Full Paper

Prevention of oral biofilm formation and degradation of biofilm by recombinant α-1,3-glucanases from Streptomyces thermodiastaticus HF3-3

(Received September 4, 2019; Accepted November 11, 2019; J-STAGE Advance publication date: June 26, 2020)

Vipavee Cherdvorapong,1 Niphawan Panti,1 Wasana Suyotha,2 Yuki Tsuchiya,3 Yosuke Toyotake,1 Shigekazu Yano,4 and Mamoru Wakayama,∗1

1Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
2Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University 90112, Thailand
3Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
4Department of Biochemical Engineering, Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan

The genes encoding α-1,3-glucanases (Agls; AglST1 and AglST2) from Streptomyces thermodiastaticus HF3-3 were cloned and were then expressed in Escherichia coli Rosetta-gami B (DE3). We purified the resultant histidine (His)-tagged α-1,3-glucanases (recombinant enzymes, rAglST1 and rAglST2). Both the recombinant enzymes were similar to the wild-type enzymes. We examined the effects of rAglST1 and rAglST2 on the formation and degradation of biofilms on glass plates with Streptococcus mutans NRBC 13955 by evaluating the biofilm content (%), release of reducing sugar (mM), release of S. mutans (log CFU/mL), and the biofilm structure using laser scanning microscopy (LSM). The results showed that after incubation for 16 h, rAglST1 and rAglST2 reduced the formation of biofilm to 52% and 49% of the control, respectively. The result may reflect the fact that the concentration of the reducing sugar and the number of S. mutans cells in the rAglATs-added medium were higher than in the control medium. After an 8-h treatment with rAglST1 and rAglST2, biofilms decreased to less than 60% of the control. The number of S. mutans cells in the reaction mixture gradually increased during the incubation period. The enzymes can degrade the biofilms that were pre-formed on the glass plate by more than 50% after a 30-min incubation in the presence of toothpaste ingredients (1% w/v of sodium fluoride, benzethonium chloride, and sodium dodecyl sulfate) at 50°C. Our study showed that rAglST1 and rAglST2 have advantageous properties for dental care applications.

Key Words: α-1,3-glucanase; biofilm; degradation; prevention; Streptomyces thermodiastaticus

Introduction

The first report that α-1,3-glucanase (Agl; EC 3.2.1.59), or mutanase that hydrolyzes α-1,3-glucan by recognizing the α-1,3-glycosidic linkage, was in the Trichoderma harzianum (Guggenheim and Haller, 1972), and later in other sources, such as fungi and bacteria. Agl is classified into two types: the glycoside hydrolase family 71 (GH71) and the glycoside hydrolase family 87 (GH87). These families are described in the Carbohydrate Active enzyme (CAZy) database on the basis of their amino acid similarity. GH71 Agl is primarily found in fungi. In T. harzianum, the enzymes use an inverting mechanism to hydrolyze substrates. On the other hand, GH87 Agl is isolated only from bacteria, but its catalytic mechanism remains unclear (Grun et al., 2006; Suyotha et al., 2016). Found in dental plaque and the fungal cell walls, α-1,3-glucan is a water-insoluble polysaccharide comprising a homopolymer of glucose with α-1,3-glycosidic linkages. Dental plaque is formed when the normal bacterial flora present in the human oral cavity, principally Streptococi

*Corresponding author: Mamoru Wakayama, Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
Tel: +81-77-566-1111 ext. 8471 Fax: +81-77-561-2659 E-mail: wakayama@sk.ritsumei.ac.jp

None of the authors of this manuscript has any financial or personal relationship with other people or organizations that could inappropriately influence their work.
Materials and Methods

α-1,3-Glucan preparation. α-1,3-Glucan was prepared using glyclosyltransferase II from *S. mutans* expressed in *E. coli* Rosetta Gami B (DE3) as described previously (Cherdvorapong et al., 2019).

Microorganism and culture conditions. *E. coli* JM 109 was used as a host to propagate the recombinant plasmid. It was incubated in Luria-Bertani (LB) broth (pH 7.0) containing 50 µg/ml ampicillin at 37°C for 18 h with shaking at 100 rpm. *E. coli* Rosetta Gami B (DE3) cells harboring the recombinant plasmid were used for α-1,3-gluсanase production by incubating in 100 mL LB broth at pH 7.0 containing 50 µg/ml ampicillin, 20 µg/ml kanamycin, and 34 µg/ml chloramphenicol at 37°C with shaking at 100 rpm. *S. mutans* NBRC 13955 was incubated in 10-mL Heart Infusion medium (HI medium) for 18–24 h, then inoculated to 75 mL HI medium which contained 1% (w/v) sucrose for biofilm formation.

Cloning and expression of α-1,3-gluсanases. Chromosomal DNA, which was isolated from *S. thermodiastaticus* HF3-3 by the general extraction method using phenol/chloroform, was used as a template DNA for PCR. We cloned two genes for α-1,3-gluсanase 1 (AglIST1) and α-1,3-gluсanase 2 (AglIST2) and designated as aglst1 and aglst2, respectively. The primer AglIST-F (5'-GGATCAGCATATGCGACGACACACAGAAG-3') and the primer AglIST-R (5'-CGCAAGCTTTTCCGGAACGCGTGACGCTGACGTA-3') were used to amplify aglst1, and the primers AglIST-F and AglIST2-R (5'-CGCAAGCTTTTCCGGAACGCGTGACGCTGACGTA-3') were used to amplify aglst2. The primers contained NdeI and HindIII restriction sites, indicated by underlining in the forward and reverse primers, respectively. PCR was performed in a reaction mixture of KOD-Plus-Neo kit (Toyobo, Japan). 50 µL of the PCR reaction contained 1.5 µL of each primer, 0.5 µL of S. thermodiastaticus HF3-3 DNA template, 5 µL of KOD buffer, 5 µL of dNTPs, 3 µL of MgSO4 and 1 µL of KOD-Plus-Neo enzyme. Thermal cycling was one cycle of 94°C for 2 min, followed by 35 cycles at 98°C for 20 s and 72°C for 2 min. The PCR products (~2 kb) were digested with NdeI and HindIII, and then inserted into NdeI and HindIII sites of pET-21a (+) along with a His6 tag. The resultant plasmids were designed as pET21-aglst1 and pET21-aglst2, respectively. Each plasmid was introduced into E. coli Rosetta-gami B (DE3) cells. The transformants were cultured at 37°C under the conditions mentioned above. After the optical density at 600 nm reached 0.6–0.8, the cultures were cooled down, and isopropyl-β-D-
monovalent cations (Na+, K+, Li+, and Ag+), divalent cations on the enzyme activity was examined by adding concentrations of NaCl at 60°C for 30–75 min. The optimal concentration of NaCl for the enzyme activity was determined by incubating the reaction mixture at 100°C for 5 min. Later, the hydrolysis product of rAglSTs for different reaction times (10 min, 30 min, 1 h, 12 h and 24 h) were spotted on the TLC silica gel 60 (Merck, Darmstadt, Germany) using 10% (w/v) of glucose, maltose, maltotriose, maltotetraose and maltopentaose as markers. The plate was developed in the chamber, which was saturated with a solution of distilled water: 1-butanol: acetic acid (1: 6: 8 v/v/v). TLC silica gel 60 was sprayed with a mixture of 5 mL sulfuric acid, 27 mL ethanol, 3 mL distilled water and 0.2 g orcinol, followed by heating on a hot plate at 100°C for 10–15 min.

Enzyme purification. After E. coli cells containing pET21-aglST1 or pET21-aglST2 were centrifuged at 12,000 rpm for 10 min at 4°C. The cell pellets were suspended with 10 mL of 50 mM Tris-HCl buffer (pH 7.4) containing 500 mM NaCl and 20 mM imidazole. The cell walls were disrupted by sonication, 15 s pulses at 45 s intervals, on ice. Cell debris was removed by centrifugation. The supernatants were applied to Ni Sepharose™ 6 Fast Flow column (GE Healthcare, Japan) equilibrated with the suspended buffer. The column was washed with 10 mL of washing buffer (50 mM Tris-HCl buffer, pH 7.4 containing 500 mM NaCl and 20 mM imidazole). Elution of the proteins was carried out with an elution buffer of 50 mM Tris-HCl buffer at pH 7.4 and containing 500 mM NaCl and 100 mM imidazole. Each fraction was collected separately, and then analyzed on a 10% SDS-PAGE. The active fractions were pooled, dialyzed against 10 mM citrate buffer (pH 5.5), and kept at −20°C until use. The purified enzymes were designated as rAglST1 and rAglST2, respectively.

Enzyme assay. The activities of rAglST1 and rAglST2 were determined by using α-1,3-glucan as a substrate. The reaction mixture contained 1% α-1,3-glucan, 50 mM citrate buffer (pH 5.5), and appropriate amounts of recombinant enzymes, and were incubated at 50°C for 30 min. The reaction was stopped by treating the reaction mixture at 100°C for 5 min. After centrifugation at 12,000 rpm for 2 min at 4°C to separate the undigested α-1,3-glucan, we used 250 µL of the resultant supernatant to determine the amount of reducing sugar by using the dinitrosalicylic (DNS) colorimetric method (Miller, 1959). One unit (U) of the enzyme activity was defined as the amount of enzyme that released 1 µmol of reducing sugar (as glucose) per min.

Characterization of rAglST1 and rAglST2. The recombinant enzymes were incubated in a reaction mixture containing 1% α-1,3-glucan, 50 mM citrate buffer (pH 4.0–6.0), a potassium phosphate buffer (pH 6.0–8.0), and Tris-HCl buffer (pH 8.0–9.5). We measured the activity over a temperature range of 30–75°C for 30 min to determine the optimal temperature. The thermal stability was determined after the treatment of the enzyme across a temperature range of 30–75°C for 1 h in 100 mM citrate buffer (pH 5.5). The optimal concentration of NaCl for the enzyme activity was determined by incubating the reaction mixtures over a range of NaCl concentrations (0–20% w/v) at 50°C for 30 min. The NaCl tolerance was determined after incubating the enzyme in a buffer containing different concentrations of NaCl at 60°C for 1 h. The effect of metal ions on the enzyme activity was examined by adding monovalent cations (Na+, K+, Li+, and Ag+), divalent cations (Ca2+, Mn2+, Mg2+, Cu2+, Fe2+, Zn2+, Co2+, and Ni2+), and a trivalent cation (Fe3+) in the reaction mixture at 1 mM in final concentration. To determine the effect of salts and surfactants on the enzyme activity, sodium fluoride (NaF), sodium dodecyl sulfate (SDS), and benzethonium chloride (BTC) were added to the reaction mixture at a final concentration of 0–1% (w/v) to determine the effect of salts and surfactants on the enzyme activity. The influence of other chemical reagents, such as NH4Cl (at 1 mM), EDTA and DTT (at 1–50 mM) on the enzyme activity was also determined by incubating at 50°C for 30 min.

Thin layer chromatography assay. The hydrolysis product of rAglSTs was determined by using α-1,3-glucan as a substrate. The reaction mixture contained 1% α-1,3-glucan, 50 mM citrate buffer (pH 5.5), and kept at −20°C until use. The purified enzymes were designated as rAglST1 and rAglST2, respectively.

Analytical methods. The protein concentration was measured by Lowry’s method using egg albumin as the standard (Lowry et al., 1951). SDS-PAGE (10%) was performed by the protocol of Laemmli (1970) using the Pre-stained Protein Markers Broad Range (Nacalai Tesque, Japan) as markers.

Biofilm formation. Three 200 mL flasks with 75 mL of HI medium supplemented with 1% (w/v) sucrose were autoclaved at 121°C for 15 min. Afterward, we inoculated each flask with S. mutans NBRC 13955. We added rAglST1 and rAglST2 to the culture medium at a final concentration 0.01 U/mL, respectively. We added 10 mM citrate buffer (pH 5.5) to the control instead of the enzyme. Five sets of three sterile glass plates were immersed into each flask, and were incubated at 37°C for 16 h under stationary conditions. Each set of glass plates was taken off of each flask after an incubation time of 0, 4, 8, 12, and 16 h. We immersed the plates in sterile, distilled water several times to remove excess cells attached to the glass plate. Biofilm conditions of the glass plate were examined using a Laser Scanning Microscope (LSM) (LEXT, Olympus, Japan). At the same time, we collected 1 mL of the culture from each flask to determine the number of S. mutans in HI agar with the drop plate method, and to estimate the released reducing sugar by the DNS method as previously described. Later, the biofilm on glass plates was dyed with alcian blue. After washing the alcian blue with 0.5 mL of 60% (v/v) acetic acid, the absorbance of the de-stained solution was measured at 340 nm (Wiater et al., 2004). Biofilm formation (%) was calculated by Eq. (1):

\[
\text{Biofilm formation (%)} = \left(\frac{\text{absorbance at 340 nm of rAglST treated sample}}{\text{absorbance at 340 nm of rAglST non treated sample}} \right) \times 100
\]
Biofilm degradation. We prepared a biofilm in advance on glass plates under the same conditions (without enzyme) as described in the biofilm formation assay. After a 16-h incubation, each set of glass plates was immersed from the culture medium, immersed in sterile distilled water several times, and then transferred to the treatment solutions containing rAglST1 and rAglST2 (0.01 U/mL of enzyme at the final concentration and 50 mM citrate buffer, pH 5.5). All samples were incubated at 37°C for 16 h under stationary conditions. After incubation for 0, 4, 8, 12, and 16 h, each set of glass plates was removed, and the biofilm condition was examined through LSM. At the same time, 1 mL of the treatment solution was collected to determine the number of S. mutans in HI agar with the drop plate method, and to estimate the released reducing sugar. Later, each glass plate was dyed with alician blue. After the plates were de-stained with 0.5 mL of 60% (v/v) acetic acid, the absorbance of the solution was measured with a spectrometer at 340 nm. Residual biofilm (%) was calculated using Eq. (1), as described above.

Biofilm degradation in the presence of toothpaste ingredients. The pre-formed biofilm was prepared as described above. Then, the set of glass plates was immersed in a treatment solution containing rAglST1 or rAglST2 (0.01 U/mL of enzyme at the final concentration), 1% (w/v) SDS, NaF and BTC in 50 mM citrate buffer (pH 5.5). Samples were incubated at 50°C for 30 min under stationary conditions. Each set of glass plates was removed, and the condition of the biofilm was examined through LSM. The released reducing sugar in each solution was measured as a concentration of glucose equivalent. Each glass plate was dyed with alician blue. After de-staining with 0.5 mL of 60% (v/v) acetic acid, the absorbance of the solution was measured with a spectrometer at 340 nm. Residual biofilm (%) was calculated using Eq. (1).

Reagents. Yeast extract and hiplopolypeptone were purchased from Nihon Seiyaku (Tokyo, Japan). HI medium was purchased from Nissui (Tokyo, Japan). The other pure grade reagents were purchased from Nacalai Tesque, Inc. (Kyoto, Japan) and Wako Pure Chemical Industries, Co. Ltd. (Osaka, Japan). The DNA primers and DNA sequence analysis were ordered in FASMAC, Co. Ltd. (Kanagawa, Japan).

Results

Purification of recombinant AglST

We purified rAglST1 and rAglST2 from E. coli Rosetta-gami B (DE3) with a Ni Sepharose™ 6 Fast Flow column. Each enzyme was completely eluted with 50 mM Tris-HCl buffer, pH 7.4 containing 500 mM NaCl and 20 mM imidazole. The active fractions of rAglST1 and rAglST2 were collected, dialyzed against 10 mM citrate buffer, pH 5.5, and stored at −20°C until further use. SDS-PAGE demonstrated that rAglST1 and rAglST2 were purified homogeneously (Figs. 1A and B). rAglST1 was purified 3.79-fold with a specific activity of 0.46 U/mg and a recovery of >80%, while rAglST2 was purified 4.95-fold with a specific activity of 0.42 U/mg and a recovery of 44.7%.

Characterization of rAglST1 and rAglST2

The pH dependence of rAglST1 and rAglST2 were plotted as a bell-shaped histogram. Maximum activity was obtained at pH 5.5, which is the same as that of wild-type Agls (Cherdvorapong et al., 2019; Suyotha et al., 2017). These results indicated that rAglST1 and rAglST2 retained more than 80% of the original activity over a pH range of 3.0–8.5 and 5.5–8.0, respectively. The effect of temperature was measured over a temperature range of 30–75°C. Maximum activity was observed at 65°C in the case of both recombinant enzymes. This agreed with previous research on AglST1, but was slightly higher in the case of AglST2 than in the previous reports (Cherdvorapong et al., 2019; Suyotha et al., 2017). Regarding thermal stability, the activities of both rAglST1 and rAglST2 were retained at a greater than 80% activity after incubation at 65°C for 1 h. The activity of rAglST2 increased in the presence of NaCl at 5–10% (w/v), whereas the activity of rAglST1 slightly decreased when treated with 15–20% (w/v) NaCl and the activity was retained at greater than 80%.

As far as the effect of metal ions was concerned, the activity of rAglST1 and rAglST2 significantly decreased to less than 80% when compared to the original activity in the presence of Ag⁺, Cu²⁺, and Ni²⁺. The activity of rAglST1 also decreased in the presence of K⁺, but this did not affect the activity of rAglST2. The addition of Li⁺ and Mn²⁺ increased the relative activity in both recombinant enzymes, especially Mn²⁺, which increased the enzyme activities by more than 200%. The presence of Ca²⁺ increased the activity of rAglST2, but did not affect the activity of rAglST1. When exposed to EDTA and DTT, the results revealed that a presence of 1 mM EDTA decreased the activities of both rAglST1 and rAglST2 to <80% and <50%, respectively. When exposed to 50 mM DTT, the activities of both enzymes slightly increased to almost 130%. The results of the general dental ingredients, NaF, SDS, and BTC, indicated that only BTC at 0.5–1.0% (w/v) decreased the activity of rAglST2 < 80%, whereas no inhibitory effect was observed in rAglST1. The other
chemicals, NaF and SDS, increased the activity of both enzymes to >120%.

The hydrolysis products of the rAglST1 and rAglST2 were observed by the TLC method and showed that rAglST2 and rAglST2 were endo-hydrolytic enzymes, equivalent to the wild-type enzymes. The summarized characteristics of rAglST1 and rAglST2 are shown in Table 1.

Effect of recombinant AglS on biofilm formation on a glass plate

To examine the effect of rAglSTs on biofilm formation, we added 0.01 U/mL of each recombinant enzyme to the batch culture medium attached to glass plates by the inoculation of S. mutans pre-culture. The result showed that the rAglSTs effectively inhibited biofilm formation. A lower amount of biofilm on glass plate than the control was clearly observed after a 12-h incubation, with 79% and 65% in the presence of rAglST1 and rAglST2, respectively. An almost 50% reduction of biofilm was observed when compared with the glass plate of the control after a 16-h incubation, without any difference between rAglST1 and rAglST2 (Fig. 2A). After a 12-h incubation, the reducing sugar in the enzyme-treated samples was approximately 7 mM higher than the control, without any difference between rAglST1 and rAglST2 (Fig. 2B). The number of S. mutans cells in the medium increased normally following an s-curve growth in both the non-treated and enzyme-treated samples. In addition, the number of S. mutans cells in enzyme-treated samples were higher than the control after incubation for 4 h. The same trends were seen until the end of the incubation (Fig. 2C).

The visual examination by LSM showed a clear difference between the enzyme-treated samples and the non-treated sample under the glass surface condition after an 8-h incubation. A biofilm of the non-treated sample was formed on both the glass plates and the flask surface. In comparison, some biofilm in the enzyme-treated samples was loosened and detached from the glass plates and flask surface into the culture medium in which we could observe small particles (data not shown). From the observation with LSM, only S. mutans could be seen on the glass plates in the enzyme-treated samples after incubation for 8 h. After a 12-h incubation, an increasing amount of S.

Table 1. Characteristics of rAglST1 and rAglST2.
rAglST1
Optimum pH
pH stability
Optimum temperature
Thermal stability
NaCl effect
Metal ions effect
activators
inhibitors
Toothpaste ingredients effect
SDS
NaF
BTC
Cleavage type
Approximately molecular mass (kDa) by SDS-PAGE

Fig. 2. Effect of recombinant AglSTs on biofilm formation.

A. Rate of biofilm formation in each incubation period. Black and gray bars represent rAglST1- and rAglST2-treated samples, respectively. Values are expressed relative to biofilm formation of the control (non-treated sample) as 100% at each incubation time. B. The releasing of reducing sugar in each incubation period. White, black, and grey bars represent the control (non-treated samples), rAglST1- and rAglST2-treated samples, respectively. Values are expressed as mM of glucose equivalent. C. The number of S. mutans cells in the medium in each incubation period. Solid line, dashed, and dotted lines represent the control (non-treated samples), rAglST1- and rAglST2-treated samples, respectively. Data are presented as the mean ± standard errors of the mean (SEM) of five independent experiments.
α-1,3-Glucanases degrade oral biofilm

Fig. 3. Laser scanning microscopy of biofilm formed by *S. mutans*.
The control (non-treated sample), rAglST1- and rAglST2-treated samples were incubated for 4, 8, 12, and 16 h, respectively.

mutans cells formed a pellicle. The mature structure of the biofilm was clearly observed surrounding with pellicle and *S. mutans* cells after incubation for 16 h. On the other hand, the biofilm of the non-treated sample started to form after an 8-h incubation, and the size of the biofilm increased in proportion to the incubation time. In summary, even though biofilm could form on all glass plates after a 16-h incubation, the thickness of enzyme-treated biofilm was thinner than non-treated biofilm (Fig. 3).

Effect of recombinant Agls on degrading biofilm on glass plate

The residual biofilm on the plate was measured to estimate the effect of rAglST1 and rAglST2 on the degradation of mature biofilm on glass plate. The decrease of biofilm was clearly observed after an incubation for 8 h to less than 60% of the original in the case of both rAglST1 and rAglST2. At the end of the incubation, rAglST1 and rAglST2 could decrease the biofilm to almost 40% of the control (Fig. 4A). Up to 4 h, the concentration of the reducing sugar produced from the degradation of the biofilm on the glass plate by rAglST2 increased rapidly. After an 8-h incubation, the concentration of reducing sugar of the sample treated by rAglST2 once decreased. The concentration of the reducing sugar of the sample treated by rAglST1 gradually increased and kept increasing for up to 16 h. On the other hand, the concentration of reducing sugar of the sample treated by rAglST2 apparently stopped increasing (Fig. 4B). The population of *S. mutans* in the sample solution treated by rAglST2 was rather higher than that of the sample solution treated by rAglST1 (Fig. 4C). It is thought that rAglST2 could degrade biofilm to the reducing sugars which *S. mutans* in the medium might use for growth more quickly than that formed from biofilm degradation by rAglST1. Therefore, *S. mutans* could grow better in the sample solution treated by rAglST2 than by rAglST1.

From LSM observations, the mature biofilms were gradually degraded after treatment with rAglST1 or rAglST2. The pellicle and the adhered *S. mutans* cells were detached from the glass plate. This resulted in a cleaner background on the glass plate after an 8-h incubation than the original background. Finally, only thinner biofilms remained after a 16-h incubation (Fig. 5).

Effect of rAglST1 and rAglST2 on biofilm degradation with the combination of toothpaste ingredients.

We wanted to evaluate the practical uses of these enzymes. The effect of α-1,3-glucanases on the degradation of a mature biofilm in the presence of mixed toothpaste ingredients (SDS, NaF, and BTC) was evaluated. Since rAglST1 and rAglST2 retained their activities after incubation at high temperatures as previously reported, rAglST1 and rAglST2 (0.01 U/ml of final concentration) were tested in a mixture of 1% (w/v) of SDS, NaF, and BTC, then incubated at 50°C for 30 min. After incubation, the result of alcian blue absorption showed rAglSTs could decrease the amount of biofilm by approximately 60% compared with non-treated samples, with no difference between rAglST1 and rAglST2 (Fig. 6A). After a 30-min incubation, a reducing sugar of 0.65 mM was generated in the enzyme-treated samples, whereas it was not observed in the non-treated sample (Fig. 6B). The difference in the biofilm quantity formed on the glass plate could be seen visually. In detail, the density of biofilm between non-treated and enzymes-treated samples was clearly different in the LSM spectroscopy observations (Fig. 7).

Discussion

The genes that encode α-1,3-glucanase from *S. thermodiastaticus* HF3-3 were successfully cloned and expressed in *E. coli* Rosetta-gami B (DE3). The purified recombinant α-1,3-glucanases, designated rAglST1 and
rAglST2, were obtained in a one-step purification using a Ni Sepharose™ 6 Fast Flow column according to the C-terminal His-tagged. As we reported in a previous study, AglST1 is generated from AglST2 by proteolytic truncation of the C-terminus region. It was interesting to identify the function of this truncated C-terminus region (~400 aa). Both rAglST1 and rAglST2 were characterized, and compared for their effectiveness on biofilm formation and degradation.

Comparing the characteristic of rAglST1 and rAglST2, both enzymes showed similarities in properties such as optimum pH, optimum temperature, thermostability, the effect of NaCl, and endo-type hydrolysis. However, they differed slightly in some properties, including pH stability, the effect of metals as activators and inhibitors, and the effect of benzethonium chloride (BTC). rAglST1 retained more than 80% of its activity in a pH range of 3.0–8.5, whereas rAglST2 activity spanned a range of 5.5–8.0. Moreover, it was found that Ca²⁺ increased the activity of rAglST2, whereas it did not affect the activity of rAglST1. K⁺ decreased the activity of rAglST1, but did not have any effect on rAglST2. On the contrary, the presence of 0.5–1.0% of BTC decreased the activity of rAglST2 without any effect on rAglST1. These differences might be derived from the truncated C-terminus region. Similar information of the slightly different characteristics between two kinds of α-1,3-glucanases, or mutanases, from the same species has been reported. However, those reports do not explain about any structural information (Guggenheim and Haller, 1972; Tsunoda et al., 1977). We have been undertaking X-ray crystallographic analysis of AglFH1, one of the isozymes of α-1,3-glucanases from _Paenicibacillus glycanilyticus_ FH11, and obtained same results, including a part of three-dimensional structure of AglFH1 (unpublished data). The 3D structure obtained showed that the region located adjacent to catalytic domain contained one calcium ion. In the case of AglFH1, Glu-X-Glu, Ser-X-X-Ser, and Asp in the region have been shown to involve Ca²⁺ binding. In the case of AglFH2, the isozyme of AglFH1, Asp-X-Asp, Ser-X-X-Lys, and Asp are found in the corresponding region. In the C-terminal region of AglST2, Asp⁶²⁶-Gly⁶²⁷-Asp⁶²⁸, Ser⁶⁸³-Ser⁶⁸⁴, Phe⁶⁸⁵-Ser⁶⁸⁶, and Asp⁷¹¹ are present in the sequence (DDBJ Accession No. LC317049). These results suggest that these amino acid residues might be involved in the formation of the Ca²⁺ binding site. At present, X-ray crystallographic analysis of AglST2 is underway.

We have investigated the effects of both rAglST1 and rAglST2 on the formation and degradation of _S. mutans_ biofilm. As shown in Fig. 3, both rAglST1 and rAglST2 especially suppressed biofilm formation during incubation for 12 h even though the concentration of the enzymes was low (0.01 U/mL). _S. mutans_ uses sucrose to produce a biofilm of α-1,3-glucan and releases fructose in the medium as a byproduct (Colby and Russell, 1997). Accordingly, when rAglST1 or rAglST2 was added to the medium in the course of biofilm formation, glucose and α-1,3-glucosyloligosaccharides were released into the medium by hydrolytic action of the enzyme on the biofilm under formation, and they exhibited a reducing ability as with fructose. In addition to an increase of reducing sugar in the medium with reaction time, the number of _S. mutans_ cells was also increased in the medium by suppressing the habitation of _S. mutans_ in the biofilm when it was treated with rAglST1 or rAglST2 (Fig. 2).

Considering previous reports, the study on α-1,3-glucanase in the application of biofilm removal was basically in a combination of commercial dextranase. Oral biofilm containing pathogenic microorganisms was effectively removed after a 3-h incubation with an enzymatic mixture of 0.25 U/mL mutanase from _T. harzianum_ F-340 and 1 U/mL commercial dextranase, and was completely removed after a 6-h incubation with the same mixture (Wiaer et al., 2008). A favorable result also reported in the study of Shimotsuura et al. (2008) that 1.4 U/mL of
α-1,3-Glucanases degrade oral biofilm

Fig. 5. Laser scanning microscopy of *S. mutans* biofilm degradation.

The biofilm formed was incubated in the solution of rAglST1 and rAglST2 for 0, 4, 8, 12, and 16 h, respectively.

Fig. 6. Effect of recombinant AglSTs on biofilm degradation in the presence of toothpaste ingredients.

Survival rate of biofilm (A) and the concentration of released reducing sugar (B) after 30-min incubation at 50°C in the presence of AglSTs and 1% (w/v) of SDS, NaF, and BTC. The reactions were performed according to the procedures described in Materials and Methods. Values are expressed as mM of glucose equivalent. Data are presented as the mean ± standard errors of the mean (SEM) of five independent experiments. Control: distilled water (without AglSTs)

Fig. 7. Laser scanning microscopy of *S. mutans* biofilm degradation on the glass plates.

S. mutans biofilm on the glass plate was incubated in distilled water (A), rAglST1 treatment with 1% (w/v) of SDS, NaF and BTC (B), rAglST2 treatment with 1% (w/v) of SDS, NaF and BTC (C) 30 min at 50°C.
recombinant mutanase from *Paenibacillus* sp. showed biofilm degrading activity comparable to that of wild-type enzyme after incubation for 6 h. Another study on the effect of mutanase from *T. harzianum* F-470 and commercial dextranase (Sigma-Aldrich, USA) both individually and in combination were reported. The most effective prevention was shown with the combination of 0.3 U/mL mutanase and 5 U/mL dextranase, which decreased the accumulation of streptococcal film to about 99.5% in biofilm formation, and 95% in biofilm degradation (Wiater et al., 2004). To our knowledge, there are few reports on biofilm formation, and 95% in biofilm degradation (Wiater et al., 2004). To our knowledge, there are few reports on biofilm formation, and 95% in biofilm degradation (Wiater et al., 2004).

Acknowledgments

This work was carried out through collaboration of the Core to Core Program, supported by the Japan Society for the Promotion of Science and the National Research Council of Thailand and financially supported by The Ministry of Education, Culture, Sports, Science and Technology in Japan (MEXT).

References

Cherdvorapong, V., Fujiki, H., Suyotha, W., Takeda, Y., Yano, S. et al. (2019) Enzymatic and molecular characterization of α-1,3-glucanase (AglST2) from *Streptomyces thermodiastaticus* HF3-3 and its relation to α-1,3-glucanase HF65 (AglST1). *J. Gen. Appl. Microbiol.*, 65, 18–25.

Colby, S. M. and Russell, R. R. B. (1997) Sugar metabolism by mutants streptococci. *J. Appl. Micro. Symposium Supplement*, 83, S80–S88.

Grun, C. H., Dekker, N., Nieuwland, A. A., Kiss, F. M., Kamerling, J. P. et al. (2006) Mechanism of action of the endo-1,3-α-glucanase MutAp from the mycoparasitic fungus *Trichoderma harzianum*. *FEBS Lett.*, 57980–37386.

Guggenheim, B. and Haller, R. (1972) Purification and properties of an α-1,3-glucanohydrolase from *Trichoderma harzianum*. *J. Dent. Res.*, 51, 394–402.

Inoue, M., Yakushiji, T., Mizuno, J., Yamaoto, Y., and Tanii, S. (1990) Inhibition of dental plaque formation by mouthwash containing an endo-alpha-1,3 glucanase. *Clinical Preventive Dentistry*, 12, 10–14.

Ismail, W. N. H. W., Razak, F. A., and Rahim, Z. H. A. (2006) The role of sucrose in the development of oral biofilm in a simulated mouth system. *Online J. Biol. Sci.*, 6, 62–66.

Kelstrup, J., Funder-Nielson, T. D., and Møller, E. N. (1973) Enzymatic reduction of colonization of *Streptococcus mutans* in human dental plaque. *Acta Odontologica Scandinavica*, 31, 249–253.

Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature*, 227, 680–685.

Lowry, O. H., Rosebrough, N. J., and Farr, A. L. (1951) Protein measurement with the folin phenol reagent. *J. Biol. Chem.*, 193, 265–275.

Marotta, M., Martino, A., Rosa, A. D., Farina, E., Carteni, M. et al. (2002) Degradation of dental plaque glucans and prevention of glucan formation using commercial enzymes. *Process Biochem.*, 38, 101–108.

Miller, G. L. (1959) Use of DNS reagent for determination of reducing sugar. *Anal. Chem.*, 31, 426–428.

Pleszczyńska, M., Wiater, A., and Szczodrak, J. (2010) Mutanase from *AglST1* and *AglST2* in this experiment was only 0.01 U/mL. A presence of dextranase would provide a synergistic effect due to its cleavage of a minor α-1,6-glycosidic bond in *Streptococcus biofilm*, which leads to an increase in the decomposition efficiency in dental plaque.

Pleszczyńska, M., Wiater, A., and Szczodrak, J. (2015) (1->3)-α-glucan hydrolyase in dental biofilm prevention and control. *Int. J. Biol. Macromolec.*, 79, 761–778.

Sanz, L., Montero, M., Redondo, J., Llobell, A., and Monte, E. (2005) Expression of an α-1,3-glucanase during mycoparasitic interaction of *Trichoderma asperellum*. *FEBS J.*, 272, 493–499.

Shimotsuura, I., Kigawa, H., Ohdera, M., Kuramitsu, H. K., and Nakashima, S. (2008) Biochemical and molecular characterization of a novel type of mutanase from *Paenibacillus* sp. strain RM1: identification of its mutan-binding domain, essential for degradation of *Streptococcus mutans* biofilms. *Appl. Environ. Microbiol.*, 74, 2759–2765.

Simonson, L. G., Lamberts, B. L., Deiher, D. A., and Walter, R. G. (1983) Prevention of dental caries in hamster by an endo-1,3-α-D-glucanase. *J. Dent. Res.*, 62, 395–397.

Suyotha, W., Yano, S., and Wakayama, M. (2016) α-1,3-glucanase: present situation and prospect of research. *World J. Microbiol. Biotechnol.*, 32, 1–11.

Suyotha, W., Fujiki, H., Cherdvorapong, V., Takagi, K., Yano, S. et al. (2017) A novel thermostable α-1,3-glucanase from *Streptomyces thermodiastaticus HF3-3*. *J. Gen. Appl. Microbiol.*, 63, 296–304.

Tsunoda, A., Nagaki, T., Sakano, Y., and Kobayashi, T. (1977) Purification and properties of an Exo-α-1,3-glucanase from *Trichoderma viride*. *Agri. Bio. Chem.*, 41, 939–943.

Wiater, A., Szczodrak, J., and Rogalski, J. (2004) Hydrolysis of mutan and prevention of its formation in streptococcal films by fungal α-α'-glucanases. *Process Biochem.*, 39, 1482–1489.

Wiater, A., Szczodrak, J., and Pleszczyńska, M. (2008) Mutanase induction in *Trichoderma harzianum* by cell wall of *Laetiporus sulphureus* and its application for mutan removal from oral biofilms. *J. Microbiol. Biotechnol.*, 18, 1335–1341.

Yano, S., Wakayama, M., and Tachiki, T. (2006) Cloning and expression of an α-1,3-glucanase gene from * Bacillus circulans* KA-304: The Enzyme Participates in Protoplast Formation of *Schizophyllum commune*. *Biosci. Biotechnol. Biochem.*, 70, 1754–1763.