Observation of a Narrow Near-Threshold Structure in the $J/\psi\phi$ Mass Spectrum in $B^+ \rightarrow J/\psi\phi K^+$ Decays

Kai Yi∗
University of Iowa
E-mail: yik@fnal.gov

Observation is reported for a structure near the $J/\psi\phi$ threshold in $B^+ \rightarrow J/\psi\phi K^+$ decays produced in $\bar{p}p$ collisions at $\sqrt{s} = 1.96$ TeV with a statistical significance of beyond 5 standard deviations. There are 19 ± 6 events observed for this structure at a mass of $4143.4^{+2.9}_{-3.0}$ (stat) ± 0.6 (syst) MeV/c2 and a width of $15.3^{+10.1}_{-6.1}$ (stat) ± 2.5 (syst) MeV/c2, which are consistent with the previous measurements reported as evidence of the $Y(4140)$.

35th International Conference of High Energy Physics - ICHEP2010,
July 22-28, 2010
Paris France

∗Speaker.
†for the CDF Collaboration

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/
Recently, evidence has been reported by CDF for a narrow structure near the $J/ψφ$ threshold, named $Y(4140)$, in $B^+ \rightarrow J/ψφK^+$ decays produced in $\bar{p}p$ collisions at $\sqrt{s} = 1.96$ TeV [1]. The structure is the first charmonium-like structure decaying into two heavy quarkonium states ($c\bar{c}$ and $s\bar{s}$) which is a candidate for exotic mesons [2]. In this note, we report an update on a search for structures in the $J/ψφ$ system produced in exclusive $B^+ \rightarrow J/ψφK^+$ decays with $J/ψ \rightarrow μ^+μ^−$ and $φ \rightarrow K^+K^−$. This analysis is based on a sample of $\bar{p}p$ collision data at $\sqrt{s} = 1.96$ TeV with an integrated luminosity of about 6.0 fb$^{-1}$ collected by the CDF II detector at the Tevatron. The CDF II detector has been described in detail elsewhere [3]. In this analysis, $J/ψ \rightarrow μ^+μ^−$ events are recorded using a dedicated three-level dimuon trigger.

The invariant mass of $J/ψφK^+$ in the current dataset, which includes those used in the previous analysis after applying the same requirements used in the previous analysis [1], is shown in Fig. 1. A fit with a Gaussian signal function with its rms fixed to the value 5.9 MeV obtained from Monte Carlo (MC) simulation [4] and a linear background function to the mass spectrum of $J/ψφK^+$ returns a B^+ signal of 115 ± 12 (stat) events. For a luminosity increase by a factor of 2.2, the yield increase was 1.53, reduced by trigger rate-limitation at higher average luminosity. We then select B^+ signal candidates with a mass within $3σ$ (17.7 MeV/c2) of the nominal B^+ mass. We define those events with a mass within [-9,-6]σ or [6,9]σ of nominal B mass as B sideband events. Fig. 2 shows the mass difference, $ΔM = m(μ^+μ^-K^+K^-) - m(μ^+μ^-)$, for events in the B^+ mass window as well as in the B sideband in our data sample. The comparison of the $ΔM$ distribution in the B mass window for the dataset used in this analysis (6.0 fb$^{-1}$) and the dataset used in the previous analysis (2.7 fb$^{-1}$ [1]) is shown in Figure 3.

The same model is used to examine the $Y(4140)$ structure as described in reference [1]. We model the enhancement by an S-wave relativistic BW function [5] convoluted with a Gaussian resolution function with the r.m.s. fixed to 1.7 MeV/c2 obtained from MC, and use three–body phase space [6] to describe the background shape. Even though we exclude the high mass region to avoid the B_s contamination, there is still a small contribution in the region of interest. We obtained the $ΔM$ shape from B_s contamination and fix the $ΔM$ shape obtained from B_s MC simulation, and

Figure 1: The mass distribution of $J/ψφK^+$; the solid line is a fit to the data with a Gaussian signal function and linear background function.

Figure 2: The mass difference, $ΔM$, between $μ^+μ^-K^+K^-$ and $μ^+μ^-$, in the B^+ mass window is shown as the black histogram. The red histogram is the $ΔM$ distribution from the data in the B sideband.
the yield to 3.3, scaled from the $B_s \rightarrow J/\psi \phi$ yield in data. An unbinned likelihood fit to the ΔM distribution, as shown in Fig. 3, returns a yield of 19 ± 6 events, a ΔM of 1046.7$^{+2.9}_{-3.0}$ MeV/c^2, and a width of 15.3$^{+10.4}_{-6.1}$ MeV/c^2.

We use the same simulation process as in Reference [1], based on a pure three-body phase space background shape to determine the significance of the $Y(4140)$ structure. We performed a total of 84 million simulations and found 19 trials with a $\sqrt{-2\ln(\mathcal{L}_0/\mathcal{L}_{max})}$ value greater than or equal to the value obtained in the data (5.9), as shown in Fig. 3, where \mathcal{L}_0 and \mathcal{L}_{max} are the likelihood values for the null hypothesis fit and signal hypothesis fit. The resulting p-value is 2.3×10^{-7}, corresponding to a significance of greater than 5.0σ.

The mass of this structure, including systematic uncertainty, is measured as $4143.4^{+2.9}_{-3.0}(\text{stat}) \pm 0.6$(syst) MeV/$c^2$ after including the world-average J/ψ mass. The relative efficiency between $B^+ \rightarrow Y(4140)K^+$, $Y(4140) \rightarrow J/\psi \phi$ and $B^+ \rightarrow J/\psi \phi K^+$ is 1.1 assuming $Y(4140)$ as an S-wave structure and B^+ phase space decays. Thus the relative branching fraction between $B^+ \rightarrow Y(4140)K^+$, $Y(4140) \rightarrow J/\psi \phi$ and $B^+ \rightarrow J/\psi \phi K^+$ including systematics is $0.149 \pm 0.039(\text{stat}) \pm 0.024(\text{syst})$.

An further excess above the three-body phase space background shape appears at approximately 1.18 GeV/c^2 in Fig. 3(b). Since the significance of $Y(4140)$ is greater than 5σ, we fit to the data assuming two structures at ΔM of 1.05 and 1.18 GeV/c^2 as shown in Fig. 3. The fit to the data with the same requirements as in the previous paper [1] returns a yield of 20 ± 5 events, a ΔM of 1046.7$^{+2.8}_{-2.9}$ MeV/c^2, and a width of 15.0$^{+8.5}_{-5.6}$ MeV/c^2 for the $Y(4140)$, which are consistent with the values returned from a $Y(4140)$-only signal fit. The fit returns a yield of 22 ± 8 events, a ΔM of 1177.7$^{+8.4}_{-6.7}$ MeV/c^2, and a width of 32.3$^{+21.3}_{-15.3}$ MeV/c^2 for the structure around ΔM of 1.18 GeV/c^2. The significance of the second structure, determined by a similar simulation is 3.1σ.
In summary, the growing $B^+ \rightarrow J/\psi \phi K^+$ sample at CDF enables us to observe the $Y(4140)$ structure \cite{1} with a significance greater than 5σ. Assuming an S-wave relativistic BW, the mass and width of this structure, including systematic uncertainties, are measured to be $4143.4^{+2.9}_{-3.0}\,(\text{stat}) \pm 0.6\,(\text{syst})$ MeV/c^2 and $15.3^{+10.4}_{-6.1}\,(\text{stat}) \pm 2.5\,(\text{syst})$ MeV/c^2, respectively. The relative branching fraction between $B^+ \rightarrow Y(4140)K^+$, $Y(4140) \rightarrow J/\psi \phi$ and $B^+ \rightarrow J/\psi \phi K^+$ including systematics is $0.149 \pm 0.039\,(\text{stat}) \pm 0.024\,(\text{syst})$. We also find evidence at 3.1σ level for a second structure with a mass of $4274.4^{+8.4}_{-6.7}\,(\text{stat})$ MeV/c^2, a width of $32.3^{+21.9}_{-15.3}\,(\text{stat})$ MeV/c^2 and a yield of 22 ± 8.

References

[1] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 102, 242002 (2009).
[2] X. Liu and Z. Zhu, Phys. Rev. D 80, 017502 (2009); N. Mahajan, Phys. Lett. B 679, 228 (2009); Z. Wang, Eur. Phys. J. C 63, 115 (2009); T. Branz et al., Phys. Rev. D 80, 054019 (2009); R. Albuquerque et al., Phys. Lett. B 678, 186 (2009); X. Liu, Phys. Lett. B 680, 137 (2009); G Ding, Eur. Phys. J. C 64, 297 (2009); J. Zhang and M. Huang, Phys. Rev. D 80, 056004 (2009); E. Beveren and G. Rupp, arXiv:0906.2278 [hep-ph]; F. Stancu, J. Phys. G 37, 075017 (2010); T. Branz et al., arXiv:1001.3959 [hep-ph]; K. Yamada, arXiv:1002.0410 [hep-ph].
[3] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 032001 (2005); A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 97, 242003 (2006).
[4] A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 96, 082002 (2006); T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 100 182002 (2008).
[5] $\frac{dN}{dm} \propto \frac{m\Gamma(m)}{[m^2-m_0^2]^2+2m_0^2\Gamma^2(m)}$, where $\Gamma(m) = \Gamma_0 \frac{q_0}{q_0} \frac{m}{m}$, and the 0 subscript indicates the value at the peak mass.
[6] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008).