NITROGEN-ENRICHED QUASARS IN THE SLOAN DIGITAL SKY SURVEY FIRST DATA RELEASE

Misty C. Bentz
Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210-1173; bentz@astronomy.ohio-state.edu

Patrick B. Hall
Princeton University Observatory, Princeton, NJ 08544-1001; pathall@astro.princeton.edu

AND

Patrick S. Osmer
Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210-1173; posmer@astronomy.ohio-state.edu

Received 2004 February 9; accepted 2004 April 30

ABSTRACT

The quasar Q0353-383 has long been known to have extremely strong nitrogen intercombination lines at 1486 and 1750 Å, implying an anomalously high nitrogen abundance of ~15 times solar. A search for similar nitrogen-rich quasars in the Sloan Digital Sky Survey First Data Release (SDSS DR1) catalog has yielded 20 candidates, including four with nitrogen emission as strong or stronger than that seen in Q0353-383. Our results indicate that only about one in 1700 of quasars have nitrogen abundances similar to Q0353-383, while up to one in 130 may be in the process of extreme nitrogen enrichment.

Key words: galaxies: active — quasars: emission lines — surveys

1. INTRODUCTION

The quasar Q0353-383 (Osmer & Smith 1980) is an unusual object, with prominent N iii] and C iv emission lines and abnormally weak C iii] and C iv lines compared with other quasars. To illustrate this point, Figure 1a displays the spectrum of Q0353-383 (J. Baldwin 1992, private communication) in comparison with a “normal” quasar spectrum given by the Sloan Digital Sky Survey (York et al. 2000) composite in Figure 1b (Vanden Berk et al. 2001). Osmer (1980) concluded that Q0353-383 has an anomalously high nitrogen abundance due to recent CNO processing in stars. Baldwin et al. (2003) used improved data and models to confirm and refine these conclusions and to determine that Q0353-383 has a metallicity of at least 5 times solar, and more likely 15 times solar. Simulations by Hamann & Ferland (1999) show that this level of overabundance is expected to occur near the end of an era of rapid metal enrichment, which can result in metallicities of as much as 10–20 times solar. The scarcity of objects like Q0353-383 may be an indication of the amount of time a quasar spends in this state of extreme metal enrichment before the gas supply is exhausted and the quasar becomes inactive.

As the only object of its kind known, Q0353-383 raises some obvious questions: what percentage of the quasar population is nitrogen strong, and what are the global properties of the nitrogen-strong quasar population? Until recently, answering these questions was difficult because of the relatively nonstandard collection of quasar data in various wavelength regimes and the lack of spectra with a high signal-to-noise ratio (S/N). The advent of the Sloan Digital Sky Survey (SDSS) has remedied this situation by working to compile, in one database, approximately 100,000 high-quality quasar spectra as it scans 10,000 deg2 of the north Galactic cap (York et al. 2000). Bentz & Osmer (2004) searched the SDSS Early Data Release (EDR, Stoughton et al. 2002) for objects similar to Q0353-383 and determined that although several objects have nitrogen emission that is unusually strong, none of the objects in the EDR Quasar Catalog (Schneider et al. 2002) with 1.8 < z < 4.1 have emission from both N iv] λ1486 and N iii] λ1750 with strengths that are comparable to Q0353-383. In this paper we have searched for nitrogen-rich quasars in the Quasar Catalog (Schneider et al. 2003) from the First Data Release (DR1, Abazajian et al. 2003), which covers almost 3 times the area on the sky as the EDR and has more than 4 times as many quasars. We present numerous objects with stronger nitrogen emission than is usually seen in quasars, including four objects that have emission as strong or stronger than that seen in Q0353-383.

2. SPECTRAL ANALYSIS

The SDSS DR1 Quasar Catalog (Schneider et al. 2003) covers an area of ~1360 deg2 of the sky, containing 16,713 objects with luminosities greater than M_i = −22 mag (for a cosmology with H_0 = 70, Ω_M = 0.3, and Ω_Λ = 0.7), at least one emission line with a FWHM larger than 1000 km s^{-1}, and reliable redshifts. The entire area scanned for the EDR is contained within DR1, and the quasar spectra from the EDR Quasar Catalog were run through the spectroscopic pipeline again after several modifications and improvements were made. To find quasars similar to Q0353-383, we focused our search on objects that exhibited the rest-frame ultraviolet nitrogen intercombination lines at 1486 and 1750 Å. It is important to note that N iv] λ1486 and N iii] λ1750 are collisionally deexcited at densities greater than ~10^{11} cm^{-3} (Ferland 1999), so it is possible for nitrogen-rich quasars to exist where a strong N v line would be the only indication (Hamann 1999). However, the detection of objects similar to Q0353-383 would help to set a lower limit on the population of nitrogen-rich quasars based on a larger sample size than previous studies, and further study of such objects could help to increase our knowledge of the end stages of quasar activity.

The SDSS DR1 database was searched for all quasars within the redshift range 1.6 < z < 4.1. This range ensures
that both N iv and N iii will be in the 3800–9200 Å range observed by the SDSS spectrograph. A total of 6650 objects met the redshift criterion. We used the redshift values determined by Schneider et al. (2003) to correct for cosmological expansion and place the spectra in a common rest frame. As many of the objects in the SDSS are faint and the features we searched for are weak, we first estimated the S/N per pixel (where 3 pixels ≈ 1 Å) of the spectra using the continuum between 1675 and 1725 Å. We threw out the noisiest spectra by making a cut at S/N > 3.45, reducing the sample to ~5600 quasars. We then ran a cross-correlation routine to compare a 30 Å window centered on 1750 Å with the same window in the rest frame spectrum of Q0353-383 to test for the presence or absence of an emission features in the location of N iii]. A further cut was made with the twofold criteria of a relative velocity offset less than 850 km s⁻¹ and a cross-correlation coefficient value of at least 0.35 for any feature detected in the N iii 30 Å window. The ~1350 objects that passed the cuts were then visually inspected to verify the presence of emission from nitrogen, as objects with features such as absorption or noise spikes could also be included in the sample. All objects with broad absorption-line profiles were immediately discounted (~6% of the sample). Only 198 (~15%) of the objects did not seem to have evidence for an emission feature near 1750 Å upon visual inspection. Objects that appeared to have prominent emission from both species of nitrogen were marked for further inspection.

Finally, equivalent widths of the N iv and N iii emission lines (W_NIV and W_NIII, respectively) were measured in the rest-frame spectra using a simple summing function with a two-point continuum interpolation. These are only guideline measurements and therefore have a typical error of 0.5–1.0 Å. Several of the objects that were selected with the cross-correlation method and subsequently passed the visual inspection were found to have relatively large values of W_NIV and W_NIII. Hereafter, we shall focus on those objects with W_NIV and W_NIII ≥ 2.0 Å (see Table 1 for their general properties and Table 2 for emission-line measurements). These quasars will hereafter be referred to as nitrogen-rich candidates, and their spectra are displayed in Figure 2. Table 3 lists another group of quasars that we shall refer to as nitrogen-salient quasars. These objects have obvious emission from at least one of the species of interest, but do not meet the above criteria of W_NIV and W_NIII ≥ 2.0 Å. In all, our search revealed 20 nitrogen-rich candidates and 31 nitrogen-salient quasars in the SDSS DR1 database.

2.1. Description of Candidates

The sample of candidate nitrogen-rich quasars presented here contains 20 objects that have similar features. Ten of the candidates have relatively flat F(z) continua, while the other 10 have slight blueward slopes. Most of the candidates are narrow-lined objects, although the FWHM of the C iv emission line ranges from ~950 to 4300 km s⁻¹, with a median FWHM of ~2100 km s⁻¹. All of the spectra show evidence for He ii λ1640 and O iii λ1663 emission, which will be important diagnostics for metallicity estimates, but in most of the candidates they are too blended for preliminary measurements at the S/N afforded by the SDSS spectra.

The profiles of the Lyα emission lines (for those candidates with z > 2.3 where Lyα has redshifted into the spectrograph range) are very narrow and sharp. All of these quasars have visibly separated N v emission, and three of the seven (SDSS J0342–0038, J1059+6638, and J1550+0236) have N v emission that is relatively unblended with the Lyα emission. The FWHM of the Lyα line ranges from ~1300 to 3000 km s⁻¹ with a median value of 1700 km s⁻¹, compared with ~6100 km s⁻¹ for the SDSS quasar composite of Vanden Berk et al. (2001). Osmer (1980) noticed that the value of the flux ratio C iv/ (Lyα+N v) was very low for Q0353-383, only 0.07 compared with average values of ~0.30, indicating a low carbon abundance. For the seven objects in this work with z > 2.3, the ratio of C iv/ (Lyα+N v) ranges from 0.09 to 0.20,

1 The cross-correlation routine was also used in a 30 Å window centered on λ1486 to search for emission from N iv. However, intrinsic absorption was a large cause of noise in the results of the cross-correlation on this area of the spectra, and the results from the N iv window were deemed more robust.
Table 1
Properties of Candidate Nitrogen-Rich Quasars

Quasar (SDSS J)	z^a	i^a	M_b	Additional Identifier	Notes^c	References^d
Q0353-3835.7	2.288	19.855	-25.88	SDSS J0240.59-003853.7	EDR	1
SDSS J0242-0038	2.843	19.116	-27.14		FIRST	2
SDSS J0745+4157	2.843	19.116	-27.14		FIRST	2
SDSS J0859+5014	1.930	18.932	-26.40		EDR	1
SDSS J0909+5014	1.793	18.986	-26.21		EDR	1
SDSS J1043+0047	2.558	19.277	-26.74		EDR	1
SDSS J1059+6638	3.075	19.874	-26.49		First	2
SDSS J1324+0352	2.659	19.270	-26.69		87GB	2, 4, 6, 7
SDSS J1336+0605	2.011	19.057	-26.35		EDR	1
SDSS J1447+5824	2.982	18.214	-28.07		FIRST	2
SDSS J1546+5253	1.839	18.319	-26.92		EDR	1
SDSS J1549+5506	3.137	18.333	-26.93		EDR	1, 5
SDSS J1637+4157	2.068	19.167	-26.32		First	2
SDSS J2040+0545	2.023	18.901	-26.61		EDR	1

^a Values taken from Schneider et al. (2003).

^b As determined by Schneider et al. (2003), with H₀ = 70, Ω_M = 0.3, Ω_Λ = 0.7, and α_Q = -0.5.

^c (EDR) SDSS Early Data Release source; (FIRST) Faint Images of the Radio Sky at Twenty cm source; (NRD) not detected in radio; (FSRQ) flat spectrum radio quasar; (SLC) superluminal candidate; (2MASS) Two Micron All Sky Survey source.

^d Cross-correlation coefficients for the 30 cm windows as described in the text; autocorrelation coefficients for Q0353-3835.

Table 2
Measured Equivalent Widths N_{iv} λ1486 and N_{iii} λ1750

Quasar	S/N^a	W (Å)^b	σ^c	CCC^d	W (Å)^b	σ^c	CCC^d
Q0353-3835	...	5.0	0.98	9.0	...	0.99	
SDSS J0242-0038	5.0	2.0	1.8	2.2	8.0	7.3	0.68
SDSS J0745+4157	8.1	3.0	4.4	0.39	4.0	5.9	0.86
SDSS J0859+5014	9.4	2.0	3.4	0.35	3.0	5.1	0.76
SDSS J0909+5014	4.1	4.0	3.0	0.31	8.0	6.0	0.85
SDSS J1043+0047	8.4	3.0	4.6	0.41	5.0	7.7	0.71
SDSS J1059+6638	5.6	4.0	4.1	0.47	4.0	4.1	0.59
SDSS J1130-0045	8.5	3.0	4.7	0.00	4.0	6.2	0.75
SDSS J1135-0002	5.0	4.0	3.7	0.66	6.0	5.5	0.80
SDSS J1136+0110	6.8	3.0	3.7	0.22	3.0	3.7	0.53
SDSS J1120-0100	5.7	5.0	5.2	0.31	3.0	3.1	0.66
SDSS J1254+0241	11.3	7.0	14.4	0.68	8.0	16.5	0.93
SDSS J1327+0035	9.6	3.0	5.3	0.46	5.0	8.8	0.94
SDSS J1337+0228	11.8	3.0	6.5	0.52	4.0	8.6	0.83
SDSS J1339+6328	8.6	4.0	6.3	0.63	4.0	6.3	0.70
SDSS J1447+5824	16.1	2.0	5.9	0.12	3.0	8.8	0.78
SDSS J1546+5253	10.5	5.0	9.6	0.35	2.0	3.8	0.84
SDSS J1549+5506	4.6	4.0	3.4	0.43	11.0	9.2	0.91
SDSS J1550+0236	3.5	7.0	4.5	0.36	7.0	4.5	0.41
SDSS J1637+4157	5.6	2.0	2.0	0.00	3.0	3.1	0.63
SDSS J2040-0545	7.7	3.0	4.2	0.71	6.0	8.4	0.65

^a S/N of the SDSS spectrum, measured between 1675 and 1725 Å before smoothing.

^b Guideline measurements in the quasar rest frame. Errors are estimated to be 0.5–1.0 Å.

^c Significance of detection, assuming a 30 Å window in the quasar rest frame.

^d Cross-correlation coefficients for the 30 Å windows as described in the text; autocorrelation coefficients for Q0353-3835.

^e Values taken from Baldwin et al. (2003).
with a median value of 0.17. The typical error on the measurement of this ratio for each object is only \(\pm 0.02\), so it seems that the nitrogen-rich candidates presented here have slightly larger relative carbon abundances than Q0353-383, while still being slightly depressed relative to the rest of the quasar population, as demonstrated by the somewhat higher value of 0.31 measured for the SDSS quasar composite. It is interesting to note that the object with the lowest value of this ratio (0.09) is SDSS J1550+0236, which appears to have much stronger \(N\)\(^{\text{iv}}\) and \(N\)\(^{\text{iii}}\) lines than the other six objects for which this ratio was calculated (see Table 2).

A composite spectrum was generated using all 20 of the candidate nitrogen-rich quasars. Each spectrum was divided by a fit to the continuum, scaling them all to a common continuum level of one. The scaled spectra were then averaged together, weighted by the S/N in the original spectra. Because of the various redshifts of the quasars, the region of overlap for all of the spectra is from \(\sim 1450\) to \(2250\) Å. Figure 3 displays the resulting composite overlaid by the SDSS composite from the EDR generated by Vanden Berk et al. (2001), which has also been scaled by dividing out the continuum. This particular method is useful for comparing emission lines individually, but obviously erases any information about the differences in the shapes of the continua of the two composites. The nitrogen-rich quasars are much stronger in the \(N\)\(^{\text{iv}}\) and \(N\)\(^{\text{iii}}\) emission lines, as well as \(Ly\alpha\). \(C\)\(^{\text{iv}}\) and \(C\)\(^{\text{iii}}\) seem to be slightly stronger in the nitrogen-rich quasars as well, although the FWHM of the \(C\)\(^{\text{iv}}\) line is much smaller in the nitrogen-rich

Fig. 2.—Rest-frame spectra of the 19 candidate nitrogen-rich quasars from the SDSS DR1 database. The spectra are smoothed with a bin of 5 pixels and plotted in semi-log format to enhance fine details. The dotted line is at \(N\)\(^{\text{iv}}\) \(\lambda 1486\) and the dashed line is at \(N\)\(^{\text{iii}}\) \(\lambda 1750\). Several of the spectra retain the signatures of night sky lines, but a handful of them also seem to have narrow absorption profiles. SDSS J0909+5803 and SDSS J1254+0241 have blueshifted absorption in \(Si\)\(^{\text{iv}}\), \(C\)\(^{\text{iv}}\), and \(Mg\)\(^{\text{ii}}\). SDSS J2040–0545 has blueshifted absorption in \(Si\)\(^{\text{iv}}\), \(C\)\(^{\text{iv}}\), and \(Al\)\(^{\text{iii}}\), and SDSS J1327+0035 has two blueshifted \(C\)\(^{\text{iv}}\) absorption systems. SDSS J1043+0047 has an associated absorption system in \(Ly\alpha\), \(N\)\(^{\text{v}}\), \(Si\)\(^{\text{iv}}\), and \(C\)\(^{\text{iv}}\), as well as two other associated \(C\)\(^{\text{iv}}\) absorbers. And SDSS J1546+5253 has an intervening \(Mg\)\(^{\text{ii}}\) and \(Fe\)\(^{\text{ii}}\) system at \(z = 0.792\), producing absorption in the \(Si\)\(^{\text{iv}}\) and \(C\)\(^{\text{iv}}\) emission lines.

BENTZ, HALL, & OSMER
composite than in the SDSS composite, with values of ~2560 and ~4850 km s$^{-1}$, respectively.

Based on the equivalent widths of their N iv λ1486 and N iii λ1750 emission lines, four of the 20 candidate nitrogen-rich quasars may be viewed as being similar to Q0353-383: SDSS J0909+5803, J1254+0241, J1546+5253, and J1550+0236. Figure 4 compares these four quasars, which all have $W_{\text{NIII}} \gtrsim 7.0$ Å and $W_{\text{NIV}} \gtrsim 4.0$ Å, compared with $W_{\text{NIII}} = 9.0$ Å, and $W_{\text{NIV}} = 5.0$ Å for Q0353-383.

As indicated in Table 1, several of the nitrogen-rich candidates discussed in this paper are also included in the SDSS EDR Quasar Catalog (Schneider et al. 2002), although the four candidates mentioned above with the strongest emission were discovered in the area of the DR1 not coincident with the EDR. For most of the objects that were not detected by Bentz & Osmer (2004) in their study of quasars in the EDR, the EDR spectra show obvious emission from N iii λ1750. However, there is only weak evidence for emission from N iv λ1486, and this is easily accounted for by the noise in the spectra. Fortunately, the SDSS spectroscopic pipeline has gone through several changes resulting in much cleaner spectra in the DR1 database, as shown by the comparison of the final EDR and DR1 spectra for SDSS J1136+0110 in Figure 5. What originally appeared to be noise in the EDR spectra of these objects is now more definitely shown to be weak emission. In addition, SDSS J1130+0045 was not detected by Bentz & Osmer (2004) because of the slight difference in the redshift cuts between the two searches. In this work we have examined quasars with $1.6 < z < 4.1$, while Bentz & Osmer (2004) only examined quasars with $1.8 < z < 4.1$. At a redshift of 1.66, SDSS J1130+0045 would not have been included in the EDR study.

3. CONCLUSIONS

We have searched 6650 quasars in the SDSS DR1 database for nitrogen-rich objects similar to Q0353-383. Four candidates have nitrogen emission as strong or stronger than that
TABLE 3

PROPERTIES OF NITROGEN-SALIENT CANDIDATE QUASARS

Quasar (SDSS J)	z\(^a\)	\(i^a\)	\(M_i^b\)	Additional Identifier	Notes\(^c\)	References\(^d\)
003815.93+140304.6...	2.718	19.794	−26.39			
004833.56+142056.8...	1.816	18.608	−26.67			
010527.72+143701.3...	1.939	19.171	−26.22			
012310.96−084053.7...	1.634	19.271	−25.71			
014517.79+135602.2...	1.949	18.866	−26.55			
022120.05−083351.0...	1.876	20.170	−25.10			
022203.24−091531.4...	1.742	18.948	−26.12			
025713.07−010157.8...	1.869	19.190	−26.15	[CLB91] 025440.2−011 EDR, pROSAT 1, 2, 3, 4		
025939.26−063158.4...	2.012	19.471	−26.04			
033832.65+004518.5...	1.839	19.240	−26.10	SDSS J033832.65+004518.4 EDR		1
040913.78+060839.0...	2.685	19.210	−26.98			
073048.37+371616.3...	1.676	19.672	−25.39			
091031.35+010151.9...	2.013	18.676	−26.76			
091745.24+555935.0...	1.961	19.060	−26.31			
092259.69+611530.6...	2.227	18.472	−27.19			
092541.46+004040.9...	1.935	19.681	−25.67			
113012.38+003314.7...	1.847	19.775	−26.47			
095150.60+593937.3...	1.926	19.142	−26.04			
102949.50+643835.9...	1.870	19.781	−25.45			
103013.61+010056.4...	2.035	19.882	−26.65			
113012.38+003314.7...	1.935	19.492	−25.85			
115357.27+002754.0...	1.672	19.094	−25.90			
121933.26+003226.4...	2.871	19.341	−26.89	SDSS J121933.25+003226.5 EDR, FIRST 1, 5		
122348.22+010221.9...	1.942	18.616	−26.74			
124727.25+030309.9...	1.635	19.120	−25.82			
125134.59+681824.2...	1.662	19.055	−25.91			
125925.03+642139.6...	1.948	19.235	−26.10			
141857.12+655524.4...	3.117	19.532	−26.86			
155003.71+031325.0...	1.788	17.648	−27.75			
210255.16+064112.2...	2.109	19.289	−26.38			

\(^a\) Values taken from Schneider et al. (2003).

\(^b\) As determined by Schneider et al. (2003), with \(H_0 = 70, \Omega_M = 0.3, \Omega_\Lambda = 0.7,\) and \(\alpha_Q = -0.5.\)

\(^c\) (EDR) SDSS Early Data Release source; (pROSAT) pointed Roentgen Satellite source; (FIRST) Faint Images of the Radio Sky at Twenty cm source; (2MASS) Two Micron All Sky Survey source.

\(^d\) This research has made use of NED.

REFERENCES.—(1) Schneider et al. 2003, (2) Vignali et al. 2003, (3) Véron-Cetty & Véron 2001, (4) Cristiani et al. 1989, (5) Becker et al. 2003, (6) Cutri et al. 2003.
seen in Q0353-383, and an additional 16 exhibit slightly weaker nitrogen emission. We have also identified 33 objects that may have visible N\(\text{iv}\) and N\(\text{iii}\) emission, although it is less clear from the quality of their spectra.

With the data available, we may set a lower limit of 0.06\% (about one in 1700) on the number of nitrogen-rich objects that are truly similar to Q0353-383. If we view Q0353-383 and its companion SDSS quasars as being the most extreme objects in a continuous phase of nitrogen enrichment, then it also appears that a lower limit of 0.2\%–0.7\% of quasars (up to one in 130) are approaching the nitrogen enrichment levels of their more extreme counterparts.

If nitrogen-strong quasars are quasars viewed at the peak of metal enrichment, then the length of that phase is approximately 1/1700th of the typical quasar lifetime. For example, for a quasar lifetime of 10\(^7\) yr, these objects would be viewed only in the last 6000 yr of their existence as quasars. Alternatively, it may be that only one in 1700 quasars reaches the extremely high metallicities needed to generate strong nitrogen emission.

Further data and modeling outside the scope of this paper are needed to place these quasars in their correct context within the overall quasar population. For example, if these quasars are near the end of their accretion phases, or are the most metal-rich because they are in the most massive bulges, their black holes should be biased toward higher masses than randomly selected quasars. However, there is no evidence of such a bias in the widths of the emission lines, which range from narrow to average.

Additional observations should be undertaken to obtain higher S/N spectra for more accurate measurements of the emission lines and also to push the observed wavelengths farther into the blue to gain the Ly\(\alpha\) and N\(\text{v}\) emission lines for those objects with \(z \approx 2\). With such additional data, metallicity estimates may be made using line ratios such as N\(\text{iii}\)/O\(\text{iii}\), N\(\text{iii}\)/C\(\text{iii}\), and N\(\text{v}\)/He\(\text{ii}\). These estimates would allow us to test the hypothesis that nitrogen-rich quasars are exhausting their fuel supplies and approaching the metallicities predicted by numerical simulations for black holes as they end their quasar activity.

We would like to thank Joe Shields for helpful comments and conversations. We are also very grateful to the referee, Don Schneider, for suggestions that considerably improved the presentation and value of this paper. Funding for the creation and distribution of the SDSS Archive has been provided by the
Alfred P. Sloan Foundation, the Participating Institutions, the National Aeronautics and Space Administration, the National Science Foundation, the U.S. Department of Energy, the Japanese Monbukagakusho, and the Max Planck Society. The SDSS Web site is http://www.sdss.org.

The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the University of Chicago, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, Los Alamos National Laboratory, the Max Planck Institute for Astronomy, the Max Planck Institute for Astrophysics, New Mexico State University, University of Pittsburgh, Princeton University, the US Naval Observatory, and the University of Washington.

REFERENCES

Abazajian, K., et al. 2003, AJ, 126, 2081
Baldwin, J. A., Hamann, F., Korista, K. T., Ferland, G. J., Dietrich, M., & Warner, C. 2003, ApJ, 583, 649
Becker, R. H., Helfand, D. J., White, R. L., Gregg, M. D., & Laurent-Mueheisen, S. A. 2003, VizieR Online Data Catalog, 8071
Becker, R. H., White, R. L., & Edwards, A. L. 1991, ApJS, 75, 1
Bentz, M. C., & Osmer, P. S. 2004, AJ, 127, 576
Cristiani, S., Barbieri, C., La Franca, F., Iovino, A., & Nota, A. 1989, A&AS, 77, 161
Croom, S. M., Smith, R. J., Boyle, B. J., Shanks, T., Loaring, N. S., Miller, L., & Lewis, I. J. 2001, MNRAS, 322, L29
Cutri, R. M., et al. 2003, VizieR Online Data Catalog, 2246
Ferland, G. 1999, in ASP Conf. Ser. 162, Quasars and Cosmology, ed. G. Ferland & J. Baldwin (San Francisco: ASP), 147
Hamann, F. 1999, in ASP Conf. Ser. 162, Quasars and Cosmology, ed. G. Ferland & J. Baldwin (San Francisco: ASP), 409
Hamann, F., & Ferland, G. 1999, ARA&A, 37, 487
Osmer, P. S. 1980, ApJ, 237, 666
Osmer, P. S., & Smith, M. G. 1980, ApJS, 42, 333
Schneider, D. P., et al. 2002, AJ, 123, 567
———. 2003, AJ, 126, 2579
Stoughton, C., et al. 2002, AJ, 123, 485
Véron-Cetty, M.-P., & Véron, P. 2001, A&A, 374, 92
Vanden Berk, D. E., et al. 2001, AJ, 122, 549
Vermeulen, R. C., & Taylor, G. B. 1995, AJ, 109, 1983
Vignali, C., Brandt, W. N., & Schneider, D. P. 2003, AJ, 125, 433
York, D. G., et al. 2000, AJ, 120, 1579