The Radial Part of Brownian Motion with respect to \mathcal{L}-Distance under Ricci Flow

Li-Juan Cheng *

Abstract

Let $\{g_t\}_{t \in [0,T]}$ be a family of complete time-depending Riemannian metrics on a manifold which evolves under backwards Ricci flow. The Itô formula is established for the \mathcal{L}-distance of the g_t-Brownian motion to a fixed reference point (\mathcal{L}-base). Furthermore, as an application, we construct a coupling by parallel displacement which yields a new proof of some results of Topping.

Keywords: Ricci flow, \mathcal{L}-functional, \mathcal{L}-cut-locus, g_t-Brownian motion, coupling

MSC(2010): 60J65, 53C44, 58J65

1 Introduction and main result

Let M be a d-dimensional differentiable manifold carrying a complete backwards Ricci flow $\{g_\tau\}_{\tau \in [0,T]}$, $0 < T \leq \infty$, i.e. a smooth family of Riemannian metrics solving the nonlinear PDE

$$\frac{\partial g_\tau}{\partial \tau} = 2\text{Ric}_\tau,$$

such that (M, g_τ) is complete for all $\tau \in [0,T)$, where Ric$_\tau$ is the Ricci curvature induced by the metric g_τ. According to Perelman [9], for $0 \leq \tau_1 < \tau_2 < T$, Perelman’s \mathcal{L}-length of a differentiable path $\gamma : [\tau_1, \tau_2] \to M$ is then defined by

$$\mathcal{L}(\gamma) := \int_{\tau_1}^{\tau_2} \sqrt{\tau} \left[|\dot{\gamma}(\tau)|_\tau^2 + R(\tau, \gamma(\tau), \tau) \right] \, d\tau,$$

where $R(x, \tau)$ is the scalar curvature at $x \in M$ w.r.t. the metric g_τ. Define the \mathcal{L}-distance between two points (x, τ_1) and (y, τ_2) by

$$Q(x, \tau_1; y, \tau_2) = \inf \{ \mathcal{L}(\gamma) | \gamma : [\tau_1, \tau_2] \to M \text{ is smooth and } \gamma(\tau_1) = x, \gamma(\tau_2) = y \}.$$

Note that the \mathcal{L}-distance can be negative, and it is in general not a real distance. But it reduces to the Riemannian distance in the sense that

$$\lim_{\tau_2 \downarrow \tau_1} 2(\sqrt{\tau_2} - \sqrt{\tau_1})Q(x, \tau_1; y, \tau_2) = \rho_{\tau_1}^2(x, y),$$

where ρ_{τ_1} is the Riemannian distance with respect to g_{τ_1}.

In this paper, we want to use the comparison theorem to analyze the behavior of the g_t-Brownian motion. Let ∇^t and Δ_t be the Levi-Civita connection and the Laplace operator associated with the metric g_t respectively. Let $\mathcal{F}(M)$ (resp. $\mathcal{O}(M)$) be the (resp. g_t-orthonormal)

*School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, The People’s Republic of China. E-mail: chenglj@mail.bnu.edu.cn (L.J. Cheng)
frame bundle. Let \(p : \mathcal{F}(M) \to M \) be the canonical projection. Set \((e_i)_{i=1}^d\) be the orthonormal basis on \(\mathbb{R}^d \). For \(t \in [0,T] \) and \(u \in \mathcal{O}_t(M) \), let \(H_i(t,u) \) be the \(\nabla^t \)-horizontal lift of \(ue_i \) and \((V_{\alpha\beta}(u))_{\alpha\beta=1}^d\) the canonical vertical vector fields. Let \((B_t)_{t\geq 0}\) be a standard \(\mathbb{R}^d \)-valued Brownian motion on a complete filtered probability space \((\Omega,\{\mathcal{F}_t\}_{t\geq 0},\mathbb{P})\). In this situation, Arnaudon, Coulibaly and Thalmaier \([1] \) constructed the horizontal Brownian motion on \(\mathcal{F}(M) \) by solving the following Stratonovich SDE

\[
\begin{align*}
 du_t &= \sqrt{2} \sum_{i=1}^d H_i(t,u_t) \circ dB_t^i - \frac{1}{2} \sum_{\alpha,\beta=1}^d G_{\alpha\beta}(t,u_t)V_{\alpha\beta}(u_t)dt, \\
 u_{s_0} \in \mathcal{O}_{s_0}(M), \ p u_{s_0} &= x,
\end{align*}
\]

where \(G_{\alpha\beta}(t,u_t) := \partial_t g_t(u_t e_{\alpha}, u_t e_{\beta}), \ alpha, \beta = 1,2, \cdots, d \). They have shown that the drift term in the equality is essential to ensure \(u_t \in \mathcal{O}_t(M) \) for all \(t \in [0,T] \). Moreover, this process is non-explosive up to \(T \) since \(g_t \) is the complete backward Ricci flow (see \cite[Theorem 1]{[7]}). The \(g_t \)-Brownian motion is then defined by \(X_t = pu_t \). For a given reference point \((L\text{-base}) (o,0)\), \(o \in M \), define the radius function

\[
Q(x,t) := Q(o,0;x,t), \quad \text{for } x \in M
\]

as the \(L \)-distance between \((x,t)\) and \((o,0)\). If \(Q \) is smooth, then by the Itô formula, we have

\[
Q(X_t,s) = Q(x,s_0) + \sqrt{2} \int_{s_0}^t \langle \nabla^s Q(X_s), u_s dB_s \rangle_s + \int_{s_0}^t [\Delta_s Q + \partial_s Q](X_s,s)ds, \quad t \geq s_0,
\]

where \(\langle \cdot , \cdot \rangle_s := g_s(\cdot , \cdot) \). However, in general, \(Q \) is not smooth on whole manifold, so that it is even not clear whether \(Q(X_t,t) \) is a semimartingale. The purpose of this paper is to prove that \(Q(X_t,t) \) is indeed a semimartingale and establish the Itô formula for it.

We would like to indicate that when the metric is independent of \(t \), the semimartingale property for the radial part of the Brownian motion w.r.t. Riemannian distance was first proved by Kendall \cite{[6]}, which is fundamental to analyze the Brownian motion on a Riemannian manifold. Especially, Kendall’s Itô formula was applied to the construction of coupling processes on manifolds (see \cite[Chapter 2]{[14]}). For the time-inhomogeneous case, Kuwada and Philipowski \cite{[7]} shows that the radial part of Brownian motion \(\rho_t(o,X_t) \), the Riemannian distance from \(o \) to \(X_t \) w.r.t. \(g_t \), is a semimartingale, which is applied to the non-explosion of the \(g_t \)-Brownian motion. See \cite{[5]} for more discussions in this direction.

By using an approximation approach to the \(L \)-cut-locus, we are able to extend Kendall’s Itô formula to the \(g_t \)-Brownian motion as follows.

Theorem 1.1. Let \(X_t \) be a \(g_t \)-Brownian motion starting at time \(s_0 \in (0,T) \). Then there exists a non-decreasing continuous process \(L \) which increases only when \((X_t,t) \in L\text{Cut}((o,0)) \) such that

\[
dQ(X_t,t) = \sqrt{2} \langle \nabla^t Q(X_t,t) , dB_t \rangle_t + [\Delta_t Q + \partial_t Q](X_t,t)dt - dL_t, \quad t \in (s_0,T),
\]

where \(\nabla^t Q(\cdot , t) \) and \(\Delta_t Q(\cdot , t) \) are defined to be zero where \(Q(\cdot , t) \) fails to be differentiable. In particular, \(Q(X_t,t) \) is semimartingale.
As an application, we will construct a coupling of g_{t_1}- and g_{t_2}-Brownian motions by parallel displacement, where $0 < t_1 \leq t_2 < T$ and $0 < s \leq t < T/t_2$. It is well-known that the coupling method is a useful tool both in stochastic analysis and geometric analysis. We will use this tool to obtain the martingale property of $Q(X_{t_1 t}, \tau_1 t; \bar{X}_{t_2 t}, \bar{\tau}_2 t)$. We would like to point out that very recently, Kuwada and Philipowski [8] constructed a coupling via approximation by geodesic random work, and applied it to proving the monotonicity of the normalized \mathcal{L}-transportation cost between solutions of the heat equation. Here, we present an alternative construction such that a large number of estimates presented in [8] are avoided. When g_t is independent of t, our construction is due to Wang [14].

The rest parts of the paper is organized as follows. In Section 2, we introduce the \mathcal{L}-cut-locus, and some properties of it. In Section 3, we prove Theorem 1.1. In the final section, we construct a coupling of g_{t_1}- and g_{t_2}-Brownian motions by parallel displacement, which leads to a new proof of the normalized \mathcal{L}-transportation cost inequality introduced by Topping [13].

For readers’ convenience, we will take the same notations as in [13].

2 Definition and properties of \mathcal{L}-cut-locus

Recall that $\{g_t\}_{t \in [0, T)}$ is a complete backwards Ricci flow. Let

$$\mathcal{Y} = \{(x, \tau_1; y, \tau_2) \mid x, y \in M \text{ and } 0 \leq \tau_1 < \tau_2 < T\}.$$

Similar to the Riemannian distance, in general, Q fails to be smooth on some subset \mathcal{LCut} defined as follows. For $\tau_1, \tau_2 \in [0, T)$ with $\tau_1 < \tau_2$, $x \in M$ and $Z \in T_x M$, we define the \mathcal{L}-exponential map $\mathcal{L}_{\tau_1, \tau_2} \exp_x : T_x M \to M$ by $\mathcal{L}_{\tau_1, \tau_2} \exp_x (Z) = \gamma (\tau_2)$, where γ is a unique \mathcal{L}-geodesic (see Remark 4.2) starting from x at time τ_1 with the initial condition $\lim_{\tau \downarrow \tau_1} \sqrt{\gamma '} (\tau) = Z$. Note that the \mathcal{L}-geodesic also induces a notation of \mathcal{L}-Jacobi fields (see e.g. [4 Chapter 7]). It is convenient to define

$$\Omega (x, \tau_1; \tau_2) = \left\{ Z \in T_x M \left| \begin{array}{c}
\gamma : [\tau_1, \tau_2] \to M \text{ defined by } \gamma (\tau) = \mathcal{L}_{\tau_1, \tau} \exp_x (Z) \\
is a unique minimising \mathcal{L}-geodesic
\end{array} \right. \right\}.$$

Let

$$\Omega^* (x, \tau_1; T) := \bigcap_{\tau_2 \in (\tau_1, T)} \Omega (x, \tau_1; \tau_2).$$

For any $Z \in T_x M \setminus \Omega^* (x, \tau_1; T)$, let $\bar{\tau} (x, \tau_1; Z) = \sup \{ \tau \in (\tau_1, T) \mid Z \in \Omega (x, \tau_1; \tau) \}$. Then, the \mathcal{L}-cut-locus is defined as follows:

$$\mathcal{LCut} = \left\{ (x, \tau_1; y, \tau') \left| \begin{array}{c}
x \in M, \tau_1 \in [0, T) ; \\
y = \mathcal{L}_{\tau_1, \tau'} \exp_{x} (Z) \text{ for some } Z \in T_x M \setminus \Omega^* (x, \tau_1; T) ; \\
\tau' = \bar{\tau} (x, \tau_1; Z) \in [\tau_1, T)\end{array} \right. \right\}.$$

Let

$$\mathcal{LCut} ((x, \tau_1)) = \{(y, \tau_2) \in M \times (\tau_1, T) \mid (x, \tau_1; y, \tau_2) \in \mathcal{LCut} \}.$$

The set \mathcal{LCut} can be decomposed into two parts: the first consists of points $(x, \tau_1; y, \tau_2)$ such that there exists more than one minimizing \mathcal{L}-geodesic $\gamma : [\tau_1, \tau_2] \to M$ with $\gamma (\tau_1) = x$ and $\gamma (\tau_2) = y$, ...
and the second is the set of points \((x, \tau_1; y, \tau_2)\) such that \(y\) is conjugate to \(x\) (with respect to \(\mathcal{L}\)-Jacobi fields) along a minimizing \(\mathcal{L}\)-geodesic \(\gamma : [\tau_1, \tau_2] \to M\) with \(\gamma(\tau_1) = x, \gamma(\tau_2) = y\).

The following important properties about the \(\mathcal{L}\)-cut-locus and \(Q\) can be found in [4] Lemma 7.27 and [15], Lemma 2.14.

Proposition 2.1. (1) The two sets \(\mathcal{L}\text{Cut} \text{ and } \mathcal{L}\text{Cut}((o,0))\) are closed of measure zero in \(\Upsilon\) and \(M \times [0,T]\) respectively. Moreover, for any \(t \in [0,T]\), the set

\[
\mathcal{L}\text{Cut}_t(o) := \{x \in M : (x,t) \in \mathcal{L}\text{Cut}((o,0))\}
\]

is of measure zero in \(M\).

(2) The function \(Q\) is smooth on \(\Upsilon \setminus \mathcal{L}\text{Cut}\).

(3) If we associate to each point \((x, \tau_1; y, \tau_2)\) in \(\Upsilon \setminus \mathcal{L}\text{Cut}\) the vector \(Z \in \Omega(x, \tau_1; \tau_2) \in T_x M\) for which \(\mathcal{L}_{\tau_1,\tau_2}\exp_z(Z) = y\), then \(Z\) depends smoothly on \((x, \tau_1, y, \tau_2)\).

(4) On \(\Upsilon \setminus \mathcal{L}\text{Cut}\), we have

\[
\frac{\partial Q}{\partial \tau_1}(x, \tau_1; y, \tau_2) = \sqrt{r_1} (|\dot{\gamma}(\tau_1)|_{\gamma_1}^2 - R(x, \tau_1)); \nabla_{\tau_1} Q(x, \tau_1; y, \tau_2) = -2\sqrt{r_1}\dot{\gamma}(\tau_1);
\]

\[
\frac{\partial Q}{\partial \tau_2}(x, \tau_1; y, \tau_2) = \sqrt{r_2} (|\dot{\gamma}(\tau_2)|_{\gamma_2}^2 - R(x, \tau_2)); \nabla_{\tau_2} Q(x, \tau_1; y, \tau_2) = 2\sqrt{r_2}\dot{\gamma}(\tau_2),
\]

where \(\gamma : [\tau_1, \tau_2] \to M\) is the minimizing \(\mathcal{L}\)-geodesic from \(x\) to \(y\) and \(\nabla_{\tau_1}^R\) (resp. \(\nabla_{\tau_2}^R\)) denotes the gradient with respect to the variable \(x\) (resp. the variable \(y\)) by using the metric \(g_{\tau_1}\) (resp. \(g_{\tau_2}\)).

Since \((X_t)\) is generated by a non-degenerated operator, the following is a direct consequence of Proposition 2.1(1).

Lemma 2.2. Suppose \(X_t\) is a \(g_t\)-Brownian motion starting at time \(s_0 \in (0,T)\). The set \(\{t \in [s_0,T] \mid (X_t, t) \in \mathcal{L}\text{Cut}((o,0))\}\) has Lebesgue measure zero almost surely.

Proof. According to [7], Lemma 2, for any starting point \(x \in M\), the law of \(X_t\) under \(\mathbb{P}^x\) is absolutely continuous with respect to the \(g_t\)-Riemannian volume measure. Moreover, by Proposition 2.1(1), \(\mathcal{L}\text{Cut}_t(o)\) measures zero, we have

\[
\mathbb{E}^x \left[\int_{s_0}^T 1_{\{(X_t, t) \in \mathcal{L}\text{Cut}(o,0))\}} dt \right] = \int_{s_0}^T \mathbb{P}^x((X_t, t) \in \mathcal{L}\text{Cut}(o,0)) dt = \int_{s_0}^T \mathbb{P}^x(X_t \in \mathcal{L}\text{Cut}_t(o)) dt = 0,
\]

it follows that \(\int_{s_0}^T 1_{\{(X_t, t) \in \mathcal{L}\text{Cut}(o,0))\}} dt = 0\), a.s.

\(\square\)

3 Proof of Theorem 1.1

Since \(X_t\) is non-explosive before the life time of the metric family, by a localization argument, it is sufficient to consider the case of compact \(M\). Thus, in this section, we assume that \(M\) is compact and \([0,T]\) is a finite interval. We first state the Itô formula for smooth functions.
Lemma 3.1. Suppose X_t is a g_t-Brownian motion starting at time $s_0 \in (0,T)$. Let f be a smooth function on $M \times [s_0,T]$. Then,

$$df(X_t,t) = \frac{\partial f}{\partial t}(X_t,t)dt + \Delta_t f(X_t,t)dt + \sqrt{2} \sum_{i=1}^{d} u_i e_i f(X_i,t)dB_i^t, \quad s_0 < t \leq T.$$

According to Proposition 2.1(2) and Lemma 3.1, we see that, if (X_t,t) stays away from the \mathcal{L}-cut-locus of $(o,0)$, then

$$dQ(X_t,t) = d\beta_t + \left[\Delta_t Q + \frac{\partial Q}{\partial t} \right] (X_t,t)dt, \quad t \in [s_0,T],$$

(3.1)

where β_t is the martingale term given by

$$d\beta_t := \sqrt{2} \sum_{i=1}^{d} (u_i e_i)Q(X_i,t)dB_i^t.$$

By Proposition 2.1(4), the quadratic variation of the martingale β_t is computed as follows

$$d\langle \beta \rangle_t = 2 \sum_{i=1}^{d} [(u_i e_i)Q(X_i,t)]^2 dt = 2|\nabla_1^t Q(X_i,t)|^2 dt = 8t |\dot{\gamma}(t)|^2 dt,$$

where $\gamma : [0,t] \to M$ is the minimal \mathcal{L}-geodesic from o to x_t and $|\cdot|_t := \sqrt{\langle \cdot, \gamma \rangle_t}$. Thus, β_t can be represented by

$$2\sqrt{2t} |\dot{\gamma}(t)|_t dt,$$

(3.2)

where b_t is a standard one-dimensional Brownian motion. We will explain in Remark 4.2 that the coefficient $2\sqrt{2t} |\dot{\gamma}(t)|_t$ is not a constant, which is different from the fixed metric case.

Next, to control the drift term of (3.1), we need the comparison theorem, which is a combination of the following two lemmas (see [4] Lemma 7.45 and [3] Lemma 7.13).

Lemma 3.2 ([4]). For $0 \leq \tau_1 < \tau_2 \leq T$, let $\gamma : [\tau_1, \tau_2] \to M$ be a minimal \mathcal{L}-geodesic from p to q. At (q,τ_2) the \mathcal{L}-distance satisfies

$$\frac{\partial}{\partial \tau_2} Q(p, \tau_1; q, \tau_2) + \Delta_{\tau_2} Q(p, \tau_1; \tau_2) (q) \leq \frac{d}{\sqrt{\tau_2 - \sqrt{\tau_1}}} - \frac{1}{2(\tau_2 - \tau_1)} Q(p, \tau_1; q, \tau_2).$$

Since M is compact, there exists some constant $C_0 < \infty$ such that

$$\max_{(x,\tau) \in M \times [0,T]} |\text{Rm}_\tau|(x) \vee |\text{Ric}_\tau|(x) \leq C_0.$$

(3.3)

We obtain the lower bound for Q from (3.3).

Lemma 3.3 ([4]). For $0 \leq \tau_1 < \tau_2 \leq T$, let $\gamma : [\tau_1, \tau_2] \to M$ be a minimal \mathcal{L}-geodesic. Then,

$$Q(\gamma(\tau_1), \tau_1; \gamma(\tau_2), \tau_2) \geq e^{-2C_0(\tau_2 - \tau_1)} \rho_{\tau_1}(\gamma(\tau_1), \gamma(\tau_2))^2 - \frac{2}{3} dC_0(\tau_2^{3/2} - \tau_1^{3/2}).$$
By Lemmas 3.2 and 3.3 we have, for \((x, t) \not\in \mathcal{LCut}(o, 0)\),
\[
\frac{\partial}{\partial t} Q(x, t) + \Delta_t Q(x, t) \leq \frac{d}{\sqrt{t}} - \frac{1}{2t} Q(x, t) \leq \frac{d}{\sqrt{t}} + \frac{1}{2t} Q(x, t) - \frac{d}{\sqrt{t}} + \frac{dC_0}{3t^{3/2}}.
\]
Define \(V(t) := \frac{4d}{\sqrt{t}} + \frac{dC_0}{2t^{3/2}}\). It is easy to see that
\[
\frac{\partial}{\partial t} Q(x, t) + \Delta_t Q(x, t) \leq V(t).
\]

(3.4)

Now, we turn to construct a closed set such that it is disjoint with \(\mathcal{LCut}\). To this end, we consider the product manifold \(M \times [0, T]\) equipped with metric \(\bar{g}\): for \(x \in M\) and \(t \in [0, T]\),
\[
\bar{g}(X, Y)(x, t) := g_t(X, Y); \quad \bar{g}\left(\frac{d}{dt}, \frac{d}{dt}\right) := 1, \quad X, Y \in T_x M.
\]
Given a path \(\gamma : [\tau_1, \tau_2] \to M\) with \([\tau_1, \tau_2] \subset [0, T]\) and \(\gamma(\tau_1) = x, \gamma(\tau_2) = y\). The length of the graph \(\tilde{\gamma} : [\tau_1, \tau_2] \to M \times [0, T]\), defined by \(\tilde{\gamma}(\tau) := (\gamma(\tau), \tau)\), is given by
\[
L_{\bar{g}}(\tilde{\gamma}) = \int_{\tau_1}^{\tau_2} \sqrt{\frac{d\tilde{\gamma}}{d\tau}}^2 + 1 \, d\tau,
\]
where \(|\cdot|_{\bar{g}}\) is the norm w.r.t. the metric \(\bar{g}\). Then the distance between \((x, \tau_1)\) and \((y, \tau_2)\) can be defined as before, namely,
\[
d_{\bar{g}}(x, \tau_1; y, \tau_2) := \inf_{\tilde{\gamma}} L_{\bar{g}}(\tilde{\gamma}).
\]
Let us define a set \(A\) by
\[
A = \left\{(y, \tau_1; z, \tau_2) \in \Upsilon \mid \begin{array}{l}
y, z \in M, \tau_2 \in [s_0, T); \\
\tau_1 = \tau_2/2; \\
Q(y, \tau_1; z, \tau_2) + Q(y, \tau_1) = Q(z, \tau_2)
\end{array} \right\}.
\]
Note that \(A\) is closed and hence compact since \(Q(y, \tau_1; z, \tau_2)\) is continuous in \((y, \tau_1, z, \tau_2)\). Moreover, for any \((y, \tau_1; z, \tau_2) \in A\), the point \((y, \tau_1)\) is on a minimal \(\mathcal{L}\)-geodesic joining \((o, 0)\) and \((z, \tau_2)\). In particular, the symmetry of the \(\mathcal{L}\)-cut-locus implies that
\[
A \cap \mathcal{LCut} = \emptyset.
\]
Combining this with Proposition 2.1 (1), we obtain
\[
\delta_1 := d_{\bar{g}} \otimes d_{\bar{g}}(A, \mathcal{LCut}) > 0,
\]
where \(d_{\bar{g}} \otimes d_{\bar{g}}\) is a metric on \(\Upsilon^2\).

The following lemma is essential to the proof of Theorem 1.1

Lemma 3.4. Let \((x_0, t_0) \in \mathcal{LCut}(o, 0)\) and \(\delta \in (0, \delta_1)\). Let \((X_t)\) be the \(g_t\)-Brownian motion starting from \(x_0\) at time \(t_0\). Let \(\bar{T} = T \wedge \inf\{t \geq t_0 | d_{\bar{g}}(x_0, t_0; X_t, t) = \delta\}\). Then
\[
\mathbb{E}\left[Q(X_{t \wedge \bar{T}}, t \wedge \bar{T}) - Q(x_0, t_0) - \int_{t_0}^{T \wedge \bar{T}} V(s)ds\right] \leq 0.
\]
Lemma 3.5. The process $Q(X_t, t) - \int_{s_0}^t V(s)ds$ is a supermartingale.
Proof. Due to the strong Markov property of the g_t-Brownian motion, it suffices to show that for all deterministic starting point $(x_0, t_0) \in M \times [s_0, T]$ and all $t \in [s_0, T]$,

$$\mathbb{E} \left[Q(X_t, t) - Q(X_{t_0}, t_0) - \int_{t_0}^{t} V(s)ds \right] \leq 0.$$

We first observe from Lemma 3.4 and (3.1) that for all $n \in \mathbb{N}$,

$$\mathbb{E} \left[Q(X_{t \wedge S_n^\delta}, t \wedge T_n^\delta) - Q(X_{t \wedge T_n^\delta}, t \wedge T_n^\delta) - \int_{t \wedge T_n^\delta}^{t \wedge S_n^\delta} V(s)ds \bigg| \mathcal{F}_{T_n^\delta} \right] \leq 0,$$

and

$$\mathbb{E} \left[Q(X_{t \wedge T_n^\delta}, T_n^\delta) - Q(X_{t \wedge S_n^\delta}, T_n^\delta) - \int_{t \wedge S_n^\delta}^{t \wedge T_n^\delta} V(s)ds \bigg| \mathcal{F}_{S_n^\delta} \right] \leq 0.$$

It remains to show that $T_n \to T$ as $n \to \infty$. If

$$\lim_{n \to \infty} T_n =: T_\infty < T,$$

then $T_n^\delta - S_n^\delta$ converges to 0 as $n \to \infty$. In addition, $d_g(X_{S_n^\delta}, S_n^\delta, X_{T_n^\delta}, T_n^\delta) = \delta$ must hold for infinitely many $n \in \mathbb{N}$. It contradicts to the fact that X_t is uniformly continuous on $[0, T]$.

\begin{lemma}
\textbf{Lemma 3.6.} $\lim_{\delta \to 0} \sum_{n=1}^{\infty} |T_n^\delta - S_n^\delta| = 0$ almost surely.
\end{lemma}

\begin{proof}
For $\delta > 0$, define

$$E_\delta = \{ t \in [s_0, T] \mid \text{there exist } t' \in [s_0, T] \text{ satisfying } |t - t'| \leq \delta \text{ and } (X_{t'}, t') \in \mathcal{L}\text{Cut}((o, 0)) \},$$

$$E = \{ t \in [s_0, T] \mid (X_t, t) \in \mathcal{L}\text{Cut}((o, 0)) \}.$$

Since the map $t \to (X_t, t)$ is continuous and $\mathcal{L}\text{Cut}$ is closed, the set E is closed and hence $E = \bigcap_{\delta > 0} E_\delta$ holds. By the definitions of S_n^δ and T_n^δ,

$$E \subset \bigcup_{n=1}^{\infty} [S_n^\delta, T_n^\delta] \subset E_\delta,$$

which, together with the monotone convergence theorem, implies

$$\lim_{\delta \to 0} \sum_{n=1}^{\infty} |T_n^\delta - S_n^\delta| \leq \lim_{\delta \to 0} \int_{s_0}^{T} 1_{E_\delta}(t)dt = \int_{s_0}^{T} 1_E(t)dt = 0, \text{ a.e.},$$

where the last equality comes from Proposition 2.1(1).

\end{proof}

\begin{lemma}
\textbf{Lemma 3.7.} The martingale part of $Q(X_t, t)$ is

$$\langle \nabla_t^i Q(X_t, t), u_t dB_t \rangle_t = \sum_{i=1}^{d} u_t e_i Q(X_t, t) dB_i^t.$$
\end{lemma}
Proof. By the martingale representation theorem, there exists an \(\mathbb{R}^d \)-valued process \(\eta \) such that the martingale part of \(Q(X_t, t) \) equals to \(\int_0^t \eta_s dB_s \). Let

\[
N_t := \int_0^t \eta_s dB_s - \sum_{i=1}^d (u_t e_i) Q(X_t, t) dB^i_t.
\]

Using the stopping times \(S^d_n \) and \(T^d_n \), the quadratic variation \(\langle N \rangle_T \) of \(N \) is expressed as follows:

\[
\langle N \rangle_T = \sum_{i=1}^d \sum_{n=1}^{\infty} \left(\int_{T^d_{n-1} \wedge T}^{T^d_n \wedge T} \left| \eta^i_t - (u_t e_i) Q(X_t, t) \right|^2 dt + \int_{S^d_n \wedge T}^{T^d_n \wedge T} \left| \eta^i_t - (u_t e_i) Q(X_t, t) \right|^2 dt \right).
\]

Since \((X_t, t) \notin \mathcal{L}\text{Cut}((o, 0)) \) if \(t \in (T^d_{n-1}, S^d_n) \), the Itô formula yields

\[
\int_{T^d_{n-1} \wedge T}^{T^d_n \wedge T} \left| \eta^i_t - (u_t e_i) Q(X_t, t) \right|^2 dt = 0
\]

for \(n \in \mathbb{N} \) and \(i = 1, 2, \ldots, d \). For the second term on the right, since the manifold is compact, there exists a constant \(C > 0 \), such that

\[
\sum_{i=1}^d \sum_{n=1}^{\infty} \int_{S^d_n \wedge T}^{T^d_n \wedge T} \left| \eta^i_t - u_t e_i \right|^2 dt \leq \int_{\bigcup_{n=1}^{\infty} S^d_n, T^d_n} \left(|\eta^i|^2 + 4|t^\gamma(t)|^2 \right) dt \leq \int_{\bigcup_{n=1}^{\infty} S^d_n, T^d_n} \left(|\eta^i|^2 + C \right) dt.
\]

Since \(\eta_t \) is locally square-integrable on \([s_0, T] \), almost surely, we obtain \(\langle N \rangle_T = 0 \) by Lemma 3.6, which yields the conclusion. \(\square \)

Proof of Theorem 1.1. Now, we can conclude the proof of Theorem 1.1. Set \(I_\delta := \bigcup_{n=1}^{\infty} [S^d_n, T^d_n] \).

Let

\[
L^\delta_t := -Q(X_t, t) + Q(X_{s_0}, s_0) + \sum_{i=1}^d \int_{s_0}^t (u_s e_i) Q(X_s, s) dB^i_s + \int_{[s_0, t]\cap I_\delta} \left[\Delta_s Q + \frac{\partial Q}{\partial s} \right] (X_s, s) ds + \int_{[s_0, t]\cap I_\delta} V(s) ds.
\]

By (3.1), \(L^\delta_t \) is an increasing process which increases only when \(t \in I_\delta \). Moreover, we have

\[
Q(X_t, t) - Q(X_{s_0}, s_0) - \sum_{i=1}^d \int_{s_0}^t (u_s e_i) Q(X_s, s) dB^i_s - \int_{s_0}^t \left[\Delta_s Q + \frac{\partial Q}{\partial s} \right] (X_s, s) ds + L^\delta_t \\
= -\int_{[s_0, t]\cap I_\delta} \left[\Delta_s Q + \frac{\partial Q}{\partial s} \right] (X_s, s) ds - \int_{[s_0, t]\cap I_\delta} V(s) ds.
\]

From (3.1), we obtain

\[
\left| \int_{[s_0, t]\cap I_\delta} \left[\Delta_s Q + \frac{\partial Q}{\partial s} \right] (X_s, s) ds + \int_{[s_0, t]\cap I_\delta} V(s) ds \right| \leq 2 \int_{[s_0, t]\cap I_\delta} V(s) ds,
\]

and \(V(s) \) is bounded on \([s_0, t] \cap I_\delta \). Then by Lemma 3.6, the right hand of (3.5) converges to 0 as \(\delta \to 0 \). Thus, \(L_t := \lim_{\delta \to 0} L^\delta_t \) exists for all \(t \in [s_0, T] \) almost surely and hence (1.2) holds. Finally, it is easy to see that \(L_t \) increases only when \((X_t, t) \in \mathcal{L}\text{Cut}((o, 0)) \) from the corresponding property of \(L^\delta_t \). \(\square \)
4 Coupling for $g_{\bar{\tau}_1 t}$- and $g_{\bar{\tau}_2 t}$-Brownian motions

First, we introduce some basic notations concerning the space-time parallel displacement.

Definition 4.1 (space-time parallel vector field). For $0 < \tau_1 < \tau_2 < T$, let \(\gamma : [\tau_1, \tau_2] \to M \) be a smooth curve. We say that a vector field \(Z \) along \(\gamma \) is space-time parallel if

\[
\nabla^t_{\dot{\gamma}(\tau)} Z(\tau) = -\text{Ric}_{\gamma}^t(Z(\tau))
\]

(4.1)

holds for all \(\tau \in [\tau_1, \tau_2] \), where \(\text{Ric}_{\gamma}^t \) is defined by regarding the \(g_{\tau} \)-Ricci curvature as a (1,1)-
tensor.

Since (4.1) is a linear first order ODE, for any \(\xi \in T_{\gamma(\tau_1)} M \), there exists a unique space-time parallel vector field \(Z \) along \(\gamma \) with \(Z(\tau_1) = \xi \). Note that whenever \(Z \) and \(Z' \) are space-time parallel vector fields along a curve \(\gamma \), their \(g_{\tau_1} \)-inner product is constant in \(\tau \):

\[
\frac{d}{d\tau} \langle Z(\tau), Z'(\tau) \rangle_{\tau} = \frac{\partial}{\partial \tau} g_{\tau}(Z(\tau), Z'(\tau)) + \left(\nabla^t_{\dot{\gamma}(\tau)} Z(\tau), Z'(\tau) \right)_{\tau} + \left(Z(\tau), \nabla^t_{\dot{\gamma}(\tau)} Z'(\tau) \right)_{\tau} = 2\text{Ric}_{\tau}(Z(\tau), Z'(\tau)) - \text{Ric}_{\tau}(Z(\tau), Z'(\tau)) - \text{Ric}_{\tau}(Z(\tau), Z'(\tau)) = 0.
\]

(4.2)

Remark 4.2. The minimal \(\mathcal{L} \)-geodesic \(\gamma = \gamma_{t_1,t_2}^{x,y} \) of \(Q(x, t_1; y, t_2) \) satisfies the \(\mathcal{L} \)-geodesic equation

\[
\nabla^t_{\dot{\gamma}(\tau)} \dot{\gamma}(t) = \frac{1}{2} \nabla^t R_{\tau} - 2\text{Ric}_{\gamma}^t(\dot{\gamma}(t)) - \frac{1}{2t} \dot{\gamma}(t).
\]

Therefore, \(\sqrt{t} \dot{\gamma}(t) \) is not space-time parallel to \(\gamma \) in general and their \(g_{\tau_1} \)-inner product is not a constant in \(t \), i.e. \(\sqrt{t} \dot{\gamma}(t) \) does not satisfy (4.1). Therefore the coefficient in the martingale part of (3.2) is not constant, which is different from the case when the metric is independent of \(t \).

Definition 4.3 (space-time parallel transport). For \(x,y \in M \) and \(0 < \tau_1 < \tau_2 \leq T \), we define a map \(P_{x,y}^{\tau_1,\tau_2} : T_x M \to T_y M \) as follows: \(P_{x,y}^{\tau_1,\tau_2}(\xi) := Z(\tau_2) \), where \(Z \) is the unique space-time parallel vector field along \(\gamma_{\tau_1,\tau_2}^{x,y} \) with \(Z(\tau_1) = \xi \). As explained in (4.2), \(P_{x,y}^{\tau_1,\tau_2} \) is an isometry from \((T_x M, g_{\tau_1}) \) to \((T_y M, g_{\tau_2}) \). In addition, it smoothly depends on \((x, \tau_1, y, \tau_2) \) outside the \(\mathcal{L} \)-cut locus.

Using the Itô formula for \(Q(X_t, t) \) presented in Theorem 1.1, we are able to construct a parallel coupling of \(g_{\bar{\tau}_1 t} \)- and \(g_{\bar{\tau}_2 t} \)-Brownian motions.

Theorem 4.4. Let \(x \neq y \) and \(0 < \bar{\tau}_1 < \bar{\tau}_2 < T \) be fixed. For any \(s > 0 \), there exist two Brownian motions \(B_t \) and \(\tilde{B}_t \) on a completed filtered probability space \((\Omega, \{\mathcal{F}_t\}_{t \geq 0}, \mathbb{P}) \) such that for all \(t \in [s, T/\bar{\tau}_2) \),

\[
1 \{ (X_t, \bar{\tau}_1 t; X_t, \bar{\tau}_2 t) \notin \mathcal{L}\text{Cut} \} d\tilde{B}_t = 1 \{ (X_t, \bar{\tau}_1 t; X_t, \bar{\tau}_2 t) \notin \mathcal{L}\text{Cut} \} (\tilde{u}_t)^{-1} P_{X_t,X_t}^{\bar{\tau}_1 t,\bar{\tau}_2 t} u_t dB_t
\]

holds, where \(X_t \) with lift \(u_t \) and \(\tilde{X}_t \) with lift \(\tilde{u}_t \) solve the equation

\[
\begin{cases}
\frac{d}{dt} X_t = \sqrt{2\bar{\tau}_1 u_t} \circ dB_t, & X_s = x; \\
\frac{d}{dt} \tilde{X}_t = \sqrt{2\bar{\tau}_2 \tilde{u}_t} \circ dB_t, & \tilde{X}_s = y.
\end{cases}
\]

(4.3)
Moreover,
\[
\text{d}Q(X_t, \tilde{\tau}_1 t; \tilde{X}_t, \tilde{\tau}_2 t) \leq 2\sqrt{2t} \left| \tilde{\tau}_1 P_{X_t, X_{\tilde{\tau}_1 t}}^{\tau_1, \tilde{\tau}_2 t}(\tilde{\tau}_1 t) - \tilde{\tau}_2\tilde{\gamma}(\tilde{\tau}_2 t) \right| \text{d}t
+ \left(\frac{d}{\sqrt{t}}(\sqrt{\tilde{\tau}_1} - \sqrt{\tilde{\tau}_2}) - \frac{1}{2t}Q(\tilde{\tau}_1 t, X_t; \tilde{\tau}_2 t, \tilde{X}_t) \right) \text{d}t,
\]
where \(\gamma : [\tilde{\tau}_1 t, \tilde{\tau}_2 t] \to M \) is the \(\mathcal{L} \)-geodesic from \(X_t \) to \(\tilde{X}_t \).

Proof. We denote \(Q(t, x, y) := Q(x, \tilde{\tau}_1 t; y, \tilde{\tau}_2 t) \) for simplicity. Our proof is divided into two parts.

(a) First, we give the construction of the couplings. Recall that \(u_t \), the horizontal lift of \(X_t \), satisfies the following SDE
\[
\begin{cases}
\text{d}u_t = -\frac{1}{2} t \sum_{\alpha,\beta} G_{\alpha,\beta}(\tilde{\tau}_1 t, u_t) V_{\alpha,\beta}(u_t) \text{d}t,
\end{cases}
\]
where \(u_s \in \mathcal{O}_{\tilde{\tau}_1 t}(M) \).

Now, for given \(x \neq y \) with \((x, \tilde{\tau}_1 t; y, \tilde{\tau}_2 t) \notin \mathcal{L} \text{Cut} \), let \(\gamma \) be the minimal geodesic from \(x \) to \(y \). Recall that \(P_{x,y}^{\tau_1, \tilde{\tau}_2 t} \) are the parallel operators. To get rid of the trouble that \(P_{x,y}^{\tau_1, \tilde{\tau}_2 t} \) does not exist on \(\mathcal{L} \text{Cut} \), we modify this operator so that it vanishes in a neighborhood of this set. To this end, for any \(n \geq 1 \) and \(\varepsilon \in (0, 1) \), let \(h_{n,\varepsilon} \in C^\infty([s, T/\tilde{\tau}_2) \times M \times M) \) such that
\[
0 \leq h_{n,\varepsilon} \leq (1 - \varepsilon), \quad h_{n,\varepsilon}|_{C_2} = 0, \quad h_{n,\varepsilon}|_{C_n} = 1 - \varepsilon,
\]
where \(C_n = \{(t, x, y) \in [s, T/\tilde{\tau}_2) \times M \times M : \text{d}_{\tilde{x}} \otimes \text{d}_{\tilde{y}}((x, \tilde{\tau}_1 t; y, \tilde{\tau}_2 t), \mathcal{L} \text{Cut}) \leq 1/n \} \). Let \(\tilde{u}_{n,\varepsilon} \) and \(\tilde{X}_{t,\varepsilon} := \text{p}\tilde{u}_{n,\varepsilon} \) solve the SDE
\[
\begin{cases}
\begin{align*}
\text{d}\tilde{u}_{n,\varepsilon} &= \sqrt{2\tilde{\tau}_1} h_{n,\varepsilon}(t, X_t, \tilde{X}_{t,\varepsilon}) \sum_{i=1}^d \text{d}B_i + \frac{1}{2} \sum_{\alpha,\beta} G_{\alpha,\beta}(\tilde{\tau}_1, \tilde{u}_{n,\varepsilon}) V_{\alpha,\beta}(\tilde{u}_{n,\varepsilon}) \text{d}t,
\end{align*}
\end{cases}
\]
where \(\tilde{u}_{n,\varepsilon} \) is a Brownian motion on \(\mathbb{R}^d \) independent of \(B_t \), and \(\text{d}\tilde{B}_t = (\tilde{u}_{n,\varepsilon})^{-1} P_{x,y}^{\tau_1, \tilde{\tau}_2 t} u_t \text{d}B_t \).

Since the coefficients involved in (4.5) are at least \(C^1 \), the solution \(\tilde{u}_{n,\varepsilon} \) exists uniquely.

Let us observe that \((u_t, \tilde{u}_{n,\varepsilon})\) is generated by
\[
L_{Q(M \times M)}(t)(u_t, \tilde{u}_{n,\varepsilon})
:= \tilde{\tau}_1 \Delta_{\tilde{\tau}_1 t}(M)(u_t) + \tilde{\tau}_2 \Delta_{\tilde{\tau}_2 t}(M)(\tilde{u}_{n,\varepsilon})
+ \sqrt{\tilde{\tau}_1 \tilde{\tau}_2} h_{n,\varepsilon}(t, X_t, \tilde{X}_{t,\varepsilon}) \sum_{i,j=1}^d \left(P_{X_t, X_{\tilde{\tau}_1 t}}^{\tau_1, \tilde{\tau}_2 t} u_t e_i, \tilde{u}_{n,\varepsilon} e_j \right)_{\tilde{\tau}_2} H(\tilde{\tau}_1, u_t) H(\tilde{\tau}_2, \tilde{u}_{n,\varepsilon})
- \frac{1}{2} \sum_{\alpha,\beta} G_{\alpha,\beta}(\tilde{\tau}_1, u_t) V_{\alpha,\beta}(u_t) \text{d}t.
\]

Next, let
\[
L_{M \times M}^{n,\varepsilon}(t)(x, y) := \tilde{\tau}_1 \Delta_{\tilde{\tau}_1 t}(x) + \tilde{\tau}_2 \Delta_{\tilde{\tau}_2 t}(y) + \sqrt{\tilde{\tau}_1 \tilde{\tau}_2} h_{n,\varepsilon}(t, x, y) \sum_{i,j=1}^d \left(P_{x,y}^{\tau_1, \tilde{\tau}_2 t} V_{\tau_1 t} W_i, W_j \right)_{\tilde{\tau}_2 t} V_{\tau_1 t} W_j,
\]
where \{V_i\} and \{W_i\} are orthonormal bases at \(x\) and \(y\) with respect to the metrics \(g_{\tau_1t}\) and \(g_{\tau_2t}\) respectively. It is easy to see that \((X_t, \dot{X}_t^{n,\varepsilon}):=(p_{ut}, p_{ut}^{n,\varepsilon})\) is generated by \(L^{n,\varepsilon}_{M\times M}(t)\) and hence is a coupling of \(g_{\tau_1t}\)- and \(g_{\tau_2t}\)-Brownian motions, as the marginal operators of \(L^{n,\varepsilon}_{M\times M}(t)\) coincide with \(\bar{\tau}_1\Delta_{\tau_1t}\) and \(\bar{\tau}_2\Delta_{\tau_2t}\) respectively.

Since in some neighborhood of \(\mathcal{LCut}\), the coupling is independent and hence behaves as a Brownian motion on \(M \times M\), we obtain from Theorem [1] that

\[
\begin{align*}
\text{d}Q(t, X_t, \dot{X}_t^{n,\varepsilon}) &= \sqrt{8t} \left[\bar{\tau}_1 \left(P^{\tau_1t, \tau_2t}_{X_t, X_t^{n,\varepsilon}} \right) \gamma_{n,\varepsilon}(\bar{\tau}_1 t) - \bar{\tau}_2 \left(P^{\tau_2t, \tau_1t}_{X_t^{n,\varepsilon}, X_t} \right) \gamma_{n,\varepsilon}(\bar{\tau}_2 t) \right]^2 \, \text{d}b_t^{n,\varepsilon} \\
&+ \left\{ \frac{\partial Q}{\partial t} + 1_{(\mathcal{Y}\setminus\mathcal{LCut})}[h_{n,\varepsilon}] + (1 - h_{n,\varepsilon})S \right\} (t, X_t, \dot{X}_t^{n,\varepsilon}) \, \text{d}t - \text{d}l_t^{n,\varepsilon},
\end{align*}
\]

where \(\gamma_{n,\varepsilon}: [\bar{\tau}_1 t, \bar{\tau}_2 t] \to \mathcal{L}\) is the \(\mathcal{L}\)-geodesic from \(X_t\) to \(\dot{X}_t^{n,\varepsilon}\), \(b_t^{n,\varepsilon}\) is an one-dimensional Brownian motion, \(l_t^{n,\varepsilon}\) is an increasing process which increases only when \((X_t, \bar{\tau}_1 t; \bar{\tau}_2 t) \in \mathcal{LCut}, and

\[
S(t, x, y) := \bar{\tau}_1 \Delta_{\tau_1t} Q(t, \cdot, y)(x) + \bar{\tau}_2 \Delta_{\tau_2t} Q(t, x, \cdot)(y);
\]

\[
I(t, x, y) := \sum_{i=1}^{d} \left(\sqrt{\bar{\tau}_1} V_i + \sqrt{\bar{\tau}_2} P^{\bar{\tau}_1t, \bar{\tau}_2t}_{x,y} V_i \right)^2 Q(t, x, y).
\]

Then, let \(\mathbb{P}^{(x,y)}_{n,\varepsilon}\) be the distribution of \((X_t, \dot{X}_t^{n,\varepsilon})\), which is a probability measure on the path space \(M^T_x \times M^T_y\), where

\[
M^T_x := \{ \gamma \in C([s, T/\bar{\tau}_2], M) : \gamma_s = x \}
\]

is equipped with the \(\sigma\)-field \(\mathcal{F}^T_x\) induced by all measurable cylindric functions. Note that \((M^T_x, \mathcal{F}^T_x)\) is metrizable with the distance

\[
\tilde{d}(\xi, \eta) := \sum_{n=1}^{\infty} 2^{-n} \left(1 \wedge \sup_{t \in [n, (n+1)\wedge T/\bar{\tau}_2]} \mathbf{d}(\bar{\tau}_1 t, \xi_t; \bar{\tau}_2 t, \eta_t) \right).
\]

Furthermore, \((M^T_x, \tilde{d})\) is a Polish space. Then \(M^T_x \times M^T_y\) is a Polish space too. It is easy to see that \(\{\mathbb{P}^{x,y}_{n,\varepsilon} : n \geq 1, \varepsilon > 0\}\) is tight (see [12] Lemma 4), since they are the couplings of \(\mathbb{P}^x\) and \(\mathbb{P}^y\). We take \(n_k \to \infty\) and \(\varepsilon_l \to 0\) such that \(\mathbb{P}^{x,y}_{n_k,\varepsilon_l}\) converges weakly to some \(\mathbb{P}^{x,y}_{l}\) \((l \geq 1)\) as \(k \to \infty\) while \(\mathbb{P}^{x,y}_{\varepsilon_l}\) converges weakly to some \(\mathbb{P}^{x,y}\) as \(l \to \infty\). Then \(\mathbb{P}^{x,y}\) is also a coupling of \(\mathbb{P}^x\) and \(\mathbb{P}^y\).

Now, let \((X_t, \dot{X}_t)\) be the coordinate process in \((M^T_x \times M^T_y, \mathcal{F}^T_x \times \mathcal{F}^T_y)\) and \(\{\mathcal{F}_t\}_{t \geq s}\) be the natural filtration. Define

\[
\tilde{L}(t)(x, y) := \bar{\tau}_1 \Delta_{\tau_1t}(x) + \bar{\tau}_2 \Delta_{\tau_2t}(y) + 1_{(\mathcal{Y}\setminus\mathcal{LCut})}(x, \bar{\tau}_1 t; y, \bar{\tau}_2 t) \sum_{i,j=1}^{d} \left(P^{\bar{\tau}_1t, \bar{\tau}_2t}_{x,y} V_i, W_j \right) \bar{\tau}_j t V_i W_j,
\]

It is trivial to see that \(\mathbb{P}^{x,y}\) solves the martingale problem for \(\tilde{L}(t)\) up to \(T/\bar{\tau}_2\) (see [2] Theorem 2]), i.e.

\[
f(X_t, \dot{X}_t) - \int_0^t \tilde{L}(s)f(X_s, \dot{X}_s) \, ds
\]

is a \(\mathbb{P}^{x,y}\)-martingale w.r.t. \(\mathcal{F}\). Then \((X_t, \dot{X}_t)\) under \(\mathbb{P}^{x,y}\) is a coupling of the \(g_{\tau_1t}\) and \(g_{\tau_2t}\)-Brownian motions starting from \((x, y)\), i.e. the solution of (4.3).
(b) We first claim that the two sets
\[\{ t \in [s, T/\bar{\tau}_2] \mid (X_t, \bar{\tau}_1 t; \bar{X}_t^n, \bar{\tau}_2 t) \in \mathcal{L} \text{Cut} \} \text{ and } \{ t \in [s, T/\bar{\tau}_2] \mid (X_t, \bar{\tau}_1 t; \bar{X}_t^\varepsilon, \bar{\tau}_2 t) \in \mathcal{L} \text{Cut} \} \]
have Lebesgue measure zero almost surely. This assertion can be checked similarly as in Lemma 2.2 by observing that \(L_M^{t,\bar{\tau}_1}(x, y, z, w) \) is strictly elliptic and all the coefficients are \(C^\infty \), then \(\mathbb{P}^x(y)(X_t, X_t^n, \bar{\tau}_1 t) \in A \) has a density \(p_t^{x, y}(x, y, z, w) \) with respect to the product volume measure \(\text{dvol}_{\bar{\tau}_1} \otimes \text{dvol}_{\bar{\tau}_2} \) (see [5, Theorem 3.16]), where \(\text{dvol}_t \) is the volume measure w.r.t. the metric \(g_t \).

Then, for \(f \in C^2(\mathbb{R}) \) with \(f' \geq 0 \) be fixed, let
\[
dN_t(f) = df \circ Q(t, X_t, \bar{X}_t) - \left[\left(I + \frac{\partial Q}{\partial t} \right) f' \circ Q(t, X_t, \bar{X}_t) \right. \\
\left. + 4t \left(\bar{\tau}_1 P_{\bar{X}_t, \bar{X}_t}^{\bar{\tau}_1, \bar{\tau}_2} \gamma(\bar{\tau}_1 t) - \bar{\tau}_2 \gamma(\bar{\tau}_2 t) \right) t^{\bar{\tau}_2} \circ Q(t, X_t, \bar{X}_t) \right] dt, \quad t \in [s, T/\bar{\tau}_2],
\]
With a similar discussion as in the proof of [3](b), we obtain \(N_{t\wedge(T/\bar{\tau}_2)} \) is a \(\mathbb{P}^{\bar{\tau}_1, \bar{\tau}_2} \)-supmartingale.

In particular, by taking explicit \(f(r) = r \), we have
\[
dQ(t, X_t, \bar{X}_t) = dM_t + \left(I + \frac{\partial Q}{\partial t} \right)(t, X_t, \bar{X}_t)dt - dl_t, \quad t \in [s, T/\bar{\tau}_2],
\]
where \(M_t \) is a local martingale and \(l_t \) is a predictable increasing process. By the second variation formula of the \(L \)-functional (see [1] Lemma 7.37 and Lemma 7.40) for instance,
\[
\frac{\partial}{\partial t} Q(t, x, y) + \sum_{i=1}^d (\sqrt{\bar{\tau}_1} V_i + \sqrt{\bar{\tau}_2} P_{x,y}^{\bar{\tau}_1, \bar{\tau}_2} V_i)^2 Q(t, x, y) \leq \frac{d}{\sqrt{t}}(\sqrt{\bar{\tau}_1} - \sqrt{\bar{\tau}_2}) - \frac{1}{2t} Q(t, x, y) =: J(t, x, y).
\]
It follows that
\[
dQ(t, X_t, \bar{X}_t) = dM_t + J(t, X_t, \bar{X}_t)dt - dl_t, \quad t \in [s, T/\bar{\tau}_2],
\]
where \(\tilde{l}_t \) is a larger predictable increasing process. Moreover, with a similar discussion as in the proof of [14] Theorem 2.1.1(d), we further obtain
\[
dM_t = 2\sqrt{2t} \left\| \bar{\tau}_1 P_{\bar{X}_t, \bar{X}_t}^{\bar{\tau}_1, \bar{\tau}_2} \gamma(\bar{\tau}_1 t) - \bar{\tau}_2 \gamma(\bar{\tau}_2 t) \right\|_{\bar{\tau}_2} db_t,
\]
which leads to complete the proof.

\[\square \]

As an important application, we give a new proof of Topping’s result [13], i.e. the contraction in the normalized \(L \)-transportation cost. We point out that this result recovers the monotonicity of Perelman’s monotonic quantities (involving both \(W \)-entropy and \(L \)-length), which are central in his work on Ricci flow (see [9, 10, 11]).

Suppose that \(\{ P_{s,t} \}_{0 < s < t < T/\bar{\tau}_2} \) and \(\{ T_{s,t} \}_{0 < s < t < T/\bar{\tau}_2} \) be the Markov inhomogeneous semigroup of the \(g_{\bar{\tau}_1} \)-Brownian motion and \(g_{\bar{\tau}_2} \)-Brownian motion respectively. To the \(L \)-distance \(Q \), we associate the Monge-Kantorovich minimization between two probability measures on \(M \),
\[
W^L(\mu, t_1; \nu, t_2) = \inf_{\eta \in C^L(\mu, \nu)} \int_{M \times M} Q(x, t_1; y, t_2) \text{d}\eta(x, y),
\]
where \(C^L(\mu, \nu) \) is the set of all probability measures on \(M \times M \) with marginal \(\mu \) and \(\nu \). Then, using the coupling constructed in Theorem 4.4, we have
Theorem 4.5. Assume that M has bounded curvature tensor, i.e.

$$
\sup_{x \in M, t \in [0, T)} |Rm_t|(x) < \infty.
$$

Then for $0 < \bar{\tau}_1 < \bar{\tau}_2 < T$ the normalized L-transportation cost

$$
\Theta(t, \delta_x P_{s,t}, \delta_y T_{s,t}) := 2(\sqrt{\bar{\tau}_2 t} - \sqrt{\bar{\tau}_1 t}) W^L(\delta_x P_{s,t}, \bar{\tau}_1 t; \delta_y T_{s,t}, \bar{\tau}_2 t) - 2d(\sqrt{\bar{\tau}_2 t} - \sqrt{\bar{\tau}_1 t})^2
$$

is a non-increasing function of $t \in [s, T/\bar{\tau}_2)$, that is

$$
\Theta(t, \delta_x P_{s,t}, \delta_y T_{s,t}) \leq 2(\sqrt{\bar{\tau}_2 s} - \sqrt{\bar{\tau}_1 s}) Q(x, \bar{\tau}_1 s; y, \bar{\tau}_2 s) - 2d(\sqrt{\bar{\tau}_2 s} - \sqrt{\bar{\tau}_1 s})^2.
$$

Proof. By \cite{4.3}, there exist two coupled $g_{\bar{\tau}_1 t}$- and $g_{\bar{\tau}_2 t}$-Brownian motions $(X_t)_{t \in [s, T/\bar{\tau}_2)}$ and $(\tilde{X}_t)_{t \in [s, T/\bar{\tau}_2)}$ with initial values $X_s = x$ and $\tilde{X}_s = y$ such that the process $(\Theta(t, X_{\bar{\tau}_1 t}, \tilde{X}_{\bar{\tau}_2 t}))_{t \in [s, T/\bar{\tau}_2)}$ is a supermartingale. Taking the expectation of this supermartingale leads to complete the proof.

Denote $P_{s,t}(\cdot, dx) := u(\bar{\tau}_1 t, x) d\nu_{\bar{\tau}_1 t}$ and $T_{s,t}(\cdot, dx) := u(\bar{\tau}_2 t, x) d\nu_{\bar{\tau}_2 t}$. This density u solves the following heat equation

$$
\frac{\partial u}{\partial \tau} = \Delta_{\bar{\tau}} u - R_{\bar{\tau}} u,
$$

where $R_{\bar{\tau}}$ is the scalar curvature w.r.t. the metric $g_{\bar{\tau}}$. Hence, the conclusion presented in Theorem 4.5 is consistent with that in \cite{13}.

Acknowledgements The author thank Professor Feng-Yu Wang for valuable suggestions and this work is supported in part by NNSFC(11131003), SRFDP, and the Fundamental Research Funds for the Central Universities.

References

1. Arnaudon, M., Coulibaly, K., Thalmaier, A.: Brownian motion with respect to a metric depending on time: definition, existence and applications to Ricci flow, C. R. Math. Acad. Sci. Paris 346 (2008), 773–778.

2. Arnaudon, M., Thalmaier, A., Wang, F.-Y.: Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below, Bull. Sci. Math. 130 (2006), 223–233.

3. Cheng, L.J.: Diffusion process on time-inhomogeneous manifolds, preprint (2012).

4. Chow, B., Chu, S.-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci flow: techniques and applications. Part I. Geometric aspects, Mathematical Surveys and Monographs, 135. American Mathematical Society, Providence, RI, 2007.

5. Friedman, A.: Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., Englewood Cliffs, N.J. 1964.
6. Kendall, W. S.: The radial part of Brownian motion on a manifold: a semimartingale property, Ann. Probab. 15 (1987), 1491–1500.

7. Kuwada, K., Philipowski, R.: Non-explosion of diffusion processes on manifolds with time-dependent metric, Math. Z. 268 (2011), 979–991.

8. Kuwada, K., Philipowski, R.: Coupling of Brownian motions and Perelman’s L-functional, J. Funct. Anal. 260 (2011), 2742–2766.

9. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications, preprint (2002), arXiv:math/0211159v1.

10. Perelman, G.: Ricci flow with surgery on three-manifolds, preprint (2003), arXiv:math/0303109v1.

11. Perelman, G.: Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, preprint (2003), arXiv:math/0307245v1.

12. von Renesse, M.: Intrinsic coupling on Riemannian manifolds and polyhedra, Electron. J. Probab. 9 (2004), 411–435.

13. Topping, P.: L-optimal transportation for Ricci flow. J. Reine Angew. Math. 636 (2009), 93–122.

14. Wang, F.-Y.: Functional Inequalities, Markov Semigroups and Spectral Theory, Science Press, Beijing, 2005.

15. Ye, R.: On the l-function and the reduced volume of Perelman, I, Trans. Amer. Math. Soc. 360 (2008), 507–531.