Repair of sequence-specific 125I-induced double-strand breaks by nonhomologous DNA end joining in mammalian cell-free extracts

Andrea Odersky1, Irina V. Panyutin2, Igor G. Panyutin2, Christian Schunck1,3, Elke Feldmann1, Wolfgang Goedecke1, Ronald D. Neumann2, Günter Obe1, and Petra Pfeiffer1

*This work was supported by a grant (96.053.2) from the Wilhelm-Sander-Stiftung für Krebsforschung (P.P.) and by a fellowship of the Heisenberg-program of the Deutsche Forschungsgemeinschaft (P.P.).

1 Institut für Genetik FB9, Universität Essen, Universitätsstr.5, D-45117 Essen, GERMANY
2 Dept. of Nuclear Medicine, Warren G. Magnusen Clinical Center, National Institutes of Health, 10 Central Drive, Bethesda MD 20854, USA.
3 present address: MetaSystems GmbH, Robert-Bosch-Str. 6, D-68804 Altlussheim, GERMANY

Running title: End joining of 125I-induced double-strand breaks

Correspondence: PD Dr. Petra Pfeiffer
Abbreviations used are: bl., blunt; coh. cohesive; ccc, covalently closed circle; DNA-PKCS, catalytic subunit of the DNA-dependent protein kinase; DSB, double-strand break; H:H head-to-head; HRR, homologous recombination repair; H:T, head-to-tail; IR, ionizing radiation; LET, linear energy transfer; NHEJ, nonhomologous DNA end joining; oc, open circle; Pu, purine; Py, pyrimidine; RE, restriction enzyme; SSA, single-strand annealing; SSB, single-strand break; TFO, triplex-forming oligo; T:T, tail-to-tail.
SUMMARY

In mammalian cells, nonhomologous DNA end joining (NHEJ) is considered the major pathway of double-strand break (DSB) repair. Rejoining of DSB produced by decay of 125I positioned against a specific target-site in plasmid DNA via a triplex-forming oligonucleotide (TFO) was investigated in cell-free extracts from CHO cells. The efficiency and quality of NHEJ of the “complex” DSB induced by the 125I-TFO was compared to that of “simple” DSB induced by restriction enzymes (RE). We demonstrate that the extracts are indeed able to rejoin 125I-TFO-induced DSB although at approximately ten-fold decreased efficiency compared to RE-induced DSB. The resulting spectrum of junctions is highly heterogeneous exhibiting deletions (1-30bp), base pair substitutions, and insertions and reflects the heterogeneity of DSB induced by the 125I-TFO within its target-site. We show that NHEJ of 125I-TFO-induced DSB is not a random process that solely depends on the position of the DSB but is driven by the availability of microhomology patches in the target sequence. The similarity of the junctions obtained with the ones found in vivo after 125I-TFO-mediated radiodamage indicates that our in vitro system may be a useful tool to elucidate the mechanisms of ionizing radiation-induced mutagenesis and repair.

INTRODUCTION

Mammalian genomes constantly suffer a variety of types of damage, of which double-strand breaks (DSB1) are considered the most dangerous. DSB may arise spontaneously in the cell or may be induced by exogenous agents, such as ionizing radiation (IR). The estimation that mammalian
cells suffer at least 10 spontaneous DSB per day suggests that efficient repair of DSB is critical for cell survival (1). Failure to do so can result in deleterious genomic rearrangements, cell cycle arrest or cell death.

Recent studies have revealed that DSB in the genomes of higher eukaryotes can be repaired by at least three different pathways (2). (i) Homologous recombination repair (HRR), the most accurate process is able to restore the original sequence at the break. Due to its strict dependence on extensive sequence homology, this mechanism is suggested to be active mainly during S- and G2 phase of the cell cycle (3;4). (ii) single-strand annealing (SSA) is another homology-dependent but less accurate process that can repair DSB between direct repeats and thereby produces mainly interstitial deletions (4). (iii) nonhomologous DNA end joining (NHEJ) comprises at least two different processes (5). The major and best investigated NHEJ pathway depends on the Ku70/80 heterodimer, the catalytic subunit of the DNA-dependent protein kinase (DNA-PKCS), DNA ligaseIV, and its essential co-factor XRCC4 (6;7). In contrast to HRR and SSA, NHEJ can operate in the absence of sequence homology (although short sequence homologies, so-called microhomologies, may facilitate the process) and is able to rejoin broken ends directly (2). This process is supposed to occur mainly in the G0- and G1-phase of the cell cycle and considered to be the major pathway of DSB repair in mammalian cells although it is typically accompanied by loss or gain of a few nucleotides. The regulation of these different pathways and their relative contributions to mammalian DSB repair has yet to be comprehended (1).

To elucidate the mechanisms of NHEJ, many studies made use of restriction endonucleases (RE) to introduce defined DSB in the genomic DNA of cultured mammalian cells (8-13), or in plasmids to be offered as DSB substrates in transfection assays (14-16), or cell-free extracts (17-22). The fact that RE-induced DSB are exactly defined with respect to their structure (depending on the enzyme used: 5’- or 3’-overhangs or blunt ends; always 3’-hydroxyl and 5’-phosphate) and position within a given DNA sequence has greatly facilitated study of the efficiency and fidelity of DSB repair
mechanisms in the above-mentioned systems by comparing the original DSB termini and the resulting repair site (junction). As opposed to such “clean” DSB which are repaired very efficiently because they are accepted substrates of DNA-modifying enzymes, DSB generated by IR or certain chemical agents are more complex and may, for instance, contain damaged sugar and base moieties, 5′-hydroxyl and 3′-phosphate groups. In addition, the investigation of the repair of such complex DSB on the molecular level is aggravated by the fact that these “dirty” DSB are usually randomly distributed and not positioned within a specific DNA sequence. Experimental approaches comprise the analysis of the mutational spectra generated by IR or chemicals in selectable cellular genes (23), the use of oligonucleotides with unusual terminal structures in cell-free extracts (24) and plasmids carrying at their ends oligonucleotides damaged by bleomycin (25-27).

A novel approach called gene-targeted radiotherapy, has recently opened the possibility to target the radiodamage produced by Auger-electron emitters such as 125I to a specific DNA sequence [as opposed to random targeting of total genomic DNA in traditional radiotherapy; (28)]. Auger-electron emitters are a large group of radioisotopes that decay by electron capture and/or conversion emitting a cascade of low-energy electrons which produces a highly charged daughter atom. The combined effect of low energy electrons and positively charged daughter atoms results in highly localized damage to the molecular structures within a short range from the decay site (Auger effect). Decay of 125I results in emission of, on average, 21 electrons and produces a correspondingly positively charged Te atom. Incorporated into DNA, the decay of 125I produces DSB localized mostly within one turn of the double-helix around the decay site (10bp) with an efficiency of 0.8 DSB per decay. This extremely short range of radiodamage produced by 125I led to the idea of targeting this Auger-electron emitter to specific genes within genomic or plasmid DNA (29).

Sequence-specific delivery of 125I-induced radiodamage is achieved by the use of triplex-
forming oligonucleotides (TFO), short single-stranded oligonucleotides capable of forming triple helixes (triplexes) with polypurine : polypyrimidine sequences. In such triplexes, the TFO occupies the major groove of the target double-helix and forms Hoogsteen hydrogen bonds with the purines of the Watson-Crick base pairs. The specificity of sequence recognition is comparable to that provided by complementary Watson-Crick base pairing (30-32).

To investigate the repair of site-specific ^{125}I-induced DSB, a TFO labeled on its 3’-end with ^{125}I (^{125}I-TFO) was used to introduce DSB within its target sequence on plasmid pUC19-MDR1 (33). The linearized plasmid was incubated with cell-free extracts from CHO cells capable of performing efficient NHEJ (5). We show that the repair of the ^{125}I-induced DSB is about a factor of 10 less efficient than the repair of RE-induced DSB. The resulting spectrum of junctions shows deletions of varying size resembling the ones found in selectable genes after irradiation of mammalian cells with IR. Our study may contribute to the understanding of how the damage produced by Auger-electron emitters is repaired by mechanisms of NHEJ which is important for their application in gene-targeted radiotherapy.

EXPERIMENTAL PROCEDURES

Cell culture

The two wild-type Chinese hamster ovary cell lines CHO-K1 and AA8 were grown at 37°C in a humidified 5% CO$_2$ atmosphere in Ham’s F12 medium enriched with 10% fetal calf serum, 2mM L-glutamine, 100U/ml penicillin and 100µg/ml streptomycin.

Cell-free extracts

Whole cell extracts from CHO-K1 and AA8 cells were prepared exactly as described previously (5;17).
In each preparation, approximately 5⋅10^8 cells of each cell line were used to yield 0.5-1ml of extract with a protein concentration ranging between 6-10mg/ml. Extracts were stored in 50µl aliquots in liquid nitrogen and remained active for 6-12 months. Directly prior to use in the NHEJ reaction, the extract aliquot was dialyzed against freshly prepared M-buffer (50mM MOPS- NaOH pH7.5; 40mM KCl; 10mM MgCl_2; 5mM 2-mercaptoethanol) on microdialysis filters (0.025µm pore diameter; cat.-n° VSWPO2500, Millipore, Germany) for 30min at 4°C.

DNA-substrates

125I-TFO-induced DSB: Labeling of the TFO with 125I-dC was performed by extension of the 3’-end of a primer in the presence of 125I-dCTP (NEN Life Science Products, USA) and Klenow fragment of DNA polymerase I as described previously (33). To form a triplex, topoisomerase-relaxed pUC19-MDR1, a 2727bp derivative of pUC19 containing a 32bp polypurine-polypyrimidine fragment from the MDR1 gene as TFO-target sequence [see Fig.1 (33;34)], was mixed with purified 125I-TFO in 30mM NaAc buffer pH 5.0 and heated to 70°C for 3 min followed by slow cooling to room temperature. For the accumulation of 125I decays, the sample was stored at -70°C. After a period of 60 days (the half-life of 125I), about 50% of total covalently closed circular (ccc) pUC19-MDR1 was converted to open circle (oc) and about 20% to linear DNA indicative of double-strand breakage of the plasmid as estimated by separation of the products in 1.5% agarose gels containing ethidium bromide (EthBr). To remove contaminating oc and ccc DNA, the linear form of pUC19-MDR1 was purified twice over 1.5% preparative low melting point NuSieve agarose (FMC, USA) gels in TAE buffer containing 0.5 mg/ml EthBr. Electrophoresis was performed at 2 V/cm for 24 hours with continuously recirculated TAE buffer containing 0.5 mg/ml EthBr and separation of DNA in oc, linear, and ccc forms was visualized under UV light. Linear
DNA was purified using the Agar ACETM Agarose-Digesting Enzyme (Promega, USA) according to the manufacturer’s instructions. Samples were purified further by two extractions with phenol and phenol:chloroform:isoamyl alcohol (25:24:1, Gibco-BRL, USA) and precipitated with ethanol. After resuspension in 50 µl TE, samples were finally purified by gel filtration through G-50 Microspin columns (Amersham Pharmacia Biotech, USA). The resulting linearized pUC19-MDR1 substrate used in extract joining assays was found to contain on the average less than 5% of contaminating oc DNA and no ccc DNA at all.

RE-induced DSB: The three substrates for cohesive (coh.) and blunt (bl.) end ligation were derived from pUC19-MDR1 by digestion with a single restriction enzyme (BamH1: 5’-coh.; PstI: 3’-coh.; HincII: bl.). The five substrates containing non-complementary ends were derived from a 4kb modified pUC19-MDR1-λ construct harboring a 1.25kb fragment of λ-DNA between the restriction sites used for substrate preparation. Generation of substrates containing two non-complementary ends was controlled by quantitative excision of the λ-insert. Each substrate was named after the pair of RE used in its preparation (Eco/Asp: 5’/5’; Sac/Kpn: 3’/3’; Eco/Sma: 5’/bl.; Sac/Sma: 3’/bl.; Eco/Kpn: 5’/3’). All RE-linearized substrates were gel purified using a gel-extraction kit (Qiagen, Germany).

Assay for NHEJ and analysis of products

In standard reactions, 10ng of 125I-TFO- or RE-linearized plasmid substrate, respectively, were incubated for up to 360 min at 25°C in a total volume of 10µl containing 6-8µg/µl of extract protein in M-buffer supplemented with 1mM ATP pH 7.5; 200µM dNTPs (50µM each) and 50ng/µl BSA. Reactions were terminated by adjustment to 20mM Tris-HCl pH7.5, 10mM EDTA, 1% SDS and incubation at 65°C for 5min. After digestion for 30min at 37°C with 2mg/ml proteinase K, equivalents of 2ng substrate DNA were electrophoresed in 1% agarose gels in the...
presence of 1µg/ml EthBr to separate oc from ccc products and visualized by in situ gel-hybridization (35) using a pUC19-specific probe labeled with [\(^{32}\text{P}\)]-\(\alpha\)-dCTP by random priming. Reaction products were quantified in a phosphorimaging facility (Packard Bioscience, Germany) as percentage of total radioactivity per lane. Circular joined products were cloned by transformation of 4ng equivalents of substrate DNA of each NHEJ sample in *E. coli* strain DH5\(\alpha\) to yield single clones which were purified by miniscale extraction. In the case of \(^{125}\text{I}\)-TFO-linearized pUC19-MDR1, samples were digested with BglIII prior to transformation to remove oc contaminants originating from substrate preparation which could yield false positives. Clones from \(^{125}\text{I}\)-TFO-linearized pUC19-MDR1 were subjected again to cleavage with BglIII and only BglIII-resistant clones were analyzed by sequencing (Seqlab, Germany). Clones from ligation products (Bam; Pst; Sma) were subjected to cleavage with the original RE to check for accurate ligation. Clones from NHEJ products (Eco/Asp; Sac/Kpn; Eco/Sma; Sac/Sma; Eco/Kpn) were analyzed directly by sequencing (ABI Prism 377 DNA Sequencer, Perkin Elmer, USA).

For the analysis of dimer products from \(^{125}\text{I}\)-TFO-linearized pUC19-MDR1, the dimer band was gel purified using a gel extraction kit (Qiagen, Germany). Dimer junctions were amplified by PCR with 2.5U of Taq polymerase in Taq-buffer (MBI, Germany) in a total volume of 50µl containing 1ng of dimer product, 20pmole of each primer (pUC19-MDR1-For: 5\'-GGGGCCTC TTCGCTATTACG; pUC19-MDR1-Rev: 5\'-AGGCACCCCAGGCTTTACCTTTTA), 2.5mM MgCl\(_2\) and 200µM of each dNTP. PCR was performed in a thermocycler (Perkin Elmer, Germany) for 30 cycles (30 sec 95\(^\circ\)C; 30 sec 54\(^\circ\)C; 1 min 72\(^\circ\)C). The resulting 300bp PCR product was digested with BglIII to remove PCR products possibly originating from oc contaminants. BglIII-resistant PCR-product was gel-purified and sub-cloned using a TA-cloning kit (Invitrogen, Germany). Resulting clones were purified by miniscale extraction and subjected again to cleavage with BglIII and only BglIII-resistant clones
were analysed by sequencing.

Calculations for Fig.8

For the diagrams in Fig.8A and B, the following calculations were performed.

Distribution of DSB: The distribution of breaks around the 125I decay site had been measured previously as single-strand breaks (SSB) occurring in the purine- (Pu) rich and pyrimidine- (Py) rich strand, respectively, [(33); see bars in Fig.1] and is given here as the average probability $[(\text{Pu}+\text{Py})/2]$ of all types of DSB (grey bars in Fig.8A and B; see Discussion for details) to occur at a given base pair position.

Relative frequencies of junction breakpoints: The relative frequencies for the occurrence of the breakpoints of junctions #2-34 (Fig.5) at a particular nucleotide (black bars in Fig.8A) were calculated as follows: (i) blunt-junctions: the number of a particular junction was normalized to the total number of junctions (64) and divided by two because the breakpoint can be either counted to the left or to the right side of the deletion. See e.g. junction #8 (Fig.5): since this junction occurred twice, its relative frequency would be $2/64 = 0.0313$. Since the breakpoint can be counted either to the A on the left side or to the C on the right side, the relative frequency of this breakpoint at the A and C, respectively, is 0.0156. (ii) microhomology-junctions: the calculation was performed as for blunt-junctions with the additional inclusion of a factor for the microhomology. See e.g. #23 (Fig.5) which occurs twice and exhibits a 2bp homology (AG) with three possible breakpoints. Therefore, the relative frequency of the breakpoints would be $2/64 \times 2 \times 3 = 0.0052$ for any nucleotide within the microhomology and each of the nucleotides flanking the microhomology on the left and right side, respectively (A, A, and G on the left side and the A, G, and T, on the right side). Each black bar in the diagram represents the sum of the relative frequencies of all breakpoints occurring at a particular nucleotide of the target sequence.
\(\chi^2\)-test: The \(\chi^2\)-test was performed for Fig.8A. Multiplication of the average probability of a DSB at a given base pair by the number of total junctions \(\frac{(Pu+Py)}{2} \times 64\) yields the expected frequency (E) of a junction to occur at this base pair which was compared to the observed frequency (O) of junctions occurring at this position. The \(\chi^2\)-value was calculated using the formula \((O-E)^2/E\). Since the distribution of observed junctions spans a larger sequence region (27bp) than the distribution of DSB (19bp: 5'-GAAG....GAGT), only the junctions falling into this 19bp region were taken into account resulting in 19 categories yielding a degree of freedom (FD) of 18. The estimated \(\chi^2\)-value is 49.54 \[\Sigma (O-E)^2/E\] and significantly larger than 28.87, the value for the 5% interval of FD=18. Therefore, the hypothesis that junction formation is a random process that follows the distribution of the \(^{125}\)I-TFO-induced DSB has to be rejected (see Discussion).

Distribution of deleted nucleotides: The distribution of nucleotides deleted around the decay site (black bars in Fig.8B) was calculated as follows: in the 64 junctions (Fig.4: #2-34), a total of 422 nucleotides were deleted. See e.g. the G* in the target sequence which was lost unambiguously in 41 cases (dots in the sequences of Fig.5) and was part of a microhomology in 14 cases. Since it is unknown from which of the two DSB ends the G in the corresponding microhomology originated, 14 was divided by two \((14/2 = 7)\) so that the relative frequency at which the G* is lost in all 64 junctions is \((41+7)/422 = 0.1137\). Each black bar in the diagram represents the relative frequency how often a particular nucleotide was deleted from the target sequence.

RESULTS

Experimental system

Annealing of the \(^{125}\)I-TFO to its target sequence within pUC19-MDR1 and subsequent
incubation for 60 days at -70°C yields sequence-specific DSB within a short region of about 10bp in each direction opposite the 125I-dC within the unique BglII-site (A/GATCT) of the plasmid (Fig.1). The distribution and relative frequencies of breaks had been determined previously by analysis of the SSB occurring in the Pu- and Py-rich strand, respectively, which is indicated schematically in Fig.1 (33). The slightly asymmetric distribution of SSB in the two strands reflects the structure of the Py-motif triple helix.

Gel-purified 125I-TFO-linearized pUC19-MDR was subjected to DNA end joining in cell-free extracts from CHO-K1 and AA8 cells as described in Experimental Procedures. For comparison, extract-joining reactions were also carried out with pUC19-MDR1 linearized by restriction endonucleases. NHEJ reaction products were separated in agarose gels and the corresponding repair sites (junctions) were cloned in $E. coli$ for subsequent sequence analysis.

Efficiency of NHEJ of 125I-TFO-induced DSB compared to RE-induced DSB

To determine the efficiency of NHEJ of the 125I-TFO-linearized substrate we used different RE-linearized substrates for comparison. Substrates generated by cleavage with a single RE have compatible ends that allow measurement of the efficiency of ligation of cohesive 5'- (Bam) or 3'-ends (Pst), respectively, or blunt ends (HincII). Substrates generated by cleavage with two different RE have non-complementary DNA ends (Eco/Asp: 5'/5'; Sac/Kpn: 3'/3'; Eco/Sma: 5'/bl.; Sac/Sma: 3'/bl.; Eco/Kpn: 5'/3') that allow measurement of the efficiency of genuine nonhomologous end joining. This type of end joining is more complex and requires more factors than “simple” cohesive or blunt end ligation because the ends must be converted first into a ligatable form by DNA fill-in synthesis and/or exonucleolytic removal of non-matching bases [(36); see Fig.2 and below]. Rejoining of 125I-TFO-induced DSB is expected to be even more complex because these “dirty” breaks may contain damaged sugar and base moieties, 5'-hydroxyl and 3'-
phosphate groups which are not substrates for DNA modifying enzymes such as DNA ligase or DNA polymerase and therefore must be removed prior to NHEJ (25;27). In addition to that, it is important to note that each RE-substrate contains only a single type of DSB with ends exactly defined in structure and sequence. In contrast, the 125I-TFO-substrate represents a mixture of molecules containing many different types of DSB due to the fact that the 125I-TFO induces multiple breaks distributed along a 19bp region (see also Discussion and Fig.8). Therefore, the term “complex DSB” used below, not only includes the presumptive “dirty” DSB but also a large variety of DSB ends differing in structure and sequence.

The extract-mediated NHEJ reaction converts all three different substrate types into monomeric oc reaction intermediates and ccc products, and linear multimers (mostly dimers) which are readily separated in agarose gels. In standard reactions, about 30% to 50% of the RE-substrate input are converted into ccc and dimer products and the ratio of ccc : dimer product is approximately 2:1 (but may vary with the batch of extract used and other factors like protein concentration, DNA concentration). We did not find any quantitative or qualitative differences between the CHO-K1 extract and the AA8 extract. A representative example of the reaction kinetics of three of the eight RE-substrates and the 125I-TFO-substrate is given in Fig.3. As reflected by the levels of ccc product formation after 6h at 25°C, the reaction is most efficient with the ligation of cohesive (Pst) and blunt ends (HincII) which converts on the average 37% of the input substrate into ccc product (and 12% into dimers). Rejoining of non-complementary RE ends (Eco/Kpn) is somewhat less efficient and converts on the average 29% of the linear input into ccc product (and 13% into dimers). For the 125I-TFO-linearized substrate, however, ccc product formation is drastically decreased to 2.3% (6.8% dimers) and reaches only about one tenth of the efficiency obtained with RE-induced DSB. This decrease in efficiency is consistent with the assumption that complex DSB require more extensive modifications to be converted into a form
that is accepted by the DNA modifying enzymes participating in the NHEJ reaction (e.g. DNA ligase IV).

Analysis of junctions

Isolation of single NHEJ-events for sequence analysis of the junctions was achieved by two different strategies: (i) transfection of total reaction products in *E.coli* which results in preferential cloning of the junctions in circular products (with decreasing efficiency for $ccc > oc > lin$) and (ii) PCR-amplification of junctions of gel-purified linear dimers and subsequent sub-cloning in *E.coli* to produce single clones suitable for sequence analysis.

Since the 125I-TFO-substrate represents a mixture of plasmid molecules containing a large variety of different DSB it can be expected that the spectrum of junctions obtained from this substrate is more heterogeneous than the spectra of junctions obtained from the different RE-substrates. In addition, the presence of “dirty” DSB may reduce the fidelity of NHEJ. We therefore investigated the sequences of 96 junctions derived from the RE-substrates (12 junctions for each of the eight different substrates; Fig.4) and 71 junctions derived from the 125I-TFO-substrate (Fig.5).

RE-induced DSB are rejoined with high accuracy

To investigate the fidelity of the NHEJ reaction using different substrates it is important to define the term “accurate NHEJ” (see Fig.2). While it is obvious that “accurate ligation” of complementary cohesive or blunt restriction ends restores the original restriction site used to create the DSB (Fig.2A), the definition of “accurate NHEJ” is not self-evident because joining of non-complementary restriction ends necessarily causes a change in the original sequence. Still, general rules were established for NHEJ of non-complementary ends because extracts from *Xenopus* eggs (18)
and mammalian cells (5;17) generate highly reproducible spectra of junctions using two main pathways ("overlap" and "fill-in" pathway; Fig.2B,C). The pathway used is determined by the structure of the ends being joined: while the "overlap" pathway typically joins DNA ends containing 5′- or 3′-anti-parallel single-stranded overhangs (5′/5′; 3′/3′), the fill-in pathway joins abutting DNA ends (5′/bl.; 3′/bl.; 5′/3′). In the first case, the ends form incompletely matched overlaps by pairing of single fortuitously complementary bases and the overlap structure determines the patterns of subsequent repair reactions [Fig.2B; (38)]. In the second case, the sequences of participating 5′- or 3′-overhangs are preserved fully by fill-in DNA synthesis in a process in which the ends are transiently held together [presumably by the Ku70/80 heterodimer; (5)] so that the 3′-hydroxyl group of the 5′-overhang or blunt end can serve as a primer to direct repair synthesis of the 3′-overhang [Fig.2C; (35)].

Cloning of single joining events was achieved by transformation of circular products in *E.coli*. Here, we have analyzed 36 cloned junctions derived from the three RE-substrates containing complementary ends (Fig.4: Ia-c), and 60 from the five RE-substrates containing non-complementary ends [24 “overlap” junctions (Fig.4: IIa,b) and 36 “fill-in” junctions (Fig.4: IIIa-c)].

The spectra of ligation junctions (Fig.4: Ia-c) show that the accuracy of ligation is high and reaches 100% for 5′-cohesive and blunt ends, and 92% for 3′-cohesive ends. The accuracy of NHEJ is slightly decreased when compared to ligation but still high with 50% and 66%, respectively for the “overlap” junctions (Fig.4: IIa,b) and 83%, 25% and 67% for the “fill-in” junctions (Fig.4: IIIa-c). These results are consistent with previous studies (5) and show that the NHEJ reaction is a highly accurate process - at least on substrates generated by restriction endonucleases that produce “clean” ends which are accepted substrates of DNA modifying enzymes.
Rejoining of 125I-TFO-induced DSB produces a highly heterogeneous spectrum of junctions

Radiodamage delivered to pUC19-MDR1 by the 125I-TFO accumulates within a short region of 19bp around the G in the single BglII site (AGATCT). As mentioned in Experimental Procedures, the linear substrate contained up to 5% of oc contaminant. The oc molecules are intermediates that arise during the decay process of the 125I and contain multiple SSB. Only molecules receiving two closely spaced SSB (one in each strand separated by less than 10bp) will give rise to linear molecules. Staggered SSB in opposite strands located further apart will probably not produce linear molecules because long single-stranded tails will melt only upon heating and re-anneal instantaneously after cooling so that these molecules will exist most likely in oc form. Furthermore, recent analysis of purified linear 125I-TFO-substrate revealed that in addition to highly localized breaks around the TFO binding site, 25% of the DSB occur outside of a 90bp fragment containing the TFO-binding motif (33). This out-of-target damage is probably due to (i) higher energy electrons produced by decay of 125I and/or (ii) the Auger effect itself if segments of the same molecule or other molecules come close to 125I due to condensation of DNA in solution. The presence of DSB outside of the target site and the presence of oc-contaminants led us to use a selection procedure to avoid sequencing of large fractions of clones not damaged in the relevant region.

Since the maximal frequency of DSB occurs within and around the single BglIII site and NHEJ of a radiation-induced DSB within the BglIII site is, a priori, not expected to restore the site we have used resistance to cleavage with BglII as a marker for successful rejoining of the 125I-TFO-linearized substrate. Therefore, joining products were digested with BglIII prior to transfection in E.coli to remove the bulk of oc contaminants (which would also give rise to clones) and the resulting clones were again checked for cleavage with BglIII. A total of 44 BglIII-resistant
clones were subjected to sequence analysis and the junctions are shown in Fig.5. To obtain a more reliable picture of the NHEJ mechanism that rejoins complex DSB, we also analyzed the junctions arising in the dimer fraction. For this, gel-purified dimers were subjected to PCR which amplifies exclusively molecules in head-to-tail orientation (equivalent to circular products; due to their palindromic nature, the simultaneously arising head-to-head: H:H and tail-to-tail: T:T molecules cannot be analyzed). After cleavage of the resulting PCR products with BglIII, the BglIII-resistant material was sub-cloned in *E. coli* and a total of 25 BglIII-resistant clones were sequenced. Their junctions are also displayed in Fig.5. Although the selection for BglIII resistance helps to avoid analyzing false positives possibly arising by transfection of oc contaminants and products resulting from plasmids damaged out-of-target, it must be kept in mind that all events are lost which arose by rejoining of DSB that do not affect the BglIII site and events in which the BglIII site is regenerated by chance by use of microhomology patches present in the repetitive TFO target motif (see Fig.1). This issue was verified by sequencing of 17 BglIII-sensitive clones and we found, as expected, a high proportion of wild-type sequences (76%) and three clones in which the BglIII-site had been regenerated by chance (Fig.5: #4 and 10).

Unlike the spectra obtained from RE-substrates which produced only few different junctions per substrate, the spectrum from the 125I-TFO-substrate appears much more heterogeneous as reflected by a total of 43 different junctions. With the exception of three junctions (#36-38), all junctions have lost one or several (up to 34) bases (larger deletions of up to several hundreds of bp also existed but were not further analyzed due to loss of the primer binding site for sequencing). Since we did not detect any major differences between the sequences derived from ccc products and those from dimer products, no further distinction was made between these two product forms.

The total spectrum can be subdivided in three major groups: (i) junctions that are free of microhomology [blunt-junctions: #2,3,7,8,12-17,19,21,22,24,26,27,29; note that the term “blunt-junction” does not imply that these junctions arose necessarily by blunt end ligation but they can
also arise by the fill-in mechanism mentioned above; see Fig.2C]; (ii) junctions that display patches of microhomology of 1 to 4bp at their breakpoints (microhomology-junctions: #4,5,6,9,10,11,18, 20,23,25,28,30-35), and (iii) junctions containing single base substitutions or additional (untemplated) bases not present in the original sequence (insertion-junctions: #36-43). The heterogeneity of this spectrum is consistent with the expected heterogeneity of DSB present in the 125I-TFO-substrate and possibly a decreased fidelity of the NHEJ reaction of “dirty” DSB. A detailed interpretation of the junctions will be presented in the Discussion.

DISCUSSION

The use of the TFO labeled with 125I-dCTP allowed us to take advantage of the highly localized energy spectrum produced by Auger-electron emitter decay to induce site-specific DSB within a limited region of approximately 20bp around the single BglII site of pUC-MDR1. The nature of the process by which Auger-emitters decay and the similarity of the biological effects to those of high-LET radiation, suggests that the majority of such DSB should be of a complex type and thus highly mutagenic. As such, Auger-emitting radionuclides fulfill the criteria for a mutagenic agent that induces complex DNA lesions including the destructive loss of nucleotides at the damaged site.

Decay of 125I is a stochastic process in which one decay may produce, e.g., 30 Auger electrons while another only five (39). Therefore, some decays may result in severe damage, i.e. multiple SSB, base and sugar lesions, base loss, or even multiple DSB, while others may produce only simple SSB or base damage that in turn results in SSB in aqueous solution. The complexity of the 125I-TFO-induced lesions is reflected by the fact that the efficiency of the cell-free NHEJ reaction is reduced by a factor of about 10 when compared to “clean” RE-induced DSB which indicates that only a small proportion of the 125I-TFO-damaged plasmid is repaired. This
proportion could represent the molecules containing the least damage, i.e. the “simplest breaks” resembling the ones induced by RE. On the other hand, DSB containing damaged sugar and base moieties would have to be converted into structures accepted by the enzymes involved in NHEJ (e.g. DNA ligase IV). We have shown previously that our extracts are capable, although at reduced efficiency, of rejoining other “complex” DSB that had been induced by bleomycin and contain 3’-phosphoglycolate termini (25). Still, we do not know at present whether the reduced NHEJ efficiency for 125I-TFO-induced DSB reflects the in vivo situation or simply is due to the lack in our extracts of some components necessary to remove damaged DNA moieties prior to NHEJ. To clarify this issue, transfection experiments similar to the ones described previously (40) would have to be performed to compare the joining capacity of 125I-TFO- and RE-linearized plasmids in vivo.

It is also worth mentioning that 125I-TFO-induced DSB reduce ccc product formation to a greater degree than dimer formation in comparison to RE-induced DSB. This may be explained in part by the fact that dimers can exist in three possible orientations where different degrees of homology are available at the termini. Especially the T:T orientation exposes the redundant TFO motif which offers ample microhomology patches (see below). This does not apply for the RE-substrates where the DSB termini are located outside of the TFO-motif. However, due to the palindromy, these T:T- and H:H products are not accessible to cloning and sequence analysis.

The majority (64%) of the 65 sequences derived from the rejoining of the 125I-TFO-substrate (see Fig.5: #2-35) show small patches of sequence homology at the junction indicating that microhomologies play a role in junction formation. In contrast to the blunt-junctions (36%), which have always precisely defined breakpoints, the breakpoints of microhomology-junctions are ambiguous because it is unknown from which of the two DSB ends a nucleotide of the homology originated and where exactly the breakpoint is located within the homology patch. This feature is the hallmark of all microhomology-junctions and becomes clearer in Fig.6 where the 64 junction
sequences #2-34 (see Fig.5) are displayed in a two-dimensional diagram as blunt-junctions (diamonds) and microhomology-junctions (circles), respectively (41;42). A comparison of the distribution of chance homologies between the vertical and horizontal strand (grey squares) and the distribution of the two junction types shows that 65% of the blunt-junctions accumulate within a region that is free of microhomology patches (see TCT 3’ of the G*) but only 35% occur in regions exhibiting microhomology. The resulting over-representation of microhomology-junctions vs. blunt-junctions in regions containing microhomology indicates that the NHEJ process prefers the use of small homologies whenever available. In our case, especially the highly redundant AG- and GA-motifs of the TFO-binding site (see vertical strand) and the adjacent BgIII- and XbaI-site (see AG*A and AGAG in the horizontal strand) contribute to the high proportion of microhomology junctions.

The importance of microhomologies in the process of junction formation is further underscored by the fact that the observed frequency of a microhomology exceeds the expected probability of this microhomology to occur by chance at a breakpoint in a DNA duplex of unbiased sequence composition [Fig.7 (41)]. Interestingly, the observed numbers of breakpoints that coincide with a microhomology increase with increasing size of the microhomology, which is inversely proportional to the expected values. This result strongly indicates that microhomologies are important for the process of junction formation from radiation-induced DSB.

The small group of insertion-junctions (11% of the total of 72 junctions) comprises sequences containing base pair substitutions or additional untemplated bases not present in the original sequence. The base pair substitutions (Fig.5: #37-39) are not necessarily linked to a DSB-rejoining event but could be explained by the repair of single bases that have been damaged by radiation. On the other hand, insertion of untemplated nucleotides is often observed at junctions (5;17;43). The insertion of one or few nucleotides (Fig.5: #40,42,43) can be explained by the action of the DNA polymerase that fills gaps in the junctions and sometimes adds single nucleotides to the 3’-
hydroxyl of a DSB end (see also Fig.4: IIb and IIIa) (44-47). The addition of a longer stretch of nucleotides (Fig.5: #41) could also be the result of polymerase action or alternatively reflect the capture of an oligonucleotide (48) possibly originating from residual fragments of mitochondrial or nuclear DNA still present in our whole cell extract preparations (49).

Although the ¹²⁵I-TFO-induced DSB are defined with respect to their location within a 19bp region of the target sequence, the analysis of the underlying joining mechanisms is still complicated by the fact that the structure of the ultimate DSB participating in the formation of a particular junction is unknown. In principle, a DSB can result from two SSB that are located precisely opposite of each other (blunt) or are separated by one or several bases (5'- or 3'-staggered). Only closely spaced SSB (<10bp) in opposite strands are likely to give rise to DSB because of the expected high stability of the intervening duplex (50). As mentioned above, the ends of the linear ¹²⁵I-TFO-substrate represent a mixture of blunt and staggered DSB at all possible positions. The probability of a certain type of DSB to occur at a given sequence position can be calculated by multiplication of the probabilities of the corresponding SSB to occur at the corresponding bases which had been determined previously [for details see Fig.1 and Experimental Procedures; (33)]. Thus, the probability of a blunt DSB to occur at a certain position is given by multiplication of the probability of the SSB at this base in one strand with the probability of the SSB at the corresponding base in the opposite strand. Likewise, the probability of a staggered DSB is given by multiplication of the probability of the SSB at a particular base in one strand with the probability of the SSB at any other base in the opposite strand. The sum of all these probabilities reflects the probability of this particular base to be found at an end in any type of DSB.

The distribution of the grey bars in Fig.8A shows a fairly symmetrical distribution of DSB around the decay site with the maximum at the central G. If the process of junction formation were a random process and solely determined by the distribution of the ¹²⁵I-TFO-induced DSB, the
distribution of junctions resulting from this substrate should resemble the distribution of DSB. As seen by the black bars in Fig.8A and confirmed in a χ^2-test (for details see Experimental Procedures), the distribution of junctions is significantly different from the expected distribution. Therefore, other parameters, like the availability of microhomologies (see e.g. over-representation of junctions at the AGAG motifs left and right of the central G) and the chemical complexity of the original DSB, are likely to contribute to the process of junction formation.

In contrast, the distribution of deleted nucleotides follows nearly precisely the distribution of breaks (Fig.8B). Almost all junctions (with the exception of #36-38 in Fig.5) have lost one or several bases. As seen in the figure, bases are most frequently lost around the central G, the site of most efficient DSB induction and thus parallels directly the distribution of DSB. It remains, however, unclear whether this loss of bases is the direct result of the original DSB lesion which was possibly accompanied by the loss of one or several bases, or the result of the NHEJ reaction which had to remove damaged bases to provide structures that can be processed by DNA modifying enzymes, or both.

In addition to the “simple” blunt or staggered DSB discussed so far, the possibility of DSB that comprise multiple SSB in one or both strands and thus are effectively accompanied by the deletion of several bases has to be considered as well. Such lesions can be regarded as double-stranded gaps and therefore have the potential to create larger deletions. As is seen in the spectra derived from RE-substrates, deletions are rarely formed by NHEJ in our cell-free system (see Fig.4). If occurring at all, they are mostly small and usually range between 1 and 5bp. Only 4% of the junctions contain larger deletions (6-55bp) indicating that the NHEJ process tends to preserve the sequence information at the DSB without extensive nucleotide loss. Fig.8C shows that 50% of the 125I-TFO-deletions observed are small, too, and range between 1 and 5bp with a pronounced maximum at 3bp. The other 50% range between 6 and 18bp. This fraction is considerably bigger than the corresponding fraction from the RE-junctions. Therefore, it cannot be excluded that a
significant fraction of the 125I-TFO-substrate molecules contain double-stranded gaps which subsequently result in the observed high fraction of larger deletions.

In conclusion, we have established an *in vitro* system which allows us to investigate the repair of a single radio-damaged site on a sequence level. With respect to the presence of deletions, base pair substitutions and insertions, the spectrum of junctions described here resembles closely the one obtained previously *in vivo* by transfection of a 125I-TFO-linearized plasmid in mammalian cells (40). This indicates that our *in vitro* system yields reliable results. In future experiments, it will be interesting to dissect the contributions of the different DSB repair mechanisms by using cell-free extracts from mutant CHO cell lines with defined defects in these pathways.

ACKNOWLEDGEMENTS

We thank George Poy for help with sequencing of the RE-junctions.

REFERENCES

1. Haber, J. E. (2000) *Trends Genet.* **16**, 259-264
2. Pfeiffer, P., Goedecke, W., and Obe, G. (2000) *Mutagenesis* **15**, 289-302
3. Haber, J. E. (1999) *Trends Biochem.Sci.* **24**, 271-275
4. Haber, J. E. (2000) *Curr.Opin.Cell Biol.* **12**, 286-292
5. Feldmann, E., Schmiemann, V., Goedecke, W., Reichenberger, S., and Pfeiffer, P. (2000) *Nucleic Acids Res.* **28**, 2585-2596
6. Critchlow, S. E. and Jackson, S. P. (1998) *Trends Biochem.Sci.* **23**, 394-398
7. Featherstone, C. and Jackson, S. P. (1999) *Curr.Biol.* **9**, R759-R761
8. Bryant, P. E. (1985) *Int.J.Radiat.Biol.Relat Stud.Phys.Chem.Med.* **48**, 55-60
9. Bryant, P. E. (1984) *Int.J.Radiat.Biol.Relat Stud.Phys.Chem.Med.* **46**, 57-65
10. Natarajan, A. T. and Obe, G. (1984) *Chromosoma* **90**, 120-127
11. Obe, G., Palitti, F., Tanzarella, C., Degrassi, F., and De Salvia, R. (1985) *Mutat.Res.* **150**, 359-368
12. Rouet, P., Smih, F., and Jasin, M. (1994) *Proc.Natl.Acad.Sci.U.S.A* **91**, 6064-6068
13. Rouet, P., Smih, F., and Jasin, M. (1994) *Mol.Cell Biol.* **14**, 8096-8106
14. Roth, D. B. and Wilson, J. H. (1985) *Proc.Natl.Acad.Sci.U.S.A* **82**, 3355-3359
15. Lutze, L. H., Cleaver, J. E., Morgan, W. F., and Winegar, R. A. (1993) *Mutat.Res.* **299**, 225-232
16. King, J. S., Valcarcel, E. R., Rufer, J. T., Phillips, J. W., and Morgan, W. F. (1993) *Nucleic Acids Res.* **21**, 1055-1059
17. Daza, P., Reichenberger, S., Göttlich, B., Hagmann, M., Feldmann, E., and Pfeiffer, P. (1996) *Biol.Chem.* **377**, 775-786
18. Pfeiffer, P. and Vielmetter, W. (1988) *Nucleic Acids Res.* **16**, 907-924
19. North, P., Ganesh, A., and Thacker, J. (1990) *Nucleic Acids Res.* **18**, 6205-6210
20. Nicolas, A. L., Munz, P. L., and Young, C. S. (1995) *Nucleic Acids Res.* **23**, 1036-1043
21. Baumann, P. and West, S. C. (1998) *Proc.Natl.Acad.Sci.U.S.A* **95**, 14066-14070
22. Labhart, P. (1999) *Eur.J.Biochem.* **265**, 849-861
23. Phillips, J. W. and Morgan, W. F. (1994) *Mol.Cell Biol.* **14**, 5794-5803
24. Beyert, N., Reichenberger, S., Peters, M., Hartung, M., Gottlich, B., Goedtke, W., Vielmetter, W., and Pfeiffer, P. (1994) *Nucleic Acids Res.* **22**, 1643-1650
25. Chen, S., Inamdar, K. V., Pfeiffer, P., Feldmann, E., Hannah, M. F., Yu, Y., Lee, J. W., Zhou, T., Lees-Miller, S. P., and Povirk, L. F. (2001) *J.Biol.Chem.* **276**, 24323-24330
26. Bennett, R. A., Gu, X. Y., and Povirk, L. F. (1996) *Int.J.Radiat.Biol.* **70**, 623-636
27. Gu, X. Y., Bennett, R. A., and Povirk, L. F. (1996) *J.Biol.Chem.* **271**, 19660-19663
28. Panyutin, I. G., Winters, T. A., Feinendegen, L. E., and Neumann, R. D. (2000) *Q.J.Nucl.Med.* **44**, 256-267
29. Sedelnikova, O. A., Luu, A. N., Karamychev, V. N., Panyutin, I. G., and Neumann, R. D. (2001) *Int.J.Radiat.Oncol.Biol.Phys.* **49**, 391-396
30. Panyutin, I. G. and Neumann, R. D. (1997) *Nucleic Acids Res.* **25**, 883-887
31. Panyutin, I. G. and Neumann, R. D. (1996) *Acta Oncol.* **35**, 817-823
32. Panyutin, I. G. and Neumann, R. D. (1994) *Nucleic Acids Res.* **22**, 4979-4982
33. Panyutin, I. V., Luu, A. N., Panyutin, I. G., and Neumann, R. D. (2001) *Radiat. Res.* **156**, 158-166
34. Sedelnikova, O. A., Panyutin, I. G., Luu, A. N., Reed, M. W., Licht, T., Gottesman, M. M., and Neumann, R. D. (2000) *Antisense Nucleic Acid Drug Dev.* **10**, 443-452
35. Thode, S., Schafer, A., Pfeiffer, P., and Vielmetter, W. (1990) *Cell* **60**, 921-928
36. Pfeiffer, P. (1998) *Toxicol. Lett.* **96-97**, 119-129
37. Pfeiffer, P., Thode, S., Hancke, J., Keohavong, P., and Thilly, W. G. (1994) *Mutagenesis* **9**, 527-535
38. Pfeiffer, P., Thode, S., Hancke, J., and Vielmetter, W. (1994) *Mol. Cell Biol.* **14**, 888-895
39. Nikjoo, H., Laughton, C. A., Terrissol, M., Panyutin, I. G., and Goodhead, D. T. (2000)
 Int. J. Radiat. Biol. **76**, 1607-1615
40. Mezhevaya, K., Winters, T. A., and Neumann, R. D. (1999) *Nucleic Acids Res.* **27**, 4282-4290
41. Roth, D. B. and Wilson, J. H. (1986) *Mol. Cell Biol.* **6**, 4295-4304
42. Roth, D. B., Porter, T. N., and Wilson, J. H. (1985) *Mol. Cell Biol.* **5**, 2599-2607
43. Roth, D. B., Chang, X. B., and Wilson, J. H. (1989) *Mol. Cell Biol.* **9**, 3049-3057
44. King, J. S., Fairley, C. F., and Morgan, W. F. (1994) *J. Biol. Chem.* **269**, 13061-13064
45. King, J. S., Fairley, C. F., and Morgan, W. F. (1996) *J. Biol. Chem.* **271**, 20450-20457
46. Clark, J. M. (1988) *Nucleic Acids Res.* **16**, 9677-9686
47. Reichenberger, S. and Pfeiffer, P. (1998) *Eur. J. Biochem.* **251**, 81-90
48. Roth, D. B., Proctor, G. N., Stewart, L. K., and Wilson, J. H. (1991) *Nucleic Acids Res.* **19**, 7201-7205
49. Lin, Y. and Waldman, A. S. (2001) *Genetics* **158**, 1665-1674
50. Tijssen, P. (1993) Hybridization with nucleic acid probe assays. Chapter 2 in Part I Theory and nucleic acid preparation. In van der Vliet, P. C., editor. *Laboratory Techniques in Biochemistry and Molecular Biology*, Elsevier, Amsterdam

LEGENDS TO FIGURES

Fig. 1
Sequence of the TFO (highlighted in grey) and location of its target sequence (bold) within the poly linker of pUC19-MDR1 (33). The enlarged C at the 3’-end of the TFO indicates the 125I-dC whose decay induces sequence-specific breaks which were measured previously as intensities of SSB at individual bases in the Pu- and Py-rich strand, respectively, in relative units (bars). The maxima occur opposite of the 125I-dC in both strands and coincide with the unique BglIII-site (underlined) of pUC19-MDR1 (33).
Fig. 2

Major pathways of accurate NHEJ as observed *in vitro* with RE-substrates in *Xenopus* eggs (18) and mammalian cells (5;17) which involves the Ku70/80 heterodimer, DNA-PKCS, DNA ligase IV and the associated XRCC4 protein (5).

(A) cohesive (5'/5'; 3'/3'; black boxes represent complementary bases in cohesive overhangs) and blunt (bl) ends are joined by ligation (black diamonds) to restore the original restriction site.

(B) DNA ends with non-complementary anti-parallel 5'/5'- or 3'/3'-overhangs form short mismatched overlaps at positions of complementary bases (black boxes) which determine the patterns of DNA fill-in synthesis (arrowheads) (37;38).

(C) Sequences of 5'- and 3'-overhangs in abutting terminus configurations are preserved by fill-in synthesis (arrowheads) (35). While fill-in of a 5'-overhang can be primed at the recessed 3'-OH group of the same end, fill-in of a 3'-overhang can be primed only at the 3'-OH of the abutting terminus which may be a blunt end or 5'-overhang.

Fig. 3

Examples of kinetics of ligation and NHEJ in the CHO-K1 extract. The indicated 125I-TFO- and RE-linearized pUC19-MDR1 substrates were incubated with CHO-K1 extract at 25°C for different times (each block of 4 lanes corresponds to 0, 15, 75, 360 min). Reaction products were separated by agarose gel electrophoresis, and visualized by *in situ* hybridization with a pUC19-specific 32P-labeled probe and subsequent exposure to an x-ray film. All samples shown originate from the same experiment but different gels. Band designations are linear plasmid (Plin) for the input substrate, open circular (Poc) and covalently closed circular (Pccc) products and linear dimer (Pdi) product.

Fig. 4

Spectrum of junctions generated by NHEJ in the CHO-K1 extract. (Ia-c) Ligation of cohesive and
blunt ends; (IIa,b) NHEJ of anti-parallel ends by overlap formation (ovlp.); (IIIa-c) NHEJ of abutting ends by fill-in. Terminus configurations (highlighted in grey) including the flanking double-strand sequences are shown at the top of each panel with complementary bases used for overlap formation between anti-parallel ends highlighted by white letters on black ground. Junctions are listed below as top strand sequences with “accurate” junctions marked by an asterisk. Double-underlining indicates a restored restriction site by accurate ligation (acc. lig.) used for quicker analysis in ligation assays. Overlaps formed by Eco/Asp via the T:A match contain a G:A mismatch that segregates in E.coli into either G:C or T:A (37). Sac/Kpn can form two different overlaps marked by (1) and (2) [(1) uses the G:C match marked in black, (2) the C:G match in grey]. Total numbers of clones analyzed are listed behind Σ and total numbers of bases lost from both ends are listed below Δ. Microhomologies at junction breakpoints not originating from overlap formation between single-stranded overhangs are marked in black letters on grey ground. Untemplated bases inserted (ins.) at junction breakpoints are printed in underlined bold italic letters.

Fig.5

Sequences of the junctions in ccc and dimer (di) products formed in cell-free extracts from CHO-K1 and AA8 (*) cells. Sequence #1 represents the original sequence with intact BglIII site (underlined) of the undamaged plasmid; the bold G marked by a vertical arrow indicates the position of the 125I in the TFO and the dashes mark the region in which SSB occur in the Pu- and Py-rich strand, respectively (see Fig.1). Bases deleted in junctions are indicated by dots and the size of the corresponding deletion is given as a negative numeral on the right. Microhomology patches at junction breakpoints are marked in white letters on black ground on the left side; the corresponding matching bases in grey on the right side (note that the microhomology patches were arbitrarily attributed to the left side although it is impossible to determine which of the nucleotides
participated in match formation). For each junction, the total number of clones is given behind the \(\Sigma \) (\(\Sigma \) d: total numbers of junctions derived from dimer products); the asterisk marks single sequences derived from \(^{125}\text{I}-\text{TFO-substrate} \) treated with AA8-extract (e.g. \(\Sigma 3^* \): two clones were derived from the CHO-K1-extract and one from the AA8-extract). Junctions harboring additional non-templated nucleotides (underlined) or altered bases (doubly underlined) are listed under insertions and base pair substitutions.

Fig. 6

Distribution of the breakpoints of junctions #2-34 (see Fig.4; due to the large size of its deletion, #35 was not included in this diagram) (41). The nucleotide sequence of the Pu-rich strand is shown along the axes in 5'-3'-direction from bottom to top and left to right. G* indicates the position of the \(^{125}\text{I} \) in the TFO (note that the motif AAG*ATC between the bold lines - although present only once - is shown in both sequences because this allows inclusion of all junction breakpoints in one diagram). Grid lines represent phosphodiester bonds between the bases (squares; grey squares mark base homologies between the vertical and horizontal strand); junctions are indicated by diamonds or circles containing numerals which indicate the number of junctions found for this particular sequence. Open symbols represent junctions derived from ccc products, black symbols junctions derived from dimers, grey symbols junctions derived from both ccc and dimer products. Blunt junctions are drawn as diamonds at intersections of grid lines. Their nucleotide sequences can be determined by reading the vertical strand from bottom to top until the horizontal line indicated by the diamond is reached, then following the vertical line from the diamond to the corresponding nucleotide in the horizontal strand, and finally by continuing to the right with the sequence of the horizontal strand. Junctions containing patches of microhomology at their breakpoints are denoted by circles. Since the homology makes it impossible to determine the precise location of the junction breakpoint, each circle in a row connected by a diagonal represents a possible breakpoint within the
microhomology patch. For example, the sequence of junction #9 (see Fig.5) which contains a 2bp homology (…GAGG*ATCT…) is given in the diagram by the diagonal row of three grey circles marked by the number 10 (left half about in the middle). Note that the homology leads to a 2bp ambiguity with respect to the position of the breakpoint which can lie either between GG*, G*A, or AT.

Fig.7

Analysis of the frequency of microhomologies at junctions. The expected probability of a homology of x nucleotides homology to occur by chance at a breakpoint in a DNA duplex of unbiased sequence composition is given by the equation \(P(x) = (x+1)(1/4)^x(3/4)^2 \) with \((x+1) \) being the number of different ways that chance identities could yield the specified homology, \((1/4)^x \) being the probability that x nucleotides match, and \((3/4)^2 \) being the probability that nucleotides flanking the matching nucleotides do not match (42). This allows one to calculate the percentage of breakpoints expected (black bars) to be located within a given microhomology and compare them with the observed numbers (grey bars) as derived from the 64 sequences shown in Fig.5.

Fig.8

Distribution of junction breakpoints (black bars) vs. distribution of breaks (grey bars) around the decay site. Each black bar represents the sum of the relative frequencies of all breakpoints occurring at a particular nucleotide of the target sequence (for details see Experimental Procedures). (B) Distribution of nucleotides deleted around the decay site (black bars) vs. distribution of breaks (grey bars are the same as in Fig.8A). Each black bar represents the relative frequency how often a particular nucleotide was deleted from the target sequence (for details see Experimental Procedures). (C) Frequencies of the different deletion sizes [in bp] in the 64 junctions.
(Fig.5:2-34).
5’ TCTAGGAAAGGAAAGAAAGGAAAGGAAGAGAAAGGTCTAGAGTGCAGC 3’ Pu-rich
5’ TCCTTTTCCTTTTCCCTTTTCCCTTTTCCCTTTCTCCTCTTCTC TFO
3’ AGATCCCTTTCCCTTTTCCCTTTTCCCTTTTCCCTTTCTGTCCTCTAGATCTCAGCTG 5’ Py-rich
A cohesive and blunt ends join by ligation

B non-complementary antiparallel ends join by overlap

C non-complementary abutting ends join by fill-in
	P di	P oc	P lin	P ccc
125I-TFO “complex”				
NHEJ				
Pst (3’-coh.)				
HincII (blunt)				
Eco/Kpn (5’/3’)				
Ligation				
NHEJ				
la) Ligation of cohesive 5'-ends (Bam)

Sequence	Result		
GATGCTCTAGGGAAAG	Δ	12	100%
GAGATCTCTTTC	4	acc. Lig.	12

lb) Ligation of cohesive 3'-ends (Pst)

Sequence	Result		
GGATCTACGAGGC	Δ	12	
4	acc. Lig.	11	92%

lc) Ligation of blunt ends (Hind II)

Sequence	Result		
GGATCTACGAGGC	Δ	12	
0	acc. Lig.	12	100%

Ila) NHEJ of non-complementary 5'/5' ends (Eco/Asp)

Sequence	Result		
GACCGCATG	Δ	12	
0	fill-in	4	
2	ovlp.	4	50%
2	ovlp.	2	

IIb) NHEJ of non-complementary 3'/3' ends (Sac/Kpn)

Sequence	Result		
CATGTAATTCGAC	Δ	12	
3	ovlp. (1)	4	33%
4	1		
4	bl./fill-in	1	
5	ovlp. (2)	4	33%
5	ins. AA	1	

IIIa) NHEJ of non-complementary 5'/bl. ends (Eco/Sma)

Sequence	Result		
CGGCCCATG	Δ	12	
0	fill-in	10	83%
0	ins. TGT	1	
3	1		

IIIb) NHEJ of non-complementary 3'/bl. ends (Sac/Sma)

Sequence	Result		
CATGTAATTCGAC	Δ	12	
0	fill-in	3	25%
4	1		
5	bl./bl.	2	42%
5	2		
9	1		

IIlc) NHEJ of non-complementary 5'/3' ends (Eco/Kpn)

Sequence	Result		
CGGCCCATG	Δ	12	
0	fill-in	8	67%
1	2		
1	2		
5	1		
insertions and base pair substitutions
Repair of sequence-specific 125I-induced double-strand breaks by nonhomologous DNA end joining in mammalian cell-free extracts
Andrea Odersky, Irina V. Panyutin, Igor G. Panyutin, Christian Schunck, Elke Feldmann, Wolfgang Goedecke, Ronald D. Neumann, Guenter Obe and Petra Pfeiffer

J. Biol. Chem. published online January 30, 2002

Access the most updated version of this article at doi: 10.1074/jbc.M111304200

Alerts:
 - When this article is cited
 - When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts