RESEARCH ARTICLE

Microarray Analysis of bacterial blight resistance 1 mutant rice infected with Xanthomonas oryzae pv. oryzae

So Young Yi†, Ha Yeon Lee†, Hyun A Kim†, Chan Ju Lim†, Woong Bom Kim†, Hyun A Jang†, Jong-Seong Jeon‡, Suk-Yoon Kwon*†

†Plant Systems Engineering Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
‡Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea

ABSTRACT We analyzed the transcriptional profile of the Xoo infected bbr1 mutant using a commercial rice gene chip containing 51,279 transcripts. Microarray revealed 92 genes with increased levels of expression and 22 genes with decreased levels of expression in bbr1. Some of the differentially expressed genes were validated by qRT-PCR. Higher expression of defense-related genes and AP2 domain containing transcription factors along with lower expression of reactive oxygen scavenging enzymes may be responsible for defense signaling in the bbr1 upon Xoo infection. The putative target genes of AP2 domain containing transcription factors also showed differential gene expression during Xoo infection, some of which encoded bacterial pathogen resistance-related protein. Induction of AP2 domain containing transcription factors along with up-regulation of their putative target genes during Xoo infection may inhibit pathogen spread in the bbr1. This observation supports the hypothesis that AP2 domain containing transcription factors is involved in the regulation of differentially expressed genes in bbr1.

Keywords Bacterial blight resistant rice, Gamma-ray mutant, Xanthomonas oryzae pv. oryzae, ERF and DREB/CFB

INTRODUCTION

Rice (Oryza sativa L.) is the most important crop in the world as it feeds half of the world’s population. The stable production of rice is affected by biotic and abiotic stress. The rice diseases caused by plant pathogenic fungi, bacteria and viruses are capable of causing heavy loss on rice crop, the global yields of which is annually decreasing by 10-15% (Dai et al. 2007). The use of resistant cultivars is one of the most important factors used to control diseases.

Because worldwide rice production has been severely affected by bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo), early research efforts have been focused on the utilizing disease resistance (R) genes in rice. Since the first cloning of the R gene Xa21 which confers resistance to Xoo almost twenty years ago (Song et al. 1995), nearly 30 major R genes for resistance to Xoo have been identified (Kurata and Yamazaki 2006) and five of them: Xa1, Xa3/Xa26, xa5, xa13 and Xa27, have been cloned: (Yoshimura et al. 1998; Iyer and McCouch 2004; Sun et al. 2004; Gu et al. 2005; Chu et al. 2006; Jiang et al. 2006). Genetic studies of BB resistance have resulted in the development of donor lines carrying major R genes. A number of these donor lines have been used in rice breeding programs around the world. Using transgenic approach, agronomically important cultivars such as IR64 and IR72 have been transformed with the Xa21 gene and field trials of selected lines were successfully undertaken in China (Zhang et al. 1998; Tu et al. 2000). Further, the Xa21 gene has been introduced into a widely used restorer of hybrid rice in China, Minghui 63, in order to produce BB-resistant hybrid rice with elite agronomic characters (Zhai et al. 2002).

Mutation breeding is also an important tool for crop improvement. During the past 75 years, more than 3,100
mutant varieties have been produced worldwide (The FAO/IAEA Mutant Varieties Database, http://mvgs.iaea.org/AboutMutantVarities.aspx). More than 501 new varieties in rice have been obtained by applying different mutagenic agents. In Asia Pacific, there are approximately 343 mutants of rice released (Ahloowalia et al. 2004).

DNA microarray can measure the individual transcript level of tens of thousands of genes simultaneously, thus providing a high-throughput means for analyzing gene expression levels at the whole-genome scale (Schena et al. 1995; Chu et al. 1998) that may help elucidate the network of defense response. For example, microarray has been used to characterize the rice-pathogen interaction, such as the interaction of rice-Xoo (Li et al. 2006; Kottapalli et al. 2007), -flagellin (Fujisawa et al. 2004), -lipopolysaccharides (Desaki et al. 2006), -fungal elicitor (Kim et al. 2005), -fungal elicitor (Kim et al. 2005), -rice dwarf virus (Shimizu et al. 2007) and -plant hopper (Cho et al. 2005).

In previous study, six rice mutant lines (M5 generation); TILL300-534, TILL300-537, TILL300-1212, TILL300-793, TILL300-693 and TILL300-651, which present resistant phenotype against Xoo KXO85 were selected from 3000 lines of gamma-ray mutated M3 plants (Lim et al. 2010). Among selected six mutant lines TILL300-651 (Bacterial Blight Resistance 1; bbr1) showed relatively strong induction of rice R gene Xa21 which confers resistance to Xoo and other rice R genes such as Pi36 and Pi-Ta against Magnaporthe oryzae (Lim et al. 2010). To further understand defense response in the bbr1-Xoo interaction, we profiled the expression of rice genes involved in the phenotype of rice mutant, bbr1, using a commercial rice gene chip containing 51,279 transcripts representing two rice cultivars, indica and japonica.

MATERIALS AND METHODS

Plant materials and pathogen inoculation

‘Dongan’ seeds (Oryza sativa L. cv. japonica) were allowed to imbibe water overnight at 22°C and kept on moistened filter paper until germination. Germinated seeds were grown in soil in a greenhouse for 40 days prior to Xoo inoculation.

Bacterial cells of Xoo were suspended in sterile distilled water and the inoculation concentration was adjusted to OD600 = 1.0 (Song et al. 1995). Rice leaves were inoculated with the bacterial suspension using the leaf clipping method (Kauffman et al. 1973). For gene expression analysis, leaf samples were collected from untreated control and infected leaves at 10 days after inoculation. The samples were flash frozen in liquid nitrogen and stored at -80°C.

RNA Isolation and qRT-PCR analysis

Total RNA was isolated from the collected samples using RNasey mini kit (Qiagen) according to the manufacturer’s instruction. Approximately 1 µg DNA-free RNA was used for first-strand cDNA synthesis using the Moloney Murine Leukemia Virus (M-MuLV) reverse transcriptase for quantitative real-time polymerase chain reaction (qRT-PCR; Fermentas). The qRT-PCR reactions were performed using a Thermal Cycler Dice Real Time System TP850 (TaKaRa, http://www.takara-bio.com) and SYBR Premix Ex Taq (TaKaRa). Primer sets prepared at 0.1 µM final concentration were used for a final volume of 25 µL. The thermal profile of the qRT-PCR reactions was 10 min at 95°C, 40 cycles of 5 s at 95°C/20 s at 60°C. Subsequently, a dissociation curve was generated. All reactions were carried out in triplicate. Primers used for qRT-PCR are listed in the Table 1.

Microarray analysis

The microarray experiment was conducted by the DNA Link Corporation (Seoul, Korea) according to the Affymetrix technical manual (http://www.affymetrix.com/support/index.affx). Total RNAs were extracted from the samples stored at -80 °C and gene expression was compared between the wild type ‘Dongan’ and bbr1 mutant with two replicates. Hybridization, washing, staining and scanning procedures were performed as described in the Affymetrix technical manual. The analysis software was the Affymetrix Command Console, R affy-package (2.9.2), Expression Console1.1, DAVID.
Table 1. Summary table displaying Arabidopsis orthologous of differentially expressed genes with known roles in disease resistance (R-), transcript regulation (TF-) and oxidative stress (POD-) and sequences of forward and reverse primers used in quantitative RT-PCR to validate the 17 selected gene expression changes determined by microarray analysis. TF, Transcription factor; R, Resistance; POD, Peroxidase.

Primer name	Gene title	Arabidopsis orthologous	Forward-primer	Reverse-primer
TF-1	Os02g0527300	AT2G26150	gttgcaactagtcaagca	tacctcccaagctgccttt
TF-2	Os06g0127100	AT4G25480	ctacgcgtactagcgaac	gaggacagcaagtgtggag
TF-3	Os08g0474000	AT4G34410	gagaacaggagaccctct	ttcaattagacacagccttaa
TF-4	Os04g0583900	AT5G37260	ccacacaaacaggagtgg	tggattcataagagccttt
TF-5	Os03g0327800	AT3G04070	cgatgtctcgaatctgc	ccggctttatgatcttgac
TF-6	Os07g0558100	AT4G21440	gcacaacacacacagctca	aagtctcgatcagcctgg
TF-7	Os01g0975300	AT5G59780	cagcagagggagctgctg	gcgaataacccggagcag
TF-8	Os01g0141000	AT1G13260	atcagctctcctgttca	tgcattgacacacagcaaa
R-1	Os01g0944900	AT4G16260	gtttactacccggagcctaa	atgcagctagtgctgcttg
R-2	Os02g0194700	AT3G45140	gctgacattggagcaggtt	atccgctcagctgacact
R-3	Os03g0129100	AT2G39200	aaagggtgagctgaggtg	gcgctacacgctgtacact
R-4	Os06g0698300	AT4G31750	ctgcaaaaaagctctcctcag	tgctggtggacacaagac
R-5	Os10g0490800	AT2G15130	gggaactagcgaagcaggt	gtaacctccgccttcacag
POD-1	Os03g0235000	AT5G06720	gcgaactacggcctggtagag	gcgcctccagcataataa
POD-2	Os07g0677100	AT5G05340	atccgtctctctgaccaaa	cggctgacctacatggct
POD-3	Os07g0677200	AT5G05340	agctgctccacggaact	atgggctgctgcttcacat
POD-4	Os08g0113000	AT4G33420	ctgaaactgcgccccgtag	cctctccacgacaataaaa
ACTIN	Os03g50890	AT3G18780	ggaaacttgtaggcagcc	atgcacctgtacaccccaag

RESULTS AND DISCUSSION

Isolation of the bbr1 mutant with enhanced Xoo resistance

To examine whether the Xoo resistant phenotype can be maintained in the next generation, progeny from the TILL300-651 (M5) were tested for the Xoo resistance phenotype. Figure 1a shows a picture of typical leaves from each of the following inoculated wild type ‘Dongan’ and bbr1 mutant. While all bbr1 mutant progenies tested were resistant, showing relatively short lesions, inoculated leaves of wild type ‘Dongan’ developed water soaked long lesions (Fig. 1a, b). This result demonstrates that the bbr1 mutant enhanced resistance to Xoo.

Differential gene expression in the leaves of bbr1 mutant plants

Leaf samples were collected from the uninoculated (no treatment; NT) and Xoo-inoculated (10 DAI) wild type ‘Dongan’ (WT) and bbr1 mutant (M6), to detect differential gene expression under both conditions. To reduce experimental variation we separately pooled the leaf samples from eight inoculated/uninoculated WT and bbr1 mutant of individual biological replicate. Total RNA was then isolated from pooled samples and used for labeling. To identify the significantly differential expression of Xoo responsive genes in bbr1 compared to WT, we applied the following criteria; (a) the gene expression change occurred at the same direction (increase or decrease) in replication; and (b) the average ratio (fold change of bbr1/WT signal intensity) of expression levels in all microarray analyses was greater than 4 or less than -4. Applying these criteria, we detected 92 genes with increased (up-regulated) levels of expression and 22 genes with decreased (down-regulated) levels of expression in bbr1 (Fig. 2). These genes were considered as characteristics of the bbr1 mutant during Xoo infection.
Fig. 1. Phenotypic analysis of the rice bbr1 mutant. (a) Water-soaked disease lesions on three leaves from wild type ‘Dongan’ (WT) and bbr1 mutants (M6). 40-day-old plants were inoculated with Xoo. Image was taken two weeks after Xoo inoculation. (b) Leaf lesion lengths of eight bbr1 M6 progeny. Lesion lengths were measured at two weeks post Xoo inoculation. Experiments were repeated two times with similar results. Each data point represents the average and standard deviation of at least three leaves.

Fig. 2. Gene ontology classification of differentially expressed genes in rice leaves at 10 day post inoculation. Functional categories are derived from the primary annotation of biological process retrieved from the Kyoto Encyclopedia of Genes and Genomes (KEGG; www.genome.jp/kegg). Differentially-regulated genes were expressed at 4-fold higher or lower levels in the bbr1 mutant compared to wild type from two independent microarray analyses. White bars indicated the number of four-fold down regulated genes and black bars indicated the number of four-fold up-regulated genes compared to the WT.
These 114 differentially expressed genes (DEGs) were further analyzed and annotated using public access databases (http://www.genome.jp/kegg). According to predicted functions of their homologous genes in *Arabidopsis*, these genes could be assigned to eleven biological process categories (Fig. 2), including defense and/or stress response, carbohydrate metabolic process, hormone responses, lipid metabolic process, nucleic acid metabolism, oxidation reduction, phosphate metabolism, protein metabolism, structure, transport and unknown function. Major categories

Description	Gene Title	Average fold change a
Transcription factor activity		
TF-1; Similar to Heat shock transcription factor 31	Os02g0527300	11.52
TF-2; AP2, Similar to CBF-like protein	Os06g0127100	43.92
TF-3; AP2, Similar to AP2 domain containing protein RAP2.6	Os08g0474000	51.32
TF-4; MYB, Similar to LHY protein	Os04g0583900	6.12
TF-5; NAM, No apical meristem (NAM) domain containing protein	Os03g0327800	5.37
TF-6; MYB, Similar to Myb-related transcription factor LBM1	Os07g0558100	6.04
TF-7; MYB, Similar to Typical P-type R2R3 Myb protein	Os01g0975300	-7.52
TF-8; AP2, RAV-like protein	Os01g0141000	-4.17
Response to biotic stress		
R-1; Similar to Beta-1,3-glucanase-like protein	Os01g0944900	19.29
R-2; Similar to Lipoxigenase 2.3, chloroplast precursor	Os02g0194700	10.9
R-3; Seven transmembrane protein MLO2	Os03g0129100	8.27
R-4; Protein phosphatase 2C family protein	Os06g0698300	7
R-5; Similar to NtPRp27	Os10g0490800	14.22
Similar to Iron-phytosiderophore transporter protein yellow stripe 1	Os02g0649900	-6.28
Similar to Pathogen-related protein	Os01g0731100	-8.17
Response to oxidative stress		
POD-1; Peroxidase	Os03g0235000	-42.2
POD-2; Peroxidase	Os07g0677100	-7.73
POD-3; Peroxidase	Os07g0677200	-4.79
POD-4; Similar to Peroxidase 47 precursor	Os08g0113000	-14.6
Response to abiotic stress		
Late embryogenesis abundant (LEA) group 1 family	Os04g0589800	25.25
Similar to Low-temperature induced protein lt101.2	Os05g0122700	16.92
Similar to Allyl alcohol dehydrogenase	Os04g0497000	11.48
Similar to 1-Cys peroxiredoxin;	Os07g0638300	9.16
Similar to Small heat stress protein class CIII	Os02g0782500	8.33
GRAM domain containing protein;	Os12g0478100	7.53
Similar to Acyl-CoA-binding protein 2 (ACBP 2)	Os06g0115300	6.89
Hly-III related proteins family protein	Os06g0652200	6.54
Similar to Dehydrin DHN1 (B8)	Os01g0702500	6.42
Heat shock protein DnaJ, N-terminal domain containing protein	Os01g0606900	6.34
EFA27 for EF hand, abscisic acid, 27kD	Os04g0511200	4.86
Glycoside hydrolase, family 17 protein	Os01g0860800	4.44
Similar to germin-like protein 8	Os08g0189850	-6.45
Similar to germin-like protein 12	Os08g0189900	-6.92

a Average values of Xoo inoculated *bbr1* samples, compared to WT samples, from two independent microarray analysis. Numbers show the factor of change between wild type and mutant after Xoo inoculation; positive values represent up-regulation (e. g. 3 = 3-fold increase) negative values down-regulation (e. g. -3 = 3-fold decrease).
Microarray Analysis of bacterial blight resistance 1 mutant rice infected with Xanthomonas oryzae pv. oryzae

of DEGs were biotic and abiotic stress related and transcription factors (Table 2). Thirty-three genes were classified into these categories and only considered for functions on specific pathways to further illustrate the differential response of WT and bbr1 mutant to Xoo infection (Table 2).

Defense-related genes induced in bbr1 mutant

Higher expression of β-1,3-glucanase-like protein (Os01g0944900; >19 fold), lipoxygenase 2.3, chloroplast precursor (Os02g0194700; >10 fold), seven transmembrane protein MLO2 (Os03g0129100; >8 fold), protein phosphatase 2C family protein (Os06g0698300; 7 fold) and basic secretory protein (Os10g0490800; >14 fold) genes were detected at 10 DAI in bbr1 mutant plant. On the other hand, lower expression of iron-phytosiderophore transporter protein yellow stripe 1 (Os02g0649900; >6 fold) and pathogen-related protein (Os01g0731100; >8 fold) were detected in Xoo-infected bbr1 leaf tissue (Table 1).

qRT-PCR analysis further confirmed the expression of

![Fig. 3. Altered expressions of genes related to Xoo inoculation in bbr1. The rice ACTIN gene was used as an internal positive control and transcript levels of the tested genes were normalized with that of ACTIN. Relative expressions of the tested genes were compared with that in WT plants. Bar represents standard deviation (three replicates)](image-url)
representative five genes (R-1 ~ R-5; Table 1) that were highly up-regulated in \textit{bbrl} mutant 10 DAI. Among the five genes, three [Os01g0944900 (β-1,3-glucanase-like protein; R-1), Os02g0194700 (lipoxygenase 2.3 chloroplast precursor (R-2); and Os03g0129100 (seven transmembrane protein MLO2; R-3)] were expressed at higher levels in \textit{bbrl} than in WT after \textit{Xoo} inoculation (Fig. 3a).

As a member of the PR-2 group of pathogenesis-related (PR) proteins, β-1,3-glucanase is induced by pathogen infection and plays an active antifungal role in hydrolyzing β-1,3-glucan, a major structural component of fungal cell walls (Sela-Buurlage \textit{et al}. 1993; Jach \textit{et al}. 1995). Lipid peroxidation, triggered by lipoxygenases and reactive oxygen species (ROS), is a hallmark of plant pathogen responses, both in signal transduction processes and during the execution of programmed cell death. Lipoxygenases oxidize free fatty acids in the cytosol or chloroplasts, thereby initiating several oxylipin pathways including the jasmonic acid and hydroperoxide lyase pathway (Mosblech \textit{et al}. 2009). Twelve predicted \textit{Mlo} homologs were identified in the rice genome (Goff \textit{et al}. 2002). The seven transmembrane MLO protein (Devoto \textit{et al}. 1999) is thought to mediate defense suppression against \textit{Blumeria graminis} f. sp. \textit{hordei} attack via direct Ca2+-dependent interaction with calmodulin (Kim \textit{et al}. 2002). MLO-mediated defense suppression also likely involves one or several small GTP-binding proteins of the ROP (Rho-related GTPases from plants) family (Schultheiss \textit{et al}. 2002). Consistent with its involvement in plant-microbe interactions, MLO expression is induced upon biotic and abiotic stress stimuli (Piffanelli \textit{et al}. 2002). Induction of defense related genes during \textit{Xoo} infection may inhibit pathogen spread in the \textit{bbrl}.

Peroxidase genes reduced in \textit{bbrl} mutant

Four class III peroxidases genes [Os03g0235000 (POD-1), Os07g0677100 (POD-2), Os07g0677200 (POD-3) and Os08g0113000 (POD-4)] were expressed at lower levels in the \textit{bbrl} mutant than in WT 10 DAI (Table 2). qRT-PCR also confirmed lower level of four peroxidases expression (Fig. 3b). Peroxidases belong to well-known class of PR-9 proteins (van Loon \textit{et al}. 2006). They are expressed to limit cellular spreading of the infection through the establishment of structural barriers or generation of highly toxic environments by massively producing ROS and reactive nitrogen species (RNS) (Passardi \textit{et al}. 2005). Since POD scavenges the ROS, a reduced activity of this enzyme will increase the levels of ROS and result in hastened cell death. Down-regulation of PODs in \textit{bbrl} may therefore result in enhanced resistance against the invading pathogen. A lower expression of four PODs in \textit{bbrl} mutant implies the ROS involvement in defense against \textit{Xoo} invasion.

\textbf{Induced and suppressed genes encoding transcription factors}

WRKY, myeloblastosis (MYB), APETALA2 (AP2) domain containing transcription factors (ethylene-responsive element-binding proteins; EREBP, C-repeat-binding proteins; CBFs, related to ABI3/VP1; RAV), basic region/leucine zipper motif (bZIP), no apical meristem (NAM), zinc-finger proteins, and heat shock factors (HSFs) are encoded by large gene families and have been intensively studied for their roles in stress responses (Kagaya \textit{et al}. 1999; Singh \textit{et al}. 2002; Saibo \textit{et al}. 2009; Hirayama and Shinozaki 2010; Santos \textit{et al}. 2011; Scharf \textit{et al}. 2012).

Higher expression of heat shock transcription factor 31 (Os02g0527300; >11 fold), RAP2.6 (Os08g0474000; >50 fold) and CBF-like protein (Os06g0127100; >40 fold), MYB domain containing protein LHY (Os04g0583900; >6 fold) and LBM1 (Os07g0558100; >6 fold) and NAM domain containing protein (Os03g0327800; >5 fold) genes were detected in \textit{bbrl} mutant plant 10 DAI. On the other hand, lower expression of typical P-type R2R3 MYB protein (Os01g0975300; >7 fold) and AP2 domain containing protein RAV (Os01g0141000; >4 fold) were detected in \textit{Xoo}-infected \textit{bbrl} leaf tissue (Table 2). qRT-PCR analysis further confirmed the expression of eight representative transcription factor genes (TF1-1 ~ TF-8; Table 1) that were highly up- and down-regulated in \textit{bbrl} mutant 10 DAI. The result showed that expression levels of TF-1 (heat shock transcription factor 31), TF-2 (CBF-like protein) and TF-3 (RAP2.6) were increased in \textit{bbrl} whereas TF-7 (typical P-type R2R3 Myb protein) and TF-8 (RAV-like protein) were suppressed in \textit{bbrl} which are in agreement with the microarray results (Fig. 3c). Due to the central role of ERF and CBFs/DEBs in biotic and abiotic...
stress responses and their ability to regulate a large number of stress-responsive target genes, induction of these transcription factors are involved in the regulation of differentially expressed genes in \textit{bbr1}.

\textbf{AP2 domain containing transcription factors is involved in the regulation of differentially expressed genes in \textit{bbr1}}

On the basis of the number of AP2/ERF domains encoded and the gene function, the AP2/EREBP gene family has been divided into four subfamilies: AP2, RAV, DREB and ERF (Sakuma \textit{et al}. 2002). Both ERF and DREB/CBF subfamilies are of particular interest owing to their involvement in plant responses to stresses. ERF subfamily genes encode a large number of ERFs (Fujimoto \textit{et al}. 2000), which have been shown to participate in the plant response to biotic stress such as pathogens by recognizing the \textit{cis}-acting element GCCGCC, known as the GCC-box (Hao \textit{et al}. 1998). The DREB subfamily genes play an important role in the resistance of plants to abiotic stresses by recognizing the dehydration responsive element (DRE), which has a core motif CCGAC (Liu \textit{et al}. 1998). The transcription factors, RAV1 and RAV2, contain an AP2 domain in the N-terminal regions and a B3 domain in the C-terminal regions (Kagaya \textit{et al}. 1999). Using binding site selection assays, the AP2 and B3 domains of RAV1 were found to bind to the CAACA and CACCTG motifs (Kagaya \textit{et al}. 1999). Ectopic expression of the \textit{CaRAV1} gene in transgenic Arabidopsis plants resulted in the induction of some pathogenesis related (PR) genes, enhancing resistance against infection by bacterial pathogens, and tolerance to osmotic stresses caused by high salinity and dehydration conditions (Sohn \textit{et al}. 2006).

Among the differentially expressed transcription factor genes observed in this study, the average expression fold change of RAP2.6 (51.32 fold higher than wild type) and CBF like protein (43.92 fold higher than wild type) are the highest in the \textit{bbr1}. Another AP2 domain containing transcription factor RAV-like protein (4.17 fold lower than wild type) is also suppressed in the \textit{bbr1} after \textit{Xoo} infection (Table 2). The extent of induction or repression of an individual gene by \textit{Xoo} infection in \textit{bbr1} depends on a complex interaction between its transcription apparatus and associated regulation related sequences. To analyze the promoter region of target genes we selected 117 candidates which are more than two fold up- or down-regulated genes in \textit{bbr1} and used sequences located 2 kb upstream of the 5’ termini of each candidate genes. Among 117 candidate genes, GCC-box (GCCGCC; Table S1), DRE-related core motifs (CCGAC; Table S2) and AP2+B3 binding motif (CAACA and CACCTG; Table S3) are found in the promoter regions of 90 (73.77\%) putative target genes (Fig. 4). Among the genes we detected, several were reported to be related to disease resistance, such as F-BOX STRESS INDUCED 2 (Maldonado-Calderon \textit{et al}. 2012), PEN3 (Xin \textit{et al}. 2013), RPM1-INDUCED PROTEIN KINASE

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{venn_diagram.png}
\caption{Venn diagram of more than two folds up- and down-regulated genes with different AP2 domain binding motif in \textit{bbr1} mutant. A total 117 genes were differentially expressed before and after \textit{Xoo} infection, among which 90 putative target genes contain DRE-related core motifs (80 genes), GCC-box (36 genes) and AP2+B3 binding motif (51 genes) in their putative promoter regions.}
\end{figure}
(Feng et al. 2012), WRKY108 (Higashi et al. 2008) and BETA-1,3-GLUCANASE 2 (Silipo et al. 2005). This observation supports the hypothesis that AP2 domain containing transcription factors are involved in the regulation of differentially expressed genes in bbr1.

CONCLUSION

Japonica rice mutant bbr1 which is selected by mutant screening in this study was characterized. The up- and down-regulated genes identified in Xoo resistant bbr1 may play a role in resistance. To investigate the Xoo resistance of the gamma-ray irradiated mutant line, bbr1, we performed the commercial rice gene chip analysis. Through DNA microarray analysis, we found significantly elevated expression of AP2 domain containing transcription factor genes, RAP2.6 (Os08g0474000) and CBF (Os06g0127100). Because the primary role of ERF and CBFs/DREBs is the regulation of a large number of target stress-responsive genes in biotic and abiotic stress, the enriched expression of the transcription factors suggests that they might be involved in the regulation of differentially expressed genes in bbr1. Also, the suppression of ROS scavenging enzyme, class III POD genes (Os03g023500, Os07g0677100, Os07g0677200, and Os08g0113000) was detected from DNA microarray analysis of bbr1. Down-regulation of PODs in bbr1 may contribute to the resistance against the invading pathogen. A lower expression of four PODs in bbr1 mutant than wild-type implies that increased ROS may have influence on the defense against Xoo invasion. These observations support the hypothesis that the genes mentioned above, contribute to bacterial blight resistance in bbr1 mutant.

ACKNOWLEDGMENTS

This work was supported by grants from the Technology Development Program for Agriculture and Forestry, Ministry of Agriculture, Food and Rural Affairs, Republic of Korea, and the KRIBB Research Initiative Program.

REFERENCES

Ahloowalia BS, Maluszynski M, Nichterlein K. 2004. Global impact of mutation-derived varieties. Euphytica 135: 187-204.

Cho SK, Jung KW, Jeung JU, Kang KH, Shim KS, You MK, Yoo KS, Ok SH, Shin JS. 2005. Analysis of differentially expressed transcripts from planthopper-infested wild rice (Oryza minuta). Plant Cell Rep. 24: 59-67.

Chu S, DeRisi J, Eisen M, Mulholland J, Botstein D, Brown PO, Herskowitz I. 1998. The transcriptional program of sporulation in budding yeast. Science. 282: 699-705.

Chu Z, Yuan M, Yao J, Ge X, Yuan B, Xu C, Li X, Fu B, Li Z, Bennetzen JL, Zhang Q, Wang S. 2006. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev. 20: 1250-1255.

Dai LY, Liu XL, Xiao YH, Wang GL. 2007. Recent advances in cloning and characterization of disease resistance genes in rice. J. Integr. Plant Biol. 49: 112-119.

Desaki Y, Miya A, Venkatesh B, Tsuyumu S, Yamane H, Kaku H, Minami E, Shibuya N. 2006. Bacterial lipopolysaccharides induce defense responses associated with programmed cell death in rice cells. Plant Cell Physiol. 47: 1530-1540.

Devoto A, Piffanelli P, Nilsson I, Wallin E, Panstruga R, von Heijne G, Schulze-Lefert P. 1999. Topology, subcellular localization, and sequence diversity of the Mlo family in plants. J. Biol. Chem. 274: 34993-35004.

Feng F, Yang F, Rong W, Wu X, Zhang J, Chen S, He C, Zhou JM. 2012. A Xanthomonas uridine 5'-monophosphate transferase inhibits plant immune kinases. Nature 485: 114-118.

Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M. 2000. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12: 393-404.

Fujiwara S, Tanaka N, Kaneda T, Takayama S, Isogai A, Che FS. 2004. Rice cDNA microarray-based gene expression profiling of the response to flagellin perception in cultured rice cells. Mol. Plant-Microbe Interact. 17:
Microarray Analysis of bacterial blight resistance 1 mutant rice infected with Xanthomonas oryzae pv. oryzae • 363

Kagaya Y, Ohmiya K, Hattori T. 1999. RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res. 27: 470-478.

Kauffman HE, Reddy APK, Hsieh SPV, Marca SD. 1973. An improved technique for evaluation of resistance of rice varieties to Xanthomonas oryzae. Plant Dis. Rep. 57: 537-541.

Kim KM, Cho SK, Shin SH, Kim GT, Lee JH, Oh BJ, Kang KH, Hong JC, Choi JY, Shin JS, Chung YS. 2005. Analysis of differentially expressed transcripts of fungal elicitor- and wound-treated wild rice (Oryza grandiglumis). J. Plant Res. 118: 347-354.

Hirayama T, Shinozaki K. 2010. Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J. 61: 1041-1052.

Iyer AS, McCouch SR. 2004. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Mol Plant Microbe Interact. 17: 1348-1354.

Jach G, Gornhardt B, Mundy J, Logemann J, Pinsdorf E, Leah R, Schell J, Maas C. 1995. Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J. 8: 97-109.

Jiang GH, Xia ZH, Zhou YL, Wan J, Li DY, Chen RS, Zhai WX, Zhu LH. 2006. Testifying the rice bacterial blight resistance gene xa5 by genetic complementation and further analyzing xa5 (Xa5) in comparison with its homolog TFIIAgamma1. Mol. Genet. Genomics 275: 354-366.
185-186: 208-217.

Mosblech A, Feussner I, Heilmann I. 2009. Oxylipins: structurally diverse metabolites from fatty acid oxidation. Plant Physiol. Biochem. 47: 511-517.

Passardi F, Cosio C, Penel C, Dunand C. 2005. Peroxidases have more functions than a Swiss army knife. Plant Cell Rep. 24: 255-265.

Piffanelli P, Zhou F, Casais C, Orme J, Jarosc B, Schaffrath U, Collins NC, Panstruga R, Schulze-Lefert P. 2002. The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli. Plant Physiol. 129: 1076-1085.

Saibo NJ, Lourenco T, Oliveira MM. 2009. Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Ann. Bot. 103: 609-623.

Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 290: 998-1009.

Santos AP, Serra T, Figueiredo DD, Barros P, Lourenco T, Chander S, Oliveira MM, Saibo NJ. 2011. Transcription regulation of abiotic stress responses in rice: a combined action of transcription factors and epigenetic mechanisms. OMICS 15: 839-857.

Scharf KD, Berberich T, Ebersberger I, Nover L. 2012. The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim. Biophys. Acta. 1819: 104-119.

Schena M, Shalon D, Davis RW, Brown PO. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467-470.

Schultheiss H, Dechert C, Kogel KH, Huckelhoven R. 2002. A small GTP-binding host protein is required for entry of powdery mildew fungus into epidermal cells of barley. Plant Physiol. 128: 1447-1454.

Sela-Buurlage MB, Ponstein AS, Bres-Vloemans SA, Melchers LS, Van Den Elzen P, Cornelissen B. 1993. Only Specific Tobacco (Nicotiana tabacum) Chitinases and β-[1,3-Glucanases Exhibit Antifungal Activity. Plant Physiol. 101: 857-863.

Shimizu T, Satoh K, Kikuchi S, Omura T. 2007. The repression of cell wall- and plastid-related genes and the induction of defense-related genes in rice plants infected with Rice dwarf virus. Mol. Plant-Microbe Interact. 20: 247-254.

Silipo A, Molinaro A, Sturiale L, Dow JM, Erbs G, Lanzetta R, Newman MA, Parrilli M. 2005. The elicitation of plant innate immunity by lipooligosaccharide of Xanthomonas campestris. J. Biol. Chem. 280: 33660-33668.

Singh K, Foley RC, Onate-Sanchez L. 2002. Transcription factors in plant defense and stress responses. Curr. Opin. Plant Biol. 5: 430-436.

Sohn KH, Lee SC, Jung HW, Hong JK, Hwang BK. 2006. Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance. Plant Mol. Biol. 61: 897-915.

Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P. 1995. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270: 1804-1806.

Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S, Zhang Q. 2004. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J. 37: 517-527.

Tu J, Zhang G, Datta K, Xu C, He Y, Zhang Q, Khush GS, Datta SK. 2000. Field performance of transgenic elite commercial hybrid rice expressing bacillus thuringiensis delta-endotoxin. Natl. Biotechnol. 18: 1101-1104.

van Loon LC, Rep M, Pieterse CM. 2006. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44: 135-162.

Xin XF, Nomura K, Underwood W, He SY. 2013. Induction and suppression of PEN3 focal accumulation during Pseudomonas syringae pv. tomato DC3000 infection of Arabidopsis. Mol. Plant-Microbe Interact. 26: 861-867.

Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang ZX, Kono I, Kurata N, Yano M, Iwata N, Sasaki T. 1998. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc. Natl. Acad. Sci. U S A. 95: 1663-1668.

Zhai W, Wang W, Zhou Y, Li X, Zheng X, Zhang Q,
Wang G, Zhu L. 2002. Breeding bacterial blight-resistant hybrid rice with the cloned bacterial blight resistance gene Xa21. Mol. Breed. 8: 285-293.

Zhang S, Song W-Y, Chen L, Ruan D, Taylor N, Ronald P, Beachy R, Fauquet C. 1998. Transgenic elite Indica rice varieties, resistant to Xanthomonas oryzae pv. oryzae. Mol. Breed. 4: 551-558.
Gene Description	Gene Title	AGI Number	putative promoter region^a	Number of GCC-box in putative promoter region	Average fold change^b
			GCCGCC GCCGCGC Total No	NT Xoo	
Transcription factor activity					
MYB family transcription factor	Os01g0863300	AT2G38090	3	3 6	7.5 8.72
MYB family transcription factor	Os02g0104500	AT1G76890	5	10 15	-5.62 -2.1
Response to stress					
HSF-type DNA-binding domain containing protein	Os06g0553100	AT3G24520	0	4 4	2.69 24.93
VQ domain containing protein	Os01g0278000	AT2G41010	1	1 2	4.84 7.29
oxidoreductase/ transition metal ion binding protein	Os09g0445600	AT5G19875	1	5 6	3.57 6.87
Similar to F-BOX STRESS INDUCED 2	Os02g0561300	AT4G21510	5	3 8	3.64 6.57
Calmodulin-related calcium sensor protein	Os01g0955100	AT1G76640	1	2	7.24 6.32
phosphate carrier protein	Os09g0454600	AT3G48850	4	2 6	3.86 6.19
diacylglycerol kinase 1	Os12g0240000	AT5G63770	1	1 2	2.31 2.75
PR (pathogenesis-related) peptide	Os12g0347800	AT2G38870	12	5 17	-3.81 1.06
Protein modification process					
protein phosphatase 2C	Os03g0268600	AT2G29380	1	2 3	7.29 9.99
STE_MEKK_ste11_MAP3K.6 - STE kinases receptor protein kinase CRINKLY4 precursor protein kinase	Os01g0699500	AT5G55090	2	0 2	9.48 9.47
STE_MEKK_ste11_MAP3K.4 - STE kinases protein phosphatase 2C	Os01g0699100	AT5G55090	2	0 4	3.64 6.57
Nucleotide binding					
WD domain containing protein	Os01g0383700	AT4G03020	2	0 2	4.42 5.19
Development					
late embryogenesis abundant protein D-34	Os06g0343100	AT3G22490	4	3 7	5.39 15.56
senescence-associated gene 29	Os02g0513100	AT3G48740	2	0 2	4.47 10.93
Auxin regulated protein?	Os01g0851100	AT2G37980	1	1 2	3.86 6.41
Metabolic process					
fringe-related protein	Os03g0269900	AT2G37730	3	2 5	3.86 6.94
gibberellin receptor GID1L2	Os03g0790500	AT5G05670	1	1 2	4.76 6.82
Anthranilate synthase alpha 2 subunit	Os03g0264400	AT2G29690	2	0 2	3.4 3.23
starch synthase	Os06g0133000	AT1G32900	1	1 2	13.45 1.23
Unknown function					
transposon protein	Os01g0186900	AT2G29380	0	3 3	17.03 15.89
expressed protein	Os01g0305200	AT1G69510	1	9 10	4.3 9.88
RPGR, putative	Os03g0296200	AT2G29380	1	1 2	6.77 8.97
expressed protein	Os02g0527200	AT2G27830	2	4 6	5.1 8.57
expressed protein	Os02g0601000	AT2G27830	4	0 4	4.99 6.54
expressed protein	Os06g0133000	AT1G32900	4	2 6	4.3 4.13
expressed protein	Os01g0138500	AT2G01260	0	1 1	2.88 4.13
DUF966 domain containing protein	Os01g0975000	AT5G59790	2	3 5	3.48 4.04
cyclase/dehydrase family protein	Os01g0772400	AT4G17650	1	3 4	3.36 3.38
expressed protein	Os12g0209700	AT4G10930	2	3 5	-2.31 -2.19
expressed protein	Os11g0307600	AT4G10930	2	0 2	-7.41 -2.37
Similar to pnn protein	Os12g0516700	AT4G10930	1	23 24	-3.88 -3.67

^a Occurrence of GCC-box (GCCGCC or GGCGGC) in 2 kb upstream region of differentially expressed genes in bbr1 mutant compared to wild type.

^b Average values of Xoo inoculated bbr1 samples, compared to WT samples, from two independent microarray analysis. Numbers show the factor of change between wild type and mutant after Xoo inoculation or no treatment (NT); positive values represent up-regulation (e. g. 3 = 3-fold increase), negative values down-regulation (e. g. -3 = 3-fold decrease).
Table S2. Seventy-nine DRE binding domain containing differentially expressed genes in bbr1 mutant compared to wild type.

Description	Gene Title	AGI Number	Number of DRE-box in putative promoter regiona	Average fold changeb	CCGAC	GTCGG	Total No.	NT	Xoo
Transcription factor activity	Tify domain containing protein	Os10g0391400	No	5	3	8	2.98	85.24	
	transcription factor BHLH92-like	Os03g0741100	No	1	1	2	2.4	35.02	
	Heat shock transcription factor 31	Os02g0527300	AT2G26150	0	1	1	3.05	26.01	
	WRKY DNA -binding domain	Os01g0821300	No	2	6	8	2.14	25.72	
	Similar to MCB2 protein (Myb-type)	Os01g0863300	AT5G04760	4	0	4	3.39	19.37	
	Chitin-inducible gibberellin-responsive protein	Os02g0682300	No	1	0	1	2.65	8.86	
	Tify domain containing protein	Os09g0439200	No	2	1	3	3.07	8.84	
	MYC/bHLH transcription factor-like	Os06g0164400	AT5G67110	2	1	3	2.51	6.05	
	NAM protein domain containing protein	Os12g0123800	AT5G18270	0	1	1	2.85	4.36	
	Avr9Cf-9 rapidly elicited protein 74	Os06g0248500	No	4	1	5	3.24	95.27	
	EF-hand Ca2+-binding protein CCD1	Os09g0434600	AT5G14040	1	2	3	2.46	9.71	
	RPM1-INDUCED PROTEIN KINASE	Os09g0442100	AT2G05940	2	0	2	2.56	13.33	
	expressed protein	Os01g0582600	AT5G12010	2	1	3	2.18	9.38	
	putative beta-1,3 glucanase	Os09g0542900	AT1G76070	1	1	2	2.23	9.32	
	heat shock protein Oshsp18.0	Os03g0267000	AT3G46230	0	5	5	2.54	4.68	
	Dehydrin Rab25	Os01g0702500	No	2	1	3	4.59	3.68	
	subtilisin-chymotrypsin inhibitor-2A-like	Os12g0347800	No	3	6	9	-3.81	1.06	
Response to stress	protein kinase domain containing protein	Os01g0699600	No	0	1	1	3.65	70.53	
	protein kinase domain containing protein.	Os01g0699500	No	2	0	2	3.25	26.42	
	HIGHLY ABA-INDUCED PP2C GENE 3	Os03g0268600	AT2G9380	3	1	4	3.24	22.68	
	Protein kinase	Os02g0165100	No	2	1	3	2.76	20.92	
	Similar to Receptor kinase-like	Os08g0374600	No	1	1	2	3.02	14.39	
	MAPKKK18	Os01g0699400	AT1G05100	2	0	2	2.93	11.11	
	Oryza sativa MAP kinase BIMK1	Os03g0285800	No	3	2	5	2.61	10.7	
	protein kinase domain containing protein	Os01g0699100	AT2G9380	4	3	7	3.61	6.43	
	diacylglycerol kinase	Os12g0224000	No	2	1	3	2.04	3.19	
	Similar to Chaperone protein dnaJ 1	Os03g0822800	AT5G59610	1	1	2	2.6	-1.12	
Protein modification process	Similar to Viviparous-14	Os07g0154100	No	0	1	1	2.48	16.14	
	Mog1/PsbP	Os01g0934400	AT3G05410	1	2	3	4.89	8.98	
	GRANULE BOUND STARCH SYNTHASE 1	Os06g0133000	AT1G32900	2	2	4	13.45	1.23	
	similar to Cytochrome P450	Os07g0635500	AT2G46960	6	1	7	2.82	6.25	
Biosynthetic process	similar to Viviparous-14	Os07g0154100	No	0	1	1	2.48	16.14	
	Mog1/PsbP	Os01g0934400	AT3G05410	1	2	3	4.89	8.98	
	GRANULE BOUND STARCH SYNTHASE 1	Os06g0133000	AT1G32900	2	2	4	13.45	1.23	
	Similar to Cytochrome P450	Os07g0635500	AT2G46960	6	1	7	2.82	6.25	
Development	zinc finger protein ZFP15 mRNA	Os03g0820400	No	4	2	6	3.91	34.75	
	Seed maturation protein domain containing protein	Os06g0341300	AT3G22490	1	2	3	4.37	19.29	
	CALMODULIN LIKE 39	Os01g0955100	AT1G76640	1	1	2	2.53	18.25	
	Late embryogenesis abundant protein	Os01g0705200	No	1	0	1	3.21	6.62	
Description	Gene Title	AGI Number	Number of DRE-box in putative promoter region	Average fold change					
---------------------------------------	-----------------------------	------------	---	---------------------					
			CCGAC	GTCGG	Total No.	NT	Xoo		
Gene regulation									
arginine/serine-rich 12	Os12g0516700		1	3	4	3.73	248.65		
Metabolic process									
hypothetical protein	Os01g0952900	No	1	2	3	2.87	15.91		
Nuclease, Phoaphatase	Os01g0716800	AT1G71710	2	0	2	2.83	11.52		
a/β hydrolase fold-3 domain containing protein	Os03g0790500	AT5G06570	0	1	2	2.91	6.35		
putative 4-coumarate-CoA ligase	Os01g0901600	AT5G63380	1	1	2	2.25	5.04		
Similar to H-ATPase	Os03g0689300	AT5G26270	1	1	1	3.53	4.88		
Transport									
peptidylprolyl isomerase ROC7	Os06g0708300	AT4G39220	2	0	2	2.65	10.09		
Similar to MtN3 protein precursor	Os02g0513100	AT5G08080	1	1	2	5.73	8.59		
putative aki 1 protein	Os01g0851100	AT2G37980	4	0	4	3.47	6.31		
Anthranilate synthase component I family protein	Os03g0272400	AT4G17650	4	2	6	6.64	9.28		
Similar to GTP-binding nuclear protein Ran1B	Os06g0600301	AT5G55190	5	2	7	2.34	5.79		
Nucleotide binding									
WD-40 repeat family protein	Os01g0383700	AT4G03020	4	2	6	3.56	6.49		
Unknown function									
ZIM domain containing protein	Os03g0181100	No	3	5	8	2.73	56.55		
hypothetical protein	Os06g0133500	No	1	0	1	3.01	45.58		
hypothetical protein	Os02g0733900	No	1	1	2	3.47	44.9		
DWNN domain domain containing protein	Os03g0693400	No	1	2	3	2.91	19.86		
hypothetical protein	Os02g0527200	No	4	4	8	2.55	17.3		
hypothetical protein	Os02g0601000	No	3	5	8	2.47	13.29		
hypothetical protein	Os01g0305200	No	4	5	9	3.23	13.21		
hypothetical protein	Os01g0121600	No	0	2	2	2.51	10.85		
hypothetical protein	Os03g0296200	No	4	0	4	6.64	9.28		
hypothetical protein	Os07g0115500	No	1	1	2	2.58	9.08		
hypothetical protein	Os06g0133300	No	0	1	1	2.34	7.59		
DUF604 family protein	Os03g0269900	AT2G37730	1	0	1	3.6	7.49		
DUF966 family protein	Os01g0975000	No	2	2	4	2.24	6.31		
Cyclin-like F-box domain containing protein	Os07g0561300	No	5	2	7	3.9	6.17		
hypothetical protein	Os09g0445600	AT2G31940	0	2	2	4.22	5.75		
DUF789 family protein	Os01g0138500	AT2G01260	4	4	8	2.28	5.22		
TonB box domain containing protein	Os09g0532000	No	1	0	1	2.35	4.15		
Conserved hypothetical protein	Os01g0121500	No	1	0	1	2.88	3.07		
hypothetical protein	Os07g0516400	No	1	2	3	4.83	3		
metallothionein-like type 2 (OsMT-2) mRNA	Os01g0492000	No	1	3	4	2.77	2.78		
hypothetical protein	Os12g0209700	No	4	2	6	-2.36	-2.14		
Hydroxyproline-rich glycoprotein DZ-HRGP	Os11g0307600	No	3	0	3	-4.59	-2.89		
similar to GT-2 factor	Os02g0104500	No	2	0	2	-5.62	-2.1		
hypothetical protein	Os02g0103800	No	3	3	6	-2.08	-14.42		

*a Occurrence of DRE binding domain (CCGAC or GTCGG) in 2 kb region up stream of differentially expressed genes in bbr1 mutant compared to wild type.

b Average values of Xoo inoculated bbr1 samples, compared to WT samples, from two independent microarray analysis. Numbers show the factor of change between wild type and mutant after Xoo inoculation or no treatment (NT); positive values represent up-regulation (e.g. 3 = 3-fold increase), negative values down-regulation (e.g. -3 = 3-fold decrease).
Table S3. Fifty-one RAV1 binding domain containing differentially expressed genes in **bbr1** mutant compared to wild type.

Gene Description	Gene Title	AGI Number	Number of RAV-binding site in putative promoter region	Average fold change			
Transcription factor activity							
WRKY108, expressed	Os01g05821300	AT4G11070	1 1 2	5.86 9.35			
HSF-type DNA-binding domain containing protein	Os06g0553100	AT3G24520	1 0 1	2.69 4.03			
Response to stress							
U-box protein CMPG1	Os08g0248500	AT5G37490	0 1 1	14.72 20.82			
cytochrome P450	Os12g0150200	AT2G27690	1 1 2	14.57 18.57			
Similar to ATL31 and ATL6	Os02g0759400	AT5G27420	3 0 3	9.25 12.55			
HSF-type DNA-binding domain containing protein	Os02g0527300	AT5G03720	1 1 2	6.84 11.51			
Similar to RAP 2.4	Os03g0191900	AT1G78080	1 0 1	14.72 20.82			
late embryogenesis abundant protein, group 3	Os01g0705200	AT3G15670	1 0 1	2.87 7.34			
phosphate carrier protein	Os09g0445600	AT5G19875	1 0 1	3.57 6.87			
Similar to RPM1-induced kinase	Os09g0442100	AT2G05940	1 0 1	3.86 6.19			
Similar to PEN3	Os01g0693000	AT1G59870	1 0 1	3.86 6.19			
expressed protein	Os09g0454600	AT3G48850	1 0 1	3.86 6.19			
Similar to 4CL	Os08g0442000	AT5G27690	1 0 1	3.86 6.19			
glutamate decarboxylase	Os09g0454600	AT3G48850	1 0 1	3.86 6.19			
Similar to PR-6 proteinase inhibitor family	Os12g0437800	AT2G38870	1 0 1	3.86 6.19			
heat shock protein DnaJ	Os03g0822800	AT5G5610	1 0 1	2.6 -1.12			
Protein modification process							
STE_MEKK_ste11_MAP3K.7 - STE kinases	Os01g0699600	AT2G32510	1 2 3	18.13 14.07			
STE_MEKK_ste11_MAP3K.6 - STE kinases	Os01g0699500	AT5G55090	0 3 3	9.48 9			
receptor protein kinase CRINKLY4 precursor protein kinase	Os08g0374600	AT3G55950	0 1 1	4.94 8.75			
protein phosphatase 2C	Os09g0326200	AT5G17330	2 1 3	4.27 3.46			
STE_MEKK_ste11_MAP3K.4 - STE kinases	Os01g0699100	AT1G59870	1 0 1	6.66 8.63			
STE_MEKK_ste11_MAP3K.5 - STE kinases	Os01g0699400	AT5G55090	1 0 1	4.63 6.99			
protein phosphatase 2C	Os01g0583000	AT1G59870	1 0 1	6.66 8.63			
Nucleotide binding							
CCHC-type zinc finger	Os03g0659400	AT5G47340	0 1 1	6.23 9.25			
WD domain	Os01g0383700	AT4G03020	1 0 1	4.42 5.19			
Development							
EF hand family protein	Os06g0863000	AT2G46600	1 0 1	7.94 6.94			
growth regulator related protein	Os01g0851100	AT2G37980	1 0 1	3.86 6.41			
glucan endo-1,3-beta-glucosidase precursor	Os03g0792800	AT2G19440	1 0 1	3.13 5.9			
senescence-inducible chloroplast stay-green protein	Os09g0532000	AT4G11910	0 1 1	2.72 3.57			
Metabolic process							
lumenal PsbP	Os01g0934400	AT3G05410	0 2 2	5.08 12.04			
expressed protein	Os06g0203600	AT2G26310	1 0 1	9.19 11.35			
AMP-binding domain containing protein	Os01g0901600	AT5G63380	1 0 1	2.69 4.2			
Transport							
white-brown complex homolog protein	Os01g0121600	AT2G01320	1 2 3	4.87 5.54			
Rer1 protein	Os06g0708300	AT4G39220	1 0 1	4.58 5.8			
ras-related protein	Os06g0600300	AT5G55190	0 1 1	2.17 2.06			
Gene Description	Gene Title	AGI Number	Number of RAV-binding site in putative promoter region^a	Average fold change^b			
----------------------------------	---------------	------------	--	----------------------------------			
			CAACA+ CACCTG	TGTTG+ CAGGTG	Total NO	NT	Xoo
Unknown function			CAACA+ CACCTG	TGTTG+ CAGGTG	Total NO	NT	Xoo
expressed protein	Os01g0952900	AT5G12340	1	0	1	27.86	33.01
transposon protein	Os01g0186900	AT5G12340	2	0	2	17.09	15.89
expressed protein	Os06g0133500	AT5G12340	1	0	1	10.78	12.64
expressed protein	Os01g0305200	AT1G69510	1	0	1	4.3	9.88
RPGR, putative,	Os03g0296200	AT1G69510	1	0	1	6.82	9
expressed protein	Os02g0527200	AT2G27830	1	0	1	5.1	8.57
expressed protein	Os02g0601000	AT2G27830	1	1	2	4.99	6.5
expressed protein	Os07g0516400	AT2G27830	1	0	1	2.27	6.34
expressed protein	Os01g0138500	AT2G01260	1	0	1	2.88	4.07
expressed protein	Os09g0542900	AT1G76070	1	0	1	5.26	3.93
transposon protein	Os01g0872900	AT1G76070	1	0	1	5.68	3.64
cyclase/dehydrase family protein	Os01g0772400	AT4G17650	0	1	1	3.36	3.38
expressed protein	Os12g0209700	AT4G10930	0	1	1	-2.31	-2.13

^a Occurrence of RAV1 binding domain (CAACA--CACCTG or TGTTG--CAGGTG) in 2 kb region upstream of differentially expressed genes in bbr1 mutant compared to wild type.

^b Average values of Xoo inoculated bbr1 samples, compared to WT samples, from two independent microarray analysis. Numbers show the factor of change between wild type and mutant after Xoo inoculation or no treatment (NT); positive values represent up-regulation (e. g. 3 = 3-fold increase), negative values down-regulation (e. g. -3 = 3-fold decrease).