From Chaotic to Order: Using Chaos Game in Mathematics Teaching

Fatih Karakuş* and Adnan Baki

*Sivas Cumhuriyet University, Education Faculty, Sivas/Turkey (ORCID: 0000-0001-9581-520X)

**Trabzon University, Faculty of Education, Trabzon/Turkey (ORCID: 0000-0002-1331-053X)

Abstract: Mathematics has a structure based on concepts and operations with a certain and logical order. The discovery of this order is one of the basic elements of doing meaningful mathematics. It is very important to prepare learning environment that allow students to connect and build relationships between mathematical concepts. In this study, “chaos game” which will enable students to build relations among patterns, probability, series and limits has been introduced in detail in the process of obtaining from irregular cases to regular cases. The Chaos game was explained in detail with examples and given some explanations on why the regular shapes formed at the end of the game. Moreover, some tasks that students will be able to use their abilities such as hypothesis, mathematical connections and deduction and to make connection among some mathematical concepts such as probability, measure, patterns and numbers were formed. Reflections from students about these tasks were also included. In this context, the tasks were applied to 44 freshman students who were attending the department of elementary mathematics education in an education faculty of a state university in Central Anatolia region and some reflections from these tasks were examined. Findings showed that the tasks enabled students to use their skills such as hypothesis, observation, mathematical connections and deduction. It was also determined that the tasks enabled students to make practice on some mathematical topics such as measurement, exponential numbers, probability and patterns.

Keywords: Chaos game, fractal, mathematical task, reflections from the classroom

DOI:10.16949/turkbilmat.541136

1. Introduction

The constructivist approach emphasizes the learner building connections among their prior and new ideas in the process of constructing their own knowledge. According to this approach, the greater the number of connections among prior and new ideas, the better the understanding (Baki, 2008). Skemp (1976) defined understanding as a measure of quality and quantity of connections that a new idea has with existing ideas. He divides understanding into two parts: relational understanding and instrumental understanding. Skemp (1976) defines instrumental understanding as knowledge of rules and procedures used in applying mathematical process without knowing the reasons. For example, students know that 6/10 can be simplified to 3/5. Moreover, they know that 6/10 is equivalent to 3/5, but not understand that 6/10 and 3/5 indicate the same quantities. Skemp (1976) also defines relational understanding as knowing what to do and why in carrying out mathematical process. Relational understanding comprises when the student realizes the properties of mathematical concepts and build connections among these properties and other mathematical concepts in his/her mind. For example, when a student classifies that the square is also a rectangle and the rectangle is also a trapezoid, it indicates that he/she has relational understanding.
Teaching, lacking in relational understanding, causes generally negative attitude and misconceptions for mathematics among students (Van De Walle, Karp & Bay-Williams, 2012). Connection has a key role in the learning of mathematical concepts and it is also one of the basic skills in teaching mathematical concepts (National Council of Teachers of Mathematics [NCTM], 2000). Activities, materials, examples and explanations used by the teacher in the teaching environment have a great role in gaining this skill. For this reason, it is very important to design environments where students can see interrelated relationships about a concept. The objectives to be created for such environments and to be brought to the students are set out in the curriculum. The deficiencies in the curriculum and the developments required by the era cause the renewal and changes in the programs from time to time.

In Turkey, the most radical reform movement in mathematics education programs has been in 2005 (Baki, 2008). As a result of the reform movement in 2005, the understanding adopted for learning and teaching mathematics has changed and the understanding that knowledge is an active product of the individual and knowledge is not independent from the individual has been accepted (Baki, 2008). In the mathematics education programs created during this period, it was emphasized that the topics were related to real life, and that students created their own knowledge based on concrete experiences and intuition (Ministry of National Education [MoNE], 2007). In line with the new understanding adopted in the curriculum, changes have been made in the topics included in the curricula. For example, for the first time in 2005 elementary mathematics curriculum, fractal geometry, a geometry different from Euclidean geometry, was included (MoNE, 2007). Fractal comes from the Latin verb “frangere”, which means “irregular, broken, complex” (Mandelbrot, 1982). Intuitively, fractals are symmetric shapes with respect to magnification (Fraboni & Moller, 2008). More mathematically, a fractal is defined as a shape which has the property of self-similarity— that is it consists of smaller copies of itself with magnification (Karakuş & Baki, 2011). In elementary mathematics curriculum, the activities of building fractals as a result of recursive iteration were included. Fractals were also in 2010 secondary school mathematics curriculum (MEB, 2010). In this curriculum, fractals were built by using transformations which were reflection, translation and rotation and finding various patterns in these shapes (Karakuş & Baki, 2011). Thus, by using fractal geometry in both elementary and secondary school mathematics curriculums, it was tried to help students to make a relationship between geometry and real life and to discover similarities and differences with Euclidean geometry by examining different geometries. Similarly, NCTM (1991) suggests that fractals should be included in mathematics curriculum and that students’ attitude and interest can be increased and students can make relationships between mathematics and nature. The fact that fractals can be constructed both geometrically and algebraically shows that they are a good application for studying the relationships between geometry and other areas of mathematics. However, in line with the updates made in mathematics curriculums, fractals were not included in both 2013 and 2017 mathematics curriculums. Although fractals are not a learning outcome in existing mathematics curriculums, they have great importance in discovering many mathematical features and employing different mathematical information in this discovery process. In the literature, it is stated that fractals help students to make different relationships both with the concepts in mathematics and with other disciplines and nature (Adams & Aslan-Tutak, 2006; Bolte, 2002; Devaney, 2004; Fraboni & Moller, 2008; Naylor, 1999; Siegrist, Dover & Piccolino, 2009; Vacc, 1999). For example, Fraboni and Moller (2008) state that students can establish relationships between different subjects of mathematics and make various discoveries while examining the Sierpinski triangle and its properties. Sierpinski triangle (Figure 1) can be constructed by using following steps:

1. Start with an equilateral triangle
2. Subdivide it into four smaller congruent equilateral triangles and remove the central triangle
3. Repeat step 2 with each of the remaining smaller triangles infinitely.

![Figure 1. The evolution of Sierpinski triangle](image)

Fraboni and Moller (2008) state that a discovery made by students with the Sierpinski triangle may be in the form of new triangles that occur at each iteration step, and determine the relationship between them and the original triangle. In order to determine this relationship, students should use the information “line joining the mid-points of two sides of a triangle is parallel to the third side and equal to half the length of the third side” (Fraboni & Moller, 2008, p. 198). With this information, they will be able to see that the triangles formed in each iteration step are equal and the triangles formed in the previous iteration step are similar to the original triangle. Thus, while students make discoveries about the Sierpinski triangle, they also make relationships for their
knowledge of equality, similarity, parallelism and mid-point theorem “line joining the mid-points of two sides of a triangle is parallel to the third side and equal to half the length of the third side”. Similarly, Nayor (1999) gave an activity in calculating the perimeter and area of the Sierpinski triangle. Nayor (1999) states that a number pattern in the form of the powers of 3 can be obtained (for the first step is 1, for second step is 3, for third step is $3^2=9$, for forth step is $3^3=27$, etc.) for the number of triangles removed while the Sierpinski triangle is formed. A similar pattern can be obtained for small black triangles formed at each iteration step. In addition, the perimeter of the Sierpinski triangle can be expressed by a divergent sequence of $3(1+3/2+(3/2)^2+(3/2)^3+\cdots+(3/2)^n)$. Since this sequence is divergent, the perimeter of the Sierpinski triangle goes to infinity. In contrast, the area of the Sierpinski triangle converges to zero. This activity shows that students make use of number patterns, exponential numbers, sequences and limit concepts when calculating the perimeter and area of the Sierpinski triangle. In addition, the shapes in Euclidean geometry have a static structure. In other words, Euclidean shapes have a certain perimeter and area. On the other hand, the Sierpinski triangle has an infinite increasing perimeter and also an area approaching towards zero. Such extraordinary situations not only attract students’ attention but also raise questions such as “how can a shape be an infinite perimeter with zero area?” or “Could there be other shapes like this?”

1.1. What is Chaos Game?

As in the studies of Fraboni and Moller (2008) and Nayor (1999), fractals are often created as a result of regular iterations. However, fractals can be created with the help of randomly situations. One of these situations that construct a fractal is chaos game. Chaos game is a game that allows students to see that certain patterns and relationships can be found in many situations randomly expressed in their environment. The rule of the game is very simple: Start with three point such as A, B and C at the vertices of an equilateral triangle and pick any point whatsoever in the triangle; this point is $z_0$ called the seed. Now roll the die. Depending upon which numbers come up, move the seed half the distance to the similarly numbered vertex. The game is played as follows:

- Roll the die, if the numbers 1 or 2 come up move the seed half distance to vertex A.
- Roll the die, if the numbers 3 or 4 come up move the seed half distance to vertex B.
- Roll the die, if the numbers 5 or 6 come up move the seed half distance to vertex C.

Repeat this procedure, each time moving the previous point half the distance to the vertex whose number turns up when the die is rolled. For three steps, the game can be played as follows: pick any point whatsoever in the triangle with the A, B and C at vertices. Roll the dice and if 3 comes up, then move the $z_0$ seed half the distance to the B vertex. Mark this point as $z_1$ and this point is the new seed. Roll the die again and 1 comes up, then move the $z_1$ seed half distance to the A vertex. Mark this point as $z_2$ and this point is the new seed. Roll the die again and 6 comes up, then move the $z_2$ seed half distance to the C vertex. Mark this point as $z_3$ (Figure 2).

Figure 2. Orbit of seed in the Chaos Game

Roll the die again and again a sequence of infinite points such as $z_0, z_1, z_2, z_3, \ldots$ is obtained. The following questions may come to mind about this sequence of points:

- Is the repetition process that creates the dots really random?
- Roll the die many hundreds of times and what will be the resulting pattern of points?

Since, when the dice is rolled, the probability of the numbers matched with the corner points is equal, the iteration process that allows the formation of dots in the game of chaos is random. In addition, the location of the first seed is also random.

As described above, what kind of shape will emerge when the chaos game is played is quite interesting. As a result of the randomness of the game and the sequence of dots behaving randomly, it may be thought the
resulting image will be a random smear of points or the points will eventually fill the entire triangle. Below are the figures formed by different number of iteration in the Chaos Game (Figure 3).

According to Figure 3, as the number of repetitions increases, resulting figure is Sierpinski triangle. This is quite unusual and interesting. Because a random geometric result emerges as a result of a random situation.

**1.2. Why does the Sierpinski triangle arise from the chaos game?**

When playing the chaos game, a starting point “seed” is picked. Suppose that the seed \( z_0 \) is in the middle of triangle ABC. When roll the die, the new seed \( z_1 \) will be in the half distance between the \( z_0 \) and one of the three corner points. Suppose, roll the die and 6 comes up. In this case, the \( z_1 \) seed close to C vertex and would be in the middle of the 3 small triangles formed in the first iteration of the Sierpinski triangle (Figure 4).

![Figure 4. Location of \( z_1 \) seed in the Chaos Game.](image)

Similarly, the new seed \( z_2 \) will be in the half distance between the \( z_1 \) and one of the three corner points. Suppose, roll the die and 4 comes up. In this case, the \( z_2 \) seed close to B vertex and would be in the middle of the 9 small triangles formed in the second iteration of the Sierpinski triangle (Figure 5).

![Figure 5. Location of \( z_2 \) seed in the Chaos Game](image)

Again play the game, the new seed \( z_3 \) will be in the half distance between the \( z_2 \) and one of the three corner points. Suppose, roll the die and 1 comes up. In this case, the \( z_3 \) seed close to A vertex and would be in the middle of the 27 small triangles formed in the third iteration of the Sierpinski triangle (Figure 6).
Similarly, the new seed $z_4$ will be in the middle of the 81 small triangles formed in the third iteration of the Sierpinski triangle. Thus, the $z_1$, $z_2$, $z_3$,... points will be in the triangles formed in the different iteration of the Sierpinski triangle. The points will lie smaller triangles and these triangles very quickly become microscopic in size. So, the orbit looks like it lies on Sierpinski triangle.

Chaos game which will enable students to build relations among patterns, probability, series and limits has been introduced in detail in the process of obtaining from irregular cases to regular cases (Devaney, 2004). The purpose of this study was to prepare tasks in which students build relations among mathematical concepts and to give reflections from the implementation of these activities. The problems of this study were as follows:

- What are the reflections from students about tasks?
- When the tasks were implemented, what kind of mathematical relationships do the students build?

The Chaos game was explained in detail with examples and given some explanations on why the regular shapes formed at the end of the game. Moreover, some tasks that students will be able to use their abilities such as hypothesis, mathematical connections and deduction and to make connection among some mathematical concepts such as probability, measure, patterns and numbers were formed. In this context, the tasks were applied to students and some reflections from these tasks were examined.

2. Method

The research methodology of this study was a case study, since students design activities that will create different associations between mathematical concepts in chaos and examine the associations of elementary school mathematics freshmen students towards these activities. Case studies give the researcher the opportunity to describe the special cases examined with a special focus on a very specific subject or situation, and to explain the cause-effect relationships between the variables (McMillan & Schumacher, 2014).

2.1. Sample

The sample of this study has been determined by convenience sampling, which is one of the non-random sampling methods. The reason for choosing the convenience sampling method in the study is that the group to be examined is accessible and practicable due to the limitations in terms of time, money and labor (McMillan & Schumacher, 2014). The participants of this study consisted of 44 freshman students who were attending department of elementary mathematics education in an education faculty of a state university in Central Anatolia region. 36 of these students are women and 8 are men. None of the students have any prior knowledge of the chaos game.

2.2. Data Collection

Data were collected from students’ written explanations and focus group interviews. Three tasks were formed for chaos game. The aim of the first task was to ensure that students can recognize regular shapes formed at the end of a random process. Thus, students will be created an understanding on chaos and chaotic thinking. The aim of the second task was to make a connection between chaos game and Sierpinski triangle. The aim of the last task was about the probability of the roll a die and construction of Sierpinski triangle. The tasks were prepared taking into account the development steps of a task in the study of Baki (2008). After the tasks were prepared, these tasks were presented to the two academics who were expert about fractals and also completed their doctoral education in the field of mathematics education. Experts have stated that the tasks are generally appropriate, but some minor corrections can be made. For example, it was stated that it would be more appropriate for students to enter their own values in addition to the probability values given in task 3. For this purpose, a place is reserved for students to write and examine their own values under the probability values given in task 3. According to the opinions of the experts, the final arrangements were made in the activities and application started. Before applying the tasks, students were separated into eleven groups and each group consists of four students. During the implementation of the tasks, each group was asked to fill in the activity sheets in line with the guidelines and explain the reasons for the results they obtained. In the second stage of data
collection, focus group interviews were conducted with 16 students in 4 groups who participated in the study and volunteered. The purpose of the focus group discussion is to reveal the thoughts of the students that do not appear on the activity sheets, to examine the reasons of the answers they have given and to discuss their answers. The focus of the group discussions is the answers given by the students to the activities. Therefore, the students were asked questions such as, “How did you get this result?”, “What did you observe?”, “Why did you write this answer?”. The aims of the questions are to reveal what kind of thinking processes students have. Focus group interviews were recorded on audio and each interview lasted an average of 30 minutes.

2.3. Implementation of the tasks

Before applying the tasks, students were separated into eleven groups and each group consists of four students. While the students were doing the activities as a group work, one of the researchers guided the students by walking between the groups, with clue questions and guidance when the students had difficulties. The researcher who carried out the application is a mathematics educator experienced in fractals. The researcher has many studies in national and international refereed journals about fractals and teaching fractals. The activities were carried out for a total of 4 class hours, 2 class hours per week, for 2 weeks. In the implementation of the activities, a computer laboratory was used and a computer connected to the internet was given to each group. The first activity lasted two hours and students played chaos game with the help of transparent paper and pencil. The reason for playing the game in this way is to make students realize that the movement of the dots is random and the probability of rolling dice is equal. In addition, it is aimed to develop skills such as hypothesis, observation and inference about what kind of shapes will be formed at the end of the game. After playing the game on paper, the students were asked to turn on the computers and they were allowed to play the game on the website http://www.shodor.org/interactivate/activities/TheChaosGame/. Since the website allows more points to be formed in a short time, it provides a more accurate Sierpinski triangle. The second activity lasted one hour and the students were aimed to establish a relationship between the Chaos game and the Sierpinski triangle and to realize how the Sierpinski triangle formed as a result of the movements of the points in the game. In this activity, students are expected to use their skills such as pattern finding, prediction and inference. The last activity lasted 1 lesson and once more http://www.shodor.org/interactivate/activities/TheChaosGame/ website was used. In this activity, different probability states of the numbers in the dice were written in the program on the website and the students observed the shapes that occurred in each probability case and the activity also aimed to determine the conditions of the formation of the Sierpinski triangle as a result of these observations.

2.4. Data analysis

Students’ explanations for each task were compared and they divided into two categories as right explanations and wrong explanations. Then, each category was examined in its own way and the reflections from the experiences of the students were presented descriptively. For this purpose, direct quotations were excerpted from the explanations of students. The data obtained from the focus group interviews were presented descriptively to support the responses of the students to the tasks. In order to ensure the internal validity, the control of the data obtained from the focus group interviews was done with participant confirmation (Fraenkel & Wallen, 2011). In addition, data triangulations (Cohen, Manion & Morrison, 2000) was made using both the responses to the activities and the data obtained from the focus group interviews. To ensure external validity, quotations from students’ answers and focus group interviews are included in the findings section.

3. Findings

3.1. Reflections from the “Chaos Game”

This activity is designed to enable students to see that regular shapes can occur at the end of a random process, thereby creating an understanding of chaotic thinking. While the first part of the activity was held in paper-pencil environment, the second part was held in computer environment. Playing the game primarily in paper-pencil environment helps students both see the movement of the dots and realize that the process is random. The randomization of the starting point in the chaos game and the randomness of the numbers in the dice throw causes a perception that a triangle consisting of random points may be formed at the end of the process. At the beginning of the activity all groups stated that, a triangle covered with dots will be formed as a result of the game. For instance, the findings from the focus group interview with Group 1 are presented below:

Researcher: In the beginning, when you were playing the game, what kind of shape did you think would occur?
Group 1: We thought that a triangle would be formed which was not completely clear.
Researcher: Why did you think such a shape would occur?
Group 1: We marked a random point between points A, B, C. Since we do not know what the number from the dice will be, we first thought that a random shape would be formed. Then we saw that no point overlapped, and all the points remained inside. Therefore, we thought that a triangle filled with dots would form.
When groups put the markings they made on transparent papers (see Figure 7) on top of each other and combined them, they obtained the observations in Table 1.

Figure 7. A student’s markings for points in the chaos game

| Observations                                                                 | f |
|------------------------------------------------------------------------------|---|
| Too many points did not fall where the triangle’s center of gravity is.       | 3 |
| The points were concentrated in certain places instead of the middle of the triangle. | 4 |
| The middle of the triangle remained empty.                                   | 8 |

Table 1 shows that when the number of points in the game increases, some points decrease less in the inner region of the triangle and the points towards the edges are increased. For instance, the findings from the focus group interview with Group 1 are presented below.

**Researcher:** What did you observe when you add your papers up with your group friends?

**Group1:** It was not exactly obvious, but we noticed that there is a gap in the middle of the triangle. The points were not increased here.

**Researcher:** Where were the points increased?

**Group1:** The dots were clustered at the points that form the corners. There were gaps in certain places.

**Researcher:** Why may there be less points in the middle of the triangle?

**Group1:** We thought this as a group. Actually, we don’t know why. However, it may be related to taking half of the distances each time.

**Researcher:** Why might it be about taking half of the distances?

**Group1:** The point we choose does not go out of the triangle and the points are getting closer to each other. The distance between the dots decreases with each roll of dice. This causes the points to accumulate in certain places. It may be because of this. I am not sure.

The explanations above show that the students realize that a triangle filled with dots will not occur at the end of the game and that there are gaps in some places. It is obvious that there are also inferences about the reasons for these gaps. When they played the game of Chaos on their website, they quickly observed that the Sierpinski triangle formed at the end of the game. In this context, the interview with Group 4 is presented below.

**Researcher:** What shape did you get when you played the game on the website?

**Group 4:** A fractal consisting of empty triangles was formed. You said your name, the Sierpinski triangle.

**Researcher:** What did you think when this shape occurred?

**Group 4:** It was very interesting. I never thought that such a shape would occur.

**Researcher:** Why might this fractal occur?

**Group 4:** I do not know the reason exactly. As we marked the dots on the paper, we saw the gap in the middle. But I had not guessed it would be this smooth. Maybe taking half the length may be the reason for this.

**Researcher:** What causes you to this thought?

**Group 4:** Looking at the shape carefully, there are intertwined triangles and they are all joined from the middle of their edges. We were also finding the midpoint of the dots in the game. We thought it might be from here.

The explanations above show that students observe that there may be a link between the rule of the game and the stages of the formation of the Sierpinski triangle.
3.2. Reflections from the activity for relationship between chaos game and Sierpinski triangle

This activity is designed for students to determine the final location of the point using their reasoning skills and to establish a relationship between the steps of the formation of the Sierpinski triangle and the number of dice rolls. In the first part of the activity, 8 groups found a correct relationship between the formation steps of the Sierpinski triangle and the number of dice rolls, while 3 groups did not find a relationship. The relationship obtained by Group 3 is presented in Figure 8.

In addition, there are groups that achieve different relationships. For instance, the relationship that Group 5 has achieved is presented in Figure 9.

In the second part of the activity, the students were expected to predict the dice that may come according to the last place where the point was found. The prediction of 10 groups were correct, and only the estimates of 1 group were incorrect. The interview with Group 4 which made the correct estimate is presented below:

**Researcher:** How did you determine the numbers on the dice?
**Group 4:** We tried to guess in reverse.

**Researcher:** Can you explain a little more? How?
**Group 4:** Since the end point is near corner B, we thought the dice rolled for the third time could be 3 or 4. Then the other point should be close to point A.

**Researcher:** Why? Why should it be close to point A.
**Group 4:** Otherwise, point 2 must fall outside the triangle, and our points are always inside the triangle.

**Researcher:** So point 2 cannot be close to C.
**Group 4:** Yes. In the other case where we take the midpoint of the distance, the point falls out. In this case, the 2nd dice may be 1 or 2.

**Researcher:** What would the first dice be then?
**Group 4:** If we continue with the same logic, the first dice should be 5 or 6, so the first point should be close to point C.

From the statements above, it is clear that the students make informed predictions using the available data without measuring

3.3. “Reflections from the “Chaos Game and Probability” activity

The purpose of this activity is to enable students to realize that the probability of the numbers in the dice rolled in the Chaos game is equal and to determine in which cases the Sierpinski triangle is formed. All groups performing the activity determined that the formation of the Sierpinski triangle depends on the probability of the numbers on the dice. For instance, the interview with Group 7 is presented below.

**Researcher:** What relationship did you determine between the probability of the numbers on the dice and the Sierpinski triangle in the game of chaos?
**Group 7:** If we want to create the full triangle, the probability of the numbers coming to each corner must be the same. Otherwise, sometimes a full triangle does not occur.

**Researcher:** What kind of shape is formed?
**Group 7:** At the points where the probability is low, the parts of the triangle with the corners become less faint, indistinct, the other parts become clearer.

**Researcher:** Does a Sierpinski triangle still form?
**Group 7:** Yes, it is formed, but not every corner has the same clarity, some places are more faint.

**Researcher:** Well, have you ever encountered a situation where the Sierpinski triangle does not occur?
**Group 7:** Yes, for example, when we make the probability 1 0 0 or 1 1 0, the Sierpinski triangle does not occur.
**Researcher:** What kind of shape is formed?

**Group 7:** In 1 0 0 all points are gathered on corner A. Since we always take half of the distance, if every time we throw 1 or 2, the dots are getting closer to corner A and become like a single point. In 1 1 0, a line segment is formed between corner A and B. The logic is the same.

**Researcher:** So what is the condition for the Sierpinski triangle to form/orinate as a result of the Chaos game?

**Group 7:** The probability of all points is the same.

The expressions above show that students realize that the probability of the numbers on the dice must be equal to form the Sierpinski triangle in the Chaos game.

### 4. Discussion, Conclusion and Suggestions

In this article, we have described chaos game and provided some tasks for students. Chaos game as a different fractal building method were explained and gave reason for the relationship between Sierpinski triangle and Chaos game. In addition, examples were given from the implementation of the tasks. Students’ experiments and reflections on the implementation of tasks were presented. Thus, the adequacy of the task was revealed.

The findings of this study indicated that most students used the observation and hypothesis abilities during the first task. The first activity was prepared for students to create perception about Chaos theory. In this activity, students are expected to realize that there may be a certain order in an event that is seen randomly. In this context, students often used their observation and hypothesis skills during the activity. The students also claimed that the shape that would appear due to the random selection of the starting point at the beginning of the game and the numbers that came in the dice roll could be a random shape. They gave some hypothesis like the final shape should be a filled triangle by dots at the end of the chaos game. However, their later observations caused these hypotheses to change. Their new claim has been that there is no point in the inner region or center of gravity of the triangle. In this context, it is clear that the first activity allows students to use their skills such as hypothesis, observation, and inference. In addition, this activity has helped students to monitor the movement of points by measuring in a repetitive process and to make inferences at the end of this process. Play the chaos game on computer revealed that the randomly generated sequence of midpoints increasingly produces a highly structured fractal shape. As the random process was repeated, they noticed that the final shape must be the Sierpinski triangle. In the renewed mathematics curriculum, emphasis is placed on preparing environments and giving examples where students will use their skills such as hypothesis, observation, correlation, and inference (MoNE, 2018a; 2018b). In addition, in studies conducted in the literature (Adams & Aslan-Tutak, 2006; Bolte, 2002; Devaney, 2004; Fraboni & Moller, 2008; Karakuş, 2015, 2016; Naylor, 1999; Siegrist et al., 2009; Vacc, 1999) it is stated that fractals help students to establish relationships between different subjects of mathematics such as similarity, logarithm, patterns, and limit, and enables them to use their skills such as hypothesis, association, and inference. The results obtained from this study are similar to the results of the studies in the literature. In the first activity, the Chaos game was played for only three points. This activity can be redesigned with a different number of points. In addition, at the end of the activity, questions can be added to students to form new claims and inferences, such as what kind of forms may occur if the game is played for a different number of points. Also, the game can be replayed for different ratios such as 1/3 or ¼ instead of ½ in the movement of the points. Activities involving these situations and reflections to be taken from students for these activities can be examined in future studies.

National Council of Teachers of Mathematics (NCTM, 2006) mentions the importance of students’ recognition, creation, and generalization of different patterns in the development of algebraic thinking. The second activity created in this study allows students to discover such patterns. Students made relationship between the number of sub-triangles and the number of the rolls of the die in the second task. Almost every group participating in the study has established correct relationships between the stages of formation of the Sierpinski triangle and the number of dice rolled. In addition, different patterns have emerged, such as the number of dice rolled and the number of triangles formed in the Sierpinski triangle. This shows that the activities designed have the potential to help students find different patterns. In addition, the second activity allows students to use their ability to make predictions and inferences, just as in the first activity. In particular, the section where the last place of the point is given and the place where it was initially asked, enables students to use these skills. In the literature (Adams & Aslan-Tutak, 2006; Fraboni & Moller, 2008; Naylor, 1999; Vacc, 1999; Karakuş, 2015), it is stated that students can reach different generalizations about the area or perimeter of the Sierpinski triangle by using exponent numbers, sequences, and limit. In this context, the results obtained from this study coincide with the results of the studies conducted in the literature.

In the last task, students established a relationship between the probabilities of the die and construction of Sierpinski triangle. Findings showed that the tasks enabled students to use their abilities such as hypothesis, observation, mathematical connections, and deduction. As a result of the activity, the students concluded that the Sierpinski triangle depends on the probability of numbers on dice which were equal probability. In addition, they
had the opportunity to observe what shapes are formed in different probability and in what cases the Sierpinski triangle does not occur. Studies in the literature (Gürbüz, 2006; İşik & Özdemir, 2014; Memnun, 2007) show that the use of concrete materials and worksheets in the teaching of probability topics has a positive effect on students’ meaningful learning and academic achievement. The reflections obtained from the activities developed in this study show that activities can help students understand probability topics. In this context, the effects of the tasks on students’ meaningful learning and academic success can be examined in future research.

The finding of this study is similar to the literature. It was also determined that the tasks enabled students to make practice on some mathematical topics such as measurement, exponential numbers, probability and patterns. The chaos game not only helps students to build Sierpinski triangle, but also provides a basis for dynamic systems and chaos theory. These tasks can enable students to show interest in or study with these concepts in their future lives. Fractal activities can be found in most NCTM Standards and mathematics curriculums. Thus, fractals can be taught separately or incorporated as examples into traditional lessons.

Chaos game does not only help students create the Sierpinski triangle. At the same time, it provides a foundation for students to realize that regular patterns will occur as a result of random situations, and thus it provides a basis for dynamic systems and chaos theory. In recent years, dynamic systems, fuzzy logic and chaotic structures are among the most frequently discussed topics in the field of mathematics. These prepared activities can allow students to show interest in or work with them in their future lives. Since one of the general objectives of mathematics education is raising future mathematicians (Baki, 2008). As a result of a random situation, the emergence of regular shapes will attract the attention of students at each grade level. Such activities will positively affect students’ interests and attitudes towards the mathematics lesson. In the studies conducted in the literature (Ünlü, 2007; Yurtbakan, Aydoğdu-İskenderoğlu ve Sesli, 2016), it is emphasized that the activities and materials to be used in the course have an impact on students’ interest in mathematics lesson. In this context, the effects of these designed activities on students’ interests and attitudes towards mathematics lesson can be examined in future studies. Students working with the activities prepared in the study have the opportunity to establish relationships between many different mathematical concepts such as probability, number sequences, patterns and measurement. NCTM (2000) emphasizes the importance of working in environments with appropriate activities, materials and examples for students to learn mathematical concepts meaningfully. In this context, the activities prepared have the potential to make different associations between students’ mathematical concepts.

In this study, the activities in which students will establish relations with patterns, probability, measurement and number sequences are included. In addition, the importance of integrating information and communication Technologies (ICT) into lessons in mathematics education programs is emphasized (MEB, 2018a; 2018b). Considering the teaching of mathematics in our country, it can be said that a traditional approach focused on teachers and the board is adopted (Baki, 2008). In the teaching of mathematics subjects, the rules and features related to the subjects are given by the presentation method, and the subjects are taught with the help of the drawings written on the blackboard. National Council of Teachers of Mathematics (NCTM, 2000) emphasizes the importance of using concrete materials, drawings and information and communication technologies in school mathematics. In the activities designed in this study, web site applications prepared for teaching purposes are included. Thus, students were enabled to use technology while establishing these relationships. Thus, the activities designed in this context will contribute to the integration of ICTs into mathematics lessons.
Düzensizlikten Dizene: Kaos Oyununun Matematik Öğretiminde Kullanılması

1. Giriş

Yapilandırıcı yaklaşım öğrencilerin kendi bilgisini inşa etmeyi sürecinde mevcut bilgileri ile yeni bilgiler arasında bağlar kurmasını vurgulamaktadır. Bu yaklaşıma göre ne zaman ki yeni bilgiler eski bilgi ile uyumlu bir şekilde ilişkilendirilir, o zaman söz konusu kavramla ilgili anlam oluşmuş olur (Baki, 2008). Skemp (1976) anlamlı işlemler anlama (instrumental understanding) ve ilişkisel anlama (relational understanding) olmak üzere ikiye ayrımıştır. Skemp (1976) işlemler anlamları gerekçelerini bilmeden kurallara matematiksel işlemler yapma becerisi olarak tanımlamaktadır. Örneğin bir öğrenci 6/10 kesrini sadeleştirerek 3/5 kesrini elde edebilir. Ancak bu durum öğrencinin denk kesir kavramı ya da 6/10 ile 3/5 kesirlerinin aynı çökülü temsıl ettiğini bildiği göstermez. Skemp (1976) ilişkisel anlamları iyi anlayacak öğrencinin matematiksel bir işlemi yaparken ne yapıldığını bilmesini kapsayan bir anlam olarak tanımlamaktadır. İlişkisel anlamın gerçekleşmesi için öğrencinin zihinde matematiksel bir kavramı oluştururken o kavrama ilgili özellikleri fark etmesi ve bu özellikleri zihindeki diğer matematiksel kavramlara ilişkilendirmesi gerekir. Örneğin, bir öğrencinin karenin aynı zamanda bir dikkörtgen ve dikkörtgenin aynı zamanda paralelkenar ile paralelkenarın aynı zamanda bir yamuk olduğu şeklinde bir sınıflandırma yaparak kavramları arasındaki ilişkileri ifade etmesi onun ilişkisel anlamanın sahip olduğunu gösterir.

Genelde ilişkisel anlamadan yoksun olarak yapılan öğretim matematiğin sevilmemesine ve öğrencilerde kavram yamgılardırın oluşması neden olmaktadır (Van De Walle, Karp ve Bay-Williams, 2012). Matematiksel kavramların anlamlandı olarak öğrenilmesinde kilit bir role sahip olan ilişkilendirme, matematiksel kavramların öğretiminde kazandırılmasını temel olarak becerileri (National Council of Teachers of Mathematics [NCTM], 2000). Bu becerinin kazandırılmasında öğretmenin öğretim ortamında kullanılmış olduğu etkinlikler, materyaller, örnekler ve açıklamalar büyük bir rol sahiptir. Bu nedenle öğrencilerin bir kavrama dair birbiririne bağlantılı iki etkeni eğitim inspectorsi öğretim ortamında tasarlanması oldukça önemlidir. Bu tür ortamların oluşturulması ve öğrencilerin zihindeki diğer matematiksel kavramların kavramı zihindeki kavramların önemi vurgulanmıştır (Millî Eğitim Bakanlığı [MEB], 2007). Öğretim programlarında temel alınma yaklaşımın değişmesi paralel olmakla programlarda olan konularda da değişiklikler yapılmıştır. Örneğin 2005 ilköğretim matematik öğretim programında ilk defa Öklid geometrisinden farklı bir geometri olan fraktal geometri yer almıştır (MEB, 2007). Fractal kelimesi “düzensiz, kırkılı, karnuşık” anlamına gelen Latince “fractus” kelimesinden gelmektedir (Mandelbrot, 1983). Sezgisel anlamda bir fraktal, belirli bir önceki seklin iki büyük ve birbirine paralel iki parçaya ayrılmış şekilde ilişkilendirilir (Karakuş ve Baki, 2011). İlköğretim programında 2010 yılında hem ilköğretim hem de ortaokul matematik programlarında fraktalların daha çok geometrik tekrarlamalar sonucunda oluşturulmuş etkinliklere yer verilmiştir. Fraktallar lise matematik öğretim programında ise 2010 yılında yer almıştır (MEB, 2010). Programda yansıma, öteleme ve dönme dönüşümlerini reflect eden fraktal şekillerin oluşturulması bu kullanışlara bu şekiller içerisinde yer alan çeşitli örtünlülerin bulunması çalışmalari yapılmıştır (Karakuş ve Baki, 2011). Boylece hem ortaokul hem de lise matematik öğretim programlarında fraktal geometriyeye yer verilerek öğrencilerin geometriyi geometri ile gerçek yaşam arasında ilişki kurmalarını ve farklı geometrileri inceleyerek Öklid geometrisi ile benzerlik ve farklılıklarını keşfetmelerine yardımcı olmaya çalışılmıştır. Benzer şekilde NCTM (1991) fraktalların matematik öğretim programlarında yer alması önererek öğrencilerin matematiğin kendi içerisindeki kavramlarıyla hem de diğer disiplinler ve diğer öğrenime de particip ve ilişkilendirmeleri kavramalarla yardımcı olduğu alanlarında yapılan çalışmalarla ifade edilmektedir (Adams ve Aslan-Tutak, 2006; Bolte, 2002; Devaney, 2004; Fraboni ve Moller, 2008; Naylor,
1999; Siegrist, Dover ve Piccolino, 2009; Vacc, 1999). Önemen Fraboni ve Moller (2008) Sierpinski üçgeni ile ilgili hazırladıkları etkinliklerde öğrencilerin Sierpinski üçgenini ve özelliklerini incelemek matematiğin farklı konuları arasında ilişkiler kurabilecekleri ve bu ilişkileri kurma sürecinde çeşitli keşif yapabilecekleri belirtilmektedir. Sierpinski üçgeni bir eşkenar üçgenin kenarlarının orta noktalarının birleştirilmesi sonucu oluşmaktadır (Şekil 1).

**Şekil 1. Sierpinski üçgenin oluşumunun adımları**

Fraboni ve Moller (2008) öğrencilerin Sierpinski üçgeniyle yapacakları bir keşfin her tekrarlamada aşamasında oluşan yeni şekillerin birbirleri ve bağlanıştaşıları ile aralarındaki ilişkileri belirlemeleri şeklinde olabileceğini ifade etmektedir. Öğrencilerin bu ilişkileri belirleyebilmeleri için “bir üçgenin iki kenar uzunluğunun orta noktasının birleştirilmesi sonucu orta noktası doğrulu parçası üçüncü kenara paralel ve uzunluğu bu kenarın yarısı kadardır” bilgisini kullanmaları gereklidir (Fraboni ve Moller, 2008, s.198). Bu bilgi sayesinde her tekrarlama adımda oluşan üçgenlerin birbirine eş ve bir önceki tekrarlama adımda oluşan şekiller arasındaki ilişki belirliyor benzer olduklarını gösterebildikler. Böylece öğrenciler Sierpinski üçgeni ile ilgili keşif yaparken aynı zamanda eşlik, benzerlik, paralellik ve “bir üçgenin iki kenar uzunluğunun orta noktasının birleştirilmesi sonucu orta noktası doğrulu üçüncü kenara paralel ve uzunluğu bu kenarın yarısı kadardır” teoremi ile ilgili bilgileri arasında ilişkiler kurmaktadır. Benzer şekilde Naylor (1999) çalışmasında Sierpinski üçgeninin çevresi ve alanı hesaplanmasında ilgili bir etkinlik sunmuştur. Naylor (1999) Sierpinski üçgeni oluşturken çıkarılan üçgen sayısının 3’un kuvvetleri şeklinde (birinci adımda 1, ikinci adımda 3, üçüncü adımda 3^2=9, dördüncü adımda 3^3=27 vb.) bir sayı örtüntüsünün elde edilebileceğini belirtmektedir. Benzer bir örtüntü her adımda oluşan kücük siyah üçgenler için de elde edilebilir. Bunun yanında Sierpinski üçgeninin çevresi 3(1+3/2+(3/2)^2+(3/2)^3+⋯+(3/2)^n) şeklinde ifade edilebilir. Bu dizi iraksak olduğundan Sierpinski üçgeninin çevresi sonsuzda gider. Buna karşın Sierpinski üçgeninin alanı sonsuza yakın biraralılarda yararlanılmasını göstermektedir. Bunun yanında Öklid geometrisindeki şekiller statik bir yapıya sahiptir. Yani Öklid şekillerinin belli bir çevresi ve alanı bulunmaktadır. Buna karşın Sierpinski üçgeninin ise smürsz şekilde artan bir çevresi ve aynı zamanda sıfıra yaklaşan bir alanı bulunmaktadır. Bu tür sıra dışı durumlar hem öğrencilerin ilgisini çekmektedir ve aynı zamanda öğrencilerin Sierpinski üçgeninin sınırsız şekilde artan bir çevresi ve aynı zamanda sıfıra yaklaştırılması sonucu oluşmaktadır (Şekil 2). Buna karşın Sierpinski üçgeninin alanı sıfıra yakın biraralılarda yararlanılmasını göstermektedir. Benzer şekilde (birinci adımda 1, ikinci adımda 3, üçüncü adımda 3^2=9, dördüncü adımda 3^3=27 vb.) bir sayı örtüntüsünün elde edilebileceğini belirtmektedir. Benzer bir örtüntü her adımda oluşan kücük siyah üçgenler için de elde edilebilir. Bu dizi iraksak olduğundan Sierpinski üçgeninin çevresi sonsuzda gider. Buna karşın Sierpinski üçgeninin alanı sonsuza yakın biraralılarda yararlanılmasını göstermektedir. Bunun yanında Öklid geometrisindeki şekiller statik bir yapıya sahiptir. Yani Öklid şekillerinin belli bir çevresi ve alanı bulunmaktadır. Buna karşın Sierpinski üçgeninin ise smürsz şekilde artan bir çevresi ve aynı zamanda sıfıra yaklaşan bir alanı bulunmaktadır. Bu tür sıra dışı durumlar hem öğrencilerin ilgisini çekmektedir ve aynı zamanda öğrencilerin Sierpinski üçgeninin sınırsız şeklinde artan bir çevresi ve aynı zamanda sıfıra yaklaştırılması sonucu oluşmaktadır (Şekil 2). Buna karşın Sierpinski üçgeninin alanı sıfıra yakın biraralılarda yararlanılmasını göstermektedir. Benzer şekilde (birinci adımda 1, ikinci adımda 3, üçüncü adımda 3^2=9, dördüncü adımda 3^3=27 vb.) bir sayı örtüntüsünün elde edilebileceğini belirtmektedir. Benzer bir örtüntü her adımda oluşan kücük siyah üçgenler için de elde edilebilir. Bu dizi iraksak olduğundan Sierpinski üçgeninin çevresi sonsuzda gider. Buna karşın Sierpinski üçgeninin alanı sonsuza yakın biraralılarda yararlanılmasını göstermektedir. Bunun yanında Öklid geometrisindeki şekiller statik bir yapıya sahiptir. Yani Öklid şekillerinin belli bir çevresi ve alanı bulunmaktadır. Buna karşın Sierpinski üçgeninin ise smürsz şekilde artan bir çevresi ve aynı zamanda sıfıra yaklaşan bir alanı bulunmaktadır. Bu tür sıra dışı durumlar hem öğrencilerin ilgisini çekmektedir ve aynı zamanda öğrencilerin Sierpinski üçgeninin sınırsız şeklinde artan bir çevresi ve aynı zamanda sıfıra yaklaştırılması sonucu oluşmaktadır (Şekil 2).
Düzensizlikten Düzene: Kaos Oyununun Matematik Öğretiminde Kullanılması

2. Kaos oyunu sonucu oluşan noktalar dizisi
Bu şekilde zar atma işlemine devam edildiğinde \( z_0, z_1, z_2, z_3, \ldots \) şeklinde nesnelerin tane noktadan oluşan bir dizi elde edilir. Bu noktalar dizisiyle ilgili olarak akla aşağıdaki sorular gelebilir:

Noktaların oluşmasını sağlayan tekrarlama süreci gerçekten rastgele midir?
Zar binlerce kez atılsa ve her seferinde oluşan yeni noktalar işaretlense, sonuçta nasıl bir şekil ortaya çıkar?

Kaos oyununda noktaların oluşmasını sağlayan tekrarlama süreci rastgeledir. Çünkü zar atıldığında köşenin boyutlarıyla eşleştirilen sayıların (1-2, A köşesi, 3-4, B köşesi ve 5-6, C köşesi) gelme olasılıkları birbirine eşittir. Bunun yanında \( z_0 \) başlangıç noktasının yeri de rastgele olarak belirlenmektedir. Hatta bu rastgele durumu daha da arttırmak için tekrarlamalar sonucunda oluşan noktalar dizisinden ilk 10 nokta silinerek tekrarlama süreci yeniden başlatılabilir.

Yukarıda açıklandığı gibi kaos oyunu oynanlığında sonuçta ne tür bir şekil ortaya çıkacağı oldukça merak uyandırıcı bir durumdur. Oyunun rastgele olması ve noktalar dizisinin rastgele davranış sonucunda üçgenin içinde rastgele noktaların oluştuğu düşünülebilir. Benzer şekilde tekrarlamalar işlemine devam edildiğinde oluşan tüm noktaların üçgeni tamamen kaplayacağı, bir diğer olasılık olarak akla gelmektedir. Bunun yanında noktaların üçgenin içinde bir bölgede toplanacağı da bir başka durum olarak düşünülebilir. Aşağıda farklı sayıda tekrarlamalarda kaos oyunu sonunda oluşan şekiller gösterilmektedir (Şekil 3).

1.2. Kaos oyunu sonucu niçin Sierpinski üçgeni oluşmaktadır?
Kaos oyununa başlamak için bir başlangıç noktası belirlenmektedir. Farz edelim ki başlangıç noktası \( z_0 \), ABC üçgeninin tam ortasında olsun. Zarf kez atıldığında yeni oluşacak nokta \( z_1 \), merkezde bulunan başlangıç noktası \( z_0 \) ile üç köşe noktasından birisi arasındaki mesafeden yarısı kadar bir yerde bulunacaktır. Zarf atılmazda üstte gelen sayının 6 olduğu varsayalım. Bu durumda \( z_1 \) noktasında Sierpinski üçgeninin birinci adımında oluşan 3 küçük üçgenden C köşesine yakın olan üçgenin tam ortasında yer alacaktır (Şekil 4).
Şekil 4. Kaos oyununda $z_1$ noktasının konumu

Benzer şekilde tekrarlama işlemine devam edildiğinde yeni oluşacak $z_2$ noktası $z_1$ ile üç köşe noktasından birisi arasındaki mesafemin yarısı kadar bir yerde bulunacaktır. Zarı attığımızda üstte gelen sayının 4 olduğunu farz edelim. Bu durumda $z_2$ noktası Sierpinski üçgeninin ikinci adında oluşan 9 küçük üçgenden B köşesine yakın olan bir üçgenin tam ortasında yer alacaktır (Şekil 5).

Şekil 5. Kaos oyununda $z_2$ noktasının konumu

Tekrarlama işlemine devam edildiğinde yeni oluşacak $z_3$ noktası $z_2$ ile üç köşe noktasından birisi arasındaki mesafemin yarısı kadar bir yerde bulunacaktır. Zarı attığımızda üstte gelen sayının 1 olduğunu farz edelim. Bu durumda $z_3$ noktası Sierpinski üçgeninin üçüncü adında oluşan 27 küçük üçgenden A köşesine yakın olan bir üçgenin tam ortasında yer alacaktır (Şekil 6).

Şekil 6. Kaos oyununda $z_3$ noktasının konumu

Benzer şekilde devam edildiğinde bir sonraki aşamada oluşacak $z_4$ noktası Sierpinski üçgeninin dördüncü adında oluşacak 81 küçük üçgenden biri içerisinde yer alacaktır. Böylece noktaların hareketi ile Sierpinski üçgeninin oluşum aşamlarında ortaya çıkan üçgenler birlikte düşünüldüğünde her bir zar atılması sonucunda oluşan $z_1$, $z_2$, $z_3$, $z_4$... noktaları Sierpinski üçgeninin tekrarlama adımlarında oluşan üçgenler içerisinde yer almaktadır. Sierpinski üçgeninde tekrarlamalar sonucunda oluşan üçgenler çok hızlı bir şekilde küçülüp mikroskobik hale gelipden bir süre sonra bu üçgenlerin içerisinde çökünen noktalarda Sierpinski üçgeninin kenarlarına çok yaklaştıktak ve onun kenarları gibi görünmektedir. Bu durum noktaların belli bir tekrarlama aşamasından sonra bir araya gelerek Sierpinski üçgeni şeklini oluşturmasın neden olmaktadır.

Kaos oyunu sayesinde öğrenciler hipotez kurma, ilişkilendirme, çıkarma yapma gibi becerilerini ise koşabildire imkani elde etmek ve olağanlık, ölçme, örüntüler ve sayı dizileri gibi matematiksel kavramlarla ilgili farklı ilişkilendirmeler oluşturabilmektedir (Devaney, 2004). Bu bağlamda bu çalışmanın amacı, öğrencilerin bu tür ilişkilendirmeler oluşturacakları etkinlikler hazırlanmak ve bu etkinliklerin uygulanmasından yansımalara
yer vererek öğrencilerin yapmış oldukları ilişkilendirmeleri belirlemekti. Bu amaca bağlı olarak bu çalışmanın problemleri;

- Geliştirilen fraktal etkinliklerine yönelik öğrencilerden elde edilen yansımalar nelerdir?
- Geliştirilen fraktal etkinlikleri öğrencilerin ne tür matematiksel ilişkilere bağlı oldukları anlasılmalıdır?

Bu şekilde belirlenmiştir. Çalışmanın ilerleyen bölümlerinde öğrencilerin bu ilişkileri oluştur采访时 yardımcı olacaktır. Bu etkinliklere yönelik öğrencilerden alınan yansımlara yer verilmiştir. Bunun yanında etkinliklerin uygulanmasında öğretmenlere yol göstermesi açısından öneriler de sunulmuştur.

2. Yöntem

Çalışma kaos konusunda öğrencilerin matematiksel kavramlar arasında farklı ilişkilendirmeler oluşturacakları etkinlikleri tasarlaması ve bu etkinliklere yönelik ilköğretim matematik öğretmenliği birincisi sınıf öğretmeninin oluşturdukları ilişkilendirmeleri incelemesi nedeniyle bir özel durum çalışmasıdır. Özellikle durum çalışması araştırıcısı çok özel bir konunun veya durumun üzerinde yoğunlaşarak inceleyen özel durumları en ince ayrıntılı olarak tanımlanmış ve değişkenler arasındaki sebep-sonuç ilişkilerini açıklayabileceği firsatı arastırmaları (McMillan ve Schumacher, 2014).

2.1. Çalışma grubu

Çalışmanın örneği, seçkin olmayan örneklemeye yöntemlerinden uygun örneklemeye yöntemi (convenience sampling) ile belirlenmiştir. Çalışma uygulanan örneklemeyi seçmeelowunun nedeni zaman, para ve işgücü açısından var olan sınırlıların nedeniyle incelecek etkinlik grubunu oluşturmaktır ve uygulama yapılabilir olması (McMillan ve Schumacher, 2014). Çalışma grubunu İç Anadolu bölgesindeki bir devlet üniversitesi eğitim fakültesi ilköğretim matematik öğretmenliği birincisi sınıfında öğrencilerin gözün 44 öğrenci oluşturacaktır. Bu öğrencilerden 36’sının kadın ve 8’si ise erkektir. Öğrencilerin hiç biri kaos oyunu ile ilgili bir ön bilgiye sahip değildir.

2.2. Veri toplama aracı

Bu çalışmadı veriler öğrencilerin etkinliklere ilişkin cevapları olarak okul grup görüşmelerinden elde edilmişdir. Çalışma için üç etkinlik geliştirilmiştir (Ek1-3). İlk etkinliğin amacı öğrencilerin rastgele bir süreç sonunda döşenmiş şekillerin oluşabileceğini öngörürleri ve böylece kaotik düzen içindeki bir anlayışı oluşturacaktır. Öğrencilerin kaos oyununda atılan zarların gelme olasılığının eşit olması Sierpinski üçgeninin oluştuğunu görmelerine ve hangi durumda kaos oyunu sonunda Sierpinski üçgeninin oluştuğunu görmelerine fırsat vermiştir. Etkinlikler Baki’de (2008) belirttilen etkinlik geliştirme basamakları gözönünde alınmıştır. Etkinlikler hazırlanırken okul grup görüşmelerindeki durumlar ve çıkmış olabilecek etkinlikleri tasarlaması ve bu etkinliklere yönelik öğrencilerden alınan yansımlara yer verilmiştir. Bunun yanında etkinliklerin uygulanmasında öğretmenlere yol göstermesi açısından öneriler de sunulmuştur.

2.3. Etkinliklerin uygulanması süreci

Etkinliklerin uygulama sürecine başlamadan önce öğrenciler dördüncü grupa ayrılmıştır. Öğrenciler etkinlikleri grup çalışması şeklinde yaparken araçtırmacılarından biri de gruplar arasında dolasaşarak öğrencilerin zorlandığı noktalarda ipucu niteliğindeki sorularla ve önerilere bağlı theyere bağlı olarak öğrencilerin rehberlik edilmiştir. Uygulamayı gerçekleştirirken araştırıcının etkinliklere fraktalların konusunda deneysel bir matematik eğitimsidir. Araştırıcının etkinliklere ve etkinliklerin etkinliklere bağlı oldukları anlasılabilir. Araştırıcının etkinliklere ve etkinliklerin etkinliklerin etkinliklere bağlı oldukları anlasılabilir.

Öğrenciler 2 hafta boyunca haftada 2 ders saati okumak üzere toplam 4 ders saati uygulanmıştır. Etkinlikler uygulanmasında bilgisyaralı laboratuarı kullanılmış ve her grubu internete bağlı bir bilgisayar verilmiştir. İlk etkinlik 2 ders saati sürüyor ve öğrenciler seffaf kaşat, kalem yardımıyla kaos oyununu

Düzensizlikten Düzene: Kaos Oyununun Matematik Öğretiminde Kullanılması

15
F. Karakuş, A. Baki

oyunlarını. Oyunun bu şekilde oynamasının nedeni öğrencilerin noktaların hareketinin rastgele ve zar gelme olasılıklarının eşit olduğundan farklı etmelerini sağlamaktır. Bunun yanında oyun sonunda ne tür şekillerin oluşacağını yönelik hipotez kurma, gözlem yapma ve çıkarsama alanında öğrencilerin bir bireysel ve grup ortamında birlikte çalışmayı desteklemektedir. Bu etkinlikte öğrencilerin öreni ve öğrenme süreci boyunca oluşturulmuş olan bulguların derlendirilmesi ve K18 oyununun gerçekleştirdiği oyunun yasaklaması sağlanmış ve K3 oyununun Sierpinski üçgenin oluşum şartlarını birlikte yönetmek amacıyla oluşturulmuştur.

2.4. Verilerin analizi

Öğrencilerin her bir etkinlik için verdiği verileri karşılaştırılmış ve öncelikle doğru ve yanlış olarak ikiye ayrılmıştır. Daha sonra her bir etkinlik kendi içerisinde incelenerek öğrencilerin süreç içerisinde yaşadıkları deneyimlerden yantlar olarak sunulmuştur. bu amaçla öğrencilerin vermiş oldukları cevaplar ve odak grup görüşmelerinden elde edilen bilgiler kullanılarak veri analizi yapılmıştır. Öğrencilerin etkinlikte vermiş oldukları cevaplar hem de odak grup görüşmelerinden elde edilen bilgilerin de etkinlikler ile ilgili veri çeşitlendirme (Cohen, Manion ve Morrison, 2000) yapılmıştır. Dış geçerliliği sağlamak amacıyla öğrencilerin cevaplarını ve odak grup görüşmelerinden alıntılar bulguların karmaşık bir şekilde sunulmuştur.

3. Bulgular

3.1. “Kaos Oyunu” etkinliğinde yansımlar

Bu etkinlik öğrencilerin rastgele bir süreç sonunda düzenli şekillerin oluşabileceğini görmelerini ve böylece karethalı ortamında gerçekleştirilen etkinlikte öğrencilerin “kaotik düşünceye yönelik” anlayışını ortaya koyarak ve bir etkinlik ortamında gerçekleştirebilmektedir.

Oyunun sonunda öğrencilerin etkinlikteki deneyimlerini ve oyununun sonu ile ilgili verileri karşılaştırılır. Bu amaçla öğrencilerin vermiş oldukları cevaplar ve odak grup görüşmelerinden elde edilen bilgiler kullanılarak veri analizi yapılmıştır. Öğrencilerin etkinlikte vermiş oldukları cevaplar hem de odak grup görüşmelerinden elde edilen bilgilerin de etkinlikler ile ilgili veri çeşitlendirme (Cohen, Manion ve Morrison, 2000) yapılmıştır. Dış geçerliliği sağlamak amacıyla öğrencilerin cevaplarını ve odak grup görüşmelerinden alıntılar bulguların karmaşık bir şekilde sunulmuştur.

Araştırmacı: Oyunu oynarken başlangıçta nasıl bir şekil oluşacağını düşündünüz?
Grup 1: Tam belirgin olmasa da bir üçgen oluşacağını düşündük.

Araştırmacı: Niçin böyle bir şekil oluşacağını düşündünüz?
Grup1: A,B,C noktalardan arasında rastgele bir nokta işaretledik. Zardan çıkan sayının ne olacağını belirlememizde önce rastgele bir şekil oluştur diye düşündük. Sonra hiçbir noktannın üst üste gelmediğini gördük ve tüm noktalar içeri kalyor muyd. Bu nedenle bu etkinliklerle bir üçgen oluşur diye düşündük.

Gruplar şeffaf kağıt olarak verilmiş oldukları şekilleri öğrencilerin gözlemlemesi sağlanmış ve K18 oyununun Sierpinski üçgenin oluşum şartlarını birlikte yönetmek amacıyla oluşturulmuştur.

Araştırmacı: K18 oyununun sonunda başarıyla oluşturulmuş bir şekil oluşturduğunu düşündünüz?

Grup 1: Yeşil noktaları ve kırmızı noktaları işaretledik. Sonra bu noktalardan rastgele bir nokta işaretledik. Daha sonra bu noktalardan rastgele bir nokta işaretledik. Bu şekilde işe koyup birleşbirdiklerinde Tablo 1’deki şekilleri elde etmiştir.
Tablo 1. Grupların Kaos oyunu etkinliğindeki gözlemleri

| Gözlemler      | f  |
|----------------|----|
| Üçgenin ağırlık merkezinin olduğu yere çok fazla nokta düşmedi | 3  |
| Noktalar üçeğinin ortasına yerine belli yerlerde yoğunlaştı     | 4  |
| Üçgenin orta kısmını boş kalkmış                                | 8  |

Tablo 1’e göre öğrencilerin oynadığı nokta sayısı arttığında bazı noktalara üçgenin iç bölgesine daha az düştüğünü ve kenarlar doğru noktalara yoğunlaştığını gözlemledikleri görülmektedir. Örneğin Grup 1 ile yapılan odak grup görüşmesinden elde edilen bulgular aşağıda sunulmuştur.

Araştırmacı: Grup arkadaşlarınızla kağıtlarınızı üst üste koydunuzda ne gözlemlediniz?
Grup 1: Tam belirgin olmasa da üçgenin ortasında bir boşluk olduğunu fark ettik. Burada noktalara yoğun değildi.

Araştırmacı: Noktalardan nerede yoğunlundu?
Grup 1: Noktalardan köşeleri oluşturan noktalardaki kümeniyordu. Belli yerlerde boşluklar kalmıyordu.

Araştırmacı: Üçgenin ortasında nicin daha az nokta kalmış olabilir?
Grup 1: Bu grupça biz de düşünüştük. Asında nedenini bilmiyoruz. Ancak her seferinde uzaklıkların yarısının alınmasıyla ilgili olabilir.

Araştırmacı: Bu nicin uzaklıkların yarısının alınmasıyla ilgili olabilir?
Grup 1: Seçtiğiniz nokta üçgenin dışına çıkmıyor ve noktalar git gide birbirine yaklaşıyordu. Her zor atışında noktalardaki mesafe azalıyordu. Bu da noktalardaki belli yerlerde toplanmasına neden oluyor gibi. Bundan dolayı olabilir. Elinin değişim.

Yukarıda açıklamalar öğrencilerin oyunu sonunda tamamen içi boş olan bir üçgenin oluşmayacağını, bazı yerlerde boşlukların olduğunu fark ettiğimizi göstermektedir. Bu boşlukların oluşma nedenleri ile ilgili çakarslar da oldukça görülmektedir. Web sitesinde Kaos oyununu oynadıklarında ise hızlı bir şekilde oyun sonunda Sierpinski üçgeninin oluştuğunu gözlemlemişlerdir. Bu bağlamda Grup 4 ile yapılan mülakat aşağıdaki sunulmuştur.

Araştırmacı: Web sitesinde oyunu oynadığınızda hangi şekil elde ettiniz?
Grup 4: İçi boş üçgenlerden oluşan bir fraktal oluştu. İsmi siz söylemişiniz, Sierpinski üçgeni.

Araştırmacı: Bu şekilde bulununa ne düşündünüz?
Grup 4: Çok ilginçti. Böyle bir şeklin oluşacağını hiç düşündüm.

Araştırmacı: Bu düşünceye sizi iten neden nedir?
Grup 4: Şekle dikkatlice bakınca iç içe üçgenler var ve hepsi kenarlarının orta noktasından birleşirilmiş. Oyunu da noktalardan orta noktasına buluyorduk. Buradan olabilir diye düşünüldük.

Yukarıdaki açıklamalar öğrencilerin oyunun kuralı ile Sierpinski üçgeninin oluşum adımları arasında bir bağ olabileceği gözlemledikleri göstermektedir.

3.2. “Kaos oyunu ile Sierpinski arasındaki ilişki” etkinliğinde yansımalar

Bu etkinlik öğrencilerin muhameme becerilerini kullanarak oynadıkları oyunun son sonu belirleme ve Sierpinski üçgeninin oluşum adımları ile zar atış sayıları arasındaki ilişki kurulmasına yönelik tasarlanmıştır. Etkinliğin ilk bölümünde 8 grubun Sierpinski üçgeninin oluşum adımları ile zar atış sayıları arasında doğru bir ilişki birakıldıkları, 3 grubun ise bir ilişki bulamadıkları belirlenmiştir. Grup 3’ün elde etmiş olduğu ilişki Şekil 8’de sunulmuştur.

Şekil 8. Grup 3’ün elde ettiği ilişki

Bunun yanında farklı ilişkilerde elde eden gruplar bulunmaktadır. Örneğin Grup 5’in elde etmiş olduğu ilişki Şekil 9’da sunulmuştur.
Şekil 9. Grup 5’in elde ettiği ilişki

Etkinliğin ikinci bölümünde ise öğrencilerin noktanın bulunduğu son yere göre gelebilecek zarları tahmin etmeleri beklenmiştir. 10 grubun tahminlerinin doğru sadece 1 grubun tahminin ise hatalı olduğu belirlenmiştir. Doğru tahminde bulunan Grup 4 ile yapılan mülakat aşağıda sunulmuştur:

Araştırmacı: Zarında gelen sayıları nasıl belirlediniz?
Grup 4: Tersine olarak tahmin etmeye çalıştık.
Araştırmacı: Biraz daha açık olur muy mus? Nasıl?
Grup 4: Son nokta B köşesine yakın olduğundan 3. defa atılan zarın 3 ya da 4 olması gerektiğini düşünük. Sonra diğer nokta A noktasına yakın olmalı.
Araştırmacı: Nişin? Niye A noktasına yakın olmalı?
Grup 4: Aksi durumda 2. noktasının üçgenin dışına düşmesi gerekiyor ki bizim noktalarımız hep üçgenin iç kısmında.
Araştırmacı: Yani 2. noka C’ye yakın olmaz.
Grup 4: Evet. Mesafenin orta noktasını aldığımızda diğer durumda noka dışarı düşüyor. Bu durumda 2. zar 1 ya da 2 gelmiş olabilir.
Araştırmacı: Ank ne olur o zaman?
Grup 4: Aynı mantıkla gittiğimizde ilk zar ise 5 ya da 6 gelmiş olmvı, ancak her attığımızda hep 1 ya da 2 gelmiş oluyor. 1 1 0 ya da 1 0 0 olması ile Sierpinski üçgeni oluşuyor, ama her attığımızda 1 1 0 yapılışında 1 0 0 yapılışında (1 1 0 ve 1 1 1) Sierpinski üçgeni oluşuyor.

3.3. “Kaos oyunu ve Olasılık” etkinliğinden yansımalar

Bu etkinliğin amacı öğrencilerin Kaos oyununda atılan zardaki sayıların gelme olasılıklarının birbirine eşit olduğunu fark etmelerini ve hangi durumda Sierpinski üçgeninin oluştuğunu beliremelerini sağlamaktır. Etkinliği yapan tüm gruplar Sierpinski üçgeninin oluşumunun zardaki sayıların gelme olasılıklarına bağlı olduğunu belirlemişlerdir. Örneğin Grup 7 ile yapılan mülakat aşağıda sunulmuştur.

Araştırmacı: Kaos oyununda zardaki sayıların gelme olasılıkları ile Sierpinski üçgeni arasında nasıl bir ilişki bulunduğunuz?
Grup 7: Tam üçgeni oluşturmak istiyorsak her bir köşeye gelen sayıların gelme olasılığı aynı olmalıdır. Yoksama bazı temel uç oluyor.
Araştırmacı: Nasıls yapılıyor?
Grup 7: Olasılığı düşük olan noktalarda üçgenin köşelerinin olduğu kısımlar daha silik, belli belirsiz oluyor, diğer kısımlar daha net oluyor.
Araştırmacı: Yanı de bir Sierpinski üçgeni oluşuyor mu?
Grup 7: Evet oluyor, ama her bir köşesi aynı olmalıdır. Bazı yerlerde daha silik oluyor.
Araştırmacı: Peki, hiç Sierpinski üçgeninin oluşmadığı bir durumda karşılaştınız mı?
Grup 7: Evet, mesela olasılığı 1 0 0 ya da 1 1 0 yapılışında Sierpinski üçgeni oluşuyor.
Araştırmacı: Nasıls yapılıyor?
Grup 7: 1 0 0 ya da tüm noktalara A köşesi üzerinde toplanıyor. Zaten hep aradaki mesafemin varlığından her attığımızda hep 1 ya da 2 gelirse noksalar gide A köşesine yaklaştır ve tek bir noka gibi olur. 1 1 0 ya da ise A ile B köşesi arasında bir doğru parçası oluşuyor. Yine mantık aynı.
Araştırmacı: O zaman Kaos oyunu sonucunda Sierpinski üçgeninin oluşması şartı nedir?
Grup 7: Tüm noktaların olasılığını aynı olması.

Yukardaki ifadeler öğrencilerin Kaos oyununda Sierpinski üçgeninin oluşması için zardaki sayıların gelme olasılıklarının birbirine eşit olması gerektiğini fark ettiklerini göstermektedir.

4. Tartışma, Sonuç ve Öneriler

Bu çalışmada öğrencilerin farklı matematiksel kavramlar arasında ilişkilendirmeler kuracağı, farklı keşiflerde bulunan farklı fraktaller ile Kaos teori kapsamında etkinlikler geliştirilmiş ve bu etkinliklerin uygulanmasına yansıtan verileri yer verilmiştir. Çalışmada farklı bir fraktal oluşturma yöntemi olarak Kaos oyununun ne olduğu ve oyun sonunda nisin Sierpinski üçgeni oluştuğu açıklanmıştır. Ayrıca bu süreci farklı snurf düzeyindeki öğrencilerin yaşamalarına imkan verecek etkinlikler ile etkinliklerin uygulanması için
sağlayacak öğretmenlere yönelik açıklamalar geliştirilmiştir. Bunun yanında etkinliklerin uygulanmasından öncelikle yer verilmiş ve öğrencilerin etkinlikler sonucunda ne tür iliskilendirimler kurdukları ve elde ettikleri sonuçlardan yorumlar sunulmuştur. Böylece etkinliklerin uygulanabilirliği de ortaya konulmaya çalışılmıştır.

İlk etkinlik öğrencilerin Kaos teori ile ilgili algı oluşturmalara yönelik hazırlanmıştır. Bu etkinlikte öğrencilerden rastgele olarak görsel bir olayda belli bir düzene olabileceğini farklı etmeleri amaçlanmıştır. Bu kapsamda öğrenciler etkinlik boyunca gözlem yapma ve hipotez kurma becerilerini siklikla kullanmıştırlar. Öğrencilerin oyunun başlangıcına başlangıç noktasının rastgele seçilmesi ve zar atışında gelen sayıların rastgele olması denediğinde oyun çokak şeklinde de oynanmış ve büyük olasılıkta bu durumda öğrencilerin keşfi olabileceğini göstermiştir. Trololoji ile öğrencilerin Sierpinski üçgeninin oluşumu arasındaki ilişki kurmalarına yönelik amaçlanmıştır. Ancak daha sonra yapımı oldukları görzelemler bu hipotezlerinin doğruluğuna ve öğrencilerin eğilmesi ya da ağırlık merkezine doktoraj etmektedir gibi yeni ipuçlarını çıkarmıştır nedeniyle belli olmalıdır. Bu bağlamda ilk etkinliğin öğrencilerin hipotez kurma, gözlem yapma ve çıkarsamada bulunma gibi becerilerini içe koşmaları manzarı vermiştir. Bunun yanında etkinliğin öğrencilerin tekrarlaması bir süre içerisinde eğitimin sonucunda ne tür şekillerin oluştuğunu ve hangi durumda Sierpinski üçgenin oluşturduğu sonucunu elde etmişlerdir. Bu sonucun öğretimde somut materyaller ve çalışma yapraklarının emek başarılarına olumlu yönde etkisini göstermektedir. Bunun yanında etkinliğin öğrencilerin tekrarlamaları bir süre içerisinde eğitimin sonucunda ne tür şekillerin oluştuğunu ve hangi durumda Sierpinski üçgenin oluşturduğu sonucunu elde etmişlerdir. Bu sonucun öğretimde somut materyaller ve çalışma yapraklarının emek başarılarına olumlu yönde etkisini göstermektedir. Bunun yanında etkinliğin öğrencilerin tekrarlamaları bir süre içerisinde eğitimin sonucunda ne tür şekillerin oluştuğunu ve hangi durumda Sierpinski üçgenin oluşturduğu sonucunu elde etmişlerdir. Bu sonucun öğretimde somut materyaller ve çalışma yapraklarının emek başarılarına olumlu yönde etkisini göstermektedir. Bunun yanında etkinliğin öğrencilerin tekrarlamaları bir süre içerisinde eğitimin sonucunda ne tür şekillerin oluştuğunu ve hangi durumda Sierpinski üçgenin oluşturduğu sonucunu elde etmişlerdir. Bu sonucun öğretimde somut materyaller ve çalışma yapraklarının emek başarılarına olumlu yönde etkisini göstermektedir. Bunun yanında etkinliğin öğrencilerin tekrarlamaları bir süre içerisinde eğitimin sonucunda ne tür şekillerin oluştuğunu ve hangi durumda Sierpinski üçgenin oluşturduğu sonucunu elde etmişlerdir. Bu sonucun öğretimde somut materyaller ve çalışma yapraklarının emek başarılarına olumlu yönde etkisini göstermektedir. Bunun yanında etkinliğin öğrencilerin tekrarlamaları bir süre içerisinde eğitimin sonucunda ne tür şekillerin oluştuğunu ve hangi durumda Sierpinski üçgenin oluşturduğu sonucunu elde etmişlerdir. Bu sonucun öğretimde somut materyaller ve çalışma yapraklarının emek başarılarına olumlu yönde etkisini göstermektedir. Bunun yanında etkinliğin öğrencilerin tekrarlamaları bir süre içerisinde eğitimin sonucunda ne tür şekillerin oluştuğunu ve hangi durumda Sierpinski üçgenin oluşturduğu sonucunu elde etmişlerdir. Bu sonucun öğretimde somut materyaller ve çalışma yapraklarının emek başarılarına olumlu yönde etkisini göstermektedir. Bunun yanında etkinliğin öğrencilerin tekrarlamaları bir süre içerisinde eğitimin sonucunda ne tür şekillerin oluştuğunu ve hangi durumda Sierpinski üçgenin oluşturduğu sonucunu elde etmişlerdir. Bu sonucun öğretimde somut materyaller ve çalışma yapraklarının emek başarılarına olumlu yönde etkisini göstermektedir. Bunun yanında etkinliğin öğrencilerin tekrarlamaları bir süre içerisinde eğitimin sonucunda ne tür şekillerin oluştuğunu ve hangi durumda Sierpinski üçgenin oluşturduğu sonucunu elde etmişlerdir. Bu sonucun öğretimde somut materyaller ve çalışma yapraklarının emek başarılarına olumlu yönde etkisini göstermektedir. Bunun yanında etkinliğin öğrencilerin tekrarlamaları bir süre içerisinde eğitimin sonucunda ne tür şekillerin oluştuğunu ve hangi durumda Sierpinski üçgenin oluşturduğu sonucunu elde etmişlerdir. Bu sonucun öğretimde somut materyaller ve çalışma yapraklarının emek başarılarına olumlu yönde etkisini göstermektedir. Bunun yanında etkinliğin öğrencilerin tekrarlamaları bir süre içerisinde eğitimin sonucunda ne tür şekillerin oluştuğunu ve hangi durumda Sierpinski üçgenin oluşturduğu sonucunu elde etmişlerdir. Bu sonucun öğretimde somut materyaller ve çalışma yapraklarının emek başarılarına olumlu yönde etkisini göstermektedir. Bunun yanında etkinliğin öğrencilerin tekrarlamaları bir süre içerisinde eğitimin sonucunda ne tür şekillerin oluştuğunu ve hangi durumda Sierpinski üçgenin oluşturduğu sonucunu elde etmişlerdir. Bu sonucun öğretimde somut materyaller ve çalışma yapraklarının emek başarılarına olumlu yönde etkisini göstermektedir. Bunun yanında etkinliğin öğrencilerin tekrarlamaları bir süre içerisinde eğitimin sonucunda ne tür şekillerin oluştuğunu ve hangi durumda Sierpinski üçgenin oluşturduğu sonucunu elde etmişlerdir. Bu sonucun öğretimde somut materyaller ve çalışma yapraklarının emek başarılarına olumlu yönde etkisini göstermektedir. Bunun yanında etkinliğin öğrencilerin tekrarlamaları bir süre içerisinde eğitimin sonucunda ne tür şekillerin oluştuğunu ve hangi durumda Sierpinski üçgenin oluşturduğu sonucunu elde etmişlerdir. Bu sonucun öğretimde somut materyaller ve çalışma yapraklarının emek başarılarına olumlu yönde etkisini göstermektedir. Bunun yanında etkinliğin öğrencilerin tekrarlamaları bir süre içerisinde eğitimin sonucunda ne tür şekillerin oluştuğunu ve hangi durumda Sierpinski üçgenin oluşturduğu sonucunu elde etmişlerdir. Bu sonucun öğretimde somut materyaller ve çalışma yapraklarının emek başarılarına olumlu yönde etkisini göstermektedir. Bunun yanında etkinliğin öğrencilerin tekrarlamaları bir süre içerisinde eğitimin sonucunda ne tür şekillerin oluştuğunu ve hangi durumda Sierpinski üçgenin oluşturduğu sonucunu elde etmişlerdir. Bu sonucun öğretimde somut materyaller ve çalışma yapraklarının emek başarılarına olumlu yönde etkisini göstermektedir. Bunun yanında etkinliğin öğrencilerin tekrarlamaları bir süre içerisinde eğitimin sonucunda ne tür şekillerin oluştuğunu ve hangi durumda Sierpinski üçgenin oluşturduğu sonucunu elde etmişlerdir. Bu sonucun öğretimde somut materyaller ve çalışma yapraklarının emek başarılarına olumlu yönde etkisini göstermektedir. Bunun yanında etkinliğin öğrencilerin tekrarlamaları bir süre içerisinde eğitimin sonucunda ne tür şekillerin oluştuğunu ve hangi durumda Sierpinski üçgenin oluşturduğu sonucunu elde etmişlerdir. Bu sonucun öğretimde somut materyaller ve çalışma yapraklarının emek başarılarına olumlu yönde etkisini göstermektedir. Bunun yanında etkinliğin öğrencilerin tekrarlamaları bir süre içerisinde eğitimin sonucunda ne tür şekillerin oluştuğunu ve hangi durumda Sierpinski üçgenin oluşturduğu sonucunu elde etmişlerdir. Bu sonucun öğretimde somut materyaller ve çalışma yapraklarının emek başarılarına olumlu yönde etkisini göstermektedir. Bunun yanında etkinliğin öğrencilerin tekrarlamaları bir süre içerisinde eğitimin sonucunda ne tür şekillerin oluştuğunu ve hangi durumda Sierpinski üçgenin oluşturduğu sonucunu elde etmişlerdir. Bu sonucun öğretimde somut materyaller ve çalışma yapraklarının emek başarılarına olumlu yönde etkisini göstermektedir. Bunun yanında etkinliğin öğrencilerin tekrarlamaları bir süre içerisinde eğitimin sonucunda ne tür şekillerin oluştuğunu ve hangi durumda Sierpinski üçgenin oluşturduğu sonucunu elde etmişlerdir. Bu sonucun öğretimde somut materyaller ve çalışma yapraklarının emek başarılarına olumlu yönde etkisini göstermektedir.
etkileyecektir. Literatürede yapılan çalışmalarla da derste kullanılabilecek etkinlik ve materyallerin öğrencilerin matematik dersine yönelik ilgileri üzerinde etkileri olduğu vurgulanmaktadır (Ünlü, 2007; Yurtbakan, Aydoğdu İskenderoğlu ve Sesi, 2016). Bu bağlamda tasarlanan bu etkinliklerin öğrencilerin matematik dersine yönelik ilgi ve tutumları üzerindeki etkileri ileri the çalışmalarda incelenmiştir. Çalışmada hazırlanın etkinliklerle çocuk öğrenciler olasılık, sayı dizileri, örüntüler ve ölçüm gibi birçok farklı matematiksel kavram arasında ilişkiler kurma fırsatı elde etmektedirler. NCTM’de (2000) öğrencilerin matematiksel kavramları anlamaları için uygulan etkinlik, materyal ve örneklerde sahip ortamlarda eğitimlerin önemli vurgulanmaktadır. Bu bağlamda hazırlanın etkinliklerin öğrencilerin matematiksel kavramlar arasında farklı ilişkilendirmeler yapma potansiyeline sahip olduğuna dair söylenebilir.

Bu çalışmada da öğrencilerin örnekler, olasılık, ölçme ve sayı dizileri konularında ilişkiler kuracağı etkinliklere yer verilmistir. Bunun yanında matematik öğretim programlarında bilgi ile iletişim teknolojilerinin (BIT) derslere entegre edilmesinin önemi vurgulanmıştır (MEB, 2018a; 2018b). Ulkemizdeki matematik öğretimi çok önemli olduğu, genelde öğretmen odaklı ve tahta başında geleneksel bir anlayışın benimsendiği söylenebilir (Gür, 2002). Matematik konularının öğretiminde, genellikle konularla ilgili kurallar ve özellikler, sunu yöntem ile verilmekte, tahtaya yazılı çizimler yardımıyla konuları öğretimi gerçekleştirmektedir. Amerikan Ulusal Matematik Öğretmenleri Birliği (NCTM, 2000) de, okul matematikinde somut materyaller, çizimler ve bilgi ile iletişim teknolojilerinin kullanılmasını önemini vurgulamaktadır. Bu çalışmada tasarlanan etkinliklerde örnekleme amaçlı hazırlanın web sitesi uygulamalarına yer verilmiştir. Böylece öğrencilerin bu ilişkileri kurarken teknolojinin de yararlanması sağlanmıştır. Bu bağlamda tasarlanın etkinliklerin matematik derslerine BIT’lerin entegre edilmesine katkı sağlayacağı söylenebilir.

Kaynaklar / References

Adams, T. L., & Aslan-Tutak, F. (2006). Serving up Sierpinski! Mathematics Teaching in the Middle School, 11(5), 248-251.

Baki, A. (2008). Karamdan uygulamaya matematik eğitimi. Ankara: Harf Eğitim Yayınları.

Bolte, L. A. (2002). A snowflake project: Calculating, analyzing, and optimizing with the Koch snowflake. Mathematics Teacher, 95(6), 414–419.

Cohen, L., Manion, L., & Morrison, K. (2000). Research methods in education 5th edition. London: Routledge Falmer.

Devaney, R., L. (2004). Fractal patterns and chaos games. Mathematics Teacher, 98(4), 228–233.

F. Karakuş, A. Baki (2011). İlköğretim 8. sınıf matematik öğretim programı ve ders kitaplarının fraktal geometri konusunu kapsamında değerlendirilmesi. İlköğretim Online, 10(3), 1081-1092.

Karakuş, F. (2015). Investigation into how 8th grade students define fractals. Educational Sciences: Theory and Practice, 15(3), 825-836.

Karakuş, F. (2016). Pre-service teachers’ concept images on fractal dimension. International Journal for Mathematics Teaching and Learning, 17(2), 1-17.

Mandelbrot, B. B. (1983). The fractal geometry of nature. New York: W. H. Freeman and Co.

McMillan, J. H., & Schumacher, S. (2014). Research in education: Evidence-based inquiry (7th ed.). Boston: Pearson Education Inc.

Memnun, D. S. (2007). Permutasyon ve olasılık konularının aktif öğrenme ile öğretiminin öğrenci başarısına etkisi. Middle Eastern & African Journal of Educational Research, 12, 4-16.

Çalışma yaparakla olasılık öğretiminin öğrenci başarısına etkisi. Middle Eastern & African Journal of Educational Research, 12, 4-16.

Karakuş, F. (2008). Matematik dersi öğretim programı ve ders kitaplarının fraktal geometri konusunu kapsamında değerlendirilmesi. İlköğretim Online, 10(3), 1081-1092.

Karakuş, F. (2015). Investigation into how 8th grade students define fractals. Educational Sciences: Theory and Practice, 15(3), 825-836.

Karakuş, F. (2016). Pre-service teachers’ concept images on fractal dimension. International Journal for Mathematics Teaching and Learning, 17(2), 1-17.

Mandelbrot, B. B. (1983). The fractal geometry of nature. New York: W. H. Freeman and Co.
National Council of Teachers of Mathematics [NCTM]. (2006). *Curriculum focal points for prekindergarten through grade 8 mathematics. A guest for coherence*. Reston VA: National Council of Teachers of Mathematics, Inc.

Naylor, M. (1999). Exploring fractals in the classroom. *Mathematics Teacher, 92*(4), 360–366.

Siegrist, R., Dover, R., & Piccolino, A. (2009). Inquiry into fractals. *Mathematics Teacher, 103*(3), 206-212.

Skemp, R. R. (1976). Relational understanding and instrumental understanding. *Mathematics Teaching, 77*(1), 20-26.

Ünlü, E. (2007). İlköğretim okullarındaki üçüncü, dördüncü ve beşinci sınıf öğrencilerinin matematik dersine yönelik tutum ve ilgilerinin belirlenmesi. *Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, 19*, 129-148.

Vacc, N. N. (1999). Exploring fractal geometry with children. *School Science and Mathematics, 99*(2), 77-83.

Van de Walle, J. A., & Karp, K. S. Bay-Williams, J. M. (2012). *Elementary and middle school mathematics: Teaching developmentally* (8th ed.). Boston: Pearson.

Yurtbakan, E, Aydoğdu-İskenderoğlu, T. ve Sesli, E. (2016). Sınıf öğretmenlerinin öğrencilereim'in matematik dersindeki başarılarını artırmaya yolları konusundaki görüşleri. *Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi, 35*(2), 101-119.