Environmental Impact of Corn Tortilla Production: A Case Study

Diego Guzmán-Soria 1, Paul Taboada-González 2, Quetzalli Aguilar-Virgen 2, Eduardo Baltierra-Trejo 3 and Liliana Marquez-Benavides 1,*

1 Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo, Av. San Juanito Itzcuicaro S/N, Col. San Juanito Itzcuicaro, Morelia 58000, Mexico; diego.gzsoria@gmail.com
2 Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad No. 14418, Mesa de Otay, Tijuana 22390, Mexico; ptaboada@uabc.edu.mx (P.T.-G.); qaguilar@uabc.edu.mx (Q.A.-V.)
3 CONACYT-Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Biológicas, Carretera Villahermosa-Cárdenas km 0.5 s/n entronque a Bosque de Saloya, Ranchería Emiliano Zapata, Villahermosa, Tabasco 86159, Mexico; eduardo.baltierra@conacyt.mx

* Correspondence: lmarquez@umich.mx; Tel.: +52-(443)-334-0475 (ext. 116)

Received: 21 October 2019; Accepted: 1 November 2019; Published: 13 November 2019

Featured Application: This work helps to realise improvements in the cultivation of corn and corn–nixtamalisation–dough–tortillas production, which could mean more environmentally friendly food production.

Abstract: The research on the environmental impacts of corn-derived products has been mainly on cultivation techniques and the production of biofuels, so there is limited information on the impacts produced by the transformation of corn for human consumption. The tortilla is a millennial product derived from corn of which consumption is increasing in North America. The aim of this study is to identify the environmental hotspots of the tortilla using a life cycle assessment (LCA) approach. The process studied included only the corn–nixtamalisation–dough–tortillas production. The functional unit is one kg of tortillas packed in kraft paper. The impacts of the tortilla production process were evaluated using SimaPro 8.5.0 software, considering ReCiPe Midpoint. The production has the greatest impact in 15 of the 18 impact categories. The normalisation reveals that the most significant impacts concentrate in the categories terrestrial acidification (TA), particulate matter formation (PMF), marine ecotoxicity (MET) and fossil fuel depletion (FD). Improvements in the cultivation could mean more environmentally friendly tortilla production.

Keywords: corn; climate change; life cycle assessment; environmental impact; CO \(_2\) emission

1. Introduction

Soil conservation is one of the main sustainability goals in ensuring food security and environmental protection [1]. For this reason, the production of food with the minimum impact on the environment is a major challenge for agricultural production. Nitrogen (N) is a critical input for optimum crop production because it promotes rapid growth of corn plants, increases leaf size and quality, and promotes fruit and seed development [2]. Many grain legumes require limited doses of N fertilisers, but others, such as maize, are big consumers of N, and consequently of energy [3]. This is important because maize is the second largest crop worldwide, with a production of 615,533,645 Mton (millions of tons) [4]. Moreover, in corn production the use of herbicides for the chemical control of weeds is intensive [5]; its high water requirements and the associated nutrient runoff contribute to several
impacts on the environment such as eutrophication, algal growth and hypoxia in downstream water bodies [6]. Other corn production-associated environmental impacts are the unsustainable use of water for irrigation, the expansion of genetically modified corn, soil erosion and biodiversity loss [4]. This situation is unsustainable in the long term.

Research on the environmental impacts of corn has been mainly on cultivation techniques [3,5,7,8] and the production of biofuels [6,9,10], so there is limited information on the impacts produced by the transformation of corn for human consumption using life cycle analysis. The study by Grant and Beer [11] was conducted using life cycle assessment (LCA) for the determination of greenhouse gas (GHG) emissions from pre-agricultural activities on farms and post-farms in the manufacture of corn chips, taking as an indicator the CO$_2$ equivalent (CO$_2$ eq) and as a functional unit a box of ten 400 g packages of corn chips. They found that GHG emissions from obtaining raw materials comprises approximately 5% of the total throughout their life cycle; corn cultivation produces around 27%, and the manufacturing stage of corn fritters around 68%. The study showed that the most important source of GHG emission is the emission of nitrous oxide on the farm as a result of the application of fertilisers (0.12 kg of CO$_2$ eq per box). Sánchez Femat [12] took as a basis the ISO 14067:2013 standard to perform an analysis of the carbon footprint produced by ten nixtamal mills distributed in the Metropolitan Zone of the Valley of Mexico. His door-to-door study produced a result of 43.38 kg CO$_2$ eq t$^{-1}$ of processed nixtamal mass.

Corn has many food uses, among which is its use for making tortillas. This is a millennial product which is part of the culinary tradition that continues to lift generations and cultures. Historically it was considered as the “bread of life” and there is a connection between Mesoamericans of around 2500 years ago and today’s international tortilla marketplace [13]. Nowadays there is a great demand in North America and some countries in Central America; in the United States, the tortilla market is projected to reach USD 29.39 billion at a Compound Annual Growth Rate (CAGR) of 5.50% over the forecast period. North America alone captures 59.06% of the global market share in the year 2017 [14]. The tortilla is a food in circular and flattened form, with diameters ranging from 160 to 300 mm and is 2 to 6 mm thick. It is made with the mass of cooked corn that is obtained through the process of nixtamalisation [15]. In Mexico, half of the corn produced goes to the production of nixtamalised corn tortillas, while 11.3% of corn production is used to make flour for tortillas [16,17]. The National Council for the Evaluation of Social Development Policy (CONEVAL) estimates that in the urban environment the annual per capita consumption of tortillas is 56.7 kg, and in rural areas, 79.5 kg [18].

Despite the economic and cultural importance of the tortilla, a study describing the environmental impact derived from the production of nixtamalised corn tortillas using an LCA approach has not been carried out. For this reason, the environmental impacts associated with each of the stages of its production are unknown. The LCA is a useful method that has been used in numerous agri-food studies in order to identify environmental hotspots and pinpoint solutions to mitigate environmental burdens [19]. The aim of this study is to identify the environmental hotspots of the tortilla as a support tool for food sovereignty, the generation of GHG emission reduction strategies, and the identification of opportunities for the technological improvement of the process.

Tortilla Description

There are two ways to produce the dough for making tortillas: the traditional method (corn–nixtamal–dough–tortilla) and that based on nixtamalised corn flour (corn flour–dough–tortilla) [20]. Tortillas in Mexico are created mainly with nixtamalised corn dough, which represents 65% of the national production, compared to 35% produced with the nixtamalised corn flour [21]. In Mexico, white corn is traditionally used to make tortillas and oils, while yellow corn is mostly used for livestock pigments and starches.

The process of cooking the tortilla is very varied, from the use of “comales” (a flat iron griddle) to automatic machines known as “tortilladoras” (see Figure 1). Currently, the most used manufacturing
process in the United States and Mexico is the semi-industrial automatic tortilla machine, which, in addition to the moulding, bakes the dough in a continuous process [20].

![Automatic machine or “tortilladora”](image)

Figure 1. Automatic machine or “tortilladora”. Source: TAPSA [22].

2. Materials and Methods

Life cycle assessment (LCA) is one of the most established environmental assessment methods for modelling the environmental effects of goods and services throughout their life cycle [23]. An LCA identifies the environmental impacts of all stages in the production cycle and enables the evaluation of environmental impacts for comparative and improvement purposes [24]. To achieve this, the LCA requires that the process be checked in order to identify all resources used (materials, energy) and all emissions of environmental pollutants (wastes, effluents, and emissions) [25].

2.1. LCA Approach and Assumptions

The process studied included only the corn–nixtamalisation–dough–tortillas production. The functional unit is one kilogram of tortillas packed in kraft paper. In the limits of the system (Figure 2), it was considered from the obtaining of raw materials for the production of corn, to the elaboration of the already packaged product, with a focus on the cradle to the door, i.e., “cradle to gate”. The stages of obtaining the rest of the raw materials, the use of the product, and the disposition of the residues at the end of life were excluded. In this study no comparisons were made between systems. A producer in Quiroga, Michoacán was surveyed in the year of 2017 to understand the process of corn production. A tortilla shop, equipped with a nixtamal mill and an automatic tortilla maker was studied, which is representative of the business class in Mexico that complies with the official standard for dough, tortillas and prepared flours [26].

![Diagram of the life cycle of tortilla production](image)

Figure 2. Limits of the system in the life cycle of the tortilla.
The stages considered in the LCA are:

- **Production of raw material.** The production of white corn is considered because it is the raw material for the production of tortillas. It includes the preparation of the earth up to the drying of the seed. The preparation of the land uses the conservation tillage technique with the use of an agricultural tractor, which includes a ploughing phase, two harrowing phases and sowing. Mechanised planters are used to plant the seed and the first fertilisation of the soil is carried out, adding the total amount of the required phosphorus and 40% of the total nitrogen. The second fertilisation consists of adding the remaining nitrogen to the corn. Pest control is carried out by sprinklers coupled to the tractor. Harvesting is done with agricultural harvesters to later go through a grain drying process. Once dry, the grain is packed in sacks and distributed to the tortilla shops.

- **Transport of raw material.** This includes the distribution of the pesticides, fertilisers and supplies necessary to produce corn, as well as those needed for the production of tortillas, such as corn and calcium hydroxide in the nixtamalisation stage.

- **Nixtamalisation.** The technique is based on the cooking of the corn grains in a calcium hydroxide solution (Ca(OH)_2) or lime. For each kg of corn, 15 g of lime are used in 3 L of boiling water ($85–100\ ^\circ\text{C}$) for at least 45 min, depending on the hardness of the grain [27]. The mixture is left to rest for 8–24 h in the cooking solution (knowing as nejayote), then washed two or three times with clean water to remove the nejayote, the pericarp of the grain and any impurities. The result of alkaline cooking is the nixtamalised or nixtamal corn. Subsequently, it is passed to a wet milling process to obtain the dough (with 48–55% humidity).

- **The cooking of the dough.** The dough is baked in an automatic tortilla machine which moulds, cuts and bakes. The machines are fuelled by natural gas or propane as a fuel source and the mechanical system is powered by electricity. The dough is fed through a hopper where there are two rollers (kneading) that rotate in opposite directions, directing the dough to the extruders which, in turn, feed the moulders, where it is shaped flat and then cut out by some blades. The discs of dough move along a hot iron caterpillar to be cooked at temperatures of 280–300 °C with a residence time of 20 to 40 s. Each side is cooked twice, at the end the tortilla is obtained [28]. Approximately 30 g of dough is needed for each tortilla. The complete process of the production system is shown in Figure 3.

2.2. **Life Cycle Inventory of Corn Tortilla**

The data and sources to execute the life cycle inventory (LCI) of tortilla production are described in Table 1. These data are referenced to the functional unit according to the ISO methodology [29]. The data were validated according to the quality criteria referred to by the ISO international standard [30].
Figure 3. Process scheme for making the tortillas.
Table 1. Types and data sources.

Stage	Data	Kind	Source
Transport of raw material	Producers of materials	Primary	Survey of corn producers and tortilla owners; Google-Maps
	Transported materials	Primary	
	Transport vehicle	Primary, Secondary	
	Distance travelled	Primary, Secondary	
Corn production	Water consumption	Primary, Secondary	Datasheet catalogues [31]
	Use of fertilisers	Primary	
	Use of pesticides	Primary	
	Use of seeds	Primary	
	Production yield	Primary, Secondary	FIRA [32]
	Land use	Secondary	Material balance
Nixtamalisation, grinding	Water consumption per unit process	Secondary	Calculated by mass balance
and cooking	Electric consumption	Primary	Light bill
	Electricity requirements per unit	Secondary	Calculated and based on technical of equipment data sheets
	process		
	Requirement of materials per unit	Primary, Secondary	Material balance of each process
	process		
	Solid waste generation	Secondary	Calculated by material balance and scientific articles
	Discharge of residual water	Primary, Secondary	Balance of material in the field

The life cycle analysis was performed using SimaPro software version 8.5.0. The environmental impact assessment of tortilla production considered the 18 midpoint impact categories of the ReCiPe method (2008): climate change (CC), ozone depletion (OD), terrestrial acidification (TA), freshwater eutrophication (FE), marine eutrophication (ME), human toxicity (HT), photochemical oxidant formation (POF), particulate matter formation (PMF), terrestrial ecotoxicity (TET), freshwater ecotoxicity (FET), marine ecotoxicity (MET), ionising radiation (IR), agricultural land occupation (ALO), urban land occupation (ULO), natural land transformation (NLT), water depletion (WD), mineral resource depletion (MRD) and fossil fuel depletion (FD).

2.3. Transport of Materials

The materials needed for the production of tortillas are purchased from various suppliers. Through an interview, the location of each one of them was identified and then the distance travelled in the transport of the inputs was calculated using the web application “Google-Maps” (Table 2).
Table 2. Life cycle inventory of the transport of materials for corn production.

Raw Material	Mass (kg)	Distance (km)	Quantity (kg·km)
Corn seeds	7.83×10^{-3}	0	0
Fertiliser 1	3.13×10^{-2}	8.68×10^{0}	2.71×10^{0}
DAP (diammonium phosphate)	1.13×10^{2}	4.85×10^{1}	1.52×10^{0}
Fertiliser 2	1.10×10^{-1}	8.68×10^{0}	9.55×10^{0}
Urea	1.13×10^{2}	4.85×10^{1}	5.34×10^{0}
Herbicide 1	6.91×10^{-4}	3.17×10^{2}	2.19×10^{-1}
Desyerbal-500	4.64×10^{-4}	3.17×10^{2}	1.47×10^{-1}
Herbicide 2	1.88×10^{-5}	3.17×10^{2}	5.94×10^{-3}
Machetazo 2000	1.04×10^{-4}	3.17×10^{2}	3.31×10^{-2}
Pesticide 1	1.06×10^{-2}	2.54×10^{2}	2.70×10^{0}
Quicklime	7.10×10^{-1}	9.38×10^{2}	6.66×10^{2}

2.4. Corn Production

In order to carry out the LCI of corn production, a producer from the city of Quíroga, Michoacán, Mexico, was interviewed. The resulting information is detailed below.

- Preparation of the land. There are two annual sowing seasons. The producer performs rotary sowing by conservation mode with a plough or fallow stage, two harrowing steps, and then sowing. For these activities, he uses a New Holland 6610 tractor which, according to Gaytán Ruelas et al. [33], has a power of 88 hp, 77 hp to the power take-off (PTO) and a fuel consumption of 7.5 L for each hour of work.
- Sowing. A two-row planter with a cultivator is used to sow the seed and perform the first fertilisation. The farmer requires 30 kg of seeds for each hectare planted and it takes approximately 2 h to carry out the activity.
- Fertilisation. The amount of fertiliser was calculated by considering the doses shown in Table 3. The production is carried out by means of seeding by storm, in common with the majority of the country [32], adding 40% of the nitrogen in the first fertilisation at the time of sowing and the remaining 60% in the second. The producer mentioned that the fertilisers he uses are diammonium phosphate (DAP) and urea with NPK contents of 18-46-0 and 46-0-0, respectively. Water consumption is assigned according to the green water footprint reported by Mekonnen and Hoekstra [34] for Mexico in corn crops.

Table 3. Dose of corn fertiliser sown at various humidity conditions.

Humidity Condition	NPK Fertilisation Dose (kg ha$^{-1}$)
Irrigation	250-46-0
Watering tip	230-46-0
Efficient temporary (greater than 650 mm of annual precipitation)	184-46-0
Poor temporary (less than 650 mm of annual precipitation)	138-46-0

Source: Vallejo et al. [35].
• Pest control. The soil is fumigated twice for the control of herbs and twice for insect control. The herbicides used are atrazine at 44% for pre-emergent control and glyphosate at 36% for post-emergent weed control at the doses indicated on the package. The most common insects are the armyworm which is treated with 24% cypermethrin and grasshoppers, treated with 50% malathion. Equation (1) was used to calculate the quantity of pesticides to be used.

\[m_p = \text{dose} \times A \times C, \]

where \(m_p \) is the pesticide mass to be used (kg or L); pesticide dose is in kg ha\(^{-1}\) or L ha\(^{-1}\); \(C \) denotes the concentration of an active ingredient in the presentation of the pesticide; and \(A \) denotes the area that will be treated (ha).

• Harvest and shelling. The corn is harvested manually when it has high moisture content, and drying is done in the sun. The corn is shelled with a sheller attached to the shaft of the PTO of the tractor, with a capacity of 1.5 t h\(^{-1}\). The LCI for the corn production process is shown in Table 4.

Table 4. Life cycle inventory of corn production.

Product Outputs	Quantity	Unit
Corn	1.00 \times 10^0	kg

Avoided products	Quantity	Unit
Olote	1.70 \times 10^{-1}	kg
Straw	2.35 \times 10^0	kg

Material inputs	Quantity	Unit
Water	1.85 \times 10^3	L
Ground	3.13 \times 10^{-4}	Ha
Seeds	7.83 \times 10^{-3}	kg
Fertiliser 1	3.13 \times 10^{-2}	kg
Fertiliser 2	1.10 \times 10^{-1}	kg
Herbicide 1	6.91 \times 10^{-4}	kg
Herbicide 2	4.64 \times 10^{-4}	kg
Pesticide 1	1.88 \times 10^{-5}	kg
Pesticide 2	1.04 \times 10^{-4}	kg
Water	6.25 \times 10^{-1}	L

Energy and heat inputs	Quantity	Unit
Diesel	9.94 \times 10^{-1}	MJ

Emissions to the air	Units	Unit
N\(_2\)O	7.253 \times 10^{-4}	kg
Ammonia	9.235 \times 10^{-3}	kg

Waste	Units	Unit
Sacks	2.83 \times 10^{-4}	kg
HDP boats	2.79 \times 10^{-4}	kg
Cardboard box	1.52 \times 10^{-4}	kg

2.5. Nixtamalisation

For this process, the materials and supplies necessary for the production of 1 kg of nixtamalised corn were considered. The materials required are corn grains, calcium hydroxide Ca(OH)\(_2\) and water. The water consumption was calculated considering the 2:1 formulation of water and corn, in addition to the water used for washing the nixtamal. The energy and/or heat inputs for this process are propane and electricity. The consumption of electrical energy was determined according to the technical
specifications of the equipment available in the tortilla shop. The losses of corn dough after washing were assigned according to the Mexican norm [27]. The results of this analysis are shown in Table 5.

Table 5. Life cycle inventory for nixtamalisation.
Outputs of Material
Nixtamal
Material inputs
Corn
Ca(OH)$_2$
Water for maceration
Water for washing
Energy and heat inputs
Propane
Emissions to the atmosphere
Water
Waste
Nejayote
Sacks
Raffia sacks

2.6. Grinding

The materials and supplies necessary to produce 1 kg of dough were considered. The required material is nixtamalised corn from the nixtamalisation process. The consumption of electrical energy in this process was determined according to the technical specifications of the equipment used. A nixtamal mill of the brand Arisa ML100, 1/3 HP at 110 V, with a capacity of 80 kg h$^{-1}$ and a mixer of the brand Tortimex Inox-430, 1 HP at 110 V with a capacity of 50 kg of dough per load were used. The water consumption of this process was estimated by a material balance in which nixtamalised corn enters with 42% humidity and leaves as a dough product with a humidity of 55%. The results of this process are shown in Table 6.

Table 6. Life cycle inventory for grinding nixtamal.
Outputs of material
Corn dough
Material inputs
Nixtamal
Water for the grinding
Energy and heat inputs
Electricity

2.7. Baking the Dough and Packing

The inputs for the production of 1 kg of tortilla from nixtamal were identified. The consumption of electrical energy for this process was determined according to the nameplate data of the Verduzco brand tortilla machine model TV-40. Its production capacity is 70 kg h$^{-1}$, with electricity consumption of 1.32 kWh and 3.8 L h$^{-1}$ of propane. The tortillas are delivered to the consumer wrapped in food-grade paper, with a grammage of 17 g m$^{-2}$. The LCI analysis for this stage is shown in Table 7.
Table 7. Life cycle inventory of baking the dough and packaging.

Outputs of material	Quantity	Unit
Tortilla	1000 kg	

Material inputs	Quantity	Unit
Dough	1.29 × 10³	kg
Food grade paper	2.534 × 10⁻³	kg

Energy and heat inputs	Quantity	Unit
Electricity	1.76 × 10²	Wh
Propane	7.70 × 10⁻²	L

Emissions to the atmosphere	Quantity	Unit
Water	2.88 × 10⁻¹	kg

2.8. Energy Flows and Greenhouse Gases for Tortilla Production

The total cumulative energy demand (CED) of a product is a parameter that represents the total of all energy inputs, concerning the consumption of primary energy. With respect to LCA phases [36] the tortilla CED can be expressed as Equation (2):

\[
CED_{\text{Tortilla}} = CED_{\text{Raw m}} + CED_{\text{Distr}} + CED_{\text{Nixt}} + CED_{\text{Gr Knd}} + CED_{\text{Cook Pack}}.
\]

Global warming potential indicators, derived respectively from the calculation of the energy flows and the calculation of the GHG emissions, were also taken into account. These results were calculated for a mass based on functional unit (FU), for a nutritional energy value FU (100 kcal) and for a price-based FU. The FU is a reference unit, to which the inputs and outputs must be connected [37].

Mexico is divided into eight economic regions (Table 8), which each represent separate activities and economical characteristics, Figure 4 is a schematic representation of the various purchasing powers of the Mexican regions.

Table 8. Eight economic regions in Mexico.

Zone	Contribution to GDP * (%)
Northwest (Pacific)	27.4
Northern Centre (Central)	21.3
West (Lowlands)	18.4
Southern Centre (Central)	12.3
East (South Central)	9.5
Northeast (North)	2.4
Southwest	1.0
Southeast	0.1

* GDP: gross domestic product. Source: adapted from INEGI [38,39].
The obtained results showed that to process the FU of tortilla (1 kg of packed tortilla), the CED\textsubscript{tortilla} = 1.03 MJ of primary energy is required; this represents 0.419 kg CO\textsubscript{2} eq/FU. The Mexican government uses the “basic basket” as the set of essential goods and services so that a family can satisfy their basic consumption needs from their income. The tortilla is a staple food for Mexicans, nutritionally and for cultural identity, and as such, it is one of the 83 items that comprises the basket. In fact, according to the National Consumer Price Index [41], the tortilla represents 6.78% of food expenses. Regardless of this importance, prices vary nationwide, as shown in Figure 5a. Prices do not match geographic purchasing powers, as the Pacific area—which has the highest purchasing power—has the lowest national price for tortillas. The explanation for this might be associated to the higher degree of mechanisation and availability of newer tortilla equipment. Northern zones are known for their higher industrialisation levels in Mexico, with probably more energy-efficient processes for tortilla production. This represents an opportunity for further study.

The Mexican electric power generation mix, or electricity mix, in the distinct economic zones is described in Table 9. Figure 5b represents the cost per energy unit, calculated from the tortilla price. These prices were calculated from the average price for tortilla in year 2017 in each zone. However, the electricity mix varies in each zone. The northern part relies heavily in fossil fuels, whereas the southern part generates electricity mainly by hydroelectric technology. Figure 5c shows the kg CO\textsubscript{2} eq as related to the tortilla price. As a result, zones with the highest prices have the lowest global warming indicators, such as the Northeast and the Southeast zones.
Figure 4. Schema of Mexico’s purchasing power variations depending on economic regions. Source: Nielsen-Consulting [40].

The obtained results showed that to process the FU of tortilla (1 kg of packed tortilla), the CED_tortilla = 1.03 MJ of primary energy is required; this represents 0.419 kg CO₂eq/FU. The Mexican government uses the “basic basket” as the set of essential goods and services so that a family can satisfy their basic consumption needs from their income. The tortilla is a staple food for Mexicans, nutritionally and for cultural identity, and as such, it is one of the 83 items that comprises the basket. In fact, according to the National Consumer Price Index [41], the tortilla represents 6.78% of food expenses. Regardless of this importance, prices vary nationwide, as shown in Figure 5a. Prices do not match geographic purchasing powers, as the Pacific area—which has the highest purchasing power—has the lowest national price for tortillas. The explanation for this might be associated to the higher degree of mechanisation and availability of newer tortilla equipment. Northern zones are known for their higher industrialisation levels in Mexico, with probably more energy-efficient processes for tortilla production. This represents an opportunity for further study.

Figure 5. Comparison of environmental impacts of tortilla production in Mexico based on energy consumed, greenhouse gas emissions and cost. (a) Price (USD)/functional unit (FU); (b) MJ demanded by cost (USD); (c) global warming potential indicator related to tortilla cost (kg CO₂eq/USD); (d) national averages for FU of tortilla production process, estimated in this work. This information was obtained from a representative survey conducted in 53 Mexican cities located in all the states of the republic, based on a sample of 384 tortilla shops and 120 self-service stores, with a confidence level of 95% and a 5% margin of error. Source: tortilla price is the yearly average (2017), SNIIM [42].

Table 9. Mexican electricity installed capacity in the economic zones and their respective technologies for electric power generation.

Economic Zone	Installed Capacity (MW, 2014)	Percentage Installed	Conventional (Thermal)	Coal-Fired	Nuclear-Electric	Combined Cycle	Others	Hydro-Electric	Alternative Sources
Northwest	7198.7		34.5	-	-	27.7	16.5	13.0	8.1
Northeast	13,814.2		12.5	18.8	-	64.4	3.2	0.9	-
South-Southeast	18,742.4		13.7	14.8	7.5	20.8	2.2	37.8	3.2
Centre northwest	9853.5		25.9	-	-	37.3	1.9	34.9	-
Centre	4754.9		43.2	29.9	-	11.7	14.4	0.9	-

Source: adapted from SENER [43].

Finally, Table 10 shows a comparison of environmental impacts for selected food products, particularly bread. Despite the difference in grain (wheat versus corn), the global warming indicator is comparable among bread types and tortillas, with the main hotspot being identified as the corn production phase.

Finally, Table 10 shows a comparison of environmental impacts for selected food products, particularly bread. Despite the difference in grain (wheat versus corn), the global warming indicator is comparable among bread types and tortillas, with the main hotspot being identified as the corn production phase.
Table 10. Comparison of environmental impacts of selected food products based on the energy consumed, emissions and greenhouse gas costs.

Food	Functional Unit	kg CO2 eq kg⁻¹	MJ kg⁻¹	kg CO2 eq 100 kcal⁻¹	MJ 100 kcal⁻¹	MJ US$⁻¹	kg CO2 eq US$⁻¹	Environmental Hotspots	System Boundaries	Reference
Mexican Tortilla	1 kg of tortillas wrapped in paper sheet	0.419	24.1	-	1.03	-	0.52	Corn production	cradle to gate (business to business)	This work
Corn chips	1 box with 10 packages of 0.4 kg	3.2	-	-	-	-	0.30	Electricity used during the manufacture	cradle to gate	Grant and Beer [11]
Romanian pasca	1 kg of bread	4.8	33.0	0.140	0.92	1.8	0.26	Agriculture/farming	cradle to bakery gate	Notarnicola et al. [44]
Italian focaccia	1 kg of bread	0.7	9.5	0.030	0.36	3.3	0.25	Agriculture/farming	cradle to bakery gate	
French baguette	1 kg of bread	0.4	8.0	0.020	0.38	4.3	0.22	Bread production	cradle to bakery gate	
Hungarian pogasza	1 kg of bread	3.4	24.0	0.080	0.58	1.4	0.19	Agriculture/farming	cradle to bakery gate	
Greek pita	1 kg of bread	0.7	9.0	0.035	0.37	2.4	0.18	Trade, distribution and retail	cradle to bakery gate	
White bread, plastic bag	Standard 800 g loaf of sliced brad	1.37	0.4	-	-	-	-	Wheat production	cradle to grave	Espinoza-Orias et al. [45]
Wholemeal bread, plastic bag	Standard 800 g loaf of sliced brad	1.28	-	-	-	-	-	Wheat production	cradle to grave	
Chicken	1 kg of chicken (carcass)	0.7	9.2	-	-	-	-	Food production	production in chicken farms, does not consider management of excreta and commercialisation	Baltierra-Trejo et al. [46]
Bread	1 kg packed sliced bread loaves	0.496	23.0	0.89	-	-	-	Cultivation of durum wheat	cradle to gate	Ingrao et al. [47]
White asparagus	1 kg of white asparagus	0.05	-	-	-	-	-	Fertiliser	cradle to gate	Stoessel et al. [48]
3. Results and Discussion

3.1. Life Cycle Impact Assessment (LCIA) of Corn Production

According to Zampori et al. [49], the hotspot analysis is important in identifying the life cycle stages, processes and elementary flows that are hotspots (>50% contribution) and that are relevant (>80% contribution). The environmental performance of a product and its hot areas might “warn” an organisation where to focus the attention. The agricultural stage of corn production, here defined as the operations related to the FU occurring from the cradle to the gate of the farm, as often reported for other grains (Table 10), was identified as a critical life cycle phase. This result is similar to that found by Jensen and Arlbjørn [50] in their study about rye bread. It was found that the primary hotspot was the raw material stage, especially agricultural production (cultivation), with processing and distribution stages as secondary hotspots.

The impact categories as hotspots and relevant (>80% contribution), due to the use of pesticides, fertilisers and land use for all life cycle phases are shown in Table 11. In fact, the use of diammonium phosphate represents four relevant impact categories (MET, ULO, NLT, MRD) and land use/rainwater (flows from nature) comprises three relevant impact categories (TA, PMF, WD) (Figure 6). According to Rezaei Rashti et al. [51], due to heavy fertiliser N applications to maintain productivity in vegetable cropping systems, agricultural land is a major source of anthropogenic N\(_2\)O, which has a significant role in global warming and destruction of the ozone layer. Masuda [52] points out that the intensification of agriculture by various means, including irrigation, fertilisers, pesticides and mechanisation, has caused harmful impacts such as global warming and eutrophication of terrestrial and aquatic environments.

Life Cycle Phase	Impact Category Hotspot (>50% Contribution)	Relevant Impact Category (>80% Contribution)
Corn production	CC, FE, TET, FET, ALO, WD	TA, MET, PMF, ULO, MRD
Cooking		
Nixtamalisation		
Grinding		
Cooking and packing		
Transport		

The hotspots in the tortilla manufacturing process involve, for masa preparation (grinding and nixtamalisation), the use of propane, electricity and the nejayote production. For tortilla cooking and packaging, the use of propane is representative in 13 impact categories. The aforementioned list points out areas where the tortilla shops have opportunity to improve. For instance, nejayote or lime wastewater has been reported (laboratory scale) as a potential source of a fraction enriched in carbohydrates, a fraction with high content of calcium components and a clear fraction enriched in phenolic compounds [53] or as biohydrogen substrate [54]. The Mexican standard NOM-019-ENER-2009 indicates that a horizontal tortilla machine should provide a minimum cooking time of 34 s. Table 12 describes the maximum energy use for tortilla machine equipment. It is evident that the lowest energy demands (MJ kg\(^{-1}\) h\(^{-1}\)) correspond to type 1 and type 11, as propane comprises 97% of the mentioned energy demand. The energy efficiency of this equipment, as required by Mexican standard (NOM-019-ENER, 2009), that points to NOM-014-ENER or NOM-016-ENER, corresponds only to the electrical part; thus, there is room for technical solutions for the thermal part of the machine.
Figure 6. Characterisation of impacts of the tortilla production process.

Horizontal Tortilla Machine Type	Maximum Propane Usage (m^3)	Maximum Electricity Usage (kWh)
Tortilla (units h^{-1}, ± 5.0%)	0.13	69
Tortilla (kg h^{-1}, ± 5.0%)	0.12	780
	0.66	950
	2.02	2100
	3.25	3000
	3.45	4000

Figure 6. Characterisation of impacts of the tortilla production process.
Table 12. Energy demand for horizontal tortilla machine.

Horizontal Tortilla Machine Type	Maximum Propane Usage (m³)	Maximum Electricity Usage (kWh)	Tortilla (Units h⁻¹, ±5.0%)	Tortilla (kg h⁻¹, ±5.0%)	a MJ kg⁻¹ h⁻¹
1	0.13	0.12	780	20	0.69
2	0.66	0.64	950	25	2.80
3	2.02	1.4	2100	55	3.86
4	3.25	2.3	3000	80	4.27
5	3.45	3	4000	104	3.50
6	4.5	4.7	6000	156	3.06
7	4.06	3.92	6600	172	2.50
8	4.56	4.44	9000	234	2.07
9	6.21	6.05	10,000	260	2.53
10	6.9	6.73	12,000	312	2.34
11	8.28	8.07	22,000	572	1.53

a Obtained after the conversion of propane (m³) and kWh to MJ, divided by kg h. Source: adapted from Mexican Standard [55].

3.2. Analysis of Contribution to Environmental Impact

The main emissions that contribute to each of the environmental impacts of the mid-point categories of the ReCiPe method were evaluated. In the contribution analysis to the category of CC, the GHGs with the greatest impact are CO₂ and N₂O, which are emitted by the use of fossil fuels (propane, diesel, gasoline), while N₂O is the result of the volatilisation of nitrogen fertilisers (Figure 7a). In the category of TA, the emission of NH₃ has the greatest contribution. This is emitted by the volatilisation of nitrogen fertilisers (Figure 7b). The contribution analysis of WD shows that the impact is mainly due to water consumption for irrigation of maize and water use in hydroelectric turbines for the generation of electricity (Figure 7d). In the category of MRD, the exploitation of Cu and Fe had the greatest impact. The depletion of these metals is linked to use in vehicles (Figure 7e). The production of corn is the process with the greatest contributions.

![Figure 7. Cont.](image-url)
Figure 7. Analysis of contribution to environmental impact. (a) CC; (b) TA; (c) PMF; (d) WD; (e) MRD; (f) ULO.

3.3. Impact Dimensioning (Normalisation)

The normalisation of the results of the LCIA is based on an analysis of the relative importance of each impact category. It consists in the calculation of the relative contribution of the total environmental loads of the product/process under study. The obtained values during the characterisation are expressed in differing units, and normalisation makes it possible to transfer them to units that allow comparison [56]. Figure 8 reveals the normalisation of the results, where the greatest impacts are concentrated in TA, PMF, MET and FD.

Figure 8. Normalisation of impact categories.

3.4. LCIA: National Dimensioning

Table 13 shows the summary of the results of the LCIA, i.e., the total impact on each of the 18 categories and the process that involves the greatest impact. The environmental impact of tortilla production in Mexico was obtained by multiplying the impacts obtained in the LCIA by the annual production of tortillas (6.94 million tonnes, 2017). The national impact on CC was 3090 Gg CO$_2$ eq year$^{-1}$, which represents 0.4% of GHG emission in Mexico [57]. Corn production has the greatest impact on 15 of the 18 impact categories, as has already been explained.
Table 13. Impacts of tortilla production in Mexico.

Impact Category	Units	Process with the Greatest Impact	Emissions/Inputs with the Greatest Impact	Functional Unit	Coefficient of Variation *	National Environmental Impact
CC	kg CO₂ eq	Corn Production	CO₂, N₂O	4.19 × 10⁻¹ kg CO₂ eq	10%	3.09 × 10⁶ t CO₂ eq
OD	kg CFC-11 eq	Cooking	Halon 1301	7.25 × 10⁻⁹ kg CFC-11 eq	50%	5.36 × 10⁻⁵ t CFC-11 eq
TA	kg SO₂ eq	Corn Production	NH₃	1.83 × 10⁻² kg SO₂ eq	23%	1.35 × 10³ t SO₂ eq
FE	kg P eq	Corn Production	PO₄³⁻	1.04 × 10⁻⁵ kg P eq	53%	7.71 × 10³ t P eq
ME	kg N eq	Corn Production	NH₃	7.78 × 10⁻⁴ kg N eq	20%	5.75 × 10⁻¹ t N eq
HT	kg 1,4-DB eq	Corn Production	Sb	1.98 × 10⁻² kg 1,4-DB eq	60%	1.47 × 10⁵ t 1,4-DB eq
POF	kg NMVOC	Raw material transport	N₂O₅	9.95 × 10⁻⁴ kg NMVOC	10%	7.36 × 10⁵ t NMVOC
PMF	kg PM10	Corn Production	NH₃	2.78 × 10⁻³ kg PM10 eq	20%	2.06 × 10⁴ t PM10 eq
TET	kg 1,4-DB eq	Corn Production	Chlorpyrifos, Cypermethrin	9.00 × 10⁻⁵ kg 1,4-DB eq	12%	6.65 × 10² t 1,4-DB eq
FET	kg 1,4-DB eq	Corn Production	Br, Chlorpyrifos	4.50 × 10⁻⁴ kg 1,4-DB eq	28%	3.33 × 10³ t 1,4-DB eq
MET	kg 1,4-DB eq	Corn Production	Cu, Ni	3.91 × 10⁻⁴ kg 1,4-DB eq	28%	2.89 × 10³ t 1,4-DB eq
IR	kBq U235	Cooking	U²³⁵	2.73 × 10⁻² kBq U235 eq	51%	2.02 × 10⁵ MBq U235 eq
ALO	m² year	Corn Production	Arable land	4.02 × 10⁻² m² year	14%	2.97 × 10⁶ m² year
ULO	m² year	Corn Production	-	1.05 × 10⁻¹ m² year	24%	7.74 × 10⁶ m² year
NLT	m²	Corn Production	-	5.19 × 10⁻⁸ m²	1698%	3.83 × 10⁻² m²
WD	m³	Corn Production	Irrigation water	1.87 × 10⁰ m³	15%	1.39 × 10⁵ m³
MRD	kg Fe eq	Corn Production	Cu	1.91 × 10⁻³ kg Fe eq	23%	1.41 × 10⁴ t Fe eq
FD	kg oil eq	Corn Production	Raw oil	1.97 × 10⁻¹ kg raw oil eq	16%	1.46 × 10⁵ t raw oil eq

* Values less than 30% of the coefficient of variation are considered reliable for the analysis.
Another indicator of environmental impact widely used is the water footprint. In this study it was considered as the category of WD. Table 14 shows the water footprint of some of the foods consumed by Mexicans.

Product	Functional Unit	Water Footprint (L)
Tortilla (This work)	1 kg	1870 *
Cup of coffee	0.125 L	140
Glass of orange juice	0.200 L	170
Glass of milk	0.200 L	200
Glass of wine	0.125 L	120
Glass of beer	0.250 L	75
Egg	0.040 kg	135
Tomato	0.070 kg	13
Slice of bread	0.030 kg	40

* Irrigation regime. Source: Chapagain and Hoekstra [58]; Hoekstra and Chapagain [59].

4. Conclusions

This investigation allowed estimating the potential environmental impacts of the production of tortillas by the life cycle analysis method included in ISO 14040 and ISO 14044. The corn production stage was the unitary process with the most significant impact on 15 of the 18 categories evaluated; this was due to the use of fertilisers and pesticides during the development of the crop.

Due to the lack of specific literature on the environmental impacts of tortilla production, the comparisons with other studies were limited to general considerations about the life cycle of cereal products. Based on the results obtained, improvements could be made in the production processes to reduce their environmental impacts, especially the cultivation phase. Possibilities include the search for environmentally friendly fertilisers that do not affect the yield of crops, or changing to organic soil fertilisation. Although this project was only evaluated for a tortilla shop, the analysis is scalable at each production level.

For future research, the following recommendations are made: (a) compare the environmental impacts of tortilla production of nixtamalised corn flour with dough; (b) compare the environmental impacts of tortilla production in various geographical conditions; (c) evaluate the water footprint of corn production by irrigation and by storm; and d) carry out an LCA that covers the final disposal of the waste generated in the process.

Author Contributions: Conceptualization, Data curation, Methodology and Formal analysis, D.G.-S., E.B.-T. and L.M.-B.; Analytical techniques, L.M.-B., Q.A.-V. and P.T.-G.; Validation, P.T.-G. and Q.A.-V.; Writing—Original Draft Preparation, D.G.-S., E.B.-T. and L.M.-B.; Writing—Review & Editing, Q.A.-V. and P.T.-G.; Supervision, L.M.-B.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. De Laurentiis, V.; Secchi, M.; Bos, U.; Horn, R.; Laurent, A.; Sala, S. Soil quality index: Exploring options for a comprehensive assessment of land use impacts in LCA. *J. Clean. Prod.* 2019, 215, 63–74. [CrossRef] [PubMed]
2. Nilahyane, A.; Islam, M.A.; O’Mesbah, A.; Garcia y Garcia, A. Evaluation of Silage Corn Yield Gap: An Approach for Sustainable Production in the Semi-Arid Region of USA. *Sustainability* 2018, 10, 2523. [CrossRef]
3. Mustafa Sadeghi, S.; Noorhosseini, S.A.; Damalas, C. Environmental sustainability of corn (Zea mays L.) production on the basis of nitrogen fertilizer application: The case of Lahijan, Iran. *Renew. Sustain. Energy Rev.* 2018, 95, 48–55. [CrossRef]
4. Mendoza-Cano, O.; Sánchez-Piña, R.A.; González-Ibarra, Á.J.; Murillo-Zamora, E.; Nava-Garibaldi, C.M. Health Impacts from Corn Production Pre-and Post-NAFTA Trade Agreement (1986–2013). *Int. J. Environ. Res. Public Health* **2016**, *13*, 709. [CrossRef]

5. Zhang, Y.; Sha, Z.; Guan, F.; Wang, C.; Li, Y. Impacts of geese on weed communities in corn production systems and associated economic benefits. *Biol. Control* **2016**, *99*, 47–52. [CrossRef]

6. Hoekman, S.K.; Broch, A.; Liu, X. (Vivian) Environmental implications of higher ethanol production and use in the U.S.: A literature review. Part I—Impacts on water, soil, and air quality. *Renew. Sustain. Energy Rev.* **2018**, *81*, 3140–3158. [CrossRef]

7. Garcia, V.; Cooter, E.; Crooks, J.; Hinckley, B.; Murphy, M.; Xing, X. Examining the impacts of increased corn production on groundwater quality using a coupled modeling system. *Sci. Total Environ.* **2017**, *586*, 16–24. [CrossRef]

8. Islam, A.; Ahuja, L.R.; Garcia, L.A.; Ma, L.; Saseendran, A.S.; Trout, T.J. Modeling the impacts of climate change on irrigated corn production in the Central Great Plains. *Agric. Water Manag.* **2012**, *110*, 94–108. [CrossRef]

9. Hong, J.; Zhang, Y.; Xu, X.; Li, X. Life cycle assessment of corn- and cassava-based ethylene production. *Biomass Bioenergy* **2014**, *67*, 304–311. [CrossRef]

10. Liu, C.; Huang, Y.; Wang, X.; Tai, Y.; Liu, L.; Liu, H. Total environmental impacts of biofuels from corn stover using a hybrid life cycle assessment model combining process life cycle assessment and economic input-output life cycle assessment. *Integr. Environ. Assess. Manag.* **2018**, *14*, 139–149. [CrossRef]

11. Grant, T.; Beer, T. Life cycle assessment of greenhouse gas emissions from irrigated maize and their significance in the value chain. *Aust. J. Exp. Agric.* **2008**, *48*, 375–381. [CrossRef]

12. Sánchez Femat, M.E. Análisis de la huella de carbono y contenido de nutrientes de la masa de nixtamal producida en molinos ubicados en la ZMVM bajo el modelo GTG. Tesis de Maestría, Instituto Politécnico Nacional—CIEMAD, Mexico City, Mexico, 2016.

13. Morton, P.E. *Tortillas: A Cultural History*; UNM Press: Albuquerque, NM, USA, 2014; ISBN 978-0-8263-5215-6.

14. Reuters Tortilla Global Market Share 2018—Production and Consumption Analysis, Brands Statistics and Overview by Top Manufacturers 2023. Available online: https://www.reuters.com/brandfeatures/venture-capital/article?id=64774 (accessed on 30 July 2019).

15. González-Cortés, N.; Silos-Espino, H.; Estrada Cabral, J.C.; Chávez-Muñoz, J.A.; Tejero Jiménez, L. Características y propiedades del maíz (*Zea mays* L.) criollo cultivado en Aguascalientes, México. *Rev. Mex. Cienc. Agric.* **2016**, *7*, 669–680.

16. SAGARPA (Secretariat of Agriculture and Rural Development). *Planeación Agrícola Nacional 2017–2030*; SAGARPA: Mexico City, Mexico, 2017.

17. INEGI (National Institute of Statistics and Geography). *SCNM-INEGI Matriz de Insumo Producto; INEGI: Aguascalientes, Mexico, 2013.*

18. SE (Ministry of Economy). *Análisis de la Cadena de Valor Maíz-Tortilla: Situación Actual y Factores de Competencia Local*; SE: Mexico City, Mexico, 2012.

19. Teixeira, R.F.M.; Morais, T.G.; Domingos, T. A Practical Comparison of Regionalized Land Use and Biodiversity Life Cycle Impact Assessment Models Using Livestock Production as a Case Study. *Sustainability* **2018**, *10*, 4089. [CrossRef]

20. Rooney, L.W.; Serna-Saldivar, S.O. Tortillas. In *Encyclopedia of Food Grains*, 2nd ed.; Wrigley, C., Corke, H., Seetharaman, K., Faubion, J., Eds.; Academic Press: Oxford, UK, 2016; pp. 90–96. ISBN 978-0-12-394786-4.

21. Jiménez-Juárez, J.A.; Arámbula-Villa, G.; de la Cruz-Lázaro, E.; Aparicio-Trapala, M.A. Characteristics of the grain, dough and tortilla produced from different maize genotypes in the mexican tropics. *Unio. Cien.** **2012**, *28*, 145–152.

22. TAPSA Tortilladora TAP 75-RD. Available online: http://www.tapsa.mx/tortilladora-tap-75-rd (accessed on 29 October 2019).

23. Pohl, J.; Hilty, L.M.; Finkbeiner, M. How LCA contributes to the environmental assessment of higher order effects of ICT application: A review of different approaches. *J. Clean. Prod.* **2019**, *219*, 698–712. [CrossRef]

24. Goglio, P.; Smith, W.N.; Grant, B.B.; Desjardins, R.L.; Gao, X.; Hanis, K.; Tenuta, M.; Campbell, C.A.; McConkey, B.G.; Nemecek, T.; et al. A comparison of methods to quantify greenhouse gas emissions of cropping systems in LCA. *J. Clean. Prod.* **2018**, *172*, 4010–4017. [CrossRef]
25. Giraldi-Díaz, M.R.; De Medina-Salas, L.; Castillo-González, E.; León-Lira, R. Environmental Impact Associated with the Supply Chain and Production of Grounding and Roasting Coffee through Life Cycle Analysis. *Sustainability* **2018**, *10*, 4598. [CrossRef]

26. STID (Former Secretariat of Trade and Industrial Development). *NOM-187-SSA1-SCFI* Productos y Servicios. Masa, Tortillas y Harinas Preparadas Para su Elaboración y Establecimientos Donde se Procesan. Especificaciones Sanitarias. *Información Comercial, Métodos de Prueba; STID*: Mexico, D.F., Mexico, 2002.

27. STID (Former Secretariat of Trade and Industrial Development). *NMX-FF-034/I-SCFI* Productos Alimenticios no Industrializados Para Consumo Humano—Cereales—Parte I: Maíz Blanco Para Proceso Alcalino Para Tortillas de Maíz y Productos de Maíz Nixtamalizados—Especificaciones y Métodos de Prueba; STID: Mexico, D.F., Mexico, 2002.

28. Jiménez-García, O. Rediseño de los Elementos Mecánicos de una Cadena de Producción Para la Obtención de Masa de Maíz. *Tesis de Licenciatura, Instituto Politécnico Nacional—ESIME, Mexico*, D.F., Mexico, 2015.

29. ISO (International Organization for Standardization). *ISO-14040:2006. Environmental Management—Life Cycle Assessment—Principles and Framework*; ISO: Genava, Suiza, 2006.

30. ISO (International Organization for Standardization). *ISO-14044:2006. Environmental Management—Life Cycle Assessment—Requirements and Guidelines*; ISO: Genava, Suiza, 2006.

31. Leonardo, S.D.; Luís, R.D.; Ernesto, F.L.; Francisco, P.D.; Ariel, R.C.; Margarito, C.B. *Guía Para Producir Maíz en la Región Ciènega de Chapula*; INIFAP: Tepatitlán de Morelos, Jalisco, 2011.

32. FIRA (Fideicomisos Instituidos en Relación con la Agricultura). *Panorama Agroalimentario: Maíz 2016*; FIRA: Mexico, D.F., Mexico, 2016.

33. Gaytán Ruelas, J.G.; Muñoz Gómez, F.; Chávez Aguilera, N.; Capulin Quinto, J.A. Evaluación comparativa de los tractores NH 6610 y JD 5715T en los aspectos técnicos, agrotécnicos y económicos. *Rev. Cienc. Téc. Agropecu.* **2005**, *14*, 14–23.

34. Mekonnen, M.M.; Hoekstra, A.Y. *The Green, Blue and Grey Water Footprint of Crops and Derived Crop Products*; UNESCO-IHE Institute for Water Education: Delft, The Netherlands, 2010.

35. Vallejo, H.L.; Ramírez, J.L.; Chuela, M.; González, R.M. Tecnología para producir Maíz en el Bajío Michoacano; INIFAP: Tepatitlán de Morelos, Jalisco, Mexico, 2004.

36. Glatt, M.F.; Yi, L.; Mert, G.; Linke, B.S.; Aurich, J.C. Technical Product-Service Systems: Analysis and reduction of the Cumulative Energy Demand. *J. Clean. Prod.* **2019**, *206*, 727–740. [CrossRef]

37. Pushkar, S. Life-Cycle Assessment of the Substitution of Sand with Coal Bottom Ash in Concrete: Two Concrete Design Methods. *Appl. Sci.* **2019**, *9*, 3620. [CrossRef]

38. INEGI (National Institute of Statistics and Geography). *Producto Interno Bruto—Entidad Federativa; INEGI: Mexico City, Mexico, 2016.*

39. INEGI (National Institute of Statistics and Geography). *Regiones Socioeconómicas de México; INEGI: Mexico City, Mexico, 2004.*

40. Nielsen-Consulting Zonas Económicas de México 2014. Available online: https://www.zonaeconomica.com/respuestas/963/zonas-nielsen (accessed on 20 January 2017).

41. INEGI (National Institute of Statistics and Geography). *Índice Nacional de Precios al Consumidor (INPC); INEGI: Mexico City, Mexico, 2018.*

42. SNIIM (National Market Information and Integration System). *Información de Precios de Tortilla en Tortillerías y Autoservicios de México; SNIIM: Mexico*, D.F., Mexico, 2018.

43. SENER (Secretary of Energy). *Prospectiva del Sector Eléctrico 2015–2029; SENER: Mexico*, D.F., Mexico, 2015.

44. Notarnicola, B.; Tassielli, G.; Renzulli, P.A.; Monforti, F. Energy flows and greenhouses gases of EU (European Union) national breads using an LCA (Life Cycle Assessment) approach. *J. Clean. Prod.* **2017**, *140*, 455–469. [CrossRef]

45. Espinoza-Orias, N.; Stichnothe, H.; Azapagic, A. The carbon footprint of bread. *Int. J. Life Cycle Assess.* **2011**, *16*, 351–365. [CrossRef]

46. Baltierra-Trejo, E.; Arroyo-Pitacua, A.; Márquez-Benavides, L. Análisis energético y emisiones de CO2 eq en la producción de carne de pollo. *Ecosistemas Recur. Agropecu.* **2017**, *4*, 571–577. [CrossRef]

47. Ingrao, C.; Liciardello, F.; Pecorino, B.; Muratore, G.; Zerbo, A.; Messineo, A. Energy and environmental assessment of a traditional durum-wheat bread. *J. Clean. Prod.* **2018**, *171*, 1494–1509. [CrossRef]

48. Stoessel, F.; Jurasek, R.; Pfister, S.; Hellweg, S. Life cycle inventory and carbon and water foodprint of fruits and vegetables: Application to a Swiss retailer. *Environ. Sci. Technol.* **2012**, *46*, 3253–3262. [CrossRef]
49. Zampori, L.; Saouter, E.; Schau, E.; Cristóbal García, J.; Castellani, V.; Sala, S. Guide for Interpreting Life Cycle Assessment Result; Publications Office of the European Union: Luxembourg, 2016.
50. Jensen, J.K.; Arlbjørn, J.S. Product carbon footprint of rye bread. J. Clean. Prod. 2014, 82, 45–57. [CrossRef]
51. Rezaei Rashti, M.; Wang, W.J.; Chen, C.R.; Reeves, S.H.; Scheer, C. Assessment of N2O emissions from a fertilised vegetable cropping soil under different plant residue management strategies using 15N tracing techniques. Sci. Total Environ. 2017, 598, 479–487. [CrossRef]
52. Masuda, K. Eco-Efficiency Assessment of Intensive Rice Production in Japan: Joint Application of Life Cycle Assessment and Data Envelopment Analysis. Sustainability 2019, 11, 5368. [CrossRef]
53. Castro-Muñoz, R.; Yanénez-Fernández, J. Valorization of Nixtamalization wastewaters (Nejayote) by integrated membrane process. Food Bioprod. Process. 2015, 95, 7–18. [CrossRef]
54. García-Depraect, O.; Gómez-Romero, J.; León-Becerril, E.; López-López, A. A novel biohydrogen production process: Co-digestion of vinasse and Nejayote as complex raw substrates using a robust inoculum. Int. J. Hydrogen Energy 2017, 42, 5820–5831. [CrossRef]
55. SENER (Secretary of Energy). NOM-019-ENER Eficiencia Termica y Electrica de Maquinas Tortilladoras Mecanizadas. Limites, Metodo de Prueba y Marcado; SENER: Mexico, D.F., Mexico, 2009.
56. Enguita-Rovira, O. Análisis Del Ciclo de Vida Para el Desarrollo de las Reglas de Categoría de Producto de Sistemas Solares Fotovoltaicos Para la Edificación; Escuela Superior de Comercio Internacional (ESCI): Mexico City, Mexico, 2012.
57. INECC (National Institute of Ecology and Climate Change). Inventario Nacional de Emisiones de Gases y Compuestos de Efecto Invernadero 2016; INECC: Mexico, D.F., Mexico, 2016.
58. Chapagain, A.K.; Hoekstra, A.Y. The water footprint of coffee and tea consumption in the Netherlands. Ecol. Econ. 2007, 64, 109–118. [CrossRef]
59. Hoekstra, A.Y.; Chapagain, A.K. Water footprints of nations: Water use by people as a function of their consumption pattern. In Integrated Assessment of Water Resources and Global Change; Springer: Berlin, Germany, 2006; pp. 35–48.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).