Development of the German version of the patient safety climate inventory to the Austrian context

Šehad Draganović 1, Guido Offermanns 1,2

ABSTRACT

Objectives In recent years, patient safety culture (PSC) in hospitals, including its development and measurement, has increasingly received attention in Europe. Even though several instruments have been developed for PSC measurement in European countries, there is, to date, no validated measure to assess PSC in Austria. The study at hand addresses this gap in the evidence base by psychometrically assessing the German ‘Patient Safety Climate Inventory’ (PaSKI) in terms of its potential suitability for the Austrian healthcare system. The goal is to theoretically develop and empirically verify a separate instrument for PSC measurement in Austria.

Setting Ten hospitals

Participants Healthcare professionals (n=1202); doctors (n=142), nurse (n=645), other health workers (n=51), medical technology professions (n=170), management/administration (n=76), other (n=20), no response (n=98).

Primary and secondary outcome measures The pretest was conducted with 101 health professionals. Psychometric evaluations, including exploratory factor analysis and confirmatory factor analysis, were performed with both an original version of the PaSKI and an adapted one. The original PaSKI and the newly adapted ‘Austrian Patient Safety Climate Inventory’ (A-PaSKI) were then compared.

Results The A-PaSKI’s factor structure developed in our study differs from the original 14-factor structure (49 items) of the PaSKI. The new instrument consists of 10 factors (30 items), comprising seven departmental factors, two hospital factors, and one outcome factor. The new instrument A-PaSKI revealed satisfactory results on the model-level and internal consistency. The confirmatory factor analysis for the A-PaSKI (χ² (360)=1408.245, p=0.0001) showed a good model fit, and the absolute and relative fit indices showed an excellent model adjustment. The construct validity was acceptable for nine and unacceptable for one factor.

Conclusions This is the first validation study of a standardised safety culture measure in Austrian hospitals. The Austrian version of PaSKI demonstrated good psychometric properties, with acceptable to good internal consistency and construct validity for use in Austrian hospitals.

INTRODUCTION

Over the last few years, patient safety has received increased attention as the scale of safety problems in healthcare has become apparent. 1 The estimated absolute number of adverse events (AEs) in the USA appears to be four times as high (400 000) as the number documented in the first published results of 1999 (98 000). 2 Most of this increase is due to population growth and ageing. However, the AE mortality rate resulting from medical treatment decreased by 21% in the USA in the time period from 1990 to 2016. 3 In European countries, it is estimated that one in every 10 patients is harmed while receiving hospital care. In Organisation for Economic Co-operation and Development countries, 15% of total hospital activity and expenditure are a direct result of AE. 4 These studies demonstrate that AEs are still a significant public health challenge internationally. An AE is a circumstance or event that results in a patient’s injury due to a medical intervention rather than the underlying medical condition. 5 AEs are also associated with high costs, complications and unnecessary readmissions to hospitals. 6
Many authors have called for greater attention to be given to the development of a patient safety culture (PSC) as a foundational step to reducing errors and AEs. Safety culture is generally defined as ‘the product of individual and group values, attitudes, perceptions, competencies and patterns of behaviour that determine the commitment to, and the style and proficiency of, an organisation’s health and safety management’. Organisations with a positive safety culture are characterised by communications founded on mutual trust, by shared perceptions of the importance of safety and by confidence in the efficacy of preventive measures. A safety culture promotes an individual’s and an organisation’s values, attitudes and perceptions regarding patient safety. A considerable number of studies indicate that a well-implemented PSC is linked to reduced infections, lower rates of AE, decreased readmission rates, direct positive relationships with financial performance and motivation to work safely.

Before creating and improving PSC, it is crucial to measure the status quo to define a starting point. This process was adopted in the development of several corresponding measurement instruments. The European Union alone, 19 different instruments are currently being used. The two most widely applied PSC instruments in hospital settings are the Safety Attitude Questionnaire (SAQ) and the Hospital Survey on Patient Safety Culture (HSOPSC) by the Agency for Healthcare Research and Quality (AHRQ). The HSOPSC is used in more than 45 countries and can thus be rated as the most widely used instrument worldwide. The HSOPSC questionnaire by AHRQ has no explicit theoretical basis. Rather, the HSOPSC was developed by conducting a literature review in the areas of safety management and accidents, organisational and safety climate and culture, medical error and error reporting, and patient safety. Subsequently, key dimensions of PSC were identified, and survey items were developed. For those reasons, the AHRQ first validated the self-developed instrument called HSOPSC in the USA, and then recommended its validation for other countries.

Seven instruments measuring PSC are currently being used in the DACH countries (DACH is an acronym used to describe Germany (D), Austria (A) and Switzerland (CH)). The instrument ‘Vienna Safety Culture Questionnaire’ (WSF) was developed and validated in Austria. However, the authors did not include an exploratory factor analysis (EFA) in the related study, which was only conducted in the pretest. In addition to this, the WSF was only tested with nursing staff and staff in a psychiatric ward. Hence, this study’s validity has not been confirmed, and it can not be applied to all hospital staff. There is, therefore, no psychometrically tested instrument to measure PSC in Austria. Instead, PSC has been measured using the HSOPSC which has been tested and adapted to Germany or Switzerland even though these two validation studies revealed entirely different factor structures. However, there are a number of reasons why the German and Swiss versions cannot be immediately adapted to Austria. First, in the German language, there are several linguistic variations in the DACH countries, and the meaning of words may vary across cultures. Second, in the basic validated translation strategies for HSOPSC published by the AHRQ, there is no report on a validated German language version of the HSOPSC for cross-cultural research in DACH countries. Third, the DACH countries’ health systems differ in several dimensions (eg, organisation, financing, provision of services, principal health reforms), thus directly or indirectly influencing PSC.

The objective of this research project was to develop an instrument for measuring PSC in Austria. In contrast to previous studies that used the HSOPSC as an instrument for psychometric analysis, we use the Patient Safety Climate Inventory (PaSKI) as a base. The PaSKI is the translated, extended, and psychometrically tested German version of the HSOPSC in Switzerland. It includes all HSOPSC factors and two additional factors with nine new items. The factors unit management support for patient safety (five items) and Unit handoffs and transitions (four items) were added to the PaSKI instrument to account for the importance of unit management in this type of hospital. We investigate if all 14 factors of the PaSKI (49 items) are applicable for measuring PSC in Austria. We use EFA and confirmatory factor analysis (CFA) to develop a sound factor structure for measuring PSC in Austria and subsequently review this factor structure. After the model-fit testing with CFA, the internal consistency and the construct level was calculated. With a validated instrument, hospitals will be able to obtain valid results on PSC. In this way, the hospitals will be able to sensitise their personnel in this area, measure and analyse their PSC’s status quo, identify strengths and weaknesses of their PSC, implement and evaluate targeted PSC measures, and draw comparisons both within and outside the organisation.

METHODS

Instrument and factors

The PaSKI is the theoretical basis for this study. The PaSKI consists of 14 factors, where each factor consists of 3–4 instrument items, totalling 49 instrument items. The instrument uses a five-point Likert response scale of agreement from ‘strongly disagree’ to ‘strongly agree’ or frequency from ‘never’ to ‘always’. It includes nine unit-level factors (supervisor, manager expectations and actions promoting safety, organisational learning—continuous improvement, teamwork within units, communication openness, feedback and communication about error, non-punitive response to error, staffing, unit management support for patient safety and unit handoffs and transition), three hospital-level factors (hospital management support for patient safety, teamwork across hospital units and hospital handoffs and transitions) and two outcome factors (overall perceptions of safety and Frequency of event reporting).
Translation, survey design and pretest

The PaSKI had already been translated into German by the ETH Zurich (Swiss Federal Institute of Technology) and was made available to the author SD by Tanja Manser on request. Pfeiffer and Manser translated the HSOPSC version into German and then back-translated it with the help of various translators. Inconsistencies in the translations were resolved through discussions between the translators, the healthcare professionals and survey experts comparing original and translated versions.

After rearranging the instrument in a new design, a pretest with 101 participants was conducted in a hospital. We used a survey design in line with the research recommendation. The data were collected online using LimeSurvey software. The invitation mode was a short email, with one reminder after 2 weeks in each hospital and was conducted between September and December 2017. In the last week, the quality managers held a meeting to achieve improved interpretability. All questionnaires with complete answers amounting to a minimum of 30% were accepted. The CFA can only be calculated with complete answers. The missing values were substituted for all other items utilising the maximum likelihood-expectation-maximisation algorithm (EM algorithm). The EM algorithm uses a two-step (an expectation step and a maximisation step) iterative procedure where missing observations are subsequently estimated. The EM algorithm provides estimates of the means and the covariance matrix, which can be used to receive consistent estimates of the parameters of interest.

Further, all negative questions were decoded and labelled ‘r’. On the 5-point Likert scale, all items were scored from ‘strongly disagree’ (1) to ‘strongly agree’ (5) or, in case of frequency from ‘never’ (1) to ‘always’ (5). All data were evaluated with SPSS Statistics V.24.0 (Superior Performing Software System) and AMOS V.24.0 (Analysis of Moment Structures).

EFA: alternative model

An EFA was used to calculate the new factor structure based on empirical data from hospitals in Austria. The new factor structure constituted the calculation basis for the subsequent CFA, which only assumes that the factor structure was tested with empirical data. The EFA is the first prerequisite to test the model. To this end, the Kaiser-Meyer-Olkin-criterion (KMO) and the measure of sample adequacy (MSA) were calculated. Additionally, the EFA was computed using the maximum-likelihood analysis, which is also used by AMOS and thus a basis for CFA. All factors were strongly correlated, and we therefore calculated an oblique rotation for the factors to achieve improved interpretability. Items with a lower than 0.4 factor loading and high cross-loadings between first and second loading were excluded from achieving a convergent and discriminant validity.

Confirmatory factor analysis

We conducted two CFA’s, one to test whether the theoretically developed PaSKI from Switzerland was compliant with the empirical data from hospitals in Austria; the second one was to test whether the new developed alternative model, the so-called Austrian Patient Safety Climate Inventory (A-PaSKI), was compliant with the empirical data from hospitals in Austria. The models were tested on three levels—first on the model level, second for internal consistency, third on the construct level—and first assessed on the model level via global and local model fit. At the model level, to avoid all potential difficulties associated with χ², other absolute fit indices were calculated, such as the root-mean-square-error of approximation (RMSEA) and Goodness-of-Fit-Index (GFI). Moreover, the comparative fit coefficient (CFI) was calculated as an incremental or comparative fit index. Also, the model fit was tested with a standardised root mean square residual (SRMR) by calculating the difference between the empirical variance-covariance of a variable and the
theoretically calculated variance-covariance of this variable. The last coefficient calculated to assess model fit in this study was the Tucker-Lewis Index (TLI). The internal consistency was calculated using Cronbach’s α for the original 14-factor PaSKI and for the new 10-factor A-PaSKI. In a third step, the models were tested on a construct level. CFA was used to determine the average extracted variance (AVE) and discriminant validity through the Fornell-Larcker criterion (FLR).

Model comparison
Apart from the abovementioned individual significance tests and other coefficients, these 10-factor and 13-factor models were directly compared using so-called information criteria. These criteria take into account the adjustments (model fit) of the respective model and the model parameters and the sample size. In the study at hand, the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) were used.

Patient and public involvement
Patients or the public were not involved in the design, or conduct, or reporting, or dissemination plans of our research.

RESULTS
The analysis was conducted in five steps: In the first step, the pretest results and feedback from health professionals were presented. In the second step, we explained how the response rate was calculated. Subsequently, sample demographics were presented. In the third step, the new questionnaire was presented. The new questionnaire was developed using EFA and checked using CFA. In the fourth step, the results of the new questionnaire A-PaSKI were compared with the original PaSKI questionnaire. Finally, the reliability and validity results of the questionnaire were presented. In the following, the results gained are discussed according to these five steps.

Survey design and pretest
The EFA pretest suggested that PaSKI had a good factor structure, and it was similar to the original PaSKI instrument. Therefore, the original PaSKI instrument structure and composition was retained.

Feedback from healthcare professionals
Changes were made following feedback from health professionals. Two items were removed as they were not understood or misunderstood (We have enough staff to handle the workload, u_A2; and We work in ‘crisis mode’ trying to do too much, too quickly, u_A14). Minor changes were made to five items (u_D1, u_D2, u_D3, u_A5r and u_A11). One item was added as it was considered to be of particular importance to Austrian hospitals (What is your primary work area or unit in this hospital?) Hence, the instrument consisted of 14 factors with 47 items.

Response rate and sample demographics
The collegial management officials at two hospitals did not allow us to ask or rephrase those two items: Hospital units do not cooperate well with each other (h_F2r) and Problems often occur during the exchange of information in the unit (u_F7r). Those items were only slightly improved in language. The management argued that these questions could not be asked as they suggested that the current workforce could be changed. However, we used these two questions in eight other hospitals. Therefore, those items were included in the analysis. The respective response rate was completely sufficient for the psychometric analysis. The survey was sent to 6587 potential participants, 1525 returned the questionnaire (response rate of 23.1%). All questionnaires with complete answers amounting to a minimum of 30% were accepted. All other questionnaires with missing values were replaced using the EM algorithm method. After our calculations following the EM algorithm, 1202 surveys remained for the psychometric analysis. The response rate in the ten participating hospitals ranged from 18.2% to 32.1%. Our sample was derived from 6 professional groups (doctors, nurse, other health workers, medical technology professions, management/administration and other) and 17 different hospital units (see table 1). However, to check on potential sample bias, we performed two nonresponse bias techniques (wave analysis and archival analysis) to determine significant differences between responders and non-responders. During wave analysis, we found significant differences in 7 from 30 variables. We found no significant differences between professional groups in our sample and professional groups in other Austria hospitals in the archival analysis.

Exploratory factor analysis
The results of the adequacy of data demonstrated that the empirical data from hospitals in Austria is a suitable basis for applying the EFA. The value of the KMO coefficient amounted to 0.951, the values of the MSA coefficient for individual items were between 0.847 and 0.976. The Bartlett test was highly significant ($\chi^2(435)=18077.817; p=0.0001$). Through EFA, a new model—the A-PaSKI—was developed featuring a new 10-factor structure with 30 items: seven-unit factors (supervisor, manager expectations and actions promoting safety, teamwork within units, communication openness, feedback and communication about error, non-punitive response to error, unit management support for patient safety, unit handoffs and transitions), two hospital factors (hospital management support for patient safety, hospital handoffs and teamwork across hospital units) and one outcome factor (frequency of event reporting) (see table 2). A total of 17 items of the original 14-factor PaSKI model were excluded due to their low factor loading and high cross-loadings between first and second loading (see online supplemental appendix 1).

However, two items with a factor loading smaller than 0.4 were accepted, as they were very close to the 0.4
Hospitals	Doctors	Nurse/registered nurse	Other health workers	Medical technology professions	Management/administration	Other	Total
	N (%)	N (%)	N (%)	N (%)	N (%)	N (%)	N (%)
Hospital A	1 (0.7)	11 (1.7)	0 (0.0)	2 (1.2)	4 (5.3)	0 (0.0)	18 (1.6)
Hospital B	0 (0.0)	15 (2.3)	2 (3.9)	9 (5.3)	8 (10.5)	0 (0.0)	34 (3.1)
Hospital C	14 (9.9)	81 (12.6)	8 (15.7)	32 (18.9)	2 (2.6)	0 (0.0)	137 (12.4)
Hospital D	3 (2.1)	39 (6.0)	0 (0.0)	21 (12.4)	4 (5.3)	1 (5.0)	68 (6.2)
Hospital E	9 (6.3)	26 (4.0)	0 (0.0)	12 (7.1)	9 (11.8)	1 (5.0)	57 (5.2)
Hospital F	13 (9.2)	30 (4.7)	2 (3.9)	5 (2.9)	3 (3.9)	1 (5.0)	54 (4.9)
Hospital G	9 (6.3)	69 (10.7)	13 (25.5)	20 (11.8)	7 (9.2)	3 (15.0)	121 (11.0)
Hospital H	18 (12.7)	32 (5.0)	6 (11.8)	5 (2.9)	5 (6.6)	1 (5.0)	67 (6.1)
Hospital I	2 (1.4)	24 (3.7)	2 (3.9)	10 (5.9)	4 (5.3)	5 (25.0)	47 (4.3)
Hospital J	73 (51.4)	318 (49.3)	18 (35.3)	54 (31.8)	30 (39.5)	8 (40.0)	501 (45.4)
Total	142 (100.0)	645 (100.0)	51 (100.0)	170 (100.0)	76 (100.0)	20 (100.0)	1104 (100.0)

Units in hospitals	Doctors	Nurse/registered nurse	Other health workers	Medical technology professions	Management/administration	Other	Total				
	N (%)	N (%)	N (%)	N (%)	N (%)	N (%)	N (%)				
Anaesthesiology and intensive care	28 (20.0)	95 (15.0)	0 (0.0)	1 (0.6)	0 (0.0)	1 (5.0)	125 (11.5)				
Accident surgery	29 (20.7)	34 (5.4)	4 (7.8)	8 (4.7)	2 (2.9)	1 (5.0)	78 (7.2)				
Roentgen	0 (0.0)	0 (0.0)	0 (0.0)	22 (13.0)	0 (0.0)	1 (5.0)	23 (2.1)				
Laboratory	1 (0.7)	0 (0.0)	0 (0.0)	22 (13.0)	0 (0.0)	1 (5.0)	24 (2.2)				
Surgery	9 (6.4)	57 (9.0)	3 (5.9)	2 (1.2)	3 (4.3)	1 (5.0)	75 (6.9)				
Internal medicine	10 (7.1)	74 (11.7)	6 (11.8)	2 (1.2)	11 (15.9)	0 (0.0)	103 (9.5)				
Neurology	4 (2.9)	12 (1.9)	1 (2.0)	16 (9.5)	1 (1.4)	0 (0.0)	34 (3.1)				
Orthopaedics	9 (6.4)	69 (10.9)	10 (19.6)	18 (10.7)	6 (8.7)	2 (10.0)	114 (10.5)				
Psychiatry/mental health	7 (5.0)	30 (4.7)	2 (3.9)	11 (6.5)	0 (0.0)	0 (0.0)	50 (4.6)				
Pneumology	5 (3.6)	11 (1.7)	0 (0.0)	2 (1.2)	3 (4.3)	1 (5.0)	22 (2.0)				
Radio- oncology	3 (2.1)	5 (0.8)	1 (2.0)	9 (5.3)	0 (0.0)	1 (5.0)	19 (1.8)				
Ophthalmology	2 (1.4)	8 (1.3)	1 (2.0)	4 (2.4)	3 (4.3)	0 (0.0)	18 (1.7)				
Dermatology	1 (0.7)	14 (2.2)	0 (0.0)	0 (0.0)	1 (1.4)	2 (10.0)	18 (1.7)				
Gynaecology	4 (2.9)	19 (3.0)	6 (11.8)	1 (0.6)	1 (1.4)	2 (10.0)	33 (3.0)				
Ear–nose–throat diseases	3 (2.1)	11 (1.7)	1 (2.0)	1 (0.6)	0 (0.0)	0 (0.0)	16 (1.5)				
Paediatric medicine	11 (7.9)	47 (7.4)	0 (0.0)	2 (1.2)	0 (0.0)	0 (0.0)	60 (5.5)				
Administration	0 (0.0)	0 (0.0)	1 (2.0)	5 (3.0)	19 (27.5)	2 (10.0)	27 (2.5)				
No response	14 (10.0)	148 (23.3)	15 (29.4)	43 (25.4)	19 (27.5)	5 (25.0)	244 (22.5)				
Total	140 (100.0)	634 (100.0)	51 (100.0)	169 (100.0)	69 (100.0)	20 (100.0)	1083 (100.0)				
Item	Factor loading										
--	----------------										
Problem often occur in the exchange of information across hospital units (h_F7r)	1.024 -0.055 -0.035 -0.019 0.017 0.003 0.000 -0.015 0.031 0.036										
It is often unpleasant to work with staff from other hospital units (h_F6r)	0.504 0.087 0.043 0.055 0.000 -0.036 0.020 0.060 -0.056 -0.024										
Unit management considers patient safety when programme changes are discussed (S12)	0.046 0.709 -0.025 -0.004 -0.001 -0.040 -0.090 -0.028 -0.041 -0.034										
Unit management has a clear picture of the risk associated with patient care (S11)	0.015 0.689 -0.024 0.022 0.005 0.019 0.018 0.053 0.031 -0.006										
Unit management provides a work climate that promotes patient safety (u_F1)	0.000 0.534 -0.038 0.102 -0.007 -0.058 -0.070 0.032 -0.189 0.019										
The actions of unit management show that patient safety is a top priority (u_F8)	0.010 0.458 -0.037 0.022 0.062 -0.092 -0.030 -0.026 -0.196 0.025										
When a mistake is made, but has no potential to harm the patient, how often is this reported? (u_D2)	0.020 0.038 -0.934 -0.010 -0.037 0.008 0.041 -0.003 0.040 -0.001										
When a mistake is made, but is caught and corrected before affecting the patient, how often is this reported? (u_D1)	-0.014 0.019 -0.829 0.016 0.040 -0.019 -0.022 -0.047 -0.049 -0.014										
When a mistake is made that could harm the patient, but does not, how often is this reported? (u_D3)	-0.009 -0.034 -0.762 -0.003 0.040 -0.034 0.010 0.083 -0.037 0.043										
In this unit, people treat each other with respect (u_A4)	-0.030 -0.031 -0.022 0.840 0.012 -0.008 0.017 0.025 -0.027 -0.031										
When a lot of work needs to be done quickly, we work together as a team to get the work done (u_A3)	0.035 -0.017 0.019 0.743 0.027 -0.027 0.013 -0.012 0.033 0.067										
People support one another in this unit (u_A1)	0.026 0.079 -0.004 0.587 0.007 0.009 -0.009 0.034 -0.009 0.006										
Important patient care information is often lost during shift changes (u_F5r – recoded)	-0.046 -0.001 -0.069 0.053 0.843 0.009 -0.031 0.023 0.059 -0.001										
Things 'fall between the cracks' when transferring patients in the unit (u_F3r)	0.159 -0.010 -0.079 -0.031 0.653 0.045 -0.113 -0.012 -0.077 -0.122										
Shift changes are problematic for patients in this unit (u_F11r – recoded)	0.013 0.039 0.071 0.060 0.570 -0.078 0.054 -0.010 -0.061 0.095										
My supervisor/manager seriously considers staff suggestions for improving patient safety (u_B2)	0.012 0.037 -0.022 -0.013 -0.008 -0.866 -0.086 -0.019 0.029 -0.054										
My supervisor/manager says a good word when he/she sees a job done according to established patient safety procedures (u_B1)	0.018 -0.047 -0.075 0.086 -0.045 -0.666 -0.058 0.028 -0.007 0.003										
Item	Factor loading	1	2	3	4	5	6	7	8	9	10
---	-----------------------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------
My supervisor/manager overlooks patient safety problems that happen over and over (u_B4r)	0.084 0.128 0.009 0.014 0.109 −0.521 0.087 0.015 −0.080 0.042										
Whenever pressure builds up, my supervisor/manager wants us to work faster, even if it means taking shortcuts (u_B3r)	−0.016 0.042 0.045 −0.035 0.139 −0.322 0.090 0.144 −0.124 0.143										
Factor 7: feedback and communication about error, Cronbach α=0.762	We are given feedback about changes put into place based on event reports (u_C1)	0.002 0.060 0.018 −0.015 0.041 −0.100 −0.669 0.092 −0.073 0.051									
	We are informed about errors that happen in this unit (u_C3)	0.013 0.116 −0.072 0.007 0.114 −0.061 −0.531 0.074 −0.013 0.167									
Factor 8: non-punitive response to error, Cronbach α=0.749	Staff feel like their mistakes are held against them (u_A8r)	0.006 −0.029 −0.007 0.119 −0.005 −0.042 −0.038 0.707 −0.028 −0.073									
	Staff worry that mistakes they make are kept in their personnel file (u_A16r)	0.057 0.030 −0.026 −0.066 −0.021 0.026 −0.032 0.627 −0.028 0.060									
	When an event is reported, it feels like the person is being written up, not the problem (u_A12r)	0.027 0.063 −0.042 0.080 0.051 −0.047 −0.032 0.560 −0.034 −0.036									
Factor 9: hospital management support for patient safety, Cronbach α=0.870	The actions of hospital management show that patient safety is a top priority (h_F8)	−0.002 0.042 −0.031 0.015 −0.014 −0.013 −0.054 −0.050 −0.822 0.013									
	Hospital management seems interested in patient safety only after an adverse event happens (h_F9r)	0.044 −0.050 −0.026 −0.047 0.033 0.007 0.030 0.112 −0.750 0.005									
	Hospital management provides a work climate that promotes patient safety (h_F1)	0.019 0.117 −0.015 0.072 0.002 −0.010 −0.028 −0.009 −0.727 −0.023									
Factor 10: communication openness, Cronbach α=0.664	Staff feel free to question the decisions or actions of those with more authority (u_C4)	0.029 −0.056 −0.055 0.096 −0.035 0.027 −0.132 −0.055 −0.022 0.599									
	Staff are afraid to ask questions when something does not seem right (u_C6r)	0.009 0.108 −0.017 −0.015 0.151 −0.109 0.141 0.246 0.035 0.423									
	In this unit, we discuss ways to prevent errors from happening again (u_C5)	0.032 0.153 −0.147 0.055 0.016 −0.138 −0.161 0.028 −0.071 0.393									

A-PaSKI, Austrian Patient Safety Climate Inventory.
Model fit indices or original and alternative A-PaSKI models

Model fit index	Criterion	Original (O) 13-factor model	Alternative (A) 10-factor model
χ^2		3589.731	1408.245
df		867	360
p	Significant p values expected*	0.000	0.000
χ^2/df	<5**	4.140	3.911
CFI	>0.90*	0.899	0.941
TLI	>0.90*	0.885	0.929
RMSEA	<0.07*	0.051	0.049
SRMR	<0.08*	0.052	0.041
GFI	>0.9***	0.874	0.927
AIC		3925.7	1618.2
ΔAIC†	>10****	2307.5	
BIC		4781.1	2152.8
ΔBIC‡		2628.3	

Threshold values references: *45, **79, ***80, ****55.
†ΔAIC = AIC$_O$ – AIC$_A$.
‡ΔBIC = BIC$_O$ – BIC$_A$.

AIC, Akaike information criterion; A-PaSKI, Austrian Patient Safety Climate Inventory; BIC, Bayesian information criterion; CFI, comparative fit coefficient; GFI, Goodness-of-Fit Index; RMSEA, root mean square error of approximation; SRMR, standardised root mean square residual; TLI, Tucker-Lewis Index.

threshold and regarded as critical to the assessment of safety culture. These were ‘in this unit, we discuss ways to prevent errors from happening again’ (u.C5) (loading 0.393) and ‘Whenever pressure builds up, my supervisor/manager wants us to work faster, even if it means taking shortcuts’ (u.B3r) (loading 0.322). During the EFA, three factors were excluded in their entirety (overall perceptions of safety, organisational learning—continuous improvement and staffing). Two items (u.A2 and u.A14) from staffing were excluded before the EFA and two more items during the EFA. The factors hospital handoffs and transitions and teamwork across hospital units were incorporated in a different factor in the EFA.

Confirmatory factor analysis

We carried out two CFA to compare the findings from the original PaSKI model with the alternative A-PaSKI model. The CFA for the original PaSKI model could not be calculated for Staffing, as its data was not sufficient. Neither was it possible to use AMOS. As a result, the CFA was calculated for the theoretically developed model without Staffing (13-factor model). This proved to be an adequate model (χ^2 (867) = 3589.731, p=0.0001) (see table 3). The χ^2 test demonstrated the model scanty acceptable fit, as χ^2/df was smaller than 5 (χ^2/df=4.140). The two absolute fit indices (RMSEA=0.051, SRMR=0.052) demonstrated a good model fit, while the third fit index showed non-acceptable model fit (GFI=0.874). By contrast, the relative fit indices (CFI=0.899, TLI=0.885) revealed a non-acceptable model fit.

The CFA for the 10-factor A-PaSKI (χ^2 (360)=1408.245, p=0.0001) indicated a better model as opposed to the theoretical PaSKI. The χ^2 test was highly significant, but in contrast to the theoretical model, the χ^2 test presented a better model fit (χ^2/df=3.911). All indices exhibited a better model fit. Moreover, the absolute fit indices showed a better model adjustment (RMSEA=0.049, SRMR=0.041, GFI=0.927)—as did the relative fit indices (CFI=0.941, TLI=0.929).

Reliability

The results from the Cronbach’s α for the theoretical PaSKI revealed that only nine factors were above the acceptable value ($\alpha\geq0.70$). For five factors, the values were close to the limit. These results support the Cronbach’s α values from Switzerland, which were similar (see table 4).

The 10-factor structure’s reliability (Cronbach’s α) for individual factors lay between 0.664 and 0.895, whereby the factor Communication openness is slightly below a α-acceptable value ($\alpha\geq0.70$), whereas the other three had positive values (see table 5).

Construct validity

We applied AVE and FLR for PaSKI (13-factor model) and A-PaSKI (10-factor model). AVE revealed unacceptable results ($\text{AVE} \geq 0.5$) regarding the theoretical 13-factor models construct validity for the following factors: organisational learning—continuous improvement, teamwork within units, communication openness, non-punitive response to error, unit handoffs and transitions, teamwork across hospital units and overall perceptions of safety. The AVE is acceptable for seven factors and unacceptable for the six remaining factors. The FLR results were even worse, as the results were positive (FLR ≤ 1) for three factors only: teamwork within units, non-punitive response to error, frequency of event reporting.

The alternative 10-factor A-PaSKI’s construct validity shows that the AVE is unacceptable for just one factor, communication openness ($\text{AVE} \geq 0.5$), and acceptable for all other factors. The FLR revealed similar values, whereby communication openness and supervisor, manager expectations and actions promoting safety, and unit management support for patient safety had unacceptable values, whereas the other three had positive values (see table 5).
DISCUSSION
This is the first PaSKI validation study in Austria to include all professional groups in a hospital (ie, doctors, nurses, administrative staff, etc.). We were able to develop a new 10-factor model, namely the A-PaSKI, as a basis for measuring PSC in Austria. The new 10-factor model with 30 items demonstrated a particularly good model fit with our data.

The model fit (χ^2 test) revealed positive results for both models. Moreover, the other individual model indices in the CFA highlighted the alternative model (A-PaSKI). The A-PaSKI also demonstrated better results on the

| Table 4 | Internal consistency and construct validity of the original model PaSKI |
| Factors | # of items | # of items | # of items | Cronbach's α | Cronbach's α | Cronbach's α |
	AUT	CHE	GER	AUT	CHE*	GER**
Unit level						
Supervisor, manager expectations and actions promoting safety	4	4	3	0.79	0.78	0.75
Organisational learning—continuous improvement	3	3	/	0.67	0.68	/
Teamwork within units	4	4	3	0.65	0.73	0.78
Communication openness	3	3	/	0.64	0.64	/
Feedback and communication about error	3	3	/	0.78	0.79	/
Non-punitive response to error	3	3	3	0.74	0.71	0.73
Staffing	4	3	/	0.66	0.61	/
Unit management support for patient safety	5	4	/	0.87	/	/
Unit handoffs and transitions	4	4	/	0.64	/	/
Hospital level						
Hospital management support for patient safety	3	3	3	0.70	0.83	0.83
Teamwork across hospital units	4	4	/	0.72	0.76	/
Hospital handoffs and transitions	2	2	/	0.88	0.71	/
Outcome measures						
Overall perceptions of safety	4	4	/	0.86	0.75	/
Frequency of event reporting	3	3	3	0.78	0.88	0.87

Threshold value references: *25, **31
Bold values are data from this study.
AUT, Austria; CHE, Switzerland; GER, Germany; PaSKI, Patient Safety Climate Inventory.

| Table 5 | Internal consistency and construct validity of alternative model A-PaSKI |
Factors	# of items	Cronbach's α	AVE	FLR
Unit level				
Supervisor, manager expectations and actions promoting safety	4	0.799	0.52	1.03
Teamwork within units	3	0.765	0.56	0.68
Communication openness	3	0.664	0.41	1.17
Feedback and communication about error	2	0.762	0.63	0.95
Non-punitive response to error	3	0.749	0.50	0.94
Unit management support for patient safety	4	0.836	0.57	1.11
Unit handoffs and transitions	3	0.781	0.55	0.75
Hospital level				
Hospital management support for patient safety	3	0.870	0.69	1.00
Hospital handoffs and teamwork across hospital units	2	0.733	0.59	0.72
Outcome				
Frequency of event reporting	3	0.895	0.74	0.66

A-PaSKI, Austrian Patient Safety Climate Inventory; AVE, average extracted variance; FLR, Fornell-Larcker criterion.
internal consistency, as only factor communication openness in Cronbach’s α was slightly below the acceptable value. In the end, the construct level values confirmed the advantages of the A-PaSKI instead of the theoretically developed PaSKI. However, the construct validity in the new model was unacceptable for the factor communication openness. The only other study focusing on adapting the PaSKI instrument yielded similar results to ours—a good model fit of a different factor structure but low international consistency.

The HSOPSC original 12-factor structure has so far only been demonstrated in four countries, with many other validations in different countries finding a different factor structure. Once again, this highlights the necessity to adapt the HSOPSC to the individual healthcare system and speaks against studies that apply the HSOPSC in different cultures without validation.

Three fundamental factors were excluded (overall perceptions of safety, organisational learning—continuous improvement and staffing). Other international psychometric analyses found identical problems with the factors overall perceptions of safety and organisational learning—continuous improvement. Through EFA, we excluded a total of 17 items from the original Swiss PaSKI, seven of which were phrased in the negative, which may have been why the participants did not understand these items. Therefore, it is recommended to phrase items exclusively in the positive. Two items (u_A2 and u_A14) from the factor staffing were excluded in the pretest phase, and two more items (u_A5r and A7r) were excluded in the EFA. The fact that the factor staffing had only two variables during the EFA may be the underlying reason for its exclusion. Also, these variables were hardly loaded, which was also confirmed in the pretest results. This may be because the items were not adapted to the specific linguistic and cultural settings. Other studies, which include the factor staffing, were faced with similar problems. The factors hospital handoffs and transitions and teamwork across hospital units were included in the EFA in one factor. Germany’s psychometric study also merged those two factors.

While Nieva and Sorra state that none of their factors measure the same construct, this is not the case for the Austrian version A-PaSKI. On the one hand, this could be due to the similarity of questions, and on the other hand, both factors dealt with collaboration between teams and units and were also correlated with others.

Implications of findings

This study confirms the importance of adapting the instrument to both the healthcare system and a specific country’s language. The validated instrument is the first step in creating a PSC in Austrian hospitals. Austrian hospitals should now use the developed instrument to launch specific activities aiming at improving their safety culture.

Future directions for research

Further research is needed to add new items or rephrase ones for the factors Staffing, Overall perceptions of safety, organisational learning—continuous improvement and hospital handoffs and transitions. The teamwork across hospital units items should be included in more detailed variables, for example, by deriving variables from theoretical team models. In this way, variables regarding goal orientation, task fulfillment, procedures, collaboration, taking on responsibility, etc., can be obtained. Future research should also generate additional variables for the two existing items of the factor hospital handoffs and transitions to become more stable. In addition to internal consistency, future research should also check for test-retest reliability. Test–retest reliability ensures that the measurements obtained are stable over time. Variables that directly depict patient transfers could be added, for instance, regarding the use of the transfer instrument I-PASS (illness severity, patient summary, action list, situation awareness and contingency plans, and synthesis by receiver). AHRQ has promoted the international translation guidelines for HSOPSC. The global outcomes highlight that these guidelines are insufficient, as the results of the original 12-factor model from the US revealed a worse model fit in some other countries.

Strengths and limitations

Our extensive and broad sample enabled us to cover a wide range of hospital in Austria. We believe that the new instrument can be applicable throughout Austria for the measurement of PSC. The survey also captured the views of a variety of healthcare professions. The study has several limitations. First, the new survey does not demonstrate good values in terms of construct validity for one factor that may limit the results’ interpretation as a whole construct of PSC. Second, we did not examine the link between PSC and objective safety outcomes (eg, medical errors, complication rates or death rate), which will need to be addressed in future studies. Third, the response rate within hospitals was rather low. However, the purpose was to have a large enough sample to assess factor structure; we accept that a higher response rate would be needed for studies assessing and comparing safety cultures. Our sample of health professionals (n=1202) in ten different hospitals and 17 different hospital units was adequate for our psychometric analysis, because our survey included homogeneous populations, that is (persons having some strong group identity) in terms of their attitudes, opinions, perspectives, etc., and the sample is comprehensive across several hospitals, units and professional groups. We could confirm with archival analysis that our sample covers all professionals’ groups very well and is therefore well suited for developing the questionnaire. In summary, the wave analysis also confirmed that our sample is acceptable for the study.
CONCLUSION
The A-PaSKI demonstrates adequate factors, reliability and validity, indicating one problematic factor. Therefore, we recommend using the A-PaSKI in its full form. Caution should be taken when interpreting the data on the factor communication openness. Thus, A-PaSKI provides added value to an empirical development of this instrument and, subsequently, Austria’s PSC. The resulting survey was more culturally relevant and more suitable to capture the conditions encountered by health professionals in Austria.

Acknowledgements
We would like to thank the participants who raised the necessary time to be interviewed and complete the evaluation survey. All the hospitals enabling the study to be carried out for providing their support. We thank Professor Charles Vincent for his comments on an earlier draft of this manuscript.

Contributors
SD is responsible for the overall content as the guarantor. SD and GO are responsible for the conceptualisation, drafting, editing and overall study design. SD completed the psychometric assessment and adapted the survey to the Austrian healthcare context. GO verified the analytical methods. Both authors discussed the manuscript and approved the final version of the document.

Funding
The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests
None declared.

Patient consent for publication
Not applicable.

Ethics approval
The study was approved by the quality, risk and ethics management of the SALK (University Clinics in Salzburg) in Austria (Reference number 09/08/2016). We obtained permission from the collegial leadership (medical director, nursing director and administrative director) to collect data. Participants gave informed consent to participate in the study before taking part.

Provenance and peer review
Not commissioned; externally peer reviewed.

Data availability statement
Data are available on reasonable request. Additional data can be made available on request.

Supplemental material
This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access
This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD
Shah Draganović http://orcid.org/0000-0002-4479-2084

REFERENCES
1. Trbovich PL, Griffin M. Measuring and improving patient safety culture: still a long way to go. BMJ Qual Saf 2016;25:209–11.
2. Brennan TA. The Institute of Medicine report on medical errors—could it do harm? N Engl J Med 2000;342:1123–5.
3. Sunshine J, Moe N, Kassebaum NJ, et al. Association of adverse effects of medical treatment with mortality in the United States: a secondary analysis of the global burden of diseases, injuries, and risk factors study. JAMA Netw Open 2019;2:e187041.
4. Slawomirski L, Auraena A, Kiazina N. The economics of patient safety: strengthening a value-based approach to reducing patient harm at national level. Paris, 2017.
5. World Alliance for Patient Safety. Conceptual framework for the International classification for patient safety. Geneva: World Health Organization, 2009. https://apps.who.int/iris/bitstream/handle/10665/70882/WHO_IER_PSP_2010.2_eng.pdf?sequence=1.
6. Zaher S, Ginsburg L, Chuang Y-T, et al. Patient safety climate (PSC) perceptions of frontline staff in acute care hospitals: examining the role of ease of reporting, unit norms of openness, and participative leadership. Health Care Manage Rev 2015;40:13–23.
7. Griffen MA, Curcuruto M. Safety climate in organizations. Annu Rev Organ Psychol Organ Behav 2016;3:191–212.
8. Danielsson M, Nilsen P, Rutberg H, et al. A national study of patient safety culture in hospitals in Sweden. J Patient Saf 2019;15:328–33.
9. Health and Safety Commission. ACSNI Study Group on human factors: 3rd report: organising for safety. H.M. Stationery office. 1993.
10. Mardon RE, Khanna K, Sorra J, et al. Exploring relationships between hospital patient safety culture and adverse events. J Patient Saf 2010;6:226–32.
11. Nahrgang JD, Morgeson FP, Hofmann DA. Safety at work: a meta-analytic investigation of the link between job demands, job resources, burnout, engagement, and safety outcomes. J Appl Psychol 2011;96:71–94.
12. Upadhyay S, Weech-Maldonado R, Lemak CH, et al. Resource-Based view on safety culture’s influence on hospital performance: the moderating role of electronic health record implementation. Health Care Manage Rev 2020;45:207–16.
13. Hansen LO, Williams MV, Singer SJ. Perceptions of hospital safety climate and incidence of readmission. Health Serv Res 2011;46:596–616.
14. Mazurenko O, Richter J, Swanson-Kazley A, et al. Examination of the relationship between management and clinician agreement on communication openness, teamwork, and patient satisfaction in the US hospitals. J Hosp Adm 2016;5:20.
15. Singer S, Lin S, Falwell A, et al. Relationship of safety climate and safety performance in hospitals. Health Serv Res 2006;41:398–421.
16. Meddings J, Reichert H, Greene MT, et al. Evaluation of the association between hospital survey on patient safety culture (HSOPS) measures and catheter-associated infections: results of two national Collaboratives. BMJ Qual Saf 2017;26:226–35.
17. Nieva VF, Sorra J. Safety culture assessment: a tool for improving patient safety in healthcare organizations. Qual Saf Health Care 2003;12 Suppl 2:i17–23.
18. Waterston P, ed. Patient safety culture: Theory, methods and applications. Boca Raton: CRC Press, 2017.
19. European Network for Patient Safety Project. Use of patient safety culture instruments and recommendations. 1st edn. ESHQ, Office for Quality Indicators: Aarhus, 2010.
20. Sexton JB, Helmreich RL, Neillands TB, et al. The safety attitudes questionnaire: psychometric properties, benchmarking data, and emerging research. BMC Health Serv Res 2006;6:84.
21. Sorra J, Yount N, Famolarto T. AHRQ Hospital Survey on Patient Safety Culture Version 2.0. User’s Guide 2019. Available: https://www.ahrq.gov/ops/surveys/hospital/index.html [Accessed 19 Mar 2021].
22. Sorra JS, Dyer N. Multilevel psychometric properties of the AHRQ Hospital survey on patient safety culture. BMC Health Serv Res 2010;10:199.
23. Palmieri PA, Peterson L, et al. Safety culture as a contemporary healthcare construct: Theoretical review, research assessment, and translation to human resource management. In: Savage GT, Fottler MD, Khati N, eds. Strategic human resource management in health care. Bingley, New Milford: Emerald Group Publishing Limited; Turpin Distribution, Incorporated [distributor], 2010.
24. Blegen MA, Gearhart S, O’Brien R, et al. AHRQ’s Hospital survey on patient safety culture: psychometric analyses. J Patient Saf 2009;5:139–44.
25. Pfeiffer Y, Manser T. Development of the German version of the hospital survey on patient safety culture: dimensionality and psychometric properties. Saf Sci 2010;48:1452–62.
26. Hammel A, Ernstmann N, Ommen O, et al. Psychometric properties of the hospital survey on patient safety culture for hospital management (HSOPS), BMC Health Serv Res 2011;11:165.
27. Zimmermann N, Kung K, Sereika SM, et al. Assessing the Safety Attitudes Questionnaire (SAQ), German language version in Swiss university hospitals—a validation study. BMC Health Serv Res 2013;13:347.
28. Gehring K, Mascherek AC, Bezzola P, et al. Safety climate in Swiss Hospital units. Swiss version of the safety climate survey. J Eval Clin Pract 2015;21:332–43.
29. Ausserhofer D, Schubert M, Desmedt M, et al. The association of patient safety culture and nurse-related organizational factors with...
selected patient outcomes: a cross-sectional survey. Int J Nurs Stud 2013;50:240–52.
30 Steyer J, Latzke M, Pilis K, et al. Development and validation of a patient safety culture questionnaire in acute geriatric units. Gerontontology 2013;59:547–55.
31 Gambashidze N, Hammer A, Brösterhaus M, et al. Evaluation of psychometric properties of the German Hospital Survey on patient safety culture and its potential for cross-cultural comparisons: a cross-sectional study. BMJ Open 2017;7:e018366.
32 Sendlhofer G, Wolter C, Pregartner G. Patient safety culture within a university hospital: feasibility trial. Saf Health Work 2015;1:152.
33 Ammon U. Die Deutsche Sprache in Deutschland, Österreich und der Schweiz: de Gruyter, 1995.
34 Agency for Healthcare Research and Quality. Translation guidelines for the survey on patient safety culture. Rockville, 2019.
35 Bachner F, Bobek J, Habirana K. Austria: health system review. 20th edn. Health Systems in Transition, 2018.
36 de PC, Camenzind P, Sturni L. Switzerland: health system review, 17th edn. Copenhagen Denmark: Health Systems in Transition, 2015.
37 Busse R, Blümel M. Germany: health system review. 16th edn. Health Systems in Transition, 2014.
38 Reis CT, Paiva SG, Sousa P. The patient safety culture: a systematic review by characteristics of hospital survey on patient safety culture dimensions. Int J Qual Health Care 2018;30:660–671.
39 Kapaki V, Misund H, Haaland G, et al. The effect of invitation to web survey response rates. Soc Sci Comput Rev 2012;30:339–49.
40 LimeSurvey GmbH. LimeSurvey manual. Available: https://www.limesurvey.org/ [Accessed 28 Jul 2021].
41 Schafer JL. Analysis of incomplete multivariate data. CRC Press, 1997.
42 Enders CK. A primer on maximum likelihood algorithms available for use with missing data. Structural Equation Modeling: A Multidisciplinary Journal 2001;8:128–41.
43 Hair JF, Black WC, Babin BJ. Multivariate data analysis. Pearson: Harlow, Essex, 2014.
44 Bühner M. Einführung in die Test- und Fragebogenkonstruktion. 3rd edn. München: Pearson Studium, 2011.
45 Hair JF, Mulaik SA. Multivariate analysis. In: Upper saddle river. 7th edn. NJ: Pearson Prentice Hall, 2010.
46 Little TD, Kline RB, eds. Discovering statistics using IBM SPSS statistics. 7th edn. New York: The Guilford Press, 2016.
47 Browne MG, Cudeck R. Alternative ways of assessing model fit. Sociol Methods Res 1993;22:276–304.
48 Anderson JT, Gerbing DW. The effect of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis. Psychometrika 1984;49:155–73.
49 Backhaus K, Erichson B, Weiber R, Fortschrittene multivariate Analysetechniken. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015.
50 Akaike H. Information theory and an extension of the maximum likelihood principle. In: Nikolettavich Petrov B, Csaki F, eds. 2nd International Symposium on information theory: Akadémiai Kiadó, 1973: 267–81.
51 Schwarz G. Estimating the dimension of a model. The Annals of Statistics 1978;6:461–4.
52 Agresti A. Categorical Data Analysis. 3rd edn. New York: John Wiley, 2013.
53 Bowlby J. A secure base: parental attachment, individuality and love. London: Routledge, 1980.
54 Byrne BM. Structural equation modeling with AMOS: basic concepts, applications, and programming. New York, NY: Routledge, 2016.