THE CORRELATION BETWEEN CERVICAL VERTEBRAL MATURATION AND MANDIBULAR DIMENSIONS IN CHILDREN AGED 8-16 YEARS: STUDY ON CHILDREN’S POPULATION IN JAKARTA, INDONESIA

Pardamean R. Andreas, Sarworini Budiardjo, Margaretha Suharsini

Department of Pedodontics, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia

ABSTRACT

INTRODUCTION: The mandible provides a basis for occlusion and mastication in collaboration with the maxilla. It is important to perform biological assessments of growth and development of the mandible in dentofacial orthopedics.

OBJECTIVES: The aim of this cross-sectional study was to analyze a correlation between cervical vertebral maturation and changes occurring in mandibular dimensions to predict the right time for orthopedic treatments, using data of 30 lateral cephalograms of subjects (18 girls, 12 boys), aged 8-16 years in Jakarta, Indonesia.

MATERIAL AND METHODS: Following parameters were evaluated in this study: visual measurements of lateral cephalogram, mandibular dimensions assessed from the total mandibular length of a condylon-gnathion line, height of mandibular ramus from the condylon–gonion intersection line, and length of mandibular body from the gonion intersection–gnathion line during maturity stages of cervical vertebra (cervical stage 1 to cervical stage 6), which were assessed from the second to fourth branches of cervical vertebral bone. Spearman method was used to analyze a correlation between cervical vertebral maturation and changes in mandibular dimensions.

RESULTS: A significant and strong correlation was observed between cervical vertebral maturation stages and the total mandibular length, the height of mandibular ramus, and the length of mandibular body, along with the pre-pubertal, pubertal, and post-pubertal periods.

CONCLUSIONS: Growth and development of the mandible can be used as skeletal maturity indicators during the pubertal age in case of a dentofacial orthopedic treatment.

KEY WORDS: skeletal maturation, mandible, growth and development, puberty.

J Stoma 2020; 73, 6: 308-312
DOI: https://doi.org/10.5114/jos.2020.102049
It is important to understand biological assessments of growth and development of the mandible in dentofacial orthopedics. The primary purpose of functional therapy in treating mandibular growth deficiency is to accelerate the increase of the length of mandible by stimulating an enhanced growth of the condylar cartilage [4]. The effectiveness of therapeutic functional devices is highly dependent on responsiveness of the condylar cartilage, which also depends on mandibular growth rates [4]. Therefore, it is important to evaluate the mandibular skeletal maturity and the individual’s growth potential to improve treatment outcomes.

Craniofacial growth and development in humans vary between individuals with pubertal growth increase by following a pattern [5]. Skeletal maturation indicates the degree of development of ossification in the bone and is a more reliable method for growth assessment [6]. Maturation may be described as a development process that completes the physical growth, and its stage can be measured and graphically represented [7]. Previous studies have demonstrated a correlation between cervical vertebral maturation and mandibular growth in adolescence, which has also received increasing attention. Measurement of cervical vertebral maturation has proven to be effective and clinically reliable for the assessment of mandibular skeletal maturation in children during growth [8]. The intensity, onset, and duration of pubertal peak in relation to the growth of mandible differ significantly among individuals. Evaluation of cervical vertebral maturation is generally performed by observing the shape and size of the second branch (C2), third branch (C3), and fourth branch (C4) of the cervical vertebral bone. The method is divided into six stages according to the stage of maturity, and can be identified during the pubertal period.

**OBJECTIVES**

This cross-sectional study was conducted to analyze a correlation between cervical vertebral maturation and changes in mandibular dimensions. Skeletal maturation can be used to assess mandibular growth and development in puberty, as a consideration in optimizing skeletal modification in orthopedic treatment time.

**MATERIAL AND METHODS**

Considering an effect size (ES) of 0.5, which is a large ES based on Cohen’s recommendation (with $\alpha = 0.05$ and power = 0.80), the projected sample size required with this ES was approximately $n = 29$. The study sample in this research consisted of 30 lateral cephalograms, which were retrospectively selected from clinics and radiology laboratories in Jakarta between June 2016 and June 2019. The cephalogram was obtained by analogue machine. The study cohort consisted of 18 girls and 12 boys, who fulfilled the inclusion criteria using visual observations. Subjects were children aged 8-16 years with class 1 skeletal malocclusion, without a history of orthodontic treatment, and class 1 molar relationship. Cephalogram quality was good in contrast, detail, and sharpness. Ethical approval was obtained from Dental Research Ethics Committee, with a protocol number of 050340319, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia.
Cervical vertebral maturation was assessed from cephalogram by visual observation using a light box based on morphological shape and depth of the lower border of cervical vertebrae C2, C3, and C4 (Figure 1). The stages of cervical vertebral maturation were based on classification of McNamara et al. (Figure 2) [9]. There were six cervical stages (CS), including CS 1 and CS 2 categorized as pre-pubertal, CS 3, and CS 4 classified as pubertal, and CS 5 and CS 6 characterized as postpubertal.

The mandibular dimensions comprised the total length of mandible represented by the distance of condylon–gnathion line, the ramus height was represented by the distance of condylon–gonion intersection line, and the body length was characterized by the distance of gonion intersection–gnathion line (Figure 3) [10].

Reliability tests for the assessment of cervical vertebral maturation were conducted by inter-operators between researchers and consultants, with a $\kappa$ value of 0.83 and by intra-operators who performed the test 2 weeks after the first assessment, with a $\kappa$ value of 1.0. Reliability tests for the total mandibular length measurements between operators and consultants were conducted using Bland–Altman plots, with mean ± SD values of 0.040 ± 0.069 and limits of agreement values of −0.097 and 0.177 (good reliability interval between −5 and 5).

The correlations between cervical vertebral maturation groups (pre-pubertal, pubertal, and post-pubertal) and the changes in mandibular dimensions were statistically analyzed using Spearman bivariate correlation test.

**RESULTS**

Table 1 shows differences between the median values of the total mandibular length, the height of mandibular ramus, and the length of mandibular body with pre-pubertal, pubertal, and post-pubertal periods. The total mandibular length was the highest median enhancement in the pre-pubertal, and post-pubertal periods. The total mandibular length, the height of mandibular ramus, and the changes in mandibular dimensions were statistically analyzed using Spearman bivariate correlation test.

Furthermore, Table 2 shows a correlation analysis of the cervical vertebral maturation and the mandibular dimension. From the results, it can be concluded that there is a strong and significant correlation between the cervical vertebral maturation and the total mandibular length ($r = 0.797$); between cervical vertebral maturation and the height of mandibular ramus ($r = 0.674$); between cervical vertebral maturation and the length of mandibular body ($r = 0.752$). The differences indicate stages of cervical vertebral maturation along with the growth and development of the mandible. The more cervical vertebral mature, the more mandible increases in size.

**DISCUSSION**

This study was conducted to analyze the correlation between cervical vertebral maturation and the changes in mandibular dimensions among individuals with a wide age range. The sample was selected by radiological quality procedures. The selected cephalograms appeared black and white, and included varying shades of gray, clear anatomical landmarks (mandibular with sharp edges), with straight Frankfort horizontal planes and no double images. Results showed strong associations, with a maximum correlation obtained between the cervical vertebral maturation stage and the total mandibular length ($r = 0.797$), followed by the length of mandibular body ($r = 0.752$) and the height of mandibular ramus ($r = 0.674$). The largest amount of mandibular growth occurred during CS 4, when cervical vertebral maturation take place within the pubertal age [10, 11]. This finding is consistent with previous studies, which have reported a relationship between cervical vertebral maturation and changes in mandibular dimensions [8, 10, 12]. The degree of cervical vertebral maturation can be observed during pubertal age and can be used as a biological indicator of skeletal maturation in an individual [9, 12].

Mandibular growth arises with bone remodeling. An increase of mandibular height occurs primarily with alveolar bone formation; also, some bones deposition take place with the lower border of mandible. The mandibular length increases because of bone deposition on posterior

**TABLE 1.** Changes in mandibular dimensions according to cervical vertebral maturation groups

| Mandibular growth variable, median (minimum-maximum) | $n$ | Pre-pubertal CS 1–CS 2 | $n$ | Pubertal CS 3–CS 4 | $n$ | Post-pubertal CS 5–6 |
|----------------------------------------------------|-----|------------------------|-----|-------------------|-----|----------------------|
| Total length of mandible                           | 10  | 10.5 (9.6-11.2)         | 10  | 11.5 (11.1-11.8)  | 10  | 11.95 (10.9-12.2)    |
| Height of mandibular ramus                         | 10  | 5.15 (4.5-5.6)          | 10  | 5.9 (5.6-6.3)     | 10  | 6.05 (5.4-6.6)       |
| Length of mandibular body                          | 10  | 7.05 (6.7-7.3)          | 10  | 7.45 (7.3-7.9)    | 10  | 7.8 (7.2-8.3)        |

**TABLE 2.** The correlation between the cervical vertebral maturation stage and the mandibular dimensions

| Cervical vertebral maturation stage | Total mandibular length | Height of mandibular ramus | Length of mandibular body |
|------------------------------------|-------------------------|---------------------------|--------------------------|
|                                    | $r = 0.797$             | $r = 0.674$               | $r = 0.752$              |
|                                    | $p = 0.001$             | $p = 0.001$               | $p = 0.001$              |
|                                    | $n = 30$                | $n = 30$                  | $n = 30$                 |
surface of the ramus as well as due to a process of resorption, as a compensation of anterior surface. It is accompanied by bone deposition on posterior surface of coronoid process and a conduction of anterior surface of the condyle. The mandibular width increases due to bone deposition on the outer surface of mandible and the resorption of mandibular surface [13]. Therefore, the mandible grows in a posterior-superior (backward-upward) direction causing an anterior-inferior displacement [14, 15]. The reported mandibular growth becomes enlarged in size during pubertal period. Some researchers suggest that mandibular growth spurs can occur, but not of the same number and duration in each individual [14]. Relationship between cervical vertebral stages with mandibular growth has received much attention, and it proven to be clinically effective and reliable for the assessment of mandibular skeletal maturation in puberty [16].

Puberty is associated with morphological and physiological changes, which occur during growth in boys or girls throughout childhood till adulthood. The characteristics of pubertal stages include the onset of sexual development, skeletal maturity, and hormonal changes. Puberty is a complex stage, and the process is influenced by several factors, including genetic, nutritional, socioeconomic, and environmental aspects, which mediate both physiological and hormonal processes [17, 18]. Bones grow faster during pubertal growth spurt because the increase of sex hormone levels triggers bone growth [19]. Therefore, a comparison between subjects in the three stages, i.e., pre-pubertal, pubertal, and post-pubertal could help in analyzing the significant changes in mandibular dimensions. In patients who require orthopedic treatment, the time of treatment during the process of growing would significantly contribute towards achieving an effective and efficient outcome for skeletal problems of every individual [9].

The occurrence of mandibular growth is affected by condyle. Condyle is one of the main growth areas in the face (apart from the maxilla, alveolar process, and mandible) until adolescence, and continues into young adulthood [13, 20]. Heterogeneous tissue contain fibroblasts, osteochondral progenitor cells, and chondrocytes. The peripheral condyle cartilage includes chondroid bone, a specialized calcified tissue with intermediate morphological properties between bone and cartilage. This tissue plays an important role in regulating the different bone formation rates in intramembranous and enchondral ossification, allowing for a variety of growth directions of condyle and maxillofacial morphology [15]. This supports the concept of great increase in mandibular growth along pubertal period in accordance with cervical vertebral maturation. Therefore, the cervical vertebral maturation method is an efficient indicator of mandibular growth during puberty [8]. The use of growth indicators is recommended in clinical practice and research in cases of malocclusion requiring interceptive or functional treatment [21]. The success of functional appliance can be assessed by intervention in mandibular length, suggesting a relationship between mandibular growth potential and treatment response [22].

A limitation of this study was that linear two-dimensional X-rays were not used to measure the growth and development effectively; therefore, this should be done by evaluating three-dimensional X-ray. Moreover, performing calibration in each cephalogram could be suggested for future research to obtain more accurate measurement results. A longitudinal study could be conducted on the same subjects in child and adolescence period by observing the individual’s growth and development, with cephalogram taken at different ages, which would reveal the growth and development of the same individual.

CONCLUSIONS

The correlation between cervical vertebral maturation and mandibular dimensions can be used as an indicator of skeletal maturation during the pubertal age. This can be used as a reference to determine the time to perform dento-facial orthopedic treatment. The effectiveness of therapeutic functional devices can be influenced by the process and state of growth, thus maximizing the outcome of treatment.

ACKNOWLEDGMENT

This research was fully supported and funded by the Directorate of Research and Community Service, Universitas Indonesia.

CONFLICT OF INTEREST

The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

1. Dean JA, Avery DR, McDonald RE. Mc Donald and Avery’s Dentistry for the Child and Adolescent. 10th ed. Missouri: Mosby Elsevier; 2016.
2. Sharma P, Arora A, Valithan A. Age changes of jaws and soft tissue profile. Sci World J 2014; 2014. doi:10.1155/2014/301501
3. Smartt JM, Low DW, Bartlett SP. The pediatric mandible: I. A primer on growth and development. Plast Reconstr Surg 2005; 116: 14e–23e. doi:10.1097/01.PR.S.0000169940.69313.9C
4. Franchi L, Baccetti T, Jr JAM, Arbor A. Mandibular growth as related to cervical vertebral maturation. Am J Orthod Dentofac Orthop 2000; 118: 335-340.
5. Al-Jewair TS, Preston CB, Flores-Mir C, Zianowski P. Correlation between craniofacial growth and upper and lower body heights in subjects with Class I occlusion. Dental Press J Orthod 2018; 23: 37-45.
6. Goyal S, Goyal S. Assessment of skeletal maturation and pubertal growth spurt using cervical vertebrae maturation indicators. Rwanda Med J 2013; 70 (September): 28-33.
7. de Souza Araujo MT, Cury-saramago ADA, Fonseca A. Clinical and radiographic guidelines to predict pubertal growth spurt. Dent Press J Orthod 2011; 16: 98-103.
8. Gu Y, McNamara JA. Mandibular growth changes and cervical vertebral maturation. Angle Orthod 2007; 77: 947-953.
9. McNamara JA, Franchi L. The cervical vertebral maturation method: a user’s guide. Angle Orthod 2018; 88: 133-143.
10. Perinetti G, Contardo L, Castaldo A, McNamara JA. Diagnostic reliability of the cervical vertebral maturation method and standing height in the identification of the mandibular growth spurt. Angle Orthod 2016; 86: 599-609.
11. Ball G, Woodside D, Tompson B, Hunter WS, Posluns J. Relationship between cervical vertebral maturation and mandibular growth. Am J Orthod Dentofacial Orthop 2011; 139: e455-e461.
12. Gray S, Bennani H, Kieser JA, Farella M. Morphometric analysis of cervical vertebrae in relation to mandibular growth. Am J Orthod Dentofac Orthop 2018; 88: 92-98.
13. Berkovitz BK, Holland G, Moxham B. Oral Anatomy, Histology and Embryology. 3rd ed. Edinburgh: Mosby; 2002.
14. Souza A, Martinelli E. Mandibular growth during adolescence. Angle Orthod 2006; 76: 786-790.
15. Mizoguchi I, Toriya N, Nakao Y. Growth of the mandible and biological characteristics of the mandibular condylar cartilage. Jpn Dent Sci Rev 2013; 49: 139-150.
16. Ball G, Woodside D, Tompson B. Relationship between cervical vertebral maturation and mandibular growth. Am J Orthod Dentofac Orthop 2011; 139: e455-e461.
17. Snyder CK. Puberty: an overview for pediatric nurses. J Pediatr Nurs 2016; 31: 757-759.
18. Soliman A, De Sanctis V, Elalaily R, Bedair S. Advances in pubertal growth and factors influencing it: can we increase pubertal growth? Indian J Endocrinol Metab 2014; 18: S53-S62.
19. Enikawati M, Suharsini M, Budihardjo SB, et al. Maxillary and mandibular lengths in 10 to 16-year-old children (lateral cephalometry study). J Phys Conf Ser 2018; 1073: 022015.
20. Kim J, Nielsen IL. A longitudinal study of condylar growth and mandibular rotation in untreated subjects with class ii malocclusion. Angle Orthod 2002; 72: 105-111.
21. Perinetti G, Franchi L, Contardo L. Determination of timing of functional and interceptive orthodontic treatment: a critical approach to growth indicators. J World Fed Orthod 2017; 6: 93-97.
22. Buschang PH, Santos-Pinto A. Condylar growth and glenoid fossa displacement during childhood and adolescence. Am J Orthod Dentofac Orthop 1998; 113: 437-442.
23. Castaldo G, Cerritelli F. Craniofacial growth: evolving paradigms. J Craniofac Sleep Pract 2015; 33: 23-31.