Groups with normal restriction property

Hung P. Tong-Viet

Abstract. Let G be a finite group. A subgroup M of G is said to be an NR-subgroup if, whenever $K \trianglelefteq M$, then $K^G \cap M = K$ where K^G is the normal closure of K in G. Using the Classification of Finite Simple Groups, we prove that if every maximal subgroup of G is an NR-subgroup then G is solvable. This gives a positive answer to a conjecture posed in [2].

Mathematics Subject Classification (2000). Primary 20D10; Secondary 20D05.

Keywords. solvable groups, maximal subgroups.

1. Introduction

All groups considered are finite. Let G be a group. Following Berkovich in [2], a triple (G, H, K) is said to be special in G if $K \trianglelefteq H \leq G$ and $H \cap K^G = K$, where K^G is the normal closure of K in G. A subgroup H is called an NR-subgroup (Normal Restriction) if, whenever $K \trianglelefteq H$, then (G, H, K) is special in G. The main result of this paper is a proof of Conjecture 2 raised in [2].

Theorem 1.1. ([2] Conjecture 2) If all maximal subgroups of G are NR-subgroups then G is solvable.

In order to prove Theorem 1.1 we need a result on the factorization of almost simple groups. Unfortunately, we cannot avoid using the Classification of Finite Simple Groups in the proof of that result (see Theorem 1.2). Recall that a group G is said to be almost simple if $S \leq G \leq Aut(S)$ for some non-abelian simple group S. If K is a proper subgroup of G and H is a subgroup of G with $K \leq H < G$, then H is called a proper over-group of K in G. Moreover, a subgroup K of G is said to be p-local in G if $K = N_G(P)$ for some non-trivial p-subgroup P of G, p prime. We also say that K is local in G if K is p-local in G for some prime p.

This work was completed with the support of University of Birmingham.
Finally, a subgroup K of G is said to be \textit{local maximal} if it is both maximal and local in G.

\textbf{Theorem 1.2.} Let S be a non-abelian simple group and $S \leq G \leq \text{Aut}(S)$. Then there exists a non-trivial subgroup K of S such that all proper over-groups of K in S are local in S and $G = N_G(K)S$.

The following corollary is used to show that the minimal counter-example to Theorem 1.1 is not simple.

\textbf{Corollary 1.3.} Let S be a non-abelian simple group. Then S contains a local maximal subgroup.

\textit{Proof.} Let $G = \text{Aut}(S)$ and K be the subgroup of S obtained from Theorem 1.2. Consider the set \mathcal{A} of all proper over-groups of K in S. Clearly, \mathcal{A} is non-empty and every element of \mathcal{A} is a local subgroup of S containing K. The maximum element of \mathcal{A} is a maximal subgroup of S and is local. \hfill \square

\section{Preliminaries}

In this section, we collect some results that we need for the proofs of the theorems above.

\textbf{Lemma 2.1.} Let $K \trianglelefteq H \leq G$. If H is an NR-subgroup of G then HK^G/K^G is an NR-subgroup of G/K^G. In particular, if $K \trianglelefteq G$ and all maximal subgroups of G are NR-subgroups, then all maximal subgroups of G/K are also NR-subgroups.

\textit{Proof.} The first statement is Lemma 4(c) in [2]. The second statement follows easily. \hfill \square

\textbf{Theorem 2.2.} ([1] Theorem 4.3) Let P be a p-Sylow subgroup of a group G. If P lies in the center of $N_G(P)$ then G has a normal p-complement.

\textbf{Theorem 2.3.} ([2] Proposition 7) Let H be a maximal solvable subgroup of G. If H is an NR-subgroup of G then $H = G$.

\section{Proofs of the Theorems}

\textit{Proof of Theorem 1.2.} Without loss of generality, we can assume that $G = \text{Aut}(S)$. By the Classification of Finite Simple Groups, if S is a non-abelian simple group then S is a finite simple group of Lie type, an alternating group of degree at least 5 or one of 26 sporadic groups. In this proof, we treat the Tits group, $^{2}F_4(2)'$ as sporadic group rather than a group of Lie type, and in view of the isomorphisms $A_6 \simeq L_2(9)$, and $A_5 \simeq L_2(5)$, we consider A_5, A_6 to be groups of Lie type.

(i) S is a finite simple group of Lie type in characteristic p, $S \neq ^{2}F_4(2)'$. By Proposition 8.2.1 and Theorem 13.5.4 in [3], S has a (B,N)-pair. Let B be a Borel subgroup of S. Then $B = N_S(U)$, where U is a p-Sylow subgroup of S. For any
Thus of \(G \), \(G/N \) satisfies the hypothesis of the Theorem and has smaller order than that of \(G \), by the minimality of \(G \), \(G/N \) is solvable. Thus \(N \) is the unique minimal normal subgroup of \(G \), and it coincides with the last term of the derived series of \(G \). If \(N \) is solvable then \(G \) is also solvable and we are done. Thus we assume that \(N \) is not solvable.

\[
\theta \in G, \text{ as } S \leq G, U^\theta \leq S^\theta = S, \text{ and hence } U^\theta \text{ is a } p\text{-Sylow subgroup of } S. \text{ By Sylow’s Theorem } U^\theta = U^g \text{ for some } g \in S. \text{ Observe that }
\]

\[
B^\theta = N_S(U^\theta) = N_S(U^g) = B^g.
\]

Thus \(\theta g^{-1} \in N_G(B) \), so that \(\theta \in N_G(B)S \), and hence \(G = N_G(B)S \). Moreover, if \(H \) is any proper over-group of \(B \) in \(S \), then \(H \) is a parabolic subgroup of \(S \) and \(H < S \), so that \(H \) is \(p\)-local in \(S \). Therefore we can choose \(K \) to be a Borel subgroup of \(S \).

(ii) \(S \) is an alternating group of degree \(n \geq 7 \). In this case \(G = S_n \). Let \(H = S_{n-3} \times S_3 \) and \(K = H \cap S \). Since \(n - 3 > 3 \), it follows from \([5]\) that \(K \) is a maximal subgroup of \(S \), \(H \) is a maximal subgroup of \(G \), and hence \(G = HS \). As \([H : K] = 2 \), we have \(H = N_G(K) \), so that \(G = N_G(K)S \). The subgroup \(K \) satisfies the Theorem since it is 3-local and maximal in \(S \).

(iii) \(S \) is sporadic or \(S = {}^2F_4(2)' \).

By \([1]\), \(|G : S| = 1 \) or 2. If \(G = S \) then we can choose \(K \) to be any local maximal subgroup of \(S \). The pairs \((S, K)\) are given in Table 1. Otherwise, as in (ii), choose \(H \) to be a maximal subgroup of \(G \) such that \(K = H \cap S \) is a local maximal subgroup of \(S \). Then \(K \) will satisfy the conclusion of the Theorem. The triple \((S, K, H)\) are given in Table 2. The proof is now completed. □

Proof of Theorem 1.1. Let \(G \) be a minimal counter-example to Theorem 1.1. We first show that \(G \) is not simple. By contradiction, suppose that \(G \) is simple. By Corollary 1.3, \(G \) contains a \(p\)-local maximal subgroup \(M \). Let \(P \) be a \(p\)-subgroup of \(G \) such that \(M = N_G(P) \). Then \(1 \neq P \leq M \) and since \(M \) is an \(NR\)-subgroup of \(G \), we have \(P^G \cap M = P \). However as \(G \) is simple and \(P \leq P^G \leq G \), \(P^G = G \). Hence \(P = G \cap M = M \). Let \(P_1 \) be a cyclic subgroup of order \(p \) in the center of \(M \). Then \(P_1 \) is normal in \(M \). Apply the same argument as above, we have \(P_1^G = G \), and so \(P_1 = P_1^G \cap M = M \). Thus \(M \) is a cyclic group of order \(p \).

In view of the maximality of \(M \) and the simplicity of \(G \), \(M \) is a \(p\)-Sylow subgroup of \(G \) and \(N_G(M) = M \). By Theorem 2.2, \(G \) has a normal \(p\)-complement. This contradicts to our assumption. Thus \(G \) is not simple.

Let \(N \) be any minimal normal subgroup of \(G \). By Lemma 2.2, the group \(G/N \) satisfies the hypothesis of the Theorem and has smaller order than that of \(G \), by the minimality of \(G \), \(G/N \) is solvable. Thus \(N \) is the unique minimal normal subgroup of \(G \), and it coincides with the last term of the derived series of \(G \). If \(N \) is solvable then \(G \) is also solvable and we are done. Thus we assume that \(N \) is not solvable.

Table 1. \(|\text{Out}(S)| = 1\)

\(S \)	\(M_{11} \)	\(J_1 \)	\(M_{23} \)	\(M_{24} \)	\(Ru \)	\(Co_1 \)	\(Co_2 \)
\(K \)	2 \(S_4 \)	7 : 6	23 : 11	\(2^4 : A_8 \)	5 : 4 \(\times A_5 \)	2 \(\times M_{12} \)	\(2^6 : M_{22} : 2 \)
\(S \)	Ly	Th	\(F_{223} \)	\(Co_1 \)	\(J_4 \)	B	M
\(K \)	37 : 18	31 : 15	2 \(F_{222} \)	\(S_3 \times A_9 \)	37 : 12	47 : 23	2 \(B \)
Then $N = S_1 \times S_2 \times \cdots \times S_t$, where $S_i = S^{x_i}$, S is a non-abelian simple group, and $x_1, x_2, \cdots, x_t \in G$. Let K be the subgroup of S obtained from Theorem 1.2 and $T = K_1 \times K_2 \times \cdots \times K_t$, where $K_i = K^{x_i}$. Then T is a non-trivial proper subgroup of N. Since N is the unique minimal normal subgroup of G, $N_{G}(T) < G$. We will show that $G = N_{G}(T)N$. For any $g \in G$, since $N^{g} = N$, there exists a permutation π of degree t acting on $\{1, 2, \cdots, t\}$ such that $S^{x_{g}} = S^{x_{\pi}}$. Let $g_{i} = x_{i}g_{x_{i}}^{-1}$. Then $g_{i} \in N_{G}(S)$. We have

$$T^{g} = K^{x_{g}} \times K^{x_{g}2} \times \cdots \times K^{x_{g}t} = K^{g_{1}x_{1}} \times K^{g_{2}x_{2}} \times \cdots \times K^{g_{t}x_{t}} = K^{h_{1}x_{1}} \times K^{h_{2}x_{2}} \times \cdots \times K^{h_{t}x_{t}} = K^{h_{1}x_{1}, s_{1}} \times K^{h_{2}x_{2}, s_{2}} \times \cdots \times K^{h_{t}x_{t}, s_{t}}$$

where $K^{g_{i}x_{i}} = K^{h_{i}}$ with $h_{i} \in S$ by Theorem 1.2 and $s_{i} = h_{i}^{-1}$. Let $s = s_{1}, s_{2}, \cdots, s_{t} \in N$. Since $[S_{i}, S_{j}] = 1$ if $i \neq j \in \{1, 2, \cdots, t\}$, $K_{s} = K_{s_{i}}$. Thus $T^{g} = T^{s}$, where $s \in N$. Therefore $G = N_{G}(T)N$.

Let M be any maximal subgroup of G containing $N_{G}(T)$. Let $U = M \cap N$. We have $G = MN$, and $U = M \cap N \leq M$. As $G/N = MN/N \simeq M/U$, M/U is solvable. If U is solvable then M is solvable. By Theorem 2.3 $G = M$, a contradiction. Thus U is non-solvable. Let L be any non-trivial normal subgroup of M. Since M is maximal in G, M is an NR-subgroup of G, so that $L = L^{G} \cap M$. It follows from the fact that N is the unique minimal normal subgroup of G, $N \leq L^{G}$. We have $U = N \cap M \leq L^{G} \cap M = L$. We conclude that U is a minimal normal subgroup of M. Now, since U is a minimal normal subgroup of M and U is non-solvable, $U = W_{1} \times W_{2} \times \cdots \times W_{k}$, where $W_{i} \simeq W$ for all $1 \leq i \leq k$ and W is a non-abelian simple group. Suppose that there exists $j \in \{1, 2, \cdots, t\}$ such that $S_{j} \leq U$. As S_{j}

S	K	H
M_{12}	$4^{2} : D_{12}$	$K : 2$
M_{22}	$2^{7} : A_{6}$	$2^{4} : S_{6}$
J_{2}	$A_{4} \times A_{5}$	$K : 2$
$^2F_{4}(2)'$	$5^{2} : 4A_{4}$	$5^{2} : 4S_{4}$
HS	$5 : 4 \times A_{5}$	$5 : 4 \times S_{5}$
J_{3}	$2^{1+3} : A_{8}$	$2^{1+3} : S_{5}$
McL	$5^{1+2} : 3 : 8$	$K : 2$
He	$5^{2} : 4A_{4}$	$5^{2} : 4S_{4}$
SU_{3}	$3^{3} : M_{11}$	$3^{3} : (M_{11} \times 2)$
$O'N$	$4^{3} L_{3}(2)$	$4^{3} (L_{3}(2) \times 2)$
Fi_{22}	$2^{10} : M_{22}$	$2^{10} : M_{22} : 2$
HN	$3^{1+3} : 4A_{5}$	$3^{1+3} : 4S_{5}$
Fi_{24}	$3' O_{7}(3)$	$3' O_{7}(3) : 2$

Table 2. $|Out(S)| = 2$
is normal in N,
$$S_j^G = S_j^{NM} = S_j^M \leq M.$$
However as $S_j^G = N$, $G = MN = M$, a contradiction. Therefore $S_j \cap U < S_j$ for any $j \in \{1, 2, \ldots, t\}$. Since $K_j \leq S_j \subseteq N$, $K_j \subseteq S_j \cap U \subseteq U$. As U is a direct product of non-abelian simple groups and $S_j \cap U$ is a non-trivial normal subgroup of U, there exists a non-empty set $J \subseteq \{1, 2, \ldots, t\}$ such that $S_j \cap U = \prod_{i \in J} W_i$. Hence
$$K_j \leq \prod_{i \in J} W_i < S_j,$$
and so
$$K \leq \prod_{i \in J} W_i^{x_j^{-1}} < S,$$
where $W_i^{x_j^{-1}}$ are non-abelian simple for any $i \in J$. However, by Theorem 1.2, \(\prod_{i \in J} W_i^{x_j^{-1}}\) is local in S. This final contradiction completes the proof. □

References

[1] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of Finite Groups, Oxford University Press, Eynsham, 1985, Maximal subgroups and ordinary characters for simple groups, with computational assistance from J.G. Thackray.

[2] Yakov Berkovich, Subgroups with the Character Restriction Property and Related Topics, Houston Journal of Mathematics, Vol. 24, No. 4, 1998.

[3] Roger W. Carter, Simple Groups of Lie Type, Pure and Applied Mathematics, Vol. 28. John Wiley and Sons, London-New York-Sydney, 1972.

[4] Daniel Gorenstein, Finite Groups, Chelsea Publishing Company, Second Edition, 1980.

[5] M.W. Liebeck, C.E. Praeger, Jan Saxl, A Classification of the Maximal Subgroups of the Finite Alternating and Symmetric Groups, Journal of Algebra 111, 365-383 (1987).

Acknowledgment

I would like to thank Professor Kay Magaard and Doctor Le Thien Tung for their help with the preparation of this work. I am also grateful to Professor Derek Holt and the referee for their suggestions to improve the proof of Theorem 1.2.