Numerical scheme based on the spectral method for calculating nonlinear hyperbolic evolution equations

Yoritaka IWATA¹, Yasuhiro TAKEI²

Abstract

Numerical scheme for nonlinear hyperbolic evolution equations is made based on the spectral method. The detail discretization processes are discussed in case of one-dimensional Klein-Gordon equations. In conclusion, a numerical scheme with the order of total calculation cost: \(O(N \log_2 N) \) is proposed. As benchmark results, the relation between the numerical precision and the discretization unit size are demonstrated.

Keywords: Fourier spectral method, high-precision numerical scheme

1 一次元 Klein-Gordon 方程式

一次元非線形双曲型発展方程式（非線形 Klein-Gordon 方程式）の初期価境界価問題を考える。

\[
\begin{align*}
\frac{\partial^2 u}{\partial t^2} + \alpha \frac{\partial^2 u}{\partial x^2} + \beta F(u) &= 0, \\
u(x, 0) &= f(x), \\
u(0, t) &= u(L, t), \\
\frac{\partial u}{\partial t}(x, 0) &= g(x), \\
\frac{\partial u}{\partial t}(L, t) &= \frac{\partial u}{\partial x}(L, t).
\end{align*}
\]

(1)

ここで、\(\alpha, \beta \) は実数、\(f(x), g(x) \) は初期関数、\(F(u) = u \) の線形または非線形関数で、\(x \in \Omega = [0, L] \) とし、周期境界条件が課されている。

本稿では、スペクトル法 [1] を基盤とした双曲型発展方程式に対する高精度計算スキームの構成法について解説する。実際に、初期値境界値問題（2）を対象にして、空間変数をスペクトル法、時間変数を \(\theta \) 法で離散化することで数値計算スキームを構成する。

2 空間変数の離散化

空間変数の離散化にスペクトル法 [1] を用いる。方程式 (2) の解が高々 \(N \) 項のフーリエ級数として展開する
ことができるものと仮定する。

\[
\begin{align*}
 u(x,t) &= a_0(t) + \sum_{k=1}^{N} a_k(t) \cos \left(\frac{2\pi}{L} k x \right) \\
 v(x,t) &= c_0(t) + \sum_{k=1}^{N} c_k(t) \cos \left(\frac{2\pi}{L} k x \right) \\
 \end{align*}
\]

そこで、(2) の第一式に (3) 式を代入するとともに、両辺に \(\cos \left(\frac{2\pi}{L} l x \right) \)、\(\sin \left(\frac{2\pi}{L} l x \right) \) をそれぞれ掛け、\(x \) に関して \(\Omega = [0, L] \) で積分すると

\[
\begin{align*}
 \frac{\partial u}{\partial t} &= c_0 \frac{\partial x}{\partial t} = c_i, \quad (i=1, \ldots, N) \\
 \frac{\partial u}{\partial t} &= d_i, \quad (i=1, \ldots, N)
\end{align*}
\]

が得られる。同様に、(2) の第二式に (3) 式を代入するとともに、両辺に \(\cos \left(\frac{2\pi}{L} l x \right) \)、\(\sin \left(\frac{2\pi}{L} l x \right) \) をそれぞれ掛け、\(x \) に関して \(\Omega = [0, L] \) で積分することで

\[
\begin{align*}
 \frac{L}{2} \frac{d^2 u}{d x^2} + \beta \int_0^L F(u) dx &= 0, \\
 \frac{L}{2} \frac{d^2 v}{d x^2} - \beta \int_0^L F(u) \cos \left(\frac{2\pi}{L} l x \right) dx &= 0, \\
 \frac{L}{2} \frac{d^2 c}{d x^2} - \beta \int_0^L F(u) \sin \left(\frac{2\pi}{L} l x \right) dx &= 0
\end{align*}
\]

が得られる。 (4) と (5) を解いて \(a_0, c_0 \) および \(a_1, b_1, c_1, d_1 \) を求めることがで、元の方程式 (2) の解が得られる。

ここで非線形項の取り扱いという点では、式 (5) に現れる積分値

\[
\begin{align*}
 \int_0^L F(u) &dx \\
 \int_0^L F(u) \cos \left(\frac{2\pi}{L} l x \right) &dx \\
 \int_0^L F(u) \sin \left(\frac{2\pi}{L} l x \right) &dx
\end{align*}
\]

が問題となる。非線形項を扱うために、作用素数変換法 [1] を用いる。ここでは非線形項をフーリエ変換した後の係数空間で解くのではなく、限界フーリエ変換することで、非線形項をもとの空間で解くことが可能となる。この処置によって計算量を有意に減らすことができる。

実際に台形公式に基づいて次のように近似する。

\[
\begin{align*}
 \int_0^L F(u) &dx \\
 \int_0^L F(u) \cos \left(\frac{2\pi}{L} l x \right) &dx \\
 \int_0^L F(u) \sin \left(\frac{2\pi}{L} l x \right) &dx
\end{align*}
\]

ここでは、台形公式で得られた表式とフーリエ変換の類似性によって、非線形項の計算が簡明になる。周期境界条件を課されたもので、\(\Omega \) を等間隔に \(J \) 分割した点を \(x_j \) \((j = 0, \ldots, J) \) とし、それぞれの点での時刻 \(t \) での関数 \(u \) の値を \(u_j = u(x_j, t) \) と表している。積分値 (6) を数値的に計算する際には、\(a_0(t) \) および \(a_1(t), b_1(t), (i = 1, \ldots, N) \) から離散フーリエ変換により \(u_j \) を求め、式 (6) の右辺を算出する。

ここで、\(F(u) \) が \(u \) の \(M \) 次多項式の場合、\(J \geq (M + 1)N + 1 \) とすると左辺と右辺の値は一致する [1]。さらに、上記の離散フーリエ変換、および式 (6) の右辺の算出に高速フーリエ変換 (FFT) を用いることで、積分値 (6) の計算量は \(O(N \log_2 N) \) となる。以上から、スペクトル法

図 1 \(\Omega \) を \(J \) 個に等間隔に分割した点
3 時間変数の離散化

時間変数の離散化に θ 法 [2] を用いる。まず十分に小さい正の値 Δτ を用いて t_n = nΔτ, n ∈ N とし、

\[a_n^0 = a(t_n), c_n^0 = c(t_n) \] と表した上で、方程式 (7) の第 1 式および第 2 式に θ 法を適用すると

\[\frac{d^2 a}{dτ^2} + \beta \frac{d}{dτ} \sum_{j=0}^{l-1} F(a_j) = 0, \]

\[\frac{d^2 c}{dτ^2} + (\alpha \frac{d}{dτ})^2 a_0 + \beta \frac{d}{dτ} \sum_{j=0}^{l-1} F(a_j) \cos(\beta \frac{dτ}{l} x_j) = 0, \]

\[\frac{d^2 d}{dτ^2} + (\alpha \frac{d}{dτ})^2 b_0 + \beta \frac{d}{dτ} \sum_{j=0}^{l-1} F(a_j) \sin(\beta \frac{dτ}{l} x_j) = 0, \]

なる。

次に、b_n^1 = b(t_n), d_n^1 = d(t_n) と表した上で、方程式 (7) の第 3 式についても θ 法を適用し、式形を変形すると

\[b_n^{1+1} = b_n^0 + (1 - \theta) c_n^0 + \delta_n^{1+n}, \]

\[d_n^{1+1} = d_n^0 + (1 - \theta) \Delta τ a_n^0 + \delta_n^{1+n+1}, \]

となる。

最後に、方程式 (7) の第 4 式に対し θ 法を適用すると

\[c_n^{1+n} = c_n^0 - \beta \Delta τ [(1 - \theta) \hat{F}_0^n + \theta \hat{F}_0^{n+1}] \]

が得られる。

以上をまとめると、時間変数を離散化して得られた式 (8), (9), (11), (12), (13) は、数値計算で解くべき問題として、

\[a_l^{1+n+1} = a_l^0 + \Delta τ l + \Delta τ c_l^{1+n}, \]

\[b_l^{1+n+1} = b_l^0 + \Delta τ l + \Delta τ d_l^{1+n}, \]

\[c_l^{1+n} = c_l^0 - \beta \Delta τ \hat{G}_l^n \]

が得られる。ここで方程式 (14) を解くとき、l = 1, \cdots, N とした上で、既知の値である \(a_l^0, c_l^0 \) および \(a_l^0, b_l^0, c_l^0 \) を用いて、未知の値 \(c_l^{1+n}, c_l^{1+n} \) および \(a_l^{1+n}, b_l^{1+n}, c_l^{1+n} \) を求めることが知悉。なお、θ法を適用したことで、各辺の右側に未知の値 \(a_l^{1+n}, c_l^{1+n} \) および \(a_l^{1+n}, b_l^{1+n}, c_l^{1+n} \) が存在することに留意が必要である。そこで式 (14) を解くために、次節で説明する反復法を構成する。

4 反復法による数値解の計算

方程式 (14) を満たす未知の値 \(a_l^{1+n}, c_l^{1+n} \) および \(a_l^{1+n}, b_l^{1+n}, c_l^{1+n} \) を求めるために、連立方程式を直接解くのではなく反復法を用いる。具体的には、反復のために新たな変数 \(v \) を導入し、式 (15) のように、\(a_l^{1+n}, c_l^{1+n}, a_l^{1+n}, b_l^{1+n}, c_l^{1+n} \) を \(a_l^{1+n}, c_l^{1+n}, a_l^{1+n}, b_l^{1+n}, c_l^{1+n} \) および \(a_l^{1+n}, c_l^{1+n}, a_l^{1+n}, b_l^{1+n}, c_l^{1+n} \) と \(a_l^{1+n}, c_l^{1+n}, a_l^{1+n}, b_l^{1+n}, c_l^{1+n} \) とし、計算を繰り返す。
d_t^{n+1L}に分けた漸化式を考える。

\[
\begin{align*}
 d_t^{n+1L+1} &= d_t^n + \Delta t(1-\theta)c_t^n + \Delta t\theta d_t^{n+1L}, \\
 b_t^{n+1L+1} &= b_t^n + \Delta t(1-\theta)d_t^n + \Delta t\theta b_t^{n+1L}, \\
 c_t^{n+1L+1} &= c_t^n + \alpha(\frac{\Delta t}{2})^2(1-\theta)\Delta t a_t^n - \beta(1-\theta)\Delta t F_t^n + \alpha(\frac{\Delta t}{2})^2\theta\Delta t b_t^{n+1L} - \beta\theta\Delta t G_t^n, \\
 d_t^{n+1L+1} &= d_t^n + \alpha(\frac{\Delta t}{2})^2(1-\theta)b_t^n - \beta(1-\theta)\Delta t G_t^n + \alpha(\frac{\Delta t}{2})^2\theta\Delta t b_t^{n+1L} - \beta\theta\Delta t G_t^n, \\
 c_t^{0+1L+1} &= c_t^0 - \beta(1-\theta)\Delta t F_t^0 - \beta\theta\Delta t F_t^{n+1L},
\end{align*}
\]

ここでf_t^{n+1L}、b_t^{n+1L}はそれぞれ式（16）で表される。b_t^{n+1L}は離散フーリエ変換によりa_t^{n+1L}、b_t^{n+1L}、
c_t^{n+1L}、d_t^{n+1L}を用いて求められる。

上記の漸化式（15）により、a_t^{n+1L}、b_t^{n+1L}、b_t^{n+1L}、c_t^{n+1L}、
c_t^{n+1L}、d_t^{n+1L}を用いて、a_t^{n+1L}、b_t^{n+1L}、
c_t^{n+1L}、d_t^{n+1L}を算出する。そして，漸化式の値が収束するまでこの計算を繰り返す。収束した
a_t^{n+1L}、b_t^{n+1L}、b_t^{n+1L}、c_t^{n+1L}、d_t^{n+1L}は式（14）
を満たすことからa_t^{n+1L}、b_t^{n+1L}、b_t^{n+1L}、c_t^{n+1L}、d_t^{n+1L}とする。

結果として，式（16）の数値積分を行う際に最も多くの
計算量$O(N \log_2 N)$を要する。これが根拠となり，本数
値計算スキーム全体の計算量が$O(N \log_2 N)$と見積もられる。

5 スペクトル法による数値計算例

5.1 $F(u)$が線形の場合

初期値境界値問題（2）で$F(u) = u, \alpha = -1, \beta = 1, \Omega = [0, L]$とした場合について，数値計算を行う。
スペクトル法による非線形双曲型発展方程式の数値解法（岩田・武井）

図4 とvに関する誤差との関係

図5 とvに関する相対誤差との関係

\[
\begin{align*}
\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} + u &= 0, \\
\frac{\partial u}{\partial t} &= v, \\
u(x, 0) &= 0, \\
u(0, t) &= u(L, t), \\
v(x, 0) &= \cos \left(\frac{2\pi}{L} x \right), \\
v(0, t) &= v(L, t).
\end{align*}
\]

(17)

するとこの問題の厳密解は式（18）で与えられる。

\[
\begin{align*}
u(x, t) &= \frac{1}{\sqrt{1 + (\frac{2\pi}{L} t)}} \sin \left(\frac{2\pi}{L} x \right) \cos \left(\frac{2\pi}{L} x \right), \\
v(x, t) &= \cos \left(\frac{2\pi}{L} x \right) \cos \left(\frac{2\pi}{L} x \right).
\end{align*}
\]

(18)

方程式（17）について、本稿で紹介した数値計算スキーム（ただし、θ = 1/2、J ≥ 2N + 1、L = 8とする）により求めた数値解の時間発展および時刻t = 1の数値解を図2及び図3に示す。

ここで厳密解は式（18）で表されることから、数値解と厳密解の誤差を求めた結果を図4及び図5に示す。具体的には、時刻t = 1の数値解（ただし、N = 2⁵またはN = 2¹⁰と固定し、Δt = 2⁻²、2⁻³、…、2⁻¹⁵と変化させた場合）について、x軸上の分点x_j (j = 0, ···, J)の数値解の値と厳密解の値の誤差（相対誤差と絶対誤差のうち小さいものを）を求め、その最大値を各Δtでプロットした。

時間変数に関する離散化の精度

まず図4を見ると分かるとおり、Δtを1/4倍すると、誤差は（1/2）² = 1/4になる。つまり、本数値計算スキームでは、時間変数に関して2次の精度の数値計算スキームとなっていることが、数値計算結果からも確認できる。言い換えると、Δtを十分に小さくすることで、誤差を小さくすることができるということになる。

空間変数に関する離散化の精度

また、N = 2⁵とN = 2¹⁰の場合の誤差を比較すると、Δtの大きさが同じであれば、誤差はほぼ同じとなる様子が分かる（なお、N = 2¹⁰の場合、Δtが大きいと反復法による数値計算が収束せず、数値解は得られない）。これはスペクトル法の利点でもあり、誤差がΔtの大きさのみ依存し、Nの大きさによらないことを示している。

このことは、次の図5の結果からも分かる。このグラフは、時刻t = 1の数値解（ただし、Δt = 2⁻⁶またはΔt = 2⁻¹⁵と固定し、N = 2⁵、2¹⁰、2¹⁵と変化させた場合）について、x軸上の分点x_j (j = 0, ···, J)の数値解
の値と厳密解の値の誤差を求め、その最大値を各 \(\Delta t \) でプロットしたものである。

この結果を見ると、\(N \) を変化させたとしても誤差は変わらない。これは本数値計算スキームでは \(F(u) \) の計算に用いる \(F(\alpha) \) の \(u \) の \(M \) 次多項式の場合、\(J \geq (M + 1)N + 1 \) とその辺りと辺りの値は一致すること [1]、また \(N \) をある程度大きくすれば、解は式 (3) で厳密に表現できることが要因である。したがって、空間変数の離散化に伴う計算誤差は非常に小さくなり、\(N \) による誤差に大きな違いはなくなる。この点が数値計算結果からも確認できる。さらに言えば、この数値計算例の計算誤差の大半は、時間変数に関する離散化 \(\Delta t \) に伴う計算誤差となることが結論される。

\(u(0,t) = u(L,t) \),
\(v(0,t) = v(L,t) \).

\begin{align}
\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} + \sin u &= 0, \\
\frac{\partial u}{\partial t} &= v, \\
v(x,0) &= -\sqrt{2} \frac{\cosh(x) \sinh(x)}{\sqrt{1 - 2 \cosh(x)}} \frac{\cosh(x) - 1}{\sqrt{1 - 2 \cosh(x)}} \frac{1}{\sqrt{1 - 2 \cosh(x)}} \\
v(0,t) &= v(L,t), \\
u(x,0) &= 2 \sin^{-1} \left[\frac{1}{2} \sinh(x, \frac{1}{2}) \right], \\
u(0,t) &= u(L,t).
\end{align}

\[\begin{cases}
\frac{\partial u}{\partial t} = 2 \sin^{-1} \left[\frac{1}{2} \sinh(x) \right], \\
v(x,t) = -\sqrt{2} \frac{\cosh(x) \sinh(x)}{\sqrt{1 - 2 \cosh(x)}} \frac{\cosh(x) - 1}{\sqrt{1 - 2 \cosh(x)}} \frac{1}{\sqrt{1 - 2 \cosh(x)}}
\end{cases} \quad (20) \]
スペクトル法による非線形双曲型発展方程式の数値解法(岩田・武井)

図8 u と v に関する誤差と Δt の関係

図9 u と v に関する誤差と N の関係

ここで sn, cn, dn はヤコビの楕円関数である [3]。また L は第一種完全楕円積分より下記と表せる [3]。

$$L = 4F \left(\frac{\sin \theta}{2}, \frac{1}{2} \right)$$
$$= 4 \int_0^{\pi/2} \frac{1}{\sqrt{1-\sin^2 \theta \sin^2 \alpha}} \, d\theta$$
$$= 6.743001419250385098 \ldots$$

方程式 (19) について、本稿で紹介した数値計算スキーム（ただし、$\theta = \frac{1}{2}, J \geq 2N + 1$ とする）により求めた数値解の時間発展および時刻 $t = 1$ の数値解を図6及び図7に示す。

ここで厳密解は式 (20) で表せることから、数値解と厳密解の誤差を求めた結果を図8に示す。具体的には、時刻 $t = 1$ の数値解（ただし、$N = 2^5$ または $N = 2^{10}$ と固定し、$\Delta t = 2^{-2}, 2^{-3}, \ldots, 2^{-15}$ と変化させた場合）について、x 軸上の点 $x_j (j = 0, \ldots, J)$ の数値解の値と厳密解の値の誤差（相対誤差と絶対誤差のうち小さいもの）を求め、その最大値を各 Δt でプロットした。

時間変数に関する離散化の精度
図8を見ると分かるとおり、Δt を $\frac{1}{2}$ 倍すると、誤差は $(\frac{1}{2})^2 = \frac{1}{4}$ 倍となり、時間変数に関して2次の精度の数値スキームとなっていることが確認できる。

空間変数に関する離散化の精度
また、$N = 2^5$ と $N = 2^{10}$ の場合の誤差を比較すると、Δt の大きさが同じであれば、誤差はほぼ同じとなる様子が分かる（なお、$N = 2^{10}$ の場合、Δt が大きいと反復法による数値計算が収束せず、数値解は得られない）。この点は、$F(u)$ が線形の場合の数値計算例と同様であり、誤差が Δt の大きさのみ依存し、N の大きさによらないことを示している。

この点を検証するために時刻 $t = 1$ の数値解（ただし、$\Delta t = 2^{-6}$ または $\Delta t = 2^{-13}$ と固定し、$N = 2^2, 2^3, \ldots, 2^{15}$ と変化させた場合）について、x 軸上の点 $x_j (j = 0, \ldots, J)$ の数値解の値と厳密解の値の誤差を求め、その最大値を各 Δt で図9にプロットした。

この結果から、N を大きくしていくと、一旦、数値解と厳密解の誤差は小さくなる。しかし、さらに N を大きくしていくと、誤差はほぼ一定の大きさとなる様子が見て取れる。これは式 (3) を見ると分かる通り、N が小さい場合、N の値による打切り誤差が大きくなるためである。そのため N を大きくすることで、打切り誤差が減少する。實際、$N = 2^2$ から $N = 2^4$ へと変えた場合、誤差が減少する様子が確認できる。
一方，N が 2^5 より大きい場合、誤差はほぼ一定の大きさとなる。この結果は、N を十分に大きくすることで式 (3) で解を十分に表現でき、空間変数の離散化に伴う計算誤差が非常に小さくなることを示している。言い換えれば、N が 2^5 より大きい場合には、非線形性を扱った今回の数値計算例においても、計算誤差の大小は Δt に伴う計算誤差となることが結論される。

6 まとめ

本稿では、一次元の非線形 Klein-Gordon 方程式を取り上げ、スペクトル法を用いた数値計算スキームを構成した。また具体的に、線形 Klein-Gordon 方程式と非線形 Sine-Gordon 方程式について、既知の厳密解との比較を通じて、本数値計算スキームによる誤差の出方を定量的に示した。その結果、本稿で構築した数値計算スキームは、時間変数に関して 2 次の精度であり、空間変数に関しては、N を十分に大きくすることで、時間変数の離散化に伴う計算誤差と比較して非常に小さい計算誤差となることが確認できた。これによって、どの程度の時間刻み Δt に対して、どの程度の空間刻み N が適しているかについての目安が得られた。この性質は、今後、厳密解の存在しないような未知の非線形発展方程式に対して計算スキームの誤差を推定するためのベンチマークとなる。今後の展開として、誤差評価のための不等式を得て、精密な数理解析と連動した計算スキームへと展開していくことが考えられる。

一般に、非線形 Klein-Gordon 方程式のような非線形双曲型方程式では、数値計算を通じ、解の発展の様子を把握することが有用なアプローチとなる。しかし、差分法等による空間変数の離散化では、離散化に伴う誤差が大きく影響し、適切な数値計算が実現できないことも多い。

本稿で紹介した数値計算スキームは、計算量 $O(N \log_2 N)$ で計算でき、かつ空間変数の離散化に伴う誤差の影響を出来るだけ抑えられる計算方法である。このことから本数値計算スキームは、今後、解の発展の様子を詳細に把握するために活用されることが期待される。

参考文献

[1] 石黒圭一（2004）「スペクトル法による数値計算入門」 東京大学出版会。
[2] R. Dautray and J.-L Lions, “Mathematical Analysis and Numerical Methods for Science and Technology: Volume 5: Evolution Problems I (English Edition)”, Springer-Verlag, 2000。
[3] 大宮真弓（2008）「非線形波動の古典解析」 森北出版。