On the Claim of Modulations in 36Cl Beta Decay and Their Association with Solar Rotation

S. Pommé1 · K. Kossert2 · O. Nähle2

Keywords Half-life · Decay constant · Radioactivity · Solar cycle · Neutrino

1. Introduction

The validity of the exponential decay law has been questioned in a series of recent articles by authors claiming that periodical oscillations in repeated radioactivity measurements are indicative of variability in the decay constants, whereas others have refuted these claims on metrological and theoretical grounds. More specifically, it was asserted that beta decay is...
induced by interaction of solar or cosmic neutrinos with the nucleus and that modulations in the neutrino flux cause changes in decay rates in the 10^{-3} range. It was speculated that precise measurements of beta decay could be used as an alternative to expensive and elaborate solar neutrino flux monitoring experiments. An overview of the discussion can be found in articles by Pommé et al. (2016, 2017a, 2017b, 2017c, 2018), which contradict the hypothesis of variability of decay constants – thus endorsing the validity of the exponential decay law – on the basis of a large suite of accurate decay-rate measurements provided by national radionuclide metrology institutes from all over the world.

In recent work, Sturrock et al. (2013), Sturrock, Fischbach, and Scargle (2016, 2017) claim to have observed modulations in beta decay with frequencies of the order of 10^{-1}, which they speculatively associate with internal solar rotation. In particular, they observed a prominent ‘transient cycle’ of $12.7 \, a^{-1}$ (28.76 days period, 0.07% amplitude) in spectrograms formed from countings of ^{36}Cl and ^{32}Si decays in a gas-flow proportional counter at BNL (Alburger, Harbottle, and Norton, 1986) and found them indicative of the synodic rotation rate of the radiative zone of the Sun, since it matches its helioseismologically determined period of 28.7 days (Schou et al., 1998; Komm et al., 2003). However, it is questionable whether all experimental uncertainties were under control in the aforementioned ^{36}Cl and ^{32}Si decay measurements (Pommé, 2015, 2016).

Sturrock, Fischbach, and Scargle (2016, 2017) also linked the $12.7 \, a^{-1}$ period with an insignificantly small oscillation in the Super-Kamiokande (SK-I) (Yoo et al., 2003) neutrino flux measurements and concluded that modulations in ‘neutrino-induced’ beta decays can provide information about the deep solar interior. In the ^{36}Cl data, an additional cycle appears at an $11 \, a^{-1}$ period, which was tentatively associated with rotation of the tachocline between the core and radiative zone. Interestingly, the cycles are called ‘transient’ because they do not persist in time, since they were present in the period 1984–1985, but disappeared in 1986–1987. Sturrock, Fischbach, and Scargle (2016) speculated that the neutrino flux had been modulated by the variable solar magnetic field, in which a primary synodic period of 26.84 days and a secondary period of 28.5 days have been identified (Gough, 2017).

Kossert and Nähle (2014, 2015) demonstrated the invariability of the decay constants for ^{36}Cl and $^{90}Sr/^{90}Y$ by triple-to-double coincidence ratio (TDCR) measurements (Kossert et al., 2015), directly rebutting previous claims for annual oscillations ascribed to seasonal changes in the solar neutrino flux due to variations in the Earth–Sun distance (see also Nähle and Kossert, 2015). However, no specific investigation of other frequencies was performed on their ^{36}Cl data set. Pommé et al. (2018) scanned decay curves of various nuclides for cyclic modulations in a frequency range between 0.08 a^{-1} and 20 a^{-1} and found no indications of non-exponential behaviour for α, β^-, β^+, and EC decaying nuclides alike. In this work, a specific analysis of the ^{36}Cl decay-rate measurements is performed in search of the modulations claimed by Sturrock, Fischbach, and Scargle (2016, 2017). They suggested that ‘a reasonable search band for the synodic modulation of beta-decay rates would seem to be 9–14 a^{-1}, corresponding to periods in the range of 26–41 days’.

2. Analysis and Results

2.1. Measurements

The experimental work was described in detail by Kossert and Nähle (2014). Liquid scintillation vials with ^{36}Cl in solution were prepared in December 2009 using 15 mL Ultima
Gold™ scintillation cocktail in 20 mL borosilicate glass vials with low potassium content. Source 3 was measured 66 times between December 2009 and April 2013 in the custom-built TDCR detector at the Physikalisch-Technische Bundesanstalt (PTB) Braunschweig; this has been described by Nähle, Kossert, and Cassette (2010). The activities and the corresponding counting rates of the sources were nearly constant because of the long 36Cl half-life of 302×10^3 a. A small linear correction was applied to the dataset to compensate for increasing colour quenching in the scintillation cocktail with time. Since the TDCR method (Broda, Cassette, and Kossert, 2007; Kossert et al., 2015) is a primary standardisation technique for radioactivity (Pommé, 2007), the PTB decay-rate measurements showed a far higher stability ($\sim 10^{-4}$) than the BNL gas-flow proportional counter measurements ($\sim 10^{-3}$) on which Sturrock et al. have based their claims.

2.2. Periodogram

The relative deviations of the measured 36Cl decay rates from their average value are shown in Figure 1, both for the PTB and BNL data sets. The standard deviation of the PTB values ($\sigma = 0.009\%$) is 14 times lower than that of the BNL data ($\sigma = 0.13\%$). The residuals were scanned for cyclic modulations through a weighted Lomb–Scargle periodogram (LSP) (Lomb, 1976; Scargle, 1982), following the procedure described by Pommé et al. (2018). The calculated power density takes a value between 0 and 1, reflecting the relative reduction of the χ^2 of the data through the fit of a cycle with a certain angular frequency ω; $p(\omega) = 1$ if the data match the fit function perfectly. For the PTB data set, the improvement of the χ^2 is less than 12% over a wide frequency range from 0.2 a$^{-1}$ to 20 a$^{-1}$. The LSP reveals several peaks, none of which is particularly pronounced. The largest peak in the search band, at 13.1 a$^{-1}$, corresponds to an insignificantly small oscillation of 0.0038 (16) % amplitude (see Section 2.4). This suggests that there are no major cyclic modulations in the 36Cl decay rate.
Figure 2 Weighted Lomb–Scargle periodograms of the 5-day averaged Super-Kamiokande I solar neutrino flux data (1996 – 2001) (top) and 36Cl decay rate data measured at the BNL (middle) and the PTB (bottom). The indicated frequencies correspond to the most apparent peak in the SK-I data (9.43 a\(^{-1}\)) and two cycles (11.0 a\(^{-1}\) and 12.7 a\(^{-1}\)) observed in the BNL count rates.

In Figure 2, a zoom-in of the LSP is shown covering the search band between 9 – 14 a\(^{-1}\). A direct comparison is made between the modulations in the SK-I neutrino flux data (top) and the BNL (middle) and PTB (bottom) 36Cl decay-rate residuals. Three particular frequencies are indicated by a dashed line. The 9.43 a\(^{-1}\) cycle is the only one that may be statistically significant (Desai and Liu, 2016) in the SK-I neutrino flux data (with a fitted amplitude of 5.5 (17) %), but there is clearly no analogue in the 36Cl decay-rate datasets. Conversely, the 11.0 a\(^{-1}\) and 12.7 a\(^{-1}\) cycles may have significant amplitudes in the BNL 36Cl decay rates, but there are no matching modulations in the PTB decay data, nor in the SK-I neutrino flux data. In summary, there is no indication of synchronicity among the three data sets.

2.3. Fit of Sinusoidal Function

To assess the magnitude of the modulations, the data were binned in 50 sub-intervals of a cycle, and the amplitude and phase of the best-fitting sinusoidal function were determined. The dates were taken relative to a fixed reference date (1/1/1970), and the fit function was defined as

\[y(t) = A \sin\left(\frac{2\pi (t + a)}{T}\right) + C, \quad (1) \]

in which \(A\) is the amplitude, \(t\) is the elapsed number of days since the reference date, \(a\) is the phase shift expressed in days, \(T\) is the period of the cycle, and \(C\) is a small constant that compensates for a non-zero average value of the grouped residuals.

The binned 36Cl decay-rate data and fitted sinusoids for cycles at frequencies of 9.43 a\(^{-1}\), 11.0 a\(^{-1}\), and 12.7 a\(^{-1}\) are shown for the BNL and PTB combined in Figures 3, 4, and 5, respectively. The corresponding amplitudes of the PTB data are 0.0012 (15) %, 0.0019 (16) % and 0.0029 (12) %, all of which are statistically indistinguishable from zero and significantly lower than the 0.07% (local maximum) effects in 36Cl decay reported by Sturrock,
Figure 3 Residuals from exponential decay of 36Cl sources at BNL (top) and PTB (bottom) binned into 50 subperiods of a 38.75-day cycle (9.43 a$^{-1}$) and a sinusoid function fitted to the data. The fitted amplitudes A are indicated in the corresponding graphs.

Figure 4 Residuals from exponential decay of 36Cl sources at BNL (top) and PTB (bottom) binned into 50 subperiods of a 33.20-day cycle (11.0 a$^{-1}$) and a sinusoid function fitted to the data. The fitted amplitudes A are indicated in the corresponding graphs.

Fischbach, and Scargle (2016, 2017). This reflects the superior stability of the measurements in this work and puts to question why the claim of variability of the 36Cl decay constant has been maintained at present day on the basis of old, unreliable measurements with an unstable instrument, whereas the precise measurements analysed in this work have been available
in literature since 2014 (Kossert and Nähle, 2014). The assertion that the cyclic events are ‘transient’ would be a far-fetched argument.

2.4. Heuristic Uncertainty

As observed with other nuclides (Pommé et al., 2018), a simple heuristic relationship appears to hold between the uncertainty $u(A)$ of the amplitude (expressed in percent) and the relative standard deviation $\sigma(x)/\bar{x}$ of the set of N decay rates (decay-corrected and compensated for annual modulations):

$$
 u(A) \approx \frac{1.5}{\sqrt{N}} \frac{\sigma(x)}{\bar{x}}.
$$

In this case, $N = 66$, and the relative standard deviation of the PTB decay-rate data is $\sigma(x)/\bar{x} = 0.0088\%$, which leads to $u(A) = 0.0016\%$. This value is in good agreement with the calculated uncertainties on the fitted amplitudes. Compensation of the PTB 36Cl data set for the fitted annual oscillation of 0.0040 (16) % amplitude did not significantly alter the amplitudes of the fitted cycles in the search band.

For all decay curves studied in Pommé et al. (2018), it was found that the amplitudes of fitted cycles were within a range $u(A)/3 < A < 3u(A)$, which suggests that they result from random variations in the decay-rate measurements. This implies that no statistically significant cycle in the 9–14 a$^{-1}$ search band could be observed in radioactive decay, the case of 36Cl beta decay included.

3. Conclusions

The precise 36Cl decay-rate measurements performed at the PTB were investigated for cyclic deviations from exponential decay at frequencies between 0.2 a$^{-1}$ and 20 a$^{-1}$. The mea-
ured decay curve shows no evidence of deviations from the exponential-decay law beyond the measurement uncertainty. Periodograms reveal no pronounced oscillations. There is no indication for a cycle at 7.43 a\(^{-1}\), corresponding to a hypothetical cycle in the SK-I neutrino flux measurements between 1996 and 2001, neither are there modulations at 11.0 a\(^{-1}\) and 12.7 a\(^{-1}\) down to a 0.0016% uncertainty on the amplitude. This contradicts claims by Sturrock et al. of ‘transient’ cycles in \(^{36}\)Cl decay rates.

These conclusions are in line with similar research performed on other radionuclides, showing that amplitudes of modulations do not exceed three times their uncertainties. The hypothesis of neutrino-induced decay has been contradicted by experiment for \(\alpha\), \(\beta^−\), \(\beta^+\), and EC decaying nuclides alike. There is no indication that solar neutrinos influence radioactive decay, therefore all speculative solar science deduced from variations in beta-decay rates should be regarded as unsubstantiated.

Acknowledgements The authors thank Peter Sturrock for kindly providing them the \(^{36}\)Cl decay-rate dataset from Alburger, Harbottle, and Norton (BNL).

Disclosure of Potential Conflicts of Interest The authors declare that they have no conflicts of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Alburger, D.E., Harbottle, G., Norton, E.F.: 1986, Half life of \(^{32}\)Si. Earth Planet. Sci. Lett. \textbf{78}, 168. DOI.

Broda, R., Cassette, P., Kossert, K.: 2007, Radionuclide metrology using liquid scintillation counting. Metrologia \textbf{44}, S36. DOI.

Desai, S., Liu, D.W.: 2016, A search for evidence of solar rotation in Super-Kamiokande solar neutrino dataset. Astropart. Phys. \textbf{82}, 86. DOI.

Gough, D.O.: 2017, Is the Sun a magnet? Solar Phys. \textbf{292}, 70. DOI.

Komm, R., Howe, R., Durney, B.R., Hill, F.: 2003, Temporal variation of angular momentum in the solar convection zone. Astrophys. J. \textbf{586}, 650. DOI.

Kossert, K., Nähle, O.J.: 2014, Long-term measurements of \(^{36}\)Cl to investigate potential solar influence on the decay rate. Astropart. Phys. \textbf{55}, 33. DOI.

Kossert, K., Nähle, O.J.: 2015, Disproof of solar influence on the decay rates of \(^{90}\)Sr/\(^{90}\)Y. Astropart. Phys. \textbf{69}, 18. DOI.

Kossert, K., Broda, R., Cassette, P., Ratel, G., Zimmerman, B.: 2015, Uncertainty determination for activity measurements by means of the TDCR method and the CIEMAT/NIST efficiency tracing technique. Metrologia \textbf{52}, S172. DOI.

Lomb, N.R.: 1976, Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. \textbf{39}, 447. DOI.

Nähle, O., Kossert, K.: 2015, Comment on “Comparative study of beta-decay data for eight nuclides measured at the Physikalisch-Technische Bundesanstalt” [Astropart. Phys. 59 (2014) 47 – 58]. Astropart. Phys. \textbf{66}, 8. DOI.

Nähle, O., Kossert, K., Cassette, P.: 2010, Activity standardization of \(^{3}\)H with the new TDCR system at PTB. Appl. Radiat. Isot. \textbf{68}, 1534. DOI.

Pommé, S.: 2007, Methods for primary standardization of activity. Metrologia \textbf{44}, S17. DOI.

Pommé, S.: 2015, The uncertainty of the half-life. Metrologia \textbf{52}, S51. DOI.

Pommé, S.: 2016, When the model doesn’t cover reality: examples from radionuclide metrology. Metrologia \textbf{53}, S55. DOI.

Pommé, S., Stroh, H., Paepen, J., Van Ammel, R., Marouli, M., Altitzoglou, T., et al.: 2016, Evidence against solar influence on nuclear decay constants. Phys. Lett. B \textbf{761}, 281. DOI.

Pommé, S., Stroh, H., Paepen, J., Van Ammel, R., Marouli, M., Altitzoglou, T., et al.: 2017a, On decay constants and orbital distance to the Sun – Part I: Alpha decay. Metrologia \textbf{54}, 1. DOI.
Pommé, S., Stroh, H., Paepen, J., Van Ammel, R., Marouli, M., Altzitzoglou, T., et al.: 2017b, On decay constants and orbital distance to the Sun – Part II: Beta minus decay. *Metrologia* **54**, 19. [DOI](https://doi.org/)

Pommé, S., Stroh, H., Paepen, J., Van Ammel, R., Marouli, M., Altzitzoglou, T., et al.: 2017c, On decay constants and orbital distance to the Sun – Part III: Beta plus and electron capture decay. *Metrologia* **54**, 36. [DOI](https://doi.org/)

Pommé, S., Stroh, H., Altzitzoglou, T., Paepen, J., Van Ammel, R., Kossert, K., et al.: 2018, in press, Is decay constant? *Appl. Radiat. Isot.* [DOI](https://doi.org/)

Scargle, J.D.: 1982, Studies in astronomical time series analysis. II – Statistical aspects of spectral analysis of unevenly spaced data. *Astrophys. J.* **263**, 835. [DOI](https://doi.org/)

Schou, J., Antia, H.M., Basu, S., Bogart, R.S., Bush, R.I., Chitre, S.M.: 1998, Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler Imager. *Astrophys. J.* **505**, 390. [DOI](https://doi.org/)

Sturrock, P.A., Javorsek, D. II, Jenkins, J., Lee, R.: 2013, An analysis of apparent r-mode oscillations in solar activity, the solar diameter, the solar neutrino flux, and nuclear decay rates, with implications concerning the Sun’s internal structure and rotation, and neutrino processes. *Astropart. Phys.* **42**, 62. [DOI](https://doi.org/)

Sturrock, P.A., Fischbach, E., Scargle, J.D.: 2016, Comparative analyses of Brookhaven National Laboratory nuclear decay measurements and Super-Kamiokande solar neutrino measurements: Neutrinos and neutrino-induced beta-decays as probes of the deep solar interior. *Solar Phys.* **291**, 3467. [DOI](https://doi.org/)

Sturrock, P.A., Fischbach, E., Scargle, J.D.: 2017, Analysis of ten years of Radon-chain decay measurements: Evidence of solar influences and inferences concerning solar internal structure and the role of neutrinos. [arXiv](https://arxiv.org/)

Yoo, J., Ashie, Y., Fukuda, S., Ishihara, K., Itow, Y., Koshio, Y., et al. (Super-Kamiokande collaboration): 2003, Search for periodic modulations of the solar neutrino flux in Super-Kamiokande-I. *Phys. Rev. D* **68**, 092002. [DOI](https://doi.org/)