A synthetic protein as efficient multitarget regulator against complement over-activation

Natalia Ruiz-Molina 1, Juliana Parsons 1, Madeleine Müller 1, Sebastian N. W. Hoernstein 1, Lennard L. Bohlender 1, Steffen Pumple 1, Peter F. Zipfel 2,3, Karsten Häffner 4, Ralf Reski 1,5 & Eva L. Decker 1

The complement system constitutes the innate defense against pathogens. Its dysregulation leads to diseases and is a critical determinant in many viral infections, e.g., COVID-19. Factor H (FH) is the main regulator of the alternative pathway of complement activation and could be a therapy to restore homeostasis. However, recombinant FH is not available. Engineered FH versions may be alternative therapeutics. Here, we designed a synthetic protein, MFHR13, as a multitarget complement regulator. It combines the dimerization and C5-regulatory domains of human FH-related protein 1 (FHR1) with the C3-regulatory and cell surface recognition domains of human FH, including SCR 13. In summary, the fusion protein MFHR13 comprises SCRs FHR1 1-2:FH 1-4:FH 13:FH 19-20. It protects sheep erythrocytes from complement attack exhibiting 26 and 4-fold the regulatory activity of eculizumab and human FH, respectively. Furthermore, we demonstrate that MFHR13 and FHR1 bind to all proteins forming the membrane attack complex, which contributes to the mechanistic understanding of FHR1. We consider MFHR13 a promising candidate as therapeutic for complement-associated diseases.
The complement is a fundamental part of the human immune system and constitutes the innate defense against infection agents. It consists of ~50 plasma and membrane-bound proteins forming a surveillance network, whose core function is the recognition and destruction of microbial invaders. Complement activation can occur by the classical (CP), lectin (LP), or alternative (AP) pathways, which converge at complement component C3 activation and end up in membrane attack complex (MAC) formation, triggering lysis of invading pathogens and inflammation.

The AP contributes to up to 80% of the overall complement activation and is spontaneously activated by hydrolysis of C3 to C3(H2O), with C3b-like activity. C3(H2O), together with the factor B (FB) fragment Bb, builds the initial C3 convertase (C3(H2O)Bb) in fluid phase, which cleaves C3 to C3a and C3b. C3b mediates surface opsonization and amplifies complement activation, by building further C3 convertases (C3bBb) together with FB and FD. In addition, the AP acts as an amplification mechanism, even when complement was activated by the CP or LP. As a consequence of excess C3b, C5 is activated, either by cleavage into C5a and C5b, or without proteolytic cleavage at very high densities of C3b on target surfaces, leading to C5b-like activated C5. While C5b or C5b-like activated C5 bind to C6, C7, C8, and C9 leading to MAC formation (also called terminal complement complex (TCC)) and cell destruction, C3a and C5a are anaphylatoxins that trigger cell recruitment and inflammation.

As complement activation can also damage intact body cells, the activation of the system is tightly controlled, especially by factor H (FH). FH is a 155 kDa glycoprotein, consisting of 20 globular domains, the short consensus repeats (SCR). The SCRs 1–4 (further named FH1-4) act as a cofactor for factor I-mediated proteolytic degradation of C3b to inactive iC3b (which is subsequently degraded to C3c and C3dg and finally the latter to C3d), and accelerate the dissociation of C3 convertases in serum and on host cell surfaces. FH binds to sialic acids and glycosaminoglycans on healthy host cells, protecting them from complement attack. The cell-surface-binding domains are mainly located on SCRs FH1 and FH20. The contribution of FH3 has been a matter of discussion. Recently, a heparin-binding site within fragment FH11-13 was reported with an affinity constant around 17 µM, 4 and 14-fold weaker than that for FH20 and FH7, respectively, measured by Surface Plasmon Resonance (SPR). FH3 has special structural characteristics which indicates functional importance. For instance, it is the smallest domain in FH with a positive net charge (+5), similar to FH7, and contains the longest linkers in FH. FH binds also through FH19-20 to C3d, which contains the C3b-thioester domain (TED) that attaches to cell surfaces.

Five factor H-related proteins (FHRs) fine-tune FH-regulatory activity. The C-terminal region of FH (FH19-20) is highly conserved in all FHRs, while none of them contains regions homologous to FH1-4. Of particular interest is FHRI, a regulator of C5 activation, which inhibits the last steps of the complement cascade (terminal pathway) and the MAC formation. Mutations in FH, FHRs, or other complement-related genes are associated with diseases such as age-related macular degeneration (AMD), atypical hemolytic uremic syndrome (aHUS), C3 glomerulopathies (C3G), and paroxysmal nocturnal hemoglobinuria (PNH). However, protective haplotypes have also been identified; one of them is the polymorphism FH V62I (rs800292). Individuals carrying the variant I62 are less prone to complement-dysregulation diseases like aHUS, C3G, AMD, or dengue hemorrhagic fever. Furthermore, FH I62 showed...
increased binding affinity for C3b and enhanced cofactor activity.

Although the complement system should protect the body against viral infections, its over-activation has been associated with viral pathogenesis, e.g., in hepatitis C, dengue virus, and coronavirus infections. Higher levels of C3a and C5a were detected in sera of patients with severe dengue and deposition of complement proteins on hepatocytes was associated with liver damage in fatal cases. Recently, the role of complement over-activation in SARS-CoV pathogenesis has been proved. C3 deposition was found in the lungs of SARS-CoV infected mice, while C3 KO mice suffered less from respiratory dysfunction. Likewise, C5a accumulation and C3 deposition were observed in lung biopsy samples from COVID-19 patients, and enhanced activation of the alternative pathway was associated with a severe outcome of the disease. Furthermore, C3a and C5a induce inflammation and are important in initiating the "cytokine storm", contributing to acute lung injury in COVID-19.

Therefore, anti-complement drugs might be an effective therapy to avoid severe inflammatory responses. Indeed, different pharmacological complement inhibitors, such as C1 esterase inhibitor, anti-C5 antibodies eculizumab, and ravulizumab, C3 inhibitor AMY-101 and anti-C5a antibody IFX-1 (the last two still in clinical trials) have been tested to treat severe cases of COVID-19, with promising results. However, the efficacy of these treatments and the best point of the complement activation cascade to target inhibition in COVID-19 patients still needs to be assessed. Furthermore, contrary to spike proteins from a common human coronavirus (HCoV-OC43), SARS-CoV-2 spike proteins were shown to activate the complement on cell surfaces mainly through the AP. Addition of FH protected cells from spike proteins-induced complement attack, suggesting that complement therapeutics based on FH activity might be an important alternative.

Although huge efforts are being undertaken to develop complement therapeutics, most are still in clinical development. Anti-C5 antibodies (eculizumab and ravulizumab) are efficient complement therapeutics and the only approved drugs to treat aHUS. However, these compounds are not as effective in many patients suffering from C3G and would not be beneficial to treat severe dengue, because they do not prevent the cleavage of C3. Thus, treatments also regulating the complement at the level of C3 are necessary. In general, anti-C5 antibodies, which block the terminal pathway and complement activity, are associated with a higher susceptibility to infections and are among the most expensive pharmaceuticals in the world.

It is therefore essential to generate new alternative therapeutic agents to treat diseases associated with complement dysregulation using approaches to control rather than block complement activation. FH is the physiological regulator on the level of C3 and therefore, FH-based therapies could restore homeostasis. However, due to the complexity of this molecule, it is desirable to produce smaller proteins with higher overall regulatory activity. Different fusion proteins including FH active domains have been developed. The synthetic multitarget complement regulator MFHR1 combines the dimerization and C5-regulatory domains of FHR1 with the C3-regulatory and cell surface recognition domains of FH to regulate the activation of the complement in the proximal and the terminal pathways. This fusion protein (MFHR1V62) exhibited a higher overall regulatory activity in vitro compared to FH or miniFH (FH1-4:FH19-20) and prevented AP deregulation in models of aHUS and C3G.

The moss Physcomitrella (Physcomitrium patens) is a suitable production host for pharmacologically interesting complement proteins, as demonstrated by the successful completion of the clinical trial phase I of α-galactosidase (Repleva AGAL; eleva GmbH) to treat Fabry disease. MFHR1 and FH have been produced in moss with full in vitro regulatory activity.

Physcomitrella’s characteristics include genetic engineering via precise gene targeting, growth as a differentiated tissue in a low-cost inorganic liquid medium, long-term genetic stability, industry-scale production in photo-bioreactors (500 L), homogenous glycosylation profile, high batch-to-batch stability and glycoengineering for improved pharmacokinetics and pharmacodynamics of the biopharmaceuticals.

Here, we designed MFHR13 (FHR1 1-2:FH1-4: FH13: FH19-20) as a novel multitarget complement regulator produced in the GMP-compliant moss production platform. MFHR13 includes the variant I62 of FH, which we characterized to induce a higher binding to C5b and cofactor activity. After structure assessment by in silico modeling, we introduced the SCR FH13, which includes an N-glycosylation site for higher protein stability, and contributes to increased flexibility of the molecule and cell surface recognition. MFHR13 was able to protect erythrocytes from complement attack in vitro much more efficiently than C5-binding antibodies, FH or MFHR1. Moreover, we could demonstrate that MFHR13, as well as its parental protein FHR1, are able to bind not only C5 or C5b6, but also C6, C7, C8, and C9, providing mechanistic insights into the role of FHR1 as a regulator of the complement system. We propose MFHR13 as a promising future biopharmaceutical to treat complement-associated diseases.

Results

The protective polymorphism V62I is located in the regulatory region of FH, which is involved in C3b-binding and cofactor activity (CA). To confirm the suitability of the I62 variant as part of an improved complement regulator, we tested the influence of this single amino acid exchange on C3b binding and CA of MFHR162 compared to MFHR1V62, both produced in Physcomitrella.

MFHR162 was successfully produced in Physcomitrella. MFHR1V62 was obtained from the moss line P1 (IMSC no.: 40838), and moss lines for the production of MFHR162 were established. For this, the Δxt/ft moss parental line was used. Recombinant proteins produced in this line display N-glycans lacking plant-specific fucoses and xyloses, which might trigger an immune response in patients. After transfection with pAct5-MFHR162 and selection, suspension cultures were established for all surviving plants and screened for MFHR162 production via ELISA. 70% of the lines produced MFHR162 in different concentrations (Supplementary Fig. 1). Four of the best producing lines were compared regarding growth and protein productivity at shake-flask scale during 26 days (Supplementary Fig. 2). The best producing line, N-179 (IMSC no.: 40839), was scaled up to a 5 L stirred bioreactor, where a productivity of 170 µg MFHR162/g FW was achieved (Supplementary Fig. 3). For structure and activity characterization, MFHR162 was purified from 8-days-old moss tissue via nickel affinity chromatography followed by anion exchange chromatography. Approximately 500 µg MFHR162/mL were obtained after purification and concentration.

The MFHR162 variant has higher C3b binding and cofactor activity. To analyze the influence of the polymorphism V62I on protein function, we assessed the binding of MFHR1V62 and MFHR162 to C3b and C5, respectively, via ELISA. As expected, there was no difference between both variants in C5 binding (P = 0.9328, Fig. 2a), while MFHR162 bound to immobilized C3b significantly better than MFHR1V62 (P = 0.0437 Fig. 2b, Supplementary Table 2). The absorbance values from one representative experiment are shown in Supplementary Fig. 7.
The experiment is shown visualized by SDS-PAGE and Coomassie staining. One representative amount of intact cleavage of C3b (Fig. 2d). Double reciprocal plot and linear regression using the sigmoidal equation (dose response curve, $4_{fl}^{P=0.0302}$). Data from one representative experiment are shown (Fig. 2e). Due to the positive influence of I62 in the regulatory activity, we included this variant in MFHR13.

Comparative protein structure modeling approach of MFHR13. To provide a potent complement biopharmaceutical, structural features that promote the efficacy of the product have to be taken into account: (1) Improving flexibility of the molecule by increasing the distance between FH4 and FH19, which will be important to enhance the biological activity of engineered versions of FH4 (2) Improving glycosylation, since it plays an important role in the stability, half-life in the circulation, efficacy, and safety of biopharmaceuticals. MFHR1 has two glycosylation sites. The first site in FHRII is partially occupied and the second site located in FH4 is deamidated and thus not glycosylated, resulting in a high portion of non-glycosylated product. Therefore, we included an additional SCR with an N-glycosylation site to MFHR162 between FH4 and FH19. The glycosylation sites in FH are found in SCRs 9, 12, 13, 14, 15, 17, and 18. An interesting domain was FH13 due to the high amount of basic amino acid residues and its electrostatic properties, which suggests it might contain a polyanion (glycosaminoglycans or sialic acid) binding site, thus potentially increasing the host cell surface recognition.

A comparative protein structure modeling approach (Modeller 9.19) was carried out to evaluate the structure of the fusion protein FHRI1-2:FH1-4:FH13:FH19-20 and if the C3b binding sites are accessible.

To build the model we used crystal structures retrieved from the PDB database corresponding to FHRI-2, FH1-4 +C3b, FH12-13, FH19-20, and C3d. Furthermore, FH1114 (Model SAXS, FH11-14) was used to orient FH13, since FH14 shares about 30% sequence identity with FH19. Out of 400 models generated, we selected the one with the lowest DOPE score and assessed its quality using the web-based tools ProSa and PROCHECK. The overall quality of the model was acceptable and in the range of all available structures on PDB. According to the local model quality, where the energy is plotted as a function of residues’ position in the sequence, problematic parts of the model (characterized by positive energy values) were located in some linkers, such as the linker between FH4 and FH13. However, this is also observed in linkers of the native proteins of this family (Supplementary Fig. 4a, b). Moreover, according to the Ramachandran plot, 97.6% of amino acid residues are in favored regions, 1.3% in allowed regions, and only 1.1% in outlier regions (Supplementary Fig. 4c).

Our model indicates that the introduction of FH13 may not affect biological activity and might confer higher flexibility to the molecule (Fig. 3a). Finally, the MFHR13 model was superimposed with the structures 2WI1 and 2XQW, which correspond to FH1-4 bound to C3b and FH19-20 to C3dg, respectively. The natural linkers are flexible enough to allow FH13 to fold back over in such a way that allows FH1-4 and FH19 to interact simultaneously with one C3b molecule (Fig. 3b). Furthermore, there is a striking electropositive patch extending over one face of FH13 to FH20.

Moss-produced MFHR13 is correctly synthesized and efficiently glycosylated. For the production of MFHR13 (FHRI1-2:FH1-4:FH13:FH19-20), the Ax/tt moss line was transformed with the pAct5-MFHR13 construct. Selection and screening of plants producing MFHR13 were performed following the same procedure as described above for MFHR162. From 98 surviving plants, 45% produced MFHR13 in different levels as screened by ELISA (Supplementary Fig. 5). For the best producing line N13-49 (IMSC no: 40840) around 70 µg MFHR13/g FW were achieved in the 5 L bioreactor cultivation, which correspond to 7 mg MFHR13 after 8 days (Supplementary Fig. 6).

CA of both variants was measured in fluid phase. Degradation of C3b is characterized by the cleavage of the C3b α-chain to fragments C3b α'-68, -46, and -43, while C3b β-chain is not cleaved (Fig. 2c). MFHR162 displayed slightly better CA than MFHR1V62 (Fig. 2d). Double reciprocal plot and linear regression analysis showed significant differences between them ($P=0.0302$).
MFHR13 exhibits enhanced heparin-binding. One important feature of complement regulators is the ability to bind to polyanions such as glycosaminoglycans and sialic acids on host cell surfaces and protect them from complement attack. The ability of MFHR13 to bind to the polyanion heparin was evaluated by an ELISA-based method, and compared to MFHR1V62, MFHR1I62, and hFH, respectively. As expected, there were no differences in heparin-binding between MFHR1V62 and MFHR1I62. In contrast, MFHR13 bound to heparin twice as strong as MFHR1V62 and MFHR1I62 ($P < 0.0001$) (Fig. 5a, Supplementary Table 3, Supplementary Fig. 8a). This can be attributed to the presence of FH13. Heparin-bound hFH was only detected at the highest concentration tested (25 nM), indicating weaker binding to heparin than MFHR13 (Fig. 5b, $P < 0.0001$).

MFHR13 regulates complement activation at the level of C3. Binding of MFHR13 to immobilized C3b was evaluated via ELISA in comparison to MFHR1I62, to evaluate the influence of FH13 on this activity. We did not find significant differences between binding of both proteins to C3b (Fig. 6a; $P = 0.8426$, Supplementary Table 4, Supplementary Fig. 8b).

MFHR13 is able to support the F1-mediated cleavage of C3b α′-chain. MFHR13 showed similar fluid-phase CA in independent experiments as compared to MFHR1I62, however, hFH had a higher CA than both synthetic regulators. (Fig. 6b, c) ($P = 0.0025$ and 0.0040 for MFHR13 and MFHR1I62, respectively).

The ability of the regulators to dissociate preformed C3 convertases, known as decay acceleration activity (DAA), was evaluated in an ELISA-based method. Increasing equimolar amounts of the regulators MFHR13, MFHR1I62, MFHR1V62, or hFH, respectively, were incubated with C3 convertase (C3bBb) and Bb fragment displacement was detected. The DAA of MFHR13, with an IC50 of 2.7 nM, was similar to that of hFH (IC50 3.8 nM) ($P = 0.2022$), but it significantly exceeded the activity of MFHR1I62 and MFHR1V62 (IC50 7.8 and 9.4 nM, respectively) ($P < 0.0001$). (Fig. 6d, Supplementary Table 5).

MFHR13 blocks the terminal pathway of complement. FH1R and MFHR13 bind to C5, C5b6, C6, C7, C8, and C9. FH1R and MFHR1 are able to interact with C5. Binding of MFHR13 to immobilized C5 was evaluated via ELISA in comparison to MFHR1I62. There was no significant difference after fitting the data with 4PL nonlinear regression model (Fig. 7a; $P = 0.2565$, Supplementary Fig. 8c).

Further, we tested the binding of MFHR13, the MFHR1 variants, FH1R and hFH to C5b6, and the other proteins involved in MAC formation. Immobilized C5b6, C6, C7, C8 and C9, and C3b and C5 as positive controls, were incubated with 25 nM of MFHR13 or MFHR1 variants (8x His-tag) or 50 nM FH1R (6x His-tag) and bound protein was detected with anti-His-tag antibodies. Due to the differences in the amount of histidine in the tag, FH1R cannot be quantitatively compared to the mass-produced regulators. Due to the lack of His-tag, binding of hFH to the complement proteins was evaluated separately using anti-FH polyclonal antibodies and compared with MFHR1V62. As...
expected, FH bound only to C3b (Fig. 7b, Supplementary Fig. 9). In contrast, MFHR13, MFHR1 variants and FHR1 bound to all complement proteins involved in MAC formation (Fig. 7c, Supplementary Fig. 9). Here, we proved that FHR1 binds not only to C3b, C5, and C5b6 but also to C6, C7, C8, and C9, which contributes to the mechanistic understanding of FHR1 as a complement regulator.

ELISA is a widely used technique to observe protein interactions. However, to validate the results obtained via ELISA, we evaluated the binding of MFHR13 with selected components of the MAC, C5, C7, and C9, in equilibrium by Microscale Thermophoresis (MST), an immobilization-free technique. We included C3d as a positive control. Using this technique, we proved that the interaction between MFHR13 and the selected MAC components occurs with an equilibrium dissociation constant (KD) in the low micromolar range. However, it was not possible to reach saturation of the binding curve, which prevents the estimation of an accurate KD (Fig. 7d).

MFHR13 prevents hemolysis by blocking MAC formation from C5b6. The C5-regulatory activity of FHR1 is still being discussed because of difficulties in separating C3 and C5-regulatory activities in vivo. FHR1 and MFHR1 were shown to bind C5b6 and prevent MAC formation in vitro. Here, we evaluated this activity of moss-made MFHR13, using a serum-free approach and compared their activity to FHR1, hFH, and eculizumab. For this, the complex C5b6 was incubated with the regulators (1 µM) followed by the addition of sheep erythrocytes and the terminal complement proteins C7, C8, and C9. Inhibition of C5b-9 formation was indirectly measured by hemolysis. The surface of sheep erythrocytes is rich in sialic acid and a good model for host-cell surfaces to test regulation of complement attack. MFHR13, similar to FHR1, protected sheep erythrocytes from complement attack, reducing cell lysis by ~70%, while hFH, eculizumab, BSA, and purified extract from the parental line (Δxt/ft) lacked such positive effects (Fig. 7e).

The terminal pathway is initiated upon cleavage of C5 to C5b, or independently from convertases when C5 binds to densely C3b-opsonized surfaces and acquires a C5b-like conformation. MFHR13 prevents hemolysis by blocking MAC formation from C5b6. The C5-regulatory activity of FHR1 is still being discussed because of difficulties in separating C3 and C5-regulatory activities in vivo. FHR1 and MFHR1 were shown to bind C5b6 and prevent MAC formation in vitro. Here, we evaluated this activity of moss-made MFHR13, using a serum-free approach and compared their activity to FHR1, hFH, and eculizumab. For this, the complex C5b6 was incubated with the regulators (1 µM) followed by the addition of sheep erythrocytes and the terminal complement proteins C7, C8, and C9. Inhibition of C5b-9 formation was indirectly measured by hemolysis. The surface of sheep erythrocytes is rich in sialic acid and a good model for host-cell surfaces to test regulation of complement attack.

MFHR13, similar to FHR1, protected sheep erythrocytes from complement attack, reducing cell lysis by ~70%, while hFH, eculizumab, BSA, and purified extract from the parental line (Δxt/ft) lacked such positive effects (Fig. 7e).

The terminal pathway is initiated upon cleavage of C5 to C5b, or independently from convertases when C5 binds to densely C3b-opsonized surfaces and acquires a C5b-like conformation. Subsequently, MAC formation begins with the binding of C5b, or C5b-like activated C5, to C6. Here, we evaluated the ability of MFHR13 to inhibit the C5 priming on opsonized sheep erythrocytes. Human FH did not differ significantly from the...
MFHR13 exhibits efficient regulatory activity on activated AP. The ability of MFHR13 to inhibit the formation of the C5b-9 complex (TCC) after activation of the AP with LPS in normal human serum (NHS) was evaluated by an ELISA-based assay. The inhibitory activity of MFHR13 was compared to MFHR1I62, MFHR1V62, hFH, and eculizumab. MFHR13 inhibited TCC formation very efficiently, exhibiting 37-fold and 2-fold the activity of hFH and eculizumab respectively (Fig. 8a; Table 1). MFHR13 inhibited slightly better than MFHR1V62 and no significant difference was observed compared to MFHR1I62.

MFHR13 protects sheep erythrocytes from complement-mediated lysis. Finally, we tested the ability of the mossa-produced MFHR13 to protect sheep erythrocytes from complement-mediated lysis. The AP was activated in NHS depleted of FH by addition of MgEGTA. In this in vitro-model for host cell surfaces, MFHR1V62 and MFHR1I62 were as active as hFH. However, MFHR13 protected sheep erythrocytes from complement attack more efficiently than MFHR1V62 (3.7-fold), MFHR1I62 (2.9-fold), hFH (4.2-fold), and eculizumab (26-fold) (Fig. 8b, Table 1).

Discussion

Complement dysregulation due to mutations in complement genes, autoantibodies against complement proteins or over-activation in response to certain viral infections leads to a long list of diseases. C3G, PNH, and aHUS are examples where complement is the main driver of the disease8,16,48. Although the development of drugs to regulate the complement response and restore homeostasis is of huge interest, only very few so far are available on the market, e.g., C1 esterase inhibitor and blocking antibodies against C5 (eculizumab, ravulizumab)32. FH is a physiological regulator of the complement system, but truncated versions of it, such as mini-FH (AMY201, Amyndas)46, are being evaluated as they have been proposed as better therapeutics because of an enhanced overall regulatory activity compared to FH. Moreover, drugs able to regulate the activation cascade at several levels might be especially interesting to increase efficiency. MFHR1 combines the regulatory domains of FHR1 and FH, and exhibits a higher regulatory activity than mini-FH (FH1-4:FH19-20)35. Our studies led to the development of MFHR13 as a potential therapeutic for complement dysregulation.

For MFHR13 design, we first considered the polymorphism V62I. The substitution of valine by isoleucine within SCR1 of FH is located in the regulatory domain. FH162 is associated with lower risk for aHUS and C3G49. Although both amino acids are biochemically similar, and both FH variants can fold correctly, the substitution has structural consequences: The FH SCRs are tightly folded forming a compact hydrophobic core, where the residue 62 is buried, and the additional methylene group from isoleucine triggers a small

negative controls BSA or purified extract from Δxt/ft, and could barely inhibit hemolysis. Under these conditions, the sample treated with eculizumab supported hemolysis, which was unexpected and differs from what was reported before when higher concentrations of complement proteins and antibody have been used5. In contrast, MFHR13 (700 nM) reduced cell lysis by 60%, efficiently protecting sheep erythrocytes from convertase-independent C5 activation and MAC formation, while FH1 inhibited reduced lysis by ~33% (Fig. 7f).

Interestingly, the hemolysis induced by C5b6-C9 was (~130%) higher than the one induced by convertase-independent activation of C5, even when the concentrations of complement proteins involved in the MAC formation were almost 20 times higher in the latter assay (Supplementary Fig. 10).

MFHR13 binds to C3b and exhibits cofactor and decay acceleration activities in fluid phase. a C3b binding was evaluated by ELISA. Nonlinear regression using the sigmoidal equation (dose–response curve, 4 parameters) and comparison of IC50 showed no significant differences between MFHR13 and MFHR1I62 binding to C3b (P = 0.8426). Data represent mean values ± SD from 5 independent experiments. Absorbance values from one representative experiment are shown in Supplementary Fig. 8b.

b Cofactor activity of FI-mediated proteolytic cleavage of C3b α′-chain in the presence of MFHR1I62, FH, or MFHR13, evaluated in increasing reaction times. Densitometric analysis of C3b cleavage. The amount of intact α′-chain was normalized for each sample with the β-chain and set to 100% intact C3b α′-chain at time zero. The data represent mean value from 5 or 6 independent experiments ± SD.

c One representative experiment included in b is shown. C3b, FI, and MFHR1I62, MFHR13 or FH were incubated for 10 and 20 min and C3b cleavage was visualized by SDS-PAGE and Coomassie staining. d MFHR13 displaced C3 convertases more efficiently than MFHR1I62 and MFHR1V62. C3bBb were assembled in C3b-coated microtiter plates with FB and FD. Complement regulators were added and the dissociation of the C3 convertases was detected by the amount of FB using polyclonal anti-FB antibodies. Absorbance of samples without regulator was set to 100% FB and samples without FD as the negative control. Nonlinear regression using the sigmoidal equation and comparison of IC50 indicated significant differences in DAA between MFHR13, MFHR1V62, and MFHR1I62 (P < 0.0001 for each comparison) and not significant difference between MFHR13 and hFH (P = 0.2022). The data represent mean value from 2 independent measurements ± SD.

Discussion

Complement dysregulation due to mutations in complement genes, autoantibodies against complement proteins or over-activation in response to certain viral infections leads to a long list of diseases. C3G, PNH, and aHUS are examples where complement is the main driver of the disease8,16,48. Although the development of drugs to regulate the complement response and restore homeostasis is of huge interest, only very few so far are available on the market, e.g., C1 esterase inhibitor and blocking antibodies against C5 (eculizumab, ravulizumab)32. FH is a physiological regulator of the complement system, but truncated versions of it, such as mini-FH (AMY201, Amyndas)46, are being evaluated as they have been proposed as better therapeutics because of an enhanced overall regulatory activity compared to FH. Moreover, drugs able to regulate the activation cascade at several levels might be especially interesting to increase efficiency. MFHR1 combines the regulatory domains of FHR1 and FH, and exhibits a higher regulatory activity than mini-FH (FH1-4:FH19-20)35. Our studies led to the development of MFHR13 as a potential therapeutic for complement dysregulation.

For MFHR13 design, we first considered the polymorphism V62I. The substitution of valine by isoleucine within SCR1 of FH is located in the regulatory domain. FH162 is associated with lower risk for aHUS and C3G49. Although both amino acids are biochemically similar, and both FH variants can fold correctly, the substitution has structural consequences: The FH SCRs are tightly folded forming a compact hydrophobic core, where the residue 62 is buried, and the additional methylene group from isoleucine triggers a small
conformational rearrangement. In addition, the FH^I62 is slightly more thermally stable and rigid than the FH^V62^50. We studied the influence of this amino acid change on the activity of the synthetic complement regulator MFHR1. Binding to immobilized C3b and cofactor activity of MFHR1^I62 were significantly higher than that of MFHR1^V62. Therefore, we included the more active variant I62 in MFHR13.

The importance of protein glycosylation on the stability, efficacy, and half-life of biopharmaceuticals in serum is well known^44. Deglycosylated proteins were shown to be inactive in vivo^34. MFHR1^V62 has a higher regulatory activity than hFH in vitro but was surpassed by hFH in vivo, which was attributed to a reduced half-life in the circulation^35. MFHR1^V62 is only partially glycosylated, due to the nature of the N-glycosylation sites present in this fusion protein, which are not or only partially glycosylated in the physiological counterparts FH and FHR1, respectively^41. To support protein stability and prolong half-life in serum we aimed to include an additional N-glycosylation site in the new MFHR. For this purpose, we searched for glycosylated SCRs from FH, which beyond achieving glycosylation without the addition of artificial sequences would increase the distance between SCRs FH_4 and FH_13 in the regulator. This distance has been postulated before to be crucial for the flexibility and the activity of mini-FH^46.

We proposed the introduction of FH_13 with its natural linkers to generate the new molecule MFHR13. FH_13 harbors many striking characteristics: Apart from displaying an N-glycosylation site, it is the smallest SCR in FH with the most flexible linkers and one of the most electrostatic positive domains. It has an unusual distribution of charged groups with a net charge of +5, similar to FH_7 and FH_20^52. We hypothesized that the host cell surface recognition could be enhanced by adding this SCR. A comparative protein structure modeling approach supported our hypothesis, since FH_13 was completely exposed with a positive electrostatic patch extending towards FH_20. This feature may increase the binding to cell surfaces due to electrostatic interactions and thus stabilize the cell-surface-binding site in FH_20.

The production of this complement regulator was carried out in moss bioreactors, due to the advantages offered by this system. MS
Fig. 8 MFHR13 regulates overall AP activation and protects host-like surfaces. a Regulation of AP activation. AP in normal human serum was activated in LP5 coated wells. The inhibition achieved by addition of regulators was evaluated indirectly by quantifying C5b-9 complex formation by an ELISA-based method. AP activity was set to 100% for wells without regulators and wells with heat-inactivated serum were used as blank. Spontaneous activation was 42 ± 2.8%, measured in wells without LP5. Data represent mean values ± SD from 4 independent measurements. B Increasing concentrations of MFHR13 protected sheep erythrocytes from human complement attack in FH-depleted serum significantly better than MFHR162 (P = 0.0003, F(DFn, Dfd) = 16.02 (1, 36)), MFHR1V62 (P < 0.0001, F(DFn, Dfd) = 54.99 (1, 42)), hFH (P = 0.0001, F(DFn, Dfd) = 18.73 (1, 31)), and eculizumab (P < 0.0001 F(DFn, Dfd) = 111.7 (1, 33)). Hemolysis was set to 100% for wells without complement regulators and the negative control without FH-depleted serum was used as blank. Data represent mean values ± SD from 4 independent measurements. Δxt/ft is a purified extract from the parental moss line used as negative control. DF degrees of freedom.

Table 1 Overall AP regulatory activity evaluated by hemolysis and an ELISA-based method: Best fit IC50 calculated by 4PL nonlinear regression model.

Assay	MFHR13	MFHR162	MFHR1V62	hFH	Eculizumab
AP ELISA IC50 (nM)	17.8	19.3	33.1	665	38.2
95% CI R2	16.9-18.9	16.1-22.5	29.4-37.4	477.2-893.3	34-42.9
Hemolysis IC50 (nM)	0.99	0.95	0.95	0.78	0.96
95% CI R2	4.9	14.3	18.4	21.3	128.8
	3.7-7.2	10.8-21.7	14.3-27.2	14.8-37.0	115.5-152.6
	0.96	0.89	0.96	0.98	0.70

CI confidence interval, R² goodness of fit.

analysis revealed that the FH13-N-glycosylation site was fully occupied with more than 85% mature complex-type N-glycans, predominantly GnGn and around 15% carrying the Lewis A epitope. Although this structure is not desired, the gene responsible for the generation of this structure was identified in moss and can be eliminated by gene targeting53. In order to increase the half-life in the circulation, N-glycans still need to be terminally sialylated to avoid rapid clearance from circulation14. Stable protein sialylation is feasible in Physcomitrella55, although the efficiency should still be improved.

In analogy to FH, MFHR13 should protect host cells against complement attack, directing the complement regulatory activity to the cell surface by interaction with polyanions. Therefore, we tested the binding to heparin of MFHR13 compared to MFHR162, our control lacking FH13. MFHR13 binds significantly better to heparin than MFHR162, indicating that FH13 retains the function of the polyanion binding site described recently for FH11-1312. Moreover, MFHR13 binds to heparin much better than hFH. MFHR13 displayed similar cofactor activity in fluid phase to MFHR162, while hFH outperformed both, possibly due to small steric hindrances generated by the dimerization domains present in FHR11-2. MFHR13 had a similar decay acceleration activity compared to hFH and significantly higher than MFHR162 or MFHR1V62. Our results suggest that MFHR13 may benefit from the space between FH4 and FH19 to bind to C3b using both sites simultaneously, which could increase the decay of the convertases (C3bBb).

We demonstrated that FHR1, MFHR13, and the MFHR1 variants are able to bind not only to C5 and C5b6, but also to C6, C7, C8, and C9, which suggests that regulation is not only mediated through C5b6-complex binding, as currently assumed15. The interaction between MFHR13 and C5, C7, and C9 was confirmed in equilibrium conditions using MST. It was evaluated at increasing concentrations and the data showed dose-dependent binding of MFHR13 to all tested complement components. The concentration of stock solutions was 1 mg/ml. Based on the high intensity of binding, it was not possible to reach saturation of the binding curve for an accurate Kd calculation with that concentration. Furthermore, taking into account that protein self-association via the N-terminal interaction domain (i.e., FHR11-2) also in Physcomitrella55, although the efficiency should still be improved.

Next, we tested the regulatory activity of MFHR13 at the level of C3. From our protein structure modeling, we expected an enhanced binding of MFHR13 to C3b due to increased flexibility of the molecule. In addition, a weak C3b binding site localized to FH13-15 was described recently12. MFHR13 binds efficiently to C3b, however, we could not detect significant differences to MFHR162. This indicates that FH13 alone is not enough to build the C3b-binding site described for FH13-1515.
obtained in previous studies for the interaction between SCRs FH19-20 and C3d, with values ranging 0.18 to 8 µM.

Our observations indicate an FHR1 activity resembling the function of vitronectin, which is a soluble human regulator of the MAC15, and thus contribute to the mechanistic understanding of FHR1 action.

To distinguish the specific activity on C5 level from overall regulation, we evaluated the inhibition of the C5b-9 complex (MAC) formation on sheep erythrocytes in a serum-free approach using C5b6, C7, C8, and C9. We could demonstrate the activity of MFHR13 at this level of activation, which has to be attributed to the presence of the FHR11-2 as described previously16,38. C5 can be enzymatically activated by convertases or non-enzymatically by conformational changes when bound to highly C3b- or C4b-opsinized surfaces. In contrast to enzymatic activation, conformational C5 activation cannot be prevented by eculizumab, explaining the residual hemolysis observed in FHR1 patients treated with adequate levels of this C5 inhibitor. As opposed to eculizumab, MFHR13 could inhibit convertase-independent activation of C5 and MAC formation on C3b-opsinized sheep erythrocytes exposed to C5-C9. This mechanism of MAC formation, however, led to a weaker hemolysis than the one induced by C5b6-C9, even at higher concentrations of complement components in the assay, and its physiologic role should be further studied.

Several regulatory activities for FHR1 at the level of C5 at physiologic concentrations have been reported but the contribution of FHR1 in complement regulation is controversial36,38, and the concentration of FHR1 in plasma is still under debate59. However, FHR1 levels are considered to be elevated during infection, as suggested by increased expression of the FHR1 gene19-20 and C3d, with values ranging 0.18 to 8 µM56.

In summary, we designed MFHR13, a novel synthetic multi-target complement regulator, and produced it in moss bioeaters. MFHR13 is a glycoprotein that regulates the overall complement activity around 37 times as efficient as native human FH, and twice as much as eculizumab, without blocking the complement response completely. Taken together, MFHR13 is a potential therapeutic agent for diseases such as C3G and aHUS, and might also be of interest for different viral pathogenesis where an over-activation of the complement system is involved, such as dengue and COVID-19.

Methods

Comparative protein structure modeling approach. To predict the 3D structure and C5b-binding capacity of a new multi-target complement regulator, MFHR13 (FHR11₁₋₁₂FHR13₋₂₀), we used the template-based modeling implemented in PyMol 2.0.

High-resolution crystal and NMR structures for 17 of 20 domains of human FH are available in the Protein Data Bank (PDB). To build the model, we used the following structures as templates (PDB accessions): 3ZD2 (FHR1₁₋₁₂), 2WII (FHR1₁₋₁₂ + C3b), 2KMS (FHR1₁₋₁₂ + C5b7 + FHR1₁₉₋₂₀), 3SWO (FHR1₁₉₋₂₀ + 2XQW (FHR1₁₉₋₂₀ + C3b)), and a SAXS model for FHR1₃₉₋₄₁ (Accesion in Small Angle Scattering Biological Data Bank (SASDBB): SASD42A). As the orientation between adjacent SCR domains is difficult to predict, some restrictions were added to orient the template structures appropriately. These restrictions were obtained by measuring distances Ca-Ca between adjacent SCRs in PDB structures such as 2WII, 3SWO using the PyMol Molecular Graphics System Visualization 2.0. Schrodinger, LLC (PyMol 2.0). Some additional restraints between FHR1 and FHR2 were taken into account, after superimposing the structures 2WII and 2XQW, which correspond to FHR1 with C3b and FHR1₉₋₂₀ with C3d, respectively.

The alignment of MFHR13 was done using also a structure for FHR1₁₋₁₄ derived from SAXS information (SASD42A). FH1₄ was aligned with FH1₂ because they share a sequence identity of 30%, and it would allow orienting FH13. The module Automod from modeler 9.19 was used to generate 100 models. The loop regions were refined using the loopmodel class, and 4 models with loop refined were built for every standard model (total: 400 models). Optimization of the objective function was done using 300 iterations with the conjugate-gradient technique and molecular dynamics with simulated annealing to refine the model. The best models were chosen comparing the Discrete Optimized Protein Energy (DOPE) score. The quality of the models was evaluated using the Ramachandran Plot SAVES Server (PROCHECK)84 (https://services.mbi.ucla.edu/SAVES/). ProsaWeb (https://prosa.services.came.sbg.ac.at/prosa.php)85. 3D structures were visualized with PyMol 2.0.

Generation of plasmid constructs. First, the vector pAct5-MFHR1I62, coding for MFHR1₁₋₁₂, a MHice variant isoloc, instead of wild-type position 193, which corresponds to position 62 of factor H, was created. This vector was obtained via site-directed mutagenesis using the Phusion Site-Directed Mutagenesis Kit (Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s instructions. The vector pAct5-MFHR1₃₉₋₄₁ was used as template with the primers SCR13_overlapSCR4_fwd and SCR13_overlapSCR4_rev (Supplementary Table 1), thus directly amplifying a single nucleotide (GTA to ATA, V62). In this vector the expression of MFHR1₃₉₋₄₁, fused to a C-terminal 8x His-tag, is driven by the 5’ region, including the 5’ intron, of the PpActin5 gene66 and the cauliflower mosaic virus (CaMV) 35S terminator. For proper posttranslational modifications, the recombinant protein was targeted to the secretory pathway by the aspartic proteinase signal peptide from P. patens, PpAP167. The ppt cassette68 is present to select the transformed plants with hygromycin.

For the production of MFHR13 the expression construct pAct5-MFHR1₃₉₋₄₁, based on pAct5-MFHR1₃₉₋₄₁, was generated using Gibson assembly69. For this, the sequence encoding for SCR FHR1₃₉₋₄₁ together with its natural flanking sequence was amplified from plasmid pH162 with the primers SCR13_overlapSCR4_fwd and SCR13_overlapSCR4_rev. This fragment was inserted in pAct5-MFHR1₃₉₋₄₁, previously amplified with primers SCR4_overlapSCR13_rev and SCR19_overlapSCR13_fwd (Supplementary Table 1), designed to exclude the linker between FHR1 and FHR2 and overlapping the sequence of the linkers from FH1₃₋₁₄. PCRs were performed with Phusion™ High-Fidelity DNA Polymerase (Thermo Fisher Scientific). Assembled vectors were verified by sequencing. The plasmids are available via the International Moss Stock Center iMSC (www.moss-stock-center.org/en/) under the accession numbers P1775 and P1782 for the expression constructs pAct5-MFHR1₁₋₁₂ and pAct5-MFHR1₃₉₋₄₁, respectively.

Plant material, culture, transformation procedure, and protein production. Physcomitrella (Physcomitrium patens) was cultivated as previously described80 on Knop ME medium70. Lines producing MFHR1 or FHR1 were obtained by transformation of the ActII/9 moss line (IMSC no: 40828), in which the genes coding for al1, fucosyltransferase and the β1,2 xyllosyltransferase are knocked out45.
Moss protoplast isolation, polyethylene glycol-mediated transfection (30 µg of linearized plasmid DNA), regeneration and selection were performed as previously described17.

Plants surviving the selection were transferred to liquid medium and after 1 month of weekly propagation, moss lines were screened for the production of the proteins of interest. For this, 6-days-old moss suspension cultures were vacuum-filtered and 30 mg fresh weight (FW) material were analyzed by ELISA. To analyze the time course of growth and production of the proteins, lines were inoculated in triplicates at 200 mg/L DW and samples were taken every 3 days for 26 days.

The best MFHR1α2 and MFHR13 producing moss lines, respectively, were scaled up to stirred tank bioreactors (SL), operated in batch for 8–12 days with the following conditions: pH 4.5, at 22 °C, aerated with 0.3 vvm air supplemented with 2% CO2, 100% elution buffer were pooled and diluted with Tris buffer pH 7.6 to reach 50 mM sodium phosphate (pH 7.0) were added per gram FW and the suspension was disrupted with an ULTRA-TURRAX® (10,000 rpm) and simultaneous sonication (ultrasonic bath) for 10 min on ice. After two consecutive centrifugation steps (4500 × g for 3 min and 20,000 × g for 10 min at 8°C) the supernatant was filtered through 0.22 µm PES filters (Rothen). For chromatographic purification, the filtrate was loaded onto a 1 mL Hitrap FF column, using the ÄKTA system (Cytiva) at 1 mL/min. The column was washed with 30 column volumes (CV) of binding buffer and 3% elution buffer (100%: 100 mM Na2HPO4, 0.5 M NaCl, 500 mM imidazole, 10% glycerol, pH 7.4). The protein was eluted using a linear gradient(6% elution buffer for 10 CV, 17% CV, 27% CV, 100% CV) and collected in 0.5 CV fractions. The first five fractions obtained with 100% elution buffer were pooled and diluted with Tris buffer pH 7.6 to reach 50 mM NaCl and loaded onto a 1 mL Hitrap Q HP column (Cytiva). MFHR13, MFHR1862, or MFHR1V862 were eluted using a linear gradient (3–100%) and elution fraction containing the protein of interest (screened by ELISA, western blot, and Coomassie staining) were pooled and dialyzed against Dulbecco’s phosphate-buffered saline (DPBS) in Slide-A-Lyzer® MINI Dialysis Devices, 20 K MWCO (Thermo Fisher Scientific). Proteins were concentrated by ultrafiltration using Vivaspin 2, 10 KDa MWCO (PES membrane; Sartorius).

Purification of moss-produced recombinant proteins. MFHR13 and MFHR1 variants (MFHR1α2 and MFHR1β1α2), respectively, were extracted from vacuum-filtered plant material. For this, 4 mL binding buffer (75 mM Na2HPO4, 0.5 M NaCl, 500 mM imidazole, 10% glycerol, pH 7.4) were diluted in sample buffer and incubated for 90 min at 37 °C. The proteins of interest were detected by a polyclonal anti-FH1-4, domains shared by all the proteins of interest, antibody that recognizes FH20 (1:2000 in coating buffer (1.59 g/l Na2CO3, 2.93 g/l NaHCO3, pH 9.6) and blocked with sample buffer (2% BSA in TBS (Tris Buffer Saline) supplemented with 0.05% Tween-20). Samples and HFl standard (hFH, CompTech; 12.9 µM) were diluted in sample buffer and incubated for 90 min at 37 °C. The proteins of interest were detected by a polyclonal anti-FH20 (1:15,000 in washing buffer (1% BSA in TBS supplemented with 0.05% Tween-20)) and antibody coupled to horseradish peroxidase (HRP) (NA934, Cytiva; 1:5000 in washing buffer) according to the manufacturer’s protocol. The ratio between MFHR13, MFHR1α2, and MFHR1V862 concentration was also compared with semi-quantitative western blots. SDS-PAGE on 7.5 or 10% gels, Coomassie staining and western blot analysis were performed as described before45.

Glycosylation analysis. MFHR13, purified as described above, was used for MS analysis. In brief, duplicate samples of purified MFHR13 were reduced and alkylated as previously described35, subjected to SDS-PAGE and subsequently stained with PageBlue® (Thermo Fisher Scientific). Bands corresponding to the expected size of MFHR13 were excised and destained. Digestion was performed overnight with 0.2 µg trypsin (Trypsin Gold, Promega) and 0.2 µg chymotrypsin (sequencing grade, Promega) simultaneously at 37 °C. Peptides were recovered and desalted using C18 ZipTip® (Millipore) and measured on a QXactive Plur Orbitrap (Thermo Fisher Scientific) as described in ref. 45. Raw data were processed with Mascot Distiller V2.7.10 and a database search was performed using Mascot server V2.7 (Matrix Science). Processed spectra from both duplicates were searched with Mascot Distiller V2.7.10 and a database search was performed using Mascot Analysis Software (Matrix Science).

Activity tests. Cofactor activity (CA). CA was measured in fluid phase. MFHR13, MFHR1α2, MFHR1β1α2, or hFH (15 or 75 nM) were incubated in DPBS with 444 mM C3b and 225 mM FI at 37 °C. Samples (20 µL) were collected at different reaction times up to 20 min. The reaction was stopped by the addition of 7.7 µL 4-α-Lamellin buffer (Bio-Rad) with 3 µl 50 mM DT (NuPAGE, Thermo Fisher Scientific). Proteolytic cleavage of C3b was assessed by visualizing the α-chain cleavage fragments α68 and α43 by SDS-PAGE in 7.5% gels under reducing conditions followed by Coomassie staining. The bands corresponding to the corresponding C3b chain were quantified by densitometry (GelAnalyzer 19.1; www.gelanalyser.com) and normalized with the corresponding C3b-β-chain. The ratio α-chain/β-chain at time 0 was set to 100% intact C3b a-chain.

Decay acceleration activity assay (DAA). The DAA in fluid phase was performed by an activity-based method as previously described40. Briefly, 230 ng C3b in PBS were immobilized on Maxisorp plates overnight at 4 °C. In order to generate the C3 convertases (C3bBs), 400 ng Factor B and 25 ng Factor D (CompTech) were incubated with immobilized C3b for 2 h at 37 °C. Increasing concentrations of moss-made regulators and hFH (CompTech) were added and incubated for 4 min at 37 °C to measure their ability to displace preformed C3 convertases. The Δ5 fragments that remain bound to C3b were detected by an anti-factor B polyclonal antibody (Merck, Darmstadt, Germany), followed by HRP-conjugated rabbit anti-goat (Dako, Hamburg, Germany). The absorbance of the preformed C3 convertase without regulators was set to 100% intact C3 convertases and the C3 proconvertase (C3bB) formation (FB without adding FD) was included as a negative control.

Binding to complement proteins. The ability of MFHR13 and MFHR1 variants to bind to the complement proteins was tested by ELISA. For this, 5 µg/mL of C3b, C5, C6, C7, C8, or C9, or the complex C5b6 (CompTech, USA) in coating buffer were immobilized on Maxisorp plates at 4 °C overnight, blocked, and subsequently incubated with increasing concentrations of MFHR13, MFHR1α2, or MFHR1V862 (0.15–50 nM) in the case of testing C3b binding or a single concentration (25 nM or 50 nM) in the case of testing C6, C7, C8, C9, and C5b6 binding, diluted in sample buffer. Bound regulators were detected with anti-His-tag antibodies (MAB050, R&D Systems, 1:1000 in washing buffer) and HRP-conjugated anti-mouse IgG (N9391, Cytiva, 1:5000 in washing buffer). In order to combine all independent experiments, the absorbance was normalized with the value corresponding to the highest concentration for every binding ELISA to obtain a relative binding. Recombinant FHR1 with a C-terminal 6x His-tag (Abcam 152006) and hFH (CompTech, USA) were included as controls. However, due to the absence of His-tag in hFH, bound hFH was detected with a polyclonal antibody74 (1:1000 in washing buffer), and the HRP-conjugated anti-rabbit (1:5000 in washing buffer). It should also be considered, that the affinity of the anti-His-antibodies towards FHR1 compared to MFHR13, MFHR1α2 and MFHR1V862 might be different, due to the different lengths of the His-tags.

Microscale thermophoresis (MST). The fusion protein MFHR13 (3 µL) was measured with NT-647 RED-NHS (NanoTemper Technologies GmbH, Munich, Germany) as previously described35. NT-647-labeled MFHR13 (200 nM) was mixed with the ligands C5, C7, C9, and C3d, or BSA as control at dilutions ranging from 10 to 0.0005 µM. The samples were diluted in PBS supplemented with 0.05% Tween-20. Protein aggregation was minimized by centrifuging at 14,000 × g for 10 min. Thermophoresis was measured at 20% LED power and medium MST power in a Monolith NT.115 instrument (NanoTemper). All measurements were performed at RT using Premium Coated capillaries. Data were analyzed using MO.affinity Analysis Software (NanoTemper).

Heparin binding. Heparin-coated microplates (Bioworld, Dublin, Ohio, USA) were used as controls. However, due to the absence of His-tag in hFH, bound hFH was detected with an anti-His-FH4 (1:1000 in washing buffer) and HRP-conjugated anti-rabbit IgG from donkey (1:2000 in washing buffer, Cytiva).
Overall AP regulatory activity. The ELISA-based assay used to analyze the overall ability of the regulators to inhibit TCC formation after activation of the AP with lipopolysaccharides (LPS) was performed as described previously with slight modifications. Briefly, increasing concentrations of MFHR13, MFHR182, MFHR1V62, eczucluzumab, or hFFH (0.5–100 nM) were incubated and formation of C5b-9 complex was detected using a C9 neuropetope-specific antibody (aE11, Santa Cruz Biotechnology. 1:2000 in DPBS/0.05% Tween in, followed by HRP-conjugated anti-mouse IgG goat (NAX931, Cytiva; 1:5000 in DPBS/0.05% Tween-20). Samples with normal human serum (NH) and without regulators were set to 100% AP activity. Heat-inactivated NH (56 °C for 30 min) was used as a blank. A negative control to indicate spontaneous activation was included, which consisted of NH without LPS or regulators. The ability of the regulators to protect sheep erythrocytes from complement-mediated lysis was measured as follows: Increasing concentrations of MFHR13, MFHR1V62, MFHR182, eczucluzumab or hFFH (0.3–100 nM) were incubated with 5 × 10^7 sheep erythrocytes followed by the addition of 30% FH-depleted serum (Comptec, USA) prepared in GVB/MgEGTA buffer (0.1% gelatin, 5 mM Veronal, 145 mM NaCl, 0.025% NaN3, 5 mM MgCl2, 5 mM EGTA, pH 7.3). The reaction was incubated for 30 min at 37 °C and stopped with GVB/EDTA (0.1% gelatin, 5 mM Veronal, 145 mM NaCl, 0.025% NaN3, 10 mM EDTA). The amount of hemoglobin released was measured at 405 nm. Samples without regulators were set to 100% hemolysis, samples lacking NH were included as negative controls and the values were subtracted from all samples.

Regulation of MAC formation on sheep erythrocytes. The inhibition of MAC formation on sheep erythrocytes was performed as previously described with some modifications. C5b6 (3.5 nM) was incubated with increasing amounts of the protein of interest (MFHR13, MFHR1V62, hFFH, FHR1 (R&D Systems) or eczucluzumab, 1000 nM) for 10 min. Then a mixture of C7 (9 nM), C8 (0.667 nM), C9 (15 nM) and 5 × 10^7 sheep erythrocytes was added (prepared in GVB/MgEGTA buffer) to 50 µL total volume. Hemolysis was detected after 40 min at 37 °C by addition of GVB/EDTA buffer. The amount of hemoglobin released was measured at 405 nm. Samples without regulators were set to 100% MAC-induced lysis. BSA or purified extract from the parental line (A2697) were included as controls. Two negative controls without C5b6 or C9 were included, which were subtracted from all samples.

Regulation of convertase-independent activation of C5 and MAC formation on sheep erythrocytes. The ability of the regulators to inhibit convertase-independent activation of C5 and subsequent MAC formation was tested in a hemolytic assay. For this, C3b-opsonization on erythrocytes was carried out as previously described with some modifications. C3b-opsonization on erythrocytes was carried out as previously described with some modifications. C5b6 or C9 were included, which were subtracted from all samples.

References
1. Záplét, P. F. & Skerka, C. Complement regulators and inhibitory proteins. Nat. Rev. Immunol. 9, 729–740 (2009).
2. Ricklin, D., Reis, E. S., Mastellos, D. C., Gros, P. & Lambris, J. D. Complement component C3—The "Swiss Army Knife" of innate immunity and host defense. Immunol. Rev. 274, 33–58 (2016).
3. Harboe, M., Ulvund, G., Viem, L., Fung, M. & Molnes, T. E. The quantitative role of alternative pathway amplification in classical pathway induced terminal complement activation. Clin. Exp. Immunol. 138, 439–446 (2004).
4. Fromell, K. et al. Assessment of the role of C3b/H2O in the alternative pathway. Front. Immunol. 11, 530 (2020).
5. Mennes, M. et al. Complement inhibition at the level of C3 or C5: mechanistic reasons for ongoing terminal pathway activity. Blood 137, 443–455 (2021).
6. Sarma, J. V. & Ward, P. A. The complement system. Cell Tissue Res. 343, 227–235 (2011).
7. Schmidt, C. Q. et al. A new map of glycosaminoglycan and C3b binding sites on factor H. J. Immunol. 181, 2610–2619 (2008).
8. Zipfel, P. F., Wiech, T., Stea, E. D. & Skerka, C. CFHR gene variations provide insights in the pathogenesis of the kidney diseases atypical hemolytic uremic syndrome and C3 glomerulopathy. J. Am. Soc. Nephrol. 31, 241–256 (2020).
9. Pangburn, M. K., Atkinson, M. A. & Meri, S. Localization of the heparin-binding site on complement factor H. J. Biol. Chem. 266, 16847–16853 (1991).
10. Blackmore, T. K. et al. Identification of the second heparin-binding domain in human complement factor H. J. Immunol. 160, 3342–3348 (1998).
11. Schmidt, C. Q. et al. The central portion of factor H (modules 10-15) is compact and contains a structurally deviant CCP module. J. Biol. Chem. 292, 2907–2912 (2017).
12. Kajander, T. et al. Dual interaction of factor H with C3d and glycosaminoglycans in host-nonhost discrimination by complement. Proc. Natl Acad. Sci. USA 108, 2749–2754 (2011).
13. Skerka, C. et al. Factor H-related protein 1: a complement regulatory protein and guardian of necrotic-type surfaces. Br. J. Pharmacol. 178, 2823–2831 (2021).
14. Risitano, A. M. et al. Anti-complement treatment for paroxysmal nocturnal hemoglobinuria: time for proximal complement inhibition? A position paper from the SAAWP of the EBMT. Front. Immunol. 10, 1157 (2019).
15. Heurich, M. et al. Common polymorphisms in C3 factor, factor B and factor H collaborate to determine systemic complement activity and disease risk. Proc. Natl Acad. Sci. USA 108, 2749–2754 (2011).
16. Tortajada, A. et al. The disease-protective complement factor H allotypic variant Ile62 shows increased binding affinity for C3b and enhanced cofactor activity. Hum. Mol. Genet. 18, 3452–3461 (2009).
17. Kittlesen, D. J., Chau-Beck-Bullock, K. A., Yao, Z. Q., Braciale, T. J. & Hahn, Y. S. Interaction between complement receptor gC1qR and hepatitis C virus core protein inhibits T-lymphocyte proliferation. J. Clin. Invest. 106, 1239–1249 (2000).
18. Carr, J. M., Caboza-Falcon, S., Dubowsky, J. G., Hulme-Jones, J. & Gordon, D. L. Dengue virus and the complement alternative pathway. FEBS Lett. 594, 2543–2555 (2020).
19. Gao, T. et al. Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation. Preprint at medRxiv https://doi.org/10.1101/2020.03.29.20041962 (2020).
20. Ma, L. et al. Increased complement activation is a distinctive feature of severe SARS-CoV-2 infection. Sci. Immunol. 6, eabbi2259 (2021).
21. Castello, D. C. et al. Complement C3 vs C5 inhibition in severe COVID-19: early clinical findings reveal differential biological efficacy. Clin. Immunol. 2020, 108598 (2020).
22. Rizzato, A. M. et al. Complement as a target in COVID-19? Nat. Rev. Immunol. 20, 343–344 (2020).
23. Urwyler, P. et al. Treatment of COVID-19 with Conestat Alfa, a regulator of the complement, contact activation and Kallikrein-Kinin system. Front. Immunol. 11, 2072 (2020).
Competing interests
The authors are inventors of patents and patent applications related to the production of recombinant proteins in moss. R.R. is an inventor of the moss bioreactor and a founder of Greenovation Biotech, now eleva GmbH. He currently serves as advisory board member of this company.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s42003-022-03094-5.

Correspondence and requests for materials should be addressed to Eva L. Decker.

Peer review information Communications Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Cesar de la Fuente and Karli Montague-Cardoso. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022