MJO Anomalies relationship with Volcanic Eruption in Indonesian Archipelago

Achmad Yasir Baeda¹, Dharmawan Abdullah¹, Chairul Pao’tonan²

¹Marine Disaster and Weather Anomalies Research Laboratory, Ocean Engineering Department, Faculty of Engineering, Universitas Hasanuddin, Indonesia
²Ocean and Coastal Geotechnical Laboratory, Ocean Engineering Department, Faculty of Engineering, Universitas Hasanuddin, Indonesia

Abstract. Madden-Julian Oscillation (MJO) is a large-scale atmospheric phenomenon that crosses the equator with a propagation area ranging from 15° North to 15° South, and moves from west to east, precisely from the Indian Ocean to the Pacific. MJO propagation is usually characterized by the rising of Sea Surface Temperature (SST) in Indian Ocean respectively. MJO anomaly is closely related to the variability of weather in the area it passes, including the Indonesian Archipelago. The impact of MJO anomaly in Indonesian Archipelago itself is suspected to cause not only excessive rainfall, but also a very long consecutive No Rain Days (NRD), with in the end can also trigger massive crop failures. In addition to SST, there are also external events that can affect the duration of the MJO, i.e. volcanic eruptions. Therefore, the study aims to determine the effect of volcanic eruption events on MJO anomalies, through the SST variable as an MJO anomaly parameter and also the occurrence of volcanic eruptions in the same time span. Data from both variables were taken over a period of 35 years, from 1982 to 2016. The SST data is a daily average data, obtained from ESRL NOAA, which is then filtered by the Bandpass Filter method to reinforce the oscillation of data. The MJO anomaly that seen from the SST fluctuations is then matched with time data and the duration of volcanic eruption events over the same time span. It found out that there are three MJO anomalies occurred during the time span of 35 years, and it is hypothesized that they were clearly in correspondence between the duration of volcanic eruption events with the incidence of MJO anomalies in Indonesian Archipelago.

1. Introduction

Equatorial regions, especially Indonesia, are influenced by very complex atmospheric and oceanographic phenomena. This phenomenon has variations in space and time varies, one of which is the intra-seasonal cycle. Viewed from its geographic position, Indonesia is surrounded by two large continents (Asia and Australia) and two large oceans (the Pacific and the Indies), and it’s a centre of mass water movement at various depths. The territory of Indonesia has a complex topography that adds to the sea-atmosphere variability in the Indonesian Ocean [1]. One of the atmospheric phenomena that occur is Madden-Julian Oscillation (MJO). MJO was first discovered by Madden-Julian [2]. MJO is one of the dominant oscillations in equatorial region [3]. Another important aspect of the MJO is its time scale, related to the average period of each occurrence of 45 days. Seto [4] states that the MJO in the active phase has a correlation of high rainfall intensity to the area it passes. MJO controls a considerable fraction of the total precipitation over Indonesia and that the rainfall variability over the surrounding ocean is more clearly controlled by the MJO compared to over the large land masses [5].
The measurement of the Outgoing Longwave Radiation (OLR) variant in the convection region will read a larger signal than the red noise so it can show the MJO signal [6]. OLR actually is the size or value of Earth radiation that has a long wavelength detected from outer space. This detection is usually done with satellite equipment, and measured value illustrates the extent of the inhibition of the Earth's radiation; which is a negative value indicating the magnitude of the obstacle. The smaller the value of OLR on a negative scale indicates the greater the obstacles that can be visualized as the higher clouds inhibit those that are usually convective clouds. In general, the OLR pattern illustrates the pattern of potential convective areas [7].

Volcanic eruptions can inject into the stratosphere tens of teragrams of chemically and microphysically active gases and solid aerosol particles, which affect the Earth’s radiative balance and climate, and disturb the stratospheric chemical equilibrium. The volcanic cloud forms in several weeks by SO2 conversion to sulfate aerosol and its subsequent microphysical transformations [8] [9]. The resulting cloud of sulfate aerosol particles, with an e-folding decay time of approximately 1 year [10], has important impacts on both shortwave and longwave radiation. The resulting disturbance to the Earth’s radiation balance affects surface temperatures through direct radiative effects as well as through indirect effects on the atmospheric circulation [11].

Figure 1 indicates the major radiative processes resulting from the stratospheric aerosol cloud from a major volcanic eruption. The most obvious and well-known effect is on solar radiation. Since the sulfate aerosol particles are about the same size as visible light, with a typical effective radius of 0.5 μm, but have a singlescatter albedo of 1, they strongly interact with solar radiation by scattering. Some of the light is backscattered, reflecting sunlight back to space, increasing the net planetary albedo and reducing the amount of solar energy that reaches the Earth’s surface. This backscattering is the dominant radiative effect at the surface and results in a net cooling there. Much of the solar radiation is forward scattered, resulting in enhanced downward diffuse radiation that somewhat compensates for a large reduction in the direct solar beam [11].

![Figure 1. Schematic diagram of volcanic inputs to the atmosphere and their effects [11].](image-url)
Effect	Mechanism	Begins	Duration
Reduction of diurnal cycle	Blockage of shortwave & emission of longwave radiation	Immediately	1-4 days
Reduce tropical precipitation	Blockage of shortwave radiation, reduced evaporation	1-3 months	3-6 months
Summer cooling of NH continents	Blockage of shortwave radiation	1-3 months	1-2 years
Stratospheric warming	Stratospheric absorption of shortwave & longwave radiation	1-3 months	1-2 years
Winter warming of NH continents	Stratospheric absorption of shortwave & longwave radiation, dynamics	$\frac{1}{2}$ year	One or two winters
Global cooling	Blockage of shortwave radiation	Immediately	1-3 years
Global cooling from multiple eruptions	Blockage of shortwave radiation	Immediately	10-100 years
Ozone depletion, enhanced UV	Dilution, heterogeneous chemistry on aerosols	1 day	1-2 years

The study aims to determine the relationship between MJO anomalies that occurred in Indonesian Archipelago with volcanic eruption events, through the SST variable as an MJO anomaly parameter and also the occurrence of volcanic eruptions in the same time span.

2. Research Method

2.1. Data

The data used in this study were downloaded from the Earth System Research Laboratory of the National Oceanic and Atmospheric Administration (ESRL NOAA)[12] for Sea Surface Temperature (SST) data with 0.25° x 0.25° spatial resolution & daily temporal resolution taken from 1982 to 2016 (35 years), and from the National Geophysical Data Center / World Data Service (NGDC/WDS)[13] for volcano eruption data. The SST data is then filtered with Bandpass Filters using Ferret.

2.2. Bandpass Filtering

The MJO phenomenon has a dominant period ranging from 40 to 60 days or classified as an intra-seasonal period, so to reinforce the oscillations of data during that period it is necessary to filtered them with an intra-seasonal frequency range [1]. Data filtering is expected to limit the impact of seasonal, annual, or inter-annual oscillation phenomena. Filtering data to be applied in this research is bandpass filter with period of 20-100 days. The cutoff value of the frequency used as the input of the bandpass filter function is 0.01 and 0.05. The low frequency value (100 days) is represented by 0.01 and the high frequency value is represented by 0.05 (20 days). The bandpass filter discards the signal oscillations with periods below 20 days and above 100 days. The input data of the X_t variable is filtered by the Lanczos equation and produces the time series data Y_t. The time series equation is used as follows [14]:

$$Y_t = \sum_{k=-\infty}^{\infty} w_k X_{t-k} = \overline{w_k}$$ (1)
\[
\overline{w}_k = \left(\frac{\sin 2\pi f_c_1 k}{\pi k} - \frac{\sin 2\pi f_c_2 k}{\pi k} \right) \sigma, k = -n, ..., 0, ..., n
\]

where:

- \(\overline{w}_k \) = signal weight at 95% confidence interval;
- \(f_{c_1} \) = cut off of 1st frequency;
- \(f_{c_2} \) = cut off of 2nd frequency which give “0” respon of Nyquist frequency;
- \(\sigma \) = sigma factor.

3. Result and Discussion

The daily data of sea surface temperatur (SST) is filtered with Bandpass Filter method, to reinforce the oscillation of data during the MJO period. The filtered data then be taken average value for each year. The annual average SST data shown in figure 2.

![Figure 2. Annual average SST in Indonesian Waters (1982 – 2016)](image)

In figure 2, there are 3 MJO anomalies occurred for 35 years (1982 – 2016), seen from the abnormal pattern of SST (circled areas).

Large volcanic eruptions inject sulfate gas into the stratosphere and produce aerosols clouds in the stratosphere, then cause the earth surface cooling but produce warming in the stratosphere\[11\]. This is occurs because the solar flux will be blocked by the aerosol cloud. Some flux will be reflected, so the flux that arrives on the surface becomes less. These occurences can be seen in figure 1. From these statements, it is possible that SST are related with volcanic eruptions, if we match the anomaly with the eruption data that occurs, there is a volcanic eruption that occurs before and at the intervals of the anomaly occurs.

In 1982 there was an eruption of El Chicón volcano in Chiapas, Mexico, with a scale of 5 VEI (Volcanic Explosivity Index), and with 800 DVI (Dust Veil Index). The eruption was often associated with the powerful El Niño incident of 1982 - 1983. Based on satellite measurements, it is estimated that the El Chicón eruption of 1982 spewed 7 metric tons of SO2 (Sulfur Dioxide) in the air \[11\]. The eruption is also suspected to have a relationship with the occurrence of SST anomalies that occurred around 1983 to 1984 (Fig 2 in the a circle).

Furthermore, during time span of 1999 to 2001, while Indonesian waters experiencing SST anomalies, there were also series volcanic eruptions occurred at the same region. At least 24 eruptions recorded during that period, with the largest eruption were at Karangetang mountain in Siau, North Sulawesi in 1999, with a VEI scale of 3. Meanwhile, there was also a major eruption that occurred...
before the anomaly occurred, i.e. Soufriere Hills, in the Caribbean Islands, with a VEI scale of 4. For the anomaly occurred in 2007 - 2008, there was an eruption in form of long ash emission (from mid 2007 to early 2008, with maximum 4VEI) of Rabaul volcano in Papua New Guinea, before the anomaly occurred. Some incident data the above mentioned volcanic eruption is suspected to be associated with the occurrence of SST anomalies.

Table 2. Volcanic eruptions from 1982 to 2016 which are related to the SST anomaly [13]

No	Year	Month	Day	Name	Location	Country	Elevation	Type
1.	1982	3	29	Chichon, El	Mexico	Mexico	1150	Tuff cone
2.	1982	4	4	Chichon, El	Mexico	Mexico	1150	Tuff cone
3.	1982	5	17	Galunggung	Indonesia	Indonesia	2168	Stratovolcano
4.	1982	5	27	Chichon, El	Mexico	Mexico	1150	Tuff cone
5.	1983	7	23	Colo [Una Una]	Sulawesi-Indonesia	Indonesia	507	Stratovolcano
6.	1983	10	3	Miyake-jima	Izu Is-Japan	Japan	815	Stratovolcano
7.	1984	9	9	Mayon	Luzon-Philippines	Philippines	2462	Stratovolcano
8.	1984	10	16	Etna	Italy	Italy	3350	Stratovolcano
9.	1985	5	10	Semeru	Java	Indonesia	3676	Stratovolcano
10.	1985	11	13	Ruiz	Colombia	Colombia	5321	Stratovolcano
11.	1986	8	21	Oku Volc Field	Africa-W	Cameroon	3011	Maar
12.	1986	11	15	Oshima	Izu Is-Japan	Japan	758	Stratovolcano
13.	1987	1	25	Pacaya	Guatemala	Guatemala	2552	Complex volcano
14.	1999	1	20	Soufriere Hills	W Indies	Montserrat	915	Stratovolcano
15.	1999	8	15	Shiveluch	Kamchatka	Russia	3283	Stratovolcano
16.	1999	10	5	Guagua Pichincha	Ecuador	Ecuador	4784	Stratovolcano
17.	1999	10	16	Tungurahua	Ecuador	Ecuador	5023	Stratovolcano
18.	2000	7	27	Semeru	Java	Indonesia	3676	Stratovolcano
19.	2000	8	23	Arenal	Costa Rica	Costa Rica	1657	Stratovolcano
20.	2001	5	14	Etna	Italy	Italy	3350	Stratovolcano
21.	2002	1	3	Karangetang [Api Siau]	Sangihe Is-Indonesia	Indonesia	1784	Stratovolcano
22.	2002	8	28	Etna	Italy	Italy	3350	Stratovolcano
23.	2002	11	3	Reventador	Ecuador	Ecuador	3562	Stratovolcano
24.	2002	3	27	Semeru	Java	Indonesia	3676	Stratovolcano
25.	2005	1	27	Manam	New Guinea-NE of Papua New	United States	1807	Stratovolcano
26.	2005	10	1	Santa Ana	El Salvador	El Salvador	2365	Stratovolcano
27.	2006	7	18	Tungurahua	Ecuador	Ecuador	5023	Stratovolcano
28.	2006	8	17	Tungurahua	Ecuador	Ecuador	5023	Stratovolcano
29.	2007	3	27	Manam	New Guinea-NE of Papua New	United States	1807	Stratovolcano
30.	2008	8	18	Kasatochi	Akutian Is	United State	314	Stratovolcano
31.	2008	8	22	Tungurahua	Ecuador	Ecuador	5023	Stratovolcano

4. Conclusion

This research concluded clearly that there is a relationship between SST anomalies and volcanic eruptions that occurred in Indonesian Archipelago; in form of ash emissions spewed in the air which can effect the solar radiation intensity. Unfortunately, the amount of ash emission produced by that volcanic eruptions, still not calculated properly in every event that occurred. Which then lead to a question, "Is it possible to predict the active period of MJO if volcanic eruptions occur on a large scale?"

5. References

[1] Wu, C. &. (2009). Topographic influence on the MJO in the maritime continent. *J. Climate*, 22, 5433-5448.
[2] Madden, R.A., & P. Julian. (1971). Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific. *J. Atmos Sci.*, 28, 702-708.

[3] Madden R.A., & P. Julian. (1994). Observations of the 40-50 day tropical oscillation. *Month Weather Rev.*, 122, 814-837.

[4] Seto, T. (2004). Effect of Madden-Julian Oscillation on Variability of Tropical Rainfall (in Bahasa Indonesia: Pengaruh Osilasi Madden-Julian terhadap Variabilitas Curah Hujan Tropis), *Jurnal Sains & Teknologi Modifikasi Cuaca I(V)*, 55-58.

[5] Hidayat, R., & S. Kizu. (2010). Influence of the Madden–Julian Oscillation on Indonesian rainfall variability in austral summer. *Int. J. Climatol.*, 30, 1816-1825.

[6] Geerts, B., & M. Wheeler. (1998). The Madden-Julian Oscillation. Retrieved October 24, 2018, from http://www.das.uwyo.edu/~geerts/cwx/notes/chap12/mjo.html

[7] Aldrian, E. (2000). Monthly average rainfall pattern in Indonesia, review of the results of the contour data with ECHAM T-42 resolution (in Bahasa Indonesia: Pola hujan rata-rata bulanan wilayah Indonesia, tinjauan hasil kontur data penakar dengan resolusi ECHAM T-42), *Jurnal Sains & Teknologi Modifikasi Cuaca. 1(2)*, 112-123.

[8] Pinto, J.P., R.P. Turco, & O.B. Toon. (1989). Self-limiting physical and chemical effects in volcanic eruption clouds. *J. Geophys. Res.*, 94, 11,165-11,174.

[9] Zhao, J., R.P. Turco, O.B. Toon. (1995). A model simulation of Pinatubo volcanic aerosols in the stratosphere. *J. Geophys. Res.*, 100, 7315-7328.

[10] Barnes, J. E., & D. J. Hoffman. (1997). Lidar Measurement of stratospheric aerosol over Mauna Loa Observatory. *Geophys. Res. Lett.*, 24, 1923-1926.

[11] Robock, A. (2000). Volcanic Eruptions and Climate. *Reviews of Geophysics*, 38, 2, 191-219.

[12] NOAA High Resolution SST data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA. (n.d.). Retrieved from Earth System Research Laboratory, Physical Sciences Data: https://www.esrl.noaa.gov/psd/

[13] National Geophysical Data Center / World Data Service (NGDC/WDS): Significant Volcanic Eruptions Database. (n.d.). Retrieved from National Geophysical Data Center, NOAA: https://www.ngdc.noaa.gov/

[14] Duchon, C. E. (1979). Lanczos Filtering in One and Two Dimensions. *Journal of Applied Meteorology*, 18, 1016-1022.