Laplacian, on the graph of the Weierstrass function

Claire David

September 24, 2018

Sorbonne Université
CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, 4, place Jussieu 75005, Paris, France

Abstract

We present, in the following, the results which enable one to build a Laplacian on the graph of the Weierstrass function, by following the approach of J. Kigami and R. S. Strichartz. Ours is made in a completely renewed framework.

AMS Classification: 37F20-28A80-05C63.

1 Introduction

The Laplacian plays a major role in the mathematical analysis of partial differential equations. Recently, the work of J. Kigami [Kig89], [Kig93], taken up by R. S. Strichartz [Str99], [Str06], allowed the construction of an operator of the same nature, defined locally, on graphs having a fractal character: the Sierpiński gasket, the Sierpiński carpet, the diamond fractal, the Julia sets, the fern of Barnsley.

J. Kigami starts from the definition of the Laplacian on the unit segment of the real line. For a double-differentiable function \(u \) on \([0, 1]\), the Laplacian \(\Delta u \) is obtained as a second derivative of \(u \) on \([0, 1]\). For any pair \((u, v)\) belonging to the space of functions that are differentiable on \([0, 1]\), such that:

\[
v(0) = v(1) = 0
\]

he puts the light on the fact that, taking into account:

\[
\int_0^1 (\Delta u)(x) v(x) \, dx = - \int_0^1 u'(x) v'(x) \, dx = - \lim_{n \to +\infty} \sum_{k=1}^{n} \int_{\frac{k}{n}}^{\frac{k+1}{n}} u'(x) v'(x) \, dx
\]

if \(\varepsilon > 0 \), the continuity of \(u' \) and \(v' \) shows the existence of a natural rank \(n_0 \) such that, for any integer \(n \geq n_0 \), and any real number \(x \) of \([\frac{k-1}{n}, \frac{k}{n}]\), \(1 \leq k \leq n \):

\[
\left| u'(x) - \frac{u \left(\frac{k}{n} \right) - u \left(\frac{k-1}{n} \right)}{\frac{1}{n}} \right| \leq \varepsilon , \quad \left| v'(x) - \frac{v \left(\frac{k}{n} \right) - v \left(\frac{k-1}{n} \right)}{\frac{1}{n}} \right| \leq \varepsilon
\]

the relation:

\[
\int_0^1 (\Delta u)(x) v(x) \, dx = - \lim_{n \to +\infty} \sum_{k=1}^{n} \left(u \left(\frac{k}{n} \right) - u \left(\frac{k-1}{n} \right) \right) \left(v \left(\frac{k}{n} \right) - v \left(\frac{k-1}{n} \right) \right)
\]
enables one to define, under a form, the Laplacian of u, while avoiding first derivatives. It thus opens the door to Laplacians on fractal domains.

Concretely, the weak formulation is obtained by means of Dirichlet forms, built by induction on a sequence of graphs that converges towards the considered domain. For a continuous function on this domain, its Laplacian is obtained as the renormalized limit of the sequence of graph Laplacians.

If the work of J. Kigami is, in means of analysis on fractals, seminal, it is to Robert S. Strichartz that one owes its rise. Robert S. Strichartz goes further than J. Kigami: on the ground of the Sierpiński gasket, he deepens, develops, exploits, generalizes, and reconstructs the classical functional spaces.

Strangely, the case of the graph of the Weierstrass function, introduced in 1872 by K. Weierstrass [Wei72], which presents self similarity properties, does not seem to have been considered anywhere, neither by Robert S. Strichartz, neither by others. It is yet an obligatory passage, in the perspective of studying diffusion phenomena in irregular structures. Let us recall that, given $\lambda \in]0,1[$, and b such that $\lambda b > 1 + \frac{3\pi}{2}$, the Weierstrass function

$$ x \in \mathbb{R} \mapsto \sum_{n=0}^{+\infty} \lambda^n \cos (\pi^b x) $$

is continuous everywhere, while nowhere differentiable. The original proof, by K. Weierstrass [Wei72], can also be found in [Tit77]. It has been completed by the one, now a classical one, in the case where $\lambda b > 1$, by G. Hardy [Har11].

After the works of A. S. Besicovitch and H. D. Ursell [BU37], it is Benoît Mandelbrot [Man77b] who particularly highlighted the fractal properties of the graph of the Weierstrass function. He also conjectured that the Hausdorff dimension of the graph is $D_W = 2 + \frac{\ln \lambda}{\ln b}$. Interesting discussions in relation to this question have been given in the book of K. Falconer [Fal85]. A proof was given by B. Hunt [Hun98] in 1998 in the case where arbitrary phases are included in each cosinusoidal term of the summation. Recently, K. Barański, B. Bárány and J. Romanowska [BBR17] proved that, for any value of the real number b, there exists a threshold value λ_b belonging to the interval $\left[\frac{1}{b}, 1 \right]$ such that the aforementioned dimension is equal to D_W for every b in $]\lambda_b, 1[$. In [Kel17], G. Keller proposes what appears as a much simpler and very original proof.

We have asked ourselves the following question: given a continuous function u on the graph of the Weierstrass function, under which conditions is it possible to associate to u a function Δu which is, in the weak sense, its Laplacian, so that this new function Δu is also defined and continuous on the graph of the Weierstrass function?

We present, in the following, the results obtained by following the approach of J. Kigami and R. S. Strichartz. Ours is made in a completely renewed framework, as regards, the one, affine, of the Sierpiński gasket. First, we concentrate on Dirichlet forms, on the graph of the Weierstrass function, which enable us the, subject to its existence, to define the Laplacian of a continuous function on this graph. This Laplacian appears as the renormalized limit of a sequence of discrete Laplacians on a sequence of graphs which converge to the one of the Weierstrass function. The normalization constants related to each graph Laplacian are obtained thanks Dirichlet forms.

In addition to the Dirichlet forms, we have come across several delicate points: the building of a specific measure related to the graph of the function, as well as the one of spline functions on the
vertices of the graph.

The spectrum of the Laplacian thus built is obtained through spectral decimation. Beautifully, as regards to the method developed by Robert S. Strichartz in the case of the Sierpiński gasket, our results come as the most natural illustration of the iterative process that gives birth to the discrete sequence of graphs.

2 Dirichlet forms, on the graph of the Weierstrass function

Notation. In the following, \(\lambda \) and \(b \) are two real numbers such that:

\[
0 < \lambda < 1 \quad , \quad b = N_b \in \mathbb{N} \quad \text{and} \quad \lambda N_b > 1
\]

We will consider the Weierstrass function \(\mathcal{W} \), defined, for any real number \(x \), by:

\[
\mathcal{W}(x) = \sum_{n=0}^{+\infty} \lambda^n \cos (2 \pi N_b^n x)
\]

2.1 Theoretical study

We place ourselves, in the following, in the euclidian plane of dimension 2, referred to a direct orthonormal frame. The usual Cartesian coordinates are \((x, y)\).

Property 2.1. Periodic properties of the Weierstrass function

For any real number \(x \):

\[
\mathcal{W}(x+1) = \sum_{n=0}^{+\infty} \lambda^n \cos (2 \pi N_b^n x + 2 \pi N_b^n) = \sum_{n=0}^{+\infty} \lambda^n \cos (2 \pi N_b^n x) = \mathcal{W}(x)
\]

The study of the Weierstrass function can be restricted to the interval \([0, 1]\).

By following the method developed by J. Kigami, we approximate the restriction \(\Gamma_W \) to \([0, 1]\times\mathbb{R}\), of the graph of the Weierstrass function, by a sequence of graphs, built through an iterative process. To this purpose, we introduce the iterated function system of the family of \(C^\infty \) maps from \(\mathbb{R}^2 \) to \(\mathbb{R}^2 \):

\[
\{T_0, ..., T_{N_b-1}\}
\]

where, for any integer \(i \) belonging to \(\{0, ..., N_b - 1\} \), and any \((x, y)\) of \(\mathbb{R}^2 \):

\[
T_i(x, y) = \left(\frac{x + i}{N_b}, \lambda y + \cos \left(2 \pi \left(\frac{x + i}{N_b} \right) \right) \right)
\]

Lemma 2.2. For any integer \(i \) belonging to \(\{0, ..., N_b - 1\} \), the map \(T_i \) is a bijection of \(\Gamma_W \).
Proof. Let $i \in \{0, \ldots, N_b - 1\}$. Consider a point $(y, W(y))$ of Γ_W, and let us look for a real number x of $[0, 1]$ such that:

$$T_i (x, W(x)) = (y, W(y))$$

One has:

$$y = \frac{x + i}{N_b}$$

Then:

$$x = N_b y - i$$

This enables one to obtain:

$$W(x) = W(N_b y - i) = \sum_{n=0}^{+\infty} \lambda^n \cos (2 \pi N_b^{n+1} y - 2 \pi N_b^n i) = \sum_{n=0}^{+\infty} \lambda^n \cos (2 \pi N_b^{n+1} y)$$

and:

$$T_i (x, W(x)) = \left(\frac{x + i}{N_b}, \lambda W(x) + \cos \left(2 \pi \left(\frac{x + i}{N_b} \right) \right) \right)$$

$$= \left\{ y, \lambda \sum_{n=0}^{+\infty} \lambda^n \cos (2 \pi N_b^{n+1} y) + \cos (2 \pi y) \right\}$$

$$= \left\{ y, \sum_{n=0}^{+\infty} \lambda^n \cos (2 \pi N_b^{n+1} y) + \cos (2 \pi y) \right\}$$

$$= \left(y, \sum_{n=0}^{+\infty} \lambda^n \cos (2 \pi N_b^n y) \right)$$

There exists thus a unique real number x in $[0, 1]$ such that:

$$T_i (x, W(x)) = (y, W(y))$$

Property 2.3.

$$\Gamma_W = \bigcup_{i=0}^{N_b-1} T_i(\Gamma_W)$$

Remark 2.1. The family $\{T_0, \ldots, T_{N_b-1}\}$ is a family of contractions from \mathbb{R}^2 to \mathbb{R}^2.

Proof. For any integer i belonging to $\{0, \ldots, N_b - 1\}$, we introduce the jacobian matrix of T_i such that, for any (x, y) of \mathbb{R}^2:

$$DT_i(x, y) = \begin{pmatrix} 1 & 0 \\ -\frac{2 \pi}{N_b} \sin \left(2 \pi \left(\frac{x + i}{N_b} \right) \right) & \lambda \end{pmatrix}$$
For any i of $\{0, \ldots, N_b - 1\}$, the spectral radius of the linear map

$$
\mathbb{R}^2 \to \mathbb{R}^2 \\
(u, v) \mapsto DT_i(x, y) \begin{pmatrix} u \\ v \end{pmatrix}
$$

is:

$$
\rho(DT_i(x, y)) = \max \left\{ \frac{1}{N_b}, \lambda \right\} = K < 1
$$

Let us denote by $\| \cdot \|_2$ the euclidean norm on \mathbb{R}^2:

$$
\forall X = (x, y) \in \mathbb{R}^2 : \quad \|X\|_2 = \|(x, y)\|_2 = \sqrt{x^2 + y^2}
$$

For the spectral norm $\| \cdot \|_{2,2}$, defined on the space of 2×2 real matrices:

$$
A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \mapsto \sup_{\|X\|_2 = 1} \|AX\|_2
$$

one has:

$$
\forall (x, y) \in \mathbb{R}^2 : \quad \|DT_i(x, y)\|_{2,2} \leq \max \left\{ \frac{1}{N_b}, \lambda \right\} < 1
$$

Thus, for any quadruplet (x, y, z, t) of real numbers:

$$
\|T_i(x, y) - T_i(z, t)\|_2 \leq K \| (x, y) - (z, t) \|_2
$$

\[\square\]

Definition 2.1. For any integer i belonging to $\{0, \ldots, N_b - 1\}$, let us denote by:

$$
P_i = (x_i, y_i) = \left(\frac{i}{N_b - 1}, \frac{1}{1 - \lambda} \cos \left(\frac{2 \pi i}{N_b - 1} \right) \right)
$$

the fixed point of the contraction T_i.

We will denote by V_0 the ordered set (according to increasing abscissa), of the points:

$$
\{P_0, \ldots, P_{N_b - 1}\}
$$

since, for any i of $\{0, \ldots, N_b - 2\}$:

$$
x_i \leq x_{i+1}
$$

The set of points V_0, where, for any i of $\{0, \ldots, N_b - 2\}$, the point P_i is linked to the point P_{i+1}, constitutes an oriented graph (according to increasing abscissa), that we will denote by Γ_{V_0}, V_0 is called the set of vertices of the graph Γ_{V_0}.

For any natural integer m, we set:

$$
V_m = \bigcup_{i=0}^{N_b-1} T_i(V_{m-1})
$$

The set of points V_m, where two consecutive points are linked, is an oriented graph (according to increasing abscissa), which we will denote by Γ_{V_m}. V_m is called the set of vertices of the graph Γ_{V_m}. We will denote, in the following, by N_{m}^S the number of vertices of the graph Γ_{V_m}, and we will write:

$$
V_m = \{S_0^m, S_1^m, \ldots, S_{N_{m}^S-1}^m\}
$$
Property 2.4. For any natural integer m:

\[V_m \subset V_{m+1} \]

Property 2.5. For any integer i belonging to $\{0, ..., N_b - 2\}$:

\[T_i (P_{N_b-1}) = T_{i+1} (P_0) \]

Proof. Since:

\[P_0 = \left(0, \frac{1}{1-\lambda}\right), \quad P_{N_b-1} = \left(\frac{N_b - 1}{N_b - 1}, \frac{1}{1-\lambda} \cos \left(\frac{2\pi (N_b - 1)}{N_b - 1}\right)\right) = \left(1, \frac{1}{1-\lambda}\right) \]

one has:

\[T_i (P_{N_b-1}) = \left(\frac{1+i}{N_b}, \frac{\lambda}{1-\lambda} + \cos \left(2\pi \left(\frac{1+i}{N_b}\right)\right)\right) \]

\[T_{i+1} (P_0) = \left(\frac{i+1}{N_b}, \frac{\lambda}{1-\lambda} + \cos \left(2\pi \left(\frac{i+1}{N_b}\right)\right)\right) \]

Property 2.6. The sequence $\left(\mathcal{N}_m^S\right)_{m \in \mathbb{N}}$ is an arithmetico-geometric one, with $\mathcal{N}_0^S = N_b$ as first term:

\[\forall m \in \mathbb{N} : \quad \mathcal{N}_{m+1}^S = N_b \mathcal{N}_m^S - (N_b - 2) \]

This leads to:

\[\forall m \in \mathbb{N} : \quad \mathcal{N}_m^S = N_b^m (N_0 - (N_b - 2)) + (N_b - 2) = 2N_b^m + N_b - 2 \]

Proof. This results comes from the fact that each graph Γ_{W_m}, $m \in \mathbb{N}^*$, is built from its predecessor $\Gamma_{W_{m-1}}$ by applying the N_b contractions T_i, $0 \leq i \leq N_b - 1$, to the vertices of $\Gamma_{W_{m-1}}$. Since, for any i of $\{0, ..., N_b - 2\}$:

\[T_i (P_{N_b-1}) = T_{i+1} (P_0) \]

the, $N_b - 2$ points appear twice if one takes into account the images of the \mathcal{N}_{m-1} vertices of $\Gamma_{W_{m-1}}$ by the whole set of contractions T_i, $0 \leq i \leq N_b - 1$. \(\square\)
Figure 1: The fixed points P_0, P_1, P_2, and the graph Γ_{W_0}, in the case where $\lambda = \frac{1}{2}$, and $N_b = 3$.

Figure 2: The graph Γ_{W_1}, in the case where $\lambda = \frac{1}{2}$, and $N_b = 3$. $T_0(P_2) = T_1(P_0)$ et $T_1(P_2) = T_2(P_1)$.

Definition 2.2. Consecutive vertices on the graph Γ_W

Two points X and Y of Γ_W will be called *consecutive vertices* of the graph Γ_W if there exists a natural integer m, and an integer j of $\{0, ..., N_b - 2\}$, such that:

$$X = (T_{i_1} \circ \ldots \circ T_{i_m})(P_j) \quad \text{and} \quad Y = (T_{i_1} \circ \ldots \circ T_{i_m})(P_{j+1}) \quad \{i_1, \ldots, i_m\} \in \{0, ..., N_b - 1\}^m$$

or:

$$X = (T_{i_1} \circ T_{i_2} \circ \ldots \circ T_{i_m})(P_{N_b-1}) \quad \text{and} \quad Y = (T_{i_1+1} \circ T_{i_2} \ldots \circ T_{i_m})(P_0)$$
Figure 3: The polygons $P_{1,0}$, $P_{1,1}$, $P_{1,2}$, in the case where $\lambda = \frac{1}{2}$, and $N_b = 3$.

Figure 4: The graphs Γ_{W_0} (in green), Γ_{W_1} (in red), Γ_{W_2} (in orange), Γ_{W} (in cyan), in the case where $\lambda = \frac{1}{2}$, and $N_b = 3$.

Remark 2.2. It is important to note that X and Y cannot be in the same time the images of P_j and P_{j+1}, $0 \leq j \leq N_b - 2$, by $T_{i_1} \circ \ldots \circ T_{i_m}$, $(i_1, \ldots, i_m) \in \{0, \ldots, N_b - 2\}$, and of P_k and P_{k+1}, $0 \leq k \leq N_b - 2$, by $T_{p_1} \circ \ldots \circ T_{p_m}$, $(p_1, \ldots, p_m) \in \{0, \ldots, N_b - 2\}$. This result can be proved by induction, since, for any pair of integers (j, k) of $\{0, \ldots, N_b - 2\}^2$, for any i_m of $\{0, \ldots, N_b - 2\}$, and any p_m of $\{0, \ldots, N_b - 2\}$:

8
Each contraction T_i, $0 \leq i \leq N_b - 1$ is indeed injective.
Since the vertices of the initial graph Γ_{W_b} are distinct, one gets the expected result.

Definition 2.3. For any natural integer m, the N_{b}^{m} consecutive vertices of the graph $\Gamma_{W_{m}}$ are, also, the vertices of N_{b}^{m} simple polygons $P_{m,j}$, $0 \leq j \leq N_{b}^{m} - 1$, with N_{b} sides. For any integer j such that $0 \leq j \leq N_{b}^{m} - 1$, one obtains each polygon by linking the point number j to the point number $j + 1$ if $j = i \text{ mod } N_{b}$, $0 \leq i \leq N_{b} - 2$, and the point number j to the point number $j - N_{b} + 1$ if $j = -1 \text{ mod } N_{b}$. These polygons generate a Borel set of \mathbb{R}^{2}.

Definition 2.4. Polygonal domain delimited by the graph $\Gamma_{W_{m}}$, $m \in \mathbb{N}$

For any natural integer m, well call **polygonal domain delimited by the graph** $\Gamma_{W_{m}}$, and denote by $D(\Gamma_{W_{m}})$, the reunion of the N_{b}^{m} polygons $P_{m,j}$, $0 \leq j \leq N_{b}^{m} - 1$, with N_{b} sides.

Definition 2.5. Polygonal domain delimited by the graph Γ_{W}

We will call **polygonal domain delimited by the graph** Γ_{W}, and denote by $D(\Gamma_{W})$, the limit:

$$D(\Gamma_{W}) = \lim_{m \to +\infty} D(\Gamma_{W_{m}})$$

Definition 2.6. Word, on the graph Γ_{W}

Let m be a strictly positive integer. We will call **number-letter** any integer M_{i} of $\{0, \ldots, N_{b} - 1\}$, and **word of length** $|M| = m$, on the graph Γ_{W}, any set of number-letters of the form:

$$M = (M_{1}, \ldots, M_{m})$$

We will write:

$$T_{M} = T_{M_{1}} \circ \ldots \circ T_{M_{m}}$$

Property 2.7. For any natural integer m :

$$\Gamma_{W} = \bigcup_{|M| = k \geq m} T_{M}(\Gamma_{W})$$

Definition 2.7. Edge relation, on the graph Γ_{W}

Given a natural integer m, two points X and Y of $\Gamma_{W_{m}}$ will be called **adjacent** if and only if X and Y are two consecutive vertices of $\Gamma_{W_{m}}$. We will write:
This edge relation ensures the existence of a word $M = (M_1, \ldots, M_m)$ of length m, such that X and Y both belong to the iterate:

$$T_M V_0 = (T_{M_1} \circ \cdots \circ T_{M_m}) V_0$$

Given two points X and Y of the graph Γ_W, we will say that X and Y are adjacent if and only if there exists a natural integer m such that:

$$X \sim_m Y$$

Proposition 2.8. Adresses, on the graph of the Weierstrass function

Given a strictly positive integer m, and a word $M = (M_1, \ldots, M_m)$ of length $m \in \mathbb{N}^*$, on the graph Γ_{W_m}, for any integer j of $\{1, \ldots, N_b - 2\}$, any $X = T_M(P_j)$ of $V_m \setminus V_0$, i.e. distinct from one of the N_b fixed point P_i, $0 \leq i \leq N_b - 1$, has exactly two adjacent vertices, given by:

$$T_M(P_{j+1}) \text{ and } T_M(P_{j-1})$$

where:

$$T_M = T_{M_1} \circ \cdots \circ T_{M_m}$$

By convention, the adjacent vertices of $T_M(P_0)$ are $T_M(P_1)$ and $T_M(P_{N_b-1})$, those of $T_M(P_{N_b-1})$, $T_M(P_{N_b-2})$ and $T_M(P_0)$.

Property 2.9. The set of vertices $(V_m)_{m \in \mathbb{N}}$ is dense in Γ_W.

Definition 2.8. Power of a vertex of the graph Γ_{W_m}, $m \in \mathbb{N}^*$

Given a strictly positive integer m, a vertex X of the graph Γ_{W_m} will be said of power one if X belongs to one and only one N_b-gon $P_{m,j}$, $0 \leq j \leq N_b^m - 1$, and of power $\frac{1}{2}$ if X is a common vertex to consecutive N_b-gons $P_{m,j}$ and $P_{m,j'}$, $0 \leq j \leq N_b^m - 1$, $0 \leq j' \leq N_b^m - 1$, $j' \neq j$. In the sequel, the power of the vertex X will be denoted by:

$$p(X)$$

Definition 2.9. Measure, on the domain delimited by the graph Γ_W

We will call domain delimited by the graph Γ_W, and denote by $D(\Gamma_W)$, the limit:

$$D(\Gamma_W) = \lim_{n \to +\infty} D(\Gamma_{W_m})$$

which has to be understood in the following way: given a continuous function u on the graph Γ_W, and a measure with full support μ on \mathbb{R}^2, then:
\[
\int_{D(\Gamma_W)} u \, d\mu = \lim_{m \to +\infty} \sum_{j=0}^{N^m-1} \sum_{X \text{ vertex of } \mathcal{P}_{m,j}} \frac{p(X) \ u(X) \ \mu(\mathcal{P}_{m,j})}{N_b}
\]
We will say that \(\mu \) is a measure, on the domain delimited by the graph \(\Gamma_W \).

Definition 2.10. Dirichlet form (we refer to the paper [BD85], or the book [FOT94])

Given a measured space \((E, \mu)\), a Dirichlet form on \(E\) is a bilinear symmetric form, that we will denote by \(\mathcal{E} \), defined on a vectorial subspace \(D \) dense in \(L^2(E, \mu) \), such that:

1. For any real-valued function \(u \) defined on \(D \) : \(\mathcal{E}(u, u) \geq 0 \).
2. \(D \), equipped with the inner product which, to any pair \((u, v)\) of \(D \times D \), associates:
 \[
 (u, v)_\mathcal{E} = (u, v)_{L^2(E, \mu)} + \mathcal{E}(u, v)
 \]
 is a Hilbert space.
3. For any real-valued function \(u \) defined on \(D \), if:
 \[
 u_* = \min(\max(u, 0), 1) \in D
 \]
 then : \(\mathcal{E}(u_*, u_*) \leq \mathcal{E}(u, u) \) (Markov property, or lack of memory property).

Definition 2.11. Dirichlet form, on a finite set ([Kig03])

Let \(V \) denote a finite set \(V \), equipped with the usual inner product which, to any pair \((u, v)\) of functions defined on \(V \), associates:

\[
(u, v) = \sum_{p \in V} u(p) \, v(p)
\]

A Dirichlet form on \(V \) is a symmetric bilinear form \(\mathcal{E} \), such that:

1. For any real valued function \(u \) defined on \(V \) : \(\mathcal{E}(u, u) \geq 0 \).
2. \(\mathcal{E}(u, u) = 0 \) if and only if \(u \) is constant on \(V \).
3. For any real-valued function \(u \) defined on \(V \), if:
 \[
 u_* = \min(\max(u, 0), 1)
 \]
 i.e. :
 \[
 \forall p \in V : \quad u_*(p) = \begin{cases}
 1 & \text{if } u(p) \geq 1 \\
 u(p) & \text{if } 0 < u(p) < 1 \\
 0 & \text{if } u(p) \leq 0
 \end{cases}
 \]
 then: \(\mathcal{E}(u_*, u_*) \leq \mathcal{E}(u, u) \) (Markov property).
Remark 2.3. In order to understand the underlying theory of Dirichlet forms, one can only refer to the work of A. Beurling and J. Deny [BD85]. The Dirichlet space D of functions u, complex valued functions, infinitely differentiable, the support of which belongs to a domain $\omega \subset \mathbb{R}^p$, $p \in \mathbb{N}^*$, is equipped with the hilbertian norm:

$$u \mapsto \|u\|_D = \int_{\omega} |\nabla u(x)|^2 \, dx$$

If the complement set of ω is not "too small", the space D can be completed by adding functions defined almost everywhere in ω. The space thus obtained D_ω, equipped with the Lebesgue measure ξ, satisfies the following properties:

i. For any compact $K \subset \omega$, there exists a positive constant C_K such that, for any u of D_ω:

$$\int_K |u(x)| \, d\xi(x) \leq C_K \|u\|_D$$

ii. If one denotes by C the space of complex-valued, continuous functions with compact support, then $C \cap D_\omega$ is dense in C and in D_ω.

iii. For any contraction of the complex plane, and any u of D_ω:

$$Tu \in D_\omega \quad \text{and} \quad \|Tu\|_{D_\omega} \leq \|u\|_{D_\omega}$$

The Dirichlet space D_ω is generated by the Green potentials of finite energy, which are defined in a direct way, as the functions u of D_ω such that there exists a Radon measure μ such that:

$$\forall \varphi \in C \cap D_\omega : \quad (u, \varphi) = \int_{\omega} \varphi \, d\mu$$

Such a map u will be called potential generated by μ.

The linear map Δ which, to any potential u of D_ω, associates the measure μ that generates this potential, is called generalized Laplacian for the space D.

It is interesting to note that the original theory of Dirichlet spaces concerned functions defined on a Hausdorff space (separated espace), with a positive Radon measure of full support (every non-empty open set has a strictly positive measure).

Remark 2.4. One may wonder why the Markov property is of such importance in our building of a Laplacian ? Very simply, the lack of memory - or the fact that the future state which corresponds, for any natural integer m, to the values of the considered function on the graph $\Gamma_{W_{m+1}}$, depends only of the present state, i.e. the values of the function on the graph Γ_{W_m}, accounts for the building of the Laplacian step by step.

Theorem 2.10. An upper bound and a lower bound, for the box-dimension of the graph $\Gamma_{\mathcal{W}}$

For any integer j belonging to $\{0, 1, \ldots, N_b - 2\}$, each natural integer m, and each word \mathcal{M} of length m, let us consider the rectangle, whose sides are parallel to the horizontal and vertical axes, of width:
\[L_m = x(T_M(P_{j+1})) - x(T_M(P_j)) = \frac{1}{(N_b - 1) N^m_b} \]

and height \(|h_{j,m}|\), such that the points \(T_M(P_j)\) and \(T_M(P_{j+1})\) are two vertices of this rectangle. Then:

i. When the integer \(N_b\) is odd:

\[
L_m^{2-D_W} (N_b - 1)^{2-D_W} \min \left\{ \frac{2}{1 - \lambda} \sin \left(\frac{\pi}{N_b - 1} \right), \frac{2}{N_b (N_b - 1)} \right\} \leq |h_{j,m}| \]

ii. When the integer \(N_b\) is even:

\[
L_m^{2-D_W} (N_b - 1)^{2-D_W} \max \left\{ \frac{2}{1 - \lambda} \sin \left(\frac{\pi}{N_b - 1} \right), \frac{2}{N_b (N_b - 1)} \right\} \leq |h_{j,m}| \]

Also:

\[
|h_{j,m}| \leq \eta_W L_m^{2-D_W} (N_b - 1)^{2-D_W} \]

where the real constant \(\eta_W\) is given by:

\[
\eta_W = 2 \pi^2 \left\{ \frac{(2 N_b - 1) \lambda (N^2_b - 1)}{(N_b - 1)^2 (1 - \lambda) (\lambda N^2_b - 1)} + \frac{2 N_b}{(\lambda N^2_b - 1) (\lambda N^3_b - 1)} \right\}.
\]

Notation. In the sequel, we set, for any natural integer \(m\):

\[
h_m = L_m^{2-D_W} = \frac{N^m_{(D_W-2)\bar{m}}}{(N_b - 1)^{2-D_W}}
\]

and:

\[
h = N^m_{(D_W-2)}
\]

Definition 2.12. Energy, on the graph \(\Gamma_{W_m}, m \in \mathbb{N}\), of a pair of functions

Let \(m\) be a natural integer, and \(u\) and \(v\) two real valued functions, defined on the set

\[
V_m = \left\{ S^m_0, S^m_1, \ldots, S^m_{N^m_{\bar{m}}} \right\}
\]

of the \(N^m_{m}\) vertices of \(\Gamma_{W_m}\).

It appears as natural to introduce the energy, on the graph \(\Gamma_{W_m}, \) of the pair of functions \((u,v)\), as:

\[
\mathcal{E}_{\Gamma_{W_m}}(u,v) = \sum_{i=0}^{N^m_{m}-2} \left(\frac{u(S^m_i) - u(S^m_{i+1})}{h_m} \right) \left(\frac{v(S^m_i) - v(S^m_{i+1})}{h_m} \right)
\]

For the sake of simplicity, we will write it under the form:

\[
\mathcal{E}_{\Gamma_{W_m}}(u,v) = \frac{1}{h^2_m} \sum_{X \sim Y} (u(X) - u(Y)) (v(X) - v(Y))
\]

13
Property 2.11. Given a natural integer m, and a real-valued function u, defined on the set of vertices of Γ_{W_m}, the map, which, to any pair of real-valued, continuous functions (u,v) defined on the set V_m of the N_m vertices of Γ_{W_m}, associates:

$$
\mathcal{E}_{\Gamma_{W_m}}(u,v) = \frac{1}{h_m^2} \sum_{X \sim Y}^m (u(X) - u(Y)) (v(X) - v(Y))
$$

is a Dirichlet form on Γ_{W_m}.

Moreover:

$$
\mathcal{E}_{\Gamma_{W_m}}(u,u) = 0 \iff u \text{ is constant}
$$

Proposition 2.12. Harmonic extension of a function, on the graph of the Weierstrass function

For any strictly positive integer m, if u is a real-valued function defined on V_{m-1}, its harmonic extension, denoted by \tilde{u}, is obtained as the extension of u to V_m which minimizes the energy:

$$
\mathcal{E}_{\Gamma_{W_m}}(\tilde{u},\tilde{u}) = \sum_{X \sim Y}^m (\tilde{u}(X) - \tilde{u}(Y))^2
$$

The link between $\mathcal{E}_{\Gamma_{W_m}}$ and $\mathcal{E}_{\Gamma_{W_{m-1}}}$ is obtained through the introduction of two strictly positive constants r_m and r_{m-1} such that:

$$
\sum_{X \sim Y}^m (\tilde{u}(X) - \tilde{u}(Y))^2 = \frac{r_m - 1}{r_{m-1}} \sum_{X \sim Y}^{m-1} (u(X) - u(Y))^2
$$

In particular:

$$
r_1 \sum_{X \sim Y}^1 (\tilde{u}(X) - \tilde{u}(Y))^2 = \sum_{X \sim Y}^0 (u(X) - u(Y))^2
$$

For the sake of simplicity, we will fix the value of the initial constant: $r_0 = 1$. One has then:

$$
\mathcal{E}_{\Gamma_{W_1}}(\tilde{u},\tilde{u}) = \frac{1}{r_1 h_1^2} \mathcal{E}_{\Gamma_{W_0}}(\tilde{u},\tilde{u})
$$

Let us set:

$$
r = \frac{1}{r_1}
$$

and:

$$
\mathcal{E}_m(u) = r_m \sum_{X \sim Y}^m (\tilde{u}(X) - \tilde{u}(Y))^2
$$

Since the determination of the harmonic extension of a function appears to be a local problem, on the graph $\Gamma_{W_{m-1}}$, which is linked to the graph Γ_{W_m} by a similar process as the one that links Γ_{W_1} to Γ_{W_0}, one deduces, for any strictly positive integer m:

$$
\mathcal{E}_{\Gamma_{W_m}}(\tilde{u},\tilde{u}) = \frac{1}{r_1} \mathcal{E}_{\Gamma_{W_{m-1}}}(\tilde{u},\tilde{u})
$$

By induction, one gets:
If v is a real-valued function, defined on V_{m-1}, of harmonic extension \tilde{v}, we will write:

$$E_m(u,v) = r^{-m} \sum_{X, Y \sim m} \frac{(\tilde{u}(X) - \tilde{u}(Y))(\tilde{v}(X) - \tilde{v}(Y))}{h_m^2} \tilde{v}(X) - \tilde{v}(Y)^2$$

For further precision on the construction and existence of harmonic extensions, we refer to [Sab97].

Nota Bene:

The above latter energy formula writes:

$$E_m(u,u) = N_b^{(5-2D_W)} \sum_{X, Y \sim m} (\tilde{u}(X) - \tilde{u}(Y))^2$$

We would like to lay the emphasis upon the fact that this work involves a mixt approach, using both the methods of J. Kigami and R. S. Strichartz, and the one by U. Mosco for fractal curves [Most02], which takes into account topology and geometry, by the means of a quasi-distance, built from the euclidean one d_{eucl} between adjacent points X and Y such that $X \sim Y$:

$$d(X,Y) = (d_{eucl}(X,Y))^\delta$$

where δ is a real constant. The related energy writes:

$$E_m(u) = \sum_{X, Y \sim m} (\tilde{u}(X) - \tilde{u}(Y))^2$$

Yet, one cannot apply this method in our case, the constant δ being a priori determined, either by decimation, either in order to verify the Gaussian principle. It is impossible to determine this constant in a non-affine framework like that of the graph of the Weierstrass function.

The question one may ask is whether one may be sure that $N_b^{(5-2D_W)}$ is the right constant in the present case? The question is not an innocuous one, in so far as the value of this constant directly affects the spectra of the related Laplacian.

The point is that, by construction, our energies satisfy the maximum principle. Also, the value of this constant joins the one at stake in the value of the population spectral density of fractional Brown functions evoked in [Man77a]. It is obtained The links between randomized forms of the Weierstrass functions and fractional Brownian motion incline us to think that we are in the good direction.

Notation. Given a strictly positive integer m, let us consider a vertex X of the graph Γ_{W_m}. Two configurations can occur:

i. the vertex X belongs to one and only one polygon with N_b sides, $\mathcal{P}_{m,j}$, $0 \leq j \leq N_b^m - 1$. We set:

$$\mathcal{A}_m = \mu(\mathcal{P}_{m,j})$$
The vertex X is the intersection point of two polygons with N_b sides, $P_{m,j}$ and $P_{m,j+1}$, $0 \leq j \leq N_b^m - 2$. We set:

$$A_m = \frac{1}{2} \{ \mu(P_{m,j}) + \mu(P_{m,j+1}) \}$$

Definition 2.13. Dirichlet form, for a pair of continuous functions defined on the graph Γ_W

We define the Dirichlet form \mathcal{E} which, to any pair of real-valued, continuous functions (u, v) defined on the graph Γ_W, associates, subject to its existence:

$$\mathcal{E}(u, v) = \lim_{m \to +\infty} \sum_{X \sim Y} r^{-m} \left(\frac{u|_{V_m}(X) - u|_{V_m}(Y)}{h_m^2} \right) \left(\frac{v|_{V_m}(X) - v|_{V_m}(Y)}{h_m^2} \right) \frac{A_m}{N_b}$$

Definition 2.14. Normalized energy, for a continuous function u, defined on the graph Γ_W

Taking into account that the sequence $(E_m(u|_{V_m}))_{m \in \mathbb{N}}$ is defined on

$$V_* = \bigcup_{i \in \mathbb{N}} V_i$$

one defines the normalized energy, for a continuous function u, defined on the graph Γ_W, by:

$$\mathcal{E}(u) = \lim_{m \to +\infty} \sum_{X \sim Y} r^{-m} \left(\frac{u|_{V_m}(X) - u|_{V_m}(Y)}{h_m^2} \right)^2 \frac{A_m}{N_b}$$

Notation. We will denote by $\text{dom} \mathcal{E}$ the subspace of continuous functions defined on Γ_W, such that:

$$\mathcal{E}(u) < +\infty$$

Notation. We will denote by $\text{dom}_0 \mathcal{E}$ the subspace of continuous functions defined on Γ_W, which take the value on V_0, such that:

$$\mathcal{E}(u) < +\infty$$
3 Laplacian of a continuous function, on the graph of the Weierstrass function

3.1 Theoretical aspect

Property 3.1. Building of a specific measure, for the domain delimited by the graph of the Weierstrass function

The Dirichlet forms mentioned in the above require a positive Radon measure with full support. In auto-affine configurations (the Sierpiński Gasket for instance), the choice of a self-similar measure, which is, most of the time, built with regards to a reference set, of measure 1, appears, first, as very natural. More generally, R. S. Strichartz [RSS93], [Str99], showed that one can simply consider auto-replicant measures \(\tilde{\mu} \), i.e. measures \(\mu \) such that:

\[
\mu = \sum_{i=0}^{N_b-1} \mu_i \circ T_i^{-1} \quad (\ast)
\]

where \((\mu_i)_{0 \leq i \leq N_b-1} \) denotes a family of strictly positive pounds.

The non-affine framework makes it clear that there cannot exist such constant coefficients \(\mu_i \). It appears more realistic that they depend on the order \(m \in \mathbb{N}^* \) of the iteration, as:

\[
\mu = \sum_{i=0}^{N_b-1} \mu_{m,i} \circ T_i^{-1} \quad (\ast_m)
\]

Let us thus denote by \(\mu_L \) the Lebesgue measure on \(\mathbb{R}^2 \), and start with the normalized measure:

\[
\mu = \frac{\mu_L}{\mu_L(P_0)}
\]

and look for a family of strictly positive pounds \((\mu_{1,i})_{0 \leq i \leq N_b-1} \) such that:

\[
\mu(T_0(P_0) \cup T_1(P_0) \cup T_2(P_0) \cup \ldots \cup T_{N_b-1}(P_0)) = \sum_{i=0}^{N_b-1} \mu_{1,i} \mu(P_0) = \sum_{i=0}^{N_b-1} \mu_{1,i}
\]

The convenient choice, for any \(i \) of \(\{0, \ldots, N_b-1\} \), is:

\[
\mu_{1,i} = \mu(T_i(P_0))
\]

Now, given a strictly positive integer \(m \), let us look for a family of strictly positive pounds \((\mu_{1,i})_{0 \leq i \leq N_b-1} \) such that:

\[
\mu = \sum_{i=0}^{N_b-1} \mu_{m,i} \circ T_i^{-1} \quad (\ast_m)
\]

where \((\mu_{m,i})_{0 \leq i \leq N_b-1} \) denotes a family of strictly positive pounds.

Relation \((\ast_m) \) yields, for any set of polygons \(P_{m,j}, \ m \in \mathbb{N}, \ 0 \leq j \leq N_b^m - 1 \), with \(N_b \) sides:

\[
\mu \left(\bigcup_{0 \leq j \leq N_b^m - 1} P_{m,j} \right) = \sum_{i=0}^{N_b-1} \mu_{m,i} \mu \left(\bigcup_{0 \leq j \leq N_b^{m-1} - 1} P_{m-1,j} \right)
\]
and, in particular:

$$\mu \left(T_0 \left(\bigcup_{0 \leq j \leq N_{b}^{m-1}-1} \mathcal{P}_{m-1,j} \right) \cup \ldots \cup T_{N_b-1} \left(\bigcup_{0 \leq j \leq N_{b}^{m-1}-1} \mathcal{P}_{m-1,j} \right) \right) = \sum_{i=0}^{N_b-1} \mu_{m,i} \mu \left(\bigcup_{0 \leq j \leq N_{b}^{m-1}-1} \mathcal{P}_{m-1,j} \right)$$

i.e.:

$$\sum_{i=0}^{N_b-1} \mu \left(T_i \left(\bigcup_{0 \leq j \leq N_{b}^{m-1}-1} \mathcal{P}_{m-1,j} \right) \right) = \sum_{i=0}^{N_b-1} \mu_i \mu \left(\bigcup_{0 \leq j \leq N_{b}^{m-1}-1} \mathcal{P}_{m-1,j} \right)$$

The convenient choice, for any \(i \) of \(\{0, \ldots, N_b - 1\} \), is:

$$\mu_{m,i} = \frac{\mu_0 \left(T_i \left(\bigcup_{0 \leq j \leq N_{b}^{m-1}-1} \mathcal{P}_{m-1,j} \right) \right)}{\mu \left(\bigcup_{0 \leq j \leq N_{b}^{m-1}-1} \mathcal{P}_{m-1,j} \right)}$$

Remark 3.1. The above result appears as an interesting splitting, fitted for the polygonal domain \(\mathcal{D}(\Gamma_W) \).

Definition 3.1. Laplacian of order \(m \in \mathbb{N}^* \)

For any strictly positive integer \(m \), and any real-valued function \(u \), defined on the set \(V_m \) of the vertices of the graph \(\Gamma_{W_m} \), we introduce the Laplacian of order \(m \), \(\Delta_m(u) \), by:

$$\Delta_m u(X) = \frac{1}{h_m^2} \sum_{Y \in V_m, Y \sim X} \left(u(Y) - u(X) \right) \quad \forall X \in V_m \setminus V_0$$

Definition 3.2. Harmonic function of order \(m \in \mathbb{N}^* \)

Let \(m \) be a strictly positive integer. A real-valued function \(u \), defined on the set \(V_m \) of the vertices of the graph \(\Gamma_{W_m} \), will be said to be harmonic of order \(m \) if its Laplacian of order \(m \) is null:

$$\Delta_m u(X) = 0 \quad \forall X \in V_m \setminus V_0$$

Definition 3.3. Piecewise harmonic function of order \(m \in \mathbb{N}^* \)

Given a strictly positive integer \(m \), a real valued function \(u \), defined on the set of vertices of \(\Gamma_W \), is said to be piecewise harmonic function of order \(m \) if, for any word \(\mathcal{M} \) of length \(m \), \(u \circ T_M \) is harmonic of order \(m \).
Definition 3.4. Existence domain of the Laplacian, for a continuous function on the graph \(\Gamma_W \) (see [BD85])

We will denote by \(\text{dom} \Delta \) the existence domain of the Laplacian, on the graph \(\Gamma_W \), as the set of functions \(u \) of \(\text{dom} \mathcal{E} \) such that there exists a continuous function on \(\Gamma_W \), denoted \(\Delta u \), that we will call \text{Laplacian of} \(u \), such that:

\[
\mathcal{E}(u,v) = - \int_{\mathcal{D}(\Gamma_W)} v \Delta u d\mu \quad \text{for any} \quad v \in \text{dom}_0 \mathcal{E}
\]

Definition 3.5. Harmonic function

A function \(u \) belonging to \(\text{dom} \Delta \) will be said to be \text{harmonic} if its Laplacian is equal to zero.

\textbf{Notation.} In the following, we will denote by \(\mathcal{H}_0 \subset \text{dom} \Delta \) the space of harmonic functions, i.e. the space of functions \(u \in \text{dom} \Delta \) such that:

\[
\Delta u = 0
\]

Given a natural integer \(m \), we will denote by \(\mathcal{S}(\mathcal{H}_0, V_m) \) the space, of dimension \(N_b^m \), of spline functions of level \(m \), \(u \), defined on \(\Gamma_W \), continuous, such that, for any word \(\mathcal{M} \) of length \(m \), \(u \circ T_{\mathcal{M}} \) is harmonic, i.e.:

\[
\Delta_m (u \circ T_{\mathcal{M}}) = 0
\]

\textbf{Property 3.2.} For any natural integer \(m \):

\[
\mathcal{S}(\mathcal{H}_0, V_m) \subset \text{dom} \mathcal{E}
\]

3.2 Explicit determination of the Laplacian of a function \(u \) of \(\text{dom} \Delta \)

Definition 3.6. Spline functions on \(\mathcal{D}(\Gamma_W) \), \(m \in \mathbb{N}^* \)

Given a strictly positive integer \(m \), let us consider a vertex \(X \) of the graph \(\Gamma_{W_m} \). Two configurations can occur:

i. the vertex \(X \) belongs to one and only one polygon with \(N_b \) sides, \(\mathcal{P}_{m,j} \), \(0 \leq j \leq N_b^m - 1 \).

In this case, if one considers the spline functions \(\psi_Z^m \) which correspond to the \(N_b - 1 \) vertices of this polygon distinct from \(X \):

\[
\sum_{Z \text{vertex of } \mathcal{P}_{m,j}} \int_{\mathcal{D}(\Gamma_W)} \psi_Z^m d\mu = \mu (\mathcal{P}_{m,j})
\]

i.e., by symmetry:

\[
N_b \int_{\mathcal{D}(\Gamma_W)} \psi_X^m d\mu = \mu (\mathcal{P}_{m,j})
\]
Thus:

\[
\int_{D(\Gamma_W)} \psi_X^m d\mu = \frac{1}{N_b} \mu(P_{m,j}) = \frac{A_m}{N_b}
\]

where we retrieve the quantities \(A_m\) of definition 2.1.

\[
\text{Figure 5: The graph of a spline function } \psi_X^m, m \in \mathbb{N}, \text{ in the case } N_b = 3.
\]

ii. the vertex \(X\) is the intersection point of two polygons with \(N_b\) sides, \(P_{m,j}\) and \(P_{m,j+1}\), \(0 \leq j \leq N_b^m - 2\).

On has then to take into account the contributions of both polygons, which leads to:

\[
\int_{D(\Gamma_W)} \psi_X^m d\mu = \frac{1}{2N_b} \{\mu(P_{m,j}) + \mu(P_{m,j+1})\} = \frac{A_m}{N_b}
\]

where, again, we retrieve the quantities \(A_m\) of definition 2.1.

Remark 3.2. As it is explained in [Str06], one has just to reason by analogy with the dimension 1, more particularly, the unit interval \(I = [0, 1]\), of extremities \(X_0 = (0, 0)\), and \(X_1 = (1, 0)\). The functions \(\psi_{X_1}\) and \(\psi_{X_2}\) such that, for any \(Y\) of \(\mathbb{R}^2\):

\[
\psi_{X_1}(Y) = \delta_{X_1}Y, \quad \psi_{X_2}(Y) = \delta_{X_2}Y
\]

are, in the most simple way, tent functions. For the standard measure, one gets values that do not depend on \(X_1\), or \(X_2\) (one could, also, choose to fix \(X_1\) and \(X_2\) in the interior of \(I\)):

\[
\int_I \psi_{X_1} d\mu = \int_I \psi_{X_2} d\mu = \frac{1}{2}
\]

(which corresponds to the surfaces of the two tent triangles.)
Figure 6: The graphs of the spline functions ψ_{X_1} and ψ_{X_2}.

In our case, we have just build the pendant, by no longer reasoning on the unit interval, but on our N_b-gons.

Property 3.3. Let m be a strictly positive integer, $X \notin V_0$ a vertex of the graph Γ_W, and $\psi^m_X \in S(\mathcal{H}_0, V_m)$ a spline function such that:

$$
\psi^m_X(Y) = \begin{cases}
\delta_{XY} & \forall \ Y \in V_m \\
0 & \forall \ Y \notin V_m
\end{cases}
$$

where $\delta_{XY} = \begin{cases}
1 & \text{if } X = Y \\
0 & \text{else}
\end{cases}$

Then, since $X \notin V_0$: $\psi^m_X \in \text{dom}_0 \mathcal{E}$.

Let us first note that:

$$
\mathcal{E}(u, \psi^m_X) = \sum_{Y \in V_m, Y \sim X} \Delta_m u(X) (\psi^m_X(Y) - \psi^m_X(Y)) \left(\int_{D(\Gamma_W)} \psi^m_X d\mu \right)
$$

$$
= \frac{N_b}{h_m^2} \sum_{Y \in V_m, Y \sim X} (u(Y) - u(X)) \left(\int_{D(\Gamma_W)} \psi^m_X d\mu \right)
$$

$$
= \frac{N_b}{h_m^2} \int_{D(\Gamma_W)} (u(Y) - u(X)) \psi^m_X(Y) d\mu
$$

For any function u of $\text{dom} \mathcal{E}$, such that its Laplacian exists, definition (3.4) applied to ψ^m_X leads to:

$$
\mathcal{E}(u, \psi^m_X) = -N_b \Delta_m u(X) \left(\int_{D(\Gamma_W)} \psi^m_X d\mu \right) = -\int_{D(\Gamma_W)} \psi^m_X \Delta u d\mu \approx -\Delta u(X) \int_{D(\Gamma_W)} \psi^m_X d\mu
$$

since Δu is continuous on Γ_W, and the support of the spline function ψ^m_X is close to X:

$$
\int_{D(\Gamma_W)} \psi^m_X \Delta u d\mu \approx -\Delta u(X) \int_{D(\Gamma_W)} \psi^m_X d\mu
$$

By passing through the limit when the integer m tends towards infinity, one gets:

$$
\lim_{m \to +\infty} \int_{D(\Gamma_W)} \psi^m_X \Delta_m u d\mu = \Delta u(X) \lim_{m \to +\infty} \int_{D(\Gamma_W)} \psi^m_X d\mu
$$
Reciprocally, if the sequence of functions \((f_m)_{m \in \mathbb{N}} \) such that, for any natural integer \(m \), and any \(X \) of \(V_\star \setminus V_0 \):

\[
f_m(X) = N^m_b \Delta_m u(X)
\]

converges uniformly towards \(\Delta u \), and, reciprocally, if the sequence of functions \((f_m)_{m \in \mathbb{N}} \) converges uniformly towards a continuous function on \(V_\star \setminus V_0 \), then:

\[
u \in \text{dom} \Delta
\]

Proof. Let \(u \) be in \(\text{dom} \Delta \). Since \(u \) belongs to \(\text{dom} \Delta \), its Laplacian \(\Delta u \) exists, and is continuous on the graph \(\Gamma_Y \). The uniform convergence of the sequence \((f_m)_{m \in \mathbb{N}} \) follows.

Reciprocally, if the sequence of functions \((f_m)_{m \in \mathbb{N}} \) converges uniformly towards a continuous function on \(V_\star \setminus V_0 \), the, for any natural integer \(m \), and any \(v \) belonging to \(\text{dom}_0 \mathcal{E} \):

\[
\mathcal{E}_m(u, v) = \sum_{(X,Y) \in \mathbb{V}^2, X \sim Y} \frac{N^m_b}{h^2_m} (u_{|V_m}(X) - u_{|V_m}(Y)) \left(v_{|V_m}(X) - v_{|V_m}(Y) \right)
\]

\[
= \sum_{(X,Y) \in \mathbb{V}^2, X \sim Y} \frac{N^m_b}{h^2_m} (u_{|V_m}(Y) - u_{|V_m}(X)) \left(v_{|V_m}(Y) - v_{|V_m}(X) \right)
\]

\[
- \sum_{X \in V_m \setminus V_0} \sum_{Y \in V_m, Y \sim X} v_{|V_m}(X) \left(u_{|V_m}(Y) - u_{|V_m}(X) \right)
\]

\[
- \sum_{X \in V_0} \sum_{Y \in V_m, Y \sim X} v_{|V_m}(X) \left(u_{|V_m}(Y) - u_{|V_m}(X) \right)
\]

\[
= \sum_{X \in V_m \setminus V_0} \sum_{Y \in V_m \setminus V_0, Y \sim X} v(X) \left(u_{|V_m}(Y) - u_{|V_m}(X) \right)
\]

\[
= \sum_{X \in V_0} \sum_{Y \in V_m, Y \sim X} v(X) \left(u_{|V_m}(Y) - u_{|V_m}(X) \right)
\]

Let us note that any \(X \) of \(V_m \setminus V_0 \) admits exactly two adjacent vertices which belong to \(V_m \setminus V_0 \), which accounts for the fact that the sum

\[
\sum_{X \in V_m \setminus V_0} \frac{N^m_b}{h^2_m} \sum_{Y \in V_m \setminus V_0, Y \sim X} v(X) \left(u_{|V_m}(Y) - u_{|V_m}(X) \right)
\]

has the same number of terms as:

\[
\sum_{(X,Y) \in (V_m \setminus V_0)^2, X \sim Y} \frac{N^m_b}{h^2_m} (u_{|V_m}(Y) - u_{|V_m}(X)) \left(v_{|V_m}(Y) - v_{|V_m}(X) \right)
\]

For any natural integer \(m \), we introduce the sequence of functions \((f_m)_{m \in \mathbb{N}} \) such that, for any \(X \) of \(V_m \setminus V_0 \):

\[
\Delta u(X) = \lim_{m \to +\infty} N^m_b \Delta_m u(X)
\]
The sequence \((f_m)_{m \in \mathbb{N}}\) converges uniformly towards \(\Delta u\).

4 Normal derivatives

Let us go back to the case of a function \(u\) twice differentiable on \(I = [0, 1]\), that does not vanish in 0 and 1:

\[
\int_0^1 (\Delta u)(x) v(x) \, dx = - \int_0^1 u'(x) v'(x) \, dx + u'(1) v(1) - u'(0) v(0)
\]

The normal derivatives:

\[
\partial_n u(1) = u'(1) \quad \text{and} \quad \partial_n u(0) = u'(0)
\]

appear in a natural way. This leads to:

\[
\int_0^1 (\Delta u)(x) v(x) \, dx = - \int_0^1 u'(x) v'(x) \, dx + \sum_{\partial [0,1]} v \partial_n u
\]

One meets thus a particular case of the Gauss-Green formula, for an open set \(\Omega\) of \(\mathbb{R}^d\), \(d \in \mathbb{N}^*\):

\[
\int_{\Omega} \nabla u \cdot \nabla v \, d\mu = - \int_{\Omega} (\Delta u) \, v \, d\mu + \int_{\partial \Omega} v \partial_n u \, d\sigma
\]

where \(\mu\) is a measure on \(\Omega\), and where \(d\sigma\) denotes the elementary surface on \(\partial \Omega\).

In order to obtain an equivalent formulation in the case of the graph \(\Gamma_W\), one should have, for a pair of functions \((u, v)\) continuous on \(\Gamma_W\) such that \(u\) has a normal derivative:

\[
\mathcal{E}(u, v) = - \int_{\Omega} (\Delta u) \, v \, d\mu + \sum_{V_0} v \partial_n u
\]

For any natural integer \(m\):

\[
\mathcal{E}_m(u, v) = \sum_{(X,Y) \in V_m^2, X \sim Y} \frac{N^m_b}{h^2_m} (v|_{V_m}(Y) - v|_{V_m}(X)) (u|_{V_m}(Y) - u|_{V_m}(X))
\]

\[
= - \sum_{X \in V_m \setminus V_0} \frac{N^m_b}{h^2_m} \sum_{Y \in V_m, Y \sim X} v|_{V_m}(X) (u|_{V_m}(Y) - u|_{V_m}(X))
\]

\[
- \sum_{X \in V_0} \frac{N^m_b}{h^2_m} \sum_{Y \in V_m, Y \sim X} v|_{V_m}(X) (u|_{V_m}(Y) - u|_{V_m}(X))
\]

\[
= - \sum_{X \in V_m \setminus V_0} v|_{V_m}(X) \frac{N^m_b}{h^2_m} \Delta_m u|_{V_m}(X)
\]

\[
+ \sum_{X \in V_0} \sum_{Y \in V_m, Y \sim X} \frac{N^m_b}{h^2_m} v|_{V_m}(X) (u|_{V_m}(X) - u|_{V_m}(Y))
\]

We thus come across an analogous formula of the Gauss-Green one, where the role of the normal derivative is played by:

\[
\sum_{X \in V_0} \sum_{Y \in V_m, Y \sim X} \frac{N^m_b}{h^2_m} (u|_{V_m}(X) - u|_{V_m}(Y)) \frac{A_m}{N_b}
\]
Definition 4.1. For any X of V_0, and any continuous function u on Γ_W, we will say that u admits a normal derivative in X, denoted by $\partial_n u(X)$, if:

$$\lim_{m \to +\infty} \frac{N_m}{h_m^2} \sum_{Y \in V_m, Y \sim X} (u|_{V_m}(X) - u|_{V_m}(Y)) \frac{A_m}{N_b} < +\infty$$

We will set:

$$\partial_n u(X) = \lim_{m \to +\infty} \frac{N_m}{h_m^2} \sum_{Y \in V_m, Y \sim X} (u|_{V_m}(X) - u|_{V_m}(Y)) \frac{A_m}{N_b} < +\infty$$

Definition 4.2. For any natural integer m, any X of V_m, and any continuous function u on Γ_W, we will say that u admits a normal derivative in X, denoted by $\partial_n u(X)$, if:

$$\lim_{k \to +\infty} \frac{r^{-k}}{h_k^2} \sum_{Y \in V_k, Y \sim X} (u|_{V_k}(X) - u|_{V_k}(Y)) \frac{A_k}{N_b} < +\infty$$

We will set:

$$\partial_n u(X) = \lim_{k \to +\infty} \frac{r^{-k}}{h_k^2} \sum_{Y \in V_k, Y \sim X} (u|_{V_k}(X) - u|_{V_k}(Y)) \frac{A_k}{N_b} < +\infty$$

Remark 4.1. One can thus extend the definition of the normal derivative of u to Γ_W.

Theorem 4.1. Let u be in $\text{dom} \Delta$. The, for any X of Γ_W, $\partial_n u(X)$ exists. Moreover, for any v of $\text{dom} \mathcal{E}$, et any natural integer m, the Gauss-Green formula writes:

$$\mathcal{E}(u, v) = -\int_{D(\Gamma_W)} (\Delta u) \ v \ d\mu + \sum_{V_0} v \partial_n u$$

5 **Spectrum of the Laplacian**

In the following, let u be in $\text{dom} \Delta$. We will apply the *spectral decimation method* developed by R. S. Strichartz [Str06], in the spirit of the works of M. Fukushima et T. Shima [FOT94]. In order to determine the eigenvalues of the Laplacian Δu built in the above, we concentrate first on the eigenvalues $(-\Lambda_m)_{m \in \mathbb{N}}$ of the sequence of graph Laplacians $(\Delta_m u)_{m \in \mathbb{N}}$, built on the discrete sequence of graphs $(\Gamma_{W_m})_{m \in \mathbb{N}}$. For any natural integer m, the restrictions of the eigenfunctions of the continuous Laplacian Δu to the graph Γ_{W_m} are, also, eigenfunctions of the Laplacian Δ_m, which leads to recurrence relations between the eigenvalues of order m and $m + 1$.

We thus aim at determining the solutions of the eigenvalue equation:

$$-\Delta u = \Lambda u \quad \text{on} \ \Gamma_W$$

as normalized limits, when the integer m tends towards infinity, of the solutions of:
\[-\Delta_m u = \Lambda_m u \text{ on } V_m \setminus V_0\]

Let \(m \geq 1 \). We consider an eigenfunction \(u_{m-1} \) on \(V_m \setminus V_0 \), for the eigenvalue \(\Lambda_{m-1} \). The aim is to extend \(u_{m-1} \) on \(V_m \setminus V_0 \) in a function \(u_m \), which will itself be an eigenfunction of \(\Delta_m \), for the eigenvalue \(\Lambda_m \), and, thus, to obtain a recurrence relation between the eigenvalues \(\Lambda_m \) and \(\Lambda_{m-1} \). Given three consecutive vertices of \(\Gamma_{V_{m-1}} \), \(X_k, X_{k+1}, X_{k+2} \), where \(k \) denotes a generic natural integer, we will denote by \(Y_{k+1}, \ldots, Y_{k+N_b} \) the points of \(V_m \setminus V_{m-1} \) such that: \(Y_{k+1}, \ldots, Y_{k+N_b} \) are between \(X_k \) and \(X_{k+1} \), and by \(Z_{k+1}, \ldots, Z_{k+2N_b-1} \), the points of \(V_m \setminus V_{m-1} \) such that: \(Z_{k+1}, \ldots, Z_{k+2N_b-1} \) are between \(X_{k+1} \) and \(X_{k+2} \). For the sake of consistency, let us set:

\[Y_{k+N_b} = X_{k+1} \quad \text{and} \quad Y_{k+2N_b} = X_{k+2} \]

Figure 7: The points \(X_k, X_{k+1}, X_{k+2}, \) and \(Y_k, \ldots, Y_{k+N_b}, \ldots, Y_{k+2N_b} \).
The values of \(u_{m-1} \) in \(X_k, X_{k+1}, X_{k+2} \) are thus supposed to be known.

The eigenvalue equation in \(\Lambda_m \) leads to the following systems:

\[
\begin{align*}
\{ \Lambda_m - 2h_{m-1}^2 \} u_m (Y_{k+1}) &= -h_{m-1}^2 u_{m-1} (X_k) - h_{m-1}^2 u_m (Y_{k+2}) \\
\{ \Lambda_m - 2h_{m-1}^2 \} u_m (Y_{k+i}) &= -h_{m-1}^2 u_m (Y_{k+i-1}) - h_{m-1}^2 u_m (Y_{k+i+1}) , \quad 1 \leq i \leq N_b - 3 \\
\{ \Lambda_m - 2h_{m-1}^2 \} u_m (Y_{k+N_b-1}) &= -h_{m-1}^2 u_{m-1} (X_k) - h_{m-1}^2 u_m (Y_{k+N_b-2})
\end{align*}
\]

and:

\[
\begin{align*}
\{ \Lambda_m - 2 \} u_m (Y_{k+N_b+1}) &= -h_{m-1}^2 u_{m-1} (X_k) - h_{m-1}^2 u_m (Y_{k+N_b+2}) \\
\{ \Lambda_m - 2h_{m-1}^2 \} u_m (Y_{k+N_b+i}) &= -h_{m-1}^2 u_m (Y_{k+N_b+i-1}) - h_{m-1}^2 u_m (Y_{k+N_b+i+1}) , \quad 1 \leq i \leq N_b - 3 \\
\{ \Lambda_m - 2h_{m-1}^2 \} u_m (Y_{k+2N_b-1}) &= -h_{m-1}^2 u_{m-1} (X_k) - h_{m-1}^2 u_m (Y_{k+2N_b-2})
\end{align*}
\]

For the sake of simplicity, we set:

\[
\Lambda_m = h_{m-1}^2 \tilde{\Lambda}_m
\]

The sequence \((u_m (Y_{k+i}))_{0 \leq i \leq 2N_b}\) satisfies a second order recurrence relation, the characteristic equation of which is:

\[
r^2 + \left\{ \Lambda_m - 2 \right\} r + 1 = 0
\]

The discriminant is:

\[
\delta_m = \left\{ \Lambda_m - 2 \right\}^2 - 4 = \omega_m^2 , \quad \omega_m \in \mathbb{C}
\]

The roots \(r_{1,m} \) and \(r_{2,m} \) of the characteristic equation are the scalar given by:

\[
\begin{align*}
 r_{1,m} &= \frac{2 - \tilde{\Lambda}_m - \omega_m}{2} , \\
r_{2,m} &= \frac{2 - \tilde{\Lambda}_m + \omega_m}{2}
\end{align*}
\]

One has then, for any natural integer \(i \) of \(\{0, \ldots, 2N_b\} \):

\[
u_m (Y_{k+i}) = \alpha_m r_{1,m}^i + \beta_m r_{2,m}^i
\]

where \(\alpha_m \) and \(\beta_m \) denote scalar constants.

The extension \(u_m \) of \(u_{m-1} \) to \(V_m \setminus V_0 \) has to be an eigenfunction of \(\Delta_m \), for the eigenvalue \(\Lambda_m \).

Since \(u_{m-1} \) is an eigenfunction of \(\Delta_{m-1} \), for the eigenvalue \(\Lambda_{m-1} \), the sequence \((u_{m-1} (X_{k+i}))_{0 \leq i \leq N_b}\) must itself satisfy a second order linear recurrence relation which be the pendant, at order \(m \), of the one satisfied by the sequence \((u_m (Y_{k+i}))_{0 \leq i \leq 2N_b}\), the characteristic equation of which is:

\[
h_{m-2}^2 \left\{ \Lambda_{m-1} - 2 \right\} r = -1 - r^2
\]

and discriminant:

\[
\delta_{m-1} = \left\{ \Lambda_{m-1} - 2 \right\}^2 - 4 = \omega_{m-1}^2 , \quad \omega_{m-1} \in \mathbb{C}
\]

The roots \(r_{1,m-1} \) and \(r_{2,m-1} \) of this characteristic equation are the scalar given by:

\[
\begin{align*}
 r_{1,m-1} &= \frac{2 - \tilde{\Lambda}_{m-1} - \omega_{m-1}}{2} , \\
r_{2,m-1} &= \frac{2 - \tilde{\Lambda}_{m-1} + \omega_{m-1}}{2}
\end{align*}
\]

For any integer \(i \) of \(\{0, \ldots, N_b\} \):

\[
u_{m-1} (Y_{k+i}) = \alpha_{m-1} r_{1,m-1}^i + \beta_{m-1} r_{2,m-1}^i
\]

where \(\alpha_{m-1} \) and \(\beta_{m-1} \) denote scalar constants.
From this point, the compatibility conditions, imposed by spectral decimation, have to be satisfied:

\[
\begin{align*}
&\begin{cases}
 u_m(Y_k) = u_{m-1}(X_k) \\
u_m(Y_{k+N_b}) = u_{m-1}(X_{k+1}) \\
u_m(Y_{k+2N_b}) = u_{m-1}(X_{k+2})
\end{cases}
\]

i.e.:

\[
\begin{align*}
\alpha_m + \beta_m &= \alpha_{m-1} + \beta_{m-1} + C_m \\
\alpha_m r_{1,m}^{N_b} + \beta_m r_{2,m}^{N_b} &= \alpha_{m-1} r_{1,m-1} + \beta_{m-1} r_{2,m-1} + C_{1,m} \\
\alpha_m r_{1,m}^{2N_b} + \beta_m r_{2,m}^{2N_b} &= \alpha_{m-1} r_{1,m-1}^{2} + \beta_{m-1} r_{2,m-1}^{2} + C_{2,m}
\end{align*}
\]

where, for any natural integer \(m \), \(\alpha_m \) and \(\beta_m \) are scalar constants (real or complex).

Since the graph \(\Gamma_{W_{m-1}} \) is linked to the graph \(\Gamma_{W_m} \) by a similar process to the one that links \(\Gamma_{W_1} \) to \(\Gamma_{W_0} \), one can legitimately consider that the constants \(\alpha_m \) and \(\beta_m \) do not depend on the integer \(m \):

\[
\forall m \in \mathbb{N}^* : \quad \alpha_m = \alpha \in \mathbb{R} \quad , \quad \beta_m = \beta \in \mathbb{R}
\]

The above system writes:

\[
\begin{align*}
\alpha r_{1,m}^{N_b} + \beta r_{2,m}^{N_b} &= \alpha r_{1,m-1} + \beta r_{2,m-1} \\
\alpha r_{1,m}^{2N_b} + \beta r_{2,m}^{2N_b} &= \alpha r_{1,m-1}^{2} + \beta r_{2,m-1}^{2}
\end{align*}
\]

One has then to consider the following configurations:

i. First case:

For any natural integer \(m \):

\[
r_{1,m} \in \mathbb{R} \quad , \quad r_{2,m} \in \mathbb{R}
\]

and, more precisely:

\[
r_{1,m} < 0 \quad , \quad r_{2,m} < 0
\]

since the function \(\varphi \), which, to any real number \(x \geq 4 \), associates:

\[
\varphi(x) = \frac{2 - x + \varepsilon \sqrt{(x - 2)^2 - 4}}{2}, \quad \varepsilon \in \{-1, 1\}
\]

is strictly increasing on \([4, +\infty[). Due to its continuity, is is a bijection of \([4, +\infty[\) on \(\varphi([4, +\infty[) = [-1, 0[\).

This configuration only occurs in the cases when the natural integer \(N_b \) is an odd number. Let us introduce the function \(\phi \), which, to any real number \(x \geq 2 \), associates:

\[
\phi(x) = |\varphi(x)| = \frac{-2 + x - \varepsilon \sqrt{(x - 2)^2 - 4}}{2}
\]

where \(\varepsilon \in \{-1, 1\} \).

The function \(\phi \) is a bijection of \([4, +\infty[\) on \(\phi([4, +\infty[) = [0, 1[\). We will denote by \(\phi^{-1} \) its inverse bijection:
\[\forall x \in]0, 1[: \quad \phi^{-1}(x) = \frac{(y + 1)^2}{y} \]

One has then:

\[\varphi(\tilde{\Lambda}_{m-1}) = \frac{2 - \tilde{\Lambda}_{m-1} + \varepsilon \omega_{m-1}}{2} \leq 0 \]

This yields:

\[(-1)^{N_b} \left(\varphi(\tilde{\Lambda}_m) \right)^{N_b} = \varphi(\tilde{\Lambda}_{m-1}) \leq 0 \]

which leads to:

\[\phi(\tilde{\Lambda}_m) = \left(\phi(\tilde{\Lambda}_{m-1}) \right)^{\frac{1}{N_b}} \]

and:

\[\tilde{\Lambda}_m = \phi^{-1} \left(\left(\phi(\tilde{\Lambda}_{m-1}) \right)^{\frac{1}{N_b}} \right) = \frac{\left(\phi(\tilde{\Lambda}_{m-1}) \right)^{\frac{1}{N_b}} + 1}{\phi(\tilde{\Lambda}_{m-1})} \frac{\left(-2 + \tilde{\Lambda}_{m-1} - \varepsilon \sqrt{\{\tilde{\Lambda}_{m-1} - 2\}^2 - 4} \right)^{\frac{1}{N_b}} + 1}{\left(-2 + \tilde{\Lambda}_{m-1} - \varepsilon \sqrt{\{\tilde{\Lambda}_{m-1} - 2\}^2 - 4} \right)^{\frac{1}{N_b}}} \]

ii. Second case:

For any natural integer \(m \):

\[r_{1,m} \in \mathbb{C} \setminus \mathbb{R} \quad r_{2,m} = \overline{r_{1,m}} \in \mathbb{C} \setminus \mathbb{R} \]

Let us introduce:

\[\rho_m = |r_{1,m}| \in \mathbb{R}^+ \quad \theta_m = \arg r_{1,m} \quad \text{if} \quad r_{1,m} \neq 0 \]

The above system writes:

\[
\begin{align*}
\rho_m^{N_b} \left\{ \gamma \cos(N_b \theta_m) + \delta \sin(N_b \theta_m) \right\} &= \rho_{m-1} \left\{ \gamma \cos(\theta_{m-1}) + \delta \sin(\theta_{m-1}) \right\} \\
\rho_m^{2N_b} \left\{ \gamma \cos(2N_b \theta_m) + \delta \sin(2N_b \theta_m) \right\} &= \rho_{m-1}^{2} \left\{ \gamma \cos(2\theta_{m-1}) + \delta \sin(2\theta_{m-1}) \right\}
\end{align*}
\]

where \(\gamma \) and \(\delta \) denote real constants.

The system is satisfied if:
\[
\begin{align*}
\begin{cases}
\rho_m^{N_b} = \frac{\rho_{m-1}}{N_b} \\
\theta_m = \frac{\theta_{m-1}}{N_b}
\end{cases}
\end{align*}
\]
and thus:
\[
\phi (\Lambda_m) = \left(\phi (\Lambda_{m-1}) \right)^{\frac{1}{N_b}}
\]
which leads to the same relation as in the previous case:
\[
\Lambda_m = \phi^{-1} \left(\left(\phi (\Lambda_{m-1}) \right)^{\frac{1}{N_b}} + 1 \right)^2 = \left(\frac{-2 + \Lambda_{m-1} - \varepsilon \sqrt{\left(\Lambda_{m-1} - 2 \right)^2 - 4}}{2} \right)^{\frac{1}{N_b}} + \left(\frac{-2 + \Lambda_{m-1} - \varepsilon \sqrt{\left(\Lambda_{m-1} - 2 \right)^2 - 4}}{2} \right)^{\frac{1}{N_b}}
\]
where \(\varepsilon \in \{-1, 1\}\).

Thanks

The author would like to thank JPG for his patient re-reading, and his very pertinent suggestions and advices, and Robert Strichartz, who suggested the introduction of specific energies to fully take into account the very specific geometry of the problem. Special thanks to GL, thanks to whom I searched in the right direction. All this helped improving the original work.

References

[BBR17] K. Barański, B. Bárány, and J. Romanowska. On the dimension of the graph of the classical Weierstrass function. Advances in Math., 265:791–800, 2017.

[BD85] A. Beurling and J. Deny. Espaces de Dirichlet. i. le cas élémentaire. Annales scientifiques de l’É.N.S. 4 e série, 99(1):203–224, 1985.

[BU37] A. S. Besicovitch and H. D. Ursell. Sets of fractional dimensions. Notices of the AMS, 12(1):18–25, 1937.

[Fal85] K. Falconer. The Geometry of Fractal Sets. Cambridge University Press, 1985.

[FOT94] M. Fukushima, Y. Oshima, and M. Takeda. Dirichlet forms and symmetric Markov processes. Walter de Gruyter & Co, 1994.
