Quantum distortion caused by magneto-elastic coupling for antiferromagnetic tetrahedral cluster of spin-1/2

Ikumi Honda1 and Kiyosi Terao1,2

1Graduate School of Science and Technology
2Faculty of Science, Shinshu University, 1-1, Asahi-3, Matsumoto 390-8621, Japan
(Dated: March 23, 2022)

We study the effects of magneto-elastic coupling on the degenerate ground spin-state of the antiferromagnetic Heisenberg model on a regular tetrahedron of spin-1/2. When displacement of spin is considered as a classical variable, the degeneracy of the spin-states is lifted through the distance dependence of exchange coupling, i.e., a kind of Jahn-Teller effect takes place. On the other hand, when displacement is considered as a quantum-mechanical variable, the degeneracy of the ground spin-state is not lifted although the tetrahedron is distorted by quantum fluctuation caused by magneto-elastic coupling for one component of the normal coordinates of the doubly degenerate mode. We propose a new model for the structural phase transition of vanadium and nickel spinels: the tetragonal distortion is caused by quantum fluctuation and there exists a kind of hidden order with respect to the non-magnetic ground spin-states.

PACS numbers: 75.10.Jm, 75.40.Gb, 75.80.+q

I. INTRODUCTION

The highly degenerate antiferromagnetic ground state of the pyrochlore lattice has received considerable attention. It is interesting how the degeneracy is lifted to satisfy the Nernst-Planck theorem. Reduction of the degeneracy due to lattice distortion through the distance dependence of exchange parameter was investigated before by Terao1,2 with classical spins on the basis of the helical spin structure theory3,4 Detailed investigations into the spin Jahn-Teller or Peierls effect were given with classical spin tetramer-model by Tchernyshyov et al. and with spin-1/2 tetramer-model for vanadium-spinels by Yamashita and Ueda5,6 in the context of the resonating valence bond approach. In these works, however, the displacement of spin is represented by classical and static variables. Recently, quantum-mechanical treatment of the displacement of spin has given by the present authors7,8 for a spin-1/2 regular-triangular cluster. They have obtained distortion due to quantum fluctuation caused by the magneto-elastic coupling without lifting the degeneracy, which is a very different aspect from the Jahn-Teller mechanism through lifting the degeneracy of the ground spin-states obtained by the static treatment.

In the present paper, we investigate the effects of the magneto-elastic coupling upon the degenerate ground spin-state of antiferromagnetic (AF) Heisenberg Hamiltonian for a regular tetrahedron of spin-1/2 by treating displacement of spin quantum-mechanically. We propose a new model for the structural phase transition of vanadium and nickel spinels9,10,11 the tetragonal distortion is caused by quantum fluctuation and there exists a hidden spin order with respect to the doubly degenerate non-magnetic ground spin-states.

II. SPIN STATES

The AF Heisenberg Hamiltonian for spins on a regular tetrahedron shown in Fig. 1 is

$$H_0 = -2J_0 \sum_{\ell < \ell'} s_\ell \cdot s_{\ell'},$$

where $J_0 < 0$ and $s = 1/2$. The symmetry of H_0 is of the T_d (43m) point group. We represent 2^4 spin states by the z components of s_ℓ and classify them by total S_z as shown in Table I. The $S_z = \pm 2$ states belong to the A_1 representation. Each set of the quadruple $S_z = \pm 1$ states is reduced to $A_1 + T_2$. The hexaple $S_z = 0$ states are reduced to $A_1 + E + T_2$. We write the bases of the

![FIG. 1: Labels of spins and orientation of coordinates.](image-url)

S_z	State vectors				
2	$	++++\rangle$, $	++++\rangle$, $	++++\rangle$	
1	$	++++\rangle$, $	++++\rangle$, $	++++\rangle$, $	++++\rangle$
0	$	++++\rangle$, $	++++\rangle$, $	++++\rangle$, $	++++\rangle$
-1	$	++++\rangle$, $	++++\rangle$, $	++++\rangle$, $	++++\rangle$
-2	$	++++\rangle$			

TABLE I: Spin states and S_z.

A_1 representation. Each set of the quadruple $S_z = \pm 1$ states is reduced to $A_1 + T_2$. The hexaple $S_z = 0$ states are reduced to $A_1 + E + T_2$. We write the bases of the
representation as \(| A_1, S_z >\) for the singlet \(A_1\), \(| T_{2\tau}, S_z >\) with \(\tau = 1, 2, 3\) for the triplet \(T_2\), and \(| \eta, S_z >\) with \(\eta = u, v\) for the doublet \(E\) representations. The eigenenergies are classified by the total spin \(S\) as

\[
\begin{align*}
\mathcal{H}_0 | A_1, S_z > &= -3J_0 | A_1, S_z > & (2a) \\
\mathcal{H}_0 | T_{2\tau}, S_z > &= J_0 | T_{2\tau}, S_z > & (2b) \\
\mathcal{H}_0 | \eta > &= 3J_0 | \eta > & (2c)
\end{align*}
\]

For the AF case \((J_0 < 0)\), the ground state belongs to the doublet \(E\) representation. The spin correlations \(\langle \eta | s_\ell \cdot s_{\ell'} | \eta >\) for the \(E\) spin-states are shown in Fig. 2.

Fig. 2: \(\langle \eta | s_\ell \cdot s_{\ell'} | \eta >\) for the \(E\) spin-states.

III. MAGNETO-ELASTIC COUPLING

Assuming the exchange parameter \(J\) depends on the distance between spins, we investigate the effects of the magneto-elastic coupling on the \(E\) spin-state. We denote the small deviation of spin around the undistorted position \(R_0^\ell\) by \(u_\ell\). Normal coordinates of spins are determined by reducing the twelve-dimensional representation by \(u_\ell\)'s to \(A_1 + E + T_1 + 2T_2\). The distortions of the cluster are classified into \(A_1\) (\(Q_a\), its normal coordinate), \(T_2\) (\(Q_1, Q_2, Q_3\)) and \(E\) (\(Q_u, Q_v\)) modes after eliminating the isotropic rotation \(T_1\) and the uniform translation \(T_2\). The normal modes are written in the twelve-dimensional vector \((u_1; u_2; u_3; u_4)\) as

\[
Q_A(1, 1, 1; -1, 1, -1; 1, -1, -1)/2\sqrt{3} \quad (3)
\]

for the singlet \(A_1\) mode,

\[
\begin{align*}
Q_1(0, 1, 1; 0, 1, -1, 0, -1, 1, 0, 1) &= 2\sqrt{2}, & (4a) \\
Q_2(1, 0, 1; 0, -1, 0, -1, 1, -1, 1, 0) &= 2\sqrt{2}, & (4b) \\
Q_3(1, 1, 0; -1, 1, 0, 1, -1, 1, 0, 1) &= 2\sqrt{2} & (4c)
\end{align*}
\]

for the triplet \(T_2\) mode, and

\[
\begin{align*}
Q_u(1, 1, -2; -1, -1, -2; -1, 1, 2; 1, -1, -2) &= 2\sqrt{3}, & (5a) \\
Q_v(1, -1, 0; -1, 1, 0; -1, -1, 0; 1, 1, 0) &= 2\sqrt{2} & (5b)
\end{align*}
\]

for the doublet \(E\) mode. The \(E\) mode distortion is illustrated in Fig. 3. The bases of the irreducible rep-

Fig. 3: The \(E\)-mode distortion.

resentation made from bilinear combinations of the spin operators are

\[
f_A = \sum_{\ell < \ell'} s_\ell \cdot s_{\ell'}/\sqrt{6} \quad (6)
\]

for the \(A_1\) representation,

\[
\begin{align*}
f_1 &= (s_1 \cdot s_4 - s_2 \cdot s_3)/\sqrt{2}, & (7a) \\
f_2 &= (s_1 \cdot s_3 - s_2 \cdot s_4)/\sqrt{2}, & (7b) \\
f_2 &= (s_1 \cdot s_2 - s_3 \cdot s_4)/\sqrt{2}, & (7c)
\end{align*}
\]

for the \(T_2\) representation, and

\[
\begin{align*}
&f_u = [(s_1 + s_2) \cdot (s_3 + s_4)]/2\sqrt{3}, & (8a) \\
&f_v = (s_1 - s_2) \cdot (s_3 - s_4)/2 & (8b)
\end{align*}
\]

for the \(E\) representation. The perturbation Hamiltonian is composed of the normal vibrations and couplings of \(Q_a\)'s with \(f_a\)'s:

\[
\begin{align*}
\mathcal{H}' &= \frac{1}{2m}(P_A^2 + P_1^2 + P_2^2 + P_3^2 + P_u^2 + P_v^2) \\
&+ \frac{m}{2} \left[\omega_A^2 Q_A^2 + \omega_T^2 (Q_1^2 + Q_2^2 + Q_3^2) \\
&+ \omega_e^2 (Q_u^2 + Q_v^2) \right] \\
&- 2[Q_A J_A f_A + J_T (Q_1 f_1 + Q_2 f_2 + Q_3 f_3) \\
&+ J_E (Q_u f_u + Q_v f_v)], & (9)
\end{align*}
\]

where \(J_a\)'s are coupling constants due to the change in \(J\) by distortion. When \(J\) depends only on the distance between spins, we have

\[
J_A' = 2J', \quad J_T' = \sqrt{3} J', \quad J_E' = J'. \quad (10)
\]

where \(J' = \partial J/\partial a\) and \(a = |R_0^\ell - R_{t'}^\ell|\).

In the two dimensional subspace of the ground spin-states, \(f_a\)'s are given in the 2x2 matrix form as

\[
\begin{align*}
f_A &= -\frac{\sqrt{6}}{4} \sigma_e, \quad (11a) \\
f_u &= -\frac{\sqrt{3}}{2} \sigma_z, \quad f_v = \frac{\sqrt{3}}{2} \sigma_x, \quad (11b) \\
f_\tau &= 0, \quad \tau = 1, 2, 3, \quad (11c)
\end{align*}
\]
where σ_e, σ_x and σ_z are the unit matrix and the Pauli matrices. Moreover, the product representation $T_2 \times E$ is reduced to $T_1 + T_2$, which does not contain the E representation, hence the perturbation belong to the T_2 representation is irrelevant in the subspace of the ground spin-states.

IV. STATIC THEORY

First, we consider the effect of the static displacement of spin. Now, the perturbation is

$$\mathcal{H}' = \frac{m}{2} \left[\omega A^2 Q^2_A + \omega E^2 (Q^2_u + Q^2_v) \right] - 2 \left[J'_A Q_A f_A + J'_E (Q_u f_u + Q_v f_v) \right].$$

(12)

In the subspace of $|\eta\rangle$’s,

$$\mathcal{H}' = \frac{m}{2} \left[\omega A^2 Q^2_A + \omega E^2 (Q^2_u + Q^2_v) \right] + \frac{\sqrt{3} J'_A Q_A}{\sqrt{2}} + \sqrt{3} J'_E (Q_u \sigma_z + Q_v \sigma_x),$$

(13)

Then the eigenvalues are

$$\delta E' = \frac{m}{2} \left[\omega A^2 Q^2_A + \omega E^2 (Q^2_u + Q^2_v) \right] + \frac{\sqrt{3} J'_A Q_A}{\sqrt{2}} + \frac{\sqrt{3} J'_E}{\sqrt{2}} Q^2_u + Q^2_v.$$

(14)

The degeneracy of the ground spin-state is lifted. Minimizing $\delta E'$, we have

$$\delta E'_{\text{min}} = \left. \delta E' \right|_{Q_A = -\sqrt{\frac{3}{2} \frac{J'_A}{m \omega A^2}}, Q^2_u + Q^2_v = \frac{\sqrt{3} J'_E}{m \omega E^2}},$$

(15a)

at

$$Q_A = -\sqrt{\frac{3}{2} \frac{J'_A}{m \omega A^2}}, \quad \sqrt{Q^2_u + Q^2_v} = \frac{\sqrt{3} J'_E}{m \omega E^2}.$$

(15b)

The degeneracy of the ground spin-state is lifted by distortion through $Q^2_u + Q^2_v$ although the ratio of Q_u and Q_v is arbitrary up to quadratic order as shown by Yamashita and Ueda. The coefficients of the linear combination for the separated spin-state depend on the ratio of Q_u and Q_v, so the perturbed ground state is non-degenerate with respect to the spin state but not unique with respect to the shape of the cluster. Thus a kind of Jahn-Teller mechanism is obtained by the static model although the energy gain due to the distortion is determined by $Q^2_u + Q^2_v$. These results are compared with the quantum mechanical results in the next section.

V. DYNAMICAL THEORY

Next, we consider the effect of dynamical displacement of spin. By making use of the creation and annihilation operators, b_a^\dagger and b_a, for normal mode Q_α, we rewrite Eq. (4) as

$$\mathcal{H'} = \sum_\alpha \left[\hbar \omega_\alpha (b_a^\dagger b_a + \frac{1}{2}) \right] - \frac{\hbar}{2 m \omega_\alpha} J'_\alpha (b_a + b_a^\dagger) f_\alpha].$$

(16)

Introducing modified operators

$$\tilde{b}_\alpha = b_a - \frac{\sqrt{2} J'_\alpha f_\alpha}{\sqrt{m \hbar \omega_\alpha}}, \quad \tilde{b}_a^\dagger = b_a^\dagger - \frac{\sqrt{2} J'_\alpha f_\alpha}{\sqrt{m \hbar \omega_\alpha}},$$

(17)

we have

$$\mathcal{H'} = \sum_\alpha \left[\hbar \omega_\alpha (\tilde{b}_\alpha^\dagger \tilde{b}_\alpha + \frac{1}{2}) - \frac{2 \hbar \omega_\alpha}{m \omega_\alpha^2} J'_\alpha^2 f_\alpha^2 \right].$$

(18)

Commutation relations of the modified operators are

$$[\tilde{b}_\alpha, \tilde{b}_\alpha^\dagger] = 1, \quad [\tilde{b}_\alpha, \tilde{b}_\beta^\dagger] = [\tilde{b}_\alpha^\dagger, \tilde{b}_\beta] = 0,$$

(19)

so \tilde{b}_α, \tilde{b}_α^\dagger are the Boson operators. Because the commutation relation of f_α and f_γ is

$$[f_\alpha, f_\gamma] = i \sqrt{3}/2 \left((s_1 - s_2) \cdot (s_3 \times s_4) + (s_3 - s_4) \cdot (s_1 \times s_2) \right),$$

(20)

we have

$$[\tilde{b}_\alpha, \tilde{b}_\gamma^\dagger] = [\tilde{b}_\alpha^\dagger, \tilde{b}_\gamma] = [\tilde{b}_\alpha, \tilde{b}_\gamma^\dagger],$$

(21)

which characterizes the chirality of the spin tetrahedron. Although the description of the excited states consistent with Eq. (21) are complicated, the ground state with respect to \tilde{b}_α is simply defined as

$$\tilde{b}_\alpha |\Gamma, S_z > = 0,$$

(22)

which is equivalent with

$$b_\alpha |\Gamma, S_z > = 2 \sqrt{m \hbar \omega_\alpha} \left(J'_\alpha f_\alpha |\Gamma, S_z > \right).$$

(23)

In the subspace of the ground spin-states $|\eta\rangle >$’s,

$$\mathcal{H'} = \sum_\alpha \left[-\frac{2}{m \omega_\alpha^2} J'_\alpha^2 f_\alpha^2 + \frac{\hbar \omega_\alpha}{2} \right],$$

(24)

where f_{α^2}’s are proportional to σ_a, the 2\times2 unit matrix, by Eqs. (11). Then, the change in energy is

$$\delta E' = \frac{3}{4 m \omega_A^2 J'_A^2 - 3 \frac{J'_E^2}{m \omega_E^2}}.$$

(25)
Note that the degeneracy is not lifted although the energy is decreased by distortions. The contribution of the A_1 mode to $\delta E'$ obtained here is equal with that by the static model, and the contribution of the E mode is twice that by the static model.

In the subspace of $|E\eta\rangle_0$'s,

$$Q_A = -\sqrt{\frac{3}{2}} \frac{J'_E}{m\omega E} \sigma_z,$$

(26)

$$Q_u = -\frac{\sqrt{3}J'_E}{m\omega E^2} \sigma_z, \quad Q_v = -\frac{\sqrt{3}J'_E}{m\omega E} \sigma_x.$$

(27)

The distortion due to the A_1 mode in $|E\eta\rangle_0$ is

$$<\eta\rangle|Q_A|E\eta\rangle_0 = -\sqrt{\frac{3}{2}} \frac{J'_E}{2m\omega E^2}$$

(28)

for $\eta = u$ and v, and those due to the E_u mode for $|E_u\rangle_0$ and $|E\nu\rangle_0$ states are

$$<\eta\rangle|Q_u|E\eta\rangle_0 = \frac{\sqrt{3}J'_E}{m\omega E^2},$$

(29a)

$$<\eta\rangle|Q_v|E\eta\rangle_0 = \frac{\sqrt{3}J'_E}{2m\omega E^2},$$

(29b)

which have opposite sign according to the spin-states $|E\eta\rangle_0$ with $\eta = u$ or v. In contrast to Q_A and Q_u, Q_v is non-diagonal and its expectation values are vanishing:

$$<\eta\rangle|Q_v|E\eta\rangle_0 = 0,$$

i.e., the distortion due to E_v mode is smeared out and can not be observed.

The fluctuation is estimated as

$$<\eta\rangle|Q_v^2|E\eta\rangle_0 = \frac{3J'_E^2}{m^2\omega^2E^4} + \frac{h}{2m\omega E}$$

(31)

for both $\eta = u$ and v. The term with h comes from the zero-point motion, and the first term is equal to

$$<\eta\rangle|Q_u|E\eta\rangle_0^2$$

by Eq. (29). Although the tetrahedron distorts into different shapes depending on the spin-states $|E\eta\rangle_0$ with $\eta = u$ or v, the spin-states remain doubly degenerate.

The expectation value of the squared displacement of the E mode distortion is

$$<\eta\rangle|Q_u^2 + Q_v^2|E\eta\rangle_0 = \frac{3J'_E^2}{2m^2\omega^2E^4} + \frac{h}{m\omega E}.$$

(32)

On the other hand, the sum of squared expectation values is

$$<\eta\rangle|Q_u|E\eta\rangle_0^2 + <\eta\rangle|Q_v|E\eta\rangle_0^2 = \frac{3J'_E^2}{m^2\omega^2E^4}$$

(33)

which is half of the first term in Eq. (32) apart from the contribution of the zero-point motion and equal to the value obtained by the static model, Eq. (15b). The change in energy due to the E mode distortion obtained by dynamical model is twice that obtained by static model because of the quantum fluctuation.

Expanding J up to the quadratic terms of Q_α’s, we obtain the coupling with f_A for the A_1 representation as

$$\mathcal{H}'[A_1] = -\left[J''_{AA} Q_A^2 + \frac{J''_{AE}}{\sqrt{2}} (Q_u^2 + Q_v^2) \right] + \frac{J''_{AT}}{\sqrt{3}} (Q_1^2 + Q_2^2 + Q_3^2) f_A,$$

(34)

with f_1, f_2 and f_3 for the T_2 representation as

$$\mathcal{H}'[T_2] = -\sqrt{2} J''_{TA} (Q_A Q_1 f_1 + Q_A Q_2 f_2 + Q_A Q_3 f_3)$$

$$\frac{J''_{TT}}{\sqrt{2}} \left[(Q_1 Q_2 + Q_2 Q_3) f_1 + (Q_3 Q_1 + Q_1 Q_2) f_2 + 2(Q_1 Q_3 + Q_3 Q_1) f_3 \right]$$

(35)

and with f_u and f_v for the E representation as

$$\mathcal{H}'[E] = -\sqrt{2} J''_{TE} (Q_A Q_u f_u + Q_A Q_v f_v)$$

$$\frac{J''_{EE}}{\sqrt{2}} \left[(Q_u^2 - Q_v^2) f_u + (Q_u Q_v + Q_v Q_u) f_v \right]$$

$$-J''_{ET} \left(\frac{Q_1^2 + Q_2^2 - 2Q_3^2}{\sqrt{6}} f_u + \frac{Q_1^2 - Q_2^2}{\sqrt{2}} f_v \right).$$

(36)

When J is a function of only the distance between spins, $J''_{AA} = 2\sqrt{6} J'/3$, $J''_{AE} = J''_{AT}/3$, $J''_{EE} = 3\sqrt{2}(J'/a + 2J''/3)$, $J''_{ET} = -2\sqrt{3} J''_{TE}$, $J''_{ET} = -J''_{EE}/\sqrt{6}$, $J''_{TT} = 2J''$, (37)

where $J'' = \partial^2 J/\partial a^2$.

In $\mathcal{H}'[A_1]$, $Q_u^2 + Q_v^2$ is proportional to σ_z by Eq. (21) and Q_α^2’s vanish apart from the zero-point motion by Eqs. (11e) and (28). In $\mathcal{H}'[E]$, $Q_u^2 - Q_v^2$ and $Q_u Q_v + Q_v Q_u$ vanish by Eq. (27). The last term vanishes by Eqs. (11e) and (28). Thus, \mathcal{H}' is proportional to σ_z in the subspace of $|E\eta S_z|_>\rangle$’s. Note that if Q_α is considered classical, $Q_u Q_v + Q_v Q_u$ does not vanish, so the degeneracy is lifted by f_v. After straightforward calculations, we obtain

$$\delta E'' = \left[\frac{3 \sqrt{6}}{8} J''_{AA} \right] + \frac{\sqrt{3}h}{8m\omega_A} J''_{AT} + \frac{3 \sqrt{3}}{2} \frac{J''_{EE}}{m^2\omega^2} + \frac{\sqrt{3}h}{4m\omega_A} J''_{ET}$$

$$+ \left[\frac{3 \sqrt{3}}{2} \frac{J''_{EE}}{m^2\omega^2} \right] + \frac{\sqrt{3}h}{4m\omega_A} J''_{ET} + \frac{3 \sqrt{3}}{2} \frac{J''_{EE} J''_{EE}}{(m\omega_A \sqrt{e})^2}.$$

(38)

Now let us consider about a new mechanism for the tetragonal distortion at the phase transition without AF ordering in vanadium and nickel spinels with
Yamashita and Ueda have considered the mechanism by breaking up the tetrahedron of spin-1 composing pyrochlore structure into the tetramer of spin-1/2 and by taking into account the spin-lattice coupling by the static model. They have explained the mechanism as a result of splitting of the degeneracy of the ground spin-state due to distortion of the cluster by considering higher terms more than quadratic terms to settle the ratio of Q_u and Q_v.

On the basis of the present dynamical model, the distortion of Q_u component emerges because the distortion of Q_v component is smeared out by the quantum-mechanical fluctuation. According to our model, the tetragonal distortion at the structural phase transition implies the occurrence of hidden ordering of the nonmagnetic spin-state $|\eta\rangle_0$, $\eta = u$ or v, because the sign of $<E[\eta]|Q_u|\eta\rangle_0$ for $\eta = u$ or v is opposite to each other.

VI. DISCUSSION AND CONCLUSIONS

We have studied the frustrating quantum spin-1/2 system on the regular tetrahedron by taking into account the effect of distortion up to the quadratic terms. When the distortion is represented by the classical variables, the degeneracy of the ground spin-state is lifted by the distance dependence of exchange parameter. The energy of separated ground spin-state is determined through $Q_u^2 + Q_v^2$, hence the ratio of Q_u and Q_v is left arbitrary, which gives continuous degeneracy with respect to the shape of the tetrahedron for the separated spin-state.

When the distortion is represented by the quantum-mechanical variables, the degeneracy of the modified spin-states $|\eta\rangle_0$ and $|\eta\rangle_0$ is not lifted by the magneto-elastic coupling although the cluster is distorted. The change in energy due to the distortion obtained by dynamical model is twice that obtained by the static model.

The distortions by Q_A (A_1 mode) and Q_u (E mode) do not fluctuate and their expectation values are equal to the results obtained by the static model apart from the contribution of the zero point motion. On the other hand, Q_v (E mode) is smeared out by the quantum fluctuation and does not contribute to the deformation in appearance. Then the shape of the distorted tetrahedron is determined by Q_u. The distortion of the tetrahedron is attributed to the quantum fluctuation caused by magneto-elastic coupling.

We have proposed a new model for the structural phase transition without AF ordering in vanadium and nickel spinels. The tetragonal distortion is caused by quantum fluctuation in contrast to the spin Jahn-Teller effect by Yamashita and Ueda. According to our model, the tetragonal distortion at the structural phase transition implies the occurrence of hidden ordering of the nonmagnetic spin-states $|\eta\rangle_0$ or $|\eta\rangle_0$.

* Present address: Ceratech Japan Co., Ltd.
500 Shinonoi Okada, Nagano 381-2295, Japan
† Electronic address: terk005@shinshu-u.ac.jp

1. P. W. Anderson, Phys. Rev. 102, 1008 (1956).
2. J. M. Luttinger and L. Tisza, Phys. Rev. 70, 954 (1946).
3. K. Terao, J. Phys. Soc. Jpn 65, 1413 (1996).
4. K. Terao, Physica 329-333, 1067 (2003).
5. A. Yoshimori, J. Phys. Soc. Jpn 14, 807 (1959).
6. T. Nagamiya, in Solid State Physics Vol. 20, eds. F. Seitz, D. Turnbull and H. Ehrenreich (Academic Press, New York and London, 1967), pp. 305-411.
7. O. Tchernyshyov, R. Moessner and S. L. Sondhi, Phys. Rev. Lett. 88, 67203 (2002).
8. O. Tchernyshyov, R. Moessner and S. L. Sondhi, Phys. Rev. B 66, 64403 (2002).
9. Y. Yamashita and K. Ueda, Phys. Rev. Lett. 85, 4960 (2000).
10. P. W. Anderson, Science 235, 1196 (1987).
11. I. Honda and K. Terao, J. Phys. Soc. Jpn 75, 044704 (2006).
12. Y. Ueda, N. Fujiwara and H. Yasuoka, J. Phys. Soc. Jpn 66, 778 (1997).
13. H. Mamiya, M. Onodera, T. Furubayashi, J. Tang and I. Nakatani, J. Appl. Phys. 81, 5289 (1997).
14. M. K. Crawford, R. L. Harlow, P. L. Lee, Y. Zhang, J. Hornadaly, R. Flippen, Q. Huang, J. W. Lynn, R. Stevens, B. F. Woodfield, J. Boerio-Goates and R. A. Fisher, Phys. Rev. B 68, 220408(R) (2003).