Evaluation of prevalent and incident ovarian cancer co-morbidity

K Stålberg*,1, T Svensson2, F Granath2, H Kieler2, B Tholander3 and S Lönn4,5

1Department of Women’s and Children’s Health, Uppsala University, 75185 Uppsala, Sweden; 2Department of Medicine, Centre for Pharmacoepidemiology, Karolinska Institutet, 17177 Stockholm, Sweden; 3Department of Oncology, Radiology and Clinical Immunology, University Hospital, 75185 Uppsala, Sweden; 4Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden; 5Research and Development, AstraZeneca, 15185 Södertälje, Sweden

BACKGROUND: The peak in incidence of ovarian cancer occurs around 65 years and concurrent increasing risk by age for a number of diseases strongly influence treatment and prognosis. The aim was to explore prevalence and incidence of co-morbidity in ovarian cancer patients compared with the general population.

METHODS: The study population was patients with ovarian cancer in Sweden 1993–2006 (n = 11 139) and five controls per case (n = 55 687). Co-morbidity from 1987 to 2006 was obtained from the Swedish Patient Register. Prevalent data were analysed with logistic regression and incident data with Cox proportional hazards models.

RESULTS: Women developing ovarian cancer did not have higher overall morbidity than other women earlier than 3 months preceding cancer diagnosis. However, at time of diagnosis 11 of 13 prevalent diagnosis groups were more common among ovarian cancer patients compared with controls. The incidence of many common diagnoses was increased several years following the ovarian cancer and the most common diagnoses during the follow-up period were thromboembolism, haematologic and gastrointestinal complications.

CONCLUSION: Women developing ovarian cancer do not have higher overall morbidity the years preceding cancer diagnosis. The incidence of many common diagnoses was increased several years following the ovarian cancer. It is crucial to consider time between co-morbidity and cancer diagnosis to understand and interpret associations.

British Journal of Cancer (2012) 106, 1860–1865. doi:10.1038/bjc.2012.164 www.bjcancer.com
Published online 1 May 2012
© 2012 Cancer Research UK

Keywords: ovarian cancer; co-morbidity; epidemiology

Ovarian cancer has the highest mortality rate among all gynaecological malignancies with an overall 5-year survival proportion in the Nordic countries of around 40% (Klint et al, 2010; Storm et al, 2010). The incidence in the Nordic countries is 10.4 per 100 000 person years (2004–2008) but is approximately five times higher for women over 65 years of age (Engholm et al, 2010). The steep increase in incidence by age makes the presence of other diseases an important factor affecting cancer morbidity and mortality. Both chronic co-morbidities and acute conditions influence the treatment and prognosis of ovarian cancer (Cloven et al, 1999; Elit et al, 2008; Fader et al, 2008).

It is a challenge to evaluate the influence of co-morbidity and the knowledge of the significance in ovarian cancer patients is limited. In studies with the aim to evaluate the impact of patient’s total co-morbidity as a predictor of outcome, an index can be valuable (de Groot et al, 2003). However, if a specific co-diagnosis is to be studied, very large study populations are needed to achieve sufficient power, as ovarian cancer is a rare diagnosis. Another issue is that some diagnoses are characterised as acute conditions and is preferably measured as incidence, while others are more chronic in their character, and are best described in prevalence analyses. Co-morbidity can be a consequence of cancer, cause cancer, or by chance, be diagnosed at the same time as the cancer.

Accordingly, the time window in relation to cancer diagnosis must be taken into consideration.

The aim of this study was to estimate prevalent and incident pre-defined co-morbidity at certain time periods in relation to ovarian cancer diagnosis and to evaluate the occurrence in comparison with the general population, using the Swedish national-based databases.

MATERIALS AND METHODS

The Cancer and Co-morbidity Database

The Cancer and Co-morbidity Database (CaCom) is a compilation of Swedish national health registries and contains all cases of cancer registered in the Swedish National Cancer Register (NCR) between 1992 and 2006; and in addition, there is information on any prior cancers reported in these same individuals in the period from 1958 to 1991. The database also includes ~1.5 million control individuals randomly sampled from the Register of the Total Population (RTP) by Statistics Sweden, and matched to have the same distribution with respect to age, sex and calendar year as all cases of cancer in the database. These individuals (cancer cases and population controls) are linked to the nationwide Swedish Cause of Death Register to obtain date and cause of death for deceased individuals, and with the Swedish Patient Register to obtain all in-patient discharge data for all hospitalisations in these individuals occurring from 1987 up to 2006. In this study, we used...
the database to explore pre-defined co-morbidities among patients with ovarian cancer.

Patient population

The study patient population was defined as all patients in the CaCom database diagnosed with ovarian cancer (ICD-7 code 175) from 1 January 1993 up to 30 November 2006. The patients should be alive at 30 days after diagnosis to exclude those ‘fatal at diagnosis’ and restrict the study to ovarian cancer patients potentially amenable to treatment in routine medical care. Patients with a pathology diagnosis (SNOMED classification) of borderline tumour or tumours considered as benign (i.e., thecoma and cystadenoma) were excluded from the analyses. Pathological diagnoses were grouped into six categories; high-risk epithelial including the serous and endometroid adenocarcinomas, anaplastic, small cell and poorly differentiated carcinomas; medium-risk epithelial including the mucinous adenocarcinomas, clear cell carcinomas, and mesonephroid cancers; germ cell tumours, stroma cell tumours and sarcomas are classified according to standard definitions. The category other tumours includes varying histology such as poorly defined tumours, squamous cell cancers and neuroendocrine tumours.

Control population

To each cancer case, up to five controls matched by year of birth, were randomly selected among the 0.75 million control women in the CaCom database. The controls were assigned the same date for start of follow-up as the matched case; this date was defined as diagnosis date for ovarian cancer plus 30 days, and defined as the index date. The controls were not allowed to have an ovarian cancer diagnosed before the corresponding matched case date of diagnosis, and were censored on the relevant date if they contracted an ovarian cancer diagnosis during the follow-up.

Sources of data

The Swedish Cancer Register was founded in 1958 and contains information about clinical and histological diagnosis and date and place of living at diagnosis. It is updated annually and reported valid information on >97% of all patients with cancer (Barlow et al, 2009). The Cancer Register converts all diagnoses into ICD-7 in order to be able to make comparisons over time.

The Swedish Patient Register includes data on dates of each hospital admission, main discharge diagnosis and secondary diagnoses if occurring. The routines of recording and forwarding diagnoses are standardised across Sweden. In CaCom, we identified 40 different co-morbidities from the Swedish Patient Register by diagnostic codes according to the ICD classification, ninth and tenth revision (ICD-9 and ICD-10), which were categorised into 13 major disease groups (see Appendix Table A1).

The Cause of Death Register contains data on dates and causes of death for Swedish citizens since 1961. The coverage is >99.5% and data are updated annually.

Statistical analyses

The prevalence of a specified co-morbidity was defined as having one of the selected diseases either as a primary or as a secondary discharge diagnosis from 10 years before the ovarian cancer diagnosis up to 30 days after. The estimates on relative prevalence were calculated with a conditional logistic regression model, conditioned on age in 5-year strata and calendar year of diagnosis. Results were presented as odds ratios (ORs) with 95% confidence intervals (CIs). Additionally, analyses of the prevalence of co-morbidity for the most common histological tumour types, high-risk and medium-risk epithelial tumours were performed.

The incidence of specified condition was defined as having an admission in the period starting at 30 days after the ovarian cancer diagnosis until end of follow-up. End of follow-up was the first date of an admission with the diagnosis of interest, date of death, date of ovarian cancer diagnosis for a control subject, or 31 December 2006, whichever came first.

The analysis of incidence can be considered as a series of exposed and unexposed individuals with different outcomes of interest, where the exposure is an ovarian cancer diagnosis. Accordingly, we used Cox proportional hazards models for these analyses and the results are presented as hazard ratios (HR) together with 95% CIs. The proportional hazards assumption was investigated by allowing different HRs during the first year of follow-up and the subsequent years.

Sensitivity analyses

A number of sensitivity analyses were performed. For the analyses of prevalence, we first restricted the diagnoses to primary diagnoses and second we disregarded admissions up to 90 days before the ovarian cancer diagnosis. For the analyses of incidence, we calculated the HR for the entire follow-up period, the first year only and when excluding already prevalent disease (diagnosed before or up to 30 days after ovarian cancer diagnosis).

The study was approved by one of the regional ethical boards at Karolinska Institutet, Stockholm.

RESULTS

Population characteristics

In total, 11,139 patients with invasive ovarian cancer were identified. Median age at diagnosis was 63 years and 49% got their ovarian cancer diagnosis at between 50 and 69 years of age. The most common tumour type was high-risk epithelial tumours (76.9%). Table 1 illustrates relative survival according to age, year of diagnosis and histological subtype. The median survival was 653 days for all ovarian cancer patients. Older women had a shorter median survival than younger, more apparent in 5-year than in 1-year survival. Since we only had survival data until 2006, patients were alive at 30 days after diagnosis to exclude those ‘fatal at diagnosis’, and restrict the study to ovarian cancer patients potentially amenable to treatment in routine medical care. Patients with a pathology diagnosis (SNOMED classification) of borderline tumour or tumours considered as benign (i.e., thecoma and cystadenoma) were excluded from the analyses. Pathological diagnoses were grouped into six categories; high-risk epithelial including the serous and endometroid adenocarcinomas, anaplastic, small cell and poorly differentiated carcinomas; medium-risk epithelial including the mucinous adenocarcinomas, clear cell carcinomas, and mesonephroid cancers; germ cell tumours, stroma cell tumours and sarcomas are classified according to standard definitions. The category other tumours includes varying histology such as poorly defined tumours, squamous cell cancers and neuroendocrine tumours.

Year of ovarian cancer diagnosis	N (%)	One-year survival (%)	Five-year survival (%)
1993–1996	3438 (30.9)	2728 (79.3)	1437 (41.8)
1997–2001	3715 (33.4)	3120 (84.0)	2024 (43.7)
Histologic type			
Epithelial, high risk	8567 (76.9)	7078 (82.6)	3638 (42.5)
Epithelial, medium risk	1504 (13.5)	1220 (81.1)	876 (58.2)
Germ cell tumour	146 (1.3)	140 (95.9)	130 (89.0)
Stroma cell tumour	452 (4.1)	437 (96.7)	390 (86.3)
Sarcomas	202 (1.8)	115 (56.9)	43 (21.3)
Other	268 (2.4)	203 (75.7)	124 (46.3)

*Women with ovarian cancer diagnosis after 2001 were excluded due to incomplete survival data. **High-risk epithelial tumours included serous and endometroid adenocarcinomas, anaplastic, small cell and poorly differentiated carcinomas. *Medium-risk epithelial tumours included mucinous adenocarcinomas, clear cell carcinomas and mesonephroid cancers.
diagnosed 2002 and later were not included in the survival analyses. Patients with ovarian sarcomas had the poorest 5-year survival rate (21%); followed by high-risk epithelial and medium-risk epithelial tumours. Patients with germ cell and stroma cell tumours had a high 5-year survival rate of 86–89%.

Analysis of co-morbidity

Table 2 demonstrates the relative prevalence of 13 categories of co-morbidity diagnoses from 10 years before until 30 days after ovarian cancer diagnosis compared with controls. Results indicated that 11 out of 13 of the pre-defined diagnosis groups were more common among ovarian cancer patients than controls. The highest OR for ovarian cancer patients was seen for; haematologic complications (anaemia, neutropenia and thrombocytopenia), with an OR = 3.6 and a prevalence of 4.7% in ovarian cancer patients, thromboembolism (OR = 2.2, prevalence 3.2%), haematologic complications (OR = 1.6), GI complications (OR = 1.5) and liver/pancreatic disease (OR = 1.3) (Table 2). When excluding co-morbidity diagnosed within 90 days before the ovarian cancer diagnosis, only the risk of liver and pancreatic disease (OR = 1.4) was statistically significant elevated (Table 2).

Analyses of prevalent co-morbidity in patients with high-risk and medium-risk epithelial tumours compared with controls are presented in Table 3. The results were overall similar between the two histological groups.

Table 4 demonstrates the relative incidence of co-morbidity among women with ovarian cancer. We detected several increased co-morbidity conditions at time of diagnosis.

DISCUSSION

This study is to our knowledge the largest population-based study of co-morbidity among women with ovarian cancer. We detected several increased co-morbidity conditions at time of diagnosis.
of ovarian cancer compared with the general population. When disregarding diagnoses within 90 days of cancer diagnosis, the differences of co-morbidities between cancer patients and general population almost disappeared. The increased incidence of haematologic, thromboembolic and GI complication was most pronounced the first year after ovarian cancer diagnosis, whereas risks of the most other diagnosis groups were increased the whole follow-up period.

Abdominal pain, swelling and nausea are the most common symptoms in ovarian cancer (Bankhead et al, 2005; Hippisley-Cox and Coupland, 2012) and might mimic GI disease and liver/gall bladder disease which were common diagnoses among the ovarian cancer patients in the present study. Urinary tract symptoms are also frequent at diagnosis of ovarian cancer (Bankhead et al, 2005), which was in line with our findings of increased prevalence of such complications close to cancer diagnosis. It is of great clinical importance that the diagnosis of the underlying cancer is not delayed in women with common symptoms from the GI or urinary tract. The prevalence of thromboembolism and anaemia was more delayed in women with common symptoms from the GI or urinary tract. The prevalence of such diagnoses among the ovarian cancer patients was significantly increased in patients with high-risk tumours only. The prevalence of cardiovascular disease and urinary tract complications was significantly increased in patients with high-risk tumours only.

Well-known complications in ovarian cancer patients related to treatment and the disease itself are bone marrow suppression, GI problems and thromboembolism. These conditions peaked the first year after diagnosis as expected, but were still significantly increased the following years. This indicates either long-term complications due to treatment or that the cancer itself might cause these problems. In the present study, 11% of the cancer patients developed haematologic complications during the follow-up period, which is a lower frequency than expected (Nurgalieva et al, 2010), and must be interpreted as an omission to report these expected findings.

A potential bias in the study was that a cancer diagnosis usually was preceded as well as followed by a period of hospital care due to diagnostic procedures, treatment, symptoms and sometimes complications. The increased probability to detect other conditions (surveillance bias) might influence the comparison with the general population. In this study, we tried to overcome these methodological obstacles by various sensitivity analyses. In the model we disregarded admissions up to 90 days before the ovarian cancer diagnosis, in order to assess the impact of diagnoses being a potential consequence of the ovarian cancer in occult form, or an effect of the increased diagnostic intensity due to the developing ovarian cancer symptoms before registered diagnosis. In the other prevalence analysis model, we included primary diagnoses only in order to include only the most clinically important diagnoses. These two adjustments increased the specificity of diagnosis, although at the price of decreased sensitivity. In the studies of incidence, we excluded all patient with a prevalent co-morbidity diagnosis in order to assess “true incident” occurrence of a diagnosis (i.e., new cases in previously healthy patients), in order to avoid potential bias of incidences and HRs due to detection of recurring conditions or registration of chronic conditions. These exclusions had no major effects on the results and it should be noted that the start of follow-up was 30 days after cancer diagnosis.

The increased probability to detect other conditions (surveillance bias) might influence the comparison with the general population. In the model we disregarded admissions up to 90 days before the ovarian cancer diagnosis, in order to assess the impact of diagnoses being a potential consequence of the ovarian cancer in occult form, or an effect of the increased diagnostic intensity due to the developing ovarian cancer symptoms before registered diagnosis. In the other prevalence analysis model, we included primary diagnoses only in order to include only the most clinically important diagnoses. These two adjustments increased the specificity of diagnosis, although at the price of decreased sensitivity. In the studies of incidence, we excluded all patient with a prevalent co-morbidity diagnosis in order to assess “true incident” occurrence of a diagnosis (i.e., new cases in previously healthy patients), in order to avoid potential bias of incidences and HRs due to detection of recurring conditions or registration of chronic conditions. These exclusions had no major effects on the results and it should be noted that the start of follow-up was 30 days after cancer diagnosis.

Since the risk of developing ovarian cancer and co-morbidity may vary with other factors in life, such as socioeconomic status, parity and ethnicity (Jensen et al, 2008; Mousavi et al, 2011) these parameters might have a confounding influence on our results. In this large study population, we did not have access to all this information; however, our results show that the spectrum of diseases between groups was similar >3 months before diagnoses and this speaks against a major bias.

We did not have access to data on FIGO stage of the diagnosed cancer. To approximate the influence of the malignant potential of the ovarian cancer, we performed subgroup analyses according to histological subtype in epithelial tumours. The tumour type in the medium-risk group (mucinous adenocarcinomas, clear cell carcinomas and mesonephroid cancers) is more often diagnosed in an early stage than the high-risk tumours (seropapillar, endometroid and poorly differentiated tumours) (Bjorge et al, 1998). Although the differences between the histological types were minor, the prevalence of cardiovascular disease and urinary tract complications was significantly increased in patients with high-risk tumours only.

The Swedish Patient Register does not historically include diagnoses from outpatient care during the study period. This might lead to underestimation of new emergent conditions, such as hypertension, thyroid disease and diabetes in the control group and might explain the increased prevalence of these conditions close to cancer diagnosis. However, diagnosing of these conditions earlier than 3 months before cancer diagnosis should not differ between cancer cases and controls. Patients with acute conditions such as thrombosis and cerebrovascular events are most likely to be hospitalised and are therefore less likely to introduce bias.

An association between hypertension or alternatively hypertensive drugs and cancer, including ovarian cancer, has previously been found (Peeters et al, 1998; Grossman et al, 2002; Assimes and Suissa, 2009; Largent et al, 2010). In addition, diabetes mellitus has been suggested as a risk factor for ovarian cancer as well as other cancers (Swedlow et al, 2005; Inoue et al, 2006; Hemminki et al, 2010).

Table 4

Co-morbidity	All years of follow-up	First year of follow-up	Excluding prevalent cases			
	Cases/controls	HR 95% CI	Cases/controls	HR 95% CI	Cases/controls	HR 95% CI
Haematologic complications	123/1384	8.6 (7.9–9.3)	729/186	23.4 (19.9–27.6)	1114/1285	8.8 (8.0–9.5)
Thyroid disease	197/1122	1.8 (1.5–2.0)	93/150	3.7 (2.9–4.8)	129/969	1.4 (1.2–1.7)
Cardiovascular disease	1219/7630	1.6 (1.5–1.7)	536/1495	2.2 (2.0–2.4)	773/5429	1.5 (1.4–1.6)
Cerebrovascular event	357/3156	1.2 (1.1–1.3)	114/442	1.6 (1.3–2.0)	320/2814	1.2 (1.1–1.4)
Thromboembolic events	824/959	1.9 (1.7–2.1)	391/152	1.4 (1.3–1.8)	743/882	1.9 (1.2–1.8)
Hypertension	911/5544	1.7 (1.6–1.8)	100/331	1.4 (1.2–2.2)	514/4530	1.3 (1.2–1.4)
Pulmonary disease	281/1628	1.6 (1.4–1.8)	3/17	1.1 (0.3–3.6)	234/2819	1.9 (1.6–2.1)
GI complications	1938/2436	7.2 (6.8–7.7)	762/486	9.2 (8.2–10.3)	1647/1936	8.7 (7.8–8.8)
Diabetes mellitus	507/2540	1.8 (1.6–2.0)	280/544	3.1 (2.7–3.6)	231/1704	1.4 (1.2–1.6)
Liver/pancreatic disease	99/605	1.6 (1.3–2.0)	32/84	2.3 (1.3–3.4)	89/560	1.6 (1.3–2.0)
Urinary tract complications	207/631	3.3 (2.8–3.9)	75/93	5.0 (3.6–6.8)	193/571	3.6 (3.0–4.2)
Infectious complications	1055/3499	3.0 (2.8–3.2)	459/505	5.4 (4.8–6.2)	959/3114	3.2 (3.0–3.5)
Neoplasms	124/512	2.4 (2.0–2.9)	44/72	3.5 (2.4–5.1)	369/2408	1.5 (1.3–1.6)

Abbreviation: GI = gastrointestinal. *End of follow-up was the first date of an admission with the diagnosis of interest, date of death, date of ovarian cancer diagnosis for a control subject, or 31 December 2006, whichever came first. †Follow-up started 30 days after cancer diagnosis. ‡The prevalence was defined as having one of the selected diseases either as a primary or as a secondary discharge diagnosis from 10 years before the ovarian cancer diagnosis up to 30 days after.
We saw an increased prevalence of hypertension as well as diabetes mellitus in women developing ovarian cancer, but the differences disappeared when disregarding the period of 90 days before cancer diagnosis. The same pattern was seen for cardiovascular disease, thyroid disease and infections. When measuring incidence of co-morbidity from cancer diagnosis and forward, the pattern was slightly different with an increased risk of most internal medicine diagnoses studied among cancer patients. Whether this risk increase is associated with the disease or the treatment cannot be resolved in this study, but it is of clinical importance since it contributes to mortality and morbidity in cancer patients (van de Poll-Franse et al, 2007; Stewart et al, 2010).

CONCLUSION
Our study illustrates the essentiality of defining co-morbidity related to time window around the cancer diagnosis. Our results indicate that women developing ovarian cancer do not have higher overall morbidity than other women earlier than 3 months preceding cancer diagnosis. However, at time of diagnosis 11 of 13 prevalent diagnosis groups were more common among ovarian cancer patients, but this might be influenced by surveillance bias or early cancer symptoms. The incidence of many common diagnoses as well as other cancers was increased several years following the ovarian cancer.

REFERENCES
Assimes TL, Suissa S (2009) Age at incident treatment of hypertension and risk of cancer: a population study. Cancer Causes Control 20(10): 1811–1820
Bankhead CR, Keohoe ST, Austoker J (2005) Symptoms associated with diagnosis of ovarian cancer: a systematic review. BJOG 112: 857–865
Barlow L, Westergren K, Holmberg L, Talback M (2009) The completeness of the Swedish Cancer Register: a sample survey for year 1998. Acta Oncol 48: 27–33
Bjorge T, Engeland A, Hansen S, Trope CG (1998) Prognosis of patients with ovarian cancer and borderline tumours diagnosed in Norway between 1954 and 1993. Int J Cancer 75: 663–670
Clovenzzz NG, Manetta A, Berman ML, Kohler MF, DiSaia PJ (1999) Management of ovarian cancer in patients older than 80 years of age. Gynecol Oncol 73: 137–139
de Groot V, Beckerman H, Lankhorst GJ, Bouter LM (2003) How to measure comorbidity, a critical review of available methods. J Clin Epidemiol 56: 221–229
Eliot LM, Bondy SJ, Paszat LP, Thomas GM, Stukel TA, Levine MN (2008) Survival outcomes in women with ovarian cancer. Can J Surg 51: 346–354
Engholm G, Ferlay J, Christensen N, Bray F, Gjerstorff Marianne L, Klint Å, Kørum Jønæs E, Olausdottir Elinborg, Pukkala E, Storm HH (2010) NORDCAN: Cancer Incidence, Mortality, Prevalence and Prediction in the Nordic Countries. Danish Cancer Society. Available at: www.anrnc.nu
Fader AN, von Gruenigen V, Gibbons H, Abushahin F, Starks D, Markman M, Belinson J, Rose P (2008) Improved tolerance of primary chemotherapy with reduced-dose carboplatin and paclitaxel in elderly ovarian cancer patients. Gynecol Oncol 109: 33–38
Grossman E, Messerli FH, Boyko V, Goldbourt U (2002) Is there an association between hypertension and cancer mortality? Am J Med 112: 479–486
Hemminki K, Li X, Sundquist J, Sundquist K (2010) Risk of cancer following hospitalization for type 2 diabetes. Oncologist 15: 548–555
Hippsley-Cox J, Coupland C (2012) Identifying women with suspected ovarian cancer in primary care: derivation and validation of algorithm. BMJ 344: d8009
Inoue M, Iwasaki M, Otani T, Sasazuki S, Noda M, Tsugane S (2006) Evaluation of prevalent and incident ovarian cancer co-morbidity. J Epidemiol 16: 1871–1877
Inoue M, Iwasaki M, Otani T, Sasazuki S, Noda M, Tsugane S (2006) Social inequality and incidence of and survival from cancer of the female genital organs in a population-based study in Denmark, 1994–2003. Eur J Cancer 44: 2003–2017
Klint A, Tryggvadottir L, Bray F, Gislum M, Hakulinen T, Storm HH, Engholm G (2010) Trends in the survival of patients diagnosed with cancer in female genital organs in the Nordic countries 1964–2003 followed up to the end of 2006. Acta Oncol 49: 632–643
Largent JA, Bernstein L, Horn-Ross PL, Marshall SF, Neuhausen S, Reynolds P, Ursin G, Zell JA, Ziogas A, Anton-Culver H (2010) Hypertension, antihypertensive medication use, and breast cancer risk in the California Teachers Study cohort. Cancer Causes Control 21: 1615–1624
Mousavi SM, Sundquist K, Hemminki K (2011) Morbidity and mortality in gynecological cancers among first- and second-generation immigrants in Sweden. Int J Cancer; e-pub ahead of print 26 August 2011; doi:10.1002/ijc.26395
Nurgalieva Z, Liu CC, Du XL (2010) Chemotherapy use and risk of bone marrow suppression in a large population-based cohort of older women with breast and ovarian cancer. Med Oncol 28(3): 716–725
Peeters PH, van Noord PA, Hoes AW, Grobbee DE (1998) Hypertension, antihypertensive drugs, and mortality from cancer among women. J Hypertens 16: 941–947
Stewart S, Ekman I, Ekman T, Oden A, Rosengren A (2010) Population impact of heart failure and the most common forms of cancer: a study of 1 162 309 hospital cases in Sweden (1988 to 2004). Circ Cardiovasc Qual Outcomes 3: 573–580
Storm HH, Engholm G, Hakulinen T, Tryggvadottir L, Klint A, Gislum M, Kejs AM, Bray F (2010) Survival of patients diagnosed with cancer in the Nordic countries up to 1999–2003 followed to the end of 2006. A critical overview of the results. Acta Oncol 49: 532–544
Swerdlow AJ, Laing SP, Qiao Z, Slater SD, Botha JL, Waugh NR, Morris AD, Gatling W, Gale EA, Patterson CC, Keen H (2005) Cancer incidence and mortality in patients with insulin-treated diabetes: a UK cohort study. Br J Cancer 92: 2070–2075
van de Poll-Franse LV, Houterman S, Jansen-Heijnen ML, Dercks MW, Coebergh JW, Haak HR (2007) Less aggressive treatment and worse overall survival in cancer patients with diabetes: a large population-based analysis. Int J Cancer 120: 1986–1992

APPENDIX
Table A1 Definition of co-morbidity subgroups (ICD-codes)

ICD-9	ICD-10
Anemia	D50, D59, D61, D62, D63, D640–D643
Neutroleukopenia	D67, D72
Myeloblastic syndrome	D46
Thrombocytopenia	D68, D693–D696
Thyroid disease	
Hyperthyroidism	
Hypothyroidism	
Diabetes mellitus	

Evaluation of prevalent and incident ovarian cancer co-morbidity
K Stålberg et al

British Journal of Cancer (2012) 106(11), 1860 – 1865 © 2012 Cancer Research UK
Table A1 (Continued)

Category	ICD-9	ICD-10
Cardiovascular disease		
Cardiac dysrhythmias	427	I460, I469, I47–I49
Coronary artery disease	410–414	I20–I22, I24–I25
Heart failure	514, 428, 5184	I50, J81
Myocardial infarction	410, 412	I21–I22, I252
Cerebrovascular event		
CNS haemorrhages	430–432	I60–I62
Cerebrovascular accident	433–435	G45, 163, 165–166
Thromboembolic events		
Deep vein thrombosis	4511–4512, 4518, 452–453	I801–I803, I808, I81–I82
Pulmonary embolism	4151	I69
Hypertension		
Hypertension	401, 4020, 4021, 4029, 4030, 4031, 4039, 4040, 4041, 4049, 4050	I10–I13, I15
Pulmonary disease		
Interstitial lung disease, narrow	515–516	J84
Interstitial lung disease, broad	4959, 501–505, 5060, 5064, 5081, 5088, 515–516, 5172, 5178, 5183	J61–J64, J66, J679, J680, J684, J701–J704, J708, J82, J84, J991
ILD, spec. idiopathic fibrosing alveolitis	5163	
Chronic obstructive pulmonary disease	4789, 4910, 4911, 4912, 4918, 4919, 492, 496	J41–J44
Respiratory insufficiency	4787, 5070, 514, 5183, 5184, 5185, 5190, 7991, 9973	J80, J81, J95, J96
GI complications		
Fistula, Gl	5374, 5651, 5751, 5764, 5961, 5439, 5698	K316, N321, K383, K603–K605, K633, K823, K833
Gl haemorrhage, lower	5620–5621, 578	K57, K920–K922
Gl haemorrhage, upper	5302, 5310, 5312, 5314, 5316, 5320, 5322, 5324, 5326, 5330, 5332, 5334, 5336, 5340, 5342, 5344, 5346, 5780	K250, K252, K254, K256, K260, K262, K264, K266, K221, K270, K272, K274, K276, K280, K282, K284, K286, K228, K520–K522
Gl perforation, oesophagus	5304, 2500–2507, 2509, 2510	E14, K223
Gl perforation, intestine	5400, 5671, 5672, 5679, 5678, 5688, 5698, 5778, 5733	K631, K65
Paralytic ileus, intestinal obstruction	560	K56
Diabetes mellitus	250	
Liver/pancreatic disease		
Liver disease, biliary	575–576	K81–K83
Liver disease, hepatitis	570, 5733	K720, K71
Pancreatitis	5770–5771	K85, K860–K861
Urinary tract complications		E10–E11
Fistula genitourinary	5962, 5991, 619	
Renal failure	584–586	N322, N360, N82
Proteinuria	7910, 5936	N17–N19
Infectious complications		
Sepsis	038	A40–A41
Pneumonia	481–483, 485–486	J13, J15, J16, J18
Pyelonephritis	3901	N10
Wound healing	9981, 5983	T813
Neoplasms	410–182, 184–239	

Abbreviation: Gl = gastrointestinal.

This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License.