Responding to the COVID-19 Epidemic

Optimization of the intravenous infusion workflow in the isolation ward for patients with coronavirus disease 2019

Yan Song, Wenhui Wang, Lijun Zhang, Li Sha, Guilan Lu

Objective: This study aimed to evaluate the effect of optimization of the intravenous infusion workflow in isolation wards for patients with coronavirus disease 2019.

Methods: The infusion management group optimized the intravenous infusion workflow based on Hamer’s Process Reengineering Theory and applied it to the treatment of patients with coronavirus disease 2019. The workflow efficiency, patients’ satisfaction and economic indicators before and after optimization were compared.

Results: After the infusion workflow was optimized, average times for preparation drugs and intravenous admixture, and patients’ waiting time decreased from 4.84 min, 4.03 min, and 34.33 min to 5.30 min, 3.50 min, and 30.87 min, respectively, patients’ satisfaction increased from 66.7% to 93.3%, and the cost of personal protective equipment (PPE) decreased from 46.67 sets and 186.6 CNY per day to 36.17 sets and 144.6 CNY, with statistical significance.

Conclusion: The optimization of the intravenous infusion workflow can effectively decrease the cost of PPE while improving the efficiency of infusion and patients’ satisfaction.

© 2020 Chinese Nursing Association. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Since December 2019, cases of coronavirus disease 2019 (COVID-19, new coronavirus pneumonia) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported [1]. The disease spreads rapidly and patients infected suffered from several complications [2,3]. The Technical Guidelines for Prevention and Control of Novel Coronavirus Infection in Medical Institutions (First Edition) [4] points out that when medical personnel contact patients with COVID-19, they need to take protective measures such as contact isolation and airborne isolation. Intravenous infusion [5] is an important treatment method in the management of various fields in China and other countries and has achieved good results.

What is known?

- Process reengineering is a management idea put forward by Michael Hammer and James Champy. It has been applied to the management of various fields in China and other countries and has achieved good results.

What is new?

- The present study finds it is effective to optimize the intravenous infusion workflow in the isolation ward for patients with coronavirus disease 2019. It is helpful to increase efficiency and patient satisfaction and reduce cost.
treatment. Process reengineering is a management idea put forward by Michael Hammer and Jace Chapmy of the United States. Its purpose is to improve overall work efficiency by optimizing the process. It has been applied to the management of various fields in China and other countries and has achieved good results [8,9]. Its core idea is to improve work efficiency and optimize productivity by reorganizing and optimizing the organization, composition, and operation steps in enterprise processes [10]. Its main approaches include equipment renewal, material substitution, step simplification, time sequence adjustment, etc. [10]. In process optimization and implementation, continuous improvement should be made to the process in order to obtain the best results. This theory has been applied to management by enterprises and has also achieved good results in hospital management, such as surgical management [11], ward-nursing operations [12,13], chronic-disease management [14], and others. To improve the efficiency of intravenous infusion treatment in the isolation ward, our hospital used reengineering theory to evaluate the intravenous infusion workflow, searched for the steps that could be improved, optimized the process, and achieved good results.

2. Participants and methods

2.1. Participants

The study subjects included 30 patients treated in the isolation ward of our hospital and 30 front-line nurses from January 19 to January 30, 2020. The inclusion criteria for patients were: 1) confirmed patients with COVID-19 or suspected cases according to the Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (5th Trial Version) [3]; 2) conscious and capable of effective communication; 3) requiring intravenous infusion therapy. The average age of patients in this study was 42.39 ± 10.54 years, with 17 males and 13 females, 25 confirmed cases and 5 suspected cases. There were three isolation wards in our hospital. Nurses work in 4-h shifts. There were four nurses on duty in the morning, three in the afternoon, and two at all other times. The nurses were all women, aged 33.25 ± 4.38 years, with a median nursing experience of 10 years (range 4–29), and 27 with a bachelor’s degree. All subjects voluntarily participated in this study.

2.2. Methods

From January 19 to 24, 2020, the intravenous-infusion workflow before optimization in the isolation ward was as follows: 1) The medical personnel wearing PPE entered the isolation area; 2) Doctors entered medical orders into the computer information system after examining patients; 3) Medical-order-processing nurses checked prescriptions; 4) Medical-order-processing nurses printed intravenous infusion sheets and labels; 5) Drug-dispensing nurses double-checked and prepared drug solutions; 6) Two responsible nurses double-check and administer the intravenous infusion. All steps were carried out in the isolation area. Process reengineering includes five main steps including establishing the process improvement team, identifying the process steps to be improved, re-optimizing the process, implementing the optimized process, and evaluating the new process. This study used this approach to optimize the intravenous infusion workflow and evaluated the optimized workflow in the isolation ward for patients with COVID-19 from January 25 to 30, 2020.

2.2.1. Organizing a team to manage the intravenous infusion workflow

According to China’s guidelines for outbreak control of hospital infections, prevention and control of hospital infections needs to be managed by a team of multidisciplinary experts in clinical medicine, nursing, epidemiology, management, microbiology, etc. [15,16]. Intravenous administration management is an important treatment method in hospitals, and its process optimization requires team cooperation. This research team consisted of a chief physician, a chief nurse, a head nurse of the isolation ward, an infection-control expert, and two responsible nursing-team leaders. Each step of the infusion workflow was evaluated to identify if it could be improved or not. Then, the optimized design was carried out, optimized process was formulated, nurses were organized for training, the status of process-operation was recorded, and supervision and feedback were incorporated into the process implementation.

2.2.2. Formulating an optimized intravenous infusion workflow

The managing team evaluated the original intravenous-infusion workflow for patients with COVID-19, evaluated all steps and consulted relevant data, and found that there were problems with the routine workflow. Wearing goggles and face shields affects nurses’ vision and hearing, causing difficulties in communication and verification [17]. Wearing a full set of PPE increased operational difficulties. Some processes could be conducted outside the isolation area, such as documentary medical-order processing, printing infusion itinerary sheets and labels, drug preparation and intravenous admixture. The managing team conducted a feasibility analysis based on the actual situation and decided on the optimization strategies as follows. 1) Setting up a special, hygienic medical-order-processing and drug-dispensing area near the isolation area. 2) Relocating medical-order processing to the hygienic area outside of the isolation area, where nurses do not need to wear a full set of PPE. 3) Relocating intravenous admixture to the hygienic area outside of the isolation area. Nurses in this area do not need to wear PPE. The optimized intravenous infusion workflow is shown in Fig. 1.

2.2.3. Training of medical staff and implement the optimized infusion workflow

Strengthening training on relevant knowledge for doctors was conducted, such as updated diagnosis and treatment protocol for patients with COVID-19. Doctors were requested to determine the treatment plan and entered medical orders according to standards. Front-line nurses were trained on their tasks and responsibilities in the optimized workflow. Training on knowledge and skills to use electronic products were provided to improve the work efficiency.

2.2.4. Outcome measurements

We compared the following indicators before and after the optimization of the infusion workflow.

2.2.4.1. Work efficiency. The infusion efficiency data measured by working-hour is relatively accurate [18]. Time-motion was used to measure the work efficiency of the optimized workflow. At the beginning of the study, the nurses participating in the study were trained on measurement methods, equipped with timers, and instructed on the correct use of timers and recording. 1) Preparation time: The time required for the medical-order-reviewing nurse to review the medical order and print the intravenous infusion sheets and infusion labels after doctors made medical prescriptions; 2) Intravenous admixture time: The time required for verification, laying out of drugs, preparing drug-administration supplies, disinfection, dispensing, re-verification, and handling drug administration supplies; 3) Wait time for each patient: The time from verification of a medical order by the medical-order-reviewing nurse to starting of the intravenous infusion.
2.2.4.2. Patient satisfaction. On the last day of the two study periods, i.e., January 24 and 30, 2020, a self-made electronic questionnaire was used to investigate on the satisfaction of patients with the nursing care that they received. The questionnaire was based on the Inpatient Satisfaction and Experience Monitoring Scale [19] and the Press Ganey Patient Satisfaction Survey [20], with a total of 15 queries. The Likert scoring method was used. Scores of 1–4 points indicate “very dissatisfied,” “dissatisfied,” “satisfied,” and “very satisfied,” with a total score of 60 points. In this study, a total score of ≥40 points was regarded as satisfied and <40 points as dissatisfied.

2.2.4.3. Costs of protective materials. The direct observation method was used to record the numbers of PPE consumed (including protective clothing, gloves, caps, goggles, N95 masks, shoe covers, and face shields) and their disposal costs for 5 days during the two study periods, the average values were compared.

2.3. Statistical methods

Statistical analyses were done using the SPSS software, version 20.0. The work efficiency and cost of PPE were expressed with mean and standard deviation (SD), and t-test was used to compare the data obtained before and after the optimization of the workflow. Patient satisfaction was measured by enumeration data and chi-square test was used to compare satisfaction before and after optimization of the workflow. \(P < 0.05 \) was considered to be statistically significant.

3. Results

3.1. Comparison of work efficiency before and after optimization of the workflow (Table 1)

Time	n	Preparation time Mean ± SD	Intravenous admixture time Mean ± SD	Wait time for each patient Mean ± SD
Before	30	4.84 ± 0.55	4.03 ± 0.50	34.33 ± 9.55
After	30	3.50 ± 0.68	2.60 ± 0.36	30.87 ± 5.53
\(t \)	9.010	14.610	2.686	
\(P \)	<0.001	<0.001	0.012	

3.2. Comparison of patient satisfaction before and after optimization of the workflow (Table 2)

Time	n	Satisfied	Dissatisfied
Before	30	20 (66.7)	10 (33.3)
After	30	28 (93.3)	2 (6.7)

Note: \(\chi^2 = 6.667, P = 0.011 \).
adjustment. In this study, the medical-order processing time, and their satisfaction was also improved. The possible reason was that when providing infusion from 4.84 min to 3.50 min; the intravenous admixture time, from 3.34 min to 3.30 min with a slight difference. The reason might be that the efficiency of the nurses was improved. The study also showed that the intravenous admixture were not performed in the isolation area, which was consistent with the study of Yan et al. [18]. It was inferred that the improvement in PPE, the managing team of intravenous infusion workflow reengineering theory, which improved the work efficiency. The core idea of this theory is to reorganize and optimize the organization, composition, and operation of the existing process, and to improve the overall work efficiency and increase income by means of equipment renewal, process simplification, and timing adjustment [10]. In this study, the medical-order processing and intravenous admixture were not performed in the isolation area, and personal digital assistants (PDAs) were provided to nurses, thus shortening the infusion working time and improving the overall infusion efficiency. The results showed that after optimization, the preparation time before intravenous admixture was shortened from 4.84 min to 3.50 min; the intravenous admixture time, from 4.03 min to 2.60 min; and the waiting time for each patient shortened. The possible reason was that when providing infusion treatment to patients with COVID-19, the nurses involved in the medical order processing step and intravenous admixture step after optimization did not need to wear heavy PPE; therefore, the influence on vision and hearing were reduced, and the degree of difficulty encountered was lesser than that noted previously. On the premise of ensuring the safety of patients, the overall drug preparation time was effectively shortened, patients were treated in time, and their satisfaction was also improved.

Due to time and manpower constraints, this study only completed a 12-day survey in 30 patients and 30 nurses. This is the limitation of this study.

5. Conclusion

The COVID-19 epidemic is a relatively serious, complicated, and widespread public health concern in the world. The rapid progression of the epidemic poses many challenges to the relevant administrative authorities and medical institutions, including challenges in manpower and material resources. Optimizing workflow based on process reengineering theory provided a potential way to improve work efficiency and reduce PPE consumption during the epidemic.

Declaration of competing interest

None.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijnss.2020.03.009.

Author statement

Yan Song: Conceptualization, Methodology, Writing- Original draft preparation. Wenhui Wang: Data curation, Writing- Original draft preparation. Lijun Zhang: Writing- Original draft preparation. Sha Li: Writing- Original draft preparation. Guilan Lu: Conceptualization, Writing- Reviewing and Editing, Supervision.

References

[1] National Health Commission of the People's Republic of China. Latest developments in epidemic control on February 9.http://www.nhc.gov.cn/xxgk/yqfkbk/202002/167a0e01b2d4274b0362ca961107929.shtml, 2020-02-10.
[2] Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395(10223):497–506.
[3] National Health Commission of the People's Republic of China. Diagnosis and treatment protocol for novel coronavirus pneumonia. 5th Trial Version, http://www.nhc.gov.cn/zzjg/tzxx/yjxx/202002/3b0589a49ab42404a79d858912d4440.shtml, 2020-02-05.
[4] National Health Commission of the People's Republic of China. Technical guidelines for prevention and control of novel coronavirus infection in medical institutions (first ed. http://www.nhc.gov.cn/zzjg/tzxx/yjxx/202002/b916b7c304431eb082d6784d7e214.shtml, 2020-01-23.
[5] National Health Commission of the People's Republic of China. Nursing practice standards for intravenous therapy, http://www.nhc.gov.cn/wwjw/pjyl/201412/806d1e601771.e5a4d6e093d72.shtml, 2014-05-01.
[6] National Health Commission of the People's Republic of China. Guidelines on use of medical protective supplies in prevention and control of novel coronavirus pneumonia. Trial Edition, http://www.nhc.gov.cn/zzjg/yjxx/202001/b71c5de926e62b9b00d6b9ab6c6.shtml.
[7] Xue MC, Zhang Y. Investigation of psychological status of the first group of clinical front-line support nurses fighting COVID-19. Nurs Res 2020;1–3.
[8] Rungvivatjarus T, Kuekls C, Miller L, Perham J, Sanderson K, Billman G, et al. Medication reconciliation improvement utilizing process redesign and clinical decision support. Joint Comm J Qual Patient Saf 2020;46(1):27–36.
[9] Alvarez JA, Flores RF, Grau JA, Matarzao J. Process reengineering and patient-centered approach strengthened efficiency in specialized care. Am J Manag Care 2015;25(2):e50–7.
[10] Ma LL, Jiang H. Progress in research and application of process reengineering in clinical nursing in China. Chin Nurs Manag 2017;17:516–20. 04.
[11] Zhao Y, Peng GL. Effect of optimizing preoperative fasting and drinking prohibition on patients undergoing elective surgery in traumatic orthopedics. Chin J Nurs 2019;54(4):523–6.
[12] Yang JF, Wang Q, Chen XY, Yang H. Construction and application of daytime biological agent treatment service modes for inflammatory bowel disease patients based on the process reengineering theory. J Nurs 2019;26(9):7–10.
[13] Zhang L, Shi Y, Zhub X. Analysis on current situation of intravenous thrombolyis process for acute ischemic stroke patients based on business process reengineering theory. Nurs Res 2017;31(17):2104–7.
[14] Xu YL, Huang H, Cao Q, Sun J, Huang J. Luo J. Construction of hospital chronic disease management and nursing service standard scheme based on process reengineering and Delphi method. Nirs Res 2019;33(16):2763–9.
[15] Zhong ZF, Rong L, Hou TY. Interpretation of guidelines for outbreak control of hospital infections. Chin J Nosocomiol 2017;27(16):3616–9.
[16] Guidelines for outbreak control of hospital infections (WS/T 524-2016). Chin J Infect Control 2018;15(12):984–8.
[17] Bulson J, Shawl K. Understanding the physiological effects of wearing enhanced PPEs while providing patient care. J Emerg Manag 2015;17(6): 517–21.
[18] Yan X, Xu XD, Yang ZY, He XX, Sun H, Liu XL, et al. Study on nursing manpower allocation in bone marrow transplant wards based on
measurement of working hours. Chin J Nurs 2016;51:823–6.

[19] Xu JQ, Gu ZJ, Chen L, Fang XF, Zhang ZJ, Wang R, et al. Development of a monitoring scale for inpatient satisfaction and experience. Chin Nurs Manag 2011;11(12):32–5.

[20] Glickman SW, Boulding W, Manary M, Staelin R, Roe MT, Woolson RJ, et al. Patient satisfaction and its relationship with clinical quality and inpatient mortality in acute myocardial infarction. Circ Cardiovasc Qual Outcomes 2010;3(2):188–95.

[21] Loignon C, Nouvet E, Couturier F, Benhadj L, Adhikari NKJ, Murthy S, et al. Barriers to supportive care during the Ebola virus disease outbreak in West Africa: results of a qualitative study. PloS One 2018;13(9):e201091.

[22] Zhang HM, Jiao JH, Li YM, Zhang XJ. Construction of sensitivity index system of nursing quality. Chin J Nurs 2017;52(5):55–8.

[23] Liu X, Cny M, Xiao J. Construction of neurosurgery nursing safety quality sensitivity index system. Chin Nurs Manag 2018;18(12):1067–72.

[24] The state council of the CPC central committee issued the planning outline for “Healthy China 2030”. http://www.gov.cn/gongbao/content/2016/content_5133024.htm. 2016-10-26.