Candidate genes for polycystic ovary syndrome are regulated by TGFβ in the bovine foetal ovary

Rafiatu Azumah 1,†, Menghe Liu 1,†, Katja Hummitzsch 1, Nicole A. Bastian1, Monica D. Hartanti 1,2, Helen F. Irving-Rodgers1,3, Richard A. Anderson 3,4, and Raymond J. Rodgers 1,1,*

1Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia 2Faculty of Medicine, Universitas Trisakti, Jakarta, Indonesia 3School of Medical Science, Griffith University, Gold Coast Campus, Southport, QLD, Australia 4MRC Centre for Reproductive Health, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK

*Correspondence address. Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia. E-mail: ray.rodgers@adelaide.edu.au

Submitted on October 14, 2021; resubmitted on January 04, 2022; editorial decision on February 01, 2022

STUDY QUESTION: Could changes in transforming growth factor β (TGFβ) signalling during foetal ovary development alter the expression of polycystic ovary syndrome (PCOS) candidate genes leading to a predisposition to PCOS?

SUMMARY ANSWER: TGFβ signalling molecules are dynamically expressed during foetal ovary development and TGFβ1 inhibits expression of the androgen receptor (AR) and 7 (INSR, CBH9orf3, RAD50, ERBB3, NEIL2, IRF1 and ZBTB16) of the 25 PCOS candidate genes in foetal ovarian fibroblasts in vitro, whilst increasing expression of the AR cofactor TGFβ-induced transcript 1 (TGFBI11 or Hic5).

WHAT IS KNOWN ALREADY: The ovarian stroma arises from the mesonephros during foetal ovary development. Changes in the morphology of the ovarian stroma are cardinal features of PCOS. The ovary is more fibrous and has more tunica and cortical and subcortical stroma. It is not known why this is and when this arises. PCOS has a foetal origin and perhaps ovarian stroma development is altered during foetal life to determine the formation of a polycystic ovary later in life. PCOS also has a genetic origin with 19 loci containing 25 PCOS candidate genes. In many adult tissues, TGFβ is known to stimulate fibroblast replication and collagen deposition in stroma, though it has the opposite effect in the non-scarring foetal tissues. Our previous studies showed that TGFβ signalling molecules [TGFβs and their receptors, latent TGFβ binding proteins (LTBPs) and fibrillins, which are extracellular matrix proteins that bind LTBP s] are expressed in foetal ovaries. Also, we previously showed that TGFβ1 inhibited expression of AR and 3 PCOS candidate genes (INSR, CBH9orf3 and RAD50) and stimulated expression of TGFBI11 in cultured foetal ovarian fibroblasts.

STUDY DESIGN, SIZE, DURATION: We used Bos taurus for this study as we can ethically collect foetal ovaries from across the full 9-month gestational period. Foetal ovaries (62–276 days, n = 19) from across gestation were collected from pregnant B. taurus cows for RNA-sequencing (RNA-seq) analyses. Foetal ovaries from B. taurus cows were collected (160–198 days, n = 6) for culture of ovarian fibroblasts.

PARTICIPANTS/MATERIALS, SETTING, METHODS: RNA-seq transcriptome profiling was performed on foetal ovaries and the data on genes involved in TGFβ signalling were extracted. Cells were dispersed from foetal ovaries and fibroblasts cultured and treated with TGFβ1. The effects of TGFβ regulation on the remaining eight PCOS candidate genes not previously studied (ERBB3, MAPRE1, FDFT1, NEIL2, ARL14EP, PLGRKT, IRF1 and ZBTB16) were examined.

MAIN RESULTS AND THE ROLE OF CHANCE: Many TGFβ signalling molecules are expressed in the foetal ovary, and for most, their expression levels increased across gestation (LTBP1/2/3/4, FBN1, TGFB2/3, TGFB2R/3 and TGFBI11), while a few decreased (FBN3, TGFB3L, TGFB1 and TGFBI) and others remained relatively constant (TGFBRAP1, TGFB1 and FBN2). TGFβ1 significantly decreased expression of PCOS candidate genes ERBB3, NEIL2, IRF1 and ZBTB16 in cultured foetal ovarian fibroblasts.

LARGE SCALE DATA: The FASTQ files, normalized data and experimental information have been deposited in the Gene Expression Omnibus (GEO) accessible by accession number GSE178450.
LIMITATIONS, REASONS FOR CAUTION: Regulation of PCOS candidate genes by TGFβ was carried out in vitro and further studies in vivo are required. This study was carried out in bovine where foetal ovaries from across all of the 9-month gestational period were available, unlike in the human where it is not ethically possible to obtain ovaries from the second half of gestation.

WIDER IMPLICATIONS OF THE FINDINGS: From our current and previous results we speculate that inhibition of TGFβ signalling in the foetal ovary is likely to (i) increase androgen sensitivity by enhancing expression of AR, (ii) increase stromal activity by stimulating expression of COL1A1 and COL3A1 and (iii) increase the expression of 7 of the 25 PCOS candidate genes. Thus inhibition of TGFβ signalling could be part of the aetiology of PCOS or at least the aetiology of polycystic ovaries.

STUDY FUNDING/COMPETING INTEREST(S): Funding was received from Adelaide University China Fee Scholarship (M.L.), Australian Research Training Program (R.A.) and the Faculty of Health and Medical Science Divisional Scholarship (R.A.), Adelaide Graduate Research Scholarships (R.A. and N.A.B.), Australia Awards Scholarship (M.D.H.), Robinson Institute Career Development Fellowship (K.H.) and Building On Ideas Grant (K.H.), National Health and Medical Research Council of Australia Centre for Research Excellence in the Evaluation, Management and Health Care Needs of Polycystic Ovary Syndrome (N.A.B., M.D.H. and R.J.R.; GTN 1078444) and the Centre for Research Excellence on Women’s Health in Reproductive life (R.A., R.J.R. and K.H.; GTN 1171592) and the UK Medical Research Council (R.A.A.; grant no. G1100357). The funders did not play any role in the study design, data collection and analysis, decision to publish or preparation of the manuscript. The authors of this manuscript have nothing to declare and no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Key words: PCOS / stroma TGFβ signalling molecules / ovary development / PCOS candidate genes / regulation / extracellular matrix / RNA-seq / gene expression

Introduction

Polycystic ovary syndrome (PCOS) is a complex reproductive and metabolic disorder with multiple clinical symptoms including psychological consequences (Teede et al., 2010). The syndrome affects around 1 in 10 women, presenting with symptoms associated with excess androgen, reproductive dysfunction and metabolic complications such as insulin resistance, gestational diabetes, central adiposity, obesity, non-alcoholic fatty liver disease, dyslipidaemia and cardiovascular diseases among others (Norman et al., 2007; March et al., 2010; Aziz et al., 2016; Rodgers et al., 2019; Stepto et al., 2019; Berni et al., 2021).

The aetiology of PCOS is not well established. However, a possible foetal predisposition has been observed in numerous studies over the past decades. For example, babies born with congenital adrenal hyperplasia, which causes elevated androgen exposure in foetal life, develop some of the features of PCOS in adulthood (Barnes et al., 1994). Androgen treatment of pregnant animals also produces a phenotype of PCOS features in the offspring (Abbott et al., 2006; Walters, 2016; Tata et al., 2018; Rusal et al., 2019; Aflatoonian et al., 2020; Stener-Victorin et al., 2020). More so, a low ponderal index (kg/m²) of children at birth has also been associated with the risk of all three cardinal PCOS symptoms (menstrual dysfunction, hyperandrogenism and polycystic ovaries) in later life (Davies et al., 2012).

PCOS also has a genetic predisposition with large genome-wide association studies and familial microsatellite linkage studies having identified a number of loci associated with PCOS (Legro et al., 1998; Urbanek, 2007; Chen et al., 2011; Goodarzi et al., 2012; Shi et al., 2012; Kosova and Urbanek, 2013; Louwers et al., 2013). There are about 25 genes in or near these loci. We recently identified that PCOS candidate genes in these loci were not differentially expressed in adult human PCOS ovaries (Liu et al., 2020) but were dynamically expressed in developing human and bovine foetal ovaries (Hartanti et al., 2020; Liu et al., 2020). We concluded that expression of PCOS candidate genes in foetal ovaries if perturbed or dysregulated may underpin development of PCOS (Hartanti et al., 2020; Liu et al., 2020).

There are some other unique features of PCOS. PCOS ovaries not only have many antral follicles but they have an expanded and very fibrous stroma (Stein and Leventhal, 1935; Hughesdon, 1982). During foetal development, the ovarian stroma is initially derived from stroma that penetrates into the ovarian primordium from the mesonephros during the first trimester (Hummitzsch et al., 2013, 2015, 2018). It expands the most during early gestation due to high levels of stromal cell replication (Hartanti et al., 2019; Hummitzsch et al., 2019). The causes or consequences of expanded fibrous stroma in PCOS ovaries are still unknown. It is possible that either the stroma is altered in a peculiar way during development of the ovary to enable it to expand and become fibrous in later life or that the adult PCOS ovaries have just become fibrotic due to fibrosis. Fibrosis is usually a wound healing event where death of specialized cells occurs and replaced by stroma and collagen.

Growth of stroma in many organs is usually driven by the growth factor transforming growth factor β (TGFβ) (Hatzirodis et al., 2011). In adult tissues TGFβ stimulates replication and production and deposition of collagen in stroma, particularly in fibrotic tissues (Verrecchia and Mauviel, 2004). In stroma, TGFβ activity is regulated by the extracellular matrix fibrillins (Kielty et al., 2002). Fibrillins achieve this by binding the latent TGFβ binding proteins (LTBPs). There are three fibrillin genes, four LTBPs, three TGFβs and three TGFβ receptors. We previously found that TGFβ signalling molecules (TGFβs, LTBPs, fibrillins and TGFβ receptors) are expressed in foetal ovaries (Hatzirodis et al., 2011, 2019). Their levels of expression were either constant (TGFβ1, TGFβ3), increasing (TGFβ2, TGFβ3, TGFβ2, TGFβ3, LTPB1, LTPB2, LTPB3, LTPB4) or decreasing (FBN2, FBN3) across gestation (Hatzirodis et al., 2011, 2019). We also showed that TGFβ inhibited expression of androgen receptor (AR) and 3 PCOS candidate genes (INSR, C8H9orfβ and RAD50) and stimulated expression of TGFβIII (transforming growth factor beta I-induced transcript 1) in cultured foetal ovarian stroma cells (Hartanti et al., 2020). This suggests that TGFβ signalling is dynamic during foetal ovarian development and could be an important part of the aetiology of PCOS.
providing a link between the genetic basis and foetal predisposition to PCOS.

Circulating levels of TGFβ2 were found to be correlated with androgen levels in women (Raja-Khan et al., 2014) and skeletal muscles in adult women with PCOS have higher expression levels of genes controlled by TGFβ and they produce more collagens (Stepo et al., 2020). In adipose tissue of PCOS women, TGFβ1 was identified as the master upstream regulator (Dumesic et al., 2019). In order to further our knowledge of TGFβ and foetal ovary development, we examined the regulation of eight additional PCOS candidate genes and the expression of TGFβ signalling molecules during foetal ovary development using RNA-sequencing (RNA-seq) analysis.

Materials and methods

Ethical approval for the study

Ethical approval was not required for this study, as foetuses and foetal ovaries were scavenged from animals being processed for human consumption and were not owned by the authors or their institutions. As such the University of Adelaide’s Animal Ethics Committee only requires notification of this.

Collection of bovine foetal ovaries

For RNA-seq, foetal ovarian pairs across gestation (62–276 days, n = 19) were collected from pregnant Bos taurus cows at the abattoir of Midfield Meat International, Warwambool, Victoria, Australia and were immediately frozen on dry ice on site and later stored in the laboratory at −80°C.

For TGFβ1 treatment, foetuses from pregnant B. taurus cows were collected at local abattoirs (Thomas Foods International, Murray Bridge, SA, Australia and Strath Meats, Strathalbyn, SA, Australia) and transported on ice in Hank’s balanced-salt solution (HBSS) with calcium and magnesium (HBSS+) to the laboratory. The gestational ages of all foetuses were estimated from the crown-rump length (CRL) (Russel, 1983). Foetuses with a CRL < 8 cm underwent sex determination as previously reported by Hummitzsch et al. (2013).

RNA extraction and RNA-seq

Using the Mo Bio Powerlyser 24 (Mo Bio Laboratories Inc., Carlsbad, CA, USA) and 1 ml Trizol® (Thermo Fisher Scientific, Waltham, MA, USA), whole foetal bovine ovaries were homogenized and RNA extracted according to manufacturer’s instructions. DNase I (Promega/Thermo Fisher Scientific Australia Pty Ltd, Tullamarine, VIC, Australia) was used to treat all samples. The RNA concentration and quality were then determined using the Experion™ RNA StdSens Analysis kit and the Experion™ Automated Electrophoresis System (Bio-Rad Laboratories Pty., Ltd., Gladesville, NSW, Australia). Of total RNA, 500 ng/50 μl per well (96-well plate) of each sample was used for RNA-seq.

RNA-seq based transcriptome profiling was performed at the SAHMRI Genomics Facility (SAHMRI, Adelaide, SA, Australia). Briefly, single-end poly A-selection mRNA libraries (~35 M reads per sample) were created using the Nugen Universal Plus mRNA-Seq library kit from Tecan (Mannenedorf, Switzerland) and sequenced with an Illumina Nextseq 500 using single read 75 bp (v2.0) sequencing chemistry (Illumina Inc., San Diego, CA, USA). Two sequencing runs, with 10 samples per run, were performed and a sample (15/R43t, 135 days gestational age) was used as internal control in both runs.

RNA-seq data analysis using Partek flow

The raw data containing FASTQ files were uploaded to Partek Flow® Software, version 8.0 (Partek Incorporated, St. Louis, MO, USA). All samples underwent a pre-alignment quality assessment and showed Phred Quality Scores larger than 30. The reads were aligned and annotated to the bovine genome ARS-UCD1.2 (bosTaun; https://www.ncbi.nlm.nih.gov/assembly/GCF_002263795.1/) using STAR 2.7.3a aligner (>97% alignment rate for all samples) and Partek E/M, respectively. The FASTQ files, normalised data and experimental information have been deposited in the Gene Expression Omnibus (GEO) (Barrett et al., 2009), accessible by accession number GSE178450. The expression of TGFβ1, LTBPs, fibrillins and TGFβ receptors were analysed using Partek Flow® Software (version 8.0). Scatter plots showing the expression patterns for fibrillins, LTBPs, TGFβ1s and TGFβ receptors across gestation were generated using GraphPad Prism version 8 (GraphPad Software Inc., La Jolla, CA, USA). Pearson’s correlation of the genes with gestational age as well as with each other were further analysed.

Treatment of bovine foetal fibroblasts with TGFβ1

Foetal fibroblasts (160–198 days, n = 6) were cultured and treated with 5 ng/ml or 20 ng/ml TGFβ1 (R&D Systems) as previously described by Bastian et al. (2016). Briefly, bovine foetal fibroblasts were seeded at 30 000 cells/well in 24-well plates in DMEM/F12 medium containing 5% (v/v) foetal calf serum, 100 IU/ml penicillin, 0.1% streptomycin sulfate (GIBCO, Carlsbad, CA, USA, 15140122) and 0.1% fungzone at 38.5°C and 5% CO2. At 60–70% confluency, cells were treated with 5 ng/ml or 20 ng/ml of TGFβ1 for 18 h in DMEM/F12 medium containing 1% foetal calf serum and then harvested and stored at −80°C for analysis.

RNA isolation, cDNA synthesis and quantitative real-time PCR

Bovine foetal fibroblasts were homogenized in 1 ml Trizol® (Thermo Fisher Scientific, Waltham, MA, USA) using the Mo Bio Powerlyser 24 (Mo Bio Laboratories Inc., Carlsbad, CA, USA) and RNA extracted according to manufacturer’s instructions as reported previously (Bastian et al., 2016). Complementary DNA was then synthesized from 200 ng of DNase-treated RNA using random hexamers (Sigma, Adelaide, SA, Australia) and 200 U Superscript Reverse Transcriptase III (Thermo Fisher Scientific, Waltham, MA, USA) as previously described (Hartanti et al., 2020). Based on available RNA sequences in NCBI, PCR primers for eight newly discovered PCOS candidate genes (ERBB3, MAPRE1, FDLTI1, NEIL2, ARL4I, PLGKR1, IRF1 and ZBTB16) were designed to span introns using Primer3 plus and Net primer software (PREMIER Biosoft Palo Alto, CA, USA) and primers are listed in Table 1. Primer combinations were tested as previously described (Hummitzsch et al., 2013; Liu et al., 2020). The amplification conditions were 95°C for 15 s, then 60°C for 60 s for 40 cycles using Rotor...
Table I List of genes and primers used for qRT-PCR.

Gene name	Gene symbol	Primers (5’→3’) (F = forward, R = reverse)	Accession number	Size (bp)
Ribosomal protein L32	RPL32	F: GCACAGGTTTCAAGCAGGTCC R: AAATGTCAGCAAGCTGTC	NM_001034783.2	73
Peptidylprolyl isomerase A (cyclophilin A)	PPIA	F: CTGGGATTCAGCAGGCAA R: CCAAATCGTCAGTTCTTC	NM_179320.2	202
ADP ribosylation factor like GTPase 14 effector protein	ARL14EP	F: ACCTGTGTTGAAGCAGTTTTC R: TTTGCGCCCGCTTGGAAATGC	NM_001031761.3	78
Erb-B2 receptor tyrosine kinase 3	ERBB3	F: TGTCATGCTCAAGGTGGTG R: CACCTGTTGAACTTGGCG	NM_001103105.1	80
Farnesyl-diphosphate farnesyltransferase	FDFT1	F: CAGGAAAAGGAGCGACAAG R: ACCGGCTATTTCAGAAACTC	NM_001013004.1	144
Interferon regulatory factor 1	IRF1	F: AAAGGATGCTGTCGTGGTCG R: CATATCTGGGACGGAGTTTC	NM_001191261.2	127
Microtubule associated protein RP/EB family member 1	MAPRE1	F: AGGCCCCATTACAACACACAG R: TTCACGGCTCTCGTACATCG	NM_001075334.2	102
Nei like DNA glycosylase 2	NEIL2	F: CGAAGAGCGGCAACAAAGG R: AAAGAACGCGCCATGTATCGC	NM_001013003.1	117
Plasminogen receptor with a C-terminal lysine	PLGRKT	F: TCCCGAATCTTGGAGAAG R: ACCAAGAAGCCGCAATTTGCA	NM_001034426.2	79
Zinc finger and BTB domain containing 16	ZBTB16	F: CACTCGCAGGTTTGGCAGAAAG R: TTTCACCCACAGCCAGAAG	NM_001037476.2	131

Gene 6000 cycler (Q series, Qiagen GmbH, Hilden, Germany). Ct values were determined using Rotor Gene 6000 software at a threshold of 0.05 normalized fluorescent unit. Gene expression values were determined using 2−ΔΔCt method and ribosomal protein L32 (RPL32) and peptidylprolyl isomerase A (PPIA) were used as housekeeping genes. The fold change of gene expression in foetal fibroblasts treated with the two different concentrations of TGFβ1 were presented as 2−ΔΔCt data with the same housekeeping genes in 2−ΔΔCt method.

Statistical analysis

All statistical analyses were carried out using Microsoft Office Excel 365 (Microsoft Redmond, WA, USA) and IBM SPSS Statistics for Windows, version 25 (IBM Corp., Armonk, NY, USA). Scatter plots and columns were made using GraphPad Prism version 8.00 (GraphPad Software Inc., La Jolla, CA, USA). One-way ANOVA with Dunnett’s post hoc tests were conducted to compare the difference between the control and the TGFβ1 treatments of foetal fibroblasts.

Results

Expression of TGFβs, LTBP3s, fibrillins, TGFβ receptors other molecules involved in TGFβ signalling

The expression of the TGFβ signalling molecules in foetal ovaries showed dynamic differences across gestation. The expression levels of most TGFβ signalling molecules significantly correlated with gestational age either positively (LTBP1, LTBP2, LTBP3, LTBP4, FBN1, TGFβ2, TGFβ3, TGFβ2, TGFβ3 and TGFβ1I) or negatively (FBN3, TGFβ3L, TFGBI and TFGFB1), while few showed no significant correlation with gestational age (TGFBRAP1, TGFBR2 and FBN2). Also, almost all the TGFβ signalling molecules, with the major exception being TGFBRAP1, correlated either positively or negatively with each other (Table II), consistent with there being a regulated network.

The expression of all four LTBP genes increased across gestation (Fig. 1D–G). LTBP3 and LTBP4 expression levels plateaued at the second half of gestation or at the start of the third trimester, respectively. FBN1 expression (Fig. 1A) increased across gestation and FBN2 decreased significantly across gestation (Fig. 1C). FBN2 also increased slightly across gestation (Fig. 1B).

Notably, TGFβ1 expression decreased across gestation until about the end of the second trimester and gradually increased during the third trimester. The expression patterns of TGFβ2 and TGFβ3 increased across gestation (Fig. 2B and C). Although TGFβ3 expression increased across gestation, the expression levels were variable in the third trimester (Fig. 2C). The levels of TGFβ1 expression increased gradually until about the end of the second trimester and decreased during the third trimester. TGFβ2 and TGFβ3 expression both increased across gestation without any decline in the third trimester (Fig. 2F).

The expression of other molecules involved in TGFβ signalling such as TGFBRAP1 (transforming growth factor beta receptor associated protein 1), TGFβ3L (transforming growth factor beta receptor 3 like), TGFβ1 (transforming growth factor beta-induced protein or βig-H3) and TGFβ1I were also studied. While TGFβ3L and TGFβ1 expression...
In this study, we explored the expression of TGFβ1 on the PCOS genes in cultured bovine foetal fibroblasts. Treatment with TGFβ1 had an effect on half of the eight genes (ERBB3, MAPRE1, FDFT1, NEIL2, ARL14EP, PLGRKT, IRF1 and ZBTB16) studied. Significantly, TGFβ1 (20 ng/ml) decreased the expression of ERBB3 (Fig. 4A), NEIL2, IRF1 and ZBTB16 (Fig. 4D, G and H), with the latter three also decreased by treatment with 5 ng/ml TGFβ1.

Table II Pearson’s correlation coefficients (R) between TGFβ signalling molecules mRNA expression levels and gestational age (62–276 days, n = 19) in bovine foetal ovaries.

Gene	Mean Age	FBN3	TGFB3L	TGFBR1	TGFBRAP1	TGFBR1	LTBPs	LTBPs	LTBPs	TGFBR3	LTBPs	TGFBR3	TGFBR3	TGFBR3
FBN3	-0.54	0.17	0.08	0.08	-0.54	-0.08	-0.54	-0.54	-0.54	-0.54	-0.54	-0.54	-0.54	-0.54
TGFB3L	-0.68	0.66	0.66	0.66	0.66	0.66	0.66	0.66	0.66	0.66	0.66	0.66	0.66	0.66
TGFBR1	-0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54
TGFBRAP1	-0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54
LTBPs	-0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54
LTBPs	-0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54
LTBPs	-0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54
TGFBR3	-0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54
LTBPs	-0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54
LTBPs	-0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54
TGFBR3	-0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54
LTBPs	-0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54
LTBPs	-0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54
TGFBR3	-0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54
LTBPs	-0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54
LTBPs	-0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54
TGFBR3	-0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54

Positive and negative correlations are marked in pink and blue, respectively. The colour intensity corresponds with the strength of the correlation. P-values: *<0.05; **<0.01; ***<0.001.

Discussion

In this study, we explored the expression of TGFβ1 signalling molecules in bovine foetal fibroblasts across gestation using RNA-seq analysis. We also analysed the effects of TGFβ1 in regulating expression of PCOS candidate genes in cultured bovine foetal ovarian fibroblasts. Our results indicate that TGFβ1 pathways operating in the foetal ovary should be considered contenders for involvement in at least some aspects of the aetiology of PCOS, especially the development of polycystic ovaries.

The current theories on the aetiology of PCOS strongly implicate androgen or androgen signalling during foetal development (Abbott et al., 2006; Walters, 2016; Tata et al., 2018; Risal et al., 2019; Afla'tounian et al., 2020; Stener-Victorin et al., 2020) and in particular androgen signalling in the brain (Cox et al., 2020). The question has remained what would stimulate or initiate enhanced androgen signalling in vivo. As far as we are aware, there are no environmental androgens, if anything, many are anti-androgens. Recently, it has been suggested that AMH, which is elevated in PCOS women during pregnancy by about 2-fold, could elevate the levels of androgens and hence initiate the PCOS phenotype in their offspring (Tata et al., 2018). However, AMH and androgens do not alter expression of any of the PCOS candidate genes in cultured foetal fibroblasts (Hartanti et al., 2020; Liu et al., unpublished results), but in contrast, TGFβ1 alters the expression of 7 out of 25 PCOS candidate genes as shown previously (Hartanti et al., 2020) and in this study. Importantly, TGFβ1 also regulates the expression of AR and one of its cofactors, TGFβ1I1 (Hartanti et al., 2020). Members of the TGFβ signalling pathways are operative before and when the AR is expressed in the foetal ovary. The concept that TGFβ is involved in PCOS not only links the foetal and genetic predispositions to PCOS but it specifically links to the ovarian morphology of PCOS (Hatzirodou et al., 2011). In adult tissues in general, TGFβ stimulates stromal fibroblast replication and collagen deposition but in foetal tissues, which do not scar in wound healing, it has the opposite effect (Rolfe et al., 2007; Rolfe and Grobbelaar, 2012). This has also been demonstrated in the foetal ovarian fibroblasts where TGFβ inhibited COL1A1 and COL3A1 expression (Liu et al., unpublished results). TGFβ also inhibited expression of AR. Thus, we speculate that inhibition of TGFβ signalling in the foetal ovary is likely to increase androgen sensitivity and stromal activity and thus this mechanism could be part of the aetiology of PCOS. It is also possible that such mechanisms act in other organs affected by PCOS such as skeletal muscle where in PCOS women expression levels of genes controlled by TGFβ are elevated, including collagens (Stepto et al., 2020).
In this study, we found that most of TGFβ signalling molecules significantly correlated negatively or positively with gestational age similar to our previous studies of bovine foetal ovaries using qRT-PCR (Hatzirodos et al., 2011, 2019; Hartanti et al., 2019). The expression of TGFβ signalling molecules in foetal and adult ovaries have also been studied in various species now including human, goat, sheep, pig and cattle (Chegini and Flanders, 1992; Nilsson et al., 2003; Sriperumbudur et al., 2010; Hatzirodos et al., 2011, 2019; Rodrigues et al., 2014; Hartanti et al., 2019). Stromal growth factors play significant roles in embryonic gonadal development via extracellular matrix contributing significantly to cell growth, differentiation and development (Ingman and Robertson, 2002; Memon et al., 2008). TGFβ signalling molecules are also known to contribute significantly to ovarian function in later life including follicle development (Oliver, 2016), granulosa proliferation (Dodson and Schomberg, 1987), differentiation of thecal-interstitial cells (Magoffin et al., 1989) and antral follicle growth and follicle selection (Knight and Glistier, 2006), among others.

The relationship between TGFβ and androgen signalling in general is complex as their regulation could be negative or positive depending on the various signals or environmental conditions (Qi et al., 2008). Although TGFβ is positively regulated by androgen in certain cancer cell lines (Rosas et al., 2021), TGFβ is known to inhibit androgen through interaction with Smad3 in different cells including thecal-interstitial cells, prostate and prostate epithelial cells (Kyriianou and Isaacs, 1988, 1989; Magoffin et al., 1989; Chipuk et al., 2002). Furthermore, studies focused on TGFβ1 deficiency in reproduction have received significant attention and have been reviewed in detail by Ingman and Robertson (2009). TGFβ1 is a ligand of the TGFβ superfamily, which is essential in development and cell differentiation (Wu and Hill, 2009; Zinski et al., 2018). In adult bovine ovaries, TGFβ1

![Figure 1. Scatter plots showing the expression patterns of FBNs and LTBPs across gestation.](https://academic.oup.com/humrep/advance-article/doi/10.1093/humrep/deac049/6567568)
protein was detected in the granulosa cells of early pre-antral and early antral follicles (1–2 cm) but was not observed after these stages (Nilsson et al., 2003). TGFB1 null mice have perturbed hypothalamic–pituitary–gonadal axis function, which results in reduction in LH levels, further resulting in reduced serum androstenedione and testosterone production in males and oestrous cycle abnormalities in female mice (Ingman et al., 2006; Ingman and Robertson, 2007). Notably, oocyte developmental incompetence due to a TGFβ1 deficient follicular environment has also been associated with the early embryo arrest in these mice (Ingman et al., 2006; Ingman and Robertson, 2009). These observations further affirm the significance of TGFβ1 in ovarian functions and their possible association with PCOS.

Dysregulation of TGFβ signalling during foetal ovary development could involve a number of different members of the pathways and could vary across gestation. FBN3, TGFBR3L, TGFBI and TGFB1 were highly expressed at the early stages of foetal ovary development and their levels significantly dropped as the ovary developed. It is during the early stages of ovarian development that stroma expansion predominantly occurs (Hartanti et al., 2019). Thus, these genes are mostly expressed when the stroma of the mesonephros, containing fibroblasts, fibres and capillaries, penetrates into the gonadal ridge resulting in the formation of the ovigerous cords containing the gonadal ridge epithelial like (GREL) cells and oogonia. TGFBR3L was recently shown to bind inhibin B and null mice were found to have elevated levels of

Figure 2. Scatter plots showing the expression patterns of TGFBs and TGFBRs across gestation.

Figure 3. Scatter plots showing the expression patterns of other molecules involved in TGFβ signalling across gestation.
FSH, antral follicles and corpora lutea (Bruête et al., 2021). TGFBI, previously named Beta Ig-H3 (bIg-H3), has been studied over the past two decades. TGFBI is a secreted extracellular matrix protein, expressed in collagen-rich tissues in response to TGFβ. TGFBI is known to play significant roles in numerous physiological processes such as morphogenesis, extracellular matrix interactions, cell adhesion/migration and angiogenesis required for development; however, its functional contribution is poorly understood (Ferguson et al., 2003; Thapa et al., 2007). TGFBI polymorphisms have also been associated with levels of insulin and BMI (Park et al., 2005) and its roles in physiological and pathological conditions including diabetes and tumourigenesis have been reviewed (Ween et al., 2012). Recent studies have also shown that TGFBI regulates adipose angiogenesis and stimulates the angiogenic capacity of endothelial cells (Lee et al., 2021).

During the later stages of ovary development, the expression of TGFβ signalling molecules such as TGFβ2, TGFβ3, LTBP1, LTBP2, LTBP3, LTBP4, FBN1, TGFBR2, TGFBR3 and TGFBR1 increases. During this stage of ovary development, folliculogenesis and ovarian stromal development occur and stroma beneath the surface epithelial basal lamina develops into the tunica albuginea in human and bovine ovaries (Hummitzsch et al., 2013, 2019; Heeren et al., 2015). Activation of some primordial follicles occurs leading to their development into primary and preantral follicles. LTBPsg, whose genes are expressed the most during the third trimester, are well known for their ability to bind to FBN1 and FBN2 to modulate TGFβ availability. They also act as structural components of extracellular matrix (Todorovic et al., 2005). Notably in adult bovine ovaries, TGFβ2 and TGFβ3 levels increase as follicles develop into large antral stage, while TGFβ1 levels decrease during this stage (Nilsson et al., 2003). TGFBR1 and TGFBR3 were downregulated in cumulus cells isolated from matured metaphase II oocytes of PCOS women (Haouzi et al., 2012). TGFBR1 and TGFBR3 expression were dysregulated in ovaries of cows with cystic ovarian disease (Matiller et al., 2019). It is unclear if these dysregulations are of foetal origin given that TGFBR1 is expressed more in foetal fibroblasts than adult fibroblasts of the ovary (Liu et al., unpublished results).

TGFB1I1, also known as hic-5, is a transcription factor and a co-activator of the AR (Fujimoto et al., 1999). It regulates proliferation and apoptosis via Wnt/β-catenin signal pathway (Sha et al., 2020) and suppresses cell migration and invasion by inhibition of the TGFβ pathway and epithelial-mesenchymal transition (Ruan et al., 2020). Also, expression of TGFB1I1 is increased in the presence of TGFBR1 (Hartanti et al., 2020). TGFB1I1 was also among the TGFβ signalling molecules downregulated in cumulus cells isolated from matured metaphase II oocytes of PCOS women (Haouzi et al., 2012).

In conclusion, we consider the following data support the hypothesis that altered TGFβ signalling could be involved in the foetal predisposition to PCOS or at least in the development of polycystic ovaries: (i) TGFβ is linked to the development of fibrous stroma, which is a
hallmark of polycystic ovaries, (ii) in foetal ovarian fibroblasts TGFβ1 can regulate seven genes genetically associated with PCOS, (iii) in foetal ovarian fibroblasts TGFβ1 can alter the expression of AR and an AR cofactor and androgen signalling has been shown to be very likely involved in the foetal development of an adult PCOS phenotype, (iv) in foetal ovarian fibroblasts TGFβ1 can regulate expression of COL1A1 and COL3A1 thus regulating collagen synthesis and (v) many of the components of TGFβ signalling are dynamically expressed in foetal ovaries across gestation as are the PCOS candidate genes. The implications of these findings for the function of other organ systems associated with PCOS, like the skeletal muscle, should also be explored.

Data availability
The FASTQ files, normalised data and experimental information have been deposited in the Gene Expression Omnibus (GEO) accessible by accession number GSE178450. Data used to create Figs 1-4 can be found at FigShare.

Acknowledgements
We thank Mrs Wendy M. Bonner for the collection of bovine foetal ovaries and Thomas Foods International (Murray Bridge, SA, Australia), Strath Meats (Strathalbyn, SA, Australia) and The Midfield Group (Warrnambool, VIC, Australia) for providing bovine tissues.

Authors’ roles
R.J.R. and K.H. initiated the conception and design of the study. R.A., M.L., N.A.B., M.D.H. and K.H. acquired the data. R.A. and M.L. conducted the statistical analysis. R.A., M.L., K.H., H.F.I.R. and R.J.R. interpreted the data. R.A., M.L. and R.J.R. drafted the manuscript. K.H., H.F.I.R., R.A.A. and R.J.R. supervised and conducted critical revision of manuscript. All authors read and approved the final version to be published.

Funding
Funding was received from Adelaide University China Fee Scholarship (M.L.), Australian Research Training Program (R.A.) and the Faculty of Health and Medical Science Divisional Scholarship (R.A.), Adelaide Graduate Research Scholarships (R.A. and N.A.B.), Australia Awards Scholarship (M.D.H.), Robinson Research Institute Career Development Fellowship (K.H.) and Building On Ideas Grant (K.H.), National Health and Medical Research Council of Australia Centre for Research Excellence in the Evaluation, Management and Care Health Needs of Polycystic Ovary Syndrome (N.A.B., M.D.H. and R.J.R.; GTN1078444) and the Centre for Research Excellence on Women’s Health in Reproductive life (R.A., R.J.R. and K.H.; GTN1171592) and the UK Medical Research Council (R.A.A.; grant no. G1100357). The funders did not play any role in the study design, data collection and analysis, decision to publish or preparation of the manuscript.

Conflict of interest
The authors of this manuscript have nothing to declare and no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

References
Abbott DH, Dumesic DA, Levine JE, Dunai A, Padmanabhan V. Animal models and fetal programming of the polycystic ovary syndrome. In: Azziz R, Nestler JE, Dewailly D (eds) Androgen Excess Disorders in Women. New Jersey, USA: Springer, 2006.
Aflatoonian A, Edwards MC, Rodriguez Paris V, Bertoldo MJ, Desai R, Gilchrist RB, Ledger WL, Handelsman DJ, Walters KA. Androgen signalling pathways driving reproductive and metabolic phenotypes in a PCOS mouse model. J Endocrinol 2020;245:381–395.
Azziz R, Carmina E, Chen Z, Dunai A, Laven JS, Legro RS, Lizraba D, Natterson-Horowitz B, Teede HJ, Yildiz BO. Polycystic ovary syndrome. Nat Rev Dis Primers 2016;2:16057.
Barnes RB, Rosenfeld RL, Ehrmann DA, Cara JF, Cuttler L, Levine JS. Ovarian hyperandrogenism as a result of congenital adrenal virilizing disorders: evidence for perinatal masculinization of neuroendocrine function in women. J Clin Endocrinol Metab 1994;79:1328–1333.
Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashovsky M, Marshall KA et al. NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res 2009;37:D885–D890.
Bastian NA, Bayne RA, Hummitzsch K, Hatzirodos N, Bonner WM, Hartanti MD, Irving-Rodgers HF, Anderson RA, Rodgers RJ. Regulation of fibrillins and modulators of TGFβ in fetal bovine and human ovaries. Reproduction 2016;152:127–137.
Benni TR, Morgan CL, Rees DA. Women with polycystic ovary syndrome have an increased risk of major cardiovascular events: a population study. J Clin Endocrinol Metab 2021;106:e3369–e3380.
Brüel E, Wang Y, Li Y, Lin YF, Zhou X, Ongaro L, Alonso CAI, Buddle ERS, Schneyer AL, Byeon CH et al. TGFβR3L is an inhibitor B co-receptor that regulates female fertility. Sci Adv 2021;7:eabf4391.
Chegini N, Flanders KC. Presence of transforming growth factor-β and their selective cellular localization in human ovarian tissue of various reproductive stages. Endocrinology 1992;130:1707–1715.
Chen Z-J, Zhao H, He L, Shi Y, Qin Y, Shi Y, Li Z, You L, Zhao J, Liu J et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat Genet 2011;43:55–59.
Chipuk JE, Cornelius SC, Pultz NJ, Jorgensen JS, Bonham MJ, Kim SJ, Danielpour D. The androgen receptor represses transforming growth factor-β signaling through interaction with Smad3. J Biol Chem 2002;277:1240–1248.
Cox MJ, Edwards MC, Rodriguez Paris V, Aflatoonian A, Ledger WL, Gilchrist RB, Padmanabhan V, Handelsman DJ, Walters KA. Androgen action in adipose tissue and the brain are key mediators
in the development of PCOS traits in a mouse model. *Endocrinology* 2020;161:bqaa061.

Davies MJ, March WA, Willson KJ, Giles LC, Moore VM. Birthweight and thinness at birth independently predict symptoms of polycystic ovary syndrome in adulthood. *Hum Reprod* 2012;27:1475–1480.

Dodson WC, Schomberg DW. The effect of transforming growth factor-β on follicle-stimulating hormone-induced differentiation of cultured rat granulosa cells. *Endocrinology* 1987;120:512–516.

Dumesic DA, Phan JD, Leung KL, Grogan TR, Ding X, Li X, Hoyos LR, Abbott DH, Chazenbalk GD. Adipose insulin resistance in normal-weight women with polycystic ovary syndrome. *J Clin Endocrinol Metab* 2019;104:2171–2183.

Ferguson JW, Mikesh MF, Wheeler EF, LeBaron RG. Developmental expression patterns of Beta-IG (BIG-H3) and its function as a cell adhesion protein. *Mech Dev* 2003;120:851–864.

Fujimoto N, Yeh S, Kang H-Y, Inui S, Chang H-C, Mizokami A, Chang C. Cloning and characterization of androgen receptor coactivator, ARA55, in human prostate. *J Biol Chem* 1999;274:8316–8321.

Goodarzi MO, Jones MR, Li X, Chua AK, Garcia OA, Chen Y-DI, Krauss RM, Rotter JI, Ankener W, Legro RS et al. Replication of association of DENND1A and THADA variants with polycystic ovary syndrome in European cohorts. *J Med Genet* 2012;49:90–95.

Haouzi D, Assou S, Monzo C, Vincens C, Dechaud H, Hamamah S. Altered gene expression profile in cumulus cells of mature MI oocytes from patients with polycystic ovary syndrome. *Hum Reprod* 2012;27:3523–3530.

Hartanti MD, Rosario R, Hummitzsch K, Bastian NA, Hatzirodos N, Bonner WM, Bayne RA, Irving-Rodgers HF, Anderson RA, Rodgers RJ. Could perturbed fetal development of the ovary contribute to the development of polycystic ovary syndrome in later life? *PLoS One* 2020;15:e0229351.

Hatzirodos N, Bayne RA, Irving-Rodgers HF, Hummitzsch K, Sabatier L, Lee S, Bonner W, Gibson MA, Rainey WE, Carr BR et al. Linkage of regulators of TGF-beta activity in the fetal ovary to polycystic ovary syndrome. *FASEB J* 2011;25:2256–2265.

Hatzirodos N, Hummitzsch K, Irving-Rodgers HF, Breen J, Perry VE, Anderson RA, Rodgers RJ. Transcript abundance of stromal and thecal cell related genes during bovine ovarian development. *PLoS One* 2019;14:e0213575.

Heeren AM, van Iperen L, Klootwijk DW, de Melo Bernardo A, Roost MS, Gomes Fernandes MM, Louwe LA, Hilders CG, Helmerhorst FM, van der Westerlaken LAJ et al. Development of the follicular basement membrane during human gametogenesis and early folliculogenesis. *BMC Dev Biol* 2015;15:4.

Hughesdon PE. Morphology and morphogenesis of the Stein-Leventhal ovary and of so-called “hyperthecosis”. *Obstet Gynecol Surv* 1982;37:59–77.

Hummitzsch K, Anderson RA, Wilhelms D, Wu J, Telfer EE, Russell DL, Robertson SA, Rodgers RJ. Stem cells, progenitor cells, and lineage decisions in the ovary. *Endocr Rev* 2015;36:65–91.

Hummitzsch K, Irving-Rodgers HF, Schwartz J, Rodgers RJ. Development of the Mammalian Ovary and Follicles. In: Leung PC and Adashi E (eds). The Ovary. Academic Press, 2018;71–81.

Hummitzsch K, Hatzirodos N, Irving-Rodgers HF, Hartanti MD, Perry VE, Anderson RA, Rodgers RJ. Morphometric analyses and gene expression related to germ cells, gonadal ridge epithelial-like cells and granulosa cells during development of the bovine fetal ovary. *PLoS One* 2019;14:e0214130.

Ingman WV, Robertson SA. Defining the actions of transforming growth factor beta in reproduction. *Bioessays* 2002;24:904–914.

Ingman WV, Robertson SA. The essential roles of TGFβ1 in reproduction. *Cytokine Growth Factor Rev* 2009;20:233–239.

Ingman WV, Robertson SA. Transforming growth factor-β1 null mutation causes infertility in male mice associated with testosterone deficiency and sexual dysfunction. *Endocrinology* 2007;148:4032–4043.

Ingman WV, Robker RL, Woitiez K, Robertson SA. Null mutation in transforming growth factor β1 disrupts ovarian function and causes oocyte incompetence and early embryo arrest. *Endocrinology* 2006;147:835–845.

Kiely CM, Sherratt MJ, Shuttleworth CA. Elastic fibres. *J Cell Sci* 2002;115:2817–2828.

Knight PG, Glister C. TGF-beta superfamily members and ovarian follicle development. *Reproduction* 2006;132:191–206.

Kosova G, Urbanek M. Genetics of the polycystic ovary syndrome. *Mol Cell Endocrinol* 2013;373:29–38.

Kyprianou N, Isaacs JT. Expression of transforming growth factor-β in the rat ventral prostate during castration-induced programmed cell death. *Nat Endocrinol* 1989;3:1515–1522.

Kyprianou N, Isaacs JT. Identification of a cellular receptor for transforming growth factor-β in rat ventral prostate and its negative regulation by androgens. *Endocrinology* 1988;123:2124–2131.

Lee SG, Kim JS, Kim H-J, Schlaepfer DD, Kim I-S, Nam J-O. Endothelial angiogenic activity and adipose angiogenesis is controlled by extracellular matrix protein TGFβ1. *Sci Rep* 2021;11:1–11.

Legro RS, Driscoll D, Strauss JF, Fox J, DuniaI A. Evidence for a genetic basis for hyperandrogenemia in polycystic ovary syndrome. *Proc Natl Acad Sci USA* 1998;95:14956–14960.

Liu M, Hummitzsch K, Hartanti MD, Rosario R, Bastian NA, Hatzirodos N, Bonner WM, Irving-Rodgers HF, Laven JS, Anderson RA et al. Analysis of expression of candidate genes for polycystic ovary syndrome in adult and fetal human and fetal bovine ovaries. *Biol Reprod* 2020;103:840–853.

Louwers YV, Stolk L, Uitterlinden AG, Laven JS. Cross-ethnic meta-analysis of genetic variants for polycystic ovary syndrome. *PLoS One* 2012;10:e109335.

Magoffin DA, Gancedo B, Erickson GF. Transforming growth factor-β promotes differentiation of ovarian thecal-interstitial cells but inhibits androgen production. *Endocrinology* 1989;125:1951–1958.

March WA, Moore VM, Willson KJ, Phillips DI, Norman RJ, Davies MJ. The prevalence of polycystic ovary syndrome in a community
TGFβ regulates polycystic ovary syndrome genes

sample assessed under contrasting diagnostic criteria. *Hum Reprod* 2010; 25: 544–551.

Matuller V, Hein GJ, Stassi AF, Angeli E, Belotti EM, Ortega HH, Rey F, Salvetti NR. Expression of TGFBR1, TGFBR2, TGFBR3, ACVR1B and ACVR2B is altered in ovaries of cows with cystic ovarian disease. *Reprod Domest Anim* 2019; 54: 46–54.

Memon MA, Anway MD, Covert TR, Uzumcu M, Skinner MK. Transforming growth factor beta 1 (TGFβ1), TGFβ2 and TGFβ3 null-mutant phenotypes in embryonic gonadal development. *Mal Cell Endocrinol* 2008; 294: 70–80.

Nilsson EE, Doraisswamy V, Skinner MK. Transforming growth factor-beta isoform expression during bovine ovarian antral follicle development. *Mal Reprod Dev* 2003; 66: 237–246.

Norman RJ, Dewailly D, Legro RS, Hickey TE. Polycystic ovary syndrome. *Lancet* 2007; 370: 685–697.

Oliver EM. Investigating the Role of TGFβ Signalling in Preantral Follicle Development. London, UK: Imperial College London, 2016. https://spiral.imperial.ac.uk/bitstream/10044/1/67747/1/Oliver-E-2017-PhD-Thesis.pdf.

Park KS, Shin HD, Park BL, Cheong HS, Choa YM, Lee HK, Lee J-Y, Lee J-K, Kim HT, Han BG et al. Genetic polymorphisms in the transforming growth factor beta-induced gene associated with BMI. *Hum Mutat* 2005; 25: 322–322.

Qi W, Gao S, Wang Z. Transcriptional regulation of the TGF-β 1 promoter by androgen receptor. *Biochem J* 2008; 416: 453–462.

Raja-Khan N, Urbanek M, Rodgers RJ, Legro RS. The role of TGF-β in polycystic ovary syndrome. *Reprod Sci* 2014; 21: 20–31.

Risal S, Pei Y, Lu H, Manti M, Fornes R, Pui H-P, Zhao Z, Massart J, Ohlsson C, Lindgren E et al. Prenatal androgen exposure and transgenerational susceptibility to polycystic ovary syndrome. *Nat Med* 2019; 25: 1894–1904.

Rodgers RJ, Avery JC, Moore VM, Davies MJ, Azizz R, Stener-Victorin E, Moran LJ, Robertson SA, Stepto NK, Norman RJ et al. Complex diseases and co-morbidities. Polycystic ovary syndrome and type 2 diabetes mellitus. *Endocr Connect* 2019; 8: R71–R75.

Rodrigues GQ, Bertoldo MJ, Brito IR, Silva CMG, Sales AD, Castro SV, Duffard N, Locatelli Y, Mermillod P, Lobo CH et al. Relative mRNA expression and immunolocalization for transforming growth factor-beta (TGF-β) and their effect on in vitro development of caprine preantral follicles. *In Vitro Cell Dev Biol Anim* 2014; 50: 688–699.

Rolfke K, Grobbelaar A. A review of fetal scarless healing. *ISRN Dermatol* 2012; 2012: 698304.

Rolfke KJ, Irvine LM, Grobbelaar AO, Linge C. Differential gene expression in response to transforming growth factor-β1 by fetal and postnatal dermal fibroblasts. *Wound Repair Regen* 2007; 15: 897–906.

Rosas E, Roberts JT, O’Neill KI, Christenson JL, Williams MM, Hanamura T, Spoelstra NS, Vahrenkamp M, Gertz J, Richer JK. A positive feedback loop between TGFβ1 and androgen receptor supports triple-negative breast cancer anoikis resistance. *Endocrinology* 2021; 162: bga226.

Ruan XJ, Ye BL, Zheng ZH, Li ST, Zheng XF, Zhang SZ. TGFβIII suppressed cell migration and invasion in colorectal cancer by inhibiting the TGF-β pathway and EMT progress. *Eur Rev Med Pharmacol Sci* 2020; 24: 7294–7302.

Russe I. Oogenesis in cattle and sheep. *Bibl Anat* 1983; 24: 77–92.

Sha L, Ma D, Chen C. Exosome-mediated Hic-5 regulates proliferation and apoptosis of osteosarcoma via Wnt/β-catenin signal pathway. *Aging (Albany NY)* 2020; 12: 23598–23608.

Shi Y, Zhao H, Shi Y, Cao Y, Yang D, Li Z, Zhang B, Liang X, Li T, Chen J et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. *Nat Genet* 2012; 44: 1020–1025.

Srirupobudur R, Zorrilla L, Gadsby JE. Transforming growth factor-β (TGFβ) and its signaling components in peri-ovulatory pig follicles. *Anim Reprod Sci* 2010; 120: 84–94.

Stein IF, Leventhal ML. Amenorrhea associated with bilateral polycystic ovaries. *Am J Obstet Gynecol* 1935; 29: 181–191.

Stener-Victorin E, Padmanabhan V, Walters KA, Campbell RE, Benrick A, Giacobini P, Dumesic DA, Abbott DH. Animal models to understand the etiology and pathophysiology of polycystic ovary syndrome. *Endocr Rev* 2020; 41: 538–576.

Stepto N, Hiam D, Gibson-Helm M, Cassar S, Harrison CL, Bennett SK, Joham AE, Canny B, Moreno-asso A, Strauss BJ et al. Exercise and insulin resistance in PCOS: muscle insulin signalling and fibrosis. *Endocr Connect* 2020; 9: 346–359.

Stepto NK, Moreno-Asso A, McIvienne LC, Walters KA, Rodgers RJ. Molecular mechanisms of insulin resistance in polycystic ovary syndrome. Unraveling the conundrum in skeletal muscle? *J Clin Endocrinol Metab* 2019; 104: 5372–5381.

Tata B, Miminou NEH, Barbotin A-L, Malone SA, Loyens A, Pigny P, Dewailly D, Catteau-Jonard S, Sundström-Poromaa I, Pittonen TT et al. Elevated prenatal anti-Müllerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood. *Nat Med* 2018; 24: 834–846.

Teede H, Deeks A, Moran L. Polycystic ovary syndrome: a complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. *BMJ Med* 2010; 8: 41.

Thapa N, Lee B-H, Kim I-S. TGFBIp/βig-h3 protein: a versatile matrix molecule induced by TGF-β. *Int J Biochem Cell Biol* 2007; 39: 2183–2194.

Todorovic V, Jurukovski V, Chen Y, Fontana L, Dabovic B, Rifkin D. Relative mRNA expression of transforming growth factor-beta (TGF-β) and their effect on in vitro development of caprine preantral follicles. *Cell Signal* 2007; 19: 834–840.

Thapa N, Lee B-H, Kim I-S. TGFBIp/βig-h3 protein: a versatile matrix molecule induced by TGF-β. *Int J Biochem Cell Biol* 2007; 39: 2183–2194.

Todorovic V, Jurukovski V, Chen Y, Fontana L, Dabovic B, Rifkin D. Relative mRNA expression of transforming growth factor-beta (TGF-β) and their effect on in vitro development of caprine preantral follicles. *Cell Signal* 2007; 19: 834–840.

Urbanek M. The genetics of the polycystic ovary syndrome. *Nat Clin Pract Endocrinol Metab* 2007; 3: 103–111.

Verrecchia F, Mauvier A. T GF-beta and T NF-alpha: antagonistic cytokines controlling type I collagen gene expression. *Cell Signal* 2004; 16: 873–880.

Walters KA. Androgens in polycystic ovary syndrome: lessons from experimental models. *Curr Opin Endocrinol Diabetes Obes* 2016; 23: 257–263.

Ween MP, Oehler MK, Ricciardelli C. Transforming growth factor-beta-induced protein (TGFBI)/βig-h3: a matrix protein with dual functions in ovarian cancer. *Int J Mol Sci* 2012; 13: 10461–10477.

Zinski J, Tajer B, Mullins MC. TGF-beta Family Signaling in Early Vertebrate Development. *Cold Spring Harb Perspect Biol* 2018; 10.