FADS1 FADS2 Gene Cluster, PUFA Intake and Blood Lipids in Children: Results from the GINIplus and LISAplus Studies

Marie Standl1, Eva Lattka2, Barbara Stach3, Sibylle Koletzko4, Carl-Peter Bauer5, Andrea von Berg6, Dietrich Berdel6, Ursula Krämer7, Beate Schaa8, Stefan Röder9, Olf Herbarth10, Anette Buyken11, Tim Drogies3, Joachim Thiery9, Berthold Koletzko4, Joachim Heinrich1* for the GINIplus Study Group

1 Institute of Epidemiology I, Helmholtz Zentrum München – German Research Centre for Environmental Health, Neuhufer, Germany, 2 Research Unit of Molecular Epidemiology, Helmholtz Zentrum München – German Research Centre for Environmental Health, Neuhufer, Germany, 3 Faculty of Medicine, Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany, 4 University of Munich Medical Centre, Dr. von Hauner Children’s Hospital, Munich, Germany, 5 Department of Pediatrics, Technical University of Munich, Munich, Germany, 6 Department of Pediatrics, Marien-Hospital Wesel, Wesel, Germany, 7 IUF, Leibniz Institut für Umweltmedizinische Forschung at the University of Düsseldorf, Düsseldorf, Germany, 8 Medical Practice for Pediatrics, Bad Honnef, Germany, 9 Department for Environmental Immunology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany, 10 Faculty of Medicine, Environmental Medicine and Hygiene, University of Leipzig, Leipzig, Germany, 11 Research Institute of Child Nutrition, University of Bonn, Dortmund, Germany

Abstract

Background: Elevated cholesterol levels in children can be a risk factor for cardiovascular diseases in later life. In adults, it has been shown that blood lipid levels are strongly influenced by polymorphisms in the fatty acid desaturase (FADS) gene cluster in addition to nutritional and other exogenous and endogenous determinants. Our aim was to investigate whether lipid levels are determined by the FADS genotype already in children and whether this association interacts with dietary intake of n-3 fatty acids.

Methods: The analysis was based on data of 2006 children from two German prospective birth cohort studies. Total cholesterol, HDL, LDL and triglycerides were measured at 10 years of age. Six single nucleotide polymorphisms (SNPs) of the FADS gene cluster were genotyped. Dietary n-3 fatty acid intake was assessed by food frequency questionnaire. Linear regression modeling was used to assess the association between lipid levels, n-3 fatty acid intake and FADS genotype.

Results: Individuals carrying the homozygous minor allele had lower levels of total cholesterol [means ratio (MR) ranging from 0.96 (p = 0.0093) to 0.98 (p = 0.2949), depending on SNPs] and LDL [MR between 0.94 (p = 0.0179) and 0.97 (p = 0.2963)] compared to homozygous major allele carriers. Carriers of the heterozygous allele showed lower HDL levels [between −0.04 (p = 0.0074) to −0.01 (p = 0.3318)] and higher triglyceride levels [MR ranging from 1.06 (p = 0.0065) to 1.07 (p = 0.0028)] compared to homozygous major allele carriers. A higher n-3 PUFAs intake was associated with higher concentrations of total cholesterol, LDL, HDL and lower triglyceride levels, but these associations did not interact with the FADS1 FADS2 genotype.

Conclusion: Total cholesterol, HDL, LDL and triglyceride concentrations may be influenced by the FADS1 FADS2 genotype already in 10-year-old children. Genetically determined blood lipid levels during childhood might differentially predispose individuals to the development of cardiovascular diseases later in life.

Citation: Standl M, Lattka E, Stach B, Koletzko S, Bauer C-P, et al. (2012) FADS1 FADS2 Gene Cluster, PUFA Intake and Blood Lipids in Children: Results from the GINIplus and LISAplus Studies. PLoS ONE 7(5): e37780. doi:10.1371/journal.pone.0037780

Editor: Vincent W. V. Jaddoe, Erasmus Medical Center, The Netherlands

Received November 17, 2011; Accepted April 27, 2012; Published May 21, 2012

Copyright: © 2012 Standl et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported financially in part by the “Kompetenzzentrum Adipositas” (“Competence Network Obesity”) funded by the German Federal Ministry of Education and Research (FKZ: 01GI0826) and by the Munich Center of Health Sciences (MCHEALTH). The LISAplus study was funded by grants of the Federal Ministry for Education, Science, Research and Technology (Grant No. 01 EG 9705/2 and 01EG9732) and the 6 years follow-up of the LISAplus study was partly funded by the Federal Ministry of Environment (IUF, FK5 20462296). BK is the recipient of a Freedom to Discover Award of the Bristol-Myers Squibb Foundation, New York, NY, USA. The authors gratefully acknowledge partial financial support from the Commission of the European Communities, specific RTD Programme “Quality of Life and Management of Living Resources”, within the 7th Framework Programme NUTRIMENTH, FP7-212652. This manuscript does not necessarily reflect the views of the Commission and in no way anticipates the future policy in this area. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: heinrich@helmholtz-muenchen.de

† Membership of the the GINIplus Study Group is provided in the Acknowledgments.

‡ Membership of the LISAplus Study Group is provided in the Acknowledgments.
Introduction

Lipid concentrations in blood are associated with cardiovascular diseases [1–4]. Elevated cholesterol levels during childhood and adolescence increases the risk for cardiovascular diseases in adulthood. Moreover treatments which effectively lower cholesterol levels early in life have been shown to prevent disease manifestation in later life [5–7].

Among other factors, dietary polyunsaturated fatty acid (PUFA) intake can attenuate high blood lipid concentrations [8–10].

In addition to dietary influences, recent genome wide association studies have identified several genetic loci that are associated with blood lipid levels in adults [11–15]. Among the top hits for the determination of lipid levels are polymorphisms in the fatty acid desaturase (FADS) gene cluster. Lower total cholesterol [11], low-density lipoprotein (LDL) [11–13], high-density lipoprotein (HDL) [13,14] and higher triglyceride levels [14,15] are all associated with the minor alleles of the tested FADS polymorphisms. The genes FADS1 and FADS2, which are both located in this gene cluster, encode the enzymes delta-5-desaturase and delta-6-desaturase, which are involved in the conversion of dietary n-3 and n-6 fatty acids to their longer chain metabolites [16]. Polymorphisms in these genes are associated with n-3 and n-6 fatty acids levels in blood and several tissues [17–23]. Carriers of the minor alleles exhibit increased levels of desaturase substrates and decreased levels of desaturase products. This trend may be the result of lower transcription levels or diminished enzyme conversion rates in individuals carrying the minor alleles [17].

The previously reported strong association of FADS polymorphisms with lipid levels in adults makes these genes good candidates for genetic association studies focused on lipid levels in children. Given the role of the gene products in the conversion of dietary fatty acids to biologically important longer chain polyunsaturated fatty acids, which in turn have been shown to influence lipid levels, interaction analysis between genetic polymorphisms and dietary intake of fatty acids for individual lipid levels is of interest.

In this study we investigated whether genetic variations of the FADS gene cluster already pre-determines total cholesterol, HDL, LDL and triglyceride levels in 10 year old children and whether genetic variation interacts with dietary intake of n-3 PUFAs to determine individual blood lipid levels.

Results

Information on lipid concentrations in blood and FADS1, FADS2 genotype was available for 2006 children (1288 (64%) children from the GINIplus study and 718 (36%) children from the LISAplus study). Information on n-3 PUFA intake was only available for 1697 of these children (1100 (65%) children from the GINIplus study and 718 (36%) children from the LISAplus study).

Basic characteristics of the study population are presented in Table 1. Total cholesterol, LDL and triglyceride concentrations were significantly higher in the GINIplus study, whereas HDL concentrations were higher in the LISAplus study.

The genotype and allele frequencies of the six SNPs which were included in the analysis are shown in Table 2. There was no difference in the allele frequency distribution between the GINIplus and LISAplus studies.

Five of the six SNPs (rs174545, rs174546, rs174556, rs174561 and rs3834458) are in high LD with each other. For these five SNPs, the pairwise squared correlations r^2 ranged from 0.83 to 0.99, and Lewontin’s D' ranged from 0.98 to 1.

For rs174575, the linkage disequilibrium is lower. The pairwise correlation r^2 for this SNP ranged from 0.49 to 0.66 and Lewontin’s D' ranged from 0.77 to 0.96.

Median levels of total cholesterol, HDL, LDL and triglyceride concentrations, stratified by FADS genotype, are presented in Table 3. Homozygous minor allele carriers had lower levels of total cholesterol and LDL compared to homozygous or heterozygous major allele carriers. In contrast, triglyceride concentrations were higher in minor allele carriers compared to homozygous major allele carriers. After adjustment for multiple testing ($\alpha_{corr}=0.025$), these associations remained significant for triglyceride levels and LDL (rs174556 and rs174561).

The results of the linear regression models for total cholesterol, HDL, LDL and triglyceride concentrations, the FADS genotype and n-3 PUFA intake are presented in Table 4. Adjusted means ratios for total cholesterol, LDL and triglyceride concentrations and effect estimates for HDL are shown.

The p-values describing the association between n-3 PUFA intake and elevated concentrations of total cholesterol [MR = 1.01 for all six SNPs (p-value ranging from 0.0268 to 0.0884)], HDL [MR from 1.01 (p = 0.1075) to 1.02 (p = 0.0411)], LDL [MR from 1.01 (p = 0.0126) to 1.02 (p = 0.0306)] and reduced triglyceride levels [MR between 0.97 (p = 0.0219) and 0.98 (p = 0.0841)] were statistically significant. However, after correcting for multiple testing, only five (out of six) SNPs for HDL and triglyceride levels and rs3834458 remained significant.

Additional analyses showed similar results for the n-3 PUFAs ALA, EPA, DPA and DHA, which were combined into the total dietary n-3 PUFA intake (data not shown).

There was no association between dietary n-6 PUFA intake and lipid levels (data not shown).

Homzygous minor allele carriers had decreased levels of total cholesterol [MR ranging from 0.96 (p = 0.0093) to 0.98 (p = 0.2949)] and LDL [MR between 0.94 (p = 0.0179) and 0.97 (p = 0.2963)] compared to homozygous major allele carriers. After correcting for multiple testing ($\alpha_{corr}=0.025$), the association remained significant for rs174556 and rs174561 and total cholesterol and LDL.

HDL concentrations were reduced in carriers of the heterozygous genotype compared to homozygous major allele carriers [p between –0.04 (p = 0.0074) to –0.01 (p = 0.3316)]. These associations remained significant for four SNPs after correction for multiple testing.

Individuals carrying the heterozygous genotype showed significantly increased triglyceride levels compared to homozygous major allele carriers [p between -0.04 (p = 0.0074) to –0.01 (p = 0.3316)]. These associations remained significant for four SNPs after correction for multiple testing.

For each model, including the FADS SNP increased the percentage of explained variance compared to the model without any SNPs (Table S2). The maximal increase in the explained variance was 0.71% for the total cholesterol model (1.98% to 2.69%), 1.28% for the LDL model (4.21% to 5.49%), 0.96% for the HDL model (7.83% to 8.79%) and 0.48% for the triglycerides model (12.38% to 12.86%). Additional analyses stratified by study (GINIplus and LISAplus) showed similar results.
although again, the lack of statistical significance is likely attributable to the reduced sample size (Figure S1).

There was no significant interaction between n-3 PUFA intake and FADS1 FADS2 genotype for any of the tested lipid concentrations (data not shown).

Discussion

The present study investigated the association between n-3 PUFA intake and FADS genotype with total cholesterol, HDL, LDL and triglyceride concentrations in 10-year-old children from the GINIplus and LISAplus birth cohort studies.

Although not all associations were statistically significant after adjustment for multiple testing, in these children, a higher n-3 PUFA intake was associated with higher total cholesterol, HDL and LDL and lower triglyceride levels. These associations remained significant after adjustment for multiple testing for HDL (five out of six tested SNPs) and triglyceride concentrations (rs3834458).

Minor alleles of FADS1 and FADS2 SNPs were significantly associated with higher levels of triglycerides and lower levels of total cholesterol, HDL, and LDL levels. However, not all of these associations reached statistical significance after correcting for multiple testing.

Generally, our results on trends in children are in line with previously published GWA studies that report an association between the minor allele of the tested FADS variant with lower total cholesterol [11], LDL [11–13], HDL [13,14] and higher triglyceride [14,15] concentrations in adults. Although the sample size of our cohort is relatively large, failure to reach statistical significance for all SNPs after correcting for multiple testing may be due to a lack of statistical power and small effect sizes. Nevertheless, our effect sizes for total cholesterol and triglycerides are comparable to those reported for adults [11,14]. Bokor et al. [24] investigated the association between FADS haplotypes and lipid levels in adolescents, and reported no associations between any of the haplotypes and total cholesterol, HDL or LDL. However, the haplotype carrying the minor allele of rs174546 was significantly associated with higher triglyceride levels and the effect size reported is similar to that observed in our study.

The lack of statistical significance with respect to triglyceride levels in homozygous minor allele carriers may be due to the small size of this group (7% to 12% of the complete sample).

The inclusion of the FADS SNPs to the model lead to an increase of explained variance ranging from 0.48% for the triglyceride model to 1.28% for the LDL model, which showed a similar level as reported by several studies [25].

SNP	Alleles (major/minor)	N	Number of subjects with genotype (%)	allele (%)				
			A/a	aa	Aa	AA	a	A
rs174545	G/C	1829	211 (12%)	793 (43%)	825 (45%)	1215 (33%)	2443 (67%)	
rs174546	G/A	1854	211 (11%)	804 (43%)	839 (45%)	1226 (33%)	2482 (67%)	
rs174556	G/A	1849	165 (9%)	758 (41%)	926 (50%)	1088 (29%)	2610 (71%)	
rs174561	A/G	1867	165 (9%)	766 (41%)	936 (50%)	1096 (29%)	2638 (71%)	
rs174575	C/G	1974	139 (7%)	738 (37%)	1097 (56%)	1016 (26%)	2932 (74%)	
rs3834458	T/Del	1971	216 (11%)	855 (43%)	900 (46%)	1287 (33%)	2655 (67%)	

Table 2. Characteristics of the SNPs in the FADS gene cluster.
Lipid levels in children are determinants for cardiovascular diseases in adulthood [5–7]. Analysis of the underlying causes for disturbances in lipid metabolism during childhood can contribute to the prevention of cardiovascular diseases later in life. Our study suggests that the \textit{FADS1 FADS2} gene cluster may influence lipid levels in early life.

Table 3. Median total cholesterol, HDL, LDL and triglyceride concentrations [mmol/L] in with 25%- and 75%-quantiles stratified by \textit{FADS} genotype (A: major allele/ a: minor allele).

rs174545	Total cholesterol	HDL	LDL	Triglyceride
AA	4.81	1.27	2.13	1.14
(4.29,5.34)	(1.06,1.47)	(1.74,2.57)	(0.87,1.57)	
Aa	4.77	1.23	2.13	1.23
(4.28,5.30)	(1.06,1.42)	(1.74,2.51)	(0.93,1.67)	
aa	4.68	1.26	2.01	1.23
(4.18,5.16)	(1.09,1.43)	(1.67,2.47)	(0.92,1.69)	
p-value\(^1\)	0.1189	0.2246	0.0718	\textbf{0.0058}
rs174546	AA	4.82	1.27	2.13
(4.29,5.34)	(1.07,1.47)	(1.74,2.57)	(0.88,1.57)	
Aa	4.77	1.23	2.13	1.24
(4.28,5.31)	(1.06,1.42)	(1.74,2.51)	(0.94,1.68)	
aa	4.66	1.26	2.01	1.22
(4.18,5.15)	(1.09,1.43)	(1.67,2.47)	(0.92,1.68)	
p-value\(^1\)	0.0709	0.1494	0.0701	\textbf{0.0078}
rs174556	AA	4.82	1.27	2.14
(4.30,5.38)	(1.07,1.47)	(1.74,2.58)	(0.88,1.58)	
Aa	4.76	1.23	2.12	1.23
(4.28,5.30)	(1.06,1.41)	(1.73,2.49)	(0.94,1.69)	
aa	4.65	1.25	1.98	1.22
(4.18,5.08)	(1.09,1.43)	(1.65,2.38)	(0.90,1.68)	
p-value\(^1\)	0.0263	0.0842	\textbf{0.0182}	\textbf{0.0071}
rs174561	AA	4.83	1.27	2.14
(4.30,5.38)	(1.07,1.47)	(1.74,2.59)	(0.88,1.58)	
Aa	4.76	1.23	2.12	1.23
(4.28,5.29)	(1.06,1.42)	(1.73,2.49)	(0.94,1.69)	
aa	4.65	1.25	2.00	1.25
(4.18,5.11)	(1.09,1.43)	(1.65,2.38)	(0.92,1.68)	
p-value\(^1\)	0.0288	0.1042	\textbf{0.0145}	\textbf{0.0076}
rs174575	AA	4.80	1.26	2.12
(4.28,5.32)	(1.06,1.46)	(1.73,2.53)	(0.88,1.57)	
Aa	4.80	1.23	2.16	1.25
(4.31,5.35)	(1.06,1.43)	(1.75,2.54)	(0.93,1.72)	
aa	4.63	1.24	1.96	1.24
(4.18,5.08)	(1.04,1.41)	(1.68,2.36)	(0.98,1.70)	
p-value\(^1\)	0.0390	0.3346	0.0325	\textbf{0.0032}
rs3834458	AA	4.81	1.26	2.13
(4.30,5.35)	(1.06,1.47)	(1.73,2.56)	(0.88,1.58)	
Aa	4.79	1.23	2.16	1.24
(4.28,5.33)	(1.06,1.42)	(1.75,2.53)	(0.94,1.68)	
aa	4.65	1.25	2.01	1.22
(4.23,5.14)	(1.06,1.43)	(1.68,2.40)	(0.94,1.69)	
p-value\(^1\)	0.0434	0.2505	0.0414	\textbf{0.0081}

\(^1\) p-value derived from Kruskal-Wallis rank sum test. Significance level after correction for multiple testing: \(\alpha_{\text{corr}} = 0.025\). Values reaching significance after adjustment for multiple testing are highlighted in bold.

doi:10.1371/journal.pone.0037780.t003
entirely clear. It is likely that the composition of polyunsaturated fatty acids in human tissues, which has been shown to be highly associated with the FADS genotype [17], is the direct link between the observed associations. Tanaka et al. [26] presumed that higher concentrations of the precursor fatty acids in minor allele carriers may result in increased membrane fluidity, and thus, in lower LDL. In addition to altered membrane fluidity, differential concentrations of long-chain PUFAs (LC-PUFAs) may lead to a change in the activation of transcription factors such as peroxisome proliferator activating receptor alpha (PPARA). Additionally, the number of multiple comparisons has to be considered. In our study, a higher intake of n-3 PUFA was associated with higher total cholesterol, HDL, and LDL levels and lower triglyceride concentrations, although these effects were not significant after adjustment for multiple testing. In the present manuscript, neither the SNPs, nor traits are independent. A more stringent approach, which would account for the number of outcome variables, would lead to a corrected alpha level of 0.0063. Taking this alpha level as a basis, the association between lipid levels, FADS genotype and dietary n-6 PUFA intake (data not shown). In our interaction analysis, we did not find a modification of the effect of n-3 PUFA intake on lipid concentrations in blood by the FADS genotype.

Table 4. Results of linear regression models for total cholesterol, HDL, LDL and triglyceride concentrations, FADS genotype (A: major allele/ a: minor allele, reference: homozygous major allele) and n-3 PUFA intake (per IQR increase, IQR (n-3 PUFA) = 0.04 mg/MJ) adjusted for gender, study centre, age, BMI, fasting status and total dietary energy intake [MJ].

Total cholesterol	HDL	LDL	Triglycerides					
rs174545								
MR, 95% CI, p-value	Estimate, Sd, 95% CI, p-value	MR, 95% CI, p-value	MR, 95% CI, p-value					
n-3 PUFA								
n = 1532	N = 1531	n = 1531	n = 1531					
1.01 (1.00, 1.02)	0.0568	0.0568	0.0193	1.01 (1.00, 1.03)	0.1023	0.98 (0.96, 1.00)	0.0841	
Aa (ref AA)	1.00 (0.98, 1.02)	0.0311	-0.04	0.0214	1.01 (0.98, 1.04)	0.6525	1.06 (1.02, 1.11)	0.0063
aa (ref AA)	0.98 (0.95, 1.00)	0.0909	-0.01	0.6638	0.97 (0.92, 1.02)	0.1758	1.05 (0.97, 1.12)	0.2148
rs174546								
n-3 PUFA								
n = 1554	n = 1553	n = 1553	n = 1553					
1.01 (1.00, 1.02)	0.0823	0.002	0.0147	1.01 (1.00, 1.03)	0.1072	0.98 (0.95, 1.00)	0.0413	
Aa (ref AA)	1.00 (0.98, 1.02)	0.9721	-0.04	0.0113	1.01 (0.97, 1.04)	0.7541	1.07 (1.02, 1.11)	0.0048
aa (ref AA)	0.97 (0.95, 1.00)	0.0592	-0.01	0.6663	0.97 (0.92, 1.02)	0.1777	1.03 (0.96, 1.11)	0.3621
rs174556								
n-3 PUFA								
n = 1548	n = 1547	n = 1547	n = 1547					
1.01 (1.00, 1.02)	0.0884	0.02	0.0173	1.01 (1.00, 1.03)	0.1075	0.98 (0.95, 1.00)	0.0363	
Aa (ref AA)	1.00 (0.98, 1.01)	0.6460	-0.04	0.0074	0.99 (0.96, 1.03)	0.7434	1.07 (1.02, 1.12)	0.0035
aa (ref AA)	0.96 (0.93, 0.99)	0.0093	0.00	0.8902	0.94 (0.88, 0.99)	0.0179	1.02 (0.94, 1.10)	0.6769
rs174575								
n-3 PUFA								
n = 1662	n = 1661	n = 1661	n = 1661					
1.01 (1.00, 1.02)	0.0290	0.02	0.0140	1.02 (1.00, 1.03)	0.4111	0.97 (0.95, 1.00)	0.0258	
Aa (ref AA)	1.01 (1.00, 1.03)	0.1070	-0.01	0.3218	1.03 (0.99, 1.06)	0.1020	1.07 (1.02, 1.11)	0.0026
aa (ref AA)	0.98 (0.95, 1.02)	0.2949	-0.01	0.6907	0.97 (0.91, 1.03)	0.2963	1.07 (0.99, 1.16)	0.0922
rs3834458								
n-3 PUFA								
n = 1659	n = 1658	n = 1658	n = 1658					
1.01 (1.00, 1.02)	0.0288	0.02	0.0126	1.02 (1.00, 1.03)	0.0422	0.97 (0.95, 1.00)	0.0219	
Aa (ref AA)	1.00 (0.98, 1.02)	0.9479	-0.03	0.0324	1.01 (0.98, 1.04)	0.6232	1.06 (1.02, 1.11)	0.0065
aa (ref AA)	0.97 (0.95, 1.00)	0.0704	-0.01	0.6009	0.97 (0.92, 1.01)	0.1674	1.04 (0.98, 1.12)	0.2130

1Significance level after correction for multiple testing: $\alpha_{corr} = 0.025$. Values reaching significance after adjustment for multiple testing are highlighted in bold.

doi:10.1371/journal.pone.0037780.t004
analyses. Therefore, we do not consider these results as chance finding.

Nevertheless, our results suggest that there is an effect of n-3 PUFA intake as well as an effect of FADS genotype on lipid levels, although these effects do not interact with each other. It is known, that the conversion rate from dietary PUFA intake to longer chain metabolites is depending on the FADS genotype [17]. Therefore, it might be possible that dietary n-3 PUFA intake as well as the FADS genotype have a linear influence on the endogenous PUFA levels. This would be in line with the results presented by Molto-Puigmarti et al. [22]. They reported lower DHA proportions in plasma phospholipids in women carrying the homozygous minor allele, but the DHA proportions increased with higher intake of fatty fish to a similar extent for all genotypes.

To our knowledge, this is the first study which has examined the complex associations between genetics, diet, and lipid levels in 10 year old children.

In addition to its strength, our study also faces some limitations which must be considered. Although lipid levels were measured from blood samples, the dietary fatty acid intake was assessed by a FFQ. The FFQ used in the present study measured dietary intake over the past 12 months and was validated for the dietary n-3 PUFA intake. Alternatively, it might be interesting to examine the association of FADS genes, lipid concentrations and measured fatty acid blood levels. A further limitation of our study is the low proportion of fasting blood samples (18.4%). The presented results were adjusted for fasting status. Additionally, the magnitude of the association between FADS genotype, n-3 PUFA and lipid concentrations was similar when the sample was restricted to those with information on fasting blood, although statistical significance was lacking due to a reduced sample size (Results for triglyceride levels are presented in Table S1).

In order to increase the power, the two independent studies GINIplus and LIASplus were analyzed together. Additional analyses stratified for the GINIplus and LIASplus studies showed consistent results (Figure S1), except for LDL, although significance was missed due to the reduced sample size. This investigation addressed a complex hypothesis and is based on a specific data situation: Dietary fatty acid intake was assessed using a FFQ, which was especially developed and validated for dietary fatty acid intake in this specific study population [33], blood lipid levels of total cholesterol, HDL, LDL and triglycerides were measured and genotyping of six variants of the FADS1 FADS2 gene cluster was performed. Nevertheless, the results in the two independent studies GINIplus and LIASplus, which are based on the same methodology, are similar and our results are comparable to those reported for adults.

Our study suggests that the FADS1 FADS2 gene cluster may affect lipid levels already in childhood. Although the explained variance is low, and can therefore not be used for prevention or prediction purposes, these results underline the hypothesis that there is a causal association between dietary n-3 PUFA intake and lipid levels in children and may help to identify the causal biological mechanism.

However, further studies are needed to investigate the long-term effects of the impact of dietary intervention on the development of cardiovascular diseases, while considering the influence of the FADS gene cluster.

Materials and Methods

Study population

Data from two ongoing German birth cohort studies were included in this investigation: the German LIASplus (Life-style Related Factors on the Immune System and the Development of Allergies in Childhood PLUS the influence of traffic emissions and genetics) and GINIplus (German Infant Nutritional Intervention PLUS environmental and genetic influences on allergy development) studies. LIASplus is a population based birth cohort study in which a total of 3097 neonates were recruited between 1997 and 1999 from the German cities of Munich, Leipzig, Wesel and Bad Honnef. The participants were not pre-selected based on family history of allergic diseases [34]. A total of 3991 mothers and their newborns were recruited from Munich and Wesel into the GINIplus study between September 1995 and June 1998. Infants with at least one allergic parent and/or sibling were allocated to the interventional study arm which investigated the effect of different hydrolysed formulas consumed during the first year of life on the development of allergies [35]. All children without a family history of allergic diseases and children whose parents did not give consent for the randomized clinical trial were allocated to the non-interventional arm. Given that the current GINIplus study is composed of both the interventional and non-interventional arm, this cohort is also population-based. Detailed descriptions of the LIASplus and GINIplus studies have been published elsewhere [34–36].

In both studies only individuals with Caucasian German descent were included.

For this analysis, only data from the 10 year follow-up is used. During this follow-up, blood samples were collected and in a subset of almost 20% of the children fasting blood samples could be collected.

For both studies, approval by the local Ethics Committees (Bavarian Board of Physicians, University of Leipzig, Board of Physicians of North-Rhine-Westphalia) and written consent from participant’s families were obtained.

Dietary n-3 PUFA intake

A food frequency questionnaire (FFQ) was developed to measure a child’s usual food and nutrient intake during one year, and more specifically, to estimate energy, fatty acid and antioxidant intake at 10 years of age. The FFQ comprised a list of 82 food items accompanied by several questions about the preferred fat and energy content of products, preparation methods, diet and food preferences, buying habits and dietary supplement use. The consumption frequencies and portion size estimates were converted to average consumption in grams per day and linked to the German Nutrient Data Base, version II.3.1 [37]. The design of the FFQ, including the selection of the food item list, validation, and the calculation of food and nutrient intake is described in more detail by Stiegler et al. [33].

The intake of n-3 PUFA was calculated by summing a child’s daily intake of α-linolenic acid (ALA, 18:3n-3), eicosapentaenoic acid (EPA, 20:5n-3), docosapentaenoic acid (DPA, 22:5n-3) and docosahexaenoic acid (DHA, 22:6n-3).

Genotyping

Six single nucleotide polymorphisms (SNPs) in the FADS1 FADS2 gene cluster (rs174545, rs174546, rs174556, rs174561, rs174575 and rs3834458) were genotyped. Five of these variants (rs174545, rs174546, rs174556, rs174561 and rs3834458) are in strong linkage disequilibrium (LD) with each other (r2>0.7, D’>0.9) [17], and were selected based on previous publications in adult populations [17,38]. Additionally, we included the rs174575 SNP in order to obtain a better coverage of the FADS gene cluster. This SNP was selected based on a previous publication in children [39]. By applying the tagger server program (http://www.broadinstitute.org/mpg/tagger/) in combination with HapMap
Measurement of lipids

The measurement of serum lipids and lipoproteins was performed using homogenous enzymatic colorimetric methods according to the manufacturers instructions (Roche Diagnostics GmbH Mannheim). All parameters and controls were analysed on a Modular Analytics System from Roche Diagnostics GmbH Mannheim.

External controls were used in accordance with the guidelines of the German Society of Clinical Chemistry and Laboratory Medicine.

Statistical analysis

Because of the skewed distribution, total cholesterol, LDL and triglyceride concentrations were naturally log-transformed. Afterwards, linear regression modelling was used to assess the association between log-transformed total cholesterol, HDL, log-transformed LDL and log-transformed triglyceride concentrations, n-3 PUFA intake and FADS genotype. Therefore, for HDL, the regression coefficient β (Estimate) with standard deviation (Sd) is shown.

For total cholesterol, LDL and triglyceride, the results are presented as means ratio (MR) with 95% confidence interval (95% CI). The MR can be easily calculated for lognormal distributed variables and is derived by applying the exponential function on the regression coefficient β (i.e. MR = $\exp (\beta)$). It describes the ratio of the mean of the outcome variable in one group compared to the mean of the outcome variable in the reference group. The MR can be interpreted as percentage change in the mean of the outcome variable in one group compared to the reference group adjusted for confounder variables.

The dietary n-3 PUFA intake was included in the regression analyses as nutrient density (n-3 PUFA intake divided by total energy intake). Additionally, the results were adjusted for total energy intake [40]. In order to compare the effect size of high (75% quantile) and low (25% quantile) dietary n-3 PUFA intake, the influence of n-3 PUFA intake is given per interquartile range increase (IQR (n-3 PUFA) = 0.04 mg/MJ).

All regression models were adjusted for gender, study centre (Munich, Welser, Leipzig and Bad Honnef), age, BMI at 10 years of age and fasting status.

Moreover, in additional analyses, an interaction between n-3 PUFA and FADS genotype (reference: homozygous major allele), was included in the linear regression models in order to test whether the effect of dietary n-3 PUFA intake is modified by FADS variants.

Statistical significance was defined by a two-sided alpha level of 5%. We corrected for multiple testing according to Nyholt [41]. In brief, this method takes the correlation pattern between the SNPs into account and reduces the number of variables in a set to the effective number of variables and provides thereby an estimate of the number of independent tests.

The alpha level is divided by the number of effective loci (which was computed as two, based on the number of effective loci of the six SNPs in the FADS gene cluster), which yields a corrected two-sided alpha level of 0.025 (5%/2 = 2.5%).

Differences between the GINplus and LISAplus studies were tested using Fisher’s exact test or Wilcoxon rank sum test. The association between lipid concentrations and FADS genotype was tested using Kruskal-Wallis rank sum test, a nonparametric method to test whether the median of the lipid concentrations is different between the FADS genotypes.

Statistical analysis was performed using the statistical software R, version 2.13.1 (http://www.R-project.org) [42].

Supporting Information

Figure S1 Results of linear regression models on total cholesterol, HDL, LDL and triglycerides stratified for the GINplus and LISAplus studies. Presented are means ratios (total cholesterol, LDL and triglycerides) and effect estimates (HDL) of FADS genotype (A: major allele/ a: minor allele, reference: homozygous major allele) and n-3 PUFA intake (per IQR increase, IQR (n-3 PUFA) = 0.04 mg/MJ). All models are adjusted for gender, study centre, age, BMI and total dietary energy intake [MJ]. a) Total cholesterol b) HDL c) LDL d) Triglycerides

Table S1 Results of linear regression models restricted to fasting blood samples for triglyceride concentrations, FADS genotype (A: major allele/ a: minor allele, reference: homozygous major allele) and n-3 PUFA intake (per IQR increase, IQR (n-3 PUFA) = 0.04 mg/MJ) adjusted for gender, study centre, age, BMI and total dietary energy intake [MJ].

Table S2 Percentage of variance explained in the models without and with the FADS variants.

Acknowledgments

The GINplus study group.

Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology I, Munich (Heinrich J, Wichmann HE, Sausenthaler S, Zutavern A, Chen, Chih-Mei, Schnappinger M, Rachak P); Department of Pediatrics, Marien-Hospital, Wesel (Berdel D, von Berg A, Beckmann C, Groß I); Department of Pediatrics, Ludwig Maximilians University, Munich (Koletzko S, Reinhardt D, Kraus-Etschmann S); Department of Pediatrics, Technical University, Munich (Bauer CP, Brockow I, Grüb A, Hoffmann U); IUF – Leibniz Research Institute for Environmental Medicine, Düsseldorf (Kramer U, Link E, Cramer C); Centre for Allergy and Environment, Technical University, Munich (Behrendt H).

The LISAplus study group.

Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology I, Munich (Heinrich J, Wichmann HE, Sausenthaler S, Chen CM, Schnappinger M); Department of Pediatrics, Municipal Hospital “St. Georg”, Leipzig (Borte M, Diez U), Marien-Hospital Wesel, Department of Pediatrics, Wesel (von Berg A, Beckmann C, Groß I); Pediatric Practice, Bad Honnef (Schaaf B); Helmholtz Centre for Environmental Research – UFZ, Department of Environmental Immunology/Core Facility Studies, Leipzig (Lehmann I, Bauer M, Grabsch C, Röder S, Schüle M); University of Leipzig, Institute of Hygiene and Environmental Medicine, Leipzig (Herbarth O, Dick C, Magnus J); IUF – Leibniz Research Institute for Environmental Medicine, Düsseldorf (Kramer U, Link E, Cramer C); Technical University Munich, Munich (Behrendt H).
References

1. Kannel WB, Dawber TR, Kagan A, Revotskie N, Stokes J (1961) Factors of risk in the development of coronary heart disease – six year follow-up experience. The Framingham Study. Am J Intern Med 55: 53–50.

2. Miller NE, Miller GJ (1975) Letter: High-density lipoprotein and atherosclerosis. Lancet 1: 1033.

3. Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR (1977) The Framingham Heart Study. N Engl J Med 316: 1346–144.

4. Kareinen A, Viitanen L, Halonen P, Lehto S, Laakso M (2001) Cardiovascular disease markers and risk factors associated with insulin resistance cluster in families with early-onset coronary heart disease. Arterioscl Thromb Vasc Biol 21: 1346–1352.

5. Newmann WF, Freedman DS, Voors AW, Gard PD, Srinivasan SR, et al. (1986) Relation of serum lipoprotein levels and systolic blood pressure to early atherosclerosis. The Bogalusa Heart Study. N Engl J Med 314: 138–144.

6. Berenson GS, Srinivasan SR, Bao W, Newman WP, Tracy RE, et al. (1998) Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N Engl J Med 338: 1650–1656.

7. McGill HC, McManus CA, Zieske AW, Sloop GD, Walcott JV, et al. (2000) Associations of coronary heart disease risk factors with the intermediate lesion of atherosclerosis in youth. The Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Arterioscler Thromb Vasc Biol 20: 1998–2004.

8. Phillipson BE, Rotherwick DW, Coneff WE, Harris WS, Illingworth DR (1985) Reduction of plasma lipids, lipoproteins, and apoproteins by dietary fish oils in patients with hypertriglyceridemia. N Engl J Med 312: 1210–1216.

9. Calabresi L, Villa B, Canavesi M, Sirtori CR, James RW, et al. (2004) An inverse association between dietary alpha-linolenic acid (18:3 n-6) and serum cholesterol in controls and in families with premature coronary artery disease. J Lipid Res 45: 35–46.

10. Berenson GS, Srinivasan SR, Bao W, Newman WP, Tracy RE, et al. (1998) The Bogalusa Heart Study. Lipoprotein cholesterol and triglyceride levels influencing type 2 diabetes, glucose levels, or insulin resistance. Am J Hum Genet 62: 1210–1216.

11. Aulchenko YS, Ripatti S, Lindqvist I, Boomsma D, Heid IM, et al. (2009) Loci associated with plasma lipoprotein size, concentration, and cholesterol content in genome-wide analysis. PLoS Genet 5: e1000730.

12. Sabatti C, Service SK, Hartikainen AL, Pouta A, Ripatti S, et al. (2009) Single nucleotide polymorphisms in the FADS genes are associated with delta-5 and delta-6 desaturase activities estimated by serum fatty acid ratios. J Lipid Res 51: 2325–2333.

13. Stranger BE, Stahl EA, Raj T (2011) Progress and promise of genome-wide association studies for human complex trait genetics. Genetics 187: 367–383.

14. Tanaka T, Shen J, Abeckas GR, Kisaiou A, Ordovas JM, et al. (2009) Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI Study. PLoS Genet 5: e1000330.

15. Fruchart JC, Duriez P, Staels B (1999) Peroxisome proliferator-activated receptor-alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis. Curr Opin Lipidol 10: 245–257.

16. Heiz R, Bishara-Shiarian J, Tulchinska T, Tan J (1995) Medy of action of peroxisome proliferators as hypolipidemic drugs. Suppression of apoprotein C-III. J Biol Chem 270: 13470–13475.

17. Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, Heyman RA, Briggs M, et al. (1996) PPARα and PPARγ agonists activate different tissue-specific transcriptional responses via a PPRE in the lipoprotein lipase gene. EMBO J 15: 5336–5348.

18. Vu-Dac N, Schoonjans K, Laine B, Fruchart JC, Auwerx J, et al. (1994) Negative regulation of the human apolipoprotein A-I promoter by fibrates can be attenuated by the interaction of the peroxisome proliferator-activated receptor with its response element. J Biol Chem 269: 31012–31018.

19. Vu-Dac N, Schoonjans K, Kooiš V, Dallongeville J, Fruchart JC, et al. (1995) Fibric acids increase human apolipoprotein A-I expression through activation of the peroxisome proliferator-activated receptor. J Clin Invest 96: 741–750.

20. Ly F, Eskens EF, Dollé ME, Inhouds S, Verschuren WM, et al. (2010) Dietary n-3 and n-6 polyunsaturated fatty acid intake interacts with FADS1 genetic variation to affect total and HDL cholesterol concentrations in the Dacieatem Cohort Study. Am J Clin Nutr 92: 258–265.

21. Steigler P, Sausenthaler S, Bryne AE, Rachak P, Czech D, et al. (2010) A new FFQ designed to measure the intake of fatty acids and antioxidants in children. J Nutr 140: 1137–1143.

22. Heiz R, Bishara-Shiarian J, Tulchinska T, Tan J, 1995. Medy of action of peroxisome proliferators as hypolipidemic drugs. Suppression of apoprotein C-III. J Biol Chem 270: 13470–13475.

23. Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, Heyman RA, Briggs M, et al. (1996) PPARα and PPARγ agonists activate different tissue-specific transcriptional responses via a PPRE in the lipoprotein lipase gene. EMBO J 15: 5336–5348.

24. Vu-Dac N, Schoonjans K, Laine B, Fruchart JC, Auwerx J, et al. (1994) Negative regulation of the human apolipoprotein A-I promoter by fibrates can be attenuated by the interaction of the peroxisome proliferator-activated receptor with its response element. J Biol Chem 269: 31012–31018.

25. Vu-Dac N, Schoonjans K, Kooiš V, Dallongeville J, Fruchart JC, et al. (1995) Fibric acids increase human apolipoprotein A-I expression through activation of the peroxisome proliferator-activated receptor. J Clin Invest 96: 741–750.

26. Ly F, Eskens EF, Dollé ME, Inhouds S, Verschuren WM, et al. (2010) Dietary n-3 and n-6 polyunsaturated fatty acid intake interacts with FADS1 genetic variation to affect total and HDL cholesterol concentrations in the Dacieatem Cohort Study. Am J Clin Nutr 92: 258–265.

27. Steigler P, Sausenthaler S, Bryne AE, Rachak P, Czech D, et al. (2010) A new FFQ designed to measure the intake of fatty acids and antioxidants in children. J Nutr 140: 1137–1143.

28. Heiz R, Bishara-Shiarian J, Tulchinska T, Tan J, 1995. Medy of action of peroxisome proliferators as hypolipidemic drugs. Suppression of apoprotein C-III. J Biol Chem 270: 13470–13475.