Jet effects in high-multiplicity pp events

Antonio Ortiz1, Gyula Bencédi1,2, Héctor Bello1,3, and Satyajit Jena4

1Instituto de Ciencias Nucleares, UNAM, 04510, México D. F., México
2Wigner Research Centre for Physics of the H.A.S., H-1121, Budapest, Hungary
3Facultad de Ciencias Físico Matemáticas, BUAP, 1152, Puebla, México
4University of Houston, Houston, TX 77204, USA

March 17, 2016

1 Introduction

The study of the high-multiplicity pp events has become important because we need to understand the origin of the fluid-like features which have been found in such small systems \cite{1-4}.

In this work we concentrate on the radial flow signatures, which not only hydrodynamical models can explain. Namely, the effect has been also found in \textsc{Pythia} \cite{5} and it is attributed to multi-parton interactions (MPI) and color reconnection (CR) via boosted color strings \cite{6}. For high-multiplicity events, the blast-wave parametrization, a hydro inspired model, has been found to fit very well the transverse momentum (p_T) spectra of different particle species \cite{7}. Although, the quality of the fits become worse for low-multiplicity events, we see that the parameter related to the average transverse expansion velocity ($\langle \beta_T \rangle$) increases with increasing multiplicity. This effect is qualitatively similar to what has been seen at the LHC \cite{8}.

In \textsc{Pythia}, color reconnection was originally introduced in order to explain the rise of the average p_T with the event multiplicity. In short, the model allows the interaction among the partons which originate from MPI and initial-/final-state radiation. There are different implementations, e.g., the default MPI-based model of \textsc{Pythia}8.212 introduces a probability which is the largest for a low-p_T system to be reconnected with one of a harder p_T scale. And the interaction between two systems of high-p_T scales is not allowed. Such a soft-hard interaction also suggests that jets may play a role in the observed radial flow-like patterns as highlighted in \cite{7,9}.

In this work, the role of jets in high-multiplicity pp collisions is investigated using \textsc{Pythia} 8.212. The inclusive p_T spectra of identified particles are studied for events with and without jets, where the jets are reconstructed using the anti-k_T algorithm implemented in FastJet \cite{10}.
2 Results

Proton-proton collisions at $\sqrt{s} = 7$ TeV were simulated with Pythia8.212 using the tune Monash 2013 [11]. Events were classified according with their event multiplicity (N_{ch}) and leading jet p_T (p_T^{jet}). All the observables were calculated counting particles within $|\eta|<1$. For the jet finder only detectable particles (including charged and neutral particles) are considered within cone radius of 0.4, while for the p_T spectra and event multiplicity only charged particles are taken into account.

To investigate on the radial flow-like effects in jets we first study the proton-to-pion ratio in low-multiplicity events and as a function of p_T^{jet} (see Fig. 1). It is worth noticing that events without jets dominate for momenta below 2 GeV/c, while at larger momenta, jets start playing a more important role. In addition, a bump at intermediate p_T is observed in all the event classes. The p_T, where the peak emerges, increases with increasing p_T^{jet}. This structure resembles one observed in the different colliding systems at the LHC [1, 12] and which sometimes is referred as a “flow peak” [6]. This effect is the same in events generated with and without color reconnection.

The blast-wave analysis of the p_T spectra has been performed using the same particle species and p_T intervals described in [7]. Figure 2 shows that the hydro model can describe the Pythia p_T spectra when jets with momentum above 5 GeV/c are part of the event. Actually, a $\langle \beta_T \rangle$ of ≈ 0.5 can be achieved when the jet p_T is larger than 20 GeV/c. Contrarily, the model does not describe the spectra in events without jets. This result is consistent with the spherocity analysis reported in [7], where it was argued that the fast parent parton being a boosted system can mimic radial flow too. The same analysis was also implemented for high-multiplicity events, in that case, thanks to color reconnection, the quality of the fit improves in events without jets, however a small $\langle \beta_T \rangle$ (≈ 0.37) is obtained and it increases up to ≈ 0.51 when a high-p_T jet is identified in the

1 Events without jets are those where the jet finder can not reconstruct one with $p_T^{\text{jet}} > 5$ GeV/c.
Figure 2: (Color online). Leading jet p_T dependence of the transverse momentum spectra for low (top) and high (bottom) multiplicity pp collisions at $\sqrt{s} = 7$ TeV. The blast-wave parametrization is shown with solid lines.
event. Actually, when a high-\(p_T\) jet was required, a very weak multiplicity dependence of \(\langle \beta_T \rangle\) is observed.

3 Summary
In summary, we have studied the role of jets in the radial flow-like features of PYTHIA. We have found that even in low-multiplicity events the blast-wave model is able to describe the \(p_T\) spectra of different particle species only when jets are part of the event. At high-multiplicity, \(\langle \beta_T \rangle\) can be very small in events without jets (\(\approx 0.37\)). The interaction of jets with the soft component is therefore important to produce the observed effects in PYTHIA. This seems to be a promising tool which could be exploited by the experiments in order to understand better the LHC data.

Acknowledgements
The authors acknowledge the useful discussions with Guy Paić, Eleazar Cuautle, Peter Christiansen and Gergely Barnaföldi. Support for this work has been received from CONACYT under the grant No. 260440; from DGAPA-UNAM under PAPIIT grants IA102515, IN105113, IN107911 and IN108414; and OTKA under the grant NK106119. The EPLANET program supported the mobility from Mexico to Europe and vis.

References
[1] A. Ortiz (ALICE), “Overview of ALICE results,” Nuclear and Particle Physics Proceedings, 267-269(2015), 403, x Latin American Symposium of High Energy Physics.

[2] Jaroslav Adam et al. (ALICE), “Multiplicity dependence of charged pion, kaon, and (anti)proton production at large transverse momentum in p-Pb collisions at \(\sqrt{s_{NN}} = 5.02\) TeV,” (2016), [1601.03658]

[3] N. Armesto and E. Scomparin, “Heavy-ion collisions at the Large Hadron Collider: a review of the results from Run 1,” (2015), [1511.02151]

[4] I. Bautista, A. Fernandez, and P. Ghosh, “Indication of change of phase in high-multiplicity proton-proton events at LHC in String Percolation Model,” Phys. Rev., D92(2015) (7), 071504.

[5] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen and P. Z. Skands, “An Introduction to PYTHIA 8.2,” Comput. Phys. Commun., 191(2015), 159.

[6] A. Ortiz, P. Christiansen, E. Cuautle, I. Maldonado, Ivonne and G. Paić, “Color Reconnection and Flowlike Patterns in pp Collisions,” Phys. Rev. Lett., 111(2013) (4), 042001.

[7] A. Ortiz, E. Cuautle and G. Paić, “Mid-rapidity charged hadron transverse spherocity in pp collisions simulated with Pythia,” Nucl. Phys., A941(2015), 78.
[8] B. Abelev et al. (ALICE), “Multiplicity Dependence of Pion, Kaon, Proton and Lambda Production in p-Pb Collisions at \(\sqrt{s_{NN}} = 5.02\) TeV,” Phys. Lett., B728 (2014), 25.

[9] A. Ortiz, “Mean \(p_T\) scaling with \(m/n_q\) at the LHC: Absence of (hydro) flow in small systems?” Nucl. Phys., A943 (2015), 9.

[10] G. P. Salam M. Cacciari and G. Soyez, “FastJet User Manual,” Eur. Phys. J., C72 (2012), 1896.

[11] S. Carrazza P. Skands and J. Rojo, “Tuning PYTHIA 8.1: the Monash 2013 Tune,” Eur. Phys. J., C74 (2014) (8), 3024.

[12] J. Adam et al. (ALICE), “Centrality dependence of the nuclear modification factor of charged pions, kaons, and protons in Pb-Pb collisions at \(\sqrt{s_{NN}} = 2.76\) TeV,” (2015), 1506.07287.