This is a pre-copyedited, author-produced version of an article accepted for publication in Rheumatology following peer review. The version of record Asghar, S., Litherland, G. J., Lockhart, J. C., Goodyear, C. S., & Crilly, A. (Accepted/In press). Exosomes in intercellular communication and implications for osteoarthritis (OA). Rheumatology is available online at: https://doi.org/10.1093/rheumatology/kez462.
Exosomes in intercellular communication and implications for osteoarthritis (OA)

Journal:	*Rheumatology*
Manuscript ID	RHE-19-1062.R1
Manuscript Type:	Review Article
Date Submitted by the Author:	23-Aug-2019
Complete List of Authors:	Asghar, Sabha; University of the West of Scotland, School of Health and Life Sciences
Litherland, Gary; University of the West of Scotland, School of Health and Life Sciences
Lockhart, John; University of the West of Scotland, School of Health and Life Sciences
Goodyear, Carl S; University of Glasgow College of Medical Veterinary and Life Sciences, Infection, Immunity and Inflammation
Crilly, Anne; University of the West of Scotland, School of Health and Life Sciences |

Keywords

Please select a minimum FIVE keywords from the list provided. These keywords will be used to select reviewers for this manuscript. The keywords in the main text of your paper do not need to match these words:

Osteoarthritis < RHEUMATIC DISEASES, Inflammation < BASIC & CLINICAL SCIENCES, Synovium < BASIC & CLINICAL SCIENCES, MicroRNA < BASIC & CLINICAL SCIENCES, Cartilage < TISSUES
Exosomes in intercellular communication and implications for osteoarthritis (OA)

Sabha Asghar¹, Gary J Litherland¹, John C Lockhart¹, Carl S Goodyear² and Anne Crilly¹

¹School of Health and Life Sciences, University of the West of Scotland, Paisley Campus, Paisley, Scotland, UK
²Institute of Infection, Immunity and Inflammation, GBRC, University Place, University of Glasgow, Glasgow, Scotland, UK

Correspondence to:
Anne Crilly,
School of Health and Life Sciences,
University of the West of Scotland,
Paisley Campus, Paisley PA1 2BE,
Scotland, UK.
E mail: anne.crilly@uws.ac.uk
ORCID iD: https://orcid.org/0000-0002-5980-3612
Abstract

Osteoarthritis (OA) is the most prevalent of the musculoskeletal conditions and represents a significant public health burden. While degeneration of articular cartilage is a key feature, it is now increasingly recognised as a complex condition affecting the whole joint, with synovial inflammation present in a significant proportion of patients. As a secretory tissue, the OA synovium is a rich source of both soluble inflammatory mediators and extracellular vesicles (EV), including exosomes, which have been implicated in cell-cell communication. Exosome cargo has been found to include proteins, lipids and various RNA subtypes such as mRNA and miRNA, potentially capable of regulating gene expression in target cells and tissues. Profiling of exosome cargo and understanding effects on cartilage could elucidate novel regulatory mechanisms within the joint, providing insight for targeted treatment. The aim of this article is to review current literature on exosome biology, highlighting the relevance and application for OA pathogenesis.

Keywords

Osteoarthritis (OA), exosomes, inflammation, cartilage, synovium, synovitis, microvesicles, mRNA, microRNA.

Key Messages

1. Multiple cell types within the osteoarthritic joint are capable of releasing exosomes
2. Exosomes carry bioactive material with the potential to regulate osteoarthritis joint pathogenesis
3. Profiling of exosome content may identify novel biomarkers and inform targeted therapy for osteoarthritis

Introduction

Osteoarthritis (OA) is the most prevalent musculoskeletal condition in the UK, affecting 9 million people and costing the NHS an estimated £5 billion p.a. (1). Approximately 80% of those with OA suffer significantly limited mobility and 25% cannot perform major daily activities (2). There is presently no gold standard treatment available for OA, and current approaches aim largely to manage the pain associated with the disease, rather than modifying the underlying cause. Elucidating pathogenic mechanisms underpinning OA provides a pathway for future therapeutic interventions that can address this unmet clinical need.

OA is a low grade inflammatory disease, which results in cartilage degeneration, inflammation of the synovium, changes to the subchondral bone, formation of osteophytes, degeneration of ligaments, hypertrophy of the joint capsule and pro-angiogenic phenotypes (3,4). Inflammatory changes to the synovium are collectively referred to as synovitis and include synovial lining hyperplasia, infiltration of inflammatory cells, neoangiogenesis and fibrosis (5–7). Some 70% of OA patients present with synovitis, the degree of which correlates with pain and cartilage damage (8,9). Acute synovitis is thought to be one of the first joint changes to occur, with synovial tissue from early OA patients showing increased expression of pro-inflammatory mediators (10).

Joint tissue homeostasis is regulated by numerous pathways and molecules that are disrupted during OA including transcription factors, epigenetic modifications, cytokines and proteases (5). This disruption causes widespread changes and stops the synovial joint from performing its function of allowing smooth and frictionless movement. Not only does this disturbance cause inflammation and thickening of synovial tissue (11), but proinflammatory mediators released by OA immune cells from synovium and infrapatellar fat pad contribute to cartilage...
damage (12). Distinct pathogen associated molecular patterns (PAMPs) and damage-
associated molecular patterns (DAMPs), (including products from cellular stress and
extracellular matrix (ECM) degeneration) are recognised by pattern recognition receptors
(PRRs) such as toll like receptors (TLRs) with inflammatory mediators subsequently released
in large amount by cells present in the OA joint. Activation of PRRs triggers cell signalling that
leads to the production of pro-inflammatory cytokines and chemokines including interleukin
6 (IL-6), IL-8, IL-1, TNF-α along with proteases, such as matrix metalloproteinase (MMP)-1,
MMP-3 and MMP-13, which go on to degrade structural components of cartilage ECM
(primarily aggrecan and collagen) and cause changes in chondrocyte viability and
glycosaminoglycan (GAG) release (5,12–18). Alteration of the subchondral bone also occurs
due to an imbalance in remodelling via bone resorption by osteoclasts and bone formation
by osteoblasts, resulting in a reduction in tissue mineralisation, loss of stiffness and bone
thickening (19).

While roles for these released soluble mediators are well established, a number of recent
studies have reported on extracellular vesicles (EVs) and exosomes and their regulatory
potential. These vesicles are secreted from a variety of cells and tissues and exosomes
released from neutrophils and synovial fibroblasts (SFs) have been detected in both RA and
OA synovial fluid (20–22). It is now believed that exosomes play an important role in cellular
communication via the transport of biological cargo. Due to difficulty in isolation and
characterisation of different groups of extracellular vesicles, most research within the
extracellular vesicle (EV) field of OA has to date focused on a mixed population of EVs.
However, given recognised differences in cargo associated with distinct vesicle types (23), this
review aims to differentiate between exosome and microvesicle (MV) related studies, and
encompass the formation and role of extracellular vesicles. Furthermore, it will focus on these
emerging pathological players and their potential as therapeutic targets; with particular
emphasis on the role of exosomes in OA pathology and the opportunities that may arise from
a better understanding of their biology.

Exosome biogenesis & release

Extracellular vesicles (EVs) can be classified and differentiated based on size, biogenesis and
release pathways. EVs include multiple subsets, the most researched of which are
microvesicles (MV) and exosomes. MVs are membranous extracellular vesicles which range
from 100 to 1,000 nm in diameter (24), whereas exosomes range only from 30 to 120 nm
(Figure 1A), with a density of between 1.13–1.19 g/ml and a distinguishing cup shaped
morphology (25,26). While MVs are shed from the surface membrane by blebbing, exosomes
arise via the endocytic pathway, from the endosomal cell compartment, where they are
stored in multivesicular bodies (MVBs) of late endosomes and are released in short bursts by
exocytosis upon fusion with the cell membrane (27–29). Typical exosome composition relates
to the cellular source from which they arise, with a range of biological cargo reported (Figure
1B). The release of exosomes occurs naturally from many tissues and cells but composition
and concentration can be regulated, for instance by cellular stressors such as senescence and
hypoxia (30–32), both of which have been associated with OA. For example, OA chondrocytes
exhibit senescence-associated phenotypes which increase MMP-1 and -13 protein release
and degrade ECM collagen (33). It is therefore interesting that EV production from
chondrocytes, isolated from human arthritic cartilage, increased with senescence (34). These
EVs were also capable of transferring senescence to nonsenescent chondrocytes and
inhibited cartilage and ECM formation by healthy chondrocytes (34). Senolytic treatment also altered expression of miR-34a, -30c, -125a, -24, -92a, -150, and -186 carried in synovial fluid exosomes (34). Furthermore, hypoxia related genes inducible nitric oxide synthetase (iNOS) and hypoxia-inducible factor-1 (HIF-1) are upregulated in OA caused by exacerbated hypoxia seen during progression of the disease (35), which may drive synovial inflammation (33). Importantly, it has been previously reported that hypoxia can drive MV release from human umbilical cord (UC)-derived MSCs (32). Given the hypoxic nature of the OA joint, potentially this could be a regulatory mechanism for exosome production during disease.

Exosome formation (Figure 2) requires multiple pathways, enzymes and mechanisms, and is ATP-dependent (36,37). Notably, exosome formation and release involves the endosomal sorting complex required for transport (ESCRT) and its associated proteins, apoptosis linked gene-2-interacting protein X (ALIX) and tumour susceptibility gene 101 (TSG-101) (38–41). The ESCRT-0, -I, and -II complexes recognise ubiquitinated membrane proteins on endosomes and the ESCRT-III complex is involved in vesicle budding and scission (42). ESCRT machinery is reported to be central to exosome formation and release, as blockage of the complexes impacts upon these processes (43). However, exosome formation does not require ESCRT function in some cells, but is dependent on sphingomyelinase, an enzyme that produces ceramide (44). Syndecan-syntenin interaction with ALIX and activation of protein kinase C, are also thought to be important for the packaging of exosomes into endosomes and their subsequent release respectively (45,46). Finally, two lipid metabolism enzymes and tetraspanins have been seen to promote formation of interluminal vesicles or ILVs (25), (44).

The divergence in formation and sorting mechanisms between extracellular vesicle types is not completely understood, however, some preliminary experiments show differences in the composition of exosomes in comparison to other EVs. Unlike other EVs, exosomes contain an abundance of cholesterol, saccharides, ceramide, sphingolipids and phosphoglycerides, which could play roles in the sorting mechanism (44,47). For example, localisation of cholesterol into MVBs was reported to mark the contents for secretion as exosomes, whereas low cholesterol levels and the presence of lysosomophatidic acid marked MVBs for lysosomal degradation (48–50). The fusion and secretion of exosomes from the cellular membrane itself can require the cytoskeleton elements actin and microtubules, molecular motors such as kinesins and myosin and fusion machinery such as SNAREs (51). Importantly, studies of exosome trafficking have shown that the vesicle transport regulators Rab 35, Rab 11, Rab 27a and Rab 27b (all of which are part of the Ras family of monomeric G proteins) are involved with secretion of exosomes (52,53).

Exosome interaction & function
Exosomes have been reported to play roles in multiple physiological processes including apoptosis, angiogenesis, inflammation, coagulation and transfer of cargo such as proteins, lipids and RNA to modulate cell communication and epigenetic modifications (24,54,55). Proteomic analysis shows that exosomes contain a common set of membrane and cytosolic proteins (54). Due to their endosomal origin, this includes membrane transport and fusion proteins (Rab GTPases, annexins, flotillins, integrins, fibronectin), tetraspanins (CD9, CD63,
CD81, CD82, heat shock proteins (Hsc70, Hsp 90), proteins involved in multivesicular body biogenesis (ALIX, TSG101), and lipid-related proteins and phospholipases (24,30,56,57).

Observations to date indicate that thymine DNA glycosylase (TDG101), signal-transducing adaptor molecule 1 (STAM1) and heat shock cognate 70 (HSC70) could all play a role in the selective packaging of proteins (51,58). The mechanisms by which miRNA is selectively packaged is currently under investigation, with studies identifying putative pathways relating to miRNA sorting into exosomes, and these include the neutral sphingomyelinase 2 (nSMase2)-dependent pathway, the miRNA motif and sumoylated heterogeneous nuclear ribonucleoproteins (hnRNPs)-dependent pathway and the miRNA induced silencing complex (miRISC)-related pathway (26,59,60). Differences in specific miRNA expression profiles have already been seen between normal and disease states, including in carcinoma patients (61).

Whether exosomes are taken up by specific cell types is still being debated. Some studies indicate cell-specific exosome interactions, where exosomes from parental cells will only interact with particular target cells. For example, activated T and B cells interact with dendritic cell (DC)-derived exosomes that contain major histocompatibility complex (MHC) class II, to down-regulate the immune response during interaction of T cells and DCs. For DC derived exosomes to be taken up, the T cells had to be activated with this process dependent on leukocyte function–associated antigen-1 (LFA-1), indicating a targeted mechanism (62,63).

Once released into the extracellular milieu, exosomes can target and interact with recipient cells in various ways. The exact mechanism responsible for EV uptake is unknown, but numerous mechanisms have been studied, including clathrin mediated endocytosis (CME), phagocytosis, macropinocytosis and plasma or endosomal membrane fusion (as reviewed by Mulcahy et al. (61) and summarised in Figure 3). Current data suggests that the main process for exosome uptake is via endocytosis, which requires clathrin-mediated or caveolin-dependent mechanisms. This involves the specific assembly of clathrin-coated vesicles containing receptors and ligands (often exosomal transmembrane proteins), through caveolae invaginations or micropinocytosis membrane ‘pinching’ (64). Once this receptor-ligand interaction has taken place, the exosomes fuse with the plasma membrane and their contents are released into the cytosol.

Exosome cargo

Exosomes contain mRNA transcripts and miRNA as well as small noncoding RNA species, repeat sequences, structural RNAs, tRNA fragments, vault RNA, Y RNA, and small interfering RNAs (65,66). Current studies have found that exosomal small RNAs are differentially distributed, indicating that there is selective incorporation of small RNA species into exosomes (66,67) and that specific proteins and miRNA may be included in EV cargo depending on function (55,68,69). Accordingly, studies differ considerably in terms of reported exosome content; some describe protein and RNA content distinct from that of the parental cell, whereas other exosome populations reflect typical cellular constituents and could potentially be used as biomarkers (68,70). For example, mast cell derived exosomes contained mRNA from genes not present in parental cells (71).

Currently, it has only been confirmed that mRNA and miRNA are horizontally transferred via exosomes (71,72). Studies have shown that transferred mRNAs can be translated into proteins by target cells, altering the target cell phenotype. Multiple studies have shown that
horizontal transfer of mRNA and protein occurs through exosomal machinery, with the genetic material transferred and proteins translated successfully (73). Exosomes from murine and human mast cell lines have been reported to contain mRNA and miRNA, which were interchangeably transferrable (i.e. mouse to human) in in vitro studies where novel murine mast cell proteins were found in human recipient cells, indicating exosomal transfer and mRNA incorporation into the recipient cells (71). Similarly, RNA from exosomes collected from chronic lymphocytic leukemia cells, was observed to modulate the transcriptome of stromal cells (74). These RNA were called exosome shuttle RNA and the study demonstrated that mRNA can be transferred in a functional form. Further studies have confirmed that this horizontal transfer of mRNA requires the presence of RNA in the recipient cell (55,68,71,75).

Of particular interest is the presence of miRNA, with the majority of circulating miRNA believed to be sequestered within exosomes (76). miRNAs are a class of small noncoding RNA of 1-25 nucleotides that regulate mRNA transcription, translation and stability to silence genes (77). miRNAs are extremely diverse and act at multiple sites with diverse effects including proliferation, apoptosis and differentiation (78,79). Microparticle cargo is predominantly pre- and not mature miRNA (80). Packaging in exosomes may offer protection from circulating RNases, allowing miRNA to retain the ability to control gene expression by regulating target-mRNA turnover (55). Exosomes released by immune cells have been reported to contain specific miRNA cargo, that can be functionally transferred to recipient cells (68,69). This was confirmed by investigation of miRNA expression levels in a variety of cell lines and their derived exosomes, which demonstrated that certain miRNA are selectively and preferentially packed into exosomes including miR-320, miR-150, miR-142-3p and miR-451 (81).

Exosomes in OA pathophysiology
Once taken up by recipient cells, exosomes can be categorised functionally based on their ability to impact cellular biology. They can be immunologically active and be involved in antigen presentation to interact with the immune system, or immunologically inactive and use packaged small RNA cargo to cause epigenetic changes (82,83). Alternatively, exosomes are able to fuse with endosomes to be degraded or re-released (84). The processes by which exosomes may impact OA pathophysiology are discussed below.

Exosomal impact via miRNA cargo
Exosomal mRNA and microRNA cargo is especially relevant in OA, where epigenetic changes such as histone modifications, DNA methylation and microRNA (miRNA) impact upon multiple transcription and proteinase factors important for pathology such as RUNX2, MMP-13 and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5), which modulate the anabolic/catabolic balance (85,86). The role and subsequent implications of a large number of miRNAs has been investigated in OA (82). In the joint, miRNAs are mainly associated with the regulation of MMPs, ADAMTS, RUNX and collagen type II, as well as various cytokines. In particular, miR-140 has been identified as having a protective role, with its expression found to be decreased in OA and in IL-1β stimulated chondrocytes (79,87,88). In miR-140 deficient mice, proteoglycan loss and fibrillation of cartilage have been reported, whereas mice overexpressing miR-140 were resistant to arthritis (89,90). In human OA tissues, miR-140 expression is reduced and coincided with upregulation of MMP-13 and ADAMTS-5 expression, with proteoglycan loss demonstrated in miR-140 knock out mice (91). Various other miRNA such as miR-139 and miR-9 also cause imbalances between anabolic and
catabolic processes that are seen in OA, and therefore cause cartilage ECM breakdown (90,92).

Findings in the OA literature have only recently begun to focus on the role of exosome miRNA cargo. Studies have found that the miRNA content of EVs differed between OA and non-OA groups and between genders (93,94). Furthermore, profiling of miRNA in synovial fluid exosomes from OA patients has shown miR-200-c to be increased 2.5-fold compared to synovial fluid from healthy subjects, with consequential effects on the zinc finger binding transcription factor (ZEB1), which decreased collagen type II formation (95). SFs obtained from normal joints were stimulated with IL-1β and derived exosomes were found to have 340 distinct miRNAs upregulated and 24 miRNAs downregulated, compared to non-IL-1β-treated SFs. Interestingly, of these, 11 miRNAs were upregulated and 9 downregulated in the exosomes released from IL-1β-treated SFs, confirming selective packaging (87). More recently, it was found that 22 miRNAs were up-regulated and 29 miRNAs (including miR-95-5p) were down-regulated in OA chondrocyte-secreted exosomes compared to normal chondrocytes (96).

Exosomal Impact via inflammatory regulation

While the role of EVs in inflammatory disease is currently well researched, for example in tumour biology (97–99), their function in OA is poorly understood. It has been noted that greater numbers of EVs can be isolated from the serum of patients suffering musculoskeletal disorders compared to healthy subjects, some of which contain elevated levels of specific miRNAs, most notably in rheumatoid arthritis (RA) (100,101). However, RA is an overtly inflammatory disease compared to OA where there may indeed be a more complex subtle and nuanced interaction occurring between joint tissues. In recent years it has become widely acknowledged that inflammation and synovitis are common features of OA (9,10,102), suggesting a potential role for OA cell derived exosomes in the pathophysiology of the disease.

Indeed, inflammatory mediators such as TNFα have been seen to affect the protein and RNA concentration of extracellular vesicles (51,103). Similarly, exosomes derived from lipopolysaccharide (LPS) stimulated mouse macrophages (an inflammatory model), also contained increased levels of inflammatory mediators and miRNAs (104). This suggests that exosomes derived under inflammatory conditions may cause further inflammatory changes. In OA joint disease, inflammation of soft tissues, including disruption of normal synovial tissue homeostasis via specific regulated pathways, could potentially lead to an altered secretory exosome profile, which may ultimately impact upon cartilage integrity (Figure 4).

Multiple cell types associated with OA, including chondrocytes and SFs have been shown to be capable of exosome secretion, with the former regulating cartilage catabolic pathways (54,87,105). OA IL-1β stimulated SFs and macrophages have exhibited an increase in exosome production during inflammation, but exosomes prepared from the synovial fluid of OA patients and healthy subjects showed no difference in either concentration or size (87,95). Chondrocyte derived exosomes have been seen to display annexins II, V and VI, which have a role in chondrocyte differentiation (106).
Synovial fluid isolated exosomes were shown to be readily endocytosed (95). Exosomes isolated from OA synovial fluid significantly stimulated the release of several inflammatory cytokines and chemokines and metalloproteinases from M1 macrophages, including increased production of IL-1β, MMP-12, MMP-7, CCL-8, CCL-1, IL-6 and TNF-α, compared to controls (107). Similarly, articular chondrocytes treated with OA synovial fluid derived exosomes decreased cell survival and expression of anabolic genes including COL2A1 and ACAN and increased expression of catabolic genes including IL-6 and TNF-α (82,94).

Chondrocytes treated with SF-derived exosomes exhibited their uptake and endocytosis, raising the possibility that exosome cargo has a role in regulating chondrocyte fate, ECM degradation and OA pathology (95). A mixed population, including exosomes containing TNF-α, have previously been found to be released by SFs, and importantly they have been shown to regulate the release of chemokines and cytokines from synoviocytes and chondrocytes during inflammation (20,108,109). Exosomes isolated from conditioned medium from normal IL-1β stimulated human SFs were cultured with articular chondrocytes resulting in upregulated gene expression of MMP-13 and ADAMTS-5, and decreased expression of COL2A1 and ACAN in comparison to exosomes collected from non stimulated SFs (87). Additionally, exosomes from IL-1β-stimulated fibroblasts have been shown to contain low levels of IL-6, MMP-3 and vascular endothelial growth factor (VEGF) (87).

Exosomal impact via bone changes

Exosomes also affect other factors associated with OA pathogenesis, such as bone growth and angiogenesis (32,110). Synovial derived exosomes were shown to exhibit increased VEGF, which stimulates angiogenesis and contributes towards OA pathology (87). Exosomes were also seen to increase angiogenic activity when incubated with human umbilical vein endothelial cells (HUVECs), with migration and tube formation activity found to be significantly higher when cultured with conditioned media containing exosomes from SFs (87). Chondrocyte derived exosomes have also been implicated in mineral formation in OA (106). Importantly, matrix vesicles, which share many exosomal characteristics are now regarded as “anchored exosomes”; these are small (20-200nm) spherical bodies in the pre-mineralised matrix of cartilage and bone. Notably, these vesicles contain mediators such as bone morphogenetic proteins (BMP), which are required for calcification (111,112).

Mixed populations of extracellular vesicles

Considering the difficulties in isolation and yield of exosomes, it is interesting to note that other forms and mixed populations of extracellular vesicles are also reported to exhibit similar effects to isolated exosomes, although research has focused mainly on inflammatory arthritis. For example, in early inflammation, T cell and monocyte derived MVs cause inflammatory changes, with increased IL-6 and IL-8 release observed later (113). Furthermore, neutrophil derived MVs were increased in RA synovial fluid and in human chondrocyte models. These MVs stimulated increased ECM production and cartilage protection, by reducing IL-8 and prostaglandin E2 (PGE2) expression and increasing production of TGFβ, type II collagen and soluble sulphated glycosaminoglycan (sGAG) (22). ECVs from T cells and monocytes, isolated from normal blood, increased MMP-1, MMP-3, MMP-9, MMP13, IL-6 and IL-8 protein synthesis in human RA SFs (113). EVs isolated from the blood of patients with RA were found to inhibit osteoclast differentiation, which could indicate an impact in OA bone remodelling (114). Despite this body of evidence, further research needs to be undertaken looking at the
differences and similarities in functionality of exosomes, MVs and mixed populations isolated from different cell types and disease conditions, including OA.

Harnessing the therapeutic potential of exosomes

Exosomes from different sources can have different impacts on cells. This review has discussed exosomes derived from synovial fibroblasts and other cell types associated with OA, which may potentially modulate joint pathology. A number of studies have focused on the release of exosomes from MSCs due to the extensive proliferative and differentiation abilities of these multipotent cells, presenting opportunities for new approaches in the treatment of joint tissue defects and OA-related damage. Although various MSC cell based therapies are in clinical trials for tissue regeneration of bone and cartilage, it has recently been considered that it is the secretome that exerts this regenerative effect via chemokines, growth factors and derived exosomes (115,116).

MSC derived exosomes have been shown to have a therapeutic effect in various OA models, including collagenase-induced and destabilised medial meniscus models (82). For example, MSC derived exosomes stimulated repair of osteochondral defects in animal models and cartilage damage in chondrocyte cultures, which involved increased cellular proliferation and infiltration (117). MSC exosomes have also been shown to regulate endothelial cell proliferation, migration and angiogenesis through the transfer of various miRNA (31,32,118,119). Exosomes from MSCs also have the capacity to regulate osteoblast differentiation via various miRNA involved in the control of osteoblast activity, e.g. miR-199b and miR-218, and a positive feedback loop was proposed whereby osteoblasts themselves secrete exosomes to increase miRNA levels that can further promote bone growth (110,120). Exosomes from synovial MSCs overexpressing miR-140-5p increased proliferation and migration of chondrocytes in vitro and prevented OA in rat models (121). Furthermore, Wnt5a and Wnt5b carried by synovial MSC-derived exosomes activated yes-associated protein 1 (YAP) via the alternative Wnt signalling pathway and increased proliferation and migration of chondrocytes in a rat OA model (121). Synovial MSC-derived exosomes have been reported to reduce bone marrow cell proliferation, apoptosis, bone mineral loss and fat tissue accumulation (122). Furthermore, when co-cultured with OA chondrocytes, BM MSC-EVs upregulated COX2 and pro-inflammatory interleukins, inhibited TNF-alpha-induced collagenase activity and stimulated production of proteoglycans and type II collagen (123). The in vitro expansion potential of MSCs, combined with a high yield of derived exosomes with therapeutic potential (compared to other OA cells such as synovial fibroblasts), makes this a very promising research avenue. Further work on how the therapeutic effects of MSC exosomes can be targeted to treat OA is still to be undertaken, but one study has shown that exosomes derived from miR-92a-3p over expressing MSCs promoted chondrogenesis, cartilage proliferation and matrix gene expression (115). Similarly, exosomes from synovial membrane stem cells overexpressing miR1405p increased chondrocyte proliferation and migration, preventing development of OA in a rat model (121).

A comparison of induced mesenchymal stem cell (iMSC) derived exosomes and synovial membrane MSC (SM-MSC) derived exosomes showed that although both reduced pathology in a mouse collagen induced arthritis model and increased chondrocyte proliferation and migration in vitro, iMSCs had a superior therapeutic effect (124). Adult stem cell and
embryonic stem cell-derived exosomes increased survival of haematopoietic stem/progenitor cells and expressed transferrable mRNAs (as well as various other RNAs) encoding for several pluripotent transcription factors (125,126). Addition of human embryonic MSCs to chondrocytes showed a therapeutic effect by restoring the balance between synthesis and degradation of chondrocyte ECM (127). Similarly, another study of osteochondral defects in adult rats treated with human embryonic MSC exosomes demonstrated complete restoration of cartilage and subchondral bone by 12 weeks, including ECM and hyaline cartilage formation (128). These findings indicate the potential therapeutic value of MSC derived exosomes from a variety of sources.

Perspective

With OA synovial fluid containing a plethora of extracellular vesicles including exosomes, as well as inflammatory proteins, the synovial derived secretome makes a significant contribution to synovial phenotype and ultimately impacts on joint pathology. The presence of exosomes in synovial fluid (through release from joint cells), with modified cargos and target effects, may be particularly pertinent to mechanisms of disease progression. With emergent ‘omics’ approaches, we are now able to sequence exosome content to identify specific cargo (e.g. miRNA) and investigate how this affects OA pathogenesis. Therapeutic approaches could include attempting to modulate these exosomes, or target down-stream cellular pathways that are activated upon exosome uptake. Importantly, miRNA expression profiles can be indicative of disease, and potentially used as diagnostic biomarkers. For example, exosomes in peripheral blood could help in early stage OA diagnosis (82). Reports that synovial fluid microRNA content is altered in patients with osteoarthritis, and that these changes are gender-specific, highlights the possible utilisation of exosome profiling for identification of novel biomarkers in early OA (94). Therefore, as well as determining points of interest for therapeutic intervention, the deciphering of cargo also allows them to be used as biomarkers (54). The fact that exosomes are available in large quantities in synovial fluid means they can be easily isolated and analysed (129). The idea that exosome cargo could potentially be manufactured and engineered to carry specific proteins and surface markers, for instance using nanoparticle based technology, could ultimately allow targeted regulation of intercellular communication (130,131). For example, exosomes derived from miR92a3p overexpressing tumour MSCs increased chondrogenesis and decreased cartilage damage via interaction with Wnt, a critical protein involved in bone and cartilage development (115). Despite the recent resurgence of interest in exosomes in disease states, obstacles to understanding and exploitation still remain, not least in terms of standardising isolation techniques. Additional research is also needed to fully elucidate the mechanisms of exosome formation and sorting. Given that effective treatment remains an urgent unmet clinical need for many OA patients, further studies looking at the role of exosomes in the pathobiology of the disease is necessary and holds therapeutic promise for the future management of the condition.
Acknowledgements: Ms Sabha Asghar was supported by a University of the West of Scotland PhD studentship, Tenovus Scotland grant number S16/16 and Arthritis Research UK Programme Grant grant number 20199. All authors were involved in drafting, reviewing and editing of the manuscript and approved the final submitted version.

Disclosure statement: the authors have declared no conflicts of interest.

Funding: No specific funding was received from any funding bodies in the public, commercial or not-for-profit sectors to carry out the work described in this manuscript.

Figure Legends

Figure 1. Structure and composition of exosomes. (A) Cargo including RNA, lipids and proteins, such as cytoskeletal and ESCRT (endosomal sorting complexes required for transport) proteins, are packaged into membranous vesicles which contain various proteins for transport and adhesion as well as communication with cell receptors [adapted from Colombo et al.(54)]. (B) Exosomes as seen in scanning electron microscopy (SEM) imaging analysis. Vesicles are within the size range of 50-120nm and have a cup shaped morphology.

Figure 2. Exosome formation and secretion. Early endosomes mature and bud inwards to form late endosomes or multivesicular bodies (MVBs), filled with selectively packaged extracellular-bound vesicles or interluminal vesicles (ILVs). Once matured into MVBs, these are marked for transportation to the plasma membrane for fusion or for degradation by lysosome fusion. Vesicles released in short bursts of exocytosis into the extracellular milieu are then decrived as exosomes. Various proteins such as ESCRT and Rab monomeric G-proteins are required for the packaging, transport and secretion of these exosomes, alongside associated proteins.

Figure 3. Exosomes are able to selectively target recipient cells. (1) by direct fusion with the plasma membrane and release of exosomal content into the cytosol (2) by interaction with receptors initiating signalling within the cell (3) via endocytosis of exosomes, where fusion with endosomes is required for cellular effect. Exosomes are able to transfer contents, including genetic material, which is translated by the recipient cell.

Figure 4. Exosomal communication between OA cells. Inflammatory cytokines, secreted in response to danger-associated molecular patterns (DAMPs) engaging with toll-like receptors (TLRs) expressed by various cells within the joint, stimulate exosome release from synovial fibroblasts (SFs). SF derived exosomes act on chondrocytes to increase MMP-13 and ADAMTS-5. Similarly, exosomes released from chondrocytes stimulated with inflammatory cytokines are released into the joint space and can act on cartilage and chondrocytes to increase e.g. MMP-13, COX-2, IL-1β expression. This positive feedback cycle leads to further breakdown of the articular cartilage ECM in OA.
References

1. ARUK. Osteoarthritis in general practice. Med Press. 2013;222:253–8.

2. Lourido L, Calamia V, Fernández-Puente P, Mateos J, Oreiro N, Blanco FJ, et al. Secretome analysis of human articular chondrocytes unravels catabolic effects of nicotine on the joint. Proteomics - Clin Appl. 2016;10(6):671–80.

3. Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: A disease of the joint as an organ. Arthritis Rheum. 2012;64(6):1697–707.

4. Mobasher A. The future of osteoarthritis therapeutics: Emerging biological therapy. Curr Rheumatol Rep. 2013;15(12):1–9.

5. Scanzello CR, Goldring SR. The role of synovitis in osteoarthritis pathogenesis. Bone. 2012;51(2):249–57.

6. Sellam J, Berenbaum F. Is osteoarthritis a metabolic disease? Jt Bone Spine. 2013;80(6):568–73.

7. Szekanecz Z, Besenyei T, Paragh G, Koch AE. New insights in synovial angiogenesis. Jt Bone Spine. 2010;77(1):13–9.

8. Krenn V, Morawietz L, Burmester GR, Kinne RW, Mueller-Ladner U, Muller B, et al. Synovitis score: Discrimination between chronic low-grade and high-grade synovitis. Histopathology. 2006;49(4):358–64.

9. Ayral X, Pickering EH, Woodworth TG, Mackillop N, Dougados M. Synovitis: A potential predictive factor of structural progression of medial tibiofemoral knee osteoarthritis - Results of a 1 year longitudinal arthroscopic study in 422 patients. Osteoarthr Cartil. 2005;13(5):361–7.

10. Benito M, Veale D, FitzGerald O, van den Berg WB, Bresnihan B. Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis. 2005;64(9):1263–7.

11. Manferdini C, Paolella F, Gabusi E, Silvestri Y, Gambari L, Cattini L, et al. From osteoarthritic synovium to synovial derived cells characterization: Synovial macrophages are key effector cells. Arthritis Res Ther. 2016;18(1):83.

12. Schelbergen RFP, Blom AB, Bosch MHJ Van Den, Slo A, Abdollahi-roodsaz S, Schreurs BW, et al. Alarmins S100A8 and S100A9 Elicit a Catabolic Effect in Human Osteoarthritic Chondrocytes That Is Dependent on Toll-like Receptor 4. Arthritis Rheum. 2012;64(5):1477–87.

13. Piccinini AM, Midwood KS. DAMPening Inflammation by Modulating TLR Signalling. Mediators Inflamm. 2010;2010.

14. Liu-Bryan R. Synovium and the innate inflammatory network in osteoarthritis progression topical collection on osteoarthritis. Curr Rheumatol Rep. 2013;15(5).

15. Kim HA, Cho M La, Choi HY, Yoon CS, Jhun JY, Oh HJ, et al. The catabolic pathway
mediated by Toll-like receptors in human osteoarthritic chondrocytes. Arthritis Rheum. 2006;54(7):2152–63.

16. Sohn DH, Sokolove J, Sharpe O, Erhart JC, Chandra PE, Lahey LJ, et al. Plasma proteins present in osteoarthritic synovial fluid can stimulate cytokine production via Toll-like receptor 4. Arthritis Res Ther. 2012;14(1):7.

17. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: Update on toll-like receptors. Nat Immunol. 2010;11:373–84.

18. Chadha R. Revealed aspect of metabolic osteoarthritis. J Orthop. 2016;13(4).

19. Goldring SR, Goldring MB. Clinical aspects, pathology and pathophysiology of osteoarthritis. J Musculoskelet Neuronal Interact. 2006;6(4):376–8.

20. Berckmans RJ, Nieuwland R, Kraan MC, Schaap MCL, Pots D, Smeets TJM, et al. Synovial microparticles from arthritic patients modulate chemokine and cytokine release by synoviocytes. Arthritis Res Ther. 2005;7(3):536–44.

21. Gyorgy B, Wright M, Nagy G, Toth K, Polgar A, Zelenak G, et al. A novel flow cytometric approach reveals abundant CD8+ T cell derived microvesicles in rheumatoid arthritis synovial fluid samples. Ann Rheum Dis. 2012;71:19.

22. Headland SE, Jones HR, Norling LV., Kim A, Souza PR, Corsiero E, et al. Neutrophil-derived microvesicles enter cartilage and protect the joint in inflammatory arthritis. Sci Transl Med. 2015;7(315):190.

23. Dozio V, Sanchez JC. Characterisation of extracellular vesicle-subsets derived from brain endothelial cells and analysis of their protein cargo modulation after TNF exposure. J Extracell Vesicles. 2017;6(1).

24. Vlassov AV., Magdaleno S, Setterquist R, Conrad R. Exosomes: Current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta - Gen Subj. 2012;1820(7):940–8.

25. Simons M, Raposo G. Exosomes - vesicular carriers for intercellular communication. Curr Opin Cell Biol. 2009;21:575–81.

26. Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W. Exosomes in cancer: small particle, big player. J Hematol Oncol. 2015;58(8):1–13.

27. Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol. 2009;19:43–51.

28. Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood. 1999;94:3791–9.

29. Théry C, Zitvogel L, Amigorena S. Exosomes: Composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–79.

30. Février B, Raposo G. Exosomes: Endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol. 2004;16:415–21.
31. Salomon C, Ryan J, Sobreiva L, Kobayashi M, Ashman K, Mitchell M, et al. Exosomal Signaling during Hypoxia Mediates Microvascular Endothelial Cell Migration and Vasculogenesis. PLoS One. 2013;8(7):1–24.

32. Zhang H-C, Liu X-B, Huang S, Bi X-Y, Wang H-X, Xie L-X, et al. Microvesicles derived from human umbilical cord mesenchymal stem cells stimulated by hypoxia promote angiogenesis both in vitro and in vivo. Stem Cells Dev. 2012;21(18):3289–97.

33. McCulloch K, Litherland GJ, Rai TS. Cellular senescence in osteoarthritis pathology. Aging Cell. 2017;16(2):210–8.

34. Jeon OH, Wilson DR, Clement CC, Rathod S, Cherry C, Powell B, et al. Senescence cell–associated extracellular vesicles serve as osteoarthritis disease and therapeutic markers. JCI Insight. 2019;4(7):e125019.

35. Pfander D, Gelse K. Hypoxia and osteoarthritis: How chondrocytes survive hypoxic environments. Curr Opin Rheumatol. 2007;19(5):457–62.

36. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 2010;285:17442–52.

37. Pan BT, Johnstone R. Selective externalization of the transferrin receptor by sheep reticulocytes in vitro. Response to ligands and inhibitors of endocytosis. J Biol Chem. 1984;259:9776–82.

38. Hanson PI, Shim S, Merrill SA. Cell biology of the ESCRT machinery. Curr Opin Cell Biol. 2009;21:568–74.

39. Hurley JH, Odorizzi G. Get on the exosome bus with ALIX. Nat Cell Biol. 2012;14:654–5.

40. Mayers JR, Audhya A. Vesicle formation within endosomes: An ESCRT marks the spot. Commun Integr Biol. 2012;5:50–6.

41. Nabhan JF, Hu R, Oh RS, Cohen SN, Lu Q. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc Natl Acad Sci. 2012;109:4146–51.

42. Raiborg C, Stenmark H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature. 2009;458:445–52.

43. Metcalf D, Isaacs AM. The role of ESCRT proteins in fusion events involving lysosomes, endosomes and autophagosomes: Figure 1. Biochem Soc Trans. 2010;38(6):1369–72.

44. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science (80-). 2008;319:1244–7.

45. Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012;14:677–85.

46. Pilzer D, Fishelson Z. Mortalin/GRP75 promotes release of membrane vesicles from immune attacked cells and protection from complement-mediated lysis. Int Immunol.
47. Subra C, Laulagnier K, Perret B, Record M. Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie. 2007;89:205–212.

48. Möbius W, Ohno-Iwashita Y, Van Donselaar EG, Oorschot VMJ, Shimada Y, Fujimoto T, et al. Immunoelectron microscopic localization of cholesterol using biotinylated and non-cytolytic perfringolysin O. J Histochem Cytochem. 2002;50:43–55.

49. White JJ, Bailey LM, Aghakhani MR, Moss SE, Futter CE. EGF stimulates annexin 1-dependent inward vesiculation in a multivesicular endosome subpopulation. EMBO J. 2006;25:1–12.

50. Wubbolts R, Leckie RS, Veenhuizen PTM, Schwarzmann G, Möbius W, Hoernschemeyer J, et al. Proteomic and biochemical analyses of human B cell-derived exosomes: Potential implications for their function and multivesicular body formation. J Biol Chem. 2003;278:10963–72.

51. Colombo M, Raposo G, Théry C. Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89.

52. Hsu C, Morohashi Y, Yoshimura SI, Manrique-Hoyos N, Jung SY, Lauterbach MA, et al. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol. 2010;189(2):223–32.

53. Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12:19–30.

54. Raimondo F, Morosi L, Chinello C, Magni F, Pittio M. Advances in membranous vesicle and exosome proteomics improving biological understanding and biomarker discovery. Proteomics. 2011;11(4):709–20.

55. Turturici G, Tinnirello R, Sconzo G, Geraci F. Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. Am J Physiol Cell Physiol. 2014;306(7):621–33.

56. Raposo G, Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–83.

57. Subra C, Grand D, Laulagnier K, Stella A, Lambeau G, Paillas M, et al. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res. 2010;51:2105–20.

58. Géminard C, de Gassart A, Blanc L, Vidal M. Degradation of AP2 during reticulocyte maturation enhances binding of hsc70 and Alix to a common site on TFR for sorting in exosomes. Traffic. 2004;5:181–93.

59. Frank F, Sonenberg N, Nagar B. Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature. 2010;465:818–22.

60. Villarroya-Beltrí C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez...
J, Martin-Cofreces N, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun. 2013;4:2980.

61. Silva J, García V, Zaballos Á, Provencio M, Lombardía L, Almonacid L, et al. Vesicle-related microRNAs in plasma of nonsmall cell lung cancer patients and correlation with survival. Eur Respir J. 2011;37:617–23.

62. Buschow SI, Van Balkom BWM, Aalberts M, Heck AJR, Wauben M, Stoorvogel W. MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis. Immunol Cell Biol. 2010;88:851–6.

63. Nolte’-t Hoen ENM, Buschow SI, Anderton SM, Stoorvogel W, Wauben MHM. Activated T cells recruit exosomes secreted by dendritic cells via LFA-1. Blood. 2009;113:1977–81.

64. Mulcahy LA, Pink RC, Carter DRF. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014;3(1).

65. Bellingham S, Coleman B, Hill A. Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res. 2012;40(21):10937–10949.

66. Nolte’-t Hoen ENM, Buermans HPIJ, Waasdorp M, Stoorvogel W, Wauben MHM, ’T Hoen PAC. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res. 2012;40(18):9272–85.

67. Squadrito ML, Baer C, Burdet F, Maderna C, Gilfillan GD, Lyle R, et al. Endogenous RNAs Modulate MicroRNA Sorting to Exosomes and Transfer to Acceptor Cells. Cell Rep. 2014;8(5):1432–46.

68. Mittelbrunn M, Gutiérrez-Vázquez C, Villarroya-Beltrí C, González S, Sánchez-Cabo F, González MÁ, et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun. 2011;2:282.

69. Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan MLG, Karlsson JM, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood. 2012;119(3):756–66.

70. Rabinowits G, Gerce-Taylor C, Day JM, Taylor DD, Kloecker GH. Exosomal microRNA: A diagnostic marker for lung cancer. Clin Lung Cancer. 2009;10:42–6.

71. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.

72. Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L. Exosomes / microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 2010;78(9):838–48.

73. Burke J, Kolhe R, Hunter M, Isales C, Hamrick M, Fulzele S. Stem cell-derived exosomes: A potential alternative therapeutic agent in orthopaedics. Stem Cells Int. 2016;2016:5–8.
74. Farahani M, Rubbi C, Liu L, Slupsky JR, Kalakonda N. CLL exosomes modulate the transcriptome and behaviour of recipient stromal cells and are selectively enriched in MIR-202-3p. PLoS One. 2015;10(10):1–18.

75. Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C, Biancone L, et al. Endothelial progenitor cell - Derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood. 2007;110(7):2440–8.

76. Gallo A, Tandon M, Alevizos I, Illei GG. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One. 2012;7(3):1–5.

77. Blanco FJ, Rego-Pérez I. Is it time for epigenetics in osteoarthritis? Arthritis Rheumatol. 2014;66(9):2324–7.

78. Reynard LN, Loughlin J. Genetics and epigenetics of osteoarthritis. Maturitas. 2012;71(3):200–4.

79. Rogers EL, Reynard LN, Loughlin J. The role of inflammation-related genes in osteoarthritis. Osteoarthr Cartil. 2015;23(11):1933–8.

80. Chen TS, Lai RC, Lee MM, Choo ABH, Lee CN, Lim SK. Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res. 2009;38(1):215–24.

81. Guduric-Fuchs J, O'Connor A, Camp B, O'Neill CL, Medina RJ, Simpson DA. Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics. 2012;13:357.

82. Li Z, Wang Y, Xiao K, Xiang S, Li Z, Weng X. Emerging role of exosomes in the joint diseases. Cell Physiol Biochem. 2018;48.

83. Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci. 2012;109:2110–6.

84. Munich S, Sobo-Vujanovic A, Buchser WJ, Beer-Stolz D, Vujanovic NL. Dendritic cell exosomes directly kill tumor cells and activate natural killer cells via TNF superfamily ligands. Oncoimmunology. 2012;1:1074–83.

85. Chen D, Shen J, Hui T. Epigenetic and microRNA regulation during osteoarthritis development. F1000 Res. 2015;4:1–10.

86. Gabay O, Sanchez C. Epigenetics, sirtuins and osteoarthritis. Jt Bone Spine. 2012;79:570–3.

87. Kato T, Miyaki S, Ishitobi H, Nakamura Y, Nakasa T, Lotz MK, et al. Exosomes from IL-1β stimulated synovial fibroblasts induce osteoarthritic changes in articular chondrocytes. Arthritis Res Ther. 2014;16(4):163.

88. Zhang R, Ma J, Yao J. Molecular mechanisms of the cartilage-specific microRNA-140 in osteoarthritis. Inflamm Res. 2013;62(10):871–7.

89. Miyaki S, Sato T, Inoue A, Otsuki S, Ito Y, Yokoyama S, et al. MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev. 2010;24(11):1173–85.
90. Sondag GR, Haqqi TM. The Role of MicroRNAs and Their Targets in Osteoarthritis. Curr Rheumatol Rep. 2016;18(8).

91. Miyaki S, Nakasa T, Otsuki S, Grogan SP, Higashiyama R, Inoue A, et al. MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum. 2009;60(9):2723–30.

92. Hu W, Zhang W, Li F, Guo F, Chen A. MIR-139 is up-regulated in osteoarthritis and inhibits chondrocyte proliferation and migration possibly via suppressing EIF4G2 and IGF1R. Biochem Biophys Res Commun. 2016;474(2):296–302.

93. Li YH, Tavallae G, Tokar T, Nakamura A, Sundararajan K, Weston A, et al. Identification of synovial fluid microRNA signature in knee osteoarthritis: differentiating early- and late-stage knee osteoarthritis. Osteoarthr Cartil. 2016;24(9):1577–86.

94. Kolhe R, Hunter M, Liu S, Jadeja RN, Pundkar C, Mondal AK, et al. Gender-specific differential expression of exosomal miRNA in synovial fluid of patients with osteoarthritis. Sci Rep. 2017;7(1):2019.

95. Withrow J, Murphy C, Liu Y, Hunter M, Fulzele S, Hamrick MW. Extracellular vesicles in the pathogenesis of rheumatoid arthritis and osteoarthritis. Arthritis Res Ther. 2016;18(286):1–12.

96. Mao G, Hu S, Zhang Z, Wu P, Zhao X, Lin R, et al. Exosomal miR-95-5p regulates chondrogenesis and cartilage degradation via histone deacetylase 2/8. J Cell Mol Med. 2018;22(11):5354–5366.

97. Jabalee J, Towle R, Garnis C. The Role of Extracellular Vesicles in Cancer: Cargo, Function, and Therapeutic Implications. Cells. 2018;7(8):93.

98. Wendler F, Favicchio R, Simon T, Alifrangis C, Stebbing J, Giamas G. Extracellular vesicles swarm the cancer microenvironment: From tumor-stroma communication to drug intervention. Oncogene. 2017;36(7):877–84.

99. Vader P, Breakefield XO, Wood MJA. Extracellular vesicles: Emerging targets for cancer therapy. Trends Mol Med. 2014;20(7):385–93.

100. Knijff-Dutmer EAJ, Koerts J, Nieuwland R, Kalsbeek-Batenburg EM, Van De Laar MAFJ. Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis. Arthritis Rheum. 2002;46:1498–503.

101. Lee Y, El Andaloussi S, Wood MJA. Exosomes and microvesicles: Extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet. 2012;21.

102. Loeuille D, Chary-Valckenaere I, Champigneulle J, Rat AC, Toussaint F, Pinzano-Watrin A, et al. Macroscopic and microscopic features of synovial membrane inflammation in the osteoarthritic knee: Correlating magnetic resonance imaging findings with disease severity. Arthritis Rheum. 2005;57(11):3492–501.

103. Segura E, Guerin C, Hogg N, Amigorena S, Thery C. CD8+ Dendritic Cells Use LFA-1 to Capture MHC-Peptide Complexes from Exosomes In Vivo. J Immunol. 2007;179:1489–96.
104. Mcdonald MK, Tian Y, Qureshi RA, Gormley M, Gao R, Lopez EA, et al. Functional Significance of Macrophage-derived Exosomes in Inflammation & Pain. Pain. 2015;155(8):1527–39.

105. Chen Y, Xue K, Zhang X, Zheng Z, Liu K. Exosomes derived from mature chondrocytes facilitate subcutaneous stable ectopic chondrogenesis of cartilage progenitor cells. Stem Cell Res Ther. 2018;9:318.

106. Kirsch T, Swoboda B, Nah HD. Activation of annexin II and V expression, terminal differentiation, mineralization and apoptosis in human osteoarthritic cartilage. Osteoarthritis Cartil. 2000;8(4):294–302.

107. Domenis R, Zanutel R, Caponnetto F, Toffoletto B, Cifù A, Pistis C, et al. Characterization of the Proinflammatory Profile of Synovial Fluid-Derived Exosomes of Patients with Osteoarthritis. Mediators Inflamm. 2017;2017.

108. Anderson HC, Mulhall D, Garimella R. Role of extracellular membrane vesicles in the pathogenesis of various diseases, including cancer, renal diseases, atherosclerosis, and arthritis. Lab Invest. 2010;90(11):1549–57.

109. Zhang H-G, Liu C, Su K, Yu S, Zhang L, Zhang S, et al. A Membrane Form of TNF-Presented by Exosomes Delays T Cell Activation-Induced Cell Death. J Immunol. 2006;176(12):7385–93.

110. Xu J-F, Yang G-H, Pan X-H, Zhang S-J, Zhao C, Qiu B-S, et al. Altered microRNA expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. PLoS One. 2014;9(12):114627.

111. Shapiro IM, Landis WJ, Risbud M V. Matrix vesicles: Are they anchored exosomes? Bone. 2015;79:29–36.

112. Golub EE. Role of matrix vesicles in biomineralization. Biochim Biophys Acta - Gen Subj. 2009;1790(12):1592–8.

113. Distler JHW, Jungel A, Huber LC, Seemayer CA, Reich CF, Gay RE, et al. The induction of matrix metalloproteinase and cytokine expression in synovial fibroblasts stimulated with immune cell microparticles. Proc Natl Acad Sci. 2005;102(8):2892–7.

114. Marton N, Kovács OT, Baricza E, Kittel Á, Győri D, Mócsai A, et al. Extracellular vesicles regulate the human osteoclastogenesis: divergent roles in discrete inflammatory arthropathies. Cell Mol Life Sci. 2017;74:3599–611.

115. Mao G, Zhang Z, Hu S, Zhang Z, Chang Z, Huang Z, et al. Exosomes derived from miR-92a-3p overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A. Stem Cell Res Ther. 2018;9(247).

116. Maumus M, Jorgensen C, Noël D. Mesenchymal stem cells in regenerative medicine applied to rheumatic diseases: Role of secretome and exosomes. Biochimie. 2013;95:2229–34.

117. Zhang S, Chuah SJ, Lai RC, Hui JHP, Lim SK, Toh WS. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials. 2018;156:16–27.
118. Sahoo S, Klychko E, Thorne T, Misener S, Shinnick K, Millay M, et al. Exosomes from Human CD34 + Stem Cells Mediate their Pro-angiogenic Paracrine Activity. Circ Res. 2011;16(1097):724–8.

119. Vrijsen KR, Sluijter JPG, Schuchardt MWL, van Balkom BWM, Noort WA, Chamuleau SAJ, et al. Cardiomyocyte progenitor cell-derived exosomes stimulate migration of endothelial cells. J Cell Mol Med. 2010;14(5):1064–70.

120. Qin Y, Sun R, Wu C, Wang L, Zhang C. Exosome : A Novel Approach to Stimulate Bone Regeneration through Regulation of Osteogenesis and Angiogenesis. Int J Mol Sci. 2016;17(5):712.

121. Tao SC, Yuan T, Zhang YL, Yin WJ, Guo SC, Zhang CQ. Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics. 2017;7(1):180–95.

122. Guo SC, Tao SC, Yin WJ, Qi X, Sheng JG, Zhang CQ. Exosomes from human synovial-derived mesenchymal stem cells prevent glucocorticoid-induced osteonecrosis of the femoral head in the rat. Int J Biol Sci. 2016;12(10):1262–71.

123. Vonk LA, van Dooremalen SFJ, Liv N, Klumperman J, Coffer PJ, Saris DBF, et al. Mesenchymal stromal/stem cell-derived extracellular vesicles promote human cartilage regeneration in vitro. Theranostics. 2018;8(4):906–920.

124. Zhu Y, Wang Y, Zhao B, Niu X, Hu B, Li Q, et al. Comparison of exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells and synovial membrane-derived mesenchymal stem cells for the treatment of osteoarthritis. Stem Cell Res Ther. 2017;8:64.

125. Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, et al. Mesenchymal Stem Cell-Derived Microvesicles Protect Against Acute Tubular Injury. J Am Soc Nephrol. 2009;20(5):1053–67.

126. Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006;20(5):847–56.

127. Wang Y, Yu D, Liu Z, Zhou F, Dai J, Wu B, et al. Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem Cell Res Ther. 2017;8:189.

128. Zhang S, Chu WC, Lai RC, Lim SK, Hui JHP, Toh WS. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthr Cartil. 2016;24(12):2135–40.

129. Miyaki S, Lotz MK. Extracellular vesicles in cartilage homeostasis and osteoarthritis. Curr Opin Rheumatol. 2018;30(1):129–135.

130. Maguire G. Exosomes: Smart nanospheres for drug delivery naturally produced by stem cells. Fabr Self-Assembly Nanobiomaterials Appl Nanobiomaterials. 2016;1:179–210.
131. Colao IL, Corteling R, Bracewell D, Wall I. Manufacturing Exosomes: A Promising Therapeutic Platform. Trends Mol Med. 2012;24(3).
Figure 1. Structure and composition of exosomes. (A) Cargo including RNA, lipids and proteins, such as cytoskeletal and ESCRT (endosomal sorting complexes required for transport) proteins, are packaged into membranous vesicles which contain various proteins for transport and adhesion as well as communication with cell receptors [adapted from Colombo et al.(54)]. (B) Exosomes as seen in scanning electron microscopy (SEM) imaging analysis. Vesicles are within the size range of 50-120nm and have a cup shaped morphology.

40x30mm (300 x 300 DPI)
Figure 2

54x30mm (300 x 300 DPI)
Figure 3. Exosomes are able to selectively target recipient cells. (1) by direct fusion with the plasma membrane and release of exosomal content into the cytosol (2) by interaction with receptors initiating signalling within the cell (3) via endocytosis of exosomes, where fusion with endosomes is required for cellular effect. Exosomes are able to transfer contents, including genetic material, which is translated by the recipient cell.
Figure 4. Exosomal communication between OA cells. Inflammatory cytokines, secreted in response to danger-associated molecular patterns (DAMPs) engaging with toll-like receptors (TLRs) expressed by various cells within the joint, stimulate exosome release from synovial fibroblasts (SFs). SF derived exosomes act on chondrocytes to increase MMP-13 and ADAMTS-5. Similarly, exosomes released from chondrocytes stimulated with inflammatory cytokines are released into the joint space and can act on cartilage and chondrocytes to increase e.g. MMP-13, COX-2, IL-1β expression. This positive feedback cycle leads to further breakdown of the articular cartilage ECM in OA.

40x30mm (300 x 300 DPI)