Estimation of relative biological effectiveness for boron neutron capture therapy using the PHITS code coupled with a microdosimetric kinetic model.
氏名（本籍） 堀口 洋徳
学位の種類 博士（医学）
学位記番号 博甲第 7434 号
学位授与年月 平成 27 年 3 月 25 日
学位授与の要件 学位規則第 4 条第 1 項該当
審査研究科 人間総合科学研究科
学位論文題目 Estimation of relative biological effectiveness for boron neutron capture therapy using the PHITS code coupled with a microdosimetric kinetic model (PHITS コードと MK モデルを組み合わせたホウ素中性子捕捉療法における生物学的効果比の評価)

主査 筑波大学教授 博士（医学） 櫻井 英幸
副査 筑波大学准教授 博士（医学） 磯辺 智範
副査 筑波大学講師 博士（医学） 三好 浩稔
副査 筑波大学講師 博士（医学） 中井 啓

論文の内容の要旨

（目的）
ホウ素中性子捕捉療法（BNCT）は、ホウ素（10B）と熱中性子の反応から発生するα粒子とリチウム粒子を利用する放射線治療法である。BNCT の照射場は、生体内で発生する放射線を含めると中性子、陽子、ガンマ線、α粒子及びリチウム粒子により構成される。治療計画においては、これらの放射線をホウ素線量、窒素線量、水素線量及びガンマ線量の 4 つの成分に分類して評価している。なお、本研究では、窒素線量と水素線量の和を陽子線量と呼ぶ。BNCT の治療効果は、物理線量と生物学的効果比（RBE）の積で表される生物学的線量を用いて評価されている。物理線量の評価に関しては、治療計画システムによる計算手法が確立され、精度の高い評価が行われている。一方で、RBE については、細胞実験や臨床結果を基に経験的に決定されていることが多く、その評価方法は、確立されているとは言えない。さらに、RBE は、線量や中性子スペクトル等に依存するため、実験的にその影響を正確に評価することは困難である。このような問題を踏まえ、本研究では、計算により BNCT の RBE を評価することができる新たな生物学的評価モデルの開発を行った。

（対象と方法）
Hawkins の提唱した Microdosimetric Kinetic Model (MK モデル) を用いて BNCT の線量成分に対
する細胞生存率の評価を行った。MKモデルは、生物学的パラメータ（MKモデルパラメータ）と局所的な領域内に付与されるエネルギー（Lineal Energy：ý）を用いて種々の細胞に対する生物学的効果を説明することができるモデルである。本評価に使用するMKモデルパラメータは、研究炉（JRR-4）で行われたV79細胞に対するフリーエアー実験のデータを基に推定した。ýは、LETに似た概念であるが、LETが単位長さあたりの付与エネルギーを表しているのに対して、単位体積あたりの付与エネルギーを表すパラメータである。つまり、ýは、生物学的効果の評価に必要な微小な領域における放射線の飛跡周辺の電離密度を的確に表すことができるパラメータであると言える。本研究では、ý及び物理線量の計算には、計算時間、精度とともに優れている汎用放射線輸送計算コード（PHITS）を採用した。開発した評価モデルの検証には、過去にJRR-4で行われたV79細胞に対する水ファントム内の細胞生存率に関する実験データを使用した。

（結果）
過去のフリーエアー実験を再評価することにより、MKモデルパラメータの推定を行った。ここで、実験値（Exp）と計算値（Cal）より導出した生存率曲線（L-Qモデル）のα値（Gy^{-1}）は、ホウ素線量（Exp: 1.25、Cal: 1.32）、陽子線量（Exp: 1.11、Cal: 1.04）となり、実験値と計算値は良く一致した。次に、フリーエアー実験に基づき推定したMKモデルパラメータを用いて、ファントム内の細胞生存率の評価を行った。その結果、ファントム内の細胞生存率及びRBEを精度良く計算することができた。

（考察）
本評価は、V79細胞に対するJRR-4の熱外中性子ビームを用いた実験結果に基づくものであり、異なる条件（細胞、中性子源）に対する検証を進める必要がある。細胞の種類に関しては、統一的な評価を行うため、腫瘍や正常組織について基準となる細胞を選定し評価を行う必要がある。また、中性子源に関しては、研究炉や加速器から発生する中性子ビームに対する生物学的効果を検証していく必要がある。評価に使用した実験データは、ホウ素キャリアとして細胞、細胞核及びその周辺に均一に分布することが知られているホウ酸を使用している。実際のBNCTでは、細胞内外に不均一に分布するホウ素キャリア（p-boronophenyllalanine:BPA、sodium borocaptate:BSH）が使用されており、細胞レベルのホウ素分布を考慮に入れたモデルの構築が必要である。

審査の結果の要旨

（批評）
本研究により、BNCTの線量成分に対するRBEを評価することができる新たな生物学的評価モデルの基礎を構築することが示された。今後、BNCTの治療計画システムへの導入をはかるために価値の高い論文と考えられた。

平成27年2月3日、学位論文審査委員会において、審査委員全員出席のもとで論文について説明を求め、関連事項について質疑応答を行い、最終試験を行った。その結果、審査委員全員が合格と判定した。

よって、著者は博士（医学）の学位を受けるのに十分な資格を有するものと認める。