Olfactory and Gustatory Dysfunctions In 100 Patients Hospitalized For Covid-19: Sex Differences and Recovery Time In Real-Life

Simone Meini ( simonemeini2@gmail.com)
Internal Medicine Unit, Santa Maria Annunziata Hospital, Firenze, Italy https://orcid.org/0000-0002-8711-8305

Lorenzo Roberto Suardi
Infectious Disease Unit, Santa Maria Annunziata Hospital, Firenze, Italy

Michele Busoni
Otolaryngology-Head & Neck Surgery Unit, Santa Maria Nuova Hospital, Firenze, Italy

Anna Teresa Roberts
Medical Department-Hospital Area, AUSL Toscana Nord-Ovest, Pisa, Italy

Alberto Fortini
Internal Medicine Unit, Nuovo San Giovanni di Dio Hospital, Firenze, Italy

Research Article

Keywords: COVID-19, ageusia, anosmia, recovery, sex, age

DOI: https://doi.org/10.21203/rs.3.rs-28881/v1

License: ☝️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Purpose. COVID-19 displays a variety of clinical manifestations; in pauci-symptomatic patients olfactory (OD) and gustatory dysfunctions (GD) may represent the first or only symptom. To date, literature addressing these disorders is scarce. Aim of this study is to investigate the timing of recovery from OD and GD in a real-life COVID-19 population.

Methods. We followed up by a phone interview the first 100 patients discharged a month earlier from three Italian non-intensive care wards.

Results. All patients were Caucasian, mean age was 65 years, 60% were males. OD and GD were early symptoms reported by 29% and 41% of patients, respectively. Among the 42 symptomatic patients, the male/female ratio was 2:1; 83% reported an almost resolved dysfunction at follow-up. The recovery rate was not significantly different between males and females. The mean duration of OD and GD was 18 and 16 days, respectively. The mean recovery time from OD or GD resulted significantly longer for females than for males (26 vs 14 days, p=0.009). Among the 42 symptomatic, the mean age of males was significantly higher than that of females (66 vs 57 years, p=0.04), while the opposite was observed in the 58 asymptomatic patients (60 vs 73 years, p=0.0018).

Conclusions. Recovery from OD or GD was rapid, occurring within 4 weeks in most patients. Chemosensory dysfunctions in women was less frequent, but longer lasting. The value of our study is its focus on a significantly older population than those previously described, and to add further data on gender differences.

Introduction

Starting in December 2019 in Wuhan (Hubei province, China), a novel coronavirus, designated SARS-CoV-2, has caused an international outbreak of a respiratory illness (COVID-19), rapidly evolving into a pandemic. Most cases are asymptomatic or self-limiting, but the clinical spectrum extends to severe progressive pneumonia with acute respiratory distress syndrome, a life-threatening condition requiring mechanical ventilation and intensive care support. A wide variety of clinical manifestations have been described, also involving the central nervous system [1]. In a not negligible number of patients, especially pauci-symptomatic ones, olfactory (OD) and gustatory dysfunctions (GD) may represent the first or only symptom. Data on chemosensory dysfunctions (CD) have been published only very recently, and the prevalence described is surprisingly variable: 5.1% and 5.6% in a Chinese cohort [1], reaching 86% and 88% in a European study [2], for OD and GD, respectively. The two populations in question were very different regarding severity of illness and age: Mao and coworkers [1] studied a population of hospitalized patients with a mean age of 53 years, of which 41% presenting severe infection according to their respiratory status, Lechien's cases [2] were mainly mild-to-moderate, with a mean age of 37 years, so both relatively young populations, possibly non representative of real-life COVID-19 patients.
Furthermore, the brief follow-up period in both studies, limited to the acute phase, did not allow to assess permanent anosmia or ageusia, and, to date, it is not well known whether recovery of olfactory and gustatory functions will be complete nor how long it will take.

The aim of our study is to investigate the timing of recovery from olfactory and gustatory dysfunctions in a cohort of COVID-19 patients hospitalized one month earlier in non-intensive care wards, an older population than that previously investigated in the early phases of the COVID-19 pandemic.

Materials And Methods

In April 2020 we followed up the first 100 COVID-19 patients discharged a month earlier from three non-intensive care wards in Florence, Italy (Internal Medicine Units of the “Santa Maria Annunziata” and “Nuovo San Giovanni di Dio” hospitals, and Infectious Disease Unit of the “Santa Maria Annunziata” hospital). From the computerized database of these hospitals we identified all adults hospitalized and diagnosed as COVID-19 by reverse transcriptase-polymerase chain reaction (RT-PCR) testing for SARS-CoV-2 on nasopharyngeal swab. The occurrence of neurological disorders during hospitalization was assessed from the electronic charts.

We telephoned each patient and asked if he/she had had, at any time of the disease, OD and/or GD, and if so, how many days it lasted. In case of persistence, interviewees were asked to score the subjective function recovery on a 100-point scale [3].

We considered recovery as nearly complete when patients reported a recovery of 80-95 points and considered the loss not disabling and almost resolved; recovery was considered complete for 100 points.

We focused solely on olfactory and gustatory disorders, thus clinical presentation and comorbidities (except the assessment of pre-existing olfactory and gustatory dysfunctions and chronic sinonasal disorders) were not considered in this survey. Patients with reported cognitive impairment, unlikely to answer reliably, were excluded from follow-up study. Data were collected in a dedicated case record form.

Continuous variables were presented as mean values and the categorical variables were presented as counts and percentages. Analyses were mainly descriptive. We compared continuous variables by using Student’s t-test proportions for categorical variables by using the χ^2 test or Fisher exact test. We considered a p value below 0.05 to be statistically significant. We used for all analyses MedCalc® statistical software version 16.4.3 (Ostend, Belgium).

Results

All 100 patients responded to the survey. All patients were Caucasian, mean age (±standard deviation) was 65±15 years (range 29-94 years), and 60% were males. No patient had previously suffered from similar dysfunctions, nor suffered from chronic sinonasal disorders. No patient presented any relevant neurological disorder (excluding headache) during hospitalization.
In the group reporting no dysfunction (58% of patients) the mean age was 66 years.

OD and GD were early symptoms reported by 29% and 41% of overall patients, respectively.

Forty-two patients complained of OD or GD; their mean age was 63 years. Out of these 42 symptomatic patients, 28 were males, thus the male/female ratio was 2:1. Of the 42 symptomatic patients, 64% reported a complete and 19% a near complete recovery, thus 83% reported an almost resolved dysfunction at follow-up. The recovery rate was not significantly different between males and females. The mean duration of OD and GD in the entire population of symptomatic was 18 and 16 days, respectively. The mean recovery time from OD or GD resulted significantly longer for females than for males (26 vs 14 days, \(p=0.009 \)).

Among the 42 symptomatic patients, the mean age of males was significantly higher than that of females (66 vs 57 years, \(p=0.04 \)), while the opposite was observed in the 58 asymptomatic patients (60 vs 73 years, \(p=0.0018 \)).

A partial recovery (30-50 points) from GD was reported by 4/42 patients after a mean of 32 days, in 2 cases with associated OD. Three patients reported no improvement of both ageusia and anosmia after a mean of 27 days.

Table 1 shows the demographical characteristics and the recovery rate and time observed in our population.

Discussion And Conclusions

In our experience, among a population of hospitalized COVID-19 patients aged 65 years, 42% complained of olfactory (anosmia or hyposmia) or gustatory (ageusia or dysgeusia) dysfunctions: this percentage resulted half of that reported by Lechien et al. [2] in a younger population, but higher than that reported by Mao et al. [1] in their hospitalized patients.

OD and GD were reported, respectively, as early symptoms by 29% and 41% of our patients: the lower incidence of smell over taste disturbances has been reported also by Klopfenstein et al. [4] (47% vs 85%), and, as previously mentioned, by Mao et al. [1] and Lechien et al. [2].

Females have been reported [2,4] as significantly more affected by these dysfunctions, but our study, in which females accounted for 40% of total population (a percentage which reflects the documented male predisposition for COVID-19 [5]), did not confirm this data. In fact, most women (65%) did not report any taste or smell symptom.

In our cohort, recovery from OD/GD was rapid, occurring within 4 weeks in most patients, and the mean recovery time from OD or GD resulted significantly longer for females than for males (26 vs 14 days,
Lechien et al. [2] already reported an early olfactory recovery rate of 44%, occurring within the first 8 days following the resolution of the disease in 73% of patients with OD. Klopfenstein et al. [4] reported a mean duration of anosmia of 9 days, with a complete recovery occurring in almost all patients within 4 weeks.

In our study chemosensory dysfunctions in women was less frequent, but longer lasting.

Our observations derive from a small sample of patients: they confirm in part what has recently been reported about these dysfunctions by other authors, in particular the rapid recovery time. The value of our study is its focus on a significantly older population than those previously described, more representative of real-life COVID-19 epidemiology, and to further investigate the gender differences.

Smell and taste loss have been reported as being significantly higher in COVID-19 patients versus non-COVID-19 patients with influenza-like symptoms (68% and 71% vs 16 and 17%, respectively) [6]. Moreover, the rapid recovery observed in COVID-19 differs from other post-viral OD, for which over 80% of the patients reported recovery after one year and longer [3], suggesting a slow regeneration of the olfactory epithelium and olfactory bulb. The damage SARS-CoV-2 inflicts on taste and smell must be different from that of other viruses, but the pathophysiological mechanisms are largely unknown. Gilani et al. [7] hypothesized that the mechanism of injury is similar to that of other coronaviruses infections that cause central and peripheral neurologic deficits, but we agree with Vaira et al. [8] when they suggest that, given the high rate of rapid recovery, it is reasonable to hypothesize that the OD is not related to definitive damage from the virus to the neuronal cells, and a damage to other cell types appears more likely. In case of SARS-CoV-2-induced anosmia, magnetic resonance imaging of the olfactory bulb did not show abnormal findings regarding its volume or signal intensity [9]. Moreover, the rapid recovery leads us to hypothesize the role of a biochemical mediator. The question is: what could it be? We can only speculate.

One clue could be that angiotensin-converting-enzyme (ACE)-inhibitors can cause OD [10]. SARS-CoV-2 enters host cells by binding (then down-regulating it) the ACE2 receptor [11]: ACE2 receptor and TMPRSS2 proteases, crucial for S protein priming, are both expressed by non-neuronal cells of the olfactory epithelium [12], and ACE2 is diffusely expressed on the mucous membrane of the oral cavity, particularly on the tongue [13]. The reduced activity of ACE and ACE2 leads to increased levels of bradykinin (BK) and [des-Arg9]-BK, respectively: these kinins, through their receptors B2R and B1R, could mediate many features observed in COVID-19, such as dry cough, inflammation, pain, vasodilation, and vascular permeability. BK seems also involved in GD, through a neurogenic inflammatory mechanism or an excess of activity directly in the central nervous system [14], and it is interesting to note that BK can also mediate a painful warm sensation [14] trough the ion channel TRPA1 on trigeminal neurons that project to the tongue [15]: it is known that some COVID-19 patients also reported a burning mouth symptom. Finally, B2R has been described in the olfactory bulb [16], where it obviously has a role to play. In COVID-19 patients, olfactory dysfunction is not associated with rhinorrhea or nasal obstruction [2], but
for the above-mentioned reasons, we do believe that the role of BK cannot be excluded in determining olfactory and/or gustatory dysfunctions.

We still have a long way to go in understanding the pathogenesis of these COVID-19-associated symptoms, and we hope for more research in this field, not least because it could help to better clarify the mechanisms leading to life-threatening organ damage. Finally, we agree with those [17] who recommend that, pending definitive evidence, in the context of the current pandemic, any patient with a new isolated olfactory or gustatory dysfunction should be considered as being infected with SARS-CoV-2 until proven otherwise.

Declarations

Funding: None

Conflicts of interest/Competing interests: The authors declare that they have no conflict of interest

The study was performed in compliance with international ethical standards. The analysis used anonymous clinical data. Informed consent was waived because of the retrospective nature of the study. The authors have no conflict of interest to declare, and the study was performed as part of their routine work

References

1) Mao L, Jin H, Wang M, Hu Y, Chen S, He Q et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020. doi: 10.1001/jamaneurol.2020.1127.

2) Lechien JR, Chiesa-Estomba CM, De Siati DR, Horoi M, Le Bon SD, Rodriguez A et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. 2020. doi: 10.1007/s00405-020-05965-1.

3) Lee DY, Lee WH, Wee JH, Kim JW. Prognosis of postviral olfactory loss: follow-up study for longer than one year. Am J Rhinol Allergy. 2014; 28(5):419-22

4) Klopfenstein T, Kadiane-Oussou NJ, Toko L, Royer PY, Lepiller Q, Gendrin V, Zayet S. Features of anosmia in COVID-19. Med Mal Infect. 2020. pii: S0399-077X(20)30110-4. doi: 10.1016/j.medmal.2020.04.006.

5) Cai H. Sex Difference and Smoking Predisposition in Patients With COVID-19. Lancet Respir Med 2020 Mar 11[Online ahead of print]
6) Yan CH, Faraji F, Prajapati DP, Boone CE, DeConde AS. Association of chemosensory dysfunction and Covid-19 in patients presenting with influenza-like symptoms. Int Forum Allergy Rhinol. 2020. doi: 10.1002/alr.22579.

7) Gilani S, Roditi R, Naraghi M. COVID-19 and anosmia in Tehran, Iran. Med Hypotheses. 2020; 141:109757. doi: 10.1016/j.mehy.2020.109757.

8) Vaira LA, Salzano G, Fois AG, Piombino P, De Riu G. Potential pathogenesis of ageusia and anosmia in COVID-19 patients. Int Forum Allergy Rhinol. 2020. doi: 10.1002/alr.22593

9) Galougahi MK, Ghorbani J, Bakhshayeshkaram M, Naeini AS, Haseli S. Olfactory Bulb Magnetic Resonance Imaging in SARS-CoV-2-Induced Anosmia: The First Report. Acad Radiol. 2020. pii: S1076-6332(20)30194-X. doi: 10.1016/j.acra.2020.04.002.

10) Scangas GA, Bleier BS. Anosmia: Differential diagnosis, evaluation, and management. Am J Rhinol Allergy 2017; 31: e3-7

11) Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020; 181(2):271-280

12) Butowt R, Bilinska K. SARS-CoV-2: Olfaction, Brain Infection, and the Urgent Need for Clinical Samples Allowing Earlier Virus Detection. ACS Chem Neurosci. 2020. doi: 10.1021/acschemneuro.0c00172.

13) Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020;12(1):8

14) Belowska-Bień K, Szeląg E, Szeląg J, Skrzypiec-Spring M. Bradykinin - an undervalued mediator? Post N Med 2017; 8: 440-6

15) Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 2004; 41 (6): 849-57

16) Chen EY, Emerich DF, Bartus RT, Kordower JH. B2 bradykinin receptor immunoreactivity in rat brain. J Comp Neurol. 2000;427(1):1-18.

17) Reinhard A, Ikonomidis C, Broome M, Gorostidi F. Anosmia and COVID-19. Rev Med Suisse. 2020;16: 849-51

Table 1
COVID-19 Group (n=100)	All population (n=42)	OD or GD (n=29)	OD (n=18)	GD (n=11)	No dysfunction (n=58)
Sex (n=number pts)	Males (n=60)	Males (n=28)	Males (n=18)	Males (n=28)	Males (n=32)
	Females (n=40)	Females (n=14)	Females (n=11)	Females (n=13)	Females (n=26)
Age, mean, years	63	66	66	66	66
	67	57	57	57	60
	66	66	66	66	73
P value	P=0.16	P=0.04	P=0.12	P=0.04	P=0.0018
Recovery rate (%)	-	25 (89)	16 (89)	25 (89)	-
	-	10 (71)	8 (73)	9 (69)	NA
P value	-	P=0.12	P=0.33	P=0.18	NA
Recovery time, mean, days	-	14	16	14	-
	-	26	25	27	NA
P value	-	P=0.009	P=0.07	P=0.0021	NA

Table 1. Sex differences and recovery rate and time in 100 hospitalized COVID-19 patients

Legend.

OD: olfactory dysfunction; GD: gustatory dysfunction; NA: not applicable;