Coordination of hypoxia adaptation and iron homeostasis in human pathogenic fungi

Dawoon Chung1, Hubertus Haas2 and Robert A. Cramer1*,

1 Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
2 Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria

INTRODUCTION

Invasive fungal infections (IFIs) including candidiasis, aspergillosis, cryptococcal meningitis, mycetoma, and encephalomyocarditis have become a significant threat to immunocompromised and immunocompetent individuals. Treatment options for IFIs are limited due to host toxicity issues, lack of drug targets, and emerging drug resistance (Latge and Calderone, 2002; Thompson and Hooper, 2010; Kontoyiannis et al., 2010; Pappas et al., 2008; Dagan and Hope, 2010; Kontoyiannis et al., 2010; Pappas et al., 2010). Given the rapid technological advances in medicine and increased human life-span it seems clear that life threatening fungal infections will continue to be a major clinical problem for the foreseeable future.

Like other diseases, development of fungal disease is a constant battle between the pathogen and host. To “win” the battle and survive, fungi must tolerate and overcome diverse conditions during infection. Host microenvironmental parameters that can affect the ability of fungi to cause disease include temperature, pH, carbon and nitrogen sources, iron acquisition, and gas tension (carbon dioxide and oxygen levels) among others (Askew, 2008; Cooter and Klein, 2008; Dagenais and Keller, 2009; Wezensky and Cramer, 2011). In this review, we focus on how fungal responses to hypoxia (significantly low levels of oxygen) and iron limitation may be interconnected (Weinberg, 1999a; Schable and Kaufmann, 2004; Cramer et al., 2009; Salahudeen and Bruick, 2009; Wezensky and Cramer, 2011). Both of these stresses have been observed to occur during fungal pathogenesis, and fungal responses to them have been associated with virulence and currently used antifungal drugs.

Due to the involvement of oxygen in iron metabolism (e.g., oxidation of Fe2+ to Fe3+ for iron storage; Arosio et al., 2009) and iron requirements for oxygen transport or respiration (e.g., homeocytosomes, Goldberg et al., 1988), the presence of integrated regulation of iron homeostasis and hypoxia adaptation has been hypothesized. Oxygen levels in healthy human tissues are 20–70 mmHg (2.5–9% O2), and damage or inflammation often causes hypoxic environments in the tissues with an oxygen level of less than 10 mmHg (~1% O2; Lewis et al., 1999). In healthy tissue and fluids, the concentration of free iron is extremely low (10−24 – 10−18 M; Bullen et al., 1978; 2005; Martin et al., 1997), and it has been reported that serum iron levels decrease further by fever during infection (Bulger and Rothenburg, 1979). These data suggest that both hypoxia and iron limitation are linked in mammals and are host conditions that pathogens encounter during infection. In human pathogenic fungi, molecular mechanisms underlying hypoxia adaptation and iron homeostasis have been investigated. However, the interconnected regulation of hypoxia adaptation and iron homeostasis remains to be fully elucidated. This review discusses the potential transcriptional regulatory links between hypoxia adaptation and iron homeostasis in human pathogenic fungi. Transcriptome analyses demonstrate that core regulators of hypoxia adaptation and iron homeostasis are involved in regulation of several common genes responsible for iron acquisition and ergosterol biosynthesis. Importantly, iron starvation increases susceptibility of fungal cells to antifungal drugs and decreased levels of ergosterol, while key hypoxia regulators are also involved in responses to antifungal drugs and mediating ergosterol levels. We suggest that pathogenic fungi have developed a coordinated regulatory system in response to hypoxia and iron starvation through (i) regulation of expression of hypoxia-responsive and iron-responsive genes via cross-linked key regulators, and/or (ii) regulation of factors involved in ergosterol biosynthesis. Thus, both oxygen and iron availability are intimately tied with fungal virulence and responses to existing therapeutic agents and further elucidation of their interrelationship should have significant clinical implications.

Keywords: hypoxia, iron homeostasis, pathogenic fungi, SREBPs, GATA factor, CBC-binding factor, heme, ergosterol biosynthesis

Published: 06 November 2012
doi: 10.3389/fmicb.2012.00381

www.frontiersin.org

November 2012 | Volume 3 | Article 381 | 5
iron limitation are natural defense mechanisms of mammalian hosts against microbial infection.

In response to hypoxia, mammalian cells attempt to increase oxygen uptake/utilization by enhancing red blood cell production (erythropoiesis; Goldberg et al., 1988). Erythropoiesis involves hemoglobin whose structure contains heme. In order to induce erythropoiesis in hypoxia, cells increase iron availability to support an increased demand for heme biosynthesis. Thus, in mammals, the cellular responses to hypoxia or iron starvation might lead to similar consequences such as improvement of iron availability (Chopely and Willmore, 2011). Whether similar mechanisms exist in fungi remains to be fully elucidated.

Studies on hypoxia-inducible factor-1 (HIF-1) in mammals and Caenorhabditis elegans have elucidated a regulatory link in cellular responses to hypoxia and iron limitation (Mendel, 1961; Rolls et al., 1997; Yoon et al., 2006; Peyssonnax et al., 2008; Salakhudin and Bruck, 2009; Beka et al., 2011; Chopely and Willmore, 2011). Stabilization of HIF-1 is induced in response to hypoxia and the presence of microbial pathogens, and HIF-1 plays a role in adaptation of stress environments and the innate immune system (Nizet and Johnson, 2009). HIF is post-translationally regulated by oxygen via hydroxylation of a regulatory subunit, HIF-α (Wang and Semenza, 1993; Poellinger and Johnson, 2004). This process is mediated by prolyl-hydroxylases (PHDs) that require iron as a cofactor (Appelhoff et al., 2004). The promoter sequence of the gene encoding the iron transport protein transferrin (TF) contains HIF-1 binding sites and expression of TF increases in hypoxia due to induced HIF-1 expression (Rolls et al., 1997). An iron response element (IRE) is found in the promoter sequence of HIF-2α, which implies that induction of HIF and resulting hypoxia adaptation is regulated in part by iron availability (Ozer and Bruick, 2007; Sanchez et al., 2007; Salakhudin and Bruck, 2009). In C. elegans, expression of two genes, ftn-1 and ftn-2, encoding the iron-storage protein ferritin is regulated by HIF-1 binding of hypoxia response element (HRE) in the promoters of ftn-1 and ftn-2 (Romney et al., 2011). Currently, no HIF-1 homolog has been identified in fungi. Given our increasing understanding of fungal responses to hypoxia and iron limitation and their clinical relevance, it is important to uncover and define regulation mechanisms of fungal hypoxia adaptation and iron homeostasis. In this review, we will describe potential regulatory mechanisms between iron homeostasis and hypoxia adaptation in fungi based on research mainly in three important pathogenic fungi, Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus.

Fungal Hypoxia and Iron Stress Responses – Transcriptional Regulators

Much of our fungal hypoxia and iron responses knowledge comes from studies on global transcriptional regulators that mediate adaptation to hypoxia and low-iron environments and these are the focus of this review. Phenotypes of gene deletion mutants of the major transcriptional regulators are summarized in Tables 1 and 2.

Organism	Regulator	Phenotype of knock-out mutants	Virulence-related	Reference
S. pombe	Sre1	- defective growth under anaerobic conditions	NA	Hughes et al. (2005)
C. neoformans	Sre1	- defective growth under hypoxia and iron starvation	Yes	Chang et al. (2007, 2009)
		- hypersusceptibility to azole drugs		
		- reduced ergosterol synthesis in normoxia and hypoxia		
A. fumigatus	SrbA	- defective growth in hypoxia and iron starvation	Yes	Willger et al. (2008), Blatzer et al. (2011)
		- hypersusceptibility to triazole drugs		
		- defective cell polarity and ergosterol synthesis		
		- decreased siderophore production in iron starvation		
C. albicans	Upc2	- defective growth and hyphal formation in hypoxia	NA	Silver et al. (2004), Synnott et al. (2005), MacPherson et al. (2005)
		- reduced ergosterol synthesis		
		- hypersusceptibility to azole drugs		
	Czf1	- defective filamentation in hypoxia	No	Brown et al. (1999), Chemllos et al. (2009)
	Efg1	- increased resistance to antimycin A (a respiration inhibitor)	Yes	Lo et al. (1997), Mulhern et al. (2006), Stichternoth and Ernst (2009)
		- hyperfilamentation in hypoxia		
	Aca2	- defective filamentation in hypoxia	Yes	MacCallum et al. (2006), Mulhern et al. (2006)
		- increased resistance to antimycin A		
	Typ7	- hyperfilamentation in hypoxia	Yes	Askew et al. (2009), Bonhomme et al. (2011)
		- reduced biofilm formation		

NA, non-available.
Table 2 | Phenotypes key regulatory gene null mutants for iron homeostasis.

Organism	Regulator	Phenotype of knock-out mutants	Violence-related	Reference
C. neoformans	Cir1	- hypersusceptibility to phleomycin	Yes	Jung et al. (2006)
		- defective growth in iron-replete conditions		
		- poor growth at 37°C		
		- loss of capsule formation		
		- altered melanin production		
	HapX	- defective hemoglobin utilization in culture	Yes	Jung et al. (2010)
		- transcriptional repression of iron-dependent pathways during iron starvation		
A. fumigatus	SreA	- defective growth in iron-replete conditions	No	Schnettl et al. (2006)
		- hypersusceptibility to phleomycin and oxidative stress		
		- increased siderophore production during iron-replete conditions		
		- hypersusceptibility to amphotericin B and decreased susceptibility to posaconazole and voriconazole in iron-replete conditions		
	HapX	- defective growth and sporulation in iron starvation	Yes	Schnettl et al. (2010a)
		- increased mitochondrial DNA content		
		- decreased resistance to tetracycline		
		- decreased siderophore production		
		- increased zinc sensitivity		
		- transcriptional repression of iron-dependent pathways during iron starvation		
C. albicans	Sef1	- defective growth in iron starvation	Yes	Noble et al. (2010), Chen et al. (2011)
		- transcriptional derepression of iron uptake during iron sufficiency		
	Sfu1	- defective growth on solid media in iron-replete conditions	No	Chen et al. (2011)
		- transcriptional derepression of iron uptake during iron sufficiency		
	Hap43	- defective growth in iron starvation	Yes	Chen et al. (2011), Hsu et al. (2011)
		- transcriptional derepression of iron-dependent pathways during iron starvation		
H. capsulatum	Sre1*	- increased siderophore production during iron sufficiency	NA	Heo et al. (2011)
		- delayed filamentation on Histoplasma macrophage medium (HMM)		
B. dermatitidis	SveB	- reduced growth rate	NA	Gauthier et al. (2011)

NA, non-available.
*A “knock-down” mutant using RNAi.

Oxygen is an important molecule that has driven a transition of an anaerobic to an aerobic life style in living organisms (Goldfine, 1965; Raymond and Segre, 2006). Uptake of molecular oxygen (O₂) from the environment is essential for ATP production in cellular respiration (Campbell and Reece, 2002) and a number of biochemical pathways related to biosynthesis of unsaturated fatty acids, tyrosine, sterols, and nicotinic acid (Goldfine, 1965; Raymond and Segre, 2006). It has been reported that both pathogens and host cells are exposed to hypoxia at sites of infection due to decreased tissue perfusion caused...
by microvascular injury, or increased interstitial pressure with metabolic activities of pathogens and inflammatory cells (Niet and Johnson, 2009). Although precise oxygen levels at sites of fungal infection have not been studied, certain organs targeted by fungal pathogens such as the gastrointestinal tract (C. albicans) and the brain (C. neoformans) are known to contain regions of hypoxia (He et al., 1999; Ercolini and Silver, 2001; Sharp and Bernaudin, 2004). In addition, hypoxia was visualized at sites of A. fumigatus murine infection in the lung with a chemical hypoxia detection agent, pimonidazole hydrochloride (Grahl et al., 2011).

The loss of detectable fluorescence in vivo of an A. fumigatus luciferase expressing strain despite an increase in fungal burden has been hypothesized to result from hypoxia (Brook et al., 2008). These data suggest that fungal pathogens encounter areas of the mammalian body that are severely limited in oxygen availability.

In human pathogenic fungi, a major transcriptional regulator of the fungal hypoxia response is the sterol regulatory element-binding protein (SREBP). SREBPs are conserved transcriptional activators in many eukaryotes that regulate expression of genes involved in cholesterol biosynthesis in response to changes in cellular sterol levels (Brown and Goldstein, 1999; Osborne and Espenshade, 2009). SREBPs have been observed as key factors in fungal hypoxia and low-iron adaptation, and have been studied in fission yeast Schizosaccharomyces pombe, and the human pathogens C. neoformans and A. fumigatus (Hughes et al., 2005; Chang et al., 2007, 2009; Chun et al., 2007; Wilger et al., 2008; Osborne and Espenshade, 2009; Weersink and Cramer, 2011). Null mutants of the SREBP homologs in C. neoformans (Sre1) and A. fumigatus (SrbA) display defects in hypoxia adaptation, growth under low-iron conditions, ergosterol synthesis, and susceptibility to triazole antifungal drugs (Chang et al., 2007, 2009; Chun et al., 2007; Wilger et al., 2008; Blatter et al., 2011). SREBP-deficiencies cause significant reductions in fungal virulence, which supports the hypothesis that hypoxia adaptation is critical for development of lethal fungal diseases (Hughes et al., 2005; Chang et al., 2007, 2009; Willger et al., 2008; Bien and Espenshade, 2010; Blatter et al., 2011). In contrast, one of the major fungal pathogens C. albicans does not have a clear Sre1/SrbA homolog. Instead, hypoxia adaptation in C. albicans is mediated by a zinc finger transcription factor, Upc2 (MacPherson et al., 2005; Synnott et al., 2010). A null mutant of upc2 displays defects in hypoxia adaptation, growth under low-iron conditions, ergosterol synthesis, and susceptibility to triazole antifungal drugs (Chang et al., 2007, 2009; Chun et al., 2007; Wilger et al., 2008; Blatter et al., 2011). In addition to Upc2, other transcriptional regulators have been studied with regard to hypoxia adaptation in C. albicans. A null mutant of elf1 es encoding the APSES family transcription factor displays decreased production of unsaturated fatty acids and increased hyphal formation in hypoxia, which suggests that Elf1 plays a role as an activator of fatty acid desaturation and a repressor of filamentation in hypoxia (Ser Nut et al., 2018). Elf1 is also required for biofilm formation in both normoxia and hypoxia (Stichterhoth and Ernst, 2009). A putative zinc finger transcription factor, Czf1 interacts with Elf1 by derepressing filamentation that is repressed by Elf1 during growth within matrix, and a null mutant of elf1 exhibits defective induction of Czf1 (Giusani et al., 2002; Vinces et al., 2006). Disruption of Czf1 causes defective filamentation in embedded conditions (Brown et al., 1999). A transcription factor regulating glycolytic genes, Tye7 is essential for biofilm formation, and the tye7 deletion is reported to result in decrease of ATP synthesis (Bonhomme et al., 2011). In contrast to Efg1 and Tye7, disruption of a homolog of Saccharomyces cerevisiae Swi5 transcription factor, Ace2 required for cell separation results in impaired yeast to hyphae transition in hypoxia (Mulhern et al., 2006). These studies suggest that hypoxia adaptation mediated by Efg1, Czf1, Tye7, and Ace2 is important for virulence-related factors in C. albicans including biofilm formation and the morphological transition (Rex et al., 2008; Whiteway and Oberholzer, 2004; Jackson et al., 2007). Indeed, Efg1, Tye7, and Ace2 have been reported to have a role in virulence in C. albicans (Table 1; Lo et al., 1997; MacCallum et al., 2008; Askew et al., 2009).

Iron is an essential element in all organisms for normal cellular functions including cellular respiration, oxygen and electron transport, as well as synthesis of DNA, amino acids, and lipids (Couillard et al., 1999; Welsh et al., 2001). However, iron overload can cause detrimental tissue damage by Haber–Weiss/Fenton chemistry (Galaris and Pantopoulos, 2008). Therefore, a balanced cellular iron concentration is crucial for hosts and pathogens (Hentze et al., 2004). In humans, disturbed iron levels result in anemia and impaired cardiopulmonary function (iron deficiency), and hemochromatosis (iron overload; Andrews, 2008). Importantly, it has been reported that iron overload exacerbates fungal infections such as meningococcal meningitis, candidiasis, and cryptococcosis probably by enhancing aggressive proliferation of microbes in host tissue (Abe et al., 1985; Barluzzi et al., 2002; Chayakulkeeree et al., 2006). Therefore, iron availability in host environments is important for fungal infection (Weinberg, 1999b).

To acquire iron from an environment, fungi generally utilize four strategies: (i) siderophore (low-molecular mass iron chelator)-mediated uptake of iron, (ii) high-affinity reductive iron assimilation, (iii) uptake and degradation of heme, and (iv) low-affinity iron uptake via metal ion transporters (Kosman, 2003; Jung and Kronstad, 2008). Low-affinity iron uptake and reductive iron assimilation are employed by most fungal species. Most fungal species also produce siderophores but prominent exceptions are S. cerevisiae, C. albicans, and C. neoformans, which nevertheless can take up siderophores produced by other species (Haas et al., 2008). Taken together, there are marked differences in the iron assimilation strategies used by different fungal species.

Fungal iron regulation has been extensively investigated in budding yeast S. cerevisiae (Kosman, 2003; Kaplan et al., 2006). Remarkably, the regulators involved in iron regulation are only conserved in closely related Saccharomyces species (Bissen et al., 2004; Scherl et al., 2004; Haas et al., 2008) and will therefore not be discussed here unless relevant to mechanisms in pathogenic fungi. Research on iron regulation in pathogenic fungi has been conducted in C. albicans, C. neoformans, A. fumigatus, Blastomyces dermatitidis (Haas, 2003; Lan et al., 2004; Jung et al., 2006; Jung and Kronstad, 2008; Scherl et al., 2008, 2010a; Gauthier et al., 2010; Blatter et al., 2011; Hwang et al., 2011). Iron-responsive GATA transcription factors are characterized as master regulators in fungal iron regulation and
mediate expression of iron-responsive genes (Lan et al., 2004; Jung et al., 2006; Schrettl et al., 2008; Gauthier et al., 2010; Chen et al., 2011; Hwang et al., 2011). Among the pathogenic fungi, details in molecular mechanisms of iron acquisition and homeostasis involving these GATA transcription regulators are particularly well studied in C. albicans, C. neoformans, A. fumigatus, and B. dermatitidis (Lan et al., 2004; Jung et al., 2006; Jung and Kronstad, 2008; Schrettl et al., 2008; Gauthier et al., 2010; Chen et al., 2011; Kronstad et al., 2011). In C. neoformans, disruption of the GATA factor Cari causes increased sensitivity to excess iron, and defects in capsule formation, melanin synthesis, cell wall integrity, and virulence (Jung et al., 2006). Similarly, the A. fumigatus GATA factor SteA is required for normal cellular response to iron and oxidative stress, but dispensable for virulence (Schrettl et al., 2008). Disruption of the GATA factor homolog Sfu1 is not essential for a normal growth rate in iron-depleted or iron-replete liquid media, and dimorphic transition in C. albicans (Lan et al., 2004). Growth of ΔSef1 cultures on solid media appears to be slightly inhibited during iron excess (Chen et al., 2011). B. dermatitidis cells lacking the GATA factor Sfe1 fail in the yeast to mold transition and in repression of siderophore biosynthesis in iron-rich conditions (Table 2; Gauthier et al., 2010).

In addition to the iron-responsive GATA factor, CCAAT-binding complex (CBC) and a regulatory component interacting with the CBC (the CBC-binding factor) have been characterized as important mediators of iron regulation in C. albicans, C. neoformans, and A. fumigatus (Buck et al., 2006; Homann et al., 2009; Jung et al., 2010; Schrettl et al., 2010a; Chen et al., 2011; Hsu et al., 2011). In C. albicans and C. neoformans, the CBC-binding factors (Hap43 and HapX, respectively) are required for normal growth in iron-limited conditions. Importantly, deficiency of Hap43 or HapX results in decreased virulence in these species (Homann et al., 2009; Jung et al., 2010; Chen et al., 2011; Hsu et al., 2011). In A. fumigatus, ΔhapX exhibits impaired growth and amino acid pool composition under iron starvation, decreased production of siderophores such as triacetylfluorescine C (TAF), and attenuated virulence (Schrettl et al., 2010a). It is noteworthy that regulation of transcription of iron-responsive genes by the GATA factor and the CBC-binding factor are negatively linked in C. albicans and A. fumigatus (Homann et al., 2009; Jung et al., 2010; Schrettl et al., 2010a). In contrast, HapX positively regulates the expression of the GATA factor, Cari in C. neoformans (Jung et al., 2010). Intriguingly, HapX may be transcriptionally regulated by the A. fumigatus SREBP, SreA, providing support for a genetic link between hypoxia and adaptation to iron starvation (Blätzer et al., 2011; Linde et al., 2012). A null mutant of SreA displays a marked growth defect in low-iron conditions and a dramatic reduction in siderophore biosynthesis (Blätzer et al., 2011).

In addition to the GATA factor and the CBC-binding factor, iron regulation in C. albicans includes a Cys(6)Zn(2) DNA-binding protein, Sef1, which is exclusively found in this species and acts as transcriptional activator of iron uptake and Hap43 (Chen et al., 2011). In iron-limited conditions, a null mutant of sef1 displays a substantial growth defect, which suggests that Sef1 is required for adaptation to iron limitation. C. albicans is a commensal pathogen residing in different host environments including the mammalian gastrointestinal tract and bloodstream. Thus, it is perhaps not surprising to find that C. albicans possesses distinct mechanisms of iron regulation (Almeida et al., 2009). In contrast to the bloodstream, the gastrointestinal tract provides a relatively iron-sufficient environment. Activation of iron-uptake genes by Sef1 is critical in low-iron conditions like the bloodstream, whereas the GATA factor Sfu1 represses the same set of genes in iron-replete condition like the gut environment. Consequently, Sef1 is required for virulence (representing iron starvation) in a mouse model of bloodstream infection, whereas Sfu1 is dispensable for virulence but promotes gastrointestinal commensalism (representing iron sufficiency) in C. albicans (Chen et al., 2011).

Related to the GATA factor and the CBC-binding factor, a zinc cluster transcription factor AcuM has been characterized in A. fumigatus. Transcriptional profiling indicated that AcuM activates expression of hapX and represses expression of sreA. ΔacuM displays defective growth in low-iron conditions due to impaired reductive iron assimilation and siderophore production. Importantly, ΔacuM shows reduced virulence in mouse models of hematogenously disseminated and invasive pulmonary aspergillosis (Liu et al., 2010). These studies illustrate the observations that fungal iron homeostasis mechanisms are regulated by multiple transcription factors that are often critical for fungal virulence (Table 2).

GENOME-WIDE ANALYSES: HYPOXIA-RESPONSIVE GENES VS. IRON-RESPONSIVE GENES

In addition to transcription factors that regulate responses to hypoxia and iron availability, transcription profiling data also suggest a potential coordination of hypoxia adaptation and iron homeostasis. First, hypoxia-responsive genes and iron-responsive genes will be compared to find if hypoxia and iron limitation leads to expression of common gene sets. Second, we will correlate expression of the key regulators for hypoxia adaptation and iron regulation in hypoxia and in different iron levels. Third, chromatin immunoprecipitation (ChIP) data will be included as supportive data for transcriptional profiles that will be discussed. Finally, expression of genes involved in heme biosynthesis in response to hypoxia and iron limitation will be discussed. Due to the biochemical properties, heme is likely a principle connector between iron metabolism and oxygen availability. We hypothesize that regulation of genes responsible for heme biosynthesis might provide clues for interconnectivity in fungal responses to hypoxia and different iron conditions. For parallel comparison of data from different organisms and different stress environments, a range of microarray data cited here is restricted to studies on the major key factors (SREBPs and the GATA factor/CBC-binding factor).

HYPOXIA-RESPONSIVE GENES REGULATED BY SREBP

Transcriptional profiles from S. pombe, C. neoformans, and A. fumigatus provide a list of genes that are differentially expressed in hypoxia (“hypoxia-responsive genes”) in a SREBP-dependent manner (Todd et al., 2006; Zhang et al., 2007; Blätzer et al., 2011). In S. pombe, 68% of genes listed for differential expression (∼2-fold) in anaerobic conditions compared to normoxia (atmospheric levels, 21% O2) are regulated by Sre1. These genes are associated with the biosynthesis of ergosterol, heme, and ubiquinone (Todd et al., 2006). In C. neoformans, 347
transcripts are differentially expressed in response to hypoxia. The genes encoding these transcripts are involved in metabolism of sterol ("erg" genes), heme (hem13) and hem8, sphingolipid/fatty acid, carbohydrate and amino acid metabolism, vesicle trafficking, and ribosomal translation (Chun et al., 2007). C. neoformans Sre1 regulates transcription of 101 hypoxia-responsive genes including those involved in ergosterol biosynthesis and iron/copper transport. The iron/copper transport gene set includes genes for uptake of copper (crt3), uptake of siderophore-iron (ait1), and reductive iron assimilation such as ferric-chelate reductase (fet7), ferroxidase, and a high-affinity iron permease (sfb1; Haas, 2003; Kosman, 2003; Chang et al., 2007). The hypoxia-responsive genes involved in iron uptake are also highly induced during iron starvation in C. neoformans as expected (Jung et al., 2006). Moreover, the functions of the iron-regulated genes have been characterized. For example, Cfo1 and Cft1 are important for high-affinity iron uptake, utilization of Tf-iron (one type of iron-containing protein in hosts (Hissen et al., 2004)) and virulence (Jung et al., 2009). Deficiency in Sre1 causes abnormal melanin deposition and cell wall structure, but not virulence in a mouse model of cryptococcosis (Janger et al., 2007). It is unclear to date if these genes are required for hypoxia adaptation in C. neoformans.

Two transcriptome analyses have shown that the SREBP homolog in the mold A. fumigatus, SrbA, is a principle regulator of hypoxia adaptation (Willger et al., 2008; Blatzer et al., 2011). Microarray data from an early response to hypoxia reveal that 1163 genes (about 12% of genome) are differentially (≥2-fold) expressed in ΔsrbA compared to wild type. The genes are associated with ergosterol biosynthesis, iron acquisition, glycolysis, oxidative stress resistance, and cell wall biosynthesis. SrbA-mediated regulation of iron acquisition genes including ferric-chelate reductase (fet7, a homolog of C. neoformans fet7), ferroxidase (fer1, a homolog of C. neoformans cft1), high-affinity iron transporter (frp1, a homolog of C. neoformans fre7), and siderophore transporter (ait1, a homolog of C. neoformans sit1) is consistent with Sre1-mediated control of iron-related genes in response to hypoxia in C. neoformans (Chang et al., 2007; Blatzer et al., 2011). Notably, as mentioned previously, transcriptional induction of the iron-regulatory CBC-binding factor hapX, reductive iron assimilation and siderophore biosynthesis appears to be controlled by SrbA in response to iron starvation in A. fumigatus (Blatzer et al., 2011; Linde et al., 2012). Direct regulation of the ergosterol biosynthesis genes erg11A/cyp51A and erg28A along with the siderophore transporter sit1 was observed as determined by SrbA binding to the respective gene promoter regions via ChIP-qPCR. Thus, the defect in transcriptional induction of key iron acquisition genes in A. fumigatus ΔsrbA may contribute to this mutant’s growth defects during iron starvation and possibly in virulence (Blatzer et al., 2011).

Overall, in hypoxia fungal SREBPs regulate expression of genes involved in physiological processes associated with oxygen in fungi as well as genes related to iron acquisition and metabolism. Interestingly, more SREBP regulated iron-linked genes in hypoxia are found in pathogenic fungi such as C. neoformans and A. fumigatus compared to the non-pathogenic fungus yeast S. pombe (Hughes et al., 2005; Chang et al., 2007; Blatzer et al., 2011). Although we cannot rule out the possibility that different experimental designs and utilized analysis tools affect the number of genes identified in these experiments, this observation may imply that pathogenic fungi have evolved to cope with hypoxia (one of the host environment parameters) more sophisticatedly than non-pathogenic fungi by coordinately regulating iron homeostasis. The different metabolisms of the respective organisms are also important to take into consideration (obligate aerobes vs. facultative anaerobe). Despite the presence of common genes regulated by SREBP in hypoxia, regulation of certain genes differs in a species-specific manner. For example, transcription of a heme biosynthesis gene, hem13 is highly induced in hypoxia in an SREBP-dependent manner in S. pombe and A. fumigatus (Hughes et al., 2005; Blatzer et al., 2011). A. fumigatus hem13 has an apparent SrbA DNA-binding motif in its promoter region (data not shown). In contrast, hem13 expression is highly induced in hypoxia but not affected by Sre1p in C. neoformans (Chang et al., 2007). This suggests that fungi utilize both common and distinct mechanisms for hypoxia adaptation besides those governed by SREBPs.

A key regulator of hypoxia adaptation in C. albicans that shares many features with the SREBPs is Upc2 (MacPherson et al., 2005; Synnott et al., 2010). Upc2 shares a functional similarity with SREBPs but is not a direct homolog. Similar to SREBPs, Upc2 is highly expressed and proteolytically cleaved in response to sterol-depleted conditions, and eventually transported to the nucleus to activate target genes by binding to a sterol regulatory element (SRE) in the promoter of target genes (Vik and Rine, 2001; MacPherson et al., 2005; Ernst and Teifker, 2009). In hypoxia, 528 genes with different expression levels compared to wild type are regulated by Upc2. Expression of genes responsible for ergosterol synthesis, iron acquisition and belonging to the common in several fungal extracellular membranes (CFEMs) family, which are involved in heme uptake (Weissman and Korntitter, 2004; Ding et al., 2011) are induced in hypoxia and down-regulated in Δupc2 (Synnott et al., 2010). Including iron-linked genes, Upc2 regulates genes similar to those found in C. neoformans and A. fumigatus transcription profiling data (Chang et al., 2007; Blatzer et al., 2011), which suggests that fungi are able to employ similar mechanisms to deal with hypoxia via different transcriptional regulators.

IRON-RESPONSIVE GENES REGULATED BY TWO MAJOR IRON REGULATORS

Transcriptional profiling data from studies on the GATA factors (Cir1, Cir2, and Cir1) and the CBC-binding factors (HapX and Hap43) have revealed genes ("iron-responsive genes") associated with iron uptake, metabolism, storage, and transport in response to iron-replete or iron-depleted conditions in C. neoformans, A. fumigatus, and C. albicans (Lan et al., 2004; Jung et al., 2006, 2010; Schreiter et al., 2008, 2010a; Chen et al., 2011; Hsu et al., 2011). In general, iron starvation induces genes in iron acquisition and represses genes involved in iron-dependent pathways such as respiration, TCA cycle, and heme biosynthesis. In C. neoformans, Cir1 regulates transcription of iron-responsive genes positively and negatively. Transcription of genes involved in reductive iron uptake (frit1, cft1, and ftr1) and laccase synthesis is negatively regulated by Cir1 in low-iron conditions. Expression of siderophore
transporters (e.g., sitA) are positively regulated by Cir1 in iron-limited conditions. This indicates that Cir1 has a dual role as an activator and a repressor of target genes in response to iron limitation (Jung et al., 2006). In partial contrast, the A. fumigatus GATA factor SreA is characterized as a general transcriptional repressor of genes involved in iron uptake during iron-replete conditions. SreA transcript is detectable only in iron-replete conditions. Most of the identified 49 SreA target genes are involved in reductive iron assimilation as well as the biosynthesis, uptake and utilization of siderophores (Schrettl et al., 2008). Similarly, the C. albicans GATA factor, Sas1, represses expression of genes involved siderophore-iron uptake and reductive iron assimilation. Notably, Sas1 also represses expression of the Cyu(6)Zn(2) DNA-binding protein Sef1 that appears to be missing in the other fungal species (Lan et al., 2004). During iron starvation, Sef1 affects expression of 223 genes positively or negatively, and the Sef1-activated genes are related to iron uptake including multicopper ferroxidase (fet3), iron permease (ftr1), ferric reductase (dfr1), siderophore transporter (sitA), heme iron uptake receptor (ftr5), and interestingly the CBC-binding factor (Hap43) (Chen et al., 2011).

A role of the CBC-binding factors as principle regulators of iron-responsive genes has been studied in C. neoformans (CnHapX), A. fumigatus (AfHapX), and C. albicans (Hap43) (Jung et al., 2006; Schrettl et al., 2009; Hsu et al., 2011). Under low-iron conditions, CnHapX regulates expression of a broader range of genes than the GATA factor, Cir1, by activating genes encoding siderophore transporters and by repressing genes involved in iron-dependent pathways such as electron transport (Jung et al., 2010). Microarray data in A. fumigatus show that during iron starvation AfHapX positively mediates transcription of genes related to metabolism of siderophores, carbohydrates, amines acids, lipids, and protein degradation and uptake. Like CnHapX, AfHapX also acts as a repressor in low-iron conditions, and 34% of the repressed genes are involved in iron-dependent pathways such as respiration, TCA cycle, amino acid metabolism, iron-sulfur cluster biosynthesis, heme metabolism, and cellular detoxification (Schrettl et al., 2010a). In low-iron conditions, the C. albicans CBC-binding factor Hap43 also down-regulates transcription of genes associated with iron consumption such as respiration and iron-sulfur cluster assembly.

Overall, to achieve iron homeostasis, fungi employ transcriptional regulators to mediate transcription of iron-responsive genes either positively or negatively. Although there are differences in the target genes in the organisms studied, generally, expression of genes involved in iron uptake (e.g., siderophore transporters, reductive iron uptake factors) is repressed in iron-rich conditions by the GATA factors. In contrast, expression of the repressed genes in iron sufficiency becomes derepressed by the CBC-binding factors in iron limitation. However, additional factors likely remain to be found to fully complete the iron mediated genetic network in pathogenic fungi.

LINKED GENE EXPRESSION OF THE KEY REGULATORS OF HYPOXIA ADAPTATION AND IRON REGULATION IN FUNGI

The major regulators of hypoxia adaptation (SREBPs and Ugc2) and iron homeostasis (the GATA factors and the CBC-binding factors) mediate expression of common target genes (e.g., iron uptake-related genes) in response to hypoxia and iron limitation. An important question is whether expression of these key regulators is related to one another. Interactive gene expression of the GATA factors and the CBC-binding factors has been well studied in A. fumigatus (Schrettl et al., 2010a; Blatter et al., 2011). In this fungus, the expression of the two iron regulators is controlled by a negative regulatory feedback loop (Schrettl et al., 2009a). In low-iron conditions, hupX transcription is induced to promote expression of genes responsible for iron acquisition and repress genes involved in iron-dependent pathways, whereas sreA transcript levels are not detectable due to repression by HapX.

Iron-rich conditions lead to promoted expression of sreA, which represses expression of hupX, thereby inducing iron-dependent pathways and blocking iron acquisition genes. Intriguingly, in addition to hypoxia, iron starvation also induces expression of sreB independent of SreA and HapX in A. fumigatus (Blatter et al., 2011). As a consequence, expression of iron uptake-related target genes of SreB including hupX becomes promoted for adaption to iron limitation. Iron regulation of SreB is reflected by the fact that a short-term shift from iron limiting to iron-rich conditions decreases the transcript levels of sreA. Together, these data suggest that a key hypoxia adaptation regulator and key iron regulators coordinate expression of iron-related genes in response to environmental iron conditions.

It is noteworthy that both SREBPs and iron homeostasis regulators mediate expression of genes involved in ergosterol synthesis. As mentioned above, all fungal SREBP homologs studied to date (Sre1p and SrbA) and a functional SREBP homolog (Upc2) are associated with transcriptional regulation of ergosterol biosynthesis genes (“erg” genes) in hypoxia (Hughes et al., 2005; MacPherson et al., 2005; Chang et al., 2007; Blatter et al., 2011). Key regulators of iron homeostasis including C. neoformans Cir1 and CnHapX as well as A. fumigatus AfHapX appear to regulate expression of certain ergosterol biosynthesis genes depending on iron availability (Jung et al., 2006, 2010; Schrettl et al., 2010a). Therefore, we hypothesize that hypoxia adaptation, iron homeostasis, and ergosterol biosynthesis have a tight link to adapt to environmental stresses encountered in vivo during human fungal infections (Figure 1). Phenotypic analyses to address this hypothesis are discussed in Section “Conclusions and Future Work.”

A PRINCIPLE CONNECTOR BETWEEN IRON METABOLISM AND OXYGEN AVAILABILITY: HEME

Heme (iron protoporphyrin IX) is found in almost all organisms and critical for electron transfer reactions (Heinemann et al., 2008). It is the major oxygen-binding molecule in eukaryotes and requires iron as a substrate. Heme is an important iron source that some fungi can acquire from the host during infection. Binding of H. capsulatum surface to hemin (ferric form of heme, protoporphyrin IX) is induced in iron-limited media (Foster, 2012). C. neoformans and C. albicans are able to utilize hemin as a sole iron source (Santos et al., 2003). A C. neoformans null mutant of the CBC-binding factor, hupX shows defective growth in media containing hemin as an iron source, which suggests that the key iron regulator mediates iron utilization from hemin (Jung et al., 2010). However, A. fumigatus does not appear to be able to utilize hemin,
The regulation of iron acquisition is not identical as, e.g., partially similar cellular responses to stress conditions, e.g., up-regulation of iron acquisition during hypoxia might be related to the increased demand in iron-dependent and heme-dependent proteins, e.g., for respiration and ergosterol biosynthesis to counteract the limited oxygen availability. In contrast, the down-regulation of heme biosynthesis and respiration during iron starvation might support saving iron. These adaptive processes probably reflect pathway prioritizations in order to optimize survival. With data currently available, a full understanding of the interconnections is still missing and most likely not all key players have been identified. One example is that although transcription of hem13 is induced by SrbA in response to both hypoxia and iron limitation, the regulation appears to be independent of SreA and HapX (Blätzer et al., 2011). Further studies on the biosynthesis and function of heme in pathogenic fungi will be needed to fully address these questions.

PHENOTYPIC PROFILES OF HYPOXIA ADAPTATION AND IRON HOMEOSTASIS TRANSCRIPTIONAL REGULATORS

While perhaps the most striking phenotype of fungal SREBP mutants is their inability to grow in hypoxia, it has been reported that loss of SREBP function in fungi affects growth in iron-depleted conditions (Chang et al., 2007; Blätzer et al., 2011). An srbA null mutant in C. neoformans shows defective growth in iron-limited conditions by iron chelator treatment, and this phenotype is complemented by addition of an iron-source to the media (Chang et al., 2007). Biomass production of A. fumigatus ΔsrbA is compromised particularly during iron-limiting conditions and this defect is rescued in the ΔsrbA reconstituted strain by expression of srbA (Blätzer et al., 2011). Moreover, loss of SreC function in ΔsrbA can partially restore growth under both low-iron and oxygen conditions (Blätzer et al., 2011). Therefore, SREBPs play a role in coping with both oxygen limitation and iron starvation in fungi.

A ROLE OF SrbA, SreA, AND HapX IN SIDEROPHORE PRODUCTION IN A. FUMIGATUS

Siderophores are ferric iron-specific chelators with low-molecular mass to mobilize iron, and many fungi produce siderophores to maintain iron homeostasis (Haas, 2003; Hussen et al., 2004; Schrettl and Haas, 2011). For example, A. fumigatus produces siderophores such as TAFc (extracellular) and ferricrocin (FC, intracellular; Hussen et al., 2004; Schrettl et al., 2004; Haas et al., 2008) and the importance of siderophore production to optimize iron uptake in A. fumigatus has been elucidated in several studies (Kragl et al., 2007; Seifert et al., 2008; Wallner et al., 2009; Schrettl et al., 2010b). Molecular genetics of the fungal siderophore biosynthesis and uptake mechanisms are reviewed in detail by Haas (2003).

Transcriptional profiling has shown that expression of certain genes involved in siderophore synthesis and metabolism is regulated by SrbA, SreA, and HapX depending on iron concentrations. Consistently, deficiency in SrbA, SreA, or HapX affects the amount of produced TAFc and FC (Schrettl et al., 2010a; Blätzer et al., 2011). Compared to wild type, loss of SrbA or HapX decreases production of TAFc and FC in iron-limiting conditions, and becomes
more severe in a double null mutant of \(\Delta srbA \) and \(\Delta hapX \) (Scheret et al., 2008, 2010b; Blatzer et al., 2011). In contrast, disruption of \(\Delta sreA \) increases the production of TAFC and FC under iron-rich conditions compared to wild type. Intriguingly, deficiency of \(\Delta srbA \) increases production of TAFC and FC compared to \(\Delta hmg1 \) in both iron-limiting and -sufficient conditions (Blatzer et al., 2011). Given the major role of \(\Delta srbA \) in hypoxia adaptation, and transcriptional change of \(\Delta srbA \) depending on oxygen levels, it is plausible to conclude that an interdependent mechanism between hypoxia adaptation and siderophore synthesis exists in \(\Delta srbA \).

A recent study in \(\Delta srbA \) supports an enzymatic link between the biosynthesis of ergosterol and siderophores. HMGC-CoA reductase (3-hydroxy-3-methyl-glutaryl-CoA) encoded by \(\Delta hmg1 \) is a key enzyme involved in ergosterol synthesis and catalyzes the formation of mevalonate. Mevalonate is converted to mevalonyl-CoA by Sdh1, which is required for TAFC production in \(\Delta srbA \). In iron starvation, transcription of \(\Delta hmg1 \) is up-regulated and over-expression of \(\Delta hmg1 \) causes increased TAFC production (Yasmin et al., 2011). Expression of \(\Delta hmg1 \) also appears to be regulated in part by \(\Delta srbA \) (Blatzer et al., 2011). Finally, heme is also an essential component of the ergosterol synthesis pathway (Ferreira et al., 2005). Taken together, these studies suggest regulatory links between hypoxia adaptation, iron homeostasis, and ergosterol biosynthesis in fungi.

EFFECT OF SREBPs AND THE KEY IRON REGULATORS ON PATHOGENESIS

The hypoxia regulators, SREBPs are required for virulence in a mouse model in \(\Delta srbA \) and \(\Delta hmg1 \) (Chang et al., 2005; Wilgner et al., 2008; Blatzer et al., 2011). Disruption of the CBC-binding factors (HapX and Hap43) causes defective virulence in \(\Delta hmg1 \) (Yasmin et al., 2011). CIR1 has a dual role as an activator and a repressor whereas most iron-regulatory GATA factors appear to function as repressors of gene expression (Jung et al., 2006; Scheret et al., 2008). This is just one of many examples that illustrates the importance of studying the function of potential orthologous genes in their respective organisms.

The implications of coordinated regulation of hypoxia adaptation and iron homeostasis on fungal virulence are poorly understood. As mentioned, inactivation of \(\Delta srbA \) partially cures the growth defects caused by loss of \(\Delta srbA \) including defective growth in hypoxia, iron, and hypersensitivity to triazole antifungal drugs (Wilgner et al., 2008; Blatzer et al., 2011). However, the \(\Delta srbA \) strain does not rescue wild type virulence in a mouse model of invasive pulmonary aspergillosis (Blatzer et al., 2011). This is perhaps not surprising given the severe iron limitation found in vivo and the modest restoration of hypoxia growth in the \(\Delta srbA \) strain. Although SREBPs and the CBC-binding factors are crucial for virulence in fungi, it is difficult to conclude whether the defects in adaptation to hypoxia or iron starvation or the combination is responsible for the virulence defect of \(\Delta srbA \)-lacking fungi. Future studies will seek to address this important issue.

A THIRD PLAYER: ERGOSTEROL BIOSYNTHESIS

Ergosterol is the fungal equivalent of cholesterol and inhibition of ergosterol biosynthesis has been a major target for antifungal drug development (Ferreira et al., 2005). Regulation of expression of genes involved in ergosterol synthesis by SREBPs in response to hypoxia has been studied in \(\Delta srbA \) in C. neoformans, and \(\Delta hmg1 \) in A. fumigatus (Hughes et al., 2005; Chang et al., 2007; Wilgner et al., 2008; Blatzer et al., 2011). Similarly, the key regulator of hypoxia adaptation in C. albicans, Upc2 is also involved in activation of the ergosterol-related genes in hypoxia (Synnott et al., 2010). ChIP analyses show that \(\Delta hmg1 \) and \(\Delta srbA \) partially cure the combination is responsible for the virulence defect of \(\Delta srbA \)-lacking fungi. Future studies will seek to address this important issue. Regulation of expression of genes involved in ergosterol synthesis by SREBPs in response to hypoxia has been studied in \(\Delta srbA \) in C. neoformans, and \(\Delta hmg1 \) in A. fumigatus (Hughes et al., 2005; Chang et al., 2007; Wilgner et al., 2008; Blatzer et al., 2011). Similarly, the key regulator of hypoxia adaptation in C. albicans, Upc2 is also involved in activation of the ergosterol-related genes in hypoxia (Synnott et al., 2010). ChIP analyses show that \(\Delta hmg1 \) and \(\Delta srbA \) partially cure the combination is responsible for the virulence defect of \(\Delta srbA \)-lacking fungi. Future studies will seek to address this important issue.
is induced in hypoxia in response to both sterol and heme levels (Davies and Rine, 2006). Therefore, cellular responses to levels of oxygen, sterol, and heme are at least in part interconnected in S. cerevisiae, but remain to be elucidated in human pathogenic fungi.

Transcriptional profiling data in C. neoformans and A. fumigatus show that the GATA factor Cg1 and the CBC-binding factors CgHapX and AhHapN regulate expression of ergosterol biosynthesis genes in response to iron conditions (Jung et al., 2006, 2010; Schreitl et al., 2010b). A C. neoformans null mutant of ΔserA encoding a ferrooxidase required for reductive iron uptake from host Tf shows hypersensitivity to fluconazole and amphotericin B compared to wild type. Interestingly, exogenous heme restores normal sensitivity to the drugs, which suggests that deficiency of ferrioxdates decreases intracellular heme levels. Presumably, the reduced intracellular heme levels cause impaired ergosterol biosynthesis in ΔserA because heme is an essential cofactor in the ergosterol biosynthesis pathway (Jung et al., 2009).

An interesting link between iron limitation and antifungal drug resistance has been observed in C. albicans. Treatment of cells using iron chelators results in enhanced susceptibility to the antifungal drug fluconazole (Erg11 target), and the defect is rescued by supplementation of media with iron. Iron deprivation leads to a decreased ergosterol content in the membrane and significantly repressed transcription of erg11 in C. albicans cells (Prasad et al., 2006). As with hypoxia, under low iron conditions, ergosterol biosynthesis initially decreases in both A. fumigatus and C. albicans (Prasad et al., 2006; Yasmin et al., 2011). These data suggest that iron conditions in environments influence the biosynthesis of siderophores and ergosterol.

Thus, a close relationship between ergosterol synthesis and cellular iron concentrations exist (Figure 1). Despite the limited information available, the data discussed above allow us to speculate that fungi possess linked metabolic processes for hypoxia adaptation, iron homeostasis, and ergosterol biosynthesis. Involvement of heme proteins either directly or indirectly in all three themes could be an example of an interconnected mechanism that remains to be fully explored in human pathogenic fungi. Recent data produced from C. albicans cells (Prasad et al., 2006; Yasmin et al., 2011). These data suggest that iron conditions in environments influence the biosynthesis of siderophores and ergosterol.

Thus, a close relationship between ergosterol synthesis and cellular iron concentrations exist (Figure 1). Despite the limited information available, the data discussed above allow us to speculate that fungi possess linked metabolic processes for hypoxia adaptation, iron homeostasis, and ergosterol biosynthesis. Involvement of heme proteins either directly or indirectly in all three themes could be an example of an interconnected mechanism that remains to be fully explored in human pathogenic fungi. Recent data produced from C. albicans cells (Prasad et al., 2006; Yasmin et al., 2011). These data suggest that iron conditions in environments influence the biosynthesis of siderophores and ergosterol.

Thus, a close relationship between ergosterol synthesis and cellular iron concentrations exist (Figure 1). Despite the limited information available, the data discussed above allow us to speculate that fungi possess linked metabolic processes for hypoxia adaptation, iron homeostasis, and ergosterol biosynthesis. Involvement of heme proteins either directly or indirectly in all three themes could be an example of an interconnected mechanism that remains to be fully explored in human pathogenic fungi. Recent data produced from C. albicans cells (Prasad et al., 2006; Yasmin et al., 2011). These data suggest that iron conditions in environments influence the biosynthesis of siderophores and ergosterol.

Thus, a close relationship between ergosterol synthesis and cellular iron concentrations exist (Figure 1). Despite the limited information available, the data discussed above allow us to speculate that fungi possess linked metabolic processes for hypoxia adaptation, iron homeostasis, and ergosterol biosynthesis. Involvement of heme proteins either directly or indirectly in all three themes could be an example of an interconnected mechanism that remains to be fully explored in human pathogenic fungi. Recent data produced from C. albicans cells (Prasad et al., 2006; Yasmin et al., 2011). These data suggest that iron conditions in environments influence the biosynthesis of siderophores and ergosterol.

Thus, a close relationship between ergosterol synthesis and cellular iron concentrations exist (Figure 1). Despite the limited information available, the data discussed above allow us to speculate that fungi possess linked metabolic processes for hypoxia adaptation, iron homeostasis, and ergosterol biosynthesis. Involvement of heme proteins either directly or indirectly in all three themes could be an example of an interconnected mechanism that remains to be fully explored in human pathogenic fungi. Recent data produced from C. albicans cells (Prasad et al., 2006; Yasmin et al., 2011). These data suggest that iron conditions in environments influence the biosynthesis of siderophores and ergosterol.

Thus, a close relationship between ergosterol synthesis and cellular iron concentrations exist (Figure 1). Despite the limited information available, the data discussed above allow us to speculate that fungi possess linked metabolic processes for hypoxia adaptation, iron homeostasis, and ergosterol biosynthesis. Involvement of heme proteins either directly or indirectly in all three themes could be an example of an interconnected mechanism that remains to be fully explored in human pathogenic fungi. Recent data produced from C. albicans cells (Prasad et al., 2006; Yasmin et al., 2011). These data suggest that iron conditions in environments influence the biosynthesis of siderophores and ergosterol.
Chung et al. Iron and hypoxia regulation in pathogenic fungi

Barluzzi, R., Saleppico, S., Nocentini, N., Baek, Y. U., Li, M., and Davis, D. (2008). Gadus olivaceus ferric reductases are differentially regulated in response to distinct forms of iron limitation by the Ramadale and Cdr1H transcription factors. Eukaryot. Cell 7, 1168–1179.

Barkucci, R., Salpjev, S., Neon, J., Bournet, R. J., Noglia, R., Botoni, F., et al. (2002). Iron overload exacerbates experimental meningoencephalopathy with Cryptococcus neoformans. J. Neuroimmunol. 132, 140–146.

Bien, C. M., and Espenheide, P. J. (2000). Sterol regulatory element binding proteins in fungi: Hypoxic transcription factors linked to sterol regulatory element-binding proteins in fungi: mechanism and physiological importance. J. Biol. Chem. 275, 50,645–666.

Brock, M., Jouvion, G., Droin-Bergere, J., et al. (2011). Antimicrob. Agents Chemother. 55, 1168–1179.

Brown, D. H. J., Giannini, A. D., Chen, X., and Kambermety, C. A. (1999). Siderophore production of Cryptococcus albicans in response to physical environmen- tal cues and its regulation by the unique CFZI gene. Mol. Microbiol. 34, 651–662.

Brown, M. S., and Goldenlin, J. L. (1999). A proteomic pathway that controls the chondroitin content of mucin. Cell. Mol. Life Sci. 56, 1–15.

Brown, J. L., Rogers, H. J., and Grifiths, D. (1978). Role of iron in bacterial infection. Crit. Rev. Microbiol. 6, 1–37.

Campbell, N. A., and Reece, J. B. (2002). Biology, 6th Edn. San Francisco: Benjamin Cummings.

Chang, Y. C., Ingavale, S. S., Bien, C. M., Lee, H., Chang, S., and Alayash, A. I. (2011). Induction of iron susceptibility in Cryptococcus neoformans. PLoS Pathog. 7, e1002145. doi: 10.1371/journal.ppat.1002145

Chepelev, N. L., and Willmore, W. J. (2011). Regulation of iron pathways in response to hypoxia. Free Radic. Biol. Med. 50, 588–594.

Chung, E., Liu, O. W., and Mudnali, H. D. (2011). A link between virulence and hematopoietic responses to hypoxia during infection by the human fungal pathogen Cryptococcus neoformans. PLoS Pathog. 7, e222. doi: 10.1371/journal.ppat.1002223

Conrad, M. E., Usdin, J. N., and More, E. G. (1999). Iron absorption and transport. Annu. Rev. Med. 50, 215–229.

Coutney, N. M., and Klein, B. S. (2008). fungal adaptation to the mammalian host: is it a new world, after all? Curr. Opin. Microbiol. 11, 511–516.

Craver, B. A., Shaikh, E. A., and Keller, N. P. (2009). Genetic regulation of aspergillus secondary metabolites and their role in fungal pathogene- sis. Curr. Top. Med. Chem. 9, 1325–1330.

Daguetis, T. R., and Keller, N. P. (2009). Pathogenesis of Aspergillus fumiga- tus in invasive aspergillosis. Clin. Microbiol. Rev. 22, 447–465.

Davis, B. S., J. I., and Rice, J. (2006). A role for sterol levels in iron sensing in Saccharomyces cerevisiae. Genetics 174, 191–201.

Deming, D. W., and Hope, W. N. (2010). Therapy for fungal disease opportunities and priorities. Trends Microbiol. 18, 195–204.

Ding, C., Valdez, G. M., Maguire, S. L., Guada, A., Jermyn, J. M., Arda, D. R., et al. (2011). Conserved and diver- gent roles of ERG1 and CEM1 proteins in Candida parapsilosis and Candida albicans. PLoS ONE 6, e19515. doi: 10.1371/journal.pone.0019515

Ezquerra, M., and Sieber, I. A. (2011). Tissue oxygen tension and brain sen- sitivity to hypoxia. Respir. Physiol. Neurobiol. 172, 265–279.

Fehr, J. C., and Telker, D. (2009). Responses to hypoxia in fungal pathogens. Cell Microbiol. 11, 185–196.

Ferrara, M. E., Colombo, A. L., Paulsen, I., Cui, Q., Witters, J., Huang, J., et al. (2005). The ergosterol biosyn- thesis pathway, transporter genes, andazole resistance in Candida parapsilosis and Candida albicans. Mol. Biol. Cell 16, 213–229.

Fontes, A. L., Silva, S. M., and Perfect, J. R. (2006). Zygomyco- tae as emerging fungal pathogens. Annu. Rev. Med. 57, 621–643.

Foose, T. R., et al. (2011). Contribution of the gly- colytic flux and hypoxia adaptation to efficient biofilm formation by Candida albicans. Mol. Biol. 40, 995–1013.

Freeman, M., Gignac, C., Dubre-Ben gle, S., Dussert, O., Nicola, M. A., and Bresson-Giroir, C. (2000). Bios- formation of Aspergillus fumigatus, a new tool for drug efficiency testing and in vivo monitoring of invasive aspergillosis. Appl. Environ. Microbiol. 74, T2035–T2037.
Iron and hypoxia regulation in pathogenic fungi

Chung et al. Iron and hypoxia regulation in pathogenic fungi

Jung, W. H., Sham, A., White, K., Kluger, M. J., and Rothenburg, B. A. (2011). "Iron and fungal pathogenesis: a case study with Cryptococcus neoformans." Eukaryot. Cell 10, 1511–1520.

Kaplan, J., McVey Ward, D., Crisp, R. (2011). "Acquired Resistance to Hypoxia in Pathogenic Fungi." Frontiers in Microbiology 2:381.

Jackson, B. E., Wilhelmus, K. R., and Hwang, L. H., Seth, E., Gilmore, S. A., Hsu, P. C., Yang, C. Y., and Lan, C. (2012). "Iron-regulated transcription factor Ace2 regulates metabolism and is required for filamentation in hypoxic conditions." Eukaryot. Cell 11, 109–118.

Loebenberg, D., Cacciapuoti, A., and Johnson, A. D. (2009). "A phe- notypic switch between the rate of erythropoiesis, hypoxia and iron absorption. I. The relationships between the rate of erythropoiesis, hypoxia and iron absorption." Blood 10, 727–730.

Miller, S. M., Logas, M. E., and Butler, G. (2006). "Candida albicans transcription factor Ace2 regulates metabolism and is required for filamentation in hypoxic conditions." Eukaryot. Cell 5, 2001–2013.

Nieto, V., and Johnson, R. S. (2009). "Interdependence of hypoxic and innate immune responses. " Nat. Rev. Immunol. 9, 609–617.

Ou, C. Y., Joo, E., Pegg, J. T., Sor- rells, T. R., Mitrovich, D. M., Hem- slay, A. D., et al. (2011). "A recently evolved transcriptional network controls biofilm development in Candida albicans." Mol. Microbiol. 81, 156–168.

Ou, S. M., French, S., Kohl, L. A., Chen, V., and Johnson, A. D. (2010). "Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity." Nat. Rev. Microbiol. 8, 592–599.

Oschmann, T. F., and Espeseth, P. J. (2009). "Iron-regulated transcription factor Ace2 and the crucial role of HIF-1 in iron homeostasis and virulence in Candida albicans." Eukaryot. Cell 8, 360–374.

Ozcan, R., and Bruick, R. K. (2007). "Non-coding RNAs as cellular sensors and regulators of iron homeostasis." Cell Cycle 6, 2722–2729.

Prasad, R., Nizet, V., and Johnson, R. S. (2009). "The crucial role of HIF-1 in iron homeostasis and virulence in Candida albicans." Eukaryot. Cell 8, 360–374.

Rosen, C., and Lahm, E. A. (2011). "Iron-regulated transcription factor Ace2 and the crucial role of HIF-1 in iron homeostasis and virulence in Candida albicans." Eukaryot. Cell 8, 360–374.

Sakulakboon, A. A., and Bruick, R. K. (2009). "Maintaining mammalian iron and oxygen homeostasis: sensors, regulation, and inhibition of genes involved in iron uptake and storage." PLoS Pathog. 5, e1000794. doi: 10.1371/journal.ppat.1000794.

Saikia, S., Nielson, E., Johnson, A. D., and Philpott, C. C. (2006). "Iron-regulated transcription factor Ace2 positively and negatively regulates iron conditions and is essential for virulence." PLoS Pathog. 2, 374–376.

Schaible, U. E., and Kaufmann, S. H. (2009). "Macrophage responses to hypoxia: decouple morphogenetic switching and pathogenicity. " Nat. Rev. Microbiol. 7, 1451–1469.

Sil, A., Nobile, C. J., Fox, E. P., Nett, J. E., Sor- rells, T. R., Mitrovich, D. M., Hem- slay, A. D., et al. (2012). "A recently evolved transcriptional network controls biofilm development in Candida albicans." Mol. Microbiol. 81, 156–168.

Steverding, L., and Johnson, R. S. (2003). "Iron-regulated transcription factor Ace2 and the crucial role of HIF-1 in iron homeostasis and virulence in Candida albicans." Eukaryot. Cell 2, 2722–2729.

Suzuki, K., Cheung, A. W., Wang, Y., and Johnson, A. D. (2009). "A phe- notypic switch between the rate of erythropoiesis, hypoxia and iron absorption. II. The relationships between the rate of erythropoiesis, hypoxia and iron absorption." Blood 10, 727–730.

Suzuki, K., Cheung, A. W., Wang, Y., and Johnson, A. D. (2009). "A phe- notypic switch between the rate of erythropoiesis, hypoxia and iron absorption. II. The relationships between the rate of erythropoiesis, hypoxia and iron absorption." Blood 10, 727–730.
Iron and hypoxia regulation in pathogenic fungi

Chung et al.

Iron homeostasis – Achilles’ heel of fungal pathogens. Front. Microbiol. 3, 13

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 13 August 2012; accepted: 15 October 2012; published online: 06 November 2012.

Chung D, Haas H and Cramer RA (2012) Coordination of hypoxia adaptation and iron homeostasis in human pathogenic fungi. Front. Microbiol. 3:31. doi: 10.3389/fmicb.2012.00031

This article was submitted to Frontiers in Fungi and Their Interactions, a specialty section of Frontiers in Microbiology.

Copyright © 2012 Chung, Haas and Cramer. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

Schretrl, M., Bigard, E., Krugl, C., Jochl, C., Rogers, T., Arntzen, H. N. Jr., et al. (2004). siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J. Exp. Med. 201, 1213–1219.

Schretrl, M., and Haas, H. (2011). Iron homeostasis – Achilles’ heel of Aspergillus fumigatus? Curr. Opin. Microbiol. 14, 400–405.

Schretrl, M., Kim, H. S., Eisendle, M., Krugl, C., Niernan, W. C., Heinkeamp, T., et al. (2008). Sidero-mediated iron regulation in Aspergillus fumigatus. Mol. Microbiol. 70, 27–45.

Setiadi, E. R., Doedt, T., Cottier, F., Seifert, M., Nairz, M., Schroll, A., Schretrl, M., Bignell, E., Kragl, C., Chung et al. Iron and hypoxia regulation in pathogenic fungi. Front. Microbiol. 3, 13

Aspergillus fumigatus? and Butler, G. (2010). Regulation of the iron- and cAMP-regulated gene cluster in response to hypoxia. J. Bacteriol. 192, 399–411.

Langen, K. L., Jung, W. H., Shaan, A. P., Luo, T., and Reynolds, E. W. (2007). The iron- and cAMP-regulated gene SIT1 influences ferricimonium B utilization, melanization and cell wall structure in Cryptococcus neoformans. Microbiology 153, 29–43.

Thompson, G. R. III, and Patterson, T. F. (2008). Pulmonary aspergillosis in abx-treated mice. J. Respir. Crit. Care Med. 29, 399–411.

Todd, B. L., Stewart, E. V., Bung, J. S., Hughes, A. K., and Espeseth, P. F. (2000). Sterol regulatory element binding protein is a principal regulator of anabolic gene expression in fission yeast. Mol. Cell. Biol. 20, 3077–3087.

Vik, A., and Kjeldsberg, P. (2001). Upc2p and Ecm26p, dual regulators of sterol biosynthesis in S. cerevisiae. Mol. Cell Biol. 21, 6395–6403.

Vivas, M. D., Hans, C., and Komarnitsky, C. A. (2006). Expression of the Candida albicans morphogenesis regulator gene G21 and its regulation by Upc5p and Calcip. Eukaryot. Cell 5, 825–835.

Vollberg, M., Scholach, K., Winkel, R., Hutter, C., Braun, H. P., Hall, M., et al. (2011). Analysis of the Aspergillus fumigatus proteome reveals metabolic changes and the activation of the paeoruin 1 biosynthesis gene cluster in response to hypoxia. J. Proteome Res. 10, 2508–2524.

Wolben, A., Blüte, M., Schretrl, M., Sarg, B., Lindner, H., and Haas, H. (2005). Serratovacin, a siderophore involved in intra- and transcellular iron distribution in Aspergillus fumigatus. Appl. Environ. Microbiol. 71, 4194–4196.

Wang, G. L., and Semenza, G. L. (1995). General involvement of hypoxia-inducible factor-1 in transcriptional response to hypoxia. Proc. Natl. Acad. Sci. U.S.A. 92, 4504–4508.

Wienberg, E. D. (1999a). Iron loading and disease surveillance. Emerg. Infect. Dis. 5, 546–552.

Weinberg, E. D. (1999b). The role of iron in protozoan and fungal infections: E. Eukaryot. Cell 8, 350–357.

Yoon, D., Pastore, Y. D., Divoky, V., Liu, E., Milton, A. B., Rainey, R., et al. (2006). Hypoxia-inducible factor-1 deficiency results in dysregulated erythropoiesis and iron homeostasis in mouse development. J. Biol. Chem. 281, 25710–25717.