The increase in the prevalence of individuals with Alzheimer’s disease (AD) combined with the lack of a cure calls for the development of novel therapies against AD (Carter et al., 2016). The key disease-defining pathological features of AD are the accumulation of extracellular amyloid-beta (Aβ) plaques and intracellular neurofibrillary tangles, comprised mostly of hyperphosphorylated tau protein/pTau (Goedert, 2015; Hardy, 2017). It is evident that the elderly are more predisposed to develop AD, and thus aging is considered to be the primary risk factor for AD. By extrapolation, strategies that delay aging may also slow down (if not stop) AD. The Nicotinamide adenine dinucleotide (NAD\(^+\))-mitophagy axis is compromised during aging. Working with Prof. Vilhelm Bohr at the National Institute on Aging at the USA and colleagues, a series of our studies have shown that the key metabolite nicotinamide adenine dinucleotide (oxidized form NAD\(^+\)) is reduced in common accelerated aging diseases, including xeroderma pigmentosum group A, ataxia telangiectasia, Cockayne syndrome (CS-A and CS-B), as well as in Werner syndrome. Importantly, NAD\(^+\) depletion is a key cause of pathological aging in these diseases (Fang et al., 2014, 2016, 2019a; Scheibe-Krudnev et al., 2014). While NAD\(^+\) participates in many cellular pathways that link to neuronal protection and healthy longevity, we show a pivotal role for NAD\(^+\)-induced mitophagy in longevity and neuroprotection. More specifically, the deacetylase SIRT1 uses NAD\(^+\) to deacetylate FOXO3 and PGC1α, which are transcriptional regulators that upregulate different mitophagy genes, such as NIX/ BNIP3 (detailed mechanisms are in Fang (2019)). NAD\(^+\) regulates mitophagy, a cellular pathway that specifically recognizes and degrades damaged mitochondria (Fang, 2019). Indeed, this NAD\(^+\)-mitophagy axis is compromised unequivocally in the aforementioned diseases. Restoration of the NAD\(^+\)-mitophagy axis alleviates disease pathologies and extends healthspan and lifespan in animal models, suggesting a causative role for the NAD\(^+\)-mitophagy axis in longevity (Fang et al., 2014; Waltz et al., 2017). In view of the fundamental role of the compromised NAD\(^+\)-mitophagy axis in accelerating aging, we wondered whether the axis could also be relevant to the development of common age-predisposed diseases such as AD. The phenomenon of accumulated mitochondria in AD has been noted for decades. We hypothesize that such accumulation was not fully understood, with oxidative stress cited as the most probable cause. In 2017, we hypothesized that the accumulation of damaged mitochondria in AD could be caused by defective mitophagy (Kerr et al., 2017). In fact, our subsequent experimental studies indicated that mitophagy was dramatically reduced in post-mortem hippocampal tissues from AD patients as well as in both AD and pTau animal models of AD (Fang et al., 2019a). In accelerated aging and Alzheimer’s disease, the NAD\(^+\)-mitophagy axis is compromised likely due to increased NAD\(^+\) consumption (via Poly (adenosine diphosphate-ribose) polymerases and CD38) and reduced production. In line with these findings, NAD\(^+\) repletion repaired AD pathologies, and retained learning and memory in AD mice (Fang et al., 2019a, Figure 1). As NAD\(^+\) is reduced in normal aging brains, and age is the primary driver of AD, it is presumed that NAD\(^+\) reduction in AD could be at least significantly contributed to aging. Consequently, we hypothesize that NAD\(^+\) supplementation could be considered to treat early-onset AD with the clinical trial validation necessary. In addition to NAD\(^+\), other NAD\(^+\) metabolites also show anti-AD potential. These compounds are actinomycin (a naturally occurring antibacterial agent) and Urolithin A (Fang et al., 2019a). Very recently, we identified two robust mitophagy inducers, Kaempferol and Rapontgenmin, from a large natural compounds library through the combination of machine learning-based virtual screening and cross-species platform-assisted wet lab validation (Xie et al., 2022, Figure 1). Kaempferol and Rapontgenmin inhibited memory loss and pathologies in both AD and pTau animal models of AD (Xie et al., 2022). The mechanisms behind how Kaempferol, Rapontgenmin, Ursolic acid, and Aconitinin inhibit AD pathogenesis may work by directly turning up mitophagy, rather than through activation of the ‘NAD\(^+\)-mitophagy axes’. Our cross-species experimental models consistently support a causative role for a compromised NAD\(^+\)-mitophagy axis in accelerated aging (as well as normal aging), likely forming a risk factor for AD. Strategies that increase NAD\(^+\) levels via augmentation of NAD\(^+\) precursors (such as nicotinamide riboside, nicotinamide mononucleotide, and nicotinamide) and mitophagy stimulation hold potential for clinical trials as the treatments against AD.

This work was supported by National Natural Science Foundation of China (No. 81971327), Akershus University Hospital (No. 269901, 261973), the Norwegian Cancer Society & the Rosa sløyfe/Norwegian Cancer Society & the Norwegian Breas Cancer Society (No. 207819) to EFF. Fang EF, Anisimov A, Croteau DL, Scheibe-Krudnev M, Marosi K, Lu H, Shamanna RA, Khanalnandaram S, Bollner RC, Wilson MA, Iver WB, Wollman BN, Monoret M, Li J, Kerr S, Lu Q, Wertz TB, Tian S, Sinclair DA, Mattson MP, et al. (2016) NAD\(^+\) Repletion improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair. Cell Metab 24:566-581.

Fang EF (2019) Mitophagy and NAD\(^+\) inhibit Alzheimer disease. Alzheimer's Ther 11:312-325. Fang EF, Hou Y, Palkaras K, Adriaanse BA, Kerr JS, Yang B, Lautrop S, Hasan-Olive MM, Caponio D, Dan X, Rockstach P, Croteau DL, Anisimov A, Greig NH, Fladby T, Nielsen M, Cai Q, Kerr LM, Tavenarakis N, Bohr VA (2019a) Mitophagy inhibits amyloid-beta and tau pathology and reduces cognitive deficits in models of Alzheimer’s disease. Nat Commun 10:539. Fang EF, Hou Y, Lautrop S, Jensen MB, Yang B, SenGupta T, Caponio D, Kheili R, Demarais TD, Aman T, Figueroa D, Monoret M, Lee HJ, Kato H, Kassahun H, Lee JH, Filipillo D, Oku MN, Marginich A, Croteau DL, et al. (2019b) NAD\(^+\) augmentation restores mitophagy and limits accelerated aging in Werner syndrome. Nat Commun 10:53284.

Goedert M (2015) NEURODEGENERATION. Alzheimer’s and Parkinson’s disease: The prion concept in relation to assembled Aβ, tau, and alpha-synuclein. Science 349:1255555. Hardy J (2017) The discovery of Alzheimer-causing mutations in the APP gene and the formulation of the “amyloid cascade hypothesis”. FEBS J 284:1040-1044. Kerr JS, Adriaanse BA, Greig NH, Mattson MP, Cader MZ, Bohr VA, Farhi C (2017) Mitophagy and Alzheimer’s disease: cellular and molecular mechanisms. Trends Neurosci 40:151-166. Scheibe-Krudnev M, Mitchell SJ, Fang EF, Eyana T, Ward T, Wang J, Le Du CA, Singh N, Veit S, Hasan-Olive MM, Marginich A, Wilson MA, Mattson MP, Bergeron LH, Cogger VC, Warren A, Le Couel AM, Godsilil R, Croteau DL, et al. (2012) A high-fat diet and NAD\(^+\) supplementation via SIRT1 to rescue premature aging in coskyane syndrome. Cell Metab 20:840-855. Waltz TB, Frisen EM, Morevati M, LC, Becker KG, Bohr VA, Fang EF (2017) Sarcopenia, aging and progressive interventional strategies. Curr Med Chem 25:S588-596. Xia C, Zhang XX, Niu A, Li R, Lautrop S, Zheng S, Yang J, Han R, Gupta TS, Cai S, Lagarto-Donate M, Cal CZ, Kerr LM, Caponio D, Wang W, Schmauck-Medina T, Zhang J, Wang HL, Liu G, Xiao X, et al. (2021) Amelioration of Alzheimer’s disease pathology by mitophagy inducers identifies aging and a cross-species workflow. Nat Biomed Eng 6:76-93.