An Analytical Solution of BK Equation with Homogeneous Balance Method

Xiaopeng Wang,1,2,3 Yirui Yang,3,‡ Wei Kou,1,2 Rong Wang,1,2,† and Xurong Chen1,2,4,‡

1 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Lanzhou University, Lanzhou 730000, China
4 Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China

(Dated: September 29, 2020)

Nonlinear QCD evolution equations are the essential tools in understanding the saturation of partons at small Bjorken x_B, as they are supposed to restore an upper bound of unitarity for the cross section of high energy scattering. In this paper, we present an analytical solution of BK equation using the homogeneous balance method. The obtained analytical solution is similar to the solution of a traveling wave. By matching the gluon distribution in the dilute region which is determined from the global analysis of experimental data (CT14 PDFs), we get the definitive solution of the dipole-proton forward scattering amplitude in the momentum space. Based on the acquired scattering amplitude and the behavior of geometric scaling, we present also a new estimated saturation scale $Q_s^2(x)$.

I. INTRODUCTION

The powerful and sharpest way to resolve the proton structure is by the lepton deep inelastic scattering (DIS) off the proton at high energy. The current experiments show that the gluon distribution grows rapidly toward smaller x_B. The fast growth of gluons is described by the well-established Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation, which is derived with perturbative quantum chromodynamics (pQCD) by resumming the leading logarithmic contribution ($\ln(1/x)$) to the scattering off the proton. However, under the assumption of the Regge-like growth of the gluon distribution as x_B decrease, the unitarity limit of the $\gamma^*\cdot P$ cross section eventually is broken. To restore the unitarity upper bound in QCD theory is an interesting physics, which has been discussed for decades. The first idea is to include the parton-parton recombination process which will cease the growth of gluon distribution when the scattering happens in the high density region.

An interesting and successful theory which permits the gluon saturation is Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner (JIMWLK) equation, in which the nonlinear correction of the strong field is considered with Wilson renormalization group approach. The saturation state predicted by JIMWLK equation is called color glass condensate (CGC), in which the nonlinear evolution equation is BK equation, in which the correction due to the resuming of the fan diagrams (two Pomerons merge into one Pomeron) are added to the standard BFKL evolution process. In JIMWLK equation, the quantum fluctuation is added to the evolution for the strong gluon field at small-x, while in BK equation, the quantum corrections from resuming multiple rescatterings is implemented for the dipole forward amplitude. Both equations are derived in the framework of the quantum evolution process. In a simple view, BK equation is regarded as the mean-field approximation of JIMWLK equation. The non-saturating regime and the saturating regime are well connected by BK equation, and the unitarization of the high energy hadron scattering can be realized as well. Moreover, BK equation is a partial derivative equation, which can be solved easily compared to JIMWLK equation, at least numerically recently. Some analytical solutions of BK equation are proposed from different approaches with some minor approximations. These solutions provide some interesting insights on the nonlinear corrections to the BFKL evolution and the phenomenological applications at high energy hadron scattering. The applications of BK equation in explaining the experimental results are important for us to understand the small-x physics and the parton saturation.

Recently the relation between the BK equation and the Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) equation has been found. The FKPP equation is a famous reaction-diffusion equation in statistical physics, which can be simulated easily using Monte-Carlo technique. Analytically, the geometric scaling of observed at small-x can be explained with the traveling wave solution of FKPP equation. It is shown in a pioneering work that the transition to the parton saturation region in high energy QCD is identical to the formation of the front of a traveling wave. Successful applications has been made in explaining the DIS data at HERA collider, with a parametrization of the travel wave solution. In this work we present a general solution of the FKPP equation from the homogeneous balance method. With some transformations and by matching to
the gluon distribution in the non-saturating region, we provide the definitive solution of the BK equation.

The organization of the paper is as follows. The BK equation and the FKPP equation are reviewed in Sec. II. The analytical solutions of FKPP equation are introduced in Sec. III. The definitive and analytical solutions of BK equation are shown in Sec. IV for the physical forward dipole-proton scattering amplitude in the momentum space. At the end, some discussions and a summary is given in Sec. V.

II. BK EQUATION AND FKPP EQUATION

In the dipole picture, the DIS cross section of virtual photon is factorized into the photon wave function Ψ into a color dipole $q\bar{q}$ and the forward dipole-proton scattering amplitude N \cite{38-40}. In the leading logarithm approximation, the cross section is written as \cite{39},

$$\sigma_{\gamma p} = \int_0^\infty dr \int_0^1 dz |\Psi(z, rQ)|^2 N(r, Y), \quad (1)$$

in which z is the longitudinal momentum fraction carried by the quark of the virtual photon, r is the size of the dipole, and $Y = \ln(1/x)$ is the total rapidity.

The BK equation is a QCD evolution equation for describing the rapidity-dependence of the imaginary part of the scattering between dipole and proton. For the scattering amplitude $N(Y, k)$ in the momentum space, BK equation is given by \cite{24},

$$\frac{\partial N(k, Y)}{\partial Y} = \frac{\alpha_s N_c}{\pi} \chi \left(-\frac{\partial}{\partial \ln k^2} \right) N(k, Y) - \frac{\alpha_s N_c}{\pi} N^2(k, Y), \quad (2)$$

where

$$\chi(\lambda) = \phi(1) - \frac{1}{2} \phi \left(1 - \frac{\lambda}{2} \right) - \frac{1}{2} \phi \left(\frac{\lambda}{2} \right), \quad (3)$$

is the BFKL kernel with $\phi(\lambda) = \Gamma'(\lambda)/\Gamma(\lambda)$. In $\phi(\lambda), \lambda = -\partial/\partial \ln k^2$ is the differential operator acting on $N(Y, k)$.

For a commonly used approximation and defining $L = \ln(k^2/k_0^2)$, S. Munier and R. Peschanski suggest an expansion of BFKL kernel to the second order around $\lambda = 1/2$ \cite{24},

$$\tilde{\chi} \left(\frac{\partial}{\partial L} \right) = \chi \left(\frac{1}{2} \right) + \chi'' \left(\frac{1}{2} \right) \left(\frac{\partial}{\partial L} + \frac{1}{2} \right)^2. \quad (4)$$

With the above expansion and the following transformations of the variables as,

$$s = (1 - \gamma) \left(L + \frac{\alpha_s}{2} Y \right),$$

$$t = \frac{\alpha_s}{2} \left(1 - \gamma \right)^2 Y,$$

$$u(s, t) = \frac{2}{\chi'' \left(\frac{1}{2} \right) \left(1 - \gamma \right)^2} \times \mathcal{N} \left(\frac{s}{1 - \gamma} - \frac{t}{\left(1 - \gamma \right)^2} \right),$$

the BK equation turns into the FKPP equation for $u(s, t)$, which is written as \cite{24},

$$\partial_s u(s, t) = \partial^2_t u(s, t) + u(s, t) - u^2(s, t). \quad (5)$$

Thus, seeking for the analytical solution of BK equation becomes a problem of finding the analytical solution of FKPP equation. The FKPP equation is a famous non-linear reaction-diffusion equation in statistical physics, which has already been studied with some systematical method.

III. SOLUTIONS OF FKPP EQUATION WITH HOMOGENEOUS BALANCE METHOD

To solve the FKPP equation (5), we begin with a heuristic solution as,

$$u(s, t) = \sum_{m+n=1}^N c_{m+n} \frac{\partial^{m+n} f(\omega(s, t))}{\partial s^m \partial t^n}. \quad (6)$$

According to the partial balance principle, the power of $\partial \omega/\partial s$ is balanced, and the power of $\partial \omega/\partial t$ is also balanced. Hence, we obtain the following constraint,

$$N = 2. \quad (8)$$

The trail solution now is written as,

$$u(s, t) = f''(\omega) \left(\frac{\partial}{\partial s} \omega \right)^2 + f'(\omega) \frac{\partial^2}{\partial s^2} \omega + c_1 f'(\omega) \frac{\partial}{\partial s} \omega + c_0. \quad (9)$$

Applying the above solution into the FKPP equation (Eq. (5)) again, and apply the homogeneous balance principle, we get a differential equation of $f(\omega)$,

$$(f''(\omega))^2 - f^{(4)}(\omega) = 0. \quad (10)$$

A particular solution for f is then solved to be,

$$f(\omega) = -6 \ln \omega. \quad (11)$$
Using the FKPP equation and the homogeneous balance principle once again, we get a differential equation of \(\omega(s, t) \). By solving the differential equation of \(\omega \), we get a traveling wave solution as a solitary wave,

\[
\omega(s, t) = 1 + e^{ks + \beta t + \theta}.
\]

(12)

Inserting the solution into the FKPP equation, we get the following constraints for the coefficients in the solution,

\[
c_0 = 0, 1,

c_1 = \pm \frac{1}{\sqrt{6}},
\]

\[
\kappa = \frac{2c_0 - 1}{6c_1},
\]

\[
\beta = -5c_1 \kappa,
\]

while \(\theta \) is still a free parameter. We choose \(c_0 = 0 \) and \(c_1 = 1/\sqrt{6} \), in order to meet the physical result that there is the strong absorption for the scattering amplitude at the very large rapidity. Finally, we get an analytical solution for the FKPP equation, which is written as [11],

\[
u(s, t) = \left[\frac{e^{-s/\sqrt{3} + 5t/6 + \theta}}{1 + e^{-s/\sqrt{3} + 5t/6 + \theta}} \right]^2.
\]

(14)

FIG. 1. The traveling wave solution of the FKPP equation from the homogeneous balance method, with the coefficients \(c_0 = 0, c_1 = 1/\sqrt{6}, \) and \(\theta = 0 \).

IV. DEFINITIVE SOLUTION OF BK EQUATION BY MATCHING NON-SATURATING GLUON DISTRIBUTION

Before going onto the solution of BK equation, let’s have a look at the simplification of the BK equations again. Fixing the running strong coupling constant and expanding the BFKL kernel \(\chi(\lambda) \) at \(\lambda = \lambda_0 [12] \), we get,

\[
A_0 N - N^2 - \frac{\partial N}{\partial Y} - A_1 \frac{\partial N}{\partial L} + \sum_{p=2}^P (-1)^p A_p \frac{\partial^p N}{\partial^p L} = 0,
\]

(15)

with the coefficients derived as [12],

\[
A_p = \sum_{i=0}^{P-p} (-1)^i \frac{\lambda^{(i+p)}(\lambda_0)}{i!} \lambda_i.
\]

(16)

In the so-called diffusive approximation (keeping the first three terms of the expansion), the BK equation turns into the FKPP equation as suggested by Munier and Peschanski. With \(P = 2 \), we get the simplified BK equation [12],

\[
A_0 N - N^2 - \frac{\partial N}{\partial Y} - A_1 \frac{\partial N}{\partial L} + A_2 \frac{\partial^2 N}{\partial^2 L} = 0.
\]

(17)

Note that some variations of the values of \(A_p \) (Eq. (16)) are allowed, as the expansion point \(\lambda_0 \) is arbitrary, the strong coupling \(\alpha_s(k^2) \) is slightly running, and the truncation of the diffusive approximation may introduce some corrections.

Based on the analytical solution of FKPP equation discussed in the above section, we obtain an analytical solution of the BK equation through some variable transformations, which is written as,

\[
N(L, Y) = \frac{A_0 e^{\lambda_0 Y}}{\left[e^{-\frac{\lambda_0 Y}{6}} + e^{-\frac{\lambda_0 Y}{6} + 2 \sqrt{\lambda_0 Y (L - A_1 Y)}} \right]^2}.
\]

(18)

The geometric scaling of the virtual photon-proton cross section is expressed as \(\sigma^\gamma p(Y, Q^2) = \sigma^\gamma p(Q^2/Q^2(Y)) \). In terms of the forward scattering amplitude, the scaling property at low \(k \) takes the form,

\[
N(L = \ln(k^2/K_0^2), Y) = N\left(\frac{k^2}{Q^2(Y)}\right).
\]

(19)

Rewriting the solution \(N(L, Y) \) as \(N(k^2/Q^2) \), we extract the saturation scale to be,

\[
Q_s^2(Y) = k_0^2 e^{(A_1 + 5\sqrt{A_0 A_2/6})\bar{Y}}.
\]

(20)

In the following analyses, we take \(k_0^2 \) to be \(\Lambda_{QCD}^2 = 0.04 \) GeV\(^2\) as the reference point.

In order to get the definitive solution of the BK equation for proton structure at small \(x \), the coefficients \(A_0, A_1 \) and \(A_2 \) should be determined. By matching the dipole-proton cross section to the normal DIS cross section in the parton model, the dipole scattering amplitude is connected to the gluon distribution via [12],

\[
N(k, Y) = \frac{4\pi \alpha_s}{N_c R_p^2} \int_k^\infty dp \left[\frac{\partial}{\partial p^2} x g(x, p^2) \right] \ln \left(\frac{p}{k} \right)
= \frac{\pi \alpha_s}{N_c R_p^2} \int_k^\infty dt \frac{x}{t^2} x g(x, t) \ln \left(\frac{t}{e k^2} \right).
\]

(21)
With the above formula, we can fix the values of A_p, by performing the fits between the dipole scattering amplitude and the widely used global analyses of the proton gluon distributions in the high k^2 (>5 GeV2) region. The relation in Eq. (21) is based on an approximation that the derivative of gluon distribution contains the information of the un-integrated gluon distribution function. And by a fit to the gluon distributions of CT14(NNLO), we get the coefficients for the BK solution to be $A_0 = 33.3$, $A_1 = -58.3$, $A_2 = 26.2$ and $\theta = -3.09$. The fit to the CT14 PDFs is shown in Fig. 2, which displays a good fitting quality.

With the definitive solutions of the BK equation determined above, we present the dipole-proton forward scattering amplitude in the full momentum range. Fig. 3 shows the BK scattering amplitude at different rapidities constrained by CT14 PDFs. It is very clear to see that these solutions exhibit the saturation behavior at the large rapidities. To demonstrate where the saturation region is, the saturation scale $Q_s^2(Y = \ln(1/x))$ is usually used, which is rapidity-dependent. The saturation scale Q_s^2 is viewed as the boundary connecting the saturation domain and the non-saturation domain of the partons. Fig. 4 shows the saturation scales extracted by the BK solutions determined in this work. Our prediction indicates a very similar domain of the parton saturation to the GBW parametrization. Our prediction gives $Q_s^2(x) \propto (1/x)^{0.386}$, and GBW prediction gives $Q_s^2(x) \propto (1/x)^{0.29}$. The existence of the parton saturation inside proton is understandable in the framework of nonlinear evolution equation, and it is a well-established mechanism for the geometric scaling phenomenon observed in experiment.

V. DISCUSSIONS AND SUMMARY

We have shown the analytical solution of nonlinear BK equation, with the application of a mathematical method of homogeneous balance principle. The homogeneous balance method would have some broad applications in solving the nonlinear evolution equations in high energy QCD. By fitting to the gluon distributions in the non-saturation region (high Q^2), we have obtained the physical BK solutions for the proton. The solutions in this work is similar to the traveling wave front introduced by Munier and Peschanski [26,28]. The saturation is clearly shown in the scattering amplitude solutions in the momentum space. The saturation scales $Q_s^2(Y)$ are also provided from our analyses. This solution with the saturation behavior is an important dynamical mechanism to explain the observed geometric scaling of the proton structure function at small x. The BK equation with the truncation of BFKL kernel is successful in interpreting
the deep inelastic scattering data at current and closed accelerator facilities.

The solutions of BK equation determined in this work are useful for the phenomenological studies on the unitarization of high energy cross-section, the parton saturation, and the small-\(x\) physics. Our results may be applied in the deep inelastic scattering [10], the diffractive process [33, 47, 48], and the hadron collisions at high energy [10], where the high parton density effect should be considered [17]. In US, the future Electron-Ion Collider (EIC) [49] will be an important machine to study the phenomenology of parton saturation physics. The saturation scale predictions can be evaluated with the future experiments. For the proposed low energy Electron-ion collider in China (EicC) [50, 51], the DIS cross-section measurement at low \(Q^2\) and small \(x_B\) is also helpful for us to understand the saturation phenomenon of partons inside proton or nucleus. The future high energy accelerator facilities are needed for a precise understanding of the complex dynamics of strong interaction and the high energy QCD frontiers.

ACKNOWLEDGMENTS

We thank Profs. Kong-Qing YANG, Wei ZHU and Fan WANG for the suggestions and the fruitful discussions. This work is supported by the Strategic Priority Research Program of Chinese Academy of Sciences under the Grant NO. XDB34030301.

[1] L. Lipatov, Sov. J. Nucl. Phys. 23, 338 (1976).
[2] E. Kuraev, L. Lipatov, and V. S. Fadin, Sov. Phys. JETP 45, 199 (1977).
[3] I. Balitsky and L. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978).
[4] M. Froissart, Phys. Rev. 123, 1053 (1961).
[5] A. Martin, Phys. Lett. 129, 1432 (1963).
[6] L. Gribov, E. Levin, and M. Ryskin, Nucl. Phys. B 188, 555 (1981).
[7] L. Gribov, E. Levin, and M. Ryskin, Phys. Rept. 100, 1 (1983).
[8] A. H. Mueller and J.-w. Qiu, Nucl. Phys. B 268, 427 (1986).
[9] A. H. Mueller, Nucl. Phys. B 335, 115 (1990).
[10] W. Zhu and J.-h. Ruan, Nucl. Phys. B 559, 378 (1999).
[11] I. Balitsky, Nucl. Phys. B 463, 99 (1996).
[12] J. Jalilian-Marian, A. Kovner, A. Leonidov, and H. Weigert, Nucl. Phys. B 504, 415 (1997).
[13] E. Iancu, A. Leonidov, and L. D. McLerran, Nucl. Phys. A 692, 583 (2001).
[14] H. Weigert, Nucl. Phys. B 703, 823 (2002).
[15] E. Iancu, A. Leonidov, and L. D. McLerran, Phys. Lett. B 510, 133 (2001).
[16] J. Jalilian-Marian and Y. V. Kovchegov, Prog. Part. Nucl. Phys. 56, 104 (2006).
[17] F. Gelis, E. Iancu, J. Jalilian-Marian, and R. Venugopalan, Ann. Rev. Nucl. Part. Sci. 60, 463 (2010).
[18] I. Balitsky, AIP Conf. Proc. 407, 953 (1997).
[19] Y. V. Kovchegov, Phys. Rev. D 60, 034008 (1999).
[20] Y. V. Kovchegov, Phys. Rev. D 61, 074018 (2000).
[21] I. Balitsky, Phys. Lett. B 518, 235 (2001).
[22] N. Armesto and M. Braun, Eur. Phys. J. C 20, 517 (2001).
[23] K. J. Golec-Biernat, L. Motyka, and A. Stasto, Phys. Rev. D 65, 074037 (2002).
[24] R. Enberg and R. B. Peschanski, Nucl. Phys. A 767, 189 (2006).
[25] C. Marquet and G. Soyez, Nucl. Phys. A 760, 208 (2005).
[26] C. Marquet and G. Soyez, Nucl. Phys. B 697, 034008 (2004).
[27] W. Xiang, Y. Cai, M. Wang, and D. Zhou, Phys. Rev. D 101, 076005 (2020).
[28] E. Iancu, A. Mueller, and S. Munier, Phys. Lett. B 606, 342 (2005).
[29] W. Yang, X. Cai, and D. Zhou, Phys. Rev. D 95, 116009 (2017).
[30] A. H. Mueller and B. Patel, Nucl. Phys. B 504, 9 (1997).
[31] A. Martin, Phys. Rev. 129, 555 (1963).
[44] J. Bartels, K. J. Golec-Biernat, and H. Kowalski, Phys. Rev. D 66, 014001 (2002), arXiv:hep-ph/0203258.
[45] H. Kowalski and D. Teaney, Phys. Rev. D 68, 114005 (2003), arXiv:hep-ph/0304189.
[46] K. Golec-Biernat and S. Sapeta, JHEP 03, 102 (2018), arXiv:1711.11360 [hep-ph].
[47] R. Enberg, Mod. Phys. Lett. A 19, 2655 (2004), arXiv:hep-ph/0410073.
[48] Y. Cai, W. Xiang, M. Wang, and D. Zhou, Chin. Phys. C 44, 074110 (2020), arXiv:2002.12610 [hep-ph].
[49] A. Accardi et al., Eur. Phys. J. A 52, 268 (2016), arXiv:1212.1701 [nucl-ex].
[50] X. Chen, PoS DIS2018, 170 (2018), arXiv:1809.00448 [nucl-ex].
[51] X. Cao, L. Chang, N. Chang, X. Chen, Z. Chen, Z. Cui, and et. al., Nuclear Techniques (in Chinese) 43, 20001 (2020).