SUPPORTING INFORMATION

Iron-Catalyzed Borrowing Hydrogen β-$C(sp^3)$-Methylation of Alcohols

Kurt Polidano,† Jonathan M. J. Williams,‡ and Louis C. Morrill*†

e-mail: MorrillLC@cardiff.ac.uk

†Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
‡Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK

Table of Contents

1. General information .. S2

2. Experimental and characterization data .. S3
 2.1. Synthesis of substrates ... S3
 2.1.1. General procedure 1 ... S3
 2.2. Optimization of iron-catalyzed β-$C(sp^3)$-methylation S28
 2.3. Substrate scope .. S29
 2.3.1. General procedure 2 ... S29
 2.4. Synthesis of plausible intermediates .. S81
 2.5. Evidence supporting possible reaction intermediates .. S84
 2.6. Kinetic time course experiments ... S88
 2.7. Mechanistic experiments employing CD$_3$OD as solvent S89

3. References ... S91
1. General information

Unless stated otherwise, all reactions were performed using oven-dried 10 mL microwave vials sealed with an aluminium crimp caps, and were stirred with Teflon-coated magnetic stirrer bars. Dry tetrahydrofuran (THF), toluene, hexanes and diethyl ether were obtained after passing these previously degassed solvents through activated alumina columns (Mbraun, SPS-800). All other solvents and commercial reagents were used as supplied without further purification unless stated otherwise. Methanol was supplied as synthesis grade from Fisher Scientific (>99.9%) and was not degassed before use.

Room temperature (rt) refers to 20-25 °C. Ice/water and CO$_2$(s)/acetone baths were used to obtain temperatures of 0 °C and -78 °C respectively. All reactions involving heating were carried out using DrySyn blocks and a contact thermometer. In vacuo refers to reduced pressure through the use of a rotary evaporator. [Fe] precatalysts 2, 4, 5, 6, 7, and 8 were prepared according to the corresponding literature procedures.

Analytical thin layer chromatography was carried out using aluminium plates coated with silica (Kieselgel 60 F$_{254}$ silica) and visualization was achieved using ultraviolet light (254 nm), followed by staining with a 1% aqueous KMnO$_4$ solution. Flash chromatography used Kieselgel 60 silica in the solvent system stated.

Melting points were recorded on a Gallenkamp melting point apparatus, and corrected by linear interpolation of melting point standards benzophenone (47-49 °C), and benzoic acid (121-123 °C).

IR spectra were recorded on a Shimadzu IRAffinity-1 Fourier Transform ATIR spectrometer as thin films using a Pike MIRacle ATR accessory. Characteristic peaks are quoted (ν_{max} / cm$^{-1}$).

1H, 13C, 19F NMR spectra were obtained on either a Bruker Avance 400 (400 MHz 1H, 101 MHz 13C, 376 MHz 19F) or a Bruker Avance 500 (500 MHz 1H, 126 MHz 13C, 471 MHz 19F) spectrometer at rt in the solvent stated. Chemical shifts are reported in parts per million (ppm) relative to the residual solvent signal. All coupling constants, J, are quoted in Hz. Multiplicities are reported with the following symbols: $s =$ singlet, $d =$ doublet, $t =$ triplet, $q =$ quartet, $m =$ multiplet and multiples thereof. The abbreviation Ph to denote phenyl, br to denote broad.

High resolution mass spectrometry (HRMS, m/z) data was acquired either at Cardiff University on a Micromass LCT spectrometer or at the EPSRC UK National Mass Spectrometry Facility at Swansea University.
2. Experimental and characterization data

2.1. Synthesis of substrates

2.1.1. General procedure 1

\[
\begin{array}{c}
\text{R} \quad \text{O} \\
\text{LiAlH}_4 (3 \text{ equiv.}) \\
\text{R'} \\
\text{OH} \\
\text{rt, THF, 24h}
\end{array}
\]

Under nitrogen, a 100 mL round-bottomed equipped a magnetic stirrer bar was charged with LiAlH\(_4\) (342 mg, 9.0 mmol) and dry THF (10 mL). The suspension was cooled to 0 °C and was then charged with a solution of carboxylic acid or ethyl ester (3.0 mmol) in dry THF (5 mL). The mixture was left to stir at 0 °C for 10 minutes and at rt for 24 h. The mixture was quenched with H\(_2\)O (1 mL), 2 M NaOH (2 mL) and H\(_2\)O (3 mL). MgSO\(_4\) was added and the suspension was filtered. The filtrate was then concentrated in vacuo.

2-(naphthalen-2-yl)ethan-1-ol

The title compound was prepared according to general procedure 1 using 2-naphthaleneacetic acid (559 mg, 3.0 mmol). Purification by flash silica chromatography (eluent = 20% EtOAc in hexanes, 30 x 150 mm silica) gave the title compound as a white solid (438 mg, 86%); mp 68-70 °C (Lit. 65-66 °C);\(^6\) \(R_f = 0.53\) (eluent = 50% EtOAc in hexanes); \(v_{\text{max}} / \text{ cm}^{-1}\) (film) 3285, 3053, 3013, 2940, 2868, 1597, 1504, 1368, 1043, 1020, 827, 743, 731, 484; \(^{1}H\) NMR (500 MHz, CDCl\(_3\)) \(\delta_H\): 1.46 (1H, br s), 3.04 (2H, t, \(J = 6.5\)), 3.95 (2H, t, \(J = 6.5\)), 7.37 (1H, dd, \(J = 8.0, 2.0\)), 7.41-7.51 (2H, m), 7.69 (1H, s), 7.76-7.86 (3H, m); \(^{13}C\) NMR (126 MHz, CDCl\(_3\)) \(\delta_C\): 39.5, 63.7, 125.6, 126.2, 127.5, 127.6, 127.6, 127.8, 128.4, 132.4, 133.7, 136.1; HRMS (EI\(^+\)) calculated for [C\(_{12}\)H\(_{12}\)O]\(^+\) (M\(^+\)) m/z : 172.0888, found 172.0892 (+2.3 ppm).
The title compound was prepared according to general procedure 1 using 4-biphenylacetic acid (637 mg, 3.0 mmol). Purification by flash silica chromatography (eluent = 10-20% EtOAc in hexanes, 30 x 170 mm silica) gave the title compound as a white solid (330 mg, 56%); mp 96-98 °C (Lit. 96-97.5 °C); Rf = 0.53 (eluent = 50% EtOAc in hexanes); \(\nu_{\text{max}}/\text{cm}^{-1} \) (film) 3240, 3063, 3032, 2941, 2874, 1520, 1487, 1404, 1368, 1121, 1059, 1045, 1013, 822, 758, 745, 685, 581; \(^1\)H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta_H \): 1.43 (1H, br s), 2.93 (2H, t, \(J_6.5 \)), 3.92 (2H, t, \(J_6.5 \)), 7.28-7.38 (3H, m), 7.44 (2H, t, \(J_7.0 \)), 7.56 (2H, d, \(J_7.0 \)), 7.59 (2H, d, \(J_7.5 \)); \(^13\)C NMR (126 MHz, CDCl\textsubscript{3}) \(\delta_C \): 39.0, 63.8, 127.2, 127.3, 127.5, 128.9, 129.6, 137.7, 139.6, 141.1; HRMS (EI+) calculated for [C\textsubscript{14}H\textsubscript{14}O]+ (M)+ m/z: 198.1045, found 198.1045 (+0.0 ppm).
The title compound was prepared according to general procedure 1 using 4-phenoxyphenylacetic acid (685 mg, 3.0 mmol) in dry THF (5 mL). Purification by flash silica chromatography (eluent = 20% EtOAc in hexanes, 35 x 130 mm silica) gave the title compound as a colourless oil (300 mg, 47%); Rf = 0.16 (20% EtOAc in hexanes); v\text{max} / cm\(^{-1}\) (film) 3327, 3059, 3030, 2936, 2870, 1587, 1504, 1487, 1229, 1161, 1045, 1015, 868, 829, 750, 692, 507; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\)H: 1.41 (1H, br s), 2.86 (2H, t, \(J\) 6.5), 3.87 (2H, t, \(J\) 6.5), 6.94-6.99 (2H, m), 6.98-7.03 (2H, m), 7.06-7.13 (1H, m), 7.16-7.22 (2H, m), 7.29-7.38 (2H, m); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\)C: 38.6, 63.9, 118.9, 119.2, 123.3, 129.9, 130.4, 133.4, 156.0, 157.5; HRMS (ES\(^+\)) calculated for [C\(_{14}\)H\(_{13}\)O]\(^+\) ((M-H\(_2\)O)+H\(^+\)) m/z: 197.0966, found 197.0971 (+2.5 ppm).
2-(benzo[d][1,3]dioxol-5-yl)ethan-1-ol

The title compound was prepared according to general procedure 1 using 3,4-(methylenedioxy)phenylacetic acid (541 mg, 3.0 mmol). Purification by flash silica chromatography (eluent = 10-15% EtOAc in n-pentane, 30 x 180 mm silica) gave the title compound as a pale yellow oil (294 mg, 59%); R_f = 0.50 (eluent = 50% EtOAc in hexanes); ν_{max} / cm⁻¹ (film) 3341, 2941, 2882, 2779, 1501, 1483, 1441, 1242, 1184, 1034, 924, 810; ¹H NMR (500 MHz, CDCl₃) δ_H: 1.39 (1H, br s), 2.79 (2H, t, J 6.5), 3.82 (2H, t, J 6.5), 5.93 (2H, s), 6.68 (1H, d, J 8.0), 6.72 (1H, s), 6.76 (1H, d, J 8.0); ¹³C NMR (126 MHz, CDCl₃) δ_C: 39.0, 63.9, 101.0, 108.5, 109.5, 122.1, 132.3, 146.3, 147.9; HRMS (EI) calculated for [C₉H₁₀O₃]⁺ (M)⁺ m/z : 166.0630, found 166.0638 (+4.8 ppm).
The title compound was prepared according to general procedure 1 using 4-(trifluoromethyl)phenylacetic acid (613 mg, 3.0 mmol). Purification by flash silica chromatography (eluent = 10% EtOAc in hexanes, 30 x 150 mm silica) gave the title compound as a colourless oil (428 mg, 75%); \(R_f = 0.33 \) (eluent = 30% EtOAc in hexanes); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta_H \): 1.41 (1H, br s), 2.93 (2H, t, \(J = 6.5 \)), 3.90 (2H, t, \(J = 6.5 \), CH\(_2\)OH), 7.36 (2H, d, \(J = 8.0 \)), 7.57 (2H, d, \(J = 8.0 \)); \(^{19}\)F NMR (471 MHz, CDCl\(_3\)) \(\delta_F \): -62.4; \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta_C \): 39.1, 63.4, 124.4 (q, \(J = 272 \)), 125.6 (q, \(J = 3.8 \), 129.0 (q, \(J = 32.5 \)), 129.5, 143.0. Spectroscopic data in accordance with the literature.

2-(4-(trifluoromethyl)phenyl)ethan-1-ol

![Chemical structure of 2-(4-(trifluoromethyl)phenyl)ethan-1-ol](image)
The title compound was prepared according to general procedure 1 using 2-(3,5-bis(trifluoromethyl)phenyl)acetic acid (817 mg, 3.0 mmol). Purification by flash silica chromatography (eluent = 5-15% EtOAc in n-pentane, 30 x 180 mm silica) gave the title compound as a white solid (459 mg, 59%); mp 54-56 °C (Lit. 54-56 °C); Rf = 0.63 (eluent = 50% EtOAc in hexanes); \(\nu_{\text{max}} / \text{cm}^{-1} \) (film) 3343, 2965, 2920, 1624, 1379, 1271, 1157, 1111, 1030, 899, 837, 704, 683; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta_H \): 1.47 (1H, br s), 3.00 (2H, t, \(J = 6.0 \)), 3.94 (2H, t, \(J = 6.0 \)), 7.71 (2H, s), 7.76 (1H, s); \(^19\)F NMR (471 MHz, CDCl\(_3\)) \(\delta_F \): -62.8; \(^13\)C NMR (126 MHz, CDCl\(_3\)) \(\delta_C \): 38.7, 62.9, 120.7, 123.5 (q, \(J = 273.2 \)), 129.4 (m), 131.8 (q, \(J = 33.1 \)), 141.6; HRMS (EI\(^+\)) calculated for [C\(_{10}\)H\(_8\)OF\(_6\)]\(^+\) (M)\(^+\) m/z: 258.0479, found 258.0477 (-0.8 ppm).
The title compound was prepared according to general procedure 1 using ethyl-3-pyridylacetate (456 µL, 495.6 mg, 3.0 mmol). Purification by flash silica chromatography (eluent = 5% MeOH in CH₂Cl₂, 30 x 150 mm silica) gave the title compound as a pale yellow oil (247 mg, 66%); Rf = 0.17 (eluent = 50% EtOAc in hexanes); **¹H NMR (500 MHz, CDCl₃)** δ_H: 2.07 (1H, br s), 2.87 (2H, t, J 6.5), 3.88 (2H, t, J 6.5), 7.23 (1H, ddd, J 7.5, 4.5, 1.0), 7.57 (1H, ddd, J 8.0, 2.5, 1.5), 8.44 (1H, dd, J 5.0, 1.5), 8.50 (1H, d, J 2.5); **¹³C NMR (126 MHz, CDCl₃)** δ_C: 36.4, 63.3, 123.6, 134.4, 136.7, 148.0, 150.4. Spectroscopic data in accordance with that stated in the literature.⁷

2-(pyridin-3-yl)ethan-1-ol

![NMR Spectrogram](image-url)
2-(furan-2-yl)ethan-1-ol

Under nitrogen, a flame dried 100 mL round-bottomed flask equipped with a magnetic stirrer bar was charged with furan (1.45 mL, 1.36 g, 20 mmol), THF (20 mL) and n-BuLi (11 mL, 20 mmol, 1.8 M in hexanes). The solution was cooled to -15 °C and charged with dropwise addition of ethylene oxide (8 mL, 24 mmol, 3.0 M in THF). The mixture was left to react for 1 h at -15 °C, and 16 h at rt. It was then quenched with sat. aq. NH₄Cl (10 mL) and water (50 mL). The mixture was washed with EtOAc (10 mL) and transferred to a separatory funnel filled with EtOAc (50 mL). The organic layer was collected, the aqueous layer was washed with EtOAc (2 x 50 mL). The organics were combined, washed with brine, dried over MgSO₄, filtered and concentrated in vacuo. Purification by flash silica chromatography (eluent = 15% EtOAc in hexanes, 40 x 100 mm silica) gave the title compound as a yellow oil (859 mg, 38%); Rf = 0.41 (eluent = 25% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δH: 1.59 (1H, m), 2.91 (2H, t, J 6.5), 3.84-3.92 (2H, m), 6.10-6.13 (1H, m), 6.31 (1H, dd, J 9.0, 1.5), 7.34 (1H, dd, J 2.0, 1.0); ¹³C NMR (126 MHz, CDCl₃) δC: 31.7, 61.3, 106.7, 110.4, 141.7, 153.0. Spectroscopic data in accordance with that stated in the literature.
A 25 mL round-bottomed flask equipped with a magnetic stirrer bar was charged with 4’-(trifluoromethyl)acetophenone (753 mg, 4.0 mmol) and MeOH (10 mL). The solution was cooled to 0 °C and was charged with NaBH₄ (228 mg, 6.0 mmol). The mixture was left stirring for 3 h at rt. The mixture was quenched with sat. aq. NH₄Cl (2 mL) and H₂O (5 mL). EtOAc (25 mL) was added and the mixture was transferred to a separatory funnel. The organic layer was collected. The aqueous phase was washed EtOAc (2 x 25 mL). The organics were combined, dried over MgSO₄ filtered and concentrated in vacuo. Purification by flash silica chromatography (eluent = 15% EtOAc in hexanes, 30 x 110 mm silica) gave the title compound as a colourless oil (569 mg, 75%); Rf = 0.28 (eluent = 10% EtOAc in n-pentane); ¹H NMR (500 MHz, CDCl₃) δH: 1.51 (3H, d, J 6.5), 1.87 (2H, d, J 3.0), 4.97 (1H, dq, J 6.5, 3.0), 7.46-7.52 (2H, m), 7.58-7.64 (2H, m); ¹⁹F NMR (471 MHz, CDCl₃) δF: -62.5; ¹³C NMR (126 MHz, CDCl₃) δC: 25.6, 70.0, 124.3 (q, J 272), 125.6 (q, J 3.8), 125.8, 129.8 (q, J 32.4), 149.8 (m). Spectroscopic data in accordance with that stated in the literature.⁹
1-(3,5-bis(trifluoromethyl)phenyl)ethan-1-ol

A flame dried round-bottomed flask equipped with a magnetic stirrer bar was charged with 3',5'-bis(trifluoromethyl)benzaldehyde (660 µL, 968.5 mg, 4.0 mmol) and THF (6 mL). The solution was cooled to 0 °C and was then charged with MeMgBr (1.6 mL, 4.8 mmol, 3M in Et₂O). The mixture was then left to reach rt and was left to stir for 16h. The mixture was quenched with sat aq. NH₄Cl (2 mL) and H₂O (5 mL). EtOAc (25 mL) was added and the mixture was transferred to a separatory funnel. The organic layer was collected. The aqueous layer was washed with EtOAc (2 x 25 mL). The organics were combined, washed with brine, dried over MgSO₄ and concentrated in vacuo. Purification by flash silica chromatography (eluent = 5% EtOAc in n-pentane, 30 x 150 mm silica) gave the title compound as a white solid (420 mg, 41%); mp 72-75 °C (Lit. 74 °C); Rᵣ = 0.41 (eluent = 10% EtOAc in n-pentane); \(^1\)H NMR (500 MHz, CDCl₃) δH: 1.55 (3H, d, J 6.5), 1.99 (1H, br s), 5.05 (1H, q, J 6.5), 7.79 (1H, s), 7.82-7.87 (2H, s); \(^{19}\)F NMR (471 MHz, CDCl₃) δF: -62.5; \(^{13}\)C NMR (126 MHz, CDCl₃) δC: 25.8, 69.4, 121.5 (m), 123.5 (q, J 271), 125.8 (m), 131.9 (q, J 33.3), 148.3. Spectroscopic data in accordance with that stated in the literature.\(^{11}\)
A flame dried round-bottomed flask equipped with a magnetic stirrer bar was charged with 4'-
(trifluoromethyl)benzaldehyde (410 µL, 522 mg, 3.0 mmol) and THF (6 mL). The solution was cooled
to 0 °C and was then charged with EtMgBr (1.2 mL, 3.6 mmol, 3M in Et₂O). The mixture was then left
to reach rt and was left to stir for 16h. The mixture was quenched with sat aq. NH₄Cl (2 mL) and H₂O
(5 mL). EtOAc (25 mL) was added and the mixture was transferred to a separatory funnel. The organic
layer was collected. The aqueous layer was washed with EtOAc (2 x 25 mL). The organics were
combined, washed with brine, dried over MgSO₄ and concentrated in vacuo. Purification by flash
silica chromatography (eluent = 10% EtOAc in hexanes, 30 x 150 mm silica) gave the title compound
as a colourless oil (344 mg, 56%); \(R_f = 0.38 \) (eluent = 10% EtOAc in n-pentane); \(^1\)H NMR (500 MHz,
CDCl₃) \(\delta_H: 0.93 \) (3H, t, \(J = 7.5 \)), 1.70-1.87 (2H, m), 1.89-1.94 (1H, m), 4.69 (1H, dt,
\(J = 6.5, 3.5 \)), 7.46 (2H, d, \(J = 8.0 \)), 7.61 (2H, d, \(J = 8.0 \)); \(^1\)F NMR (471 MHz, CDCl₃) \(\delta_F: -62.5 \); \(^13\)C NMR (126 MHz, CDCl₃) \(\delta_C: 10.0, 32.2, 75.4, 124.3 \) (q, \(J = 272 \)), 125.5 (q, \(J = 3.8 \)), 126.4, 129.8 (q, \(J = 32.4 \)), 148.7 (m). Spectroscopic data in
accordance with that stated in the literature.\(^\dagger\)
A flame dried round-bottomed flask equipped with a magnetic stirrer bar was charged with 3',5'-((bistrifluoromethyl)benzaldehyde (494 µL, 726 mg, 3.0 mmol) and THF (6 mL). The solution was cooled to 0 °C and was then charged with EtMgBr (1.2 mL, 3.6 mmol, 3 M in Et₂O). The mixture was then left to reach rt and was left to stir for 16h. The mixture was quenched with sat aq. NH₄Cl (2 mL) and H₂O (5 mL). EtOAc (25 mL) was added and the mixture was transferred to a separatory funnel. The organic layer was collected. The aqueous layer was washed with EtOAc (2 x 25 mL). The organics were combined, washed with brine, dried over MgSO₄ and concentrated *in vacuo*. Purification by flash silica chromatography (eluent = 10% EtOAc in hexanes, 30 x 150 mm silica) gave the title compound as a white solid (349 mg, 43%); mp 94-96 °C; Rf = 0.55 (eluent = 10% EtOAc in n-pentane); ν∕cm⁻¹ (film) 3277, 3192, 1646, 1382, 1350, 1275, 1159, 1113, 1049, 982, 937, 901, 862, 843, 739, 704, 683, 671; ^1H NMR (500 MHz, CDCl₃) δ_H: 0.97 (3H, t, J 7.5), 1.75-1.87 (2H, m), 2.03 (1H, d, J 3,5), 4.78 (1H, dt, J 6.5, 3.5), 7.79 (1H, s), 7.82 (2H, s); ^19F NMR (471 MHz, CDCl₃) δ_F: -62.8; ^13C NMR (126 MHz, CDCl₃) δ_C: 9.9, 32.4, 74.8, 121.5, 123.5 (q, J 273), 126.3 (m), 131.8 (q, J 33.4), 147.2. HRMS (EI⁺) calculated for [C₁₁H₁₀OF₆]⁺ (M) m/z : 272.0636, found 272.0627 (-3.3 ppm).
A 100 mL round-bottomed flask equipped with a magnetic stirrer bar was charged with 2-phenoxy-1-phenylethan-1-one (1.27 g, 6.0 mmol) and MeOH (15 mL). The solution was cooled to 0 °C and was then charged with NaBH$_4$ (340 mg, 9.0 mmol) portion wise. The mixture was left stirring for 16 h at rt. The mixture was quenched with sat. aq. NH$_4$Cl (5 mL) and H$_2$O (10 mL). EtOAc (50 mL) was added and the mixture was transferred to a separatory funnel. The organic layer was collected. The aqueous phase was washed EtOAc (2 x 50 mL). The organics were combined, dried over MgSO$_4$ filtered and concentrated in vacuo. Purification by flash silica chromatography (eluent = 15% EtOAc in hexanes, 40 x 120 mm silica) gave the title compound as a white solid (1.17 g, 91%); mp 61-63 °C (Lit. 62-64 °C).14 Rf = 0.36 (20% EtOAc in hexanes); 1H NMR (500 MHz, CDCl$_3$) δ: 2.81 (1H, s), 4.02 (1H, dd, J 9.5, 9.0), 4.12 (1H, dd, J 9.0, 3.0), 5.14 (1H, dd, J 9.0, 3.0), 6.90-6.96 (2H, m), 6.96-7.02 (1H, m), 7.27-7.33 (2H, m), 7.32-7.38 (1H, m), 7.38-7.44 (2H, m), 7.44-7.40 (2H, m); 13C NMR (126 MHz, CDCl$_3$) δ: 72.7, 73.4, 114.8, 121.4, 126.4, 128.3, 128.7, 129.7, 139.8, 158.5; Spectroscopic data in accordance with the literature.14
2,3-dihydro-1H-inden-2-ol

A 50 mL round-bottomed flask equipped with a magnetic stirrer bar was charged with 2-indanone (661 mg, 5.0 mmol) and MeOH (25 mL). The solution was cooled to 0 °C and was charged with NaBH₄ (228 mg, 6.0 mmol). The mixture was left stirring for 3 h at rt. The mixture was quenched with sat. aq. NH₄Cl (2 mL) and H₂O (5 mL). EtOAc (25 mL) was added and the mixture was transferred to a separatory funnel. The organic layer was collected. The aqueous phase was washed EtOAc (2 x 25 mL). The organics were combined, dried over MgSO₄, filtered and concentrated in vacuo. Purification by flash silica chromatography (eluent = 50% EtOAc in hexanes, 30 x 110 mm silica) gave the title compound as a white solid (592 mg, 88%); mp 67-69 °C (Lit. 67-68 °C); Rf = 0.07 (eluent = 10% EtOAc in hexanes); νmax / cm⁻¹ (film) 3260, 2932, 1479, 1458, 1423, 1341, 1308, 1269, 1198, 1032, 1020, 051, 926, 735, 542, 417; ¹H NMR (500 MHz, CDCl₃) δH: 1.63 (1H, d, J 5.0), 2.92 (2H, dd, J 16.5, 3.0), 3.22 (2H, dd, J 16.5, 6.0), 4.66-4.76 (1H, m), 7.14-7.21 (2H, m), 7.21-7.29 (2H, m); ¹³C NMR (126 MHz, CDCl₃) δC: 42.8, 73.3, 125.1, 126.8, 140.9; HRMS (EI⁺) calculated for [C₉H₁₀O]⁺ (M)⁺ m/z: 134.0732, found 134.0732 (+0.0 ppm).
2.2. Optimization of iron-catalyzed β-C(sp³)-methylation

A 10 mL microwave vial equipped with a magnetic stirrer bar was charged with base (x mmol), additive (x mol %), precatalyst (x mol %), MeOH (x mL) and 2-phenylethanol (60 μL, 61.1 mg, 0.5 mmol). The vial was sealed with a cap and was left to react at the specified temperature (°C) and time (h). It was then cooled, mesitylene (70 μL, 60.1 mg, 0.5 mmol) added, EtOAc (1 mL), sat. aq. NH₄Cl (0.5 mL) and H₂O (0.5 mL). In some cases brine (0.5 mL) was added to aid layer separation. The mixture was stirred for 5 minutes and left to settle for a further 5 minutes. The top layer was sampled and analysed using ¹H NMR.

Entry	Cat. loading (mol %)	Additive (mol %)	Base (equiv)	Solvent	T (°C)	Time (h)	3 (%)[^b]
1	-	-	NaOH (2)	MeOH (0.5 M)	130	24	< 2
2	[Fe] 2 (5)	Me₃NO (10)	NaOH (2)	MeOH (0.5 M)	130	24	85 (75)
3	[Fe] 4 (5)	Me₃NO (10)	NaOH (2)	MeOH (0.5 M)	130	24	< 2
4	[Fe] 5 (5)	Me₃NO (10)	NaOH (2)	MeOH (0.5 M)	130	24	< 2
5	[Fe] 6 (5)	Me₃NO (10)	NaOH (2)	MeOH (0.5 M)	130	24	< 2
6	[Fe] 7 (5)	Me₃NO (10)	NaOH (2)	MeOH (0.5 M)	130	24	< 2
7	[Fe] 8 (5)	Me₃NO (10)	NaOH (2)	MeOH (0.5 M)	130	24	< 2
8	[Fe] 2 (5)	-	NaOH (2)	MeOH (0.5 M)	130	24	81
9	[Fe] 2 (5)	PPh₃ (10)	NaOH (2)	MeOH (0.5 M)	130	24	76
10	[Fe] 2 (5)	Me₃NO (10)	-	MeOH (0.5 M)	130	24	< 2
11	[Fe] 2 (5)	Me₃NO (10)	K₂CO₃ (2)	MeOH (0.5 M)	130	24	75
12	[Fe] 2 (5)	Me₃NO (10)	KOt-Bu (2)	MeOH (0.5 M)	130	24	80
13	[Fe] 2 (5)	Me₃NO (10)	Cs₂CO₃ (2)	MeOH (0.5 M)	130	24	54
14	[Fe] 2 (5)	Me₃NO (10)	KOH (2)	MeOH (0.5 M)	130	24	75
15	[Fe] 2 (5)	Me₃NO (10)	NaOH (0.2)	MeOH (0.5 M)	130	24	75
16	[Fe] 2 (5)	Me₃NO (10)	NaOH (4)	MeOH (0.5 M)	130	24	66
17	[Fe] 2 (10)	Me₃NO (20)	NaOH (2)	MeOH (0.5 M)	130	24	73
18	[Fe] 2 (2)	Me₃NO (4)	NaOH (2)	MeOH (0.5 M)	130	24	62
19	[Fe] 2 (5)	Me₃NO (10)	NaOH (2)	MeOH (0.5 M)	140	24	79
20	[Fe] 2 (5)	Me₃NO (10)	NaOH (2)	MeOH (0.5 M)	120	24	64
21	[Fe] 2 (5)	Me₃NO (10)	NaOH (2)	MeOH (1 M)	130	24	69
22	[Fe] 2 (5)	Me₃NO (10)	NaOH (2)	MeOH (0.25 M)	130	24	57
23	[Fe] 2 (5)	Me₃NO (10)	NaOH (2)	MeOH/PhMe (0.5 M)	130	24	72
24	[Fe] 2 (5)	Me₃NO (10)	NaOH (2)	MeOH (0.5 M)	130	6	70
25	[Fe] 2 (5)	Me₃NO (10)	NaOH (2)	MeOH (0.5 M)	130	48	81

[^a]: Reactions performed using 1 (0.5 mmol) and reagent grade MeOH. [¹] = 0.5 M. [^b]: Yield after 24 h as determined by ¹H NMR analysis of the crude reaction mixture with 1,3,5-trimethylbenzene as the internal standard. Isolated yield given in parentheses.
2.3. Substrate scope

2.3.1. General procedure 2

A 10 mL microwave vial equipped with a magnetic stirrer bar was charged with NaOH (40 mg, 1 mmol), Me$_3$NO.2H$_2$O (5.6 mg, 0.1 mmol, 10 mol %), [Fe] precatalyst 2 (11.4 mg, 0.025 mmol, 5 mol %), MeOH (1 mL) and alcohol (0.5 mmol). The vial was sealed with a cap and was left to stir at 130 °C for 24 hours. It was then cooled, treated with sat. aq. NH$_4$Cl (0.5 mL) and H$_2$O (0.5 mL), washed with EtOAc (15 mL) and transferred to a separatory funnel filled with brine (15 mL). The organic layer was collected and the aqueous phase washed with EtOAc (2 x 15 mL). The organics were combined, dried over MgSO$_4$, filtered and concentrated in vacuo.

2-phenylpropan-1-ol

The title compound was prepared according to general procedure 2 using 2-phenylethanol (60 µL, 61 mg, 0.5 mmol). Purification by flash silica chromatography (eluent = 5% EtOAc in hexanes, 20 x 200 mm silica) gave the title compound as a colourless oil (51 mg, 75%); R$_f$ = 0.28 (20% EtOAc in hexanes); 1H NMR (500 MHz, CDCl$_3$) δH: 1.29 (3H, d, J 7.0), 2.96 (1H, sext, J 7.0), 3.71 (2H, d, J 7.0), 7.21 - 7.27 (3H, m), 7.30 - 7.37 (2H, m); 13C NMR (126 MHz, CDCl$_3$) δC: 17.7, 42.6, 68.9, 126.8, 127.6, 128.8, 143.8. Spectroscopic data in accordance with the literature.16

10 mmol Scale

An ACE pressure tube rated at 150 PSI was charged with NaOH (800 mg, 20.0 mmol), Me$_3$NO.2H$_2$O (111 mg, 1.0 mmol) and [Fe] precatalyst 2 (228 mg, 0.5 mmol). The vessel was charged with MeOH (20 mL) and 2-phenylethanol (1.20 mL, 1.22 g, 10.0 mmol). It was sealed with the appropriate screw top cap, placed in an oil bath behind a blast shield, and the mixture was left to react at 130 °C for 24 hours. It was then cooled and charged with sat aq. NH$_4$Cl (10 mL), EtOAc (20 mL) and H$_2$O (10 mL). The mixture was transferred to a separatory funnel filled with brine (50 mL). The organic layer was collected and the aqueous phase washed with EtOAc (2 x 50 mL). The organics were combined, dried over MgSO$_4$, filtered and concentrated in vacuo. Purification by flash silica chromatography (eluent
= 5-10% EtOAc in pet. ether, 40 x 220 mm silica) gave a colourless oil (1.02 g, 76%). Spectroscopic data in accordance with that reported previously.
The title compound was prepared according to general procedure 2 using 4-methylphenethyl alcohol (70 µL, 68 mg, 0.5 mmol). Purification by flash silica chromatography (eluent = 10% EtOAc in hexanes, 20 x 200 mm silica) gave the title compound as a colourless oil (46 mg, 61%); Rf = 0.47 (eluent = 30% EtOAc in hexanes); νmax / cm⁻¹ (film) 3335, 3019, 2963, 2920, 2864, 1514, 1449, 1034, 1011, 816, 721, 556, 527; ¹H NMR (500 MHz, CDCl₃) δH: 1.26 (3H, d, J 7.0), 1.30 (1H, br s), 2.33 (3H, s), 2.92 (1H, sext, J 7.0), 3.68 (2H, d, J 7.0), 7.14 (4H, s); ¹³C NMR (126 MHz, CDCl₃) δC: 17.8, 21.1, 42.4, 68.9, 127.5, 129.5, 136.4, 140.7; HRMS (EI⁺) calculated for [C₁₀H₁₄O]⁺ (M)⁺ m/z: 150.1045, found 150.1047 (+1.3 ppm).
The title compound was prepared according to general procedure 2 using 3-methylphenethyl alcohol (68 mg, 0.5 mmol). Purification by flash silica chromatography (eluent = 10% EtOAc in hexanes, 20 x 200 mm silica) gave the title compound as a colourless oil (49 mg, 65%); Rf = 0.47 (eluent = 30% EtOAc in hexanes); νmax / cm⁻¹ (film) 3329, 3015, 2961, 2928, 2868, 1491, 1460, 1383, 1030, 1011, 756, 723, 451; ¹H NMR (500 MHz, CDCl₃) δH: 1.27 (3H, d, J = 7.0), 1.29 (1H, t, J = 6.0), 2.35 (3H, s), 2.93 (1H, sext, J = 7.0), 3.70 (2H, t, J = 6.0), 7.01-7.09 (3H, m), 7.19-7.25 (1H, m); ¹³C NMR (126 MHz, CDCl₃) δC: 17.8, 21.6, 42.5, 68.9, 124.6, 127.6, 128.4, 128.7, 138.4, 143.7; HRMS (EI⁺) calculated for [C₁₀H₁₄O]⁺ (M)⁺ m/z: 150.1045, found 150.1045 (+0.0 ppm).
1-(o-tolyl)propan-1-ol

The title compound was prepared according to general procedure 2 using 2-(o-tolyl)-1-ethanol (68 mg, 0.5 mmol). Purification by flash silica chromatography (eluent = 10% EtOAc in hexanes, 20 x 200 mm silica) gave the title compound as a colourless oil (30 mg, 40%); R_f = 0.43 (eluent = 30% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ_H: 1.25 (3H, d, <i>J</i> 7.0), 1.38 (1H, br s), 2.37 (3H, s), 3.27 (1H, sext, <i>J</i> 7.0), 3.70 (1H, dd, <i>J</i> 11.0, 6.5), 3.76 (1H, dd, <i>J</i> 11.0, 7.0), 7.09-7.24 (4H, m); ¹³C NMR (126 MHz, CDCl₃) δ_C: 17.7, 19.8, 37.3, 68.2, 125.6, 126.4, 126.5, 130.7, 136.6, 141.8. Spectroscopic data in accordance with that stated in the literature.16
The title compound was prepared according to general procedure 2 using 2-(naphthalen-1-yl)ethan-2-ol (83 mg, 0.5 mmol). Purification by flash silica chromatography (eluent = 10% EtOAc in hexanes, 20 x 200 mm silica) gave the title compound as a white solid (77 mg, 82%); mp 64-66 °C (Lit. 60 °C); \(R_f = 0.40 \) (eluent = 30% EtOAc in hexanes); \(v_{\text{max}} \) / cm\(^{-1}\) (film) 3279, 3051, 2968, 2916, 2851, 1597, 1504, 1452, 1369, 1032, 1007, 853, 816, 741, 478; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta_H \): 1.35 (1H, br s), 1.38 (3H, d, \(J = 7.0 \)), 3.14 (1H, sext, \(J = 7.0 \)), 3.80 (2H, d, \(J = 6.5 \)), 7.39 (1H, d, \(J = 8.5 \)), 7.46 (2H, quint, \(J = 7.5 \)), 7.69 (1H, s), 7.76-7.88 (3H, m); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta_C \): 17.7, 42.7, 68.7, 125.7, 125.9, 126.2, 126.2, 127.8, 127.8, 128.5, 132.6, 133.7, 141.2; HRMS (EI\(^+\)) calculated for [C\(_{13}\)H\(_{14}\)O]\(^+\) (M)\(^+\) m/z: 186.1045, found 186.1045 (+0.0 ppm).
The title compound was prepared according to general procedure 2 using 2-(naphthalen-1-yl)ethan-1-ol (83 mg, 0.5 mmol). Purification by flash silica chromatography (eluent = 10% EtOAc in hexanes, 20 x 200 mm silica) gave the title compound as a colourless oil (59 mg, 63%); $R_f = 0.40$ (eluent = 30% EtOAc in hexanes); \(^1\)H NMR (500 MHz, CDCl\(_3\)) δ: 1.40 (1H, br s), 1.45 (3H, d, $J = 6.5$), 3.78-4.02 (3H, m), 7.43 (1H, d, $J = 7.0$), 7.45-7.58 (3H, m), 7.76 (1H, d, $J = 8.0$), 7.88 (1H, d, $J = 8.0$), 8.16 (1H, d, $J = 8.5$); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) δ: 18.0, 36.5, 68.3, 123.2, 123.2, 125.7, 125.7, 126.2, 127.2, 129.1, 132.1, 134.2, 139.7. Spectroscopic data in accordance with that stated in the literature.\(^{16}\)
The title compound was prepared according to general procedure 2 using 2-[[1,1'-biphenyl]-4-yl]ethan-1-ol (99 mg, 0.5 mmol). Purification by flash silica chromatography (eluent = 10% EtOAc in hexanes, 20 x 220 mm silica) gave the title compound as an off-white solid (91 mg, 86%); mp 64-66 °C; Rf = 0.63 (eluent = 50% EtOAc in hexanes); νmax / cm⁻¹ (film) 3269, 3055, 3028, 2972, 2941, 2901, 2859, 1707, 1485, 1362, 1256, 1229, 1180, 1030, 1003, 833, 816, 760, 727, 689, 673; ¹H NMR (500 MHz, CDCl₃) δH: 1.32 (3H, d, J = 7.0), 3.02 (1H, sext, J = 7.0), 3.76 (2H, d, J = 7.0), 7.30-7.37 (3H, m), 7.41-7.47 (2H, m), 7.54-7.61 (4H, m); ¹³C NMR (126 MHz, CDCl₃) δC: 17.8, 42.3, 68.9, 127.2, 127.3, 127.5, 128.0, 128.9, 139.8, 141.1, 142.9; HRMS (AP⁺) calculated for [C₁₅H₁₅]⁺ ((M-H₂O)+H)⁺ m/z: 195.1174, found 195.1173 (-0.5 ppm).
The title compound was prepared according to general procedure 2 using 4-methoxyphenethyl alcohol (76 mg, 0.5 mmol). Purification by flash silica chromatography (eluent = 15% EtOAc in hexanes, 20 x 200 mm silica) gave the title compound as a colourless oil (48 mg, 57%); Rf = 0.33 (eluent = 30% EtOAc in hexanes); 1H NMR (500 MHz, CDCl$_3$) δH: 1.25 (3H, d, J 7.0), 1.30 (1H, br s), 2.91 (1H, sext, J 7.0), 3.60-3.72 (2H, m), 3.80 (3H, s), 6.88 (2H, d, J 8.0), 7.16 (2H, d, J 8.0); 13C NMR (126 MHz, CDCl$_3$) δC: 17.9, 41.7, 55.4, 69.0, 114.2, 128.5, 135.7, 158.5. Spectroscopic data in accordance with that stated in the literature.16
The title compound was prepared according to general procedure 2 using 2-(4-phenoxyphenyl)ethan-1-ol (107 mg, 0.5 mmol). Purification by flash silica chromatography (eluent = 20% EtOAc in hexanes, 20 x 220 mm silica) gave the title compound as an colourless oil (92 mg, 81%); \(R_f = 0.20 \) (20% EtOAc in hexanes); \(\nu_{\text{max}} / \text{cm}^{-1} \) (film) 3327, 3036, 2961, 2920, 2870, 1587, 1504, 1489, 1234, 1198, 1167, 1036, 1009, 868, 835, 754, 691; \(^1\text{H NMR (500 MHz, CDCl}_3\text{)}\) \(\delta_H \): 1.28 (3H, d, \(J = 7.0 \)), 1.32 (1H, br s), 2.95 (1H, sext, \(J = 7.0 \)), 3.64-3.75 (2H, m), 6.96-7.00 (2H, m), 6.99-7.03 (2H, m), 7.07-7.13 (1H, m), 7.17-7.23 (2H, m), 7.30-7.37 (2H, m); \(^{13}\text{C NMR (126 MHz, CDCl}_3\text{)}\) \(\delta_C \): 17.9, 41.9, 68.9, 118.9, 119.2, 123.3, 128.8, 129.9, 138.6, 156.1, 157.4; HRMS (ES\(^+\)) calculated for [C\(_{15}\)H\(_{15}\)O\(^+\)] \((\text{M-H}_2\text{O}+\text{H})^+\) m/z: 211.1123, found 211.1128 (+2.4 ppm).
2-(4-(benzyl oxy)phenyl)propan-1-ol

The title compound was prepared according to general procedure 2 using 4-benzyl oxyphenethyl alcohol (114 mg, 0.5 mmol). Purification by flash silica chromatography (eluent = 15% EtOAc in hexanes, 20 x 200 mm silica) gave the title compound as a white solid (90 mg, 74%); mp 52-54 °C; Rf = 0.33 (eluent = 30% EtOAc in hexanes); νmax / cm⁻¹ (film) 3256, 3034, 2980, 2882, 1611, 1508, 1447, 1379, 1242, 1179, 1013, 833, 731, 694, 546. ¹H NMR (500 MHz, CDCl₃) δH: 1.25 (3H, d, J 6.5), 1.29 (1H, br s), 2.91 (1H, sext, 7.0), 3.60-3.73 (2H, m), 5.05 (2H, s), 6.95 (2H, d, J 8.0), 7.16 (2H, d, J 8.0), 7.32 (1H, t, J 7.5), 7.39 (2H, t, J 7.5), 7.43 (2H, d, J 7.5); ¹³C NMR (126 MHz, CDCl₃) δC: 17.9, 41.7, 69.0, 70.2, 115.1, 127.6, 128.1, 128.6, 128.7, 136.0, 137.2, 157.8; HRMS (EI⁺) calculated for [C₁₆H₁₈O₂]⁺ (M)+ m/z: 242.1307 found 242.1312 (+2.1 ppm).
The title compound was prepared according to general procedure 2 using 2-(benzo[d][1,3]dioxol-5-yl)ethan-1-ol (83 mg, 0.5 mmol). Purification by flash silica chromatography (eluent = 20% Et₂O in n-pentane, 20 x 220 mm silica) gave the title compound as a pale-yellow oil (66 mg, 73%); Rf = 0.20 (20% EtOAc in hexanes); νmax / cm⁻¹ (film) 3360, 2961, 2874, 1501, 1483, 1439, 1240, 1186, 1011, 935, 916, 860, 806, 637; ¹H NMR (500 MHz, CDCl₃) δH: 1.23 (3H, d, J 7.0), 1.33 (1H, br s), 2.89 (1H, sext, J 7.0), 3.56-3.74 (2H, m), 5.94 (1H, d, J 8.0), 6.07 (1H, d, J 8.0), 6.74 (1H, s), 6.77 (1H, d, J 8.0); ¹³C NMR (126 MHz, CDCl₃) δC: 17.9, 42.3, 68.9, 101.0, 107.7, 108.5, 120.7, 137.7, 146.4, 148.0; HRMS (EI⁺) calculated for [C₁₀H₁₂O₃]⁺ (M)⁺ m/z: 180.0786, found 180.0789 (+1.7 ppm).
The title compound was prepared according to general procedure 2 using 4-aminophenethyl alcohol (69 mg, 0.5 mmol). Purification by flash silica chromatography (eluent = 20-50% EtOAc in hexanes, 20 x 200 mm silica) gave the title compound as a pale-yellow oil (43 mg, 52%); Rf = 0.08 (20% EtOAc in hexanes); νmax / cm⁻¹ (film) 3404, 3347, 2961, 2920, 2876, 2805, 1612, 1522, 1315, 1256, 1180, 1034, 1015, 1003, 820; ¹H NMR (500 MHz, CDCl₃) δ: 1.23 (3H, d, J 7.0), 2.79-2.90 (4H, m), 3.58-3.70 (2H, m), 6.58-6.64 (2H, m), 7.04-7.10 (2H, m); ¹³C NMR (126 MHz, CDCl₃) δ: 17.9, 31.0, 41.7, 69.0, 112.9, 128.4, 132.0, 148.3; HRMS [EI⁺] calculated for [C₁₀H₁₅NO]⁺ (M)⁺ m/z: 165.1154, found 165.1152 (-1.2 ppm).
The title compound was prepared according to general procedure 2 using 4-(trifluoromethyl)phenethyl alcohol (76 µL, 95 mg, 0.5 mmol). Purification by flash silica chromatography (eluent = 15% EtOAc in hexanes, 20 x 200 mm silica) gave the title compound as a colourless oil (82 mg, 80%); Rf = 0.43 (eluent = 30% EtOAc in hexanes); 1H NMR (500 MHz, CDCl$_3$) δH: 1.30 (3H, d, J 7.0), 1.34 (1H, br s), 3.03 (1H, sext, J 7.0), 3.75 (2H, d, J 6.5), 7.36 (2H, d, J 7.5), 7.59 (2H, d, J 8.0); 19F NMR (471 MHz, CDCl$_3$) δF: -62.4; 13C NMR (126 MHz, CDCl$_3$) δC: 17.6, 42.5, 68.5, 124.4 (q, J 272), 125.7 (q, J 3.8), 128.0, 129.1 (q, J 32.5), 148.2 (m). Spectroscopic data in accordance with the literature.16

2-(4-(trifluoromethyl)phenyl)propan-1-ol
The title compound was prepared according to general procedure 2 using 2-(3,5-bis(trifluoromethyl)phenyl)ethan-1-ol (136 mg, 0.5 mmol). Purification by flash silica chromatography (eluent = 20% Et₂O in n-pentane, 20 x 140 mm silica) gave the title compound as a colourless oil (119 mg, 88%); R_f = 0.28 (20% EtOAc in hexanes); ν_{max} / cm⁻¹ (film) 3337, 2976, 2930, 2882, 1470, 1381, 1344, 1273, 1165, 1119, 1076, 1030, 978, 893, 847, 721, 704, 679; ¹H NMR (500 MHz, CDCl₃) δ_H: 1.34 (3H, d, J_{7.5}), 1.42 (1H, br s), 3.11 (1H, sext, J_{7.0}), 3.71-3.85 (2H, m), 7.70 (2H, s), 7.76 (1H, s); ¹⁹F NMR (471 MHz, CDCl₃) δ_F: -62.8; ¹³C NMR (126 MHz, CDCl₃) δ_C: 17.5, 42.3, 68.0, 120.8 (sept, J_{3.8}), 123.5 (q, J_{272.9}), 127.9 (m), 131.8 (q, J 33.1), 146.8; HRMS (EI⁺) calculated for [C₁₁H₁₀OF₆]⁺ (M)⁺ m/z: 272.0636, found 272.0627 (-3.3 ppm).
The title compound was prepared according to general procedure 2 using 2-(trifluoromethyl)phenethyl alcohol (79 µL, 95 mg, 0.5 mmol). Purification by flash silica chromatography (eluent = 15% Et₂O in n-pentane, 20 x 210 mm silica) gave the title compound as a colourless oil (23 mg, 23%); Rᵋ = 0.16 (eluent = 20% Et₂O in n-pentane); νₓₓₙₓ max / cm⁻¹ (film) 3021, 2953, 2880, 1605, 1456, 1312, 1157, 1109, 1059, 1038, 770, 743, 652, 515; ¹H NMR (500 MHz, CDCl₃) δₓ: 1.30 (3H, d, J 7.0), 1.37 (1H, br s), 3.42 (1H, dsext, J 7.0, 1.0), 3.69-3.77 (1H, m), 3.78-3.86 (1H, m), 7.32 (1H, t, J 7.5), 7.46 (1H, d, J 7.5), 7.54 (1H, d, J 7.5), 7.65 (1H, d, J 7.5); ¹⁹F NMR (471 MHz, CDCl₃) δₓ: -58.5; ¹³C NMR (126 MHz, CDCl₃) δₓ: 18.7, 37.6 (m), 68.2, 124.7 (q, J 274), 126.1 (q, J 5.9), 126.5, 127.8, 129.0 (q, J 29.2), 132.2 (m), 143.3 (m); HRMS (El⁺) calculated for [C₁₀H₁₁OF₃]⁺ (m)⁺ m/z : 204.0762, found 204.0763 (+0.5 ppm).
The title compound was prepared according to general procedure 2 using 2-(4-bromophenyl)ethan-1-ol (70 µL, 101 mg, 0.5 mmol). Purification by flash silica chromatography (eluent = 10% EtOAc in hexanes, 20 x 200 mm silica) gave the title compound as a colourless oil (73 mg, 68%); R_f = 0.60 (eluent = 50% EtOAc in hexanes); ν_max / cm⁻¹ (film) 3321, 2963, 2922, 2874, 1487, 1449, 1406, 1076, 1038, 1007, 816, 714, 550, 519. ¹H NMR (500 MHz, CDCl₃) δ_H: 1.26 (3H, d, J 7.0), 2.92 (1H, sext, J 7.0), 3.64-3.73 (2H, m), 7.09-7.15 (2H, m), 7.42-7.48 (2H, m); ¹³C NMR (126 MHz, CDCl₃) δ_C: 17.6, 42.1, 68.6, 120.5, 129.4, 131.8, 142.9; HRMS (EI⁺) calculated for [C₉H₁₁OBr⁺] (M)⁺ m/z: 213.0993, found 213.0995 (+0.9 ppm).
The title compound was prepared according to general procedure 2 using 4-chlorophenethyl alcohol (68 µL, 78 mg, 0.5 mmol). Purification by flash silica chromatography (eluent = 10% EtOAc in hexanes, 20 x 200 mm silica) gave the title compound as a colourless oil (69 mg, 81%); Rf = 0.40 (eluent = 30% EtOAc in hexanes); 1H NMR (500 MHz, CDCl$_3$) δ$_H$: 1.26 (3H, d, J 7.0), 1.31 (1H, br s), 2.94 (1H, sext, J 7.0), 3.63-3.75 (2H, m), 7.18 (2H, d, J 8.0), 7.30 (2H, d, J 8.0); 13C NMR (126 MHz, CDCl$_3$) δ$_C$: 17.7, 42.0, 68.7, 128.9, 129.0, 132.5, 142.4. Spectroscopic data in accordance with that stated in the literature.16
The title compound was prepared according to general procedure 2 using 4-fluorophenethyl alcohol (63 µL, 70 mg, 0.5 mmol). Purification by flash silica chromatography (eluent = 10% EtOAc in hexanes, 20 x 200 mm silica) gave the title compound as a colourless oil (60 mg, 77%); Rf = 0.37 (eluent = 30% EtOAc in hexanes); v_{max} / cm$^{-1}$ (film) 3327, 2961, 2930, 2876, 1601, 1512, 1221, 1159, 1034, 1011, 827, 550, 527; 1H NMR (500 MHz, CDCl$_3$) δH: 1.26 (3H, d, J 7.0), 1.30 (1H, br s), 2.94 (1H, sext, J 7.0), 3.62-3.74 (2H, m), 7.02 (2H, t, J 8.5) 7.20 (2H, dd, J 8.0, 5.5); 19F NMR (471 MHz, CDCl$_3$) δF: -116.6; 13C NMR (126 MHz, CDCl$_3$) δC: 17.9, 41.8, 68.8, 115.5 (d, J 21.0), 129.0 (d, J 7.9), 139.5, (d, J 5.4), 161.8 (d, J 244); HRMS (EI$^+$) calculated for [C$_9$H$_{11}$OF]$^+$ (M)$^+$ m/z: 154.0794, found 154.0791 (-1.9 ppm).
The title compound was prepared according to general procedure 2 using tryptophol (80 mg, 0.5 mmol). Purification by flash silica chromatography (eluent = 25% EtOAc in hexanes, 20 x 200 mm silica) gave the title compound as a pale-yellow oil (49 mg, 56%); R₂ = 0.13 (eluent = 30% EtOAc in hexanes). v_{\text{max}}/\text{cm}^{-1} (film) 3545, 3402, 3283, 3055, 2963, 2926, 2870, 1454, 1341, 1221, 1090, 1020, 1005, 731. 1H NMR (500 MHz, CDCl\textsubscript{3}) δ\textsubscript{H}: 1.38 (1H, br s), 1.41 (3H, d, J = 7.0), 3.32 (1H, sext, J = 6.5), 3.76 - 3.89 (2H, m), 7.07 (1H, s), 7.13 (1H, t, J = 7.5), 7.21 (1H, t, J = 7.5), 7.38 (1H, d, J = 8.0), 7.67 (1H, d, J = 8.0), 8.05 (1H, br s); 13C NMR (126 MHz, CDCl\textsubscript{3}) δ\textsubscript{C}: 17.4, 34.1, 68.1, 111.4, 118.2, 119.4, 119.6, 121.3, 122.4, 126.9, 136.7; HRMS (EI+) calculated for [C\textsubscript{10}H\textsubscript{13}NO]+ (M)+ m/z: 175.0997, found 175.1001 (+2.3 ppm).

2-(1H-indol-3-yl)propan-1-ol
2-(pyridin-3-yl)propan-1-ol

The title compound was prepared according to general procedure 2 using 2-(pyridin-3-yl)ethan-1-ol (62 mg, 0.5 mmol). Purification by flash silica chromatography (eluent = 60-70% EtOAc in hexanes, 20 x 180 mm silica) gave the title compound as a colourless oil (53 mg, 77%); Rf = 0.17 (eluuent = 50% EtOAc in hexanes); ν_{max} / cm$^{-1}$ (film) 3225, 2967, 2920, 2870, 1580, 1476, 1425, 1047, 1016, 810, 714, 635; 1H NMR (500 MHz, CDCl$_3$) δ: 1.31 (3H, d, J 7.0), 2.99 (1H, sext, J 7.0), 3.70-3.79 (2H, m), 7.23-7.28 (1H, m), 7.55-7.60 (1H, m), 8.47 (1H, dd, J 5.0, 2.0), 8.50 (1H, d, J 2.0); 13C NMR (126 MHz, CDCl$_3$) δ: 17.4, 40.2, 68.3, 123.7, 135.1, 139.4, 148.1, 149.5; HRMS (EI$^+$) calculated for [C$_8$H$_{11}$NO]$^+$ (M)$^+$ m/z: 137.0841, found 137.0836 (-3.6 ppm).
The title compound was prepared according to general procedure 2 using 2-(2-hydroxyethyl)pyridine (62 mg, 0.5 mmol). Purification by flash silica chromatography (eluent = 30-50% EtOAc in hexanes, 20 x 180 mm silica) gave the title compound as a colourless oil (40 mg, 65%); Rf = 0.17 (eluent = 50% EtOAc in hexanes); νmax / cm⁻¹ (film) 3269, 2972, 2926, 2870, 1593, 1570, 1476, 1439, 1150, 1045, 1018, 997, 783, 750, 629, 557, 536; ¹H NMR (500 MHz, CDCl₃) δH: 1.33 (3H, d, J = 7.0), 3.08 (1H, dquint, J = 7.0, 4.0), 3.84 (1H, dd, J = 11.0, 6.5), 3.94 (1H, dd, J = 10.5, 4.0), 7.16 (1H, ddd, J = 7.5, 5.0, 1.0), 7.65 (1H, dt, J = 7.5, 2.0), 8.50 (1H, ddd, J = 5.0, 2.0, 1.0); ¹³C NMR (126 MHz, CDCl₃) δC: 17.3, 42.0, 67.3, 121.7, 122.3, 137.0, 148.7, 165.1; HRMS (AP⁺) calculated for [C₈H₁₂NO⁺] (M+H)⁺ m/z: 138.0919, found 138.0922 (+2.2 ppm).
2-(furan-2-yl)propan-1-ol

The title compound was prepared according to general procedure 2 using 2-(furan-2-yl)ethan-1-ol (56 mg, 0.5 mmol). Purification by flash silica chromatography (eluent = 10% EtOAc in hexanes, 20 x 210 mm silica) gave the title compound as a colourless oil (31 mg, 50%); R_f = 0.42 (eluent = 25% EtOAc in hexanes); 1H NMR (500 MHz, CDCl\textsubscript{3}) δ\textsubscript{H}: 1.27 (3H, d, J 7.0), 1.65 (1H, br s), 3.05 (1H, sext, J 7.0), 3.68-7.78 (2H, m), 6.09 (1H, dt, J 3.5, 1.0), 6.31 (1H, dd, J 3.5, 2.0), 7.34 (1H, dd, J 2.0, 1.0); 13C NMR (126 MHz, CDCl\textsubscript{3}) δ\textsubscript{C}: 15.3, 36.3, 66.8, 105.3, 110.2, 141.5, 157.6. Spectroscopic data in accordance with that stated in the literature.18
2-(thiophen-2-yl)propan-1-ol

The title compound was prepared according to general procedure 2 using 2-thiopheneethanol (56 µL, 64 mg, 0.5 mmol). Purification by flash silica chromatography (eluent = 10% EtOAc in hexanes, 20 x 200 mm silica) gave the title compound as a colourless oil (51 mg, 72%); R_f = 0.47 (eluent = 30% EtOAc in hexanes); ν_max / cm⁻¹ (film) 3356, 2963, 2934, 2874, 2835, 1611, 1512, 1458, 1300, 1244, 1177, 1032, 1018, 1001, 827, 806, 559, 538; ¹H NMR (500 MHz, CDCl₃) δ_H: 1.36 (3H, d, J 7.0), 1.51 (1H, br s), 3.26 (1H, sext, J 7.0), 3.63-3.78 (2H, m), 6.87-6.93 (1H, m), 6.94-7.02 (1H, m), 7.20 (1H, d, J 5.0); ¹³C NMR (126 MHz, CDCl₃) δ_C: 18.7, 38.3, 69.1, 123.7, 124.0, 127.0, 147.5; HRMS (EI⁺) calculated for [C₇H₁₀OS⁺] (M)⁺ m/z: 142.0452, found 142.0450 (-1.4 ppm).
2-methyl-3-phenylpropan-1-ol

The title compound was prepared according to general procedure 2 using 3-phenyl-1-propanol (68 µL, 68 mg, 0.5 mmol). The crude 1H NMR showed 9% conversion to 31 as shown in the below spectrum. The integrated peak corresponds to that stated in the literature.19
2-methyl-1-phenylpropan-1-ol

The title compound was prepared according to general procedure 2 using 1-phenylethanol (60 µL, 61 mg, 0.5 mmol). The crude 1H NMR showed 11% conversion to 32 as shown in the below spectrum. The integrated peak corresponds to that stated in the literature.20
2-methyl-1-(4-(trifluoromethyl)phenyl)propan-1-ol

The title compound was prepared according to general procedure 2 using 1-(4-(trifluoromethyl)phenyl)ethan-1-ol (95 mg, 0.5 mmol). Purification by flash silica chromatography (eluent = 5% EtOAc in cyclohexane, 20 x 190 mm silica) gave the title compound as a colourless oil (31 mg, 28%); Rf = 0.52 (eluent = 10% EtOAc in n-pentane); νmax / cm⁻¹ (film) 3389, 2972, 2930, 2874, 1616, 1470, 1418, 1319, 1161, 1119, 1067, 1013, 837, 793, 611; ¹H NMR (500 MHz, CDCl₃) δH: 0.84 (3H, d, J 6.5), 0.97 (3H, d, J 6.5), 1.88 (1H, br s), 1.97 (1H, oct, J 6.5), 4.48 (1H, d, J 6.5), 7.44 (2H, d, J 8.0), 7.60 (2H, d, J 8.0); ¹⁹F NMR (471 MHz, CDCl₃) δF: -62.4; ¹³C NMR (126 MHz, CDCl₃) δC: 17.9, 19.0, 35.5, 79.3, 124.3 (q, J 272), 125.3 (q, J 3.8), 127.0, 129.7 (q, J 32.4), 147.6 (m); HRMS (EI⁺) calculated for [C₁₁H₁₃OF₃]⁺ (M)⁺ m/z : 218.0918, found 218.0914 (-1.4 ppm).
The title compound was prepared according to general procedure 2 using 1-(3,5-bis(trifluoromethyl)phenyl)ethan-1-ol (129 mg, 0.5 mmol). Purification by flash silica chromatography (eluent = 5% EtOAc in cyclohexane, 20 x 190 mm silica) gave the title compound as a white solid (55 mg, 38%); mp 51-53 °C; Rf = 0.14 (eluent = 5% EtOAc in cyclohexane); \(\nu_{\text{max}} / \text{cm}^{-1} \) (film) 3389, 3325, 2972, 2926, 2895, 2855, 1472, 1379, 1329, 1275, 1159, 1117, 1103, 1034, 901, 847, 827, 710, 679, 664; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta_H \): 0.89 (3H, d, \(J = 7.0 \)), 0.95 (3H, d \(J = 6.5 \)), 1.90-2.08 (2H, m), 4.59 (1H, d, \(J = 6.0 \)), 7.79 (3H, s); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta_C \): 17.3, 19.0, 35.5, 78.5, 121.4 (m), 123.5 (q, \(J = 273 \)), 126.8, 131.5 (q, \(J = 33.3 \)), 146.2; HRMS (EI) calculated for [C\(_{12}\)H\(_{12}\)OF\(_6\)]\(^+\) (M\(^+\) m/z : 286.0792, found 286.0783 (-3.1 ppm).
2-methyl-1-phenylpropan-1-ol

The title compound was prepared according to general procedure 2 using 1-phenyl-1-propanol (68 mg, 0.5 mmol). The crude 1H NMR showed 12% conversion to 35 as shown in the below spectrum. The integrated peak corresponds to that stated in the literature.

2-methyl-1-(4-(trifluoromethyl)phenyl)propan-1-ol

The title compound was prepared according to general procedure 2 using 1-(4-(trifluoromethyl)phenyl)propan-1-ol (102 mg, 0.5 mmol). Purification by flash silica chromatography (eluent = 5% EtOAc in cyclohexane, 20 x 190 mm silica) gave the title compound as a colourless oil (24 mg, 22%); $R_f = 0.52$ (eluent = 10% EtOAc in n-pentane). Spectroscopic data in accordance with that reported previously.
1-(3,5-bis(trifluoromethyl)phenyl)-2-methylpropan-1-ol

The title compound was prepared according to general procedure 2 using 1-(3,5-bis(trifluoromethyl)phenyl)propan-1-ol (136 mg, 0.5 mmol). Purification by flash silica chromatography (eluent = 5% EtOAc in cyclohexane, 20 x 190 mm silica) gave the title compound as a white solid (40 mg, 28%); mp 51-53 °C; Rf = 0.14 (eluent = 5% EtOAc in cyclohexane). Spectroscopic data in accordance with that reported previously.

2-phenoxy-1-phenylpropan-1-ol

The title compound was prepared according to general procedure 2 using 2-phenoxy-1-phenylethan-1-ol (107 mg, 0.5 mmol) giving the crude product after work up (2:1 dr). Purification by flash silica chromatography (eluent = 5% EtOAc in hexanes, 20 x 220 mm silica) gave the title compound as a colourless oil (36 mg, 30%, 56:44 dr); Rf = 0.44 (eluent = 20% EtOAc in hexanes); νₘₐₓ / cm⁻¹ (film) 3557, 3433, 3063, 3036, 2982, 2920, 1597, 1584, 1491, 1449, 1229, 1173, 1063, 993, 937, 883, 748, 692, 505;

Selected data for major diastereomer:

¹H NMR (500 MHz, CDCl₃) δH: 1.20 (3H, d, J 6.0), 2.51 (2H, d, J 3.0), 4.59 (1H, dq, J 6.0, 3.5), 5.06 (1H, t, J 3.0), 6.92-7.02 (3H, m), 7.27-7.41 (5H, m), 7.41-7.46 (2H, m); ¹³C NMR (126 MHz, CDCl₃) δC: 13.0, 75.2, 77.9, 116.4, 121.5, 126.4, 128.5, 129.8, 140.1, 157.5.

Selected data for minor diastereomer:

¹H NMR (500 MHz, CDCl₃) δH: 1.13 (3H, d, J 6.0), 3.05 (2H, d, J 2.0), 4.45 (1H, dq, J 7.5, 6.0), 4.71 (1H, dd, J 7.5, 2.5), 6.92-7.02 (3H, m), 7.27-7.41 (5H, m), 7.41-7.46 (2H, m); ¹³C NMR (126 MHz, CDCl₃) δC: 15.6, 78.3, 79.0, 116.4, 121.6, 127.5, 128.6, 129.8, 139.9, 157.7.

HRMS (EI⁺) calculated for [C₁₅H₁₆O₂]⁺ (M)⁺ m/z : 228.1150, found 228.1156 (+2.6 ppm).
(1R,2S,3S)-1,3-dimethyl-2,3-dihydro-1\textit{H}-inden-2-ol
(1R,3R)-1,3-dimethyl-2,3-dihydro-1\textit{H}-inden-2-ol

The title compounds were prepared according to general procedure 2 using 2-indanol (67 mg, 0.5 mmol) giving the crude products after work up (71:29 dr). Purification by flash silica chromatography (eluent = 5-10% EtOAc in n-pentane, 20 x 140 mm silica) gave 36a as a white solid (7 mg, 9%); mp 105-107 °C, R\textsubscript{f} = 0.39 (eluent = 10% EtOAc in n-pentane); and 36b as a colourless oil (27 mg, 33%); R\textsubscript{f} = 0.35 (eluent = 10% EtOAc in n-pentane).

Data for 36a:
\(\nu_{\text{max}} / \text{cm}^{-1} \) (film) 3291, 3071, 3017, 2965, 2930, 2870, 2839, 1474, 1373, 1323, 1240, 1144, 1034, 1016, 962, 876, 768, 758, 712; \(^{1}\text{H} \text{NMR (}500 \text{ MHz, CDCl}_3\) \(\delta_H\): 1.39 (6H, d, \(J 7.0\)), 3.15 (2H, dq, \(J 7.0, 3.6\)), 4.32 (1H, t, \(J 3.6\)), 7.17-7.25 (4H, m); \(^{13}\text{C} \text{NMR (}126 \text{ MHz, CDCl}_3\) \(\delta_C\): 12.0, 43.7, 80.2, 123.5, 126.9, 145.3; HRMS (EI+) calculated for [C\textsubscript{11}H\textsubscript{14}O+] (M+) m/z : 162.1045, found 162.1044 (-0.6 ppm).
Data for 36b:

\(\nu_{\text{max}} / \text{cm}^{-1} \) (film) 3358, 3021, 2961, 2930, 2870, 1477, 1450, 1375, 1103, 1098, 1061, 1011, 972, 752, 498, 461; ***\(^1\)H NMR (500 MHz, CDCl\(_3\))*** \(\delta \) \(H \): 1.25 (3H, d, \(J = 7.0 \)), 1.31 (3H, d, \(J = 7.0 \)), 3.05-3.13 (1H, m), 3.23-3.33 (1H, m), 4.10 (1H, t, \(J = 6.0 \)), 7.16-7.23 (4H, m); ***\(^{13}\)C NMR (126 MHz, CDCl\(_3\))*** \(\delta \) \(C \): 13.3, 17.1, 42.0, 45.8, 82.4, 124.0, 124.1, 127.1, 127.1, 144.9, 145.2; HRMS (EI\(^+\)) calculated for [C\(_{11}\)H\(_{14}\)O]\(^+\) (M)^+ m/z : 162.1045, found 162.1045 (+0.0 ppm).
The title compound was prepared according to general procedure 2 using 1-indanol (67 mg, 0.5 mmol). Purification by flash silica chromatography (eluent = 5% Et₂O in n-pentane, 30 x 120 mm silica) gave the title compound as a colourless oil (46 mg, 62%); Rᵢ = 0.27 (eluent = 5% EtOAc in hexanes);

^{1}H NMR (500 MHz, CDCl₃) δH: 1.32 (3H, d, J 7.0), 2.67-2.77 (2H, m), 3.35-3.45 (1H, m), 7.34-7.40 (1H, m), 7.42-7.49 (1H, m), 7.59 (1H, dt, J 1.5, 7.5), 7.76 (1H, d, J 7.5);

^{13}C NMR (126 MHz, CDCl₃) δC: 16.4, 35.1, 42.1, 124.1, 126.7, 127.5, 134.8, 136.5, 153.6, 209.6. Spectroscopic data in accordance with that stated in the literature.²¹
The title compound was prepared according to general procedure 2 using 1-tetralol 1-tetralol (74.1 mg, 0.5 mmol). Purification by flash silica chromatography (eluent = 5% Et₂O in n-pentane, 30 x 120 mm silica) gave the title compound as a colourless oil (43 mg, 53%); Rf = 0.34 (eluent = 5% EtOAc in hexanes); 1H NMR (500 MHz, CDCl₃) δH: 1.28 (3H, d, J 7.0), 1.83-1.95 (1H, m), 2.20 (1H, dq, J 13.5, 4.5), 2.54-2.65 (1H, m), 2.92-3.11 (2H, m), 7.23 (1H, d, J 7.5), 7.30 (1H, t, J 7.5), 7.45 (1H, dt, J 7.5, 1.5), 8.04 (1H, dd, J 7.5, 1.5); 13C NMR (126 MHz, CDCl₃) δC: 15.6, 29.0, 31.5, 42.8, 126.6, 127.5, 128.8, 133.2, 132.5, 144.3, 201.0; Spectroscopic data in accordance with that stated in the literature. 22

2-methyl-3,4-dihydronaphthalen-1(2H)-one

![Chemical structure](image)

The title compound was prepared according to general procedure 2 using 1-tetralol 1-tetralol (74.1 mg, 0.5 mmol). Purification by flash silica chromatography (eluent = 5% Et₂O in n-pentane, 30 x 120 mm silica) gave the title compound as a colourless oil (43 mg, 53%); Rf = 0.34 (eluent = 5% EtOAc in hexanes); 1H NMR (500 MHz, CDCl₃) δH: 1.28 (3H, d, J 7.0), 1.83-1.95 (1H, m), 2.20 (1H, dq, J 13.5, 4.5), 2.54-2.65 (1H, m), 2.92-3.11 (2H, m), 7.23 (1H, d, J 7.5), 7.30 (1H, t, J 7.5), 7.45 (1H, dt, J 7.5, 1.5), 8.04 (1H, dd, J 7.5, 1.5); 13C NMR (126 MHz, CDCl₃) δC: 15.6, 29.0, 31.5, 42.8, 126.6, 127.5, 128.8, 133.2, 132.5, 144.3, 201.0; Spectroscopic data in accordance with that stated in the literature. 22

S79
2.4. Synthesis of plausible intermediates

2-phenylprop-2-en-1-ol

\[
\text{Cul (0.5 equiv.)} \quad \text{PhMgBr (3.0 equiv.)}
\]

\[
\text{-78 °C - rt, PhMe, 24 h}
\]

Under nitrogen, a three-necked 250 mL round-bottomed flask equipped with a magnetic stirrer bar was charged with Cul (1.9 g, 10 mmol) and dry toluene (25 mL). The suspension was cooled to -78 °C followed by the addition of propargyl alcohol (1.16 mL, 1.12 g, 20 mmol). To this solution was then added a fresh prepared solution of phenylmagnesium bromide (60 mL, 60 mmol, 1 M in THF). The mixture was left to gradually warm up to room temperature and left stirring for 16 h. Sat. aq. NH₄Cl (10 mL), H₂O (20 mL) and EtOAc (50 mL) were then added. The mixture was transferred to a separatory funnel and the organic layer was collected. The aqueous layer was washed with EtOAc (2 x 50 mL). The organics were combined, dried over MgSO₄, filtered and concentrated in vacuo. Purification by flash silica chromatography (eluent = 5-25% EtOAc in hexanes, 35 x 170 mm silica) gave the title compound as a colourless oil (1.21 g, 45%); Rf = 0.28 (eluent = 20% EtOAc in hexanes);

\[\text{^1H NMR (500 MHz, CDCl}_3\text{)}\ \delta_H: 1.56-1.66 (1H, m), 4.55 (2H, d, J 6.0), 5.36 (1H, q, J 1.5), 5.48 (1H, q, J 1.5), 7.28-7.33 (1H, m), 7.33-7.39 (2H, m), 7.43-7.48 (2H, m); \text{^13C NMR (126 MHz, CDCl}_3\text{)}\ \delta_C: 65.2, 112.8, 126.2, 128.1, 128.7, 138.6, 147.4. Spectroscopic data in accordance with that stated in the literature.\]
A 50 mL round-bottomed flask equipped with a magnetic stirrer bar was charged with 2-phenylpropane-1,3-diol (1.52 g, 10 mmol) and dry DMF (20 mL). The solution was cooled to 0 °C and was then charged with NaH (400 mg, 10 mmol, 60% suspension in mineral oil). After 30 min at this temperature, MeI (747 µL, 1.70 g, 12 mmol) was added. The flask was sealed with a cap and the mixture was left to stir at rt for 20 h. The mixture was quenched with sat aq. NH₄Cl (10 mL), H₂O (10 mL) and was then transferred to a separatory funnel filled with EtOAc (50 mL). The organic layer was collected. The aqueous phase was washed with EtOAc (2 x 50 mL). The organics were combined, washed with brine (5 x 100 mL), dried over MgSO₄, filtered and concentrated in vacuo. Purification by flash silica chromatography (eluent = 30-70% EtOAc in hexanes, 35 x 110 mm silica) gave the title compound as a colourless oil (749 mg, 45%), Rₘ = 0.24 (eluent = 30% EtOAc in hexanes); vₘₐₓ / cm⁻¹ (film) 3408, 3032, 2930, 2874, 2826, 1495, 1450, 1194, 1117, 1090, 1028, 756, 700; ¹H NMR (500 MHz, CDCl₃) δH: 2.44 (1H, t, J 6.0), 3.12-3.24 (1H, m), 3.39 (3H, s), 3.65-3.79 (2H, m), 3.80-3.91 (1H, m), 3.94-4.03 (1H, m), 7.18-7.28 (3H, m), 7.29-7.36 (2H, m); ¹³C NMR (126 MHz, CDCl₃) δC: 47.8, 59.3, 66.8, 76.6, 127.2, 128.1, 128.8, 139.7; HRMS (EI⁺) calculated for [C₁₀H₁₄O₂]⁺ (M)⁺ m/z : 166.0994, found 166.0992 (-1.2 ppm).
2.5. Evidence supporting possible reaction intermediates

A 10 mL microwave vial equipped with a magnetic stirrer bar was charged with NaOH (40 mg, 1 mmol), Me$_3$NO (5.6 mg, 0.05 mmol, 10 mol %), [Fe] pre catalyst 2 (11.4 mg, 0.025 mmol, 5 mol %), MeOH (1 mL) and 2-phenylpropane-1,3-diol (76 mg, 0.5 mmol). The vial was sealed with a cap and was left to react at 130 °C for 24 hours. It was then cooled, treated with mesitylene (70 µL, 60.1 mg, 0.5 mmol), EtOAc (1 mL), sat. aq. NH$_4$Cl (0.5 mL) and H$_2$O (0.5 mL). Brine (0.5 mL) was added to aid layer separation. The mixture was stirred for 5 minutes and left to settle for a further 5 minutes. The top layer was sampled and analysed using 1H NMR. The result gave a 78% NMR yield of 3.
A 10 mL microwave vial equipped with a magnetic stirrer bar was charged with NaOH (40 mg, 1 mmol), Me$_3$NO (5.6 mg, 0.05 mmol, 10 mol %), [Fe] precatalyst 2 (11.4 mg, 0.025 mmol, 5 mol %), MeOH (1 mL) and 2-phenylprop-2-en-1-ol (67 mg, 0.5 mmol). The vial was sealed with a cap and was left to react at 130 °C for 24 hours. It was then cooled, treated with mesitylene (70 µL, 60.1 mg, 0.5 mmol), EtOAc (1 mL), sat. aq. NH$_4$Cl (0.5 mL) and H$_2$O (0.5 mL). Brine (0.5 mL) was added to aid layer separation. The mixture was stirred for 5 minutes and left to settle for a further 5 minutes. The top layer was sampled and analysed using 1H NMR. The result gave a 85% NMR yield of 3.
Crude 1H NMR

3

44
A 10 mL microwave vial equipped with a magnetic stirrer bar was charged with NaOH (40 mg, 1 mmol), Me₃NO (5.6 mg, 0.05 mmol, 10 mol %), [Fe] precatalyst 2 (11.4 mg, 0.025 mmol, 5 mol %), MeOH (1 mL) and 3-methoxy-2-phenylpropan-1-ol (83 mg, 0.5 mmol). The vial was sealed with a cap and was left to react at 130 °C for 24 hours. It was then cooled, treated with mesitylene (70 µL, 60.1 mg, 0.5 mmol), EtOAc (1 mL), sat. aq. NH₄Cl (0.5 mL) and H₂O (0.5 mL). Brine (0.5 mL) was added to aid layer separation. The mixture was stirred for 5 minutes and left to settle for a further 5 minutes. The top layer was sampled and analysed using ¹H NMR. The result gave a 57% NMR yield of 3.
Kinetic time course experiments

A 10 mL microwave vial equipped with a magnetic stirrer bar was charged with NaOH (40 mg, 1 mmol), Me$_3$NO (5.6 mg, 0.05 mmol, 10 mol %), [Fe] precatalyst 2 (11.4 mg, 0.025 mmol, 5 mol %), MeOH (1 mL) and 2-phenylethanol (60 µL, 61 mg, 0.5 mmol). The vial was sealed with a cap and was left to react at 130 °C for a specific amount of time. It was then cooled to 20 °C, treated with mesitylene (70 µL, 60.1 mg, 0.5 mmol), EtOAc (1 mL), sat. aq. NH$_4$Cl (0.5 mL) and H$_2$O (0.5 mL). Brine (0.5 mL) was added to aid layer separation. The mixture was stirred for 5 minutes and left to settle for a further 5 minutes. The top layer was sampled and analysed using 1H NMR. This was repeated for 7 parallel reactions ranging from 0.25 h to 24 h, as shown in the table below.
Time (h)	Starting Material (%)	Product (%)
0.25	70	21
0.5	56	31
1	43	44
2	22	72
4	20	74
8	16	78
16	16	79
24	15	80

2.7. Mechanistic experiments employing CD$_3$OD as solvent

A 10 mL microwave vial equipped with a magnetic stirrer bar was charged with NaOH (40.0 mg, 1 mmol), Me$_3$NO.2H$_2$O (5.6 mg, 0.1 mmol, 10 mol %), [Fe] precatalyst 2 (11.4 mg, 0.025 mmol, 5 mol %), CD$_3$OD (1 mL) and 2-phenethyl alcohol (60 µL, 61 mg, 0.5 mmol). The vial was sealed with a cap and was left to stir at 130 °C for 24 hours. It was then cooled, treated with sat. aq. NH$_4$Cl (0.5 mL) and H$_2$O (0.5 mL), washed with EtOAc (15 mL) and transferred to a separatory funnel filled with brine (15 mL). The organic layer was collected and the aqueous phase washed with EtOAc (2 x 15 mL). The organics were combined, dried over MgSO$_4$, filtered and concentrated in vacuo. Purification by flash silica chromatography (eluent = 20% Et$_2$O in n-pentane, 20 x 220 mm silica) gave the title compound as a colourless oil (43 mg, 60%). The product was subjected to D$_2$O exchange by placing a drop of D$_2$O in the NMR tube with CDCl$_3$ as solvent.
Deuterium incorporation equation:

\[
\% \text{ D} = 100 - \left(\frac{\text{peak integral}}{\text{equivalent protons}} \right) \times 100
\]

Peak A: 100 - \left(\frac{0.53}{2} \right) \times 100 = 74\% \text{ D}
Peak B: 100 - \left(\frac{0.09}{1} \right) \times 100 = 91\% \text{ D}
Peak C: 100 - \left(\frac{0.50}{3} \right) \times 100 = 83\% \text{ D}

3. References

1. Dambatta, M. B.; Polidano, K.; Northey, A. D.; Williams, J. M. J.; Morrill, L. C. Iron-Catalyzed Borrowing Hydrogen C-Alkylation of Oxindoles with Alcohols. *ChemSusChem* **2019**, *1*, 1–6.
2. Plank, T. N.; Drake, J. L.; Kim, D. K.; Funk, T. W. Air-Stable, Nitrile-Ligated (Cyclopentadienone)Iron Dicarbonyl Compounds as Transfer Reduction and Oxidation Catalysts. *Adv. Synth. Catal.* **2012**, *354*, 597–601.
3. Funk, T. W.; Mahoney, A. R.; Sponenberg, R. A.; Zimmerman, K. P.; Kim, D. K.; Harrison, E. E. Synthesis and Catalytic Activity of (3,4-Diphenylcyclopentadienone)Iron Tricarbonyl Compounds in Transfer Hydrogenations and Dehydrogenations. *Organometallics* **2018**, *37*, 1133–1140.
4. Moulin, S.; Dentel, H.; Pagnoux-Ozherelyeva, A.; Gaillard, S.; Poater, A.; Cavallo, L.; Lohier, J. F.; Renaud, J. L. Bifunctional (Cyclopentadienone)Iron-Tricarbonyl Complexes: Synthesis, Computational Studies and Application in Reductive Amination. *Chem. Eur. J.* **2013**, *19*, 17881–17890.
5. Facchini, S. V.; Cettolin, M.; Bai, X.; Casamassima, G.; Pignataro, L.; Gennari, C.; Piarulli, U. Efficient Synthesis of Amines by Iron-Catalyzed C=N Transfer Hydrogenation and C=O Reductive Amination. *Adv. Synth. Catal.* **2018**, *360*, 1054–1059.
6. Banks, T. M.; Clay, S. F.; Glover, S. A.; Schumacher, R. R. Mutagenicity of N-Acloyxy-N-Alkoxyamides as an Indicator of DNA Intercalation Part 1: Evidence for Naphthalene as a DNA Intercalator. *Org. Biomol. Chem.* **2016**, *14*, 3699–3714.
7. Li, Z.; Gupta, M. K.; Snowden, T. S. One-Carbon Homologation of Primary Alcohols and the Reductive Homologation of Aldehydes Involving a Jocic-Type Reaction. *European J. Org. Chem.* **2015**, *2015*, 7009–7019.
8. Schadt, F. L.; Lancelot, C. J.; Schleyer, P. V. R. Effect of Solvent on β-Arylalkyl Solvolyis1. *J. Am. Chem. Soc.* **1978**, *100*, 228–246.
9. Süsse, L.; Hermke, J.; Oestreich, M. The Asymmetric Piers Hydrosilylation. *J. Am. Chem. Soc.* **2016**, *138*, 6940–6943.
10. Bigler, R.; Huber, R.; Mezzetti, A. Highly Enantioselective Transfer Hydrogenation of Ketones with Chiral (NH)2P2 Macrocyclic Iron(II) Complexes. *Angew. Chem. Int. Ed.* **2015**, *54*, 5171–5174
11. Bigler, R.; Mezzetti, A. Highly Enantioselective Transfer Hydrogenation of Polar Double Bonds by Macrocyclic Iron(II)/(NH)2P2 Catalysts. *Org. Process Res. Dev.* **2016**, *20*, 253–261.
12. Mohebbi, M.; Bararjanian, M.; Ebrahim, S. N.; Smeško, M.; Salehi, P. Noscapine Derivatives as New Chiral Catalysts in Asymmetric Synthesis: Highly Enantioselective Addition of Diethylzinc to Aldehydes. *Synthesis* **2018**, *50*, 1841–1848.
13. Polidano, K.; Allen, B. D. W.; Williams, J. M. J.; Morrill, L. C. Iron-Catalyzed Methylation Using the Borrowing Hydrogen Approach. *ACS Catal.* **2018**, *8*, 6440–6445.
14. Fan, R. H.; Hou, X. L. Efficient Ring-Opening Reaction of Epoxides and Aziridines Promoted by Tributylphosphine in Water. *J. Org. Chem.* **2003**, *68*, 726–730.

15. Prokopowicz, M.; Młynarz, M.; Kafarski. P. *Tetrahedron Lett.* **2009**, *50*, 7314–7317.

16. Denmark, S. E.; Werner, N. S. On the Stereochemical Course of Palladium-Catalyzed Cross-Coupling of Allylic Silanolate Salts with Aromatic Bromides. *J. Am. Chem. Soc.* **2010**, *132*, 61801–61801.

17. Suprun, W. Ya. Reactivity and Selectivity in the Oxidation of Styrene Derivatives. III. Studies on the Oxidation of 1- and 2-Isopropenynaphthalene. *Adv. Synth. Catal.* **1997**, *339*, 664-668.

18. Bierstedt, A.; Stölting, J.; Fröhlich, R.; Metz, P. Enzymatic Kinetic Resolution of 1-(3′-Furyl)-3-Buten-1-Ol and 2-(2′-Furyl)-Propan-1-Ol. *Tetrahedron Asymmetry* **2002**, *12*, 3399-3407.

19. Shoba, V. M.; Thacker, N. C.; Bochat, A. J.; Takacs, J. M. Synthesis of Chiral Tertiary Boronic Esters by Oxime-Directed Catalytic Asymmetric Hydroboration. *Angew. Chem. Int. Ed.* **2016**, *55*, 1465–1469.

20. Pizzolato, S. F.; Štacko, P.; Kistemaker, J. C. M.; Van Leeuwen, T.; Otten, E.; Feringa, B. L. Central-to-Helical-to-Axial-to-Central Transfer of Chirality with a Photoresponsive Catalyst. *J. Am. Chem. Soc.* **2018**, *140*, 17278–17289.

21. Li, Y.; Xue, D.; Lu, W.; Wang, C.; Liu, Z. T.; Xiao, J. DMF as Carbon Source: Rh-Catalyzed α-Methylation of Ketones. *Org. Lett.* **2014**, *16*, 66–69.

22. Takeda, T.; Terada, M. Development of a Chiral Bis(Guanidino)Iminophosphorane as an Uncharged Organosuperbase for the Enantioselective Amination of Ketones. *J. Am. Chem. Soc.* **2013**, *135*, 15306–15309.

23. Sun, X.; Frimpong, K.; Tan, K. L. Synthesis of Quaternary Carbon Centers via Hydroformylation. *J. Am. Chem. Soc.* **2011**, *132*, 11841-11843.