Comparison between Amulet and Watchman left atrial appendage closure devices: A real-world, single center experience.

Mohammed Saad
Medical Clinic III, University Hospital Schleswig-Holstein, Kiel, Germany

Osama Risha
Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany

Makoto Sano
Medical Clinic II, University Heart Center Lübeck, division of electrophysiology, Lübeck, Germany

Thomas Fink
Medical Clinic II, University Heart Center Lübeck, division of electrophysiology, Lübeck, Germany

Christian-Hendrik Heeger
Medical Clinic II, University Heart Center Lübeck, division of electrophysiology, Lübeck, Germany

Julia Vogler
Medical Clinic II, University Heart Center Lübeck, division of electrophysiology, Lübeck, Germany

Vanessa Sciacca
Medical Clinic II, University Heart Center Lübeck, division of electrophysiology, Lübeck, Germany

Charlotte Eitel
Medical Clinic II, University Heart Center Lübeck, division of electrophysiology, Lübeck, Germany

Thomas Stiermaier
Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany

Alexander Joost
Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany

Ahmad Keelani
Medical Clinic II, University Heart Center Lübeck, division of electrophysiology, Lübeck, Germany

Georg Fuernau
Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany

Roza Meyer-Sarai
Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany

Karl-Heinz Kuck
Medical Clinic II, University Heart Center Lübeck, division of electrophysiology, Lübeck, Germany

Ingo Eitel
Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany

Roland Richard Tilz
Research Article

Keywords: Left atrial appendage closure, Amulet, Watchman, atrial fibrillation, anti-coagulation

DOI: https://doi.org/10.21203/rs.3.rs-412824/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Objectives

To compare the Watchman™ versus Amulet™ left atrial appendage closure (LAAC) devices in a consecutive, industry-independent registry.

Background

Data reporting a head-to-head comparison between Amulet and Watchman devices are scarce.

Methods

Patients who underwent LAAC using Watchman or Amulet devices from January 2014 to December 2019 at the University Heart Center Lübeck, Lübeck, Germany were included in the present analysis. Primary endpoints included periprocedural complications (in-hospital death, pericardial tamponade, device embolization, stroke, major bleeding and vascular access complications), and complications during 2-year follow-up (ischemic stroke, hemorrhagic stroke, thromboembolism, device thrombus, bleeding and death).

Results

After matching the patients for age (± 5 years), gender, CHA2DS2Vasc score (± 1) and HASBLED score (± 1), each of the Watchman and the Amulet groups included 113 patients. Patients in the Amulet group had significantly more periprocedural complications (2.7% vs 10.6%, p = 0.029; respectively) and more major bleeding complications (0% vs 5.3%, p = 0.029; respectively). During 2-year follow-up, the rate of events was comparable between the Watchman and Amulet groups (18.3% versus 20.8%, p = 0.729; respectively).

Conclusion

Amulet LAAC device was associated with increased periprocedural complications as compared to Watchman LAAC device. On 2-year follow-up, both devices showed comparable efficacy and safety.

Introduction

Atrial fibrillation (AF) is the most common form of clinically relevant arrhythmia with a prevalence ranging from 0.1% among patients aged < 55 years and up to 9% in octogenarians. Patients with AF have an increased risk of ischemic stroke approximately 5 times compared with those without AF.
Although oral anticoagulants (OAC) play an important role in preventing AF-related stroke4,5, this treatment is underutilized in a subset of patients due to poor patient compliance, contraindications, and potential bleeding complications.6−10 Taking into consideration that 90% of thrombi are located in the left atrial appendage (LAA) in patients with non-valvular AF11, left atrial appendage closure (LAAC) has emerged as an alternative approach in this patient group.

Currently, many percutaneous LAAC devices have obtained CE mark. The Watchman (Boston Scientific, Marlborough, MA, USA) and the Amplatzer Cardiac Plug (ACP) (Abbott, St Paul, MN, USA) are the most commonly used devices for mechanical orifice obstruction and the Lariat device (SentreHEART, Redwood City, CA, USA) for epicardial suture ligation.12 The Watchman device is approved in many countries worldwide and is the only device studied in randomized trials13−14, as well as in multicenter prospective non-randomized studies.15−16 For ACP and its second-generation Amulet, multiple retrospective and prospective registries have reported successful device implantation in 95–100% of patients, with a low rate of major periprocedural adverse events17−22. However, data reporting a head-to-head comparison of clinical outcomes in a consecutive, industry-independent registry of Amplatzer and Watchman devices are limited.23−28 Aim of this study was therefore to compare the Watchman™ to the Amulet™ LAAC device regarding peri-procedural success and complications during 2-year follow-up in a real-world industry-independent registry.

Results

Patient characteristics

From January 2014 to December 2019, 303 patients underwent endocardial or epicardial LAAC at the University Heart Center Lübeck, Lübeck, Germany. Of these, 284 patients underwent LAAC using Watchman or Amulet devices and were included in the present analysis. Patients who underwent epicardial LAAC with Lariat (17 patients) or endocardial LAAC using Lambre (2 patients) devices were excluded from this study.

After matching the patients for age (± 5 years), gender, CHA2DS2Vasc score (± 1) and HASBLED score (± 1), 113 patient pairs with 113 patients in Watchman group were compared to 113 patients in the Amulet group (Fig. 1). Median follow-up was 238 days in the Watchman group and 160 days in the Amulet group. Patients in the Amulet group included more patients with a history of congestive heart failure and more patients with a history of hemorrhagic stroke. Otherwise, there were no significant differences in patient characteristics between both groups (Table 1). The procedural device implantation success was achieved in 99% in the Watchman group and in 97% in the Amulet group.

Periprocedural complications

In comparison to patients in the Watchman group, patients in the Amulet group had significantly more periprocedural complications (2.7% vs 10.6%, $p = 0.029$; respectively) and more major bleeding
complications (0% vs 5.3%, p = 0.029; respectively). The detailed events are illustrated in Table 2. In-hospital death, pericardial tamponade and device embolization were as well numerically higher in the Amulet group but without reaching statistical significance (Table 2).

Clinical outcome during 2-year follow-up

Anticoagulation strategy at the end of the follow up is shown in Table 1. Most of the patients were discharged on dual-antiplatelet-therapy in both groups (60.7% in Watchman group and 79.5% in Amulet group) followed by OAK or new OAK (10.7% and 16.1% for Watchman and 5.4% and 10.7% for Amulet, respectively). Otherwise, very few patients were discharged on single antiplatelet-, triple- or new OAC/Clopidogrel-therapy. During 2-year follow-up, the rate of MACCE was similar between the 2 groups. However, the rate of developing a device-thrombus was numerically higher in the Watchman group (4.9%) in comparison to the Amulet group (0.9%), but it did not reach statistical significance (Table 3). Figure 2 depicts Kaplan–Meier plots showing the risk of MACCE in both groups during 2-year follow-up with no relevant difference between groups (p = 0.354).

Discussion

In our consecutive, real-world, industry-independent registry study comparing Watchman versus Amulet LAAC device implantation, the implantation of Amulet LAAC device was associated with an increased risk for periprocedural complications without increase in complication rates during 2-year follow-up.

While the Amplatzer devices (ACP and Amulet) were only studied in large registries,29–31 the Watchman device is the only LAAC device, which is studied in randomized trials,13,14 as well as in multicenter prospective non-randomized studies.15,16 Both devices proved clinical effectiveness in prevention of ischemic and bleeding events, as well as cardiovascular mortality.13–16,29,31 However, only few retrospective data reported a head-to-head comparison of clinical outcomes of Amplatzer and Watchman devices and especially industry-independent data are lacking.23–28

In our real-world study, the incidence rate of periprocedural MACCE for our cohort was 6.6%, with an incidence of 2.7% in the Watchman group and 10.6% in the Amulet group. In the previously published Watchman studies, the rates of 7-day procedure-related serious adverse events were 8.7% in PROTECT-AF trial, 4.2% in the PREVAIL trial, and 2.8% in the EMBOLUS study.13,14,15 However, we reported a higher incidence of MACCE in the Amulet group than in previously published large registries with rates ranging from 3.2–6.2%.17,29,31

In the previously published data comparing Watchman and Amulet LAAC devices the rate of overall major peri-procedural complications did not differ between Watchman and Amplatzer groups.23–28 This may be explained by the small number of patients included in these retrospective studies, lack of matching between the 2 device groups or both reasons together.24–28 The significantly higher incidence of periprocedural complications associated with Amulet implantation in our matched patient populations.
was mainly derived from the numerically higher incidence of pericardial tamponade, device embolization and major bleeding. These differences may be attributable to the early implantation experience with the Watchman device in our center and the introduction of the Amulet device later at the end of 2016.

In our analysis, there were 4 (3.5%) device embolizations in the Amulet group with no documented embolization in the Watchman group. Three embolizations occurred directly after the implantation procedure while the fourth occurred few hours later and all were treated percutaneously with no need for a surgical retrieval. One embolization was due to an oversized device, while the second was due to an undersized device and both were retrieved from the left atrium. The third embolization was due to a difficult LAA anatomy (broccoli LAA), whereas the fourth device dislodged from its delivery catheter and was partially embolized in the left atrium before its implantation in the LAA followed by complete embolization in the inferior vena cava during a trial of retrieval.

In a propensity score matched analysis of 2 real-world registries, higher rates of device embolizations, bailout surgery, and cardio-pulmonary resuscitation were noticed in the Amplatzer group compared to the Watchman group. In these 2 real-world registries, 8 (3%) device embolizations occurred in patients who received the Amplatzer devices and only 1 embolization in patients who received the Watchman device. However, the rate of device embolization was much lower (0.7%) in the previously published LAAC observational studies of AMPLATZER devices.

We reported a significantly higher incidence of major bleeding in the Amulet group than in the Watchman group (5.3% vs 0% respectively, \(p = 0.029 \)) and a numerically higher incidence of pericardial tamponade (4.4% vs 0% respectively, \(p = 0.06 \)). Similarly, in a total of 371 consecutive patients from 8 UK centers, Betts et al reported a significantly higher incidence of acute minor adverse events in patients who were treated with ACP compared to patients who were treated with Watchman and this was explained with the higher number of incidental pericardial effusions and bleeds. In the recently published subanalysis of the Left-Atrium-Appendage Occluder Register - GErmany (LAARGE) registry, procedural safety did not differ between Watchman and Amulet devices. However, the incidence of severe bleeding and moderate pericardial effusion were numerically higher in the Amulet group without reaching a statistical significance and the incidence of moderate bleeding was significantly higher in the Amulet group. While the incidence rate of periprocedural vascular access complications was similar between the 2 groups in our study, other studies reported higher rates in patients who were treated either with Watchman or with Amulet. This might be explained in part by the different implantation settings in the different centers either with using a radial, femoral or no arterial access in monitoring blood pressure during LAAC device implantation and in part the heterogenous use of vascular closure techniques.

In our study, procedural radiation doses and fluoroscopy times were similar for the two devices, while the dose of contrast was higher for Watchman compared to Amulet. Figini et al reported comparable results for intraprocedural radiation doses and fluoroscopy times but higher volume of contrast for ACP.
In the present report, Watchman and Amplatzer devices offered comparable efficacy and safety on 2-year follow-up in patients with non-valvular atrial fibrillation. No statistically significant differences were found in terms of deaths (total and cardiac), thromboembolic and bleeding events at follow-up. These results are consistent with the previously published reports comparing Watchman and Amulet LAAC devices.\(^{23-28,32}\)

The stroke rate at follow-up was 2.9% in patients who were treated with Watchman and 1.9% in patients who were treated with Amulet consistent with other reports of Amplatzer registries\(^ {17,29,31}\) and in the 5-year outcomes of the PROTECT-AF and PREVAIL trials for the Watchman occluder.\(^ {33}\)

The incidence rate of device-thrombus with the Watchman device was 4.9%, which is relatively consistent with rates observed in the PROTECT AF and ASAP (ASA Plavix Feasibility Study with Watchman Left Atrial Appendage Closure Technology) studies\(^ {13,16}\), which were 4.2% and 4%, respectively. In the Amulet group, we reported an incidence of only 0.9% of device thrombus, a rate that is lower than the 2–4% reported in the Amplatzer registries.\(^ {19,29,31}\) Fauchier et al reported an overall incidence of thrombus on the device of 5.5% in patients treated with a Watchman device, 8.2% with the ACP, and 25% with the Amulet device.\(^ {26}\)

We noticed a numerically higher incidence of peri-device leak \(< 5\) mm in the Watchman group (5%) than in the Amulet group (2%), but without reaching a statistical significance. In the matched analysis of Kleinecke et al, peri-device leak \(\geq 5\) mm was equally low for Amplatzer and Watchman groups.\(^ {23}\) In the study of Figini et al, and during follow-up, there was a significantly higher incidence of severe peri-device leak \(> 3\) mm) with the Watchman device.\(^ {24}\)

We reported a death rate of 9.6% in the Watchman group and 14.2% in the Amulet group. These mortality rates are higher than in other studies.\(^ {13,14,24,26-28}\) In comparison to patients of the PROTECT-AF, CAP and PREVAIL studies, our patients were older, had more prevalence of diabetes, congestive heart failure and higher incidence of transient ischemic attack, ischemic and hemorrhagic stroke.\(^ {14}\) At 1-year follow-up in the EWOLUTION registry, the mortality rate was 9.8%, and this was mainly attributed to the advanced age and considerable comorbidities of the study patients.\(^ {15}\) In comparison to the EWOLUTION registry, our patients have a significantly higher prevalence of hemorrhagic stroke and major bleeding.\(^ {34}\) Moreover, in a matched analysis of Kleinecke et al, all-cause mortality at 1 year for Watchman was 8.36% (54/646) and for Amulet 10.21% (69/676); a rate which is close to our results.\(^ {23}\)

Despite most of the retrospective data showing comparable efficacy and safety of the Watchman and Amplatzer devices, larger randomized studies or well-designed prospective registries will have to confirm these results. CLOSURE-AF (NCT03463317) trial is the largest on-going, non-industry sponsored, trial comparing LAAC to oral anticoagulants. Results of this study are expected to give more information about the safety and efficacy of LAAC in a real-world patient population.
Limitations

Due to lack of randomization, potential selection bias cannot be excluded. However, to minimize this potential bias, we performed a matching for age, gender, CHA2DS2Vasc score, and HASBLED score for the 2 groups. Furthermore, we started earlier in our center with the implantation of the Watchman device, which may have influenced the operator experience, peri-procedural complications and the significantly different follow-up durations. Other limitations of this study include the small number of patients, selection of the LAAC device according to the operator decision and expertise and different post-interventional anti-coagulations strategies over the time of study period.

In conclusion, our results of a large, industry-independent real-world registry demonstrate that in patients with non-valvular atrial fibrillation undergoing LAAC, the implantation of Amulet LAAC device was associated with increased periprocedural complications compared to Watchman LAAC device. Both devices showed comparable efficacy and safety on 2-year follow-up.

Abbreviations

- ACP: Amplatzer Cardiac Plug
- AF: Atrial fibrillation
- LAA: Left atrial appendage
- LAAC: Left atrial appendage closure
- MACCE: major adverse cardiac and cerebrovascular events
- OAC: Oral anticoagulants
- TEE: transesophageal echocardiography

Declarations

Data availability

The datasets generated and analyzed during the current study are not publicly available due to inclusion of patient information but are available from the corresponding author on reasonable request.

Author contributions:

- MS: study design, statistical analysis, writing the manuscript.
- OR: data collection, revision of the manuscript
- MS: data collection, revision of the manuscript
- TF: data collection, revision of the manuscript
- C-H H: revision of the manuscript
- JV: revision of the manuscript
Competing Interests Statement:

RRT: consultant to Boston Scientific, speaker’s bureau: Boston Scientific, Abbot Medical.

MS: proctor in Boston Scientific for Watchman 2.5 and Watchman FLX.

All other authors declare no competing financial and/or non-financial interests in relation to the work described.

References

1. Rahman, F., Kwan, G. F. & Benjamin, E. J. Global epidemiology of atrial fibrillation. Nat Rev Cardiol. 11, 639–654 (2014).

2. Go, A. S. et al. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and risk factors in atrial fibrillation (ATRIA) study. JAMA. 285, 2370–2375 (2001).

3. Kirchhof, P. et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 37, 2893–2962 (2016).

4. Hart, R. G., Benavente, O., McBride, R. & Pearce, L. A. Antithrombotic therapy to prevent stroke in patients with atrial fibrillation: a meta-analysis. Ann Intern Med. 131, 492–501 (1999).

5. Risk factors for stroke and efficacy of antithrombotic therapy in atrial fibrillation. Analysis of pooled data from five randomized controlled trials. Arch Intern Med. 154, 1449–1457 (1994). Erratum in: Arch Intern Med. 154, 2254 (1994).

6. Waldo, A. L., Becker, R. C., Tapson, V. F., Colgan, K. J. & NABOR Steering Committee. Hospitalized patients with atrial fibrillation and a high risk of stroke are not being provided with adequate anticoagulation. J Am Coll Cardiol. 46, 1729–1736 (2005).

7. Bungard, T. J., Ghali, W. A., Teo, K. K., McAlister, F. A. & Tsuyuki, R. T. Why do patients with atrial fibrillation not receive warfarin? Arch Intern Med. 160, 41–46 (2000).
8. Levine, M. N., Raskob, G., Landefeld, S. & Kearon, C. Hemorrhagic complications of anti-coagulant treatment. *Chest.** 119*, 108–121 (2001).

9. Kirchhof, P. *et al.* Management of atrial fibrillation in seven European countries after the publication of the 2010 ESC Guidelines on atrial fibrillation: primary results of the PREvention of thromboembolic events European Registry in Atrial Fibrillation (PREFER in AF). *Europace.** 16*, 6–14 (2014).

10. Lip, G. Y. *et al.* A prospective survey in European Society of Cardiology member countries of atrial fibrillation management: baseline results of EURObservational Research Programme Atrial Fibrillation (EORP-AF) Pilot General Registry. *Europace.** 16*, 308–319 (2014).

11. Blackshear, J. & Odell, J. Appendage obliteration to reduce stroke in cardiac surgical patients with atrial fibrillation. *Ann Thorac Surg.** 61*, 755–759 (1996).

12. Shetty, R., Leitner, J. & Zhang, M. Percutaneous catheter-based left atrial appendage ligation and management of periprocedural left atrial appendage perforation with the LARIAT suture delivery system. *J Invasive Cardiol.** 24*, E289–293 (2012).

13. Holmes, D. R. *et al.* Percutaneous closure of the left atrial appendage versus warfarin therapy for prevention of stroke in patients with atrial fibrillation: a randomised non-inferiority trial. *Lancet.** 374*, 534–542 (2009).

14. Holmes, D. R. Jr. *et al.* Prospective randomized evaluation of the Watchman Left Atrial Appendage Closure device in patients with atrial fibrillation versus long-term Warfarin therapy (the PREVAIL Trial). *J Am Coll Cardiol.** 64*, 1–12 (2014).

15. Boersma, L. V. *et al.* Efficacy and safety of left atrial appendage closure with WATCHMAN in patients with or without contraindication to oral anticoagulation: 1-Year follow-up outcome data of the EWOLUTION trial. *Heart Rhythm.** 14*, 1302–1308 (2017).

16. Reddy, V. Y. *et al.* Left atrial appendage closure with the Watchman device in patients with a contraindication for oral anticoagulation: the ASAP study (ASA Plavix Feasibility Study With Watchman Left Atrial Appendage Closure Technology). *J Am Coll Cardiol.** 61*, 2551–2556 (2013).

17. Landmesser, U. *et al.* Left atrial appendage occlusion with the AMPLATZER Amulet device: periprocedural and early clinical/echocardiographic data from a global prospective observational study. *EuroIntervention.** 13*, 867–876 (2017).

18. Tzikas, A. *et al.* Left atrial appendage occlusion with the AMPLATZER Amulet device: an expert consensus step-by-step approach. *EuroIntervention.** 11*, 1512–1521 (2016).

19. Korsholm, K. Transcatheter left atrial appendage occlusion in patients with atrial fibrillation and a high bleeding risk using aspirin alone for post-implant antithrombotic therapy. *EuroIntervention.** 12*, 2075–2082 (2017).

20. Berti, S. *et al.* Left atrial appendage occlusion in high-risk patients with non-valvular atrial fibrillation. *Heart.** 102*, 1969–1973 (2016).

21. Kleinecke, C. *et al.* Twelve-month follow-up of left atrial appendage occlusion with Amplatzer Amulet. *Cardiol J.** 24*, 131–138 (2017).
22. Urena, M. *et al.* Percutaneous left atrial appendage closure with the AMPLATZER cardiac plug device in patients with nonvalvular atrial fibrillation and contraindications to anticoagulation therapy. *J Am Coll Cardiol.* **62**, 96–102 (2013).

23. - Kleinecke, C. *et al.* Clinical outcomes of Watchman vs. Amplatzer occluders for left atrial appendage closure (WATCH at LAAC). *Europace.* **22**, 916–923 (2020).

24. - Figini, F. *et al.* Left atrial appendage closure: A single center experience and comparison of two contemporary devices. *Catheter Cardiovasc Interv.* **89**, 763–772 (2017).

25. Betts, T. R. *et al.* Percutaneous left atrial appendage occlusion using different technologies in the United Kingdom: A multicenter registry. *Catheter Cardiovasc Interv.* **89**, 484–492 (2017).

26. - Fauchier, L. *et al.* Device-Related Thrombosis After Percutaneous Left Atrial Appendage Occlusion for Atrial Fibrillation. *J Am Coll Cardiol.* **71**, 1528–1536 (2018).

27. - Fastner, C. *et al.* Real-world experience comparing two common left atrial appendage closure devices. *BMC Cardiovasc Disord.* **18**, 171 (2018).

28. Chen, S. *et al.* Left atrial appendage occlusion using LAmbre Amulet and Watchman in atrial fibrillation. *J Cardiol.* **73**, 299–306 (2019).

29. Tzikas, A. *et al.* Left atrial appendage occlusion for stroke prevention in atrial fibrillation: multicentre experience with the AMPLATZER Cardiac Plug. *EuroIntervention.* **11**, 1170–1179 (2016).

30. Landmesser, U. *et al.* Left atrial appendage occlusion with the AMPLATZER Amulet device: one-year follow-up from the prospective global Amulet observational registry. *EuroIntervention.* **14**, e590–e597 (2018).

31. Berti, S. *et al.* Left atrial appendage closure using AMPLATZER devices: A large, multicenter, Italian registry. *Int J Cardiol.* **248**, 103–107 (2017).

32. Ledwoch, J. *et al.* WATCHMAN versus ACP or Amulet devices for left atrial appendage occlusion: a sub-analysis of the multicentre LAARGE registry. *EuroIntervention.* **16**, e942–e949 (2020).

33. Reddy, V. Y. *et al.* 5-year outcomes after left atrial appendage closure: from the PREVAIL and PROTECT AF trials. *J Am Coll Cardiol.* **70**, 2964–2975 (2017).

34. Boersma, L. V. *et al.* Implant success and safety of left atrial appendage closure with the WATCHMAN device: peri-procedural outcomes from the EWOLUTION registry. *Eur Heart J.* **37**, 2465–2474 (2016).

Methods

Study population

Patients who underwent endocardial or epicardial LAAC from January 2014 to December 2019 at the University Heart Center Lübeck, Lübeck, Germany, were screened for this study. Patients who underwent LAAC using Watchman or Amulet devices were included in the present analysis. (Figure 1). The
implantation of LAAC devices were done by experienced and certified implanters and according to the recommendation of EHRA/EAPCI expert consensus statement for catheter-based LAAC.35

To adjust for baseline differences between the 2 groups, patients were matched for age (± 5 years), gender, CHA2DS2Vasc score (± 1) and HASBLED score (± 1) (Figure 1). The primary endpoints of the study included the occurrence of peri-procedural complications and complications during 2-year follow-up. The study was conducted in accordance with the Declaration of Helsinki and was approved by the local ethics board at Lübeck University. All patients provided informed consent to the procedure before intervention.

\textit{Definition of endpoints:}

Procedural endpoints and adverse events were categorized according to the Munich consensus document on LAAC.36 Periprocedural complications included in-hospital death, pericardial tamponade, device embolization, stroke, major bleeding and vascular access complications. Complications during 2-year follow-up included ischemic stroke, hemorrhagic stroke, thromboembolism, device thrombus, bleeding and death. Endpoints were analyzed individually as well as in combination as major adverse cardiac and cerebrovascular events (MACCE).

\textit{Post-procedural management and follow-up visits}

All patients underwent transthoracic echocardiography to rule out pericardial effusion and device migration at the first post-procedural day. Follow-up visits with planned TEE were scheduled after 6 to 12 weeks after the procedure to evaluate peri-device leakage and device thrombosis and to evaluate the occurrence of other adverse events. Afterwards, clinical scheduled follow-up was regularly carried out every 6-12 months at the outpatient clinic or the referring clinic. Mortality was documented based on hospital visits, scheduled follow-up visits and communication with ambulatory physicians.

\textit{Statistical analysis}

To adjust for baseline differences between the Watchman and Amulet group, patients were matched for age (± 5 years), gender, CHA2DS2Vasc score (± 1) and HASBLED score (± 1). Categorical data were presented as frequency with percentage. Continuous data were expressed as median with interquartile range. Differences between groups were assessed by Fisher’s exact or the χ^2 test for categorical variables, and were evaluated using the nonparametric Mann-Whitney U test for continuous data. Kaplan-Meier graphs were used to illustrate the complication rates during 2-year follow-up in the two groups. All tests were 2-tailed, and a p-value <0.05 was considered statistically significant. Statistical analysis was performed using SPSS Statistics 17.0.0.0 (IBM, Armonk, New York).

\textbf{Methods References:}
35. Meier, B. et al. EHRA/EAPCI expert consensus statement on catheter-based left atrial appendage occlusion. EuroIntervention. 10, 1109-1125 (2015).

36. Tzikas, A. et al. Percutaneous left atrial appendage occlusion: the Munich consensus document on definitions, endpoints, and data collection requirements for clinical studies. Europace. 19, 4-15 (2017).

Tables

Table 1 Baseline characteristics:

Continuous data are presented as median and interquartile range
PT=dual antiplatelet therapy; GFR=glomerular filtration rate; LAA=left atrial appendage; LVEF=left ventricular ejection fraction; AC=new oral anticoagulants; NYHA=New York heart association; SAPT=single antiplatelet therapy; TIA=transient ischemic attack; VKA=vitamin K antagonists.
Variable

Age (years)
Male sex
Hypertension
Diabetes mellitus
Body mass index (kg/m²)
Schemic heart disease
Congestive heart failure
Peripheral vascular disease
Liver Dysfunction
History of Ischemic stroke
History of TIA
History of hemorrhagic stroke
History of major bleeding
LVEF
NYHA Class
1
2
3
CHA2DS2VASC-SCORE
HASBLED-SCORE
LAA-flow
Serum Creatinin
GFR
Anticoagulation before implantation
No
SAPT
DAPT
NOAC + Clopidogrel
NOAC
Anticoagulation after implantation
Unknown
ASS
Clopidogrel
DAPT
NOAC + Clopidogrel
NOAC
VKA
Triple
Hospital stay (days)
Device size (mm)
Contrast volume (ml)
Fluoroscopy time (minutes)
Radiation dose
Implantation success
Table 2 Procedural complications

MACCE = major adverse cerebral and cardiovascular events

Variable	Watchman	Amulet	p
MACCE – n (%)	3/113 (2.7)	12/113 (10.6)	0.029
Minor complications – n (%)	2/113 (1.8)	1/113 (0.9)	1.000
In-hospital death – n (%)	1/113 (0.9)	4/113 (3.5)	0.369
Pericardial tamponade – n (%)	0/113 (0.0)	5/113 (4.4)	0.060
Device embolization – n (%)	0/113 (0.0)	4/113 (3.5)	0.122
Stroke – n (%)	1/113 (0.9)	0/113 (0.0)	1.000
Major bleeding – n (%)	0/113 (0.0)	6/113 (5.3)	0.029
Blood transfusion – n (%)	2/113 (1.8)	5/113 (4.4)	0.446
Major vascular access complications	1/113 (0.9)	2/113 (1.8)	1.000
Minor vascular access complications	2/113 (1.8)	1/113 (0.9)	1.000

Table 3 Complications during 2-year follow-up

MACCE = major adverse cerebral and cardiovascular events

Variable	Watchman	Amulet	p
MACCE – n (%)	19/104 (18.3)	22/106 (20.8)	0.729
Ischemic stroke – n (%)	3/104 (2.9)	2/106 (1.9)	0.681
Hemorrhagic Stroke – n (%)	0/104 (0.0)	2/106 (1.9)	0.498
Thromboembolism – n (%)	2/104 (1.9)	2/106 (1.9)	1.000
Device-Thrombus – n (%)	5/102 (4.9)	1/106 (0.9)	0.114
Bleeding – n (%)	9/104 (8.7)	9/106 (8.5)	1.000
Death – n (%)	10/104 (9.6)	15/106 (14.2)	0.395
Cardiac death – n (%)	1/104 (1.0)	4/106 (3.8)	0.342

Figures
Figure 1

Study flow chart. LAAC: left atrial appendage closure.
Figure 2

Kaplan-Meier graph showing 2-year follow-up of cumulative major adverse cardiovascular and cerebral event rates according to Watchman and Amulet left atrial appendage colure devices.