Many cancers, including leukemias, are dynamic oligoclonal diseases. Tools to identify and prospectively isolate genetically distinct clones for functional studies are needed. We describe our CombiFlow protocol, which is a combinatorial flow cytometry-based approach to identify and isolate such distinct clones. CombiFlow enables the visualization of clonal evolution during disease progression and the identification of potential relapse-inducing cells at MRD time points. The protocol can be adapted to various research questions and allows functional studies on live sorted cell populations.
Protocol

CombiFlow: Flow cytometry-based identification and characterization of genetically and functionally distinct AML subclones

Roos Houtsma,1,2,* Shanna M. Hogeling,1 and Jan Jacob Schuringa1,3,*

1Department of Hematology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
2Technical contact
3Lead contact
*Correspondence: r.houtsma@umcg.nl (R.H.), j.j.schuringa@umcg.nl (J.J.S.)
https://doi.org/10.1016/j.xpro.2021.100864

SUMMARY

Many cancers, including leukemias, are dynamic oligoclonal diseases. Tools to identify and prospectively isolate genetically distinct clones for functional studies are needed. We describe our CombiFlow protocol, which is a combinatorial flow cytometry-based approach to identify and isolate such distinct clones. CombiFlow enables the visualization of clonal evolution during disease progression and the identification of potential relapse-inducing cells at minimal residual disease (MRD) time points. The protocol can be adapted to various research questions and allows functional studies on live sorted cell populations.

For complete details on the use and execution of this protocol, please refer to de Boer et al. (2018).

BEFORE YOU BEGIN

The protocol below describes the analysis of two diagnosis samples, a paired relapse sample, and a healthy control sample. The protocol may also be applied to the comparison of multiple diagnostic samples within a subgroup of AML or to longitudinally track disease progression by including data from MRD time points. Preparation consists of:

1. Installation of the required R packages (key resources table) for the CombiFlow analysis
2. Primer design for targeted sequencing.

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
ADAM17-PE (10 μL**)	R&D Systems	Cat#FAB9301P RRID:AB_357217<br(Clone 111633)
ALCAM-PE* (1 μL)	BioLegend	Cat#343904 RRID: AB_2289302<br(Clone 3A6)
CCR1-PE (5 μL)	Miltenyi Biotec	Cat#130-100-367 RRID:AB 2655839<br(Clone REA158)

(Continued on next page)
REAGENT or RESOURCE	SOURCE	IDENTIFIER
CD117-PE (3 μL)	BD Biosciences	Cat#555714
RRID: AB_396058		
Clone YB5.B8		
CD123-PE* (3 μL)	BioLegend	Cat#306006
RRID: AB_314580		
Clone 6H6		
CD151-PE* (1 μL)	R&D Systems	Cat#FAB1884P
RRID: AB_2228965		
CD19-PE (5 μL)	BD Biosciences	Cat#346777
RRID: AB_2868805		
Clone 4G7		
CD25-PE* (3 μL)	BioLegend	Cat#302606
RRID: AB_314276		
Clone BC96		
CD200-PE* (5 μL)	R&D Systems	Cat#FAB23741P
RRID: AB_1061611		
Clone 325516		
CD206-PE (5 μL)	R&D Systems	Cat#FAB25342P
RRID: AB_10889015		
CD274-PE (3 μL)	BioLegend	Cat#329706
RRID: AB_940368		
Clone 29E.2A3		
CD34-APC (backbone, see 9)	BD Biosciences	Cat#555824
RRID: AB_398614		
Clone 581		
CD38-FITC (backbone, see 9)	BD Biosciences	Cat#555459
RRID: AB_395852		
Clone HIT2		
CD45-PE-Cy7 (backbone, see 9)	BD Biosciences	Cat#557748
RRID: AB_396854		
Clone HI30		
CD45RA-BV421 (backbone, see 9)	BioLegend	Cat#304108
RRID: AB_314412		
Clone HI100		
CD47-PE* (3 μL)	BD Biosciences	Cat#556046
RRID: AB_396317		
CD82-PE* (1 μL)	BioLegend	Cat#342104
RRID: AB_1595455		
Clone ASL-24		
CD93-PE (3 μL)	BioLegend	Cat#336108
RRID: AB_2076048		
Clone ViM2		
CD97-PE* (1 μL)	BioLegend	Cat#336308
RRID: AB_2076182		
Clone ViM3b		
CD99-PE* (1 μL)	BioLegend	Cat#371306
RRID: AB_2616974		
Clone 3B2/7A8		
CLL1-PE* (5 μL)	R&D Systems	Cat#FAB2946P
RRID: AB_10892515		
CXCR4-PE (3 μL)	BioLegend	Cat#306506
RRID: AB_314612		
Clone 12G5		
EMR2-PE (1 μL)	Miltenyi	Cat#130-119-810
RRID: AB_2751862		
Clone REA302		
ESAM-PE (5 μL)	R&D Systems	Cat#FAB4204P
RRID: AB_2293790		
Clone 408519		
ESEL-Fc-PE (1 μL)	GlycoMimetics	Cat#B252284
FLT3-PE* (10 μL)	BD Biosciences	Cat#558996
RRID: AB_397175 |

(Continued on next page)
REAGENT or RESOURCE	SOURCE	IDENTIFIER
GPR56-PE* (1 μL)	BioLegend	Cat#358204 RRID: AB_2562084 Clone CG4
IFNGRI-PE* (1 μL)	R&D Systems	Cat#FAB673P RRID: AB_2264548
IL1RAP-PE* (3 μL)	R&D Systems	Cat#FAB676P RRID: AB_10717521
IL6-PE (1 μL)	R&D Systems	Cat#FAB227P RRID: AB_2127909 Clone 17506
ITGA5-PE* (3 μL)	BD Biosciences	Cat#555617 RRID: AB_395984
ITGA6-PE (3 μL)	BioLegend	Cat#313612 RRID: AB_893373 Clone GoH3
ITGAE-PE (3 μL)	BioLegend	Cat#350206 RRID: AB_10641843 Clone Ber-ACT8
ITGB7-PE (5 μL)	R&D Systems	Cat#FAB4669P RRID: AB_1964636 Clone 473207
JAMC-PE (5 μL)	R&D Systems	Cat#FAB11891P RRID: AB_2128938 Clone 208212
LILRB2-PE (5 μL)	Miltenyi Biotec	Cat#130-100-564 RRID: AB_2659347 Clone REA184
Propidium iodide	Invitrogen	Cat#P3566
PVR-PE (5 μL)	R&D Systems	Cat#FAB25301P RRID: AB_2269068 Clone 300907
SEMA4D-PE (10 μL)	R&D Systems	Cat#FAB74701P RRID: AB_273284 Clone 758726
SIRPA-PE (10 μL)	Thermo Scientific	Cat#MA1-74228 RRID: AB_1955117 Clone 15-414
TGFBRII-PE (10 μL)	R&D Systems	Cat#FAB241P RRID: AB_2044728 Clone 25508
TIM3-PE* (3 μL)	BioLegend	Cat#345006 RRID: AB_2116576 Clone F38-2E2

Biological samples

- AML mononuclear cells: UMCG, n/a

Chemicals, peptides, and recombinant proteins

- IQ SYBR Green Supermix: Bio-Rad, Cat#170-8887
- FcR blocking reagent: Miltenyi Biotec, Cat#130-059-901
- DAPI: Thermo Scientific, Cat#D1306
- Bovine Serum Albumin fraction V (BSA): Roche, Cat#10735094001
- Calcium chloride dihydrate: Merck Millipore, Cat#10035-04-8
- Heparin: Hospital pharmacy UMCG, Cat#EP00242
- MgSO4: Sigma-Aldrich, Cat#M2643-500G
- DNase I: Sigma-Aldrich/Roche, Cat#112854932001

Critical commercial assays

- TruSight™ Myeloid Sequencing Panel: Illumina, Cat#FC-130-1010
- NucleoSpin Tissue Kit: MACHEREY-NAGEL, Cat#740952

Deposited data

- Marker panel – histograms R script: This paper, n/a
- CombiFlow R script: This paper, n/a

(Continued on next page)
Materials and Equipment

ESEL-Fc buffer

Component	Final concentration	Stock concentration	Amount
HBSS	n/a	n/a	49.5 mL
CaCl$_2$	1 mM	100 mM	0.5 mL
BSA	0.5%	n/a	0.25 g
Total	n/a	n/a	50 mL

Store at 4°C.

NCS mix

Component	Final concentration	Stock concentration	Amount
NCS	n/a	n/a	6 mL
Heparine	5 U/mL	1000 IU/mL	500 µL
MgSO$_4$	4 µM	200 mM	500 µL
DNase I	20 U/mL	1 mg/mL	500 µL
Total	n/a	n/a	7.5 mL

Make fresh each time.

R Package Reference

- CATALYST ([Crowell, 2021](#))
- ConsensusClusterPlus ([Wilkerson and Hayes, 2010](#))
- cowplot ([Wilke, 2020](#))
- devtools ([Wickham, 2021a](#))
- dplyr ([Wickham, 2021b](#))

(Continued on next page)
Thawing an AML sample

© Timing: 45 min–1 h

AML samples (bone marrow or peripheral blood) stored in liquid nitrogen can be thawed and immediately stained with antibodies for the marker panel or cell sorting. The used thawing procedure, as previously described (Schuringa and Schepers, 2009; van Gosliga et al., 2007), consists of the following steps:

1. Thaw two tubes of 6 mL newborn calf serum (NCS)
2. Collect the AML sample from the liquid nitrogen storage and quickly thaw the sample in a water bath kept at 37°C
3. Transfer the AML sample to an NCS tube and centrifuge for 5 min at 450 g
4. In the meantime, prepare NCS mix by adding 5 U/mL heparine, 4 μM MgSO4 and 20 U/mL DNAse I to the other NCS tube
5. Resuspend the AML cell pellet in the pre-warmed NCS mix
6. Incubate the cells at 37°C for 15 min
7. Spin down cells and resuspend in PBS-mix (6 mL PBS + DNase (5 U/mL) and MgSO₄ (4 μM))
8. Count the viable cells using Trypan Blue and continue with:
 a. Run the marker panel or
 b. Sorting of potential subclones

⚠️ CRITICAL: 30–50% of the AML cells will not survive the thawing process. To obtain a higher yield speed is essential in steps 2 and 3. Complete steps 2 and 3 within 15 minutes. If less than 50% viable cells are obtained, it can be considered to perform a Ficoll separation to remove dead cells.

Run the marker panel

Timing: 4 h

Plasma Membrane Protein marker expression data is acquired by flow cytometry that can be used as input for the following analyses: 1) Leukemic cells can be identified based on aberrant expression of one or more markers compared to the healthy control. 2) Aberrantly expressed plasma membrane protein marker expression can be used to identify and sort potential subclones. 3) Disease progression can be tracked by running the panel on longitudinal samples from individual patients.

9. Cells are stained for markers CD34, CD38, CD45 and CD45RA, from now onwards called backbone stain. These markers are used as a basis to merge all measured plasma membrane protein markers together and are therefore present in every tube. More detailed explanation about this principle can be found in Merge the marker panel flow data. Addition of antibodies can be performed at 15°C–25°C. All stainings are carried out at 4°C in the dark.
 a. Label unstained and single stained control tubes
 b. Take 15 million viable mononuclear cells (MNCs) of the thawed AML sample and resuspend this in 320 μL PBS
 c. Add 2 μL of cell suspension to the unstained and single stained control tubes containing 98 μL PBS
 d. Add the backbone stain to the remaining cells:
 i. FcR blocking reagent 10 μL
 ii. CD34-APC 9 μL
 iii. CD38-FITC 9 μL
 iv. CD45-PECy7 3 μL
 v. CD45RA-BV421 3 μL
 10. Stain cells for 20 min at 4°C in the dark
 a. Label tubes for the marker panel (1-36)
 b. Add PBS to the backbone-stained cells in a total volume of 100 μL * number of markers
 c. Add 100 μL of backbone-stained cells to each of the labeled tubes. Resuspend in between so that all tubes have a similar amount of cells
 d. Add one PE-labeled plasma membrane protein marker antibody per tube. The volume of antibody per tube is indicated in the key resources table.
 e. Stain cells for 30 min at 4°C in the dark
 f. Wash cells with 2 mL of PBS per tube and centrifuge at 450 g for 5 min
 g. Remove PBS and resuspend cells in 100 μL fresh PBS
 11. Acquire expression data using a flow cytometer

Note: The extra volume of backbone-stained cells will be approximately 300 μL. Keep this at 4°C until all PE-labeled marker panel antibodies have been added. It can serve as back-up if a pipetting mistake is made with the marker panel.
Note: The steps described above have been optimized for staining of cells in FACS tubes. For staining of cells in a 96-well plate some adjustments may be needed in the protocol.

Note: While we have used a backbone panel with antibodies against CD34, CD38, CD45 and CD45RA, other markers, or additional markers such as CD64 or CD117, can be included as backbone markers as well.

Note: The percentage of viable, thawed cells when measuring the marker panel usually lies between 70-90%. The largest cell loss during the thawing procedure is cleaned by the DNase in the NCS mix and does not result in the accidental staining of large number of dead cells. If desired, PI (at 1 μg/mL) can be added to the backbone panel in order to discriminate viable cells. In case of limited patient material, for instance at follow-up time points, a prioritized list consisting of 15 markers can be used, indicated by an asterisk behind the antibody in the key resources table. The ranking of these markers was based on the number of times it was positive in a cohort of 87 AML samples and on literature describing the use of specific markers in AML.

Note: We acquire flow data at the MacsQuant Analyzer 10. Other flow cytometers may also be used if the lasers are sufficient for the used fluorophores.

Optional: Experiment can be paused here. Data analysis and the thawing of a second AML sample for sorting can be done on a different day.

Merge the marker panel flow data

© Timing: 30 min

A limiting factor in flow cytometry is that the number of markers that can be measured per tube is limited due to availability of fluorochrome-labeled antibodies with distinct excitation and emission spectra and flow cytometers with multiple lasers. To circumvent this problem, we add a backbone of markers in each independent FACS tube. Additional to the backbone in each of the tubes an antibody against a specific plasma membrane marker is added, that can carry the same fluorochrome, in our case PE. Flow data acquired in separate tubes can be combined based on the expression of the backbone markers using Infinicyt™. With the recent development of full spectrum flow cytometers, such as the Cytek Aurora, more fluorochromes may be included to further increase the resolution and reduce analysis time.

12. Gate the FCS files in FlowJo

 a. Export the cells of interest as new FCS files. Here, we make use of CD45⁺ cells of which 10.000 events were exported per FCS file. See Methods video S1 for stepwise instructions

13. Use Infinicyt™ to combine FlowJo™ exported FCS files into a merged file. See Methods video S2 for stepwise instructions

 a. Within the Infinicyt™ environment, select ‘Calculate data’ in the ‘Guided modules’ window

 b. Load all FCS files necessary for your analysis. For instance, when disease progression is monitored load all FCS files per patient for every time point

 c. Deselect parameters that can be excluded, such as the time parameter HDR-T

 d. Separate the PE parameter so that one row is created for every included marker

 e. Check for a potential merge warning. Check out troubleshooting – problem 1 if this is the case

 f. Rename the rows that were created in step 13d by the corresponding plasma membrane protein marker name

 g. Check the “The selected populations were unequivocally identified” box and select calculate data
h. Save the calculated data file before continuing to the analysis window
i. Continue to the analysis window and save

14. Export the merged FCS file
 a. For continuation of CombiFlow, see CombiFlow
 b. For identification of potential subclones, see Identification of potential subclones.

Note: By making use of Infinicyt to separate the PE-labeled markers, the panel can be easily adapted. The number of markers can be increased, provided that a PE-labeled antibody is available.

Note: Pay attention to the names of the markers and make sure these are consistent throughout analyses. This will avoid errors in the CombiFlow pipeline. Spaces are allowed but will be replaced by an underscore in the CombiFlow analysis script.

Note: Additional information on exporting FCS files can be found here: FCS file export from FlowJo. Additional explanations on the merging of FCS files and the APS plotting can be found in the Infinicyt documentation available on the Cytognos website.

Note: Select which markers to include in the export if the merged file is used as input for CombiFlow, since here markers should match between included files.

Identification of potential subclones

Timing: 30 min–1 h

With the merged flow data from **Merge the marker panel flow data** marker expressions can be compared with marker expressions of a healthy donor. Aberrantly expressed markers can be selected and used for further analysis in the Infinicyt™ environment to identify potential subclones as depicted in Figure 1. First, markers with aberrant expression are selected and used as input for the Principal Component analysis, which is used to identify the most discriminating marker (Figures 1A and B). Subpopulations can be sorted based on this marker and sequenced (Figure 1C). Based on the sequencing outcomes, a pedigree can be created that depicts the expected evolutionary track of the leukemic cells (Figure 1D).

15. Prepare the data from the merged file for further analysis
 a. Export marker expression data per cell from the population of interest in the merged FCS file using FlowJo™
 b. Prepare a data file for the healthy control
16. Run R script: “Marker panel – histograms” to plot plasma membrane protein marker expression data of a healthy control and the data of interest to find aberrantly expressed proteins
 a. Save generated histogram plot as pdf
17. Select plasma membrane protein markers that are aberrantly expressed in comparison to the healthy control using the previously generated histogram plots
18. Open the analysis file, saved in step 13i, in the Infinicyt™ environment. See Methods video S3 for stepwise instructions
 a. If necessary: gate population of interest
 b. Check if Negative Visibility Configuration is selected for Automatic Negativity
19. Perform a Principal Component analysis
 a. Plot an APS (Automated Population Separator) diagram (Ctrl+D)
 b. Deselect backbone markers and select aberrantly expressed markers (Right click: Diagram Configuration → Parameters Configuration)
 c. Obtain Principal Component values (Ctrl+I) and select most distinguishing markers
d. Gate subpopulations and visualize in dot plots
20. Export all graphs and individual subpopulations for use in Manuscript Figures or downstream analysis
21. Determine a sorting strategy using the most distinguishing marker(s) in the merged FCS file using FlowJo™
 a. Continue with Sorting of potential subclones

Note: If more than one plasma membrane protein marker is needed to distinguish between potential subclones, it is necessary to check whether this marker is available with a different fluorophore than PE before continuing with **Sorting of potential subclones**.
Troubleshooting 2

Sorting of potential subclones

© Timing: 4 h

After determining the most distinguishing plasma membrane protein marker(s) to identify potential subclones using the merged FCS file and Infinicyt™. The potential clones can be sorted using the protocol below. This part is a continuation of **Thawing an AML**.

Figure 1. Outcome of subclone identification by Principal Component analysis

(A and B) Gating strategy for the sorting of subpopulations. (B) Expression of plasma membrane protein markers of an AML sample plotted together with the expression of these markers in a healthy control in order to identify which plasma membrane protein markers are aberrantly expressed.

(C) A Principal Component analysis was performed using aberrantly expressed plasma membrane protein markers, showing the most distinguishing markers for Principal Component 1 (PC1) and Principal Component 2 (PC2). Plasma membrane protein marker CD25 was identified as most distinguishing marker. A FACS sort was performed based on CD34 and CD205 expression resulting in two subclones: subclone 1 CD34⁺CD25⁺ and subclone 2 CD34⁺CD25⁻.

(D) To identify whether the sorted subclones were genetically distinct targeted sequencing was performed for the mutations DNMT3A G>A, RUNX1 duplication CCTA and FLT3-ITD. It was found that both subclones have a DNMT3A and RUNX1 mutation, but only subclone 1 CD34⁺CD25⁺ also has a FLT3-ITD.

(E) Pedigree of the subclones depicting the possible evolution pattern. This figure was adjusted from de Boer et al., 2018; figure 3.
22. To sort potential subclones AML cells need to be stained with part of the backbone markers and the most distinguishing plasma membrane protein markers (PMPs) that were determined by a Principal Component analysis.
 a. Label tubes for unstained and single stained controls
 b. Resuspend all thawed AMLs cells in PBS-mix (10 × 10^6 cells/100 μL)
 c. Add 1 μl of cells to unstained and single stained controls containing 99 μL of PBS-mix
 d. Add staining to the remaining cells. Volume/100 μL.
 i. Fc block 3 μL
 ii. CD34-APC 3 μL
 iii. CD45-PECy7 1 μL
 iv. PMP marker 1-PE
 v. PMP marker 2 (optional)
 e. Stain cells for 20 min at 4°C
23. In the meantime, prepare collection tubes containing medium with FCS
24. Wash cells with PBS and resuspend them:
 a. For unstained/single cell tubes in ± 300 μL PBS-mix
 b. For main tube in 1000 μL PBS-mix per 50 × 10^6 cells
 c. Add PI stain to the main tube at 1 μg/mL
25. Sort subclones of interest. If the FACS sorter is clogged, check troubleshooting – problem 2 for extra instructions
26. Process sorted cells for downstream analysis e.g., targeted sequencing, RNA sequencing or culturing

Note: This sorting protocol is optimized for the Beckman Coulter MoFlo Astrios and XDP at our FACS facility. Before starting sorting subclones it is advised to optimize the protocol for your FACS equipment. Troubleshooting 3 and 4

CombiFlow

© Timing: 1 h

The CombiFlow pipeline can be used to study the hematopoietic landscape of healthy and leukemic samples at diagnosis and longitudinally. Potential relapse-inducing populations can be identified at MRD time points and changes in clonal composition can be monitored based on marker expression data as depicted in Figures 2 and 3. The CombiFlow pipeline is based on an analysis workflow for CyTOF data (Nowicka et al., 2017). Whereas in the described examples clusters are assigned to visualize differences between diagnosis, relapse and healthy (Figure 2), it may also be used to visualize different cell types such as blasts, lymphocytes and mature myeloid cells.

27. Data preparation
 a. Export population of interest from the merged FCS files using FlowJo™ and zip the files
 b. Create a metadata file
 c. Create a panel file
28. Create a cluster file. The number of clusters can be adjusted based on the expected number of populations. If this is not known before running the analysis, a fixed number of clusters can be used. Here, 40 clusters were created per analysis to avoid missing out on smaller, more rare cell populations
29. Clusters are formed using the FlowSOM algorithm (Van Gassen et al., 2015) and can be visualized for all samples or per sample using tSNE landscapes. These can be colored by marker expression to identify and visualize specific cell populations such as CD34+ cells or CD4+ lymphocytes
30. Create a heatmap that depicts the transformed marker expression per cluster. This can be used to assign clusters to specific cell types
31. Run the script until the step ‘Manual clustering per sample’
 a. Clusters can be assigned to a sample based on the cluster cell count per sample
 b. Create a sample file
32. Visualize the newly assigned clusters for all samples combined or per sample
33. A new heatmap can be created, which depicts the combined expression of all clusters assigned to one specific sample
34. Continue running the script until the Principal Component analysis step
 a. Select which markers and clusters to include in the Principal Component analysis. A Principal Component analysis can be performed for all included samples, but a comparison of diagnosis and relapse, without the healthy clusters, is also a possibility
 b. Run the Principal Component analysis to identify the most discriminating marker(s).

Troubleshooting 5

Optional: Clusters can be assigned to a sample but also cell type. In order to do so, create a file similar to the cluster and sample file but now assign each cluster to a cell type based on the expression data in the heatmap. For example, a cluster with small size, high CD45 and CD19 expression may be assigned to either lymphocytes or, more specifically, B cells.

Note: Some clusters may have cells originating from both the leukemic and healthy sample. We opted to assign these cells to the healthy sample until the ratio Healthy/Leukemic cells fell below 1:8.

Note: Uniform manifold approximation and projection (UMAP) visualization may be an alternative for the currently used tSNE plots. Implementation of UMAP into the CombiFlow.
pipeline is currently ongoing, as well as a more automated, machine-learning approach for the cluster assignments to reduce analysis time.

EXPECTED OUTCOMES

With this protocol we generated marker expression profiles of 2 diagnosis samples, a paired relapse sample and a healthy control. Of the unpaired diagnosis sample we selected the plasma membrane protein markers that were aberrantly expressed in comparison to the expression levels in the healthy control (Figure 1A). Using the aberrantly expressed markers a Principal Component analysis was

Figure 3. Outcome of CombiFlow pipeline for a patient with paired diagnosis and relapse samples and a healthy control

(A) TruSight sequencing Variant Allele frequencies at diagnosis and relapse depicted in a fish plot.
(B) tSNE landscape per sample. Distinction between diagnosis (red), relapse (blue) and healthy (green).
(C) Principal Component analysis of the forty clusters, colored by sample.
(D) Ranking of markers contributing to Principal Component 1 (PC1, top) or Principal Component 2 (PC2, bottom).
performed in the Infinicyt™ environment and the marker CD25 was identified as most distinguishing maker (Figure 1B). The diagnosis sample was sorted in two populations: CD34+CD25+ and CD34+CD25−, and cells were processed for further analysis. We isolated gDNA from both clones and performed targeted sequencing for the mutations DNMT3A G>A, RUNX1 dup. CCTA and FLT3-ITD. We found that DNTM3A and RUNX1 were present in both clones, but FLT3-ITD was only found in the CD25+ clone (Figure 1C). Based on these findings we can predict a possible evolutionary pattern of the clones found in this particular individual. Various downstream analyses were performed on the sorted subclones. RNA sequencing and GO analysis revealed enrichment of processes related to cell proliferation, mitochondrial activity and cytokine signaling in the FLT3-ITD clone, whereas the FLT-WT clone was enriched for processes related to chromatin organization and histone modification. By in vitro culture of the subclones followed by treatment with the FLT3 tyrosine kinase inhibitor AC-220, differences in sensitivity to AC-220 were found as only the FLT3-ITD subclone showed reduced cell counts and increased levels of apoptosis.

The CombiFlow examples show one AML patient with diagnosis and relapse samples and a healthy control. In Figure 2 the forty clusters are visualized in total and per sample. Here it can be observed that the diagnosis and relapse differ based on their marker expression profiles. TruSight sequencing data was also available at diagnosis and relapse, variant allele frequencies at both time points are depicted in a fish plot (Figure 3A). Clonal evolution between diagnosis and relapse was observed as the BCOR mutation was no longer detected at relapse, whereas the mutations in KMT2A and CEBPA newly appeared. The size of the NPM1 mutated clone increased. These genetic differences between diagnosis and relapse were visualized in the tSNE landscape (Figure 3B), indicating that the markers used to create the landscape could separate cell clusters derived from the diagnosis and relapse sample. The healthy control clustered away from the AML samples. The Principal Component analysis reflected this separation and identified ITGA5, CD97 and IL1RAP as the top markers to distinguish between the AML and healthy cells (Figures 3C and 3D). CD47, CD99 and CLL1 differ between diagnosis and relapse and possibly within the healthy cells as well (Figure 3D).

LIMITATIONS
A possible bottleneck is the merging of the flow data in Infinicyt™. This is sensitive to aberrations in expression of the backbone markers. It may lead to having to exclude one of the markers. Furthermore, it is possible that the subclone that was found is very small, so there are not enough cells left after sorting for further analysis. In addition, differences in mutational status are not always found in the sorted subclones, resulting in having to go back to the drawing board. Another limitation is that the number of events that can be included in the CombiFlow analysis is currently relatively low. This is due to a lack of computational power. By running the analysis on a cluster this may be circumvented and the number of events can be increased. Another issue that is commonly present when working with patient material is a low quantity of cells. For longitudinal studies this is mainly at MRD time points, when most of the cells are expected to be healthy but a small aberrant population may remain. A smaller marker panel may be used in these instances to reduce the amount of needed material. Markers may be selected based on their aberrant expression at diagnosis, yet this may exclude markers with a different-from-normal expression that arise following treatment. Lastly, we are currently working on automating the process by a machine-learning approach of creating and assigning clusters to a sample or cell type to reduce analysis time and remove potential user bias.

TROUBLESHOOTING
Problem 1
A merge warning occurs (step 13).

Potential solution
Exclude the FCS file that is listed first in the merge warning window or separate the backbone marker from the aberrant file from the rest similar to what is needed for the PE-labeled markers. A
The disadvantage of this is that the marker can no longer serve as a backbone marker and the calculate data step will take longer. Another possibility is to include more events in the ‘calculate data’ step. For example, instead of including only the blasts or CD45+ cells, include all viable cells. This will mainly help if cell numbers per file are relatively low.

Problem 2
No subpopulations can be identified in the APS plot (step 19).

Potential solution:
This is a possibility as some AMLs do not have clear subpopulations based on their marker expression profile. It may be that markers currently not included in the panel are capable of distinguishing subpopulations in the AML in question. Another option is that the highest ranking marker does have a larger range in expression than other markers but that lower ranked markers have a more bimodal expression pattern indicative of subpopulations. It is therefore, in these instances, recommended to deselect the one or two highest ranking parameters to see if the APS plot changes.

Problem 3
Stickiness of AML cells result in clogging of FACS sorter (step 25).

Potential solution
AML cells can be diluted further in PBS mix; the DNaseI in the mix breaks down free DNA. If this is not sufficient cells can be put through a 35 µm cell strainer.

Problem 4
The sorted subpopulations do not differ in mutation status (step 26).

Potential solution
It is possible that sorting an AML into subpopulations based on the highest ranking marker(s) in the PCA does not result in genetically distinct subclones. A potential solution may be to sort the AML again, except this time not based on the highest ranking but on the second or third ranking marker. Another explanation for the lack of difference in mutation status may be that the differences in marker expression are not due to genetic, but due to epigenetic or transcriptomic variation between the subpopulations. This will require more extensive analysis of the sorted subpopulations than NGS sequencing.

Problem 5
Running the CombiFlow script results in an error (step 29)

Potential solution
Check if the script refers to the correct files. The metadata file should contain the exact file names that are included in the zipped folder containing the FCS files. The markers included in the analysis should match between each FCS file and between the FCS files and the panel file. Lastly, the CombiFlow script can be used for different comparisons, e.g., AML versus healthy or tracking an AML patient longitudinally. This may affect the description of the condition, which should match between the metadata file and the script.

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Prof Dr. J.J. Schuringa, j.j.schuringa@umcg.nl

Materials availability
This study did not generate new unique reagents.
34 distinct AML subclones. Cancer Cell characterization of genetically and functionally
de Boer, B., Prick, J., Pruis, M.G., Keane, P.,
Complex Systems
(Csardis, G.N., T.) (2006). The igraph Software
Package for Complex Network Research
Crowell, H.L.e.a. (2021). CATALYST: Cytometry
Vectors (CRAN.r-projects).
Apply to Rows and Columns of Matrices (and to
Bengtsson, H. (2021). matrixStats: Functions that
Bates, D., Machler, M., Bolker, B.M., and Walker,
S.C. (2015). Fitting linear mixed-effects models
using lme4. J. Stat. Softw.
Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W.,
and Saeys, Y. (2015). limma powers
differential expression analyses for RNA-
microarray studies. Nucleic Acids
Analyses.

STAR Protocols
Protocol

Data and code availability
The videos and code generated and used in this study are available at https://github.com/rhoutsma/
CombiFlow.

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.1016/j.xpro.2021.100864.

ACKNOWLEDGMENTS
Funding was provided by the Dutch Cancer Foundation to J.J.S. (11013). TruSight sequencing data
at diagnosis and relapse were kindly provided by the Routine Diagnostics Department of the UMCG.

AUTHOR CONTRIBUTIONS
S.M.H. and R.H. performed the experiments and optimized the data analysis pipelines. S.M.H., R.H.,
and J.J.S. analyzed data and wrote the manuscript.

DECLARATION OF INTERESTS
The authors declare no competing interests.

REFERENCES
Auguie, B. (2017): gridExtra: Miscellaneous
Functions for “Grid” Graphics (CRAN.r-projects).
Bache, S.M.W., H. (2020): magrittr: A Forward-Pipe
Operator for R (CRAN.r-projects).
Bates, D., Machler, M., Bolker, B.M., and Walker,
S.C. (2015). Fitting linear mixed-effects models
using lme4. J. Stat. Softw.
Kassambara, A. (2020a): ggrepplot2 (Based
Publication Ready Plots).
Kassambara, A.M.F. (2020b): factoextra: Extract
and Visualize the Results of Multivariate Data
Analyses.
Kolde, R. (2019): pheatmap: Pretty Heatmaps
(CRAN.r-projects).
Konopka, T. (2020): umap: Uniform Manifold
Approximation and Projection (CRAN.r-projects).
Krijthe, J.H. (2015): Rtsne: T-distributed stochastic
neighbor embedding using a Barnes-Hut
implementation. CRAN.r-projects.
Le, S.J., and Husson, F. (2008): FactoMineR: an R
package for multivariate analysis. J. Stat. Softw.
25, 1–18.
Maechler, M.E.A. (2021): robustbase: Basic Robust
Statistics (CRAN.r-projects).
Newbrough, E. (2014): RColorBrewer: ColorBrewer
Palettes (CRAN.r-projects).
Nowicka, A.E.A. (2020): mvtnorm: Multivariate Normal
and t Distributions (CRAN.r-projects).
Hennig, C. (2020): fpc: Flexible Procedures for
Clustering (CRAN.r-projects).
Henry, L.W., H. (2020): purrr: Functional
Programming Tools (CRAN.r-projects).
Kolde, R. (2019): pheatmap: Pretty Heatmaps
(CRAN.r-projects).
Klijnsma, F.J., Guglietta, S., Becher, B.,
Levesque, M.P., and Robinson, M.D. (2017).
CyTOF workflow: differential discovery in high-
throughput high-dimensional cytometry datasets.
F1000Res 6, 746.
Quadros, A. (2020): emstreeR: Tools for Fast
Computing and Plotting Euclidean Minimum
Spanning Trees (CRAN.r-projects).
Ritchie, M.E., Shipson, B., Wu, D., Hu, Y., Law, C.W.,
Shi, W., and Smyth, G.K. (2015). limma powers
differential expression analyses for RNA-
sequencing and microarray studies. Nucleic Acids
Res. 43, e47.
Schuringa, J.J., and Schepers, H. (2009): Ex vivo
assays to study self-renewal and long-term
expansion of genetically modified primary human
acute myeloid leukemia stem cells. Methods Mol.
Biol. 538, 287–300.
Srucca, L., Fop, M., Murphy, T.B., and Raftery, A.E.
(2016): mclust S: Clustering, classification and
density estimation using Gaussian finite mixture
models. R. J. 8, 289–317.
Slowikowski, K. (2021): ggrepel: Automatically
Position Non-overlapping Text Labels with
ggrepot2 (CRAN.r-projects).
Temple Lang, D. (2021): XML: Tools for Parsing and
Generating XML within R and S-Plus (CRAN.r-
projects).
Temple Lang, D.W., J. (2020): RJSONIO: Serialize R
Objects to JSON, JavaScript Object Notation
(CRAN.r-projects).
Van Gassen, S., Callebaut, B., Van Helden, M.J.,
Lambrecht, B.N., Demester, P., Dhaene, T.,
and Saeye, Y. (2015): FlowSOM: Using self-
organizing maps for visualization and
interpretation of cytometry data. Cytometry A
87, 636–645.
Van Gosliga, D., Schepers, H., Rizo, A., van der Kolk,
D., Vellenga, E., and Schuringa, J.J. (2007).
Establishing long-term cultures with self-renewing
acute myeloid leukemia stem/progenitor cells.
Exp. Hematol. 35, 1538–1549.
Van, P., Jiang, W., Gottardo, R., and Finak, G.
(2018): ggCyto: next generation open-source
visualization software for cytometry. Bioinformatics
34, 3951–3953.
Venables, W.N., and Ripley, B.D. (2002). Modern
Applied Statistics with S (Springer-Verlag New
York).
Wickham, H. (2007). Reshaping data with the
reshape package. J. Stat. Softw. 21, 1–20.
Wickham, H. (2016). ggrepot2: Elegant Graphics for
Data Analysis (Springer).
Wickham, H.B.J. (2019a). readxl: Read Excel Files.

Wickham, H.E.A. (2019b). Welcome to the Tidyverse. J. Open Source Softw. 4, 1686.

Wickham, H.E.A. (2021a). devtools: Tools to Make Developing R Packages Easier.

Wickham, H.E.A. (2021b). dplyr: A Grammar of Data Manipulation.

Wickham, H.H.J. (2020). readr: Read Rectangular Text Data (CRAN r-projects).

Wilke, C.O. (2020). Cowplot: Streamlined Plot Theme and Plot Annotations for ’ggplot2’ (CRAN r-projects).

Wilkerson, M.D., and Hayes, D.N. (2010). ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 26, 1572-1573.

Xiao, N. (2018). ggsci: Scientific Journal and Sci-Fi Themed Color Palettes for ’ggplot2’ (CRAN r-projects).