Identification of siderophore producing and cynogenic fluorescent Pseudomonas and a simple confrontation assay to identify potential bio-control agent for collar rot of chickpea

Anil S. Kotasthane1 · Toshy Agrawal1 · Najam Waris Zaidi2 · U. S. Singh2

Abstract In soil, plant roots coexist with bacteria and fungi that produce siderophores capable of sequestering the available iron. Microbial cyanogenesis has been demonstrated in many species of fungi and in a few species of bacteria (e.g., Chromobacterium and Pseudomonas). Fluorescent Pseudomonas isolates P29, P59, P144, P166, P174, P187, P191 and P192 were cyanogenic and produced siderophores in the presence of a strong chelater 8-Hydroxyquinoline (50 mg/l). A simple confrontation assay for identifying potential antagonists was developed. Fluorescent Pseudomonas isolates P66, P141, P144, P166 and P174 were antagonistic against both Rhizoctonia solani and Sclerotium rolfsii. Vigorous plant growth was observed following seed bacterization with P141, P200 and P240. In field experiments, seed bacterization with selected bacterial isolates resulted in reduced collar rot (S. rolfsii) incidence.

Keywords Fluorescent Pseudomonads · Collar rot · HCN · Siderophores · Confrontation assays

Introduction

Rhizosphere inhabiting fluorescent Pseudomonads are one of the most dominant and potentially most promising group of plant growth promoting rhizobacteria involved in the bio-control of plant diseases (Haas and Défago 2005; Glick 2014). They maintain soil health by employing a wide variety of mechanisms, including nitrogen fixation, enhanced solubilization of phosphate and phytohormone production that positively impact plant health (such as auxins and cytokinins) (Penrose and Glick 2003; Mirza et al. 2006). Pseudomonas spp. produce an arsenal of antimicrobials (including hydrogen cyanide (HCN), pyoluteorin, phenazines, pyrrolnitrin, siderophores, cyclic lipopeptides and 2,4-diacetylphloroglucinol (DAPG) (Thomashow and Weller 1996; Weller 2007). They also are able to promote plant growth and induce systemic resistance (ISR) in plants (Raaijmakers et al. 2009; Glick 2014). In the present study we evaluate fluorescent Pseudomonas isolates for siderophore (CAS assay-plate screening, CAS assay-spectrophotometric analysis, hydroxyquinoline test, tetrazolium test, FeCl\textsubscript{3} test and Arnow’s assay) and HCN production. Pseudomonas spp. have been employed efficiently as commercial biocontrol agents (Loper and Lindow 1987; Walsh et al. 2001). However, there is always a scope for isolating better, locally adapted strains for deployment as biocontrol agents. Hence, we have screened local isolates of fluorescent Pseudomonads for developing formulation and possible commercialization for the management of collar rot of chickpea (S. rolfsii Sacc), one of the major biotic factors contributing towards low production (55–95% mortality of chickpea seedlings).

Materials and methods

Microorganisms and culture conditions

The experimental material consisted of purified 29 isolates of fluorescent Pseudomonas spp. from soils (rhizospheric and non-rhizospheric) of different geographical locations.
of Chhattisgarh. Isolation of fluorescent pseudomonads was
done by adopting serial dilution method on King’s B (KB)
medium. After incubation at 28 °C for 2 days, fluorescent
pseudomonad colonies from plates were identified under
UV light (366 nm). Isolates were characterized on the basis
of biochemical tests as per the procedures outlined in
Bergery’s Manual of Systematic Bacteriology (Sneath et al.
1986). Isolated colonies of fluorescent *Pseudomonas* were
further streaked onto KB agar plates to obtain pure cul-
tures. The isolates were maintained (at −80 °C on King’s
B broth (Himedia) containing 30% (v/v) glycerol) in the
culture collections of the Department of Plant Molecular
Biology and Biotechnology, Indira Gandhi Krishi Vish-
wavidyalaya, Raipur, Chhattisgarh, India, and revived on
King’s B slants when required.

Siderophore production

Siderophore production (qualitative and quantitative) was
determined by (CAS assay (Schwyn and Neilands 1987).
Specific tests were carried out for identification of
hydroxamate and Catecholate types of siderophores fol-
lowering the standard methods (Arnow 1937). Chrome
azurol S solution was prepared and added to melted King’s
B agar medium in the ratio 1:15. Spot inoculation at the
centre of the CAS plate was done from actively growing
cultures of *Pseudomonas*. Colonies exhibiting an orange
halo after 3 days of incubation (28 ± 2 °C) were consid-
ered positive for siderophore production and the diameter
of the orange halo was measured.

Hydroxyquinoline mediated siderophore test

For selection of *Pseudomonas* isolates with high ability to
siderophores, isolates were inoculated on King’s B medium
supplemented with a strong chelator 8-Hydroxyquinoline
(50 mg/l) (De Brito et al. 1995). Inoculated isolates were
incubated at 28 ± 2 °C for 48–72 h; only those bacteria
that produce a more avid iron chelator will grow.

Arnow’s assay

Arnow’s assay was used for quantification of catechol type
siderophore. For qualitative estimation of siderophores,
actively growing cultures of *Pseudomonas* were inoculated
to 20 ml King’s B medium in 50 ml tubes and incubated
for 3 days at 28 ± 2 °C. The bacterial cells were removed
by centrifugation at 3000 rpm for 5 min. Three ml of the
culture supernatant was then mixed with 0.3 ml of 5 N HCl
solution, 1.5 ml of Arnow’s reagent (10 g NaNO₂, 10 g
Na₂MoO₄·2H₂O dissolved in 50 ml distilled water) and
0.3 ml of 10 N NaOH. After 10 min the presence or
absence of pink colour was observed and noted.

Tetrazolium test

This test is based on the capacity of hydroxamic acid to
reduce tetrazolium salt by hydrolysis of hydroxamate
groups using a strong alkali. The reduction and release of
alkali shows red colour to a pinch of tetrazolium salt when
1–2 drops of 2 N NaOH and 0.1 ml of test sample are
added. Instant appearance of a deep red colour indicated
the presence of hydroxamate siderophore.

FeCl₃ test

One ml of the culture supernatant was mixed with freshly
prepared 0.5 ml of 2% aqueous FeCl₃ and observed for the
presence and absence of deep red colour.

HCN production

The production of HCN was estimated by the method of
Wei et al. (1991). The cultures were grown on KM
plates supplemented with 4.4 g/l glycine as a precursor
and the filter paper strips soaked in saturated picric acid
solution were exposed to the growing *Pseudomonas*
isolates. The plates were incubated for 7 days at
28 ± 2 °C and observations were recorded as change in
the colour of filter paper to brown as positive indicator
for HCN production.

Confrontation assay

Fluorescent *Pseudomonas* isolates were multiplied on
King’s B broth and incubated for 2 days at 28 °C till the
fluorescent pigment appeared in the broth. Petri-plates
containing pre-sterilized potato dextrose agar (PDA)
medium were inoculated with plant pathogenic fungi
Sclerotium rolfsii or *Rhizoctonia solani* (in the centre)
and incubated at 252 °C for 3 days till the fungus
completely covered the entire plate. Bipartite interac-
tions were performed following a simple confrontation
assay which was developed during the course of inves-
tigation. To identify prospective bio-agent, a simple
confrontation assay was developed wherein edge of glass
funnel was deployed for bio-agent inoculum deposition
surrounding pre-inoculated fungal pathogen. The edge of
a glass funnel was sterilized by dipping in alcohol fol-
lowed by flaming. Broth containing young growing cell
(3-day-old) of fluorescent *Pseudomonas* was dispensed
in sterile petri dish and picked at the edge of the funnel
by dipping. Care was taken to remove the excess
inoculum by gently shaking the funnel. Inoculation was
done by gently touching the edge of the funnel (con-
taining fluorescent *Pseudomonas*) which encircled the
pre-inoculated plant pathogenic fungi on agar plug.
equidistantly (Fig. 1). Inhibition zone was measured after 72 h of incubation at 28 ± 2 °C. Percent inhibition of pathogens by *Pseudomonas* isolates over control was calculated using the formula of (Vincent 1947):

\[
\text{Percent inhibition} = \frac{(\text{Growth of pathogen in control} - \text{growth of pathogen with } Pseudomonas \text{ isolate/growth of pathogen in control}) \times 100}
\]

Proposed technique has the following advantages: (1) uniform inoculum deposition during all combinations of bipartite interactions. (2) Replica-plating can be done of the inoculum picked on the edge of the funnel. (3) Ability to evaluate the antagonistic potential of a sporulating bio-inoculant (e.g. *Trichoderma* sp.). The only disadvantage with this technique is that for each bio-inoculant in the broth a separate plate is required to dispense the inoculums.

Field trial for testing selected fluorescent *Pseudomonas* isolates against chickpea collar rot

For field trials seed bacterization was done with stock cultures (used for confrontation assays) of selected fluorescent *Pseudomonas* isolate. Slurry for seed bacterization was prepared @ 5 ml of bacterial culture + 3 g of talcum powder/kg of chickpea seeds. Care was taken for uniform coating of all the seeds, which were dried in shade and then sown in a field naturally infested with *S. rolfsii*. Sowing was done in 2 M × 7 M plots. Care was taken to carry out all normal agricultural practices. Observations were recorded on germination, plant vigour, mortality and bundle and grain weight.

Results

Qualitative and quantitative assay for siderophore production

In the present investigation, 29 isolates of *Pseudomonas* were screened by six different siderophore assays viz., CAS assay-plate screening, CAS assay-spectrophotometric analysis, hydroxyquinoline test, tetrazolium test, FeCl$_3$ test and Arnow’s assay. All isolates exhibited an orange halo after 3 days of incubation (28 ± 2 °C) on CAS agar plate and, therefore, were considered positive for siderophore production. Intensity of orange halo and diameter showed wide variation among the isolates, which ranged from 11.50 (isolate P56) to 64.50 (isolate P191) mm. Isolates P29, P59, P66, P141, P144, P166, P174, P187, P191, P192, P200, P207 P229 and P260 were identified as producer of more avid iron chelator as they were tested –ve in King’s B medium supplemented with a strong chelater 8-Hydroxyquinoline (50 mg/l). Three isolates (P7, P43 and P45) tested positive in Arnow’s assay (detects catechol type of siderophores). We observed that isolates P43 and P45 tested –ve in HQ test but were +ve for other siderophore tests. All isolates produced deep red colour on addition of hydroxamate type of siderophores (reduce tetrazolium salt by hydrolysis of hydroxamate group in presence of strong alkali). FeCl$_3$ test was positive for isolates P7, P23, P29, P43, P59, P66 P74, P80, P123, P141, P144, P174, P180, P187, P192, P200, P207 P229 and P260. Only one isolate (P7)
Table 1: Quantitative and qualitative estimation of siderophores by different tests, HCN production and antagonistic activity of fluorescent *Pseudomonas* isolates against *Rhizoctonia solani* and *Sclerotium rolfsii*

Isolates	Quantitative siderophore units	Qualitative siderophore test	HCN production	% inhibition	R. solani	S. rolfsii
	CAS ± Arnow’s FeCl₃ Tetrazolium HQ					
P66	78.555 ± 0.39ₐ	63.5 ± 1.5ₐ	++ +	68.89 ± 1.1₁ᵃ	82.78 ± 2.7₈ᵇ	
P141	80.15 ± 0.15ₐ	55 ± 1.8ₐ	+ +	52.78 ± 2.7₈ᶜ	43.335 ± 2.2₂²ᵇ	
P200	49.475 ± 2.11¹	45.5 ± 1.5₈ₑ	+ +	60 ± 5.5₈ᵇ	28.89 ± 1.1₁¹	
P229	22.365 ± 1.32¹	36 ± 1.₇ᵇ	+ +	19.445 ± 2.7₈¹	28.885 ± 4.4₄⁵ᶠ	
P260	71.05 ± 2.63ᵇ	61.5 ± 0.₅ᵃ	++ +	37.775 ± 5.5₆ᵇ	32.775 ± 3.3₃ᵇⁱ	
P2	37.25 ± 1.06ᵈ	35 ± 1.₇ᵇ	+ +	40.5 ± 0.₅ᶜ	17.25 ± 0.₅ʲ	
P3	30.2 ± 0.2₈ᵉ	52.5 ± 2.₅ᵇₑ	+ +	32.95 ± 0.₄⁵ᵇ	17.1 ± 0.₄ᵢ	
P43	70.6 ± 0.₈₈ᵇ	41 ± 1.₆₈ḡ	+ +	26.2 ± 1.₂ᵢ	33.95 ± 0.₆₅ᵇᵃ	
P45	24.15 ± 0.₂₁ʲ	16.5 ± 1.₅ᶜ	+ +	13.05 ± 0.₅₅ᵏ	25.1 ± 0.₇ʲ	
P130	47.5 ± 0.₃₂ᶠ	31.5 ± 1.₅₅ᶜ	+ +	25.15 ± 0.₁₅ⁱ	31.85 ± 0.₇₅ᵇᵃ	
P6	47.5 ± 0.₇₁ᵗ	40 ± 2.₅₆ᵇ	+ +	21.825 ± 0.₅₈	45.15 ± 0.₇₅ᵇ	
P123	43.78 ± 0.₃₁ᵍ	39 ± 2.₉ᵇ	+ +	33.15 ± 0.₆₅ᵇ	34 ± 0.₇ʰ	
P150	43.78 ± 0.₃₁ᵍ	42.5 ± 2.₅₆ᵗₑ	+ +	38.2 ± 0.₇ᵇ	44.95 ± 0.₅₅ᵇ	
P23	48.25 ± 0.₃₅ᶠ	42 ± 2.₅₆ᵗₑ	+ +	39.375 ± 0.₆₃ᵇ	45.05 ± 0.₆₅ᵇ	
P56	27.5 ± 0.₇₁ᵗ	11.5 ± 1.₅ᵗ	+ +	10.8 ± 0.₅ᵗ	50.65 ± 0.₆₅ᶠ	
P184	40.615 ± 0.₈₇ᵗ	40.5 ± 0.₅₆ᵗᵉ	+ +	18 ± 0.₅ᶠ	50.75 ± 0.₇₅ᵇ	
P206	36.16 ± 0.₂₃ʲ	51 ± 1.₈ᶜ	+ +	46.875 ± 0.₆₃ᵇ	72.8 ± 0.₆	
P132	23.835 ± 0.₂₃¹	41 ± 1.₇ₑ	+ +	13.15 ± 0.₆₅ᵏ	61.95 ± 0.₈₅ᵈ	
P7	52.9 ± 0.₄ᶜ	41.5 ± 1.₅₇ₑ	+ +	21.625 ± 0.₃₈	61.8 ± 0.₇ᵈ	
P192	36.115 ± 0.₁₆ᶜ	54.5 ± 1.₅ᵇ	+ +	28.2 ± 0.₇ᵈ	56.25 ± 0.₆₅ᵉ	
P191	47.945 ± 0.₀₈ᵀ	64.5 ± 1.₅ᵃ	+ +	30.8 ± 0.₈ᵉ	72.6 ± 0.₄	
P59	60.5 ± 0.₇₁ᶜ	39.5 ± 1.₅₈ᵇ	+ +	36.625 ± 0.₃₈ᵇ	47.3 ± 0.₆¢	
P29	60.5 ± 0.₇₁ᶜ	54.5 ± 1.₅ᵇ	+ +	43.85 ± 1.₃₅ₑ	87.3 ± 0.₆₆	
P187	60.115 ± 0.₁₆ᶜ	51.5 ± 1.₅ᵇₑ	+ +	44.325 ± 0.₅₇ₑ	74.05 ± 0.₇₅ˢ	
P74	27.75 ± 0.₃₅ᵀ	40.5 ± 2.₅₆ᵗᵉ	+ +	50.7 ± 0.₇⁸	35.4 ± 0.₃ᵇ	
P80	32.5 ± 0.₇₁¹	s ± 1.₄ᵉʳ	+ +	63.1 ± 0.₆ᵇ	63.85 ± 0.₅₅ᵈ	
P144	43.5 ± 0.₇₁ᵀ	48.5 ± 1.₅ᵈ	+ +	50.7 ± 0.₇⁸	76 ± 0.₄	
P166	60.115 ± 0.₁₆ᶜ	40 ± 3.₅₆ᵀ	+ +	73.1 ± 0.₆ᵉ	73 ± 0.₈	
P174	55.5 ± 0.₇₁ᵈ	51 ± 1.₈ᶜ	+ +	51 ± 1.₇⁸	82.95 ± 0.₇₅ᵇ	
Max.	80.15	64.5		73.1	87.3	
Min.	22.365	11.5		10.8	17.1	
CV	2.352	5.22		6.625	3.645	
CD (0.01)	2.962	6.33		6.876	5.12	
CD (0.05)	2.198	4.697		5.102	3.799	
tested positive for all siderophore tests. Carboxylate type of siderophore was determined by spectrophotometric method at 630 nm and the percentage of siderophore unit ranged from 12.23% (isolate P130) to 70.60% (isolate P43) (Table 1).

Table 1 continued

Isolates	Quantitative % siderophore units	Qualitative siderophore test	HCN production	% inhibition
	CAS Arnow's FeCl₃ Tetrazolium HQ	R. solani S. rolfsii		
F cal	527.375** 53.39**	90.948** 247.998**		

Values are average of three replications; values after ± represent standard deviation
As per Duncan’s grouping means with the same letter are not significantly different
CV coefficient of variance, CD critical difference, HQ hydroxyquinoline test
+++ Luxuriant/high growth
++ Medium growth
+ Low growth
– No growth
** Values are significant at 1 and 5% levels

Table 2 Efficacy of selected fluorescent *Pseudomonas* isolates against collar rot and yield of chickpea

Isolate no.	No. of plants	Plant vigour	Collar rot incidence	Bundle weight (kg)	Yield (gm)	
		% poor vigour	% high vigour	% wilted plants		
Control	256	92.820± 0.63	7.965± 0.155	35.015± 0.635	2.070 ± 0.25	598.000± 25
P66	289	17.425± 0.465	93.585± 0.545	16.130± 0.21	3.670± 0.45	1361.500± 59.5
P141	303	5.130± 0.51	96.070± 0.69	11.105± 0.545	4.890± 0.43	1732.500± 10.5
P200	350	21.625± 0.485	79.353± 0.675	7.275± 0.705	3.785± 0.425	1085.000± 36
P229	305	92.955± 0.165	7.820± 0.61	2.930± 0.31	2.735± 0.355	574.500± 14.5
P260	367	7.7620± 0.51	14.000± 0.65	2.645± 0.465	1.425± 0.225	277.000± 34
CV	1.331	1.715	5.750	16.755	5.126	
Fcal	7145.771**	5242.546**	570.035**	11.890**	262.364**	
CD (0.01)	5.529	3.062	2.668	1.923	178.267	
CD (0.05)	1.669	2.021	1.761	1.269	117.675	

Values after ± represent standard deviation
Superscript values indicate Duncan’s grouping means with the same letter are not significantly different
** Values are significant at 1 and 5% levels

tested positive for all siderophore tests. Carboxylate type of siderophore was determined by spectrophotometric method at 630 nm and the percentage of siderophore unit ranged from 12.23 (isolate P130) to 70.60% (isolate P43) (Table 1).

Screening for hydrogen cyanide production

To identify cynogenic fluorescent *Pseudomonas*, isolates were inoculated on KMB plates supplemented with 4.4 g/l glycine (precursor molecule of HCN) and incubated for 7 days at 28 ± 2°C. Development of brown colour on filter paper strips soaked in saturated picric acid solution indicated –ve for HCN production. Out of the 29 fluorescent *Pseudomonas* tested, 12 isolates (P7, P29, P45, P59, P132, P144, P150, P166, P174, P187, P191 and P192) tested positive for HCN producing ability. We observed a correlation between inhibitory effects observed following confrontation assays and the ability to produce HCN by fluorescent *Pseudomonas*. Cynogenic (HCN producers) isolates P132, P7, P192, P191, P59, P29, P187 exerted strong antagonism against *S. rolfsii*, where as a non-cynogenic isolate P74 exerted strong inhibitory effects against *R. solani*. On the contrary, a noncynogenic (P80) and three cyanogenic (P144, P166, P174) fluorescent *Pseudomonas* exerted strong inhibitory effects against both the soilborne fungal pathogens *R. solani* and *S. rolfsii* (Table 1).

In vitro antagonistic activity of *Pseudomonas* isolates against *R. solani* and *S. rolfsii*

There were differences in the antagonistic abilities of fluorescent *Pseudomonas* isolates against both (*R. solani* and *S. rolfsii*) pathogens (Fig. 1; Table 1). All of the 29 isolates of fluorescent *Pseudomonas* showed different degree of growth inhibitions of *R. solani* and *S. rolfsii*, ranging from 10.8 to 73.1% and 17.1 to 87.3%, respectively.
Confrontation assays revealed P166 and P29 as potential antagonists against *R. solani* and *S. rolfsii*, respectively, while isolates P56 and P3 were ineffective. Fluorescent *Pseudomonas* isolates P29, P187, P191, P192 and P207 exerted strong inhibitory effects on the mycelia growth of *S. rolfsii* whereas isolates P66, P141, P144, P166 and P174...
expressed strong inhibitory effects on both *R. solani* and *S. rolfsii*.

Efficacy of selected fluorescent *Pseudomonas* isolates against root rot and yield of chickpea

Through confrontation assay, isolates P66 and P141 was identified to be having very strong antagonistic activities against *R. solani* and *S. rolfsii*, whereas P200 was antagonistic only against *R. solani*; other two isolates P229 and P260 were ineffective against both the pathogens. For field trials these five fluorescent *Pseudomonas* isolates were selected for their efficacy against collar rot disease and yield of chickpea. Frequency of infected plants was very high in untreated (control) plot, whereas seed treatment with bacterial isolates had lower incidence of collar rot (Table 2; Fig. 2). Vigorous plant growth was observed following seed bacterization with P141, P200, P240 (95.38, 83.04 and 78.86%, respectively), whereas poor vigour was observed with P229 (7.21%) and P260 (13.35%) (Table 2; Fig. 2). Bundle weight and yield indicated significant differences between control and treated plots. In the order of increasing bundle weight and yield per plot, the bioefficacy of the isolates were P260 < P229 < P66 < P200 < P141 (Table 2).

Discussion

Understanding of the mechanisms involved in the antagonist interactions between bacteria, pathogen and host plant is important for efficient utilization of these natural resources in crop health management. Thomashow and Weller 1991). Siderophore production by strains of *Pseudomonas* spp., for plant disease control, is of great interest because of its possibilities in the substitution of chemical pesticides. Similarly, microbial cyanogenesis has been demonstrated in a few bacterial species (belonging to the genera *Pseudomonas, Chromobacterium, Rhizobium* and several cyanobacteria (Blumer and Haas 2000). Glycine has generally been used as a precursor of cyanide in fungi and bacteria (Brysk et al. 1969; Wissing 1974) and cyanogenesis is one of the mechanisms of antagonism and biocontrol properties (Haas and Défago 2005; Lanteigne et al. 2012). In the present study, we have compared the ability of several fluorescent Pseudomonads to produce siderophores, cyanogenesis and antagonism in plate assay. Our study revealed that the isolates vary in the mechanisms and ability to inhibit pathogens. During the study a simple confrontation assay technique was developed which was advantageous as compared to earlier reported techniques (Dennis and Webster 1971; Fokkema 1978; Santoyo et al. 2010), wherein bipartite interactions were performed on media plates by streaking bacterial bio-agents (forming quadrant) and placing mycelial plug of 4 mm in the centre. Our combined in vitro and field data show the potential of isolates P66, P141 and P200 to be developed as a commercial bioagent for the control of chickpea collar rot, a perennial problem in chickpea production compounded by the lack of host resistance against the pathogen *S. rolfsii*.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest in the publication.

References

Arnow LE (1937) Colorimetric determination of the components of 3, 4-dihydroxyphenylalanine-tyrosine mixtures. J Biol Chem 118:531–537

Blumer C, Haas D (2000) Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch Microbiol 173:170–177

Brysk MM, Lauinger C, Ressler C (1969) Biosynthesis of cyanide from [2–14C] glycine in chromobacterium violaceum. Biochim Biophys Acta (BBA) Gen Subj 184:583–588

De Brito AM, Gagne S, Antoun H (1995) Effect of compost on rhizosphere microflora of the tomato and on the incidence of plant growth-promoting rhizobacteria. Appl Environ Microbiol 61:194–199

Dennis C, Webster J (1971) Antagonistic properties of species-groups of Trichoderma: I. Production of non-volatile antibiotics. Trans Br Mycol Soc 57:25–IN3

Fokkema NJ (1978) Fungal antagonisms in the phyllosphere. Ann Appl Biol 99:115–119

Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319. doi:10.1038/nrmicro1129

Lanteigne C, Gadkar VJ, Wallon T et al (2012) production of DAPG and HCN by *Pseudomonas* sp. LBUM300. Contributes to the biological control of bacterial canker of tomato. Phytopathology 102:967–973. doi:10.1094/PHYTO-11-11-0312

Loper JE, Lindow SE (1987) Lack of evidence for the in situ fluorescent pigment production by *Pseudomonas syringae pv. syringae* on bean leaf surfaces. Phytopathology 77:1449–1454

Mirza MS, Mehnaz S, Normand P et al (2006) Molecular characterization and PCR detection of a nitrogen-fixing *Pseudomonas* strain promoting rice growth. Biol Fertil Soils 43:163–170

Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15

Raaijmakers JM, Paulitz TC, Steinberg C et al (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

Santoyo G, Valencia-Cantero E, Orozco-Mosqueda M del C et al (2010) Papel de los sideróforos en la actividad antagónica de *Pseudomonas fluorescens* zum80 hacia hongos fitopatógenos (Role of siderophores in antagonistic activity of *Pseudomonas fluorescens* zum80 against phytopathogens). Terra Latinoam 28:53–60

Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56
Sneath PHA, Mair NS, Sharpe ME, Holt JG (1986) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore, MD, p 964

Thomashow LS, Weller DM (1991) Role of antibiotics and siderophores in biocontrol of take-all disease of wheat. In: The rhizosphere and plant growth. Springer, Netherlands, pp 245–251

Thomashow LS, Weller DM (1996) Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites. In: Plant-microbe interactions. Springer, US, pp 187–235

Vincent JM (1947) Distortion of fungal hyphae in the presence of certain inhibitors. Nature 159:850

Walsh UF, Morrissey JP, O’Gara F (2001) Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol 12:289–295

Wei G, Klopper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508–1512

Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256

Wissing F (1974) Cyanide formation from oxidation of glycine by a Pseudomonas species. J Bacteriol 117:1289–1294