Bee venom acupuncture therapy ameliorates neuroinflammatory alterations in a pilocarpine-induced epilepticus model

Abeer Mohamed Abd El-Hameed1 · Abdelaziz S. A. Abuelsaad2 · Abdelwahab Khalil3

Received: 12 February 2021 / Accepted: 6 June 2021 / Published online: 17 June 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Bee venom (BV) is applied in different traditional medicinal therapies and is used worldwide to prevent and treat many acute and chronic diseases. Epilepsy has various neurological effects, e.g., epileptogenic insults; thus, it is considered a life-threatening condition. Seizures and their effects add to the burden of epilepsy because they can have health effects including residual disability and even premature mortality. The use of antiinflammatory drugs to treat epilepsy is controversial; therefore, the alternative nonchemical apitherapy benefits of BV were evaluated in the present study by assessing neuroinflammatory changes in a pilocarpine-induced epilepticus model. Levels of electrolytes, neurotransmitters, and mRNA expression for some gate channels were determined. Moreover, ELISA assays were conducted to detect pro- and anti-inflammatory cytokines, whereas RT-PCR was performed to assess mRNA expression of Foxp3 and CTLA-4. BV ameliorated the interruption in electrolytes and ions through voltage- and ligand-gated ion channels, and it limited neuronal excitability via rapid repolarization of action potentials. In addition, BV inhibited the high expression of proinflammatory cytokines. Acupuncture with BV was effective in preventing some of the deleterious consequences of epileptogenesis associated with high levels of glutamate and DOPA in the hippocampus. BV ameliorates changes in the expression of voltage-gated channels, rebalances blood electrolytes and neurotransmitters, and modulates the levels of pro- and anti-inflammatory cytokines. Thus, BV could reduce the progression of epileptogenesis as a cotherapy with other antiepileptic drugs.

Keywords Epilepsy · Pilocarpine · Bee venom - inflammation · Cytokines · Neurotransmitters · Oxidative stress

Introduction
Epilepsy is a collection of diverse disorders that together affect approximately 1% of the general population. It affects people of all ages and is one the most prevalent chronic diseases of the central nervous system. About 80% of the 50 million people with epilepsy worldwide live in low- and middle-income countries. When adequately diagnosed and treated, an estimated 70% of epileptic patients will be seizure free. In low-income countries, however, about 75% of patients do not get the care they require and this figure can rise to 90% in certain countries (WHO 2020).

Over two decades ago, Shin and McNamara (1994) reported that antiepileptic drugs (AEDs) can regulate seizures in many patients and cure some patients; however, for the majority of epilepsies, there is no effective prophylactic protocol. Therefore, most AEDs only treat symptoms and are largely ineffective. Epileptic seizures are the primary symptom of epilepsy; these are repeated paroxysmal events marked by stereotyped behavioral changes that represent the neuronal pathways involved in the epileptic phase (Beghi et al. 2019). Diagnosing seizures and epilepsy is challenging, especially in low-income countries where socioeconomic and cultural limitations are barriers to disease detection and acceptance (Newton and Garcia 2012). Many AEDs cannot prevent epileptogenesis without being used in combination with polytherapy. If seizures and epilepsy cannot be controlled after two drug trials, the epilepsy may be defined as drug-resistant epilepsy (Park et al. 2019).
Many AEDs designed to ameliorate or downregulate epileptogenesis are not sufficiently effective (Löscher and Brandt 2010) despite the noticeable neuroprotective effects of many such medications. The failure of these drugs may arise from several factors, e.g., species differences, inappropriate timing of intervention, focus on nonessential molecular targets, differential genetic susceptibility, and perhaps the long-term neurotoxicity of the drugs (Kobow et al. 2012).

The high levels of inflammatory cytokines in case of epileptogenesis can destroy the blood brain barriers, allowing recruitment of different immune components to share. Permeability of glutamatergic neurons to calcium ions will increased by release of these inflammatory mediators, causing abnormal neuronal hyper-excitability (Meng and Yao 2020). They reviewed two waves of cytokines and inflammatory mediators from glial cells or neurons, which can amplify the inflammatory downstream cascades and causing neuronal over-excitation during epileptogenesis.

Both Lee et al. (2002) and Wang et al. (2015) reviewed that adult neural cells express pro/anti-inflammatory cytokines e.g. IL-1β, IL-6, IL-8, IL-10, IL-12, IL-15, TNF-α and many chemokines e.g. CCL2, CCL3 and CCL4. On the other hand; many researches correlated between frequency and severity of seizure, and variations in the IL-4, IL-8 and IL-17 levels (Sinha et al. 2008; Mao et al. 2013; Pernhorst et al. 2013; Somnez et al. 2013). Finally, Wang et al. (2015) concluded that only four independent cytokine biomarkers (IL-6, IFNγ, IL-17a and IFNλ3) are correlated with severe seizures in three different types of epilepsy e.g. temporal lobe epilepsy (TLE), extra-temporal lobe epilepsy (XLE) and the idiopathic generalized epilepsy (IGE).

As stated in a review by Abd El-Hameed et al. (2020), alternative medicines are gradually being introduced from Asian traditional medicine into western countries. Apitherapy is one such traditional medicine based on the use of various products of Apis mellifera (the European honeybee) including raw honey, propolis, pollen, royal jelly, beeswax, and venom (Stuhlmeier 2007). One example, bee venom (BV) therapy, which was developed in the 1950 and 1960s, has been used in wound healing and has the potential to treat many diseases and conditions such as asthma, rheumatoid arthritis, multiple sclerosis, polynieritis, neuralgia, malaria, and epilepsy. In addition to reporting that all hive products have positive healing effects on wounds and burns, in a review by Trumbeckaite et al. (2015), various studies confirmed the antibacterial, antifungal, antiinflammatory, antiproliferative, and anticancer properties of honey products. In traditional medicine, BV is commonly used to cure immune-related diseases.

The venom of social insects such wasps, bees, and ants is used as a chemical weapon for protecting the individual or colony; extremely low concentrations of venom can incapacitate attackers in minutes (Krell 1996). BV therapy (also known as apitherapy) was practiced in ancient Egyptian, Greek, and Chinese civilizations to treat epilepsy. BV of A. mellifera contains about 88% water and 0.1 µg of dry venom (Nawaz et al. 2019). In one sting, about 50–140 µg of venom is released by the bee. Various researchers have reported that dry venom is chemically composed of a complex mixture of active peptides (e.g., melittin), enzymes [e.g., phospholipase A2 (PLA2), hyaluronidase, and acid phosphatase], and biogenic amines (e.g., vasoactive amines and histamine) (Krishna et al. 2011). Verma et al. (2013) reported that melittin is the main active and hydrophobic peptide of A. mellifera venom and represents 50–60% of the total chemical constituents. Over a series of apitherapy sessions representing adjusted dose-dependent venom immunotherapy, A. mellifera BV can cure patients from relapsed systemic anaphylactic reactions (Aust et al. 2010).

Melittin in BV has lytic activity if it is inserted into the phospholipid bilayer of the cell membrane (Cruciani et al. 1991). In addition to PLA2 in BV having a potent inflammatory activator; it is involved in various biological pathways including synthesis of arachidonic acid metabolites (Nair et al. 1993), and, as another active constituent of BV, apamin acts not only as a potent neurotoxin (Stuhlmeier 2007) but also as a blocker of K+ channels (Modzelewska et al. 2003).

For some neuroinflammatory diseases, drugs from venomous sources have been suggested as effective alternative treatments. Many previous studies have demonstrated the properties of the active constituents of BV; however, the present study examines the changes in neurotransmitter expression and the balance of both blood electrolytes and inflammatory biomarker levels after a therapeutic acupuncture treatment with BV in a pilocarpine-induced epilepticus model.

Materials & methods

Animals

White thirty-two adult male Sprague Dawley rats (150–180 g) were obtained from the animal house of the National Research Institute, Doki, Giza, Egypt. Animals were housed in individual metabolic cages in a controlled environment (23 ± 1 °C; humidity, 55 ± 5 %) under a 12-h light/dark cycle. Food and water were available ad libitum under Ethical approval agreement.

Drug, chemicals and bee venom

Pilocarpine hydrochloride (99%) (PILO) was purchased from Acros Organics (New Jersey, USA). In addition, methylscopolamine, diazepam and chloral hydrate were purchased from Nanjing Chemical Reagent Co., Ltd. (Nanjing,
Induction of epilepsy and animal grouping

Epilepsy was experimentally induced according to the method of Turski et al. (1989) and Abdel-Reheim (2009). Prior to treatment with 300 mg/kg of pilocarpine hydrochloride injection, the experimental rats were intraperitoneally injected with methylscopolamine (1 mg/kg) for 30 min. Then, animal’s behavior was evaluated as indicative of seizure activity was assessed according to certain criteria. These criteria for successful modeling: epileptic seizure symptoms are sluggishness, salivation, tremors, convulsions, etc. Such behaviors were observed in rats model for 120 min after the administration of pilocarpine hydrochloride; while, rats in the control group behaved normally. When generalized seizure activity was continuously observed without normal behavior during each episode, the rats were considered suffer from seizure episodes. When the rats continuously suffered from seizure episodes for 1 h, and the attacks occurred every 2–5 min. Seizures were terminated with diazepam (4 mg/kg, i.p.) delivered every 20 min as needed. Control rats were treated with the same protocol, except that phosphate buffered saline (PBS, pH 7.4; 0.2 mL/rat) was injected instead of pilocarpine, followed, 1 h later, by diazepam.

Generally, thirty two adult male rats (150–180 g) were used in the present experiment. They were divide into five groups (eight rats/group) as follows: (1) Control group (C) received only standard diet, free access to sterile water and orally fed with (PBS, pH 7.4; 0.2 mL/rat) using intragastric intubation at intervals parallel to the treated groups. (2) Positive epileptic group, epileptic control “EP group” was treated with 300 mg pilocarpine hydrochloride/Kg. b.wt of rats. (3) Depakine®-treated epileptic group (EP_DK group): this group was injected with 300 mg/kg of pilocarpine hydrochloride injection as described previously, and then orally fed with 500 mg Depakine® /Kg. b.wt of rats, dissolved in PBS (pH 7.4; 0.2 mL/rat). Depakine® inoculation was performed twice/week for four consecutive weeks, using intragastric intubation at intervals parallel to other groups for four consecutive weeks. (4) Bee venom-treated epileptic group (EP_BV group): It was injected with 300 mg/kg of pilocarpine hydrochloride injection as described previously, and then injected intradermal (i.d.) with 10 µg/animal once every 3 days for four consecutive weeks of pure BV dissolved in PBS (pH 7.4) according to a modified dose of Kim (1997); Koyama et al. (2000) and Ncbi (2020).

Blood, tissue sampling and biochemical measurements

At the end of the experiment, rats were euthanized and sacrificed according to ethical committee of Beni-Suef University, Beni-Suef, Egypt. Blood was immediately collected into a sterile vacutainer tube and allowed to coagulate for plasma or sera preparation by centrifugation at 3500 x g for 15 min, transferred into sterilized tubes and stored at -20 °C till used for analysis of various biochemical and immunological parameters. Briefly, blood samples were collected and harvested in two parts within 30 min at 37 °C from EDTA-anticoagulated and EDTA-free samples. Sera samples were separated for electrolytes. The hippocampus was sliced from the brain on ice containing plates for determination of electrolytes and neurotransmitters. Briefly, parts of hippocampus tissue were homogenized in cooled PBS (pH 7.4) using Potter–Elvehjem homogenizer (Braun, Melsungen, Germany) with a loose-fitting Teflon pestle at 1000 g with eight up and down strokes. After filtration, the homogenate was centrifuged at 600 x g for 10 min at 4 °C in a Beckman TJ-6 centrifuge (Beckman Instruments; Munich, Germany). Clear supernatant was kept in -80°C till evaluation of many investigations. Total protein (gm tissue) was estimated in the supernatant (Bradford 1976). Some slices of brain tissues were kept in sterilized Eppendorf tubes at -70 °C until they were used for RNA extraction and RT-PCR analysis.

Neurotransmitters were performed according to the purchased manufacture guide. MyBioSource Co. assay kits were used for quantitative detection (pg/mg protein tissue) of L-dihydroxyphenyalanine (L-DOPA); epinephrine (EN); Norepinephrine (NEN); glutamate (pg/mg protein tissue) and gamma-amino butyric acid (GABA), using kits with catalogue numbers (MBS9357024, MBS031232, MBS269993, MBS047402 and MBS269152, respectively). Acetylcholinesterase (U/L) activity was performed according to the instruction manual of QuantiChrom™ Assay Kit (Cat. No: DACE-100). According to the manual instruction of MyBioSource; concentration of electrolytes (mMol/L) in either serum or brain homogenate tissue were performed e.g. sodium (Na⁺), potassium (K⁺). In addition, calcium (Ca²⁺) and chloride (Cl⁻) levels were determined according to the quantitative colorimetric instruction manual of QuantiChrom™ assay. Levels of different cytokines e.g. IL-6; IL-10; IL-17; TNF-α, and TGF-β (pg/mg protein tissues) were estimated by using ELISA Kit purchased from My Bio-source according to the manufacturer’s protocol in triplicates.
RNA isolation and qRT-PCR for pro and anti-inflammatory cytokines

All gate receptors e.g. SCN1A (Na+ channel); Kcnj2 (K+ channel); CACNA1S (Ca2+ channel); CLCN2 (GABA receptor); NMDA (Glutamate receptor); and T regulatory cell markers e.g. FOXP3 and CTLA4; were estimated by quantitative Real Time PCR. Analysis using SYBR Green I was performed using an applied BioSystem with software version 3.1 (StepOne™, USA). The qPCR assay with sets target primer sequence at annealing temperature at 60°C for one min. Denaturation temperature at 95 °C for one min and extension temp at 72°C for one min (in one cycle) repeated for 40 cycles. PCR (RT–PCR) using rat specific primers listed in Table 1 as follows:

Statistical analysis

One-way ANOVA test with Tukey-Kramer method for post-hoc statistical analysis was used to compare data between different groups. Statistical data analysis was performed using SPSS version 22 software (IBM Corp., 2013) with significance set at P<0.05. Data were expressed as means ± standard deviation (M ± S.D.).

Ethics committee approval

All animal procedures were conducted in accordance with the standards set in the guidelines for the care and use of experimental animals by the Animal Ethics Committee of the Zoology Department in the Faculty of Science at Beni-Suef University under approval number BSU/FS/2017/15 at December 15th, 2017.

Results

In comparison to the control group, the pilocarpine-induced epilepsy produced a significant disturbance of electrolytes (P < 0.001; Table 2) represented by an elevation of sera Na+ and Cl− (141.7 ± 1.06 and 117.53 ± 10.37 mM/ml, respectively) in contrast to their intracellular decrease in homogenate tissues (13.89 ± 0.85 and 77.17 ± 4.15 mM/ml, respectively). Treatment with Depakine and BV returned the elevated levels of Na+ and Cl− to normal levels in serum and mitigated their reduction in homogenate tissues: Na+ and Cl− levels returned to 133.20 ± 0.69 and 131.37 ± 0.57 mM/ml in the sera of Depakine- and BV-treated groups, respectively;

Table 1 List of rat specific PCR (RT–PCR) primers

Item	Primer	Primer
SCN1A (Na+ channel)	F:5-TCATGGCAGTTCTGTATC-3	R:5-GCAGTAGCAATTAGCAGCAA-3
Kcnj2 (K+ channel)	F:5-GCAAAACTCTGGTTAGTGGG-3	R:5-TCATACAAAGGGCTTGCCTCG-3
CACNA1S (Ca2+ channel)	F:5-GACATATATCCCGGTGCTGGG-3	R:5-GTTCATTCCTTCCACCGGCC-3
CLCN2 (GABA-receptor)	F:5-CACGTGGAATAACAGGCCCA-3	R:5-GCAGGGAATGTAGTTCTGG-3
NMDA (Glutamate Receptor)	F:5-ACTTCCACACTGCCCATGAAC-3	R:5-TTGTTCCCAAGAATTTGCTT-3
FOXP3	F:5-TCATCCGCTGGGCCATCTCGG-3	R:5-GTGGAAACCTCTACTTCCTGTC-3
CTLA4	F:5-GGACCGGAGTTTATGTACTTGATC-3	R:5-CCAAGCTACTGGCAAGAGG-3
GAPDH	F:5-GTGAAGGTCGGAGTCAACG-3	R:5-CATGCCAGCCACAGCG-3

Table 2 Changes in electrolytes in sera and brain tissues of control (C), epileptic group (EP)

	Na+	K+	Ca2+	Cl−				
	Serum (mM/ml)	Tissues (mM/ml)						
C	132.20 ±0.61 †	22.47 ±0.70 †	6.28 ±0.66 †	94.17 ±1.61 †	0.47 ±0.03 †	0.33 ±0.08 †	109.20 ±8.38 †	93.70 ±3.50 †
EP	141.70 ±1.06 †	13.89 ±0.85 †	2.95 ±0.44 †	130.20 ±9.82 †	0.25 ±0.03 †	0.97 ±0.12 †	117.53 ±10.37 †	77.17 ±4.15 †
Ep_DK	133.20 ±0.69 †	20.23 ±1.06 †	4.49 ±0.08 †	106.50 ±6.63 †	0.49 ±0.02 †	0.29 ±0.02 †	102.80 ±4.44 †	82.83 ±4.92 †
EP_BV	131.37 ±0.57 †	21.47 ±0.83 †	5.25 ±1.07 †	90.50 ±4.09 †	0.40 ±0.06 †	0.28 ±0.04 †	103.90 ±3.28 †	95.15 ±2.96 †
F value	119.622	58.769	13.238	24.139	27.111	63.819	2.876	14.426
P <	0.000	0.000	0.002	0.000	0.000	0.000	0.103	0.001

Depakine®-treated group (EP_DK), and bee venom–treated group (EP_BV). Values were represented as Mean ± SD & n=8 animals. Means within same parameter and not sharing a common superscript symbol(s), are differ significantly at P<0.05
CI- levels returned to 102.80 ± 0.44 and 103.90 ± 3.28 mM/ml in the sera of Depakine- and BV-treated groups, respectively.

On the other hand, significant extracellular hypokalemia (2.95 ± 0.44 mM/ml) and hypocalcemia (0.25 ± 0.03 mM/ml) were recorded in the EP group (P < 0.001), as well as significant intracellular hyperkalemia (130.20 ± 9.82 mM/ml) and intracellular hypercalcemia (0.97 ± 0.12 mM/ml) (P < 0.001; Table 2). Treatment with Depakine and BV significantly ameliorated the interruption of electrolytes and ions in both the sera and hippocampal tissue (P < 0.001).

Biochemical estimation (Fig. 1A–F) of three members of the monoamine catecholamine neurotransmitter family, i.e., l-3,4-dihydroxyphenylalanine (DOPA; Fig. 1A), epinephrine (EN; Fig. 1B), and norepinephrine (NEN; Fig. 1C), showed levels that were significantly increased in the hippocampal tissues of the epileptic group (P < 0.001; 131.33 ± 10.00 pg/mg protein tissue, 209.77 ± 20.23 pg/mg protein tissue, and 35.67 ± 3.23 µg/mg protein tissue, respectively). Additionally, significantly high levels of glutamate (P < 0.001; Fig. 1F) were recorded in this group (20.77 ± 2.8523 pg/mg protein tissue). On the other hand, in the pilocarpine-induced epilepticus model, the release of both γ-aminobutyric acid (GABA; 20.80 ± 3.24 pg/mg protein tissue; Fig. 1D) and acetylcholinesterase (AChE; 37.10 ± 5.71 U/mg protein tissue; Fig. 1E) were inhibited in comparison with control levels. However, treatment with Depakine and BV significantly stimulated the release of GABA and AChE in hippocampal tissues (P < 0.001).

Changes in the relative mRNA expression of some voltage-gated channels are illustrated in Fig. 2A–E. The mRNA levels of channels SCN1A (Na+; Fig. 2A), KCNJ2 (K+; Fig. 2B), and CLCNC (GABA; Fig. 2D) were significantly reduced after induction of epilepsy relative to control expression levels (P < 0.001; 0.23-fold ± 0.03; 0.35-fold ± 0.03 and 0.15-fold ± 0.03, respectively). In contrast, the mRNA levels of channels CACNCL (Ca2+; Fig. 2C) and N-methyl-D-aspartate receptor (NMDAR; Fig. 2E) significantly increased relative to control expression levels (P < 0.001; 7.37-fold ± 0.40 and 6.17-fold ± 1.30, respectively). Treatment with Depakine and BV significantly increased the previously reduced mRNA expression of the SCN1A, KCNJ2,
and CLCNC channels ($P < 0.001$), whereas these treatments significantly reduced the previously upregulated expression of the CACNCL and NMDAR channels ($P < 0.001$).

In ELISA evaluations of the antiinflammatory activities of BV (Figs. 3 and 4), the venom was found to significantly inhibit all inflammatory biomarkers ($P < 0.001$), including the cytokines IL-6 (61.97 ± 3.63 pg/mg protein tissue), IL-17 (62.67 ± 6.22 pg/mg protein tissue), TNF-α (32.73 ± 3.36 pg/mg protein tissue), and TGF-β (60.37 ± 8.60 pg/mg protein tissue) along with mRNA expression (as fold changes against a control or relative to control) of the T-regulatory nuclear transcription factors FOXP3 (3.11 ± 0.81) and CTL4 (2.54 ± 0.61) (Fig. 4), in hippocampal tissues after induction of epilepsy, which had previously produced a significant elevation of these proinflammatory biomarkers ($P < 0.001$). On the other hand, BV was found to significantly increase...
antiinflammatory activity by returning levels of IL-10 (197.50 ± 5.88 pg/mg protein tissue) near-control levels (i.e., 217.90 ± 6.96 pg/mg protein tissue) after a significant decrease in IL-10 levels in the epilepticus group ($P < 0.001$; 99.23 ± 11.97 pg/mg protein tissue).

Discussion

The present study attempted to delineate the effects of BV on the expression of neurotransmitters and imbalance of both electrolytes and inflammatory biomarkers in a pilocarpine-induced epilepticus model. Pilocarpine, as a cholinergic agonist, serves as a model for the acute phase of temporal lobe epilepsy (Clynen et al. 2014). Religious books such as the Vedas, Bible, and Quran encourage the use of bee products to treat and cure many human diseases (Silva et al. 2015); thus, this is an ancient treatment that deserves further attention in modern medicine.

The first step in seizure diagnosis is the evaluation of blood chemistry to determine electrolyte abnormalities, especially those involving sodium, calcium, and magnesium (Oguni 2004). The significant Na^+, K^+, and hypocalemia disorders observed in the present study were in agreement with the findings of Castilla-Guerra et al. (2006), who concluded that major neurological damage may be due to an imbalance in electrolytes and ion gradients across cell membranes, which directly or indirectly affects neuronal discharge and promotes epileptogenesis behavior.

Although acute hypocalcemia recorded in serum can alter mental activity and cause tonic–clonic, focal motor, and atypical absence or kinetic seizures (Riggs 2002; Mrowka et al. 2004), severe tissue hypercalcemia leads to minimal neurologic symptoms (Marx 2000). On the other hand, hypokalemia or hyperkalemia rarely cause seizure symptoms. An imbalance in serum potassium levels (extracellular) affects regulation of the neuromuscular and cardiovascular systems, which can cause fatal muscle paralysis or arrhythmias (Riggs 2002).

Melittin in BV has antinociceptive effects in apipuncture (Son et al. 2007), whereas topical usage of melittin elevates levels of Ca^{2+} in 69% of rat dorsal root ganglia $\textit{in vitro}$ (Chen and Guan 2017). Melittin-responsive dorsal root ganglia cells have been defined as nociceptors because
their action potentials exhibit typical electrophysiological characteristics of nociceptive cells, i.e., long durations and prolonged after-hyperpolarization (Du et al. 2011). Koyama et al. (2000) reported that low doses of melittin (5 µg in 50 µl of saline) gradually inhibit the pain sensation, which disappeared at 3 min. Moreover, melittin increases activity of the Na⁺-K⁺ pump by increasing Na⁺ entry into the cell and increases ion flux signals to initiate mitogenesis of quiescent cells (Rozengurt et al. 1981).

The current data suggest that usage of a low therapeutic dose of BV causes hyperpolarization of the presynaptic cells by opening ATP-dependent K⁺ channels, as indicated by increments of channel activity via increased mRNA expression of SCN1A and KCNJ2 channel genes. In addition, voltage-dependent Ca²⁺ channels were closed, which was indicated by low mRNA expression of voltage-gated Ca²⁺ (CACNCL) that led to a corresponding reduction in glutamate release (low expression of NMDA receptors) and inhibition of seizures.

The SCN1A channel is a voltage-gated Na⁺ channel found in dendrites and soma. SCN1A plays a critical role during neuronal excitability including the initiation and propagation of action potentials (Lai and Jan 2006); therefore, the genes of this channel are considered important causative agents in epilepsy (Trimmer and Rhodes 2004). In addition to Lorincz and Nusser (2010) revealing that dendritic voltage-gated Na⁺ (Nav) channels support action potentials in cortical pyramidal cells, Seleem (2016) reported that the melittin component of BV could inhibit the activity of Na/K-ATPase. The unequal expression of SCN1A genes that can occur on excitatory pyramidal neurons and inhibitory interneurons may be essential in epileptogenesis (Wei et al. 2017). In the current study, the low expression of voltage-gated potassium in the EP group was in agreement with the work of Lai and Jan (2006), who found that a lack of Kv1, which controls action potential propagation (Lambe and Aghajanian 2001) and neurotransmitter release (Wang et al. 1994), led to hyperexcitability in the hippocampus and to epilepsy.

The main inhibitory neurotransmitter in the brain, GABA, plays several inhibitory roles during many immune reactions. Therefore, GABAergic medications are used to treat epilepsy, alcohol withdrawal, and anxiety (Bhat et al. 2010). Several drugs, including alcohol and benzodiazepines, cause increased GABA activity, which is associated with a sedative

![Fig. 4](https://example.com/fig4.jpg) Changes in levels of cytokines (A): IL-6, (B): IL-10, (C): TGF-β and (D) TNF-α, in hippocampal tissues control (C), epileptic (EP), Depakine®-treated (EP_DK), and bee venom-treated (EP_BV) groups. Values were represented as Mean± SO & n = 8 animals. Means within same parameter and not sharing a common superscript symbol(s), are differ significantly at P < 0.05
effect. Some potent peptides of natural venoms can mimic such interactions, specifically with ion channels, e.g., Na⁺, K⁺, Cl⁻, and Ca²⁺; therefore, GABAergic neurotransmission can be modulated (Monge-Fuentes et al. 2015). GABA treatment decreases inflammatory cytokine production in peripheral macrophages (Reyes-García et al. 2007). In addition, agonists of GABA and GABA type A receptor decrease cytotoxic immune responses and cutaneous delayed-type hypersensitivity reactions (Tian et al. 1999).

The interruption in electrolytes and ions, e.g., sodium, potassium, and calcium ions, through voltage- and ligand-gated ion channels causes hyperexcitability (i.e., firing and bursting) of brain neurons. Therefore, voltage-gated Ca²⁺/K⁺ channels play a vital role in numerous biological processes such as stimulation of neurotransmitters, muscle contraction, gene expression control, and neuronal migration. Various chemical compounds that influence and modulate the Ca²⁺/K⁺ channels are used to treat a variety of neurological disorders (Miller 2001).

During the propagation of action potentials, the active channels of dendrites play a major role in the physiological, pathophysiological, and electrical behaviors of each neuron. Magee and Johnston (1995) suggested that the density of Ca²⁺ channels is equally distributed in all CAI pyramidal neurons (excluding axonic and terminal regions). Ca²⁺ channels and the Ca²⁺ spikes of dendrites aid in the initiation and propagation of somatic bursting behavior and ultimately prolong epileptogenesis (Traub et al. 1993). The influx of Ca²⁺ into dendrites can be directly increased via voltage-gated dendritic channels when voltage-gated Ca²⁺ channels are opened or indirectly when NMDA channels are unblocked after depolarization of the postsynaptic membrane (Faber and Sah 2007; Luján et al. 2009).

Activation of potassium SK/KCa2 channels may reduce neuronal excitability and delay the development of neuroinflammation. Any increment in submicromolar concentrations of calcium can activate SK/KCa2 channels in neuronal cells (Dolga and Culmsee 2012). Apamin can reduce the neurotoxicity of activated microglia as it has high affinity for SK2/KCa2,2 and SK2/KCa2,3 channels and can block both (Dolga and Culmsee 2012).

Data from the present study showed that BV can limit neuronal excitability by rapid repolarization of action potentials as a result of the high rate of outward K⁺ currents through K⁺ channels (Sypher et al. 2015). This can be achieved by apamin, which contributes to synaptic plasticity by selectively inhibiting and blocking SK channels (a subfamily of Ca²⁺-activated K⁺ channels) in the brain and spinal cord; therefore, apamin can potentiate and enhance both learning and memory in experimental animals (Faber and Sah 2007). Apamin blocks calcium-activated K⁺ channels by binding to the pores of the SK channels (it acts as an allosteric inhibitor); thus, it lowers the threshold of action potentials, affects the permeability of the cell membrane toward potassium ions, and suppresses delayed cell hyperpolarization (Wehbe et al. 2019; Gu et al. 2020).

An imbalance of Ca²⁺ ions directly affects the severity of a seizure. This may be due to overexpression of S100B (a calcium-binding astrocytic protein), which causes hyperactivity and impairs hippocampal activity (Winocur et al. 2001). Melittin is known to interact with S100B, leading to its conformational changes, distortion, and the inaccessibility of its calcium-binding domain, which ultimately decreases epileptogenesis (Verma et al. 2013).

In the present study, a rebalanced state in Cl⁻ levels was observed in sera and tissues after treatment with BV. The redistribution of chloride ions facilitated activation of GABA receptors, which in turn affected membrane conductance dependent upon the anion transporter, which controls the distribution of Cl⁻ and HCO₃⁻ ions (Farrant and Kaila 2007).

Increasing intracellular calcium concentrations promotes a conformational rotation of SK/KCa2 channels that allows potassium to flow through the channel pore (Adelman et al. 2012). The imbalance of Ca²⁺ in the hippocampus homogenate tissue may have been due to hyperpolarization after the opening of SK/KCa2 channels (Stocker 2004). Moreover, high levels of intracellular calcium may be due to the effects of SK/KCa2 channels in excitable cells, which are activated by Ca²⁺ influx from the extracellular space through both ionotropic receptors (e.g., NMDARs) and nicotinic acetylcholine receptors (Dolga and Culmsee 2012). Vezzani et al. (2011) suggested that high levels of proinflammatory cytokines in neurons, and glia; caused signaling activation and rapid increase in NMDA receptor Ca²⁺, which led to an increase in intracellular Ca²⁺ levels that in turn reduced the seizure threshold and increased neuronal hyperexcitability and/or reorganized the entire signal network. NMDAR genes (e.g., N-methyl-D-aspartate receptor) play important roles in excitatory synaptic transmission, plasticity, and central nervous system excitation (Wei et al. 2017). In the current study, such channel activity was activated in the epileptic group.

One aim of research such as this is the reduction of disease progression as well as the side effects of AEDs. Therefore, the high levels of inflammatory cytokines induced by epileptogenic pilocarpine during the present study were in accordance with the findings of previous studies, e.g., De Simoni et al. (2000). Other studies have demonstrated the role of TGF-β signaling in glia and local inflammation of the cerebral cortex microenvironment following local blood–brain barrier breakdown, which activates a TGF-β receptor-mediated signaling cascade in glia and causes local inflammation (Cacheaux et al. 2009; Vezzani et al. 2013). Therefore, BV treatment may reduce TGF-β within activated neurons, resulting in delayed propagation of epileptic activities.
The improvement in inflammatory cytokines, e.g., IL-6, TNF-α, TGF-β, and IL-17, observed here may have been due to the suppressive effect of BV acupuncture on leukocyte migration (Kwon et al. 2003). Shin et al. (2018) reported that Th1 cytokine, INF-γ production, and mucin-producing cells were suppressed by BV. Apamin (contained in BV) is known to inhibit the overexpression of TNF-α and adhesion molecules (e.g., vascular cell adhesion molecule-1, intracellular adhesion molecule-1, fibronectin, and TGF-β1), and to inhibit cellular apoptosis via inhibition of the NF-κB signaling pathway (Gu et al. 2020). Many biological activities of microglial cells, such as calcium deregulation and cytokine release, can be modulated through SK2/KCa2.3 (which is one of the potassium channels in microglia). Notably, apamin can suppress the release of TNFα, which is produced in SK2/KCa2.2 channel-activated microglia and cortical neurons (Park et al. 2020). Moreover, apamin downregulates inflammation by inhibiting nitric oxide release and decreasing the activity of MAPK (p38-mitogen-activated protein kinase) in activated microglia cells (Schlichter et al. 2010).

In addition to PLA2, as an active component of BV, modulating Treg cells in some neuroinflammatory disease models, including Alzheimer disease (Baek et al. 2018) and Parkinson’s disease (Chung et al. 2012) models and therefore BV can rescue dopaminergic neurons from injury or neurodegeneration, melittin can modify the release and production of different cytokines; it was found to increase levels of the antiinflammatory cytokine IL-10 and prevent the release of the proinflammatory cytokines IL-6 and IL-1β (Kim et al. 2020). In addition, BV restores the brain’s neurochemistry and ameliorates all changes in neuroinflammatory biomarkers in rotenone-induced Parkinson’s disease (Khalil et al. 2015). The components of BV improve locomotor activity by repressing cellular DNA damage via inhibition of many apoptotic markers, e.g., caspase-3, Bax, and Bcl-2, during development of atherosclerotic lesions (Kim et al. 2012; Abd El-Hameed and Mahmoud 2020) or in Parkinson’s disease model mice (Wehbe et al. 2019). Moreover, apamin can ameliorate TNF-α- and IFN-γ-induced inflammatory conditions by inhibiting Th2-related cytokines (Kim et al. 2017).

Where IL-17 enhances the release of many cytokines via NF-κB activation (Cipollini et al. 2019), high levels of IL-17 were recorded in the current study and this is a signature cytokine of Th17 cells and its potential function in several brain diseases has been acknowledged (Engelhardt and Ransohoff 2012). Based on the present results, the injection of melittin in low doses could induce antiinflammatory effects by downregulating IL-6, IL-8, IL-17, TNF-α, and IFN-γ through inhibition of various signaling pathways via NF-κB, Akt (protein kinase), and ERK1/2 (extracellular signal-regulated kinases) (Stuhlmeyer 2007; Lee and Bae 2016; Hossen et al. 2017; Wehbe et al. 2019).

Acupuncture with BV was effective in preventing some of the deleterious consequences of epileptogenesis associated with high levels of glutamate and DOPA in the hippocampus. BV ameliorates changes in the expression of voltage-gated channels, rebalances blood electrolytes and neurotransmitters. BV has multiple antiinflammatory properties, which are largely due to inhibition of proinflammatory cytokine activation. Finally, BV could reduce the progression of epileptogenesis as a co-therapy with other AEDs.

Author contributions Conceptualization: Abulesaad, A.S. and Khalil, A. Data curation: Abulesaad, A.S. and Abd El-Hameed, A.M. Formal analysis and Investigation: Abulesaad, A.S. and Abd El-Hameed, A.M. Resources: Abulesaad, A.S; Abd El-Hameed, A.M. and Khalil, A. Supervision and Validation: Abulesaad, A.S; Abd El-Hameed, A.M. and Khalil, A. Writing: original draft, review & final editing: Abulesaad, A.S; Abd El-Hameed, A.M. and Khalil, A.

Data availability All results, tables and figures are attached at the end of the present manuscript.

Declarations

Conflict of interest All authors declare that they have no conflict of interest with any groups and didn’t receive any fund to cover the present study.

References

Abd El-Hameed AM, Mahmoud HS (2020) Cypermethrin induced apoptosis and testicular toxicity by upregulation of p53 in the brain and testis of male rats is alleviated by Sesame oil. J Taibah Univ Sci 14(1):1342–1349
Abd El-Hameed AM, Eskandranii AA, Elroby FA (2020) Assesment of the ameliorative effect of Hypericum perforatum on olanzapine-induced hepatic oxidative stress and metabolic abnormalities in experimental male albino rats. J Taibah Univ Sci 14(1):1496–1502
Abdel-Reheim ES (2009) Physiological and biochemical studies on the melatonin effect on the fertility of epileptic rats. J Egyp Ger Soci Zool 58:1–25
Adelman JP, Maylie J, Sah P (2012) Small-conductance Ca2+-activated K+ channels: form and function. Annu Rev Physiol 74:245–269, ISSN 0066–4278
Aust W, Wichmann G, Dietz A (2010) Therapy control of specific hymenoptera venom allergy. Laryngorhinootologie 89(12):725–728, ISSN 0935–8943
Baek H, Lee C-j, Choi DB, Kim N-s, Kim Y-S, Ye YJ et al (2018) Bee venom phospholipase A2 ameliorates Alzheimer’s disease pathology in Aβ vaccination treatment without inducing neuro-inflammation in a 3xTg-AD mouse model. Sci Rep 8(1):1–11, ISSN 2045–2322
Beghi E, Giussani G, Nichols E, Abd-Allah F, Abdela J, Abdelalim A et al (2019) Global, regional, and national burden of epilepsy, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18(4):357–375, ISSN 1474–4422
contractile activity of the myometrium from non-pregnant women. Reprod Biol Endocrinol 1(1):1477–7827
Monge-Fuentes V, Gomes FMM, Campos GAA, de Castro Silva J, Biolchi AM, dos Anjos LC et al (2015) Neuroactive compounds obtained from arthropod venoms as new therapeutic platforms for the treatment of neurological disorders. J Venom Anim Incl Trop Dis 21(1):1–9
Mrowka M, Knabe S, Klinge H, Oden P, Rosenow F (2004) Hypocalcemic generalized seizures as manifestation of iatrogenic hypoparathyroidism months to years after thyroid surgery. Epileptic Disord 6:85–87
Nair X, Nettleton D, Clever D, Trampusch K, Ghosh S, Franson R (1993) Swine as a model of skin inflammation. Inflammation 17(2):205–215, ISSN 0360–3997
Nawaz A, Khan MA, Naz R, Zeb S (2019) Extraction of venom from honey bee in district SWAT, Khyber Pakhtunkhwa, Pakistan. Int J Zool Stud 4(6):27–30
NCBI (2020) Standardized bee venom preparation. PubChem Patent Summary for US-8691283-B2: National Center for Biotechnology Information. Retrieved December 31, 2020
Newton CR, Garcia HH (2012) Epilepsy in poor regions of the world. Lancet 380(9848):1193–1201, ISSN 0140–6736
Oguni H (2004) Diagnosis and treatment of epilepsy. Epilepsia 45:13–16
Park KM, Kim SE, Lee BI (2019) Antiepileptic drug therapy in patients with drug-resistant epilepsy. J Epilepsy Res 9(1):14
Park J, Jang KM, Park K-K (2020) Aminap suppresses LPS-induced neuroinflammatory responses by regulating SK CHANNELS and TLR4-mediated signaling pathways. Int J Mol Sci 21:4319
Pernhorst K, Herms S, Hoffmann P, Cichon S, Schulz H, Sander T et al (2015) Pharmacological alternatives for the treatment of neurodegenerative disorders: Wasp and bee venoms and their neuroinflammatory responses by regulating SK CHANNELS and TLR4-mediated signaling pathways. Int J Mol Sci 21:4319
Pernhorst K, Herms S, Hoffmann P, Cichon S, Schulz H, Sander T et al (2015) Pharmacological alternatives for the treatment of neurodegenerative disorders: Wasp and bee venoms and their neuroinflammatory responses by regulating SK CHANNELS and TLR4-mediated signaling pathways. Int J Mol Sci 21:4319
Riggs JE (2002) Neurologic manifestations of electrolyte disturbances. Neurol Clin 20(1):227–239, ISSN 0733–8674
Rozengurt E, Gelehrte TD, Legg A, Pettican P (1981) Melittin stimulates Na entry, Na-K pump activity and DNA synthesis in quiescent cultures of mouse cells. Cell 23(3):781–788. https://www.cell.com/doi/10.1016/0092-8674(81)90442-6
Schlichter LC, Kausahl V, Moxon-Emre I, Sivagnanam V, Vincent C (2010) The Ca 2 + activated SK3 channel is expressed in microglia in the rat striatum and contributes to microglia-mediated neurotoxicity in vitro. J Neuroinflammation 7(1):1–15
Seleem AA (2016) The protective effect of bee venom against verapamil embryotoxicity during prenatal liver and kidney development of mice Mus musculus. J Basic Appl Zool 75:13–27 (ISSN 2090–9896)
Shin M, McNamara C, James M O (1994) Mechanism of epilepsy. Annu Rev Med 45(1):379–389. ISSN 0066–4219
Shin SH, Ye MK, Choi SY, Park KK (2018) Interictal cytokine levels were correlated with seizure severity of epileptic patients: a retrospective study on 1218 epileptic patients. J Transl Med 13:1479–5876
Vezzani A, Friedman A, Dingledine RJ (2011) The role of inflammation in epilepsy. Nat Rev Neurol 7(1):1759–4766
Vezzani A, Friedman A, Dingledele RJ (2013) The role of inflammation in epileptogenesis. Neuropharmacology 69:16–24
Wei F, Yan L-M, Su T, He N, Lin Z-J, Wang J et al (2017) Ion channel genes and epilepsy: functional alteration, pathogenic potential, and mechanism of epilepsy. Neurosci Bull 33(4):455–477, ISSN 1673–7067
WHO (2020) https://www.who.int/health-topics/epilepsy#tab=1
Wolters C, Oudega M, van der Horst PJ, Vingerling JR, Roder J, Looijenga LHJ (2005) Learning and memory in S100β transgenic mice: an analysis of impaired and preserved functions. Neurosci Lett 387:125–130
Publishers note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.