Dependent multiplier bootstraps for non-degenerate U-statistics under mixing conditions with applications

Axel Bücher∗ and Ivan Kojadinovic†

December 19, 2014

Abstract

The asymptotic validity of a resampling method for two sequential processes constructed from non-degenerate U-statistics is established under mixing conditions. The resampling schemes, referred to as dependent multiplier bootstraps, result from an adaptation of the seminal approach of Gombay and Horváth (2002) to mixing sequences. The proofs exploit recent results of Dehling and Wendler (2010b) on degenerate U-statistics. A data-driven procedure for estimating a key bandwidth parameter involved in the resampling schemes is also suggested, making the use of the studied dependent multiplier bootstraps fully automatic. The derived results are applied to the construction of confidence intervals and to test for change-point detection. For such applications, Monte Carlo experiments suggest that the use of the proposed resampling approaches can have advantages over that of estimated asymptotic distributions.

Keywords: alpha and beta mixing; change-point detection; functional multiplier central limit theorem; lag window estimator; sequential processes.

1 Introduction

The asymptotic analysis of many well-known estimators and tests can be carried out using the theory of U-statistics. Common examples of estimators are the empirical variance, Gini’s mean difference or Kendall’s rank correlation coefficient, while a classical test based on a U-statistic is Wilcoxon’s signed rank test for the hypothesis of location at zero (see, e.g., van der Vaart, 1998, Example 12.4). Throughout this work, we focus on the important special case of U-statistics of order 2 based on stationary, short-range dependent observations. More precisely, let $d \geq 1$ be an integer and let $h : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ be a symmetric, measurable function. Given a stretch of observations X_1, \ldots, X_n drawn from a stationary, \mathbb{R}^d-valued sequence $(X_i)_{i \in \mathbb{N}}$,

$$U_{h,1:n} = \frac{1}{\binom{n}{2}} \sum_{1 \leq i < j \leq n} h(X_i, X_j)$$

(1.1)
is called \textit{U-statistic of order 2 with kernel} h. A kernel h that satisfies $E\{h(x, X_1)\} = 0$ for P^{X_1}-almost all $x \in \mathbb{R}^d$ is called \textit{degenerate}. In the rest of this work, we restrict our attention to U-statistics defined from non-degenerate kernels, subsequently referred to as \textit{non-degenerate U-statistics}.

To analyze the asymptotics of such U-statistics, Hoeffding (1948) introduced the decomposition

$$U_{h,1:n} = \theta + \frac{2}{n} \sum_{i=1}^{n} h_1(X_i) + U_{h_{2,1:n}}, \quad (1.2)$$

where, with X and X' denoting independent random vectors that have the same distribution as X_1,

$$\theta = E\{h(X, X')\}, \quad (1.3)$$

$$h_1(x) = E\{h(x, X)\} - \theta, \quad x \in \mathbb{R}^d, \quad (1.4)$$

$$h_2(x_1, x_2) = h(x_1, x_2) - h_1(x_1) - h_1(x_2) - \theta, \quad x_1, x_2 \in \mathbb{R}^d. \quad (1.5)$$

A simple calculation shows that h_2 is a degenerate kernel. In many situations of interest, the asymptotic behavior of $U_{h,1:n}$ follows from that of the term $2n^{-1} \sum_{i=1}^{n} h_1(X_i)$.

For any $x \geq 0$, let $[x]$ be the greatest integer smaller or equal than x, and, for any $(s, t) \in \Delta = \{(s, t) \in [0,1]^2 : s \leq t\}$, let $\lambda_n(s, t) = ([nt] - [ns])/n$. Also, let $\ell^\infty([0,1])$ be the space of all bounded real-valued functions on $[0,1]$ equipped with the uniform metric. The main theoretical aim of this work is to establish, under suitable moment and mixing conditions, the asymptotic validity of two \textit{dependent multiplier bootstraps} for the stochastic process $U_n \in \ell^\infty([0,1])$ defined by

$$U_n(s) = \sqrt{n} \lambda_n(0, s)(U_{h,1:[ns]} - \theta) \quad \text{if } s \in [2/n, 1], \quad (1.6)$$

and $U_n(s) = 0$ otherwise, and for the related process $D_n \in \ell^\infty([0,1])$ defined by

$$D_n(s) = \sqrt{n} \lambda_n(0, s)\lambda_n(s, 1)(U_{h,1:[ns]} - U_{h,1:[ns]+1:n}) \quad \text{if } s \in [2/n, 1-2/n] \quad (1.7)$$

and $D_n(s) = 0$ otherwise. The latter process is of particular importance for change point analysis; see Section 3.2 below.

Multiplier bootstraps, also frequently referred to as \textit{wild} or \textit{weighted} bootstraps, were used in a wide variety of settings. For the arithmetic mean, such resampling schemes were investigated among others in Barbe and Bertail (1995) for independent observations and in Shao (2010) for weakly dependent observations. For general empirical processes based on independent observations, key results are given in van der Vaart and Wellner (2000, Chapters 2.9 and 3.6), while for standard empirical processes based on weakly dependent observations, a seminal contribution is Bühlmann (1993, Section 3.3) which was recently revisited by Bücher and Kojadinovic (2014). Multiplier bootstraps for degenerate U-statistics were for instance studied by Dehling and Mikosch (1994) in the case of independent observations and recently by Leucht and Neumann (2013) in the case of weakly dependent data. The case of non-degenerate U-statistics based on independent observations was investigated by Janssen (1994) and Wang and Jing (2004), among others.

For non-degenerate U-statistics based on weakly dependent observations, the only study of the asymptotic validity of a resampling scheme seems to be due to Dehling and Wendler
(2010a) who investigated a circular block bootstrap for the statistic \(U_n(1) \) with \(U_n \) defined in (1.6). The dependent multiplier bootstraps for the process \(U_n \) proposed in Section 2.3 of this work are thus (sequentially extended) alternatives to the latter approach. Our proofs of their asymptotic validity exploit recent key results due to Dehling and Wendler (2010a) and Dehling and Wendler (2010b) concerning the degenerate \(U \)-statistic \(U_{h_2,1;n} \) appearing in Hoeffding’s decomposition (1.2).

We apply similar arguments to prove the asymptotic validity of related dependent multiplier bootstraps for the process \(D_n \) in (1.7). The latter process is a key ingredient in a large class of tests for change-point detection (see, e.g., Gombay and Horváth, 2002; Horváth and Hušková, 2005), a typical test statistic being

\[
S_n = \max_{2 \leq k \leq n-2} |D_n(k/n)| = \sup_{s \in [0,1]} |D_n(s)|. \tag{1.8}
\]

Particular choices for the kernel \(h \) lead to, for instance, tests for detecting changes in the variance, Gini’s mean difference or Kendall’s tau (see Dehling et al., 2014, and references therein for more details on this last test). The dependent multiplier bootstrap results of Gombay and Horváth (2002) from independent to weakly dependent observations. As a consequence of this extension, under suitable moment and mixing conditions, the tests for change-point detection based on \(S_n \) could be carried out using resampling instead of relying on the fact that, under the null, \(D_n \) converges weakly to a Brownian bridge depending on an unknown long-run variance parameter that needs to be estimated. Our Monte Carlo experiments indicate that the use of resampling instead of the estimated asymptotic null distribution of \(S_n \) can lead to better behaved tests.

The remaining parts of this article are organized as follows. Dependent multiplier bootstrap results for the process \(U_n \) defined in (1.6) are given in Section 2. In addition to asymptotic validity results, a procedure for estimating a key bandwidth parameter (playing a role somehow analogous to the block length in the block bootstrap) is proposed. A straightforward application to the construction of confidence intervals concludes the section and illustrates possible advantages of the use of the proposed resampling schemes. Section 3 provides asymptotic validity results for the related bootstrap procedures for the process \(D_n \) defined in (1.7), and discusses applications to change-point detection. Monte Carlo experiments are carried out for a specific test for change-point detection based on the statistic \(S_n \) in (1.8) and suggest that, in this case, the use of resampling may be preferable to that of the estimated asymptotic null distribution when computing an approximate p-value for \(S_n \). Section 4 concludes.

All proofs are deferred to a sequence of appendices and the studied tests for change-point detection are implemented in the package \texttt{npcl} for the \texttt{R} statistical system (\texttt{R} Development Core Team, 2014).

2 Two dependent multiplier bootstraps for \(U_n \)

2.1 Additional definitions

For the sake of completeness, let us first recall the notions of strongly mixing sequence and absolutely regular sequence. For a sequence of \(d \)-dimensional random vectors \((Y_i)_{i \in \mathbb{N}}\),
the σ-field generated by $(Y_i)_{i \leq b}$, $a, b \in \mathbb{N} \cup \{+\infty\}$, is denoted by \mathcal{F}_a^b. The strong mixing coefficients corresponding to the sequence $(Y_i)_{i \in \mathbb{N}}$ are then defined by $\alpha_0 = 1/2$

$$\alpha_r = \sup_{p \in \mathbb{N}} \sup_{A \in \mathcal{F}_{a}^p, B \in \mathcal{F}_{a}^{+r}} |P(A \cap B) - P(A)P(B)|, \quad r \in \mathbb{N}, r > 0.$$

The sequence $(Y_i)_{i \in \mathbb{N}}$ is said to be strongly mixing if $\alpha_r \to 0$ as $r \to \infty$. The absolute regularity coefficients corresponding to the sequence $(Y_i)_{i \in \mathbb{N}}$ are defined by

$$\beta_r = \sup_{p \in \mathbb{N}} \sup_{A \in \mathcal{F}_{a}^\infty} |P(A|\mathcal{F}_0^p) - P(A)|, \quad r \in \mathbb{N}, r > 0.$$

The sequence $(Y_i)_{i \in \mathbb{N}}$ is said to be absolutely regular if $\alpha_r \to 0$ as $r \to \infty$. As $\alpha_r \leq \beta_r$, absolute regularity implies strong mixing.

To establish the desired theoretical results, we rely on key results of Dehling and Wendler (2010a) and Dehling and Wendler (2010b) on the degenerate part of Hoeffding’s decomposition (1.2) of a U-statistic. The latter require that the kernel h satisfies certain moment conditions.

Definition 2.1. Given a strictly stationary sequence $(X_i)_{i \in \mathbb{N}}$, a kernel h is said to have uniform γ-moments, $\gamma > 0$, if there exists $B > 0$ such that

$$E\{|h(X, X')|^\gamma\} \leq B$$

for any random vector (X, X') in \mathbb{R}^{2d} with probability distribution in $\{P^{(X_i, X_k)} : k \in \mathbb{N}\} \cup \{P^{X_i} \otimes P^{X_1}\}$.

The following continuity conditions are also needed. The first one is due to Dehling and Wendler (2010a), the second one to Denker and Keller (1986) (see also Dehling and Wendler, 2010b, Definition 1.7).

Definition 2.2. (a) A kernel h is called P-Lipschitz-continuous with constant $L > 0$ if

$$E\{|h(X, Y) - h(X', Y)|1(\|X - X'\| \leq \varepsilon)\} \leq L\varepsilon$$

for any $\varepsilon > 0$ and any random vector (X, X', Y) in \mathbb{R}^{2d} such that the probability distributions of (X, Y) and (X', Y) are in $\{P^{(X_i, X_k)} : k \in \mathbb{N}\} \cup \{P^{X_i} \otimes P^{X_1}\}$.

(b) A kernel h is said to satisfy the variation condition if there exists a constant $L > 0$ such that, for any $\varepsilon > 0$ and any independent random vectors X and X' with probability distribution $P^{X_1},$

$$E\left\{\sup_{\|y - y'\| \leq \varepsilon} |h(y, y') - h(z, z')| \right\} \leq L\varepsilon.$$

Examples of kernels satisfying the P-Lipschitz-continuity condition or the variation condition are given for instance in Dehling and Wendler (2010b); see also Section 2.5.
2.2 Weak convergence of U_n under mixing

Before stating bootstrap consistency results, we study the asymptotics of U_n in (1.6). The following proposition is a rather immediate consequence of Theorem 2 of Oodaira and Yoshihara (1972) and Theorem 1 of Dehling and Wendler (2010b). Its proof is given in Appendix A.

Proposition 2.3 (Asymptotics of U_n). Assume that X_1, \ldots, X_n is drawn from a strictly stationary sequence $(X_i)_{i \in \mathbb{N}}$ and that h has uniform $(2 + \delta)$-moments for some $\delta > 0$. Furthermore, suppose that one of the following two conditions holds:

(i) $(X_i)_{i \in \mathbb{N}}$ is absolutely regular and $\beta_r = O(r^{-b})$, $b > (2 + \delta)/\delta$,

(ii) $(X_i)_{i \in \mathbb{N}}$ is strongly mixing, $E(\|X_1\|^\gamma) < \infty$ for some $\gamma > 0$, h satisfies the P-Lipschitz continuity or variation condition and $\alpha_r = O(r^{-b})$, $b > \max\{(3\gamma\delta + \delta + 5\gamma + 2)/(2\gamma\delta), (2 + \delta)/\delta\}$.

Then,

$$
\sup_{s \in [0, 1]} \left| U_n(s) - \frac{2}{\sqrt{n}} \sum_{i=1}^{\lfloor ns \rfloor} h_1(X_i) \right| = o_P(1) \quad (2.1)
$$

and

$$
\sigma^2_{h_1} = E[\{h_1(X_1)\}^2] + 2 \sum_{i=2}^{\infty} E\{h_1(X_1)h_1(X_i)\} < \infty. \quad (2.2)
$$

Consequently, $U_n \rightsquigarrow U = 2\sigma_{h_1}\mathbb{B}$ in $\ell^\infty([0, 1])$, where ‘\rightsquigarrow’ denotes weak convergence in the sense of Definition 1.3.3 in van der Vaart and Wellner (2000) and \mathbb{B} is a standard Brownian motion.

Interestingly enough, the sufficient mixing conditions become significantly simpler if h is a bounded kernel. Under such a restriction, the above result was established for P-near epoch dependent sequences by Dehling et al. (2014, Theorem B.1).

2.3 Dependent multiplier bootstrap results

Our dependent multiplier bootstrap results for U_n rely on the notion of dependent multiplier sequence due to Bühlmann (1993, Section 3.3) (see also Bücher and Kojadinovic, 2014).

Definition 2.4. A sequence of random variables $(\xi_{i,n})_{i \in \mathbb{N}}$ is said to be a dependent multiplier sequence if:

(M1) The sequence $(\xi_{i,n})_{i \in \mathbb{N}}$ is strictly stationary with $E(\xi_{1,n}) = 0$, $E(\xi_{1,n}^2) = 1$ and $\sup_{n \geq 1} E(|\xi_{1,n}|^\nu) < \infty$ for all $\nu \geq 1$, and is independent of the available sample X_1, \ldots, X_n.

(M2) There exists a sequence $\ell_n \to \infty$ of strictly positive constants such that $\ell_n = o(n)$ and the sequence $(\xi_{i,n})_{i \in \mathbb{N}}$ is ℓ_n-dependent, i.e., $\xi_{i,n}$ is independent of $\xi_{i+h,n}$ for all $h > \ell_n$ and $i \in \mathbb{N}$.

5
(M3) There exists a function \(\varphi : \mathbb{R} \to [0, 1] \), symmetric around 0, continuous at 0, satisfying \(\varphi(0) = 1 \) and \(\varphi(x) = 0 \) for all \(|x| > 1 \) such that \(\mathbb{E}(\xi_{i,n} \xi_{i+1,n}) = \varphi(h/\ell_n) \) for all \(h \in \mathbb{N} \).

Let \(M \) be a large integer and let \((\xi_{i,n}^{(1)})_{i \in \mathbb{N}}, \ldots, (\xi_{i,n}^{(M)})_{i \in \mathbb{N}}\) be \(M \) independent copies of the same dependent multiplier sequence. Then, for any \(m \in \{1, \ldots, M\} \) and \(s \in [0, 1] \), let

\[
\mathbb{H}_n(s) = \frac{2}{\sqrt{n}} \sum_{i=1}^{[ns]} h_1(X_i), \quad \mathbb{H}_n^{(m)}(s) = \frac{2}{\sqrt{n}} \sum_{i=1}^{[ns]} \xi_{i,n}^{(m)} h_1(X_i),
\]

where \(h_1 \) is defined in (1.4). The dependent multiplier central limit theorem stated in Proposition B.1 then implies that, under suitable moment and mixing conditions, the processes \(\mathbb{H}_n, \mathbb{H}_n^{(1)}, \ldots, \mathbb{H}_n^{(M)} \) jointly converge weakly to independent copies of the same limit, suggesting to interpret \(\mathbb{H}_n^{(1)}, \ldots, \mathbb{H}_n^{(M)} \) as bootstrap replicates of \(\mathbb{H}_n \). Because of (2.1), the latter multiplier processes can actually be regarded as bootstrap replicates of \(U_n \) as well. They are however not computable as the sample \(h_1(X_1), \ldots, h_1(X_n) \) is not observable. Starting from (1.4) and given integers \(1 \leq k \leq l \leq n \), it is natural to estimate the sample \(h_1(X_k), \ldots, h_1(X_l) \) by the pseudo-observations \(\hat{h}_{1,k:l}(X_k), \ldots, \hat{h}_{1,k:l}(X_l) \), where

\[
\hat{h}_{1,k:l}(X_i) = \frac{1}{l-k} \sum_{j=k}^{l} h(X_i, X_j) - U_{h,k:l}, \quad i \in \{k, \ldots, l\},
\]

with the convention that \(\hat{h}_{1,k:k} = 0 \) if \(k = l \). Fix \(m \in \{1, \ldots, M\} \). We then consider the two following computable versions of \(\mathbb{H}_n^{(m)} \) in (2.3) defined, for any \(s \in [0, 1] \), as

\[
\hat{U}_n^{(m)}(s) = \frac{2}{\sqrt{n}} \sum_{i=1}^{[ns]} \xi_{i,n}^{(m)} \hat{h}_{1,1:n}(X_i), \quad s \in [0, 1],
\]

and

\[
\hat{U}_n^{(m)}(s) = \frac{2}{\sqrt{n}} \sum_{i=1}^{[ns]} \xi_{i,n}^{(m)} \hat{h}_{1,1:[ns]}(X_i), \quad s \in [0, 1],
\]

respectively. The two processes above are to be interpreted as bootstrap replicates of the process \(\hat{U}_n \) defined in (1.6). The process \(\hat{U}_n^{(m)} \) was considered in the case of independent observations in the seminal work of Gombay and Horváth (2002), while the process \(\hat{U}_n^{(m)} \) is a variation of the latter. The following result is proved in Appendix C.

Proposition 2.5 (Two dependent multiplier bootstraps for \(\hat{U}_n \)). Assume that \(X_1, \ldots, X_n \) is drawn from a strictly stationary sequence \((X_i)_{i \in \mathbb{N}} \) and that \(h \) has uniform \((4 + \delta) \)-moments for some \(\delta > 0 \). Also, let \((\xi_{i,n}^{(1)})_{i \in \mathbb{N}}, \ldots, (\xi_{i,n}^{(M)})_{i \in \mathbb{N}}\) be independent copies of the same dependent multiplier sequence satisfying (M1)–(M3) in Definition 2.4 such that \(\ell_n = O(n^{1/2-\varepsilon}) \) for some \(1/(6 + 2\delta) < \varepsilon < 1/2 \). Furthermore, suppose that one of the following two conditions holds:

(i) \((X_i)_{i \in \mathbb{N}} \) is absolutely regular with \(\beta_r = O(r^{-b}) \), \(b > 2(4 + \delta)/\delta \).
(ii) \((X_i)_{i \in \mathbb{N}}\) is strongly mixing, \(E(\|X_1\|^\gamma) < \infty\) for some \(\gamma > 0\), \(h\) satisfies the \(P\)-Lipschitz continuity or variation condition and \(\alpha_r = O(r^{-b})\), \(b > \max\{(3\gamma\delta + \delta + 5\gamma + 2)/(\gamma\delta), 2(4 + \delta)/\delta\}\).

Then, for any \(m \in \{1, \ldots, M\}\),

\[
\sup_{s \in [0, 1]} \left| \hat{U}_n^{(m)}(s) - \frac{2}{\sqrt{n}} \sum_{i=1}^{[ns]} \xi_{i,n} h_1(X_i) \right| = o_p(1), \quad (2.7)
\]

\[
\sup_{s \in [0, 1]} \left| \hat{U}_n^{(m)}(s) - \frac{2}{\sqrt{n}} \sum_{i=1}^{[ns]} \xi_{i,n} h_1(X_i) \right| = o_p(1), \quad (2.8)
\]

and

\[
\left(\hat{U}_n, \hat{U}_n^{(1)}, \ldots, \hat{U}_n^{(M)}, \hat{U}_n^{(1)}, \ldots, \hat{U}_n^{(M)} \right) \sim (U, U^{(1)}, \ldots, U^{(M)}, U^{(1)}, \ldots, U^{(M)})
\]

in \(\{\ell^\infty([0, 1])\}^{2M+1}\), where \(U\) is the weak limit of \(U_n\) given in Proposition 2.3, and \(U^{(1)}, \ldots, U^{(M)}\) are independent copies of \(U\).

Notice that most results establishing the asymptotic validity of resampling procedures involve weak convergence of conditional laws. Unlike such results, Proposition 2.5 above is of an unconditional nature. As explained in Bücher and Kojadinovic (2014, Remark 2.3) and as shall be discussed further in the context of change-point detection in Section 3, the adopted unconditional approach leads to meaningful validity conclusions in the statistical contexts under consideration.

2.4 Estimation of the bandwidth parameter \(\ell_n\)

From a practical perspective, the use of either of the two dependent multiplier bootstraps studied in the previous section requires the choice of the bandwidth parameter \(\ell_n\) appearing in the definition of dependent multiplier sequences (see Definition 2.4). As mentioned in Bücher and Kojadinovic (2014), since \(\ell_n\) plays a role somehow analogous to that of the block length in the block bootstrap, its value is expected to have a crucial influence on the finite-sample performance of the dependent multiplier bootstraps. The aim of this section is to propose an estimator of \(\ell_n\) in the spirit of that investigated in Politis and White (2004), among others, for other resampling schemes.

From (2.7) and (2.8), we see that the two dependent multiplier bootstraps under consideration are asymptotically equivalent to a dependent multiplier bootstrap for the mean (multiplied by 2) of the unobservable sequence \(h_1(X_1), \ldots, h_1(X_n)\). Analogously for instance to Politis and White (2004) (see also Patton et al., 2009), the idea is then to estimate \(\ell_n\) as the value that minimizes asymptotically the mean square error of

\[
\sigma^2_{h_1,n} = \text{Var}_\xi \left\{ \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \xi_{i,n} h_1(X_i) \right\},
\]

where \(\text{Var}_\xi\) denotes the variance conditional on the data and \((\xi_{i,n})_{i \in \mathbb{N}}\) is a dependent multiplier sequence. Interestingly enough, it is easy to verify that the above (non-computable)
estimator of $\sigma^2_{h_1}$ in (2.2) can be rewritten as

$$\sigma^2_{h_1,n} = \frac{1}{n} \sum_{i,j=1}^{n} \varphi \left(\frac{i-j}{h_n} \right) h_1(X_i)h_1(X_j),$$

(2.9)

and thus has the form of the HAC kernel estimator of de Jong and Davidson (2000).

Additionally to the conditions of Proposition 2.5, suppose that we have $b > 3(4 + \delta)/(2 + \delta)$, that φ in Definition 2.4 is twice continuously differentiable on $(-1, 1)$ with $\varphi''(0) \neq 0$ and that φ is Lipschitz continuous on \mathbb{R}. Then, adapting the proofs of Propositions 5.1 and 5.2 in Bücher and Kojadinovic (2014) (see also Lemmas 3.12 and 3.13 in Bühlmann, 1993 and Proposition 2.1 in Shao, 2010), we obtain that

$$\mathbb{E}(\sigma^2_{h_1,n}) - \sigma^2_{h_1} = \frac{\Gamma}{\ell_n^2} + o(\ell_n^{-2}) \quad \text{and} \quad \text{Var}(\sigma^2_{h_1,n}) = \frac{\ell_n}{n} \Delta + o(\ell_n/n),$$

where

$$\Gamma = \frac{\varphi''(0)}{2} \sum_{k=-\infty}^{\infty} k^2 \gamma(k) \quad \text{with} \quad \gamma(k) = \text{Cov}\{h_1(X_0), h_1(X_{|k|})\},$$

and

$$\Delta = 2\sigma^4_{h_1} \int_{-1}^{1} \varphi(x)^2 dx.$$

As a consequence, the mean squared error of $\sigma^2_{h_1,n}$ is

$$\text{MSE}(\sigma^2_{h_1,n}) = \frac{\Gamma^2}{\ell_n^4} + \Delta \frac{\ell_n}{n} + o(\ell_n^{-4}) + o(\ell_n/n).$$

It follows that the value of ℓ_n that minimizes the mean square error of $\sigma^2_{h_1,n}$ is, asymptotically,

$$\ell_n^{opt} = \left(\frac{4\Gamma^2}{\Delta} \right)^{1/5} n^{1/5}. \quad (2.10)$$

To estimate ℓ_n^{opt}, we first estimate the unobservable sequence $h_1(X_1), \ldots, h_1(X_n)$ by the pseudo-observations $\hat{h}_{1,n}(X_1), \ldots, \hat{h}_{1,n}(X_n)$, where $\hat{h}_{1,n}(X_i)$ is defined as in (2.4). Then, we adapt the approach of Politis and White (2004, Section 3) (see also Patton et al., 2009) to the current context: let $\hat{\gamma}_n(k)$ be the sample autocovariance at lag k computed from $\hat{h}_{1,n}(X_1), \ldots, \hat{h}_{1,n}(X_n)$ and estimate Γ and Δ by

$$\hat{\Gamma}_n = \frac{\varphi''(0)}{2} \sum_{k=-L_n}^{L_n} \lambda(k/L_n) k^2 \hat{\gamma}_n(k)$$

and

$$\hat{\Delta}_n = 2 \left\{ \sum_{k=-L_n}^{L_n} \lambda(k/L_n) \hat{\gamma}_n(k) \right\}^2 \left\{ \int_{-1}^{1} \varphi(x)^2 dx \right\},$$

respectively, where $\lambda(x) = \{\{2(1 - |x|) \vee 0\} \wedge 1, x \in \mathbb{R}$, is the “flat top” (trapezoidal) kernel of Politis and Romano (1995) and L_n is the smallest integer k after which $\hat{\rho}_n(k)$, the sample autocorrelation at lag k estimated from $\hat{h}_{1,n}(X_1), \ldots, \hat{h}_{1,n}(X_n)$, appears negligible. The latter is determined automatically by means of the algorithm described in detail in Politis and White (2004, Section 3.2). Our implementation is based on Matlab code by A.J. Patton (available on his web page) and its R version by J. Racine and C. Parmeter. The resulting estimate of ℓ_n^{opt} in (2.10) is denoted by ℓ_n^{opt} as we continue.
2.5 Applications to confidence intervals for θ

A first straightforward application of the previous results is the computation of confidence intervals for θ in (1.3). To fix ideas, we consider three possible kernels:

$$
e(x, y) = \frac{(x - y)^2}{2}, \quad f(x, y) = |x - y|, \quad \text{for } x, y \in \mathbb{R}, \quad (2.11)$$

$$
g(x, y) = 1(x < y) + 1(y < x), \quad \text{for } x, y \in \mathbb{R}^d. \quad (2.12)$$

The kernels e and f are P-Lipschitz-continuous as verified in Dehling and Wendler (2010a, Example 1.5) and Dehling and Wendler (2010b, Example 1.8), respectively, while the kernel g satisfies the variation condition provided the c.d.f. of the distribution of X_1 is Lipschitz continuous (Dehling et al., 2014, Appendix C). If $d = 1$ and $h = e$ (resp. $h = f$), θ is the variance of X_1 (resp. the population version of Gini’s mean difference). If $d \geq 2$, the distribution of X_1 has continuous margins and $h = g$, θ is, up to a simple affine linear transformation, a natural multivariate extension of Kendall’s tau (Joe, 1990).

To obtain a confidence interval for θ given a sequence of suitably weakly dependent observations, a first natural possibility is to use the fact that, according to Proposition 2.3, $U_n(1)$ is asymptotically centered normal with variance $4\sigma_{h_1}^2$ given in (2.2). In the context under consideration, a natural estimator of $\sigma_{h_1}^2$ is (2.9), in which $h_1(X_i)$ is estimated by $\hat{h}_{1,n}(X_i)$ as defined in (2.4) and in which the parameter ℓ_n gets replaced by the estimator $\hat{\ell}_n$ introduced in the previous section. We shall denote this estimator by $\hat{\sigma}_{h_{1,n}}^2$ as we continue. The resulting confidence interval of asymptotic level $1 - \alpha$ is then

$$C_{I,n} = \left[U_{h_{1,n}} \pm \Phi^{-1}(1 - \alpha/2)n^{-1/2}2\hat{\sigma}_{h_{1,n}}\right],$$

where Φ denotes the c.d.f. of the standard normal distribution.

A second possibility consists of basing the confidence interval on empirical quantiles computed from a sample of M bootstrap replicates of $U_n(1)$. In the studied setting, the latter involves generating M independent copies of a dependent multiplier sequence with $\ell_n = \hat{\ell}_n$ and computing $\hat{U}_n(1), \ldots, \hat{U}_n(M)(1)$, where $\hat{U}_n(m)$ is defined in (2.5) (notice that $\hat{U}_n(m)(1) = \hat{U}_n^2(1)$). The resulting confidence interval of asymptotic level $1 - \alpha$ is then

$$C_{I,2,n} = \left[U_{h_{1,n}} - n^{-1/2}\hat{U}_{n,1/2}(M+1):M(1), U_{h_{1,n}} - n^{-1/2}\hat{U}_{n,2(M+1):M}(1)\right],$$

where $\hat{U}_{n,1/2}(M+1):M(1), \ldots, \hat{U}_{n,M}:M(1)$ are the order statistics obtained from $\hat{U}_n(1), \ldots, \hat{U}_n(M)(1)$. The above confidence interval is related to the so-called basic bootstrap confidence interval (see, e.g., Davison and Hinkley, 1997, Chapter 5).

As a brief illustration, Table 1 reports coverage probabilities when $h \in \{e, f\}$ of $C_{I,n}$ and $C_{I,2,n}$ estimated from 1,000 univariate samples of size n generated from an AR1 model with parameter $\zeta \in \{0, 0.5\}$ and either standard normal or t_5 innovations. The setting $\zeta = 0$ (resp. $\zeta = 0.5$) corresponds to serial independence (resp. strong serial dependence). Although this was not always necessary, the true value of θ was estimated from a sample of size $20,000$ using (1.1). The number of multiplier bootstrap replicates necessary to compute $C_{I,2,n}$ was set to $M = 4999$. The corresponding dependent multiplier sequences were generated using the “moving average approach” proposed initially in Bühlmann (1993, Section 6.2) and revisited in Bücher and Kojadinovic (2014, Section 6.1). A standard normal sequence was used for the required initial i.i.d. sequence.
Table 1: For \(h \in \{e, f\} \), coverage probabilities of \(\text{CI}_{1,n} \) and \(\text{CI}_{2,n} \) estimated from 1,000 univariate samples of size \(n \) generated from an AR1 model with parameter \(\zeta \in \{0, 0.5\} \) and either standard normal or \(t_5 \) innovations.

Innovations	\(\alpha \)	\(n \)	\(\text{CI}_{2,n} \)	\(\text{CI}_{1,n} \)	\(\text{CI}_{2,n} \)	\(\text{CI}_{1,n} \)	\(\text{CI}_{2,n} \)	\(\text{CI}_{1,n} \)		
N(0,1)	0.10	50	0.847	0.844	0.779	0.766	0.858	0.853	0.788	0.782
	100	0.877	0.877	0.845	0.840	0.895	0.889	0.826	0.817	
	200	0.888	0.887	0.859	0.854	0.892	0.886	0.850	0.843	
0.05	50	0.904	0.903	0.831	0.824	0.907	0.906	0.880	0.876	
	100	0.929	0.929	0.866	0.856	0.932	0.929	0.885	0.880	
	200	0.936	0.934	0.919	0.913	0.956	0.956	0.918	0.912	
0.01	50	0.946	0.943	0.882	0.875	0.967	0.970	0.933	0.932	
	100	0.980	0.980	0.929	0.927	0.978	0.978	0.961	0.954	
	200	0.985	0.985	0.962	0.961	0.988	0.988	0.966	0.967	
\(t_5 \)	0.10	50	0.779	0.777	0.691	0.679	0.827	0.823	0.775	0.767
	100	0.840	0.839	0.759	0.749	0.858	0.857	0.836	0.826	
	200	0.869	0.870	0.828	0.827	0.897	0.895	0.862	0.858	
0.05	50	0.828	0.820	0.725	0.715	0.899	0.894	0.852	0.841	
	100	0.854	0.850	0.779	0.770	0.938	0.934	0.890	0.888	
	200	0.909	0.905	0.859	0.857	0.948	0.946	0.906	0.903	
0.01	50	0.910	0.906	0.801	0.793	0.950	0.952	0.881	0.875	
	100	0.922	0.915	0.893	0.885	0.965	0.964	0.955	0.951	
	200	0.963	0.963	0.941	0.939	0.973	0.974	0.965	0.960	

The kernel function \(\kappa \) in that procedure was chosen to be the Parzen kernel defined by \(\kappa_P(x) = (1 - 6x^2 + 6|x|^3)1(|x| \leq 1/2) + 2(1 - |x|)^31(1/2 < |x| \leq 1) \), \(x \in \mathbb{R} \), which amounts to choosing the function \(\varphi \) in Definition 2.4 as \(x \mapsto \frac{(\kappa_P \ast \kappa_P)(2x)}{(\kappa_P \ast \kappa_P)(0)} \), where ‘\(\ast \)’ denotes the convolution operator.

As one can see, \(\text{CI}_{1,n} \) and \(\text{CI}_{2,n} \) are overall too narrow for the sample sizes under consideration, although the situation improves as \(n \) increases. In most settings, \(\text{CI}_{2,n} \) displays better coverage rates than \(\text{CI}_{1,n} \). The difference is the highest under serial dependence (\(\zeta = 0.5 \)) and, as expected, decreases as \(n \) increases. As observed in other settings, the use of studentized bootstrap confidence intervals (see, e.g., Davison and Hinkley, 1997, Chapter 5) could lead to improved coverage rates. The latter would require the availability of a resampling scheme for the estimator \(\hat{\sigma}_{h_1}^2 \) of \(\sigma_{h_1}^2 \) involved in the expression of \(\text{CI}_{1,n} \). Finally, note that for \(t_5 \) innovations and \(h = e \), the moments conditions on the kernel in Proposition 2.5 are not satisfied. Still, the finite-sample behavior of \(\text{CI}_{2,n} \) relatively to that of \(\text{CI}_{1,n} \) does not seem affected suggesting that Proposition 2.5 might hold under weaker conditions.
3 Two dependent multiplier bootstraps for \mathbb{D}_n

3.1 Dependent multiplier results for \mathbb{D}_n

Results analogous to Propositions 2.3 and 2.5 can be obtained for the process \mathbb{D}_n in (1.7). As we shall see, they have immediate applications to change-point detection. The starting point for deriving such results is to note that, for any $s \in [2/n, 1 - 2/n]$, \mathbb{D}_n can be rewritten as

$$\mathbb{D}_n(s) = \lambda_n(s, 1) \mathbb{U}_n(s) - \lambda_n(0, s) \mathbb{U}_n^*(s), \quad (3.1)$$

where \mathbb{U}_n is defined in (1.6) and where, for any $s \in [0, 1]$,

$$\mathbb{U}_n^*(s) = \begin{cases} \sqrt{n} \lambda_n(s, 1) \{U_{h,\lfloor ns\rfloor+1:n} - \theta\}, & \text{if } s \in [0, 1 - 2/n], \\ 0, & \text{otherwise}. \quad (3.2) \end{cases}$$

The following proposition extends Theorem 1.1 of Gombay and Horváth (2002) to mixing sequences. Its proof is given in Appendix D.

Proposition 3.1 (Asymptotics of \mathbb{D}_n). Under the conditions of Proposition 2.3, $\mathbb{D}_n \rightsquigarrow \mathbb{D}$ in $\ell^\infty([0, 1])$, where $\mathbb{D}(s) = 2\sigma h_1 (\mathbb{B}(s) - s\mathbb{B}(1))$, $s \in [0, 1]$, with \mathbb{B} a standard Brownian motion and σh_1 given in (2.2).

To obtain dependent multiplier bootstrap results for \mathbb{D}_n in the spirit of those obtained in the previous section, we start again from (3.1). Since \mathbb{U}_n can be resampled using the processes $\hat{\mathbb{U}}_n^{(m)}$ and $\tilde{\mathbb{U}}_n^{(m)}$, $m \in \{1, \ldots, M\}$, defined in (2.5) and (2.6), respectively, it suffices to define the corresponding bootstrap replicates for the process \mathbb{U}_n^* in (3.2) to obtain bootstrap replicates of \mathbb{D}_n. Thus, for any $m \in \{1, \ldots, M\}$, let

$$\hat{\mathbb{U}}_n^{*(m)}(s) = \frac{2}{\sqrt{n}} \sum_{i=\lfloor ns\rfloor+1}^{n} \xi_{i,n}^{(m)} \hat{h}_{1,1:n}(X_i), \quad s \in [0, 1],$$

and

$$\tilde{\mathbb{U}}_n^{*(m)}(s) = \frac{2}{\sqrt{n}} \sum_{i=\lfloor ns\rfloor+1}^{n} \xi_{i,n}^{(m)} \tilde{h}_{1,1:n}(X_i), \quad s \in [0, 1], \quad (3.3)$$

where, for any integers $1 \leq k \leq l \leq n$, $\hat{h}_{1,k:l}$ is defined in (2.4). Corresponding dependent multiplier bootstrap replicates of \mathbb{D}_n are then naturally given by

$$\hat{\mathbb{D}}_n^{(m)}(s) = \lambda_n(s, 1) \hat{\mathbb{U}}_n^{(m)}(s) - \lambda_n(0, s) \hat{\mathbb{U}}_n^{*(m)}(s), \quad (3.4)$$

and

$$\tilde{\mathbb{D}}_n^{(m)}(s) = \lambda_n(s, 1) \tilde{\mathbb{U}}_n^{(m)}(s) - \lambda_n(0, s) \tilde{\mathbb{U}}_n^{*(m)}(s). \quad (3.5)$$

A proof of the following result is given in Appendix D.

Proposition 3.2 (Two dependent multiplier bootstraps for \mathbb{D}_n). Under the conditions of Proposition 2.5,

$$\left(\mathbb{D}_n, \hat{\mathbb{D}}_n^{(1)}, \ldots, \hat{\mathbb{D}}_n^{(M)}, \tilde{\mathbb{D}}_n^{(1)}, \ldots, \tilde{\mathbb{D}}_n^{(M)}\right) \rightsquigarrow \left(\mathbb{D}, \mathbb{D}^{(1)}, \ldots, \mathbb{D}^{(M)}, \mathbb{D}^{(1)}, \ldots, \mathbb{D}^{(M)}\right)$$

in $\{\ell^\infty([0, 1])\}^{2M+1}$, where \mathbb{D} is the weak limit of \mathbb{D}_n given in Proposition 3.1, and $\mathbb{D}^{(1)}, \ldots, \mathbb{D}^{(M)}$ are independent copies of \mathbb{D}.

11
3.2 Applications to change-point detection

The previous result is of immediate interest in the context of tests for change-point detection. Recall that the aim of such statistical procedures is to test

\[H_0 : \exists F \text{ such that } X_1, \ldots, X_n \text{ have c.d.f. } F \]

against alternatives involving the non-constancy of the c.d.f. (see, e.g., Csörgő and Horváth, 1997, for an overview of possible approaches). As already mentioned, a typical test statistic is \(S_n \) in (1.8). To fix ideas, we consider again the kernels defined in (2.11) and (2.12). Choosing \(h = e \) (resp. \(h = f \)) results in tests for \(H_0 \) that are particularly sensitive to changes in the variance (resp. Gini’s mean difference) of the observations. The choice \(h = g \) leads to tests for \(H_0 \) particularly sensitive to changes in the cross-correlation of multivariate time series as measured by Kendall’s tau. Such tests were studied by Quessy et al. (2013) in the case of serially independent observations and, more recently, by Dehling et al. (2014) in the case \(P \)-near epoch dependent sequences.

The usual way of carrying out tests based on \(S_n \) is to exploit the fact that, under \(H_0 \) and for instance the conditions of Proposition 2.3, \(S_n \) converges weakly to \(S = 2\sigma h_1 \sup_{s \in [0,1]} |B(s) - s\mathbb{B}(1)| \), where \(B \) is a standard Brownian motion. In other words, \(S_n \sigma h_1^{-1} / 2 \) converges weakly to the supremum of a Brownian bridge, which implies that its limiting distribution is the Kolmogorov distribution. The c.d.f. \(F_K \) of the latter distribution can be approximated very well numerically. In the setting considered in this work, it is thus natural to compute an approximate p-value for \(S_n \) as

\[1 - F_K(S_n \sigma h_1^{-1} / 2), \]

where, again, \(\sigma^2 \) is the estimator of \(\sigma^2 \) obtained from (2.9) by replacing \(h_1(X_i) \) by \(\hat{h}_{1,n}(X_i) \) as defined in (2.4), and in which the bandwidth parameter \(\ell_n \) is estimated by \(\hat{\ell}^{opt} \) (see Section 2.4).

An alternative way to carry out the test consists of resampling \(S_n \). For any \(m \in \{1, \ldots, M\} \), let

\[\hat{S}_n^{(m)} = \sup_{s \in [0,1]} |\hat{D}_n^{(m)}(s)| \quad \text{and} \quad \hat{S}_n^{(m)} = \sup_{s \in [0,1]} |\hat{D}_n^{(m)}(s)|, \]

where \(\hat{D}_n^{(m)} \) and \(\hat{D}_n^{(m)} \) are defined in (3.4) and (3.5), respectively. From Proposition 3.2 and the continuous mapping theorem, we immediately have that, under \(H_0 \) and the conditions of Proposition 2.5,

\[(S_n, \hat{S}_n^{(1)}, \ldots, \hat{S}_n^{(M)}, \hat{S}_n^{(1)}, \ldots, \hat{S}_n^{(M)}) \sim (S, S^{(1)}, \ldots, S^{(M)}, S^{(1)}, \ldots, S^{(M)}) \]

in \(\mathbb{R}^{2M+1} \), where \(S \) is the weak limit of \(S_n \), and \(S^{(1)}, \ldots, S^{(M)} \) are independent copies of \(S \). The previous result suggests computing an approximate p-value for \(S_n \) as

\[\frac{1}{M} \sum_{m=1}^{M} 1\left(\hat{S}_n^{(m)} \geq S_n\right) \quad \text{or as} \quad \frac{1}{M} \sum_{m=1}^{M} 1\left(\hat{S}_n^{(m)} \geq S_n\right). \]

The weak convergence in (3.8) can be combined with Proposition F.1 in Bücher and Kojadinovic (2014) to show that a test based on \(S_n \) whose p-value is computed as in (3.9) will hold its level asymptotically as \(n \to \infty \) followed by \(M \to \infty \).
3.3 Monte Carlo experiments

To illustrate the previous developments, we restrict our attention to the choice \(h = g \) and \(d = 2 \), that is, to tests for change-point detection for bivariate data that are particularly sensitive to changes in Kendall’s tau. The aim is to compare the two ways for carrying out the test discussed previously for samples of moderate size. When the approximate p-value for \(S_n \) in (1.8) is computed using (3.7), we shall talk about the test based on \(\hat{S}_n \), while when it is based on (3.9), we shall talk about the test based on \(\tilde{S}_n \) or the test based on \(\check{S}_n \).

Two simple time series models were used to generate bivariate samples of size \(n \). Given a real \(t \in (0, 1) \) determining the location of the possible change-point of the innovations, two bivariate copulas \(C_1 \) and \(C_2 \), and parameters \(\zeta, \omega, \beta, \alpha \) to be specified below, the following steps were followed to generate a bivariate sample \(X_1, \ldots, X_n \):

1. generate independent bivariate random vectors \(U_i, i \in \{-100, \ldots, 0, \ldots, n\} \) such that \(U_i, i \in \{-100, \ldots, 0, \ldots, \lfloor nt \rfloor\} \) are i.i.d. from copula \(C_1 \) and \(U_i, i \in \{\lfloor nt \rfloor + 1, \ldots, n\} \) are i.i.d. from copula \(C_2 \),

2. compute \(\epsilon_i = (\Phi^{-1}(U_{i1}), \Phi^{-1}(U_{i2})) \), where \(\Phi \) is the c.d.f. of the standard normal distribution,

3. set \(X_{-100} = \epsilon_{-100} \) and, for \(j = 1, 2 \), compute recursively either

\[
X_{ij} = \zeta X_{i-1,j} + \epsilon_{ij}, \quad i = -99, \ldots, 0, \ldots, n, \tag{AR1}
\]

or

\[
\sigma_{ij}^2 = \omega_j + \beta_j \sigma_{i-1,j}^2 + \alpha_j \epsilon_{i-1,j}^2, \quad X_{ij} = \sigma_{ij} \epsilon_{ij}, \quad i = -99, \ldots, 0, \ldots, n. \tag{GARCH}
\]

If the copulas \(C_1 \) and \(C_2 \) are chosen equal, the above procedure generates samples under \(H_0 \) defined in (3.6). Three possible values were considered for the parameter \(\zeta \) controlling the strength of the serial dependence in (AR1): 0 (serial independence), 0.25 (mild serial dependence), 0.5 (strong serial dependence). For model (GARCH), following Bücher and Ruppert (2013), we took \((\omega_1, \beta_1, \alpha_1) = (0.012, 0.919, 0.072) \) and \((\omega_2, \beta_2, \alpha_2) = (0.037, 0.868, 0.115) \). The latter values were estimated by Jondeau et al. (2007) from SP500 and DAX daily logreturns, respectively.

Two one-parameter copula families were considered: the Clayton (which is upper-tail dependent) and the Gumbel–Hougaard (which is lower-tail dependent) (see, e.g., Nelsen, 2006). For both families, there exists a one-to-one relationship between the parameter value and Kendall’s tau. To estimate the power of the tests, 1,000 samples were generated under each combination of factors and all the tests were carried out at the 5% significance level. For the tests based on \(S_n \) or \(\hat{S}_n \), \(M = 1,000 \) multiplier replications were used. The corresponding dependent multiplier sequences were generated as explained in Section 2.5. For the test based on \(\check{S}_n \), as classically done, we approached the c.d.f. \(F_k \) in (3.7) by that of the statistic of the classical Kolmogorov–Smirnov goodness-of-fit test for a simple hypothesis. From a practical perspective, we used the function \texttt{pkolmogorovix} given in the code of the R function \texttt{ks.test}.
Table 2: Percentage of rejection of H_0 computed from 1,000 samples of size $n \in \{50, 100, 200\}$ when $C_1 = C_2 = C$ is either the bivariate Clayton (Cl) or the Gumbel–Hougaard (GH) copula with a Kendall’s tau of τ.

C	n	τ	$\zeta = 0$	$\zeta = 0.25$	$\zeta = 0.5$	GARCH				
Cl	50	0.1	6.0	5.6	5.3	6.1	11.7	8.4	6.2	6.0
		0.3	5.3	5.3	6.2	7.2	8.5	6.8	5.8	6.0
		0.5	4.3	7.9	5.7	10.7	6.7	11.5	4.4	8.7
		0.7	4.7	16.4	4.1	17.4	8.4	16.3	5.6	16.2
	100	0.1	6.2	5.5	5.3	4.4	7.8	5.1	6.0	4.6
		0.3	5.6	5.6	6.1	5.8	8.1	6.6	4.2	4.2
		0.5	4.3	4.7	5.3	6.1	6.3	6.7	4.9	5.9
		0.7	2.5	10.4	2.2	8.4	4.9	9.7	2.7	9.4
	200	0.1	6.4	5.0	6.5	5.3	5.5	3.8	5.8	5.1
		0.3	4.9	4.4	5.0	4.4	7.2	5.3	7.5	6.2
		0.5	4.8	4.7	5.0	5.5	6.3	5.8	6.2	6.0
		0.7	3.7	5.9	3.8	5.8	5.5	7.0	4.2	5.9
GH	50	0.1	5.4	4.9	7.3	6.1	9.7	7.0	6.5	5.1
		0.3	5.8	5.8	6.3	6.7	7.7	8.1	6.0	6.7
		0.5	4.8	8.8	5.2	8.5	8.5	11.3	6.4	10.6
		0.7	6.3	20.6	5.7	20.2	6.8	18.9	5.0	18.7
	100	0.1	5.0	4.1	6.5	5.3	8.9	6.1	5.6	4.8
		0.3	4.8	4.4	6.1	5.8	7.7	6.9	5.5	4.8
		0.5	4.4	4.9	4.2	5.7	7.1	8.8	4.1	5.3
		0.7	3.3	10.6	3.0	9.3	4.3	11.0	3.8	9.0
	200	0.1	5.7	5.1	5.7	4.4	7.0	5.2	6.1	4.5
		0.3	5.8	5.4	4.8	4.4	6.6	5.9	6.7	5.8
		0.5	3.7	4.9	4.8	4.6	7.5	6.6	5.0	5.4
		0.7	2.8	6.1	3.9	6.6	4.9	7.8	3.3	5.4

Table 2 reports the rejection percentages of H_0 for observations generated under the null. To ease reading, the rejection rates of the test based on \hat{S}_n are not reported as the latter turned out, overall, to be worse behaved than the test based on \tilde{S}_n for the sample sizes under consideration. As one can see, the test based on \hat{S}_n tends to be way too liberal when the cross-sectional dependence is high ($\tau \geq 0.5$), although its behavior improves as n increases. The empirical levels of the test based on \tilde{S}_n are overall reasonably good when $\zeta \in \{0, 0.25\}$ and for sequences generated using (GARCH), even for small sample sizes. However, under strong serial dependence corresponding to $\zeta = 0.5$ in (AR1), the test is overall too liberal although the agreement with the 5% nominal level improves as n increases.

Table 3 reports the rejection percentages of H_0 for bivariate sequences generated with a break in the innovations whose position is determined by the parameter t. The results are those obtained when C_1 and C_2 are Gumbel–Hougaard copulas with different Kendall’s taus. Similar results (not reported) were obtained when C_1 and C_2 are Clayton
Table 3: Percentage of rejection of H_0 computed from 1,000 samples of size $n \in \{50, 100, 200\}$ when C_1 and C_2 are both bivariate Gumbel–Hougaard copulas such that C_1 has a Kendall’s tau of 0.2 and C_2 has a Kendall’s tau of τ.

n	t	τ	$\zeta = 0$	$\zeta = 0.25$	$\zeta = 0.5$	GARCH				
			\hat{S}_n	\hat{S}_n^2	\hat{S}_n	\hat{S}_n^2				
50	0.10	0.4	5.2	7.3	7.1	9.3	9.4	11.9	6.7	8.6
			9.7	10.5	12.2	21.7	9.3	16.5		
	0.25	0.4	11.7	11.1	11.5	12.4	13.3	9.6	9.6	
			30.7	29.2	26.7	29.2	24.2	29.7	27.0	
	0.50	0.4	14.7	13.9	15.6	14.4	15.9	12.4	11.3	
			48.2	37.0	47.6	36.4	41.9	27.2	43.4	35.3
100	0.10	0.4	7.4	8.3	6.0	6.2	9.2	8.9	5.8	6.1
			13.3	18.2	14.3	18.8	14.8	18.1	14.3	18.2
	0.25	0.4	15.9	14.1	18.5	14.5	14.5	14.7	13.8	
			60.4	52.3	60.3	51.6	49.4	37.6	59.3	51.6
	0.50	0.4	26.8	21.8	23.8	20.5	24.8	17.8	26.5	22.5
			85.4	77.9	79.6	69.8	72.2	55.4	83.3	72.7
200	0.10	0.4	8.2	8.3	8.3	8.4	8.7	8.7	9.0	7.9
			35.3	36.8	33.7	36.4	21.7	23.1	32.4	34.0
	0.25	0.4	33.9	31.9	31.3	28.9	27.3	21.1	27.0	26.0
			93.5	83.9	91.0	79.9	81.0	62.6	91.4	82.1
	0.50	0.4	48.2	44.1	49.1	45.7	41.2	31.9	47.3	43.8
			99.1	97.1	98.3	94.3	95.1	86.4	99.3	95.8

copulas instead. As one can see, the test based on \hat{S}_n seems overall more powerful except when the change in the innovations occurs early ($t = 0.1$). Of course, when analyzing these results, one should keep in mind that the test based on \hat{S}_n^2 was observed to be too liberal in the case of strong cross-sectional dependence, and that both tests displayed inflated empirical levels, overall, for $\zeta = 0.5$.

4 Conclusion

Starting from the work of Gombay and Horváth (2002) and Dehling and Wendler (2010b), we have studied the asymptotic behavior of sequential resampling schemes for the processes U_n and D_n defined in (1.6) and (1.7), respectively. Monte Carlo experiments indicate that the use of the derived dependent multiplier bootstraps can have advantages over that of estimated asymptotic distributions in the context of confidence interval construction or tests for change-point detection. Future work could consist of studying resampling schemes for estimators of the variance $\sigma^2_{h_1}$ in (2.2) (with studentized confidence intervals in mind), or comparing dependent multiplier tests for change-point detection based on S_n in (1.8) with their self-normalization version proposed in Shao and Zhang (2010).
A Proof of Proposition 2.3

Throughout this and the following proofs, we will frequently apply results from Dehling and Wendler (2010a,b). The latter are stated for \(d = 1 \) only, but actually hold true for \(d > 1 \) as explained in Dehling et al. (2014, Appendix B).

Proof of Proposition 2.3. Since \(b > (2 + \delta)/\delta \), Theorem 2 of Oodaira and Yoshihara (1972) implies that \(\sigma_{h_1}^2 < \infty \) and that the process \(s \mapsto n^{-1/2} \sum_{i=1}^{[ns]} h_1(X_i) \) converges weakly to \(\sigma_{h_1} B \) in \(\ell^\infty([0,1]) \). To show the desired result, it therefore suffices to show that \(\sup_{s \in [0,1]} |U_n(s) - 2n^{-1/2} \sum_{i=1}^{[ns]} h_1(X_i)| = o_p(1) \). Since \(U_n(s) = 0 \) if \(s \in [0,2/n) \) and since \(2n^{-1/2} h_1(X_i) = o_p(1) \), we immediately obtain that \(\sup_{s \in [0,2/n]} |U_n(s) - 2n^{-1/2} \sum_{i=1}^{[ns]} h_1(X_i)| = o_p(1) \).

For any \(s \in [2/n, 1] \), using Hoeffding’s decomposition (1.2), we obtain that

\[
U_n(s) = \frac{2}{\sqrt{n}} \sum_{i=1}^{[ns]} h_1(X_i) + \sqrt{n} \lambda_n(0, s) U_{h_2,1:[ns]}.
\]

Hence,

\[
\sup_{s \in [2/n, 1]} |U_n(s) - 2 \frac{1}{\sqrt{n}} \sum_{i=1}^{[ns]} h_1(X_i)| = n^{-1/2} \max_{2 \leq k \leq n} k |U_{h_2,1:k}|.
\]

It remains to show that the latter supremum converges in probability to zero. Under (i), let \(a = \delta b/(2 + \delta) \) and notice that \(a > 1 \) from the assumption on the mixing rate. Furthermore, if \(-1 < 1 - a < 0\), from well-known results on Riemann series, \(\sum_{i=1}^{n} r^{\beta_i/(2+\delta)} \leq \text{const} \times \sum_{i=1}^{n} r^{1-a} = O(n^{2-a}) \). Set \(\tau = \max(2 - a, 0) \). Then, \(\sum_{i=1}^{n} r^{\beta_i/(2+\delta)} = O(n^\tau) \) and the conditions of Theorem 1 in Dehling and Wendler (2010b) are satisfied. Let additionally \(a_k = (\log k)^{3/2} \log \log k \), \(k \geq 2 \). Then,

\[
n^{-1/2} \max_{2 \leq k \leq n} k |U_{h_2,1:k}| \leq n^{-1/2} \max_{2 \leq k \leq n} \frac{k^{1-\tau/2} |U_{h_2,1:k}|}{a_k} \times \max_{2 \leq k \leq n} k^{\tau/2} a_k \leq \sup_{k \geq 2} \frac{k^{1-\tau/2} |U_{h_2,1:k}|}{a_k} \times n^{\tau/2-1/2} a_n \xrightarrow{a.s.} 0,
\]

since \(\tau/2 - 1/2 < 0 \) and since \(\sup_{k \geq 2} k^{1-\tau/2} |U_{h_2,1:k}|/a_k < \infty \) with probability one as a consequence of Theorem 1 in Dehling and Wendler (2010b).

The proof under (ii) is similar and follows by possibly letting \(a = b \times 2 \gamma \delta/(3 \gamma \delta + \delta + 5 \gamma + 2) \).

B A dependent multiplier central limit theorem

Let \((Y_i)_{i \in \mathbb{N}} \) be a strictly stationary sequence of centered random variables. Furthermore, let \(M > 0 \) be a large integer, and let \((\xi^{(1)}_{i,n})_{i \in \mathbb{N}}, \ldots, (\xi^{(M)}_{i,n})_{i \in \mathbb{N}} \) be independent copies of the same dependent multiplier sequence (see Definition 2.4). Then, for any \(m \in \{1, \ldots, M\} \) and \(s \in [0,1] \), let

\[
Z_n(s) = \frac{1}{\sqrt{n}} \sum_{i=1}^{[ns]} Y_i, \quad Z^{(m)}_n(s) = \frac{1}{\sqrt{n}} \sum_{i=1}^{[ns]} \xi^{(m)}_{i,n} Y_i.
\]
Proposition B.1 (Dependent multiplier central limit theorem). Assume that \((Y_i)_{i \in \mathbb{N}}\) is a strictly stationary sequence of centered random variables with \((4 + \delta)\)-moments for some \(\delta > 0\) and such that the strong mixing coefficients associated with \((Y_i)_{i \in \mathbb{N}}\) satisfy \(\alpha_r = O(r^{-b})\), \(b > 2(4 + \delta)/\delta\). Then,

\[
\sigma^2 = \mathbb{E}(Y_0) + 2 \sum_{i=1}^{\infty} \mathbb{E}(Y_0 Y_i) < \infty.
\]

Furthermore, let \((\xi_{i,n}^{(1)}, \ldots, \xi_{i,n}^{(M)})_{i \in \mathbb{N}}\) be independent copies of the same dependent multiplier sequence satisfying \((M1)\)–\((M3)\) in Definition 2.4 such that \(\ell_n = O(n^{1/2-\varepsilon})\) for some \(1/(6 + 2\delta) < \varepsilon < 1/2\). As a consequence,

\[
(Z_n, Z_n^{(1)}, \ldots, Z_n^{(M)}) \overset{d}{\to} (Z, Z^{(1)}, \ldots, Z^{(M)})
\]

in \(\{\mathcal{F}([0, 1])\}^{M+1}\), where \(Z = \sigma \mathbb{B}\) with \(\mathbb{B}\) a standard Brownian motion, and where \(Z^{(1)}, \ldots, Z^{(M)}\) are independent copies of \(Z\).

The proof of the previous result is based on two lemmas, which are given first.

Lemma B.2 (Finite-dimensional convergence). Assume that \((Y_i)_{i \in \mathbb{N}}\) is a strictly stationary sequence of centered random variables with \((4 + \delta)\)-moments for some \(\delta > 0\) and such that the strong mixing coefficients associated with \((Y_i)_{i \in \mathbb{N}}\) satisfy \(\alpha_r = O(r^{-b})\), \(b > (4 + \delta)(6 + 2\delta)/(2 + \delta)^2\). Also, let \((\xi_{i,n}^{(1)}, \ldots, \xi_{i,n}^{(M)})_{i \in \mathbb{N}}\) be independent copies of the same dependent multiplier sequence satisfying \((M1)\)–\((M3)\) in Definition 2.4 such that \(\ell_n = O(n^{1/2-\varepsilon})\) for some \(1/(6 + 2\delta) < \varepsilon < 1/2\). Then, the finite dimensional distributions of \((Z_n, Z_n^{(1)}, \ldots, Z_n^{(M)})\) converge weakly to those of \((Z, Z^{(1)}, \ldots, Z^{(M)})\).

Proof. The proof is an adaption of that of Lemma A.1 in Bücher and Kojadinovic (2014). Fix \(m \in \{1, \ldots, M\}\). For the sake of brevity, we shall only show that the finite-dimensional distributions of \((Z_n, Z_n^{(m)})\) converge weakly to those of \((Z, Z^{(m)})\), the proof of the stated result being a more notationally complex version of the proof of the latter result.

Let \(q \in \mathbb{N}, q > 1\), be arbitrary, and let \((s_1, t_1), \ldots, (s_q, t_q) \in [0, 1]^2\). The result is proved if we show that

\[
(Z_n(s_1), Z_n^{(m)}(t_1), \ldots, Z_n(s_q), Z_n^{(m)}(t_q)) \overset{d}{\to} (Z(s_1), Z^{(m)}(t_1), \ldots, Z(s_q), Z^{(m)}(t_q)).
\]

Let \(c_1, d_1, \ldots, c_q, d_q \in \mathbb{R}\) be arbitrary. By the Cramér–Wold device, it then suffices to show that

\[
Z_n = \sum_{l=1}^{q} c_l Z_n(s_l) + \sum_{l=1}^{q} d_l Z_n^{(m)}(t_l) \overset{d}{\to} Z = \sum_{l=1}^{q} c_l Z(s_l) + \sum_{l=1}^{q} d_l Z^{(m)}(t_l).
\]

Now, for any \(i \in \{1, \ldots, n\}\), let

\[
Z_{i,n} = \sum_{l=1}^{q} c_l Y_l 1(i \leq \lfloor ns_l \rfloor) \quad \text{and} \quad Z_{i,n}^{(m)} = \sum_{l=1}^{q} d_l Y_l 1(i \leq \lfloor nt_l \rfloor).
\]
Hence, \(Z_n = n^{-1/2} \sum_{i=1}^{n} (Z_{i,n} + Z_{i,n}^{(m)}) \). To prove the convergence in distribution of \(Z_n \) to \(Z \), we employ a blocking technique (see, e.g., Dehling and Philipp, 2002, page 31). Each block is composed of a big subblock followed by a small subblock. Let \(1/(6+\delta) < \eta_s < \eta_b < \varepsilon \) such that \(\eta_s < 1/2 - 1/a \), where \(a = b(2+\delta)/(4+\delta) \). Notice that the condition on \(b \) implies that \(a > (6+2\delta)/(2+\delta) \), which is equivalent to \(1/(6+\delta) < 1/2 - 1/a \). Hence, it is possible to choose \(\eta_b \) and \(\eta_s \) according to the above constraints. The length of the small subblocks is \(s_n = \lfloor n^{1/2-\eta_s} \rfloor \) and the length of the big subblocks is \(b_n = \lfloor n^{1/2-\eta_b} \rfloor \) so that the length of a block is \(b_n + s_n \). The total number of blocks is \(k_n = \lfloor n/(b_n + s_n) \rfloor \), and we can write \(n = k_n(b_n + s_n) + \{n - k_n(b_n + s_n)\} \). Note that \(s_n \sim n^{1/2-\eta_s} \), \(b_n \sim n^{1/2-\eta_b} \), and \(k_n \sim n^{1/2+\eta_b} \) and that both \(b_n \) and \(s_n \) dominate \(\ell_n \). As we continue, \(n \) is taken sufficiently large so that \(b_n > s_n > \ell_n \). Notice also that the condition \(\eta_s < 1/2 - 1/a \) implies that \(n s_n^{-a} \rightarrow 0 \). Now, for any \(j \in \{1, \ldots, k_n\} \), let

\[
B_{j,n} = \sum_{i=(j-1)(b_n+s_n)+1}^{(j-1)(b_n+s_n)+b_n} (Z_{i,n} + Z_{i,n}^{(m)}) \quad \text{and} \quad S_{j,n} = \sum_{i=(j-1)(b_n+s_n)+b_n+1}^{j(b_n+s_n)} (Z_{i,n} + Z_{i,n}^{(m)})
\]

be the sums of the \((Z_{i,n} + Z_{i,n}^{(m)}) \) in the \(j \)th big subblock and the \(j \)th small subblock, respectively. Then,

\[
Z_n = n^{-1/2} \sum_{j=1}^{k_n} B_{j,n} + n^{-1/2} \sum_{j=1}^{k_n} S_{j,n} + n^{-1/2} R_n,
\]

where \(R_n = \sum_{i=k_n(b_n+s_n)+1}^{n} (Z_{i,n} + Z_{i,n}^{(m)}) \) is the sum of the \((Z_{i,n} + Z_{i,n}^{(m)}) \) after the last small subblock. It follows that

\[
\text{Var}(Z_n) = \text{Var} \left(n^{-1/2} \sum_{j=1}^{k_n} B_{j,n} \right) + 2n^{-1} \sum_{j,j'=1}^{k_n} \mathbb{E}(B_{j,n} S_{j',n}) + 2n^{-1} \sum_{j=1}^{k_n} \mathbb{E}(B_{j,n} R_n) + n^{-1} \sum_{j,j'=1}^{k_n} \mathbb{E}(S_{j,n} S_{j',n}) + 2n^{-1} \sum_{j=1}^{k_n} \mathbb{E}(S_{j,n} R_n) + \mathbb{E}(n^{-1} R_n^2). \quad (B.1)
\]

We shall now show that all the terms on the right except the first one tend to zero. Notice that the convergence of the fourth and sixth term to zero will imply that \(|Z_n - n^{-1/2} \sum_{j=1}^{k_n} B_{j,n}| = |n^{-1/2} \sum_{j=1}^{k_n} S_{j,n} + n^{-1/2} R_n| \xrightarrow{P} 0 \). We start with the second one. For any \(i \in \mathbb{N} \), let \(\gamma(i) = \text{Cov}(Y_0, Y_i) \). We have

\[
\mathbb{E}(B_{j,n} S_{j',n}) = \sum_{i=(j-1)(b_n+s_n)+1}^{j(b_n+s_n)} \sum_{i'=(j'-1)(b_n+s_n)+b_n+1}^{j'(b_n+s_n)} \{\mathbb{E}(Z_{i,n} Z_{i',n}) + \mathbb{E}(Z_{i,n}^{(m)} Z_{i',n}^{(m)})\}.
\]

Now,

\[
|\mathbb{E}(Z_{i,n} Z_{i',n})| \leq \sum_{l,l'=1}^{q} |c_l c_{l'}| |\gamma(|i' - i|)| \leq 10 \alpha_i^{(2+\delta)/(4+\delta)} \|Y_0\|_{4+\delta}^2 \sum_{l,l'=1}^{q} |c_l c_{l'}|,
\]

where the last inequality is a consequence of Lemma 3.11 in Dehling and Philipp (2002) with \(r = s = 4 + \delta \) and \(t = (4+\delta)/(2+\delta) \), which implies that

\[
|\gamma(i)| \leq 10 \alpha_i^{(2+\delta)/(4+\delta)} \|Y_0\|_{4+\delta}^2, \quad i \in \mathbb{N}. \quad (B.2)
\]
Similarly,

$$|E(Z_{i,n}^{(m)} Z_{i',n}^{(m)})| \leq 1(|i' - i| \leq \ell_n) 10\alpha^{(2+\delta)/(4+\delta)} \|Y_0\|_{2+\delta}^2 \sum_{l,l'=1}^q |d_l d_{l'}|$$

since, by Cauchy-Schwarz’s inequality, $E(S_{i,n}^{(m)} S_{i',n}^{(m)}) \leq E\{(S_{0,n}^{(m)})^2\} = 1$. It follows that

$$|E(B_{j,n} S_{j,n})| \leq \text{const} \times \sum_{i=1}^{b_n} \sum_{i'=b_n+1}^{b_n+s_n} \alpha_i^{(2+\delta)/(4+\delta)} \leq \text{const} \times \sum_{i=1}^{b_n+s_n-1} i \alpha_i^{(2+\delta)/(4+\delta)} < \infty$$

since $\sum_{i=1}^{\infty} i \alpha_i^{(2+\delta)/(4+\delta)} < \infty$ as $a > 2$. Similarly, we obtain that $|E(B_{j,n} S_{j-1,n})| < \infty$. For $j' \geq j + 1$ or $j > j' + 1$, $E(B_{j,n} S_{j',n}) = O(b_n s_n \alpha_n^{(2+\delta)/(4+\delta)}) = O(b_n s_n b_{n}^{-a})$. Hence,

$$2n^{-1} \sum_{j,j'=1}^{k_n} E(B_{j,n} S_{j',n}) = O(n^{-1} k_n) + O(n^{-1} k_n^2 b_n s_n b_{n}^{-a}) = O(b_n^{-1}) + O(n s_n b_{n}^{-a-1}).$$

Since $n s_n b_{n}^{-a-1} < n s_n^{-a}$, the previous term converges to zero. In a similar way, for the third summand on the right-hand side of (B.1), we have

$$2n^{-1} \sum_{j=1}^{k_n} E(B_{j,n} R_n) = 2n^{-1} \sum_{j=1}^{k_n-1} E(B_{j,n} R_n) + 2n^{-1} E(B_{k_n,n} R_n)$$

$$= O(n^{-1} k_n b_n (n - k_n (b_n + s_n)) \alpha_n^{(2+\delta)/(4+\delta)}) + O(n^{-1} b_n (n - k_n (b_n + s_n)))$$

$$= O(b_n^{-a+1}) + O(n^{-1} b_n^2) \to 0$$

using the fact that $n - k_n (b_n + s_n) < b_n + s_n$. The case of the fifth summand is similar. Regarding the fourth summand in (B.1), we have

$$E(S_{j,n} S_{j',n}) = \sum_{i=(j-1)(b_n+s_n)+b_n+1}^{j(b_n+s_n)} \sum_{i'==(j'-1)(b_n+s_n)+b_n+1}^{j'(b_n+s_n)} \{E(Z_{i,n} Z_{i',n}) + E(Z_{i,n}^{(m)} Z_{i',n}^{(m)})\},$$

which implies that

$$E(S_{j,n}^2) \leq \text{const} \times \sum_{i,j'=b_n+1}^{b_n+s_n} \alpha_i^{(2+\delta)/(4+\delta)} \leq \text{const} \times 2 \sum_{i=0}^{s_n-1} (s_n - i) \alpha_i^{(2+\delta)/(4+\delta)}$$

$$\leq \text{const} \times s_n \sum_{i=0}^{\infty} \alpha_i^{(2+\delta)/(4+\delta)} = O(s_n)$$

and that, for $j \neq j'$, $E(S_{j,n} S_{j',n}) = O(s_n^2 \alpha_n^{(2+\delta)/(4+\delta)}) = O(s_n^2 b_{n}^{-a})$. Hence,

$$n^{-1} \sum_{j,j'=1}^{k_n} E(S_{j,n} S_{j',n}) = O(n^{-1} k_n s_n) + O(n^{-1} k_n^2 s_n^2 b_{n}^{-a}) = O(b_n^{-1} s_n) + O(n s_n^2 b_{n}^{-a-2})$$

19
which converges to 0 since $b_n^{-1}s_n \to 0$ and $ns_n^2b_n^{-2} < ns_n^{-a}$. Finally, for the sixth summand in (B.1), we have

$$E(n^{-1}R_n^2) = O(n^{-1}(n - k_n(b_n + s_n))^2) = O(n^{-1}(b_n + s_n)^2) = O(n^{-1}b_n^2)$$

since $n - k_n(b_n + s_n) < b_n + s_n$.

In order to prove that Z_n converges in distribution to Z, it suffices therefore to prove that $n^{-1/2} \sum_{j=1}^{k_n} B_{j,n}$ converges in distribution to Z. Let $\psi_{j,n}(t) = \exp(itn^{-1/2}B_{j,n})$, $t \in \mathbb{R}$, $j \in \{1, \ldots, k_n\}$, and observe that the characteristic function of $n^{-1/2} \sum_{j=1}^{k_n} B_{j,n}$ can be written as $t \mapsto E\left\{\prod_{j=1}^{k_n} \psi_{j,n}(t)\right\}$. Also, for two σ-fields \mathcal{F}_1 and \mathcal{F}_2, let

$$\alpha(\mathcal{F}_1, \mathcal{F}_2) = \sup_{A \in \mathcal{F}_1, B \in \mathcal{F}_2} |P(A \cap B) - P(A)P(B)|.$$

Now, for any $t \in \mathbb{R}$, we can write

$$\left|E\left\{\prod_{j=1}^{k_n} \psi_{j,n}(t)\right\} - \prod_{j=1}^{k_n} E\{\psi_{j,n}(t)\}\right| \leq E\left|\prod_{j=1}^{k_n} E\{\psi_{j,n}(t)\} - E\{\psi_{1,n}(t)\}E\left\{\prod_{j=2}^{k_n} \psi_{j,n}(t)\right\}\right| + \ldots$$

$$+ \ldots + \prod_{j=1}^{k_n-2} E\{\psi_{j,n}(t)\} \left|E\left\{\prod_{j=k_n-1}^{k_n} \psi_{j,n}(t)\right\} - \prod_{j=k_n-1}^{k_n} E\{\psi_{j,n}(t)\}\right|.$$

Using the fact that the modulus of a characteristic function is smaller than one and applying $k_n - 1$ times Lemma 3.9 of Dehling and Philipp (2002), we obtain

$$\left|E\left\{\prod_{j=1}^{k_n} \psi_{j,n}(t)\right\} - \prod_{j=1}^{k_n} E\{\psi_{j,n}(t)\}\right| \leq 2\pi k_n \max_{1 \leq i \leq k_n-1} \alpha \left\{\sigma \left\{\psi_{i,n}(t)\right\}, \sigma \left\{\prod_{j=i+1}^{k_n} \psi_{j,n}(t)\right\}\right\}.$$

Since the big subblocks are s_n observations apart, the right-hand side of the previous inequality is smaller than $2\pi k_n \alpha s_n = O(k_n s_n^{-a})$ which tends to zero as $k_n s_n^{-a} \leq ns_n^{-a} \to 0$. Hence, for any $t \in \mathbb{R}$,

$$\left|E\left\{\prod_{j=1}^{k_n} \psi_{j,n}(t)\right\} - \prod_{j=1}^{k_n} E\{\psi_{j,n}(t)\}\right| \to 0.$$

In other words, the characteristic function of $n^{-1/2} \sum_{j=1}^{k_n} B_{j,n}$ is asymptotically equivalent to the characteristic function of $n^{-1/2} \sum_{j=1}^{k_n} B'_{j,n}$, where $B'_{1,n}, \ldots, B'_{k_n,n}$ are independent and $B'_{j,n}$ and $B_{j,n}$ have the same distribution for all $j \in \{1, \ldots, k_n\}$. To conclude that $n^{-1/2} \sum_{j=1}^{k_n} B_{j,n}$ converges in distribution to Z, it suffices therefore to show that $n^{-1/2} \sum_{j=1}^{k_n} B'_{j,n}$ converges in distribution to Z. This will be accomplished using the Lindeberg–Feller central limit theorem for triangular arrays. Hence, let us first show that

$$\text{Var}\left(n^{-1/2} \sum_{j=1}^{k_n} B'_{j,n}\right) \to \text{Var}(Z).$$
We have
\[
\text{Var}(Z) = \sum_{l,l' = 1}^{q} c_l c_{l'} (s_l \wedge s_{l'}) \sum_{i \in \mathbb{Z}} \gamma(|i|) + \sum_{l,l' = 1}^{q} d_{l} d_{l'} (t_l \wedge t_{l'}) \sum_{i \in \mathbb{Z}} \gamma(|i|).
\]

Note that \(\sum_{i \in \mathbb{Z}} \gamma(|i|) = \text{Var}\{\mathbb{Z}(1)\} < \infty\) since, from (B.2),
\[
\sum_{i \in \mathbb{Z}} \gamma(|i|) = |\gamma(0)| + 2 \sum_{i = 1}^{\infty} |\gamma(i)| \leq \text{Var}(Y_0) + 20 \sum_{i = 1}^{\infty} \alpha_i^{(2+\delta)/(4+\delta)} < \infty. \tag{B.3}
\]

Now, we shall first show that \(\text{Var}\left(n^{-1/2} \sum_{j=1}^{k_n} B_{j,n}'\right) = \text{Var}(Z_n) + o(1)\) and then that \(\text{Var}(Z_n) \rightarrow \text{Var}(Z)\). We have
\[
\text{Var}\left(n^{-1/2} \sum_{j=1}^{k_n} B_{j,n}'\right) = n^{-1} \sum_{j=1}^{k_n} \text{Var}(B_{j,n}') = n^{-1} \sum_{j=1}^{k_n} \text{Var}(B_{j,n})
\]
\[
= \text{Var}\left(n^{-1/2} \sum_{j=1}^{k_n} B_{j,n}\right) - n^{-1} \sum_{j,j' = 1}^{k_n} \sum_{j \neq j'} \text{E}(B_{j,n}B_{j',n}).
\]

From (B.1), we know that \(\text{Var}(n^{-1/2} \sum_{j=1}^{k_n} B_{j,n}) = \text{Var}(Z_n) + o(1)\). Hence, it remains to show that the double sum in the last displayed formula converges to 0. Proceeding as for the summands on the right of (B.1), we have that, for \(j \neq j'\), \(\text{E}(B_{j,n}B_{j',n}) = O(b_n^2 \alpha_s^{(2+\delta)/(4+\delta)}) = O(b_n^2 s_n^{-a})\). Hence,
\[
n^{-1} \sum_{j,j' = 1}^{k_n} \sum_{j \neq j'} \text{E}(B_{j,n}B_{j',n}) = O(n^{-1} b_n^2 b_n^2 s_n^{-a}) = O(n s_n^{-a}) \rightarrow 0.
\]

Thus, it remains to show that \(\text{Var}(Z_n) \rightarrow \text{Var}(Z)\). Now,
\[
\text{Var}(Z_n) = n^{-1} \sum_{i,i' = 1}^{n} \{\text{E}(Z_{i,n}Z_{i',n}) + \text{E}(Z_{i,n}(Z_{i',n})^{(m)})}\}.
\]

It follows that
\[
\text{Var}(Z_n) = \sum_{l,l' = 1}^{q} c_l c_{l'} n^{-1} \sum_{i = 1}^{|n s_l|} \sum_{i' = 1}^{|n s_{l'}|} \gamma(|i' - i|)
\]
\[
+ \sum_{l,l' = 1}^{q} d_{l} d_{l'} n^{-1} \sum_{i = 1}^{|n t_l|} \sum_{i' = 1}^{|n t_{l'}|} \varphi\{(i' - i)/\ell_n\} \gamma(|i' - i|), \tag{B.4}
\]

21
where \(\varphi \) is the function appearing in Assumption (M3). Let us first deal with the second term on the right. Let \(l, l' \in \{1, \ldots, q\} \) be arbitrary and suppose without loss of generality that \(t_l \leq t_{l'} \). Then,

\[
\begin{align*}
 n^{-1} \sum_{i=1}^{\lfloor nt_l \rfloor} \sum_{i'=1}^{\lfloor nt_{l'} \rfloor} \varphi\left(\frac{(i' - i)}{\ell_n}\right) \gamma\left(|i' - i|\right) &= n^{-1} \sum_{i=1}^{\lfloor nt_l \rfloor} \sum_{i'=1}^{\lfloor nt_{l'} \rfloor} \varphi\left(\frac{(i' - i)}{\ell_n}\right) \\
 &+ n^{-1} \sum_{i=1}^{\lfloor nt_l \rfloor} \sum_{i'=\lfloor nt_{l'} \rfloor + 1}^{\lfloor nt_{l'} \rfloor} \varphi\left(\frac{(i' - i)}{\ell_n}\right) \gamma\left(|i' - i|\right).
\end{align*}
\]

(B.5)

The first sum on the right-hand side is equal to

\[
 n^{-1} \sum_{i=-\lfloor nt_l \rfloor}^{\lfloor nt_l \rfloor} \{\lfloor nt_l \rfloor - |i|\} \varphi(i/\ell_n) \gamma(|i|) = \sum_{i=-\lfloor nt_l \rfloor}^{\lfloor nt_l \rfloor} \{\lambda_n(0, t_l) - |i|/n\} \varphi(i/\ell_n) \gamma(|i|)
\]

and converges to \(t_l \sum_{i \in \mathbb{Z}} \gamma(|i|) \) by Assumption (M3), (B.3) and dominated convergence. The second sum on the right-hand side of (B.5) is bounded in absolute value by \(\text{const} \times n^{-1} \sum_{i=1}^{\lfloor nt_{l'} \rfloor-1} \delta_i (2+\delta)/(4+\delta) \to 0 \). Hence, the second term on the right of (B.4) converges to \(\sum_{l'=1}^{q} d_{l'} d_{l'} (t_l \wedge t_{l'}) \sum_{i \in \mathbb{Z}} \gamma(|i|) \). Similarly, the first term on the right of (B.4) converges to \(\sum_{l'=1}^{q} c_{l'} c_{l'} (s_l \wedge s_{l'}) \sum_{i \in \mathbb{Z}} \gamma(|i|) \). Thus, \(\text{Var}(Z_n) \to \text{Var}(Z) \).

To be able to conclude that \(n^{-1/2} \sum_{j=1}^{k_n} B_{j,n}' \) converges in distribution to \(Z \), it remains to prove the Lindeberg condition of the Lindeberg-Feller theorem, i.e., that, for every \(\epsilon > 0 \),

\[
 n^{-1} \sum_{j=1}^{k_n} \mathbb{E}\{\left((B_{j,n}')^2 \right) \mathbf{1}\left(|B_{j,n}'| > n^{1/2}\epsilon\right)\} = n^{-1} \sum_{j=1}^{k_n} \mathbb{E}\{B_{j,n}^2 \mathbf{1}\left(|B_{j,n}| > n^{1/2}\epsilon\right)\} \to 0.
\]

Let \(\epsilon > 0 \) be arbitrary. Using Hölder’s inequality with \(p = 1 + \nu/2 \), where \(0 < \nu \leq 2 + \delta \) is to be chosen later on, and Markov’s inequality, we have

\[
 n^{-1} \sum_{j=1}^{k_n} \mathbb{E}\{B_{j,n}^2 \mathbf{1}\left(|B_{j,n}| > n^{1/2}\epsilon\right)\} \leq n^{-1} \sum_{j=1}^{k_n} \left\{ \mathbb{E}\left(|B_{j,n}|^{2+\nu}\right) \right\}^{2/(2+\nu)} \{\mathbb{P}\left(|B_{j,n}| > n^{1/2}\epsilon\right)\}^{\nu/(2+\nu)}
\]

\[
 \leq n^{-1} \sum_{j=1}^{k_n} \left\{ \mathbb{E}\left(|B_{j,n}|^{2+\nu}\right) \right\}^{2/(2+\nu)} \{\mathbb{P}\left(|B_{j,n}|^{2+\nu} > n^{(2+\nu)/2}\epsilon^{2+\nu}\right)\}^{\nu/(2+\nu)}
\]

\[
 \leq n^{-1} \sum_{j=1}^{k_n} \left\{ \mathbb{E}\left(|B_{j,n}|^{2+\nu}\right) \right\}^{2/(2+\nu)} \{\mathbb{E}\left(|B_{j,n}|^{2+\nu}\right)\}^{\nu/(2+\nu)} (n^{1/2}\epsilon)^{-\nu}
\]

\[
 \leq n^{-1} \sum_{j=1}^{k_n} \mathbb{E}\left(|B_{j,n}|^{2+\nu}\right) n^{-\nu/2} \epsilon^{-\nu}.
\]
Now, from Minkowski’s inequality,
\[
\{E(|B_{j,n}|^{2+\nu})\}^{1/(2+\nu)} \leq \sum_{i=(j-1)(b_n+s_n)+1}^{(j-1)(b_n+s_n)+b_n} \left[\{E(|Z_{i,n}|^{2+\nu})\}^{1/(2+\nu)} + \{E(|Z_{i,n}^{(m)}|^{2+\nu})\}^{1/(2+\nu)} \right] = O(b_n)
\]
since, for any \(\nu \in (0, 2+\delta)\),
\[
\max_{1 \leq i \leq n} E(|Z_{i,n}|^{2+\nu}) \leq E \left(\left[\sum_{l=1}^{q} |c_l| |Y_0| \right]^{2+\nu} \right) < \infty,
\]
and
\[
\max_{1 \leq i \leq n} E(|Z_{i,n}^{(m)}|^{2+\nu}) \leq E \left(\left[\sum_{l=1}^{q} |d_l| |Y_0| \right]^{2+\nu} \right) < \infty.
\]
It follows that
\[
n^{-1} \sum_{j=1}^{k_n} E\{B_{j,n}^2 1(|B_{j,n}| > n^{1/2} \epsilon)\} = O(n^{-1} k_n b_n^{2+\nu} n^{-\nu/2}) = O(b_n^{1+\nu} n^{-\nu/2}) = O(n^{1/2-\eta \nu (1+\nu)}),
\]
which converges to zero for \(\nu > 1/(2 \eta \nu) - 1\). The condition \(1/(6+2\delta) < \eta \nu \) imposed at the beginning of the proof is equivalent to \(2 + \delta > 1/(2 \eta \nu) - 1\). Hence, the desired convergence is obtained by taking \(\nu = 2 + \delta\).

Lemma B.3 (Moment inequality). Assume that \((Y_t)_{t \in \mathbb{N}}\) is a strictly stationary sequence of centered random variables with \((4+\delta)\)-moments for some \(\delta > 0\) and such that the strong mixing coefficients associated with \((Y_t)_{t \in \mathbb{N}}\) satisfy \(\alpha_r = O(r^{-b})\), \(b > 2(4+\delta)/\delta\). Also, for any \(m \in \{1, \ldots, M\}\), let \((\xi_{i,n}^{(m)})_{i \in \mathbb{N}}\) be a sequence satisfying (M1) in Definition 2.4. Then, for any \(0 \leq s \leq t \leq 1\),
\[
E \left[\{Z_n^{(m)}(s) - Z_n^{(m)}(t)\}^4 \right] \leq \kappa \{\lambda_n(s, t)\}^2,
\]
where \(\kappa > 0\) is a constant depending on the mixing coefficients, \(E[\{\xi_{i,n}^{(m)}\}^4]\) and \(\|Y_0\|_4^{1+s}\).

Proof. The proof is an adaptation of that of Lemma A.2 in Bücher and Kojadinovic (2014). The result holds trivially if \([ns] = [nt]\). Let us therefore assume that \([nt] - [ns] \geq 1\). Proceeding as in the proof of Lemma 3.22 in Dehling and Philipp (2002), we can write
\[
E \left[\{Z_n^{(m)}(s) - Z_n^{(m)}(t)\}^4 \right]
= \frac{1}{n^2} \sum_{i_1, i_2, i_3, i_4 = [ns]+1}^{[nt]} E[\xi_{i_1,n}^{(m)} \xi_{i_2,n}^{(m)} \xi_{i_3,n}^{(m)} \xi_{i_4,n}^{(m)}] E[Y_{i_1} Y_{i_2} Y_{i_3} Y_{i_4}],
\]
\[
\leq \frac{4! \lambda_n(s, t)}{n} \sum_{0 \leq i, j, k \leq [nt]-[ns]-1} E[\xi_{i,n}^{(m)} \xi_{i+j,n}^{(m)} \xi_{i+j+k,n}^{(m)}] E[Y_0 Y_{i+j} Y_{i+j+k}]. \tag{B.6}
\]
On the one hand, $|E[c_{0,n}^{(m)} e_{i,n}^{(m)} e_{i+j,n}^{(m)} e_{i+j+k,n}^{(m)}]| \leq E[|\xi_{0,n}^{(m)}|^4]$. On the other hand, by Lemma 3.11 of Dehling and Philipp (2002) and using the generalized version of Holder’s inequality, we have

$$E[Y_0(Y_i Y_{i+j} Y_{i+j+k})] \leq 10\alpha_i^{\delta/(4+\delta)}||Y_0||_{4+\delta}||Y_i Y_{i+j} Y_{i+j+k}||_{(4+\delta)/3} \leq 10\alpha_i^{\delta/(4+\delta)}||Y_0||_{4+\delta},$$

$$E[(Y_0 Y_i Y_{i+j}) Y_{i+j+k}] \leq 10\alpha_i^{\delta/(4+\delta)}||Y_0||_{4+\delta},$$

and

$$|E[(Y_0 Y_i)(Y_{i+j} Y_{i+j+k})]| \leq |E[Y_0 Y_i]E[Y_{i+j} Y_{i+j+k}]| + 10\alpha_i^{\delta/(4+\delta)}||Y_0||_{(4+\delta)/2}||Y_{i+j} Y_{i+j+k}||_{(4+\delta)/2} \leq 100\alpha_i^{(2+\delta)/(4+\delta)} \alpha_j^{(2+\delta)/(4+\delta)}||Y_0||^4_{4+\delta} + 10\alpha_i^{\delta/(4+\delta)}||Y_0||^4_{(4+\delta)}.$$}

Proceeding as in Lemma 3.22 of Dehling and Philipp (2002), we split the sum on the right of (B.6) into three sums according to which of the indices i, j, k is the largest. Combining this decomposition with the three previous inequalities, we obtain

$$E \left[\left\{ \mathbb{Z}_n^{(m)}(s) - \mathbb{Z}_n^{(m)}(t) \right\}^4 \right] \leq \frac{24E[|\xi_{0,n}^{(m)}|^4]||Y_0||^4_{4+\delta} \lambda_n(s, t)}{n} \times \left\{ 100 \sum_{j=0}^{[nt]-[ns]-1} \sum_{i,k \leq j} \alpha_i^{(2+\delta)/(4+\delta)} \alpha_j^{(2+\delta)/(4+\delta)} + 30 \sum_{i=0}^{[nt]-[ns]-1} \sum_{j,k \leq i} \alpha_i^{\delta/(4+\delta)} \right\}.$$}

From the condition on the mixing coefficients, there exists a constant $C > 0$ such that

$$\sum_{i=0}^{[nt]-[ns]-1} \sum_{j,k \leq i} \alpha_i^{\delta/(4+\delta)} \leq \sum_{i=1}^{[nt]-[ns]-1} i^{2-a} \alpha_i^{\delta/(4+\delta)} \leq C \sum_{i=1}^{\infty} i^{2-a},$$

where $a = b\delta/(4 + \delta) > 2$. From well-known results on Riemann series, if $-1 < 2 - a < 0$, the sum on the right of the previous inequality is $O((\{nt\} - \{ns\})^{3-a})$. Hence, $\sum_{i=0}^{[nt]-[ns]-1} \sum_{j,k \leq i} \alpha_i^{\delta/(4+\delta)} = O((\{nt\} - \{ns\})^\tau)$, where $\tau = \max(3-a, 0) < 1$. Also, since $a > 2$, $\sum_{i=1}^{\infty} i^{2-a} < \infty$, and therefore

$$E \left[\left\{ \mathbb{Z}_n^{(m)}(s) - \mathbb{Z}_n^{(m)}(t) \right\}^4 \right] \leq K \lambda_n(s, t) [\lambda_n(s, t) + n^{\tau-1} \{\lambda_n(s, t)\}^\tau],$$

where $K > 0$ is a constant depending on the mixing coefficients, $E[|\xi_{0,n}^{(m)}|^4]$ and $||Y_0||^4_{4+\delta}$. The latter inequality implies that

$$E \left[\left\{ \mathbb{Z}_n^{(m)}(s) - \mathbb{Z}_n^{(m)}(t) \right\}^4 \right] \leq K \{\lambda_n(s, t)\}^2 [1 + n^{\tau-1} \{\lambda_n(s, t)\}^{\tau-1}] \leq K \{\lambda_n(s, t)\}^2 (1 + 1),$$

where we have used the fact that $1/n \leq \lambda_n(s, t)$ and that $\tau - 1 < 0$.

Proof of Proposition B.1. Weak convergence of the finite-dimensional distributions is established in Lemma B.2. Asymptotic tightness of Z_n is a consequence of the the weak convergence of Z_n to Z in $C^\infty([0, 1])$ proved in Oodaira and Yoshihara (1972, Theorem 2). Fix $m \in \{1, \ldots, M\}$. To show asymptotic tightness of $Z_n^{(m)}$, we shall first prove that $Z_n^{(m)}$ is asymptotically uniformly equicontinuous in probability using Lemma B.3 together with
Lemma 2 of Balacheff and Dupont (1980) (see also Bickel and Wichura, 1971, Theorem 3 and the remarks on page 1665).

Let \(T_n = \{ i/n : i = 0, \ldots, n \} \) and let \(\{ s, t \} \) be a non-empty set of \([0, 1]\) whose boundary points lie in \(T_n \). Also, let \(\mu \) be the Lebesgue measure on \([0, 1]\). By Markov’s inequality and Lemma B.3, we then have that, for any \(\varepsilon > 0 \),

\[
P(|Z_n^{(m)}(s) - Z_n^{(m)}(t)| \geq \varepsilon) \leq \varepsilon^{-4} \mathbb{E} \left[\left(|Z_n^{(m)}(s) - Z_n^{(m)}(t)| \right)^4 \right] \leq \varepsilon^{-4} \kappa \{ \lambda_n(s, t) \}^2 = \varepsilon^{-4} \kappa \{ \mu((s, t)) \}^2. \tag{B.7}
\]

Let \(\tilde{\mu}_n \) denote a finite measure on \(T_n \) defined from its values on the singletons \(\{ s \} \) of \(T_n \) as

\[
\tilde{\mu}_n(\{ s \}) = \begin{cases} 0 & \text{if } s = 0, \\ \mu((s', s]) & \text{otherwise,} \end{cases}
\]

where \(s' = \max \{ t \in T_n : t < s \} \). By additivity of \(\tilde{\mu}_n \), (B.7) can be rewritten as

\[
P(|Z_n^{(m)}(s) - Z_n^{(m)}(t)| \geq \varepsilon) \leq \varepsilon^{-4} \kappa \{ \tilde{\mu}_n((s, t) \cap T_n) \}^2.
\]

Next, consider a positive sequence \(\delta_n \downarrow 0 \), and let \(\delta'_n \downarrow 0 \) such that, for any \(n \in \mathbb{N} \), \(\delta'_n \in \{ 1/i : i \in \mathbb{N} \} \) and \(\delta'_n \geq \max(\delta_n, 1/n) \). Then, for any \(\varepsilon > 0 \),

\[
P \left(\sup_{s, t \in [0, 1], |s-t| \leq \delta'_n} |Z_n^{(m)}(s) - Z_n^{(m)}(t)| > \varepsilon \right) \leq P \left(\sup_{s, t \in [0, 1], |s-t| \leq \delta'_n} |Z_n^{(m)}(s) - Z_n^{(m)}(t)| > \varepsilon \right).
\]

Applying Lemma 2 of Balacheff and Dupont (1980), we obtain that there exists a constant \(C > 0 \) depending on \(\varepsilon \) such that the probability on the right of the previous display is smaller than

\[
C \tilde{\mu}_n(T_n) \times \sup_{s, t \in \overline{T}_n, |s-t| \leq 3 \delta'_n} |\tilde{\mu}_n(\{ 0, \ldots, s \}) - \tilde{\mu}_n(\{ 0, \ldots, t \})| \leq C 3 \delta'_n \rightarrow 0.
\]

Hence, \(Z_n^{(m)} \) is asymptotically uniformly equicontinuous in probability and therefore asymptotically tight. The proof is complete as marginal asymptotic tightness implies joint asymptotic tightness.

\[\Box\]

C Proof of Proposition 2.5

Proof of Proposition 2.5. For any \(m \in \{ 1, \ldots, M \} \), let

\[
\tilde{\eta}^{(m)}_n(s) = \frac{2}{\sqrt{n}} \sum_{i=1}^{[ns]} \zeta^{(m)}_{i,n} \tilde{h}_{1,1:[ns]}(X_i), \quad s \in [0, 1],
\]

where, for \(1 \leq k \leq l \leq n \),

\[
\tilde{h}_{1,k:l}(X_i) = \frac{1}{l-k} \sum_{j=k}^{l} h(X_i, X_j) - \theta, \quad i \in \{ k, \ldots, l \}, \tag{C.1}
\]
with the convention that \(\hat{h}_{1,k,l} = 0 \) if \(k = l \). Fix \(m \in \{1, \ldots, M\} \) and let us first show (2.8). Proceeding as for the term (B.8) in Bücher et al. (2014), it can be verified that

\[
\sup_{s \in [0,1]} |\tilde{U}_n^{(m)}(s) - \tilde{U}_n^{(m)}(s)| = \sup_{s \in [0,1]} \left| U_n(s) \times \frac{2}{n} \sum_{i=1}^{\lfloor ns \rfloor} \xi_{s,n}^{(m)} \right| = o_P(1).
\]

Hence, to show (2.8), it is enough to prove that

\[
\sup_{s \in [0,1]} \left| \tilde{U}_n^{(m)}(s) - \frac{2}{\sqrt{n}} \sum_{i=1}^{\lfloor ns \rfloor} \xi_{s,n}^{(m)} h_1(X_i) \right| = o_P(1). \tag{C.2}
\]

It is easy to verify that the result holds if the above supremum is restricted to \(s \in [0, 2/n) \).

For any \(s \in [2/n, 1] \), using (1.5), we obtain

\[
\tilde{U}_n^{(m)}(s) = \frac{2}{\sqrt{n}([ns] - 1)} \sum_{i,j=1\atop i \neq j}^{\lfloor ns \rfloor} \{h_1(X_i) + h_1(X_j) + h_2(X_i, X_j)\}
= \frac{2}{\sqrt{n}} \sum_{i=1}^{\lfloor ns \rfloor} \xi_{s,n}^{(m)} h_1(X_i) + \mathcal{V}_n^{(m)}(s) + \mathcal{W}_n^{(m)}(s),
\]

where

\[
\mathcal{V}_n^{(m)}(s) = \frac{2}{\sqrt{n}([ns] - 1)} \sum_{i,j=1\atop i \neq j}^{\lfloor ns \rfloor} \xi_{s,n}^{(m)} h_1(X_j), \tag{C.3}
\]

\[
\mathcal{W}_n^{(m)}(s) = \frac{2}{\sqrt{n}([ns] - 1)} \sum_{i,j=1\atop i \neq j}^{\lfloor ns \rfloor} \xi_{s,n}^{(m)} h_2(X_i, X_j). \tag{C.4}
\]

To prove (C.2), it remains therefore to show that both \(\sup_{s \in [2/n, 1]} |\mathcal{V}_n^{(m)}(s)| = o_P(1) \) and \(\sup_{s \in [2/n, 1]} |\mathcal{W}_n^{(m)}(s)| = o_P(1) \). First, for any \(s \in [2/n, 1] \), we write \(\mathcal{V}_n^{(m)}(s) = \mathcal{V}_{n,1}^{(m)}(s) - \mathcal{V}_{n,2}^{(m)}(s) \), where

\[
\mathcal{V}_{n,1}^{(m)}(s) = \frac{1}{([ns] - 1)} \sum_{i=1}^{\lfloor ns \rfloor} \xi_{s,n}^{(m)} \times \frac{2}{\sqrt{n}} \sum_{j=1}^{\lfloor ns \rfloor} h_1(X_j),
\]

\[
\mathcal{V}_{n,2}^{(m)}(s) = \frac{1}{([ns] - 1)} \times \frac{2}{\sqrt{n}} \sum_{i=1}^{\lfloor ns \rfloor} \xi_{s,n}^{(m)} h_1(X_i).
\]

Using the method of proof used for the term (B.8) in Bücher et al. (2014), it can be verified that \(\sup_{s \in [2/n, 1]} |\mathcal{V}_{n,1}^{(m)}(s)| = o_P(1) \). Furthermore, using the fact that \(s \mapsto n^{-1/2} \sum_{i=1}^{\lfloor ns \rfloor} \xi_{s,n}^{(m)} h_1(X_i) \in \mathcal{C}^\infty([0, 1]) \) is asymptotically equicontinuous in probability as a consequence of Proposition B.1, we have that

\[
\sup_{s \in [2/n, n^{-1/2}]} |\mathcal{V}_{n,2}^{(m)}(s)| \leq 2 \sup_{s \in [0,1]} \sup_{s \leq n^{-1/2}} \left| \frac{1}{\sqrt{n}} \sum_{i=1}^{\lfloor ns \rfloor} \xi_{s,n}^{(m)} h_1(X_i) \right| = o_P(1).
\]

26
Furthermore, using again the weak convergence of $s \mapsto n^{-1/2} \sum_{i=1}^{[ns]} \xi_{i,n}^{(m)} h_1(X_i)$ in $\ell^\infty([0,1])$,

$$\sup_{s \in [n^{-1/2},1]} \left| \mathbb{V}^{(m)}_{n,2}(s) \right| \leq \frac{1}{\sqrt{n-2}} \times \sup_{s \in [0,1]} 2 \sqrt{n} \sum_{i=1}^{[ns]} \xi_{i,n}^{(m)} h_1(X_i) = O_P(n^{-1/2}) = o_P(1).$$

Altogether, $\mathbb{V}^{(m)}_n$ converges uniformly to zero in probability as it was to be shown.

The uniform convergence in probability to zero of $\mathbb{V}^{(m)}_n$ in (C.4) follows from Lemma C.1 below. Indeed, under (i), we have $\sum_{r=1}^n r^{\beta/(2+\delta)} \leq \text{const} \times \sum_{r=1}^n r^{1-a} = O(1)$, where $a = b\delta/(2+\delta) > b\delta/(4+\delta) > 2$. Under (ii), from Lemma 4.5 of Dehling and Wendler (2010b), we know that since h satisfies the P-Lipschitz-continuity or the variation condition, so does h_2 and, in addition, $\sum_{r=1}^n r^{\beta/(2+\delta)} \leq \text{const} \times \sum_{r=1}^n r^{1-a} = O(1)$ with $a = b \min\{\delta/(2+\delta), 2\gamma\delta/(3\gamma\delta + \delta + 5\gamma + 2)\} > 2$. This completes the proof of (2.8).

Let us now prove (2.7). Using (2.4) and then (1.5), we obtain

$$\sup_{s \in [0,1]} \left| \hat{U}^{(m)}_n(s) - \frac{2}{\sqrt{n}} \sum_{i=1}^{[ns]} \xi_{i,n}^{(m)} h_1(X_i) \right| \leq \sup_{s \in [0,1]} \frac{2}{\sqrt{n(n-1)}} \sum_{i=1}^{[ns]} \xi_{i,n}^{(m)} \sum_{j=1 \atop j \neq i}^n h_2(X_i, X_j) + |U_n(1)| \times \sup_{s \in [0,1]} \frac{2}{n} \sum_{i=1}^{[ns]} \xi_{i,n}^{(m)} |h_1(X_i)|.$$

The third term on the right of the previous inequality converges in probability to zero since $U_n(1)$ converges weakly as a consequence of Proposition 2.3 and $\sup_{s \in [0,1]} \left| 2n^{-1} \sum_{i=1}^{[ns]} \xi_{i,n}^{(m)} \right| = o_P(1)$, which can be shown by proceeding for instance as for the term K_n in the proof of Lemma D.2 of B"ucher and Kojadinovic (2014). To show that the first supremum on the right is $o_P(1)$, one can use a decomposition similar to that used for (C.3) and proceed along the same lines. The second supremum can be rewritten as $\sup_{s \in [0,1]} |\mathbb{K}^{(m)}_n(s) + \mathbb{L}^{(m)}_n(s)|$, where, for any $s \in [0,1]$,

$$\mathbb{K}^{(m)}_n(s) = \frac{2}{\sqrt{n(n-1)}} \sum_{i,j=1 \atop i \neq j}^{[ns]} \xi_{i,n}^{(m)} h_2(X_i, X_j),$$

$$\mathbb{L}^{(m)}_n(s) = \frac{2}{\sqrt{n(n-1)}} \sum_{i=1}^{[ns]} \xi_{i,n}^{(m)} \sum_{j=\lceil [ns] \rceil + 1}^n h_2(X_i, X_j).$$

The proof of the convergence in probability to zero of $\sup_{s \in [0,1]} |\mathbb{K}^{(m)}_n(s)|$ is very similar to that of Lemma C.1. The same arguments can be adapted to show that $\sup_{s \in [0,1]} |\mathbb{L}^{(m)}_n(s)| = o_P(1)$ by proving, in particular, appropriate versions of Lemmas 5.2 and 5.3 of Dehling et al. (2013).

Finally, from Proposition B.1, we have that

$$\left(s \mapsto 2n^{-1/2} \sum_{i=1}^{[ns]} h_1(X_i), s \mapsto 2n^{-1/2} \sum_{i=1}^{[ns]} \xi_{i,n}^{(1)} h_1(X_i), \ldots, s \mapsto 2n^{-1/2} \sum_{i=1}^{[ns]} \xi_{i,n}^{(M)} h_1(X_i), \right)$$

27
converges weakly to \((U, U^{(1)}, \ldots, U^{(M)})\) in \(\{\ell^\infty([0,1])\}^2\). The last claim of the proposition then follows from the continuous mapping theorem and (2.1), (2.7) and (2.8).

\[\text{Lemma C.1.} \text{ Assume that } X_1, \ldots, X_n \text{ is drawn from a strictly stationary sequence } (X_t)_{t \in \mathbb{N}} \text{ and that } h_2 \text{ has uniform } (2+\delta) \text{-moments for some } \delta > 0. \text{ Also, for any } m \in \{1, \ldots, M\}, \text{ let } (\xi_{i,n}^{(m)})_{i \in \mathbb{N}} \text{ be a sequence satisfying (M1) in Definition 2.4. Furthermore, suppose that there exists } \tau \in (0,1) \text{ such that one of the following two conditions holds:}
\]
\[\begin{align*}
(i) & \quad (X_t)_{t \in \mathbb{N}} \text{ is absolutely regular and } \sum_{r=0}^{\infty} r^{\beta/(2+\delta)} = O(n^\tau), \\
(ii) & \quad (X_t)_{t \in \mathbb{N}} \text{ is strongly mixing, } \mathbb{E}(\|X_t\|^{\gamma}) < \infty \text{ for some } \gamma > 0, \text{ } h_2 \text{ satisfies the P-Lipschitz continuity or variation condition and } \sum_{r=0}^{\infty} r^{2\gamma/(3\gamma+\delta+5\gamma+2)} = O(n^\tau).
\end{align*}\]

\[\text{Then, for any } m \in \{1, \ldots, M\}, \text{ sup}_{s \in [2/n,1]} |\mathbb{W}_n^{(m)}(s)| \to 0, \text{ where } \mathbb{W}_n^{(m)} \text{ is defined in (C.4).}
\]

\[\text{Proof.} \text{ Fix } m \in \{1, \ldots, M\}. \text{ We shall first show that } \sup_{s \in [2/n, n^{-1/2}]} |\mathbb{W}_n^{(m)}(s)| = o_p(1). \text{ Clearly,}
\]
\[\sup_{s \in [2/n, n^{-1/2}]} |\mathbb{W}_n^{(m)}(s)| = \max_{2 \leq k \leq n^{1/2}} |\mathbb{W}_n^{(m)}(k/n)|.
\]

Furthermore,
\[\mathbb{E}\left[\max_{2 \leq k \leq n^{1/2}} |\mathbb{W}_n^{(m)}(k/n)|^2\right] = \mathbb{E}\left[\max_{2 \leq k \leq n^{1/2}} \{\mathbb{W}_n^{(m)}(k/n)\}^2\right] \leq \sum_{2 \leq k \leq n^{1/2}} \mathbb{E}\{\mathbb{W}_n^{(m)}(k/n)\}^2.
\]

Using the fact that \(\mathbb{E}(\xi_{i_1,n}^{(m)} \xi_{j_2,n}^{(m)}) = 1 \text{ and Lemma 4.4 in Dehling and Wendler (2010b)}, \text{ we obtain}
\]
\[
\mathbb{E}\{\mathbb{W}_n^{(m)}(k/n)\}^2 = 4 \sum_{i_1, j_1, j_2, s_1, s_2 = 1}^{k} \mathbb{E}(\xi_{i_1,n}^{(m)} \xi_{j_2,n}^{(m)}) \mathbb{E}\{h_2(X_{i_1}, X_j, X_{j_2})\}
\]
\[
\leq 4 \sum_{i_1, j_1, j_2, s_1, s_2 = 1}^{k} |\mathbb{E}\{h_2(X_{i_1}, X_j, X_{j_2})\}| = O(k^\tau/n).
\]

It follows that
\[\mathbb{E}\left[\max_{2 \leq k \leq n^{1/2}} |\mathbb{W}_n^{(m)}(k/n)|^2\right] = O(n^{(\tau-1)/2}) \to 0. \quad (C.5)
\]

It remains to show that \(\sup_{s \in [n^{-1/2},1]} |\mathbb{W}_n^{(m)}(s)| = o_p(1). \text{ To do so, we use Lemma C.2 below. Using Markov’s inequality, for any } n^{-1/2} \leq s < t \leq 1 \text{ such that } t - s \geq n^{-1} \text{ and any } \lambda > 0, \text{ we have}
\]
\[
P\{|\mathbb{W}_n^{(m)}(s) - \mathbb{W}_n^{(m)}(t)| \geq \lambda\} \leq \lambda^{-2} \mathbb{E}\{|\mathbb{W}_n^{(m)}(s) - \mathbb{W}_n^{(m)}(t)|^2\} \leq \lambda^{-2} K(t-s)n^{(\tau-1)/2},
\]

which, as \(\mathbb{W}_n^{(m)}(s) = \mathbb{W}_n^{(m)}([ns]/n)\) for all \(s \in [2/n,1]\), implies that
\[
P\{|\mathbb{W}_n^{(m)}([ns]/n) - \mathbb{W}_n^{(m)}([nt]/n)| \geq \lambda\} \leq \lambda^{-2} K(nt-ns)n^{(\tau-3)/2}
\]
\[
\leq \lambda^{-2} K2([nt] - [ns])n^{(\tau-3)/2}.
\]

28
Setting \(\kappa = 2K \), it follows that, for any integers \(|n^{1/2}| \leq k \leq l \leq n \),

\[
P\{ |W_n^{(m)}(k/n) - W_n^{(m)}(l/n)| \geq \lambda \} \leq \lambda^{-2} \kappa (l - k)n^{(r-3)/2} \leq \lambda^{-2} \kappa (l - k)^{1+\epsilon}n^{(r-3)/2} \quad \text{(C.6)}
\]

for some \(0 < \epsilon < (1 - \tau)/2 \). Then, for any \(i \in \{1, \ldots, n - \lfloor n^{1/2} \rfloor \} \), set

\[
\zeta_i = W_n^{(m)}\{(i + \lfloor n^{1/2} \rfloor)/n\} - W_n^{(m)}\{(i - 1 + \lfloor n^{1/2} \rfloor)/n\}.
\]

Also, let \(S_0 = 0 \) and, for any \(i \in \{1, \ldots, n - \lfloor n^{1/2} \rfloor \} \), let \(S_i = W_n^{(m)}\{(i + \lfloor n^{1/2} \rfloor)/n\} - W_n^{(m)}(\lfloor n^{1/2} \rfloor)/n) \) and, from (C.6), we have that, for any integers \(0 \leq k \leq l \leq n - \lfloor n^{1/2} \rfloor \),

\[
P\{|S_i - S_k| \geq \lambda\} \leq \lambda^{-2} \kappa^{1/(1+\epsilon)}n^{(r-3)/2(1+\epsilon)}(l - k)^{1+\epsilon}.
\]

We can then apply Theorem 10.2 of Billingsley (1999) with \(\alpha = (1 + \epsilon)/2, \beta = 1/2 \) and \(u_i = \kappa^{1/(1+\epsilon)}n^{(r-3)/2(1+\epsilon)}, \) \(l \in \{1, \ldots, n - \lfloor n^{1/2} \rfloor \} \). Hence, there exists a constant \(\kappa' > 0 \) depending only \(\epsilon \) such that, for any \(\lambda > 0 \),

\[
P\left(\max_{1 \leq k \leq n - \lfloor n^{1/2} \rfloor} |S_k| \geq \lambda \right) \leq \kappa' \lambda^{-2} \left(\kappa^{1/(1+\epsilon)}n^{(r-3)/2(1+\epsilon)}(n - \lfloor n^{1/2} \rfloor) \right)^{1+\epsilon}
\]

\[
\leq \kappa' \lambda^{-2} \kappa n^{(r-3)/2+1+\epsilon} \rightarrow 0.
\]

The desired result finally follows from (C.5) and the fact that

\[
\max_{\lfloor n^{1/2} \rfloor + 1 \leq k \leq n} |W_n^{(m)}(k/n)| \leq \max_{1 \leq k \leq n - \lfloor n^{1/2} \rfloor} |S_k| + |W_n^{(m)}(\lfloor n^{1/2} \rfloor)/n)|.
\]

\[\blacksquare\]

Lemma C.2. Under the conditions of Lemma C.1, there exists a constant \(K > 0 \) such that, for any \(m \in \{1, \ldots, M\} \) and any \(n^{-1/2} \leq s < t \leq 1 \) such that \(t - s \geq n^{-1} \),

\[
E\{W_n^{(m)}(s) - W_n^{(m)}(t)\}^2 \leq K(t - s)n^{(r-1)/2}.
\]

Proof. Fix \(n^{-1/2} \leq s < t \leq 1 \) such that \(t - s \geq n^{-1} \). Then,

\[
n^{1/2}\{W_n^{(m)}(t) - W_n^{(m)}(s)\}/2 = \frac{1}{[nt]} - \frac{1}{[nt]} \sum_{i,j=1}^{[nt]} \xi_{i,n}^{(m)} h_2(X_i, X_j) - \frac{1}{[nt]} - \frac{1}{[nt]} \sum_{i,j=1}^{[nt]} \xi_{i,n}^{(m)} h_2(X_i, X_j)
\]

\[
+ \frac{1}{[ns]} - \frac{1}{[ns]} \sum_{i,j=1}^{[ns]} \xi_{i,n}^{(m)} h_2(X_i, X_j) - \frac{1}{[ns]} - \frac{1}{[ns]} \sum_{i,j=1}^{[ns]} \xi_{i,n}^{(m)} h_2(X_i, X_j),
\]

29
that is, $n^{1/2}\{\mathbb{W}_n^{(m)}(t) - \mathbb{W}_n^{(m)}(s)\}/2 = I_{n,1} + I_{n,1}^\prime + I_{n,2} + I_{n,2}^\prime + I_{n,3}$, where

$$I_{n,1} = \frac{1}{[nt] - 1} \sum_{[ns]+1 < i < j < [nt]} \xi_{i,n}^{(m)} h_2(X_i, X_j),$$

$$I_{n,1}^\prime = \frac{1}{[nt] - 1} \sum_{[ns]+1 < i < j < [nt]} \xi_{j,n}^{(m)} h_2(X_i, X_j),$$

$$I_{n,2} = \frac{1}{[nt] - 1} \sum_{1 \leq i < [ns] < j \leq [nt]} \xi_{i,n}^{(m)} h_2(X_i, X_j),$$

$$I_{n,2}^\prime = \frac{1}{[nt] - 1} \sum_{1 \leq i < [ns] < j \leq [nt]} \xi_{j,n}^{(m)} h_2(X_i, X_j),$$

$$I_{n,3} = \frac{|ns| - |nt|}{([nt] - 1)([nt] - 1)} \sum_{i < j \neq i} \xi_{i,n}^{(m)} h_2(X_i, X_j).$$

Using the fact that, for any $x, y \in \mathbb{R}$, $(x + y)^2 \leq 2(x^2 + y^2)$, we have that

$$E[n\{\mathbb{W}_n^{(m)}(t) - \mathbb{W}_n^{(m)}(s)\}^2/4] \leq 8\{E(I_{n,1}^2) + E(I_{n,1}^\prime) + E(I_{n,2}^2) + E(I_{n,2}^\prime) + E(I_{n,3})\}.$$ (C.7)

Now,

$$E(I_{n,1}^2) \leq \frac{1}{([nt] - 1)^2} \sum_{[ns]+1 < i < j < [nt]} \left|E\{h_2(X_{i_1}, X_{j_1})h_2(X_{i_2}, X_{j_2})\}\right|$$

$$= O\left(\frac{([nt] - [ns])^{2+\tau}}{([nt] - 1)^2}\right),$$

where we have used the fact that $E(\xi_{i_1,n}^{(m)}\xi_{i_2,n}^{(m)}) \leq E(\{\xi_{i_1,n}^{(m)}\}^2) = 1$, Lemma 4.4 in Dehling and Wendler (2010b), and the stationarity of $(X_i)_{i \in \mathbb{N}}$. Then, using the fact that $[nt] - [ns] \leq [nt] - 1$, $n^{1/2} \leq nt$ and $t - s \geq n^{-1}$, we obtain that

$$\frac{([nt] - [ns])^{2+\tau}}{([nt] - 1)^2} \leq \frac{[nt] - [ns]}{([nt] - 1)^{1-\tau}} \leq \frac{nt - ns + 1}{(n^{1/2} - 2)^{1-\tau}} \leq \frac{n \times 2(t - s)}{(n^{1/2} - 2)^{1-\tau}},$$

and therefore that $E(I_{n,1}^2) = (t - s) \times O(n^{(\tau+1)/2})$. Similarly, $E(I_{n,2}^2) = (t - s) \times O(n^{(\tau+1)/2})$.

Concerning $I_{n,2}$, we have

$$E(I_{n,2}^2) \leq \frac{1}{([nt] - 1)^2} \sum_{1 \leq i < [ns] < j < [nt]} \left|E\{h_2(X_{i_1}, X_{j_1})h_2(X_{i_2}, X_{j_2})\}\right|,$$

Proceeding as in Lemma 5.2 of Dehling et al. (2013), and with the help of Lemmas 4.1 and 4.2 in Dehling and Wendler (2010b), we obtain

$$E(I_{n,2}^2) = O\left(\frac{|ns|([nt] - [ns])|nt|^\tau}{([nt] - 1)^2}\right) = O\left(\frac{|nt| - [ns]}{([nt] - 1)^{1-\tau}}\right) = (t - s) \times O(n^{(\tau+1)/2}),$$

and similarly for $I_{n,2}^\prime$ and $I_{n,3}$. The desired result finally follows from (C.7).
D Proofs of Propositions 3.1 and 3.2

Proof of Proposition 3.1. A first step consists of showing that

$$\sup_{s \in [0,1]} \left| \mathbb{U}_n^*(s) - \frac{2}{\sqrt{n}} \sum_{i=\lfloor ns \rfloor + 1}^{n} h_1(X_i) \right| = o_P(1).$$

To do so, it suffices to prove that \(\sup_{s \in [0,1-2/n]} \left| \mathbb{U}_n^*(s) - 2n^{-1/2} \sum_{i=\lfloor ns \rfloor + 1}^{n} h_1(X_i) \right| = o_P(1).\)

Using (1.2), this amounts to showing that \(n^{-1/2} \max_{2 \leq k \leq n} \max_{1 \leq j \leq n} |U_{h_2,n-k+1,j}| = o_P(1).\) The latter can be proved by adapting the arguments used in Lemmas C.1 and C.2.

Using the above result and (2.1), we obtain that

$$\sup_{s \in [0,1]} \left| \mathbb{D}_n(s) - (1-s) \times \frac{2}{\sqrt{n}} \sum_{i=\lfloor ns \rfloor + 1}^{n} h_1(X_i) + s \times \frac{2}{\sqrt{n}} \sum_{i=\lfloor ns \rfloor + 1}^{n} h_1(X_i) \right| = o_P(1), \quad (D.1)$$

and the desired result follows from Theorem 2 of Oodaira and Yoshihara (1972) and the continuous mapping theorem.

Proof of Proposition 3.2. For any \(m \in \{1, \ldots, M\},\) let

$$\hat{\mathbb{U}}_n^{*(m)}(s) = \frac{2}{\sqrt{n}} \sum_{i=\lfloor ns \rfloor + 1}^{n} \xi_{i,n}^{(m)} \hat{h}_{1,\lfloor ns \rfloor + 1,m}(X_i), \quad s \in [0,1],$$

where \(\hat{h}_{1,k,l}(X_i)\) is defined in (C.1). Fix \(m \in \{1, \ldots, M\}.\) Adapting the arguments used in the proof of Proposition 2.5, it can be verified that \(\hat{\mathbb{U}}_n^{*(m)},\) defined in (3.3), is asymptotically equivalent to \(\hat{\mathbb{U}}_n^{*(m)},\) and that \(\sup_{s \in [0,1]} \left| \hat{\mathbb{U}}_n^{*(m)}(s) - 2n^{-1/2} \sum_{i=\lfloor ns \rfloor + 1}^{n} \xi_{i,n}^{(m)} \hat{h}_1(X_i) \right| = o_P(1).\) Combined with (C.2), we then obtain that

$$\sup_{s \in [0,1]} \left| \hat{\mathbb{D}}_n^{(m)}(s) - (1-s) \times \frac{2}{\sqrt{n}} \sum_{i=\lfloor ns \rfloor + 1}^{n} \xi_{i,n}^{(m)} \hat{h}_1(X_i) + s \times \frac{2}{\sqrt{n}} \sum_{i=\lfloor ns \rfloor + 1}^{n} \xi_{i,n}^{(m)} \hat{h}_1(X_i) \right| = o_P(1),$$

where \(\hat{\mathbb{D}}_n^{(m)}\) is defined in (3.5). Similar arguments can be carried out to get the analogue display for \(\hat{\mathbb{D}}_n^{(m)}\) in (3.4). The desired result finally additionally follows from Proposition B.1, the continuous mapping theorem and (D.1).

Acknowledgements

This work has been supported in parts by the Collaborative Research Center “Statistical modeling of nonlinear dynamic processes” (SFB 823) of the German Research Foundation (DFG), which is gratefully acknowledged.
References

S. Balacheff and G. Dupont. Normalité asymptotique des processus empiriques tronqués et des processus de rang. Lecture Notes in Mathematics, 821:19–45, 1980.

P. Barbe and P. Bertail. The weighted bootstrap. Lecture Notes in Statistics, Vol. 98. Springer, New York, 1995.

P.J. Bickel and M.J. Wichura. Convergence criteria for multiparameter stochastic processes and some applications. Annals of Mathematical Statistics, 42(5):1656–1670, 1971.

P. Billingsley. Convergence of probability Measures. Wiley, New York, 1999. Second edition.

A. Bücher and I. Kojadinovic. A dependent multiplier bootstrap for the sequential empirical copula process under strong mixing. Bernoulli, page in press, 2014. URL arXiv:1306.3930.

A. Bücher and M. Ruppert. Consistent testing for a constant copula under strong mixing based on the tapered block multiplier technique. Journal of Multivariate Analysis, 116:208–229, 2013.

A. Bücher, I. Kojadinovic, T. Rohmer, and J. Segers. Detecting changes in cross-sectional dependence in multivariate time series. Journal of Multivariate Analysis, 132:111–128, 2014.

P. Bühlmann. The blockwise bootstrap in time series and empirical processes. PhD thesis, ETH Zürich, 1993. Diss. ETH No. 10354.

M. Csörgő and L. Horváth. Limit theorems in change-point analysis. Wiley Series in Probability and Statistics. John Wiley & Sons, Chichester, UK, 1997.

A. C. Davison and D. V. Hinkley. Bootstrap Methods and Their Application. Cambridge University Press, 1997. ISBN 0-521-57391-2; 0-521-57471-4.

R.M. de Jong and J. Davidson. Consistency of kernel estimators of heteroscedastic and autocorrelated covariance matrices. Econometrica, 68(2):407–423, 2000.

H. Dehling and T. Mikosch. Random quadratic forms and the bootstrap for u-statistics. Journal of Multivariate Analysis, 51:392–413, 1994.

H. Dehling and W. Philipp. Empirical process techniques for dependent data. In H. Dehling, T. Mikosch, and M. Sørensen, editors, Empirical process techniques for dependent data, pages 1–113. Birkhäuser, Boston, 2002.

H. Dehling and M. Wendler. Central limit theorem and the bootstrap for U-statistics of strongly mixing data. Journal of Multivariate Analysis, 101:126–137, 2010a.
H. Dehling and M. Wendler. Law of the iterated logarithm for U-statistics of weakly dependent observations. In I. Berkes, R. Bradley, H. Dehling, M. Peligrad, and R. Tichy, editors, Dependence in probability, analysis and number theory, pages 177–194. Kendrick Press, 2010b.

H. Dehling, R. Fried, I. Garcia, and M. Wendler. Change-point detection under dependence based on two-sample U-statistics. In R. Kulik, editor, Asymptotic Methods in Stochastics – Festschrift in Honor of Miklos Csörgö. 2013. URL arXiv:1304.2479.

H. Dehling, D. Vogel, M. Wendler, and D. Wied. Testing for changes in the rank correlation of time series. arXiv:1203.4871, 2014.

M. Denker and G. Keller. Rigorous statistical procedures for data from dynamical systems. Journal of Statistical Physics, 44(1-2):67–93, 1986.

E. Gombay and L. Horváth. Rates of convergence for U-statistic processes and their bootstrapped versions. Journal of Statistical Planning and Inference, 102:247–272, 2002.

W. Hoeffdïng. A class of statistics with asymptotically normal distribution. Annals of Mathematical Statistics, 19:293–325, 1948.

L. Horváth and M. Hušková. Testing for changes using permutations of U-statistics. Journal of Statistical Planning and Inference, 128:351–371, 2005.

P. Janssen. Weighted bootstrapping of u-statistics. Journal of Statistical Inference and Planning, 38:31–42, 1994.

H. Joe. Multivariate concordance. Journal of Multivariate Analysis, 35(1):12–30, 1990.

E. Jondeau, S.-H. Poon, and M. Rockinger. Financial modeling under non-Gaussian distributions. Springer, London, 2007.

A. Leucht and M.H. Neumann. Dependent wild bootstrap for degenerate U and V-statistics. Journal of Multivariate Analysis, 117:257–280, 2013.

R.B. Nelsen. An introduction to copulas. Springer, New-York, 2006. Second edition.

H. Oodaira and K. Yoshihara. Functional central limit theorems for strictly stationary processes satisfying the strong mixing condition. Kodai Math. Sem. Rep., 24(3):259–269, 1972.

A.J. Patton, D.N. Politis, and H. White. Correction: Automatic block-length selection for the dependent bootstrap. Econometric Reviews, 28(4):372–375, 2009.

D.N. Politis and H. White. Automatic block-length selection for the dependent bootstrap. Econometric Reviews, 23(1):53–70, 2004.

D.P. Politis and J.P. Romano. Bias-corrected nonparametric spectral estimation. Journal of Time Series Analysis, 16:67–103, 1995.
J.-F. Quessy, M. Saïd, and A.-C. Favre. Multivariate Kendall’s tau for change-point detection in copulas. *The Canadian Journal of Statistics*, 41:65–82, 2013.

R Development Core Team. *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria, 2014. URL http://www.R-project.org. ISBN 3-900051-07-0.

X. Shao. The dependent wild bootstrap. *Journal of the American Statistical Association*, 105(489):218–235, 2010.

X. Shao and X. Zhang. Testing for change points in time series. *Journal of the American Statistical Association*, 105(491):1228–1240, 2010.

A.W. van der Vaart. *Asymptotic statistics*. Cambridge University Press, 1998.

A.W. van der Vaart and J.A. Wellner. *Weak convergence and empirical processes*. Springer, New York, 2000. Second edition.

Q. Wang and B-Y. Jing. Weighted bootstrap for u-statistics. *Journal of Multivariate Analysis*, 91:177–198, 2004.