Aquirufa antheringensis gen. nov., sp. nov. and Aquirufa nivalisilvae sp. nov., representing a new genus of widespread freshwater bacteria

Alexandra Pitt,* Johanna Schmidt, Ulrike Koll and Martin W. Hahn

Abstract
Three bacterial strains, 30S-ANTBAC, 103A-SOEBACh and 59G-WUEMPEL, were isolated from two small freshwater creeks and an intermittent pond near Salzburg, Austria. Phylogenetic reconstructions with 16S rRNA gene sequences and, genome based, with amino acid sequences obtained from 119 single copy genes showed that the three strains represent a new genus of the family Cytophagaceae within a clade formed by the genera Pseudarcicella, Arcicella and Flectobacillus. BLAST searches suggested that the new genus comprises widespread freshwater bacteria. Phenotypic, chemotaxonomic and genomic traits were investigated. Cells were rod shaped and were able to glide on soft agar. All strains grew chemoorganotrophically and aerobically, were able to assimilate pectin and showed an intense red pigmentation putatively due to various carotenoids. Two strains possessed genes putatively encoding proteorhodopsin and retinal biosynthesis. Genome sequencing revealed genome sizes between 2.5 and 3.1 Mbp and G+C contents between 38.0 and 42.7 mol%. For the new genus we propose the name Aquirufa gen. nov. Pairwise-determined whole-genome average nucleotide identity values suggested that the three strains represent two new species within the new genus for which we propose the names Aquirufa antheringensis sp. nov. for strain 30S-ANTBAC =JCM 32977 =LMG 31079 =DSM 108553 and Aquirufa nivalisilvae sp. nov. for strain 59G-WUEMPEL =LMG 31081 =DSM 108554.

The phylum Bacteroidetes contains Gram-negative bacteria, which occur in a broad variety of habitats all over the world and show different lifestyles and physiological traits [1]. The Cytophaga–Flavobacteria cluster belongs to this phylum and is characterized by rod-shaped, non-spore-forming, frequently pigmented and gliding, chemoorganotrophic bacteria [2]. They are often capable of degrading biopolymers such as agar, cellulose, chitin, pectin and keratin [3]. Bacteria belonging to the Cytophaga–Flavobacteria cluster occur in high abundances in many freshwater and marine systems and play an important role in these ecosystems in respect to the uptake and degradation of dissolved organic material [2]. A large family within this cluster are the Cytophagaceae, which comprise 30 genera and about 150 species. Phylogenetic analyses based on 16S rRNA gene sequences suggested that this family encompass divergent clades which cannot be well distinguished from members of the families Cytophagaceae and Flammeoigricaceae [4]. Genome-scale phylogenies inferred from whole proteomes revealed that the Cytophagaceae as a family and some of their genera are not monophyletic [1].

Within a cooperation project between schools and science (Sparkling Science program), which pursues the aim to isolate and taxonomically describe new bacterial species, 125 teenagers from high schools took samples from various freshwater habitats around the city of Salzburg (Austria), measured basic water chemistry parameters and inoculated agar plates with the collected water samples. By screening these plates, we found several strains belonging to an obviously undescribed genus affiliated with the family Cytophagaceae. From nine pure cultures, three were selected for further analysis. Some students joined the lab and helped with the phenotypic characterizations of the strains. Furthermore, some students created, with the help of a nomenclature advisor, the proposed genus and species names.
So, here we describe a new genus belonging to the Cytophaga-gaceae which seems to be common in various aquatic freshwater habitats. As type species for this new genus we propose Aquirufa antheringensis gen. nov., sp. nov. with its type strain 30S-ANTBACT. Furthermore, we propose to establish an additional species within this genus, Aquirufa nivalisilvae for strain 59G-WUEMPELT.

HOME HABITATS AND ISOLATION

Strain 30S-ANTBACT was isolated from Antheringer Bach, a small freshwater creek running through the town Anthering, Austria, the approximate geographic coordinates are 47.877 N 13.006 E. Water sampled in November 2017 had a pH of 6.9 and a conductivity of 435 \textmu s cm-1. Strain 103A-SOEBACH was isolated from Soellheimer Bach, a small freshwater creek located in Salzburg, Austria, the approximate geographic coordinates are 47.826 N 13.049 E. Water sampled in May 2018 had a pH of 6.9 and a conductivity of 515 \textmu s cm-1. Strain 59G-WUEMPELT was isolated from a small intermittent freshwater pond located in a forest in Schneegattern (Lengau), Austria, the approximate geographic coordinates are 48.029 N 13.299 E. Water sampled in April 2018 had a pH of 7.5 and a conductivity of 163.7 \mu s cm-1. All three strains were isolated by filtrating the samples and subsequent plating on agar plates. For strains 30S-ANTBACT and 103A-SOEBACH with 0.45 \textmu m pore size and for strain 59G-WUEMPELT filters with 0.65 \mu m pore size were used. Nutrient broth–soyote–yeast extract (NSY) agar plates [5] were utilized for 103A-SOEBACH, while Reasoner’s 2A (R2A) agar plates [6] were used for strain 30S-ANTBACT and tryptone–soyote (DTS) plates [7] with very low nutrient concentrations were used for strain 59G-WUEMPELT for the first cultivation steps, respectively. Nevertheless, all strains grew on NSY plates and in liquid NSY medium at pH 7.2 and were purified using these media.

PHENOTYPIC AND CHEMOTAXONOMIC CHARACTERIZATION

The temperature range for growth was tested on NSY agar plates exposed to increasing temperatures in 1 °C steps starting at 5 °C until no growth was observed. NaCl tolerance was tested using agar plates with various NaCl concentrations in 0.1 % (w/v) steps. For testing anaerobic growth, an anaerobic chamber and standard NSY agar plates as well as NSY plates supplemented with 2 g l-1 NaNO\textsubscript{3} were used. For determination of cell morphology and cell dimensions, well-growing liquid cultures were fixed with 2 % paraformaldehyde, stained with DAPI (4′,6-diamidino-2-phenylindole) and investigated by using an epifluorescence microscope (UV filter). To test the ability of the strains to glide, soft agar plates (1 g l-1 yeast extract, 0.1 g l-1 K\textsubscript{2}HPO\textsubscript{4}, 2.0 g l-1 agar) were used [8]. One drop of a well-growing culture was placed in the centre of these test plates, as well as on standard NSY plates, respectively, incubated at room temperature and observed for several days. Assimilation of various substrates was tested using GEN III MicroPlates (Biolog), which detect utilization of substrates as electron donors by the subsequent reduction of a tetrazolium redox dye. Cells from well-growing liquid cultures were centrifuged and added to the inoculum medium so that the OD of the culture correspond to 0.07 at a wavelength of 590 nm. The absorption was measured with a Multiskan FC (Thermo Scientific) at a wavelength of 595 nm after 48 h incubation at 20 °C. After subtracting the value of the negative control (without substrate), obtained values from 0.016 to 0.05 were regarded as weak utilization and for \geq0.05 as positive. The chemotaxonomic characterization of the strains included analyses of the composition of whole-cell fatty acids, polar lipids and respiratory quinones. They were carried out by the Identification Service, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany. For all chemotaxonomic analyses cells were inoculated into liquid NSY medium and harvested after 3 days of growth by centrifugation. For the whole-cell fatty acid composition, an Agilent Technologies 6890 N instrument, the Microbial Identification System (MIDI) Sherlock version 6.1 and the TSBA 40 database were used as described by Sasser [9].

Polar lipids and respiratory quinones were extracted and analysed as described by Tindall [10, 11] based on the method by Bligh and Dyer [12]. To investigate if the pigmentation of the cultures was caused by flexirubin, tests with 20 % KOH and 12 M HCl were performed [13].

Cells of all investigated strains were slim rods. They formed bright red, in older stages dark-red coloured, circular, and convex colonies with smooth surface on agar plates and showed a strong orange-red colouring in liquid media. Strain 59G-WUEMPELT grew up to a temperature of 35 °C, the other two strains stopped growing at lower temperatures (Table 1). All strains only tolerated low salt concentrations, showed no anaerobic growth and were able to glide and showed spreading over the whole soft agar plates within periods of 7 days (Table 1). Despite various efforts according to Bernardet et al. [13] the flexirubin test was negative for all investigated strains, maybe caused by other overlaying pigments. All three investigated strains assimilated pectin and Tween 40 and showed weak assimilation of acetoacetic acid, glucuronamide, and D-fructose-6-PO\textsubscript{4} (Table 1). Strain 59G-WUEMPELT grew up to a temperature of 35 °C, the other two strains stopped growing at lower temperatures (Table 1). All strains only tolerated low salt concentrations, showed no anaerobic growth and were able to glide and showed spreading over the whole soft agar plates within periods of 7 days (Table 1). Despite various efforts according to Bernardet et al. [13] the flexirubin test was negative for all investigated strains, maybe caused by other overlaying pigments. All three investigated strains assimilated pectin and Tween 40 and showed weak assimilation of acetoacetic acid, glucuronamide, and D-fructose-6-PO\textsubscript{4} (Table 1). Strain 59G-WUEMPELT showed weak assimilation of additional substrates (Table 1). All three investigated strains contained nearly the same fatty acids but in various amounts, C\textsubscript{15-0} was only found in strain 30S-ANTBACT (Table 2). The amounts of the major fatty acids differed remarkably between strain 30S-ANTBACT and strain 103A-SOEBACH, which should be classified as the same species (see below). For example, iso-C\textsubscript{15:0} constituted 20.3 % and 39.5 % of fatty acids in strains 30S-ANTBACT and 103A-SOEBACH, respectively (Table 2). These finding suggested, that the relative fatty acid amounts can vary a lot among strains belonging to the same species grown under comparable conditions. A study describing a new Polynucleobacter species (Betaproteobacteria) within the cryptic species complex PnecC based on six investigated isolates came to the...
same conclusion [14]. Regarding the polar lipids, all three strains presented here contained phosphatidylethanolamine and various unidentified polar lipids like aminolipids, phospholipids and aminophospholipids (Table 2, Fig. S1, available in the online version of this article). While for strain 30S-ANTBACT seven polar lipids could be separated, strain 59G-WUEMPET showed a more diverse pattern with three additional unidentified polar lipids. The main respiratory quinone for all three strains presented here was MK7. Additionally, strain 30S-ANTBACT and strain 103A-SOEBACh contained traces of MK6 (Table 2).

GENOMIC CHARACTERIZATION

DNA extraction and genome sequencing were performed as described previously [15]. A shotgun library was paired-end sequenced on an Illumina MiSeq instrument (2 × 300 bp). *De novo* assemblies were performed by using the software SPAdes version 3.13.0 [16], details are given in Table 3. The obtained genome sequences were annotated by the NCBI Prokaryotic Genome Annotation Pipeline and for further comparative analyses by the Integrated Microbial Genomes/Expert Review (IMG/ER) annotation pipeline and incorporated in the IMG database [17]. The IMG Genome ID and GenBank accession numbers of all three investigated strains and strain HME7025 (Kim et al., ‘Pseudarcicella sp.’ HME7025 genome sequencing and assembly, unpublished data), which is closely related to the three investigated strains, are listed in Table 3.

The size of the genomes of strain 30S-ANTBACT and strain 103A-SOEBACh was 2.5 Mbp, while strain 59G-WUEMPET had a size of 3.1 Mbp (Table 3). All strains had relatively low G+C contents of less than 45 mol% (Table 3). Interestingly, members of the nearest relatives of the new genus had genome sizes twice as big (Table 4). Additionally, among 60 genomes of members of the family Cytophagaceae and related taxa, strain 30S-ANTBACT and strain 103A-SOEBACh not only possessed the smallest genome size but also the highest coding density. While coding densities of the other 58 genomes ranged from 85.6% to 93.5% coding bases (average 89.5%, median 89.4%), these two genomes were characterized by a value of 94.8%. On the other hand, the G+C content of their genomes of 43 mol% was close to the average of the other Cytophagaceae genomes (range 35–56 mol%, average 45 mol%), suggesting that the genomes of these two strains underwent evolutionary genome streamlining, which was decoupled from changes in G+C content.

The gene content of the three investigated strains and strain HME7025, which is closely related to strain 59G-WUEMPET (see above), showed interesting pattern, some genes had all strains in common and some differed between them (Table 5). All four strains had genes putatively encoding proteins associated with gliding motility, which confirmed the observed gliding on soft agar plates. Only strain 30S-ANTBACT and strain 103A-SOEBACh possessed genes putatively encoding a proteorhodopsin and a β-carotene.

Table 1. Traits characterizing the three strains

All strains have the following substrate usage characteristics in common: assimilation of pectin and Tween 40; weak assimilation of acetoacetic acid, glucuronamide and D-fructose-6-P, no assimilation of l-histidine, propionic acid, D-lactic acid methyl ester, L-alanine, L-glutamic acid, L-aspartic acid, D-glucose-6-P, dextrin, D-glucuronic acid, D-fructose, D-arabitol, α-D-glucose, α-hydroxy-butyric-acid, D-galactose, methyl β-D-glucoside, D-galacturonic acid, 3-methyl glucose, L-rhamnose, L-galactonic acid lactone, L-mannitol, formic acid, L-malic acid, D-gluconic acid, N-acetyl D-glucosamine, N-acetyl-β-D-mannosamine, mucic acid, myo-inositol, trehalose, inosine, maltose, gentiobiose, β-hydroxymethyl-β-D-mannose, celllobiose, glycyrrhizic acid, pyrogallic acid, N-acetyl-D-galactosamine, glycerol, L-fucose, α-keto-glutaric acid, melibiose, lactose, L-fucose, L-tartaric acid, tartaric acid, N-acetyl neuraminic acid, quinic acid, D-sorbitol, D-malic acid, D-hydroxy-phenylacetic acid, raffinose, γ-aminobutyric acid, L-arginine, stachyose, gelatin, D-serine, D-saccharic acid, methyl pyruvate, α-keto-butyric acid, bromo-succinic acid, L-serine, citric acid and acetic acid. +, Positive; w, weak; −, negative.

Characteristic	Strain 30S-ANTBACT	Strain 103A-SOEBACh	Strain 59G-WUEMPET
Cell morphology	Rods	Rods	Rods
Mean cell length (µm)	1.7	1.8	1.6
Mean cell width (µm)	0.6	0.4	0.5
Temperature range for growth (°C)	5–32 (w)	5–31 (w)	5–35 (w)
NaCl tolerance (% w/v)	0–0.3 (w)	0–0.2 (w)	0–0.4 (w)
Anaerobic growth on NSY plates	−	−	−
Anaerobic growth on NSY+nitrate	−	−	−
Gliding ability	+	+	+
Pigmentation	Red	Red	Red
Flexirubin test	−	−	−
Assimilation of:			
	Sucrose	−	w
	D-Mannose	−	w
	D-Saline	−	w
	D-Aspartic acid	−	w

Table 2. Chemotaxonomy: polar lipids, respiratory quinones and fatty acid composition (%) of the three investigated strains

Fatty acids with values less than 0.5 percent for all strains are not listed. +, Detected; --, not detected, TR, trace.

Chemotaxonomic property	Strain 30S-ANTBAC^T	Strain 103A-SOEBACH	Strain 59G-WUEMPEL^T
Polar lipids:			
Phosphatidylethanolamine	+	+	+
Unidentified aminolipids	--	1	1
Unidentified amino-phospho-lipids	2	2	3
Unidentified polar lipids	4	4	5
Respiratory quinones:			
MK7	+	+	+
MK6	TR	TR	--
Fatty acids:			
C₁₄:0	2.9	1.0	0.4
C₁₅:0	2.2	--	--
C₁₅:0^ω6c	1.5	2.0	1.1
C₁₆:0^ω5c	11.9	6.8	3.0
C₁₇:0^ω6c	1.1	1.3	1.4
iso-C₁₁:0	3.6	2.6	1.2
iso-C₁₃:0	0.8	0.8	1.4
iso-C₁₅:0	20.3	39.5	34.4
anteiso-C₁₁:0	0.5	0.3	0.2
anteiso-C₁₃:0	0.5	0.4	0.7
anteiso-C₁₅:0	5.6	8.3	10.7
C₁₆:0^{3-OH}	1.0	0.5	0.3
iso-C₁₅:0³-OH	13.4	11.7	10.5
iso-C₁₇:0^{3-OH}	1.1	2.5	3.3
iso-C₁₇:^ω9c	0.4	0.8	2.0
Summed feature 1*	0.3	1.0	1.0
Summed feature 2*	1.3	0.5	0.2
Summed feature 3*	24.7	9.2	16.8
Summed feature 4*	1.1	2.9	3.0
Unknown 14.959†	2.4	4.5	5.0

[*]Summed features represent groups of fatty acids which could not separated by GLC and the MIDI system. Summed feature 1 contains iso-C₁₅:1^h, C₁₃:0 3-^{OH}, iso-C₁₅:1^IH and iso-C₁₅:1^I; summed feature 2 contains C₁₂:0 ALDE, unknown 10.928, iso-C₁₆:1^I, C₁₄:0 3-^{OH} and iso-C₁₆:1^I; summed feature 3 contains iso-C₁₅:0 2-^{OH} and C₁₆:1^ω7^c; summed feature 4 contains iso-C₁₇:1^I and anteiso-C₁₇:1^{B/I}.

[†]Unknown 14.959 is an unknown compound with an ECL of 14.959.

Table 3. Genome characteristics of the three investigated strains and strain HME7025

Characteristic	Strain 30S-ANTBAC^T	Strain 103A-SOEBACH	Strain 59G-WUEMPEL^T	Strain HME7025
Number of scaffolds	14	17	40	--
K-mer coverage	260	235	107	--
N50 value (Mbp)	0.64	0.58	0.78	--
Genome size (Mbp)	2.5	2.5	3.1	3.1
G+C content (mol%)	42.6	42.7	38.0	37.9
ANI with 30S-ANTBAC^T	100.0	96.5	70.8	71.0
ANI with 103A-SOEBACH	96.5	100.0	71.0	71.1
ANI with 59G-WUEMPEL^T	70.8	71.0	100.0	97.4
ANI with HME7025	71.0	71.1	97.4	100.0
Accession number GenBank	SEWZ00000000	SEWY00000000	SEWX00000000	CP029346
IMG/ER Genome ID	2816332120	2816332126	2816332125	2811994884
Table 4. Comparison of the proposed genus *Aquirufa* and the three most closely related genera

Features for all genera in common: identified polar lipid, phosphatidylethanolamine; major respiratory quinone, MK-7. ++, Genes putatively associated with gliding, ND, not determined.

Feature	*Aquirufa* gen. nov.	*Arcicella*	*Pseudarcicella*	*Flectobacillus*
Number of species	2	4	1	6
Cell morphology	Rods	Various*	Rods	Rods
Range of cell length (µm)	1.6–1.8	2.5–6.3	1.0–2.0	1.5–10.0
Range of cell width (µm)	0.4–0.6	0.5–0.75	0.9–1.1	0.3–1.0
Pigmentation	Red	Pink or orange	Pink	Pink or orange
Flexirubins	No	No	ND	No
Carotinoids	All strains†	One species	ND	Some species
Motility	Gliding /++†	No/++†	No/++†	No/++†
Temperature range of growth (°C)	5–34	4–40	10–36	4–40
NaCl tolerance (%NaCl, w/v)	0–0.4	0–3.0	ND	0–4.0
Predominant fatty acids	iso-C₁₅:0 3-OH, iso-C₁₅:0	C₁₀:1 ω5c, iso-C₁₅:0	C₁₆:1 ω5c, C₁₈:1 ω7c	C₁₆:1 ω5c, iso-C₁₅:0
Summed feature	C₁₆:1 ω7c, C₁₆:1 ω6c, iso-C₁₅:0 2-OH	C₁₆:1 ω7c, C₁₆:1 ω6c	C₁₈:1 ω7c, iso-C₁₅:0 2-OH	
G+C content (mol%)	38–43	34–44	38†	38–40
Genome size (Mbp)	2.5–3.1†	5.9†	6.2†	6.2†
Genome available (Table 3, S1)	All strains	*Aricella aurantiaca*	*Pseudarcicella hirudinis*	*Flectobacillus major*
References	This study	[40]	[35]	[41–44]

*Rods, vibrioïd, curved or spiral-shaped.
†Based on genome data.

Table 5. Comparison of the presence and absence of selected genes of the three investigated strains and strain HME7025

+, Present; –, absent.

Genes putatively encoding	Strain 30S-ANTBAC[†]	Strain 103A-SOEBACH	Strain 59G-WUEMPEL[†]	Strain HME7025
Motility:				
Proteins associated with gliding	+	+	+	+
Utilization of light:				
Proteorhodopsin	+	+	–	–
Biosynthesis of 7,8-dihydro-β-carotene	+	+	+	+
β-Carotene 1, 15′-monooxygenase	+	+	–	–
Pigments:				
Biosynthesis of β, γ and ζ-carotene	+	+	+	+
Biosynthesis of β-cryptoxanthin, canthaxanthin, phenoicoxanthin and astaxanthin	+	+	+	+
Transport systems:				
ABC-type: phospholipid, lipoprotein	+	+	+	+
myo-Inositol, lipopolysaccaride	–	–	+	+
MFS-transporter: nitrate/nitrite	+	–	+	+
Inorganic nutrients:				
Nitrate reductase (assimilatory)	+	–	+	+
Nitrite reductase (assimilatory)	–	–	+	+
Anaerobiosis:				
Nitrous oxide reductase	–	+	+	+
Oxidative stress:				
Catalase-peroxidase (EC:1.11.1.21)	+	+	–	–
Cytochrome c peroxidase (EC:1.11.1.5)	+	+	–	–
15,15'-monooxygenase. But all four strains had genes putatively encoding enzymes for the complete biosynthesis of 7,8-dihydro-β-carotene. The latter one serves as substrate for the monooxygenase, which produces retinal, the cofactor for the light driven proton pump proteorhodopsin [18]. Furthermore, only strain 30S-ANTBACT and strain 103A-SOEBCAH possessed genes putatively encoding a catalase-peroxidase and a cytochrome c peroxidase, which could protect bacteria from oxidative stress.

All three investigated strains and strain HME7025 encoded genes annotated for the biosynthesis of various carotenoids (Table 5). Concerning the ABC-type transport systems the four strains showed different patterns (Table 5). Regarding nitrogen metabolism the four strains showed some shared genes with an interesting distribution pattern among them. All strains except 103A-SOEBCAH possessed a gene cluster, which encompassed genes putatively necessary for the uptake and assimilation of nitrate and nitrite (Table 5). All strains except 30S-ANTBAC relative to the new taxon. The fact, that 16S rRNA gene sequences of different species within a genus are quite similar was reported from other taxonomic groups [23].

To improve the phylogenetic placement of the members of the new genus, genome data sets were used to calculate a RaxML tree [24]. Of the 120 protein-encoding genes recommended by Parks et al. [19], one gene (protein family TIGR00095) was not present in any of the available genomes of members of the Cytophagaceae. Sequences of the remaining 119 protein families were concatenated and aligned by using MAFFT [25]. This resulted in a sequence alignment of 50907 amino acid positions. This alignment was filtered by GBLOCKS (version 0.91b) [26] for highly variable positions. The chosen settings resulted in reduction of the alignment to 37796 positions (74 % of positions) in 556 selected blocks. A maximum-likelihood tree (Fig. 2) was reconstructed using RAXML 8.2.10 [24], as implemented on the CIPRES Science Gateway version 3.3 [27], under the Protein CAT model with auto selection of a protein substitution matrix (model settings PROTCATAUTO), and 100 bootstrapping iterations.

The phylogenetic reconstruction revised the placements of the members of the Cytophagaceae and confirmed the clade comprising members of the genus Flectobacillus, Arcicella, Pseudarcicella and the new taxon. The latter was now clearly separated from the other three genera. (Fig. 2).

ECOLOGY

The three strains presented in this study were isolated from either standing or running freshwater systems. All home habitats had in common that they were small ones. Thus, all habitats were in close contact to terrestrial systems. This corresponded with the fact that all strains are obviously able to degrade the polymer pectin, which is a component of the cell wall of terrestrial plants. The ability of all investigated strains to glide could also be a hint to their lifestyle in small and not permanent waters, which potentially allow them to move on moist surfaces. Strains 30S-ANTBAC and 103A-SOEBCAH could have, via proteorhodopsin, the opportunity to use sunlight as a supplementary energy source, which indicates that the strains live in at least temporarily light exposed habitats. All investigated members of the new genus-like taxon possessed a gene cluster putatively encoding for enzymes responsible for the reduction of nitrous oxide to nitrogen. This last step of the dissimilatory nitrate reduction is used by some bacteria to transfer protons across the membrane for energy conservation and was considered as the least oxygen tolerant step of nitrogen respiration [28]. However, a recent study [29] from a marine system revealed that N2O-consuming bacteria were also present and active in oxygenated surface water, this might be attributed to anoxic micro-environments created by particles. Even though the members of the new taxon grew aerobically, the potential ability to use N2O could also be an advantage at the water sediment interface of small or ephemeral water bodies, where anaerobic conditions may occur.
Blast searches with the 16S rRNA gene sequences of 30S-ANTBAC\(^1\) and 59G-WUEMPEL\(^1\) revealed that the new genus-like taxon represents a common and widespread group of freshwater bacteria. Even when taking only the 100 % and 99 % hits into account, more than 100 sequences from uncultured and cultured bacteria originating from all over the world were reported (Fig. S2). This included detections from various inland water systems like rivers, lakes, ponds, groundwater and lake sediments in the USA, Canada, the Arctic, China, Japan, Africa and Europe. For instance, sequences from environmental samples putatively belonging to the new genus-like taxon were found in high-altitude lakes of the eastern Tibetan plateau [30], the temperate Ipswich and Parker River in Massachusetts, USA [31], the humic lake Grosse Fuchskuhle, Germany [32], and in sediments of the freshwater Lake Kasumigaura, Japan [33]. Nevertheless, only a very few isolates were found in databases corresponding to the 16S rRNA genes from strains 59G-WUEMPEL\(^1\) and 30S-ANTBAC\(^1\) with identities of more

Strain	Genome Locus Tag	Identity (%)
HME7025	00303	98/100/100
Pitt et al. Int J Syst Evol Microbiol 2019;69:2739–2749		

Fig. 1. Reconstruction of the phylogenetic position of the investigated strains based on almost full length 16S rRNA gene sequences (1336 alignment positions). Sequences from all genus type species of the family Cytophagaceae, and further species closely related to the investigated strains were used. Shown is the maximum-likelihood tree. Bootstrap values are shown from left to right for maximum-likelihood, neighbour-joining, and maximum-parsimony trees calculated with the same sequence set. Bar, 0.01 substitutions per nucleotide position. The tree was rooted with Prevotella melaninogenica DSM 7089\(^1\) (not shown, AY323525).
than 98.7 %, which is according to Chun et al. [34] a similarity value potentially separating different species. In the case of 59G-WUEMPELT, six strains sharing 16S rRNA gene similarities of >99.7 % were isolated from a mesotrophic lake in the Republic of Korea (strains HME7025, IMCC25912 and HMD1017), from the sediment of a freshwater lake in Japan [33], from an unknown source in China (strain D11), and from freshwater in Taiwan (strain CAR-16). In case of strain 30S-ANTBAC*, only two isolates sharing 16S rRNA gene similarities of >99.3 %, one from an artificial mesotrophic lake in the Republic of Korea (strain HME7208) and one from Lake Maarsseveen, The Netherlands (strain MI3-53), could be found.

PROPOSAL OF THE NEW GENUS AQUIRUFA GEN NOV. AND THE TWO SPECIES AQUIRUFA ANTERINGENSIS SP. NOV. AND AQUIRUFA NIVALISILVAE SP. NOV.

In the 16S rRNA gene tree, strains 30S-ANTBAC*, 103A-SOEBAECH and 59G-WUEMPELT formed their own clade, well separated from the closest related genera. With their nearest relative *Pseudarcicella hirudinis* they showed low 16S rRNA gene sequence similarities of less than 94.5 %. The separation of the clade was confirmed and more pronounced by the phylogenomic tree (Fig. 2). Pairwise whole genome average nucleotide identity (gANI) values

![Phylogenomic RAxML tree](image-url)
calculated with the type strains of *Pseudarcicella hirudinis* and *Arcicella aurantiaca* were only slightly higher (71.8%) than pairwise values calculated (i) for any of the three new strains and the *P. hirudinis* type strain (in all three cases about 69%), and (ii) for any of the three new strains and the *A. aurantiaca* type strain (in all three cases 69–70%). A comparison of the new taxon with the closest related genera *Pseudarcicella*, *Arcicella* and *Flectobacillus* is given in Table 4. The new taxon differed in pigmentation, in predominant fatty acid composition and in the combination of some other features from all other genera (Table 4). The patterns of the polar lipids of the three investigated strains (S1) and *Pseudarcicella hirudinis* [35] differed strongly. The most striking point is the genome size of the new taxon, which is approximately half of that of these nearest related genera. These points and the phylogenetic reconstructions (Fig. 1, Fig. 2), as well as 16S rRNA gene similarities and gANI values suggested that these three strains represent a new genus, for which we propose the name *Aquirufa* gen. nov.

To test which of the three investigated strains belong to the same species, pairwise gANI values were calculated (Table 3). While strains 30S-ANTBAC\(^T\) and 103A-SOE-BACH had a gANI value of 96.5% which is slightly higher than the proposed cut-off of 95–96% separating two species [34, 36–39], indicated the remaining gANI values of rounded 71% (Table 3) that the three investigated strains represented two different species [34, 36–39]. These findings were confirmed by the phylogenomic reconstructions with multiple amino acid sequences (Fig. 2), which separated the proposed novel species on different branches with branch length, i.e. evolutionary distances, similar to those between other type strains belonging to the same genus within the family *Cytophagaceae* (Fig. 2). The pairwise gANI value between strains 59G-WUEMPEL\(^T\) and HME7025 of 97.4% suggested, that these strains need to be considered as members of the same species. At first glance, the results of the gene content concerning the nitrogen metabolism disagree with the classification of the investigated strains into two species, since strains 30S-ANTBAC\(^T\) and 103A-SOE-BACH classified as one species differed in possessing gene clusters putatively encoding for nitrate/nitrite assimilation and nitrous oxide reduction, respectively (see above). According to the pangeneome concept, these two gene clusters could be regarded as auxiliary genes representing parts of the flexible genome of the strains. Such genes could be exchanged by intra- or even interspecific horizontal gene transfer [15], which might explain, why the clusters are present or absent in strains belonging to the same species. In the case of the predicted assimilatory nitrate reductase, the gene sequence similarity between strains HME7025 and 59G-WUEMPEL\(^T\), probably belonging to a single species, was relatively high (97%), while the latter and strain 30S-ANTBAC\(^T\) showed 70%. In contrast, for the predicted nitrous oxide reductase and flanking genes, the sequence similarity between strains HME7025 and 59G-

WUEMPEL\(^T\) was the same (97%), while the latter and strain 103A-SOEBAECH showed 88% similarity of the genes. This value is much higher than the whole genome sequence similarity of 71% between these two strains and could imply that for this gene cluster horizontal gene transfer across species boundaries might be possible.

Some features distinguished the three strains from each other. Only strain 59G-WUEMPEL\(^T\) weakly assimilated sucrose, D-mannose, D-salicin and D-aspartic acid (Table 1). Furthermore, while strain 30S-ANTBAC\(^T\) had only four unidentified polar lipids, strain 59G-WUEMPEL\(^T\) had five. The two strains 30S-ANTBAC\(^T\) and 103A-SOEBAECH considered as belonging to the same species, shared highly similar G+C values but differed in this characteristic from the third strain.

DESCRIPTION OF AQUIRUFA GEN. NOV.

Aquirufa gen. nov. [A.qui.ru’fa. L. n. *aqua*, water; L. adj. *rufus*, red; N.L. fem. n. *Aquirufa*, a red (bacterium) isolated from water].

Cells form rods and grow chemoorganotrophically and aerobically. Colonies grown on NSY or R2A agar are bright red, in older stages dark red pigmented, circular and convex with smooth surface. Liquid cultures in NSY or R2A medium have an intense red-orange colouring. Cells are able to glide on soft agar. Major respiratory quinone is MK-7, predominant fatty acid is iso-C\(_{15:0}\), identified polar lipid is phosphatidylethanolamine. Based on phylogenetic reconstructions with 16S rRNA gene sequences and amino acid sequences obtained from 119 single copy genes, respectively, the genus belongs to the family *Cytophagaceae*. G+C content is in the range of 38–43 mol\%. The type species of the new genus is *Aquirufa antheringensis*.

DESCRIPTION OF AQUIRUFA ANHERINGENSIS SP. NOV.

Aquirufa antheringensis (an.the.rin.gen’sis. N.L. fem. adj. antheringensis, isolated from Antheringer Creek).

Cells form rods, about 1.7 \(\mu\)m long and 0.6 \(\mu\)m wide. Colonies grown on NSY or R2A agar are bright red, in older stages dark red, pigmented, circular and convex with smooth surface. Liquid cultures in NSY or R2A medium have an intense red-orange colouring. Cells are able to glide on soft agar. Growth occurs at 5–32°C and in 0–0.3% (w) NaCl. Cells assimilate pectin and Tween 40, weakly assimilate acetooacetic acid, glucuronamide and D-fructose-6-P\(_4\), and do not assimilate L-histidine, propionic acid, D-lactic acid methyl ester, L-alanine, L-glutamic acid, L-aspartic acid, D-glucose-6-P\(_4\), dextrin, D-glucuronic acid, D-fructose, D-arabitol, \(\alpha\)-D-glucose, \(\alpha\)-hydroxy-butyric-acid, D-galactose, methyl \(\beta\)-D-glucoside, D-galacturonic acid, 3-methyl glucose, L-rhamnose, L-galactonic acid lactone, D-mannitol, formic acid, L-malic acid, D-gluconic acid, N-acetyl-D-glucosamine, N-acetyl-\(\beta\)-D-mannosamine, mucic acid, myo-inositol, trehalose, inosine, maltose, gentiobiose, \(\beta\)-
The type strain is 3OS-ANTBAC\(^T\) (=JCM 32977\(^T\) =DSM 108553\(^T\)), which was isolated from a small intermittent freshwater pond with low conductivity and nearly neutral pH located near Lengau, Austria. The genome of the type strain is characterized by a size of 3.1 Mbp and a G+C content of 42.6 mol%.

DESCRIPTION OF AQUIRUF A NIVALISILVAE SP. NOV.

Aquirufa nivalisilvae [ni.va.li.sil’vae. L. adj. nivalis, snow covered; L. n. silva, forest: N.L. gen. n. nivalisilvae, from the forest of Schnee (snow)pattern].

Cells form rods, about 1.6 µm long and 0.5 µm wide. Colonies grown on NSY or R2A agar are bright red, in older stages dark red, pigmented, circular and convex with smooth surface. Liquid cultures with NSY or R2A medium have an intense red-orange colouring. Cells are able to glide on soft agar. Growth occurs at 5–35°C and in 0–0.4% (w) NaCl. Cells assimilate pectin and Tween 40, weakly assimilate acetoclastic acid, glucuronamide, D-fructose-6-PO\(_4\), sucrose, D-mannose, D-salicylinal, and D-aspartic acid, but do not assimilate L-histidine, propionic acid, D-lactic acid methyl ester, L-alanine, L-glutamic acid, L-aspartic acid, D-glucose-6-PO\(_4\), dextrin, D-glucuronic acid, D-fructose, D-arabitol, α-D-glucose, α-hydroxy-butyric-acid, D-galactose, methyl β-D-glucoside, D-galacturonic acid, 3-methyl glucose, L-rhamnose, L-galactononic acid lactone, D-mannitol, formic acid, L-malic acid, D-gluconic acid, N-acetyl-D-glucosamine, N-acetyl-β-D-mannosamine, mucic acid, myoinositol, trehalose, inosine, maitose, gentiobiose, β-hydroxy-DL-DL-butyric acid, cellubiose, glycolyl-L-proline, L-pyrroglutamic acid, N-acetyl-D-galactosamine, glycerol, L-fucose, α-keto-glutaric acid, melibiose, lactose, D-fucose, D-lactic acid, turanose, N-acetyl neuraminic acid, quinic acid, 2-sorbitol, D-malic acid, p-hydroxyphenylacetic acid, raffinose, α-manno-butyric acid, L-arginine, stachyose, gelatin, D-serine, D-saccharic acid, methyl pyruvate, α-keto-butyric acid, bromo-succinic acid, L-serine, citric acid, succro, D-mannose, D-salicin, D-aspartic acid and acetic acid. Major fatty acids are C\(_{14:1}\)ω5c, iso-C\(_{15:0}\)ω2c, anteiso-C\(_{15:0}\)ω2c, C\(_{16:1}\)ω7c, C\(_{16:1}\)ω6c, and summed feature 3 (iso-C\(_{15:0}\)ω2c + C\(_{16:1}\)ω7c). Polar lipids are phosphatidylethanolamine, unidentified amino-lipids, unidentified amino-phospho-lipids and unidentified polar lipids. Respiratory quinones are MK7 and traces of MK6.

Funding information
This study was supported by ‘Sparkling Science’ project SPA 06/065 funded by the Austrian Federal Ministry of Education, Science and Research (BMBWF) and the program ‘Talente’ of the Austrian Research Promotion Agency (FFG).

Acknowledgements
We thank Rabia Eskil, Florian Groemer and Simon Hallinger for taking and handling water samples. We also thank Anita Hatheuer, Lea Emberger, Dilara Yıldırım, Isabella Robl, Amely Sikula, Leonie Kitti, Victoria Fuchs and Oliver Millgrammer for their help in the lab. We thank Eva Schnitzlbaumer, Carina Schiel, Gershild Bach, Valentina Gruber, Lena Roeder, Lena Beitscheck and Sarah Jelovčič for creating the genus and species names, Johanna Poettler for her organizational support and Bernhard Schink for advice concerning the nomenclature.

Conflicts of interest
The authors declare that there are no conflicts of interest.

References
1. Hahnke RL, Meier-Kolthoff JP, García-López M, Mukherjee S, Huntemann M et al. Genome-based taxonomic classification of Bacteroidetes. Front Microbiol 2016;7:2003.
2. Kirchman DL. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 2002;39:91–100.
3. Reichenbach H, Dworkin M. The order Cytophagales (with addenda on the genera Herpetosiphon, Saprospira, and Flexithrix). In: Starr MP (editor). The Prokaryotes: A handbook on habitats, isolation, and identification of bacteria. Berlin, Heidelberg: Springer; 1981. pp. 355–379.
4. McBride MJ, Liu W, Lu X, Zhu Y, Zhang W et al. The family Cytophagaceae. In: Rosenberg E (editor). The prokaryotes: Other major lineages of Bacteria and the Archaea. Berlin, Heidelberg: Springer; 2014. pp. 577–593.
5. Hahn MW, Stadler P, Wu QL, Pöckl M. The filtration-acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J Microbiol Methods 2004;57:379–390.
6. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985;49:1–7.
7. Tamaki H, Tanaka Y, Matsuoka H, Muramatsu M, Meng XY et al. Armimatina mesae gen. nov., sp. nov., of a novel bacterial phylum, Armimatinales phyl. nov., formally called the candidate phylum OP10. Int J Syst Evol Microbiol 2011;61:1442–1447.
8. Hahn MW, Schmidt J, Kolb U, Rohde M, Verbarg S et al. Silivaniqreta aquatica gen. nov., sp. nov., isolated from a freshwater lake, description of Silivaniqretaceae fam. nov., and Silivangiellales ord. nov., reclassification of the order Bdellovibrionales in the class Oligoflexia, reclassification of the families Bacteriovoraceae and Halobacteriorovaceae in the new order Bacteriovoraceae ord. nov., and reclassification of the family Pseudobacteriorovaceae in the order Oligoflexiales. Int J Syst Evol Microbiol 2017;67:2555–2568.
9. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC News 1990;20:16.
10. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130.
11. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202.
12. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959;37:911–917.
13. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52:1049–1070.
14. Hoetzinger M, Schmidt J, Pitt A, Koll U, Lang E et al. Polynucleo-
bacter paneuropaeus sp. nov., characterized by six strains isolated from freshwater lakes located along a 3000 km north-south cross-section across Europe. Int J Syst Evol Microbiol 2019;69:203–213.
15. Hoetzinger M, Schmidt J, Jezberová J, Koll U, Hahn MW. Microdi-
versification of a pelagic Polynucleobacter species is mainly driven by acquisition of genomic islands from a partially interspecific gene pool. Appl Environ Microbiol 2017;83:19.
16. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477.
17. Chen IA, Chu K, Palaniappan K, Pillay M, Ratner A et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res 2019;47:D666–D677.
18. Peck RF, Echavarri-Erasun C, Johnson EA, Ng WV, Kennedy SP et al. brp and ibh are required for synthesis of the retinal cofactor bacteriohopdopsin in Halobacterium salinarum. J Biol Chem 2001;276:5739–5744.
19. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phy- logeny substantially revises the tree of life. Nat Biotechnol 2018;36:996–1004.
20. Munoz R, Rosselló-Móra R, Amann R. Revised phylogeny of Bacterio-
edetes and proposal of sixteen new taxa and two new combi-
nations including Rhodothermaeota phyI. nov. Syst Appl Microbiol 2016;39:281–296.
21. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018;35:1547–1549.
22. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120.
23. Hahn MW, Jezberová J, Koll U, Saueressig-Beck T, Schmidt J. Complete ecological isolation and cryptic diversity in Polynucleo-
bacter bacteria not resolved by 16S rRNA gene sequences. Isme J 2016;10:1642–1655.
24. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–1313.
25. Katoh K, Kuma K, Toh H, Miyata T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 2008;36:511–518.
26. Castresana J. Selection of conserved blocks from multiple align-
ments for their use in phylogenetic analysis. Mol Biol Evol 2000;17:540–552.
27. Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES science gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE). New Orleans, LA: IEEE; 2010. pp. 1–8.
28. Zumft WG. Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 1997;61:533–616.
29. Sun X, Jayakumar A, Ward BB. Community composition of nitrous oxide consuming bacteria in the oxygen minimum zone of the eastern tropical South Pacific. Front Microbiol 2017;8:1183.
30. Xing P, Hahn MW, Wu QL. Low taxon richness of bacterioplankton in high-altitude lakes of the eastern tibetan plateau, with a pre-
dominance of Bacteroidetes and Synechococcus spp. Appl Environ Microbiol 2009;75:7017–7025.
31. Crump BC, Hobbie JE. Synchrony and seasonality in bacterio-
plankton communities of two temperate rivers. Limnol Oceanogr 2005;50:1718–1729.
32. Burkert U, Warnecke F, Babenzien D, Zwirnmann E, Pernthalier J. Members of a readily enriched beta-proteobacterial clade are common in surface waters of a humic lake. Appl Environ Microbiol 2003;69:6550–6559.
33. Tamaki H, Hanada S, Sekiguchi Y, Tanaka Y, Kamagata Y. Effect of gelling agent on colony formation in solid cultivation of micro-
bial community in lake sediment. Environ Microbiol 2009;11:1827– 1834.
34. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the tax-
onomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466.
35. Kämpfer P, Busse HJ, Longaric I, Rosselló-Móra R, Galatis H et al. Pseudarcicella hirudinis gen. nov., sp. nov., isolated from the skin of the medical leech Hirudo medicinalis. Int J Syst Evol Microbiol 2012;62:2247–2251.
36. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351.
37. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005;102:2567–2572.
38. Konstantinidis KT, Ramette A, Tiedje JM. The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci 2006;361:1929–1940.
39. Rosselló-Móra R, Amann R. Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol 2015;38:209–216.
40. Chen WM, Yang SH, Shyu SY. Arcicella rigui sp. nov., isolated from water of a wetland, and emended descriptions of the genus Arcicella, Arcicella aquatica, Arcicella rosea and Arcicella aurantiaca. Int J Syst Evol Microbiol 2013;63:134–140.
41. Shyu SY, Liu LP, Chen WM. Flectobacillus pallidus sp. nov., isolated from a freshwater spring. Int J Syst Evol Microbiol 2017;67:1126–1132.
42. Chen WM, Lin KR, Young CC, Shyu SY. Flectobacillus fontis sp. nov., isolated from a freshwater spring. Int J Syst Evol Microbiol 2017;67:336–342.
43. Ramaprasad EV, Sasaki A, Ramana C. Flectobacillus rhizos-
phaeræ sp. nov., isolated from the rhizosphere soil of Oryza sativa (L.), and emended description of the genus Flectobacillus. Int J Syst Evol Microbiol 2015;65:3451–3456.
44. Hwang CY, Cho BC. Flectobacillus lacus sp. nov., isolated from a highly eutrophic pond in Korea. Int J Syst Evol Microbiol 2006;56:1197–1201.