Prognostic value of subventricular zone involvement in relation to tumor volumes defined by fused MRI and O-(2-[¹⁸F]fluoroethyl)-L-tyrosine (FET) PET imaging in glioblastoma multiforme

Maciej Harat¹,⁴*, Bogdan Małkowski² and Krzysztof Roszkowski³

Abstract

Background: Subventricular zone (SVZ) involvement is associated with a dismal prognosis in patients with glioblastoma multiforme (GBM). Dual-time point (dtp) O-(2-[¹⁸F]fluoroethyl)-L-tyrosine (FET) PET/CT (PET) may be a time- and cost-effective alternative to dynamic FET PET, but its prognostic value, particularly with respect to SVZ involvement, is unknown.

Methods: Thirty-five patients had two scans 5–15 and 50–60 min after i.v. FET injection to define tumor volumes and SVZ involvement before starting radiotherapy. Associations between clinical progression markers, MRI- and dtp FET PET-based tumor volumes, or SVZ involvement and progression-free (PFS) and overall survival (OS) were assessed in univariable and multivariable analyses.

Results: The extent of resection was not related to outcomes. Albeit non-significant, dtp FET PET detected more SVZ infiltration than MRI (60% vs. 51%, \(p = 0.25 \)) and was significantly associated with poor survival (\(p < 0.03 \)), but PET-T1-Gad volumes were larger in this group (\(p < 0.002 \)). Survival was shorter in patients with larger MRI tumor volumes, larger PET tumor volumes, and worse Karnofsky performance status (KPS), with fused PET-T1-Gad and KPS significant in multivariable analysis (\(p < 0.03 \)). Uptake kinetics was not associated with treatment outcomes.

Conclusions: FET PET-based tumor volumes may be useful for predicting worse prognosis glioblastoma. Although the presence of SVZ infiltration is linked to higher PET/MRI-based tumor volumes, the independent value of dtp FET PET parameters and SVZ infiltration as prognostic markers pre-irradiation has not been confirmed.

Keywords: Glioblastoma multiforme, FET PET, Subventricular zone, Prognosis, Imaging biomarker
2 gene mutations [6, 7], and subventricular zone (SVZ) involvement [8]. However, the relationship between pre-irradiation MRI contrast enhancement-based tumor volume and clinical outcome remains controversial [9, 10].

Therefore, accurately predicting tumor behavior in individual patients based on imaging parameters remains challenging, especially when molecular-genetic factors are not available. Imaging may be especially important given that mutations show intratumoral heterogeneity in non-operable, sub-totally operated, or MGMT promoter status-undefined patients [11–13].

SVZ infiltration defined by MRI is known to be associated with treatment outcomes and progression and is thought to arise from neural stem cells [14, 15]. Extensive peritumoral edema on imaging may also be associated with survival [16, 17], since edema defined by MRI-T2 sequences may represent a mixture of neoplastic cells as well as vasogenic edema [18]. However, imaging parameters that more accurately define prognosis are still urgently needed to individualize treatment.

Positron-emission tomography/CT (PET) using O-(2-[18F]fluoroethyl)-L-tyrosine (FET) has been widely used for static and dynamic imaging in patients with brain tumors [19, 20]. Dynamic FET PET is helpful for defining aggression in WHO III astrocytomas [21] and low-grade gliomas (LGGs) [22, 23]. Moreover, WHO I-II gliomas show increased uptake kinetics compared to WHO III-IV high-grade gliomas (HGGs) [24, 25]. Dynamic acquisition more accurately differentiates LGGs from HGGs than standard static scans (20–40 min post-injection (p.i.)), mainly due to the characteristic high FET uptake in HGGs in the initial phase [26]. However, many institutions do not have routine access to dynamic PET imaging techniques. When dynamic PET cannot be performed, FET PET acquisition at a few selected time points may be a cost- and time-effective alternative as demonstrated using a Philips camera (3 Tesla; Achieva 3.0 T X-series, Philips Medical Systems, Crawley, UK) and a standard head coil up to 7 days prior to radiotherapy in two stages: (i) standard head MRI, taking the area containing tumor into account in the spin-echo or turbo spin-echo sequence in T1-, T2-, and PD-dependent images at three levels: frontal, sagittal, and transverse; and (ii) patients received intravenous contrast (gadolinium diethylenetriamine pentaacetate; Magnevist, Bayer Schering Pharma, Berlin, Germany) at a dose of 0.2 ml/kg body weight with 180 s of imaging using the spin-echo sequence in T1-weighted images in three dimensions. The scan thickness was 2 mm in a 512 × 512 pixel matrix. Tumor was defined as the area of contrast-induced signal enhancement in the T1 sequence. Hypointense areas without contrast enhancement on T1 images were regarded as the postoperative bed.

All radiotherapy planning MRI studies were carried out using a variant of the Philips camera (3 Tesla; Achieva 3.0 T X-series, Philips Medical Systems, Crawley, UK) and a standard head coil up to 7 days prior to radiotherapy in two stages: (i) standard head MRI, taking the area containing tumor into account in the spin-echo or turbo spin-echo sequence in T1-, T2-, and PD-dependent images at three levels: frontal, sagittal, and transverse; and (ii) patients received intravenous contrast (gadolinium diethylenetriamine pentaacetate; Magnevist, Bayer Schering Pharma, Berlin, Germany) at a dose of 0.2 ml/kg body weight with 180 s of imaging using the spin-echo sequence in T1-weighted images in three dimensions. The scan thickness was 2 mm in a 512 × 512 pixel matrix. Tumor was defined as the area of contrast-induced signal enhancement in the T1 sequence. Hypointense areas without contrast enhancement on T1 images were regarded as the postoperative bed.

All PET/CT scans were performed using a mCT128 Biograph (Siemens Medical Solutions, Erlangen, Germany) using locally produced FET radiotracer. The amino acid 18F-FET was produced and applied as described previously [30].

Patients were fasted for 4 h prior to data collection. Radiotracer uptake was assessed after 5–15 min and 50–60 min after i.v. administration of 350 ± 10 MBq FET. Image acquisition was performed in the supine position after head immobilization with an individual thermoplastic mask fixed to the scanner table. CT scans were
performed as follows: CARE Dose 4D, 120 kV, and pit 0.7 recorded every 2.7 min per 1 position of the bed. The TrueX+TOF (UltraHD-PET) three-dimensional algorithm was used for image reconstruction.

PET tissue uptake was recorded as a standardized uptake value (SUV) defined as the ratio of radioactivity (MBq/ml) of the tissue marker to the initial radioactivity of the marker administered i.v. according to the patient's weight [31]. The tumor was assessed using the Leonardo™ diagnostic station (Siemens Medical Solutions/CTI).

To measure PET uptake, volumes of interest (VOI) were defined in similarly sized symmetrical areas defined by the tumor on one side and normal tissue in the other (normal) hemisphere. In the semi-quantitative analysis, 5–15 and 50–60 min after administering radiotracer, the maximum SUV (SUV_MAX) and the mean SUV (SUV_MEAN) were specified for each VOI on PET scans with CT images used as reference images. The SUV_MEAN and SUV_MAX ratios in the VOI of the tumor to healthy brain were determined (tumor-to-brain ratio, TBR_MAX and TBR_MEAN). Tumors were contoured semi-automatically as areas corresponding to radiotracer uptake above 1.6 x SUV_MEAN in the VOI of normal brain (threshold) corrected to areas of physiological activity in the basal ganglia, thalamus, cerebellum, skull bones, sphenoidal sinus, sagittal sinus, pituitary, and vessels [31, 32]. The tumor area was defined this way 5–15 (PET_VOL 10) and 50–60 min (PET_VOL 60) after radiotracer administration. Fused volumes of the larger of PET and MRI volumes with (PET-T1-Gad) and without tumor bed (PET-T1-Gad without tumor bed) were assessed. A nuclear medicine specialist and radiation oncologist jointly evaluated each case.

FET uptake values analysis

The differences between TBR_MEAN10 and TBR_MEAN60 (TBR_MEAN diff), TBR_MAX10 and TBR_MAX60 (TBR_MAX diff), SUV_MEAN10 and SUV_MEAN60 (SUV_MEAN diff), SUV_MAX10 and SUV_MAX60 (SUV_MAX diff) were calculated in each case. The difference between PET tumor volumes (PET_VOL diff) was also defined.

Subventricular zone invasion and extensive peritumoral edema

SVZ was defined as contrast-enhanced lesions and/or dtp FET PET-positive uptake involving the wall of the lateral ventricle. Patients without SVZ involvement on MRI but infiltrated in PET were defined (Fig. 1). Peritumoral edema was observed as hyperintense areas in T2-weighted or FLAIR MRI or hypointense areas in T1-weighted images. Extensive peritumoral edema (EPE)
was defined when edema extended 2 cm from the tumor border as in [33]. SVZ and EPE were analyzed in relation to OS or PFS. Moreover, the OS and PFS of tumors involved SVZ (+) and not involved SVZ (−) in combination with all clinical and imaging parameters were analyzed. The median was used as the threshold for tumor volumes and imaging quantitative parameters.

Statistical analysis
Calculations were performed in STATISTICA v13.0 (Statsoft, Poland). Quantitative parameters are presented as minimum and maximum values (min and max) and mean (±) and median values. Distributions were assessed using the Shapiro-Wilk test; parameters without a normal distribution were analyzed using the Mann-Whitney rank sum test. Spearman’s correlations were used to compare two quantitative parameters. For univariate analyses, Cox regression was used to assess the significance of individual variables using log-rank tests. OS and PFS were analyzed with Kaplan-Meier survival curves. The median was used as the threshold for dichotomizing parameters. To examine relative effects, multivariate regression analyses and log-rank (Mantel-Cox) testing were performed. P-values < 0.05 were considered significant.

Results
Overall characteristics
Thirty-five patients were eligible for study. During a mean observation period of 36 months, 32 patients (91%) died. The mean OS was 16 ± 2 months (range, 4–48 months), and the mean PFS was 10 ± 2 months (range, 2–47 months). The clinical parameters including MRI and PET tumor volumes are summarized in Table 1.

Progression-free survival and overall survival
Better KPS performance status (> 70%) had a favorable impact on PFS (Kaplan–Meier test; HR 0.09, 95% CI 0.02–0.38, \(p = 0.001 \)) and OS (Kaplan–Meier test; HR 0.03, 95% CI 0.007–0.11, \(p = 0.001 \); Fig. 2a and b and Additional file 1: Table S1), and was correlated with PFS (\(p = 0.007 \)) and OS (\(p < 0.001 \)) as assessed by Spearman’s rank correlations (Additional file 1: Table S2A). Gross total resection had no impact on PFS (\(p = 0.594 \)) or OS (\(p = 0.22 \)) (Additional file 1: Table S2B). Other significant parameters are presented in Additional file 1: Table S1.

There were no statistically significant relationships between PFS and the quantitative imaging parameters in the univariate analysis. However, for OS, there were significant and negative Spearman’s correlations with age, \(\text{PET}_{\text{VOL}} \), \(\text{PET}_{\text{VOL}} \), \(\text{T1-Gad} \), \(\text{PET-T1-Gad} \), and \(\text{PET-T1-Gad} \) without tumor bed (Table 2). OS was significantly longer for the group without SVZ involvement (Mann-Whitney test; mean OS 14.1 vs. 18.8 months, median OS 10 vs. 15 months, \(p = 0.021 \), Table 3), but tumor volumes were significantly smaller in this group (\(\text{PET-T1-Gad} \) mean volume in SVZ− vs. SVZ+ 35.9 cm\(^3\) vs. 64.2 cm\(^3\), \(p = 0.004 \)).

Significant variables (KPS, SVZ, \(\text{PET-T1-Gad} \)) in univariate OS analysis and one parameter representing changes in PET uptake values (\(\text{TBR}_{\text{MAX diff}} \)) and previously studied by the same authors [34] were entered into a multivariable model (Table 4). KPS and \(\text{PET-T1-Gad} \) were associated with OS with a close but non-significant relationship for SVZ. For PFS, only KPS was associated in multivariable analysis.

FET uptake values and kinetics measured in dual time-point assessments
Uptake and kinetic values for the whole group are listed in Table 5, and the kinetic data for patients are presented in Additional file 1: Table S3. In all cases, uptake was above the threshold of 1.6 x mean background. Kinetic analysis was available for 34/35 patients. The majority of GBMs had decreased kinetics measured according to \(\text{TBR}_{\text{MAX diff}} \) and \(\text{TBR}_{\text{MEAN diff}} \) parameters. Kinetic parameters measured quantitatively were not associated with survival (Table 2).

FET and SVZ infiltration
SVZ infiltration was present in MRI scans from 18 patients and, by adding dtp FET PET data, three further cases of SVZ infiltration could be defined (21/35; 60%, \(p = 0.25 \)). MRI-based, PET-based, or fused volumes differed significantly when there was SVZ involvement

Table 1 Clinical and radiological parameters of the study population

Parameter	n (range)	%
Gross total resection defined with MRI	24	68
KPS performance > 70	24	68
Age (mean)	53	29–73
Sex (male)	25	71
SVZ infiltration defined by MRI	18	51
SVZ infiltration defined by dtp FET PET	21	60
EPE	10	28
Distant progression	9	25
\(\text{TBR}_{\text{MAX}} \) increased	9	25
\(\text{TBR}_{\text{MEAN}} \) increased	4	11
\(\text{SUVR}_{\text{MAX}} \) increased	13	37
\(\text{SUVR}_{\text{MEAN}} \) increased	24	68
\(\text{PET}_{\text{VOL}} \) 10 (mean)	39 (1–115)	–
\(\text{PET}_{\text{VOL}} \) 60 (mean)	34 (1–101)	–
\(\text{T1-Gad} \) (mean)	30 (4–89)	–
\(\text{PET-T1-Gad} \) (mean)	50 (5–131)	–
\(\text{PET-T1-Gad} \) without tumor bed (mean)	45 (3–129)	–
The most significant difference was for mean PET-T1-Gad without tumor bed (59 cm³ in SVZ-positive tumors and 29.7 cm³ in SVZ-negative tumors; \(p = 0.001 \)). TBR MAX, TBR MEAN, and kinetic parameters were nearly identical in both groups. EPE and quantitative parameters above median were not additional negative factors when combined with SVZ involvement, KPS performance status, and age but not the tumor-to-brain uptake ratios or FET kinetics measured by dtp PET/CT were prognostic in univariate analysis. However, the presence or absence of SVZ was associated with higher PET/MR tumor volumes, so this association was no longer significant in multivariate analysis.

Table 2: Univariate analysis of patient survival related to selected quantitative imaging factors (Spearman’s rank test)

Parameter	PFS R	PFS p	OS R	OS p
Age	0.130	0.502	−0.375	0.032
PETVOL10	−0.145	0.454	−0.374	0.032
PETVOL60	−0.220	0.251	−0.423	0.014
PETVOLdiff	0.355	0.059	0.161	0.372
T1-Gad	−0.293	0.131	−0.441	0.011
PET T1-Gad	−0.198	0.312	−0.443	0.011
PET-T1 Gad w/o tumor bed	−0.205	0.295	−0.447	0.010
TBRMEAN DIFF	0.159	0.418	0.002	0.949
TBRMAX DIFF	0.237	0.225	0.304	0.091
SUVMEAN DIFF	−0.002	0.993	−0.317	0.073
SUVMAX DIFF	0.254	0.183	0.130	0.471
SUVMEAN10	0.363	0.058	0.184	0.314
SUVMAX 10	0.021	0.913	−0.163	0.364
TBRMAX10	0.300	0.121	0.300	0.095
TBRMEAN10	0.152	0.439	0.058	0.753
SUVMAX60	0.100	0.604	−0.045	0.803
SUVMEAN60	0.081	0.677	−0.069	0.701
TBRMAX60	0.140	0.477	0.049	0.790
TBRMEAN60	0.041	0.838	0.055	0.767

Discussion
Here we show that pre-irradiation tumor volumes have a prognostic impact in GBM. Of the analyzed volumes, fused dtp FET PET for T1-Gad-based volume without the tumor bed was the most powerful predictor and may therefore be of value for radiation treatment planning. SVZ involvement, KPS performance status, and age but not the tumor-to-brain uptake ratios or FET kinetics measured by dtp PET/CT were prognostic in univariate analysis. However, the presence or absence of SVZ was associated with higher PET/MR tumor volumes, so this association was no longer significant in multivariate analysis.

Tumors are known to differ in shape and size when defined 10 and 60 min post FET injection and corresponded with the site of recurrence [28]. The current study shows that dtp FET PET parameters do not provides additional information as a prognostic imaging biomarker, although we note that FET PET performed...
after irradiation treatment response has previously been shown to be a marker of both PFS and OS [9].

Current PET tracers provide additional prognostic value in GBM [9, 35–38]. However, amino acids and FET specifically are most commonly used for PET due to low uptake into inflammatory tissues, high stability, and longer half-life of 18F-FET [39].

Table 3

Parameter	SVZ involved	SVZ not involved	p-values				
	Mean	Median	Range	Mean	Median	Range	
PFS	11.7	5.0	3–47	9.1	7.5	2–37	0.650
OS	14.1	10.0	4–48	18.8	15.0	9–41	0.021
Age	56.1	58.0	34–73	50.8	48.0	29–72	0.207
PET VOL 10	49.7	51.1	3.07–115.63	27.0	25.7	1.24–67.93	0.007
PET VOL 60	46.0	50.2	0.79–101.7	21.9	19.4	1.48–60.06	0.007
PET VOL DIFF	4.5	4.5	−16.06–27.61	5.2	4.4	−3.28–20.5	0.832
T1-Gad	38.6	33.5	11.2–89.31	21.5	16.3	4.23–53.48	0.024
PET T1-Gad	64.2	62.5	17.8–131.5	35.9	29.9	5.1–103.1	0.004
PET-T1Gad w/o tumor bed	59.4	58.6	11.2–129.2	29.7	26.2	2.8–86.6	0.001
TBR MEAN DIFF	0.2	0.2	−0.07–0.69	0.3	0.2	−0.09–0.8	0.634
TBR MAX DIFF	0.3	0.2	−0.43–2.33	1.0	0.6	−0.4–5.45	0.067
SUV MEAN DIFF	−0.1	−0.1	−1.14–1.01	0.0	−0.1	−0.49–1.25	0.807
SUV MAX DIFF	0.6	0.0	−0.84–4.28	0.5	0.6	−1.5–3.5	0.832
SUV MAX 10	3.7	3.3	1.03–10.16	3.1	3.4	1.26–4.79	0.646
SUV MEAN 10	1.8	1.7	0.8–2.7	1.5	1.5	0.98–2.04	0.025
TBR MAX 10	3.1	2.9	1.92–7.66	3.3	3.0	1.37–6.38	0.734
TBR MEAN 10	2.5	2.3	2–3.95	2.4	2.3	1.85–3.92	0.518
SUV MAX 60	3.8	3.4	1.48–8.21	3.0	3.0	1.78–5.36	0.103
SUV MEAN 60	1.9	1.9	1.18–3.23	1.7	1.7	0.96–2.76	0.207
TBR MAX 60	2.8	2.5	1.88–5.33	2.3	2.2	0.93–3.2	0.067
TBR MEAN 60	2.3	2.2	1.89–3.39	2.1	2.0	1.65–3.12	0.079

Table 4

Multivariate linear regression analyses of OS or PFS versus age, KPS, SVZ, PET-T1-Gad, and TBR MAX DIFF

Parameter	OS Coefficient	p-value	Parameter	PFS Coefficient	p-value
Age	−0.11 (0.50)	0.482	Age	0.16 (0.19)	0.414
KPS	−14.38 (0.45)	0.006	KPS	−13.80 (5.86)	0.028
SVZ	8.82 (0.25)	0.091	SVZ	10.27 (5.56)	0.078
PET-T1-Gad	−0.142 (0.059)	0.047	PET-T1-Gad	−0.112 (0.08)	0.194
TBR MAX DIFF	0.72 (0.13)	0.680	TBR MAX DIFF	−0.96 (1.92)	0.62
R² = 0.406			R² = 0.29		

Table 5

dtp FET PET parameters in glioblastoma

Parameter	Mean	Median	Range
TBR MEAN DIFF	0.2	0.2	−0.09–0.8
TBR MAX DIFF	0.6	0.4	−0.43–5.45
SUV MEAN DIFF	−0.1	−0.1	−1.14–1.25
SUV MAX DIFF	0.6	0.4	−1.5–4.28
SUV MEAN 10	3.4	3.4	1.03–10.16
SUV MAX 10	1.6	1.6	0.8–2.7
TBR MEAN 10	3.2	2.9	1.37–7.66
TBR MAX 10	2.4	2.3	1.85–3.95
SUV MEAN 60	3.4	3.2	1.48–8.21
SUV MAX 60	1.8	1.8	0.96–3.23
TBR MEAN 60	2.6	2.4	0.93–5.33
TBR MAX 60	2.2	2.1	1.65–3.39
Tumor volumes are vulnerable to the FET PET acquisition method. Tumor-to-brain ratios of L.6 or greater determine the FET tumor volume and depend on the time of measurement, spatial resolution of the PET scans, and image processing [20]. The most commonly used method represents a summation of dynamic PET scans and a single static scan 20–40 min post PET injection. Pre-radiation tumor volumes defined on static PET have been shown to be prognostic [9]. However, in high-grade gliomas, there can be an increased tracer uptake at earlier time frames [26, 40], so tumor volume might be underestimated in the standard 20–40-min scan frequently taken in static PET-based radiation treatment planning [26]. However, in our group, 25% of patients had different uptake kinetics that may underestimate tumor volumes when categorized only on early (5–15 min p.i.) acquisition. The largest study to date on the topic reported a correlation between PET volumes and OS based on dynamic PET results [38]. However, dynamic FET PET is more time-consuming and costly, requiring 40–50 min of scanning time [20], which may be too long to patients to tolerate the thermoplastic mask.

Grosu et al. [41] reported that gross tumor volumes were not significantly different when measured by L-[methyl-11C]-methionine (MET) PET or FET PET by static acquisition. However, FET PET-based volumes depend on the time of uptake measurement, which may have limited this comparison. Moreover, the different uptake kinetics (also known as the time-activity curve (TAC)) is a feature of FET not observed with MET [20].

Uptake kinetics have been shown to be prognostic in more aggressive low-grade [22] and WHO III [21] gliomas. Further, in a study of selected patients, uptake kinetics had an impact on prognosis [23]. We could not confirm this finding here, perhaps due to the smaller group size, non-selected cohort, or different method of PET acquisition.

With respect to the impact of SVZ invasion on GBM prognosis, our results are consistent with other studies [8, 14, 33]. However, to our knowledge, this is the first report that FET-PET-detected infiltration of the surrounding brain is larger in SVZ areas than in other locations. These large FET uptake volumes may, to some extent, explain worse outcomes for patients with SVZ invasion, which is typically explained in pre-clinical studies by the “neural stem cell niche” concept. Moreover, tumor not defined as infiltrating the SVZ on MRI may actually extend into this area when defined by dtp FET PET. Further, the frequency of SVZ involvement not shown on MRI but present in dtp FET PET is unknown. Here, this frequency was not significantly increased, but this was simply due to the larger volumes defined by dtp FET PET. It could be of value to target SVZ areas with modified or higher than routine radiation doses in future research studies.

The maximal safe resection of contrast-enhancing tumors is the mainstay of treatment for newly diagnosed GBM. Although extensively studied, the prognostic value of partial resection remains controversial, but the benefit of gross total resection in association with survival has been established [42]. This, however, was not seen in our study. Other factors such as MGMT methylation have a substantial impact on prognosis and, in combination with the small number of events, could impact on the lack of effect of gross total removal on survival. Here, 24 patients underwent gross total resection as defined by MRI; interestingly, all 35 patients had pathological uptake values in the surrounding tumor bed. This suggests that when the aim is to remove a contrast enhanced portion of a tumor, partial rather than gross tumor removal is the actual result. A recent large retrospective analysis showed that the additional removal of a significant portion of the FLAIR-abnormal region was associated with better survival [43]. Further, PET-based tumor removal may prolong survival in patients with high-grade gliomas [10]. Our study supports the concept that pre-radiation tumor volumes, especially when defined by PET rather than contrast-enhanced tumor removal, influences prognosis [9, 44]. The prognostic value of PET-based volume was also recently reported in a case of re-irradiation [45]. Nevertheless, performance status post-surgery remains the most important clinical marker of treatment outcome.

The dtp FET PET methodology used here and that published by Lohmann et al. [27] are different (20–40 p.i. and 70–90 p.i. in [27] and 5–15 p.i. and 50–60 p.i. here). The frequently recommended acquisition (20–40 p.i.) is not one of the two time points, which might have influenced the results (the threshold of 1.6 of the background has been validated on 20–40 p.i. static images). However, this might explain why 25% of GBMs showed decreased uptake (the maximal uptake could have been obtained in the period 20–40 min p.i., and thus missed by the choice of timepoints).

The main limitations of this study are the post hoc analysis of SVZ infiltration, manual measurement of tumor volumes that may influence results, and the relatively small number of patients. The lack of known MGMT promoter methylation status may also be regarded as limiting, but this was not standard care during recruitment. However, it has been shown that the PET PET volumes are independent of MGMT methylation status [38]. This study is also strengthened by its prospective nature, no pre-selection of patients, and confirmation of the exact date of death.

Conclusions
FET PET-based tumor volumes may be useful for predicting a worse prognosis in glioblastoma patients. Although the presence of SVZ infiltration is linked to higher PET/MRI-based tumor volumes, the independent value of dtp FET PET parameters and SVZ infiltration as prognostic markers pre-irradiation has not been confirmed.
Additional file

Additional file 1: Table S1. Univariate analysis of patient survival related to selected factors. The cut-off for the quantitative parameters used (age, PET VOL 10, PET VOL 60, T1-Gad, T1-Gad with tumor bed) was the median index for the entire group determined separately for each indicator. Table S2. Spearman’s rank correlation of KPS score (A) (KPS 100–80 – KPS 1, KPS 80 – KPS 2) and extent of resection (B) (Gross total resection - GTR 1, subtotal resection or biopsy - GTR 0) for overall survival (OS) and progression free survival (PFS). Table S3. Kinetic data for all patients. Table S4. Combined Kaplan Meier analysis of SVZ with other imaging parameters (above or below median value for quantitative results) for overall survival (OS) and progression free survival (PFS). (DOCX 31 kb)

Abbreviations
dtp: Dual-time point; FET: O-(2-[18F]fluoroethyl)-L-tyrosine; GBM: Glioblastoma multiforme; GPA: Grading prognostic assessment; HGGs: High-grade gliomas; IDH1: Isocitrate dehydrogenase 1; IDH2: Isocitrate dehydrogenase 2; KPS: Karnofsky performance status; MGMT: O(6)-methylguanine-DNA methyltransferase; OS: Overall survival; PET: Positron-emission tomography; PFS: Progression-free survival; SVZ: Subventricular zone; TBR: Tumor-to-brain ratio; VOI: Volumes of interest

Acknowledgements
We gratefully acknowledge Nextgenediting (http://www.nextgenediting.com) for editorial assistance.

Funding
None.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors’ contributions
MH and BM conceived and designed the experiments; MH and BM reagents/materials/analysis tools; MH wrote the paper. All authors read and approved the final manuscript.

Ethics approval and consent to participate
The Ethics Committee of Collegium Medicum of Nicolaus Copernicus University approved this prospective longitudinal study (procedure nr KB257/2012), and all subjects signed written informed consent.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Department of Oncology and Brachytherapy, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum, Romanowskiej 2 St, 85-796 Bydgoszcz, Poland. 2Department of Positron Emission Tomography and Molecular Imaging, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland. 3Department of Oncology, Radiotherapy and Gynecologic Oncology, Faculty of Health Sciences, Nicolaus Copernicus University Toruń, Bydgoszcz, Poland. 4Department of Radiotherapy, Unit of Radiosurgery and Radiotherapy of CNS, Franciszek Lukaszyck Oncology Center, Bydgoszcz, Poland.

Received: 19 September 2018 Accepted: 21 February 2019
Published online: 04 March 2019

References
1. Kier D, Klink B, Hartmann C, von Deimling A, Pietsch T, Simon M, et al. Long-term survival with glioblastoma multiforme: Brain. 2007;130(10):2596–606. https://doi.org/10.1093/brain/awm294.
2. U J, Wang M, Won M, Shaw EG, Coughlin C, Curran WJ, et al. Validation and simplification of the radiosurgery oncology group recursive partitioning analysis classification for glioblastoma. Int J Radiat Oncol Biol Phys. 2011;81(3):623–30. https://doi.org/10.1016/j.ijrobp.2010.06.012.
3. Tsien C, Gomez-Hassan D, Chenietev TL, Lee J, Lawrence T, Ten Haken RK, et al. Predicting outcome of patients with high-grade gliomas after radiotherapy using quantitative analysis of T1-weighted magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 2007;67(5):1476–83. https://doi.org/10.1016/j.ijrobp.2006.11.020.
4. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003. https://doi.org/10.1056/NEJMoa043331.
5. Wick W, Weller M, van den Bent M, Sanson M, Weller M, von Deimling A, et al. MGMT testing-the challenges for biomarker-based glioma treatment. Nat Rev Neurol. 2014;10(7):372–85. https://doi.org/10.1038/nrneurol.2014.100.
6. Molenaar RJ, Verbaan D, Lamba S, Zanon C al., Boots-Sprenger SH, et al. The combination of IDH1 mutations and MGMT methylation status predicts survival in glioblastoma better than either IDH1 or MGMT alone. Neuro-Oncology. 2014 Sep;16(9):1263–73. https://doi.org/10.1093/neuonc/noz005.
7. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009 Feb 19;360(8):765–73. https://doi.org/10.1056/NEJMoa0808710.
8. Jafri NF, Clarke JL, Weinberg V, Barani UJ, Cha S. Relationship of glioblastoma multiforme to the subventricular zone is associated with survival. Neuro-Oncology. 2013 Jan;15(1):91–6. https://doi.org/10.1093/neuonc/nos260.
9. Piroth MD, Holy R, Pinkle M, Stoffels G, Kaiser HJ, Gallides N, et al. Prognostic impact of postoperative, pre-irradiation (18F)-fluorooxytyrosine uptake in glioblastoma patients treated with radiochemotherapy. Radiother Oncol. 2011;99(2):218–24. https://doi.org/10.1016/j.radonc.2011.03.006.
10. Pirotte BJ, Levivier M, Goldman S, Massager N, Wikler D, Dewitte O, et al. Positron emission tomography-guided volumetric resection of supratentorial high-grade gliomas: a survival analysis in 66 consecutive patients. Neurosurgery. 2009;64(3):471–81. https://doi.org/10.1227/NEU.000038949.94469.85.
11. Sottovia A, Spiterri I, Picciolli SG, Toulioumis A, Collins VP, Marioni JC, et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A. 2013;110(10):4009–14. https://doi.org/10.1073/pnas.1219747110.
12. Parker DJ, Wheeler HR, Clarkson A, McKenzie CA, Biggs MT, Little NS, et al. Variation of O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation in serial samples in glioblastoma. J Neuro-Oncol. 2011;606. https://doi.org/10.1093/neuonc/nou005.
13. Hawkins SE, Rajendram I, Cano-Lopez L, Yoder HH, Sonmezoglu A, et al. Impact of IDH1 and IDH2 mutations on overall survival of glioblastoma patients treated with radiochemotherapy. J Neuro-Oncol. 2015;126(3):369–76. https://doi.org/10.1007/s11060-015-1907-8.
14. Rimm DL, Pearson JT, Yung WK, Li Q, Brada M, et al. Intratumoral evolution of IDH1 and IDH2 mutations in glioblastoma patients treated with radiochemotherapy. Cancer Res. 2015;75(2):559–67. https://doi.org/10.1158/0008-5472.CAN-14-2946.
15. Li X, Rimm DL, Pearson JT, Yung WK, Li Q, Brada M, et al. Intratumoral evolution of IDH1 and IDH2 mutations in glioblastoma patients treated with radiochemotherapy. Cancer Res. 2015;75(2):559–67. https://doi.org/10.1158/0008-5472.CAN-14-2946.
18. Kelly PJ, Daumas-Duport C, Kispert DB, Kall BA, Scheithauer BW, Illig JJ. Imaging-based stereotactic serial biopsies in untreated intracranial gli neoplasms. J Neurosurg. 1987;66(6):865–74. https://doi.org/10.3171/jns.1987.66.6.0865.

19. Grosu AL, Weber WA. PET for radiation treatment planning of brain tumours. Radiother Oncol. 2010;96(3):325–7. https://doi.org/10.1016/j.radonc.2010.08.001.

20. Langen KJ, Stoffels G, Filss C, Heinezel A, Stegmayr C, Lohmann P, et al. Imaging of amino acid transport in brain tumours: positron emission tomography with O-(2-[18F]fluoroethyl-L-tyrosine (FET). Methods. 2017;130:124–34. https://doi.org/10.1016/j.jymeth.2017.05.019.

21. Jansen NL, Suchorska B, Wenter V, Schmid-Tannwald C, Todica A, Eigenbrod S, et al. Prognostic significance of dynamic 18F-FET PET in newly diagnosed astrocytic high-grade glioma. J Nucl Med. 2015;56(1):9–15. https://doi.org/10.2967/jnumed.114.144675.

22. Jansen NL, Suchorska B, Wenter V, Eigenbrod S, Schmid-Tannwald C, Zwergal A, et al. Dynamic 18F-FET PET in newly diagnosed astrocytic low-grade glioma identifies high-risk patients. J Nucl Med. 2014;55(2):198–203. https://doi.org/10.2967/jnumed.113.122333.

23. Suchorska B, Giese A, Biczok A, Unterrainer M, Weller M, Drexler M, et al. Identification of time-to-peak on dynamic 18F-FET PET as a prognostic marker specifically in IDH1/2 mutant diffuse astrocytoma. Neuro-Oncology. 2017. https://doi.org/10.1093/neuonc/nox153.

24. Calcagni ML, Galli G, Giordano A, Taralli S, Anile C, Niesen A, et al. Dynamic O-(2-[18F]fluoroethyl-L-tyrosine (F-18 FET) Methods. 2017;130:69–79. https://doi.org/10.1016/j.ijrobp.2016.06.004.

25. Popperl G, Keth FW, Mehrkens JH, Hemm J, Seelos K, Koch W, et al. PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging. 2007;34(12):1932–41. https://doi.org/10.1007/s00259-007-0475-0.

26. Albert NL, Winkelmann I, Suchorska B, Wenter V, Schmid-Tannwald C, Miller E, et al. Early static (18)F-FET-PET scans have a higher accuracy for glioma grading than the standard 20-40 min scans. Eur J Nucl Med Mol Imaging. 2016;43(6):105–14. https://doi.org/10.1007/s00259-015-3276-2.

27. Lohmann P, Herzog H, Rota Kops E, Stoffels G, Judov N, Filss C, et al. Dual-time-point O-(2-[18F]fluorocitrate)-L-tyrosine PET for grading of cerebral gliomas. Eur Radiol. 2015;25(10):3017–24. https://doi.org/10.1007/s00330-015-3691-6.

28. Harre M, Markowicz R. Pre-intradation tumour volumes defined by MRI and dual time-point 18F-FET PET for the prediction of glioblastoma multiforme recurrence: a prospective study. Radiother Oncol. 2016;120(2):241–7. https://doi.org/10.1016/j.radonc.2016.06.004.

29. Ellingson BM, Wen PY, Cloughesy TF. Modified criteria for radiographic assessment of cerebral gliomas. Brain. 2005;128:2037–45. https://doi.org/10.1093/brain/128.9.2037.

30. Harat M, Zyroksma A, et al. The Sum of Tumour-to-Brain Ratios Improves the Accuracy of Diagnosing Gliomas Using 18F-FET PET. PLoS One. 2015;10(10):e0140917. Published 2015 Oct 15. https://doi.org/10.1371/journal.pone.0140917.

31. Liang HT, Chen YW, Lai SF, Su MY, You SL, Chen LH, et al. The extent of edema and tumor synchronous invasion into the subventricular zone and corpus callosum classify outcomes and radiotherapy strategies of glioblastomas. Radiother Oncol. 2017;125(2):248–57. https://doi.org/10.1016/j.radonc.2017.09.024.

32. Malkowski B, Harat M, Zyroksma A, et al. The Sum of Tumour-to-Brain Ratios Improves the Accuracy of Diagnosing Gliomas Using 18F-FET PET. PLoS One. 2015;10(10):e0140917. Published 2015 Oct 15. https://doi.org/10.1371/journal.pone.0140917.

33. Calovolpe C, Metelius P, Mancini J, Barrie M, Béquet-Boucard C, Figarella-Branger D, et al. Independent prognostic value of pre-treatment 18F-FDG-PET in high-grade gliomas. J Neuro-Oncol. 2012;107(3):527–35. https://doi.org/10.1007/s11060-011-0771-6.

34. Spence AM, Muzi M, Swanson KR, O’Sullivan F, Rockhill JF, Rajendran JG, et al. Regional hypoxia in glioblastoma multiforme quantified with [18F]fluoromisonidazole positron emission tomography before radiotherapy: correlation with time to progression and survival. Clin Cancer Res. 2008;14(9):2623–30. https://doi.org/10.1158/1078-0432.

35. Suchorska B, Jansen NL, Linn J, Kretzschmar H, Jansen H, Eigenbrod S, et al. Biological tumor volume in 18FET-PET before radiochemotherapy correlates with survival in GBM. Neurology. 2015;84(7):710–9. https://doi.org/10.1212/212.WNL.000000000001262.

36. Wang L, Lieberman BF, Ploerek Kung HF. Synthesis and evaluation of 18F labeled FET proruds for tumor imaging. Nud Med Biol. 2014;41(1):58–67.

37. Brown TJ, Brennan MC, Li M, Church EW, Brandmeir NJ, Rakszawski KL, et al. Association of the extent of resection with survival in glioblastoma: a systematic review and meta-analysis. JAMA Oncol. 2016;2(11):1460–9. https://doi.org/10.1001/jamaoncol.2016.0988.

38. Li YM, Suki D, Hess K, Sawaya R. The influence of maximum safe resection of glioblastoma on survival in 1229 patients: can we do better than gross-total resection? J Neurosurg. 2016;124(4):977–88. https://doi.org/10.1093/jn.124.4.977.

39. Grabowski MW, Recinos PF, Nowacki AS, Schroder JL, Angelov L, Barnett GH, et al. Residual tumor volume versus extent of resection: predictors of survival after surgery for glioblastoma. J Neurosurg. 2014;121(5):1115–23. https://doi.org/10.3171/2014.7. JNS142087.

40. Moller S, Law I, Munk AC, Rosenchold P, Costa J, Poulsen HS, et al. Prognostic value of 18F-FET PET imaging in re-intradiation of high-grade glioma: results of a phase I clinical trial. Radiother Oncol. 2016;121(1):132–7. https://doi.org/10.1016/j.radonc.2016.08.014.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions