Safety of Denosumab Versus Zoledronic Acid in Patients with Bone-related Diseases
A Systematic Review and Meta-analysis

Abstract

Introduction
Both Dmb and ZA have been widely used in the prevention and treatment of bone-related diseases, while which drug is an optimal treatment in terms of safety and efficacy remains controversial.

Material and methods
PubMed, Embase, Web of Science, the Cochrane Central Library, and ClinicalTrials.gov were systematically searched up to 1st January 2021, and were evaluated by Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. Randomized controlled trials comparing Dmb versus ZA in patients with bone-related diseases were included.

Results
A total of 13 studies involving 21042 participants were included. The incidence of total adverse events was significantly lower in patients receiving Dmb treatment than in those undergoing ZA treatment (OR = 0.84, 95% CI = 0.75–0.94, P = 0.003). 9 trials comparing Dmb with ZA further showed that Dmb was significantly better than ZA in controlling serious adverse events (OR = 0.91, 95% CI = 0.85–0.99, P = 0.02). Compared to ZA, Dmb was correlated with a lower incidence of skeletal-related events (OR = 0.77, 95% CI = 0.70–0.85, P = 0.00001). However, no significant difference was found in the rate of infection events between Dmb and ZA (OR = 1.06, 95% CI = 0.93–1.20, P =0.39).

Conclusions
This study demonstrated superiority of Dmb over ZA in treating bone-related diseases in terms of safety and efficacy.
Safety of Denosumab Versus Zoledronic Acid in Patients with Bone-related Diseases

A Systematic Review and Meta-analysis

Wenhao Luo1*, Ruoyu Ji2*, Ziyao Fu2, Shijie Yang2, Jing Zhan2, Ye Li3

1 Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.

2 Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.

3 Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.

*Wenhao Luo and Ruoyu Ji contributed to this article equally.

Corresponding to: Ye Li; Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
Post code: 510282
Tel: (86)17374509139
Email: liye@pumch.cn
Jiruoyupumch@163.com
Fuzzy9697@yeah.net
yangsijihu@163.com
Zhanj14@student.pumc.edu.cn
Abstract

Objective: To compare the safety of denosumab (Dmab) versus zoledronic acid (ZA) in patients with bone-related diseases.

Background: Both Denosumab and zoledronic acid have been widely used in the treatment of bone-related diseases, while which drug is an optimal treatment in terms of safety remains controversial.

Methods: PubMed, Embase, Web of Science, the Cochrane Central Library, and ClinicalTrials.gov were systematically searched up to 1st January 2021, and were evaluated by Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. Randomized controlled trials comparing relevant outcomes of Dmab versus ZA in patients with bone-related diseases were included.

Results: A total of 13 studies involving 21042 participants were included. The incidence of total adverse events was significantly lower in patients receiving Dmab treatment than in those undergoing ZA treatment (OR = 0.84, 95% CI = 0.75–0.94, P = 0.003). Nine trials comparing Dmab with ZA further indicated that Dmab was significantly better than ZA in controlling the incidence of serious adverse events (OR = 0.91, 95% CI = 0.85–0.99, P = 0.02). Compared to ZA, Dmab administration was correlated with a lower risk of skeletal-related events (OR = 0.77, 95% CI = 0.70–0.85, P = 0.00001). However, no significant difference was found
in the rate of infection events between Dmab and ZA (OR = 1.06, 95% CI = 0.93–1.20, P = 0.39).

Conclusion: This study demonstrated superiority of Dmab over ZA in treating bone-related diseases in terms of safety.

Keywords: Denosumab, Zoledronic acid, Bone-related diseases, Adverse events.

Introduction

With the increase of tumor incidence and the aging of the population, the prevalence of bone-related diseases along with the demand for corresponding medications is growing. We attached great importance to bone-related diseases\(^1\)-\(^3\). As two potent antiresorptive agents, both denosumab (Dmab) and zoledronic acid (ZA)\(^4\) have been widely used in the treatment of bone-related diseases, including but not limited to osteoporosis\(^5\),\(^6\), bone metastases secondary to solid tumors\(^7\)-\(^9\), multiple myeloma\(^10\),\(^11\) and giant cell tumor of bone\(^12\),\(^13\). As a potent intravenous bisphosphonate, ZA plays a critical role in the prevention of skeletal complications in bone-related diseases\(^5\),\(^14\). Dmab is a fully human monoclonal antibody of the immunoglobulin G2 isotype, which functions against the receptor activator of nuclear factor κB ligand (RANKL) and thereby inhibits osteoclast activation and function\(^15\), and its use is significantly less limited to renal toxicity\(^16\). Growing evidence suggests that Dmab is superior in terms of efficacy\(^17\),\(^18\), safety\(^5\) and even cost-
effectiveness19,20 over ZA. Published meta-analyses comparing the efficacy between Dmab and ZA for treatment of bone metastases in patients with solid tumors demonstrated that Dmab was better than ZA in preventing complications and delaying the onset of skeletal-related events (SREs)21-23. However, meta-analysis evaluating the safety between Dmab and ZA is still insufficient. In the few studies evaluating this, the use of both drugs was confined to the treatment of patients with bone metastases16,21,23. With the continuous expansion of indications of both drugs and increased interest in identifying the optimal treatment for bone-related diseases, there is necessity to comprehensively compare the safety of Dmab and ZA based on a wide range of bone-related diseases, which is also an important aspect to guide the clinical medication. Therefore, in this study, we conducted a systematic review and meta-analysis based on clinical trials to compare the safety and efficacy between Dmab and ZA in patients with bone-related diseases.

\textbf{Materials and Methods}

Registration of this systematic review has been completed on the PROSPERO (International Prospective Register of Systematic Reviews) website, under the registration number CRD42021227328. This systematic review was conducted with adherence to the guidelines of Preferred
Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) statement24.

Study Selections

Relevant studies were searched and identified by individually searching the following databases: PubMed, Embase, Web of Science, the Cochrane Central Library, and ClinicalTrials.gov up to 1st January 2021. For all databases, the following key terms were used for searching: “Denosumab”, “zoledronic acid” and “bone”. The study design was limited to randomized controlled trials (RCTs). This meta-analysis adhered to the Critical Appraisal Skills Programme (CASP) Checklist. Eligibility assessment was performed by two independent reviewers (L.W.H. and J.R.Y.). Disagreements between reviewers were resolved by group discussion and consensus.

Inclusion and Exclusion Criteria

Eligibility was assessed by two independent reviewers (L.W.H. and J.R.Y.), with consensus reached by discussing conflicts with a third investigator (L.Y.). Assessments were performed and repeated twice. Only RCTs were included. First, the titles and abstracts were assessed. Full texts of potentially qualified studies were then obtained and carefully reviewed. Reviewers were not blinded to the authorship of the studies. Dissertations, conference proceedings, and studies in non-English languages were excluded.
Outcomes of Interest

The primary outcome measure was the rate of adverse events. The secondary outcome measures were the rate of serious adverse events, SREs and infection events.

Data Collection

The following data were extracted: first author, year of study, country of origin, study population, number of patients, basic demographic characteristics, treatment information and data of outcomes of interest. The data were extracted and cross-checked independently by two authors (L.W.H. and J.R.Y.). Disagreements were resolved through deep discussion with a third reviewer (L.Y.) until we have reached a consensus.

Evaluation of Quality of Evidence

The methodological quality of the selected studies was blindly evaluated by two independent reviewers (L.W.H. and J.R.Y.). Disagreements were discussed among the group and resolved by a third assessor (L.Y.). The study quality was assessed using the CASP Checklist (Supplementary Table 1), which evaluates the risk of bias and comprises 11 items related to methodological quality and statistical reporting. Discrepancies and disagreements were resolved by consensus.

Statistical Analysis

Data analyses were performed using the Cochrane Collaboration’s Review Manager program (RevMan version 5.3; Cochrane Collaboration,
Oxford, UK). Meta-analysis was conducted to calculate pooled odds ratios (ORs) with 95% confidence intervals (CIs). We evaluated heterogeneity across studies using the Cochrane chi-square (χ^2) and quantified with the I^2 statistics25. I^2 values of 25%, 50% and 75% represented low, moderate and high heterogeneity, respectively26. Fixed-effects or random-effects models were used accordingly. The publication bias was detected by funnel plots and was statistically examined by Egger’s test27. The Egger’s test was performed in STATA version 16 (StataCorp, College Station, TX).

Results

Literature Search

A flow diagram of the literature search was shown in Figure 1. Among 565 potentially eligible articles, 13 fulfilled the inclusion criteria. Initially, through the electronic database search, we identified 565 citations. Examinations of the reference lists in all relevant papers, recent editorials, and related review articles yielded no further studies for evaluation. Non-RCTs were excluded and the remaining 26 articles were then selected after reading the titles and abstracts. After reading the full texts, 13 studies were further excluded because they did not report relevant outcomes. The remaining 13 RCTs met our inclusion criteria and were ultimately included in the qualitative analysis and final meta-analysis.
Study Characteristics

The characteristics of enrolled RCTs were presented in Table 1. Our meta-analysis included 21042 patients (10073 men and 10969 women) who were diagnosed with bone-related disease from six different countries. Among them, 10535 (50.1%) patients were treated with Dmab and 10507 (49.9%) patients were treated with ZA. The results of the quality assessment of the included RCTs were detailed in Table 2.

Primary Outcome

Adverse events

Ten of the included studies reported the overall rate of adverse events. The adverse events rate was 86.3% (6581/7623) in the Dmab group and
87.6% (6644/7584) in the ZA group. (odds ratio [OR] = 0.84, 95% CI = 0.75–0.94, P = 0.003) (Figure 2).

Secondary Outcomes

Serious adverse events

Nine RCTs reported relevant data regarding the rate of serious adverse events. The incidence of serious adverse events was significantly lower in the Dmab group compared with the ZA group (OR = 0.91, 95% CI = 0.85–0.99, P = 0.02) (Figure 3).
Skeletal-related Events (SREs)

The SREs rates were reported in four RCTs. The overall SREs rate was 40.5% (37.5% in the Dmab group and 43.5% in the ZA group). Dmab contributed to a lower incidence of SREs. (OR = 0.77, 95% CI = 0.70–0.85, P = 0.00001) (Figure 4).

Study or Subgroup	Denosumab Events	Denosumab Total	Zoledronic Events	Zoledronic Total	Weight	Odds Ratio M H Fixed, 95% CI
Martin 2011	341	368	651	37.5%	0.62	[0.56, 0.68]
Miguel 2012	318	332	690	26.3%	0.60	[0.55, 0.65]
Salahi 2015	494	604	651	37.5%	0.60	[0.57, 0.62]
Yadavhan 2012	276	333	690	23.2%	0.60	[0.56, 0.66]
Total (95% CI)	**3812**	**3812**	**100%**	**0.77 [0.70, 0.85]**		
Total events	1341	1680				

Figure 4 Forest plot for the incidence of SREs in denosumab compared with zoledronic acid

Infection events

Four studies involving 6594 patients were pooled and analyzed. These four trials comparing Dmab with ZA in patients with bone-related disease showed no significant difference between two drugs in the incidence of infection events (OR = 1.06, 95% CI = 0.93–1.20, P =0.39) (Figure 5).

Study or Subgroup	Denosumab Events	Denosumab Total	Zoledronic Events	Zoledronic Total	Weight	Odds Ratio M H Random, 95% CI
Alimohamadian 2019	473	494	1013	32.6%	0.91	[0.89, 1.08]
Alimohamadian 2016	193	168	452	18.4%	1.29	[1.19, 1.38]
Doi 2011	128	119	276	17.6%	1.13	[1.04, 1.26]
Kamin 2011	402	375	1046	30.6%	1.35	[1.24, 1.46]
Total (95% CI)	**3396**	**3288**	**100%**	**1.06 [0.93, 1.20]**		
Total events	1196	1165				

Figure 5 Forest plot for the incidence of infection events in denosumab compared with zoledronic acid
Publication Bias

-Funnel plots for the incidence of adverse events, serious adverse events, infection events and SREs were presented in Figure 6. The funnel plots did not show obvious asymmetry, and only one study (Fizazi, Karim 2011) evaluating the incidence of serious adverse events laid outside the limits of the 95% CI. Considering that the accuracy of funnel plots might be limited by the small number of studies, we complemented the Egger’s test to statistically examine the publication bias. The Egger’s test suggested no significant publication bias for the incidence of adverse events (P=0.310), serious adverse events (P=0.713), infection events (P=0.388) and SREs (P=0.554).

Figure 6 Funnel plots for the incidence of adverse events (a), serious adverse events (b), infection events (c) and SREs (d).
Discussion

We obtained several major findings from the present meta-analysis based on data from 21042 patients with bone-related diseases. From an efficacy perspective, Dmab resulted in less SREs in patients with bone metastases compared with ZA. For medication safety, Dmab significantly reduced the overall rate of adverse events including severe adverse events compared with ZA. Moreover, Dmab did not induce a higher risk of infection.

The benefit of preventing SREs in patients with bone metastases achieved by Dmab was consistently reported across included clinical trials with no interstudy heterogeneity. Previous meta-analyses have also confirmed the advantage of Dmab over ZA in delaying the onset of SREs\(^{21-23}\). SREs secondary to bone metastases such as pathological fracture, spinal cord compression, radiation or surgery to bone commonly occur clinically\(^{28}\), resulting in reduced survival, higher functional independence rates and dramatically lower health-related quality of life\(^{29}\). Moreover, SREs impose considerable financial burden on patients due to subsequent treatments\(^{30,31}\). Despite that the direct drug cost for Dmab was higher than ZA, it can be remarkably offset by reduced costs contributed by preventing or delaying the onset of SREs\(^{19,20}\). Therefore, compared with ZA, Dmab can alleviate both the health and economic burden for patients.

The comparison of the overall adverse events rate between Damb and
ZA has been little evaluated in the previous meta-analysis. After processing data from ten RCTs which enrolled a total of 15207 patients, our analyses indicated that Dmab was superior to ZA in declining the overall rate of adverse events. Of the ten studies, three included patients with multiple myeloma8,10,32 and two included patients with postmenopausal osteoporosis5,18, which relatively well represented the spectrum of indications of antiresorptive regents. Of note, no adverse events were recorded in Dmab group in one study based on patients with postmenopausal osteoporosis5, which was also the major source of heterogeneity. One potential explanation was that all patients underwent previous treatment of Dmab with a mean duration of 2.2 years before the start of the trial and were thus well tolerated to a second course of Dmab treatment. After excluding this study for sensitivity analysis, the result remained significant with a remarkable decrease in heterogeneity (P=0.020, I2=0).

Moreover, Dmab was also associated with fewer serious adverse events after evaluating data from nine clinical trials. A Previous meta-analysis based on patients with bone metastases demonstrated that Dmab administration was associated with lower risk of serious adverse events including hypocalcaemia, new primary malignancy and particularly renal toxicity16, which together with the result of ours, confirmed that Dmab had advantages in reducing the occurrence of serious adverse events over ZA.
RANKL pathway is expressed in activated lymphocytes and is involved in the formation of lymphoid nodes and thymic microenvironment33,34, and its inhibition by Dmab was concerned to be correlated with a higher risk of infection. As shown by our analysis result, Dmad did not significantly increase the incidence of infection event compared with ZA. However, according to pooled estimate of four included clinical trials, the overall rate of infection after infusion of Dmab was 36.2%. Additionally, serious and opportunistic infections have been observed, though rarely, in patients treated with Dmab35,36. Therefore, Dmab-induced infection still merit consideration before the initiation of therapy.

The present meta-analysis provided an assessment of current evidence regarding the efficacy and safety of Dmab versus ZA based on 13 high-quality RCTs which covered several bone-related diseases. To our current knowledge, compared with previous studies regarding the related topic, this meta-analysis contains the largest number of RCTs and covers the widest range of bone-related diseases, contributing to a reliable result and a more extensive application of analysis results. Despite these strengths, our study has several limitations. Even though the studies included in our meta-analysis were not confined to bone metastases, the number of studies evaluating non-cancer diseases such as postmenopausal osteoporosis was too small to conduct a reliable and robust subgroup analysis, which may limit the generalization of our results. For osteoporosis, the results must be
interpreted with caution, and a subgroup analysis is warranted with more articles published. Also, some included studies were sponsored by pharmaceutical companies and as such they were not free of potential pharmaceutical company bias.

Conclusion

Based on 13 high-quality randomized clinical trials, our results demonstrated that denosumab was superior to zoledronic acid in reducing the overall rate of adverse events as well as serious adverse events, and in reducing the onset of SREs. The treatment of denosumab was not correlated with a higher risk of infection as previously concerned. Considering the superiority of denosumab in safety outcomes, denosumab will be regarded as an optimal intervention for bone-related diseases. However, for other bone-related diseases rather than bone metastases, the superior safety of denosumab should be generalized with caution and further analyses are still warranted.

Declarations:

Ethical Approval

Not applicable

- **Consent to Publish**

We exceedingly hope that this manuscript could be accepted and published.

- **Authors Contributions**
Study design: LWH; Literature search: LWH, JRY; Study selection: LWH; Study draft and revision: LWH, JRY, FZY, YSJ and ZJ; Article guarantor: Dr. LI Ye

-Funding
Not applicable

-Competing Interests
Not applicable

-Availability of data and materials
Not applicable

References

1 Duman S, Çamurcu İ Y, Uçpınar H et al. Comparison of clinical characteristics and 10-year survival rates of revision hip arthroplasties among revision time groups. Arch Med Sci 2021; 17, 382–389.

2 Xu N, Wang L, Fu SJiang B. Resveratrol is cytotoxic and acts synergistically with NF-κB inhibition in osteosarcoma MG-63 cells. Arch Med Sci 2021; 17, 166–176.

3 Yin P, Shi Q, Xiao F et al. Inhibition of miR-22 promotes differentiation of osteoblasts and improves bone formation via the YWHAZ pathway in experimental mice. Arch Med Sci 2020; 16, 1419–1431.

4 Sert İ U, Kilic O, Akand M et al. The role of vitamin E in the prevention of zoledronic acid-induced nephrotoxicity in rats: a light and electron microscopy study. Arch Med Sci 2018; 14, 381–387.

5 Anastasilakis AD, Papapoulos SE, Polyzos SA, Appelman-Dijkstra NM, Makras P. Zoledronate for the Prevention of Bone Loss in Women Discontinuing Denosumab Treatment. A Prospective 2-Year Clinical Trial. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 2019; 34, 2220–2228.

6 Cummings SR, San Martin J, McClung MR et al. Denosumab for prevention of
fractures in postmenopausal women with osteoporosis. *The New England Journal of Medicine* 2009; 361, 756-765.

7 Fizazi K, Carducci M, Smith M et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. *Lancet (London, England)* 2011; 377, 813-822.

8 Henry DH, Costa L, Goldwasser F et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. *Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology* 2011; 29, 1125-1132.

9 Lipton A, Fizazi K, Stopeck AT et al. Effect of denosumab versus zoledronic acid in preventing skeletal-related events in patients with bone metastases by baseline characteristics. *European Journal of Cancer (Oxford, England: 1990)* 2016; 53, 75-83.

10 Raje N, Terpos E, Willenbacher W et al. Denosumab versus zoledronic acid in bone disease treatment of newly diagnosed multiple myeloma: an international, double-blind, double-dummy, randomised, controlled, phase 3 study. *The Lancet. Oncology* 2018; 19, 370-381.

11 Raje N, Vadhan-Raj S, Willenbacher W et al. Evaluating results from the multiple myeloma patient subset treated with denosumab or zoledronic acid in a randomized phase 3 trial. *Blood Cancer Journal* 2016; 6, e378.

12 Lipplaa A, Kroep JR, van der Heijden L et al. Adjuvant Zoledronic Acid in High-Risk Giant Cell Tumor of Bone: A Multicenter Randomized Phase II Trial. *The Oncologist* 2019; 24, 889-e421.

13 van der Heijden L, Dijkstra PDS, Blay JY Gelderblom H. Giant cell tumour of bone in the denosumab era. *European Journal of Cancer (Oxford, England: 1990)* 2017; 77, 75-83.

14 Kohno N, Aogi K, Minami H et al. Zoledronic acid significantly reduces skeletal complications compared with placebo in Japanese women with bone metastases from breast cancer: a randomized, placebo-controlled trial. *Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology* 2005; 23, 3314-3321.

15 Body JJ, Facon T, Coleman RE et al. A study of the biological receptor activator of nuclear factor-kappaB ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer. *Clinical Cancer Research: An Official Journal of the American Association for Cancer Research* 2006; 12, 1221-1228.

16 Chen FPu F. Safety of Denosumab Versus Zoledronic Acid in Patients with Bone Metastases: A Meta-Analysis of Randomized Controlled Trials. *Oncology Research and Treatment* 2016; 39, 453-459.

17 Scagliotti GV, Hirsh V, Siena S et al. Overall survival improvement in patients with lung cancer and bone metastases treated with denosumab versus zoledronic acid: subgroup analysis from a randomized phase 3 study. *Journal...
Miller PD, Pannacciulli N, Brown JP et al. Denosumab or Zoledronic Acid in Postmenopausal Women With Osteoporosis Previously Treated With Oral Bisphosphonates. *The Journal of clinical endocrinology and metabolism* 2016; **101**, 3163-3170.

Stoppeck A, Brufsky A, Kennedy L et al. Cost-effectiveness of denosumab for the prevention of skeletal-related events in patients with solid tumors and bone metastases in the United States. *Journal of medical economics* 2020; **23**, 37-47.

Raje N, Roodman GD, Willenbacher W et al. A cost-effectiveness analysis of denosumab for the prevention of skeletal-related events in patients with multiple myeloma in the United States of America. *Journal of medical economics* 2018; **21**, 525-536.

Sun LYu S. Efficacy and safety of denosumab versus zoledronic acid in patients with bone metastases: a systematic review and meta-analysis. *American journal of clinical oncology* 2013; **36**, 399-403.

Chen C, Li R, Yang T et al. Denosumab Versus Zoledronic Acid in the Prevention of Skeletal-related Events in Vulnerable Cancer Patients: A Meta-analysis of Randomized, Controlled Trials. *Clinical therapeutics* 2020; **42**, 1494-1507.e1491.

Chen J, Zhou L, Liu X et al. Meta-analysis of clinical trials to assess denosumab over zoledronic acid in bone metastasis. *International journal of clinical pharmacy* 2020.

Moher D, Liberati A, Tetzlaff JAltman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Annals of internal medicine* 2009; **151**, 264-269, w264.

Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. *Stat Med* 2002; **21**, 1539-1558.

Higgins JP, Thompson SG, Deeks JJAltman DG. Measuring inconsistency in meta-analyses. *Bmj* 2003; **327**, 557-560.

Egger M, Davey Smith G, Schneider Minder C. Bias in meta-analysis detected by a simple, graphical test. *Bmj* 1997; **315**, 629-634.

D’Oronzo S, Coleman R, Brown JSilvestris F. Metastatic bone disease: Pathogenesis and therapeutic options: Up-date on bone metastasis management. *Journal of bone oncology* 2019; **15**, 004-004.

Costa L, Badia X, Chow E, Lipton AWardley A. Impact of skeletal complications on patients’ quality of life, mobility, and functional independence. *Supportive care in cancer: official journal of the Multinational Association of Supportive Care in Cancer* 2008; **16**, 879-889.

Yong C, Onukwugha EMullins CD. Clinical and economic burden of bone metastasis and skeletal-related events in prostate cancer. *Current opinion in oncology* 2014; **26**, 274-283.

Bhowmik D, Hines DM, Intorcia MWade RL. Economic burden of skeletal-related
events in patients with multiple myeloma: analysis of US commercial claims database. *Journal of medical economics* 2018; 21, 622-628.

32 Diel IJ, Body JJ, Stopeck AT et al. The role of denosumab in the prevention of hypercalcaemia of malignancy in cancer patients with metastatic bone disease. *European journal of cancer (Oxford, England : 1990)* 2015; 51, 1467-1475.

33 Leibbrandt A, Penninger JM. RANK/RANKL: regulators of immune responses and bone physiology. *Annals of the New York Academy of Sciences* 2008; 1143, 123-150.

34 Dore RK. The RANKL pathway and denosumab. *Rheumatic diseases clinics of North America* 2011; 37, 433-452, vi-vii.

35 Watts NB, Roux C, Modlin JF et al. Infections in postmenopausal women with osteoporosis treated with denosumab or placebo: coincidence or causal association? *Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA* 2012; 23, 327-337.

36 Lau AN, Wong-Pack M, Rodjanapiches R et al. Occurrence of Serious Infection in Patients with Rheumatoid Arthritis Treated with Biologics and Denosumab Observed in a Clinical Setting. *The Journal of rheumatology* 2018; 45, 170-176.

Figure Legends

Figure 1 A flow diagram of the literature search

Figure 2 Forest plot for the incidence of adverse events in denosumab compared with zoledronic acid

Figure 3 Forest plot for the incidence of serious adverse events in denosumab compared with zoledronic acid

Figure 4 Forest plot for the incidence of SREs in denosumab compared with zoledronic acid

Figure 5 Forest plot for the incidence of infection events in denosumab compared with zoledronic acid

Figure 6 Funnel plots for the incidence of adverse events (a), serious adverse events (b), infection events (c) and SREs (d)
Year	Country	Design	D group	Z group				
			Patients Number	Median Age	Male percentage	Patients Number	Median Age	Male percentage
2010	America	RCT	1026	57	0.8%	1020	56	0.9%
2011	America	RCT	886	60	66.0%	890	61	62.0%
2011	France	RCT	950	71	100.0%	951	71	100.0%
2012	Italy	RCT	411	60	74.0%	400	61	68.0%
2012	America	RCT	886	60	66.0%	890	61	62.0%
2012	Spain	RCT	1026	57	0.8%	1020	56	0.9%
2014	America	RCT	800	59	66.0%	797	61	62.0%
2015	France	RCT	950	71	100.0%	951	71	100.0%
2015	Germany	RCT	1912	58	31.0%	1910	59	29.0%
2016	America	RCT	321	68.5	0.0%	322	69.5	0.0%
2018	America	RCT	859	63	54.0%	859	63	55.0%
2018	Greece	RCT	30	64.8	0.0%	27	65.2	0.0%
2016	America	RCT	325	56	0.0%	342	55.9	0.0%
			153	70	100.0%	128	71	100.0%
Year	Country	Design	D group	Z group				
------	---------	--------	---------	---------				
			Patients Number	Median Age	Male percentage	Patients Number	Median Age	Male percentage
2010	America	RCT	1026	57	0.8%	1020	56	0.9%
2011	America	RCT	886	60	66.0%	890	61	62.0%
2011	France	RCT	950	71	100.0%	951	71	100.0%
2012	Italy	RCT	411	60	74.0%	400	61	68.0%
2012	America	RCT	886	60	66.0%	890	61	62.0%
2012	Spain	RCT	1026	57	0.8%	1020	56	0.9%
2014	America	RCT	800	59	66.0%	797	61	62.0%
2015	France	RCT	950	71	100.0%	951	71	100.0%
2015	Germany	RCT	1912	58	31.0%	1910	59	29.0%
2016	America	RCT	321	68.5	0.0%	322	69.5	0.0%
2018	America	RCT	859	63	54.0%	859	63	55.0%
2018	Greece	RCT	30	64.8	0.0%	27	65.2	0.0%
2016	America	RCT	325	56	0.0%	342	55.9	0.0%
			153	70	100.0%	128	71	100.0%
Additions for Table 1

References	Year	Country	Design	D group	Z group
Stopeck, Alison T	2010	America	RCT	120mg q4w s.c	4mg q4w ivgtt
Henry, David H	2011	America	RCT	120mg q4w s.c	4mg q4w ivgtt
Fizazi, Karim	2011	France	RCT	120mg q4w s.c	4mg q4w ivgtt
Scaglioni, Giorgio Vittorio	2012	Italy	RCT	120mg q4w s.c	4mg q4w ivgtt
Vadhan-Raj, S	2012	America	RCT	120mg q4w s.c	4mg q4w ivgtt
Martin, Miguel	2012	Spain	RCT	120mg q4w s.c	4mg q4w ivgtt
Henry, David	2014	America	RCT	120mg q4w s.c	4mg q4w ivgtt
Smith, Matthew R	2015	France	RCT	120mg q4w s.c	4mg q4w ivgtt
Diehl, Ingo J	2015	Germany	RCT	120mg q4w s.c	4mg q4w ivgtt
Miller, P. D	2016	America	RCT	60mg q6m twice, s.c	5mg once ivgtt
Raje, Noopur	2018	America	RCT	120mg q4w s.c	4mg q4w ivgtt
Anastasilakis, Athanasios D	2018	Greece	RCT	60mg q6m twice, s.c	5mg once ivgtt
Stopeck, Alison T	2016	America	RCT	120mg q4w s.c	4mg q4w ivgtt

Notes: 120mg q4w s.c means 120 mg subcutaneously every 4 weeks; 4mg q4w ivgtt means 4 mg intravenous every 4 weeks.
Year	Country	Design	Primary Disease
2010	America	RCT	Advanced breast cancer with bone metastases
2011	America	RCT	Advanced cancer or multiple myeloma with bone metastases
2011	France	RCT	Castration-resistant prostate cancer with bone metastases
2012	Italy	RCT	Lung cancer with bone metastases
2012	America	RCT	Advanced cancer or multiple myeloma with bone metastases
2012	Spain	RCT	Advanced Breast Cancer
2014	America	RCT	Advanced solid tumor with bone metastases
2015	France	RCT	Castration-resistant prostate cancer with bone metastases
2015	Germany	RCT	Advanced breast cancer and other solid tumours (excluding breast or prostate cancer) or multiple myeloma with bone metastases
2016	America	RCT	Postmenopausal osteoporosis
2018	America	RCT	Multiple myeloma
2018	Greece	RCT	Postmenopausal osteoporosis
2016	America	RCT	Advanced breast with bone metastases Castration-resistant prostate cancer with bone metastases
Table 2 Quality assessments of randomized controlled trials enrolled in the meta-analysis

Reference	Item I	Item II	Item III	Item IV	Item V	Item VI	Item VII	Item VIII	Item IX	Item X	Item XI	Total Score
Athanasios D Anastasilakis et al	1	1	1	1	1	1	1	1	1	1	1	11
Noopur Raje et al	1	1	1	0.5	1	1	1	1	1	1	1	10.5
PD Miller et al	1	0.5	1	0	1	1	1	1	0.5	1	1	10
Alison T. Stopeck et al	1	1	1	1	1	1	1	1	1	1	1	11
Ingo J. Diel et al	1	1	0.5	0.5	1	0	1	1	0.5	1	1	8.5
M. R. Smith et al	1	1	0.5	1	1	1	1	1	0.5	1	1	10
David Henry et al	1	1	1	1	1	1	1	1	1	1	1	11
Giorgio Vittorio Scagliotti et al	1	0.5	1	1	1	1	1	1	1	1	1	10.5
Miguel Martin et al	1	1	1	1	1	1	1	1	1	1	1	11
S. Vadhan-Raj et al	1	1	1	0.5	1	1	1	1	1	1	1	10.5
Karim Fizazi et al	1	1	1	1	1	1	1	1	1	1	1	10.5
David H. Henry et al	1	1	1	1	1	1	1	1	1	1	1	11
Alison T. Stopeck et al	1	1	1	1	1	1	1	1	1	1	1	11
Supplementary Table 1 Critical Appraisal Skills Programme (CASP) Checklist

Item Number	Items of quality assessment
1	Was the assigned treatment adequately concealed before allocation?
2	Were the outcome of patients who withdrew described and included in the analysis (intention to treat)?
3	Were the outcome assessors blinded to the treatment status?
4	Were the treatment and control groups comparable at entry?
5	Were the participants blinded to the assignment status after allocation?
6	Were the treatment providers blind to the assignment status?
7	Were the care programs, other than the trial options, identical?
8	Were the inclusion and exclusion criteria clearly defined?
9	Were the interventions clearly defined?
10	Were the outcome measures used clearly defined?
11	Were diagnostic tests used in the outcome assessment clinically useful?