Assisted reproductive technology and the risk of gestational diabetes mellitus: a systematic review and meta-analysis

Maryam Mohammadi 1,2, Esmaeil Khedmati Morasae 3, Saman Maroufizadeh 4*, Amir Almasi-Hashiani 5, Behnaz Navid 1, Payam Amini 6, Reza Omani-Samani 7 and Ahad Alizadeh 8*

Abstract

Background: The use of assisted reproductive technology (ART) is increasing worldwide, and observational studies have indicated that women who conceived by ART have an increased risk of pregnancy complications including gestational diabetes mellitus (GDM). We aimed to determine the risk of GDM among women who conceived with ART by systematic review and meta-analysis.

Main text: A systematic literature search was conducted in ISI Web of Knowledge, MEDLINE, Scopus, and Embase through May 2017 for English-language articles using a list of keywords. All studies comparing GDM in women conceived by ART and those who conceived spontaneously were included. Data extraction was performed by two authors independently and discrepancies were resolved by discussion. In total, 48 studies with 91,487 pregnancies conceived through ART and 2,525,234 spontaneously conceived met the inclusion criteria. There was evidence of substantial heterogeneity among these studies ($P < 0.001$, $I^2 = 98.6\%$). Random effects meta-analysis showed a significant increase in GDM among those who conceived by ART compared with those who conceived spontaneously (pooled relative risk = 1.51, 95% confidence interval = 1.18–1.93). Visual inspection of the funnel plot did not reveal any publication bias, which was supported by Egger’s test and Begg’s test.

Conclusion: The findings of this systematic review indicate that the use of ART treatment is associated with a 1.51-fold increase in GDM. Women need to be counselled carefully before undergoing ART treatment about the possibility and risk of GDM.

Keywords: Assisted reproductive technology, Gestational diabetes mellitus, Infertility, Meta-analysis, Systematic review

Background

Assisted reproductive technology (ART) is a group of medical methods for treating the infertile human in which both male and female gametes are used outside the body to achieve pregnancy [1]. To date, approximately 5 million babies are born worldwide via ART [2]. Although ART may help infertile couples, its use has increased concerns associated with pregnancy-related complications and adverse consequences [3]. It has been suggested that obstetric outcomes in gestation after ART are poor when compared with those pregnancies spontaneously conceived [4]. Moreover, evidence from meta-analyses [4–8] has revealed that singleton pregnancies after ART are at higher risk of adverse consequences than those conceived naturally. One of the outcomes followed by ART is gestational diabetes mellitus (GDM) and is known as one of the most common complications in pregnancy [9, 10]. GDM is defined as “carbohydrate intolerance of variable severity with onset or first recognition during pregnancy” [11]. GDM is a worldwide public health problem and complicates about 7% of all pregnancies [12, 13]. The cause and pathogenesis of GDM is both multifunctional and complex [14]. GDM is prone to causing a woman and her baby a wide range of complications during pregnancy and in later life [15, 16]. women with GDM are more...
likely to develop metabolic syndrome in the future, including type 2 diabetes [17]. Therefore, it is important to realize the risk factors of GDM such as family history of diabetes, obesity, high parity, advanced maternal age, previous adverse pregnancy, non-white race, history of a baby with birth weight > 3800 g, and hypothyroidism [12, 18].

In addition, studies have indicated that ART pregnancies are related to an increased risk of GDM [19–22]. Another study in Australia reported those who underwent ART are more prone to experience GDM compared to those who conceived spontaneously [23]. However, it was shown in another study that the rate of GDM was lower in women who conceived under intracytoplasmic sperm injection (ICSI) compared to those of spontaneously, in vitro fertilization (IVF) or simple ART [24]. Finally, we conducted a meta-analysis to provide an up-to-date survey of pregnancies resulting from ART and the increased risk of GDM between 1997 and 2017. We aimed to investigate the higher risk of GDM in pregnancies following ART and compare them to those of spontaneous conceptions.

Material and methods

Search strategy
This systematic review adheres to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) checklist [25]. We searched the electronic databases ISI Web of Knowledge, MEDLINE/PubMed, Scopus, and Embase through May 2017, for studies investigating the relationship between ART and GDM. The search terms used were presented in Table 1. Reference lists from all identified studies were also searched for any relevant articles. Two authors (MM and AA) evaluated the studies, and discrepancies were resolved by discussion.

Inclusion and exclusion criteria
We included published studies that examined the relationship between the use of ART and the risk of GDM. No restriction criteria were imposed with regard to the size or type of the studied population, nor to the type of ART treatment. The following study types were excluded from the analyses: (a) non-English articles; (b) animal studies; (c) repeated or overlapping studies; (d) reviews, meta-analyses, case reports, editorials, and letters-to-the-editor articles; and (e) unpublished studies.

Outcome and exposure
The exposure variable was all types of ART treatment. Our outcome was GDM, defined as “carbohydrate intolerance of variable severity with onset or first recognition during pregnancy” [11].

Table 1 Search strategy for MEDLINE (MeSH, Medical Subject Headings)
Word or term
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Data extraction and quality assessment
Two reviewers (MM and AA) independently abstracted the following data from all eligible articles: first author’s name; year of publication; location; study period; design; sample size; type of ART; and study findings. Discrepancies were resolved by discussion between two reviewers. Quality assessment of included studies was performed independently by two reviewers using the Newcastle–Ottawa Scale (NOS) [26]. The NOS assesses the methodological quality of the observational studies according to three domains: (a) selection of study groups; (b) comparability of groups; and (c) ascertainment of exposure and outcomes. Total scores range from 0 (lowest quality) to 9 (highest quality).

Statistical analysis
Data were analyzed using STATA version 13.0 (Stata Corp, College Station, TX, USA). The pooled relative risk (RR) was calculated with its 95% confidence interval (CI) to assess the strength of the association between the use of ART and GDM risk. To assess between study heterogeneity, both the Cochran Q test and the I^2 statistic (the percentage of total variation across studies attributable to heterogeneity beyond chance) were calculated [27]. I^2 values of 25, 50, and 75% were used as evidence of low, moderate, and high heterogeneity, respectively [27]. Subgroup analysis was performed to detect factors
that may explain heterogeneity in outcome between each study. Publication bias was assessed using visual inspection of a funnel plot, Egger’s test, and Begg’s test [28, 29]. In all statistical tests, results with $P < 0.05$ were deemed statistically significant, except for the Cochran Q test where $P < 0.10$ was used.

Results

Study selection

The steps of the study selection are displayed in Fig. 1. A total of 950 related published articles were retrieved by using a search strategy in four international databases (638 from Scopus, 91 from PubMed, 62 from ISI Web of Knowledge, and 159 from Embase) and also seven records were identified from Google Scholar and reference lists of final included papers in the meta-analysis. In this study, 829 papers remained after removing duplicate papers using EndNote software. After title and abstract screening, 278 relevant articles were recognized as eligible and they were considered for additional full-text screening. After excluding 230 non-eligible studies, finally, 48 studies (four case-control studies, three cross-sectional studies, and 41 cohort studies) were included in this meta-analysis.

Study characteristics

The study characteristics of the included studies are summarized in Table 2. In total, we included 48 studies published from 1987 to 2017. Observational studies (i.e., cross-sectional, case control and cohort studies) were included in the meta-analysis, whereas non-English studies and studies without relevant data or partial data were excluded. Sample size in the ART group ranged from 31 to 21,615 cases and in the non-ART group it ranged from 20 to 595,168 cases. Of the 48 studies, 19 were conducted in Asia, 17 in Europe, and 12 in America. Fourteen studies were published before 2011 and 34 studies were published from 2011 to 2017.

Quantitative data synthesis

In the present study, 91,487 ART cases (with 6819 cases of GDM) and 2,525,234 non-ART cases (with 113,505 cases of GDM) were included in the analysis. RRs and their 95% CIs were calculated using the Mantel–Haenszel method and, because of significant heterogeneity
Table 2: Characteristics of the primary studies included in the meta-analysis

First author	DOP	Country	Period	Design	Mean of age	Type of ART	# of GDM in ART group	# of GDM in non-ART group
Varma TR	1987	UK	1983–1985	Cohort	NA	NA	7	362
Vollenhoven B	2000	Australia	1990–1997	Case–Control	NA	NA	22	60
Bjercke S	2002	Norway	1993–1998	Cohort	31.32	32.7	IVF	4
Koivurova S	2002	Finland	1990–1995	Cohort	31.8	31.8	IVF	12
Nassar AH	2003	USA	1995–2000	Cohort	35	36	IVF	3
Pinborg A	2004	Denmark	1997	Cohort	33.1	30.5	IVF/ICSI	13
Shevell T	2005	USA	1999–2002	Cohort	33.19	29.9	IVF/IOI	92
Saygan-Karamürsel B	2006	Turkey	1999–2003	Case–Control	31.45	28.94	ICSI	22
Buckett WM	2007	Canada	1998–2003	Cohort	34.75	34	IVF/ICSI/IVM	39
Adler-Levy Y	2007	Israel	1988–2002	Case–Control	30.27	29.4	IVF/IOI	96
Eskandar M	2007	Saudi Arabia	2004–2006	Cohort	28.29	26.44	ICSI	3
Krieg SA	2008	USA	2001–2005	Cohort	42.7	41.3	IVF	10
Vasario E	2010	Italy	2004–2008	Cohort	31.5	33.5	IVF	10
Suzuki S	2010	Japan	2000–2007	Cohort	37.8	37.9	IVF	1
Tepper NK	2011	USA	1997–2004	Cohort	36	30	NA	112
Montoya JB	2012	Mexico	2005–2009	Cohort	32.5	31.6	NA	7
Moini A	2012	Iran	2008–2010	Cohort	30.6	27.3	IVF/ICSI	21
Bamberg C	2012	Germany	1998–2008	Cohort	32.5	30.1	IVF/ICSI	19
Le Ray C	2012	France	2008–2010	Cohort	>43	>43	IVF/OD	11
Werder E	2013	USA	2002–2008	Cohort	NA	NA	IVF	155
Wang Y	2013	Australia	2007–2009	Cross–Sectional	NA	NA	1044	13,732
Farhi A	2013	Israel	2006–2008	Cohort	NA	NA	IVF/ICSI	61
Toshimitsu M	2014	Japan	2006–2010	Cohort	NA	NA	IVF/ICSI	0
Castera D	2014	Italy	2007–2011	Cohort	38.5	33.5	IVF/ICSI	14
Ashrafi M	2014	Iran	2011–2012	Cross–Sectional	30	26.4	IVF	174
Ashrafi M	2014	Iran	2011–2012	Cross–Sectional	30.35	26.6	ICSI/IVF/IV/UID	13
Silberstein T	2014	Israel	1988–2006	Cohort	30.9	28.49	IVF/IOI	492
Yang X	2014	China	2011	Cohort	NA	NA	ART	172
Domingues A	2014	Portugal	1996–2011	Cohort	NA	NA	IVF/ICSI	15
Stern JE	2015	USA	2004–2008	Cohort	NA	NA	81	3689
Jie Z	2015	China	2010–2013	Cohort	32.53	29.87	IVF	48
Nunes F	2015	NA	Case–Control	NA	34.3	31.4	NA	11
Barua S	2016	Australia	2007–2010	Cohort	32.1	29.2	ART	224
Zhu L	2016	China	2006–2014	Cohort	31.84	31.73	IVF/ICSI	309
Martin AS	2016	USA	2008–2012	Cohort	NA	NA	ART	397
Luke B	2016	USA	2004–2010	Cohort	36.65	30.1	ART	93
Bashmakova NV	2016	Russia	NA	Cohort	NA	NA	ART	12
Rosato E	2016	Italy	2010–2011	Cohort	44.2	44.1	ART	6
Valenzuela-lcaraz B	2016	Spain	2004–2010	Cohort	33.46	31	IVF/ICSI/IOI	17
Marton V	2016	Sweden	1994–2014	Cohort	35.25	33.275	IVF/ICSI	54
Beyer DA	2016	Germany	NA	Cohort	39	39	IVF/ICSI	4
Pourali L	2016	Iran	2009–2014	Cohort	28.9	27.1	ART	8
Table 2 Characteristics of the primary studies included in the meta-analysis (Continued)

First author	DOP Date	Country	Period	Design	Mean of age	Type of ART	# of GDM in ART group	# of GDM in Non-ART group	
Ben-Yaakov RD	2016	Israel	1988–2012	Cohort	30.9	28.7	IVF/OI	585	4153, 5895, 95,138
Qin J	2016	China	2013–2016	Cohort	31.3	29.26	IVF	165	1260, 823, 4379
Wang YPA	2016	Australia	2007–2011	Cohort	NA	NA	NA	1736	21,615, 30,869, 574,905
Korosec S	2016	Slovenia	2004–2011	Cohort	33.42	33.42	IVF/ET/FET	43	1127, 129, 3381
Morency AM	2016	Canada	2000–2013	Cohort	33	31.4	ART	4	49, 19, 181
Luke B	2017	USA	2004–2010	Cohort	35.3	30.4	IVF	378	3538, 493, 6090

DOP: date of publication, GDM: gestational diabetes mellitus, ART: assisted reproductive technology, Non-ART: non-assisted reproductive technology, NA: not available.

![Forest plot showing the risk of GDM following ART](image-url)
between studies, random effect models were also used. The relationship of ART and the risk of GDM was estimated using 48 included primary studies. The summary estimate of RR in this meta-analysis suggested that ART significantly was associated with higher risk of GDM (pooled RR = 1.51, 95% CI = 1.18–1.93, \(P = 0.001\)); that is, the risk of GDM in the ART group is 1.51 times compared to that in the non-ART group (Fig. 2 and Table 3).

Heterogeneity analysis
To check the heterogeneity between studies, chi-square test, \(I^2\)-squared, and Tau-squared were conducted. Chi-square analysis revealed that there was a significant heterogeneity between primary studies (\(P < 0.001, \chi^2 = 98.6\%\)); consequently, to pool the effect sizes in this study, a random effect model was used. To find the source of heterogeneity between studies, subgroup analyses were performed on the basis of study design, study region, and study period (Table 3). Even after the aforementioned subgroup analyses, heterogeneity across the studies did not diminish successfully in all subgroups; for that reason, some estimations of pooled RR were measured by the random effects model and only pooled RR for case control studies and the papers that were published between 1987 and 2010 were estimated by a mixed-effect model (Figs. 3, 4 and 5).

Risk of publication bias
Graphical (funnel plot) and statistical tools (Begg’s and Egger’s test) were done to test the existence of publication bias in the studies. The results of the symmetrical funnel plot (Fig. 6), Egger’s test (\(P = 0.331\)), and Begg’s test (\(P = 0.810\)) suggested that there was no significant publication bias in this study.

Table 3 Summary of meta-analysis results and subgroups analysis

Groups	# of studies	Test of association	\(P\)	Model	Heterogeneity	
Total studies	48	1.51 (1.18–1.93)	0.001	Random	< 0.001	98.9%
Study design						
Cohort	41	1.44 (1.07–1.95)	0.021	Random	< 0.001	98.8%
Case control	4	2.04 (1.65–2.51)	0.001	Fixed	0.445	0
Cross-sectional	3	1.99 (0.93–4.26)	0.095	Random	< 0.001	88.1%
Time period						
1987–2010	14	1.75 (1.50–2.05)	< 0.001	Fixed	0.343	10.1%
2011-2017	34	1.42 (1.05–1.90)	0.022	Random	< 0.001	99.0%
Region						
Europe	16	1.75 (1.31–2.34)	< 0.001	Random	< 0.001	65.3%
Asia	19	1.70 (1.45–1.98)	< 0.001	Random	< 0.001	94.2%
America	12	1.07 (0.46–2.52)	< 0.001	Random	< .01	99.4%

Discussion
The current study aimed to assess the impact of ART on GDM using a systematic review of related articles. This meta-analysis included 344,021 cases, in which 91,487 cases used ART to achieve pregnancy. Statistical approaches were determined based on the heterogeneity of the included studies and publication bias was checked. Several subgroups were defined based on the study design, time period, and region.

The results from this meta-analysis revealed that GDM is strongly affected by the use of ART. The relative risk of GDM was significant regarding the use of ART. Regarding the magnitude of the RR, the results from different study designs were in accordance. However, the included cross-sectional studies did not report a significant pooled RR in contrast to cohort and case-control studies and this might be due to the lower number of cross-sectional studies. Moreover, the impact of ART on GDM did not differ in two distinct periods of time (2010 as the cut-off point). In contrast to America, consistent results were found in two regions of Asia and Europe. The pooled RR resulting from American studies showed a higher risk of GDM among those in the non-ART group.

The ART has been defined as treatments including in vitro handling of oocytes and sperm, and embryos, in which establishing pregnancy is the goal [76]. There have been many debates on the efficacy and safety of using ART regarding its increasing trend of use across most countries [77, 78]. It has been shown that ART is responsible for a high number of adverse pregnancy-related complications and obstetric outcomes such as polyhydramnios, low and very low infant birth weight, pregnancy-induced hypertension, pre-eclampsia, perinatal mortality, preterm and very preterm birth, placenta
previa, antepartum hemorrhage, multiple pregnancy, congenital malformation, higher risk of ectopic pregnancy, lower odds of vaginal delivery, postpartum hemorrhage, oligohydramnios, small for gestational age, and placental abruption [36, 79–83]. As mentioned, using ART was associated with GDM, which is diabetes diagnosed during pregnancy. Pregnancy may cause insulin resistance and hyperinsulinemia and can be followed by diabetes. GDM is defined as glucose intolerance with the first recognition during pregnancy and usually progresses in the second trimester [84]. GDM is associated with a large number of risk factors, such as elevated prepregnancy body mass index, older maternal age, history of GDM, diabetes among family members, polycystic ovary syndrome (PCOS), pre-existing hypertension, weight gain during pregnancy, smoking, ART, and higher parity [85–87]. The adverse effect of ART on GDM is discussed by several studies; however, the mechanism has not been well clarified [48, 52]. Several hypotheses are introduced in which GDM is influenced by the use of ART, including the etiology of infertility, the drugs used in the treatment procedure, the hormonal levels, and metabolic and vascular factors [19, 52]. However, it has been revealed that maternal age is the most effective factor on GDM [88]. Wang et al. have discussed the association between GDM and ART through

Name	year	Country	RR (95% CI)	% Weight	Reference
Varma TR	1987	UK	2.08 (0.96, 4.50)	2.01	54
Koivurova S	2002	Finland	1.67 (0.83, 3.34)	2.09	57
Bjorn Bjoergo	2002	Norway	1.27 (0.39, 4.79)	1.57	56
Nasar AH	2003	USA	1.00 (0.26, 3.86)	1.43	58
Pinyng A	2004	Denmark	1.90 (0.93, 3.70)	2.07	59
Shewell T	2005	USA	1.50 (1.32, 1.84)	1.33	33
Buckett WM	2007	Canada	1.50 (0.93, 2.43)	2.29	60
Eriksson M	2007	Saudi Arabia	0.90 (0.20, 3.30)	1.48	62
Kling OA	2008	USA	1.60 (0.88, 2.97)	1.63	63
Vesaio E	2010	Italy	1.24 (0.57, 2.72)	2.00	54
Suzuki S	2010	Japan	1.35 (0.09, 21.25)	0.61	65
Tepper NK	2012	Massachusetts	2.39 (1.97, 2.86)	2.47	66
Moni A	2012	Iran	1.03 (0.56, 1.90)	2.15	66
Le Ray C	2012	France	1.47 (0.66, 3.24)	1.89	70
Bambang C	2012	Germany	1.38 (0.77, 2.46)	2.20	69
Montoya JB	2012	Mexico	1.00 (0.37, 2.69)	1.79	67
Fathi A	2013	Israel	1.10 (0.78, 1.54)	2.39	72
Warder E	2013	USA	0.71 (0.49, 1.03)	2.37	71
Toskimatsu M	2014	Japan	0.44 (0.03, 7.78)	0.67	73
Yang X	2014	China	2.95 (2.05, 3.40)	2.48	77
Dominguez A	2014	Portugal	1.81 (0.50, 3.28)	2.19	78
Silberstein T	2014	Israel	2.11 (1.94, 2.30)	2.50	76
Castera D	2014	Italy	3.27 (1.79, 6.32)	1.85	74
Je Z	2015	China	1.58 (1.17, 2.14)	2.42	80
Stuen JE	2015	USA	1.95 (1.57, 2.43)	2.48	79
Rosato E	2016	Italy	1.10 (0.97, 1.28)	0.67	80
Konvacs B	2016	Slovenia	1.00 (0.71, 1.40)	2.39	95
Merin AS	2016	USA	0.14 (0.03, 0.16)	2.50	94
Valenzuela-Acuna B	2016	Spain	1.72 (0.58, 5.04)	1.70	98
Wang YPA	2016	Australia	1.46 (1.39, 1.53)	2.51	94
Luke B	2016	USA	1.31 (1.08, 1.61)	2.47	95
Pourell L	2016	Iran	2.67 (1.98, 6.61)	1.57	91
Ben-Yakov RO	2016	Israel	2.12 (1.95, 2.29)	2.50	92
Beyer DA	2016	Germany	0.36 (0.13, 0.93)	1.79	90
Monroy AM	2016	Canada	0.79 (0.28, 2.24)	1.74	95
Zhu L	2016	China	1.72 (1.48, 2.00)	2.48	83
Marton V	2016	Sweden	3.21 (2.19, 4.68)	2.37	89
Bashmakova NV	2016	Russia	4.16 (1.56, 10.43)	1.86	85
Barus S	2016	Australia	1.82 (1.60, 2.07)	2.49	82
Qin J	2017	China	0.73 (0.63, 0.86)	2.48	93
Luke B	2017	USA	1.29 (1.13, 1.48)	2.47	97
Subtotal (squared = 98.8%, p = 0.000)			1.44 (1.07, 1.95)	84.72	
- case-control					
Vollehoven B	2000	Australia	1.88 (0.96, 3.69)	2.11	55
Stegner-Karleus B	2006	Turkey	2.66 (1.28, 5.53)	2.06	21
Afler VS Y	2007	Israel	2.13 (1.67, 2.73)	2.45	61
Nunes F	2015	Portugal	1.26 (0.84, 2.47)	2.11	61
Subtotal (squared = 0.0%, p = 0.445)			2.04 (1.65, 2.51)	8.72	
- Cross-sectional					
Wang Y	2013	Australia	1.48 (1.10, 1.98)	2.50	44
Ashraf M	2014	Iran	4.00 (2.49, 4.64)	2.29	43
Ashraf M	2014	Iran	1.16 (0.42, 3.32)	1.76	75
Subtotal (squared = 88.1%, p = 0.000)			1.99 (0.93, 4.26)	6.56	
- Overall (squared = 96.5%, p = 0.000)			1.51 (1.18, 1.93)	100.00	

NOTE: Weights are from random effects analysis.

Fig. 3 Forest plot showing the risk of GDM following ART on the basis of study design.
impaired glucose tolerance in comparison to those of spontaneous conceptions. Moreover, they have exposed that for singleton mothers, GDM was more common among cases that underwent ART. However, the risk increases for singleton mothers younger than 40 [48]. Double embryo transfer has been introduced as a significant factor for multiple gestational pregnancy, which is followed by an elevated risk of GDM [89, 90]. Vitthala et al. assessed the risk of monozygotic twins after ART using a systematic review and they revealed that in comparison to cleavage embryo transfer, GDM is more affected by blastocyst transfer [91]. Hammoud et al. addressed the scientific question of whether it is important to diagnose GDM by screening or symptoms. They showed that GDM is strongly related to large-for-gestational-age births [92] and Sazonova et al. showed that babies after embryo transfer have a higher large for gestational age compared to fresh embryo transfer [93]. Pre-existing hypertension is associated with GDM [87] and this might be due to higher rates of ART mothers being of high maternal age [94]. Sibai and Ross assessed the pathophysiology and long-term consequences of hypertension in GDM. They demonstrated that mothers of twins are at a higher risk of GDM in contrast to those of singletons [90]. Risk of GDM among women with PCOS was assessed by Toulis et al. in a systematic review. They showed an increased likelihood of

Name	year	Country	RR (95% CI)	% Weight	Reference
Vanma TR	1987	UK	2.04 (0.98, 4.50)	2.01	54
Volante-Brown	2000	Australia	1.88 (0.96, 3.69)	2.11	55
Kolovratova	2002	Finland	1.87 (0.83, 3.34)	2.09	57
Bjarcne S	2002	Norway	1.27 (2.39, 67.99)	1.17	56
Nasser AH	2003	USA	1.00 (0.26, 3.86)	1.43	58
Pincborg A	2004	Denmark	1.90 (0.83, 3.89)	2.07	59
Shevlin T	2005	USA	1.95 (12, 194)	1.46	33
Saygak-Karami S	2006	Turkey	2.66 (12, 55)	2.06	21
Adler-Levy Y	2007	Israel	2.13 (1.67, 2.73)	2.45	61
Buswell WM	2007	Canada	1.50 (0.83, 2.43)	2.29	60
Eskander M	2007	Saudi Arabia	0.90 (0.25, 3.30)	1.48	62
Klieg SA	2008	USA	1.80 (0.68, 3.77)	1.33	63
Vassile E	2010	Italy	1.24 (0.57, 2.72)	2.00	54
Suzuki S	2010	Japan	1.35 (0.98, 21,25)	0.61	65
Subtotal			1.75 (1.50, 2,05)	26.17	

Fig. 4: Forest plot showing the risk of GDM following ART on the basis of time period.
developing GDM among women with PCOS compared with general cases [95].

The current meta-analysis revealed a significant heterogeneity among the pooled studies, the cohort and cross-sectional studies, the studies conducted during 2011–2017, and the three regions of Asia, Europe, and America. Several statistical tools are available to check the heterogeneity of included studies in a meta-analysis and its selection mechanism depends on several factors such as sample size, the frequency of included studies, etc. The two common tests for heterogeneity (chi-square and the I^2 value) can result in controversial conclusions regarding the number of included studies and the magnitude of the relative risks [96]. There might be many reasons for the presence of heterogeneity in the results, such as different cultural and ethnic conditions and diversity in the amount of regions’ development.

The present systematic review has several limitations that should be noted. First, the most important limitation for this study as for other meta-analysis studies is the lack of data for subgroup analysis based on type of pregnancy (singleton versus twin pregnancy), type of ART, or for data analysis controlling for known confounders. Second, there were no data on the relationship between ART and GDM for large regions such as Africa and Latin America, thus the generalizability of the

![Fig. 5 Forest plot showing the risk of GDM following ART on the basis of region](image-url)
results may be limited. Third, this study included only English papers.

In sum, the findings of the present systematic review and meta-analysis indicate that the use of ART is associated with a 1.51-fold increase in GDM. Women need to be counselled carefully before undergoing ART treatment about the possibility and risk of GDM.

Abbreviations
ART: Assisted reproductive technology; CI: Confidence interval; GDM: Gestational diabetes mellitus; NOS: Newcastle–Ottawa Scale; PCOS: Polycystic ovary syndrome; RR: Relative risk

Acknowledgments
Not applicable.

Authors’ contributions
AA, MM, ROS, SM, and AAH conceived the study. MM, PA, BN, SM, EKM, and AA collected the data. AAH and SM analyzed the data. All authors contributed equally to draft the manuscript. All authors revised the manuscript and approved the final version.

Funding
This work received no specific grant from any agency in the public, commercial or not for profit sector.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran. 2Department of Health Services Research, Institute of Psychology, Health, and Society, University of Liverpool, Liverpool, UK. 3School of Nursing and Midwifery, Guilan University of Medical Sciences, Rasht, Iran. 4Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran. 5Department of Biostatistics and Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. 6Department of Medical Ethics and Law, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran. 7Metabolic Diseases Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.

Received: 5 July 2019 Accepted: 27 January 2020
Published online: 05 February 2020

References
1. Quintino-Moro A, Zantut-Wittmann DE, Tambascia M, Machado HD, Fernandes A (2014) High prevalence of infertility among women with Graves’ disease and Hashimoto’s thyroiditis. Int J Endocrinol 2014:1–6
2. Kissin DM, Jamieson DJ, Barfield WD (2014) Monitoring health outcomes of assisted reproductive technology. N Engl J Med 371:91–93
3. De Mouzon J, Lancaster P, Nygren KG, Sullivan E, Zegers-Hochschild F, Mansour R, Ishihara O, Adamson D (2009) World collaborative report on assisted reproductive technology, 2002. Hum Reprod 24:2310–2320
4. Pandey S, Shetty A, Hamilton M, Bhattacharya S, Maheshwari A (2012) Obstetric and perinatal outcomes in singleton pregnancies resulting from IVF/ICSI: a systematic review and meta-analysis. Hum Reprod Update 18:485–503
5. Helmerhorst FM, Perquin DA, Donker D, Keirse MJ (2004) Perinatal outcome of singleton and twins after assisted conception: a systematic review of controlled studies. BMJ 328:261
6. Jackson RA, Gibson KA, Wu YW, Croughan MS (2004) Perinatal outcomes in singletons following in vitro fertilization: a meta-analysis. Obstet Gynecol 103:551–563
7. McDonald SD, Murphy K, Beyene J, Ohlsson A (2005) Perinatal outcomes of singleton pregnancies achieved by in vitro fertilization: a systematic review and meta-analysis. J Obstet Gynaecol Can 27:449–459
8. McGovern PG, Llorens AJ, Skurnick JH, Weiss G, Goldsmith LT (2004) Increased risk of preterm birth in singleton pregnancies resulting from in vitro fertilization–embryo transfer or gamete intrafallopian transfer: a meta-analysis. Fertil Steril 82:1514–1520
9. Salmeen K (2016) Gestational diabetes testing: making sense of the controversy. J Midwifery Womens Health 61:203–209
10. Bartolo S, Vambergue A, Deruelle P (2016) Screening for gestational diabetes: still many unsolved issues. J Gynecol Obstet Biol Reprod (Paris) 45:105–111
and without assisted reproductive technology treatment. Fertil Steril 103: 1438–1445

58. Jie Z, Yiling D, Ling Y (2015) Association of assisted reproductive technology with adverse pregnancy outcomes. Iran J Reprod Med 13:169–180

59. Nunes F, Noronha N, Neves F, Taborda A, Silva IS, Almeida M (2015) Obstetric And Perinatal Outcomes In Multifetal Gestations: Assisted Reproductive Technology Versus Spontaneous Conception. J Perinat Med 43:208

60. Barua S, Hing TM, Smith H, Bradford J, McLeman M (2017) Ovulatory disorders are an independent risk factor for pregnancy complications in women receiving assisted reproduction treatments. Amt N J Obstet Gynaecol 57: 286–293

61. Zhu LL, Zhang Y, Liu YF, Zhang RJ, Wu YQ, Huang Y, Liu F, Li MG, Sun SJ, Xing LF et al. (2016) Maternal and Live-birth Outcomes of Pregnancies following Assisted Reproductive Technology: A Retrospective Cohort Study. Sci Rep6

62. Martin AS, Monsour M, Kissin DM, Jamieson DJ, Callaghan WM, Boulet SL (2015) Risk of infertility and adverse pregnancy outcomes with increasing maternal age. Am J Obstet Gynecol 217:529–56

63. Luke B, Stern JE, Kotelchuck M, Declercq ER, Anderka M, Diop H (2016) Birth outcomes by infertility treatment. Analyses of the population-based cohort: Massachusetts outcomes study of assisted reproductive technologies (MOSART). J Reprod Med 61:114–127

64. Bashmakova NV, Davydenko NB, Malgina GB, Putilova NV (2016) Epidemiology of critical states during pregnancy after assisted reproductive technologies. Gynecol Endocrinol 32:47–51

65. Besozzo E, Perone G, Capri O, Galoppi P, Candelieri M, Marcoccia E, Schiavi MC, Zannini I, Brunelli R (2016) Hypertension and early menopause after the use of assisted reproductive technologies in women aged 43 years or older: Long-term follow-up study. J Obstet Gynaecol Res 42:1782–1788

66. Valenzuela-Alcaraz B, Crispi F, Manau D, Cruz-Lemini M, Borras A, Balasch J, Gratacos E (2016) Differential effect of mode of conception and infertility treatment on fetal growth and prematurity. J Matern Fetal Neonatal Med 29:387–3884

67. Marton V, Zadori J, Kozinszky Z, Kereszturi A (2016) Prevalences and risk factors influencing large-for-gestation birth weight in singletons born after in vitro fertilization versus natural conception. Fertil Steril 106:1399–1406

68. Beyer DA, Amari F (2016) Maternal risk factors and neonatal outcomes after ART treatment – A German monocenter experience. Middle East Fertil Soc J 21:155–160

69. Pourali L, Ayati S, Jelodar S, Zarifian A, Andalibi MSS (2016) Obstetrics and perinatal outcomes of singleton pregnancies conceived via assisted reproductive technology complicated by gestational diabetes mellitus: a prospective cohort study. BMC Pregnancy Childbirth 18:495

70. Almasi-Hashami A, Omani-Samani R, Mohammadi M, Armini P, Navid B, Alizadeh A, Moraseh EE, Maroufzadeh S (2019) Assisted reproductive technology and the risk of preeclampsia: an updated systematic review and meta-analysis. BMC Pregnancy Childbirth 19:140

71. Association, A.D (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37:581–590

72. Higgins, J.P. and Green, S. (2011) Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0. The Cochrane Collaboration, 2011. Available from www.cochrane-handbook.org.

73. Dickey RP (2007) The relative contribution of assisted reproductive technologies and ovulation induction to multiple births in the United States 5 years after the Society for Assisted Reproductive Technology/American Society for Reproductive Medicine recommendation to limit the number of embryos transferred. Fertil Steril 88:1554–1561

74. Bashmakova NV, Davydenko NB, Malgina GB, Putilova NV (2016) Obstetric and perinatal outcomes of singleton pregnancies conceived via assisted reproductive technology complicated by gestational diabetes mellitus: a meta-analysis of cohort studies. Fertil Steril 105:73–85

75. Qin J, Wang H, Sheng X, Liang D, Tan H, Xia J (2015) Pregnancy-related complications and adverse pregnancy outcomes in singleton pregnancies: a meta-analysis of cohort studies. Fertil Steril 103:1492–1508

76. Koulhan A, Khamseh ME, Pirjani R, Moni M, Arabipoor A, Maroufzadeh S, Hosseini R, Baradaran HR (2016) Obstetric and perinatal outcomes of singleton pregnancies conceived via assisted reproductive technology complicated by gestational diabetes mellitus: a prospective cohort study. BMC Pregnancy Childbirth 18:495

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.