On the Brieskorn (a,b)-module of an isolated hypersurface singularity.

Daniel Barlet.

Abstract

We show in this note that for a germ g of holomorphic function with an isolated singularity at the origin of \mathbb{C}^n there is a pole for the meromorphic extension of the distribution

$$\frac{1}{\Gamma(\lambda)} \int_X |g|^{2\lambda} g^{-n} \Box$$

at $-n-\alpha$ when α is the smallest root in its class modulo \mathbb{Z} of the reduce Bernstein-Sato polynomial of g. This is rather unexpected result comes from the fact that the self-duality of the Brieskorn (a,b)-module E_g associated to g exchanges the biggest simple pole sub-(a,b)-module of E_g with the saturation of E_g by $b^{-1}a$.

In the first part of this note, we prove that the biggest simple pole sub-(a,b)-module of the Brieskorn (a,b)-module E of g is ”geometric” in the sense that it depends only on the hypersurface germ $\{g = 0\}$ at the origin in \mathbb{C}^n and not on the precise choice of the reduced equation g, as the poles of (*)

By duality, we deduce the same property for the saturation \tilde{E} of E. This duality gives also the relation between the ”dual” Bernstein-Sato polynomial and the usual one, which is the key of the proof of the theorem.

Key words Isolated hypersurface singularity, Brieskorn (a,b)-module, Bernstein-Sato polynomial, dual Bernstein-Sato polynomial.

AMS Classification : 32-S-05, 32-S-25, 32-S-40.
1 Introduction.

Let $\tilde{g} : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ a germ of holomorphic function with an isolated singularity. Denote by $g : X \to D$ a Milnor representative of \tilde{g}. Let b_g be the reduced Bernstein-Sato polynomial of g. Let α be the biggest root of b_g in its class modulo \mathbb{Z}. A classical question is whether for $j \in \mathbb{N}$ big enough the meromorphic extension of the distribution

$$\frac{1}{\Gamma(\lambda)} \int_X |g|^{2\lambda} \bar{g}^{-j} \square$$

has a pole at $\lambda = \alpha$.

The present note gives a result which, in a sense, suggests that, may be, this question is not the good one.

Let me introduce the dual Bernstein-Sato polynomial of g by the formula

$$b_g^*(z) = (-1)^q b_g(-n - z)$$

where $q := \text{deg}(b_g)$. Recall that all roots of b_g (and b_g^*) are contained in $]-n, 0[$, see [K.76] for the inequality < 0, and the section 3 for the inequality $> -n$.

We shall prove the following result.

Théorème 1.0.1 Let α be the smallest root of b_g in its class modulo \mathbb{Z}, and let d be its multiplicity (as a root of b_g). Then the meromorphic extension of the distribution

$$\frac{1}{\Gamma(\lambda)} \int_X |g|^{2\lambda} \bar{g}^{-n} \square$$

has a pôle of order $\geq d$ at $-n - \alpha$.

Remarks.

1. In general $b_g^* \neq b_g$ so it is not clear that $-n - \alpha$ is a root of b_g. But, of course, the previous theorem implies that there exists at least d roots of b_g (counting multiplicities) which are bigger than $-n - \alpha$. If $-n - \alpha \in [-1, 0]$ then there is no choice : $-n - \alpha$ is a root of multiplicity $\geq d$ of b_g.

2. This result gives, in term of the Bernstein-Sato polynomial b_g, a precise value where we know that a pole appears in the class $[\beta]$ modulo \mathbb{Z} of a root β of b_g. But the pole which is given is not at the biggest root of b_g in this class but at the biggest root of b_g^* in this class !

A clear reason for that is given in the proof: the dual Bernstein-Sato polynomial is the minimal polynomial of $-b^{-1}a$ acting on $F/b.F$ where F is the biggest simple pole sub-(a,b)-module of the Brieskorn (a,b)-module E associated to g. So it lies in the lattice given by holomorphic forms.

\[1\text{recall that we are dealing with negative numbers.}\]
On the contrary, \(b_g \) is the minimal polynomial of \(-b^{-1}a \) acting on \(\bar{E}/b\bar{E} \) where \(\bar{E} \) is the saturation of \(E \) by \(b^{-1}a \), or, in other words, the minimal simple pole \((a,b)\)-module containing \(E \). So, if \(E \) is not a simple pole \((a,b)\)-module, elements in \(\bar{E} \) are not always representable in the holomorphic lattice, and so we may need some power of \(g \) as denominators. And this may introduce integral shifts for the poles.

3. The case where \(E \) is a simple pole \((a,b)\)-module (that is to say when we have \(F = E = \bar{E} \)) corresponds to a quasi-homogeneous \(g \), with a suitable choice of coordinates. In this case we have \(b_g^* = b_g \), so \(-n - \alpha \) is the smallest root of \(b_g \) in its class modulo \(\mathbb{Z} \).

In the first part of this note, we prove that the biggest simple pole sub-(a,b)-module of the Brieskorn \((a,b)\)-module \(E \) of \(g \) is "geometric" in the sense that it depends only on the hypersurface germ \(\{ g = 0 \} \) at the origin in \(\mathbb{C}^n \) and not on the precise choice of the reduced equation \(g \).

Remark that the poles of the meromorphic distributions \(\frac{1}{\pi(\lambda)} \int_X |g|^{2\lambda} \bar{g}^{-j} \Box \) are also "geometric" in the sense above.

By duality, we deduce the same property for the saturation \(\bar{E} \) of \(E \). This duality gives also the relation between the dual Bernstein-Sato polynomial and the usual one, which is the key of the proof of the theorem.

2 Changing the reduced equation.

Let \(g : X \to D \) be a Milnor representative of a germ of an holomorphic function with an isolated singularity at the origin of \(\mathbb{C}^n, n \geq 2 \). We define the function
\[
f(t, x) := e^t g(x) \quad \text{where} \quad f : \mathbb{C} \times X \to \mathbb{C}
\]
and we denote by \(\pi : \mathbb{C} \times \mathbb{C} \times X \) the projection defined by \(\pi(\lambda, t, x) = (t, x) \). We shall denote by \(F \) the function \(\pi^*(f) \). Its critical locus is \(S := \mathbb{C} \times \mathbb{C} \times \{0\} \).

We consider on \(Y = \{ F = 0 \} \), as in [B.05], the complex of sheaves \(((\text{Ker} dF)^*, d^*) \). The following theorem is an easy generalization of [B.05] th.2.2 (case LII).

Théorème 2.0.2 In the situation describe above, the \(n \)-th cohomology sheaf of the complex \(((\text{Ker} dF)^*, d^*) \) is a constant sheaf whose fiber is \(F_g \) the biggest simple pole sub-(a,b)-module of the Brieskorn \((a,b)\)-module \(E_g \) associated to the function \(g \).

It is easy to deduce from the previous theorem the following corollary.

Corollaire 2.0.3 Let \(g \) be a germ of an holomorphic function with an isolated singularity at the origin of \(\mathbb{C}^n \). Let \(h \) be any invertible holomorphic germ at the origin. Then the biggest simple pole sub-(a,b)-module of the Brieskorn \((a,b)\)-module associated to the function \(h.g \) does not depend on the choice of \(h \) up to isomorphism.
More precisely, if the holomorphic invertible function depends holomorphically on some parameter λ in a complex manifold Λ, the subsheaf of the sheaf on Λ defined by the Brieskorn (a, b)-modules of the fibers, which is given in each fiber by the biggest simple pole sub-(a, b)-module of the Brieskorn (a, b)-module, is a locally constant sheaf on Λ.

Proof of the theorem. Let us first consider the case of an holomorphic function f on a complex manifold Z and let the holomorphic function F be $F := \pi^*(f)$ on $\mathbb{C} \times Z$ where $\pi: \mathbb{C} \times Z \to Z$ is the projection.

In this situation we have the following description of $(\hat{\operatorname{Ker}} dF)^p$:

$$(\hat{\operatorname{Ker}} dF)^p = \pi^*((\hat{\operatorname{Ker}} df)^p) \oplus d\lambda \wedge \pi^*((\hat{\operatorname{Ker}} df)^{p-1}).$$

Then $\alpha \oplus d\lambda \wedge \beta \in (\hat{\operatorname{Ker}} dF)^p$ is $d-$closed iff it satisfies:

$$d/\alpha = 0 \text{ and } \frac{\partial \alpha}{\partial \lambda} = d/\beta$$

where $\frac{\partial \alpha}{\partial \lambda}$ is defined by the equation $d\alpha = d/\alpha + d\lambda \wedge \frac{\partial \alpha}{\partial \lambda}$.

Lemme 2.0.4 In the situation above set $Y = \{f = 0\}$; we have the short exact sequence of complex of sheaves on $\mathbb{C} \times Y$:

$$0 \to (\hat{\operatorname{Ker}} df^\bullet, d^\bullet) \to (\pi^*(\hat{\operatorname{Ker}} df^\bullet), d^\bullet) \xrightarrow{i} (\pi^*(\hat{\operatorname{Ker}} df^\bullet), d^\bullet) \to 0.$$

So if the sheaf $\hat{\mathcal{H}}^{p-1}_f$ is 0 on Z for $p \geq 3$ or is isomorphic to $E_1 \otimes \mathbb{C}_Y$ for $p = 2$, then we have for $p \geq 2$ the exact sequence of sheaves on $\mathbb{C} \times Y$:

$$0 \to \hat{\mathcal{H}}^p_f \to \pi^*(\hat{\mathcal{H}}^p_f) \xrightarrow{\partial/\partial \lambda} \pi^*(\hat{\mathcal{H}}^p_f).$$

Proof. Here the sheaf $\pi^*(\hat{\mathcal{H}}^p_f)$ is defined via $\lambda-$relative holomorphic forms. On this complex we have a derivation $\partial/\partial \lambda$ commuting with the product by the function F, the wedge product with dF and the $\lambda-$relative de Rham differential denoted by d/λ. Remark also that we have $d/\lambda = dF$.

The exactness of the short exact sequence of complexes is obvious and the associated long exact cohomology sequence is enough to conclude for $p \geq 3$. For the $p = 2$ case, we have only to check the injectivity of the map i.

Let $\alpha \oplus d\lambda \wedge \beta \in (\hat{\operatorname{Ker}} df)^p \cap \overline{\operatorname{Ker}} d$; its image by i is the class $[\alpha]$. If it vanishes

2we define this sheaf via the cohomology of the formal completion of the de Rham complex of $\Lambda-$relative holomorphic forms annihilated by $\wedge dF$.

3recall that $E_1 := \mathbb{C}[[b]].e_1$ where $a.e_1 = b.e_1$.
3. The dual Bernstein-Sato polynomial.

We shall now consider an (a,b)-module E such that

\[\pi \ast (\hat{H}_p f) \]

we can find \(\gamma \in \pi \ast \left((\hat{K}_{\text{ker} df})^{-1} \right) \) such that \(d/\gamma = \alpha \). Differentiating with respect to \(\lambda \) gives, using the relation \(\partial \beta \partial = d/\beta \),

\[d/\left(\beta - \partial \gamma \partial \right) = 0. \]

But as \(\beta - \partial \gamma \partial \in \pi \ast \left((\hat{K}_{\text{ker} df})^{-1} \right) \) this form induces a class in \(\pi \ast (\hat{H}_p f)^{-1} \). So we can write

\[\beta = \partial \gamma \partial + \phi(\lambda, f) df, \]

where \(\phi \in \pi \ast (\text{C}[\lambda]) \). We obtain, if \(\partial \psi \partial = \phi(\lambda, f) df \),

\[d(\beta - \partial \gamma \partial) = 0. \]

The corollary follows, because we can always join two invertible functions to one another (the restriction of a constant sheaf is a constant sheaf).

End of the proof of the theorem.
follows: we define on the $\mathbb{C}[[b]]$-module $\text{Hom}_{\mathbb{C}[[b]]}(E, F)$, which is free and of finite rank, an action of a by the formula:

$$(a.\varphi)(x) = a_F \varphi(x) - \varphi(a_E x), \quad \forall x \in E.$$

Of course, we have to check that $a.\varphi$, defined in this way, is $\mathbb{C}[[b]]$-linear and that we have $a.b.\varphi - b.a.\varphi = b^2.\varphi$. It is not difficult to check also that $\text{Hom}_{a,b}(E, F)$ is regular when E and F are regular (see [B.95]).

Recall also that the Brieskorn (a,b)-module of a germ of holomorphic function with an isolated singularity in \mathbb{C}^n satisfies properties i) and ii) above with $\delta = n$, see [Be.01].

Proposition 3.0.5 Under hypotheses i) and ii) above, let F be the biggest simple pole sub-(a,b)-module in E, and let \tilde{E} the saturation of E for $b^{-1}a$. Then we have natural isomorphisms of (a,b)-modules deduced from κ:

$$\kappa' : \tilde{E} \to \text{Hom}_{a,b}(F, E_{\delta}) \quad \text{and} \quad \kappa'' : F \to \text{Hom}_{a,b}(\tilde{E}, E_{\delta}).$$

In the proof of this proposition we shall use the following lemmas.

Lemme 3.0.6 Let E and F be simple pole (a,b)-modules. Then $\text{Hom}_{a,b}(E, F)$ is also a simple pole (a,b)-module.

Proof. Fix an element $\varphi \in \text{Hom}_{a,b}(E, F)$. Then define $\theta : E \to F$ by the formula $\theta(x) := b^{-1}.a.\varphi(x) - b^{-1}.\varphi(a.x)$ for all $x \in E$. As E has a simple pole, we have $a.x \in b.E$ and so $\varphi(a.x) \in b.F$ from b-linearity of φ. But F has also a simple pole, so $b^{-1}.a : F \to F$ is well defined.

Now θ is b-linear:

$$\theta(b.y) = b^{-1}.a.\varphi(b.y) - b^{-1}.\varphi(a.b.y) = (a + b).\varphi(y) - \varphi((a + b).y)$$

$$= a.\varphi(y) - \varphi(a.y) = b.\theta(y).$$

But we have $a.\varphi = b.\theta$ in $\text{Hom}_{a,b}(E, F)$. Therefore $\text{Hom}_{a,b}(E, F)$ is a simple pole (a,b)-module. ■

Lemme 3.0.7 Let E be a regular (a,b)-module and let δ be any complex number. Then we have a canonical (a,b)-module isomorphism

$$\tau : E \to \text{Hom}_{a,b}(\text{Hom}_{a,b}(E, E_{\delta}), E_{\delta}).$$

Proof. The map τ is defined by $x \to \tau(x)[\varphi] = \varphi(x)$. It is obviously a b-linear isomorphism. So we have only to check the a-linearity. But, with the notation $\theta = \tau(x)$, we have:

$$(a.\theta)[\varphi] = a.(\theta[\varphi]) - \theta[a.\varphi] = a.\varphi(x) - (a.\varphi(x) - \varphi(a.x)) = \tau(a.x)[\varphi].$$

And so $a.\tau(x) = \tau(a.x)$. ■
Lemme 3.0.8 Let E and F be two (a,b)-modules. Then we have a canonical isomorphism

$$\text{Hom}_{a,b}(E,F) \rightarrow \text{Hom}_{a,b}(\tilde{E},\tilde{F}).$$

Proof. It is clear that $\text{Hom}_{a,b}(\tilde{E},\tilde{F})$ is the same complexe vector space than $\text{Hom}_{a,b}(E,F)$ and that the action of b on it is given by $-b$. The fact that the action of a is the opposite of the action of a on $\text{Hom}_{a,b}(E,F)$ follows also directly from the definition of $\text{Hom}_{a,b}$. \blacksquare

Proof of proposition 3.0.5. The functor $\text{Hom}_{a,b}(-,E_\delta)$ applied to the inclusion of E in \tilde{E} gives an (a,b)-linear injection

$$\text{Hom}_{a,b}(\tilde{E},E_\delta) \hookrightarrow \text{Hom}_{a,b}(E,E_\delta) \simeq \tilde{E}.$$

As $\text{Hom}_{a,b}(\tilde{E},E_\delta)$ has a simple pole by lemma 3.0.6 it is contained in \tilde{F}, by definition of F. Apply now the functor $\text{Hom}_{a,b}(-,E_\delta)$ to the inclusions

$$\text{Hom}_{a,b}(\tilde{E},E_\delta) \hookrightarrow \tilde{F} \hookrightarrow \tilde{E}$$

This gives (a,b)-linear injections

$$\text{Hom}_{a,b}(\tilde{E},E_\delta) \hookrightarrow \text{Hom}_{a,b}(\tilde{F},E_\delta) \hookrightarrow \tilde{E}$$

using lemma 3.0.7. But, as \tilde{E}_δ is canonically isomorphic to E_δ, so we have isomorphims

$$\text{Hom}_{a,b}(\tilde{E},E_\delta) \simeq \text{Hom}_{a,b}(\tilde{E},\tilde{E}_\delta) \simeq \text{Hom}_{a,b}(E,E_\delta)^\sim \simeq \tilde{E} \simeq E$$

using lemma 3.0.8 and our hypothesis on E. So the simple pole (a,b)-module $\text{Hom}_{a,b}(\tilde{F},E_\delta)$ which lies between E and \tilde{E} is equal to \tilde{E}. We conclude using again the canonical isomorphism between E_δ and \tilde{E}_δ and the lemma 3.0.7. \blacksquare

Remark.

In the situation of the proposition 3.0.5 the non-degenerate (a,b)-bilinear pairing

$$h : \tilde{E} \times E \rightarrow E_\delta$$

deduced from κ via the formula $h(x,y) := \kappa(x)[y]$, gives also non-degenerate (a,b)-bilinear pairings

$$h' : \tilde{E} \times F \rightarrow E_\delta \quad \text{and} \quad h'' : \tilde{F} \times \tilde{E} \rightarrow E_\delta$$

deduced from κ' and κ'' via the formulas $h'(x,y) := \kappa'(x)[y]$ and $h''(u,v) = \kappa''(u)[v]$.

An obvious consequence of proposition 3.0.5 is the following corollary of the theorem 2.0.2.
Corollaire 3.0.9 Let g be a germ of an holomorphic function having an isolated singularity at the origin in \mathbb{C}^n where $n \geq 2$. For any holomorphic invertible germ h at the origin, the saturation by $b^{-1}a$ of the Brieskorn (a,b)-module of the germ $h.g$ is independant, up to an isomorphism of (a,b)-module, of the choice of h. If the invertible h depends holomorphically of a parameter λ in a complex manifold Λ, the sheaf on Λ defined by the saturations of the Brieskorn (a,b)-modules of the germs $h_\lambda.g$ is a locally constant sheaf on Λ.

4 Poles of $\int_X |g|^{2.\lambda}$.

We shall begin by a simple definition.

Démonstration 4.0.10 Let E be a regular (a,b)-module. We shall call dual Bernstein polynomial of E, denoted by $b^*_{\delta E}$, the minimal polynomial of the linear endomorphism $-b^{-1}.a$ acting on the (finite dimensional) vector space $F/b.F$ where F is the biggest simple pole sub-(a,b)-module of E. Recall that the Bernstein-Sato polynomial of E is the minimal polynomial of the action of $-b^{-1}.a$ on the (finite dimensional) vector space $\tilde{E}/b.\tilde{E}$, where \tilde{E}, as before, is the saturation of E by $b^{-1}.a$. In other words, \tilde{E} is the smallest simple pole (a,b)-module which contains E. This can be understood in two ways. Either you look in $E[b^{-1}]$ for the smallest simple pole (a,b)-module containing E. The other way is to consider the inclusion $E \to \tilde{E}$ as the initial element for inclusions of E in simple poles (a,b)-modules.

Remark.

Let δ a given complex number, and assume that the (a,b)-module E is equipped with an (a,b)-linear isomorphism

$$\kappa : \tilde{E} \to \text{Hom}_{a,b}(E, E_{\delta}).$$

Then we have $b^*_{\delta E}(z) = (-1)^r.b_{\delta E}(-\delta - z)$ where $r := \text{deg}(b_{\delta E})$, since $b^{-1}a$ acts on the same way on E and \tilde{E}.

So, for the Brieskorn (a,b)-module of a germ of an holomorphic function g with an isolated singularity at the origin of \mathbb{C}^n the dual Bernstein polynomial is given by

$$b^*_g(z) = (-1)^r b_g(-n - z).$$

Using Malgrange positivity theorem it is easy to show that the roots of b^*_g are strictly negative. This gives, using [K.76], the fact that the roots of b_g are contained in $]-n, 0[$.
Proof of the theorem \[1.0.1\] The only new point for this proof, compared to [B.84 a] and [B.84 b], is the following:

In a simple pole \((a,b)\)-module \(F\), if a spectral value \(\beta\) of multiplicity \(d\) for the action of \(b^{-1}.a\) on \(F/bF\), is minimal in its class modulo \(\mathbb{Z}\), there exists elements \(e_1, \ldots, e_d\) in \(F\), giving a Jordan block of size \(d\) for \(b^{-1}a\) acting on \(F/bF\), and such that they satisfy in \(F\) the relations

\[a.e_j = \beta.b.e_j + b.e_{j-1}, \quad \forall j \in [1, d] \]

with the convention \(e_0 = 0\) (see [B.93]).

This enable us, using the standard technics of [B.84 a], to build up \((n-1)\)-holomorphic forms \(\omega_1, \ldots, \omega_d\) in a neighbourhood of the origin in \(\mathbb{C}^n\), such that

\[d\omega_j = \beta.\frac{dg}{g} \wedge \omega_j + \frac{dg}{g} \wedge \omega_{j-1}, \quad \forall j \in [1, d] \]

with the convention \(\omega_0 = 0\), which induce a Jordan block of size \(d\) in \(H^{n-1}(F, \mathbb{C})\) where \(F\) is the Milnor fiber of \(g\), for the eigenvalue \(exp(-2i\pi . \beta)\) of the monodromy.

So we avoid in this way the integral shifts coming from the use of a lattice which may be not contained in the one given by holomorphic forms and we can realize the pole of our statement for \(\lambda = -\beta\), using the same strategy than in [B.84a] for eigenvalues \(\neq 1\) and [B.84 b] for the eigenvalue 1. \(\blacksquare\)
References.

1. [B.84 a] Barlet, D. Contribution effective de la monodromie aux développements asymptotiques, Ann. Sc. Ec. Norm. Sup. 17 (1984), p.293-315.

2. [B.84.b] Barlet, D. Contribution du cup-produit de la fibre de Milnor aux pôles de $|f|^2$, Ann. Inst. Fourier (Grenoble), 34 (1984) p.75-107.

3. [B.93] Barlet, D. Theory of (a,b)-Modules I, Complex Analysis and Geometry, Plenum Press New York, (1993), p.1-43.

4. [B.95] Barlet, D. Theorie des (a,b)-modules II. Extensions, Complex Analysis and Geometry, Pitman Research Notes in Math. Series 366, (Trento 1995), p.19-59, Longman (1997).

5. [B.04] Barlet, D. Sur certaines singularités non isolées d’hypersurfaces I, preprint de l’Institut E. Cartan (Nancy) 2004/n°03, 47 pages. A second version (shorter) will appear in Bull. Soc. Math. France.

6. [B.05] Barlet, D. Sur certaines singularités non isolées d’hypersurfaces II, preprint de l’Institut E. Cartan (Nancy) 2005/n°42, 47 pages.

7. [Be.01] Belgrade, R. Dualité et Spectre des (a,b)-modules, Journal of Algebra 245, (2001), p.193-224.

8. [Br.70] E. Brieskorn : Die Monodromie der isolierten Singularitäten von Hyperflächen. Manuscripta Math. 2 (1970), p. 103-161.

9. [K.76] Kashiwara, M. b-Function and Holonomic Systems, Rationality of Roots of b-Functions, Invent. Math. 38 (1976) p.33-53.

10. [M.74] Malgrange, B. Intégrales asymptotiques et monodromie, Ann. Sc. Ec. Norm. Sup. , t.7, (1974), p.405-430.

Daniel Barlet,
Université Henri Poincaré (Nancy I) et Institut Universitaire de France,
Institut E.Cartan UHP/CNRS/INRIA, UMR 7502 ,
Faculté des Sciences et Techniques, B.P. 239
54506 Vandœuvre-les-Nancy Cedex , France.
e-mail : barlet@iecn.u-nancy.fr