Risk Factors of Severe Disease and Methods for Clinical Outcome Prediction in Patients with COVID-19 (Review)

Sergey V. Sokologorskiy, Aleksey M. Ovechkin, Ivan V. Khapov, Mikhail E. Politov, Ekaterina L. Bulanova

I. M. Sechenov First Moscow State Medical University (Sechenov University), 8 Trubetskaya Str., Build. 8, Moscow 119991, Russia

Summary

Large population studies using statistical analysis and mathematical computer modeling could be an effective tool in studying COVID-19. The use of prognostic scales developed using correlation of changes in clinical and laboratory parameters and morphological data, can help in early prediction of disease progression and identification of patients with high risk of unfavorable outcome.

Aim of the review. To assess the risk factors for severe course and unfavorable outcome of COVID-19 and to evaluate the existing tools for predicting the course and outcome of the novel coronavirus infection.

PubMed, Medline, and Google Scholar were searched for the relevant sources.

This review contains information on existing tools for assessing the prognosis and outcome of the disease, along with the brief data on the etiology, pathogenesis of the novel coronavirus infection and the known epidemiological, clinical and laboratory factors affecting its course.
Conclusion. It is essential to develop predictive models tailored to specific settings and capable of continuous monitoring of the situation and making the necessary adjustments. The discovery of new and more sensitive early markers and developing marker-based predictive assessment tools could significantly impact improving the outcomes of COVID-19.

Keywords: COVID-19; risk factors; prognostic tools

Conflict of interest. The authors declare no conflict of interest.

Введение

Пандемия COVID-19 является глобальной проблемой, затрагивающей многие сферы жизни общества. Она уже нанесла колоссальный социальный и экономический ущерб, и по данным ВОЗ прогнозируются несколько волн роста заболеваемости по всему миру [1]. Изучение клинических и эпидемиологических особенностей заболевания, его патогенеза позволяет более качественно прогнозировать исходы инфекции и разработать эффективные меры по ее профилактике и лечению.

Этиологическим агентом инфекции является РНК-вирус SARS-CoV-2 из рода Betacoronavirus. SARS-CoV-2 имеет множество клеток-мишеней в организме человека и существует несколько клинических фенотипов болезни. В подавляющем большинстве случаев заболевание протекает в виде острой респираторной инфекции и/или пневмонии легкого или среднетяжелого течения, однако у части пациентов вирус приводит к развитию ОРДС, ДВС-синдрома, полиорганной недостаточности. Причина гетерогенности течения заболевания кроется в полиморфизме SARS-CoV-2, индивидуальных особенностях ответа организма пациента на инфекцию, его исходного состояния и множестве других факторов, влияющих на развитие патологического процесса.

Применение прогностических шкал, разработанных на основании сопоставления динамики клинических и лабораторных показателей с морфологическими данными, может помочь в своевременной оценке возможных вариантов течения заболевания и выделении больных группы высокого риска неблагоприятного исхода.

Цель обзора — оценка факторов риска тяжелого течения и неблагоприятного исхода COVID-19, существующих инструментов прогнозирования течения и исхода новой коронавирусной инфекции.

Поиск источников осуществляли в базах данных PubMed, Medline, Google Scholar. Ключевыми словами поиска являлись: «COVID-19», «SARS-CoV-2», «Betacoronavirus» «COVID-19 risk factors», «COVID-19 comorbidities», «COVID-19 prognosis», «COVID-19 outcome prognosis», «COVID-19 ICU», «mortality», «death». Из более 300 первично отобранных источников литературы в обзор включили 80, из них 78 источников, опубликованных в течение последних двух лет (2020–2021 гг.)

Мишени и проявления вирусного повреждения

Ключевыми факторами, влияющими на тяжесть COVID-19, являются вирусная нагрузка и особенности иммунного ответа пациента [2]. В основе патогенеза — системный воспалительный ответ организма, приводящий к органным повреждениям. В литературе описаны миокардит [3–5], поражения легких [6], печени [7–9], почек [10, 11], нервной системы [12, 13], кожи [14–16] и других органов, возникающие в результате вирусного и/или аутоиммунного повреждения. Тяжелые формы коронавирусной инфекции ассоциированы с развитием ДВС-синдрома на фоне генерализованного эндотелиита [2] и полиорганной недостаточности.

Наиболее часто поражаемым органом являются легкие, что проявляется как пневмония, в некоторых случаях — с развитием ОРДС. Как и в случаях ОРДС другой этиологии [17, 18], при SARS-CoV-2-ОРДС возможно выделить гипо- и гиперинфламмарный подтипы ОРДС, ассоциированных с SARS-CoV-2 инфекцией [19]. В одном проспективном обсервационном исследовании [20] гиперинфламматарный подтип характеризовался более высокими значениями ферритина, лактатдегидрогеназы (ЛДГ) и летальности, хотя значения не достигли статистической значимости в связи с небольшим объемом выборки (всего 39 пациентов).

При патологоанатомическом исследовании легочной ткани пациентов, погибших от COVID-19, обнаруживают признаки диффузного альвеолярного пролиферативного повреждения, повреждения микроциркуляторного русла, тромбозы ветвей легочной артерии [21]. При высоких признаках показателей цитокинов, во время патологического исследования легких можно обнаружить высокие уровни пироплазмы и апоптоза [22].
Факторы риска

В данном обзоре представлены факторы риска, изучавшиеся в популяциях пациентов с COVID-19, путем обнаружения РНК или белков вируса в тканях пациентов при жизни или во время патоморфологического исследования. Учитывая возможную неоднородность популяций пациентов и различные доминирующие факторы в каждой из них, существуют работы, изучавшие как общую популяцию пациентов [23], так и отдельно популяцию пациентов, проходивших лечение в отделении реанимации [24], пациентов с орхидоксигенацией [25], астмой [26], сахарным диабетом [27], ожирением [28], пожилого [29] и детского возраста [30]. В большинстве исследований группы состояли из пациентов с легальным исходом. Также оценивались факторы, влияющие на госпитализацию в стационар [31], в отделение ОРИТ [32], необходимость искусственной вентиляции легких [33].

Основными факторами, увеличивающими риск летального исхода в общей популяции, являлись различные коморбидности, такие как сахарный диабет, ожирение, артериальная гипертензия, хронические заболевания сердца, легких, печени, почек, деменция. Данные факторы были выделены на основании нескольких мета-анализов и ретроспективных исследований, самая крупная выборка насчитывала 20133 пациента [34–37]. В некоторых ретроспективных исследованиях было показано, что интегральный показатель для оценки сопутствующих заболеваний и их тяжести может служить индекс коморбидности Чарльсона, который хорошо коррелировал с летальностью в общей популяции пациентов с COVID-19 [38–40]. Мужской пол был ассоциирован с повышенным риском смерти в большинстве исследований [41]. Хотя пожилой возраст также относится к факторам риска осложненной инфекции, что было показано во многих исследованиях [42–44], в работе [45] авторы на основе мета-анализа приходят к выводу о том, что возраст является конфундером и не увеличивает риск летального исхода. С возрастом происходит естественное увеличение коморбидностей, которые и вносят вклад в развитие тяжелых форм заболевания.

Из оцениваемых при поступлении параметров у пациентов с подтвержденной новой короновирусной инфекцией значимо влияли на летальность (на основе нескольких ретроспективных когортных исследований и мета-анализов, насчитывающих от 63 до 16100 пациентов): объем поражения легких по данным КТ [46, 47], высокое содержание Д-димера [48], лейкоцитоз, лейкопения [49], низкое содержание тромбоцитов [50], высокое содержание С-реактивного белка (СРБ) [51], ЛДГ [52], ферритин [53], низкое содержание CD4 и CD8 клеток [49].

Лечение и наблюдение в ОРИТ необходимо в 6–32,3% случаев [44, 41, 54, 55]. Пациенты, проходившие лечение в отделении реанимации, являются особой популяцией, которую следует рассматривать отдельно. В ОРИТ установлены регулярный мониторинг за состоянием пациентов, а также зачастую спектр рассматриваемых параметров намного шире.

В общей популяции, различные фоновые хронические заболевания у пациентов ОРИТ значительно влияли на летальность. Мужской пол и пожилой возраст также были ассоциированы с повышенной летальностью при COVID-19 [24].

Поражение легких с развитием ОРДС-подобного синдрома являлось доминирующей причиной перевода в отделение реанимации для обеспечения респираторной поддержки пациентов. Крайне низкий индекс оксигенации (PаO2/FiO2) при поступлении в ОРИТ, в основном менее 100, а также высокий альвеолярно-артериальный градиент являлись статистически значимыми факторами, увеличивающими летальность [24, 54, 55]. Механическая вентиляция легких сама по себе не являлась фактором, ассоциированным с летальностью [56]. Существуют работы, описывающие фенотипы поражения легких у пациентов с COVID-19, которые находились на искусственной вентиляции легких [57, 58]. Наличие ателектазов, низкий легочный комплаенс и низкую рекрутабельность альвеол относят к более поздним стадиям легочного повреждения, и данный фенотип считается более тяжелым. Подъем ПДКВ, необходимого для увеличения площади газообмена, приводит к повышенному риску баротравмы [59, 60]. В работе [61] высокое ПДКВ было ассоциировано с повышенной летальностью.

В плазме пациентов ОРИТ, у которых развилась органная дисфункция, было обнаружено повышенное содержание IL-интерлейкина-6 (ИЛ) [61], ИЛ-1, ИЛ-8, фактора некроза опухоли-альфа, интерферона-гамма, сниженное содержание альфа1-антитрипсина [62]. Высокое содержание ИЛ-6 и сниженное содержание альфа1-антитрипсина увеличивали риск летального исхода [62].

Гипотеза о развитии SARS-CoV-2-ассоциированного эндотелиита подтверждается значительным увеличением маркеров повреждения эндотелия у пациентов с тяжелыми формами заболевания. В работе [63] было продемонстрировано статистически значимое различие в концентрациях фактора Виллебранда, в-селек-
та и тромбомодулина в плазме у пациентов ОРИТ по сравнению с пациентами нереанимационного профиля. Высокое содержание вышеуказанных маркеров было ассоциировано с повышенной летальностью.

Прогностические инструменты

Необходимость в быстрой и точной оценке состояния пациента и прогнозировании исхода заболевания побудила исследователей к созданию прогностических инструментов. В ранний период эпидемии состояние пациентов оценивалось с помощью уже существующих шкал qSOFa, APACHE II, PSI, SMART-COP, CURB-65, MulBSTA, NEWS [64]. Исследование [65] показало, что наиболее точными с точки зрения прогноза смерти у пациентов с пневмонией, вызванной SARS-CoV-2, оказались шкалы PSI и CURB-65. В работе [66] авторы продемонстрировали преимущество шкалы NEWS над шкалой SIRS для оценки риска госпитализации в ОРИТ и 28-дневной летальности. В исследовании [68] авторы рекомендуют использовать шкалы NEWS и NEWS2 для оценки риска клинического ухудшения у пациентов с COVID-19.

В дальнейшем накопление данных привело к созданию специфических шкал. В наиболее крупном исследовании [69], которое включило 35463 пациента общей популяции, было выделено 8 показателей (возраст, пол, число коморбидностей, ЧДД, SpO2, уровень сознания, мочевина, процент лимфоцитов), влияющих на летальность (AUC 79, CI: 0,78–0,79).

Другое исследование [70] включало 1590 пациентов общей популяции. Критерием выбора являлось тяжелое течение заболевания, которое расценивалось как госпитализация в ОРИТ, необходимость ИВЛ и летальный исход. Созданная шкала включала 10 показателей (площадь поражения легких по КТ, возраст, амнезия, наличие ядерных и экстракорпоральных антигенных показателей, процент поражения легких по КТ; процент лимфоцитов; содержание мочевины, креатинкиназы, общего белка, СРБ, Д-димера). Для прогнозирования летального исхода значение имели возраст, анионный промежуток, СРБ, ЛДГ, прокальцитонин, процент лимфоцитов, содержание общего белка, СРБ, Д-димера.

Таким образом, наблюдается тенденция использование прогностических шкал для оценки риска летального исхода у пациентов с COVID-19. Прогнозирование исхода заболевания у этих пациентов позволяет разработать индивидуальные планы терапии и вмешательства, что может повысить эффективность лечения и прогнозировать исход заболевания.
лписи данные 931 пациента. Из многочисленных клинических и лабораторных показателей с помощью статистического анализа были выбраны 4 наиболее значимых: возраст, среднее артериальное давление, наличие почечного повреждения (стадии 2 и выше по KDIGO AKI) и тяжелая гипоксия (SpO2 ниже 90%, респираторная поддержка более 4 л кислорода в минуту, неинвазивная и инвазивная ИВЛ). AUC при оценке 7-дневной летальности составила 0,86, 14-дневной — 0,83. При валидации с использованием данных 265 пациентов AUC при оценке 7-дневной и 14-дневной летальности составила 0,85 и 0,83, соответственно.

В исследовании [77] авторами была предложена номограмма, определяющая риск крайне тяжелого течения на основании 7 показателей: возраста, уровня ЛДГ, СРБ, прямого билирубина, альбумина, мочевины и ширины распределения объема эритроцитов. В исследовании приняло участие 1172 пациента. Шкала включала всего три показателя: ЧДД, SpO2 и поток вдыхаемого кислорода, AUC 0,81, CI: 0,73–0,89.

В одной из работ [79] авторы, используя показатели 80 пациентов, разработали прогностическую шкалу для оценки риска инвазивной вентиляции и летального исхода. Данная шкала включает: возраст пациента, количество лейкоцитов, количество нейтрофилов, содержание миоглобина. Авторы сообщают о 70,8% чувствительности и 89,3% специфичности прогностической номограммы, определяющей риск крайне тяжелого течения на основании 7 показателей: возраста, уровня ЛДГ, СРБ, прямого билирубина, альбумина, мочевины и ширины распределения объема эритроцитов. В исследовании приняло участие 372 пациента, чувствительность и специфичность — 87,6%.

А. Д. Haimovich и др. [81] разработали прогностическую шкалу для оценки вероятности дыхательной недостаточности в ближайшие 24 часа. В исследовании участвовало 1172 пациента. Шкала включала все три показателя: ЧДД, SpO2 и поток вдыхаемого кислорода, AUC 0,81, CI: 0,73–0,89.

В одной из работ [79] авторы, используя показатели 80 пациентов, разработали прогностическую шкалу для оценки риска инвазивной вентиляции и летального исхода. Данная шкала включает: возраст пациента, количество лейкоцитов, содержание миоглобина. Авторы сообщают о 70,8% чувствительности и 89,3% специфичности прогностической шкалы.

Прогностические инструменты являются хорошим помощником лечащему врачу в решении о тактике ведения пациента. На данный момент в мире на основании статистического анализа и машинного обучения разработано довольно большое количество прогностических шкал, номограмм, компьютерных моделей, позволяющих спрогнозировать исход с той или иной степенью погрешности. Однако существует вопрос о том, являются ли данные модели универсальными. В работе [80] авторы приводят точку зрения, что прогностические инструменты должны применяться в определенном месте, в определенное время и в определенной популяции пациентов, аргументируя это постоянным различием в популяциях, системах здравоохранения, демографических, фенотипических, генетических особенностях популяций пациентов и др. Из этого можно сделать вывод о необходимости разработки прогностических моделей, созданных под конкретные условия с возможностью постоянного мониторинга ситуации и внесения корректировок при необходимости.

К сожалению, многие факторы, коррелирующие с плохим исходом с высоким уровнем статистической значимости, являются одновременно маркерами уже наступившего организменного повреждения и органной недостаточности.

Заключение

Необходима разработка прогностических моделей, созданных под конкретные условия с возможностью постоянного мониторинга ситуации и внесения корректировок при необходимости. Обнаружение новых более чувствительных на ранних этапах заболевания маркеров и разработка на их основе инструментов оценки прогноза могло бы значительно улучшить исходы COVID-19.
73. Shang Y., Liu T., Wei Y., Li J., Shao L., Liu M., Zhang Y., Zhao Z., Xu H., Peng Z., Zhou F., Wang X. Scoring systems for predicting mortality for severe patients with COVID-19. EClinicalMedicine. 2020; 24: 100426. DOI: 10.1016/j.eclinm.2020.100426. PMID: 32766541.

74. Vaid A., Somani S., Russak A.J., De Freitas J.K., Chaudhri EF, Paranjpe I., Johnson K.W., Lee S.J., Mistro R., Richter E., Zhao S., Beckmann N.D., Naik N., Kia A., Timsina P., Lala A., Paranjpe M., Golden E., Danieleitto M., Singh M., Meyer D., O’Reilly PE, Huckins L., Kovatch P., Finkelstein J., Freeman R.M., Argulian E., Kasariskis A., Percha B., Aberg J.A., Bagiella E., Horovitz C.R., Murphy B., Nessler E.J., Schaud E.E., Cho J.H., Gordon-Cardo C., Foster V., Charney D.S., Beich D.L., Bottinger E.R., Levin M.A., Narsila J., Fayad Z.A., Just A.C., Charney A.W., Nadkarni G.N., Glicksberg B.S. Machine Learning to Predict Mortality and Critical Events in a Cohort of Patients With COVID-19 in New York City: Model Development and Validation. J Med Internet Res. 2020; 22 (11): e24018. DOI: 10.2196/24018. PMID: 33027032.

75. Wu G., Yang P., Xie Y., Woodruff H.C., Rao X., Guiot J., Frix A.N., Louis R., Moutschen M., Li J., Li J., Yan C., Du D., Zhao S., Ding Y., Liu B., Sun W., Albarello F., D’Abramo A., Schinchinà V., Nicasiri E., Occhipinti M., Barisone G., Barisone E., Hailliez L., Lecina F., Wang X., Wu J., Lambin P. Development of a clinical decision support system for severity risk prediction and triage of COVID-19 patients at hospital admission: an international multicentre study. Eur Respir J. 2020; 56 (2): 2001104. DOI: 10.1183/13993003.01104-2020. PMID: 32616557.

76. Hajifathalian K., Sharaiha R.Z., Kumar S., Krisko T., Skaf D., Ang B., Redd W.D., Zhou J.C., Hathorn K.E., McCarrthy T.R., Bazarakashii A.N., Njie C., Weng D., Shen L., Sholle E., Cohen D.E., Brown R.S. Jr, Chan WW. Fortune B.E. Development and external validation of a prediction risk model for short-term mortality among hospitalized U.S. COVID-19 patients: A proposal for the COVID-AID risk tool. PLoS One. 2020; 15 (9): e0239536. DOI: 10.1371/journal.pone.0239536. PMID: 32997700.

77. Gong J., Ou J., Qiu X., Jie Y., Chen Y., Yuan L., Gao J., Tan M., Xu W., Zheng E., Shi Y., Hu B. A Tool for Early Prediction of Severe Coronavirus Disease 2019 (COVID-19): A Multicenter Study Using the Risk Nomogram in Wuhan and Guangdong, China. Clin Infect Dis. 2020; 71 (15): 833-840. DOI: 10.1093/cid/ciaa443. PMID: 32996824.

78. Holmowich A.D., Ravindra N.G., Stoychev S., Young H.P., Wilson EP, van Dijk D., Schulz WL, Taylor RA. Development and Validation of the Quick COVID-19 Severity Index: A Prognostic Tool for Early Clinical Decompensation. Ann Emerg Med. 2020; 76 (4): 442-453. DOI: 10.1016/j.annemergmed.2020.07.022. Epub 2020 Jul 21. PMID: 33012378.

79. Zhang C., Qin L., Li K., Wang Q., Zhao Y., Xu B., Liang L., Dai Y., Feng Y., Sun J., Li X., Hu Z., Xiang H., Dong T., Jin B., Zhang Y. A Novel Scoring System for Prediction of Disease Severity in COVID-19. Front Cell Infect Microbiol. 2020; 10: 318. DOI: 10.3389/fcimb.2020.00318. PMID: 32582575.

80. Futoma J., Simons M., Panch T., Doshi-Velez F., Celi L.A. The myth of generalisability in clinical research and machine learning in health care. Lancet Digit Health. 2020; 2 (9): e489-e492. DOI: 10.1016/S2589-7500 (20)30186-2. Epub 2020 Aug 24. PMID: 32864600.

Поступила 24.05.21, принято в печать 20.01.2022