Comparative genome sequence and phylogenetic analysis of chloroplast for evolutionary relationship among *Pinus* species

Umar Zeba, Xiukang Wangb, AzizUllah AzizUllaha, Sajid Fiazc, Hanif Khanda, Shirat Ullahe, Habib Alif, Khurram Shahzadc

Department of Biology, The University of Haripur, 22620, Pakistan

College of Life Sciences, Yan'an University, Yan'an 716000, Shaanxi, China

Department of Plant Breeding and Genetics, The University of Haripur, 22620 Haripur, Pakistan

Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China

Department of Botany University of Malakand, Pakistan

Department of Agricultural Engineering, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan

A R T I C L E I N F O

Article history:
Received 11 August 2021
Revised 24 August 2021
Accepted 31 October 2021
Available online 12 November 2021

Keywords:
Pinus
Plastid genome
Sequence differentiation
Divergence time
Divergence hotspots

A B S T R A C T

Genus *Pinus* is a widely dispersed genus of conifer plants in the Northern Hemisphere. However, the inadequate accessibility of genomic knowledge limits our understanding of molecular phylogeny and evolution of *Pinus* species. In this study, the evolutionary features of complete plastid genome and the phylogeny of the *Pinus* genus were studied. A total of thirteen divergent hotspot regions (*trnK-UUU, matK, trnQ-UUG, atpF, atpH, rpoC1, rpoC2, rpoB, ycf2, ycf1, trnD-GUC, trnY-GUA, and trnH-GUG*) were identified that would be utilized as possible genetic markers for determination of phylogeny and population genetics analysis of *Pinus* species. Furthermore, seven genes (*petD, psaI, psaM, matK, rps18, ycf1, and ycf2*) with positive selection site in *Pinus* species were identified. Based on the whole genome this phylogenetic study showed that twenty-four *Pinus* species form a significant genealogical clade. Divergence time showed that the *Pinus* species originated about 100 million years ago (95% HPD, 101.76–109.79 MYA), in lateral stages of Cretaceous. Moreover, two of the subgenera are consequently originated in 85.05 MYA (95% HPD, 81.04–88.02 MYA). This study provides a phylogenetic relationship and a chronological framework for the future study of the molecular evolution of the *Pinus* species.

© 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Pinus L. (*Pinaceae*) is major coniferous genus consisted of more than (110–120) species. Because of its divergence and significant ecological value, the genus *Pinus* is the best option for the study of species divergence and evolution of conifers (Farjon, 1990; Neale and Kremer, 2011). These species are distributed throughout the world but it is the main coniferous genus of the northern hemisphere, which harbored over, Asia, Europe, North Africa, and Central America (Price et al., 1998). The genus Pine is originated in the mid-Cretaceous period, which is further diverged into two lineages, i.e. the subgenus *Strobus* (*Haploxylon*) and subgenus *Pinus* (*Diploxylon*) (Willyard et al., 2007; Millar, 1998). These species are ecologically essential assisting forest ecosystems and are economically very important for being used as fuel and timber (Ennos, 2001; Vekemans and Hardy, 2004). The anatomical, morphological, and evolutionary level data determine that the two subgenera are significantly separated (Wang et al., 1999; Gernandt et al., 2001). Generally, a valuable fossil record, of pine species divergence and later time calibrations have been used for the fewer fossils records (Gernandt et al., 2005; He et al., 2016; Moore et al., 2007). Further, the fossils records are contentious concerning their phylogenetic position and age limit.

There are several other techniques i.e., fossil records, haplotype investigation, time-calibrated phylogeny and DNA duplication etc.
taken place to study the evolutionary relationship among Pine species. However, Next-generation sequencing technologies, utilizing the paternally inherited plastid DNA is a reliable tool to investigate the evolutionary and phylogenetic relationships in plants (Bentley et al., 2008; Langmead et al., 2009; WILSON et al., 2017). Plastid genome has a particular genetic system, and perform a significant role in the photosynthesis (Ravi et al., 2008). Generally, chloroplast genome (cp genome) is circular DNA molecules, which classically have a quaternary molecular structure containing inverted repeats (IRA/IRb) regions, detached through single large copy (LSC) and small single copy (SSC) regions (Palmer, 1991; Asaf et al., 2017). However, the plastome round structure composed of four intersections in inverted repeat regions and the single-copy regions which hampered our capability to maintain exact chloroplast genome assemblies (Chin et al., 2013; Bashir et al., 2012). Previous studies showed that chloroplast genomes of gymnosperm species were more preserved in their gene structure, order and contents (George et al., 2015). Typical structure of cp genome of a majority of the land plants is spherical with a length of (120–160 kb), consist of (110–130) genes (Ruhlman and Jansen, 2014; Civán et al., 20142014). The complete chloroplast DNA sequences of closely related species confides several evolutionary hotspots region for mutations in the whole chloroplast genomes of Pinus species. Phylo-genomics study provides an excessive ability to determine historically severe issues in phylogeny by decreasing sampling mistake (Lindgren and Anderson, 2018). Using different datasets of plastid genomes the land plants showed different reconstructing phylogenetic tree at different taxonomic level (Luo et al., 20162016; Zhang et al., 2017).

Plastid genome is identified in the plant phylogeny, evolution, and divergence of a species. Some works supported that phylogenetic analyses not only determine the previously discussed phylogeny but also increase accurate phylogenetic trees (Irisarri et al., 2017; Sass et al., 2016; Bravo et al., 2019). Nowadays, such type of studies is essential to point out the difference between various tree-building methods used for phylogenetic evaluations based on systematic errors. However, the systematic mistake will be eliminated by improving the dataset, which leads to improving the size of data (Crawford et al., 2012). Comparative study of related species with distinct environmental necessities and evolutionary histories can reveal insight into the mechanisms of the structural genetic adaptation (Ahmad et al., 2021). Comparative studies of the whole plastome are conducting to study the adaptive evolution of the genus Pinus showing differences in demographic history populations genetics, environmental conditions, or phylogenetic relationships (Grivet et al., 2013). The forest trees, adaptive evolution is difficult, throughout their life sequence. Moreover, because of the large size of the plastid genome, the comparative genomic studies of the forest trees are difficult. Recently, in-plant genomics divergence for spots of spots that are anticipated to evolved inversely (synonymous and nonsynonymous). Meanwhile, positive selection has an impact on the plant morphology and phenology; more genes elaborate in these adaptations are still mostly unidentified. However, concern to gymnosperm species knowledge is inadequate. Positive site or complementary selection have been recognized for some selected genes (Eveno et al., 2008). Pinus life cycle provides excellent chances for robust selection. The gene flow in most of the plant population is higher, which make the selection in a well-organized manner. This study was conducted with the following specific objectives: (a) investigation of variation in the gene order, gene content and repetitive sequence in whole plastid genomes of Pinus species (b) to recognize the hotspots region of chloroplast genomes and to find out the possibility under selection pressure (c) to recreate molecular divergence and phylogeny within the main ancestors of Pinus species.

2. Materials and methods

2.1. Materials

The whole plastid DNA dataset of twenty-four genus Pinus and the out groups were found from the NCBI (https://www.ncbi.nlm.nih.gov/). We also re-annotated the Pinus complete chloroplast genomes sequenced for the analysis.

2.2. Chloroplast genome Sequencing, Annotation, and divergence analysis

The chloroplast genomic data were used to generate a consensus sequence inside the Geneious R v 8.0.2 (Biomatters Ltd., Auckland, New Zealand). The preliminary plastome annotation was turned using program DOGMA (https://dogma.ccbb.utexas.edu/). The stop and start codons were adjusted manually in the Geneious R v 8.0.2. The Organellar Genome DRAW v1.1 (OGDRAW) utilized for construction of circular plastid cp genome map (Wyman et al., 2004; Lohe et al., 2007). For the divergence sequence in the Pinus plastome, the sequence reorganization analysis of the Pinus genome was used (Morse et al., 2009), and Pinus species were determined through mVISTA (Frazer et al., 2004), as used for the investigation of P. bungeana as a reference.

2.3. Repeat sequence and selective pressure analysis

Repeat sequence analysis is handy markers which possess dynamic roles in the phylogenetic analysis and evolutionary studies (Ni et al., 2017). We find the three repeats’ sequences i.e., dispersed, palindromic, and tandem, and the web-based software REPuter (https://bibiserv.cebitec.uni-bielefeld.de/reputer) was used to investigate the repeat sequences (Kurtz et al., 2001). The dispersed and palindromic repeated sequences are (a) sequence identity 90%; (b) Hamming distance = 1; and (c) minimum repeat size = 30 bp (Benson, 1999). Moreover, the tandem motifs examination (>10 bp in length) was identified using the Tandem Repeats Finder program (https://tandem.bu.edu/trf/trf.html). We examined the repeat sequence manually in the cp DNA of twenty-four Pinus species with the genomic sequence, simple sequence repeats (SSR) through the Perl script MISA program (http://pgrc.ipk-gatersleben.de/misa/). The three repeat units for mono-, di-, tri-, tetra-, penta-, and hexa nucleotide SSRs respectively (Thiel et al., 2003).

The Codeml program (http://abacus.gene.ucl.ac.uk/abacus_website_frozen/abacus.gene.ucl.ac.uk/index.html) was employed to understand the codon-substitution models, PAML package v 4.7.1 (http://abacus.gene.ucl.ac.uk/software/paml.html) for analysis of synonymous (dS) and non-synonymous (dN) nucleotide substitution rates, along with their ratios (ω = dN/dS) (Yang, 2007). The Genious R v 8.0.2 was employed for identification and alignment of protein-coding gene (Stamatakis, 2014). Protein-coding exon and each value of dN; dS, and ω were calculated using the site-specific model apply in the codeml package (seqtype = 1, model = 0, Nsites = {0, 1, 2, 3, 7, 8}) in PAML4.7 (Yang et al., 2005). Generally, this model permissible the ω proportion to be different among sites with a settled ω ratio have evolution in the site-specific gene phylogeny (Katoh and Standley, 2013). To determine the assistance of selected sites, we compared the modul site-specific M0 (one ratio) vs M3 (discrete), M1 (neutral) vs M2 (positive selection), M7 (beta) vs M8 (beta and ω), were related in site-specific models (Katoh and Standley, 2013). The Model M1 was used to determine two site classes with ω < 1 and ω = 1 and model M2 was used to examine the third side class ω > 1. The M7 and M8 model equally
explained the ω circulate as a beta function. The model M7 beta null limitation ω to (0, 1), the substitute beta and ω model M8 used for other selected site classes. Only consistent sites of positive selection with important from posterior probability (p (ω > 1 ≥ 0.99) were identified; Modal M2 and M8 recognized Bayes Empirical Bayes approach (BEB) were further considered.

2.4. Phylogenetic analysis

The evolutionary relationship among the available complete chloroplast genome of twenty-four Pinus species were utilized to reconstruct the phylogenetic tree. We also include cp genome sequences from Cupressus gigantean (KT315754) and Cupressus chengiana (KY392754) as out-groups. Plastid plasome of Pinus species from the complete dataset were aligned with MAFFT v 7.0.0 (Yang and Nielsen, 20022002), after that nucleotide sequence alignment were performed with the Clustal W technique using the MEGA v 7.0.18 (Tamura et al., 2007), with manual inspection. However, maximum likelihood (ML) and maximum parsimony (MP) evaluated the inferred evolutionary trees, implemented the best-fit model of the cp genome sequence evolution preferred by Model Test version 3.7 with the Akaike Information Criterion (AIC) (Posada et al., 20042004). The phylogenetic tree was assessed by (1000) bootstrap value. It was then used to approximate MP and ML tree branch support values. The best phylogenetic model was determined through PAUP* (Swofford, 2003). In addition, the Bayesian phylogenetic analysis was performed by MrBayes v3.1.2. Markov chain Monte Carlo (MCMC) investigation was commenced from an arbitrary tree and run for 3,000,000 generations with the null limitation (Pennington et al., 2004) from the independent fossil calibrations. To check the chain balancing the results of MCMC was analyzed by Tracer v 1.5 provided a central 95% range of 85 Mya, within the ranges described by (39.9%), followed by IRs (39.6%) and LSC (38.1%) regions (Table S1). Among 114 functional genes, 63 were linked to self-replication (36 in rRNA and 4 in rRNA), 9 were associated to large subunits of the ribosome, and 11 were associated to small subunits of the ribosome, and 4 genes were associated with DNA-dependent in RNA polymerase subunits. The infA gene was associated with the translational initiation factor. Subsequently, 40 genes were related with photosynthesis, six with ATP synthase, 6 genes with subunits of cytochrome, 11 genes with subunits of photosystem I and 8 genes with subunits of Photosystem II. Generally, about five extra genes were identified. However, the matk gene encoding Maturase, accD encoding subunit of acetyl-CoA, ccsA encoding C-type cytochrome synthesis gene, and cplP encoding Protease (Table 2). In the chloroplast genome, six genes (trnS-GCU, trnI-GAU, trnS-UGA, trnH-GUG, trnT-GGU, trnR-ACG) were repeated in all the Pinus plastomes.

2.5. Divergence time analysis

The BEAST v2.4.5 software was used for the divergence time estimation which estimated the node ages and topology (Bouckaert et al., 2014). The average substitute rate of 5 × 10^{-2} s/s/y to calibrate the molecular divergence. The nucleotide substitutions of the GTR model and applied the ‘Bayesian skyline’ tree process model used with a standard normal prior. We set an ‘exponential relaxed clock’ with the previous substitution rate. Generally, about five extra genes were identified. However, the matk gene encoding Maturase, accD encoding subunit of acetyl-CoA, ccsA encoding C-type cytochrome synthesis gene, and cplP encoding Protease (Table 2). In the chloroplast genome, six genes (trnS-GCU, trnI-GAU, trnS-UGA, trnH-GUG, trnT-GGU, trnR-ACG) were repeated in all the Pinus plastomes.

3. Results

3.1. Characteristics of twenty-four complete plastid genomes of Pinus species

The comparison of full length and size of complete plastid DNA of twenty-four species of the genus Pinus, ranged from 115,723 bp (P. monophylla) to 120,596 bp (P. oocarpa) (Table 1, Fig. 1). These plastid DNA contains distinctive quadripartite circular structure, comparable to those in higher plants. In addition, the chloroplast genome of twenty-four Pinus species were divided into two different sections that coordinated to subgenus Strobus and subgenus Pinus. The subgenus Strobus size ranged from 116,119 bp (P. krempfii) to 117,805 bp (P. fenzelianana), and subgenus Pinus ranged in size from 115,909 bp (P. oocarpa) to 120,596 bp (P. jalisina) (Table 1). The subgenus Pinus had an LSC region ranged from 64,415 bp (P. sylvestris) to 65,724 bp (P. oocarpa), and SSC region ranged from 50,661 (P. sylvestris) to 54,146 (P. taeda). The subgenus Strobus, the inverted repeats (IRs) region ranged from 326 bp (P. sibirica) to 516 bp (P. gerardiana), and subgenus Pinus from 389 bp (P. greggi) to 487 bp (P. taiwanesensis) (Table 1). The complete chloroplast genome was composed of 114 functional genes, counting 74 protein-coding genes (CDS), four ribosomal RNA genes (rRNA), and 36 transfer RNA genes (tRNA). In the LSC region, 17 tRNA genes and 53 protein-coding genes were present, whereas the SSC region includes 17 tRNA genes and 18 protein-coding genes. Additionally, the trnI-GAU genes were repeated in the IRs region. Moreover, the total GC content was similar in the twenty-four genomes of Pinus species at about 38.6%. The overall GC content was irregularly circulate the plastid DNA, which was highest in the SSC region (39.9%), followed by IRs (39.6%) and LSC (38.1%) regions (Table S1).

Among 114 functional genes, 63 were linked to self-replication (36 in rRNA and 4 in rRNA), 9 were associated to large subunits of the ribosome, and 11 were associated to small subunits of the ribosome, and 4 genes were associated with DNA-dependent in RNA polymerase subunits. The infA gene was associated with the translational initiation factor. Subsequently, 40 genes were related with photosynthesis, six with ATP synthase, 6 genes with subunits of cytochrome, 11 genes with subunits of photosystem I and 8 genes with subunits of Photosystem II. Generally, about five extra genes were identified. However, the matk gene encoding Maturase, accD encoding subunit of acetyl-CoA, ccsA encoding C-type cytochrome synthesis gene, and cplP encoding Protease (Table 2). In the chloroplast genome, six genes (trnS-GCU, trnI-GAU, trnS-UGA, trnH-GUG, trnT-GGU, trnR-ACG) were repeated in all the Pinus plastomes.
The features of complete chloroplast genomes of twenty-four Pinus species.

Subgenus strobus (single needle sections)

Species	Size (bp)	LSC (bp)	SSC (bp)	IRs (bp)	Number of Protein Coding Genes	Number of tRNA Genes	Number of tRNA Genes	GC Contents (%)	Accession number
P. armandii	116,998	64,337	51,711	389	75	4	36	37	NC_029847
P. bungeana	116,751	64,311	51,490	475	75	4	36	38.8	NC_028421
P. fenzeliana	117,805	64,480	52,565	375	75	4	35	38.8	KX235674
P. gerardiana	116,668	64,296	51,339	516	75	4	36	38.7	EU998741
P. koraiensis	116,781	64,337	51,494	475	76	4	36	38.8	AY228648
P. krempfii	116,119	64,463	50,912	356	74	4	34	38.8	EU998742
P. lambertiana	116,958	64,604	51,592	379	75	4	35	38.8	EU998743
P. monophylla	115,723	64,299	50,664	373	73	4	36	38.7	EU998745
P. nelsonii	116,210	64,604	50,845	367	74	4	35	38.7	EU998746
P. pinus	117,398	64,606	51,842	384	75	4	36	38.0	JN854168
P. pumila	117,035	64,598	51,787	326	79	4	33	38.7	NC_028552
P. strobus	116,975	64,286	51,827	474	75	4	38	38.8	NC_026302
P. tabuliformis	117,726	65,107	51,665	482	74	4	36	38.6	–

Subgenus Pinus (double needle section)

Species	Size (bp)	LSC (bp)	SSC (bp)	IRs (bp)	Number of Protein Coding Genes	Number of tRNA Genes	GC Contents (%)	Accession number	
P. greggii	119,480	64,849	53,853	389	74	4	36	38.5	NC_035947
P. gregoriana	120,596	65,724	54,089	394	73	4	36	38.5	KY693869
P. pauciflora	119,909	64,415	50,661	420	75	4	37	38.6	KR476379
P. mugo	119,042	64,938	53,123	404	75	4	36	38.5	KX833097
P. thunbergii	118,893	65,210	52,885	399	74	4	36	38.5	FJ899562
P. tabuliformis	118,969	65,196	52,975	399	75	4	36	38.5	NC_028531
P. taiwanensis	119,013	64,959	52,985	487	80	4	37	38.5	NC_027415
P. jilinica	119,697	64,805	54,092	403	75	4	37	38.5	NC_035948

The analysis of this correlation showed that the divergence of IRs region is less than the SSC and LSC regions. Thus, the noncoding regions showed more variation than the coding regions, and profoundly variable regions among the Pinus plasteome happen in the intergenic spacers. Interestingly, we identified that eleven genes positioned in LSC and SSC region within the coding and non-intergenic spacers. The IRs region is less than the SSC and LSC regions. Thus, the noncoding regions showed more variation than the coding regions, and profoundly variable regions among the Pinus plasteome happen in the intergenic spacers. Interestingly, we identified that eleven genes positioned in LSC and SSC region within the coding and non-intergenic spacers. The IRs region. In addition, the noncoding regions showed more variation than the coding regions, and profoundly variable regions among the Pinus plasteome happen in the intergenic spacers. Interestingly, we identified that eleven genes positioned in LSC and SSC region within the coding and non-intergenic spacers. The IRs region. Additionally, the psaC, psaA, ycf1, ycf2, chlN, chlL, and chlF gene regions harbored more variation than the coding regions, and profoundly variable regions among the Pinus plasteome happen in the intergenic spacers. Interestingly, we identified that eleven genes positioned in LSC and SSC region within the coding and non-intergenic spacers. The IRs region.

3.6. Molecular dating

The Beast molecular clock evaluated the divergence times in the genus Pinus. Molecular dating of the genus Pinus has instigated about 100 MYA (95% HPD, 101.76.35–109.79 MYA). The first divergence between the two subgenera (Strobus and Pinus) has originated at 85.05 MYA (95% HPD, 81.04–88.02 MYA). Subgenus Strobus diverged about 22.40 MYA (95% HPD, 20.32–25.26 MYA), and subgenus Pinus diverged about 58.62 MYA (95% HPD, 46.40–68.94 MYA) (Fig. 5).

4. Discussion

Taxonomic studies have used the plastid DNA to assess the closely related species of the Pinus species. The whole plastome of twenty-four genus Pinus species were used to assess their phylogenetic relationship in the family Pinaceae. Land plants have an extremely well-maintained plastome, and four regions with altered cp genome sizes and length (Hansen et al., 2007; Plunkett and Downie, 2000; Qian et al., 2013). Besides, the overall GC contents of the (LSC and SSC) regions in all the Pinus species were higher than the IRs region. In addition, the Pinus plastid genome, the subgenus Strobus has the high GC content of 38.8%, and subgenus Pinus; P. massoniana (38.6%). Subsequently, in the overall likelihood method, maximum parsimony, and Bayesian interference. The two major clades were recognized which included the subgenus Strobus (single needle section) and subgenus Pinus (double needle section) of pine species (Fig. 4). The phylogenetic tree showed most of the monophyletic clade with high bootstrap value. The P. pinus is closely related to P. sibirica and P. fenzeliana.
genus *Pinus* highest LSC was obtained for *P. bungeana* (38.1%), SSC *P. krempfii* (39.9%) and IRs *P. gerardiana* (39.3%) regions. The relatively highly GC contents of the IRs region were regularly featured to the rRNA and tRNA genes (He et al., 2016; Shen et al., 2017). Generally, the large IRs play essential role in sustaining the constancy of the plastid genome (Wu et al., 2011). However, the loss of an extensive IRs result in few differences in the genome structures and gene content in the plastid genome (Yi et al., 2013). There is no large IRs region in the complete plastome of the conifer’s species. In this study, we observed the IR regions in the subgenera (*Strobus* and *Pinus*) (326 to 487 bp). Generally, some differences in sequence size were also originated in the small IRs region among *Pinus* genome.

Previous studies suggested that the repetitive sequence variations played a significant role in the reorganization and maintenance of the cp genomes (Cavalier-Smith, 2002). Recently, we found that dispersed, palindromic, and tandem repeats in twenty-four *Pinus* species, demonstrated that dispersed repeats number is more palindromic whereas in tandem repeats was lower. Some repeat motifs were circulated in the intergenic spacer and intron regions, which were similar in preceding studies (Yang et al., 2016). The long repeat sequence might sustain the constancy of plastome, which were comparable to previous studies (Maréchal and Brisson, 2010). We identified a total of 769 SSRs from twenty-four *Pinus* species. The mononucleotide repeats were more frequent in the plastid genome, and they represented in 4.91% of the aggregate SSRs. Furthermore, the SSRs contain (1–6) nucleotide repeat motifs, which are generally dispersed in the whole genome and have an undue influence on the genome rearrangement and recombination (Ni et al., 2016). SSRs also has been identified in the highest number of *P. sibirica* and *P. fenzeliana* (47, 47). The highest SSRs was obtained for mono-, and di-nucleotide repeats, whereas in tri-, tetra-, penta, and hexa-nucleotide repeat sequences were lower in all *Pinus* species (Yu et al., 2017; Song et al., 2017). The SSRs result showed agreement with the previous work in which the mono-nucleotides were A/T, and all of the di-nucleotides were AT / TA repeats units and composed with the A/T-richness in the plastid genome (Han et al., 2015).
Table 2
Gene contents in twenty-four Pinus species complete chloroplast genomes.

Gene group	Gene name	rnl16	rnl23	rnl4.5	rnl5
Ribosomal RNA genes					
Ribosomal RNA genes	trnL-CAU	tnrL-CAU(rep)			
Transfer RNA genes	trnR-UCA	trnR-ACC(rep)			
Transfer RNA genes	trnV-UCU	trnV-GAC			
Transfer RNA genes	trnP-UGG	trnP-M-CAU			
Transfer RNA genes	trnS-UGCA(re)	trnS-GCU(rep)			
Transfer RNA genes	trnE-UGC	trnE-GUC			
Transfer RNA genes	trnG-GCC	trnG-CAU			
Small Subunit of ribosome	rps2	rps3	rps4	rps7	rps8
Small Subunit of ribosome	rps11	rps12	rps14	rps15	rps18
Large Subunit of ribosome	rps12	rps114	rps116	rps120	rps122
Large Subunit of ribosome	rps123	rps132	rps133	rps136	
DNA-dependent RNA polymerase	rpoA	rpoB	rpoC1	rpoC2	
Translational initiation factor	infA				
Subunits of photosystem I	psaA	psaB	psaC	psaI	psaJ
Subunits of photosystem I	psaM	ycf1	ycf2	ycf3	ycf4
Subunits of photosystem II	psbA	psbB	psbC	psbD	psbE
Subunits of photosystem II	psbF	psbH	psbI	psbJ	psbL
Subunits of photosystem II	psbM	psbN	psbT		
Subunits of cytochrome	petA	petB	petD	petG	petL
Subunits of ATP synthase	petN				
Subunits of ATP synthase	atpA	atpB	atpE	atpF	atpH
Large subunit of Rubisco	atpI				
Maturase	rbcL				
Protease	clpP				
Subunit of acetyl-CoA	accD				
C-type cytochrome synthesis gene	ccsA				

Fig. 2. Repeat analyses. (a) Histogram showing the number of repeats in the twenty-four Pinus chloroplast genomes.
The Pinus plastome sequence was analyzed by the mVISTA program, as a reference with P. bungeana (Fig. S3). The comparative study of our results showed that the IRs region is less diverged than the (LSC and SSC) regions. Also, the non-coding regions are highly fluctuating than coding regions, displaying significant different regions among the Pinus plastome (Ni et al., 2016). Though, the divergent hotspot region includes eleven genes (trnG-GCC, trnL-UAG, trnL-CAG, trnQ-UUG, rpoC1, rpoC2, psaC, ycf1, ycf2, chlN, and chlO) in the non-coding regions. Moreover, among all twenty-four plastid genome sequences, the cp genome variations of higher plants were more conserved, and the plastid genome of Pinus species showed very low genetic divergence. The current results showed resemblance with previous studies (Qian et al., 2013), and revealed different coding regions in the Pinus species. Generally, the synonymous and non-synonymous nucleotide sites are beneficial for evolutionary studies and population genetics (OGAWA et al., 1999). In this study, we determined seven cp protein-coding genes that exposed site-specific selection (matK, petD, psaI, rps18, psaM, ycf1, and ycf2) for the Pinus species (Table S2). In the selective pressure analysis, we isolated a total of four types of photosynthesis gene groups, which are: 1. four genes’ subunits of photosystem 1 (psal, psaM, ycf1, and ycf2), 2. One small subunit of the ribosomal gene (rps18), 3. Subunit of cytochrome b/f complex (petD), and 4. One gene of maturae (matK). In addition, a total of 11 genes observed with the encoded small subunit of the ribosome, in which only one gene of rps18 was found in the restricted positive selection. However, positively selected genes performed a significant function in the variation of the Pinus species under diverse environmental condition.

The complete chloroplast genome has been commonly used in the phylogeny of gymnosperm plants (Parks et al., 2012; Zhu et al., 2016). Based on evaluations of protein-coding genes (PCGs) some studies have discovered the phylogenetic analysis at the profound nodes (Moore et al., 2010; Eckert and Hall, 2006). These analyses enhanced our knowledge about the phylogenetic relationship and evolutionary studies among Pinus species. The current study is based on the phylogenetic investigation of the whole plastome sequence of twenty-four Pinus species, using C. chengiana and C. gigantean as outgroups. However, we obtained a phylogenetic tree with (ML, MP, and BI) methods (Fig. 3). Phylogenetic tree of genus Pinus was mainly separated into two different classes similar to single vascular needle and double vascular needle section plants. Among single needle section plants species, the P. pumila showed closed positioned with P. fenzeliana, and P. sibirica in the same clade, which has a close relationship with each other (Fig. 3). This finding determined the closest relationship among these species. In addition, our study has been recognized that P. bungeana and P. Gerardiana have a close association with each other. Similar to this study, a previous study also demonstrated a closed position of P. bungeana and P. Gerardiana species (Liu et al., 2014).

To evaluate the divergence time of genus Pinus the beast molecular clock evaluated the divergence times for Pinus species. The
Pinus species have been instigated about 100 MYA (95% HPD, 101.76–109.79 MYA). The first divergence between the two subgenera of *Strobus* and subgenera *Pinus* occurred about 85.05 MYA (95% HPD, 81.04–88.02 MYA). Subgenus *Strobus* diverged about 22.40 Mya (95% HPD, 20.32–25.26 Mya), and subgenus *Pinus* diverged about 58.62 Mya (95% HPD, 46.40–68.94 MYA) (Fig. 4). These results were also broadly dependable with the previously fossil histories from the early Cretaceous. Similar to our study, the molecular dating of the previous study also obtained comparable results (Liu et al., 2014).

5. Conclusion

In present investigation, the evidence of the whole chloroplast genome of *Pinus* species. We compared their whole plastid genomes developed by plentiful genetic resources, comprised hotspots region and SSRs. Plastid DNA had a distinctive circular form with a preserved genome prearrangement. The molecular study of plastome in the genus *Pinus* also provided the phylogenetic relationship and molecular dating. The cp genome structure and genetic resources showed that the study will enhance our understanding of phylogeny, conservation and population genetics.

Funding

The publication of the present work is supported by the Natural Science Basic Research Program of Shaanxi Province (grant no. 2018Q5218) and the National Natural Science Foundation of China (51809224), Top Young Talents of Shaanxi Special Support Program.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

None.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.sjbs.2021.10.070.

References

Ahmad, H.M., Rahman, M., Ahmar, S., Fiaz, S., Azeem, F., Shaheen, T., Ijaz, M., 2021. Comparative Genomic Analysis of MYB Transcription Factors for Cuticular Wax Biosynthesis and Drought Stress Tolerance in *Helianthus annuus* L. Saudi. J. Biol. Sci. https://doi.org/10.1016/j.sjbs.2021.06.009.

Asaf, S., Khan, A.L., Khan, M.A., Waqas, M., Kang, S.M., Yun, B.-W., Lee, I.J., 2017. Chloroplast genomes of *Arabidopsis halleri* ssp. gemmifera and *Arabidopsis lyrata* ssp. petraea: structures and comparative analysis. Sci. Rep. 7, 7550.

Bashir, A., Klammer, A.A., Robins, W.P., Chin, C.-S., Webster, D., Paxinos, E., Hsiu, D., Ashby, M., Wang, S., Peluso, P., Sebra, R., Sorensen, J., Bullard, J., Yen, J., Valdovino, M., Mollova, E., Luong, K., Lin, S., LaMay, B., Joshi, A., Rowe, L., Frace, M., Tarr, C.L., Turusek, M., Davis, B.M., Kasarskis, A., Mekalanos, J.J., Waldor, M. K., Schadt, E.E., 2012. A hybrid approach for the automated finishing of bacterial genomes. Nat. Biotechnol. 30 (7), 701–707.

Benson, G., 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27 (2), 573–580.

Bentley, D.R., Balasubramanian, S., Swerdlow, H.P., Smith, G.P., Milton, J., Brown, C. G., Hall, K.P., Evers, D.J., Barnes, C.L., Bignell, G.R., 2008. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53.

Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., Suchard, M.A., Rambaut, A., Drummond, A.J., 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS computational biology 10, e1003537.

Bravo, G.A., Antonelli, A., Bacon, C.D., Bartoszek, K., Blom, M.P., Huynh, S., Jones, G., Knowles, L.J., Lamichhaney, S., Marcusen, T., 2019. Embracing heterogeneity: coalescing the Tree of Life and the future of phylogenomics. PeerJ 7, e6399.

Cavalier-Smith, T., 2002. Chloroplast evolution: secondary symbiogenesis and multiple losses. Curr. Biol. 12 (2), R62–R64.

Chin, C.-S., Alexander, D.H., Mariko, P., Klammer, A.A., Drake, J., Heiner, C., Clum, A., Copeland, A., Huddleston, J., Eichler, E.E., Turner, S.W., Korlach, J., 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10 (6), 563–569.
Yang, Y., Zhou, T., Duan, D., Yang, J., Feng, L., Zhao, G., 2016. Comparative analysis of the complete chloroplast genomes of five Quercus species. Front. Plant Sci. 7, 959.
Yi, X., Gao, L., Wang, B., Su, Y.-J., Wang, T., 2013. The complete chloroplast genome sequence of Cephalotaxus oliveri (Cephalotaxaceae): evolutionary comparison of Cephalotaxus chloroplast DNAs and insights into the loss of inverted repeat copies in gymnosperms. Genome Biol. Evolut. 5, 688–698.
Yu, X.-Q., Drew, B.T., Yang, J.B., Gao, L.M., Li, D.Z., 2017. Comparative chloroplast genomes of eleven Schima (Theaceae) species: Insights into DNA barcoding and phylogeny. PLoS One 12, e0178026.
Zhang, S.-D., Jin, J.-J., Chen, S.-Y., Chase, M.W., Soltis, D.E., Li, H.-T., Yang, J.-B., Li, D.-Z., Yi, T.-S., 2017. Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics. New Phytol. 214 (3), 1355–1367.
Zhu, A., Guo, W., Gupta, S., Fan, W., Mower, J.P., 2016. Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates. New Phytol. 209 (4), 1747–1756.