On non-orientable surfaces embedded in 4-manifolds

David Auckly and Rustam Sadykov

Abstract
We find conditions under which a non-orientable closed surface smoothly embedded into an orientable 4-manifold X can be represented by a connected sum of an embedded closed surface in X and an unknotted projective plane in a 4-sphere. This allows us to extend the Gabai 4-dimensional light bulb theorem and the Auckly–Kim–Melvin–Ruberman–Schwartz ‘one is enough’ theorem to the case of non-orientable surfaces.

1. Introduction
The goal of the present note is to determine conditions under which a non-orientable closed surface S smoothly embedded into a 4-manifold X admits a splitting into the connected sum of an embedded surface S' and an unknotted projective plane P^2 in a 4-sphere, that is, there exists a diffeomorphism of pairs

$$(X, S) \cong (X, S') \# (S^4, P^2).$$

(1)

The important ingredient for the existence of the splitting is the existence of a geometric dual for S. We say that a sphere G embedded into X is a geometric dual for a connected surface S if the normal Euler number of G is trivial and G intersects S transversally at a unique point. We note that some authors, including Gabai [6] and Freedman–Quinn [5], use the term (embedded) transverse sphere to refer to a geometric dual. The surface S is G-inessential if the induced homomorphism $\pi_1(S \setminus G) \to \pi_1(X \setminus G)$ is trivial. When there is such a geometric dual, any P^2 summand in S can be split off.

Theorem 1. Let S be a connected non-orientable closed surface embedded in an orientable 4-manifold X. Suppose that S is G-inessential for a geometric dual G. Let P^2 be a projective plane summand of S. Then the pair (X, S) splits as in (1) with P^2 unknotted, and with the surface S' still G-inessential for the geometric dual G.

Remark 1. Let $M \subset S^3 \subset S^4$ be the standard Möbius band. The boundary of M can be pushed radially into the upper hemisphere of S^4 where it bounds a unique disc D^2 up to isotopy. The union of the Möbius band and the disc D^2 is an embedded, unknotted projective plane P^2 in S^4. Depending on the sign of the half-twist of the Möbius band, there are two non-isotopic unknotted projective planes, P^2_+ and P^2_-. These can be detected by one of two invariants: the normal Euler number or the Brown invariant; see §2.

Remark 2. If the Euler characteristic of S is odd, then we may choose the projective plane P^2 in S so that the surface S' in the splitting (1) is orientable. When the Euler characteristic...
of S is even, we may split off two unknotted projective planes leaving an orientable surface. If the Euler characteristic is less than one, we may split off an unknotted projective plane so that the resulting surface S' is still non-orientable. It also follows that there is a diffeomorphism of pairs
\[(X, S) \cong (X, S^2) \# k(S^4, P^2) \# \ell(S^4, P^2),\]
where S^2 is a 2-sphere embedded into X, and $k + \ell$ is the cross-cap number of S.

As a consequence of the splitting theorem (Theorem 1), we show that a version of the recent Gabai light bulb theorem (Theorem 8) holds true for non-orientable surfaces as well.

Theorem 2. Let X be an orientable 4-manifold such that $\pi_1(X)$ has no 2-torsion. Let S_0 and S_1 be two homotopic embedded G-inessential closed surfaces with common geometric dual G. Suppose that the normal Euler numbers of S_0 and S_1 agree. Suppose that the surface S_0 agrees in a neighborhood of $S_0 \cap G$ with S_1. Then the surfaces are ambiently isotopic via an isotopy that fixes the geometric dual pointwise.

In the orientable case considered by Gabai the normal Euler number does not play a role. However, this invariant is critical when the surfaces are non-orientable, see Remark 3. Theorem 2 has a number of applications.

One source of applications is to stabilization of smoothly knotted surfaces embedded in 4-manifolds. If (X, S) is a pair consisting of a 4-manifold and an embedded surface, one has four types of stabilizations: external stabilization $(X, S)\#(S^2 \times S^2, \emptyset)$, pairwise stabilization $(X, S)\#(S^2 \times S^2, \{pt\} \times S^2)$, internal stabilization $(X, S)\#(S^4, T^2)$ and non-orientable internal stabilization $(X, S)\#(S^4, P^2)$. Baykur and Sumukjian proved that a sufficient number of internal stabilizations results in isotopic surfaces [3]. In [9], Kamada shows that two embedded surfaces become isotopic after enough internal non-orientable stabilizations.

We say that an embedded surface S in a 4-manifold X is π_1-trivial if the homomorphism $\pi_1 S \to \pi_1 X$ induced by the inclusion $S \subset X$ is trivial. The hypothesis that a π_1-trivial surface S is G-inessential for a geometric dual G is always satisfied after taking the connected sum of the pair (X, S) with $(S^2 \times S^2, \{\ast\} \times S^2)$ which immediately implies the following.

Corollary 3. Let X be an orientable 4-manifold such that $\pi_1(X)$ has no 2-torsion. Then regularly homotopic, π_1-trivial, embedded surfaces in X become isotopic after just one pairwise stabilization.

Quinn [16] and Perron [13, 14] show that topologically isotopic surfaces in simply connected 4-manifolds become isotopic after sufficiently many external stabilizations. Auckly, Kim, Melvin, Ruberman and Schwartz proved that just one external stabilization was enough for ordinary topologically isotopic orientable surfaces [1]. A second consequence of the splitting theorem is a non-orientable version of this ‘one is enough’ theorem.

Theorem 4. Let S_0 and S_1 be regularly homotopic (possibly non-orientable), embedded surfaces in an orientable 4-manifold X, each with simply connected complement. If the homology class $[S_0] = [S_1]$ is ordinary, then S_0 is isotopic to S_1 in $X\#(S^2 \times S^2)$. If the homology class is characteristic, then the surfaces are isotopic in $X\#(S^2\overline{\times} S^2)$.

We note that by Theorem 7 homotopic embeddings of a closed connected orientable surface into an orientable 4-manifold are always regularly homotopic. If the surface is non-orientable, then homotopic embeddings are regularly homotopic provided that the normal Euler numbers of the embeddings agree; see Theorem 7.
In §2 we review the notion of an unknotted projected plane as well as the definition of
the normal Euler number. In §3 we prove the splitting theorem (Theorem 1). The hypothesis
in Theorem 1 that there exists a geometric dual \(G \) is essential. In §4 we give examples of
surfaces with no geometric duals that do not admit splittings. In general, the isotopy class
of the surface \(S \# R \) in the pair \((X, S) \# (Y, R)\) may change when \(S \) and \(R \) are changed by isotopy.
In contrast, in §4 we show that the isotopy class of \(S \# R \) is well defined when \(Y \) is a sphere, see
Lemma 6. Lemma 6 is essential for the proof of the Gabai theorem for non-orientable surfaces
(Theorem 2). Another preliminary statement is proved in §5 where we show that homotopic
surfaces with the same normal Euler numbers are regularly homotopic. Theorem 2 is proved
in §6. Finally, Theorem 4 is proved in §7.
Throughout the paper we work in smooth category. All 4-manifolds are orientable but
not necessarily closed. Unless stated otherwise, all surfaces in 4-manifolds are embedded
and connected.

We thank Rob Schneiderman for generously sharing his detailed thoughts on earlier drafts
of this paper, including proposing Examples 5 and 6, and providing Figures 12, 13 and 15–17.
We are also grateful to Victor Turchin and referees for helpful suggestions and comments.

2. Background

A pair of manifolds \((X, S)\) is a manifold \(X\) together with an embedded submanifold \(S\). The
connected sum of pairs \([11]\) is denoted by

\[(X_0, S_0) \# (X_1, S_1) = (X_0 \# X_1, S_0 \# S_1).\]

Given a possibly non-orientable surface \(S\) embedded in an oriented 4-manifold \(X\), one may
define the normal Euler number \(e(S)\). Take a small generic displacement \(\tilde{S}\) of \(S\) in the normal
directions and count the algebraic number of intersection points in \(S \cap \tilde{S}\). The sign of an
intersection point \(p\) is positive (respectively, negative) if \((e_1, e_2, \tilde{e}_1, \tilde{e}_2)\) is positively (respectively,
negatively) oriented, where \(e_1, e_2\) is an arbitrary basis of the tangent space \(T_pS\) and \(\tilde{e}_1\) and \(\tilde{e}_2\)
the image of \(e_1\) and \(e_2\) in \(T_p\tilde{S}\).

Remark 3. The normal Euler number is well defined up to regular homotopy, that is, homotopy through immersions.

The positive unknotted projective plane \(P^2_+\) in \(\mathbb{R}^4 \subset S^4\) is obtained by capping off the gray
right-handed Möbius band in Figure 1 with a disc \(D\) in the upper half space \(\mathbb{R}^4_+ = [0, \infty) \times \mathbb{R}^3\).
There is a displacement \(\tilde{D}\) of \(D\) in \(\mathbb{R}^4_+\) that has an empty intersection with \(D\). It is bounded
The normal Euler number of P_2^2 is -2. Not shown is the vector \tilde{e}_2 directed into the interior of the lower half space \mathbb{R}^4_\downarrow. This curve has zero linking number with the boundary of the Möbius band. The red curve may be extended to the lower half space \mathbb{R}^4_\downarrow and then capped with a red Möbius band to obtain a displacement \tilde{P}_2^2. The only points of intersection are the two green points in Figures 1 and 2. Orienting the tangent space of the grey Möbius band at a green point by vectors e_1 and e_2 and taking displaced vectors \tilde{e}_1 and \tilde{e}_2 in the tangent space of the red Möbius band, we can see that the two intersection points are counted negatively. Therefore, the normal Euler number of P_2^2 is negative 2. The negative unknotted projective plane P_2^2 is obtained by capping off a left-handed Möbius band with a disc in the upper half space \mathbb{R}^4_\uparrow. Its normal Euler number is 2.

Remark 4. Let r be the linear transformation of \mathbb{R}^4 given by $(t, x, y, z) \mapsto (-t, -x, y, z)$. It takes the projective plane obtained by capping off the right-handed Möbius band with a disk in the upper half-space to the projective plane obtained by capping off a left-handed Möbius band with a disc in the lower half space \mathbb{R}^4_\downarrow.

Remark 5. There is a different invariant defined when S is a characteristic (possibly non-orientable) closed surface embedded in an orientable 4-manifold X. It is called the Brown invariant [4]. The Brown invariant will not play a role in this paper.

3. The splitting theorem

In this section we prove the main splitting theorem. We begin with a simple observation that any splitting is determined by a special disk.

Lemma 5. Let S be a closed surface embedded into a possibly non-orientable 4-manifold X. Suppose that there is a closed 4-disc $U \subset X$ such that the intersection $U \cap S$ is a Möbius band M and ∂U is an embedded submanifold of X intersecting S transversally. Suppose that ∂M is an unknot in $\partial U \cong S^3$. Then (X, S) is diffeomorphic to the connected sum of pairs of manifolds (X, S') and (S^4, P_2^2) where S' is a surface obtained from $S \setminus \text{Int}(U)$ by capping off its only boundary component with a 2-disc, where $\text{Int}(U)$ is the interior of U.

Proof. Since ∂M is an unknot in ∂U, the boundary of each of the pairs $(X \setminus U, S \setminus U)$ and $(U, U \cap S)$ is diffeomorphic to the boundary of the pair (D^4, D^2) of standard discs. In other words, the boundary of each of the two pairs can be capped off by the pair of standard discs to produce pairs (X, S') and (S^4, P_2^2) whose connected sum is diffeomorphic to (X, S). □

In practice, the closed disc U in Lemma 5 is constructed by taking a closed regular neighborhood of a 2-disc D such that ∂D is the central closed curve of the Möbius band M, the interior of D does not contain points of S and D is nowhere tangent to S. If such a disc D exists, then we say that D is the core of the splitting of Lemma 5.
Suppose a connected surface S possesses a geometric dual G. Given another surface $R \subset X$, an intersection point $p \in S \cap R$ can be tubed off using G along a path γ in S from the point p to $\hat{G} \cap S$, where \hat{G} is a parallel copy of G; see Figure 3. The result of this procedure is a new surface \hat{S} obtained from R by taking the union of R and a copy \hat{G}, removing a disc neighborhood D_G of $\hat{G} \cap S$ in \hat{G}, removing a disc neighborhood D_S of p in R, attaching a tube $S^1 \times [0,1]$ along γ to the two new boundary components of $R \setminus D_S$ and $\hat{G} \setminus D_G$, and smoothing the corners.

Proof of Theorem 1. Let α be a simple closed orientation reversing curve in S that is disjoint from G. Since S is G-inessential, the curve α bounds an immersed disc D in $X \setminus G$.

Using finger movers, boundary twists and tubing with the geometric dual, we may convert D into the core of a splitting. Indeed, we may join any self-intersection point p of D with a point in ∂D by a curve and use a finger move to eliminate the self-intersection point p of D; see Figure 4. By repeating this procedure we obtain an embedded disc $D \subset X \setminus G$ that may intersect S in interior points. Since $S \setminus \alpha$ is path connected, for each point p in $D \cap S$ there is a path from p to the unique intersection point $G \cap S$. Thus, we may use the geometric dual G to tube off the intersection points of D with S; see Figure 3. Thus there exists an embedded 2-disc D in $X \setminus G$ such that the intersection $D \cap S$ is the curve α. Furthermore, we may assume that D approaches S orthogonally (with respect to a Riemannian metric on X).

In what follows we will use standard techniques of Kirby calculus including handle notation, handle slides and handle twisting. We refer the reader to an excellent exposition by Gompf–Stipsicz; see [7, Chapters 4, 5]. A neighborhood $S^1 \times D^3$ of α in X is diffeomorphic to the complement in D^4 of a neighborhood of D^2. This is depicted by a dotted circle representing the boundary of the disc D^2; see Figure 5. Such a neighborhood of α already contains the
Figure 5. A neighborhood of the surface S, dual disc G and an embedded disc D.

Figure 6. A twist of the 1-handle.

Möbius band neighborhood of α in S. With respect to a trivialization of $S^1 \times D^2$, it twists $k + 1/2$ times for some integer k. The rest of a regular neighborhood of S in X is obtained from the described neighborhood of α by attaching 1-handles that correspond to thickenings of 1-handles of S and one 2-handle h_S which corresponds to the thickening of the 2-cell in a cell decomposition of S corresponding to a perfect Morse function. A regular neighborhood of a geometric dual contributes a 2-handle attached along a meridian of S with zero framing. A regular neighborhood of the disc D also contributes a 2-handle h_D attached along a circle that passes over the 1-handle h_1 once and which, \textit{a priori}, could be linked with the attaching circle of h_S. Using the geometric dual G, the attaching circle of h_D can be unlinked from the attaching circle of h_S. Furthermore, since the attaching circle of h_D is isotopic to α, it is unknotted. We denote by m and n the framings of the attaching circles of the 2-handles h_D and h_S, respectively.

Giving one of the attaching discs of the 1-handle a full left rotation results in linking the attaching circles of h_D with h_S as well as decreasing simultaneously m and k by 1 and n by 4; see Figure 6. (A right rotation has the opposite effect.) Thus, we may assume that k is 0 or -1, corresponding to $\pm 1/2$ twists, and m is even. If $k = 0$ (respectively, $k = -1$) and m is odd, then a full -1 rotation (respectively, $+1$ rotation) of the 1-handle results in even m and $k = -1$ (respectively, 0).
Figure 7. Sliding the 2-handle h_D over the 1-handle links the attaching sphere h_D with the attaching sphere h_S and changes the framing by ± 2.

Sliding the attaching circle of h_D along h_1, links the attaching circles of h_D and h_S and changes the framing m by ± 2; see Figure 7. In view of the geometric dual, we may again unlink the attaching circles h_D from h_S. To summarize, we may assume that in Figure 5, the twisting number k is 0 or -1, and the framing m is 0.

Let U denote a closed regular neighborhood of the disc D; then U itself is a closed 4-disc. Without loss of generality, we may assume that the attaching sphere for h_S is in ∂U. Since $m = 0$ and k is 0 or -1, it follows that the attaching sphere for h_S is an unknot. Theorem 1 now follows from Lemma 5.

4. Problems with splitting and sums

4.1. Non-existence and non-uniqueness of splittings

In the absence of a geometric dual the splitting surgery along arbitrary 1-sided curves may not be possible; see Example 1.

EXAMPLE 1. According to the Massey theorem [12], there exists an embedding of a closed non-orientable surface $S \subset S^4$ of Euler characteristic χ with normal Euler number $\nu = 2\chi - 4, 2\chi, \ldots, 4 - 2\chi$. We may choose an embedding so that $\nu \neq \pm 2$. Suppose that there exists a splitting surgery representing (S^4, S) by a connected sum of (S^4, S') and (S^4, P^2_{\pm}), where S' is a closed orientable surface. Since the normal Euler number of P^2_{\pm} is ∓ 2 and the normal Euler number of a closed orientable surface embedded in S^4 is trivial, we deduce that the normal Euler number of their connected sum S is ± 2, which contradicts the assumption that $\nu \neq \pm 2$. Therefore, such a splitting surgery does not exist.

In fact it may be the case that no splitting is possible as in the following example.

EXAMPLE 2. The rational elliptic surface has a cusp fiber F. In Kirby calculus, a neighborhood of this fiber is obtained by attaching a 0-framed 2-handle to D^4 along a right-handed trefoil. The right handed trefoil bounds an obvious Möbius band. Capping the Möbius band with the core of the 2-handle results in an embedded P^2 representing the fiber class $[F]$. Note that this class is characteristic. A splitting of the form

$$(E(1), P^2) \cong (E(1), S^2) \# (S^4, P^2)$$

would imply the existence of a smoothly embedded sphere representing the fiber class $[F]$ in $E(1)$ contradicting the Kervaire–Milnor theorem [10].

When splitting is possible, it need not be unique. Indeed changing the homotopy class of the core of the splitting can change the integral homology class of the summands. In Example 3 we describe a general way to get inequivalent splittings of a map.
Example 3. Suppose that D is a core of a splitting of a non-orientable surface S in an orientable 4-manifold X. Suppose that the splitting results in the decomposition

$$(X, S) \cong (X, S'_D) \# (S^4, P_\pm),$$

where S'_D is an orientable surface. Let A be a homotopically non-trivial embedded sphere in $X \setminus (S \cup D)$ with trivial normal bundle. Consider the splitting with the core $D \# A$,

$$(X, S) \cong (X, S'_D \# A) \# (S^4, P_\pm).$$

Then $[S'_D \# A] = [S'_D] + 2[A]$, where the orientation of A agrees with the orientation of $D \# A$.

In the last example, the \mathbb{Z}_2 homology classes of the surfaces $S'_D \# A$ and S'_D in the decomposition agree. However, the integral homology classes of the surfaces are not the same. Thus, Example 3 shows that the connected sum decomposition of pairs is not unique. This should not be surprising as the connected sum decomposition of manifolds is not unique in 4-dimensions. We now give one more example where by changing the core of the splitting we are able to change from splitting off a copy of P_+ to splitting off a copy of P_-.

Example 4. Let X denote the manifold $\mathbb{C}P^2 \# (S^2 \times S^2)$ and S the submanifold $S^2 \times \{0\}$ in the second factor $S^2 \times S^2$ of X. The projective plane in $(X, S) \# (S^4, P_\pm)$ has geometric dual $\{\ast\} \times S^2$ in the connected factor $S^2 \times S^2$ of X. We claim that we can split off either P_+ or P_-. Indeed, the P_\pm-splitting is obvious. To describe the P_\pm-splitting, let D denote the core of the P_\pm-splitting. We note that this corresponds to $k = 0$ and $m = 0$ in Figure 5 using the trivialization of D. Replacing D with its connected sum with $\mathbb{C}P^1 \subset \mathbb{C}P^2$, results in a model corresponding to $k = 0$ and $m = 1$; see Figure 8 where the 2-handle corresponding to $\mathbb{C}P^1$ is denoted by H. To view the neighborhood in the trivialization of the new disk we apply a twist to the 1-handle. This model corresponds to $k = -1$ and $m = 0$; see Figure 9. Now we may slide the handle $D + H$ along the 2-handle $-G$ twice to obtain the core for a P_\pm-summand. In other words,

$$(X, S) \# (S^4, P_\pm) \cong (X, S') \# (S^4, P_\pm).$$

The normal Euler number of P_\pm is 2, while the normal Euler number of P_\pm is -2. Consequently, the normal Euler number of S' is -4. In fact, $[S'] = [S] + 2[\mathbb{C}P^1] - 4[\{\ast\} \times S^2]$ in the homology group $H_2(\mathbb{C}P^2 \# S^2 \times S^2; \mathbb{Z})$.

Figure 8. The handle $D + u$ of the connected sum of the disc D with $\mathbb{C}P^1$.

This provides an example of how changing the core of the splitting can lead to different decompositions.
The connected sum of two manifolds X and Y is defined by removing coordinate open balls $D_X \subset X$ and $D_Y \subset Y$, and then identifying the new boundaries in $X \setminus D_X$ and $Y \setminus D_Y$ appropriately.

4.2. Connected sums of pairs

In general, connected sums of pairs are not well defined up to isotopy. However, connected sums are well defined under hypothesis of Lemma 6. In this subsection we will prove Lemma 6; it will be used in the proof of Theorem 2.

The connected sum of pairs of manifolds is defined similarly by means of pairs of balls. We say that $\left(D_X, D_S \right) \subset (X,S)$ is a pair of coordinate open balls if \bar{D}_X, \bar{D}_S is an embedded pair of closed discs, and ∂D_X intersects S along ∂D_S, and the pair (D_X, D_S) is parametrized by a diffeomorphism from the standard pair of unit balls in $(\mathbb{R}^4, \mathbb{R}^2)$. The connected sum of pairs (X,S) and (Y,R) is defined by removing pairs of coordinate open discs $(D_X, D_S) \subset (X,S)$ and $(D_Y, D_R) \subset (Y,R)$ and then identifying the new boundaries appropriately.

In this paper we are interested in internal sums, which are defined by taking the connected sum with (Y,R) where R is a surface embedded in $Y = S^4$. In this case, without loss of generality we may assume that D_Y is the lower hemisphere, and identify $Y \setminus D_Y$ with a closed coordinate ball. Then $X \# S^4$ is canonically diffeomorphic to the original manifold X as the connected sum operation replaces the coordinate open ball D_X with the interior of the coordinate ball $S^4 \setminus D_Y$. We will write $S\#_i R$ for the resulting surface in $X = X \# S^4$ when $i : D_X \to X$ is a specified inclusion and D_Y is an open lower hemisphere in $Y = S^4$.

To motivate Lemma 6, we note that in the case of connected sums of pairs of manifolds there is an additional subtlety. Namely, let S_0 and S_1 be two isotopic surfaces in X that agree in a coordinate open ball D_X. Furthermore, suppose that (X, S_0) and (X, S_1) share the same pair of coordinate balls (D_X, D_S). Then the ambient space $X \# Y$ in the pair $(X, S_0) \# (Y, R)$ coincides with the ambient space in the pair $(X, S_1) \# (Y, R)$. However, in general, the surface $S_0 \# R$ may not be isotopic to $S_1 \# R$ in $X \# Y$, as the isotopy of $X \setminus \{0\}$, where $\{0\}$ is the center of the coordinate ball D_X, may not admit an extension to an isotopy of $X \# Y$.

Given a pair (X, S), we say that a tuple of vectors v_1, \ldots, v_4 at a point $x \in S$ is an adapted frame if it is a basis for the tangent space $T_x X$ and if the vectors v_1 and v_2 form a basis for the tangent space $T_x S$. If X and S are oriented, then we additionally require that the basis $\{v_1, \ldots, v_4\}$ for $T_x X$ and $\{v_1, v_2\}$ for $T_x S$ to be positively oriented. We note that up to isotopy the pair of the coordinate open balls (D_X, D_S) in (X, S) determines and is determined by the standard coordinate adapted frame e_1, \ldots, e_4 in $T_0 D_X \subset TX$.

Figure 9. A twist of the 1-handle.
Lemma 6. Let \(S_0 \) and \(S_1 \) be connected isotopic surfaces in an oriented 4-manifold \(X \), and \(R \) be a surface embedded in \(S^4 \). Let \(i_0 \) and \(i_1 \) be possibly different orientation preserving embeddings of an open coordinate 4-ball \(D^4 \) into \(X \) such that \((i_k D^4, i_k D^2)\) is a pair of coordinate open discs in \((X, S_k)\) for \(k = 0, 1 \). In the case where \(S_0 \) and \(S_1 \) are oriented, suppose that the isotopy from \(S_0 \) to \(S_1 \) is orientation preserving, and the frames associated with the pairs \((i_k D^4, i_k D^2)\) of coordinate balls are adapted. Then the surface \(S_0 \# i_0 R \) is isotopic to the surface \(S_1 \# i_1 R \) in \(X \).

Proof. The ambient isotopy taking \(S_0 \) to \(S_1 \) takes the connected sum \(S_0 \# i_0 R \) to \(S_1 \# i_1 R \) for some embedding \(j: D^4 \to X \). Let \(\{v_i\} \) and \(\{w_i\} \) denote the frames over \((X, S_1)\) corresponding to the embeddings \(j \) and \(i_1 \) respectively. Since the frames are adapted, by applying an ambient isotopy of \(X \) that fixes \(S_1 \) setwise, we may assume that \(v_1 = w_1 \) and \(v_2 = w_2 \). Since both \(\{v_i\} \) and \(\{w_i\} \) are positively oriented frames over \(X \), the coincidences \(v_1 = w_1 \) and \(v_2 = w_2 \) imply that there is an ambient isotopy of \(X \) that fixes \(S_1 \) setwise and takes the frame \(\{v_i\} \) to the frame \(\{w_i\} \). Thus, the surface \(S_0 \# i_0 R \) is isotopic to the surface \(S_1 \# R \). This completes the proof of Lemma 6.

5. Regularly homotopic surfaces

At one step in the Gabai’s proof of the 4-dimensional light bulb theorem [6] one modifies a given homotopy between orientable surfaces into a regular homotopy. In this section we will show that the hypotheses on the surfaces in the non-orientable version of the Gabai theorem (Theorem 2) guarantee that the (possibly non-orientable) surfaces are still regularly homotopic.

By the Smale–Hirsch theorem [8], the space of immersions of a manifold \(S \) into a manifold \(X \) is weakly homotopy equivalent to the space \(\text{Imm}^F(S, X) \) of smooth injective bundle homomorphisms \(TS \to TX \) provided that \(\dim S < \dim X \) or that \(S \) is open. Let \(f: S \to X \) denote a smooth map, and \(\text{Hom}(TS, f^*TX) \to S \) the standard Hom-bundle with a fiber over \(s \in S \) given by homomorphisms \(T_s S \to T_{f(s)} X \). Let \(V(TS, f^*TX) \to S \) denote the subbundle of the Hom-bundle of injective homomorphisms. Then the space of injective bundle homomorphisms \(TS \to TX \) covering a smooth map \(f: S \to X \) can be identified with the space of sections of \(V(TX, f^*TX) \to S \). In fact, there is a natural fibration

\[
\text{Imm}^F(S, X) \to C^\infty(S, X),
\]

where \(C^\infty(S, X) \) is the space of smooth maps \(f: S \to X \), with fiber over \(f \) given by the space of sections of the bundle \(V(TS, f^*TX) \to S \).

When the dimension of \(S \) is 2 and the dimension of \(X \) is 4, the fiber of the fiber bundle \(V(TS, f^*TX) \) over \(S \) is homotopy equivalent to \(O(4) \). The case where \(S \) is a sphere is established by Smale [17], and it is used in [6]. Since we need the non-orientable case, we give a quick outline of its proof here.

Theorem 7. Suppose that \(f \) and \(g \) are two homotopic embeddings of a closed connected surface \(S \) into an orientable 4-manifold \(X \). If the surface \(S \) is non-orientable, suppose, in addition, that the normal Euler numbers of \(f \) and \(g \) agree. Then the embeddings \(f \) and \(g \) are regularly homotopic.

Proof. Choose a handle decomposition of \(S \) with a unique 2-cell. By a general position argument, we may assume that a homotopy of \(f \) to \(g \) restricts to an isotopy of a regular neighborhood of the 1-skeleton of \(S \). Furthermore, the isotopy of this neighborhood extends to an isotopy of the ambient manifold \(X \). Thus, we may assume that \(f \) and \(g \) agree in the neighborhood of the 1-skeleton of \(S \). Consequently, the normal bundles \(N(f) \) and \(N(g) \) agree over the same neighborhood.
Since \(f \) and \(g \) are homotopic, their normal Euler numbers agree when \(S \) is orientable. In particular, in both cases, when \(S \) is orientable or non-orientable, under the hypotheses of Theorem 7, the normal bundle of the immersion \(f \) is isomorphic to that of \(g \). Even more is true, the isomorphism already given over the 1-skeleton extends to an isomorphism \(N(f) \cong N(g) \).

Let \(\hat{f} \) denote the inclusion of \(N = N(f) \) into \(X \), and \(\hat{g} : N \to X \) denote the composition of the isomorphism \(N \cong N(g) \) and the inclusion. By the homotopy lifting property, a homotopy \(\check{f}_t \) of \(f \) to \(\hat{g} \) extends to a homotopy of \(df \) through injective bundle homomorphisms \(TN \to \check{f}_t^*TX \).

We may assume that the resulting homomorphism \(h : TN \to \hat{g}^*TX \) agrees with \(dg \) over the 1-skeleton of \(S \subset N \). Since the fiber of the bundle \(V(TN, \hat{g}^*TX) \to TN \) is homotopy equivalent to \(O(4) \) and \(\pi_2(O_4) = 0 \), the homomorphism \(h \) can be further deformed so that it agrees with \(g \) over \(S \subset N \), see [18, §29]. Finally, since \(S \) is a deformation retract of \(N \), the homomorphism \(h \) is homotopic to \(g \) through injective bundle homomorphisms. It follows that \(\check{f}_t \) is regularly homotopic to \(g \), hence \(f \) is regularly homotopic to \(g \).

Remark 6. The argument in the proof of Theorem 7 shows that one may assume that the regular homotopy in the conclusion of Theorem 7 restricts to an isotopy away from any prescribed disk in the surface \(S \).

Remark 7. There are many knotted projective planes in \(S^4 \), for example, see [19]. On the other hand, all projective spaces embedded in \(S^4 \) are null-homotopic, and have normal Euler number \(\pm 2 \); see [12]. Therefore, by Theorem 7 all projective planes embedded in \(S^4 \) are regularly homotopic to \(P_+ \) or \(P_- \).

6. **The Gabai light-bulb theorem for non-orientable surfaces**

Recently Gabai proved the following theorem; see [6, Theorem 9.7].

Theorem 8 (Gabai [6]). Let \(X \) be an orientable 4-manifold such that \(\pi_1(X) \) has no 2-torsion. Two homotopic embedded \(G \)-inessential orientable surfaces \(S_0 \) and \(S_1 \) with common geometric dual \(G \) are ambiently isotopic via an isotopy that fixes the geometric dual pointwise.

In this section we prove Theorem 2, which asserts that the Gabai result is still true for non-orientable surfaces as well, provided that the normal Euler numbers of the surfaces agree.

Remark 8. If a surface \(S \) has a geometric dual, then \(S \) is ordinary. Thus the Brown invariant does not play a role in this theorem.

The idea of the proof is to use the splitting theorem (Theorem 1) to reduce the general case of possibly non-orientable surfaces \(S_0 \) and \(S_1 \) to the case of orientable surfaces by representing \(S_0 \) and \(S_1 \) as internal connected sums of orientable surfaces \(S_0' \) and \(S_1' \) with unknotted projective planes. As examples in §4 show, in general the surfaces \(S_0' \) and \(S_1' \) may not even be homotopic. Lemma 9 below shows that we may assume that the surfaces agree away from an open ball. For surfaces meeting the conclusion of Lemma 9, we prove Lemmas 10 and 12 ensuring that there is a splitting such that the surfaces \(S_0' \) and \(S_1' \) are homotopic.

Lemma 9. Let \(S_0 \) and \(S_1 \) be regularly homotopic surfaces embedded in a 4-manifold \(X \). Then there exist an embedded surface \(S_2 \) in \(X \) and a regular neighborhood \(U \) of a point in \(S_0 \) such that \(S_0 \) agrees with \(S_2 \) on the complement of \(U \), and \(S_2 \) is regularly homotopic to \(S_0 \) by a homotopy that is constant on the complement of \(U \), and \(S_1 \) is isotopic to \(S_2 \).
Proof. Let $R : I \times S_0 \to X$ be a regular homotopy with $R_0(S_0) = S_0$ and $R_1(S_0) = S_1$. By Remark 6, we may assume that R restricts to an isotopy in a neighborhood of a 1-skeleton of S_0 with complement an open disk U. By the isotopy extension theorem, there is an ambient isotopy $J : I \times X \to X$ that agrees with R restricted to $S_0 \setminus U$. Clearly, the surface $S_2 := J_1^{-1}(S_1)$ is isotopic to S_1, and S_0 agrees with S_2 in the complement to U. The required regular homotopy of S_0 to S_2 fixing the complement of U is given by $R_t(x) := J_t^{-1} \circ R_t(x)$.

Lemma 9 is the first step in the proof of Theorem 2. It establishes an isotopy of S_1 to S_2 so that S_0 and S_2 agree away from a regular neighborhood of a point. Thus, in the proof of Theorem 2, without loss of generality, we may assume that S_1 agrees with S_0 away from a neighborhood of a point. Lemmas 10 and 12 will establish that there are cores of splittings such that the surfaces S_0' and S_1' obtained by splitting off unknotted projective planes from S_0 and S_1, respectively, are still homotopic.

Lemma 10. Let X be an orientable 4-manifold. Let $S_0 \subset X$ be an embedded connected G-inessential non-orientable surface for some geometric dual G for S_0. Let D_0 be a core of a splitting such that $S_0 \setminus \partial D_0$ is non-orientable. Let S_1 be a G-inessential surface that agrees with S_0 away from a disc neighborhood $U \subset S_1$ of a point such that $\partial D_0 \cap U = \emptyset$ and $U \cap G = \emptyset$. Suppose that $S_1 \setminus G$ is regularly homotopic to $S_0 \setminus G$ relative to the complement to U in $X \setminus G$. Then there exists a core D_1 of a splitting for S_1 that agrees with D_0 in a neighborhood of ∂D_0 such that the surfaces S_0' and S_1' obtained by splitting are regularly homotopic relative to G.

Proof. If the intersection of the interior of D_0 and S_1 is empty, then $D_1 = D_0$ is a core of a splitting for S_1 with the desired property. In the rest of the argument we will assume that $D_0 \cap S_1$ consists of a single point as the general case is similar. There exists a curve α_0 on S_1 from the intersection point $D_0 \cap S_1$ to a parallel copy of G. Let D_1 denote the disc D_0 with the intersection $D_0 \cap S_1$ tubed along α_0, see Figure 3. We claim that the splitting S_0' of S_0 along D_0 is regularly homotopic relative to G to the splitting S_1' of S_1 along D_1. Indeed, the surface S_1' can be constructed differently. To begin with we may split the surface S_1 along D_0 to obtain an immersed intermediate surface S' with two self-intersection points (see Figure 10), and then we may tube the two self-intersection points of S' along respectively two curves α_+ and α_- which coincide with α_0 except near the endpoints. In particular, the surface S_1' is obtained by removing from S' two discs B_\pm near the two self-intersection points, and then attaching two discs D_\pm in a neighborhood of $\alpha_\pm \cup G$, see Figure 11.

Since S_1 is regularly homotopic to S_0 relative to the complement to U, their splittings S' and S_0' along D_0 are regularly homotopic. The normal Euler numbers of S' and S_0' are the same since the Euler number of G is trivial. By Theorem 7 it remains to show that S' is homotopic to S_0'.

The disc D_+ can be obtained from D_- by a C^0-small isotopy. Therefore, an orientation on D_+ gives rise to an orientation on D_-. For a curve γ in S'_1 from ∂D_+ to ∂D_-, let $N(\gamma)$ denote a closed neighborhood of γ in S'_1 such that the unions $D_+ \cup D_- \cup N(\gamma)$ and $B_+ \cup B_- \cup N(\gamma)$ are boundary connected sums of discs along γ. Since S'_1 is non-orientable, we may choose γ so that the compatible orientations on D_+ and D_- do not extend to an orientation of the disc $D_+ \cup D_- \cup N(\gamma)$. We denote by C the union of the two discs $D_+ \cup D_- \cup N(\gamma)$ and $B_+ \cup B_- \cup N(\gamma)$. We will show that the sphere C is null-homotopic by showing that a lift of C to the universal covering $X \setminus G$ of $X \setminus G$ is null-homotopic.

Choose a reference lift of a neighborhood $N(D_0)$ of D_0, and take lifts of B_\pm contained in the lift of $N(D_0)$ and lifts of D_\pm meeting these lifts of B_\pm. Since there is an isotopy taking D_- to D_+ keeping the boundary in $N(D_0)$, we see that D_\pm are obtained from B_\pm by tubing with parallel copies of the same lift of a copy of G. Denote these lifts by \tilde{D}_\pm, \tilde{B}_\pm, and \tilde{G}. Since
Figure 10. Each intersection point in $S_1 \cap D_0$ corresponds to two intersection points in $S' \cap S'_0$.

Figure 11 (colour online). Tubing the self-intersection points of S'.

S_1 is G-inessential, S' is G-inessential, so the loop obtained by joining the endpoints of γ in $N(D_0)$ is null-homotopic and we see that the lift \tilde{C} of C containing B_\pm also contains D_\pm, so in the homology of $X \setminus G$ we have $[\tilde{C}] = [\tilde{G}] - [\tilde{G}] = 0$. It follows that C is null-homotopic, establishing that S' (and therefore S'_0) is homotopic to S'_1. \hfill \square

Up to isotopy (rel boundary), a generic regular homotopy between properly embedded surfaces in a 4-manifold can be expressed as finitely many finger moves followed by the same number of Whitney moves, where an isotopy of an immersion is the conjugation of the map by diffeotopies of range and domain, for example, see [5, §1.6], [15, §3] and [2, Lemma 8]. By the
isotopy extension theorem an isotopy of an embedding extends to an ambient isotopy, but in general isotopies of immersions are ‘non-ambient’.

The following lemma will be used to keep track of intersections between a surface and a splitting disk that are created during a regular homotopy.

Lemma 11. Let \(S_0 \) be a possibly non-orientable surface properly embedded in a 4-manifold, and let \(D \) be a 2-disk with \(\partial D \) embedded in \(S_0 \) such that the interior of \(D \) is disjoint from \(S_0 \). If \(S_0 \) is homotopic (rel boundary) to an embedded surface \(S_1 \) by a regular homotopy \(S_t \), then \(S_1 \) is ambiently isotopic (rel boundary) to the result of the following moves starting with \(S_0 \):

1. finger moves supported away from \(D \);
2. finger moves pushing sheets of \(S_t \setminus \partial D \) into the interior of \(D \);
3. internal finger moves pushing sheets of \(S_t \setminus \partial D \) across \(\partial D \);
4. Whitney moves guided by Whitney disks which are disjoint from \(D \).

Each finger move in item (2) creates a pair of interior intersections between \(S_t \) and \(D \), and each internal finger move in item (3) creates a single interior intersection between \(S_t \) and \(D \). Here an ‘internal finger move’ is guided by an arc contained in \(S_t \) that starts at a self-intersection of \(S_t \) and ends at a point in \(\partial D \) (Figure 13).

Proof. By a small perturbation (rel boundary) we may assume that the regular homotopy \(S_t \) is generic, and we fix a description of \(S_t \) up to isotopy as finger moves followed by Whitney moves. The finger moves are supported near arcs which can be assumed to be pairwise disjoint, with each finger move creating two self-intersections in the ‘middle level’ of the homotopy which is the result of doing all the finger moves. The Whitney moves are supported near pairwise disjointly embedded framed Whitney disks pairing the self-intersections of the middle level, with each Whitney move eliminating two self-intersections. Each Whitney disk has a neighborhood diffeomorphic to the left side of Figure 12, with the result of the Whitney move shown in the right side of Figure 12.

Since they are supported near arcs, the finger moves starting with \(S_0 \) as in item (1) may be assumed to be supported away from \(D \) by general position. The Whitney disks that describe the rest of the regular homotopy will generically have interior and boundary intersections with \(D \); see the left side of Figure 12 for an example.
These intersections will lead to interior intersections between S_1 and D, as shown in the right side of Figure 12.

The right side of Figure 13 shows how to change a Whitney disk W to a ‘smaller’ Whitney disk W' which is disjoint from D by applying finger moves as in items (2) and (3). The combination of these finger moves followed by a Whitney move guided by W' is ambient isotopic to the result of doing a Whitney move guided by W.

The proof is completed by applying the modifications of Figure 13 to all the Whitney disks on the middle level, and then doing the Whitney moves on the resulting smaller Whitney disks. The resulting embedded surface is isotopic to, and hence ambiently isotopic to, S_1. □

The proof of Lemma 12 also requires a simple case of the self-intersection number of a generic immersed, oriented surface. If $j : R \hookrightarrow X$ is such a surface (generally denoted by R), the double point set is $D(j) := \{p \in J(R)| \#j^{-1}(p) > 1\}$ and the self-intersection number is $R \cdot R := \sum_{D(j)} \epsilon(p)$ where $\epsilon(p) = \pm 1$ is determined by the orientations in the standard way.

Remark 9. Let S_t be a non-orientable surface in an orientable 4-manifold X, and D a core of a splitting such that $S_t \setminus \partial D$ is orientable. Let W be a Whitney disc defining a Whitney move on the surface S_t. The boundary of the Whitney disc W consists of two arcs $\partial_1 W$ and $\partial_2 W$ with common endpoints p and q. Then the signs of p and q in the definition of the self-intersection number $(S_t \setminus \partial D) \cdot (S_t \setminus \partial D)$ are in general distinct from the relative signs of the double points p and q with respect to the Whitney disc sign convention. Indeed, Figure 14 can be used to describe one such example. Suppose that the arc $\partial_1 W$ intersects ∂D transversally at a unique point. Then there is a curve γ (shown in red in the figure) on $S_t \setminus \partial D$ joining the two endpoints p and q of the arc $\partial_1 W$. The relative signs of p and q with respect to the Whitney disc sign convention come from orientations of regular neighborhoods of $\partial_2 W$ and γ. The existence of the Whitney framing implies that the points p and q have opposite relative signs. The signs of p and q in the definition of $(S_t \cap \partial D) \cdot (S_t \cap \partial D)$ are determined by means of regular neighborhoods of $\partial_2 W$ and γ. Since the union of γ and $\partial_1 W$ is an orientation reversing curve on S_t, these two sign conventions cannot match.

Remark 10. Let S_0 be an embedded non-orientable surface in an orientable 4-manifold X with a core D_0 of a splitting such that $S_0 \setminus D_0$ is oriented. Then the disc D_0 inherits
the signs in the definition of the self-intersection number $(S_t \setminus \partial D) \cdot (S_t \setminus \partial D)$ are in general distinct from the relative signs of the double points in the description of a Whitney disk.

an orientation. Indeed, the splitting of S_0 along D_0 is obtained by removing a Möbius band neighborhood of ∂D_0 in S_0 and attaching a disc B along D_0. We orient the resulting surface S'_0 so that over $S'_0 \setminus B$ the orientation of S'_0 agrees with the orientation on $S_0 \setminus D_0$. On the other hand, without loss of generality we may assume that near ∂D_0 the projection of the tubular neighborhood of D_0 onto D_0 defines a double cover of a neighborhood of ∂B in B over a neighborhood of ∂D_0 in D_0. In particular, the disc D_0 inherits an orientation.

Examples of homotopies with boundary intersections between Whitney disks and splitting disks

These examples illustrate how a homotopy can create intersections with a splitting disk coming from boundary intersections with Whitney disks, and also illustrate some of the subtleties regarding the ‘opposite sign condition’ for Whitney disks [5, Section 1.4] in the setting of non-orientable surfaces.

Figures 15 and 16 describe two regular homotopies from a G-inessential embedding $S_0 : \mathbb{R}P^2 \hookrightarrow X^4$ to G-inessential embeddings S_1 and S'_1 that have interior intersections with a splitting disk D on S_0. Both homotopies fix S_0 outside the subdisk bounded by the dashed grey circle, and in particular fix neighborhoods of ∂D. The preimage of ∂D is shown in red in both figures. It is assumed that S_0 is G-inessential, with the geometric dual G suppressed from the figures and assumed to intersect S_0 outside the indicated subdisk. Fix an orientation of $S_0 \setminus \partial D$.

Figure 14 (colour online). the signs in the definition of the self-intersection number $(S_t \setminus \partial D) \cdot (S_t \setminus \partial D)$ are in general distinct from the relative signs of the double points in the description of a Whitney disk.

Figure 15 (colour online). Left: The preimage (green) of the boundary of a Whitney disk on $S_{0.5}$ that is ‘inverse’ to a finger move on S_0. Right: The preimage (blue) of the boundary of a Whitney disk that leads to S_1.
Example 5. The left side of Figure 15 shows the preimage of $S_{0,5} : \mathbb{R}P^2 \hookrightarrow X$ which is the result of performing a single finger move on S_0. The green arcs are the preimage of the boundary of a Whitney disk ‘inverse’ to the finger move. Horizontally adjacent pairs of black dots map to the same self-intersection of $S_{0,5}$, with the lower pair mapping to the negative self-intersection, and the upper pair mapping to the positive self-intersection.

The right side of Figure 15 also shows the preimage of $S_{0,5}$, but now with the blue preimage of the boundary of a new Whitney disk W such that ∂W intersects ∂D in two points (the green arcs are just shown for reference to the left picture). The existence of a framed W with the indicated boundary follows from the G-inessential assumption: ∂W bounds an immersed disk in $X \setminus G$ which can be promoted to an embedded framed Whitney disk with interior disjoint from $S_{0,5}$ and G by boundary-twisting, pushing-down and tubing into G. Note that the ‘opposite-signs’ condition for intersections to be paired by a framed Whitney disk is satisfied by the blue Whitney arcs since one blue Whitney arc ‘goes twice over the twisted 1-handle’ of $S_{0,5}$.

Performing a W-Whitney move which moves a neighborhood in $S_{0,5}$ of the image of the short blue double-arrow boundary arc across W, while fixing a neighborhood of the image of the long blue single-arrow boundary arc, completes the homotopy to a G-inessential embedding $S_1 : \mathbb{R}P^2 \hookrightarrow X$. The two intersections between ∂W and ∂D in $S_{0,5}$ yield two interior intersections between S_1 and D; compare Figure 12. By the proof of Lemma 12 these interior intersections have opposite signs in the complement of ∂D, so can be eliminated by tubing D into G, yielding a splitting disk for S_1 with the same homotopy class rel boundary as D.

Example 6. The left side of Figure 16 shows the preimage of $S'_{0,5} : \mathbb{R}P^2 \hookrightarrow X$ which is the result of performing two finger moves on S_0. The green arcs are the preimages of the boundaries of inverse Whitney disks to these finger moves, similarly to Figure 15. We assume that both finger moves are guided by arcs representing equal elements of $\pi_1 X$.

The right side of Figure 16 also shows the preimage of $S'_{0,5}$, but now with the preimages in blue and orange of the boundaries of two new Whitney disks, each intersecting ∂D in a single point (again the green arcs are just shown for reference to the left picture). The existence of appropriate Whitney disks with these boundaries follows from the G-essential assumption (similar to the previous example), since the four self-intersections determine the same element of $\pi_1 X$. The opposite-signs condition is satisfied by each of the blue and orange Whitney disk boundaries even though they are pairing self-intersections which are ‘like-signed’ using the orientation in the complement of ∂D. This is because one of each of the blue and orange Whitney arcs ‘goes once over the twisted 1-handle’ of $S'_{0,5}$, so the relative signs of the self-intersections are switched compared with the green Whitney arcs contained in the complement of ∂D.
Performing the blue and orange Whitney moves which move neighborhoods in $S'_{0,5}$ of the images of the short blue and orange double-arrow boundary arcs, while fixing neighborhoods of the images of the long blue and orange single-arrow boundary arcs, completes the homotopy to a G-inessential embedding $S'_1 : \mathbb{R}P^2 \to X$. Each of the two intersections between the Whitney disk boundaries and ∂D in $S'_{0,5}$ yields an interior intersection between S'_1 and D, and again by Lemma 12 these interior intersections have opposite signs in the complement of ∂D, so can be eliminated by tubing D into G, yielding a splitting disk for S'_1 with the same homotopy class rel boundary as D.

Lemma 12. Let X be an oriented 4-manifold. Let $S_0 \subset X$ be an embedded connected G-inessential non-orientable surface for a geometric dual G for S_0. Let D_0 be a core of a splitting such that $S_0 \setminus \partial D_0$ is orientable. Let S_1 be a G-inessential surface that agrees with S_0 away from a disc neighborhood $U \subset S_1$ of a point such that $\partial D_0 \cap U = \emptyset$ and $G \cap U = \emptyset$. Suppose that $S_1 \setminus G$ is regularly homotopic in $X \setminus G$ to $S_0 \setminus G$ relative to the complement to U. Then there exists a core D_1 of a splitting for S_1 that agrees with D_0 in a neighborhood of ∂D_0 such that $D_0 \cup D_1$ is null-homotopic and the relative normal Euler number of (D_0, v) agrees with that of (D_1, v) with respect to any vector field v over $\partial D_0 = \partial D_1$ normal to D_0 (and therefore to D_1).

Given an embedded disc D in a 4-manifold X and a nowhere zero vector field v over ∂D normal to D in X, the relative normal Euler number of (D, v) is defined to be the algebraic number of signed intersection points of D and any of its generic displacement \tilde{D} such that $\partial \tilde{D}$ is obtained by displacing ∂D in the direction of v.

Proof. First, let us consider the case where $X \setminus G$ is simply connected. If $S_1 \cap D_0 = \partial D_0$ then $D_1 := D_0$ satisfies the conclusion of the lemma. Otherwise, create D_1 from D_0 by tubing D_0 into parallel copies of the geometric dual G to eliminate the interior intersections $S_1 \cap D_0$. Since G is framed, the relative Euler number of (D_1, v) is equal to that of (D_0, v). To show that $D_0 \cup D_1$ is null-homotopic, it suffices to check that $S_1 \cap D_0$ consists of oppositely-signed pairs, where the signs come from choosing and fixing orientations on $S_1 \setminus \partial D_0$ and D_0, so that the copies of G added to D_0 to form D_1 come in oppositely oriented pairs which do not change the homotopy class rel boundary of D_0.

To check this we may assume that S_1 is equal to the result of the finger moves and Whitney moves realizing the regular homotopy S_1 as in Lemma 11, since an isotopy of embeddings will extend to an ambient isotopy of $S_1 \cup D_1$ which preserves signed intersections. Define for each generic S_t the following combination of algebraic intersection numbers:

$$\psi(S_t) := S_t \cdot D_0 + \frac{1}{2} S_t \cdot S_t,$$

where orientations are induced by choosing and fixing orientations on $S_0 \setminus \partial D_0$ and D_0.

We will show that ψ is invariant under the moves of Lemma 11. This implies Lemma 12 in the simply connected case. Indeed, since $\psi(S_0) = 0$, we conclude that $\psi(S_1) = 0$ in view of the invariance of ψ. On the other hand, since S_1 is embedded, it follows that $S_1 \cdot D_0 = 0$; that is, $S_1 \cap D_0$ consists of oppositely-signed pairs.

Now let us verify that ψ is invariant under the moves of Lemma 11: Each finger move of item (1) guided by an arc in the complement of D_0 creates only a pair of self-intersections that admit a local Whitney disk whose boundary is disjoint from ∂D_0, so the intersection pair has opposite signs using the induced orientation on $S_1 \setminus \partial D_0$.

Similarly, each finger move of item (2) creates only a pair of oppositely signed intersections between S_t and D_0 using induced orientation on $S_t \setminus \partial D_0$ and D_0.

By Remark 10, we may assume that the fixed orientation on D_0 has been chosen so that pushing a self-intersection $p \in S_t \cap S_t$ across ∂D_0 as in item (3) of Lemma 11 creates an interior
intersection between S_t and D that has the same sign as p, and also converts p to $p' \in S_t \cap S_t$ having the opposite sign as p (see Figure 17). (Note that it is with respect to the orientation of $S_t \setminus \partial D_0$ that p and p' have opposite signs, so the self-intersections p' and q' shown in Figure 13 satisfy the ‘opposite signs’ criteria for admitting a Whitney disk [5, Section 1.4], no matter how many intersections with ∂D_0 are crossed by the internal finger moves, since the sheets A and B have only been changed by isotopy.)

Finally, each Whitney move as in item (4) is guided by Whitney disk whose boundary is disjoint from ∂D, hence eliminates a pair of self-intersections that have opposite signs using the orientation of $S_t \setminus \partial D$. This completes the proof of Lemma 12 in the simply connected case.

Suppose now that $X \setminus G$ is not simply connected. To establish the null-homotopy of $D_0 \cup D_1$, it will suffice to establish that a certain lift of $D_0 \cup D_1$ is null homologous (and therefore null-homotopic) in the universal cover of $X \setminus G$. By a slight perturbation of D_0 with support in the interior, we may assume that S_1 is transverse to the interior of D_0. By assumption, a regular neighborhood of G is diffeomorphic to $G \times D^2$. Pick a collection $\{G_k\}$ of distinct parallel spheres; one sphere G_k for each intersection point in $S_1 \cap D_0$. Since G_k and D_0 are simply connected, and S_1 is G-inessential, all lift to copies in the universal cover $\tilde{X} \setminus \tilde{G}$ of $X \setminus G$. Pick reference lifts S^t_1, G^t_k and D^t_0 so that $\partial D^t_0 \subset S^t_1$ and $G^t_k \cap S^t_1 \neq \emptyset$. Let S^+_1, G^+_k and D^+_0 denote the translates of these chosen lifts by an element τ of the deck group. The regular homotopy relative to the complement of U lifts to regular homotopies of each S^+_1 to a surface S^+_0. As in the simply connected case define

$$\psi(S^+_1, D^+_0) := S^+_1 \cdot D^+_0 + \frac{1}{2} S^+_1 \cdot S^-_1.$$

One checks that this is invariant under the moves of Lemma 11. Since S^+_1 is embedded, one concludes that $S^+_1 \cdot D^+_0 = 0$ and therefore $S^+_1 \cdot D^+_0 = 0$. It follows that D^+_1 is obtained from D^+_0 by adding an algebraically trivial number of copies of G^+_k to D^+_0. □

Proof of Theorem 2. We first prove the result for surfaces of odd Euler characteristic. By Lemma 9 we may isotope S_1 to agree with S_0 away from a disc neighborhood of a point, and have a further regular homotopy relative to the complement of this neighborhood taking S_0 to S_1. Without loss of generality, we may assume that the disc neighborhoods in S_0 and S_1 are disjoint from $S_0 \cap G = S_1 \cap G$. Since the Euler characteristic of S_0 is odd, there is a simple closed curve in S_0 that has orientable complement and that is disjoint from the disc neighborhood in S_0 and from $S_0 \cap G$. By the splitting theorem (Theorem 1), this curve bounds a core D_0 of a splitting for S_0. By Lemma 12, there is a core D_1 for S_1 that agrees with D_0 in a neighborhood of $\partial D_1 = \partial D_0$ and such that $D_1 \cup -D_0$ is null-homotopic.
Let \(S_j' \) denote the result of the splitting surgery of \(S_j \) along \(D_j \) for \(j = 0, 1 \). It follows that \(S_0' \) and \(S_1' \) are orientable surfaces in \(X \). We claim that \(S_0' \) and \(S_1' \) are homotopic in \(X \). Indeed, let \(U_0' \subset S_j' \) denote the complement in \(S_j \) to a regular neighborhood of \(\partial D_j \). By construction, there is a regular homotopy of \(U_0 \) to \(U_1 \) relative to a regular neighborhood of the boundary \(\partial U_0 = \partial U_1 \). On the other hand, since \(D_1 \cup -D_0 \) is null-homotopic, the closure of the surface \(S_0' \setminus U_0 \) is homotopic to the closure of \(S_1' \setminus U_1 \) relative to the boundary. Therefore \(S_0' \) is homotopic to \(S_1' \). Furthermore, the surface \(S_0 \) agrees with the surface \(S_1 \) in a neighborhood of \(S_0 \cap G \). Thus, \(S_0' \) is isotopic to \(S_1' \) by the Gabai theorem (Theorem 8). Now \((X, S_0) \cong (X, S_1')/(S^4, P_\pm) \) and \((X, S_1) \cong (X, S_1')/(S^4, P_\pm)\) implies that \(S_0 \) is isotopic to \(S_1 \) as proved in Lemma 6.

Turn now to the case where \(S_j \) is non-orientable with even Euler characteristic. The proof is similar to the odd Euler characteristic case. The difference is that the complement in \(S_0 \) of \(\partial D_0 \) must be non-orientable. Lemma 10 produces a core of a splitting \(D_1 \) for \(S_1 \). Let \(S_j' \) denote the result of the splitting of \(S_j \) along \(D_j \) for \(j = 0, 1 \). The surfaces \(S_0' \) and \(S_1' \) have odd Euler characteristic and are regularly homotopic. Thus by the odd Euler characteristic case, established in the first part of this proof, we know that \(S_0' \) is isotopic to \(S_1' \) which using Lemma 6 completes the proof. □

7. Isotopy of surfaces in 4-manifolds

In view of the Gabai’s theorem for non-orientable surfaces (Theorem 2), we are in position to extend a recent theorem of [1] (Theorem 13) to the case of non-orientable surfaces.

Theorem 13 (Auckly–Kim–Melvin–Ruberman–Schwartz, [1]). If \(X \) is a smooth simply-connected 4-manifold and \(\alpha \in H_2(X) \) is an ordinary class, then any two closed oriented surfaces \(S_0 \) and \(S_1 \) in \(X \) of the same genus representing \(\alpha \), both with simply connected complement, are smoothly isotopic in \(X \#(S^2 \times S^2) \) (summing away from \(S_0 \cup S_1 \)). When \(\alpha \) is characteristic, the same result holds if one stabilizes by summing with \(S^2 \times S^2 \).

In Theorem 4 which extends Theorem 13 to the case of non-orientable surfaces we assume that \(S_0 \) is regularly homotopic to \(S_1 \); note that in a simply connected manifold \(X \) orientable surfaces of the same genus representing the same integral homology class are regularly homotopic by Theorem 7.

Proof of Theorem 4. In the case where \(S_0 \) and \(S_1 \) are oriented surfaces, Theorem 4 is established in [1]. In view of Theorem 2, the proof of Theorem 4 in the non-orientable case follows in the same way as in the orientable case with one minor change. We provide an abbreviated outline referring to [1] for longer exposition. As \(X \setminus S_0 \) is simply connected, it contains an immersed disk bounded by a meridian of \(S_0 \). Capping the immersed disc with a fiber of the normal bundle results in an immersed dual \(\Sigma \) to \(S_0 \). If the integral homology class of \(S_0 \) is ordinary, then, after taking the sum with an immersed sphere disjoint from \(S_0 \), we may assume that the self-intersection of \(\Sigma \) is even.

In contrast to the orientable case, in the present case only the parity of the intersection number \(\Sigma \cdot S_0 \) is well defined up to regular homotopy. It follows that \(\Sigma \cdot S_1 \) is odd. We can reduce the geometric intersection number \(\#(\Sigma \cap S_1) \) down to 1. Indeed, if there is excess intersection, pick a pair of intersection points. Given an arc in \(S_1 \) joining the two intersection points, one may associate a relative sign to the intersection points via an orientation of a neighborhood of the path. Since \(S_1 \) is non-orientable, one may arrange that the relative sign is negative via a suitable choice of path.

The proof now continues as in the orientable case in [1]. Namely, as \(X \setminus S_1 \) is simply connected, the union of the chosen path in \(S_1 \) and a path in \(\Sigma \) bounds an immersed disk in the complement
of \(S_1 \). Via finger moves intersections between the disk and \(S_0 \) may be removed. The correct framing may be obtained by boundary twisting along the portion of the boundary of the disk meeting \(\Sigma \). The result is an immersed Whitney disk. Sliding \(\Sigma \) across this disk removes a pair of intersection points.

If follows that one may assume that \(\Sigma \) intersects \(S_0 \) and \(S_1 \), each at exactly one point. In the ordinary case the self-intersection of \(\Sigma \) is even. It follows that by taking the connected sum of pairs \((X, \Sigma) \# (S^2 \times S^2, \{pt\} \times S^2) = (X \# (S^2 \times S^2), \Sigma)\) and tubing with copies of \(S^2 \times \{pt\} \) one may eliminate the self-intersections of \(\tilde{\Sigma} \) and adjust the square to zero. The result now follows from the orientable version of the light bulb theorem.

In the characteristic case the self-intersection number of \(\Sigma \) is odd. Here one takes the sum \((X, \Sigma) \# (\tilde{S}^2 \times S^2, \text{zero section}) = (X \# (\tilde{S}^2 \times S^2), \tilde{\Sigma})\) to obtain an immersed dual with even square. Tubing with copies of the fiber will remove the self-intersections and adjust the framing to zero. □

References

1. D. Auckly, H. J. Kim, P. Melvin, D. Ruberman and H. Schwartz, ‘Isotopy of surfaces in 4-manifolds after a single stabilization’, Adv. Math. 341 (2019) 609–615.
2. A. Bartels and P. Teichner, ‘All two dimensional links are null homotopic’, Geom. Topol. 2 (1999) 235–252.
3. R. I. Baykur and N. Sunukjian, ‘Knotted surfaces in 4-manifolds and stabilizations’, J. Topol. 9 (2016) 215–231.
4. E. H. Brown, Jr, ‘Generalizations of the Kervaire invariant’, Ann. of Math. 95 (1972) 368–383.
5. M. Freedman and F. Quinn, Topology of 4-manifolds (Princeton University Press, Princeton, NJ, 1990).
6. D. Gabai, ‘The 4-dimensional light bulb theorem’, J. Amer. Math. Soc. 33 (2020) 609–652.
7. R. Gompf and A. Stipsicz, 4-manifolds and Kirby calculus, Graduate Studies in Mathematics 20 (American Mathematical Society, Providence, RI, 1999) 558.
8. M. W. Hirsch, ‘Immersions of manifolds’, Trans. Amer. Math. Soc. 93 (1959) 242–276.
9. S. Kamada, ‘Nonorientable surfaces in 4-space’, Osaka J. Math. 26 (1989) 367–385.
10. M. Kervaire and J. Milnor, ‘On 2-spheres in 4-manifolds’, Proc. Natl. Acad. Sci. USA 47 (1961) 1651–1657.
11. A. Kosinski, Differential manifolds (Academic Press, Boston, MA, 1993).
12. W. S. Massey, ‘Proof of a conjecture of Whitney’, Pacific J. Math. 31 (1969) 143–156.
13. B. Perron, ‘Pseudo-isotopies et isotopies en dimension 4 dans la catégorie topologique’, C. R. Acad. Sci. Paris 299 (1984) 455–458.
14. B. Perron, ‘Pseudo-isotopies et isotopies en dimension quatre dans la catégorie topologique’, Topology 25 (1986) 381–397.
15. M. Powell, A. Ray and P. Teichner, ‘The 4-dimensional disc embedding theorem and dual spheres’, Preprint, arXiv:2006.05209.
16. F. Quinn, ‘Isotopy of 4-manifolds’, J. Diff. Geo. 24 (1986) 343–372.
17. S. Smale, ‘A classification of immersions of the two-sphere’, Trans. AMS (1957) 281–290.
18. N. Steenrod, The topology of fibre bundles (Princeton University Press, Princeton, NJ, 1951).
19. O. Ya. Viro, ‘Local knotting of sub-manifolds’, Mat. Sb. (N.S.) 90 (1973) 173–183 (Russian).

David Auckly and Rustam Sadykov
Mathematics Department
Kansas State University
138 Cardwell Hall, 1228 N. 17th Street
Manhattan, KS 66506
USA
dav@ksu.edu

The Journal of Topology is wholly owned and managed by the London Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission. All surplus income from its publishing programme is used to support mathematicians and mathematics research in the form of research grants, conference grants, prizes, initiatives for early career researchers and the promotion of mathematics.