Avoiding Imposters and Delinquents: Adversarial Crowdsourcing and Peer Prediction

Jacob Steinhardt
Computer Science Department
Stanford University
jsteinhardt@cs.stanford.edu

Gregory Valiant
Computer Science Department
Stanford University
valiant@stanford.edu

Moses Charikar
Computer Science Department
Stanford University
moses@cs.stanford.edu

Abstract

We consider a crowdsourcing model in which \(n \) workers are asked to rate the quality of \(n \) items previously generated by other workers. An unknown set of \(\alpha n \) workers generate reliable ratings, while the remaining workers may behave arbitrarily and possibly adversarially. The manager of the experiment can also manually evaluate the quality of a small number of items, and wishes to curate together almost all of the high-quality items with at most an \(\epsilon \) fraction of low-quality items. Perhaps surprisingly, we show that this is possible with an amount of work required of the manager, and each worker, that does not scale with \(n \): the dataset can be curated with \(\tilde{O} \left(\frac{1}{\beta \alpha \epsilon^3} \right) \) ratings per worker, and \(\tilde{O} \left(\frac{1}{\beta \epsilon^2} \right) \) ratings by the manager, where \(\beta \) is the fraction of high-quality items. Our results extend to the more general setting of peer prediction, including peer grading in online classrooms.

1 Introduction

How can we reliably obtain information from humans, given that the humans themselves are unreliable, and might even have incentives to mislead us? Versions of this question arise in crowdsourcing (Vuurens et al., 2011), collaborative knowledge generation (Priedhorsky et al., 2007), peer grading in online classrooms (Piech et al., 2013; Kulkarni et al., 2015), aggregation of customer reviews (Harmon, 2004), and the generation/curation of large datasets (Deng et al., 2009). A key challenge is to ensure high information quality despite the fact that many people interacting with the system may be unreliable or even adversarial. This is particularly relevant when raters have an incentive to collude and cheat as in the setting of peer grading, as well as reviews on sites like Amazon and Yelp, where artists and firms are incentivized to manufacture positive reviews for their own products and negative reviews for their rivals (Harmon, 2004; Mayzlin et al., 2012).

One approach to ensuring quality is to use gold sets — questions where the answer is known, which can be used to assess reliability on unknown questions. However, this is overly constraining — it does not make sense for open-ended tasks such as knowledge generation on wikipedia, nor even for crowdsourcing tasks such as “translate this paragraph” or “draw an interesting picture” where there are different equally good answers. This approach may also fail in settings, such as peer grading in massive online open courses, where students might collude to inflate their grades.
In this work, we consider the challenge of using crowdsourced human ratings to accurately and efficiently evaluate a large dataset of content. In some settings, such as peer grading, the end goal is to obtain the accurate evaluation of each datum; in other settings, such as the curation of a large dataset, accurate evaluations could be leveraged to select a high-quality subset of a larger set of variable-quality (perhaps crowd-generated) data.

There are several confounding difficulties that arise in extracting accurate evaluations. First, many raters may be unreliable and give evaluations that are uncorrelated with the actual item quality; second, some reliable raters might be harsher or more lenient than others; third, some items may be harder to evaluate than others and so error rates could vary from item to item, even among reliable raters; finally, some raters may even collude or want to hack the system. This raises the question: can we obtain information from the reliable raters, without knowing who they are a priori?

In this work, we answer this question in the affirmative, under surprisingly weak assumptions:

- We do not assume that there is a “gold set” or other cheap way to judge worker performance; instead, we rely on a small number of our own (potentially noisy) post hoc judgments.
- We do not assume that the majority of workers are reliable.
- We do not assume that the unreliable workers conform to any statistical model; they could behave fully adversarially, in collusion with each other and with full knowledge of how the reliable workers behave.
- We do not assume that the reliable worker ratings match our own, but only that they are “approximately monotonic” in our ratings, in a sense that will be formalized later.

For concreteness, we describe a simple formalization of the crowdsourcing setting (our actual results hold in a more general setting). There are n raters and n items to evaluate, which have an unknown quality level in $[0, 1]$. At least αn workers are “reliable” in that their judgments match our own in expectation, and they make independent errors. We assign each worker to evaluate at most k randomly selected items. In addition, we ourselves judge k_0 items. Our goal is to recover the β-quantile: the set T^* of the βn highest-quality items. Our main result is the following:

Theorem 1. In the setting above, suppose $k \geq \Omega(1/\beta n^3 \epsilon^4)$ and $k_0 \geq \Omega(\log(1/\alpha \beta \epsilon)/\beta \epsilon^2)$. Then, with probability at least 99%, we can identify βn items with average quality at most ϵ worse than T^*.

Amazingly, the amount of work that each worker (and we ourselves) has to do does not grow with n; it depends only on the fraction α of reliable workers and the the desired accuracy ϵ. While the number of evaluations k for each worker is likely not optimal, we note that the amount of work k_0 required of us is close to optimal: for $\alpha \leq \beta$, it is information theoretically necessary for us to evaluate $\Omega(1/\beta \epsilon^2)$ items, via a reduction to estimating noisy coin flips (Mannor and Tsitsiklis, 2004).

Why is it necessary to include some of our own ratings? If we did not, and $\alpha < 1/2$, then an adversary could create a set of dishonest raters that were identical to the reliable raters except with the item

![Figure 1: Illustration of our problem setting. We observe a small number of ratings from each rater (indicated a blue), which we represent as entries in a matrix \tilde{A} (unobserved ratings in red, treated as zero by our algorithm). We also rate a small number of items ourself, indicated by \tilde{r}. Our goal is to recover the set T^* representing the top β fraction of items under our rating. As an intermediate step, we recover a matrix M^* that approximates the top items for each individual rater.]

In expectation, and they make independent errors. We assign each worker to evaluate at most k randomly selected items. In addition, we ourselves judge k_0 items. Our goal is to recover the set T^* representing the top β fraction of items under our rating. As an intermediate step, we recover a matrix M^* that approximates the top items for each individual rater.
indices permuted by a random permutation of \{1, \ldots, m\}. In this case, there is no way to distinguish the honest from the dishonest raters except by breaking the symmetry with our own ratings.

Our main result holds in a considerably more general setting where we require a weaker form of inter-rater agreement — for example, our results hold even if some of the reliable raters are harsher than others, as long as the expected ratings induce approximately the same ranking. The focus on quantiles rather than raw ratings is what enables this. Note that once we estimate the quantiles, we can approximately recover the ratings by evaluating a few items in each quantile.

Our technical tools draw on semidefinite programming methods for matrix completion, which have been used to study graph clustering as well as community detection in the stochastic block model (Holland et al., 1983; Condon and Karp, 2001). Our setting corresponds to the sparse case where all nodes have constant degree, which has recently seen great interest (Decelle et al., 2011; Mossel et al., 2012; 2013b;a; Massoulié, 2014; Guédon and Vershynin, 2014; Mossel et al., 2015; Chin et al., 2015; Abbe and Sandon, 2015; Makarychev et al., 2015). Makarychev et al. (2015) in particular provide an algorithm that is robust to adversarial perturbations, but only if the perturbation has size \(o(n)\); see also Cai and Li (2015) for robustness results when the node degree is logarithmic.

Several authors have considered semirandom settings for graph clustering, which allow for some types of adversarial behavior (Feige and Krauthgamer, 2000; Feige and Kilian, 2001; Coja-Oghlan, 2004; Krivelevich and Vilenchik, 2006; Coja-Oghlan, 2007; Makarychev et al., 2012; Chen et al., 2014; Guédon and Vershynin, 2014; Moitra et al., 2015; Agarwal et al., 2015). In our setting, these semirandom models would need to assume that the adversaries are strictly dominated by the reliable raters, in the sense of having lower expected accuracy on every item; this is implausible as it rules out most types of strategic behavior. In removing this assumption, we face a key technical challenge: while previous analyses consider errors relative to a ground truth clustering, in our setting the ground truth only exists for rows of the matrix corresponding to reliable raters while the remaining rows could behave arbitrarily even in the limit where all ratings are observed. This necessitates a more careful analysis, which helps to clarify what properties of a clustering are truly necessary for identifying it.

2 Algorithm and Intuition

We now describe our recovery algorithm. To fix notation, we assume that there are \(n\) raters and \(m\) items, and that we observe a matrix \(\hat{A} \in [0, 1]^{n \times m}\): \(\hat{A}_{ij} = 0\) if rater \(i\) does not rate item \(j\), and otherwise \(\hat{A}_{ij}\) is the assigned rating, which takes values in \([0, 1]\). In the settings we care about \(\hat{A}\) is very sparse — each rater only rates a few items. Remember that our goal is to recover the \(\beta\)-quantile \(T^*\) of the best items according to our own rating.

Our algorithm is based on the following intuition: the reliable raters must (approximately) agree on the ranking of items, and so if we can cluster the rows of \(\hat{A}\) appropriately, then the reliable raters should form a single very large cluster (of size \(\alpha n\)). There can be at most \(\frac{1}{\alpha}\) disjoint clusters of this size, and so we can manually check the accuracy of each large cluster (by checking agreement with our own rating on a few randomly selected items) and then choose the best one.

Algorithm 1 Algorithm for recovering \(\beta\)-quantile matrix \(\hat{M}\) using (unreliable) ratings \(\hat{A}\).

1: Parameters: reliable fraction \(\alpha\), quantile \(\beta\), tolerance \(\epsilon\), number of raters \(n\), number of items \(m\)
2: Input: noisy rating matrix \(\hat{A}\)
3: Let \(\hat{M}\) be the solution of the optimization problem (1):

\[
\begin{align*}
\text{maximize } & \langle \hat{A}, M \rangle, \\
\text{subject to } & 0 \leq M_{ij} \leq 1 \quad \forall i, j, \\
& \sum_j M_{ij} \leq \beta m \quad \forall j, \\
& \|M\|_* \leq \frac{2}{\alpha \epsilon} \sqrt{\alpha \beta nm},
\end{align*}
\]

where \(\cdot\|_*\) denotes nuclear norm.
4: Output \(\hat{M}\).
Algorithm 2 Algorithm for recovering an accurate \(\beta \)-quantile \(T \) from the \(\beta \)-quantile matrix \(M \).

1: Parameters: tolerance \(\epsilon \), reliable fraction \(\alpha \)
2: Input: matrix \(\hat{M} \) of approximate \(\beta \)-quantiles, noisy ratings \(\hat{r}, \hat{r}' \)
3: Let \(C' \) be the set of \(\alpha n \) indices \(i \) for which \(\sum_j \hat{M}_{ij} \hat{r}_j \) is largest.
4: \(T_0 \leftarrow \frac{1}{|C'|} \sum_{i \in C'} \hat{M}_i. \)
5: do \(T \leftarrow \text{RANDOMIZEDROUND}(T_0) \) while \((T - T_0, \hat{r}') < -\frac{\epsilon}{4} \beta k \)
6: return \(T \)

One major challenge in using the clustering intuition is the sparsity of \(\hat{A} \): any two rows of \(\hat{A} \) will almost certainly have no ratings in common, so we must exploit the global structure of \(\hat{A} \) to discover clusters, rather than using pairwise comparisons of rows. The key is to view our problem as a form of noisy matrix completion. A matrix \(\hat{M} \) has low-rank structure if all of the reliable raters agree with each other, their rows in \(\hat{M} \) are all identical, and so there is an \((\alpha n) \times m \) submatrix of \(\hat{M} \) with rank 1. This inspires the low-rank matrix completion algorithm for recovering \(\hat{M} \) given in Algorithm 1. Each row of \(\hat{M} \) is constrained to have sum at most \(\beta m \), and \(\hat{M} \) as a whole is constrained to have nuclear norm \(\| \hat{M} \| \) at most \(\frac{2}{\alpha \epsilon} \sqrt{\alpha \beta m n} \). Recall that the nuclear norm is the sum of the singular values of \(M \); in the same way that the \(\ell^1 \)-norm is a convex surrogate for the \(\ell^0 \)-norm, the nuclear norm acts as a convex surrogate for the rank of \(M \) (i.e., number of non-zero singular values). The optimization problem \((1) \) therefore chooses a set of \(\beta m \) items in each row to maximize the corresponding values in \(\hat{M} \), while constraining the item sets to have low rank (where low rank is relaxed to low nuclear norm to obtain a convex problem). This low-rank constraint acts as a strong regularizer that quenches the noise in \(\hat{A} \).

Once we have recovered \(\hat{M} \) using Algorithm 1, it remains to recover a specific set \(T \) that approximates the \(\beta \)-quantile according to our ratings. Algorithm 2 provides a recipe for doing so: first, rate \(k_0 \) items at random, obtaining the vector \(\hat{r}: \hat{r}_j = 0 \) if we did not rate item \(j \), and otherwise \(\hat{r}_j \) is the (possibly noisy) rating that we assign to item \(j \). Next, score each row \(\hat{M}_i \) based on the noisy ratings \(\sum_j \hat{M}_{ij} \hat{r}_j \), and let \(T_0 \) be the average of the \(\alpha n \) highest-scoring \(\hat{M}_i \). Finally, use randomized rounding to turn the vector \(T_0 \in [0, 1]^m \) into a discrete vector \(T \in \{0, 1\}^m \), and treat \(T \) as the indicator function of a set approximating the \(\beta \)-quantile (see Section 5 for details of the rounding algorithm).

In summary, given a noisy rating matrix \(\hat{A} \), we will first run Algorithm 1 to recover a \(\beta \)-quantile matrix \(\hat{M} \) for each rater, and then run Algorithm 2 to recover our personal \(\beta \)-quantile from \(\hat{M} \).

Possible attacks by adversaries. In our algorithm, the adversaries can influence \(\hat{M}_i \) for reliable raters \(i \) via the nuclear norm constraint (note that the other constraints are separable across rows). This makes sense because the nuclear norm is what causes us to pool global structure across raters (and thus potentially pool bad information). In order to limit this influence, the constraint on the nuclear norm is weaker than is typical by a factor of \(\frac{2}{\alpha \epsilon} \); it is not clear to us whether this is actually necessary or due to a loose analysis. (Note that \(M^*_0 - \hat{M} \) restricted to the reliable rows—has nuclear norm \(\sqrt{\alpha \beta m n} \), since it is the \(\alpha n \times \beta m \) all-1s matrix padded by zeros; the constraint on \(\| M \| \), must be at least \(\frac{1}{\alpha} \) times as large as this since the adversaries could produce \(\frac{2}{\alpha} \) permuted copies of \(M^*_0 \).)

The constraint \(\sum_j M_{ij} \leq \beta m \) is not typical in the literature. For instance, (Chen et al., 2014) place no constraint on the sum of each row in \(M \) (instead of recovering the \(\beta \)-quantile, they normalize \(\hat{A} \) to lie in \([-1, 1]^{m \times m} \) and recover the items with a positive rating). Our row normalization constraint prevents an attack in which a spammer rates a random subset of items as high as possible and rates the remaining items as low as possible. If the actual set of high-quality items has density much smaller than 50%, then the spammer gains undue influence relative to honest raters that only rate
We now state our assumptions more formally, state the general form of our results, and outline the key ingredients of the proof. In our setting, we can query a rater \(i \in [m] \) and item \(j \in [m] \) to obtain a rating \(\hat{A}_{ij} \in [0, 1] \). Let \(r^* \in [0, 1]^m \) denote the vector of true ratings of the items. We can also query an item \(j \) (by rating it ourselves) to obtain a noisy rating \(\tilde{r}_j \) such that \(E[\tilde{r}_j] = r^*_j \).

Let \(C \subseteq [n] \) be the set of reliable raters, where \(|C| \geq \alpha n \). Our main assumption is that the reliable raters make independent errors:

Assumption 1 (Independence). When we query a pair \((i, j)\), and \(i \in C \), we obtain an output \(\hat{A}_{ij} \) whose value is independent of all of the other queries so far. Similarly, when we query an item \(j \), we obtain an output \(\tilde{r}_j \) that is independent of all of the other queries so far.

Note that Assumption 1 allows the unreliable ratings to depend on all previous ratings and also allows arbitrary collusion among the unreliable raters. In our algorithm, we will generate our own ratings after querying everyone else, which ensures that at least \(\tilde{r} \) is independent of the adversaries.

We need a way to formalize the idea that the reliable raters agree with us. To this end, for \(i \in C \) let \(A^*_{ij} \) be the expected rating that rater \(i \) assigns to item \(j \). We want \(A^* \) to be roughly increasing in \(r^* \):

Definition 1 (Monotonic raters). We say that the reliable raters are \((L, \epsilon)\)-monotonic if

\[
r^*_j - r^*_{j'} \leq L \cdot (A^*_{ij} - A^*_{ij'}) + \epsilon
\]

whenever \(r^*_j \geq r^*_{j'} \), and for all \(i \in C \) and all \(j, j' \in [m] \).

The \((L, \epsilon)\)-monotonicity property says that if we think that one item is substantially better than another item, the reliable raters should think so as well. As an example, suppose that our own ratings are binary \((r^*_j \in \{0, 1\})\) and that each rating \(\hat{A}_{i,j} \) matches \(r^*_j \) with probability \(\frac{2}{3} \). Then \(A^*_{ij} = \frac{2}{3} + \frac{1}{3}r^*_j \), and hence the ratings are \((5, 0)\)-monotonic. In general, the monotonic property is fairly mild — if the reliable ratings are not \((L, \epsilon)\)-monotonic, it is not clear that they should even be called reliable!

Algorithm for collecting ratings. Under the model given in Assumption 1, our algorithm for collecting ratings is given in Algorithm 3. Given integers \(k \) and \(k_0 \), Algorithm 3 assigns each rater at most \(2k \) ratings, and assigns us \(2k_0 \) ratings in expectation. The output is a noisy rating matrix \(\hat{A} \in [0, 1]^{n \times m} \) as well as noisy rating vectors \(\tilde{r}, \tilde{r}' \in [0, 1]^m \) (we need to create two independent rating vectors for technical reasons; in practice we can use a single vector). Our main result states that we can use \(\hat{A} \) and \(\tilde{r} \) to estimate the \(\beta \)-quantile \(T^* \); throughout we will assume that \(m \) is at least \(n \).

Theorem 2. Let \(m \geq n \). Suppose that Assumption 1 holds, that the reliable raters are \((L, \epsilon_0)\)-monotonic, and that we run Algorithm 3 to obtain noisy ratings, with \(k \geq \Omega \left(\frac{\log^2(1/\delta)}{\beta^2 \epsilon_0^2} \frac{m}{n} \right) \) and \(k_0 \geq \Omega \left(\frac{\log(1/\alpha \cdot 2k \delta)}{\beta^2 \epsilon_0} \right) \). Then, with probability \(1 - \delta \), Algorithms 1 and 2 recover a set \(T \) satisfying
\[\frac{1}{\beta m} \left(\sum_{j \in T^*} r_j^* - \sum_{j \not\in T} r_j^* \right) \leq (L + 1) \cdot \epsilon + \epsilon_0. \]

(3)

Note that the amount of work for the raters scales as \(\frac{m}{n} \). Some dependence on \(\frac{m}{n} \) is necessary, since we need to make sure that every item gets rated at least once.

The proof of Theorem 2 can be split into two parts: analyzing Algorithm 1 (Section 4), and analyzing Algorithm 2 (Section 5). At a high level, analyzing Algorithm 1 involves showing that the nuclear norm constraint in (1) imparts sufficient noise robustness while not allowing the adversary too much influence over the reliable rows of \(\tilde{M} \). Analyzing Algorithm 2 is far more straightforward, and requires only standard concentration inequalities and a standard randomized rounding idea (though the latter is perhaps not well-known, so we will explain it briefly in Section 5).

4 Recovering \(\tilde{M} \) (Algorithm 1)

The goal of this section is to show that solving the optimization problem (1) recovers a matrix \(\tilde{M} \) that approximates the \(\beta \)-quantile of \(r^* \) in the following sense:

Proposition 1. Under the conditions of Theorem 2, Algorithm 1 outputs a matrix \(\tilde{M} \) satisfying

\[\frac{1}{|C|} \frac{1}{\beta m} \sum_{i \in C} \sum_{j \in [m]} (T_j^* - \tilde{M}_{i,j}) A^*_{ij} \leq \epsilon, \]

where \(T_j^* = 1 \) if \(j \) lies in the \(\beta \)-quantile of \(r^* \), and is 0 otherwise.

Proposition 1 says that the row \(\tilde{M}_i \) is good according to rater \(i \)'s ratings \(A^*_i \). Note that \((L, \epsilon_0)\)-monotonicity then implies that \(\tilde{M}_i \) is also good according to \(r^* \). In particular (see A.2 for details)

\[\frac{1}{|C|} \frac{1}{\beta m} \sum_{i \in C} \sum_{j \in [m]} (T_j^* - \tilde{M}_{i,j}) r_j^* \leq L \cdot \frac{1}{|C|} \frac{1}{\beta m} \sum_{i \in C} \sum_{j \in [m]} (T_j^* - \tilde{M}_{i,j}) A_{ij}^* + \epsilon_0 \leq L \cdot \epsilon + \epsilon_0. \]

(5)

Proving Proposition 1 involves two major steps: showing (a) that the nuclear norm constraint in (1) imparts noise-robustness, and (b) that the constraint does not allow the adversaries to influence \(\tilde{M}_C \) too much. (For a matrix \(X \) we let \(X_C \) denote the rows indexed by \(C \) and \(X_T \) the remaining rows.)

In a bit more detail, if we let \(M^* \) denote a denoised version of \(\tilde{M} \), and \(B \) denote a denoised version of \(\tilde{A} \), we first show (Lemma 1) that \(\langle B, \tilde{M} - M^* \rangle \geq -\epsilon' \) for some \(\epsilon' \) determined below. This is established via the matrix concentration inequalities in Le and Vershynin (2015). Lemma 1 already suffices for standard approaches (e.g., Guédon and Vershynin, 2014), but in our case we must grapple with the issue that the rows of \(B \) could be arbitrary outside of \(C \), and hence closeness according to \(B \) may not imply actual closeness between \(\tilde{M} \) and \(M^* \). Our main technical contribution, Lemma 2, shows that \(\langle B_C, \tilde{M}_C - M^*_C \rangle \geq \langle B, \tilde{M} - M^* \rangle - \epsilon' \); that is, closeness according to \(B \) implies closeness according to \(B_C \). We can then restrict attention to the reliable raters, and obtain Proposition 1.

Part 1: noise-robustness. Let \(B \) be the matrix satisfying \(B_C = \frac{k}{m} A^*_C \), \(B_T = \tilde{A}_T \) which denoises \(\tilde{A} \) on \(C \). The scaling \(\frac{k}{m} \) is chosen so that \(\mathbb{E}[\hat{A}_C] \approx B_C \). Also define \(R \in \mathbb{R}^{n \times m} \) by \(R_{ij} = T_j^* \).

Ideally, we would like to have \(M_C = R_C \), i.e., \(M \) matches \(T^* \) on all the rows of \(C \). In light of this, we will let \(M^* \) be the solution to the following “corrected” program, which we don’t have access to (since it involves knowledge of \(A^* \) and \(C \)), but which will be useful for analysis purposes:

\[
\begin{align*}
\text{maximize} & \quad \langle B, M \rangle, \\
\text{subject to} & \quad M_C = R_C, \quad 0 \leq M_{ij} \leq 1 \quad \forall i, j, \\
& \quad \sum_j M_{ij} \leq \beta m \quad \forall i, \\
& \quad \|M\|_* \leq \frac{2}{\alpha} \sqrt{\alpha \beta nm}.
\end{align*}
\]

(6)

Importantly, (6) enforces \(M^*_{ij} = T^*_j \) for all \(i \in C \). Lemma 1 shows that \(\tilde{M} \) is “close” to \(M^* \):
Lemma 1. Let \(m \geq n \). Suppose that Assumption 1 holds and that \(k = \Omega \left(\frac{\log^3(1/\delta) m}{n^2} \right) \). Then, the solution \(\tilde{M} \) to (1) performs nearly as well as \(M^* \) under \(B \); specifically, with probability \(1 - \delta \),

\[
\langle B, \tilde{M} \rangle \geq \langle B, M^* \rangle - \epsilon \alpha \beta kn. \tag{7}
\]

Note that \(\tilde{M} \) is not necessarily feasible for (6), because of the constraint \(M_C = R_C \); Lemma 1 merely asserts that \(\tilde{M} \) approximates \(M^* \) in objective value. The proof of Lemma 1, given in Section A.3, primarily involves establishing a uniform deviation result; if we let \(\mathcal{P} \) denote the feasible set for (1), then we wish to show that \(\langle \tilde{A} - B, M \rangle \rangle \leq \frac{1}{2} \epsilon \alpha \beta kn \) for all \(M \in \mathcal{P} \). This would imply that the objectives of (1) and (6) are essentially identical, and so optimizing one also optimizes the other.

Using the inequality \(|\langle \tilde{A} - B, M \rangle | \leq \| \tilde{A} - B \|_{\text{op}} \| M \|_{\ast} \) where \(\| \cdot \|_{\text{op}} \) denotes operator norm, it suffices to establish a matrix concentration inequality bounding \(\| \tilde{A} - B \|_{\text{op}} \). This bound follows from the general matrix concentration result of Le and Vershynin (2015), stated in Section A.1.

Part 2: bounding the influence of adversaries. We next show that the nuclear norm constraint does not give the adversaries too much influence over the de-noised program (6); this is the most novel aspect of our argument.

Suppose that the constraint on \(\| M \|_{\ast} \) were not present in (6). Then the adversaries would have no influence on \(M_C \), because all the remaining constraints in (6) are separable across rows. How can we quantify the effect of this nuclear norm constraint? We exploit Lagrangian duality, which allows us to replace constraints with appropriate modifications to the objective function.

To gain some intuition, consider Figure 2. The key is that the Lagrange multiplier \(Z_C \) can bound the amount that \(\langle B, M \rangle \) can increase due to changing \(M \) outside of \(C \). If we formalize this and analyze \(Z \) in detail, we obtain the following result:

Lemma 2. Let \(m \geq n \). Suppose that \(k = \Omega \left(\frac{\log^3(1/\delta) m}{n^2} \right) \). Then with probability at least \(1 - \delta \),

\[
\text{there exists a matrix } Z \text{ with } \text{rank}(Z) = 1, \| Z \|_F \leq ek \sqrt{\alpha \beta n/m} \text{ such that } \langle B_C - Z_C, M^*_C - M_C \rangle \leq \langle B, M^* - M \rangle \text{ for all } M \in \mathcal{P}. \tag{8}
\]

By localizing \(\langle B, M^* - M \rangle \) to \(C \) via (8), Lemma 2 bounds the effect that the adversaries can have on \(M_C \). It is therefore the key technical tool powering our results, and is proved in Section A.4. Proposition 1 is proved from Lemmas 1 and 2 in Section A.5.

5 Recovering \(T \) (Algorithm 2)

In this section we show that if \(\tilde{M} \) satisfies the conclusion of Proposition 1, then Algorithm 2 recovers a set \(T \) that approximates \(T^* \) well. Formally, we show the following:
Proposition 2. Suppose Assumption 1 holds and \(k_0 \geq \Omega \left(\frac{\log(1/\alpha \beta \epsilon)}{\beta^2} \right) \). With probability \(1 - \delta \), Algorithm 2 outputs a set \(T \) satisfying
\[
\frac{1}{\beta m} \sum_{j \in T} r_j^* \geq \left(\frac{1}{\beta m} \right) \frac{1}{|C|} \sum_{i \in C} \sum_{j \in [m]} \tilde{M}_{ij} r_j^* - \epsilon. \tag{9}
\]

The validity of this procedure hinges on two results. First, establish a concentration bound showing that \(\sum_j \tilde{M}_{ij} \tilde{r}_j \) is close to \(\sum_j \tilde{M}_{ij} r_j^* \) for all \(i \in C \), which implies that the \(\alpha n \) best rows of \(\tilde{M} \) according to \(\tilde{r} \) also look good according to \(r^* \). This yields the following lemma:

Lemma 3. Let \(C' \) be the \(\alpha n \) best rows according to \(\tilde{r} \), as in Algorithm 2. Suppose that \(\tilde{r} \) satisfies Assumption 1 and that \(k_0 \geq \Omega \left(\frac{\log(1/\alpha \beta \epsilon)}{\beta^2} \right) \). Then, with probability \(1 - \delta \), we have
\[
\frac{1}{\alpha n} \sum_{i \in C'} \left(\sum_{j \in [m]} \tilde{M}_{ij} r_j^* \right) \geq \frac{1}{|C'|} \sum_{i \in C} \left(\sum_{j \in [m]} \tilde{M}_{ij} r_j^* \right) - \frac{\epsilon}{4m}. \tag{10}
\]

See Section A.6 for a proof. The idea is to establish a uniform bound showing that \(\sum_{j \in S} \tilde{M}_{ij} \tilde{r}_j \) is small for any set of \(\alpha n \) rows \(S \), and hence that greedily taking the \(\alpha n \) best rows according to \(\tilde{r} \) is almost as good as taking the \(\alpha n \) best rows according to \(r^* \). We improve over a naïve union bound by exploiting power mean inequalities on cumulant functions.

Having recovered a set \(C' \) of good rows, define their average \(T_0 \in [0, 1]^m \) as \(T_0 \overset{\text{def}}{=} \frac{1}{|C'|} \sum_{i \in C'} \tilde{M}_{i} \).

We need to turn \(T_0 \) into a binary vector so that Algorithm 2 can output a set; we do so via randomized rounding, obtaining a vector \(T \in \{0, 1\}^m \) such that \(E[T_0] = T \). Our rounding procedure is given in Algorithm 4; the following lemma, proved in A.7, asserts its correctness:

Lemma 4. The output \(T \) of Algorithm 4 satisfies \(E[T] = T_0, \|T\|_0 \leq \beta m \).

Algorithm 4 Randomized rounding algorithm.

1: procedure RANDOMIZEDROUND(\(T_0 \)) \hfill \triangleright \(T_0 \in [0, 1]^m \) satisfies \(\|T_0\|_1 \leq \beta m \)
2: \(s \) be the vector of partial sums of \(T_0 \) \hfill \triangleright \text{i.e., } s_j = (T_0)_1 + \cdots + (T_0)_j
3: Sample \(u \sim \text{Uniform}([0, 1]). \)
4: \(T \leftarrow [\ldots, 0] \in \mathbb{R}^m \)
5: for \(z = 0 \) to \(\beta m - 1 \) do
6: \(\triangleright \text{if no such } j \text{ exists, skip the next step} \)
7: \(\triangleright \text{if no such } j \text{ exists, skip the next step} \)
8: \(\triangleright \text{if such } j \text{ exists, skip the next step} \)
9: end for
10: return \(T \)
11: end procedure

The remainder of the proof involves lower-bounding the probability that \(T \) is accepted in each stage of the while loop in Algorithm 2. We refer the reader to Section A.8 for details.

6 Open Directions and Related Work

Future Directions On the theoretical side, perhaps the most immediate open question is whether it is possible to improve the dependence of \(k \) (the amount of work required per worker) on the parameters \(\alpha, \beta, \) and \(\epsilon \). It is tempting to hope that when \(m = n \) a tight result would have \(k = \Theta \left(\frac{\log(1/\alpha \beta \epsilon)}{\min(\alpha, \beta)^2} \right) \), in loose analogy to recent results for the stochastic block model (Banks and Moore, 2016).

Our results also leave some open questions for variations on our setting. One concerns the regime where \(m \ll n \); in this case, can we get by with much less work per rater? Another question concerns adaptivity: if the choice of queries is based on previous worker ratings, can we reduce the amount of work? We would be quite interested in answers to either question.

Related work. Our setting is closely related to the problem of peer prediction (Miller et al., 2005), in which we wish to obtain truthful information from a population of raters by exploiting inter-rater
agreement. While several mechanisms have been proposed for these tasks, they typically assume that rater accuracy is observable online (Resnick and Sami, 2007), that raters are rational agents maximizing a payoff function (Dasgupta and Ghosh, 2013; Kamble et al., 2015; Shnayder et al., 2016), that the workers follow a simple statistical model (Karger et al., 2014; Zhang et al., 2014; Zhou et al., 2015), or some combination of the above (Shah and Zhou, 2015; Shah et al., 2015).

The work most close to ours is Christiano (2014; 2016), which studies online collaborative prediction in the presence of adversaries; roughly, when raters interact with an item they predict its quality and afterwards observe the actual quality; the goal is to minimize the number of incorrect predictions among the honest raters. This differs from our setting in that (i) the raters are trying to learn the item qualities as part of the task, and (ii) there is no requirement to induce a final global estimate of the high-quality items, which is necessary for estimating quantiles. It seems possible however that there are theoretical ties between this setting and ours, which would be interesting to explore.

References

E. Abbe and C. Sandon. Community detection in general stochastic block models: fundamental limits and efficient recovery algorithms. arXiv, 2015.

N. Agarwal, A. S. Bandeira, K. Koiliaris, and A. Kolla. Multisection in the stochastic block model using semidefinite programming. arXiv, 2015.

J. Banks and C. Moore. Information-theoretic thresholds for community detection in sparse networks. arXiv, 2016.

T. T. Cai and X. Li. Robust and computationally feasible community detection in the presence of arbitrary outlier nodes. The Annals of Statistics, 43(3):1027–1059, 2015.

Y. Chen, S. Sanghavi, and H. Xu. Improved graph clustering. IEEE Transactions on Information Theory, 60(10):6440–6455, 2014.

P. Chin, A. Rao, and V. Vu. Stochastic block model and community detection in the sparse graphs: A spectral algorithm with optimal rate of recovery. In Conference on Learning Theory (COLT), 2015.

P. Christiano. Provably manipulation-resistant reputation systems. arXiv, 2014.

P. Christiano. Robust collaborative online learning. arXiv, 2016.

A. Coja-Oghlan. Coloring semirandom graphs optimally. Automata, Languages and Programming, pages 71–100, 2004.

A. Coja-Oghlan. Solving NP-hard semirandom graph problems in polynomial expected time. Journal of Algorithms, 62(1):19–46, 2007.

A. Condon and R. M. Karp. Algorithms for graph partitioning on the planted partition model. Random Structures and Algorithms, pages 116–140, 2001.

A. Dasgupta and A. Ghosh. Crowdsourced judgement elicitation with endogenous proficiency. In World Wide Web (WWW), pages 319–330, 2013.

A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová. Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications. Physical Review E, 84(6), 2011.

J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei. ImageNet: A large-scale hierarchical image database. In Computer Vision and Pattern Recognition (CVPR), pages 248–255, 2009.

U. Feige and J. Kilian. Heuristics for semirandom graph problems. Journal of Computer and System Sciences, 63(4):639–671, 2001.

U. Feige and R. Krauthgamer. Finding and certifying a large hidden clique in a semirandom graph. Random Structures and Algorithms, 16(2):195–208, 2000.

O. Guédon and R. Vershynin. Community detection in sparse networks via Grothendieck's inequality. arXiv, 2014.

A. Harmon. Amazon glitch unMASKs war of reviewers. New York Times, 2004.

P. W. Holland, K. B. Laskey, and S. Leinhardt. Stochastic blockmodels: Some first steps. Social Networks, 5: 109–137, 1983.

V. Kamble, N. Shah, D. Marn, A. Parekh, and K. Ramachandran. Truth serums for massively crowdsourced evaluation tasks. arXiv, 2015.

D. R. Karger, S. Oh, and D. Shah. Budget-optimal task allocation for reliable crowdsourcing systems. Operations Research, 62(1):1–24, 2014.

M. Krivelevich and D. Vilenchik. Semirandom models as benchmarks for coloring algorithms. In Meeting on Analytic Algorithmics and Combinatorics, pages 211–221, 2006.
C. Kulkarni, P. W. Koh, H. Huy, D. Chia, K. Papadopoulos, J. Cheng, D. Koller, and S. R. Klemmer. Peer and self assessment in massive online classes. Design Thinking Research, pages 131–168, 2015.

C. M. Le and R. Vershynin. Concentration and regularization of random graphs. arXiv, 2015.

K. Makarychev, Y. Makarychev, and A. Vijayaraghavan. Approximation algorithms for semi-random partitioning problems. In Symposium on Theory of Computing (STOC), pages 367–384, 2012.

K. Makarychev, Y. Makarychev, and A. Vijayaraghavan. Learning communities in the presence of errors. arXiv, 2015.

S. Mannor and J. N. Tsitsiklis. The sample complexity of exploration in the multi-armed bandit problem. Journal of Machine Learning Research (JMLR), 5:623–648, 2004.

L. Massoulié. Community detection thresholds and the weak Ramanujan property. In Symposium on Theory of Computing (STOC), pages 694–703, 2014.

D. Mayzlin, Y. Dover, and J. A. Chevalier. Promotional reviews: An empirical investigation of online review manipulation. Technical report, National Bureau of Economic Research, 2012.

N. Miller, P. Resnick, and R. Zeckhauser. Eliciting informative feedback: The peer-prediction method. Management Science, 51(9):1359–1373, 2005.

A. Moitra, W. Perry, and A. S. Wein. How robust are reconstruction thresholds for community detection? arXiv, 2015.

E. Mossel, J. Neeman, and A. Sly. Stochastic block models and reconstruction. arXiv, 2012.

E. Mossel, J. Neeman, and A. Sly. Belief propagation, robust reconstruction, and optimal recovery of block models. arXiv, 2013a.

E. Mossel, J. Neeman, and A. Sly. A proof of the block model threshold conjecture. arXiv, 2013b.

E. Mossel, J. Neeman, and A. Sly. Consistency thresholds for the planted bisection model. In Symposium on Theory of Computing (STOC), pages 69–75, 2015.

C. Piech, J. Huang, Z. Chen, C. Do, A. Ng, and D. Koller. Tuned models of peer assessment in MOOCs. arXiv, 2013.

R. Priedhorsky, J. Chen, S. T. K. Lam, K. Panciera, L. Terveen, and J. Riedl. Creating, destroying, and restoring value in Wikipedia. In International ACM Conference on Supporting Group Work, pages 259–268, 2007.

P. Resnick and R. Sami. The influence limiter: provably manipulation-resistant recommender systems. In ACM Conference on Recommender Systems, pages 25–32, 2007.

N. Shah, D. Zhou, and Y. Peres. Approval voting and incentives in crowdsourcing. In International Conference on Machine Learning (ICML), 2015.

N. B. Shah and D. Zhou. Double or nothing: Multiplicative incentive mechanisms for crowdsourcing. In Advances in Neural Information Processing Systems (NIPS), 2015.

V. Shnayder, R. Frongillo, A. Agarwal, and D. C. Parkes. Strong truthfulness in multi-task peer prediction, 2016.

J. Vuurens, A. P. de Vries, and C. Eickhoff. How much spam can you take? An analysis of crowdsourcing results to increase accuracy. ACM SIGIR Workshop on Crowdsourcing for Information Retrieval, 2011.

Y. Zhang, X. Chen, D. Zhou, and M. I. Jordan. Spectral methods meet EM: A provably optimal algorithm for crowdsourcing. arXiv, 2014.

D. Zhou, Q. Liu, J. C. Platt, C. Meek, and N. B. Shah. Regularized minimax conditional entropy for crowdsourcing. arXiv, 2015.
A Deferred Proofs

A.1 Matrix Concentration Bound of Le and Vershynin (2015)

For ease of reference, here we state the matrix concentration bound from Le and Vershynin (2015), which we make use of in the proofs below.

Theorem 3 (Theorem 2.1 in Le and Vershynin (2015)). Given an $s \times s$ matrix P with entries $P_{i,j} \in [0, 1]$, and a random matrix A with the properties that 1) each entry of A is chosen independently, 2) $\mathbb{E}[A_{i,j}] = P_{i,j}$, and 3) $A_{i,j} \in [0, 1]$, then for any $r \geq 1$, the following holds with probability at least $1 - s^{-r}$, let $d = s \cdot \max_{i,j} |P_{i,j}|$, and modify any subset of at most $10s/d$ rows and/or columns of A by arbitrarily decreasing the value of nonzero elements of those rows or columns to form the matrix A' with entries in $[0, 1]$, then

$$||A' - P||_{op} \leq C r^{3/2} \left(\sqrt{d} + \sqrt{d'} \right),$$

where d' is the maximum ℓ_2 norm of any row or column of A', and C is an absolute constant.

Note: The proof of this theorem in Le and Vershynin (2015) shows that the statement continues to hold in the slightly more general setting where the entries of A are chosen independently according to random variables with bounded variance and sub-Gaussian tails, rather than just random variables restricted to the interval $[0, 1]$.

A.2 Details of Lipschitz Bound (Equation 5)

The proof essentially consists of matching up each value r^*_j, for $j \in T^*$, with a set of values $r^*_{j'}$, $j' \geq j$, where the corresponding $\tilde{M}_{i,j'}$ sum to 1; we can then invoke the condition (2). Unfortunately, expressing this idea formally is a bit notationally cumbersome.

Before we start, we observe that the Lipschitz condition (2) implies that, if $r^*_j \geq r^*_j$, then $r^*_j - r^*_j \leq L \cdot (A^*_{i,j'} - A^*_{i,j'}) + \epsilon_0$. It is this form of (2) that we will make use of below.

Now, let $I_j = I[j \in T^*]$, and without loss of generality suppose that the indices j are such that $r^*_1 \geq r^*_2 \geq \cdots \geq r^*_m$. For a vector $v \in [0, 1]^m$, define

$$h(\tau, v) \overset{\text{def}}{=} \inf \{ j \mid \sum_{j' = 1}^j v_{j'} \geq \tau \},$$

where $h(\tau, v) = \infty$ if no such j exists. We observe that for any vector $v \in [0, 1]^m$, we have

$$\sum_{j \in [m]} v_j r^*_j = \int_0^\infty r^*_h(\tau; v) d\tau,$$

where we define $r^*_\infty = 0$ (note that the integrand is therefore 0 for any $\tau \geq \|v\|_1$). Hence, we have

$$\sum_{j \in T^*} r^*_j - \sum_{j \in [m]} \tilde{M}_{i,j} r^*_j = \sum_{j \in [m]} I_j r^*_j - \sum_{j \in [m]} \tilde{M}_{i,j} r^*_j \overset{\text{(i)}}{=} \int_0^{\beta m} r^*_h(\tau, I) - r^*_h(\tau, \tilde{M}_i) d\tau$$

$$\overset{(i)}{\leq} \int_0^{\beta m} \left[L \cdot (A^*_h(\tau, I) - A^*_h(\tau, \tilde{M}_i)) + \epsilon_0 \right] d\tau$$

$$= L \cdot \left(\sum_{j \in [m]} I_j A^*_j - \sum_{j \in [m]} \tilde{M}_{i,j} A^*_j \right) + \beta m \epsilon_0$$

$$= L \cdot \left(\sum_{j \in T^*} A^*_j - \sum_{j \in [m]} \tilde{M}_{i,j} A^*_j \right) + \beta m \epsilon_0,$$

which implies (5). The key step is (i), which uses the fact that $h(\tau, I) \leq h(\tau, \tilde{M}_i)$ (because I is maximally concentrated on the left-most indices of $[m]$), and hence $r^*_h(\tau, I) \geq r^*_h(\tau, \tilde{M}_i)$.

A.3 Stability Under Noise (Proof of Lemma 1)

By Hölder’s inequality, we have that $|⟨\tilde{A} - B, M⟩| \leq ∥\tilde{A} - B∥_op ∥M∥_*$. We now leverage Theorem 3 to bound $∥\tilde{A} - B∥_op$. To apply the theorem, first note that from the construction of \tilde{A} given in Algorithm 3, \tilde{A} can be constructed by first having the raters rate each item independently with probability k/m to form matrix \tilde{A}^o and then removing ratings from the “heavy” rows (i.e. rows with more than $2k$ ratings), and “heavy” columns (i.e. columns with more than $2k$) ratings. By standard Chernoff bounds, the probability that a given row or column will need to be “pruned” is at most $e^{-k/3} \leq 2/k$, and hence from the independence of the rows, the probability that more than $5n/k$ rows are “heavy” is at most $e^{-2n/3k}$. The probability that there are more than $5n/k$ heavy columns is identically bounded.

Note that the expectation of the portion of \tilde{A}^o corresponding to the reliable raters is exactly the corresponding portion of matrix B, and with probability at least $1 - 2e^{-2n/3k}$, at most $10n/k$ rows and/or columns of \tilde{A}^o are pruned to form \tilde{A}. Consider padding matrices \tilde{A} and B with zeros, to form the $n × n$ matrices \tilde{A}' and B'. With probability $1 - 2e^{-2n/3k}$ the conditions of Theorem 3 now apply to \tilde{A}' and B', with the parameters $d = \frac{nk}{m} \leq k$, and $d' = 2k$. Hence for any $r \geq 1$, with probability at least $1 - 2e^{-2n/3k} - n^{-r}$

$$∥\tilde{A} - B∥_op = ∥\tilde{A}' - B'∥_op \leq C_3^{2/3} \sqrt{k},$$

for some absolute constant C_3.

By assumption, $∥\tilde{M}∥_* \leq \frac{\alpha}{2} \sqrt{\alpha/\beta mn}$ and $∥M^*∥_* \leq \frac{\alpha}{4} \sqrt{\alpha/\beta mn}$. Hence setting $r = \log(1/\delta)$, and $k \geq C' \log^3(\frac{1}{\delta}) \frac{m/n}{\alpha \beta mn}$ for some absolute constant C', we have that with probability at least $1 - \delta$, we have

$$|⟨\tilde{A} - B, \tilde{M}⟩| \leq \frac{1}{2} \epsilon \alpha \beta kn,$$

and $|⟨\tilde{A} - B, M^*⟩|$ is bounded identically.

To conclude, we have the following:

$$⟨B, \tilde{M}⟩ \geq ⟨\tilde{A}, \tilde{M}⟩ - \frac{1}{2} \epsilon \alpha \beta kn \quad (18)$$

$$\geq ⟨\tilde{A}, M^*⟩ - \frac{1}{2} \epsilon \alpha \beta kn \quad \text{(since } \tilde{M} \text{ is optimal for } \tilde{A}) \quad (19)$$

$$\geq ⟨B, M^*⟩ - \epsilon \alpha \beta kn, \quad (20)$$

which completes the proof.

A.4 Bounding the Effect of Adversaries (Proof of Lemma 2)

In this section we prove Lemma 2. Let \mathcal{P}_0 be the superset of \mathcal{P} where we have removed the nuclear norm constraint. By Lagrangian duality we know that there is some μ such that maximizing $⟨B, M⟩$ over $\mathcal{P} \cap \{M_C = R_C\}$ is equivalent to maximizing $f_\mu(M) \overset{\text{def}}{=} ⟨B, M⟩ + \mu \left(\frac{\alpha}{\epsilon} \sqrt{\alpha/\beta mn} - ∥M∥_*\right)$ over $\mathcal{P}_0 \cap \{M_C = R_C\}$.

We start by bounding μ. We claim that $\mu \leq \epsilon k \sqrt{\alpha/\beta mn}$. To show this, we will first show that (B, M) cannot get too large. Let \mathcal{E} be the set of (i, j) for which ratings are observed, and define the matrix B' as $(B')_{ij} = \frac{1}{m} + \mathbf{I}(i, j) \in \mathcal{E})(B_{ij} - 1)$; note that $(B - B')_{ij} = \mathbf{I}(i, j) \in \mathcal{E}) - \frac{1}{m}$. For any $M \in \mathcal{P}_0$, we have

$$⟨B, M⟩ \leq ⟨B', M⟩ + ⟨B - B', M⟩ \quad (21)$$

$$\leq βkn + ∥B - B'∥_op ∥M∥_* \quad (22)$$

$$\leq βkn + \log(1/δ)^{3/2}2\sqrt{2ε}∥M∥_* \quad (23)$$

$$\leq k \left(βn + \frac{ε \sqrt{α/β mn}}{2} ∥M∥_* \right) \quad (24)$$

12
In (i) we used the matrix concentration inequality of Theorem 3, in a similar manner as was used in our proof of Lemma 1. Specifically, we consider padding \(B \) and \(B' \) with zeros so as to make both into \(n \times n \) matrices. Provided the total number of raters and items whose initial assignments are removed in the second and third steps of the rater/item assignment procedure (Algorithm 3) is bounded by \(10n/k \), which occurs with probability at least \(1 - \delta/2 \) given our choice of \(k \), then Theorem 3 applies with \(r = \log(1/\delta) \), and \(d \) and \(d' \) bounded by \(2k \), yielding an operator norm bound of \(r^{3/2}(\sqrt{k} + \sqrt{2k}) \leq \log(1/\delta)^{3/2}2\sqrt{k} \), that holds with probability \(1 - n^{-r} > 1 - \delta/2 \). In (ii) we plug in our assumption \(k = \Omega \left(\frac{\log(1/\delta)^{3/2}m}{m^2} \right) \).

Now, suppose that we take \(\mu_0 = \epsilon\sqrt{\alpha\beta n/mk} \) and optimize \(\langle B, M \rangle - \mu_0 \| M \|_* \) over \(\mathcal{P}_0 \cap \{ M_C = R_C \} \). By the above inequalities, we have \(\langle B, M \rangle - \mu_0 \| M \|_* \leq \beta kn - \frac{\epsilon^2}{\alpha}\sqrt{\alpha\beta n/mk} \|| M \|_* \), and so any \(M \) with \(\| M \|_* > \frac{2}{\epsilon^2}\sqrt{\alpha\beta n/mk} \) cannot possibly be optimal, since the solution \(M = 0 \) would be better. Hence, \(\mu_0 \) is a large enough Lagrange multiplier to ensure that \(M \in \mathcal{P} \), and so \(\mu \leq \mu_0 = \epsilon k \sqrt{\alpha\beta n/m} \), as claimed.

We next characterize the subgradient of \(f_\mu \) at \(M = M^* \). Define the projection matrix \(P \) as

\[
P_{i,i'} = \begin{cases}
\frac{1}{\delta_{i,i'}} & : i, i' \in \mathcal{C} \\
0 & : \text{else}
\end{cases}
\]

Thus \(P M = M \) if and only if all rows in \(\mathcal{C} \) are equal to each other. In particular, \(P M = M \) whenever \(M_C = R_C \). Now, since \(M^* \) is the maximum of \(f_\mu(M) \) over all \(M \in \mathcal{P}_0 \cap \{ M_C = R_C \} \), there must be some \(G \in \partial f(M^*) \) such that \(\langle G, M - M^* \rangle \leq 0 \) for all \(M \in \mathcal{P}_0 \cap \{ M_C = R_C \} \). The following lemma says that without loss of generality we can assume that \(PG = G \):

Lemma 5. Suppose that \(G \in \partial f(M^*) \) satisfies \(\langle G, M - M^* \rangle \leq 0 \) for all \(M \in \mathcal{P}_0 \cap \{ M_C = R_C \} \). Then, \(PG \) satisfies the same property, and lies in \(\partial f(M^*) \) as well.

We can further note (by differentiating \(f_\mu \)) that \(G = B - \mu Z_0 \), where \(\| Z_0 \|_{op} \leq 1^1 \). Then \(PG = PB - \mu PZ_0 = B - \mu PZ_0 \). Let \(r(M) \) denote the matrix where \(M_C \) is replaced with \(R_C \) (so \(r(M) \in \mathcal{P}_0 \cap \{ R_C = M_C \} \) whenever \(M \in \mathcal{P}_0 \)). The rest of the proof is basically algebra; for any \(M \in \mathcal{P} \), we have

\[
\langle B, M - M^* \rangle \leq f_\mu(M) - f_\mu(M^*) \leq \langle B - \mu PZ_0, M - M^* \rangle = \langle B - \mu PZ_0, M - r(M) \rangle + \langle B - \mu PZ_0, r(M) - M^* \rangle \leq \langle B - \mu PZ_0, M - r(M) \rangle \leq \langle B - \mu PZ_0, M - r(M) \rangle_{C} = \langle B - \mu PZ_0, M_C - r(M) \rangle_{C},
\]

where (i) is by complementary slackness (either \(\mu = 0 \) or \(\| M^* \|_* = \frac{2}{\epsilon} \sqrt{\alpha\beta n/m} \)); (ii) is concavity of \(f_\mu \), and the fact that \(B - \mu PZ_0 \) is a subgradient; (iii) is the property from Lemma 5 (\(\langle B - \mu PZ_0, r(M) - M^* \rangle \leq 0 \) since \(r(M) \in \mathcal{P}_0 \)); and (iv) is because \(M \) and \(r(M) \) only differ on \(\mathcal{C} \).

To finish, we will take \(Z = \mu(PZ_0)_C \). We note that \(\| Z \|_{op} = \| \mu(PZ_0)_C \|_{op} \leq \mu \| PZ_0 \|_{op} \leq \mu \| Z_0 \|_{op} \leq \mu \). Moreover, \(Z \) has rank 1 and so \(\| Z \|_F = \| Z \|_{op} \leq \mu \leq \epsilon k \sqrt{\alpha\beta n/m} \), as was to be shown.

Proof of Lemma 5. First, since \(PM = M \) for all \(M \in \mathcal{P}_0 \cap \{ M_C = R_C \} \), and \(PM^* = M^* \), we have \(\langle PG, M - M^* \rangle = \langle G, P(M - M^*) \rangle = \langle G, M - M^* \rangle \leq 0 \). We thus only need to show that

\[1\]This is due to the more general result that, for any norm \(\| \cdot \| \), the subgradient of \(\| \cdot \| \) at any point has dual norm at most 1.
We start by stating a lemma which will be useful both here and later:

\[
\langle PG, M - M^* \rangle = (G, PM - M^*)
\]

\[
\geq f_\mu(PM) - f_\mu(M^*)
\]

\[
= (B, PM) - \mu\|PM\|_* - f_\mu(M^*)
\]

\[
= (B, M) - \mu\|PM\|_* - f_\mu(M^*)
\]

where (i) is because \(G \in \partial f_\mu(M^*) \), and (ii) is because projecting decreases the nuclear norm. Since the inequality \(\langle PG, M - M^* \rangle \geq f_\mu(M) - f_\mu(M^*) \) is the defining property for \(PG \) to lie in \(\partial f_\mu(M^*) \), the proof is complete.

A.5 Proof of Proposition 1

In this section, we will prove Proposition 1 from Lemmas 1 and 2. We start by plugging in \(\hat{M} \) for \(M \) in Lemma 2. This yields \(\langle B_C - Z_C, M_C^* - \hat{M}_C \rangle \leq \langle B, M^* - \hat{M} \rangle \leq \epsilon \alpha \beta kn \) by Lemma 1. On the other hand, we have

\[
|\langle Z_C, M_C^* - \hat{M}_C \rangle| \leq \|Z_C\|_F \|M_C^* - \hat{M}_C\|_F
\]

\[
\leq \epsilon \sqrt{\alpha \beta kn/m} \sqrt{\|M_C^* - \hat{M}_C\|_1 \|M_C^* - \hat{M}_C\|_\infty}
\]

Putting these together, we obtain \(\langle B_C, M_C^* - \hat{M}_C \rangle \leq (1 + \sqrt{2})\epsilon \alpha \beta kn \). Expanding \(\langle B_C, M_C^* - \hat{M}_C \rangle \) as \(k/m \sum_{i \in C} \left(\sum_{j \in [m]} (R_{ij} - \hat{M}_{ij}) A_{ij}^* \right) \), we obtain

\[
\frac{1}{|C|} \frac{1}{\beta m} \sum_{i \in C} \sum_{j \in [m]} (T_{ij}^* - \hat{M}_{ij}) A_{ij}^* \leq (1 + \sqrt{2})\epsilon.
\]

Scaling \(\epsilon \) by a factor of \(1 + \sqrt{2} \) yields the desired result.

A.6 Concentration Bounds for \(\hat{r} \) (Proof of Lemma 3)

We start by stating a lemma which will be useful both here and later:

Lemma 6. Let \(M \in [0,1]^{n \times m} \) be a matrix of random variables such that \(\|M_i\|_2^2 \leq \beta m \) for all rows \(i \in [n] \). Define the deviation \(D_i \defeq \sum_{j=1}^m \hat{M}_{ij} (\hat{r}_{ij} - \frac{k_0}{m} r_{ij}) \). Then, for \(k_0 \geq \frac{3 \log(2n/\alpha)}{\min(e, 4 \epsilon^2)} \), with probability \(1 - \delta \), we have \(\frac{1}{|V|} \sum_{i \in V} D_i \leq \epsilon k_0 \) for all sets \(V \subseteq [n] \) with \(|V| \geq v \).

Given Lemma 6, the rest of the proof is fairly straightforward. Noting that \(\epsilon \leq 1 \) and applying this conclusion for \(v = \alpha n \), and \(k_0 \geq \frac{3 \cdot 8^2 \log(2/\alpha)}{e^2} \), we see that

\[
\frac{1}{\alpha n} \sum_{i \in C} \sum_{j \in [m]} M_{ij} r_{ij} \geq \frac{1}{\alpha n} \sum_{i \in C} \sum_{j \in [m]} \hat{M}_{ij} \hat{r}_{ij} - \frac{\epsilon}{8} \beta m
\]

\[
\geq \frac{1}{|C|} \sum_{i \in C} \sum_{j \in [m]} \hat{M}_{ij} \hat{r}_{ij} - \frac{\epsilon}{8} \beta m
\]

\[
\geq \frac{1}{|C|} \sum_{i \in C} \sum_{j \in [m]} M_{ij} r_{ij}^* - \frac{\epsilon}{4} \beta m,
\]

as was to be shown.
Proof of Lemma 6. Define the cumulant function \(c_i(\lambda) \) \(\overset{\text{def}}{=} \log(\mathbb{E}_\mathcal{F}[\exp(\lambda D_i)]) \). We have

\[
c_i(\lambda) = \log(\mathbb{E}_\mathcal{F}[\exp(\lambda \sum_j M_{ij}(\bar{r}_j - (k_0/m)r_j^*)] = \sum_j \log(\mathbb{E}_\mathcal{F}[\exp(\lambda M_{ij}(\bar{r}_j - (k_0/m)r_j^*)])
\]

\[
(i) \leq \sum_j (e^{\lambda} - \lambda - 1) \hat{M}_j^2 \text{Var}[\bar{r}_j] \leq (e^{\lambda} - \lambda - 1) \sum_j \hat{M}_j^2 \frac{k_0}{m} \leq (e^{\lambda} - \lambda - 1)\beta k_0,
\]

where (i) is Bennet’s inequality.

We also consider the cumulant function for the maximum average deviation over possible sets \(V \):

\[
C_v(\lambda) \overset{\text{def}}{=} \log \left(\mathbb{E}_\mathcal{F} \left[\max_{|V| \geq v} \left(\frac{\lambda}{|V|} \sum_{i \in V} D_i \right) \right] \right).
\]

To bound \(C_v(\lambda) \), we use the power mean inequality

\[
\max_{|V| \geq v} \left(\frac{\lambda}{|V|} \sum_{i \in V} D_i \right) \leq \max_{|V| \geq v} \frac{1}{|V|} \sum_i \exp(\lambda D_i) \leq \max_{|V| \geq v} \frac{1}{|V|} \sum_{i=1}^n \exp(\lambda D_i) \leq \frac{1}{|V|} \sum_{i=1}^n \exp(\lambda D_i) .
\]

Therefore,

\[
C_v(\lambda) = \log \left(\mathbb{E}_\mathcal{F} \left[\max_{|V| \geq v} \left(\frac{\lambda}{|V|} \sum_{i \in V} D_i \right) \right] \right) \leq \log \left(\mathbb{E}_\mathcal{F} \left[\frac{1}{|V|} \sum_{i=1}^n \exp(\lambda D_i) \right] \right) \leq \log \left(\frac{n}{|V|} \exp \left((e^{\lambda} - \lambda - 1)\beta k_0 \right) \right) = \log(n/|V|) + (e^{\lambda} - \lambda - 1)\beta k_0.
\]

By applying a standard Chernoff bound argument to \(C_v(\lambda) \), we obtain

\[
P \left[\max_{|V| \geq v} \left| \frac{1}{|V|} \sum_{i \in V} D_i \right| \geq \epsilon \beta k_0 \right] \leq \frac{2n}{|V|} \exp \left(-\frac{\beta k_0}{3} \min(\epsilon, \epsilon^2) \right) .
\]

In particular, for \(k_0 \geq \frac{3\log(2n/\delta)}{\beta \min(\epsilon, \epsilon^2)} \), we have with probability \(1 - \delta \) that \(\left| \frac{1}{|V|} \sum_{i \in V} D_i \right| \leq \epsilon \beta k_0 \) for all sets \(V \subseteq [n] \) with \(|V| \geq v \), as was to be shown.

A.7 Correctness of Randomized Rounding (Proof of Lemma 4)

Our goal is to show that the output of Algorithm 4 satisfies \(\mathbb{E}[T] = T_0 \). First, observe that since \((T_0)_j \leq 1 \) for all \(j \), each interval \([s_{j-1}, s_j)\) has length at most 1, and so the for loop over \(z \) never picks the same index \(j \) twice. Moreover, the probability that \(j \) is included in \(T_0 \) is exactly \(s_j - s_{j-1} = (T_0)_j \). The result follows by linearity of expectation.
A.8 Correctness of Algorithm 2 (Proof of Proposition 2)

First, we claim that with probability $1 - \delta$, we will invoke RandomizedRound at most $\frac{4\log(1/\delta)}{\epsilon \beta}$ times. To see this, note that $\mathbb{E}[(T, T')^2] = (T_0, T')$, and $(T, T') \in [0, k_0]$ almost surely. By Markov’s inequality, the probability that $(T, T') < (T_0, T') - \frac{\epsilon}{4} \beta k_0$ is at most $\frac{k_0 - (T_0, T')}{k_0 - (T_0, T')} + \frac{\epsilon}{4} \beta k_0$. We can assume that $(T_0, T') \geq (\epsilon/4) \beta k_0$ (since otherwise we accept T with probability 1), in which case the preceding expression is bounded by $\frac{k_0 - (\epsilon/4) \beta k_0}{k_0} = 1 - \frac{\epsilon}{4} \beta$. Therefore, the probability of accepting T in any given iteration of the while loop is at least $\frac{\epsilon}{4} \beta$, and so the probability of accepting at least once in $\frac{4\log(1/\delta)}{\epsilon \beta}$ iterations is indeed at least $1 - \delta$.

Next, for $k_0 \geq \Omega \left(\frac{\log(2/\epsilon \beta \delta)}{\epsilon \beta} \right)$, we can make the probability that $|\langle T, r^* \rangle - \frac{m}{\beta \epsilon} r^*| \geq \frac{\epsilon}{4} \beta k_0$ be at most $\frac{\delta \epsilon \beta}{4 \log(1/\delta)}$ (this follows from a standard Chernoff argument which we omit; Lemma 6 contains a superset of the necessary ideas). Therefore, by union bounding over the $\frac{4\log(1/\delta)}{\epsilon \beta}$ possible T as well as T_0, with probability $1 - 2\delta$ we have $|\langle T, r^* \rangle - \frac{m}{\beta \epsilon} r^*| \leq \frac{\epsilon}{4} \beta k_0$ for whichever T we end up accepting, as well as for $T = T_0$.

Consequently, we have

$$
\langle T, r^* \rangle \geq \frac{m}{k_0} \langle T_0, r^* \rangle - \frac{\epsilon}{4} \beta m
$$

(59)

$$
\geq \frac{m}{k_0} (T_0, r^*) - \frac{2\epsilon}{4} \beta m
$$

(60)

$$
\geq \langle T_0, r^* \rangle - \frac{3\epsilon}{4} \beta m
$$

(61)

$$
\geq \left(\frac{1}{|C|} \sum_{i \in C} M_i, r^* \right) - \epsilon \beta m
$$

(62)

where the final step is Lemma 3. By scaling down the failure probability δ by a constant (to account for the probability of failure at each step of the above argument), Proposition 2 follows.

A.9 Proof of Theorem 2

By Proposition 1, for $k = \Omega \left(\frac{1}{\beta \epsilon} \max \left(1, \frac{m}{n} \right) \right)$, we can recover a matrix \hat{M} satisfying

$$
\frac{1}{|C|} \frac{1}{\beta m} \sum_{i \in C} \sum_{j \in [m]} (M_{ij} - T^*_i) A_{ij} \leq \epsilon,
$$

and hence by (5) \hat{M} also satisfies

$$
\frac{1}{|C|} \frac{1}{\beta m} \sum_{i \in C} \sum_{j \in [m]} (M_{ij}^* - T^*_i) r_j^* \leq L \cdot \epsilon + \epsilon_0.
$$

By Proposition 2, we then recover a set T satisfying

$$
\frac{1}{\beta m} \sum_{j \in T} r_j^* \geq \left(\frac{1}{\beta m} \frac{1}{|C|} \sum_{i \in C} \sum_{j \in [m]} \hat{M}_{ij} r_j^* \right) - \epsilon
$$

(63)

$$
\geq \left(\frac{1}{\beta m} \frac{1}{|C|} \sum_{i \in C} \sum_{j \in [m]} T^*_j r_j^* \right) - [(L + 1) \cdot \epsilon + \epsilon_0]
$$

(64)

$$
= \left(\frac{1}{\beta m} \sum_{j \in T^*} r_j^* \right) - [(L + 1) \cdot \epsilon + \epsilon_0],
$$

(65)

as was to be shown.

B Examples of Adversarial Behavior

In this section, in order to provide some intuition we show two possible attacks that adversaries could employ to make it hard for us to recover the good items. The first attack creates a symmetric
situation, whereby there are $\frac{1}{\alpha}$ indistinguishable sets of potentially good items, and we are therefore forced to consider each set before we can find out which one is actually good. The second attack demonstrates the necessity of constraining each row to have a fixed sum, by showing that adversaries that are allowed to create very dense rows can have disproportionate influence on nuclear norm-based recovery algorithms.

B.1 Necessity of Nuclear Norm Scaling

Suppose for simplicity that $\alpha = \beta$ and $n = m$. Let J be the $\alpha n \times \alpha n$ all-ones matrix, and suppose that the full rating matrix A has a block structure:

$$A^* = \begin{bmatrix}
J & (1-\epsilon)J & \cdots & (1-\epsilon)J \\
(1-\epsilon)J & J & \cdots & (1-\epsilon)J \\
\vdots & \vdots & \ddots & \vdots \\
(1-\epsilon)J & (1-\epsilon)J & \cdots & J
\end{bmatrix} \quad (66)$$

In other words, both the items and raters are partitioned into $\frac{1}{\alpha}$ blocks, each of size αn. A rater assigns a rating of 1 to everything in their corresponding block, and a rating of $1-\epsilon$ to everything outside of their block. Thus, there are $\frac{1}{\alpha}$ completely symmetric blocks, only one of which corresponds to the good raters. Since we do not know which of these blocks is actually good, we need to include them all in our solution M^*. Therefore, M^* should be

$$M^* = \begin{bmatrix}
J & 0 & \cdots & 0 \\
0 & J & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & J
\end{bmatrix} \quad (67)$$

Note however that in this case, $\|M^*\|_* = n$, while $\sqrt{\alpha \beta nm} = \alpha n$. We therefore need the nuclear norm constraint in (1) to be at least $\frac{1}{\alpha}$ times larger than $\sqrt{\alpha \beta nm}$ in order to capture the solution M^* above.

It is not obvious to us that the additional $\frac{2}{\alpha}$ factor appearing in (1) is actually necessary, but it was needed in our analysis in order to bound the impact of adversaries.

B.2 Necessity of Row Normalization

Suppose that we did not include the row-normalization constraint $\sum_j \tilde{M}_{ij} \leq \beta m$ in (1). For instance, this might happen if, instead of seeking all items of quality above a given quantile, we sought all items with quality above a given threshold (say, whose quality was great than $\frac{1}{2}$). In this case we might pose the optimization problem

$$\text{maximize} \langle \tilde{A} - \frac{1}{2} J_{n,m}, M \rangle,$$

subject to $0 \leq M_{ij} \leq 1 \ \forall i, j,$

$$\|M\|_* \leq \frac{2}{\alpha \epsilon} \sqrt{\alpha \beta nm},$$

where $J_{n,m}$ is the $n \times m$ all-ones matrix. There are several reasons not to do this (for instance, focusing on quality thresholds rather than quantile thresholds loses the robustness to monotonic transformations that our method enjoys). In this section, we will focus on the particular issue that (68) is less robust to adversaries than (1).

Concretely, we will suppose that the adversaries are split into $\frac{1}{\beta n} \left(\frac{1}{\alpha} - 1\right)$ blocks of size $3\alpha \beta n$, each of which rates a random subset of $\frac{m}{2}$ items positively and the rest negatively. So for instance the
matrix A^* might look like (with $\alpha = \frac{2}{5}, \beta = \frac{1}{6}, n = 10, m = 12$):

$$
\begin{align*}
A^* &= \begin{bmatrix}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1
\end{bmatrix}
\end{align*}
$$

(69)

The nuclear norm of each individual bad block is $\sqrt{\frac{3}{2}\alpha\beta nm}$, and because the blocks are chosen independently of each other, the nuclear norm will be approximately additive across blocks. In addition, including a given bad block increases $\langle \tilde{A} - \frac{1}{2} J, M \rangle$ by $\frac{3}{4}\alpha\beta nm$. In contrast, including the good block increases the nuclear norm by $\sqrt{\alpha\beta nm}$ and only increases the objective by $\frac{1}{2}\alpha\beta nm$. The bad blocks therefore all give more “bang for the buck” in terms of how much they increase the objective vs. how much much they increase the nuclear norm, so we will add them before the good block.

To accommodate all these bad blocks, we need to allow $\|M\|_*$ to be at least roughly $\frac{1}{\alpha \beta} \left(\frac{1}{\alpha \beta} - 1 \right) \times \sqrt{\frac{3}{2}\alpha\beta nm} = \Omega \left(\frac{1}{\alpha \beta} \sqrt{\alpha\beta nm} \right)$, which is adds an extra factor of $\frac{1}{\beta}$ relative to when we constrain the column sum. The issue can be seen in the above construction in (69): if we do not normalize the rows, then the rows controlled by adversaries can exert disproportionate influence (up to a factor of $\frac{1}{\beta}$) by creating columns that are much denser than those of the reliable raters.