I. INTRODUCTION

A simple model where the effects of the interplay between quantum fluctuations and disorder can be studied in great detail is the spin-\(S\) random antiferromagnetic Heisenberg (AFH) chain with Hamiltonian:

\[
H = \sum_i J_i \vec{S}_i \cdot \vec{S}_{i+1}
\]

where the \(J_i > 0\) are quenched random variables.

In absence of randomness \((J_i = J)\) quantum fluctuations lead to qualitatively different behavior for half-integer \((S = 1/2, 3/2, \ldots)\) and integer \((S = 1, 2, \ldots)\) values of the spin \(S\). Half-integer spin chains have a gapless spectrum and quasi long range order. It is believed that they all belong to the same (bulk) universality class independently on \(S\). This was explicitly verified numerically for the \(S = 3/2\) chain \([1]\), which was found to have the same bulk decay exponent as for the \(S = 1/2\) chain. Integer spin chains are instead gapped and have a hidden topological order \([2]\).

The effect of quenched randomness on the AFH chains can be studied by the Strong Disorder Renormalization Group (SDRG) method. This technique consists in successively decimating out the strongest bond in the chain \([3]\). For the \(S = 1/2\) chain the SDRG procedure can be carried out in great detail and yields a probability distribution of coupling constants that under renormalization is broadened without limits and in the so called infinite randomness fixed point the method becomes asymptotically exact. At this fixed point, describing the so-called random singlet (RS) phase \([4]\), the energy scale \((\Gamma)\) and the length scale \((\xi)\) are related via \(\ln \Gamma \sim \xi^z\), which differs from scaling at a conventional (random) fixed point, where \(\Gamma \sim \xi^{-z}\) with a finite dynamical exponent \(z\). Numerical studies on random spin \(S = 1/2\) AFM chains generally agree with the SDRG results \([5, 6]\), although some issues are still debated \([7]\).

For \(S > 1/2\) the SDRG procedure requires a higher degree of approximations with respect to the \(S = 1/2\) case. A spin \(S\) is represented by a maximally symmetrized combination of \(2S\) identical \(S = 1/2\) spins. The SDRG decimation then produces effective spins of magnitudes \(S_{\text{eff}} \leq S\) obtained by linking the spin-1/2 objects into correlated singlets. For the \(S = 1\) case an SDRG analysis shows that a sufficiently strong randomness induces a RS phase with \(S_{\text{eff}} = 1\), separated from the gapped phase by a gapless region of Griffiths singularities \([8]\) (the gapless Haldane phase \([9]\)) in which the dynamical exponent, \(z\), increases with disorder. A recent SDRG study \([10]\) of the disordered AFH chain with \(S = 3/2\) indicated the existence of two phases: At strong disorder the relevant degrees of freedom are \(S_{\text{eff}} = 3/2\) spins, while at weaker disorder they are of type \(S_{\text{eff}} = 1/2\). Both phases are of RS type with identical critical exponents. A quantum critical point separating them is expected to have specific multicritical exponents \([11, 12]\).

As the SDRG method might fail at weak disorder, its predictions should be tested by means of accurate numerical analysis, which is the aim of the present paper. We will present numerical evidences, supported by theoretical arguments, that the phase diagram for the \(S = 3/2\) spin chain differs from what predicted by SDRG \([12]\). Our numerical results support the existence of a RS phase only for sufficiently strong disorder, while weak disorder appear to be an irrelevant perturbation for the system.

II. NUMERICAL RESULTS

Here we analyze the critical behavior of the AFH chains with varying degree of disorder by means of density matrix renormalization group (DMRG) techniques \([13]\). Numerical calculations are restricted to the \(S \leq 3/2\)
where \[\ldots \] and \(S \) defined as:

\[
\text{on the spin direction.}
\]

The correlation function obviously does not depend on the spin direction.

In the weak disorder regime the DMRG is a rather stable and reliable technique. In order to emphasize the differences between the two cases we present together the results for the \(S = 3/2 \) and \(S = 1/2 \) chains in absence of randomness (circles), which decays asymptotically as \(C_L \sim L^{-\eta} \) with \(\eta_{RS} = 1 \). This is indeed observed in the case \(S = 1/2 \).

To obtain the bulk exponent (\(\eta \)) we consider \(C(1,L) \) the correlation function between an edge and a spin in the middle of the chain, which decays asymptotically as \(C(1,L/2+1) \sim L^{-(\eta+\eta^s)/2} \). Thus each point of reference brings its local scaling dimension, \(\eta/2 \) and \(\eta^s/2 \), respectively. In order to eliminate the surface exponent contribution we consider the ratio

\[
C_L \equiv \frac{C(1,L/2+1)C(L/2,L)}{C_L^2}
\]

which decays asymptotically as \(C_L \sim L^{-\eta} \). The plot of \(\ln C_L \) vs. \(\ln L \) is shown in Fig. 1(b). In the pure system the bulk exponent is \(\eta = 1 \), while in an RS phase one expects \(\eta_{RS} = 2 \). The numerical data for \(S = 3/2 \) are quite consistent with a \(1/L \) decay, which seem to be in disagreement with the existence of a RS phase at weak disorder, but rather support the same critical behavior as for the pure system.

In the \(S = 1/2 \) case the data are not fully consistent with the expected RS exponent \(\eta_{RS} = 2 \), shown as a dashed line, but are characterized by an increasing slope.
as L increases in the log-log scale, which is an indication that the asymptotic regime has not yet been reached. This slope in any case is clearly larger than 1. Notice that for the calculation of the bulk exponent we use a combination [see Eq. (1)] of correlation functions between an edge spin and a spin in the middle of the chain. As the distance between these spins is $L/2$, it is plausible that C_L is plagued by stronger finite size corrections compared to the surface-surface correlation function C^S_L.

B. Dynamical exponent

We consider next the dynamical singularities in the system, which are related to the integrated probability distribution, $\Omega(\varepsilon)$, of the smallest energy gap ε. This quantity, for small ε, behaves as

$$\Omega(\varepsilon) \sim \varepsilon^{1/z'}$$

(5)

If $z' < 1$ quantum fluctuations dominate and the true dynamical exponent is $z = 1$, as in the pure system. If $z' > 1$ the disorder and quantum effects compete and the singular properties of the system are governed by a conventional random fixed point with $z = z'$. In the RS phase $z = z' \to \infty$.

Figure 2 shows plots of $\ln \Omega(\varepsilon)$ versus $\ln \varepsilon$ for $S = 3/2$ (a) and $S = 1/2$ (b). The different scaling behavior for the two values of the spin can be seen by comparing the data for the same strength of disorder ($\delta = 0.3$). In the $S = 1/2$ chain the distribution becomes broader by increasing the chain length, while in the $S = 3/2$ chain $\ln \Omega(\varepsilon)$ tends to have a finite non-vanishing slope for small ε, implying that $1/z' > 0$, a conclusion which is at odds with a RS phase.

For sufficiently strong disorder $\delta = 3$, however, also the $S = 3/2$ spin chains shows a broadening gap distribution (Fig. 2a). The inset of 2 presents a graph of $\ln \Omega(\varepsilon)$ plotted as a function of the rescaled variable $\ln \varepsilon/L^\psi$, with $\psi = 1/2$, as expected in the RS phase 16. Similar results were also found at $\delta = 2$. At such strong values of disorder, due to difficulties in the convergence of the DMRG method, we restricted ourselves to exact diagonalization data of rather short chains $L \leq 10$. The asymptotic behavior is however reached already for rather small chains, as the good collapse of the data of the inset of Fig. 2 demonstrates.

We have also calculated the dynamical exponent from the distribution of the end-to-end correlation functions C^S_L, which is expected to scale as

$$P_r(C^S_L) \sim (C^S_L)^{1/z'}$$

(6)

Figure 4 shows a plot of the exponent $1/z'(L)$ vs. $1/L$, for $\delta = 0.3$ obtained from the analysis of the gap and of the correlation function (Eqs. (5) and (6)). Both estimates lead to a finite value $z' \approx 0.13$. One may wonder whether this is a genuine effect or just due to a very slow convergence to a possible asymptotic behavior consistent with a RS phase $1/z'(L) \to 0$. On the view of our numerical results we believe that the latter scenario is rather unlikely, as it would require also a non-monotonic scaling in L of $1/z'(L)$ for the data obtained from the gap.

In a similar way we estimated the dynamical exponent for other strengths of disorder. For $\delta = 0.8$ we find $z' = 0.8(2)$. At $\delta = 2$ and even stronger disorder the scaling is consistent with a RS behavior. The borderline between the RS phase and the weak disorder phase seems to be located at $\delta = 1$.

C. About the Harris Criterion

The numerical results for the correlation functions and for the gap distribution strongly suggest that at weak disorder the $S = 3/2$ chain has the same critical properties as in the pure case, i.e. the disorder is irrelevant 18. For sufficiently strong disorder the DMRG results show also that the system is in a RS phase, therefore there is a transition induced by the strength of disorder. The analysis of both the gap and correlation functions indicate that the region of irrelevance extends up to $\delta = 1$.

According to the Harris criterion 19 disorder is relevant if an appropriately defined correlation length ξ^2 in the pure system diverges with an exponent ν such that $2/\nu > d$ (here $d = 1$). In the present case, as the disorder is coupled to the local energy operator, $\hat{S}_i \cdot \hat{S}_{i+1}$, the correlation length ξ entering in the Harris criterion is that associated to the strength of the dimerization, t, defined as the amplitude of the alternated modulation of the coupling constants: $J_i = 1 + (-1)^i t$. In the limit $t \to 0$ this correlation length diverges as $\xi \sim |t|^{-\nu}$. In the $S = 1/2$ case, $\nu = 2/3 < 2$ 21, implying relevance of weak disorder.
In the $S = 3/2$ case there is no numerical result available for the critical exponent, ν, therefore we have analyzed the scaling behavior of the smallest gaps as function of t. Scaling plots are given in Fig. 4 and as a comparison the same quantities for the $S = 1/2$ chain are shown in Fig. 5. The gaps are expected to scale as:

$$\varepsilon_k(L, t) = L^{-z_k} \tilde{\varepsilon}_k(L^{1/\nu_s} t),$$

with $\tilde{\varepsilon}_k$ a scaling function and where $k = 1, 2$ labels the first and second gaps. As shown above for the $S = 3/2$ at weak disorder and for the pure system the surface is ordered at $t \leq 0$, i.e. the correlation function between the edge spins is finite in the limit $L \to \infty$ (for L even). There are several known examples of models with spontaneous surface order, as the one observed the $S = 3/2$ chain. In these cases one expects a localized low energy excitation at $t = 0$ with a gap that vanishes faster than $1/L$ because the ground state is degenerate in the thermodynamic limit, i.e. $\varepsilon_1 \sim L^{-z_s}$ with $z_s > 1$. Indeed this can be seen in Fig. 4 for the smallest gap in the $S = 3/2$ case, ε_1. In absence of dimerization this quantity scales with an exponent $z_s \approx 1.36 > 1$, as shown by the scaling collapse at the point $t = 0$ in Fig. 4(a). The figure also shows that in the surface disordered region $t > 0$ a reasonably good data collapse for ε_1 is obtained with the choice $L^{1/\nu_s} t$ with $\nu_s = 2$. Notice that in the surface ordered region $t < 0$ no scaling collapse can be observed. All the other gaps in the $S = 3/2$ are non-localized and scale with $z = 1$, as illustrated in Fig. 4(b) for ε_2, and their scaling form involves the bulk correlation length, $\xi \sim |t|^{-\nu}$, with $\nu \approx 1$. This estimate for ν is different from the value $\nu = 2/3$ in the $S = 1/2$ chain. We expect that the origin of this difference is due to the existence of a dangerous irrelevant scaling variable, which is generally observed at first-order surface transitions as in this case.

Our numerical results, summarized above, can be compared with theoretical predictions in Ref. [22]. In the resonating valence bond picture the low energy excitations of the open $S = 3/2$ chain are expected to be described by effective $S = 1/2$ edge-spin degrees of freedom, which are very weakly coupled to the rest of an $S = 1/2$ chain. In the thermodynamic limit the edge spins are expected to be decoupled, the effective coupling being logarithmically small, as $1/\ln L$. In this picture the smallest gap (at $t = 0$) scales as $\varepsilon_1 \sim 1/\ln L$, whereas the other gaps scale in the same way as for the open $S = 1/2$ chain. Our numerical findings disagree with this prediction at two points. First, the localized gap has a faster size-dependence, our numerical results can not be described by a logarithmic correction. As a matter of fact for sizes we used in the calculation the effective exponent, z_s, is monotonously increasing with the size and there is no sign of reversing this tendency. Data of previous numerical calculations in Fig. 5 of Ref. [27] show also strong deviations from a pure logarithmic correction. Our second disagreement concerns the second gap at $t = 0$, the value of which according to conformal invariance should be:

$$\varepsilon_2(L, 0)L = \pi \nu_s x_s$$

in the large L limit. Here $\nu_s = 3.87$ is the sound velocity for the $S = 3/2$ chain and x_s is the surface anomalous dimension, which for the $S = 1/2$ chain is $x_s = \eta^s/2 = 1$. For the $S = 3/2$ chain the results in Fig. 4 are considerably smaller, our estimate is around $x_s = 1/2$. Thus there are very probably new operators for the open $S = 3/2$ chain, which are not present in the $S = 1/2$ chain.

As a comparison we plot in Fig. 5 a similar scaling collapse analysis for the first two gaps in the $S = 1/2$ case, using a similar range of system sizes as in Fig. 4. Notice that the best collapse is obtained with a scaling variable $L^{1.41} t$, implying $\nu \approx 0.71$, not far from the expected value $\nu = 2/3$, a difference which can be imputed to logarithmic corrections.

The analysis at finite t reveals that the dimerization couples differently to the $S = 3/2$ chain with respect to the $S = 1/2$ chain. We argue that the appropriate correlation length to be used in the Harris criterion [19, 20]...
for the $S = 3/2$ chain is ξ_s that associated to the smallest gap and thus with $\nu_s = 2$ the disorder is marginally irrelevant. An accumulation of weak bonds along the chain may result indeed in an effective cut of the system. The resulting scenario is that of weakly interacting segments of finite length in which the relevant length scale is ξ_s, that associated to a chain with open boundary conditions. (We note that a similar scenario is used for the renormalization of random $S = 1$ chains, in which the effective coupling between spin-1/2 degrees of freedom is exponentially small\cite{[11]).} This scenario therefore provides a plausible explanation for the observed irrelevance of weak disorder for the random $S = 3/2$ chains.

III. CONCLUSION

We conclude by suggesting a general phase diagram for the spin-S AFH chains as a function of the strength of disorder δ. This phase diagram, shown in Fig. 6 is obtained by combining DMRG and SDRG results known for the $S = 1/2$, $S = 1$ and $S = 3/2$ cases with some general arguments for higher S. First of all, differently from the $S = 1/2$ case, where any amount of disorder is known to lead to a RS phase, we expect that all chains for $S > 1/2$ have a region of irrelevance, the weak disorder (WD) region, where the system is either critical (half-integer S) or gapped (integer S). This was already known for $S = 1$ integer. Our results for the $S = 3/2$ chain suggest that it may be true also for non-integer spin.

At strong enough disorder all S are in a RS phase composed of effective S spins, which we indicate as $R S_s$. For the $S = 1$ case there is only one such phase (RS1), while a recent SDRG study for $S = 3/2$\cite{[12]} predicts two distinct phases: $R S_{3/2}$ and $R S_{1/2}$. We found no signatures of this spin reduction transition in our DMRG calculations, which could be anyhow difficult to detect as the $R S_{1/2}$ and $R S_{3/2}$ have identical critical exponents. There is also the possibility to have, for higher spins ($S > 3/2$), a sequence of multiple RS phases of different nature. Possible phase diagram for higher S have been recently discussed\cite{[13]}.

F. I. is grateful to G. Fáth for useful discussions. This work has been supported by a German-Hungarian exchange program (DAAD-MÖB), by the Hungarian National Research Fund under grant No OTKA T034138, TO37323, MO45596 and M36803, by the Ministry of Education under grant No. FKFP 87/2001, by Kuwait University Research Grant No. [SP 09/02], by the Centre of Excellence ICA1-CT-2000-70029, and the numerical calculations by NIIF 1030. P.L. thanks M.M. Sharma for help in numerical calculation.

Note added – After this paper was submitted we became aware of a recent work of Seguia et al.\cite{[32]}, who performed a SDRG analysis of the disordered $S = 3/2$ AFH chain. Their calculation differs from that of Ref.\cite{[12]} as the decimation scheme keeps into account more states, thus it is expected to be more accurate. While the results of Ref.\cite{[12]} indicated the existence of two RS phases with different effective spins ($S_{\text{eff}} = 1/2$ and $S_{\text{eff}} = 3/2$), in the work of Seguia et al.\cite{[32]} the renormalization flow indicates that the weak disorder is an irrelevant perturbation of the system. This is in agreement with the conclusion of this paper.

\begin{thebibliography}{9}
\bibitem{[1]} F. D. M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).
\bibitem{[2]} H. J. Schulz, Phys. Rev. B 34, 6372 (1986); I. Affleck and F. D. M. Haldane, Phys. Rev. B 36, 5291 (1987); I. Affleck et al. J. Phys. A 22, 511 (1989).
\bibitem{[3]} K. Hallberg et al. Phys. Rev. Lett. 76, 4955 (1996).
\bibitem{[4]} M. den Nijs and K. Rommelse, Phys. Rev. B 40, 4709 (1989).
\bibitem{[5]} S. K. Ma, C. Dasgupta and C.-K. Hu, Phys. Rev. Lett. 43, 1434 (1979); C. Dasgupta and S. K. Ma, Phys. Rev. B22, 1305 (1980).
\bibitem{[6]} D. S. Fisher, Phys. Rev. B 50, 3799 (1994).
\bibitem{[7]} P. Henelius and S. M. Girvin, Phys. Rev. B 57, 11457 (1998).
\bibitem{[8]} F. Iglói, R. Juhász, and H. Rieger, Phys. Rev. B 61, 11552 (2000).
\bibitem{[9]} K. Hamacher, J. Stolze, and W. Wenzel, Phys. Rev. Lett. 89, 127202 (2002); N. Laflorencie and H. Rieger, Phys. Rev. Lett. 91, 229701 (2003).
\bibitem{[10]} R. B. Griffiths, Phys. Rev. Lett. 23, 17 (1969).
\bibitem{[11]} R. A. Hyman and K. Yang, Phys. Rev. Lett. 78, 1783
\end{thebibliography}
[19] A.B. Harris, J. Phys. C7, 1671 (1974).
[20] J.T. Chayes et al, Phys. Rev. Lett. 57, 2999 (1986).
[21] M. C. Cross and D. S. Fisher, Phys. Rev. B 19, 402 (1979); T. Papenbrock et al, cond-mat/0212254.
[22] In Eq. (1) we leave the possibility of having different gaps scaling with different exponents (i.e. z and ν may depend on k). This is indeed found in the $S = 3/2$ chain.
[23] F. Iglói and L. Turban, Phys. Rev. B47, 3404 (1993).
[24] M. E. Fisher, in *Renormalization Group in Critical Phenomena and Quantum Field Theory*, proceedings of a conference, edited by J. D. Gunton and M. S. Green (Temple University, Philadelphia)(1974).
[25] E. Carlon, P. Lajkó, and F. Iglói, Phys. Rev. Lett. 87, 277201 (2001).
[26] T-K. Ng, Phys. Rev. B 50, 555 (1994).
[27] S. Qin, T-K. Ng, and Z-B. Su, Phys. Rev. B 52, 12844 (1995).
[28] F.C. Alcaraz, M. Baake, U. Grimm, and V. Rittenberg, J. Phys. A21, L117 (1988).
[29] K. Hida, Phys. Rev. Lett. 83, 3297 (1999); K. Yang and R. A. Hyman, Phys. Rev. Lett. 84, 2044 (2000); K. Hida, Phys. Rev. Lett. 84, 2045 (2000).
[30] S. Todo, K. Kato, and H. Takayama, J. Phys. Soc. Jpn. 69, 355 (2000); S. Bergkvist, P. Henelius, and A. Rosen- gren, Phys. Rev. B 66, 134407 (2002).
[31] P. Lajkó, E. Carlon, H. Rieger, and F. Iglói (unpublished).
[32] A. Saguia, B. Boechat, and M. A. Continentino, Phys. Rev. B 68 020403(R) (2003).