A quantum computer only needs one universe

A. M. Steane
Centre for Quantum Computation,
Department of Atomic and Laser Physics, University of Oxford,
Clarendon Laboratory, Parks Road, Oxford OX1 3PU, England.

1 October 2002

Abstract
The nature of quantum computation is discussed. It is argued that, in terms of the amount of information manipulated in a given time, quantum and classical computation are equally efficient. Quantum superposition does not permit quantum computers to “perform many computations simultaneously” except in a highly qualified and to some extent misleading sense. Quantum computation is therefore not well described by interpretations of quantum mechanics which invoke the concept of vast numbers of parallel universes. Rather, entanglement makes available types of computation process which, while not exponentially larger than classical ones, are unavailable to classical systems. The essence of quantum computation is that it uses entanglement to generate and manipulate a physical representation of the correlations between logical entities, without the need to completely represent the logical entities themselves.

The main purpose of this article is to improve our insight into what is going on in any quantum computation. Although I have no new quantum algorithms or methods to offer, I hope this type of contribution may still be of some help towards a better grasp of quantum computation, and therefore towards future insights and new methods.
The article has been prompted by the often-quoted, though admittedly vague statement, “a quantum computer can perform vast numbers of computations simultaneously”. I think this statement is sufficiently misleading that it should have a “health warning label” attached to it, where in this case it is the health of our insight into quantum computing which we need to guard. The statement is sometimes used as evidence that quantum physics is best understood in terms of vast numbers of parallel universes [1, 2], and therefore that a laboratory demonstration of quantum computing is evidence in favour of such interpretations as opposed to others (though they all make the same predictions). It is not my main purpose here to bring out the logical difficulties of this, or any other, interpretation of quantum physics. However, the title “A quantum computer only needs one universe” conveys the conclusion of the present discussion: quantum computers are not wedded to “many worlds” interpretations, not only in terms of the prediction of the results of experiments, but also in terms of insight into what is going on within the quantum computational process.

The discussion will consist of a sequence of seven remarks followed by a proposition. The intention is to point out features of quantum computing processes which suggest that a better insight into quantum computing is gained by thinking of it as a small process which exploits correlations provided by entanglement, rather than a large process which exploits massive parallelism. The thesis is that quantum computation offers not a greater amount of computation in a given system size and time, but rather a more flexible type of process than is available in classical computation. The final proposition is a view of what the essence of this further flexibility is, namely an efficient way to represent and manipulate correlations.

1 Seven remarks

Background to remark 1. For the purpose of this first remark, by “computations” we mean elementary processing operations which achieve some given degree of transformation of a body of information, such as evolving it from one state to an orthogonal state. It is certainly not self-evident that a quantum computer does exponentially more computations than a classical computer of similar size calculating for a similar time, since there are not exponentially more computational results available. This follows immediately from Holevo's theorem [3, 4] on the capacity of a quantum channel to
transmit classical information. We may deduce that whatever else may be
said about a quantum computer, it does not constitute many classical in-
f ormation processors. (It is self-evident that it does constitute one quantum
information processor). No one, to my knowledge, has seriously argued that
a quantum computer does constitute many classical information processors,
but informal statements implying this have been quite common (and I have
not been totally innocent of them).

Furthermore, when a classical computer simulates the action of a quantum
computer, it may need exponentially more time steps or physical components,
but then it also yields exponentially more information about the final state.
Therefore:

Remark 1. Quantum computers cannot manipulate classical
information more efficiently than classical ones, and the total in-
formation about the dynamics of a quantum system which can
be obtained by classical computing cannot be obtained more ef-
iciently by quantum computing.

In this sense, the two types of computing are equally efficient. Neverthe-
less, the ability of a quantum computer to be focused onto specific desired
results remains highly significant and useful, for the same reason efficient
classical algorithms are significant compared to inefficient ones.

Background to remark 2. Some insight into computational efficiency can
be obtained by examining the difference between an efficient and an inefficient
classical algorithm for the same problem. Take as an example problem that
of finding an item in an ordered list (for example, a name in an alphabetically
ordered list). In order to make the problem capable of being efficient both in
space and time, we assume that elements of the list can be generated by some
fast algorithm f. The problem is then equivalent to that of finding the root
of a monotonic function $f(x)$, where x is an integer between zero and $N - 1$
(where for an n-bit problem, $N = 2^n$). An efficient algorithm is the binary
search (examine $f(N/2)$, and then according as it is less than or greater than
zero, discard the first half or the second half of the list, and repeat). An
inefficient algorithm is the exhaustive search (examine every element in turn,
until the root is found). If we make a direct comparison between the binary
search and the exhaustive search, forgetting for a moment our understanding
of number theory, then each step of the binary search appears to accomplish
an exponentially large number, of order $N/2$, steps of exhaustive search.
For example if $f(N/2) < 0$ then in one step of the binary search we have apparently accomplished the $N/2$ ‘computations’ $f(0) \neq 0$, $f(1) \neq 0$; $f(2) \neq 0$, \ldots $f(N/2) \neq 0$. Actually, of course, only one of these computations has been carried out: the rest follow by a process of reasoning, drawing on the definition of number and the statement that $f(x)$ is monotonic.

Remark 2. The quantity “amount of computation” is not correctly measured by counting the number of steps which would have had to be accomplished if the computation had been done another way.

Therefore, to measure the “amount of computation” carried out in a quantum algorithm such as Shor’s, it is inappropriate to count the steps which a classical computer would have needed. A laboratory demonstration of Shor’s algorithm does not constitute proof that huge amounts of computation have taken place in a small system in a small time—unless there is a proof to that effect which we have not yet considered.

Background to remark 3. The “proof” (or rather, evidence) usually offered is the presence of processes such as

$$\sum_{x=0}^{2^n-1} |x\rangle |0\rangle \rightarrow \sum_{x=0}^{2^n-1} |x\rangle |f(x)\rangle ,$$

in a quantum algorithm such as Shor’s. However, we know that such a process does not constitute “evaluation of N values of the function” except in a highly qualified sense, since upon examining the computer, we will only be able to learn one value of the function. To that extent the situation is comparable to the classical binary search, where when a single function evaluation was carried out, an appearance of vast numbers of parallel evaluations arose when the algorithm was looked at from a perspective which lacked insight. Therefore, it remains open whether the mathematical notation of (1) is giving a misleading appearance or a good insight into the quantity of computation.

Let us consider examples of notations which give an impression of many simultaneous computations, but where we can prove this to be a false impression. I will propose first an artificial classical example, and then a more powerful quantum one. Suppose we have a collection of n compass needles. Each needle can indicate north, south, east or west, or any other direction. The direction is a two-component vector which we write with the notation $[\psi]$. We will use our needles as a simple classical computing device, in which
pointing north represents zero and pointing east represents one. The vector for north may therefore be conveniently written \([0]\), and the vector east can be written \([1]\). A state of \(n\) needles such as \([0][1][0][1]\) is written \([0101]\). Suppose we begin with all needles pointing north, and then rotate each needle to point northeast. This requires \(n\) elementary operations, and performs the process

\[
[0] \rightarrow \frac{1}{2^{n/2}} \sum_{x=0}^{2^n-1} [x].
\] (2)

Our computer now “stores all the values of \(x\) from \(x = 0\) to \(x = 2^n - 1\) simultaneously”. It has also just “performed \(2^n\) evaluations of the function \(f(x) = x\)” in only \(n\) steps! Actually, of course, this computer only “stores” all those values in a highly qualified (and in this case almost useless) sense, and only “evaluates” all those function values in a highly qualified sense, despite the appearance of (2). (More complicated functions can be evaluated “in parallel”, by many methods: for example, by operating a sequence of base-3 logic gates on the needles, where the three logic states for each gate input and output are \([0]\), \(2^{-1/2}(0 + [1])\) and \([1]\), and then interpreting the final state of the needles as a superposition of binary numbers. Of course this is of no practical value, and only a small family of functions can be treated). This is a good illustration of the fact that the essential element in quantum (as contrasted with classical) computing is not superposition but entanglement. It is the entanglement in the right hand side of (1) which makes the quantum state computationally useful, and it is entanglement which is hard to express succinctly in mathematical notation.

A more powerful example is given by the Gottesman-Knill theorem \[5, 4]\ (I take the statement from [5]):

Gottesman-Knill theorem: Any quantum computer performing only: a) Clifford group gates, b) measurements of Pauli group operators, and c) Clifford group operations conditioned on classical bits, which may be the results of earlier measurements, can be perfectly simulated in polynomial time on a probabilistic classical computer.

When we recall that the Clifford group contains both Hadamard rotations and controlled-not gates, we see the strength of this statement. It means that there exist many quantum algorithms which, when written down in standard state-vector notation, have an appearance of multiple parallel computations
just as strong as that of (1), and yet which can be classically simulated efficiently.

Remark 3. In view of the fact that it is possible for mathematical notation to give a false impression of the quantity of computation represented by a given process, impressions such as the one contained in (1) do not give a reliable guide to quantity of computation.

Such an impression may merely reflect a weakness of the mathematical notation, not a profound insight into what is going on.

To conclude so far, when a quantum computer is evolved through a process such as (1) it is sometimes stated that the quantum computer ‘computes’ all the function evaluations \(f(x) \). It is then asked, how can this be so, when a classical computer would need exponentially more time and/or space to compute all these things? However, this is a simple case of the same word ‘compute’ being used to mean two essentially different things, so there is no paradox. The quantum computer process (1) is being compared to the very different process

\[
|0\rangle |1\rangle |2\rangle \cdots |2^n - 1\rangle \rightarrow |f(0)\rangle |f(1)\rangle |f(2)\rangle \cdots |f(2^n - 1)\rangle . \tag{3}
\]

There is no reason why two such thoroughly different processes should require similar resources.

The argument so far has not produced an indisputable case, but in view of the remarks made, I would say the burden of proof lies with those who claim that quantum computation does really constitute a vast quantity of computation carried out in parallel. The remaining remarks argue directly against that claim. The aim of the discussion is not merely to say what quantum computation is *not*, however—I will also argue for an alternative, admittedly incomplete, view of what it is.

Remark 4. An \(n \)-qubit quantum computer is only sensitive to decoherence to the level \(1 / \text{Poly}(n) \), not \(1 / \exp(n) \), in the case that different qubits have independent decoherence. If the quantum computer were really “doing \(2^n \) computations”, and the result depended on getting a large proportion of them right, then we would expect it to be sensitive to errors at the level \(1 / 2^n \), which it is not.
I feel this point is so strong that it suffices on its own to rule out the concept of “vast parallel computation”.

Background to remark 5. Quantum computing is now a field which has reached a modest degree of maturity, but there are still profound unresolved basic issues, chiefly the nature of entanglement involving more than two parties, and the general problem of constructing algorithms which take advantage of quantum physics. Almost certainly insights into each of these will contribute to understanding the other. Although most work on quantum algorithms uses the model of a quantum register with a network of logic gates, it is well known that other computing models are possible, for example cellular automata. Most such models are close cousins of the network model. Recently a new model was discovered which can be shown to reproduce the results of the network/register model, but which also can produce behaviour outside that model. This new model is the ‘cluster state’ computer, or ‘one-way computer’ discovered by Raussendorf and Briegel [6, 7]. The central elements are the preparation of a special entangled state of many qubits at the outset of the computation (the cluster state), followed by appropriately-chosen measurements of single qubits. No further elements are needed (in particular, no unitary ‘logic gates’, whether on one or more qubits, are needed, nor are joint measurements of two or more qubits needed). The choice of measurements at a given stage depends on the outcome of previous measurements. It can be shown that this model can be used to reproduce the action of any quantum network, with similar resources (qubits and time). However, it can also produce behaviour which has no natural interpretation in terms of networks of logic gates. For example, the number of steps (‘logical depth’) required to accomplish a desired transformation can be much smaller (e.g. a constant rather than a logarithm of the input size), and the temporal ordering of the measurements can be unrelated to the sequence of gates in a network designed to accomplish the same algorithm.

The cluster state prepared at the outset is a fixed state which does not depend on the computation to be performed. The measurements to be implemented at any time are determined from two pieces of classical information: a set of angles given by the algorithm, and the ‘information flow vector’ which is a classical bit-string of length $2n$ where n is the size of the input information. This bit-string is updated depending on the outcomes of the measurements, and half of it gives the algorithm’s output when all measurements are complete.
Remark 5. The evolution of the cluster-state computer is not readily or appropriately described as a set of exponentially many computations going on at once. It is readily described as a sequence of measurements whose outcomes exhibit correlations generated by entanglement.

In order to design an algorithm for this or any other computer, it is natural to think in terms of classical information in the first instance, simply because that is the only way we know well. For example one might start from a network model, analyzed in a computational basis, and make use of the “quantum parallelism” concept of eq. (1). This is certainly one good way to think about designing algorithms. However, the actual evolution of the cluster state computer has no ready mapping onto this analysis. The main features are instead the information flow vector, and the cluster state whose entanglement slowly disappears as more and more measurements are made on it. The information being processed must reside in these two, but the qubits play almost a passive role, in that they are prepared at the outset in a standard state, and thereafter simply measured one at a time. Rather than ‘performing computations in superposition’, the role of the quantum information is to provide a resource, namely entanglement, which permits the measurement outcomes to exhibit correlations of a different nature to those which would be possible with a set of classical bits.

Background to remark 6. I have argued that it is not true that a quantum computer accomplishes a vast number of computations all at once. A statement which, by contrast, has a clear meaning, and which I think is more useful, is that a quantum computer can compute a specific desired result, such as the period of a function, using much fewer resources than a classical computer would need. Now, when we examine how it is that some classical algorithms are more efficient than others, we find (as in the ordered search example considered above) that the efficient algorithms do not generate (either temporarily or permanently) unnecessary subsidiary results. It is natural, therefore, to ask whether quantum computers out-perform classical ones for the same reason. In view of the fact that, as I have already argued, the two types of computer are equally efficient, in terms of quantity of computations in a given time, this is probably the only available route for improved efficiency. When we examine an efficient quantum algorithm such as Shor’s, we find that it is indeed essential to the working of the algorithm that the evaluations of \(f(x) \) in superposition do not individually have any
subsequent influence on other parts of the universe. If they did, the resulting entanglement would prevent the algorithm from working. The algorithm only establishes the correlations, such as that between \(f(x) \) and \(f(x + r) \) where \(r \) is the period, not the individual values themselves.

Remark 6. Whenever one algorithm for a given problem is substantially more efficient than another, the more efficient algorithm generates much less extraneous classical information.

Both memory resources and time must be included when measuring efficiency. The value of this remark is that it applies uniformly to classical and to quantum computing, and to their comparison. It implies that we should understand a gain in computational efficiency as a given result achieved with less processing, not as a given result achieved with the same amount of processing but in parallel.

Remark 7. The different “strands” or “paths” of a quantum computation, represented by the orthogonal states which at a given time form, in superposition, the state of the computer (expressed in some product basis) are not independent, because the whole evolution must be unitary.

This remarks underlines the fact that in a quantum computer a single process is taking place, not many different ones. One practical result is that quantum computation cannot give an efficient algorithm for the unstructured search problem.[8]

2 Entanglement, superposition and correlations

It is undisputed that entanglement plays an important role in quantum computing, though the elucidation of this role is an ongoing research area. By definition, an entangled state cannot be written as a product, so if we want to write it down we will have to write a sum of terms. Owing to the linearity of quantum mechanics, subsequent unitary operations cause these terms to evolve independently, and the attraction of the picture of multiple parallel computations comes from this. However, this feature is no different from
what is observed in the Fourier analysis of a classical linear electronic circuit. Each Fourier component of a classical signal will there behave independently of the others, but it does not give any useful insight to talk of the different Fourier components as occupying ‘parallel universes’.

The Fourier example (and others that could be given) emphasizes that superposition is not in itself the essential ingredient in quantum computation. Entanglement is, on the other hand, the essential difference between the states on the right hand side of equation (1) and of equations (2) and (3), and no known efficiency separation between quantum and classical computation does not involve the exploitation of entanglement for computational purposes.

I will now put forward an interpretational view of quantum computing which is in accord with the seven remarks above, and with what is known about entanglement.

Interpretational view. A quantum computer can be more efficient than a classical one at generating some specific computational results, because quantum entanglement offers a way to generate and manipulate a physical representation of the correlations between logical entities, without the need to completely represent the logical entities themselves.

The ‘logical entities’ will typically be integers. Thus, for example, in a set of qubits described by equation (1), the correlation between \(f(x) \) and \(x \) is fully represented, but the values of \(f(x) \) are not. For, a measurement of the qubits in the computational basis will with certainty give a pair of results such that if one is \(x \), the other is \(f(x) \), for any \(x \) in the superposition, but it will only with low probability give any particular \(x, f(x) \). Furthermore, if the qubits are to be used in Shor’s period-finding algorithm, then the period of the function which the algorithm extracts is a property of the correlation between values of \(f(x) \), not of any particular value, and when the algorithm finishes this correlation information is available, but no physical record remains of any value of \(x \) for a given \(f(x) \). This is not an insignificant side-effect, because the absence of a record of any \(x \) arises from an interferometric cancellation which is essential to the success of the algorithm.

Note also that the interferometric cancellation is only possible if the terms in the sum are parts of a single entity, i.e. the single, coherent, state of a system isolated in such a way that it does not leave ‘which path’ information through entanglement with other systems. In common with remark 7
above, this emphasizes that the terms in the superposition do not each have a separate existence, and therefore should not be described as if they did.

The EPR experiment, in the form as analyzed by Bell, emphasizes that entanglement leads to a degree of correlation beyond that which can be explained in terms of local hidden variables. In order that these correlations are consistent with special relativity (i.e. that they cannot be used for faster-than-light signaling) it is necessary that they appear ‘hidden’ in two sets of measurement results which are random when either set is examined without the other. This combination of correlation and randomness is a further example of what I mean by a physical state which can represent correlation without representing information about the correlated entities (except in so far as this is logically necessary to represent information about their correlation).

To conclude, the basic fact which quantum computers take advantage of, is that multi-partite entanglement offers a way to produce some computational results without the need to calculate a lot of ‘spectator’ results. For example, we can find the period of a function without calculating all the evaluations of the function; we can find a specific property of a quantum system (such as an energy level) without also finding the complete wavefunction; we can communicate some shared aspect of distributed information without transmitting as much of the information as we would otherwise need to.

The impression of vast parallel computation in (1) is a false impression engendered by an imperfect mathematical notation. It might be argued that the mathematical notation is the only one we have, and that it carries a lot of insight into what is going on in the algorithm. The latter is true, but since we know for a fact the idea of ‘vast computation’ could only be true in a highly qualified sense here, and since there is other evidence to suggest vast computations are not in fact going on, therefore this impression is merely an artifact of the notation. It is noteworthy that the very fact that we can write the state using a summation symbol, rather than writing out all the components laboriously, indicates that the algorithmic information content of the state is small.

Entanglement does mean the process is of a subtle type not available to any classical system. Therefore the computation process, though not exponentially large, is unavailable to classical computers.

The answer to the question ‘where does a quantum computer manage to perform its amazing computations?’ is, we conclude, ‘in the region of spacetime occupied by the quantum computer’. Nonetheless, the quantum
computer’s evolution is a subtle and powerful process, and one might want to convey this fact by invoking the image of an ‘exploration of parallel universes’. However, since the concept of ‘parallel universes’ implies a computational power which is not in fact present in quantum computation, I feel such an image obscures more than it illuminates.

The right way to describe the efficiency of quantum computation is, I have argued, that entanglement provides a way to represent and manipulate correlations directly, rather than indirectly through a manipulation of the correlated entities.

Finally, if the state vector notation of (1) is imperfect, then can we think of a notation giving further insight? A more insightful perspective in many areas of physics is that of operators rather than states. For example, take the Heisenberg picture of quantum mechanics, the creation/destruction operator description of quantum optics, and the stabilizer description of quantum error correction. We have noted that quantum algorithms which cannot be efficiently simulated classically exploit entanglement. A notation which focused on this distinction, i.e. which treated operations on entanglement measures rather than state vectors, may give a useful insight.

I acknowledge helpful correspondence with David Deutsch, Christof Zalka, and Michael P. Frank. This work was supported by EPSRC and by the Research Training and Development and Human Potential Programs of the European Union.

References

[1] *The many-worlds interpretation of quantum mechanics*, edited by B. S. DeWitt and N. Graham (Princeton University Press, Princeton, 1973).

[2] D. Deutsch, *The fabric of reality* (Penguin, London, 1997).

[3] A. S. Holevo, in *Proceedings of the 2nd Japan-USSR symposium on probability theory* (Springer-Verlag, Berlin, 1973), pp. 104–119.

[4] M. A. Nielsen and I. L. Chuang, *Quantum Computation and Quantum Information* (Cambridge University Press, Cambridge, 2000).

[5] D. Gottesman, “The Heisenberg representation of quantum computers” (1998), quant-ph/9807006
[6] R. Raussendorf and H.-J. Briegel, Phys. Rev. Lett. 86, 5188 (2001), quant-ph/0010033.

[7] R. Raussendorf and H.-J. Briegel, “Computational model underlying the one-way quantum computer”, (2001), quant-ph/0108067.

[8] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, SIAM J. Comput. 26, 1510 (1997), quant-ph/9701001.