Transformation by FosB requires a trans-activation domain missing in FosB2 that can be substituted by heterologous activation domains

Ron Wisdom, Jeffrey Yen, Dana Rashid, and Inder M. Verma
Molecular Biology and Virology Laboratory, The Salk Institute, San Diego, California 92186-5800 USA

Two functionally distinct proteins derived from the FosB gene by alternative splicing have recently been described. FosB protein transforms fibroblasts efficiently, whereas FosB2 protein, a carboxy-terminally truncated form of FosB, does not, despite the fact that both proteins can participate in high-affinity, sequence-specific DNA binding as part of a heterodimeric complex with c-Jun protein. We show here that the functional difference between these proteins is the result of the presence of a potent proline-rich transcriptional activation domain in the carboxy-terminal amino acids unique to FosB. This conclusion is supported by three lines of evidence: (1) Mutations in the carboxy-terminal region of FosB that impair transcriptional activation also reduce transforming potential, despite the fact that DNA binding as part of a complex with c-Jun is not affected; (2) the carboxy-terminal region unique to FosB functions as an activation domain when fused to the DNA-binding domain of GAL4; and (3) transforming potential can be conferred on FosB2 by fusing any of several different well-characterized trans-activation domains. These results identify an additional functional requirement for transformation by Fos proteins and have implications for the mechanism(s) of mitogenic signaling by the AP-1 transcription complex.

[Key Words: FosB protein; FosB2 protein; trans-activation domain; transformation]

Received December 17, 1991; revised version accepted February 18, 1992.

Treatment of cells with peptide growth factors induces a cascade of biochemical events that results in cell division. Prominent among these is a rapid increase in the transcription of early response genes, an event that does not require de novo protein synthesis. The early response genes encode several transcription factors that are believed to mediate, at least in part, the cellular response to growth factors. The members of the Fos gene family, including c-Fos, FosB, Fra-1, and Fra-2, are induced by growth factors. The products of these genes form heterodimeric complexes with Jun proteins that bind to and increase transcription from genes that contain phorbol ester (12-O-tetradecanoylphorbol-13-acetate)-responsive elements (TREs) (Angel et al. 1987; Halazonetis et al. 1988, Nakabeppu et al. 1988; Rauscher et al. 1988; Sassone-Corsi et al. 1988; Kouzarides and Ziff 1989; Neuberg et al. 1989; Turner and Tjian 1989). The interactions with Jun and DNA are mediated by discrete domains known as the leucine zipper and basic region, respectively (Halazonetis et al. 1988; Nakabeppu et al. 1988; Rauscher et al. 1988; Sassone-Corsi et al. 1988; Kouzarides and Ziff 1989; Neuberg et al. 1989, Turner and Tjian 1989). Thus, transforming activity is dependent on the integrity of the basic region and leucine zipper (BLZ) motif (Scheurmann et al. 1989). Previous studies have also demonstrated that transformation by Fos proteins requires sequences outside the BLZ motif, including sequences in the carboxyl terminus (Jenuwein and Muller 1987; Lucibello et al. 1991). Although the function of these sequences is not well understood, by analogy with other transcription factors in which the DNA-binding and activation functions are separa-

1Present address: Department of Molecular Biology, Schering-Plough Research, Bloomfield, New Jersey 07002 USA.
Below, they may function as transcriptional activation domains.

Recently, we and others have identified two functionally distinct products derived from the FosB gene by alternative splicing (Dobrzenski et al. 1991; Mumberg et al. 1991; Nakabeppu and Nathans 1991; Yen et al. 1991). FosB protein is a 338-amino-acid protein that was originally identified as the product of the FosB gene, an early response gene with strong homology to c-Fos (Zerial et al. 1989). FosB2 is a 237-amino-acid protein derived from a separate mRNA that is missing the carboxy-terminal 101 amino acids of FosB as a result of an alternate splicing event. We have shown previously that the two messages are coinduced after serum stimulation of starved cells with somewhat delayed kinetics compared with the c-Fos gene (Yen et al. 1991). FosB protein transforms established fibroblasts efficiently, whereas FosB2 protein does not (Mumberg et al. 1991; Yen et al. 1991). Both FosB and FosB2 contain the highly conserved BLZ motif, and both proteins form a heterodimeric complex with c-Jun and bind to DNA in a sequence-specific manner with high affinity. Therefore, the difference in transforming potential between these genes is not the result of inefficient interaction with DNA. In this report we show that the carboxy-terminal 101 amino acids unique to FosB comprise a potent transcriptional activation domain and that the presence or absence of this domain is responsible for the difference in transforming activity between FosB and FosB2. These results identify a functional requirement aside from DNA binding for transformation by Fos proteins. They suggest further that optimal mitogenic signaling by the AP-1 transcription complex requires the presence of an activation domain on the Fos partner.

Results

Transformation by FosB but not FosB2

We and several other groups have recently described the existence of two distinct proteins derived from the FosB gene by alternative splicing (Dobrzenski et al. 1991; Mumberg et al. 1991; Nakabeppu and Nathans 1991; Yen et al. 1991). To analyze the transforming potential of FosB and FosB2 proteins, the respective cDNAs were introduced into the retroviral vector SLX-CMV (Scharffmann et al. 1991). Stocks of recombinant helper-free viruses were used to infect 208F cells, a rodent fibroblast cell line sensitive to transformation by FosB. Infected cells were selected with G418 and expanded as a mass culture. The 208F cells infected with the retroviruses SLX-CMV–FosB or SLX-CMV–FosB2 were used to analyze various parameters related to transformation. Following infection, cells were split and duplicate plates were used to monitor the appearance of foci of transformed cells and G418-resistant colonies. The number of transformed foci in plates of cells infected with the SLX-CMV–FosB virus is approximately equal to the number of G418-resistant colonies, whereas SLX-CMV–FosB2 does not give rise to foci of transformed-appearing cells (Table 1). G418-resistant cells infected with SLX-CMV–FosB display marked morphologic evidence of transformation, with a refractile, rounded appearance, whereas FosB2-expressing cells are indistinguishable from the parental 208F cells (Fig. 1C). Pooled colonies of FosB-expressing cells grow to form large colonies in soft agar, whereas FosB2-expressing colonies do not (data not shown). Thus, by three different criteria, morphology, focus formation, and anchorage-independent growth, FosB, and not FosB2, transforms 208F fibroblasts efficiently.

The carboxy-terminal region of FosB is required for transformation

The structural differences between FosB and FosB2, shown schematically in Figure 2, must underlie the distinct biologic properties of these two proteins. We have shown previously that both proteins can bind to DNA in a sequence-specific manner as part of a heterodimeric complex with c-Jun protein (Yen et al. 1991). This result is not unexpected, as both proteins contain the conserved BLZ region that mediates these interactions. Therefore, complex formation and DNA binding do not explain the biologic difference between these proteins. The carboxy-terminal region unique to FosB contains a proline-rich segment similar to the activation domains of some transcription factors (Mermod et al. 1989). To define sequences in the carboxy-terminal region of FosB required for transformation, FosB genes encoding mutations in the carboxy-terminal 101 amino acids were generated. The mutations correspond to a deletion of the amino acids encoded by the alternate intron (D238-284), a deletion of amino acids encoded by sequences downstream of the alternate intron (284–338), and deletion of a proline-rich stretch (10 of 18 residues, including 7 consecutive prolines; see Fig. 2) encoded within the intron. Coupled in vitro transcription and translation of the mutant genes showed that all constructs produced proteins of the expected size (data not shown). Electrophoretic mobility-shift assays (EMSAs) showed that all of the mutant proteins can bind to DNA containing AP-1 sites as part of a heterodimeric complex with c-Jun (Fig. 3). Therefore, any difference in the biologic activity of these mutant proteins is not the result of altered DNA-binding activity.

668 GENES & DEVELOPMENT
Figure 1. Expression of FosB and FosB2 in infected 208F cells. (A) RNA expression in infected 208F cells. RNA was isolated from uninfected 208F cells and G418-resistant 208F cells infected with recombinant retroviruses containing the FosB or FosB2 cDNAs. Northern blotting and hybridization with a FosB probe shows the presence of three transcripts from virally infected cells. In the original autoradiograph, faint bands of 4.6–4.8 kb, corresponding to unspliced transcripts originating from the long terminal repeat (LTR), are observed. A schematic of the transcripts generated in FosB-infected cells is shown below. The corresponding transcripts in FosB2-infected cells are all ~140 nucleotides shorter. (B) Immunoprecipitation of FosB proteins in infected 208F cells. Exponentially growing infected 208F cells and uninfected 208F cells stimulated with serum were labeled with 35S-labeled amino acids for 90 min. Extracts of labeled cells were incubated with antisera directed against a peptide comprised of FosB amino acids 80–96 in either the absence (−) or presence (+) of competing peptide, and the immunoprecipitate was separated by SDS-PAGE. The extracts were boiled before immunoprecipitation so that Jun peptides, which migrate very close to FosB on SDS-PAGE, would not be visualized. (C) Phase-contrast photomicrographs of 208F cells and infected cells expressing FosB or FosB2. Original magnification, 160×.
The carboxy-terminal region of FosB contains a trans-activation domain

The strong correlation between transcriptional activation of the transin gene and neoplastic transformation suggests that the carboxy-terminal domain unique to FosB constitutes a functional activation domain. We have tested this hypothesis in two ways. First, we have linked the carboxy-terminal 113 amino acids of FosB to the DNA-binding domain of the well-characterized transcriptional activator GAL4 (Kakidani and Ptashne 1988; Sadowski and Ptashne 1989) and tested the ability of the resulting fusion protein to activate transcription of reporter constructs containing GAL4-binding sites. The GAL4–FosB[226-338] fusion protein is a transcriptional activator, with ∼20–30% the activity of GAL4–VP16 (Sadowski et al. 1988) [Fig. 5]. GAL4–FosB[226-284] retains ∼50% of the activity of the parental construct, whereas GAL4–FosB[284-338] does not display detectable activity [Fig. 5]. These results demonstrate that the carboxy-terminal domain unique to FosB can function as a trans-activation domain when linked to a heterologous DNA-binding domain. Furthermore, the sequence shown to be required for transcriptional activation and transformation in FosB is required for efficient activation when linked to GAL4. In both contexts, the presence of the amino acids encoded by the alternate intron, which includes the proline-rich segment, is required to maintain functional activity.

Functional substitution by heterologous trans-activation domains

Many studies have demonstrated an ability of transcriptional activation domains to function in a context other than the native protein. If the difference in transforming potential between FosB and FosB2 is the result of the presence of a transcriptional activation domain in FosB, then it should be possible to create chimeric transforming genes by fusing heterologous activation domains onto FosB2. To test this hypothesis, chimeric genes were constructed in which FosB2 sequences were fused to sequences encoding the well-characterized trans-activation domains from VP16, CTF/NF1, and SP1 (Courey and Tjian 1988; Triezenberg et al. 1988; Mermod et al. 1989). These trans-activation domains are representative of the acidic, proline-rich, and glutamine-rich classes, respectively. The fusion genes were tested for their ability to induce neoplastic transformation in focus-forming assays [Table 2]. All of the fusion genes scored positive in the transformation assays, FosB2–CTF and FosB2–SP1 each had ∼20% the activity of FosB, whereas FosB2–VP16 induced transformation approximately as efficiently as FosB. Not all sequences can convert FosB2 into a transforming gene; a random segment of Escherichia coli DNA encoding a 68-amino-acid open reading frame was inactive [data not shown]. Furthermore, transformation by FosB2–VP16 requires the ability to interact with c-Jun, as a derivative of this construct with a deletion of the leucine zipper domain did not

Table 1. Focus-forming activity of FosB proteins

Virus	Foci/plate	G418' colonies/plate	Transforming activity (%)	Transin mRNA (%)
None	0	0	NA	0
FosB	132	120	100	100
FosB2	0	163	0	12
D237-284	0	287	0	3
D284-338	42	152	27	35
D256-275	2	111	2	4

Focus-forming activity was measured by infecting 208F cells with different FosB viruses. Duplicate plates were then analyzed for the appearance of transformed foci and G418-resistant colonies as described. Each data point represents the average of two separate experiments. The transforming activity was calculated by dividing the number of foci by the number of G418-resistant colonies; the activity is expressed as percentage, with the activity of FosB virus arbitrarily assigned a value of 100. Transcriptional activation is generated from densitometric analysis of the autoradiograph shown in Fig. 4C, with a value of 100% assigned to FosB-infected cells and 0% assigned to uninfected 208F cells.

The mutant cDNAs were cloned into the SLX-CMV vector, and recombinant virus stocks were used to infect 208F cells as described. G418-resistant cells were expanded as a mass culture and analyzed for expression of FosB mRNA by Northern blotting [Fig. 4A]. Each of the mutant viruses directed the expression of approximately equal amounts of FosB mRNA. Immunoprecipitation of metabolically labeled COS cells transfected with the mutant cDNAs showed that proteins of the expected sizes were expressed at approximately equal levels, except for mutant D284-338, which was expressed at a level several fold lower [Fig. 4B]. Focus assays were performed with cells infected with the mutant viruses as described. Mutant D284-338 induced focus formation at 27% the level of the wild-type FosB virus, whereas mutants D237-284 and D256-275 induced transformation at 0% and 2% the level of FosB, respectively [Table 1]. These results demonstrate that transforming activity is strongly dependent on the presence of amino acids encoded within the alternate intron. The transin gene encodes an extracellular matrix-degrading enzyme and has been shown to be a direct target of transcriptional activation by the Fos–Jun complex [Matrisian et al. 1986; Kerr et al. 1988]. As a measure of transcriptional activation by FosB, we analyzed the amount of transin mRNA in stably infected cells by Northern analysis [Fig. 4C]. Quantitation of transin mRNA levels as determined by scanning densitometry is shown in Table 1. We consistently observe a small increase in transin mRNA in FosB2-infected cells compared with uninfected 208F cells, suggesting that FosB2 is not totally deficient in transcriptional activation. Nonetheless, it is clear that the level of transin mRNA is greatly increased in FosB-infected cells compared with FosB2-infected cells [Fig. 4C].
FosB trans-activation domain

Figure 2. Schematic diagram of the structures of FosB and FosB2 proteins. FosB and FosB2 are identical in amino acids 1–237, including the BLZ motif, which is highly conserved among Fos family members (amino acids 142–211). Because of an alternate splicing event, translation of FosB2 is terminated after amino acid 237, whereas FosB contains a unique 101-amino-acid carboxy-terminal extension. The carboxy-terminal extension of FosB consists of amino acids encoded within the alternate intron (amino acids 238–284; stippled box), and amino acids encoded downstream of the intron (amino acids 285–338; hatched box). The amino acid sequence of this region is shown, the brackets designate the amino acids encoded within the alternate intron. The proline-rich segment is shown in boldface type; the numbers refer to amino acid position.

induce transformation (data not shown). Northern analysis of RNA from infected cells again revealed a strong correlation between expression of transin mRNA and transforming potential [Fig. 6B], supporting the hypothesis that transcriptional activation is the mechanism of transformation by FosB. We conclude that fusion of three different well-characterized activation domains can confer transforming activity on FosB2.

Discussion

The existence of two functionally distinct proteins from the FosB gene has been described recently. FosB efficiently transforms established rodent fibroblasts, whereas FosB2, a truncated form of FosB generated by alternate splicing, does not [Mumberg et al. 1991; Yen et al. 1991]. Three lines of evidence support the conclusion that the difference between FosB and FosB2 with regard to transforming activity is the result of the presence of a strong transcriptional activation domain in the carboxy-terminal region unique to FosB. First, mutants in this region with impaired induction of transin mRNA expression also show diminished transforming potential. Second, this region functions as a trans-activation domain when linked to the DNA-binding domain of GAL4, and mutations of the fusion gene corresponding to those in the native FosB molecule have similar effects on transcriptional activation in either context. Finally, fusion of three different well-characterized trans-activation domains can confer transforming potential on FosB2. The activation domain that we have identified contains many proline residues, similar to the proline-rich activation domain in the transcription factor CTF-1 [Mermod et al. 1989], and our experiments demonstrate an important role for the proline residues in mediating the activation function. The biochemical interaction in which this domain directly participates remain to be elucidated.

An absolute requirement for the presence of the BLZ motif for transformation by Fos proteins has been demonstrated previously [Neuberg et al. 1989; Scheurmann et al. 1989]. In addition, it has been shown that se-

Figure 3. FosB mutants form DNA-binding complexes with c-Jun. Mutant FosB proteins were mixed with c-Jun protein generated by in vitro translation in rabbit reticulocyte lysate. The proteins were then incubated with a 32P-labeled 20-bp fragment corresponding to the human collagenase gene AP-1 site, and complexes were resolved by electrophoresis on non-denaturing polyacrylamide gels. The mutant FosB proteins are named according to the deleted amino acids. The arrow designates the position of the specific FosB/c-Jun complex. In addition, a more rapidly migrating complex is formed from proteins present in the reticulocyte lysate.
sequences outside the BLZ region are required for transformation by v-fos, including sequences in the carboxyl terminus (Jenuwein and Muller 1987; Lucibello et al. 1991). The inability of FosB2 and carboxy-terminally truncated v-Fos mutants to induce transformation shows that high-affinity DNA binding is not sufficient to induce transformation. Our studies extend previous work by demonstrating the requirement for a functional domain outside the BLZ motif. It has been shown previously that v-Fos and c-Fos also contain transcriptional activation domains (Lech et al. 1988; Abate et al. 1990). FosB, c-Fos, and v-Fos are all highly divergent in their carboxy-terminal regions, and it is tempting to speculate that the increased transforming potential of v-Fos is the result of the presence of a stronger transcriptional activation domain in this region.

These results have important implications with regard to mitogenic signaling by the AP-1 complex, which is composed of both homodimeric Jun complexes and heterodimeric Fos–Jun complexes. It is clear that dimer formation and, hence, DNA binding, is increased by the presence of Fos protein, but the importance of trans-activation domains contributed by the various partners has been difficult to establish. If one assumes that transformation is the result of prolonged mitogenic stimulation by the AP-1 complex, it is apparent from our data that maximal mitogenic signaling requires the presence of an activation domain on the Fos partner. This does not exclude the existence of such domains on the Jun partner, and there is strong evidence that such domains exist (Angel et al. 1989; Bohmann and Tjian 1989; Baichwal and Tjian 1990).

It has recently become apparent that multiple isoforms of some transcription factors, including CTF/NF1 and mTFE3, are generated by alternate splicing (Santoro et al. 1988; Roman et al. 1991). In both of the cases mentioned, the different isoforms differ by the presence or absence of activation domains, allowing the generation of negative regulatory proteins. The FosB/FosB2 system represents another example of this phenomenon, supporting the idea that alternative splicing is an important mechanism in the control of transcriptional regulatory proteins.

Materials and methods

Cells and transfections

The 208F cells were grown in Dulbecco’s minimal essential media (DMEM) supplemented with 10% fetal calf serum (FCS). Focus-forming assays were performed by growing cells in DMEM supplemented with 5% FCS and 2 x 10^{-6} M dexamethasone as described previously (Wisdom and Verma 1990). To generate retroviral stocks, Am12 cells were transfected with recombinant proviral DNA using the calcium phosphate method. After selection in G418 (400 μg/ml), supernatants were used to infect 208F cells. After infection, 208F cells were split.
A

Figure 5. The carboxy-terminal domain unique to FosB contains a transcriptional activation domain. [A] The carboxy-terminal domain of FosB (amino acids 226–338) or portions of the carboxy-terminal domain were fused to the DNA-binding domain of GAL4 (amino acids 1–147). A schematic diagram of the reporter construct and the different activator constructs is shown. The nomenclature refers to the amino acids of FosB fused to the DNA-binding domain of GAL4 (amino acids 1–147). [B] The fusion genes were transfected into 208F cells along with the GAL4 reporter construct pGSBCAT. Forty-eight hours after transfection, cell lysates were prepared and CAT activity was measured.

B

Amino acids 369–468 of CTF-1 [Mermod et al. 1989], and amino acids 263–405 of SP1 [Courey and Tjian 1988]. A deletion of codons 183–211, corresponding to a deletion of the leucine zipper, was introduced into the FosB–VP16 fusion cDNA by oligonucleotide-directed mutagenesis. To fuse random segments of DNA to FosB2, E. coli genomic DNA was digested with BamHI and EcoRI, and fragments of 300–700 bp were purified by electrophoresis. The fragments were ligated downstream of codon 237 by using the FosB mutant described above. A fusion gene with an open reading frame of 307 amino acids [237 from FosB, 2 from the BgIII sequence, and 68 from E. coli DNA] was used. Each mutant was then cloned into the retroviral vector SLX-CMV to generate proviral DNA.

Oligonucleotide-directed mutagenesis was carried out according to the method of Kunkel [Kunkel et al. 1987]. The sequences of all mutants were verified by nucleotide sequencing.

To generate GAL4–FosB fusion genes, the polymerase chain reaction (PCR) was used to amplify various segments of the FosB genes encoding the specified amino acids. Each primer contained a 5′ EcoRI site and a 3′ XbaI site; PCR-amplified fragments were then cloned into the vector pSG424, which encodes the DNA-binding domain (amino acids 1–147) of GAL4 in a SV40-based expression construct [Sadowski and Ptashne 1989]. The plasmid encoding GAL4–VP16 has been described previously [Sadowski et al. 1988]. The reporter plasmid pGSBCAT contains five tandem repeats of the GAL4 DNA-binding site, basal promoter sequences derived from the adenovirus Elb gene, and the CAT sequences and has been described previously [Kakidani and Ptashne 1988].

To generate FosB2 fusion genes, unique BgIII and EcoRI sites were introduced into the FosB cDNA downstream of codon 237. The trans-activation domains of VP16, CTF-1, and SP1 were amplified using PCR, and the appropriate fragments were then ligated to the FosB2 sequences. The segments fused to FosB2 encode amino acids 412–490 of VP16 [Triezenberg et al. 1988], amino acids 369–468 of CTF-1 [Mermod et al. 1989], and amino acids 263–405 of SP1 [Courey and Tjian 1988]. A deletion of codons 183–211, corresponding to a deletion of the leucine zipper, was introduced into the FosB2–VP16 fusion cDNA by oligonucleotide-directed mutagenesis. To fuse random segments of DNA to FosB2, E. coli genomic DNA was digested with BamHI and EcoRI, and fragments of 300–700 bp were purified by electrophoresis. The fragments were ligated downstream of codon 237 by using the FosB mutant described above. A fusion gene with an open reading frame of 307 amino acids [237 from FosB, 2 from the BgIII sequence, and 68 from E. coli DNA] was used. Each mutant was then cloned into the retroviral vector SLX-CMV to generate proviral DNA.

Oligonucleotide-directed mutagenesis was carried out according to the method of Kunkel [Kunkel et al. 1987]. The sequences of all mutants were verified by nucleotide sequencing.

EMSA

FosB and c-Jun proteins were translated in vitro using rabbit reticulocyte lysate programmed with in vitro-transcribed RNA encoding the appropriate protein. For EMSA, samples of the proteins were mixed with a 32P-end-labeled 20-bp fragment corresponding to the human collagenase AP-1 site as described previously [Yen et al. 1991].

RNA analysis, immunoprecipitations, and CAT assays

RNA isolation and Northern blotting were carried out as described previously [Wisdom and Lee 1991]. For transin mRNA measurement, cells were grown in DMEM with 0.5% FCS for 24 hr prior to RNA isolation.

For immunoprecipitations of 208F cells, subconfluent 100-mm dishes were radiolabeled with 500 μCi/ml of 35S-labeled amino acids [Express label, NEN]. Serum-starved 208F cells
Figure 6. Transin mRNA expression in cells infected with FosB2 fusion genes. (A) FosB2 fusion genes containing trans-activation domains derived from VP-16, CTF-1, and Sp1 were generated. Schematic diagrams of the fusion proteins are shown. (B) The 208F cells infected with retroviruses expressing the different fusion genes were grown in the absence of serum for 24 hr; RNA was then isolated and analyzed for transin expression [top] and GAPDH [bottom] by Northern blotting. The positions of the rRNAs are shown.

Table 2. Transforming activity of FosB2 fusion genes

Virus	Foci/plate	G418' colonies/plate	Transforming activity (%)	Transin mRNA (%)
None	0	0	NA	0
FosB	207	228	100	100
FosB2	0	291	0	8
FosB2-VP16	421	359	128	132
FosB2-CTF	19	202	11	21
FosB2-SP1	42	154	30	23

Recombinant retroviruses containing FosB2 genes with carboxy-terminal fusions of different trans-activation domains (VP16, CTF-1, and Sp1) were used to perform focus-forming assays as described previously. Each data point represents the average of two separate experiments. The transforming activity was calculated by dividing the number of foci by the number of G418-resistant colonies; the activity is expressed as a percentage, with the activity of FosB virus arbitrarily assigned a value of 100. Transcriptional activation is computed from densitometric analysis of the autoradiograph shown in Fig. 6, with FosB-infected cells assigned a value of 100% and 208F cells assigned a value of 0%.

Acknowledgments

We thank Jun-ichiro Inoue for critical reading of the manuscript and members of the Verma laboratory for helpful discussions and ideas. The plasmid encoding GAL4–VP16 was a gift from Ivan Sodrowski. Raphael Scharffmann provided retroviral packaging cells and advice regarding their use, and suggested the experiments using the leucine zipper deletion mutant of FosB2–VP16. Kazuhiko Umesono generously provided the expression vector pCMX. Pat McClintock helped in preparation of the manuscript. This work was supported by a grant from the University of California Tobacco Related Disease Research Program (R.W.) and National Institutes of Health grant CA44360A to I.M.V. I.M.V. is an American Cancer Society Professor of Molecular Biology.

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 USC section 1734 solely to indicate this fact.

References

Abate, C., D. Luk, E. Gagne, R. Roeder, and T. Curran. 1990. Fos and Jun cooperate in transcriptional regulation via heterologous activation domains. Mol. Cell. Biol. 10: 5532–5535.
Angel, P., M. Imagawa, R. Chiu, B. Stein, R.J. Imbra, H.J. Rahmsdorf, C. Jonat, P. Herrlich, and M. Karin. 1987. Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell 49: 729–739.

Angel, P., T. Smeal, J. Meek, and M. Karin. 1989. jun and v-jun contain multiple regions that participate in transcriptional activation in an interdependent manner. New Biologist 1: 35–43.

Baichwal, V.J. and R. Tjian. 1990. Control of c-Jun activity by interaction of a cell-specific inhibitor with regulatory domain 8: Differences between v- and c-Jun. Cell 63: 815–825.

Bohmann, D. and R. Tjian. 1989. Biochemical analysis of transcriptional activation by Jun: differential activity of c- and v-Jun. Cell 59: 709–717.

Courey, A.J. and R. Tjian. 1988. Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell 55: 887–898.

Dobrzenski, P., T. Noguchi, K. Kovaly, C.A. Rizzo, P.S. Lazo, and R. Bravo. 1991. Both products of the fos gene, FosB and its short form, FosB/SF, are transcriptional activators in fibroblasts. Mol. Cell. Biol. 11: 5470–5478.

Gorman, C.M., L.F. Moffatt, and B.H. Howard. 1987. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2: 1044–1051.

Halazonetis, T.D., R. Georgopoulos, M.E. Greenberg, and P. Leider. 1988. C-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA binding affinities. Cell 55: 917–924.

Jenuwein, T. and R. Muller. 1987. Structure-function analysis of fos protein: A single amino acid change activates the immortalizing potential of v-fos. Cell 48: 647–657.

Kakudani, H. and M. Ptashne. 1988. GAL4 activates gene expression in mammalian cells. Cell 52: 161–167.

Kerr, L.D., J.T. Holt, and L.M. Matrisian. 1988. Growth factors regulated trans gene expression through c-fos dependent and c-fos independent pathways. Science 242: 1424–1428.

Kouzarides, T. and E. Ziff. 1989. Leucine zippers of Fos, Jun and c-Jun reveal in vivo differential activity of c- and v-Jun. Cell 59: 709–717.

Baichwal, V.J. and R. Tjian. 1990. Control of c-Jun activity by interaction of a cell-specific inhibitor with regulatory domain 8: Differences between v- and c-Jun. Cell 63: 815–825.

Courey, A.J. and R. Tjian. 1988. Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell 55: 887–898.

Dobrzenski, P., T. Noguchi, K. Kovaly, C.A. Rizzo, P.S. Lazo, and R. Bravo. 1991. Both products of the fos gene, FosB and its short form, FosB/SF, are transcriptional activators in fibroblasts. Mol. Cell. Biol. 11: 5470–5478.

Gorman, C.M., L.F. Moffatt, and B.H. Howard. 1987. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2: 1044–1051.

Halazonetis, T.D., R. Georgopoulos, M.E. Greenberg, and P. Leider. 1988. C-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA binding affinities. Cell 55: 917–924.
Transformation by FosB requires a trans-activation domain missing in FosB2 that can be substituted by heterologous activation domains.

R Wisdom, J Yen, D Rashid, et al.

Genes Dev. 1992, 6:
Access the most recent version at doi:10.1101/gad.6.4.667

References
This article cites 39 articles, 12 of which can be accessed free at:
http://genesdev.cshlp.org/content/6/4/667.full.html#ref-list-1

License

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.