Clinical Study

Striae Gravidarum, Acne, Facial Spots, and Hair Disorders: Risk Factors in a Study with 1284 Puerperal Patients

Isadora da Rosa Hoefel,1 Magda Blessmann Weber,2 Ana Paula Dornelles Manzoni,2 Bárbara Hartung Lovato,3 and Renan Rangel Bonamigo1,2,4

1Program of Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
2Dermatology Service of Santa Casa de Porto Alegre, Porto Alegre, Brazil
3Faculdade de Medicina de Jundiaí, Brazil
4Dermatology Service of Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

Correspondence should be addressed to Isadora da Rosa Hoefel; isadorahoefel@yahoo.com.br

Received 2 January 2020; Accepted 15 April 2020; Published 19 May 2020

Academic Editor: Luca Marozio

Copyright © 2020 Isadora da Rosa Hoefel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objective. To determine the prevalence of skin changes during pregnancy and to relate their occurrence to specific factors in a population of south Brazil. Methods. A cross-sectional analytical study was carried out with 1284 puerperal patients. A questionnaire about skin changes during pregnancy was developed and applied by the authors to all puerperal women admitted in a tertiary hospital in south Brazil. Results. The appearance of striae during pregnancy was reported by 633 women (49.5%) and had a statistically significant association with primiparity, presence of stretch marks before pregnancy, and gestational weight gain above 21 kg. Facial blemishes were reported by 33.9% (n = 434) and were associated with a positive family history, multiparity, and the use of facial sunscreen (p < 0.0001). The onset or worsening of acne was identified in 35.7% (n = 456) and was statistically associated with primiparity and Fitzpatrick phototypes IV and V. Hair alterations were reported by 44.5% (n = 569) and were associated with primiparity (p = 0.029). Conclusion. Although most of the skin changes during pregnancy are considered "physiologic," they can cause significant discomfort. Thus, it is important to know them and to understand which risk factors may be associated with such changes.

1. Introduction

Pregnancy influences virtually all the maternal organic systems, which undergo significant modifications to allow retention and intraterine development of the fetus. During pregnancy, the female body undergoes numerous hormonal, metabolic, immunological, and vascular changes [1].

In the skin and mucous membranes, pregnancy causes physiological changes, which can be divided into pigment alterations, hair alterations, nail alterations, skin gland alterations, and vascular alterations [2]. Many of these occur due to increased endocrine activity, in particular by increased production of the hormones progesterone and estrogen [3]. Although rare, there are also specific diseases of gestation, and the most common are pruritus of pregnancy, pemphigoid gestationis or herpes gestationis, polymorphic dermatitis of pregnancy, and impetigo herpetiformis [4]. In addition, autoimmune skin diseases often worsen during pregnancy, mainly systemic lupus erythematosus, dermatomyositis, and pemphigus [5].

Considering the multiplicity of physiological skin alterations that occur during pregnancy and the stigma they generate, few studies have attempted to analyze the epidemiological aspects related to the subject, something which could facilitate better management of such problems [6, 7]. Although physiological, these alterations can persist long after the gestational period and have a considerable impact on the patients’ quality of life [3].
2. Materials and Methods

After approval by the Research Ethics Committee of the institution, a cross-sectional study was carried out, the objective of which was to identify the prevalence of the main skin alterations that occur during pregnancy and to relate their occurrence to specific factors.

The sample consisted of puerperal women hospitalized at the Mário Totta Maternity of Santa Casa Hospital (Porto Alegre, Brazil), during eight months (winter and spring).

All the admitted mothers (mothers of live newborns) who accepted to participate and signed the free and informed consent term were included in the study.

Data were collected using standardized questionnaires applied by four medical students and one dermatologist who jointly received training to standardize the interview. All the participants were interviewed on the first day after delivery, and data were collected on obstetric history, phenotypic characteristics, skin alterations developed during pregnancy, and skin care in pregnancy. The Fitzpatrick scale was used to determine the skin type of the participants [8].

The results are presented using descriptive statistics—absolute and relative distribution—as well as by measures of central tendency and variability, while the study of the distribution of age data was conducted using the Kolmogorov-Smirnov test. For the bivariate analysis between categorical variables, Pearson’s chi-squared test (χ^2) was used, and in the contingency tables in which at least 25% of the values presented an expected frequency of less than 5, Fisher’s exact test was adopted. In situations where at least one variable had a polyatomatic characteristic, the Monte Carlo simulation was used. For the continuous variables, when the comparison was made between two independent groups, the Student t- and the Mann-Whitney tests (asymmetric distribution) were applied. The data were analyzed in the Statistical Package for Social Sciences version 17.0 (SPSS Inc., Chicago, IL, USA, 2008) program for Windows, and for the statistical decision criteria, a significance level of 5% was adopted.

3. Results

The results presented refer to a sample of 1284 patients aged from 13 to 51 years, the mean being 26.6 (\pm6.8) years. The patients’ general characteristics are presented in Table 1.

Multiparous patients represented 52.6% ($n = 676$), and two pregnancies were the median in this group.

Prior to pregnancy, the mean weight was 66.9 ± 15.7 kg, and 39.3% ($n = 496$) of the patients gained up to 10 kg; 32.7% ($n = 413$) from 11 to 15 kg, and 10.7% ($n = 135$) gained more than 21 kg.

The prevalence of health problems during pregnancy was 48.7% ($n = 624$) within the sample, with the most common conditions being urinary infection (50.3%) ($n = 314$) and increased blood pressure (27.9%) ($n = 174$), while 87.3% ($n = 1114$) of the investigated patients used some type of medication and, in this group, 66.4% ($n = 740$) used ferrous sulfate; 33.5% ($n = 373$) used folic acid; and 30.3% ($n = 338$) reported the use of antibiotics (Table 1). Of the sample,

Table 1: General characteristics, skin care, and skin changes during pregnancy. Santa Casa Hospital, Porto Alegre, Brazil.

Variables	Sample ($n = 1284$)
Age (years)	
Mean ± SD	26.6 ± 6.8
Median (min–max)	$26.0 \ (13-51)$
Age group	
<19 years	229
20 to 29 years	622
30 to 39 years	397
>=40 years	35
Primiparous	
No	676
Yes	608
Number of pregnancies	
Mean ± SD	2.1 ± 1.5
Median (min–max)	$2.0 \ (1.0–7.0)$
Gestation	
1	569
2	372
3	175
4	81
5 or more	85
Phototype	
1	14
2	250
3	582
4	322
5	100
6	8
Daily moisturizing products use	
No	572
Yes	710
Type	
Moisturizing lotions	494
Ointments	323
Others	2
Weigh before pregnancy	
Mean ± SD	66.9 ± 15.7
Median (min–max)	$64.0 \ (68.0–88.0)$
Weigh after pregnancy	
Mean ± SD	79.4 ± 15.4
Median (min–max)	$78.0 \ (68.0–88.0)$
p^*	0.0001
Weight gain	
≤10 kg	496
11 to 15 kg	413
16 to 20 kg	219
≥21 kg	135
80.2% (n = 1024) had appropriate prenatal follow-up, considering a minimum number of 6 visits. The daily use of some type of moisturizer was confirmed by 55.3% (n = 710) of those investigated, and the daily use of facial sunscreen during pregnancy was reported by 18.0% (n = 230) (Table 1).

The main skin changes that occurred in the recent pregnancy were stretch marks (49.5%, n = 633), facial blemishes (33.9%, n = 434), acne (35.7%, n = 456), and hair alterations (44.5%, n = 569). The important details of these alterations are described in Tables 2 and 3.

When assessing the relationship between age group and alterations, there was significant association of the up to 25-year age group with the appearance of stretch marks (66.3%; n = 402, p < 0.001), acne (p < 0.001), and the absence of facial blemishes (75.7%; n = 458, p < 0.0001). In the over 26-year age group, there was an association with the absence of stretch marks (65.8%; n = 443, p < 0.001), the presence of blemishes (42.6%; n = 287, p < 0.001), and nonappearance/nonworsening of acne (71.4%; n = 480, p < 0.0001) (Tables 2 and 3).

4. Discussion

This research was carried out in a tertiary and university hospital (Santa Casa de Porto Alegre/Universidade Federal de Ciências da Saúde de Porto Alegre). This hospital receives patients from various parts of Greater Porto Alegre, most of whom received prenatal care in low-risk primary services, so that our sample resembles the population found in primary care settings. The demographic profile observed is very similar to that found in a study carried out among pregnant women in a primary healthcare unit in Porto Alegre: in both studies, the predominant age of interviewees was 20 to 29 years (46.9% versus 51.7%) and the main pathologies presented during pregnancy were urinary tract infections and arterial hypertension [9]. The weight gain observed in our sample, in which the predominant increase was up to 15 kg, is in line with the recommendations of the Ministry of Health.
in its Technical Manual for Prenatal and Puerperium [10]. Adequate prenatal care was performed by 80.2% of the pregnant women, considering a minimum of 6 consultations also recommended by the Ministry of Health. Regarding skin changes, the main considerations are described below.

In our study, 49.5% of the interviewees reported the appearance of stretch marks during pregnancy, a lower percentage than that found in the Brazilian and international literature, with values between 55 and 61% [11, 12]. In accordance with the literature, the main sites affected were, in descending order, abdomen, breasts, and thighs, and there was a statistically significant association between greater weight gain (>16 kg) and the development of stretch marks [11, 12]. In the present study, primiparity, excess weight gain (greater than 21 kg), the presence of stretch marks prior to the first pregnancy, and younger maternal age were found to be factors associated with the appearance of stretch marks. These data are consistent with those in the literature [13, 14].

The use of moisturizers and oils does not seem to have a preventive capacity for stretch marks during pregnancy, which has also been reported in a recent study published by Cochrane [15].

In this study, it was decided to include the occurrence of facial blemishes globally, not just melasma, since some pregnant women develop diffuse hyperpigmentation of the skin, the appearance or darkening of ephelides, and solar melanosomes, which are different conditions of melasma, but which are still capable of causing discomfort in pregnant women.

The occurrence of facial blemishes during pregnancy was reported by 33.9% of the interviewees. Data on the occurrence of melasma and other spots on the face during pregnancy are presented in Table 2.

Table 2: Stretch marks and facial blemishes in pregnancy. Santa Casa Hospital, Porto Alegre, Brazil.

Variables	Appearance of stretch marks^a		
Age range			
<25 years	204 (33.7) 402 (66.3)	<0.001	
26 years or more	443 (65.8) 230 (34.2)		
Stretch marks prior to first pregnancy			
No	410 (63.5) 363 (57.7)	0.035	
Yes	236 (36.5) 266 (42.3)		
Primiparous			
No	411 (63.5) 264 (41.7)	<0.0001	
Yes	236 (36.5) 369 (58.3)		
Phototype			
1	7 (1.1) 7 (1.1)		
2	118 (18.3) 132 (21.0)		
3	314 (48.8) 265 (42.2)	0.218	
4	160 (24.8) 162 (25.8)		
5	41 (6.4) 58 (9.2)		
6	4 (0.6) 4 (0.6)		
Weight gain			
≤10 kg	283 (44.6) 212 (33.9)		
11 to 15 kg	204 (32.2) 207 (33.1)	<0.0001	
16 to 20 kg	106 (16.7) 113 (18.1)		
≥21 kg	41 (6.5) 94 (15.0)		
Daily moisturizing products use			
No	291 (45.0) 281 (44.4)	0.869	
Yes	355 (54.9) 352 (55.6)		
Adequate prenatal care			
No	135 (21.0) 117 (18.6)	0.278	
Yes	508 (79.0) 513 (81.4)		

*Percentages calculated based on the total of each group that noted the appearance of stretch marks.

Table 2: Continued.

Variables	Appearance of facial spots/melasma^b		
Age range			
<25 years	458 (75.7) 147 (24.3)	0.001	
26 years or more	386 (57.4) 287 (42.6)		
Mother or sister diagnosed with facial blemishes/melasma			
No	582 (69.0) 226 (52.1)	<0.0001	
Yes	230 (27.3) 200 (46.1)		
Unknown	31 (3.7) 31 (3.7)		
Primiparous			
No	413 (48.9) 261 (60.1)	<0.0001	
Yes	432 (51.1) 173 (39.9)		

*Percentages calculated based on the total of each group that noted the appearance of facial spots/melasma.

^aPearson’s chi-squared test.
pregnancy are quite heterogeneous in the literature, ranging from 10.7 to 70% [4, 16–18].

The factors associated with the appearance of facial blemishes in our study were family history of facial blemishes, multiparity, and the daily use of sunscreen on the face. Although studies indicate a high prevalence of family history among women with melasma (ranging from 36 to 56.3%), few studies have been able to demonstrate a statistical association between family history and the development of melasma [7, 16–18]. The group that perceived the presence of facial blemishes had a significantly higher mean number of pregnancies when compared to those that did not present facial blemishes, corroborating data from the literature that associate the appearance of facial blemishes with increased parity [16, 18, 19].

In this study, the women who developed facial blemishes showed greater adherence to the daily use of facial sunscreen than those who did not develop such blemishes. Despite the known preventive and therapeutic action of the use of sunscreen in melasma, previous studies among pregnant women found no association between melasma prevention and sunscreen use [16, 17]. This is probably due to a reverse causality bias: women who are more likely to have melasma (e.g., family history or prior history of that skin alteration) are more likely to use sunscreen daily.

The literature is inconclusive regarding any association between the occurrence of melasma and facial blemishes and ethnicity or phototype: while some studies associate the occurrence of melasma with higher phototypes, others demonstrate no such association [16, 17]. In our study, no relationship was found between the occurrence of melasma and phototype.

The onset or worsening of acne lesions during pregnancy was reported by 35.7% of the interviewees, which could be related to the increase in glandular activity, already described in the literature, especially that of the sebaceous glands [20, 21]. Few studies, either Brazilian or international, address the development of acne in pregnancy. A study conducted in basic health units in São Paulo with a total of 124 pregnant women showed an incidence of 12.8% of acne lesions during pregnancy, and an Indian study with 607 pregnant women showed a prevalence of 2.3% among the women interviewed [20, 22].

Variables	Appearance or aggravation of acne^a			p
	0—no (n = 820)	1—yes (n = 456)		
Age range				
<25 years	339	264	43.8	<0.001[§]
26 years or more	480	192	28.6	
Primiparous				
No	470	201	44.1	<0.001[§]
Yes	350	255	55.9	
Phototype				
1	8	6	1.3	
2	154	96	21.2	
3	402	178	39.4	0.011[§]
4	198	123	27.2	
5	50	46	10.2	
6	5	3	0.7	
Weight gain				
≤10 kg	333	161	35.7	
11 to 15 kg	252	157	34.8	0.249[§]
16 to 20 kg	134	84	18.6	
≥21 kg	86	49	10.9	
Daily facial sunscreen use				
No	660	381	53.6	0.272[§]
Yes	154	75	16.4	
Developed health complications during pregnancy				
No	422	233	51.3	0.944[§]
Yes	397	221	48.7	
Medication use				
No	100	61	13.5	0.510[§]
Yes	717	390	86.5	

Appearance of hair alterations^b			p	
Variables	0—no (n = 709)	1—yes (n = 569)		
Age range				
<25 years	343	261	54.4	0.374[§]
26 years or more	366	307	45.6	
Primiparous				
No	395	278	48.9	0.029[§]
Yes	314	291	51.1	
Phototype				
1	7	7	1.2	0.533[§]
2	126	123	21.8	
3	326	254	45.0	
4	187	133	23.5	
5	56	43	7.6	
6	3	5	0.9	

^aPercentages calculated based on the total of each group that noted the appearance of aggravation of acne. ^bPercentages calculated based on the total of each group that noted the appearance of hair abnormalities. [§]Pearson’s chi-squared test. [¶]Fischer’s exact test using Monte Carlo simulations.
In our sample, the factors associated with development or worsening of acne lesions during pregnancy were primiparity and maternal age less than 25 years. In a study carried out in Brazil with female patients with acne, the mean age of the patients was 21.7 years, which reinforces the data found in our study [23].

Phototypes 4 and 5 were also associated with a higher occurrence of acne in the present study. Interestingly, a recent study carried out in Pelotas (southern Brazil) found that patients with higher phototypes have a different pattern of acne than lighter-skinned patients, with noninflammatory acne prevailing in the former and inflammatory acne prevailing in the latter [24]. New studies into the occurrence of acne in the different phototypes could be conducted, as well as into the risk factors for and protection against the development of acne during pregnancy.

The occurrence of hair alterations during pregnancy was reported by 44.5% of the sample, with most complaints referring to hair loss and dryness. The data available in the literature show much lower rates of capillary changes during pregnancy, ranging from 2.6 to 12.8%, with both hair loss and increasing hair volume [7, 22].

The present data do not corroborate some studies that point to increased capillary volume in pregnancy (with increased thread diameter and a greater proportion of anagen to telogen threads) [25].

There was a greater proportion of capillary alterations among the primiparous patients, suggesting that perhaps the first pregnancy influenced the capillary cycle more strongly, or even a bias of confusion and memory, as women in their first pregnancy could be more aware of such modifications. In agreement with the literature, no other risk or protection factors for capillary alterations during pregnancy were identified.

Our study has limitations. Additional sample variables, such as weight and sex of the newborn, delivery route, gestational age, and economic and educational factors of the sample could have been collected and analyzed in order to enrich our analysis. Some of our data were only obtained through patient reports, such as family history of facial blemishes and the occurrence of hair alterations, which makes our data subject to biases of subjectivity and memory. The occurrence of other pigmenitary alterations, such as linea nigra, and vascular alterations, such as palmar erythema, has not been studied (such changes are frequent but usually spontaneously resolved).

5. Conclusion

Given their high prevalence rates, the importance of skin alterations during pregnancy is clear. In particular, stretch marks, hair alterations, acne, and facial blemishes were observed.

Risk factors were found, and the recognition of these associations may help in the prevention and management of the problems. The main points are as follows: excessive weight gain, primiparity, and younger age as risk factors for stretch marks; the lack of evidence of the use of topical preparations during pregnancy to prevent stretch marks; family history, multiparity, and older age as risk factors for the development of facial blemishes; primiparity and the younger age as a risk factor for acne; and primiparity as a risk factor for hair loss and hair dryness.

Thus, the present study presents important data from a large sample, the largest Brazilian series on the subject, to date.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

There is no conflict of interest to declare.

Acknowledgments

We acknowledge the invaluable help from Marcela Lopes, Suelen Camargo, Carla Bastos, and Emilia Scalco.

References

[1] V. V. Panicker, N. Riyaz, and P. K. Balachandran, “A clinical study of cutaneous changes in pregnancy,” Journal of Epidemiology and Global Health, vol. 7, no. 1, pp. 63–70, 2017.
[2] K. H. Tyler, “Physiological skin changes during pregnancy,” Clinical Obstetrics and Gynecology, vol. 58, no. 1, pp. 119–124, 2015.
[3] G. F. Alves, T. C. N. Varella, and L. S. C. Nogueira, “Dermatologia e gestação,” Anais Brasileiros de Dermatologia, vol. 80, no. 2, pp. 179–186, 2005.
[4] J. L. Schmutz, “Specific dermatoses of pregnancy,” Presse Médicale, vol. 32, no. 38, pp. 1813–1817, 2003.
[5] S. C. S. Carneiro and L. Azulay-Abulafia, “Pele na gestação,” Revista Brasileira de Reumatologia, vol. 45, no. 3, pp. 146–152, 2005.
[6] V. Roizen, I. Araya, D. Faivovich, and G. Gigia, “Cambios dermatológicos fisiológicos y patológicos del embarazo: estudio en 227 mujeres,” Revista Chilena de Dermatología, vol. 25, no. 4, pp. 344–351, 2009.
[7] F. Muzaﬀar, I. Hussain, and T. S. Haroon, “Physiologic skin changes during pregnancy: a study of 140 cases,” International Journal of Dermatology, vol. 37, no. 6, pp. 429–431, 2002.
[8] T. B. Fitzpatrick, “The validity and practicality of sun-reactive skin types i through vi,” Archives of Dermatology, vol. 124, no. 6, pp. 869–871, 1988.
[9] M. T. G. Gomes and J. A. César, “Perfil epidemiológico de gestantes e qualidade do pré-natal em unidade básica de saúde em Porto Alegre, Rio Grande do Sul, Brasil,” Revista Brasileira de Medicina de Família e Comunidade, vol. 8, no. 27, pp. 80–89, 2013.
[10] Ministério da Saúde, Secretaria de Atenção à Saúde, Departamento de Ações Programáticas Estratégicas, Área Técnica de Saúde da Mulher, Pré-natal e Puerpério: atenção qualificada e humanizada – manual técnico/Ministério da Saúde, Secretaria de Atenção à Saúde, Departamento de Ações Programáticas Estratégicas, Ministério da Saúde, Brasília, 2005.
[11] M. Maia, C. R. Marçôn, S. B. Rodrigues, and T. Aoki, “Estrias de distensão na gravidez: fatores de risco em primíparas,” Anais Brasileiros de Dermatologia, vol. 84, no. 6, pp. 599–605, 2009.
[12] H. Osmann, N. Rubeiz, H. Tamim, and A. Nassar, “Risk factors for the development of striae gravidarum,” *American Journal of Obstetrics and Gynecology*, vol. 196, no. 1, pp. 62.e1–62.e5, 2007.

[13] A. L. Chang, Y. Z. Agredano, and A. B. Kimball, “Risk factors associated with striae gravidarum,” *Journal of the American Academy of Dermatology*, vol. 51, no. 6, pp. 881–885, 2004.

[14] G. S. Atwal, L. K. Manku, C. E. Griffiths, and D. W. Polson, “Striae gravidarum in primiparae,” *The British Journal of Dermatology*, vol. 155, no. 5, pp. 965–969, 2006.

[15] M. Brennan, G. Young, and D. Devane, “Topical preparations for preventing stretch marks in pregnancy,” *Cochrane Database of Systematic Reviews*, no. 11, article CD000066, 2012.

[16] A. Moin, Z. Jabery, and N. Fallah, “Prevalence and awareness of melasma during pregnancy,” *International Journal of Dermatology*, vol. 45, no. 3, pp. 285–288, 2006.

[17] K. S. M. Purim and M. F. S. Avelar, “Photoprotection, melasma and quality of life in pregnant women,” *Revista Brasileira de Ginecologia e Obstetricia*, vol. 34, no. 5, pp. 228–234, 2012.

[18] A. A. Tamega, L. D. B. Miot, C. Bonfetti, M. E. A. Marques, and H. A. Miot, “Clinical patterns and epidemiological characteristics of facial melasma in Brazilian women,” *Journal of the European Academy of Dermatology and Venereology*, vol. 27, no. 2, pp. 151–156, 2013.

[19] A. C. Handel, P. B. Lima, V. M. Tonolli, L. D. Miot, and H. A. Miot, “Risk factors for facial melasma in women: a case-control study,” *The British Journal of Dermatology*, vol. 171, no. 3, pp. 588–594, 2014.

[20] M. B. M. Urasaki, “Alterações fisiológicas da pele percebidas por gestantes assistidas em serviços públicos de saúde,” *Acta Paulista de Enfermagem*, vol. 23, no. 4, pp. 519–525, 2010.

[21] R. C. Wong and C. N. Ellis, “Physiologic skin changes in pregnancy,” *Journal of the American Academy of Dermatology*, vol. 10, no. 6, pp. 929–940, 1984.

[22] D. M. Thappa, R. Kumari, and T. J. Jaisankar, “A clinical study of skin changes in pregnancy,” *Indian Journal of Dermatology, Venereology and Leprology*, vol. 73, p. 141, 2007.

[23] J. V. Schmitt, P. Y. Masuda, and H. A. Miot, “Padrões clínicos de acne em mulheres de diferentes faixas etárias,” *Anais Brasileiros de Dermatologia*, vol. 84, no. 4, pp. 349–354, 2009.

[24] R. P. Duquia, I. S. Santos, H. Almeida Jr., P. R. M. Souza, J. A. Breunig, and C. C. Zouboulis, “Epidemiology of acne vulgaris in 18-year-old male army conscripts in a South Brazilian city,” *Dermatology*, vol. 233, no. 2-3, pp. 145–154, 2017.

[25] Y. L. Lynfield, “Effect of pregnancy on the human hair cycle,” *The Journal of Investigative Dermatology*, vol. 35, no. 6, pp. 323–327, 1960.