Association of three single nucleotide polymorphisms of \textit{ESR1} with breast cancer susceptibility: a meta-analysis

Xu Hu1, Linfei Jiang1, Chenhui Tang1, Yuehong Ju1, Li Ji2, Yongyue Wei3, Li Guo4, Yang Zhao3,✉

1Department of Biotechnology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China; 2School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; 3Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; 4School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210046, China.

Abstract

Expression of estrogen receptors is correlated with breast cancer risk, but inconsistent results have been reported. To clarify potential estrogen receptor (ESR)-related breast cancer risk, we analyzed genetic variants of \textit{ESR1} in association with breast cancer susceptibility. We performed a meta-analysis to investigate the association between rs2234693, rs1801132, and rs2046210 (single nucleotide polymorphisms of \textit{ESR1}), and breast cancer risk. Our analysis included 44 case-control studies. For rs2234693, the CC genotype had a higher risk of breast cancer compared to the TT or CT genotype. For rs2046210, the AA, GA, or GA + GG genotype had a much higher risk compared to the GG genotype. No significant association was found for the rs1801132 polymorphism with breast cancer risk. This meta-analysis demonstrates association between the rs2234693 and rs2046210 polymorphisms of \textit{ESR1} and breast cancer risk. The correlation strength between rs2234693 and breast cancer susceptibility differs in subgroup assessment by ethnicity.

Keywords: breast cancer, estrogen receptor alpha, meta-analysis, single nucleotide polymorphism

Introduction

Breast cancer is one of the leading causes of cancer mortality in women worldwide[1]. Many environmental exposures contribute to breast cancer risk, including exposure to some organic solvents, polycyclic aromatic hydrocarbons (PAHs), organic chlorine compounds, pesticides, and ingestion of food contaminated by fungus, bacteria, and heavy metals, such as cadmium, chromium, lead, and arsenic[2-3]. However, newer genomics technology has also identified genetic variations as risk factors for breast cancer[4]. \textit{BRCA1} was the first gene found to be associated with breast cancer risk[5], although two other well-known genes, \textit{HER2} and \textit{BRCA2}, are also associated with breast cancer risk[6-7].

Khan \textit{et al.} reported that estrogen receptor (ESR) expression is also associated with breast cancer susceptibility[8]. Breast tissue exposed long-term to high levels of estrogen may develop cancer, which can result from ESR stimulation by estrogen-mediated aberrant gene expression[9]

More recently, \textit{ESR1}-induced carcinogenesis in mammary tissues has been explained by epigenetic
mechanisms. Indeed, ESR1 methylation may influence activity of normal breast tissue\(^{[10]}\). ESRs have two typical types, ESR-alpha and ESR-beta, which are encoded by ESR1 and ESR2, respectively. ESR1 (6q25.1) single nucleotide polymorphisms (SNPs) are associated with tumor carcinogenesis, cell proliferation, and metastasis\(^{[11]}\). For example, \(Pvu\) II (rs2234693) and \(Xba\) I (rs9340799) polymorphisms located in intron 1 are correlated with breast cancer\(^{[12]}\), prostate cancer\(^{[13]}\), and systemic lupus erythematosus\(^{[14]}\).

However, other studies have found inconsistent results. For example, Li \(et\) \(al\). found no significant correlation between rs9340799 and breast cancer risk\(^{[15]}\). Zhang \(et\) \(al\). conducted a meta-analysis of ESR1 SNPs associated with breast cancer risk, although that study did not include rs2046210, an important novel SNP\(^{[16]}\). Considering the heterogeneous approaches and limited sample sizes of earlier studies, we performed a larger sample size-based meta-analysis of published reports of three of the most studied ESR1 SNPs: rs2234693, rs1801132, and rs2046210. Our included studies covered reports published in both Chinese and English, since most studies published were conducted by Chinese researchers and the association between rs2046210 and breast cancer risk was first found in China\(^{[17]}\).

Materials and methods

Search strategy

We performed a systematic search of English and Chinese databases, including PubMed, Web of Science, Embase, Springer, China National Knowledge Infrastructure (CNKI) (http://www.cnki.net), Wanfang Data (http://www.wanfangdata.com.cn), and VIP (http://www.cqvip.com). We searched these databases by using key terms including "ESR1", "ESR-alpha", "ESR alpha", "breast cancer risk", and "breast cancer susceptibility". The most recent search was performed on January 1, 2016.

Data extraction

Two researchers, H.X. and J.L., independently extracted information from the literature. Entered data were double-checked to ensure accuracy, and inconsistent data were resolved by discussion. In total, 177 studies were related to the key terms. Data were included in the meta-analysis if they met the following criteria (Fig. 1): (i) included recent pathology diagnosed as breast cancer; (ii) reported association between risk of breast cancer and one or more of the four ESR1 polymorphisms; (iii) included case-control studies; (iv) included adult women as study subjects; (v) results were adjusted for age and body mass index; (vi) genotypes of controls followed Hardy–Weinberg equilibrium. Studies were excluded if: (i) the full article was not accessible; (ii) drugs that may be an interactive factor, such as tamoxifen, were included; (iii) results mainly focused on the mechanism of ESR1 influencing breast cancer; (iv) the study based on most samples was selected from overlapped ones.

From each study, the following information was...
ESR1 polymorphisms and breast cancer risk

Fig. 2 Forest plot of the association between breast cancer risk and rs2234693 polymorphism in all population. A: dominant model (TT + TC vs. CC), B: recessive model (TT vs. TC + CC), C: homozygous model (TT vs. CC).
first author's name, year of publication, country of origin, ethnicity, matching criteria, number of cases and controls, and odds ratio (OR) values. If any information was not included in the study, the term "mixed" was used.

Statistical analysis

Pooled ORs with 95% confidence intervals (CIs) were calculated to assess risk of breast cancer associated with ESR1 polymorphisms. The I^2 index was used to measure heterogeneity among included studies. An $I^2 \geq 50\%$ indicated heterogeneity among studies and a DerSimonian and Laird random-effects model was used to analyze data. Otherwise, we used a Mantel–Haenszel fixed-effects model to analyze data. For each SNP in ESR1, we analyzed three inheritance models (dominant, recessive, and homozygous models) when possible.

To explore whether there were differences in results of the above meta-analysis in different ethnicities, we performed a subgroup-analysis on each SNP by ethnicity. Asians and/or Han Chinese were regarded as subgroup 1, and Europeans and/or Caucasians as subgroup 2. Publication bias was tested with funnel plots and Egger's test, and Forest plots were used to present pooled results. Sensitivity analysis was used to evaluate the stability of results by removing some of the studies, the sizes of which were significantly larger than others or the results were significantly different from other studies. All analyses, except the Egger's test (using Stata V12.0), were performed using Review Manager V5.3.

Results

As shown in Fig. 1, 177 studies were identified and reviewed. After inclusion and exclusion procedures were applied, 47 studies were included in the meta-analysis, comprising 137,451 cases and 145,391 controls. Details of each included study are described in Table 1.

According to I^2 indexes of all three SNPs, we found that heterogeneity existed in dominant (97%), recessive (94%), and homozygous (91%) models of rs2046210, but not in any inheritance models of rs2234693 and rs1801132. Thus, a fixed-effects model was used to analyze studies on rs1801132 and rs2234693. A random-effects model was used for those on rs2046210.

As shown in Fig. 2B-C, we found significant
associations between rs2234693 and breast cancer risk in a recessive model [OR: 0.94, 95%CI (0.89, 0.996)] and homozygous model [OR: 0.92, 95%CI (0.87, 0.98)]. Significant associations were also found for rs2046210 in all three inheritance models (Fig. 4A-C).

No significant associations were found for rs1801132 (Fig. 3).

Funnel plots and Egger's test were used to represent publication bias for the three SNPs (Fig. 5). We found no publication bias for any of the three inheritance
SNP	Author(ref.)	Year	Country	Ethnicity	Matching Criteria	Sample Size		
rs2234693	Anghel[18]	2010	Romania	Caucasian	Ethnicity	101 90		
	Gonzalez-Zuloeta[19]	2008	Netherlands	Caucasian	Ethnicity	190 3703		
	Shin[20]	2003	Korea	Asian	Area	201 190		
	Kjaergaard[21]	2007	Denmark	Caucasian	Ethnicity	1256 2489		
	Dunning[22]	2009	Mixed	Mixed	Mixed	4548 4362		
	Bar[23]	2010	China	Han	Ethnicity	189 374		
	Cad[24]	2014	China	Asian	Area	221 252		
	Deng[25]	2011	China	Asian	Area	128 130		
	Sonested[26]	2009	Sweden	Caucasian	Ethnicity	539 1073		
	Han[27]	2011	China	Asian	Area	859 877		
	Wang[28]	2007	USA	Caucasian	Ethnicity	392 783		
	Sakoda[29]	2011	China	Asian	Area	612 874		
	Lu[30]	2005	China	Asian	Area	138 140		
	Tang[31]	2013	China	Asian	Area	875 886		
	Onland-Moret[32]	2005	Netherlands	Caucasian	Ethnicity	308 337		
	Ca[33]	2003	China	Asian	Area	1069 1166		
	Gonzalez-Mancha[34]	2008	Spain	Caucasian	Ethnicity	444 704		
	Wedren[35]	2004	Sweden	Caucasian	Ethnicity	1292 1348		
	Chattopadhyay[36]	2014	India	Caucasian	Ethnicity	360 360		
	Clendenen[37]	2013	Sweden	Caucasian	Ethnicity	1163 2106		
	Shen[38]	2006	China	Asian	Area	247 274		
	Hu[39]	2007	China	Asian	Area	113 113		
	Anghel[40]	2010	Romania	Caucasian	Ethnicity	103 88		
	Awatif[41]	2008	Sudan	Caucasian	Ethnicity	79 85		
	Han[42]	2011	China	Asian	Area	865 885		
	Wang[43]	2007	USA	Caucasian	Ethnicity	393 789		
	Fernandez[44]	2006	Spain	Caucasian	Ethnicity	829 545		
	Ding[45]	2010	India	Asian	Area	934 1544		
	Jeon[46]	2009	Korean	Asian	Area	746 655		
	Gallicchio[47]	2006	USA	Caucasian	Ethnicity	90 1298		
SNP	Author(ref.)	Year	Country	Ethnicity	Matching Criteria	Sample Size	Case	Control
---------	--------------	------	---------	-----------------	-------------------	-------------	------	---------
Rs2046210	Sueta[45]	2012	Japan	Asian Area		697	1394	
	Antoniou[46]	2011	USA	Caucasian Ethnicity		8896	8109	
	Campa[47]	2011	Germany	European Area		8298	11543	
	Huo[48]	2012	USA	African Ethnicity		1059	1383	
	Ruiz-Narvae[49]	2012	USA	African-American Ethnicity		1149	1841	
He[50]	2015	China	Asian Area			253	343	
Guo[51]	2012	China	Han Ethnicity			461	537	
Kim[52]	2012	Korea	Asian Area			2257	2052	
Lao[53]	2012	China	Asian Area			617	597	
Zhou[54]	2015	China	Asian Area			459	549	
Luo[55]	2012	China	Asian Area			114	141	
Charn[56]	2012	China	Asian Area			1173	1417	
Han[57]	2011	China	Asian Area			861	884	
Ca01[58]	2011	Mixed	Asian Area			11996	9748	
Ca02[59]	2011	Mixed	European Area			4373	3885	
Heng[60]	2012	Mixed	Mixed Ethnicity			56281	51428	
Stacey01[61]	2010	Mixed	Asian Area			1126	1118	
Stacey02[62]	2010	Mixed	European Area			7899	11234	
Mizoe[63]	2013	Japan	Asian Area			468	463	
Zheng[64]	2009	USA	European Area			6472	3962	
Han[65]	2011	Korea	Asian Area			3251	3493	
Jiang[66]	2011	China	Asian Area			493	510	
models of rs1801132 ($P = 0.272, 0.493, \text{ and } 0.631$, for dominant, recessive, and homozygous model, respectively) and rs2046210 ($P = 0.568, 0.489, \text{ and } 0.196$, respectively). For rs2234693, we observed possible bias in the recessive model ($P = 0.553, 0.045, \text{ and } 0.053$, respectively).

Tables 2-4 show the results of our subgroup analyses. For rs2234693, subgroup 1 retained strong association with breast cancer susceptibility, and heterogeneity was low among the studies (three I^2 values were all less than 50%). In subgroup 2, only the homozygous model showed strong association with low heterogeneity ($Table 2$); no significant correlation was shown in the other two groups. In addition, for rs1801132, the results for the two subgroups were negative ($Table 3$); thus, independent of subgroup, the rs1801132 polymorphism might not have significance for breast cancer risk. For rs2046210, the two subgroups both had strong positive results ($Table 4$); thus, correlation between rs2046210 and breast cancer risk was not affected by ethnicity.

Finally, we performed sensitivity analysis to evaluate whether our results were stable. First, we removed the study from Anghel et al.\cite{18} for its significant OR values (0.68, 2.59, 2.35, Fig. 3) and re-analyzed the associa-

![Funnel plots of the association between breast cancer risk and all three polymorphisms in all populations. (A) dominant model, (B) recessive model, (C) homozygous model, (a) rs2234693, (b) rs1801132, (c) rs2046210. Two symmetric oblique dotted lines was used to mark Mantel-Haenszel fixed-effects models.](image)

Subgroup\(^a\)	Dominant model	Recessive model	Homozygous model						
	I^2(%)	Ph	OR (95%CI)	I^2(%)	Ph	OR (95%CI)	I^2(%)	Ph	OR (95%CI)
1	0.75	0.92 (0.85, 0.99)	0.33	0.85 (0.76, 0.95)	0.06	0.89 (0.80, 0.99)			
2	0.006	0.98 (0.86, 1.11)	0.03	0.89 (0.77, 1.04)	0.14	0.91 (0.84, 0.99)			

aP-value from heterogeneity test; bSubgroup 1: Asian and/or Han population, 2: European and/or Caucasian population.
tion between rs1801132 and breast cancer risk in all three models. Still, no significant correlation was found \((P = 0.966, 0.514 \text{ and } 0.474 \text{ for the dominant, recessive and homozygous models, respectively}) \). Besides, we also re-analyzed the association between rs2234693 and breast cancer risk in the recessive model by removing the Anghel \textit{et al.} study\[^{18}\] due to its potential influence on publication bias. The publication bias no longer existed \((P = 0.140) \) and the association between rs2234693 and breast cancer risk in the recessive model was marginally significant \[\text{OR: 0.95, 95\%CI (0.90, 1.0004)}\]. Given that the effect size only changed slightly, we concluded that the results of our meta-analysis were stable.

Discussion

The association between \textit{ESR1} polymorphisms and breast cancer risk has attracted increasingly more attention\[^{8,9}\]. Although there have been several genetic variations reportedly associated with breast cancer risk, our meta-analysis is the first to include these three polymorphisms of \textit{ESR1}. Among the 44 studies included in our meta-analysis, 29 include Asian populations and 17 include Caucasian populations. The meta-analysis found that a variant genotype (AG or AA) of rs2046210 and one (CC) of rs2234693 were associated with increased risk of breast cancer. However, we did not find associations between breast cancer risk and another \textit{ESR1} SNP, rs1801132.

Previous studies have found that variants of \textit{ESR1} are associated with endometriosis, uterine fibroids, breast cancer, and osteoporosis\[^{19-21,63-65}\]. ESR and progesterone receptor (PR) status is also important for clinicians to determine whether a patient needs adjuvant therapy and, if so, what type is needed\[^{22,66}\]. The mechanism for this influence of ESR may be through estrogen, which generally stimulates ESR-mediated transcription, thereby increasing the number of errors during DNA replication as well as rate of cell proliferation\[^{23,67}\].

Rs2234693 is intronic and possibly affects receptor function via altered pre-mRNA splicing. Herrington \textit{et al.} found that the C allele of rs2234693 produces a functional binding site for transcription factor B-Myb, significantly increasing transcription of a downstream reporter construct compared to the T allele\[^{24,68}\], which may explain its high correlation with breast cancer risk.

Rs2046210, located upstream of \textit{ESR1}, is strongly and consistently associated with breast cancer risk in a three-stage genome-wide association study\[^{17}\]. It should be noted that rs2046210 is also associated with bone mineral density, a trait that is affected by estrogen\[^{25}\]. In our analysis, rs2046210 was significantly associated with risk of breast cancer in all three models, indicating that variant A carriers have a higher risk of breast cancer compared to GG homozygotes. Stacey \textit{et al.} hypothesized that it was the polymorphism itself or causal variants in linkage disequilibrium that might regulate \textit{ESR1} expression and elevate susceptibility to breast cancer\[^{29,59}\]. However, direct evidence of whether rs2046210 affects \textit{ESR1} expression is lacking; therefore, further investigations are required\[^{27,70}\]. Sun \textit{et al.}\[^{28,71}\] found that SNP rs2046210 may increase expression of \textit{AKAP12}, a functional gene located ~26.8 kb upstream of SNP rs2046210 that is associated with malignancy and metastasis in many cancer types, including breast cancer\[^{29,72}\], expression in both normal tissues and tumor tissues. This regulation may explain how the genetic variations in this locus play a role in multiple stages of breast cancer development, including initiation, progression, and metastasis.

Table 3 Subgroup meta-analysis of the association between the rs1801132 polymorphism and breast cancer risk.

Subgroup \(a \)	Dominant model	Recessive model	Homozygous model							
	\(I^2 \) (%)	\(Ph \)	OR (95\% CI)	\(I^2 \) (%)	\(Ph \)	OR (95\% CI)	\(I^2 \) (%)	\(Ph \)	OR (95\% CI)	
1	0 0.6	0.93 (0.80, 1.09)	0 0.4	1.03 (0.91, 1.16)	0 0.4	1.03 (0.91, 1.16)	0 0.45	1.15 (0.79, 1.68)	0 0.6	1.12 (0.77, 1.65)
2	0 0.77	0.93 (0.80, 1.09)	0 0.64	1.15 (0.79, 1.68)	0 0.63	1.12 (0.77, 1.65)				

\(P \)-value from heterogeneity test; \(A \)-Subgroup 1: Asian and/or Han population, 2: European and/or Caucasian population.

Table 4 Subgroup meta-analysis of the association between the rs2046210 polymorphism and breast cancer risk.

Subgroup \(a \)	Dominant model	Recessive model	Homozygous model						
	\(I^2 \) (%)	\(Ph \)	OR (95\% CI)	\(I^2 \) (%)	\(Ph \)	OR (95\% CI)	\(I^2 \) (%)	\(Ph \)	OR (95\% CI)
1	73 < 0.00001	1.34 (1.24, 1.44)	0.66 < 0.00001	1.37 (1.23, 1.53)	76 < 0.00001	1.62 (1.44, 1.83)			
2	90 < 0.00001	1.14 (1.03, 1.27)	0.03	1.15 (1.05, 1.25)	85 0.0001	1.22 (1.06, 1.41)			

\(P \)-value from heterogeneity test; \(A \)-Subgroup 1: Asian and/or Han population, 2: European and/or Caucasian population.
Interestingly, rs1801132 is reported to influence mRNA stability and translation efficiency and predict exonic splicing enhancers\cite{30,73}. However, we found no significant association in this meta-analysis. Hence, it is implied that there are some other unknown metabolisms contributing to the varying influence of different SNPs on ESR1 expression.

Zhang et al. performed a meta-analysis on associations between rs2234693 and rs1801132 and breast cancer and found that individuals with a TT + TC or TT genotype in rs2234693 had a higher risk of developing breast cancer than those with a CC genotype\cite{16}, which is consistent with our results. However, we also provided a subgroup analysis with more details. For rs2234693, Caucasian patients were likely to develop breast cancer in a homozygous model, indicating that the association between rs2234693 and breast cancer risk was stronger in Asians, but not non-correlated in Caucasians as previously reported. Our negative result on rs1801132 also gave a further justification to Zhang et al. and Sun et al.\cite{31,74}, but is inconsistent with Li et al.\cite{32,75}, which may be due to its limited sample sizes and different inclusion or exclusion criteria with ours.

Possible bias was observed for rs2234693 in the recessive model, which may be due to the significantly lower OR value reported by Anghel et al.\cite{18}. Through the sensitivity analysis, we found that the upper bound of 95%CI was changed to 1.0004 after removing the study of Anghel et al. We concluded that the influence of publication bias was limited as our results are stable.

To the best of our knowledge, this meta-analysis included the most recently published articles reporting the association between ESR gene SNPs with breast cancer. We believe that our study provided more evidence supporting further investigation on ESR gene. We acknowledge that there were some limitations of our study. For rs1801132, our sample size was limited. However, as most studies did not report smoking, blood pressure, or other environmental factors for subgroups, it was not possible for us to perform stratified analyses.

In conclusion, our meta-analysis demonstrated a link between the rs2234693 and rs2046210 polymorphisms of ESR1 and breast cancer risk. In addition, the correlation strength between rs2234693 and breast cancer susceptibility differs in subgroup assessment by ethnicity. Based on a much larger sample size, our results gave further justifications and supplements to previous works and clarified the inconsistency of their contradictory results.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81373102 to YZ, No. 61301251 to LG); the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 12KJB310003); Priority Academic Program Development of Jiangsu Higher Education Institution (PAPD); and Flagship Major Development of Jiangsu Higher Education Institutions. This study is also supported by the Qing-lan Project of Jiangsu Province and the Excellent Young Teach Project of Nanjing Medical University. Xu Hu contributed to data analysis and manuscript preparation. Linfei Jiang, Chenhui Tang, Yuehong Ju and Li Jiu also performed data analysis and prepared the manuscript. Li Jiu helped polish the language of the manuscript. Yongyue Wei and Li Guo helped perform analysis and contributed constructive discussions. Yang Zhao contributed to the conception and design of the study. The final version was approved by all the above authors.

References

\[1\] DeSantis CE, Bray F, Ferlay J, et al. International variation in female breast cancer incidence and mortality rates\cite{1}. Cancer Epidemiol Biomarkers Prev, 2015, 24(10): 1495–1506.

\[2\] Brody JG, Rudel RA, Michels KB, et al. Environmental pollutants, diet, physical activity, body size, and breast cancer: where do we stand in research to identify opportunities for prevention?\cite{2}. Cancer, 2007, 109(12 Suppl): 2627–2634.

\[3\] Yang CS, Feng Q. Chemo/Dietary prevention of cancer: perspectives in China\cite{3}. J Biomed Res, 2014, 28(6): 447–455.

\[4\] Balmain A, Gray J, Ponder B. The genetics and genomics of cancer\cite{4}. Nature Genetics, 2003, 33(Suppl): 238–244.

\[5\] Miki Y, Swensen J, Shattuck-Eidens D, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1\cite{5}. Science, 1994, 266(5182): 66–71.

\[6\] Slamon DJ, Leyland-Jones B, Shaik S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2\cite{6}. N Engl J Med, 2001, 344(11): 783–792.

\[7\] Wooster R, Bignell G, Lancaster J, et al. Identification of the breast cancer susceptibility gene BRCA2\cite{7}. Nature, 1995, 378 (6659): 789–792.

\[8\] Khan SA, Rogers MA, Obando JA, et al. Estrogen receptor expression of benign breast epithelium and its association with breast cancer\cite{8}. Cancer Res, 1994, 54(4): 993–997.

\[9\] Khan SA, Rogers MA, Khurana KK, et al. Estrogen receptor expression in benign breast epithelium and breast cancer risk\cite{9}. J Nutr Cancer, 1998, 90(1): 37–42.

\[10\] Khakpour G, Pooladi A, Izadi P, et al. DNA methylation as a promising landscape: A simple blood test for breast cancer prediction\cite{10}. Tumour Biol, 2015, 36(7): 4905–4912.

\[11\] Sun H, Deng Q, Pan Y, et al. Association between estrogen
ESR1 polymorphisms and breast cancer risk

receptor 1 (ESR1) genetic variations and cancer risk: a meta-analysis[J]. J BUON, 2015, 20(1): 296–308.

[12] Madeira KP, Daltoé RD, Sirtoli GM, et al. Estrogen receptor alpha (ERS1) SNPs c454-397T>C (PvuII) and c454-351A>G (XbaI) are risk biomarkers for breast cancer development[J]. Mol Biol Rep, 2014, 41(8): 5459–5466.

[13] Gu Z, Wang G, Chen W. Estrogen receptor alpha gene polymorphisms and risk of prostate cancer: a meta-analysis involving 18 studies[J]. Tumour Biol, 2014, 35(6): 5921–5930.

[14] Cai L, Zhang JW, Xue XX, et al. Meta-analysis of associations of IL1 receptor antagonist and estrogen receptor gene polymorphisms with systemic lupus erythematosus susceptibility[J]. PLoS One, 2014, 9(10): e109712.

[15] Li LW, Xu L. Menopausal status modifies breast cancer risk associated with ESR1 PvuII and XbaI polymorphisms in Asian women: a HuGE review and meta-analysis[J]. Asian Pac J Cancer Prev, 2012, 13(10): 5105–5111.

[16] Zhang YM, Zhang M, Yuan XS, et al. Association Between ESR1 PvuII, XbaI, and P325P Polymorphisms and Breast Cancer Susceptibility: A Meta-Analysis[J]. Med Sci Monitor, 2015, 21(2986–96).

[17] Zheng W, Long J, Gao YT, et al. Effects of passive smoking on breast cancer risk among Chinese women with breast cancer[J]. Chin J Public Health (In Chinese), 2014, (5): 993–1001.

[18] Han J, Jiang T, Bai H, et al. Genetic variants of 6q25 and breast cancer susceptibility: a two-stage fine mapping study in a Chinese population[J]. Breast Cancer Res Treat, 2011, 129(3): 901–907.

[19] Wang J, Higuchi R, Modugno F, et al. Estrogen receptor alpha haplotypes and breast cancer risk in older Caucasian women[J]. Breast Cancer Res Treat, 2007, 106(2): 273–280.

[20] Nakoda LC, Blackston CR, Doherty JA, et al. Selected estrogen receptor 1 and androgen receptor gene polymorphisms in relation to risk of breast cancer and fibrocystic breast conditions among Chinese women[J]. Cancer Epidemiol, 2011, 35(1): 48–55.

[21] Lu X, Li B, Wei J, et al. The Xba I mad PvuII gene polymorphisms of the estrogen receptor α gene in Chinese women with breast cancer[J]. Chin J Surg (In Chinese), 2005, 05: 21–4.

[22] Tang LY, Chen LJ, Qi ML, et al. Effects of passive smoking on breast cancer risk in pre/post-menopausal women as modified by polymorphisms of PARP1 and ESR1[J]. Gene, 2013, 524(2): 84–89.

[23] Onland-Moret NC, van Gils CH, Roest M, et al. The estrogen receptor alpha gene and breast cancer risk (The Netherlands)[J]. Cancer Causes Control, 2005, 16(10): 1195–1202.

[24] Cai Q, Shu XO, Jin F, et al. Genetic polymorphisms in the estrogen receptor alpha gene and risk of breast cancer: results from the Shanghai Breast Cancer Study[J]. Cancer Epidemiol Biomarkers Prev, 2003, 12(9): 853–859.

[25] González-Mancha R, Galán JJ, Crespo C, et al. Analysis of the ERS1 gene germline PvuII marker in breast cancer risk[J]. Med Sci Monit, 2008, 14(4): 22.85–22.94.

[26] González-Mancha R, Galán JJ, Crespo C, et al. Analysis of the ERα gene polymorphisms and breast cancer risk[J]. Hum Mol Genet, 2009, 18(6): 1131–1139.

[27] Clendenen T, Zeleniuch-Jacquotte A, Virgin I, et al. Genetic and breast cancer risk[J]. Chin J Public Health (In Chinese), 2010, 12: 1525–7.

[28] Cao L, Li H, Liu L, et al. ERF gene polymorphism and breast cancer risk among females in Sichuan province: a case-control study[J]. J Cancer Control Treat (In Chinese), 2014, 04: 171–5.

[29] Deng L, Lu Y. Research on polymorphism of estrogen α receptor sites Xba I and Pvu II in relation to breast cancer[J]. Chin J of Oncol Prev and Treat (In Chinese), 2011, 01: 19–22.

[30] Madeira KP, Daltoé RD, Sirtoli GM, et al. Estrogen receptor alpha gene haplotypes and breast cancer risk among females in Sichuan province: a case-control study[J]. Chin J Cancer Control Treat (In Chinese), 2014, 04: 171–5.

[31] Wedrén S, Lovmar L, Humphreys K, et al. The protective association of high plasma enterolactone with breast cancer is reasonably robust in women with polymorphisms in the estrogen receptor alpha and beta genes[J]. J Nutr, 2009, 139(5): 993–1001.

[32] Madeira KP, Daltoé RD, Sirtoli GM, et al. Estrogen receptor alpha gene polymorphisms and breast cancer risk[J]. Breast Cancer Res Treat, 2003, 80(1): 127–131.

[33] Cai L, Zhang JW, Xue XX, et al. Meta-analysis of associations of IL1 receptor antagonist and estrogen receptor gene polymorphisms with systemic lupus erythematosus susceptibility[J]. PLoS One, 2014, 9(10): e109712.

[34] Li LW, Xu L. Menopausal status modifies breast cancer risk associated with ESR1 PvuII and XbaI polymorphisms in Asian women: a HuGE review and meta-analysis[J]. Asian Pac J Cancer Prev, 2012, 13(10): 5105–5111.

[35] Zhang YM, Zhang M, Yuan XS, et al. Association Between ESR1 PvuII, XbaI, and P325P Polymorphisms and Breast Cancer Susceptibility: A Meta-Analysis[J]. Med Sci Monitor, 2015, 21(2986–96).

[36] Zheng W, Long J, Gao YT, et al. Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1[J]. Nat Genet, 2009, 41(3): 324–328.

[37] Anghel A, Raica M, Narita D, et al. Estrogen receptor alpha polymorphisms: correlation with clinicopathological parameters in breast cancer[J]. Neoplasma, 2010, 57(4): 306–315.

[38] González-Zuloeta Ladd AM, Vásquez AA, Rivadeneira F, et al. Estrogen receptor alpha polymorphisms and postmenopausal breast cancer risk[J]. Breast Cancer Res Treat, 2008, 107(3): 415–419.

[39] Shin A, Kang D, Nishio H, et al. Estrogen receptor alpha gene polymorphisms and breast cancer risk[J]. Breast Cancer Res Treat, 2003, 80(1): 127–131.

[40] Kjaergaard AD, Ellervik C, Tybjaerg-Hansen A, et al. Estrogen receptor alpha gene polymorphism and risk of cardiovascular disease, cancer, and hip fracture: cross-sectional, cohort, and case-control studies and a meta-analysis[J]. Circulation, 2007, 115(7): 861–871.

[41] Dunning AM, Healey CS, Baynes C, et al., and the SEARCH, and the EPIC, and the MEC, and the ABCS, and the ABDFS, and the BBCC, and the BCCS, and the CGPS, and the CNIO-BCS, and the GENICA, and the GC-HBCC, and the HABCS, and the HEBCS, and the KARBARC, and the KBCS, and the kConFab and the AOCs Management Group, and the MARIE, and the for MCBCS, and the MCCS, and the NBCS, and the NHS, and the ORIGO, and the PBCS, and the SASBAC, and the SEBCS, and the TWBCS, and the UCIBC, and the USRTS, and the BCAC. Association of ESR1 gene tagging SNPs with breast cancer risk[J]. Hum Mol Genet, 2009, 18(6): 1131–1139.

[42] Bai Y, Lu H, Huang Y, et al. Association between polymorphisms of estrogen receptor alpha and vitamin D receptor gene and breast cancer risk[J]. Chin J Public Health (In Chinese), 2010, 12: 1525–7.
variants in hormone-related genes and risk of breast cancer[J]. PLoS One, 2013, 8(7): e69367.

[38] Shen Y, Li DK, Wu J, et al. Joint effects of the CYP1A1 MspI, ERα and ERβ genotype on the risk of breast cancer: results from a population-based case-control study in Shanghai, China[J]. Cancer Epidemiol Biomarkers Prev, 2006, 15(2): 342–347.

[39] Hu Z, Song CG, Lu JS, et al. A multicase study on breast cancer risk associated with genetic polymorphisms of ER Alpha, COMT and CYP19 gene in BRCA1/BRCA2 negative Shanghai women with early onset breast cancer or affected relatives[J]. J Cancer Res Clin Oncol, 2007, 133(12): 969–978.

[40] Awatif S, Osman MA, Salma A, et al. Estrogen Receptor α Gene Polymorphism and Breast Cancer[J]. Annals of the New York Academy of Sciences, 2008, 1138(5): 95–107.

[41] Fernández LP, Milne RL, Barroso E, et al. Estrogen and progesterone receptor gene polymorphisms and sporadic breast cancer risk: a Spanish case-control study[J]. Int J Cancer, 2006, 119(2): 467–471.

[42] Ding SL, Yu JC, Chen ST, et al. Diverse associations between ERα polymorphism and breast cancer development and progression[J]. Clin Cancer Res, 2010, 16(13): 3473–3484.

[43] Jeon S, Choi JY, Lee KM, et al. Combined genetic effect of CDK7 and ERα polymorphisms on breast cancer[J]. Breast Cancer Res Treat, 2010, 121(3): 737–742.

[44] Gallicchio L, Berndt SI, Mcsorley MA, et al. Polymorphisms in estrogen-metabolizing and estrogen receptor genes and the risk of developing breast cancer among a cohort of women with benign breast disease[J]. BMC Cancer, 2006, 6(173).

[45] Sueta A, Ito H, Kawase T, et al. A genetic risk predictor for breast cancer using a combination of low-penetrance polymorphisms in a Japanese population[J]. Breast Cancer Res Treat, 2012, 122(2): 711–721.

[46] Antoniou AC, Kartsonaki C, Sinilnikova OM, et al., the SWE-BRCA, and the HEBON, and the EMBRACE, and the CEMO Study Collaborators, and the Breast Cancer Family Registry, and the KConflict Investigators, and the CMIBA. Common alleles at 6q25.1 and 1p11.2 are associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers[J]. Hum Mol Genet, 2011, 20(16): 3304–3321.

[47] Campa D, Kaaks R, Le Marchand L, et al. Interactions between breast variants and breast cancer risk factors in the breast and prostate cancer cohort consortium[J]. J Natl Cancer Inst, 2011, 103(16): 1252–1263.

[48] Huo D, Zheng Y, Ogundiran TO, et al. Evaluation of 19 susceptibility loci of breast cancer in women of African ancestry[J]. Carcinogenesis, 2012, 33(4): 835–840.

[49] Ruiz-Narváez EA, Rosenberg L, Yao S, et al. Fine-mapping of the 6q25 locus identifies a novel SNP associated with breast cancer risk in African-American women[J]. Carcinogenesis, 2013, 34(2): 287–291.

[50] He Y, Chen Q, Liu H, et al. The relationship between four GWAS-identified single nucleotide polymorphisms and female breast cancer in Henan population[J]. Chin J Endocr Surg(Chinese), 2015, 5: 367–71.

[51] Guo H, Ming J, Liu C, et al. A common polymorphism near the ESR1 gene is associated with risk of breast cancer: evidence from a case-control study and a meta-analysis[J]. PLoS One, 2012, 7(12): e52445.

[52] Kim HC, Lee JY, Sung H, et al. A genome-wide association study identifies a breast cancer risk variant in ERBB4 at 2q34: results from the Seoul Breast Cancer Study[J]. Breast Cancer Res Treat, 2012, 14(2): R56.

[53] Lao H. Study on the screening and identification of sporadic breast cancer susceptible gene polymorphism in women from Guangdong, Chongqing, Shandong and Nanchang [D]. Southern Medical University, 2012.

[54] Zhou L, He N, Feng T, et al. Association of five single nucleotide polymorphisms at 6q25.1 with breast cancer risk in northwestern China[J]. Am J Cancer Res, 2015, 5(8): 2467–2475.

[55] Luo D. Initial research on the relationship between rs2046210 gene polymorphisms and risk of breast cancer [D]: Zunyi Medical University, 2012.

[56] Chan M, Ji SM, Liaw CS, et al. Association of common genetic variants with breast cancer risk and clinicopathological characteristics in a Chinese population[J]. Breast Cancer Res Treat, 2012, 136(1): 209–220.

[57] Cai Q, Wen W, Qu S, et al. Replication and functional genomic analyses of the breast cancer susceptibility locus at 6q25.1 generalizes its importance in women of Chinese, Japanese, and European ancestry[J]. Cancer Res, 2011, 71(4): 1344–1355.

[58] Hein R, Maranian M, Hopper JL, et al., and the GENICA Network, and the KConflict Investigators, and the AOCs Group. Comparison of 6q25 breast cancer hits from Asian and European Genome Wide Association Studies in the Breast Cancer Association Consortium (BCAC)[J]. PLoS One, 2012, 7(8): e42380.

[59] Stacey SN, Sulem P, Zanon C, et al. Ancestry-shift refinement mapping of the C6orf97-ESR1 breast cancer susceptibility locus[J]. PLoS Genet, 2010, 6(7): e1001029.

[60] Mizoo T, Taira N, Nishiyama K, et al. Effects of lifestyle and single nucleotide polymorphisms on breast cancer risk: a case-control study and a meta-analysis[J]. Prev Med, 2012, 55(12): 107–124.

[61] Lamp M, Peters M, Reinmaa E, et al. Polymorphisms in ESR1, ESR2 and HSD17B1 genes are associated with fertility status in endometriosis[J]. Gynecol Endocrinol, 2011, 27(6): 425–433.
[64] Hassan MH, Fouad H, Bahashwan S, et al. Towards non-surgical therapy for uterine fibroids: catechol-O-methyl transferase inhibitor shrinks uterine fibroid lesions in the Eker rat model[J]. *Hum Reprod*, 2011, 26(11): 3008–3018.

[65] Luo L, Xia W, Nie M, et al. Association of ESR1 and C6orf97 gene polymorphism with osteoporosis in postmenopausal women[J]. *Mol Biol Rep*, 2014, 41(5): 3235–3243.

[66] Calhoun BC, Collins LC. Predictive markers in breast cancer: An update on ER and HER2 testing and reporting[J]. *Semin Diagn Pathol*, 2015, 32(5): 362–369.

[67] Yue W, Wang JP, Li Y, et al. Tamoxifen versus aromatase inhibitors for breast cancer prevention[J]. *Clin Cancer Res*, 2005, 11(2 Pt 2): 925s–930s.

[68] Herrington DM, Howard TD, Brosnihan KB, et al. Common estrogen receptor polymorphism augments effects of hormone replacement therapy on E-selectin but not C-reactive protein[J]. *Circulation*, 2002, 105(16): 1879–1882.

[69] Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, et al. Multiple genetic loci for bone mineral density and fractures [J]. *N Engl J Med*, 2008, 358(22): 2355–2365.

[70] Lin Y, Fu F, Chen M, et al. Associations of two common genetic variants with breast cancer risk in a chinese population: a stratified interaction analysis[J]. *PLoS One*, 2014, 9(12): e115707.

[71] Sun Y, Ye C, Guo X, et al. Evaluation of potential regulatory function of breast cancer risk locus at 6q25.1[J]. *Carcinogenesis*, 2016, 37(2): 163–168.

[72] Gelman IH. Emerging Roles for SSceKS/Gravin/AKAP12 in the Control of Cell Proliferation, Cancer Malignancy, and Barriergenesis[J]. *Genes Cancer*, 2010, 1(11): 1147–1156.

[73] Sauna ZE, Kimchi-Sarfaty C, Ambudkar SV, et al. Silent polymorphisms speak: how they affect pharmacogenomics and the treatment of cancer[J]. *Cancer Res*, 2007, 67(20): 9609–9612.

[74] Sun H, Hou J, Shi W, et al. Estrogen receptor 1 (ESR1) genetic variations in cancer risk: a systematic review and meta-analysis [J]. *Clin Res Hepatol Gastroenterol*, 2015, 39(1): 127–135.

[75] Li N, Dong J, Hu Z, et al. Potentially functional polymorphisms in ESR1 and breast cancer risk: a meta-analysis[J]. *Breast Cancer Res Treat*, 2010, 121(1): 177–184.