Removal cadmium from Aqueous solutions using nanoparticle chitosan

Afrah Raheem Jasim1 and Hazim A.Walli2

1,2University of Al-Qadisiyah, College of Science, Department of Ecology
Hazim.abed@qu.edu.iq

Abstract

Removal and recuperation of Cad was concentrated from fluid arrangement. The boundaries for expulsion level of Cad from watery arrangements were concentrated, for example, contact time, and centralization of Compact disc. The consequences of the current investigation showed that the chitosan nanomaterial has a powerful impact in eliminating cadmium from the arrangements utilized in the current examination. The proposed technique was utilized for the expulsion of Cadmium from faucet water and waterway water gathered from different territories of AL-Dwaniyah city as appeared. Standard expansion strategy was utilized in which 10 mL of the water test was taken, spiked with known measure of Cad, and after adsorption measure, percent evacuation of Cadmium was resolved. It very well may be seen that the expulsion effectiveness of Cadmium from the water tests by chitosan 10,20 and 30 at 2 time 18 and 22 hours is high and can be utilized effectively for the expulsion of Cadmium from genuine water test.

Keywords: chitosan; nanoparticles; Cd; Adsorption kinetics; Adsorption

1- Introduction

Poisonous metal particles (Pb(II), Cd(II), Cr(VI), Hg(II), Co(II), Cu(II), Ni(II) and As (III)) contamination of water is turning into a huge natural and general medical problem (1,2). Businesses, for example, refining, metal plating, Cd Ni batteries, phosphate composites, mining, paint, shades, plastics, stabilizers, composite enterprises, ceramics, and sewage ooze are principally answerable for the presentation of Cd into water (3). Major physiological anomalies, for example, focal sensory system and blood creation disturbance, energy admission, and perpetual harm to fundamental body organs are brought about by Cadmium (1).

In this way, for the expulsion of weighty metals from squander water and groundwater, different substance, organic, biochemical and physicochemical methodologies have been utilized. Different strategies, for example, particle trade, coagulation, buoyancy, coprecipitation, electrochemical treatments, adsorption, and layer filtration have generally been utilized to accomplish natural detoxification. Among these, because of high adsorption potential and selectivity, adsorption is one of the promising cycles used to remove poisonous metal particles from water.
Various adsorbents were utilized to remove weighty metals from watery arrangement, either from squander materials, for example, enacted coconut shell carbon (4), mango strip squander (5), sawdust (6), chitosan (7) or manufactured materials like zeolites (8), hydroxides (9), hydroxyapatite (10), diatomite (11), cysteine-adjusted biomass (12) and engineered polystyrene gum (13). There are a few downsides to engineered adsorbents, like running cost, garbage removal, and low proficiency of evacuation. As of late, nano-adsorbents, for example, nanoparticles of zinc oxide (14), nano-alumina (15), functionalized nanotubes of carbon (16),

Functionalized nanoparticles of silica (16), (17). And nanoparticles of hydroxyapatite (1) have been inspected for the expulsion of metal particles. Chitosan (C) is a semi-manufactured polyaminosaccharide got from N-chitin deacetylation. Due to its protected profile, biodegradability and biocompatibility, notwithstanding its bacteriostatic and mucoadhesive properties, chitosan has pulled in interest in different biomedical, therapeutic, food and natural fields (18; 19; 20; 22; 22). Chitosan nanoparticles (NPs) are ordinarily read for medication, protein, and quality conveyance frameworks as nanocarriers (23; 24). The most read detailing strategy for getting ready chitosan NPs is ionotropic gelation.

2- Materials and methods

Samples: Samples were collected from water sources contaminated with heavy toxins.

Reagents: All synthetics utilized were of scientific reagent grade or comparable virtue. Cadmium oxide, were provided by Sigma-Aldrich. The nuclear gadget was utilized subsequent to planning tests to test tests and knowing the amount and term of expulsion.

3- Results and Discussion. The results of the current study showed that the removal and adsorption of the cadmium component from the liquid solutions used in the current chitosan study had a positive and strong effect at two different periods. Where three concentrations of cadmium with three concentrations of a substance were studied, and the highest percentage of impact was the concentration of chitosan with 10 concentrations of cadmium, with a concentration of 30 at 18 and 22 hours, as shown in the figures, respectively (1 and 2).

As seen, the proposed strategy was utilized to extricate cadmium from faucet water and stream water got from various zones of the city of AL-Dwaniyah. The standard expansion strategy was utilized in which 10 mL of the water test was taken, spiked with a known measure of Disc, and percent of Cadmium expulsion was resolved after the adsorption cycle. The expulsion effectiveness of Cadmium from the water tests of chitosan 10,20 and 30 at 2 hours 18 and 22 can be demonstrated to be high and can be successfully used to extract Cadmium from the actual water sample.
LSD (Cd(10 ppm))=0.002, LSD (Cd(15 ppm))=0.005, LSD (Cd(20 ppm))=0.003

Fig 1: Results of chitosan nanomaterial at a concentration of 30,20,10) mg / ml in removing elemental Cd at a concentration of (10, 20 and 30 mg / liter) for a period of (18) hours

LSD (Cd(10 ppm))=0.007, LSD (Cd(15 ppm))=0.0025, LSD (Cd(20 ppm))=0.0053

Fig 2: Results of chitosan nanomaterial at a concentration of 30,20,10) mg / ml in removing elemental Cd at a concentration of (10, 20 and 30 mg / liter) for a period of (18) hours

Because of the higher centralization of hydronium particles and its more prominent portability because of more modest sizes, the percent expulsion of Cadmium was lower at low pH (25). The outside of the adsorbent is decidedly charged beneath pHpzc and stops the adsorption of emphatically charged Cd (26). The centralization of hydronium particles is diminished at the ideal pH 7 and adsorption of cadmium is expanded (27).

The convergence of hydroxyl particles expanded at a higher pH than the ideal pH and Cadmium delivered hydroxide which decreased the centralization of Cadmium (28). The adsorption isotherm is significant for depicting the comprehension of adsorbent adsorbate just
as for the adsorption capacity data of the adsorbent (29). The adsorbent surface can go about as a monolayer or multilayer (30). For monolayer adsorption of adsorbate from fluid arrangement on an adsorbate surface containing a limited number of indistinguishable destinations, the Langmuir adsorption isothermal model is utilized (31). High adsorption capability of nano-sized particles and hydroxyl utilitarian gatherings, all of which joined to give powerful destinations to the limiting of cadmium particles (32). The Freundlich isothermal adsorption model portrays multilayer adsorption by accepting that adsorbed atoms associate with a non-uniform appropriation of adsorption heat on a heterogeneous surface (33).

4- Conclusion The high expulsion effectiveness of chitosan adsorbent for the expulsion of Disc from watery arrangements was appeared in this exploration. At the balance season of 22 hours, chitosan 30 focus, pH of 7 and temperature of 30 °C, the exploratory outcomes in the group technique showed the greatest sorption of Cd particles. Isotherm examines showed that the harmony information of Compact disc contrasted and the Freundlich isotherm model was very much addressed by the Langmuir model.

5- References

[1] Y. Feng, J.-L. Gong, G.-M. Zeng, Q.-Y. Niu, H.-Y. Zhang, C.-G. Niu, J.-H. Deng, M. Yan, (2010). Adsorption of Cd II) and Zn(II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents, Chem. Eng. J. 162 487–494.

[2] N. Atar, A. Olgun, S. Wang, (2012). Adsorption of cadmium (II) and zinc(II) on boron enrichment process waste in aqueous solutions: Batch and fixed-bed system studies, Chem. Eng. J. 192 1–7.

[3] S. Mahdavi, M. Jalali, A. Afkhami, (2012). Removal of heavy metals from aqueous solutions using Fe3O , ZnO, and CuO nanoparticles, J. Nanoparticle Res. 14 1–18.4

[4] K. Kadirvelu, C. Namaisivayam, (2003). Activated carbon from coconut coirpith as metal adsorbent: Adsorption of Cd (II) from aqueous solution, Adv. Environ. Res. 7: 471–478.

[5] M. Iqbal, A. Saeed, S.I. Zafar, (2009). FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd 2+ and Pb−1) Pore size (Å) 2+ removal by mango peel waste, J. Hazard. Mater. 164: 161–171.

[6] J. Shah, M.R. Jan, A. Ul Haq, M. Sadia, (2011). Biosorption of cadmium from aqueous solution using mulberry wood sawdust: Equilibrium and kinetic studies, Sep. Sci. Technol. 46: 1631–1637.

[7] R. Laus, T.G. Costa, B. Szpoganicz, V.T. Fa’ vere, (2010). Adsorption and desorption of Cu(II), Cd(II) and Pb(II) ions using chitosan crosslinked with epichlorohydrin triphosphate as the adsorbent, J. Hazard. Mater. 183: 233–241.

[8] U. Wingenfelder, B. Nowack, G. Furrer, R. Schulin, (2005). Adsorption of Pb and Cd by amine-modified zeolite, Water Res. 39: 3287–3297.

[9] C. Namaisivayam, K. Ranganathan, (1995). Removal of Cd(II) from wastewater by adsorption on “waste” Fe(III) Cr (III) hydroxide, Water Res. 29: 1737–1744.

[10] Y. Takeuchi, H. Arai, (1990). Removal of coexisting Pb, Cu 2+ and Cd2+ ions from water by addition of hydroxyapatite powder, J. Chem. Eng. Japan 23: 75–80.

[11] M.A. Khraisheh, Y.S. Aldegs, W.A. Mcminn, (2004). Remediation of wastewater containing heavy metals using raw and modified diatomite, Chem. Eng. J. 99: 177–184.
[12] J. Yu, M. Tong, X. Sun, B. Li, (2007). Cystine-modified biomass for Cd(II) and Pb(II) biosorption, J. Hazard. Mater. 143: 277–284.

[13] C. Xiong, C. Yao, (2009). Synthesis, characterization and application of triethylenetetramine modified polystyrene resin in removal of mercury, cadmium and lead from aqueous solutions, Chem. Eng. J. 155: 844–850.

[14] T. Sheela, Y.A. Nayaka, R. Viswanatha, S. Basavanna, T. Venkatesha, (2012). Kinetics and thermodynamics studies on the adsorption of Zn(II), Cd(II) and Hg(II) from aqueous solution using zinc oxide nanoparticles, Powder Technol. 217: 163–170.

[15] M. Ezoddin, F. Shemirani, K. Abdi, M.K. Saghezchi, M. Jamali, (2010). Application of modified nano-alumina as a solid phase extraction sorbent for the preconcentration of Cd and Pb in water and herbal samples prior to flame atomic absorption spectrometry determination, J. Hazard. Mater. 178: 900–905.

[16] Y.-H. Li, S. Wang, Z. Luan, J. Ding, C. Xu, D. Wu, (2003). Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes, Carbon 41: 1057–1062.

[17] M. Sadia, M.R. Jan, J. Shah, G.M. Greenway, (2013). Simultaneous preconcentration and determination of nickel and cobalt using functionalised mesoporous silica spheres by ICP-OES, Int. J. Environ. Anal. Chem. 93: 1537–1556.

[18] Alves, N., and Mano, J. (2008). Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int. J. Biol. Macromol. 43, 401–414.

[19] Riva, R., Ragelle, H., des Rieux, A., Duhem, N., Jérôme, C., and Prétat, V. (2011). “Chitosan and chitosan derivatives in drug delivery and tissue engineering,” in Chitosan for Biomaterials II. Advances in Polymer Science, Vol. 244, eds R. Jayakumar, M. Prabaharan, and R. Muzzarelli (Berlin; Heidelberg: Springer), 19–44.

[20] Miola, M., Verné, E., Ciraldo, F. E., Cordero-Arias, L., and Boccaccini, A. R. (2015). Electrophoretic deposition of chitosan/45S5 bioactive glass composite coatings doped with Zn and Sr. Front. Bioeng. Biotechnol. 3:159.

[21] Silva, M., Calado, R., Marto, J., Bettencourt, A., Almeida, A., and Gonçalves, L. (2017). Chitosan nanoparticles as a mucoadhesive drug delivery system for ocular administration. Marine Drugs 15:370.

[22] Savin, C.-L., Popa, M., Delaite, C., Costuleanu, M., Costin, D., and Peptu, C. A. (2019). Chitosan grafted-poly (ethylene glycol) methacrylate nanoparticles as carrier for controlled release of bevacizumab. Mater. Sci. Eng. 98, 843–860.

[23] Almaaytah, A., Qaoud, M., Khalil Mohammed, G., Abualhajjaa, A., Knappe, D., Hoffmann, R., et al. (2018). Antimicrobial and antibiofilm activity of UP-5, an ultrashort antimicrobial peptide designed using only arginine and biphenylalanine. Pharmaceuticals 11:3.

[24] Baghdan, E., Pinnapireddy, S. R., Strehlow, B., Engelhardt, K. H., Schfer, J., and Bakowsky, U. (2018). Lipid coated chitosan-DNA nanoparticles for enhanced gene delivery. Int. J. Pharmaceut. 535, 473–479.

[25] P. Yuan, D. Liu, M. Fan, D. Yang, R. Zhu, F. Ge, J.X. Zhu, H. He, (2010) Removal of hexavalent chromium [Cr (VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles, J. Hazard. Mater. 173, 614–621.
[26] K.Z. Setshed, M. Bhaumik, S. Songwane, M.S. Onyango, A. Maity, (2013). Exfoliated polypyrrole-organically modified montmorillonite clay nanocomposite as a potential adsorbent for Cr(VI) removal, Chem. Eng. J. 222, 186–197.

[27] D. Mohan, K.P. Singh, V.K. Singh, (2005). Removal of hexavalent chromium from aqueous solution using low-cost activated carbons derived from agricultural waste materials and activated carbon fabric cloth, Ind. Eng. Chem. Res. 44, 1027–1042.

[28] M. Irani, A.R. Keshtkar, M.A. Moosavian, (2012). Removal of cadmium from aqueous solution using mesoporous PVA/TEOS/APTES composite nanofiber prepared by sol gel/electrospinning, Chem. Eng. J. 200–202, 192–201.

[29] M. Aliabadi, M. Irani, J. Ismaeili, S. Najafzadeh. (2014). Design and evaluation of chitosan/hydroxyapatite composite nanofiber membrane for the removal of heavy metal ions from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers 45, 518- 526.

[30] E. Salehi, S.S. Madaeni, L. Rajabi, A.A. Derakhshan, S. Daraei, V. Vatanpour, (2013). Static and dynamic adsorption of copper ions on chitosan/polyvinyl alcohol thin adsorptive membranes: Combined effect of polyethylene glycol and aminated multi-walled carbon nanotubes, Chem Eng J 215–216 791–801.

[31] SF Wang, L Shen, WD Zhang, YJ Tong. (2005). Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules, 6, 3067.

[32] J. Marroquin, H. J. Kim, D-H Jung, K.Y. Rhee. (2012). Effect of Fe3O4 loading on the conductivities of carbon nanotube/chitosan composite films. Carbon Letters 13, 126-129.

[33] Y.A. AydIn, N.D. Aksoy, (2009). Adsorption of chromium on chitosan: optimization, kinetics and thermodynamics, Chem. Eng. J. 15, 188–194.