New elementary components of the Gorenstein locus of the Hilbert scheme of points

Robert Szafarczyk

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland

ABSTRACT
We construct new explicit examples of nonsmoothable Gorenstein algebras with Hilbert function \((1, n, n, 1)\). This gives a new infinite family of elementary components in the Gorenstein locus of the Hilbert scheme of points and solves the cubic case of Iarrobino’s conjecture.

1. Introduction

Hilbert schemes of points were first constructed by Grothendieck in 1960–1961 [7]. Since then they have found many applications, notably in combinatorics [8] and in constructing hyperkähler manifolds [1]. Hilbert schemes of points also appear in complexity theory while studying tensor and border ranks [16]. One of the more important results of the theory is that by Fogarty stating that the Hilbert scheme of points of a smooth, irreducible surface is itself smooth and irreducible [5]. The Hilbert scheme of points for three- and higher-dimensional varieties is singular and not well understood.

The topology of the Hilbert scheme of points is still poorly understood and finding its irreducible components remains a challenge. The building blocks for them are the elementary components, those parametrizing subschemes with one-point support. Points of the Hilbert scheme of points corresponding to Gorenstein zero-dimensional subschemes form an open set, called the Gorenstein locus. Few components of this locus are known. Additionally, the smooth points of these components are often not explicitly given. Explicit points outside of the smoothable component are of interest in applications to tensors [15] and in computations.

Let \(S = k[\alpha_1, \ldots, \alpha_n] \) and \(P = k[x_1, \ldots, x_n] \) be polynomial rings of \(n \) variables over a field \(k \) of characteristic 0. There is an action of \(S \) on \(P \) defined as follows

\[
\alpha_1^{b_1} \alpha_2^{b_2} \cdots \alpha_n^{b_n} \cdot x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n} = \begin{cases} x_1^{a_1-b_1} x_2^{a_2-b_2} \cdots x_n^{a_n-b_n} & \text{if } \forall i \ a_i \geq b_i \\ 0 & \text{otherwise.} \end{cases}
\]

This action is called contraction and is somewhat similar to differentiation. For any polynomial \(f \in P \) the set \(\text{Ann}(f) = \{ s \in S : s \cdot f = 0 \} \) forms a homogeneous ideal of \(S \), called the apolar ideal. In this paper, we present the following result.

Theorem 1. If \(n \geq 6 \) (except for \(n = 7 \)), then for a general \(f \in P \) homogeneous of degree 3 the ideal \(\text{Ann}(f) \) is a smooth point of an elementary component of the Hilbert scheme.
Moreover, we give an explicit description of such a smooth point. The *apolar algebra* \(S/\text{Ann}(f) \), denoted \(\text{Apolar}(f) \), with Hilbert function \((1, n, n, 1)\) is said to satisfy the small tangent space condition if the \(k \)-algebra \(S/\text{Ann}(f)^2 \) has the smallest Hilbert function possible. **Theorem 1** is a corollary of the following.

Theorem 2. If \(n \geq 6 \) (except for \(n = 7 \)), then for a general \(f \in P \) homogeneous of degree 3 the apolar algebra \(\text{Apolar}(f) \) satisfies the small tangent space condition.

Loosely speaking, **Theorem 2** asserts that \(\text{Apolar}(f) \) has only trivial deformations of second order. For why it is false when \(n \leq 5 \) or \(n = 7 \) see [3] and [2].

The characteristic 0 assumption can be removed for \(n \geq 18 \), see **Theorem 3.1**. We believe this to be true for all \(n \), but small \(n \) would probably require a direct verification. We make this verification on computer for characteristics 0,2, and 3. For \(n \) less than 13 this was also done by Iarrobino and Kanev [10, Lemma 6.21].

Summing up, we show **Theorem 2** to hold for all characteristics when \(n \geq 18 \) and for characteristics 0,2, and 3 in general. This resolves the following conjecture, posed by Iarrobino and Kanev, in the case \(d = 3 \).

Conjecture 3 ([10], Conjecture 6.30). Let \(d \) be an odd integer. If one of the following conditions holds

1. \(n = 4 \) and \(d \geq 15 \),
2. \(n = 5 \) and \(d \geq 5 \),
3. \(n \geq 6 \) and \(d \geq 3 \) (except for \((n, d) = (7, 3)\)),

then for a general \(f \in P \) homogeneous of degree \(d \) the apolar algebra \(\text{Apolar}(f) \) satisfies the small tangent space condition.

For \(d > 3 \) essentially nothing is known.

In order to prove **Theorem 2** it suffices to give, for every \(n \), a single example of a polynomial whose apolar algebra satisfies the small tangent space condition. In our proof, we give three rather simple ones covering all \(n \) greater than 8, see equations (3.1), (3.2), and (3.3). As a consequence, we provide an explicit description of a smooth point of an elementary component of the Hilbert scheme. Since the apolar ideals associated to our examples admit a set of generators consisting only of monomials and binomials they are also convenient from a computational point of view. Moreover, for \(n \geq 18 \), our proof does not use any computer computations. This is important in complexity theory, where structure tensors of such algebras correspond to 1-generic tensors [16, Section 5.6.1].

We begin, in **Section 2**, by giving all necessary background such as contraction, apolar algebras, and Gorenstein rings. It is also there where we compute the tangent space to the Hilbert scheme and present equivalent descriptions of the small tangent space condition. Then, in **Section 3**, we prove **Theorem 2** for sufficiently large \(n \). Small \(n \) are taken care of in **Section 4** where we verify them on a computer.

2. Preliminaries

This section introduces all notions related to our study. In **Section 2.1**, we define the Hilbert scheme and describe its tangent space. In **Section 2.2**, we introduce apolar algebras and divided power rings associated to polynomial rings. In **Section 2.3**, we introduce the dualizing functor \((-)^\vee\) and define zero-dimensional Gorenstein local rings. In **Section 2.4**, we define the small tangent space condition and relate it to the tangent space of the Hilbert scheme. Finally, in **Section 2.5**, we give a link between the small tangent space condition and smooth points on elementary components of the Hilbert scheme.
2.1. Hilbert scheme

In this section, we introduce the notion of deformation. The deformation functor turns out to be representable by a scheme, called the Hilbert scheme of points.

Let k be a field. Given two k-algebras S and A, we write S_A for the ring $S \otimes_k A$ treated as an A-algebra.

Definition 2.1. Let S be a fixed, finitely generated k-algebra. The embedded deformation functor $\text{Defemb} : k\text{-Alg} \rightarrow \text{Set}$ assigns to a k-algebra A the set of isomorphism classes of ideals $I \triangleleft S_A$ such that S_A/I is a locally free A-module of finite rank. To a morphism $A \rightarrow B$ of k-algebras the functor Defemb assigns the function taking $I \in \text{Defemb}(A)$ to $I_S B \in \text{Defemb}(B)$.

We consider the following theorem as the definition of the Hilbert scheme.

Theorem 2.2 ([9], Theorem 1.1). Let S be a fixed, finitely generated k-algebra. Then, there exists a finite type k-scheme \mathcal{H}, called the Hilbert scheme of points, representing the deformation functor Defemb in the sense that there is an isomorphism of sets $\text{Defemb}(A) \cong \text{Mor}_{\mathcal{H}}(\text{Spec} A, \mathcal{H})$ natural in A.

Note that $\text{Defemb}(k)$, and hence $\mathcal{H}(k)$, is the set of ideals $I \triangleleft S$ such that $\dim_k S/I$ is finite. Since S/I is Noetherian $\dim_k S/I$ being finite is equivalent to S/I being zero-dimensional.

Theorem 2.3 ([17], Theorem 10.1). Let S be a finitely generated k-algebra, and let \mathcal{H} be its associated Hilbert scheme. For an ideal $I \triangleleft S$ such that $\dim_k S/I$ is finite, hence for a rational point of \mathcal{H}, the tangent space of \mathcal{H} at I is isomorphic to $\text{Hom}_S(I, S/I)$.

2.2. Apolar algebras

In this section, following [12], we introduce the notion of apolar algebra. This is the easiest to construct and, in the case of zero-dimensional, graded local rings, the only example of a Gorenstein ring (see Theorem 2.11).

Consider a polynomial ring $S = k[\alpha_1, \ldots, \alpha_n]$ over a field k. Recall that S is a graded k-algebra with the ideal S_+ equal to $(\alpha_1, \ldots, \alpha_n)$. We denote by S^\vee the S-module $\text{Hom}_k(S, k)$ of k-linear functionals on S. Let $(-, -) : S \times S^\vee \rightarrow k$ be the natural map given by evaluation.

Definition 2.4. Let P be the submodule $\{f \in S^\vee : \forall_{N \geq 0} (\langle S_+ \rangle^N, f) = 0\}$ of S^\vee. The induced action of S on P is called contraction.

We now give a more concrete description of contraction. If $a = (a_1, a_2, \ldots, a_n)$ is a multi-index, we write α^a for the monomial $\alpha_1^{a_1} \alpha_2^{a_2} \cdots \alpha_n^{a_n} \in S$. For every multi-index a there is a unique functional $x^{\langle a \rangle} \in P$ dual to α^a in the sense that for all multi-indices b we have

$$\langle \alpha^b, x^{\langle a \rangle} \rangle = \begin{cases} 1 & \text{if } a = b \\ 0 & \text{otherwise.} \end{cases}$$

Note that $x^{\langle \cdot \rangle}$ form a k-basis of P. The quantity $\sum a : = \sum a_i$ is called the degree of $x^{\langle a \rangle}$. An element $f \in P$ is called homogeneous of degree d if f is contained in $\text{span}_k(x^{\langle a \rangle} : \sum a = d)$. Contraction behaves on the basis as follows

$$\alpha^b \cdot x^{\langle a \rangle} = \begin{cases} x^{\langle a-b \rangle} & \text{if } a \geq b \quad (\forall_i a_i \geq b_i) \\ 0 & \text{otherwise.} \end{cases}$$
Though we do not need this, we can equip P with a ring structure. Multiplication on P is given by the formula

$$x^{[a]}x^{[b]} = \left(a + b \right)x^{[a+b]}$$

where $\left(a + b \right) = \prod (a_i + b_i)$. In this way, P is a divided power ring.

Definition 2.5. Let $f \in P$, and let $\text{Ann}(f)$ denote the ideal $\{ s \in S : s \cdot f = 0 \}$ of S. The k-algebra $S/\text{Ann}(f)$ is called the apolar algebra of f, and is denoted $\text{Apolar}(f)$.

2.3. Zero-dimensional Gorenstein local rings

Throughout this section let (A, m, k) be a zero-dimensional, finitely generated local k-algebra. We denote by $A\text{-mod}$ the category of finitely generated modules over A and by $A\text{-mod}^{op}$ its opposite category.

We recall basic definitions and properties concerning zero-dimensional Gorenstein rings following [4, Chapter 21].

Definition 2.6. A functor $E : A\text{-mod}^{op} \rightarrow A\text{-mod}$ is called dualizing if $E^2 \cong 1$.

Proposition 2.7 ([4], Proposition 21.1). If $E : A\text{-mod}^{op} \rightarrow A\text{-mod}$ is dualizing, then there is an isomorphism of functors $E \cong \text{Hom}_A(−,E(A))$. Moreover, up to isomorphism there exists at most one dualizing functor on $A\text{-mod}$.

Consider the functor $(-)^\vee \equiv \text{Hom}_k(-,k)$. For an A-module M, the vector space $\text{Hom}_k(M,k)$ naturally forms an A-module with the A-action given by

$$(a \cdot \varphi)(m) = \varphi(am)$$

where $\varphi \in M^\vee$, $m \in M$, and $a \in A$. Therefore, we can view $(-)^\vee$ as a functor $A\text{-mod}^{op} \rightarrow A\text{-mod}$.

Proposition 2.8 ([4], Section 21.1). The functor $(-)^\vee$ is dualizing.

Combining Propositions 2.7 and 2.8 shows that up to isomorphism there exists a unique dualizing functor on $A\text{-mod}$.

Definition 2.9. We say that A is Gorenstein if $A^\vee \cong A$.

If A is Gorenstein, then in view of Proposition 2.7 we have an isomorphism of functors $\text{Hom}_A(−,A) \cong \text{Hom}_A(−,A^\vee) \cong (−)^\vee$. In particular $\text{Hom}_A(−,A)$ is dualizing. Conversely, if $\text{Hom}_A(−,A)$ is dualizing, then, by Proposition 2.7 and Yoneda lemma, A is isomorphic to A^\vee, so A is Gorenstein.

We have the following characterization of zero-dimensional Gorenstein rings.

Proposition 2.10 ([4], Proposition 21.5). Let (A, m, k) be a zero-dimensional, finitely generated local k-algebra. Then, the following conditions are equivalent.

1. A is Gorenstein.
2. A is injective as an A-module.
3. The annihilator of the maximal ideal $\text{Ann}(m) \subset A$ is one dimensional.
4. $\text{Hom}_A(−,A)$ is dualizing.
2.4. Small tangent space condition

In this section, we introduce the small tangent space condition and better describe the tangent space of the Hilbert scheme associated to a polynomial ring. We also prove Proposition 2.18, which is needed in the proof of Theorem 3.1.

As in Section 2.2, let S be a polynomial ring of n variables over a field k, and let P be its associated divided power ring. We denote by \mathcal{H} the Hilbert scheme associated to S. Recall that Apolar(f) = S/Ann(f). If $I = $ Ann(f) we write S/I and Apolar(f) interchangeably.

Let M be a graded module and $H(M)_i = \dim_k M_i$ its Hilbert function. When saying that M has Hilbert function (h_0, h_1, \ldots, h_j), $h_i \in \mathbb{N}$ we mean that $H(M)_i$ is equal to h_i for $i \in \{0, 1, \ldots, j\}$ and that $H(M)_i$ is equal to 0 for $i \notin \{0, 1, \ldots, j\}$. For example, S has Hilbert function $(1, n, (n+1)/2, (n+2)/3, \ldots)$. We denote a shift of gradation in square brackets, so $M[d]_i = M_{d+i}$.

Theorem 2.11 ([11], Lemma 1.2 and Theorem 1.5). For every nonzero $f \in P$ homogeneous of degree d the apolar algebra Apolar(f) is a graded zero-dimensional Gorenstein local ring. Moreover, there is a graded isomorphism Apolar(f) \cong Apolar(f)$^\vee[-d]$.

For every homogeneous ideal $I \subset S$, if S/I is a zero-dimensional Gorenstein local ring, then there exists homogeneous $f \in P$ such that $I = $ Ann(f).

We can now describe the tangent space of the Hilbert scheme more concretely.

Proposition 2.12. Let $f \in P$ be homogeneous of degree d, and let $I = $ Ann(f). Then, the tangent space $T_I \mathcal{H}$ is isomorphic as a graded module to $(I/I^2)^\vee[-d]$.

Proof. By Theorem 2.3 the tangent space to \mathcal{H} at I is isomorphic to $\operatorname{Hom}_S(I, S/I)$. By the tensor-hom adjunction and the isomorphism $I \otimes_S S/I \cong I/I^2$ we get

$$\operatorname{Hom}_S(I, S/I) \cong \operatorname{Hom}_{S/I}(I/I^2, S/I).$$

Then, Theorem 2.11 yields

$$\operatorname{Hom}_{S/I}(I/I^2, S/I) \cong \operatorname{Hom}_{S/I}(I/I^2, (S/I)^\vee)[-d].$$

Now, again by the tensor-hom adjunction, we obtain

$$\operatorname{Hom}_{S/I}(I/I^2, (S/I)^\vee)[-d] \cong (I/I^2)^\vee[-d].$$

Hence, $T_I \mathcal{H} \cong (I/I^2)^\vee[-d]$ as required.

From now on, since we are mainly interested in degree 3 homogeneous elements of P, we reduce ourselves to this special case.

Let $f \in P$ be homogeneous of degree 3, and let $I = $ Ann(f). Since $S_{\geq 4}$ is contained in I the Hilbert function of S/I can be nonzero only in degrees 0, 1, 2, and 3. Moreover, since $(S/I)^\vee \cong (S/I)[3]$ the Hilbert function is symmetric in the sense that $H(S/I)_0 = H(S/I)_3$ and $H(S/I)_1 = H(S/I)_2$. Clearly, $H(S/I)_0 = 1$ and $H(S/I)_1 \leq n$. In view of the following proposition, the case $H(S/I)_1 < n$ might be considered degenerate.

Proposition 2.13 ([10], Proposition 3.12). There is an open, dense subset U of the space of cubics Spec Sym$(P_3)^\vee$ such that for all rational points $f \in U(k)$ the Hilbert function of Apolar(f) is $(1, n, n, 1)$.

Proposition 2.14. Let $f \in P$ be homogeneous of degree 3, and let $I = $ Ann(f). If Apolar(f) has Hilbert function $(1, n, n, 1)$, then $H(S/I^2)_4 \geq n$.

Proof. This follows from [13, Lemma 3.4].
Definition 2.15. Let \(f \in P \) be homogeneous of degree 3, and let \(I = \text{Ann}(f) \). Then, we say that \(\text{Apolar}(f) \) satisfies the small tangent space condition if \(\text{Apolar}(f) \) has Hilbert function \((1, n, n, 1) \) and \(H(S/I)^2_4 = n, H(S/I^2)_5 = 0 \).

Proposition 2.16. Let \(f \in P \) be homogeneous of degree 3. Then, \(\text{Apolar}(f) \) satisfies the small tangent space condition if and only if the tangent space of \(H \) at \(I = \text{Ann}(f) \) has Hilbert function \(n, (\frac{n+2}{3}) - 1, (\frac{n+1}{2}) - n \) in degrees \(-1, 0, 1\) respectively, and 0 elsewhere.

Proof. First suppose that \(\text{Apolar}(f) \) satisfies the small tangent space condition. In view of Proposition 2.12 we need to compute the Hilbert function of \(I/I^2 \). The ring \(S/I \) has Hilbert function \((1, n, n, 1) \), so \(I_{\leq 1} = 0 \). It follows that \(S/I^2 \) is all of \(S \) in degrees \(0, 1, 2, \) and 3. Furthermore, since \(S/I \) satisfies the small tangent space condition \(S_5 \) is contained in \(I^2 \), so \(S_{\geq 6} \) is contained in \(I^2 \) as well, which means that \(H(S/I^2)_{\geq 6} = 0 \). Thus, the Hilbert function of \(S/I^2 \) is \((1, n, (\frac{n+2}{3}), (\frac{n+1}{2}), n) \). Furthermore, since \(S/I \) has Hilbert function \((1, n, n, 1) \), we get that the Hilbert function of \(I/I^2 \) is equal to \((0, 0, (\frac{n+1}{2}) - n, (\frac{n+2}{3}) - 1, n) \), hence the tangent space \(T_I H \cong (I/I^2)^\vee [-3] \) has the desired Hilbert function.

Now suppose that \(T_I H \) has the given Hilbert function. Then, \(I/I^2 \) has Hilbert function \((0, 0, (\frac{n+1}{2}) - n, (\frac{n+2}{3}) - 1, n) \). Since \(S_{\geq 4} \subset I \) this means that \(H(S/I^2)_4 = n \) and \(H(S/I^2)_5 = 0 \). Moreover, since \(I^2 \) is not all of \(S \) we have \(H(I)_0 = 0 \), so \(H(I^2)_1 = 0 \). Thus, \(H(S/I)_0 = 1 \) and \(H(S/I)_1 = n \), which since \(S/I \) is Gorenstein implies that \(S/I \) has Hilbert function \((1, n, n, 1) \) as required. \(\square \)

Corollary 2.17. Let \(f \in P \) be homogeneous of degree 3 such that \(\text{Apolar}(f) \) has Hilbert function \((1, n, n, 1) \). Then, \(\text{Apolar}(f) \) satisfies the small tangent space condition if and only if the tangent space of \(H \) at \(I \) has the smallest Hilbert function possible.

Proposition 2.18. Let \(f \in P \) be homogeneous of degree 3 such that \(\text{Apolar}(f) \) satisfies the small tangent space condition. Then, for a general \(g \in P \) homogeneous of degree 3 the apolar algebra \(\text{Apolar}(g) \) satisfies the small tangent space condition.

Proof. Let \(U \) be the open subscheme of \(\text{Spec Sym}(P) \) from Proposition 2.13. By [13, Section 2.2] there is a family \(Z \subset U \times \mathbb{P}^n_k \rightarrow U \) such that the fiber over \(f \in U(k) \) is \(\text{Spec Apolar}(f) \). Hence, the claim follows from Corollary 2.17 and upper semi-continuity of rank for the quasicoherent sheaf \(I(Z)/I(Z)^2 \). \(\square \)

2.5. Elementary components

We now describe the connection between the small tangent space condition and smooth points on elementary components of the Hilbert scheme.

As in Section 2.4, we only consider degree 3 homogeneous elements of \(P \).

Definition 2.19. An irreducible component \(Z \) of the Hilbert scheme is called elementary if for all rational points \(I \in Z(k) \) the \(S \)-module \(S/I \) is supported at a single point.

Proposition 2.20. Let \(f \in P \) be homogeneous of degree 3. If \(\text{Apolar}(f) \) satisfies the small tangent space condition, then \(I = \text{Ann}(f) \) is a smooth point of an elementary component of \(H \).

Proof. Since \(\text{Apolar}(f) \) satisfies the small tangent space condition, by Proposition 2.16, we have \(\dim_k \text{Hom}_S(I, S/I)_{\leq 0} = n \). Hence, by [14, Theorem 4.5 and Corollary 4.7], all irreducible components containing \(I \) are elementary. Smoothness follows from the discussion in [10, Proof of Lemma 6.21]. \(\square \)

3. Small tangent space condition in degree 3

In this section, we prove Theorem 3.1, which confirms Conjecture 3 in the case where \(d = 3 \) and \(n \geq 18 \).
Theorem 3.1. Let S be a polynomial ring of n variables over a field k, and let P be its associated divided power ring. If $n \geq 18$, then for a general $f \in P$ homogeneous of degree 3 the apolar algebra $\text{Apolar}(f)$ satisfies the small tangent space condition.

Proof. In view of Proposition 2.18 it suffices to find, for each $n \geq 18$, a single $f \in P$ such that $\text{Apolar}(f)$ satisfies the small tangent space condition. We divide the proof into three cases: $n = 3m$, $n = 3m + 1$, and $n = 3m + 2$, where $m \geq 6$. They are resolved by Propositions 3.11, 3.18, and 3.24, respectively.

Corollary 3.2. Let S be a polynomial ring of n variables over a field k, and let P be its associated divided power ring. If $n \geq 18$, then for a general $f \in P$ homogeneous of degree 3 the ideal $\text{Ann}(f)$ is a smooth point of an elementary component of the Hilbert scheme.

Proof. This follows by combining Proposition 2.20 and Theorem 3.1.

3.1. Proof of Theorem 3.1; case $n = 3m$

Let $S = k[a_i, b_i, c_i | i = 1, \ldots, m]$ be a polynomial ring of $n = 3m$ variables. Recall that we assume $m \geq 6$. When writing indices we treat them modulo m.

Consider the following polynomial

$$F = \sum_{i=1}^{m} a_i b_i c_i + a_i a_{i+1}^2 + b_i b_{i+1}^2 + c_i c_{i+1}^2.$$ \hfill (1)

Also by F we denote its dual element in the divided power ring associated to S.

Let I be the smallest ideal satisfying the following remark.

Remark 3.3. For all $x, y \in \{a, b, c\}$, and for all indices i, j, if $j \not\in \{i - 1, i, i + 1\}$, then $x_i y_j \in I$.

For all $x, y \in \{a, b, c\}$, and for all indices i, j, if $x \not\equiv y$, then $x_i y_{i+1} - x_j y_{j+1} \in I$.

For all $x, y \in \{a, b, c\}$, and for all indices i, j, one of the following holds:

1. $x_i y_j$ is contained in I.
2. $x \equiv y$ and $j \in \{i - 1, i + 1\}$.
3. There exists an index k and $p, q \in \{a, b, c\}, p \not\equiv q$, such that $x_i y_j - p_k q_k \in I$.

The polynomial F is chosen such that $I \subset \text{Ann} F$.

Let J denote the ideal $I^2 + \langle a_i a_{i+1}^2 a_{i+2}^2, b_i b_{i+1} b_{i+2}^2, c_i c_{i+1} c_{i+2}^2 | i = 1, \ldots, m \rangle$. Note that $F, I,$ and J are invariant under index translation and permutations of the set $\{a, b, c\}$.

We want to show that $\text{Apolar}(F)$ satisfies the small tangent space condition. The main part of the proof is checking that all polynomials of degree 4 are contained in J, hence, that $H(S/I^2)_4 = n$.

In this section, we use the following notation. For polynomials $Q, R \in S$ we write $Q \equiv R$ if Q is equal to R in S/I^2.

Lemma 3.4. For all $x, y, z, w, p, q \in \{a, b, c\}$, and for all indices i, j, k,

1. there exists an index t such that $x_i y_j z_t w_{t+1}$ is in I^2.
2. there exist indices s, t such that each of $x_{i+1} y_{i+1} z_j w_{j+1}$, $x_j y_{j+1} z_j w_{j+1}$, and $x_j y_{j+1} z_j w_{j+1}$ is in I^2.
3. if $j, k \in \{i - 1, i, i + 1\}$, then there exists an index s such that each of $x_i y_j z_s w_{s+1}$ and $z_s w_{s+1} p_k q_k$ is in I^2.

Proof. Throughout the proof we use the assumption $m \geq 6$.

We first prove (1). If \(j \notin \{i + 1, i + 2, i + 3\} \), then we take \(t = i + 2 \), so that \(x_iy_jz_{i+2}w_{i+3} = (x_iw_{i+3})y_jz_{i+2} \equiv 0 \). If \(j \in \{i + 1, i + 2, i + 3\} \), then we take \(t = i - 2 \), so that \(x_iy_jz_{i-2}w_{i-1} = (x_iw_{i-1})(y_jz_{i-2}) \equiv 0 \).

Now we show (2). If \(j \notin \{i + 1, i + 2, i + 3\} \), then we take \(s = j + 2, t = j - 2 \), so that
\[
\begin{align*}
x_iy_i+1z_j-2w_{j-1} &= (x_iw_{i+1})y_jz_{j-2} \equiv 0 \\
x_j+2y_j+jz_jw_{j+1} &= (x_jw_{j+1})y_jz_{j+2} \equiv 0 \\
x_j+2y_j+jz_jw_{j-1} &= (x_jw_{j-1})y_jz_{j-2} \equiv 0.
\end{align*}
\]
If \(j \in \{i + 1, i + 2, i + 3\} \), then we take \(s = j - 2, t = j + 1 \), so that
\[
\begin{align*}
x_iy_i+1z_j+1w_{j+2} &= (x_iw_{i+1})y_jz_{j+1} \equiv 0 \\
x_j+2y_j-jz_jw_{j+1} &= (x_jw_{j+1})y_jz_{j-1} \equiv 0 \\
x_j+2y_j-jz_jw_{j-2} &= (x_jw_{j-1})y_jz_{j-2} \equiv 0.
\end{align*}
\]
Finally, we prove (3). If \(k = i + 1 \), then we take \(s = i - 3 \), so that
\[
\begin{align*}
x_iy_i+3z_i-2w_{i-2} &= (x_iw_{i-2})y_iz_i-3 \equiv 0 \\
z_i-3w_{i-2}p_{i+1}q_{i+1} &= (z_i-3p_{i+1})(w_{i-2}q_{i+1}) \equiv 0.
\end{align*}
\]
If \(k \in \{i - 1, i\} \), then we take \(s = i + 2 \), so that
\[
\begin{align*}
x_iy_i+2z_{i+2}w_{i+3} &= (x_iw_{i+2})y_iw_{i+3} \equiv 0 \\
z_{i+2}w_{i+3}p_kq_k &= (z_{i+2}w_{i+3}q_k) \equiv 0.
\end{align*}
\]
This finishes the proof.

Lemma 3.5. For all \(x, y, z, w \in \{a, b, c\} \), \(z \neq w \), and for all indices \(i, j, k \), if either \(x_jy_k \in I \) or \(x \neq y \) and \(k = j + 1 \), then the monomial \(z_iw_{i+1}x_jy_k \) is contained in \(I^2 \).

Proof. By symmetry we can assume \(z = a \), \(w = b \). Hence, we only need to examine monomials of the form \(a_ib_{i+1}x_jy_k \), where either \(x_jy_k \in I \) or \(x \neq y \) and \(k = j + 1 \).

First consider the case \(x_jy_k \in I \). By Lemma 3.4 there exists an index \(t \) such that \(a_t b_{t+1} x_j y_k \in I^2 \). Therefore, \(a_i b_{i+1} x_j y_k = (a_i b_{i+1} - a_i b_{t+1})(x_j y_k) + a_i b_{t+1} x_j y_k \equiv 0 \).

Now consider the case where \(x \neq y \) and \(k = j + 1 \). Then, by Lemma 3.4, there exist indices \(t \) and \(s \) such that \(a_t b_{t+1} x_j y_{j+1} = a_t b_{t+1} x_j y_{j+1} \), and \(a_t b_{t+1} x_j y_{j+1} \) are in \(I^2 \). Therefore, \(a_t b_{t+1} x_j y_{j+1} = (a_t b_{i+1} - a_t b_{i+1})(x_j y_{j+1} - x_j y_{j+1}) + a_t b_{t+1} x_j y_{j+1} + a_t b_{t+1} x_j y_{j+1} - a_t b_{t+1} x_j y_{j+1} \equiv 0 \).

Lemma 3.6. For all indices \(i \) and \(j \), the monomial \(a_i a_j b_i c_i \) is contained in \(I \).

Proof. First assume that \(j \notin \{i - 2, i - 1, i, i + 1\} \). Then, we can rewrite \(a_i a_j b_i c_i \) as follows.
\[
a_i a_j b_i c_i = (a_i b_i - c_{i-1} c_i)(a_j c_i) + (a_j c_{i-1})(c_i^2 - a_j b_{i-1}) + a_{i-1} a_i b_{i-1} c_{i-1} = a_{i-1} a_i b_{i-1} c_{i-1}
\]
Hence, iterating this procedure, we get \(a_i a_j b_i c_i \equiv a_i a_{j+2} b_{j+2} c_{j+2} \). Therefore, we just need to examine monomials \(a_{i-2} a_i b_i c_i, a_{i-1} a_i b_i c_i, a_i^2 b_i c_i, \) and \(a_i a_{i+1} b_i c_i \).

Monomial \(a_{i-2} a_i b_i c_i \) can be rewritten in the following way.
\[
a_{i-2} a_i b_i c_i = (a_i b_i - c_{i-1} c_i)(a_{i-2} c_i) + (a_{i-2} c_{i-1} - a_{i+2} c_{i+3})(c_i^2 - a_{i-1} b_{i-1}) + a_{i-2} a_{i-1} b_{i-1} c_{i-1} + (a_{i+2} c_i)(c_i c_{i+3}) - (a_{i-1} a_{i+2})(b_{i-1} c_{i+3}) \equiv a_{i-2} a_{i-1} b_{i-1} c_{i-1}
\]
Hence, we are reduced to considering \(a_{i-1} a_i b_i c_i, a_i^2 b_i c_i, \) and \(a_i a_{i+1} b_i c_i \). Before we do so, we make some auxiliary computations.
\[a_i^4 = (a_i^2 - b_{i-1}c_{i-1})^2 - (b_{i-1} - b_{i-3}b_{i-2})(c_{i-1} - c_{i-3}c_{i-2}) + \\
- b_{i-1}^2c_{i-3}c_{i-2} - b_{i-3}b_{i-2}c_{i-1}^2 + b_{i-3}b_{i-2}c_{i-3}c_{i-2} + \\
+ 2a_i^2b_{i-1}c_{i-1} \]
\[a_i^2a_{i+1}^2 = (a_i^2 - b_{i-1}c_{i-1})(a_{i+1}^2 - b_{i+1}c_{i+1}) + a_i^2b_i^2c_i + (a_{i+1}b_{i-1})(a_{i+1}c_{i-1}c_{i}) + \\
- b_{i-1}b_{i+1}c_{i-1}c_{i} \]

Hence, Lemma 3.5 shows \(a_i^4 \equiv 0 \) and \(a_i^2a_{i+1}^2 \equiv a_i^2b_i^2c_i \). We make further computations, where we assume \(j \notin \{i - 1, i, i + 1\} \).

\[a_i^2b_i^2c_i \equiv a_i^2a_{i+1}^2 + (a_i^2 - 2a_i^2a_{i+1}^2 - a_i^4 + 2a_i^2a_{i+1}^2 a_{i+2}^2 \equiv 2a_i^2a_{i+1}a_{i+2}^2 \in J \]
\[a_i^2a_{i+1}^2 = (a_i^2 - a_{i-1}a_{i+1})(a_i^2 - a_{i+2}^2 + a_i^2a_{i+1}a_{i+2}^2 = a_{i+1}a_{i+2}a_{i+3}^2 \in J \]

Iterating the last computation we get \(a_i^2a_{i+1}^2 \equiv a_i^2a_{i+1}a_{i+2}a_{i+3}^2 \). We are now ready to rewrite \(a_{i-1}a_i b_i c_i \) and \(a_{i+1}b_i c_i \).

\[a_{i-1}a_i b_i c_i = (a_{i-1}a_i - a_{i-2}a_{i+1}^2)(b_i c_i - a_{i-1}a_{i+1}^2) + a_{i-1}a_i a_{i+1}a_{i+2}^2 + \\
+ (a_{i-1}a_i - a_{i-3}a_{i+2}^2)(a_{i+1}c_i - a_{i-1}a_{i-2}) + (a_{i-1}a_{i+1})(b_i c_i - a_{i-1}a_{i-2}) + \\
+ (a_{i+1}a_{i+3})(b_{i+2}c_{i-1}) - (a_{i-1}a_{i+3})(b_{i+2}c_{i-1} - a_{i-1}a_{i+3}) = a_i^4 \equiv \\
= a_{i-1}a_i a_{i+1}a_{i+2}^2 \in J \]
\[a_i^2a_{i+1}a_{i+2}a_{i+3}^2 \equiv a_{i+1}a_{i+2}a_{i+3}^2 \in J \]

This finishes the proof.

\[\square \]

Lemma 3.7. For all \(x, y, z, w \in \{a, b, c\} \), \(z \neq w \), and for all indices \(i, j, k \), the monomial \(z_i w_{i+1} x_j y_k \) is contained in \(J \).

Proof. By symmetry we can assume \(z = a \), \(w = b \). Hence, we only need to examine monomials of the form \(a_{i+1}x_jy_k \).

Lemma 3.5 covers some of the cases. In any other there exist \(p, q \in \{a, b, c\} \), \(p \neq q \), and an index \(t \) such that \(x_jy_k - p_tq_t \in I \). Furthermore, since \(x_jy_k \notin I \) we have \(k, t \in \{i - 1, j, j + 1\} \), hence, by Lemma 3.4, we can choose an index \(s \) such that both \(a_{i+1}x_jy_k \) and \(a_{i+1}x_{j+1}y_k \) are in \(I^2 \). Then, we have \(a_{i+1}x_jy_k = (a_{i+1} - a_{b_{i+1}x_jy_k} + a_{b_{i+1}x_{j+1}y_k} = a_{i+1}p_{i+1}q_t \) \(a_{i+1}x_{j+1}y_k \) \(a_{i+1}x_{j+1}y_k \) \(a_{i+1}p_{i+1}q_t \). Hence, to finish the proof it suffices to consider monomials of the form \(a_{i+1}x_{j+1}y_k \) with \(x \neq y \).

If \(j \notin \{i - 1, i + 1, i + 2\} \), then \(x_{i+1}x_{j+1}y_k = (a_{i+1}x_jy_k) (a_{i+1}x_{j+1}y_k) \equiv 0 \).

Suppose \(x_j \neq y \) one of them is not \(a \), say \(x \neq a \). Then, if \(j = i - 1 \), we can write \(a_{i+1}x_{j+1}y_k \) as \(a_{x-1}y_{i-1}b_{i+1} \), and since \(y_{i-1}b_{i+1} \notin I \), Lemma 3.5 applies showing \(x_{i-1}a_{y_{i-1}b_{i+1}} \equiv 0 \). Similarly, if \(j = i + 1 \), since one of \(x, y \) in not \(b \), say \(x \neq b \), we know, by Lemma 3.5, that \(b_{i+1}x_{j+1}a_{y_{i+2}} \equiv 0 \).

In the case \(j = i + 1 \) we need to consider monomials \(a_{i+1}b_{i+1}^2c_{i+1} \), \(a_{i+1}b_{i+1}c_{i+1}c_{i+1} \), and \(a_{i+1}b_{i+1}c_{i+1}c_{i+1} \). Monomial \(a_{i+1}b_{i+1}c_{i+1}c_{i+1} \) is a special case of Lemma 3.6. Others can be rewritten as follows.

\[a_{i+1}b_{i+1}^2c_{i+1} = (a_{i+1}^2 - a_{i-2}b_{i-1})(a_{i+1}b_{i+1} - a_{i-2}b_{i-1}^2) + a_{i+1}b_{i+1}c_{i+1}^2 + \\
+ (a_{i-2}a_{i+1})(b_{i-1}c_{i+1} - a_{i-2}b_{i-1})(a_{i+1}b_{i+1} - a_{i-2}b_{i-1}^2) = 0 \]
\[a_{i+1}b_{i+1}^2c_{i+1} = (a_{i+1}^2 - a_{i-2}b_{i-1})(a_{i+1}b_{i+1} - a_{i-2}b_{i-1}^2) + a_{i+1}b_{i+1}c_{i+1}^2 + \\
+ (a_{i-2}a_{i+1})(b_{i-1}c_{i+1} - a_{i-2}b_{i-1})(a_{i+1}b_{i+1} - a_{i-2}b_{i-1}^2) = 0 \]

where \(a_{i+1}b_{i+1}^2c_{i+1} \) and \(a_{i+1}b_{i+1}^2b_{i+1} \) are in \(I^2 \) by Lemma 3.5.
Lemma 3.8. For all $x, y, z, w \in \{a, b, c\}$, and for all indices i, j, k, t such that $x_iy_j \in I$, the monomial $x_iy_jzkw_t$ is in I.

Proof. If z_kw_t is contained in I as well, then $x_iy_zzkw_t \in I^2$. If z_kw_t is of the form p_isq_{s+1} for some index s and $p, q \in \{a, b, c\}$, $p \neq q$, then Lemma 3.7 applies.

In any other case there exist $p, q \in \{a, b, c\}$, $p \neq q$, and an index s such that $z_kw_t = p_isq_{s+1}$. We may assume that $s+1 \geq 2$. Then, Lemmas 3.6 and 3.7 finish the proof.

Since, by symmetry, $aibicixjyk$ is a special case of Lemma 3.6 the proof is finished.

Proposition 3.9. Every degree 4 homogenous polynomial of S is contained in I.

Proof. In view of Lemma 3.8 it suffices to verify monomials where no two indices differ by more than 1. Moreover, if two indices differ exactly by 1, and not all letters are equal, then Lemma 3.7 applies. Hence, by symmetry, it suffices to examine $a_i^2b_i^2c_i, a_i^2b_i^2, a_i^2b_i, a_i^2a_i, a_i^2a_i, a_i^2a_i^2, a_i^2a_i^2$ and $a_i^2b_i^2$. Clearly, $a_i^2b_i^2c_i$ is in I. Monomial a_i^2 was shown to be in I^2 in the proof of Lemma 3.6, hence, by symmetry, c_i^4 is also in I^2. We can rewrite the remaining monomials as follows:

\[
a_i^2b_i^2 = (a_i^2b_i - c_{i+1}^2)^2 + 2(a_i^2c_{i+1})(b_i^2c_{i+1}) - c_{i+1}^4 \equiv 0
\]

\[
a_i^3b_i = (a_i^3b_i - c_{i+1}^3)(b_i^3c_{i+1}) - c_{i+1}^3 \equiv 0
\]

\[
a_i^3a_i^2 = (a_i^3a_i^2 - b_{i+1}c_{i+1})^2 + a_i^4b_{i+1}a_{i+1}c_{i+1}^2 + a_i^4b_{i+1}c_{i+1}^2
\]

Then, Lemmas 3.6 and 3.7 finish the proof.

Lemma 3.10. For all $x, y \in \{a, b, c\}$, and for all indices i, j, the monomial $x_iy_jx_iy_j$ is in I^2.

Proof. By symmetry we can assume $y = a$. Note that $a_i^2b_i$ annihilates F, so is in I. If $i \neq j, j+1$, then $x_iy_j \in I$, so $x_iy_jx_iy_j = (x_iy_j)(a_i^2b_i) \in I^2$. Now suppose $i \in \{j - 1, j, j + 1\}$. Either $x \neq b$ or $x \neq c$, by symmetry we can assume $x \neq c$. Then, in the case $i \in \{j - 1, j + 1\}$, we obtain $x_i^2a_i^2b_iy_j = \ldots$
\[(x_i c_j - x_{i+3} c_{j+3}) (a_i^2 b_j) + (x_{i+3} a_j) (a_i c_{j+3}) b_j \in I^2.\] In the case \(i = j\) we need to consider monomials \(a_i^3 b_i c_i\) and \(a_i^2 b_i^2 c_i\). We rewrite them as follows.

\[
a_i^3 b_i c_i = (a_i^2 b_i)(a_i c_i - b_{i-1} b_i) + (a_i b_i^2)(a_i b_{i-1} - a_{i-2} b_{i-3}) + (a_{i-2} a_i)(b_{i-3} b_i) b_i = 0
\]

\[
a_i^2 b_i^2 c_i = (a_i^2 c_i)(b_i^2 - b_{i-2} b_{i-1}) + (a_i^2 b_{i-1})(b_{i-2} c_i) = 0
\]

This finishes the proof. \qed

Proposition 3.11. The apolar algebra \(\text{Apolar}(F)\) satisfies the small tangent space condition.

Proof. It is easy to check that no linear form annihilates \(F\), hence \(\text{Apolar}(F)\) has Hilbert function \((1, n, n, 1)\). **Proposition 3.9** implies that \(H(S/I^2)_4 \leq n\), so \(H(S/\text{Ann}(F)^2) \leq n\). Thus, by **Proposition 2.14**, \(H(S/\text{Ann}(F)^2)_4 = n\). Finally, since monomials of the form \(x_i a_i b_i c_i\) generate \((S/I^2)_4\) \(\text{Lemma 3.10}\) implies that \(H(S/I^2)_5 = 0\), so also \(H(S/\text{Ann}(F)^2) = 0\). \qed

3.2. Proof of Theorem 3.1; case \(n = 3m + 1\)

Let \(S' = k[a_i, b_j, c_j, d \mid i = 1, \ldots, m]\) be a polynomial ring of \(n = 3m + 1\) variables. Recall that we assume \(m \geq 6\). When writing indices we treat them modulo \(m\).

Consider the following polynomial

\[
F' = \sum_{i=1}^{m} a_i b_i c_i + a_i a_i a_{i+1}^2 + b_i b_{i+1}^2 + c_i c_{i+1}^2 + a_i b_{i+1} d.
\]

Also by \(F'\) we denote its dual element in the divided power ring associated to \(S'\).

Let \(I'\) be the smallest ideal satisfying the following remark.

Remark 3.12. For all \(x, y \in \{a, b, c\}\), and for all indices \(i, j\), if \(j \notin \{i-1, i, i+1\}\), then \(x_i y_j \in I'\).

For all \(x, y \in \{a, b, c\}\), and for all indices \(i, j\), if \(x \neq y\), then \(x_i y_{i+1} - x_j y_{j+1} \in I'\).

For all \(x, y \in \{a, b, c\}\), and for all indices \(i, j\), one of the following holds.

1. \(x_i y_j\) is contained in \(I'\).
2. \(x \neq y\) and \(j \in \{i-1, i+1\}\).
3. There exists an index \(k\) and \(p, q \in \{a, b, c\}, p \neq q\), such that \(x_i y_j = p_k q_k \in I'\).

For any \(x \in \{a, b, c\}\), and any index \(i\), one of the following holds.

1. \(x_i d\) is contained in \(I'\).
2. There exists an index \(j\) and \(p, q \in \{a, b, c\}, p \neq q\), such that \(x_i d = p_j q_j \in I'\).

The polynomial \(F'\) is chosen such that \(I' \subset \text{Ann} F'\).

Let \(J'\) denote the ideal \((I')^2 + \langle a_i a_{i+1} a_{i+2}^2, b_i b_{i+1} b_{i+2}^2, c_i c_{i+1} c_{i+2}^2 \mid i = 1, \ldots, m \rangle + \langle a_1 b_1 c_1 d \rangle\). Note that \(F', I', \text{and } F'\) are invariant under index translation.

We want to show that \(\text{Apolar}(F')\) satisfies the small tangent space condition. The main part of the proof is checking that all polynomials of degree 4 are contained in \(J'\), hence, that \(H(S'/(I')^2)_4 = n\).

In this section, we use the following notation. For polynomials \(Q, R \in S'\) we write \(Q \equiv R\) if \(Q\) is equal to \(R\) in \(S'/(I')^2\).

Lemma 3.13. All monomials of degree 4, not divisible by \(d\) are contained in \(J'\).

Proof. We have a natural inclusion of rings \(S \subset S'\). Note that \(I \subset I' \cap S\), so also \(J \subset J' \cap S\). Since every monomial not divisible by \(d\) is contained in \(S\), the claim follows from **Proposition 3.9**. \qed
Lemma 3.14. For all $x, y, z \in \{a, b, c\}$, and for all indices i, j, k, the monomial $x_i y_j z_k d$ is contained in J'.

Proof. If any of $x_i y_j$, $x_i z_k$, $y_j z_k$ is in I', say $x_i y_j \in I'$, then either $z_k d \in I'$, so that $x_i y_j z_k d = (I')^2$, or there exist $p, q \in \{a, b, c\}$ and an index t such that $z_k d - p_t q_t \in I'$, so $x_i y_j z_k d = (x_i y_j)(z_k d - p_t q_t) + x_i y_j p_t q_t$. Monomial $x_i y_j p_t q_t$ is contained in I' by Lemma 3.13.

If any of $x_i y_j$, $x_i z_k$, $y_j z_k$ is of the form $w_i v_{i+1}$, $w \neq v$, say $j = i + 1$, $x \neq y$, then either $z_k d \in I'$ and we can rewrite $x_i y_j z_k d = (x_i y_{i+1} - x_k y_{i+1} y_k)(z_k d) + x_k y_{i+1} z_k d$, or $z_k d \notin I'$ and there exist $p, q \in \{a, b, c\}$ and an index t such that $z_k d - p_t q_t \in I'$, hence $x_i y_j z_k d = (x_i y_{i+1} - x_k y_{i+1} y_k)(z_k d - p_t q_t) + x_k y_{i+1} y_k z_k d$. In any case the claim follows by the previous paragraph and Lemma 3.13.

It remains to consider the case where either $x = y = z$ and $j, k \in \{i, i + 1\}$, or $i = j = k$. We first consider the case where $i = j = k$ and not all x, y, z are the same. If x, y, z are not mutually different, say $x = y$, then since $y \neq z$ there exists $w \in \{a, b, c\}$, $w \neq x$, such that $y z_i - w_{i-1} w_i \in I'$. Hence, if $x_i d \in I'$ we get $x_i y_j z_k d = (x_i d)(y z_i - w_{i-1} w_i) + x_i w_{i-1} w_i d$, and if $x_i d \notin I'$, then there are $p, q \in \{a, b, c\}$ and an index s such that $x_i d - p_t q_t \in I'$, so $x_i y_j z_k d = (x_i d - p_t q_t)(y z_i - w_{i-1} w_i) + x_i w_{i-1} w_i d + y z_i p_t q_t - w_{i-1} w_i p_t q_t$. Thus, the claim follows by the previous parts of the proof and Lemma 3.13. Now we consider the case where x, y, z are mutually different, hence we need to examine the monomial $a_i b_j c_k d$. We rewrite it as follows.

$$a_i b_j c_k d = (a_i b_i - c_i d)(d) + (c_i e_{i+1} - a_i b_i + 1)(d) + a_i b_i c_{i+1} d$$

Therefore, $a_i b_i c_{i+1} d \equiv a_{i+1} b_{i+1} c_{i+1} d$, and so $a_i b_j c_k d \equiv a_i b_1 c_1 d \in J'$.

We now consider the case where $x = y = z$. If $i = j = k$, then there are three monomials to consider, $a_i^3 d$, $b_i^3 d$, and $c_i^3 d$. We rewrite them in the following way.

$$a_i^3 d = (a_i^2 - b_i c_{i-1})(a_i d - a_i b_i c_{i+1}) + a_i^2 a_i b_i c_{i+1} +$$
$$+ (a_i b_i - c_i)(b_i d - a_i^2) + a_i^2 b_i^2 + a_i b_i c_{i-1} d +$$
$$- a_i b_i c_{i-1} d \equiv 0$$

$$b_i^3 d = (b_i^2 - c_i b_{i-1})(b_i d - a_i^2) + a_i^2 b_i^2 + a_i b_i c_{i-1} d +$$
$$- a_i b_i c_{i-1} d \equiv 0$$

$$c_i^3 d = (c_i^2 - c_i c_{i-1})(d) + (c_i c_{i-2})(d) \equiv 0$$

Hence, Lemma 3.13 and previous parts of the proof apply. Now suppose $x = y = z$ and at least one of j, k is $i + 1$, say $j = i + 1$, hence there exist $p, q \in \{a, b, c\}$, $p \neq q$, and an index t such that $x_i x_{i+1} - p_t q_t \in I'$. Then, either $x_i d \in I'$ and we get $x_i x_{i+1} x_i d = (x_i x_{i+1} - p_t q_t)(x_i d) + x_i p_t q_t d$, or there exist $w, v \in \{a, b, c\}$ and an index s such that $x_i d - w_s v_s \in I'$, so $x_i x_{i+1} x_i d = (x_i x_{i+1} - p_t q_t)(x_i d - w_s v_s) + x_i w_s v_s d + x_i x_{i+1} w_s v_s + x_i p_t q_t d - p_t q_t w_s v_s$. Either case follows from the previous parts of the proof and Lemma 3.13.

Lemma 3.15. For all $x, y \in \{a, b, c\}$, and all indices i, j, the monomial $x_i y_j d^2$ is contained in J'.

Proof. If both $x_i d$ and $y_j d$ are in I', then $x_i y_j d^2 \in (I')^2$. If only one of them is in I', say $x_i d \in I'$, then there exist $z, w \in \{a, b, c\}$ and an index k such that $y_j d - z_k w_k \in I'$, so $x_i y_j d^2 = (x_i d)(y_j d - z_k w_k) + x_i z_k w_k d$. Finally, if $x_i d \notin I'$, $y_j d \notin I'$, then there exist $z, w, p, q \in \{a, b, c\}$ and indices k, t such that $x_i d - w_k z_k \in I'$ and $y_j d - p_t q_t \in I'$, so $x_i y_j d^2 = (x_i d - p_t q_t)(y_j d - z_k w_k) + x_i z_k w_k d + y_j p_t q_t d - z_k w_k p_t q_t$. Hence, the claim follows from Lemmas 3.13 and 3.14.

Proposition 3.16. Every degree 4 homogenous polynomial of S' is contained in J'.

Proof. Lemmas 3.13, 3.14, and 3.15 cover most of the cases. It remains to check that for any $x \in \{a, b, c\}$ and any index i both $x_i d^3$ and d^4 are in J'. Thus, we need to consider four monomials, which we rewrite as follows.
\[a_id^3 = (a_id - a_{i+1}c_{i+1})(d^2) + a_{i+1}c_{i+1}d^2\]
\[b_id^3 = (b_id - b_{i-1}c_{j-1})(d^2) + b_{i-1}c_{j-1}d^2\]
\[c_id^3 = (c_id)(d^2) \equiv 0\]
\[d^4 = (d^2)^2 \equiv 0\]

Thus, Lemma 3.15 finishes the proof. \qed

Lemma 3.17. For all \(x, y \in \{a, b, c\}\), and for all indices \(i, j\), the monomials \(x_iy_ja_ib_jc_j\), \(x_iy_ja_ib_jc_jd\) and \(a_ib_jc_jd^2\) are in \((I')^2\).

Proof. That \(x_iy_ja_ib_jc_j\) is in \((I')^2\) follows from the inclusion of rings \(S \subseteq S'\) and Lemma 3.10. Note that \(a_ib_jd\) annihilates \(F\), so it is in \(I'\). If \(x_i \neq c_j\), then \(x_iy_jb_j \in I'\), so \(x_iy_ja_ib_jc_jd = (x_iy_jb_j)(c_jd) \in (I')^2\). Thus, it remains to consider \(a_ib_jc_jd^2\). We rewrite them as follows.

\[a_ib_jc_jd^2 = (a_ib_jd)(c_jd) \equiv 0\]

Hence, the proof is complete. \qed

Proposition 3.18. The apolar algebra \(\text{Apolar}(F')\) satisfies the small tangent space condition.

Proof. It is easy to check that no linear form annihilates \(F\), hence \(\text{Apolar}(F')\) has Hilbert function \((1, n, n, 1)\). Proposition 3.16 implies that \(H(S'/(I')^2)_4 \leq n\), so \(H(S'/\text{Ann}(F')^2) \leq n\). Thus, by Proposition 2.14, \(H(S'/\text{Ann}(F')^2)_4 = n\). Finally, since monomials of the form \(x_iy_ja_ib_jc_j\) and \(a_ib_jc_jd\) generate \((S'/I')^2\), Lemma 3.17 implies that \(H(S'/(I')^2)_5 = 0\), so also \(H(S'/\text{Ann}(F')^2)_5 = 0\). \qed

3.3. Proof of Theorem 3.1; case \(n = 3m + 2\)

Let \(S'' = k[a_i, b_j, c_i, d, e] \mid i = 1, \ldots, m\) be a polynomial ring of \(n = 3m + 2\) variables. Recall that we assume \(m \geq 6\). When writing indices we treat them modulo \(m\).

Consider the following polynomial

\[I'' = \sum_{i=1}^{m} a_ib_ic_i + a_i a_{i+1}^2 + b_i b_{i+1}^2 + c_i c_{i+1}^2 + a_i b_{i+1}d + b_i c_{i+1}e.\] \hfill (3)

Also by \(I''\) we denote its dual element in the divided power ring associated to \(S''\).

Let \(I''\) be the smallest ideal satisfying the following remark.

Remark 3.19. For all \(x, y \in \{a, b, c\}\), and for all indices \(i, j\), if \(j \notin \{i - 1, i, i + 1\}\), then \(x_iy_j \in I''\).

For all \(x, y \in \{a, b, c\}\), and for all indices \(i, j\), if \(x \neq y\), then \(x_iy_{i+1} - y_jy_{j+1} \in I''\).

For all \(x, y \in \{a, b, c\}\), and for all indices \(i, j\), one of the following holds.

1. \(x_iy_j\) is contained in \(I''\).
2. \(x \neq y\) and \(j \in \{i - 1, i + 1\}\).
3. There exists an index \(k\) and \(p, q \in \{a, b, c\}\), \(p \neq q\), such that \(x_iy_j - p_k q_k \in I''\).

For any \(x \in \{a, b, c\}\), any \(y \in \{d, e\}\), and any index \(i\), one of the following holds.

1. \(x_iy\) is contained in \(I''\).
2. There exists an index \(j\) and \(p, q \in \{a, b, c\}\), \(p \neq q\), such that \(x_iy - p_j q_j \in I''\).

The polynomial \(I''\) is chosen such that \(I'' \subseteq \text{Ann} I''\).
Let \(J'' \) denote the ideal \((I'')^2 + \langle a_ia_{i+1}a_{i+2}, b_ib_{i+1}b_{i+2}, c_ic_{i+1}c_{i+2} \mid i = 1, \ldots, m \rangle + \langle a_1b_1c_1d, a_1b_1c_1e \rangle\). Note that \(F'', I'', \) and \(J'' \) are invariant under index translation.

We want to show that Apolar\((F'')\) satisfies the small tangent space condition. The main part of the proof is checking that all polynomials of degree 4 are contained in \(J'' \), hence that \(H(S''/(I'')^2) = n \).

In this section, we use the following notation. For polynomials \(Q, R \in S'' \) we write \(Q \equiv R \) if \(Q \) is equal to \(R \) in \(S''/(I'')^2 \).

Lemma 3.20. All monomials of degree 4, not divisible by \(de \) are contained in \(I'' \).

Proof. We have two inclusions of rings \(S' \subset S'' \), one takes \(a, b, c, d \) to \(a, b, c, d \) respectively, the other takes \(a, b, c, d \) to \(b, c, a, e \) respectively. Note that, in both cases, \(I' \subset I'' \cap S' \), so \(J' \subset J'' \cap S' \). Since every monomial not divisible by \(de \) is contained in at least one of those subrings, the claim follows from Proposition 3.16.

Lemma 3.21. For all \(x, y \in \{a, b, c\} \), and for all indices \(i, j \), the monomial \(x_iy_jde \) is contained in \(I'' \).

Proof. If both \(x_ide \) and \(y_je \) are in \(I'' \), then \(x_idey_je \in (I'')^2 \). If only \(x_ide \) is in \(I'' \), then there exist \(z, w \in \{a, b, c\} \) and an index \(k \) such that \(y_je - z_kw_k \in I'' \), so \(x_idey_je = (x_ide)(y_je - z_kw_k) + x_iz_kw_kde \). Similarly, if only \(y_je \) is in \(I'' \), then there exist \(z, w \in \{a, b, c\} \) and an index \(k \) such that \(x_ide - z_kw_k \in I'' \), so \(x_idey_je = (x_ide - z_kw_k)(y_je) + x_iz_kw_kde \). If both \(x_ide \) and \(y_je \) are not in \(I'' \), then there exist \(w, z, p, q \in \{a, b, c\} \) and indices \(k, t \) such that \(x_ide - z_kw_k \in I'' \) and \(y_je - p_tq_t \in I'' \), so \(x_idey_je = (x_ide - p_tq_t)(y_je - z_kw_k) + x_iz_kw_kde \). Hence, the claim follows from Lemma 3.20.

Proposition 3.22. Every degree 4 homogenous polynomial of \(S'' \) is contained in \(I'' \).

Proof. Lemmas 3.20 and 3.21 cover most of the cases. The rest we rewrite as follows.

\[
\begin{align*}
 a_ide^2 &= (ae)(d^2) = 0 \\
 b_ide^2 &= (be - c_{i+2})^2(d^2) + (c_{i+2}d^2) = 0 \\
 c_ide^2 &= (cd)(de) = 0 \\
 a_ide^2 &= (ae)(de) = 0 \\
 b_ide^2 &= (be - a_i^2)(e^2) + (a_ie)^2 = 0 \\
 c_ide^2 &= (cd)(e^2) = 0 \\
 d^3 &= (d^2)(de) = 0 \\
 d^2e^2 &= (de)^2 = 0 \\
 de^3 &= (de)(e^2) = 0
\end{align*}
\]

This finishes the proof.

Lemma 3.23. For all \(x, y \in \{a, b, c\}, z, w \in \{d, e\} \), and for all indices \(i, j \), the monomials \(x_ia_ja_ib_jc_jz, x_ia_jb_jc_jz \) and \(a_ia_jb_jc_jzw \) are in \((I'')^2 \).

Proof. We have two inclusions of rings \(S' \subset S'' \), one takes \(a, b, c, d \) to \(a, b, c, d \) respectively, the other takes \(a, b, c, d \) to \(b, c, a, e \) respectively. Hence, in view of Lemma 3.17 it suffices to consider \(a_ide \). We have \(a_ide = (a_je)(c_{i+2}d) \in (I'')^2 \).

Proposition 3.24. The apolar algebra Apolar\((F'')\) satisfies the small tangent space condition.

Proof. It is easy to check that no linear form annihilates \(F'' \), hence Apolar\((F'')\) has Hilbert function \((1, n, n, 1) \). Proposition 3.22 implies that \(H(S''/(I'')^2) \leq n \), so \(H(S''/\text{Ann}(F'')) \leq n \). Thus, by
Proposition 2.14, $H(S''/\text{Ann}(F''))^2 = n$. Finally, since monomials of the form $x_ia_ib_ic_i, a_1b_1c_1d_i$, and $a_1b_1c_1e$ generate $(S''/(I''))^2$ Lemma 3.23 implies that $H(S''/(I'')) = 0$, so $H(S''/\text{Ann}(F''))^2 = 0$ as well.

4. Computer computations for $n < 18$

Let S be a polynomial ring of n variables. In this section, we give examples of degree 3 polynomials F such that $\text{Apolar}(F)$ satisfies the small tangent space condition for $n = 6$ and $7 < n < 18$ (the case $n \geq 18$ is covered by Theorem 3.1).

We have checked on computer, using Macaulay2 [6], that they are indeed correct for fields of characteristic 0, 2, and 3. We believe that they work in any characteristic, though a proof would probably require a direct verification, so we restrict ourselves to supplying a computer code which one can use to verify these examples in any given characteristic.

Note that in order to verify Conjecture 3 for a field k of characteristic 0 it suffices to check $k = \mathbb{Q}$. Similarly, for a field k of characteristic p it suffices to check $k = \mathbb{F}_p$.

Our examples from Section 3 work also for $n \geq 9$. For $n = 6$ and $n = 8$ we construct different polynomials. For $n = 6$ we have chosen the polynomial

$$F = a_1b_1c_1 + a_2b_2c_2 + a_1a_2^2 + b_1b_2^2 + c_1c_2^2 + a_1^3 + b_1^3 + c_1^3.$$

For $n = 8$ we have chosen

$$F = a_1b_1c_1 + a_2b_2c_2 + a_1a_2^2 + b_1b_2^2 + c_1c_2^2 + a_1de + b_1^2d + c_1^2e.$$

4.1. Macaulay2 code

In this section, we describe the computer code we have used to verify our examples. First one needs to choose a field, hence to type

```
k = QQ;
```

or (replacing p by a prime number of choice)

```
k = ZZ/p;
```

into the Macaulay2 console. Then, one needs to specify the number of variables of the polynomial ring by typing

```
n = ?
```

with ? replaced by the chosen number. If n was chosen to be 6, then the following code generates the appropriate polynomial.

```
S = kk[a_1,a_2,b_1,b_2,c_1,c_2];
F = a_1*b_1*c_1 + a_2*b_2*c_2 + a_1*a_2^2 + b_1*b_2^2 + c_1*c_2^2 + a_1^3 + b_1^3 + c_1^3;
```

If $n = 8$ one needs to enter the following lines.

```
S = kk[a_1,a_2,b_1,b_2,c_1,c_2,d,e];
F = a_1*b_1*c_1 + a_2*b_2*c_2 + a_1*a_2^2 + b_1*b_2^2 + c_1*c_2^2 + a_1*d*e + b_1^2*d + c_1^2*e;
```
If n is divisible by 3 and greater than 8, then the following code needs to be entered.

$$
m = n/3;
S = kk[a_1..a_m,b_1..b_m,c_1..c_m];
F = 0;
for i in 1..m-1 do F = F + a_i*b_i*c_i + a_i*a_(i+1)^2 + b_i*b_(i+1)^2 + c_i*c_(i+1)^2;
F = F + a_m*b_m*c_m + a_m*a_1^2 + b_m*b_1^2 + c_m*c_1^2;
$$

If n gives remainder 1 upon division by 3 and is greater than 8, then one uses the following code.

$$
m = (n-1)/3;
S = kk[a_1..a_m,b_1..b_m,c_1..c_m,d];
F = 0;
for i in 1..m-1 do F = F + a_i*b_i*c_i + a_i*a_(i+1)^2 + b_i*b_(i+1)^2 + c_i*c_(i+1)^2 + a_i*b_(i+1)*d;
F = F + a_m*b_m*c_m + a_m*a_1^2 + b_m*b_1^2 + c_m*c_1^2 + a_m*b_1*d;
$$

Lastly, if n gives remainder 2 upon division by 3 and is greater than 8, then the following code needs to be used.

$$
m = (n-2)/3;
S = kk[a_1..a_m,b_1..b_m,c_1..c_m,d,e];
F = 0;
for i in 1..m-1 do F = F + a_i*b_i*c_i + a_i*a_(i+1)^2 + b_i*b_(i+1)^2 + c_i*c_(i+1)^2 + a_i*b_(i+1)*d + b_i*c_(i+1)*e;
F = F + a_m*b_m*c_m + a_m*a_1^2 + b_m*b_1^2 + c_m*c_1^2 + a_m*b_1*d + b_m*c_1*e;
$$

To verify whether the apolar algebra induced by the generated polynomial satisfies the small tangent space condition one can run the following lines.

$$
I = ideal fromDual(matrix{{F}}, DividedPowers => true);
if (hilbertFunction(0,S/I) == 1 and hilbertFunction(1,S/I) == n and hilbertFunction(4,S/I^2) == n and hilbertFunction(5,S/I^2) == 0)
then print True else print False;
$$

If the answer given by Macaulay2 reads "True", then Apolar(F) satisfies the small tangent space condition. If on the other hand the answer reads "False", then Apolar(F) does not satisfy the small tangent space condition.

Acknowledgments

The author would like to thank Joachim Jelisiejew for introducing him to the subject as well as for many helpful suggestions. Without his support this article would not exist.

Funding

The author was financed by the Ministry of Science and Higher Education of the Republic of Poland project “Szkola Orłów”, project number 500-D110-06-0465160.
References

[1] Beauville, A. (1983). Variétés Kähleriennes dont la première classe de Chern est nulle. *J. Differential Geom.* 18(4):755–782 (1984).

[2] Bertone, C., Cioffi, F., Roggero, M. (2022). Smoothable gorenstein points via marked schemes and double-generic initial ideals. *Exp. Math.* 31(1):120–137.

[3] Casnati, G., Notari, R. (2011). On the irreducibility and the singularities of the Gorenstein locus of the punctual Hilbert scheme of degree 10. *J. Pure Appl. Algebra* 215(6):1243–1254.

[4] Eisenbud, D. (1995). *Commutative Algebra*, volume 150 of Graduate Texts in Mathematics. New York: Springer-Verlag. 1995. With a view toward algebraic geometry.

[5] Fogarty, J. (1968). Algebraic families on an algebraic surface. *Amer. J. Math.* 90:511–521.

[6] Grayson, D. R., Stillman, M. E. Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/.

[7] Grothendieck, A. (1995). Techniques de construction et théorèmes d’existence en géométrie algébrique. IV. Les schémas de Hilbert. In: *Séminaire Bourbaki*, Vol. 6. Paris: Société mathématique de France, pp. Exp. No. 221, 249–276.

[8] Haiman, M. (2003). Combinatorics, symmetric functions, and Hilbert schemes. In: *Current Developments in Mathematics*, 2002. Somerville, MA: International Press, pp. 39–111.

[9] Haiman, M., Sturmfels, B. (2004). Multigraded Hilbert schemes. *J. Algebraic Geom.* 13(4):725–769.

[10] Iarrobino, A., Kanev, V. (1999). *Power Sums, Gorenstein Algebras, and Determinantal Loci*, volume 1721 of Lecture Notes in Mathematics. Berlin: Springer-Verlag. Appendix C by Iarrobino and Steven L. Kleiman.

[11] Iarrobino, A. A. (1994). Associated graded algebra of a Gorenstein Artin algebra. *Mem. Amer. Math. Soc.* 107(514):viii+115.

[12] Jelisiejew, J. (2017). Classifying local Artinian Gorenstein algebras. *Collect. Math.* 68(1):101–127.

[13] Jelisiejew, J. (2018). VSPs of cubic fourfolds and the Gorenstein locus of the Hilbert scheme of 14 points on \mathbb{A}^6. *Linear Algebra Appl.* 557:265–286.

[14] Jelisiejew, J. (2019). Elementary components of Hilbert schemes of points. *J. Lond. Math. Soc.* (2) 100(1):249–272.

[15] Jelisiejew, J., Landsberg, J., Pal, A. (2022). Concise tensors of minimal border rank. *arXiv preprint arXiv:2205.05713*.

[16] Landsberg, J. M. (2017). *Geometry and Complexity Theory*, volume 169 of Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge University Press.

[17] Strømme, S. A. (1996). Elementary introduction to representable functors and Hilbert schemes. In: *Parameter Spaces (Warsaw, 1994)*, volume 36 of Banach Center Publications. Warsaw: Institute of Mathematics Polish Academy of Sciences, pp. 179–198.