MAXIMIZING THE OUTPUT POWER HARVEST OF A PV PANEL: A CRITICAL REVIEW

E. O. Ogundimu 1, E. T. Akinlabi 1,2 and CA Mgbemene 3

1Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa,
2Department of Mechanical Engineering, College of Engineering, Covenant University, Ota, Nigeria.
3Department of Mechanical Engineering, University of Nigeria, Nsukka, Nigeria.
Corresponding Author; 216089300@student.uj.ac.za

Abstract-
The quick exhausting of traditional energy sources and the present consistently expanding energy request with regards to ecological issues have supported concentrated research on solar energy innovation. Apprehending most extreme energy from the sun by utilizing solar PV technology is impenetrable. A few features that influence the solar energy yield of this technology comprise the material of the photovoltaic, solar irradiances topographical area, the orientation of the panel, the angle of sun and surrounding climate. This present work reviews the ideologies and contrivances of solar PV tracking systems to decide the greatest solar panel tilt-angle, both isotopic and ant isotopic solar models and uses of numerous procedures for outlining solar panel tilt- angle by means of dissimilar optimization techniques. The work displays that sun-tracking systems are quite expensive than the opposing fixed mounted variety. This is mostly due to having motor-powered and moving portions. More also, having all these moving and mechanical parts means that there will be some amount of regular inspection, adjustments or even replacements required which leads way to another disadvantage. For greatest energy harvest, the optimum tilt angle for solar PV systems must be resolved definitely for every territory as it is basic for most extreme power generation by the system.

Keywords: Optimal-tilt angle, Photovoltaic, Solar Energy.

1. Introduction
Solar energy has turned into a promising elective source because of its preferences such as plenitude, contamination free and inexhaustibility. A portion of the key preferences are immediate utilization of absorbed heat received from sun, nonappearance of mechanical components, low repairs cost, high dependability, effective lengthy life and direct transformation of light to power through a basic solid state technology [1-20]. Along these lines, the issue of power transmission by cables could be wiped out by the utilization of sun based cells at the site where the power is required. Harvesting energy from the sun utilizing sun-powered PV (photovoltaic) methods remain a prominent verdict of sustainable power source innovation around the world. Regardless of the dive in petroleum derivative costs [4-6], Studies on the PV solar systems have gotten much thought, for the most part, on numerous worldwide applications [21-40]. The instantaneous solar radiation on a level collector plate surface is a component of the situation of the Sun in the sky, which changes continually. Figure 1 demonstrates the introduction and incline of PV sun oriented board are very much characterized by the tilt edge of PV sun based
board concerning the level surface (β), the azimuth edge (γ), which means the introduction of the sun powered authority regarding due south. The pinnacle edge (α) is the point between the line to the Sun and polar axis. The solar radiation accumulation at the solar PV will be best when the sun's beams are at 90 degree to the solar PV board's surface (α).

![Diagrammatic illustration of the solar, orientation and tilt angles](image)

Figure 1: Diagrammatic illustration of the solar, orientation and tilt angles

There are some articles [41-46] that show that the irradiance solar PV power system hinge on dual features, azimuth angle and tilt angle. In this study, major approaches to increase the output power yield generated from PV technology are reviewed in the paper.

2. Solar tracker applications

The solar tracking technology assumes an essential work in various solar PV technology uses where its advantages not just be present in the power and effectiveness improvements and increment contrasted with the fixed systems, yet in addition in the monetary investigations of the vast scale solar PV technology applications [47, 48]. The utmost active solar energy harvest can be attained by the use of Sun-tracking systems. A solar tracker is an electromechanical device that orients a load toward the Sun [49] as shown in Figure 2. Loads are usually Fresnel reflectors, solar panels, the mirrors of a heliostat or parabolic troughs, [50, 51]. Sun based trackers are a high-productivity substitute for customary, mounting units and static sun oriented racking. Sensibly than proceeding in one settled point all during that time sun based trackers direct themselves to screen the sun's situation through the sky, capturing a more noteworthy extent of sunlight based vitality that can be changed into electrical energy.
Solar tracking systems can be partitioned into two primary groups dependent on the procedures that govern the solar PV system [53-56]. Passive and active tracking systems are the two basic groups of trackers. Passive tracking systems utilize a low breaking point compacted gas liquid that starts from sun-based thermal while the active tracking system uses DC motors and mechanical drives to coordinate the board toward the sun [55, 57-62].

2.1 Passive tracker system

Passive tracking systems apply a low-slung breaking point compacted gas vapor that is headed to the other side or the other (by sun-powered thermal making gas weight) to make the tracker move because of an irregularity [53-56]. As this is a non-accuracy introduction it is inadmissible for specific kinds of concentrating photovoltaic authorities yet works fine for regular PV board types. The comprehensive vapor be able to drive the denser gas to the shaded ampoule and transport the weightiness to that on the side of the solar PV module, in this way making a gas weight that creates the motion [63]. Figure. 3(a) & (b) demonstrate the working procedure of passive solar tracker.

Figure. 2: Figure 2. 1: PV solar tracker [52]
Figure 3: Working principle of passive solar tracker [63]

Some studies have been done on the passive trackers. Table 1 provides a quick summary of studies done on a passive solar tracking system. The core benefit of the passive method is its competence to trajectory the sun from to and fro devoid of applying gears drive, electric motors, controllers or any mechanical drives.

Techniques	Descriptions	Merits	Demerits
Noval passive [66]	Single axis		
The mechanical parts was implemented			
Matched with a static system	Very economical		
The overall efficiency was amplified by 23.3%	Simply disrupt by the atmospheric conditions		
Somework Track Rack [67]	Single axis		
The mechanical parts was implemented			
Matched with a static system	Easy installation		
Very economical			
The overall efficiency was amplified by 25%	Simply disrupt by the atmospheric conditions		
Solar Pumping System [68-70]	Single axis		
The mechanical parts was implemented			
Matched with a static system	The overall power was amplified by 16%		
The overall solar radiation was amplified by 14%	Simply disrupt by the atmospheric conditions		
Somework Principle [71]	Single axis		
The mechanical parts was implemented
Matched with a static system
Three different gases were used | More accurate
The overall efficiency was amplified by 23.5% | Very costly |

A reasonably stress-free installation procedure, actual results, a low-slung cost of maintenance and nonappearance of peripheral power supplies are the benefit of passive tracking system over active tracking system [56, 62]. Globally, Passive solar trackers are still presently used in several residences. Nevertheless, passive solar trackers possess many teething troubles that affect their overall performance as illustrated in Table 1.

2.2 Active solar tracker

Otieno et al. [64] partitioned active solar trackers into three classifications: dual axis trackers, single axis trackers and chronological trackers. Shaltout et al. [65] characterized active solar trackers into four classifications, in particular, spin cell, single axis tracking, triangular solar panel and double-axis tracking technology as appeared in Figure 4.
The triangular solar trackers utilize two solar photovoltaic modules looking inverse to each other, and the two modules can get equivalent measures of daylight radiation. The single axis tracking technology is the easiest and least expensive tracking system; notwithstanding, its viability is low in light of the fact that the solar PV module can be coordinated vertically or horizontally as it were.

Table 1: Summary of studies on an active solar tracker

Techniques	Descriptions	Merits	Demerits
Photo Sensor	Sensor-driven structure	Changes direction every ten minutes interval	Ineffective
[39,72-73]	The mechanical parts was implemented		High error rate
	Used a controller motor		
	Compared with other models		
Temperature sensor	Sensor-driven system	Cheap	No practical data available
[75-78]	The mechanical parts was implemented	Easily rotates	
	Electric direct current motors was used		
	Simulation Implemented		
	Used a controller motor		
	Compared with other models		
Arduino ATmega32s	Recipe Sensor Based Microprocessor Driven Double -axis tracking system	Low-cost	Not effective in a cloudy and dark sky
+LDRS [79,80]	Software implemented	Increase the power gain	Energy ineffective
		Increase the generated power	

Figure 3: Samples of active trackers
Loschi et al. [83, 84] ordered dynamic sun based tracking frameworks into four classifications dependent on the innovations used to change the direction of rotation of the photovoltaic modules. These classifications are centered on microprocessor, auxiliary-bifacial-cell-based, date-and-time-based and control as electro-optical-based or a combination of these categories. Microprocessor and electric-optical sensor trackers can control the photovoltaic modules based on a response mechanism. For photovoltaic frameworks, trackers are utilized to limit the point of occurrence between the approaching daylight and a photovoltaic board [85-87]. This builds the measure of vitality created from a settled measure of introduced control producing limit. In standard photovoltaic applications. There is numeral of works demonstrating that following frameworks empower noteworthy measure of sun based vitality contrasted with fixed frameworks [88, 89]. Abdallah [90] found that trackers beacons increment general everyday vitality reap to around 43.87% as related with a settled framework. A far-reaching audit of energy pick up of various trackers was set up by Mousazadeh et al. [91] in their paper creators detailed an increase in gathered sunlight based vitality by the utilization of GPS beacons in the scope of 10–100% at risk on assorted land conditions and timeframes. Chang [92] discovered significant upgrades of 18.7%, 28.5% and 51.4% from the watched, anticipated and additional earthly radiations separately by methods for a solitary pivot following framework. Tomson [93, 94] portrayed an expanding of occasional energy yield of around 10–20% by the utilization of the two-positional following framework that spots gatherers in the sunrise and in the mid-evening.

The performance of single single axis tracker was tried and established to have added up to 24% in the yield of solar PV system [74]. The double axis tracker solar PV gives 30% more vitality pick up than fixed solar PV [90-96]. Execution of settled and sun tracker PV frameworks was researched by Rustemli et al. [95, 96] and established that 29% more energy pick up for sun tracking framework. Kivrak et al. [97] did the test to check the execution fluctuation between a double pivot following PV board and a settled tilt PV board are thought about for quite a long time of May and June and it was stated that the vitality age for the following framework rises almost 64% as identified with that of settled PV structure. Abdallah [90, 98] laid out that there was an expansion in the electrical power

Open Loop [81, 82]	DC stepper motors was used Electric direct current motors was used	The high cost of maintenance	Can work in bad weather It is effective in Dull sky Supplementary Energy developed matched to fixed panel Suitable for mobile tracking It may be installed in at all locality It does not need user guide	Verified in scarce sunny days The variances amid premeditated and measured azimuth and zenith are 3.6% and 43% Cannot assess depraved climate conditions Implemented on a prototype [84]
Open –Closed Loop Driver System Double -axis tracking system Electric direct current motors was used The mechanical parts was implemented Related with other models Use a GPS system Simulation study	Open –Closed Loop Driver System Double -axis tracking system Electric direct current motors was used The mechanical parts was implemented Related with other models Use a GPS system Simulation study	Open –Closed Loop Driver System Double -axis tracking system Electric direct current motors was used The mechanical parts was implemented Related with other models Use a GPS system Simulation study	Open –Closed Loop Driver System Double -axis tracking system Electric direct current motors was used The mechanical parts was implemented Related with other models Use a GPS system Simulation study	Open –Closed Loop Driver System Double -axis tracking system Electric direct current motors was used The mechanical parts was implemented Related with other models Use a GPS system Simulation study
pick up to 43.87% for the two tomahawks, 37.53% for east-west, 34.43% for vertical, and 15.69% for north-south following, separately, when contrasted with that of settled surface slanted toward the south in Jordan and Amman. An analysis performed by Morcos [99, 100] demonstrated that, changing gatherers' azimuth and tilt edges day by day to their ideal qualities in the geological area Egypt came about into the pickup of 29.2% altogether sunlight based radiation contrasted that of settled authority and the tilt-point equivalent to its geographic scope. The impact of double pivot sun-powered following on vitality pick up of solar PV board tested and tried by M. Kacira et al. [101]. The examiners found that on a specific day in Sanliurfa, Turkey, with a two-hub sun-powered trackers, there was 29.3% pick up altogether sun oriented radiation which came about into day by day normal pick up of 34.6% in control delivered. Sanzidur Rahman et al. [102] effectively composed and tried double hub sun trackers. The energy picks up of 52.78% for solar trackers contrasted with that of settled PV board was found by the creator. Yao et al. [103] played out the investigation by utilizing double axis sun based trackers. It was noticed that the normal energy productivity of the ordinary following PV, expanded by 23.6% and there was a steady increment of 31.8% in the PV vitality effectiveness. Yilmaz et al. [104] depicted that Two-axis tracker structure is more productive than a focused structure with a yearly increase of more than 31.67%. Strategy for measuring of a fixed solar PV is displayed by Rezk et al. [105] and built up a framework for sun following. Augmentation of 59.34% in the sunlight based radiation striking on PV board when utilizing double tomahawks following framework was found by Khan et al. [106] built and tried sun based following framework with reflecting mirror by utilizing stepper engine and Arduino microcontroller to expand the PV board productivity [106-108]. It was noticed that, the most extreme proficiency of PV board with followed and non-followed is 12.86%, 10.14% separately. Single-axis and dual-axis tracking system propose a diverse order of involvedness and proficiency, however the entirely solar tracking system stick to this rudiments [67-72,109-110].

3. **Tilt-angle application**

This segment grants a summary on the utmost operative expertise and approaches employed in the modern studies to show case the simulations, mathematical models, design parameters and applications of a tilt-angle in various applications. The alternative method is to upturn the amount of harvested energy to a position that the PV panel is at an optimum angle monthly or seasonally.

Authors	Location	Year	Optimum Tilt Angle with respect to Latitude	References
Stanciu C. and Stanciu D	Romania	2014,2016	$\beta = \phi - \delta_{opt}$	[111, 112]
Uba and Sarsah	Ghana	2013	$\beta = \phi + 17_{opt}$	[113]
Author(s)	Location	Year	Equation	Reference
---------------------------------	---------------	------	--	-----------
Bakirci	Turkey	2012	$\beta = 34.783 - 1.4317\delta - 0.0081\delta + 0.0002\delta_{opt}$	[8]
Rowlands et al	Canada	2011	$\beta = \varphi_{opt}$	[114]
Benghanem	Saudi Arabia	2011	Yearly, $\beta = \varphi_{opt}$	[115]
Moghadam et al.	Iran	2011	$\beta = 0.917\varphi_{opt}$	[116]
Calabrôa	USA Europe	2009	$\beta = \varphi - (26, 27, 28 \, opt)$	[117]
			Where φ varies from 36° to 46°	
Ahmad and Tiwari	India	2009	Summer; $\beta = \varphi - 60 \, opt$	[118]
			Winter; $\beta = \varphi + 90 \, opt$	
Gunerhan and Hepbasli	Turkey	2007	Summer or Winter; $\beta = \varphi \pm 15 \, opt$	[119]
			March and September; $\beta = \varphi_{opt}$	
Duffie and Beckman	USA	1974	$\beta = (\varphi + 15^\circ) \pm 15^\circ \, opt$	[120]
Elminir et al.	Helwan, Egypt	2006	$\beta = \varphi \pm 15^\circ_{opt}$	[121]
Shariah et al.	Jordan	2002	$\beta = \varphi - 3 \, opt$	[122]
Ibrahim	Cyprus	1995	Summer; $\beta = \varphi - 21 \, opt$	[123]
			Winter; $\beta = \varphi + 13 \, opt$	
Gopinathan	South Africa	1991	$\beta = \varphi_{opt}$	[124]
Author	Country	Year	Tilt Angle Equation	Reference
-----------------	---------------	-------	---------------------	-----------
El-Kassaby	Egypt	1988	$\beta = \varphi + 3.5^\circ \text{opt}$	[125]
Lewis	UK	1987	$\beta = \varphi \pm 8^\circ$	[126]
Lunde	USA	1980	$\beta = \varphi \pm 15^\circ \text{opt}$	[127]
Iqbal	Canada	1979	$\beta = \varphi + (-10 \rightarrow 15) \text{opt}$	[128]
Garg and Gupta	USA	1978	$\beta = \varphi \pm 5^\circ \text{opt}$	[129]
Kern and Harris	South Africa	1975	$\beta = \varphi + 10 \text{opt}$	[130]
Löf and Tybout	USA	1973	$\beta = \varphi + (10 \rightarrow 30) \text{opt}$	[131]
Yellott	USA	1973	$\beta = \varphi \pm 20 \text{opt}$	[132]
Heywood	England	1971	$\beta = \varphi - 10 \text{opt}$	[133]
Chinnery	South Africa	1967	$\beta = \varphi + 10 \text{opt}$	[134]
Hottel	USA	1954	$\beta = \varphi + 20 \text{opt}$	[135]

The greater part of past studies in this field researched on the month to a month tilt angle of the PV solar panel collectors and the outcomes demonstrated that the tilt angle relies upon the latitude of the location. The incline angle is characterized by the angle of tilt of the collectors with respect to horizontal and different mathematical models has been proposed as shown in Table 3. The positive sign is referring to the winter while the negative sign refers to the summer season. The solar energy improvement is calculated based on a tilt angle had a relative error below 1.5%. Nijegorodov [136] et al. offered 12 formulas for computing the monthly optimum tilt angle which is used in succeeding studies for authentication of other scholars' results as presented in Table 4.
Table 4: Monthly Tilt-angle Equation as presented by Nijegorodov [87]

Month	Equation
January	$\beta_{\text{opt.(m)}} = 0.9901\Phi + 24.631$
February	$\beta_{\text{opt.(m)}} = 0.6613\Phi + 26.283$
March	$\beta_{\text{opt.(m)}} = 1.2657\Phi - 8.6368$
April	$\beta_{\text{opt.(m)}} = 0.89\Phi - 11.878$
May	$\beta_{\text{opt.(m)}} = 0.381\Phi - 9.3689$
June	$\beta_{\text{opt.(m)}} = 0.0235\Phi - 2.9196$
July	$\beta_{\text{opt.(m)}} = 0.138\Phi - 4.2233$
August	$\beta_{\text{opt.(m)}} = 0.3931\Phi - 0.4064$
September	$\beta_{\text{opt.(m)}} = 0.1767\Phi + 23.08$
October	$\beta_{\text{opt.(m)}} = 0.6592\Phi + 23.08$
November	$\beta_{\text{opt.(m)}} = 0.9975\Phi + 23.192$
December	$\beta_{\text{opt.(m)}} = 0.9236\Phi + 29.184$

There are a number of studies and investigates that were completed keeping in mind the end goal to locate the best execution of a close planetary system, others in an examination between various areas, the ideal tilt point and introduction (azimuth) of PV frameworks, PV solar panels and some other application in specific regions around the globe as follows: Botswana [137], Abu Dhabi, UAE [138], eight provinces of Turkey [139-142], Greece [143], United States of America (USA) [143-145], North America [146], India [147], Canada [148], Egypt [125], Jordan [149], Taiwan [150], Basra, Iraq [151], 30 cities in China [152], Syria [153], Malaysian territory [154, 155], Dhaka, Bangladesh [156], Japan [157], Cyprus [158], Spain [159], Ghana [160], Romania [161], Brunei Darussalam [162], South Africa [124, 130, 134, 163-164] and Nigeria [165-171].
4. **Conclusion**

The main purpose of this work was to present various researches done to increase the output power yield of a PV solar panel such as diverse types of solar tracking systems based on their technologies and driving methods and also numerous optimal tilt-angle models. There is no reservation about the respectable performance of sun tracker based PV solar system. However, Sun-tracking systems are quite expensive than the opposing fixed mounted variety. This is mostly due to having motor-powered and moving portions. More also, having all these moving and mechanical parts means that there will be some amount of regular inspection, adjustments or even replacements required Which leads way to another disadvantage. Finally, much work has been done on solar optimization modeling but a little study was done on experimental validation of solar PV optimization modeling.

5. **Recommendation**

I hereby recommends that greater researches need to done on experimental validation of solar PV optimization modeling.

Reference

[1] Jafarkazemi, F., & Saadabadi, S. A. (2013). Optimum tilt angle and orientation of solar surfaces in Abu Dhabi, UAE. *Renewable energy*, 56, 44-49.

[2] Yadav, A. K., & Chandel, S. S. (2013). Tilt angle optimization to maximize incident solar radiation: A review. *Renewable and Sustainable Energy Reviews*, 23, 503-513.

[3] Hartner, M., Ortner, A., Hiesl, A., & Haas, R. (2015). East to west–The optimal tilt angle and orientation of photovoltaic panels from an electricity system perspective. *Applied Energy*, 160, 94-107.

[4] Jeyaprabha, S. B., & Selvakumar, A. I. (2015). Optimal sizing of photovoltaic/battery/diesel based hybrid system and optimal tilting of solar array using the artificial intelligence for remote houses in India. *Energy and Buildings*, 96, 40-52.

[5] Yan, R., Saha, T. K., Meredith, P., & Goodwin, S. (2013). Analysis of yearlong performance of differently tilted photovoltaic systems in Brisbane, Australia. *Energy conversion and management*, 74, 102-108.

[6] Ismail, M. S., Moghavvemi, M., & Mahlia, T. M. I. (2013). Design of an optimized photovoltaic and microturbine hybrid power system for a remote small community: case study of Palestine. *Energy Conversion and Management*, 75, 271-281.

[7] Zang, H., Guo, M., Wei, Z., & Sun, G. (2016). Determination of the optimal tilt angle of solar collectors for different climates of china. *Sustainability*, 8(7), 654.

[8] Bakirci K. General models for optimum tilt angles of solar panels: a turkey case study. *Renew Sustain Energy Rev* 2012;16(8):6149–59.

[9] Lucio, J. H., Valdés, R., & Rodrí, L. R. (2012). Loss-of-load probability model for stand-alone photovoltaic systems in Europe. *Solar Energy*, 86(9), 2515-2535.

[10] Bojić M, Bigot D, Miranville F, Parvedy-Patou A, Radulović J. Optimizing performances of photovoltaics in Reunion Island-tilt angle. *Prog Photovolt: ResAppl*
2012, 20(8):923–35.

[11] Siraki, A. G., & Pillay, P. (2012). Study of optimum tilt angles for solar panels in different latitudes for urban applications. Solar energy, 86(6), 1920-1928.

[12] Kaldellis, J., & Zafirakis, D. (2012). Experimental investigation of the optimum photovoltaic panels’ tilt angle during the summer period. Energy, 38(1), 305-314.

[13] Liu, G., Rasul, M. G., Amanullah, M. T. O., & Khan, M. M. K. (2012). Techno-economic simulation and optimization of residential grid-connected PV system for the Queensland climate. Renewable Energy, 45, 146-155.

[14] Beringer, S., Schilke, H., Lohse, I., & Seckmeyer, G. (2011). Case study showing that the tilt angle of photovoltaic plants is nearly irrelevant. Solar energy, 85(3), 470-476.

[15] Wada, H., Yamamoto, F., Ueta, K., & Yamaguchi, T. (2011). Generation characteristics of 100 kW PV system with various tilt angle and direction arrays. Solar Energy Materials and Solar Cells, 95(1), 382-385.

[16] Benghanem, M. (2011). Optimization of tilt angle for solar panel: Case study for Madinah, Saudi Arabia. Applied Energy, 88(4), 1427-1433.

[17] Talebizadeh, P., Mehrabian, M. A., & Abdolzadeh, M. (2011). Prediction of the optimum slope and surface azimuth angles using the Genetic Algorithm. Energy and Buildings, 43(11), 2998-3005.

[18] Sunderan, P., Ismil, A. S., Singh, B., & Mohamed, N. M. (2011). Optimum tilt angle and orientation of Standalone Photovoltaic Electricity Generation System and rural Electrification. J. of Appl. Sci, 11, 1219-1224.

[19] Li, D. H., & Lam, T. N. (2007). Determining the optimum tilt angle and orientation for solar energy collection based on measured solar radiance data. International Journal of Photoenergy, 2007.

[20] Rowlands, I. H., Kemery, B. P., & Beausoleil-Morrison, I. (2011). Optimal solar-PV tilt angle and azimuth: An Ontario (Canada) case-study. Energy Policy, 39(3), 1397-1409.

[21] Kaysal, A. (2016). The design of two axis solar tracking system based on fuzzy logic control and efficiency analysis. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 5, 8922.

[22] Ramli, M. A., Twaha, S., Ishaque, K., & Al-Turki, Y. A. (2017). A review on maximum power point tracking for photovoltaic systems with and without shading conditions. Renewable and Sustainable Energy Reviews, 67, 144-159.

[23] Gad, H. H., Haikal, A. Y., & Ali, H. A. (2017). New design of the PV panel control system using FPGA-based MPSoC. Solar Energy, 146, 243-256.

[24] Bernardi, M., Ferralis, N., Wan, J. H., Villalon, R., & Grossman, J. C. (2012). Solar energy generation in three dimensions. Energy & Environmental Science, 5(5), 6880-6884.

[25] Deb G, Roy AB. Use of solar tracking system for extracting solar energy. Int J Comput Electr Eng 2012;4(1):42

[26] Hines, B. E., & Gross, W. (2008). U.S. Patent No. 7,432,488. Washington, DC: U.S. Patent and Trademark Office.
[28] Huang, Y. J., Kuo, T. C., Chen, C. Y., Chang, C., Wu, P., & Wu, T. (2009). The design and implementation of a solar tracking generating power system. Eng Lett, 17(4), 1-5.

[29] Juang, J. N., & Radharamanan, R. (2014, April). Design of a solar tracking system for renewable energy. In Proceedings of the 2014 Zone 1 Conference of the American Society for Engineering Education (pp. 1-8). IEEE.

[30] Elmaged, A., & Kamal, H. (2015). Passive Solar Tracking System (Doctoral dissertation, UOFK, Khartoum, Sudan).

[31] Tudorache, T., & Kreindler, L. (2010). Design of a solar tracker system for PV power plants. Acta Polytechnica Hungarica, 7(1), 23-39.

[32] Hines, B. E., & Gross, W. (2008). U.S. Patent No. 7,432,488. Washington, DC: U.S. Patent and Trademark Office.

[33] Chong, K. K., & Wong, C. W. (2009). General formula for on-axis sun-tracking performance in real-time. International Journal of Sustainable Engineering, 10(2), 72-81.

[34] Sikora, A. M., Dohan, C. M., & Anderson, E. J. (2004). Solar panel peak power tracking system.

[35] Clifford, M. J., & Eastwood, D. (2004). Design of a novel passive solar tracker. Solar Energy, 77(3), 269-280.

[36] Sözen, A., Arcaklioğlu, E., & Özlalp, M. (2004). Estimation of solar potential in Turkey by artificial neural networks using meteorological and geographical data. Energy Conversion and Management, 45(18-19), 3033-3052.

[37] Racharla, S., & Rajan, K. (2017). Solar tracking system—a review. International Journal of Sustainable Engineering, 10(2), 72-81.

[38] Sikora, A. M., Dohan, C. M., & Anderson, E. J. (2004). Solar panel peak power tracking system.

[39] Clifford, M. J., & Eastwood, D. (2004). Design of a novel passive solar tracker. Solar Energy, 77(3), 269-280.

[40] Sabry, M. S., Hall, K. H., & Raichle, B. W. (2013). Determining the accuracy of solar trackers (Doctoral dissertation, Appalachian State University).

[41] Fonash, S. J., Nam, W. J., Dornstetter, J. C., Al-Ghza iwat, M., Foldyna, M., & Cabarrocas, P. R. (2017). A solar cell architecture for enhancing performance while reducing absorber thickness and back contact requirements. IEEE Journal of Photovoltaics, 7(4), 974-979.

[42] Petrone, G., Spagnuolo, G., Teodorescu, R., Veerachary, M., & Vitelli, M. (2008). Reliability issues in photovoltaic power processing systems. IEEE transactions on Industrial Electronics, 55(7), 2569-2580.

[43] Alahmad, M., Chaaban, M. A., kit Lau, S., Shi, J., & Neal, J. (2012). An adaptive utility interactive photovoltaic system based on a flexible switch matrix to optimize performance in real-time. Solar Energy, 86(3), 951-963.

[44] Chaaban, M. A., Alahmad, M., Neal, J., Shi, J., Berryman, C., Cho, Y., ... & Stansbury, J. (2010, November). Adaptive photovoltaic system. In IECon 2010-36th Annual Conference on IEEE Industrial Electronics Society (pp. 3192-3197). IEEE.

[45] Hammad, M., & Zurigat, Y. (1998). Performance of a second generation solar cooling unit. Solar Energy, 62(2), 79-84.
[46] Hamrouni, N., Jraidi, M., & Chérif, A. (2008). Solar radiation and ambient temperature effects on the performances of a PV pumping system. *Revue des Énergies Renouvelables, 11*(1), 95-106.

[47] Garg, A. (2015). Solar Tracking: An efficient method of improving solar plant efficiency. *Int. J. of Electrical and Electronics Engineers, 7*(1), 199-203.

[48] Zogbi, R., & Laplaze, D. (1984). Design and construction of a sun tracker. *Solar energy, 33*(3), 368-372.

[49] Assaf, E. M. (2014). Design and implementation of a two axis solar tracking system using plc techniques by an inexpensive method. *International Journal of Academic Scientific Research, 2*(3), 54-65.

[50] Mgbemene, C. A., Duffy, J., Sun, H., & Onyeegbu, S. O. (2010). Electricity generation from a compound parabolic concentrator coupled to a thermoelectric module. *Journal of Solar Energy Engineering, 132*(3), 031015.

[51] Sampaio, P. G. V., & González, M. O. A. (2017). Photovoltaic solar energy: Conceptual framework. *Renewable and Sustainable Energy Reviews, 74*, 590-601.

[52] Solar tracker. Available: https://oomlout.co.uk/blogs/news/123219201-bruce-helsens-arduino-powered-solar-tracker

[53] Ni, L. M., Liu, Y., Lau, Y. C., & Patil, A. P. (2003, March). LANDMARC: indoor location sensing using active RFID. In *Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003.(PerCom 2003).* (pp. 407-415). IEEE.

[54] Ishikawa, T. (2004). Passive driver gaze tracking with active appearance models.

[55] Deak, G., Curran, K., & Condell, J. (2012). A survey of active and passive indoor localisation systems. *Computer Communications, 35*(16), 1939-1954.

[56] Smith, A., Balakrishnan, H., Goraczko, M., & Priyantha, N. (2004, June). Tracking moving devices with the cricket location system. In *Proceedings of the 2nd international conference on Mobile systems, applications, and services* (pp. 190-202). ACM.

[57] Mostafa, G., & Khan, F. (2009, December). An efficient method of solar panel energy measurement system. In *2009 1st International Conference on the Developments in Renewable Energy Technology (ICDRET)* (pp. 1-3). IEEE.

[58] Dill, L. M. (1977). Refraction and the spitting behavior of the archerfish (Toxotes chatareus). *Behavioral Ecology and Sociobiology, 2*(2), 169-184.

[59] Panjwani, M. K., & Narejo, G. B. (2014). Effect of humidity on the efficiency of solar cell (photovoltaic). *International Journal of Engineering Research and General Science, 2*(4), 499-503.

[60] Holm, D., Banks, D., Schäffler, J., Worthington, R., & Afrene-Okese, Y. (2008). Renewable energy briefing paper. Available at: [reep-sa.org/docs/docdownload/38-renewableenergy-briefing-paper (Accessed: 16 September 2009)](http://reep-sa.org/docs/docdownload/38-renewableenergy-briefing-paper).

[61] Green, M. A. (1982). Solar cells: operating principles, technology, and system applications. *Englewood Cliffs, NJ, Prentice-Hall, Inc.*, 1982. 288 p.

[62] Nadia, A. R., Isa, N. A. M., & Desa, M. K. M. (2018). Advances in solar photovoltaic tracking systems: A review. *Renewable and Sustainable Energy Reviews, 82*, 2548-2569.

[63] Holambe, P. R., Talange, D. B., & Bhole, V. B. (2015, October). Motorless solar
tracking system. In 2015 International Conference on Energy Systems and Applications (pp. 358-363). IEEE.

[64] OTIENO, O. R. (2015). FACULTY OF ENGINEERING DEPARTMENT OF ELECTRICAL AND INFORMATION ENGINEERING SOLAR TRACKER FOR SOLAR PANEL (Doctoral dissertation, University of Nairobi).

[65] Shaltout, M. M., Ghettas, A., & Sabry, M. (1995). V-trough concentrator on a photovoltaic full tracking system in a hot desert climate. Renewable energy, 6(5-6), 527-532.

[66] Clifford, M. J., & Eastwood, D. (2004). Design of a novel passive solar tracker. Solar Energy, 77(3), 269-280.

[67] Sabry, M. S., & Raichle, B. W. (2014). Characteristics of residential tracker accuracy in quantified direct beam irradiance and global horizontal irradiance. Journal of Technology Innovations in Renewable Energy, 3(2), 44-57.

[68] Chandel, S. S., Naik, M. N., & Chandel, R. (2015). Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies. Renewable and Sustainable Energy Reviews, 49, 1084-1099.

[69] Mazouz, N., & Midoun, A. (2011). Control of a DC/DC converter by fuzzy controller for a solar pumping system. International Journal of Electrical Power & Energy Systems, 33(10), 1623-1630.

[70] Sontake, V. C., & Kalamkar, V. R. (2016). Solar photovoltaic water pumping system: A comprehensive review. Renewable and Sustainable Energy Reviews, 59, 1038-1067.

[71] Fonash, S. J., Nam, W. J., Dornstetter, J. C., Al-Ghzaiwat, M., Foldyna, M., & Cabarrocas, P. R. (2017). A solar cell architecture for enhancing performance while reducing absorber thickness and back contact requirements. IEEE Journal of Photovoltaics, 7(4), 974-979.

[72] Chen, J., Zhu, G., Yang, W., Jing, Q., Bai, P., Yang, Y., ... & Wang, Z. L. (2013). Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Advanced Materials, 25(42), 6094-6099.

[73] Aiuchi, K., Yoshida, K., Katayama, Y., Nakamura, M., & Nakamura, K. (2004, January). Sun tracking photo-sensor for solar thermal concentrating system. In ASME 2004 International Solar Energy Conference (pp. 625-631). American Society of Mechanical Engineers.

[74] Ferriere, A., & Rivoire, B. (2002). An instrument for measuring concentrated solar-radiation: A photo-sensor interfaced with an integrating sphere. Solar energy, 72(3), 187-193.

[75] Iwaki, Y. (2011). U.S. Patent No. 7,989,694. Washington, DC: U.S. Patent and Trademark Office.

[76] Schultz, J. (1980). U.S. Patent No. 4,219,008. Washington, DC: U.S. Patent and Trademark Office.

[77] Baruschke, W., Kaefer, O., & Lochmahr, K. (2001). U.S. Patent No. 6,185,950. Washington, DC: U.S. Patent and Trademark Office.

[78] Mandalakas, J. N. (1969). U.S. Patent No. 3,480,781. Washington, DC: U.S. Patent and Trademark Office.

[79] Tharamuttam, J. K., & Ng, A. K. (2017). Design and development of an automatic solar tracker. Energy Procedia, 143, 629-634.
[80] Nadia, A. R., Isa, N. A. M., & Desa, M. K. M. (2018). Advances in solar photovoltaic tracking systems: A review. Renewable and Sustainable Energy Reviews, 82, 2548-2569.

[81] Alexandru, C. (2013). A novel open-loop tracking strategy for photovoltaic systems. The Scientific World Journal, 2013.

[82] Gouvêa Melo, A., Oliveira Filho, D., de Oliveira Júnior, M. M., Zolnier, S., & Ribeiro, A. (2017). Development of a closed and open loop solar tracker technology. Acta Scientiarum. Technology, 39(2).

[83] Loschi, H. J., Ferrarezi, R., Rocha, N. M., Silva, A. A., & Iano, Y. (2014). Solar tracking system installed with photovoltaic (PV) panels to connection grid tie low voltage (sunflower). system, 1, 9.

[84] Loschi, H. J., Iano, Y., León, J., Moretti, A., Conte, F. D., & Braga, H. (2015). A review on photovoltaic systems: mechanisms and methods for irradiation tracking and prediction. Smart Grid and Renewable Energy, 6(07), 187.

[85] Akbar, H. S., Siddiq, A. I., & Aziz, M. W. (2017). Microcontroller based dual axis sun tracking system for maximum solar energy generation. American Journal of Energy Research, 5(1), 23-27.

[86] Ghassoul, M. (2013). Design of an automatic solar tracking system to maximize energy extraction. International Journal of Emerging Technology and Advanced Engineering, 3(5), 453-460.

[87] Seme, S., Srpčič, G., Kavšek, D., Božičnik, S., Letnik, T., Praunseis, Z., ... & Hadžišelimović, M. (2017). Dual-axis photovoltaic tracking system—Design and experimental investigation. Energy, 139, 1267-1274.

[88] Sidek, M. H. M., Azis, N., Hasan, W. Z. W., Ab Kadir, M. Z. A., Shaﬁe, S., & Radzi, M. A. M. (2017). Automated positioning dual-axis solar tracking system with precision elevation and azimuth angle control. Energy, 124, 160-170.

[89] Fonseca-Campos, J., Fonseca-Ruiz, L., & Cortez-Herrera, P. N. (2016, November). Portable system for the calculation of the sun position based on a laptop, a GPS and Python. In 2016 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC) (pp. 1-5). IEEE.

[90] Abdallah, S., & Badran, O. O. (2008). Sun tracking system for productivity enhancement of solar still. Desalination, 220(1-3), 669-676.

[91] Mousazadeh, H., Keyhani, A., Javadi, A., Mobli, H., Abrinia, K., & Sharifi, A. (2009). A review of principle and sun-tracking methods for maximizing solar systems output. Renewable and sustainable energy reviews, 13(8), 1800-1818.

[92] Chang, S., Li, Q., Xiao, X., Wong, K. Y., & Chen, T. (2012). Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods. Energy & Environmental Science, 5(11), 9444-9448.

[93] Tomson, T. (2008). Discrete two-positional tracking of solar collectors. Renewable energy, 33(3), 400-405.

[94] Tomson, T., & Tamm, G. (2006). Short-term variability of solar radiation. Solar Energy, 80(5), 600-606.

[95] Rustemli, S., & Dincer, F. (2011). Modeling of photovoltaic panel and examining effects of temperature in Matlab/Simulink. Elektronika ir Elektrotechnika, 109(3), 35-40.

[96] Rustemli, S., Dincer, F., Unal, E., Karaaslan, M., & Sabah, C. (2013). The analysis
on sun tracking and cooling systems for photovoltaic panels. *Renewable and Sustainable Energy Reviews*, 22, 598-603.

[97] Kivrak, S., Gunduzbal, M., & Dincer, F. (2012). Theoretical and experimental performance investigation of a two-axis solar tracker under the climatic condition of Denizli, Turkey. *Przegląd Elektrotechniczny*, 88(2), 332-336.

[98] Abdallah, S., Badran, O., & Abu-Khader, M. M. (2008). Performance evaluation of a modified design of a single slope solar still. *Desalination*, 219(1-3), 222-230.

[99] Morcos, V. H. (1990). Investigation of a latent heat thermal energy storage system. *Solar & wind technology*, 7(2-3), 197-202.

[100] Morcos, V. H. (1994). Optimum tilt angle and orientation for solar collectors in Assiut, Egypt. *Renewable energy*, 4(3), 291-298.

[101] Kacira, M., Simsek, M., Babur, Y., & Demirkol, S. (2004). Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey. *Renewable energy*, 29(8), 1265-1275.

[102] Rahman, S., Ferdaus, R. A., Mannan, M. A., & Mohammed, M. A. (2013). Design & implementation of a dual axis solar tracking system. *American Academic & Scholarly Research Journal*, 5(1), 47.

[103] Yao, Y., Liu, H., & Wu, W. (2014). Spectrum splitting using multi-layer dielectric meta-surfaces for efficient solar energy harvesting. *Applied Physics A*, 115(3), 713-719.

[104] Yilmaz, M., & Kentli, F. (2015). Increasing of electrical energy with solar tracking system at the region which has Turkey’s most solar energy potential. *Journal of Clean Energy Technologies*, 3(4), 287-290.

[105] Rezk, H., & Hasaneen, E. S. (2015). A new MATLAB/Simulink model of triple-junction solar cell and MPPT based on artificial neural networks for photovoltaic energy systems. *Ain Shams Engineering Journal*, 6(3), 873-881.

[106] Khan, J. A., Mustafa, M., Hayat, T., Faroq, M. A., Alsaeedi, A., & Liao, S. J. (2014). On model for three-dimensional flow of nanofluid: An application to solar energy. *Journal of Molecular Liquids*, 194, 41-47.

[107] Pattanasethanon, S. (2010). The solar tracking system by using digital solar position sensor. *American Journal of Engineering and Applied Sciences*, 3(4), 678-682.

[108] Kadir, A. (2017). Automated positioning dual-axis solar tracking system with precision elevation and azimuth angle control. *Energy*.

[109] Fonseca-Campos, J., Fonseca-Ruiz, L., & Cortez-Herrera, P. N. (2016, November). Portable system for the calculation of the sun position based on a laptop, a GPS and Python. In *2016 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)* (pp. 1-5). IEEE.

[110] Alexodru, C. (2013). A novel open-loop tracking strategy for photovoltaic systems. *The Scientific World Journal*, 2013.

[111] Stanciu, C., & Stanciu, D. (2014). Optimum tilt angle for flat plate collectors all over the World–A declination dependence formula and comparisons of three solar radiation models. *Energy Conversion and Management*, 81, 133-143.

[112] Stanciu, D., Stanciu, C., & Paraschiv, I. (2016). Mathematical links between optimum solar collector tilts in isotropic sky for intercepting maximum solar irradiance. *Journal of Atmospheric and Solar-Terrestrial Physics*, 137, 58-65.

[113] Uba, F. A., & Sarsah, E. A. (2013). Optimization of tilt angle for solar collectors in...
WA, Ghana. *Pelagia Research Library, Advances in Applied Science Research, 4*(4), 108-114.

[114] Rowlands, I. H., Kemery, B. P., & Beaousoleil-Morrison, I. (2011). Optimal solar-PV tilt angle and azimuth: An Ontario (Canada) case-study. *Energy Policy, 39*(3), 1397-1409.

[115] Benghanem, M. (2011). Optimization of tilt angle for solar panel: Case study for Madinah, Saudi Arabia. *Applied Energy, 88*(4), 1427-1433.

[116] Moghadam, H., Tabrizi, F. F., & Sharak, A. Z. (2011). Optimization of solar flat collector inclination. *Desalination, 265*(1-3), 107-111.

[117] Calabró, E. (2009). Determining optimum tilt angles of photovoltaic panels at typical north-tropical latitudes. *Journal of renewable and sustainable energy, 1*(3), 033104.

[118] Jamil Ahmad, M., & N Tiwari, G. (2009). Optimization of tilt angle for solar collector to receive maximum radiation. *The Open Renewable Energy Journal, 2*(1).

[119] Gunerhan, H., & Hepbasli, A. (2007). Determination of the optimum tilt angle of solar collectors for building applications. *Building and Environment, 42*(2), 779-783.

[120] Duffie, J. A., & Beckman, W. A. (1974). *Solar energy thermal processes.* University of Wisconsin-Madison, Solar Energy Laboratory, Madison, WI.

[121] Elminir, H. K., Ghitas, A. E., Hamid, R. H., El-Hussainy, F., Beheary, M. M., & Abdel-Moneim, K. M. (2006). Effect of dust on the transparent cover of solar collectors. *Energy conversion and management, 47*(18-19), 3192-3203.

[122] Shariah, A., Al-Akhras, M. A., & Al-Omari, I. A. (2002). Optimizing the tilt angle of solar collectors. *Renewable Energy, 26*(4), 587-598.

[123] Ibrahim, D. (1995). Optimum tilt angle for solar collectors used in Cyprus. *Renewable energy, 6*(7), 813-819.

[124] Gopinathan, K. K. (1991). Optimization of tilt angle of solar collectors for maximum irradiation on sloping surfaces. *International Journal of Solar Energy, 10*(1-2), 51-61.

[125] El-Kassaby, M. M. (1988). Monthly and daily optimum tilt angle for south facing solar collectors; theoretical model, experimental and empirical correlations. *Solar & wind technology, 5*(6), 589-596.

[126] Lewis, G. (1987). The applicability of diffuse solar radiation models to Huntsville, Alabama. *Solar energy, 38*(1), 55-57.

[127] Lunde, P. J. (1980). Solar thermal engineering: space heating and hot water systems. *New York, John Wiley and Sons, Inc., 1980. 635 p.*

[128] Iqbal, M. (1979). Optimum collector slope for residential heating in adverse climates. *Solar Energy, 22*(1), 77-79.

[129] Gupta, C. L., & Garg, H. P. (1968). System design in solar water heaters with natural circulation. *Solar Energy, 12*(2), 163-182.

[130] Kern, J., & Harris, I. (1975). On the optimum tilt of a solar collector. *Solar Energy, 17*(2), 97-102.

[131] Lüb, G. O., & Tybouts, R. A. (1974). The design and cost of optimized systems for residential heating and cooling by solar energy. *Solar Energy, 16*(1), 9-18.

[132] Yellott, J. I. (1963). *U.S. Patent No. 3,072,920.* Washington, DC: U.S. Patent and Trademark Office.

[133] Heywood, H. (1971). Operating experiences with solar water heating. *IHE J., 39*.

[134] Chinnery, D. N. W. (1971). *Solar water heating in South Africa.* Council for
Scientific and Industrial Research.

[135] Hottel, H. C. (1976). A simple model for estimating the transmittance of direct solar radiation through clear atmospheres. Solar energy, 18(2), 129-134.

[136] Nijegorodov, N., Devan, K. R. S., Jain, P. K., & Carlsson, S. (1994). Atmospheric transmittance models and an analytical method to predict the optimum slope of an absorber plate, variously oriented at any latitude. Renewable Energy, 4(5), 529-543.

[137] Jafarkazemi, F., & Saadabadi, S. A. (2013). Optimum tilt angle and orientation of solar surfaces in Abu Dhabi, UAE. Renewable energy, 56, 44-49.

[138] Kacira, M., Simsek, M., Babur, Y., & Demirkol, S. (2004). Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey. Renewable energy, 29(8), 1265-1275.

[139] Gunerhan, H., & Hepbasli, A. (2007). Determination of the optimum tilt angle of solar collectors for building applications. Building and Environment, 42(2), 779-783.

[140] Ulgen, K. (2006). Optimum tilt angle for solar collectors. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 28(13), 1171-1180.

[141] Ulgen, K., & Hepbasli, A. (2002). Prediction of solar radiation parameters through clearness index for Izmir, Turkey. Energy Sources, 24(8), 773-785.

[142] Tsalides, P., & Thanailakis, A. (1985). Direct computation of the array optimum tilt angle in constant-tilt photovoltaic systems. Solar Cells, 14(1), 83-94.

[143] Lave, M., & Kleissl, J. (2011). Optimum fixed orientations and benefits of tracking for capturing solar radiation in the continental United States. Renewable Energy, 36(3), 1145-1152.

[144] Best, S. R., Rodiek, J. A., & Brandhorst, H. W. (2011, June). Comparison of solar modeling data to actual pv installations: power predictions and optimal tilt angles. In 2011 37th IEEE Photovoltaic Specialists Conference (pp. 001994-001999). IEEE.

[145] Gong, X., & Kulkarni, M. (2005). Design optimization of a large scale rooftop photovoltaic system. Solar Energy, 78(3), 362-374.

[146] Moon, S. H., Felton, K. E., & Johnson, A. T. (1981). Optimum tilt angles of a solar collector. Energy, 6(9), 895-899.

[147] Jamil Ahmad, M., & N Tiwari, G. (2009). Optimization of tilt angle for solar collector to receive maximum radiation. The Open Renewable Energy Journal, 2(1).

[148] Rowlands, I. H., Kemery, B. P., & Beausoleil-Morrison, I. (2011). Optimal solar-PV tilt angle and azimuth: An Ontario (Canada) case-study. Energy Policy, 39(3), 1397-1409.

[149] Hussein, H. M. S., Ahmad, G. E., & El-Ghetany, H. H. (2004). Performance evaluation of photovoltaic modules at different tilt angles and orientations. Energy conversion and management, 45(15-16), 2441-2452.

[150] Chang, Y. P. (2010). Optimal the tilt angles for photovoltaic modules in Taiwan. International Journal of Electrical Power & Energy Systems, 32(9), 956-964.

[151] Jafarkazemi, F., Ali Saadabadi, S., & Pasdarshahri, H. (2012). The optimum tilt angle for flat-plate solar collectors in Iran. Journal of Renewable and Sustainable Energy, 4(1), 013118.

[152] Saraf, G. R., & Hamad, F. A. W. (1988). Optimum tilt angle for a flat plate solar collector. Energy Conversion and Management, 28(2), 185-191.

[153] Skeiker, K. (2009). Optimum tilt angle and orientation for solar collectors in
Syria. *Energy Conversion and Management*, 50(9), 2439-2448.

[154] Bari, S. (2000). Optimum slope angle and orientation of solar collectors for different periods of possible utilization. *Energy Conversion and Management*, 41(8), 855-860.

[155] Daut, I., Irwanto, M., Irwan, Y. M., Gomesh, N., & Ahmad, N. S. (2011, June). Clear sky global solar irradiance on tilt angles of photovoltaic module in Perlis, Northern Malaysia. In *International conference on electrical, control and computer engineering 2011 (InECCE)* (pp. 445-450). IEEE.

[156] Ghosh, H. R., Bhowmik, N. C., & Hussain, M. (2010). Determining seasonal optimum tilt angles, solar radiations on variously oriented, single and double axis tracking surfaces at Dhaka. *Renewable Energy*, 35(6), 1292-1297.

[157] Hiraoka, S., Fujii, T., Takakura, H., & Hamakawa, Y. (2003). Tilt angle dependence of output power in an 80 kWp hybrid PV system installed at Shiga in Japan. *Solar energy materials and solar cells*, 75(3-4), 781-786.

[158] De Miguel, A., Bilbao, J., & Diez, M. (1995). Solar radiation incident on tilted surfaces in Burgos, Spain: isotropic models. *Energy conversion and management*, 36(10), 945-951.

[159] Colli, A., & Zaaiman, W. J. (2012). Maximum-power-based PV performance validation method: application to single-axis tracking and fixed-Tilt c-Si systems in the Italian Alpine region. *IEEE Journal of Photovoltaics*, 2(4), 555-563.

[160] Uba, F. A., & Sarsah, E. A. (2013). Optimization of tilt angle for solar collectors in WA, Ghana. *Pelagia Research Library, Advances in Applied Science Research*, 4(4), 108-114.

[161] Iacobescu, F., & Badescu, V. (2012). The potential of the local administration as driving force for the implementation of the National PV systems Strategy in Romania. *Renewable energy*, 38(1), 117-125.

[162] Yakup, M. A. B. H. M., & Malik, A. Q. (2001). Optimum tilt angle and orientation for solar collector in Brunei Darussalam. *Renewable Energy*, 24(2), 223-234.

[163] Asowata, O., Swart, J., & Pienaar, C. (2012, March). Optimum tilt and orientation angles for photovoltaic panels in the Vaal Triangle. In *2012 Asia-Pacific Power and Energy Engineering Conference* (pp. 1-5). IEEE.

[164] Asowata, O., Swart, J., & Pienaar, C. (2012). Optimum tilt angles for photovoltaic panels during winter months in the Vaal triangle, South Africa. *Smart Grid and Renewable Energy*, 3(02), 119.

[165] Ahmadu, T. O., Folayan, C. O., & Anafi, F. O. (2016). Modeling, simulation and optimization of a solar absorption air conditioning system for an office block in Zaria, Nigeria. *International Journal of Air-Conditioning and Refrigeration*, 24(02), 1650012.

[166] Dowu, O. S., Olarenwaju, O. M., & Ifedayo, O. I. (2013). Determination of optimum tilt angles for solar collectors in low-latitude tropical region. *International Journal of Energy and Environmental Engineering*, 4(1), 29.

[167] Okoye, C. O., Bahrami, A., & Atikol, U. (2018). Evaluating the solar resource potential on different tracking surfaces in Nigeria. *Renewable and Sustainable Energy Reviews*, 81, 1569-1581.

[168] Eke, A. B. (2012). Prediction of optimum angle of inclination for flat plate solar collector in Zaria, Nigeria. *Agricultural Engineering International: CIGR*
[169] Alonge, A. F., & Oje, K. (2006). Computer Modeling Of Optimum Angle Of Slope For Flat Solar Collectors In Nigeria Major Town. In Computers in Agriculture and Natural Resources, 23-25 July 2006, Orlando Florida (p. 352). American Society of Agricultural and Biological Engineers.

[170] Njoku, H. O. (2016). Upper-limit solar photovoltaic power generation: Estimates for 2-axis tracking collectors in Nigeria. Energy, 95, 504-516.

[171] Oladiran, M. T. (1995). Mean global radiation captured by inclined collectors at various surface azimuth angles in Nigeria. Applied Energy, 52(4), 317-330.