Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Kuwait cohort of the A1chieve study

Alaa Daban, Hussain Haji Ali
Department of Diabetes, North Ardeiya PC, Department of Family Medicine, KOC Ahmadi Hospital, Kuwait

ABSTRACT

Background: The A1chieve, a multicentric (28 countries), 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726) in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Kuwait. Results: A total of 1185 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Study patients had started on or were switched to biphasic insulin aspart (n = 472), insulin detemir (n = 472), insulin aspart (n = 4), basal insulin plus insulin aspart (n = 188) and other insulin combinations (n = 48). At baseline, glycaemic control was poor for both insulin naïve (mean HbA1c: 9.8%) and insulin user (mean HbA1c: 9.4%) groups. After 24 weeks of treatment, both the groups showed improvement in HbA1c (insulin naïve: −2.4%, insulin users: −1.7%). No major hypoglycaemic episodes were observed at 24 weeks. SADR was reported in 0.1% of insulin users. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

Key words: A1chieve study, insulin analogues, Kuwait, type 2 diabetes mellitus

INTRODUCTION

Diabetes prevalence in Kuwait is estimated to be 15.9%, with 298 thousand people with diabetes. Fear of hypoglycaemia and gain in body weight are barriers for initiation of insulin therapy. Modern insulin analogues are a convenient new approach or tool to glycaemic control, associated with low number of hypoglycaemia and favourable weight change.

A1chieve, a multinational, 24-week, non-interventional study, assessed the safety and effectiveness of insulin analogues in people with T2DM (n = 66,726) in routine clinical care. This short communication presents the results for patients enrolled from Kuwait.

MATERIALS AND METHODS

Please refer to editorial titled: The A1chieve study: Mapping the Ibn Battuta trail.

RESULTS

A total of 1185 patients were enrolled in the study. The patient characteristics for the entire cohort divided as insulin-naïve and insulin users is shown in the Table 1. Glycaemic control at baseline was poor in this population. The majority of patients started on or were switched to biphasic insulin aspart (39.8%) or insulin detemir (39.8%). Other groups were insulin aspart (n = 4), basal insulin plus insulin aspart (n = 188) and other insulin combinations (n = 48).
After 24 weeks of treatment, overall hypoglycaemic events reduced from 8.9 events/patient-year to 3.2 events/patient-year in insulin user group whereas hypoglycaemia increased from 0.3 events/patient-year to 1.9 events/patient-year in insulin naive group. However, this hypoglycaemia incidence in insulin naive group at 24 weeks was still lower than that observed in insulin users at baseline. No major hypoglycaemic episodes were observed at 24 weeks. SADR was reported in 0.1% of insulin users. Body weight decreased and overall lipid profile improved at week 24 in complete cohort [Tables 2 and 3].

All parameters of glycaemic control improved from baseline to study end in the total cohort [Table 4].

Biphasic insulin aspart ± OGLD
Of the total cohort, 472 patients started on biphasic insulin aspart ± OGLD, of which 128 (27.1%) were insulin naïve and 344 (72.9%) were insulin users. After 24 weeks of starting or switching to biphasic insulin aspart, hypoglycaemic events reduced from 9.0 events/patient-year to 2.2 events/patient-year in insulin user group while hypoglycaemia increased from 0.6 events/patient-year to 2.0 events/patient-year in insulin naive group. Body weight decreased after 24 weeks in insulin user group [Tables 5 and 6].

All parameters of glycaemic control improved from baseline to study end in those who started on or were switched to biphasic insulin aspart for both insulin naïve and insulin user groups [Table 7].

Basal + insulin aspart ± OGLD
Of the total cohort, 188 patients started on basal + insulin aspart ± OGLD, of which 13 (6.9%) were insulin naïve and 175 (93.1%) were insulin users. After 24 weeks of starting or switching to basal + insulin aspart, hypoglycaemic

Table 1: Overall demographic data
Parameters
Number of participants
Male N (%)
Female N (%)
Age (years)
Weight (kg)
BMI (kg/m²)
Duration of DM (years)
No therapy
>2 OGLD
FPG (mmol/L)
PPPG (mmol/L)
Macrovascular complications, N (%)
Microvascular complications, N (%)
Pre-study therapy, N (%)
Insulin users
OGLD only
No therapy
Baseline therapy, N (%)
Insulin detemir±OGLD
Insulin aspart±OGLD
Biphasic insulin aspart±OGLD
Others
Missing

BMI: Body mass index, OGLD: Oral glucose-lowering drug, HbA₁c: Glycated hemoglobin A₁c, FPG: Fasting plasma glucose, PPPG: Postprandial plasma glucose, DM: Diabetes mellitus

Table 2: Overall safety data
Parameter
Hypoglycaemia (insulin naïve), events/patient-year
Hypoglycaemia (insulin users), events/patient-year
Body weight, kg
Lipids and BP (insulin naïve)
HDL-C, mean (mmol/L), (N, % >1.0 mmol/L)
TG, mean (mmol/L), (N, % <2.3 mmol/L)
SBP, mean (mmHg), (N, % <130 mmHg)
Lipids and BP (insulin users)
HDL-C, mean (mmol/L), (N, % >1.0 mmol/L)
TG, mean (mmol/L), (N, % <2.3 mmol/L)
SBP, mean (mmHg), (N, % <130 mmHg)

BP: Blood pressure, LDL-C: Low-density lipoprotein cholesterol, HDL-C: High-density lipoprotein cholesterol, TG: Triglycerides, SBP: Systolic blood pressure
events reduced from 10.6 events/patient-year to 6.1 events/patient-year in insulin user group whereas hypoglycaemia increased from 0.0 events/patient-year to 1.2 events/patient-year in insulin naïve group. A decrease in body weight was observed in both insulin naïve and insulin user groups [Tables 8 and 9].

All parameters of glycaemic control improved from baseline to study end in those who started on or were switched to basal + insulin aspart ± OGLDs for both insulin naïve and insulin user groups [Table 10].

Table 3: Insulin dose

Insulin dose, U/day	N	Pre-study	N	Baseline	N	Week 24
Insulin naïve						
Insulin users						

Table 4: Overall efficacy data

Parameter	N	Baseline	Week 24	Change from baseline
Glycaemic control (insulin naïve)				
HbA1c, mean (%)	444	9.8	7.4	−2.3
FPG, mean (mmol/L)	399	11.0	7.1	−3.9
PPPG, mean (mmol/L)	288	14.4	9.3	−5.1
Glycaemic control (insulin users)				
HbA1c, mean (%)	560	9.4	7.7	−1.7
FPG, mean (mmol/L)	525	10.4	7.4	−3.0
PPPG, mean (mmol/L)	415	13.3	9.6	−3.7
Achievement of HbA1c <7.0% at week 24				
Insulin naïve (% of patients)	477	35.2		
Insulin users (% of patients)	619	33.3		

Table 5: Biphasic insulin aspart±oral glucose-lowering drug safety data

Parameter	N	Baseline	Week 24	Change from baseline
Hypoglycaemia, events/patient-year				
Insulin naïve	128	0.6	2.0	1.4
Insulin users	344	9.0	2.2	−6.8
Body weight, kg				
Insulin naïve	113	82.6	82.6	0.0
Insulin users	297	85.2	84.3	−0.9

Table 6: Insulin dose

Insulin dose, U/day	N	Pre-study	N	Baseline	N	Week 24
Insulin naïve						
Insulin users						

Insulin detemir ± OGLD

Of the total cohort, 472 patients started on insulin detemir ± OGLD, of which 359 (76.1%) were insulin naïve and 113 (23.9%) were insulin users. After 24 weeks of starting or switching to insulin detemir, hypoglycaemic events reduced from 4.7 events/patient-year to 1.8 events/patient-year in insulin user group whereas

Parameter	N	Baseline	Week 24	Change from baseline
Glycaemic control (insulin naïve)				
HbA1c, mean (%)	277	9.3	7.6	−1.7
FPG, mean (mmol/L)	246	10.2	7.4	−2.8
PPPG, mean (mmol/L)	203	12.9	9.7	−3.2

Table 8: Basal+insulin aspart±oral glucose-lowering drug safety data

Parameter	N	Baseline	Week 24	Change from baseline
Hypoglycaemia, events/patient-year				
Insulin naïve	13	0.0	1.2	−1.2
Insulin users	175	10.6	6.1	−4.5
Body weight, kg				
Insulin naïve	11	83.3	82.6	−0.7
Insulin users	163	86.1	85.3	−0.8

Table 9: Insulin dose

Insulin dose, U/day	N	Pre-study	N	Baseline	N	Week 24
Insulin naïve						
Insulin users						

Table 10: Basal+insulin aspart±oral glucose-lowering drug efficacy data

Parameter	N	Baseline	Week 24	Change from baseline
Glycaemic control (insulin naïve)				
HbA1c, mean (%)	145	10.2	7.4	−2.8
FPG, mean (mmol/L)	119	13.7	9.4	−4.3

HbA1c: Glycated haemoglobin A1c, FPG: Fasting plasma glucose, PPPG: Postprandial plasma glucose
hypoglycaemia increased from 0.3 events/patient-year to 1.7 events/patient-year in insulin naïve group. Body weight decreased in both insulin naïve and insulin user groups [Tables 11 and 12].

All parameters of glycaemic control improved from baseline to study end in those who started on or were switched to insulin detemir ± OGLDs for both insulin-naïve and insulin user groups [Table 13].

Insulin aspart ± OGLD

Of the total cohort, 4 patients started on insulin aspart ± OGLD of which 1 (25%) were insulin naïve and 3 (75%) were insulin users. After 24 weeks of treatment starting or switching to insulin aspart, hypoglycaemic events reduced from 13.0 events/patient-year to 0.0 events/patient-year in insulin user group, while hypoglycaemia remained nil in insulin naïve group similar to that of baseline. Body weight decreased in insulin user group. All parameters of glycaemic control improved from baseline to study end in those who started on or were switched to insulin aspart ± OGLDs for both insulin naïve and insulin user groups.

Conclusion

Our study reports improved glycaemic control following 24 weeks of treatment with any of the insulin analogues (Biphasic insulin aspart; basal + insulin aspart; insulin detemir; insulin aspart) with or without OGLD. No major hypoglycaemic episodes were observed at 24 weeks. SADR was reported in 0.1% of insulin users. Though the findings are limited by number of patients, still the trend indicates that insulin analogues can be considered effective and possess a safe profile for treating type 2 diabetes in Kuwait.

References

1. IDF Diabetes Atlas. 5th ed. Available from: http://www.idf.org/atlasmap/atlasmap [Last accessed on 2013 Jun 10].
2. Korytkowski M. When oral agents fail: Practical barriers to starting insulin. Int J Obes Relat Metab Disord 2002;26 Suppl 3:S18-24.
3. Hirsch IB. Insulin analogues. N Engl J Med 2005;352:174-83.
4. Shah SN, Litwak L, Haddad J, Chakkarwar PN, Hajjaji I. The A1chieve study: A 60 000-person, global, prospective, observational study of basal, meal-time, and biphasic insulin analogs in daily clinical practice. Diabetes Res Clin Pract 2010;88 Suppl 1:S11-6.