The Symmetry Preserving Removal Lemma

BALÁZS SZEGEDY

September 16, 2008

Abstract

In this note we observe that in the hyper-graph removal lemma the edge removal can be done in a way that the symmetries of the original hyper-graph remain preserved. As an application we prove the following generalization of Szemerédi’s Theorem on arithmetic progressions. If in an Abelian group A there are sets S_1, S_2, \ldots, S_t such that the number of arithmetic progressions x_1, x_2, \ldots, x_t with $x_i \in S_i$ is $o(|A|^2)$ then we can shrink each S_i by $o(|A|)$ elements such that the new sets don’t have such a diagonal arithmetic progression.

1 Introduction

A directed k-uniform hyper-graph H on the vertex set V is a subset of V^k such that there is no repetition in the k coordinates. A homomorphism between two directed k-uniform hyper-graphs F and H with vertex sets $V(F)$ and $V(H)$ is a map $f : V(F) \to V(H)$ such that $(f(a_1), f(a_2), \ldots, f(a_k))$ is in H whenever (a_1, a_2, \ldots, a_k) is in F. The automorphism group $\text{Aut}(H)$ is the group of bijective homomorphisms $\pi : V(H) \to V(H)$. The homomorphism density $t(F, G)$ of F in G is the probability that a random map $f : V(G) \to V(H)$ is a homomorphism.

The so-called hyper-graph removal lemma ([3],[4],[1],[2],[7])(in the directed setting) says the following

Theorem 1 (Removal Lemma) For every $k \in \mathbb{N}$, $\epsilon > 0$ and k-uniform directed hyper-graph F there is a constant $\delta = \delta(k, \epsilon, F) > 0$ such that for every k-uniform directed hyper-graph G with $t(F, G) \leq \delta$ there is a subset $S \subseteq G$ with $S \leq \epsilon|V(G)|^k$ such that $t(F, G \setminus S) = 0$.

Using this deep result we observe that the edge removal can be done in a way that the symmetries of G remain preserved.
Theorem 2 (Symmetry Preserving Removal Lemma) For every $k \in \mathbb{N}$, $\epsilon > 0$ and k-uniform directed hyper-graph F there is a constant $\delta_2 = \delta_2(k, \epsilon, F) > 0$ such that for every k-uniform directed hyper-graph G with $t(F,G) \leq \delta_2$ there is a subset $S \subseteq G$ with $S \leq \epsilon |V(G)|^k$ such that $t(F,G \setminus S) = 0$ and furthermore $\text{Aut}(G) \subseteq \text{Aut}(G' \setminus S)$.

Proof. Let $V = V(G)$. Using the original removal lemma it remains to show that if $S \subseteq V^k$ satisfies $t(F,G \setminus S) = 0$ then there is $S' \subseteq V^k$ which is $\text{Aut}(G)$ invariant, $t(F,G \setminus S') = 0$ and $S' \leq |F||S|$. Such an S' is the union of those orbits O of $\text{Aut}(G)$ on V^k for which $|O|/|O \cap S| \leq |F|$. Assume that $f : V(F) \rightarrow V$ is a homomorphism from F to $G \setminus S'$. Then for every fixed $e \in F$ and for random element $\pi \in \text{Aut}(G)$ the probability that $\pi(f(e)) \in G \setminus S$ is less than $1/|F|$ and so there is some $\pi \in \text{Aut}(G)$ with $\pi(f(F)) \subseteq G \setminus S$ which is contradiction.

The argument given for the symmetry preserving removal is very general. It applies for various modified versions of the removal lemma. An important such version is the t-partite removal lemma where t is a fixed natural number. The vertex set of a t-partite k-uniform hypergraph is a t tuple $\{V_i\}_{i=1}^t$ of finite sets. An edge of a t-partite hypergraph is an element from $\prod_{i=1}^t V_a$ where a_1, a_2, \ldots, a_k are k distinct numbers between 1 and t. Let G_1, G_2 be two t partite k-uniform hyper-graphs with vertex sets $\{V_i\}_{i=1}^t$ and $\{W_i\}_{i=1}^t$. A homomorphism from G_1 to G_2 is a t tuple of maps $\{\phi_i : V_i \rightarrow W_i\}_{i=1}^t$ such that $(\phi_{a_1}(r_1), \phi_{a_2}(r_2), \ldots, \phi_{a_k}(r_k)) \in \prod_{i=1}^t W_a$ is an edge in G_2 whenever $(r_1, r_2, \ldots, r_k) \in \prod_{i=1}^t V_a$ is an edge in G_1. An automorphism is a bijective homomorphism from G_1 to G_1 and the homomorphism density $t(G_1, G_2)$ is the probability that a random t tuple of maps $\{\phi_i : V_i \rightarrow W_i\}_{i=1}^t$ is a homomorphism.

We give an example for an application of the symmetry preserving removal lemma and then we generalize it in the next chapter.

Example 1.: Let S be a subset of a group T. The Cayley graph $\text{Cy}(T, S) \subseteq G \times G$ is the collection of pairs (a, b) with $ab^{-1} \in S$. The automorphism group of $\text{Cy}(T, S)$ contains T with the action $(a, b) \mapsto (ag, bg)$. Clearly any subset of $T \times T$ invariant under this action of G is a Cayley graph itself. This means that the T-orbit of edges in $\text{Cy}(T, S)$ correspond to elements of S. We apply the symmetry preserving removal lemma for $F = \{(1, 2), (1, 3), (2, 3)\}$ with $V(F) = \{1, 2, 3\}$ and for $G = \text{Cy}(T, S)$. A homomorphism from F to G is a map $f : \{1, 2, 3\} \rightarrow T$ such that $a = f(1)f(2)^{-1}$, $b = f(2)f(3)^{-1}$ and $c = f(1)f(3)^{-1}$ are all in S. Consequently, the number of such homomorphisms is the number is $|T||\{(a, b, c) : ab = c, a, b, c \in S\}$.
removal lemma yields that if \(ab = c \) has \(o(|T|^2) \) solutions in \(S \) then one can remove \(o(|T|) \) elements from \(S \) such that in the new set there is no solution of \(ab = c \). This was first proved by Ben Green \[9\] for Abelian groups and generalized for groups by Kral, Serra and Vena \[8\].

2 Cayley Hypergraphs

In this chapter we describe a potential way of generalizing Cayley graphs to the hypergraphs setting and then discuss the symmetry preserving removal lemma on such graphs.

Definition 2.1 Let \(G_1, G_2, \ldots, G_t \) be \(t \) finite groups and let \(H \) be a subgroup of \(\prod_{i=1}^{t} G_i \). The group \(H \) is acting on each \(G_i \) by \((h_1, h_2, \ldots, h_t)g = h_ig \) where \((h_1, h_2, \ldots, h_t) \in H \) and \(g \in G_i \). An \(t \)-partite \(k \)-uniform hypergraph \(T \) on the vertex set \(\{ G_1 \}^t_{i=1} \) is called a Cayley hypergraph if its automorphism group contains \(H \) with the previous action.

This definition is very general so we will start to analyze a special setting. Assume that all the groups \(G_1, G_2, \ldots, G_t \) are isomorphic to an Abelian group \(A \). Furthermore, to get something interesting we want to assume that \(H \) is not too big and not too small. Let \(C = \{ C_1, C_2, \ldots, C_r \} \) be a collection of \(k \)-element subsets of \(\{1,2,\ldots,t\} \). Each set \(C_i \) defines a projection \(p_i : H \to A^k \) to the coordinates in \(C_i \). Assume that the factor group \(A^{C_i}/p_i(H) \cong A \) and let \(\psi_i : A^{C_i} \to A \) be a homomorphism with kernel \(p_i(H) \). Now we pick a subsets \(S_i \subseteq A \) for \(1 \leq i \leq r \) and we define the graph \(H_{k,t}(A,\{S_i\},C) \) as

\[
\bigcup_{i=1}^{r} \psi_i^{-1}(S_i)
\]

where \(\psi_i^{-1}(S_i) \) is the union of cosets in \(A^{C_i} \) of \(p_i(H) \) representing an element in \(S_i \). Note that the way we produced \(H_{k,t}(A,\{S_i\},C) \) guarantees that its automorphism group contains \(H \) as a subgroup.

The symmetry preserving removal lemma for \(t \)-partite hypergraphs directly implies the following lemma:

Lemma 2.1 (Cayley Hypergraph Removal Lemma) For every \(k, t \) natural numbers and \(\epsilon > 0 \) there exists a constant \(\delta > 0 \) such that if

\[
t(F, H_{k,t}(A,\{S_i\},C)) \leq \delta
\]

for some \(t \) partite \(k \)-uniform hypergraph \(F \) then there are subsets \(S'_i \) in \(A \) of size at most \(\epsilon |A| \) such that \(t(F, H_{k,t}(A,\{S_i \setminus S_i'\},C)) = 0 \).
Example 2.: This example uses an idea by Solymosi [6] who showed that the Hypergraph Removal Lemma implies Szemeredi’s theorem on arithmetic progressions (even in a multi dimensional setting). Let t be a natural number, $k = t - 1$ and A be an Abelian group. We define H to be the subgroup in A^t of the elements (a_1, a_2, \ldots, a_t) with $\sum_{i=1}^{t} a_i = 0$ and $\sum_{i=1}^{t} (i - 1) a_i = 0$. Now set

$$C = \{\{1, 2, \ldots, i - 1, i, \ldots, t\}\}_{i=1}^{t}$$

and

$$\psi_i(a_1, a_2, \ldots, a_{i-1}, a_{i+1}, \ldots, a_t) = \sum_{j=1}^{t} (j - i) a_i.$$

The functions ψ_i are computed in a way that $\ker(\psi_i^{-1})$ is the projection of H to the coordinates in C_i.

Let F be the complete t partite $t - 1$ uniform hypergraph on four point. Lemma 2.1 applied to F and the above hypergraph $H_{t-1,t}(A, \{S_i\}, C)$ implies that if the system

$$x_i = \sum_{j=1}^{t} (j - i) a_i \in S_i$$

has $o(|A|^t)$ solutions then we can delete $o(|A|)$ elements from each S_i such that the previous system has no solution. It is clear that x_1, x_2, \ldots, x_t are forming a t term arithmetic progression and in fact any such progression with $x_i \in S_i$ gives rise to $|A|^{t-2}$ solution of the previous system. Using this we obtain the following:

Theorem 3 (Diagonal Szemeredi Theorem) For every $\epsilon > 0$ there exists a $\delta > 0$ such that if A is an Abelian group, S_1, S_2, \ldots, S_t are subsets in A and there are at most $\delta|A|^2$ t-tuples x_1, x_2, \ldots, x_t with $x_i \in S_i$ such that they are forming a t term arithmetic progression then we can shrink each S_i by at most $\epsilon|A|$ elements such that the new sets don’t have such a configuration.

This theorem implies Szemeredi’s theorem [10] if we apply it for $S = S_i$, $1 \leq i \leq t$ since S contains the trivial progressions $a, a, a \ldots, a$ which are only removable if we delete the whole set S.

References

[1] T. Gowers, Quasirandomness, counting and regularity for 3-uniform hypergraphs. Combin. Probab. Comput. 15 (2006), no. 1-2, 143–184.

[2] Y. Ishigami, A Simple Regularization of Hypergraphs

[3] B. Nagle, V. Rödl and M. Schacht, The counting lemma for regular k-uniform hypergraphs. Random Structures Algorithms 28 (2006), no. 2, 113–179.

[4] V. Rödl, M. Schacht, Regular partitions of hypergraphs: regularity lemmas. Combin. Probab. Comput. 16 (2007), no. 6, 833–885.

[5] V. Rödl, J. Skokan, Regularity lemma for k-uniform hypergraphs. Random Structures Algorithms 25 (2004), no. 1, 1–42.

[6] J. Solymosi, A note on a question of Erdős and Graham. Combin. Probab. Comput. 13 (2004), no. 2, 263–267.

[7] T. Tao, A variant of the hypergraph removal lemma. J. Combin. Theory Ser. A 113 (2006), no. 7, 1257–1280.

[8] D. Král, O. Serra, L. Vena A combinatorial proof of the Removal Lemma for Groups preprint

[9] B. Green, A szemerédi type regularity lemma in Abelian groups, with applications Geom. Funct. anal. 15(2005), no. 2, 340-376.

[10] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression Acta Arith. 27 (1975), 199-245