EVIDENCE FOR A STRONG THREE-BODY FORCE IN THE TRITON*

D. D. Brayshaw
Stanford Linear Accelerator Center
Stanford University, Stanford, California 94305

In view of the fact that three-body calculations with apparently "realistic" two-nucleon potential models underbind 3He by about 1.7 MeV and produce only rough agreement with its charge form factor, it appears necessary to make some changes in our theoretical assumptions. In this work we shall investigate the possibility that these discrepancies are due, not to off-shell effects, but to the existence of a strong three-body force. Specifically, we shall utilize the existing charge form factor data for 3He, 3H and some assumptions to produce a model of the triton wave function compatible with these constraints. Given this wave function, the Schrödinger equation may be trivially solved for the effective local potential. The discrepancy between this potential and those predicted by typical pair-interaction models in the domain where all three particles are close together appears to provide clear evidence of a strong attractive three-body force.

To proceed we shall assume that the wave functions for 3He, 3H are identical and describe a purely L=0 state. The relation between the experimental input and this wave function is given by

$$F_{ch}(^3\text{He}) = (f_p + \frac{1}{2} f_n)(F_1 + F_3) - \frac{1}{2} (f_p - f_n) F_2,$$

$$F_{ch}(^3\text{H}) = (f_p + 2f_n)(F_1 + F_3) + \frac{2}{3} (f_p - f_n) F_2,$$

where F_1, F_2, F_3 are the body form factors and f_p, f_n the charge form factors of proton and neutron, respectively. All quantities in eq. (1) are functions of q^2, the momentum-transfer. It is convenient to employ the following parametrization of the 3He, 3H charge form factors:

$$F_{ch}(q^2) = e^{-a q^2} - b q^2 e^{-c q^2} + d \left[-\left(\frac{q-q_0}{p}\right)^2 + e^{-\left(\frac{q+q_0}{p}\right)^2}\right].$$

For 3He we shall use the parameters determined by McCarthy et al. 1) in the analysis of their experiment. In the case of 3H, experiments only cover the range $q^2 \leq 8$ enabling one to determine only the a, b, c parameters in this formula. However, guided by the 3He data, model calculations, and a comparison of 3He and 3H in the measured region, we shall assign what we believe are reasonable

*Work supported by the U. S. Atomic Energy Commission.
values to the d, qo, p parameters for \(^3\)H, as listed in Table 1.

TABLE 1: Parameters for \(^3\)He, \(^3\)H Form Factors

	a	b	c	d	qo	p
\(^3\)He	.67500	.36600	.83600	-.00678	3.980	0.900
\(^3\)H	.59914	.34623	.70007	-.00680	4.162	0.950

In fig. 1 we have plotted the absolute values of \(^3\)He, \(^3\)H form factors determined by these parameters. In order to eliminate the uncertainty introduced by extending the \(^3\)H curve in this fashion we have actually performed our analysis for a broad band of possible \(^3\)H curves centered about this choice. These studies indicate that the sum of all experimental uncertainties affecting the curves of fig. 1 produces a net effect of at most 4-5% in our results.

![Fig. 1. Absolute value of charge form factor vs. \(q^2\) for (a) \(^3\)He, (b) \(^3\)H, as given by the parametrization of Table 1.](image)

The structure of our model is motivated by the results of numerous model calculations utilizing a hyperspherical basis. In the notation of Erens, we take

\[
\psi_s(x, y) = \phi_0^S(\rho) y_{00}^S(\beta) + \phi_2^S(\rho) y_{20}^S(\beta) ,
\]
\[
\psi_{m, 1}(x, y) = \phi_1^m(\rho) y_{10}^{m-1}(\beta), \quad \psi_{m, 2}(x, y) = \phi_1^m(\rho) y_{10}^{m+2}(\beta),
\]
where \(\rho^2 = x^2 + y^2 \), \(d\bar{x} d\bar{y} = \rho^5 d\rho d\beta \). For such models, the \(\phi_0^s, \phi_2^s, \phi_1^m \) components typically contribute about 97.0, 0.6, 1.6%, respectively, to the wave function norm. Using the values for \(F_{ch}^{(3}\text{He}) \) and \(F_{ch}^{(3}\text{H}) \) discussed above, and the proton, neutron form factors of Janssens et al.\(^3\), eq. (1) determines \(F_2 \) and the sum \(F_1 + F_3 \). These known functions were used to determine a fit for \(\phi_0^s, \phi_2^s, \phi_1^m \).

Given \(\phi_0^s, \phi_2^s, \phi_1^m \) and the form of the Schrödinger equation in the hyperspherical basis, and neglecting \(\phi_2^s, \phi_1^m \) with respect to \(\phi_0^s \), it is straightforward to obtain the following expression for \(V_{00} \), the matrix element of the potential coupling the \(\phi_0^s \) component to itself:

\[
V_{00} = -M E_0 + \left[\phi_0^s D_0^s + \phi_2^s D_2^s \phi_1^m D_1^m \right] / \left[2(\phi_0^s)^2 \right],
\]
where \(E_0 \) is the experimental binding energy, and
\[
D_k = \frac{1}{\rho^5} \frac{d}{d\rho} \left(\frac{5}{\rho^5} \frac{d}{d\rho} \right) - \frac{4k(k+2)}{\rho^2}.
\]

Our result for \(V_{00} \) is plotted in fig. 2.

Fig. 2. The \(V_{00}(\rho) \) given by our analysis for the wave function components of fig. 2 is plotted as curve (a). Curve (b) shows \(V_{00} \) as predicted by the model of Malfliet and Tjon.\(^4\)
For comparison, we have also plotted the form of V_{00} which results from a typical nucleon-nucleon interaction model, that of Malfliet and Tjon.\textsuperscript{4)4} (Our assumptions require us to consider only models in which there is no tensor force.) It seems reasonable to interpret the difference between these two curves as due to a strong attractive three-body force.

References

1. J. S. McCarthy, I. Sick, R. R. Whitney, and M. R. Yearian, Phys. Rev. Lett. \textbf{25} (1970) 884.

2. G. Erèns, Bound State Properties of a Model Three-Nucleon System Calculated with a Hyperspherical Function Basis (Thesis, University of Amsterdam, 1970), and earlier references contained therein.

3. T. Janssens, R. Hofstadter, E. B. Hughes, and M. R. Yearian, Phys. Rev. \textbf{142} (1966) 922.

4. R. A. Malfliet and J. A. Tjon, Nucl. Phys. \textbf{A127} (1969) 161.