Computational study on superparamagnetic hyperthermia with biocompatible SPIONs to destroy the cancer cells

C. Caizer

Department of Physics, West University of Timisoara, Timisoara, Romania.

e-mail: ccaizer@physics.uvt.ro

Abstract. Superparamagnetic hyperthermia (SPMHT) appears nowadays as the most promising method of the future, non-invasive and with low toxicity, for destroys the cancer cells through the magnetic relaxation in superparamagnetic nanoparticles. In our research we focused on finding the optimal conditions using a 3D computational study to obtain a maximum specific absorption rate (SAR) by the magnetic relaxation in Fe₃O₄ and γ-Fe₂O₃ superparamagnetic iron oxide nanoparticles (SPIONs), which give the most pronounced SAR and with low toxicity on cells. The effect of the diameter of the nanoparticles, frequency and amplitude of external alternating magnetic field and the thickness of biological coating of nanoparticles in the case of their encapsulation in biocompatible membranes, like liposomes (Ls) and cyclodextrins (CDs), on Néel-Brown magnetic relaxation and maximum SAR, are presented and discussed in this paper, within the biological admitted limit.

1. Introduction
Superparamagnetic hyperthermia (SPMHT) [1], obtained as a result of magnetic relaxation in superparamagnetic iron oxide nanoparticles (SPIONs), is a very suitable method for destroying cancer cells [2], by increasing the temperature to 42-43 °C in the targeted tissues. This method is non-invasive and apparently without toxicity when nanoparticles are encapsulated in biocompatible membranes, such as liposomes (Ls) or cyclodextrins (CDs), which are used today as a possible nanocarriers in drug delivery [3,4]. One of the most important issues in the use of SPMHT is finding the optimum conditions for obtaining a maximum specific absorption rate (SAR). Several research studies have been conducted on the effect of the nanoparticles’ diameter upon the magnetic hyperthermia [5,6]. However, finding the optimal physical conditions for obtaining a maximum SAR, within the accepted biological limit [7] is still an open issue, which must be clarified before moving on to the next stage, of in vitro or in vivo studies and, finally, to the clinical studies. The success of the in vitro/in vivo magnetic hyperthermia highly depends on the results from the first stage. In this regard, we conducted a 3D computational study of SAR, considering simultaneously the diameter of the nanoparticles (D), the frequency (f) and amplitude of the magnetic field (H) in the case of SPIONs of Fe₃O₄ and γ-Fe₂O₃, when they are encapsulated in Ls or bioconjugated with CDs (using CDs in SPMHT is a new strategy of ours). Our 3D study allows us to rapidly find the optimum values of the D, f, H parameters, the viscosity of the dispersion environment of the bionanocapsules, etc., by simply modifying their values in the calculation program, thus optimizing the superparamagnetic hyperthermia, by simulating real conditions. The study focused on finding the optimum diameter of the nanoparticles, which is a critical parameter, and on the way in which the thickness of the biological...
membrane of the Ls and of the layer determined by the CDs at the surface of the biocompatible nanoparticles, when dispersed in water, influence the contribution of the Neel-Brown relaxation processes in obtaining the maximum SAR. Furthermore, for this study, we took into consideration a very small volume fraction of the nanoparticles, of only 1.7 vol%, which allows the maintenance of the superparamagnetic behavior of nanoparticles [8], without the appearance of the hysteresis loop caused by the interactions between nanoparticles [9], and the application of the Neel-Brown relaxation theory; in static conditions (where the measuring time is ~100 s [10]), in the lack of the interactions between nanoparticles, and as a result of the reduced magnetic anisotropy of the Fe$_3$O$_4$ and γ-Fe$_3$O$_4$ nanoparticles, the superparamagnetic (SPM) behavior is maintained for rather large diameters (<20 nm), because the Neel-Brown relaxation times (in the order of nano - microseconds) are much lower than the measuring time (tens – hundreds of seconds). Consequently, considering the Neel-Brown magnetic relaxation, we aimed to find the optimum conditions in which the highest maximum SAR is obtained for the nanoparticles of Fe$_3$O$_4$ and γ-Fe$_3$O$_4$, when they are encapsulated in Ls or bioconjugated with CDs, without exceeding the biological limit [7].

2. Theory

Volumetric power dissipated in superparamagnetic nanoparticles in alternating harmonic magnetic field, with frequency f and amplitude H [1], can be written based on the static magnetic susceptibility χ_0 and magnetic relaxation time τ [11]:

$$P = \mu_0\gamma f \frac{2\pi f \tau}{1 + (2\pi f \tau)^2} \chi_0 H^2.$$

In low magnetic fields, χ_0 can be approximated by the initial magnetic susceptibility $\chi_i = \chi_0 \frac{M_s^2 D^3}{18k_b T}$, deduced from the Langevin function [12], for the approximation of the spherical nanoparticles, and the relaxation time is $\tau = \tau_N \tau_B / (\tau_N + \tau_B)$, with the following components: $\tau_N = \tau_0 \exp \left(\frac{\pi KD^3}{6k_B T} \right)$, for the Néel relaxation time, and $\tau_B = 3\pi \eta D_h^3 / 6k_B T$, for the Brown relaxation time. In the above mentioned formulas, M_s is the spontaneous magnetization, D is the magnetic (mean) diameter, ε is the (volume) magnetic packing fraction of nanoparticles, μ_0 is the permeability of vacuum, k_B is the Boltzmann constant, T is the room temperature, K is the magnetic anisotropy constant, τ_0 is the time constant ($\sim 10^3 s$), η is the viscosity coefficient and D_h is the hydrodynamic diameter of nanoparticles: $D_h = D + 2d$, d being the biological coating thickness. Specific absorption rate (SAR), under adiabatic conditions, can be expressed in terms of power dissipation, expressed in W/g, by the formula:

$$\text{SAR} = \frac{P}{\rho},$$

where ρ is the material density.

3. Results and discussions

SAR was studied in 3D for the monodispersed Fe$_3$O$_4$ and γ-Fe$_3$O$_4$ nanoparticles, which are suitable for magnetic hyperthermia. SAR was also studied when the nanoparticles are encapsulated in Ls or bioconjugated with CDs, while considering the hydrodynamic diameter of the nanobiocapsules (D_h). In these conditions, we aimed to find the most suitable nanoparticles, regarding the diameter (optimal diameter in the range of 1-30 nm), depending on the frequency and amplitude of the external magnetic field, which are leading to the highest maximum SAR, without exceeding the biological limit. Data used in calculations, according to the formulas in Section 2, are given in Table 1.

Samples	M_s (kA/m)	K (kJ/m3)	ρ (g/cm3)	ε	d_{vs} [3] (nm)	d_{cd} [14] (nm)	η (kgm$^{-1}$s$^{-1}$)	f (kHz)	H (kA/m)
Fe$_3$O$_4$ [13]	477	11	5.24	0.017	35	0.8	7×104	100-1000	10-20
γ-Fe$_3$O$_4$ [1]	416	4.6	5.20	0.017	-	-	-	100-1000	10
Due to the very low (0.017) volume magnetic packing fraction of nanoparticles (ε) and to the thickness of the biological coating of the nanoparticle, the nanoparticles are well isolated from one another and, therefore, the interactions between them (Van der Waals and dipole-dipole) may be neglected [8,15].

In the case of Fe$_3$O$_4$ nanoparticles (figure 1), for the 10 kH/m amplitude of the magnetic field, it has been found that the maximum SAR can be obtained if the magnetic diameter of the nanoparticles is \sim15-17 nm, depending on the frequency (100 - 1000 kHz); at lower frequencies the diameter has a higher value. Highest maximum for SAR is \sim27 W/g and it can be obtained at the diameter of \sim15 nm and frequency of 1 MHz.

In the case of Fe$_3$O$_4$ nanoparticles (figure 1), for the 10 kH/m amplitude of the magnetic field, it has been found that the maximum SAR can be obtained if the magnetic diameter of the nanoparticles is \sim15-17 nm, depending on the frequency (100 - 1000 kHz); at lower frequencies the diameter has a higher value. Highest maximum for SAR is \sim27 W/g and it can be obtained at the diameter of \sim15 nm and frequency of 1 MHz.

In the case of Fe$_3$O$_4$ nanoparticles (figure 1), for the 10 kH/m amplitude of the magnetic field, it has been found that the maximum SAR can be obtained if the magnetic diameter of the nanoparticles is \sim15-17 nm, depending on the frequency (100 - 1000 kHz); at lower frequencies the diameter has a higher value. Highest maximum for SAR is \sim27 W/g and it can be obtained at the diameter of \sim15 nm and frequency of 1 MHz.

In the case of Fe$_3$O$_4$ nanoparticles (figure 1), for the 10 kH/m amplitude of the magnetic field, it has been found that the maximum SAR can be obtained if the magnetic diameter of the nanoparticles is \sim15-17 nm, depending on the frequency (100 - 1000 kHz); at lower frequencies the diameter has a higher value. Highest maximum for SAR is \sim27 W/g and it can be obtained at the diameter of \sim15 nm and frequency of 1 MHz.

In the case of Fe$_3$O$_4$ nanoparticles (figure 1), for the 10 kH/m amplitude of the magnetic field, it has been found that the maximum SAR can be obtained if the magnetic diameter of the nanoparticles is \sim15-17 nm, depending on the frequency (100 - 1000 kHz); at lower frequencies the diameter has a higher value. Highest maximum for SAR is \sim27 W/g and it can be obtained at the diameter of \sim15 nm and frequency of 1 MHz.

In the case of Fe$_3$O$_4$ nanoparticles (figure 1), for the 10 kH/m amplitude of the magnetic field, it has been found that the maximum SAR can be obtained if the magnetic diameter of the nanoparticles is \sim15-17 nm, depending on the frequency (100 - 1000 kHz); at lower frequencies the diameter has a higher value. Highest maximum for SAR is \sim27 W/g and it can be obtained at the diameter of \sim15 nm and frequency of 1 MHz.
large diameters. When the magnetic field reaches to 20 kA/m (figure 3(b)), the highest maximum of SAR increases significantly from ~15 W/g to about ~38 W/g, at the biological limit, for the 17 nm diameter. In this case, the SAR still remains high (~30 W/g) for $D > 22$ nm, due to Brown relaxation.

4. Conclusions

The 3D study allowed us to optimize superparamagnetic hyperthermia, in order to apply it in practice: by finding the most suitable bionanoparticles, as material and size, and also as magnetic field parameters (f and H), in order to obtain the highest SAR within the biological accepted limit.

References
[1] Rosensweig R E 2002 J. Magn. Magn. Mater. 252 370
[2] Tanaka K, Ito A, Kobayashi T, Kawamura T, Shimada S, Matsumoto K, Saida T and Honda H 2005 Inter. J. Cancer 116 624
[3] Caizer C, Hadaruga N, Hadaruga D, Tanasie G and Vlazan P 7th Int. Conf. on Inorganic Materials 12 – 14 September 2010, Biarritz, France
[4] Huang S H 2008 Adv. Drug Deliv. Rev. 60 1167
[5] Gazeau F, Lévy M and Wilhelm C 2008 Nanomedicine 3 831
[6] Habib A H, Ondek C L, Chaudhary P, Bockstaller M R and McHenry M E 2008 J. Appl. Phys. 103 07A307
[7] Hergt R and Dutz S 2007 J. Magn. Mater. 311 187
[8] Caizer C 2003 J. Phys.: Condens. Matter 15 765
[9] Bakoglidis K D, Simeonidis K, Sakellari D, Stefanou G and Angelakeris M 2012 IEEE Trans. Magn. 48 1320
[10] Néel L 1955 Adv. Phys. 4 191
[11] Shliomis M 1974 Sov. Phys. Uspekhi 17 153
[12] Jacobs I S and Bean C P 1963 Magnetism vol III, ed G T Rado and H Suhl (New York: Academic Press)
[13] Smitt J and Wijen H P J 1961 Les Ferrites (Paris: Bibl. Tech. Philips)
[14] Li J and Loh X J 2008 Adv. Drug Deliv. Rev. 60 1000
[15] Chantrell R W, Walmsley N S, Gore J and Maylin M 1999 J. Magn. Magn. Mater. 118 169
[16] Mørup S 1983 J. Magn. Magn. Mater. 37 39