Diagnosis and management of intralabyrinthine schwannoma: case series and review of the literature

Antonella Miriam Di Lullo1,2, Aldo Paolucci3, Sergio Motta4, Elena Cantone1, Emiliano Barbieri2, Domenico Cicala5, Roberta Grassi6, Federico Bruno3, Alessandra Splendiani7, Fabio Tortora8, Michele Cavaliere1, Luca Brunese4

1Department of Neuroscience, Reproductive and Odontostomatologic Sciences, University of Naples “Federico II”, Naples, Italy; 2CEINGE- Advanced Biotechnology, Naples, Italy; 3Ospedale Maggiore Policlinico Milano, Milan, Italy; 4Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy; 5Department of Neurosciences, “Santobono-Pausilipon” Pediatric Hospital, Naples, Italy; 6Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy; 7Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy; 8Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Naples, Italy

Summary. Intralabyrinthine schwannoma (ILS) is a rare benign tumor affecting cochlear and vestibular nerves, whose symptoms are generally unspecific and frequently responsible for a late diagnosis. Radiological examinations, with particular reference to magnetic resonance imaging (MRI), represent the only diagnostic technique to identify ILS. On computed tomography ILS can only be indirectly suspected by the presence of surrounding bone remodeling, whereas MRI provides direct visualization of the neoplasm as a filling defect within the labyrinth with vivid contrast enhancement. At the same time, MRI is also helpful in defining ILS anatomical extension into adjacent structures and in planning therapeutic management. Here we report three representative cases of ILS with new pictorial imaging features to improve ILS early detection and optimize subsequent therapeutic management. (www.actabiomedica.it)

Keywords: Schwannoma, Labyrinth, Magnetic Resonance Imaging, Differential Diagnosis

Introduction

Intralabyrinthine schwannoma (ILS) was first described by Meter in 1917 as a rare benign tumor, affecting cochlear and vestibular nerves (1). Most tumors show a modification in intracellular pathways (2-8). It can variably involve vestibule, cochlea, or semi-circular canals (9). Its symptoms are generally unspecific due to the slow growth pattern, frequently causing a late diagnosis. In most cases, it occurs with unilateral progressive sensorineural hearing loss (95%); more inconstant symptoms include tinnitus (51%), imbalance (35%), vertigo (22%), or fullness (2%), alone or in combination (1, 10). Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) are the primary imaging tool for a variety of conditions and diseases, both for diagnostic and interventional purposes, especially in the neuroradiological field (11,12).

The most common differential diagnoses include Ménière’s disease and vestibular neuritis (1), and neuroradiological investigation with magnetic resonance imaging (MRI) (13-18) represents the reference method to identify ILS diagnostic features.

CT imaging, indeed, could only raise the suspicion of ILS in the case of surrounding bone remodeling. Conversely, MRI shows a filling defect within the labyrinth with relatively high signal on T1w images, low signal on T2w, and vivid contrast enhancement.
Diagnosis and management of intralabyrinthine schwannoma: case series and review of the literature

after contrast media administration. MRI is also helpful in defining ILS anatomical epicenter and extension into adjacent structures, as well as in planning therapeutic management (16, 19, 20). Here we report three representative cases with striking imaging features to improve ILS early diagnosis and optimize therapeutic management. All patients had written informed consent, and all the performed procedures were by the 1964 Helsinki declaration and its later Amendments.

Materials And Methods

A 29-year-old woman came to our observation for the first episode of subjective vertigo; she also complained about right-sided tinnitus and hearing loss in the last year. A previous audiometric examination had revealed right fluctuating sensorineural hearing loss with modest pan-tonal hypacusia, classified as suspected for Meniere’s disease for which she was administered Betaistina 24mg/2die. ENT showed normal otoscopic findings, whereas audiometry revealed a worsening of the known sensorineural hearing loss for acute frequencies (moderate-to-severe), still limited to the right side (Figure 1A). An oral exam showed a right-sided slight reduction in detection threshold and alteration in word discrimination (15). Tympanogram was Type A bilaterally, while vestibular examination revealed a deficit on the right ear at Head Impulse Test (HIT). Contrast-enhanced MRI scan of the temporal bone was therefore performed, showing a small mass within the proper vestibule, reducing the regular representation of endocochlear fluids (Figure 1B). Homogeneous and intense enhancement was observed after contrast media administration (Figure 1C); thus the suspicion of ILS was raised. The patient refused to undergo surgery, so a wait-and-scan approach was decided. At present, after a 1-year follow-up, no significant lesion growth was observed. A 56-year-old man complained tinnitus and right-sided hearing loss persisted for 3 years. He underwent his first otoscopic examination was negative on both sides. Audiometric tests showed right-sided progressive (moderate-to-severe) sensorineural hearing loss for low frequencies (Figure 2A), with a slight reduction in detection threshold but no alteration in word discrimination. No spontaneous nystagmus was evoked at the vestibular examination; the Romberg test was negative, and neu-
rological functions were normal. HIT showed slight hyporeflexia on the affected side. Subsequent contrast-enhanced MRI scan showed the presence of a right ear small intralabyrinthine mass limited to the vestibule without the involvement of the semi-circular canals and vivid enhancement (Figure 2B-C), accounting for the diagnosis of ILS. Due to the limited lesion volume and patient’s refusal, surgery was temporarily excluded to avoid hearing loss; after a 2-years follow-up, neither audiometry deterioration nor ILS growth was observed. A 29-year-old man complaining recent onset of right ear hearing loss without tinnitus/vertigo came to our attention for ENT evaluation. Otoscopic examination revealed normal findings bilaterally. Audiometry showed right-sided deep pan-tonal sensorineural hearing loss (Figure 3A), while the vestibular examination was normal. The patient, therefore, underwent contrast-enhanced MRI showing a right intracochlear mass, involving medium and apical turns of the snail on T2w images (Figure 3B) with intense contrast enhancement (Figure 3C); also in this case, the suspicion of ILS was raised, but the patient refused surgery. After a 3-years follow-up, audiometry confirmed a further deterioration of sensorineural hearing loss, but no significant ILS growth was observed at MRI examination, so wait-and-scan approach was continued.

Discussion

Schwannoma is the most common benign neoplasm affecting the internal auditory canal and pontocerebellar angle (up to 6% of all intracranial tumors), rising from the ends of cochlear and vestibular nerves (21, 22). ILS is a subtype of schwannoma originating from the perineural Schwann cells of the vestibule-cochlear nerve proximal to the membranous labyrinth (cochlea and vestibule) without any outer extension (23). Although considered a rare disease, its prevalence is higher in some patients’ subgroups (i.e., in patients with symptoms accounting for Meniere’s disease who underwent MRI, ILS was found in 0.4% patients) (1, 23). A revision of all the ILS cases described in current scientific literature is reported in Table 1. Kennedy et al. (21, 22) further classified ILS into 7 categories according to anatomical localization (Table 2): intra-cochlear, when confined to the cochlear loops; intra-vestibular, when confined to the vestibule with or without extension into semi-circular canals; vestibule-cochlear, when involving both vestibule and cochlea; trans-macular, when extending from the vestibule to IAC through the lamina cribrosa; trans-modiolar, when extending through the modiolus into the inner auditory canal; tympano-labyrinthine; trans-otic, when involving posterior labyrinth, IAC, and middle ear. In 2013 Van Abel et al. identified 2 more types, respectively, trans-labyrinthine and trans-otic variant into a cerebellopontine angle (1, 10) (Table 2).

In recent years, the ILS incidence has increased thanks to the use of more accurate and advanced imaging techniques (14, 19, 22).

In this regard, imaging techniques have assumed a primary role in the study and treatment planning of numerous pathologies (24-27). In particular, MRI represents the golden standard for the diagnosis of ILS, ensuring an accurate depiction of dimension, shape, margins, signal intensity and relation with adjacent structures (21); moreover, MRI is important in pre-surgical planning, as well as in follow-up when a
Table 1. Literature review of intralabyrinthine schwannoma cases reported in current scientific literature

Author	Year	n	Clinical picture	Location
Lee et al.	2019	16	Progressive HL, vertigo	37.5% intracochlear
				18.75% intravestibular
				18.75% intravestibular-cochlear
				12.5% transmodiolar
				6.25% transmacular
				6.25% nc
Withers et al.	2019	1	Bilateral HL	Intracochlear
Venkatasamy et al.	2019	3	Progressive hearing loss, vertigo	
Pan et al.	2019	1	Unilateral HL, vertigo	
Park et al.	2019	1	HL, vertigo	Intravestibular-cochlear
Thapa et al.	2019	30	72% gradual HL, 51% tinnitus, 21% dizziness, 9% facial nerve paresthesia, 12% SNHL	
Marchioni et al.	2018	8	100% HL, 62.5% vertigo, 75% tinnitus	62.5% intracochlear
Marinelli et al.	2018	14	29% sudden HL, 36% vertigo, 29% aural fullness, 21% neurofibromatosis type 2	25% transmodiolar
Bae et al.	2018	9		
Mazzoni et al.	2017	8	Severe HL, vertigo	37.5% transmodiolar
				12.5% transotic + CPA
				25% transmacular transmodiolar
				12.5% transmacular
				12.5% intracochlear
Plontke et al.	2017	12	Hearing fluctuating, vertigo	
Covelli et al.	2017	1	Sudden hearing loss	
Fukushima et al.	2017	1	Sudden hearing loss	
Plontke et al.	2017	1	Sudden hearing loss	
Sabatino et al.	2017	1	Rapidly progressive hearing loss, vertigo	
Jerin et al.	2016	5	40% progressive hearing loss, 40% sudden hearing loss, 20% vertigo	
Shupak et al.	2016	7	95% progressive hearing loss	
Gosselin et al.	2015	66	No description	50.9% intracochlear
				38.2% intravestibular
				10.9% intravestibulocochlear
Lee et al.	2015	1	Sudden hearing loss, vertigo	
Dubernard et al.	2014	110	94.5% progressive hearing loss, 59.1% vertigo	50% intracochlear
				19.2% intravestibular
				14.5% transmodiolar
				11.8% intravestibulocochlear
				2.7% transmacular
				1.8% tympanolabyrinthine
Bittencourt et al.	2014	1	Hearing fluctuating and tinnitus	
Kim et al.	2013	1	Sudden hearing loss	
Schutt et al.	2013	1	Hearing fluctuating, ear fullness and vertigo	
Table 1. Literature review of intralabyrinthine schwannoma cases reported in current scientific literature

Author	Year	n	Clinical picture	Location
Van Abel et al.	2013	234	84% progressive hearing loss	51% intracochlear
			3% hearing fluctuation	29% intravestibular
			43% vertigo	9% intravestibulocochlear
				5% transmodiolar
				1% transmacular
				1% translabyrinthine
Salzaman et al.	2012	45	60% progressive hearing loss	31.11% intracochlear
			31.11% sudden hearing loss	28.88% transmodiolar
			8.89% hearing fluctuating	15.55% intravestibular
			35.56% vertigo	11.11% intravestibulocochlear
				8.88% transmacular
				4.47% transotic
Gordts et al.	2011	1	Hearing fluctuating and tinnitus	
Magliulo et al.	2009	1	Sudden hearing loss and vertigo	
Brozek-Madry et al.	2009	1	Sudden hearing loss and vertigo	
Tieleman et al.	2008	52	83.67% progressive hearing loss	80.7% intracochlear
			14.28% sudden hearing loss	13.5% intravestibular
			19.23% vertigo	5.8% intravestibulocochlear
Jia et al.	2008	4	75% progressive hearing loss	
			25% sudden hearing loss	
			75% vertigo	
Nishimura et al.	2008	1	Sudden hearing loss and tinnitus	
Lella et al.	2007	7	71.42% progressive hearing loss	
			28.5% sudden hearing loss	
			57.14% vertigo	
Kennedy et al.	2004	28	61% progressive hearing loss	32% intracochlear
			32% sudden hearing loss	21% intravestibular
			7% hearing fluctuating	32% transmodiolar
			71% tinnitus	11% transmacular
			29% vertigo	4% transotic
Green et al.	1999	4	75% progressive hearing loss	
			25% sudden hearing loss	
			75% vertigo	
Deux et al.	1998	3	Progressive hearing loss, tinnitus,	
De Lozier et al.	1994	1	Progressive hearing loss, tinnitus	

Table 2. Kennedy’s classification of ILSs (modified by Van Abel)

Class	Areas of ear involved
Intra-vestibular (IV)	Vestibule ± semi-circular canal (SCC)
Intra-cochlear (IC)	Cochlea
Vestibulo-cochlear	Vestibule and cochlea
Trans-modiolar (TMO)	Cochlea and IAC
Trans-macular (TMA)	Vestibule and IAC
Trans-otic	Middle ear and vestibule/cochlea and IAC
Tympano-labyrinthine	Middle ear and vestibule/cochlea
Trans-labyrinthine	Vestibule and/or SCC + cochlea + Internal auditory meatus (IAM)
Trans-otic variant into CPA	CPA ± cochlea ± vestibule and/or SCC ± IAM ± Middle ear
“watch-an-wait” strategy is preferred (28). However, for diagnostic purposes, MRI is also crucial in providing imaging clues for differential diagnosis from other causes of vertigo, tinnitus, and hearing loss with negative otoscopic findings (29). E.g., when acute labyrinthitis is suspected MRI shows less pronounced enhancement that gradually decreases and progressively disappears at follow-up (23), whereas schwannoma enhancement does not change over time. In more challenging cases, such as intralabyrinthine extension of otomastoiditis or cholesteatoma, MRI can provide differential diagnosis by the use of diffusion-weighted techniques (30-32). Conversely, only in rare cases, CT can be more informative than MRI, as it happens in case of suspected labyrinthitis ossificans (33).

ILS management options primarily include the “wait and scan” approach, surgical removal, and radiotherapy (34). The “wait and scan” approach, based on longitudinal MRI examinations, relies on the slow growth rate of ILS and on the preservation of inner ear functions (1). The surgical removal is reserved to a limited number of cases (about 3% cases) (10), mostly depending on patients’ compliance, tumor size, localization, and growth pattern, and mainly on the presence of intractable symptoms refractory to medical treatment. Surgical ablative treatment results in total hearing loss in 100% of cases; moor inconstant consequences also include facial nerve palsy (4%), cerebrospinal fluid leakage (5.4%), and meningeal inflammation (1.8%) (1, 34). At present only few cases of ILS stereotactic radiosurgery have been reported (1), generally reserved to patients who cannot undergo surgery due to systemic counter-indications and intractable symptoms; however, no significant effect on vertigo was observed, whereas the probability of neurological side-effects and malignant tumor transformation was increased (1). Finally, recent studies reported some cases of ILS treatment by trans-tympanic steroid and intra-tympanic gentamicin injections, improving clinical outcomes in those cases were vestibular impairment was relatively more prominent than hearing loss (1, 35).

In conclusion, although ILS is a very rare pathology, its incidence has increased in recent years due to the availability of more accurate imaging techniques. As well documented in both neurological and other clinical specialties, diagnostic investigations and interventional radiology represent a fundamental integration to clinical evaluation. MRI is the gold standard both for ILS diagnosis and preoperative management, also allowing for differential diagnosis between ILS and possible mimickers. Several algorithms for ILS management have been proposed, but no consensus concerning the best therapeutic strategy was reached. At present, a tailored therapeutic approach based on the multidisciplinary evaluation of every single case should be considered the best option to be pursued.

Conflict of interest: Authors declare that they have no commercial associations (e.g. consultancies, stock ownership, equity interest, patent/licensing arrangement etc.) that might pose a conflict of interest in connection with the submitted article.

References

1. Covelli E, Volpini L, Filippi C, et al. Intralabyrinthine Vestibular Schwannoma Responsive to Intratympanic Gentamicin Treatment. J Int Adv Otol 2017; 13: 285-88.
2. Moccia F, Zuccolo E, Poletto V, et al. Targeting Stim and Orai Proteins as an Alternative Approach in Anticancer Therapy. Curr Med Chem 2016; 23: 3450-80.
3. Zuccolo E, Dragoni S, Poletto V, et al. Arachidonic acide-voked Ca(2+) signals promote nitric oxide release and proliferation in human endothelial colony forming cells. Vascul Pharmacol 2016; 87: 159-71.
4. Zuccolo E, Lim D, Kheder DA, et al. Acetylcholine induces intracellular Ca(2+) oscillations and nitric oxide release in mouse brain endothelial cells. Cell Calcium 2017; 66: 33-47.
5. Zuccolo E, Kheder DA, Lim D, et al. Glutamate triggers intracellular Ca(2+) oscillations and nitric oxide release by inducing NAADP- and InsP3-dependent Ca(2+) release in mouse brain endothelial cells. J Cell Physiol 2019; 234: 3538-54.
6. Coppola N, Perna A, Lucariello A, et al. Effects of treatment with Maraviroc a CCR5 inhibitor on a human hepatic stellate cell line. J Cell Physiol 2018; 233: 6224-31.
7. Perna A, Lucariello A, Sellitto C, et al. Different Cell Cycle Modulation in SKOV-3 Ovarian Cancer Cell Line by Anti-HIV Drugs. Oncol Res 2017; 25: 1617-24.
8. Esposito T, Lucariello A, Hay E, et al. Effects of curcumin and its adjuvant on TPC1 thyroid cell line. Chem Biol Interact 2019; 305: 112-18.
9. Doyle KJ, Brackmann DE. Intralabyrinthine schwannomas. Otolaryngol Head Neck Surg 1994; 110: 517-23.
10. Van Abel KM, Carlson ML, Link MJ, et al. Primary inner ear schwannomas: a case series and systematic review of the literature. Laryngoscope 2013; 123: 1957-66.
11. Gibelli D, Cellina M, Gibelli S, Oliva AG, Termine G, Sforza C. Anatomical variants of sphenoid sinuses pneumatization: a CT scan study on a Northern Italian population. Radiol Med 2017; 122: 575–80.

12. Cellina M, Fetoni V, Baron P, Orsi M, Oliva G. Unusual primary central nervous system lymphoma location involving the fourth ventricle and hypothalamus. Neuroradiol J 2015; 28: 120–5.

13. Striano P, Tortora F, Evoli A, et al. Periodic myoclonus due to cytomegalovirus encephalitis in a patient with good syndrome. Arch Neurol 2007; 64: 277–9.

14. Cocozza S, Russo C, Pontillo G, et al. Is advanced neuro-imaging for neuroradiologists? A systematic review of the scientific literature of the last decade. Neuroradiology 2016; 58: 1233–39.

15. Ottaviano G, Cantone E, D’Errico A, et al. Sniffin’ Sticks fibrous dysplasia: personal experience with gadoliniumenhanced magnetic resonance imaging. Radiol Med 2017; 122: 575–80.

16. Tortora F, Prudente M, Cirillo M, et al. Diagnostic accuracy of short-time inversion recovery sequence in Graves’ Ophthalmopathy before and after prednisone treatment. Neuro-Ophthalmo 2014; 35: 535–61.

17. Varrassi M, Cobianchi Bellisari F, Bruno F, et al. High-resolution magnetic resonance imaging at 3T of pituitary gland: advantages and pitfalls. Gland Surg 2019; 8: S208–s15.

18. D’Orazio F, Splendiani A, Gallucci M. 320-Row Detector Dynamic 4D-CTA for the Assessment of Brain and Spinal Cord Vascular Shunting Malformations. A Technical Note. Neuroradiol J 2014; 27: 710–7.

19. Tieleman A, Casselman JW, Somers T, et al. Imaging of intralabyrinthine schwannomas: a retrospective study of 52 cases with emphasis on lesion growth. AJNR Am J Neuroradiol 2008; 29: 898–905.

20. Plontke SK, Rahne T, Pfister M, et al. Intralabyrinthine schwannomas: Surgical management and hearing rehabilitation with cochlear implants. Hno 2017; 65: 136–48.

21. Kennedy RJ, Shelton C, Salzman KL, Davidson HC, Harnsberger HR. Intralabyrinthine schwannomas: diagnosis, management, and a new classification system. Otol Neurotol 2004; 25: 160–7.

22. Salzman KL, Childs AM, Davidson HC, Kennedy RJ, Shelton C, Harnsberger HR. Intralabyrinthine schwannomas: imaging diagnosis and classification. AJNR Am J Neuroradiol 2012; 33: 104–9.

23. Sabatino L, Greco F, Quattrociocchi CC, Salvinelli F, Casale M. “Canalolabyrinthine Schwannoma,” A Rare Variant of Intralabyrinthine Schwannoma: A Case Report. J Int Adv Otol 2017; 13: 140–42.

24. Cappabianca S, Colella G, Russo A, et al. Maxillofacial fibrous dysplasia: personal experience with gadoliniumenhanced magnetic resonance imaging. Radiol Med 2008; 113: 1198–210.

25. Bonomo P, Desideri I, Loi M, et al. Elderly patients affected by head and neck squamous cell carcinoma unfit for standard curative treatment: Is de-intensified, hypofractionated radiotherapy a feasible strategy? Oral Oncology 2017; 74: 142–47.

26. Conforti R, Marrone V, Sardaro A, Faella P, Grassi R, Cappabianca S. From anatomy to image: The cranial nerves at MRI. Recent Progress in Medicina 2013; 104: 308–13.

27. Desideri I, Francolini G, Carta GA, et al. Efficacy and tolerability of cyberknife stereotactic robotic radiotherapy for primary or secondary orbital lesions: A single-center retrospective experience. Technology in Cancer Research and Treatment 2019; 18: 18.

28. Choudhury B, Carlson ML, Jethanamset D. Intralabyrinthine Schwannomas: Disease Presentation, Tumor Management, and Hearing Rehabilitation. J Neurol Surg B Skull Base 2019; 80: 196–202.

29. Bykowski J, Mafee MF. Intralabyrinthine pathology: Role of imaging. Operative Techniques in Otolaryngology-Head and Neck Surgery 2014; 25: 29–35.

30. Patel KM, Almutairi A, Mafee MF. Acute otomastoiditis and its complications: Role of imaging. Operative Techniques in Otolaryngology-Head and Neck Surgery 2014; 25: 21–28.

31. Elefante A, Cavaliere M, Russo C, et al. Diffusion weighted MR imaging of primary and recurrent middle ear cholesteatoma: an assessment by readers with different expertise. Biomed Res Int 2015; 2015: 597896.

32. Cavaliere M, Di Lullo AM, Caruso A, et al. Diffusion-weighted intensity magnetic resonance in the preoperative diagnosis of cholesteatoma. ORL J Otorhinolaryngol Relat Spec 2014; 76: 212–21.

33. Buch K, Baylosis B, Fujita A, et al. Etiology-Specific Mineralization Patterns in Patients with Labyrinthitis Ossificans. AJNR Am J Neuroradiol 2019; 40: 551–57.

34. Grayeli AB, Fond C, Kalamardies M, et al. Diagnosis and management of intracochlear schwannomas. Otol Neurotol 2007; 28: 951–7.

35. Iseri M, Ulubil SA, Topdag M, Oran A. Hearing loss owing to intralabyrinthine schwannoma responsive to intratympanic steroid treatment. J Otolaryngol Head Neck Surg 2009; 38: E95–7.
