Cognitive bias: how understanding its impact on antibiotic prescribing decisions can help advance antimicrobial stewardship

Bradley J. Langford1,2*, Nick Daneman1,3,4,5, Valerie Leung1,6 and Dale J. Langford7

1Public Health Ontario, Toronto, Ontario, Canada; 2Hotel Dieu Shaver Health and Rehabilitation Centre, St Catharines, Ontario, Canada; 3University of Toronto, Toronto, Ontario, Canada; 4Sunnybrook Research Institute, Toronto, Ontario, Canada; 5ICES (formerly Institute for Clinical Evaluative Sciences), Toronto, Ontario, Canada; 6Toronto East Health Network, Michael Garron Hospital, Toronto, Ontario, Canada; 7Department of Anesthesiology and Pain Medicine, School of Medicine, University of Washington, Seattle, WA, USA

*Corresponding author. E-mail: bradley.langford@oahpp.ca

The way clinicians think about decision-making is evolving. Human decision-making shifts between two modes of thinking, either fast/intuitive (Type 1) or slow/deliberate (Type 2). In the healthcare setting where thousands of decisions are made daily, Type 1 thinking can reduce cognitive load and help ensure decision making is efficient and timely, but it can come at the expense of accuracy, leading to systematic errors, also called cognitive biases. This review provides an introduction to cognitive bias and provides explanation through patient vignettes of how cognitive biases contribute to suboptimal antibiotic prescribing. We describe common cognitive biases in antibiotic prescribing both from the clinician and the patient perspective, including hyperbolic discounting (the tendency to favour small immediate benefits over larger more distant benefits) and commission bias (the tendency towards action over inaction). Management of cognitive bias includes encouraging more mindful decision making (e.g., time-outs, checklists), improving awareness of one’s own biases (i.e., meta-cognition), and designing an environment that facilitates safe and accurate decision making (e.g., decision support tools, nudges). A basic understanding of cognitive biases can help explain why certain stewardship interventions are more effective than others and may inspire more creative strategies to ensure antibiotics are used more safely and more effectively in our patients.

Introduction

The way clinicians think about decision-making is evolving. Psychologist and economist, Dr Daniel Kahneman proposed the Dual Process Theory, which is an example of a framework that categorizes human decision-making as either fast and intuitive (Type 1) or slow and deliberate (Type 2).1 While these dual processes are complex (e.g., types of thinking interact and variability exists within each type), the broad concept of a distinction between types or systems of thought is well-established and central to various psychological and physiological theories.2 Probably as a result of conferring a survival advantage, humans spend 95% of their time in the intuitive Type 1 mode.3 In busy healthcare settings, where the volume of decisions required is often as many as thousands per shift, Type 1 thinking can reduce cognitive load, and help ensure decision making is efficient and timely.4 However, the subconscious, hard-wired, habitual, and often emotional nature of this mode can lead to imperfect results.5 The speed and efficiency of Type 1, though at times beneficial, may in some scenarios come at the expense of accuracy, leading to systematic errors, also called cognitive biases.6

Over 100 cognitive biases have been described, many of which apply to decisions made in healthcare.7 These cognitive biases may explain common diagnostic and medical errors,8 but they may also help us understand insufficiencies in the process of antibiotic prescribing. There are at least four ‘moments’ of antibiotic prescribing decision-making: (1) initiation (deciding whether antibiotics are required); (2) empirical (sending appropriate cultures and selecting initial antibiotic therapy); (3) re-assessment (de-escalating, changing route); and (4) selecting an appropriate duration of treatment.9 The impact of cognitive bias at each of these moments may contribute to the high incidence of suboptimal antibiotic prescribing across healthcare settings.10–12

Recent studies evaluating antimicrobial prescribing have called for a more behavioural approach to addressing antibiotic overuse by considering the emotional, cognitive and social factors associated with this complex decision.13,14 Antimicrobial stewardship interventions designed using an implementation science approach emphasize identifying and addressing barriers and facilitators to behaviour change, which can include numerous factors including knowledge and skills, environmental context and resources, and social influences such as family pressure.15 Although our experience is that successfully addressing the more complex barriers to behaviour change related to antimicrobial prescribing takes a thoughtful, coordinated and multifaceted approach,16 understanding mental shortcuts (also known as heuristics) may be an underused tool to help us better design and implement effective...
antimicrobial stewardship interventions. In this review, we use patient vignettes to illustrate cognitive biases as barriers to appropriate antibiotic use and suggest incorporating de-biasing approaches as a novel way to further support antimicrobial stewardship endeavours.

Patient vignettes that demonstrate cognitive biases

Ms G.H. is a 79-year-old long-term care resident with mild cognitive impairment who is admitted to the hospital with reduced urinary output, confusion and lethargy but no acute dysuria or abdominal or flank pain. In the emergency department (ED), the provider orders a urine culture, urinalysis, and initiates empirical antibiotics and intravenous (IV) fluids. A preliminary diagnosis of dehydration and query urinary tract infection (UTI) are made. After 24 h the patient is transferred to the ward and appears much better. Her urine culture comes back positive for *Escherichia coli* and her urinalysis shows positive leucocyte esterase and nitrites. Ms G.H. is continued on antibiotics for a 7-day course and is discharged back to long-term care on day 4.

Antimicrobial stewards may recognize this case to be a classic episode of asymptomatic bacteriuria, where antibiotics in non-pregnant adults provide no benefit and could in fact lead to harm. So what went wrong? Is more education needed for the pregnant adults provide no benefit and could in fact lead to an episode of asymptomatic bacteriuria, where antibiotics in non-term care on day 4.

The patient's family notes their improvement on the combination therapy with a substantial survival benefit over vancomycin, and that the reaction A.I. reported as a child is likely not a true IgE-mediated allergy, Dr D.U. remembers a very severe case of anaphylaxis he had to manage 2 months ago and worries this could happen again (negativity effect – negative outcomes make a greater impression than equally positive outcomes and increase the perceived frequency of the outcome and availability bias – tendency to overestimate the likelihood of an event that is easily recalled). Seeing the reaction documented by the nurse as an allergy in the chart and repeated by the patient solidifies Dr D.U.’s concerns (diagnostic momentum – initial incorrect suspicion gathers momentum as it passes between individuals). The physician decides that this patient is at low risk for reaction to β-lactams and Mr A.I. is switched safely to IV cefazolin. The ID physician later invites Dr D.U. to participate in a quality improvement initiative to improve appropriate documentation of penicillin allergy labels and optimize treatment in patients with reported allergies. Dr D.U. becomes a key opinion leader and informal champion of reducing inappropriate penicillin allergy labels (IKEA effect – the tendency of a person to place higher value on, and satisfaction with, a product if they made it themselves).

Scenarios such as these undoubtedly occur across health systems on a regular basis. Understanding the myriad cognitive biases that occur in decision-making may provide some insight into how we can bridge the gap between evidence and practice in order to steward our antimicrobials more effectively.

Addressing cognitive biases through antimicrobial stewardship initiatives

Management of cognitive biases involves slowing down to activate Type 2 decision-making, reflecting on one’s own biases, reducing cognitive load associated with decision-making, and taking cognitive bias into account when designing interventions.

Slow down

Clinician decision making includes both intuitive and reflective components, both of which play an important role in providing patient care. There is evidence that a balanced approach to Type 1 and Type 2 thinking may optimize medical decision making. A ‘slow down’ strategy aims to improve this balance by supporting...
Table 1. Selected cognitive biases associated with antibiotic use

Bias	Definition	Example	Managing the bias
Anchoring	Fixating on certain diagnostic features early in the process. Initial impression can be powerful and a challenge to deviate from, even once new information becomes available. Anchoring can lead to 'premature diagnostic closure' where other diagnoses may not be considered.	Altered mental status in an elderly nursing home resident may often be considered to be caused by UTI before other causes are ruled out. Antibiotics are often initiated in these patients even though antibiotics do not confer any survival benefit.	Decision support and algorithms to trigger assessment of other causes for non-specific symptoms (e.g., dehydration in the elderly patient with altered mental status). Re-evaluation of antibiotic therapy once further information is available (e.g., antibiotic time-out). Estimate and re-evaluate confidence in predictions. Provide and reflect upon statistical data showing the risks and benefits of each option and its alternatives.
Availability bias	Overestimating the likelihood of events that are more memorable. See Negativity effect.	There may be a tendency to select an antibiotic that has had recent perceived success and avoid antibiotics with recent perceived failure. Physicians who recalled that they had frequently cared for bacteraemic patients were more likely to over-estimate bacteraemia in a current patient.	Sharing narratives and stories of harm associated with antibiotic commission or overuse (e.g., *C. difficile* infection or antibiotic-resistant infections). Thorough evaluation of risks and benefits of antibiotic therapy and withholding antibiotic therapy, ideally at the point of care.
Commission bias	Tendency towards action over inaction. This may be influenced by the perception that doing something is better than nothing; the regret associated with an omission error outweighs that of a commission error, and may be augmented by patient and family demand.	Antimicrobial stewardship recommendations are more likely to be accepted if they expand antibiotic spectrum compared with reducing spectrum, and are more likely to be accepted if they increase antibiotic exposure rather than decrease exposure. Concerns about missing an infection outweigh concerns about serious antibiotic harms such as *Clostridioides difficile* infection.	Seek out disconfirming evidence, e.g. use of mnemonics to remind clinicians of alternative diagnoses. Provide statistical data on the likelihood of infection (and spontaneous resolution), colonization, and contamination in specific patient populations.
Confirmation bias	The tendency to seek out evidence that confirms an initial hypothesis and reject information that refutes it. This is an especially powerful bias as it helps to reduce cognitive overload associated with evaluating other alternative hypotheses.	An initial suspicion of UTI in a patient with non-specific symptoms is often 'confirmed' by a positive urine culture or dipstick result, leading to unnecessary antibiotic treatment. Clinicians and patients may justify antibiotics retrospectively based on symptom resolution, for example, for upper respiratory tract infection, where the natural course of illness is self-resolution with or without antibiotics.	Seek out disconfirming evidence, e.g. use of mnemonics to remind clinicians of alternative diagnoses.
Diagnostic momentum	An initial suspicion can gather momentum and quickly become solidified as a diagnosis as it passes from the patient to health care provider and then across disciplines during the course of illness.	Antibiotics initiated unnecessarily in the ED for suspected UTI are often continued once the patient is hospitalized. Although β-lactam allergy labels are common, <10% represent true IgE-mediated hypersensitivity. Penicillin allergy labels reported by the patient and accepted at face value can lead to selection of suboptimal therapy. Once reported, a penicillin allergy is often difficult to remove.	Re-evaluation of antibiotic therapy upon healthcare transitions (e.g., ED to ward, upon discharge). Structured communication tools to assist nurses in transferring adequate information regarding long-term care residents with suspected infection to prescribers. Use of checklists and frameworks to re-evaluate β-lactam allergies.
IKEA effect	At the individual-patient level, physicians may be more likely to support a		Engage end users and prescribers early in process of antibiotic therapy.
Type 2 (slow and deliberate) thinking to re-evaluate the appropriateness of antibiotic therapy. Such approaches include ‘antibiotic time-outs’ where prescribers are prompted to re-assess therapy and decide whether discontinuation or de-escalation is reasonable.23 Typically in hospital settings, antibiotic time-outs are a supplemental strategy that can be applied for selected patient populations (e.g., receiving targeted antibiotics) and involves a formal re-assessment of antibiotic use by the provider most responsible, usually occurring at 48 to 72 h after initiation of antibiotic treatment, in an effort to decide if antibiotics are no longer needed or can be de-escalated. This time-out strategy is generally associated with improved antibiotic utilization and guideline concordance.23 Antibiotic time-outs can be combined with a structured tool such as a checklist to ensure a comprehensive re-assessment occurs. Despite low uptake, the use of a checklist with quality indicators for antibiotic therapy at the point of prescribing and again at 72 h has been associated with improved quality of care, such as appropriate culturing, documentation and guideline concordant prescribing.24 A more personal face-to-face alternative to checklists also appears to be an effective approach. Physician-led25 and nurse-led26 prompting of the prescriber to re-evaluate antibiotic therapy in the ICU is associated with reduced antibiotic utilization. Providing additional information at the time of prescribing, particularly in a visual format, can help re-calibrate the prescriber’s understanding of risks versus benefits.27 This latter tactic requires further evaluation in antimicrobial stewardship strategies.

Reflect

Clinicians are often able to identify bias in others, but they tend to lack insight into their own biases. This phenomenon itself is a common bias referred to as blind spot bias.8 For example, although physicians generally recognize that antibiotic over-prescribing is a problem, there is a sense of externalized responsibility, in that many believe antibiotic over-prescribing is driven by physicians other than themselves.28 De-biasing requires clinicians to become aware of their own cognitive biases, how often they occur, and how they differ from accurate estimates. Cognitive interventions, such as those that prompt providers to ‘consider-the-opposite’ of an initial judgement, may be helpful de-biasing strategies, particularly for biases that lead to over- or under-estimating the likelihood of an event (such as anchoring bias, optimism bias, and confirmation bias).29,30 Considering-the-opposite can be done in real time by seeking evidence to refute an initial assumption (e.g., the use of mnemonics to consider a broader range of diagnoses aside from the initial prescriber’s understanding of risks versus benefits).27 This latter tactic requires further evaluation in antimicrobial stewardship strategies.
recalibrate overconfidence and improve accuracy.32 Such meta-cognitive de-biasing approaches have yet to be evaluated in antimicrobial stewardship initiatives, and therefore provide an opportunity for future research (e.g., the impact of de-biasing training on management of asymptomatic bacteriuria or upper respiratory tract infections).

It should be acknowledged that infectious disease and antimicrobial stewardship experts are equally susceptible to cognitive bias and may also benefit from de-biasing strategies. The curse of knowledge is the tendency to be unaware of the challenges faced by non-infectious diseases colleagues,31 such as the difficulties in selecting an antibiotic with optimal spectrum of activity or interpreting microbiology reports. The specialized expertise in antimicrobial stewardship can also lead to the law of the instrument bias, an over-reliance on familiar strategies (e.g., if all you have is a hammer, everything looks like a nail),32 such as the tendency to focus solely on antimicrobial stewardship opportunities in each patient rather than the bigger picture of the patient scenario. Omission bias (a tendency toward inaction over action) may be a greater concern in antimicrobial stewardship teams where antibiotic harms may be over-valued compared with the immediate benefits to patients. Formalized interactions between prescribers and antimicrobial stewards including face-to-face antimicrobial stewardship rounds34 and bringing together clinical teams and infectious disease and antimicrobial stewardship experts in the development of guidelines and pathways35 can help ensure a more-balanced approach is taken.

Make it easy

A key approach to improving clinical decision-making is to design an environment that makes it easier for clinicians to make optimal decisions despite existing cognitive biases. This strategy mainly involves reducing the cognitive load associated with decision-making, primarily through clinical decision support and presentation of information and options in a format that guides optimal decision making (e.g., forcing functions and optimal choice architecture). Clinical decision support systems including information technology to improve antibiotic prescribing (e.g., clinical pathways, order sets, alerts, or reminders) are generally associated with improved antibiotic utilization and quality of prescribing.36 However, despite their widespread use, these decision support tools tend to lack sophistication, and primarily focus on antibiotic selection rather than initiation, reassessment, and discontinuation.37 Structured allergy assessments have been used as an accessible tool to help safely de-label patients with reported β-lactam allergies and can help mitigate the diagnostic momentum of penicillin allergy labels in patients who do not have true penicillin allergies. This systematic approach to pharmacist-led allergy history assessment was associated with increased use of first-line antibiotics peri-operatively, which are generally safer and more effective than second-line alternatives.38 Another promising strategy, employed largely through microbiology reporting, is nudging, whereby the architecture of the report is modified to gently encourage more evidence-based antibiotic prescribing.39 For example, non-reporting of ciprofloxacin susceptibility results on microbiology laboratory reports when there was susceptibility to narrower-spectrum agents was associated with reduced use of ciprofloxacin and improved Gram-negative susceptibility to this agent in an interrupted time series analysis.40 Similarly, non-reporting of mid-stream urine culture results for hospital inpatients was associated with reduced treatment of asymptomatic bacteriuria, with no adverse patient outcomes.41,42

Considerations for future research

The application of behavioural insights to antimicrobial stewardship is in its infancy, so there are lessons to be learned from behaviour change experts in economics, sociology and psychology. Partnership with these experts, in addition to implementation science practitioners, is likely to yield more-refined, well-designed, and optimally adopted antimicrobial stewardship strategies. Recognizing cognitive biases as an additional perspective for identifying and addressing complicated barriers to practice change may help antimicrobial stewards ensure antibiotics are used more appropriately in a range of healthcare settings. The following are some examples of key antimicrobial stewardship research, education, and policy opportunities that address or incorporate an understanding of the impact of cognitive biases on prescribing patterns:

1. Mapping cognitive biases across the four moments of antibiotic prescribing using experimental studies, naturalistic observation, and qualitative interviews
2. Incorporating an understanding of provider cognitive biases in the design of antibiotic prescribing clinical decision support tools and audit and feedback interventions
3. Devising public policy and communication strategies to engage the general public in antimicrobial stewardship by countering optimism bias and re-calibrating an understanding of the risks and benefits of antibiotics
4. Developing a framework that incorporates dual process theory into implementation science, knowledge translation and quality improvement to support the development of theory-informed antibiotic stewardship initiatives
5. Evaluating the impact of meta-cognitive de-biasing approaches to minimize antibiotic prescribing for common conditions that do not require antibiotic therapy

Conclusions

Cognitive bias is a common aspect of daily decision-making that may play an underappreciated role in antibiotic prescribing decisions. Behavioural science represents a largely untapped field of knowledge to help improve the design and implementation of antibiotic stewardship interventions. Management of cognitive bias includes encouraging more mindful decision making (e.g., timeouts, checklists), improving awareness of one’s own biases (i.e., meta-cognition), and designing an environment that facilitates safe and accurate decision making (e.g., decision support tools, nudges). A basic understanding of cognitive biases can help explain why certain stewardship interventions are more effective than others and may inspire more creative strategies to ensure antibiotics are used more safely and more effectively in our patients.

Transparency declarations

None to declare.
References

1. Kahneman D, Thinking, Fast and Slow. 1st edn. Farrar, Straus and Giroux, 2011.
2. Evans J, Stanovich KE. Dual-process theories of higher cognition: advancing the debate. Perspect Psychol Sci 2013; 8: 223–41.
3. Lakoff G, Johnson M, Philosopy in the Flesh: The Embodied Mind and Its Challenge to Western Thought. Basic Books, 2010.
4. Croskerry P. Achieving quality in clinical decision making: cognitive strategies and detection of bias. Acad Emerg Med 2002; 9: 1184–204.
5. Stanovice K. Rationality and the Reflective Mind. Oxford University Press, 2011.
6. Scott IA, Soon J, Elshaug AG et al. Countering cognitive biases in minimising low value care. Med J Aust 2017; 206: 407–11.
7. Croskerry P. From mindless to mindful practice—cognitive bias and clinical decision making. N Engl J Med 2013; 368: 2445–8.
8. O’Sullivan E, Schofield S. Cognitive bias in clinical medicine. J R Coll Physicians Edinb 2018; 48: 225–32.
9. Tamma FD, Miller MA, Cosgrove SE. Rethinking how antibiotics are prescribed: incorporating the 4 moments of antibiotic decision making into clinical practice. JAMA 2019; 321: 139.
10. Dobler CC, Morrow AS, Kamath CC. Clinicians’ cognitive biases: a potential barrier to implementation of evidence-based clinical practice. Fam Pract 2016; 33: 309–11.
11. Rotjanapan P, Dosa D, Thomas KS. Potentially inappropriate treatment of urinary tract infections in two Rhode Island nursing homes. Arch Intern Med 2011; 171: 438–43.
12. Papenburg J, Fontela PS, Freitas RR et al. Inappropriate antibiotic prescribing for acute bronchiolitis in US emergency departments, 2007–2015. J Pediatr Infect Dis Soc 2019; 8: 567–70.
13. Rzewuska M, Charani E, Clarkson JE et al. Prioritizing research areas for antibiotic stewardship programmes in hospitals: a behavioural perspective consensus paper. Clin Microbial Infect 2019; 25: 163–8.
14. Donisi V, Sibani M, Corrara E et al. Emotional, cognitive and social factors of antimicrobial prescribing: can antimicrobial stewardship intervention be effective without addressing psycho-social factors? J Antimicrob Chemother 2019; 74: 2844–7.
15. Chambers A, MacFarlane S, Zvonar R et al. A recipe for antimicrobial stewardship success: Using intervention mapping to develop a program to reduce antibiotic overuse in long-term care. Infect Control Hosp Epidemiol 2019; 40: 24–31.
16. Brown KA, Chambers A, MacFarlane S et al. Reducing unnecessary urine culturing and antibiotic overprescribing in long-term care: a before-and-after analysis. CMAJ Open 2019; 7: E174–81.
17. Nicolle LE, Gupta K, Bradley SF et al. Clinical practice guideline for the management of asymptomatic bacteriuria: 2019 update by the Infectious Diseases Society of America. Clin Infect Dis 2019; 68: e83–110.
18. Norton MJ, Mochon D, Ariely D. The IKEA effect: when labor leads to love. J Consum Psychol 2012; 22: 453–60.
19. Dobler CC, Morrow AS, Kamath CC. Clinicians’ cognitive biases: a potential barrier to implementation of evidence-based clinical practice. BMJ Evid-Based Med 2019; 24: 137–40.
20. Pineros DB, Doctor JN, Friedberg MW et al. Cognitive reflection and antibiotic prescribing for acute respiratory infections. Fam Pract 2016; 33: 309–11.
21. Norman G, Sherhino J, Dore K et al. The etiology of diagnostic errors: a controlled trial of system 1 versus system 2 reasoning. Acad Med 2014; 89: 277–84.
22. Jones M, Butler J, Graber CJ et al. Think twice: a cognitive perspective of an antibiotic timeout intervention to improve antibiotic use. J Biomed Inform 2017; 71: S22–31.
23. Kinn P, Postelnicu M, Schroeder S et al. A timeout on the antimicrobial timeout: where does it stand and what is its future? Curr Treat Options Infect Dis 2018; 10: 281–90.
24. van Dallen FV, Prins JM, Opmeer BC et al. Effect of an antibiotic checklist on length of hospital stay and appropriate antibiotic use in adult patients treated with intravenous antibiotics: a stepped wedge cluster randomized trial. Clin Microbial Infect 2017; 23: 485.e1–e8.
25. Weiss CH, DiBARDino D, Rho J et al. A clinical trial comparing physician prompting with an unprompted automated electronic checklist to reduce empirical antibiotic utilization. Crit Care Med 2013; 41: 2563–9.
26. Raybardhan S, Kan T, Chung B et al. Nurse prompting for prescriber-led review of antimicrobial use in the critical care unit. Am J Crit Care 2020; 29: 71–6.
27. Croskerry P, Singhal G, Mamede S. Cognitive debiasing 2: impediments to and strategies for change. BMJ Qual Saf 2013; 22: i65.
28. Zets RM, Stoesz A, Smith BA et al. Outpatient antibiotic use and the need for increased antibiotic stewardship efforts. Pediatrics 2018; 141: e20174124.
29. Mussweiler T, Strack F, Pfeiffer T. Overcoming the inevitable anchoring effect: considering the opposite compensates for selective accessibility. Pers Soc Psychol Bull 2000; 26: 1142–50.
30. Ludolph R, Schulz PJ. Debiasing health-related judgments and decision making: a systematic review. Med Decis Making 2018; 38: 3–13.
31. Marcontonio ER. Delirium in hospitalized older adults. N Engl J Med 2017; 377: 1456–66.
32. Renner CH, Renner MJ. But I thought I knew that: Using confidence estimation as a debiasing technique to improve classroom performance. Appl Cogn Psychol Off J Soc Appl Res Mem Cogn 2001; 15: 23–32.
33. Peiffer-Smadja N, Lescure FX, Maatoug R et al. Re: ‘Determinants of in-hospital antibiotic prescription behaviour’ by Lambregts et al. Clin Microbial Infect 2019; 25: 635–7.
34. Hurst AL, Child J, Pearce K et al. Handshake stewardship: a highly effective rounding-based antimicrobial optimization service. Pediatr Infect Dis J 2016; 35: 1104–10.
35. Beerlage-de Jong N, Wentzel J, Hendrix R et al. The value of participatory development to support antimicrobial stewardship with a clinical decision support system. Am J Infect Control 2017; 45: 365–71.
36. Curtis CE, BAhar F, Marriott JF. The effectiveness of computerised decision support on antibiotic use in hospitals: a systematic review. PLoS One 2017; 12: e0183062.
37. Rawson TM, Moore LSP, Hernandez B et al. A systematic review of clinical decision support systems for antimicrobial management: are we failing to investigate these interventions appropriately? Clin Microbial Infect 2017; 23: 524–32.
38. Vaisman A, McCready J, Hicks S et al. Optimizing preoperative prophylaxis in patients with reported ß-lactam allergy: a novel extension of antimicrobial stewardship. J Antimicrob Chemother 2017; 72: 2657–60.
39. Langford BJ, Leung E, Hajj R et al. Nudging In Microbiology Laboratory Evaluation (NIMBLE): a scoping review. Infect Control Hosp Epidemiol 2019; 40: 1400–6.
40. Langford BJ, Seath J, Chan A et al. Antimicrobial stewardship in the microbiology laboratory: impact of selective susceptibility reporting on ciprofloxacin
utilization and susceptibility of gram-negative isolates to ciprofloxacin in a hospital setting. J Clin Microbiol 2016; 54: 2343–7.

41 Leis JA, Rebick GW, Daneman N et al. Reducing antimicrobial therapy for asymptomatic bacteriuria among noncatheterized inpatients: a proof-of-concept study. Clin Infect Dis 2014; 58: 980–3.

42 Daley P, Garcia D, Inayatullah R et al. Modified reporting of positive urine cultures to reduce inappropriate treatment of asymptomatic bacteriuria among nonpregnant, noncatheterized inpatients: a randomized controlled trial. Infect Control Hosp Epidemiol 2018; 39: 814–9.

43 Dufour AB, Shaffer ML, D'Agata EMC et al. Survival after suspected urinary tract infection in individuals with advanced dementia. J Am Geriatr Soc 2015; 63: 2472–7.

44 Poses RM, Anthony M. Availability, wishful thinking, and physicians' diagnostic judgments for patients with suspected bacteremia. Med Decis Making 1991; 11: 159–68.

45 Pellerin J, Edmond M, Bearman G et al. An examination of stewardship interventions by major category in an urban academic medical center. Infect Control Hosp Epidemiol 2012; 33: 432–4.

46 Langford B, Nisenbaum R, Brown K et al. Antibiotics: easier to start than to stop? A multivariable analysis of 11041 antimicrobial stewardship recommendations. Clin Microbiol Infect 2020; In Press.

47 Livorsi D, Comer A, Matthias MS et al. Factors influencing antibiotic-prescribing decisions among inpatient physicians: a qualitative investigation. Infect Control Hosp Epidemiol 2015; 36: 1065–72.

48 Infectious Diseases Society of America. Faces of Antimicrobial Resistance. 2018. https://www.idsociety.org/globalassets/idsa/topics-of-interest/antimicrobial-resistance/foar-report-1-up-final-1.pdf.

49 Walker S, McGeer A, Simor AE et al. Why are antibiotics prescribed for asymptomatic bacteriuria in institutionalized elderly people? A qualitative study of physicians' and nurses' perceptions. CMAJ Can Med Assoc J J Assoc Medecine Can 2000; 163: 273–7.

50 Kiyatkin D, Bessman E, McKenzie R. Impact of antibiotic choices made in the emergency department on appropriateness of antibiotic treatment of urinary tract infections in hospitalized patients: appropriateness of Antibiotics for UTIs. J Hosp Med 2016; 11: 181–4.

51 Stone CA, Trubiano J, Coleman DT et al. The challenge of de-labeling penicillin allergy. Allergy 2020; 75: 273–88.

52 McMaughan DK, Nwaiwu O, Zhao H et al. Impact of a decision-making aid for suspected urinary tract infections on antibiotic overuse in nursing homes. BMC Geriatr 2016; 16: 81.

53 Vaisman A, McCready J, Powis J. Using in-depth history screening as an additional method to help delabel inappropriate β-lactam allergies. Clin Infect Dis 2018; 67: 1959–60.

54 Sikkens JJ, van Agtmael MA, Peters EJG et al. Behavioral approach to appropriate antimicrobial prescribing in hospitals: the Dutch Unique Method for Antimicrobial Stewardship (DUMAS) participatory intervention study. JAMA Intern Med 2017; 177: 1130.

55 Rozin P, Royzman E. Negativity bias, negativity dominance, and contagion. Personal Soc Psychol Rev 5: 296–320.

56 Hoffmann TC, Del Mar C. Clinicians’ expectations of the benefits and harms of treatments, screening, and tests: a systematic review. JAMA Intern Med 2017; 177: 407–19.

57 Coxeter PD, Mar CD, Hoffmann TC. Parents’ Expectations and Experiences of Antibiotics for Acute Respiratory Infections in Primary Care. Ann Fam Med 2017; 15: 149–54.

58 Légaré F, Labrecque M, Cauchon M et al. Training family physicians in shared decision-making to reduce the overuse of antibiotics in acute respiratory infections: a cluster randomized trial. CMAJ Can Med Assoc J J Assoc Medecine Can 2012; 184: E726–34.