Incidence of hypophosphatemia in patients with inflammatory bowel disease treated with ferric carboxymaltose or iron isomaltoside

Trond Espen Detlie1,2 | Jonas Christoffer Lindstrøm2,3 | Marte Eide Jahnsen1 | Elisabeth Finnes4 | Heinz Zoller5 | Bjørn Moum2,4 | Jørgen Jahnsen1,2

1Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
2Institute of Clinical Medicine, University of Oslo, Oslo, Norway
3Health Services Research Unit, Akershus University Hospital, Lørenskog, Norway
4Division of Medicine, Department of Gastroenterology, Oslo University Hospital Ullevål, Oslo, Norway
5Department of Medicine II, Gastroenterology and Hepatology, Medical University of Innsbruck, Innsbruck, Austria

Correspondence
Trond Espen Detlie, Department of Gastroenterology, Akershus University Hospital, Sykehusveien 25, 1478 Lørenskog, Norway.
Email: t.e.detlie@medisin.uio.no

Funding information
Pharmacosmos A/S, Grant/Award Number: N/A

Summary
Background: Iron deficiency and iron deficiency anaemia are common complications in inflammatory bowel disease (IBD). In patients with moderate-to-severe anaemia, oral iron intolerance or ineffectiveness of oral iron, ferric carboxymaltose and iron isomaltoside are widely used. Hypophosphatemia is a side effect of both preparations.
Aims: To investigate the occurrence of hypophosphatemia in IBD patients with iron deficiency/iron deficiency anaemia treated with high-dose intravenous iron.
Methods: A prospective observational study of adult IBD patients with iron deficiency/iron deficiency anaemia was conducted at two study sites where patients received 1000 mg of ferric carboxymaltose or iron isomaltoside. At baseline, weeks 2 and 6, blood and faecal samples were collected. The primary endpoint was to determine the incidence of moderate-to-severe hypophosphatemia. Secondary endpoints included the total incidence of hypophosphatemia, possible risk factors for hypophosphatemia, and response to single-dose intravenous iron.
Results: One hundred and thirty patients were included. In the per-protocol set, 52 patients received ferric carboxymaltose and 54 patients received iron isomaltoside. Ferric carboxymaltose treatment had a significantly higher incidence of moderate-to-severe hypophosphatemia compared with iron isomaltoside at week 2 (56.9% vs 5.7%, P < 0.001) and a higher incidence at week 6 (13.7% vs 1.9%, P = 0.054). The overall incidence of hypophosphatemia was significantly higher with ferric carboxymaltose compared with iron isomaltoside treatment at weeks 2 (72.5% vs 11.3%, P < 0.001) and 6 (21.6% vs 3.7%, P = 0.013).
Conclusions: In IBD patients with iron deficiency/iron deficiency anaemia, ferric carboxymaltose was associated with higher incidence, severity and persistence of hypophosphatemia compared with iron isomaltoside. The presence of moderate-to-severe hypophosphatemia beyond 6 weeks is a clinical concern that requires further investigation.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
© 2019 The Authors. Alimentary Pharmacology & Therapeutics Published by John Wiley & Sons Ltd.
A common complication of inflammatory bowel disease (IBD) is anaemia, which in adults with IBD, prevalence is approximately 60% at the time of diagnosis and approximately 30%-40% at any other time. Iron deficiency has been identified as a major cause of anaemia. Typical symptoms of iron deficiency anaemia include fatigue, headache, dyspnoea, vertigo, and tachycardia, but iron deficiency anaemia can also manifest as restless legs syndrome, and reduced cognitive and physical performance. Iron deficiency anaemia, therefore, negatively impacts the quality of life of patients with IBD.

Iron deficiency and iron deficiency anaemia should be treated with iron supplementation. The European Crohn’s and Colitis Organisation (ECCO) guidelines recommend high-dose intravenous iron over oral supplementation because intravenous iron is more effective, delivers a faster response, and is better tolerated. However, iron deficiency and iron deficiency anaemia have been found to recur after therapy with intravenous iron in IBD patients (median 19 months for iron deficiency and 10 months for iron deficiency anaemia), indicating a need for repeated infusions.

Ferric carboxymaltose (Ferinject®; Vifor Pharma Ltd) and iron isomaltoside (Monofer®; Pharmacosmos A/S) are the most widely used high-dose intravenous iron preparations in Europe. Hypophosphatemia is a recognised but not well-known side effect of both intravenous iron preparations. There are numerous published case reports that document the risk of hypophosphatemia associated with ferric carboxymaltose treatment with potential severe complications. Data from iron isomaltoside clinical trials suggest lower rates of hypophosphatemia with iron isomaltoside than have been observed in similarly designed trials of ferric carboxymaltose.

Phosphate is essential in human physiology. An individual with a low serum phosphate level (<0.65 mmol/L) is considered to be at risk of experiencing clinical symptoms including fatigue, proximal muscle weakness, and bone pain. However, only a few case reports have documented specific acute clinical symptoms associated with hypophosphatemia. Furthermore, these symptoms are difficult to distinguish from the clinical manifestations of IBD and iron deficiency/iron deficiency anaemia. If hypophosphatemia is severe, potential complications include respiratory failure, rhabdomyolysis, haemolysis and left ventricular dysfunction. Additionally, an increasing number of published case reports have shown that prolonged hypophosphatemia can result in osteomalacia.

The aim of this study was to investigate the rate of hypophosphatemia after infusion of a single dose of intravenous iron (1000 mg) in adults with IBD treated with either ferric carboxymaltose or iron isomaltoside.

2 | MATERIALS AND METHODS

2.1 | Study design and patient population

This prospective observational study was conducted between 1 February 2017 and 1 July 2018. Adult IBD patients (>18 years), including both Crohn’s disease and ulcerative colitis, with iron deficiency were recruited at two separate study sites in the southeast region of Norway. These two study sites use different intravenous iron preparations to treat iron deficiency—ferric carboxymaltose is used at Oslo University Hospital Ullevål and iron isomaltoside is used at Akershus University Hospital. All patients provided written informed consent after receiving oral and written information about the study. The consent was necessary due to Norwegian law, the planned extra study visits and collected study samples; and the registration of data.

Both hospitals have a well-defined catchment area and the two centres do not differ in regard to patient demographics, or diagnostic, treatment and follow-up protocols except in the choice of high-dose intravenous iron treatment. In Norway, all IBD patients are primarily treated in outpatient clinics.

Patients diagnosed with iron deficiency/iron deficiency anaemia (according to the ECCO guidelines), as a consequence of IBD, were eligible for inclusion into the study. The decision to treat with high-dose intravenous iron was made independently of the study. Eligible patients were prescribed 1000 mg of high-dose intravenous iron, ferric carboxymaltose (50 mg/mL) or iron isomaltoside (100 mg/mL), administered as a single dose. Patients who had received high-dose intravenous iron treatment or a packed red blood cell transfusion within 3 months of study entry, or for whom high-dose intravenous iron treatment was contraindicated, were excluded from the study. Patients prescribed ferric carboxymaltose or iron isomaltoside at a dose other than 1000 mg were excluded (to ensure comparable dosing between the two intravenous iron treatment groups). Pregnant or breastfeeding women were also excluded.

Enrolment continued until at least 50 consecutive patients with complete adherence to the study protocol were recruited at each site (a total of more than 100 patients). The enrolment period was followed by a prospective observation period, which lasted ≤7 weeks for each patient and included three study visits.

Study inclusion was performed at baseline, at which time intravenous iron treatment was administered. Patients attended the clinic at week 2 (10-15 days) and at week 6 (5-7 weeks) following intravenous iron treatment. Each patient could receive only one infusion within an approximate 2-month period after consenting to study participation.

2.2 | Study assessments and data collection

Blood analysis at every visit included haemoglobin (Hb), mean corpuscular volume, mean corpuscular Hb, thrombocytes, reticulocytes, reticulocyte Hb content, iron, ferritin, transferrin saturation, transferrin receptor, C-reactive protein (CRP), magnesium, calcium, ionised calcium, creatinine, alkaline phosphatase, albumin, phosphate and vitamin D (25-hydroxyvitamin D).

Faecal calprotectin was measured in stool samples taken within 4 weeks before treatment administration and again in the timeframe of 2 weeks before or 4 weeks after the final visit (Calprotectin ELISA; Buhlmann Laboratories AG, Basel, Switzerland).

Disease activity was assessed at each study visit using the Harvey Bradshaw Index for Crohn’s disease, or the partial Mayo Score for ulcerative colitis.
Information regarding demographic data, such as age, sex, body weight, IBD phenotype and subphenotype, disease history and activity, and previous intravenous iron treatments were collected.

All demographic information was collected from the patient medical records and was systematically entered into an electronic case report form.

Safety was evaluated by recording the number and severity of adverse drug reactions (ADRs). ADRs and pregnancies were registered and reported to the relevant authorities by the investigator, in accordance with the national reporting systems. All events were documented in the patients’ medical notes and in the study records.

The study was completed when all enrolled patients had received intravenous iron administration, had attended all three study visits, and had fulfilled the requirements of the study protocol.

2.3 Study outcomes

The primary endpoint was the proportion of patients with moderate to severe hypophosphatemia, defined as a phosphate level <0.65 mmol/L (or <2.0 mg/dL), following a single 1000 mg intravenous dose of ferric carboxymaltose or iron isomaltoside.

The criteria for hypophosphatemia followed the UK National Health Service (NHS) Guideline for the Treatment of Hypophosphatemia in Adults, published in March 2016. The NHS guidelines categorise hypophosphatemia as mild (serum phosphate level: 0.65-0.79 mmol/L), moderate (0.32-0.64 mmol/L), and severe (<0.32 mmol/L) (normal range: 0.8-1.45 mmol/L).

The key secondary endpoints were to determine the proportion of patients with any hypophosphatemia, to identify possible serologically or clinically related risk factors for the development of hypophosphatemia, and to evaluate response to high-dose (1000 mg) intravenous iron administered in a single dose in regard to iron deficiency/iron deficiency anaemia correction.

2.4 Data analysis

Assuming incidences of hypophosphatemia of 49% with ferric carboxymaltose and 15% with iron isomaltoside (based on data from previous clinical studies) and using a power of 80%, 49 patients per study site were required to detect a difference between ferric carboxymaltose and iron isomaltoside at a significance level of 5%.

Data are presented descriptively for continuous variables, as mean (SD) and median (SD), and as the number of exposed patients (with percentages) for categorical variables.

Differences in proportions were analysed using the Newcomb’s test, and differences in continuous variables were tested using t-tests. The statistical analyses were performed in R.

2.5 Ethical considerations

The study protocol was approved by the relevant local regulatory and ethics committees, and adhered to the applicable laws on data protection. An application was sent to the EudraCT system with the application no. 2016-003476-41 for registration, but the application was deemed to be unnecessary since there were no indications of a medical intervention study.

Study nurses, who interacted with the patients at each study visit, were blinded to the results of laboratory analyses. The primary investigator at each study centre was not blinded for safety reasons, as they did not interact with the patients.

3 RESULTS

The total number of patients recruited and the total number of patients adherent to the study protocol are shown in Figure 1. The demographics of the 52 patients at Oslo University Hospital Ullevål and 54 patients at Akershus University Hospital are shown.

FIGURE 1 Patient flow
in Table 1. There were no significant differences between the two treatment cohorts in terms of demographics, except that there were significantly fewer patients with ulcerative proctitis in the iron isomaltoside treatment group.

Haemoglobin and serum iron parameters at baseline indicate less severe iron deficiency anaemia in the ferric carboxymaltose treatment group compared with the iron isomaltoside treatment group (Table 2). Baseline phosphate levels were lower in the ferric carboxymaltose treatment group, but all within normal range. CRP and faecal calprotectin levels were slightly more elevated in the iron isomaltoside treatment group. Otherwise, the baseline serological data were similar between the treatment groups (Table 2).

With respect to the primary endpoint, at week 2, 56.9% of patients treated with ferric carboxymaltose experienced moderate to severe hypophosphatemia after a single 1000 mg dose compared with 5.7% of the patients treated with iron isomaltoside (P < 0.001). At week 6, 13.7% of patients in the ferric carboxymaltose treatment group continued to demonstrate moderate to severe hypophosphatemia compared with 1.9% in the iron isomaltoside treatment group (P = 0.054; Figure 2 and Table 3). The total incidence of hypophosphatemia (<0.8 mmol/L) was significantly more common with ferric carboxymaltose treatment at weeks 2 and 6 (72.5% and 21.6%, respectively) compared with iron isomaltoside treatment (11.3% and 3.7%, respectively; week 2: P < 0.001, week 6: P = 0.013; Figure 2 and Table 3).

After the end of the predefined observation period, 50% of the patients in the ferric carboxymaltose treatment group were available for subsequent assessment of phosphate levels until normalisation. In this subset of patients, the time to spontaneous normalisation ranged from additionally 1-6 months.

Binary logistic regression analysis did not reveal an association in relation to risk of developing hypophosphatemia, with sex, age, diagnosis, disease phenotype, disease activity, or grade of inflammation, in either the ferric carboxymaltose or the iron isomaltoside treatment groups.

Haemoglobin and serum iron parameters for individual patients in the ferric carboxymaltose and iron isomaltoside treatment groups at baseline and at the follow-up visits are shown in Figure 3A–E. The mean changes from baseline in Hb and serum iron parameters over time after administration of a single 1000 mg dose of ferric carboxymaltose or iron isomaltoside are shown in Figure S1A–E. There was a nonsignificant trend for a greater response to iron isomaltoside treatment compared with ferric carboxymaltose treatment. However, at the end of the study period, <50% of patients in both of the treatment groups met the therapeutic goal of normalised Hb and iron stores.

There were no ADRs registered in this study, except for the development of hypophosphatemia as reported.

TABLE 1 Patient demographics at baseline

	Ferric carboxymaltose (n = 52)	Iron isomaltoside (n = 54)
Sex, female, n (%)	29 (55.8)	25 (46.3)
Age (y), mean (SD)	40.6 (14.1)	39.5 (13.5)
IBD phenotype, n (%)		
Crohn’s disease	19 (36.5)	28 (51.9)
Ulcerative colitis	33 (63.5)	26 (48.1)
Crohn’s disease subphenotype, n (%)^a		
Ileal	7 (36.8)	6 (21.4)
Colonic	2 (10.5)	7 (25.0)
Ileocolonic	10 (52.6)	15 (53.6)
Ulcerative colitis subphenotype, n (%)^b		
Ulcerative proctitis	9 (27.3)	1 (3.8)^c
Left sided	11 (33.3)	5 (19.2)
Extensive	13 (39.4)	20 (76.9)
Disease duration (y), mean (SD)	10.6 (9.8)	11.4 (10.6)
Prior surgery, n (%)		
Yes	14 (26.9)	14 (25.9)
No	38 (73.1)	40 (74.1)
Harvey Bradshaw Index		
Mean (SD)	4.11 (4.7)	5.71 (5.2)
Median	2.0	4.0
Partial Mayo Score		
Mean (SD)	2.09 (2.3)	2.50 (2.4)
Median	1.0	1.0

^aFerric carboxymaltose, n = 19; iron isomaltoside, n = 28; total, n = 47.
^bFerric carboxymaltose, n = 33; iron isomaltoside, n = 26; total, n = 59.
^cP < 0.01 vs Ferric carboxymaltose treatment group.

4 | DISCUSSION

The results of this real-world study show a high incidence and persistence of hypophosphatemia in a cohort of IBD patients after administration of a single 1000 mg intravenous dose of ferric carboxymaltose. Hypophosphatemia was observed significantly more frequently in patients receiving ferric carboxymaltose than in those receiving iron isomaltoside, at weeks 2 and 6 after treatment. After 6 weeks, only two patients treated with iron isomaltoside presented with hypophosphatemia; both cases were of mild to moderate severity.

Binary regression analysis did not demonstrate any correlation between hypophosphatemia and grade of inflammation, phenotype and subphenotype of disease, or concomitant medication. Additionally, there was no correlation to baseline phosphate levels and the drop of value or the severity of hypophosphatemia at weeks 2 and 6. The difference in baseline phosphate levels in the two treatment groups seems therefore to have no clinical relevance. The occurrence of hypophosphatemia does not appear to be a side effect of intravenous iron that is unique to patients with IBD.²¹ Individuals with iron deficiency anaemia caused by chronic kidney disease appear to be at a lower risk of developing hypophosphatemia after ferric carboxymaltose treatment compared with other aetiologies.²¹
TABLE 2 Serological and faecal parameters at baseline, and at weeks 2 and 6 after a single 1000 mg intravenous dose of ferric carboxymaltose or iron isomaltoside

	Baseline	Week 2	Week 6			
	Ferric carboxymaltose	Iron isomaltoside	Ferric carboxymaltose	Iron isomaltoside	Ferric carboxymaltose	Iron isomaltoside
Hb (g/dL)	12.4 (1.6)	11.6 (1.8)	12.8 (1.4)	12.7 (1.5)	13.3 (1.4)	13.4 (1.5)
MCV (fl)	86.5 (6.8)	81.4 (7.1)	87.9 (6.1)	83.9 (6.4)	89.1 (6.4)	84.6 (6.3)
MCH (pg)	28.1 (3.0)	26.0 (2.9)	28.5 (2.9)	27.0 (2.6)	29.2 (2.7)	27.7 (2.5)
Thrombocytes (10^9/L)	330.4 (113.1)	334.0 (108.6)	316.8 (106.4)	299.5 (76.0)	302.2 (106.6)	281.4 (87.2)
Reticulocytes (10^9/L)	57.8 (19.9)	45.9 (15.9)	91.3 (31.0)	71.9 (25.0)	63.3 (25.0)	43.4 (17.5)
Reticulocyte Hb content (pg)	29.9 (4.1)	25.6 (5.6)	32.7 (3.4)	32.0 (3.9)	32.4 (4.0)	31.2 (3.7)
Iron (μmol/L)	11.2 (6.1)	8.3 (5.8)	16.2 (6.7)	15.3 (6.7)	16.3 (6.5)	13.4 (6.6)
Transferrin saturation (%)	15.4 (7.9)	10.8 (7.4)	27.0 (10.6)	24.2 (10.4)	28.5 (11.5)	22.3 (11.8)
Transferrin receptor (mg/L)	4.0 (2.3)	6.5 (4.6)	3.2 (2.4)	4.8 (3.4)	3.2 (2.3)	3.7 (3.0)
Ferritin (μg/L)	24.3 (21.9)	19.6 (28.0)	494.2 (204.9)	316.1 (139.7)	192.8 (107.1)	126.6 (90.7)
CRP (mg/L)	3.4 (4.1)	7.3 (12.4)	3.3 (4.9)	4.9 (7.6)	3.2 (4.8)	4.8 (6.2)
CRP (mg/L), median (SD)	1.8 (4.1)	2.0 (12.4)	1.2 (1.9)	1.0 (7.6)	1.4 (1.8)	2.0 (6.2)
Creatinine (μmol/L)	70.7 (13.2)	73.2 (14.4)	65.3 (12.3)	74.7 (14.6)	69.9 (13.7)	75.5 (14.4)
ALP (U/L)	78.2 (39.9)	76.3 (32.2)	78.2 (34.4)	78.5 (36.9)	76.4 (33.2)	77.4 (37.5)
Calcium (mmol/L)	2.31 (0.11)	2.33 (0.12)	2.24 (0.08)	2.35 (0.12)	2.33 (0.11)	2.36 (0.19)
Ionised calcium (mmol/L)	1.21 (0.05)	1.23 (0.04)	1.20 (0.04)	1.23 (0.05)	1.21 (0.05)	1.25 (0.05)
Magnesium (mmol/L)	0.84 (0.07)	0.82 (0.08)	0.83 (0.06)	0.84 (0.08)	0.84 (0.07)	0.83 (0.08)
Phosphate (mmol/L)	1.07 (0.17)	1.15 (0.17)	0.65 (0.25)	1.07 (0.24)	1.00 (0.29)	1.14 (0.20)
Albumin (g/L)	42.7 (4.4)	41.7 (4.0)	43.3 (3.8)	42.5 (4.0)	44.2 (4.2)	42.8 (4.5)
25-hydroxyvitamin D (nmol/L)	58.3 (24.4)	63.5 (21.9)	57.1 (23.1)	64.6 (20.0)	57.5 (20.8)	62.8 (21.1)
Faecal calprotectin (mg/kg)	851 (1100)	1040 (1365)	NA	NA	726 (1205)	707 (956)
Faecal calprotectin (mg/kg), median (SD)	298 (1100)	562 (1365)	NA	NA	364 (1205)	318 (956)

Values are mean (SD) unless otherwise stated.
Abbreviations: ALP, alkaline phosphatase; CRP, C-reactive protein; Hb, haemoglobin; MCH, mean corpuscular haemoglobin; MCV, mean corpuscular volume; NA, not applicable; SD, standard deviation.

FIGURE 2 Phosphate levels in IBD patients with iron deficiency/iron deficiency anaemia at baseline and at weeks 2 and 6 after a single 1000 mg intravenous dose of ferric carboxymaltose or iron isomaltoside. Horizontal bars represent group medians.
FIGURE 3 A-E. Haemoglobin and serum iron parameters in IBD patients with iron deficiency/iron deficiency anaemia at baseline and at weeks 2 and 6 after a single 1000 mg intravenous dose of ferric carboxymaltose or iron isomaltoside. Horizontal bars represent group medians.
However, in this study, all patients had creatinine values within the normal range.

This study demonstrates that ferric carboxymaltose and iron isomaltoside are both effective in the correction of iron deficiency and iron deficiency anaemia. The nonsignificant trend for greater effectiveness observed with iron isomaltoside treatment may be due to lower mean Hb levels and more severe iron deficiency at baseline in the iron isomaltoside treatment group compared with the ferric carboxymaltose treatment group. However, at the end of the study period, <50% of patients in both of the treatment groups met the therapeutic goal of normalised Hb and iron stores. When the simplified dosing method is used to calculate the iron need (see the ECCO guidelines), patients with iron deficiency/iron deficiency anaemia can be assigned to one of four dosing groups (see Table 4). In this study, the majority of patients had an iron need >1000 mg before treatment (Table 4). Compared with the ferric carboxymaltose treatment group, a greater proportion of the patients in the iron isomaltoside treatment group had an iron need >1000 mg (Table 4). At 6 weeks following administration of 1000 mg intravenous iron, 58% of patients needed additional iron supplementation (Table 4). These findings are in accordance with the results of the NiMo study that showed a trend towards underdosing of iron at a dose of 1000 mg.35

Anaemia is one of the most common extra-intestinal manifestations in IBD,1 and one of the most common health-related problems worldwide.36 Awareness of the benefits of treating iron deficiency and iron deficiency anaemia with high-dose intravenous iron across various medical and surgical conditions is steadily increasing, with improvements reported in patient quality of life and disease outcomes, and reductions in morbidity.37-39 However, the finding in this study of persistent moderate to severe hypophosphatemia beyond 6 weeks after intravenous iron treatment with ferric carboxymaltose is a clinical concern that requires further investigation.
If ferric carboxymaltose is considered for use to correct iron deficiency or iron deficiency anaemia in a clinical setting, it is important to measure serum phosphate concentrations before treatment. If the patient has pre-existing hypophosphatemia, ferric carboxymaltose should be avoided. Monitoring serum phosphate concentrations at 2 and 6 weeks after treatment with intravenous iron is reasonable, in order to identify patients that need close follow-up or phosphate supplementation until normalisation of phosphate levels. However, the mechanism associated with the development of hypophosphatemia after ferric carboxymaltose treatment involves increased urinary phosphate excretion resulting from increased circulating concentrations of fibroblast growth factor 23 (FGF23), rendering sustainable correction of hypophosphatemia by oral or intravenous phosphate administration very difficult.

Repeated infusions with ferric carboxymaltose probably increase the risk of developing severe symptoms of hypophosphatemia, such as osteomalacia. Therefore, it is important to investigate bone and muscle pain reported by patients with chronic conditions, such as IBD, who may be receiving repeated infusions of high-dose intravenous iron. In this study, there were no reports of specific symptoms related to hypophosphatemia during the observation period.

In general, monitoring phosphate levels for longer than 6 weeks after administration of intravenous iron may be unnecessary. However, it is important to consider longer term monitoring of phosphate levels in certain at-risk patient populations. This may be particularly valuable in patients who receive repeated infusions and in circumstances where hypophosphatemia is relevant in the short term, for example, pre-operative optimisation.

Potential limitations of this study include the lack of specific questionnaires for hypophosphatemia-related symptoms or physical tests for hypophosphatemia. Therefore, methods of detecting the condition are limited to blood sampling and urine testing. Although, since only the results of the laboratory tests were analysed, this could be considered a strength as this potentially reduces subjective bias. However, not all study personnel were blinded to the results of the biochemical analysis. Another potential limitation of the study is that only one of the intravenous iron manufacturers invited to support this study agreed to be involved.

ACKNOWLEDGEMENTS
We would like to acknowledge and thank Petra Wondrak at the Medical University of Innsbruck, Austria, for her great assistance and work with the analysis of 1.25-(OH)-Vitamin-D and Fibroblast Growth Factor 23 (FGF23) in this study. This study has been financed by Akershus University Hospital, Oslo University Hospital Ulleval, and the University of Oslo. Financial support has been received from Pharmacosmos A/S.

Declaration of personal interests: Trond Espen Detlie has served as a speaker, consultant or advisory board member for AbbVie, Pharmacosmos, Ferring, and Tillotts. He has received research grant from AbbVie and Pharmacosmos. Marte Eide Jahnsen has received lecture fees from Pharmacosmos. Heinz Zoller has served as a speaker, consultant or advisory board member for Abbvie.
AUTHORSHIP

Guarantor of the article: Trond Espen Detlie.

Author contributions: Trond Espen Detlie: planned, designed and conducted the study, interpreted the data, drafted and critically revised the manuscript. Jonas Christoffer Lindström: performed the statistical analysis and critically revised the manuscript. Marte Eide Jahnsen: conducted the study and critically revised the manuscript. Elisabeth Finnes: conducted the study and critically revised the manuscript. Heinz Zoller: interpreted the data, helped to draft and critically revised the manuscript. Bjørn Moum: contributed to the design and conducted the study, interpreted the data, helped to draft and critically revised the manuscript. Jørgen Jahnsen: planned, designed and conducted the study, interpreted the data, helped to draft and critically revised the manuscript. All authors approved the final version of this article, including the authorship list.

ORCID

Trond Espen Detlie https://orcid.org/0000-0002-1576-5298
Heinz Zoller https://orcid.org/0000-0003-1794-422X

REFERENCES

1. Dignass AU, Gasche C, Bettenworth D, et al.: European Crohn’s and Colitis Organisation (ECCO). European consensus on the diagnosis and management of iron deficiency and anaemia in inflammatory bowel diseases. J Crohns Colitis. 2015;9:211-222.

2. Goodhand JR, Kamperidis N, Rao A, et al. Prevalence and management of anaemia in children, adolescents, and adults with inflammatory bowel disease. Inflamm Bowel Dis. 2012;18:513-519.

3. Stein J, Hartmann F, Dignass AU. Diagnosis and management of iron deficiency anaemia in patients with IBD. Nat Rev Gastroenterol Hepatol. 2010;7:599-610.

4. Wells CW, Lewis S, Barton JR, Corbett S. Effects of changes in hemoglobin level on quality of life and cognitive function in inflammatory bowel disease patients. Inflamm Bowel Dis. 2006;12:123-130.

5. Kuhnig S, Teischinger L, Dejaco C, Waldhor T, Gasche C. Rapid recurrence of IBD-associated anaemia and iron deficiency after intravenous iron sucrose and erythropoietin treatment. Am J Gastroenterol. 2009;104:1460-1467.

6. Zoller H, Schaefer B, Glodny B. Iron-induced hypophosphatemia: an emerging complication. Curr Opin Nephrol Hypertens. 2017;26:266-275.

7. Schaefer B, Württiger P, Finkenstedt A, et al. Choice of high-dose intravenous iron preparation determines hypophosphatemia risk. PLoS ONE. 2016;11:e0167146

8. Bartko J, Roschger P, Zandieh S, Brehm A, Zwerina J, Klaushofer K. Hypophosphatemia, severe bone pain, gait disturbance, and fatigue fractures after iron substitution in inflammatory bowel disease: a case report. J Bone Miner Res. 2018;33:534-539.

9. Schaefer B, Glodny B, Zoller H. Blood and bone loser. Gastroenterology. 2017;152:e-e66.

10. Klein K, Asaad S, Econs M, Rubin JE. Severe FGF23-based hypophosphataemic osteomalacia due to ferric carboxymaltose administration. BMJ Case Rep. 2018;2018.

11. Urbina T, Belkhir R, Rossi G, et al. Iron supplementation-induced phosphaturic osteomalacia: FGF23 is the culprit. J Bone Miner Res. 2018;33:540-542.

12. Reyes M, Diamond T. Hypophosphataemic rickets due to parenteral ferrous carboxymaltose in a young man with Crohn disease and iron deficiency: a case report and review of literature. J Clin Case Rep. 2017;7:931.

13. Phan T, Liebman SEA case of hypophosphatemia due to ferric carboxymaltose induced renal phosphate wasting. Abstract presented at the American Nephrology Society Kidney Week; 31 October–5 November. New Orleans, LA, USA; 2017.

14. Auerbach M, Thomsen LL. A single infusion of iron isomaltoside 1000 allows a more rapid hemoglobin increment than multiple doses of iron sucrose with a similar safety profile in patients with iron deficiency anemia. Abstract presented at the American Society of Hematology Annual Meeting & Exposition; December 1–4. San Diego, CA, USA:2018.

15. Bhandari S, Kalra PA, Kothari J, et al. A randomized, open-label trial of iron isomaltoside 1000 (Monofer®) compared with iron sucrose (Venoferr®) as maintenance therapy in haemodialysis patients. Nephrol Dial Transplant. 2015;30:1577-1589.

16. Birgegård G, Henry D, Glaspy J, Chopra R, Thomsen LL, Auerbach M. A randomized noninferiority trial of intravenous iron isomaltoside versus oral iron sulfate in patients with nonmyeloid malignancies and anemia receiving chemotherapy: the PROFOUND trial. Pharmacotherapy. 2016;36:402-414.

17. Derman R, Roman E, Modiano MR, Achebe MM, Thomsen LL, Auerbach M. A randomized trial of iron isomaltoside versus iron sucrose in patients with iron deficiency anemia. Am J Hematol. 2017;92:286-291.

18. Kalra PA, Bhandari S. Efficacy and safety of iron isomaltoside (Monofer®) in the management of patients with iron deficiency anemia. Int J Nephrol Renovasc Dis. 2016;9:53-64.

19. Van Wyck DB, Mangione A, Morrison J, Hadley PE, Jehle JA, Goodnough LT. Large-dose intravenous ferric carboxymaltose injection for iron deficiency anemia in heavy uterine bleeding: a randomized, controlled trial. Transfusion. 2009;49:2719-2728.

20. Wolf M, Koch TA, Bregman DB. Effects of iron deficiency anaemia and its treatment on fibroblast growth factor 23 and phosphate homeostasis in women. J Bone Miner Res. 2013;28:1793-1803.

21. Wolf M, Chertow GM, Macdougall Ic, Kaper R, Krop J, Strauss W. Randomized trial of intravenous iron isomaltoside versus iron sucrose in patients with iron deficiency anemia. Am J Hematol. 2017;92:286-291.

22. Kalra PA, Bhandari S. Efficacy and safety of iron isomaltoside (Monofer®) in the management of patients with iron deficiency anemia. Int J Nephrol Renovasc Dis. 2016;9:53-64.

23. Van Wyck DB, Mangione A, Morrison J, Hadley PE, Jehle JA, Goodnough LT. Large-dose intravenous ferric carboxymaltose injection for iron deficiency anemia in heavy uterine bleeding: a randomized, controlled trial. Transfusion. 2009;49:2719-2728.

24. Wolfe M, Koch TA, Bregman DB. Effects of iron deficiency anaemia and its treatment on fibroblast growth factor 23 and phosphate homeostasis in women. J Bone Miner Res. 2013;28:1793-1803.

25. Wolfe M, Chertow GM, Macdougall Ic, Kaper R, Krop J, Strauss W. Randomized trial of intravenous iron isomaltoside versus iron sucrose in patients with iron deficiency anemia. Am J Hematol. 2017;92:286-291.

26. Kalra PA, Bhandari S. Efficacy and safety of iron isomaltoside (Monofer®) in the management of patients with iron deficiency anemia. Int J Nephrol Renovasc Dis. 2016;9:53-64.
27. Burckhardt P. Eisen-induzierte osteomalazie. Osteologie. 2018;27:20-23.
28. Bart G, Glemarec J, Lerhun M, et al. A rusty man...or how iron can be responsible for bone pain. Symptomatic hypophosphataemic osteomalacia after iron carboxymaltose treatment. The Rheumatologist’s Newsletter. No. 428; 2017.
29. Etchenique MP, Diehl M, Kitaigrodsky AV, et al. Hypophosphatemia and osteomalacia induced by intravenous iron. Bone. 2016;89:65.
30. Moore K, Kildahl-Andersen O, Kildahl-Andersen R, Tjønnfjord GE. Uncommon adverse effect of a common medication. Tidsskr Nor Legeforen. 2013;2:165.
31. Poursac N. Hypophosphatemia and elevated FGF23: it is not always an oncogenic phosphate diabetes patient. Rhumatoos. 2015;12:61-64.
32. Sangrós Sahún MJ, Goñi Gironés E, Camarero Salazar A, Estébanez C, Lozano Martínez ME. Symptomatic hypophosphataemic osteomalacia secondary to the treatment with iron carboxymaltose detected in bone scintigraphy. Rev Esp Med Nucl Imagen Mol. 2016;35:391-393.
33. Tournis S, Michopoulos S, Makris K, Terpos E. Re: hypophosphatemia, severe bone pain, gait disturbance, and fatigue fractures after iron substitution in inflammatory bowel disease: a case report. J Bone Miner Res. 2018;33:543-545.
34. National Health Service. Guideline for the Treatment of Hypophosphatemia in Adults. March 2016. https://www.nuh.nhs.uk/download.cfm?doc=docm93jijm4n3161.pdf&ver=5196. Accessed March 4, 2019.
35. Frigstad SO, Haaber A, Bajor A, et al. The NIMO Scandinavian study: a prospective observational study of iron isomaltoside treatment in patients with iron deficiency. Gastroenterol Res Pract. 2017;2017:4585164.
36. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1545-1602.
37. McDonagh T, Diam T, Doehner W, et al. Screening, diagnosis and treatment of iron deficiency in chronic heart failure: putting the 2016 European Society of Cardiology heart failure guidelines into clinical practice. Eur J Heart Fail. 2018;20:1664-1672.
38. Aapro M, Béguin Y, Bokemeyer C, et al. ESMO Guidelines Committee. Management of anaemia and iron deficiency in patients with cancer: ESMO clinical practice guidelines. Ann Oncol. 2018;29(Suppl. 4):iv96-iv110.
39. Muñoz M, Acheson AG, Auerbach M, et al. International consensus statement on the peri-operative management of anaemia and iron deficiency. Anaesthesia. 2017:72:233-247.

SUPPORTING INFORMATION

Additional supporting information will be found online in the Supporting Information section at the end of the article.

How to cite this article: Detlie TE, Lindstrøm JC, Jahnsen ME, et al. Incidence of hypophosphatemia in patients with inflammatory bowel disease treated with ferric carboxymaltose or iron isomaltoside. Aliment Pharmacol Ther. 2019;50:397–406. https://doi.org/10.1111/apt.15386