Urinary markers for bladder cancer
Zachary L. Smith and Thomas J. Guzzo*

Address: Division of Urology, Hospital of the University of Pennsylvania, Perelman Center for Advanced Medicine, 3rd Floor, West Pavilion, 3400 Civic Center Blvd, Philadelphia, PA 19104
* Corresponding author: Thomas J. Guzzo (thomas.guzzo@uphs.upenn.edu)

F1000Prime Reports 2013, 5:21 (doi:10.12703/P5-21)

Abstract
Bladder cancer has the fifth highest incidence of all malignancies in the United States, with a propensity to recur, requiring lifelong surveillance after diagnosis. Urinary markers of disease have been of extreme interest in this field in an effort to simplify surveillance schedules and improve early detection of tumors. Many markers have been described, but most remain investigational. However, some markers have undergone clinical trials and are approved for clinical use. In this review, urinary markers and their application for screening and surveillance of bladder cancer are discussed.

Introduction
Bladder cancer (urothelial carcinoma) has the fifth highest incidence of all malignancies in the United States, with an estimated 72,570 new cases and 15,210 deaths in 2013 [1]. At presentation, approximately 70% are non-muscle-invasive (stage Tis, Ta, T1) and 30% muscle-invasive (stage T2, T3, T4) [2]. Of the non-muscle-invasive tumors, 50-70% will recur despite conservative measures such as transurethral and intravesical therapy [3,4]. It is because of this natural history that, once diagnosed, bladder cancer requires lifelong surveillance. Unfortunately, this management paradigm contributes to bladder cancer carrying the highest cost from diagnosis to death of all cancers, ranging from $96,000 to $187,000 (2001 values) in the United States [5]. Consequently, there is a need for an accurate marker of disease in order to decrease the cost associated with surveillance. An accurate marker would also have the added benefit of improving quality of life by potentially minimizing the number of invasive endoscopic evaluations.

An accurate bladder cancer marker should ideally be capable of both screening high risk populations as well as surveillance of patients with a known history of bladder cancer. Given the relatively low overall prevalence of bladder cancer in the general population, widespread screening is not cost effective and, therefore, not recommended at this time [6,7]. However, screening individuals who are at high risk for bladder cancer, such as those with a history of tobacco abuse, high risk occupational exposure, cyclophosphamide exposure, or pelvic radiation, may be beneficial for early detection of bladder cancer.

Recent advances
For decades, cystoscopy with the addition of urine cytology has been the gold standard in the detection and surveillance of bladder cancer. Current surveillance protocols after initial diagnosis typically include cystoscopy and urine cytology every 3 months for the first 1 to 3 years, every 6 months for an additional 1 to 3 years, and then annually thereafter. Cystoscopy is a minimally traumatic office procedure and is successful in identifying most bladder tumors. However, it may be inconclusive if a patient has a grossly abnormal appearance to their bladder mucosa, such as patients with an indwelling catheter or an active inflammatory condition. While still the gold standard for diagnosis, cystoscopy has a false-negative rate either from operator error, or from small areas of sessile tumor (carcinoma in situ), which may be difficult to detect [8,9]. Additionally, although cystoscopy is a minor procedure, it can still cause significant patient discomfort, stress, and anxiety [10,11].
An abundance of data supports the idea that urine cytology with cystoscopy is superior to cystoscopy alone in detecting high-grade urothelial carcinoma, as well as upper tract tumors [12,13]. Accordingly, any new marker must have its performance considered against this current gold standard. A meta-analysis of 36 studies found a sensitivity and specificity of 44% and 96%, respectively, for urine cytology [14]. Additionally, the positive predictive value of cytology is approximately 90% [15,16]. However, one major limitation of urine cytology is its low sensitivity for the detection of low-grade tumors, at approximately 4% to 31% [17]. Unfortunately, thus far, a similar correlation is being identified in the current investigational urinary markers as well.

Therefore, the addition of a commercially available bladder tumor marker would add to the armamentarium of bladder cancer detection. The ideal screening and surveillance test should be non-invasive, rapid, easily accessible to providers and patients, and have high sensitivity and specificity. Because urine comes into direct contact with bladder tumors, urinary markers have been of extreme interest in this field. Many markers have been described, but most of them remain investigational and are still undergoing preclinical evaluation (see Table 1). Few have undergone clinical trials and are approved for clinical use.

When investigating the utility of a new marker, it is important to delineate the difference between screening and surveillance applications. One function of an accurate urinary marker for bladder cancer would be in surveillance of patients with a history of bladder cancer, with the goal of detecting early recurrence of disease and potentially minimizing the need for invasive testing. The other use would be in screening the general population, or patients at high risk, for bladder cancer. When examining the current literature on the various urinary markers, it must be understood that the overwhelming majority of studies have used mixed population cohorts (i.e. patients with history of bladder cancer, patients at risk of getting bladder cancer, and asymptomatic low risk patients). Few studies have evaluated markers in purely surveillance or purely screening populations and this limits the analysis of the sensitivity and specificity of these assays. When evaluating the performance of a marker, one must be careful to consider the study population in which it is being applied as disease prevalence will impact the performance of the marker. Although low in number, some of these markers have undergone focused studies, and we have attempted to segregate these data in Table 2, accepting that uniform data are not available for each marker.

A recent analysis of 21 screening cohort studies examined the use of these markers for screening [18]. Using various methods and markers in addition to cystoscopy, bladder cancer was diagnosed in 0.0% to 51.2% of high-risk screening populations (removing the single highest outlier, the range was 0.0% to 1.64%), with a median

Table 1. Summary of urinary markers for bladder cancer

Test (Manufacturer)	Marker detected	Assay type	FDA approval
Cytology	Tumor cells	Microscopy	N/A
BLCA-4	Nuclear matrix protein	Sandwich ELISA (rabbit polyclonal antibody)	–
BTA sta® (Polymedco)	Complement factor H-related protein and complement factor H	Immunoassay or point-of-care	For diagnosis & follow-up
BTA TRAK® (Polymedco)	Complement factor H-related protein and complement factor H	Sandwich ELISA	For diagnosis & follow-up
CYFRA 21-1 (Bio International; Roche Diagnostics)	Cytoskeletal protein (cytokeratin 19)	Immunoradiometric assay or ELISA	–
DD23 (UroCor Labs)	185-kDa tumor associated antigen	Immunocytochemistry	–
NMP22/BladderChek® (Alere)	Nuclear mitotic apparatus protein	Sandwich ELISA or point-of-care	For diagnosis & follow-up
Survivin	Inhibitor of apoptosis gene	Bio-dot test (rabbit polyclonal antibody)	–
UBC™ (IDL Biotech)	Cytoskeletal proteins (cytokeratin 8 and 18)	Sandwich ELISA or point-of-care	–
ImmunoCyt™/uCyt™ (Scimedx)	Carcinoembryonic antigen, two bladder tumor cell-associated mucins	Immunocytochemistry	For follow-up
UroVysion™ (Abbott, Vysis)	Alterations in chromosomes 3, 7, 17, and 9p21	FISH	For diagnosis & follow-up

ELISA, enzyme-linked immunosorbent assay; FISH, fluorescence in-situ hybridization
incidence of 0.64%. Given this low prevalence, screening of both the general population and high-risk populations has been called into question.

In similar fashion, final results of a screening program using home hematuria testing and molecular markers were recently published [19]. 1747 asymptomatic men completed home hematuria testing and, if positive, were screened with a variety of molecular markers and underwent subsequent cystoscopy if warranted. Of this cohort, four patients were diagnosed with bladder cancer and one with a kidney tumor. Screening missed one patient with bladder cancer and one with a kidney tumor. The authors concluded that a sequential screening approach may help minimize unnecessary invasive testing with very few missed cancers. However, this mass screening program had a very low diagnostic yield.

Innumerable assays have been developed over the last few decades, with many of them claiming good performance initially, only to have this fade with long-term follow-up. We have focused on some of the more common, and more promising, urinary markers to date. This includes urine-based assays (BLCA-4, BTA stat®, BTA TRAK®, CYFRA 21-1, NMP22, Survivin, UBC™) and cell-based assays (DD23, ImmunoCyt™/uCyt+™, UroVysion™). To date, the only urinary markers that have Food and Drug Administration (FDA) approval for diagnosis and follow-up of bladder cancer are BTA stat®, BTA TRAK®, NMP22, and UroVysion™, with ImmunoCyt™/uCyt+™ only being approved for follow-up of bladder cancer. The molecular targets of each assay differ widely and are summarized in Table 1.

One of the few markers to gain widespread clinical use is the UroVysion™ test, which utilizes fluorescence in-situ hybridization (FISH) to identify chromosomal abnormalities. This test seems to be more sensitive, but less specific, than urinary cytology across all tumor grades. A recent meta-analysis showed that the overall performance of UroVysion™ was better than that of cytology (area under the curve: 87% vs 63%) [20]. However, the difference was almost entirely attributable to the ability of FISH to diagnose stage Ta patients better than cytology, as the value decreased when these patients were excluded from the analysis (area under the curve: 94% vs 91%). Another reason for the popularity of FISH is in its usefulness for monitoring patients with superficial bladder cancer after treatment with intravesical bacillus Calmette-Guérin (BCG). In this group, FISH has shown superiority to cytology and is beneficial when cytology results are equivocal [21-23].

Another marker with promise is nuclear mitotic apparatus protein (NMP22), a member of the nuclear matrix protein family. NMP22 is quite prevalent in malignant urothelial cells, but not in their normal counterpart. A recent study compared NMP22, cytology, and cystoscopy by performing both urine tests during 351 consecutive cystoscopies [24]. NMP22, cytology, and cystoscopy demonstrated sensitivity/specificity of 51%/96%, 35%/97%, and 92%/88%, respectively. Importantly, the cost of NMP22 and cytology were $8,750 and $52,500, respectively, showing that not all new markers will be more expensive than the current gold standard. However, because this protein is released from apoptotic urothelial cells, many benign conditions of the urinary tract contribute to a significant false-positive rate. One study found that greater than 80% of the false-positive results were categorized as benign inflammatory or infectious conditions, stone disease, recent foreign body in the urinary tract, bowel interposition segment, another genitourinary cancer, or an instrumented urine sample [25]. In fact, the presence of ureteral stents or any bowel interposition segment had a 100% false-positive rate.

| Table 2. Sensitivity and specificity of urinary markers for bladder cancer |
|-----------------|-----------------|---------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Test | Surveillance* | | | | | | | | |
| | Sensitivity (%) | Specificity (%) | References | | | | | | |
| Cytology | 22-52 | 96-98 | [14,28,29] | | | | | | |
| BLCA-4 | 89-96 | 100 | [32,33] | | | | | | |
| BTA stat® | 53-83 | 67-72 | [34,35,29,36] | | | | | | |
| BTA TRAK® | 66-72 | 51-75 | [37-39] | | | | | | |
| CYFRA 21-1 | 67-97 | 67-89 | [40-42] | | | | | | |
| DD23 | 70-81 | 60 | | | | | | | |
| NMP22/BladderChek® | 47-100 | 60-90 | [24,25,35,40,45-51] | | | | | | |
| Survivin | 64-100 | 87-93 | [53-55] | | | | | | |
| UBC™ | 66-82 | 83-90 | [34,56] | | | | | | |
| ImmunoCyt™/uCyt+™ | 50-100 | 69-79 | [28,57-60] | | | | | | |
| UroVysion™ | 36-100 | 89-98 | [61,62] | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |

*Also includes mixed cohorts
Table 3. Summary of International Consultation on Urological Diseases recommendations regarding urinary markers for bladder cancer [27]

| Bladder cancer screening and early detection using urinary markers is promising but cannot be recommended at present. |
| Marker-guided follow-up of patients with low-grade NMIBC appears attractive; however, based on current levels of evidence, this procedure cannot be recommended at present. |
| A use of molecular markers in surveillance of patients with high-grade NMIBC cannot be recommended. |
| Reflex testing is considered experimental at present and should be evaluated in clinical studies. |

Abbreviations
ELISA, enzyme-linked immunosorbent assay; FDA, Food and Drug administration; FISH, fluorescence in situ hybridization; NMP22, nuclear mitotic apparatus protein; PSA, prostate-specific antigen.

Disclosures
The authors declare that they have no disclosures.

References
1. Siegel R, Naishadham D, Jemal A: Cancer statistics, 2013. CA Cancer J Clin 2013, 63:11-30.
2. Ro JY, Staerkel GA, Ayala AG: Cytologic and histologic features of superficial bladder cancer. Urol Clin North Am 1992, 19:435-53.
3. Saad A, Hanbury DC, McNicholas TA, Boustead GB, Morgan S, Woodman AC: A study comparing various noninvasive methods of detecting bladder cancer in urine. BJU Int 2002, 89:369-73.
4. Soloway MS, Sofer M, Vaidya A: Contemporary management of stage T1 transitional cell carcinoma of the bladder. J Urol 2002, 167:1573-83.
5. Botteman MF, Pashos CL, Redaelli A, Laskin B, Hauser R: The health economics of bladder cancer: a comprehensive review of the published literature. Pharmacoeconomics 2003, 21:1315-30.
6. Lokeshwar VB, Soloway MS: Current bladder tumor tests: does their projected utility fulfill clinical necessity? J Urol 2001, 165:1067-77.
7. Svatek RS, Sagalowsky AI, Lotan Y: Economic impact of screening for bladder cancer using bladder tumor markers: a decision analysis. Urol Oncol 2006, 24:338-43.
8. van der Poel HG, Debruyne FM: Can biological markers replace cystoscopy? An update. Curr Opin Urol 2001, 11:503-9.
9. Herr HW: The natural history of a T1 bladder cancer: life-long tumour diathesis. BJU Int 1999, 84:1102-3.
10. Botteman MF, Pashos CL, Hauser RS, Laskin BL, Redaelli A: Quality of life aspects of bladder cancer: a review of the literature. Qual Life Res 2003, 12:675-88.
11. Herr HW, Schneider M: Outpatient flexible cystoscopy in men: a randomized study of patient tolerance. J Urol 2001, 165:1971-2.
12. Babjuk M, Sokup V, Pešl M, Kotširová M, Drnčová E, Smolová H, Szakacsová M, Getzenberg R, Pavlík L, Dvoráček J: Urinary cytology and quantitative BTA and UBC tests in surveillance of patients with pT1 bladder urothelial carcinoma. Urology 2008, 71:718-22.
Lotan Y, Roehrborn CG: Sensitivity and specificity of commonly
used urine based markers in bladder cancer. Urology 2005, 66:35-63.

17. Mowatt G, Zhu S, Kilono M, Boachie C, Fraser C, Griffiths TRL, NDow J, Nabi G, Cook J, Vale L: Systematic review of the clinical
effectiveness and cost-effectiveness of photodynamic diagnosis
and urine biomarkers (FISH, ImmunoCyt, NMP22) and
cytology for the detection and follow-up of bladder cancer.
Health Technol Assess 2010, 14:1-331 iii-iv.

18. Larré S, Catto JWF, Cookson MS, Messing EM, Shariat SF, Soloway MS,
Svatek RS, Lotan Y, Zlotta AR, Grossman HB: The accuracy of
urinary cytology in daily practice. Cancer 1999, 87:118-28.

19. Planz B, Jochims E, Deix T, Caspers HP, Jakse G, Boecking A: The
role of urinary cytology for detection of bladder cancer. Eur J
Surg Oncol 2005, 31:304-8.

20. Lotan Y, Roehrborn CG: Sensitivity and specificity of commonly
available urine based markers versus cytology: results of a
comprehensive literature review and meta-analyses. Urology
2003, 61:109-18 discussion 118.

21. Bastacky S, Ibrahim S, Wilczynski SP, Murphy WM: The accuracy of
urinary cytology in daily practice. Cancer 1999, 87:118-28.

22. Savic S, Zlobec I, Thalmann GN, Engeler C, Schmauss M, Lehmann K,
Mattarelli G, Eichenberger T, Dalquen P, Spieler P, Schoenegg R,
Gasser TC, Sulser T, Forster T, Zellweger T, Casella R, Buendorf L: The
prognostic value of cytology and fluorescence in situ
hybridization in the follow-up of nonmuscle-invasive bladder
cancer after intravesical Bacillus Calmette-Guérin therapy.
Int J Cancer 2009, 124:2899-904.

23. Kipp BR, Karnes RJ, Bankleit SM, Harwood AR, Pankratz VS,
Sebo TJ, Blute MM, Lieber MM, Zincke H, Halling KC: Monitoring
intravesical therapy for superficial bladder cancer using
fluorescence in situ hybridization. J Urol 2005, 173:401-4.

24. Schlake A, Crispin PL, Cap AP, Atkinson T, Davenport D, Preston DM: NMP-22, urinary cytology, and cystoscopy: a 1 year comparison
study. Can J Urol 2012, 19:6345-50.

25. Sharma S, Zippe CD, Pandrangi L, Nelson D, Agarwal A: Exclusion
criteria enhance the specificity and positive predictive value of
NMP22 and BTA stat. J Urol 1999, 162:253-7.

26. Mian C, Maier K, Complejo E, Lodde M, Berner L, Lussardi L, Palermo S,
Vitzadello F, Pycha A: uCyt+/ImmunoCyt in the detection of
recurrent urothelial carcinoma: an update on 1991 analyses.
Cancer 2006, 108:60-5.

27. Kamat AM, Hegarty PK, Gee JR, Clark PE, Svatek RS, Hegarty N,
Shariat SF, Xylinas E, Schmitz-Dräger BJ, Lotan Y, Jenkins LC,
Droller M, van Rhijn BW, Karakiewicz PI: ICUD-EAU Interna-
tional Consultation on Bladder Cancer 2012: screening,
diagnosis, and molecular markers. Eur Urol 2013, 63:4-15.

28. Complejo E, Mian C, Ambrosi-Spaltro A, Dechet C, Palermo S,
Treni E, Lodde M, Horninger W, Pycha A: uCyt+/ImmunoCyt and
cytology in the detection of urothelial carcinoma: An update
on 7422 analyses. Cancer Cytopathol 2013.

29. Pode D, Shapiro A, Wald M, Nativ O, Laufer M, Kaver I: Noninvasive detection of bladder cancer with the BTA stat test.
J Urol 1999, 161:443-6.

30. Grossman HB, Messing E, Soloway M, Tomera K, Katz G, Berger Y,
Shen Y: Detection of bladder cancer using a point-of-care
proteomic assay. JAMA 2005, 293:810-6.

31. Miyanaga N, Akaza H, Tsukamoto T, Ishikawa S, Noguchi R, Ohtani M,
Kawabe K, Kubota Y, Fujita K, Obata K, Hirao Y, Kotsake T,
Ohmori H, Kumazawa J, Koiso K: Urinary nuclear matrix protein
22 as a new marker for the screening of urothelial cancer in
patients with microscopic hematuria. Int J Urol 1999, 6:173-7.

32. van Le T, Myers J, Konety BR, Bader T, Getzenberg RH: Functional
characterization of the bladder cancer marker, BLCA-4. Clin Cancer Res 2004, 10:1384-91.

33. van Le T, Miller R, Bader T, Babjuk M, Potter DM, Getzenberg RH:
Highly specific urine-based marker of bladder cancer. Urology
2005, 66:1256-60.

34. Mian C, Lodde M, Haitel A, Egarter Vigl E, Marberger M, Pycha A:
Comparison of two qualitative assays, the UBC rapid test and
the BTA stat test, in the diagnosis of urothelial cell
carcinoma of the bladder. Urology 2000, 56:228-31.

35. Wiener HG, Mian C, Haitel A, Pycha A, Schatz G, Marberger M: Can
urine bound diagnostic tests replace cystoscopy in the
management of bladder cancer? J Urol 1998, 159:1876-80.

36. Sarosdy MF, Hudson MA, Ellis WJ, Soloway MS, deVere White R,
Sheinfeld J, Jawornenko MV, Shellhammer PF, Scherwitz EW, Patel JV,
Chodak GW, Lamm DL, Johnson RD, Henderson M, Adams G,
Blumenstein BA, Thoelke KR, Pfaltzgraf RD, Murchison HA, Brunelle SL:
Improved detection of recurrent bladder cancer using the
Bard BTA stat Test. Urology 1997, 50:349-53.

37. Thomas L, Leyh H, Marberger M, Bombardieri E, Bassi P, Pagano F,
Pansadoro V, Sternberg CN, Boccon-Gibod L, Ravery V, Le
Guludec D, Meulmans A, Conort P, Ishak L: Multicenter trial of
the quantitative BTA TRAK assay in the detection of bladder cancer. Clin Chem 1999, 45:472-7.

38. Heicappell R, Wettig IC, Schostak M, Müller M, Steiner U, Sauser T, Miller K: Quantitative detection of human complement factor H-related protein in transitional cell carcinoma of the urinary bladder. Eur Urol 1999, 35:81-7.

39. Ellis WJ, Blumenstein BA, Ishak LM, Enfield DL: Clinical evaluation of the BTA TRAK assay and comparison to voided urine cytology and the Bard BTA test in patients with recurrent bladder tumors. The Multi Center Study Group. Urology 1997, 50:882-7.

40. Sánchez-Carbayo M, Urrutia M, Silva JM, Romaní R, de Buitrago JM, Navajo JA: Comparative predictive values of urinary cytology, urinary bladder cancer antigen, CYFRA 21-1 and NMP22 for evaluating symptomatic patients at risk for bladder cancer. J Urol 2001, 165:1462-7.

41. Nisman B, Barak V, Shapiro A, Golijanin D, Perez T, Pode D: Evaluation of urine CYFRA 21-1 for the detection of primary and recurrent bladder carcinoma. Cancer 2002, 94:2914-22.

42. Pariente JL, Bordeneuve L, Jacob F, Gobinet A, Leger F, Ferriere JM, Le Guillou M: Analytical and prospective evaluation of urinary cytokeratin 19 fragment in bladder cancer. J Urol 2000, 163:1116-9.

43. Sawczuk IS, Pickens CL, Vasa UR, Ralph DA, Norris KA, Miller MC, Ng AY, Grossman HB, Veltri RW: DD23 Biomarker: a prospective clinical assessment in routine urinary cytology specimens from patients being monitored for TCC. Urol Oncol 2002, 7:185-90.

44. Gilbert SM, Veltri RW, Sawczuk A, Shabihg A, Knowles DR, Bright S, O’Dowd GJ, Olsson CA, Benson MC, Sawczuk IS: Evaluation of DD23 as a marker for detection of recurrent transitional cell carcinoma of the bladder in patients with a history of bladder cancer. Urology 2003, 61:539-43.

45. Hughes JH, Katz RL, Rodriguez-Villanueva J, Kidd L, Dinney C, Grossman HB, Fritsche HA: Urinary nuclear matrix protein 22 (NMP22): a diagnostic adjunct to urine cytologic examination for the detection of recurrent transitional-cell carcinoma of the bladder. Diagn Cytopathol 1999, 20:285-90.

46. Takashi M, Schenk U, Kissel K, Leh H, Treiber U: Use of diagnostic categories in urinary cytology in comparison with the bladder tumour antigen (BTA) test in bladder cancer patients. Int Urol Nephrol 1999, 31:189-96.

47. Gutiérrez Baños JL, Martín García B, Hernández Rodríguez R, Portillo Martín JA, Correas Gómez MA, del Valle Schaan JJ, Roca Ereda A, Villanueva Peña A, Gutierrez García R, de Diego Rodríguez E, Rado Velázquez MA: Utilidad del BTA Stat TEST (Bard) en el diagnóstico del cáncer vesical. Resultados preliminares y comparación con citología y cistoscopia. Arch Esp Urol 1998, 51:778-82.

48. Del Nero A, Esposito N, Currò A, Biasoni D, Montanari E, Mangiarotti B, Trinchieri A, Zanetti G, Serrago MP, Pisanì E: Evaluation of urinary level of NMP22 as a diagnostic marker for stage pTa-T1 bladder cancer: comparison with urinary cytology and BTA test. Eur Urol 1999, 35:93-7.

49. Serretta V, Lo Presti D, Vasile P, Gange E, Esposito E, Menozzi I: Urinary NMP22 for the detection of recurrence after transurethral resection of transitional cell carcinoma of the bladder: experience on 137 patients. Urology 1998, 52:793-6.

50. Witjes JA, van der Poel HG, van Balken MR, Debruyne FM, Schalken JA: Urinary NMP22 and karyometry in the diagnosis and follow-up of patients with superficial bladder cancer. Eur Urol 1998, 33:387-91.

51. Grossman HB, Soloway M, Messing E, Katz G, Stein B, Cassabian V, Shen Y: Surveillance for recurrent bladder cancer using a point-of-care proteomic assay. JAMA 2006, 295:299-305.

52. Huber S, Schwentner C, Taeger D, Pesch B, Naterflack M, Genn G, Mayer T, Gawrzych K, Bonberg N, Pelzter M, Johnen G, Bontrup H, Wellhäuser H, Bierfreund H, Wieni C, Bayer C, Eberle F, Scheuermann B, Kluckert M, Feil G, Brünig T, Stenzl A: Nuclear matrix protein-22: a prospective evaluation in a population at risk for bladder cancer. Results from the UroScreen study. BJU Int 2012, 110:699-708.

53. Altiere DC: Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene 2003, 22:8581-9.

54. Smith SD, Wheeler MA, Plescia C, Colberg JW, Weiss RM, Altiere DC: Urine detection of survivin and diagnosis of bladder cancer. JAMA 2001, 285:324-8.

55. Shariat SF, Casella R, Khoddam SM, Hernandez G, Sulser T, Gasser TC, Lerner SP: Urine detection of survivin is a sensitive marker for the noninvasive diagnosis of bladder cancer. J Urol 2004, 171:626-30.

56. Sumi S, Arai K, Kitahara S, Yoshida KI: Preliminary report of the clinical performance of a new urinary bladder cancer antigen test: comparison to voided urine cytology in the detection of transitional cell carcinoma of the bladder. Clin Chim Acta 2000, 296:111-20.

57. Olsson H, Zackrisson B: ImmunoCyt a useful method in the follow-up protocol for patients with urinary bladder carcinoma. Scand J Urol Nephrol 2001, 35:280-2.

58. Jän C, Pycha A, Wiener H, Haitel A, Lodde M, Marberger M: ImmunoCyt: a new tool for detecting transitional cell cancer of the urinary tract. J Urol 1999, 161:1486-9.

59. Vriesema JL, Atsma F, Kiemeneij LA, Peelen WP, Witjes JA, Schalken JA: Diagnostic efficacy of the ImmunoCyt test to detect superficial bladder cancer recurrence. Urology 2001, 58:367-71.

60. Pfister C, Chautard D, Devonec M, Perrin P, Chopin D, Rischmann P, Bouchot O, Beurtens D, Coulanges C, Rabbeaud J: ImmunoCyt test improves the diagnostic accuracy of urinary cytology: results of a French multicenter study. J Urol 2003, 169:921-4.

61. Sarosdy MF, Schellhammer P, Bokinsky G, Kahn P, Chao R, Yore L, Zadra J, Burzon D, Osher G, Bridge JA, Anderson S, Johanson SL, Lieber M, Soloway M, Flom K: Clinical evaluation of a multi-target fluorescent in situ hybridization assay for detection of bladder cancer. J Urol 2002, 168:1950-4.

62. Halling KC, King W, Sokolova IA, Meyer RG, Burkhardt HM, Hailing AC, Cheville JC, Sebo TJ, Ramakumar S, Stewart CS, Pankratz S, O’Kane DJ, Seelig SA, Lieber MM, Jenkins RB: A comparison of cytology and fluorescence in situ hybridization for the detection of urethelial carcinoma. J Urol 2000, 164:1768-75.