A photonic based microwave and RF integrator with a transversal filter

david moss (dmoss@swin.edu.au)
Swinburne University of Technology

Research Article

Keywords: Integrator, Kerr micro-comb, RF signal processing

DOI: https://doi.org/10.21203/rs.3.rs-558391/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract
We demonstrate a photonic RF integrator based on an integrated soliton crystal micro-comb source. By multicasting and progressively delaying the input RF signal using a transversal structure, the input RF signal is integrated discretely. Up to 81 wavelengths are provided by the microcomb source, which enable a large integration time window of \(\sim 6.8 \) ns, together with a time resolution as fast as \(\sim 84 \) ps. We perform signal integration of a diverse range of input RF signals including Gaussian pulses with varying time widths, dual pulses with varying time intervals and a square waveform. The experimental results show good agreement with theory. These results verify our microcomb-based integrator as a competitive approach for RF signal integration with high performance and potentially lower cost and footprint.

Introduction
Temporal integration is a basic function that has a wide range of applications in signal processing systems. In contrast to electrical integrators that are subject to the electronic bandwidth bottleneck, photonic techniques offer distinctive advantages such as the broad bandwidth, strong immunity to electromagnetic interference, and low loss [1-3], thus holding great promise to address the limitations of their electrical counterparts.

Extensive effort has been made to achieve photonic integrators (see Table 1 for comparison of existing photonic integrators), such as those based on gratings [4-6], and micro-ring resonators (MRRs) [7-9]. These approaches achieve optical signal integration with a time resolution as fast as 8 ps [7] and a large time-bandwidth product with high-Q resonant structures.

However, these approaches still face limitations. Many are not recongurable in terms of the temporal resolution and the length of the integration window, preventing processing of RF signals with different bandwidths and varying integration time windows. In addition, many approaches process optical signals, instead of the RF signals directly, in which case they require electro-optical interfaces that limit their performance.

Approaches to photonic integrators based on transversal structures offer high reconfigurability and accuracy owing to the parallel scheme where each path can be controlled independently [10-12]. By tailoring the progressive delay step, RF signal integration with a reconfigurable operation bandwidth can be achieved [10-12]. Yet these integrators are still limited by the number of channels. To increase the number of wavelength channels, discrete laser arrays or electro-optical comb sources can be employed, although these approaches have a trade-off between the number of wavelengths and system complexity, ultimately leading to a limited number of channels and time-bandwidth product.

Recently, [13-19] a novel multi-wavelength source—integrated microcombs—has attracted great interest in RF photonic systems [20, 21]. Microcombs arise from optical parametric oscillation in ultra-high-Q
monolithic MRRs and offer many advantages over traditional multi-wavelength sources, including a much higher number of wavelengths and a greatly reduced footprint and complexity for the system. A wide range of RF applications have been demonstrated based on microcombs, such as RF true time delays [22, 23], transversal signal processors [24-29], frequency conversion [30], phase-encoded signal generators [31], and channelizers [32, 33] and Hilbert transforms [34].

In this paper, we demonstrate a highly reconfigurable photonic RF integrator using an integrated soliton crystal micro-comb source [35, 36] with a low comb spacing of 49GHz. The input RF signal is multicast onto the flattened microcomb lines and progressively delayed via dispersion, and then summed upon detection to achieve temporal integration. The large number of wavelengths - up to 81 - offered by the microcomb enable a large integration time window of ~6.8 ns with a time resolution as fast as ~84 ps. A comb shaping system is developed to compensate for the non-flat spectral output of the soliton crystal microcomb. We successfully test the system on a range of different input signals. The experimental results match well with theory, verifying the performance and feasibility of our approach to achieving photonic RF integration with a large time window and potentially lower cost and footprint.

Method	Reconfigurability	Time window	Time resolution	Bandwidth	Time-bandwidth product
Fiber Bragg grating [4]	×	N.A.	6ps	N.A.	N.A.
Active fiber Bragg grating [3]	×	~5 ns	50 ps	20 GHz	100
apodized uniform period fiber Bragg grating [6]	×	60 ps	2.5 ps	400 GHz	24
Passive high-Q MRR [7]	×	800 ps	8 ps	200 GHz	100
InP-InGaAsP MRR [8]	×	6331 ps	<54 ps	>15 GHz	>117
Passive MRR [9]	×	12.5 ps	1.9 ps	400 GHz	6.6
Incoherent light source [10]	√	200 ps	7 ps	>18 GHz	28.5
Multi-wavelength fiber laser [11]	√	1.24 ns	~27 ps	36.8 GHz	~45.9
Incoherent light source and fiber Bragg grating [12]	√	7 ns	344 ps	2.9 GHz	20.3
Microcomb (this work)	√	6.8 ns	84 ps	11.9 GHz	81

Experimental Results

Figure 1 illustrates the operation principle of photonic RF integrator. The integration process can be achieved via a discrete time-spectrum convolution operation between the RF input signal $f(t)$ and the flattened microcomb. With a delay step of Δt, the operation can be described as:

$$y(t) = \sum_{k=1}^{N} f(t+k \cdot \Delta t)$$ \hspace{1cm} (1)

where N is the total number of wavelength channels. After the replicas of $f(t)$ are delayed progressively and summed together, the integration of $f(t)$ can be achieved, with a time feature [10] of Δt and a total integration time window of $T = N \times \Delta t$.

Figure 2 shows the experimental up of the photonic RF integrator using a microcomb source. The microcomb was generated by pumping a nonlinear high-Q MRR (Q factor > 1.5 million, free spectral range = ~0.4nm or ~48.9 GHz) with a continuous-wave (CW) laser. As the pump power and wavelength detuning were adjusted to provide sufficient parametric gain, soliton crystal microcombs were generated. The soliton crystal microcombs [21] with tightly packaged solitons circulating in the MRR were generated in our experiments due to a mode crossing at ~1552 nm of the MRR. The distinctive palm-like comb spectra (Fig. 3) is a result of the spectral interference between the circulating solitons. We then flattened the microcomb spectral lines in the C band with two stages of WaveShapers (Finisar 4000S). The input RF signal was imprinted onto the comb lines, generating replicas across all wavelength channels. The replicas
were progressively delayed by a spool of standard single-mode fibre (~13km) and summed upon photodetection using a high-speed photodetector (Finisar, 40 GHz bandwidth).

The delay step between the adjacent wavelength channels Δt, or referred as the time feature of the integrator [10], was measured to be ~ 84 ps, which was determined by the dispersion and length of the fibre and the spectral spacing between the comb lines. We note that the fastest time feature is determined by the delay step of the wavelength channels, and thus in theory can become arbitrarily small by reducing the amount of dispersion, although with a tradeoff that the integration window also decreases proportionally.

The first WaveShaper (WS1) pre-flattened the optical spectrum of the microcomb to acquire a high link gain and a high signal-to-noise ratio. The second WaveShaper was employed for accurate comb shaping assisted by feedback control. The error signal was generated by reading and comparing the comb lines’ power with the desired channel weights, which are all equal for the integrator. The measured optical spectrum after comb shaping is shown in Fig. 4.

We selected 60 comb lines in the C-band for the integration, yielding a total integration time window ($T = N \times \Delta t$) reached up to 60×84 ps = 5.04 ns, as denoted by the yellow shaded region in Fig. 5. To verify the performance of our approach, we performed signal integration for different RF input signals. The red curves in Fig. 5(a-c) show the integration results of Gaussian pulses (blue curves) with a full width at half maximum (FWHM) varying from 0.20 ns to 0.94 ns, where the demonstrated integration window T (~5 ns) matched well with theoretical calculations (5.04 ns). Fig. 5(d-e) shows the integration results of dual Gaussian pulses with different time intervals of 1.52 ns and 3.06 ns, respectively. The measured results (red curves) clearly illustrate the performance of our integrator by exhibiting three distinct intensity steps in the integration waveforms. The left step corresponds to the integration of the first pulse while the middle step indicates the integration of both of the two initial pulses, and the right step shows the integration of only the second pulse since it is beyond the integration window of the first pulse. Moreover, the performance of the integrator is further demonstrated by an input signal with a rectangular input waveform with its width equal to the integration window (5 ns). The measured integrated waveform exhibits a triangular shape that matches well with ideal integration results (gray curve).

Result Analysis And Optimization

As shown in Fig. 5, we note that discrepancies between the measured (red curves) and the ideal (grey curves) results can be observed. Considering the optical power of the comb lines has been well flattened, we deduce that the errors were introduced by the non-ideal impulse response of the system, caused by the non-flat transmission response of the optical amplifier, the modulation and the photodetector across the wavelength channels. To verify our deduction, we measured the impulse response of the system with a Gaussian pulse input. Considering that the time resolution of the system (~ 84 ps) was much smaller than the duration of the input pulse, we separated the wavelength channels into multiple subsets (each with a much larger spacing between the adjacent comb lines and thus obtaining a temporal resolution larger than the input pulse duration), and measured their impulse responses sequentially. Figure 6(a) shows the measured impulse response of the system, which was not flat in magnitude even when the comb lines were perfectly flattened. We used the measured impulse response and the input RF signal in Fig. 5 to calculate corresponding integral output, with the results matching the experimentally measured integration well — verifying our deductions that the experimental errors were induced by the non-ideal impulse responses of the system.

In order to reduce the errors mentioned above, we developed a much more accurate comb shaping approach, where the error signal of the feedback loop was generated directly by the measured impulse response, instead of the optical power of the comb lines. As a result, the flattened impulse response is shown as Fig. 6(b), which is much closer to the ideal impulse response than Fig. 6(a).

We then performed integration with the same RF inputs as previous measurements, the results are shown in Fig. 7. Note that during this measurement, 81 wavelength channels were enabled by the impulse response shaping process, as such the integration time window ($T = N \times \Delta t$) increased to 81×84ps =
6.804 ns, resulting in an operation bandwidth of $1/84\text{ps} = 11.9\text{ GHz}$ and a time-bandwidth product of $6.804\text{ns} \times 11.9\text{GHz} = \sim 81$ (approximately equal to the number of channels N). The measured integrated results (red curves, Fig. 6) show significantly fewer discrepancies and agree well with the theoretical predictions, indicating the success of the impulse response shaping method, and the feasibility of our approach to photonic RF integration based on microcombs.

These results further advance the field of nonlinear integrated photonic chips for both classical and quantum applications [37-102]

Conclusions

In conclusion, we demonstrate a photonic RF integrator using an integrated soliton crystal micro-comb source. Through broadcast and delay processes employing 81 wavelength channels generated by the microcomb source, discrete temporal integration of RF signals is achieved. A large integration time window of 6.8 ns is demonstrated, together with a time feature as fast as 84 ps. An impulse response shaping approach was developed to compensate for the non-flat optical transmission response of the system to guarantee uniform channels weights for the integrator. Different input signals were successfully integrated. The experimental results verify that our RF integrator is a competitive approach towards integrating high-speed photonic RF signals with high performance and potentially reduced cost and footprint.

Competing Interests

The authors declare no competing interests.

References

1. Capmany, and D. Novak, “Microwave Photonics combines two worlds,” *Nature Photonics*, vol. 1, pp. 319-330, Jun. 2007.
2. Yao, “Microwave Photonics,” *Journal of Lightwave Technology*, vol. 27, no. 3, pp. 314-335, Feb. 2009.
3. C. Williamson, R. D. Esman, “RF Photonics,” *Journal of Lightwave Technology*, vol. 26, no. 9, pp. 1145-1153, May 2008.
4. Park, T.-J. Ahn, Y. Dai, J. Yao, and J. Azaña, “All-optical temporal integration of ultrafast pulse waveforms,” *Optics Express*, vol. 16, no. 22, pp. 17817-17825, 2008/10/27. 2008.
5. Slavík, Y. Park, N. Ayotte, S. Doucet, T.-J. Ahn, S. LaRochelle, and J. Azaña, “Photonic temporal integrator for all-optical computing,” *Optics Express*, vol. 16, no. 22, pp. 18202-18214, 2008/10/27. 2008.
6. H. Asghari, Y. Park, and J. Azaña, “New design for photonic temporal integration with combined high processing speed and long operation time window,” *Optics Express*, vol. 19, no. 2, pp. 425-435, 2011/01/17. 2011.
7. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” *Nature Communications*, vol. 1, no. 1, pp. 29, 2010/06/15. 2010.

8. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Coldren, and J. Yao, “A Photonic Temporal Integrator With an Ultra-Long Integration Time Window Based on an InP-InGaAsP Integrated Ring Resonator,” *Journal of Lightwave Technology*, vol. 32, no. 20, pp. 3654-3659. 2014.

9. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “All-optical 1st and 2nd order integration on a chip,” *Optics Express*, vol. 19, no. 23, pp. 23153-23161, 2011/11/07. 2011.

10. Park, and J. Azaña, “Ultrafast photonic intensity integrator,” *Optics Letters*, vol. 34, no. 8, pp. 1156-1158, 2009/04/15. 2009.

11. Malacarne, R. Ashrafi, M. Li, S. LaRochelle, J. Yao, and J. Azaña, “Single-shot photonic time-intensity integration based on a time-spectrum convolution system,” *Optics Letters*, vol. 37, no. 8, pp. 1355-1357, 2012/04/15. 2012.

12. Zhang, and J. Yao, “Microwave photonic integrator based on a multichannel fiber Bragg grating,” *Optics Letters*, vol. 41, no. 2, pp. 273-276, 2016/01/15. 2016.

13. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” *Science*, vol. 361, no. 6402, pp. 8083. 2018.

14. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydexit for nonlinear optics,” *Nature Photonics*, vol. 7, no. 8, pp. 597-607, Aug. 2013.

15. L. Gaeta, M. Lipson, and T. J. Kippenberg, “Photonic-chip-based frequency combs,” *Nature Photonics*, vol. 13, no. 3, pp. 158-169, Mar. 2019.

16. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: A novel generation of optical sources,” *Physics Reports-Review Section of Physics Letters*, vol. 729, pp. 1-81, Jan 27. 2018.

17. -G. Suh, and K. J. Vahala, “Soliton microcomb range measurement,” *Science*, vol. 359, no. 6378, pp. 884-887. 2018.

18. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” *Nature communications*, vol. 6, pp. 7957. 2015.

19. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, and A. Bluestone, “An optical-frequency synthesizer using integrated photonics,” *Nature*, vol. 557, no. 7703, pp. 81-85. 2018.

20. Wu, X. Xu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “RF Photonics: An Optical Microcombs’ Perspective,” *IEEE Journal of Selected Topics in Quantum Electronics*, vol. 24, no. 4, pp. 1-20. 2018.

21. Xu, M. Tan, J. Wu, R. Morandotti, A. Mitchell, and D. J. Moss, “Microcomb-based photonic RF signal processing,” *IEEE Photonics Technology Letters*, vol. 31, no. 23, pp. 1854-1857. 2019.
22. Xu, J. Wu, T. G. Nguyen, T. Moein, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Photonic microwave true time delays for phased array antennas using a 49 GHz FSR integrated optical micro-comb source,” *Photonics Research*, vol. 6, no. 5, pp. B30-B36, May 1, 2018.

23. Xue, Y. Xuan, C. Bao, S. Li, X. Zheng, B. Zhou, M. Qi, and A. M. Weiner, “Microcomb-Based True-Time-Delay Network for Microwave Beamforming With Arbitrary Beam Pattern Control,” *Journal of Lightwave Technology*, vol. 36, no. 12, pp. 2312-2321, Jun. 2018.

24. Xu, J. Wu, T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Advanced RF and microwave functions based on an integrated optical frequency comb source,” *Optics Express*, vol. 26, no. 3, pp. 2569-2583, Feb 5, 2018.

25. Xu, M. Tan, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Advanced Adaptive Photonic RF Filters with 80 Taps Based on an Integrated Optical Micro-Comb Source,” *Journal of Lightwave Technology*, vol. 37, no. 4, pp. 1288-1295, Feb. 2019.

26. X. Xue, Y. Xuan, H. J. Kim, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Programmable Single-Bandpass Photonic RF Filter Based on Kerr Comb from a Microring,” *Journal of Lightwave Technology*, vol. 32, no. 20, pp. 3557-3565, Oct 15, 2014.

27. Xu, J. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source,” *APL Photonics*, vol. 2, no. 9, Sep. 2017.

28. Tan, X. Xu, B. Corcoran, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Microwave and RF Photonic Fractional Hilbert Transformer Based on a 50 GHz Kerr Micro-Comb,” *Journal of Lightwave Technology*, vol. 37, no. 24, pp. 6097-6104, 2019.

29. Tan, X. Xu, B. Corcoran, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “RF and microwave fractional differentiator based on photonics,” IEEE Transactions on Circuits and Systems II: Express Briefs, Early Access. 2020. DOI: 10.1109/TCSII.2020.2965158

30. Xu, J. Wu, M. Tan, T. G. Nguyen, S. Chu, B. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Microcomb based photonic local oscillator for broadband microwave frequency conversion,” *Journal of Lightwave Technology*, vol. 38, no. 2, pp. 332-338, 2020.

31. Xu, M. Tan, J. Wu, A. Boes, B. Corcoran, T. G. Nguyen, S. T. Chu, B. Little, R. Morandotti, and A. Mitchell, “Photonic RF phase-encoded signal generation with a microcomb source,” *Journal of Lightwave Technology*, Early Access. 2019. DOI: 10.1109/JLT.2019.2958564

32. Xu, M. Tan, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “High performance RF filters via bandwidth scaling with Kerr micro-combs,” *APL Photonics*, vol. 4, no. 2, pp. 026102, 2019.

33. Xu, J. Wu, T. G. Nguyen, S. Chu, B. Little, A. Mitchell, R. Morandotti, and D. J. Moss, “Broadband RF Channelizer based on an Integrated Optical Frequency Kerr Comb Source,” *Journal of Lightwave Technology*, vol. 36, no. 19, pp. 7, 2018.

34. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Integrated frequency comb source-based Hilbert transformer for wideband microwave photonic phase
35. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” *Nature Photonics*, vol. 11, no. 10, pp. 671. 2017.

36. Wang, Z. Lu, W. Zhang, S. T. Chu, B. E. Little, L. Wang, X. Xie, M. Liu, Q. Yang, and L. Wang, “Robust soliton crystals in a thermally controlled microresonator,” *Optics letters*, vol. 43, no. 9, pp. 2002-2005. 2018.

37. Ido, H.Sano, D.J.Moss, S.Tanaka, and A.Takai, "Strained InGaAs/InAlAs MQW electroabsorption modulators with large bandwidth and low driving voltage", Photonics Technology Letters, Vol. 6, 1207 (1994). DOI: 10.1109/68.329640.

38. Hu et al., “Reconfigurable radiofrequency filters based on versatile soliton microcombs”, Nature Comm., vol. 11, no. 1, pp.1-9 (2020).

39. Mengxi Tan, X. Xu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and David J. Moss, “Photonic Radio Frequency Channelizers based on Kerr Optical Micro-combs”, Journal of Semiconductors, Vol. 42, No. 4, 041302 (2021). (ISSN 1674-4926). DOI:10.1088/1674-4926/42/4/041302.

40. Bao, L.Olivieri, M.Rowley, S.T. Chu, B.E. Little, R.Morandotti, D.J. Moss, J.S.T. Gongora, M.Peccianti and A.Pasquazi, “Laser Cavity Solitons and Turing Patterns in Microresonator Filtered Lasers: properties and perspectives”, Paper No. LA203-5, Paper No. 11672-5, SPIE LASE, SPIE Photonics West, San Francisco CA March 6-11 (2021). DOI:10.1117/12.2576645

41. Mengxi Tan, X. Xu, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and David J. Moss, “Advanced microwave signal generation and processing with soliton crystal microcombs”, or “Photonic convolutional accelerator and neural network in the Tera-OPs regime based on Kerr microcombs”, Paper No. 11689-38, PW210-OE201-67, Integrated Optics: Devices, Materials, and Technologies XXV, SPIE Photonics West, San Francisco CA March 6-11 (2021). DOI:10.1117/12.2584017

42. Mengxi Tan, Bill Corcoran, Xingyuan Xu, Andrew Boes, Jiayang Wu, Thach Nguyen, Sai T. Chu, Brent E. Little, Roberto Morandotti, Arnan Mitchell, and David J. Moss, “Optical data transmission at 40 Terabits/s with a Kerr soliton crystal microcomb”, Paper No.11713-8, PW210-OE803-23, Next-Generation Optical Communication: Components, Sub-Systems, and Systems X, SPIE Photonics West, San Francisco CA March 6-11 (2021). DOI:10.1117/12.2584014

43. Mengxi Tan, X. Xu, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and David J. Moss, “RF and microwave photonic, fractional differentiation, integration, and Hilbert transforms based on Kerr micro-combs”, Paper No. 11713-16, PW210-OE803-24, Next-Generation Optical Communication: Components, Sub-Systems, and Systems X, SPIE Photonics West, San Francisco CA March 6-11 (2021). DOI:10.1117/12.2584018

44. Mengxi Tan, X. Xu, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and David J. Moss, “Broadband photonic RF channelizer with 90 channels based on a soliton crystal microcomb”, or “Photonic microwave and RF channelizers based on Kerr micro-combs”, Paper No.
45. Xu, M. Tan, J. Wu, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, B. Corcoran, D. Hicks, and D. J. Moss, “Photonic perceptron based on a Kerr microcomb for scalable high speed optical neural networks”, IEEE Topical Meeting on Microwave Photonics (MPW), pp. 220-224, Matsue, Japan, November 24-26, 2020. Electronic ISBN:978-4-88552-331-1. DOI: 10.23919/MWP48676.2020.9314409

46. Mengxi Tan, Bill Corcoran, Xingyuan Xu, Andrew Boes, Jiayang Wu, Thach Nguyen, S. T. Chu, B. E. Little, Roberto Morandotti, Arnan Mitchell, and David J. Moss, “Ultra-high bandwidth optical data transmission with a microcomb”, IEEE Topical Meeting on Microwave Photonics (MPW), pp. 78-82. Virtual Conf., Matsue, Japan, November 24-26, 2020. Electronic ISBN:978-4-88552-331-1. DOI: 10.23919/MWP48676.2020.9314476

47. Tan, X. Xu, J. Wu, R. Morandotti, A. Mitchell, and D. J. Moss, “RF and microwave high bandwidth signal processing based on Kerr Micro-combs”, Advances in Physics X, VOL. 6, NO. 1, 1838946 (2020). DOI:10.1080/23746149.2020.1838946.

48. Mengxi Tan, Xingyuan Xu, Jiayang Wu, Thach G. Nguyen, Sai T. Chu, Brent E. Little, Roberto Morandotti, Arnan Mitchell, and David J. Moss, “Photonic Radio Frequency Channelizers based on Kerr Micro-combs and Integrated micro-ring Resonators”, JOSarXiv.202010.0002.

49. Mengxi Tan, Xingyuan Xu, David Moss “Tunable Broadband RF Photonic Fractional Hilbert Transformer Based on a Soliton Crystal Microcomb”, Preprints, DOI: 10.20944/preprints202104.0162.v1

50. Mengxi Tan, X. Xu, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and David J. Moss, “Orthogonally polarized Photonic Radio Frequency single sideband generation with integrated micro-ring resonators”, Journal of Semiconductors vol. 42, No.4, 041305 (2021). DOI: 10.1088/1674-4926/42/4/041305.

51. Wu, T. Moein, X. Xu, and D. J. Moss, “Advanced photonic filters based on cascaded Sagnac loop reflector resonators in silicon-on-insulator nanowires,” APL Photonics, vol. 3, 046102 (2018). DOI:10.1063/1.5025833Apr. 2018.

52. Wu, T. Moein, X. Xu, G. H. Ren, A. Mitchell, and D. J. Moss, “Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity,” APL Photonics, vol. 2, 056103 (2017).

53. Arianfard, J. Wu, S. Juodkazis, and D. J. Moss, “Advanced Multi-Functional Integrated Photonic Filters Based on Coupled Sagnac Loop Reflectors”, Journal of Lightwave Technology, Vol. 39, No.5, pp.1400-1408 (2021). DOI: 10.1109/JLT.2020.3037559.

54. Bao et al., “Turing patterns in a fibre laser with a nested micro-resonator: robust and controllable micro-comb generation”, Physical Review Research, vol. 2, pp. 023395 (2020).

55. D. Lauro, J. Li, D. J. Moss, R. Morandotti, S. T. Chu, M. Peccianti, and A. Pasquazi, “Parametric control of thermal self-pulsation in micro-cavities,” Opt. Lett. vol. 42, no. 17, pp. 3407-3410, Aug. 2017.
56. Bao et al., “Type-II micro-comb generation in a filter-driven four wave mixing laser,” *Photonics Research*, vol. 6, no. 5, pp. B67-B73 (2018).

57. Bao et al., “Laser cavity-soliton microcombs,” *Nature Photonics*, vol. 13, no. 6, pp. 384-389 (2019).

58. Xu, J. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source,” *APL Photonics*, vol. 2, no. 9, 096104 (2017).

59. Xu, M. Tan, J. Wu, R. Morandotti, A. Mitchell, and D. J. Moss, “Microcomb-based photonic RF signal processing”, *IEEE Photonics Technology Letters*, vol. 31 no. 23 1854-1857 (2019).

60. Xu, et al., “Advanced RF and microwave functions based on an integrated optical frequency comb source,” *Opt. Express*, vol. 26, no. 3, pp. 2569-2583 (2018).

61. Xu, et al., “Broadband RF channelizer based on an integrated optical frequency Kerr comb source,” *Journal of Lightwave Technology*, vol. 36, no. 19, pp. 4519-4526 (2018).

62. Xu, et al., “Continuously tunable orthogonally polarized RF optical single sideband generator based on micro-ring resonators,” *Journal of Optics*, vol. 20, no. 11, 115701 (2018).

63. Xu, et al., “Orthogonally polarized RF optical single sideband generation and dual-channel equalization based on an integrated microring resonator,” *Journal of Lightwave Technology*, vol. 36, no. 20, pp. 4808-4818 (2018).

64. Xu, et al., “Photonic microwave true time delays for phased array antennas using a 49 GHz FSR integrated optical micro-comb source,” *Photonics Res*, vol. 6, no. 5, pp. B30-B36 (2018).

65. Xu, et al., “Advanced adaptive photonic RF filters with 80 taps based on an integrated optical micro-comb source,” *Journal of Lightwave Technology*, vol. 37, no. 4, pp. 1288-1295 (2019).

66. Xu et al., Broadband microwave frequency conversion based on an integrated optical micro-comb source”, *Journal of Lightwave Technology*, vol. 38 no. 2, pp. 332-338 (2020).

67. Tan et al., “Photonic RF and microwave filters based on 49GHz and 200GHz Kerr microcombs”, *Optics Comm*. vol. 465, Article: 125563, Feb. 22 (2020).

68. Xu et al., “Broadband photonic RF channelizer with 90 channels based on a soliton crystal microcomb”, *Journal of Lightwave Technology*, Vol. 38, no. 18, pp.5116 - 5121 (2020). doi: 10.1109/JLT.2020.2997699.

69. Xu et al., “Photonic RF and microwave integrator with soliton crystal microcombs”, *IEEE Transactions on Circuits and Systems II: Express Briefs*, Vol. 67 (12) 3582-3586 (2020). DOI:10.1109/TCSII.2020.2995682.

70. Xu et al., “Photonic RF phase-encoded signal generation with a microcomb source”, *Journal of Lightwave Technology*, vol. 38, no. 7, pp. 1722-1727 (2020).

71. Xu et al., “High performance RF filters via bandwidth scaling with Kerr micro-combs,” *APL Photonics*, vol. 4, no. 2, pp. 026102 (2019).

72. Tan et al., “Microwave and RF photonic fractional Hilbert transformer based on a 50 GHz Kerr microcomb”, *Journal of Lightwave Technology*, vol. 37, no. 24, pp. 6097 – 6104 (2019).
73. Tan et al., “RF and microwave fractional differentiator based on photonics”, IEEE Transactions on Circuits and Systems: Express Briefs, Vol. 67, No. 11, pp. 2767 - 2771 (2020). DOI:10.1109/TCSII.2020.2965158.

74. Tan et al., “Photonic RF arbitrary waveform generator based on a soliton crystal micro-comb source”, Journal of Lightwave Technology, Vol. 38, No. 22, pp. 6221-6226, Oct 22 (2020). DOI: 10.1109/JLT.2020.3009655.

75. Tan, X. Xu, J. Wu, R. Morandotti, A. Mitchell, and D. J. Moss, “RF and microwave high bandwidth signal processing based on Kerr Micro-combs”, Advances in Physics X, VOL. 6, NO. 1, 1838946 (2020). DOI:10.1080/23746149.2020.1838946.

76. Corcoran, et al., “Ultra-dense optical data transmission over standard fiber with a single chip source”, Nature Communications, vol. 11, Article:2568 (2020). DOI:10.1038/s41467-020-16265-x.

77. Xu, et al., “Photonic perceptron based on a Kerr microcomb for scalable high speed optical neural networks”, Laser and Photonics Reviews, vol. 14, no. 8, 2000070 (2020). DOI:10.1002/lpor.202000070.

78. Xu, et al., “11 TeraFLOPs photonic convolutional accelerator for deep learning convolutional optical neural networks”, Nature, vol. 589 (7840), 44-51 (2021).

79. Razzari, D. Duchesne, M. Ferrera, et al., “CMOS-compatible integrated optical hyper-parametric oscillator,” Nature Photonics, vol. 4, no. 1, pp. 41-45 (2010).

80. J. Moss, R. Morandotti, A. L. Gaeta, et al., “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nature Photonics, vol. 7, no. 8, pp. 597-607 (2013).

81. Ferrera, L. Razzari, D. Duchesne, et al., “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nature Photonics, vol. 2, no. 12, pp. 737-740 (2008).

82. Pasquazi, et al., “Sub-picosecond phase-sensitive optical pulse characterization on a chip”, Nature Photonics, vol. 5, no. 10, pp. 618-623 (2011). DOI: 10.1038/nphoton.2011.199.

83. Duchesne, M. Peccianti, M. R. E. Lamont, et al., “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Optics Express, vol. 18, no. 2, pp. 923-930 (2010).

84. Ferrera, et al., “On-chip CMOS-compatible all-optical integrator”, Nature Communications, vol. 1, Article 29 (2010).

85. Pasquazi, et al., “All-optical wavelength conversion in an integrated ring resonator,” Optics Express, vol. 18, no. 4, pp. 3858-3863 (2010).

86. Pasquazi, Y. Park, J. Azana, et al., “Efficient wavelength conversion and net parametric gain via Four Wave Mixing in a high index doped silica waveguide,” Optics Express, vol. 18, no. 8, pp. 7634-7641 (2010).

87. Peccianti, M. Ferrera, L. Razzari, et al., “Subpicosecond optical pulse compression via an integrated nonlinear chirper,” Optics Express, vol. 18, no. 8, pp. 7625-7633 (2010).

88. Duchesne, M. Ferrera, L. Razzari, et al., “Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides,” Optics Express, vol. 17, no. 3, pp. 1865-1870 (2009).
89. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: A novel generation of optical sources,” *Physics Reports*, vol. 729, pp. 1-81 (2018).

90. Peccianti, *et al*., “Demonstration of an ultrafast nonlinear microcavity modelocked laser”, *Nature Communications*, vol. 3, pp. 765 (2012).

91. Kues, *et al*., “Passively modelocked laser with an ultra-narrow spectral width”, *Nature Photonics*, vol. 11, no. 3, pp. 159 (2017). DOI:10.1038/nphoton.2016.271

92. Pasquazi, L. Caspani, M. Peccianti, *et al*., “Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip,” *Optics Express*, vol. 21, no. 11, pp. 13333-13341 (2013).

93. Pasquazi, M. Peccianti, B. E. Little, *et al*., “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” *Optics Express*, vol. 20, no. 24, pp. 27355-27362 (2012).

94. Reimer, L. Caspani, M. Clerici, *et al*., “Integrated frequency comb source of heralded single photons,” *Optics Express*, vol. 22, no. 6, pp. 6535-6546 (2014).

95. Reimer, *et al*., “Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip”, *Nature Communications*, vol. 6, Article 8236 (2015). DOI: 10.1038/ncomms9236

96. Caspani, C. Reimer, M. Kues, *et al*., “Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated Quantum Frequency Combs,” *Nanophotonics*, vol. 5, no. 2, pp. 351-362 (2016).

97. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” *Science*, vol. 351, no. 6278, pp. 1176-1180 (2016).

98. Kues, *et al*., “On-chip generation of high-dimensional entangled quantum states and their coherent control”, *Nature*, vol. 546, no. 7660, pp. 622-626 (2017).

99. Roztocki, M. Kues, C. Reimer, B. Wetzel, S. Sciara, Y. Zhang, A. Cino, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Practical system for the generation of pulsed quantum frequency combs,” *Optics Express*, vol. 25, no. 16, pp. 18940-18949 (2017).

100. Zhang, *et al*., “Induced photon correlations through superposition of two four-wave mixing processes in integrated cavities”, *Laser and Photonics Reviews*, vol. 14, no. 7, 2000128 (2020). DOI: 10.1002/lpor.202000128

101. Kues, C. Reimer, A. Weiner, J. Lukens, W. Munro, D. J. Moss, and R. Morandotti, “Quantum Optical Micro-combs”, *Nature Photonics*, vol. 13, no.3, pp. 170-179 (2019).

102. Reimer, *et al*., “High-dimensional one-way quantum processing implemented on d-level cluster states”, *Nature Physics*, vol. 15, no.2, pp. 148–153 (2019).

Figures
Figure 1

Schematic diagram of the photonic RF integration.

Figure 2

Experimental setup of the photonic RF integrator based on a micro-comb source. EDFA: erbium-doped fibre amplifier. PC: polarization controller. MRR: micro-ring resonator. WS: WaveShaper. EOM: Mach-Zehnder modulator. SMF: single mode fibre. PD: photodetector.

Figure 3

Optical spectra of the generated soliton crystal microcomb with spans of (a) 100 nm and (b) 30 nm.
Figure 4

Optical spectrum of the shaped microcomb.

Figure 5

Experimental results of the microcomb-based RF integrator after comb optical power shaping for input (a-c) Gaussian pulses with FWHM of 0.20, 0.38 and 0.94 ns, (d-e) dual Gaussian pulses with time intervals of 1.52 and 30.6 ns, and (f) a triangular waveform with a width of 5.00 ns. The blue curves denote the input signal, the red curves denote the measured integration results, the gray curves denote the ideal integration results, and the green curves denote the integration results calculated with measured impulse response of the system.
Figure 6

Measured impulse response of the integrator (a) after comb optical power shaping and (b) after impulse response shaping using a Gaussian RF input pulse.

Figure 7

Experimental results of the microcomb-based RF integrator after impulse response shaping for input (a-c) Gaussian pulses with FWHM of 0.20, 0.38 and 0.94 ns, (d-e) dual Gaussian pulses with time intervals of 1.52 and 3.06 ns, and (f) a triangular waveform with a width of 5.00 ns. The blue curves denote the input signal, the red curves denote the measured integration results.