Quantum Gases

An ideal Josephson junction in an ultracold two-dimensional Fermi gas

Niclas Luick1,2, Lennart Sobirey1,2, Markus Bohlen1,2,3, Vijay Pal Singh4,2, Ludwig Mathey4,2, Thomas Lompe1,2, Henning Moritz1,2

The role of reduced dimensionality in high-temperature superconductors is still under debate. Recently, ultracold atoms have emerged as an ideal model system to study such strongly correlated two-dimensional (2D) systems. Here, we report on the realization of a Josephson junction in an ultracold 2D Fermi gas. We measure the frequency of Josephson oscillations as a function of the phase difference across the junction and find excellent agreement with the sinusoidal current phase relation of an ideal Josephson junction. Furthermore, we determine the critical current of our junction in the crossover from tightly bound molecules to weakly bound Cooper pairs. Our measurements clearly demonstrate phase coherence and provide strong evidence for superfluidity in a strongly interacting 2D Fermi gas.

Fig. 1. Josephson oscillations in a homogeneous 2D Fermi gas.

(A) Sketch of a Josephson junction consisting of two Fermi gases with chemical potential μ, particle numbers \(N_L \) and \(N_R \), and phases \(\phi_L \) and \(\phi_R \) separated by a tunneling barrier with height \(V_0 \). (B) Absorption images of cold atom Josephson junctions. The width of the barrier is held fixed at a waist of \(w = 0.81(6) \mu m \) while the size \(I_z \) of the system is increased. (C and D) Time evolution of the phase difference \(\Delta \phi \) (C) and relative particle number difference \(\Delta N/N \) (D) between the left and right side of the box after imprinting a relative phase difference of \(\Delta \phi = \pi/4 \). The red lines represent a damped sinusoidal fit. (E) Oscillation frequency as a function of barrier height \(V_0 \) for different system sizes [symbols as in (B)], where the error bars denote the 1σ fit error. The inductance \(L_B \) and capacitance \(C \) of the bulk system are proportional to the length \(I_z \) of the box, and therefore the oscillation frequency decreases with increasing system size for \(V_0 = 0 \). For nonzero values of \(V_0 \), the barrier adds a nonlinear Josephson inductance \(L_J \) to the system and the oscillation frequency decreases as a function of barrier height. (F) Josephson inductance \(L_{1/2}(V_0) \) extracted from the frequency measurements using an LC circuit model. The Josephson inductances for all system sizes collapse onto a single curve, which shows that the inductance of the junction depends only on the height of the barrier and validates our LC circuit model. We obtain the calibration of the barrier height \(V_0 \) by matching the data to a full numerical simulation (light red line with circles) (27). The data are obtained by averaging 20 (B), 42 (C), 130 (D), and 7 [(E) and (F)] individual measurements.

1Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany. 2The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany. 3Laboratoire Kastler Brossel, ESPS-Université Paris 7-CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005 Paris, France. 4Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.

*Corresponding author. Email: tlompe@physik.uni-hamburg.de
a Gaussian beam waist of $w = 0.81(6)\ \mu m$ to split the system into two homogeneous 2D pair condensates connected by a weak link (Fig. 1, A and B). We imprint a relative phase ϕ_0 between the two sides of the junction by illuminating one-half of the system with a spatially homogeneous optical potential for a variable time between 0 and 20 μs (27). We then let the system evolve for a time t and extract the population imbalance $\Delta N = (N_L - N_R)$ and the phase difference ϕ between the two sides using either in situ or time-of-flight imaging. A typical Josephson oscillation of a molecular condensate at a magnetic field of $B = 731$ G (29) and a barrier height of $V_0/\mu = 1.08(5)$ featuring the characteristic $\pi/2$ phase shift between imbalance and phase is shown in Fig. 1, C and D. The oscillations are weakly damped with a relative damping of $\gamma/\omega = 0.07\%$, which, according to a full numerical simulation of our system, can be explained by phononic excitations in the bulk and the nucleation of vortex-antivortex pairs in the junction (fig. S3) (30).

To understand these Josephson oscillations, we use a simple circuit model commonly used to describe superconducting Josephson junctions (21, 31, 32). In this model, we describe our junction as a nonlinear Josephson inductance L_J, which is connected in series to a linear bulk inductance L_B and a capacitance C (Fig. 1F), where the bulk inductance L_B characterizes the inertia of the gas and the capacitance C its compressibility. For vanishing Josephson inductance, the model reduces to a linear resonator with frequency $\omega_0 = \sqrt{L_B/C} = 2\pi n_c/2L_J$, which corresponds to the frequency of a sound mode propagating with the speed of sound c_0 across the length L of the system. Introducing a barrier with height V_0 adds a nonlinear inductance L_J to the system and reduces the oscillation frequency ω_0. Owing to the nonlinearity of the current phase relation, this L_J depends on the phase difference $\phi(t)$ across the junction, but for small phase excitations, there is a linear regime where $L_J[\phi(t)]$ can be approximated by a time-independent Josephson inductance $L_{J,0}$ and the oscillation frequency is given by $\omega = \omega_0/\sqrt{L_B + L_{J,0}}/C$.

To confirm that our physical system is described by this model, we prepare a gas of deeply bound dimers, perform measurements of the oscillation frequency in the linear regime as a function of the barrier height for different system sizes (Fig. 1E), and extract the Josephson inductance $L_{J,0}$ (Fig. 1F). Because our system has a uniform density, the bulk inductance is given by the simple expression $L_B = 8m_L/\pi^2n_c^2$, where n is the density per spin state, m is the mass of a 6Li atom, and $L (L_J)$ is the diameter of the box perpendicular (parallel) to the barrier (27). Consequently, the Josephson inductance $L_{J,0}(\omega) = L_B(\omega^2/\omega^2 - 1)$ can be extracted from the frequency difference between the Josephson oscillations and the sound mode. Whereas the oscillation frequency is strongly dependent on the size of the box owing to the change in the bulk inductance L_B and the capacitance C, the measured Josephson inductance $L_{J,0}$ should depend only on the coupling between the two reservoirs. As can be seen from Fig. 1 F, all measurements of $L_{J,0}$ versus barrier height collapse onto a single curve regardless of the system size, which confirms that our Josephson junction can be described by an inductor-capacitor (LC) circuit model. For the barrier heights used in our experiments, we also find very good agreement with a full numerical simulation of our system (27).

Next, we probe the fundamental property of Josephson junctions: the nonlinearity of the current phase relation (3, 26). For large phase excitations, the nonlinear current phase relation leads to anharmonic oscillations with an increased oscillation period. Our ability to imprint arbitrary phase differences ϕ_0 across the barrier enables us to measure this reduction of the fundamental frequency $\omega(\phi_0)$ as a probe of the nonlinearity (Fig. 2). To extract the nonlinear response of the current from our measurements of $\omega(\phi_0)$, we first calculate $I_{J,0}[\omega(\phi_0)]$ and then apply the relation $dI/d\phi_0 = h/L_J$ to $I_{J,0}(\phi_0)$ to obtain an effective current $I_{J}(\phi_0)$. For an ideal Josephson junction, I_{J} follows a rescaled current phase relation $I_J(\phi_0) = 2I_c \sin(\phi_0/2)$ (27). We find that our measurement is in excellent agreement with this current phase relation, indicating that our junction is an ideal Josephson junction (3, 26, 33). This implies that the current across the junction is indeed a supercurrent, driven by the phase difference between two superfluids.

Following this result, we can now use our Josephson junction as a probe for 2D superfluidity in the strongly correlated regime. We observe Josephson oscillations over a wide range of interaction strengths, indicating the presence of superfluidity in the entire crossover from tightly bound molecules to weakly bound Cooper pairs (Fig. 3). To quantify the effect of interactions on our system, we extract the critical current I_c from the frequency of the Josephson oscillations. Because for a fixed barrier height V_0 the change in the critical current would be dominated by the interaction dependence of the chemical potential, we instead maintain a constant $V_0/\mu = 1.4(2)$ by adjusting the barrier height V_0 for each interaction strength according to a reference measurement of the equation of state (fig. S4). We observe that, within the uncertainty of our measurement, the critical current stays nearly constant, with a tendency toward smaller values of I_c when approaching the Bardeen-Cooper-Schrieffer (BCS) side of the resonance. Although there is currently no theory available that quantitatively describes a 2D Josephson junction in the whole Bose-Einstein condensate (BEC)–BCS crossover, in the bosonic limit we can calculate the critical current from the condensate density n_c and the overlap of the condensate wave functions (27, 34). We use this theory to determine the condensate fraction from the measured critical current for interaction strengths $\ln(k_BT_0)/\Delta = -0.9$ and obtain $n_c/n = 0.72(8)_{\text{stat}}(0.13)_{\text{exp}}$, where stat. denotes the statistical error and the
systematic error (systs.) arises from the 15% uncertainty in V_0/μ. For our homogeneous 2D system, Berezinskii-Kosterlitz-Thouless theory relates the condensate fraction n_c/n^{∞} to the algebraic decay of phase coherence over the finite size L of the box, where $n^{\infty} \approx T_n/L$ is the algebraic scaling exponent (35, 36). A measurement of the critical current as a function of system size can therefore be used to extract the algebraic scaling exponent and the superfluid density n_c, as recently suggested in (37).

Our homogeneous 2D Fermi gas provides an excellent starting point to study the influence of reduced dimensionality on strongly correlated superfluids in the crossover between two and three dimensions. The distinctive combination of reduced dimensionality, uniform density, low entropy, and high-resolution imaging makes our system a perfect platform to observe exotic phases such as the elusive Fulde-Ferrell-Larkin-Ovchinnikov state (38). Finally, our system is ideally suited to investigate whether periodic driving of Josephson junctions can strongly enhance coherent transport, as suggested by experiments with THz-driven cuprate superconductors (39, 40).

REFERENCES AND NOTES

1. B. D. Josephson, Phys. Lett. 1, 251–253 (1962).
2. P. W. Anderson, J. M. Rowell, Phys. Rev. Lett. 10, 230–232 (1963).
3. A. A. Golubov, M. Y. Kuprianov, E. I. Il’ichev, Rev. Mod. Phys. 76, 411–469 (2004).
4. C. Tsuei, J. Kirtley, Rev. Mod. Phys. 72, 969–1016 (2000).
5. B. Fröhlich et al., Phys. Rev. Lett. 106, 105301 (2011).
6. A. T. Sommer, L. W. Cheuk, M. J. H. Ku, W. S. Bakr, M. W. Zwierlein, Phys. Rev. Lett. 108, 043012 (2012).
7. V. Makhalov, K. Martyanov, A. Turlapov, Phys. Rev. Lett. 112, 043013 (2014).
8. W. Wong C. Cheng, I. Arasakiyan, J. E. Thomas, Phys. Rev. Lett. 114, 010403 (2015).
9. K. Fenech et al., Phys. Rev. Lett. 116, 045302 (2016).
10. D. Mitra, P. T. Brown, P. Schauß, S. S. Kondov, W. S. Bakr, Phys. Rev. Lett. 117, 090601 (2016).
11. A. Mazurenko et al., Nature 545, 462–466 (2017).
12. J. Levinstein, M. M. Parish, in Annual Review of Cold Atoms and Molecules, K. W. Madison, K. Borgs, L. D. Carr, A. M. Rey, H. Hiz, Eds. (World Scientific, 2015), vol. 3, chap. 1, pp. 1–75.
13. M. G. Ries et al., Phys. Rev. Lett. 114, 230401 (2015).
14. F. S. Cataliotti et al., Science 293, 843–846 (2001).
15. M. Abieie et al., Phys. Rev. Lett. 95, 010402 (2005).
16. S. Levy, E. Lahoud, I. Shomroni, J. Steinhauser, Nature 449, 579–583 (2007).
17. L. J. Leblanc et al., Phys. Rev. Lett. 106, 025302 (2011).
18. T. Betz et al., Phys. Rev. Lett. 106, 200407 (2011).
19. G. Spagnoli et al., Phys. Rev. Lett. 118, 230403 (2017).
20. G. Valtolina et al., Science 350, 1505–1508 (2015).
21. A. Burchianti et al., Phys. Rev. Lett. 120, 025302 (2018).
22. C. Ryu, P. W. Blackburn, A. A. Blinova, M. G. Boshier, Phys. Rev. Lett. 113, 205301 (2013).
23. G. Watanabe, F. Dalfovo, F. Piazza, L. Pitaevskii, S. Stringari, Phys. Rev. A 80, 053602 (2009).
24. A. Spantarella, P. Pieri, G. C. Strinati, Phys. Rev. Lett. 99, 040401 (2007).
25. F. Ancilotto, L. Salasnich, F. Toigo, Phys. Rev. A 79, 033627 (2009).
26. S. Ekel, F. Jendrzejewski, A. Kumar, C. Lobb, G. Campbell, Phys. Rev. X 4, 031052 (2014).
27. See supplementary materials.
28. K. Hueck et al., Phys. Rev. Lett. 120, 060402 (2018).
29. This corresponds to an interaction strength of $\ln(k_F a) = -2.4$.
30. Notably, achieving this low damping requires a temperature of $T/T_F \lesssim 0.03$ (fig. S3), which is far below the predicted critical temperature $T_c/T_F = 0.1$ for 2D superfluidity at this interaction strength (13, 27, 42).
31. J. G. Lee, B. J. Molavian, C. J. Lobb, W. T. Hill III, Sci. Rep. 3, 1034 (2013).
32. S. Ekel et al., Phys. Rev. A 93, 063619 (2016).
33. We note that achieving a sinusoidal current phase relation requires a barrier deep in the tunneling regime, which is fulfilled for our barrier depth of $V_0/\mu = 1.5$.
34. M. Zaccanti, W. Zwerger, Phys. Rev. A 100, 063601 (2019).
35. Z. Hadzibabic, J. Dalibard, Riv. Nuovo Cim. 34, 389 (2011).
36. N. V. Prokof’ev, B. V. Svistunov, J. Exp. Theor. Phys. 127, 860–864 (2018).
37. V. P. Singh, N.Luck, L. Sobirey, Mat. Rev. 2002, 08375 [cond-mat.quant-gas] (19 February 2020).
38. J. J. Kinnunen, J. E. Baarsma, J.-P. Martikainen, P. Törnä, Rep. Prog. Phys. 81, 046401 (2018).
39. W. Hu et al., Nat. Mater. 13, 705–711 (2014).
40. J. J. Okamoto, W. Hu, A. Cavalleri, L. Mathey, Phys. Rev. B 96, 144505 (2017).
41. D. Petrov, M. Baranov, G. Shyaptikin, Phys. Rev. A 67, 031601 (2003).
42. N. Luck et al., Data for “An ideal Josephson junction in an ultracold two-dimensional Fermi gas.” Zenodo (2020); https://doi.org/10.5281/zenodo.3744797.
43. N. Luck et al., Simulation script and data for “An ideal Josephson junction in an ultracold two-dimensional Fermi gas.” Zenodo (2020); https://doi.org/10.5281/zenodo.3786298.

ACKNOWLEDGMENTS

We thank K. Hieck and B. Lienau for their contributions during earlier stages of the experiment, T. Enss, A. Recati, and M. Zaccanti for stimulating discussions; and G. Roati and F. Scazza for careful reading of the manuscript and valuable suggestions regarding the interpretation of Fig. 3.

Funding: This work was supported by the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 335431 and by the DFG in the framework of SFB 925 and the excellence clusters “The Hamburg Centre for Ultrafast Imaging” – EXC 1074 - project ID 194651731 and “Advanced Imaging of Matter” – EXC 2056 - project ID 390715994. M.B. acknowledges support by Labex ICFP of École Normale Supérieure Paris. Author contributions: N.L. and L.S. performed the experiments and data analysis with support from M.B. and T.L. V.P.S. and L.M. developed numerical and analytical models and contributed to the interpretation of our experimental data. N.L. and T.L. wrote the manuscript, and L.S. created the figures with input from all authors. T.L. and H.M. supervised the project. All authors contributed to the discussion and interpretation of our results. Competing interests: The authors declare no competing interests. Data and materials availability: All data presented in this paper and simulation scripts are deposited at Zenodo (42, 43).

SUPPLEMENTARY MATERIALS

science.sciencemag.org/content/369/6499/89/suppl/DC1

Figs. S1 to S4

References (44–49)

23 August 2019; accepted 7 May 2020

10.1126/science.aaz2342