Measurement of branching fraction and final-state asymmetry for the $\bar{B}^0 \rightarrow K^0_S K^\mp \pi^\pm$ decay

Y.-T. Lai,17 I. Adachi,17,13 H. Aihara,86 S. Al Said,80,35 D. M. Asner,3 H. Atmacan,76 V. Aulchenko,4,64 T. Aushhev,54 V. Babu,81 I. Badhrees,80,34 A. M. Bakich,79 V. Bansal,66 P. Behera,24 C. Beleño,12 B. Bhuyan,22 T. Bilka,5 J. Biswal,31 A. Bobrov,4,64 A. Bozek,62 M. Bracko,48,31 L. Cao,32 D. Červenkov,5, P. Chang,61 V. Chen,49,59 B. G. Cheon,15 K. Chilikin,42 K. Cho,37 S.-K. Choi,14 S. Choudhury,23 D. Cinabro,90 S. Cunliffe,7 N. Dash,21 S. Di Carlo,40 Z. Doležal,5 T. V. Dong,17,13 S. Eidelman,4,64,42 D. Epifanov,4,64 J. E. Fast,31 A. Frey,12 B. G. Fulsom,66 R. Garg,67 V. Gaur,89 N. Gabyshev,4,64 A. Garmash,4,64 M. Gelb,32 A. Giri,23 P. Goldenzweig,32 D. Greenwald,32 D. Greenwald,32 Y. Guan,25,17 J. Haba,17,13 T. Hara,17,13 K. Hayasaka,63 H. Hayashi,85 W.-S. Hsu,61 C.-L. Hsu,79 K. Huang,61 T. Iijima,56,55 K. Inami,55 G. Inguglia,7 A. Ishikawa,84 R. Itoh,17,13 M. Iwasaki,65 Y. Iwasaki,17 S. Jia,7 Y. Jin,86 D. Joffe,33 A. B. Kaliyar,24 G. Karyan,7 T. Kawasaki,36 H. Kichimi,17 C. King,75 H. K. Kim,39 J. B. Kim,38 S. H. Kim,15 K. Kinoshita,6 P. Kodyš,5 S. Korpar,48,31 D. Kotchetkov,16 P. Križan,43,31 R. Kroeger,51 P. Krokovny,4,64 T. Kuhr,44 R. Kulasiri,33 R. Kumar,70 A. Kuzmin,4,64 Y.-J. Kwon,92 K. Lalwani,46 J. S. Lange,70 I. S. Lee,15 J. K. Lee,73 Y. Lee,73 S. C. Lee,39 C. H. Li,50 L. K. Li,26 Y. B. Li,68 L. Li Gioi,49 J. Libby,49 Z. Liptak,16 D. Liventsev,89,17 P.-C. Lu,61 M. Lubej,31 T. Luo,9 J. MacNaughton,52 M. Masuda,85 T. Matsuda,52 D. Matvienko,4,64,42 M. Merola,28,57 K. Miyabayashi,58 R. Mizuk,69 G. B. Mohanty,81 T. Mori,31 R. Mrvar,31 R. Musa,29 E. Nakano,65 M. Nakao,17,13 K. J. Nath,27 M. Nayak,90,17 N. K. Nisar,89 S. Nishida,17,13 S. Ogawa,83 G. Paksilova,42,54 B. Pal,3 S. Pardi,28 H. Park,39 S. Paul,82 T. K. Pedlar,45 R. Pestotnik,31 L. E. Piilonen,89 V. Popov,42,54 E. Prencipe,39 A. Raskin,42,54 T. Rostomyan,7 G. Russo,28 Y. Sakai,17,13 M. Salehi,47,44 S. Sandilya,6 L. Santelj,17 T. Sanuki,84 V. Savinov,49 O. Schneider,41 G. Schnell,1,20 C. Schwanda,27 Y. Seino,63 K. Senyo,91 O. Seon,55 M. E. Sevior,50 C. P. Shen,7 T.-A. Shibata,87 J.-G. Shiu,61 E. Solovieva,42,54 M. Starič,31 M. Sumihama,11 T. Sumiyoshi,88 W. Sutecliffe,32 M. Takizawa,74,18,71 K. Tanida,30 Y. Tao,8 F. Tenchini,51 M. Uehara,37 T. Uesugi,37 Y. Unno,54 S. Uno,17,13 P. Urquijo,30 Y. Usoskin,4,64 R. Van Tonder,32 G. Varner,16 K. E. Varvell,79 V. Vorobyev,4,64,42 B. Wang,4,64 C. H. Wang,60 M.-Z. Wang,4,64 P. Wang,26 X. L. Wang,9 E. Widmann,77 E. Won,38 H. Yamamoto,64 S. B. Yang,38 H. Ye,27,13 C. Z. Yuan,26 Y. Yusa,63 Z. P. Zhang,72 V. Zhilich,64 V. Zhukova,42 and V. Zhulanov,4,64 (Belle Collaboration)

1University of the Basque Country UPV/EHU, 48080 Bilbao
2Beihang University, Beijing 100191
3Brookhaven National Laboratory, Upton, New York 11973
4Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
5Faculty of Mathematics and Physics, Charles University, 121 16 Prague
6University of Cincinnati, Cincinnati, Ohio 45221
7Deutsches Elektronen–Synchrotron, 22607 Hamburg
8University of Florida, Gainesville, Florida 32611
9Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443
10Justus-Liebig-Universität Gießen, 35392 Gießen
11J-PARC Branch, KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
12II. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen
13SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
14Gyeongsang National University, Chinju 660-701
15Hanyang University, Seoul 133-791
16University of Hawaii, Honolulu, Hawaii 96822
17High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
18J-PARC Branch, KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
19Forschungszentrum Jülich, 52425 Jülich
20IKERBASQUE, Basque Foundation for Science, 48013 Bilbao
21Indian Institute of Technology Bhubaneswar, Satya Nagar 751007
22Indian Institute of Technology Guwahati, Assam 781039
23Indian Institute of Technology Hyderbad, Telangana 502285
24Indian Institute of Technology Madras, Chennai 600036
25Physica信息安全, Tsukuba 305-0801
262019年011101-4
27Published by the American Physical Society
Indiana University, Bloomington, Indiana 47408
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
Institute of High Energy Physics, Vienna 1050
INFN—Sezione di Napoli, 80126 Napoli
INFN—Sezione di Torino, 10125 Torino
Advanced Science Research Center, Japan Atomic Energy Agency, Naka 319-1195
J. Stefan Institute, 1000 Ljubljana
Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
Kennesaw State University, Kennesaw, Georgia 30144
King Abdulaziz City for Science and Technology, Riyadh 11442
Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589
Kitasato University, Sagamihara 252-0373
Korea Institute of Science and Technology Information, Daejeon 305-806
Korea University, Seoul 136-713
Kyungpook National University, Daegu 702-701
LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay
École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991
Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana
Ludwig Maximilians University, 80539 Munich
Luther College, Decorah, Iowa 52101
Malaviya National Institute of Technology Jaipur, Jaipur 302017
University of Malaya, 50603 Kuala Lumpur
University of Maribor, 2000 Maribor
Max-Planck-Institut für Physik, 80805 München
School of Physics, University of Melbourne, Victoria 3010
University of Mississippi, University, Mississippi 38677
University of Miyazaki, Miyazaki 889-2192
Moscow Physical Engineering Institute, Moscow 115409
Moscow Institute of Physics and Technology, Moscow Region 141700
Graduate School of Science, Nagoya University, Nagoya 464-8602
Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602
Università di Napoli Federico II, 80055 Napoli
Nara Women’s University, Nara 630-8506
National Central University, Chung-li 32054
National United University, Miao Li 36003
Department of Physics, National Taiwan University, Taipei 10617
H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342
Niigata University, Niigata 950-2181
Novosibirsk State University, Novosibirsk 630090
Osaka City University, Osaka 558-8585
Pacific Northwest National Laboratory, Richland, Washington 99352
Panjab University, Chandigarh 160014
Peking University, Beijing 100871
University of Pittsburgh, Pittsburgh, Pennsylvania 15260
Panjab Agricultural University, Ludhiana 141004
Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198
University of Science and Technology of China, Hefei 230026
Seoul National University, Seoul 151-742
Showa Pharmaceutical University, Tokyo 194-8543
Soongsil University, Seoul 156-743
University of South Carolina, Columbia, South Carolina 29208
Stefan Meyer Institute for Subatomic Physics, Vienna 1090
Sungkyunkwan University, Suwon 440-746
School of Physics, University of Sydney, New South Wales 2006
Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71451
Tata Institute of Fundamental Research, Mumbai 400005
Department of Physics, Technische Universität München, 85748 Garching
Toho University, Funabashi 274-8510
Department of Physics, Tohoku University, Sendai 980-8578
We report a measurement of the branching fraction and final-state asymmetry for the $\bar{B}^0 \to K^0_S K^\mp \pi^\pm$ decays. The analysis is based on a data sample of 711 fb$^{-1}$ collected at the Υ(4S) resonance with the Belle detector at the KEKB asymmetric-energy e^+e^- collider. We obtain a branching fraction of $(3.60\pm0.33\pm0.15) \times 10^{-6}$ and a final-state asymmetry of $(-8.5\pm8.9\pm0.2)\%$, where the first uncertainties are statistical and the second are systematic. Hints of peaking structures are found in the differential branching fractions measured as functions of Dalitz variables.

$$A = \frac{N(K^0_S K^- \pi^+)}{N(K^0_S K^+ \pi^-)} - \frac{N(K^0_S K^- \pi^-)}{N(K^0_S K^+ \pi^+)} ,$$

where N denotes the signal yield obtained for the corresponding final state of both B^0 and \bar{B}^0. Here A is distinct from the direct CP asymmetry (A_{CP}); rather it is an asymmetry between the decay final states of $K^0_S K^-\pi^+$ and $\bar{K}^0_S K^+\pi^-$ where the K^0_S or \bar{K}^0_S is reconstructed as a K^0_S. We measure this quantity as it can be more precisely determined than A_{CP} for this decay mode. A nonzero A value would be an indirect manifestation of CP violation. This is the first measurement of such an asymmetry in the $\bar{B}^0 \to K^0_S K^\mp \pi^\pm$ decay. In addition, we use the \mathcal{P}-plot [13] method to obtain background-subtracted yields for the Dalitz variables $M_{K^-\pi^+}$, $M_{\pi^-K^0_S}$, and $M_{K^+K^-}$, and hence to determine their differential branching fractions. The total branching fraction is calculated by integrating the differential branching fractions. The result of the analysis is consistent with the previous measurements [4–12].

Our measurement is based on the full data sample of 711 fb$^{-1}$, corresponding to 772×10^6 $B\bar{B}$ pairs, collected on the Υ(4S) resonance with the Belle detector [14] at the KEKB asymmetric-energy e^+e^- collider [15]. The detector components relevant for this study are a silicon vertex detector (SVD), a 50-layer central drift chamber (CDC), an array of aerogel threshold Cherenkov counters (ACC), a barrel-like arrangement of time-of-flight scintillation counters (TOF), and an electromagnetic calorimeter made of CsI(Tl) crystals. These are located inside a superconducting solenoid that provides a 1.5 T magnetic field.

Large samples of Monte Carlo (MC) events are generated with EVTGEN [16] and subsequently simulated with

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.
GEANT3 [17] with the configurations of the Belle detector. We use these samples to obtain the expected distributions of various physical quantities for signal and backgrounds, to optimize the selection criteria, and to determine the signal detection efficiency.

The selection criteria for the final-state particles in the $B^0 \to K_S^0 K^+\pi^-$ reconstruction are based on information obtained from the tracking systems (SVD and CDC) and the charged-hadron identification (PID) systems, namely the CDC, ACC, and TOF. The charged kaons and pions are required to have an impact parameter within ±0.2 cm of the interaction point (IP) in the transverse plane, and within ±5.0 cm along the z axis, defined as the direction opposite the e^+e^- beam. The likelihood values of each track for kaon and pion hypotheses (L_K and L_π) are determined from the information provided by the PID systems. A track is identified as a kaon if $L_K/(L_K + L_\pi) > 0.6$, otherwise it is treated as a pion. The efficiency for identifying a pion (kaon) is about 88% (86%), depending on the track momentum, while the probability for a pion or a kaon to be misidentified is less than 10%. The efficiency and misidentification probabilities are averaged over the momentum of final-state particles.

The K_S^0 candidates are reconstructed via the $K_S^0 \to \pi^+\pi^-$ decay, and the identification is enhanced by selecting on the output of a neural network (NN) [18], which combines seven kinematic variables of the K_S^0 [19]. The invariant mass of the K_S^0 candidate is required to be within ±10 MeV$/c^2$ of its world average [20], which corresponds to about three times the mass resolution. The $K_S^0 \to \pi^+\pi^-$ vertex fit is required to converge with a goodness-of-fit (χ^2) value less than 20.

We identify B mesons with two kinematic variables calculated in the center-of-mass (CM) frame: the beam-energy constrained $M_{bc} \equiv \sqrt{E_{beam}/c^2 - |\vec{p}_B/c|^2}$, and the energy difference $\Delta E \equiv E_B - E_{beam}$, where E_{beam} is the beam energy, and \vec{p}_B (E_B) is the momentum (energy) of the reconstructed B meson. The B candidates are required to have $M_{bc} > 5.255$ GeV$/c^2$ and $|\Delta E| < 0.15$ GeV, with the signal region given by 5.272 GeV$/c^2 < M_{bc} < 5.288$ GeV$/c^2$ and $|\Delta E| < 0.05$ GeV. We require a successful vertex fit for $B^0 \to K_S^0 K^+\pi^-$ candidates, where the K_S^0 trajectory is included in the fit, with $\chi^2 < 100$.

About 9% of the events in the data sample have more than one B candidate, and the signal events have an average of 1.1 candidates. In such cases, we select the candidate with the smallest χ^2 value from the B vertex fit. According to simulations, our best candidate selection method chooses the correct candidate in 99% of cases.

The dominant background is from the continuum $e^+e^- \to q\bar{q}$ ($q = u, d, s, c$) process. To suppress it, we construct a Fisher discriminant [21] from 17 modified Fox-Wolfram moments [22]. To further improve the distinguishing power, we combine the discriminant output with four more variables in an NN. These are the cosine of the angle between the reconstructed B flight direction and the z axis in the CM frame, the offset along the z axis between the vertex of the reconstructed B and the vertex formed by the remaining tracks, the cosine of the angle between the thrust axis [23] of the reconstructed B and that of the rest of the event in the CM frame, and a B meson flavor tagging quality variable. The NN is trained with signal and continuum MC samples. The NN output (C_{NN}) ranges from −1 to 1, and it is required to be greater than 0.7. This removes 93% of the continuum background while retaining 82% of the signal. We transform C_{NN} to $C'_{NN} \equiv \log(C_{NN}^{\text{min}} - C_{NN})/(C_{NN}^{\text{max}} - C_{NN})$, where C_{NN}^{min} is 0.7 and C_{NN}^{max} is the maximum value of C_{NN}.

Background events from B decays mediated via the $b \to c$ transition (generic B decays) have peaking structures in the signal region. They are mainly due to the decays with two-body final states of D and J/ψ mesons, e.g., $D^0 \to K^-\pi^+$, $D^- \to K^-\pi^-$, $D^- \to K^-\pi^0$, $J/\psi \to e^+e^-$, and $J/\psi \to \mu^+\mu^-$. These decays can be identified by peaks at the nominal D and J/ψ mass [20] in the distributions of the invariant masses of two of the final-state particles ($M_{K^-\pi^+}, M_{\pi^-\pi^+}$, $M_{K^-\pi^0}$, where we allow for a change in the mass hypothesis of a charged kaon or pion). We exclude events within ±4σ of the nominal mass of the peaking structures to suppress the contributions from D and J/ψ mesons.

The rare B background from $b \to u, d, s$ transitions is studied with a large MC sample in which the branching fractions are much larger than the measured or expected values. Two modes are found to have peaks near the ΔE signal region: $B^0 \to K^-K^+K_S^0$ and $B^0 \to \pi^-\pi^+K_S^0$, including their intermediate resonant modes. The remaining rare B events have a relatively flat ΔE distribution.

The signal yield and \mathcal{A} are extracted from a three-dimensional extended unbinned maximum likelihood fit, with the likelihood defined as

$$\mathcal{L} = \frac{e^{-\sum_{i=1}^{N_j} N_j^i} \prod_{i=1}^{N} \left(\sum_{j=1}^{N} N_j P_j^i \right)^{N_j}}{N!}, \quad (2)$$

where

$$P_j^i = \frac{1}{2} (1 - q^i \cdot \mathcal{A}_j) \times P_j (M_{bc}^i, \Delta E^i, C_{NN}^i), \quad (3)$$

N is the number of candidate events, N_j is the number of events in category j, i is the event index, q^i is the charge of the K^\pm in the i-th event, \mathcal{A}_j is the value of final-state asymmetry of the j-th category, P_j represents the value of the corresponding three-dimensional probability density function (PDF), and M_{bc}^i, ΔE^i, and C_{NN}^i are the M_{bc}, ΔE, and C_{NN} values of the i-th event, respectively.
With all the selection criteria applied, 98% of the signal MC events are correctly reconstructed while 2% are self-crossfeed (scf). In the fit, the ratio of scf to correctly reconstructed (“true”) signal events is fixed. The signal yield \(N_{\text{sig}} \) is the combined yield of the true signal and scf PDF. Five more event categories are included in the fit: continuum background, generic \(B \) background, \(B^0 \to K^- K^+ K_S^0 \), \(B^0 \to \pi^- \pi^+ K_S^0 \), and the remaining rare \(B \) background. The true signal PDF is described by the product of a sum of two Gaussian functions in \(M_{bc} \), a sum of three Gaussian functions in \(\Delta E \), and an asymmetric Gaussian function in \(C_{NN} \). These PDF shapes are calibrated including possible data-MC differences obtained from the study of a high-statistics control mode \(B^0 \to D^- \pi^+ \), \(D^- \to K_S^0 \pi^- \). The continuum background PDF is given by the product of an ARGUS function \([24]\) in \(M_{bc} \), a second-order polynomial in \(\Delta E \), and a sum of a Gaussian and an asymmetric Gaussian function in \(C_{NN} \). All shape parameters of the continuum PDF are free in the fit, except for the ARGUS endpoint which is fixed to 5.2892 GeV/c\(^2\). For the other contributions (scf, generic \(B \), \(B^0 \to K^- K^+ K_S^0 \), \(B^0 \to \pi^- \pi^+ K_S^0 \), and rare \(B \)), their PDFs are described by a smoothed histogram in \(\Delta E \) and \(M_{bc} \), and an asymmetric Gaussian function in \(C_{NN} \) whose shape is based on MC. The yield of each category is floated. The \(\mathcal{A} \) value is fixed to zero for all background categories.

The signal-enhanced projections of the fit are shown in Fig. 1. We obtain a signal yield of \(490^{+46}_{-45} \) with a statistical significance of 13 standard deviations, and an \(\mathcal{A} \) value of \((-8.5 \pm 8.9)\% \). The significance is defined as \(\sqrt{-2 \ln (L_0/L_{\text{max}})} \), where \(L_0 \) and \(L_{\text{max}} \) are the likelihood values obtained by the fit with and without the signal yield fixed to zero, respectively.

The branching fraction is calculated using

\[
\mathcal{B} = \frac{N_{\text{sig}}}{\epsilon \times \eta \times N_{BB}},
\]

where \(N_{\text{sig}} \), \(N_{BB} \), \(\epsilon \), and \(\eta \) are the fitted signal yield, the number of \(BB \) events (= \(772 \times 10^6 \)), the signal reconstruction efficiency, and the efficiency calibration factor, respectively. We assume that charged and neutral \(BB \) events are produced equally at the \(\Upsilon (4S) \). The \(\epsilon \) value

![Fig. 1. Signal-enhanced projections of the fit to \(B^0 \to K_S^0 K^\pm \pi^\mp \) decays on \(\Delta E, M_{bc} \), and \(C_{NN} \). (a) \(\Delta E \) in 5.272 GeV/c\(^2\) < \(M_{bc} \) < 5.288 GeV/c\(^2\) and 0 < \(C_{NN} \) < 5. (b) \(M_{bc} \) in \(\Delta E \) < 0.05 GeV and 0 < \(C_{NN} \) < 5. (c) \(C_{NN} \) in \(|\Delta E| \) < 0.05 GeV and 5.272 GeV/c\(^2\) < \(M_{bc} \) < 5.288 GeV/c\(^2\).](#)

![Fig. 2. Background-subtracted Dalitz plot of the \(\bar{B}^0 \to K_S^0 K^\pm \pi^\mp \) decays.](#)
determined by MC, with all the selection criteria applied, is \((26.7 \pm 0.1)\%\). The calibration factor includes contributions due to various systematic effects \(\eta = \eta_K \times \eta_\pi \times \eta_{\text{NN}} \times \eta_0\), where \(\eta_K = 0.9948 \pm 0.0083\) and \(\eta_\pi = 0.9512 \pm 0.0079\) are the corrections due to \(K^\pm\) and \(\pi^\pm\) identification, and are obtained from a control sample of \(D^{+}\rightarrow D^0\pi^+, D^+ \rightarrow K^-\pi^+\). Similarly, \(\eta_{\text{NN}} = 0.9897 \pm 0.0208\) is due to the requirement on \(C_{\text{NN}}\) and is obtained from a sample of \(B^0 \rightarrow D^-\pi^+, D^- \rightarrow K^0S\pi^-\). The factor \(\eta_0 = 1.022 \pm 0.004\) is due to fit bias, obtained from an ensemble test on the fitter.

Figure 2 shows the background-subtracted Dalitz plot obtained with the \(s\text{Plot}\) method. Structures around the regions \(M_{K^-K^0_s}^2 < 2\text{ GeV}^2/c^4\) and \(7\text{ GeV}^2/c^4 < M_{\pi^+K^0_s}^2 < 23\text{ GeV}^2/c^4\) are visible. We also obtain background-subtracted distributions after separating into five bins, and then calculate the differential branching fractions as functions of the three Dalitz variables with the yield and reconstruction efficiency within each bin. We use a similar binning scheme as the one in Ref. [9]. Figure 3 shows the

FIG. 3. Differential branching fraction as functions of Dalitz variables.

FIG. 4. Differential branching fraction as functions of the Dalitz variables for the two reconstructed \(B\) final states: \(K^0SK^-\pi^+\) (red points with error bars) and \(K^0SK^+\pi^-\) (blue points with error bars).
TABLE I. Signal yields, efficiency, and differential branching fraction in each $M_{K^+\pi^-}$, $M_{K^--\pi^+}$, and $M_{\pi^+\pi^-}$ bin.

(c^2/GeV)	Yield	$dB/dM (10^{-7})$
$M_{K^+\pi^-}$		
0–1.1	0.301	69.2 ± 18.0 ± 3.0
1.1–1.5	0.306	71.3 ± 17.8 ± 3.1
1.5–2.5	0.289	47.5 ± 20.5 ± 2.0
2.5–3.5	0.262	149.7 ± 21.7 ± 6.4
> 3.5	0.237	152.7 ± 22.0 ± 6.6
$M_{K^--\pi^+}$		
0–1.1	0.275	27.1 ± 12.7 ± 1.2
1.1–1.5	0.269	19.4 ± 12.4 ± 0.8
1.5–2.5	0.252	84.8 ± 20.0 ± 3.6
2.5–3.5	0.264	65.7 ± 17.6 ± 2.8
> 3.5	0.283	293.4 ± 31.5 ± 12.6
$M_{\pi^+\pi^-}$		
0–1.1	0.245	32.9 ± 8.5 ± 1.4
1.1–1.5	0.258	154.6 ± 19.6 ± 6.6
1.5–2.5	0.235	96.9 ± 21.3 ± 4.2
2.5–3.5	0.267	83.4 ± 18.1 ± 3.6
> 3.5	0.292	122.6 ± 27.8 ± 5.3

differential branching fractions as functions of the three Dalitz variables including comparison to the MC with a three-body phase space model. Large deviations from phase space expectations are found around 1.2 GeV/c^2 in the $M_{K^+\pi^-}$ spectrum as well as near 3.0–4.2 GeV/c^2 in the $M_{K^--\pi^+}$ spectrum. No obvious structure is observed in the low-mass regions of both $M_{K^+\pi^-}$ and $M_{K^--\pi^+}$, which is consistent with previous two-body decay measurements [5,7,8].

Differential branching fractions are shown separately for the $K^0_SK^+\pi^-$ and $K^0_SK^--\pi^+$ final states in Fig. 4. Within each bin of the Dalitz variables, the results are consistent with no asymmetry. The details of the differential branching fraction calculation in each bin are summarized in Table I.

Various sources of systematic uncertainties in the branching fraction calculation are listed in Table II. The uncertainty due to the number of $B\bar{B}$ events is 1.4%. The uncertainty due to the charged-track reconstruction efficiency is estimated to be 0.35% per track by using partially reconstructed $D^{+} \rightarrow D^0\pi^+, D^0 \rightarrow \pi^+\pi^-K^0_S$. The uncertainties due to K^+ and π^+ identification are obtained by the control sample study of $D^{+} \rightarrow D^0\pi^+, D^0 \rightarrow K^-\pi^+$. The uncertainty due to the $K^0_S \rightarrow \pi^+\pi^-$ branching fraction is based on its world average [20]. The uncertainty due to K^0_S identification is estimated to be 1.6% based on a $D^{+} \rightarrow D^0\pi^+, D^0 \rightarrow K^0_Sd^0$ control sample [25]. The uncertainty due to continuum suppression with the requirement on C_{NN} is obtained from a control sample of $B^0 \rightarrow D^-\pi^+, D^- \rightarrow K^0_S\pi^-$. The uncertainty of the reconstruction efficiency is due to limited MC statistics. The uncertainty due to fixed PDF shapes is estimated by the deviation of fitted signal yield when varying the parameters of the PDFs in different cases. For all the smoothed histograms, we vary their binning parameters. For the PDFs with fixed parameterization, the fixed parameters are randomized by using a Gaussian random number to repeat data fits, and the uncertainty of the yield distribution is quoted. The uncertainty due to fit bias is obtained from an ensemble test on the fitter.

Various sources of systematic uncertainties in A are listed in Table III. The uncertainty due to K^+ and π^+ identification is estimated to be 0.8% and 0.8% respectively. The uncertainty due to K^0_S identification is estimated to be 1.6% based on a $D^{+} \rightarrow D^0\pi^+, D^0 \rightarrow K^0_Sd^0$ control sample [25]. The uncertainty due to continuum suppression with the requirement on C_{NN} is obtained from a control sample of $B^0 \rightarrow D^-\pi^+, D^- \rightarrow K^0_S\pi^-$. The uncertainty of the reconstruction efficiency is due to limited MC statistics. The uncertainty due to fixed PDF shapes is estimated by the deviation of fitted signal yield when varying the parameters of the PDFs in different cases. For all the smoothed histograms, we vary their binning parameters. For the PDFs with fixed parameterization, the fixed parameters are randomized by using a Gaussian random number to repeat data fits, and the uncertainty of the yield distribution is quoted. The uncertainty due to fit bias is obtained from an ensemble test on the fitter.
Table III. Summary of systematic uncertainties on \mathcal{A}.

Source	in %
Detector bias	0.6
Signal PDF	2.7
Background PDF	0.9
Total	2.9

detection bias are obtained from the control samples of $D^+ \rightarrow \phi\pi^+$ and $D^+_s \rightarrow \phi\pi^+$ [26], and $D^+ \rightarrow K^0_S\pi^+$ [27], respectively. The uncertainties due to the fixed PDF shapes are treated similarly to those on the branching fraction. They are estimated from the deviation of the fitted value of \mathcal{A} with varying the conditions of those PDFs in different cases.

In summary, we have measured the branching fraction and asymmetry \mathcal{A} of $B^0 \rightarrow K^0_SK^+\pi^+$ using a data sample of 711 fb$^{-1}$ collected by Belle. We obtain a branching fraction of $(3.60 \pm 0.33 \pm 0.15) \times 10^{-6}$ and an \mathcal{A} of $(-8.5 \pm 8.9 \pm 0.2)\%$, where the first uncertainty is statistical and the second is systematic. The measured \mathcal{A} value is consistent with no asymmetry. Hints of peaking structures are seen in the regions $M_{K^-K_S}^2 < 2 \text{ GeV}^2/c^4$ and $7 \text{ GeV}^2/c^4 < M_{\pi^+K_S}^2 < 23 \text{ GeV}^2/c^4$ in the Dalitz plot. The peaking structure in $M_{K^-K_S}^2$ is consistent with the result from the previous $B^+ \rightarrow K^+K^-\pi^+$ measurement. A cross-check is performed by calculating the differential branching fraction after projecting onto each Dalitz variable, and hints of peaking structures are found near $1.2 \text{ GeV}/c^2$ in $M_{K^-K_S}^2$ and around $4.2 \text{ GeV}/c^2$ in $M_{\pi^+K_S}^2$ when compared to the phase space MC. No obvious K^* structure is seen in either low $M_{K^-\pi^+}$ or $M_{\pi^+K_S}$ spectra, which are consistent with the BABAR and LHCb results [5,7,8]. No localized final-state asymmetry is observed. In the near future, experiments with large data sets such as Belle II and LHCb can perform a more detailed analysis exploiting the full Dalitz plot.

Acknowledgments

We thank the KEKB group for excellent operation of the accelerator; the KEK cryogenics group for efficient solenoid operations; and the KEK computer group, the NII, and PNNL/EMSL for valuable computing and SINET5 network support. We acknowledge support from MEXT, JSPS and Nagoya’s the Tau-Lepton Physics Research Center (TLPRC) (Japan); ARC (Australia); FWF (Austria); NSFC and the Chinese Academy of Science Center for Excellence in Particle Physics (CCEPP) (China); MSMT (Czechia); the Carl Zeiss Foundation (CZF), DFG, the Excellence Cluster Universe (EXC153), and the VolkswagenStiftung (VS) (Germany); DST (India); INFN (Italy); MOE, MSIP, NRF, RSRI, Foreign Large-size Research Facility Application Supporting project (FLRFAS) project and GSDC of KISTI and Korea Research Environment Open Network (KREONET)/Global Ring Network for Advanced Application Development (GLORIAD) (Korea); MNiSW and NCN (Poland); Ministry of Science and Higher Education of the Russian Federation (MSHE), Grant No. 14.W03.31.0026 (Russia); ARRS (Slovenia); IKERBASQUE (Spain); SNSF (Switzerland); MOE and MOST (Taiwan); and DOE and NSF (USA).

[1] I. Bediaga, I. I. Bigi, A. Gomes, G. Guerrer, J. Miranda, and A. C. dos Reis, Phys. Rev. D 80, 096006 (2009).
[2] I. Bediaga, J. Miranda, A. C. dos Reis, I. I. Bigi, A. Gomes, J. M. Otalora-Goicochea, and A. Veiga, Phys. Rev. D 86, 036005 (2012).
[3] Throughout this paper, inclusion of charge-conjugate decay modes is implied unless otherwise stated.
[4] P. del Amo Sanchez et al. (BABAR Collaboration), Phys. Rev. D 82, 031101 (2010).
[5] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 74, 072008 (2006).
[6] R. Aaij et al. (LHCb Collaboration), J. High Energy Phys. 11 (2017) 027.
[7] R. Aaij et al. (LHCb Collaboration), New J. Phys. 16, 123001 (2014).
[8] R. Aaij et al. (LHCb Collaboration), J. High Energy Phys. 01 (2016) 012.
[9] C.-L. Hsu et al. (Belle Collaboration), Phys. Rev. D 96, 031101 (2017).
[10] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 99, 221801 (2007).
[11] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 112, 011801 (2014).
[12] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 90, 112004 (2014).
[13] M. Pivk and F. R. Le Diberder, Nucl. Instrum. Methods Phys. Res., Sect. A 555, 356 (2005).
[14] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 117 (2002); also see detector section in J. Brodzicka et al., Prog. Theor. Exp. Phys. 2012, 04D001 (2012).
[15] S. Kurokawa and E. Kikutani, Nucl. Instrum. Methods Phys. Res., Sect. A 499, 1 (2003), and other papers included in this volume; T. Abe et al., Prog. Theor. Exp. Phys. 2013, 03A001 (2013) and references therein.

[16] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).

[17] R. Brun et al., CERN Report No. DD/EE/84-1, 1987.

[18] M. Feindt and U. Kerzel, Nucl. Instrum. Methods Phys. Res., Sect. A 559, 190 (2006).

[19] H. Nakano, Ph.D. thesis, Tohoku University, 2014, Chap. 4, https://tohoku.repo.nii.ac.jp/?action=pages_view_main&active_action=repository_view_main_item_detail&item_id=70563&item_no=1&page_id=33&block_id=38.

[20] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).

[21] R. A. Fisher, Annals of human genetics 7, 179 (1936).

[22] G. C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978); The modified moments used in this paper are described in S. H. Lee et al. (Belle Collaboration), Phys. Rev. Lett. 91, 261801 (2003).

[23] S. Brandt, C. Peyrou, R. Sosnowski, and A. Wroblewski, Phys. Lett. 12, 57 (1964).

[24] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 241, 278 (1990).

[25] N. Dash et al. (Belle Collaboration), Phys. Rev. Lett. 119, 171801 (2017).

[26] M. Starič et al. (Belle Collaboration), Phys. Rev. Lett. 108, 071801 (2012).

[27] B. R. Ko et al. (Belle Collaboration), Phys. Rev. Lett. 109, 021601 (2012).