A Succinct Grammar Compression

Yasuo Tabei1,
Yoshimasa Takabatake2,
Hiroshi Sakamoto2

1. Japan Science and Technology Agency
2. Kyusyu Institute of Technology
Straight Line Program (SLP)

- Canonical form of a CFG deriving a single string
- Every production rule satisfies
 - Right hand side of a production rule is a digram
 - Subscript of the left symbol is larger than subscripts of the right symbols, i.e., $X_k \rightarrow X_i X_j \ (k > i, j)$

Example:

$$
\begin{align*}
X_1 & \rightarrow ab \\
X_2 & \rightarrow aX_1 \\
X_3 & \rightarrow bX_1 \\
X_4 & \rightarrow X_3 b \\
X_5 & \rightarrow X_2 X_4
\end{align*}
$$
Grammar compression

• Builds up an SLP from a given string
• Two crucial data structures to access a production rule $X_k \rightarrow X_i X_j$
 1. Dictionary (Array) : Given X_k, return $X_i X_j$
 2. Reverse dictionary (Hash table) : Given $X_i X_j$, return X_k if $X_k \rightarrow X_i X_j$ is registered in the dictionary

$X_1 \rightarrow ab$
$X_2 \rightarrow aX_1$
$X_3 \rightarrow bX_1$
$X_4 \rightarrow X_3 b$
$X_5 \rightarrow X_2 X_4$

Access $X_k \rightarrow A[2k-2]A[2k-1]$

Space : $2n\log n$ bits (n : #variables)
Three open problems about an optimal encoding of an SLP

1. An nontrivial information theoretic lower bound for encoding an SLP

2. Optimal encoding of an SLP
 - Standard array : $2n \log n$ bits (n: #variables)
 - Present an encoding asymptotically equivalent to the lower bound, while supporting fast random access

3. Space-efficient data structure for reverse dictionary
 - Hash table uses $O(n \log(n))$ bits
 - Present a data structure of $2n \log n (1+o(1))$ bits
An information theoretic lower bound for representing an SLP
An information theoretic lower bound for representing an SLP of n variables: $\log n! + 2n + o(n)$ bits

- Use two techniques for the proof
 1. Spanning tree decomposition for representing an SLP as two ordered trees
 2. Right most expansion for completely enumerating ordered trees
- First introduce these two techniques, and then show a sketch of the proof
Spanning tree decomposition [SPIRE11]

• Any SLP can be represented as left and right spanning trees.

Parse tree

- X_5
- X_2, X_1, X_3, X_4
- a, b

DAG representation

- X_5
- X_2, X_1, X_3, X_4
- a, b

Spanning trees

- X_5
- X_2, X_1, X_3, X_4
- a, b

Indegree(s) = 2σ
Right most expansion [KDD02,SDM02]

• Build trees of \((m+1)\) nodes from a tree of \(m\) nodes
 – Add a node to the nodes on the right most path

Example:

\[\rightarrow: \text{right most path}\]
Search space: All trees can be enumerated by applying the right most expansion, recursively.
Sketch of the proof (detail)

- Basic idea: Consider a super set $S(n)$ of $\text{DAG}(n)$ without the restriction of the in-degree 2σ of the sink, and count $|S(n)|$ by the induction
 - Get $|S(n)|/n^\sigma \leq |\text{DAG}(n)| \leq |S(n)|$
- Decompose $S(n)$ into the left and right trees by the spanning tree decomposition
- Count the number of left trees and the right trees of $(n+1)$ nodes by induction
 - Apply the right most expansion to the left tree
 - $|S(n)| = C_n (n-1)!$ where $C_n \approx 2^{2n} n^{-3/2}$
- Get the information-theoretic minimum bits for representing $G \in \text{DAG}(n)$: $\log n! + 2n + o(n)$ bits
An optimal encoding of an SLP
An optimal encoding of an SLP

- Basic idea: Encode the left and right symbols of the right hand side of the production rules, respectively.
- Rename the variables by traversing the left tree in the breadth first manner.
Encoding the left symbols

- Left symbols are monotonically increasing
- Apply gap encoding to the left symbols
- Use rank/select dictionary for \(O(1)\)-time access

\[
\begin{align*}
X_1 & \rightarrow a & X_2 \\
X_2 & \rightarrow a & b \\
X_3 & \rightarrow b & X_2 \\
X_4 & \rightarrow X_1 & X_5 \\
X_5 & \rightarrow X_3 & b
\end{align*}
\]

\[
00013 \\
0^010^010^010^{(1-0)}10^{(3-1)}1 \\
11101001
\]

\text{Gap encoding}

\(n + o(n)\) bits (\(n\): \#variables)

\(O(1)\) time access
Encoding the right symbols D (detail)

- Extract subarrays s_i of monotonically increasing and decreasing elements from D
- Use two integer arrays D_ρ, D_π and two bit arrays B,b
- $2n \log \rho (1 + o(1)) \rho < \sqrt{n}$ bits, and $O(\log \log \rho)$ access time

$s_1 = \{2, 3, 4\}, s_2 = \{1, 5\}$

index	1	2	3	4	5
D	2	0	2	5	0
D_ρ	2	1	1	1	2
D_π	1	2	2	1	1

$B = 110010010001$

$b = 01$

- s_i: indices of increasing/decreasing elements
- $D_\rho[i]$ indicates which s_j contains $D[i]$
- D_π is the sorted D_ρ w.r.t. $D[i]$ of the pairs $(D[i], D_\rho[i])$
- B is the gap encoding of the sorted D
- $b[i]$ indicates s_i is increasing or decreasing
Space-efficient data structure for reverse dictionary
Space-efficient data structure for reverse dictionary

- **Recap**: Reverse dictionary D^{-1}

\[D^{-1}(X_i, X_j) = \begin{cases} X_k, & \text{if } X_k \rightarrow X_iX_j \text{ is in the dictionary } D \\ X_{n+1}, & \text{otherwise.} \end{cases} \]

- Basic idea: Build a wavelet tree (WT) consisting of right symbols X_iX_j, and simulate reverse dictionary on the WT.

- Access and update time: $O(\log n)$, Space: $2n\log n(1+o(1))$ bits
Build WT from digrams: The range of a digram is split into the higher half (right) and the lower half (left)

\[
\begin{align*}
X_1 & \rightarrow ab \\
X_2 & \rightarrow aX_1 \\
X_3 & \rightarrow bX_2 \\
X_4 & \rightarrow X_3X_2 \\
X_5 & \rightarrow X_4X_1
\end{align*}
\]
Accessing $X_k \rightarrow X_i X_j$

EX) Access $X_3 X_2$

- Start from the root B_1 as $i = n$ (#variables)
- Apply $\text{rank}_1(B_j, i)$ for the right child and $\text{rank}_0(B_j, i)$ for the left child
- After reaching a leaf, go up to the root by applying select operation
- Solution: $X_k = \text{select}_{0/1}(B_1, i)$
Conclusion

• Three open problems related to an optimal encoding of an SLP
 1. an information theoretic lower bound
 2. an optimal encoding
 3. a dynamic data structure for reverse dictionary

• Novel challenges: Developing succinct data structures of an SLP for various applications e.g., self-index, pattern mining, q-gram mining etc