Utility-Scale Energy Storage in an Imperfectly Competitive Power Sector

Vilma Virasjokia Afzal S. Siddiquia,b Fabricio Oliveiraa
Ahti Saloa

a Aalto University

b Stockholm University, e-mail address: asiddiq@dsv.su.se

7–9 June 2021
Table of Contents

1. Introduction
2. Mathematical Formulation
3. Numerical Examples
4. Conclusions
Introduction
Role of Flexible Generation (https://energy-charts.info/)

- Marginal costs: €30/MWh (lignite), €39/MWh (CCGT), €53/MWh (gas)
- Daily average prices: €22.85/MWh to €43.64/MWh
Is Energy Storage the Answer? (https://www.climatetechwiki.org/technology/jiqweb-ph)
Equilibrium Analysis of Storage

- Schill and Kemfert (2011) consider the use of storage in Germany without transmission constraints
- Sioshansi (2014) demonstrates when storage can reduce social welfare or increase GHG emissions (Sioshansi, 2011)
- Siddiqui et al. (2019) compare welfare impacts of ownership and market power
 - Cournot oligopoly: the merchant invests less than the welfare maximiser does to keep price differences high and benefit from temporal arbitrage (margin trading)
 - Perfect competition: the merchant invests in more capacity than a welfare maximiser does (volumetric trading)
- Nasrolahpour et al. (2016) use a bi-level model to assess storage investment by a merchant
- Dvorkin et al. (2018) consider transmission congestion but not strategic investors and market power at the lower level
Research Objective and Findings

- How are storage capacity and social welfare affected by the type of storage owner?
- Bi-level model for Western Europe with network and VRE: profit-maximising generators with a profit-maximising merchant investor (or a welfare-maximising entity)
- Market structure and spatio-temporal variations affect investment decisions more than the type of investor
 - Perfectly competitive lower level: 300 MWh of storage investment in Belgium and France with welfare transfer from producers to consumers
 - Cournot oligopolistic lower level: 100 MWh of storage investment in Germany and similar welfare transfers (although producers avoid losses)
- Impact of investor type: welfare maximiser never invests less vis-à-vis the merchant under perfect competition, but low storage-investment cost may spur a merchant to adopt more capacity vis-à-vis the welfare maximiser under Cournot oligopoly
Mathematical Formulation
Setup

- Inverse demand at each node, $D_{m,t,n}^{\text{int}} - D_{m,t,n}^{\text{slp}}q_{m,t,n}$
- DC load flow based on network transfer admittance, $H_{\ell,n}$, and susceptance, $B_{n,n'}$, with voltage angles, $v_{m,t,n}$
- Constant marginal costs, C_{u}^{conv}, with capacities, $G_{n,i',u}^{\text{conv}}$
- VRE has capacities $G_{n,i'}^{e}$ with availability factors, $A_{m,t,n}^{e}$
- Leader’s problem
 - Maximise welfare (or, profit if merchant) by investing in storage capacity, $\sum_{y \in Y} z_{n,j,y}R_{d}^{d}$
 - Anticipate the response of followers
- Followers’ problems
 - Power producers: maximise profit from net generation, $g_{m,t,n,i',u}^{\text{conv}} + g_{m,t,n,i'}^{e} + r_{m,t,n,i'}^{\text{out}} - r_{m,t,n,i'}^{\text{in}}$
 - ISO: maximise gross surplus by managing flows, $v_{m,t,n}$, and consumption, $q_{m,t,n}$
 - Merchant: maximise profit from storage operations, $r_{m,t,n,j}^{\text{out}} - r_{m,t,n,j}^{\text{in}}$
Playing Games

Central-Planning Model

Single-Level Optimization Problem
- Storage Investment
- Power Market Operations

Bi-Level Model

Upper-Level Optimization Problem
- Storage Investment

Lower-Level Optimization Problem
- Power Market Operations (ISO)
Mathematical Program with Primal and Dual Constraints (MPPDC)

- Replace lower-level problems (1)–(4), (5)–(10), and (11)–(20), \(\forall i' \in \mathcal{I}' \), by a single-agent quadratic programming (QP) problem using an extended-cost function.
- Replace lower-level QP by:
 - Primal constraints
 - Dual constraints
 - QP strong duality (Dorn, 1960; Huppmann and Egerer, 2015)
- After resolving bilinear terms in strong-duality expression and merchant’s upper-level objective function (23) via binary expansion, we render the bi-level problems as mixed-integer quadratically constrained quadratic programs (MIQCQPs).
- Also, we implement a benchmark central-planning problem that is a simple mixed-integer quadratic program (MIQP).
Numerical Examples
Network Topology
Generation Technologies’ Marginal Costs (with CO\(_2\) price of 20\(\text{\euro}/\text{t}\)), Ramp Rates, and Emission Rates

Type	Marginal cost (\(\text{\euro}/\text{MWh}\))	Max hourly ramping rate (%)	CO\(_2\) emissions per unit of electricity output (kg/kWh)
u1 (nuclear)	9	10	0
u2 (lignite)	30	10	0.94
u3 (coal)	44	20	0.83
u4 (CCGT)	39	30	0.37
u5 (gas)	53	30	0.50
u6 (oil)	91	70	0.72
u7 (hydro)	0	30	0
Installed Generation Capacity (GW) and Used Availability Percentages for Conventional Technology u_1–u_7, Solar, and Wind

Node	Producer	u_1	u_2	u_3	u_4	u_5	u_6	u_7	S	W
n_1	Uniper	-	0.9	3.2	2.7	0.5	1.2	-	-	0.3
	RWE	2.6	9.1	2.8	2.5	1.7	-	0.3	-	0.3
	EnBW	2.7	0.9	3.0	0.4	-	0.4	0.2	-	0.3
	Vattenfall	-	-	2.9	0.6	0.9	0.1	-	-	0.6
	FringeD	4.2	7.4	9.3	10.9	2.2	0.4	1.3	40.1	54.6
n_2	EDF	63.1	-	4.0	1.4	-	7.0	15.0	0.3	1.5
	FringeF	-	-	-	3.8	2.4	-	3.6	6.5	12.3
n_3	Electrabel	5.9	-	-	1.7	1.4	-	-	-	0.5
n_6	EDF (Luminus)	-	-	-	0.4	0.4	-	-	-	0.2
	FringeB	-	-	-	1.0	-	-	-	3.3	2.2
n_4	Electrabel	-	-	-	2.8	0.1	-	-	-	-
n_5	Essent/RWE	-	-	1.3	1.9	0.6	-	-	-	-
n_7	Nuon/Vattenfall	-	-	0.9	3.2	1.1	-	-	-	-
	FringeN	0.5	2.9	3.2	0.7	-	-	2.0	4.3	
%	Available	80	85	84	89	86	86	30	Fig.	Fig.
Representative Weeks and Demand/VRE Clusters

Week, \(m\) (1-52)	Weight, \(W_m\)	Demand profile	Wind profile	Solar profile
6	7/52	high	low	low
18	12/52	low	high	high
20	23/52	low	low	high
47	10/52	high	high	low

Clusters for weekly demand and wind power generation

Clusters for weekly demand and solar PV power generation
Welfare Effects of Storage Investment on Social Welfare (SW), Investor Surplus (IS), Producer Surplus (PS), Consumer Surplus (CS), and Merchandising Surplus (MS) under PC

Cost (€/MWh)	Model	SW (k€)	IS (k€)	PS (k€)	CS (k€)	MS (k€)	Capacity (GWh)
	No inv. PC	2 201 628.15	–	438 683.35	1 749 290.80	13 654.01	–
65	1. CP / 2. SW-PC / 3. M-PC	+2.542	+1.95	-86.53	+88.02	-0.90	0.3
		+2.541	+2.23	-82.50	+81.90	+0.92	0.2
50	1. CP / 2. SW-PC / 3. M-PC	+7.04	+6.45	-86.53	+88.02	-0.90	0.3
		+7.04	+6.45	-86.53	+88.02	-0.90	0.3
35	1. CP / 2. SW-PC / 3. M-PC	+13.06	+11.95	-101.63	+103.54	-0.80	0.6
		+12.83	+11.98	-90.93	+93.13	-1.34	0.5
Welfare Effects of Storage Investment on Social Welfare (SW), Investor Surplus (IS), Producer Surplus (PS), Consumer Surplus (CS), and Merchandising Surplus (MS) under PC Cost Model

Cost (€/MWh)	SW (k€)	IS (k€)	PS (k€)	CS (k€)	MS (k€)	Capacity (GWh)
–	2 201 628.15	–	438 683.35	1 749 290.80	13 654.01	–
65	+2.542	+1.95	-86.53	+88.02	-0.90	0.3
50	+7.04	+6.45	-86.53	+88.02	-0.90	0.3
35	+13.06	+11.95	-101.63	+103.54	-0.80	0.6

1. CP / 2. SW-PC 3. M-PC
2. SW-PC+2.542
3. M-PC+2.23
4. CP / 2. SW-PC+7.04
5. M-PC+7.04
6. CP / 2. SW-PC+13.06
7. M-PC+12.83
Welfare Effects of Storage Investment on Social Welfare (SW), Investor Surplus (IS), Producer Surplus (PS), Consumer Surplus (CS), and Merchandising Surplus (MS) under CO

Cost (€/MWh)	Model	SW (k€)	IS (k€)	PS (k€)	CS (k€)	MS (k€)	Capacity (GWh)
	No inv. CO	1 923 769.99	–	989 457.19	917 432.27	16 880.53	–
55	4. SW-CO	+0.16	-0.40	+0.56	+0.60	-0.60	0.1
	5. M-CO	-	-	-	-	-	-
50	4. SW-CO	+0.66	+0.10	+0.56	+0.60	-0.60	0.1
	5. M-CO	+0.66	+0.10	+0.56	+0.60	-0.60	0.1
25	4. SW-CO	+4.88	+1.78	+0.88	+0.10	+2.13	0.4
	5. M-CO	+3.95	+2.87	-0.25	+1.33	-	0.2
15	4. SW-CO	+9.15	+6.34	+0.87	+0.45	+1.50	0.5
	5. M-CO	+8.43	+6.92	-1.05	+3.27	-0.71	0.6
Welfare Effects of Storage Investment on Social Welfare (SW), Investor Surplus (IS), Producer Surplus (PS), Consumer Surplus (CS), and Merchandising Surplus (MS) under CO

Cost (€/MWh)	Model	SW (k€)	IS (k€)	PS (k€)	CS (k€)	MS (k€)	Capacity (GWh)
–	No inv. CO	1 923 769.99	–	989 457.19	917 432.27	16 880.53	–
55	4. SW-CO	+0.16	-0.40	+0.56	+0.60	-0.60	0.1
	5. M-CO						
50	4. SW-CO	+0.66	+0.10	+0.56	+0.60	-0.60	0.1
	5. M-CO	+0.66	+0.10	+0.56	+0.60	-0.60	
25	4. SW-CO	+4.88	+1.78	+0.88	+0.10	+2.13	0.4
	5. M-CO	+3.95	+2.87	-0.25	+1.33	-	0.2
15	4. SW-CO	+9.15	+6.34	+0.87	+0.45	+1.50	0.5
	5. M-CO	+8.43	+6.92	-1.05	+3.27	-0.71	0.6
Welfare Effects of Storage Investment on Social Welfare (SW), Investor Surplus (IS), Producer Surplus (PS), Consumer Surplus (CS), and Merchandising Surplus (MS) under CO Cost Model

Cost (€/MWh)	SW (k€)	IS (k€)	PS (k€)	CS (k€)	MS (k€)	Capacity (GWh)	
–	No inv. CO	1 923 769.99	–	989 457.19	917 432.27	16 880.53	–
55	4. SW-CO	+0.16	-0.40	+0.56	+0.60	-0.60	0.1
	5. M-CO	–	–	–	–	–	–
50	4. SW-CO	+0.66	+0.10	+0.56	+0.60	-0.60	0.1
	5. M-CO	+0.66	+0.10	+0.56	+0.60	-0.60	0.1
25	4. SW-CO	+4.88	+1.78	+0.88	+0.10	+2.13	0.4
	5. M-CO	+3.95	+2.87	-0.25	+1.33	–	0.2
15	4. SW-CO	+9.15	+6.34	+0.87	+0.45	+1.50	0.5
	5. M-CO	+8.43	+6.92	-1.05	+3.27	-0.71	0.6
Optimal Storage Investment Size and Location under PC

Welfare maximiser

Merchant
Optimal Storage Investment Size and Location under CO

Welfare maximiser

Merchant
Conclusions
Summary

- Directly compare the impact of market structure and investor type on storage adoption
 - Market power affects investment more than the investor type
 - PC: higher investment capacity because of higher temporal price differentials, especially in nuclear-dominated Belgium and France
 - CO: higher but smoother prices, which results in storage arbitrage to be sought in Germany due to its high VRE capacity
 - Welfare maximiser generally invests in at least as much capacity as the merchant
 - Exception: low storage-investment cost spurs a merchant to adopt more capacity, i.e., to assume a volumetric strategy, under CO

- Future work: enhance solution methods for large-scale MIQCQP problem instances, represent uncertain VRE output, transmission expansion
Mathematical Appendix
\[
\max_{\Omega^{\text{ISO}}} \sum_{m \in M} \sum_{t \in T} \sum_{n \in N} W_m \left(D^{\text{int}}_{m,t,n} q_{m,t,n} - \frac{1}{2} D^{\text{slp}}_{m,t,n} q_{m,t,n}^2 \right) \\
\text{s.t.} \quad \sum_{n \in N} T_t \ell, n v_{m,t,n} - T_t K_{\ell} \leq 0 \left(\mu_{m,t,\ell} \right), \forall m, t, \ell \\
- \sum_{n \in N} T_t \ell, n v_{m,t,n} - T_t K_{\ell} \leq 0 \left(\mu_{m,t,\ell} \right), \forall m, t, \ell \\
q_{m,t,n} - \sum_{i' \in I'} \sum_{u \in U_{n,i'}} g_{m,t,n,i',u} - \sum_{i' \in I'} \sum_{e \in E} g_{m,t,n,i'} - \sum_{i \in I} r_{m,t,n,i}^\text{out} \\
+ \sum_{i \in I} r_{m,t,n,i}^\text{in} - \sum_{n' \in N} T_t B_{n,n'} v_{m,t,n'} = 0 \left(\theta_{m,t,n} \right), \forall m, t, n
\]

where \(\Omega^{\text{ISO}} \equiv \{ q_{m,t,n} \geq 0, v_{m,t,n} \ \text{u.r.s.} \} \)
Mathematical Appendix

Lower-Level Problems

ISO

\[
\max_{\Omega^{ISO}} \sum_{m \in M} \sum_{t \in T} \sum_{n \in N} W_m \left(D^\text{int}_{m,t,n} q_{m,t,n} - \frac{1}{2} D^\text{slp}_{m,t,n} q^2_{m,t,n} \right)
\]

s.t. \[
\sum_{n \in N} T_t H_{\ell,n} v_{m,t,n} - T_t K_{\ell} \leq 0 \ (\bar{\mu}_{m,t,\ell}), \ \forall m, t, \ell
\]

\[
- \sum_{n \in N} T_t H_{\ell,n} v_{m,t,n} - T_t K_{\ell} \leq 0 \ (\mu_{m,t,\ell}), \ \forall m, t, \ell
\]

\[
q_{m,t,n} - \sum_{i' \in I'} \sum_{u \in U_{n,i'}} g^\text{conv}_{m,t,n,i',u} - \sum_{i' \in I'} \sum_{e \in E} g^e_{m,t,n,i'} - \sum_{i \in I} r^\text{out}_{m,t,n,i}
\]

\[
+ \sum_{i \in I} r^\text{in}_{m,t,n,i} - \sum_{n' \in N} T_t B_{n,n'} v_{m,t,n'} = 0 \ (\theta_{m,t,n}), \ \forall m, t, n
\]

where \(\Omega^{ISO} \equiv \{ q_{m,t,n} \geq 0, v_{m,t,n} \ \text{u.r.s.} \} \)
\[
\max_{\Omega_{\text{ISO}}} \sum_{m \in M} \sum_{t \in T} \sum_{n \in N} W_m \left(D_{\text{int},m,t,n} q_{m,t,n} - \frac{1}{2} D_{\text{slp},m,t,n} q_{m,t,n}^2 \right)
\]
\[\text{s.t.} \quad \sum_{n \in N} T_t H_{\ell,n} v_{m,t,n} - T_t K_{\ell} \leq 0 \ (\bar{\mu}_{m,t,\ell}), \ \forall m, t, \ell \]
\[\quad - \sum_{n \in N} T_t H_{\ell,n} v_{m,t,n} - T_t K_{\ell} \leq 0 \ (\underline{\mu}_{m,t,\ell}), \ \forall m, t, \ell \]
\[\quad q_{m,t,n} - \sum_{i' \in \mathcal{I}', u \in \mathcal{U}_{n,i'}} g_{m,t,n,i',u} - \sum_{i' \in \mathcal{I}', e \in \mathcal{E}} g_{m,t,n,i'} + \sum_{i \in \mathcal{I}} r_{m,t,n,i}^\text{in} - \sum_{n' \in \mathcal{N}} T_t B_{n,n'} v_{m,t,n'} = 0 \ (\theta_{m,t,n}), \ \forall m, t, n \]

where \(\Omega_{\text{ISO}} \equiv \{ q_{m,t,n} \geq 0, v_{m,t,n} \ \text{u.r.s.} \} \)
Storage Operator j

\[
\max_{\Omega^j} \sum_{m \in M} \sum_{t \in T} \sum_{n \in N} W_m \left[\frac{\theta_{m,t,n}}{W_m} (r_{m,t,n,j}^{\text{out}} - r_{m,t,n,j}^{\text{in}}) - C^{\text{sto}} r_{m,t,n,j}^{\text{out}} \right]
\]

\[
\text{s.t.} \quad r_{m,t,n,j}^{\text{sto}} - (1 - E_{j}^{\text{sto}}) T_t r_{m,t-1,n,j}^{\text{sto}} - E_{j}^{\text{in}} r_{m,t,n,j}^{\text{in}} + r_{m,t,n,j}^{\text{out}} = 0 \quad (\lambda_{m,t,n,j}^{\text{bal}}), \quad \forall m, t, n
\]

\[
= 0 \quad (\lambda_{m,t,n,j}^{\text{bal}}), \quad \forall m, t, n
\]

\[
r_{m,t,n,j}^{\text{in}} - T_t R_j^{\text{in}} \sum_{y \in Y} z_{n,j,y} R_y^{d} \leq 0 \quad (\lambda_{m,t,n,j}^{\text{in,p}}), \quad \forall m, t, n
\]

\[
r_{m,t,n,j}^{\text{out}} - T_t R_j^{\text{out}} \sum_{y \in Y} z_{n,j,y} R_y^{d} \leq 0 \quad (\lambda_{m,t,n,j}^{\text{out,p}}), \quad \forall m, t, n
\]

\[
r_{m,t,n,j}^{\text{sto}} - \sum_{y \in Y} z_{n,j,y} R_y^{d} \leq 0 \quad (\lambda_{m,t,n,j}^{\text{ub,p}}), \quad \forall m, t, n
\]

\[
R_{n,j} \sum_{y \in Y} z_{n,j,y} R_y^{d} - r_{m,t,n,j}^{\text{sto}} \leq 0 \quad (\lambda_{m,t,n,j}^{\text{lb,p}}), \quad \forall m, t, n
\]

where $\Omega^j \equiv \{ r_{m,t,n,j}^{\text{out}} \geq 0, r_{m,t,n,j}^{\text{in}} \geq 0, r_{m,t,n,j}^{\text{sto}} \}$
Storage Operator j

\[
\max_{\Omega^j} \sum_{m \in M} \sum_{t \in T} \sum_{n \in N} W_m \left[\frac{\theta_{m,t,n}}{W_m} (r^\text{out}_{m,t,n,j} - r^\text{in}_{m,t,n,j}) - C^\text{sto} r^\text{out}_{m,t,n,j} \right]
\]

s.t.
\[
\begin{align*}
& r^\text{sto}_{m,t,n,j} - (1 - E^\text{sto}_j) T_t r^\text{sto}_{m,t-1,n,j} - E^\text{in}_j r^\text{in}_{m,t,n,j} + r^\text{out}_{m,t,n,j} = 0 \quad (\lambda^\text{bal}_{m,t,n,j}), \ \forall m, t, n \\
& r^\text{in}_{m,t,n,j} - T_t R^\text{in}_j \sum_{y \in Y} z_{n,j,y} R^d_y \leq 0 \quad (\lambda^\text{in,p}_{m,t,n,j}), \ \forall m, t, n \\
& r^\text{out}_{m,t,n,j} - T_t R^\text{out}_j \sum_{y \in Y} z_{n,j,y} R^d_y \leq 0 \quad (\lambda^\text{out,p}_{m,t,n,j}), \ \forall m, t, n \\
& r^\text{sto}_{m,t,n,j} - \sum_{y \in Y} z_{n,j,y} R^d_y \leq 0 \quad (\lambda^\text{ub,p}_{m,t,n,j}), \ \forall m, t, n \\
& \frac{R_{n,j}}{} \sum_{y \in Y} z_{n,j,y} R^d_y - r^\text{sto}_{m,t,n,j} \leq 0 \quad (\lambda^\text{lb,p}_{m,t,n,j}), \ \forall m, t, n
\end{align*}
\]

where $\Omega^j \equiv \{ r^\text{out}_{m,t,n,j} \geq 0, r^\text{in}_{m,t,n,j} \geq 0, r^\text{sto}_{m,t,n,j} \}$
Storage Operator j

$$\max_{\Omega^j} \sum_{m \in M} \sum_{t \in T} \sum_{n \in N} W_m \left[\frac{\theta_{m,t,n}}{W_m} (r_{m,t,n,j}^{\text{out}} - r_{m,t,n,j}^{\text{in}}) - C_{\text{sto}}^{st} r_{m,t,n,j}^{\text{out}} \right]$$

s.t. $$r_{m,t,n,j}^{\text{sto}} - (1 - E_{j}^{\text{sto}}) T_t r_{m,t-1,n,j}^{\text{sto}} - E_{j}^{\text{in}} r_{m,t,n,j}^{\text{in}} + r_{m,t,n,j}^{\text{out}} = 0 \quad (\lambda_{\text{bal}}^{m,t,n,j}), \ \forall m, t, n \quad (5)$$

$$r_{m,t,n,j}^{\text{in}} - T_t R_{j}^{\text{in}} \sum_{y \in Y} z_{n,j,y} \overline{R}_{y}^{d} \leq 0 \quad (\lambda_{\text{in,p}}^{m,t,n,j}), \ \forall m, t, n \quad (6)$$

$$r_{m,t,n,j}^{\text{out}} - T_t R_{j}^{\text{out}} \sum_{y \in Y} z_{n,j,y} \overline{R}_{y}^{d} \leq 0 \quad (\lambda_{\text{out,p}}^{m,t,n,j}), \ \forall m, t, n \quad (7)$$

$$r_{m,t,n,j}^{\text{sto}} - \sum_{y \in Y} z_{n,j,y} \overline{R}_{y}^{d} \leq 0 \quad (\lambda_{\text{ub,p}}^{m,t,n,j}), \ \forall m, t, n \quad (8)$$

$$R_{n,j} \sum_{y \in Y} z_{n,j,y} \overline{R}_{y}^{d} - r_{m,t,n,j}^{\text{sto}} \leq 0 \quad (\lambda_{\text{lb,p}}^{m,t,n,j}), \ \forall m, t, n \quad (9)$$

where $\Omega^j \equiv \{ r_{m,t,n,j}^{\text{out}} \geq 0, r_{m,t,n,j}^{\text{in}} \geq 0, r_{m,t,n,j}^{\text{sto}} \}$
Storage Operator j

$$\max_{\Omega^j} \sum_{m \in M} \sum_{t \in T} \sum_{n \in N} W_m \left[\frac{\theta_{m,t,n}}{W_m} (r_{m,t,n,j}^{out} - r_{m,t,n,j}^{in}) - C_{sto} r_{m,t,n,j}^{out} \right]$$

s.t.

$$r_{m,t,n,j}^{sto} - (1 - E_{j}^{sto}) T_t r_{m,t-1,n,j}^{sto} - E_{j}^{in} r_{m,t,n,j}^{in} + r_{m,t,n,j}^{out} = 0 \ (\lambda^{bal}_{m,t,n,j}), \ \forall m, t, n $$

$$r_{m,t,n,j}^{in} - T_t R_{j}^{in} \sum_{y \in Y} z_{n,j,y} R_{y}^{d} \leq 0 \ (\lambda^{in,p}_{m,t,n,j}), \ \forall m, t, n $$

$$r_{m,t,n,j}^{out} - T_t R_{j}^{out} \sum_{y \in Y} z_{n,j,y} R_{y}^{d} \leq 0 \ (\lambda^{out,p}_{m,t,n,j}), \ \forall m, t, n $$

$$r_{m,t,n,j}^{sto} - \sum_{y \in Y} z_{n,j,y} R_{y}^{d} \leq 0 \ (\lambda^{ub,p}_{m,t,n,j}), \ \forall m, t, n $$

$$R_{n,j} \sum_{y \in Y} z_{n,j,y} R_{y}^{d} - r_{m,t,n,j}^{sto} \leq 0 \ (\lambda^{lb,p}_{m,t,n,j}), \ \forall m, t, n $$

where $\Omega^j \equiv \{ r_{m,t,n,j}^{out} \geq 0, r_{m,t,n,j}^{in} \geq 0, r_{m,t,n,j}^{sto} \}$
Storage Operator \(j \)

\[
\max_{\Omega^j} \sum_{m \in M} \sum_{t \in T} \sum_{n \in N} W_m \left[\frac{\theta_{m,t,n}}{W_m} (r_{m,t,n,j}^{\text{out}} - r_{m,t,n,j}^{\text{in}}) - C_{m,t,n,j}^{\text{sto}} r_{m,t,n,j}^{\text{out}} \right]
\]

s.t.

\[
r_{m,t,n,j}^{\text{sto}} - (1 - E_j^{\text{sto}}) T_t r_{m,t-1,n,j}^{\text{sto}} - E_j^{\text{in}} r_{m,t,n,j}^{\text{in}} + r_{m,t,n,j}^{\text{out}} = 0 \quad (\lambda_{m,t,n,j}^{\text{bal}}), \quad \forall m, t, n
\]

\[
r_{m,t,n,j}^{\text{in}} - T_t R_j^{\text{in}} \sum_{y \in Y} z_{n,j,y} R_y^d \leq 0 \quad (\lambda_{m,t,n,j}^{\text{in,p}}), \quad \forall m, t, n
\]

\[
r_{m,t,n,j}^{\text{out}} - T_t R_j^{\text{out}} \sum_{y \in Y} z_{n,j,y} R_y^d \leq 0 \quad (\lambda_{m,t,n,j}^{\text{out,p}}), \quad \forall m, t, n
\]

\[
r_{m,t,n,j}^{\text{sto}} - \sum_{y \in Y} z_{n,j,y} R_y^d \leq 0 \quad (\lambda_{m,t,n,j}^{\text{ub,p}}), \quad \forall m, t, n
\]

\[
R_{n,j} \sum_{y \in Y} z_{n,j,y} R_y^d - r_{m,t,n,j}^{\text{sto}} \leq 0 \quad (\lambda_{m,t,n,j}^{\text{lb,p}}), \quad \forall m, t, n
\]

where \(\Omega^j \equiv \{ r_{m,t,n,j}^{\text{out}} \geq 0, r_{m,t,n,j}^{\text{in}} \geq 0, r_{m,t,n,j}^{\text{sto}} \} \)
Mathematical Appendix

Lower-Level Problems

Storage Operator \(j \)

\[
\max_{\Omega^j} \sum_{m \in M} \sum_{t \in T} \sum_{n \in N} W_m \left[\frac{\theta_{m,t,n}}{W_m} (r_{m,t,n,j}^{\text{out}} - r_{m,t,n,j}^{\text{in}}) - C_{\text{sto}}^{\text{out}} r_{m,t,n,j}^{\text{out}} \right]
\]

s.t.

\[
\begin{align*}
\text{r}^{\text{sto}}_{m,t,n,j} - (1 - E_{j}^{\text{sto}}) T_t \text{r}^{\text{sto}}_{m,t-1,n,j} - E_{j}^{\text{in}} \text{r}^{\text{in}}_{m,t,n,j} + \text{r}^{\text{out}}_{m,t,n,j} &= 0 \ (\lambda_{m,t,n,j}^{\text{bal}}), \ \forall m, t, n \\
\text{r}^{\text{in}}_{m,t,n,j} - T_t R_{j}^{\text{in}} \sum_{y \in \mathcal{Y}} z_{n,j,y} \overline{R}_y &\leq 0 \ (\lambda_{m,t,n,j}^{\text{in,p}}), \ \forall m, t, n \\
\text{r}^{\text{out}}_{m,t,n,j} - T_t R_{j}^{\text{out}} \sum_{y \in \mathcal{Y}} z_{n,j,y} \overline{R}_y &\leq 0 \ (\lambda_{m,t,n,j}^{\text{out,p}}), \ \forall m, t, n \\
\text{r}^{\text{sto}}_{m,t,n,j} - \sum_{y \in \mathcal{Y}} z_{n,j,y} \overline{R}_y &\leq 0 \ (\lambda_{m,t,n,j}^{\text{ub,p}}), \ \forall m, t, n \\
\overline{R}_{n,j} \sum_{y \in \mathcal{Y}} z_{n,j,y} \overline{R}_y - \text{r}^{\text{sto}}_{m,t,n,j} &\leq 0 \ (\lambda_{m,t,n,j}^{\text{lb,p}}), \ \forall m, t, n
\end{align*}
\]

where \(\Omega^j \equiv \{ r_{m,t,n,j}^{\text{out}} \geq 0, r_{m,t,n,j}^{\text{in}} \geq 0, r_{m,t,n,j}^{\text{sto}} \} \)
Firm i'

$$\max_{\Omega^{i'}} \sum_{m \in M} \sum_{t \in T} \sum_{n \in N} W_m \left[(g_{m,t,n,i'}, u + g^e_{m,t,n,i'} + r^{out}_{m,t,n,i'} - r^{in}_{m,t,n,i'}) \times (D^{int}_{m,t,n} - D^{slp}_{m,t,n} q_{m,t,n}) - \sum_{u \in U_{n,i'}} C_u g_{m,t,n,i', u} - C^{sto} r^{out}_{m,t,n,i'} \right]$$ \hspace{1cm} (11)

s.t.
$$g_{m,t,n,i', u} - T_t \overline{G}_{n,i', u} \leq 0 \left(\beta^{conv}_{m,t,n,i', u} \right), \ \forall m, t, n, u \in U_{n,i'}$$ \hspace{1cm} (12)

$$g_{m,t,n,i', u} - g_{m,t-1,n,i', u} - T_t R^u_{u} \overline{G}_{n,i', u} \leq 0 \left(\beta^{up}_{m,t,n,i', u} \right), \ \forall m, t, n, u \in U_{n,i'}$$ \hspace{1cm} (13)

$$g_{m,t-1,n,i', u} - T_t R^down_{u} \overline{G}_{n,i', u} \leq 0 \left(\beta^{down}_{m,t,n,i', u} \right), \ \forall m, t, n, u \in U_{n,i'}$$ \hspace{1cm} (14)

$$g^e_{m,t,n,i'} - T_t A^e_{m,t,n} \overline{G}^e_{n,i'} = 0 \left(\beta^{e}_{m,t,n,i'} \right), \ \forall m, t, n, e$$ \hspace{1cm} (15)

$$r^{sto}_{m,t,n,i'} - (1 - E^{sto}_i) T_t r^{sto}_{m-1,t,n,i'} - E^{in}_i r^{in}_{m,t,n,i'} + r^{out}_{m,t,n,i'} = 0 \left(\lambda^{bal}_{m,t,n,i'} \right), \ \forall m, t, n$$ \hspace{1cm} (16)

$$r^{in}_{m,t,n,i'} - T_t R^{in}_i \overline{R}_{n,i'} \leq 0 \left(\lambda^{in,p}_{m,t,n,i'} \right), \ \forall m, t, n$$ \hspace{1cm} (17)

$$r^{out}_{m,t,n,i'} - T_t R^{out}_i \overline{R}_{n,i'} \leq 0 \left(\lambda^{out,p}_{m,t,n,i'} \right), \ \forall m, t, n$$ \hspace{1cm} (18)

$$r^{sto}_{m,t,n,i'} - \overline{R}_{n,i'} \leq 0 \left(\lambda^{ub,p}_{m,t,n,i'} \right), \ \forall m, t, n$$ \hspace{1cm} (19)

$$\overline{R}_{n,i'} - r^{sto}_{m,t,n,i'} \leq 0 \left(\lambda^{lb,p}_{m,t,n,i'} \right), \ \forall m, t, n$$ \hspace{1cm} (20)

where $\Omega^{i'} \equiv \{ g_{m,t,n,i', u}^{conv} \geq 0, g^{e}_{m,t,n,i'} \geq 0, r^{out}_{m,t,n,i'} \geq 0, r^{in}_{m,t,n,i'} \geq 0, r^{sto}_{m,t,n,i'} \geq 0 \}$
Firm i'

\[
\begin{align*}
\max_{\Omega^{i'}} \quad & \sum_{m \in M} \sum_{t \in T} \sum_{n \in N} W_m \left[(g_{m,t,n,i}', u + g_e^{m,t,n,i'} + r^{out}_{m,t,n,i'} - r^{in}_{m,t,n,i'}) \right. \\
& \times \left. (D^{\text{int}}_{m,t,n} - D^{\text{slp}}_{m,t,n} q_{m,t,n}) - \sum_{u \in U_{n,i'}} C_u^{\text{conv}} g_{m,t,n,i}', u - C^{\text{sto}} r^{out}_{m,t,n,i'} \right] \\
\text{s.t.} \quad & g^{\text{conv}}_{m,t,n,i}', u - T_t \bar{G}^{\text{conv}}_{n,i}', u \leq 0 (\beta^{\text{conv}}_{m,t,n,i',u}), \forall m, t, n, u \in U_{n,i'} \\
& g^{\text{conv}}_{m,t,n,i}', u - g^{\text{conv}}_{m,t-1,n,i}', u - T_t R^{\text{up}}_u \bar{G}^{\text{conv}}_{n,i}', u \leq 0 (\beta^{\text{up}}_{m,t,n,i',u}), \forall m, t, n, u \in U_{n,i'} \\
& g^{\text{conv}}_{m,t-1,n,i}', u - g^{\text{conv}}_{m,t,n,i}', u - T_t R^{\text{down}}_u \bar{G}^{\text{conv}}_{n,i}', u \leq 0 (\beta^{\text{down}}_{m,t,n,i',u}), \forall m, t, n, u \in U_{n,i'} \\
& g^{e}_{m,t,n,i'} - T_t A^{e}_{m,t,n} \bar{G}^{e}_{n,i'} = 0 (\beta^{e}_{m,t,n,i'}), \forall m, t, n, e \\
& r^{\text{sto}}_{m,t,n,i}' - (1 - E^{\text{sto}}_{i}) T_t r^{\text{sto}}_{m-1,t,n,i'} - E^{\text{in}}_{i} r^{\text{in}}_{m,t,n,i'} + r^{\text{out}}_{m,t,n,i'} = 0 (\lambda^{\text{bal}}_{m,t,n,i'}), \forall m, t, n \\
& r^{\text{in}}_{m,t,n,i'} - T_t R^{\text{in}}_{i} \bar{R}_{n,i'} \leq 0 (\lambda^{\text{in,p}}_{m,t,n,i'}), \forall m, t, n \\
& r^{\text{out}}_{m,t,n,i'} - T_t R^{\text{out}}_{i} \bar{R}_{n,i'} \leq 0 (\lambda^{\text{out,p}}_{m,t,n,i'}), \forall m, t, n \\
& r^{\text{sto}}_{m,t,n,i'} - \bar{R}_{n,i'} \leq 0 (\lambda^{\text{ub,p}}_{m,t,n,i'}), \forall m, t, n \\
& \bar{R}_{n,i'} \bar{R}_{n,i'} - r^{\text{sto}}_{m,t,n,i'} \leq 0 (\lambda^{\text{lb,p}}_{m,t,n,i'}), \forall m, t, n \\
\end{align*}
\]

where $\Omega^{i'} \equiv \{g^{\text{conv}}_{m,t,n,i}', u \geq 0, g^{e}_{m,t,n,i'} \geq 0, r^{\text{out}}_{m,t,n,i'} \geq 0, r^{\text{in}}_{m,t,n,i'} \geq 0, r^{\text{sto}}_{m,t,n,i'} \geq 0\}$
Firm \textit{i}'

\[
\max_{\Omega_{i}'} \sum_{m \in M} \sum_{t \in T} \sum_{n \in N} W_m \left[(g_{\text{conv}} m,t,n,i',u + g_{e} m,t,n,i' + r_{\text{out}} m,t,n,i' - r_{\text{in}} m,t,n,i') \right.
\]
\[
\times (D_{\text{int}} m,t,n - D_{\text{slp}} m,t,n q_{m,t,n} - \sum_{u \in U_{n,i'}} C_{u} g_{\text{conv}} m,t,n,i',u - C_{\text{sto}} r_{\text{out}} m,t,n,i') \right] \] (11)

s.t.
\[
g_{\text{conv}} m,t,n,i',u - T_t G_{n,i',u} \leq 0 (\beta_{\text{conv}} m,t,n,i',u), \forall m, t, n, u \in U_{n,i'} \] (12)
\[
g_{\text{conv}} m,t,n,i',u - g_{\text{conv}} m,t-1,n,i',u - T_t R_{u}^{\text{up}} G_{n,i',u} \leq 0 (\beta_{\text{up}} m,t,n,i',u), \forall m, t, n, u \in U_{n,i'} \] (13)
\[
g_{\text{conv}} m,t-1,n,i',u - g_{\text{conv}} m,t,n,i',u - T_t R_{u}^{\text{down}} G_{n,i',u} \leq 0 (\beta_{\text{down}} m,t,n,i',u), \forall m, t, n, u \in U_{n,i'} \] (14)
\[
g_{e} m,t,n,i' - T_t A_{m,t,n} G_{e,n,i'} = 0 (\beta_{e} m,t,n,i'), \forall m, t, n, e \] (15)
\[
r_{\text{sto}} m,t,n,i' - (1 - E_{i}^{\text{sto}}) T_t r_{\text{sto}} m,t-1,n,i' - E_{i}^{\text{in}} r_{\text{in}} m,t,n,i' + r_{\text{out}} m,t,n,i' = 0 (\lambda_{\text{bal}} m,t,n,i'), \forall m, t, n \] (16)
\[
r_{\text{in}} m,t,n,i' - T_t R_{i}^{\text{in}} R_{n,i'} \leq 0 (\lambda_{\text{in,p}} m,t,n,i'), \forall m, t, n \] (17)
\[
r_{\text{out}} m,t,n,i' - T_t R_{i}^{\text{out}} R_{n,i'} \leq 0 (\lambda_{\text{out,p}} m,t,n,i'), \forall m, t, n \] (18)
\[
r_{\text{sto}} m,t,n,i' - R_{n,i'} \leq 0 (\lambda_{\text{ub,p}} m,t,n,i'), \forall m, t, n \] (19)
\[
R_{n,i'} - r_{\text{sto}} m,t,n,i' \leq 0 (\lambda_{\text{lb,p}} m,t,n,i'), \forall m, t, n \] (20)

where \(\Omega_{i}' \equiv \{ g_{\text{conv}} m,t,n,i',u \geq 0, g_{e} m,t,n,i' \geq 0, r_{\text{out}} m,t,n,i' \geq 0, r_{\text{in}} m,t,n,i' \geq 0, r_{\text{sto}} m,t,n,i' \geq 0 \} \)
Firm i'

$$\begin{align*}
\max_{\Omega^{i'}} \sum_{m \in \mathcal{M}} \sum_{t \in \mathcal{T}} \sum_{n \in \mathcal{N}} W_m \left[(g_{m,t,n,i'}, u + g_{m,t,n,i'}^e + r_{m,t,n,i'}^\text{out} - r_{m,t,n,i'}^\text{in}) \right. \\
\left. \times (D_{m,t,n}^\text{int} - D_{m,t,n}^\text{slp} q_{m,t,n}) - \sum_{u \in \mathcal{U}_{n,i'}} C_u g_{m,t,n,i',u}^\text{conv} - C_{\text{sto}}^\text{out} r_{m,t,n,i'} \right] \tag{11}
\end{align*}$$

subject to

$$\begin{align*}
g_{m,t,n,i', u}^\text{conv} - T_t G_{n,i'}^\text{conv}, u & \leq 0 (\beta_{m,t,n,i', u}^\text{conv}), \forall m, t, n, u \in \mathcal{U}_{n,i'} \tag{12} \\
 g_{m,t,n,i', u}^\text{conv} - g_{m,t-1,n,i', u}^\text{conv} - T_t R_u G_{n,i'}^\text{conv}, u & \leq 0 (\beta_{m,t,n,i', u}^\text{up}), \forall m, t, n, u \in \mathcal{U}_{n,i'} \tag{13} \\
 g_{m,t-1,n,i', u}^\text{conv} - g_{m,t,n,i', u}^\text{conv} - T_t R_u G_{n,i'}^\text{conv}, u & \leq 0 (\beta_{m,t,n,i', u}^\text{down}), \forall m, t, n, u \in \mathcal{U}_{n,i'} \tag{14} \\
 g_{m,t,n,i'}^e - T_t A_{m,t,n} G_{n,i'}^e, u & = 0 (\beta_{m,t,n,i'}^e), \forall m, t, n, e \tag{15} \\
 r_{m,t,n,i'}^\text{sto} - (1 - E_i^\text{sto}) T_t r_{m,t-1,n,i'}^\text{sto} - E_i^\text{in} r_{m,t,n,i'}^\text{in} + r_{m,t,n,i'}^\text{out} & = 0 (\lambda_{m,t,n,i'}^\text{bal}), \forall m, t, n \tag{16} \\
 r_{m,t,n,i'}^\text{in} - T_t R_i^\text{in} R_{n,i'} & \leq 0 (\lambda_{m,t,n,i'}^\text{in}), \forall m, t, n \tag{17} \\
 r_{m,t,n,i'}^\text{out} - T_t R_i^\text{out} R_{n,i'} & \leq 0 (\lambda_{m,t,n,i'}^\text{out}), \forall m, t, n \tag{18} \\
 r_{m,t,n,i'}^\text{sto} - R_{n,i'} & \leq 0 (\lambda_{m,t,n,i'}^\text{ub}), \forall m, t, n \tag{19} \\
 R_{n,i'} - r_{m,t,n,i'}^\text{sto} & \leq 0 (\lambda_{m,t,n,i'}^\text{lb}), \forall m, t, n \tag{20}
\end{align*}$$

where $\Omega^{i'} \equiv \{ g_{m,t,n,i', u}^\text{conv} \geq 0, g_{m,t,n,i'}^e \geq 0, r_{m,t,n,i'}^\text{out} \geq 0, r_{m,t,n,i'}^\text{in} \geq 0, r_{m,t,n,i'}^\text{sto} \geq 0 \}$
Firm i'

$$\begin{align*}
\max_{\Omega^i} & \sum_{m \in M} \sum_{t \in T} \sum_{n \in N} W_m \left[(g_{m,t,n,i',u}^{\text{conv}} + g_{m,t,n,i'}^{e} + r_{m,t,n,i'}^{\text{out}} - r_{m,t,n,i'}^{\text{in}}) \right] \\
& \times (D_{m,t,n}^{\text{int}} - D_{m,t,n}^{\text{slp}} q_{m,t,n}) - \sum_{u \in U_{n,i'}} C_u g_{m,t,n,i',u}^{\text{conv}} - C_{\text{sto}} r_{m,t,n,i'}^{\text{out}} \\
\text{s.t.} & g_{m,t,n,i',u}^{\text{conv}} - T_t G_{n,i'}^{\text{conv}}, u \leq 0 (\beta_{m,t,n,i',u}^{\text{conv}}), \forall m, t, n, u \in U_{n,i'} \\
& g_{m,t,n,i',u}^{\text{conv}} - g_{m,t-1,n,i',u}^{\text{conv}} - T_t R_{u}^{\text{up}} G_{n,i'}^{\text{conv}}, u \leq 0 (\beta_{m,t,n,i',u}^{\text{up}}), \forall m, t, n, u \in U_{n,i'} \\
& g_{m,t-1,n,i',u}^{\text{conv}} - g_{m,t,n,i',u}^{\text{conv}} - T_t R_{u}^{\text{down}} G_{n,i'}^{\text{conv}}, u \leq 0 (\beta_{m,t,n,i',u}^{\text{down}}), \forall m, t, n, u \in U_{n,i'} \\
& g_{m,t,n,i'}^{e} - T_t A_{m,t,n}^{e} G_{n,i'}^{e} = 0 (\beta_{m,t,n,i'}^{e}), \forall m, t, n, e \\
& r_{m,t,n,i'}^{\text{sto}} - (1 - E_{i'}^{\text{sto}}) T_t r_{m,t-1,n,i'}^{\text{sto}} - E_{i'}^{\text{in}} r_{m,t,n,i'}^{\text{in}} + r_{m,t,n,i'}^{\text{out}} = 0 (\lambda_{m,t,n,i'}^{\text{bal}}), \forall m, t, n \\
& r_{m,t,n,i'}^{\text{in}} - T_t R_{i'}^{\text{in}} R_{n,i'}^{\text{in}} \leq 0 (\lambda_{m,t,n,i'}^{\text{in,p}}), \forall m, t, n \\
& r_{m,t,n,i'}^{\text{out}} - T_t R_{i'}^{\text{out}} R_{n,i'}^{\text{out}} \leq 0 (\lambda_{m,t,n,i'}^{\text{out,p}}), \forall m, t, n \\
& r_{m,t,n,i'}^{\text{sto}} - R_{n,i'}^{\text{sto}} R_{n,i'}^{\text{sto}} \leq 0 (\lambda_{m,t,n,i'}^{\text{ub,p}}), \forall m, t, n \\
& R_{n,i'}^{\text{sto}} R_{n,i'}^{\text{sto}} - r_{m,t,n,i'}^{\text{sto}} \leq 0 (\lambda_{m,t,n,i'}^{\text{lb,p}}), \forall m, t, n \\
\end{align*}$$

where $\Omega^{i'} \equiv \{ g_{m,t,n,i',u}^{\text{conv}} \geq 0, g_{m,t,n,i'}^{e} \geq 0, r_{m,t,n,i'}^{\text{out}} \geq 0, r_{m,t,n,i'}^{\text{in}} \geq 0, r_{m,t,n,i'}^{\text{sto}} \geq 0 \}$
Upper-Level Objective Function

\[
\begin{align*}
\text{max} \quad & \sum_{m \in M} \sum_{t \in T} \sum_{n \in N} W_m \left[\left(D_{m,t,n}^{\text{int}} q_{m,t,n} - \frac{1}{2} D_{m,t,n}^{\text{slp}} q_{m,t,n}^2 \right)
ight. \\
& - \sum_{i' \in I'} \sum_{u \in U_{n,i'}} C_{u}^{\text{conv}} g_{m,t,n,i',u}^{\text{conv}} - \sum_{i \in I} C_{m,t,n,i}^{\text{sto}} r_{m,t,n,i}^{\text{out}} \\
& - \sum_{n \in N} \sum_{y \in Y} z_{n,j,y} I R_y^{d} \\
\text{s.t.} \quad & \sum_{y \in Y} z_{n,j,y} = 1, \forall n, \quad z_{n,j,y} \in \{0, 1\}, \forall n, y
\end{align*}
\]

(21)

\[
\begin{align*}
\text{max} \quad & \sum_{m \in M} \sum_{t \in T} \sum_{n \in N} W_m \left[\frac{\theta_{m,t,n}}{W_m} \left(r_{m,t,n,j}^{\text{out}} - r_{m,t,n,j}^{\text{in}} \right) - C_{m,t,n,j}^{\text{sto}} r_{m,t,n,j}^{\text{out}} \right] \\
& - \sum_{n \in N} \sum_{y \in Y} z_{n,j,y} I R_y^{d} \\
\text{s.t.} \quad & (22)
\end{align*}
\]

(23)
Upper-Level Objective Function

\[
\begin{align*}
\max_{z_{n,j,y}} & \quad \sum_{m \in M} \sum_{t \in T} \sum_{n \in N} W_m \left[\left(D_{m,t,n}^{\text{int}} q_{m,t,n} - \frac{1}{2} D_{m,t,n}^{\text{slp}} q_{m,t,n}^2 \right) \\
& - \sum_{i' \in I'} \sum_{u \in U_{n,i'}} C_u^{\text{conv}} g_{m,t,n,i',u}^{\text{conv}} - \sum_{i \in I} C_{\text{sto}}^{\text{out}} r_{m,t,n,i}^{\text{out}} \right] \\
- & \sum_{n \in N} \sum_{y \in Y} z_{n,j,y} IR_d^{d} y \\
\text{s.t.} & \quad \sum_{y \in Y} z_{n,j,y} = 1, \forall n, \quad z_{n,j,y} \in \{0, 1\}, \forall n, y
\end{align*}
\]

\[
\begin{align*}
\max_{z_{n,j,y}} & \quad \sum_{m \in M} \sum_{t \in T} \sum_{n \in N} W_m \left[\frac{\theta_{m,t,n}}{W_m} (r_{m,t,n,j}^{\text{out}} - r_{m,t,n,j}^{\text{in}}) - C_{\text{sto}}^{\text{out}} r_{m,t,n,j}^{\text{out}} \right] \\
- & \sum_{n \in N} \sum_{y \in Y} z_{n,j,y} IR_d^{d} y \\
\text{s.t.} & \quad (22)
\end{align*}
\]
Upper-Level Objective Function

\[
\max_{z_{n,j,y}} \sum_{m \in \mathcal{M}} \sum_{t \in \mathcal{T}} \sum_{n \in \mathcal{N}} W_m \left[\left(D_{m,t,n}^\text{int} q_{m,t,n} - \frac{1}{2} D_{m,t,n}^\text{slp} q_{m,t,n}^2 \right) \right. \\
\left. - \sum_{i' \in \mathcal{I}'} \sum_{u \in \mathcal{U}_{n,i'}} C_u^{\text{conv}} g_{m,t,n,i',u} - \sum_{i \in \mathcal{I}} C_{\text{sto}} r_{m,t,n,i}^\text{out} \right] \\
- \sum_{n \in \mathcal{N}} \sum_{y \in \mathcal{Y}} z_{n,j,y} I\bar{R}_y^d
\]

\text{s.t.} \quad \sum_{y \in \mathcal{Y}} z_{n,j,y} = 1, \forall n, \quad z_{n,j,y} \in \{0, 1\}, \forall n, y \tag{21}

\max_{z_{n,j,y}} \sum_{m \in \mathcal{M}} \sum_{t \in \mathcal{T}} \sum_{n \in \mathcal{N}} W_m \left[\frac{\theta_{m,t,n}}{W_m} (r_{m,t,n,j}^\text{out} - r_{m,t,n,j}^\text{in}) - C_{\text{sto}} r_{m,t,n,j}^\text{out} \right] \\
- \sum_{n \in \mathcal{N}} \sum_{y \in \mathcal{Y}} z_{n,j,y} I\bar{R}_y^d
\]

\text{s.t.} \quad (22)
Upper-Level Objective Function

\[
\begin{align*}
\max_{z_{n,j,y}} \sum_{m \in M} \sum_{t \in T} \sum_{n \in N} W_m \left[(D_{m,t,n}^\text{int} q_{m,t,n} - \frac{1}{2} D_{m,t,n}^\text{slp} q_{m,t,n}^2)
ight] \\
- \sum_{i' \in I'} \sum_{u \in U_{n,i'}} C_u^{\text{conv}} g_{m,t,n,i',u}^{\text{conv}} - \sum_{i \in I} C^{\text{sto}} r_{m,t,n,i}^{\text{out}} \\
- \sum_{n \in N} \sum_{y \in Y} z_{n,j,y} IR_d^{d} \end{align*}
\]

\[
\sum_{y \in Y} z_{n,j,y} = 1, \forall n, \quad z_{n,j,y} \in \{0, 1\}, \forall n, y
\]

\[
\begin{align*}
\max_{z_{n,j,y}} \sum_{m \in M} \sum_{t \in T} \sum_{n \in N} W_m \left[\frac{\theta_{m,t,n}}{W_m} (r_{m,t,n,j}^{\text{out}} - r_{m,t,n,j}^{\text{in}}) - C^{\text{sto}} r_{m,t,n,j}^{\text{out}} \right] \\
- \sum_{n \in N} \sum_{y \in Y} z_{n,j,y} IR_d^{d} \end{align*}
\]

\[
\text{s.t.} \quad (22)
\]