Abstract

Recently, a family of models that couple multifluid systems to the full Maxwell equations draw a lot of attention in laboratory, space, and astrophysical plasma modeling. These models are more complete descriptions of the plasma than reduced models like magnetohydrodynamic (MHD) since they naturally retain non-ideal effects like electron inertia, Hall term, pressure anisotropy/nongyrotropy, etc. One obstacle to broader application of these model is that an explicit treatment of their source terms leads to the need to resolve rapid kinetic processes like plasma oscillation and electron cyclotron motion, even when they are not important. In this paper, we suggest two ways to address this issue. First, we derive the analytic forms solutions to the source update equations, which can be implemented as a practical, but less generic solver. We then develop a time-centered, locally implicit algorithm to update the source terms, allowing stepping over the fast kinetic time-scales. For a plasma with S species, the locally implicit algorithm involves inverting a local $3S + 3$ matrix only, thus is very efficient. The performance can be further elevated by using the direct update formulas to skip null calculations. Benchmarks illustrated the exact energy-conservation of the locally implicit solver, as well as its efficiency and robustness for both small-scale, idealized problems and large-scale, complex systems. The locally implicit algorithm can be also easily extended to include other local sources, like collisions and ionization, which are difficult to solve analytically.

Keywords: Plasma, multifluid, Two-Fluid, Five-Moment, Ten-Moment, Source Terms, Implicit solvers

Contents

1 Introduction 2
2 An Operator Splitting Scheme and the Homogeneous Terms 4
3 Source Term Update Equations 5
4 An Exact Solution Scheme 5
 4.1 Exact Solutions of the Electric Field-Currents Source Term Updates 5
 4.1.1 Normalization Towards an Anti-Symmetric System 5
 4.1.2 Parallel Sub-System 5
 4.1.3 Perpendicular Sub-System 6
 4.2 Exact Solution to the Pressure Tensor Rotation 6
5 A Locally Implicit Scheme

5.1 The Scheme .. 9
5.2 Accuracy and Stability .. 10
5.3 Conservation Properties .. 11
5.4 Including Collisions ... 11

6 Benchmark Problems .. 11

6.1 Plasma Oscillation .. 11
6.2 Plasma Wave-Beach .. 11
6.3 Magnetic Reconnection in a Harris Current Sheet 13
6.4 Orszag-Tang Vortex ... 13
6.5 Solar Wind-Magnetosphere Interaction at the Earth 13

7 Conclusions .. 14

A Useful Notes on the Matrix Form of the Linear System of Equations .. 15

A.1 Notes on Skew-Symmetric and Skew-Hermitian Matrices 15
A.2 Equivalent Eigenvalue Problem 16
A.3 Constructing Real Solutions ... 16

B Deriving the Exact Solutions ... 17

B.1 Identifying the renormalizations 17
B.2 Solving the Parallel Sub-System 17
B.3 Solving the Perpendicular Sub-System 18
 B.3.1 Eigenvalues .. 18
 B.3.2 Eigenvectors ... 19
 B.3.3 Real solution bases .. 19

C Direct Calculation of the Locally Implicit Scheme 20

D Stability of the Locally Implicit Scheme 22

D.1 Von Neumann Stability Analysis 22
D.2 Properties of the Implicit Midpoint Method 23

E The Eigensystem of the Ten-Moment Model 23

1. Introduction

In this paper we describe numerical methods to update source terms for the multifluid plasma equations coupled to Maxwell equations. These models consist of equations of velocity moments for each plasma species s, in the conservative form,

$$\frac{\partial}{\partial t} (m_s n_s) + \frac{\partial}{\partial x_j} (m_s n_s u_{j,s}) = 0$$ \hspace{1cm} (1)

$$\frac{\partial}{\partial t} (m_s n_s u_{j,s}) + \frac{\partial P_{ij,s}}{\partial x_j} = \frac{n_s q_s}{\epsilon} (E_i + \epsilon_{ijk} u_{j,s} B_k)$$ \hspace{1cm} (2)
Here, q_s and m_s are the particle charge and mass, ε_{ijk} is the Levi-Civita symbol. The moments are defined as

$$n_s(x) \equiv \int f_s dv \quad (3)$$

$$m_s n_s(x) u_{i,s}(x) \equiv m_s \int v_i f_s dv \quad (4)$$

$$P_{i,s}(x) \equiv m_s \int v_i v_j f_s dv \quad (5)$$

with $f_s(x,v,t)$ being the phase space distribution function. We will neglect the subscript s hereinafter for convenience. For completeness, P_{ij} relates to the more familiar thermal pressure tensor

$$P_{ij} \equiv m \int (v_i - u_i) (v_j - u_j) f dv \quad (6)$$

by

$$P_{ij} = P_{ij} + nm u_i u_j. \quad (7)$$

For simplicity, non-ideal effects like heat transport and viscous dissipation are neglected. The electric and magnetic fields \mathbf{E} and \mathbf{B} are evolved using Maxwell equations

$$\frac{\partial \mathbf{B}}{\partial t} + \nabla \times \mathbf{E} = 0 \quad (8)$$

$$\frac{\partial \mathbf{E}}{\partial t} - c^2 \nabla \times \mathbf{B} = -\frac{1}{\varepsilon_0} \sum_s q_s n_s u_s. \quad (9)$$

with $c = 1/\sqrt{\mu_0 \varepsilon_0}$ being the speed of light.

To close the system, the second order moment P_{ij} or P_{ij} must be specified. For example, a cold fluid closure simply sets $P_{ij} = 0$, while an isothermal equation of state (EOS) assumes that the temperature is constant. Or, assuming zero heat flux and that the pressure tensor is isotropic, we can write an adiabatic EOS for $P_{ij} = p^T$

$$\frac{\partial \mathcal{E}}{\partial t} + \nabla \cdot [(p + \mathcal{E}) \mathbf{u}] = n q \mathbf{u} \cdot \mathbf{E}, \quad (10)$$

where

$$\mathcal{E} \equiv \frac{p}{\gamma - 1} + \frac{1}{2} |\mathbf{u}|^2 \quad (11)$$

is the total fluid (thermal plus kinetic) energy and γ is the adiabatic index, set to 5/3 for a fully ionized plasma. For a plasma with S species ($s = 1, \ldots, S$) this system is closed and has a total of $5S + 6$ equations, and are here referred to as the five-moment model [1]. More general models can be obtained by retaining the evolution equations for all six components of the pressure tensor [2, 3] in the so-called ten-moment model

$$\frac{\partial P_{ij,s}}{\partial t} + \frac{\partial Q_{ijm,s}}{\partial x_m} = n_s q_s u_{i,s} E_j + \frac{q_s}{m_s} \varepsilon_{ipl} P_{mj,s} B_l \quad (12)$$

where the third moment

$$Q_{ijm,s}(x) \equiv m_s \int v_i v_j v_m f_s dv \quad (13)$$

relates to the conventionally defined heat flux tensor

$$Q_{ijm} \equiv m \int (v_i - u_i)(v_j - u_j)(v_m - u_m) f dv \quad (14)$$

by

$$Q_{ijm} = Q_{ijm} + u_i P_{jm} - 2nm u_i u_j u_m. \quad (15)$$
Again, the equations here must be closed by some approximation for the heat-flux tensor. We may include evolution equations for even higher order moments, e.g., the twenty one components of the heat-flux tensor[4].

Although multifluid-Maxwell models provide a more complete description of the plasma than reduced, asymptotic models like Magnetohydrodynamics (MHD) [5, 6], they are less frequently used. The reason for this is the infinitesimal kinetic scales involved. Retaining the electron inertia adds plasma-frequency and cyclotron time-scale, while non-neutrality adds Debye length spatial-scales. Further, inclusion of the displacement currents means that electromagnetic (EM) waves must be resolved when using an explicit scheme. Fortunately, the restrictions due to kinetic scales are introduced only through the non-hyperbolic source terms of Eqns. [2, 9], and Eqn. [12]. Therefore we may eliminate these restrictions by updating the source term separately either exactly or using an implicit algorithm. This allows larger time steps and leads to significant speedup, specially with realistic electron/ion mass ratios. Developing such source term update schemes is the focus of this paper. The speed of light constraint still exists, however, can be greatly relaxed, using reduced values for the speed of light and/or sub-cycling Maxwell equations. Of course, an implicit Maxwell solver, or a reduced set of electromagnetic equations like the Darwin approximation[7], can also relax the time-step restrictions. In either case, though, a fully implicit approach is needed, and are not considered in this paper.

The rest of the paper is organized as follows. First, the source term update equations are written down as time-dependent constant-coefficient ordinary differential equations (ODEs). We then give exact solutions to these equations for any number of plasma species. Subsequently, a locally implicit algorithm is presented. It is shown that the time-steps are restricted solely by the speed of light, and that the algorithm preserves positivity of density and pressure. The accuracy and robustness of both (i.e., the analytic solution and the locally implicit solution) methods are demonstrated through a few standard benchmark problems, as well as through an application to large-scale modeling of the interaction between solar wind and Earth’s magnetosphere. The appendix gives a thorough derivation of the exact solutions plus direct formulae for the locally implicit schemes. The eigensystem of the ten-moment model, useful for implementing approximate Riemann solvers for this system, is provided in the appendix too.

2. An Operator Splitting Scheme and the Homogeneous Terms

The multifluid-Maxwell equations can be split into a homogeneous part and a source term update part. The key idea is to solve these two parts separately and apply high accuracy schemes on both. Ignoring sources, the homogeneous equations can be solved in the conservation law form

$$\frac{\partial \mathbf{Q}}{\partial t} + \nabla \cdot \mathbf{F} = 0$$

where \(\mathbf{Q}\) is the vector of conserved quantities (fluid moments and electromagnetic field) and \(\mathbf{F}\) are the corresponding fluxes. See Eqns. (1)–(3) of [1] for the conservation form of five-moment equations, and Eqns. (24)–(25) of [2] for the conservation form of the ten-moment equations. An explicit solution of Eqn. (16) is subject to light speed constraint \(c \Delta t/\Delta x < \text{CFL}\), where \(\Delta x\) is the (smallest) grid spacing and \(\text{CFL} \leq 1\) is determined from the spatial scheme used. The often more restrictive constraints due to kinetic scales are contained in the remaining non-hyperbolic, source term update part only. This implies that it is possible to eliminate these constraints if a proper implicit algorithm is applied to update the source term.

Deferring the source term details to the next section, we represent the homogeneous update schematically as the operator \(\exp(L_H \Delta t)\) and the source update as \(\exp(L_S \Delta t)\). The full algorithm can now be written as the Strang-splitting sequence that has second order accuracy in time[8],

$$\exp(L_S \Delta t/2) \exp(L_H \Delta t) \exp(L_S \Delta t/2).$$

(17)

The remainder of this paper is devoted to develop schemes for \(\exp(L_S \Delta t)\). As for \(\exp(L_H \Delta t)\), one can use a number of schemes, including finite-volume (FV) wave-propagation scheme[9, 11], or a variation of the MUSCL algorithm[10], or a discontinuous Galerkin (DG) scheme[11] [12], among others. Each of these schemes has advantages: finite-volume methods are robust and easy to implement, while DG schemes are
high-order and have the potential of providing higher accuracy at a lower cost compared to second-order schemes.

3. Source Term Update Equations

For the five-moment model, the source terms are

\[
\begin{aligned}
\frac{\partial J_s}{\partial t} &= \omega_s^2 \varepsilon_0 E + J_s \times \Omega_s \\
\varepsilon_0 \frac{\partial E}{\partial t} &= - \sum_s J_s.
\end{aligned}
\] (18)

Here, \(\Omega_s \equiv q_s B / m_s\) is the cyclotron frequency, \(\omega_s \equiv \sqrt{q_s^2 n_s / \varepsilon_0 m_s}\) is the species plasma frequency, and we use currents, \(J_s \equiv q_s n_s u_s\), instead of momentum for convenience. During the source term update, the plasma density \(n_s\) and magnetic field \(B\) remain unchanged and this coupled system has an energy invariant,

\[
\sum_s \frac{1}{2} \frac{J_s^2}{\varepsilon_0 \omega_s^2} + \frac{\varepsilon_0}{2} E^2 = \text{const.}
\] (19)

The ten-moment equations have identical sources for currents and the electric field. In addition, there are source terms in the pressure tensor equation (12) that accounts for a rotation around the background magnetic field

\[
\frac{\partial P_s}{\partial t} = \text{Sym}^2 (P_s \times \Omega_s).
\] (20)

Here, \(\text{Sym}^2 (V)\) denotes the space of all symmetric tensors of 2nd order defined on the tensor \(V\).

4. An Exact Solution Scheme

During the source term updates Eqn. (18) and (37), the plasma densities and magnetic field remain unchanged. Consequently, the equations are effectively constant-coefficient linear ODEs in time. They can be solved exactly to obtain currents/electric field or pressure tensor as functions of time. Ref. [3] obtained such exact, analytic solutions in the two-fluid case. Here, we unify and generalize the procedure for any number of species and outline the critical steps/results.

4.1. Exact Solutions of the Electric Field-Currents Source Term Updates

For a single cell, the procedure to update the source term Eqn. (18) by time step \(\Delta t\) is outlined below:

Algorithm 1 Update source term Eqn. (18) exactly in one cell

1: Normalize \(E\) and \(J_s\) to get anti-symmetric; coefficient matrix for Eqn. (18)
2: if \(|B| \neq 0\) then
3: Decompose the system into a parallel part and a perpendicular part regarding \(B\);
4: for sub-system in \{parallel, perpendicular\} do
5: Compute eigenvalues and eigenvectors of the coefficient matrix at \(t = 0\);
6: Compute eigencoefficients by projecting the initial state onto the eigenvectors;
7: Compute eigenvectors at \(t = \Delta t\);
8: Compute the updated state at \(t = \Delta t\) as combinations of the updated eigenvectors;
9: else
10: Solve the equivalent parallel problem along all three directions;
11: Normalize \(E\) and \(J_s\) back to their original units;

Here we briefly iterate some of the steps and give the results but leave the more involving details in Sec. [3]
4.1 Exact Solutions of the Electric Field-Currents Source Term Updates

4.1.1. Normalization Towards an Anti-Symmetric System

This section addresses the line 1 in Algorithm (1). Eqn. (18) for N species can be written in a matrix form

\[
\begin{bmatrix}
\frac{\partial}{\partial t} & E \\
J_1 & J_2 \\
\vdots & \vdots \\
J_N & \end{bmatrix}
\begin{bmatrix}
0 & -1/\varepsilon_0 & -1/\varepsilon_0 & \cdots & -1/\varepsilon_0 \\
\omega_1^2\varepsilon_0 & -\Omega_1 \times \mathcal{I} & 0 & \cdots & 0 \\
\omega_2^2\varepsilon_0 & 0 & -\Omega_2 \times \mathcal{I} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\omega_N^2\varepsilon_0 & 0 & 0 & \cdots & -\Omega_N \times \mathcal{I}
\end{bmatrix}
\begin{bmatrix}
E \\
J_1 \\
\vdots \\
J_N
\end{bmatrix},
\]

where \(\mathcal{I} \) is a 3 \times 3 unit tensor, \(\omega_s \) and \(\Omega_s \) denote the plasma and signed cyclotron frequency of species \(s \)

\[
\omega_s \equiv \sqrt{\frac{q_s^2 n_s}{\varepsilon_0 m_s}}, \quad \Omega_s \equiv \frac{q_s B}{m_s}.
\]

It is easier to work on a symmetric or antisymmetric system. This can be achieved by renormalizing the electric field and currents. Consider normalizations \(E_0 \) and \(J_s \), so that

\[
\dot{E} = \tilde{E} E_0, \quad \dot{J}_s = \tilde{J}_s J_s,
\]

and require

\[
J_s / \varepsilon_0 E_0 = \omega_{ps},
\]

the system becomes anti-symmetric:

\[
\dot{E} =
\begin{bmatrix}
0 & -\omega_1 & -\omega_2 & \cdots & -\omega_N \\
-\omega_1 & 0 & 0 & \cdots & 0 \\
-\omega_2 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-\omega_N & 0 & 0 & \cdots & 0
\end{bmatrix}
\begin{bmatrix}
E \\
J_1 \\
\vdots \\
J_N
\end{bmatrix}.
\]

Eqn. (25) can be further decomposed into a parallel part and a perpendicular part with regard to the background magnetic field direction. We shall solve these two parts separately.

4.1.2. Parallel Sub-System

This section identifies the eigenvectors needed in the loop 4 of Algorithm (1) for the parallel sub-system. This sub-system evolves \((E_\parallel; u_\parallel) \) and writes

\[
\begin{bmatrix}
\frac{\partial}{\partial t} \\
\dot{E}_\parallel \\
\dot{J}_{1\parallel} \\
\dot{J}_{2\parallel} \\
\vdots \\
\dot{J}_{N\parallel}
\end{bmatrix}
=
\begin{bmatrix}
M_\parallel \\
\dot{E}_\parallel \\
\dot{J}_{1\parallel} \\
\dot{J}_{2\parallel} \\
\vdots \\
\dot{J}_{N\parallel}
\end{bmatrix},
\]

with the coefficient matrix

\[
M_\parallel =
\begin{bmatrix}
0 & -\omega_1 & -\omega_2 & \cdots & -\omega_N \\
-\omega_1 & 0 & 0 & \cdots & 0 \\
-\omega_2 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-\omega_N & 0 & 0 & \cdots & 0
\end{bmatrix},
\]

\(M_\parallel \) has three distinct eigenvalues

\[
-i \omega_p, \quad i \omega_p, \quad 0.
\]
4.1 Exact Solutions of the Electric Field-Currents Source Term Updates

with multiplicities 1, 1, and \(N - 1\), respectively. Here, the total plasma frequency \(\omega_p\) is defined as

\[
\omega_p^2 = \sum_s \omega_s^2.
\]

Following the procedure in Sec. A.2 and A.3, the \(N + 1\) real solution bases are

\[
\begin{bmatrix}
\tilde{\mathbf{E}}_\| \\
\tilde{\mathbf{J}}_{1\|} \\
\tilde{\mathbf{J}}_{2\|} \\
\vdots \\
\tilde{\mathbf{J}}_{N-1\|} \\
\tilde{\mathbf{J}}_{N\|}
\end{bmatrix} =
\begin{bmatrix}
\omega_p \cos (\omega_p t) & -\omega_p \sin (\omega_p t) & 0 & 0 & 0 \\
\omega_1 \sin (\omega_p t) & \omega_1 \cos (\omega_p t) & 1/\omega_1 & 0 & 0 \\
\omega_2 \sin (\omega_p t) & \omega_2 \cos (\omega_p t) & 0 & 1/\omega_2 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\omega_{N-1} \sin (\omega_p t) & \omega_{N-1} \cos (\omega_p t) & 0 & 0 & 1/\omega_{N-1} \\
\omega_N \sin (\omega_p t) & \omega_N \cos (\omega_p t) & -1/\omega_N & -1/\omega_N & -1/\omega_N
\end{bmatrix}.
\]

At \(t = 0\), they are

\[
\begin{bmatrix}
\omega_p \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{bmatrix} \begin{bmatrix}
0 \\
1/\omega_1 \\
0 \\
\vdots \\
0 \\
-1/\omega_N
\end{bmatrix} + c_0 \begin{bmatrix}
0 \\
0 \\
0 \\
\vdots \\
0 \\
1/\omega_N
\end{bmatrix} + c_1 \begin{bmatrix}
0 \\
0 \\
0 \\
\vdots \\
0 \\
-1/\omega_N
\end{bmatrix}.
\]

Note that the \(N - 1\) degenerate eigenvectors for \(\omega_0 = 0\) are not orthogonal when \(N \geq 3\). Thus we cannot compute their eigencoefficients following Eqn. (A.6) directly. Instead, we would have to orthonormalize these eigenvectors (using, e.g., the Gram-Schmidt procedure) first. However, we note that these eigenvectors do not change in time. As a result, we do not need to project onto them. The solution at \(t\) can be computed by simply accumulating the incremental changes due to the first two bases only. In other word, we only need to do projection onto the first and the second bases in Eqn. (30), i.e., to compute \(c_0\) and \(c_1\) following Eqn. (A.6). The updated state at time \(t = \Delta t\) is

\[
a_\| (t = \Delta t) = a_\| (t = 0) + c_0 \begin{bmatrix}
\omega_p \left[\cos (\omega_p \Delta t) - 1 \right] \\
\omega_1 \sin (\omega_p \Delta t) \\
\omega_2 \sin (\omega_p \Delta t) \\
\vdots \\
\omega_{N-1} \sin (\omega_p \Delta t) \\
\omega_N \sin (\omega_p \Delta t)
\end{bmatrix} + c_1 \begin{bmatrix}
-\omega_p \sin (\omega_p \Delta t) \\
\omega_1 \left[\cos (\omega_p \Delta t) - 1 \right] \\
\omega_2 \left[\cos (\omega_p \Delta t) - 1 \right] \\
\vdots \\
\omega_{N-1} \left[\cos (\omega_p \Delta t) - 1 \right] \\
\omega_N \left[\cos (\omega_p \Delta t) - 1 \right]
\end{bmatrix}.
\]

4.1.3. Perpendicular Sub-System

This section identifies the eigenvectors needed in the loop 4 of Algorithm 1 for the perpendicular sub-system. To get an elegant form of the sub-system, consider the two perpendicular components of a vector as the real and imaginary parts of a complex vector, i.e., \(\mathbf{E}_\perp = \bar{E}_1 + i\bar{E}_2\), etc. Then we can write the perpendicular system as

\[
\frac{\partial}{\partial \tau}
\begin{bmatrix}
\bar{\mathbf{E}}_\perp \\
\bar{\mathbf{J}}_{1\perp} \\
\bar{\mathbf{J}}_{2\perp} \\
\vdots \\
\bar{\mathbf{J}}_{N-1\perp} \\
\bar{\mathbf{J}}_{N\perp}
\end{bmatrix} = \mathbf{M}_\perp
\begin{bmatrix}
\bar{\mathbf{E}}_\perp \\
\bar{\mathbf{J}}_{1\perp} \\
\bar{\mathbf{J}}_{2\perp} \\
\vdots \\
\bar{\mathbf{J}}_{N-1\perp} \\
\bar{\mathbf{J}}_{N\perp}
\end{bmatrix},
\]

where the complex coefficient matrix is
4.2 Exact Solution to the Pressure Tensor Rotation

\[
M_{\perp} = \begin{bmatrix}
0 & -\omega_1 & -\omega_2 & \cdots & -\omega_N \\
\omega_1 & -i\Omega_1 & 0 & 0 & 0 \\
\omega_2 & 0 & -i\Omega_2 & 0 & 0 \\
\vdots & 0 & 0 & \ddots & 0 \\
\omega_N & 0 & 0 & 0 & -i\Omega_N \\
\end{bmatrix}.
\]

(33)

Since \(M_{\perp}\) is skew-Hermitian, it has \(N + 1\) purely imaginary eigenvalues \(\lambda = i\omega\) that can be obtained (see Sec. B.3) by solving

\[
\omega - \sum_s \frac{\omega_s^2}{\omega + \Omega_s} = 0.
\]

(34)

Each eigenvalue has two real, orthogonal solution bases of different polarizations (see Sec. B.3):

\[
\begin{bmatrix}
\tilde{E}_1 \\
\tilde{E}_2 \\
\vdots \\
J_{s1} \\
J_{s2} \\
\vdots \\
\end{bmatrix} = \begin{bmatrix}
0 & -\sin \omega t & \cos \omega t \\
\cos \omega t & 0 & \sin \omega t \\
\vdots & \vdots & \vdots \\
\frac{\omega_1}{\omega + \Omega_1} & \cos \omega t & -\sin \omega t \\
\frac{\omega_2}{\omega + \Omega_2} & \sin \omega t & \cos \omega t \\
\vdots & \vdots & \vdots \\
\end{bmatrix}
\]

(35)

At \(t = 0\) they are

\[
\begin{bmatrix}
E_1 \\
E_2 \\
\vdots \\
u_{1s} \\
u_{2s} \\
\vdots \\
\end{bmatrix} = \begin{bmatrix}
0 \\
1 \\
\vdots \\
\frac{\omega_1}{\omega + \Omega_1} \\
\frac{\omega_2}{\omega + \Omega_2} \\
\vdots \\
\end{bmatrix} \quad \text{and} \quad \begin{bmatrix}
1 \\
0 \\
\vdots \\
0 \\
-\frac{\omega_s}{\omega + \Omega_s} \\
\vdots \\
\end{bmatrix}.
\]

(36)

By the theory of Hermitian matrices, the eigenvectors of distinct eigenvectors are orthogonal. Therefore we recover \(2 \times (N + 1)\) orthogonal solution bases.

Finally, time-dependent solution to the original perpendicular sub-system Eqn. (32) can be obtained following the “project-and-evolve” procedure outlined in Sec. A.2.

4.2 Exact Solution to the Pressure Tensor Rotation

The source term for the pressure tensor rotation, Eqn. (20), can be written more explicitly as

\[
\frac{d}{dt} \begin{bmatrix}
P_{xx} \\
P_{xy} \\
P_{xz} \\
P_{yy} \\
P_{yz} \\
P_{zz} \\
\end{bmatrix} = q \begin{bmatrix}
0 & 2B_y & -2B_y & 0 & 0 & 0 \\
-B_z & 0 & B_z & B_z & -B_y & 0 \\
0 & -2B_z & 0 & 0 & 2B_z & 0 \\
B_y & -B_x & 0 & 0 & B_x & B_y \\
0 & 2B_y & 0 & 0 & -2B_x & 0 \\
0 & 0 & 2B_y & B_y & -B_x & 0 \\
\end{bmatrix} \begin{bmatrix}
P_{xx} \\
P_{xy} \\
P_{xz} \\
P_{yy} \\
P_{yz} \\
P_{zz} \\
\end{bmatrix}.
\]

(37)

It can be solved analytically, too, and can be implemented following Algorithm (2). The rotation matrix \(R\) in line 2 of Algorithm (2) is

\[
R = \begin{bmatrix}
\cos \alpha + (1 - \cos \alpha) b_1^2, & (1 - \cos \alpha) b_1 b_2 - \sin \alpha b_3, & (1 - \cos \alpha) b_1 p_3 + \sin \alpha b_2 \\
(1 - \cos \alpha) b_2 b_1 + \sin \alpha b_3, & \cos \alpha + (1 - \cos \alpha) b_2^2, & (1 - \cos \alpha) b_2 p_3 - \sin \alpha b_1 \\
(1 - \cos \alpha) b_3 b_1 - \sin \alpha b_2, & (1 - \cos \alpha) b_3 b_2 + \sin \alpha b_1, & \cos \alpha + (1 - \cos \alpha) b_3^2 \\
\end{bmatrix},
\]

(38)
Algorithm 2 Update source term for pressure tensor equation for species s exactly in one cell

1: Compute the rotation angle $\alpha (\Delta t) = -\Omega_{cs} \Delta t$ counter-clockwise around B;
2: Compute the rotation matrix R for α;
3: Rotate the pressure tensor P by applying the rotation matrix R;

The pressure tensor rotation in line 3 can be done as

$$ P (\Delta t) = R \cdot P (0) \cdot R^T. $$

(39)

in the expanded form

$$ P_{mn} (t) = \sum_i \sum_j P_{ij} (0) R_{mi} R_{nj}. $$

(40)

5. A Locally Implicit Scheme

The exact source solutions obtained in the Section 4 are relatively expensive to compute. More importantly, it is difficult to incorporate additional source terms as they might change the fundamental structure of the linear system. In this section, we develop a locally implicit scheme to update the source term equations more efficiently using a centered discretization in time. Using this scheme, it is also straightforward to include additional source terms that depend on local quantities only, say, collisions and ionizations. It is worthwhile to mention that schemes using implicit–explicit (IMEX) timestepping to treat the source terms are described in [14, 15, 16]. A more recent work coupled a biased implicit treatment of the source term in with the hyperbolic update[17]. However the scheme presented here is considerably simpler as we work with the non-conservative form of the equations \textit{just for the source updates}. In any case, the scheme in [14] is implicitly contained in earlier two-fluid papers [18, 1], which essentially only performed a single (or few) iteration(s) of the implicit scheme in [14].

5.1. The Scheme

For numerical stability, it is intuitive to apply the backward Euler method,

$$ \begin{align*}
\bar{J}_s &= J_n^s + \frac{\Delta t}{2} (\omega^2 \epsilon_0 E^{n+1} + J_{s}^{n+1} \times \Omega_s) \\
\bar{E} &= E^n - \frac{\Delta t}{2\epsilon_0} \sum_s \bar{J}_s.
\end{align*} $$

(41)

which was adopted by [15]. However, this is a first order method and damps the oscillatory solutions. A slight modification improves both stability and energy conservation. For convenience, we introduce time-center quantities

$$ J_s \equiv (J_{s}^{n+1} + J_{s}^{n})/2 \quad \text{and} \quad \bar{E} \equiv (E^{n+1} + E^n)/2 $$

(42)

The first part of our scheme is given by

$$ \begin{align*}
\bar{J}_s &= J_n^s + \frac{\Delta t}{2} (\omega^2 \epsilon_0 \bar{E} + \bar{J}_s \times \Omega_s) \\
\bar{E} &= E^n - \frac{\Delta t}{2\epsilon_0} \sum_s \bar{J}_s
\end{align*} $$

(43)

and can be rearranged into the form

$$ \begin{align*}
\begin{bmatrix}
\bar{J}_s \\
\bar{E} + \frac{\Delta t}{2\epsilon_0} \sum_s \bar{J}_s
\end{bmatrix} &= \begin{bmatrix}
J_n \\
E^n\end{bmatrix} \Leftrightarrow M_{l.h.s.} \begin{bmatrix}
\bar{J}_s \\
\bar{E}
\end{bmatrix} = \begin{bmatrix}
J_s \\
E
\end{bmatrix}
\end{align*} $$

(44)
5.2 Accuracy and Stability

with $\mathbf{M}_{l.h.s.}$ being the $(3S + 3) \times (3S + 3)$ constant coefficient matrix.

Eqn. (44) is a system of linear, constant-coefficient ODEs for the $3S + 3$ unknowns $\mathbf{\bar{J}}_s$ and $\mathbf{\bar{E}}$ and can be solved with any linear algebra routine to get

$$
\begin{bmatrix}
\mathbf{\bar{J}}_s \\
\mathbf{\bar{E}}
\end{bmatrix} = \mathbf{M}_{l.h.s.}^{-1}
\begin{bmatrix}
\mathbf{J}_s \\
\mathbf{E}
\end{bmatrix}.
\tag{45}
$$

The final updated currents and electric field can then be determined by

$$
\mathbf{E}^{n+1} = 2\mathbf{E}^n - \mathbf{E}^n \\
\mathbf{J}_s^{n+1} = 2\mathbf{\bar{J}}_s - \mathbf{J}_s^n.
\tag{46}
$$

We call this scheme the locally implicit scheme as it involves only data in a single cell and requires the inversion of only a $(3S + 3)^2$ matrix. No global matrix inversion coupling all cells in the domain is required. If a DG scheme is used, then the source update needs to be computed at each node of the selected finite-element node, or, projected onto the selected modal basis, if using those. In Section. C, we show that it is also possible to write down the resultant formulae for the complete linear algebra calculations and skip the “null” calculations for significant speedup.

5.2. Accuracy and Stability

Indeed, the locally implicit scheme is an implicit midpoint method, giving an error of order $O\left((\Delta t)^2\right)$. The stability of the algorithm can be studied by a von Neumann analysis. We introduce a time-dependence of $e^{-i\omega t}$, where ω is the (possibly complex) numerical frequency. For plasma oscillations the source update has the numerical dispersion relation (see Section. D)

$$
\frac{4}{\Delta t^2} \tan^2\left(\frac{\omega \Delta t}{2}\right) = \omega_p^2
\tag{47}
$$

showing that the time-step is not restricted by plasma frequency. In a similar way, we can show that the time step is not restricted by cyclotron frequency, either.

5.3. Conservation Properties

To ensure that the number density and pressure remain positive, we first observe that the source update Eqns.(50) do not modify either of these quantities. Hence, positivity violations can only occur in the homogeneous updates of the fluid quantities.

The multifluid system, in the absence of dissipation and with appropriate boundary conditions1 conserves the total energy, i.e $d\mathcal{E}/dt = 0$, where

$$
\mathcal{E} = \int \left[\sum_i \left(\frac{1}{2} m_i \mathbf{u}_i^2 + \frac{3}{2} p_i \right) + \epsilon_0 \frac{1}{2} \mathbf{E}^2 + \frac{1}{2\mu_0} \mathbf{B}^2 \right] \, dx
\tag{48}
$$

and the integration is taken over the whole domain. The source update, Eqns. as can be shown easily, conserve the discrete form of Eqn. (19). This can be further understood as the merit of the implicit midpoint method that it preserves the magnitude of any oscillatory systems. Also, solving the homogeneous fluid equation in conservation law form conserves the fluid energies. Hence, the conservation of the total discrete energy, including electromagnetic energy, depends on the scheme selected to solve Maxwell equations. In general, upwind finite-volume schemes will not conserve the EM energy, but decay it. Hence, unless an energy conserving finite-volume/difference scheme is used to update the EM fields, the total energy is not conserved by the discrete scheme. Even when using an upwind scheme, lack of energy conservation is not always a problem, however, as the energy conservation error scales as the order of the scheme, and hence can be controlled by using a finer mesh or a higher order method.

1Energy conservation for homogeneous fluid equations is exact for periodic boundaries. However, for wall boundary small energy errors arise due to diffusive terms in the numerical fluxes used. One can always use a central flux at walls, but this complicates the scheme, and is not always worth the effort in practice.
5.4 Including Collisions

Following [19], we may incorporate frictional collisions by slightly modifying the current source term as

$$\left(\frac{\partial}{\partial t} + \nu_s \right) \mathbf{J}_s = \omega_s^2 \varepsilon_0 \mathbf{E} + \mathbf{J}_s \times \mathbf{\Omega}_s$$

(49)

where ν_s is a constant collision frequency. The additional collision term converts the solution from purely oscillatory to damped oscillations. The corresponding locally implicit scheme writes

$$\begin{cases}
\bar{\mathbf{J}}_s = \mathbf{J}_s^n + \frac{\Delta t}{2} \left(\omega_s^2 \varepsilon_0 \bar{\mathbf{E}} + \bar{\mathbf{J}}_s \times \mathbf{\Omega}_s - \nu_s \bar{\mathbf{J}}_s \right) \\
\bar{\mathbf{E}} = \mathbf{E}^n - \frac{\Delta t}{2 \varepsilon_0} \sum_s \bar{\mathbf{J}}_s.
\end{cases}$$

(50)

This is still a constant coefficient linear system, thus can also be solved using any linear algebra routine. In a similar manner, we may include additional source terms, e.g., ionization, gravity, chemical production, as long as the terms involves only local quantities (i.e., no gradient calculations etc.).

6. Benchmark Problems

In this section, we present a few benchmark simulations to illustrate the properties of locally implicit scheme. In all but the first test, we use a dimensionally split version of the FV discretization described in [1]. Note that the purpose of the paper is not to study the detailed physics of these problems, but to simply show that the algorithm presented above is efficient and stable where the explicit algorithm would be unstable, and produces qualitatively correct results.

6.1. Plasma Oscillation

The first is a plasma oscillation test. We consider the plasma oscillation of one species locally, i.e., within a cell. In other word, we disregard the spatial integration Eqn. (16) and integrates only Eqn. (18). The initial condition consists of a uniform, stationary plasma and vanishing magnetic field. Perturbation is imposed on E_x. The system should oscillate at the plasma frequency ω_{pe}, as the exact solution Eqn. (29) indicates. We use a severely under-resolving time step $\Delta t = \frac{73}{\omega_{pe}}$ and the simulation lasts until $t = \frac{1.25 \times 10^5}{\omega_{pe}}$, after 17000 steps. Figure. (1)a shows the first one tenth of E_x's evolution. Though the simulation is unable to fully capture the plasma oscillation cycles due to the massive time step, it does maintain an oscillatory solution without damping or magnifying. This is more clearly seen in Figure. (1)b, the phase-diagram for the normalized electric field and current (see Eqn. (23)). Different points are simulation results at different times. Apparently, the points always fall on a unit circle, indicating a fully oscillatory solution without energy loss/gain. In comparison, if we opted to use a backward Euler method, the oscillation would be damped; if we use a forward Euler method, the oscillation magnitude would be magnified.

6.2. Plasma Wave-Beach

We now show a few more practical problems that couple the homogeneous part and the source term part. The first is a “plasma wave-beach” problem, in which power is propagated in a 1 m long hydrogen plasma of increasing density, such that the wave suffers a cutoff at $1 - x = 0.42$. Letting $\delta t = 1/100c$, the plasma profile is $\omega_e(x)\delta t = (1 - x)^2$. For the 100 cell simulation shown in Figure. (2), hence, the time-step, restricted only by the CFL condition, is $\omega_e \Delta t = 25$, 12.5 times larger than would be allowed by a fully explicit scheme, which has a restriction $\omega_e \Delta t < 2$.

6.2 Plasma Wave-Beach

Figure 1: Electron plasma oscillation using the locally implicit algorithm and a very large time step $\Delta t = 73/\omega_{pe}$. (a): Temporal evolution of E_x earlier in the simulation. (b): Track of normalized electric field \tilde{E}_x and normalized electron current $\tilde{J}_{x,e}$ throughout the run. The result is fully oscillatory without any damping or instability.

Figure 2: Propagation of an electromagnetic (EM) wave into a “plasma wave-beach”. Shown are contours of the y-component of the electric field, time increasing from left to right. The EM wave is launched by applying a current (J_y) at $x = 1$, with frequency $\omega \delta t = \pi/10$, with $\delta t = 1/100c$. The wave suffers a cutoff (black dashed line), reflecting back into the low-density region, creating a standing wave pattern late in time. The time-step is $12.5\times$ larger than for a fully explicit scheme, which would have a restriction $\omega_e \Delta t < 2$.
6.3 Magnetic Reconnection in a Harris Current Sheet

The second simulation is of magnetic reconnection in a Harris current sheet. For this, the standard GEM reconnection challenge parameters are used [20], with an initial equilibrium magnetic field $B_x(y) = B_0 \tanh(y/L)$, supported by an out-of-plane current sheet with both electrons and ions carrying current. The simulation parameters are

$$\lambda / d_i = 0.5, \quad \frac{m_i}{m_e} = 100, \quad \frac{T_i}{T_e} = 5, \quad \frac{n_b}{n_0} = 0.2, \quad \frac{V_{A0}}{c} = 0.05$$ (51)

where $d_i = c/\omega_{pi}$ is the ion inertial length, T_i and T_e are the ion and electron temperatures, and $V_{A0} = B_0/\sqrt{\mu_0 n_0 m_i}$ is the Alfvén velocity. The plasma beta is unity. A grid of 64×32 cells was used, with a CFL number of 0.9, resulting in a time-step of $\omega_{pe} \Delta t \approx 3.6$. Even on this coarse mesh, with the plasma frequency unresolved and the Debye length severely under-resolved, the algorithm is stable and produces results qualitatively similar to previously published five-moment results [1, 13], clearly showing the reconnected current sheath structure, as well as the quadrupole out-of-plane magnetic field formed due to Hall currents. More thorough studies of magnetic reconnection in the context of Earth’s magnetosphere, etc. can be found in [21] and [6].

6.4. Orszag-Tang Vortex

The third is five-moment simulation of Orszag-Tang vortex [22], a 2D problem extensively used to benchmark and compare numerical codes [23, 24, 25]. We use a $[0, 2\pi] \times [0, 2\pi]$ periodic domain on a 512×512 grid. The initial condition consists of uniform total mass density $\rho = 25/9$, uniform total pressure $p = 5/3$, in-plane flow vortex $v_x = -\sin y$, $v_y = \sin x$, and magnetic field vortex $B_x = -\sin y$, $B_y = \sin (2x)$. The ion charge/mass ratio is so that the ion inertia lengths based on initial background density is $d_i = \sqrt{\mu_0 n_0 m_i^{2}}/\epsilon_0 = 2\pi/25$. Other parameters include $\gamma = 5/3$, $\mu_0 = 1$, $c = 20$, $m_i/m_e = 25$, and $p_i/p_e = 1$. As shown in Figure 4, the formation of shocks is clearly captured, and the strong shock-shock interactions produce rather dynamic turbulence.

6.5. Solar Wind-Magnetosphere Interaction at the Earth

Finally, we present results of 3D, large scale modeling of the Earth’s magnetosphere under the impact of solar wind plasmas transported from the sun. The system is dominated by magnetic reconnection. At the dayside, this happens between the Earth’s dipolar magnetic field and the southward interplanetary magnetic field. At the nightside, it is between the highly stretched dipolar field. Later, we will demonstrate the tail reconnection as an example.

The simulation domain has the Earth at the origin, the x-axis is along the Sun-Earth line, and the z-direction is northward. The domain spans $[-17, 63]$ along x in units of the Earth’s radii, and $[-81, 81]$ in the other two directions. A stretched nonuniform grid of total size $1600 \times 2200 \times 2200$ is used to achieve
Figure 4: Total mass densities at different stages in the five-moment Orszag-Tang vortex test.

Figure 5 shows a perspective view snapshot. The yellow-white-coded contours represent the ion number density in the equatorial plane. Their dayside boundaries mark the sharp shock due to the supersonic and superAlfvenic inflow. The blue-red-coded contours are the non-vanishing B_y in the xz plane due to the Hall effect contained in the multifluid model. The white streamlines are magnetic field lines in the same plane. The snapshot clearly shows the formation of plasmoids, a coherent structure containing isolated regions of magnetic fluxes. The relaxation of field lines after ejection and the birth of a new plasmoid are depicted in the last two frames, indicating a repeating life-cycle of the system. Planetary/moon magnetospheric physics are often quite complicated. For more in-depth investigations, interested readers may refer to [26, 27] for applications of this model to other magnetosphere systems.

7. Conclusions

Multifluid-Maxwell models have been rapidly gaining interest recently in laboratory, space, and astrophysical plasma physics modeling [6, 28, 17, 29, 16, 30, 31, 32, 33, 34]. In this paper, we have developed a locally implicit schemes to update the source terms for such systems. Numerical restrictions due to kinetic scales like plasma and cyclotron frequencies are eliminated. The calculation involves only local (one-cell) inversion of a $3S + 3$ matrix, where S is the number of species. Direct formulæ that avoid null calculations in full matrix operations are derived that can be used to speed up the algorithm. The stability of the source term solver alone and the complete coupled system is validated using a few benchmark problems, ranging from small, idealized problems to large, complicated systems. For completeness, we also derived the exact solutions to the source term equations, which is often more expensive to compute but nevertheless can be implemented as a base benchmark solver.

Eliminating the restrictions due to kinetic scales is crucial for the practical application of the multifluid-Maxwell model. The coupled system is still constrained by the CFL condition due to speed of light, but this is often a less demanding requirement. The locally implicit algorithm enables us to model large, multi-scale systems by stepping over smallest scale physics that might not be crucial for the global picture. In fact, we have successfully applied our model to plasmas in a vast range of problems [6, 26, 28, 27, 21, 35, 36, 37, 38]. The capability to retain finite order kinetic physics (Hall term, electron inertia, pressure non-gyrotropy etc.) of the coupled multifluid-Maxwell model is desirable for the study of many problems, i.e., magnetic
reconnection. It is of course also pleasant to be able to incorporate an arbitrary number of plasma species, particularly electron physics and multi-ion effects.

Acknowledgements

The authors thank Dr. Peifeng Fan and for useful discussions. This work was supported by ... Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center, the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, Cheyenne (doi:10.5065/D6RX99HX) provided by NCAR’s CISL, sponsored by NSF, and Trillian, a Cray XE6m-200 supercomputer at the UNH supported by the NSF MRI program under Grant No. PHY-1229408.

A. Useful Notes on the Matrix Form of the Linear System of Equations

A.1. Notes on Skew-Symmetric and Skew-Hermitian Matrices

A square matrix M is skew-Hermitian if and only if its conjugate transpose is its negative,

$$M^*_i j = -M_{ji}.$$ \hspace{1cm} \text{(A.1)}

Here the superscript * represents the conjugate operation.

The following properties of a skew-Hermitian matrix M are useful in our derivation:

- M is diagonalizable and all of its eigenvalues are either purely imaginary or zero.
- Eigenvectors of distinct eigenvalues of M are orthogonal to each other.
- If M is also real, then its nonzero eigenvalues come in pairs $\pm \lambda$.
A.2 Equivalent Eigenvalue Problem

- Now if \(v \) is an eigenvector of \(M \) with eigenvalue \(\lambda = i\omega \), then \(v^\ast \) is an eigenvector for eigenvalue \(-i\omega\).

 • \(iM \) is Hermitian.
 • If \(v \) is an eigenvector of \(M \) with eigenvalue \(\lambda = i\omega \), it is an eigenvalue of \(iM \) with eigenvalue \(\omega \).

A.2. Equivalent Eigenvalue Problem

Note that solving the constant-coefficient linear ODE system

\[
\frac{\partial q}{\partial t} = M \cdot q .
\]

(A.2)

where \(M \) is a skew-Hermitian matrix, is equivalent to solving the time-independent eigenvalue problem

\[
M \cdot v_\ell = v_\ell \lambda_\ell .
\]

(A.3)

Here \(\lambda_\ell \) and \(v_\ell \) are the \(\ell \)th eigenvalue and eigenvector of \(M \).

To solve the initial value problem, we need to first compute the eigencoefficients \(c_\ell \) by projecting the initial condition onto the eigenvectors,

\[
q(t = 0) = \sum_\ell c_\ell v_\ell .
\]

(A.4)

The temporal evolution then follows

\[
q(t) = \sum_\ell c_\ell v_\ell \exp (\lambda_\ell t) .
\]

(A.5)

Since \(M \) is skew-Hermitian, \(\lambda_\ell \) must be purely imaginary or zero. Therefore the solution above is oscillatory or constant in time.

In addition, due to the theory of skew-Hermitian matrices, their eigenvectors for distinct eigenvalues must be orthogonal. Therefore we can compute the coefficients for nondegenerate eigenvectors by

\[
c_\ell = q(t = 0) \cdot v_\ell .
\]

(A.6)

Note that the degenerate eigenvectors might not be orthogonal, though.

A.3. Constructing Real Solutions

The solution Eqn. (A.5) can be complex. Thus we need to construct real solutions from them to represent real physical values. To do this, we first consider a complex eigenvector \(v = a + i b \) of an eigenvalue \(\lambda = i\omega \), the corresponding time-dependent, complex solution to Eqn. (A.2) is

\[
v \exp (i\omega t) = (a + i b) (\cos \omega t + i \sin \omega t)
= a \cos \omega t - b \sin \omega t + i (a \sin \omega t + b \cos \omega t) .
\]

(A.7)

Note that \(-iv\) is also an eigenvector with eigenvalue \(i\omega \) and has the time-dependent solution

\[
v \exp (i\omega t) = (b - i a) (\cos \omega t + i \sin \omega t)
= a \sin \omega t + b \cos \omega t - i (a \cos \omega t - b \sin \omega t) .
\]

(A.8)

Thus we identify two independent real solution bases

\[
a \cos \omega t - b \sin \omega t \quad \text{and} \quad a \sin \omega t + b \cos \omega t
\]

(A.9)

which are the real and imaginary parts of Eqn. (A.7). In other words, to construct the real solutions, we only need to take the real and imaginary parts of an complex eigenvector Eqn. (A.7).
B. Deriving the Exact Solutions

B.1. Identifying the renormalizations

The normalization relation Eq. (24) is identified by observing that Eq. (21) in the renormalized variables are

$$\frac{\partial}{\partial t} \begin{bmatrix} \tilde{E} \\ \tilde{J}_1 \\ \tilde{J}_2 \\ \vdots \\ \tilde{J}_N \end{bmatrix} = \begin{bmatrix} 0 \\ -\frac{J_{1,0}}{\varepsilon_0 E_0} \tilde{E} \\ -\Omega_1 \times \mathcal{I} \\ \vdots \\ -\frac{J_{N,0}}{\varepsilon_0 E_0} \tilde{E} \end{bmatrix} \begin{bmatrix} \tilde{E} \\ \tilde{J}_1 \\ \tilde{J}_2 \\ \vdots \\ \tilde{J}_N \end{bmatrix}$$

(B.1)

To anti-symmetrize the coefficient matrix, we require

$$-\omega^2 \varepsilon_0 E_0 = -\frac{J_{s,0}}{\varepsilon_0 E_0},$$

hence Eq. (24). Note that Eq. (24) does not give specific values for $J_{s,0}$ and E_0 but only their relation. One may choose a nominal normalization, say, $E_0 \equiv 1$ and accordingly, $J_{s,0} \equiv \varepsilon_0 \omega_{ps}$.

B.2. Solving the Parallel Sub-System

Solving the eigenvalue problem of the parallel sub-system Eq. (26)

$$\det |M_\parallel - \lambda| = 0$$

(B.3)

gives three distinct eigenvalues

$$[-i \omega_p, i \omega_p, 0]$$

(B.4)

and their multiplicities

$$[1, 1, N-1].$$

(B.5)

The corresponding left eigenvectors are

$$\begin{bmatrix} -i \omega_p \\ \omega_1 \\ \omega_2 \\ \vdots \\ \omega_{N-1} \\ \omega_N \end{bmatrix}, \begin{bmatrix} i \omega_p \\ \omega_1 \\ \omega_2 \\ \vdots \\ \omega_{N-1} \\ \omega_N \end{bmatrix}$$

(B.6)

The last $N-1$ eigenvectors for eigenvalue $i \omega = 0$ are real and do not depend on time. The first two eigenvectors due to eigenvalues $i \omega = \pm i \omega_p$ are conjugate to each other. They can be used to construct two real, orthogonal real solutions following Sec. (A.3). The results are

$$a \cos \omega_p t - b \sin \omega_p t \quad \text{and} \quad a \sin \omega_p t + b \cos \omega_p t$$

(B.7)

where

$$a = \begin{bmatrix} 0 \\ \omega_1 \\ \omega_2 \\ \vdots \\ \omega_{N-1} \\ \omega_N \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} \omega_p \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$
B.3 Solving the Perpendicular Sub-System

The perpendicular system evolves \((E_\perp; u_\perp)\) and writes

\[
\frac{\partial}{\partial t} \begin{bmatrix}
\tilde{E}_{11} \\
\tilde{E}_{12} \\
\tilde{J}_{111} \\
\tilde{J}_{112} \\
\tilde{J}_{211} \\
\tilde{J}_{212} \\
\tilde{J}_{N11} \\
\tilde{J}_{N12}
\end{bmatrix} = \begin{bmatrix}
0 & 0 & -\omega_1 & 0 & -\omega_1 & 0 & \cdots & -\omega_N & 0 \\
0 & 0 & 0 & -\omega_1 & 0 & -\omega_1 & \cdots & 0 & -\omega_N \\
\omega_1 & 0 & 0 & \Omega_1 & 0 & 0 & \cdots & 0 & 0 \\
0 & \omega_1 & -\Omega_1 & 0 & 0 & 0 & \cdots & 0 & 0 \\
\omega_2 & 0 & 0 & 0 & -\Omega_2 & 0 & \cdots & 0 & 0 \\
0 & \omega_2 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
\omega_N & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & \Omega_N \\
0 & \omega_N & 0 & 0 & 0 & 0 & \cdots & -\Omega_N & 0
\end{bmatrix} \cdot \begin{bmatrix}
\tilde{E}_{11} \\
\tilde{E}_{12} \\
\tilde{J}_{111} \\
\tilde{J}_{112} \\
\tilde{J}_{211} \\
\tilde{J}_{212} \\
\tilde{J}_{N11} \\
\tilde{J}_{N12}
\end{bmatrix}.
\]

(B.9)

Here the subscripts 1 and 2 represent two orthogonal directions that form a right-handed coordinate when combined with the background magnetic field direction (along direction “3”).

Note that the coefficient matrix of Eq. (B.9) is a \(2(N+1) \times 2(N+1)\) real, skew-symmetric matrix. Its nonzero eigenvalues are purely imaginary and come in pairs \(\pm i\omega\) with conjugate eigenvectors. In total, the system has \(2(N+1)\) eigenvalues and eigenvectors. However, to simplify the problem, we may consider the two components of a perpendicular vector as the real and imaginary parts of a complex vector, the equation above can be rearranged into a more compact form Eq. (32). The coefficient matrix \(M_\perp\) now is a \((N+1) \times (N+1)\) skew-Hermitian matrix and has \(N+1\) complex eigenvectors. The real and imaginary parts of the eigenvectors serve as the 1st and 2nd components of the perpendicular vectors, as we will see below.

B.3.1. Eigenvalues

Consider the eigenstructure of the perpendicular problem Eq. (32),

\[
0 = (M_\perp - i\omega I) \cdot q_\perp = \begin{bmatrix}
-i\omega & -\omega_1 & -\omega_2 & \cdots & -\omega_N \\
\omega_1 & -i(\omega + \Omega_1) & 0 & 0 & 0 \\
-\omega_2 & 0 & -i(\omega + \Omega_2) & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\omega_N & 0 & 0 & 0 & -i(\omega + \Omega_N)
\end{bmatrix} \cdot q_\perp.
\]

(B.10)

The first row gives

\[
-i\omega \tilde{E}_\perp = \sum_s \omega_s \tilde{J}_{s\perp}
\]

(B.11)

while the remaining rows simultaneously give

\[
\tilde{E}_\perp \omega_s - i(\omega + \Omega_s) \tilde{J}_{s\perp} = 0, \text{ where } s = 1, \ldots, N
\]

(B.12)

\[
\Rightarrow \tilde{J}_{s\perp} = \tilde{E}_\perp \frac{\omega_s}{i(\omega + \Omega_s)}.
\]

(B.13)

Substitute Eq. (B.13) into Eq. (B.11) leads to

\[
-i\omega \tilde{E}_\perp = \sum_s \omega_s \frac{\omega_s}{i(\omega + \Omega_s)} \tilde{E}_\perp = -i \sum_s \frac{\omega_s^2}{\omega + \Omega_s} \tilde{E}_\perp
\]

(B.14)

or

\[
\tilde{E}_\perp \left(\omega - \sum_s \frac{\omega_s^2}{\omega + \Omega_s}\right) = 0
\]

(B.15)
which has nontrivial solution of \tilde{E}_\perp when and only when Eq. (34) is satisfied. Since M_\perp is skew-Hermitian and iM_\perp is Hermitian, solving the equation above gives $N+1$ real eigenvalues ω for iM_\perp and correspondingly $N+1$ imaginary eigenvalues $\lambda = i\omega$ for M_\perp.

Eq. (34) can be expanded as a $N+1$ order polynomial and solved with any root finder. For three or fewer species, analytic formulae exists for the roots. For more species, we may find the roots as eigenvalues of a companion matrix, or using an iterative root finder.

B.3.2. Eigenvectors

As indicated by Eq. (B.13), for each eigenvalue $i\omega$, there are two complex eigenvectors

$$
\begin{bmatrix}
i \\
\omega_1 \\
\omega_2 \\
\omega_3 \\
\omega_4
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
-1 \\
-\omega_1 \\
-\omega_2 \\
-\omega_3 \\
-\omega_4
\end{bmatrix}.
$$

(B.16)

B.3.3. Real solution bases

From these two complex eigenvectors, we can determine two time-dependent real, orthogonal solution bases following the recipe in Sec. A.3. To determine the first real solution, we first write down the full, complex eigenvector of $\lambda = i\omega$ as

$$
v = a + ib, \quad a = \begin{bmatrix} 0 \\ \omega_1 \\ \omega_2 \\ \omega_3 \\ \omega_4 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix},
$$

(B.17)

then the time-dependent solution for the perpendicular problem is

$$
\begin{align*}
ve^{i\omega t} &= (a + ib) (\cos \omega t + i \sin \omega t) \\
&= (a \cos \omega t - b \sin \omega t) + i (a \sin \omega t + b \cos \omega t) \\
&= \begin{bmatrix} -\sin \omega t \\ \frac{\omega_1}{\omega_1 + \omega_2} \cos \omega t \\ \frac{\omega_2}{\omega_2 + \omega_3} \cos \omega t \\ \frac{\omega_3}{\omega_3 + \omega_4} \cos \omega t \\ \frac{\omega_4}{\omega_4 + \omega_1} \cos \omega t \end{bmatrix} + i \begin{bmatrix} \cos \omega t \\ \frac{\omega_1}{\omega_1 + \omega_2} \sin \omega t \\ \frac{\omega_2}{\omega_2 + \omega_3} \sin \omega t \\ \frac{\omega_3}{\omega_3 + \omega_4} \sin \omega t \\ \frac{\omega_4}{\omega_4 + \omega_1} \sin \omega t \end{bmatrix}. \\
&= \begin{bmatrix} -\sin \omega t \\ \frac{\omega_1}{\omega_1 + \omega_2} \cos \omega t \\ \frac{\omega_2}{\omega_2 + \omega_3} \cos \omega t \\ \frac{\omega_3}{\omega_3 + \omega_4} \cos \omega t \\ \frac{\omega_4}{\omega_4 + \omega_1} \cos \omega t \end{bmatrix} + i \begin{bmatrix} \cos \omega t \\ \frac{\omega_1}{\omega_1 + \omega_2} \sin \omega t \\ \frac{\omega_2}{\omega_2 + \omega_3} \sin \omega t \\ \frac{\omega_3}{\omega_3 + \omega_4} \sin \omega t \\ \frac{\omega_4}{\omega_4 + \omega_1} \sin \omega t \end{bmatrix}. \\
&= \begin{bmatrix} -\sin \omega t \\ \frac{\omega_1}{\omega_1 + \omega_2} \cos \omega t \\ \frac{\omega_2}{\omega_2 + \omega_3} \cos \omega t \\ \frac{\omega_3}{\omega_3 + \omega_4} \cos \omega t \\ \frac{\omega_4}{\omega_4 + \omega_1} \cos \omega t \end{bmatrix} + i \begin{bmatrix} \cos \omega t \\ \frac{\omega_1}{\omega_1 + \omega_2} \sin \omega t \\ \frac{\omega_2}{\omega_2 + \omega_3} \sin \omega t \\ \frac{\omega_3}{\omega_3 + \omega_4} \sin \omega t \\ \frac{\omega_4}{\omega_4 + \omega_1} \sin \omega t \end{bmatrix}.
\end{align*}
$$

(B.18)

The real and imaginary parts in each row are the first and second components of a same perpendicular vector \tilde{E}_\perp or $\tilde{J}_s\perp$. Thus the time-dependent real solution is

$$
\begin{bmatrix}
\tilde{E}_1 \\
\tilde{E}_2 \\
\vdots \\
\tilde{J}_s1 \\
\tilde{J}_s2 \\
\vdots
\end{bmatrix} = \begin{bmatrix} -\sin \omega t \\ \frac{\omega_1}{\omega_1 + \omega_2} \cos \omega t \\ \frac{\omega_2}{\omega_2 + \omega_3} \cos \omega t \\ \frac{\omega_3}{\omega_3 + \omega_4} \cos \omega t \\ \frac{\omega_4}{\omega_4 + \omega_1} \cos \omega t \end{bmatrix}.
$$

(B.19)
Similarly, the second time-dependent real solution can be determined by

\[v = a + ib, \text{ where } a = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad b = -\begin{bmatrix} \frac{\omega_1}{\omega + \Omega_1} \\ \frac{\omega_2}{\omega + \Omega_2} \\ \frac{\omega_3}{\omega + \Omega_3} \\ \frac{\omega_4}{\omega + \Omega_4} \end{bmatrix}, \]

(B.20)

\[\Rightarrow ve^{i\omega t} = (a + ib)(\cos \omega t + i \sin \omega t) \]

\[= (a \cos \omega t - b \sin \omega t) + i(a \sin \omega t + b \cos \omega t) \]

\[= \begin{bmatrix} \cos \omega t \\ \frac{\omega_1}{\omega + \Omega_1} \sin \omega t \\ \frac{\omega_2}{\omega + \Omega_2} \sin \omega t \\ \frac{\omega_3}{\omega + \Omega_3} \sin \omega t \end{bmatrix} + i \begin{bmatrix} \sin \omega t \\ -\frac{\omega_1}{\omega + \Omega_1} \cos \omega t \\ -\frac{\omega_2}{\omega + \Omega_2} \cos \omega t \\ -\frac{\omega_3}{\omega + \Omega_3} \cos \omega t \end{bmatrix}. \]

(B.21)

The second real solution is then

\[\hat{E}_1 \quad \hat{E}_2 \quad \cdots \quad \hat{E}_{s1} \quad \hat{E}_{s2} \quad \cdots \]

\[J_{s1} \quad J_{s2} \quad \cdots \quad J_{ns} \quad \epsilon_0 \omega^2 \Delta t \frac{\hat{E}}{2} \quad \epsilon_0 \omega^2 \Delta t \frac{\hat{E}}{2} \]

\[= \begin{bmatrix} \cos \omega t \\ -\frac{\omega_1}{\omega + \Omega_1} \sin \omega t \\ -\frac{\omega_2}{\omega + \Omega_2} \sin \omega t \\ -\frac{\omega_3}{\omega + \Omega_3} \sin \omega t \end{bmatrix}. \]

(B.22)

Now we find two real, orthogonal solutions for \(\lambda = i\omega \) of different polarizations as in Eq. (35). In total, we recover all \(2 \times (N + 1) \) real, orthogonal solutions to the \(2 (N + 1) \) order Eq. (B.9).

C. Direct Calculation of the Locally Implicit Scheme

The linear, constant-coefficient ODEs Eqs. (50) can be solved directly instead of through matrix inversion, as described in Ref. [19]. This usually leads to faster computation. Here, we give a straightforward derivation, and fix a few minor mistakes in Ref. [19]. Note that we do not consider collisions, while Ref. [19] did.

We start by noting that the general problem

\[A = R + A \times B, \]

(C.1)

where \(R \) and \(B \) are knowns, has the solution

\[A = \frac{R + BB \cdot R - B \times R}{1 + B^2} = \frac{R + B^2bb \cdot R - Bb \times R}{1 + B^2}. \]

(C.2)

A relevant problem

\[C = R + C \times B + \xi bb \cdot C, \]

(C.3)

where \(\xi \neq 1 \) and \(b \) is the unit vector along \(B \), has the solution

\[C = \frac{R + BB \cdot R - B \times R}{1 + B^2} + \frac{\xi}{1 - \xi} bb \cdot R. \]

(C.4)

The first line of Eqs. (50) can be re-arranged into the form of Eqn. (C.1),

\[J_s = \left(J_0^s + \frac{\epsilon_0 \omega^2 \Delta t}{2} \frac{\hat{E}}{2} \right) + J_s \times \left(\frac{\Omega_s \Delta t}{2} b \right), \]

(C.5)
thus has the solution

$$ J_s = \left(1 + \frac{\Omega_s^2 \Delta t^2}{4}\right)^{-1} \left(J_s^* + \frac{\Omega_s^2 \Delta t^2}{4} \mathbf{b} \cdot J_s^* - \mathbf{b} \times \frac{\Omega_s \Delta t}{2} J_s^* \right), \quad (C.6) $$

where

$$ J_s^* \equiv J_s^* + \frac{\varepsilon_0 \omega_s^2 \Delta t}{2} \mathbf{E}. \quad (C.7) $$

Note that Eqn. (15) of Ref. [19] corresponds to Eqn. (C.6) above, but it misses a leading coefficient \((1 + \Omega_s^2 \Delta t^2/4)^{-1}\) and the dimensionality is not correct.

Substituting Eqn. (C.6) back into the second line of Eqns. (50) yields an equation of \(\bar{\mathbf{E}}\) in the form of Eqn. (C.3):

$$ F_{n+1/2} = F_n + \frac{1}{2} K + \frac{1}{1 + \frac{1}{4} \omega_0^2 + \frac{1}{16} \gamma^2} \mathbf{b} \cdot \left(F_{n+1/2} + \frac{1}{2} K \right) $$

$$ - \frac{1}{1 + \frac{1}{4} \omega_0^2} \frac{1}{16} \gamma^2 \mathbf{b} \cdot F_{n+1/2}, \quad (C.8) $$

where \(F \equiv \varepsilon_0 \mathbf{E}\), and

$$ K \equiv -\Delta t \sum_s \left[\left(1 + \frac{\Omega_s^2 \Delta t^2}{4}\right)^{-1} \left(J_s^* + \frac{\Omega_s^2 \Delta t^2}{4} \mathbf{b} \cdot J_s^* - \mathbf{b} \times \frac{\Omega_s \Delta t}{2} J_s^* \right) \right]. \quad (C.9) $$

Following Eqn. (C.4) and after some rather tedious algebraic re-arrangement, we obtain

$$ \bar{\mathbf{F}} = + \frac{1}{1 + \frac{1}{4} \omega_0^2 + \frac{1}{16} \Delta^2} \left(F_n + \frac{1}{2} K \right) $$

$$ \frac{\frac{1}{4} \omega_0^2 \Delta^2 - \frac{1}{4} \gamma^2}{(1 + \frac{1}{4} \omega_0^2 + \frac{1}{16} \Delta^2) (1 + \frac{1}{4} \omega_0^2 + \frac{1}{16} \gamma^2) \mathbf{b} \cdot \left(F_n + \frac{1}{2} K \right)} $$

$$ + \left(1 + \frac{1}{4} \omega_0^2 + \frac{1}{16} \Delta^2 \right) \frac{1}{1 + \frac{1}{4} \omega_0^2} \mathbf{b} \times \left(F_n + \frac{1}{2} K \right). \quad (C.10) $$

Here, we use the following notations modified from Eqn. (11) of Ref. [19]:

$$ \omega_0^2 \equiv \sum_s \frac{\omega_s^2 \Delta t^2}{1 + \Omega_s^2 \Delta t^2/4}, $$

$$ \gamma^2 \equiv \sum_s \frac{\omega_s^2 \Omega_s \Delta t^3}{1 + \Omega_s^2 \Delta t^2/4}, \quad \delta = \sum_s \frac{\omega_s^2 \Omega_s \Delta t^3}{1 + \Omega_s^2 \Delta t^2/4}, \quad (C.11) $$

$$ \Delta \equiv \frac{\delta^2}{1 + \omega_0^2}. $$

This result is consistent with Eqn. (13) of Ref. [19] though the latter missed a few terms.

In the actual implementation, Eqn. (C.10) is computed first to get \(\bar{\mathbf{E}}\), which is substituted in Eqn. (C.6) to compute \(J_s^*\) for each species. The final updated currents and electric fields are then determined by \(J_{n+1}^s = 2J_s - J_n^s\) and \(E_{n+1} = 2E - E^n\). In an informal two-fluid five-moment test, the exact source solution described here is approximately 5× times faster than the solution through matrix inversion using external numerical package.
D. Stability of the Locally Implicit Scheme

D.1. Von Neumann Stability Analysis

Following the Von Neumann analysis, we assume all quantities depend on time as $e^{i\omega t}$:

\[q^{n+1}_s = q^n_se^{i\omega \Delta t}, \quad q = [E; J_s]^T. \]

(D.1)

The time-centered quantities are

\[q_s = \frac{q^n_{n+1} + q^n_s}{2} = q^n_1 + e^{i\omega \Delta t}. \]

(D.2)

For simplicity, we consider the normalized quantities \tilde{E} and \tilde{J}_s as defined in Section. 4 in this derivation.

First, considering only the plasma oscillation, i.e., neglecting the cyclotron term $J_s \times \Omega_s$, the locally implicit scheme gives

\[\begin{cases}
\tilde{E} = \tilde{E}^n - \frac{\Delta t}{2} \omega_p \sum_s \tilde{J}_s. \\
\tilde{J}_s = \tilde{J}^n_s + \frac{\Delta t}{2} \tilde{E}.
\end{cases} \]

(D.3)

or

\[q^n_i + e^{i\omega \Delta t} = q^n_e + \frac{\Delta t}{2} M_{\|} q^n_1 + e^{i\omega \Delta t}. \]

(D.4)

where $q = [E; J_s]^T$ and the coefficient matrix is defined in Eqn. 27. Eqn. (D.4) can be rearranged to get

\[q^n \frac{e^{i\omega \Delta t} - 1}{2} = \frac{\Delta t}{2} M_{\|} q^n + \frac{1}{2}. \]

(D.5)

or

\[q^n \frac{i \tan \left(\frac{\omega \Delta t}{2} \right)}{2} = \frac{\Delta t}{2} M_{\|} q^n. \]

(D.6)

Here, we used the relation

\[1 - e^{-i\theta} = 2i \sin \frac{\theta}{2} e^{-i\theta/2} \quad \text{and} \quad 1 + e^{-i\theta} = 2 \cos \frac{\theta}{2} e^{-i\theta/2}. \]

(D.7)

Recall that $M_{\|}$ has nonzero eigenvalues $\pm \omega_p$, therefore Eqn. (D.6) gives the stability criterion for plasma oscillation

\[\left(\frac{2 \Delta t}{\omega_p^2} \right)^2 \tan^2 \left(\frac{\omega \Delta t}{2} \right) = \omega_p^2. \]

(D.8)

This equation has only real solutions for ω thus eliminates the possibility of numerical instability.

Similarly, we may compute the stability criteria for the perpendicular problem. The results will be of the form

\[\left(\frac{2 \Delta t}{\omega_\perp^2} \right)^2 \tan^2 \left(\frac{\omega \Delta t}{2} \right) = \omega_\perp^2. \]

(D.9)

where $i\omega_\perp$ is an eigenvalue of the matrix M_{\perp} defined in Eqn. 33. Again, the time-step is not restricted by ω_\perp, which contains both plasma and cyclotron frequencies.
D.2 Properties of the Implicit Midpoint Method

The locally implicit scheme is essentially an implicit midpoint method. Thus it is useful to understand the general properties of the method. Consider the initial value problem of an ODE,

\[y'(t) = f(t, y(t)), \quad y(t_0) = y_0. \]

The implicit midpoint method is given by

\[y_{n+1} = y_n + h f \left(t_n + \frac{h}{2}, \frac{y_n + y_{n+1}}{2} \right). \]

(D.10)

It can be written as an implicit Runge-Kutta method

\[k = f \left(t_n + \frac{h}{2}, y_n + \frac{h}{2} k \right) \]

\[y_{n+1} = y_n + hk \]

(D.11)

which contains the implicit Euler method with step size \(h/2 \) as its first part. We may also write the method as

\[\bar{y} = y_n + \frac{h}{2} f \left(t_n + \frac{h}{2}, \bar{y} \right) \]

\[y_{n+1} = y_n + hf \left(t_n + \frac{h}{2}, \bar{y} \right) \]

(D.12)

since

\[y_{n+1} - 2\bar{y} = y_n - 2y_n = -y_n \Leftrightarrow \bar{y} = \frac{y_n + y_{n+1}}{2}. \]

(D.13)

An additional observation is that the second step in Eqn. (D.12) can then be replaced by \(y_{n+1} = 2\bar{y} - y_n \). This simplifies the implementation and is used in our code.

The implicit midpoint method has local truncation error of order \(O(h^3) \) hence global error of order \(O(h^2) \). For a problem \(y = e^{\lambda t} \), the stability region of the method is the entire half plane with \(\text{Im}(\lambda) h \leq 0 \), thus the method is unconditionally stable for nongrowing problems. For a purely oscillatory problem, like our source update equations, \(\lambda \) lies right on the border of the stability region (the imaginary axis), indicating exact preservation of oscillation magnitude.

E. The Eigensystem of the Ten-Moment Model

To determine the eigensystem of the homogeneous part of the ten-moment equations we first write, in one-dimension, the left-hand side of Eqns. (1), (2) and (12), in the quasilinear form

\[\partial_t \mathbf{v} + \mathbf{A} \partial_1 \mathbf{v} = 0 \]

(E.1)

where \(\mathbf{v} \) is the vector of primitive variables and \(\mathbf{A} \) is a matrix of coefficients. For the ten-moment system we have

\[\mathbf{v} = [\rho, u_1, u_2, u_3, P_{11}, P_{12}, P_{13}, P_{22}, P_{23}, P_{33}]^T \]

(E.2)
The eigensystem of this matrix can be easily obtained either by hand or a computer algebra package. The results are described below.

The eigenvalues of the system are given by

\[\lambda_{1,2} = u_1 - \sqrt{P_{11}/\rho} \]
\[\lambda_{3,4} = u_1 + \sqrt{P_{11}/\rho} \]
\[\lambda_5 = u_1 - \sqrt{3P_{11}/\rho} \]
\[\lambda_6 = u_1 + \sqrt{3P_{11}/\rho} \]
\[\lambda_{7,8,9,10} = u_1 \]

To maintain hyperbolicity we must hence have \(\rho > 0 \) and \(P_{11} > 0 \). In multiple dimensions, in general, the diagonal elements of the pressure tensor must be positive. When \(P_{11} = 0 \) the system reduces to the cold fluid equations which is known to be rank deficient and hence not hyperbolic as usually understood\(^2\). Also notice that the eigenvalues do not include the usual fluid sound-speed \(c_s = \sqrt{5p/3\rho} \) but instead have two different propagation speeds \(c_1 = \sqrt{P_{11}/\rho} \) and \(c_2 = \sqrt{3P_{11}/\rho} \). This is because the (neutral) ten-moment

\(^2\)For hyperbolicity the matrix \(A \) must posses real eigenvalues and a complete set of linearly independent right eigenvectors. For the cold fluid system we only have a single eigenvalue (the fluid velocity) and a single eigenvector. This can lead to generalized solutions like delta shocks.
system does not go to the correct limit of Euler equations in the absence of collisions. In fact, it is collisions
that drive the pressure tensor to isotropy, but do not appear in the homogenous ten-moment system.

The right eigenvectors (column vectors) are given below.

\[r^{1,3} = \begin{bmatrix} 0 \\ 0 \\ \mp c_1 \\ 0 \\ 0 \\ P_{11} \\ 0 \\ 2P_{12} \\ P_{13} \\ 0 \end{bmatrix} \]
\[r^{2,4} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \mp c_1 \\ P_{11} \\ 0 \\ P_{11} \\ 0 \\ P_{12} \\ 2P_{13} \end{bmatrix} \] (E.9)

and

\[r^{5,6} = \begin{bmatrix} \rho P_{11} \\ \mp c_3 P_{11} \\ \mp c_3 P_{12} \\ \mp c_3 P_{13} \\ 3P_{11}^2 \\ 3P_{11}P_{12} \\ 3P_{11}P_{13} \\ P_{11}P_{22} + 2P_{12}^2 \\ P_{11}P_{23} + 2P_{13}P_{13} \\ P_{11}P_{33} + 2P_{13}^2 \end{bmatrix} \] (E.10)

and

\[r^7 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \]
\[r^8 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \]
\[r^9 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \]
\[r^{10} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \] (E.11)

We can now compute the left eigenvectors (row vectors) by inverting the matrix with right eigenvectors
stored as columns. This ensures the normalization \(\mathbf{l}^r \mathbf{r}^k = \delta^{rk} \), where the \(\mathbf{l}^r \) are the left eigenvectors. On
performing the inversion we have

\[l^{1,3} = \begin{bmatrix} 0 \pm \frac{P_{12}}{2c_1 P_{11}} & \mp \frac{1}{2c_1} & 0 & \frac{P_{12}}{2P_{11}^2} & \frac{1}{2P_{11}} & 0 & 0 & 0 & 0 \end{bmatrix} \] (E.12)
\[l^{2,4} = \begin{bmatrix} 0 \pm \frac{P_{13}}{2c_1 P_{11}} & 0 & \mp \frac{1}{2c_1} & \frac{P_{13}}{2P_{11}^2} & 0 & \frac{1}{2P_{11}} & 0 & 0 & 0 \end{bmatrix} \] (E.13)

and

\[l^{5,6} = \begin{bmatrix} 0 \mp \frac{1}{2c_2 P_{11}} & 0 & 0 & \frac{1}{6P_{11}^2} & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \] (E.14)
\[\mathbf{I}^7 = \begin{bmatrix} 1 & 0 & 0 & 0 - \frac{1}{3c_1^2} & 0 & 0 & 0 & 0 \end{bmatrix} \quad \text{(E.15)} \]
\[\mathbf{I}^8 = \begin{bmatrix} 0 & 0 & 0 & 0 & \frac{4P_{12}^2 - P_{11}P_{22}}{3P_{11}^2} & -\frac{2P_{12}}{P_{11}} & 0 & 1 & 0 \end{bmatrix} \quad \text{(E.16)} \]
\[\mathbf{I}^9 = \begin{bmatrix} 0 & 0 & 0 & 0 & \frac{4P_{12}P_{13} - P_{11}P_{23}}{3P_{11}^2} & -\frac{P_{13}}{P_{11}} & -\frac{P_{12}}{P_{11}} & 0 & 1 \end{bmatrix} \quad \text{(E.17)} \]
\[\mathbf{I}^{10} = \begin{bmatrix} 0 & 0 & 0 & 0 & \frac{4P_{13}^2 - P_{11}P_{33}}{3P_{11}^2} & 0 & 2\frac{P_{13}}{P_{11}} & 0 & 0 & 1 \end{bmatrix} \quad \text{(E.18)} \]

Most often, for numerical simulations, the eigensystem of the conservation form of the homogeneous system is needed. This eigensystem is related to the eigensystem of the quasilinear form derived above. To see this consider a conservation law
\[\partial_t \mathbf{q} + \partial_1 \mathbf{f} = 0 \quad \text{(E.19)} \]
where \(\mathbf{f} = \mathbf{f}(\mathbf{q}) \) is a flux function. Now consider an invertible transformation \(\mathbf{q} = \varphi(\mathbf{v}) \). This transforms the conservation law to
\[\partial_t \mathbf{v} + (\varphi')^{-1} \partial_1 \mathbf{f} \varphi \partial_1 \mathbf{v} = 0 \quad \text{(E.20)} \]
where \(\varphi' \) is the Jacobian matrix of the transformation and \(\partial_1 \mathbf{f} \equiv \partial \mathbf{f} / \partial \mathbf{q} \) is the flux Jacobian. Comparing this to Eqn. E.1 we see that the quasilinear matrix is related to the flux Jacobian by
\[\mathbf{A} = (\varphi')^{-1} \partial_1 \mathbf{f} \varphi' \quad \text{(E.21)} \]
This clearly shows that the eigenvalues of the flux Jacobian are the same as those of the quasilinear matrix while the right and left eigenvectors can be computed using \(\varphi' \mathbf{r}^p \) and \(\mathbf{L}(\varphi')^{-1} \) respectively.

For the ten-moment system the required transformation is
\[\mathbf{q} = \varphi(\mathbf{v}) = \begin{bmatrix} \rho \\ \rho u_1 \\ \rho u_2 \\ \rho u_3 \\ \rho u_1 u_1 + P_{11} \\ \rho u_1 u_2 + P_{12} \\ \rho u_1 u_3 + P_{13} \\ \rho u_2 u_2 + P_{22} \\ \rho u_2 u_3 + P_{23} \\ \rho u_3 u_3 + P_{33} \end{bmatrix} \quad \text{(E.22)} \]

For this transformation we have
\[\varphi'(\mathbf{v}) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ u_1 & \rho & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ u_2 & 0 & \rho & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ u_3 & 0 & 0 & \rho & 0 & 0 & 0 & 0 & 0 & 0 \\ u_1 u_1 & 2\rho u_1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ u_1 u_2 & \rho u_2 & \rho u_1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ u_1 u_3 & \rho u_3 & 0 & \rho u_1 & 0 & 1 & 0 & 0 & 0 & 0 \\ u_2 u_2 & 0 & 2\rho u_2 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ u_2 u_3 & \rho u_3 & \rho u_2 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ u_3 u_3 & 0 & 0 & 2\rho u_3 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{(E.23)} \]
The inverse of the transformation Jacobian is

\[
(\varphi')^{-1} = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-u_1/\rho & 1/\rho & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-u_2/\rho & 0 & 1/\rho & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-u_3/\rho & 0 & 0 & 1/\rho & 0 & 0 & 0 & 0 & 0 & 0 \\
u_1u_1 & -2u_1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
u_1u_2 & -u_2 & -u_1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
u_1u_3 & -u_3 & -u_1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
u_2u_2 & 0 & -2u_2 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
u_2u_3 & 0 & -u_3 & -u_2 & 0 & 0 & 0 & 0 & 1 & 0 \\
u_3u_3 & 0 & 0 & -2u_3 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]
(E.24)

References

[1] A. Hakim, J. Loverich, U. Shumlak, A high resolution wave propagation scheme for ideal Two-Fluid plasma equations, Journal of Computational Physics 219 (2006) 418–442. doi:10.1016/j.jcp.2006.03.036
URL https://www.sciencedirect.com/science/article/pii/S0021999106001707
[2] A. H. Hakim, Extended MHD modelling with the ten-moment equations, Journal of Fusion Energy 27 (2008) 36–43. doi:10.1007/s10894-007-9116-z
URL http://link.springer.com/article/10.1007/s10894-007-9116-z
[3] E. A. Johnson, Gaussian-Moment Relaxation Closures for Verifiable Numerical Simulation of Fast Magnetic Reconnection in Plasmas, arXiv:1409.6985
URL http://arxiv.org/abs/1409.6985
[4] J. Ng, A. Hakim, A. Bhattacharjee, A twenty-moment model for collisionless guide field reconnection, APS Division of Plasma Physics Meeting 2015, abstract id. NPP1100
URL http://adsabs.harvard.edu/abs/2015APS..NPP1100N
[5] B. Srinivasan, U. Shumlak, Analytical and computational study of the ideal full two-fluid plasma model and asymptotic approximations for Hall-magnetohydrodynamics, Physics of Plasmas 18 (9) (2011) 092113. doi:10.1063/1.3640811
URL http://aip.scitation.org/doi/10.1063/1.3640811
[6] L. Wang, A. H. A. Hakim, A. Bhattacharjee, K. Germanwsky, Comparison of multi-fluid moment models with particle-in-cell simulations of collisionless magnetic reconnection, Physics of Plasmas 22 (1) (2015) 012108. doi:10.1063/1.4906603
URL http://scitation.aip.org/content/aip/journal/pop/22/1/10.1063/1.4906603
[7] C. K. Birdsall, A. B. Langdon, Plasma physics via computer simulation, McGraw-Hill, 1985.
URL http://adsabs.harvard.edu/abs/1991ppcs.book.....B
[8] G. Strang, On the Construction and Comparison of Difference Schemes, SIAM Journal on Numerical Analysis 5 (3) (1968) 506–517. doi:10.1137/0705041
URL http://epubs.siam.org/doi/10.1137/0705041
[9] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, 2002. doi:10.1017/CBO9780511791253
URL http://ebooks.cambridge.org/ref/id/CBO9780511791253
[10] A. G. Kulikovskii, N. V. Pogorelov, A. Y. Semenov, Mathematical Aspects of Numerical Solutions of Hyperbolic Systems, Chapman and Hall/CRC, 2001.
[11] B. Cockburn, C. W. Shu, Runge–Kutta discontinuous Galerkin methods for convection-dominated problems, Journal of Scientific Computing 16 (3) (2001) 173–261.
[12] J. S. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis and Applications, Springer, 2008.
[13] J. Loverich, A. Hakim, U. Shumlak, A Discontinuous Galerkin Method for Ideal Two-Fluid Plasma Equations, Communications in Computational Physics.
[14] H. Kumar, S. Mishra, Entropy Stable Numerical Schemes for Two-Fluid Plasma Equations, Journal of Scientific Computing 52 (2) (2012) 401–425. doi:10.1007/s10915-011-9554-7
URL http://link.springer.com/10.1007/s10915-011-9554-7
[15] R. Abgrall, H. Kumar, Robust Finite Volume Schemes for Two-Fluid Plasma Equations, Journal of Scientific Computing 60 (3) (2014) 584–611. doi:10.1007/s10915-013-9809-6
URL http://link.springer.com/10.1007/s10915-013-9809-6
[16] D. S. Balsara, T. Amano, S. Garain, J. Kim, A high-order relativistic two-fluid electrodynamic scheme with consistent reconstruction of electromagnetic fields and a multidimensional Riemann solver for electromagnetic, Journal of Computational Physics 318 (2016) 169–200. arXiv:1603.06875. doi:10.1016/j.jcp.2016.05.006
URL http://dx.doi.org/10.1016/j.jcp.2016.05.006
[17] Z. Huang, G. Töth, B. van der Holst, Y. Chen, T. Gombosi, A Six-moment Multi-fluid Plasma Model, arXiv:1902.06816
URL http://arxiv.org/abs/1902.06816
