Replicate whole-genome next-generation sequencing data derived from Caucasian donor saliva samples

Hansen, Marcus Høy; Nyvold, Charlotte Guldborg

Published in:
Data in Brief

DOI:
10.1016/j.dib.2021.107349

Publication date:
2021

Document version:
Final published version

Document license:
CC BY

Citation for published version (APA):
Hansen, M. H., & Nyvold, C. G. (2021). Replicate whole-genome next-generation sequencing data derived from Caucasian donor saliva samples. Data in Brief, 38, [107349]. https://doi.org/10.1016/j.dib.2021.107349

Go to publication entry in University of Southern Denmark's Research Portal

Terms of use
This work is brought to you by the University of Southern Denmark. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

- You may download this work for personal use only.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying this open access version.

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 30. Sep. 2023
Data Article

Replicate whole-genome next-generation sequencing data derived from Caucasian donor saliva samples

Marcus Høy Hansen, Charlotte Guldborg Nyvold

Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark

Department of Hematology, Odense University Hospital, Odense, Denmark

A R T I C L E I N F O

Article history:
Received 26 May 2021
Revised 13 July 2021
Accepted 13 August 2021
Available online 4 September 2021

Keywords:
Whole-genome
Homo Sapiens genome
Next-generation sequencing (NGS)
DNA sequencing
Raw data replicate

A B S T R A C T

Next-generation sequencing (NGS) of whole genomes has become more accessible to biomedical researchers as the sequencing price continues to drop, and more laboratories have NGS facilities or have access to a core facility. However, the rapid and robust development of practical bioinformatics pipelines partly depends on convenient access to data for the testing of algorithms. Publicly available data sets constitute a part of this strategy. Here, we provide a triplicate whole-genome paired-end sequencing data set, consisting of 1.38 billion raw sequencing reads derived from saliva DNA from a single anonymous male Caucasian donor, with the average sequencing depths aimed at 30x for two of the samples and 4x for a low-coverage sample. The raw number of single nucleotide variants were 3.3–4 million and the median variant read depth of GATK4-passed variants in three samples was 22, 18, and 10. 81% of all variants were found in two or three of the samples, whereas 19% were singletons. The karyotype was evaluated as 46,XY with no apparent copy-number variation.

The data set is provided without restrictions for research, educational or commercial purposes.

* Corresponding author at: Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark.

E-mail address: marcus.hoy.hansen@rsyd.dk (M.H. Hansen).

Social media: (M.H. Hansen)

https://doi.org/10.1016/j.dib.2021.107349

2352-3409/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Specifications Table

Subject	Health and medical sciences
Specific subject area	Human genome, triplicate raw control DNA sequence data for evaluation or educational purpose
Type of data	Triplicate paired-end DNA sequencing reads from Illumina Novaseq 6000 provided in compressed FastQ format (3 × 2 files available for download)
How data were acquired	See data collection
Data format	Raw gzipped sequencing data in the FASTQ format available in online repository.
Parameters for data collection	Not applicable
Description of data collection	Saliva was obtained from the donor, with approximately one year from the first sample to the third sampling. DNA purification and sequencing were performed in separate batches. Raw data is provided as obtained by the sequencing provider (Dante-Labs, L’Aquila, Italy)
Data source location	Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
Data accessibility	The data set is deposited in a public repository. Data are directly downloadable without access restrictions.
Repository name:	figshare (figshare.com)
Data identification numbers:	Replicate 1–3
Direct URL to data:	https://doi.org/10.6084/m9.figshare.c.5336714

Value of the Data

- The data set provided here is relevant for the continued development and testing of bioinformatics pipelines as whole-genome sequencing become more important in biomedical research.
- Data access is provided by simple download and without restrictions. The triplicate sequencing of a Caucasian male may benefit bioinformaticians, biomedical researchers for testing or as control samples. The data may also be used for educational purposes.
- The raw sequencing data consists of biological replicates of low, medium, and higher coverage, which thus may be used for testing different workflow setups.

1. Data Description

Here, we provide a data collection of samples derived from saliva DNA from a single anonymous male Caucasian donor consisting of triplicate whole-genome paired-end sequencing reads, with 1.38 billion raw reads in total (Fig. 1A), with a mean quality of 36 (SAMtools stats), and approximately 93.4% paired and mappable reads (GRCh37). The combined theoretical mean coverage was estimated to be 63–67x, depending on whether the unadjusted or mapped percentage was implemented, using the Lander and Watermann approach [1,2] for genomic mapping: $C = L \cdot N/G$ (C: coverage, L: read length, N: number of reads, G: genome size). Calculations were based on an average read length of 144, 146, and 148 bp. The median GATK-passed variant read depths of the three were 22, 18, and 10 with 3.3–4 million variants (Fig. 1B), thus representing medium, low and shallow depth in the perspective of contemporary WGS coverage. 81% of all GATK4-passed variants (see provided workflow), 4.2 million in total, were found in two
or three of the samples and 19% in singletons (Fig. 1C). In agreement with previously reported results [3], the total number of unique single nucleotide variants were approximately 4 million. The karyotype was evaluated as 46,XY with no noticeable copy-number variation (CNV) detected (Fig. 1D). We note that the number of variants will vary according to user-specified workflow.

The data set is provided without restrictions for research, educational or commercial purposes. Additional replicates may be added to the repository for future usage. Please cite appropriately.

2. Experimental Design, Materials and Methods

Biological material was collected using GeneFiX Saliva DNA collection kits and stored at ambient temperature. DNA extraction, quality control, library preparation, and sequencing were performed by the sequencing provider (Dante-Labs, L’Aquila, Italy) over the time span of approximately one year from replicate 1 to 3. For the assessment shown here, alignment implemented Burrows-Wheeler Aligner [4] with the human reference genome GRCh38 and Genome Analysis Toolkit 4.1.9 [5]. Variant calling was based on deduplicated sequencing with the provided workflow. Quality was assessed with SAMtools stat/flagstat [6] and FastQC [7]. SNP comparisons were
performed in the Wolfram (Mathematica, Wolfram Research, Ill, USA) and the CNV profile was assessed using QDNAseq [8] in R 3.6.1 using Ubuntu 18.04.

Used commandline workflow

```
fn=$(1L_1001_R1_001.fastq.gz)
bwa mem -M -R @RG:tID:group1:tSM:$fn:tPL:illumina:tLB:lib1:tPU:unit1" -t 23
gatk MarkDuplicatesSpark \
  -I fn.bam \
  -O fn.dedup.bam \
  --remove-sequencing-duplicates
gatk BaseRecalibrator \
  -I fn.dedup.bam \
  -R hg38/Homo_sapiens_assembly38.fasta \
  --known-sites hg38/1000G_phase1.snps.high_confidence.hg38.vcf.gz \
  --known-sites hg38/Homo_sapiens_assembly38.dbsnp138.vcf 
  --known-sites hg38/1000G_phase1.snps.high_confidence.hg38.vcf.gz 
  -O fn.recal1.table
gatk ApplyBQSR \
  -I fn.dedup.bam \
  -R hg38/Homo_sapiens_assembly38.fasta \
  --bqsr-recal-file fn.recal1.table 
  -O fn.dedup.recal.bam
gatk HaplotypeCaller \
  --native-pair-hmm-threads 23 \
  -R hg38/Homo_sapiens_assembly38.fasta \
  -I fn.dedup.recal.bam \
  -dbsnp hg38/Homo_sapiens_assembly38.dbsnp138.vcf 
  -O fn.mnvs.vcf
gatk SelectVariants \
  -R hg38/Homo_sapiens_assembly38.fasta \
  -V fn.mnvs.vcf \
  --select-type-to-include SNP 
  -O fn.SNP.vcf
gatk VariantRecalibrator \
  -R hg38/Homo_sapiens_assembly38.fasta \
  -V fn.SNP.vcf \
  --resource:hapmap,known=false,training=true,truth=true,prior=15.0,hapmap_3.3.hg38.vcf \
  --resource:1000G,known=false,training=true,truth=true,prior=12.0,hg38/1000G Omni2.5.hg38.vcf \
  --resource:1000G,known=false,training=true,truth=false,prior=10.0,hg38/1000G_phase1.snps.high_confidence.hg38.vcf 
  --resource:dbsnp,known=true,training=false,truth=false,prior=2.0,hg38/Homo_sapiens_assembly38.dbsnp138.vcf \
  -an QD -an MQ -an MQRankSum -an ReadPosRankSum -an FS -an SOR -an DP 
  -mode SNP 
  -O fn.output.recal \
  -tranches-file fn.output.tranches \
  -rscript-file fn.output.plots.R
gatk ApplyVQSR \
  -R hg38/Homo_sapiens_assembly38.fasta \
  -V fn.SNP.vcf \
  -O fn.SNP.filtered.vcf \
  --truth-sensitivity-filter-level 99.5 \
  -tranches-file fn.output.tranches \
  -recal-file fn.output.recal 
  -mode SNP
```

Ethics Statement

Informed consent was obtained concerning the donation of biological material and genomic information. Sequencing was part of a technology assessment using anonymous donor material and does not involve any clinical evaluations or trials. Data is made freely available in order to contribute to the continued development of NGS bioinformatics and for educational purposes.
CRediT Author Statement

Marcus Høy Hansen: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Resources, Data Curation, Writing, Editing, Visualization, Supervision, Project administration, Funding acquisition; **Charlotte Guldborg Nyvold:** Writing, Editing, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships which have or could be perceived to have influenced the work reported in this article. Funding was provided by the first author. Disclaimer: The provided data presentation is deliberately descriptive. *It is not a regular scientific paper.*

Acknowledgments

We thank Dante Labs for the extended assistance with data retrieval.

References

[1] E.S. Lander, M.S. Waterman, Genomic mapping by fingerprinting random clones: a mathematical analysis, Genomics 2 (1988) 231–239.
[2] R. Arratia, E.S. Lander, S. Tavare, M.S. Waterman, Genomic mapping by anchoring random clones: a mathematical analysis, Genomics 11 (1991) 806–827.
[3] A. Auton, L.D. Brooks, et al., Genomes Project C, A global reference for human genetic variation, Nature 526 (2015) 68–74.
[4] H. Li, R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics 25 (2009) 1754–1760.
[5] A. McKenna, M. Hanna, E. Banks, et al., The genome analysis toolkit: a MapReduces framework for analyzing next-generation DNA sequencing data, Genome Res. 20 (2010) 1297–1303.
[6] H. Li, B. Handsaker, A. Wysoker, et al., The sequence alignment/map format and SAMtools, Bioinformatics 25 (2009) 2078–2079.
[7] S. Andrews, A Quality Control Tool for High Throughput Sequence Data, The Babraham Institute, Cambridge, UK, 2010 [ONLINE].
[8] I. Scheinin, D. Sie, H. Bengtsson, et al., DNA copy number analysis of fresh and formalin-fixed specimens by shallow whole-genome sequencing with identification and exclusion of problematic regions in the genome assembly, Genome Res. 24 (2014) 2022–2032.