Genetic Diversity in Oil Palm Genotypes by Multivariate Analysis

P. Balakrishna1,2*, Rajasekhar Pinnamaneni3,4, K.V. Pavani5 and R.K. Mathur1

1ICAR-Indian Institute of Oil Palm Research, Pedavegi-534 450, A.P, India
2Department of Biotechnology, Jawaharlal Nehru Technological University Hyderabad, Hyderabad, India
3Department of Biotechnology, Sreenidhi Institute of Science and Technology, Yammampet, Ghatkesar, Hyderabad-501 301, India
4Department of Biotechnology, K L University, Greenfields, Vaddeswaram, Guntur District-522 502, A.P., India
5Department of Biotechnology, Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad-500 090, India

*Corresponding author

A B S T R A C T

Genetic diversity was studied in 58 genotypes of oil palm germplasm in Andhra Pradesh and Telangana locations of India. Morphological traits were recorded and subjected to Mahalanobis D2 cluster analysis and principal component analysis (PCA). These 58 genotypes were grouped into eight clusters which show greater genetic diversity in the genotypes. Cluster 7 is the largest one that has 12 genotypes. Intra and Inter cluster distance of clusters was analyzed by D2 and principal component analysis (PCA). According to D2 analysis maximum intra cluster distance was observed in Cluster 5 and minimum in Cluster 4. Maximum D2 inter cluster distance was observed between Cluster 1 and Cluster 6. Similarly in PCA analysis maximum inter cluster distance was observed between Cluster 2 and Cluster 6. These clusters are having greater genetic distance and hybridization of these genotypes with desired traits can develop superior hybrids.

Introduction

Oil palm (Elaeis guineensis Jacq) is an important edible vegetable oil crop which produces 4-6 tonnes of crude palm oil/ha. As oil palm crop is introduced in India from Africa, it is growing in India under different climatic conditions like high temperature, low humidity and less rainy days. There is a need to develop and strengthen the oil palm breeding program in India as there is a demand from the farmers to cultivate good yielding oil palm hybrids. In the cross pollinated crop like oil palm exploitation of heterosis is the main objective to develop high yielding hybrids (Kumar and Singh, 2006).
For strengthening the breeding program broad range of genetic resources collection and its conservation is the preliminary step (Haussmann et al., 2004). Characterization of traits in collected germplasm is the important aspect in crop improvement (Singh et al., 2008; Duran et al., 2009 and Worede et al., 2014). The agro morphological traits which were categorized into qualitative and quantitative traits and their study is the procedure of germplasm characterization. Genetic divergence in the available germplasm is the important requisite for the successful breeding for the selection of parents (Hoisington et al., 1999; Maxted et al., 2002; Rohman et al., 2004; Singh et al., 2008 and Naik et al., 2006). Multi variate analysis such as Mahalanobis D2 cluster analysis and principal component analysis (PCA) were useful to select the diversified genotypes for hybridization (Satish et al., 2005; Sudhakar et al., 2005; Parthasarathy et al., 2005 and Ngah et al., 2015). In the present investigation, genetic diversity was assessed in oil palm genotypes by evaluating the agro morphological traits using cluster and principal component analysis.

Materials and Methods

Sample collection and parameters analyzed

58 oil palm genotypes located in different villages of Andhra Pradesh and Telangana were taken in the present study (Table 1). Randomized block design (RBD) was laid out in 3 replications and 24 morphological traits were recorded in all the genotypes. Morphological biometric observations like height, girth at base, height increment, sex ratio, number of leaves, petiole width, petiole depth, number of leaflets, rachis length, leaflet length (LLL), leaflet width (LLW), leaf area (LA), leaf dry weight (LDW), total leaf dry weight (TLDW), specific leaf weight (SLW), trunk dry matter (TrDM), vegetative dry matter (VDM), total dry matter (TDM) and yield parameters like bunch number (BN), fresh fruit bunch yield (FFBY), average bunch weight (ABW), bunch dry weight (BDW), bunch index (BI), oil/bunch ratio were recorded as per Corley et al., (1971) and Kushairi et al., (1999) non-destructive method and experiment was conducted during year 2011-2016.

Data Analysis

The Morphological data recorded was submitted to statistical package WINDOSTAT 9.2 (developed by INDOSTAT services Ltd. Hyderabad, India) to carry out the Genetic diversity studies through Mahalanobis (1936) generalized distance (D2) cluster analysis and principal component analysis (PCA) as described by Rao (1952).

Results and Discussion

The analysis of variance revealed significant differences among the 58 genotypes. The 58 genotypes were grouped into eight clusters in D2 analysis. Among the eight clusters, cluster 7 is the largest cluster that consists of 12 genotypes followed by cluster 1 which contains 11 genotypes, cluster 8 with 10 genotypes, cluster 4 with 7 genotypes, cluster 2, 3, 6 with 5 genotypes each and cluster 5 with 3 genotypes (Table 2 and Figure 1).

The results have clearly indicated that there is no parallelism between the geographic diversity and genetic diversity in oil palm, in accordance with Ngah et al., (2015). Rahman and Al-Mansur (2009) reported that genetic diversity is associated with geographical diversity. Kjaer et al., (2004) and Zulkifli et al., (2012) reported that genetic diversity is associated with geographical diversity. In this study found no association between genetic diversity and geographical location reveals that populations from different locations have genetic similarity that may obtained from
same parent material (Tahir et al., 2013). This results show that the germplasm accessions present in single cluster were genetically similar and that are distributed in different clusters were diversified even though they were collected from different geographical locations.

On the basis of D2 analysis intra and inter cluster analysis was obtained (Table 3). The range of intra cluster distance is from 94.247 (Cluster 4) to 180.169 (Cluster 5) and the maximum intra cluster distance was observed in cluster 5 (180.169), followed by cluster 6 (147.183) and cluster 3 (130.605). The minimum intra cluster distance was observed in cluster 4 (94.247) followed by cluster 7 (95.913) and cluster 2 (115.243). The minimum inter cluster distance was observed in cluster 4 (94.247) followed by cluster 6 (147.183) and cluster 3 (130.605). The maximum inter cluster D2 distance was between cluster 1 and cluster 6 (1640.325) which shows greater genetic divergence between these clusters. As these two clusters (cluster 1 and 6) are having greater genetic distance, the genotypes in cluster 1 and cluster 6 exhibit greater genetic diversity. The hybridization between these genotypes will yields greater variability in the germplasm and develop superior hybrids with desired traits (Arunachalam, 1981; and Ravali, 2017).

The minimum inter cluster distance was observed in cluster 1 and cluster 2 (164.048), which shows very narrow range of divergence between the genotypes in these cluster and they are not suitable for hybridization due to inbreeding depression (Kumar and Singh, 2006).

The additional advantage of D2 analysis is the contribution of various characters (Table 4) towards the expression of genetic divergence. This analysis indicated that the height of palm contributed maximum genetic divergence in the material (64.07 %) followed by fresh fruit bunch yield-FFBY (18.45 %). Based on PCA scores the additional advantage in hierarchical cluster analysis is identifying sub-cluster of the major group at different levels so that each small group can be critically analyzed.

Table 1 List of genotypes and their sources

S. No	Village	Genotype	S. No	Village	Genotype
1	A Polavaram	APV	30	Ankannagudem	ANG
2	Annadevarapeta	ADP	31	Bandivarigudem	BVG
3	Bayannagudem	BNG	32	Busarajupalli	BRP
4	Blimolu	BMU	33	Chityala	CHT
5	Gavaravaram	GVM	34	Doramamidi	DRM
6	Jelugumilli	JLG	35	Eduvadalla Palu	EVP
7	Komatikunta	KMK	36	Guravaigudem	GVG
8	Kommugudem	KMG	37	Jaggavaram	JGV
9	Kunta Gudem	KTG	38	Kanakadripuram	KKP
10	Lakkkavaram	LKV	39	Kollivarigudem	KVG
11	Lingaraopalem	LOP	40	Krishnapuram	KSP
12	Malagolampalli	MLG	41	P Rajavaram	PRM
13	P Narayanapuram	PNP	42	Rachanna gudem	RNG
14	R Ganapavaram	RGP	43	Rudranajukotagudem	RRK
15	Rajavaram	RJV	44	Bandamcharla	BMC
16	Gudlapalli	GDP	45	Borrapalem	BMP
17	Kethavaram	KTV	46	Cherukumili	CRK
18	Laxmanagudem	LXG	47	Darbhagudem	DRB
19	Mysannna Gudem	MNG	48	Devulapalli	DVP
20	Peddipalli	PDP	49	Gangolu	GNG
21	Pullepudi	PLP	50	Gopalapuram	GPP
22	Rajupothepalli	RPP	51	Vegavaram	VGV
23	Ramacherilla Gudem	RCG	52	Kamayya Palem	KMP
24	Taduvi	TDV	53	Makkinavarigudem	MKV
25	Teklavarigudem	TVG	54	P Ankampalem	PAP
26	Aswarapeta	ARP	55	Pangidigudem	PGG
27	Janagareddygudem	JRG	56	Parimpudi	PRP
28	Pedavegi	PED	57	Ponguturu	PGT
29	Akkampeta	AKP	58	Pragadapalli	PGD
Table 2: Distribution of 58 genotypes into different clusters as per Mahalanobis D2 analysis

Cluster	Number of Genotypes	Genotypes
1	11	APV, ADP, LGP, CRK, GVG, BVG, DRM, VGV, PGG, KSP, GNG
2	5	RRK, DRB, MKV, JGV, PGT
3	5	GDP, TVG, GVM, BRP, RPP
4	7	BNG, MLG, KMK, JRG, PDP, TDV, AKP
5	3	RJV, MNG, KTG
6	5	BMU, LXG, PLP, GPP, PRM
7	12	PED, PAP, PRP, RGP, KKP, PGD, BMP, DVP, RCG, PNP, KMP, JLG
8	10	KMG, KVG, KTV, EVP, CHT, LKV, BMC, ARP, ANG, RGG

Table 3: Intra cluster (bold) and Inter cluster Euclidean² values among eight clusters using Wards minimum variance method

Cluster	1 Cluster	2 Cluster	3 Cluster	4 Cluster	5 Cluster	6 Cluster	7 Cluster	8 Cluster
1 Cluster	**119.519**	164.048	177.09	226.822	442.024	1640.325	1530.418	621.552
2 Cluster	**115.243**	245.93	191.306	334.873	1353.530	1340.588	351.929	
3 Cluster	**130.605**	212.75	532.697	1527.964	1254.331	470.374		
4 Cluster	**94.247**	303.767	981.943	914.438	299.954			
5 Cluster	180.169	951.882	1211.797	574.752				
6 Cluster	147.183	351.993	565.267					
7 Cluster	95.913	350.566						
8 Cluster	123.248							

Table 4: Contribution of 24 characters towards genetic diversity

S.N0.	Source	Times Ranked 1st	Contribution %
1	Height (cm)	1059	64.07 %
2	Girth (cm)	9	0.54 %
3	Height incre (cm)	24	1.45 %
4	Sex Ratio (%)	1	0.06 %
5	No. of Leaves	3	0.18 %
6	Petiole Width (cm)	5	0.30 %
7	Petiole Depth (cm)	0.01	0.00 %
8	No. of Leaflets	4	0.24 %
9	Rachis Length (cm)	65	3.93 %
10	LLL (cm)	4	0.24 %
11	LLW (cm)	50	3.02 %
12	LA sq m	3	0.18 %
13	LDW (kg)	3	0.18 %
14	TLDW (kg)	0.01	0.00 %
15	SLW kg/sq m	2	0.12 %
16	TrDM (kg)	8	0.48 %
17	VDM (kg)	0.01	0.00 %
18	BN	39	2.36 %
19	FFBY (kg)	305	18.45 %
20	ABW (kg)	24	1.45 %
21	BDW (kg)	1	0.06 %
22	TDM (kg)	0.01	0.00 %
23	BI	0.01	0.00 %
24	Oil/ bunch %	44	2.66 %
Table 5
Intra cluster (bold) and Inter cluster distances in principal component analysis (PCA) by Tocher method

	1 Cluster	2 Cluster	3 Cluster	4 Cluster	5 Cluster	6 Cluster	7 Cluster	8 Cluster
1 Cluster	**27.900**	414.052	108.110	491.737	139.433	138.861	140.480	383.797
2 Cluster	414.052	**62.232**	216.235	110.011	493.043	533.597	481.997	188.709
3 Cluster	108.110	216.235	**82.431**	273.295	187.422	202.525	185.182	235.754
4 Cluster	491.737	110.011	273.295	**0.000**	408.576	441.169	455.917	87.053
5 Cluster	139.433	493.043	187.422	408.576	**0.000**	42.340	46.157	301.541
6 Cluster	138.861	533.597	202.525	441.169	42.340	**0.000**	68.174	283.859
7 Cluster	140.480	481.997	185.182	455.917	46.157	68.174	**0.000**	328.489
8 Cluster	383.797	188.709	235.754	87.053	301.541	283.859	328.489	**0.000**

Table 6
Eigen values, percentage of variability, cumulative percent variability for Eight principal component analysis (PCA)

	1 Vector	2 Vector	3 Vector	4 Vector	5 Vector	6 Vector	7 Vector	8 Vector
Eigen Value (Root)	9.073	2.728	1.628	1.557	1.454	1.180	1.032	0.931
% Var. Exp.	37.805	11.365	6.782	6.488	6.057	4.916	4.302	3.880
Cum. Var. Exp.	37.805	49.170	55.952	62.440	68.497	73.413	77.715	81.594
Height (cm)	0.325	0.048	0.014	0.007	0.041	0.054	0.007	0.010
Girth (cm)	0.232	0.040	0.101	0.322	0.169	0.178	-0.020	0.319
Height incre (cm)	-0.319	-0.029	0.058	0.012	-0.044	-0.078	-0.029	0.041
Sex Ratio (%)	-0.203	0.092	-0.067	0.258	0.238	-0.119	0.041	0.130
No. of Leaves	0.144	-0.221	0.002	0.073	-0.524	-0.134	0.034	0.056
Petiole Width (cm)	-0.015	-0.428	0.182	0.242	-0.049	-0.053	0.000	-0.298
Petiole Depth (cm)	-0.089	0.049	0.105	0.323	-0.141	-0.596	-0.040	0.459
No. of Leaflets	-0.289	-0.014	0.120	0.031	-0.159	0.021	0.012	0.047
Rachis Length (cm)	0.044	-0.222	0.589	0.072	-0.024	0.169	0.104	-0.116
LLL (cm)	-0.006	-0.317	0.178	-0.294	0.069	0.100	-0.436	0.403
LLW (cm)	0.256	0.098	0.124	-0.053	-0.029	-0.208	0.419	0.098
LA sq m	0.241	0.231	0.143	0.049	0.200	-0.205	0.125	0.010
LDW (kg)	0.312	0.010	-0.089	-0.036	0.039	0.066	-0.032	-0.078
TLDW (kg)	-0.100	0.176	-0.425	0.250	-0.110	-0.021	-0.257	-0.255
SLW kg/sq m	-0.313	-0.083	0.058	-0.024	-0.069	0.036	-0.041	0.043
TrDM (kg)	-0.133	-0.053	-0.278	-0.186	0.085	0.325	0.362	0.469
VDM (kg)	-0.092	-0.154	-0.080	-0.475	-0.139	-0.307	0.409	-0.112
BN	-0.154	0.302	0.341	-0.020	-0.172	0.089	-0.060	-0.019
FFBY (kg)	-0.041	0.440	0.204	-0.202	-0.251	0.199	-0.081	-0.062
ABW (kg)	0.132	-0.006	-0.194	0.163	-0.571	0.154	0.068	0.088
BDW (kg)	-0.297	0.055	-0.010	-0.064	-0.024	0.003	-0.036	0.090
TDM (kg)	0.192	0.305	0.090	-0.225	-0.217	-0.057	-0.233	0.182
BI	0.207	-0.296	-0.154	0.012	-0.140	0.128	-0.139	0.159
Oil/ bunch %	-0.130	0.080	0.077	0.340	-0.110	0.385	0.380	0.077
Fig. 1 Distribution of 58 genotypes into different clusters as per D2 analysis-Wards minimum variance method.
Fig. 2: Two dimensional plot of 58 genotypes and their relative positions based on PCA scores.
Fig. 3 Three dimensional plot of 58 genotypes and their relative positions based on PCA scores

On the basis of principal component analysis (PCA) by Tocher method (Table 5) the maximum intra-cluster distance was observed in cluster 3 (82.431) and minimum in cluster 1 (27.90). Similarly the maximum inter-cluster distance was observed between cluster 2 and 6 (533.60) while the least being between cluster 5 and 6 (42.34).

Rahman and Al-Mansur (2009) reported that higher genetic diversity with higher inter and intra cluster distances in cluster and closeness of the genotypes by minimum inter and intra cluster distances. PCA will show the major contributer of the total variation at each distinct point. The principal factor (PF) will be obtained by PCA method and it does not require the assumption of normal distribution of population. The major principal component can be determined by Eigen value. The first 7 principal components (PCS) greater than one Eigen value and they together explained 77.71% of total variability among 58 genotypes (Table 6). The first principal component or Vector (PC1) accounted maximum towards variability (37.80%) followed by PC2 (11.36%), PC3 (6.78%), PC4 (6.48%), PC5 (6.05%), PC6 (4.91%), PC7 (4.30%) and PC8 (3.88%).

PC1 has major positive association with Height of the palm (0.325), Girth at base (0.232), number of leaves (0.144), leaflet width-LLW (0.256), leaf area-LA (0.241), leaf dry weight-LDW (0.312), total dry matter-TDM (0.192) and respectively. PC2 has significant positive association with leaf area-LA (0.231), total leaf dry weight-TLDW (0.176), bunch number-BN (0.302), fresh fruit bunch yield-FFBY (0.440), total dry matter-TDM (0.305), respectively. PC3 has significant positive association with petiole...
width (0.182), rachis length (0.589), bunch number-BN (0.341), and fresh fruit bunch yield-FFBY (0.204), respectively. PC4 has significant positive association with Girth at base (0.322), sex ratio (0.258), petiole depth (0.323), oil to bunch ratio (0.340), respectively. PC5 has significant positive association with sex ratio (0.238), Girth at base (0.169), Leaf area-LA (0.200), respectively. PC6 has significant positive association with oil to bunch ratio (0.385), fresh fruit bunch yield-FFBY (0.199), average bunch weight-ABW (0.154), trunk dry matter-TrDM (0.325), rachis length (0.169), Girth at base (0.178), respectively. PC7 has significant positive association with leaflet width-LLW (0.419), vegetative dry matter-VDM (0.409), trunk dry matter-TrDM (0.362), respectively. PC8 has significant positive association with Girth at base (0.319), petiole depth (0.459), leaflet length-LLL (0.403), trunk dry matter-TrDM (0.469), respectively. All the genotypes were plotted (2D and 3D) for first principal components (PCS) to observe the relationship between 58 genotypes (Figure S2 and 3).

In conclusion, due to Genetic drift and selection pressure the genotypes of same geographical location clustered with other genotypes that are in different geographical location. This shows that there is no parallelism between genetic diversity and geographical location. From D2 and PCA analysis the maximum cluster distances in intra and inter clusters genotypes are having greater genetic diversity and they can be useful for hybridization to develop superior genotypes with desired traits. Similarly PCS or vectors that are having greater positive significance towards fresh fruit bunch yield-FFBY, oil to bunch ratio and bunch index-BI can be selected to develop superior genotypes with desired traits.

References

Arunachalam V. (1981). Genetic distance in plant breeding. Indian J. Genet Plant Breed. 41: 226-236.

Corley R H V, Hardon J J and Tan G Y. (1971). Analysis of growth of the oil palm (Elaeis guineensis Jacq.). 1. Estimation of growth parameters and application in breeding. Euphytica. 20: 307-315.

Duran C, Appeby N, Edwards D and Batley J. (2009). Molecular genetic markers: Discovery, applications, data storage and visualization. Curr. Bioinform. 4: 16-27.

Haussmann B I G, Parzies H K, Presteri T, Susic Z and Miedaner T. (2004). Plant genetic resources in crop improvement. Plant Genet. Resour. 2: 3-21.

Hoisington D, Khairallah M, Ribaut J M, Skovmand B, Tabia S and Warburton M. (1999). Plant Genetic Resources: What can they contribute towards increased crop productivity. Proc. natl. Acad. Sci. 96: 5937-5943.

Kjær A, Barford A S, Asmussen C B and Serberg O. (2004). Investigation of Genetic and Morphological Variation in the Sago Palm (Metroxylon sagu; Areocaeae) in Papau New Guinea. Annals of Botany. 94: 109-117.

Kumar R R and Singh S P. (2006). Multivariate Analysis and Clustering of Cupheacrocubens Inbred Lines. Genetika. 38(1): 23-30.

Kushairi A, Rajanaidu N, Jalani B S and Zakri A H. (1999). Agronomic performance and genetic variability of Dura x Pisisfera progenies. Journal of Oil Palm Research. 11 (2): 1-24.

Mahalanobis P C. (1936). On generalized distance in statistics. Proceedings of National Institute of Science. 2: 49-55.

Maxted N, Guarino L, Myer L and Chiwona E A. (2002). Towards a methodology
for on-farm conservation of plant genetic resources. *Genet. resour. Crop Evol. 49*: 31-46.

Naik D, Sao A, Sarawgi A K and Singh P. (2006). Genetic divergence studies in some indigenous scented rice (*Oryza sativa* L.) accessions of central India. *Asian J. Plant Sci.* 5: 197-200.

Ngah Che Wan Zanariah C W, Li Hammed M A, Kushairi A, Rajanaidu N, Hassan M S, Jalani B S and Olalekan Elegbede I. (2015). Genetic diversity in oil palm germplasm as shown by Hierarchical clustering methods. *International Journal of Recent Scientific Research.* 6(6): 4866-4872.

Parthasarathy K, Eswari B, Durga Rani Ch V and Srinivasa Rao V. (2005). Genetic Divergence in Greengram (*Vigna radiata* L.). *The Andhra Agric. J.* 52(3&4): 451-458.

Rahman M M and Al-Munsur M A Z. (2009). Genetic Divergence Analysis of Lime. *Journal of Bangladesh Agricultural University.* 7(1): 33-37.

Rao C R. (1952). Advanced Statistical Method in Biometric Research, John Wiley and Sons, Inc., New York. 15(10): 130-134.

Ravali B, Ravinder Reddy K, Saidiah P and Shivraj N. (2017). Genetic Diversity in Brinjal (*Solanum melongena* L.). *Int.J.Curr.Microbiol.App.Sci.* 6(6): 48-54.

Rohman M M, Hakim M A, Sultana N A, Kabir M E, Hasanuzzaman M and Ali M. (2004). Genetic divergence analysis in sorghum (*Sorghum bicolor* L.). *Asian J. Plant Sci.* 3: 211-214.

Satish Kumar D, Koteswara Rao Y, Ramana Kumar P V and Srinivasa Rao V. (2005). Genetic Diversity in Redgram (*Cajanus cajan* (L.) Mills.] *The Andhra Agric. J.* 52(1&2): 443-450.

Singh M, Kaur K and Singh B. (2008). “Cluster Algorithm for Genetic Diversity”. *World Academy of Science, Engineering and Technology.* 18: 453-457.

Sudhakar Ch, Rao P J M, Panduranga Rao C and Srinivasa Rao V. (2005). Multivariate analysis in Maghi Sorghum [*Sorghum bicolor* (L.) Moench]. *The Andhra Agric. J.* 52(3&4): 411-418.

Tahir M, Rahman H, Gul R, Ali A and Khalid M. (2013). Genetic Divergence in Sugarcane Genotypes. *American Journal of Experimental Agriculture.* 3(1): 102-109.

Worede F, Sreewongchai T, Phumichai C and Sripichitt P. (2014). Multivariate analysis of genetic diversity among some Rice genotypes using Morpho-agronomic traits. *Journal of Plant Sciences.* 9(1): 14-24.

Zulkifli Y, Maizura I and Rajinder S. (2012). Evaluation of MPOB Oil Palm Germplasm (*Elaies guineensis*) Populations Using EST-SSR. *Journal of Oil Palm Research.* 24: 1368-1377.

How to cite this article:

Balakrishna, P., Rajasekhar Pinnamaneni, K.V. Pavani and Mathur, R.K. 2017. Genetic Diversity in Oil Palm Genotypes by Multivariate Analysis. *Int.J.Curr.Microbiol.App.Sci.* 6(8): 1180-1189. doi: https://doi.org/10.20546/ijcmas.2017.608.146