C$_{60}^+$ - looking for the bucky-ball in interstellar space

G.A. Galazutdinov, V.V. Shimansky, A. Bondar, G. Valyavin, J. Kreowski

1 Instituto de Astronomía, Universidad Católica del Norte, Av. Angamos 0610, Antofagasta, Chile
2 Pulkovo Observatory, Pulkovskoe Shosse 65, Saint-Petersburg 196140, Russia
3 Special Astrophysical Observatory, Nizhnij Arkhyz, 369167, Russia
4 Kazan Federal University, Kazan, 420008, Russia
5 International Center for Astronomical and Medico-Ecological Research, Zabolotnoho Str. 27, Kiev, 03187, Ukraine
6 Center for Astronomy, Nicholas Copernicus University, Gagarina 11, Pl-87-100 Torun, Poland

ABSTRACT
The laboratory gas phase spectrum recently published by Campbell et al. has reinvigorated attempts to confirm the presence of the C$_{60}^+$ cation in the interstellar medium, through an analysis of the spectra of hot, reddened stars. This search is hindered by at least two issues that need to be addressed: (i) the wavelength range of interest is severely polluted by strong water-vapour lines coming from the Earth’s atmosphere; (ii) one of the major bands attributed to C$_{60}^+$, at 9633 Å, is blended with the stellar MgII line, which is susceptible to non-local-thermodynamic equilibrium effects in hot stellar atmospheres. Both these issues are here carefully considered for the first time, based on high-resolution and high-signal-to-noise ratio echelle spectra for 19 lines of sight. The result is that the presence of C$_{60}^+$ in interstellar clouds is brought into question.

Key words: ISM: clouds - ISM: lines and bands - ISM: molecules

1 INTRODUCTION
One of the carbon allotropes, the spherical fullerene molecule C$_{60}$ (buckminsterfullerene, bucky-ball) is of particular interest for astrophysics. Indeed, in their seminal paper presenting the discovery of C$_{60}$ (Kroto et al., 1985), authors suggested that the molecule might give rise to a super stable species which might exist in interstellar space and circumstellar shells. A decade later, the first attempt to find C$_{60}$ in interstellar medium was made by Foining & Ehrenfreud (1994), who reported on the detection of two interstellar absorptions, at 9577 and 9633 Å, almost coincident with the wavelengths expected for C$_{60}^+$. However, the limited number of observed sight lines, and the fact that the laboratory spectra were acquired in solid state matrices, made that identification uncertain. Jenniskens et al. (1997) and Galazutdinov et al. (2000) pointed out two difficulties inherent to the search for interstellar C$_{60}^+$ (see the Abstract above), and mentioned the non-detection of minor C$_{60}^+$ bands, expected at 9429 and 9366 Å (telluric lines are particularly strong in this wavelength range). Galazutdinov et al. (2000) also presented the first, simplified attempt to eliminate the influence of stellar MgII line.

In 2010 Cami et al. reported on the first detection of infrared emissions carried by neutral C$_{60}$ seemingly attached to the solid material (dust particles). These emissions were observed in the vicinity of a peculiar planetary nebula Tc1. Independently, Sellgren et al. (2010) reported on the presence of neutral C$_{60}$ in the NGC 7023 reflection nebula illuminated by a B star HD 209775. The same nebula was recently identified as a source of C$_{60}^+$, following the discovery of emission bands at 6.4, 7.1, 8.2, and 10.5 μm by Berné et al. (2013). The molecule was detected only in the regions closest to the star. All these reports fostered the hope that the buckminsterfullerene cation would be detected in translucent interstellar clouds. However, the laboratory spectra of C$_{60}^+$, available in 1994, were measured for a solid medium (cryogenic matrix), and these spectra therefore could not offer any firm confirmation of this ion as the one responsible for known 9577 and 9633 Å diffuse bands.

The dormant interest in discovering interstellar bucky-ball cations was revived following the recent publication of laboratory gas-phase spectra by Campbell et al. (2015). According to the authors, C$_{60}^+$ exhibits four relatively strong spectral lines, centered at 9365.9±0.1, 9428.5±0.1, 9577.5±0.1 and 9632.7±0.1 Å, with relative intensities of 0.2, 0.3, 1.0 and 0.8 respectively. New attempts to confirm the presence of this molecule in the interstellar medium, by analysing the spectra of hot, reddened stars, were recently reported by Walker et al. (2015), who have also tried to detect the two weaker spectral features of C$_{60}^+$ in the sight lines towards HD 183143 and HD 169454. Very recently, Camp-
bell, Holz & Maier (2016) reported on the detection of a very weak feature at 9348.5 Å (just 1/10 of the intensity of the major 9577 Å band), again in a spectrum of HD 183143. Unfortunately, both these studies lack an analysis of possible pollution by telluric lines. Indeed, as we demonstrate below, the DIB9633 in both HD 169454 and HD 183143 spectra significantly contaminated by stellar MgII 9632Å line. Generally, the HD 183143 sight line is not a good choice for finding any new diffuse bands. As demonstrated in the respective DIB surveys (Galazutdinov et al. 2000b, Hobbs et al. 2009), it is often not easy to distinguish between stellar and interstellar lines towards this relatively cool and slowly rotating white hypergiant classified as B6 to B8 Ia-0 (Chentsov 2004).

Here we present the most careful analysis to date of near-infrared interstellar features commonly attributed to C+60, for a relatively large sample of targets. We took into account the possibilities of spectral contamination not only from telluric but also from stellar lines. Indeed, incidental overlap with stellar lines is at particularly important danger in cases such as HD 183143, where broad interstellar features have widths comparable to the stellar lines, the latter being numerous in this late B type supergiant.

2 SPECTRAL DATA

Our sample of astronomical data includes precise measurements of the 9577 Å and 9633 Å bands, the two major interstellar features allegedly resulting from C+60. High signal-to-noise and high resolution echelle spectra were obtained for 19 heavily reddened targets (Tables 1 and 2) with the UVES spectrograph fed by the Kueyen 8-m telescope at Paranal. The resolving power R=λ/Δλ was 80,000 in the range of MgII 4481.2 Å line, and 110,000 in the range of currently analysed diffuse interstellar bands (DIB).

All spectra were processed and measured in a standard way using both IRAF (Tody 1986) and our own DECH1 codes. The wavelength scale of all spectra was corrected by well-known atomic/molecular interstellar lines, e.g. K i and C2.

2.1 Telluric contamination

Near infrared wavelength range, when observed using ground-based instruments, is subject to strong contamination by telluric lines. In order to eliminate them, we applied the classical method implemented based on the use of a divisor, namely the spectrum of an unreddened, hot, and preferably rapidly rotating, star. Our software allowed for the compensation of both positional and intensity variability within the set of observed telluric lines. As a divisor we used the UVES spectra of Spica (HD 116658). Recently, Tkachenko et al. (2016) published an extensive study of this close binary system, which has an orbital period of ~4d, effective temperatures of 25,300±500 K and 20,900±500 K, logarithms of gravity 3.71±0.10 and 4.15±0.15, rotational velocities v sin i 165.3±4.5 km/s and 58.8±1.5 km/s, for the primary and secondary components respectively. When used for the removal of telluric lines, the complex and variable spectrum of Spica may introduce unwanted distortion into relatively broad profiles, such as that of DIB9633, owing to the presence of stellar line(s). This is depicted in Figure 1a for the DIB9633 profile observed towards HD 183143. The lack of a stellar, contaminating component inside the DIB9633 profile, is evident. However, in order to check for the applicability of Spica’s spectra as divisors, we tested the recently introduced MOLECFIT procedure (Smette et al., 2015), a software tool designed to remove atmospheric absorption features. Fig. 1b shows a good matching of the DIB9633 profiles derived with the divisor (Spica) and MOLECFIT approaches. The same quality of agreement has also been found for the other three bands that are candidates for C+60 absorptions. We checked the removal of telluric lines for all targets using both methods.

3 MgII CONTAMINATION

Background stars are obviously not ideal sources of radiation for measuring interstellar absorptions, particularly because of the presence of their own spectral features. The pollution...
Table 1. Basic parameters of the observed stars. Effective temperature - T_{eff} (K), logarithm of gravity - $\log g$ (cm s^{-2}), microturbulent velocity - v_{turb} (km s^{-1}), projected rotational velocity - $v \sin i$ (km s^{-1}), abundances of marked chemical elements relative to the solar abundance - $[\text{X/H}]$ (dex).

Star	T_{eff}	$\log g$	v_{turb}	$v \sin i$	Abundance $[\text{X/H}]$								
					He	C	N	O	Fe	Si	Mg	Al	Ne
					$\times 10^{-5}$								
CD-324348	19,500	2.45	9	36	-0.30	-0.30	-0.30	-0.30	-0.20	+0.50	-0.30	+0.20	
BD-154037	18,000	1.80	10	42	+0.30	+0.10	-0.30	+0.10	+0.20	+0.30	+0.10	+0.20	
HD 23180	24,000	3.45	13	78	+0.15	-0.10	-0.20	-0.10	-0.20	-0.40	-0.20	-0.10	
HD 27778	15,500	3.80	5	92	+0.20	-0.05	-0.20	+0.05	-0.40	-0.40	-0.50		
HD 63804*	9,400?	1.10?	6?	?	+0.15	-0.20			-0.20	-0.30			
HD 76341	34,000	3.70	13	66	+0.25	+0.20	+0.40	+0.20	+0.40	-0.05	-0.10	+0.20	
HD 78344	31,000	3.30	13	98	+0.30	+0.30	+0.50	+0.30	+0.50	+0.10	+0.10	+0.30	
HD 80077	17,000	2.00	15	47	+0.05	-0.40	+0.40	+0.10	+0.10	+0.40	-0.05	+0.10	
HD 138239	17,000	1.80	11	43	+0.40	+0.30	+0.50	+0.30	+0.20	+0.50	+0.30	+0.20	
HD 145562	21,000	4.00	8	98	-0.10	-0.70	+0.40	+0.05	-0.20	+0.15	-0.60		
HD 147888	16,000	4.10	5	104	-0.10	-0.10	-0.10	-0.00	-0.30	-0.10	-0.50		
HD 148379	17,000	1.70	14	51	+0.40	+0.30	+0.30	+0.10	+0.10	+0.20	+0.10	+0.00	
HD 148605	20,500	4.20	11	145	+0.15	-0.30	-0.40	-0.30	-0.60	-0.60	-0.60		
HD 167264	29,000	3.60	12	82	+0.35	+0.10	+0.30	+0.25	+0.20	-0.10	-0.05		
HD 168625	14,000	2.00	10	52	+0.00	-0.20	+0.25	+0.05	-0.10	+0.05	+0.05	+0.00	
HD 169454	21,000	2.10	16	39	+0.10	+0.30	+0.50	+0.30	+0.60	+0.30	+0.20	+0.20	
HD 170740	21,000	3.90	10	40	+0.00	-0.05	-0.15	-0.20	-0.40	-0.40	-0.45		
HD 183143	11,500	4.00	8	37	+0.00	+0.00	+0.30	+0.10	-0.20	+0.10	+0.10		
HD 184915	27,000	3.40	19	220	+0.30	+0.10	+0.50	+0.00	-0.10	+0.00			

* - see the comment in "Mgt contamination" section.

Table 2. Measurements of four C$^{+}_{60}$ candidate bands. Upper, cumulative column captions give: laboratory central wavelength, laboratory full width at half maximum (FWHM), and laboratory intensity normalized to the strength of the 9577 Å band – I/λ_{9577} (Campbell et al., 2015). The lower captions give: observed central wavelength (Å), observed equivalent widths (mÅ), observed FWHM, and intensity normalized to that of the 9577 Å feature. Two equivalent width values are given for the 9633 Å band: EW$_{a}$ (before correction) and EW$_{c}$ (after the removal of the Mgt blending feature). Measurement errors are given in parentheses.

Continued...
Table 2 – continued.

Star	λ_c	EW$_o$(mA)	FWHM(Å)	I/I$_{9577}$	λ_c	EW$_o$(mA)	FWHM(Å)	I/I$_{9577}$
CD-32 4348	n/a	<5	<0.1	n/a	9365.4(0.3)	30(30)	2.2(0.2)	0.15
BD-14 5037	strong telluric	n/a		n/a	<50	n/a		1
HD 23180	n/a	<30(30)	<0.3	<0.3				
HD 76341	n/a	<30830	<0.1					
HD 78344	<2(2)	<0.01	<0.1					
HD 80077	9428.15(0.1)	50(50)	2.5(0.5)	0.3	9365.5(0.3)	50(50)	2.5(0.5)	0.3
HD136239	strong telluric	n/a		n/a				
HD145502	n/a							
HD145502	n/a							
HD148379	n/a							
HD148605	n/a							
HD147826	n/a							
HD167264	n/a							
HD168625	n/a							
HD169454	n/a							
HD170740	n/a							
HD183143	<50	<0.1			strong telluric	n/a		
HD184915	n/a							

Table 3. Oscillator strength of 4481 and 9632 Å Mg$_{ii}$ triplets.

λ_c(Å)	lg gf	λ_c(Å)	lg gf
4481.1260	0.74	9631.8910	0.59
4481.1500	-0.56	9631.9470	-0.71
4481.3250	0.59	9632.4300	0.43

Figure 3. DIB9633 profile, as observed towards HD 145502, after the telluric correction (the corresponding fragment of synthetic stellar spectrum is shown in red). This exemplifies the case of no detectable Mg$_{ii}$ effect.
Mg HD 80077, so that the DIB is much weaker than it appears, and the separation of two contributions requires a careful procedure.

Profiles of Mg Figure 5. Figure 4. Here. Our results for the four DIBs previously assigned to DIB9633 are given in two separate columns which list the

The corrected oscillator strengths are given in Tab. 3. The magnitude of non-LTE effects is low. The chemical composition exhibits a small deficit of heavy elements. The binarity of the target is well seen in the observed spectrum but can be reproduced. The doubled profile of Mgii 4481 Å line is satisfactorily coincident with the model spectrum. A weak Mgii line at 9632 Å fades with strong HeI line to a smeared blend.

There is a good coincidence of the observed model spectra. The magnitude of non-LTE effects is low. The chemical composition exhibits some underabundance of iron (a metallicity deficit is generally observed in this object), an excess of helium, and a noticeable irregularity in the abundances of heavy elements. The symmetric profile of 4481 Å Mgii line is very well reproduced in the synthetic spectrum. The 9632 Å line of Mgii makes a major contribution to a blend with DIB9633.

There is good coincidence of observed and model spectra. The magnitude of non-LTE effects is low. The chemical composition exhibits some underabundance of iron (a metallicity deficit is generally observed in this object), an excess of helium, and a noticeable irregularity in the abundances of heavy elements. The symmetric profile of 4481 Å Mgii line is very well reproduced in the synthetic spectrum. The 9632 Å line of Mgii makes a major contribution to a blend with DIB9633.

Interstellar C\(^+\)\(_{60}\) values without and with the correction for the stellar MgII line.

Below we provide information specific to each of the studied targets.

CD-32 4348 The abundance of alpha elements is [\(x/H\)] = -0.4 dex. Moderate deficits of helium, magnesium and nitrogen are revealed, while silicon exhibits an overabundance. A strong blend of Mgii 4481 Å and AlIII 4479 Å lines generated in the model spectrum matches the observed profile well. Subtracting the 9632 Å line of Mgii reduces the intensity of DIB9633 almost half. Minor bands at 9429 and 9366 Å, expected for C\(^+\)\(_{60}\) are below the level of detection.

BD-14 5037 Overabundances of He, N, Si (up to +0.3 dex) are typical for stars experiencing the CNO-cycle. The magnesium abundance [Mg/H] = 0.1 dex is accurately estimated by means of the Mgii 4481 Å line. This object provides an example of the diffuse band at 9633 Å being stronger than that at 9577 Å, despite that the intensity of former being reduced by the removal of the contribution from stellar magnesium.

HD 23180 There is a good coincidence of observed phase of this binary target with the model spectrum. The magnitude of non-LTE effects is low. The chemical composition exhibits a small deficit of heavy elements. The binarity of the target is well seen in the observed spectrum but can be reproduced. The doubled profile of Mgii 4481 Å line is satisfactorily coincident with the model spectrum. A weak Mgii line at 9632 Å fades with strong HeI line to a smeared blend.

HD 27778 There is good coincidence of observed and model spectra. The magnitude of non-LTE effects is low. The chemical composition exhibits some underabundance of iron (a metallicity deficit is generally observed in this object), an excess of helium, and a noticeable irregularity in the abundances of heavy elements. The symmetric profile of 4481 Å Mgii line is very well reproduced in the synthetic spectrum. The 9632 Å line of Mgii makes a major contribution to a blend with DIB9633.

HD 63804 The basic stellar parameters of this object can be reliably determined based on Hi Balmer lines and on the spectral features of HeI, FeII, CII, SiII. However, the observed MgII 4481 Å line is too strong, considering any realistic abundance of magnesium. Weaker MgII and MgII lines point to [Mg/H] = -0.3 dex. The star is probably a spectroscopic binary, with components having the effective temperature of ~8000 and ~14000 K. The cooler object is brighter, with its spectral lines red-shifted by ~40-50 km/s. Additional spectra, acquired 1-2 years later, will permit for a more complete description. Nevertheless, a strong Mgii 9632 Å line leaves little space for the interstellar 9633 Å feature. The latter has just 1/10 of the DIB9577 intensity, which is eight times weaker than expected assuming C\(^+\)\(_{60}\) as the carrier. The lack of weaker 9429 and 9366 Å bands is obvious.

HD 76341 This object is very hot O-type giant. Helium, silicon and nitrogen are in similar excess of +0.2 dex. Broad stellar lines are not able to distort the discussed infrared DIBs. This sight line offers yet another example of DIB9633 being stronger than DIB9577, in contrast to the case for the laboratory gas phase spectrum of C\(^+\)\(_{60}\).

HD 78344 The chemical composition generally exhibits an overabundance of helium and light elements. Broad and
shallow stellar lines do not affect the profiles of interstellar features. The DIB9633 intensity is just 0.6 of that found for DIB9577, instead of 0.8 expected with the assumption of C_{60}^+ as the carrier. The absence of weaker $9429\AA$ and $9366\AA$ bands is evident.

HD 80077 This star features a significant excess (\sim0.4 dex) of nitrogen, as well as of silicon, and a deficit of carbon of almost equal magnitude. Magnesium and helium abundances are almost solar. Other elements display an over-abundance of \sim0.1 dex. The Mg ii $9632\AA$ line is quite strong, which makes the true strength of DIB9633 a factor of 0.6 lower than that measured for DIB9577, instead of the value 0.8 anticipated assuming the assignments to C_{60}^+. The presence or absence of weaker C_{60}^+ bands, at $9429\AA$ and $9366\AA$, is doubtful owing to saturated telluric lines.

HD136239 Excesses of +0.4 dex are found here for the alpha elements and helium. Nitrogen and silicon are over-abundant by +0.5 dex. The stellar Mg ii line is strong, making the true intensity of DIB9633 half of expected assuming C_{60}^+ as the carrier. The presence/absence of $9429\AA$ and $9366\AA$ features is uncertain, owing to saturated telluric lines.

HD145502 There is only a moderate coincidence of observed and model spectra because of large differences of individual abundances for different lines of helium and carbon. The deficit of carbon and magnesium is anomalous. The Mg ii $4481\AA$ line has an irregular shape, and therefore cannot be well reproduced by our synthetic spectrum. The star is probably a binary object. A weak $9632\AA$ Mg ii line merges with strong He i line to a smeared blend.

HD147888 A very good match with the model spectrum is observed. The magnitude of non-LTE effects is low. The chemical composition is characterized by smoothly decreasing elemental abundances for heavier species. Magnesium is evidently underabundant. The profile of Mg ii $4481\AA$ line, anomalous owing to strange, rather flat wings, is nevertheless well reproduced with the model. The Mg ii $9632\AA$ line makes a major contribution to the blend with DIB9633.

HD148379 The equivalent width of DIB9633 is reduced by almost a half after subtracting the coincident stellar magnesium line. A weak feature is possibly present at $9366\AA$ but a strong telluric contamination prevents any precise measurements.

HD148605 There is a good coincidence of observed and model spectra. The magnitude of non-LTE effects is low. The chemical composition exhibits a smooth decrease of individual abundances of chemical elements for heavier species. The profile of the Mg ii $4481\AA$ line is symmetric, and well reproduced by the model. The weak $9632\AA$ Mg ii line merges with strong He i line to a common smeared blend.

HD167264 Again, there is a good match of observed and model spectra. Line profiles are affected by the stellar wind. The spectral features of some light elements are perturbed by uncompensated non-LTE effects. There is a smooth decrease of individual elemental abundances for heavier species. The observed profile of Mg ii $4481\AA$ is very well reproduced by the model. There is no infrared Mg ii line polluting DIB9633.

HD168625 Here, the intensity of DIB9633 is substantially reduced after subtracting the contribution from Mg ii, which makes the equivalent widths ratio DIB9633/DIB9577 closer to that observed in laboratory gas phase spectra of C_{60}^+.

HD169454 The object exhibits almost solar abundances of helium and magnesium, while nitrogen and silicon are in moderate excess. The synthetic profile of a blend made by Mg ii $4481\AA$ and Al iii $4749\AA$ matches the observed spectrum well. This sight line exemplifies the case of unusually strong $9633\AA$ band; even after the subtraction of the stellar Mg ii feature, the equivalent width is still higher than for DIB9577, in strong disagreement with the ratio of respective bands observed in the laboratory gas phase spectrum of C_{60}^+.

HD170740 There is a reasonable coincidence of observed and model spectra in this binary object, with evident two-component profiles of He i and C ii. Stellar parameters were determined for the main component only. The chemical composition exhibits the deficit of metallicity, with a large scatter of abundances derived for different lines of helium and carbon. Both carbon and magnesium are in deficit. The observed profile of Mg ii $4481\AA$ is almost perfectly symmetric and clearly separated from the neighboring Al iii $4749\AA$ line.
as is very well reproduced by the synthetic spectrum. The intensity of DIB9633 is considerably reduced after the subtraction of the stellar Mg ii line contribution.

HD183143 There is a good coincidence of observed and model spectra. Hydrogen lines Hα – Hγ exhibit strong, wind-driven emissions. The lines of other elements, including neutral helium, are symmetric and match the model. The chemical composition is almost solar, with a slight excess of nitrogen, probably as a result of the running CN-cycle. Mg ii 4481 Å line has a symmetric profile, coincident with that generated in the synthetic spectrum. A contribution from the infrared Mg i 9632 Å line, when subtracted, essentially reduces the intensity of DIB9633. HD 183143 is a key object for the recently announced detections of C ii (Walker et al. 2015, Campbell et al. 2016). As noted, this identification of interstellar C ii was premature, as it laked the analysis of the stellar spectrum. Indeed, taking account of a considerable contribution from the stellar Mg ii line, the equivalent widths ratio DIB9633/DIB9577 is just 0.4.

HD184915 There is an excellent coincidence of observed and model spectra. Non-LTE effects are moderate, without any detectable stellar wind effects. The estimated rotational velocity is as high as 220 km/s. The chemical composition exhibits an excessive abundance of helium and nitrogen, probably owing to the enrichment of the stellar surface by CNO-cycle products. The profile of the Mg ii 4481 Å line is symmetric, which is well reproduced by the model. There is no Mg i line overlapping DIB9633.

4 OBSERVED DIFFUSE BANDS VERSUS THE C ii \textsubscript{60} LABORATORY GAS PHASE SPECTRUM

The laboratory gas-phase absorption spectrum of C ii \textsubscript{60} features four main infrared bands: 9632.7, 9577.5, 9428.5 and 9362.7 Å (± 0.1 Å), with relative intensities of 0.8, 1.0, 0.3, and 0.2, respectively; thus the strongest peak is at 9577.5 Å (Campbell et al., 2015). No lines of sight in our sample allowed the detection of that spectral pattern. In particular, no candidates for the two weakest of the above listed bands have emerged (cf. the second part of Table 2).

Apart from that, the assignment of diffuse bands at 9633 Å and 9577 Å to the two strongest C ii \textsubscript{60} bands suffers from the fact that the observed intensity ratio DIB9633/DIB9577 varies greatly from target to target instead of scattering, within the known error limits, around a “canonical” value of 0.8 (see Tab. 2). Towards the majority of our targets, the 9633 Å band was in fact stronger than that at 9577 Å. On the other hand, lines of sight with extremely low DIB9633 intensities were revealed (Tab. 2). Such large variations of the observed strength ratio cast serious doubts on whether the two bands could indeed share a common carrier.

A convincing illustration of this issues is provided by the results acquired for HD 145502, an object free from the Mg ii effect and intentionally selected to waive all speculation concerning the accuracy of our stellar line removal procedure. Moreover, the elimination of telluric lines was particularly successful for HD 145502 (Fig. 7). For that sight line, DIB9633 is exceptionally strong, in fact much stronger than DIB9577, making the DIB9633/DIB9577 ratio as big as 1.3, instead of the 0.8 observed in laboratory gas-phase spectra.

Both features are blue-shifted and broader than expected, when compared with the known C ii \textsubscript{60} bands. Concerning the two remaining, minor bands of C ii \textsubscript{60}, it is the case that the relevant wavelength range is very difficult to study because of exceptionally strong telluric lines, which are difficult to remove because of saturation effects. Nevertheless, the upper panel of Fig. 7 clearly demonstrates that there is no room for broad and shallow features of the expected depth. The Gaussians, normalized to the depth of DIB9577, intersect the observed spectrum making thus the presence of both weak features very unlikely.

The second example illustrates the opposite case, with a very small DIB9633/DIB9577 ratio. Indeed, in the spectrum of HD 183143, after the Mg ii correction, the intensity of DIB9633 was reduced by a factor of more than 2. The presence or absence of weak DIB9366 cannot be confirmed owing to very strong telluric lines which seem to be partially blended. The profile of another weak band, DIB9428, intersects the observed spectrum in which it can hardly be traced.

Another interesting object is HD37022. As depicted by Fig. 4, DIB9633 is red-shifted in this spectrum, similar to what was reported for DIB5780 (Krešovský et al. 2015). This leads to the spectral separation of DIB9633 from the Mg ii 9632 Å line. It is the only such case in our sample. Importantly, however, the other crucial C ii \textsubscript{60} candidate band, DIB9577, which is very broad in this spectrum, does not show any red–shift (and may even be slightly blue–shifted). This is further evidence against a common origin of the two major DIBs attributed to C ii \textsubscript{60}.

Very recently Campbell et al. (2016a) have corrected...
Figure 8. Radial velocity profiles for DIB9577 and DIB9633 observed towards HD 37022 made with “new” laboratory wavelength from Campbell et al. (2016a). The rest wavelength velocity scale was established using the interstellar K_i 7699Å line.

Figure 9. Same as Fig. 7, for HD 183143.

laboratory C_{60}^+ wavelengths, taking into account the fact that their previously reported values (Campbell et al. 2016) concerned weakly bound C_{60}^+–He_n (n = 1 - 3) complexes. The absorption bands of such species exhibit progressive red-shifts with the increasing number of interacting He atoms (see figs 1 and 2 in Campbell et al., 2016a). Wavelengths estimations for bare C_{60}^+ cations were based on the linear interpolation of measurements made for the complexes containing 1, 2 and 3 He atoms. Of note is the fact that the corrected wavelengths derived for the 2 major peaks of bare C_{60}^+ (9577.0 and 9632.1 Å, with ±0.2 Å as the 2σ uncertainty) are in good agreement with the mean values calculated for our present sample of targets: 9577.0 and 9632.2 Å. However, the observed scatter of position of peaks in astronomical spectra greatly exceeds the uncertainty of measurements. Diffuse bands of the common origin have to be displaced in unison, keeping the same distance between them; in other words, the scatter of positions of diffuse bands in astronomical measurements (Table 2) cannot be explained by an assumption of their common origin. Indeed, as we already reported, DIB9633 and stellar MgII line at 9632 Å can be easily distinguished in the spectrum of HD 37022 (Fig. 4) where DIB9633 exhibits an evident red-shift, while the second major band 9577 fits the “new” lab wavelength well (Fig. 8). Note that in Fig. 8 both radial velocity profiles were constructed using the “new” rest wavelengths from Campbell et al. (2016a).

Interestingly, it is not the “new”, but rather “old” (i.e. uncorrected for the He complexes) laboratory position of the strongest C_{60}^+ band at 9577.5±0.1 Å that matches well the DIB9577 wavelength 9577.4±0.02 Å observed towards HD 183143 (both values are from Table 1 of Campbell et al., 2016). Our observations of HD183143 (our Table 2) confirm the wavelength of interstellar feature at 9577 Å. Thus, there is surprising difference of 0.4-0.5 Å between the “new” laboratory wavelength and that observed in HD 183143.

Weak interactions between C_{60}^+ cations and some common constituents of the interstellar gas remain to be modelled and/or measured in laboratories. At present it’s anybody’s guess that such complexes, if bound strong enough to withstand the temperatures of the translucent interstellar medium, would have spectra differing from that of bare C_{60}^+ by much more than the documented scatter of DIB9633 and DIB9577 wavelengths/intensities. It should also be noticed that complexes with helium, experimentally observed by Campbell et al., formed with a high number density of He atoms \(10^{15} \text{ cm}^{-3}\) and that temperatures below 8 K were required. Such species have therefore not been postulated to be of any significance for the DIB phenomenon.

It seems that the only astronomically observed parameters that match the laboratory ones relatively well are FWHMs of diffuse bands. They are slightly broader than the laboratory ones for 9577 band, but in general the similarity is satisfactory in most of the observed lines of sight (Table 2).

5 CONCLUSIONS

The results from the observed sample of 19 reddened stars having spectra with easily detectable diffuse bands at 9577 and 9633 Å do not allow us to assign these features to near-IR transitions of C_{60}^+, and thus to confirm the presence of this cation in translucent interstellar clouds, for the following reasons:

- The ratio of DIB9633 and DIB9577 equivalent widths is variable within a broad range: see Table 2 and, for example, Figs. 7, 9, 10. The resultant mutual correlation is very poor,
unresolved diffuse bands. Nevertheless, both the lack of a firm detection of the two minor bands expected for C+\textsubscript{60} and, for the major candidate bands, the disagreement of central wavelengths with laboratory values need to be addressed in order to defend the recently claimed identification of C+\textsubscript{60}.

Cami et al. (2010) suggested that “the absence of the corresponding spectral features of fullerene cations and anions implies that the fullerenes are in the neutral state”. This remark, formulated in the context of circumstellar matter, may prove correct for translucent interstellar clouds also.

Figure 10. Diffuse bands at 9577 and 9633 Å (corrected profiles, same ordinate scale). The latter is 1.6 times stronger than the former, while the respective ratio, expected for C+\textsubscript{60}, is 0.8! Note that the originally observed intensity ratio, before the subtraction of a stellar Mg\textsc{ii} contribution, was even greater, as big as 1.9.

Figure 11. Very poor intensity correlation of 9633 and 9577 Å diffuse bands. Dotted line represents the equivalent width ratio DIB9633/DIB9577=0.8. Differences in strength ratios are much bigger than measurement errors.

much worse than within any other pair of reasonably strong DIBs (Fig. 11).

- We have not confirmed the presence of two weaker members of the C60 family, expected at 9428 and 9366 Å the former is stronger in laboratory but more difficult to be traced in observations, even though these should appear assuming the validity of experimentally determined intensity ratios.

- The “interstellar” wavelengths of the two strongest DIBs proposed for C60 show evident variability, but not in unison, i.e. the distance between DIB9633 and DIB9577 discernibly fluctuates.

- The profile shapes of both diffuse bands are variable. In particular, asymmetric profiles were found in several cases, contrasting with what was reported for gas-phase C+\textsubscript{60}.

In general, the observed very poor correlation of the two discussed DIBs can be explained, together with the variable shapes of DIB profiles, by some blending with other, as yet unresolved diffuse bands. Nevertheless, both the lack of a firm detection of the two minor bands expected for C+\textsubscript{60} and, for the major candidate bands, the disagreement of central wavelengths with laboratory values need to be addressed in order to defend the recently claimed identification of C+\textsubscript{60}.

ACKNOWLEDGEMENTS

This paper includes data gathered with the VLT and UVES spectrograph, programs 067.C-0281(A), 082.C-0566(A), 092.C-0019(A). Authors acknowledge Dr. H. Linnartz and Dr. R. Kolos for his valuable comments and suggestions. GAG and GV acknowledge the support of Russian Science Foundation (project 14-50-00043, area of focus Exoplanets). VVS acknowledges the Russian Fund for Basic Researches 16-02-01145 (Non-LTE modeling of stellar atmospheres). JK acknowledges the grant 2015/17/B/ST9/03397 of the Polish National Science Center.

REFERENCES

Berné O., Mulas G., Joblin C., 2013, A&A, 550, L4
Cami J., Bernard-Salas J., Peeters E., Malek S.E., 2010, Science, 329, 1180
Campbell E. K., Holz M., Gerlich D., Maier J. P., 2015, Nature, 523, 322
Campbell E. K., Holz M., Maier J.P., Gerlich D., Walker G.A.H., Bohlender D., 2016, ApJ, 822, 17
Campbell E. K., Holz M., Maier J. P., 2016a, ApJ, 826, L4
Castelli F., Kurucz R. L., 2004, Proceedings of the IAU Symp. No 210, Modelling of Stellar Atmospheres, eds. N. Piskunov et al. 2005, poster A20, arXiv:astro-ph/0405087
Chentsov E.L., 2004, Astronomy Letters, 30, 325
Foing B. H., Ehrenfreund P., 1994, Nature, 369, 296
Galazutdinov G.A., Krelowski J., Musaev F. A., Ehrenfreund P., Foing B.H., 2000, MNRAS, 317, 750
Galazutdinov G.A., Musaev F.A., Krelowski J., Walker G.A.H., 2000, PASP, 112, 648
Hobbs J. M., York D. G., Thorburn J. A., Snow T. P., Bischof M., Friedman S. D., McCull B. J., Oka T. and 3 coauthors, 2009, ApJ, 705, 32
Jenniskens P., Mulas G., Pericdelu I., Benvenuti P., 1997, A&A, 327, 337
Krelowski J., Greenberg J.M., 1999, A&A, 346, 199
Krelowski J., Galazutdinov G.A., Mulas G., Maszewa M., Cecchi-Pestellini C., 2015, MNRAS, 451, 3210
Kroto H.W., Heath J.R., Obrion S.C., Curl R.F., Smalley R.E., 1985, Nature, 318, 162
Menzhevitski V.S., Shimanskaya N.N., Shimansky V.V., Kudryavtsev D. O., 2014, Astrophysical Bulletin, 69, 169
Sakhullin N.A., 1983, Kazanskaia Gorodskaia Astronomicheskia Observatoriia, Trudy (ISSN 0371-8247), 48, 9
Sellgren K., Werner, M.W., Ingalls J.G., Smith J.D.T., Carleton T. M., Joblin C., 2010, ApJ, 722, L54
Smette A., Sana H., Noil S., Horst H., Kausch W., Kimeswenger S., Barden M., Szyszka C. and 5 coauthors, 2015, A&A, 576, A77
Tkachenko A., Matthews J. M., Aerts C., Pavlovski K., Papics P.I., Zwintz K., Cameron C., Walker G.A.H. and 11 coauthors, 2016, MNRAS, 458, 1964

MNRAS 000, 1–10 (2016)
This paper has been typeset from a \TeX/\LaTeX file prepared by the author.