Supplementary information

for

Modification of the kinetic stability of immunoglobulin G
by solvent additives

Jonas V. Schaefer¹,§, Erik Sedlák¹,²,§, Florian Kast¹, Michal Nemergut³,
and Andreas Plückthun¹,*

¹Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057
Zurich, Switzerland
²Center for Interdisciplinary Biosciences, P.J. Šafárik University, Jesenná 5, 041 54 Košice,
Slovakia
³Department of Biophysics, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia

§ Both authors contributed equally to this work
* To whom correspondence should be addressed
Figure S1

IgG_{WT} heavy chain
MKHLWFLLL VAAPRWVLSDQ VQLQSGPGL VKFQTLSLTLT CAISSGVSS NSAANNIRQ SPGRGELWG
RTYRYSKWN DYADSVKQRI TINPDTSQKQ FLQLNSVTP EDTAVYYCAR SYFISFFSD YWGGQLVTIV
SSASTKGPST FPFLAPSSKST SGGAAGLCLV KDLYFPSEPVT VSWSGALTTS GVTQFAPAVLQ SGLYLSLSS
VTVPSSSLGTL QYICNVPNHK PSNTKVDRKVR EPKSCDKHTT CPPCPAPELL GGPSVFLLFP KPKDTLIMSR
TPEVTGADV VSHEDPEVKF NWYVQGVEVH NAKTPEREQQ YNASTYRVVSV LTVLHQDLNLN GKEYKCKVSN
KALPAPIETIK ISAKAQQPER EQYVTLPFSR EEMTNKQVSL TCLVKGFFPS DIAVEMESNG QPENNYKTP
PVLDSDGFF LYSKLTVDKS RWWQGQVFSC SVMHEALNH YTQQKLSSLP G(K)

IgG_M heavy chain
MKHLWFLLLL VAAPRWVLSDQ VQLQSGPGL VKFQTLSLTLT CAISSGVSS NSAANNIRQ SPGRGELWG
RTYRYSKWN DYADSVKQRI TINPDTSQKQ FLQLNSVTP EDTAVYYCAR SYFISFFSD YWGGQLVTIV
SSASTKGPST FPFLAPSSKST SGGAAGLCLV KDLYFPSEPVT VSWSGALTTS GVTQFAPAVLQ SGLYLSLSS
VTVPSSSLGTL QYICNVPNHK PSNTKVDRKVR EPKSCDKHTT CPPCPAPELL GGPSVFLLFP KPKDTLIMSR
TPEVTGADV VSHEDPEVKF NWYVQGVEVH NAKTPEREQQ YNASTYRVVSV LTVLHQDLNLN GKEYKCKVSN
KALPAPIETIK ISAKAQQPER EQYVTLPFSR EEMTNKQVSL TCLVKGFFPS DIAVEMESNG QPENNYKTP
PVLDSDGFF LYSKLTVDKS RWWQGQVFSC SVMHEALNH YTQQKLSSLP G(K)

Fab_{WT} heavy chain
MKHLWFLLL VAAPRWVLSDQ VQLQSGPGL VKFQTLSLTLT CAISSGVSS NSAANNIRQ SPGRGELWG
RTYRYSKWN DYADSVKQRI TINPDTSQKQ FLQLNSVTP EDTAVYYCAR SYFISFFSD YWGGQLVTIV
SSASTKGPST FPFLAPSSKST SGGAAGLCLV KDLYFPSEPVT VSWSGALTTS GVTQFAPAVLQ SGLYLSLSS
VTVPSSSLGTL QYICNVPNHK PSNTKVDRKVR EPKSCDKHTT EQKLISEEDEL NSAVFILSHNM I

Fab_M heavy chain
MKHLWFLLLL VAAPRWVLSDQ VQLQSGPGL VKFQTLSLTLT CAISSGVSS NSAANNIRQ SPGRGELWG
RTYRYSKWN DYADSVKQRI TINPDTSQKQ FLQLNSVTP EDTAVYYCAR SYFISFFSD YWGGQLVTIV
SSASTKGPST FPFLAPSSKST SGGAAGLCLV KDLYFPSEPVT VSWSGALTTS GVTQFAPAVLQ SGLYLSLSS
VTVPSSSLGTL QYICNVPNHK PSNTKVDRKVR EPKSCDKHTT EQKLISEEDEL NSAVFILSHNM I

lambda light chain
MAWALLLLLL LTTGQGNSWD IELQPQPSVS VAPGQTARIS CSGDLDKDY ASNYQKPKGQ APVLIYDSD
DRPSIGPERF GSNSGNTAT LTGQTAED EADYYCQYSYD SGFSTVGGG TLTVLFQQPK AAPSVTLFPP
SSEELQANKA TLVCLISDFY PGAVTVWKG DSSPVKAGVE TTTPKQSNN KYAASSLYL TPEQWKSHRS
YSCOVTHEGS TVKETVAPTE CS

Figure 1. Sequences of the IgG and Fab fragments used in this study. Mutated residues in the respective heavy chains are highlighted in either red for the IgG_{WT} and in turquoise for the IgG_M constructs. The cleaved signal sequences in both the heavy and light chains are marked in grey and the myc- and his-tag present only in the heavy chains of the Fab constructs in pink or green, respectively. Considering the cleavage of IgG heavy chain C-terminal lysine (therefore these residues are stated in brackets) the resulting pi values for the IgG_{WT} and the IgG_M are 6.89 or 6.65, respectively, while those for the Fab_{WT} and the Fab_M are 6.28 or 6.14, respectively.
Figure S2

Figure S2. Comparison of DSC scans of IgG WT in the presence of representative additives with the corresponding scans of Fab WT fragments under identical conditions. The DSC scans of IgG are shown in color, corresponding DSC scans of Fab fragment are shown in black lines (DSC scan of Fab WT in the presence of 1 M NaCl is shown in dashed black line). All DSC measurements were performed at a protein concentration 0.5 mg/ml in corresponding buffers at a scan rate of 1 K/min.
Figure S3. Comparison of relative lifetimes of individual Fab fragments (grey bars) and the Fab fragments in the context of the full-length IgG (black bars) in the presence of studied additives. The respective lifetimes are expressed as the logarithm (\log_{10}) of relative lifetimes of the Fab fragments relative to the individual FabWT (upper part) or FabM (lower part) in the presence of PBS at 37°C. Thus, the respective Fab in PBS is set to zero in this plot.
Figure S4. Temperature dependence of absorbance at 500 nm for IgG_{WT} (A) and IgG_M (B) in the presence of studied additives: PBS (black), sorbitol (blue), sucrose (cyan), trehalose (green), NaClO₄ (magenta), NaCl (red), Na₂SO₄ (yellow), arginine (dark blue), sarcosine (dark cyan), betaine (dark green), and TMAO (dark magenta).
Figure S5

Figure S5. Temperature dependence of $\log\left(k_2 \frac{K}{1+K}\right)$ of IgGWT (A) and IgGM (B) in the presence of studied additives: PBS (black), sorbitol (blue), sucrose (cyan), trehalose (green), NaClO₄ (magenta), NaCl (red), Na₂SO₄ (yellow), arginine (dark blue), aarcosine (dark cyan), betaine (dark green), and TMAO (dark magenta).
Figure S6.

Figure S6. Correlation of onset temperatures, T_{onset}, and aggregation temperatures, T_{agg}, for IgG$_{\text{WT}}$ (white circles) and IgG$_{\text{M}}$ (black circles). The temperatures are listed in Table S3.
Table S1. Fitting parameters for thermal transitions of FabWT fragment and IgGWT

	T1 (°C)	ΔH1 (kJ/mol)	T2 (°C)	ΔH2 (kJ/mol)	T1/2, 37°C (x factor)	ΔH3 (kJ/mol)	T3 (°C)	E3 (kJ/mol)	ΔH3 (kJ/mol)	R²
PBS										
FabWT	-	-	75.1	443	1	1273	-	-	-	0.9893
IgGWT	69.3	±0.1	565	±4	75.3	295	±2	~0.002	1539	±0.1
										0.9977
Sorbitol										
FabWT	-	-	77.5	476	~10	1908	-	-	-	0.9911
IgGWT	73.0	±0.1	703	±15	78.4	293	±10	~0.004	1738	±23
										0.9976
Sucrose										
FabWT	-	-	78.6	482	~30	1670	-	-	-	0.9904
IgGWT	74.3	±0.1	681	±5	79.5	279	±3	~0.003	1544	±7
										0.9998
Trehalose										
FabWT	-	-	79.5	495	~80	2094	-	-	-	0.9920
IgGWT	74.2	±0.1	680	±5	79.7	292	±3	~0.006	1786	±7
										0.9998
NaClO4										
FabWT	-	-	71.5	353	~0.01	1623	-	-	-	0.9984
IgGWT	56.2	±0.1	428	±3	71.1	341	±2	~0.003	1502	±29
										0.9977
NaCl										
FabWT	-	-	79.3	422	~2	1784	-	-	-	0.9961
IgGWT	69.4	±0.1	623	±2	79.2	377	±1	~0.3	1664	±8
										0.9996
Na2SO4										
FabWT	-	-	85.8	427	~40	1826	-	-	-	0.9961
IgGWT	72.4	±0.1	570	±3	83.5	349	±3	~0.3	1660	±50
										0.9993
Arginine										
FabWT	-	-	78.1	375	~0.2	1923	-	-	-	0.9999
IgGWT	65.5	±0.1	545	±2	77.7	367	±2	~0.1	1551	±12
										0.9984
Sarcosine										
FabWT	-	-	79.1	494	~60	1953	-	-	-	0.9927
IgGWT	72.8	±0.1	640	±4	79.8	317	±2	~0.02	1747	±8
										0.9997
Betaine										
FabWT	-	-	77.4	446	~3	1777	-	-	-	0.9933
IgGWT	71.9	±0.1	668	±4	78.2	289	±3	~0.003	1598	±7
										0.9997
TMAO										
FabWT	-	-	78.0	471	~10	1691	-	-	-	0.9928
IgGWT	73.0	±0.1	656	±3	79.2	276	±3	~0.002	1355	±6

Fitting parameters for thermal transitions of FabWT fragment and IgGWT were obtained from fits of experimental data using Eq. 4 and 6, respectively. All measurements were performed at a scan rate of 1 K/min. The shelf-life T1/2 is related to the calculated shelf-life of the FabWT at 37°C, which is set to 1. The changes in T2, E2, and T1/2 in the presence of the additives are color-coded in three different categories (indicated by three different strengths of either green (increase in parameters, i.e., longer half-life or higher stability) or red (decrease in parameters)), based on the intensity of the changes: for T2, category 1
represents an in/decrease between 1° and 3°C, category 2 is between 3° and 5°C, while category 3 indicates changes by more than 5°C. For E_a, category 1 represents an in/decrease up to 20 kJ/mol, category 2 is between 20 and 50 kJ/mol, while category 3 indicates changes by more than 50 kJ/mol. For $\tau_{1/2}$, category 1 represents an in/decrease of the shelf life between 2- and 10-fold, category 2 is between 10- and 30-fold, while category 3 indicates changes by more than 30-fold.
Table S2. Fitting parameters for thermal transitions of FabM fragment and IgG_M

	T1 (°C)	ΔH1 (kJ/mol)	T2 (°C)	ΔH2 (kJ/mol/x factor)	T12,37°C (°C)	ΔH3 (kJ/mol)	R²		
PBS FabM	-	-	77.7±0.1	614±5	1	1439±10	-	-	0.9906
IgG_M	69.6±0.1	612±4	75.6±0.1	510±4	-0.02	1754±8	84.6±5	338±4	0.9994
Sorbitol FabM	-	-	80.6±0.1	628±4	~10	1487±7	-	-	0.9961
IgG_M	73.3±0.1	597±5	78.7±0.1	652±4	~10	1692±10	87.1±5	347±10	0.9988
Sucrose FabM	-	-	81.1±0.1	621±4	~10	1404±8	-	-	0.9945
IgG_M	74.6±0.1	601±5	79.7±0.1	607±4	~2	1596±9	88.6±5	347±8	0.9990
Trehalose FabM	-	-	82.4±0.1	635±4	~50	1593±9	-	-	0.9943
IgG_M	74.9±0.1	642±4	80.3±0.1	639±3	~15	1823±8	89.1±7	331±7	0.9993
NaClO4 FabM	-	-	72.5±0.1	407±3	~1x10⁵	1279±7	-	-	0.9931
IgG_M	56.1±0.1	403±4	71.3±0.2	398±4	~5x10⁶	1224±116	75.5±39	303±114	0.9953
NaCl FabM	-	-	80.5±0.1	598±3	~2	1356±6	-	-	0.9965
IgG_M	69.3±0.1	531±4	79.2±0.1	549±4	~0.1	1475±30	85.7±22	280±22	0.9969
Na₂SO₄ FabM	-	-	86.6±0.1	564±2	~10	1381±5	-	-	0.9977
IgG_M	73.4±0.1	450±5	84.4±0.2	458±9	~0.02	1124±215	87.9±86	283±207	0.9962
Arginine FabM	-	-	79.0±0.1	473±3	~0.003	1430±7	-	-	0.9953
IgG_M	65.1±0.1	540±3	78.3±0.1	425±3	~0.0003	1589±45	84.2±27	279±25	0.9973
Sarcosine FabM	-	-	81.9±0.1	649±3	~70	1455±6	-	-	0.9967
IgG_M	73.2±0.1	623±5	80.0±0.1	608±4	~3	1825±13	87.1±15	357±13	0.9981
Betaine FabM	-	-	79.1±0.1	583±4	~0.5	1378±7	-	-	0.9957
IgG_M	72.9±0.1	599±9	77.7±0.1	547±9	~0.05	1471±14	86.6±11	354±11	0.9979
TMAO FabM	-	-	80.0±0.1	625±5	~5	1249±7	-	-	0.9931
IgG_M	73.5±0.1	563±7	78.8±0.1	592±5	~1	1380±13	86.9±14	345±14	0.9981

Fitting parameters for thermal transitions of FabM fragment and IgG_M were obtained from fits of experimental data using Eq. 4 and 6, respectively. All measurements were performed at a scan rate of 1 K/min. The shelf-life τ_{1/2} is related to the calculated shelf-life of the FabM at 37°C. The changes in T2', Eα2, and τ_{1/2} in the presence of the additives are color-coded in three different categories (indicated by three different strengths of either green (increase in parameters, i.e., longer half-life or higher stability) or red (decrease in parameters)), based on the intensity of the changes: for T2', category 1 represents an in/decrease
between 1° and 3°C, category 2 is between 3° and 5°C, while category 3 indicates changes by more than 5°C. For E_{a2}, category 1 represents an in/decrease up to 20 kJ/mol, category 2 is between 20 and 50 kJ/mol, while category 3 indicates changes by more than 50 kJ/mol. For $\tau_{1/2}$, category 1 represents an in/decrease of the shelf life between 2- and 10-fold, category 2 is between 10- and 30-fold, while category 3 indicates changes by more than 30-fold.
Table S3. Parameters characterizing the thermal transitions of IgG_{WT} and IgG_M

IgG_{WT}	T_{onset} (<°C>)	T_{agg} (<°C>)	log(τ_{rel,IgG} / τ_{rel,Fab}) **	log[k_{2K/(1+K)}]
PBS	65.0	72.5	-5.40	-15.89
Sorbitol	69.0	80.0	-5.80	-18.14
Sucrose	70.0	82.5	-6.52	-17.97
Trehalose	70.0	77.5	-6.35	-18.22
NaClO₄	50.5	-	-3.04	-9.88
NaCl	63.5	76.0	-1.35	-17.53
Na₂SO₄	66.5	-	-2.65	-17.46
Arginine	60.5	-	-1.30	-14.89
Sarcosine	67.5	72.5	-5.18	-17.65
Betaine	67.0	77.0	-5.52	-17.08
TMAO	68.0	70.5	-6.40	-17.05

IgG_M	T_{onset} (<°C>)	T_{agg} (<°C>)	log(τ_{rel,IgG} / τ_{rel,Fab}) **	log[k_{2K/(1+K)}]
PBS	65.0	73.0	-3.40	-19.33
Sorbitol	68.5	80.5	1.00	-23.56
Sucrose	69.5	83.0	-0.40	-23.31
Trehalose	70.0	76.5	0.65	-24.94
NaClO₄	50.5	-	-5.60	-10.63
NaCl	64.0	76.0	-2.30	-19.51
Na₂SO₄	68.0	-	-4.40	-18.20
Arginine	60.0	-	-4.52	-15.96
Sarcosine	68.0	74.5	-0.89	-23.44
Betaine	67.5	77.5	-2.30	-21.14
TMAO	68.5	72.0	-0.70	-21.81

* The experimental error in determination of T_{onset} and T_{agg} is estimated to be ±0.5 °C.
** The parameter τ_{rel,IgG} ^{τ_{rel,IgG} / τ_{rel,Fab}} ^{τ_{rel,Fab}} is expressed in logarithmic form.