Genome-Wide Identification of TCP Family Transcription Factors in Medicago truncatula Reveals Significant Roles of miR319-Targeted TCPs in Nodule Development

Hongfeng Wang¹, Hongwei Wang², Rong Liu¹, Yiteng Xu¹, Zhichao Lu¹ and Chuanen Zhou¹*

¹ Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China, ² State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China

TCP proteins, the plant-specific transcription factors, are involved in the regulation of multiple aspects of plant development among different species, such as leaf development, branching, and flower symmetry. However, thus far, the roles of TCPs in legume, especially in nodulation are still not clear. In this study, a genome-wide analysis of TCP genes was carried out to discover their evolution and function in Medicago truncatula. In total, 21 MtTCPs were identified and classified into class I and class II, and the class II MtTCPs were further divided into two subclasses, CIN and CYC/TB1. The expression profiles of MtTCPs are dramatically different. The universal expression of class I MtTCPs was detected in all organs. However, the MtTCPs in CIN subclass were highly expressed in leaf and most of the members in CYC/TB1 subclass were highly expressed in flower. Such organ-specific expression patterns of MtTCPs suggest their different roles in plant development. In addition, most MtTCPs were down-regulated during the nodule development, except for the putative MtmiR319 targets, MtTCP3, MtTCP4, and MtTCP10A. Overexpression of MtmiR319A significantly reduced the expression level of MtTCP3/4/10A/10B and resulted in the decreased nodule number, indicating the important roles of MtmiR319-targeted MtTCPs in nodulation. Taken together, this study systematically analyzes the MtTCP gene family at a genome-wide level and their possible functions in nodulation, which lay the basis for further explorations of MtmiR319/MtTCPs module in association with nodule development in M. truncatula.

Keywords: Medicago truncatula, TCP genes, miR319, expression analysis, nodule development

INTRODUCTION

TCP proteins, a small family of plant-specific transcription factors, was first described in 1999 and named after its initial members TEOSINTE BRANCHED1 (TB1) in maize (Zea mays), CYCLOIDEA (CYC) in snapdragon (Antirrhinum majus), and PROLIFERATING CELL FACTORS 1 and 2 (PCF1 and PCF2) in rice (Oryza sativa) (Luo et al., 1996; Doebley et al., 1997;
Arabidopsis TCP genetic regulators and play vital roles in plant development (Kosugi and Ohashi, 1997; Cubas et al., 1999). All TCP proteins contain a highly conserved TCP domain which is a 59-amino-acid non-canonical basic-helix-loop-helix (bHLH) motif at the N-terminus and functions in DNA binding, protein–protein interaction, and protein nuclear localization (Kosugi and Ohashi, 2002; Aggarwal et al., 2010; Martin-Trillo and Cubas, 2010; Dhaka et al., 2017). So far, TCP genes have been identified in various plant species including *Arabidopsis*, rice, tomato, tobacco, and strawberry as shown in Supplementary Figure S1 (Palatnik et al., 2003; Li et al., 2005; Aguilar-Martinez et al., 2007; Ori et al., 2007; Yao et al., 2007; Schommer et al., 2008; Nag et al., 2009; Giraud et al., 2010; Koyama et al., 2010b; Sarvepalli and Nath, 2011; Yang et al., 2012; Ma et al., 2014; Parapunova et al., 2014; Wang et al., 2015b; Chen et al., 2016; Lin et al., 2016; Ma et al., 2016; Wei et al., 2016; Zhou et al., 2016; Du et al., 2017; Xie et al., 2017).

The TCP family can be classified into two classes: class I (also known as PCF class or TCP-P class) and class II (also known as TCP-C class) according to the amino acid sequences of the TCP domain (Kosugi and Ohashi, 2002; Navaud et al., 2007; Martin-Trillo and Cubas, 2010). The class II can be further divided into two unlike subclasses: CIN and CYC/TB1 (Crawford et al., 2004; Howarth and Donoghue, 2006; Martin-Trillo and Cubas, 2010). The difference between the class I and class II TCP proteins is a four-amino-acid deletion in the TCP domain in class I. Besides the TCP domain, all members of the CYC/TB1 TCP proteins contain an arginine-rich R domain with unknown function, which is speculated to facilitate protein–protein interaction (Cubas et al., 1999).

Class I TCPs mainly participate in promoting cell proliferation and plant growth, such as the PCF1/PCF2 in rice and TCP20 in *Arabidopsis* (Kosugi and Ohashi, 1997; Li et al., 2005). Most loss-of-function mutants of class I TCP genes do not exhibit obvious phenotypic defects due to the genetic redundancy. In *Arabidopsis*, class I genes TCP14 and TCP15 have redundant functions in the regulation of internode length, leaf shape, seed germination, and endoreduplication (Kieffer et al., 2011; Uberti-Manassero et al., 2012; Resentini et al., 2015). TCP20 appears to participate in different developmental processes, such as jasmonic acid (JA) biosynthesis and leaf senescence (Li et al., 2005; Danisman et al., 2012, 2013). Meanwhile, TCP9 and TCP19 act redundantly with TCP20 and positively regulate leaf senescence through the JA signaling pathway (Danisman et al., 2012, 2013). TCP16 mainly expresses in developing microspores and plays a crucial role at the early stage of pollen development (Takeda et al., 2006). Moreover, TCP7, TCP8, TCP22, and TCP23 show similar expression patterns in young leaves and have genetic redundancy in regulation of leaf development (Aguilar-Martinez and Sinha, 2013).

MicroRNAs (miRNAs) are small non-coding RNAs (20–24 nucleotides in length) that can complementarily bind to their target mRNAs and reduce their expression levels (Reinhart et al., 2002; Voinnet, 2009; Rogers and Chen, 2013). Recent evidences indicate that miRNAs are essential genetic regulators and play vital roles in plant development (Chen, 2008). In the CIN subclass, five *Arabidopsis* TCP genes TCP2, TCP3, TCP4, TCP10, and TCP24 are the targets of *miR319* and have been involved in regulation of cell division to control leaf morphogenesis (Palatnik et al., 2003; Bresso et al., 2017). In tomato, high levels of *miR319* or low LA activity cause an excess of cell expansion, resulting in the super compound leaves (Ori et al., 2007). Meanwhile, the CYC/TB1 subclass TCPs involve in floral dorsoventral asymmetry development and shoot branching, such as CYC in *Lotus japonicus*, snapdragon and *Pisum sativum* (Luo et al., 1996, 1999; Almeida and Galego, 2005; Feng et al., 2006; Wang et al., 2008, 2010; Li et al., 2010; Weng et al., 2011; Xu et al., 2013) and TB1 in maize (Doebley et al., 1995). In *Arabidopsis*, two orthologs of maize TB1, BRANCHED1 (BRC1, TCP18) and BRANCHED2 (BRC2, TCP12), are expressed in axillary buds. Both of them are involved in suppressing axillary bud outgrowth and loss-of-function in these genes results in the increased shoot branching (Aguilar-Martinez et al., 2007; Finlayson, 2007). TCP1, a member of the CYC/TB1 subclass, is implicated in the control of brassinosteroid (BR) biosynthesis and the regulation of longitudinal elongation in plant (Guo et al., 2010; Koyama et al., 2010b).

Medicago truncatula is a model species for legume genetics and functional genomics study. However, the TCP family in *M. truncatula* has not been characterized, and their roles are still unknown, especially in nodulation. In this study, a global analysis of the TCP gene family in *M. truncatula* was carried out. Twenty-one MtTCP genes were identified, and their phylogenetic relationship, gene structure, protein motifs, chromosomes locations, and transcriptional levels in different organs were analyzed. Furthermore, we found that the expression patterns of MtTCP genes are different during the nodule development. Based on the time course of MtTCPs expression in nodules, MtTCP3, MtTCP4, and MtTCP10A, three of four target genes of MtmiR319, were significantly up-regulated after inoculation with rhizobia. Overexpression of MtmiR319A led to the decreased nodule number, which further confirms the significant roles of MtmiR319-targeted MtTCPs in nodulation. Therefore, this study provides detailed information of the MtTCPs classification and throws some light into the function of MtTCPs involved in nodule development in *M. truncatula*.

MATERIALS AND METHODS

Plant Material and Root Nodule Induction

For nodule induction, wild-type (ecotype R108) and 35S::MtmiR319A seeds were transferred to plastic seedling holes containing a 3:1 ratio of perlite/sand under a 16-h/8-h light/dark at 22°C and 60% relative humidity. The *S. melliloti* 1021 strain harboring the lacZ reporter gene (Boivin et al., 1990) was cultured in TY medium supplemented with 6 mmol l⁻¹ calcium chloride, 200 µg ml⁻¹ streptomycin, and 10 µg ml⁻¹ tetracycline. The *S. melliloti* culture was shaken at 220 rpm and 28°C overnight. The *S. melliloti* growth was monitored by measuring optical density at a wavelength of
Identification and Phylogenetic Analysis of the TCP Genes in *M. truncatula*

To identify all TCP genes in *M. truncatula*, we used the 24 known TCP genes from *Arabidopsis* and 21 TCP genes from rice to perform protein to protein BLAST in *Medicago truncatula* resource website1 (Martin-Trillo and Cubas, 2010; Shi et al., 2016). TCP genes in *Arabidopsis* were downloaded from TAIR2 online. TCP genes in rice were downloaded from the Rice Genome Annotation Project3 online. Based on the searched TCP chromosome locus, we downloaded the genome sequence from Medicago truncatula Genome Database4. The BLASTP parameters are E-value = 10, top hits number = 30. In total, 27 MtTCPs sequences with annotations were obtained. As each of Medtr2g090960, Medtr1g038650, and Medtr2g006150 has two splice variants, and Medtr1g101810 has four splice variants. We selected splice variant 1 for study, and other splice variants were excluded. Therefore, 21 independent MtTCP genes were identified in *M. truncatula*. Then, the MtTCP sequences were confirmed in the Plant Transcription Factor Database (PlantTFDB)5 online. To study the phylogenetic relationships among TCP genes in *M. truncatula*, *Arabidopsis*, and rice, 21 identified MtTCP proteins in *M. truncatula* and 24 *Arabidopsis* AtTCP proteins and 21 rice OsTCP proteins were used to generate the phylogenetic tree. Multiple sequence alignments were executed using CLUSTALW6 online. Then, the phylogenetic trees were constructed using MEGA7.1 by the Neighbor Joining (NJ) method with 1000 bootstrap replicates in p-distance model. Since the TCP family in *Arabidopsis* has been identified and studied well, we named MtITCPs based on the phylogenetic relationship with AtTCPs and Blast analysis against the *Arabidopsis* genome in TAIR.

Gene Structure Analysis of MtTCP Genes

To analyze the gene structures and exon–intron organization of the MtTCP genes, we downloaded the MtTCP genes genomic sequences and structural information from the Medicago truncatula Genome Database. Then, the MtTCP genomic sequences and CDS sequences were aligned using the gene structure display server 2.0 (GSDS) online7 to generate the diagrams of exon–intron structures.

Conserved Domains and Motif Analysis in MtTCP Proteins

Conserved motifs in MtTCP proteins were analyzed with the online Multiple Em for Motif Elicitation (MEME) program8. The optimized MEME parameters were as follows: repetition number, any; maximum motif width, 200; minimum motif width, 6; and maximum motif number, 20. Multiple protein sequences alignment was carried out with Jalview software9.

RNA Isolation, Gene Expression Analysis, and Statistical Analysis

To detect the expression patterns of TCP genes in *M. truncatula*, total RNA was extracted from the young leaves (folded leaves developed on the first and second internodes), mature leaves (fully expanded leaves developed on the older internodes), roots, stems, flowers, shoot buds, pods, and nodules at the different stages using the Trizol-RT Reagent (Molecular Research Center, INC), according to the manufacturer's instructions. RNA quantitative and qualitative measurements were achieved using Nanodrop 2000 Spectrophotometer (NanoDrop Technologies, United States). Three micrograms of total RNA from each organ/tissue was reverse-transcribed into cDNA using the Roche RNA Reverse Transcription Kit (Roche, United States). The qRT-PCR was performed on Bio-Rad CFX ConnectTM using Roche SYBR-green fluorescence dye (FastStart Essential DNA Green Master). The relative expression levels were calculated using 2−ΔΔCT method. For all qRT-PCR analysis, triplicate biological samples were collected. The MtUBI gene was selected as internal control for normalization. T-test was used to estimate if the difference is significant in analysis of gene expression level, fresh weight, and nodule number.

Subcellular Localization of MtTCPs and Cloning of the MtmiR319A Gene

For subcellular localization, PCR was performed to amplify the coding sequences of MtTCP3, MtTCP4, MtTCP10A, and MtTCP10B genes using gene-specific primers which are listed in Supplementary Table S1. Then, the PCR products were purified and cloned into pEarleyGate 103 (Earley et al., 2006) using the Gateway LR reaction (Invitrogen). The *Agrobacterium tumefaciens* EHA105 strain harboring relevant plasmids was transformed into tobacco epidermal cells. The MtTCP-GFP fusion proteins were examined using a confocal laser scanning microscope LSM 700 (Zeiss). To construct the *MtmiR319A* overexpression vector, *MtmiR319A* genomic sequence was PCR amplified and transferred into pEarleyGate 100. The leaves of the wild-type were transformed with the EHA105 strain harboring the *MtmiR319A* overexpression vector.

1http://www.medicagohapmap.org/tools/blastform
2http://www.arabidopsis.org/
3http://rice.plantbiology.msu.edu/index.shtml
4http://www.medicagogenome.org
5http://planttfdb.cbi.pku.edu.cn
6http://www.genome.jp/tools-bin/clustalw
7http://gsds.cbi.pku.edu.cn
8http://meme-suite.org/tools/meme
9http://www.jalview.org
Identification of the MtmiR319 and Prediction of the MtmiR319 Target Genes

The mature MtmiR319 sequences were obtained on miRBase Database\(^1\) online. To predict MtmiR319 target sites, full length of MtTCPs coding sequences was analyzed using the psRNATarget (A Plant Small RNA Target Analysis\(^2\)) online. The mature miR319 sequences of rice were obtained on miRBase Database. (A Plant Small RNA Target Analysis\(^2\)) online. To predict MtmiR319 sequences of Arabidopsis and rice were used to BLAST search against the Medicago truncatula Genome Database\(^3\) and Plant Transcription Factor Database (PlantTFDB\(^4\)). A total of 21 putative MtTCP sequences were obtained, which all contained the conserved TCP domain. The length of the protein sequences of 21 MtTCPs ranged from 205 to 489 amino acids. The gene locus, exon number, amino acid length, molecular weight (Mw), and isoelectric point (pI) of MtTCPs were unevenly located on different chromosomes. Five MtTCPs were located on Chr1. Four MtTCPs were located on Chr4. Furthermore, the Chr2 and Chr7 chromosomes each had three MtTCPs. The other MtTCPs were distributed on Chr3, Chr5, Chr6, and Chr8, respectively (Table 1).

Phylogenetic Analysis and Classification of TCP Genes in M. truncatula

To evaluate the evolutionary and phylogenetic relationships among the TCP transcription factor families among species, a total of 70 TCP protein sequences, including 21 MtTCPs, 24 AtTCPs, and 21 OsTCPs, 1 ZmTCP (maize, TB1), and 3 AmTCPs (A. majus, AmCIN/AmCYC/AmDICH) were collected to construct an unrooted phylogenetic tree using MEGA7.1 by the NJ method with 1000 bootstrap replicates. According to its classification in Arabidopsis, the MtTCPs could also be classified into two TCP classes. Class I contained nine members of MtTCPs. The rest of MtTCPs were grouped as Class II which can be further divided into two subclasses: the CIN (eight members) and the CYC/TB1 (four members) (Figures 1, 2A). Then, the TCP domains of each MtTCP were identified and used for further phylogenetic analysis (Supplementary Figure S2). The phylogenetic trees derived from full-length protein sequences and TCP domains are essentially the same, indicating the evolutionary conservation among these TCPs.

Gene Structure, Conserved Motifs, and Recognition Sequence of miR319

To get the understanding of the diversification of MtTCPs, the structure and number of exon/intron of MtTCPs were analyzed (Figure 2B). We investigated the exon/intron organization

Name	Locus	CDS	Exons	Length (aa)	MW (kDa)	pI	Type	Chromosomes location
MtTCP1A	Medtr6g017055	1230	2	409	46,096.18	9.436	CYC/TB1	chr6:6710788..6713192 (+)
MtTCP1B	Medtr7g018500	1125	2	374	42,704.88	6.966	CYC/TB1	chr7:6031315..6033168 (+)
MtTCP3	Medtr2g078200	885	1	294	32,176.38	7.084	CIN	chr3:32505911..32507609 (+)
MtTCP4	Medtr8g063380	1302	1	433	47,448.71	6.953	CIN	chr8:22236723..22329800 (+)
MtTCP5A	Medtr3g026050	1158	1	385	43,448.1	7.716	CIN	chr7:7990307..7997349 (+)
MtTCP5B	Medtr4g019660	921	1	306	33,901.83	9.198	CIN	chr4:45588798..45589718 (+)
MtTCP7	Medtr1g038850	708	1	235	25,831.56	8.251	PCF	chr1:14248871..14250840 (+)
MtTCP9	Medtr8g030070	1002	1	333	36,244.28	9.491	PCF	chr8:12681955..12683853 (+)
MtTCP10A	Medtr2g090960	990	1	329	36,325.62	6.322	CIN	chr9:36075847..36078457 (+)
MtTCP10B	Medtr4g079580	1008	1	335	37,656.05	9.198	CIN	chr1:30767465..30768533 (+)
MtTCP11	Medtr1g063870	618	1	205	21,956.8	7.447	PCF	chr1:28041642..28042798 (+)
MtTCP12	Medtr1g033380	1470	2	489	56,235	9.766	CIN	chr1:46794627..46797920 (+)
MtTCP13	Medtr7g015010	1056	1	351	39,686.79	8.564	CIN	chr7:4515349..4517203 (+)
MtTCP14	Medtr5g039600	1251	1	416	44,227.9	7.167	PCF	chr5:17427991..17429993 (+)
MtTCP15	Medtr4g083730	1314	1	437	47,447.01	7.818	PCF	chr4:44959266..44961490 (+)
MtTCP17	Medtr6g015350	1002	1	333	37,706.17	6.671	CIN	chr7:501976..50319085 (+)
MtTCP18	Medtr4g111935	1167	2	388	44,497.4	8.183	CIN	chr4:46279251..46280786 (+)
MtTCP19	Medtr1g101810	1104	1	367	38,729.49	5.251	PCF	chr4:45965265..45966764 (+)
MtTCP20	Medtr7g028160	855	1	284	30,714.79	6.864	PCF	chr7:9483450..9485316 (+)
MtTCP21	Medtr1g114380	774	1	257	27,420.59	9.492	PCF	chr1:51614461..51616519 (+)
MtTCP22	Medtr2g006150	1464	1	487	51,820.53	6.581	PCF	chr2:468724..471446 (+)

\(^1\)http://www.mirbase.org
\(^2\)http://plantgrn.noble.org/psRNATarget
\(^3\)http://www.Arabidopsis.org
\(^4\)http://www.medicagogenome.org
\(^5\)http://planttfdb.cbi.pku.edu.cn

RESULTS

Identification of TCP Genes in *M. truncatula*

To identify TCP proteins in *M. truncatula*, the TCP protein sequences of Arabidopsis and rice were used to BLAST search against the Medicago truncatula Genome Database\(^3\) and Plant Transcription Factor Database (PlantTFDB\(^4\)). A total of 21 putative MtTCP sequences were obtained, which all contained the conserved TCP domain. The length of the protein sequences of 21 MtTCPs ranged from 205 to 489 amino acids. The gene locus, exon number, amino acid length, molecular weight (Mw), and isoelectric point (pI) of MtTCPs are listed in Table 1. Based on the gene locus data, these MtTCPs were further divided into two subclasses: the CIN (eight members) and the CYC/TB1 (four members) (Figures 1, 2A). Then, the TCP domains of each MtTCP were identified and used for further phylogenetic analysis (Supplementary Figure S2). The phylogenetic trees derived from full-length protein sequences and TCP domains are essentially the same, indicating the evolutionary conservation among these TCPs.
of individual MtTCPs by aligning the CDS sequences and corresponding genomic DNA sequences. The class I MtTCPs displayed a conserved exon–intron organization: eight of nine MtTCPs had no intron, only MtTCP19 possessed two introns. However, the class II MtTCPs showed different number of introns. All the CYC/TB1 subclass MtTCPs contained one more intron than those of CIN subclass genes (Figure 2B).

To obtain a better understanding of the evolutionary relationships of the TCP proteins in *M. truncatula*, the motifs of MtTCPs were analyzed (Figure 3). In total, 20 motifs were identified in MtTCPs using the online MEME tool. As expected, all the 21 MtTCPs displayed a highly conserved TCP domain. Analysis of the phylogenetic tree and the alignment of the TCP domains showed that MtTCP proteins can be divided into two classes (Figures 2B, 4A and Supplementary Figure S3), as for all species so far. The conserved R domain was only found in MtTCP1A, MtTCP1B, MtTCP12, and MtTCP18, which are the members of CYC/TB1 subclass in Class II (Figures 2B, 4B and Supplementary Figure S3).

In *Arabidopsis*, five members of the Class II MtTCPs subfamily (*AtTCP2, AtTCP3, AtTCP4, AtTCP10, and AtTCP24*) are post-transcriptionally regulated by *AtmiR319* (Palatnik et al., 2003).
In *M. truncatula*, the evolutionarily closest homologs of these *Arabidopsis* genes are *MtTCP3*, *MtTCP4*, *MtTCP10A*, and *MtTCP10B*, which contained a putative recognition site of *MtmiR319* (Figures 2B, 4C). We searched the miRBase Database and found four *MtmiR319* (*MtmiR319A-D*) in *M. truncatula* genome (Supplementary Figure S4). The alignment of multiple *miR319* mature sequences showed that the *miR319-TCP* regulation module was highly conserved among species (Figure 4D). Although mismatches existed at 3′ of the *MtmiR319* and 5′ of the targeted *MtTCP* mRNA, core target sequences were conserved. These data suggest that *MtTCP3*, *MtTCP4*, *MtTCP10A*, and *MtTCP10B* probably play the roles in an *MtmiR319*-regulated manner in *M. truncatula*.

Distinct Expression Profiles of *MtTCPs* in *M. truncatula*

To investigate the tissue-specific expression profiles of *MtTCP* genes, their relative expression levels in different organs, including young leaves, mature leaves, roots, stems, flowers, shoot buds, and pods, were analyzed by quantitative real-time PCR (qRT-PCR). As indicated in Figure 5, some Class 1 *MtTCP*
genes were differentially expressed in the different organs, while other Class I MtTCP genes showed similar expression patterns among different organs. For example, MtTCP9, MtTCP11, and MtTCP19 were highly expressed in root and flower, whereas MtTCP7, MtTCP20, and MtTCP21 were expressed at very low level in all organs examined. This finding implies that those Class I MtTCP genes probably play different roles during plant growth and development. Most CYC/TB1 subclass MtTCPs (MtTCP1A, MtTCP1B, and MtTCP12) showed relatively weak expression in the root, stem, leaf, and pod, but highly expressed in flower, implying their specific roles in flower development. While another CYC/TB1 subclass MtTCP gene (MtTCP18) was highly expressed in leaf, flower, and shoot bud, but lowly expressed in root, stem, and pod. In contrast, the expression levels of all the MtmiR319 target CIN subclass MtTCPs (MtTCP3, MtTCP4, MtTCP10A, and MtTCP10B) were very high in young leaf, indicating that they may play an important role in leaf development. The non-MtmiR319 target CIN MtTCPs, MtTCP13, and MtTCP17 showed similar expression patterns. Both of them were strongly expressed in leaf, flower, shoot bud, and pod, but weakly expressed in root and stem, implying their similar roles in plant developmental processes. MtTCP5A and MtTCP5B were highly expressed in root, leaf, and flower, but weakly expressed in stem. The qRT-PCR data suggest that MtTCPs may be involved in different aspects of plant growth and development. However, further studies are still needed to uncover the functional divergence of MtTCP genes in M. truncatula.
MtmiR319-Targeted MtTCPs Play the Vital Roles in Nodule Development

Roots play an important role in plant growth and development, such as nutrient and water uptake and the establishment of symbiotic interactions (Lopez-Bucio et al., 2003). It is important for legume species, since it can adapt to low nitrogen (N) by symbiosis with nitrogen-fixing rhizobia in nodules (Graham et al., 1981; Carroll et al., 1985; Caetanoanolles and Gresshoff, 1990). To elucidate the roles of MtTCPs in nodule development, the qRT-PCR was conducted to measure their relative expression levels at the different stages of nodule development (Figure 6). Nodules were harvested at 7, 14, and 21 dpi inoculated with S. meliloti 1021 strain, roots without inoculation as control (Supplementary Figure S5). The expression levels of most MtTCPs were down-regulated at different developmental stages of nodules, compared with those in root of 0 dpi. However, the expression levels of MtmiR319-targeted genes, MtTCP3, MtTCP4, and MtTCP10A, were significantly increased. This finding suggests that MtmiR319-MtTCPs module is probably involved in nodule development.

To further evaluate the possible function of MtmiR319-MtTCPs module, the subcellular localization of the MtmiR319-targeted MtTCPs was performed. MtTCP3, MtTCP4, MtTCP10A, and MtTCP10B were, respectively, fused with GFP, and transformed into tobacco epidermal cells. Based on the observation of green fluorescence signal, these MtmiR319-MtTCPs were located in the cell nucleus, suggesting that they are functional transcription factors (Figures 7A,B). Then, the MtmiR319A sequence was introduced into wild-type plants under the regulation of the cauliflower mosaic virus 35S promoter and the stable transgenic plants were obtained. The expression levels of MtTCP3, MtTCP4, MtTCP10A, and MtTCP10B were significantly down-regulated in the 35S:MtmiR319A plants, indicating that these four MtTCPs are the targets of MtmiR319A (Figures 7C,D). 35S:MtmiR319A transgenic plant displayed downward-curled leaves with pronounced serrations on the leaf margin (Figures 7E,F), indicating that MtmiR319-target MtTCPs play the conserved roles in leaf development, similar to their functions in Arabidopsis.

To better characterize their roles in nodule development, wild-type and MtmiR319A-overexpressing plants were inoculated...
with *S. meliloti* 1021 strain. After 3 weeks of inoculation, the *MtmiR319A*-overexpressing plants exhibited reduced shoot fresh weight, nodule numbers, and decreased ratio of nodule/root fresh weight compared with those in wild-type (Figures 8A–D and Supplementary Figure S6). However, there was no obvious difference in nodule size and shape between wild-type and *MtmiR319A*-overexpressing plants (Supplementary Figure S7). After 3 weeks of inoculation, the nodules were harvested for histological studies. The longitudinal sections of nodules were stained for β-galactosidase activity to visualize the bacteria, since the *S. meliloti* 1021 strain carried a constitutively expressed hemA/lacZ fusion. The

![Figure 5](image-url)
staining in the distal zone of wild-type nodules was much
darker than that of MtmiR319A-overexpressing nodules,
implying less functional zone of nitrogen fixation exists
in MtmiR319A-overexpressing nodules (Figures 8E,F).
These results indicate that MtmiR319/MtTCPs module is
essential not only for nodule number, but also for nodule symbiosis.

DISCUSSION

TCP family transcription factors play important roles in multiple
processes during plant growth and development, such as leaf
development, flower development, phytohormone biosynthesis,
endoreduplication, circadian clock, and shoot lateral branching
(Palatnik et al., 2003; Takeda et al., 2003; Aguilar-Martinez et al.,
2007; Damerval et al., 2007; Ori et al., 2007; Nag et al., 2009;
Guo et al., 2010; Koyama et al., 2010a; Wang et al., 2010,
2015a,b; Sarvepalli and Nath, 2011; Shleizer-Burko et al., 2011;
Danisman et al., 2012; Li et al., 2012; Aguilar-Martinez and Sinha,
2013; Li and Zachgo, 2013; Niwa et al., 2013; Tao et al., 2013;
Das Gupta et al., 2014; Schommer et al., 2014; Lopez et al.,
2015; Lucero et al., 2015; Yang et al., 2015; Alvarez et al., 2016;
Danisman, 2016; Nicolas and Cubas, 2016; Uberti-Manassero
et al., 2016; Wei et al., 2016; Bresso et al., 2017; Koyama et al.,
2017). In this study, 21 MtTCPs were identified in M. truncatula,
which were distributed on eight chromosomes with different densities.

Generally, genes within same class/clade shared the similar gene structure. Through exon–intron organization analysis of MtTCP family members, except for MtTCP19, the class I and CIN clade TCP genes show similar exon–intron structure that possessed only a single exon. While all members in CYC/TB1 clade display similar exon–intron organization with one exon and one intron. Such exon–intron structure similarity/variation might be caused by single intron loss or gain during the process of gene structure evolution. Protein sequence motif analysis revealed that MtTCPs within the same class/clade exhibit similar motif distribution. Moreover, TCP domains are highly conserved in all members of the MtTCP family, suggesting that the MtTCPs may share similar DNA binding capacity (Kosugi and Ohashi, 1997; Cubas et al., 1999).

It is noted that all class I MtTCPs showed more widespread and less tissue-/organ-specific expression patterns and had relatively high expression levels in all organs. These results indicated that
class I MtTCPs might play various regulatory roles at multiple developmental stages. The class II CYC/TB1 clade TCPs are mainly participated in the developmental regulation of axillary meristems, which gives rise to either lateral branches or flowers. This clade included AtTCP1/12/18 and MtTCP1A/B/12. MtTCP1A/B/12 were grouped into a subclade and closely related to AtTCP1, although AtTCP12 was also grouped into this subclade. AtTCP1, the ortholog of CYC in A. majus, is involved in the regulation of longitudinal elongation of multiple organs, such as petioles, rosette leaves, and inflorescent stems. AtTCP1 shows high expression level in inflorescence stem, leaf, and petiole (Koyama et al., 2010b). However, MtTCP1A, MtTCP1B, and MtTCP12 exhibited high transcriptional levels in flower and shoot bud, which is different with that in AtTCP1. This finding implies that they may function redundantly in flower and young leaf development in M. truncatula. BRANCHED1 (BRC1, also named AtTCP18) and BRANCHED2 (BRC2, also named AtTCP12), two orthologous genes of TB1 in maize, were transcribed at high levels in axillary meristems or buds (Aguilar-Martinez et al., 2007; Finlayson, 2007; Niwa et al., 2013). AtTCP12 shows a lower transcription level and mild mutant phenotype than its homolog AtTCP18 (Aguilar-Martinez et al., 2007; Finlayson, 2007). The phylogenetically closest gene of AtTCP18 in M. truncatula is MtTCP18. MtTCP18 displayed relatively high expression level in shoot buds. This result suggested that MtTCP18 is likely to execute similar roles with AtTCP18 in axillary bud development and branching control.

The class II TCP gene CIN is expressed downstream of the cell cycle arrest front progression and acts as a repressor of cell proliferation in leaves (Nath et al., 2003). In Arabidopsis, the miR319-targeted TCP genes, AtTCP2, AtTCP3, AtTCP4, AtTCP10, and AtTCP24, regulate leaf morphogenesis, leaf senescence, and petal growth (Palatnik et al., 2003; Schommer et al., 2008, 2014; Nag et al., 2009; Sarvepalli and Nath, 2011; Li et al., 2012; Bresso et al., 2017; Koyama et al., 2017; Samad et al., 2017). In M. truncatula, four closest MtTCPs (MtTCP3, MtTCP4, MtTCP10A, and MtTCP10B) have a putative recognition site of MtmiR319. All the MtmiR319-targeted MtTCPs were highly expressed in leaves. Meanwhile, MtTCP3 and MtTCP10A also exhibited high expression levels in flowers. However, the non-MtmiR319 target MtTCP genes, such as MtTCP13 and MtTCP17, also exhibited similar expression pattern with those of MtmiR319-targeted MtTCPs, implying the different regulation mechanism controlling their expression.

The root nodule symbiosis is a complex biological process that is controlled by several transcription factors, such as NSP1/2, ERN1, and IPN2 (Schauer et al., 1999; Andriankaja et al., 2007; Middleton et al., 2007; Yano et al., 2008; Zhu et al., 2008; Hirsch et al., 2009; Wang et al., 2013; Battaglia et al., 2014; Kang et al., 2014; Singh et al., 2014; Soyano and Hayashi, 2014). Plant hormone cytokinin (CK) plays an essential role in nodulation. CK signaling is required for cell divisions that initiate nodule development (Murray et al., 2007; Tirichine et al., 2007). Previous reports suggest that downregulation of the expression level of MiLOG1, a CK riboside 5’-monophosphate phosphoribohydrolase, reduces...
the nodule number, supporting the positive effect of CK on nodulation (Lohar et al., 2004; Gonzalez-Rizzo et al., 2006; Murray et al., 2007; Tirichine et al., 2007). However, the nodule number also decreases in 35S: MtLOG1 plants, indicating the CK homeostasis is important for nodulation (Mortier et al., 2014). TCPs promote leaf growth and development by modification of responses or sensitivity to CK (Steiner et al., 2012, 2016; Efroni et al., 2013). Overexpression of MtmiR319A led to the downregulation of the targeted MtTCPs. The transgenic plants exhibited small plants size with reduced nodule number and fresh weight during rhizobial infection, which is similar to the plants with CK deficiency. Therefore, it is possible that MtmiR319/MtTCPs module play a significant role in nodule development by regulating the CK pathway.

CONCLUSION

In this study, we executed genome-wide analyses and identified TCP genes in M. truncatula. Those MtTCP genes were placed on eight chromosomes with different densities. We characterized MtTCP genes expression profiles in different tissues/organisms and developmental stages of nodule, suggesting MtTCP genes could play vital roles in M. truncatula growth and development. In addition, the nuclear-localized signal of four MtTCP-GFP fusion proteins indicated that the MtTCPs were functional transcription factors. Remarkably, overexpression of MtmiR319A in M. truncatula leads to the decreased nodule number and nodule weight, demonstrating that MtmiR319/MtTCPs module might be involved in the regulation of nodule development. Further study is needed to illuminate the molecular mechanism that MtTCPs genes involved in leaf and nodule development.

AUTHOR CONTRIBUTIONS

HzW and CZ designed the research. HzW and HwW carried out most of the research and analyzed the data. RL and YX performed some nodule analysis experiments. ZL contributed analytical tools. HzW and CZ wrote the paper.

FUNDING

This work was supported by grants from the Ministry of Science and Technology of China (2015CB943500), the National Natural Science Foundation of China (31671507 and 31371235), and the 1000-Talents Plan from China for young researchers (1011.2.206.99.99).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2018.00774/full#supplementary-material

REFERENCES

Aggarwal, P., Das Gupta, M., Joseph, A. P., Chatterjee, N., Srinivasan, N., and Nath, U. (2010). Identification of specific DNA binding residues in the TCP family of transcription factors in Arabidopsis. Plant Cell 22, 1174–1189. doi: 10.1105/tpc.109.066647

Aguilar-Martinez, J. A., Pozo-Carrión, C., and Cubas, P. (2007). Arabidopsis BRANCHED1 acts as an integrator of branching signals within auxillary buds. Plant Cell 19, 458–472. doi: 10.1105/tpc.106.048934

Aguilar-Martinez, J. A., and Sinha, N. (2013). Analysis of the role of Arabidopsis class I TCP genes AtTCP7, AtTCP8, AtTCP22, and AtTCP23 in leaf development. Front. Plant Sci. 4:406. doi: 10.3389/fpls.2013.00406

Almeida, J., and Gallego, L. (2005). Flower symmetry and shape in Antirrhinum. Int. J. Dev. Biol. 49, 527–537. doi: 10.1387/ijdb.041967ja

Alvarez, J. P., Furumizu, C., Efroni, L, Eshed, Y., and Bowman, J. L. (2016). Active suppression of a leaf meristem orchestrates determinate leaf growth. Elife 5:e15023, doi: 10.7554/eLife.15023

Andriankaja, A., Boisson-Dernier, A., Frances, L., Sauviac, L., Jauneau, A., Barker, D. G., et al. (2007). AP2-ERF transcription factors mediate nod factor-dependent mt ENOD11 activation in root hairs via a novel cis-regulatory motif. Plant Cell 19, 2866–2885. doi: 10.1105/tpc.107.052944

Battaglia, M., Ripodas, C, Clua, J, Baudin, M., Aguilar, O. M., Niebel, A., et al. (2014). A nuclear factor Y interacting protein of the GRAS family is required for nodule organogenesis, infection thread progression, and lateral root growth. Plant Physiol. 164, 1430–1442. doi: 10.1104/pp.113.230896

Boivin, C., Camut, S., Malpica, C. A., Truchet, G., and Rosenberg, C. (1990). Rhizobium melloti genes encoding catalasism of trigonelline are induced under symbiotic conditions. Plant Cell 2, 1157–1170. doi: 10.1105/tpc.2.12.1157

Bressol, E. G., Chorostecki, U., Rodriguez, R. E., Palatnik, J. F., and Schommer, C. (2017). Spatial control of gene expression by miR319-regulated TCP transcription factors in leaf development. Plant Physiol. 176, 1694-1708. doi: 10.1104/pp.17.00823

Caetanoanoolles, G., and Gresshoff, P. M. (1990). Early induction of feedback regulatory responses governing nodulation in soybean. Plant Sci. 71, 69–81. doi: 10.1016/0168-9452(90)90069-Z

Carroll, B. J., Mcelne, D. L., and Gresshoff, P. M. (1985). Isolation and properties of soybean [Glycine-Max (L) Merr] mutants that nodulate in the presence of high nitrate concentrations. Proc. Natl. Acad. Sci. U.S.A. 82, 4162–4166. doi: 10.1073/pnas.82.12.4162

Chen, L., Chen, Y. Q., Ding, A. M., Chen, H., Xia, F., Wang, W. F., et al. (2016). Genome-wide analysis of TCP family in tobacco. Genet. Mol. Res. 15:7728, doi: 10.22386/gmr.15027728

Chen, X. M. (2008). MicroRNA metabolism in plants. RNA Interference 320, 117–136. doi: 10.1007/978-3-540-75157-1_6

Crawford, B. C., Nath, U., Carpenter, R., and Coen, E. S. (2004). CINCNATA controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum. Plant Physiol. 135, 244–253. doi: 10.1104/pp.103.036368

Cubas, P., Lauter, N., Doebel, J., and Coen, E. (1999). The TCP domain: a motif found in proteins regulating plant growth and development. Plant J. 18, 215–222. doi: 10.1046/j.1365-313X.1999.00444.x

Damerval, C., Le Guilloux, M., jager, M., and Charon, C. (2007). Diversity and evolution of CYCLOIDEA-like TCP genes in relation to flower development in Papaveraceae. Plant Physiol. 143, 759–772. doi: 10.1104/pp.106.090324

Danisman, S. (2016). TCP transcription factors at the interface between environmental challenges and the plant's growth responses. Front. Plant Sci. 7:1930. doi: 10.3389/fpls.2016.01930

Danisman, S., van der Wal, F., Dhondt, S., Waites, R., de Folter, S., Bimbo, A., et al. (2012). Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically. Plant Physiol. 159, 1511–1523. doi: 10.1104/pp.112.200303

Danisman, S., van Dijk, A. D., Bimbo, A., van der Wal, F., Hennig, L, de Folter, S., et al. (2013). Analysis of functional redundancies within the Arabidopsis TCP transcription factor family. J. Exp. Bot. 64, 5673–5685. doi: 10.1093/jxb/er337
Das Gupta, M., Aggarwal, P., and Nath, U. (2014). CINCINNATA in Antirrhinum majus directly modulates genes involved in cytokinin and auxin signaling. New Phytol. 204, 901–912. doi: 10.1111/nph.12963

Dhaka, N., Bhardwaj, V., Sharma, M. K., and Sharma, R. (2017). Evolving Tale of TCPs: new paradigms and old lacunae. Front. Plant Sci. 8:679. doi: 10.3389/fpls.2017.00679

Doebel, I., Stec, A., and Gustus, C. (1995). Teosinte branched1 and the origin of maize - evidence for epistasis and the evolution of dominance. Genetics 141, 333–346.

Doebel, I., Stec, A., and Hubbard, L. (1997). The evolution of apical dominance in maize. Nature 386, 485–488. doi: 10.1038/386485a0

Du, J., Hu, S., Yu, Q., Wang, C., Yang, Y., Sun, H., et al. (2017). Genome-wide identification and characterization of Brx1 TCP transcription factors in Brassica rapa ssp. rapa. Front. Plant Sci. 8:1588. doi: 10.3389/fpls.2017.01588

Earley, K. W., Haag, J. R., Pontes, O., Oppier, K., Juchele, T., Song, K. M., et al. (2006). Gateway-compatible vectors for plant functional genomics and proteomics. Plant Cell 45, 616–629. doi: 10.1105/tpc.105.02617.x

Efroni, I., Han, S. K., Kim, H. J., Wu, M. F., Steiner, E., Birnbaum, K. D., et al. (2013). Regulation of leaf maturation by chromatin-mediated modulation of cytokinin responses. Dev. Cell 24, 438–445. doi: 10.1016/j.devcel.2013.01.019

Feng, X. Z., Zhao, Z., Tian, Z. X., Xu, S. L., Luo, Y. H., Cai, Z. G., et al. (2006). Control of petal shape and floral zygomorphy in Lotus japonicus. Proc. Natl. Acad. Sci. U.S.A. 103, 4970–4975. doi: 10.1073/pnas.0600611103

Finlayson, S. A. (2007). TCP transcription factors link the regulation of genes encoding mitochondrial proteins with the circadian clock in Arabidopsis thaliana. Plant Cell 19, 3921–3934. doi: 10.1105/tpc.107.075598

Giraud, E., Ng, S., Carrie, C., Duncan, O., Low, J., Lee, C. P., et al. (2010). Arabidopsis TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. Plant Cell 22, 3574–3588. doi: 10.1105/tpc.110.075598

Koyama, T., Sato, F., and Ohme-Takagi, M. (2010b). A role of TCP1 in the longitudinal elongation of leaves in Arabidopsis. Biosci. Biotechnol. Biochem. 74, 2145–2147. doi: 10.1271/bbb.100442

Koyama, T., Sato, F., and Ohme-Takagi, M. (2017). Roles of miR319 and TCP transcription factors in leaf development. Plant Physiol. 175, 874–885. doi: 10.1104/pp.17.00712

Li, C. X., Potuschak, T., Colon-Carmona, A., Gutierrez, R. A., and Doermer, P. (2005). Arabidopsis TCP20 links regulation of growth and cell division control pathways. Proc. Natl. Acad. Sci. U.S.A. 102, 12978–12983. doi: 10.1073/pnas.0504039102

Li, S. and Zachgo, S. (2013). TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana. Plant J. 76, 901–913. doi: 10.1111/tbj.12346

Li, X., Zhuang, L. M., Ambrose, M., Rameau, C., Hu, X. H., Yang, J., et al. (2010). Genetic analysis of ele mutants and comparative mapping of ele locus in the control of organ internal asymmetry in garden pea. J. Integr. Plant Biol. 52, 528–535. doi: 10.1111/j.1744-7909.2010.00949.x

Li, Z., Li, B., Shen, W. H., Huang, H., and Dong, A. (2012). TCP transcription factors interact with AS2 in the repression of class-I KNOX genes in Arabidopsis thaliana. Plant J. 71, 99–107. doi: 10.1111/j.1365-3122.2012.04973.x

Luo, Y. F., Chen, Y. Y., Hisao, Y. Y., Shen, C. Y., Hu, J. L., Yéh, C. M., et al. (2016). Genome-wide identification and characterization of TCP genes involved in ovule development of Phaseolus coccineus. J. Exp. Bot. 67, 5051–5066. doi: 10.1093/jxb/erw273

Lohar, D. P., Schiff, J. E., Laskey, J. G., Kieber, J. J., Bilyeu, K. D., and Bird, D. M. (2004). Cytokinins play opposite roles in lateral root formation, and nematode and Rhizobial symbioses. Plant J. 38, 203–214. doi: 10.1111/j.1365-313X.2004.02038.x

Loge, J. A., Sun, Y., Blair, P. B., and Mukhtar, M. S. (2015). TCP three-way handshake: linking developmental processes with plant immunity. Trends Plant Sci. 20, 238–245. doi: 10.1016/j.tplants.2015.01.005

Lopez-Bucio, J., Cruz-Ramirez, A., and Herrera-Estrella, L. (2003). The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 6, 280–287. doi: 10.1016/j.pop.2003.04.004

Lucero, L. E., Uberti-Manassero, N. G., Arce, A. L., Colombatti, F., Aleman, S. G., and Gonzalez, D. H. (2015). TCP15 modulates cytokinin and auxin responses during gynoecium development in Arabidopsis. Plant J. 84, 267–282. doi: 10.1111/tbj.12992

Luo, D., Carpenter, R., Cospey, L., Vincent, C., Clark, J., and Coen, E. (1999). Control of organ asymmetry in flowers of Antirrhinum. Cell 99, 367–376. doi: 10.1016/S0092-8674(00)81523-8

Luo, D., Carpenter, R., Cospey, L., Coen, E. (1996). Origin of floral asymmetry in Antirrhinum. Nature 383, 794–799. doi: 10.1038/383794a0

Ma, J., Wang, Q., Sun, R., Xie, F., Jones, D. C., and Zhang, B. (2014). Genome-wide identification and expression analysis of TCP transcription factors in Gossypium raimondii. J. Exp. Bot. 65, 4665. doi: 10.1093/jxb/eru273

Ma, X., Ma, J., Fan, D., Li, C., Jiang, Y., and Luo, K. (2016). Genome-wide identification of TCP family transcription factors from Populus euphratica and their involvement in leaf shape regulation. Sci. Rep. 6, 32395. doi: 10.1038/srep32395

Martin-Trillo, M., and Cubas, P. (2010). TCP genes: a family snapshot ten years later. Trends Plant Sci. 15, 31–39. doi: 10.1016/j.tplants.2009.11.003

Morton, V., Aars, J., Morten, V., Jakob, B., Koste, D., Christensen, K., and Nilsen, T. (2009). An ENF transcription factor in Medicago truncatula that is essential for nod factor signal transduction. Plant J. 59, 1221–1234. doi: 10.1111/j.1365-313X.2010.04826

Mortier, V., Aars, J., Morten, V., Jakob, B., and Nilsen, T. (2010). Role of LONELY GUY genes in indeterminate nodulation on Medicago truncatula. New Phytol. 202, 582–593. doi: 10.1111/j.1469-8137.2010.03421.x

Murray, J. D., Karas, B. J., Koste, D. M., Christensen, K., and Nilsen, T. (2009). NnTCP1 regulates nodulation in Nostoc commune. New Phytol. 182, 794–808. doi: 10.1111/j.1469-8137.2009.03197.x
Navaud, O., Dabos, P., Carmus, E., Tremouaysygue, D., and Herve, C. (2007). TCP transcription factors predate the emergence of land plants. J. Mol. Evol. 65, 23–33. doi: 10.1007/s00267-006-0174-z

Nicolas, M., and Cubas, P. (2016). TCP factors: new kids on the signaling block. Curr. Opin. Plant Biol. 33, 33–41. doi: 10.1016/j.pbi.2016.05.006

Niwa, M., Daimon, Y., Kurotani, K., Higo, A., Pruneda-Paz, J. L., Breton, G., et al. (2013). BRANCH1 interacts with FLOWERING LOCUS T to repress the floral transition of the axillary meristems in Arabidopsis. Plant Cell 25, 1228–1242. doi: 10.1105/tpc.112.1109090

Ori, N., Cohen, A. R., Etzioni, A., Brand, A., Yanai, O., Sleenker, S., et al. (2007). Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat. Genet. 39, 787–791. doi: 10.1038/ng2036

Patel, K. J., Allen, E., Wu, X. L., Schommer, C., Schwab, R., Carrington, J. C., et al. (2003). Control of leaf morphogenesis by microRNAs. Nature 425, 257–263. doi: 10.1038/nature01958

Parapunova, V., Busscher, M., Busscher-Lange, J., Lammers, M., Karlova, R., Bovy, A. G., et al. (2014). Identification, cloning and characterization of the tomato TCP transcription factor family. BMC Plant Biol. 14:157. doi: 10.1186/1471-2229-14-157

Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B., and Bartel, D. P. (2002). MicroRNAs in plants. Genes Dev. 16, 1616–1626. doi: 10.1101/gad.1004402

Resentini, F., Felipo-Benavent, A., Colombo, L., Blazquez, M. A., Alabadi, D., and Masiero, S. (2015). TCP14 and TCP15 mediate the promotion of seed germination by gibberellins in Arabidopsis thaliana and Masiero, S. (2015). TCP14 and TCP15 mediate the promotion of seed germination by gibberellins in Arabidopsis thaliana. Mol. Plant 8, 482–485. doi: 10.1016/j.molp.2014.11.018

Rogers, K., and Chen, X. M. (2013). Biogenesis, turnover, and mode of action of plant MicroRNAs. Plant Cell 25, 2383–2399. doi: 10.1105/tpc.113.113159

Samad, A. F. A., Sajad, M., Nazaruddin, N., Fauzi, I. A., Murad, A. M. A., Zainal, Z., et al. (2017). MicroRNA and transcription factor: key players in plant regulatory network. Front. Plant Sci. 8:656. doi: 10.3389/fpls.2017.00656

Scarveppali, K., and Nath, U. (2011). Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation. Plant J. 67, 595–607. doi: 10.1111/j.1365-3131.2011.04616.x

Schauers, L., Roussis, A., Stiller, I., and Stougarda, J. (1999). A plant regulator controlling development of symbiotic root nodules. Nature 402, 191–195. doi: 10.1038/46058

Schommer, C., Debernardi, J. M., Bresso, E. G., Rodriguez, R. E., and Palatnik, J. F. (2014). Repression of cell proliferation by miR319-regulated TCP4. Mol. Plant 7, 1533–1544. doi: 10.1093/mp/szu084

Schommer, C., Palatnik, J. F., Aggarwal, P., Chetelat, A., Cubas, P., Farmer, E. E., et al. (2008). Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol. 6:e230. doi: 10.1371/journal.pbio.0060230

Shi, P., Guy, K. M., Wu, W., Fang, B., Yang, J., Zhang, M., et al. (2016). Genome-wide identification and expression analysis of the ClTCP transcription factors in Citrullus lanatus. BMC Plant Biol. 16:85. doi: 10.1186/s12870-016-0765-9

Shleizer-Burko, S., Burko, Y., Ben-Herzel, O., and Ori, N. (2011). Dynamic growth program regulated by LANCEOLATE enables flexible leaf patterning. Development 138, 695–704. doi: 10.1242/dev.056770

Singh, S., Katzer, K., Lambert, J., Cerri, M., and Parniske, M. (2014). CYCLOPS, a rare SNP identified a TCP transcription factor essential for tendril development in cucumber. Mol. Plant 7, 1795–1808. doi: 10.1016/j.molp.2015.10.005

Wang, J., Wang, Y., and Luo, D. (2010). LjCYC genes constitute floral dorsoventral asymmetry in Lotus japonicus. J. Integr. Plant Biol. 52, 959–970. doi: 10.1111/j.1744-7909.2010.00926.x

Xie, Q., Liu, X., Zhang, Y., Tang, J., Yin, D., Fan, B., et al. (2017). Identification and characterization of microRNA319a and its putative target gene, PvPCF5, in the bioenergy grass switchgrass (Panicum virgatum). Front. Plant Sci. 8:436. doi: 10.3389/fpls.2015.00436

Xu, S., Luo, Y., Cai, Z., Cao, X., Hu, X., Yang, J., et al. (2013). Functional diversity of CYCLOIDEA-like TCP genes in the control of zygomatic flower development in Lotus japonicus. J. Integr. Plant Biol. 55, 221–231. doi: 10.1111/j.1744-7909.2012.01169.x

Yan, X., Yang, B. H., Liu, B. L., Qiu, Z. J., Gao, W., et al. (2012). Evolution of double positive autoregulatory feedback loops in CYCLOIDEA2 clade genes is associated with the origin of floral zygomorphy. Plant Cell 24, 1834–1847. doi: 10.1105/tpc.112.109277

Ye, X., Zhao, X. G., Li, C. Q., Liu, J., Qiu, Z. J., Dong, Y., et al. (2015). Distinct regulatory changes underlying differential expression of TEOSINE BRANCH1-CYCLOIDEA-PROLIFERATING CELL FACTOR genes associated with petal variations in zygomorphic flowers of Petrocosmea. Frontiers in Plant Science | www.frontiersin.org 15 June 2018 | Volume 9 | Article 774
spp. of the family gesneriaceae. *Plant Physiol.* 169, 2138–2151. doi: 10.1104/pp.15.01181

Yano, K., Yoshida, S., Muller, J., Singh, S., Banba, M., Vickers, K., et al. (2008). CYCLOPS, a mediator of symbiotic intracellular accommodation. *Proc. Natl. Acad. Sci. U.S.A.* 105, 20540–20545. doi: 10.1073/pnas.0806858105

Yao, X., Ma, H., Wang, J., and Zhang, D. R. (2007). Genome-wide comparative analysis and expression pattern of TCP gene families in *Arabidopsis thaliana* and *Oryza sativa*. *J. Integr. Plant Biol.* 49, 885–897. doi: 10.1111/j.1744-7909.2007.00509.x

Zhou, Y. Z., Xu, Z. D., Zhao, K., Yang, W. R., Cheng, T. R., Wang, J., et al. (2016). Genome-wide identification, characterization and expression analysis of the TCP gene family in *Prunus mume*. *Front. Plant Sci.* 7:1301. doi: 10.3389/fpls.2016.01301

Zhu, H., Chen, T., Zhu, M. S., Fang, Q., Kang, H., Hong, Z. L., et al. (2008). A novel ARID DNA-Binding protein interacts with SymRK and is expressed during early nodule development in *Lotus japonicus*. *Plant Physiol.* 148, 337–347. doi: 10.1104/pp.108.119164

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The reviewer MB and handling Editor declared their shared affiliation.

Copyright © 2018 Wang, Wang, Liu, Xu, Lu and Zhou. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.