EXTREMAL DOMAINS FOR THE FIRST EIGENVALUE IN A GENERAL COMPACT RIEMANNIAN MANIFOLD

ERWANN DELAY
Laboratoire de Mathématiques d’Avignon
Faculté des Sciences
33 rue Louis Pasteur
F-84000 Avignon, France

PIERALBERTO SICBALDI
Institut de Mathématiques de Marseille
39 rue Joliot-Curie
13453 Marseille Cedex 13, France

Abstract. We prove the existence of extremal domains with small prescribed volume for the first eigenvalue of the Laplace-Beltrami operator in any compact Riemannian manifold. This result generalizes a result of F. Pacard and the second author where the existence of a nondegenerate critical point of the scalar curvature of the Riemannian manifold was required.

CONTENTS
1. Introduction and statement of the result 5800
2. Notations and preliminaries 5804
3. Some expansions in normal geodesic coordinates 5806
4. Known results 5808
5. Construction of small extremal domains 5810
6. Expansion of the first eigenvalue on perturbations of small geodesic balls 5812
7. Localisation of the obtained extremal domains 5818
8. Appendix I: On the first eigenfunction in the unit Euclidean ball 5821
9. Appendix II: The second eigenvalue of the operator H 5823
10. Appendix III: Differentiating with respect to the domain 5824
REFERENCES 5824

2010 Mathematics Subject Classification. Primary: 49Q10, 53B20, 53C21; Secondary: 53A10, 35N25, 58C40.

Key words and phrases. Extremal domains, Laplace-Beltrami operator, first eigenvalue, scalar curvature, geodesic balls, constant scalar curvature manifolds, Einstein manifolds, homogeneous spaces, perturbative methods.

Both authors are grateful to Philippe Delanoë for his pleasant “Séminaire commun d’analyse géométrique” that took place at CIRM (Marseille) in September 2012, where they met and started the collaboration. This work was done from September 2012 to January 2013, when the first author was member of the Laboratoire d’Analyse Topologie et Probabilité of the Aix-Marseille University as “chercheur CNRS en délégation”, and he is grateful to the member of such research laboratory for their warm hospitality. The first author is partially supported by the ANR-10-BLAN 0105 ACG and the ANR SIMI-1-003-01. The second author is partially supported by the GDRE Geometric Analysis (France-Spain) and the University of Marseille.
1. Introduction and statement of the result. Let \((M, g)\) be an \(n\)-dimensional Riemannian manifold, \(\Omega\) a connected and open domain in \(M\) with smooth boundary, and \(\lambda_\Omega > 0\) the first eigenvalue of the Laplace-Beltrami operator \(-\Delta_g\) in \(\Omega\) with zero Dirichlet boundary condition. The domain \(\Omega\) is said to be extremal (for the first eigenvalue of the Laplace-Beltrami operator with zero Dirichlet boundary condition) if it is a critical point for the functional \(\Omega \mapsto \lambda_\Omega\) in the class of domains with the same volume.

An extremal domain is characterized by the fact that the first eigenfunction of the Laplace-Beltrami operator with zero Dirichlet boundary condition has constant Neumann data at the boundary. This result has been proved in the Euclidean space by P.R. Garabedian and M. Schiffer in 1953 [5], and in a general Riemannian manifold by A. El Soufi and S. Ilias in 2007 [3]. Extremal domains are then domains where the elliptic overdetermined problem

\[
\begin{align*}
\Delta_g u + \lambda u &= 0 \quad \text{in} \quad \Omega \\
u > 0 &\quad \text{in} \quad \Omega \\
u &= 0 &\quad \text{on} \quad \partial \Omega \\
g(\nabla u, \nu) &= \text{constant} &\quad \text{on} \quad \partial \Omega
\end{align*}
\]

(1)

can be solved for some positive constant \(\lambda\), where \(\nu\) denotes the outward unit normal vector about \(\partial \Omega\) for the metric \(g\).

In \(\mathbb{R}^n\) the only extremal domains are balls. This is a consequence of a very well known result by J. Serrin: if there exists a solution \(u\) to the overdetermined elliptic problem

\[
\begin{align*}
\Delta u + f(u) &= 0 \quad \text{in} \quad \Omega \\
u > 0 &\quad \text{in} \quad \Omega \\
u &= 0 &\quad \text{on} \quad \partial \Omega \\
\langle \nabla u, \nu \rangle &= \text{constant} &\quad \text{on} \quad \partial \Omega
\end{align*}
\]

(2)

for a given bounded domain \(\Omega \subset \mathbb{R}^n\) and a given Lipschitz function \(f\), where \(\nu\) denotes the outward unit normal vector about \(\partial \Omega\) and \(\langle \cdot, \cdot \rangle\) the scalar product in \(\mathbb{R}^n\), then \(\Omega\) must be a ball, [22]. In the Euclidean space, round balls are in fact not only extremal domains, but also minimizers for the first eigenvalue of the Laplacian with 0 Dirichlet boundary condition in the class of domains with the same volume. This follows from the Faber–Krähn inequality,

\[
\lambda_\Omega \geq \lambda_{B^n(\Omega)}
\]

(3)

where \(B^n(\Omega)\) is a ball of \(\mathbb{R}^n\) with the same volume as \(\Omega\), because equality holds in (3) if and only if \(\Omega = B^n(\Omega)\), see [4] and [10]. Similar facts hold for the hyperbolic space \(\mathbb{H}^n\) and the round sphere \(S^n\).

Nevertheless, very few results are known about extremal domains in a Riemannian manifold. The result of J. Serrin, based on the moving plane argument introduced by A. D. Alexandrov in [1], uses strongly the symmetry of \(\mathbb{R}^n\), \(\mathbb{H}^n\), \(S^n\), and naturally it fails in other geometries. The classification of extremal domains is completely open in a general Riemannian manifold.

For small volumes, a method to build new examples of extremal domains in some Riemannian manifolds has been developed in [15] by F. Pacard and P. Sicbaldi. They proved that when the Riemannian manifold has a nondegenerate critical point of the scalar curvature, then it is possible to build extremal domains of any given small enough volume, and such domains are close to geodesic balls centered at the nondegenerate critical point of the scalar curvature. The method fails if the
Riemannian manifold does not have a nondegenerate critical point of the scalar curvature.

In this paper we improve the result of F. Pacard and P. Sicbaldi by eliminating the hypothesis of the existence of a nondegenerate critical point for the scalar curvature. In particular, we are able to build extremal domains of small volume in every compact Riemannian manifold.

For $\epsilon > 0$, we denote by $B^g_\epsilon(p) \subset M$ the geodesic ball of center $p \in M$ and radius ϵ. We denote by $B_\epsilon \subset \mathbb{R}^n$ the Euclidean ball of radius ϵ centered at the origin. The main result of the paper is the following:

Theorem 1.1. Let M be a compact Riemannian manifold of dimension $n \geq 2$. There exist $\epsilon_0 > 0$ and a smooth function $\Phi : M \times (0, \epsilon_0) \rightarrow \mathbb{R}$ such that:

1. For all $\epsilon \in (0, \epsilon_0)$, if p is a critical point of the function $\Phi(\cdot, \epsilon)$ then there exists an extremal domain $\Omega_\epsilon \subset M$, containing p, whose volume is equal to the Euclidean volume of B_ϵ. Moreover, there exists $c > 0$ such that, for all $\epsilon \in (0, \epsilon_0)$, the boundary of Ω_ϵ is a normal graph over $\partial B^g_\epsilon(p)$ for some function $v(p, \epsilon)$ with

$$\|v(p, \epsilon)\|_{C^2(\partial B^g_\epsilon(p))} \leq c \epsilon^3.$$

2. There exists a function r defined on M that can be written as

$$r = K_1 \|\text{Riem}\|^2 + K_2 \|\text{Ric}\|^2 + K_3 R^2 + K_4 \Delta_g R$$

where Riem, Ric, R denote respectively the Riemann curvature tensor, the Ricci curvature tensor and the scalar curvature of (M, g), and K_1, K_2, K_3 and K_4 are constants depending only on n, such that for all $k \geq 0$

$$\|\Phi(p, \epsilon) - R_p - \epsilon^2 r_p\|_{C^k(M)} \leq c_k \epsilon^3$$

for some constant $c_k > 0$ which does not depend on $\epsilon \in (0, \epsilon_0)$ (the subscript p means that we evaluate the function at p).

3. The following expansion holds:

$$\lambda_{\Omega_\epsilon} = \lambda_1 \epsilon^{-2} - \frac{n(n+2) + 2\lambda_1}{6n(n+2)} \Phi(p, \epsilon)$$

$$= \lambda_1 \epsilon^{-2} - \frac{n(n+2) + 2\lambda_1}{6n(n+2)} (R_p + \epsilon^2 r_p) + O(\epsilon^3)$$

where λ_1 is the first Dirichlet eigenvalue of the unit Euclidean ball.

The explicit computation of the constants K_i is given in Section 7 (formulas (32)). We remark that if M is compact, then there exists always a critical point of $\Phi(\cdot, \epsilon)$, and then we have small extremal domains obtained as perturbation of small geodesic balls in every compact Riemannian manifold without boundary.

Remark 1. If M is not compact, the result holds on any relatively compact open set U for some $\epsilon_0 = \epsilon_0(U)$ and the function Φ is well defined on

$$\bigcup_{U \subset M} (U \times (0, \epsilon_0(U))).$$
Remark 2. It is clear that Theorem 1.1 generalizes the result in [15] because the construction of extremal domains does not require the existence of a nondegenerate critical point of the scalar curvature. In fact, if the scalar curvature function R has a nondegenerate critical point p_0, then, by the implicit function theorem, for all ϵ small enough there exists a critical point $p = p(\epsilon)$ of $\Phi(\cdot, \epsilon)$ such that
\[
\text{dist}(p, p_0) \leq c \epsilon^2.
\]
and then the geodesic ball $B_\epsilon(p)$ can be perturbed in order to obtain an extremal domain. We recover in this case the result in [15], but with a better estimation for the distance of p to p_0 (in [15] the distance between p and p_0 is bounded by $c \epsilon$). In particular, we have the p-independent expansion
\[
\lambda_{\Omega_\epsilon} = \lambda_1 \epsilon^{-2} - \frac{n(n + 2)}{6n(n + 2)} R_{p_0} + O(\epsilon^2).
\]

Remark 3. The result in [15] can not be applied to some natural metrics as an Einstein metric, i.e when $\text{Ric} = k g$ for some constant k, or simply a constant scalar curvature one. In the case where R is a constant function, the implicit function theorem gives the existence of a critical point of the function Φ close to any nondegenerate critical point of the function \mathbf{r} and then the existence of extremal domains near such last points. In the particular case where the metric g is Einstein we obtain extremal domains close to any nondegenerate critical point of the function (we will see that $K_1 \neq 0$)
\[
p \to \|\text{Riem}_p\|^2.
\]

Remark 4. If M is an homogeneous manifold, then r_p does not depend on p. The expansion of $\lambda_{\Omega_\epsilon}$ given in Theorem 1.1 is then space-independent. This is natural since for homogeneous metrics, if small extremal domains exist near a point, they can be transported near any other point by homogeneity.

Remark 5. The reader will notice that in Proposition 6.5 we compute the asymptotic of the first eigenvalue of any small volume-preserving perturbation of a geodesic ball whose volume is equal the volume of a Euclidean ball of radius ϵ (the geodesic ball of radius $\epsilon(1 + v_0)$, where the constant v_0 is defined in Proposition 4.1 and depends on the center of the ball). In particular we can compare the first eigenvalue of the extremal domain obtained in Theorem 1.1 with the first eigenvalue of a geodesic ball $B_{\epsilon(1+v_0)}$ with the same volume (see also the proof of Proposition 7.2), obtaining:
\[
\lambda_{\Omega_\epsilon} = \lambda_{B_{\epsilon(1+v_0)}}(p) - \frac{\lambda_1}{36(n+2)(\lambda_1-n)} |\tilde{\text{Ric}}_p|^2 \epsilon^2 + O(\epsilon^3),
\]
where $\tilde{\text{Ric}}$ is the traceless Ricci curvature (see Section 6). It is interesting to remark that in general an extremal domains has its first eigenvalue smallest than the first eigenvalue of a geodesic ball of the same volume. For instance, this is clearly the case, by formula (4), in an homogeneous space which is not an Einstein manifold. For example, in dimension 3, there exist extremal domains that are nontrivial perturbations of geodesic balls in $S^2 \times \mathbb{R}$, $\mathbb{H}^2 \times \mathbb{R}$, Nil_3, $\text{PSL}_2(\mathbb{R})$, Sol_3.

Let us explain briefly the construction of the function $\Phi(p, \epsilon)$. Firstly, we will show that for all point $p \in M$, and all ϵ small enough, there exists a function $v(p, \epsilon)$ defined on $\partial B_\epsilon^p(p)$ such that the domain $\Omega_{p,\epsilon}$ bounded by the normal graph of $v(p, \epsilon)$ over $\partial B_\epsilon^p(p)$ has the same volume of the Euclidean ball B_ϵ and the property that
the Neuman data of the first eigenfunction of the Laplace-Beltrami operator over \(\Omega_{p,\epsilon} \), seen up to a natural diffeomorphism as a function on the unit sphere, is the restriction of a linear function. Such domain \(\Omega_{p,\epsilon} \) is then in some sense “close” to be extremal. Secondly, we will prove that \(\Omega_{p,\epsilon} \) is extremal if and only if \(p \) is a critical point of the function \(p \mapsto \lambda_1(\Omega_{p,\epsilon}) \). The function \(\Phi(\cdot, \epsilon) \) is given, up to a constant, exactly by the function \(p \mapsto \lambda_1(\Omega_{p,\epsilon}) \).

In order to put the result in perspective let us digress slightly. The solutions of the isoperimetric problem

\[
I_\kappa := \min_{\Omega \subset M : \text{Vol}_g \Omega = \kappa} \text{Vol}_g \partial \Omega
\]

are (where they are smooth enough) constant mean curvature hypersurfaces (here \(g_\text{in} \) denotes the induced metric on the boundary of \(\Omega \)). In fact, critical points of the area functional

\[
\Omega \mapsto \text{Vol}_g \partial \Omega
\]

under a volume constraint \(\text{Vol}_g \Omega = \kappa \) are characterized by the property that their mean curvature is constant. Now, it is well known (see [4], [10] and [11]) that the determination of the isoperimetric profile \(I_\kappa \) is related to the Faber-Krähn profile, where one looks for the least value of the first eigenvalue of the Laplace-Beltrami operator amongst domains with prescribed volume

\[
FK_\kappa := \min_{\Omega \subset M : \text{Vol}_g \Omega = \kappa} \lambda_\Omega
\]

A smooth solution to this minimizing problem is an extremal domain, and in fact extremal domains are the critical points of the functional

\[
\Omega \mapsto \lambda_\Omega
\]

under a volume constraint \(\text{Vol}_g \Omega = \kappa \).

The result by F. Pacard and P. Sicbaldi [15] had been inspired by some parallel results on the existence of constant mean curvature hypersurfaces in a Riemannian manifold \(M \). In fact, R. Ye built in [25] constant mean curvature topological spheres which are close to geodesic spheres of small radius centered at a nondegenerate critical point of the scalar curvature, and the result of F. Pacard and P. Sicbaldi can be considered the parallel of the result of R. Ye in the context of extremal domains. The method used in [15] is based on the study of the operator that to a domain associates the Neumann value of its first eigenfunction, which is a nonlocal first order elliptic operator. This represents a big difference with respect to the result of R. Ye, where the operator to study was a local second order elliptic operator.

Based on [25] and other related results, S. Narduli has obtained in [14] an asymptotic expansion of \(I_\tau \) as \(\tau \) tends to 0. The parallel expansion of the Faber-Krahn profile is given in [2].

In a recent paper, [16], F. Pacard and X. Xu generalise the result of R. Ye by eliminating the hypothesis of the existence of a nondegenerate critical point of the scalar curvature function. For every \(\epsilon \) small enough, they are able to build a small topological sphere of constant mean curvature equal to \(\frac{n-1}{\epsilon} \) by perturbing a small geodesic ball centered at a critical point of a certain function defined on \(M \) which is close to the scalar curvature function. For this, they use the variational characterization of constant \(H_0 \) mean curvature hypersurfaces as critical points of the functional

\[
S \mapsto \text{Vol}_{g_\text{in}}(S) - H_0 \text{Vol}_g(D_S)
\]

in the class of topological sphere, where \(D_S \) is the domain enclosed by \(S \), see [16].
Our construction is based on some ideas of [16]. For this, we use the variational characterization of extremal domains. The main difference and difficulties with respect to the result of F. Pacard and X. Xu lie in the fact that there does not exist an explicit formulation to compute the first eigenvalue of a domain while there exists an explicit formulation to compute the volume of a surface.

Our result shows once more the similarity between constant mean curvature hypersurfaces and extremal domains. The deep link between such two objects has been underlined also in [19] and [20].

It is important to remark that P. Sicbaldi was able to build extremal domains of big volume in some compact Riemannian manifold without boundary by perturbing the complement of a small geodesic ball centered at a nondegenerate critical point of the scalar curvature function, see [23]. As in the case of small volume domains, the existence of a nondegenerate critical point of the scalar curvature function is required (and such result requires also that the dimension of the manifold is at least 4). It would be interesting to adapt our result in order to build extremal domains of big volume in any compact Riemannian manifold without boundary by perturbing the complement of small geodesic balls of radius ϵ centered at a critical point of the function Φ(·, ϵ) or some other similar function. This result would allow for example to obtain extremal domains Ωj that are given by the complement of a small topological ball in a flat 2-dimensional torus, and by the characterization of extremal domains this would lead to a nontrivial solution of (2), with f(t) = λt, in the universal covering ˜Ω of Ωj, which is a nontrivial unbounded domain of R2. Up to our knowledge the existence of this unbounded domain is not known. Remark that ˜Ω is a doubly periodic domain, made by the complement of an infinitely countable union of topological balls. The existence of ˜Ω would establish once more the strong link between extremal domains and constant mean curvature surfaces, via the doubly periodic constant mean curvature surfaces (see [7], [18] and [17]).

It would be interesting to study the stability of the extremal domains built in Theorem 1.1. This question is closely linked to the determination of the domains that realize the Faber-Krahn profile, see [2].

2. Notations and preliminaries. Let Ω0 be a smooth bounded domain in M. We say that \(\{Ω_t\}_{t \in (-t_0, t_0)} \) is a deformation of Ω0 if there exists a vector field Ξ such that Ωt = Ξ(t,Ω0) where Ξ(t,·) is the flow associated to Ξ, namely
\[
\frac{dξ}{dt}(t,p) = Ξ(ξ(t,p)) \quad \text{and} \quad ξ(0,p) = p.
\]
In this case we say that Ξ is the vector field that generates the deformation. The deformation is said to be volume preserving if the volume of Ωt does not depend on t. If \(\{Ω_t\}_{t \in (-t_0, t_0)} \) is a deformation of Ω0, and λΩt and uΩt are respectively the first eigenvalue and the first eigenfunction (normalized to be positive and have L2(Ωt) norm equal to 1) of \(-Δ_g \) on Ωt with zero Dirichlet boundary condition, both applications \(t \mapsto λΩt \) and \(t \mapsto uΩt \) inherit the regularity of the deformation of Ω0. These facts are standard and follow at once from the implicit function theorem together with the fact that the least eigenvalue of the Laplace-Beltrami operator with 0 Dirichlet boundary condition is simple.

A domain Ω0 is an extremal domain (for the first eigenvalue of \(-Δ_g \) with zero Dirichlet boundary condition) if for any volume preserving deformation \(\{Ω_t\}_{t \in (-t_0, t_0)} \) of Ω0, we have
Assume that \(\{\Omega_t\}_t \) is a perturbation of a domain \(\Omega_0 \) generated by the vector field \(\Xi \). The outward unit normal vector field to \(\partial \Omega_t \) is denoted by \(\nu_t \). We have the following result, whose proof can be found in [3] or in [15]:

Proposition 2.1. (Garabedian – Schiffer, El Soufi – Ilias). The derivative of the first eigenvalue with respect to the deformation of the domain is given by

\[
\left. \frac{d\lambda_{\Omega_t}}{dt} \right|_{t=0} = - \int_{\partial \Omega_0} (g(\nabla u_0, \nu_0))^2 g(\Xi, \nu_0) \, d\text{vol}_{g_0}.
\]

This result allows to characterize extremal domains as the domains where there exists a positive solution to the overdetermined elliptic problem

\[
\begin{aligned}
\Delta_g u + \lambda u &= 0 \quad \text{in } \Omega \\
u &= 0 \quad \text{on } \partial \Omega \\
g(\nabla u, \nu) &= \text{constant} \quad \text{on } \partial \Omega
\end{aligned}
\]

for a positive constant \(\lambda \), where \(\nu \) is the outward unit normal vector about \(\partial \Omega \). The proof of this fact follows directly from Proposition 2.1, but can be found also in [15].

Given a point \(p \in M \) we denote by \(E_1, \ldots, E_n \) an orthonormal basis of the tangent plane \(T_p M \). Geodesic normal coordinates \(x := (x^1, \ldots, x^n) \in \mathbb{R}^n \) at \(p \) are defined by

\[
X(x) := \text{Exp}_p \left(\sum_{j=1}^n x^j E_j \right) \in M
\]

where \(\text{Exp}_p \) is the exponential map at \(p \) for the metric \(g \).

It will be convenient to identify \(\mathbb{R}^n \) with \(T_p M \) and \(S^{n-1} \) with the unit sphere in \(T_p M \). If \(x := (x^1, \ldots, x^n) \in \mathbb{R}^n \), we set

\[
\Theta(x) := \sum_{i=1}^n x^i E_i \in T_p M.
\]

It corresponds to the vector of \(T_p M \) whose coordinates in the basis \((E_1, \ldots, E_n) \) are \(x \). Given a continuous function \(f : S^{n-1} \to (0, +\infty) \) whose \(L^\infty \)-norm is sufficiently small we can define

\[
B_f^g(p) := \left\{ \text{Exp}_p(\Theta(x)) : x \in \mathbb{R}^n \quad 0 < |x| < f \left(\frac{x}{|x|} \right) \right\} \cup \{p\}.
\]

For notational convenience, given a continuous function \(f : S^{n-1} \to (0, \infty) \), we set

\[
B_f := \{ x \in \mathbb{R}^n : 0 < |x| < f(x/|x|) \} \cup \{0\}.
\]

When we do not indicate the metric as a superscript, we understand that we are using the Euclidean one. Similarly, we denote by \(\text{Vol}_p \) the volume in the metric \(g \), by \(d\text{vol}_p \) on \(\Omega \subset M \) the volume element in the metric \(g \), by \(d\text{vol}_{g_0} \) the volume element in the induced metric \(g_0 \) on \(\partial \Omega \). When we do not indicate anything we understand that we are considering the Euclidean volume, or the Euclidean measure, or the measure induced by the Euclidean one on boundaries.
Our aim is to show that, for all $\epsilon > 0$ small enough, we can find a point $p \in M$ and a function $v : S^{n-1} \rightarrow \mathbb{R}$ such that

$$\text{Vol}_g B^\epsilon_{e(1+v)}(p) = \text{Vol}_e = \epsilon^n \text{Vol}_1 = \epsilon^n \frac{\omega_n}{n}$$

(where ω_n is the Euclidean volume of the unit sphere S^{n-1}) and the overdetermined problem

$$\begin{cases}
\Delta_g \phi + \lambda \phi &= 0 \quad \text{in } B^\epsilon_{e(1+v)}(p) \\
\phi &= 0 \quad \text{on } \partial B^\epsilon_{e(1+v)}(p) \\
g(\nabla \phi, \nu) &= \text{constant} \quad \text{on } \partial B^\epsilon_{e(1+v)}(p)
\end{cases} \quad (7)$$

has a non trivial positive solution for some positive constant λ, where ν is the unit normal vector field about $\partial B^\epsilon_{e(1+v)}(p)$.

Clearly, this problem does not make sense when $\epsilon = 0$. For this reason, we observe that, considering the dilated metric $\bar{g} := \epsilon^{-2} g$, (7) is equivalent to finding a point $p \in M$ and a function $v : S^{n-1} \rightarrow \mathbb{R}$ such that

$$\text{Vol}_{\bar{g}} B^\epsilon_{\bar{g}}(1+v)(p) = \text{Vol}_1$$

and for which the overdetermined problem

$$\begin{cases}
\Delta_{\bar{g}} \bar{\phi} + \bar{\lambda} \bar{\phi} &= 0 \quad \text{in } B^\epsilon_{1+v}(p) \\
\bar{\phi} &= 0 \quad \text{on } \partial B^\epsilon_{1+v}(p) \\
\bar{g}(\nabla \bar{\phi}, \bar{\nu}) &= \text{constant} \quad \text{on } \partial B^\epsilon_{1+v}(p)
\end{cases} \quad (8)$$

has a non trivial positive solution for some positive constant $\bar{\lambda}$, where $\bar{\nu}$ is the unit normal vector field about $\partial B^\epsilon_{1+v}(p)$. Taking into account that the functions ϕ and $\bar{\phi}$ have L^2-norm equal to 1, we have that the relation between the solutions of the two problems is simply given by

$$\phi = \epsilon^{-n/2} \bar{\phi}$$

and

$$\lambda = \epsilon^{-2} \bar{\lambda}.$$

3. Some expansions in normal geodesic coordinates. We specify that through this paper we consider the following definition of the Riemann curvature tensor:

$$\text{Riem}(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$$

where ∇ denotes the Levi-Civita connection on the manifold M.

Geodesic normal coordinates are very useful because there exists a well known formula for the expansion of the coefficients of a metric near the center of such coordinates, see [24], [13] or [21]. At the point of coordinate x, the following expansion holds1:

$$g_{ij} = \delta_{ij} - \frac{1}{3} R_{ikjl} x^k x^\ell x^m - \frac{1}{6} R_{ikjl,m} x^k x^\ell x^m x^m$$

$$- \frac{1}{20} R_{ikjl,m\sigma} x^k x^\ell x^m x^\sigma + \frac{2}{45} \sum_{s=1}^n R_{ki\ell s} R_{mjs\sigma} x^k x^\ell x^m x^\sigma + O(|x|^5)$$

$$\quad (9)$$

1We choose the convention of [24], some sign in the development are different from those in [16] or [15] because of a different choice of the definition of R_{ijkl}.
where
\[
R_{ikjt} = g(R_{iem}(E_k, E_i) E_j, E_t)
\]
\[
R_{ikjt,m} = g((\nabla E_m R_{iem})(E_k, E_i) E_j, E_t)
\]
\[
R_{ikjt,m\sigma} = g((\nabla E_\sigma \nabla E_m R_{iem})(E_k, E_i) E_j, E_t),
\]
and the subscript \(p\) means that we evaluate the quantity at \(p\). In (9) the Einstein notation is used (i.e., we sum over every index appearing up and down). Such notation will be always used through this paper.

This expansion allows to obtain other expansions, as those for the volume of a geodesic ball, or for the first eigenvalue and the first eigenfunction on a geodesic ball. In order to recall such expansions, let us introduce some notations. Let us denote by \(\lambda_1\) the first eigenvalue of the Laplacian in the unit ball \(B_1\) with zero Dirichlet boundary condition. We denote by \(\phi_1\) the associated eigenfunction
\[
\Delta \phi_1 + \lambda_1 \phi_1 = 0 \quad \text{in} \quad B_1
\]
\[
\phi_1 = 0 \quad \text{on} \quad \partial B_1
\]
normalized to be positive and have \(L^2(B_1)\) norm equal to 1. It is clear that \(\phi_1\) is a radial function \(\phi_1(x) = \phi_1(|x|)\). We denote \(r = |x|\).

We recall now some expansions we will need later, whose proofs can be deduced from (9). We refer to [16] and [9] for the proofs. For the volume of a geodesic ball of radius \(\epsilon\) we have:
\[
\epsilon^{-n} \text{Vol}_g B_\epsilon^g(p) = \frac{\omega_n}{n} + W_0 \epsilon^2 + W \epsilon^4 + O(\epsilon^5),
\]
(11)
where
\[
W_0 = -\frac{\omega_n}{6n(n+2)} R_p
\]
\[
W = \frac{\omega_n}{360n(n+2)(n+4)} (-3 \|Riem_p\|^2 + 8 \|Ric_p\|^2 + 5 R_p^2 - 18 (\Delta g R)_p)
\]
(12)
For the first eigenvalue of the Laplace-Beltrami operator with 0 Dirichlet boundary condition on a geodesic ball of radius \(\epsilon\) we have:
\[
\epsilon^2 \lambda_{B_\epsilon^g(p)} = \lambda_1 + \Lambda_0 \epsilon^2 + \Lambda \epsilon^4 + O(\epsilon^5)
\]
(13)
where
\[
\Lambda_0 = -\frac{R_p}{6}
\]
\[
\Lambda = -\frac{\epsilon^2}{n(n+2)} \left(3 \|Riem_p\|^2 + \frac{35}{18} \|Ric_p\|^2 + \frac{5n-3}{18n} R_p^2 + \frac{1}{5} (\Delta g R)_p \right)
\]
(14)
and the constant \(c^2\) is given by
\[
c^2 = -\int_0^1 \phi_1 \partial_r \phi_1 r^{n+2} dr = \frac{n+2}{2} \int_0^1 \phi_1^2 r^{n+1} dr
\]
For the associate eigenfunction \(\phi\) in the geodesic ball \(B_\epsilon^g(p)\) normalized to be positive and with \(L^2\)-norm equal to 1, we have
\[
\epsilon^{n/2} \phi(q) = \phi_1(y) + \left[R_{ij} y^i y^j - \frac{R}{n} |y|^2 \right] \frac{\phi_1}{12} + R G_2(|y|) c^2 + O(\epsilon^3)
\]
(15)
where \(q \) is the point of \(M \) whose geodesic coordinates are \(\epsilon y \) for \(y \in B_1 \), and \(G_2 \) is defined implicitly as a solution of an ODE in [9]. Although we do not need its expression, for completeness we recall it: if we solve such ODE we found is defined implicitly as a solution of an ODE in [9]. Although we do not need its expression, for completeness we recall it: if we solve such ODE we found

\[
G_2(r) = \frac{1}{12} n r^2 \phi_1(r) - c^2 \frac{\omega_n}{6n (n + 2)} \phi_1(r).
\]

(16)

For the volume element in the metric \(g \) we have

\[
dvol_g = \left(1 - \frac{1}{6} R_{ij} x^i x^j - \frac{1}{12} R_{ij,k} x^i x^j x^k + O(|x|^4) \right) dvol.
\]

4. **Known results.** Our aim is to perturb the boundary of a small ball \(B^g_1(p) \) with a function \(v \) in order to obtain an extremal domain \(B^{\phi^g}_{1+v}(p) \). The natural space for the function \(v \) is \(C^{2,\alpha}(S^{n-1}) \) but not all functions in this space are admissible because \(v \) must satisfy also the condition

\[
\text{Vol}_{g} B^{\phi^g}_{1+v}(p) = \text{Vol} B_1
\]

In order to have a space of admissible functions not depending on the point \(p \), we use a result proved in [15], that allows to use as space of admissible functions the space

\[
C^{2,\alpha}_m(S^{n-1}) = \left\{ \bar{v} \in C^{2,\alpha}(S^{n-1}) : \int_{S^{n-1}} \bar{v} = 0 \right\}
\]

The result is the following:

Proposition 4.1. (Pacard – Sicbaldi [15]) Let \(p \in M \). For all \(\epsilon \) small enough and all function \(\bar{v} \in C^{2,\alpha}_m(S^{n-1}) \) whose \(C^{2,\alpha}-\text{norm} \) is small enough there exist a unique a constant \(\nu_0 = \nu_0(p,\epsilon,\bar{v}) \in \mathbb{R} \) and, setting \(v := \nu_0 + \bar{v} \), a unique positive function \(\tilde{\phi} = \tilde{\phi}(p,\epsilon,\bar{v}) \in C^{2,\alpha}(B^{\phi^g}_{1+v}(p)) \) and a constant \(\lambda = \lambda(p,\epsilon,\bar{v}) \in \mathbb{R} \) such that

\[
\text{Vol}_{g} B^{\phi^g}_{1+v}(p) = \text{Vol} B_1,
\]

and \(\tilde{\phi} \) solves

\[
\begin{aligned}
\Delta_{\tilde{g}} \tilde{\phi} + \lambda \tilde{\phi} &= 0 \quad \text{in} \quad B^{\phi^g}_{1+v}(p) \\
\tilde{\phi} &= 0 \quad \text{on} \quad \partial B^{\phi^g}_{1+v}(p)
\end{aligned}
\]

with normalization

\[
\int_{B^{\phi^g}_{1+v}(p)} \tilde{\phi}^2 dvol_g = 1.
\]

In addition \(\tilde{\phi}, \lambda \) and \(\nu_0 \) depend smoothly on the function \(\bar{v} \) and on the parameter \(\epsilon \), and \(\tilde{\phi} = \phi_1, \lambda = \lambda_1 \) and \(\nu_0 = 0 \) when \(\epsilon = 0 \) and \(\bar{v} \equiv 0 \). Moreover \(\nu_0(p,\epsilon,0) = O(\epsilon^2) \).

Instead of working on a domain depending on the function \(v = \nu_0 + \bar{v} \), it will be more convenient to work on a fixed domain \(B_1 \) endowed with a metric depending on both \(\epsilon \) and the function \(v \). This can be achieved by considering the parametrization of \(B^{\phi^g}_{1+v}(p) \) given by

\[
Y(y) := \text{Exp}^\hat{g}_p \left(\left(1 + \nu_0 + \chi(y) \bar{v} \left(\frac{y}{|y|} \right) \right) \sum_i y^i E_i \right)
\]

where \(\chi \) is a cutoff function identically equal to 0 when \(|y| \leq 1/2 \) and identically equal to 1 when \(|y| \geq 3/4 \). Hence the coordinates we consider from now on are \(y \in B_1 \) with the metric \(\hat{g} := Y^* \hat{g} \).
Up to some multiplicative constant, problem (17) can now be rewritten in the form

$$\begin{cases}
\Delta \hat{g} \hat{\phi} + \hat{\lambda} \hat{\phi} = 0 \text{ in } B_1 \\
\hat{\phi} = 0 \text{ on } \partial B_1
\end{cases}$$ \hspace{1cm} (18)

with

$$\int_{B_1} \hat{\phi}^2 \, d\text{vol}_{\hat{g}} = 1$$ \hspace{1cm} (19)

and

$$\text{Vol}_{\hat{g}}(B_1) = \text{Vol} B_1$$ \hspace{1cm} (20)

When $\epsilon = 0$ and $\bar{v} \equiv 0$, a solution of (18) is given by $\hat{\phi} = \phi_1$, $\hat{\lambda} = \lambda_1$ and $v_0 = 0$. In the general case, the relation between the function $\bar{\phi}$ and the function $\hat{\phi}$ is simply given by

$$Y^* \bar{\phi} = \hat{\phi} \quad \text{and} \quad \bar{\lambda} = \hat{\lambda}.$$

We define the operator

$$F(p, \epsilon, \bar{v}) = \hat{g}(\nabla \hat{\phi}, \bar{v}) \bigg|_{\partial B_1} - \frac{1}{\omega_n} \int_{\partial B_1} \hat{g}(\nabla \hat{\phi}, \bar{v})$$

where \bar{v} is the unit normal vector field to ∂B_1 using the metric \hat{g} and $(\bar{\phi}, v_0)$ is the solution of (17) provided by Proposition 4.1. Recall that $v = v_0 + \bar{v}$. Schauder’s estimates imply that F is well defined from a neighbourhood of $M \times \{0\} \times \{0\}$ in $M \times [0, \infty) \times C^{2,\alpha}_m(S^{n-1})$ into $C^{1,\alpha}(S^{n-1})$ (the space $C^{1,\alpha}(S^{n-1})$ is naturally the space of functions in $C^{1,\alpha}(S^{n-1})$ whose mean is 0). Our aim is to find (p, ϵ, \bar{v}) such that $F(p, \epsilon, \bar{v}) = 0$. Observe that, with this condition, $\bar{\phi}$ will be the solution to problem (8).

We also have the alternative expression for F, after canonical identification of $\partial B_{1+\epsilon}(p)$ with S^{n-1},

$$F(p, \epsilon, \bar{v}) = \bar{g}(\nabla \bar{\phi}, \bar{v}) \bigg|_{\partial B_{1+\epsilon}} - \frac{1}{\omega_n} \int_{\partial B_{1+\epsilon}} \bar{g}(\nabla \bar{\phi}, \bar{v})$$

where this time \bar{v} denotes the unit normal vector field to $\partial B_{1+\epsilon}$.

For all $\bar{v} \in C^{2,\alpha}_m(S^{n-1})$ let ψ be the (unique) solution of

$$\begin{cases}
\Delta \psi + \lambda_1 \psi = 0 \text{ in } B_1 \\
\psi = -c_1 \bar{v} \text{ on } \partial B_1
\end{cases}$$ \hspace{1cm} (21)

which is $L^2(B_1)$-orthogonal to ϕ_1, where $c_1 := \partial_r \phi_1|_{r=1}$. Define

$$H(\bar{v}) := (\partial_r \psi + c_2 \bar{v})|_{\partial B_1}$$ \hspace{1cm} (22)

where $c_2 = \partial_r^2 \phi_1|_{r=1}$. We recall that the eigenvalues of the operator $-\Delta_{S^{n-1}}$ are given by $\mu_j = j(n-2+j)$ for $j \in \mathbb{N}$, and we denote by V_j the eigenspace associated to μ_j.

The following result shows that H is the linearization of F with respect to \bar{v} at $\epsilon = 0$ and $\bar{v} = 0$:
Proposition 4.2. (Pacard – Sicbaldi, [15])² The operator obtained by linearizing \(F \) with respect to \(\bar{v} \) at \(\epsilon = 0 \) and \(\bar{v} = 0 \) is

\[
H : C^2_m(S^{n-1}) \to C^1_m(S^{n-1})
\]

It is a self adjoint, first order elliptic operator, preserving the eigenspaces \(V_j \). The kernel of \(H \) is given by \(V_1 \). Moreover there exists \(c > 0 \) such that

\[
\|w\|_{C^2_m(S^{n-1})} \leq c \|H(w)\|_{C^1_m(S^{n-1})},
\]

provided \(w \) is \(L^2(S^{n-1}) \)-orthogonal to \(V_0 \oplus V_1 \).

Using the previous proposition and the fact that \(V_1 \) is the restriction on the sphere of affine functions, the implicit function theorem gives directly the following:

Proposition 4.3. (Pacard – Sicbaldi, [15]) There exists \(\epsilon_0 > 0 \) such that, for all \(\epsilon \in [0, \epsilon_0] \) and for all \(p \in M \), there exists a unique function \(\bar{v} = \bar{v}(p, \epsilon) \in C^2_m(S^{n-1}) \), orthogonal to \(V_0 \oplus V_1 \), and a vector \(a = a(p, \epsilon) \in \mathbb{R}^n \) such that

\[
F(p, \epsilon, \bar{v}) + \langle a, \cdot \rangle = 0
\]

The function \(\bar{v} \) and the vector \(a \) depend smoothly on \(p \) and \(\epsilon \) and we have

\[
|a| + \|\bar{v}\|_{C^2_m(S^{n-1})} \leq c \epsilon^2
\]

In other word, for every point \(p \in M \) it is possible to perturbe the small ball \(B^q_1(p) \) in a domain \(B^q_{1+\epsilon}(p) \), whose volume did not change, but with the (strong) property that \(F(p, \epsilon, \bar{v}) \) (i.e. the Neumann data of its first eigenfunction minus its mean) is the restriction of a linear function \(\langle a, \cdot \rangle \) on \(S^{n-1} \). It is important to underline that this result does not depend on the geometry of the manifold, because it is true for every point \(p \).

Now, we have to find the good point \(p \) for which such linear function \(\langle a, \cdot \rangle \) is the 0 function. And in this research we will see the geometry of the manifold.

5. Construction of small extremal domains. For \(p \in M \), let us define the function

\[
\Psi_\epsilon(p) := \hat{\lambda} = \hat{\lambda}(p, \epsilon, \bar{v}(p, \epsilon))
\]

where \(\hat{\lambda} \) is given by (18) taking \(\bar{v} = \bar{v}(p, \epsilon) \) given by Proposition 4.3.

Proposition 5.1. For \(\epsilon \) small enough, the domain \(B^q_{1+\epsilon}(p) \) is extremal if and only if \(p \) is a critical point of \(\Psi_\epsilon \), where \(v(p, \epsilon) = v_0(p, \epsilon, \bar{v}(p, \epsilon)) + \bar{v}(p, \epsilon) \).

Proof. Recall that by definition

\[
F(p, \epsilon, \bar{v}(p, \epsilon)) = \hat{g}(\bar{v}, \nabla \bar{v}) - b
\]

where

\[
b = b(p, \epsilon) := \frac{1}{\omega_n} \int_{\partial B_1} \hat{g}(\bar{v}, \nabla \bar{v})
\]

and

\[
\int_{\partial B_1} F = 0.
\]

Moreover we know that

\[
F(p, \epsilon, \bar{v}(p, \epsilon)) + \langle a(p, \epsilon), \cdot \rangle = 0.
\]

²To be precise, we mention that in [15] the measure of the integral that appears in the definition of the operator \(F \) is the Riemannian measure, but the linearization at \(\epsilon, \bar{v} = 0 \) does not change (see the proof of Proposition 4.3 in [15]).
In particular the domain \(B^g_{1+\epsilon(p,\epsilon)}(p)\) is extremal if and only if \(a(p,\epsilon) = 0\).

Let us now compute the differential of \(\Psi_\epsilon\). Let \(\Xi \in T_pM\) and

\[
q := \text{Exp}_p(t\Xi).
\]

For \(t\) small enough, the boundary of \(B^g_{1+\epsilon(p,\epsilon)}(q)\) can be written as a normal graph over the boundary of \(B^g_{1+\epsilon(p,\epsilon)}(p)\) for some function \(f\), depending on \(p,\epsilon, t\) and \(\Xi\), and smooth on \(t\). This defines a vector field on \(\partial B^g_{1+\epsilon(p,\epsilon)}(p)\) by

\[
Z := \frac{\partial f}{\partial t} \bigg|_{t=0} \hat{\nu}
\]

where \(\hat{\nu}\) is the normal of \(\partial B^g_{1+\epsilon(p,\epsilon)}(p)\). Let \(X\) be the vector field obtained by parallel transport of \(\Xi\) from geodesic issued from \(p\). As the metric \(\hat{g}\) is close to the Euclidean one for \(\epsilon\) small, there exists a constant \(c\) such that for all \(\epsilon\) small enough and any \(\Xi\) the estimation

\[
\|Z - X\|_{\hat{g}} \leq c\|\Xi\|_{\hat{g}}.
\]

holds. The variation of the first eigenvalue, see Proposition 2.1, gives

\[
D_p\Psi_\epsilon(\Xi) = \left| \frac{d}{dt} \bigg|_{t=0} \Psi_\epsilon(q) \right| = -\int_{\partial B^1} [\hat{g}(\nabla h, \nabla \nu)]^2 \hat{g}(\hat{Z}, \hat{\nu}) \text{dvol}_{\hat{g}_\epsilon}.
\]

We thus obtain

\[
D_p\Psi_\epsilon(\Xi) = -\int_{\partial B^1} [-a(p,\epsilon) \cdot + b]^2 \hat{g}(\hat{Z}, \hat{\nu}) \text{dvol}_{\hat{g}_\epsilon} \quad (24)
\]

Recall that the variation we made is volume preserving, i.e.

\[
\int_{\partial B^1} \hat{g}(\hat{Z}, \hat{\nu}) \text{dvol}_{\hat{g}_\epsilon} = 0.
\]

Then it is easy to see that if \(a = 0\) then \(D_p\Psi_\epsilon = 0\). This proves one implication.

For the reverse implication, assume now that \(D_p\Psi_\epsilon = 0\). From (24) we have

\[
2b \int_{\partial B^1} [\hat{a}(p,\epsilon) \cdot \hat{g}(\hat{Z}, \hat{\nu}) \text{dvol}_{\hat{g}_\epsilon} = \int_{\partial B^1} \hat{a}(p,\epsilon) \cdot \hat{g}(\hat{Z}, \hat{\nu}) \text{dvol}_{\hat{g}_\epsilon} \quad (25)
\]

for all \(\Xi\). It is easy to see that for all \(\epsilon\) small enough there exists a constant \(c\) such that (we identify a point on the sphere with the normal vector)

\[
|\hat{g}(\hat{Z}, \hat{\nu}) - \langle \Xi, \cdot \rangle| \leq c \epsilon \|\Xi\|_{\hat{g}}
\]

(in fact the left hand side vanishes when \(\epsilon = 0\), the metric \(\hat{g}\) and the Euclidean one differ by terms of order \(\epsilon^2\) and the normal vectors differ by terms of order \(\epsilon\)). Now we choose \(\Xi = b a = b(p,\epsilon) a(p,\epsilon)\) and we get

\[
\hat{g}(\hat{Z}, \hat{\nu}) = b \langle a, \cdot \rangle + \epsilon A
\]

where \(|A| \leq c \|ba\|_{\hat{g}}\). Using this equality in equation (25), we deduce that for all \(\epsilon\) small enough there exists a constant \(C > 0\) independent on \(\epsilon\) and \(a\) such that

\[
2b^2 \int_{\partial B^1} \langle a, \cdot \rangle^2 \text{dvol}_{\hat{g}_{\epsilon}} \leq C \|b\| (\epsilon \|a\|^3 + \|a\|^3 + \epsilon \|a\|^2).
\]

Now the left hand side is bounded from below by \(C' b^2 \|a\|^2\) for some \(C' > 0\), so finally we obtain

\[
b^2 \|a\|^2 \leq C'' \|b\| (\epsilon \|a\| + \|a\| + \epsilon) \|a\|^2.
\]
for some $C'' > 0$. Observe that $|b|$ is bounded away from zero by a uniform constant because when $\epsilon = 0$, $b \neq 0$. As $\|a\| = O(\epsilon^2)$, then for ϵ small (recall $b \neq 0$) we obtain that $a = 0$ and this concludes the proof of the proposition.

We now define

$$\Phi(p, \epsilon) = -\frac{6 n (n + 2)}{n (n + 2) + 2 \lambda_1} \frac{\Psi_\epsilon(p) - \lambda_1}{\epsilon^2},$$

where λ_1 is the first eigenvalue of the euclidean unit ball. Propositions 4.3 and 5.1 complete the proof of the first part of Theorem 1.1. In the following sections, we will prove the second and the third parts of Theorem 1.1, and for this we have to find an expansion in power of ϵ for $\Psi_\epsilon(p)$. Such expansion will involve the geometry of the manifold.

6. Expansion of the first eigenvalue on perturbations of small geodesic balls. In this section we want to find an expansion of the first eigenvalue $\hat{\lambda} = \hat{\lambda}(p, \epsilon, \bar{v})$ in power of ϵ and \bar{v}, where p is fixed in M. In a second time, we will use the function $\bar{v} = \bar{v}(p, \epsilon)$ given by Proposition 4.3 in order to find an expansion of $\hat{\lambda}(p, \epsilon, \bar{v}(p, \epsilon))$ in power of ϵ. Keeping in mind that we will have $\bar{v} = O(\epsilon^2)$ we write formally

$$\hat{\lambda}(p, \epsilon, \bar{v}) = \hat{\lambda}(p, 0, 0) + \partial_\epsilon \hat{\lambda}(p, 0, 0) \epsilon$$

$$+ \partial_{\bar{v}} \hat{\lambda}(p, 0, 0) \bar{v} + \frac{1}{2} \partial^2_{\epsilon} \hat{\lambda}(p, 0, 0) \epsilon^2$$

$$+ \partial_\epsilon \partial_{\bar{v}} \hat{\lambda}(p, 0, 0) \epsilon \bar{v} + \frac{1}{6} \partial^3_{\epsilon} \hat{\lambda}(p, 0, 0) \epsilon^3$$

$$+ \frac{1}{2} \partial^2_{\epsilon} \hat{\lambda}(p, 0, 0) \bar{v}^2 + \frac{1}{2} \partial^2_{\epsilon} \partial_{\bar{v}} \hat{\lambda}(p, 0, 0) \epsilon^2 \bar{v} + \frac{1}{24} \partial^4_{\epsilon} \hat{\lambda}(p, 0, 0) \epsilon^4$$

$$+ O(\epsilon^5)$$

We thus study all of these terms.

Lemma 6.1. We have

$$\partial_\epsilon \hat{\lambda}(p, 0, 0) = 0$$

$$\frac{1}{2} \partial^2_{\epsilon} \hat{\lambda}(p, 0, 0) = -\frac{R_p}{6} \left(1 + 2 \frac{\lambda_1}{n (n + 2)}\right) =: \hat{\Lambda}_0$$

$$\partial^3_{\epsilon} \hat{\lambda}(p, 0, 0) = 0$$

$$\frac{1}{24} \partial^4_{\epsilon} \hat{\lambda}(p, 0, 0) = \Lambda + \lambda_1 \left(\frac{2 W}{\omega_n} - \frac{R_p^2}{36 n^2 (n + 2)}\right) =: \hat{\Lambda}$$

where the constants Λ and W are given in (12) and (14).

Proof. It suffices to find the expansion of $\hat{\lambda}(p, \epsilon, 0)$ in power of ϵ. First we have to expand $v_0(p, \epsilon, 0)$ and this can be done by using expansion (11), keeping in mind the definition of the metric \hat{g} and the fact that when $\bar{v} = 0$ the constant v_0 is given by the relation

$$\text{Vol}_{\hat{g}} B_1 = \text{Vol}_{\hat{g}} B_1^{\hat{g}} = e^{-n} \text{Vol}_{\hat{g}} B_{\epsilon(1+v_0)} = \text{Vol} B_1 = \frac{\omega_n}{n}.$$
Using expansion (11) with ϵ replaced by $\epsilon(1 + v_0)$, we obtain

$$\epsilon^{-n} (1 + v_0)^{-n} \text{Vol}_g B^g_{\epsilon(1+v_0)}(p)$$

$$= \frac{\omega_n}{n} + W_0 \epsilon^2 (1 + v_0)^2 + W \epsilon^4 (1 + v_0)^4 + O(\epsilon^5 (1 + v_0)^5).$$

Hence,

$$\frac{\omega_n}{n} = (1 + v_0)^n \left[\frac{\omega_n}{n} + W_0 \epsilon^2 (1 + v_0)^2 + W \epsilon^4 (1 + v_0)^4 + O(\epsilon^5) \right]$$

that gives, taking into account that $v_0 = O(\epsilon^2)$,

$$\frac{\omega_n}{n} = \left(1 + n v_0 + \frac{n(n-1)}{2} v_0^2 \right) \left[\frac{\omega_n}{n} + W_0 \epsilon^2 (1 + 2v_0) + W \epsilon^4 \right] + O(\epsilon^5).$$

We find then that

$$v_0 = A_0 \epsilon^2 + A \epsilon^4 + O(\epsilon^5)$$

for some constants A_0, A, with

$$\omega_n A_0 + W_0 = 0$$

i.e.

$$A_0 = -\frac{W_0}{\omega_n},$$

and

$$\omega_n A + \omega_n \frac{n-1}{2} A_0^2 + nA_0W_0 + 2A_0W_0 + W = 0$$

i.e.

$$A = -\frac{1}{\omega_n} \left((n + 2) A_0 W_0 + \frac{n-1}{2} A_0^2 \omega_n + W \right).$$

Now we use expansion (13) replacing ϵ by $\epsilon(1 + v_0)$. We obtain

$$\hat{\lambda} = \lambda_1 + \hat{\Lambda}_0 \epsilon^2 + \hat{\Lambda} \epsilon^4 + O(\epsilon^5)$$

where

$$\hat{\Lambda}_0 = \Lambda_0 - 2 \lambda_1 A_0 = -\frac{R_p}{6} \left(1 + 2 \frac{\lambda_1}{n(n+2)} \right)$$

$$\hat{\Lambda} = \Lambda - \lambda_1 (2A - 3 A_0^2) = \Lambda + \lambda_1 \left(\frac{2W}{\omega_n} - \frac{R_p^2}{36n^2(n+2)} \right)$$

This concludes the proof of the result.

Lemma 6.2. We have

$$\partial_\nu \hat{\lambda}(p, 0, 0) = 0$$

$$\partial_\nu^2 \hat{\lambda}(p, 0, 0)(\bar{\nu}, \bar{\nu}) = -2 c_1 \int_{S^{n-1}} \bar{\nu} H(\bar{\nu})$$

where H is the operator of Proposition 4.2, whose expression is given by (22), and $c_1 := \partial_r \phi_1|_{r=1}$ is the constant defined in (21).
Proof. Let $\Omega_0 = B_1$ be the unit ball of \mathbb{R}^n, and let $\Omega_t = B_{1+\nu_0(t)}$, where we recall that $\int_{S^{n-1}} \nu = 0$ and $v_0 = v_0(t)$ is chosen so that $\text{Vol}(\Omega_t) = \text{Vol}(\Omega_0) = \frac{\omega_n}{n}$. We have

$$\partial_t \hat{\lambda}(p, 0, 0)(\bar{v}) = \frac{d}{dt} \bigg|_{t=0} \lambda_{\Omega_t}$$

and

$$\partial^2_{tt} \hat{\lambda}(p, 0, 0)(\bar{v}, \tilde{v}) = \frac{d^2}{dt^2} \bigg|_{t=0} \lambda_{\Omega_t}$$

where λ_{Ω_t} is the first Dirichlet eigenvalue of Ω_t. The expansion of $\text{Vol}(\Omega_t)$ directly proves that $v_0 = O(t^2)$. In fact, in polar coordinates, we have

$$\text{Vol}(\Omega_t) = \int_{S^{n-1}} \int_0^{1+v_0(t)+t \bar{v}} r^{n-1} dr d\theta$$

$$= \frac{1}{n} \int_{S^{n-1}} (1 + v_0(t) + t \bar{v})^n d\theta$$

$$= \frac{1}{n} \int_{S^{n-1}} [(1 + v_0(t))^n + n (1 + v_0)^{n-1} t \bar{v} + O(t^2)] d\theta$$

$$= \frac{\omega_n}{n} (1 + v_0(t))^n + O(t^2)$$

Differentiating this expression with respect to t, and keeping in mind that $v_0(0) = 0$, we obtain that $v_0(t) = O(t^2)$. For $y \in \Omega_0$ and t small, let

$$h(t, y) = \left(1 + v_0(t) + t \chi(y) \bar{v} \left(\frac{y}{|y|}\right)\right) y$$

where χ is a cutoff function identically equal to 0 when $|y| \leq 1/2$ and identically equal to 1 when $|y| \geq 3/4$, so that $h(t, \Omega_0) = \Omega_t$. We will denote the t-derivative with a dot. Let $V(t, h(t, y)) = h(t, y)$ be the first variation of the domain Ω_t. Let ν be the unit normal to $\partial \Omega_t$ and let $\sigma = (V, \nu)$ the normal variation about $\partial \Omega_t$. Let λ be the first eigenvalue and ϕ the first eigenfunction of the Dirichlet Laplacian over Ω_t normalized in order to have L^2 norm equal to 1. From Proposition 2.1 we have

$$\dot{\lambda} = -\int_{\partial \Omega_t} (\partial_{\nu} \phi)^2 \sigma$$

where $\partial_{\nu} \phi = \langle \nabla \phi, \nu \rangle$. At $t = 0$ and on the boundary, we have $\phi = \phi_1$, $\partial_{\nu} \phi = \partial_{\nu} \phi_1 = c_1$, $\sigma = \bar{v}$. Then $\dot{\lambda}(0) = 0$. This proves the first part of the Lemma.

We can use now equality (36) of Proposition 10.1 of the Appendix (with $f = (\partial_{\nu} \phi)^2 \sigma$) in order to derive this formula with respect to t. We obtain

$$\ddot{\lambda} = -\int_{\partial \Omega_t} \left[(\partial_{\nu} \phi)^2 (\bar{\sigma} + \sigma \partial_{\nu} \sigma + \dot{H} \sigma^2) + 2 \sigma (\partial_{\nu} \phi \partial_{\nu} \phi + \sigma \partial_{\nu} \phi \partial_{\nu}^2 \phi)\right]$$

where \dot{H} is the mean curvature of $\partial \Omega_t$. Now the second variation of the volume of Ω_t is

$$\ddot{\text{Vol}}(\Omega_t) = \int_{\partial \Omega_t} (\bar{\sigma} + \sigma \partial_{\nu} \sigma + \dot{H} \sigma^2) = 0.$$

Such equation can be obtained differentiating equality (35) of Proposition 10.1 with $f = 1$, using equality (36) of Proposition 10.1 with $f = \sigma$. On the other hand, at $t = 0$ and on the boundary, we have $\phi = \phi_1$, $\partial_{\nu} \phi = \partial_{\nu} \phi_1 = c_1$, $\partial_{\nu}^2 \phi = \partial_{\nu}^2 \phi_1 = c_2 = \sigma$.
Lemma 6.4. We have
\[-(n-1)c_1, \sigma = \bar{v}.\]
We claim that at \(t = 0 \) we have also \(\dot{\phi} = \psi \), where \(\psi \) solve (21) and is \(L^2(B_1) \)-orthogonal to \(\phi_1 \). This last claim can be easily proved by writing
\[
\dot{\phi} = \phi(t) = \phi_1 + t \psi + O(t^2).
\]
Since \(\lambda_{\Omega_t} = \lambda_1 + O(t^2) \), differentiation of
\[
\begin{align*}
\Delta \phi(t) + \lambda_{\Omega_t} \phi(t) &= 0 \quad \text{in } \Omega_t \\
\phi(t) &= 0 \quad \text{on } \partial \Omega_t
\end{align*}
\]
with respect to \(t \) at \(t = 0 \) gives exactly (21). Moreover differentiation of
\[
\int_{\Omega_t} \phi(t)^2 = 1
\]
with respect to \(t \) at \(t = 0 \) implies that \(\psi \) is \(L^2(B_1) \)-orthogonal to \(\phi_1 \). Our claim is then proved, and in conclusion we obtain
\[
\bar{\lambda}(0) = -2c_1 \int_{S^{n-1}} \bar{v} (\partial_\nu \bar{v} + c_2 \bar{v}) = -2c_1 \int_{S^{n-1}} \bar{v} H(\bar{v}).
\]
The proof of the Lemma follows at once.

\[\square \]

Lemma 6.3. We have
\[
\partial_\nu \partial_\nu \bar{\lambda}(p,0,0) = 0
\]
\[
\partial_\nu^2 \partial_\nu \bar{\lambda}(p,0,0) \bar{v} = -\frac{c_1^2}{3} \int_{S^{n-1}} \bar{R} \bar{c}_p(\Theta,\Theta) \bar{v}
\]
where \(\Theta \) has been defined in (6), \(c_1 := \partial_\nu \phi_1 |_{t=1} \) is the constant defined in (21), and
\[
\bar{Ric} = Ric - \frac{R}{n} g
\]
is the traceless Ricci curvature.

In order to prove this lemma, we start with a preliminary result. The formulas for the geometric quantities we will consider are potentially complicated, and to keep notations short, we agree on the following: any expression of the form \(L_p(v) \) denotes a linear combination of the function \(v \) together with its derivatives up to order 1, whose coefficients can depend on \(\epsilon \) and there exists a positive constant \(c \) independent on \(\epsilon \in (0,1) \) and on \(p \) such that
\[
\|L_p(v)\|_{C^{1,\alpha}(S^{n-1})} \leq c \|v\|_{C^{2,\alpha}(S^{n-1})}.
\]
similarly, given \(a \in \mathbb{N} \), any expression of the form \(Q_p^{(a)}(v) \) denotes a nonlinear operator in the function \(v \) together with its derivatives up to order 1, whose coefficients can depend on \(\epsilon \) and there exists a positive constant \(c \) independent on \(\epsilon \in (0,1) \) and on \(p \) such that
\[
\|Q_p^{(a)}(v_1) - Q_p^{(a)}(v_2)\|_{C^{1,\alpha}(S^{n-1})}
\]
\[
\leq c \left(\|v_1\|_{C^{2,\alpha}(S^{n-1})} + \|v_2\|_{C^{2,\alpha}(S^{n-1})} \right)^{a-1} \|v_2 - v_1\|_{C^{2,\alpha}(S^{n-1})}
\]
provided \(\|v_i\|_{C^{2,\alpha}(S^{n-1})} \leq 1 \), for \(i = 1,2 \).

Lemma 6.4. We have
\[
\partial_\nu v_0(p,\epsilon,0)(\bar{v}) = \frac{c_2}{6\omega_n} \int_{S^{n-1}} \bar{Ric}(\Theta,\Theta) \bar{v} + \int_{S^{n-1}} \left[O(\epsilon^5) + O(\epsilon^3) L_p(\bar{v}) \right]
\]
where \(\Theta \) has been defined in (6).
Proof. The expansion in ϵ and v for the volume of the perturbed geodesic ball $B^g_{\epsilon(1+v)}(p)$ is given in the Appendix of [16] (the corresponding notations with respect to [16] are $B^g_{\epsilon(1+v)}(p) = B_{p,\epsilon}(-v)$ and $n = m + 1$). We have:

\begin{equation}
\epsilon^{-n} \text{Vol}(B^g_{\epsilon(1+v)}(p)) = \frac{\omega_n}{n} + W_0 \epsilon^2 + W \epsilon^4 + \int_{S^{n-1}} v + \frac{n-1}{2} \int_{S^{n-1}} v^2 - \frac{1}{6} \epsilon^2 \int_{S^{n-1}} \text{Ric}_p(\Theta, \Theta) v + \int_{S^{n-1}} \left(O(\epsilon^5) + O(\epsilon^3) L_p(v) + O(\epsilon^2) Q^{(2)}_p(v) + Q^{(3)}_p(v) \right) \tag{26}
\end{equation}

where Θ has been defined in (6), and W_0, W are given by (12). Putting $v = v_0 + \bar{v}$ in expansion (26), where $\int_{S^{n-1}} \bar{v} = 0$ and v_0 is chosen in order that the volume of $B^g_{\epsilon(1+v)}(p)$ is equal to the volume of B_ϵ, we obtain

\begin{align*}
\epsilon^{-n} \text{Vol}(B^g_{\epsilon(1+v)}(p)) &= \frac{\omega_n}{n} + W_0 \epsilon^2 + W \epsilon^4 \\
&+ \frac{1}{2} \int_{S^{n-1}} v_0 \left(1 + \frac{n-1}{2} v_0 \right) - \frac{1}{6} \epsilon^2 \int_{S^{n-1}} \text{Ric}_p(\Theta, \Theta) \\
&+ \frac{n-1}{2} \int_{S^{n-1}} \bar{v}^2 - \frac{1}{6} \epsilon^2 \int_{S^{n-1}} \text{Ric}_p(\Theta, \Theta) \bar{v} \\
&+ \int_{S^{n-1}} \left(O(\epsilon^5) + O(\epsilon^3) L_p(v) + O(\epsilon^2) Q^{(2)}_p(v) + Q^{(3)}_p(v) \right).
\end{align*}

In order to compute the expansion of

$$\dot{v}_0 := \partial_6 v_0(p, \epsilon, 0)(\bar{v}) = \frac{d}{ds} \bigg|_{s=0} v_0(p, \epsilon, s\bar{v}),$$

we derivate with respect to s, at $s = 0$, equality

$$\text{Vol}_g B^g_{\epsilon(1+v_0(p, \epsilon, s\bar{v}) + s\bar{v})}(p) = \text{Vol} B_\epsilon$$

using the expansion above. Recall that we know $v_0(p, \epsilon, 0) = O(\epsilon^2)$. We find

$$(1 + O(\epsilon^2)) \omega_n \dot{v}_0 = \frac{1}{6} \epsilon^2 \int_{S^{n-1}} \text{Ric}_p(\Theta, \Theta) \bar{v} + \int_{S^{n-1}} \left(O(\epsilon^5) + O(\epsilon^3) L_p(\bar{v}) \right)$$

Finally

$$\dot{v}_0 = \frac{1}{6 \omega_n} \epsilon^2 \int_{S^{n-1}} \text{Ric}_p(\Theta, \Theta) \bar{v} + \int_{S^{n-1}} \left(O(\epsilon^5) + O(\epsilon^3) L_p(\bar{v}) \right)$$

This completes the proof of the Lemma. \hfill \Box

We are now able to prove Lemma 6.3.

Proof. (Lemma 6.3). We make a development up to power 2 in ϵ, of the function

$$\frac{d}{ds} \bigg|_{s=0} \hat{\lambda}(p, \epsilon, s\bar{v}).$$
From Proposition 2.1, we have
\[\frac{d}{ds} \hat{\lambda}(p, \epsilon, s\bar{v}) = -\int_{\partial B_1} \hat{g}(V, \hat{\nu}) (\hat{g}(\nabla \hat{\phi}, \hat{\nu}))^2 d\text{vol}_{\hat{g}_n} \]
where the deformation in a neighborhood of \(\partial B_1 \) is given by
\[h(s, y) = (1 + v_0(\epsilon, s \bar{v}) + s \bar{v}) y \]
and
\[V(y) = \frac{\partial h}{\partial s} \bigg|_{s=0} = \left[\partial_v v_0(p, \epsilon, 0)(\bar{v}) + \frac{y}{|y|} \right] y. \]
In that formula, the term \(\hat{g}(\nabla \hat{\phi}, \hat{\nu}) \) is computed with \(s = 0 \) or equivalently \(\bar{v} = 0 \).
From the definition of \(\hat{g} \) and the expansion of the metric \(g \), when \(\bar{v} = 0 \) we have
\[\hat{g}_{ij} = (1 + v_0(\epsilon, 0))^2 \left(\delta_{ij} - \frac{1}{3} \epsilon^2 R_{ikjl} y^k y^l + O(\epsilon^3) \right) \]
\[\hat{\nu} = (1 + v_0(\epsilon, 0)^{-1} \partial_r = (1 + v_0(\epsilon, 0)^{-1} \frac{y}{|y|} \]
The expansion of \(\hat{\phi}(p, \epsilon, 0) \) is almost known: it suffices to replace \(\epsilon \) by \(\epsilon(1 + v_0) \) in formula (15). We have
\[\hat{\phi} = \phi_1 + \epsilon^2 f_2 + O(\epsilon^3) \]
where
\[f_2(y) = \left[R_{ij} y^i y^j - \frac{R_p}{n} |y|^2 \right] \frac{\phi_1}{12} + R_p G_2(|y|). \]
Using the notation \(R^j_{\ k} m_l = g^{ja} g^{mb} R_{akbl} \) we thus have on \(\partial B_1 \)
\[\hat{g}(\nabla \hat{\phi}, \hat{\nu}) = (1 + v_0(\epsilon, 0)^{-1} \left(\delta_{ij} - \frac{1}{3} \epsilon^2 R_{ikjl} y^k y^l + O(\epsilon^3) \right) \]
\[\cdot y^i \left(\delta^{jm} + \frac{1}{3} \epsilon^2 R^j_{\ kl m} y^k y^l \right) \left(\frac{\partial}{\partial y^m} \phi_1 + \epsilon^2 \frac{\partial}{\partial y^m} f_2 \right) + O(\epsilon^3) \]
\[= (1 + v_0(\epsilon, 0)^{-1} [c_1 + \epsilon^2 \partial_r f_2 + O(\epsilon^3)] \]
where on the boundary
\[\partial_r f_2(y) = \frac{c_1}{12} \left[R_{ij} y^i y^j - \frac{R_p}{n} \right] + R_p G'_2(1). \]
Now we have to expand the measure on the boundary. This is classical and can be done directly from expansion (9). We have
\[d\text{vol}_{\hat{g}_n}|_{\partial B_1} = (1 + v_0)^{n-1} \left[1 - \frac{1}{6} R\text{ic}p(\Theta, \Theta) \epsilon^2 + O(\epsilon^3) \right] d\text{vol}|_{S^{n-1}} \]
where \(\Theta \) has been defined in (6) and \(d\text{vol}|_{S^{n-1}} \) is the Euclidean volume element induced on \(S^{n-1} \). For the term \(\partial_v v_0(p, \epsilon, 0)(\bar{v}) \) appearing in \(V \) we use Lemma 6.4. We have
\[\partial_v v_0(p, \epsilon, 0)(\bar{v}) = \frac{\epsilon^2}{6 \omega_n} \int_{S^{n-1}} \hat{R}\text{ic}p(\Theta, \Theta) \bar{v} + \int_{S^{n-1}} [O(\epsilon^5) + O(\epsilon^3) L_p(\bar{v})] \]
We finally obtain
\[\frac{d}{ds} \bigg|_{s=0} \hat{\lambda}(p, \epsilon, s\bar{v}) = C \epsilon^2 \int_{S^{n-1}} \hat{R}\text{ic}p(\Theta, \Theta) \bar{v} + \int_{S^{n-1}} [O(\epsilon^5) + O(\epsilon^3) L_p(\bar{v})] \]
where
\[
C = -\frac{c_1^2}{6} - \frac{2c_1^2}{12} + \frac{c_1^2}{6} = -\frac{c_1^2}{6}
\]
The proof of the Lemma follows at once.

Summarizing the results of Lemmas 6.1, 6.2 and 6.3 we obtain the following:

Proposition 6.5. Let \(p \in M \), let \(\epsilon \) and \(\bar{v} \) be small enough. Then:
\[
\hat{\lambda}(p, \epsilon, \bar{v}) = \lambda_1 + \hat{\Lambda}_0 \epsilon^2 + \hat{\Lambda} \epsilon^4 \\
- c_1 \int_{S^{n-1}} \bar{v} H(\bar{v}) - \frac{c_1^2}{6} \epsilon^2 \int_{S^{n-1}} \bar{R}c_p(\Theta, \Theta) \bar{v} \\
+ \int_{S^{n-1}} \left[\mathcal{O}(\epsilon^2) + \mathcal{O}(\epsilon^3) L_p(\bar{v}) + \mathcal{O}(\epsilon^2) Q_p^{2}(\bar{v}) + Q_p^{3}(\bar{v}) \right]
\]
where \(\Theta \) has been defined in (6), and we agree with the convention about \(L_p(v), Q_p^{2}(v) \) and \(Q_p^{3}(v) \) we gave before.

Proof. It suffices to put together the results of Lemmas 6.1, 6.2 and 6.3.

7. **Localisation of the obtained extremal domains.** Now we want to find the expansion of the function \(\Psi_\epsilon(p) \) in power of \(\epsilon \). Recall that
\[
\Psi_\epsilon(p) = \hat{\lambda}(p, \epsilon, \bar{v}(p, \epsilon))
\]
In order to find such expansion we will relate the first term in the expansion of \(\bar{v}(p, \epsilon) \) to the curvature of the manifold at \(p \).

The first term of the expansion of \(\bar{v}(p, \epsilon) \) is related to the traceless Ricci curvature at \(p \), as stated by the following:

Proposition 7.1. We have
\[
\bar{v}(p, \epsilon) = -\frac{c_1}{12 \alpha_2} \bar{R}c_p(\Theta, \Theta) \epsilon^2 + \mathcal{O}(\epsilon^3) = \frac{n}{12(\lambda_1 - n)} \bar{R}c_p(\Theta, \Theta) \epsilon^2 + \mathcal{O}(\epsilon^3)
\]
where \(\Theta \) has been defined in (6), and \(\alpha_2 \) is the eigenvalue of the operator \(H \) defined in Proposition 4.2 associated to the eigenspace \(V_2 \).

Proof. Let us recall that
\[
F(p, \epsilon, \bar{v}(p, \epsilon)) + \langle a(p, \epsilon), \cdot \rangle = 0.
\]
where
\[
\|\bar{v}(p, \epsilon)\|_{C^{2,\alpha}(S^{n-1})} + ||a(p, \epsilon)|| \leq c \epsilon^2
\]
Now, because \(F(p, \epsilon, 0) = \mathcal{O}(\epsilon^2) \) and because \(\bar{v}(p, \epsilon) = \mathcal{O}(\epsilon^2) \), we can write
\[
F(p, \epsilon, \bar{v}) = F(p, 0, 0) + \partial_\epsilon F(p, 0, 0) \epsilon \\
+ \partial_\epsilon F(p, 0, 0) \bar{v} + \frac{1}{2} \partial_\epsilon^2 F(p, 0, 0) \epsilon^2 + \mathcal{O}(\epsilon^3)
\]
\[
= H(\bar{v}) + \frac{1}{2} \partial_\epsilon^2 F(p, 0, 0) \epsilon^2 + \mathcal{O}(\epsilon^3)
\]
In the computation of the mixed derivatives of \(\hat{\lambda} \) in the proof of Lemma 6.3 we have already computed the expansion of \(\hat{g}(\nabla \hat{\phi}, \hat{\nu}) \) for \(\hat{v} = 0 \), so we directly deduce

\[
F(p, \epsilon, 0) = \epsilon^2 \frac{c_1}{12} \left[R_{ij}(p) y^i y^j - \frac{R_p}{n} \right] + O(\epsilon^3)
\]

where we used the following formula

\[
\int_{S^{n-1}} Ric_p(\Theta, \Theta) = \frac{\omega_n}{n} R_p
\]

whose proof can be found in [16]. Then we have

\[
\partial_2^2 F(p, 0, 0) = \frac{c_1}{6} \hat{R}ic_p(\Theta, \Theta)
\]

Writing

\[
a = a_p \epsilon^2 + O(\epsilon^3)
\]

and

\[
\bar{v} = \bar{v}_p \epsilon^2 + O(\epsilon^3)
\]

and considering the expansion of \(F \), from equation (23) we obtain

\[
H(\bar{v}_p) + \frac{c_1}{12} \hat{R}ic_p(\Theta, \Theta) = -\langle a_p, \cdot \rangle
\]

From (28) we obtain

\[
-\langle a_p, \cdot \rangle = H \left(\bar{v}_p + \frac{c_1}{12\alpha_2} \hat{R}ic(\Theta, \Theta) \right)
\]

i.e. \(\langle a_p, \cdot \rangle \) is in the image of \(H \). But it belongs also to the kernel of \(H \), and then \(a_p = 0 \) and

\[
H \left(\bar{v}_p + \frac{c_1}{12\alpha_2} \hat{R}ic(\Theta, \Theta) \right) = 0
\]

Now we remark that \(\left(\bar{v}_p + \frac{c_1}{12\alpha_2} \hat{R}ic(\Theta, \Theta) \right) \) is orthogonal to \(V_0 \oplus V_1 \), and then

\[
\bar{v}_p = -\frac{c_1}{12\alpha_2} \hat{R}ic(\Theta, \Theta)
\]

In order to complete the proof of the proposition we use equation (34) and Lemma 8.1 of the Appendix.

Now we are able to give an expansion for the function \(\Psi_{\epsilon}(p) \) in power of \(\epsilon \).
Proposition 7.2. We have:

\[\Psi(\varepsilon) = \lambda_1 + \tilde{\Lambda}_0 R_p \varepsilon^2 (R_p + r_p \varepsilon^2) + O(\varepsilon^5) \] (31)

where \(\tilde{\Lambda}_0 \) is defined in Lemma 6.1 (note that \(\frac{\tilde{\Lambda}_0}{R_p} \) is well defined also when \(R_p = 0 \)), and the function \(r \) can be written as

\[r = K_1 \|Riem\|^2 + K_2 \|Ric\|^2 + K_3 R^2 + K_4 \Delta g R \]

for some constants \(K_i \) only depending on \(n \).

Proof. Replacing \(\bar{v} \) with its expansion given by Proposition 7.1 in the expansion of \(\hat{\lambda} \) given by Proposition 6.5, we obtain

\[\Psi(\varepsilon) = \lambda_1 + \hat{\Lambda}_0 \varepsilon^2 + \hat{\Lambda} \varepsilon^4 - c_1 \int_{S^{n-1}} (\varepsilon^2 + \frac{c_1}{6} \hat{\varepsilon}^2 \hat{\text{Ric}}(\Theta, \Theta)) + O(\varepsilon^5) \]

where we used (30) from the second to the third line, (27) and the following formula

\[\int_{S^{n-1}} (\hat{\text{Ric}}(\Theta, \Theta))^2 = \frac{\omega_n}{n(n+2)} \left(2 \|\text{Ric}\|^2 + R_p^2 \right), \]

(whose proof can be found in [16]) from the third to the fourth line, and the computation of \(\alpha_2 \) given in (34) and Lemma 8.1 to deduce the last line. Define

\[r_p = R_p \tilde{\Lambda}_0^{-1} \left[\hat{\Lambda} + \frac{\lambda_1}{36(n+2)(n-\lambda_1)} \left(\|\text{Ric}\|^2 - \frac{1}{n} R_p^2 \right) \right] \]

Recalling the definition of \(W \) and \(\Lambda \) given in (12) and (14), we obtain that

\[r_p = K_1 \|\text{Riem}\|^2 + K_2 \|\text{Ric}\|^2 + K_3 R_p^2 + K_4 (\Delta g R)_p \]

where

\[K_1 = \frac{1}{n(n+2) + 2 \lambda_1} \left(18 \varepsilon^2 + \frac{\lambda_1}{10(n+4)} \right) \]
\[K_2 = \frac{1}{n(n+2)+2\lambda_1} \left(\frac{35}{3} c^2 - \frac{4\lambda_1}{15(n+4)} + \frac{n\lambda_1}{6(\lambda_1-n)} \right) \]
\[K_3 = \frac{1}{n(n+2)+2\lambda_1} \left(\frac{5n-3}{3n} c^2 - \frac{\lambda_1}{6(n+4)} + \frac{\lambda_1}{6n} - \frac{\lambda_1}{6(\lambda_1-n)} \right) \]
\[K_4 = \frac{1}{n(n+2)+2\lambda_1} \left(\frac{6}{5} c^2 + \frac{3\lambda_1}{5(n+4)} \right) \]
\[(32) \]

and formula (31) follows at once. The fact that the constants \(K_i \) depend only on \(n \) comes immediately from the computation of \(c^2 \) in Lemma 8.2 of the Appendix:
\[c^2 = \frac{(n+2)[2\lambda_1+n(n-4)]}{12\lambda_1\omega_n} \]

This completes the proof of the proposition. \(\square \)

Remark 6. We remark that \(K_1 > 0 \) in order to justify our discussion about critical point of \(\|Riem\| \) for Einstein metrics in the introduction.

Now recalling that
\[\Phi(p,\epsilon) = R_p \hat{\Lambda}_0^{-1} \Psi_r(p) - \lambda_1 \quad \text{with normalization} \quad \int_{B_1} \phi_1^2(1) \, dx = \omega_n \int_0^1 (\phi_1)^2 r^{n-1} \, dr = -\frac{2\omega_n}{n} \int_0^1 \phi_1 \phi_1' r^n \, dr \]
the proof of the second and third part of Theorem 1.1 follows at once.

8. **Appendix I: On the first eigenfunction in the unit Euclidean ball.** In this Appendix we state and prove some relations between the first eigenfunction and the first eigenvalue of the Dirichlet Laplacian on the unit ball.

Lemma 8.1. Let
\[c_1 = \phi_1'(1) \]
where \(x \to \phi_1(|x|) \) is the first eigenfunction of the Dirichlet Laplacian on the unit ball, normalized in order to have \(L^2 \)-norm equal to 1. Then
\[c_1 = -\sqrt{\frac{2\lambda_1}{\omega_n}} \]
where \(\lambda_1 \) is the first eigenvalue of the Dirichlet Laplacian on the unit ball.

Proof. Recall that \(\phi_1 \) is the solution of
\[\phi_1'' + \frac{n-1}{r} \phi_1' + \lambda_1 \phi_1 = 0 \]
with normalization
\[1 = \int_{B_1} \phi_1^2(1) \, dx = \omega_n \int_0^1 (\phi_1)^2 r^{n-1} \, dr = -\frac{2\omega_n}{n} \int_0^1 \phi_1 \phi_1' r^n \, dr \quad (33) \]
and
\[\lambda_1 = \int_{B_1} |\nabla \phi_1(1)|^2 \, dx = \omega_n \int_0^1 (\phi_1')^2 r^{n-1} \, dr \]
Now let us compute
\[(r^n(\phi_1')^2)' = n r^{n-1} (\phi_1')^2 + 2 r^n \phi_1' \phi_1'' \]
\[= n r^{n-1} (\phi_1')^2 - 2 r^n \phi_1' \left(\frac{n-1}{r} \phi_1' + \lambda_1 \phi_1 \right) \]
\[= (2-n) r^{n-1} (\phi_1')^2 - 2 \lambda_1 r^n \phi_1' \phi_1 \]

Integrating this relation between 0 and 1 we obtain
\[c_1^2 = \frac{2\lambda_1}{\omega_n} \]

The proof of the Lemma follows at once, keeping in mind that \(c_1 \) is negative. \(\square \)

Lemma 8.2. Let
\[c^2 = \frac{n + 2}{2} \int_0^1 \phi_1^2 r^{n+1} \, dr \]
where \(x \to \phi_1(|x|) \) is the first eigenfunction of the Dirichlet Laplacian on the unit ball, normalized in order to have \(L^2 \)-norm equal to 1. Then
\[c^2 = \frac{(n + 2) [2\lambda_1 + n(n - 4)]}{12 \lambda_1 \omega_n} \]
where \(\lambda_1 \) is the first eigenvalue of the Dirichlet Laplacian on the unit ball.

Proof. We have
\[\frac{n + 2}{2} \int_0^1 \phi_1^2 r^{n+1} \, dr = -\int_0^1 \phi_1 \phi_1' r^{n+2} \, dr \]
Recall also that
\[\phi_1'' + \frac{n - 1}{r} \phi_1' + \lambda_1 \phi_1 = 0 \]
with \(\phi_1(1) = 0 \), and \(\phi_1 \) is normalized by (33). We first compute
\[
(n + 2) r^{n+1} (\phi_1')^2 + 2r^{n+2} \phi_1' \phi_1'' = (n + 2) r^{n+1} (\phi_1')^2 - 2r^{n+2} \phi_1' \left(\frac{n - 1}{r} \phi_1' + \lambda_1 \phi_1 \right)
\]
Integrating this relation between 0 and 1 we find
\[c_1^2 = (4 - n) \int_0^1 r^{n+1} (\phi_1')^2 + 2\lambda_1 c^2 \]
where \(c_1 = \phi_1'(1) \). We now compute
\[
(n + 1) r^n \phi_1 \phi_1' + r^{n+1} (\phi_1')^2 + r^{n+1} \phi_1 \phi_1'' = (n + 1) r^n \phi_1 \phi_1' + r^{n+1} (\phi_1')^2 - r^{n+1} \phi_1 \left(\frac{n - 1}{r} \phi_1' + \lambda_1 \phi_1 \right)
\]
\[= 2r^n \phi_1 \phi_1' + r^{n+1} (\phi_1')^2 - \lambda_1 r^{n+1} \phi_1^2 \]
Integrating this relation between 0 and 1 we find
\[0 = -n (\omega_n)^{-1} + \int_0^1 r^{n+1} (\phi_1')^2 - \lambda_1 \frac{2}{n + 2} c^2. \]
Thus we have at the end
\[c^2 = \frac{n + 2}{12 \lambda_1} \left[c_1^2 + \frac{n(n - 4)}{\omega_n} \right]. \]
The proof of the Lemma follows at once from Lemma 8.1. \(\square \)
9. **Appendix II: The second eigenvalue of the operator H.** Here we compute the eigenvalue α_2 of the operator H associated to the eigenspace V_2. When w is an homogeneous polynomial harmonic of degree 2 (abusively identified with its restriction to the unit sphere) we have $\Delta_{S^{n-1}} w = -\mu_2 w = -2n w$ and $H(w) = \alpha_2 w$. We recall that

$$H(w) = (\partial_r \psi)|_{\partial B_1} + c_2 w = (\partial_r \psi)|_{\partial B_1} - (n - 1) c_1 w$$

where ψ is the solution of

$$\begin{cases}
\Delta \psi + \lambda_1 \psi &= 0 \quad \text{in } B_1 \\
\psi &= -c_1 w \quad \text{on } \partial B_1
\end{cases}$$

which is $L^2(B_1)$-orthogonal to ϕ_1. Decomposing ψ in spherical harmonics, we see that $\psi(r, \theta) = b_2(r) \phi_1(\theta)$ where b_2 is the solution defined at 0 of

$$\begin{cases}
\frac{r^2}{2} b'' + (n - 1) r b' + (r^2 \lambda_1 - 2n) b = 0 \quad \text{in } (0, 1) \\
b(1) = -c_1 = -\phi_1'(1)
\end{cases}$$

From the definition of H, we see that $\alpha_2 = b_2'(1) + \phi_1''(1) = b_2'(1) + c_2 = b_2'(1) - (n - 1) c_1$ so we have to compute $b_2'(1)$. Let us verify that

$$b_2(r) = -\left(\frac{\lambda_1}{n} \phi_1 + \frac{1}{r} \phi_1'\right)$$

is the desired solution. Recall that

$$(\phi_1'')' + \frac{n - 1}{r} \phi_1' + \lambda_1 \phi_1 = 0,$$

thus

$$(\phi_1')'' + \frac{n - 1}{r} (\phi_1')' + \lambda_1 \phi_1 = \frac{n - 1}{r^2} \phi_1'$$

Now

$$b_2' = -\left(\frac{\lambda_1}{n} \phi_1' + \frac{1}{r} \phi_1''\right) + \frac{1}{r^2} \phi_1'$$

and

$$b_2'' = -\left(\frac{\lambda_1}{n} \phi_1' + \frac{1}{r} \phi_1''\right) + \frac{2}{r^2} \phi_1'' - \frac{2}{r^3} \phi_1'$$

so

$$b_2' + \frac{n - 1}{r} b_2 + \lambda_1 b_2 = -\frac{1}{r} \frac{n - 1}{r^2} \phi_1' + \frac{n - 1}{r} \frac{1}{r^2} \phi_1' + 2 \frac{1}{r^2} \phi_1'' - 2 \frac{1}{r^3} \phi_1'$$

$$= -2 \frac{1}{r^2} \left(\frac{n - 1}{r} \phi_1' + \lambda_1 \phi_1\right) - 2 \frac{1}{r^3} \phi_1'$$

$$= -2 n \frac{1}{r^2} \left(\frac{\lambda_1}{n} \phi_1 + \frac{1}{r} \phi_1\right)$$

$$= \frac{2n}{r^2} b_2$$

And of course $b_2(1) = -c_1$, so this is the desired solution. Finally we have

$$b_2'(1) = \frac{n^2 - \lambda_1}{n} c_1$$
and, keeping in mind that $\lambda_1 > n$ (see [12] and related references),

$$\alpha_2 = \frac{n - \lambda_1}{n} c_1 = \frac{\lambda_1 - n}{n} \sqrt{\frac{2 \lambda_1}{\omega_n}} > 0.$$ \hspace{1cm} (34)

10. **Appendix III: Differentiating with respect to the domain.** In this Appendix we recall a useful result that allows to derive the integral of a function with respect to a parameter t that appears in the function and also in the domain of integration. The proof of such result can be found in [8], page 14.

Proposition 10.1. Let Ω a smooth bounded domain of \mathbb{R}^n and

$$h : (-r, r) \times \Omega \to \mathbb{R}^n$$

a smooth function, where r is a positive constant, such that $h(0, p) = p$ for all $p \in \Omega$. Let

$$f : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$$

a smooth function. Let $\Omega_t = h(t, \Omega_0)$, $V(t, h(t, p)) = \frac{\partial h}{\partial t}(t, p)$ and $N(t, q)$ the unit outward normal at $q \in \partial \Omega_t$. Then

$$\frac{\partial}{\partial t} \int_{\Omega_t} f = \int_{\Omega_t} \frac{\partial f}{\partial t} \, dx + \int_{\partial \Omega_t} f \langle V, N \rangle \, ds \hspace{1cm} (35)$$

and

$$\frac{\partial}{\partial t} \int_{\partial \Omega_t} f \, ds = \int_{\partial \Omega_t} \left(\frac{\partial f}{\partial t} + \langle V, N \rangle \langle \nabla_x f, N \rangle + H \langle V, N \rangle f \right) \, ds \hspace{1cm} (36)$$

where $\langle \cdot, \cdot \rangle$ denote the scalar product in \mathbb{R}^n, s denote the area element of $\partial \Omega_t$ and H is the mean curvature of $\partial \Omega_t$.

Remark 7. Although we do not need it here, we mention that this proposition can easily be proven also for domains in a Riemannian manifold.

REFERENCES

[1] A. D. Alexandrov, Uniqueness theorems for surfaces in the large, I. (Russian) Vestnik Leningrad Univ. Math., 11 (1956), 5–17.

[2] O. Druet, Asymptotic expansion of the Faber-Krahn profile of a compact Riemannian manifold, C. R. Math. Acad. Sci. Paris, 346 (2008), 1163–1167.

[3] A. El Soufi and S. Ilias, Domain deformations and eigenvalues of the Dirichlet Laplacian in Riemannian manifold, Illinois J. Math., 51 (2007), 645–666.

[4] G. Faber, Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt, Sitzungsber. - Bayer. Akad. Wiss. München, Math.-Phys. Kl., (1923), 169–172.

[5] P. R. Garadedian and M. Schiffer, Variational problems in the theory of elliptic partial differential equations, J. Rat. Mech. An., 2 (1953), 137–171.

[6] D. Gilbarg and N. S. Trudinger, *Elliptic Partial Differential Equations of Second Order*, Grundlehren der mathematischen Wissenschaften, a Series of Comprehensive Studies in Mathematics, Vol. 224, 2nd Edition, Springer, 1983.

[7] K. Große-Brauckmann, New surfaces of constant mean curvature, Math. Z., 214 (1993), 527–565.

[8] D. Henry, *Perturbation of the Boundary in Boundary-Value Problems of Partial Differential Equations*, London Mathematical Society, Lecture Note Series 318, Cambridge University Press, 2005.

[9] L. Karp and M. Pinsky, The first eigenvalue of a small geodesic ball in a Riemannian manifold, Sci. Math. (2), 111 (1987), 229–239.

[10] E. Krahn, Über eine von Raleigh formuliierte Minimaleigenschaft der Kreise, Math. Ann., 94 (1925), 97–100.

[11] E. Krahn, Über Minimaleigenschaften der Kugel in drei und mehr dimensionen, Acta Comm. Univ. Tartu (Dorpat), A9 (1926), 1–44.
[12] T. Lang and R. Wong, “Best possible” upper bounds for the first two positive zeros of the Bessel function $J_\nu(x)$: The infinite case, *J. Comput. Appl. Math.*, **71** (1996), 311–329.

[13] J. M. Lee and T. H. Parker, The Yamabe Problem, *Bulletin of the American Mathematical Society*, **17** (1987), 37–91.

[14] S. Nardulli, The isoperimetric profile of a smooth Riemannian manifold for small volumes, *Ann. Global Anal. Geom.*, **36** (2009), 111–131.

[15] F. Pacard and P. Sicbaldi, Extremal domains for the first eigenvalue of the Laplace-Beltrami operator, *Ann. Inst. Fourier*, **59** (2009), 515–542.

[16] F. Pacard and X. Xu, Constant mean curvature sphere in Riemannian manifolds, *Manuscripta Math.*, **128** (2009), 275–295.

[17] M. Ritoré, *Superficies Con Curvatura Media Constante*, Tesis doctoral, Universidad de Granada, 1994.

[18] M. Ritoré, Examples of constant mean curvature surfaces obtained from harmonic maps to the two sphere, *Math. Z.*, **226** (1997), 127–146.

[19] A. Ros and P. Sicbaldi, Geometry and Topology for some overdetermined elliptic problems, *J. Diff. Eq.*, **255** (2013), 951–977.

[20] F. Schlenk and P. Sicbaldi, Bifurcating extremal domains for the first eigenvalue of the Laplacian, *Adv. Math.*, **229** (2012), 602–632.

[21] R. Schoen and S. T. Yau, *Lectures on Differential Geometry*, International Press, 1994.

[22] J. Serrin, A symmetry problem in potential theory, *Arch. Rational Mech. Anal.*, **43** (1971), 304–318.

[23] P. Sicbaldi, Extremal domains of big volume for the first eigenvalue of the Laplace-Beltrami operator in a compact manifold, *Ann. Inst. Poincaré (C) An. non linéaire*, **31** (2014), 1231–1265.

[24] T. J. Willmore, *Riemannian Geometry*, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993.

[25] R. Ye, Foliation by constant mean curvature spheres, *Pacific J. Math.*, **147** (1991), 381–396.

Received January 2014; revised September 2014.

E-mail address: erwann.delay@univ-avignon.fr
E-mail address: pieralberto.sicbaldi@univ-amu.fr