Whole-exome sequencing of 79 xenografts as a potential approach for the identification of genetic variants associated with sensitivity to cytotoxic anticancer drugs

Chihiro Udagawa, Yasushi Sasaki, Yasuhiro Tanizawa, Hiroshi Suemizu, Yasuyuki Ohnishi, Yasukazu Nakamura, Takashi Tokino, Hitoshi Zembutsu

1 Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan, 2 Biology, Department of Liberal Arts and Sciences Center for Medical Education, Sapporo Medical University, Sapporo, Japan, 3 Department of Informatics, National Institute of Genetics, Mishima, Japan, 4 Laboratory Animal Research Department, Central Institute for Experimental Animals, Kawasaki, Japan, 5 Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan, 6 Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan

* hzenbuts@ncc.go.jp

Abstract

Chemotherapy response remains unpredictable in most patients with cancer. In this study, we performed whole-exome sequencing of 79 cancer xenografts derived from human cancer tissues to identify genetic predictors of chemosensitivity to nine cytotoxic anticancer drugs. Xenografts were harvested from 12 organs with cancer and implanted into nude mice. The mice were exposed to one of nine cytotoxic anticancer drugs (5-fluorouracil, nimustine, adriamycin, cyclophosphamide, cisplatin, mitomycin C, methotrexate, vincristine, and vinblastine) to assess the correlation between chemosensitivity response and variant allele frequency. We found 162 candidate variants that were possibly associated with chemosensitivity to one or more of the nine anticancer drugs (P < 0.01). In a subgroup analysis of breast and gastric cancer xenografts, 78 and 67 variants, respectively, were possibly associated with chemosensitivity. This approach may help to contribute to the development of personalized treatments that may allow for the prescription of optimal chemotherapy regimens among patients with cancer.

Introduction

Cancer is a global health concern, with approximately 18.1 million new cases and 9.6 million deaths in 2018 [1]. Currently, most cancers are treated by surgery, radiation therapy, and/or chemotherapy [2,3]. Chemotherapy remains a gold standard for the treatment of blood cancers, such as leukemia and lymphoma [4–6], unresectable or metastatic cancers [7,8], and solid tumors, such as lung, breast and colorectal cancers [9–11]. Despite an improved understanding of cancer biology and the development of molecular targeted therapy and immunotherapy for select patients [12,13], chemotherapy still plays a primary role in cancer treatment regimes.
Indeed, chemotherapy regimens have improved considerably, now taking into consideration the organ of origin, histological appearance, and stage of progression. Yet, these improvements aside, chemotherapeutic efficacy still varies between individuals [14] and is often complicated by toxic reactions, including nausea, tiredness, diarrhea, and hair loss [14,15], causing physical and mental distress and decreased patient quality of life. As such, it is becoming increasingly important to identify effective treatments with fewer toxic side effects as a first-line therapy for each patient. Several recent studies have sought to establish diagnostic methods for predicting chemosensitivity to cytotoxic anticancer drugs before treatment is undertaken. However, clinically useful genetic markers have yet to be developed [16–20].

Patient-derived xenograft (PDX) models have been established for many types of tumors and have emerged as powerful tools for predicting drug efficacy and for understanding tumor characteristics. With PDX models, fresh human tissue is directly implanted into immunocompromised mice. These models retain the heterogeneity of the original patient tumors and thus allow for tests, predominantly to examine the efficiency of anticancer drugs [21].

Next-generation sequencing technologies have also been developed in recent years, exposing tumor genomic profiles and facilitating the detection of low frequency variants and other genetic mutations that could not otherwise be uncovered by conventional methods [22,23]. Indeed, several studies have reported associations between such genetic mutations in tumors and clinical outcomes [24–26]. Guided by these reports, we hypothesized that genetic variants within tumors, including low frequency, rare variants, may underpin patient responses to cytotoxic anticancer drugs, such as chemosensitivity and chemoresistance. To this end, we performed whole-exome sequencing of DNA samples taken from 79 human cancer xenografts prepared from 12 different organs. These xenografts were implanted in mice and treated with one of nine cytotoxic anticancer drugs. We assessed correlations between the chemosensitivities of the xenografts to nine anticancer drugs and the variant allele frequencies (VAFs) as a potential approach to identify variants that may be predictive of drug response.

Materials and methods

Animals and tumor xenograft model

Previously, a total of 79 human tumor tissues were obtained aseptically during surgery or at autopsy across 13 hospitals in Japan [27]. The samples included 12 breast cancers, 12 gastric cancers, 10 neuroblastomas, 10 non-small-cell lung cancers, 7 gliomas, 6 pancreatic cancers, 5 colon cancers, 5 choriocarcinomas, 4 small-cell lung cancers, 4 hematopoietic cancers, 3 ovarian cancers, and 1 osteosarcoma. These xenografts were separately transplanted into athymic BALB/c-nu/nu mice (Clea Japan, Inc, Tokyo, Japan) and maintained by serial subcutaneous transplantation of 2×2×2 mm fragments into the flank once a month, as described previously [27]. Microbiological monitoring of the tumor-bearing nude mice was performed for bacteria (e.g., *Pasteurella pneumotropica* and *Mycoplasma pulmonis*), viruses (e.g., mouse adenovirus and mouse hepatitis virus), and parasites (e.g., *Giardia muris* and *Spironucleus muris*) by culture, serological, or microscopic examinations [27]. Furthermore, histological examination and isozyme testing were carried out to assess for the risk of cross-contamination among the tumor lines, or cross-contamination between human tumor xenografts and a mouse tumor appearing at the inoculation site of the xenograft during passaging [27]. Tumor-bearing mice were euthanized with deep anesthesia followed by cervical dislocation. To minimize discomfort, euthanasia was performed quickly. Tumors were excised from the euthanized mice, and a piece of the tumor tissue was implanted into another mouse using a transplantation needle. All handling of mice was carried out in a gentle to minimize animal suffering and distress. The general conditions of the mice such as appetite and respiratory conditions were monitored.
every 2 or 3 days after transplantation, and the size of the tumor was measured twice a week. Mice were housed in a controlled temperature of 23±1 °C and relative humidity 50–70%, with ad libitum access to food and water. All animal experiments were performed in accordance with the guidelines of the Central Institute for Experimental Animals.

Anticancer drugs

The chemosensitivity tests on the xenograft model in this study were performed more than 20 years ago [27]. We chose nine cytotoxic anticancer drugs that could be classified into different categories based on their mechanism of action: 5-fluorouracil (5FU; Sigma-Aldrich; Merck KGaA, Darmstadt, Germany), nimustine (ACNU; Daiichi Sankyo Co., Ltd., Tokyo, Japan), adriamycin (ADR; Kyowa Hakko Bio Co., Ltd., Tokyo, Japan), cyclophosphamide (CPM; Shionogi & Co., Ltd., Osaka, Japan), cisplatin (DDP; Sigma-Aldrich), mitomycin (MMC; Kyowa Hakko Bio), methotrexate (MTX; Wyeth Lederle Japan, Ltd., Tokyo, Japan), vincristine (VCR; Shionogi & Co), and vinblastine (VLB; Shionogi & Co). These drugs have been used as a standard of care for cancer for over 20 years, and some of these drugs remain a standard of care. All of the drugs were dissolved in sterile 0.85% NaCl containing 1% mannitol (Wako Pure Chemical Industries, Ltd., Osaka, Japan).

Chemosensitivity analysis

A total of 7,900 mice were purchased from Japan CLEA Inc. (Tokyo, Japan) and used in this study. Each anticancer drug was administered individually at the maximum tolerated dose (MTD) to nude mice bearing human cancer xenografts (n = 6 mice per group), because this dose could clearly distinguish responders from non-responders for each drug. The MTD for each drug was as described previously [27]: 6.7 mg/kg MMC, 260 mg/kg CPM, 48 mg/kg ACNU, 10 mg/kg DDP, 12 mg/kg ADR, 1.6 mg/kg VCR, 11 mg/kg VLB, 19 mg/kg 5-FU, 15 mg/kg MTX. 5-FU and MTX were administered once a day for 5 days whereas all other drugs were administered once. The control groups did not receive any treatment (6 mice per xenograft). Each of the 79 xenografts was treated with nine drugs over the course of the experiment, with 6 mice bearing xenografts used to test each drug. Two to four drugs were tested as part of a single cohort for each xenograft; along with 6 control mice, this equated to 18 to 30 mice at one time. In addition, 4 spare mice for each drug were prepared. This meant that up to 50 mice were used for each cohort. Mice were sacrificed by cervical dislocation at 21 days after administration of the drug or when the tumor volume reached 250 mm³ (humane endpoint criteria). The next cohort of mice were then acquired, and the same protocols were followed for housing and treatment. For a single xenograft, it took about 1.5 months to test each of the 9 drugs. Given that there were 79 xenografts in total, this part of our experimental procedures was carried out over approximately 10 years.

Chemosensitivity was calculated as the relative tumor volume in the treated mice (T) compared with the control (C) using the mean values measured on day 14, as described previously (T/C [%]) [27]. Tumor volume (mm³) was calculated using the following formula: 0.5 × major diameter × minor diameter².

Ethics statement

All animal studies were approved by the Institutional Committee of Central Institute for Experimental Animals, and carried out as per published protocols [27]. The establishment of PDX models and chemosensitivity testing of these xenografts were performed between 1981 and 1991. These studies were performed before enforcement of the Ethical Guidelines for Human Genome/Gene Analysis Research in Japan. Therefore, acquisition of agreement of
patients for the use of their tumor was not obligated at the time. Furthermore, these xenografts are publicly available resources, and chemosensitivity data of them were published in 1996 [27]. Therefore approval from ethics committee is not necessary for this study.

Sample preparation and whole-exome sequencing
Tumor genomic DNA was extracted from 79 xenografts using the QIAamp DNA Mini kit (QIAGEN, Hilden, Germany), according to the manufacturer’s protocol and as previously described [28]. Exome enrichment and library preparation were performed using Ion Ampiseq Exome RDY Kit PI v3, which targets >97% of consensus coding sequences (CCDS) with 5-bp padding around exons, and Ion Xpress Barcode Adapters (Thermo Fisher Scientific, Inc.). Pooled barcoded libraries were subsequently conjugated with sequencing beads by emulsion PCR and enriched using the Ion PI Hi-Q Chef kit and Ion Chef (Thermo Fisher Scientific, Inc.). Sequencing of templates was performed with 2 samples per Ion PI Chip V3 using the Ion Proton system (Thermo Fisher Scientific, Inc.), according to the manufacturer’s protocols.

Variant calling
To avoid false-positive results, we removed reads derived from the mouse genome, as follows. Sequencing reads were aligned to the human genome build 19 (hg19) and two mouse genomes C57BL/6J (mm10, NCBI accession number: GCA_000001635.26) and BALB/c (GCA_001632525.1) using the Torrent Mapping Alignment Program (ver 3.0.1, Thermo Fisher Scientific, Inc.). Reads aligned to the mouse genomes with higher alignment score than to the human genome were considered to be contamination from the host mouse and were removed from subsequent analyses. The Torrent Variant Caller plugin (ver 5.10.1, Thermo Fisher Scientific, Inc.) was used to identify variants. The parameter file, optimized for somatic mutations with low stringency criteria, was obtained from the software vendor. Variants were annotated by ANNOVAR (ver. 2018-04-16) [29] using the following reference databases: RefSeq Gene (refGene); LJB non-synonymous variants annotation (dbnsfp35a); dbSNP version 150 (avsn150); the 1000 Genome Project (1000g2015aug_eas); Clinvar version 20190305 (clinvar_20190305); COSMIC Release v88 (cosmic88); segmental duplication region (genomicSuperDups); transcription factor binding site (tfbsConsSites); Human Genetic Variation Database version 2.3 [30]; 3.5K Japanese individuals allele frequency panel (3.5KJPNv2) [31]. Variants were filtered and excluded if they: (i) had a quality score < 30; (ii) had segmental duplication or repeat regions identified by Repeat Masker or Tandem Repeats Finder; (iii) were found in homopolymer regions or multi-allelic sites; (iv) were previously detected in 3.5KJPNv2 or Human Genetic Variation Database (HGVD).

Statistical analysis
The correlations between variant allele frequencies (VAFs) and drug sensitivities were assessed using Spearman correlation tests. Significance after Bonferroni correction for multiple testing was $P = 1.11 \times 10^{-6}$ ($P < 0.05; 44,875$ variants). Statistical tests were conducted using Microsoft Excel 2016 (Microsoft Corporation, Redmond, WA, USA).

Results
Identification of variants associated with chemosensitivity
Whole-exome sequencing was used to identify genetic variants associated with chemosensitivity to one or more of nine cytotoxic anticancer drugs (MMC, CPM, ACNU, DDP, ADR, VER, VLB, 5FU, and MTX). Drugs were administered to 79 PDX models of cancers prepared from
Table 1. Variants associated with chemosensitivity to 5FU (P < 0.01), as identified among 79 xenografts.

Drug	Chr Position\(^b\)	rsID\(^b\)	Gene	Allele Ref./Variant	Location	Amino acid change	Prediction of functional effect	P value	rs\(^s\)	
5FU	4	170428839	-	NEK1	-/A	intron			1.76E-03	-0.355
	19	57840351	-	ZNF543	T/C	exon	Y507Y		2.20E-03	0.394
	20	44572085	-	PCIF1	G/C	intron			2.52E-03	0.393
	19	8386994	-	RPS28	-/C	intron			3.09E-03	-0.335
	7	89861889	-	STEAP2	-/T	exon	M475fs+51	NA	3.83E-03	-0.328
	8	145059414	rs144026672	PARD10	G/A	exon	P264P		5.66E-03	0.345
	15	63433763	-	LACTB	-/A	exon	R469Kfs*8	NA	6.56E-03	-0.309
	15	74468404	rs74686961	ISLR	A/G	exon	E402G	Tolerated	6.95E-03	0.313
	17	39190653	-	KRTAP1-3	C/A	exon	A141S	Tolerated	6.73E-03	0.358
	19	37488298	-	ZNF568	-/G	exon	E505Gfs*6	NA	6.96E-03	-0.307
	17	40556634	rs3833143	CAVIN1	-/GAGCCGAGA	3’UTR			7.10E-03	-0.306
	1	157366015	-	FCLL4	-/A	intron			8.19E-03	-0.301
	3	100039903	-	TBCID23	T/G	intron			8.39E-03	0.304
	7	14947751	-	SSPO	A/G	intron			9.44E-03	0.320
	11	68727966	-	MRGPRF	A/G	exon	F271S	Tolerated	9.76E-03	0.318

\(^a\) Based on GRCh37 genome assembly.

\(^b\) rsID from the NCBI database of genetic variation (dbSNP). “-”, this variant is not identified in dbSNP.

\(^s\) Spearman correlation coefficient had been calculated to estimate positive (resistant) or negative (sensitive) correlation between the VAF and sensitivity to each anticancer drug.

5FU, 5-fluorouracil; Ref., reference; fs, frameshift; NA, not available.

https://doi.org/10.1371/journal.pone.0239614.1001

12 different human tissues. Between 30,012 and 45,638 variants were detected for each xenograft, with a coverage of 62 to 249 (mean; 37,921 variants, with depth of 138×). Variants were filtered using an in-house program (see Materials and methods), leaving a total of 44,875 variants for correlation analysis. Chemosensitivity was calculated as T/C and the variants whose allele frequency was higher in xenografts with lower T/C as were defined as ‘chemosensitive variants’ and variants whose allele frequency were higher in xenografts with higher T/C as ‘chemoresistant variants’.

Although no variants reached a significance level of P < 1.11 × 10⁻⁶ (see Materials and methods), we observed variants showing P < 0.01 (7.15 × 10⁻⁵ < P < 9.97 × 10⁻³; Tables 1–9). The variant (chr8:g.22960701 insC) with the highest significance (lowest P value) was associated with chemosensitivity to ADR, and was located on two overlapping genes: uncharacterized LOC254896 (LOC254896) and TNF receptor superfamily member 10c (TNFRSF10C) (P = 7.15 × 10⁻⁵, rs = 0.426; Table 1, Fig 1). As presented in Fig 1, particular to this variant, xenografts with higher VAFs had poorer responses to ADR than those with lower VAFs. This may suggest that variant chr8:g.22960701 insC may be associated with resistance to ADR.

For the other eight drugs, the variants most strongly associated with chemosensitivity were as follows (Tables 1–9): NIMA-related kinase 1 (NEK1) showed strong associations with 5FU treatment (P = 1.76 × 10⁻³, rs = -0.355, Table 1); coiled-coil domain containing 66 (CCDC66) with ACNU (P = 5.04 × 10⁻⁴, rs = 0.387, Table 2); copine 7 (CPNE7) with CPM (P = 9.17 × 10⁻⁵, rs = 0.426, Table 4); SEMA3F antisense RNA 1 (SEMA3F-AS1) with DDP (P = 6.66 × 10⁻⁴, rs = 0.389, Table 3); PAS domain-containing serine/threonine kinase (PASK) with MMC (P = 2.05 × 10⁻³, rs = 0.397, Table 6); leucyl-tRNA synthetase 1 (LARS) with MTX (P = 2.11 × 10⁻³, rs = -0.366, Table 7); protein kinase C delta (PRKCD) with VCR (P = 2.38 × 10⁻³, r = -0.355).
Table 2. Variants associated with chemosensitivity to ACNU (P < 0.01), as identified among 79 xenografts.

Drug	Chr	Position	rsID	Gene	Allele Ref./Variant	Location	Amino acid change	Prediction of functional effect	P value	rs	SIFT	PolyPhen2
ACNU	3	56650052	rs1553710792	CCDC66	-/CTT	exon	T571_S572insF	NA	NA	5.04E-04	0.387	
	7	64169017	rs199594424	ZNF107	-/GAA	exon	E816delinsGK	NA	NA	7.86E-04	0.375	
	12	46760562	rs201547018	SLC38A2	C/A	intron			1.17E-03	-0.468		
	11	6061783	-	CCDC86	-/A	3'UTR			1.81E-03	-0.350		
	7	23872045	rs199803936	STK3I	GA/-	3'UTR			2.69E-03	0.337		
	8	96281481	rs142455613	C8orf37-AS1	-/GGGGACCTGGC	ncRNA_intron			3.06E-03	0.335		
	15	42305854	-	PLA2G4E	-/AGG	intron			3.67E-03	-0.327		
	9	136135237	rs34229678	ABO	AT/GC	exon			3.96E-03	-0.325		
	9	15510020	rs14802076	PSIP1	-/G	intron			4.00E-03	-0.324		
	19	44648728	rs376448556	ZNF234	GC/CT	5'UTR			4.81E-03	-0.318		
	19	15789257	rs34521056	CYP4F12	T/C	intron			5.59E-03	0.313		
	10	64967953	rs139722368	JMJD1C	AAACCT/-	exon	G939_L940del	NA	NA	6.55E-03	-0.307	
	12	5022038	-	KCNA1	-/A	3'UTR			7.42E-03	0.303		
	8	142231944	rs386730897	SLC45A4	GCA/G	intron			7.64E-03	-0.302		
	14	75643383	-	TMED10	T/G	upstream			7.74E-03	-0.314		
	16	81242149	rs386792900	PKD1L2	TT/T	exon	N236del	NA	NA	8.13E-03	-0.300	
	2	11348365	rs1553298800	ROCK2	-/TAACT	intron			8.33E-03	-0.305		
	8	132052227	-	ADCY8	G/T	exon	A118D	Tolerated	Benign	8.39E-03	0.315	
	22	29655909	-	RHBDLD3	G/T	3'UTR			8.62E-03	-0.342		
	3	50232000	-	GNAT1	T/C	exon	S259P	Deleterious	Probably damaging	9.26E-03	-0.336	
	2	226447080	rs1292467126	NYAP2	A/G	exon	K316R	Tolerated	Benign	9.33E-03	-0.330	
	2	119600548	-	EN1	G/C	exon	T382S	Deleterious	Benign	9.65E-03	-0.340	
	19	50771503	-	MYH14	-/G	exon	A931Gfs*46	NA	NA	9.97E-03	-0.296	

* Based on GRCh37 genome assembly.

b rsID from the NCBI database of genetic variation (dbSNP). "-", this variant is not identified in dbSNP.

` Spearman correlation coefficient had been calculated to estimate positive (resistant) or negative (sensitive) correlation between the VAF and sensitivity to each anticancer drug.

ACNU, nimustine; Ref., reference; ncRNA, noncoding RNA; del, deletion; ins, insertion; fs, frameshift; NA, not available.

https://doi.org/10.1371/journal.pone.0239614.t002
Table 3. Variants associated with chemosensitivity to ADR (P < 0.01), as identified among 79 xenografts.

Drug	Chr	Position	rsID	Gene	Allele Ref./Variant	Location	Amino acid change	Prediction of functional effect	P value	r_s
ADR	8	22960701		LOC254896, TNFRSF10C	NC	nRNA_exon			7.15E-05	0.437
	12	56740015		STAT2	GAA	intron			2.59E-03	0.339
	20	7980553		TMX4	IA	intron			3.39E-03	-0.330
	22	45914432		FBLN1	A	intron			3.59E-03	0.341
	7	66103436	rs57580125	KCTD7	-/AGGA	intron			4.01E-03	-0.326
	6	153312232	rs149540839	MTRF1	-/ATATG	intron			4.14E-03	0.325
	19	10226353	rs71188883	EIF3G	TGCC	intron			4.41E-03	-0.321
	15	6673951		CA12	-/G	3'UTR			4.68E-03	0.323
	2	226447080	rs1292467126	NYAP2	AG	exon	K316R	Tolerated	4.95E-03	-0.355
	3	50135710		SEMA3F-AS1	A/C	nRNA_intron			4.98E-03	0.325
	3	148459394		AGTR1	-/T	exon	I193Dfs*34	NA	5.10E-03	-0.316
	15	78581889		WDR61	-/T	intron			5.44E-03	0.314
	16	113639		RHBDF1	G/A	exon	S136S		5.66E-03	0.386
	19	44648728	rs376448556	ZNF234	GCCT	3'UTR			6.52E-03	-0.308
	2	11348365	rs1553298800	ROCK2	-/TAACT	intron			6.99E-03	-0.311
	17	47284675	rs3830594	GNGT2	-/A	intron			7.79E-03	0.301
	2	74642267	rs768089535	C2orf81	-/GCGAGGGCAGCGTCGCCGCGCGCG	exon	A251delinsGAAPPAPP	NA	7.89E-03	0.301
	6	24450169	rs5874981	GPLD1	-/CCT	intron			8.61E-03	0.297
	20	238437		DEFB132	GGTCCTT-I	exon	V7_L8del	NA	9.50E-03	-0.296

*a Based on GRCh37 genome assembly.

*b rsID from the NCBI database of genetic variation (dbSNP). "-", this variant is not identified in dbSNP.

Spearman correlation coefficient had been calculated to estimate positive (resistant) or negative (sensitive) correlation between the VAF and sensitivity to each anticancer drug. ADR, adriamycin; Ref., reference; nRNA, non-coding RNA; del, deletion; ins, insertion; fs, frameshift; NA, not available.
Table 4. Variants associated with chemosensitivity to CPM (P < 0.01), as identified among 79 xenografts.

Drug	Chr	Positiona	rsIDb	Gene	Allele Ref./Variant	Location	Amino acid change	Prediction of functional effect	P value	rs'c
CPM	16	89656247	-	CPNE7	-/C	intron			9.17E-05	0.426
	10	79588623	rs58805712	DLG5	CCAGCCT/-	intron			1.14E-04	0.420
	18	64178922	rs122290614	CDH19	C/T	exon	V487L	Tolerated Benign	6.42E-04	-0.458
	22	20096315	rs57382195	DGC8	-/CGCCTACCTTGGCC AGACCCCTGGGCA	intron			1.09E-03	0.361
	7	23854839	rs588291	STK31	-/C	exon			2.17E-03	0.340
	16	775954	rs37352409	CCDC78	C/C	intron			2.21E-03	0.339
	2	228529430	rs71180792	ORSCN	-/GACGGCTCAGGCCAG CTCGTGGCAGTGG	intron			2.30E-03	-0.356
	6	24450169	rs5874981	GPLD1	-/C	intron			2.43E-03	0.337
	5	112406768	rs11283943	MCC	-/CCT	intron			2.79E-03	-0.332
	3	197428754	-	RUBCN	C/A	intron			3.57E-03	-0.417
	5	56226601	-	MIER3	-/C	intron			3.74E-03	0.323
	7	12319049	rs414763	NDUFA5	-/CTGATACGCGAAATCC	intron			3.97E-03	-0.335
	10	73571582	rs59718926	CDH23	-/C	intron			3.97E-03	-0.321
	2	226447080	rs1292467126	NYAP2	A/G	exon	K316R	Tolerated Benign	3.98E-03	-0.361
	17	79687211	-	SLC25A10	G/T	exon	W295C	NA NA	4.04E-03	-0.382
	17	46691588	rs11267100	HOXB8	-/GGGCCCTGCCCC	intron			4.92E-03	-0.315
	9	136307571	-	DBH	G/T	exon	R243R	NA NA	5.38E-03	-0.404
	1	1510022	-	SSU72	G/T	5'UTR			5.45E-03	-0.341
	1	38334317	rs386630429	INPP5B	T/GA	intron			5.47E-03	0.310
	16	48244838	rs35914140	ABCCI1	G/C/A	intron			5.77E-03	0.308
	19	49134387	-	DBP	-/C	intron			5.87E-03	0.307
	1	248367014	-	OR2M3	TG/CA	exon	A216T	NA NA	5.89E-03	-0.307
	1	206681225	-	RASSF5	C/A	exon	A97E	NA Possibly damaging	7.10E-03	-0.339
	4	17038575	rs373660112	SH3RF1	A/N/T	intron			7.32E-03	0.300
	22	45914431	rs11421543	FBLN1	-/T	intron			7.92E-03	0.297
	3	186338529	-	AHS6	C/T	exon	P305L	Tolerated Benign	7.98E-03	0.315
	11	96123735	rs3842515	JRLK	-/G	5'UTR			9.24E-03	-0.291
	2	27884266	-	SUP37L	T/G	5'UTR			9.68E-03	0.297
	5	111500819	-	EBP41LA	-/AAAT	intron			9.79E-03	-0.289

a Based on GRCh37 genome assembly.
b rsID from the NCBI database of genetic variation (dbSNP). “-” this variant is not identified in dbSNP.
c Spearman correlation coefficient had been calculated to estimate positive (resistant) or negative (sensitive) correlation between the VAF and sensitivity to each anticancer drug. CPM, cyclophosphamide; Ref., reference; NA, not available.
Table 5. Variants associated with chemosensitivity to DDP (P < 0.01), as identified among 79 xenografts.

Drug	Chr	Positiona	rsIDb	Gene	Allele Ref./Variant	Location	Amino acid change	Prediction of functional effect	P value	r_s^c
DDP	3	50155710	-	SEMA3F-AS1	A/C	ncRNA_intron			6.66E-04	0.389
	21	45843709	rs76520785	TRPM2-AS	AGG/-	ncRNA_intron			1.44E-03	-0.357
	19	40541037	-	ZNF70B	-/T	exon S577Kfs'9	NA		1.58E-03	0.354
	7	64169017	rs199594424	ZNF107	-/GAA	exon E816delinsGK	NA		1.73E-03	0.351
	7	23854839	rs5882915	STK31	-/A	intron			1.77E-03	0.351
	7	123190494	rs147636	NDUFAS5	-/CTGGATACC ACAAATC	intron			3.23E-03	-0.347
	17	7225146	-	NEURAL	-/G	intron			4.74E-03	-0.319
	19	2980268	-	TLE6	-/A	intron			5.03E-03	-0.317
	3	47453783	-	PTPN23	G/T	exon G1271C	Deleterious	Probably damaging	5.55E-03	0.324
	15	75881889	-	WDR61	-/T	intron			5.68E-03	0.312
	15	73994678	rs1271868805	CD276	T/C	exon P54P			6.42E-03	-0.351
	5	147695284	rs3217238	LOC102546294	-/TCA	ncRNA_intron			6.63E-03	-0.307
	6	350941	rs11408655	DUSP22	-/A	3'UTR			6.69E-03	0.307
	13	50092133	-	PHF11, SETDR2-PHF11	GTN/-	intron, intron			7.21E-03	0.319
	6	36759740	-	CPNE5	-/A	intron			7.38E-03	-0.303
	8	124749609	-	ANXA13	-/T	5'UTR			7.70E-03	-0.302
	19	21300592	-	ZNF714	C/A	exon G374G			7.89E-03	-0.355
	22	20784908	rs35574298	SCARE2	TT/GA	intron			8.26E-03	0.299
	6	28331127	rs371085669	ZKSCAN3	AA/GC	exon K52A	NA		9.56E-03	0.294
	1	85787116	rs1172711726	DDAH1	-/C	3'UTR			9.92E-03	-0.322
	7	111846724	rs773775063	ZNF277	C/A	5'UTR			9.97E-03	0.372

a Based on GRCh37 genome assembly.
b rsID from the NCBI database of genetic variation (dbSNP). "-" this variant is not identified in dbSNP.
c Spearman correlation coefficient had been calculated to estimate positive (resistant) or negative (sensitive) correlation between the VAF and sensitivity to each anticancer drug.

DDP, cisplatin; Ref., reference; ncRNA, noncoding RNA; del, deletion; ins, insertion; fs, frameshift; NA, not available.

https://doi.org/10.1371/journal.pone.0239614.t005

https://doi.org/10.1371/journal.pone.0239614.t005

Genetic variants associated with sensitivity to cytotoxic anticancer drugs
There were 162 variants possibly associated with chemosensitivity to more than one of the nine anticancer drugs ($P < 0.01$, Tables 1–9). rs1292467126 (chr2:g.226447080 A\rightarrowG) in exon 4 of neuronal tyrosine-phosphorylated phosphoinositide-3-kinase adaptor 2 (NYAP2) was the most commonly associated variant, with chemosensitivity to four anti-cancer drugs: CPM ($P = 3.98 \times 10^{-3}$, $r_s = -0.361$; Table 4), ADR ($P = 4.95 \times 10^{-3}$, $r_s = -0.355$; Table 3), VCR ($P = 6.22 \times 10^{-3}$, $r_s = -0.347$; Table 8), and ACNU ($P = 9.33 \times 10^{-3}$, $r_s = -0.330$; Table 2). Xenografts with higher VAFs of rs1292467126 had better responses to the four drugs, as shown in Table 10 and Fig 2. Furthermore, three variants were associated with three drugs and 13 variants with two drugs (Table 10). For example, rs773775063 (chr7:g.111846724 C\rightarrowA) in the 5'UTR of zinc finger protein 277 (ZNF277) was associated with resistance to VLB ($P = 6.54 \times 10^{-3}$, $r_s = 0.395$), MTX ($P = 9.87 \times 10^{-3}$, $r_s = 0.398$), and DDP ($P = 9.97 \times 10^{-3}$, $r_s = 0.372$) (Table 10).

Genetic variants associated with multi-drug sensitivity

There were 162 variants possibly associated with chemosensitivity to more than one of the nine anticancer drugs ($P < 0.01$, Tables 1–9). rs1292467126 (chr2:g.226447080 A\rightarrowG) in exon 4 of neuronal tyrosine-phosphorylated phosphoinositide-3-kinase adaptor 2 (NYAP2) was the most commonly associated variant, with chemosensitivity to four anti-cancer drugs: CPM ($P = 3.98 \times 10^{-3}$, $r_s = -0.361$; Table 4), ADR ($P = 4.95 \times 10^{-3}$, $r_s = -0.355$; Table 3), VCR ($P = 6.22 \times 10^{-3}$, $r_s = -0.347$; Table 8), and ACNU ($P = 9.33 \times 10^{-3}$, $r_s = -0.330$; Table 2). Xenografts with higher VAFs of rs1292467126 had better responses to the four drugs, as shown in Table 10 and Fig 2. Furthermore, three variants were associated with three drugs and 13 variants with two drugs (Table 10). For example, rs773775063 (chr7:g.111846724 C\rightarrowA) in the 5'UTR of zinc finger protein 277 (ZNF277) was associated with resistance to VLB ($P = 6.54 \times 10^{-3}$, $r_s = 0.395$), MTX ($P = 9.87 \times 10^{-3}$, $r_s = 0.398$), and DDP ($P = 9.97 \times 10^{-3}$, $r_s = 0.372$) (Table 10).

Subgroup analysis

We further performed a subgroup analysis based on cancer type to identify tissue-specific chemosensitivity-related variants. Subgroups of breast and gastric cancers were analyzed because more than 10 xenografts of these cancer types were available. In breast and gastric cancer xenografts, 78 and 67 variants, respectively, were possibly associated with chemosensitivity to one or more drugs, with P values < 0.01 (Tables 11 and 12). rs386792906 (chr16:g.81253642 AG\rightarrowTC) in polycystin 1 like 2 (PKD1L2), which was associated with resistance to MTX, showed the strongest association of the nine tested anti-cancer drugs among the breast cancer
Drug	Chr	Position*	rsIDb	Gene	Allele Ref./Variant	Location	Amino acid change	Prediction of functional effect	P value	rs^c
MTX	5	145508636	rs1554127194	LARS	TA/CC	exon	N846D	NA	2.11E-03	-0.366
	20	16316676		KIF16B	A/C	intron		NA	2.81E-03	0.365
	19	39961019		SUPT5H	-/C	exon	K508Q6s'22	NA	3.22E-03	0.368
	3	183013150		MCF2L2	G/CT	exon	A538D	Deleterious	3.36E-03	-0.399
	5	131705587	rs7159071	MIR3936HG	CG/TA	ncRNA_exon		NA	3.46E-03	0.350
	3	101484334		CEP97	A/C	exon	Q789Af5'5	NA	3.53E-03	0.349
	7	12391269	rs11454536	VWDE	-/A	exon	K11S6f0'0	NA	3.82E-03	0.346
	2	189916175		COL5A2	T/G	exon	E934D	Deleterious	3.99E-03	0.400
	15	22960698		CYFIP1	-/G	intron		NA	5.35E-03	-0.334
	22	26709896		SEZ6L	-/A	intron		NA	6.00E-03	-0.330
	20	43108927	rs1356710132	TTPAL	G/A	exon	L96L	NA	6.25E-03	0.364
	11	47201752		PACSN3	G/CT	exon	A196A	NA	6.25E-03	-0.382
	17	21215643	rs73302034	MAP2K3	A/G	intron		NA	7.11E-03	0.324
	17	7721209		DNAH2	T/C	intron		NA	7.42E-03	-0.327
	1	146763088		CHD1L, NBPF19	-/A	intron, intron		NA	7.47E-03	0.322
	2	172216968	rs12550880	METTL8	-/C	exon	E22G6'S13	NA	7.85E-03	-0.320
	17	8046598		PER1	G/CT	exon	P1020T	Tolerated	8.34E-03	-0.373
	2	23208743		ARMC9	-/G	exon	I180D6s'8	NA	8.48E-03	0.317
	7	48146989		UPP1	C/CT	exon	S89S	NA	8.55E-03	-0.392
	7	15083555		ASB10	C/A	exon	A170S	Tolerated	8.93E-03	-0.363
	14	97313771	rs143447703	VRK1	-/A	intron		NA	9.12E-03	0.314
	17	47284675	rs3830594	GNGT2	-/A	intron		NA	9.65E-03	0.312
	7	111846724	rs73775063	ZNF277	C/A	5'UTR		NA	9.87E-03	0.398
	3	196296147	rs1560314855	FBXO4S	T/G	exon	C98G	Tolerated	9.91E-03	-0.323

* Based on GRCh37 genome assembly.

b rsID from the NCBI database of genetic variation (dbSNP). "-",” this variant is not identified in dbSNP.

c Spearman correlation coefficient had been calculated to estimate positive (resistant) or negative (sensitive) correlation between the VAF and sensitivity to each anticancer drug.

MTX, methotrexate; Ref., reference; ncRNA, noncoding RNA; fs, frameshift; NA, not available.

https://doi.org/10.1371/journal.pone.0239614.t007
Table 8. Variants associated with chemosensitivity to VCR (P < 0.01), as identified among 79 xenografts.

Drug	Chr	Position^a	rsID^b	Gene	Allele Ref./Variant	Location	Amino acid change	Prediction of functional effect	P value	r_s^c
VCR	3	53220765	rs3830265	PRKCD	TCAGAGCC/-	intron			2.38E-03	-0.343
	4	15118701	rs150278643	LRBA	-/GAGAT	intron			2.81E-03	0.338
	22	45182326	rs67401095	ARHGAP8, PRK5-ARHGAP8	CTG/-	intron, intron			3.08E-03	-0.335
	10	73115941	rs34040846	SLC29A3	TG/GCA	exon			3.12E-03	-0.335
	1	248367014	-	OR2M3	TG/CA	exon			3.47E-03	-0.331
	14	77751922	-	POMT2	-/A	exon			3.87E-03	0.328
	4	646913057	rs200831837	TRAPPC11	C/T	exon			4.46E-03	0.323
	18	226447080	rs38301387	NYAP2	AG/CG	exon			5.29E-03	-0.392
	19	21300592	-	ZNF714	C/A	exon			5.34E-03	-0.374
	3	24006476	-	NR1D2	G/A	exon			5.52E-03	-0.315
	15	43028509	-	CDAN1	-/C	exon			6.03E-03	0.312
	19	21660610	-	ZNF493	C/A	exon			6.22E-03	-0.361
	2	226447080	rs1292467126	TRAPPC11	C/T	exon			6.22E-03	-0.347
	19	21240167	-	ZNF430	A/G	exon			6.31E-03	-0.349
	3	124646709	rs869290005	MUC13	/AAG	exon			6.35E-03	-0.310
	19	36355594	-	KIRREL2	-/G	exon			6.47E-03	0.310
	16	22161135	-	VWA3A	-/C	exon			7.42E-03	-0.305
	20	948071	-	RSPO4	T/C	intron			8.00E-03	-0.357
	12	75816816	rs59277111	GLIPL12	-/CA	exon			8.66E-03	-0.299
	17	47888851	-	GPRD1	-/G	exon			8.88E-03	-0.298
	10	70804100	rs372941859	LRMDA	GG/CC	intron			9.29E-03	-0.297
	19	20002842	-	ZNF253	C/A	exon			9.46E-03	-0.347
	5	50232000	-	GNAT1	T/C	exon			9.58E-03	-0.337
	8	74335015	rs60338415	STA2A-AS1	-/AGAAAGAGC	ncRNA_intron			9.77E-03	0.297
	20	57430029	-	GNAS	C/A	exon			9.94E-03	-0.325
	1	67423998	rs142198730	MIER1	A/TTC/TCC	intron			9.95E-03	-0.302

^a Based on GRCh37 genome assembly.

^b rsID from the NCBI database of genetic variation (dbSNP). *-*, this variant is not identified in dbSNP.

^c Spearman correlation coefficient had been calculated to estimate positive (resistant) or negative (sensitive) correlation between the VAF and sensitivity to each anticancer drug.

VCR, vincristine; Ref., reference; ncRNA, noncoding RNA; ins, insertion; fs, frameshift; NA, not available.

https://doi.org/10.1371/journal.pone.0239614.t008

PLOS ONE | https://doi.org/10.1371/journal.pone.0239614 | September 28, 2020
subgroup ($P = 1.52 \times 10^{-5}$, $r_s = 0.991$, Table 11). rs73302038 (chr17:g.21215682 G>A) in mitogen-activated protein kinase kinase 3 ($MAP2K3$), which was associated with resistance to VCR, showed the strongest association for the gastric cancer subgroup ($P = 8.32 \times 10^{-6}$, $r_s = 0.935$, Table 12). However, of the variants with $P < 0.01$ in the subgroup analyses, only three (chr15:g.22960698 insG in MTX, rs59277111 in VCR, and rs3217238 in DDP) were significant at $P < 0.01$ in the whole-group analysis (Tables 11 and 12).

Discussion

Precision medicine demands the development of biomarkers to detect patient chemosensitivity to anti-cancer drugs. Here, we sought to identify clinically useful genetic markers for chemosensitivity to one or more of nine cytotoxic anticancer drugs by whole-exome sequencing for 79 xenografts. Although none of the genetic variants achieved a significance level after Bonferroni correction for multiple testing ($P = 1.11 \times 10^{-6}$), numerous variants showed possible associations with chemosensitivity to each of the nine tested drugs. Moreover, the subgroup analysis indicated chemosensitivity markers specific for breast and gastric cancers. We propose that our method could contribute to the development and optimization of personalized chemotherapy regimens among patients with cancer.

In the whole-exome sequencing analysis of 79 xenografts, we found that, the variant chr8: g.22960701insC, located in $TNFRSF10C$ and $LOC254896$, had the most significant (i.e., lowest) P value for its associated chemosensitivity to ADR ($P = 7.15 \times 10^{-5}$, $r_s = 0.437$, Table 3, Fig 1). Although the function of $LOC254896$ remains to be clarified, the down-regulated expression

Table 9. Variants associated with chemosensitivity to VLB ($P < 0.01$), as identified among 79 xenografts.

Drug	Chr	Position*	rsIDb	Gene	Allele Ref./Variant	Location	Amino acid change	Prediction of functional effect	P value	r_s^c
VLB	10	45869697	-	ALOX5	/-C	5'UTR		SIFT PolyPhen2	1.65E-03	0.355
	1	16967947	rs4987281	SEL	-/CT	intron			1.96E-03	0.350
	3	169540395	-	LRRIQ4	/-G	exon	C231Vfs*3	NA NA	2.82E-03	-0.340
	9	132652688	-	FNBP1	/-GAC	3'UTR			4.06E-03	0.326
	4	184619035	rs20083187	TRAPPC11	/T	intron			4.16E-03	0.325
	8	96281481	rs142455613	Cbof37-AS1	/-GGGGACCTGGC	ncRNA_intron			4.21E-03	0.327
	4	6293234	-	WFSI	/-G	intron			5.35E-03	0.316
	7	1528998	-	ENTS1	/A/CA	exon	M767W	NA NA	6.08E-03	0.312
	22	50659594	-	TUBGCP6	/T/C	intron			6.52E-03	0.309
	7	11146724	rs773775063	ZNF277	/A	5'UTR			6.54E-03	0.395
	6	74123314	rs35252896	DDX43	/-GCT	intron			8.14E-03	-0.301
	7	12391269	rs11454536	VWDE	/A	exon	K1158fs*0	NA NA	8.80E-03	0.299
	13	24869045	-	SPATA13	/-C	intron			8.97E-03	0.298
	19	21300592	-	ZNF714	/A	exon	G374G	NA NA	9.32E-03	-0.351
	7	111846719	-	ZNF277	/A	5'UTR			9.88E-03	0.369
	2	160075887	rs3214491	TANC1	/-C	intron			9.90E-03	-0.294

* Based on GRCh37 genome assembly.

b rsID from the NCBI database of genetic variation (dbSNP). "-", this variant is not identified in dbSNP.

c Spearman correlation coefficient had been calculated to estimate positive (resistant) or negative (sensitive) correlation between the VAF and sensitivity to each anticancer drug.

VLB, vinblastine; Ref., reference; ncRNA, noncoding RNA; fs, frameshift; NA, not available.

https://doi.org/10.1371/journal.pone.0239614.t009
and hypermethylation \cite{34,35} of TNFRSF10C in colorectal, prostate, and breast cancers has been reported previously. Additionally, in vitro experiments have suggested that an upregulation in TNFRSF10C in response to ADR treatment may induce resistance to ADR \cite{36}. TNFRSF10C is reported to protect cells from TRAIL-induced apoptosis \cite{37}, and thus may be associated with resistance to ADR through these pathways.

A variant (chr15:g.63673951 insG) located in the 5’UTR of carbonic anhydrase 12 (CA12) was also associated with resistance to ADR (Table 3). CA12 is a membrane carbonic anhydrase and plays important roles in several physiological functions, such as acid-base balance and calcification \cite{38}. A recent in vitro study showed CA12 overexpression in chemo-resistant colon cancer cells expressing the drug efflux transporter P-glycoprotein (Pgp). Moreover, ADR chemosensitivity in tumors overexpressing both CA12 and Pgp can be increased using CA12 inhibitors \cite{39}. Therefore, the chr15:g.63673951 insG variant may increase resistance to ADR by altering CA12 expression; further functional analyses would be required to verify this hypothesis.

Moreover, a variant (chr2:g.189916175 T>G) associated with resistance to MTX was located in exon 42 of collagen type V alpha 2 chain (COL5A2) (Table 7). COL5A2 is upregulated in colorectal and breast cancers \cite{40,41} and is associated with poor clinical outcome and poor survival rates in bladder cancer \cite{42}. Studies have suggested that collagen expression increases tumor drug resistance by inhibiting drug penetration into the cancer tissue and increasing cellular resistance to apoptosis \cite{43}. As shown in Table 10, we identified genetic variants that could be associated with multi-drug resistance or sensitivity. Some of these genes may be involved in the proliferation and invasion of tumor cells; for example, NYAP2 is reported to activate PI3K, Akt and Rac1, and mediates remodeling of the actin cytoskeleton...
Chr	Position*	rsIDb	Gene	Allele Ref./Variant	Location	Amino acid change	Prediction of functional effect	P value	r_s	Drug	
2	226447080	rs1292467126	NYAP2	A/G	exon	K316R	Tolerated	Benign	3.98E-03	-0.361	CPM
										4.95E-03	ADR
										6.22E-03	VCR
										9.33E-03	ACNU
19	21300592	-	ZNF714	C/A	exon	G374G	5.34E-03	-0.374	VCR		
										7.89E-03	DDP
										9.32E-03	VLB
15	78581889	-	WDR61	-/T	intron		5.44E-03	0.314	ADR		
										5.68E-03	DDP
										8.71E-03	MMC
7	111846724	rs773775063	ZNF277	C/A	5'UTR		6.54E-03	0.395	VLB		
										9.87E-03	MTX
										9.97E-03	DDP
3	50155710	-	SEMA3F-AS1	A/C	ncRNA_intron		6.66E-04	0.389	DDP		
										4.98E-03	ADR
7	64169017	rs199594424	ZNF107	GAA	exon	E816delinsGK	NA	NA	7.86E-04	0.375	ACNU
										1.73E-03	DDP
7	23854839	rs5882915	STK31	A	intron		1.77E-03	0.351	DDP		
										2.17E-03	CPM
6	24450169	rs5874981	GPlD1	CCT	intron		2.43E-03	0.337	CPM		
										8.61E-03	ADR
8	96281481	rs142455613	C8orf37-AS1	GGGGACCTGCC	ncRNA_intron		3.06E-03	0.335	ACNU		
										4.21E-03	VLB
7	123190494	rs4147636	NDUFA5	CTGGATACCCACAAATC	intron		3.23E-03	-0.347	DDP		
										3.97E-03	CPM

(Continued)
whereas ZNF277 regulates cell migration and invasion through phosphatase and tensin homolog (PTEN) [45].

In the subgroup analysis using breast and gastric cancer xenografts, we identified possible tissue-specific biomarkers in the response to anticancer drugs; however, most of these variants showed weak or no association in the whole-group analysis. These results suggest a degree of tissue specificity in sensitivity to cytotoxic anticancer drugs. rs386792906 (chr16:g.81253642 AG>T), which showed the strongest association with MTX chemosensitivity in breast cancer xenografts, was located in intron 1 of PKD1L2. PKD1L2 is a member of the polycystin protein family, and may function as a component of cationic channel pores [46]. According to a previous study using The Cancer Genome Atlas (TCGA) dataset, overexpression of PKD1L2 mRNA is associated with improved prognosis in patients with breast cancer [47]. Although the functional association between PKD1L2 and MTX is unknown, this variant may be a useful

Table 10. (Continued)

Chr	Position	rsID	Gene	Allele Ref./Variant	Location	Amino acid change	Prediction of functional effect	P value	r_s	Drug
1	248367014	-	OR2M3	TG/CA	exon	A216T	NA	3.47E-03	-0.331	VCR
								5.89E-03	-0.307	CPM
7	12391269	rs11454536	VWDE	-/A	exon	K1158fs*0	NA	3.82E-03	0.346	MTX
								8.80E-03	0.299	VLB
4	184619035	rs200831837	TRAPPC11	C/T	intron		4.16E-03	0.325	VLB	
								4.46E-03	0.323	VCR
19	44648728	rs376448556	ZNF234	GC/TT	5'UTR		4.81E-03	-0.318	ACNU	
								6.52E-03	-0.308	ADR
2	11348365	rs1553298800	ROCK2	-/TAACT	intron		6.99E-03	-0.311	ADR	
								8.33E-03	-0.305	ACNU
17	47284675	rs3830594	GNGT2	-/A	intron		7.79E-03	0.301	ADR	
								9.65E-03	0.312	MTX
3	50232000	-	GNAT1	T/C	exon	S259P	Deleterious	9.26E-03	-0.336	ACNU
							Probably damaging	9.58E-03	-0.337	VCR

a Based on GRCh37 genome assembly.

b rsID from the NCBI database of genetic variation (dbSNP). "+", this variant is not identified in dbSNP.

c Spearman correlation coefficient had been calculated to estimate positive (resistant) or negative (sensitive) correlation between the VAF and sensitivity to each anticancer drug.

ACNU, nimustine; ADR, adriamycin; CPM, cyclophosphamide; DDP, cisplatin; MMC, mitomycin C; MTX, methotrexate; VCR, vincristine; VLB, vinblastine; ncRNA, noncoding RNA; del, deletion; ins, insertion; fs, frameshift; NA, not available.

https://doi.org/10.1371/journal.pone.0239614.t010
marker for predicting sensitivity to MTX, and may act as an indicator of prognosis for breast cancer in the clinical setting.

We investigated the functional consequences of the associations between the top variants and the response to chemotherapy by interrogating the expression quantitative trait loci (eQTL) information in the Genotype-Tissue Expression (GTEx) database [48]. rs3830265, which showed the strongest association with sensitivity to VCR, was associated with the expression of \(\text{PRKCD}\) in the skin \((P = 7.3 \times 10^{-7})\) and esophagus \((P = 1.7 \times 10^{-5})\). Moreover, rs3842515, which showed the strongest association with sensitivity to ACNU in breast cancer xenograft, displayed a cis-regulatory effect on \(\text{CCDC82}\) expression in several tissues, including esophagus, thyroid, skin, and nerve \((P_{\text{min}} = 2.3 \times 10^{-13})\). However, the functional associations between these genes \((\text{PRKCD} \text{ and } \text{CCDC82})\) and sensitivities to the aforementioned drugs or mechanisms of drug metabolism remain unknown and require further investigation.

There were several strengths and limitations in our study. The main strength of our study is that we sought to identify tissue-agnostic predictive markers for chemosensitivity to nine cytotoxic anticancer drugs. As we have entered a new era of precision medicine, tissue-agnostic cancer therapy will continue to grow and expand treatment options for patients with cancer [49]. In addition to our tissue-agnostic approach, we also performed subgroup analyses of breast and gastric cancers as a deeper understanding of the genomic profiles of specific tumor types is also important. There were several limitations in our study. First, the total number of xenografts and the total number of each tumor type are small, and there were differences in the numbers of tumor types. Therefore, our study is likely to be underpowered to detect

![Fig 2. Correlation between variant rs1292467126 and chemosensitivity to CPM (A), ADR (B), VCR (C), and ACNU (D).](https://doi.org/10.1371/journal.pone.0239614.g002)
Table 11. Variants associated with chemosensitivity to each drug (P < 0.01) in breast cancer xenografts.

Drug	Chr	Position	rsID	Gene	Allele Ref./Variant	Location	Amino acid change	Prediction of functional effect	Breast cancer	All xenografts		
									N	P value	N	P value
5FU	1	23078993	rs35668201	MTR	-/TCTG	intron			10	5.42E-04	76	4.69E-01
	11	76901624	rs35298297	MYO7A	-/GCTGGGGCCCTGGAGC	intron			9	7.34E-04	70	6.96E-01
	15	34634138	rs38672889	NOP10	G/AC	3'UTR			10	4.16E-03	76	2.34E-02
	4	84230617	-	HPSE	-/C	exon	E250Gfs*6	NA	NA	5.69E-03	76	2.47E-02
	1	234588667	-	SLC35F3	-/A	intron			10	5.69E-03	76	5.31E-02
	21	47985555	rs74854320	DIP2A	-/G	intron			10	6.38E-03	76	4.83E-02
	21	40883673	-	SH3BGR, WRB-SH3BGR	-/GAA	exon, exon	E200delinsGK, E265delinsGK	NA	6.51E-03	76	2.15E-01	
	20	13763897	rs28372964	ISF1	-/ATTA	intron			10	7.55E-03	75	8.83E-01
	1	228529430	rs71180792	OBSCN	-/GACGGGCTCAAGCCA GCTGGTGCGATGGG	intron			8	8.35E-03	68	9.76E-01
	3	15075167	rs34680920	KCNAB1	GG/AA	intron			10	8.75E-03	76	3.18E-01
	10	71648214	rs74503792	COL13A1	-/A	intron			10	9.47E-03	76	2.72E-01
ACNU	11	96123735	rs3842515	IRKL	-/G	5'UTR			11	6.67E-04	77	5.72E-01
	6	33659469	-	ITPR3	-/G	exon	L2436Asfs*4	NA	NA	1.08E-03	77	9.88E-01
	6	153461050	-	SYNE1	GTTT/-	intron			11	1.94E-03	77	2.58E-01
	6	30558478	-	ABCF1	-/A	exon	X808delinsX	NA	NA	2.00E-03	77	6.94E-01
	10	78084100	rs372941859	LRMDA	GG/CC	intron			11	4.91E-03	77	5.08E-01
	19	2980268	-	TLE6	-/A	intron			11	5.99E-03	77	4.99E-02
	6	42853640	-	RPL7L1	-/TCC	intron			11	6.86E-03	77	4.60E-01
	4	69964337	rs386675647	UGT2B7	AT/TC	exon	Y268H	NA	NA	8.29E-03	77	8.67E-01
	4	6594943	-	MAN2B2	-/C	exon	Q243Pfs*9	NA	NA	8.57E-03	77	7.38E-01

(Continued)
Drug	Chr	Position\(^a\)	rsID\(^b\)	Gene	Allele Ref./Variant	Location	Amino acid change	Prediction of functional effect	Breast cancer	All xenografts
ADR	14	69791440	-		GALNT16	exon	P123T	Deleterious	10	6.43E-04
	11	56468448	rs1554964167	OR9G1, OR9G9	A/G	exon, exon	I196F, I196F	NA	11	2.88E-03
	12	6886294	-		LAG3	intron			8	3.18E-03
	16	425408	rs1555454446	SRL	-/AGATAACGCCC CCGCCTCCA	intron			11	3.63E-03
	14	75745752	-		FOS	exon	A23P	Tolerated	7	4.80E-03
	7	100361392	rs321539	ZAN	-/C	intron			11	5.83E-03
	5	1093610	rs56276350	SLC12A7	-/GGCGGGGACT	intron			10	5.93E-03
	10	73571582	rs59718926	CDH23	-/CT	intron			11	7.44E-03
	16	138773	rs57321480	NPR13	-/G	exon			11	7.82E-03
	22	50927448	rs55651311	MIOX	-/GTCCCCTCCCT	intron			10	9.83E-03
CPM	6	42853640	-		RPL17L1	intron			12	3.32E-03
	10	78084100	rs372941859	LRMDA	GG/CC	intron			12	3.43E-03
	3	49148887	-		USP19	intron			12	4.10E-03
	7	100229467	-		TFR2	exon	A185A		8	5.15E-03
	1	234458667	-		SLC35F3	intron			12	8.52E-03
	16	164781111	rs869176116	PBX1	-/ATATAAG	intron			12	9.83E-03
	11	66333595	-		CTSF	exon	E256Rfs13	NA	12	9.98E-03

(Continued)

\(^a\)Chromosome position

\(^b\)rsID

\(^c\)SIFT and PolyPhen2 scores, P values, and r2 values for each genetic variant associated with sensitivity to cytotoxic anticancer drugs.
Table 11. (Continued)

Drug	Chr	Position	rsID	Gene	Allele Ref./Variant	Location	Amino acid change	Prediction of functional effect	Breast cancer	All xenografts
	5	137682568	-	FAM53C	G/T	exon	G367C	Deleterious	Benign	
	6	42853640	-	RPL7L1	-/TCC	intron				
	10	78084100	rs372941859	LRMDA	G/GCC	intron				
	4	69964337	rs386675647	UGT2B7	AT/TC	exon	Y268H	NA	NA	
	18	67863852	rs386388096	RTTN	-/TCC	exon	G242_D243insE	NA	NA	
	2	128878011	-	UGCT1	-/A	exon	V320Gfs*20	NA	NA	
	17	15343525	rs66754946	CDRT4	-/CTT	exon	E9_V10insK	NA	NA	
	10	134012502	-	DPYSIA	CGAGGGG	intron				
	6	8073625	-	EEG1E1-BLOCIS5	AGAGTAGTTT-	ncRNA_intron				
	1	228469903	rs386640014	OBSCN	AG/TT	exon	R2823L	NA	NA	
	1	228476366	rs386640016	OBSCN	AG/TT	exon	E3372_S3373delinsDC	NA	NA	
	3	172473062	-	ECT2	-/AT	intron				
	11	96123735	rs3842515	JRLK	-/G	5'UTR				
	11	13444417	-	OBSCN	AG/TT	exon	E3372_S3373delinsDC	NA	NA	
	22	36587848	rs86915251	APOL4	-/CT	exon				
	16	772841	-	CCDC78	-/C	intron				
	5	26906240	-	CDH9	T/G	intron				
	22	38318262	-	MICAL1	C/A	exon	R285R	6.15E-03	8.52E-01	0.008
	6	44274143	-	AARS2	GAN/-	intron				
	1	203816588	-	ZC3H11A	T/A	exon	I440N	Tolerated	Benign	

Genetic variants associated with sensitivity to cytotoxic anticancer drugs

PLOS ONE | https://doi.org/10.1371/journal.pone.0239614 | September 28, 2020 20/31
Drug	Chr	Position*	rsIDb	Gene	Allele Ref./Variant	Location	Amino acid change	Prediction of functional effect	Breast cancer N	r_s^c	P value	All xenografts N	r_s^c	P value	
MTX	16	81253642	rs386792906	PKD1L2	AG/TC	intron			7	1.52E-05	0.991	68	8.70E-01	0.02	
	11	5411579	rs369353765	OR51M1	GT/AC	exon	F318L	NA	NA	7	4.97E-04	0.963	68	4.54E-01	0.092
	21	45843709	rs765207853	TRPM2-AS	AGG/-	ncRNA_intron			7	8.67E-04	0.954	68	1.26E-02	0.301	
	6	80513567	-	LINC01621	-/TCTCTCTGATA	ncRNA_exon			7	1.30E-03	-0.945	68	4.67E-01	-0.09	
	22	20784908	rs35574298	SCARF2	TT/GA	intron			7	2.06E-03	-0.934	68	1.43E-01	-0.18	
	17	7123256	-	ACADVL, DLG4	-/GGCGCTGC	5'UTR, 5'UTR			7	3.92E-03	0.915	68	5.76E-01	-0.069	
	15	22960698	-	CYHIPI	-/G	intron			7	5.13E-03	-0.905	68	5.35E-03	-0.334	
	6	30314566	rs35287137	RPP21, TRIM39-RPP21	TC/GA	exon, exon	Q157K, Q498K	NA	NA	7	6.53E-03	0.895	68	5.92E-01	-0.066
	9	88631383	rs368374310	NAA35	-/GTT	intron			7	7.11E-03	0.891	68	5.63E-01	0.071	

(Continued)
Drug	Chr	Position^a	rsID^b	Gene	Allele Ref./Variant	Location	Amino acid change	Prediction of functional effect	Breast cancer	All xenografts
								SIFT PolyPhen2 N P value r^c		N P value r^c
VCR	21	30714976		BACH1	C/G	exon	A678G	Tolerated Benign	10	3.71E-05
	12	75816816	rs59277111	GLIPR1L2	-/CAA	exon	D239_K240msQ	NA NA	10	6.11E-04
	10	97397087	-	ALDH18A1	A/C	exon	V26G	Deleterious Possibly damaging	6	7.47E-04
	19	56001803	rs5828624	SS3D	-/CCACAGC	intron			9	9.35E-04
	2	47277207	rs71416119	TTC7A	-/CAGG	intron			10	1.44E-03
	15	78581889	-	WDR61	-/T	intron			10	2.46E-03
	3	44803116	rs3082548	KIAA1143	AGACAGI/-	5'UTR			10	3.69E-03
	8	145692652	-	KIFC2	A/G	exon	S133G	Tolerated Benign	7	4.86E-03
	5	1246263	-	SLC6A18	-/GCCCCC	3'UTR			10	4.99E-03
	12	29908581	rs3830914	TMTC1	-/TTGTT	intron			10	6.95E-03
	7	100361392	rs3215395	ZAN	-/C	intron			10	7.45E-03
	6	32713619	rs146449814	HLA-DQA2	C/A	exon	P128H	Deleterious Probably damaging	9	8.51E-03
	8	134292515	-	NDRG1	-/G	intron			10	8.87E-03
	1	203816588	-	ZC3H11A	T/A	exon	I440N	Tolerated Benign	5	9.01E-03
	9	138523408	rs34000956	GLT6DI	-/T	intron			10	9.25E-03

(Continued)
Drug	Chr	Position^a	rsID^b	Gene	Allele Ref./Variant	Location	Amino acid change	Prediction of functional effect	Breast cancer	All xenografts					
									N	P value					
									r_s	N					
										r_c					
VLB	6	33037639	rs386699859	HLA-DPA1	GC/AT	exon	A42M	NA	NA	10	6.37E-04	0.886	76	1.96E-01	0.150
	6	32948287	-	BRD2	TT/SC	intron				10	6.49E-04	0.886	76	6.54E-01	0.052
	15	89864317	rs2307433	POLG	-/CTAC	intron				10	3.72E-03	-0.819	76	2.01E-01	0.148
	11	94322352	rs386756343	PIWIL4	AG/TA	exon	Q327L	NA	NA	10	4.26E-03	-0.813	76	4.89E-01	0.081
	20	62492851	-	ABHD16B	G/C	5'UTR				8	4.66E-03	0.873	65	8.77E-01	0.020
	12	1605927	rs71042275	STRAP	-/T	3'UTR				10	5.38E-03	-0.801	76	3.62E-01	0.106
	2	211421454	-	CPS1	-/CTT	exon	I5_K6insL	NA	NA	10	6.08E-03	0.794	79	7.54E-01	0.036
	1	9324725	-	H6PD	C/A	exon	P736T	Deleterious	Probably damaging	5	8.08E-03	0.964	45	7.12E-01	0.057
	21	47754410	rs57603484	PCNT	A/G	exon	S5G	Tolerated	Possibly damaging	9	1.71E-03	0.803	75	1.77E-01	0.158
	15	89864318	-	POLG	-/TACC	intron				10	9.98E-03	-0.765	76	4.25E-01	0.093

^a Based on GRCh37 genome assembly.

^b rsID from the NCBI database of genetic variation (dbSNP). "-", this variant is not identified in dbSNP.

^c Spearman correlation coefficient had been calculated to estimate positive (resistant) or negative (sensitive) correlation between the VAF and sensitivity to each anticancer drug.

5FU, 5-fluorouracil; ACNU, nimustine; ADR, adriamycin; CPM, cyclophosphamide; DDP, cisplatin; MMC, mitomycin C; MTX, methotrexate; VCR, vincristine; VLB, vinblastine; ncRNA, noncoding RNA; del, deletion; ins, insertion; fs, frameshift.

https://doi.org/10.1371/journal.pone.0239614.t011
Table 12. Variants associated with chemosensitivity to each drug (P < 0.01) in gastric cancer xenografts.

Drug	Chr	Position	rsID	Gene	Allele Ref./Variant	Location	Amino acid change	Prediction of functional effect	Gastric cancer	All xenografts				
									N	P value	N	P value	r²	r²
SFU	8	19682402	-	INTS10	C/A	exon	Q309K	Deleterious Possibly damaging	10	2.77E-03	59	7.29E-02	0.235	0.235
	13	25466771	-	CENPI	-/C	intron			12	4.73E-03	76	6.63E-01	0.051	0.051
	6	153312232	rs149540839	MTRF1	-/ATATG	intron			12	5.42E-03	75	5.29E-01	-0.074	-0.074
	17	21203998	rs62057674	MAP2K3	G/A	intron			12	5.80E-03	76	3.56E-01	-0.107	-0.107
	2	11395396	rs155348097	PSD4	CA/TG	intron			12	6.43E-03	76	1.54E-01	-0.165	-0.165
	6	33037639	rs38669859	HLA-DPA1	GC/AT	exon	A42M	NA NA	12	9.22E-03	76	3.34E-02	0.244	0.244
ACNU	16	70287173	-	AARS	-/G	exon	Q907Pfs*23	NA NA	12	2.32E-03	77	7.85E-01	-0.032	-0.032
	19	17946871	rs397839855	JAK3	-/G	intron			12	4.51E-03	77	2.98E-01	-0.120	-0.120
	14	93399168	-	CHGA	-/A	exon	E271Gfs*19	NA NA	12	5.36E-03	77	4.75E-01	-0.083	-0.083
	8	33451023	-	DUSP26	-/T	intron			12	6.54E-03	77	4.03E-01	-0.097	-0.097
	1	10384177	rs3831405	KIF1B	-/TTGAAA	intron			12	6.68E-03	77	4.47E-01	-0.088	-0.088
	7	21659555	rs57952953	DNAH11	-/TTAAT	intron			12	6.79E-03	76	8.74E-01	-0.018	-0.018
	4	48178004	rs11282767	TEC	-/AATCAGCC	intron			12	9.20E-03	77	4.10E-02	0.233	0.233
	12	11215037	-	PRH1-PRR4	-/A	ncRNA_int			12	9.68E-03	77	5.13E-02	0.223	0.223
ADR	19	36290965	-	PRODH2	G/C	exon	P529R	Tolerated Benign	10	4.21E-03	68	6.80E-01	0.051	0.051
	1	212615872	-	NENF	-/C	intron			12	4.62E-03	77	9.81E-01	0.003	0.003
	10	23393222	-	MSRB2	-/G	intron			12	9.29E-03	77	1.40E-01	-0.170	-0.170

(Continued)
Drug	Chr	Position	rsID	Gene	Allele Ref./Variant	Location	Amino acid change	Prediction of functional effect	Gastric cancer	All xenografts
CPM	8	10366431	rs36083487	KLF10	A	intron				
	2	23208747	-	ARMC9	G	exon	I180Dfs'8	NA	NA	NA
	2	29287938	-	C2orf71	TGC	intron				
	17	71433759	-	SDK2	G	intron				
	10	70652195	-	STOX1	T	intron				
DDP	1	28203133	rs77495478	THEMIS2	C/T	exon	C4BC			
	9	13624604	-	STKLD1	C/T	intron				
	17	10209869	-	MYH13	C/T	exon	E1791E			
	16	113639	-	RHBD1	G/A	exon	S136S			
	9	18927887	rs19993722	SAXO1	T/C	3'UTR				
	20	1896059	rs386811663	SIRPA	GT/AC	exon	V132T	NA	NA	
	12	5359339	rs34924760	SOAT2	G/T	exon	A202A			
	19	40886465	-	HIPK4	T/G	exon	Y478S	Deleterious Probably damaging		
	19	45649504	rs72019726	PPP1R37	G/TTA	intron				
	5	147695284	rs3217238	LOC105492694	-/TGA	ncRNA_intron				
	11	6555318	-	DNHD1	G/A	exon	E971E			
	9	13118538	rs6988335	MIR1268A	TGGGCTGCTG	ncRNA_intron				
	14	93399168	-	CHGA	A	exon	E271Gfs+19	NA	NA	NA
	20	1895950	rs386811661	SIRPA	CCT/GTC	exon	D95_L96 delinsES	NA	NA	
	8	33451023	-	DUSP26	T	intron				

(Continued)
Drug	Chr	Position	rsID	Gene	Allele Ref./Variant	Location	Amino acid change	Prediction of functional effect	Gastric cancer	All xenografts	
MMC	19	48282078	rs34940677	SELENOW	-/GCAGCCGG	intron			N 3.63E-03	75 2.33E-01	
	1	23293095	-	GPMB	-/A	intron			N 4.73E-03	79 7.34E-01	
	15	52901283	rs386783993	FAM214A	TTY/CC	exon	T617A	NA	N 5.67E-03	79 7.36E-01	
	1	158533221	-	OR6P1	-/G	exon	M59Hfs^32	NA	N 6.62E-03	79 3.40E-01	
	19	9000065	-	MUC16	-/T	intron			N 6.62E-03	79 6.42E-01	
	5	134210196	-	TXNDC15	G/T	exon	G27X	NA	N 7.00E-03	59 3.45E-01	
	10	13536890	rs3831169	SYCE1	-/GCTGAGACGG	intron			N 8.31E-03	79 9.80E-01	
	10	13536891	-	SYCE1	-/CTGAGACGGG	intron			N 8.31E-03	79 9.44E-01	
	8	11705381	rs145929462	CTSB	-/AGCCCCAGCTGGGGCGG	intron			N 8.82E-03	77 8.06E-01	
	6	32362702	rs28362676	BNL12	TGCT	exon	P393Q	NA	N 8.82E-03	79 4.25E-01	
	15	101606889	rs38678740	LRRK1	GC/AA	exon	G1938E	NA	N 9.59E-03	79 7.75E-01	
MTX	2	113953976	rs1553408097	PSD4	CA/TG	intron			N 1.39E-03	68 9.03E-02	
	1	10384177	rs3831405	KIF1B	-/TTGAAA	intron			N 1.58E-03	68 9.54E-01	
	2	128878011	-	UGGT1	-/A	exon	V320Gfs^20	NA	N 2.13E-03	68 1.86E-01	
	15	101606889	rs38678740	LRRK1	GC/AA	exon	G1938E	NA	N 2.38E-03	68 3.77E-02	
	5	140203493	-	PCDH9	G/A	exon	V711V			N 3.01E-03	51 5.76E-01
	2	69597065	rs57960122	GFPT1	-/A	intron			N 3.12E-03	68 3.87E-01	
	2	74642267	rs768089535	C2orf81	-/GCAGGGGGCGCG	exon	A251delinsGAAPP	NA	N 3.70E-03	68 6.82E-01	
	16	81242149	rs796089514	PKD1L2	TTT/-	exon	N236del	NA	N 4.96E-03	68 4.89E-01	

(Continued)
Drug	Chr	Position	rsID	Gene	Allele Ref./Variant	Location	Amino acid change	Prediction of functional effect	Gastric cancer	All xenografts
VCR	17	21215682	rs73302038	MAP2K3	G/A	intron				
	17	21215637	rs66486636	MAP2K3	G/A	intron				
	17	21215700	rs73302043	MAP2K3	T/G	intron				
	17	21215643	rs73302034	MAP2K3	A/G	intron				
	21	47985555	rs74854320	DIP2A	G/	intron				
	6	79595168	rs66520304	IRAK1BP1	-/CTTAT	intron				
	19	8808938	-	ACTL9	G/A	intron				
	7	100853907	-	PLD3	C/G	exon				
	15	65931909	rs11131011	SLC24A1	-/CTGAGGC	intron				
	5	180687440	rs3073543	TRIM52	TTC/-	exon				
	3	49148887	-	USP19	C/G	intron				
	8	142231944	rs38673087	SLC45A4	GC/AG	intron				
	1	203137787	-	MYBPH	C/G	exon				
VLB	2	113953976	rs1553408097	PS9D	C/TG	intron				
	11	60617832	-	CCDC86	G/A	intron				
	19	45649504	rs72019726	PPP1R37	T/G	intron				
	13	98896915	-	FARPI	T/G	exon				
	6	44122422	rs10537719	TMEM63B	C/T	intron				
	1	10384177	rs3831405	KIF1B	-/TTGAAGA	intron				

*Based on GRCh37 genome assembly.

b rsID from the NCBI database of genetic variation (dbSNP). "-" this variant is not identified in dbSNP.

c Spearman correlation coefficient had been calculated to estimate positive (resistant) or negative (sensitive) correlation between the VAF and sensitivity to each anticancer drug.

5FU, 5-fluorouracil; ACNU, nimustine; ADR, adriamycin; CPM, cyclophosphamide; DDP, cisplatin; MMC, mitomycin C; MTX, methotrexate; VCR, vincristine; VLB, vinblastine; ncRNA, noncoding RNA; del, deletion; ins, insertion; fs, frameshift.
statistically significant variants or perform a subgroup analysis for all tumor types. Second, the results need to be confirmed using a larger number of samples, along with a functional analysis of the identified genes.

In conclusion, using whole-exome sequencing and a PDX model, we identified 162 genetic variants as possible susceptibility factors for sensitivity to one or more of the nine tested cytotoxic anticancer drugs. This method and the results presented herein may contribute to the development of personalized treatments for the prescription of optimal chemotherapy regimens. Although the underlying mechanisms should be further investigated using a larger number of clinical samples and molecular analysis, we propose that our findings may help to contribute to understanding the mechanisms of chemoresistance and chemosensitivity, and aid in the improved prognosis and quality of life for patients with cancer.

Acknowledgments

The authors would like to thank Mr. Takashi Ishikura for technical assistance, and all members and staff for their contribution to the sample collection and the completion of the current study.

Author Contributions

Conceptualization: Hitoshi Zembutsu.

Data curation: Yasushi Sasaki, Yasuhiro Tanizawa, Yasukazu Nakamura, Takashi Tokino.

Formal analysis: Chihiro Udagawa.

Funding acquisition: Hitoshi Zembutsu.

Investigation: Yasushi Sasaki, Takashi Tokino.

Methodology: Yasuhiro Tanizawa, Yasukazu Nakamura.

Project administration: Hitoshi Zembutsu.

Resources: Hiroshi Suemizu, Yasuyuki Ohnishi.

Software: Yasuhiro Tanizawa, Yasukazu Nakamura.

Writing – original draft: Chihiro Udagawa.

Writing – review & editing: Hitoshi Zembutsu.

References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68(6):394–424. https://doi.org/10.3322/caac.21492 PMID: 30207593

2. Arruebo M, Vilaboa N, Sáez-Gutierrez B, Lambea J, Tres A, Valladares M, et al. Assessment of the evolution of cancer treatment therapies. Cancers (Basel). 2011; 3(3):3279–330. https://doi.org/10.3390/cancers3033279 PMID: 24212956

3. Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, et al. Cancer treatment and survivorship statistics, 2016. CA: a cancer journal for clinicians. 2016; 66(4):271–89. https://doi.org/10.3322/caac.21349 PMID: 27253694

4. Dombret H, Gardin C. An update of current treatments for adult acute myeloid leukemia. Blood. 2016; 127(1):53–61. https://doi.org/10.1182/blood-2015-08-604520 PMID: 26660429

5. Bose P, Vachhani P, Cortes JE. Treatment of Relapsed/Refractory Acute Myeloid Leukemia. Curr Treat Options Oncol. 2017; 18(3):17-. https://doi.org/10.1007/s11864-017-0456-2 PMID: 28286924

6. Bassan R, Maino E, Cortelazzo S. Lymphoblastic lymphoma: an updated review on biology, diagnosis, and treatment. Eur J Haematol. 2016; 96(5):447–60. https://doi.org/10.1111/ejh.12722 PMID: 26679753
7. Shaib WL, Ip A, Cardona K, Alese OB, Maithel SK, Kooby D, et al. Contemporary Management of Borderline Resectable and Locally Advanced Unresectable Pancreatic Cancer. Oncologist. 2016; 21(2):178–87. https://doi.org/10.1634/theoncologist.2015-0316 PMID: 26834159

8. Spiegel D, Palta M, Uronis H. Role of Chemotherapy and Radiation Therapy in the Management of Gastric Adenocarcinoma. Surg Clin North Am. 2017; 97(2):421–35. https://doi.org/10.1016/j.suc.2016.11.013 PMID: 28325195

9. Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr., Wu Y-L, et al. Lung cancer: current therapies and new targeted treatments. Lancet. 2017; 389(10066):299–311. https://doi.org/10.1016/S0140-6736(16)30958-8 PMID: 27574741

10. Harbeck N, Gnant M. Breast cancer. Lancet. 2017; 389(10074):1134–50. https://doi.org/10.1016/S0140-6736(16)31891-8 PMID: 27865536

11. Kuipers EJ, Grady WM, Lieberman D, Seufferlein T, Sung JJ, Boelens PG, et al. Colorectal cancer. Nat Rev Dis Primers. 2015; 1:15065-. https://doi.org/10.1038/nrdp.2015.65 PMID: 27189416

12. Lheureux S, Denoyelle C, Ohashi PS, De Bono JS, Mottaghy FM. Molecularly targeted therapies in cancer: a guide for the nuclear medicine physician. Eur J Nucl Med Mol Imaging. 2017; 44(Suppl 1):41–54. https://doi.org/10.1007/s00259-016-3695-3 PMID: 28396911

13. Shahid K, Khalife M, Dabney R, Phan AT. Immunotherapy and targeted therapy—the new roadmap in cancer treatment. Ann Transl Med. 2019; 7(20):595- . https://doi.org/10.21037/atm.2019.05.58 PMID: 31807576

14. Rehman S. An Overview of Cancer Treatment Modalities. 2018.

15. Nurgali K, Jagoe RT, Abalo R. Editorial: Adverse Effects of Cancer Chemotherapy: Anything New to Improve Tolerance and Reduce Sequelae? Frontiers in Pharmacology. 2018; 9(245). https://doi.org/10.3389/fphar.2018.00245 PMID: 29623040

16. Qian C-Y, Zheng Y, Wang Y, Chen J, Liu J-Y, Zhou H-H, et al. Associations of genetic polymorphisms of the transporters organic cation transporter 2 (OCT2), multidrug and toxin extrusion 1 (MATE1), and ATP-binding cassette subfamily C member 2 (ABCC2) with platinum-based chemotherapy response and toxicity in non-small cell lung cancer patients. Chin J Cancer. 2016; 35(1):85-. https://doi.org/10.1186/s40880-016-0145-8 PMID: 27590272

17. Fridley BL, Ghosh TM, Wang A, Raghavan R, Dai J, Goode EL, et al. Genome-Wide Study of Response to Platinum, Taxane, and Combination Therapy in Ovarian Cancer: In vitro Phenotypes, Inherited Variation, and Disease Recurrence. Front Genet. 2016; 7:37-. https://doi.org/10.3389/fgen.2016.00037 PMID: 27047539

18. Botticelli A, Borro M, Onesti CE, Strigari L, Gentile G, Cerbelli B, et al. Degradation Rate of 5-Fluorouracil in Metastatic Colorectal Cancer: A New Predictive Outcome Biomarker? PLoS One. 2016; 11(9): e0163105-e . https://doi.org/10.1371/journal.pone.0163105 PMID: 27656891

19. Cassidy JW, Caldas C, Bruna A. Maintaining Tumor Heterogeneity in Patient-Derived Tumor Xenografts. Cancer Res. 2015; 75(15):2963–8. https://doi.org/10.1158/0008-5472.CAN-15-0727 PMID: 26180079

20. Shin H-T, Choi Y-L, Yun JW, Kim NKD, Kim S-Y, Jeon HJ, et al. Prevalence and detection of low-allele-frequency variants in clinical cancer samples. Nat Commun. 2017; 8(1):1377-. https://doi.org/10.1038/s41467-017-01470-y PMID: 29123093

21. Giardina T, Robinson C, Griieu-lacopetta F, Millward M, lacopetta B, Spagnolo D, et al. Implementation of next generation sequencing technology for somatic mutation detection in routine clinical practice. Pathology. 2018; 50(4):389–401. https://doi.org/10.1016/j.pathol.2018.01.005 PMID: 29752127

22. Sailman DA, Komoriki R, Vaupel C, Cluzeau T, Geyer SM, McGraw KL, et al. Impact of TP53 mutation variant allele frequency on phenotype and outcomes in myelodysplastic syndromes. Leukemia. 2016; 30(3):666–73. https://doi.org/10.1038/leu.2015.304 PMID: 26514544

23. Pairawan S, Hess KR, Janku F, Sanchez NS, Shaw KRM, Eng C, et al. Cell-Free Circulating Tumor DNA Variant Allele Frequency Associates with Survival in Metastatic Cancer. Clin Cancer Res. 2019: clincancer.0306.2019. https://doi.org/10.1158/1078-0432.CCR-19-0306 PMID: 31852833
26. Osumi T, Shinozaki E, Yamaguchi K, Zembutsu H. Early change in circulating tumor DNA as a potential predictor of response to chemotherapy in patients with metastatic colorectal cancer. Sci Rep. 2019; 9(1):17358-e. https://doi.org/10.1038/s41598-019-53711-3 PMID: 31758080

27. Nomura T, Sakurai Y, Inaba M, Ueyama Y, Tamaoki N, Kobayashi T, et al. The Nude Mouse and Anticancer Drug Evaluation. Nomura T, Sakurai Y, Inaba M, editors: Central Institute for Experimental Animals; 1996.

28. Udagawa C, Sasaki Y, Suemizu H, Ohnishi Y, Ohsaki H, Tokino T, et al. Targeted sequencing reveals genetic variants associated with sensitivity of 79 human cancer xenografts to anticancer drugs. Exp Ther Med. 2018; 15(2):1339–59. https://doi.org/10.3892/etm.2017.5533 PMID: 29434720

29. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010; 38(16):e164-e. https://doi.org/10.1093/nar/gkq603 PMID: 20601685

30. Higasa K, Miyake N, Yoshimura J, Okamura K, Niihori T, Saitsu H, et al. Human genetic variation database, a reference database of genetic variations in the Japanese population. Journal of Human Genetics. 2016; 61(6):547–53. https://doi.org/10.1038/jhg.2016.12 PMID: 26911352

31. Tadaka S, Katsuoka F, Ueki M, Kojima K, Makino S, Saito S, et al. 3.5KJPNv2: an allele frequency panel of 3552 Japanese individuals including the X chromosome. Human Genome Variation. 2019; 6(1):28. https://doi.org/10.1038/s41439-019-0059-5 PMID: 31240104

32. Hornstein M, Hoffmann MJ, Alexa A, Yamakawa M, Muller M, Jung V, et al. Protein phosphatase and TRAIL receptor genes as new candidate tumor genes on chromosome 8p in prostate cancer. Cancer Genomics Proteomics. 2008; 5(2):123–36. PMID: 18460741

33. Fischer H, Stenling R, Rubio C, Lindblom A. Colorectal carcinogenesis is associated with stromal expression of COL11A1 and COL5A2. Carcinogenesis. 2001; 22(6):875–8. https://doi.org/10.1093/carcin/22.6.875 PMID: 11375892

34. Vargas AC, McCart Reed AE, Wadell N, Lane A, Reid LE, Smart CE, et al. Gene expression profiling of tumour epithelial and stromal compartments during breast cancer progression. Breast Cancer Res Treat. 2012; 135(1):153–65. https://doi.org/10.1007/s10549-012-1213-4 PMID: 22781338

35. Zeng X-T, Liu X-P, Liu T-Z, Wang X-H. The clinical significance of COL5A2 in patients with bladder cancer: A retrospective analysis of bladder cancer gene expression data. Medicine (Baltimore). 2018; 97(10):e0091-e. https://doi.org/10.1097/MD.00000000000010091 PMID: 29517678

36. Januchowski R, Swierczewska M, Sterzyńska K, Wojewicz K, Nowicki M, Zabel M. Increased Expression of Several Collagen Genes is Associated with Drug Resistance in Ovarian Cancer Cell Lines. J Cancer. 2016; 7(10):1295–310. https://doi.org/10.7150/jca.15371 PMID: 27390605

37. Yokoyama K, Tezuka T, Kotani M, Nakazawa T, Hoshina N, Shimoda Y, et al. NYAP: a phosphoprotein family that links PI3K to WAVE1 signalling in neurons. The EMBO Journal. 2011; 30(23):4739–54. https://doi.org/10.1038/embj.2011.348 PMID: 21946561

38. Liu Z, Xu Z, Tian Y, Yan H, Lou Y. ZNF277 regulates ovarian cancer cell proliferation and invasion through inhibition of PTEN. Onco Targets Ther. 2019; 12:3031–42. https://doi.org/10.2147/OTT. S192553 PMID: 31114246
46. Li A, Tian X, Sung S-W, Somlo S. Identification of two novel polycystic kidney disease-1-like genes in human and mouse genomes. Genomics. 2003; 81(6):596–608. https://doi.org/10.1016/s0888-7543(03)00048-x PMID: 12782129

47. Qi L, Yao Y, Zhang T, Feng F, Zhou C, Xu X, et al. A four-mRNA model to improve the prediction of breast cancer prognosis. Gene. 2019; 721:144100. https://doi.org/10.1016/j.gene.2019.144100 PMID: 31493508

48. Battle A, Brown CD, Engelhardt BE, Montgomery SB. Genetic effects on gene expression across human tissues. Nature. 2017; 550(7675):204–13. https://doi.org/10.1038/nature24277 PMID: 29022597

49. Garber K. In a major shift, cancer drugs go ‘tissue-agnostic’. Science. 2017; 356(6343):1111–2. https://doi.org/10.1126/science.356.6343.1111 PMID: 28619894