Geophysical Classification of Planets, Dwarf Planets, and Moons: A Mass Scale and Composition Codes

David G. Russell
Owego Free Academy, Owego, NY USA
russelld@oacsd.org
dgruss23@yahoo.com

Abstract

A planetary mass scale and system of composition codes are presented for describing the geophysical characteristics of exoplanets and Solar System planets, dwarf planets, and spherical moons. The composition classes characterize the rock, ice, and gas properties of planetary bodies. The planetary mass scale includes five mass classes with upper and lower mass limits derived from recent studies of the exoplanet mass-radius and mass-density relationships, and the physical characteristics of planets, dwarf planets, and spherical moons in the Solar System. The combined mass and composition codes provide a geophysical classification that allows for comparison of the global mass and composition characteristics of exoplanets with the Solar System’s planets, dwarf planets and spherical moons. The system is flexible and can be combined with additional codes characterizing other physical, dynamical, or biological characteristics of planets.

Subject Headings: planets and satellites: composition - planets and satellites: fundamental parameters - planets and satellites: general

1. Introduction

To date nearly 3000 exoplanets have been confirmed (Han et al. 2014). It is possible to derive reasonable models for the interior structure of most Solar System planets and many exoplanets (Baraffe et al. 2008, 2010, 2014; Fortney et al. 2006, Sotin et al. 2010). Numerous names are used to characterize exoplanets including: Earth, super-Earth, mini-Neptune, Neptune, sub-Neptune, hot Neptune, Saturn, Jupiter, hot Jupiter, Jovian, gas giant, ice giant, rocky, terrestrial, water, and ocean. There are no clear guidelines for when to apply one of these terms to a given exoplanet. What is the acceptable range in mass, composition, temperature, orbital elements, or other traits that the exoplanet must have in order to be considered an Earth, Neptune, or Jupiter? How much greater or lesser a mass can an exoplanet have before it should be called a ‘super-’ or ‘mini-’ version of its Solar System analog? What descriptors should be used for planets with a combination of mass and composition characteristics not found in the Solar system?

As the catalog of confirmed exoplanets continues to grow there is an increasing need for a system of codes to characterize fundamental geophysical and dynamical characteristics of these planets. Plávalová (2012) proposed a classification system that includes codes for exoplanetary mass, semi-major axis, eccentricity, primary composition, and mean Dyson temperature. Other taxonomic systems have been proposed that characterize mass, spectral and atmospheric types, plausibility of life, and stellar type (Irwin & Schulze-Makuch 2001; Sudarsky, Burrows, & Hubeny 2003; Kaelin 2006; Lundock et al. 2009; Encrenaz 2010; Mendez 2011; Fletcher et al. 2014).
In this paper codes are described for classifying the mass and composition characteristics of exoplanets and the planets, dwarf planets, and spherical moons of the Solar System – collectively referred to as “planetary bodies”. The codes provide a geophysical taxonomy but can serve as a foundation for additional codes describing other physical, dynamical, and biological characteristics. This paper is organized as follows: In §2 a system of composition codes is described to characterize the rock, ice, and gas properties of planetary bodies. In §3 a planetary mass scale with physically motivated mass boundaries is presented. In §4 the mass scale and composition codes are combined into a geophysical taxonomy useful for characterizing planetary bodies within the Solar System and exoplanetary systems. Concluding remarks are provided in §5.

2. Composition codes for characterizing planets, dwarf planets, and moons

2.1 General planetary composition classes

Each planetary body is a unique product resulting from (1) the composition and structure of the gas cloud and the proto-planetary disk from which the planetary system formed, (2) the location, composition, temperature, timescale, and migration history of the body within the proto-planetary disk during formation, and (3) the proto-planetary and planetary interaction and collision history. Planets, dwarf planets, and spherical moons fall into three general composition classes:

(1) **Rock**: Rock planets are primarily composed of the elements Mg, Si, O, and Fe (Baraffe et al. 2014) in the form of silicate and Fe-rich silicate rocks in a crust and mantle with an iron-rich core.

(2) **Ice**: The elements carbon, nitrogen, hydrogen, and oxygen form molecules such as H$_2$O, CH$_4$, NH$_3$, CO, N$_2$ and CO$_2$ that are collectively referred to as ‘astrophysical’ or ‘planetary’ ices and comprise most of the mass of ice planets (Stern & Levison 2002; Baraffe et al. 2014; de Pater & Lissauer 2015).

(3) **Gas**: The elements H and He are the primary mass component of gas planets (Baraffe et al. 2010).

For detailed discussions of planetary internal structure see reviews by Baraffe et al. (2010, 2014), Schubert et al. (2010), Sotin et al. (2010), and de Pater & Lissauer (2015). As a population, the planets, dwarf planets, and spherical moons of the Solar System have diverse structure and composition. Models indicate the composition of each planetary body in the Solar System is at least 50% by mass of one of the three composition types (rock, ice, gas), but many of these bodies have a significant mass contribution from a second composition component (Baraffe et al. 2010, 2014; Sotin et al. 2010; de Pater & Lissauer 2015). For example, Uranus and Neptune are >50% ice by mass but have significant rock and gas fractions. The gas giants Jupiter and Saturn are both > 50% H/He gases but have different Z>2 element mass fractions (Baraffe et al. 2014). The spherical moons of the outer planets have varying fractions of rock and ice. Many sub-Neptune mass exoplanets have no Solar System analog and are >90% rock by mass but with an envelope of H/He gases that significantly inflates the planetary radius (e.g. Lissauer et al. 2013). Therefore, a simple three composition class system (rock, ice, gas) fails to sufficiently characterize the observed variation in the composition and structure of planetary bodies.
Table 1. Planet Composition Classes

Composition codes	Composition name	Composition description
R_M	Metallic Rock	Silicates & iron with >50% by mass iron
R_S	Silicate Rock	>50% silicate minerals with negligible ices and <50% iron
R_I	Icy Rock	>50% by mass by mass silicates/iron with ices <50% & no gas
R_G	Rock gas envelope	>50% by mass silicates/iron with an H/He envelope
R_I_G	Rock ice + gas envelope	>50% by mass silicates/iron with ices and an H/He envelope
R_I	Rock (?)	>50% by mass silicates/iron with uncertain fractions of ice & gas
I	Ice	>90% ices by mass, <10% silicates & iron, no H/He envelope
I_S	Rock Ice	>50% ices by mass with >10% silicate & iron, no H/He envelope
I_S_G	Ice giant	>50% ices by mass w/rock core & H/He envelope
I_G	Ice Gas	>50% ices by mass w/ice core & H/He envelope
I_I	Ice (?)	>50% ices by mass with highly uncertain fractions of rock & gas
G_01	Gas	>50% H/He gas with 0-10% Z>2 elements
G_12	Gas	>50% H/He gas with 10-20% Z>2 elements
G_23	Gas	>50% H/He gas with 20-30% Z>2 elements
G_02	Gas	>50% H/He gas with 0-20% Z>2 elements
G_13	Gas	>50% H/He gas with 10-30% Z>2 elements
G_24	Gas	>50% H/He gas with 20-40% Z>2 elements
G_05	Gas Deuterium Burner	>50% H/He gas with deuterium burning
G_09	Gas (?)	>50% H/He gas with 0-49% Z>2 elements

The composition codes are summarized in Table 1 and described in §2.2 - 2.5. The composition codes for planets, dwarf planets and spherical moons begin with “R”, “I”, and “G” for planetary bodies that are >50% by mass rock, ice, and gas respectively. Further resolution of composition is characterized with subscripted letters or numbers that follow R, I, and G. The composition codes are applied to the planets, dwarf planets and spherical moons of the Solar System in Table 2.

2.2 Rocky planetary bodies: R_S, R_M, R_I, R_G, R_I_G

The Solar System’s rocky planetary bodies include (1) terrestrial planets and several spherical moons with pure rock composition and (2) dwarf planets and icy moons with >50% rock and a significant fraction of astrophysical ices. The known exoplanet population also includes rocky planets with radii inflated by an H/He or H/He/H_2O envelope that accounts for <10% of the planetary mass.
2.2.1 R_S (silicate) planetary bodies

Planetary bodies with R_S class have pure rock composition with $>50\%$ by mass silicate rocks and $<50\%$ Fe. Solar System R_S bodies include Venus, Earth, Mars, the Moon, Io, and Vesta. The composition of Venus, Earth, and Mars is \sim65-75\% silicate rock and \sim25-35\% Fe (Morgan & Anders 1980; Ronco et al. 2015). The structure of R_S planets include a solid and/or liquid core composed of Fe-Ni metal, Fe, or FeS, a silicate mantle, and an outer silicate crust (Sotin et al. 2010; Baraffe et al. 2014; de Pater & Lissauer 2015). Based upon the mass-radius relationship, examples of rocky exoplanets with R_S classification include Kepler 10b (Dumusque et al. 2014), Kepler 36b (Carter et al. 2012), Kepler 78b (Grunblatt et al. 2015), and Kepler 93b (Ballard et al. 2014; Dressing et al. 2015).

2.2.2 R_M (metallic) planetary bodies

Planetary bodies with R_M class are “metallic” planets having pure rock composition but with $>50\%$ by mass Fe. Mercury is the only R_M planet in the Solar System and has an iron core that accounts for \sim64\% of the planetary mass and \sim75\% of the planetary radius surrounded by a silicate mantle and crust (de Pater & Lissauer 2015). The exoplanet CoRoT 7-b ($5.74\ M_{\oplus}$; $\rho = 7.5\ g\ cm^{-3}$) is a candidate R_M composition class planet (Wagner et al. 2012; Barros et al. 2014).

2.2.3 R_I (icy rock) planetary bodies

“R_I” planetary bodies have $>50\%$ rock by mass but contain a significant fraction of astrophysical ices. Several examples of R_I planetary bodies in the Solar System include the moons Ganymede, Titan, Triton, Europa and dwarf planets such as Ceres, Pluto, and Eris. The icy rock planetary bodies found in the Solar System have an interior structure with a rock or iron core overlain by a silicate mantle, most likely at some depth an interior liquid water layer, and an icy crust (McKinnon et al. 2008; de Pater & Lissauer 2015). In some instances the mantle may include an icy mantle layer overlaying an interior rock mantle (Ganymede) or an icy mantle directly overlaying the core (Triton).

Exoplanet candidates for R_I composition class are super-Earth to Neptune mass planets including Kepler 10c (Dumusque et al. 2014; Weiss et al. 2016), Kepler 68b (Gilliland et al. 2013), HD97658b (Van Grootel et al. 2014), and Kepler 18b (Cochran et al. 2011). Some R_I class super-Earth planets may represent very massive versions of Ganymede (Sotin et al. 2010). The structure of massive R_I composition class exoplanets will include a massive rock core surrounded by an H_2O-rich envelope or under the right circumstances the body may be an ocean planet with a 50 km to 475 km ocean overlaying high pressure ice and a rock core (Sotin et al. 2010).

2.2.4 R_G and R_{IG} planetary bodies

Exoplanet surveys have identified a class of super-Earth and sub-Neptune planets that are most likely rock planets with a radius inflated from a $<10\%$ by mass H/He envelope rather than astrophysical ices. These planets will have a rock core containing over 90\% of the planetary mass
surrounded by an H/He envelope. Planets of this composition type have the code “RG”. Examples of candidate exoplanets for the RG class include Kepler 11c-f (Lissauer et al. 2013) and Kepler 20c (Gautier III et al. 2012).

GJ 436b (Gillon et al. 2007; Nettelmann et al. 2010) and HD97658b (Van Grootel et al. 2014) are exoplanets for which available data makes it hard to rule out an RIIG composition that is >50% rock but with an envelope that is composed of both astrophysical ices and H/He gas.

2.3 Icy planetary bodies: I, IS, ISG, IG

Planetary bodies in the Solar System with >50% of the mass comprised of astrophysical ices include the ice giants (Uranus & Neptune) and numerous spherical moons of the outer planets (Table 2).

2.3.1 I (Ice) planetary bodies

Planetary bodies of the “I” composition class have a composition that is >90% astrophysical ices by mass and are therefore nearly “pure” ice. Saturn’s moon Tethys (ρ = 0.97 g cm⁻³) is the only known planetary body in the Solar System with an almost pure ice composition (de Pater & Lissauer 2015).

2.3.2 IS (rocky ice) planetary bodies

The Solar System’s gas and ice giant planets have numerous spherical moons that are icy bodies with an increasing fraction of rock toward the center overlain by an icy mantle, a possible interior liquid H₂O layer, and an ice crust. Bodies with this composition are given the code “IS” and include the moons Callisto, Iapetus, Mimas, and others listed in Table 2. Candidate IS exoplanets include Kepler 11b (Lissauer et al. 2013), Kepler 68b (Gilliland et al. 2013), Kepler 18b (Cochran et al. 2011), and Kepler 20b and 20c (Gautier III et al. 2012).

2.3.3 ISG (ice giant planets)

Uranus and Neptune represent the class of planets identified as “ice giants” and have a composition that is ~60-65% ices, ~25% rock and ~10-15% H and He (Baraffe et al. 2010). Models of the interior structure of the ice giants include a rocky core, a liquid ionic icy mantle, and a molecular H₂, He, and CH₄ envelope (Baraffe et al. 2010, 2014; de Pater & Lissauer 2015). The composition code for ice giants is “ISG” indicating an ice planet with significant mass contributions from both silicates and He/He gases. Note that ice giants may be similar to RIG planets that also have significant mass contributions from rock, ice, and gas but ice giants are >50% ice by mass whereas RIG planets are >50% rock by mass.

Exoplanets with possible ice giant composition include Kepler 18c and 18d (Chochran et al. 2011), GJ 3470b (Demory et al. 2013), and Kepler 101b (Bonomo et al. 2014).
2.3.4 I_G planets

Planets with an I_G composition class will have $>50\%$ by mass planetary ices with most of the remaining mass in the form of an H/He envelope. An interesting exoplanet candidate for this planet class is the extremely low density planet Kepler 87c which could also have an ice giant composition (I_{SG}), or an R_G composition (Ofir et al. 2014).

2.4 Gas (H/He) planetary bodies: G_Z, G_D

2.4.1 G_Z (gas giant planets)

According to the core accretion model gas giant planets form by initial accretion of an approximately 10 M_J rocky core upon which a massive H/He envelope is collected from the protoplanetary disk (Baraffe et al. 2010; Helled et al. 2014). The internal structure of a gas giant will include a rock and ice core overlain by a convective liquid metallic hydrogen and helium envelope and an outer molecular hydrogen and helium envelope (de Pater & Lissauer 2015). The mass fraction of $Z>2$ elements in gas giants can show considerable variation. Structural models for Jupiter and Saturn indicate $Z>2$ element mass fractions of ~ 0.08 and ~ 0.22 respectively (Baraffe et al. 2010). Kepler 30d is a gas planet with a $Z>2$ mass fraction possibly as large as 0.40 (Spiegel, et al. 2014). The composition code for gas giant planets therefore includes subscripted numbers indicating a range for the mass fraction of $Z>2$ elements. Jupiter is a G_{01} planet where the subscript “01” indicates that the mass fraction of $Z>2$ elements is between 0.00 and 0.10. Saturn is a G_{23} planet indicating a $Z>2$ element mass fraction between 0.20 and 0.30.

Examples of exoplanets with a G_{01} composition class include KOI 680b (Almenara et al. 2015) and Kepler 423b (Gandolfi et al. 2015). The exoplanets KOI 614b (Almenara et al. 2015) and Kepler 77b (Gandolfi et al. 2013) have a $Z>2$ element fraction between 0.0 and 0.20 and therefore have a G_{02} composition code. When a gas giant exoplanet has a highly uncertain fraction of $Z>2$ elements it is given the composition code G_{05}.

2.4.2 G_D (deuterium burning gas giants)

It has been suggested that giant planets formed by core-accretion in a proto-planetary disk can exceed the deuterium burning (DB) limit of 13 Jupiter masses (Mulders et al. 2013; Baraffe et al. 2014; Ma & Ge 2014) and therefore can be classified as ‘deuterium burning planets’ (Baraffe et al. 2008; Molliere & Mordasani 2012). These giant planets are given the composition code “G_D”. KOI-423b (18 M_J) is candidate G_D exoplanet (Bouchy et al. 2011).
Table 2. Planets, dwarf planets and spherical moons of the Solar System

Planetary Body	Mass (kg)*	Radius (km)*	Density g cm$^{-3}$*	Composition class
Jupiter	1.90 x 1027	69911	1.326	G$_{G1}$ c,d
Saturn	5.68 x 1026	58232	0.687	G$_{G2}$ c,d
Neptune	1.02 x 1026	24622	1.638	I$_{SG}$ c,d
Uranus	8.68 x 1025	25631	1.270	I$_{SG}$ c,d
Earth	5.97 x 1024	6371	5.513	R$_{S}$ c,d
Venus	4.87 x 1024	6052	5.243	R$_{S}$ c,d
Mars	6.40 x 1023	3390	3.934	R$_{S}$ c,d
Mercury	3.30 x 1023	2440	5.427	R$_{M}$ c,d
Ganymede	1.48 x 1023	2631	1.94	R$_{S}$ c
Titan	1.30 x 1023	2575	1.88	R$_{I}$ c,e
Callisto	1.08 x 1023	2410	1.83	I$_{S}$ c
Io	8.93 x 1022	1822	3.53	R$_{S}$ c
Moon	7.35 x 1022	1738	3.34	R$_{S}$ c
Europa	4.80 x 1022	1561	3.01	R$_{I}$ c
Triton	2.10 x 1022	1353	2.06	R$_{I}$ c,e
Eris	1.67 x 1022	1163	2.50	R$_{I}$ e
Pluto	1.31 x 1022	1151	2.05	R$_{I}$ e
Titania	3.4 x 1021	789	1.66	I$_{S}$
Oberon	2.9 x 1021	761	1.56	I$_{S}$
Rhea	2.3 x 1021	764	1.23	I$_{S}$ e
Iapetus	1.8 x 1021	736	1.08	I$_{S}$
Charon	1.55 x 1021	604	1.68	R$_{I}$ e
Ariel	1.3 x 1021	599	1.59	I$_{S}$
Umbriel	1.2 x 1021	585	1.46	I$_{S}$
Dione	1.1 x 1021	562	1.48	I$_{S}$
Ceres	9.35 x 1020 a	476	2.14 b	R$_{I}$
Tethys	6.18 x 1020	533	0.97	I e
Vesta	2.71 x 1020 a	265	3.7 b	R$_{S}$ f
Pallas	2.41 x 1020 a	273	3.2 b	R$_{I}$
Enceladus	1.08 x 1020	252	1.61	R$_{I}$ e
Miranda	6.6 x 1019	236	1.21	I$_{S}$
Proteus	5.0 x 1019	210	1.3	I$_{S}$
Mimas	3.75 x 1019	198	1.15	I$_{S}$ e

Notes:
*Planetary data is from the NASA Solar System Exploration webpage available at http://solarsystem.nasa.gov/planets/index.cfm

a – Michalak (2001)
b – Michalak (2000)
c - de Pater & Lissauer (2015)
d – Baraffe et al. (2010, 2014)
e – Schubert et al. (2010)
f – Russell et al. (2012)
2.5 Advantages of the composition codes

There are several advantages to the system of composition codes described above. The system is relatively simple as R, I, and G indicate planets with > 50% by mass rock, ice, or gas respectively. Subscript modifiers then allow higher resolution description of planetary composition within the uncertainty of composition and interior structure models. The system allows exoplanets similar to Solar System planets to be identified but also includes codes for exoplanets that have no Solar System analogs. For example, the Kepler 11 planetary system may contain four planets with R_G composition (Lissauer et al. 2013). The rock mass fraction in R_G exoplanets is >0.9 but these planets are not typical of terrestrial planets as the radius is inflated by an H/He envelope with a mass fraction that is <0.1 of the planet’s mass. In the absence of a set of composition codes, characterization of R_G planets is difficult. Kepler 10c is a 17 +/- 2 M_⊕ planet with an H/He envelope fraction of only 0.5% or a more massive water envelope (Lopez & Fortney 2014). Wolfgang & Lopez (2015) prefer to characterize Kepler 10c as a sub-Neptune rather than a super-Earth. However, R_G planets have a dominant rock composition whereas Neptune has a dominant ice composition. Earth-like terrestrial planets lack the H/He envelope found in R_G planets. Therefore, the names “super-Earth” and “sub-Neptune” both fail to accurately describe the composition of Kepler 10c whereas the composition code R_G characterizes the planet’s composition while also identifying the composition differences from the Earth and Neptune.

The composition codes can be related to other composition descriptions. For example, Grasset et al. (2009) identified four composition classes of super-Earth planets: Mercury-like (iron-rich), Earth-like (silicate-rich), water-rich, and Neptune-like that can be distinguished with mass-radius relationships. The composition codes presented in this section clearly classify each of these super-Earth types: R_M (Mercury-like), R_S (Earth-like), R_I (water-rich), and I_SG (Neptune-like).

3. A Planetary Mass Scale

The Solar System’s planets, dwarf planets, and spherical moons range in mass from icy moons such as Mimas, Proteus, and Miranda with masses on the order of 10^{19} kg to the gas giant Jupiter with a mass of 10^{27} kg. Most exoplanets and brown dwarfs discovered to date include bodies ranging from ~1 Earth mass (M_⊕) to ~60 Jupiter mass (M_J). Mass-density and mass-radius relationships indicate several mass ranges that broadly differentiate planetary composition types. Gas giant planets generally have masses of ~0.3 to ~60 M_J (Hatzes & Rauer 2015). Most terrestrial rock planets have radii <1.6 R_⊕ and masses <6 M_⊕ (Rogers 2015; Weiss & Marcy 2014; Marcy et al. 2014). The population of planets between 6 and 60 M_⊕ has varying fractions of rock, ice, and gas including ice giants (I_SG), R_G, R_I, and I_S planets (Grasset et al. 2009; Marcy et al. 2014).

At the high mass end of sub-stellar bodies (>1 M_J) the distinction between giant gas planets and brown dwarfs is complicated by the incompatibility between deuterium burning and formation based definitions, observations of the mass distribution of planets and brown dwarfs, and the observed mass-density relationship. The IAU has defined brown dwarfs as objects that exceed the deuterium burning (DB) limit (~13 M_J) irrespective of formation mechanism. As defined by
formation theories giant planets (GP) are objects formed in a proto-planetary disk around a star by core accretion or disk instability mechanisms whereas brown dwarfs (BD) are objects formed in a star-like manner from gas fragmentation and collapse in molecular clouds (see reviews by Kumar 2003; Chabrier et al. 2007, 2014; Whitworth et al. 2007; Luhman 2008; Baraffe et al. 2010; D’Angelo et al. 2010). However the mass functions for objects that form in a protoplanetary disk and those that form by gas collapse overlap with gas collapse mechanisms forming bodies as small as 5-6 M$_J$ (Zapatero Osorio et al. 2000, 2002; Lucas et al. 2006; Caballero et al. 2007; Bihain et al. 2009; Delorme et al. 2012; Peña Ramírez et al. 2012; Leconte et al. 2009; Scholz et al. 2012; Luhman 2014; Beichman et al. 2014; Brandt et al. 2014) while planets formed in a proto-planetary disk can exceed the DB limit (Mulders et al. 2013; Baraffe et al. 2014; Ma & Ge 2014).

The BD-GP overlapping mass regime makes it problematic to simultaneously apply the DB limit and the formation mechanism as criteria for distinguishing GP and BD (Chabrier et al. 2014). The mass-density and mass-radius relationships from 0.3 to 60 M$_J$ lack any distinguishing features that identify a mass boundary separating the GP and BD populations (Hatzes & Rauer 2015; Chen & Kipping 2016). Instead, the mass-density relationship indicates that all objects in the mass range 0.3 to 60 MJ have the same physics controlling the structure of this population of sub-stellar bodies (Hatzes & Rauer 2015).

Chabrier et al. (2014) has suggested that formation mechanism should be used to define the difference between GP and BD noting that objects that form in a proto-planetary disk will have Z>2 element enrichment relative to the parent star and therefore are distinct objects from those formed by gas collapse mechanisms (Whitworth et al. 2007; Baraffe et al. 2010; Chabrier et al. 2014). Planets formed in a proto-planetary disk around a star or BD that exceed the DB limit are then identified as ‘deuterium burning planets’ (Baraffe et al. 2008; Molliere & Mordasani 2012).

The planetary mass scale described in the following sections takes into account the observations described above. The mass codes P1, P2, P3, P4, and P5 have physically motivated mass boundaries derived from mass-radius and mass-density relationships along with the characteristics of Solar System planets and exoplanets. Within each mass class the planet population will have a much narrower range of composition and structure relative to the full range of composition types among all known planets. With the exception of the P1 mass class, each class in Table 3 is named after the most massive planetary body found in the Solar System within the mass class. The names do not require a composition similar to the planet after which the mass class is named.

Table 3. Planetary Mass Scale

Class	Class Name	Mass (Kg)	Mass (J)	Mass (⊕)
P1	Brown Dwarf Mass	9.5 x 1027 - 1.2 x 1029	5 - 60	
P2	Jupiter Mass	3.6 x 1026 - 9.5 x 1027	0.2 - 5	60 - 1600
P3	Neptune Mass	3.6 x 1025 - 3.6 x 1026	6 - 60	
P4	Earth Mass	3.0 x 1023 - 3.6 x 1025	.05 - 6	
P5	Ganymede Mass	3.7 x 1019 - 3.0 x 1023		
3.1 P1 Class (Brown dwarf mass)

The mass range for the P1 mass class is 5-60 M\(_J\) and includes the most massive gas giant planets formed in a proto-planetary disc and overlaps the mass range of brown dwarfs formed by gas collapse. The upper mass limit for the P1 mass class is 60 M\(_J\) and is the upper limit for sub-stellar objects as indicated by the mass-density relationship (Hatzes & Rauer 2015). The lower mass limit for the P1 mass class is 5 M\(_J\) – the lower mass limit for bodies formed by gas collapse mechanisms (Lucas et al. 2006; Caballero et al. 2007; Delorme et al. 2012; Peña Ramírez et al. 2012; Scholz et al. 2012; Brandt et al. 2014, Luhman 2014; Beichman et al. 2014).

While the lower mass limit for the P1 class is approximately the smallest mass for objects that can form by gas collapse, planets with masses larger than 5 M\(_J\) may form by core accretion or disk instability in a proto-planetary disk (LeConte et al. 2009; Mulders et al. 2013; Chabrier et al. 2014, Ma & Ge 2014) and therefore the population of bodies with masses >5 M\(_J\) includes both GP and BD as defined by formation mechanisms. Most sub-stellar bodies with masses <5 M\(_J\) will have formed in a proto-planetary disk and have Z>2 element enrichment relative to the parent star or BD (see reviews by Whitworth et al. 2007; Chabrier et al. 2014).

3.2 P2 Class (Jupiter mass)

Planets in the P2 class have masses ranging from 0.02 M\(_J\) to 5 M\(_J\) or 60 M\(_\oplus\) to 1600 M\(_\oplus\). The upper mass limit for the P2 class is the lower mass limit for objects that reside in the BD-GP overlapping mass regime (§ 3.1). The lower mass limit for the P2 class is approximately the mass limit where the population of planets transitions from bodies having a >50% by mass H/He envelope to less massive planets with a higher percentage of planetary ices and rock (Lopez & Fortney 2014). The mass-density relationship demonstrates that the transition between gas giants and planets with a dominant ice/rock composition occurs somewhere between 0.1 M\(_J\) and 0.3 M\(_J\) (Hatzes & Rauer 2015; Laughlin & Lissauer 2015). Therefore 0.2 M\(_J\) – or 60 M\(_\oplus\) - is adopted as the lower mass limit for the P2 mass class. Most P2 planets should have a gas giant composition similar to Jupiter and Saturn.

3.3 P3 Class (Neptune Mass)

Planets in the P3 class have masses ranging from 6 M\(_\oplus\) to 60 M\(_\oplus\) with the justification for the upper mass boundary described in § 3.2. The lower mass limit for the P3 mass class is 6 M\(_\oplus\). Mass-radius relationships indicate that exoplanets with radii < ~1.6 R\(_\oplus\) or a mass <~ 6 M\(_\oplus\) are primarily of terrestrial composition (Marcy et al. 2014; Weiss & Marcy 2014; Buchhave et al. 2014; Howe, Burrows & Verne 2014; Lopez & Fortney 2014; Rogers 2015; Dressing et al. 2015). Therefore the lower mass limit for the P3 class separates the population of ice giants and rocky planets with H/He or ice envelopes from the population of predominately terrestrial planets. Planets in the P3 class may be true ice giants such as Uranus, Neptune, GJ436b (Gillon et al. 2007), and Kepler 101b (Bonomo et al. 2014). However, planets in the P3 class mass range - often
identified as ‘Neptunes’ - have tremendous variation in composition and in some cases may have a significant fraction of H/He gas (Spiegel, Fortney, & Sotin 2014). For example, Kepler 30d (mass = 23.1 M⊕, radius = 8.8 R⊕) is a Neptune mass planet that is only 30 per cent Z>2 elements and 70 per cent H and He gas (Batygin & Stevenson 2013; Spiegel, Fortney, & Sotin 2014).

Exoplanets such as Kepler 30d illustrate that the P3 class name ‘Neptune mass’ is a different meaning than simply ‘Neptune’ – which implies a similarity in composition and structure with Neptune. While P3 planets have a Neptune range mass, the P3 name ‘Neptune mass’ does not require a Neptune composition and structure. Kepler 30d is more accurately characterized as a ‘mini-Jupiter’ since the mass fraction of H/He is >0.50.

3.4 P4 Class (Earth Mass)

Planets in the P4 mass class have masses ranging from 0.05 M⊕ to 6 M⊕. Based upon the mass-radius relationship most planets with radius <~1.6 R⊕ should be terrestrial planets (Buchhave et al. 2014; Marcy et al. 2014; Weiss & Marcy 2014; Howe, Burrows & Verne 2014; Dressing et al. 2015; Rogers 2015). Rogers (2015) found that most exoplanets with radii >1.6 R⊕ are too low in density to be pure rock composition and find that > 50% of planets with radius < 1.6 R⊕ – or ~6 M⊕ – are “Earth-like”.

The lower mass limit for the P4 planet class is 0.05 M⊕. Among the Solar System’s dwarf planets and spherical moons less massive than Mercury only Io, the Moon, and Vesta have a pure rock composition (Table 2). The remaining bodies have R₁, I₅, or I compositions indicating a significant mass percentage of ices. Ganymede is the largest R₁ class planetary body in the Solar System with a mass that is 44.8 % the mass of Mercury. This indicates that within the Solar System the mass range for the population of bodies with a high frequency of pure rock composition only extends to the mass of Mercury (0.055 M⊕) and therefore 0.05 M⊕ is adopted as the lower mass limit for the “Earth-like” P4 class planets.

3.5 P5 Class (Ganymede mass)

Planetary bodies in the P5 mass class have masses in the range 3.7 x 10¹⁹ – 3.0 x 10²³ kg. P5 bodies include the Solar System’s dwarf planets and spherical moons with most having mixed rock-ice composition classes R₁ and I₅. The lower mass limit for the P5 mass class is 3.7 x 10¹⁹ kg - the mass of Mimas and approximately the minimum mass required for an icy body formed in a proto-planetary disk to attain a nearly spherical hydrostatic equilibrium shape (Lineweaver & Norman 2010; Tancredi 2010).
Table 4. “Super-“ and “mini-“ Planet classes

Mass Code	Primary composition (name)	Alternate compositions (names)
P1	GZ (super-Jupiter)	G_D (deuterium burning planet)
P2	GZ (Jupiter)	ISG (super-Neptune)
P3	ISG (Neptune)	RS, RM (super-Earth); GZ (mini-Jupiter)
P4	RS or RM (Earth)	R_I or IS (super-Ganymede)
P5	RI (Ganymede) or IS	RS or RM (mini-Earth)

3.6 ‘Super-’ and ‘mini-’ planets

A difficulty with characterizing exoplanets as Earth’s, Neptune’s, or Jupiter’s is that these names indicate not only a general mass range, but are also associated with composition and structural characteristics. However, a 10-20 M⊕ planet might be predominantly planetary ices by mass and have a Neptune-like ice giant composition and structure or it could be predominantly rock composition. For example Kepler 18c (17.3 M⊕) and 18d (16.4 M⊕) appear to have ice giant composition (Cochran et al. 2011) whereas Kepler 10c (13.98 M⊕ - Weiss et al. 2016) and BD+20594b (16.3 M⊕ - Espinoza et al. 2016) have smaller radii consistent with >50% rock composition classes RS, RG, and RI. There are also no clear guidelines for how closely the mass of an exoplanet must match its Solar System analog before the planet should be identified as a ‘super-’ or ‘mini-‘ version of Earth, Neptune, or Jupiter.

The planetary mass scale provides a physically motivated guideline for when to use terms such as ‘super-Earth’, ‘super-Neptune’, or ‘mini-Jupiter’. The mass limits for the P2, P3, P4, and P5 mass classes indicate mass ranges for planets and planetary bodies that are most likely to be similar to Jupiter, Neptune, Earth, and Ganymede respectively. The prefixes ‘super-’ and ‘mini-‘ can therefore be applied to planets and planetary bodies with composition that differs from the norm for the mass ranges of the planetary mass codes (Table 4). If a rock planet has a P4 mass class then it is simply an ‘Earth’ – even if it is 2-6 times the Earth’s mass. A rock planet with a P3 mass class – such as CoRoT-7b (Barros et al. 2014) can be identified as a ‘super-Earth’ since the planetary mass falls above the normal range for the population of planets that are terrestrial rock planets. Likewise a planet such as HD 149026b which has a Jupiter range mass but a Neptune-like composition (Fortney et al. 2006) should be identified as a ‘super-Neptune’. Within the Solar System Io could be identified as a “mini-Earth” because it has the general composition and interior structural characteristics of P4 class pure rock planets but a mass in the range for the P5 icy rock planets.

3.7 Discussion and comparison with other proposed mass scales

Mass scales and codes have also been proposed by Kaelin (2006), Mendez (2011), and Plávalová (2012), Chen & Kipping (2017). Kaelin (2006) proposed the K-scale based upon planetary mass-density relations. The most massive planetary bodies in the K-scale are given the class M7 and the least massive are given the class M3. K-scale mass boundaries use a 10^2 mass difference between the upper limits of each successive mass class and therefore are not physically motivated. For example the upper mass limit for the “Terran” mass class of the K-scale is 1.7 M⊕.
whereas exoplanet studies indicate that the upper mass limit for the terrestrial planet population is ~6 M⊕ (Marcy et al. 2014; Weiss & Marcy 2014; Howe, Burrows & Verne 2014; Dressing et al. 2015; Rogers 2015). The mass scale presented in this paper adopts 6 M⊕ as a physically motivated upper mass limit derived from the mass-radius relationship for the P4 mass class. This mass limit separates planets that are primarily terrestrial from planets in the P3 mass class that have ice giant composition or have radii inflated by a significant mass contribution from ices or H/He gas.

Mendez (2011) has proposed a mass scale that has no codes, but instead uses the names Mercurian, Subterranean, Terran, Superterranean, Neptunian, and Jovian to identify six mass ranges for planetary bodies. The physical criteria for the six mass ranges are undefined but the boundaries in some cases closely match the mass scale presented in this paper. For example, the upper mass limit of the “Neptunian” mass class is 50 M⊕ - close to the 60 M⊕ upper mass limit for the P3 mass class. However, the upper mass boundary for the “Terran” mass class in the Mendez (2011) proposal is 2 M⊕ which leaves out a significant portion of the terrestrial planet population as determined from the mass-radius relationship (Rogers 2015).

Plávalová (2012) proposed expressing exoplanetary masses in Mercury, Earth, Neptune, and Jupiter mass units. The codes proposed are not tied to any physical criteria and provide a direct mass of the planet in the specified planetary units. While Plávalová has specified exclusive mass ranges for using each Solar System mass unit, the ranges prescribed have no physical basis and may create unnecessary confusion. For example the mass of the ice giant Uranus must be expressed in Earth units while the masses of the ice giant Neptune and the gas giant Saturn are expressed in Neptune mass units. Venus is prescribed to be expressed as 15 Mercury mass units rather than 0.81 Earth mass units. The mass codes summarized in Table 3 have specified kilogram mass ranges but may also be expressed in Earth masses and Jupiter masses when those units are found more useful.

In contrast to the mass scales and codes proposed by Kaelin (2006), Mendez (2011), and Plávalová (2012), the boundaries of the mass scale described in this paper are based upon physical criteria adopted from observed mass-radius, mass-density relationships, and the characteristics of Solar System planets and exoplanets (§3.1-3.5). The resulting mass codes group planets into mass ranges within which the planet population has a narrower range of composition and structural characteristics. For example, most P2 planets will be gas giants, most P3 planets will be ice or rock dominated with an H/He envelope, and most P4 planets will be rock planets. These mass ranges result from physical principles and formation mechanisms. When considering planet masses below ~6 M⊕ it becomes increasingly difficult for a planet to maintain a gas envelope and therefore H/He rich planets should be rare among P4 planets. Likewise, with planetary formation mechanisms such as core accretion it is difficult for planets to accumulate masses in excess of 60 M⊕ without also accreting a massive H/He envelope and therefore P2 rock planets should be extremely rare. However, the mass scale is still compatible with the actual variation of planetary composition that exists within each mass class as the mass code alone does not require a planet to have the composition that is most common for the mass range.

Another advantage of the mass scale presented here over the mass scales of Kaelin (2006), Mendez (2011), and Plávalová (2012) is that the use of physical criteria to identify the boundaries
of the mass scale also naturally provides a useful guideline for when to use terms such as “mini-Earth”, “super-Earth”, “super-Neptune”, and mini-Jupiter (§3.6).

Based upon the mass-radius relationship Chen & Kipping (2017) have proposed a physically motivated mass scale that includes three planetary mass ranges: Terran worlds (<2M⊕), Neptunian worlds (2M⊕ - 0.41 Mj), Jovian worlds (0.41 Mj - ∼80 Mj). The Jovian worlds of the Chen & Kipping (2017) mass scale approximately covers the full mass range for gas giant planets and incorporates both the P1 and P2 mass classes presented here. While Chen & Kipping (2017) present a simpler system with fewer mass classes the additional mass classes presented in this paper are important. The P1/P2 mass boundary corresponds with the minimum mass for bodies that can form by gas collapse mechanisms and therefore separates lower mass gas giant planets that have formed in a protoplanetary disk (P2 planets) from the higher mass P1 population of sub-stellar bodies that may be gas giant planets or may be brown dwarfs depending upon formation mechanisms and how the difference between GP and BD is defined. The low mass end of the mass scale proposed by Chen & Kipping (2017) combines all P4 and P5 planets, dwarf planets, and moon into a single “Terran worlds” group. In this paper the P4 and P5 mass classes divide the Solar System’s “Terran worlds” into the pure rock planets with Rs and Rm composition classes (P4) and the dwarf planets and moons that primarily have R$_I$ and I$_S$ composition classes (P5).

4. Combined codes for geophysical classification of planetary bodies

The composition and mass codes presented in § 2 and § 3 may be combined to describe the geophysical characteristics of a planet, dwarf planet, or moon. This taxonomy is applied to Solar System planets, dwarf planets, and moons in Table 5 and a sample of exoplanets in Table 6. The first code is the P1 to P5 code from the planetary mass scale followed by the planetary composition code. In this taxonomy the geophysical classification of the Earth is P4Rs, of Neptune is P3lsG, and of Jupiter is P2Go1.

The composition and interior structure of exoplanets is often hard to narrow down to a single composition class as multiple combinations of rock, ice, and gas can match the data available for modeling the planetary structure and composition (see Spiegel, Fortney, & Sotin 2014). For example, Kepler 68b has an uncertain composition and models with nearly 50 per cent water or nearly 50 per cent outgassed H/He are equally compatible with the mass, radius, and density for this planet (Gilliland et al. 2013). Therefore many of the exoplanets listed in Table 6 have several possible composition classes listed with the mass code.

Despite the greater overall uncertainty in composition and interior structure for exoplanets, the taxonomy allows for useful comparisons of exoplanets with Solar System planets. There is a significant diversity among the Neptune mass (P3) planets. For example, GJ 436b (Gillon et al. 2007) and Kepler 101b (Bonomo et al. 2014) are ice giants similar to Uranus and Neptune (Gillon et al. 2007). Kepler 18c and 18d have a dominant ice composition but a significant (~20 and 40 per cent by mass respectively) H/He envelope (Cochran et al. 2011) whereas Uranus and Neptune both have ~12% of the planetary mass in an outer H/He envelope (Baraffe et al. 2010). CoRoT-7b is likely a P3 rock planet and is a “super-Earth” or “super-Ganymede”. The population of P3
planets includes R_G planets with no Solar System analog. These planets are >90% by mass rock composition with an H/He envelope accounting for <10% of the planetary mass but a significant fraction of the planetary radius (Lissauer et al. 2013).

Kepler 10b (3.33 M⊕), Kepler 36b (4.45 M⊕), Kepler 78b (1.87 M⊕), and Kepler 93b (3.80 M⊕) are exoplanets (Table 6) with a geophysical class P4Rₘ similar to the terrestrial planets of the Solar System. As discussed in § 3.6, while these planets are 1.87-4.45 times more massive than the Earth, they fall within normal mass range for the population of rock planets and therefore these planets can be identified as “Earths” rather than “super-Earths”. Kepler 78b with a mass of 1.87 M⊕ and a density of 6.0 g cm⁻³ most likely has an iron content of ~32% with the remaining mass as silicate rocks (Grunblatt, Howard, & Haywood 2015). The composition and internal structure of Kepler 78b therefore should be most similar to the Earth’s among the exoplanets listed in Table 6.

Table 5. Planetary Geophysical Classification Applied to Solar System Planetary Bodies

Planet	Classification	Planet	Classification
Mercury	P₄Rₘ	Rhea	P₅Iₛ
Venus	P₄Rₘ	Titan	P₅R₁
Earth	P₄Rₘ	Iapetus	P₅Iₛ
Moon	P₅Rₛ	Uranus	P₃Iₗₕ
Mars	P₄Rₛ	Miranda	P₅Iₛ
Ceres	P₅R₁	Ariel	P₅Iₛ
Pallas	P₅R₁	Umbriel	P₅Iₛ
Vesta	P₅Rₛ	Titania	P₅Iₛ
Jupiter	P₂G₀₁	Oberon	P₅Iₛ
Io	P₅Rₛ	Neptune	P₃Iₗₕ
Europa	P₅R₁	Triton	P₅R₁
Ganymede	P₅R₁	Proteus	P₅Iₛ
Callisto	P₅Iₛ	Pluto	P₅R₁
Saturn	P₂G₂₃	Charon	P₅R₁
Mimas	P₅Iₛ	Eris	P₅R₁
Enceladus	P₅R₁	Makemake	P₅R₁
Tethys	P₅I	Haumea	P₅R₁
Dione	P₅Iₛ?		
Table 6. Planetary Geophysical Classification Applied to a Sample of Exoplanets

Planet	Possible Classification	Reference
Kepler 10b	P4R_S	Dumusque et al. 2014
Kepler 10c	P3R1 - P3R_S	Dumusque et al. 2014
Kepler 77b	P2G02	Gandolfi et al. 2013
Kepler 36b	P4R_S	Carter et al. 2012
Kepler 36c	P3R_G	Carter et al. 2012
Kepler 11b	P4R_G - P4I_S	Lissauer et al. 2013
Kepler 11c	P4R_G	Lissauer et al. 2013
Kepler 11d	P3R_G	Lissauer et al. 2013
Kepler 11e	P3R_G	Lissauer et al. 2013
Kepler 11f	P4R_G	Lissauer et al. 2013
HD 149026b	P2I_G - P2I_SG	Fortney et al. 2006
GJ 436b	P3I_SG - P3R_SG	Gillon et al. 2007; Nettelmann et al. 2010
Kepler 30d	P3G24	Spiegel, Fortney, & Sotin 2014
Kepler 68b	P3R1 - P3R_G - P3I_S	Gilliland et al. 2013
Kepler 78b	P4R_S	Grunblatt, Howard, & Haywood 2015
CoRoT-7b	P3R_M - P3R_S	Wagner et al. 2012; Barros et al. 2014
HD 97658b	P3R1 - P3R_G - P3R_SG	Van Grootel et al. 2014
KOI-423b	P1G0_D - P1G01	Bouchy et al. 2011
Kepler 18b	P3R1 - P3I_S	Cochran et al. 2011
Kepler 18c	P3I_SG	Cochran et al. 2011
Kepler 18d	P3I_SG	Cochran et al. 2011
GJ 3470b	P3R_G - P3I_SG	Demory et al. 2013
Kepler 20b	P3R_G - P3I_S	Gautier III et al. 2012
Kepler 20c	P3R_G - P3I_S	Gautier III et al. 2012
Kepler 454b	P4R_S	Gettel et al. 2016
Kepler 93b	P4R_S	Ballard et al. 2014; Dressing et al. 2015
BD+20594b	P3R_S - P3R1	Espinoza et al. 2016
KOI 614b	P2G02	Almenara et al. 2015
KOI 680b	P2G01	Almenara et al. 2015
KOI 206b	P2G1	Almenara et al. 2015
Kepler 101b	P2I_SG	Bonomo et al. 2014
Kepler 423b	P2G01	Gandolfi et al. 2015
Wasp 46b	P2G01	Ciceri et al. 2016
Wasp 45b	P2G12	Ciceri et al. 2016
HATS-17b	P2G25	Brahm et al. 2016

Gas giant planets in the P2 mass class vary in composition with clues to their structure found from mass-density and mass-radius relationships. For example, the planet KOI 206b’s density is 1.13 g cm$^{-3}$ but its mass is 2.82 M$_J$ implying that the planet must have a different internal structure than Jupiter (Almenara et al. 2015) and is therefore a P2G05 planet. KOI 614b (2.86 M$_J$) can have at most 16.5% by mass Z>2 elements (Almenara et al. 2015) and therefore has a P2G02 classification where “G02” indicates a gas planet with between 0 and 20% Z>2 elements by mass.

Planetary bodies formed in a proto-planetary disk that exceed the deuterium burning limit are ‘deuterium burning planets’ (Baraffe et al. 2014) and are classified as P1G_D planets in the taxonomy presented here. A possible candidate for this planet class is KOI-423b which is an 18 M$_J$ body that is either a GP or a BD (Bouchy et al. 2011).
5. Conclusion

As the list of known exoplanets grows and the availability and quality of data for modeling the composition and interior structure of exoplanets improves a system of codes is needed to aid in quick comparisons of basic planetary geophysical characteristics. The system of codes presented in this paper provides a simple geophysical taxonomy that addresses this need. The composition codes are flexible enough to accommodate new planet classes identified in exoplanet studies and when combined with the mass scale codes allow for useful geophysical comparisons between exoplanets and the spherical planetary bodies of the Solar System.

The mass and composition codes presented in this paper can serve as a foundation for a more extensive system of codes that might include additional physical characteristics such as planetary temperature or density and dynamical characteristics such as orbital semi-major axis. The system may also be combined with other systems of codes already proposed. For example, the taxonomy of Irwin & Schulze-Makuch (2001) uses roman numerals I-V to rank the probability of life for a planet. If the Irwin & Schulze-Makuch taxonomy is combined with the taxonomy proposed in this paper then the Earth would be coded as a P4R5I, Europa would be coded as a P5R4II, and Jupiter would be coded as a P2G01V.

Appendix: Dynamical Classes for Spherical Planetary Bodies

The planetary mass scale and the composition classes described in this paper provide a geophysical classification system that can be applied to spherical sub-stellar mass bodies irrespective of their dynamical status as planets, dwarf planets, or moons. For example Ganymede, Pluto, and Kepler 18b are classified as a moon, a dwarf planet, and a planet respectively but all have composition class “R1”. Therefore a dynamical code can be a valuable addition to the geophysical classification system described in this paper. Dynamical codes are provided in Table A1.

The definitions that follow describe the general dynamical circumstances for spherical planetary bodies and correspond with the dynamical codes (Table A1). These codes may be added to the geophysical classification described in Section 4. The term “planetary body” is a general term for spherical sub-stellar mass bodies including planets, dwarf planets, and spherical moons.

Table A1. Dynamical Class Codes for Spherical Planetary Bodies

Dynamical Class	Dynamical code
Principal planet (Planet)	p
Belt planet (dwarf planet)	b
Moon	m
Rogue planet	r
Principal double planet	pd
Belt double planet	bd
Rogue double planet	rd
Principle planet: A planetary body orbiting a star or brown dwarf that is dynamically dominant within its orbital zone. A Principal planet will have significantly more mass than the cumulative mass of all other bodies sharing in the Principal planet’s orbital zone.

Belt planet: A planetary body orbiting a star or brown dwarf that does not dynamically dominate its orbital zone. A Belt planet shares its orbital region with numerous mostly smaller bodies having a cumulative mass larger than the mass of the belt planet.

Moon: A planetary body orbiting a larger planetary body and with the orbital barycenter inside the radius of the larger body.

Double planet or double belt planet: A pair of Principal or Belt planets with an orbital barycenter outside the radius of the larger planetary body.

Rogue Planet: A free-floating planetary body ejected from a planetary system which does not orbit any star or brown dwarf.

Satellite: A satellite is not a type of planetary body but is a sub-planetary mass ($< \sim 3 \times 10^{19}$ kg) body orbiting a Principal planet, Belt planet, Moon, or Rogue planet.

In common usage the terms “moon” and “satellite” are generally interchangeable terms. However, in the system of dynamical classes described above the two terms have distinct meanings. Non-spherical sub-planetary mass bodies orbiting planets and dwarf planets are “satellites” and considered a separate class from the spherical “moons”.

With regard to different definitions for the term “planet” it is important to note that the dynamical classes described above are compatible with the International Astronomical Union (IAU) planet definition and also compatible with a geophysical definition in which all spherical planetary bodies are classified as “planets” (e.g. Stern & Levison 2002, Runyon et al. 2017).

If the IAU’s planet definition is preferred then the dynamical classes “Principal planet” and “Belt planet” align with the IAU definitions for “planet” and “dwarf planet” respectively. Bodies identified as “belt planets” and the spherical “moons” are not planets in the IAU definition. However all planets, dwarf planets, and spherical moons can be assigned a mass class code from the planetary mass scale (Table 3) and a composition class code (Table 1). The dynamical class codes can also be assigned although sticking strictly to the IAU definitions it would be more appropriate to identify, for example, the Earth, Pluto, and Ganymede as a “P4R$_S$ planet”, a “P5R$_I$ dwarf planet”, and a “P5R$_I$ moon” respectively.

If the geophysical definition of “planet” is preferred then the dynamical classes “Principal planet”, “Belt planet”, and “moon” are dynamical classes of planets. Each planet would have a mass class code from the planetary mass scale (Table 3), a composition class code (Table 1) and a dynamical class code (Table A1).
Whether the IAU planet definition or the geophysical planet definition is preferred, any given spherical planetary body will be assigned the exact same mass scale code, composition code, and dynamical code as those codes have been defined in this paper. The classification for Solar System planetary bodies when combining the dynamical code with the geophysical codes is provided in Table A2.

Table A2: Classification of Solar System Planetary Bodies

Solar System planetary body	Classification
Mercury	P4R_{MP}
Venus	P4R_{SP}
Earth	P4R_{SP}
Moon	P5R_{SM}
Mars	P4R_{SP}
Ceres	P5R_{lb}
Jupiter	P2G_{01p}
Saturn	P2G_{23p}
Uranus	P3I_{scp}
Neptune	P3I_{scp}
Pluto	P5R_{bd}
Charon	P5R_{bd}
Io	P5R_{SM}
Europa	P5R_{SM}
Ganymede	P5R_{SM}
Callisto	P5I_{SM}
Titan	P5I_{SM}
Iapetus	P5I_{SM}
Mimas	P5I_{SM}
Tethys	P5I_M
Triton	P5R_M

Acknowledgements

This research has made use of NASA’s Astrophysics Data System Bibliographic Services. This research has made use of the Exoplanet Orbit Database and the Exoplanet Data Explorer at exoplanets.org. I would like to thank David Merritt for helpful comments on the composition codes presented in Table 1.
References

Almenara, J. M., Damiani, C., Bouchy, F., Havel, M., Bruno, G., Hébrard, G., Diaz, R. F., Deleuil, M., Barros, S. C. C., Boisse, I., Bonomo, A. S., Montagnier, G., Santerne, A. (2015) SOPHIE velocimetry of Kepler transit candidates. XV. KOI-614b, KOI-206b, and KOI-680b: a massive warm Jupiter orbiting a G0 metallic dwarf and two highly inflated planets with a distant companion around evolved F-type stars. *Astronomy & Astrophysics* 575: 71-86

Ballard, S., Chaplin, W.J., Charbonneau, D., Désert, J-M., Fressin, F., Zeng, L., Werner, M.W., Davies, G.R., Silva Aguirre, V., Basu, S., Christensen-Dalsgaard, J., Metcalfe, T.S., Stello, D., Bedding, T.R., Campante, T.L., Handberg, R., Karoff, C., Elsworth, Y., Gilliland, R.L., Hekker, S., Huber, D., Kawaler, S.D., Kjeldsen, H., Lund, M. N., Lundkvist, M. (2014) Kepler-93b: A Terrestrial World Measured to within 120 km, and a Test Case for a New Spitzer Observing Mode. *The Astrophysical Journal* 790: 12-28

Baraffe, I., Chabrier, G., and Barman, T. (2008) Structure and evolution of super-Earth to super-Jupiter exoplanets I. Heavy element enrichment in the interior. *Astronomy & Astrophysics* 482: 315-332

Baraffe I., Chabrier G., and Barman T. (2010) The physical properties of extra-solar planets. *Reports on Progress in Physics* 73: 016901.

Baraffe I., Chabrier G., Fortney J., Sotin C. (2014) Planetary Internal Structures. In *Protostars and Planets VI*, Beuther, H., Klessen, R., Dullemond, C. and Henning, T. (eds.), University of Arizona Press, Tucson, 914 pp., p.763-786; preprint (arXiv:1401.4738)

Barros, S., Almenara, J., Deleuil, M., Diaz, R., Csizmadia, Sz., Cabrera, J., Chaintreuil, S., Collier Cameron, A., Hatzes, A., Haywood, R., Lanza, A., Aigrain, S., Alonso, R., Bordé, P., Bouchy, F., Deeg, H., Erikson, A., Fridlund, M., Grziwa, S., Gandolfi, D., Guillot, T., Guenther, E., Leger, A., Moutou, C., Ollivier, M., Pasternacki, T., Pätzold, M., Rauer, H., Rouan, D., Santerne, A., Schneider, J., Wuchterl, G. (2014) Revisiting the transits of CoRoT-7b at a lower activity level. *Astronomy & Astrophysics* 569: 74-87

Batygin, K. and Stevenson, D. (2013) Mass-Radius Relationships for Very Low Mass Gaseous Planets. *The Astrophysical Journal Letters* 769: L9-L14

Beichman, C., Gelino, C. R., Kirkpatrick, J. D., Cushing, M. C., Dodson-Robinson, S., Marley, M. S., Morley, C. V., Wright, E. L. (2014) WISE Y Dwarfs as Probes of the Brown Dwarf-Exoplanet Connection. *The Astrophysical Journal* 783: 68-97.

Bihain, G., Rebolo, R., Zapatero Osorio, M. R., Béjar, V. J. S., Villó-Pérez, I., Díaz-Sánchez, A., Pérez-Garrido, A., Caballero, J. A., Bailer-Jones, C. A. L., Barrado y Navascués, D., Eislöffel, J., Forveille, T., Goldman, B., Henning, T., Martín, E. L., Mundt, R. (2009) Candidate free-floating super-Jupiters in the young sigma Orionis open cluster. *Astronomy & Astrophysics* 506: 1169-1182

Bonomo, A. S., Sozzetti, A.,Lovis, C., Malavolta, L., Rice, K., Buchhave, L. A., Sasselov, D., Cameron, A. C., Latham, D. W., Molinari, E., Pepe, F., Udry, S., Affer, L., Charbonneau, D., Cosentino, R., Dressing, C. D., Dumusque, X., Figueira, P., Fiorenzano, A. F. M., Gettel, S.,
Harutyunyan, A., Haywood, R. D., Horne, K., Lopez-Morales, M., Mayor, M., Micela, G., Motalebi, F., Nacimbeni, V., Phillips, D. F., Piotto, G.; Pollacco, D., Queloz, D., Ségransan, D., Szentgyorgyi, A., Watson, C. (2014) Characterization of the planetary system Kepler-101 with HARPS-N: A hot super-Neptune with an Earth-sized low-mass companion. *Astronomy & Astrophysics* 572: 2-9

Bouchy, F., Bonomo, A. S., Santerne, A., Moutou, C., Deleuil, M., Díaz, R. F., Eggenberger, A., Ehrenreich, D., Gry, C., Guillot, T., Havel, M., Hébrard, G., Udry, S. (2011) SOPHIE velocimetry of Kepler transit candidates. III. KOI-423b: an 18 M$_{\text{Jup}}$ transiting companion around an F7IV star. *Astronomy & Astrophysics* 533, 83-92

Brahm, R., Jordán, A., Bakos, G., Penev, K., Espinoza, N., Rabus, M., Hartman, J., Bayliss, D., Ciceri, S., Zhou, G., Mancini, L., Tan, T., de Val-Borro, M., Bhatti, W., Csubry, Z., Bento, J., Henning, T., Schmidt, B., Suc, V., Lázár, J., Papp, I., Sári, P. (2016) HATS-17b: A Transiting Compact Warm Jupiter in a 16.3 Days Circular Orbit. *The Astronomical Journal* 151: 89-100

Brandt, Timothy D., McElwain, Michael W., Turner, Edwin L., Mede, Kyle, Spiegel, David S., Kuzuhara, Masayuki, Schlieder, Joshua E., Wisniewski, John P., Abe, L., Biller, B., Brandner, W., Carson, J., Currie, T., Egner, S., Feldt, M., Golota, T., Goto, M., Grady, C. A., Guyon, O., Hashimoto, J., Hayano, Y., Hayashi, M., Hayashi, S., Henning, T., Hodapp, K. W., Inutsuka, S., Ishii, M., Iye, M., Janson, M., Kandori, R., Knapp, G. R., Kudo, T., Kusakabe, N., Kwon, J., Matsuo, T., Miyama, S., Morino, J.-I., Moro-Martín, A., Nishimura, T., Pyo, T.-S., Serabyn, E., Suto, H., Suzuki, R., Takami, M., Takato, N., Terada, H., Thalmann, C., Tomono, D., Watanabe, M., Yamada, T., Takami, H., Usuda, T., Tamura, M. (2014) A Statistical Analysis of SEEDS and Other High-contrast Exoplanet Surveys: Massive Planets or Low-mass Brown Dwarfs? *The Astrophysical Journal* 794: 159-184

Buchhave, L. A., Bizzarro, M., Latham, D. W., Sasselov, D., Cochran, W. D., Endl, M., Isaacson, H., Juncker, D., Marcy, G. W. (2014) Three regimes of extrasolar planet radius inferred from host star metallicities. *Nature* 509: 593-595

Caballero, J. A., Béjar, V. J. S., Rebolo, R., Eislöffel, J., Zapatero Osorio, M. R., Mundt, R., Barrado Y Navascués, D., Bihain, G., Bailier-Jones, C. A. L., Forveille, T., Martín, E. L. (2007) The substellar mass function in sigma Orionis. II. Optical, near-infrared and IRAC/Spitzer photometry of young cluster brown dwarfs and planetary-mass objects. *Astronomy & Astrophysics* 470: 903-918

Carter, J. A., Agol, E., Chaplin, W. J., Basu, S., Bedding, T. R., Buchhave, L. A., Christensen-Dalsgaard, J., Deck, K. M., Elsworth, Y., Fabrycky, D. C., Ford, E. B., Fortney, J. J., Hale, S. J., Handberg, R., Hekker, S., Holman, M. J., Huber, D., Karoff, C., Kawaler, S. D., Kjeldsen, H., Lissauer, J. J., Lopez, E. D., Lund, M. N., Lundkvist, M., Metcalfe, T. S., Miglio, A., Rogers, L. A., Stello, D., Borucki, W. J., Bryson, S., Christiansen, J. L., Cochran, W. D., Geary, J. C., Gilliland, R. L., Haas, M. R., Hall, J., Howard, A. W., Jenkins, J. M., Klaus, T., Koch, D. G., Latham, D. W., MacQueen, P. J., Sasselov, D., Steffen, J. H., Twicken, J. D., Winn, J. N. (2012) Kepler-36: A Pair of Planets with Neighboring Orbits and Dissimilar Densities. *Science* 337: 556

Chabrier G., Baraffe I., Selsis F., Barman T., Hennebelle P., Alibert Y. (2007) Gaseous Planets, Protostars, and Young Brown Dwarfs: Birth and Fate. In Reipurth B., Jewitt D., Keil K. (eds), *Protostars and Planets V*, University of Arizona press, Tuscon, p. 623-638
Chabrier G., Johansen A., Janson M., Rafikov R. (2014) Giant Planet and Brown Dwarf Formation. In Protostars and Planets VI, Beuther, H., Klessen, R., Dullemond, C. and Henning, T. (eds.), University of Arizona Press, Tucson. p. 619-642 preprint

Chen, G. and Kipping, D. (2017) Probabilistic Forecasting of the Masses and Radii of Other Worlds. preprint: The Astrophysical Journal 834:17-30

Ciceri, S., Mancini, L., Southworth, J., Lendl, M., Tregloan-Reed, J., Brahms, R., Chen, G., D’Ago, G., Dominik, M., Figuera Jaimes, R., Galianni, P., Harpsøe, K., Hinse, T.C., Jørgensen, U., Juncker, D., Korhonen, H., Liebig, C., Rabus, M., Bonomo, A., Bott, K., Henning, Th., Jordán, A., Sozzetti, A., Alsubai, K., Andersen, J., Bajek, D., Bozza, V., Bramich, D., Browne, P., Calchi Novati, S., Damerdji, Y., Diehl, C., Elyiv, A., Giannini, E., Gu, S-H., Hundertmark, M., Kains, N., Penny, M., Popovas, A., Rahvar, S., Scarpetta, G., Schmidt, R., Skottfelt, J., Snodgrass, C., Surdej, J., Vilela, C., Wang, X-B., Wertz, O. (2016) Physical Properties of the Planetary Systems WASP-45 and WASP-46 from Simultaneous Multi-Band Photometry. Monthly Notices of the Royal Astronomical Society 456: 990-1002

Cochran, W. D., Fabrycky, D. C., Torres, G., Fressin, F., Désert, Jean-Michel, Ragozzine, D., Sasselov, D., Fortney, J. J., Rowe, J. F., Brugamer, E. J., Bryson, S. T., Carter, J. A., Ciardi, D. R., Howell, S. B., Steffen, J. H., Borucki, W. J., Koch, D. G., Winn, J. N., Welsh, W. F., Uddin, K., Tenenbaum, P., Still, M., Seager, S., Quinn, S. N., Mullally, F., Miller, N., Marcy, G. W., MacQueen, P. J.; Lucas, P., Lissauer, J. J., Latham, D. W., Knutson, H., Kinemuchi, K., Johnson, J. A., Jenkins, J. M., Isaacson, H., Howard, A., Horch, E., Holman, M. J., Henze, C. E., Haas, M. R., Gilliland, R. L., Gautier, T. N., III, Ford, E. B., Fischer, D. A., Everett, M., Endl, M., Demory, Brice-Oliver, Deming, D., Charbonneau, D., Caldwell, D., Buchhave, L., Brown, T. M., Batalha, N. (2011) Kepler-18b, c, and d: A System of Three Planets Confirmed by Transit Timing Variations, Light Curve Validation, Warm-Spitzer Photometry, and Radial Velocity Measurements. The Astrophysical Journal Supplement 197: 7-26

D’Angelo, G., Durisen, R., Lissauer, J. (2010) Giant Planet formation. Preprint: arXiv:1006.5486

Delorme, P., Gagné, J., Malo, L., Reylé, C., Artigau, E., Albert, L., Forveille, T., Delfosse, X., Allard, F., Homeier, D. (2012) CFBDSIR2149-0403: a 4-7 Jupiter-mass free-floating planet in the young moving group AB Doradus? Astronomy & Astrophysics 548: 26-40

Demory, Brice-Oliver; Torres, Guillermo; Neves, Vasco; Rogers, Leslie; Gillon, Michæl; Horch, Elliott; Sullivan, Peter; Bonfils, Xavier; Delfosse, Xavier; Forveille, Thierry; Lovis, Christophe; Mayor, Michel; Santos, Nuno; Seager, Sara; Smalley, Barry; Udry, Stephane (2013) Spitzer Observations of GJ 3470 b: A Very Low-density Neptune-size Planet Orbiting a Metal-rich M Dwarf. The Astrophysical Journal, Volume 768, Issue 2, article id. 154, 9 pp.

de Pater, I., Lissauer, J. (2015) Planetary Sciences: Updated Second Edition, Cambridge University Press, University Printing House, Cambridge CB2 8BS, United Kingdom

Dressing, C. D., Charbonneau, D., Dumusque, X., Gettel, S., Pepe, F., Collier Cameron, A., Latham, D. W., Molinari, E., Udry, S., Affer, L., Bonomo, A.S., Buchhave, L. A., Cosentino, R., Figueira, P., Fiorenzano, A. F. M., Harutyunyan, A., Haywood, R. D., Johnson, J.A., Lopez-Morales, M., Lovis, C., Malavolta, L., Mayor, M., Micela, G., Motalebi, F., Nascimbeni, V., Phillips, D. F., Piotto, G.,
Pollacco, D., Queloz, D., Rice, K., Sasselov, D., Ségransan, D., Sozzetti, A., Szentesgoryi, A., Watson, C. (2015) The Mass of Kepler-93b and The Composition of Terrestrial Planets. *The Astrophysical Journal* 800: 135-142

Dumusque, X., Bonomo, A. S., Haywood, R. D., Malavolta, L., Ségransan, D., Buchhave, L. A., Collier Cameron, A., Latham, D. W., Molineri, E., Pepe, F., Udry, S., Charbonneau, D., Cosentino, R., Dressing, C. D., Figueira, P., Fiorenzano, A. F. M.; Gettel, S., Harutyunyan, A., Horne, K., Lopez-Morales, M., Lovis, C., Mayor, M., Micela, G., Motalebi, F., Nascimbeni, V., Phillips, D. F.; Piotto, G., Pollacco, D., Queloz, D., Rice, K., Sasselov, D.; Sozzetti, A., Szentesgoryi, A., Watson, C. (2014) The Kepler-10 Planetary System Revisited by HARPS-N: A Hot Rocky World and a Solid Neptune-Mass Planet. *The Astrophysical Journal* 789: 154-168

Encrenaz T., (2010) Characterizing Exoplanet Atmospheres and Surfaces. *Pathways Towards Habitable Planets*, proceedings of a workshop held 14 to 18 September 2009 in Barcelona, Spain. Edited by Vincent Coudé du Foresto, Dawn M. Gelino, and Ignasi Ribas. San Francisco: Astronomical Society of the Pacific 430: 65

Espinoza, N., Brahm, R., Jordán, A., Jenkins, J., Rojas, F., Jofré, P., Mädler, T., Rabus, M., Chanaamé, J., Pantoja, B., Soto, M., Morzinski, K., Males, J., Ward-Duong, K., Close, L. (2016) Discovery and Validation of a High Density sub-Neptune from the K2 Mission. *The Astrophysical Journal* 830: 43-54

Fletcher L., Irwin P., Barstow J., de Kok R., Lee J., Aigrain S. (2014) Exploring the Diversity of Jupiter-Class Planets (Discussion Meeting Contribution). Preprint: arXiv:1403.4436

Fortney J., Saumon D., Marley M., Lodders K., Freedman R. (2006) Atmosphere, Interior, and Evolution of the Metal-rich Transiting Planet HD 149026b. *The Astrophysical Journal* 642: 495-504

Gandolfi, D., Parviainen, H., Fridlund, M., Hatzes, A. P., Deeg, H. J., Frasca, A., Lanza, A. F., Prada Moroni, P. G., Tognelli, E., McQuillan, A., Aigrain, S., Alonso, R., Antoci, V., Cabrera, J.; Carone, L., Csizmadia, Sz., Djupvik, A. A., Guenther, E. W.; Jessen-Hansen, J., Ofir, A., Telting, J. (2013) Kepler-77b: a very low albedo, Saturn-mass transiting planet around a metal-rich solar-like star. *Astronomy & Astrophysics* 557: 74-87

Gandolfi, D., Parviainen, H., Deeg, H. J., Lanza, A. F., Fridlund, M., Prada Moroni, P.G., Alonso, R., Augusteijn, T., Cabrera, J., Evans, T., Geier, S., Hatze, A. P., Holczer, T., Hoyer, S., Kangas, T., Mazeh, T., Pagano, I., Tal-Or, L., Tingley, B. (2015) Kepler-423b: a half-Jupiter mass planet transiting a very old solar-like star. *Astronomy & Astrophysics* 576: 11-24

Gautier, T. N., III, Charbonneau, D., Rowe, J. F., Marcy, G.W., Isaacson, H., Torres, Guillermo, F., Francois, R., Leslie A., Désert, J.-M., Buchhave, L.A., Latham, D.W., Quinn, S. N., Ciardi, D.R., Fabrycky, D.C., Ford, E.B., Gilliland, R.L., Walkowicz, L.M., Bryson, S.T., Cochran, W.D., Endl, M., Fischer, D.A., Howell, S.B., Horch, E.P., Barclay, T., Batalha, N., Borucki, W.J., Christiansen, J.L., Geary, J.C., Henze, C.E., Holman, M.J., Ibrahim, K., Jenkins, J.M., Kinemuchi, K., Koch, D.G., Lissauer, J.J., Sanderfer, D.T., Sasselov, D.D., Seager, S., Silverio, K., Smith, J.C., Still, M., Stumpe, M.C., Tenenbaum, P., Van Cleve, J. (2012) Kepler-20: A Sun-like Star with Three Sub-Neptune Exoplanets and Two Earth-size Candidates. *The Astrophysical Journal* 749: 15-34
Gettel, S., Charbonneau, D., Dressing, C., Buchhave, L., Dumusque, X., Vanderburg, A., Bonomo, A., Malavolta, L., Pepe, F., Collier Cameron, A., Latham, D., Udry, S., Marcy, G., Isaacson, H., Howard, A., Davies, G., Silva Aguirre, V., Kjeldsen, H., Bedding, T., Lopez, E., Affer, L., Cosentino, R., Figueira, P., Fiorenzano, A., Harutyunyan, A., Johnson, J., Lopez-Morales, M., Lovis, C., Mayor, M., Micela, G., Molinaro, E., Motalebi, F., Phillips, D., Piotto, G., Queloz, D., Rice, K., Sasselov, D., Ségransan, D., Sozzetti, A., Watson, C., Basu, S., Campante, T., Christensen-Dalsgaard, J., Kawaler, S., Metcalfe, T., Handberg, R., Lund, M., Lundkvist, M., Huber, D., Chaplin, W. (2016) The Kepler-454 System: A Small, Not-rocky Inner Planet, a Jovian World, and a Distant Companion. *The Astrophysical Journal* 816: 95-108

Gilliland, R. L., Marcy, G. W., Rowe, J. F., Rogers, L., Torres, G., Fressin, F., Lopez, E. D., Buchhave, L. A., Christensen-Dalsgaard, J., Désert, J.-M., Henze, C. E., Isaacson, H., Jenkins, J. M., Lissauer, J. J., Chaplin, W. J., Basu, S., Metcalfe, T. S., Elsworth, Y., Handberg, R., Hekker, S., Huber, D., Karoff, C., Kjeldsen, H., Lund, M. N.; Lundkvist, M., Miglio, A., Charbonneau, D., Ford, E. B., Fortney, J. J., Haas, M. R.; Howard, A. W., Howell, S. B., Ragozzine, D., Thompson, S. E. (2013) Kepler-68: Three Planets, One with a Density between that of Earth and Ice Giants. *The Astrophysical Journal* 766: 40-59

Gillon, M., Pont, F., Demory, B.-O., Mallmann, F., Mayor, M., Mazeh, T., Queloz, D., Shporer, A., Udry, S., Vuissoz, C. (2007) Detection of transits of the nearby hot Neptune GJ 436b. *Astronomy & Astrophysics* 472: L13-L16

Grasset, O., Schneider, J., Sotin, C. (2009) A Study of the Accuracy of Mass-Radius Relationships for Silicate-Rich and Ice-Rich Planets Up To 100 Earth Masses. *The Astrophysical Journal* 693: 722-733

Grunblatt, S. K., Howard, A. W., Haywood, R. D. (2015) Measuring the Mass of Kepler-78b Using a Gaussian Process Model. Preprint arXiv:1501.00369

Han, E., Wang, S. X., Wright, J.T., Feng, Y. K., Zhao, M., Fakhouri, O., Brown, J. I., Hancock, C. (2014) Exoplanet Orbit Database. II. Updates to Exoplanets.org. *Publications of the Astronomical Society of the Pacific* 126: 827-837

Hatzes, A. and Rauer, H. (2015) A Definition for Giant Planets Based on the Mass-Density Relationship. *The Astrophysical Journal Letters* 810: L25-L29

Helled, R., Bodenheimer, P., Podolak, M., Boley, A., Meru, F., Nayakshin, S., Fortney, J.J., Mayer, L., Alibert, Y., Boss, A.P. (2014) Giant Planet Formation, Evolution, and Internal Structure. In *Protostars and Planets VI*, Beuther, H., Klessen, R., Dullemond, C. and Henning, T. (eds.), University of Arizona Press, Tucson, 914 pp., p. 643-665

Howe A., Burrows A., and Verne W. (2014) Mass-radius Relations and Core-envelope Decompositions of Super-Earths and Sub-Neptunes. *The Astrophysical Journal* 787: 173-195

Irwin, L. and Schulze-Makuch, D. (2001) Assessing the Plausibility of Life on Other Worlds. *Astrobiology* 1: 143-160
Kaelin R. (2006) In a class by themselves: a method to classify planets. *Journal of the Association of Lunar & Planetary Observers* 48: 28-32

Kumar, S. (2003) The Bottom of the Main Sequence and Beyond: Speculations, Calculations, Observations, and Discoveries (1958-2002). *IAUS* 211: 3-12

Laughlin, G. and Lissauer, J. (2015) Exoplanetary Geophysics – An Emerging Discipline. Preprint: arXiv:1501.05685

LeConte J., Baraffe I., Chabrier G., Barman T., Levrard B. (2009) Structure and evolution of the first CoRoT exoplanets: probing the brown dwarf/planet overlapping mass regime. *Astronomy & Astrophysics* 506: 385-389

Lineweaver C. and Norman M. (2010) The Potato Radius: a Lower Minimum Size for Dwarf Planets. Preprint arXiv:1004.1091

Lissauer, J. J., Jontof-Hutter, D., Rowe, J. F., Fabrycky, D. C., Lopez, E. D., Agol, E., Marcy, G. W., Deck, K. M., Fischer, D. A., Fortney, J. J., Howell, S. B., Isaacson, H., Jenkins, J. M., Kolbl, R., Sasselov, D., Short, D. R., Welsh, W. F. (2013) All Six Planets Known to Orbit Kepler-11 Have Low Densities. *The Astrophysical Journal* 770: 131-146

Lopez, E. and Fortney, J. (2014) Understanding the Mass-Radius Relation for Sub-neptunes: Radius as a Proxy for Composition. *The Astrophysical Journal* 792: 1-17

Lucas P., Weights D., Roche P., Riddick F. (2006) Spectroscopy of planetary mass brown dwarfs in Orion. *Monthly Notices of the Royal Astronomical Society: Letters* 373: L60-L64

Luhman K. (2008) Distinguishing Giant Planets and Brown Dwarfs. In Extreme Solar Systems, *ASP Conference Series*, Vol. 398, proceedings of the conference held 25-29 June, 2007, at Santorini Island, Greece. Edited by D. Fischer, F. A. Rasio, S. E. Thorsett, and A. Wolszczan, p.357

Luhman K. (2014) Discovery of a ~250 K Brown Dwarf at 2 pc from the Sun. *The Astrophysical Journal Letters* 786: L18-L24

Lundock, R., Ichikawa, T., Okita, H., Kurita, K., Kawabata, K. S., Uemura, M., Yamashita, T., Ohsugi, T., Sato, S., Kino, M. (2009) Tohoku-Hiroshima-Nagoya planetary spectra library: a method for characterizing planets in the visible to near infrared. *Astronomy & Astrophysics* 507: 1649-1658

Ma B. and Ge J. (2014) Statistical properties of brown dwarf companions: implications for different formation mechanisms. *Monthly Notices of the Royal Astronomical Society* 439: 2781-2789

Marcy G., Weiss L., Petigura E., Isaacson H., Howard A., Buchhave L. (2014) Occurrence and core-envelope structure of 1-4x Earth-size planets around Sun-like stars. *Proceedings of the National Academy of Sciences* 111: 12655-12660. Preprint: arXiv:1404.2960
McKinnon, W. B., Prialnik, D., Stern, S. A., Coradini, A. (2008) Structure and Evolution of Kuiper Belt Objects and Dwarf Planets. *The Solar System Beyond Neptune*, M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, and A. Morbidelli (eds.), University of Arizona Press, Tucson, p. 213-241

Mendez, A. (2011) A Mass Classification for both Solar and Extrasolar Planets. Planetary Habitability Laboratory University of Puerto Rico. Available online at http://phl.upr.edu/library/notes/amassclassificationforbothsolarandextrasolarplanets

Michalak G. (2000) Determination of asteroid masses --- I. (1) Ceres, (2) Pallas and (4) Vesta. *Astronomy & Astrophysics* 360: 363-374

Michalak G. (2001) Determination of asteroid masses. II. (6) Hebe, (10) Hygiea, (15) Eunomia, (52) Europa, (88) Thisbe, (444) Gyptis, (511) Davida and (704) Interamnia. *Astronomy & Astrophysics* 374: 703-711

Mollière, P. and Mordasini, C. (2012) Deuterium burning in objects forming via the core accretion scenario Brown dwarfs or planets? *Astronomy & Astrophysics* 547: 105-127

Morgan, J. and Anders, E. (1980) Chemical Composition of Earth, Venus, and Mercury. *Proceedings of the National Academy of Sciences of the United States of America* 77: 6973-6977

Mulders, G.D., Paardekooper, S.-J., Panić, O., Dominik, C., van Boekel, R., Ratzka T. (2013) Planet or brown dwarf? Inferring the companion mass in HD 100546 from the wall shape using mid-infrared interferometry. *Astronomy & Astrophysics* 557: 68-78

Nettelmann, N., Kramm, U., Redmer, R., Neuhäuser, R. (2010) Interior structure models of GJ 436b. *Astronomy & Astrophysics* 523: 26-35

Ofir, A., Dreizler, S., Zechmeister, M., Husser, T-O. (2014) An independent planet search in the Kepler dataset. II. An extremely low-density super-Earth mass planet around Kepler-87. *Astronomy & Astrophysics* 561: 103-110

Peña Ramírez K., Béjar V., Zapatero Osorio M., Petr-Gotzens M., Martín E. (2012) New Isolated Planetary-mass Objects and the Stellar and Substellar Mass Function of the σ Orionis Cluster. *The Astrophysical Journal* 754: 30

Plávalová E. (2012) Taxonomy of the Extrasolar Planet. *Astrobiology* 12: 361-369

Rogers, L. (2015) Most 1.6 Earth-radius Planets are Not Rocky. *The Astrophysical Journal* 801: 41-54

Ronco, M.P., Thiabaud, A., Marboeuf, U., Alibert, Y., de Elía, G.C., Guilera, O.M. (2015) Chemical composition of Earth-like planets. Preprint: arXiv:1502.06870

Runyon, K.D., Stern, S.A., Lauer, T.R., Grundy, W., Summers, M.E., Singer, K.N. (2017) A Geophysical Planet Definition. 48th Lunar and Planetary Science Conference, LPI Contribution No. 1964, id.1448
Russell, C. T., Raymond, C. A., Coradini, A., McSween, H. Y., Zuber, M. T., Nathues, A., De Sanctis, M. C., Jaumann, R., Konopliv, A. S., Preusker, F., Asmar, S. W., Park, R. S., Gaskell, R., Keller, H. U., Mottola, S., Roatsch, T., Scully, J. E. C., Smith, D. E., Tricarico, P., Tozli, M. J., Christensen, U. R., Feldman, W. C., Lawrence, D. J., McCoy, T. J., Prettyman, T. H., Reedy, R. C., Sykes, M. E., Titus, T. N. (2012) Dawn at Vesta: Testing the Protoplanetary Paradigm. *Science* 336: 684

Scholz A., Jayawardhana R., Muzic K., Geers V., Tamura M., and Tanaka I. (2012) Substellar Objects in Nearby Young Clusters (SONYC). VI. The Planetary-mass Domain of NGC 1333. *The Astrophysical Journal* 756: 24-36

Schubert, G., Hussmann, H., Lainey, V., Matson, D. L., McKinnon, W. B., Sohl, F., Sotin, C., Tobie, G., Turrini, D., van Hoolst, T. (2010) Evolution of Icy Satellites. *Space Science Reviews* 153: 447-484

Sotin, C., Jackson, J. M., and Seager, S. (2010) Terrestrial Planet Interiors. *Exoplanets*, edited by S. Seager. Tucson, AZ: University of Arizona Press, p.375-395

Spiegel D., Fortney J. and Sotin C. (2014) Structure of exoplanets. *Proceedings of the National Academy of Sciences* 111: 12622-12627.

Stern S.A. and Levison H.F. (2002) Regarding the criteria for planethood and proposed planetary classification schemes. In *Highlights of Astronomy* 12: 205-213 Edited by H. Rickman. San Francisco, CA: Astronomical Society of the Pacific, ISBN 1-58381-086-2

Sudarsky D., Burrows A., and Hubeny I. (2003) Theoretical Spectra and Atmospheres of Extrasolar Giant Planets. *The Astrophysical Journal* 588: 1121-1148

Tancredi G. (2010) Physical and dynamical characteristics of icy “dwarf planets” (plutoids) *Icy Bodies of the Solar System*, Proceedings of the International Astronomical Union, IAU Symposium 263: 173-185

Van Grootel, V., Gillon, M., Valencia, D., Madhusudhan, N., Dragomir, D., Howe, A., Burrows, A., Demory, B.-O, Deming, D., Ehrenreich, D., Lovis, C., Mayor, M., Pepe, R., Queloz, D., Scuflaire, R., Seager, S., Segransan, D., Udry, S. (2014) Transit Confirmation and Improved Stellar and Planet Parameters for the Super-Earth HD 97658 b and its Host Star. *The Astrophysical Journal* 786: 2-13

Wagner, F. W., Tosi, N., Sohl, F., Rauer, H., Spohn, T. (2012) Rocky super-Earth interiors. Structure and internal dynamics of CoRoT-7b and Kepler-10b. *Astronomy & Astrophysics* 541: 103-116

Wolfgang, A. and Lopez, E. (2015) How Rocky Are They? The Composition Distribution of Kepler’s Sub-Neptune Planet Candidates within 0.15 AU. *The Astrophysical Journal* 806: 183-205

Weiss L. and Marcy G. (2014) The Mass-Radius Relation for 65 Exoplanets Smaller than 4 Earth Radii. *The Astrophysical Journal Letters* 783: L6-L13
Weiss, L., Rogers, L., Isaacson, H., Agol, E., Marcy, G., Rowe, J., Kipping, D., Fulton, B., Lissauer, J., Howard, A., Fabrycky, D. (2016) Revised Masses and Densities of the Planets around Kepler-10. *The Astrophysical Journal* 819: 83-105

Whitworth, A., Bate, M. R., Nordlund, Å., Reipurth, B., Zinnecker, H. (2007) The Formation of Brown Dwarfs: Theory. In *Protostars and Planets V*, B. Reipurth, D. Jewitt, and K. Keil (eds.), University of Arizona Press, Tucson, p.459-476

Zapatero Osorio M., Béjar V., Martín E., Rebolo R., Barrado y Navascués D., Bailier-Jones C., Mundt R. (2000) Discovery of Young, Isolated Planetary Mass Objects in the σ Orionis Star Cluster. *Science* 290: 103-107

Zapatero Osorio M., Béjar V., Martín E., Rebolo R., Barrado y Navascués D., Mundt R., Eislöffel J., Caballero J. (2002) A Methane, Isolated, Planetary-Mass Object in Orion. *The Astrophysical Journal* 578: 536-42