_1, x_4), S_5(x_1, x_4), S_6(x_1, x_4) \) and the characteristics are: \(\chi(K_4) = 12 - 4 - 6 + 1 = 3 \), \(\chi(M) = 6 - 3 - 3 + 1 = 1 \), \(\chi(K_4/M) = 6 - 2 - 3 + 1 = 2 \).

Finally, we define a class of queries that will be used later in the paper.

Definition 2.2. A conjunctive query \(q \) is tree-like if \(q \) is connected and \(\chi(q) = 0 \).

For example, the query \(L_k \) is tree-like; in fact, a query over a binary vocabulary is tree-like if and only if its hypergraph is a tree. Over non-binary vocabularies, if a query is tree-like then it is acyclic, but the converse does not hold: \(q = S_1(x_0, x_1, x_2), S_2(x_1, x_2, x_3) \) is acyclic but not tree-like. An important property of tree-like queries is that every connected subquery will be also tree-like.

\(^3\)In the preliminary version of this paper [5] we defined \(\chi(q) \) with the opposite sign (as \(-a + k + \ell - c\)); we find the current definition more natural since now \(\chi(q) \geq 0 \) for every \(q \).
Fractional Edge Packing A fractional edge packing (also known as a fractional matching) of a query \(q \) is any feasible solution \(u = (u_1, \ldots, u_{\ell}) \) of the following linear constraints:

\[
\forall i \in [k] : \sum_{j \in S_i} u_j \leq 1 \\
\forall j \in [\ell] : u_j \geq 0
\] \hspace{1cm} (2)

The edge packing associates a non-negative weight \(u_j \) to each atom \(S_j \) such that for every variable \(x_i \), the sum of the weights for the atoms that contain \(x_i \) do not exceed 1. If all inequalities are satisfied as equalities by a solution to the LP, we say that the solution is tight. The dual notion is a fractional vertex cover of \(q \), which is a feasible solution \(v = (v_1, \ldots, v_k) \) to the following linear constraints:

\[
\forall j \in [\ell] : \sum_{i \in S_j} v_i \geq 1 \\
\forall i \in [k] : v_i \geq 0
\]

At optimality, \(\max_u \sum_j u_j = \min_v \sum_i v_i \); this quantity is denoted \(\tau^* \) and is called the fractional vertex covering number of \(q \).

Example 2.3. An edge packing of the query \(L_3 = S_1(x_1, x_2), S_2(x_2, x_3), S_3(x_3, x_4) \) is any solution to \(u_1 \leq 1, u_1 + u_2 \leq 1, u_2 + u_3 \leq 1 \) and \(u_3 \leq 1 \). In particular, the solution \((1, 0, 1) \) is a tight edge packing; it is also an optimal packing, thus \(\tau^* = 2 \).

We also need to refer to the fractional edge cover, which is a feasible solution \(u = (u_1, \ldots, u_{\ell}) \) to the system above where \(\leq \) is replaced by \(\geq \) in Eq.(2). Every tight fractional edge packing is a tight fractional edge cover, and vice versa. The optimal value of a fractional edge cover is denoted \(\rho^* \). The fractional edge packing and cover have no connection, and there is no relationship between \(\tau^* \) and \(\rho^* \). For example, for \(q = S_1(x, y), S_2(y, z) \), we have \(\tau^* = 1 \) and \(\rho^* = 2 \), while for \(q = S_1(x), S_2(x, y), S_3(y) \) we have \(\tau^* = 2 \) and \(\rho^* = 1 \). The two notions coincide, however, when they are tight, meaning that a tight fractional edge cover is also a tight fractional edge packing and vice versa. The fractional edge cover has been used recently in several papers to prove bounds on query size and the running time of a sequential algorithm for the query [4, 24]; for the results in this paper we need the fractional packing.

2.3 Entropy

Let us fix a finite probability space. For random variables \(X \) and \(Y \), the **entropy** and the **conditional entropy** are defined respectively as follows:

\[
H(X) = -\sum_x P(X = x) \log P(X = x) \hspace{1cm} (3)
\]

\[
H(X \mid Y) = \sum_y P(Y = y) H(X \mid Y = y) \hspace{1cm} (4)
\]

The entropy satisfies the following basic inequalities:

\[
H(X \mid Y) \leq H(X)
\]
\[H(X, Y) = H(X \mid Y) + H(Y) \] (5)

Assuming additionally that \(X \) has a support of size \(n \):

\[H(X) \leq \log n \] (6)

2.4 Friedgut’s Inequality

Friedgut \cite{friedgut} introduces the following class of inequalities. Each inequality is described by a hypergraph, which in our paper corresponds to a query, so we will describe the inequality using query terminology. Fix a query \(q \) as in (1), and let \(n > 0 \). For every atom \(S_j(x_j) \) of arity \(a_j \), we introduce a set of \(n^{a_j} \) variables \(w_j(a_j) \geq 0 \), where \(a_j \in [n]^{a_j} \). If \(a \in [n]^d \), we denote by \(a_j \) the vector of size \(a_j \) that results from projecting on the variables of the relation \(S_j \). Let \(u = (u_1, \ldots, u_\ell) \) be a fractional edge cover for \(q \). Then:

\[\sum_{a \in [n]^{a_j}} \prod_{j=1}^{\ell} w_j(a_j) \leq \prod_{j=1}^{\ell} \left(\sum_{a_j \in [n]^{a_j}} w_j(a_j)^{1/u_j} \right)^{u_j} \] (7)

We illustrate Friedgut’s inequality on the queries \(C_3 \) and \(L_3 \):

\[
C_3(x, y, z) = S_1(x, y), S_2(y, z), S_3(z, x)
\]
\[
L_3(x, y, z, w) = S_1(x, y), S_2(y, z), S_3(z, w)
\] (8)

Consider the cover \((1/2, 1/2, 1/2)\) for \(C_3 \), and the cover \((1, 0, 1)\) for \(L_3 \). Then, we obtain the following inequalities, where \(a, \beta, \gamma \) stand for \(w_1, w_2, w_3 \) respectively:

\[
\sum_{x, y, z \in [n]} a_{xy} \cdot \beta_{yz} \cdot \gamma_{zx} \leq \sqrt{\sum_{x, y \in [n]} a_{xy}^2 \sum_{y, z \in [n]} \beta_{yz}^2 \sum_{z, x \in [n]} \gamma_{zx}^2}
\]
\[
\sum_{x, y, z, w \in [n]} a_{xy} \cdot \beta_{yz} \cdot \gamma_{zw} \leq \sum_{x, y \in [n]} a_{xy} \cdot \max_{y, z \in [n]} \beta_{yz} \cdot \sum_{z, w \in [n]} \gamma_{zw}
\]

where we used the fact that \(\lim_{u \to 0} (\sum_{z \in [n]} a_{zy})^u = \max \beta_{yz} \).

Friedgut’s inequalities immediately imply a well known result developed in a series of papers \cite{16, 4, 24} that gives an upper bound on the size of a query answer as a function on the cardinality of the relations. For example in the case of \(C_3 \), consider an instance \(S_1, S_2, S_3 \), and set \(\alpha_{xy} = 1 \) if \((x, y) \in S_1 \), otherwise \(\alpha_{xy} = 0 \) (and similarly for \(\beta_{yz}, \gamma_{zx} \)). We obtain then \(|C_3| \leq \sqrt{|S_1| \cdot |S_2| \cdot |S_3|} \). Note that all these results are expressed in terms of a fractional edge cover. When we apply Friedgut’s inequality in Section 3 to a fractional edge packing, we ensure that the packing is tight.

3 One Communication Step without Skew

In this section, we consider the case where the data has no skew, and the computation is restricted to a single communication round.
We will say that a database is a matching database if each relation has degree bounded by 1 (i.e., the frequency of each value is exactly 1 for each relation). Our lower bounds in this section will hold for such matching databases. The upper bound, and in particular the load analysis for the algorithm, hold not only for matching databases, but in general for databases with a small amount of skew, which we will formally define in Section 3.1.

We assume that all input servers know the cardinalities \(m_1, \ldots, m_\ell\) of the relations \(S_1, \ldots, S_\ell\). We denote \(\mathbf{m} = (m_1, \ldots, m_\ell)\) the vector of cardinalities, and \(\mathbf{M} = (M_1, \ldots, M_\ell)\) the vector of the sizes expressed in bits, where \(M_j = a_j m_j \log n\), and \(n\) is the size of the domain of each attribute.

3.1 The HyperCube Algorithm

We describe here an algorithm that computes a conjunctive query in one step. Such an algorithm was introduced by Afrati and Ullman [2] for MapReduce, is similar to an algorithm by Suri and Vassilvitskii [26] to count triangles, and also uses ideas that can be traced back to Ganguly [15] for parallel processing of Datalog programs. We call this the HyperCube (HC) algorithm, following [5].

The HC algorithm initially assigns to each variable \(x_i\), where \(i = 1, \ldots, k\), a share \(p_i\), such that \(\prod_{i=1}^k p_i = p\). Each server is then represented by a distinct point \(y \in \mathcal{P}\), where \(\mathcal{P} = [p_1] \times \cdots \times [p_2]\); in other words, servers are mapped into a \(k\)-dimensional hypercube. The HC algorithm then uses \(k\) independently chosen hash functions \(h_i : [n] \to [p_i]\) and sends each tuple \(t\) of relation \(S_j\) to all servers in the destination subcube of \(t\):

\[
\mathcal{D}(t) = \{ y \in \mathcal{P} \mid \forall m = 1, \ldots, a_j : h_{i_m}(t[i_m]) = y[i_m] \} \tag{9}
\]

During the computation phase, each server locally computes the query \(q\) for the subset of the input that it has received. The correctness of the HC algorithm follows from the observation that, for every potential tuple \((a_1, \ldots, a_k)\), the server \((h_1(a_1), \ldots, h_k(a_k))\) contains all the necessary information to decide whether it belongs in the answer or not.

Example 3.1. We illustrate how to compute the triangle query \(C_3(x_1, x_2, x_3) = S_1(x_1, x_2), S_2(x_2, x_3), S_3(x_3, x_1)\). Consider the shares \(p_1 = p_2 = p_3 = p^{1/3}\). Each of the \(p\) servers is uniquely identified by a triple \((y_1, y_2, y_3)\), where \(y_1, y_2, y_3 \in [p^{1/3}]\). In the first communication round, the input server storing \(S_1\) sends each tuple \(S_1(a_1, a_2)\) to all servers with index \((h_1(a_1), h_2(a_2), y_3)\), for all \(y_3 \in [p^{1/3}]\); notice that each tuple is replicated \(p^{1/3}\) times. The input servers holding \(S_2\) and \(S_3\) proceed similarly with their tuples. After round 1, any three tuples \(S_1(a_1, a_2), S_2(a_2, a_3), S_3(a_3, a_1)\) that contribute to the output tuple \(C_3(a_1, a_2, a_3)\) will be seen by the server \(y = (h_1(a_1), h_2(a_2), h_3(a_3))\): any server that detects three matching tuples outputs them.

Analysis of the HC algorithm Let \(R\) be a relation of arity \(r\). For a tuple \(J\) over a subset of the attributes \([r]\), define \(d_J(R) = |\sigma_J(R)|\) as the degree of the tuple \(J\) in relation \(R\). A matching database restricts the degrees such that for every tuple \(t\) over \(U \subseteq [r]\), we have \(d_J(R) = 1\). Our first analysis of the HC algorithm in [5] was only for the special case of matching databases.

Here, we analyze the behavior of the HC algorithm for larger degrees. Our analysis is based on the following lemma about hashing, which we prove in detail in Appendix A.
Lemma 3.2. Let $R(A_1, \ldots, A_r)$ be a relation of arity r of size m. Let p_1, \ldots, p_r be integers and let $p = \prod_i p_i$. Suppose that we hash each tuple (a_1, \ldots, a_r) to the bin $(h_1(a_1), \ldots, h_r(a_r))$, where h_1, \ldots, h_r are independent and perfectly random hash functions. Then:

1. The expected load in every bin is m / p.
2. Suppose that for every tuple J over $U \subseteq [r]$ we have $d_j(R) \leq \frac{\beta^{\|u\|_m}}{\prod_{i \in U} p_i}$ for some constant $\beta > 0$. Then the probability that the maximum load exceeds $O(m / p)$ is exponentially small in p.

Using the above lemma, we can now prove the following statement on the behavior of the HC algorithm.

Corollary 3.3. Let $p = (p_1, \ldots, p_k)$ be the shares of the HC algorithm. Suppose that for every relation S_j and every tuple J over $U \subseteq [a_j]$ we have $d_j(S_j) \leq \frac{\beta^{\|u\|_{M_j}}}{\prod_{I \in S_j} p_i}$ for some constant $\beta > 0$. Then with high probability the maximum load per server is

$$O\left(\max_j \frac{M_j}{\prod_{i \in S_j} p_i}\right)$$

Choosing the Shares Here we discuss how to compute the shares p_i to optimize the expected load per server. Afrati and Ullman compute the shares by optimizing the total load $\sum_j m_j / \prod_{I \in S_j} p_i$ subject to the constraint $\prod_i p_i = 1$, which is a non-linear system that can be solved using Lagrange multipliers. Our approach is to optimize the maximum load per relation, $L = \max_j m_j / \prod_{I \in S_j} p_i$; the total load per server is $\leq \ell L$. This leads to a linear optimization problem, as follows. First, write the shares as $p_i = p^{e_i}$ where $e_i \in [0, 1]$ is called the share exponent for x_i, denote $\lambda = \log_p L$ and $\mu_j = \log_p M_j$ (we will assume w.l.o.g. that $M_j \geq p$, hence $\mu_j \geq 1$ for all j). Then, we optimize the LP:

$$\begin{align*}
\text{minimize} & \quad \lambda \\
\text{subject to} & \quad \sum_{i \in [k]} -e_i \geq -1 \\
& \quad \forall j \in [\ell] : \sum_{i \in S_j} e_i + \lambda \geq \mu_j \\
& \quad \forall i \in [k] : e_i \geq 0, \quad \lambda \geq 0
\end{align*}$$

(10)

Theorem 3.4 (Upper Bound). For a query q and p servers, with statistics M, let $e = (e_1, \ldots, e_k)$ be the optimal solution to (10) and e^* its objective value.

Let $p_i = p^{e_i}$ and suppose that for every relation S_j and every tuple J over $U \subseteq [a_j]$ we have $d_j(S_j) \leq \frac{\beta^{\|u\|_{M_j}}}{\prod_{I \in S_j} p_i}$ for some constant $\beta > 0$. Then the HC algorithm with shares p_i achieves $O(L^{upper})$ maximum load with high probability, where $L^{upper} = p^{e^*}$.

A special case of interest is when all cardinalities M_j are equal, therefore $\mu_1 = \ldots = \mu_\ell = \mu$. In that case, the optimal solution to Eq.(10) can be obtained from an optimal fractional vertex cover $v^* = (v_1^*, \ldots, v_k^*)$ by setting $e_i = v_i^* / \tau^*$ (where $\tau^* = \sum_j v_i^*$). To see this, we note that any feasible solution $(\lambda, e_1, \ldots, e_k)$ to Eq.(10) defines the vertex cover $v_i = e_i / (\mu - \lambda)$, and in the opposite
direction every vertex cover defines the feasible solution \(e_i = v_i / (\sum_i v_i) \), \(\lambda = \mu - 1 / (\sum_i v_i) \); furthermore, minimizing \(\lambda \) is equivalent to minimizing \(\sum_i v_i \). Thus, when all cardinalities are equal to \(M \), at optimality \(\lambda^* = \mu - 1 / \tau^* \), and \(L_{\text{upper}} = M / p^{1/\tau^*} \).

We illustrate more examples in Section 3.3.

3.2 The Lower Bound

In this section, we prove a lower bound on the maximum load per server over databases with statistics \(M \).

Fix a query \(q \) and a fractional edge packing \(u \) of \(q \). Denote:

\[
L(u, M, p) = \left(\frac{\prod_{j=1}^{\ell} M_j^{u_j}}{p} \right)^{1/\sum_i u_i} \tag{11}
\]

Further denote \(L_{\text{lower}} = \max_u L(u, M, p) \), where \(u \) ranges over all edge packings for \(q \). In this section, we will prove that Eq.\((11) \) is a lower bound for the load of any algorithm computing the query \(q \), over a database with statistics \(M \). We will prove in Section 3.3 that \(L_{\text{lower}} = L_{\text{upper}} \), showing that the upper bound and lower bound are tight. To gain some intuition behind the formula \((11) \), consider the case when all cardinalities are equal, \(M_1 = \ldots = M_\ell = M \). Then \(L_{\text{lower}} = M / p^{1/\sum_i u_j} \), and this quantity is maximized when \(u \) is a maximum fractional edge packing, whose value is \(\tau^* \), the fractional vertex covering number for \(q \). Thus, \(L_{\text{lower}} = M / p^{1/\tau^*} \), which is the same expression as \(L_{\text{upper}} \).

To prove the lower bound, we will define a probability space from which the input databases are drawn. Notice that the cardinalities of the \(\ell \) relations are fixed: \(m_1, \ldots, m_\ell \). We first choose a domain size \(n \geq \max_j m_j \) to be specified later, and choose independently and uniformly each relation \(S_j \) from all matchings of \([n]^{m_j} \) with exactly \(m_j \) tuples. We call this the matching probability space. Observe that the probability space contains only databases with relations without skew (in fact all degrees are exactly 1). We write \(E[|q(I)|] \) for the expected number of answers to \(q \) under the above probability space.

Theorem 3.5 (Lower Bound). Fix statistics \(m \), and consider any deterministic MPC algorithm that runs in one communication round on \(p \) servers. Let \(u \) be any fractional edge packing of \(q \). If \(s \) is any server and \(L_s \) is its load, then server \(s \) reports at most

\[
\frac{\sum_i u_j}{(\sum_i u_j/4)^{\sum_i u_j} \prod_{j=1}^{\ell} M_j^{u_j}} \cdot E[|q(I)|]
\]

answers in expectation, where \(I \) is a randomly chosen from the matching probability space with statistics \(m \) and domain size \(n = (\max_j m_j)^2 \). Therefore, the \(p \) servers of the algorithm report at most

\[
\left(\frac{4L}{(\sum_i u_j) \cdot L(u, M, p)} \right)^{\sum_i u_j} \cdot E[|q(I)|]
\]

answers in expectation, where \(L = \max_{s \in [p]} L_s \) is the maximum load of all servers.
Furthermore, if if all relations have equal size $m_1 = \ldots = m_\ell = m$ and arity $a_j \geq 2$, then one can choose $n = m$, and strengthen the number of answers reported by the p servers to:

$$
\left(\frac{L}{(\sum u_j) \cdot L(M, p)} \right)^{\Sigma u_j} \cdot E[|q(I)|]
$$

Therefore, if u is any fractional edge packing, then $(\sum u_j) \cdot L(M, p)/4$ is a lower bound for the load of any algorithm computing q. Up to a constant factor, the strongest such lower bound is given by u^*, the optimal solution for Eq. (11), since for any u, we have $(\sum u_j) \cdot L(M, p)/4 \leq [(\sum u_j)/(\sum u_j^*)] \cdot [(\sum u_j^*) \cdot L_{\text{lower}}/4$, and $(\sum u_j)/(\sum u_j^*) \leq \tau^* = O(1)$ (since $\sum u_j \leq \tau^*$ and, at optimality, $\sum u_j^* \geq 1$).

Before we prove the theorem, we show how to extend it to a lower bound for any randomized algorithm. For this, we start with a lemma that we also need later.

Lemma 3.6. The expected number of answers to q is $E[|q(I)|] = n^{k-a} \prod_{j=1}^\ell m_j$. In particular, if $n = m_1 = \ldots = m_\ell$ then $E[|q(I)|] = n^{c-x(q)}$, where c is the number of connected components of q.

Proof. For any relation S_j, and any tuple $a_j \in [n]^{a_j}$, the probability that S_j contains a_j is $P(a_j \in S_j) = m_j^{-a_j}$. Given a tuple $a \in [n]^k$ of the same arity as the query answer, let a_j denote its projection on the variables in S_j. Then:

$$
E[|q(I)|] = \sum_{a \in [n]^k} P(\bigwedge_{j=1}^\ell (a_j \in S_j)) = \sum_{a \in [n]^k} \prod_{j=1}^\ell P(a_j \in S_j)
$$

$$
= \sum_{a \in [n]^k} \prod_{j=1}^\ell m_j^{-a_j} = n^{k-a} \prod_{j=1}^\ell m_j
$$

We now can prove a lower bound for the maximum load of any randomized algorithm, on a fixed database instance.

Theorem 3.7. Consider a connected query q with fractional vertex covering number τ^*. Fix some database statistics M. Let A be any one round, randomized MPC algorithm A for q, with maximum load $L \leq \delta \cdot L_{\text{lower}}$, for some constant $\delta < 1/(4 \cdot 9^{\tau^*})$. Then there exists an instance I such that the randomized algorithm A fails to compute $q(I)$ correctly with probability $> 1 - 9(4\delta)^{1/\tau^*} = \Omega(1)$

Proof. We use Yao’s lemma, which in our setting says the following. Consider any probability space for database instances I. If any deterministic algorithm fails with probability $\geq 1 - \delta$ to compute $q(I)$ correctly, over random inputs I, then there exists an instance I such that every randomized algorithm A fails with probability $\geq 1 - \delta$ to compute $q(I)$ correctly over the random choices of A. To apply the lemma, we need to choose the right probability space over database instances I. The space of random matchings is not useful for this purpose, because for a connected query with a large characteristic $\chi(q)$, $E[|q(I)|] = O(1/n)$ and therefore $P(q(I) \neq \emptyset) = O(1/n)$, which means that a naive deterministic algorithm that always returns the empty answer with fail with a very small probably, $O(1/n)$. Instead, denoting $\mu = E[|q(I)|]$, we define C_α the event
\(|q(I)| > \alpha \mu\), where \(\alpha > 1\) is some constant. We will apply Yao’s lemma to the probability space of random matchings conditioned on \(C_\alpha\).

We prove that, for \(\alpha = 1/3\), any deterministic algorithm \(A\) fails to compute \(q(I)\) correctly with probability \(\geq 1 - 9(4\delta)^{1/r^*}\), over random matchings conditioned on \(C_{1/3}\). Let \(u^*\) be an edge packing that maximizes \(L(u, M, p)\), and denote \(f = \left(\frac{4\delta}{\sum_j u_j^*}\right)^{1/\sum_j u_j^*}\). Lemma 3.6 implies that that, for any one-round deterministic algorithm with load \(\leq L\), \(\mathbb{E}[|A(I)|] \leq f\mathbb{E}[|q(I)|]\). We prove the following in Appendix B:

Lemma 3.8. If \(A\) is a deterministic algorithm for \(q\) (more precisely: \(\forall I, A(I) \subseteq q(I)\)), such that, over random matchings, \(\mathbb{E}[|A(I)|] \leq f\mathbb{E}[|q(I)|]\) for some constant \(f < 1/9\), then, denoting \(\text{fail}\) the event \(A(I) \neq q(I)\), we have

\[
P(\text{fail}|C_{1/3}) \geq 1 - 9f\]

The proof of the theorem follows from Yao’s lemma and the fact that \(f \leq \left(\frac{4\delta}{\sum_j u_j^*}\right)^{1/\sum_j u_j^*} \leq (4\delta)^{1/r^*}\) because \(\sum_j u_j^* \leq \tau^*\) and, at optimality, \(\sum_j u_j^* \geq 1\).

In the rest of this section, we give the proof of Theorem 3.5.

Let us fix some server \(s \in [p]\), and let \(\text{msg}(I)\) denote the function specifying the message the server receives on input \(l\). Recall that, in the input-sever model, each input relation \(S_j\) is stored at a separate input server, and therefore the message received by \(s\) consists of \(\ell\) separate message \(\text{msg}_j = \text{msg}_j(S_j)\), for each \(j = 1, \ldots, \ell\). One should think of \(\text{msg}_j\) is a bit string. Once the server \(s\) receives \(\text{msg}_j\) it “knows” that the input relation \(S_j\) is in the set \(\{S_j \mid \text{msg}_j(S_j) = \text{msg}_j\}\). This justifies the following definition: given a message \(\text{msg}_j\), the set of tuples known by the server is:

\[
K_{\text{msg}_j}(S_j) = \{t \in [n]^n \mid \text{for all instances } S_j \subseteq [n]^n, \text{msg}_j(S_j) = \text{msg}_j \Rightarrow t \in S_j\}
\]

where \(a_j\) is the arity of \(S_j\).

Clearly, an algorithm \(A\) may output a tuple \(a \in [n]^k\) as answer to the query \(q\) iff, for every \(j\), \(a_j \in K_{\text{msg}_j}(S_j)\) for all \(j = 1, \ldots, \ell\), where \(a_j\) denotes the projection of \(a\) on the variables in the atom \(S_j\).

We will first prove an upper bound for each \(|K_{\text{msg}_j}(S_j)|\) in Section 3.2.1. Then in Section 3.2.2 we use this bound, along with Friedgut’s inequality, to establish an upper bound for \(|K_{\text{msg}}(q)|\) and hence prove Theorem 3.5.

3.2.1 Bounding the Knowledge of Each Relation

Let us fix a server \(s\), and an input relation \(S_j\). Recall that \(M_j = m_j \log n\) denotes the number of bits necessary to encode \(S_j\). An algorithm \(A\) may use few bits, \(\mathcal{M}_j\), by exploiting the fact that \(S_j\) is a uniformly chosen \(a_j\)-dimensional matching. There are precisely \((\frac{n}{m_j})^{a_j} (m_j!)^{a_j-1}\) different \(a_j\)-dimensional matchings of arity \(a_j\) and size \(m_j\) and thus the number of bits \(N\) necessary to represent the relation is given by the entropy:

\[
\mathcal{M}_j = H(S_j) = a_j \log \left(\frac{n}{m_j}\right) + (a_j - 1) \log (m_j!)
\]

(12)
We will prove later that $M_j = \Omega(M_j)$. The following lemma provides a bound on the expected knowledge $K_{m_j}(S_j)$ the server may obtain from S_j:

Lemma 3.9. Suppose that the size of S_j is $m_j \leq n/2$ (or $m_j = n$), and that the message $msg_j(S_j)$ has at most $f_j \cdot M_j$ bits. Then $\mathbb{E}[|K_{msg_j}(S_j)|] \leq 2f_j \cdot m_j$ (or $\leq f_j \cdot m_j$), where the expectation is taken over random choices of the matching S_j.

It says that, if the message msg_j has only a fraction f_j of the bits needed to encode S_j, then a server receiving this message knows, in expectation, only a fraction $2f_j$ of the m_j tuples in S_j. Notice that the bound holds only in expectation: a specialized encoding may choose to use very few bits to represent a particular matching $S_j \subseteq [n]^a$: when a server receives that message, then it knows all tuples in S_j, however then there will be fewer bit combinations left to encode the other matchings S_j.

Proof. The entropy $H(S_j)$ in Eq.(12) has two parts, corresponding to the two parts needed to encode S_j: for each attribute of S_j we need to encode a subset $\subseteq [n]$ of size m_j, and for each attribute except one we need to encode a permutation over $[m_j]$. Fix a value msg_j of the message received by the server from the input S_j, and let $k = |K_{msg_j}(S_j)|$. Since msg_j fixes precisely k tuples of S_j, the conditional entropy $H(S_j | msg_j(S_j) = msg_j)$ is:

$$\log |\{S_j | msg_j(S_j) = msg_j\}| \leq a_j \log \left(\begin{array}{c} n-k \\ m_j-k \end{array}\right) + (a_j - 1) \log((m_j-k)!)$$

We will next show that

$$\log |\{S_j | msg_j(S_j) = msg_j\}| \leq \left(1 - \frac{k}{2m_j}\right)M_j$$

(13)

In other words, we claim that the entropy has decreased by at least a fraction $k/(2m_j)$. We show this by proving that each of the two parts of the entropy decreased by that amount:

Proposition 3.10. $\log ((m-k)!) \leq \left(1 - \frac{k}{m}\right)\log(m!)$

Proof. Since $\log(x)$ is an increasing function, it holds that $\sum_{i=1}^{m-k} (\log(i) / (m-k)) \leq \sum_{i=1}^{m} (\log(i) / m)$, which is equivalent to:

$$\frac{\log((m-k)!)}{\log(m!)} \leq \frac{m-k}{m}$$

This proves the claim. \qed

Proposition 3.11. For any $k \leq m \leq n/2$, or $k \leq m = n$:

$$\log \left(\begin{array}{c} n-k \\ m-k \end{array}\right) \leq \left(1 - \frac{k}{2m}\right)\log \left(\begin{array}{c} n \\ m \end{array}\right)$$
Proof. If \(m = n \) then the claim holds trivially because both sides are 0, so we assume \(m \leq n/2 \). We have:

\[
\binom{n}{m-k} = \binom{n}{m} = \frac{n \cdot (n-1) \cdots (n-k + 1)}{(m-k) \cdot (m-k-1) \cdots 1} \leq \left(\frac{m}{n} \right)^k
\]

and therefore:

\[
\log \left(\frac{n-k}{m-k} \right) \leq \log \left(\frac{n}{m} \right) - k \log(n/m) = \left(1 - \frac{k \log(n/m)}{\log(n/m)} \right) \log \left(\frac{n}{m} \right)
\]

To conclude the proof, it suffices to show that \(\log \left(\frac{n}{m} \right) \leq 2m \log(n/m) \). For this, we use the bound \(\log \left(\frac{n}{m} \right) \leq nH(m/n) \), where \(H(x) = -x \log(x) - (1-x) \log(1-x) \) is the binary entropy. Denote \(f(x) = -x \log(x) \), therefore \(H(x) = f(x) + f(1-x) \). Then we have \(f(x) \leq f(1-x) \) for \(x \leq 1/2 \), because the function \(g(x) = f(x) - f(1-x) \) is concave (by direct calculation, \(g''(x) = -1/x^2 - 1/(1-x)^2 \leq 0 \) for \(x \in [0,1/2] \)), and \(g(0) = g(1/2) = 0 \), meaning that \(g(x) \geq 0 \) on the interval \(x \in [0,1/2] \). Therefore, \(H(x) \leq 2f(x) \), and our claim follows from:

\[
\log \left(\frac{n}{m} \right) \leq nH(m/n) \leq 2nf(m/n) = 2m \log(n/m)
\]

This concludes the proof of Proposition 3.11. \(\square \)

Now we will use Eq.(13) to complete the proof of Lemma 3.9. We apply the chain rule for entropy, \(H(S_j, \text{msg}_j(S_j)) = H(\text{msg}_j(S_j)) + H(S_j|\text{msg}_j(S_j)) \), then use the fact that \(H(S_j, \text{msg}_j(S_j)) = H(S_j) \) (since \(S_j \) completely determines \(\text{msg}_j(S_j) \)) and apply the definition of \(H(S_j|\text{msg}_j(S_j)) \):

\[
H(S_j) = H(\text{msg}_j(S_j)) + \sum_{\text{msg}_j} P(\text{msg}_j(S_j) = \text{msg}_j) \cdot H(S_j|\text{msg}_j(S_j) = \text{msg}_j)
\]

\[
\leq f_j \cdot H(S_j) + \sum_{\text{msg}_j} P(\text{msg}_j(S_j) = \text{msg}_j) \cdot H(S_j|\text{msg}_j(S_j) = \text{msg}_j)
\]

\[
\leq f_j \cdot H(S_j) + \sum_{\text{msg}_j} P(\text{msg}_j(S_j) = \text{msg}_j) \cdot (1 - \frac{|K_{\text{msg}_j}(S_j)|}{2m_j}) H(S_j)
\]

\[
= f_j \cdot H(S_j) + (1 - \sum_{\text{msg}_j} P(\text{msg}_j(S_j) = \text{msg}_j) \frac{|K_{\text{msg}_j}(S_j)|}{2m_j}) H(S_j)
\]

\[
= f_j \cdot H(S_j) + (1 - \frac{\mathbb{E}[|K_{\text{msg}_j}(S_j)|]}{2m_j}) H(S_j)
\]

where the first inequality follows from the assumed upper bound on \(|\text{msg}_j(S_j)| \), the second inequality follows by (13), and the last two lines follow by definition. Dividing both sides of (14) by \(H(S_j) \) since \(H(S_j) \) is not zero and rearranging we obtain the required statement. \(\square \)

3.2.2 Bounding the Knowledge of the Query

We use now Lemma 3.9 to derive an upper bound on the number of answers to \(q(I) \) that a server \(s \) can report. Recall that Lemma 3.9 assumed that the message \(\text{msg}_j(S_j) \) is at most a fraction \(f_j \) of the
entropy of S_j. We do not know the values of f_j, instead we know that the entire $\text{msg}(I)$ received by the server s (the concatenation of all ℓ messages $\text{msg}_j(S_j)$) has at most L bits. For each relation S_j, define
\[
 f_j = \max_{S_j \subseteq [n]^q_j} |\text{msg}_j(S_j)| / M_j.
\]
Thus, f_j is the largest fraction of bits of S_j that the server receives, over all choices of the matching S_j. We immediately derive an upper bound on the f_j's. We have $\sum_j f_j |\text{msg}_j(S_j)| \leq L$, because each relation S_j can be chosen independently, which implies $\sum_{j=1}^f f_j M_j \leq L$.

For $a_j \in [n]^q_j$, let $w_j(a_j)$ denote the probability that the server knows the tuple a_j. In other words $w_j(a_j) = P(a_j \in K_{\text{msg}_j(S_j)}(S_j))$, where the probability is over the random choices of S_j.

Lemma 3.12. For any relation S_j:

(a) $\forall a_j \in [n]^q_j : w_j(a_j) \leq m_j / n^{q_j}$, and

(b) $\sum_{a_j \in [n]^q_j} w_j(a_j) \leq 2f_j \cdot m_j$.

Proof. To show (a), notice that $w_j(a_j) \leq P(a_j \in S_j) = m_j / n^{q_j}$, while (b) follows from the fact $\sum_{a_j \in [n]^q_j} w_j(a_j) = E[|K_{\text{msg}_j(S_j)}(S_j)|] \leq 2f_j \cdot m_j$ (Lemma 3.9).

Since the server receives a separate message for each relation S_j, from a distinct input server, the events $a_1 \in K_{\text{msg}_1(S_1)}, \ldots, a_\ell \in K_{\text{msg}_\ell(S_\ell)}$ are independent, hence:
\[
 E[|K_{\text{msg}_I}(q)|] = \sum_{a \in [n]^\ell} P(a \in K_{\text{msg}_I}(q)) = \sum_{a \in [n]^\ell} \prod_{j=1}^\ell w_j(a_j)
\]
We now use Friedgut’s inequality. Recall that in order to apply the inequality, we need to find a fractional edge cover. Let us pick any fractional edge packing $u = (u_1, \ldots, u_\ell)$. Given q, defined as in (1), consider the extended query, which has a new unary atom for each variable x_i:
\[
 q'(x_1, \ldots, x_k) = S_1(x_1), \ldots, S_\ell(x_\ell), T_1(x_1), \ldots, T_k(x_k)
\]
For each new symbol T_i, define $u'_i = 1 - \sum_{j:x_i \in \text{vars}(S_j)} u_j$. Since u is a packing, $u'_i \geq 0$. Let us define $u' = (u'_1, \ldots, u'_k)$.

Lemma 3.13. (a) The assignment (u, u') is both a tight fractional edge packing and a tight fractional edge cover for q'. (b) $\sum_{j=1}^\ell a_j u_j + \sum_{i=1}^k u'_i = k$

Proof. (a) is straightforward, since for every variable x_i we have $u'_i + \sum_{j:x_i \in \text{vars}(S_j)} u_j = 1$. Summing up:
\[
 k = \sum_{i=1}^k \left(u'_i + \sum_{j:x_i \in \text{vars}(S_j)} u_j \right) = \sum_{i=1}^k u'_i + \sum_{j=1}^\ell a_j u_j
\]
which proves (b).
We will apply Friedgut’s inequality to the extended query \(q' \). Set the variables \(w(-) \) used in Friedgut’s inequality as follows:

\[
w_j(ai) = \mathbb{P}(ai \in K_{msg,S_j}(S_j)) \text{ for } S_j, \text{ tuple } ai \in [n]^{a_j}
\]

\[
w'(\alpha) = 1 \quad \text{ for } T, \text{ value } \alpha \in [n]
\]

Recall that, for a tuple \(a \in [n]^k \) we use \(ai \in [n]^{a_j} \) for its projection on the variables in \(S_j \); with some abuse, we write \(ai \in [n] \) for the projection on the variable \(x_i \). Assume first that \(u_j > 0 \), for \(j = 1, \ldots, \ell \). Then:

\[
\mathbb{E}[|K_{msg}(q)|] = \sum_{a \in [n]^k} \prod_{j=1}^{\ell} w_j(ai)
\]

\[
= \sum_{a \in [n]^k} \prod_{j=1}^{\ell} w_j(ai) \prod_{i=1}^{k} w'_i(ai)
\]

\[
\leq \prod_{j=1}^{\ell} \left(\sum_{a \in [n]^{a_j}} w_j(ai)^{1/u_j} \right)^{u_j} \prod_{i=1}^{k} \left(\sum_{\alpha \in [n]} w'_i(\alpha)^{1/u'_i} \right)\]

\[
= \prod_{j=1}^{\ell} \left(\sum_{a \in [n]^{a_j}} w_j(ai)^{1/u_j} \right)^{u_j} \prod_{i=1}^{k} n^{u'_i}
\]

Note that, since \(w'(\alpha) = 1 \) we have \(w'(\alpha)^{1/u'_i} = 1 \) even if \(u'_i = 0 \). Write \(w_j(ai)^{1/u_j} = w_j(ai)^{1/u_j-1} w_j(ai) \), and use Lemma 3.12 to obtain:

\[
\sum_{a \in [n]^{a_j}} w_j(ai)^{1/u_j} \leq (m_j/n^{a_j})^{1/u_j-1} \sum_{a \in [n]^{a_j}} w_j(ai)
\]

\[
\leq (m_j n^{-a_j})^{1/u_j-1} 2f_j \cdot m_j
\]

\[
= 2f_j \cdot m_j^{1/u_j} \cdot n^{(a_j-a_j/u_j)}
\]

Plugging this in the bound, we have shown that:

\[
\mathbb{E}[|K_{msg}(q)|] \leq \prod_{j=1}^{\ell} \left((2f_j \cdot m_j^{1/u_j} \cdot n^{(a_j-a_j/u_j)})^{u_j} \cdot \prod_{i=1}^{k} n^{u'_i} \right)
\]

\[
= \prod_{j=1}^{\ell} (2f_j)^{u_j} \cdot \prod_{j=1}^{\ell} m_j \cdot n^\left(\sum_{i=1}^{\ell} a_j u_j - a_j \right) \cdot n^\sum_{i=1}^{k} u'_i
\]

\[
= \prod_{j=1}^{\ell} (2f_j)^{u_j} \cdot \prod_{j=1}^{\ell} m_j \cdot n^{-a_j + \left(\sum_{i=1}^{\ell} a_j u_j + \sum_{i=1}^{k} u'_i \right)}
\]

\[
= \prod_{j=1}^{\ell} (2f_j)^{u_j} \cdot \prod_{j=1}^{\ell} m_j \cdot n^{k-a}
\]

\[
= \prod_{j=1}^{\ell} (2f_j)^{u_j} \cdot \mathbb{E}[|q(I)|] \quad (15)
\]

18
If some $u_j = 0$, then we can derive the same lower bound as follows: We can replace each u_j with $u_j + \delta$ for any $\delta > 0$ still yielding an edge cover. Then we have $\sum_j a_j u_j + \sum_j u_j' = k + a\delta$, and hence an extra factor $n^{a\delta}$ multiplying the term n^{k-a} in (15); however, we obtain the same upper bound since, in the limit as δ approaches 0, this extra factor approaches 1.

Let $f_q = \prod_{j=1}^\ell (2f_j)^{u_j}$; the final step is to upper bound the quantity f_q using the fact that $\sum_j f_j M_j \leq L$. Recall that $u = \sum_j u_j$, then:

$$f_q = \prod_{j=1}^\ell (2f_j)^{u_j} = \prod_{j=1}^\ell \left(\frac{f_j M_j}{u_j} \right)^{u_j} \prod_{j=1}^\ell \left(\frac{2u_j}{M_j} \right)^{u_j}$$

$$\leq \left(\frac{\sum_{j=1}^\ell f_j M_j}{\sum_{j=1}^\ell u_j} \right)^{\sum_{j=1}^\ell u_j} \prod_{j=1}^\ell \left(\frac{2u_j}{M_j} \right)^{u_j}$$

$$\leq \left(\frac{L}{\sum_{j=1}^\ell u_j} \right)^{\sum_{j=1}^\ell u_j} \prod_{j=1}^\ell \left(\frac{2u_j}{M_j} \right)^{u_j}$$

$$= \prod_{j=1}^\ell \left(\frac{2L}{u \cdot M_j} \right)^{u_j} \prod_{j=1}^\ell (u_j)^{u_j}$$

$$\leq \prod_{j=1}^\ell \left(\frac{2L}{u \cdot M_j} \right)^{u_j}$$

Here, the first inequality comes from the weighted version of the Arithmetic Mean-Geometric Mean inequality. The last inequality holds since $u_j \leq 1$ for any j.

Finally, we need a lower bound on the number of bits M_j needed to represent relation S_j. Indeed:

Proposition 3.14. The number of bits M_j needed to represent S_j are:

(a) If $n \geq m_j^2$, then $M_j \leq M_j/2$

(b) If $n = m_j$ and $a_j \geq 2$, then $M_j \leq M_j/4$

Proof. For the first item, we have:

$$M_j \geq a_j \log \left(\frac{n}{m_j} \right) \geq a_j m_j \log(n/m_j) \geq (1/2) a_j m_j \log(n) = M_j/2$$

For the second item, we have:

$$M_j \geq (a_j - 1) \log(m_j!) \geq \frac{a_j - 1}{2} m_j \log(m_j) \geq \frac{a_j - 1}{2a_j} M_j \geq M_j/4$$

where the last inequality comes from the assumption that $a_j \geq 2$. \qed

Applying the above bound on M_j, we complete the proof of Theorem 3.5. Recall that our L denotes the load of an arbitrary server, which was denoted L_i in the statement of the theorem.
3.3 Proof of Equivalence

Let $pk(q)$ be the extreme points of the convex polytope defined by the fractional edge packing constraints in (2). Recall that the vertices of the polytope are feasible solutions u_1, u_2, \ldots, with the property that every other feasible solution u to the LP is a convex combination of these vertices. Each vertex can be obtained by choosing m out of the $k + \ell$ inequalities in (2), transforming them into equalities, then solving for u. Thus, it holds that $|pk(q)| \leq \binom{k+\ell}{m}$. We prove here:

Theorem 3.15. For any vector of statistics M and number of processors p, we have:

$$L_{\text{lower}} = L_{\text{upper}} = \max_{u \in pk(q)} L(u, M, p)$$

Proof. Recall that $L_{\text{upper}} = p e^*$, where e^* is the optimal solution to the primal LP problem (10). Consider its dual LP:

$$\begin{align*}
\text{maximize} & \quad \sum_{j \in [\ell]} \mu_j f_j - f \\
\text{subject to} & \quad \sum_{j \in [\ell]} f_j \leq 1 \\
& \quad \forall i \in [k] : \sum_{j : i \in S_j} f_j - f \leq 0 \\
& \quad \forall j \in [\ell] : f_j \geq 0, \ f \geq 0
\end{align*}$$

(16)

By the primal-dual theorem, its optimal solution is also e^*. Writing $u_j = f_j/f$ and $u = 1/f$, we transform it into the following non-linear optimization problem:

$$\begin{align*}
\text{maximize} & \quad \frac{1}{u} \cdot \left(\sum_{j \in [\ell]} \mu_j u_j - 1 \right) \\
\text{subject to} & \quad \sum_{j \in [\ell]} u_j \leq u \\
& \quad \forall i \in [k] : \sum_{j : i \in S_j} u_j \leq 1 \\
& \quad \forall j \in [\ell] : u_j \geq 0
\end{align*}$$

(17)

Consider optimizing the above non-linear problem. Its optimal solution must have $u = \sum_j u_j$, otherwise we simply replace u with $\sum_j u_j$ and obtain a feasible solution with at least as good objective function (indeed, $\mu_j \geq 1$ for any j, and hence $\sum_j \mu_j u_j \geq \sum_j u_j \geq 1$, since any optimal u will have sum at least 1). Therefore, the optimal is given by a fractional edge packing u. Furthermore, for any packing u, the objective function $\sum_j \frac{1}{u} \cdot (\mu_j u_j - 1)$ is $\log_p L(u, M, p)$. To prove the theorem, we show that (a) $e^* = u^*$ and (b) the optimum is obtained when $u \in pk(q)$. This follows from:

Lemma 3.16. Consider the function $F : \mathbb{R}^{k+1} \rightarrow \mathbb{R}^{k+1}$: $F(x_0, x_1, \ldots, x_k) = (1/x_0, x_1/x_0, \ldots, x_k/x_0)$. Then:

- F is its own inverse, $F = F^{-1}$.
• F maps any feasible solution to the system (16) to a feasible solution to (17), and conversely.
• F maps a convex set to a convex set.

Proof. If $y_0 = 1/x_0$ and $y_j = x_j/x_0$, then obviously $x_0 = 1/y_0$ and $x_j = y_j/y$. The second item can be checked directly. For the third item, it suffices to prove that F maps a convex combination $\lambda x + \lambda' x'$ where $\lambda + \lambda' = 1$ into a convex combination $\mu F(x) + \mu' F(x')$, where $\mu + \mu' = 1$. Assuming $x = (x_0, x_1, \ldots, x_k)$ and $x' = (x'_0, x'_1, \ldots, x'_k)$, this follows by setting $\mu = x_0/(\lambda x_0 + \lambda x'_0)$ and $\mu' = x'_0/(\lambda x_0 + \lambda x'_0)$.

This completes the proof of Theorem 3.15.

3.4 Discussion

We present here examples and applications of the theorems proved in this section.

The Speedup of the HyperCube Denote u^* the fractional edge packing that maximizes $L(u, M, p)$ (11). When the number of servers increases, the load decreases at a rate of $1/p^1/\sum u^*_j$, which we call the speedup of the HyperCube algorithm. We call the quantity $1/\sum u^*_j$ the speedup exponent. We have seen that, when all cardinalities are equal, then the speedup exponent is $1/\tau^*$, but when the cardinalities are unequal then the speedup exponent may be better.

Example 3.17. Consider the triangle query

$$C_3 = S_1(x_1, x_2), S_2(x_2, x_3), S_3(x_3, x_1)$$

and assume the relation sizes are M_1, M_2, M_3. Then, $pk(C_3)$ has five vertices, and each gives a different value for $L(u, M, p) = (M_1^{u_1} M_2^{u_2} M_3^{u_3} / p)^{1/(u_1 + u_2 + u_3)}$:

u	$L(u, M, p)$
$(1/2, 1/2, 1/2)$	$(M_1 M_2 M_3)^{1/3} / p^{2/3}$
$(1, 0, 0)$	M_1 / p
$(0, 1, 0)$	M_2 / p
$(0, 0, 1)$	M_3 / p
$(0, 0, 0)$	0

(The last row is justified by the fact that $L(u, M, p) \leq \max(M_1, M_2, M_3) / p^{1/(u_1 + u_2 + u_3)} \rightarrow 0$ when $u_1 + u_2 + u_3 \rightarrow 0$.) The load of the HC algorithm is given by the largest of these quantities, in other words, the optimal solution to the LP (10) that gives the load of the HC algorithm can be given in closed form, as the maximum over these five expressions. To compute the speedup, suppose $M_1 < M_2 = M_3 = M$. Then there are two cases. When $p \leq M/M_1$, the optimal packing is $(0, 1, 0)$ (or $(0, 0, 1)$) and the load is M/p. HyperCube achieves linear speedup by computing a standard join of $S_2 \bowtie S_3$ and broadcasting the smaller relation S_1; it does this by allocating shares $p_1 = p_2 = 1$, $p_3 = p$. When $p > M/M_1$ then the optimal packing is $(1/2, 1/2, 1/2)$ the load is $(M_1 M_2 M_3)^{1/3} / p^{2/3}$, and the speedup decreases to $1/p^{2/3}$.
The following lemma sheds some light into how the HyperCube algorithm exploits unequal cardinalities.

Lemma 3.18. Let \(q \) be a query, over a database with statistics \(M \), and let \(u^* = \arg\max_u L(u, M, p) \), and \(L = L(u^*, M, p) \). Then:

1. If for some \(j, M_j < L \), then \(u_j^* = 0 \).

2. Let \(M = \max_i M_i \). If for some \(j, M_j < M/p \), then \(u_j^* = 0 \).

3. When \(p \) increases, the speedup exponent remains constant or decreases, eventually reaching \(1/\tau^* \).

Proof. We prove the three items of the lemma.

(1) If we modify a fractional edge packing \(u \) by setting \(u_j = 0 \), we still obtain a fractional edge packing. We claim that the function \(f(u_j) = L(u, M, p) \) is strictly decreasing in \(u_j \) on \((0,\infty)\): the claim implies the lemma because \(f(0) > f(u_j) \) for any \(u_j > 0 \). The claim follows by noticing that \(f(u_j) = p^{(a \log M_j + b)/(a u_j + c)} \) where \(a, b, c \) are positive constants, hence \(f \) is monotone on \((0,\infty)\), and \(f(u_j) = L > M_j = f(\infty) \), implying that it is monotonically decreasing.

(2) This follows immediately from the previous item by noticing that \(M/p \leq L \); to see the latter, let \(k \) be such that \(M_k = M \), and let \(u \) be the packing \(u_k = 1, u_j = 0 \) for \(j \neq k \). Then \(M/p = L(u, M, p) \leq L(u^*, M, p) = L \).

(3) Consider two edge packings \(u, u' \), denote \(u = \sum_j u_j, u' = \sum_j u'_j \), and assume \(u < u' \). Let \(f(p) = L(u, M, p) \) and \(g(p) = L(u', M, p) \). We have \(f(p) = c/p^{1/u} \) and \(g(p) = c'/p^{1/u'} \), where \(c, c' \) are constants independent of \(p \). Then \(f(p) < g(p) \) if and only if \(p > (c/c')^{1/(1/u-1/u')} \), since \(1/u - 1/u' > 0 \). Thus, as \(p \) increases from 1 to \(\infty \), initially we have \(f(p) < g(p) \), then \(f(p) > g(p) \), and the crossover point is \((c/c')^{1/(1/u-1/u')} \). Therefore, the value \(\sum_j u_j^* \) can never decrease, proving the claim. To see that the speedup exponent reaches \(1/\tau^* \), denote \(u^* \) the optimal vertex packing (maximizing \(\sum_j u_j \)) and let \(u \) be any edge packing s.t. \(u = \sum_j u_j < \tau^* \). Then, when \(p^{1/u-1/\tau^*} > (\prod_j M_j^{u_j})^{1/\tau^*} / (\prod_j M_j^{u_j})^{1/u} \), we have \(L(u^*, M, p) > L(u, M, p) \). \(\square \)

The first two items in the lemma say that, if \(M \) is the size of the largest relation, then the only relations \(S_i \) that matter to the HC algorithm are those for which \(M_i \geq M/p \); any smaller relation will be broadcast by the HC algorithm. The last item says that the HC algorithm can take advantage of unequal cardinalities and achieve speedup better than \(1/p^{1/\tau^*} \), e.g. by allocating fewer shares to the smaller relations, or even broadcasting them. As \(p \) increases, the speedup decreases until it reaches \(1/p^{1/\tau^*} \).

Space Exponent Let \(|I| = \sum_j M_j \) denote the size of the input database. Sometimes it is convenient to study algorithms whose maximum load per server is given as \(L = O(|I|/p^\epsilon) \), where \(0 \leq \epsilon < 1 \) is a constant parameter \(\epsilon \) called the space exponent of the algorithm. The lower bound given by Theorem 3.5 can be interpreted as a lower bound on the space exponent. To see this, consider the special case, when all relations have equal size \(M_1 = \ldots = M_k = M \); then the load can also be written as \(L = O(M/p^\epsilon) \), and, denoting \(u^* \) the optimal fractional edge packing, we
Table 2: Query examples: $C_k = $ cycle query, $L_k = $ linear query, $T_k = $ star query, and $B_{k,m} = $ query with (k^m) relations, where each relation contains a distinct set of m out of the k head variables. The share exponents presented are for the case where the relation sizes are equal.

Conjunctive Query	Share Exponents	Value $\tau^*(q)$	Lower Bound for Space Exponent		
$C_k(x_1, \ldots, x_k) = \bigwedge_{j=1}^k S_j(x_{ij}, x_{(j \mod k)+1})$	$\frac{1}{k}, \ldots, \frac{1}{k}$	$k/2$	$1 - 2/k$		
$T_k(z, x_1, \ldots, x_k) = \bigwedge_{j=1}^k S_j(z, x_{ij})$	$1, 0, \ldots, 0$	1	0		
$L_k(x_0, x_1, \ldots, x_k) = \bigwedge_{j=1}^k S_j(x_{j-1}, x_j)$	$0, \frac{1}{\lceil k/2 \rceil}, 0, \frac{1}{\lceil k/2 \rceil}, \ldots, \lceil k/2 \rceil$	$[k/2]$	$1 - 1/[k/2]$		
$B_{k,m}(x_1, \ldots, x_k) = \bigwedge_{I \subseteq [k],	I	=m} S_I(\bar{x}_I)$	$\frac{1}{k}, \ldots, \frac{1}{k}$	k/m	$1 - m/k$

have $\sum u^*_j = \tau^*$ and $L(u^*, M, p) = M/p^{\tau^*}$. Theorem 3.5 implies that any algorithm with a fixed space exponent ϵ will report at most as many answers:

$$O\left(\frac{L}{L(u^*, M, p)}\right)^{\tau^*} \cdot \mathbb{E}[|q(I)|] = O(p^{\tau^*|\epsilon - (1-1/\tau^*)|}) \cdot \mathbb{E}[|q(I)|]$$

Therefore, if the algorithm has a space exponent $\epsilon < 1 - 1/\tau^*$, then, as p increases, it will return a smaller fraction of the expected number of answers. This supports the intuition that achieving parallelism becomes harder when p increases: an algorithm with a small space exponent may be able to compute the query correctly when p is small, but will eventually fail, when p becomes large enough.

Replication Rate Given an algorithm that computes a conjunctive query q, let L_s be the load of server s, where $s = 1, \ldots, p$. The replication rate r of the algorithm, defined in [1], is $r = \sum_{s=1}^p L_s/|I|$. In other words, the replication rate computes how many times on average each input bit is communicated. The authors in [1] discuss the tradeoff between r and the maximum load in the case where the number of servers is not given, but can be chosen optimally. We show next how we can apply our lower bounds to obtain a lower bound for the tradeoff between the replication rate and the maximum load.

Corollary 3.19. Let q be a conjunctive query with statistics M. Any algorithm that computes q with maximum load L, where $L \leq M_j$ for every S_j, must have replication rate

$$r \geq \frac{cL}{\sum_j M_j} \max_u \prod_{j=1}^\ell \left(\frac{M_j}{L}\right)^{u_j}$$

where u ranges over all fractional edge packings of q and $c = \max_u (\sum_j u_j/4)^{\sum_j u_j}$.

\(^4\)if $L > M_j$, we can send the whole relation to any processor without cost.
Proof. Let \(f_s \) be the fraction of answers returned by server \(s \), in expectation, where \(I \) is a randomly chosen matching database with statistics \(M \). Let \(u \) be an edge packing for \(q \) and \(c(u) = (\sum_j u_j / 4)^{\sum_j u_j} \); by Theorem 3.5, \(f_s \leq L_s^{\sum_j u_j} / c(u) \prod_j M_j^{u_j} \). Since we assume all answers are returned, \(1 \leq \sum_s f_s = \sum_s \frac{L_s^{\sum_j u_j}}{c(u) \prod_j M_j^{u_j}} \leq \frac{L_s^{\sum_j u_j - 1} \sum_s L_s}{c(u) \prod_j M_j^{u_j}} = \frac{L_s^{\sum_j u_j - 1} |I|}{c(u) \prod_j M_j^{u_j}} \) where we used the fact that \(\sum_j u_j \geq 1 \) for the optimal \(u \). The claim follows by noting that \(|I| = \sum_j M_j \). \(\square \)

In the specific case where the relation sizes are all equal to \(M \), the above corollary tells us that the replication rate must be \(r = \Omega((M/L)^{\tau^* - 1}) \). Hence, the ideal case where \(r = o(1) \) is achieved only when the maximum vertex cover number \(\tau^* \) is equal to 1 (which happens if and only if a variable occurs in every atom of the query).

Example 3.20. Consider again the triangle query \(C_3 \) and assume that all sizes are equal to \(M \). In this case, the edge packing that maximizes the lower bound is \((1/2, 1/2, 1/2) \), and \(\tau^* = 3/2 \). Thus, we obtain an \(\Omega(\sqrt{M/L}) \) bound for the replication rate for the triangle query.

4 Handling Data Skew in One Communication Step

In this section, we discuss how to compute queries in the MPC model in the presence of skew. We first start by presenting an example where the HC algorithm that uses the optimal shares from (10) fails to work when the data has skew, even though it is asymptotically optimal when the relations are of low degree.

Example 4.1. Let \(q(x, y, z) = S_1(x, z), S_2(y, z) \) be a simple join query, where both relations have cardinality \(m \) (and size in bits \(M \)). The optimal shares are \(p_1 = p_2 = 1 \), and \(p_3 = p \). This allocation of shares corresponds to a standard parallel hash-join algorithm, where both relations are hashed on the join variable \(z \). When the data has no skew, the maximum load is \(O(M/p) \) with high probability.

However, if the relation has skew, the maximum load can be as large as \(O(M) \). This occurs in the case where all tuples from \(S_1 \) and \(S_2 \) have the same value for variable \(z \).

As we can see from the above example, the problem occurs when the input data contains values with high frequency of occurrence, which we call outliers, or heavy hitters. We will consider two different scenarios when handling data skew. In the first scenario, in Section 4.1, we assume that the algorithm has no information about the data apart from the size of the relations.

In the second scenario, presented in Section 4.2, we assume that the algorithm knows about the outliers in our data. All the results in this section are limited to single-round algorithms.

4.1 The HyperCube Algorithm with Skew

We answer the following question: what are the optimal shares for the HC algorithm such that the maximum load is minimized over all possible distributions of input data? In other words, we
limit our treatment to the HyperCube algorithm, but we consider data that can heavily skewed, as in Example 4.1. Notice that the HC algorithm is oblivious of the values that are skewed, so it cannot be modified in order to handle these cases separately. Our analysis is based on the following lemma about hashing, which we prove in detail in Appendix A.

Lemma 4.2. Let \(R(A_1, \ldots, A_r) \) be a relation of arity \(r \) with \(m \) tuples. Let \(p_1, \ldots, p_r \) be integers and \(p = \prod_i p_i \). Suppose that we hash each tuple \((a_1, \ldots, a_r)\) to the bin \((h_1(a_1), \ldots, h_r(a_r))\), where \(h_1, \ldots, h_r \) are independent and perfectly random hash functions. Then, the probability that the maximum load exceeds \(O\left(\frac{m}{\min_i p_i}\right) \) is exponentially small in \(m \).

Corollary 4.3. Let \(p = (p_1, \ldots, p_k) \) be the shares of the HC algorithm. For any relations, with high probability the maximum load per server is

\[
O\left(\max_j \frac{M_j}{\min_{i \in S_j} p_i}\right)
\]

The bound bound is tight: we can always construct an instance for given shares such that the maximum load is at least as above. Indeed, for a relation \(S_j \) with \(i = \arg \min_{i \in S_j} p_i \), we can construct an instance with a single value for any attribute other than \(x_i \) and \(M_j \) values for \(x_i \). In this case, the hashing will be across only one dimension with \(p_i \) servers, and so the maximum load has to be at least \(M_j / p_i \) for the relation \(S_j \).

As in the previous section, if \(L \) denotes the maximum load per server, we must have that \(M_j / \min_{i \in S_j} p_i \leq L \). Denoting \(\lambda = \log_p L \) and \(\mu_j = \log_p M_j \), the load is optimized by the following LP:

\[
\begin{align*}
\text{minimize} & \quad \lambda \\
\text{subject to} & \quad \sum_{i \in [k]} -e_i \geq -1 \\
& \quad \forall j \in [\ell] : h_j + \lambda \geq \mu_j \\
& \quad \forall j \in [\ell], i \in S_j : e_i - h_j \geq 0 \\
& \quad \forall i \in [k] : e_i \geq 0, \quad \forall j \in [\ell] : h_j \geq 0 \quad \lambda \geq 0
\end{align*}
\]

Following the same process as in the previous section, we can obtain the dual of the above LP, and after transformations obtain the following non-linear program with the same optimal objective function:

\[
\begin{align*}
\text{maximize} & \quad \frac{\sum_{j \in [\ell]} \mu_j u_j - 1}{\sum_{j \in [\ell]} u_j} \\
\text{subject to} & \quad \forall i \in [k] : \sum_{j \in S_j} w_{ij} \leq 1 \\
& \quad \forall j \in [\ell] : u_j \leq \sum_{i \in S_j} w_{ij} \\
& \quad \forall j \in [\ell] : u_j \geq 0 \\
& \quad \forall i \in [k], j \in [\ell] : w_{ij} \geq 0
\end{align*}
\]
4.2 Skew with Information

We discuss here the case where there is additional information known about skew in the input database. We will present a general lower bound for arbitrary conjunctive queries, and show an algorithm that matches the bound for star queries

\[q = S_1(z, x_1), S_2(z, x_2), \ldots, S_\ell(z, x_\ell) \]

which are a generalization of the join query. In [6] we show how our algorithmic techniques (the \textsc{BinHC} algorithm) can be used to compute arbitrary conjunctive queries; however, there is a substantial gap between the upper and lower bounds in the general case.

We first introduce some necessary notation. For each relation \(S_j \) with \(|S_j| = m_j \), and each assignment \(h \in [n] \) for variable \(z \), we define its frequency as \(m_j(h) = |\sigma_{z=h}(S_j)| \). We will be interested in assignments that have high frequency, which we call heavy hitters. In order to design algorithms that take skew into account, we will assume that every input server knows the assignments with frequency \(\geq m_j/p \) for every relation \(S_j \), along with their frequency. Because each relation can contain at most \(p \) heavy hitters, the total number over all relations will be \(O(p) \). Since we are considering cases where the number of servers is much smaller than the data, an \(O(p) \) amount of information can be easily stored in the input server.

To prove the lower bound, we will make a stronger assumption about the information available to the input servers. Given a conjunctive query \(q \), fix a set of variables \(x \) and let \(d = |x| \). Also, let \(x_j = x \cap \text{vars}(S_j) \) for every relation \(S_j \), and \(d_j = |x_j| \). A statistics of type \(x \), or \(x \)-statistics is a vector \(m = (m_1, \ldots, m_\ell) \), where \(m_j \) is a function \(m_j : [n]^N \to \mathbb{N} \). We associate with \(m \) the function \(m : [n]^X \to (\mathbb{N})^\ell \), where \(m(h) = (m_1(h_1), \ldots, m_\ell(h_\ell)) \), and \(h \) denotes the restriction of the tuple \(h \) to the variables in \(x_j \). We say that an instance of \(S_j \) satisfies the statistics if for any tuple \(h_j \in [n]^{x_j} \), its frequency is precisely \(m_j(h_j) \). When \(x = \emptyset \), then \(m \) simply consists of \(\ell \) numbers, each representing the cardinality of a relation; thus, a \(x \)-statistics generalizes the cardinality statistics. Recall that we use upper case \(M = (M_1, \ldots, M_\ell) \) to denote the same statistics expressed in bits, i.e. \(M_j(h) = a_j m_j(h) \log(n) \).

In the particular case of the star query, we will assume that the input servers know the \(z \)-statistics; in other words, for every assignment \(h \in [n] \) of variable \(z \), we know that its frequency in relation \(S_j(z, x_j) \) is precisely \(m_j(h) \). Observe that in this case the cardinality of \(S_j \) is \(|S_j| = \sum_{h \in [n]} m_j(h) \).

4.2.1 Algorithm for Star Queries

The algorithm uses the same principle popular in virtually all parallel join implementations to date: identify the heavy hitters and treat them differently when distributing the data. However, the analysis and optimality proof is new, to the best of our knowledge.

Let \(H \) denote the set of heavy hitters in all relations. Note that \(|H| \leq \ell p \). The algorithm will deal with the tuples that have no heavy hitter values (light tuples) by running the vanilla HC algorithm, which runs with shares \(p_z = p \) and \(p_{x_j} = 1 \) for every \(j = 1, \ldots, \ell \). For this case, the load analysis of Appendix A will give us a maximum load of \(\tilde{O}(\max_j M_j/p) \) with high probability, where \(\tilde{O} \) hides a polylogarithmic factor that depends on \(p \). For heavy hitters, we will have to adapt its function as follows.
To compute q, the algorithm must compute for each $h \in H$ the subquery

$$q[h/z] = S_1(h, x_1), \ldots, S_k(h, x_k)$$

which is equivalent to computing the Cartesian product $q_z = S'_1(x_1), \ldots, S'_k(x_k)$, where $S'_1(x_1) = S_1(h, x_1)$ and $S'_2(x_2) = S_2(h, x_2)$, and each relation S'_j has cardinality $m_j(h)$ (and size in bits $M_j(h)$).

We call q_z the residual query. The algorithm will allocate p_h servers to compute $q[h/z]$ for each $h \in H$, such that $\sum_{h \in H} p_h = \Theta(p)$. Since the unary relations have no skew, they will be of low degree and thus the maximum load L_h for each h is given by

$$L_h = O\left(\max_{u \in pk(q_z)} L(u, M(h), p_h)\right)$$

For the star query, we have $pk(q_z) = \{0, 1\}^\ell \setminus \{(0, 0, \ldots, 0)\}$. At this point, since p_h is not specified, it is not clear which edge packing in $pk(q_z)$ maximizes the above quantity for each h. To overcome this problem, we further refine the assignment of servers to heavy hitters: we allocate $p_{h,u}$ servers to each h and each $u \in pk(q_z)$, such that $p_h = \sum_u p_{h,u}$. Now, for a given $u \in pk(q_z)$, we can evenly distribute the load among the heavy hitters by allocating servers proportionally to the "heaviness" of executing the residual query. In other words we want $p_{h,u} \sim \prod_j M_j(h)^{u_j}$ for every $h \in H$. Hence, we will choose:

$$p_{h,u} = \left[\frac{\prod_j M_j(h)^{u_j}}{\sum_{h' \in H} \prod_j M_j(h')^{u_j}}\right]$$

Since $[x] \leq x + 1$, and $|H| \leq \ell p$, we can compute that the total number of servers we need is at most $(\ell + 1) \cdot |pk(q_z)| \cdot p$, which is $\Theta(p)$. Additionally, the maximum load L_h for every $h \in H$ will be

$$L_h = O\left(\max_{u \in pk(q_z)} \left(\frac{\sum_{h \in H} \prod_j M_j(h)^{u_j}}{p} \right)^{1/(\sum_j u_j)}\right)$$

Plugging in the values of $pk(q_z)$, we obtain the following upper bound on the algorithm for the heavy hitter case:

$$O\left(\max_{l \leq |I|} \left(\frac{\sum_{h \in H} \prod_j M_j(h)}{p} \right)^{1/|I|}\right) \quad (20)$$

Observe that the terms depend on the frequencies of the heavy hitters, and can be much larger than the bound $O(\max_j M_j/p)$ we obtain from the light hitter case. In the extreme, a single heavy hitter h with $m_j(h) = m_j$ for $j = 1, \ldots, \ell$ will demand maximum load equal to $O((\prod_j M_j/p)^{1/\ell})$.

4.2.2 Algorithm for Triangle Query

We show here how to compute the triangle query $C_3 = R(x, y), S(y, z), T(z, x)$ when all relation sizes are equal to m (and have M bits). As with the star query, the algorithm will deal with the tuples that have no heavy hitter values, i.e. the frequency is less than $m/p^{1/3}$, by running the vanilla HC algorithm. For this case, the load analysis of Appendix A will give us a maximum load of $\tilde{O}(M/p^{2/3})$ with high probability.

Next, we show how to handle the heavy hitters. We distinguish two cases.
Case 1 In this case, we handle the tuples that have values with frequency $\geq m/p$ in at least two variables. Observe that we did not set the heaviness threshold to $m/p^{1/3}$, for reasons that we will explain in the next case.

Without loss of generality, suppose that both x, y are heavy in at least one of the two relations they belong to. The observation is that there at most p such heavy values for each variable, and hence we can send all tuples of $R(x, y)$ with both x, y heavy (at most p^2) to all servers. Then, we essentially have to compute the query $S'(y, z), T'(z, x)$, where x and y can take only p values. We can do this by computing the join on z; since the frequency of z will be at most p for each relation, the maximum load from the join computation will be $O(M/p)$.

Case 2 In this case, we handle the remaining output: this includes the tuples where one variable has frequency $\geq m/p^{1/3}$, and the other variables are light, i.e. have frequency $\leq m/p$. Without loss of generality, assume that we want to compute the query q for the values of x that are heavy in either R or T. Observe that there are at most $2p^{1/3}$ of such heavy hitters. If H_x denotes the set of heavy hitter values for variable x, the residual query $q[h/x]$ for each $h \in H$ is:

$$q[h/x] = R(h, y), S(y, z), T(z, h)$$

which is equivalent to computing the query $q_x = R'(y), S(y, z), T'(z)$ with cardinalities $m_R(h), m, m_T(h)$ respectively. As before, we allocate p_h servers to compute $q[h/x]$ for each $h \in H$. If there is no skew, the maximum load L_h is given by the following formula:

$$L_h = O\left(\max\left(\frac{M}{p_h}, \sqrt{\frac{M_R(h)M_T(h)}{p_h}}\right)\right)$$

Notice now that the only cause of skew for q_x may be that y or z are heavy in $S(y, z)$. However, we assumed that the frequencies for both y, z are $\leq m/p$, so there will be no skew (this is why we set the heaviness threshold for Case 1 to m/p instead of $m/p^{1/3}$).

We can now set $p_h = p_{h,1} + p_{h,2}$ (for each of the quantities in the max expression), and choose the allocated servers similarly to how we chose for the star queries:

$$p_{h,1} = \left\lfloor p \cdot \frac{M_S(h)}{M} \right\rfloor \quad \quad p_{h,2} = \left\lfloor p \cdot \frac{M_R(h)M_T(h)}{\sum_{h \in H_x} M_R(h)M_T(h)} \right\rfloor$$

We now get a load of:

$$L = O\left(\max\left(\frac{M}{p}, \sqrt{\frac{\sum_{h \in H_x} M_R(h)M_T(h)}{p}}\right)\right)$$

Summing up all the cases, we obtain that the load of the 1-round algorithm for computing triangles is:

$$L = \tilde{O}\left(\max\left(\frac{M}{p^{2/3}}, \sqrt{\frac{\sum_{h \in H_x} M_R(h)M_T(h)}{p}}, \sqrt{\frac{\sum_{h \in H_x} M_R(h)M_S(h)}{p}}, \sqrt{\frac{\sum_{h \in H_x} M_S(h)M_T(h)}{p}}\right)\right)$$
4.2.3 Lower Bound

The lower bound we present here holds for any conjunctive query, and generalizes the lower bound in Theorem 3.5, which was over databases with cardinality statistics $\mathbf{M} = (M_1, \ldots, M_\ell)$, to databases with a fixed degree sequence. If the degree sequence is skewed, then the new bounds can be stronger, proving that skew in the input data makes query evaluation harder.

Let us fix statistics \mathbf{M} of type \mathbf{x}. We define $q_\mathbf{x}$ as the residual query, obtained by removing all variables \mathbf{x}, and decreasing the arities of S_j as necessary (the new arity of relation S_j is $a_j - d_j$). Clearly, every fractional edge packing of q is also a fractional edge packing of $q_\mathbf{x}$, but the converse does not hold in general. If \mathbf{u} is a fractional edge packing of $q_\mathbf{x}$, we say that \mathbf{u} saturates a variable $x_i \in \mathbf{x}$, if $\sum_{j : x_i \in \text{vars}(S_j)} u_j \geq 1$; we say that \mathbf{u} saturates \mathbf{x} if it saturates all variables in \mathbf{x}. For a given \mathbf{x} and \mathbf{u} that saturates \mathbf{x}, define

$$L_\mathbf{x}(\mathbf{u}, \mathbf{M}, p) = \left(\frac{\sum_{h \in [n]^\mathbf{x}} \prod_j M_j(h_j)^{u_j}}{p} \right)^{1/\sum u_j} \quad (21)$$

Theorem 4.4. Fix statistics \mathbf{M} of type \mathbf{x} such that $a_j > d_j$ for every relation S_j. Consider any deterministic MPC algorithm that runs in one communication round on p servers and has maximum load L in bits. Then, for any fractional edge packing \mathbf{u} of q that saturates \mathbf{x}, we must have

$$L \geq \min_j \frac{(a_j - d_j)}{4d_j} \cdot L_\mathbf{x}(\mathbf{u}, \mathbf{M}, p).$$

Note that, when $\mathbf{x} = \emptyset$ then $L_\mathbf{x}(\mathbf{u}, \mathbf{M}, p) = L(\mathbf{u}, \mathbf{M}, p)$, as defined in (11). However, our theorem does not imply Theorem 3.5, since it does not give a lower bound on the expected size of the algorithm output as a fraction of the expected output size.

Proof. For $\mathbf{h} \in [n]^\mathbf{x}$ and $a_j \in S_j$, we write $a_j \models \mathbf{h}$ to denote that the tuple a_j from S_j matches with \mathbf{h} at their common variables x_j, and denote $(S_j)_h = \{ a_j \mid a_j \in S_j, a_j \models \mathbf{h} \}$. Let I_h denote the restriction of I to \mathbf{h}, in other words $I_h = ((S_1)_h, \ldots, (S_\ell)_h)$.

We pick the domain n such that $n = (\max_j \{m_j\})^2$ and construct a probability space for instances I defined by the \mathbf{x}-statistics \mathbf{M} as follows. For a fixed tuple $\mathbf{h} \in [n]^\mathbf{x}$, the restriction I_h is a uniformly chosen instance over all matching databases with cardinality vector $\mathbf{M}(\mathbf{h})$, which is precisely the probability space that we used in the proof of Theorem 3.15. In particular, for every $a_j \in [n]^\mathbf{x}$, the probability that S_j contains a_j is $P(a_j \in S_j) = m_j(\mathbf{h})/n^{a_j - d_j}$. Lemma 3.6 immediately gives:

$$\mathbb{E}[|q(I_h)|] = n^{k-d} \prod_{j=1}^\ell \frac{m_j(\mathbf{h})}{n^{a_j - d_j}}$$

Let us fix some server and let $\text{msg}(I)$ be the message the server receives on input I. As in the previous section, let $K_{\text{msg}}(S_j)$ denote the set of tuples from relation S_j known by the server. Let $w_j(a_j) = P(a_j \in K_{\text{msg}}(S_j)(S_j))$, where the probability is over the random choices of S_j. This is upper bounded by $P(a_j \in S_j)$:

$$w_j(a_j) \leq m_j(\mathbf{h})/n^{a_j - d_j}, \quad \text{if } a_j \models \mathbf{h} \quad (22)$$
We derive a second upper bound by exploiting the fact that the server receives a limited number of bits, in analogy with Lemma 3.9:

Lemma 4.5. Let \(S_j \) a relation with \(a_j > d_j \). Suppose that the size of \(S_j \) is \(m_j \leq n/2 \) (or \(m_j = n \)), and that the message \(\text{msg}_j(S_j) \) has at most \(L \) bits. Then, we have \(\mathbb{E}[|K_{\text{msg}_j}(S_j)|] \leq \frac{4L}{(a_j - d_j) \log(n)} \).

Observe that in the case where \(a_j = d_j \) for some relation \(S_j \), the \(x \)-statistics fix all the tuples of the instance for this particular relation, and hence \(\mathbb{E}[|K_{\text{msg}_j}(S_j)|] = m_j \).

Proof. We can express the entropy \(H(S_j) \) as follows:

\[
H(S_j) = H(\text{msg}_j(S_j)) + \sum_{\text{msg}_j} P(\text{msg}_j(S_j) = \text{msg}_j) \cdot H(S_j | \text{msg}_j(S_j) = \text{msg}_j)
\]

\[
\leq L + \sum_{\text{msg}_j} P(\text{msg}_j(S_j) = \text{msg}_j) \cdot H(S_j | \text{msg}_j(S_j) = \text{msg}_j)
\]

(23)

For every \(h \in [n]^x \), let \(K_{\text{msg}_j}(\langle S_j \rangle h) \) denote the known tuples that belong in the restriction of \(S_j \) to \(h \). Following the proof of Lemma 3.9, and denoting by \(M_j(h_j) \) the number of bits necessary to represent \(\langle S_j \rangle h \), we have:

\[
H(S_j | \text{msg}_j(S_j) = \text{msg}_j) \leq \sum_{h \in [n]^x} \left(1 - \frac{|K_{\text{msg}_j}(\langle S_j \rangle h)|}{2m_j(h_j)} \right) M_j(h_j)
\]

\[
= H(S_j) - \sum_{h \in [n]^x} \frac{|K_{\text{msg}_j}(\langle S_j \rangle h)|}{2m_j(h_j)} M_j(h_j)
\]

\[
\leq H(S_j) - \sum_{h \in [n]^x} \frac{|K_{\text{msg}_j}(\langle S_j \rangle h)|}{2m_j(h_j)} m_j(h_j) \frac{a_j - d_j}{2} \log(n)
\]

\[
= H(S_j) - (1/4) \cdot |K_{\text{msg}_j}(S_j)|(a_j - d_j) \log(n)
\]

where the last inequality comes from Proposition 3.14. Plugging this in (23), and solving for \(\mathbb{E}[|K_m(S_j)|] \):

\[
\mathbb{E}[|K_{\text{msg}_j}(S_j)|] \leq \frac{4L}{(a_j - d_j) \log(n)}
\]

This concludes our proof.

Let \(q_x \) be the residual query, and recall that \(u \) is a fractional edge packing that saturates \(x \). Define the extended query \(q'_x \) to consist of \(q_x \), where we add a new atom \(S'_i(x_i) \) for every variable \(x_i \in \text{vars}(q_x) \). Define \(u'_i = 1 - \sum_{j \in S_i} u_j \). In other words, \(u'_i \) is defined to be the slack at the variable \(x_i \) of the packing \(u \). The new edge packing \((u, u')\) for the extended query \(q'_x \) has no more slack, hence it is both a tight fractional edge packing and a tight fractional edge cover for \(q_x \). By adding all equalities of the tight packing we obtain:

\[
\sum_{j=1}^\ell (a_j - d_j)u_j + \sum_{i=1}^{k-d} u'_i = k - d
\]

30
We next compute how many output tuples from \(q(I_h) \) will be known in expectation by the server. Note that \(q(I_h) = q_x(I_h) \), and thus:

\[
\mathbb{E}[|K_{\text{msg}}(q(I_h))|] = \mathbb{E}[|K_{\text{msg}}(q_x(I_h))|] = \sum_{a,h} \prod_{j=1}^{\ell} w_j(a_j)
\]

\[
= \sum_{a,h} \prod_{j=1}^{\ell} w_j(a_j) \prod_{i=1}^{k-d} w_i(a_i)
\]

\[
\leq \prod_{i=1}^{k-d} n^u_i \cdot \prod_{j=1}^{\ell} \left(\sum_{a_j|h} w_j(a_j)^{1/u_j} \right)^{u_j}
\]

By writing \(w_j(a_j)^{1/u_j} = w_j(a_j)^{1/u_j-1}w_j(a_j) \) for \(a_j \parallel h \), we can bound the sum in the above quantity as follows:

\[
\sum_{a_j|h} w_j(a_j)^{1/u_j} \leq \left(\frac{m_j(h_j)}{n^{u_j-\ell}} \right)^{1/u_j-1} \sum_{a_j|h} w_j(a_j) = (m_j(h_j)n^{d_j-a_j})^{1/u_j-1}L_j(h)
\]

where \(L_j(h) = \sum_{a_j|h} w_j(a_j) \). Notice that for every relation \(S_j \), we have \(\sum_{h_j \in [n]^j} L_j(h_j) = \sum_{a_j \in [n]^j} w_j(a_j) \).

We can now write:

\[
\mathbb{E}[|K_{\text{msg}}(q(I_h))|] \leq n^{x_j-\ell u_j} \prod_{j=1}^{\ell} \left(L_j(h) m_j(h_j)^{1/u_j-1}n^{(d_j-a_j)(1/u_j-1)} \right)^{u_j}
\]

\[
= \prod_{j=1}^{\ell} L_j(h)^{u_j} \cdot \prod_{j=1}^{\ell} m_j(h_j)^{-u_j} \cdot \mathbb{E}[|q(I_h)|]
\]

(24)

Summing over all \(p \) servers, we obtain that the expected number of answers that can be output for \(q(I_h) \) is at most \(p \cdot \mathbb{E}[|K_{\text{msg}}(q(I_h))|] \). If some \(h \in [n]^x \) this number is not at least \(\mathbb{E}[|q(I_h)|] \), the algorithm will fail to compute \(q(I) \). Consequently, for every \(h \) we must have that \(\prod_{j=1}^{\ell} L_j(h_j)^{u_j} \geq (1/p) \cdot \prod_{j=1}^{\ell} m_j(h_j)^{u_j} \). Summing the inequalities for every \(h \in [n]^x \):

\[
\frac{1}{p} \cdot \sum_{h \in [n]^x} \prod_{j=1}^{\ell} m_j(h_j)^{u_j} \leq \sum_{h \in [n]^x} \prod_{j=1}^{\ell} L_j(h_j)^{u_j}
\]

\[
\leq \prod_{j=1}^{\ell} \left(\sum_{h_j \in [n]^j} L_j(h_j) \right)^{u_j} \text{ by Friedgut’s inequality}
\]

\[
\leq \prod_{j=1}^{\ell} \left(\frac{4L}{(a_j - d_j) \log(n)} \right)^{u_j} \text{ by Lemma 4.5}
\]
Solving for L and using the fact that $M_j = a_j m_j \log(n)$, we obtain that for any edge packing u that saturates x,

$$L \geq \left(\min_j \frac{a_j - d_j}{4a_j} \right) \cdot \left(\frac{\sum_{h \in [n]} \prod_j M_j(h)^{u_j}}{p} \right)^{1/\sum_j u_j}$$

which concludes the proof.

To see how Theorem 4.4 applies to the star query, we assume that the input servers know z-statistics M_i; in other words, for every assignment $h \in [n]$ of variable z, we know that its frequency in relation S_j is $m_j(h)$. Then, for any edge packing u that saturates z, we obtain a lower bound of

$$L \geq (1/8) \cdot \left(\frac{\sum_{h \in [n]} \prod_j M_j(h)^{u_j}}{p} \right)^{1/\sum_j u_j}$$

Observe that the set of edge packings that saturate z and maximize the above quantity is $\{0, 1\}^\ell \setminus (0, \ldots, 0)$. Hence, we obtain a lower bound

$$L \geq (1/8) \cdot \max_{I \subseteq [\ell]} \left(\frac{\sum_{h \in [n]} \prod_{j \in I} M_j(h)}{p} \right)^{1/|I|}$$

5 Multiple Communication Steps

In this section, we discuss the computation of queries in the MPC model in the case of multiple steps. We will establish both upper and lower bounds on the number of rounds needed to compute a query q.

To prove our results, we restrict both the structure of the input and the type of computation in the MPC model. In particular, our multi-round algorithms will process only queries where the relations are of equal size and the data has no skew. Additionally, our lower bounds are proven for a restricted version of the MPC model, called the the tuple-based MPC model, which limits the way communication is performed.

5.1 An Algorithm for Multiple Rounds

In Section 3, we showed that in the case where all relations have size equal to M and are matching databases (i.e. the degree of any value is exactly one), we can compute a conjunctive query q in one round with maximum load

$$L = O(\frac{M}{p^{1/\tau^*(q)}})$$

where $\tau^*(q)$ denotes the fractional vertex covering number of q. Hence, for any $\epsilon \geq 0$, a conjunctive query q with $\tau^*(q) \leq 1/(1-\epsilon)$ can be computed in one round in the MPC model with load $L = O(\frac{M}{p^{1-\epsilon}})$; recall from Section 3.4 that we call the parameter ϵ the space exponent.

We define now the class of queries Γ_{ϵ}^r using induction on r. For $r = 1$, we define

$$\Gamma_{\epsilon}^1 = \{ q \mid \tau^*(q) \leq 1/(1 - \epsilon) \}$$
For $r > 1$, we define Γ^r to be the set of all conjunctive queries q constructed as follows. Let $q_1, \ldots, q_m \in \Gamma^{r-1}$ be m queries, and let $q_0 \in \Gamma^1$ be a query over a different vocabulary V_1, \ldots, V_m, such that $|\text{vars}(q_j)| = \text{arity}(V_j)$ for all $j \in [m]$. Then, the query $q = q_0[q_1/V_1, \ldots, q_m/V_m]$, obtained by substituting each view V_j in q_0 with its definition q_j, is in Γ^r. In other words, Γ^r consists of queries that have a query plan of depth r, where each operator is a query computable in one step with maximum load $O(M/p^{1-\epsilon})$. The following proposition is now straightforward.

Proposition 5.1. Every conjunctive query $q \in \Gamma^r$ with input a matching database where each relation has size M can be computed by an MPC algorithm in r rounds with maximum load $L = O(M/p^{1-\epsilon})$.

We next present two examples that provide some intuition on the structure of the queries in the class Γ^r.

Example 5.2. Consider the query L_k in Table 2 with $k = 16$; we can construct a query plan of depth $r = 2$ and load $L = O(M/p^{1/2})$ (with space exponent $\epsilon = 1/2$). The first step computes in parallel four queries, $v_1 = S_1, S_2, S_3, S_4$, ..., $v_4 = S_{13}, S_{14}, S_{15}, S_{16}$. Each query is isomorphic to L_4, therefore $\tau^*(q_1) = \cdots = \tau^*(q_4) = 2$ and thus each can be computed in one step with load $L = O(M/p^{1/2})$. The second step computes the query $q_0 = V_1, V_2, V_3, V_4$, which is also isomorphic to L_4.

We can generalize the above approach for any query L_k. For any $\epsilon \geq 0$, let k_ϵ be the largest integer such that $L_{k_\epsilon} \in \Gamma^r$. In other words, $\tau^*(L_{k_\epsilon}) \leq 1/(1-\epsilon)$ and so we choose $k_\epsilon = 2\lceil 1/(1-\epsilon) \rceil$. Then, for any $k \geq k_\epsilon$, L_k can be computed using L_{k_ϵ} as a building block at each round: the plan will have a depth of $\lceil \log_{k_\epsilon}(k) \rceil$ and will achieve a load of $L = O(M/p^{1-\epsilon})$.

Example 5.3. Consider the query $SP_k = \bigwedge_{i=1}^k R_i(z, x_i), S_i(x_i, y_i)$. Since $\tau^*(SP_k) = k$, the one round algorithm can achieve a load of $O(M/p^{1/k})$.

However, we can construct a query plan of depth 2 for SP_k with load $O(M/p)$, by computing the joins $q_i = R_i(z, x_i), S_i(x_i, y_i)$ in the first round and in the second round joining all q_i on the common variable z.

We next present an upper bound on the number of rounds needed to compute any query if we want to achieve a given load $L = O(M/p^{1-\epsilon})$; in other words, we ask what is the minimum number of rounds for which we can achieve a space exponent ϵ.

Let $\text{rad}(q) = \min_u \max_v d(u, v)$ denote the radius of a query q, where $d(u, v)$ denotes the distance between two nodes in the hypergraph of q. For example, $\text{rad}(L_k) = \lfloor k/2 \rfloor$ and $\text{rad}(C_k) = \lfloor k/2 \rfloor$.

Lemma 5.4. Fix $\epsilon \geq 0$, let $k_\epsilon = 2\lceil 1/(1-\epsilon) \rceil$, and let q be any connected query. Define

$$r(q) = \begin{cases}
\lfloor \log_{k_\epsilon}(\text{rad}(q)) \rfloor + 1 & \text{if } q \text{ is tree-like}, \\
\lfloor \log_{k_\epsilon}(\text{rad}(q)) \rfloor + 2 & \text{otherwise}.
\end{cases}$$

Then, q can be computed in $r(q)$ rounds on any matching database input with relations of size M with maximum load $L = O(M/p^{1-\epsilon})$.

Proof. By definition of rad(q), there exists some node $v \in \text{vars}(q)$, such that the maximum distance of v to any other node in the hypergraph of q is at most rad(q). If q is tree-like then we can decompose q into a set of at most $|\text{atoms}(q)|^{\text{rad}(q)}$ (possibly overlapping) paths P of length...
\[q \quad \epsilon \quad r \quad r = f(\epsilon) \]

Query	Space Exponent for 1 Round	Rounds to Achieve Load \(O(M/p) \)	Rounds/Space Tradeoff
\(C_k \)	\(1 - 2/k \)	\(\lceil \log k \rceil \)	\(\sim \frac{\log k}{\log(2/(1-\epsilon))} \)
\(L_k \)	\(1 - \frac{1}{k/2} \)	\(\lceil \log k \rceil \)	\(\sim \frac{\log k}{\log(2/(1-\epsilon))} \)
\(T_k \)	0	1	NA
\(SP_k \)	\(1 - 1/k \)	2	NA

Table 3: The tradeoff between space and communication rounds for several queries.

\[\leq \text{rad}(q) \), each having \(v \) as one endpoint. Since it is essentially isomorphic to \(L_{\ell} \), a path of length \(\ell \leq \text{rad}(q) \) can be computed in at most \(\lceil \log_{k_c}(\text{rad}(q)) \rceil \) rounds using the query plan from Proposition 5.1 together with repeated use of the one-round HyperCube algorithm for paths of length \(k_c \). Moreover, all the paths in \(P \) can be computed in parallel, because \(|P| \) is a constant depending only on \(q \). Since every path will contain variable \(v \), we can compute the join of all the paths in one final round with load \(O(M/p) \).

The only difference for general connected queries is that \(q \) may also contain atoms that join vertices at distance \(\text{rad}(q) \) from \(v \) that are not on any of the paths of length \(\text{rad}(q) \) from \(v \): these can be covered using paths of length \(\text{rad}(q) + 1 \) from \(v \). To get the final formula, we apply the equality \(\lceil \log_a(b+1) \rceil = \lceil \log_a(b) \rceil + 1 \), which holds for positive integers \(a, b \).

As an application of the above lemma, Table 3 shows the number of rounds required by different types of queries.

5.2 Lower Bounds for Multiple Rounds

To show lower bounds for the case of multiple rounds, we will need to restrict the communication in the MPC model; to do this, we define a restriction of the MPC model that we call the **tuple-based MPC model**.

5.2.1 Tuple-Based MPC

In the general MPC model, we did not have any restrictions on the messages sent between servers at any round. In the tuple-based MPC model, we will impose some structure on how we can communicate messages.

Let \(I \) be the input database instance, \(q \) be the query we want to compute, and \(A \) an algorithm. For a server \(s \in [p] \), we denote by \(\text{msg}_{S_j \rightarrow s}(A, I) \) the message sent during round 1 by the input server for \(S_j \) to the server \(s \), and by \(\text{msg}_{S \rightarrow s'}^k(A, I) \) the message sent to server \(s' \) from server \(s \) at round \(k \geq 2 \). Let \(\text{msg}_{S_1}(A, I) = (\text{msg}_{S_1 \rightarrow s}(A, I), \ldots, \text{msg}_{S_{\ell-1} \rightarrow s}(A, I)) \) and \(\text{msg}_{S_k}(A, I) = (\text{msg}_{S_1 \rightarrow s}(A, I), \ldots, \text{msg}_{S_{p-1} \rightarrow s}(A, I)) \) for any round \(k \geq 2 \).

Further, we define \(\text{msg}_{S_k}^p(A, i) \) to be the vector of messages received by server \(s \) during the first \(k \) rounds, and \(\text{msg}_{S_k}^p(A, i) = (\text{msg}_{S_1}^p(A, i), \ldots, \text{msg}_{S_{p-1}}^p(A, i)) \).
Define a join tuple to be any tuple in \(q'(I) \), where \(q' \) is any connected subquery of \(q \). An algorithm \(A \) in the tuple-based MPC model has the following two restrictions on communication during rounds \(k \geq 2 \), for every server \(s \):

- the message \(\text{msg}^k_{s \rightarrow s'}(A, I) \) is a set of join tuples.
- for every join tuple \(t \), the server \(s \) decides whether to include \(t \) in \(\text{msg}^k_{s \rightarrow s'}(A, I) \) based only on the parameters \(t, s, s', r \), and the messages \(\text{msg}^1_j(A, I) \) for all \(j \) such that \(t \) contains a base tuple in \(S_j \).

The restricted model still allows unrestricted communication during the first round; the information \(\text{msg}^1(A, I) \) received by server \(s \) in the first round is available throughout the computation. However, during the following rounds, server \(s \) can only send messages consisting of join tuples, and, moreover, the destination of these join tuples can depend only on the tuple itself and on \(\text{msg}^1(A, I) \).

The restriction of communication to join tuples (except for the first round during which arbitrary, e.g. statistical, information can be sent) is natural and the tuple-based MPC model captures a wide variety of algorithms including those based on MapReduce. (Indeed, MapReduce is closer to an even more restricted version in which communication in the first round is also limited to sending tuples.) Since the servers can perform arbitrary inferences based on the messages that they receive, even a limitation to messages that are join tuples starting in the second round, without a restriction on how they are routed, would still essentially have been equivalent to the fully general MPC model. For example, any server wishing to send a sequence of bits to another server can encode the bits using a sequence of tuples that the two exchanged in previous rounds, or (with slight loss in efficiency) using the understanding that the tuples themselves are not important, but some arbitrary fixed Boolean function of those tuples is the true message being communicated. This explains the need for the condition on routing tuples that the tuple-based MPC model imposes.

5.2.2 A Lower Bound

We present here a general lower bound for connected conjunctive queries in the tuple-based MPC model.

We first introduce a combinatorial object associated with every query \(q \), called the \((\varepsilon, r)\)-plan, which is central to the construction of the multi-round lower bound. We next define this notion, and also discuss how we can construct such plans for various classes of queries.

Given a query \(q \) and a set \(M \subseteq \text{atoms}(q) \), recall that \(q/M \) is the query that results from contracting the edges \(M \) in the hypergraph of \(q \). Also, we define \(\overline{M} = \text{atoms}(q) \setminus M \).

Definition 5.5. Let \(q \) be a connected conjunctive query. A set \(M \subseteq \text{atoms}(q) \) is \(\varepsilon \)-good for \(q \) if it satisfies the following two properties:

1. Every connected subquery of \(q \) that is in \(\Gamma^1_\varepsilon \) contains at most one atom in \(M \).

2. \(\chi(\overline{M}) = 0 \) (and thus \(\chi(q/\overline{M}) = \chi(q) \) by Lemma 2.1).

For \(\varepsilon \in [0, 1] \) and integer \(r \geq 0 \), an \((\varepsilon, r)\)-plan \(M \) is a sequence \(M_1, \ldots, M_r \), with \(M_0 = \text{atoms}(q) \supset M_1 \supset \cdots \supset M_r \) such that (a) for \(j = 0, \ldots, r - 1 \), \(M_{j+1} \) is \(\varepsilon \)-good for \(q/M_j \), and (b) \(q/\overline{M}_r \notin \Gamma^1_\varepsilon \).
We provide some intuition about the above definition with the next two lemmas, which shows how we can obtain such a plan for the query L_k and C_k respectively.

Lemma 5.6. The query L_k admits an $(\epsilon, \lceil \log_{k_e}(k) \rceil - 2)$-plan for any integer $k > k_e = 2\lceil 1/(1-\epsilon) \rceil$.

Proof. We will prove using induction that for every integer $r \geq 0$, if $k \geq k_e^{r+1} + 1$ then L_k admits an (ϵ, r)-plan. This proves the lemma, because then for a given k the smallest integer r we can choose for the plan is $r = \lceil \log_{k_e}(k-1) \rceil - 1 = \lceil \log_{k_e}(k) \rceil - 2$. For the base case $r = 0$, we have that $k \geq k_e + 1$, and observe that $L_k/\overline{M}_0 = L_k \notin \Gamma^1_\epsilon$.

For the induction step, let $k_0 \geq k_e^{r+1} + 1$; then from the inductive hypothesis we have that for every $k \geq k_0 + 1$ the query L_k has an $(\epsilon, r-1)$-plan. Define M to be the set of atoms where we include every k_e-th atom L_{k_0}, starting with S_1; in other words, $M = \{S_1, S_{k+1}, S_{2k+1}, \ldots\}$. Observe now that $L_{k_0}/\overline{M} = S_1(x_0, x_1), S_{k+1}(x_1, x_{k+1}), S_{2k+1}(x_{k+1}, x_{2k+1}), \ldots$, which is isomorphic to $L_{[k_0/k]}$.

We will show first that M is good for L_{k_0}. Indeed, $\chi(L_{k_0}/\overline{M}) = \chi(L_{[k_0/k]}) = \chi(L_{k_0})$ and thus property (2) is satisfied. Additionally, recall that Γ^1_ϵ consists of queries for which $\tau^*(q) \leq 1/(1-\epsilon)$; thus the connected subqueries of L_{k_0} that are in Γ^1_ϵ are precisely queries of the form $S_j(x_{j-1}, x_j), S_{j+1}(x_j, x_{j+1}), \ldots$, $S_{j+k-1}(x_{j+k-2}, x_{j+k-1})$, where $k \leq k_e$. By choosing M to contain every k_e-atom, no such subquery in Γ^1_ϵ will contain more than one atom from M and thus property (1) is satisfied as well.

Finally, we have that $[k_0/k] \geq [k_e^{r+1} + 1/k_e] = k_e^{r+1}$ and thus from the inductive hypothesis the query L_{k_0}/\overline{M} admits an $(\epsilon, r-1)$-plan. By definition, this implies a sequence M_1, \ldots, M_{r-1}; the extended sequence M, M_1, \ldots, M_{r-1} will now be an (ϵ, r)-plan for L_{k_0}. □

Lemma 5.7. The query C_k admits an $(\epsilon, \lceil \log_{k_e}(k/(m_e+1)) \rceil)$-plan, for every integer $k > m_e = \lceil 2/(1-\epsilon) \rceil$.

Proof. The proof is similar to the proof for the query L_k, since we can observe that any set M of atoms that are (at least) k_e apart along any cycle C_k is an ϵ-good set for C_k and further C_k/\overline{M} is isomorphic to $C_{[k/k]}$. The only difference is that the base case for $r = 0$ is that $k \geq m_e + 1$. Thus, the inductive step is that for every integer $r \geq 0$, if $k \geq k_e^{r}(m_e+1)$ then C_k admits an (ϵ, r)-plan. □

The above examples of queries show how we can construct (ϵ, r)-plans. We next present the main theorem of this section, which tells us how we can use such plans to obtain lower bounds on the number of communication rounds needed to compute a conjunctive query.

Theorem 5.8 (Lower Bound for Multiple Rounds). Let q be a conjunctive query that admits an (ϵ, r)-plan. For every randomized algorithm in the tuple-based MPC model that computes q in $r + 1$ rounds and with load $L \leq cM/p^{1-\epsilon}$ for a sufficiently small constant c, there exists an instance I with relations of size M where the algorithm fails to compute q with probability $\Omega(1)$.

The constant c in the above theorem depends on the query q and the parameter ϵ. To state the precise expression the constant c, we need some additional definitions.

Definition 5.9. Let q be a conjunctive query and M be an (ϵ, r)-plan for q. We define $\tau^+(M)$ to be the minimum of $\tau^+(q/\overline{M}_r)$ and $\tau^+(q')$, where q' ranges over all connected subqueries of $q/\overline{M}_{j-1}, j \in [r]$, such that $q' \notin \Gamma^1_\epsilon$.
Proposition 5.10. Let q be a conjunctive query and \mathcal{M} be an (ε, r)-plan for q. Then, $\tau^*(\mathcal{M}) > 1/(1 - \varepsilon)$.

Proof. For every $q' \notin \Gamma^1_\varepsilon$, we have by definition that $\tau^*(q') > 1/(1 - \varepsilon)$. Additionally, by the definition of an (ε, r)-plan, we have that $\tau^*(q/M_r) > 1/(1 - \varepsilon)$. \hfill \square

Further, for a given query q let us define the following sets:

- $C(q) = \{q' | q'$ is a connected subquery of $q\}$
- $C_\varepsilon(q) = \{q' | q' \notin \Gamma^1_\varepsilon, q'$ is a connected subquery of $q\}$
- $S_\varepsilon(q) = \{q' | q' \notin \Gamma^1_\varepsilon, q'$ is a minimal connected subquery of $q\}$

and let

$$
\beta(q, \mathcal{M}) = \left(\frac{1}{\tau^*(q/M_r)}\right)^{\tau^*(\mathcal{M})} + \sum_{k=1}^{r} \sum_{q' \in S_\varepsilon(q/\mathcal{M}_{k-1})} \left(\frac{1}{\tau^*(q')}\right)^{\tau^*(\mathcal{M})}
$$

We can now present the precise statement.

Theorem 5.11. If q has an (ε, r)-plan \mathcal{M} then any deterministic tuple-based MPC algorithm running in $r + 1$ rounds with maximum load L reports at most

$$
\beta(q, \mathcal{M}) \cdot \left(\frac{(r + 1)L}{M}\right)^{\tau^*(\mathcal{M})} \cdot p \cdot \mathbb{E}[|q(I)|]
$$
correct answers in expectation over a uniformly at random chosen matching database I where each relation has size M.

The above theorem implies Theorem 5.8 by following the same proof as in Theorem 3.7. Indeed, for $L \leq cM/p^{1-\varepsilon}$ we obtain that the output tuples will be at most $f \cdot \mathbb{E}[|q(I)|]$, where $f = \beta(q, \mathcal{M}) \cdot ((r + 1)c)^{\tau^*(\mathcal{M})}$. If we choose the constant c such that $f < 1/9$, we can apply Lemma 3.8 to show that for any randomized algorithm we can find an instance I where it will fail to produce the output with probability $\Omega(1)$.

In the rest of this section, we present the proof of Theorem 5.11. Let \mathcal{A} be an algorithm that computes q in $r + 1$ rounds. The intuition is as follows. Consider an ε-good set \mathcal{M}; then any matching database i consists of two parts, $i = (i_M, i_M^\perp)$, where i_M are the relations for atoms in M, and i_M^\perp are all the other relations. We show that, for a fixed instance i_M, the algorithm can be used to compute $q/M(i_M)$ in $r + 1$ rounds; however, the first round is almost useless, because the algorithm can discover only a tiny number of join tuples with two or more atoms $S_j \in M$ (since every subquery q' of q that has two atoms in M is not in Γ^1_ε). This shows that the algorithm can compute most of the answers in $q/M(i_M)$ in only r rounds, and we repeat the argument until a one-round algorithm remains.

To formalize this intuition, we need some notation. For two relations A, B we write $A \bowtie B$, called the semijoin, to denote the set of tuples in A for which there is a tuple in B that has equal values on their common variables. We also write $A \triangleright B$, called the antijoin, to denote the set of tuples in A for which no tuple in B has equal values on their common variables.

We will use i to denote a fixed matching instance, as opposed to I that denotes a random instance.
Let A be a deterministic algorithm with $r + 1$ rounds, $k \in [r + 1]$ a round number, s a server, and q' a subquery of q. We define:

$$K_{msg}^{A,k}(q') = \{a' \in [n]^{vars(q')} \mid \forall \text{ matching database } i, msg^{\leq k}(A,i) = msg \Rightarrow a' \in q'(i)\}$$

$$K_{msg}^{A,k}(q') = \bigcup_{s=1}^{p} K_{msg}^{A,k}(q')$$

Using the above notation, $K_{msg}^{A,k}(q')$ and $K_{msg}^{\leq k}(A,i)(q')$ denote the set of join tuples from q' known at round k by server s, and by all servers, respectively, on input i. Further, $A(i) = \bigcup_{s=1}^{p} A_{msg}^{\leq k}(A,i)(q')$ is w.l.o.g. the final answer of the algorithm A on input i. Finally, let us define

$$J_{A}(i) = \bigcup_{q' \in C(q)} K_{msg}^{A,1}(A,i)(q')$$

$$J_{e}(A)(i) = \bigcup_{q' \in C_e(q)} K_{msg}^{A,1}(A,i)(q')$$

$J_{e}(A)(i)$ is precisely the set of join tuples known after the first round, but restricted to those that correspond to subqueries that are not computable in one round; thus, the number of tuples in $J_{e}(A)(i)$ will be small.

We can now state the two lemmas we need as building blocks to prove Theorem 5.11.

Lemma 5.12. Let q be a query, and M be any ϵ-good set for q. If A is an algorithm with $r + 1$ rounds for q, then for any matching database i_M over the atoms of M, there exists an algorithm A' with r rounds for q/M using the same number of processors and the same total number of bits of communication received per processor such that, for every matching database i_M defined over the atoms of M:

$$|A(i_M, i_M)| \leq |q(i_M, i_M) \times J_{e}(A)(i_M, i_M)| + |A'(i_M)|.$$

In other words, the algorithm returns no more answers than the (very few) tuples in $J_{e}(A)$, plus what another algorithm A' that we define next computes for q/M using one fewer round.

Proof. We call q/M the contracted query. While the original query q takes as input the complete database $i = (i_M, i_M)$, the input to the contracted query is only i_M. Observe also that for different matching databases i_M, the lemma produces different algorithms A'. We fix now a matching database i_M.

The construction of A' is based on the following two constructions, which we call contraction and retraction.

Contraction. We first show how to use the algorithm A to derive an algorithm A^c for q/M that uses the same number of rounds as A.

For each connected component q_c of M, we choose a representative variable $z_c \in \text{vars}(q_c)$. The query answer $q_c(i_M)$ is a matching instance, since q_c is tree-like (because $\chi(M) = 0$). Denote $\text{mc} = \{\sigma_x \mid x \in \text{vars}(q)\}$, where, for every variable $x \in \text{vars}(q)$, $\sigma_x : [n] \rightarrow [n]$ is the following permutation. If $x \in \text{vars}(M)$, then σ_x is defined as the identity, i.e. $\sigma_x(a) = a$ for every $a \in [n]$. If $x \notin \text{vars}(M)$, then σ_x is the following permutation.
Otherwise, if \(q_c \) is the unique connected component such that \(x \in \text{vars}(q_c) \) and \(a \in q_c(i_M) \) is the unique tuple such that \(a_x = a \), we define \(\sigma_x(a) = a_{z_x} \). In other words, we think of \(m\sigma \) as permuting the domain of each variable \(x \in \text{vars}(q) \). Observe that \(m\sigma \) is known to all servers, since \(i_M \) is a fixed instance.

It holds that \(m\sigma(q(i)) = q(m\sigma(i)) \), and \(m\sigma(i_M) = \text{id}_{M} \), where \(\text{id}_{M} \) is the identity matching database (where each relation in \(\overline{M} \) is \((1,1,\ldots),(2,2,\ldots)\ldots\)). Therefore,

\[
q/M(i_M) = m\sigma^{-1}(\Pi_{\text{vars}(q/M)}(q(m\sigma(i_M), \text{id}_{M})))
\]

Using the above equation, we can now define the algorithm \(\mathcal{A}^{c} \) that computes the query \(q/M(i_M) \). First, each input server for \(S_j \in M \) replaces \(S_j \) with \(m\sigma(S_j) \). Second, we run \(\mathcal{A} \) unchanged, substituting all relations \(S_j \in \overline{M} \) with the identity. Finally, we apply \(m\sigma^{-1} \) to the answers and return the output. Hence, we have:

\[
\mathcal{A}^{c}(i_M) = m\sigma^{-1}(\Pi_{\text{vars}(q/M)}(\mathcal{A}(m\sigma(i_M), \text{id}_{M})))
\]

Retraction. Next, we transform \(\mathcal{A}^{c} \) into a new algorithm \(\mathcal{A}' \), called the retraction of \(\mathcal{A}^{c} \), that takes as input \(i_M \) as follows.

- In round 1, each input server for \(S_j \) sends (in addition to the messages sent by \(\mathcal{A}^{c} \)) every tuple in \(a_j \in S_j \) to all servers \(s \) that eventually receive \(a_j \). In other words, the input server sends \(t \) to every \(s \) for which there exists \(k \in [r+1] \) such that \(a_j \in K^{\mathcal{A}', k, s}_{\text{msg}}(\mathcal{A}^{c}, i_M)(S_j) \). This is possible because of the restrictions in the tuple-based MPC model: all destinations of \(a_j \) depend only on \(S_j \), and hence can be computed by the input server. Note that this does not increase the total number of bits received by any processor, though it does mean that more communication will be performed during the first round.

- In round 2, \(\mathcal{A}' \) sends no tuples.

- In rounds \(k \geq 3 \), \(\mathcal{A}' \) sends a join tuple \(t \) from server \(s \) to server \(s' \) if server \(s \) knows \(t \) at round \(k \), and also algorithm \(\mathcal{A}^{c} \) sends \(t \) from \(s \) to \(s' \) at round \(k \).

Observe first that the algorithm \(\mathcal{A}' \) is correct, in the sense that the output \(\mathcal{A}'(i_M) \) will be a subset of \(q/M(i_M) \). We now need to quantify how many tuples \(\mathcal{A}' \) misses compared to the contracted algorithm \(\mathcal{A}^{c} \). Let \(Q_M = \{q' \mid \text{subquery of } q/M, |q'| \geq 2\} \), and define:

\[
J^{\mathcal{A}^{c}}_{+}(i_M) = \bigcup_{q' \in Q_M} K^{\mathcal{A}^{c}, 1}_{\text{msg}}(\mathcal{A}^{c}, i)(q').
\]

The set \(J^{\mathcal{A}^{c}}_{+}(i_M) \) is exactly the set of non-atomic tuples known by \(\mathcal{A}^{c} \) right after round 1: these are also the tuples that the new algorithm \(\mathcal{A}' \) will choose not to send during round 2.

Lemma 5.13. \(\mathcal{A}^{c}(i_M) \triangleright J^{\mathcal{A}^{c}}_{+}(i_M) \subseteq \mathcal{A}'(i_M) \)

Proof. We will prove the statement by induction on the number of rounds: for any subquery \(q' \) of \(q/M \), if server \(s \) knows \(t \in (q'(i_M) \triangleright J^{\mathcal{A}^{c}}_{+}(i_M)) \) at round \(k \) for algorithm \(\mathcal{A}^{c} \), then server \(s \) knows \(t \) at round \(k \) for algorithm \(\mathcal{A}' \) as well.

\(^6\)We assume \(\text{vars}(q/M) \subseteq \text{vars}(q) \); for that, when we contract a set of nodes of the hypergraph, we replace them with one of the nodes in the set.
For the induction base, in round 1 we have by construction that \(K_{A^c,1,s}^{\mathcal{A},1,s}(S_j) \subseteq K_{A^c,1,s}^{\mathcal{A},1,s}(S_j) \) for every \(S_j \in M \), and thus any tuple \(t \) (join or atomic) that is known by server \(s \) for algorithm \(A^c \) will be also known for algorithm \(\mathcal{A}' \).

Consider now some round \(k + 1 \) and a tuple \(t \in (q'(i_M) \triangleright J_{A^c}^1(i_M)) \) known by server \(s \) for algorithm \(A^c \). If \(q' \) is a single relation, the statement is correct since by construction all atomic tuples are known at round 1 for algorithm \(\mathcal{A}' \). Otherwise \(q' \in Q_M \). Let \(t_1, \ldots, t_m \) be the subtuples at server \(s \) from which tuple \(t \) is constructed, where \(t_j \in q_j(i_M) \) for every \(j = 1, \ldots, m \). Observe that \(t_j \in (q_j(i_M) \triangleright J_{A^c}^1(i_M)) \). Thus, if \(t_i \) was known at round \(k \) by some server \(s' \) for algorithm \(A^c \), by the induction hypothesis it would be known by server \(s \) for algorithm \(\mathcal{A}' \).

From the above lemma it follows that:
\[
\mathcal{A}^c(i_M) \subseteq \mathcal{A}'(i_M) \cup (q/\overline{M}(i_M) \times J_{A^c}^1(i_M))
\] (26)

Additionally, by the definition of \(\varepsilon \)-goodness, if a subquery \(q' \) of \(q \) has two atoms in \(M \), then \(q' \not\in \Gamma^1_\varepsilon \). Hence, we also have:
\[
J_{A^c}^1(i_M) \subseteq m\sigma^{-1}((\Pi_{\mathcal{A}^c(q/\overline{M})}(J_{A^c}^1(q\sigma(i)))))
\] (27)

Since \(\mathcal{A}' \) send no information during the second round, we can compress it to an algorithm \(\mathcal{A}' \) that uses only \(r \) rounds. Finally, since \(M \) is \(\varepsilon \)-good, we have \(\chi(q/\overline{M}) = \chi(q) \) and thus \(|\mathcal{A}^c(i_M)| = |\mathcal{A}(i_M,i_{\overline{M}})| \). Combining everything together:
\[
|\mathcal{A}(i_M,i_{\overline{M}})| = |\mathcal{A}^c(i_M)| \\
\leq |\mathcal{A}'(i_M)| + |(q/\overline{M}(i_M) \times J_{A^c}^1(i_M))| \\
\leq |\mathcal{A}'(i_M)| + |q/\overline{M}(i_M) \times m\sigma^{-1}((\Pi_{\mathcal{A}^c(q/\overline{M})}(J_{A^c}^1(q\sigma(i)))))| \\
\leq |\mathcal{A}'(i_M)| + |\Pi_{\mathcal{A}^c(q/\overline{M})}(q(i) \times J_{A^c}^1(i))| \\
\leq |\mathcal{A}'(i_M)| + |q(i) \times J_{A^c}^1(i)|
\]

This concludes the proof.

Lemma 5.14. Let \(q \) be a conjunctive query and \(q' \) a subquery of \(q \). Let \(\mathcal{B} \) be any algorithm that outputs a subset of answers to \(q' \) (i.e. for every database \(i, \mathcal{B}(i) \subseteq q'(i) \)). Let \(I \) be a uniformly at random chosen matching database for \(q \), and \(I' = I_{\text{atoms}(q')} \) its restriction over the atoms in \(q' \).

If \(\mathbb{E}[|B(I')|] \leq \gamma \cdot \mathbb{E}[|q'(I')|] \), then \(\mathbb{E}[|q(I) \times \mathcal{B}(I')|] \leq \gamma \cdot \mathbb{E}[|q(I)|] \).

Proof. Let \(y = \text{vars}(q') \) and \(d = |y| \). By symmetry, the quantity \(\mathbb{E}[|\sigma_{y=a}(q(I))]|] \) is independent of \(a \), and therefore equals \(\mathbb{E}[|q(I)|]/n^d \). Notice that by construction \(\sigma_{y=a}(\mathcal{B}(i')) \subseteq \{a\} \). We now have:
\[
\mathbb{E}[|q(I) \times \mathcal{B}(I')|] = \sum_{a \in [n]^d} \mathbb{E}[|\sigma_{y=a}(q(I)) \times \sigma_{y=a}(\mathcal{B}(I'))|]
\]
\[
= \sum_{a \in [n]^d} \mathbb{E}[|\sigma_{y=a}(q(I))|] \cdot \mathbb{E}[\sigma_{y=a}(\mathcal{B}(I'))]
\]

40
and hence, by Lemma 3.6, we have

where the last inequality follows from the fact that \(\mathbb{E}[|q'(I')|] \leq n^d \) (since for every database \(i' \), we have \(|q'(i')| \leq n^d\)).

of Theorem 5.11. Given an \((\varepsilon, r)\)-plan atoms \(q = M_0 \supset M_1 \supset \ldots \supset M_r \), we define \(\hat{M}_k = \overline{M}_k - \overline{M}_{k-1} \), for \(k \geq 1 \). Let \(\mathcal{A} \) be an algorithm for \(q \) that uses \((r + 1)\) rounds.

We start by applying Lemma 5.12 for algorithm \(\mathcal{A} \) and the \(\varepsilon \)-good set \(M_1 \). Then, for every matching database \(i_{\hat{M}_1} = i_{\hat{M}_r} \), there exists an algorithm \(\mathcal{A}_{i_{\hat{M}_1}}^{(1)} \) for \(q/\hat{M}_1 \) that runs in \(r \) rounds such that for every matching database \(i_{\hat{M}_1} \) we have:

\[
|\mathcal{A}(i)| \leq |q(i) \times I_{\hat{M}}^d_q(i)| + |\mathcal{A}_{i_{\hat{M}_1}}^{(1)}(i_{\hat{M}_1})|
\]

We can iteratively apply the same argument. For \(k = 1, \ldots, r - 1 \), let us denote \(\mathcal{B}_k = \mathcal{A}_{i_{\hat{M}_k}}^{(k)} \) the inductively defined algorithm for query \(q/\overline{M}_k \), and consider the \(\varepsilon \)-good set \(M_{k+1} \). Then, for every matching database \(i_{\hat{M}_{k+1}} \) there exists an algorithm \(\mathcal{B}_k^{k+1} = \mathcal{A}_{i_{\hat{M}_{k+1}}}^{(k+1)} \) for \(q/\overline{M}_{k+1} \) such that for every matching database \(i_{\hat{M}_{k+1}} \), we have:

\[
|\mathcal{B}_k(i_{\hat{M}_k})| \leq |q/\overline{M}_{k}(i_{\hat{M}_k}) \times I_{\varepsilon}^{\mathcal{B}_k, q/\overline{M}_{k}}(i_{\hat{M}_k})| + |\mathcal{B}_k^{k+1}(i_{\hat{M}_{k+1}})|
\]

We can now combine all the above inequalities for \(k = 0, \ldots, r - 1 \) to obtain:

\[
|\mathcal{A}(i)| \leq |q(i) \times I_{\varepsilon}^{\mathcal{B}_k, q}(i_{\hat{M}_r}, \ldots, i_{\hat{M}_1})|
+ |q/\overline{M}_1(i_{\hat{M}_1}) \times I_{\varepsilon}^{\mathcal{B}_k, q/\overline{M}_1}(i_{\hat{M}_r}, i_{\hat{M}_1}, \ldots, i_{\hat{M}_1})|
+ \ldots
+ |q/\overline{M}_{r-1}(i_{\hat{M}_{r-1}}) \times I_{\varepsilon}^{\mathcal{B}_k, q/\overline{M}_{r-1}}(i_{\hat{M}_r}, i_{\hat{M}_{r-1}})|
+ |\mathcal{B}_r(i_{\hat{M}_r})|
\]

(28)

We now take the expectation of (28) over a uniformly chosen matching database \(I \) and upper bound each of the resulting terms. Observe that for all \(k = 0, \ldots, r \) we have \(\chi(q/\overline{M}_k) = \chi(q) \), and hence, by Lemma 3.6, we have \(\mathbb{E}[|q(I)|] = \mathbb{E}[|(q/\overline{M}_k)(I_{\hat{M}_k})|] \).

We start by analyzing the last term of the equation, which is the expected output of an algorithm \(\mathcal{B}_r \) that uses one round to compute \(q/\overline{M}_r \). By the definition of \(\tau^*(\mathcal{M}) \), we have \(\tau^*(q/\overline{M}_r) \geq \tau^*(\mathcal{M}) \). Since the number of bits received by each processor in the first round of algorithm \(\mathcal{B}_r \) is at most \(r + 1 \) times the bound for the original algorithm \(\mathcal{A} \), we can apply Theorem 3.5 to obtain that:

\[
\mathbb{E}[\mathcal{B}_r(i_{\hat{M}_r})] \leq p \left(\frac{(r + 1)L}{\tau^*(q/\overline{M}_r)M} \right)^{\tau^*(q/\overline{M}_r)} \mathbb{E}[|(q/\overline{M}_r)(I_{\hat{M}_r})|]
\]

41
\[\leq p \left(\frac{(r+1)L}{\tau^*(q/M_r)} \right)^{\tau^*(\mathcal{M})} \mathbb{E}[|q(I)|] \]

We next bound the remaining terms. Note that \(I_{M_{k-1}} = (I_{M_1}, I_{M_2}, \ldots, I_{M_r}) \) and consider the expected number of tuples in \(I = \bigcup_{k=1}^{r} A_{k}^{(k-1)} \). The algorithm \(B_{k-1} = A_{k}^{(k-1)} \) itself depends on the choice of \(I_{M_{k-1}} \); still, we show that \(I \) has a small number of tuples. Every subquery \(q' \) of \(q/\overline{M}_{k-1} \) that is not in \(\Gamma_k \) (and hence contributes to \(I \)) has \(\tau^*(q') \geq \tau^*(\mathcal{M}) \). For each fixing \(I_{M_{k-1}} = i_{M_{k-1}} \), the expected number of tuples produced for subquery \(q' \) by \(B_{q'} \), where \(B_{q'} \) is the portion of the first round of \(A_{k}^{(k-1)} \) that produces tuples for \(q' \), satisfies \(\mathbb{E}[|B_{q'}(I_{M_{k-1}})|] \leq \gamma(q') \cdot \mathbb{E}[|q'(I_{M_{k-1}})|] \), where

\[\gamma(q') = p \left(\frac{(r+1)L}{\tau^*(q')} \right)^{\tau^*(\mathcal{M})} \]

since each processor in a round of \(A_{k}^{(k-1)} \) (and hence \(B_{q'} \)) receives at most \(r + 1 \) times the communication bound for a round of \(A \). We now apply Lemma 5.14 to derive

\[\mathbb{E}[|q(I) \times B_{q'}(I_{M_{k-1}})|] = \mathbb{E}[|(q/\overline{M}_{k-1})(I_{M_{k-1}}) \times B_{q'}(I_{M_{k-1}})|] \leq \gamma(q') \cdot \mathbb{E}[|(q/\overline{M}_{k-1})(I_{M_{k-1}})|] = \gamma(q') \cdot \mathbb{E}[|q(I)|]. \]

Averaging over all choices of \(I_{M_{k-1}} = i_{M_{k-1}} \) and summing over the number of different queries \(q' \in S(q/\overline{M}_{k-1}) \), where we recall that \(S(q/\overline{M}_{k-1}) \) is the set of all minimal connected subqueries \(q' \) of \(q/\overline{M}_{k-1} \) that are not in \(\Gamma_k \), we obtain

\[\mathbb{E}[|q(I) \times I_{k=1}^{r} A_{k}^{(k-1)}(I_{M_{k-1}})|] \leq \sum_{q' \in S(q/\overline{M}_{k-1})} \gamma(q') \cdot \mathbb{E}[|q(I)|] \]

Combining the bounds obtained for the \(r + 1 \) terms in (28), we conclude that

\[\mathbb{E}[|A(I)|] \leq \left(\frac{1}{\tau^*(q/M_r)} \right)^{\tau^*(\mathcal{M})} \sum_{k=1}^{r} \sum_{q' \in S(q/\overline{M}_{k-1})} \left(\frac{1}{\tau^*(q')} \right)^{\tau^*(\mathcal{M})} \left(\frac{(r+1)L}{M} \right)^{\tau^*(\mathcal{M})} \mathbb{E}[|q(I)|] \]

which proves Theorem 5.11.

\(\square \)

5.3 Application of the Lower Bound

We show now how to apply Theorem 5.8 to obtain lower bounds for several query classes, and compare the lower bounds with the upper bounds.

The first class is the queries \(L_k \), where the following corollary is a straightforward application of Theorem 5.8 and Lemma 5.6.

\[42 \]
Corollary 5.15. Any tuple-based MPC algorithm that computes \(L_k \) with load \(L = O(M / p^{1-\epsilon}) \) requires at least \(\lceil \log_{k_\epsilon} k \rceil \) rounds of computation.

Observe that this gives a tight lower bound for \(L_k \), since in the previous section we showed that there exists a query plan with depth \(\lceil \log_{k_\epsilon} k \rceil \) and load \(O(M / p^{1-\epsilon}) \).

Second, we give a lower bound for tree-like queries, and for that we use a simple observation:

Proposition 5.16. Let \(q \) be a tree-like query, and \(q' \) be any connected subquery of \(q \). Any algorithm that computes \(q' \) with load \(L \) needs at least as many rounds to compute \(q \) with the same load.

Proof. Given any tuple-based MPC algorithm \(A \) for computing \(q \) in \(r \) rounds with maximum load \(L \), we construct a tuple-based MPC algorithm \(A' \) that computes \(q' \) in \(r \) rounds with at most load \(L \). \(A' \) will interpret each instance over \(q' \) as part of an instance for \(q \) by using the relations in \(q' \) and using the identity permutation \((S_j = (1, 1, \ldots), (2, 2, \ldots), \ldots) \) for each relation in \(q \setminus q' \). Then, \(A' \) runs exactly as \(A \) for \(r \) rounds; after the final round, \(A' \) projects out for every tuple all the variables not in \(q' \). The correctness of \(A' \) follows from the fact that \(q \) is tree-like. \(\square \)

Define \(\text{diam}(q) \), the diameter of a query \(q \), to be the longest distance between any two nodes in the hypergraph of \(q \). In general, \(\text{rad}(q) \leq \text{diam}(q) \leq 2 \text{rad}(q) \). For example, \(\text{rad}(L_k) = \lceil k/2 \rceil \), \(\text{diam}(L_k) = k \) and \(\text{rad}(C_k) = \text{diam}(C_k) = \lceil k/2 \rceil \).

Corollary 5.17. Any tuple-based MPC algorithm that computes a tree-like query \(q \) with load \(L = O(M / p^{1-\epsilon}) \) needs at least \(\lceil \log_{k_\epsilon} (\text{diam}(q)) \rceil \) rounds.

Proof. Let \(q' \) be the subquery of \(q \) that corresponds to the diameter of \(q \). Notice that \(q' \) is a connected query, and moreover, it behaves exactly like \(L_{\text{diam}(q)} \). Hence, by Corollary 5.15 any algorithm needs at least \(\lceil \log_{k_\epsilon} (\text{diam}(q)) \rceil \) to compute \(q' \). By applying Proposition 5.16, we have that \(q \) needs at least that many rounds as well. \(\square \)

Let us compare the lower bound \(r_{\text{low}} = \lceil \log_{k_\epsilon} (\text{diam}(q)) \rceil \) and the upper bound \(r_{\text{up}} = \lceil \log_{k_\epsilon} (\text{rad}(q)) \rceil + 1 \) from Lemma 5.4. Since \(\text{diam}(q) \leq 2 \text{rad}(q) \), we have that \(r_{\text{low}} \leq r_{\text{up}} \). Additionally, \(\text{rad}(q) \leq \text{diam}(q) \) implies \(r_{\text{up}} \leq r_{\text{low}} + 1 \). Thus, the gap between the lower bound and the upper bound on the number of rounds is at most 1 for tree-like queries. When \(\epsilon < 1/2 \), these bounds are matching, since \(k_\epsilon = 2 \) and \(2 \text{rad}(q) - 1 \leq \text{diam}(q) \) for tree-like queries.

Third, we study one instance of a non tree-like query, namely the cycle query \(C_k \). The lemma is a direct application of Lemma 5.7.

Lemma 5.18. Any tuple-based MPC algorithm that computes the query \(C_k \) with load \(L = O(M / p^{1-\epsilon}) \) requires at least \(\lceil \log_{k_\epsilon} (k/(m_\epsilon + 1)) \rceil + 2 \) rounds, where \(m_\epsilon = \lfloor 2/(1-\epsilon) \rfloor \).

For cycle queries we also have a gap of at most 1 between this lower bound and the upper bound in Lemma 5.4.

Example 5.19. Let \(\epsilon = 0 \) and consider two queries, \(C_5 \) and \(C_6 \). In this case, we have \(k_\epsilon = m_\epsilon = 2 \), and \(\text{rad}(C_5) = \text{rad}(C_6) = 2 \).

For query \(C_6 \), the lower bound is then \(\lceil \log_2 (6/3) \rceil + 2 = 3 \) rounds, while the upper bound is \(\lceil \log_2 (3) \rceil + 1 = 3 \) rounds. Hence, in the case of \(C_6 \) we have tight upper and lower bounds. For query \(C_5 \), the upper bound is again \(\lceil \log_2 (3) \rceil + 1 = 3 \) rounds, but the lower bound becomes \(\lceil \log_2 (5/3) \rceil + 2 = 2 \) rounds. The exact number of rounds necessary to compute \(C_5 \) is thus open.
Finally, we show how to apply Corollary 5.15 to show that transitive closure requires many rounds. In particular, we consider the problem CONNECTED-COMPONENTS, for which, given an undirected graph $G = (V, E)$ with input a set of edges, the requirement is to label the nodes of each connected component with the same label, unique to that component.

Theorem 5.20. Let G be an input graph of size M. For any $\epsilon < 1$, there is no algorithm in the tuple-based MPC model that computes CONNECTED-COMPONENTS with p processors and load $L = O(M/p^{1-\epsilon})$ in fewer than $o(\log p)$ rounds.

The idea of the proof is to construct input graphs for CONNECTED-COMPONENTS whose components correspond to the output tuples for L_k for $k = \lfloor p^{\delta} \rfloor$ for some small constant δ depending on ϵ, and use the round lower bound for solving L_k. Notice that the size of the query L_k is not fixed, but depends on the number of processors p.

Proof. Since larger ϵ implies a more powerful algorithm, we assume without loss of generality that $\epsilon = 1 - 1/t$ for some integer constant $t > 1$. Let $\delta = 1/(2(t + 2))$. The family of input graphs and the initial distribution of the edges to servers will look like an input to L_k, where $k = \lfloor p^{\delta} \rfloor$. In particular, the vertices of the input graph G will be partitioned into $k + 1$ sets P_1, \ldots, P_{k+1}, each partition containing m/k vertices. The edges of G will form permutations (matchings) between adjacent partitions, P_i, P_{i+1}, for $i = 1, \ldots, k$. Thus, G will contain exactly $k \cdot (m/k) = m$ edges. This construction creates essentially k binary relations, each with m/k tuples and size $M_k = (m/k) \log (m/k)$.

Since $k < p$, we can assume that the adversary initially places the edges of the graph so that each server is given edges only from one relation. It is now easy to see that any tuple-based algorithm in MPC that solves CONNECTED-COMPONENTS for an arbitrary graph G of the above family in r rounds with load L implies an $(r + 1)$-round tuple-based algorithm with the same load that solves L_k when each relation has size M. Indeed, the new algorithm runs the algorithm for connected components for the first r rounds, and then executes a join on the labels of each node. Since each tuple in L_k corresponds exactly to a connected component in G, the join will recover all the tuples of L_k.

Since the query size is not independent of the number of servers p, we have to carefully compute the constants for our lower bounds. Consider an algorithm for L_k with load $L \leq cM/p^{1-\epsilon}$, where $M = m \log(m)$. Let $r = \lceil \log k \rceil - 2$. Observe also that $k_{\epsilon} = 2t$ since $\epsilon = 1 - 1/t$.

We will use the (ϵ, r)-plan \mathcal{M} for L_k presented in the proof of Lemma 5.6, apply Theorem 5.11, and compute the factor $\beta(L_k, \mathcal{M})$. First, notice that each query L_k/\overline{M}_j for $j = 0, \ldots, r$ is isomorphic to $L_{k/k^j_{\epsilon}}$. Then, the set $\mathcal{S}_\epsilon(L_k/k^j_{\epsilon})$ consists of at most k/k^j_{ϵ} paths of length $k_{\epsilon} + 1$. By the choice of r, L_k/\overline{M}_r is isomorphic to L_k where $k_{\epsilon} + 1 \leq \ell < k^2_{\epsilon}$. Further, we have that $\tau^*(\mathcal{M}) = \tau^*(L_{k+1}) = \lceil (k_{\epsilon} + 1)/2 \rceil + t + 1$ since $k_{\epsilon} = 2t$.

Thus, we have

$$
\beta(L_k, \mathcal{M}) = \left(\frac{1}{\tau^*(L_k/\overline{M}_r)} \right)^{\tau^*(\mathcal{M})} + \sum_{j=1}^{r} \sum_{q^j_{\epsilon} \in \mathcal{S}_\epsilon(q/\overline{M}_{j-1})} \left(\frac{1}{\tau^*(q^j_{\epsilon})} \right)^{\tau^*(\mathcal{M})}
\leq (1 - \epsilon) \tau^*(\mathcal{M}) \left(1 + \sum_{j=1}^{r} \frac{k_{\epsilon}}{k_{j-1}} \right)
$$

44
\leq (2k + 1)(1 - \varepsilon)T^\ast(M).

Observe now that \(M/M_k = 1/(1/k - \log(k)/(k\log(m))) \leq 2k \), assuming that \(m \geq p^{22} \). Consequently, Theorem 5.11 implies that any tuple-based MPC algorithm using at most \(\lceil \log k \rceil - 1 \) rounds reports at most the following fraction of the required output tuples for the \(L_k \) query:

\[
\beta(L_k, M) \cdot p \left(\frac{(r + 1)L}{M_k} \right)^{\tau^\ast(M)} \leq (2k + 1)(2ck(r + 1)/t)^{\tau^\ast(M)} \cdot p^{1 - \tau^\ast(M)(1 - \varepsilon)}
\]

\[
\leq c'k^{t+2}(\log k)c'' \cdot p^{1-(1+t)(1-\varepsilon)}
\]

\[
\leq c'(\delta \log p)^{c''} \cdot p^{\delta(t+2)+1-(1+t)(1-\varepsilon)}
\]

\[
= c'(\delta \log p)^{c''} \cdot p^{\delta(t+2)-1/t}
\]

\[
= c'(\delta \log p)^{c''} \cdot p^{-1/2t}
\]

where \(c, c'' \) are constants. Since \(t > 1 \), the fraction of the output tuples is \(o(1) \) as a function of the number of processors \(p \). This implies that any algorithm that computes CONNECTED-COMPONENTS on \(G \) requires at least \(\lceil \log k \rceil \lceil p^\delta \rceil - 2 = \Omega(\log p) \) rounds.

\[\square\]

6 Related Work

MapReduce-Related Models Several computation models have been proposed in order to understand the power of MapReduce and related massively parallel programming methods [12, 19, 20, 1]. These all identify the number of communication rounds as a main complexity parameter, but differ in their treatment of the communication.

The first of these models was the MUD (Massive, Unordered, Distributed) model of Feldman et al. [12]. It takes as input a sequence of elements and applies a binary merge operation repeatedly, until obtaining a final result, similarly to a User Defined Aggregate in database systems. The paper compares MUD with streaming algorithms: a streaming algorithm can trivially simulate MUD, and the converse is also possible if the merge operators are computationally powerful (beyond PTIME).

Karloff et al. [19] define \(\mathcal{MRC} \), a class of multi-round algorithms based on using the MapReduce primitive as the sole building block, and fixing specific parameters for balanced processing. The number of processors \(p \) is \(\Theta(N^{1-\varepsilon}) \), and each can exchange MapReduce outputs expressible in \(\Theta(N^{1-\varepsilon}) \) bits per step, resulting in \(\Theta(N^{2-2\varepsilon}) \) total storage among the processors on a problem of size \(N \). Their focus was algorithmic, showing simulations of other parallel models by \(\mathcal{MRC} \), as well as the power of two round algorithms for specific problems.

Lower bounds for the single round MapReduce model are first discussed by Afrati et al. [1], who derive an interesting tradeoff between reducer size and replication rate. This is nicely illustrated by Ullman’s drug interaction example [29]. There are \(n = (6,500) \) drugs, each consisting of about 1MB of data about patients who took that drug, and one has to find all drug interactions, by applying a user defined function (UDF) to all pairs of drugs. To see the tradeoffs, it helps to simplify the example, by assuming we are given two sets, each of size \(n \), and we have to apply a UDF to every pair of items, one from each set, in effect computing their Cartesian product. There are two extreme ways to solve this. One can use \(n^2 \) reducers, one for each pair of items; while each
reducer has size 2, this approach is impractical because the entire data is replicated n times. At the other extreme one can use a single reducer that handles the entire data; the replication rate is 1, but the size of the reducer is $2n$, which is also impractical. As a tradeoff, partition each set into g groups of size n/g, and use one reducer for each of the g^2 pairs of groups: the size of a reducer is $2n/g$, while the replication rate is g. Thus, there is a tradeoff between the replication rate and the reducer size, which was also shown to hold for several other classes of problems [1].

There are two significant limitations of this prior work: (1) As powerful and as convenient as the MapReduce framework is, the operations it provides may not be able to take full advantage of the resource constraints of modern systems. The lower bounds say nothing about alternative ways of structuring the computation that send and receive the same amount data per step. (2) Even within the MapReduce framework, the only lower bounds apply to a single communication round, and say nothing about the limitations of multi-round MapReduce algorithms.

While it is convenient that MapReduce hides the number of servers from the programmer, when considering the most efficient way to use resources to solve problems it is natural to expose information about those resources to the programmer. In this paper, we take the view that the number of servers p should be an explicit parameter of the model, which allows us to focus on the tradeoff between the amount of communication and the number of rounds. For example, going back to our Cartesian product problem, if the number of servers p is known, there is one optimal way to solve the problem: partition each of the two sets into $g = \sqrt{p}$ groups, and let each server handle one pair of groups.

A model with p as explicit parameter was proposed by Koutris and Suciu [20], who showed both lower and upper bounds for one round of communication. In this model only tuples are sent and they must be routed independent of each other. For example, [20] proves that multi-joins on the same attribute can be computed in one round, while multi-joins on different attributes, like $R(x), S(x,y), T(y)$ require strictly more than one round. The study was mostly focused on understanding data skew, the model was limited, and the results do not apply to more than one round.

The MPC model we introduce in this paper is much more general than the above models, allowing arbitrary bits to represent communicated data, rather than just tuples, and unbounded computing power of servers so the lower bounds we show for it apply more broadly. Moreover, we establish lower bounds that hold even in the absence of skew.

Other Parallel Models The prior parallel model that is closest to the MPC model is Valiant’s Bulk Synchronous Parallel (BSP) model [30]. The BSP model, operates in synchronous rounds of supersteps consisting of possibly asynchronous steps. In addition to the number of processors, there is a superstep size, L, there is the notion of an h-relation, a mapping in which each processor sends and receives at most h bits, as well as an architecture-dependent bandwidth parameter g which says that a superstep has to have at least gh steps in order for the processors to deliver an h-relation during a superstep.

In the MPC model, the notion of load L largely parallels the notion of h-relation (though we technically only need to bound the number of bits each processor receives to obtain our lower bounds) but the other parameters are irrelevant because we strengthen the model to allow unbounded local computation and hence the only notion of time in the model is the number of
synchronous rounds (supersteps).

The finer-grained LogP model [9] does away with the synchronization barriers and the notion of \(h \)-relations inherent in the BSP model and has a more continuous notion of relaxed synchrony based on a latency bound and bound on processor overhead for setting up communication, rather than based on supersteps. While its finer grain computation and relaxed asynchrony allowed tighter modeling of a number of parallel architectures, it seems less well matched to system architectures for MapReduce-style computations than either the BSP or MPC models.

Communication complexity The results we show belong to the study of communication complexity, for which there is a very large body of existing research [21]. Communication complexity considers the number of bits that need to be communicated between cooperating agents in order to solve computational problems when the agents have unlimited computational power. Our model is related to the so-called number-in-hand multi-party communication complexity, in which there are multiple agents and no shared information at the start of communication. This has already been shown to be important to understanding the processing of massive data: Analysis of number-in-hand (NIH) communication complexity has been the main method for obtaining lower bounds on the space required for data stream algorithms (e.g. [3]).

However, there is something very different about the results that we prove here. In almost all prior lower bounds, there is at least one agent that has access to all communication between agents\(^7\). (Typically, this is either via a shared blackboard to which all agents have access or a referee who receives all communication.) In this case, no problem on \(N \) bits whose answer is \(M \) bits long can be shown to require more than \(N + M \) bits of communication.

In our MPC model, all communication between servers is private and we restrict the communication per processor per step, rather than the total communication. Indeed, the privacy of communication is essential to our lower bounds, since we prove lower bounds that apply when the total communication is much larger than \(N + M \). (Our lower bounds for some problems apply when the total communication is as large as \(N^{1+\delta} \).)

7 Conclusion

In this paper, we introduce a simple but powerful model, the MPC model, that allows us to analyze query processing in massively parallel systems. The MPC model captures two important parameters: the number of communication rounds, and the maximum load that a server receives during the computation. We prove the first tight upper and lower bounds for the maximum load in the case of one communication round and input data without skew. Then, we show how to handle skew for several classes of queries. Finally, we analyze the precise tradeoff between the number of rounds and maximum load for the case of multiple rounds.

\(^7\)Though private-messages models have been defined before, we are aware of only two lines of work where lower bounds make use of the fact that no single agent has access to all communication: (1) Results of [14, 17] use the assumption that communication is both private and (multi-pass) one-way, but unlike the bounds we prove here, their lower bounds are smaller than the total input size; (2) Tiwari [28] defined a distributed model of communication complexity in networks in which in input is given to two processors that communicate privately using other helper processors. However, this model is equivalent to ordinary public two-party communication when the network allows direct private communication between any two processors, as our model does.
Our work leaves open many interesting questions. The analysis for multiple rounds works for a limited class of inputs, since we have to assume that all relations have the same size. Further, our lower bounds are (almost) tight only for a specific class of queries (tree-like queries), so it remains open how we can obtain lower bounds for any conjunctive query, where relations have different size.

The effect of data skew in parallel computation is another exciting research direction. Although we have some understanding on how to handle skew in a single round, it is an open how skew influences computation when we have multiple rounds, and what are the tradeoffs we can obtain in such cases.

References

[1] F. N. Afrati, A. D. Sarma, S. Salihoglu, and J. D. Ullman. Upper and lower bounds on the cost of a map-reduce computation. CoRR, abs/1206.4377, 2012.

[2] F. N. Afrati and J. D. Ullman. Optimizing joins in a map-reduce environment. In EDBT, pages 99–110, 2010.

[3] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency moments. JCSS, 58(1):137–147, 1999.

[4] A. Atserias, M. Grohe, and D. Marx. Size bounds and query plans for relational joins. In FOCS, pages 739–748, 2008.

[5] Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel query processing. In Richard Hull and Wenfei Fan, editors, Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2013, New York, NY, USA - June 22 - 27, 2013, pages 273–284. ACM, 2013.

[6] Paul Beame, Paraschos Koutris, and Dan Suciu. Skew in parallel query processing. In Richard Hull and Martin Grohe, editors, Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS’14, Snowbird, UT, USA, June 22-27, 2014, pages 212–223. ACM, 2014.

[7] George Bennett. Probability inequalities for the sum of independent random variables. Journal of the American Statistical Association, 57(297):33–45, March 1962.

[8] S. Chaudhuri. What next?: a half-dozen data management research goals for big data and the cloud. In PODS, pages 1–4, 2012.

[9] David E. Culler, Richard M. Karp, David A. Patterson, Abhijit Sahay, Eunice E. Santos, Klaus E. Schauer, Ramesh Subramonian, and Thorsten von Eicken. Logp: A practical model of parallel computation. Commun. ACM, 39(11):78–85, 1996.

[10] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. In OSDI, pages 137–150, 2004.
[11] EMC Corporation. Data science revealed: A data-driven glimpse into the burgeoning new field. http://www.emc.com/collateral/about/news/emc-data-science-study-wp.pdf.

[12] J. Feldman, S. Muthukrishnan, A. Sidiropoulos, C. Stein, and Z. Svitkina. On distributing symmetric streaming computations. ACM Transactions on Algorithms, 6(4), 2010.

[13] E. Friedgut. Hypergraphs, entropy, and inequalities. American Mathematical Monthly, pages 749–760, 2004.

[14] A. Gál and P. Gopalan. Lower bounds on streaming algorithms for approximating the length of the longest increasing subsequence. In FOCS, pages 294–304, 2007.

[15] S. Ganguly, A. Silberschatz, and S. Tsur. Parallel bottom-up processing of datalog queries. J. Log. Program., 14(1&2):101–126, 1992.

[16] M. Grohe and D. Marx. Constraint solving via fractional edge covers. In SODA, pages 289–298, 2006.

[17] Sudipto Guha and Zhiyi Huang. Revisiting the direct sum theorem and space lower bounds in random order streams. In ICALP, volume 5555 of LNCS, pages 513–524. Springer, 2009.

[18] Russell Impagliazzo and Valentine Kabanets. Constructive proofs of concentration bounds. In Proceedings, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 14th International Workshop, RANDOM, volume 6302 of Lecture Notes in Computer Science, pages 617–631, Barcelona, Spain, 2010. Springer.

[19] H. J. Karloff, S. Suri, and S. Vassilvitskii. A model of computation for mapreduce. In SODA, pages 938–948, 2010.

[20] P. Koutris and D. Suciu. Parallel evaluation of conjunctive queries. In PODS, pages 223–234, 2011.

[21] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, Cambridge, England ; New York, 1997.

[22] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome A. Rolia. Skewtune: mitigating skew in mapreduce applications. In Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012, pages 25–36, 2012.

[23] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, and T. Vassilakis. Dremel: Interactive analysis of web-scale datasets. PVLDB, 3(1):330–339, 2010.

[24] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case optimal join algorithms: [extended abstract]. In PODS, pages 37–48, 2012.

[25] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-so-foreign language for data processing. In SIGMOD Conference, pages 1099–1110, 2008.
[26] Siddharth Suri and Sergei Vassilvitskii. Counting triangles and the curse of the last reducer. In WWW, pages 607–614, 2011.

[27] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive - a warehousing solution over a map-reduce framework. PVLDB, 2(2):1626–1629, 2009.

[28] P. Tiwari. Lower bounds on communication complexity in distributed computer networks. JACM, 34(4):921–938, October 1987.

[29] J. D. Ullman. Designing good mapreduce algorithms. ACM Crossroads, 19(1):30–34, 2012.

[30] Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM, 33(8):103–111, 1990.

[31] Reynold S. Xin, Josh Rosen, Matei Zaharia, Michael J. Franklin, Scott Shenker, and Ion Stoica. Shark: SQL and rich analytics at scale. In Kenneth A. Ross, Divesh Srivastava, and Dimitris Papadias, editors, Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013, pages 13–24. ACM, 2013.

[32] A. C. Yao. Lower bounds by probabilistic arguments. In FOCS, pages 420–428, Tucson, AZ, 1983.
A Hashing

In this section, we present a detailed analysis of the behavior of the HyperCube algorithm for input distributions with various guarantees. Throughout this section, we assume that a hash function is chosen randomly from a strongly universal family of hash functions. Recall that a strongly universal set of hash functions is a set \mathcal{H} of functions with range $[K]$ such that, for any $n \geq 1$, any distinct values a_1, \ldots, a_n and any bins $B_1, \ldots, B_n \in [K]$, we have that $\Pr(h(a_1) = B_1 \land \cdots \land h(a_n) = B_n) = 1/K^n$, where the probability is over the random choices of $h \in \mathcal{H}$.

A.1 Basic Partition

We start by examining the following scenario. Suppose that we have a set of weighted balls which we hash-partition into K bins; what is the maximum load among all the bins? Assuming that the sum of the weights is m, it is easy to see that the expected load for each bin is m/K. However, this does not tell us anything about the maximum load. In particular, in the case where we have one ball of weight m, the maximum load will always be m, which is far from the expected load.

In order to obtain meaningful bounds on the distribution of the maximum load, we thus have to put a restriction on the maximum weight of a ball. The following theorem provides such a tail bound on the probability distribution.

Theorem A.1 (Weighted Balls in Bins). Let S be a set where each element i has weight w_i and $\sum_{i \in S} w_i \leq m$. Let $K > 0$ be an integer. Suppose that for some $\beta > 0$, $\max_{i \in S} \{w_i\} \leq \beta m / K$. We hash-partition S into K bins. Then for any $\delta > 0$

$$\Pr(\text{maximum weight of any bin} \geq (1 + \delta)m / K) \leq K \cdot e^{-h(\delta)/\beta}$$

(29)

where $h(x) = (1 + x) \ln(1 + x) - x$.

A stronger version of Theorem A.1 is also true, where we replace $h(\delta)$ by $K \cdot D(1 + \frac{\delta}{1 + \frac{\delta}{K}} \| \frac{1}{K})$ where $D(q' \| q) = q' \ln(\frac{q'}{q}) + (1 - q') \ln(\frac{1 - q'}{1 - q})$ is the relative entropy (also known as the KL-divergence) of Bernoulli indicator variables with probabilities q' and q. This strengthening\(^8\) is immediate from the following theorem with $t = 1 + \delta$ and $m_1 = m$, which implies the bound for a single bin, together with a union bound over all K choices of bins. The statement above follows from a weaker form of Theorem A.2 that can also be derived using using Bennett’s inequality [7].

Theorem A.2. Let $K \geq 2$. Let $w \in \mathbb{R}^n$ satisfy $w \geq 0$, $\|w\|_1 \leq m_1$, and $\|w\|_\infty \leq m_\infty = \beta m_1 / K$. Let $(Y_i)_{i \in [n]}$ be a vector of i.i.d. random indicator variables with $\Pr(Y_i = 1) = 1/K$ and $\Pr(Y_i = 0) = 1 - 1/K$. Then

$$\Pr(\sum_{i \in [n]} w_i Y_i > tm_1 / K) \leq e^{-K \cdot D(t/K \| 1/K) / \beta}.$$

Proof. The proof follows along similar lines to constructive proofs of Chernoff bounds in [18]: Choose a random $S \subseteq [n]$ by including each element i independently with probability q_i:

$$\Pr(i \in S) = q_i = 1 - (1 - q) \frac{m_1}{\beta m_1 / K}$$

\(^8\)Note that $K \cdot D(1 + \frac{\delta}{K} \| \frac{1}{K}) = (1 + \delta) \ln(1 + \delta) + (K - 1 - \delta) \ln(1 - \frac{\delta}{K - 1}) \geq (1 + \delta) \ln(1 + \delta) - \delta$.

51
Let E denote the event that $\sum_{i \in [n]} w_i Y_i \geq tm_1 / K$. Then

$$
\mathbb{E} \left[\bigwedge_{i \in S} Y_i = 1 \right] \geq \mathbb{E} \left[\bigwedge_{i \in S} Y_i = 1 \mid E \right] \cdot \mathbb{P}(E).
$$

We bound both expectations. First we see that

$$
\mathbb{E} \left[\bigwedge_{i \in S} Y_i = 1 \right] = \sum_{S \subseteq [n]} \left(\frac{1}{K^{\lvert S \rvert}} \right) \prod_{i \in S} q_i \prod_{i \notin S} (1 - q_i)
$$

$$
= \sum_{S \subseteq [n]} \prod_{i \in S} (q_i / K) \prod_{i \notin S} (1 - q_i)
$$

$$
= \prod_{i \in [n]} \left(q_i / K + (1 - q_i) \right) = \prod_{i \in [n]} \left(1 / K + (1 - 1 / K)(1 - q_i) \right)
$$

$$
\leq \prod_{i \in [K / \beta]} \left(1 / K + (1 - 1 / K)(1 - q) \right)
$$

$$
= (1 / K + (1 - 1 / K)(1 - q))^{K / \beta}
$$

$$
= (1 - q(1 - 1 / K))^{K / \beta}.
$$

(30)

The inequality follows from the fact the function $f(w) = 1 / K + (1 - 1 / K)(1 - q)^Kw^{\frac{m_1}{K}}$ is log-convex\footnote{Write $g(w) = \log f(w)$. Then $g'(w) = \log(a + be^{-cw})$ for some $a, b, c > 0$; hence $g'(w) = -bc e^{-cw} / (a + be^{-cw}) = -bc / (ae^w + b)$ is increasing and so g is convex.} and therefore $\prod_i f(w_i)$ is maximized on a vertex of the polytope given by $0 \leq w_i \leq \beta m_1 / K$ and $\sum_i w_i \leq m_1$.

Second, for any outcome of Y_1, \ldots, Y_n that satisfies E, the probability that S misses all indices i such that $Y_i = 0$ is

$$
\prod_{i : Y_i = 0} (1 - q_i)^{\frac{w_i}{m_i + m_1 / K}} = \left(1 - q \right)^{\frac{\sum_{i : Y_i = 0} w_i}{m_i + m_1 / K}} \geq \left(1 - q \right)^{\frac{m_1 - tm_1 / K}{m_i + m_1 / K}}
$$

since E implies that $\sum_{i : Y_i = 0} w_i \leq m_1 - \sum_{i : Y_i = 1} w_i \leq m_1 - tm_1 / K$. Hence

$$
\mathbb{E} \left[\bigwedge_{i \in S} Y_i = 1 \mid E \right] \geq (1 - q)^{(K - t) / \beta}.
$$

(31)

Combining Eq(30) and (31), we obtain:

$$
\mathbb{P}(E) \leq \left(\frac{1 - q(1 - 1 / K)}{1 - q(1 - K / K)} \right)^{K / \beta}
$$

As noted in [18], by looking at its first derivative one can show that the function $f_{\delta, \gamma}(q) = \frac{1 - q(1 - \delta)}{(1 - q)^{1 - \gamma}}$ takes its minimum at $q = q^* = \frac{\gamma - \delta}{\gamma(1 - \delta)}$ where it has value $e^{-D(\gamma || \delta)}$. Plugging in $\delta = 1 / K$ and $\gamma = t / K$, we obtain:

$$
\mathbb{P}(E) \leq e^{-K \cdot D(t / K || 1 / K)} / \beta
$$
The construction goes via the first-fit decreasing algorithm for bin-packing. Sort the vectors \(\ell \) there is some \(u \)

Let \(\ell \) exists some \(u \)

We apply Lemma A.4 to the vectors \(w^{(i)} \) of Theorem A.3.

Theorem A.3. Let \(K \geq 2 \). Let \((w^{(i)}) \) be a sequence of vectors in \(\mathbb{R}^n \) satisfying \(w^{(i)} \geq 0, ||w^{(i)}||_1 \leq m_1, \) and \(||w^{(i)}||_\infty \leq m_\infty \). Suppose further that \(|| \sum_j w^{(j)} ||_1 \leq km_1 \). Let \((Y_i)_{i \in [n]} \) be a vector of i.i.d. random indicator variables with \(\mathbb{P}(Y_i = 1) = 1/K \) and \(\mathbb{P}(Y_i = 0) = 1 - 1/K \). Then

\[
\mathbb{P}(\exists j \sum_{i \in [n]} w^{(i)}_j Y_i > (1 + \delta) \frac{m_1}{K}) \leq 2k \cdot e^{-h(\delta)/\beta}
\]

where \(h(x) = (1 + x) \ln(1 + x) - x \).

The proof of this theorem follows easily from the following lemma.

Lemma A.4. Let \((w^{(i)}) \) be a sequence of vectors in \(\mathbb{R}^n \) satisfying \(w^{(i)} \geq 0, ||w^{(i)}||_1 \leq m_1, \) and \(||w^{(i)}||_\infty \leq m_\infty \). Suppose further that \(|| \sum_j w^{(j)} ||_1 \leq km_1 \). Then there is a sequence of at most 2k vectors \(u^{(1)}, \ldots, u^{(2k)} \in \mathbb{R}^n \) such that each \(u^{(\ell)} \geq 0, ||u^{(\ell)}||_1 \leq m_1, \) and \(||u^{(\ell)}||_\infty \leq m_\infty \), and for every \(j \), there is some \(\ell \in [2k] \) such that \(w^{(j)} \leq u^{(\ell)} \), where the inequality holds only if it holds for every coordinate.

Proof. The construction goes via the first-fit decreasing algorithm for bin-packing. Sort the vectors \(w^{(j)} \) in decreasing order of \(||w^{(j)}||_1 \). Then greedily group them in bins of capacity \(m_1 \). That is, we begin with \(w^{(1)} \) and continue to add vectors until we find the largest \(j_1 \) such that \(\sum_{j=1}^{h} ||w^{(j)}||_1 \leq m_1 \). Define \(u^{(1)} \) by \(u^{(1)}_i = \max_{1 \leq j \leq h} w^{(j)}_i \) for each \(i \in [n] \). Now \(||u^{(1)}||_1 \leq m_1 \) and \(||u^{(1)}||_\infty \leq \max_{1 \leq j \leq h} ||w^{(j)}||_\infty \leq m_\infty \). Moreover, for each \(j \in [1, j_1] \), \(w^{(j)} \leq u^{(1)} \) by definition. Then repeat beginning with \(u^{(h+1)} \) until the largest \(j_2 \) such that \(\sum_{j=h+1}^{h_2} ||w^{(j)}||_1 \leq m_1 \), and define \(u^{(2)} \) by \(u^{(2)}_i = \max_{j_1+1 \leq j \leq h_2} w^{(j)}_i \) for each \(i \in [n] \) as before, and so on. Since the contribution of each subsequent \(||w^{(j)}||_1 \) is at most that of its predecessor, if it cannot be included in a bin, then that bin is more than half full so we have \(||u^{(j)}||_1 > m_1/2 \) for all \(\ell \). Since \(\sum_{\ell} ||u^{(\ell)}||_1 \leq \sum_{j} ||w^{(j)}||_1 \leq km_1 \), there must be at most 2k such \(u^{(\ell)} \). \(\square \)

of Theorem A.3. We apply Lemma A.4 to the vectors \(w^{(j)} \) to construct \(u^{(1)}, \ldots, u^{(2k)} \). We then apply a union bound to the application of Theorem A.2 to each of \(u^{(\ell)} \). The total probability that there exists some \(\ell \in [2k] \) such that \(\sum_{i \in [n]} u^{(\ell)}_i Y_i > (1 + \delta) \beta m_1 / K \) is at most \(2k \cdot e^{-h(\delta)/\beta} \). Now for each \(j \), there is some \(\ell \) such that \(w^{(j)} \leq u^{(\ell)} \) and hence \(\sum_{i \in [n]} w^{(j)}_i Y_i \leq \sum_{i \in [n]} u^{(\ell)}_i Y_i \). Therefore if there exists a \(j \) such that \(\sum_{i \in [n]} w^{(j)}_i Y_i > (1 + \delta) m_1 / K \) then there exists an \(\ell \) such that \(\sum_{i \in [n]} u^{(\ell)}_i Y_i > (1 + \delta) m_1 / K \). \(\square \)

A.2 HyperCube Partition

Before we analyze the load of the HC algorithm, we present some useful notation. Even though the analysis in the main paper assumes that relations are sets, here we will give a more general analysis for bags.
Let a U-tuple J be a function $J : U \rightarrow [n]^{|U|}$, where $[n]$ is the domain and $U \subseteq [r]$ a set of attributes. If J is a V-tuple and $U \subseteq V$ then $\pi_U(J)$ is the projection of J on U. Let S be a bag of $[r]$-tuples. Define:

\[
\begin{align*}
m(S) &= |S| & \text{the size of the bag } S, \text{ counting duplicates} \\
\Pi_U(S) &= \{\pi_U(J) \mid J \in S\} & \text{the duplicates are kept, thus } |\Pi_U(S)| = |S| \\
\sigma_J(S) &= \{K \in S \mid \pi_U(K) = J\} & \text{bag of tuples that contain } J \\
d_J(S) &= |\sigma_J(S)| & \text{the degree of the tuple } J
\end{align*}
\]

Given shares p_1, \ldots, p_r, such that $\prod_u p_u = p$, let $p_U = \prod_{u \in U} p_u$ for any attribute set U. Let h_1, \ldots, h_r be independently chosen hash functions, with ranges $[p_1], \ldots, [p_r]$, respectively. The hypercube hash-partition of S sends each element (i_1, \ldots, i_r) to the bin $(h_1(i_1), \ldots, h_r(i_r))$.

A.2.1 HyperCube Partition without Promise

We prove the following:

Theorem A.5. Let S be a bag of tuples of $[n]^r$ such that each tuple in S occurs at most $\beta m/p$ times, for some constant $\beta > 0$. Then for any $\delta > 0$:

\[
P \left(\text{maximum size any bin} > (1 + \delta) \frac{m(S)}{\min_u p_u} \right) \leq r \cdot p \cdot e^{-h(\delta)/\beta}
\]

where the bin refers to the HyperCube partition of S using shares p_1, \ldots, p_r.

Notice that there is no promise on how large the degrees can be. The only promise is on the number of repetitions in the bag S, which is automatically satisfied when S is a set, since it is at most one.

Proof. We prove the theorem by induction on r. If $r = 1$ then it follows immediately from Theorem A.1 by letting the weight of a ball i be the number of elements in S containing it. Assume now that $r > 1$. We partition the domain $[n]$ into two sets:

\[
D_{\text{small}} = \{i \mid d_{\pi^{-1}}(S) \leq \beta m/p_r\} \text{ and } D_{\text{large}} = \{i \mid d_{\pi^{-1}}(S) > \beta m/p_r\}
\]

Here $r \mapsto i$ denotes the tuple (i); in other words $\sigma_{\pi^{-1}}(S)$ returns the tuples in S whose last $(r$-th) attribute has value i. We then partition the bag S into two sets $S_{\text{small}}, S_{\text{large}}$, where S_{small} consists of tuples t where $\pi_r(t) \in D_{\text{small}}$, and S_{large} consists of those where $\pi_r(t) \in D_{\text{large}}$. The intuition is that we can apply Theorem A.1 directly to show that S_{small} is distributed well by the hash function h_r. On the other hand, there cannot be many $i \in D_{\text{large}}$, in particular $|D_{\text{large}}| \leq p_r/\beta$, and hence the projection of any tuple in S_{large} onto $[r-1]$ has at most D_{large} extensions in S_{large}. Thus, we can obtain a good inductive distribution of S_{large} onto $[r-1]$ using h_1, \ldots, h_{r-1}.

Formally, for $U \subseteq [r]$ and $T \subseteq S$, let $M_U(T)$ denote the maximum number of tuples of T that have any particular fixed value under $h_U = \times_{j \in U} h_j$. With this notation, $M_{[r]}(S)$ denotes the
the maximum number of tuples from S in any bin. Hence, our goal is to show that $P(M_{[r]}(S) > (1 + \delta)m(S)/\min_{u \in [r]} p_u) < r \cdot p \cdot e^{-h(\delta)/\beta}$. Now, by Theorem A.1,

$$P(M_{[r]}(S_{small}) > (1 + \delta)m(S_{small})/p_r) \leq p \cdot e^{-h(\delta)/\beta}$$

and consequently

$$P(M_{[r]}(S_{small}) > (1 + \delta)m(S_{small})/\min_{u \in [r]} p_u) \leq p \cdot e^{-h(\delta)/\beta}.$$

Let $S' = \Pi_{[r-1]}(S_{large})$. Since projections keep duplicates, we have $m(S') = m(S_{large})$ and $M_{[r-1]}(S') = M_{[r-1]}(S_{large})$. By the assumption in the theorem statement, each tuple in S, and hence in S_{large}, occurs at most $\beta r m/p$ times. Then, since $|D_{large}| \leq p_r/\beta$, each tuple in S' occurs at most $\beta r^{-1}m/p'$ times where $p' = \prod_{u \in [r-1]} p_u$. Therefore we can apply the inductive hypothesis to S' to yield

$$P(M_{[r-1]}(S') > (1 + \delta)m(S')/\min_{u \in [r-1]} p_u) \leq (r - 1) \cdot p \cdot e^{-h(\delta)/\beta}$$

and hence

$$P(M_{[r]}(S_{large}) > (1 + \delta)m(S_{large})/\min_{u \in [r]} p_u) \leq (r - 1) \cdot p \cdot e^{-h(\delta)/\beta}.$$

Since $m(S) = m(S_{small}) + m(S_{large})$ and $M_{[r]}(S) = M_{[r]}(S_{small}) + M_{[r]}(S_{large})$,

$$P(M_{[r]}(S) > (1 + \delta)m(S)/\min_{u \in [r]} p_u) \leq p \cdot e^{-h(\delta)/\beta} + (r - 1) \cdot e^{-h(\delta)/\beta} = r \cdot p \cdot e^{-h(\delta)/\beta}$$

as required. □

A.2.2 HyperCube Partition with Promise

The following theorem extends Theorem A.5 to the case when we have a promise on the degrees in the bag (or set) S.

Theorem A.6. Let S be a bag of tuples of $[n]^r$, and suppose that for every U-tuple J we have $d_J(S) \leq \frac{\beta^{(|U|)} \cdot m}{p_u}$ where $\beta > 0$. Consider a hypercube hash-partition of S into p bins. Then, for any $\delta \geq 0$:

$$\Pr \left(\text{maximum size of any bin} > (1 + \delta)\frac{m(S)}{p} \right) \leq f(p, r, \beta) \cdot e^{-h(\delta)/\beta}$$

where the bin refers to the HyperCube partition of S using shares p_1, \ldots, p_r, and

$$f(p, r, \beta) = 2p \sum_{j=1}^{r} \prod_{u \in [r-1]} (1/\beta + 1/p_u) \leq 2p \frac{(1/\beta + \epsilon)^r - 1}{1/\beta + \epsilon - 1}, \quad (32)$$

where $\epsilon = 1/\min_{u \in [r-1]} p_u$.

We will think of r as a constant, p_u as being relatively large, and β as $\log^{-O(1)} p$.

55
Proof. We prove the theorem by induction on \(r \). The base case \(r = 1 \) follows immediately from Theorem A.1 since an empty product evaluates to 1 and hence \(f(p, 1, \beta) = 2p \).

Suppose that \(r > 1 \). There is one bin for each \(r \)-tuple in \([p_1] \times \cdots \times [p_r]\). We analyze cases based on the value \(b \in [p_r] \). Define

\[
S^{r \to b}(h_r) = \bigcup_{i \in [n]: h_r(i) = b} \sigma_{r \to i}(S) \quad \text{and} \quad S'(b, h_r) = \Pi_{[r-1]}(S^{r \to b})
\]

Here \(r \mapsto i \) denotes the tuple \((i)\). \(S^{r \to b}(h_r) \) is a random variable depending on the choice of the hash function \(h_r \) that represents the bag of tuples sent to bins whose first projection is \(b \). \(S'(b, h_r) \) is essentially the same bag where we drop the last coordinate, which, strictly speaking, we need to do to apply induction. Then \(m(S'(b, h_r)) = m(S^{r \to b}(h_r)) \).

Since the promise with \(U = \{r\} \) implies that \(d_r(S_l) \leq \beta \cdot m/p_r \), by Theorem A.1,

\[
\mathbb{P}(m(S'(b, h_r)) > (1 + |\text{delta}|) m(S_l)/p_r \leq e^{-h(\delta)/\beta}.
\]

We handle the bins corresponding to each value of \(b \) separately via induction. However, in order to do this we need to argue that the recursive version of the promise on coordinates holds for every \(U \subseteq [r-1] \) with \(S'(b, h_r) \) and \(m' = (1 + \delta)m(S_l)/p_r \) instead of \(S \) and \(m \). More precisely, we need to argue that, with high probability, for every \(U \subseteq [r-1] \) and every \(U \)-tuple \(J \),

\[
d_f(S'(b, h_r)) \leq \frac{\beta |U| \cdot m' }{ p_U } = (1 + \delta) \frac{\beta |U| \cdot m}{ p_U p_r } \quad \text{(33)}
\]

Fix such a subset \(U \subseteq [r-1] \). The case for \(U = \emptyset \) is precisely the bound for the size \(m(S'(b, h_r)) \) of \(S'(b, h_r) \). Since the promise of the theorem statement with \(U = \{r\} \) implies that \(d_{\{r\}}(S) \leq \beta m/p_r \), by Theorem A.1 we have that \(P(m(S'(b))) > m' \leq e^{-h(\delta)/\beta} \).

Assume next that \(U \neq \emptyset \). Observe that \(d_f(S'(b, h_r)) \) is precisely the number of tuples of \(S \) consistent with \((J, i)\) such that \(h_r(i) = b \). Using Theorem A.3, we upper bound the probability that there is some \(U \)-tuple \(J \) such that (33) fails. Let \(k(U) = p_U / \beta |U| \). For each fixed \((J, i)\), the promise for coordinates \(U \cup \{r\} \) implies that there are at most \(\frac{\beta |U| \cdot m}{ p_U p_r } \) \(\frac{\beta m}{ p_U k(U) } \) tuples in \(S \) consistent with \((J, i)\). Further, the promise for coordinates \(U \) implies that there are at most \(\frac{\beta |U| \cdot m}{ p_U } \) \(\frac{m}{ k(U) } \) tuples in \(S \) consistent with \((J, i)\). For each such \(J \) define vector \(\omega^{(J)} \) by letting \(\omega_{j}^{(J)} \) be the number of tuples consistent with \((J, i)\). Thus \(||\omega^{(J)}||_\infty \leq \frac{\beta m / p_U}{ k(U) } \) for all \(J \) and \(||\omega^{(J)}||_1 \leq \frac{m}{ k(U) } \) for all \(J \). Finally note that since there are \(m = m(S) \) tuples in \(S \), \(\sum_j ||\omega^{(J)}||_1 \leq m \). We therefore we can apply Theorem A.3 with \(k = k(U) \), \(m_1 = m / k(U) \) and \(m_\infty = \beta m / p_r \) to say that the probability that there is some \(U \)-tuple \(J \) such that \(d_f(S'(b, h_r)) > (1 + \delta)m_1/p_1 = (1 + \delta)m/p(k(U)) \) is at most \(2k(U) \cdot e^{-h(\delta)/\beta} \).

For a fixed \(b \), we now use a union bound over the possible sets \(U \subseteq [r-1] \) to obtain a total probability that (33) fails for some set \(U \) and some \(U \)-tuple \(J \) of at most

\[
2 \sum_{U \subseteq [r-1]} \beta^{-|U|} p_U \cdot e^{-h(\delta)/\beta} = 2 \prod_{u \in [r-1]} (1 + p_u/\beta) \cdot e^{-h(\delta)/\beta}
\]

\[
= 2 (p/p_r) \prod_{u \in [r-1]} (1 + 1/p_u) \cdot e^{-h(\delta)/\beta}.
\]
If \(m(S'(b)) \leq m' \) and (33) holds for all \(U \subseteq [r-1] \) and \(U \)-tuples \(f \), then we apply the induction hypothesis (32) to derive that the probability that some bin that has \(b \) in its last coordinate has more than \((1 + \delta)^{-m'} \leq (p/p_r) = (1 + \delta)^{m/p} \) tuples is at most \(f(p/\beta, r-1, \beta) \cdot e^{-h(\delta)/\beta} \).

Since there are \(p_r \) choices for \(b \), we obtain a total failure probability at most \(f(p, r, \beta) \cdot e^{-h(\delta)/\beta} \) where

\[
f(p, r, \beta) = \frac{2p(r-1)}{\beta} \prod_{u \in [r-1]} (1/\beta + 1/p_u) + f(p/p_r, r-1, \beta)
= 2p \prod_{u \in [r-1]} (1/\beta + 1/p_u) + p_r f(p/p_r, r-1, \beta)
= 2p \prod_{u \in [r-1]} (1/\beta + 1/p_u) + p_r (2p/p_r) \sum_{j=1}^{r-1} \prod_{u \in [j-1]} (1/\beta + 1/p_u)
= 2p \sum_{j=1}^{r} \prod_{u \in [j-1]} (1/\beta + 1/p_u)
= f(p, r, \beta)
\]

The final bound uses geometric series sum upper bound.

\[\square\]

B Probability Bounds

In this section, we show how to obtain lower bounds on the probability of failure using bounds on the expected output. We start by proving a lemma regarding the distribution of the query output for random matching databases.

Lemma B.1. Let \(I \) be a random matching database for a connected conjunctive query \(q \), and let \(\mu = \mathbb{E}[|q(I)|] \). Then, for any \(\alpha \in [0, 1) \) we have:

\[
P(|q(I)| > \alpha \mu) \geq (1 - \alpha)^2 \frac{\mu}{\mu + 1}
\]

Proof. To prove the bound, we will use the Paley-Zygmund inequality for the random variable \(|q(I)| \):

\[
P(|q(I)| > \alpha \mu) \geq (1 - \alpha)^2 \mathbb{E}[|q(I)|^2]
\]

To bound \(\mathbb{E}[|q(I)|^2] \), we construct a query \(q' \) that consists of \(q \) plus a copy of \(q \) with new variables. For example, if \(q = R(x,y), S(y, z) \), we define \(q' = R(x, y), S(y, z), R(x', y'), S(y', z') \). We now have:

\[
\mathbb{E}[|q(I)|^2] = \mathbb{E}[|q'(I)|] = \sum_{a, a' \in [n]^k} \prod_{j=1}^\ell P(a_j \in S_j \land a'_j \in S_j)
= \sum_{a \neq a' \in [n]^k} \prod_{j=1}^\ell P(a_j \in S_j \land a'_j \in S_j) + \sum_{a \in [n]^k} \prod_{j=1}^\ell P(a_j \in S_j)
\]

57
Proof.

We start by writing

\[
\Pr(\text{fail}) \leq \sum_{a \neq a' \in [n]^k} \prod_{j=1}^{\ell} P(a_j \in S_j)P(a'_j \in S_j | a_j \in S_j) + \mu
\]

Next, observe that when \(a, a'\) differ in all positions, since the database is a matching, the event \(a'_j \in S_j\) is independent of the event \(a_j \in S_j\) for every relation \(S_j\); in this case, \(P(a'_j \in S_j | a_j \in S_j) = P(a'_j \in S_j)\) for every \(S_j\). On the other hand, if \(a, a'\) agree in at least one position, then since \(q\) is connected it will be that \(P(a'_j \in S_j | a_j \in S_j) = 0\) for some relation \(S_j\). Thus, we can write:

\[
\mathbb{E}[|q(I)|^2] \leq \sum_{a \neq a' \in [n]^k} \prod_{j=1}^{\ell} P(a_j \in S_j)P(a'_j \in S_j) + \mu
\]

\[
= (n^{2k} - n^k) \prod_{j=1}^{\ell} (m_j/n^a)^2 + \mu
\]

\[
= \left(1 - n^{-k}\right) \mu^2 + \mu
\]

\[
\leq \mu^2 + \mu
\]

\(\square\)

For a deterministic algorithm \(A\) that computes the answers to a query \(q\) over a randomized instance \(I\), let \(\text{fail}\) denote the event that \(|q(I) \setminus A(I)| > 0\), i.e. the event that the algorithm \(A\) fails to return all the output tuples. The next lemma shows how we can use a bound on the expectation to obtain a bound on the probability of failure.

Lemma B.2. Let \(I\) be a random matching database for a connected query \(q\). Let \(A\) be a deterministic algorithm such that \(\mathbb{E}[|A(I)|] \leq f \mathbb{E}[|q(I)|]\), where \(f \leq 1\). Let \(\mu = \mathbb{E}[|q(I)|]\) and let \(C_a\) denote the event that \(|q(I)| > a\mu\). Then,

\[
P(\text{fail} | C_{1/3}) \geq 1 - 9f
\]

Proof. We start by writing

\[
P(\text{fail} | C_a) = P(|q(I) \setminus A(I)| > 0 | C_a)
\]

\[
\geq P(|A(I)| \leq a\mu | C_a)
\]

\[
= 1 - P(|A(I)| > a\mu | C_a)
\]

Additionally, we have:

\[
\mathbb{E}[|A(I)|] = \mathbb{E}[|A(I)| | C_a] \cdot P(C_a) + \mathbb{E}[|A(I)| | \neg C_a] \cdot P(\neg C_a)
\]

\[
\geq \mathbb{E}[|A(I)| | C_a] \cdot P(C_a)
\]

\[
= P(C_a) \sum_{t = \lfloor a\mu \rfloor + 1}^{\infty} t \cdot P(|A(I)| = t | C_a)
\]

\[
\geq P(C_a)(\lfloor a\mu \rfloor + 1)P(|A(I)| > a | C_a)
\]

Combining the above two inequalities, we can now write

\[
P(\text{fail} | C_a) \geq 1 - \frac{\mathbb{E}[|A(I)|]}{(\lfloor a\mu \rfloor + 1)P(C_a)} \geq 1 - \frac{f \mu}{(\lfloor a\mu \rfloor + 1)P(C_a)}
\]

58
We can now apply Lemma B.1 to obtain $P(C_\alpha) = P(\{|q(I)| > \alpha \mu\} \geq (1 - \alpha)^2 \mu / (\mu + 1)$. Thus,

$$P(fail | C_\alpha) \geq 1 - \frac{f\mu}{[\alpha \mu] + 1} \cdot \frac{\mu + 1}{\mu(1 - \alpha)^2} = 1 - \frac{f(\mu + 1)}{([\alpha \mu] + 1)(1 - \alpha)^2}$$

We can now choose $\alpha = 1/3$ to obtain that

$$P(fail | C_{1/3}) \geq 1 - (9/4)f \frac{\mu + 1}{[\mu/3] + 1}$$

The final step is to show that the quantity $\frac{\mu + 1}{[\mu/3] + 1}$ is upper bounded by 4 for any (positive) value of μ. We distinguish here two cases:

- If $\mu < 3$, then $[\mu/3] = 0$. Thus, $\frac{\mu + 1}{[\mu/3] + 1} = \mu + 1 < 4$.

- If $\mu \geq 3$, we use the fact $\mu/3 \leq \lfloor \mu/3 \rfloor + 1$ to obtain that $\frac{\mu + 1}{[\mu/3] + 1} \leq (\mu + 1)/(\mu/3) = 3(1 + 1/\mu) \leq 3(1 + 1/3) = 4$.

This concludes the proof of the lemma. \qed