An Odd Presentation for $W(E_6)$

Gert Heckman and Sander Rieken
Radboud University Nijmegen

December 10, 2014

Abstract

The Weyl group $W(E_6)$ has an odd presentation due to Christopher Simons as factor group of the Coxeter group on the Petersen graph by deflation of the free hexagons. The goal of this paper is to give a geometric meaning for this presentation, coming from the action of $W(E_6)$ on the moduli space of marked maximally real cubic surfaces and its natural tessellation as seen through the period map of Allcock, Carlson and Toledo.

1 Introduction

We denote by $\mathcal{M}(1^n)$ the moduli space of n ordered mutually distinct points on the complex projective line. If $n = n_1 + \cdots + n_r$ is a partition of n with $r \geq 4$ parts we denote by $\mathcal{M}(n_1 \cdots n_r)$ the moduli space of r points on the complex projective line with weights n_1, \cdots, n_r respectively, and to be viewed as part of a suitable compactification of $\mathcal{M}(1^n)$ by collisions according to the given partition.

The case of 4 points is classical and very well known. If $z = (z_1, z_2, z_3, z_4)$ represents a point of $\mathcal{M}(1^4)$ then we consider for the elliptic curve

$$E(z) : y^2 = \prod (x - z_i)$$

with periods (say z_i are all real with $z_1 < z_2 < z_3 < z_4$)

$$\pi_i(z) = \int_{z_i}^{z_{i+1}} \frac{dx}{y}$$

resulting in a coarse period isomorphism (by taking the ratio of two consecutive periods)

$$\mathcal{M}(1^4)/S_4 \to \mathbb{H}/\Gamma$$
of orbifolds. Here S_n is the symmetric group on n objects and Γ is the modular group $\text{PSL}_2(\mathbb{Z})$ acting on the upper half plane $\mathbb{H} = \{ \tau \in \mathbb{C}; \Im \tau > 0 \}$ by fractional linear transformations. To remove the orbifold nature one observes an underlying fine period isomorphism

$$\mathcal{M}(1^4) \longrightarrow \mathbb{H}/\Gamma(4)$$

with $\Gamma(4)$ the principal congruence subgroup of Γ of level 4. Taking the quotient on the left by S_4 and on the right by $\Gamma/\Gamma(4) \cong S_4$ turns the fine period isomorphism into the previous coarse one.

There are two different real loci: either all 4 points are real or 2 points are real and 2 are complex conjugate. The first component is called the maximal real locus. Under the coarse period isomorphism the maximal real locus corresponds to the imaginary axis in \mathbb{H} since π_{i+1}/π_i is purely imaginary, while the other real locus corresponds to the unit circle in \mathbb{H}. The group $\Gamma(4)$ has 6 cusps and is of genus 0 meaning that the compactification $\mathbb{H}/\Gamma(4)$ by filling in the cusps is just isomorphic to the complex projective line. The 6 cusps are just the vertices of an octahedron permuted transitively by the rotation group S_4 of the octahedron (permuting pairs of opposite faces). The maximal real locus corresponds to the 12 edges of the octahedron, while the other real locus corresponds to the 24 diagonals in the faces of the octahedron.

This simple picture allows a beautiful generalization. If $z = (z_1, \cdots, z_6)$ represents a point of $\mathcal{M}(1^6)$ then we consider the curve

$$C(z) : y^3 = \prod(x - z_i)$$

which is of genus 4 by the Hurwitz formula. The Jacobian $J(C(z))$ is a principally polarized Abelian variety of dimension 4 with an endomorphism structure by the group ring $\mathbb{Z}[C_3]$ of the cyclic group of order 3. The PEL theory of Shimura [17], [18], [4] gives that these Jacobians in the full moduli space $\mathcal{A}_4 = \mathbb{H}_4/Sp_8(\mathbb{Z})$ form an open dense part of a ball quotient \mathbb{B}/Γ of dimension 3. More precisely and thanks to the work of Deligne and Mostow [8] and of Terada [20] we have a coarse period isomorphism

$$\mathcal{M}(1^6)/S_6 \longrightarrow \mathbb{B}^0/\Gamma$$

with \mathbb{B}^0/Γ the complement of a Heegner divisor in a ball quotient \mathbb{B}/Γ. More explicitly, let $\mathcal{E} = \mathbb{Z} + \mathbb{Z}\omega$ with $\omega = (-1 + i\sqrt{3})/2$ be the ring of Eisenstein integers and let

$$L = \mathcal{E} \otimes \mathbb{Z}^{3,1}$$
be the Lorentzian lattice over \mathcal{E} then it turns out that the automorphism group $U(L)$ is a group generated by the hexaflections (order 6 complex reflections) in norm one vectors. If $e \in L$ is a norm one vector then the hexaflection with root e is defined by $h_e(l) = l - (\omega^2 + 1)\langle l, e \rangle e$. Here $\langle \cdot, \cdot \rangle$ denotes the sesquilinear form on L of Lorentzian signature. Let us denote the complement of the mirrors of all these hexaflections by B°. The main result of Deligne and Mostow in this particular case can be rephrazed by the commutative diagram

$$
\begin{array}{ccc}
\mathcal{M}^o & \longrightarrow & \mathcal{M} \\
\downarrow & & \downarrow \\
\mathbb{B}^\circ / \Gamma & \longrightarrow & \mathbb{B} / \Gamma \\
\end{array}
$$

with \mathcal{M}^o short for $\mathcal{M}(1^6)/S_6$. The horizontal maps are injective and the vertical maps are isomorphisms from the top horizontal line (the geometric side) to the bottom horizontal line (the arithmetic side). The moduli space

$$
\overline{\mathcal{M}}^{\text{HM}} = \text{Proj} \left(S(\mathcal{S}^6 \mathbb{C}^2)^{\text{SL}_2(\mathbb{C})} \right)
$$

is the Hilbert–Mumford compactification of \mathcal{M}^o through GIT of degree 6 binary forms, which consists of the open stable locus \mathcal{M} with at most double collisions and the polystable (also called strictly semistable) locus, a point with two triple collisions. In the bottom line we have the ball quotient \mathbb{B} / Γ with $\Gamma = PU(L)$ and its Baily–Borel compactification

$$
\overline{\mathbb{B}}^{\text{BB}} / \Gamma = \text{Proj} \left(\mathcal{A}((\mathbb{L}^\times)^{U(L)}) \right)
$$

with $\mathbb{L}^\times = \{ v \in \mathbb{C} \otimes \mathbb{Z}^{3,1}; \langle v, v \rangle < 0 \} \longrightarrow \mathbb{B} = \mathbb{P}(\mathbb{L})$ the natural \mathbb{C}^\times-bundle and $\mathcal{A}((\mathbb{L}^\times)^{U(L)})$ the algebra of modular forms, graded by weight (minus the degree, or maybe better by minus degree/3 in order to match with the degree on the geometric side: the center of $\text{SL}_2(\mathbb{C})$ has order 2 while the center of $U(L)$ has order 6).

A similar commutative diagram also holds in the case of ordered points, so with $\mathcal{M}^o = \mathcal{M}(1^6)/S_6$ replaced by $\mathcal{M}^o_m = \mathcal{M}(1^6)$ and $U(L)$ replaced by the principal congruence subgroup $U(L)(1 - \omega)$. The subindex m stands for marking. This latter group is generated by all triflections in norm one vectors, namely by the squares of the previous hexaflections. So we have a
The group isomorphism $\Gamma/\Gamma(1 - \omega) \cong S_6$ explains that the quotient of this commutative diagram by this finite group gives back the former commutative diagram.

The real locus in the space $\mathcal{M}(1^6)/S_6$ of degree 6 binary forms with nonzero discriminant has 4 connected components. There are k complex conjugate pairs and the remaining points $6 - 2k$ points are real for $k = 0, 1, 2, 3$ respectively. All 6 points real is called the maximal real locus, and will be denoted $\mathcal{M}_r^0 = \mathcal{M}_r(1^6)/S_6$. It was shown by Yoshida \cite{23} that we have a similar commutative diagram

$$
\mathcal{M}_r^0 \longrightarrow \mathcal{M}_r \longrightarrow \mathcal{M}_r^{HM}
$$

with the bar in the upper horizontal line denoting the real Zariski closure of the maximal real locus in the GIT compactification, and the bar in the lower horizontal line denoting the Baily–Borel compactification of \mathbb{B}_r. Here \mathbb{B}_r is the real hyperbolic ball associated to the Lorentzian lattice $\mathbb{Z}_{3,1}$. Likewise \mathbb{B}_r^\cap is the complement of the mirrors in norm one roots in $\mathbb{Z}_{3,1}$ and $\Gamma = O^+(\mathbb{Z}_{3,1})$.

Likewise we have a marked version in the real case with commutative diagram

$$
\mathcal{M}_{r_m}^0 \longrightarrow \mathcal{M}_{r_m} \longrightarrow \mathcal{M}_{r_m}^{HM}
$$

with $\mathcal{M}_{r_m} = \mathcal{M}_r(1^6)$ the moduli space of 6 distinct ordered real points and $\Gamma(3)$ the principal congruence subgroup of $\Gamma = O^+(\mathbb{Z}_{3,1})$ of level 3. The group isomorphism $\Gamma/\Gamma(3) = \text{PGO}_4(3) \cong S_6$ shows that the quotient of this commutative diagram by S_6 gives the previous commutative diagram just as in the complex case.

Deliberately we have suppressed the index $n = 3$ of the Lorentzian lattice $\mathbb{Z}^{n,1}$ because there are similar stories to tell for $n = 2, 3, 4$. The case $n = 2$
corresponds to $M^\circ = M(21^4)/S_4$ and $M^\circ_m = M(21^4)$ and is also due to Deligne and Mostow. The case $n = 4$ corresponds to $M^\circ = M(cs)$ the moduli space of smooth cubic surfaces and is due to Allcock, Carlson and Toledo [1]. A cubic surface S can be obtained by blowing up 6 points in the projective plane and hence $H_2(S, \mathbb{Z})$ with its insertion form is just the lattice $\mathbb{Z}^{1,6}$ with natural basis l, e_1, \ldots, e_6 for a line and the exceptional curves. The anticanonical class $k = 3l - \sum e_i$ has norm 3 and its orthogonal complement is isomorphic to minus the root lattice of type E_6. The choice of such an isomorphism is called a marking of the cubic surface S. The Weyl group $W(E_6)$ permutes these markings in a simply transitive manner.

We denote by $M^\circ_m = M_m(cs)$ the moduli space of marked smooth cubic surfaces. The maximal real locus $M^\circ_r = M_r(cs)$ is by definition the moduli space of smooth real cubic surfaces with 27 real lines, and likewise we denote $M^\circ_{r_m} = M_{r_m}(cs)$ for the marked covering. All four commutative diagrams remain valid in case $n = 4$. The group isomorphism $\Gamma/\Gamma(3) = \text{PGO}_5(3) \cong W(E_6)$ shows that the quotient of the commutative diagram in the marked case becomes the commutative diagram in the unmarked case.

Consider following commutative diagram

$$
\begin{array}{cccc}
M^\circ_{r_m} & \longrightarrow & \mathcal{M}_{r_m} & \longrightarrow & \mathcal{M}_r \\
\downarrow & & \downarrow & & \downarrow \\
\mathbb{B}^\circ_r/\Gamma(3) & \longrightarrow & \mathbb{B}_r/\Gamma(3) & \longrightarrow & \mathbb{B}_r/\Gamma \\
\end{array}
$$

with $\Gamma/\Gamma(3) = \text{PGO}_{n+1}(3)$ the Weyl group of type A_3, A_5, E_6 for $n = 2, 3, 4$ respectively. The two left horizontal arrows are inclusions and the two right horizontal maps are quotient maps for the action of $\Gamma/\Gamma(3)$. In fact we shall for the moment only consider the bottom horizontal line for all $2 \leq n \leq 7$, independently of the modular interpretation for $n \leq 4$.

Fix a connected component of the mirror complement \mathbb{B}°_r of norm one roots in $\mathbb{Z}^{n,1}$ and denote by P its closure in \mathbb{B}_r. It is a fundamental domain for the action on \mathbb{B}_r of the subgroup Γ_1 of $\Gamma = O^+(\mathbb{Z}^{n,1})$ generated by the reflections in norm one roots. Clearly Γ_1 is a subgroup of the principal congruence subgroup $\Gamma(2)$ of level 2. It was shown by Everitt, Ratcliffe and Tschantz that $\Gamma_1 = \Gamma(2)$ if and only if $n \leq 7$, which will be assumed from now on. The polytope P will be called the Gosset polytope, by analogy with the terminology of Coxeter [7] in case $n = 6$. The symmetry group Γ_0 of P in Γ is the Coxeter group of type E_n, with $E_5 = D_5, E_4 = A_4, E_3 = A_1 \sqcup A_2$ and $E_2 = A_1$. For $n \geq 3$ it permutes the faces of P transitively, and a face of P^n is equal to P^{n-1}. The ball quotient $\mathbb{B}_r/\Gamma(3)$ inherits a regular tessellation by polytopes γP with $\gamma \in \Gamma/\Gamma(3)\Gamma_0$. The cardinality of the
factor space $\Gamma/\Gamma(3)\Gamma_0$ is equal to 12, 60, 432 for $n = 2, 3, 4$ respectively in accordance with the discussion by Yoshida [23], [24], who gives a description of this tessellation on the geometric side.

Two walls of P are either orthogonal (with nonempty intersection in \mathbb{B}_r) or parallel (with only intersection at an ideal point of \mathbb{B}_r), and so P is a right angled polytope. Equivalently, the Coxeter diagram of the chamber P of the Coxeter group Γ_1 has only edges with mark ∞. This Coxeter diagram (after deletion of all marks ∞) is of type A_3, \tilde{A}_5 for $n = 2, 3$ respectively, while for $n = 4$ it is the Peterson graph, which we denote by I_{10}.

Since $\Gamma/\Gamma(3) \cong \Gamma(2)/\Gamma(6)$ the group $\Gamma/\Gamma(3)$ is generated by the cosets modulo $\Gamma(3)$ of a set of generators of $\Gamma(2)$. Since $\Gamma(2) = \Gamma_1$ is a Coxeter group we take r_i the reflections in the walls of P as Coxeter generators for $\Gamma(2)$ and hence $t_i = r_i\Gamma(3)$ are generators for $\Gamma/\Gamma(3)$. Because the r_i are reflections the t_i remain involutions in $\Gamma/\Gamma(3)$. Likewise if r_i and r_j commute so do t_i and t_j commute. The relations between the t_i in dimension n are also valid in dimension $n + 1$. In dimension $n = 2$ it is easy to check that $t_it_jt_i = t_jt_it_j$ if the corresponding walls are parallel. Hence we recover the Coxeter presentation of S_4. In all dimensions $2 \leq n \leq 7$ the group $\Gamma/\Gamma(3)$ becomes a factor group of the Coxeter group of the simply laced Coxeter diagram obtained from that of P by deletion of the marks ∞. For $n = 3$ this Coxeter diagram is the affine diagram of type \tilde{A}_5 and it is easy to check that the translation lattice dies in $\Gamma/\Gamma(3)$. This relation is also called deflation of the free hexagon, and we arrive at the following result.

Theorem 1.1. For $2 \leq n \leq 7$ the group $\Gamma/\Gamma(3)$ is a factor group of W/N. Here W is the Coxeter group of the simply laced Coxeter diagram associated with P and W/N is the quotient by deflation of the free hexagons. For $n \leq 4$ we have in fact equality $\Gamma/\Gamma(3) = W/N$ and for $n = 4$ we recover a presentation for $W(E_6)$ found by Simons [19].

The fact that for $n = 4$ these are a complete set of relations is an easy exercise with the Petersen graph. The essential point of the theorem is to explain that this presentation has a natural geometric meaning from the action of $W(E_6)$ on the moduli space $\overline{\mathcal{M}}_{rm}(cs)$ of marked maximally real cubic surfaces with its natural equivariant tessellation as seen on the arithmetic side.

We do not know whether for $n = 5, 6, 7$ the generators and relations given in the theorem for $\Gamma/\Gamma(3)$ suffice to give a presentation. However this presentation for $W(E_6)$ was found by Simons by analogy with similar presentations for the orthogonal group $\text{PGO}_8^-(2)$ and the bimonster group $M \wr 2$ as factor group of the Coxeter group on the incidence graph of the
projective plane over a field of 2 and 3 elements by deflation of the free octagons and dodecagons respectively. This presentation of the bimonster was found by Conway and Simons [6] as a variation of the Ivanov–Norton theorem, which gives the bimonster group as a factor group of the Coxeter group $W(Y_{555})$ modulo the spider relation [12], [14]. This presentation for $\operatorname{PGO}_8^-(2)$ and some of its subgroups (for example the Weyl group $W(E_7)$) can be given a similar geometric meaning. We would like to thank Masaaki Yoshida for comments on an earlier version of this paper.

2 The odd unimodular lattice $\mathbb{Z}^{n,1}$

The odd unimodular lattice $\mathbb{Z}^{n,1}$ has basis e_i for $0 \leq i \leq n$ with scalar product $(e_i, e_j) = \delta_{ij}$ for all i, j except for $i = j = 0$ in which case $e_0^2 = -1$. The open set $L^+ = \{v \in \mathbb{R}^{n,1}; v^2 < 0\}$ has two connected components, and the component containing e_0 is denoted by L^+_r. The quotient space

$$B_r = L^+_r / \mathbb{R}^+ = L^+_r / \mathbb{R}^+$$

is the real hyperbolic ball. The forward Lorentz group $O^+(\mathbb{R}^{n,1})$ is the index two subgroup of the full Lorentz group $O(\mathbb{R}^{n,1})$ preserving the component L^+_r and it acts faithfully on the ball B_r. In addition

$$\Gamma = O^+(\mathbb{Z}^{n,1}) = O^+(\mathbb{R}^{n,1}) \cap O(\mathbb{Z}^{n,1})$$

is a discrete subgroup of $O^+(\mathbb{R}^{n,1})$ acting on B_r properly discontinuously with cofinite volume. It contains reflections

$$s_\alpha(\lambda) = \lambda - 2(\lambda, \alpha)\alpha / \alpha^2$$

in roots $\alpha \in \mathbb{Z}^{n,1}$ of norm 1 or norm 2. Our notation is $\alpha^2 = (\alpha, \alpha)$ for the norm of $\alpha \in \mathbb{Z}^{n,1}$. The next theorem is a (special case of a more general) result due to Vinberg [22] and for a pedestrian exposition of the proof we refer to the lecture notes on Coxeter groups by one of us [11].

Theorem 2.1. For $2 \leq n \leq 9$ the group $\Gamma = O^+(\mathbb{Z}^{n,1})$ is generated by reflections s_α in roots $\alpha \in \mathbb{Z}^{n,1}$ of norm 1 or norm 2. Moreover the Coxeter diagram of this reflection group Γ is given by
with simple roots

\[\alpha_0 = e_0 - e_1 - e_2 - e_3, \alpha_1 = e_1 - e_2, \ldots, \alpha_{n-1} = e_{n-1} - e_n, \alpha_n = e_n. \]

For \(n = 2, 3, 4 \) the Coxeter diagrams become

\[
\begin{array}{cccccc}
1 & 2 & 0 & \infty & 1 & 2 \\
0 & 1 & 2 & 3 & 0 & 1 \end{array}
\]

with \(\alpha_0 = \alpha_0 = e_0 - e_1 - e_2 \) a norm 1 vector in case \(n = 2 \).

The vertices of the closed fundamental chamber \(D \) in \(\mathbb{B}_r \) are represented by the vectors (for \(j = 3, \ldots, n \))

\[
v_0 = e_0, v_1 = e_0 - e_1, v_2 = 2e_0 - e_1 - e_2, v_j = 3e_0 - e_1 - e_2 - \cdots - e_j
\]
as (anti)dual basis of the basis of simple roots. Let \(D_0 \) be the face of \(D \) cut out by the long simple roots. Hence \(D_0 \) is the edge of the triangle \(D \) with vertices represented by \(v_0, v_2 \) for \(n = 2 \), while \(D_0 \) is the vertex of the simplex \(D \) represented by \(v_n \) for \(3 \leq n \leq 9 \). Let \(\Gamma_0 \) be the subgroup of \(\Gamma \) generated by the long simple roots, and so \(\Gamma_0 \) is the stabilizer of the face \(D_0 \). Clearly the group \(\Gamma_0 \) is a finite Coxeter group (of type \(A_1, A_1 \sqcup A_2, A_4, D_5, E_6, E_7, E_8 \) respectively) for \(2 \leq n \leq 8 \), which will be assumed from now on.

The convex polytope \(P \) defined by

\[
P = \bigcup_{w \in \Gamma_0} wD
\]
is the star of \(D_0 \), and will be called the Gosset polytope. The walls of \(D \) which do not meet the relative interior of \(D_0 \) are cut out by the mirrors of the short simple roots. For \(n = 2 \) there are 2 such edges of \(D \) and for \(3 \leq n \leq 8 \) there is just a unique such wall of \(D \). Hence the interior of \(P \) is just a connected component of the complement of all mirrors in norm 1 roots, and \(P \) is a fundamental chamber for the normal subgroup \(\Gamma_1 \) of \(\Gamma \) generated by the reflections in norm 1 roots. Note that \(\Gamma_1 \) is in fact a
subgroup of the principal congruence subgroup $\Gamma(2)$ of Γ of level 2. Because $\Gamma_0 = \{w \in \Gamma; wP = P\}$ and the reflection group Γ_1 is normal in Γ and has P as fundamental chamber we have the semidirect product decomposition $\Gamma = \Gamma_1 \rtimes \Gamma_0$.

For $3 \leq n \leq 8$ all walls of P^n are congruent and of the form P^{n-1}. By induction on the dimension it can be shown that the set of vertices of P consists of two orbits under Γ_0. One orbit $\Gamma_0 v_0$ are the actual vertices and the other orbit $\Gamma_0 v_1$ are the ideal vertices of P. In turn this shows by a local analysis at v_0 and v_1 that all dihedral angles of P inside B_r are $\pi/2$, and so P is a right-angled polytope. Of course, at ideal vertices of P the dihedral angle of intersecting walls can be 0 as well. In other words, the Coxeter diagram of the group of Γ_1 generated by reflections in norm 1 roots with fundamental chamber P has only edges with mark ∞. The next result is due to Everitt, Ratcliffe and Tschantz [9].

Theorem 2.2. For $2 \leq n \leq 7$ the group $\Gamma(2)$ is generated by reflections in norm 1 roots, while for $n = 8$ the subgroup of $\Gamma(2)$ generated by reflections in norm 1 roots has index 2.

Proof. Since $\Gamma = \Gamma_1 \rtimes \Gamma_0$ we have to show that $\Gamma_0 \cap \Gamma(2)$ is the trivial group for $2 \leq n \leq 7$ and has order 2 for $n = 8$. For $n = 2$ the sublattice $L_0 = \mathbb{Z}v_0 + \mathbb{Z}v_2$ has discriminant $d = 2$ while for $3 \leq n \leq 7$ the sublattice $L_0 = \mathbb{Z}v_0$ has discriminant $d = 9 - n$. Hence the orthogonal complement Q_0 of L_0 in \mathbb{Z}^{n-1} is just the root lattice of the finite Coxeter group Γ_0 (of type $A_1, A_1 \sqcup A_2, A_4, D_5, E_6, E_7, E_8$ respectively). Indeed, that root lattice is contained in Q_0 and has the correct discriminant d. The corresponding (rational) weight lattice P_0, by definition the dual lattice of Q_0, is the orthogonal projection of \mathbb{Z}^{n-1} on $Q \otimes Q_0$.

Now $w \in \Gamma_0$ also lies in $\Gamma(2)$ if and only if $w\lambda - \lambda \in 2Q_0$ for all $\lambda \in P_0$. It is well known that for $2 \leq n \leq 7$ the set $\{\lambda \in P_0; \lambda^2 < 2\}$ is nonempty and spans P_0. For all these λ the norm $(w\lambda - \lambda)^2$ is smaller than 8 by the triangle inequality. But the only vector in $2Q_0$ of norm smaller than 8 is the null vector. Hence $w = 1$ and so $\Gamma_0 \cap \Gamma(2)$ is the trivial group. For $n = 8$ the elements of minimal positive norm in the lattice $P_0 = Q_0$ of type E_8 form the root system $R(E_8)$ of type E_8 of vectors of norm 2. If $(w - 1)\alpha \in 2Q_0$ for $w \in \Gamma_0$ and $\alpha \in R(E_8)$ then either $(w - 1)\alpha$ has norm smaller than 8 and $w\alpha = \alpha$, or $(w - 1)\alpha$ has norm 8 and $w\alpha = -\alpha$. If $w\alpha = \pm\alpha$ for all $\alpha \in R(E_8)$ then one easily concludes that $w = \pm 1$. Hence $\Gamma_0 \cap \Gamma(2) = \{\pm 1\}$ has order 2 for $n = 8$. \hfill \Box

For $n = 2, 3, 4$ the Coxeter diagram of the reflection group $\Gamma_1 = \Gamma(2)$
Theorem 2.3. The Coxeter diagrams of Γ on the left and of $\Gamma(2)$ on the right are given by

for $n = 2$, and

for $n = 3$, and

for $n = 4$ respectively. All edges of the Coxeter diagrams of $\Gamma(2)$ have mark ∞, but for simplicity and because of the next theorem these are left out in the drawn diagrams. The last diagram for $n = 4$ with 10 nodes is the so called Petersen graph and will be denoted I_{10}. The automorphism groups $\Gamma_0 \cong \Gamma/\Gamma(2)$ of these Coxeter diagrams of $\Gamma(2)$ are equal to $S_2, S_2 \times S_3, S_5$ as the Weyl groups of type $A_1, A_1 \sqcup A_2, A_4$ respectively.

Proof. Let s_i for $i = 0, 1, \cdots, n$ be the simple reflections of the group Γ as numbered in Theorem 2.1. We shall treat the cases $n = 2, 3, 4$ separately.

For $n = 2$ the fundamental domain D is a hyperbolic triangle with angles $\{\pi/4, 0, \pi/2\}$ at the vertices v_0, v_1, v_2 respectively. The Gosset polytope $P = D \cup s_1D$ is a hyperbolic triangle with angles $\{\pi/2, 0, 0\}$ at the vertices.
v_0, v_1, s_1v_1. It is a fundamental domain for the action of the Coxeter group \(\Gamma(2) \) with simple generators

\[
r_1 = s_1s_2s_1, r_2 = s_2, r_3 = s_0
\]

whose Coxeter diagram is the \(A_3 \) diagram with marks \(\infty \) on the edges rather than the usual mark 3.

For \(n = 3 \) the Gosset polytope \(P \) is a double tetrahedron \(P = T \cup s_0T \) with hyperbolic tetrahedron \(T \) the union over \(wD \) with \(w \in S_3 = \langle s_1, s_2 \rangle \) and \(\{v_0, v_1, s_1v_1, s_2s_1v_1\} \) as the set of vertices. The Coxeter diagram of \(T \) is the \(D_4 \) diagram with marks 4 on the edges rather than the usual mark 3. The reflection \(s_0 \) corresponds to the central node, and the reflections

\[
r_1 = s_1r_2s_1, r_2 = s_2s_3s_2, r_3 = s_3
\]

correspond to the three extremal nodes. The polytope \(P \) is the fundamental domain for the action of the Coxeter group \(\Gamma(2) \) with simple generators

\[
r_1 = s_1r_2s_1, r_2 = s_2s_3s_2, r_3 = s_3, r_4 = s_0r_3s_0, r_5 = s_0r_1s_0, r_6 = s_0r_2s_0
\]

whose Coxeter diagram is the \(\tilde{A}_5 \) diagram with marks \(\infty \) on the edges rather than the usual mark 3.

For \(n = 4 \) the Gosset polytope \(P \) is the union \(\cup_w wD \) over \(w \in \Gamma_0 \) with \(\Gamma_0 = S_5 \) the group generated by the reflections \(s_0, s_1, s_2, s_3 \) in the long simple roots. The vertex \(v_4 \) of \(D \) is interior point of \(P \) and \(\Gamma_0 \) is the symmetry group of \(P \) generated by the reflections in the mirrors through \(v_4 \). The group \(\Gamma(2) \) is generated by the simple reflections

\[
r_i = w_4w^{-1}
\]

with \(w \in S_5 \) and \(i \in I = S_5/(S_2 \times S_3) \) the left coset of \(w \) for the centralizer of \(s_4 \) in \(S_5 \), which is just generated by \(s_0, s_1, s_2 \). The cardinality of \(I \) is equal to 10 and the Coxeter diagram of \(P \) is the Petersen graph \(I_{10} \), but with the edges marked \(\infty \) rather than 3. Indeed, by Theorem \ref{thm:11}

\[
\alpha_0 = e_0 - e_1 - e_2 - e_3, \alpha_1 = e_1 - e_2, \alpha_2 = e_2 - e_3, \alpha_3 = e_3 - e_4, \alpha_4 = e_4
\]

is the basis of simple roots for \(D \). Hence both \(\beta_3 = s_3(\alpha_4) = e_3 \) and \(\beta_{12} = s_0(\beta_3) = e_0 - e_1 - e_2 \) are simple roots for \(P \). Using the action of \(\langle s_1, s_2, s_3 \rangle \) we see that

\[
\beta_i = e_i, \beta_{jk} = e_0 - e_j - e_k
\]
are simple roots of P for $1 \leq i \leq 4$ and $1 \leq j < k \leq 4$. Because P has 10 simple roots these are all simple roots of P. The Gosset polytope P has 5 actual vertices, which are the transforms under Γ_0 of v_0. Likewise it has 5 ideal vertices, which are the transforms under Γ_0 of the cusp v_1 of D.

The Petersen graph was described by Petersen in 1898 [15], but was in fact discovered before in 1886 by Kempe [13].

Theorem 2.4. Let $\Gamma = O^+(\mathbb{Z}^{n,1})$ and let $\Gamma(2)$ and $\Gamma(3)$ be the principal congruence subgroups of level 2 and level 3 respectively for $n = 2, 3, 4$. Then the group $\Gamma/\Gamma(3)$ is equal to

$$\text{PGO}_3(3) = S_4 = W(A_3), \quad \text{PGO}_4(3) = S_6 = W(A_5), \quad \text{PGO}_5(3) = W(E_6)$$

respectively. If we denote by r_i the Coxeter generators of $\Gamma(2)$ in the notation of Theorem 2.3 then $t_i = r_i/\Gamma(3)$ are generators for $\Gamma/\Gamma(3)$. In fact $\Gamma/\Gamma(3)$ has a presentation with generators the involutions t_i and with braid and deflation relations. The braid relations amount to

$$t_i t_j = t_j t_i, \quad t_i t_j t_i = t_j t_i t_j$$

if the nodes with index i and j are disconnected and connected respectively, and so $\Gamma/\Gamma(3)$ is a factor group of the Coxeter group associated to the simply laced Coxeter diagrams A_3, \tilde{A}_5, P_{10} of Theorem 2.3. The deflation relations mean that for each subdiagram of type \tilde{A}_5, also called a free hexagon, the translation lattice of the affine Coxeter group $W(\tilde{A}_5)$ dies in $\Gamma/\Gamma(3)$.

Proof. It is well known that PGO_{n+1} is equal to $W(A_3), W(A_5), W(E_6)$ for $n = 2, 3, 4$ respectively [5]. Clearly $\Gamma/\Gamma(3) \cong \Gamma(2)/\Gamma(6)$, and so $\Gamma/\Gamma(3)$ is a factor group of the Coxeter group $\Gamma(2)$ with Coxeter diagram given by Theorem 2.3 with all edges marked ∞.

If $\alpha, \beta \in \mathbb{Z}^{n,1}$ are norm 1 roots with $(\alpha, \beta) = -1$ then a straightforward computation yields

$$(s_\beta s_\alpha s_\beta - s_\alpha s_\beta s_\alpha) \lambda = 6(\lambda, \alpha)\alpha - 6(\lambda, \beta)\beta$$

for all $\lambda \in \mathbb{Z}^{n,1}$, which in turn implies $s_\beta s_\alpha s_\beta \equiv s_\alpha s_\beta s_\alpha$ modulo $\Gamma(3)$. Hence $\Gamma/\Gamma(3)$ is a factor group of the Coxeter group with the simply laced Coxeter diagrams of Theorem 2.3 because the marks ∞ become a 3 and are deleted. For $n = 2$ we recover the Coxeter presentation of $S_4 = W(A_3)$.

For $n = 3$ the group $\Gamma/\Gamma(3) = S_6$ is the factor group of the affine Coxeter group $W(\tilde{A}_5)$ by its translation lattice. Indeed, in the notation of Theorem 2.3 and its proof we have

$$r_1 = s_{e_1}, r_2 = s_{e_2}, r_3 = s_{e_3}, r_4 = s_{e_0-e_1-e_2}, r_5 = s_{e_0-e_2-e_3}, r_6 = s_{e_0-e_1-e_3}$$
and the relation
\[t_1 t_4 t_2 t_5 t_3 t_6 t_3 t_5 t_2 t_4 = 1 \]
in \(\Gamma/\Gamma(3) \) follows by direct inspection. Since the element on the left side in the affine Coxeter group \(\tilde{W}(\tilde{A}_5) \) is a translation over a coroot this shows that the translation lattice dies in \(\Gamma/\Gamma(3) \). This relation is also called deflation of the free hexagon.

For \(n = 4 \) we recover a presentation for the group \(W(E_6) \) as found by Christopher Simons [19]. It is the factor group of the Coxeter group \(W(P_{10}) \) of the Petersen graph \(P_{10} \) by deflation of all free hexagons. This somewhat odd presentation for \(W(E_6) \) can be seen in the usual \(E_6 \) diagram as follows. The group generated by the simple reflections \(s_i \) for \(1 \leq i \leq 5 \) is the symmetric group \(S_6 \). The orbit under the symmetric group \(S_5 \) generated by \(s_i \) for \(1 \leq i \leq 4 \) of the root \(\alpha_6 \) has cardinality 10 and the reflections in these 10 roots generate the Weyl group \(W(D_5) \) generated by the reflections \(s_1, s_2, s_3, s_4, s_6 \). However \(S_6 \) has an outer automorphism [21], and the image of \(S_5 \) under this automorphism is denoted \(\tilde{S}_5 \). The orbit under the twisted \(\tilde{S}_5 \) of the root \(\alpha_6 \) has again cardinality 10, and the Gram matrix of this set of 10 roots is the incidence matrix of the Petersen graph, so \((\alpha, \beta) = 0, 1, 2 \) if \(\alpha \) and \(\beta \) are disconnected, or are connected by an edge, or are equal respectively.

An explicit way of understanding that a set of 10 vectors with such a Gram matrix exists in the root system \(R(E_6) \) goes as follows. Denote by \(\{\alpha_j\} \) the basis of simple roots of \(R(E_6) \) numbered as in the above diagram. Then we take
\[
\beta_{13} = -\alpha_1, \beta_1 = \alpha_2, \beta_{14} = -\alpha_3, \beta_4 = \alpha_4, \beta_{34} = -\alpha_5, \beta_{23} = \alpha_6
\]
in the numbering of nodes of \(P_{10} \) as in Theorem [2.3]. In turn this implies
\[
\begin{align*}
\beta_3 &= -\alpha_1 - \alpha_2 - \alpha_3 - \alpha_4 - \alpha_5 \\
\beta_{24} &= \alpha_2 + 2\alpha_3 + 2\alpha_4 + \alpha_5 + \alpha_6 \\
\beta_2 &= \alpha_1 + 2\alpha_2 + 3\alpha_3 + 2\alpha_4 + \alpha_5 + 2\alpha_6 \\
\beta_{12} &= \alpha_1 + 2\alpha_2 + 2\alpha_3 + \alpha_4 + \alpha_6
\end{align*}
\]
by looking for suitable free hexagons, as the alternating sum of the roots of a free hexagon vanishes. Hence we recover the presentation of Simons for the Weyl group $W(E_6)$ as the quotient of the Coxeter group $W(P_{10})$ by deflation of all free hexagons.

Remark 2.5. The automorphism group S_5 of the Petersen graph can be identified with the group of geometric automorphisms of the Clebsch diagonal surface

$$u + v + w + x + y = 0, \quad u^3 + v^3 + w^3 + x^3 + y^3 = 0$$

in projective three space. Via the period map this surface corresponds to the central point $v_4 = 3e_0 - e_1 - e_2 - e_3 - e_4$ of the Gosset polytope P for $n = 4$. In this way S_5 becomes a subgroup of $W(E_6)$ as symmetry group of the configuration of the 27 lines on the Clebsch diagonal surface. This monomorphism $S_5 \hookrightarrow W(E_6)$, as described in the above proof, was already discussed by Segre [16].

Likewise the dihedral group D_6 of order 12 as automorphism group of the free hexagon can be identified with the group of geometric automorphisms of the degree 6 binary form $u^6 + v^6$, which corresponds via the period map to the central point $v_3 = 3e_0 - e_1 - e_2 - e_3$ of the Gosset polytope P for $n = 3$. In this way $D_6 \hookrightarrow S_6$ and up to conjugation by (inner and outer) automorphisms of S_6 there is a unique monomorphism $D_6 \hookrightarrow S_6$.

The symmetric group S_2 as automorphism group of the Coxeter diagram A_3 can be identified with the group of geometric automorphisms of the one parameter family of degree 6 binary forms $(u + v)^2(u^4 + tu^2v^2 + v^4)$ with $-2 < t < 2$ via $(u, v) \mapsto (v, u)$, which corresponds via the period map to the central line segment between the vertices v_0 and v_2 inside the Gosset polytope P for $n = 2$. In this way $S_2 \hookrightarrow V_4 \hookrightarrow S_4$ and up to conjugation there is a unique such monomorphism.

Via the period map isomorphism $\overline{M}_{rm} \to \overline{\mathbb{F}}_r / \Gamma(3)$ we get a tessellation of the moduli space \overline{M}_{rm} of marked maximally real objects by congruent copies γP of the Gosset polytope with γ in the factor space $\Gamma / \Gamma(3)\Gamma_0$ and $\Gamma_0 = \text{Aut}(P) \hookrightarrow \Gamma / \Gamma(3)$ the natural monomorphism. The glue prescription is given by

$$\overline{\mathbb{F}}_r / \Gamma(3) = \{ \sqcup \gamma P \} / \sim$$

with

$$\gamma P \supset \gamma F_i \sim (\gamma t_i) F_i \subset (\gamma t_i) P$$

and F_i the wall of P fixed by r_i in the notation of Theorem 2.1. The glue prescription was discussed in geometric terms by Yoshida [23, 24]. This paper grew out of an attempt to understand his work.
References

[1] Daniel Allcock, Jim Carlson and Domingo Toledo, The complex hyperbolic geometry of the moduli space of cubic surfaces, J. Algebraic Geometry 11 (2002), 659-724.

[2] Daniel Allcock, Jim Carlson and Domingo Toledo, Hyperbolic Geometry and the Moduli space of Real Binary Sextics, in: Arithmetic and Geometry around Hypergeometric Functions, Rolf–Peter Holzapfel, A. Muhammed Uludag and Masaaki Yoshida Editors, Progress in Mathematics 260, Birkhäuser, 2007.

[3] Daniel Allcock, Jim Carlson and Domingo Toledo, Hyperbolic Geometry and Moduli of Real Cubic Surfaces, Ann. Sci. Ecole Norm. Sup. 43 (2010), 69-115.

[4] W.A. Casselman, Families of Curves and Automorphic Functions, Ph.D. Princeton University, 1966.

[5] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, The ATLAS of finite groups, Oxford University Press, 1985.

[6] John H. Conway and Christopher Simons, 26 Implies the Bimonster, Journal of Algebra 235 (2001), 805-814.

[7] H.S.M. Coxeter, The polytope 2_{21}, whose 27 vertices correspond to the lines on a general cubic surface, Amer. J. Math. 62 (1940), 457-486.

[8] P. Deligne and G.D. Mostow, Monodromy of hypergeometric functions and non-lattice integral monodromy, Publ. Math. I.H.E.S. 63 (1986), 5-90.

[9] Brent Everitt, John G. Ratcliffe and Steven T. Tschantz, Right-angled Coxeter polytopes, hyperbolic 6-manifolds and a problem of Siegel, arXiv:math.GT/1009.3231, 2010.

[10] Gert Heckman, The Allcock ball quotient, [arXiv:math.AG/0752617], 2013.

[11] Gert Heckman, Coxeter Groups, Informal Lecture Notes, Fall 2013.

[12] A.A. Ivanov, A geometric characterization of the monster, Durham Conference 1990, London Math. Soc. Lecture Notes Ser. 165, Cambridge University Press (1992), 46-62.
[13] A.B. Kempe, A memoir on the theory of mathematical form, Phil. Trans. Royal Soc. London 177 (1886), 1-70.

[14] S.P. Norton, Constructing the monster, Durham Conference 1990, London Math. Soc. Lecture Notes Ser. 165, Cambridge University Press (1992), 63-76.

[15] J. Petersen, Sur le théorème de Tait, Intermédiaire des Mathématiciens 5 (1898), 225-227.

[16] B. Segre, The Non-singular Cubic Surfaces, Oxford University Press, 1942.

[17] G. Shimura, On analytic families of polarized abelian varieties and automorphic functions, Ann. of Math. 78 (1963), 149-192.

[18] G. Shimura, On purely transcendental fields of automorphic functions of several variables, Osaka J. Math. 1 (1964), 1-14.

[19] Christopher S. Simons, An elementary Approach to the Monster, The American Mathematical Monthly 112 (2005), 334-341.

[20] T. Terada, Fonctions hypergéométriques F_1 et fonctions automorphes I and II, Math. Soc. Japan 35 (1983), 451-475 and 37 (1985), 173-185.

[21] J.A. Todd, The 'Odd' Number Six, Proc. Cambridge Phil. Soc. 41 (1945), 66-68.

[22] E.B. Vinberg, Hyperbolic reflection groups, Russian Math. Surv. 40 (1980), 31-75.

[23] Masaaki Yoshida, The real loci of the configuration space of six points on the projective line and a Picard modular 3-fold, Kumamoto J. Math. 11 (1998), 43-67.

[24] Masaaki Yoshida, A hyperbolic structure on the real locus of the moduli space of marked cubic surfaces, Topology 40 (2001), 469-473.

Gert Heckman, Radboud University Nijmegen: g.heckman@math.ru.nl
Sander Rieken, Radboud University Nijmegen: s.rieken@math.ru.nl