A multi-wavelength survey of NGC 6752: X-ray counterparts, two new dwarf novae, and a core-collapsed radial profile

G. S. Thomson1, C. Knigge1, A. Dieball1, T. J. Maccarone1, A. Dolphin2, D. Zurek3, K. S. Long4, M. Shara3, and A. Sarajedini5

1Faculty of Physical and Applied Sciences, University of Southampton, SO17 1BJ, UK
2Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85706, USA
3Department of Astrophysics, American Museum of Natural History, New York, NY 10024, USA
4Space Telescope Science Institute, Baltimore, MD 21218, USA
5Department of Astronomy, University of Florida, Gainesville, FL 32611, USA

ABSTRACT

We present the results of a multi-wavelength (FUV to I-band) survey of the stellar populations of the globular cluster NGC 6752, using STIS, ACS and WFC3 on board the Hubble Space Telescope. We have confirmed that two previously identified CV candidates are, in fact, dwarf novae which underwent outbursts during our observations. We have also identified previously unknown optical counterparts to two X-ray sources. We estimate the position of the centre of the cluster, and show that the stellar density profile is not well described by a single King model, indicating that this cluster is in a core-collapsed or post-core collapse phase. The colour-magnitude diagram shows a well-populated horizontal branch, numerous blue stragglers and white dwarfs (WDs), as well as 87 sources in the gap region where we expect to find WD - main sequence binaries, including cataclysmic variables (CVs). The X-ray sources and WD binary systems are the most centrally concentrated populations, with dynamically estimated characteristic masses \(> 1.1 M_\odot \) and \(> 0.8 M_\odot \), respectively.

Key words: globular clusters: individual (NGC 6752) - binaries: close - stars: dwarf novae - novae, cataclysmic variables - stars: variables: other

1 INTRODUCTION

Globular clusters (GCs) have high stellar densities, especially towards the cluster core. This makes them ideal locations for the dynamical formation of exotic stellar populations such as X-ray binaries, milli-second pulsars (MSPs), blue stragglers (BSs), cataclysmic variables (CVs) and other close binary systems (e.g. Knigge et al. 2008; Dieball et al. 2005). Knowledge of the properties of the binary fraction of a cluster can help us to understand GC evolution, since interactions between binary systems and passing single stars can actually drive the cluster towards evaporation. Thus, GCs are not only excellent places to study close binaries, but studying the close binary populations also helps us to understand more about the GC itself.

Ultraviolet (UV) images are useful in searches for exotic stellar populations, because main sequence (MS) and red giant (RG) stars which dominate in optical images are fainter in the UV, so the crowding that affects optical images is no longer a problem. The most exotic populations, on the other hand, emit much of their radiation in the UV, making UV images an ideal tool to search for interacting binary systems. NGC6752 is a nearby, dense GC, which lies at a distance of 4 kpc, and has a reddening of \(E_{B-V} = 0.04 \) mag, and a metallicity of \([Fe/H] = -1.54\) dex (Harris 1996, 2010 edition). In a study using Chandra observations, Pooley et al. (2002) identified 19 X-ray sources in NGC6752 and found 12 optical counterparts, including 10 CV candidates.

D’Amico et al. (2002) then identified 5 MSPs, four of which have no known optical counterparts. The other (PSR A), has a white dwarf (WD) counterpart (Bassa et al. 2003), but this MSP is located \(\approx 74 \) core radii from the centre, and it is not clear whether or not this source is a cluster member (Bassa et al. 2006, Cocozza et al. 2006). If PSR A is a cluster member, one of the likely explanations for its offset position is that it was propelled there by an interaction with a black hole-black hole binary system (Colpi, Possenti & Gualandris 2002). This idea is supported by the
Table 1. Summary of observations used in this survey. The individual images from the FUV and NUV wave-bands are listed, as these were used to search for variability. In all other cases, total exposure times are listed.

Instrument/Detector	FoV	Plate Scale ["/pixel]	Waveband	Filter	Exposures	Date
STIS	25′1 × 25′3	0.25	FUV	F25QTZ	10 × 650 s	2001 March 30
					3 × 900 s	2001 March 30
WFC3/UVIS	162″ × 162″	0.04	NUV	F225W	6 × 120 s	2010 July 31
					6 × 120 s	2010 August 7
					6 × 120 s	2010 August 21
WFC3/UVIS	162″ × 162″	0.04	U	F390W	1590 s	2010 May 1 - 5
WFC3/UVIS	162″ × 162″	0.04	B	F410M	1800 s	2010 May 1 - 5
ACS/WFC	202″ × 202″	0.05	V	F606W	142 s	2006 June 24
ACS/WFC	202″ × 202″	0.05	I	F814W	162 s	2006 June 24

unusually high mass-to-light ratio in NGC 6752, suggesting an excess of low-luminosity stars in the core (D’Amico et al. 2002). Further evidence for the existence of black holes (BHs) in GCs might be found in the stellar radial distributions. A central BH is likely to produce a central cusp in the surface brightness profile, which can be distinguished from core collapse by its slope (Baumgardt et al. 2005).

Despite the fact that NGC 6752 is a relatively close GC, there is no consensus on its dynamical status. There has been much discussion in previous studies regarding whether or not the GC should be classified as core-collapsed. Ferraro et al. (2003) found that the radial profile can only be modelled using a combination of two King (1966) profiles, which they interpret as indication that it has undergone core collapse, but other studies (e.g. Lugger, Cohn & Grindlay 1995), argued that it is not inconsistent with a single King model. Noyola & Gebhardt (2006) produced surface brightness profiles for 38 GCs and found that NGC 6752 was the only GC previously reported as core-collapsed that did not show a central cusp. Like Lugger et al. (1995), they found that the central part of the surface brightness profile was flat.

Here, we present the results of a study performed using near ultraviolet (NUV), U- and V-band data taken with the Wide Field Camera 3 (WFC3) on board the Hubble Space Telescope (HST), as well as far ultraviolet (FUV) observations using the Space Telescope Imaging Spectrograph (STIS), and the V- and I-band catalogue from The ACS Survey of Galactic Globular Clusters (Sarajedini et al. 2002). Our goals include searching for counterparts to X-ray sources, for completeness. WFC3 has a field of view of 162″ × 162″ and a plate scale of 0.′′04/pixel.

2 OBSERVATIONS AND CATALOGUE

2.1 Observations

The data used in this survey come from three sources, summarised in Table 1. The majority of this paper deals with observations carried out using the UVIS detector on WFC3 on board HST, with the F225W (NUV) and F390W (U-band) filters. The NUV data consist of 18 individual images of 120 s exposure time, which are used in the search for time variability. The U-band dataset comprised 6 images with exposure times between 2 s and 880 s each, giving a total exposure time of 1590 s. We also include 3 exposures with the F410M filter with exposure times of 40 s and 880 s. These data are included in the discussion of optical counterparts to X-ray sources, for completeness. WFC3 has a field of view of 162″ × 162″ and a plate scale of 0.′′04/pixel.

Secondly, we used data from the Advanced Camera for Surveys (ACS) in the Wide Field Channel (WFC), which have total exposure times of 142 s with the F606W (V-band) filter and 162 s with the F814W (I-band) filter (PI. Sarajedini). The ACS has a larger field of view than WFC3, at 202″ × 202″, but a slightly coarser plate scale of 0.′′05/pixel.

Finally, we used FUV observations consisting of 13 individual exposures of 650 s or 900 s taken on 2001 March 30 with STIS on board HST using the F25QTZ filter. This has a wavelength range of 1475 - 1900 Å. The STIS observations have a field of view of 25′1 × 25′3 and a plate scale of 0.′′025/pixel. This dataset was used to facilitate time variability studies of sources in the core of the cluster.

2.2 Photometry

Astrometry and photometry were performed on the WFC3 data (NUV, U- and B-band) using the WFC3 module of DOLPHOT (Dolphin 2000). First, master images to be used as reference images for the World Coordinate System (WCS) were made for each of the WFC3 datasets (one per filter), by combining the individual frames using multidrizzle running under PyRAD. The DOLPHOT procedure wfc3mask was used to mask the pixels identified as saturated or bad

1 Note that we are limited to combining a maximum of 15 frames by the capabilities of the wfc3mask routine of DOLPHOT, but this only affects the NUV dataset as the U- and B-band data are
in the HST pipeline. The DOLPHOT tasks *splitgroups* and *cal.sky* were used to divide the exposures into their component chips (so they can be aligned to the master image), and to create a sky image for each frame. To correct for changes in alignment between individual frames, a few reference stars were found in each individual image and the reference image, and *ufc3jfdistort* was used to determine how each individual frame differed from the reference image. DOLPHOT was then used to perform photometry on each individual image, giving a catalogue in the WCS of the reference frame. We cleaned the resulting catalogues by removing sources which were deemed too sharp or too extended, as these are likely to be cosmic rays or background galaxies, or which were badly affected by the presence of nearby neighbours so that PSF-fitting could not be completed adequately. The resulting catalogues contained 14511 NUV, 27099 U-band, and 32780 B-band sources.

The V- and I-band ACS data were taken from the ACS Survey of Galactic Globular Clusters (Sarajedini et al. 2007, Anderson et al. 2008; henceforth ‘the ACS Survey Catalogue’). The catalogue contains 52818 stars that were found in both the V- and I-bands.

The individual FUV exposures were aligned by hand using the IRAF routine *imalign*, as image distortion coefficients are not available for these images, and then combined using the IRAF routine *imcombine*. We performed astrometry and photometry on the FUV images broadly following the method described in Dieball et al. (2010) and Dieball et al. (2007). We used the IRAF routine *daofind* (Stetson 1991) to create an initial source list, and then inspected the image by eye to add sources missed by *daofind* and remove false detections. This left 503 sources in the FUV catalogue. Photometry was performed using the IRAF routine *daophot* (Stetson 1991). Due to the high stellar density in the core, we chose a small aperture of 3 pixels and a sky annulus of 5-7 pixels. We also used a few isolated, bright stars to deter-

Figure 1. Left panel: Combined and geometrically corrected ‘master’ image of 15 NUV images. North is up and East is to the left. The field of view is 162″ × 162″ and the pixel scale is 0.04″/pixel. X-ray source positions are marked in blue circles and labelled with their CX number (except those in the core). Top right panel: Combined ‘master’ image of 13 FUV images, with X-ray positions marked. Again, North is up and East is to the left. The STIS field of view is 25.1′ × 25.3′ and the pixel scale is 0.025″/pixel. Lower right panel: Zoomed in version of the central region of the master NUV image, with the central X-ray sources marked and labelled with their CX number. The field shown is ≈ 40″ wide and 38″ high and the position and scale corresponds to that of the FUV image shown above.
Table 2. Catalogue of all sources in our WFC3 field of view. The first column is the source ID number. Columns 2-5 give the source position in RA and decl. and image pixel coordinates (using our F225 ‘master’ image). Column 6 is the FUV magnitude measured using daophot. Columns 7 and 9 give estimates of the FUV and NUV variability amplitude, defined to be the standard deviation of the source relative to its mean magnitude. Columns 8, 10 and 11 give the NUV, U- and B-band magnitudes derived using DOLPHOT. Columns 12 and 13 give the corresponding V- and I-band magnitudes from the ACS Survey Catalogue. The final column shows the source type (i.e. the area of the image ‘taken up’ by a single source), depending on the number of matches found, the matching tolerance (i.e. the area of the image ‘taken up’ by a single source), and the number of sources in each catalogue. When matching the catalogs from the different wavebands, we first transformed all of the catalogues to the WCS of the master WFC3/NUV image. This has one of the largest fields of view of our images, but is not so crowded that locating matching sources becomes problematic. For each catalogue, we created a reference list of up to 16 sources (not all sources were visible in all images) which are easily visible in the image to be transformed and in the NUV reference image. We then used the IRAF tasks geomap and geoxytran to determine the transformation required to shift the catalogue to the NUV WCS, allowing for shifts in the x and y directions, scale changes, and rotation. This gave a reasonable fit to the new WCS. We repeated the process using up to 48 reference sources to refine the transformation. The (rms) residual errors in the transformation were small: 0.28 pixels (7 milli-arcsecond) in the FUV, 0.11 pixels (4.4 mas) in the WFC3 and 0.04 pixels (1.3 mas) in the ACS Survey Catalogue. We searched for matches between all of the catalogues (noting that the ACS catalogue from Sarajedini et al. contains only sources that are visible in both the V- and I-band), allowing for a 2 STIS pixel (0′′.05) difference in the STIS and WFC3 positions, and a 1 WFC3 pixel (0′′.04) difference between the various WFC3 catalogues and between WFC3 and ACS positions. Table 3 gives the number of matches found in each case. Note that only V- and I-band sources with a match in at least one of our WFC3 datasets are included. This gives a total catalogue of 39411 sources. The full catalogue is available in the online journal, and a portion of it is shown in Table 2.

Table 3. Number of matches between catalogues. The first two columns indicate the datasets being matched. The third column gives the number of matches found. The last two columns give the expected percentage of false matches and the number of expected false matches that this equates to. See text for details.

Catalogues	N_{match}	%false	N_{false}	
STIS/FUV	WFC3/NUV	492	3.84	19
WFC3/NUV	WFC3/U	12020	0.05	6
WFC3/NUV	WFC3/B	11883	0.06	7
WFC3/NUV	ACS/V&I	13494	0.03	4
WFC3/U	WFC3/B	22910	0.08	18
WFC3/U	ACS/V&I	24258	0.03	7
WFC3/B	ACS/V&I	23045	0.16	37

2.3 Matching the Catalogues

In order to match the catalogues from the different wavebands, we first transformed all of the catalogues to the WCS of the master WFC3/NUV image. This has one of the largest fields of view of our images, but is not so crowded that locating matching sources becomes problematic. For each catalogue, we created a reference list of up to 16 sources (not all sources were visible in all images) which are easily visible in the image to be transformed and in the NUV reference image. We then used the IRAF tasks geomap and geoxytran to determine the transformation required to shift the catalogue to the NUV WCS, allowing for shifts in the x and y directions, scale changes, and rotation. This gave a reasonable fit to the new WCS. We repeated the process using up to 48 reference sources to refine the transformation. The (rms) residual errors in the transformation were small: 0.28 pixels (7 milli-arcsecond) in the FUV, 0.11 pixels (4.4 mas) in the WFC3 and 0.04 pixels (1.3 mas) in the ACS Survey Catalogue. We searched for matches between all of the catalogues (noting that the ACS catalogue from Sarajedini et al. contains only sources that are visible in both the V- and I-band), allowing for a 2 STIS pixel (0′′.05) difference in the STIS and WFC3 positions, and a 1 WFC3 pixel (0′′.04) difference between the various WFC3 catalogues and between WFC3 and ACS positions. Table 3 gives the number of matches found in each case. Note that only V- and I-band sources with a match in at least one of our WFC3 datasets are included. This gives a total catalogue of 39411 sources. The full catalogue is available in the online journal, and a portion of it is shown in Table 2.

Table 3 also gives the percentage and number of these matches that we expect to be spurious matches. The number of false matches expected when matching two catalogues depends on the number of matches found, the matching tolerance (i.e. the area of the image ‘taken up’ by a single source), and the number of sources in each catalogue. When matching the FUV and NUV images, we calculated this value for the entire FUV field of view; for all other matches we used a circle centred on the cluster core (see Section 2.4) to represent the overlapping region. As the area used includes the core, where we expect to find the most spurious matches, the numbers quoted in Table 3 can be considered as up-
per limits on the expected percentage and number of false matches. We note that the method used, described more fully in Knigge et al. (2002), does not take into account the increase in stellar density towards the cluster centre.

2.4 Improving the Astrometry

The standard world coordinate system (WCS) provided with HST data is based on the original guide star catalogue (GSGC1), with absolute position accuracy of 1\,\prime\prime - 2\,\prime\prime. In order to compare our results to those in the literature (e.g. the position of the centre), it was necessary to improve the accuracy of the absolute astrometry. To do this, we used the third U.S. Naval Observatory CCD Astrograph Catalog (UCAC3; Zacharias et al. 2009). The astrometry provided in UCAC3 is on the Hipparcos (or Tycho) system and has astrometric errors of 15 - 20 mas for stars in the 10 - 14 mag range in V- and R-band.

We located 23 stars from the UCAC3 catalogue that could also be identified in our catalogue, and updated the astrometric solution for the WCS for each of our images. As in Section 2.3, we repeated this process using a further 70 sources, to get a more precise transformation. The rms error between positions in our catalogue and the UCAC3 sample was ≈ 0.15\,\prime\prime.

3 THE COLOUR-MAGNITUDE DIAGRAM

The NUV - U and V - I CMDs for NGC 6752 are shown in Figure 2. Different stellar populations are highlighted: WD candidates are shown in grey; BSS in purple; asymptotic giant branch (AGB) stars in dark red and 'gap' sources as orange crosses. These objects are located between the MS and WD sequence and are where we would expect to find MS-WD binaries, whether they are interacting (CVs) or non-interacting binaries.

The sources marked in black are MS, sub-giant branch (SGB) or red-giant branch (RGB) stars. Where a source can be clearly identified as belonging to a certain stellar population in the NUV - U CMD, it is also marked as being of that population in the V - I CMD. The location of sources on the V - I CMD agrees well with the expected position based on the NUV - U CMD. Sources that are not in the
NUV - U CMD are then classified according to their position in the V - I CMD. This method results in a handful of sources that appear to lie on the MS in the V - I CMD, but are marked as gap or WD sources; they clearly belong to that category in the NUV - U CMD. The spurious CMD positions of these sources mean that they may be false matches, or may be binary systems in which the redder source dominates at redder wavelengths, while the blue sources dominates in the bluest bands. There are also some sources that appear to be AGB stars from the V - I CMD that were categorised as RGB stars in the NUV - U catalogue. For consistency, we retain the NUV - U classification where one exists.

The horizontal branch (HB) is divided into blue horizontal branch (BHB) stars (light cyan), and extended or extreme horizontal branch (EHB) stars (dark green crosses). We define EHB stars to be HB stars which are bluer than an apparent gap in the NUV - U HB corresponding to around 16,500 K (marked with an arrow in Figure 2). This is consistent with the usual definitions for EHB stars (e.g. Momany et al. 2004, Brown et al. 2010).

Figure 2 also shows a theoretical zero-age horizontal branch (ZAHB, dark green line), zero-age main sequence (ZAMS, purple line), and a WD cooling sequence (grey line). These were created using a distance of 4.0 kpc, reddening of $E(B - V) = 0.04$ mag (Harris 1996, 2010 edition) and metallicity of [Fe/H] $\simeq -1.5$ (Gratton et al. 2005).

The FUV - NUV CMD is shown in Figure 3. The colours are as per Figure 2. The blue triangles indicate sources for which there is no U-, V- or I-band counterpart. The FUV - NUV CMD is not populated enough to clearly distinguish between WD and gap sources.

4 IDENTIFICATION OF X-RAY COUNTERPARTS

Based on Chandra observations, Pooley et al. (2002) identified 19 X-ray sources within the 115'' half-mass radius of NGC 6752, including six within the 105'' core radius, down to a limiting luminosity of $L_X \approx 10^{30} \text{ erg s}^{-1}$. Using archival HST data, Pooley et al. suggested 12 optical counterparts. These include 10 CV candidates, one to three RS CVn or BY Dra sources (based on their X-ray-to-optical flux ratio limits), and one or two that are background objects. Seven of the X-ray sources had no detectable optical counterparts. One of the CVs, CX 4, is now known to be a DN (Kaluzny & Thompson 2009).

Sixteen of the Chandra X-ray sources are in the field of view of our WFC3 observations, and 7 are also in the field of the FUV image. Using the most obvious known matches (the DN and other bright CVs), we made a first attempt to register the X-ray source positions to our (Tycho based) WCS. Comparing the positions of all X-ray sources to our catalogue revealed matched sources that could be considered ‘safe’, including two further DNe (see Section 3.1). We used the (now three) DN counterparts to refine the correction. We found that the Chandra positions quoted by Pooley et al. (2002) should be shifted by 0''0540 in right ascension and −0''055 in declination in order to best match the positions of the DNe, giving an rms offset between the X-ray and optical positions of the DNe of 0''012 in right ascension and 0''003 in declination.

Using the empirical equation derived by Kim et al. (2007) for the positional uncertainty of Chandra X-ray sources, and ignoring the off-axis angle in the Chandra observations (which is likely to be negligible given the relatively small field of view), we reconstructed the 90% confidence level uncertainty of the X-ray source positions. This was the dominant source of error in the X-ray positions; for all but the very brightest sources, the Chandra uncertainty was several times larger than the estimated error on our boresight correction.

We compared the positions of all X-ray sources to our catalogue to search for matches, using the 90% confidence level uncertainty in X-ray position as the maximum matching radius. Figure 4 shows the FUV and NUV images with the X-ray source positions overlotted, and Figure 5 presents finder charts of all counterparts.

Using the method described in Section 3.3 we calculate that we expect to find 2 spurious matches to the 16 X-ray sources in our field of view. As outlined in the following sections, we find 12 sources within the regions searched, at least 7 of which are likely to be the real optical counterpart, based on their CMD positions or light curves. For one X-ray source (with a likely ‘real’ counterpart), there are 2 sources within the maximum matching radius; clearly, at least one of these ‘matches’ is spurious. Of the remaining 5 matches, which are MSs or were only detected in one wave-band, the calculation suggests that 1 is likely to be a spurious match, while the other 4 may be real counterparts. We caution that Poisson errors on these numbers mean that they are approximations only.
Figure 4. Finder charts showing possible counterparts to X-ray sources. In each case, the field covers 4" × 4" and North is up and East is to the left. The circles show the 90% confidence level uncertainty in X-ray position that we searched for counterparts. For sources CX1, 2, 5, 6, 7, 10 and 12, the image is the NUV ‘master’ image created by combining 15 individual F225W exposures. For sources CX4, 8, 15 and 16, the image is a combination of 6 U-band images taken with the F390W filter. The grey-scale is varied to enhance the visibility of the counterparts. Sources CX3, 9, 13, 17 and 19 are outside our WFC3 field of view. No sources were detected within the 90% confidence error circle of CX11, 14 or 18.
We searched for hints of periodic variability in the light curves of every potential X-ray counterpart. Following Thomson et al. (2010), photometry was performed on the individual FUV exposures, using the overall FUV catalogue as input to daophot (see Section 2.2). As described in Section 2.2 photometry was carried out on the NUV and U-band data using DOLPHOT, which gives individual magnitudes for each source in each of the 18 individual images as part of its output. For each source, we calculated a reduced χ^2 value by comparing each magnitude measurement to the mean magnitude for the source. We then compared the χ^2 value of each X-ray counterpart candidate to other sources of similar magnitude. Outliers found in this way are likely to be variable. We produced a power spectrum for each of these outliers and used a randomisation test to estimate a false alarm probability (FAP); this is the probability that a higher peak could be produced at any frequency if the positions of the data were shuffled. Table 4 summarises the results. Figure 5 shows the light curves of the four most interesting counterparts.

Our main result is that two of the X-ray sources that Pooley identified as CV candidates are, in fact, dwarf novae (DNe). This confirms the CV nature of these sources, and determines their sub-class. For two X-ray sources, we identified new optical counterpart candidates, including one which is a variable. In the following subsections we provide details of these and all other potential counterparts to each of the X-ray sources in our field of view. The CMD positions of all of the counterparts discussed (where CMD information is available) are shown in Figure 6.

4.1 CX 1 and CX 7: Two Dwarf Novae

Very few DNe have been found in GCs (Pietrukowicz et al. 2008), although to what extent this is due to selection effects remains unclear (Knigge 2011). Prior to this study, only one DN was known in NGC6752 (Kaluzny & Thompson, 2009). Two X-ray sources which were previously known to be CVs, CX 1 and CX 7, show DN-like outbursts in our data. This takes the number of known DNe in NGC6752 up to three, more than any other cluster.

Pooley et al. (2002) identified source CX 1 as a CV. This source matches with number 8824 in our catalogue, which was outside the FUV field of view, but was detected...
in our NUV and U-band images. The light curve from the NUV images, shown in Figure 5, shows that the source is \(\approx 1.5 \) mag brighter in the middle observing epoch than in epochs one and three. Subtracting the mean magnitude from each epoch, a Lomb-Scargle power spectrum shows that the small scale NUV variability could be fit with a period of 4.1 hours, but the peak in the power spectrum is only marginally significant. Figure 5 also shows that the amplitude of the variation is suppressed somewhat during the outburst. This source exhibits X-ray emission, has short time scale variability, as well as an outburst, and is situated in the gap between WD and MS on the CMD. We therefore argue that this source should be considered to be a confirmed CV of the DN sub-class.

CX 7 was first identified as a CV candidate by Bailyn et al. (1996), who found a period of 3.7 hours. This source corresponds to source 6374 in our catalogue and was identified in all of the wave-bands used. The second panel of Figure 6 presents the light curve from the NUV data, which clearly shows a 6 magnitude outburst in the final observing epoch. This indicates that this source is a DN. Subtracting the mean magnitude measured in each observing epoch from the NUV data we found a tentative best-fit period of 3.5 hours, which is not quite consistent with the result of Bailyn et al., but, again, the data are not sufficient to draw strong conclusions regarding the period.

4.2 CX 7, CX 12 and CX 16: New Optical Counterpart Candidates

Two of the X-ray sources without optical counterparts in Pooley et al. (2002), CX 8 and CX 12, have new potential optical counterparts in our data. For a further source for which Pooley et al. (2002) did suggest a counterpart, we have found a source that may be a better match.

CX 8’s error circle contains source ID 24678. CX 8 is outside the FUV field of view, but 24678 was detected in U- and B-bands. The light curve does not exhibit periodic variability, but the CMD positions indicate that it is a faint gap source. We suggest that this source may be a CV.
Table 4. Properties of potential counterparts to Chandra X-ray sources.

ID_X	ID_cat	R.A. (hh:mm:ss)	Decl. (deg:mm:ss)	\(L_{X,0.5-2.5}\) (ergs s\(^{-1}\))	FUV (mag)	NUV (mag)	\(\sigma_{\text{NUV}}\) (mag)	U (mag)	B (mag)	V (mag)	I (mag)	Previous Status	CMD position, Comments	
CX1	8824	19:10:51.134	-59:59:11.83	\(2.1 \times 10^{32}\)	17.700	0.539	18.528	CV\(^P\)	gap, DN	
CX2	12078	19:10:56.009	-59:59:37.38	\(6.0 \times 10^{31}\)	19.604	0.423	19.728	19.782	19.818	CV\(^P\)	gap, (CV)	
CX3	...	19:10:40.354	-59:58:41.34	\(5.3 \times 10^{31}\)	CV\(^P\)	...	
CX4	7180	19:10:51.583	-59:59:01.76	\(4.0 \times 10^{31}\)	19.756	20.800	0.212	20.914	21.002	20.328	20.653	CV\(^P\), DN\(^K\)	gap, CV	
CX5	7796	19:10:51.410	-59:59:05.16	\(3.6 \times 10^{31}\)	21.371	0.140	19.089	19.057	19.402	CV/BY Dra\(^P\)	MS, (CV)	
CX6	10808	19:10:51.499	-59:59:27.05	\(2.2 \times 10^{31}\)	23.583	0.652	23.367	CV\(^P\)	WD, (CV)	
CX7	6374	19:10:51.504	-59:58:56.77	\(1.9 \times 10^{31}\)	20.941	20.412	3.067	21.084	21.650	21.424	21.567	CV\(^P\)	gap, DN	
CX8	24708	19:11:02.981	-59:59:41.94	\(2.1 \times 10^{31}\)	
CX9	...	19:10:51.756	-59:58:59.21	\(1.3 \times 10^{31}\)	
CX10	9343	19:10:54.742	-59:59:13.92	\(6.0 \times 10^{30}\)	20.288	0.098	CV\(^P\)	gap, (CV)	
CX11	...	19:10:52.411	-59:59:05.61	\(6.2 \times 10^{30}\)	
CX12	7592	19:10:52.730	-59:59:03.33	\(5.6 \times 10^{30}\)	23.199	19.235	0.045	17.946	17.840	18.044	18.547	...	MS, Variable\(^E\)	
CX13	19.336	0.058	18.073	17.954	18.169	18.669	MS	
CX14	
CX15	14708	19:10:55.834	-59:57:45.58	\(3.2 \times 10^{30}\)	22.583	23.295	23.044	23.558	...	CV/Gal\(^P\)	gap/WD, (CV)	
CX16	31669	19:10:42.509	-59:58:42.88	\(3.0 \times 10^{30}\)	23.484	
CX17	20.861	0.135	19.090	18.935	18.949	19.278	BY Dra\(^P\)	MS\(^E\)
CX18	
CX19	

The first column is the Chandra ID number from Pooley et al. (2002), followed by our ID number in Column 2. Columns 3-4 give the source position in R.A. and decl. (shifted to match our Tycho based WCS). Column 5 gives the 0.5 – 2.5 keV X-ray luminosity from Pooley et al. (2002). Columns 6-7 and 9-10 give the magnitudes in STMAG, and Column 8 gives an estimate of the variability amplitude, defined to be the standard deviation of the source from its mean magnitude. Columns 11 and 12 give the magnitudes in STMAG from the ACS Survey Catalogue.

Column 13 gives previous suggestions of source type, and the final column gives our CMD position and categorisation of each source. Where a source is marked ‘(CV)’, we detected the counterpart suggested by Pooley et al. (2002), but our data were not sufficient for us to draw any further conclusions regarding its nature.

\(^P\) Counterpart type suggested by Pooley et al. (2002). ‘Gal’ indicates that the source may be a galaxy.

\(^K\) Kaluzny and Thompson (2009) found that CX 4 (their V 25) is a DN, and suggest that CX 19 is a close binary hosting a NS or a BH.

\(^D\) The position of CX 11 is consistent with the MSP PSR D from D’Amico et al. (2002).

\(^E\) Source 7581 is outside the error circle of CX 12, but is included because it shows variability.

Source 4190 is outside the error circle of CX 16. We include it in the table because Pooley et al. (2002) concluded that this source is a BY Dra or RS CVn source based on its CMD position and H\(\alpha\) emission.
The MS source 7592, is within the Chandra error circle of CX 12, but the FUV and NUV light curves showed no hint of periodic variability. Interestingly, source 7581, which is just outside CX 12’s error circle, does appear to vary (see third panel of Figure 4), with a possible period of 4 hours. This source is also on the MS. It was not detected in the FUV data, despite being in the field of view. Based on the variability, possible period and the fact that the CMD position makes a faint BS classification possible, we suggest that this is an SX Phoenicis star. Recently, X-ray emission has been detected from Cepheid variables (Engle et al. 2009), possibly due to magnetic activity associated with pulsations, or the presence of an active binary companion. Source 7581 is marked on the finder chart (Figure 4).

Source CX 16 was identified as a BY Draconis star by Pooley et al. (2002). We detected the optical counterpart they suggested, but it was slightly outside the 90% confidence error circle of the X-ray position. The data were not sufficient to allow further conclusions regarding this source. Another source, 31669, was found to be closer to the position of the X-ray source than the counterpart suggested by Pooley et al. This source was only detected in our B-band images, so the data are not sufficient to draw any conclusions about its nature. However, based on the proximity to the X-ray source, we suggest that this may be the true counterpart.

4.3 Other X-ray Sources

4.3.1 CX 4: A Known Dwarf Nova

CX 4 was shown to be variable by Bailyn et al. (1996), who determined a period of 5.1 hours. It was identified as a U Gem type DN by Kaluzny & Thompson (2009). This source, number 7180 in our catalogue, was identified in every wave-band in this dataset. Analysis of the NUV data suggested a best-fitting period of 6.9 hours, but the strength of the Lomb-Scargle peak was marginal. The complete NUV light curve is shown in Figure 5.

4.3.2 CX 2, CX 3, CX 5, CX 6, CX 10, CX 13, CX 15: Cataclysmic Variables

Of the remaining sources, CX 3 and CX 13 were outside our WFC3 field of view. For CV candidate sources CX 2, CX 5, CX 6, CX 10, and CX 15, we were able to detect the sources that Pooley et al. suggest are the optical counterparts, but the data are not sufficient to draw any further conclusions regarding their characteristics. For CX 6, we found a second source within the Chandra error circle. This is source 34433, which was identified in our B-band image only and is included in Table 4 for completeness.

4.3.3 CX 11 and CX 17: The Others

We did not detect the counterpart to CX 11 that Pooley et al. found. They suggest that this source is a CV or a background galaxy, neither of which are ruled out by our lack of detection.

Source CX 17, which is thought to be an MSP or a background galaxy (Pooley et al. 2002) is outside the WFC3 field of view.

4.3.4 CX 9, CX 14, CX 18 and CX 19: No Optical Counterpart

Pooley et al. were unable to locate an optical counterpart for sources CX 9, CX 14, CX 18 or CX 19, and we were unable to identify a counterpart either.

Kaluzny & Thompson (2009) claim a match to CX 19, which is also visible in our observations, but this source is outside the 0.2 Chandra error circle in our catalogue. Kaluzny & Thompson do not state the size of the area they searched for counterparts. However, the source they found is ≈ 0.5 from the Chandra position and corresponds to our source 9889. While Kaluzny & Thompson suggest a period of 0.11 days, we found no such period in our NUV light curve.

5 A SEARCH FOR MILLISECOND PULSAR COUNTERPARTS

There are five known millisecond pulsars (MSPs) in NGC 6752 (D’Amico et al. 2002), of which 3 (PSR B, D and E) are inside the field of view of our WFC3 and STIS observations. All three of these are known to be isolated (D’Amico et al. 2002), and optical emission from the pulsars themselves has not yet been detected. We used the uncertainty in radio position from D’Amico et al. (2002) to compare the MSP positions to the positions of sources in our catalogue, and found no optical counterparts. We note that the position of X-ray source CX 11 is consistent with that of PSR D, but we did not detect any optical sources within the search region for this source. Based on nearby sources that were detected in our study, we set an upper brightness limit on the MSP counterparts of $NUV_{ST MAG} \approx 22.5$ mag.

6 VARIABLE SOURCES

In addition to searching for variability among optical counterparts to X-ray sources, we also carried out a general search for variability using sources detected in our FUV and NUV images. Using the method described in Section 4, we identified sources where the reduced χ^2 value for the FUV or NUV magnitudes was significantly higher than that of other sources of similar brightness. These sources are likely to be variable, and are highlighted as such in the catalogue (Table 2).

Again following the method explained in Section 4, we then produced power spectra for the outliers and estimated the probability shuffling the positions of the data could produce a higher peak. Based on the number of outliers we investigated, we expect ≈ 1 source with an FAP value < 0.015. It should be noted that the presence of power implies that a source has variability at a specific frequency, which does not necessarily correspond to periodic variability. For example, red noise power spectra exhibit variability on a range of frequencies, but the variability is not periodic. Aside from the DNe, we found three sources with FAP < 0.015 and three more sources with $FAP \leq 0.05$, but periodograms of these sources tend to have peaks at frequencies close to zero, suggesting that the power spectra in these cases are dominated by long-term trends.
7 DYNAMICAL STATUS

The dynamical status of a GC can be described in terms of its concentration parameter, \(c = \log_{10}(r_t/r_c) \), where \(r_t \) is the tidal radius and \(r_c \) is the core radius. A concentration parameter of \(c \geq 2 - 2.5 \) is considered to be on the verge of collapsing, undergoing core-collapse, or post-core-collapse (Meylan & Heggie 1997). There is, as yet, no clear way to distinguish between these phases, but fitting radial profiles to single-mass King models, which are characterised by values of \(r_t \) and \(r_c \), can give an indication of whether the entire cluster can be defined using one value of \(c \), or if different values are needed to describe the core and outer regions.

Although NGC 6752 is one of the closest GCs, its dynamical status is still a topic of debate. Djorgovski & King (1986) and Arriere & Ortolani (1989) suggested that it has undergone core-collapse and might be in a post-core-collapse bounce phase. Lugger et al. (1995), however, claimed that the radial profile is not inconsistent with a single King profile. Later, Ferraro et al. (2003) argued that two King profiles were needed to fit the radial distribution based on star counts, and that a post-core-collapse bounce is the most likely scenario. In a study of 38 GCs, Noyola & Gebhardt (2006) found that NGC 6752 was the only likely core-collapsed cluster to exhibit a flat core in the surface brightness profile. In this section we construct radial profiles based on our WFC3 and ACS data.

7.1 Finding the Cluster Centre

In order to construct radial profiles of the cluster, we first had to determine the location of the cluster centre. This is important, because mis-placing the cluster centre will lead to a flattening of the radial density profile, hiding possible core structure. There are two distinct, basic ways to define the centre: using luminosity, \(C_{\text{lum}} \), or using mass, \(C_{\text{grav}} \). As stellar luminosity varies differently with stellar mass for different types of stars, these two points are not necessarily at the same location. Furthermore, different types of stars dominate the cluster’s luminosity in different observational wave-bands, so \(C_{\text{lum}} \) measured in one band may differ from that measured in another. It has been shown that \(C_{\text{grav}} \) is the better measure of the ‘true’ centre, in terms of consistency between colour bands (e.g. Montegriffo et al. 1995), and radial symmetry (e.g. Calzetti et al. 1993). In this study, therefore, we will use \(C_{\text{grav}} \).

Following Dieball et al. (2010), we estimate the location of the cluster centre by finding the position at which the number of sources contained within a circular region of given radius \(r_{\text{lim}} \) is a maximum. This was carried out using sources in our U-band catalogue, down to limiting magnitude of \(U_{\text{ST MAG}} = 19 \) mag. Our U-band catalogue is particularly good for this, as it contains a sufficiently large number of sources (8546 sources have \(U_{\text{ST MAG}} < 19 \) mag), but is not seriously affected by crowding. The adopted magnitude limit ensures that faint stars in the wings of bright sources are not missed, which would create a discrepancy between the centres found using only bright or only faint sources. For our final result, we used \(r_{\text{lim}} = 300 \) pixels (= 12") , but other reasonable choices gave results consistent with this. To estimate the uncertainties in our measurements, we used a simple bootstrapping method which involved sampling with replacement from the catalogue to create 1000 fake catalogues and estimating the centre of each one. The standard deviation of these ‘fake’ centres gives the error on the real measurement.

As a result, we find the cluster centre to be at \(x = 2404 \pm 12 \) pixels, \(y = 2411 \pm 13 \) pixels in our local (WFC3) coordinate system. For comparison, we also used the V- and I-band source positions from the ACS Survey Catalogue. Using the same method we estimated the centre to be at \(x = 2404 \pm 13 \), \(y = 2411 \pm 15 \) pixels in our local (WFC3) coordinate system, in excellent agreement with our U-band based estimate. This corresponds to \(\alpha = 19^h10^m52.128^s \), \(\delta = -59^\circ59’44.56’’ \) in our Tycho-based system, with an estimated uncertainty of 0.5’.

Table 5 lists estimates of the centre position from the literature. Ferraro et al. (2003) found the average \(\alpha \) and \(\delta \) coordinates of all stars in the PC chip of their WFPC2 image. Using WFPC2, PC images, Noyola & Gebhardt (2006) estimated the location of the centre by dividing the area surrounding each assumed centre position into eight regions. They define the centre to be the point for which the standard deviation in the number of sources in the surrounding regions is lowest. This can be described as the point around which sources are most symmetrically distributed. Goldsbury et al. (2010) used the same ACS catalogue as us and fitted ellipses to contours of constant number density. The average centre of these ellipses was interpreted as the centre. Our estimate is consistent with these previous results.

R.A. (hh:mm:ss)	Decl. (deg:mm:ss)	Uncertainty (")	Reference
19:10:52.128	-59:59:04.56	0.5	This paper
19:10:52.040	-59:59:04.64	0.5	Ferraro et al. (2003)
19:10:52.240	-59:59:03.81	1.5	Noyola & Gebhardt (2006)
19:10:52.110	-59:59:04.40	0.1	Goldsbury et al. (2010)

7.2 Stellar Density Profiles

For the purposes of determining radial profiles for NGC 6752, we rely on the V- and I-band data from the ACS Survey Catalogue, as this is the deepest available dataset. Repeating the process using our WFC3/NUV catalogue gave the same overall shape, with a simple shift in density that was consistent at all radii, indicating that depth is the dominant difference between the observed distributions.

The procedure we used is similar to that described by Djorgovski (1988). The catalogue is divided into concentric circles, centred on our cluster centre, increasing in radius by 50 pixels (2") each step. Each annulus is split into eight equal sectors. Due to the off-centre location of the cluster centre on the chip, the number of segments which fell en-

Footnote: It is important to note, however, that the estimate of the centre that we refer to as centre of gravity, \(C_{\text{grav}} \), is determined using the distribution of all stars, regardless of their mass or evolutionary status, so is not, strictly speaking, the gravitational centre. It is actually the geometrical centre.
tirely on the chip in V- and I-band data ranges from 35 to 52, depending on the sector considered, while sectors in the NUV data contained 35 to 46 complete segments. The number of sources falling within a segment is divided by the area of the segment to give the stellar density.

The overall density for a given annulus is then computed as the average of the densities of the segments corresponding to that annulus. The error on the density of an annulus is the standard deviation on the mean density. This is justified by the fact that the dominant error source is the discrete nature of the distribution; if there is an unusually dense region of stars in one segment, that segment will contribute an artificially high number to the annulus, but the corresponding dispersion will also be larger.

In constructing the radial density profiles, we include all of the sources listed in the ACS Survey Catalogue (unlike in previous sections, in which only V- and I-band sources with a match in the WFC3 catalogues are included) This has a plate scale of 0″05/pixel out to radius ≈ 101″. We limit the data to sources brighter than ≈ 2 mags below the MSTO, corresponding to to $V_{ST,MAG} = 19.7$ mag, to reduce the likelihood of incompleteness impacting the results. We correct for completeness using the artificial star catalogue for NGC 6752 that was created by Anderson et al. (2008) as part of the ACS Survey. Following their method, we consider a star to be recovered if the input and output fluxes agree to within 0.75 mag and the positions agree to within 0.5 pixels. Using the centre determined in Section 7.1, we test for completeness as a function of radius, for stars brighter than $V_{ST,MAG} = 19.7$ mag. We find that completeness is almost 100% at the edges of our images, and is over 50% even in the core. We correct our stellar densities using the fractions of artificial sources recovered at each radius.

The radial profile obtained using this method is plotted in Figure 7. The profile shows a continuing rise in density towards the centre of the cluster. This agrees with the findings of Ferraro et al. (2003), and is contrary to the findings of Noyola & Gebhardt (2006), whose surface brightness profile showed a flat core within $log(r) \approx 0.5$. As shown in Table 5, the centre used by Noyola & Gebhardt differed from ours by nearly 1″. Creating a radial density profile using our data but the centre given by Noyola & Gebhardt, we find that the majority of the profile is unchanged, but the density at the innermost measurement point is slightly lower, giving the impression of a flatter core. The difference between our radial profile and that of Noyola & Gebhardt could, therefore, be partly due to the difference in the assumed centre positions. An alternative explanation is that there is a fundamental difference between the stellar density profile and surface brightness profile. D’Amico et al. (2002) showed that NGC 6752 has an unusual high mass to light ratio ($\gtrsim 10$), leading to a high proportion of optically faint sources in the core, which may contribute to the stellar density but not the surface brightness.

7.3 Modelling the Stellar Density Profile

In order to find the model which best describes the radial stellar density profile of NGC 6752, we used single-mass King (1966) models, which we then projected to create 2-dimensional stellar density profiles. As we suspected that a plausible, single King model may not provide a good representation of the profile, we searched for the model that gave the best best fit to the data, without constraining the parameters to plausible physical ranges. Instead, we allowed the parameters (W_0, r_c, and $\sigma(0)$) to vary as required. The model that best described the data over the entire radius range had $W_0 = 11$, $r_c = 9″$, $c = 2.547$, and is plotted as a solid, blue line on Figure 7. While this r_c value is comparable to that of 10″2 given by Harris (1996, 2010 edition), a concentration parameter of $c \gtrsim 2$ is usually considered to indicate a core-collapsed cluster, which should not be modelled using a single King profile. It is immediately apparent from the plot that the model does not give a good fit, demonstrating the difficulty in modelling the radial distribution of NGC 6752 with a single King model, as found by Ferraro et al. (2003).

As noted above, Ferraro et al. (2003) presented a radial profile of NGC 6752 based on WFCPC2 and ground based data, and also concluded that two King models were required to adequately fit the data. In their investigation, the PC chip of WFCPC2 was roughly centred on the core of the GC, so the spatial resolution available was 0″046/pixel for the central region, out to ≈ 18.5 radius. Outside this radius, the WFCPC2/WF chips and ground based data were used, with pixel scale, at best, of 0″1/pixel. In the central region, the resolution of the images used by Ferraro et al. is comparable to that of ACS/WFC and WFC3, but beyond a radial distance of ≈ 18.5, the dataset used in our investigation has considerably better resolution.

In Figure 8 we compare our data to the radial profiles from Ferraro et al. (2003), including the two King models presented.
they used to fit the data. The result shows that our measured V- and I-band stellar density is higher than theirs at all radii, because of the different brightness limits used (Ferraro et al. cut off at $V_{T MAG} = 18.5$ mag, while we include stars down to $V_{T MAG} = 19.7$ mag), but the shapes are quite similar.

As modelling the radial profile of NGC 6752 with a single King model gave such a bad fit, we also split the data, following Ferraro et al. (2003), and used separate King profiles to fit the inner and outer parts of the cluster. We note that a double King model is a purely phenomenological structure, and has no actual physical basis. Furthermore, we treat the two parts of the cluster independently, neglecting any contribution to one regime from the other (for example, there should be a contribution to the inner part of the cluster’s density profile from the underlying King model used in the outer part, which we have ignored). As before, we do not restrict the model parameters to physically reasonable ranges; instead we simply found the best fits to the data. We define the inner part of the cluster to have $log_10(r) < 0.9$, and the outer part to have $log_10(r) > 1.2$. Figure 9 shows the resulting fits. The inner part of the cluster (dark green, dashed line) is best described by a King model with $W_0 = 13$, $r_c = 5''$, $c = 2.944$, while the outer part (cyan, solid line) has $W_0 = 11$, $r_c = 9''$, $c = 2.547$. The core radius for the inner part is not dissimilar from that found by Ferraro et al. (2003). The core radius for the outer part is not a good match, but at $log_10(r) > 1.2$ there is little difference in the shapes of models with different core radii. The values of W_0 and c that we found are considerably higher than expected, but a large change in W_0 leads to a very small change in the shape of the profile, particularly near the core, and c comes directly from the best-fit W_0 value. Models with lower values of W_0 (and, therefore, c) fit the data almost as well, especially at small radial distances.

Comparing Figure 7 and Figure 9 it is clear that NGC 6752’s radial density profile is better fit using a combination of two King profiles than a single one, suggesting that the cluster is undergoing, or has undergone, a core-collapse phase.

8 RADIAL DISTRIBUTIONS AND MASSES OF STELLAR POPULATIONS

8.1 Radial Distributions

The cumulative radial profiles of various stellar populations identified in our CMDs and of the X-ray sources are shown in Figure 10. In order to prevent completeness affecting the results, we use V- and I-band data to consider the HB stars and BSs, while the positions of gap sources are determined using measurements taken with NUV and U-band filters. We only consider sources brighter than $NUV_{T MAG} = 22.5$ mag to make sure that completeness does not affect the results. In this way, we can be confident that the sources have been categorised correctly and that the radial distributions are not biased by ‘missing’ faint sources towards the core. We limit the distributions to a radial distance of 68" in the ACS (V- and I-band) data and 72" in WFC3 (NUV and U-band) data, in order to avoid bias due to the edges of the detectors.

Only 13 of the 19 known X-ray sources are included, because the others are more than 72" from the core. Table 6 lists the number of sources considered from each stellar population. Kolmogorov-Smirnov (KS) tests were carried out on
Table 6. Number of sources from each stellar population considered in computing radial profiles.

Population	N_{sources}
HB (overall)	119
BHB	78
EHB	41
BS (overall)	32
bBS	16
fBS	16
gap	14
X-ray	13

Table 7. Result of KS tests: probability in % that a single population can exhibit differences in radial distributions as large as those observed. This gives an indication of the likelihood that the two populations are from the same distribution. Significant KS test results (i.e. KS probability < 5%) are highlighted in bold.

Populations	KS test result [%]
BHB vs. EHB	73.15
bBS vs. fBS	23.83
BS vs. HB	9.13
BS vs. BHB	7.94
BS vs. EHB	5.21
BS vs. gap	91.69
BS vs. X-ray	10.48
gap vs. HB	9.21
gap vs. BHB	9.30
gap vs. EHB	18.49
gap vs. X-ray	30.34
X-ray vs. HB	0.08
X-ray vs. BHB	0.12
X-ray vs. EHB	0.14

A multi-wavelength survey of NGC 6752

8.2 Masses of Populations

The typical masses of stars belonging to a given stellar population can be estimated by comparing the populations’ radial distribution to that of theoretical distributions of stars of a given mass. Using the method described in Heinke et al. (2003), we assume that the cluster can be well described by a classic King (1966) model (although as discussed in Section 7.2 this may be over-simplified), and compare the radial distributions of our sources to those of generalised theoretical model. There is no significant difference between the radial profiles of bright and faint BSs, and the KS test shows that there is no substantial evidence that they come from different initial distributions.

$$S(r) = \int \left(1 + \left(\frac{r}{r_\text{c}}\right)^2\right)^{-\frac{3q}{2}} \, dr,$$

where r_c is the core radius and the parameter $q = M_X/M_\star$ is the ratio of the mass of the stellar population used to determine r_c, to the mass of the stellar population being considered. We take an MSTO star with mass 0.8 M_\odot to be a typical star that defines the core radius and adopt the core radius determined by Trager, Djorgovski & King (1993) using stars at or brighter than the MSTO of $r_\text{c} = 10''$.47.

As in Section 5.1, we use V- and I-band data to compare the HB stars and BSs, and NUV and U-band detections for the gap sources. Again, we only consider NUV sources brighter than $NUV_{\text{ST MAG}} = 22.5$ mag. This ensures a uniform completeness limit. In order to avoid inconsistencies due to the edge of the field of view, we limit the area considered to a circle centred on the cluster core with radius 68$''$ for ACS data and 72$''$ for WFC3 data. We consider all of the X-ray sources that are within 72$''$ of the cluster core.
Figure 10. Cumulative radial distributions for various stellar populations identified in our CMDs and of the X-ray sources within our field of view. Panels (a) and (b) compare the radial distributions of the EHB and BHB sources, and those of bright (blue) BSs and faint (red) BSs. Panel (c) shows the radial distributions of the X-ray sources, along with the (overall) BS and HB populations. Panel (d) compares the distribution of X-ray sources with that of the gap sources, down to a limiting magnitude of $NUV_{ST,MAG} = 22.5$ mag. See text for details.

Figure 11. Comparison of the radial distributions of various stellar populations with theoretical King models with average masses of $0.4 - 2M_\odot$, along with the radial distributions of the BSs, HBs, X-ray sources and gap sources. Panel (a) gives a mass estimate of approximately $0.9 M_\odot$ for the BSs and $0.6 M_\odot$ for the overall HB population (BHB and EHB). These results are consistent with theoretical expectations. The ZAMS suggests BS masses of $0.95 - 1.65 M_\odot$ and the ZAHB suggests an HB mass range of $0.49 - 0.66 M_\odot$. In both cases, the majority of sources lie towards the lower mass (fainter) end of the sequence. Panel (b) shows that the X-ray sources have characteristic dynamical mass larger than $1.1 M_\odot$, while the gap sources have masses greater than $0.8 M_\odot$.

9 SUMMARY

We have analysed FUV images taken with STIS, and NUV, U- and B-band images taken with WFC3 on board HST of the nearby, dense GC NGC 6752. We matched our catalogues to the V- and I-band catalogue from the ACS Survey Catalogue, to produce a catalogue with a total of 39411 sources. The NUV-U CMD shows plentiful BS and HB populations, along with a number of ‘gap’ sources in the region where we expect to find CVs and non-interacting WD - MS binaries. The images are also deep enough to reveal 360 WDs.

By comparing the positions of sources in our catalogue with those of known X-ray sources, we have found that two X-ray sources, CX 1 and CX 7 which were previously thought to be CV candidates are actually DNe. Prior to this study only one DN was known to exist in NGC 6752. We have identified previously unknown optical counterparts to two X-ray sources. Another source which is just outside the X-ray position uncertainty of CX 12, source 7581 in our catalogue, shows variability with a period of 4.1 hours. One X-ray source, CX 16, was thought to be a BY Dra source. We suggest an alternative optical source as the true counterpart. A search for variability revealed a number of potentially variable sources, which are indicated in our catalogue.

Finally, using the U-band and V-band catalogue, we estimate the position of the geometrical centre of the cluster, and use this centre to produce stellar density profiles of the cluster. Contrary to the surface density profile created by Noyola & Gebhardt (2006), we do not find a flat core; this may be because of the different centre position used, or because the stellar density profile and surface brightness profile of NGC 6752 are physically different. We conclude that the radial profile cannot be well modelled using a single King model, indicating that the cluster is undergoing, or has undergone, core collapse.

ACKNOWLEDGMENTS

We thank Tony Bird and Eva Noyola for helpful discussions. Some/all of the data presented in this paper were obtained from the Multimission Archive at the Space Telescope
A multi-wavelength survey of NGC 6752

Lugger P. M., Cohn H. N., Grindlay J. E. 1995, ApJ, 439, 191
Meylan G., Heggie D. C., 1997, A&A Rev., 8, 1
Momany Y., Bedin L. R., Cassisi S., Piotto G., Ortolani S., Recio-Blanco A., De Angeli F., Castelli F. 2004, A&A, 420, 605
Montegriffo P., Ferraro F. R., Fusi Pecci F., Origlia L., 1995, MNRAS, 276, 739
Noyola E., Gebhardt K., 2006, AJ, 132, 447
Pietrukowicz P., Kaluzny J., Schwarzenberg-Czerny A., Thompson I. B., Pyc W., Krzeminski W., Mazur B., 2008, MNRAS, 388, 1111
Pooley D., et al., 2002, ApJ, 569, 405
Sarajedini A. et al., 2007, AJ, 133, 1658
Sills A., Bailyn C. D., Edmonds P. D., Gilliland R. L. 2000, ApJ, 535, 298
Stetson P. B. 1991, 3rd ESO/ST-ECF Garching, Data Analysis Workshop, ed. P. J. Grosbl & R. H. Warmels (Garching: ESO), 187
Thomson G. S., Dieball A., Knigge C., Long K. S., Zurek D. R., 2010, MNRAS, 406, 1084
Trager S. C., Djorgovski S., King, I. R., Structure and Dynamics of Globular Clusters (ASP Conf. Ser. 50), ed. S. G. Djorgovski & G. Meylan (San Francisco, CA: ASP), 347
Zacharias N. et al., 2009, VizieR Online Data Catalog, 1315, 0

REFERENCES

Anderson J et al. 2008, AJ, 135, 2055
Auriere M., Ortolani S., 1989, A&A, 221, 20
Bailyn C. D., Rubenstein E. P., Slavin S. D., Cohn H., Lugger P., Cool A. M., Grindlay J. E., 1996, ApJ, 473, L31
Bassa C. G., Verbunt F., van Kerkwijk M. H., Homer L., 2003, A&A, 409, L31
Bassa C. G., van Kerkwijk M. H., Koester D., Verbunt F. 2006, A&A, 456, 295
Baumgardt H., Makino J., Hut P. 2005, ApJ, 620, 238
Brown T. M., Sweigart A. V., Lanz T., Smith E., Landsman W. B., Hubeny I. 2010, ApJ, 718, 1332
Calzetti D., de Marchi G., Paresce F., Shara M., 1993, ApJ, 402, L1
Cocozza G., Ferraro F. R., Possenti A., D’Amico N., 2006, ApJ, 641, L129
Colpi M., Possenti A., Gualandris A., 2002, ApJ, 570, L85
D’Amico N., Possenti A., Fici L., Manchester R. N., Lyne A. G., Camilo F., Sarkissian J., 2002, ApJ, 570, L89
Dieball, A., Knigge, C., Zurek, D., Shara, M.M., Long, K. 2005, ApJL, 634, L105
Dieball A., Knigge C., Zurek D., Shara M.M., Long K., Charles P. A., Hannikainen D. 2007 ApJ, 670, 379
Dieball A., Long K. S., Knigge C., Thomson G. S., Zurek D. R., 2010, ApJ, 710, 332
Djorgovski S. 1988, The Harlow-Shapley Symposium on Globular Cluster Systems in Galaxies; Proceedings of the 126th IAU Symp., 126, 333
Djorgovski S., King I. R., 1986, ApJ, 305, L71
Dolphin A. E. 2000, PASP, 112, 1383
Engle S. G., Guinan E., Evans N., DePasquale J., 2009, Bulletin of the American Astronomical Society, 41, 303
Ferraro F. R., Possenti A., Sabbi E., Lagani P., Rood R. T., D’Amico N., Origlia L., 2003 ApJ 595 179
Ferraro F. R., Sills A., Rood R., Paltrinieri B., Buonanno R. 2003b, ApJ, 588, 464
Ferraro F. R., Beccari G., Rood R., Bellazzini M., Sills A., Sabbi E. 2004, ApJ, 603, 127
Goldsbury R., Richer H. B., Anderson J., Dotter A., Sarajedini, A., Woodley K., 2010, AJ, 140, 1830
Gratton R. G. et al. 2005, A&A, 440, 901
Harris W.E., 1996, AJ, 112, 1487
Heinke C. O., Grindlay J. E., Edmonds P. D., Lloyd D. A., Murray S. S., 2003, ApJ, 598, 516
Kaluzny J., Thompson I. B. 2009, Acta Astron., 59, 273
Kim M. et al., 2007, ApJ, 169, 401
King I. R., 1966, AJ, 71, 64
Knigge C., Zurek D. R., Shara M. M., Long K. S. 2002, ApJ, 579, 752
Knigge C., Dieball A., Maz Apellniz J., Long K. S., Zurek D. R., Shara M. M. 2008, ApJ, 683, 1006
Knigge C., Leigh N., Sills A., 2009, Nat, 457, 288
Knigge C. 2011, pre-print arXiv:1112.1074