Substantial improvement of toyocamycin production in *Streptomyces diastatochromogenes* by cumulative drug-resistance mutations

Xu-Ping Shentu\(^1*\), Zhen-Yan Cao\(^1*\), Yin Xiao\(^1\), Gu Tang\(^1\), Kozo Ochi\(^2\), Xiao-Ping Yu\(^1\)

\(^1\) Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China, \(^2\) Department of Life Science, Hiroshima Institute of Technology, Hiroshima, Japan

These authors contributed equally to this work.

* yxp@cjlu.edu.cn

Abstract

Toyocamycin is a member of the nucleoside antibiotic family and has been recognized as a promising fungicide for the control of plant diseases. However, low productivity of toyocamycin remains an important bottleneck in its industrial production. Therefore, dramatic improvements of strains for overproduction of toyocamycin are of great interest in applied microbiology research. In this study, we sequentially selected for mutations for multiple drug resistance to promote the overproduction of toyocamycin by *Streptomyces diastatochromogenes* 1628. The triple mutant strain, SD3145 \((str\ str\ par)\), was obtained through sequential screenings. This strain showed an enhanced capacity to produce toyocamycin (1500 mg/L), 24-fold higher than the wild type in GYM liquid medium. This dramatic overproduction was attributed at least partially to the acquisition of an \(rsmG\) mutation and increased gene expression of \(toyA\), which encodes a LuxR-family transcriptional regulator for toyocamycin biosynthesis. The expression of \(toyF\) and \(toyG\), probably directly involved in toyocamycin biosynthesis, was also enhanced, contributing to toyocamycin overproduction. By addition of a small amount of scandium \((\text{ScCl}_3 \cdot 6\text{H}_2\text{O})\), the mutant strain, SD3145, produced more toyocamycin (2664 mg/L) in TPM medium, which was the highest toyocamycin level produced in shake-flask fermentation by a streptomycete so far. We demonstrated that introduction of combined drug resistance mutations into *S. diastatochromogenes* 1628 resulted in an obvious increase in the toyocamycin production. The triple mutant strain, SD3145, generated in our study could be useful for improvement of industrial production of toyocamycin.

Introduction

Members of the genus *Streptomyces* are the primary producers of numerous valuable secondary metabolites \([1, 2]\). It has been estimated that greater than 70% of the antibiotics developed for use both in medicine and agriculture are produced by *Streptomyces* \([3]\). The pyrrolopyrimidine,
toyocamycin, is a member of the nucleoside antibiotic family and has been recognized as a promising fungicide for the control of plant diseases [4,5]. However, low productivity of toyocamycin remains an important bottleneck in its industrial production. Therefore, dramatic improvements of strains for overproduction of toyocamycin are of great interest.

‘Ribosome engineering’ has been developed to increase the expression of genes and antibiotic production in bacteria through the modulation of ribosomal components, including ribosomal proteins and rRNA[6,7]. This approach is based on the introduction of genetic mutations that confer resistance to ribosome-targeting drugs, including streptomycin, gentamicin, paromomycin, and others[7]. This approach holds several advantages including the ability to screen for spontaneous drug resistance mutations through a simple selection that can be carried out on drug-containing plates even in the case of mutations with extremely low frequency (e.g., <10^-10) and the ability to select for mutations in the absence of known genetic information[8,9]. Furthermore, this method has been widely applied for strain improvement for antibiotic overproduction and even for novel antibiotic discovery[8,10,11].

In our previous work, a strain (No.1628) possessing the ability to synthesize toyocamycin was isolated and identified as S. diastatochromogenes 1628[4]. Recently, we have discovered that the acquisition of resistance to certain antibiotics, including paromomycin and streptomycin, improved the ability of S. diastatochromogenes to produce toyocamycin[11]. In the current study, we aimed to develop combinations of drug resistance mutations to further improve toyocamycin-producing strains. Here, we describe certain physiological aspects, as well as the expression levels of toyocamycin biosynthesis genes in the mutant strains generated in this study.

Materials and methods

Strains

The wild-type strain S. diastatochromogenes 1628 and its mutants used in this study are listed in Table 1. S. diastatochromogenes 1628 was deposited in the China general microbiological culture collection (CGMCC) and was assigned as accession number of CGMCC 2060. Spontaneous rifampicin-resistant (Rif^r), streptomycin-resistant (Str^r), gentamicin-resistant (Gen^r), paromomycin-resistant (Par^r), and fusidic acid-resistant (Fus^r) mutants were obtained from colonies that grew within 5 to 10 days after spore suspensions were spread on GYM agar containing various concentrations of each respective antibiotic. All strains obtained were stored as spore suspensions at -80°C.

Media and growth conditions

GYM and 2XGYM media were described previously [12]. Toyocamycin producing medium (TPM) contained (per liter): soybean meal 40 g, bran 10 g, soluble starch 20 g, FeCl_2 1 g, CaCO_3 5 g, NH_4NO_3 3 g, and KHSO_4 3 g. A spore suspension volume of 0.5 ml (approximately 1x10^7 spores per ml) was inoculated into 50 ml of the above medium and was incubated at 28°C on a rotary shaker set to 200 rpm.

Determination of MICs

The minimum inhibitory concentrations (MICs) were determined by spreading spore suspensions (~10^6) onto GYM plates containing various antibiotic concentrations, followed by incubation at 28°C for the indicated time. The minimum drug concentration able to fully inhibit growth was defined as the MIC. The resistance levels were determined in a similar manner as the MIC.
Analysis of toyocamycin

Toyocamycin production was determined using a Varian Prostar-240 HPLC (Prostar 240 Solvent Delivery Module, Prostar 335 PDA Detector, Prostar 410 Autosampler, Prostar Workstation, USA). A water-CH$_3$OH gradient system was used, which ranged linearly from 5% to 100% CH$_3$OH over the course of 30 min, and was then held for 10 min. The detection wavelength was 279 nm. The column (RP-C18 column) temperature was maintained at 30˚C (250 mm×4.6 mm, 5 μm, XBridgeTM, Waters, USA)[11].

Mutation analysis

The primers used to amplify candidate DNA fragments (rsmG, rpoB and rpsL genes) were designed as described previously [8,13]. PCR amplification was carried out using LA Taq (Takara), and the purified PCR products were sequenced by Shanghai Ruidi Biological Technology Co. The sequencing data were aligned using the Mega 5.0 program. To confirm the results, mutation analysis was conducted two to three times for each mutant strain.

Transcriptional analysis by real-time qPCR

Total RNA was extracted and purified from cells grown on GYM medium for the indicated time using RNAiso Plus (TaKaRa) according to the manufacturer’s instructions. One μg of each of the total RNA was used as a template for reverse transcription (RT), which was carried out using the PrimeScript RT reagent Kit with gDNA Eraser (Perfect Real Time) (TaKaRa). Realtime quantitative PCR (qRT-PCR) was carried out using an Applied Biosystems StepOne-Plus Real-Time PCR System with SYBR® _Premix Ex Taq™_ (Tli RHaseH Plus) reagent (TaKaRa, Dalian, China). The gene primers used in qRT-PCR reactions are listed in S1 Table.
Each reaction mixture was comprised of 7.5 μL of SYBR® Premix Ex Taq™ (2×), 1 μL of template, 0.3 μL of forward primer, 0.3 μL of reverse primer, 0.3 μL of ROX Reference Dye (50×), and 5.6 μL of RNase-free H2O. The acceptable qRT-PCR standard curve (0.9 ≤ E ≤ 1.0, R² ≥ 0.99) for each gene examined in this study was optimized by altering the annealing temperature and time. For each gene, all PCR reactions were carried out in triplicate within a single plate, with hrdB of *S. diastatochromogenes* 1628 used as the reference gene. Quantification of relative gene expression was analyzed using the 2^ΔΔCt method[14].

Dry weight of biomass

Culture broth was filtered through filter paper and washed twice with reverse osmosis water in order to remove any residual medium remaining on the cell surface. The remaining cells were then dried in an oven at 55°C to a constant weight. Dry cell weights were determined by subtracting the weight of the filter paper from the weight of the filter paper plus the cells.

Results

Construction of combined resistant mutants

First, a single drug-resistant mutation was introduced into the wild-type strain 1628, as summarized in Table 2. A total of 218 spontaneous antibiotic-resistant mutants of strain 1628 were isolated from GYM agar plates containing rifampicin, streptomycin, or paromomycin at concentrations 2–10 fold higher than their respective MICs. Mutants that possessed enhanced toyocamycin production were detected at a high frequency (9% to 26%) among streptomycin-, paromomycin-, and rifampicin-resistant isolates. The highest productivity detected for each mutant strain ranged from 1.5 to 4.1 times of the wild-type production level. All of these drug

Strain	Toyocamycin produced (mg/L)	Toyocamycin titer/dry cell weight (mg/L/g)	MIC (mg/L)	Antibiotic concentration used for screening (mg/L)	Frequency (%) of mutants producing increased antibiotic
1628	63	23.2	Streptomycin (5)	20	26 (20/78)
			Rifampicin (1)	50	21 (16/76)
			Paromomycin (10)	20	9 (3/34)
SD10	134	29.8	Streptomycin (50)	1000	16 (6/37)
			Fusidic acid (1)	3	12 (3/25)
			Gentamicin (5)	8	14 (9/64)
SD228	563	165	Paromomycin (10)	50	11 (4/35)
			Gentamicin (3)	6	13 (2/15)
			Fusidic acid (1)	3	15 (4/26)
SD3145	1500	395			
SD3176	1250	318			
SD3195	1186	288			

* Determined after 6 days of incubation at 28°C, using a 300-mL flask containing 50 mL of GYM medium.

Table 2. Screening and toyocamycin productivity of drug-resistant mutants.

https://doi.org/10.1371/journal.pone.0203006.t002
resistance screenings were found to be effective in toyocamycin overproduction by *S. diastatochromogenes* 1628.

Next, we created double mutant strains by generating spontaneous *Str*, *Fus*, and *Gen* mutants from the starting *str* mutant SD10 strain (Tables 1 and 2). The frequency of double mutants, which were demonstrated to produce increased amounts of toyocamycin, was found to be 12% to 16%, with the highest productivity ranging from 1.5 to 4.2 times of the SD10 strain. These findings indicated that all the combinations of single-resistance mutations resulted in the generation of double mutants (*str str*, *str gen*, and *str fus*), which were all effective to increase toyocamycin production.

Finally, we created triple mutant strains by generating spontaneous *par*, *gen* and *fus* mutants in a *str str* double mutant strain (SD228) (Tables 1 and 2). The frequency of triple mutants to produce increased amounts of toyocamycin was found to be 11% to 15%, with the highest productivity found to be 1.86 times higher than that of the starting *str str* double-mutant strain. Thus, we demonstrated that the triple mutation (*par*, *gen* and *fus*) was effective in increasing toyocamycin productivity in strains containing double mutations. The toyocamycin titer of SD3145 with the highest productivity among the triple mutant strains reached 1500 mg/L (395 mg/L/g dry cell weight in yield), which was 24-fold of that produced by the wild type strain in GYM liquid medium (Fig 1A). A time course evaluation of toyocamycin production from wild-type and mutant strains was shown in S1 Fig. Thus, combinations of various drug resistance mutations had the ability to further enhance toyocamycin productivity.

Mutation analyses of the mutants

Certain *rpsL*, *rsmG*, and *rpoB* mutations have been shown to have the ability to activate antibiotic production in *Streptomyces* [6,7]. Therefore, we sequenced and compared the *rpsL*, *rsmG* and *rpoB* genes between the mutants and wild-type strain. As summarized in Table 1, many of the low-level streptomycin-resistant mutants possessed an *rsmG* mutation, and these mutations in *rsmG* were effective at improving toyocamycin production in *S. diastatochromogenes* 1628. The mutation of the Cys residue at position 59 was often effective in other *Streptomyces*. The rifampicin-resistant mutant SD88 was found to possess a point mutation in the *rpoB* gene that generated an amino acid substitution from Pro437 to Leu. No mutation was identified in the *rpsL* gene of the high-level streptomycin-resistant and paromomycin-resistant mutants (Table 1), although the mutation site within the *rpsL* gene responsible for streptomycin or paromomycin resistance and antibiotic overproduction was identified in *S. coelicolor* A3(2) [15,16], implicating the presence of unknown mutations which are responsible for the enhanced toyocamycin production.

Effects of different media on toyocamycin production

Toyocamycin production levels by wild-type and mutant strains were found to be medium-dependent (Fig 1A). We found that the mutant strain SD3145 produced 1959, 1500, and 1615 mg/L toyocamycin in TPM, GYM, and 2XGYM medium, respectively. These production levels were 11, 24, and 15 times of that produced by the wild-type strains (178, 63 and 105 mg/L), respectively. It was reported that the rare earth element, scandium (Sc), causes antibiotic overproduction when added at a low concentration (10–100 μM) to cultures of *S. coelicolor* A3(2) (actinorhodin producer), *S. antibioticus* (actinomycin producer), and *S. griseus* (streptomycin producer) [17]. Similarly, the addition of scandium (ScCl₃⋅6H₂O) markedly enhanced toyocamycin production by the mutant strain SD3145 when cells were grown in TPM medium for 6
Improved toyocamycin production in *S. diastatochromogenes*

![Graph showing toyocamycin production](https://doi.org/10.1371/journal.pone.0203006.g001)

Fig 1. a Comparison of antibiotic production by the parent and mutant strains in three different liquid media (GYM, 2XGYM and toyocamycin production medium (TPM)). Antibiotic production was determined after a 6-day incubation at 28˚C. The error bars indicate the standard deviations of the means of three or more samples. b Effects of scandium on toyocamycin production by the mutant SD3145 in TPM medium after a 6-day incubation at 28˚C.

Scandium was effective at low concentrations (5–20 μM) and toyocamycin production was enhanced by 1.4-fold, reaching 2664 mg /L.

https://doi.org/10.1371/journal.pone.0203006.g001
Relative expression level of *toy* genes and cell growth in wild-type and mutant strains

Currently, the biosynthetic pathway of toyocamycin in *S. diastatochromogenes* has yet to be completely established. It was reported that *toyA* gene encodes a LuxR transcriptional regulator in the biosynthetic pathway of toyocamycin in *S. rimosus* (ATCC 14673) [18]. Certain mutations within the *rpoB*, *rpsL*, or *rsmG* genes have been demonstrated to dramatically enhance the expression of genes involved in the secondary metabolic biosynthesis of actinomycetes or *Bacillus subtilis*[13,19,20]. Thus, we studied the relative expression levels of the *toyA* gene using qRT-PCR, as well as cell growth of the wild-type and mutant strains (SD10, SD228 and SD3145). The profile of the changes in expression levels of the *toyA* gene is depicted in Fig 2. As expected, we observed remarkable increase in expression levels of *toyA* in the mutant strains SD10, SD228, and SD3145 relative to the wild-type strain at late growth phases (after 50 h). The relative expression levels of *toyA* reached its maximum value at 50 h and 75 h in the mutant strains SD228 and SD3145, respectively. These values were 4.2 and 2.5 times of that produced by wild-type strain (at 38 h), respectively. In the case of cell growth, the drug-resistant mutant strains grew more slowly compared to the wild-type strain. In contrast, the mycelium growth of the wild strain was observed to enter the logarithmic growth phase after 10 h. Overall, our findings regarding the mutant growth phenomenon were consistent with previous reports by Wang *et al.* [21]. The growth of the octuple mutant strain C8 of *S. coelicolor* was also very slow[21]. In general, it was found that drug resistance was obtained at the cost of growth fitness[22].

Two fragments containing *toyF* and *toyG* were cloned previously in *S. diastatochromogenes* 1628. ToyF encodes an adenylosuccinate lyase and ToyG encodes an adenylosuccinate synthetase, both of which are probably involved in toyocamycin biosynthesis in *S. diastatochromogenes* 1628[18]. The relative expression levels of *toyF* and *toyG* genes in mutants and wild type strain were analyzed. As shown in Fig 3, the expression of *toyF* and *toyG* genes both in the wild and mutant strains changed at different time points (36, 48, and 60 h). There was significant increase in the expression of *toyF* and *toyG* in SD228 and SD3145 compared with control strain 1628 especially at time point of 60 h, likely due to the enhanced expression of transcriptional regulator *toyA* in the mutant strains. At 36 h, the expression of *toyF* and *toyG* was both lower in SD228 and SD3145 than in 1628 strain apparently due to their slow growth. Thus, the improvement of toyocamycin production can be attributed, at least partially, to the increase of the expression level of the genes directly involved in toyocamycin biosynthesis.

Discussion

Ribosome engineering has been demonstrated to be an effective approach for improving antibiotic productivity in *S. diastatochromogenes* 1628[11]. Herein, we showed that combinations of various drug resistance mutations have the ability to further enhance antibiotic productivity. This has been previously demonstrated, for example, through the introduction of octuple drug-resistance mutations into *S. coelicolor* 1147 or triple drug-resistance mutations into *B. subtilis*. The octuple mutant C8 was found to produce large quantities (1.63 g/L) of antibiotic actinorhodin, which was 180-fold higher than that produced by the wild-type 1147 strain[21]. In our previous work, we showed that the Rif^r (SD88), Str^r (SD10, SD143), Gen(SD189)^r, Par^r (SD99), and Ery^r (SD160) mutants were more antibiotic productive (toyocamycin, tetramycin P, tetrin B and Tetramycin A) than the wild type strain[11]. Here, we demonstrated the development of combined drug-resistant mutation approaches for further improvement of toyocamycin overproduction. We showed that the triple mutant SD3145 produced a higher yield (1959 mg/L) of the antibiotic toyocamycin, which was 11-fold greater than that produced...
Improved toyocamycin production in *S. diastatochromogenes*
by the wild-type 1628 strain. Our study proved that ribosome engineering represents a convenient, unlabourious, uncostly, and effective method for inducing antibiotic overproduction by bacteria. To enhance toyocamycin production by *S. diastatochromogenes* 1628, many methods...
such as intergeneric conjugation and adding a positive regulator for toyocamycin biosynthesis were used and the mutants 1628-VHB-23 and 1628-T62A produced 1.18-fold (165 mg/L) and 1.2-fold (181 mg/L) more of toyocamycin than the wild type, respectively. Apparently, ribosome engineering was more effective than the reported methods on toyocamycin overproduction [23–26].

The antibiotic streptomycin and rifampicin were frequently used as a screening drug by ribosome engineering technology and RNA polymerase engineering technology respectively due to their effectiveness on metabolite overproduction [8,27,28]. Therefore, we aimed to obtain spontaneous mutants through the introduction of specified str or rif mutations into S. diastatochromogenes 1628 in an effort to increase toyocamycin concentration. However, it remained difficult to obtain effective Rifr mutants of S. diastatochromogenes 1628. As shown in Table 2, the frequency (%) of mutants that produce increased antibiotic levels was greater than 20% when streptomycin was used as the screening drug. In contrast, only 3 Rifr mutants (i.e. 9% frequency) were found to produce enhanced toyocamycin. This may be explained by the fact that the frequency of spontaneous mutations in the rpoB gene of S. diastatochromogenes 1628 was very low ($<10^{-11}$).

It was previously demonstrated that specific rpsL mutations that confer streptomycin or paromomycin resistance are effective in activating the antibiotic production in Streptomyces spp [13,29]. The mutations K88E and K88R (Lys\rightarrowGlu and Lys\rightarrowArg at position 88, respectively) were most commonly identified as mutations associated with antibiotic overproduction. Currently, there are few reports regarding the paromomycin resistance mutation found in the rpsL gene. Wang et al. identified a novel paromomycin resistance-associated mutation in rpsL caused by the insertion of glycine residue at position 92 in S. coelicolor ribosomal protein S12 [30]. This insertion mutation (GI92) was demonstrated to cause a 20-fold increase in the level of paromomycin resistance. However, no mutation was identified in the rpsL gene of the streptomycin- and paromomycin-resistant mutant SD3145, implicating the presence of unknown mutations which are responsible for the enhanced toyocamycin production. The rpoB mutations are often located at positions 1264C and 1327G, corresponding to the amino acid residues Leu422 and Ala443, respectively [8]. As expected, the rifampicin-resistant mutant SD88 was found to possess a point mutation in the rpoB gene, leading to a novel amino acid alteration from Pro437 to Leu.

In conclusion, we demonstrated that introduction of combined drug-resistant mutations into S. diastatochromogenes 1628 resulted in a 24-fold increase in the toyocamycin production in GYM medium. Although causal relationship between the increased toyocamycin production and each drug-resistance mutation was not demonstrated in the present work due to the lack of genetic system in this organism, the high frequency (9–26%) of high efficiency strains among the drug-resistant mutants shows a possible causality of these events. Scandium (ScCl$_3$·6H$_2$O) was effective for further enhancement of toyocamycin production. The triple mutant strain, SD3145, generated in our study could be useful for improvement of industrial production of toyocamycin. Previous work reported that the antibiotic productivity of the industrial Streptomyces spp. strain could be enhanced by 50- to 100-fold through the introduction of combined drug resistance-producing mutations [21,31]. We are currently planning to use the SD3145 strain for further development in a similar manner.

Supporting information

S1 Fig. The time course evaluation of toyocamycin production in GYM medium. (TIF)
S1 Table. Primers used for qRT–PCR.

Acknowledgments

This work was supported by National Key Research and Development Program of China (2016YFF0202300), National Natural Science Foundation of China (31401793, 31640018), Zhejiang Provincial Programs for Science and Technology Development (2017C32006, 2018C02030), Zhejiang Provincial Natural Science Foundation (LY12C14012).

Author Contributions

Data curation: Yin Xiao, Gu Tang.

Formal analysis: Zhen-Yan Cao.

Supervision: Xiao-Ping Yu.

Writing – original draft: Xu-Ping Shentu.

Writing – review & editing: Kozo Ochi.

References

1. Baltz R H (2007) Antimicrobials from actinomycetes: Back to the future. Microbe 2: 125–131.
2. Hopwood D A (2007). Streptomycetes in nature and medicine: The antibiotic makers. New York: Oxford University Press, Inc.
3. Wative MG, Tickoo R, Jog MM, Bhole BD (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176:386–390. https://doi.org/10.1007/s002030100345 PMID: 11702082
4. Shentu XP, Yu B, Bian YL, Hu J, Ma Z, Tong CM, et al. (2012) Biocontrol effect and taxonomy of antagonistic Streptomyces strain B28. Acta Phytopathologica Sinica 42: 105–109 (In Chinese).
5. Yu B, Shentu XP, Yu XP (2011) Antifungal activity of toyocamycin on Rhizoctonia solani Kühn. Chin J Biol Control 27:373–377 (in Chinese).
6. Ochi K, Okamato S, Tozawa Y, Inaoka T, Hosaka T, Xu J, et al. (2004) Ribosome engineering and secondary metabolite production. Adv Appl Microbiol 56:155–184. https://doi.org/10.1016/S0065-2164 (04)56005-7 PMID: 15566979
7. Ochi K (2007) From microbial differentiation to ribosome engineering. Biosci Biotechnol Biochem 71:1373–1386. https://doi.org/10.1271/bbb.70007 PMID: 17587669
8. Tanaka Y, Kasahara K, Hirose Y, Murakami K, Kugimiy M. (2010) Activation and products of the cryptic secondary metabolite biosynthetic gene clusters by rifampin resistance (rpoB) mutations in actinomycetes. J Bacteriol 195(13):2959–2970. https://doi.org/10.1128/JB.00147-13 PMID: 23603745
9. Funane K, Tanaka Y, Hosaka T, Murakami K, Miyazaki T, Shiwa Y, et al. (2016) Combined drug-resistance mutations substantially enhance enzyme production in Paenibacillus agarivorans. J Bacteriol https://doi.org/10.1128/JB.00188-16 (In Press). PMID: 29866810
10. Suzuki T, Seto K, Nishikawa C, Hara E, Shigeno T, Nakajima-Kambe T (2015) Improved ethanol tolerance and ethanol production from glycerol in a streptomycin-resistant Klebsiella variicola mutant obtained by ribosome engineering. Bioresource Technol 176: 156–162.
11. Shentu XP, Liu NN, Tang G, Tanaka Y, Ochi K, Xu J, et al. (2016) Improved antibiotic production and silent gene activation in Streptomyces diastatochromogenes by ribosome engineering. J Antibiot 69: 406–410. https://doi.org/10.1038/ja.2015.123 PMID: 26648118
12. Ochi K (1987) Metabolic initiation of differentiation and secondary metabolism by Streptomyces griseus: significance of the stringent response (ppGpp) and GTP content in relation to A factor. J Bacteriol 169: 3608–3616. PMID: 3112126
13. Tanaka Y, Tokuyama S, Ochi K(2009) Activation of secondary metabolite–biosynthetic gene clusters by generating rsmG mutations in Streptomyces griseus. J Antibiot 62:669–673. https://doi.org/10.1038/ ja.2009.97 PMID: 19816320
14. Schmittgen T D, Livak K J (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3: 1101–1108. PMID: 18546601
15. Funane K, Tanaka Y, Hosaka T, Murakami K, Miyazaki T, Shiwa Y, et al. (2016) Combined drug-resistance mutations substantially enhance enzyme production in Paenibacillus agarivorans. J Bacteriol https://doi.org/10.1128/JB.00188-16 (In Press). PMID: 29866810
16. Ochi K (1987) Metabolic initiation of differentiation and secondary metabolism by Streptomyces griseus: significance of the stringent response (ppGpp) and GTP content in relation to A factor. J Bacteriol 169: 3608–3616. PMID: 3112126
17. Tanaka Y, Tokuyama S, Ochi K(2009) Activation of secondary metabolite–biosynthetic gene clusters by generating rsmG mutations in Streptomyces griseus. J Antibiot 62:669–673. https://doi.org/10.1038/ ja.2009.97 PMID: 19816320
18. Schmittgen T D, Livak K J (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3: 1101–1108. PMID: 18546601
15. Ochi K, Zhang D, Kawamoto S, Hesketh A (1997) Molecular and functional analysis of the ribosomal L11 and S12 protein genes (rplK and rpsL) of Streptomyces coelicolor A3(2). Mol Gen Genet 256:488–498. PMID: 9413432

16. Shima J, Hesketh A, Okamoto S, Kawamoto S, Ochi K (1996) Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). J Bacteriol 178:7276–7284. PMID: 8955413

17. Kawai K, Wang G, Okamoto S, Ochi K (2007) The rare earth, scandium, causes antibiotic overproduction in Streptomyces spp. FEMS Microbiol Lett 274: 311–315. https://doi.org/10.1111/j.1574-6968.2007.00846.x PMID: 17645525

18. McCarty RM, Bandarian V (2008) Deciphering deazapurine biosynthesis: pathway for pyrrolopyrimidine nucleosides toyoacycin and sangivamycin. Chem Biol 15(8):790–798. https://doi.org/10.1016/j.chembiol.2008.07.012 PMID: 18721750

19. Hosaka T, Ohnishi-Kameyama M, Muramatsu H, Murakami K, Tsurumi Y, Kodani S, et al. (2009) Antibacterial discovery in actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12. Nat Biotechnol 27:462–464. https://doi.org/10.1038/nbt.1538 PMID: 19396160

20. Inaoka T, Takahashi K, Yada H, Yoshida M, Ochi K (2004) RNA polymerase mutation activates the production of a dormant antibiotic 3,3-neotrehaosadiamine via an autoinduction mechanism in Bacillus subtilis. J Biol Chem 279:3885–3892. https://doi.org/10.1074/jbc.M309925200 PMID: 14612444

21. Wang GJ, Hosaka T, Ochi K (2008) Dramatic Activation of Antibiotic Production in Streptomyces coelicolor by Cumulative Drug Resistance Mutations. Appl Environ Microb 74:2834–2840.

22. Anderson D I, Levin B R (1999) The biological cost of antibiotic resistance. Curr Opin Microbiol 2: 489–493. PMID: 10508723

23. Wang J, Xu J, Luo S, Ma Z, Bechthold A, Yu X (2018) AdpA sd, a positive regulator for morphological development and toyoacycin biosynthesis in Streptomyces diastatochromogenes 1628. Curr Microbiol. https://doi.org/10.1007/s00284-018-1529-6 (in press). PMID: 29922969

24. Ma Z, Liu J, Bechthold A, Tao L, Shentu X, Bian Y, et al. (2014) Development of intergeneric conjugal gene transfer system in Streptomyces diastatochromogenes 1628 and its application for improvement of toyoacycin production. Curr Microbiol 68:180–185. https://doi.org/10.1007/s00284-013-0461-z PMID: 24057064

25. Ma Z, Liu J, Shentu X, Bian Y, Yu X(2014) Optimization of electroporation conditions for toyoacycin producer Streptomyces diastatochromogenes 1628. J Basic Microbiol 54:278–284. https://doi.org/10.1002/jobm.201200489 PMID: 23775805

26. Xu X, Wang J, Bechthold A, Ma Z, Yu X (2017) Selection of an efficient promoter and its application in toyoacycin production improvement in Streptomyces diastatochromogenes 1628. World J Microbiol Biotechnol 33:30–37 https://doi.org/10.1007/s11274-016-2194-1 PMID: 28058639

27. Ochi K (2016) Insights into microbial cryptic gene activation and strain improvement: principle, application and technical aspects. J Antibiot 70: 25–40. https://doi.org/10.1038/ja.2016.82 PMID: 27381522

28. Fukuda K, Tamura T, Ito H, Yamamoto S, Ochi K, Inagaki K (2010) Production improvement of antifungal, antitrypanosomal nucleoside sinfungin by rpoB mutation and optimization of resting cell system of Streptomyces incarnatus NRRL 8089. J Biosci Bioeng 109:459–465. https://doi.org/10.1016/j.jbiosc.2009.10.017 PMID: 20347768

29. Okamoto-Hosoya Y, Sato T, Ochi K (2000) Resistance to paromomycin is conferred by rpsL mutations, accompanied by an enhanced antibiotic production in Streptomyces coelicolor A3(2). J Antibiot 53: 1424–1427. PMID: 11217811

30. Wang GJ, Inaoka T, Okamoto S, Ochi K (2009) A novel insertion mutation in Streptomyces coelicolor ribosomal S12 protein results in paromomycin resistance and antibiotic overproduction. Antimicrob Agents and Chemother 53:1019–1026

31. Hu HF, Ochi K (2001) Novel approach for improving the productivity of antibiotic-producing strains by inducing combined resistant mutations. Appl Environ Microbiol 67:1885–1892. https://doi.org/10.1128/AEM.67.4.1885-1892.2001 PMID: 11282646