EFFECT OF VITAMIN D SUPPLEMENTATION ON INSULIN SENSITIVITY AND ANDROGEN LEVEL IN VITAMIN D-DEFICIENT POLYCYSTIC OVARY SYNDROME PATIENTS

SABA M SWADI AL-THUWAYNEE¹, AMAAL RAAD AHMED²*

¹Department of Obstetrics and Gynecology, College of Medicine, University of Al-Qadisiyah, Iraq. ²Department of Family Medicine, Al-Diwanyah Teaching Hospital, Al-Diwaniyah, Iraq. Email: ammal.raad.a@gmail.com

Received: 10 August 2018, Revised and Accepted: 06 September 2018

INTRODUCTION

Polycystic ovary syndrome (PCOS) is the most common ovarian disorder associated with the disturbances of reproductive, hypotalusinemia, and androgen excess in women [1]. Definition and diagnosis of PCOS are based on criteria including clinical evidence of hyperandrogenism, ovarian dysfunction such as oligoovulation, and the exclusion of other causes of hyperandrogenism such as adrenal hyperplasia, hyperprolactinemia, and thyroid disorders [2]. PCOS is associated with insulin resistance, hypertension, central lipidemia, and central venous dysfunction, all of which are risk factors for metabolic syndrome, type 2 diabetes, and coronary artery disease [3].

Metabolic disturbances are common in PCOS women: 30–40% have glucose tolerance disorder, 60–80% are resistant to insulin, and 10% have type 2 diabetes in their 30s or 40s. Evidence suggests the pivotal role of insulin resistance in PCOS pathogenicity [4]. Decrease level of Vitamin D is common in women with PCOS [5]. Vitamin D deficiency in PCOS women was associated with a reduced likelihood of these women becoming pregnant and delivering babies, regardless of body mass index (BMI), race, age, markers of metabolic functioning, or fertility treatment" [6]. Vitamin D has been associated with reducing androgen levels in women with PCOS. A review of six clinical trials with 183 women with PCOS revealed that Vitamin D supplementation significantly reduced total testosterone levels [7].

METHODS

Study design

After having permission from the Ethics Committee of Al-Qadisiyah University of Medical Sciences, this study was conducted as a randomized, blinded clinical trial design from April 2018 to June 2018, and we studied 60 Iraqi females with polycystic ovary syndrome referring to the women’s counseling, outpatients at maternity and pediatrics teaching hospital in Al-Qadisiyah city, Iraq. In our study, the aim of the project was explained to all females, and if they agreed, informed consent was obtained.

Inclusion criteria

The following criteria were included in the study:
1. Age of women ranges from 18 to 45 years.
2. Serum Vitamin D below 30 ng/ml.
3. Women should not be pregnant or lactating.
4. Rotterdam criteria for PCOS diagnosis have been use [2] so patient should encounter at least two things of these criteria including: Oligoovulation or anovulation, hyperandrogenogenism with a clinical or laboratory diagnosis. and, Polycystic ovary characterized by ultrasound that means at least 12 follicles per ovary, or 9–2 mm in size, or ovarian enlargement more than 10 ml (obtained from the formula (0.5 - length - width - thickness) in ultrasound [8].
5. All women which included in this study have testosterone level between 3.5 and 5 nmol/L (normal level of testosterone in females between 0.5 and 3.5 nmol/L).
6. Drugs which affect metabolic parameters such as metformin, Corticosteroid 3 months before the experiment, calcium and multivitamin 3 months before the experiment did not be used.
7. Screening for impaired glucose tolerance (IGT) test, and women with 2 h plasma glucose level of 140–199 mg/dl (7.8–11.0 mmol/L) were involved in this study.
Exclusion criteria
Diseases which are chronic, for example, chronic kidney disease, liver cirrhosis, pancreatitis, nephrotic syndrome, tumors, and diabetes mellitus and patient who is being suffering from Cushing’s syndrome, hyperprolactenemia, the congenital adrenal hyperplasia, and androgen secretion tumors were excluded from the study.

Measurement Methods
Calculation of BMI
By measuring body weight in kilograms using a digital scale. Quantitative test of total 25(OH)D2/D3 level in human serum/plasma was measured by ICHROMA DEVICE using immunofluorescence method by Vitamin D kit. Testosterone level was measured using fluorescence immunoassay method (FIA). IGT is performed to all females included in this study. After diagnosis of IGT test depend on if blood glucose between 7.8 and 11.0 mmol/L this indicate impaired glucose test and then patient included in our study.

Clinical assessment
In includes the determination of hirsutism using modified Ferriman-Gallwey scoring system [9]. It should be noted in includes the determination of hirsutism using modified Ferriman-Gallwey scoring system [9].

RESULTS
Sixty patients with polycystic syndrome enrolled in this study age ranging from 18 to 39 years, mean age 27.48±5.95 years, as shown in Table 1. In the beginning of the study, the level of Vitamin D was 16.11±5.6 and, after 2 months, became 35.9±4.3 which is a significant difference (p=0.002) as shown in Table 2.

In regard to IGT test after 2 months of supplementation, there were 51.6% of patients still who had impaired test while 48.4% reach normal reading (p=0.001) (Table 3). On the other hand, 75% of patients reach the normal level of testosterone and 25% had abnormal level (p=0.001) (Table 4).

Table 1: Age distribution

Parameter	SD: Standard deviation
Mean±SD	27.48±5.95
Minimum	18
Maximum	39

Table 2: Level of serum Vitamin D through the study

Time	No.	Vitamin D	p value
At baseline	60	16.11±5.64	0.002
After 2 months	50	35.9±4.3	

Table 3: IGT after 2 months

IGT after 2 months	N (%)	Mean±SD	p value
Impaired	31 (51.6)	8.2±0.4	0.001
Normal	29 (48.4)	6.4±0.8	
Total	60		

DISCUSSION
Our result indicated women with PCOS have a significant low level of Vitamin D in mean, IGT test in mean, and high level of testosterone in mean. Women with PCOS have statistically significant low level of Vitamin D in mean, IGT test in mean, and high level of testosterone in mean. After Vitamin D supplementation for 2 months, 42 of 54 PCOS women previously affected by menstrual disturbances reported improvement of menstrual frequency. Also there was marked reduction in the level of IGT after treatment with Vitamin D have been reported. Furthermore, there is an improvement in the symptom of hyperandrogenism.

CONCLUSION
Women with PCOS have statistically significant low level of Vitamin D in mean, IGT test in mean, and high level of testosterone in mean. After Vitamin D supplementation for 2 months, 42 of 54 PCOS women previously affected by menstrual disturbances reported improvement of menstrual frequency. Also there was marked reduction in the level of IGT after treatment with Vitamin D have been reported. Furthermore, there is an improvement in the symptom of hyperandrogenism.

AUTHORS' CONTRIBUTIONS
Saba M. Swadi Al-Thuwaynee: Contributing to the conception, study design, and data interpretation. Amaal Raad Ahmed: Contributing to sample collection, writing the manuscript, and statistical analysis.

CONFLICTS OF INTEREST
There are no conflicts of interest.

REFERENCES
1. Conway G, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Franks S, Gambineri A, et al. The polycystic ovary syndrome: A position statement from the European society of endocrinology. Eur J Endocrinol 2014;171:1-29.
2. Krul YH, Sneecy C, Louwers Y. The role of Vitamin D in metabolic disturbances in PCOS. Eur J Endocrinol 2013;169:853-65.
3. Rahimi-Ardabili H, Gianggi BP, Farzadi L. Vitamin D supplementation has no effect on insulin resistance assessment in women with polycystic
ovary syndrome and Vitamin D deficiency. Nutr Res 2012;3:195-201.
4. Thomson RL, Spedding S, Brinkworth GD, Noakes M, Buckley JD. Seasonal effects on Vitamin D status influence outcomes of lifestyle intervention in overweight and obese women with polycystic ovary syndrome. Fertil Steril 2013;99:1779-85.
5. Faraji R, Sharami SH, Zahiri Z, Asgharni M, Kazemnejad E, Sadeghi S. Evaluation of relation between anthropometric indices and Vitamin D concentrations in women with polycystic ovarian syndrome. J Family Reprod Health 2014;8:123-9.
6. Bergiota A, Diamanti-Kandarakis E. The effect of old, new and emerging medicines on metabolic aberrations in PCOS. Ther Adv Endocrinol Metab 2012;1:27-47.
7. Banuls C, Rovira-Llopis S, Martínez de Maranon A, Veses S, Jover A, Gomez M, et al. Metabolic syndrome enhances endoplasmic reticulum, oxidative stress and leukocyte-endothelium interactions in PCOS. Metabolism 2017;71:153-62.
8. Li HW, Breteton RE, Anderson RA, Wallace AM, Ho CK. Vitamin D deficiency is common and associated with metabolic risk factors in patients with polycystic ovary syndrome. Metabolism 2011;60:1475-81.
9. Gallea M, Granzotto M, Azzolini S, Faggian D, Mozzanega B, Vettor R, et al. Insulin and bodyweight but not hyperandrogenism seem involved in seasonal serum 25-OH-Vitamin D3 levels in subjects affected by PCOS. Gynecol Endocrinol 2014;30:739-45.
10. Hahn S, Haselhorst U, Tan S, Quadbeck B, Schmidt M, Roesler S, et al. Low serum 25-hydroxyvitamin D concentrations are associated with insulin resistance and obesity in women with polycystic ovary syndrome. Exp Clin Endocrinol Diabetes 2006;114:577-83.
11. Tootzas T, Papadopoulo PG, Tziomalos K, Karras S, Gasteris K, Perros P, et al. Rising serum 25-hydroxy-Vitamin D levels after weight loss in obese women correlate with improvement in insulin resistance. J Clin Endocrinol Metab 2010;95:4251-7.
12. Mn AA, Alias A, Sajith M, Nimbargi V, Kumdale S. Prescription pattern in obese and non-obese infertile women with polycystic ovary syndrome in a tertiary care hospital. Asian J Pharm Clin Res 2018;11:53-6.
13. Garg G, Kachhawa G, Ramot R, Khadgawat R, Tandon N, Sreenivas V, et al. Effect of Vitamin D supplementation on insulin kinetics and cardiovascular risk factors in polycystic ovarian syndrome: A pilot study. Endocr Connect 2015;4:108-16.
14. Raja-Khan N, Shah J, Stetter CM, Lott ME, Kanselman AR, Dodson WC, et al. High dose Vitamin D supplementation and measures of insulin sensitivity in polycystic ovarian syndrome. Fertile Steril 2014;101:1740-6.
15. He C, Lin Z, Robb SW, Ezeamama AE. Serum Vitamin D levels and polycystic ovary syndrome: A systematic review and meta-analysis. Nutrients 2015;7:4555-77.
16. Kataria J, Gill GK, Kaur M. Interrelationship of thyroid hormones, obesity, and prolactin in infertile women. Asian J Pharm Clin Res 2018;11:136-7.
17. Ardabili HR, Gargari BP, Farzadi L. Vitamin D supplementation has no effect on insulin resistance assessment in women with polycystic ovary syndrome and vitamin D deficiency. Nutr Res 2012;32:195-201.
18. Fang F, Ni K, Cai Y, Shang J, Zhang X, Xiong C. Effect of Vitamin D supplementation on polycystic ovary syndrome: A systematic review and meta-analysis of randomized controlled trials. Complement Ther Clin Pract 2017;26:53-60.
19. Mahmoudi T, Gourabi H, Ashraf M, Yazdi RS, Ezabadi Z. Calcitropic hormones, insulin resistance, and the polycysticovary syndrome. Fertil Steril 2010;93:1208-14.