Time evolution of Fukushima-derived radiocesium in the western subtropical gyre of the North Pacific Ocean by 2017

Yuichiro Kumamoto1 · Michio Aoyama2 · Yasunori Hamajima3 · Eitarou Oka4 · Akihiko Murata1

Received: 23 April 2018 / Published online: 21 August 2018
© The Author(s) 2018

Abstract
In 2015–2017, we measured activity concentration of radiocesium in the western subtropical gyre of the North Pacific Ocean and revealed the time evolution of radiocesium derived from the Fukushima Dai-ichi Nuclear Power Plant (FNPP1) accident between 2011 and 2017. The FNPP1-derived radiocesium deposited on the area south of the Kuroshio/Kuroshio Extension Currents in March 2011 was transported southward and westward through subsurface layers due to subduction of the subtropical mode water. In 2014, the radiocesium in the subsurface layers returned to the north and circulated within the Kuroshio recirculation area. Then in 2015–2017, the radiocesium re-circulated with the area.

Keywords Fukushima Dai-ichi Nuclear Power Plant accident · Radiocesium · North Pacific Ocean · Western subtropical gyre

Introduction
The massive Tohoku earthquake and consequent giant tsunamis on 11 March 2011 resulted in serious damage to the Fukushima Dai-ichi Nuclear Power Plant (FNPP1) in eastern Japan. Radiocesium (134Cs and 137Cs) released from the damaged FNPP1 caused radioactive contamination in the land of eastern Japan and the North Pacific Ocean mostly in March and April 2011 [1]. Measurements of 134Cs and 137Cs activity concentrations in soil collected in Japan revealed that (1) the activities of 134Cs and 137Cs released from the FNPP1 were equivalent at a 1:1 ratio approximately [2] and (2) the total deposition of 134Cs (or 137Cs) activity on the land was 2.4 PBq (1015 Bq) [3]. Recent estimates of the total 134Cs (or 137Cs) deposition in the ocean tend to converge on a range of 10–20 PBq [4]. 134Cs (or 137Cs) was also discharged directly into the North Pacific due to leakage of contaminated water from the FNPP1, which was estimated to be a range of 2–6 PBq [4].

Before the FNPP1 accident, radiocesium was also released into the North Pacific by atmospheric nuclear weapons testing mainly in the 1950s and 1960s [5]. The bomb-derived 137Cs deposited on the North Pacific remained in the ocean in March 2011 because of its long half-life (30.17 years). After March 2011, the FNPP1-derived 137Cs was added to the bomb-derived 137Cs, which resulted in about 30% increase of 137Cs activity in the North Pacific [6]. In contrast, the 134Cs released before the FNPP1 accident had disappeared, because its half-life is only 2.06 years. Therefore, 134Cs is an unequivocal indicator of the radiocesium contamination due to the FNPP1 accident.

The FNPP1 (37.4°N/141°E) is situated to the north of the Kuroshio Extension Current around 35°N, which corresponds to the Kuroshio Front (Fig. 1f). The FNPP1-derived 134Cs directly-discharged and atmospheric-deposited north of the Kuroshio Front was transported...
eastward along surface currents. In summer 2012, about one and half years after the accident, a water mass with high activity concentration of 134Cs was observed around 165°E–170°W between 40°N and 50°N in surface layers [7]. This high-134Cs water was then reached to stations in the Gulf of Alaska in 2015 [8].

The area south of the Kuroshio Front, namely the western subtropical gyre, the activity concentration of 134Cs in surface water was lower than that in the area north of the front, because the Kuroshio Front restricted surface water exchange across it [7]. In the western subtropical gyre, however, subsurface maxima of 134Cs (> 10 Bq m$^{-3}$) in approximately 200–600 m depth had been observed since several months after the accident [9–13]. The subsurface layer of the 134Cs maximum agrees with density layers of the subtropical mode water (STMW) [14] in the North Pacific Ocean. Potential water-density anomaly (σ_θ) defined by [potential water density (kg m$^{-3}$) – 1000] of STMW ranges about 25.0–25.6 kg m$^{-3}$. STMW is formed just south of the

Fig. 1 Transections of 134Cs activity concentration (Bq m$^{-3}$) along approximately 25°N in 2016–2017 (a) and approximately 145°E in 2015–2017 (b). Those along approximately 145°E in March–June 2014 (c) [16], 147°E in November 2012 (d) [13], and 149°E in January 2012 (e) [11] are also shown. The activity concentration of 134Cs was corrected to the FNPP1 accident date. The contour interval is 1 Bq m$^{-3}$. Dots are sampling depths at each station. The locations of the sampling stations in a/b (triangles), c (diamonds), d (circles), and e (squares) are shown in the map (f). The inverted triangle indicates a sampling station in April 2013 [9]. The vertical profiles at stations marked with a dot (30°N) are shown in Fig. 2. The star and dotted arrow indicate the FNPP1 location and schematic stream lines of the Kuroshio and Kuroshio Extension Current, respectively. This figure was drawn using Ocean Data View software [23].
Kuroshio and Kuroshio Extension Currents in the midwinter due to severe cooling by cold monsoon wind and then transported southward and westward through subsurface layers [15]. Therefore, it was concluded that ^{134}Cs deposited just south of the Kuroshio and Kuroshio Extension Currents in March 2011 was conveyed southward through the subsurface layers due to the formation and subduction of STMW.

We measured vertical profiles of radiocesium in the western subtropical gyre of the North Pacific and concluded that the FNPP1-derived radiocesium had spread throughout the whole area of the western subtropical area by 2014 [16]. Following the observations in 2014, we continued to measure radiocesium concentration in the western subtropical gyre in 2015, 2016, and 2017. We compiled radiocesium data from this study and previous works and revealed time evolution of the FNPP1-derived radiocesium in the western subtropical gyre by 2017.

Experimental

Samples

Seawater samples (10 or 20 L) for radiocesium measurements were collected at 6 stations between October 2015 and January 2017 during five research cruises of “Hakuho-maru” (KH-16-3), “Kaimei” (KM16-08 and KM17-01), “Keifu-maru” (KS16-09), and “Shinsei-maru” (KS-15-14) (Fig. 1f). Surface seawater was collected using a bucket, a 12-L Niskin sampling bottle, or a pump for surface water. Seawater samples from deep layers were collected using the Niskin bottles equipped to a carousel multi-sampling system with sensors (Model SBE 9 plus/11 plus, Seabird Electronics Inc.) which measured salinity, temperature, and pressure. All the samples were acidified by adding concentrated nitric acid. Because we did not filter the seawater sample, measured radiocesium in the seawater sample included those in dissolved and particulate fractions. The particulate fraction, however, is expected to be negligible because of soluble nature of cesium [17].

Measurements

After the cruises, radiocesium in the seawater sample was concentrated onto ammonium phosphomolybdate (AMP) for measurement of gamma-ray activity [18] in our onshore laboratory of the Mutsu Institute for Oceanography, Japan Agency for Marine-Earth Science and Technology (MIO/JAMSTEC). The radiocesium activity concentration in the AMP/Cs compound was measured using gamma-ray spectrometers in MIO/JAMSTEC. To remove ^{40}K that is a major interfering substance, radiocesium in the AMP/Cs compound of the KS16-09 sample was refined into a platinate salt using a precipitation method [18] and re-measured using low-background gamma-ray spectrometers.
in Low Level Radioactivity Laboratory, Kanazawa University (LLRL/KU) [19]. The detection limit of 134Cs (137Cs) decay-corrected to the accident date (11 March 2011) for the measurements in LLRL/KU and MIO/JAMSTEC were calculated to be approximately 0.2 (0.05) and 0.4 (0.1) Bq m$^{-3}$, respectively. All the radiocesium and hydrographic data are listed in the supplementary table.

Results

Vertical distribution in 2015–2017

In 2015–2017, the subsurface maximum of 134Cs still remained in 200–600 m depth in the western subtropical gyre of the North Pacific, south of the Kuroshio and Kuroshio Extension Currents (Fig. 1a, b). The concentrations in 200–600 m depth (1.0–2.9 Bq m$^{-3}$) at 128°E and 131°E in November 2016 were lower than those (2.1–3.2 Bq m$^{-3}$) at 143°E in January 2017 (Fig. 1a). Because the sampling at the stations conducted simultaneously, the observed difference in vertical profile of 134Cs between the western and eastern stations suggests spatial variation. 134Cs profile at stations along approximately 145°E were similar: the maximum concentrations (3.2–3.8 Bq m$^{-3}$) appeared at 400 m depth (Fig. 1b), which suggests its small temporal variation during the sampling period from October 2015 to January 2017.

Temporal change in vertical distribution

To discuss the temporal change by 2017, vertical distributions of 134Cs from 2012 to 2014 in the area south of the Kuroshio Front between 140°E and 150°E are also shown in Fig. 1. In March–June 2014 (Fig. 1c), the subsurface maxima of 134Cs were shallower (about 300 m depth) than those in 2015–2017 (about 400 m depth). The peak concentrations (4.5–5.1 Bq m$^{-3}$) at the two northern stations (33.5°N and 32.0°N) were higher than those (3.1–4.4 Bq m$^{-3}$) observed in the three southern stations (30.0°N, 28.3°N, and 28.0°N). In November 2012 (Fig. 1d), the subsurface maxima of 134Cs around 300 m depth were more apparent and the peak concentrations were more than three times higher than those in 2014. The peak concentration was higher in the south and highest at the southernmost station (13.1 Bq m$^{-3}$). In January 2012 (Fig. 1e), the peak concentration of the subsurface maximum was highest at 370 m depth at 32.2°N (27.4 Bq m$^{-3}$) and lower in the south.

Temporal change in vertical inventory

Vertical inventory of 134Cs (Bq m$^{-2}$) decay-corrected between surface and 800 m depth was determined by simple trapezoidal integration of activity concentrations (Bq m$^{-3}$) versus depth (m). At 30°N, the vertical inventory increased from 1620 ± 130 Bq m$^{-2}$ in January 2012 to 4250 ± 520 Bq m$^{-2}$ in November 2012 (Fig. 3). Then it reduced to 2130 ± 200 Bq m$^{-2}$ in April 2013. Similar
inventories of 1860 ± 200 Bq m$^{-2}$ and 1600 ± 400 Bq m$^{-2}$ were observed in June 2014 and June 2016, respectively. In January 2012, the largest inventory was observed at $32^\circ/N$ (5640 ± 410 Bq m$^{-2}$). In November 2012, the inventory between $30^\circ/N$ and $35^\circ/N$ increased to $2570-4250$ Bq m$^{-2}$ except those around $32^\circ/N$ and became larger toward south. In 2014, the inventory decreased less than 2000 Bq m$^{-2}$. The inventories at the northern three stations ($1860-2000$ Bq m$^{-2}$), however, significantly larger than those at the southern two stations ($1320-1420$ Bq m$^{-2}$). In 2015–2017, the inventories at the southern or western (approximately $130^\circ/E$) two stations were significantly smaller than those at the eastern stations (approximately $145^\circ/E$).

Discussion

In January 2012, about 10 months after the FNPP1 accident, a main body of the subsurface maximum remained between $30^\circ/N$ and $35^\circ/N$ (Fig. 1e), where STMW was formed in March 2011, just after the accident. In November 2012, about 20 months after the accident, the main body was probably transported to the south of $30^\circ/N$ (Fig. 1d). In March–June 2014, about 40 months after the accident, the
highest peak concentration of the subsurface maximum appeared again between 30°N and 35°N (Fig. 1c), which implies a return of the main body of the high concentration water to the north along the anti-cyclonic circulation of STMW in the western subtropical gyre [20]. The small spatial and temporal variations in the vertical profiles of 134Cs in 2015–2017 (Fig. 1b) suggest that the peak concentration in the subsurface layer was mixed horizontally possibly due to re-circulation of STMW. The deepening of the peak concentration (Fig. 2) could be explained by diapycnal vertical mixing and erosion of the upward spreading due to newly-formed STMW after the winter of 2012, whose 134Cs concentration was lower than that in STMW subducted in March 2011 [16].

To confirm the circulation and re-circulation of the FNPP1-derived 134Cs in the STMW layer, we complied 134Cs data in the subsurface layer (25.0–25.6 kg m$^{-3}$) in the western subtropical gyre between 2011 and 2017 (Fig. 4) [9–13, 21]. Between September 2011 and February 2012 (Fig. 4a), the subsurface maximum was apparent only at stations along 150°E and north of 20°N. The main body of the high concentration water, which was formed between 30°N and 35°N approximately in March 2011, remained in the same latitude range about 10 months later. This apparent stagnation of the main body implies that eastward transport was predominant in this early stage. In June–September 2012 (Fig. 4b), the subsurface maximum spread to the west (125°E), east (165°E), and south (18°N), namely into almost the whole western subtropical gyre. The main body was transported to around 30°N due to southward subduction of STMW. In October–November 2012 (Fig. 4c), it was continuously transported south-westward and reached to the south of 30°N in 2013 (Fig. 4d). In 2014 (Fig. 4e), the main body returned to the north at the western edge of the western subtropical area and then moved eastward along the northern rim of STMW circulation. During 2015–2017 (Fig. 4f), it re-circulated within an area south of Japanese islands that corresponds to the Kuroshio recirculation area. As a result, the small spatial and temporal variations in the vertical profile and inventory were observed within the area (Figs. 1b, 3). Approximate 3 years of the circulation time of STMW in the Kuroshio recirculation area, which was derived from the time evolution of the subsurface 134Cs maximum, agrees with the renewal time of STMW in the western subtropical area, 2–9 years [22].

Conclusions

We revealed the time evolution of FNPP1-derived radionuclides in the western subtropical gyre between 2011 and 2017. In March 2011, the radionuclides was released from the damaged FNPP1 and some of that was deposited on the area south of the Kuroshio/Kuroshio Extension Currents, where STMW was sinking to the subsurface layer. Along the southward and westward transport of STMW, the FNPP1-derived radioactivity was transported to the south of 30°N by 2013 through the subsurface layer. Then the subsurface maximum returned to the north and circulated in the Kuroshio recirculation area by 2014. It re-circulated within the area in 2015–2017. The circulation time of STMW in the Kuroshio recirculation area was estimated to be about 3 years.

Acknowledgements We thank Dr. Taichi Yokokawa, Dr. Hiroshi Uchida, and crew of the research vessels belong to JAMSTEC and Japan Meteorological Agency for their help during onboard sample collection. This work was partially supported by a Grant-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan (KAKENHI), Interdisciplinary Study on Environmental Transfer of Radionuclides from the Fukushima Dai-ichi NPP Accident (#24110004).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Yoshida N, Kanda J (2012) Tracking the Fukushima radionuclides. Science 336:1115–1116
2. Saito K, Tanihata I, Fujiwara M, Saito T, Shimoura S, Otsuka T, Onda Y, Hoshi M, Ikeuchi Y, Takahashi F, Kinouchi N, Saegusa J, Seki A, Takemiyah H, Shibata T (2015) Detailed deposition density maps constructed by large-scale soil sampling for gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact 129:308–319
3. Morino Y, Ohara T, Watanabe M, Hayashi S, Nishizawa M (2013) Episode analysis of deposition of radioactivity from the Fukushima Daiichi Nuclear Power Plant accident. Environ Sci Technol 47:2314–2322
4. Buesseler K, Dai M, Aoyama M, Benitez-Nelson C, Charmasson S, Higley K, Maderich V, Masqué P, Morris PJ, Oughton D, Smith JN (2017) Fukushima Daiichi-derived radionuclides in the ocean: transport, fate, and impacts. Annu Rev Mar Sci 9:173–203
5. Aoyama M, Hirose K, Igarashi Y (2006) Re-construction and updating our understanding on the global weapons tests 137Cs fallout. J Environ Monit 8:431–438
6. Aoyama M, Kajino M, Tanaka TY, Sekiyama TT, Tsumune D, Tsubono T, Hamajima Y, Inomata Y, Gamo T (2016) 134Cs and 137Cs in the North Pacific Ocean derived from the March 2011 TEPCO Fukushima Dai-ichi Nuclear Power Plant accident, Japan. Part two: estimation of 134Cs and 137Cs inventories in the North Pacific Ocean. J Oceanogr 72:67–76
7. Kumamoto Y, Aoyama M, Hamajima Y, Nishino S, Akihiko Murata A, Kikuchi T (2016) Meridional distribution of Fukushima-derived radioactivity in surface seawater along a trans-Pacific
line from the Arctic to Antarctic Oceans in summer 2012. J Radioanal Nucl Chem 307:1703–1710
8. Smith JN, Rossi V, Buesseler KO, Cullen JT, Cornett J, Nelson R, Macdonald AM, Robert M, Kellogg J (2017) Recent transport history of Fukushima radioactivity in the Northeast Pacific Ocean. Environ Sci Technol 51:10494–10502
9. Yoshida S, Macdonald AM, Jayne SR, Rypina II, Buesseler KO (2015) Observed eastward progression of the Fukushima 134Cs signal across the North Pacific. Geophys Res Lett 42:1. https://doi.org/10.1002/2015GL065259
10. Aoyama M, Hamajima Y, Hult M, Uematsu M, Oka E, Tsumune D, Kumamoto Y (2016) 134Cs and 137Cs in the North Pacific Ocean derived from the March 2011 TEPCO Fukushima Dai-ichi Nuclear Power Plant accident, Japan. Part one: surface pathway and vertical distributions. J Oceanogr 72:53–65
11. Kumamoto Y, Aoyama M, Hamajima Y, Aono T, Kowatsuru S, Murata A, Kawano T (2014) Southward spreading of the Fukushima-derived radiocesium across the Kuroshio Extension in the North Pacific. Sci Rep. https://doi.org/10.1038/srep04276
12. Kaeriyama H, Shimizu Y, Ambe D, Masujima M, Shigenobu Y, Fujimoto K, Ono T, Nishiuchi K, Taneda T, Kurogi H, Setou T, Sugisaki H, Ichikawa T, Hidaka K, Hiroe Y, Kusaka A, Kodama T, Kuriyama M, Morita H, Nakata K, Morinaga K, Morita T, Watanabe T (2014) Southward intrusion of 134Cs and 137Cs derived from the Fukushima Dai-ichi Nuclear Power Plant accident in the western North Pacific. Environ Sci Technol 48:3120–3127
13. Kaeriyama H, Shimizu Y, Setou T, Kumamoto Y, Okazaki M, Ambe D, Ono T (2016) Intrusion of Fukushima-derived radiocaesium into subsurface water due to formation of mode waters in the North Pacific. Sci Rep. https://doi.org/10.1038/srep22010
14. Masuzawa J (1969) Subtropical mode water. Deep Sea Res 16:463–472
15. Suga T, Hanawa K (1995) The subtropical mode water circulation in the North Pacific. J Phys Oceanogr 25:958–970
16. Kumamoto Y, Aoyama M, Hamajima Y, Nagai H, Yamagata T, Kawai Y, Oka E, Yamaguchi A, Imai K, Murata A (2017) Fukushima-derived radiocesium in the western North Pacific in 2014. J Radioanal Nucl Chem 311:1209–1217
17. Ramzaev V, Nikitin A, Sevastyanov A, Artemiev G, Bruk G, Ivanov S (2014) Shipboard determination of radiocesium in seawater after the Fukushima accident: results from the 2011–2012 Russian expeditions to the Sea of Japan and western North Pacific Ocean. J Environ Radioact 135:13–24
18. Aoyama M, Hirose K (2008) Radiometric determination of anthropogenic radionuclides in seawater. In: Povinec PP (ed) Analysis of environmental radionuclides, radioactivity in the environment, vol 2. Elsevier, Amsterdam
19. Hamajima Y, Komura K (2004) Background components of Ge detectors in Ogoya underground laboratory. Appl Radiat Isot 61:179–183
20. Oka E, Qiu B (2012) Progress of North Pacific mode water research in the past decade. J Oceanogr 68:5–20
21. Men W, He J, Wang F, Wen Y, Li Y, Huang J, Yu X (2015) Radioactive status of seawater in the northwest Pacific more than one year after the Fukushima nuclear accident. Sci Rep. https://doi.org/10.1038/srep07757
22. Suga T, Aoki Y, Saito H, Hanawa K (2008) Ventilation of the North Pacific subtropical pycnocline and mode water formation. Prog Oceanogr 77:285–297
23. Schlitzer R, Ocean data view. http://odv.awi.de. Accessed 2 Aug 2018