s-Block Metal Catalysts for the Hydroboration of Unsaturated Bonds

Marc Magre, * Marcin Szewczyk, and Magnus Rueping *

ABSTRACT: The addition of a B–H bond to an unsaturated bond (polarized or unpolarized) is a powerful and atom-economic tool for the synthesis of organoboranes. In recent years, s-block organometallics have appeared as alternative catalysts to transition-metal complexes, which traditionally catalyze the hydroboration of unsaturated bonds. Because of the recent and rapid development in the field of hydroboration of unsaturated bonds catalyzed by alkali (Li, Na, K) and alkaline earth (Mg, Ca, Sr, Ba) metals, we provide a detailed and updated comprehensive review that covers the synthesis, reactivity, and application of s-block metal catalysts in the hydroboration of polarized as well as unsaturated carbon–carbon bonds. Moreover, we describe the main reaction mechanisms, providing valuable insight into the reactivity of the s-block metal catalysts. Finally, we compare these s-block metal complexes with other redox-neutral catalytic systems based on p-block metals including aluminum complexes and f-block metal complexes of lanthanides and early actinides. In this review, we aim to provide a comprehensive, authoritative, and critical assessment of the state of the art within this highly interesting research area.

CONTENTS
1. Introduction 8262
2. s-Block Organometallic Complexes: Synthesis and Reactivity 8263
 2.1. Synthesis of Alkali Metal Complexes 8263
 2.2. Synthesis of Alkaline Earth–Metal Complexes 8264
 2.3. Reactivity of s-Block Organometallic Complexes toward Hydroboration of Unsaturated Bonds 8265
3. Hydroboration of Polarized Unsaturated Bonds 8266
 3.1. Aldehydes and Ketones 8266
 Asymmetric Hydroboration of Ketones 8274
 3.2. Pyridines 8275
 3.3. Imines 8280
 3.4. Esters and Amides 8282
 3.5. Carbonates and Carbamates 8285
 3.6. Nitriles and Isonitriles 8287
 3.7. Isocyanates and Carbodiimides 8289
 3.8. Carbon Dioxide 8291
 3.9. Carboxylic Acids 8292
 3.10. Sulfoxides 8292
4. Hydroboration of Unsaturated C–C Bonds 8292
 4.1. Alkenes 8292
 4.2. Alkynes 8294
5. Hydroboration of Strained Systems: Epoxides and Oxetanes 8295
6. Comparison of Alkali- and Alkaline-Earth-Abundant Catalysts with Aluminum and Lanthanide and Early-Actinide Analogues 8298
 6.1. s-Block Metals versus Aluminum Complexes 8298
 6.1.1. Aldehydes and Ketones 8299
 6.1.2. Nitriles and Carbodiimides 8300
 6.1.3. Carbon Dioxide 8300
 6.1.4. Alkenes 8300
 6.1.5. Alkynes 8300
 6.2. s-Block Metals versus Lanthanide and Early-Actinide Complexes 8300
 6.2.1. Aldehydes and Ketones 8301
 6.2.2. Pyridines 8301
 6.2.3. Imines and Nitriles 8302
 6.2.4. Esters and Amides 8302
 6.2.5. Alkenes 8302
 6.2.6. Epoxides 8302
7. Considerations 8303
 7.1. Borane Decomposition: BH₃ as a “Hidden” Catalyst 8303
 7.2. Catalyst-Free Hydroboration 8304
8. Conclusions and Outlook 8305
Author Information 8306
Corresponding Authors 8306
Author Contributions 8306
Funding 8306
Notes 8306

Received: July 20, 2021
Published: March 7, 2022
1. INTRODUCTION

Hydroboration—the addition of a boron—hydrogen bond to an unsaturated bond—is a useful and atom-economic transformation for the synthesis of organoboranes. The addition of boranes (HBR₂) to C=O or C≡N bonds (Scheme 1) results in formation of a boron–oxygen or nitrogen bond, which, along with hydrolysis, constitutes a two-step process equivalent to reduction.1,2 Furthermore, the addition of borane to carbon–carbon unsaturated bonds (e.g., alkenes or alkynes) results in the synthesis of a carbon–boron bond suitable for sequential transformations such as C–C couplings3 (i.e., Suzuki coupling reaction4).

In 1956, Brown et al. discovered the direct addition of a B–H bond across a C≡C bond using sodium borohydride–aluminum chloride mixtures.6 This pioneering discovery marked a substantial breakthrough in the hydroboration reaction.7 Using the simplest borane (BH₃), the transformation occurs spontaneously without the need for a catalyst to provide the anti-Markovnikov product. In this regard, the regioselectivity observed is rationalized as follows: (i) B–H addition occurs in a cis-fashion; (ii) the boryl moiety prefers the least sterically hindered carbon; and (iii) the hydridic character of the H–B bond favors interactions with an electropositive carbon in the transition state of the reaction.8,9 Catecholborane (HBcat) and pinacolborane (HBpin) have emerged as alternatives to highly reactive BH₃. Groundbreaking work by Kono and Ito revealed that Wilkinson’s catalyst, Rh(PPh₃)₃Cl, underwent oxidative addition with HBcat (Scheme 2),10 which led to the first example of metal-catalyzed hydroboration of alkenes and alkynes by Männig and Nöth et al.11

Since then, research on transition-metal-based catalytic systems capable of providing hydroboration chemoselectivity and regioselectively has increased exponentially.1,2 Since then, the application of alkaline earth metals and, more recently, alkali metals has evolved rapidly. Among the latest discoveries, the use of these metal complexes in catalysis, which was not thought to be possible merely two decades ago, stands out. With these breakthroughs, interest in the catalytic activity of group 1 and group 2 metals has increased tremendously.22,23 Although some alkaline earth metals, such as magnesium and calcium, are among the most abundant metals in the Earth’s crust (Figure 1),24 their use in catalysts is still underdeveloped compared to, for instance, that of transition metals.

Organometallic complexes derived from early main group elements are known to be very reactive and difficult to isolate. Their high nucleophilic character and Bronsted basicity make them strong polar reagents. This high reactivity gives them high potential as catalysts for organic transformations that are traditionally catalyzed by transition-metal complexes. In terms of environmental hazards and toxicity, the replacement of expensive and harmful transition metals for abundant and nontoxic alkali and alkaline earth metals is highly desirable, particularly with regard to applications in the pharmaceutical industry or materials synthesis, where residual transition metals must be avoided.

Although the use of early main group metals in hydrofunctionalization catalysis has increased in the past decade,25 their application is still fairly limited due to their tendency to undergo Schlenk-type equilibrium (section 2.3).26 Whereas group 1 early metals (Li, Na, K) have been mostly limited to hydroboration reactions, group 2 metals (Mg, Ca, Sr, and Ba) have been widely studied and applied in a variety of hydrofunctionalizations of unsaturated bonds.27–30

In terms of standard reactivity toward hydrofunctionalization of unsaturated bonds, alkaline earth metal catalytic systems differ depending on the polarization of the Y–H bond in the reactant. While hydridic Y–H bonds undergo σ-bond metathesis, protic Y–H bonds undergo protonolysis. Therefore, two general catalytic cycles can be distinguished (Scheme 3).

The year 2016 brought a breakthrough in the area of alkali and alkaline earth metal hydrofunctionalization of unsaturated bonds, specifically, with regard to the hydroboration reaction. Therefore, herein, we will disclose in detail all s-block (group 1 and group 2) metal complexes and their application in the hydroboration of polarized and unpolarized unsaturated bonds.

Scheme 1. Hydroboration of Unsaturated Bonds

\[
\text{R}_1 \xrightarrow{X} \text{H} \rightarrow \text{B(R)}^2 \xrightarrow{X} \text{R}_2 \text{H}
\]

where \(X = \text{O}, \text{NR}, \text{CR}_2\).

Scheme 2. H–B Bond Activation by Wilkinson’s Catalyst

\[
\text{Ph}_3\text{P}=\text{Rh}(\text{PPh}_3)\text{Cl} \xrightarrow{\text{H} \rightarrow \text{B(R)}^2} \text{Ph}_3\text{P} \text{Rh}(\text{PPh}_3)\text{Cl}
\]

Figure 1. Relative abundance of metals in the Earth’s crust. Alkali and alkaline earth metals are highlighted.
First, we will briefly describe the different synthetic approaches for the synthesis of alkali- and alkaline earth metal catalysts and their reactivity toward hydroboration reactions (Section 2). Regarding the catalytic applicability, we have organized this section by reactions depending on the nature of the reduced bond: polarized (section 3) and nonpolarized (section 4). As the hydroboration of polarized bonds has been the most studied field, we have organized it in order of reactivity: aldehydes and ketones (section 3.1) followed by main C=N bonds such as N-heterocycles and imines (sections 3.2 and 3.3, respectively). Then we will disclose the hydroboration of more stable and thus less reactive compounds such as esters and amides (section 3.4) as well as carbonates and carbamates (section 3.5).

To close the section on polarized unsaturated bonds, we will focus on the hydroboration of other unsaturated systems, such as nitriles and isonitriles (section 3.6), isocyanates and carbodiimides (section 3.7), carbon dioxide (section 3.8), carboxylic acids (section 3.9), and sulfoxides (section 3.10).

Finally, we will include hydroboration of C=C double and triple bonds: alkenes (section 4.1), alkynes (section 4.2), and strained ring systems such as epoxides (section 5). For each transformation, we will include and explain in detail all known examples of group 1 and group 2 metal catalysts in chronological order.

Over the past years, aluminum- and lanthanide-based catalysts have been used for hydroboration of organic compounds. Given the similarities in reactivity (Section 6), we decided to provide a comparison of s-block metal-based catalysts with those derived from aluminum (section 6.1) and lanthanides (section 6.2).

Very recently, Thomas et al. reported the decomposition of the previously perceived stable hydride source HBPin, a borane most often used in hydroboration reactions. This decomposition results in the formation of BH₃ which then may act as a “hidden” catalyst (see section 7). We recommend the readers to be aware of this issue while reading our manuscript.

Finally, protocols utilizing a catalyst-free hydroboration approach are briefly discussed in section 7.2.

Please note that the use of heterobimetallic complexes that contain alkali or alkaline earth metals as counterions will be excluded from this review, as they have been recently reviewed by Mulvey et al.

2. S-BLOCK ORGANO METALLIC COMPLEXES: SYNTHESIS AND REACTIVITY

In this section, we briefly describe the synthesis and representative examples of alkali and alkaline earth metal complexes applied to the hydroboration of unsaturated bonds. Moreover, the general reactivity trend and catalytic behavior of these complexes will also be discussed.

2.1. Synthesis of Alkali Metal Complexes

Although simple and commercially available compounds (e.g., n-BuLi, NaOH, and KOr-Bu) have been successfully applied in the hydroboration of unsaturated bonds, several alkali metal complexes have also been effectively synthesized and applied in this transformation. In this regard, there are two main synthetic approaches to afford alkali metal complexes: (i) the use of neutral N,N,N,N-ligands to form ion-pair complexes (Scheme 4a) and (ii) the formation of neutral alkali metal complexes by either deprotonation of a ligand containing an acidic proton or 1,2-addition of organolithium compounds to pyridines (Scheme 4b).

The first important route (Scheme 4a), explored by Okuda et al., consists of ligand coordination to easily accessible tetramethyl disilazides followed by BPh₃-mediated β-SiH abstraction. An alternative route provides group 1 metal complexes after treating the corresponding hydridotriphenylborates with a neutral N,N,N,N-ligand (tris[2-(dimethylamino)]ethyl)amine). These routes developed by Okuda and co-workers led to the successful synthesis of Li, Na, and K solvent-separated ion pairs.35–37

The second approach, which is most commonly used for the synthesis of alkali metal complexes, is based on a deprotonation strategy (Scheme 4b-1). Due to the high basicity of LiN(SiMe₃)₂ (pK_a ∼ 30), lithium disopropylamide (pK_a ∼ 35), and n-BuLi (pK_a ∼ 50), these lithium precursors can effectively remove acidic protons from phenol and pyrrole derivatives, among others. In addition, β-diketiminate lithium complexes have been synthesized following the same strategy.

Finally, 1-lithio-2-alkyl-1,2-dihydropyridine complexes can easily be synthesized by nucleophilic addition of alkyl lithium to pyridines, forming soluble and active lithium complexes (Scheme 4b-2). In this regard, Mulvey et al. were able to successfully isolate and comprehensively characterize this type of Li complexes.

All of the above-mentioned strategies were applied to the synthesis of active alkali metal catalysts for the hydroboration of C=C...
unsaturated bonds. All group 1 metal complexes will be presented, and their application will be discussed in section 3.

2.2. Synthesis of Alkaline Earth Metal Complexes

The application of alkaline earth metal complexes in the hydroboration reaction has gained more attention than the application of group 1 metal complexes. For this reason, there are several examples of effective group 2 metal catalysts in the literature. As already described for alkali metal complexes (section 2.1), two main types of alkaline earth metal catalysts can be distinguished: (1) cationic complexes and (2) neutral complexes containing monoanionic or dianionic ligands.

The first type, developed by Okuda et al., relies on the synthesis of magnesium hydridotriphenylborate complexes \(\text{I} \) where a coordinative solvent, such as THF, provides the complex as a solvent-separated ion pair (Scheme 4a).45

Recently, the same authors prepared dimeric cationic magnesium hydride species \(\text{II} \) stabilized by neutral \(\text{N,N,N,N} \)-ligands. The treatment of magnesium bis(hexamethyldisilazide) with the macrocyclic ligand \(\text{Me}_4\text{TACD} \) (\(\text{Me}_4\text{TACD} = 1,4,7,10\text{-tetramethyl-1,4,7,10-tetraazacyclododecane} \)) and \(\text{PhSiH}_3 \) as a hydride source yields magnesium dimeric species \(\text{II} \), which, after partial protonolysis by [\(\text{NEt}_3\text{H} \)]\([\text{B(3,5-Me}_2\text{C}_6\text{H}_3)_4] \) in THF, afforded dimeric hydride ionic species \(\text{III} \) (Scheme 4b-2).46

The second type of group 2 metal complexes are neutral complexes. Their synthesis is based on a deprotonation strategy of Brønsted acidic ligands by basic metal alkyl or silylamide precursors to afford the corresponding alkaline earth metal complexes (Scheme 5b). This second strategy has been the most widely applied to synthesize neutral complexes. Consequently, there are a wide variety of group 2 metal complexes bearing monoanionic ligands such as \(\beta \)-diketiminates and their derivatives,47−50 phosphinoamides,51 tris(oxazolinyl)phenylborates and their derivatives,52−54 or guanidinates55 or...
amidinates,54 which have been applied in the hydroboration of polarized and unpolarized unsaturated bonds (Figure 2).

![Figure 2. Representative group 2 metal complexes applied in the hydroboration of unsaturated bonds.](image)

The use of monoanionic ligands results in the corresponding stable alkaline earth metal complex bearing a reactive site (e.g., alkyl or silylamide ligands) that reacts with HBpin via σ-bond metathesis to afford an active metal hydride species. Moreover, this strong ligand–metal interaction prevents any kind of ligand redistribution, known as Schlenk-type equilibrium,26 which would lead to a less reactive species. Although dianionic ligands, such as diols, have been widely used in group 2 metal catalysis,55,56 examples of applications in hydroboration reactions are scarce.

Although considerable effort has been made to design and apply tailor-made alkaline earth metal complexes, commercially available or simple Ae-bis(amides),58–62 e.g., Ae[N(SiMe$_3$)$_2$]$_2$, or Ae-bis(alkyl), e.g., Ae[CH(SiMe$_3$)$_2$]$_2$·(THF)$_2$63 and Mg(n-Bu)$_2$64 have also been widely used as precatalysts in other hydrofunctionalizations.

In section 3, all group 2 metal catalysts and their application in hydroboration will be discussed in more detail.

2.3. Reactivity of s-Block Organometallic Complexes toward Hydroboration of Unsaturated Bonds

As previously mentioned, the chemistry of s-block organometallics is marked by their stable $+1$ (for alkali metals) and $+2$ (for alkaline earth metals) oxidation states.65 In this regard, the ionic radii of the corresponding ions (groups 1 and 2)66 increase as the group number decreases, leading to a decrease in electronic density and an increase in polarizability (Figure 3).

These inherent variations influence the nature of metal-to-ligand bonding. In the case of heavier alkaline earth metals (Ca, Sr, and Ba), the nondirectional ionic interactions affect metal-to-ligand binding. Therefore, heteroleptic complexes tend to undergo Schlenk-type equilibrium,26 leading to homoleptic metal complexes, which mostly differ in reactivity (Scheme 6).

Concerning enantioselective catalysis, this ligand redistribution can also lead to nonchiral and more reactive homoleptic complexes, which would provide low or no enantioinduction (Scheme 6). To avoid ligand redistribution, considerable efforts have been made in ligand and catalyst design. In this regard, bidentate monoanionic ligands presenting hard donor sites and steric bulk provide efficient kinetic stability to avoid any kind of ligand redistribution. Alkaline earth metal complexes designed for catalytic hydroboration reactions are frequently based on a spectator ligand (and most of the cases, monoanionic ligand, L) and a reactive ligand (usually silylamide or an alkyl group).

In contrast to transition metals, which usually show reversible oxidation states,67 s-block metals generally favor only one oxidation state, a fact that excludes catalytic pathways with redox features such as oxidative addition and reductive elimination.68 Therefore, the catalytic steps are simplified and built around basic dipolar transformations.

As described in the Introduction, the nature of the hydrofunctionalizing agent determines the elemental catalytic steps (Scheme 3) of the transformation.69 In this case, hydroboranes such as HBpin present a hydridic H–B bond; therefore, a general catalytic cycle (Scheme 7) is based on metal hydride σ–bond metathesis and its addition to an unsaturated bond, as follows: (i) σ-bond metathesis occurs between the polarized catalyst precursor, which bears a reactive labile ligand, and a polarized hydride reagent (H–Bpin). In this first step, a reactive L–Ae–H species is formed. (ii) The metal hydride species is inserted into an unsaturated bond via hydrometalation. (iii) Finally, the polarized hydride reagent H–B undergoes σ-bond metathesis to regenerate the active L–Ae–H catalyst and release the corresponding hydroborated product.70

This general catalytic cycle, which is based on metal hydride formation and subsequent hydrometalation, can vary depending on the nature of the ligand and the metal. For alkali metal catalysts, which have either spectator monoanionic ligands or reactive ligands, HBpin activation and the catalytic cycle can differ from those described in Scheme 7. Moreover, the hydroboration catalyzed by metal catalysts bearing a dianionic ligand or by a cationic complex also occurs via different
pathways. Different HBpin activations and mechanisms will be discussed in detail in section 3.

3. HYDROBORATION OF POLARIZED UNSATURATED BONDS

3.1. Aldehydes and Ketones

The first example of s-block metal-catalyzed hydroboration of carbonyl compounds was reported in 2011 by Clark et al. and involved the use of sodium tert-butoxide 4 as the precatalyst (Scheme 8). The authors demonstrated that sodium alkoxide can catalytically activate pinacolborane toward the addition to C=O bonds in ketones. In this regard, the initial activation of pinacolborane by NaO\textsubscript{t}-Bu forms hydride species I, which adds to the C=O bond. The formed alkoxide II activates pinacolborane to generate species III, which subsequently adds to the C=O bond, generating the corresponding product and sodium alkoxide II, which enters the new catalytic cycle. Since the active hydride species could not be isolated or characterized by means of NMR spectroscopy, the authors postulated an equilibrium between sodium trialkoxyborohydride and other boron alkoxy and hydride species, which can also act as hydride sources.73

\(\beta \)-Diketiminate magnesium complex 5, as reported by Hill et al., showed catalytic activity toward the hydroboration of aldehydes and ketones.74 Excellent yields were afforded for a wide range of carbonyl compounds for the first time using magnesium-based catalysts under mild reaction conditions (ambient temperature) and at low catalyst loadings (0.05−0.5 mol %). Mechanistically, the addition of HBpin to a solution of 5 leads, via \(\sigma \)-bond metathesis, to stoichiometric formation of n-BuBpin and heteroleptic magnesium hydride species 6, which exists in equilibrium with labile magnesium borohydride and other boron alkoxide and hydride species, which can also act as hydride sources.73

HBpin releases a boronic ester and recovers the catalyst (Scheme 9).

As described in section 2, Stasch et al. developed phosphinoamido−magnesium−hydride complexes 7−10 (Scheme 10) to investigate whether a ligand that favors bridging and terminal coordination modes can be beneficial in terms of activity compared to magnesium complexes such as 5.75 Complexes 7−9 were shown to be very active for the hydroboration of ketones, providing quantitative conversions under mild reaction conditions, short reaction times, and low catalyst loadings (0.05 mol %). The authors, however, limited the substrate scope to only two ketones—benzophenone and 2-adamantanone.

The addition of Li−H species to the carbonyl group was first reported in 2012 by Stasch et al., who showed that a hydrocarbon-soluble lithium hydride complex can effectively undergo hydrometalation to benzophenone.51

It was not until 2016, however, that the first catalytic application of light alkali metal complexes was reported. Okuda et al. employed a series of lithium, sodium, and potassium hydridotriphénylborate complexes 11−13 for the selective hydroboration of benzophenone as a model substrate (Scheme 11).15 Compared to sodium and potassium complexes 12 and
respectively, lithium complex 11 exhibited superb activity, exhibiting a remarkably high TOF of $66.6 \times 10^3 \text{ h}^{-1}$ or 18 s$^{-1}$.

Complex 11, the most active catalyst, was applied for the hydroboration of several ketones and aldehydes. Mechanistically, the authors postulate that lithium hydridotriphenylborate 11 reacts rapidly with the carbonyl compound to give intermediate $[(L)\text{M}]\{\text{R}_1\text{R}_2\text{CHO}\text{OBPh}_3\}$ (I), whereas no reaction between 11 and HBpin or BPh$_3$ and HBpin was observed. Finally, intermediate I reacts further with HBpin to give the desired product and regenerated 11. The insertion step appears to be equally fast for all metals (Li, Na, and K), but the catalyst regeneration (or group transfer) is faster for Li complex 11 than for Na and K 12 and 13, respectively. The authors suggested that the group-transfer step is rate determining. The group-transfer step through a direct hydride−alkoxide exchange via σ-bond metathesis was discarded, and regeneration of the active species 11 was suggested to occur by hydride abstraction from HBpin to generate LiH and BiPh$_3$ (Scheme 11). Moreover, coordination of Me$_6$TREN is crucial for high activity; in the absence of the coordinating ligand, the catalyst activity significantly decreased. The Me$_6$TREN ligand offers a unique combination of flexible coordination and retention of the Lewis acidity of the lithium cation to become a highly active catalyst. Thus, the high activity of the Li catalyst is thus explained by the higher degree of polarization of lithium in the $[(L)\text{Li}]\{\text{R}_1\text{R}_2\text{CHO}\text{OBPh}_3\}$ intermediate compared with sodium and potassium. Moreover, this chelation most likely prevents lithium from forming aggregates.

Lin et al. reported a simple strategy to stabilize heteroleptic magnesium alkyl species by a TPHN-metal−organic framework (TPHN = 4,4′-bis(carboxyphenyl)-2-nitro-1,1′-biphenyl), thus avoiding any kind of Schlenk equilibrium that could lead to inactive Mg species. The authors succeeded in a straightforward metalation of secondary building units of Zr-MOF with MgMe$_2$ and the application of this magnesium-supported catalyst 17 (Scheme 12) for the hydroboration of a wide range of carbonyl compounds, such as aldehydes and ketones. Impressively, Mg-
functionalized MOF 17 displayed high turnover numbers and could be reused more than 10 times with no loss of activity. In addition, Okuda et al. developed magnesium hydrotriphenylborate complex 1 (Scheme 13), which proved to be an active catalyst for the hydroboration of various polarized bonds. Although complex 1 was active for the hydroboration of aldehydes with as low as 0.05 mol % catalyst loading, lower conversions and longer reaction times were required when ketones were used in the reaction. Moreover, since the reactions were carried out in DMSO, the authors observed competition between the reduction of carbonyls and sulfoxides (see section 3.10).

To expand the catalyst versatility, Okuda et al. designed a new molecular magnesium complex 18 containing an N,N,N,N-type macrocyclic ligand (Scheme 13). Interestingly, the basic amido function is blocked by the Al(iBu)_3 coordination in order to avoid the formation of large clusters. Complex 18 was subsequently applied for the catalytic hydroboration of a wide range of substrates, including ketones. Compared to its ligand-free analogue 1, magnesium complex 18 showed lower catalytic activity toward the hydroboration of ketones which may be
explained by the oversaturated, sterically encumbered five-coordinate magnesium center.

It was not until 2017 that the first calcium-catalyzed hydroboration of carbonyl compounds appeared. Sen et al. designed a benzamidinato calcium complex 19 that was active toward the hydroboration of aldehydes and ketones (Scheme 14). By using complex 19, excellent yields could be obtained under mild reaction conditions, short reaction times, and low catalyst loadings. Moreover, this catalytic system showed good functional group tolerance toward OH and NH groups as well as C–C double bonds.

Wu, Liu, and Zhao et al. showed that a catalytic hydroboration of carbonyl compounds could be initiated simply by NaOH (Scheme 15). The authors postulated that the reaction is possible due to the formation of an anionic borodihydride species from the reaction of borane and NaOH, which then acts as a precatalyst. The formation of the anionic borodihydride was corroborated when the authors used 9-BBN as a hydride source to isolate and characterize the dihydride species, as the attempt to obtain such dihydride from HBpin resulted in the formation of unanalyzable species.

Taking advantage of the excellent hydrogen-transfer ability of dihydropyridines, Mulvey and Robertson et al. described the successful application of lithium tert-butyldihydropyridine complex 21 in the hydroboration of aldehydes and ketones. This highly hydrocarbon-soluble catalyst exhibited excellent activities, providing quantitative conversions in less than 30 min, in almost all cases. On the basis of the NMR studies, the authors suggested that complex 21 undergoes hydrometalation of the C=O bond, releasing rearomatized t-BuPy and Li alkoxide. Finally, the Li alkoxide species activates HBpin via a 6-membered transition state with t-BuPy to regenerate the Li-I,2-dihydropyridine 21 and the desired boronic ester.

Ma et al. designed a series of bulky amido magnesium complexes 22–25 (Figure 4), which could be easily prepared by treating the corresponding secondary amine and 2 equiv of the Grignard reagent (MeMgI). All complexes exhibited excellent activities toward ketone hydroboration, although complex 25 provided the best results. However, when sterically hindered ketones were used, elevated temperature and prolonged time were necessary to achieve good conversion.

In 2018, Sen et al. reported a wide range of accessible and active lithium compounds (26–28, Scheme 17). 2,6-Di-tert-butyl phenolate lithium 26, 1,1′-dilithioferrocene 27, and β-diketiminate lithium 28 and exhibited excellent activities toward aldehyde and ketone hydroboration. Based on the results of NMR spectroscopy and DFT calculations, the authors provided mechanistic insight into the reaction catalyzed by complex 26. Coordination of the oxygen atom of HBpin to lithium complex 21 forms Li-HBpin adduct I. The concerted attack of the boron center by the O-atom of the carbonyl group and of the electrophilic carbon by the hydride group leads to the formation of a four-membered transition state (TS-1, Scheme 17) and eventually to the formation of a boronic ester and the regeneration of the catalyst 26.

The possibility of a phenolate
attack to the pinacolborare to form the boronate complex II was ruled out based on a thermodynamically unfavored pathway ($\Delta G = -0.7$ kcal mol$^{-1}$ for I and $\Delta G = 15.2$ kcal mol$^{-1}$ for II).

A comparative study of the hydroboration of p-methoxybenzaldehyde using N-adamantyliminopyrrolyl complexes 29–33 with Group 1 and Group 2 metals was carried out by Panda et al. (Scheme 18).41 The results showed that group 1 complexes rapidly led to the formation of the corresponding product within 30 min for lithium and sodium complexes 29 and 30, respectively. The potassium analogue showed the highest activity, and the reaction was finished in less than 20 min. Thus, potassium complex 31 was applied for the hydroboration of aldehydes and ketones, showing good functional group tolerance. Moreover, the authors found that magnesium complex 32 and calcium complex 33 exhibited similar reactivity and were less active than the corresponding group 1 metal complexes 29–31.

Scheme 16. Li-1,2-Dihydropyridine-Catalyzed Hydroboration of C═O Bonds

Scheme 17. Mechanism of Li-Based Hydroboration of Carbonyl Compounds in the Presence of Catalysts 26 and 27 developed by Sen et al.

Scheme 18. N-Adamantyl−Iminopyrrolyl Complexes for the Hydroboration of Carbonyl Compounds

Figure 4. Various magnesium-based precatalysts for the hydroboration of carbonyl compounds developed by Ma et al.
Xue and Bao et al. demonstrated that readily available n-BuLi is able to effectively catalyze the hydroboration of aldehydes and ketones. With as little as 0.1 mol % precatalyst, the authors were able to reduce aromatic and aliphatic aldehydes and ketones, showing excellent functional group tolerance, under mild reaction conditions: in most cases in just 20 min. On the basis of DFT calculations, the authors proposed that n-BuLi reacts with pinacolborane to provide a Li-butylborate species which upon reduction of the aldehyde leads to the lithium alkoxide, which presumably binds to the n-BuBpin, forming adduct II. Adduct II then undergoes ligand exchange with pinacolborane, according species III to form the active catalytic species. A thermodynamically favored nucleophilic attack of the alkoxide to the boron atom affords Li boronate species V, in which a carbonyl compound binds to the lithium cation, favoring the hydride attack (TS VII). The obtained species VIII finally reacts with another molecule of pinacolborane, affording the desired compound and the regenerated active species III (Scheme 19).

A similar study was reported at the same time by An et al., who showed the excellent reactivity of n-BuLi toward the hydroboration of aldehydes and ketones. Varying the reaction conditions compared to those used by Xue and Bao et al., such as performing reactions with higher catalyst loading but lower temperature (0 °C) and using THF as a solvent, resulted in formation of the desired product in just 5 min. Remarkably, α,β-unsaturated ketones and aldehydes underwent selective 1,2-hydroboration, affording the corresponding allylic alcohols.

Moreover, the same authors also reported the catalytic application of NaH for the hydroboration of aldehydes and ketones (Scheme 20). This NaH-catalyzed hydroboration of α,β-unsaturated substrates was completely regioselective, affording the corresponding allylic alcohols in excellent yields.

The concept of magnesium(I) complexes was first presented in 2007 by Stasch et al.; however, their first application in catalytic hydroboration was reported by Ma et al., who applied a series of unsymmetrical β-diketiminatomagnesium(I) complexes as precatalysts (Scheme 21) for the hydroboration of aldehydes and ketones, among others. The reduction of C=O bonds was performed under mild reaction conditions and at low catalyst loadings. From a mechanistic point of view, the authors proposed that dimeric Mg(I) complex reacts with HBpin to form dimeric magnesium boryloxide complex, arising from the decomposition of HBpin. Compound 39 reacts with another molecule of HBpin, forming catalytically active Mg(II) complex. Although catalytically active Mg(II) complex has been reported as a well-defined species active toward hydroboration of unsaturated bonds, it is worth mentioning that the combination of Mg(I) dimers with pinacolborane provides additional reactive boron-containing species, which could also be considered active in hydroboration (see section 7.1).

An interesting use of magnesium and calcium complexes for the hydroboration of aldehydes and ketones has been reported by Vanka and Sen et al. Here, β-diketiminatomagnesium and -calcium complexes allowed formation of the desired products under mild reaction conditions, short reaction times, and low catalyst loadings (Scheme 22). On the basis of the hemilabile bond between the pyridyl group and the metal center as well as the results of DFT calculations, the authors postulated that the metallic center does not partake in any activation, but rather binds two ligands, each of which is capable of acting as a catalytic site for the hydroboration. Thus, the calcium enables the formation of a dual site catalyst, which would be more efficient than just employing a pyridine moiety as a single site catalyst in the reaction. It should be noted, however, that the authors did not conduct any control experiments with just a ligand or pyridine to confirm the proposal. The presented work could therefore be considered as an example of organocatalytic transformation.
Following the trend of Xue and Bao, who used readily available n-BuLi as a precatalyst, Kucinski and Hreczycho reported that commercially available and inexpensive LiHBEt₃ shows high activity toward the catalytic hydroboration of a wide range of aldehydes and ketones. Under solvent-free conditions, with as little as 0.1 mol % precatalyst, quantitative conversions were reported for a wide range of substrates. Furthermore, An et al. reported the successful hydroboration of aldehydes and ketones using lithium tert-butoxide and potassium carbonate as precatalysts. Excellent yields were obtained under mild reaction conditions and catalyst loadings of 0.5–1 mol %. Interestingly, lithium tert-butoxide showed higher activity than its sodium analogue, which was studied by Clark et al. Although commercially available lithium complexes were tested as efficient precatalysts, commercially available magnesium compounds were not applied for the hydroboration of carbonyl compounds until Rueping et al. applied readily available Mg(n-Bu)₂ for the chemoselective hydroboration of α,β-unsaturated ketones (Scheme 23). For the first time, this simple and readily available precatalyst was successfully applied for the highly 1,2-selective hydroboration of α,β-unsaturated ketones, achieving excellent yields and chemoselectivities for a wide range of enones and ynones with low catalyst loadings, short times, and mild reaction conditions. Compared to other
Mg complexes previously applied for hydroboration of \(\alpha,\beta\)-unsaturated compounds,\(^{45,76}\) precatalyst 46 provides better conversions in shorter times.

Moreover, Grignard reagents have been applied by Ma et al. in the hydroboration of aldehydes and ketones. The high concentration of the reaction mixture ensured excellent conversions in the presence of MeMgI \(^{47}\) (aldehydes: 0.05 mol %, ketones: 0.5 mol %) in 20 min.\(^{24}\)

Very recently, Harder et al. reported the use of calcium amidinate complexes \(^{48-51}\) with various anionic ligands or counterions for the hydroboration of ketones\(^{55}\) and compared their activity with that of previously reported complex 19 (Scheme 24).\(^{78}\) The authors concluded that complex 48 exhibited far better activity than complex 19. The authors attribute this observation to the different amidinate spectator ligands’ bulkiness (buried volume \(V_B = 34.0\%\) for 48 and \(V_B = 28.1\%\) for 19), both in \(N,N\)-coordination mode, and the presence of aryl substituents in complex 48, making calcium more electrophilic. Further increasing the metal center electrophilicity by introducing the \([\text{B(C}_6\text{F}_5)_4]\)\(^-\) anion (complex 49) led to an improvement in the catalytic performance. Finally, catalysts 50 and 51 outperformed all the other catalysts, which led to the proposal of two different mechanistic pathways depending on the ligand.

Mechanistically, for hydridic complexes 50 and 51 the authors proposed that in similar metal–hydride hydroboration reactions, Ca–H I undergoes hydrometalation to provide calcium alkoxide II, which via nucleophilic attack to the boron atom forms zwitterionic species III. Finally, after hydride transfer, complex IV is obtained, the product is released, and the catalyst regenerates the catalysts. Alternatively, a pathway in which
hydroboration of ketones. The sterically hindered magnesium complex catalysts. version has been exclusively limited to transition-metal studied using magnesium catalysts, the catalytic enantioselective catalytic hydroboration of carbonyl compounds has been widely reduced under mild reaction conditions and in short reaction times. hydroboration of various organic compounds, such as aldehydes and ketones, acid chlorides, esters, amides, nitriles, alkenes, and alkynes as well as epoxides. Out of all tested substrates, only hydroboration of aldehydes and ketones provided the desired products. With as little as 0.5 mol % of LiBr, various substrates bearing aliphatic and aromatic substituents were reduced under mild reaction conditions and in short reaction times.

Very recently, Maron, Venugopal, and co-workers reported (Me6TREN)−magnesium alkoxide complex 54 and magnesium dialkoxide 55 as active catalysts for the hydroboration of ketones. The sterically hindered magnesium complex 54 was employed as a model catalyst to explore the role of magnesium alkoxides for ketone hydroboration (Scheme 25). Control experiments and DFT calculations suggest that the hydride transfer from pinacolborane to the C=O bond occurs in a concerted reaction pathway through a six-membered ring transition state (TS-1). On the basis of these results, the authors discarded the possibility of the formation of any magnesium hydride intermediate (cf. Scheme 28). The authors explored the substrate scope by using homoleptic dialkoxide 55 as a simplified version of 54. Excellent yields were obtained for a wide range of dialkyl ketones, enones, and acetonaphone derivatives, showing good functional group tolerance. It is important to highlight the excellent activities of 55, competing favorably with the other Group 1 and Group 2 metal catalysts.

Recently, Liu and Cui reported the activity of dinuclear magnesium hydride 56 stabilized by a phosphinimino amide ligand. Under mild reaction conditions and in short reaction times, complex 56 was able to successfully catalyze the hydroboration of a wide range of aldehydes, acetoephonene-derived ketones, and enones (Scheme 26).

Asymmetric Hydroboration of Ketones. Although the catalytic hydroboration of carbonyl compounds has been widely studied using magnesium catalysts, the catalytic enantioselective version has been exclusively limited to transition-metal catalysts. Even though there are several examples of enantioselective magnesium catalysis reported thus far, there are only two examples of enantioselective magnesium-catalyzed hydroboration.

The first example of enantioselective magnesium hydroboration of prochiral ketones was reported by Rueping et al. using Mg-(R)-BINOL derived complex 57. With this in situ formed catalyst, excellent yields and enantioselectivities could be obtained for a wide range of acetonaphene and 1-indanone derivatives (Scheme 27). Moreover, catalyst 57 was applied for the hydroboration of α,β-unsaturated ketones, with exclusive 1,2-addition, achieving excellent enantioselectivities for a wide range of enones and ynone. The authors suggested a cooperative magnesium–ligand activation mode of HBpin, which is supported by the results of NMR spectroscopy and DFT calculations (Scheme 28). NMR experiments showed that, in contrast to other magnesium hydroboration examples, no Mg–H species was observed when 57 and HBpin were mixed. NMR spectroscopy measurements also showed that in stoichiometric experiments only one molecule of HBpin is necessary for the quantitative reduction of ketone, in agreement
with the fact that no Mg−H formation is required for the reaction. In this regard, DFT calculations disclosed an alternative pathway. After substrate coordination to 57, HBpin coordination takes place via a dual coordination with the Mg center (via O atom from HBpin) and with the O atom of BINOL ligand (via B atom from HBpin). Through coordination the HBpin moiety becomes more electron-rich, which facilitates hydride transfer to the previously coordinated C==O bond. DFT calculations also indicate that the BINOL derivative can act as a noninnocent ligand and is involved in HBpin activation. In this regard, when HBPin coordinates to the O atom of 57, it becomes more electron rich and facilitates hydride transfer to C==O bond. This hydride transfer is also favored not only by the increase of the hydridic character of HBpin but presumably also by the increased electrophilic character of the substrate upon coordination to the Mg center. The computed energy profile reveals that the hydride-transfer step is predicted to be the rate-limiting and enantiodetermining step. In this case, the origin of enantioselectivity arises from the steric repulsion between the substituent at the 3′-position of the BINOL skeleton and the aryl substituent of the ketone. Thus, the energy difference of 2.5 kcal mol⁻¹ between both transition states in the hydride transfer step and the absolute configuration of the products are in agreement with the experimental results.

Similarly, Gade et al. developed magnesium–boxmi complex 58 (boxmi = bis(oxazolinylmethylidene)isoindoline) for the hydroboration of a wide range of acetophenone derivatives (Scheme 29). On the basis of the results of NMR spectroscopy and DFT calculations, the authors suggest a mechanistic pathway that involves a reactive borohydride intermediate (59) formed via metathesis with a simultaneous release of Me₃SiCH₂BPin. Although complex 58 showed excellent enantioselectivity toward acetophenone derivatives, competing favorably with Rueping’s catalyst 57 (Scheme 26), complex 58 showed a narrower substrate scope.

Very recently, Melen et al. developed the enantioselective lithium-catalyzed hydroboration of aryl alkyl ketones (Scheme 30). Lithium complex 60 formed in situ between LDA and a chiral BINOL-derived ligand generated secondary alcohols in good to excellent yields; however, the optical purities of the obtained products were rather low and did not exceed 60% ee. Mechanistically, the authors showed that the phenolic proton in the ligand is deprotonated with LDA and that subsequent addition of HBpin leads to the formation of reactive trialkoxyborohydride species 61, which is responsible for the hydride transfer to the C==O bond.

3.2. Pyridines

In 2010, Hill et al. found that β-diketiminate magnesium complex 5 promoted the dearomatization of pyridine. By single-crystal X-ray diffraction analysis and NMR spectroscopy, they observed that upon mixing of 5 and pyridine coordination takes place rather than alkyl addition. Treatment of the pyridyl complex with phenylsilane, a reagent known for the synthesis of well-deﬁned magnesium hydrides, resulted in the formation of n-butyphenylsilane. However, no evidence of a Mg−H species was found. Instead, the formation of a mixture of 1,2- and 1,4-dihydropyridines was observed (Scheme 31a). The product distribution was in agreement with the seminal work from Ashby who demonstrated MgH₂ addition to pyridine.

These stoichiometric studies led to the development of the first catalytic system based on magnesium hydride species for the hydroboration of unsaturated bonds. In this case, magnesium complex 5 was shown to catalyze the hydroboration of a wide range of pyridines, leading to mixtures of 1,2- and 1,4-dihydropyridine products (Scheme 31b), with a preference for the latter.

Mechanistically, the magnesium-catalyzed hydroboration of pyridine derivatives did not differ from the stepwise stoichiometric studies previously accomplished by the same group. The authors postulate that the precatayst 5 reacts with pinacolbor-
ane to afford the corresponding magnesium hydride intermediate, which upon pyridine coordination immediately forms the corresponding 1,2-dihydropyridine regioisomer (Mg−1,2-DHP), which isomerizes to the more thermodynamically stable regioisomer (Mg-1,4-DHP). Finally, the Mg−dihydropyridine intermediates reacts with pinacolborane, forming a magnesium borate intermediate that releases the final product and the regenerated magnesium hydride catalyst. It should be noted that the isomerization is highly substrate dependent, resulting in excellent to poor product regioselectivity.

A multinuclear magnesium hydride cluster 62 was tested by Harder et al. for the conversion of pyridine derivatives to N-borylated dihydropyridines (Scheme 32).117 Focusing first on stoichiometric reactivity, a tetranuclear cluster 62 showed exceptional selectivity toward hydride transfer to the 2-position of the pyridine, with no isomerization even at elevated temperatures and prolonged heating. On the other hand, the octanuclear cluster analogue showed temperature-dependent mixtures with 1,2- and 1,4-selectivity. Because of the exceptional 1,2-selectivity, the authors applied 62 in the catalytic hydroboration of a wide range of pyridine derivatives. Whereas the use of stoichiometric Mg−H addition to pyridine led to the formation of a 1,2-regioisomer exclusively, the use of catalytic amounts of 62 resulted in lower regioselectivity. The inactivity observed for 2,6-lutidine supported the mechanistic hypothesis of an initial hydride transfer to the 2-position prior to the isomerization to the 4-position. The difference in regioselectivity of the stoichiometric and catalytic reactions led the authors to hypothesize that the two metallic centers of the catalysts might be operating in different catalytic stages of the cycle, which could potentially result in the preference of regioselectivity.
authors ruled out the possibility of the formation of catalytic amounts of MgH₂ (which would lead to a nonselective hydride transfer) as no direct indication for Schlenk equilibrium was observed. Consequently, the authors proposed an alternative catalytic cycle, which circumvents the formation of the intermediate magnesium hydride species. Whereas the first catalytic cycle is based on a magnesium hydride species, which transfers the hydride to the 2-position selectively, the second, unselective cycle might be operating in parallel to the Mg−H cycle (Scheme 32). Thus, in the presence of excess pyridine (Cycle II), a magnesium borate intermediate (IV) is formed,
which could directly transfer a hydride from boron to either the
2- or 4-position of a pyridine ligand, resulting in the formation of
a magnesium 1,2-DHP or 1,4-DHP mixture (V). Importantly,
multinuclear magnesium 62 showed slightly better performance
than the mononuclear magnesium complex 5.115,116

In 2016, Stasch et al. developed phosphinoamido–magne-
sium−hydride complex 8 (Figure 5), which was shown to be
very active for the hydroboration of ketones.75 When applied to
the hydroboration of pyridine, complex 8 did not lead to full
conversion due to decomposition of HBpin under harsh reaction
conditions, thus showing lower catalytic activity than the
previously developed magnesium complexes 5 and 62
developed by Hill 115 and Harder,117 respectively.

In the same year, Okuda et al. applied magnesium complex 18,
containing an N,N,N,N-type macrocyclic ligand (Figure 5), for
the hydroboration of pyridine, which regioselectively afforded
the 1,4-insertion product.77

Similarly, Parkin et al. developed [TismPriBenz]MgMe complex
63 (Figure 5).118 Although the precatalyst provided the 1,4-
addition product with high regioselectivity, the authors did not
further investigate the substrate scope.

Tetranuclear siloxide/amide strontium complex 64, which is
active for the hydroboration of pyridine and its derivatives
(Scheme 33), was reported by Harder et al.119 In terms of
activity and 1,4-regioselectivity, complex 64 competes favorably
with the magnesium catalysts reported to date. The authors also
developed tetranuclear siloxide/amide barium complex 65,
which is an analogue of 64, for the hydroboration of pyridines.
Compared to strontium complex 64, barium complex 65 was
slightly more active, although in some cases, this increase in
activity occurred at the expense of regioselectivity. It is
important to highlight the excellent activity and good selectivity
of complex 65 when chlorinated pyridine was tested, which thus
far has been converted only with the use of an iron catalyst.120

Okuda et al. then demonstrated that when [Mg-
(SiPh3)2(THF)2]THF complex was mixed with pyridine it
underwent 1,4-addition, affording complex 66 (Figure 6). A
similar reaction but with excess pyridine provided complex 67.
The same result was observed when (Me3TACD)Mg(SiPh3)
was mixed with excess pyridine, leading to the formation of
complex 68. For comparison purposes, (Me3TACD-AlBu3)−
Mg(NC5H4SiPh3) 69 was synthesized, and all complexes (67–
69) were applied in the hydroboration of pyridine. Complexes
68 and 69 were the most active complexes.121 Regarding
activities and regioselectivities, these complexes showed
behavior similar to those already reported by Stasch et al.
(8),75 Hill et al. (5)115 and Harder et al. (62).117

Okuda et al. also reported the synthesis of cationic magnesium
hydride species 3 (Figure 7) stabilized by an N,N,N,N-type
macrocycle.46 When 3 was treated with pyridine, complex 70
was obtained. Remarkably, complex 70, which contains a 1,2-
dihydropyridine as a ligand, did not isomerize to the 1,4-
regioisomer 71, even at high temperature, in excess pyridine, and
after a long time. The conversion of 70 to 71 was achieved by
adding catalytic amounts of complex 72. The authors speculated
that the strong Lewis acidic Mg2+ complex 72 accelerated the
transformation of 70 to 71. These three magnesium complexes
were further applied for the catalytic hydroboration of pyridine.
Whereas complexes 70 and 71 provided a mixture of 1,2- and
1,4-regioisomers (ratio 1:3 and 1:9, respectively), complex 72
exclusively provided the 1,4-regioisomer.
Interestingly, Park and Chang et al. found that potassium-based precatalysts not only are active for the hydroboration of C═O bonds but also provide excellent regioselectivities for the hydroboration of pyridines and their derivatives. Potassium tert-butoxide 73 together with 18-crown-6 showed excellent activities and regioselectivities for the hydroboration of a range of N-heteroarenes (Scheme 34), achieving N-boryl-1,4-dihydropyridines in excellent yields. Mechanistic studies revealed that in situ formed BH$_3$ forms an adduct with N-heteroarenes to which HBpin is selectively added to break the N-aromaticity. Mechanistic investigations supported by NMR spectroscopy, DFT calculations, and kinetic studies revealed that initially KO-t-Bu reacts with HBpin to rapidly produce borohydrides species I, which are in equilibrium (including BH$_3$). The pyridine substrate then reacts with BH$_3$ to generate a pyridine-BH$_3$ adduct II that undergoes nucleophilic hydride attack by a borohydride species, forming 1,4-dihydropyridyl borohydride III, which is a resting intermediate. Then a hydride transfer from III to HBpin slowly regenerates the reactive borohydrides I and 1,4-dihydropyridyl borane IV, which finally reacts with a second molecule of pinacolborane to afford the N-Bpin-1,4-dihydropyridine product and BH$_3$, probably via σ-bond metathesis.\(^{122}\)

Recently, He and Zhang et al. reported the regioselective 1,2-hydroboration of N-heteroarenes using potassium tert-butoxide 73.\(^{123}\) The authors found that replacing THF with a nonpolar solvent, such as benzene, completely changed the regioselectivities observed by Chang et al.\(^{124}\) toward selective 1,2-addition. Therefore, a range of N-heteroarenes could be selectively hydroborated, affording the corresponding N-boryl-1,2-dihydropyridine derivatives in excellent yields and selectivity. When KO-t-Bu 73 and HBpin were mixed a white precipitate was obtained together with t-BuOBpin. The authors suggested that the white precipitate is KH, which indeed in subsequent experiments performed the same way as KO-t-Bu 73 (Scheme 35).\(^{123}\) Interestingly, other alkali metal hydrides (LiH and NaH) provided lower regioselectivity. These findings corroborated the hypothesis that KH is formed after mixing and that KH was the active hydride species.

Regarding the regioselectivity, the authors propose that the 1,2-regioselectivity relies on the reaction between K-compound I with HBpin, which is faster than the isomerization of I to II. Therefore, once I is formed, the 1,2-regiosomer will be afforded together with KH. Control experiments confirmed that the isomerization from I to II occurs due to stability of N-boryl-1,2-hydropyridine (Scheme 35).\(^{123}\) Hence, polar and coordinative solvents such as THF favor the isomerization toward intermediate II, whereas C$_6$D$_6$ suppresses it.

A comparison of the KO-t-Bu-catalyzed hydroboration of N-heteroarenes reported by Park and Chang et al.\(^{122}\) and He and Zhang et al.\(^{123}\) shows that the active hydride species (and thus, the regioselectivity) depends on the nature of the solvent. Whereas reactions carried out in THF and in the presence of 18-crown-6 provide BH$_3$ as active hydride species and 1,4-regiosomers, the reactions carried out in C$_6$D$_6$ and in the absence of 18-crown-6 form KH as a hydride donor, and 1,2-regiosomers are obtained.

Bai and Lan and co-workers performed DFT calculations to investigate the mechanism of the alkaline earth metal catalyzed hydroboration of pyridines with pinacolborane.\(^{124}\) The authors...
studied the magnesium-catalyzed hydroboration of pyridine using one of the most employed catalysts: a magnesium hydride derived from the precatalyst 5 (Scheme 36). The authors established that once the magnesium hydride species is formed (upon mixing 5 with pinacolborane) pyridine coordination takes place. The authors studied three possibilities: (i) direct 1,2-hydride transfer involving Mg-H; (ii) 1,2-hydride transfer mediated by pinacolborane; and (iii) direct 1,4-hydride transfer involving Mg-H. Interestingly, the insertion barrier steps are of 29.7, 33.5, and 38.8 kcal mol\(^{-1}\), respectively. The hydride transfer via TS-1 and TS-2 afford the same Mg-1,2-dihydropyridine intermediate, whereas TS-3, less energetically favored, provides the other regioisomer. The free energy profile shows that the rate-determining step of the catalytic cycle is the hydride transfer to pyridine (via TS-1). The authors also studied other alkaline earth metal catalysts and found that the activation free energies of TS-1 are much lower for the Ca and Sr analogue of 5 (calculated Ae-H BDE is Be-H > Mg-H > Ca-H > Sr-H). Thus, the authors anticipate that calcium and strontium catalysts could be used in a future, allowing milder reaction conditions.

3.3. Imines

Imines, which are easily accessible from carbonyl compounds and primary amines, are suitable precursors for the preparation of secondary amines. In 2013, Hill et al. reported the excellent catalytic activity of magnesium complex 5 for the hydroboration of N-aryl and N-alkyl aldimines and ketimines (Scheme 37).\(^{125}\) For reactions that required temperatures higher than 60 °C and prolonged times, poor yields were obtained due to the decomposition of catalyst. The authors observed in several reactions B\(_2\)pin\(_3\) as a decomposition pathway byproduct.

By means of NMR spectroscopy, the authors established that when complex 5 is mixed with HBpin, dimeric species 6 is formed together with \(n\)-BuBpin, which exist in equilibrium with...
the magnesium borohydride complex 70. This active Mg-H species 6 undergoes C≡N bond addition affording a magnesium-amido intermediate, and after σ-bond metathesis with 1 equiv of HBpin, N-boryl amine is obtained, and active species 6 is partially regenerated together with a new magnesium hydride species (Scheme 37).

Kinetic studies displayed a second-order rate in [imine] and a zero order in [HBpin], and in the excess of pinacolborane, a decrease of the reaction rate was observed, consistent with HBpin acting as an inhibitor. On the contrary, the excess of imine substrate showed no catalyst inhibition at higher initial concentrations. Finally, kinetic studies showed that the reaction is first order in [catalyst], which is consistent with the monomeric nature of the insertion intermediate.

Lin et al. applied magnesium-functionalized Zr-MOF 17 for the hydroboration of imines to give N-borylamines.76 Although the complete conversion of N-benzylideneaniline was observed with a catalyst loading of 0.05 mol %, rather long reaction times were reported for other aldimines and ketimines, limiting the applicability of the catalyst (Scheme 38a).

Scheme 38. Hydroboration of Various Benzaldehyde-Derived Aldimines

Magnesium hydrotriphenylborate complex 1 applied for the reduction of a variety of polarized bonds was used for N-benzylideneaniline as a model substrate (Scheme 38b).45 Similar to Lin’s finding,76 harsher reaction conditions and a long reaction time were necessary to afford full conversion of this relatively reactive imine.

N-benzylideneaniline was hydroborated by Okuda et al. in the presence of magnesium complex 18 containing an N,N,N,N-type macrocyclic ligand (Scheme 34c).77 The authors suggested that the presence of a bulky Al(iBu)3 group made the reaction difficult, and full conversion was achieved after 48 h.

The catalytic hydroboration of N-methyl-1-phenylmethanimine could be initiated simply by NaOH 20 (Scheme 34d), as shown by Wu, Liu, and Zhao et al.78 The reaction proceeded within 6 h at 90 °C, affording the product in good yield. The
authors, however, did not expand the substrate scope to other imines. Furthermore, Xue and Bao et al. extended the application of \(n\)-BuLi as an efficient precatalyst for the hydroboration of imines (Scheme 39). For the first time, a lithium catalyst was shown to be active toward the hydroboration of imines. A wide range of \(N\)-aryl and \(N\)-alkyl aldimines and ketimines were hydroboration under mild reaction conditions. Additionally, this catalytic system showed excellent chemoselectivity toward the hydroboration of \(N\)-propargylic aldimines.

Panda and co-workers applied potassium benzyl (KCH\(_2\)Ph) for the hydroboration of aldimines. Although low catalyst loadings (5 mol%) and mild reaction conditions were required for the successful hydroboration of aldimines, no examples of less reactive \(N\)-alkyl aldimines and ketimines were presented. Thus, excellent yields were obtained for a wide range of \(N\)-aryl ketimines. Furthermore, after successfully applying lithium bromide for hydroboration of aldehydes and ketones in the presence of cheap and readily available lithium bromide, An et al. utilized this catalytic system for hydroboration of imines. Various aryl-protected aldimines and ketimines were hydroborated to afford the corresponding amines under mild reaction conditions and in remarkably short reaction times.

3.4. Esters and Amides

Due to their higher stability compared to ketones and imines, the reduction of esters and amides is a more challenging task. The existing protocols often employ either transition-metal catalysts or very reactive metal hydrides, which are rather undesired, as they tend to react with other functional groups. The s-block metal-catalyzed hydroboration of esters and amides has been reported using only magnesium-based catalysts.

The first example of magnesium-catalyzed hydroboration of esters was reported in 2014 by Sadow et al. Trisoxazonylphenyborate magnesium complex 75 (To\(^3\)MgMe) was used for the catalytic hydroboration of both linear and cyclic esters. In all cases, quantitative conversions were observed under mild reaction conditions, short reaction times and low catalyst loadings (Scheme 40). Moreover, the authors established the formation of a zwitterionic magnesium borohydride species A when 75 reacts with the excess of pinacolborane. Here, the magnesium center coordinates to the O atom of the pinacolborane and the two hydrogens are bound to the boron atom. The reaction of 75 with AcOEt produces magnesium ethoxide B within 5 min, following the elemental organometallic steps of MgMe addition to C\(\equiv\)O bond to give the \(\beta\)-ethoxy alkoxide, followed by the \(\beta\)-ethoxy elimination. Unexpectedly,
kinetic studies of the catalytic reaction ruled this step out as a part of the catalytic cycle. Treatment of the magnesium ethoxide species B with the excess of pinacolborane provides zwitterionic magnesium borohydride species A and EtOBpin. Notably, this step is also ruled out by catalytic kinetic experiments.

Kinetic studies revealed surprising dependencies of half-order [AcOEt] and zero-order [HBpin]. The half-order [AcOEt] indicates a reversible interaction of the catalyst and the ester substrate to afford ester cleavage prior to the turnover-limiting step. The zero-order [HBpin] rules out that the classic σ-bond metathesis mechanism is turnover-limiting and together with the half-order [AcOEt] unambiguously rule out the insertion/σ-bond metathesis pathway. The Mg intermediate II was shown to be the resting state, as it was the only magnesium compound observed during the course of the catalytic reaction. This finding is in agreement with the zero-order [HBpin] as the hydride reducing agent is not HBpin but II in its resting state. Thus, the classic σ-bond metathesis step forming the corresponding Mg-H and EtOBpin species does not occur. The half-order [AcOEt] rather indicates that the catalyst resting state interacts reversibly (via reversible ester cleavage). Finally, product formation occurs by a unimolecular conversion of intermediate III that already contains Bpin−, RO−, and LMg− moieties. In addition, the authors showed that either 75 or magnesium intermediate I can mediate ester metathesis, a fast reversible cleavage of ester substrate providing the corresponding aldehyde.

One year later, in 2015, the same authors applied complex 75 to the hydroboration of amides (Scheme 41). The presented catalytic system allowed the reduction of secondary and tertiary amides to the corresponding amines via deoxygenative C−O bond cleavage.133 Although reduction of N,N-dimethylformamide was completed within minutes under mild reaction conditions, hydroboration of acetamides, benzamides, and secondary formamides required much longer reaction times of up to 48 h. Mechanistically, the authors postulate that the magnesium species A (in Scheme 40), formed by mixing 75 and HBpin, is not a plausible catalytically relevant species as it provides a mixture of several products from C−N, C−O, and C−C bond cleavages. Alternatively, 75 decomposes in the presence of amides, ruling out the possibility that 75 is a catalytically relevant species. Moreover, no reactivity of amide with HBpin (in the absence of 75) is observed.

Spectroscopy data suggest that 75 reacts with both amide and HBpin simultaneously, forming formimidate boronic ester I (at higher concentrations of HBpin) and diborylated compound II (at lower concentration of HBpin); the latter being obtained via a NH/BH dehydrocoupling pathway from a possible i-II species. Kinetic studies showed that conversion of amide to I and II is fast, whereas the reductive deoxygenation pathway (from I and II to give the desired product) is the turnover-limiting step.

Okuda et al. also applied magnesium hydrotriphenylborate complex I and complex 18 for the hydroboration of esters and amides (Scheme 42).45,79 In all cases, however, the reactions required harsher conditions and longer times than those needed for Sadow’s precatalyst 75.132,133 The authors concluded that in the case of complex 18, the presence of a bulky Al(iBu)3 group reduces the amide reactivity.

Several magnesium amide complexes 76 and 77 (Figure 8) were developed in 2017 by Nembenna et al. for the selective hydroboration of esters.134 Whereas magnesium diamide 76 showed excellent selectivity toward ester hydroboration, more sterically hindered complex 77 was less active. From a catalytic perspective, quantitative conversions at ambient temperature and low catalyst loadings (0.1−0.5 mol %) were achieved in 10−45 min for a wide range of linear and cyclic esters bearing functional groups, competing favorably with Sadow’s precatalyst.132

Ma et al. applied dimeric Mg(I) complex 78 (Figure 8) for the reduction of various carbonyl compounds, including esters.135 Under mild reaction conditions, full conversions were obtained for a variety of substrates, showing the high effectiveness of this low-valent magnesium(I) complexes, comparable to the best results obtained with divalent magnesium(II) complexes.

Mandal and co-workers reported the use of abnormal NHC-based potassium complex 79 for the catalytic hydroboration of primary amides.136 Low catalyst loading and mild reaction temperatures allowed the reduction of several aryl and alkyl primary amides in excellent yields. It is important to highlight that control experiments showed that in the absence of precatalyst 79 or with the presence of only NHC or KN(TMS)2 no conversion was observed. Isolation of reaction intermediates and single-crystal XRD analysis as well as DFT calculations led
to the proposal of the dual role of 79: nucleophilic activation of HBpin by the abnormal NHC and the Lewis acidic activation of the borylated amide by potassium ions (Scheme 43).

Later, Yao and co-workers reported that simple and commercially available KO-t-Bu 73 in combination with BEt3 could selectively reduce amides to amines (Scheme 44).137 Interestingly, and contrary to the previously reported K-based precatalyst 79, KO-t-Bu 73 in combination with BEt3 catalyzes the deoxygenative reduction of tertiary, secondary, and primary amides with pinacolborane, although longer reaction times were required. Kinetic experiments showed that the reaction shows a first-order dependence on [substrate], [HBpin], and [73-BEt3].

Mechanistically, the authors reported that [K][BEt₂H] I, obtained from the reaction of 73 and BEt3 with pinacolborane, is the active reducing agent. On the basis of control experiments and DFT calculations, the authors reported that a plausible mechanism would involve the reaction of I with the amide, providing ion-pair intermediate II, which subsequently reacts with pinacolborane to afford borane III and regenerate active species I. Intermediate III then provides iminium IV species, which in the case of 3° amides is reduced to the desired product. On the contrary, with 1° and 2° amines an imine intermediate V is obtained via intermediate IV and HBpin. Finally, imine V undergoes reduction, affording the corresponding primary and secondary amines.

Finally, Sen and co-workers reported high efficiency of lithium phenolate 26 as catalyst for the deoxygenative hydroboration of primary, secondary, and tertiary amides (Scheme 45).139 In this regard, excellent yields for a wide range of amides could be obtained. In agreement with the previous reports from Sadow,131 Mandal,136 and Yao,137 the authors suggest a pathway via the imine intermediate. Thus, lithium 26 coordinates to HBpin to afford intermediate I, which after amide insertion, together with hydrogen evolution, gives the N-borylated amide III. Catalyst 26 coordinates to the C═O bond, favoring the

Figure 8. Magnesium complexes for hydroboration of esters.
second hydroboration reaction to obtain intermediate IV, which undergoes elimination of B₂pin₂O and generates imine V. Finally, hydrogen evolution and reduction of N-borylated imine VI provides the corresponding compound. It is important to highlight that direct reactivity of 26 with amide, and the subsequent reaction with HBpin is discarded due to the higher energy barrier required.

Recently, Liu and Cui and co-workers reported the catalytic activity of dimeric magnesium hydride stabilized by phosphinimino 56 toward ester hydroboration, although in comparison with most of the other catalyst, lower activity was observed. 99

3.5. Carbonates and Carbamates

The reduction of carbonates leads to methanol and value-added diols or their derivatives. However, carbonates are known to be inert toward reduction due to their high stability. 140 Thus, the hydroboration of carbonates remains fairly underdeveloped, and the first example was reported recently. Rueping et al. applied readily available Mg(n-Bu)₂ 46 to the hydroboration of linear and cyclic carbonates. 141 For the first time, an s-block metal-based catalyst showed activity toward carbonate reduction. This efficient Mg-catalyzed reduction of carbonates provides an efficient indirect route for the conversion of CO₂ into valuable alcohols (Scheme 46). Moreover, magnesium 46 could also be applied for the depolymerization of polycarbonates. Based on control experiments and NMR spectroscopy, the authors suggest a mechanism for the magnesium-catalyzed hydroboration of carbonates which involves a n-BuMgH species obtained by σ-bond metathesis of HBpin and Mg(n-Bu)₂. 46 This active n-BuMgH species then participates in three sequential catalytic cycles. After the first hydromagnesiation of carbonate and the subsequent σ-bond metathesis with one
molecule of pinacolborane, active n-BuMgH I is regenerated together with O-Bpin formate II. Then species II reacts with n-BuMgH to provide formaldehyde III, and after reaction with a second molecule of pinacolborane, the desired product IV is obtained, regenerating n-BuMgH I, which finally reduces formaldehyde leading to methyl boronic ester V. Competition experiments with equimolar amounts of carbonate and formate II showed that whereas formate reacted quantitatively, carbonate remained unreacted, thus leading to the conclusion that the reduction of carbonate is the rate-limiting step.

Similarly, Ma et al. continued their research on the application of dimeric Mg(I)-based precatalysts for the hydroboration of carbonyl compounds. Just recently, they reported an efficient protocol for the reduction of cyclic and linear carbonates, among other compounds. By performing the reaction under neat conditions, the authors were able to prepare the corresponding Bpin-protected alcohols and diols in the presence of 1 mol % catalyst 78 at ambient temperature.\(^{135}\)

Rueping et al. also applied commercially available Mg(n-Bu)\(_2\) for the hydroboration of a wide range of secondary and tertiary linear and cyclic carbamates (Scheme 47).\(^{142}\) In this case, the hydroboration of methyl and tert-butyl carbamates provided the corresponding N-methyl amines in excellent yields. It is important to highlight that one of the most applied N-protecting groups, the N-Boc group, could be used as a C1-building block. Similarly, by using DBpin, the corresponding N-trideuteromethyl amines could be obtained. On the basis of the

Scheme 46. Mg-Catalyzed Hydroboration of Carbonates

Selected examples

Reaction	Yield
BpinO OBPin	88% yield
BpinO OBPin t-Bu	93% yield
BpinO OBPin Ph	>95% yield
OOBpin	93% yield

Proposed mechanism

Scheme 47. Magnesium-Catalyzed Deoxygenative Reduction of Carbamates

Selected examples

Reaction	Yield
R\(_1\) N\(_2\) O R\(_3\)	89% yield
CH\(_3\) N\(_2\)	>96% yield
CH\(_3\) N\(_2\)	73% yield

Proposed mechanism (simplified)

8286 https://doi.org/10.1021/acs.chemrev.1c00641

Chem. Rev. 2022, 122, 8261–8312
NMR spectroscopy results, the authors suggested a mechanism which involves two sequential reductive steps of the carbamate I and the formamide intermediate II and a third step that involves a C–O bond cleavage of the obtained O-Bpin hemiaminal species III. Similar to the hydroboration of carbonates (Scheme 46), the authors established that the rate-limiting step is the reduction of carbonate I.

Recently, Liu and Cui reported the catalytic activity of dimeric magnesium hydride stabilized by phosphinimino in the hydroboration of both linear and cyclic carbonates.

3.6. Nitriles and Isonitriles

The reduction of nitriles and isonitriles, compared to the reduction of other unsaturated compounds, is a fairly under-developed field of research, as the only existing example of catalytic hydroboration of this class of compounds was described by Hill et al. in 2015. The reduction of N-alkyl-substituted isonitriles to form 1,2-diborylated amines proceeded smoothly in 1 h at a moderate temperature in the presence of diketiminato magnesium alkyl complex 5 (Scheme 48).

Scheme 48. Magnesium-Catalyzed Hydroboration of Isonitriles

reduction of N-aryl substrates, on the other hand, required much harsher conditions and did not lead to complete consumption of the substrate. The low conversions were attributed not only to the change in electronic properties of the substrates and hence their higher stability but also to the decomposition of the reducing agent at elevated temperature. Mechanistic studies revealed that the first Mg–H addition occurs on the polarized C≡N bond. Then HBpin coordination takes place, leading to an intramolecular hydride transfer from HBpin to the Mg–formimidoyl intermediate. Finally, a σ-bond metathesis of the second molecule of HBpin regenerates the catalyst and provides the corresponding 1,2-diborylated amine products. On the basis of NMR spectroscopy studies, the authors proposed a mechanism in which precatatyl 5 reacts with HBpin to form L>Mg-H species I. After substrate coordination, the first Mg-H addition to the polarized C≡N bond occurs, providing intermediate III. Then HBpin coordination takes place, affording species IV, which undergoes intramolecular hydride transfer from HBpin to the Mg-formimidoyl intermediate III to afford magnesium species V. Analysis of the reaction rates indicate a pre-equilibria between I and II and between III and IV, which regulates the assembly of a magnesium formimidoylhydroborate IV. The intramolecular hydride transfer in IV is proposed to be the turnover-limiting step. Finally, a σ-bond metathesis of the second molecule of HBpin regenerates the catalyst and provides the corresponding 1,2-diborylated amine products. It is worth mentioning that the authors did not find enough experimental evidence to rule out the possibility that the formidoyl reduction (intermediate IV) and borane metathesis occur in a concerted fashion. Therefore, the product could be obtained through a pathway which would not contemplate intermediate V.

Hill et al. showed that complex 5 is also an active and selective precatalyst for the reductive dihydroboration of organic nitriles and is a useful tool for the synthesis of primary amine derivatives (Scheme 49). Similar to the reduction of isonitriles, substrates with aliphatic substituents could be reduced in shorter times and under milder reaction conditions compared to aryl nitriles. Mechanistic investigations indicated that the magnesium-catalyzed processes are likely to demonstrate previously unappreciated mechanistic diversity, as follows:

(i) Stoichiometric experiments showed that the reaction proceeds through the generation of magnesium aldimido II, magnesium aldimidoborate III, and magnesium borylamido IV intermediates formed via sequential intra- and intermolecular σ-bond metathesis of HBpin.

(ii) Mechanistic differences may depend on the substrate; alkyl nitriles versus electron-rich aryl nitriles versus electron poor aryl nitriles.

(iii) KIE indicates that B–H bond cleavage and C–H bond formation are involved in the rate-determining process during the dihydroboration of alkyl and electron poor aryl nitriles. With all that information, the authors suggested a common mechanism in which the rate-determining steps vary based on the formation of several pre-equilibria.

Thus, for alkyl nitriles (which exhibit more basic character) the monomer/dimer equilibrium favors the monomeric species II. After HBpin coordination, magnesium aldimido hydroborate III is obtained. A facile subsequent hydride transfer follows, affording magnesium borylamide IV. Finally, Mg–N metathesis with a second equivalent of pinacolborane provides the corresponding bis(boryl) amine product via intermediate V. The catalytic hydroboration of alkyl nitriles is determined by the pre-equilibria of II and III and its consumption though a B–H transfer to the coordinated C≡N bond. Thus, the observed rate is dictated by not only the ability of HBpin to replace the nitrite substrate but also by the intramolecular C≡N reduction. For electron-rich aryl nitriles, the conjugative stability of III toward intramolecular reduction would discard the reaction pathway via intermediate IV. Alternatively, a second molecule of HBpin may
coordinate to intermediate III, affording intermediate V. The second-order [HBpin] is likely the result of two sequential reactions between the magnesium intermediate III and HBpin. For electron-deficient aryl nitriles, the Mg−H insertion into RCN provides a dimeric intermediate II*. The apparent independence of [HBpin] and the absence of KIE (using DBpin) suggests that HBpin is not involved in the opening of this dimeric intermediate. Thus, the coordination ability of the substrate to disrupt the dimer II* to form dimer II** with a partial opening may be considered as the rate-determining step. The second order [catalyst] would also agree with an active dinuclear catalysis. Then II** undergoes HBpin coordination and hydride transfer to provide the diborylated amine product.

Magnesium hydrotriphenylborate complexes 1 and 18 were developed by Okuda et al. for the hydroboration of a variety of polarized bonds, including organic nitriles. Although only one substrate has been tested (Scheme 49), the authors proved the high activity of both complexes, as the reduction of tert-butyl nitrile was completed in a very short time using 10 times less catalyst than that used by Hill et al.144 Finally, Ma et al. applied an unsymmetrical β-diketiminate-magnesium(I) complex 37 (Scheme 51) for the hydroboration of nitriles.88 Although the reaction required high catalyst loadings (10 mol %), the reduction of both aliphatic and aromatic nitriles could be achieved. Notably, the higher activity of complex 37 in the hydroboration of aromatic nitriles than of the initial precatalyst 5 developed by Hill et al.144 was attributed to the better accessibility of the metal center due to the smaller steric hindrance of one of the aryl moieties of the unsymmetrical ligand.

Findlater and co-workers showed the high catalytic activity of NaHBEt3 toward nitrile hydroboration (Scheme 52).145 In this regard, excellent yields in short reaction times were obtained for a wide range of aryl and alkyl nitriles, competing favorably with the previous magnesium catalysts reported by Hill, Okuda,45,77 and Ma.88 At the same time, Wangelin and co-workers applied lithium amide 81 precatalyst for the hydroboration of nitriles (Scheme 53).146 Excellent yields for a wide range of substrates were obtained, although slightly higher catalyst loadings and longer reaction times were required when compared to other previously
reported catalysts. Kinetic experiments showed that the reaction exhibited a pseudo-first-order rate dependence on [RCN], first order on [81], and zero order on [HBpin]. On the basis of the kinetic and stoichiometric experiments, the authors proposed that upon mixing 81 with the substrate a Lewis acid−base adduct is formed. Then HBpin coordination (via O atom to the lithium cation) takes place, followed by an intramolecular hydride transfer, forming lithium−imido compounds that undergo further reduction, affording the corresponding bis-N-(borylated) amines.

Finally, Yang and Ma and co-workers demonstrated the excellent activity of readily available n-BuLi 34 as precatalyst in the hydroboration of aryl and alkyl nitriles (Scheme 54).147

3.7. Isocyanates and Carbodiimides

The application of magnesium 5 to the hydroboration of carbodiimides was first presented by Hill et al. in 2016.148 Interestingly, only partial reduction took place, affording the corresponding N-boryl formamidine products. Attempts to induce the second reduction led only to HBpin decomposition. Therefore, a wide range of (E)-formamidine derivatives could be obtained under relatively mild reaction conditions (Scheme 55). On the basis of kinetic studies, the authors showed that catalytic turnover is dependent on the cooperative assembly of further carbodiimides and HBpin to affect the formation of the (E)-formamidine product.

In the same year, Okuda et al. developed magnesium hydrotriphenyloborate complex 1, which was applied for the hydroboration of polarized bonds, including carbodiimides and isocyanates (Scheme 56).45 Although the authors limited the application of the catalytic system to only model substrates, it has been proven that the catalyst exhibits high activity toward the reduction of C==N bonds (cf. Hill’s monohydroboration on Scheme 55), as the dihydroboration of NN-diisopropyl carbodiimide and tert-butyl isocyanate was complete within 12 and 0.5 h, respectively, in the presence of just 1 mol % catalyst.

Furthermore, Hill et al. confirmed the excellent versatility of complex 5 by its application in the reductive hydrodeoxygenation of isocyanates.149 Organic isocyanates were easily converted to methyl amines via a magnesium-catalyzed hydroboration process (Scheme 57). On the basis of the results of control experiments, NMR spectroscopy, and DFT calculations, the authors suggest that the mechanism involves two hydride additions to isocyanate (cycle I) and formamide intermediate (cycle II) and a third hydride addition that cleaves a C−O bond (cycle III), affording the corresponding N-methyl amine. Thus,
the authors postulated that precatalyst 5 reacts with pinacolborane to afford the active magnesium hydride A which, upon substrate coordination and hydromagnesiation, forms magnesium formamidate species B. The reaction with a second equivalent of HBpin leads to intermediate C, a borate species formed by the formal insertion of HBpin into the Mg−N bond. In this case, no indication of a Mg−H species was found. Intermediate C in the presence of HBpin rapidly affords N-borylated formamidine E via magnesium species D. The so-obtained N-borylated formamidine E reacts with A to provide diborylated hemiaminal product G, presumably via magnesium hemiaminal F, which was, however, never observed. Finally, the production of N-borylated amine product and closure of the catalytic cycle (regeneration of active magnesium hydride A) are described to occur via a sequential C−O/Mg−H and Mg−O/B−H metathesis steps. DFT calculations showed that this magnesium-mediated C−O bond cleavage is the most energetically demanding catalytic step. After the C−O bond cleavage a magnesium-boryloxide species H is formed, which after dimerization and Mg−O/B−H metathesis regenerates the active magnesium hydride species, and (pinB)₂O is obtained as byproduct. Notably, in the case of the catalyst developed by Okuda et al., deoxygenative reduction (similar to cycle III) did not take place, and a Bpin−hemiaminal was obtained instead (see Scheme 56).

In 2017, Hill, Mahon et al. further expanded the application of magnesium-based complexes for the hydroboration of carbodiimides. Thus, complex 82 was applied for hydroboration of iPrN═C═N−iPr with HBpin to afford the corresponding bis(N-boryl)aminal (Scheme 58a). Parkin et al. developed
[Tism[P(Pr)]MgMe complex 63 (Scheme 58b), and a preliminary test showed that it was able to catalyze the hydroboration of carbodiimides to form N-boryl formamidines.118 The authors claim that complex 63 shows the highest activity in the hydroboration of carbodiimides among all the magnesium catalysts reported thus far, as the reaction proceeds in a short time at room temperature. It should be pointed out, however, that a large excess of reducing agent was used.

Panda et al. applied KCH2Ph 74 as precatalyst in the hydroboration of carbodiimides as earlier studies showed 74 to be an active precatalyst for the aldimine hydroboration (Scheme 59).127 Although higher catalyst loadings were required compared to magnesium complex 1 developed by Okuda,45 precatalyst 74 compares well with magnesium precatalyst 5 applied by Hill et al.148

Recently, Yang and Ma and co-workers showed that readily available n-BuLi 34 can also be used in the hydroboration of dialkyl- and diarylcarbodiimides.147 In this regard, precatalyst 34 showed similar activities to magnesium 5 and 1, previously reported by Hill148 and Okuda.149

3.8. Carbon Dioxide

Hydroboration of carbon dioxide is a convenient approach for conversion of this rather thermally and kinetically stable gas to C1 building blocks.151 Although several transition-metal complexes have shown to be active toward carbon dioxide reduction, it was only very recently when alkali- or alkaline-earth-abundant metals were applied.152

In 2014, Hill et al. showed that B(C6F5)3-activated magnesium and calcium hydride complexes 83 and 84 are active for the catalytic hydroboration of CO2 (Scheme 60a).153 This catalytic system allowed the unprecedented complete and selective reduction of CO2 to the methanol equivalent (CH3OBpin), although for both catalysts, full conversion was observed only after long reaction times at elevated temperature.

Later, Okuda et al. employed a series of alkali metal hydridotriphenylborate complexes 11–13 for the selective hydroboration of CO2 to primarily reduce formoxyborane (Scheme 60b).35 In this case, all complexes promoted hydroboration at very low catalyst loadings following the reactivity trend Li > Na > K, similar to when carbonyl compounds were reduced (section 3.1).

Okuda et al. applied magnesium hydridotriphenylborate complex 1 (Scheme 60c) for the hydroboration of carbon dioxide at ambient temperature.154 Notably, the complex showed higher activity than magnesium and calcium complexes 83 and 84.

Scheme 59. Hydroboration of Carbodiimides Catalyzed by Potassium 74

Scheme 60. Comparison of Catalytic Activity of Various Alkali and Alkaline Earth Metal Complexes in Hydroboration of Carbon Dioxide
Commerically available Mg(n-Bu)_2 46 was applied by Rueping et al. for the hydroboration of CO₂ (Scheme 60d). This precatalyst, however, showed much lower activity than previously reported complexes, as harsh reaction conditions and long reaction times were necessary for complete consumption of the substrate. This observation was also reported by Ma et al., who applied Mg(I) complex 78 for hydroboration of CO₂ and other carbonyl compounds (Scheme 60e). 135

3.9. Carboxylic Acids

Reduction of carboxylic acids can be performed using stoichiometric amounts of LiAlH₄. The application of HBpin in combination with metal catalysts is very rare, and the only example of a main group metal catalyzed hydroboration of carboxylic acids was reported by Ma et al. in 2020. 135 Sterically bulky amino magnesium methyl complex 85 was applied for hydroboration of various aliphatic and aromatic carboxylic acids (Scheme 61). Remarkably, the reported catalytic system turned out to be more efficient than the previously reported protocols based on Ru and Mn. 156

On the basis of DFT calculations, NMR analysis, and control experiments, the authors proposed a mechanism which involves formation of RCOOBpin II via a noncatalytic reaction of carboxylic acid with HBpin with simultaneous liberation of hydrogen or via a Mg-catalyzed pathway. The so-obtained RCOOBpin is then reduced in the presence of in situ formed magnesium hydride I (pathway A) to to generate a magnesium complex V and eventually the desired product. Alternatively (pathway B), the first step obtained boryl ester could react with LMcH to form an aldehyde and magnesium boryloxide species V. The formation of an aldehyde as a plausible intermediate was confirmed via NMR experiments. The boryloxide species V reacts then with HBpin to regenerate the magnesium hydride with elimination byproduct pinBOBpin. At the same time, the aldehyde is reduced to the corresponding borylated alcohol via alkoxy intermediate VI. Although the authors reported high activity of their complex, it should be noted that recent studies on catalyst-free hydroboration of carboxylic acids demonstrated that this reaction may in fact proceed efficiently without the presence of any catalyst (see section 7.2).

3.10. Sulfoxides

During studies on the hydroboration of carbonyl compounds in the presence of magnesium hydridophenylborate complex I, Okuda et al. found that when the reactions were carried out in DMSO, catalytic deoxygenation of DMSO occurred as a side reaction (Section 3.1). The authors further investigated the reactivity of complex I for the hydroboration of sulfoxide, and thus, the only existing protocol of such a reaction in the presence of an alkaline earth metal-based catalyst was reported (Scheme 62). 45 Catalytic deoxygenation proceeded even under mild reaction conditions and low catalyst loadings; however, longer reaction times were required, and the substrate scope was limited to only three examples.

4. HYDROBORATION OF UNSATURATED C–C BONDS

4.1. Alkenes

Although the transition-metal-catalyzed hydroboration of alkenes has been widely studied, 157–160 studies of the hydroboration of alkenes catalyzed by s-block metals have been limited. 145 The first example of the s-block metal-catalyzed hydroboration of unsaturated C–C bonds was reported by Harder et al. in 2012. Calcium-based complexes 86–88 (Figure 9) were investigated as potential catalysts in the hydroboration of 1,1-diphenylethylene using HBcat (catecholborane) as
reducing agent. Surprisingly, the product of the reaction was not the expected Ph₂CHCH₂Bcat; instead, (Ph₂CHCH₂)₃B was formed. By means of NMR spectroscopy, the authors proved that organocalcium complexes decompose HBcat to BH₃ or B₂H₆, which are the actual active species in the reaction. By using less reactive HBpin, they found that the organocalcium complexes decompose even at room temperature.162

Several years later, Wu, Liu, and Zhao et al. showed that a catalytic hydroboration of nonpolarized unsaturated compounds, such as alkenes, could be carried out in the presence of NaOH as a precatalyst (Scheme 63).79 The authors postulated that the reaction is possible due to the formation of an anionic borodihydride species from the reaction of borane and NaOH, which then acts as a catalyst (see Scheme 15).

The only example of magnesium-catalyzed hydroboration of alkenes reported thus far was reported in 2017 by Parkin et al., who applied magnesium complex 63 for the hydroboration of styrene (Scheme 64).118 Remarkably, in contrast to the anti-Markovnikov regioselectivity observed when transition-metal catalysts were used, the hydroboration in the presence of 63 as a precatalyst proceeded in a Markovnikov manner. Although only styrene was tested, this was the first example of such a transformation in the presence of a magnesium catalyst.

In 2019, Xu and Shi et al. showed that n-BuLi 34 may also be active for the reductive relay hydroboration of allylic alcohols (Scheme 65).163

Mechanistic studies revealed that this process involves a one-pot three-step process involving:

Scheme 65. Li-Catalyzed Reductive Relay Hydroboration of Allylic Alcohols

Figure 9. Calcium complexes applied in the hydroboration of unsaturated bonds.
(i) Pathway a: base-promoted regioselective hydroboration of the allylic intermediate A (obtained via dehydrocoupling of allylic alcohol with pinacolborane), followed by β-oxygen elimination (transition state B, path a), to afford alkene D.

(ii) Alternative pathway b: allylic hydride substitution of allylic intermediate A mediated by an in situ generated borohydride (transition state C) to afford alkene D.

(iii) Finally, an anti-Markovnikov hydroboration step of D to afford the desired product.

Although the authors report that n-BuLi species are regenerated within the proposed catalytic cycle (Scheme 65), no experimental evidence is reported. Because of the high reaction temperatures (130 °C) and the presence of allylic alcohol as substrates, alternative regenerated Li species should be considered.

The same authors reported an efficient and general n-BuLi-promoted anti-Markovnikov selective hydroboration of various terminal α- and 1,1-disubstituted alkenes, providing the corresponding alkyl boronic esters bearing various functional groups as single regioisomers with very good yields (Scheme 66).64

Scheme 66. Li-Catalyzed Hydroboration of Alkenes

![Scheme 66](https://doi.org/10.1021/acs.chemrev.1c00641)

Similarly, Sen et al. reported that lithium complexes 26 and 27, which were previously employed for the hydroboration of polarized unsaturated compounds such as ketones and aldehydes (Scheme 17),62 could also be applied for the hydroboration of alkenes.63 Interestingly, when 2-substituted 1,3-diene was used in the reaction, the 3,4-selective hydroboration product was obtained exclusively. Finally, An et al. discovered that potassium carbonate 45 was an active precatalyst for the hydroboration of a wide range of terminal alkenes.65 This method employing inexpensive, readily available, and air-stable potassium salts afforded products with moderate to very good yields.

4.2. Alkynes

Vinylboranes are versatile precursors that have been widely used in organic synthesis, for instance, in the Suzuki–Miyaura reaction. Although in recent years the catalytic hydroboration of alkynes has increasingly gained attention, the application of main group metal catalyst is at its early career stage.66–69 Wu, Liu, and Zhao et al. showed that catalytic hydroboration alkynes could be initiated by simple sodium hydroxide 20 (Scheme 67).70 The desired products were isolated, in most cases, in moderate to good yields with anti-Markovnikov regioselectivity and (E)-stereoselectivity; however, the authors limited the substrate scope to only aryl-terminal alkynes.

One year later, Ma et al. applied unsymmetrical β-diketiminate magnesium(I) complex 37 for the hydroboration of terminal alkynes.68 Although harsh reaction conditions were required, excellent yields of aryl- and alkyl-terminal alkynes were obtained. Only one example of an internal alkyne was reported, although with moderate regioselectivity.

Xue and Bao et al. extended the application of n-BuLi as a precatalyst for the hydroboration of alkynes under mild reaction conditions (Scheme 68).126 Although the authors described the reaction conditions as “neat”, some solvent from n-BuLi stock solution has been involved. For the first time, a lithium catalyst was shown to be active toward the hydroboration of non-polarized unsaturated bonds; however, relatively high catalyst loading was necessary. Unfortunately, this catalytic system failed when internal alkynes were tested.

Rueping et al. applied commercially available Mg(n-Bu)2 for the hydroboration of a wide range of terminal and internal alkynes.171 Low-cost and readily available magnesium species 46 provided the corresponding (E)-vinyl boranes in excellent yields (Scheme 69).

Moreover, precatalyst 46 showed excellent functional group tolerance, and the hydroboration of alkynes bearing hydroxy and free amino groups proceeded with excellent yields and with syn-stereoselectivities. It is important to highlight the good to excellent regioselectivities obtained for a wide range of internal unsymmetrical alkynes. The authors provided insight into the reaction mechanism, and based on the results of NMR spectroscopy and DFT calculations, they proposed the catalytic
cycle, based on catalytically active magnesium hydride species, which involves:

(i) **The formation of active n-BuMgH species:** By means of NMR spectroscopy and DFT calculations, the authors suggested that mixing commercially available 46 with pinacolborane, n-BuMgH I, and n-BuBpin were formed via a σ-bond metathesis pathway (8.9 kcal mol\(^{-1}\)).

(ii) **Alkyne hydromagnesiation step:** In situ formed magnesium hydride species I, which contains one molecule of coordinated HBpin, undergoes hydrometalation of alkyne (20.2 kcal mol\(^{-1}\)) to afford the corresponding vinyl magnesium II.

(iii) **Nucleophilic migration:** The next step is the nucleophilic migration of the vinyl group to the boron atom of the coordinated pinacolborane (8.2 kcal mol\(^{-1}\)), forming a zwitterionic intermediate III, which is more stable than vinyl magnesium II species.

(iv) **Hydride migration:** Finally, a reverse hydride migration of anionic borohydride to magnesium center (5.8 kcal mol\(^{-1}\)) provides the corresponding (E)-vinyl borane and regenerates the active n-BuMgH I species.

The significantly lower energy barriers of nucleophilic migration and hydride migration steps (8.2 and 5.9 kcal mol\(^{-1}\), respectively) suggest that the rate-limiting step in the catalytic cycle is the hydromagnesiation step (20.2 kcal mol\(^{-1}\)).

Xu and Shi et al. reported an efficient and general n-BuLi-promoted anti-Markovnikov selective hydroboration of various terminal and internal alkynes (Scheme 70).164 When nonsymmetrical internal alkynes were tested, moderate to excellent regioselectivities were observed. Moreover, harsher reaction conditions than those reported by Xue and Bao et al. were required to make the hydroboration of internal alkynes possible.

At the same time, Sen et al. reported that lithium complexes 23 and 24, which were active for the hydroboration of polarized unsaturated bonds such as ketones and aldehydes, were also active toward alkyne hydroboration.165 Smooth hydroboration of different aromatic terminal alkynes with electron-donating or electron-withdrawing substituents at the o/m/p-positions was reported, providing the corresponding products with very good conversions. On the other hand, when internal alkynes were tested, only moderate yields and stereoselectivities were achieved.

5. HYDROBORATION OF STRAINED SYSTEMS: EPOXIDES AND OXETANES

The ring opening of strained systems such as epoxides and oxetanes is a powerful tool to obtain alcohols. In this regard, the ring opening of nonsymmetrical substrates afford mixtures of regioisomers, traditionally dependent on the reducing agent employed.172 Generally, the catalytic C–O bond cleavage is fairly limited due to the high stability of the metal–alkoxide products, which hampers the regeneration of the metal hydride intermediate.

In the recent years, the transition-metal-catalyzed hydroboration of epoxides has emerged as a good method for the synthesis of alcohols. The use of mild pinacolborane as a reducing agent resulted in good-to-excellent selectivities, however, exclusively toward linear alcohols.172

In 2020, Rueping et al. reported the first main group metal catalyzed hydroboration of epoxides and oxetanes to obtain the
corresponding alcohols. The authors demonstrated that readily available Mg(n-Bu)2 was able to catalyze the ring opening of terminal and internal epoxides and oxetanes to afford the corresponding branched alcohol, the opposite regioselectivity compared to transition-metal-catalyzed hydroboration of epoxides. In addition, enantiopure tertiary alcohols were also
obtained as a result of the enantiospecific ring opening of optically pure epoxides and epoxides derived from natural products, showing excellent functional group tolerance (Scheme 71). Interestingly, the good performance of 46 could be also extended to the hydroboration of less reactive oxetanes which had not even been reported with transition-metal catalysts. In addition, the authors found that replacing the Mg\(\text{(n-Bu)}_2\)_46 precatalyst with readily available Mg(NTf\(_2\))_81 completely reversed the regioselectivity. In this regard, magnesium catalyst 81 provided the corresponding linear alcohol in excellent yields and regioselectivities for a wide range of terminal epoxides. Mechanistically, based on control experiments and DFT calculations, the authors elucidated two different mechanisms for magnesium 46 and magnesium 89 catalyzed reactions (Scheme 72 and Scheme 73 respectively).

For the Mg\(\text{(n-Bu)}_2\)_46-catalyzed procedure (Scheme 72), the authors suggest that after epoxide coordination to active n-BuMgH species a bimolecular ring-opening mechanism occurs in which epoxide activation and hydride addition to the least substituted carbon take place simultaneously (5.2 kcal mol\(^{-1}\) difference between TS1 and TS1-R) to provide the corresponding magnesium alkoxide intermediate. Then HBpin activation occurs, followed by alkoxide migration to pinacolborane (TS3), and the resulting zwitterionic species undergoes hydride transfer (TS4) to liberate the branched pinacol ester product with the regeneration of active n-BuMgH. Thus, the overall reaction profile (Scheme 72) shows that the bimetallic hydride transfer via TS1 is the rate-controlling step. Regarding the regioselectivity, as mentioned before, differences in energy of 5.2 kcal mol\(^{-1}\) (TS1 vs TS1-R) and 3.8 kcal mol\(^{-1}\) (TS2 vs TS2-R) are consistent with the high regioselectivity observed.

On the other hand, by means of DFT calculations, the authors elucidated the mechanism for Mg(NTf\(_2\))_89-catalyzed ring opening of terminal epoxides (Scheme 73). Here, magnesium 89 catalyzes the hydroboration of epoxides to afford the linear product (opposite to magnesium 46). First, the authors ruled out the possibility of a magnesium hydride intermediate. However, they established that the epoxide coordinates to highly Lewis acidic 89, which results in isomerization (TS1 and TS2) to afford the corresponding aldehyde. Finally, after HBpin coordination to 89, the aldehyde is reduced, affording the linear isomer product. Moreover, the authors also demonstrated a loss of enantioselectivities when enantiopure epoxide was tested with 89, corroborating the epoxide isomerization via carbocation intermediate.

Very recently, Ma et al. also reported the application of dimeric Mg(I) dimers 91–92 for the hydroboration of epoxides.\(^{172}\) In this case, Mg(I) dimers were found to be active as well (Scheme 74).
6. COMPARISON OF ALKALI- AND ALKALINE-EARTH-ABUNDANT CATALYSTS WITH ALUMINUM AND LANTHANIDE AND EARLY-ACTINIDE ANALOGUES

The application of main group metal catalysts in reactions that have been traditionally associated with transition-metal complexes has increased exponentially in the past decade. Thus, p-block metals such as aluminum (and to a lesser extent, Sn and Ge) and f-block metal complexes such as lanthanides have been successfully applied for the hydroboration of a wide range of unsaturated systems.

Alkali- and alkaline-earth-abundant metals (s-block) share several similarities with p- and f-block metals, including:

(i) generally redox neutral catalytic activity;
(ii) metal hydride as active catalytic species;
(iii) mechanisms based on similar catalytic steps.

As such, it is interesting to compare alkali- and alkaline-earth-abundant metal catalysts (presented in this review) with their aluminum, lanthanide, and early actinide catalyst analogues. It is important to highlight that this section is not intended to provide a detailed description of the mechanisms and scope of the different p- and f-block metals. We will simply illustrate the best catalysts of each block and compare them with the best of s-block catalysts. The comparison with Sn- and Ge-based catalysts will not be discussed due to their limited scope as almost all examples are based on the hydroboration of aldehydes and ketones.176,177 However, it is worth mentioning that since the first example of low-valent Sn(II) and Ge(II) complexes applied in hydroboration of C==O bonds178 promising advances have been made on low-valent p-block metal hydroborations.179–182

6.1. s-Block Metals versus Aluminum Complexes

Group 13 hydrides have been widely used in various organic transformations, but their catalytic use has been rather scarce.183 Many efforts have been made to investigate the catalytic activity of aluminum hydrides as main group catalysts based on the principles of transition-metal catalysts.183

6.1.1. Aldehydes and Ketones. The hydroboration of aldehydes and ketones has become a benchmark reaction to test the activity of catalysts. In this regard, several aluminum-based catalysts active for the reduction of C==O bonds have been developed (Scheme 75).183–191 Compared with Group 1 and Group 2 catalysts, however, application of aluminum catalysts (group 13) is still in its infancy. A comparison of β-diketiminate magnesium 5 with its aluminum analogue 93 demonstrates that the magnesium complex 5 showed higher activities toward aldehyde and ketone hydroboration. This behavior can be attributed to the electronically difference of the metal centers but also to the fact that, whereas complex 5 contains an alkyl group as reactive side, aluminum 93 contains a hydride and a OTf group, which influences the reactivity. Although recent

Scheme 74. Magnesium(I) Dimer Catalyzed Hydroboration of Epoxides

Scheme 75. Comparison in the Hydroboration of Aldehydes and Ketones
efforts have been made in aluminum catalysis, lithium complex 11 and magnesium complex 55, developed by Okuda et al.99 and Venugopal et al.,100 respectively, exhibit much higher reactivity. Mechanistically, Okuda (for 11) and Maron and Venugopal (for 55) discarded the fact that metal hydrides are the active species in the reduction of C=O bonds. In both cases, the authors suggest that the hydroboration of C=O bonds proceeds via B−H addition, either from the HBPh3 anion (in the case of 11, Scheme 12) or from a ligand activation of HBpin (in the case of 55, Scheme 26). In the other cases, a metal hydride species is proposed as active catalysts; therefore, a different mechanism operates when complexes 94 and 95 are used.

Enantioselective Hydroboration of Ketones. The hydroboration of ketones remains one of the most studied transformations with the use of main group metals. However, the enantioselective version remains a challenge. Similar to magnesium-based complexes, there are only a few active and selective aluminum catalysts (Scheme 76).192−195 In this regard, metal−ligand cooperative activation of pinacolborane. In the case of aluminum 97, the ammonium salt activates the borane while the aluminum center activates the carbonyl compound. As such, very different active species and mechanisms are reported, thus making the comparison difficult. Nevertheless, main group metal complexes mimicking the dual activation mode of 57 and 97 can be excellent candidates for active and selective catalysts toward enantioselective hydroboration of ketones.

6.1.2. Nitriles and Carbodiimides
Recently, nitriles and carbodiimides have become a benchmark reaction to test the newly developed aluminum catalysts.196,197 Whereas Hill et al. developed the first s-block metal complex 5 active toward nitrile,141 and carbodiimide,144 hydroboration in 2016, Panda et al. reported the first aluminum-based precatalyst 98 in 2019.198 A comparison of the β-diketiminate complexes (Scheme 77) shows that Al-based complex 99 developed by Roesky199 is more active than its magnesium analogue 5 in both the hydroboration

Scheme 76. Comparison in the Enantioselective Hydroboration of Aldehydes and Ketones

Aluminum-based catalysts

Scheme	Catalyst	Conditions	ee	References
96	Rueping, 2019	1 mol%	Heteroaryl ketones: up to 99% ee	
97	Kästner and Peters, 2021	0.1-1 mol%	Acetophenone-type: up to 97% ee, Dialkyl ketones: up to 79% ee	

s-Block metal-based catalyst

Scheme	Catalyst	Conditions	ee	References
96	Rueping, 2019	7 mol%	Acetophenone-type: up to 98% ee, Enones: up to 94% ee, Ynones: up to 98% ee	
58	Gade, 2020	5 mol%	Acetophenone-type: up to 98% ee, Enones: up to 98% ee	

Scheme 77. Comparison in the Hydroboration of Nitriles and Carbodiimides

Nitriles

R−N	R1	H−B	Catalyst	R−N	R1
Al−				Mg−	
57					
99				2.6-El2-C6H3	
100				2.6-El2-C6H3	
101				2.6-El2-C6H3	
102				2.6-El2-C6H3	

Carbodiimides

R−N	R1	H−B	Catalyst	R−N	R1
Al−				Mg−	
57					
99				2.6-El2-C6H3	
100				2.6-El2-C6H3	
101				2.6-El2-C6H3	
102				2.6-El2-C6H3	

β-diketiminate-based catalysts

Scheme	Catalyst	Conditions	ee	References
96	Rueping, 2019			
57	Kästner and Peters, 2021			

Other successful Al-based catalysts

Scheme	Catalyst	Conditions	ee	References
98	Panda, 2019			
101	Nembronna, 2020			

Most successful s-block metal-based catalyst

[Mg(THF)2][HB(phen)3]	1
Okuda, 2016	

Nitriles	Carbodiimides	
1 mol%	10 mol%	
60 °C	60 °C	
4 h	12 h	

results complementary to those obtained using magnesium 57107 and 58109 can be obtained by aluminum−BINOL complex 96 developed by Rueping et al.194 and a recent aluminum−ammonium salt 97 developed by Kästner, Peters, and co-workers.195 The different reactivity observed between Al-BINOL 96 and Mg-BINOL 57 can be attributed to the different active species formed in the presence of pinacolborane. In the reaction with 96, the authors report the formation of active aluminum hydride species, while for 57, the authors suggest a
of nitriles and carbodiimides. Thus, the different electronic natures of the Al- and Mg-atoms play a crucial role. At the same time, aluminum complex developed by Panda is the most active aluminum complex reported to date for the hydroboration of nitriles. However, cationic magnesium complex developed by Okuda is still the most active catalytic system for the hydroboration of nitriles and carbodiimides.

6.1.3. Carbon Dioxide. The hydroboration of carbon dioxide has not been studied as much as the hydroboration of other C=O bonds. Although recent advances have been made in aluminum catalysis by Inoue et al. and Mezailles, So, et al., dicatonic magnesium catalyst developed by Okuda exhibits the highest activity (Scheme 78). One can attribute the higher catalytic activity of magnesium to its different reactivity. Whereas the aluminum complexes and undergo 1,2-hydroalumination, in the case of cationic magnesium, the hydroborated anion plays a crucial role via direct B−H addition (Scheme 12).

6.1.4. Alkenes. Contrary to the hydroboration of highly polarized C=O and C=N bonds, there are more active s-block complexes reported for hydroboration of C=C bonds than the s-block analogues. In this regard, Cowley and Thomas applied commercially available LiAlH₄ for the hydroboration of alkenes to obtain the anti-Markovnikov regioisomer. Similarly and independently, Panda and Shi applied active aluminum precatalyst and (Scheme 79). A comparison of commercially available alkyl aluminum and shows that the latter precatalysts can catalyze the hydroboration of internal alkynes, probably due to the lower steric hindrance around the metal center. On the other hand, magnesium complexes developed by Ma and Rueping showed broader substrate scope with excellent functional group tolerance, probably due to the milder reaction conditions used, when compared to its aluminum analogue (80 °C for 46 vs 110 °C for 108).

6.2. s-Block Metals versus Lanthanide and Early-Actinide Complexes

Because of their low cost and toxicity and high catalytic activity, f-block elements, which are relatively highly abundant in the Earth’s crust, have been widely used in catalytic hydro-functionalization of unsaturated bonds.

Interestingly, Thomas and Cowley applied commercially available alkyl aluminum for the hydroboration of terminal and internal alkynes. However, the functional group tolerance was limited. Comparison of with shows that the latter precatalysts can catalyze the hydroboration of internal alkynes, probably due to the lower steric hindrance around the metal center. On the other hand, magnesium complexes developed by Ma and Rueping showed broader substrate scope with excellent functional group tolerance, probably due to the milder reaction conditions used, when compared to its aluminum analogue (80 °C for 46 vs 110 °C for 108).

6.2. s-Block Metals versus Lanthanide and Early-Actinide Complexes

Because of their low cost and toxicity and high catalytic activity, s-block elements, which are relatively highly abundant in the Earth’s crust, have been widely used in catalytic hydro-functionalization of unsaturated bonds. Similar to s-block metals and aluminum, organolanthanide and early actinide catalysts engage in redox-neutral processes. Thus, in hydroboration reactions the mechanism resembles the one presented for alkali- and alkaline-earth-abundant metals. Another similarity is the σ-bond metathesis pathway occurring in the presence of hydridic reagents such as pinacolborane. As such, organolanthanides and early actinides form catalytically
active Ln−H and An−H species.209,210 The catalytic activities of f-block metal complexes are significantly influenced by the nature of the metal center and the steric and electronic nature of the ligand. Thus, for f-block metal-catalyzed hydroelementations, larger metal ions bearing a less sterically hindered coordination sphere show higher activity.211,212 However, due to the high oxophilicity of the Ln- and An-centers, thermodynamically stable and catalytically inactive Ln−O and An−O bonds are preferred, making the hydroboration of C=O bonds rather challenging.213,214

In this part, we will compare the most active and selective f-block metal-based complexes with s-block metal catalysts in the hydroboration of unsaturated systems.

6.2.1. Aldehydes and Ketones

The wider exploration of lanthanide-based catalyst for the hydroboration of aldehydes and ketones started later than s-block metal complexes.215 Simple La−amide,215 cyclopentadienyl,216,217 and −alkoxide218 complexes were found to be very active, competing favorably with the best group 1 and group 2 metal complexes (Scheme 81). However, Okuda’s Li complex remains the most active catalyst reported to date.35 Generally, metal complexes that form metal hydrides upon reaction with boranes show lower activity than those that, for instance, activate pinacolborane via nucleophilic attack or Lewis acid-type coordination (1, 11, and 55).

Regarding Ln reactivity, La-amide 109, which bears a N-ligand, has been shown to be the most active Ln catalyst. Enantioselective Hydroboration of Ketones. As described above the successful applications of chiral alkali- and alkaline-earth-abundant metals for the enantioselective hydroboration of ketones are rare.107,109 However, the examples of rare-earth metal complexes are even more unusual (Scheme 82). In this regard, the only example is the phenoxyl-prolinol Yb catalysts 113 and 114 reported by Zhao and Yao.219 Compared with magnesium complex 57 reported by Rueping et al., enantioselectivities reported in the hydroboration of acetophenone derivatives and enones are lower.107

6.2.2. Pyridines

The first s-block metal-catalyzed hydroboration of N-heterocycles was reported by Hill et al. in 2011 when magnesium 5 catalyzed the hydroboration of pyridine.115 In 2014, Delferro and Marks et al. reported the first example of a La-based catalyst.19 Interestingly, dimeric [Cp*LaH]2 complex 115 exhibited complete selectivity toward 1,2-hydroborated pyridine, similar to the Th complex 116 developed later by Eisen (Scheme 83).220 Probably, due to the milder reaction conditions when compared to Mg precatalyst 5, the kinetically favored 1,2-product remains in favor over the thermodynamically controlled 1,4-hydroborated product. It is important to highlight that comparable 1,2-regioselectivity was observed by He and Zhang when KO-f-Bu 73 was used as a precatalyst (Scheme 35).221
6.2.3. Imines and Nitriles. The first s-block metal complex active toward imine125 and nitrile144 reduction was developed by Hill \textit{et al.} in 2013 and 2016, respectively. Two years later, the first successful example of a rare-earth metal catalyst was reported by Wang.221 However, with magnesium precatalyst1 or a rare-earth metal complex117, long reaction times and high temperatures are needed. Later, Eisen \textit{et al.} reported the Th-catalyzed hydroboration of imines and nitriles.222 Comparing Ln- (117) and An-based complexes (118 and 119) with s-block metal catalysts (1, 5, and 17), one can see that, whereas for the hydroboration of imines, long reaction times are needed in all cases, for the nitrile hydroboration magnesium complex 1 is the most active metal complex (Scheme 84).45

6.2.4. Esters and Amides. While the first s-block magnesium-catalyzed hydroboration of esters132 and amides133 was reported by Sadow in 2014 and 2015 (75), the first example using a lanthanum-based precatalyst (120) was reported in 2019 by the same author.20 Since then, other La-based complexes have been reported as active precatalyst toward esters and amides.223–226 When comparing La with Mg complexes, we can observe that both types of complexes exhibit similar reactivity (Scheme 85).

6.2.5. Alkenes. In 1992, Marks \textit{et al.} reported the first example of organolanthanide-catalyzed (123) hydroboration of olefins.18 In this case, HBcat was used to hydroborate terminal and internal alkenes. With the recent application of s-block metal catalytic systems, broader substrate scope is tolerated under milder reaction conditions and shorter reaction times. Similar to aluminum-based complexes and most of the s-block metal complexes, Ln-based catalysts ensure the anti-Markovnikov regioselectivity (Scheme 86).227

6.2.6. Epoxides. In 2019, Sadow \textit{et al.} reported the use of tris(alkyl)lanthanum 120 for the hydroboration of epoxides.20 One year later, Rueping \textit{et al.} reported the use of commercially available dialkylmagnesium Mg(n-Bu)\textsubscript{2} 46 as a precatalyst.175 Interestingly, while the lanthanide-based precatalyst provided
the linear isomer, the magnesium 46 provided the branched isomer. This complementary result can be explained by the different catalytically active species formed. Whereas La complex 120 activates pinacolborane forming a zwitterionic species,20 Mg complex 46 forms an active hydride species.173 On the other hand, Mg complex 89, which does not react with HBpin forming a magnesium hydride species, provides the same regioisomer as 120 (Scheme 87).173

7. CONSIDERATIONS

7.1. Borane Decomposition: BH₃ as a “Hidden” Catalyst

Recently, Thomas et al. demonstrated that catalyst precursors can mediate BH₃ formation by the decomposition of HBpin in the presence of a nucleophilic catalyst.31,32 The authors point out that in the case of reactions utilizing HBcat, decomposition is routinely investigated. In the case of HBpin, however, decomposition is not commonly considered as it is perceived as a stable hydride source. The authors applied different well-established precatalysts (including Group 1 and Group 2 metal-based complexes) for hydroboration of e.g. alkenes, alkynes, ketones and N-heterocycles and in many cases observed formation of BH₃ in the reaction mixture. This in situ formed species then acted as a “hidden” catalyst.

Since the hydroboration of a variety of organic compounds can be mediated by simple nucleophiles, careful control is
needed to determine whether the catalyst studied is the "true" catalyst or if BH₃ formed, is the "hidden" active catalyst.

Recently reported enantioselective and regiodivergent hydroboration of unsaturated systems in the presence of well-defined alkali- and alkaline-earth-metal complexes, however, show that BH₃ does not always have to be the "hidden" catalyst. If BH₃ indeed acted as a hidden catalyst background reaction then racemic product formation would have been expected. Nevertheless, careful control experiments must be conducted when HBpin activation by group 1 and group 2 metals is studied.

Thomas also points out that commercially available HBpin may contain BH₃ impurities which may compete with a catalyst. In this context, it is worth mentioning that some commonly occurring impurities may promote hydroboration as well. For instance, Speed reported that water or methanol impurities promoted hydroboration of imines.²²⁹

Very recently, Jones and co-workers reported that Mg(I) dimers also react with HBpin to provide derivatives in which the γ-carbon of the β-diketiminate ligand is activated by boron hydride. Additionally, different reactive boron-containing species such as boryloxides (OBpin), borates ([B(pin)₂]⁻ or [(pin)BH₂]⁻), B−O bond ruptured [pinBH₂]⁻, or BH₃ have been observed. These results suggest that magnesium(I) dimers are not catalysts in the hydroboration of unsaturated bonds and that there are many potential precatalysts or hydride sources that are generated when Mg(I) dimers and HBpin are mixed.²³⁰

Additionally, Jin and co-workers discovered that carboxylic acids may promote hydroboration of alkynes. However, in this case, elevated temperatures were required, and thus, acid impurities must also be taken into consideration.²³¹ As such, as for any catalytic reaction, it is of great importance to consider all side products as potential catalysts.

7.2. Catalyst-Free Hydroboration

In 1992, Knochel introduced a catalyst-free approach for selective hydroboration of alkynes and alkenes (Scheme 88a).²³² In the presence of superstoichiometric quantities of HBpin (2 equiv), hydroboration of alkenes and alkynes proceeded in high yields under ambient reaction conditions. Since his discovery, catalyst-free approaches have been utilized for many functional group transformations. In 2018, Hreczycho et al. performed a solvent-free and catalyst-free hydroboration of aldehydes. The reaction proceeded rapidly at ambient temperature (Scheme 88b).²³³ The authors suggested that the reaction occurs through the formation of Lewis adducts with a weakened boron−hydrogen bond that facilitates the hydride transfer and reduction of the carbonyl bond. Leung et al. performed the reduction of ketones to achieve high conversion to the corresponding secondary alcohols at elevated temperature and long reaction times (Scheme 88c)²³⁴ and Rit et al. applied catalyst-free conditions for the hydroboration of aldimines and ketimines (Scheme 88d). The authors observed trends similar to those observed for the reduction of aldehydes and ketones. Whereas aldimines were hydroborated at room temperature, ketimines required elevated temperature and long reaction times.²³⁵ Very recently, Vanka, Sen et al. reported deoxygenative hydroboration of primary and secondary amides (Scheme 88e).²³⁶ The corresponding N-Bpin-protected amines were obtained with good to excellent yields; however, harsh reaction conditions, and in the case of secondary amides prolonged reaction times, were necessary. DFT calculations showed an energy barrier of 47.9 kcal mol⁻¹ (ΔG° value) which explains the need for elevated temperatures (100 °C). The groups of Panda,²³⁷ Ma,²³⁸ and Xue²³⁹ almost simultaneously reported hydroboration of carboxylic acids in the absence of any catalyst (Scheme 88f). All three groups suggested their own mechanisms; however, all start with a reaction between the acid and HBpin to form a boronic ester with concomitant release of hydrogen. Ma et al. suggest that this first step has an energy barrier of 56.8 kcal/mol. However, because the reaction is highly exothermic, this barrier is surpassed. Interestingly, the above-mentioned results contradict the paper on magnesium-based
hydroboration of carboxylic acid by Ma et al. (see section 3.9). In the optimization table, the authors show that in the case of the absence of the catalyst very poor conversion for the reduction of model benzoic acid is observed (3.1 equiv of HBpin, 60 °C, 1 h, 40% yield).134 The same group, however, reports full conversion of the same model substrate under solvent-free and catalyst-free conditions (4 equiv of HBpin, 60 °C, 1 h, 99% yield).138 Similarly, Xue et al. reported full conversion already at room temperature, although after a slightly longer time (3.3 equiv of HBpin, rt, 4 h, 95% yield).239 As such, further studies are required to understand the reaction pathway. Finally, An et al. reported a catalyst-free hydroboration of alkynes (Scheme 88g). The authors postulate that hydroboration of alkynes proceeded in a general syn-addition to afford the trans hydroboration product as a result of thermal activation (110 °C).240

Overall, most of the above-mentioned hydroborations under catalyst-free and solvent-free conditions using HBpin as a reducing agent require elevated temperatures, long reaction times, or superstoichiometric amounts of HBpin to achieve full conversions. On the other hand, catalytic systems based on s-block metals usually present milder reaction conditions and shorter reaction times. For example, when two papers reported by Hreczycho on hydroboration of aldehydes are compared, the one that utilizes a catalyst (LiHBET3)130 shows much better results than its catalyst-free analogue.133 Another example is the Mg-based catalytic system reported by Rueping which requires 80 °C for the hydroboration of alkynes,134 while the catalyst-free protocol requires 110 °C.240 However, comparison of the activity of the catalyst-free approach for the reduction of amides236 shows similar efficiency to s-block metals.133,136,137,139 In this context, it is worth mentioning, that reduction of tertiary amides was not possible when a catalyst-free system was utilized, whereas in the case of some of the s-block metal catalysts, this reaction was possible.133,136,137

Therefore, to further improve the efficiency of catalyst-free systems, more reactive boranes may be introduced. In this context, Himmel et al. reported the use of nucleophilic diborane [HB(hpp)], for the hydroboration of carbon dioxide.241 The first hydroboration takes place at remarkably low temperature and short reaction time (Scheme 89). Further reduction of the so-obtained products was possible, when 9-BBN was added. The results obtained for CO₂ reduction utilizing HBpin and the most active alkaline-earth-metal-based catalysts (see Section 3.8) compete favorably with the catalyst-free variant.

8. CONCLUSIONS AND OUTLOOK

In the past decade, alkali and alkaline earth metals have emerged as redox-neutral alternatives to transition-metal catalysts for the hydrofunctionalization of unsaturated bonds. In this Review, we describe the Group 1 and Group 2 metal catalysts applied for the hydroboration of various polarized unsaturated C=O as well as C–C multiple bonds. We discussed the synthesis of different s-block metal complexes, the scope of the hydrobocations, and the proposed outcome. Finally, the comparison of these s-block metal complexes with other redox-neutral catalytic systems based on p-block metals such as aluminum and f-block metal complexes such as lanthanides and early actinides has been also presented.

Since the first example of an s-block metal-catalyzed hydroboration reaction, the evolution of this topic of research has been exponential. Regarding achiral hydroborations, alkali- and alkaline-earth metals bearing neutral and monoanionic ligands have been successfully reported as active and selective catalysts. The ligand design principles can be summarized as (i) the use of monoanionic or dianionic ligands to favor a strong metal–ligand binding, thus avoiding ligand redistribution, and (ii) bulky substituents in a close proximity to the metal center to avoid side-reactivity such as polymerization, catalyst decomposition, and/or ligand redistribution.

Moreover, in recent years, the use of commercially and readily available s-block metal precatalysts has become a focus of interest due to their low cost, simplicity, and thus, the avoidance of tedious ligand synthesis. The recent reports of the application of simple s-block organometallics in the hydroboration of a wide range of unsaturated systems have shown that these simple reagents are very active and selective and can be seen as good alternatives to those s-block metal complexes bearing elaborated ligands.

However, one has to take into consideration that some of the readily available organometallic can decompose pinacolborane (or other organic boranes) to form BH₃, which has been shown to be an active hydroborating agent. Thus, careful control experiments must be conducted when the HBpin activation by s-block metals is studied.

Concerning the metals of interest, lithium and magnesium complexes have been the most studied catalytic precursors for the hydroboration of unsaturated polarized and unpolarized bonds, which has been the most studied hydrofunctionalization reaction. The combination of experimental and theoretical studies has provided insight into different mechanisms for alkali and alkaline earth metal complexes, all involving redox-neutral pathways. Whereas some mechanisms are based on σ-bond metathesis for precatalyst activation, leading to the formation of active metal hydride species, other mechanisms discard the formation of metal hydrides and rely on the formation of zwitterionic species from the reaction of catalyst precursor and HBpin. Hence, different mechanisms need to be considered: (i) in some cases, s-block metals act as active precatalysts due to the formation of active metal hydrides (via σ-bond metathesis with pinacolborane) and undergo 1,2-hydrometalation with the unsaturated bond; (ii) in other cases, the s-block metals activate the borane (via nucleophilic attack) and the newly formed borate is the active species, transferring the hydride to the unsaturated substrate. Here the question arises if the s-block metal is just a counterion of the nucleophile or if it also has a role in the activation of the unsaturated system via coordination. Given the early stage of s-block metal-catalyzed hydroboraions of unsaturated systems, more efforts have to be made to fully understand the respective mechanisms.

Moreover, whereas the addition of H–B bonds to reactive C=O and C=N bonds has been widely studied, more recently, the hydroboration of less reactive bonds such as carbon dioxides and derivatives (carbonates and carbamates), alkenes, and alkynes, and strained systems such as epoxides and oxetanes has also been accomplished. Thus, the hydroboration reaction has
become a useful tool for the synthesis of fine chemicals and the conversion of greenhouse gas to C1 building blocks.

Although the use of s-block metal catalysts for achiral hydroboration has evolved exponentially and can already been seen as a real alternative to transition-metal catalysts, the application of alkalai- and alkaline-earth-abundant metal catalysts to asymmetric hydroboration is still underexplored. In this regard, there are only a few chiral catalysts reported which so far only focus on the hydroboration of ketones and which show lower catalytic activity and functional group tolerance if compared to the best transition-metal-based catalysts. Thus, the development of efficient chiral s-block metal catalysts is greatly desirable. For this purpose, an efficient ligand design is of high interest to avoid any kind of ligand redistribution, known as Schlenk-type equilibrium, which leads to very reactive but nonchiral species and, consequently, no enantioselective induction.

Comparing s-block metal catalysts with their p- and f-block analogues, we can observe several similarities:

(i) Simple organometallic compounds have appeared as precatalyst that can be an attractive alternative to catalysts with complex ligand architectures. They show excellent activities toward the hydroboration of several unsaturated bonds and high functional group tolerance.

(ii) Whereas for some unsaturated bonds s-, p-, and f-block metal catalysts show similar activities and selectivities, for other C–X bonds (such as aldehydes and ketones) lithium and magnesium complexes show higher activities than their aluminum and lanthanide analogues.

(iii) Regarding enantioselective hydroboration, chiral aluminum magnesium complexes display similar reactivity. However, chiral f-block metal complexes are still underdeveloped.

Furthermore, new catalyst-free protocols have recently appeared in the literature for the hydroboration of several unsaturated compounds. However, in almost all cases, excess of pinacolborane, elevated temperatures, or longer reaction times are required.

Given that only very few examples of enantioselective s-block metal-catalyzed hydroboration reactions are known, there are many opportunities for further developments in this field, and we anticipate that future directions will focus on enantioselective hydroboration of other unsaturated bonds, such as imines and alkenes, to achieve chiral amines and alkyl boranes. Moreover, we foresee that new research will also be directed toward other enantioselective hydrofunctionalizations.

Apart from the hydrofunctionalization of unsaturated bonds, and due to the high reactivity of s-block metals (and their low-valent analogues), we also expect the application of alkalai and alkaline earth metal catalysts to further cutting-edge catalytic transformations such as C–H or C–X bond activation and functionalization. In this regard, to date, only stoichiometric use has been reported, and the need for catalytic transformations will provide important impetus for this area of research.

AUTHOR INFORMATION

Corresponding Authors

Marc Magre — Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany; orcid.org/0000-0002-5950-4129; Email: marc.magre@oc.rwth-aachen.de

Magnus Rueping — Chemical Science Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal 23955-6900, Kingdom of Saudi Arabia; orcid.org/0000-0003-4580-5227; Email: magnus.rueping@kaust.edu.sa

Author

Marcin Szewczyk — Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.chemrev.1c00641

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Funding

This work was financially supported by the King Abdullah University of Science and Technology.

Notes

The authors declare no competing financial interest.

Biographies

Marc Magre was born in 1989 in Valls, Spain. In 2012, he received his M.Sc. in organometallic chemistry and homogeneous catalysis from the Universitat Rovira i Virgili (Tarragona, Spain), where he continued as a Ph.D. student under the supervision of Prof. Montserrat Dieguez and Prof. Oscar Pàmies. In late 2016, he obtained his Ph.D. after researching tailor-made chiral Pd- and Ir-based catalysts for enantioselective transformations. In 2017, he moved to RWTH Aachen (Germany) as a postdoctoral researcher under the supervision of Prof. Magnus Rueping. There, he worked on magnesium-catalyzed hydrofunctionalization of unsaturated systems. In 2020, he joined the Max Planck Institut für Kohlenforschung (Mülheim an der Ruhr, Germany) as a postdoctoral researcher in the group of Dr. Josep Cornella, where he focuses on bismuth catalysis.

Marcin Szewczyk was born in 1991 in Kraków, Poland. In 2014, he received his MSc from Jagiellonian University, where he continued his research in the field of asymmetric catalysis as a Ph.D. student under the supervision of Prof. Jacek Mlynarski. After graduating in 2018, he joined the group of Prof. Magnus Rueping at RWTH Aachen, Germany, as a postdoctoral associate. His interests are within asymmetric synthesis and hydrofunctionalization.

Magnus Rueping obtained his doctoral degree from the ETH Zurich in 2002 under the supervision of Professor Dieter Seebach. He then moved to Harvard University to work with Professor David A. Evans. In 2004, he was appointed an Associate Professor at the University Frankfurt. After four years in Frankfurt, he accepted the positions of Chair and Full Professorship of Organic Chemistry at RWTH Aachen University and is currently a Professor of Chemical Sciences at KAUST. His group’s research activities are directed toward the development and simplification of synthetic catalytic methodology and technology and their application in the rapid synthesis of diverse functional natural and unnatural molecules.

ACKNOWLEDGMENTS

The authors gratefully acknowledge financial support from King Abdullah University of Science and Technology and RWTH Aachen.
REFERENCES

(1) Chong, C.; Kinjo, R. Catalytic Hydroboronation of Carboxyl Derivatives, Imines, and Carbon Dioxide. ACS Catal. 2015, 5, 3238–3259.

(2) Shegavi, M. L.; Bose, S. K. Recent Advances in the Catalytic Hydroboronation of Carboxyl Compounds. Catal. Sci. Technol. 2019, 9, 3307–3336.

(3) Leonori, D.; Aggarwal, V. K. Stereoselective Couplings of Secondary and Tertiary Boron Esters. Angew. Chem., Int. Ed. 2015, 54, 1082–1096.

(4) Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chem. Rev. 1995, 95, 2457–2483.

(5) Suzuki, A. Cross-coupling Reactions of Organoboranes: An Easy Way to Construct C-C Bonds. Angew. Chem., Int. Ed. 2011, 50, 6722–6737.

(6) Brown, H. C.; Subba Rao, B. C. A New Technique for the Conversion of Olefins into Organoboranes and Related Alcohols. J. Am. Chem. Soc. 1956, 78, 5694–5695.

(7) Davidson, M.; Hughes, A. K.; Marder, T. B.; Wade, K., Eds. Contemporary Boron Chemistry; Royal Society of Chemistry: Cambridge, U.K., 2000.

(8) Brown, H. C.; Zweifel, G. Hydroboronation. VII. Directive Effects in the Hydroboronation of Olefins. J. Am. Chem. Soc. 1960, 82, 4708–4712.

(9) Graham, G. D.; Freilich, S. C.; Lipscomb, W. N. Substituent Effects in Hydroboronation: Reaction Pathways for the Markownikoff and anti-Markownikoff Addition of Borane to Propylene and Cyanoethylene. J. Am. Chem. Soc. 1981, 103, 2546–2552.

(10) Kono, H.; Ito, K.; Nagai, Y. Oxidative Addition of 4,4,6-Trimethyl-1,3,2-dioxaborinane and Benzol[1,3,2]dioxaborole to Tris(triphosphorine)halogeno-organochrom. Chem. Lett. 1975, 4, 1095–1096.

(11) Männig, D.; Nöth, H. Catalytic Hydroboration with Rhodium Complexes. Angew. Chem., Int. Ed. 1985, 24, 878–879.

(12) Carroll, A.-M.; O’Sullivan, T. P.; Guiry, P. J. The Development of Enantioselective Rhodium-Catalyzed Hydroboration of Olefins. Adv. Synth. Catal. 2005, 347, 609–631.

(13) Fu, G. C. In Transition Metals for Organic Synthesis, 2nd ed.; Beller, M., Bolm, C., Eds.; WILEY-VCH Verlag: Weinheim, Germany, 2004.

(14) He, X.; Hartwig, J. F. True Metal-Catalyzed Hydroboration with Titanium. J. Am. Chem. Soc. 1996, 118, 1696–1702.

(15) Edeguarda, N.; Wang, Z.; Chaudhary, U.; Nelson, N.; Kandel, K.; Kobayashi, T.; Slowong, I. I.; Pruski, M.; Sadow, A. D. Mesoporous Silica-Supported Amidozirconium-Catalyzed Carboxyl Hydroboration. ACS Catal. 2015, 5, 7399–7414.

(16) Wu, J. Y.; Moreau, B.; Ritter, T. Iron-Catalyzed 1,4-Hydroboration of 1,3-Dienes. J. Am. Chem. Soc. 2009, 131, 12915–12917.

(17) Das, U. K.; Higman, C. S.; Gabidullin, B.; Hein, J. E.; Baker, R. T. Efficient and Selective Iron-Complex-Catalyzed Hydroboration of Aldehydeys. ACS Catal. 2018, 8, 1076–1081.

(18) Harrison, K. N.; Marks, T. J. Organolanthane-Catalyzed Hydroboration of Olefins. J. Am. Chem. Soc. 1992, 114, 9220–9221.

(19) Dudnik, A. S.; Weidner, V. L.; Motta, A.; Delferro, M.; Marks, T. J. Atom-Efficient Regioselective 1,2-Dearomatization of Functionalized Pyridines by an Earth-Abundant Organolanthane Catalyst. Nat. Chem. 2014, 6, 1100–1107.

(20) Patnaik, S.; Sadow, A. D. Interconverting Lanthanum Hydride and Borohydride Catalysts for C = O Reduction and C-O Bond Cleavage. Angew. Chem., Int. Ed. 2019, 58, 2505–2509.

(21) Harder, S. Early Main Group Metal Catalysis: Concepts and Reactions; Wiley-VCH Verlag, 2020.

(22) Revunova, K.; Nikonov, G. I. Main Group Catalyzed Reduction of Unsaturated Bonds. Dalton Trans. 2015, 44, 840–866.

(23) Yao, W.; Ma, M.; Zhang, S.; Luo, M. Recent Advances in Alkaline Earth Metal Catalyzed Hydroboration Reactions. Sci. Sin. Chem. 2020, 50, 639–654.

(24) Yaroshevsky, A. A. Abundances of Chemical Elements in the Earth’s Crust. Geochim. Int. Ed. 2006, 44, 48–55.

(25) Roy, M. M. D.; Omaña, A. A.; Wilson, A. S. H.; Hill, M. S.; Aldridge, S.; Rivard, E. Molecular Main Group Metal Hydrides. Chem. Rev. 2021, 121, 12784–12965.

(26) Avent, A. G.; Crimmin, M. R.; Hill, M. S.; Hitchcock, P. B. Kinetic Stability of Heteroleptic (L)M[HBPh3] (M = Li, Na, K): Chemo-Compounds as Homogeneous Catalysts. Chem. Rev. 2015, 115, 8405–8443.

(27) Harrison, K. N.; Marks, T. J. Organolanthane-Catalyzed Hydroboration of Olefins. J. Am. Chem. Soc. 1992, 114, 9220–9221.

(28) Harder, S. Alkaline-Earth Metal Compounds: Oddities and Applications; Springer: Berlin, 2013.

(29) Rochat, R.; Lopez, M. J.; Tsurugi, H.; Mashima, K. Recent Developments in Homogeneous Organomagnesium Catalysis. Chem. Cat. Chem. 2016, 8, 10–20.

(30) Hill, M. S.; Liptrot, D. J.; Weetman, C. Alkaline Earths as Main Group Reagents in Molecular Catalysis. Chem. Soc. Rev. 2016, 45, 972–988.

(31) Bage, A. D.; Hunt, T. A.; Thomas, S. T. Hidden Boron Catalysis: Nucleophile-Promoted Decomposition of HBpin. Org. Lett. 2020, 22, 4107–4112.

(32) Bage, A. D.; Nicholson, K.; Hunt, T. A.; Langer, T.; Thomas, S. P. The Hidden Role of Boranes and Borohydrides in Hydroboration Catalysis. ACS Catal. 2020, 10, 13479–13486.

(33) Robertson, S. D.; Uzelac, M.; Mulvey, R. E. Alkalide-Mediated Synergistic Effects in Polar Main Group Organometallic Chemistry. Chem. Rev. 2019, 119, 8332–8405.

(34) Epinger, J.; Herdewiek, E.; Anwander, R. Synthesis and Characterization of Alkalide Bis(dimethylsilyl)amides: Infinite All-Planar Laddering in the Unsolvated Sodium Derivative. Polyhedron 1998, 17, 1195–1201.

(35) Mukherjee, D.; Osseili, H.; Spaniol, T. P.; Okuda, J. Alkalide Hydridotriphenylborates ([(L)M][HBPh3]) (M = Li, Na, K): Chemo-Selective Catalysts for Carbonyl and CO2 Hydroboration. J. Am. Chem. Soc. 2016, 138, 10790–10793.

(36) Osseili, H.; Mukherjee, D.; Beckerle, K.; Spaniol, T. P.; Okuda, J. Me4TREN-Supported Alkalide Hydridotriphenylborates [(L)M]-
[HBPh₃] (M = Li, Na, K): Synthesis, Structure, and Reactivity. Organometallics 2017, 36, 3029–3034.

(37) Osseili, H.; Mukherjee, D.; Spaniol, T. P.; Okuda, J. Ligand Influence on Carboxyl Hydroboration Catalysis by Alkali Metal Hydrotriphenylphosphineboronates [L(M)][HBPh₃] (M = Li, Na, K). Chem.— Eur. J. 2017, 23, 14292–14298.

(38) Fraser, R. R.; Mansour, T. S.; Savard, S. Acidity Measurements on Pyridines in Tetrahydrofuran Using Lithiated Silyleamines. J. Org. Chem. 1985, 50, 3222–3234.

(39) See, for example: Dessy, R. E.; Kitching, W.; Parris, T.; Salinger, R.; Chen, A.; Chivers, T. Organometallic Electrochemistry. II. Carbanion Stabilization. J. Am. Chem. Soc. 1966, 88, 460–467.

(40) Boyle, T. J.; Pedrotty, D. M.; Alm, T. M.; Vick, S. C.; Rodriguez, M. A. Structural Diversity in Solvated Lithium Aryloxides. Syntheses, Characterization, and Structures of [Li(OAr)(THF)] x and [Li(OAr)-{(py)}] x Complexes Where OAr = OC₆H₅, OC₆H₄-(2-Me), OC₆H₃-(2,6-(Me))₂. Inorg. Chem. 2000, 39, 5133–5146.

(41) Harinath, A.; Bhattacharjee, J.; Nayek, H. P.; Panda, T. K. Alkali Metal Complexes as Efficient Catalysts for Hydroboration and Cyanoxylation of Carbyl Compounds. Dalton Trans. 2018, 47, 12613–12622.

(42) Bishop, J. J.; Davison, A.; Katcher, M. L.; Lichtenberg, D. W.; Merrill, R. E.; Smart, J. C. Symmetrically Disubstituted Ferrocenes: I. The Synthesis of Potential Bidentate Ligands. Organometallics 1971, 27, 241–249.

(43) Stender, M.; Wright, R. J.; Eichler, B. E.; Prust, J.; Omlstead, M. M.; Roeksy, H. W.; Power, P. P. The Synthesis and Structure of Lithium Derivatives of the Sterically Encumbered β-Diketiminate Ligand [[(2,6-Pr₂-C₆H₅)₂(NHCH₂CH₂)]-] and a Modified Synthesis of the Aminoimine Precursor. J. Chem. Soc., Dalton Trans. 2001, 3465–3469.

(44) Robertson, S. D.; Kennedy, A. R.; Liggata, J. J.; Mulvey, R. E. Facile Synthesis of a Genuinely Alkane-Stabile but Isolable Lithium Hydride Transfer Reagent. Chem. Commun. 2015, 51, 5452–5455.

(45) Mukherjee, D.; Shirase, S.; Spaniol, T. P.; Moshida, K.; Okuda, J. Magnesium Hydrotriphenylphosphineboronate [Mg(thf)]₃[HBPh₃]: A Versatile Hydroboration Catalyst. Chem. Commun. 2012, 56215–13158.

(46) Lemmer, L. E.; Mukherjee, D.; Spaniol, T. P.; Wong, A.; Ménard, G.; Maron, L.; Okuda, J. Cationic Magnesium Hydride [MgH⁺] Stabilized by an NNNN-Type Macrocycle. Chem. Commun. 2019, 55, 3199–3202.

(47) Bourget-Merle, L.; Lappert, M. F.; Severn, J. R. The Chemistry of β-Diketiminatometal Complexes. Rev. Chem. 2002, 102, 3031–3066.

(48) Tsai, Y. The Chemistry of Univalent Metal β-Diketimimates. Coord. Chem. Rev. 2012, 256, 725–772.

(49) Hohloch, S.; Kriegel, B. M.; Bergman, R. G.; Arnold, J. Group 5 Chemistry Supported by β-Diketiminate Ligands. Dalton Trans. 2016, 45, 15725–15745.

(50) Torvisco, A.; O’Brien, A. Y.; Ruhlrand-Senge, K. Advances in Alkaline Earth-Nitrogen Chemistry. Coord. Chem. Rev. 2011, 255, 1268–1292.

(51) For pioneering work on aminophosphines complexion in s-block metals, see: Stasch, A. A Hydrocarbon-Soluble Lithium Hydride Complex. Angew. Chem., Int. Ed. 2012, 51, 1930–1933.

(52) Dunne, J. F.; Fulton, D. B.; Ellern, A.; Sadow, A. D. Concerted C–N and C–H Bond Formation in a Magnesium-Catalyzed Hydrosilylation. J. Am. Chem. Soc. 2010, 132, 17680–17683.

(53) Barman, M. K.; Baishya, A.; Nembenna, S. Bulky Guanidinate Stabilized Homoleptic Magnesium, Calcium and Zinc Complexes and Their Catalytic Activity in the Tishchenko Reaction. J. Organomet. Chem. 2015, 785, 52–60.

(54) Yadav, S.; Swamy, V. S. V. S. N.; Gonrade, R. G.; Sen, S. S. Benzimidazolin Stabilized Monomer Calcium Iodide and a Lithium Calcinate(II) Cluster featuring Group 1 and Group 2 Elements. ChemistrySelect 2016, 1, 1066–1071.

(55) Trent, B. M.; Malhotra, S.; Koschker, P.; Ellerbrock, P. Development of the Enantioselective Addition of Ethyl Diazoacetate to Aldehydes: Asymmetric Synthesis of 1,2-Diols. J. Am. Chem. Soc. 2012, 134, 2075–2084.
Hydroboration and Hydroamination Reactions. J. Am. Chem. Soc. 2016, 138, 7488–7491.

(77) Schnitzler, S.; Spaniol, T. P.; Okuda, J. Reactivity of a Molecular Magnesium Hydride Featuring a Terminal Magnesium–Hydrogen Bond. Inorg. Chem. 2016, 55, 12997−13006.

(78) Yadav, S.; Pahar, S.; Sen, S. S. Benz-amidinato Calcium Iodide Catalyzed Aldehyde and Ketone Hydroboration with Unprecedented Functional Group Tolerance. Chem. Commun. 2017, 53, 4562−4564.

(79) Wu, Y.; Shan, C.; Ying, J.; Su, J.; Zhu, J.; Liu, L. L.; Zhao, Y. Catalytic Hydroboration of Aldehydes, Ketones, Alkynes and Alkenes Initiated by NaOH. Green Chem. 2017, 19, 4169−4175.

(80) McLellan, R.; Kennedy, A. R.; Mulvey, R. E.; Orr, S. A.; Robertson, S. D. 1-Alkali-metal-2-alkyl-1,2-dihydropyridines: Soluble Hydride Surrogates for Catalytic Dehydrogenative Coupling and Hydroboration Applications. Chem.—Eur. J. 2017, 23, 16853−16861.

(81) Ma, M.; Li, J.; Shen, X.; Yu, Z.; Yao, W.; Pullarkat, S. A. Sterically Bulky Amido Magnesium Methyl Complexes: Syntheses, Structures and Catalysis. RSC Adv. 2017, 7, 45401−45407.

(82) Bisai, M. K.; Das, T.; Vanka, K.; Sen, S. S. Easily Accessible Lithium Compound Catalyzed Mild and Facile Hydroboration and Cyanosilylation of Aldehydes and Ketones. Chem. Commun. 2018, 54, 6843−6846.

(83) Zhi, Z.; Wu, X.; Xu, X.; Wu, Y.; Xue, M.; Yao, Y.; Shen, Q.; Bao, X. n-Butyllithium Catalyzed Selective Hydroboration of Aldehydes and Ketones. J. Org. Chem. 2018, 83, 10677−10683.

(84) Yang, S. J.; Jaladi, A. K.; Kim, J. H.; Gundeti, S.; An, D. K. n-Butyllithium (1 mol%)-catalyzed Hydroboration of Aldehydes and Ketones with Pinacolborane. Bull. Korean Chem. Soc. 2018, 40, 34−38.

(85) Shin, W. K.; Kim, H.; Jaladi, A. K.; An, D. K. Catalytic Hydroboration of Aldehydes and Ketones with Sodium Hydride: Application to Chemoselective Reduction of Aldehydes over Ketones. Tetrahedron 2018, 74, 6310−6315.

(86) For studies of Mg(1) adducts, see: Green, S. P.; Jones, C.; Stasch, A. Stable Magnesium(1) Compounds with Mg-Mg Bonds. Science 2007, 318, 1754−1757.

(87) Jones, C.; Stasch, A. Stable Dimeric Magnesium(1) Compounds: From Chemical Landmarks to Versatile Reagents. Dalton Trans. 2011, 40, 5659−5672.

(88) Li, J.; Luo, M.; Sheng, X.; Hua, H.; Yao, W.; Pullarkat, S. A.; Xu, L.; Ma, M. Unsymmetrical β-Diketiminate Magnesium(1) Complexes: Syntheses and Application in Catalytic Hydroboration of Alkynes, Nitrile and Carbonyl Compounds. Org. Chem. Front. 2018, 5, 3538−3547.

(89) Yadav, S.; Dixit, R.; Bisai, M. K.; Vanka, K.; Sen, S. S. Alkaline Earth Metal Compounds of Methylpyridinato β-Diketiminate Ligands and Their Catalytic Application in Hydroboration of Aldehydes and Ketones. Organometallics 2018, 37, 4576−4584.

(90) Kuciński, K.; Hreczycho, G. Lithium Triethylborohydride as Catalyst for Solvent-Free Hydroboration of Aldehydes and Ketones. Green Chem. 2019, 21, 1912−1915.

(91) Kim, J. H.; Jaladi, A. K.; Kim, H. T.; An, D. K. Lithium tert-Butoxide-catalyzed Hydroboration of Carboxyl Compounds. Bull. Korean Chem. Soc. 2019, 40, 971−975.

(92) Ma, D. H.; Jaladi, A. K.; Lee, J. H.; Kim, T. S.; Shin, W. K.; Hwang, H.; An, D. K. Catalytic Hydroboration of Aldehydes, Ketones, and Alkenes Using Potassium Carbonate: A Small Key to Big Transformation. ACS Omega 2019, 4, 15893−15903.

(93) Yang, Y. K.; Magre, M.; Rueping, M. Chemoselective Luche-Type Reduction of α,β-Unsaturated Ketones by Magnesium Catalysis. Org. Lett. 2019, 21, 8349−8352.

(94) Wang, W.; Lu, K.; Qin, Y.; Yao, W.; Yuan, D.; Pullarkat, S. A.; Xu, L.; Ma, M. Grignard Reagents-Catalyzed Hydroboration of Aldehydes and Ketones. Tetrahedron 2020, 76, 131145−131151.

(95) Brand, B.; Causero, A.; Elsen, H.; Pahl, J.; Langer, J.; Harder, S. Ligand Effects in Calcium Catalyzed Ketone Hydroboration. Eur. J. Inorg. Chem. 2020, 2020, 1728−1735.

(96) Kuciński, K.; Hreczycho, G. Potassium Fluoride-Catalyzed Hydroboration of Aldehydes and Ketones: Facile Reduction to Primary and Secondary Alcohols. Eur. J. Org. Chem. 2020, 2020, 552−555.
(117) Intemann, J.; Lutz, M.; Harder, S. Multinuclear Magnesium Hydride Clusters: Selective Reduction and Catalytic Hydroboration of Pyridines. Organometallics 2014, 33, 5722–5729.

(118) Rauch, M.; Ruccolo, S.; Parkin, G. Synthesis, Structure, and Reactivity of a Terminal Magnesium Hydride Compound with a Carbamate Motif, [TisM\textsubscript{3}H\textsubscript{2}]\textsubscript{2}MgH: A Multifunctional Catalyst for Hydroisilylation and Hydroboration. J. Am. Chem. Soc. 2017, 139, 13264–13267.

(119) Freitag, B.; Stegen, P.; Thum, K.; Fischer, C. A.; Harder, S. Tetranuclear Strontium and Barium Siloxide/Amide Clusters in Metal-Ligand Cooperative Catalysis. Eur. J. Inorg. Chem. 2018, 2018, 1938–1944.

(120) Zhang, F.; Song, H.; ZhuangX; Tung, C.-H.; WangW. Iron-Catalyzed 1,2-Selective Hydroboration of N-Heteroarenes. J. Am. Chem. Soc. 2017, 139, 17775–17778.

(121) Lemmertz, L. E.; Spaniol, T. P.; Okuda, J. 1,4-Dihydroyprpyridyl Complexes of Magnesium: Synthesis by Pyridine Insertion into the Magnesium–Silicon Bond of Triphenylsilyls and Catalytic Pyridine Hydrofunctionalization. Dalton Trans. 2018, 47, 12553–12561.

(122) Jeong, E.; Heo, J.; Park, S.; Chang, S. Alkoxide-Promoted Selective Hydroboration of N-Heteroarenes: Pivotal Roles of in situ Generated BH\textsubscript{3} in the Deaeromatization Process. Chem.–Eur. J. 2019, 25, 6320–6325.

(123) Liu, T.; He, J.; Zhang, Y. Regioselective 1,2-Hydroboration of N-Heteroarenes Using a Potassium-Based Catalyst. Org. Chem. Front. 2019, 6, 2749–2755.

(124) Li, Y.; Wu, M.; Chen, H.; Xu, D.; Qu, L.; Zhang, J.; Bai, R.; Lan, Y. Role of Alkaline-Earth Metal-Catalyst: A Theoretical Study of Pyrroles Hydroboration. Front. Chem. 2019, 7, 149–158.

(125) Arrowsmith, M.; Hill, M. S.; Kociok-Köhn, G. Magnesium Catalysis of Imine Hydroboration. Chem.–Eur. J. 2013, 19, 2776–2783.

(126) Yan, D.; Wu, X.; Xiao, J.; Zhu, Z.; Xu, X.; Bao, X.; Yao, Y.; Shen, Q.; Xue, M. N-Butyllithium Catalyzed Hydroboration of Imines and Alkynes. Org. Chem. Front. 2019, 6, 648–653.

(127) Panda, T. K.; Banerjee, I.; Sagar, S. Alkali-Metal-Promoted Facile Synthesis of Secondary Amines from Imines and Carboxamides. Appl. Organomet. Chem. 2020, 34, No. e5765.

(128) Kim, H.; Kim, H. T.; Lee, J. H.; Hwang, H.; An, D. K. Lithium Bromide: An Inexpensive and Efficient Catalyst for Imine Hydroboration with Pinacolborane at Room Temperature. RSC Adv. 2020, 10, 34421–34427.

(129) Andersson, P. G.; Munslov, I. J. Modern reduction methods; Wiley: New York, 2008.

(130) Das, S.; Addis, D.; Zhou, S.; Jung, K.; Beller, M. Zinc-Catalyzed Reduction of Amines: Unprecedented Selectivity and Functional Group Tolerance. J. Am. Chem. Soc. 2010, 132, 1770–1771.

(131) Seyden-Penne, J. Reductions by the Alumino and Borohydrides in Organic Synthesis, 2nd ed.; Wiley: New York, 1997.

(132) Mukherjee, D.; Ellern, A.; Sadow, A. D. Magnesium-Catalyzed Hydroboration of Esters: Evidence For a New Zwitterionic Mechanism. Chem. Sci. 2014, 5, 959–964.

(133) Lampland, N. L.; Hovey, M.; Mukherjee, D.; Sadow, A. D. Magnesium-Catalyzed Mild Reduction of Tertiary and Secondary Amides to Amines. ACS Catal. 2015, 5, 4219–4226.

(134) Barman, M. K.; Baishya, A.; Nambenna, S. Magnesium Amide Catalyzed Selective Hydroboration of Esters. Dalton Trans. 2017, 46, 4152–4156.

(135) Cao, X.; Wang, W.; Lu, K.; Yao, W.; Xue, F.; Ma, M. Magnesium-Catalyzed Hydroboration of Organic Carbonates, Carbon Dioxide and Esters. Dalton Trans. 2020, 49, 2776–2780.

(136) Bhuin, M.; Sahoo, S. R.; Das, A.; Jasimuddin, A.; Sreejyothi, P.; Mandal, S. K. Transition Metal-Free Catalytic Reduction of Primary Amines Using an Abnormal NHC Based Potassium Complex: Integrating Nucleophilicity with Lewis Acidic Activation. Chem. Sci. 2020, 11, 1848–1854.

(137) Yao, W.; Wang, J.; Zhong, A.; Wangs, S.; Shao, Y. Transition-Metal-Free Catalytic Hydroboration Reduction of Amides to Amines. Org. Chem. Front. 2020, 7, 3515–3520.
(161) Reij, S.; Das, A.; Panda, T. K. Overview of Regioselective and Stereoselective Catalytic Hydroboronation of Alkenes. Adv. Synth. Catal. 2021, 363, 4818.

(162) Harder, S.; Spielmann, J. Calcium-Mediated Hydroboration of Alkenes: “Trojan Horse” or “True” Catalysis? J. Organomet. Chem. 2012, 698, 7–14.

(163) Wang, Z.-C.; Chen, D.; Gao, J.; Jia, X.; Xu, Y.; Shi, S.-L. Base-Catalysed Reductive Relay Hydroboration of Allylic Alcohols with Pinacolborane to Form Allylboration Esters. Chem. Commun. 2019, 55, 8848–8851.

(164) Wang, Z.-C.; Wang, M.; Gao, J.; Shi, S.-L.; Xu, Y. nBuLi-promoted anti-Markovnikov Selective Hydroboration of Unactivated Alkenes and Internal Alkenes. Org. Chem. Front. 2019, 6, 2949–2953.

(165) Bisai, M. K.; Yadav, S.; Das, T.; Vanka, K.; Sen, S. S. Lithium Compounds as Single Site Catalysts for Hydroboration of Alkenes and Alkynes. Chem. Commun. 2019, 55, 11711–11714.

(166) Gunanathan, C.; Hilscher, M.; Pan, F.; Leitner, W. Ruthenium Catalysed Hydroboration of Terminal Alkenes to Z-Vinylboronates. J. Am. Chem. Soc. 2012, 134, 14349–14352.

(167) Sundararaju, B.; Fürster, A. A trans-Selective Hydroboration of Internal Alkenes. Angew. Chem., Int. Ed. 2013, 52, 14050–14054.

(168) Yang, Z.; Zhong, M.; Ma, X.; De, S.; Anusha, C.; Parameswaran, P.; Roesky, H. W. An Aluminum Dihydride Working as a Catalyst in Hydroboration and Dehydrocoupling. J. Am. Chem. Soc. 2016, 138, 2548–2551.

(169) Bismuto, A.; Thomas, S. P.; Cowley, M. J. Aluminum Hydride Catalyzed Hydroboration of Alkenes. Angew. Chem., Int. Ed. 2016, 55, 15356–15359.

(170) Saptal, V. B.; Wang, R.; Park, S. Recent Advances in Transition Metal-Free Catalytic Hydrodelementation (E = B, Si, Ge, and Sn) of Alkenes. RSC Adv. 2020, 10, 43359.

(171) Magre, M.; Maity, B.; Falconnet, A.; Cavallio, L.; Rueping, M. Magnesium-Catalyzed Hydroboration of Terminal and Internal Alkenes. Angew. Chem., Int. Ed. 2019, 58, 7025–7029.

(172) Huang, C.-Y.; Doyle, A. G. The Chemistry of Transition Metals with Three-Membered Ring Heterocycles. Chem. Rev. 2014, 114, 8153–8198.

(173) Magre, M.; Paffenholz, E.; Maity, B.; Cavallio, L.; Rueping, M. Regiodivergent Hydroborative Ring Opening of Epoxides via Selective C–O Bond Activation. J. Am. Chem. Soc. 2020, 142, 14286–14294.

(174) Song, H.; Ye, K.; Geng, P.; Han, X.; Liao, R.; Tung, C. H.; Wang, W. Activation of Epoxides by a Cooperative Iron-Thiolate Catalyst: Intermediacy of Ferrous Alkoxides in Catalytic Hydroboration. ACS Catal. 2017, 7, 7709–7717.

(175) Cao, X.; Li, J.; Zhu, A.; Su, F.; Yao, W.; Xue, F.; Ma, M. Syntheses of Asymmetrical Magnesium(I) Complexes and Their Catalytic Application in Epoxide Hydroboration. Org. Chem. Front. 2020, 7, 3625–3632.

(176) Wu, Y.; Shan, C.; Sun, Y.; Chen, P.; Ying, J.; Zhu, J.; Liu, L. L.; Zhao, Y. Main Group Metal—Ligand Cooperation of N-heterocyclic Gernylene: an Efficient Catalyst for Hydroboration of Carbylons. Chem. Commun. 2016, 52, 13799–13802.

(177) Schneider, J.; Sindlinger, C. P.; Freitag, S. M.; Schubert, H.; Wiesemann, L. Diverse Activation Modes in the Hydroboration of Alkenes and Internal Alkynes. Dalton Trans. 2019, 48, 664–672.
Supported Rare-Earth Metal Complexes as Catalysts for Efficient Hydroboration of Unactivated Imines and Nitriles. Inorg. Chem. 2018, 57, 15069–15078.

(222) Saha, S.; Eisen, M. S. Catalytic Recycling of a Th-H Bond via Single or Double Hydroboration of Inactivated Imines and Nitriles. ACS Catal. 2019, 9, 5947–5956.

(223) Bargér, C. J.; Motta, A.; Weidner, V. L.; Lohr, T. L.; Marks, T. J. La[N(SiMe3)3]3-Catalyzed Ester Reductions with Pinacolborane: Scope and Mechanism of Ester Cleavage. ACS Catal. 2019, 9, 9015–9024.

(224) Tamang, S. R.; Singh, A.; Bedi, D.; Bazikiaei, A. R.; Warner, A. A.; Glogau, K.; McDonald, G.; Unruh, D. K.; Findlater, M. Polynuclear Lanthanide-Diketonato Clusters for the Catalytic Hydroboration of Carboxamides and Esters. Nat. Catal. 2020, 3, 154–162.

(225) Zhang, F.; gong, M.; Xie, H.; Luo, Y.; La(CH2C6H4NMe2-0)-Catalyzed Reduction of Esters to Alcohols with Pinacolborane. New J. Chem. 2021, 45, 17654.

(226) Guo, C.; Zhang, F.; Yu, C.; Luo, Y. Reduction of Amides to Amines with Pinacolborane Catalyzed by Heterogeneous Lanthanum Catalyst La(CH2C6H4NMe2-0)@SBA-15. Inorg. Chem. 2021, 60, 13122–13135.

(227) Horino, Y.; Livinghouse, T.; Stan, M. Allene-Pinacolborane Hydroboration Catalyzed by Lanthanum Tris[bis(trimethylsilyl)amido]. Synlett 2004, 2639–2641.

(228) Ang, N.; Buettner, C. S.; Docherty, S.; Bismuto, A.; Carney, J. R.; Docherty, J. H.; Cowley, M. J.; Thomas, S. P. Borane-Catalysed Hydroboration of Alkynes and Alkenes. Synthesis 2018, 50, 803–808.

(229) Huchenski, B. S. N.; Speed, A. W. H. Protic Additives or Impurities Promote Imine Reduction with Pinacolborane. Org. Biomol. Chem. 2019, 17, 1999–2004.

(230) Jones, D. D. L.; Matthews, A. j. r.; Jones, C. The complex reactivity of β-diketiminate magnesium(1) dimers towards pinacolborane: implications for catalysis. Dalton Trans. 2019, 48, 5785–5792.

(231) Ho, H. E.; Asao, N.; Yamamoto, Y.; Jin, T. Carboxylic Acid-Catalyzed Highly Efficient and Selective Hydroboration of Alkenes with Pinacolborane. Org. Lett. 2014, 16, 4670–4673.

(232) Tucker, C. E.; Davidson, J.; Knochel, P. Mild and Stereoselective Hydroboration of Functionialized Alkenes and Alkynes Using Pinacolborane. J. Org. Chem. 1992, 57, 3482–3485.

(233) Stachowiak, H.; Kazmierczak, J.; Kučiński, K.; Hrezczyko, G. Catalyst-Free and Solvent-Free Hydroboration of Aldehydes. Green Chem. 2018, 20, 1738–1742.

(234) Wang, W.; Luo, M.; Yao, W.; Ma, M.; Pullarkat, S. A.; Xu, L.; Leung, P.-H. Catalyst-Free and Solvent-Free Hydroboration of Ketones. New J. Chem. 2019, 43, 10744–10749.

(235) Pandey, V. K.; Donthireddy, S. N. R.; Rit, A. Catalyst-Free and Solvent-Free Facile Hydroboration of Imines. Chem. -Asian J. 2019, 14, 3255–3258.

(236) Rohit, K.; Bisai, M. K.; Jain, S.; Vanka, K.; Sen, S. S. Deoxygenative Hydroboration of Primary and Secondary Amides: a Catalyst-Free and Solvent-Free Approach. Chem. Commun. 2021, 57, 10596.

(237) Harinath, A.; Bhattacharjee, J.; Panda, T. K. Facile Reduction of Carboxylic Acids to Primary Alcohols under Catalyst-Free and Solvent-Free Conditions. Chem. Commun. 2019, 55, 1386–1389.

(238) Wang, W.; Luo, M.; Zhu, D.; Yao, W.; Xu, L.; Ma, M. Green Hydroboration of Carboxylic Acids and Mechanism Investigation. Org. Biomol. Chem. 2019, 17, 3604–3608.

(239) Xu, X.; Yan, D.; Zhu, Z.; Kang, Z.; Yao, Y.; Shen, Q.; Xue, M. Catalyst-Free Approach for Hydroboration of Carboxylic Acids under Mild Conditions. ACS Omega 2019, 4, 6775–6783.

(240) Jaladi, A. K.; Choia, H. S.; An, D. K. Catalyst-Free and Solvent-Free Hydroboration of Alkenes. New J. Chem. 2020, 44, 13626–13632.

(241) Frick, M.; Horn, J.; Wadepohl, H.; Kaiser, E.; Himmell, H.-J. Catalyst-Free Hydroboration of CO2 With a Nucleophilic Diborane. Chem.—Eur. J. 2018, 24, 16985–16986.