The Square Trees in the Tribonacci Sequence

Huang Yueke† Wen Zhiying‡

Abstract: The Tribonacci sequence T is the fixed point of the substitution $\sigma(a, b, c) = (ab, ac, a)$. In this note, we get the explicit expressions of all squares, and then establish the tree structure of the positions of repeated squares in T, called square trees. Using the square trees, we give a fast algorithm for counting the number of repeated squares in $T[1, n]$ for all n, where $T[1, n]$ is the prefix of T of length n. Moreover, we get explicit expressions for some special n such as $n = t_m$ (the Tribonacci number) etc., which including some known results such as H. Mousavi and J. Shallit[6].

Key words: the Tribonacci sequence, kernel, square, gap sequence.

2010 MR Subject Classification: 11B85; 68Q45

1 Introduction

Let $A = \{a, b, c\}$ be a three-letter alphabet. The Tribonacci sequence T is the fixed point beginning with a of the substitution $\sigma(a, b, c) = (ab, ac, a)$. As a natural generalization of the Fibonacci sequence, T has been studied extensively by many authors, see [1–6][7][8].

Let ω be a factor of T, denoted by $\omega \prec T$. Let ω_p be the p-th occurrence of ω. If the factor ω and integer p such that $\omega_p \omega_{p+1} \prec T$, we call $\omega_p \omega_{p+1}$ a square of T. As we know, T contains no fourth powers. The properties of squares and cubes are objects of a great interest in mathematics and computer science etc.

We denote by $|\omega|$ the length of ω. Denote $|\omega|_\alpha$ the number of letter α in ω, where $\alpha \in A$. Let $\tau = x_1 \cdots x_n$ be a finite word (or $\tau = x_1 x_2 \cdots$ be a sequence). For any $i \leq j \leq n$, define $\tau[i, j] = x_i x_{i+1} \cdots x_j x_j$. By convenient, denote $\tau[i, i] = \tau[i, i] = x_i$, $\tau[i, i-1] = \varepsilon$ (empty word). Denote $T_m = \sigma^m(a)$ for $m \geq 0$, $T_m = \varepsilon, T_m = c$. Denote $t_m = |T_m|$ for $m \geq -2$, called the m-th Tribonacci number. Denote by δ_m the last letter of T_m for $m \geq -1$.

Denote $A(n) = \#\{\omega, p : \omega_p \omega_{p+1} \prec T[1, n]\}$ the number of repeated squares in $T[1, n]$. In 2014, H. Mousavi and J. Shallit[6] gave expression of $A(t_m)$, which they proved by mechanical way. In [4], we give a fast algorithm for counting the number of repeated squares in each prefix of the Fibonacci sequence. In this note, we give a fast algorithm for counting $A(n)$ for all n. In Section 2, we establish the tree structure of the positions of repeated squares in T, called the square trees. Section 3 is devoted to give a fast algorithm for counting $A(n)$. As a special case, we get expression of $A(t_m)$ in Section 4.

The main tools of the paper are “kernel word” and “gap sequence”, which introduced and studied in [2]. We define the kernel numbers that $k_0 = 0, k_1 = k_2 = 1, k_m = k_{m-1} + k_{m-2} + k_{m-3} - 1$ for $m \geq 3$. The kernel word with order m is defined as $K_1 = a, K_2 = b, K_3 = c, K_m = \delta_{m-1} T_m-3[1, k_m - 1]$ for $m \geq 4$. Using the property of gap sequence, we can determine the positions of all ω_p, and then establish the square trees.

2 The square trees

In [3], we determined the three cases of squares with kernel K_m (i.e., the maximal kernel word occurring in these squares is K_m). For $m \geq 4$ and $p \geq 1$, we denote

$$A(m, p) = pt_{m-1} + |T[1, p-1]|t_{m-2} + |T[1, p-1]|t_{m-3} + |T[1, p-1]|t_{m-2}.$$
By Property 6.1 in [5], we have the position of the last letter of the p-th occurrence of \(K_m \) that
\[P(K_m,p) = \Lambda(m,p) + k_m - 1. \]
Thus we can define three sets for \(m \geq 4 \) and \(p \geq 1 \), which contain the three cases of squares, respectively.

\[
\begin{align*}
\langle 1, K_m, p \rangle &= \{ P(\omega, p) : \text{Ker}(\omega\omega) = K_m, |\omega| = t_{m-1}, \omega \prec T \} \\
&= \{ \Lambda(m,p) + t_{m-1}, \cdots, \Lambda(m,p) + k_{m+3} - 2 \}; \\
\langle 2, K_m, p \rangle &= \{ P(\omega, p) : \text{Ker}(\omega\omega) = K_m, |\omega| = t_{m-4} + t_{m-3}, \omega \prec T \} \\
&= \{ \Lambda(m,p) + t_{m-3} + t_{m-4}, \cdots, \Lambda(m,p) + k_{m+2} - 2 \}; \\
\langle 3, K_m, p \rangle &= \{ P(\omega, p) : \text{Ker}(\omega\omega) = K_m, |\omega| = t_{m-4} - k_{m-3}, \omega \prec T \} \\
&= \{ \Lambda(m,p) + k_m - 1, \cdots, \Lambda(m,p) + 2t_{m-4} - 1 \}.
\end{align*}
\]

For \(m \geq 4 \) and \(p \geq 1 \), we consider the sets

\[
\begin{align*}
\Gamma_{1,m,p} &= \{ \Lambda(m,p) + k_{m+2} - 1, \cdots, \Lambda(m,p) + k_{m+3} - 2 \}; \\
\Gamma_{2,m,p} &= \{ \Lambda(m,p) + k_{m+1} - 1, \cdots, \Lambda(m,p) + k_{m+2} - 2 \}; \\
\Gamma_{3,m,p} &= \{ \Lambda(m,p) + k_m - 1, \cdots, \Lambda(m,p) + k_{m+1} - 2 \}.
\end{align*}
\]

Obviously, \(\langle 1, K_m, p \rangle \) (resp. \(\langle 2, K_m, p \rangle \), \(\langle 3, K_m, p \rangle \)) contains the several maximal (resp. maximal, minimal) elements of \(\Gamma_{1,m,p} \) (resp. \(\Gamma_{2,m,p} \), \(\Gamma_{3,m,p} \)). Moreover \(\max \Gamma_{2,m,p} + 1 = \min \Gamma_{1,m,p} \) and \(\max \Gamma_{3,m,p} + 1 = \min \Gamma_{2,m,p} \). Using Lemma 6.4 in [5], comparing minimal and maximal elements in these sets below, we have

\[
\begin{align*}
\Gamma_{1,m,p} &= \Gamma_{3,m,p} - P(a,p)+1 \cup \Gamma_{2,m,p} - P(b,p)+1 \cup \Gamma_{1,m,p} - P(a,p)+1, \quad m \geq 4; \\
\Gamma_{2,m,p} &= \Gamma_{3,m,p} - P(b,p)+1 \cup \Gamma_{2,m,p} - P(b,p)+1 \cup \Gamma_{1,m,p} - P(b,p)+1, \quad m \geq 5; \\
\Gamma_{3,m,p} &= \Gamma_{3,m,p} - P(c,p)+1 \cup \Gamma_{2,m,p} - P(c,p)+1 \cup \Gamma_{1,m,p} - P(c,p)+1, \quad m \geq 6.
\end{align*}
\]

Thus we establish the recursive relations for any \(\Gamma_{1,m,p} \) (\(m \geq 4 \)), \(\Gamma_{2,m,p} \) (\(m \geq 5 \)) and \(\Gamma_{3,m,p} \) (\(m \geq 6 \)). By the relation between \(\Gamma_{i,m,p} \) and \(\langle i, K_m, p \rangle \), we get the tree structure of the positions of repeated squares in \(T \), called the square trees.

\[
\begin{align*}
\pi_1(1, K_m, p) &= \langle 3, K_{m-1}, \hat{a} \rangle \cup \langle 2, K_{m-1}, \hat{a} \rangle \cup \langle 1, K_{m-1}, \hat{a} \rangle, m \geq 4; \\
\pi_2(2, K_m, p) &= \langle 3, K_{m-2}, \hat{b} \rangle \cup \langle 2, K_{m-2}, \hat{b} \rangle \cup \langle 1, K_{m-2}, \hat{b} \rangle, m \geq 5; \\
\pi_3(3, K_m, p) &= \langle 3, K_{m-3}, \hat{c} \rangle \cup \langle 2, K_{m-3}, \hat{c} \rangle \cup \langle 1, K_{m-3}, \hat{c} \rangle, m \geq 6.
\end{align*}
\]

Here we denote \(P(\alpha, p) + 1 \) by \(\hat{\alpha} \) for short, \(\alpha \in \{a,b,c\} \).

On the other hand, for \(m \geq 4 \) and \(i \in \{1,2,3\} \), each \(\langle i, K_m, 1 \rangle \) belongs to the square trees. Moreover \(\langle i, K_m, \hat{\alpha} \rangle \) (resp. \(\langle i, K_m, \hat{b} \rangle \), \(\langle i, K_m, \hat{c} \rangle \)) is subset of \(\pi_1(1, K_{m+1}, p) \) (resp. \(\pi_2(2, K_{m+2}, p) \), \(\pi_3(3, K_{m+3}, p) \)). Notice that \(\mathbb{N} = \{1\} \cup \{P(a,p) + 1\} \cup \{P(b,p) + 1\} \cup \{P(c,p) + 1\} \), the square trees contain all \(\langle i, K_m, p \rangle \), i.e. all squares in \(T \). Fig. 4 shows some examples.

3 Algorithm: the numbers of repeated squares in \(T[1, n] \)

Denote \(a(n) = \#\{ (\omega, p) : \omega \omega \omega \omega + 1 \succ T[1, n] \} \) the number of squares ending at position \(n \). By Proposition 3.1 we can calculate \(a(n) \), and otherwise calculate \(A(n) \) by \(A(n) = \sum_{i=4}^{n} a(i) \). For \(m \geq 4 \), since \(k_m = \frac{t_m - 2t_{m-1} + t_{m-2} + 1}{2} \),

\[
\begin{align*}
\Gamma_{1,m,1} &= \{ t_m + 2t_{m-1} - t_{m-2} - 1, \ldots, t_m + 2t_{m-1} + t_{m-2} - 3 \}; \\
\Gamma_{2,m,1} &= \{ -t_m + 4t_{m-1} - t_{m-2} - 1, \ldots, t_m + 2t_{m-1} - t_{m-2} - 3 \}; \\
\Gamma_{3,m,1} &= \{ t_m + t_{m-2} - 1, \ldots, -t_m + 4t_{m-1} - t_{m-2} - 3 \}.
\end{align*}
\]
Figure 1: (a)-(c) are square trees from root $\langle 1, K_6, 1 \rangle$, $\langle 2, K_7, 1 \rangle$, $\langle 3, K_7, 1 \rangle$, respectively.
(a) \(\Phi_m = \frac{m}{37}(-5t_m + 14t_{m-1} + 4t_{m-2}) + \frac{1}{14}(67t_m - 166t_{m-1} + 5t_{m-2}) + \frac{1}{4} \).

(b) \(\sum a(\Gamma_{i,4,1}) = 1 \) where \(i \in \{1, 2, 3\} \), and

\[
\begin{aligned}
\sum a(\Gamma_{1,m,1}) &= \frac{m}{37}(4t_m - 9t_{m-1} + 10t_{m-2}) + \frac{1}{14}(19t_m + 36t_{m-1} - 169t_{m-2}) - \frac{1}{4}; \\
\sum a(\Gamma_{2,m,1}) &= \frac{m}{37}(10t_m - 6t_{m-1} - 19t_{m-2}) + \frac{1}{14}(-189t_m + 156t_{m-1} + 331t_{m-2}) - \frac{1}{4}; \\
\sum a(\Gamma_{3,m,1}) &= \frac{m}{37}(-19t_m + 29t_{m-1} + 13t_{m-2}) + \frac{1}{14}(237t_m - 358t_{m-1} - 157t_{m-2}) + \frac{3}{4}.
\end{aligned}
\]

(c) \(\sum_{j=4}^{m-1} \Phi_j = \frac{m}{37}(13t_m - 10t_{m-1} + 5t_{m-2}) + \frac{2}{14}(-8t_m + 8t_{m-1} - 7t_{m-2}) + \frac{m}{4} + 2. \)

\[
\begin{aligned}
A(\max \Gamma_{3,m,1}) &= \frac{m}{37}(-25t_m + 48t_{m-1} + 31t_{m-2}) + \frac{1}{14}(173t_m - 294t_{m-1} - 213t_{m-2}) + \frac{m+11}{4}; \\
A(\max \Gamma_{2,m,1}) &= \frac{m}{37}(-5t_m + 36t_{m-1} - 7t_{m-2}) + \frac{1}{14}(-8t_m + 69t_{m-1} + 59t_{m-2}) + \frac{m+10}{4}; \\
A(\max \Gamma_{1,m,1}) &= \frac{m}{37}(3t_m + 18t_{m-1} + 13t_{m-2}) + \frac{1}{14}(3t_m - 102t_{m-1} - 51t_{m-2}) + \frac{m+9}{4}.
\end{aligned}
\]

Figure 2: These properties can be proved easily by induction, where (a) and (c) hold for \(m \geq 4 \), (b) and (d) hold for \(m \geq 5 \).

Proposition 3.1. \(a([8]) = [1] \), \(a([9, 10]) = [0, 1] \), \(a([11, \cdots, 14]) = [0, 0, 0, 1] \), \(a([15, 16]) = [1, 1] \), \(a([17, \cdots, 20]) = [0, 0, 1, 1] \), \(a([28, \cdots, 31]) = [1, 1, 1, 1] \),

\[
\begin{aligned}
a(\Gamma_{1,m,1}) &= [a(\Gamma_{3,m-1,1}), a(\Gamma_{2,m-1,1}), a(\Gamma_{1,m-1,1})] + \left[\underbrace{0, \ldots, 0}_{t_{m-2}-k_{m+1}}, \underbrace{1, \ldots, 1}_{k_{m-1}} \right]; \\
a(\Gamma_{2,m,1}) &= [a(\Gamma_{3,m-2,1}), a(\Gamma_{2,m-2,1}), a(\Gamma_{1,m-2,1})] + \left[\underbrace{0, \ldots, 0}_{t_{m-3}-k_{m+1}}, \underbrace{1, \ldots, 1}_{k_{m-1}} \right]; \\
a(\Gamma_{3,m,1}) &= [a(\Gamma_{3,m-3,1}), a(\Gamma_{2,m-3,1}), a(\Gamma_{1,m-3,1})] + \left[\underbrace{1, \ldots, 1}_{t_{m-4}-k_{m+1}}, \underbrace{0, \ldots, 0}_{k_{m-3}-1} \right].
\end{aligned}
\]

Denote \(\Phi_m = \sum a(\Gamma_{3,m,1}) + \sum a(\Gamma_{2,m,1}) + \sum a(\Gamma_{1,m,1}) \). The immediately corollaries of Proposition 3.1 are \(\sum a(\Gamma_{1,m,1}) = \Phi_{m-1} + k_m - 1 \), \(\sum a(\Gamma_{2,m,1}) = \Phi_{m-2} + k_m - 1 \), \(\sum a(\Gamma_{3,m,1}) = \Phi_{m-3} + t_m - 4 - k_{m-3} + 1 \). Moreover, for \(m \geq 7 \),

\[
\Phi_m = \Phi_{m-1} + \Phi_{m-2} + \Phi_{m-3} + \frac{-3t_m + 6t_{m-1} + t_{m-2} - 1}{2}.
\]

By induction, we can prove the 4 properties in Fig 2.

Obversely we can calculate \(A(n) \) by \(A(n) = \sum_{i=1}^{n} a(i) \). But when \(n \) large, this method is complicated. Now we turn to give a fast algorithm. For any \(n \geq 52 \), let \(m \) such that \(n \in \Gamma_{3,m,1} \cup \Gamma_{2,m,1} \cup \Gamma_{1,m,1} = \{ \frac{t_m + t_m - 2}{2}, \ldots, \frac{t_m + t_m + t_m - 2}{2} \} \). We already determine the expression of \(A(\max \Gamma_{i,m,1}) \) for \(i \in \{1, 2, 3\} \), \(m \geq 5 \). In order to calculate \(A(n) \), we only need to calculate \(\sum_{i=\min \Gamma_{i,m,1}}^{n} a(i) \).

Algorithm. Step 1. For \(n \leq 51 \), calculate \(\sum_{i=\min \Gamma_{i,m,1}}^{n} a(i) \) by Property 3.1.

Step 2. For \(n \geq 52 \), find the \(m \) and \(i \) such that \(n \in \Gamma_{i,m,1} \), then \(m \geq 7 \). We calculate \(\sum_{i=\min \Gamma_{i,m,1}}^{n} a(i) \) by the properties in Fig 3.

Step 3. Calculate \(A(\min \Gamma_{i,m,1} - 1) \) by the Property (d) in Fig 2.

Step 4. \(A(n) = A(\min \Gamma_{i,m,1} - 1) + \sum_{i=\min \Gamma_{i,m,1}}^{n} a(i) \).

4 Expression: the numbers of repeated squares in \(T_m \)

Since \(\theta_m^6 \leq t_m < \theta_m^7 \) and \(\theta_{m-1}^6 \leq t_m - t_{m-1} < \theta_{m-1}^7 \) for \(m \geq 7 \), see Fig 3.

\[
\begin{aligned}
\sum_{i=\min \Gamma_{1,m,1}}^{t_m} a(i) - \sum_{i=\min \Gamma_{1,m-1,3}}^{t_{m-3}} a(i) &= \sum a(\Gamma_{3,m-1,1}) + \sum a(\Gamma_{3,m-3,1}) + \sum a(\Gamma_{2,m-3,1}) + 2t_m - 2t_{m-1} - 3t_{m-2} + 1 \\
&= \frac{m}{37}(-19t_m + 29t_{m-1} + 13t_{m-2}) + \frac{1}{14}(347t_m - 622t_{m-1} - 47t_{m-2}) + \frac{9}{4}.
\end{aligned}
\]
(a) \(n \in \Gamma_{3,m,1} = \left\{ \frac{t_m + t_{m-2} - 1}{2}, \ldots, \frac{t_m + 4t_{m-1} + t_{m-2} - 3}{2} \right\} \) for \(m \geq 7 \). Denote

\[
\begin{align*}
\theta^1_m &= \min \Gamma_{3,m,1} = \frac{t_m + t_{m-2} - 1}{2}, \\
\theta^2_m &= \min \Gamma_{3,m,1} + \Gamma_{3,m-3,1} = \frac{-5t_m + 10t_{m-1} + 3t_{m-2} - 1}{2}, \\
\theta^3_m &= \min \Gamma_{3,m,1} + \Gamma_{3,m-3,1} + |\Gamma_{2,m-1} - 3t_{m-2} - 1|, \\
\eta^1_m &= \min \Gamma_{3,m,1} + t_{m-4} - k_{m-3} + 1 = -2t_m + 5t_{m-1}, \\
\eta^2_m &= \max \Gamma_{3,m,1} + 1 = \min \Gamma_{2,m,1} = \frac{-t_m + 4t_{m-1} + t_{m-2} - 1}{2}.
\end{align*}
\]

Obviously, \(\theta^3_m < \eta^1_m < \eta^2_m \) for \(m \geq 7 \), and \(\min \Gamma_{3,m,1} - \min \Gamma_{3,m-3,1} = t_{m-1} \). By Property 3.1 we have: for \(n \geq 52 \), let \(m \) such that \(n \in \Gamma_{3,m,1} \), then \(m \geq 7 \) and

\[
\sum_{i=\min \Gamma_{3,m,1}} \aleph(i) = \left\{ \begin{array}{ll}
\sum_{i=\min \Gamma_{3,m,1}} a(i) + n - \min \Gamma_{3,m,1} + 1, & \text{if } \theta^3_m \leq n < \theta^2_m; \\
\sum_{i=\min \Gamma_{3,m,1}} a(i) + n - \min \Gamma_{3,m,1} + 1, & \text{if } \theta^2_m \leq n < \theta^1_m; \\
\sum_{i=\min \Gamma_{3,m,1}} a(i) + n - \min \Gamma_{3,m,1} + 1, & \text{if } \theta^1_m \leq n.
\end{array} \right.
\]

(b) \(n \in \Gamma_{2,m,1} = \left\{ \frac{-t_m + 4t_{m-1} + t_{m-2} - 3}{2}, \ldots, \frac{t_m + 2t_{m-1} - t_{m-2} - 3}{2} \right\} \) for \(m \geq 6 \). Denote

\[
\begin{align*}
\theta^5_m &= \min \Gamma_{2,m,1} + |\Gamma_{3,m-2,1}| = \frac{3t_m - 5t_{m-1} - 1}{2}, \\
\eta^5_m &= \min \Gamma_{2,m,1} + t_{m-3} - k_{m} + 1 = 2t_{m-1} - t_{m-2}, \\
\theta^6_m &= \min \Gamma_{2,m,1} + |\Gamma_{3,m-3,1}| + |\Gamma_{2,m-2,1}| = \frac{3t_m - 2t_{m-1} - t_{m-2} - 1}{2}, \\
\theta^7_m &= \max \Gamma_{2,m,1} + 1 = \min \Gamma_{2,m,1} = \frac{t_m + 2t_{m-1} + t_{m-2} - 1}{2}.
\end{align*}
\]

Obviously, \(\theta^5_m < \theta^6_m \) for \(m \geq 6 \), and \(\min \Gamma_{2,m,1} - \min \Gamma_{3,m-3,1} = t_{m-1} \). By Property 3.1 we have: for \(n \geq 32 \), let \(m \) such that \(n \in \Gamma_{2,m,1} \), then \(m \geq 6 \) and

\[
\sum_{i=\min \Gamma_{2,m,1}} \aleph(i) = \left\{ \begin{array}{ll}
\sum_{i=\min \Gamma_{2,m,1}} a(i) + n - \min \Gamma_{2,m,1} + 1, & \text{if } \theta^7_m \leq n < \theta^6_m; \\
\sum_{i=\min \Gamma_{2,m,1}} a(i) + n - \min \Gamma_{2,m,1} + 1, & \text{if } \theta^6_m \leq n < \theta^5_m; \\
\sum_{i=\min \Gamma_{2,m,1}} a(i) + n - \min \Gamma_{2,m,1} + 1, & \text{if } \theta^5_m \leq n.
\end{array} \right.
\]

(c) \(n \in \Gamma_{1,m,1} = \left\{ \frac{t_m + 2t_{m-1} - t_{m-2} - 1}{2}, \ldots, \frac{t_m + 3t_{m-1} + t_{m-2} - 3}{2} \right\} \) for \(m \geq 5 \). Denote

\[
\begin{align*}
\theta^8_m &= \min \Gamma_{1,m,1} + |\Gamma_{3,m-1,1}| = \frac{t_m + 3t_{m-1} - 2}{2}, \\
\theta^9_m &= \min \Gamma_{1,m,1} + |\Gamma_{3,m-1,1}| + |\Gamma_{2,m-1,1}| = \frac{t_m + 4t_{m-1} + 3t_{m-2} - 1}{2}, \\
\eta^8_m &= \min \Gamma_{1,m,1} + t_{m-2} - k_{m-1} + 1 = 2t_{m-1}, \\
\eta^9_m &= \max \Gamma_{1,m,1} + 1 = \min \Gamma_{1,m,1} = \frac{t_m + 2t_{m-1} + t_{m-2} - 1}{2}.
\end{align*}
\]

Obviously, \(\theta^8_m < \eta^8_m < \eta^9_m \) for \(m \geq 5 \), and \(\min \Gamma_{1,m,1} - \min \Gamma_{3,m-1,1} = t_{m-1} \). By Property 3.1 we have: for \(n \geq 21 \), let \(m \) such that \(n \in \Gamma_{1,m,1} \), then \(m \geq 5 \) and

\[
\sum_{i=\min \Gamma_{1,m,1}} \aleph(i) = \left\{ \begin{array}{ll}
\sum_{i=\min \Gamma_{1,m,1}} a(i), & \text{if } \theta^9_m \leq n < \theta^8_m; \\
\sum_{i=\min \Gamma_{1,m,1}} a(i) + n - \min \Gamma_{1,m,1}, & \text{if } \theta^8_m \leq n < \theta^9_m; \\
\sum_{i=\min \Gamma_{1,m,1}} a(i) + n - \min \Gamma_{1,m,1}, & \text{if } \theta^9_m \leq n.
\end{array} \right.
\]

Figure 3: (a)-(c) show the three cases of recursive relations between \(\sum_{i=\min \Gamma_{k,m,k}} \aleph(i) \) and \(\sum_{i=\min \Gamma_{k,m,k}} a(i) \), where \(k, t \in \{1, 2, 3\} \), respectively. These relations are derived directly from the square trees (the tree structure of the positions of repeated squares). Using them, we can calculate \(\sum_{i=\min \Gamma_{k,m,k}} a(i) \) fast, and give a fast algorithm for \(A(n) \).
For $m \geq 7$, by induction, $\sum_{i=\min \Gamma_{1,m,1}}^{t_m} a(i)$ is equal to

$$\frac{m}{44}(23t_m - 38t_{m-1} - 3t_{m-2}) + \frac{1}{44}(-65t_m + 164t_{m-1} - 105t_{m-2}) + \frac{3m}{4} - \frac{9}{4}.$$

Since $\min \Gamma_{1,m,1} - 1 = \max \Gamma_{2,m,1}$, $A(t_m) = A(\max \Gamma_{2,m,1}) + \sum_{i=\min \Gamma_{1,m,1}}^{t_m} a(i)$. By the properties in Fig.3 we can prove Theorem 21 in H. Mousavi and J. Shallit [6] in a novel way: for $m \geq 3$,

$$A(t_m) = \frac{m}{22}(9t_m - t_{m-1} - 5t_{m-2}) + \frac{1}{44}(-81t_m + 26t_{m-1} + 13t_{m-2}) + m + \frac{1}{4}.$$

Acknowledgments

The research is supported by the Grant NSFC No.11431007, No.11271223 and No.11371210.

References

[1] Delecroix V., Hejda T., Steiner W.: Balancedness of Arnoux-Rauzy and Brun words. Lecture Notes in Computer Science. 8079, 119–131 (2013).

[2] Huang Y K, Wen Z Y.: Kernel words and gap sequence of the Tribonacci sequence, Acta Mathematica Scientia (Series B). 36.1, 173–194 (2016).

[3] Huang Y K, Wen Z Y.: The numbers of distinct squares and cubes in the Tribonacci sequence. arXiv: submit/1560699.

[4] Huang Y K, Wen Z Y.: The number of distinct and repeated squares and cubes in the Fibonacci sequence. arXiv:1603.04211.

[5] Huang Y K, Wen Z Y.: The numbers of repeated palindromes in the Fibonacci and Tribonacci sequences. arXiv: 1604.05021.

[6] Mousavi H., Shallit J.: Mechanical proofs of properties of the Tribonacci word. Combinatorics on Words. Springer International Publishing. 170–190 (2014).

[7] Richomme G., Saari K., Zamboni L.Q.: Balance and Abelian complexity of the Tribonacci word. Advance Applied Mathematic. 45, 212–231 (2010).

[8] Tan B., Wen Z Y.: Some properties of the Tribonacci sequence. European J Combin. 28, 1703–1719 (2007).