Isolation and Characterization of Microbial Contamination from Computer Accessories used in Different Department of Hazara University and Diagnostic Laboratories of District Mansehra, Pakistan

Zeba Gul Burki1, Mukhtiar Hassan1, Faiza Naseer2,*, Sohail Ahmad3, Samiullah Burki4, Mohammad Saleem5, Attiya Nazish2, Shafiq-ur-Rehman2

1Department of Microbiology, Hazara University, Mansehra, Pakistan
2College of Pharmacy, Govt College, University, Faisalabad, Pakistan
3Department of Biochemistry, Hazara University, Mansehra, Pakistan
4Department of pharmacology, faculty pharmacy, Federal Urdu University of Arts, Science and Technology, Pakistan
5College of Pharmacy, Punjab University, Lahore, Pakistan

*Corresponding author: faiza.naseer@ymail.com

Received September 28, 2014; Revised October 18, 2014; Accepted May 22, 2015

Abstract

150 samples were collected from computer accessories used in Hazara University and different diagnostic laboratories of Mansehra, examined for the total bacterial count and maximum growths were observed. Samples were analyzed for further identification of micro-organisms such as E.coli, Klebsiella, Staph. aureus and Staph. epidermidis. These organisms were detected in the percentage of 46.66 of E. coli, 20% of Klebsiella, 16.66% of S. aureus & 16.66% of S. Epidermidis and identified on selective media, i.e. EMB agar and Mannitol salt agar. Furthermore, biochemical tests, including IMVIC Test, Catalase Test and Coagulase Tests were performed to confirm the presence of micro-organisms and their susceptibility also checked against different standard antibiotics and their zone of inhibitions were measured and noticed. E.coli showed maximum resistance of 97.36% against Erythromycin, Klebsiella showed against Amoxil + Clavulonic acid about 83.83%, Staph aureus showed against Erythromycin about 64.64% and Staph. epidermidis resistance was 90.9% against Erythromycin and Gentamycin. E.coli and Klebsiella showed maximum sensitivity for Meropenem 67.22% and 72.72% respectively while Staph. aureus and Staph. epidermidis maximum sensitivity for Vancomycin about 82.82% and 72.72% respectively. These results indicate that the computer accessories might act as environmental vehicles for the transmission of potentially pathogenic bacteria in our surroundings and also indicate the need for increasing awareness among computer users on cleaning of such surfaces or disinfection and adequate hand-washing hygiene.

Keywords: E.coli, Klebsiella, Staph. aureus, Staph. epidermidis, Computer accessories, EMB agar, Mannitol salt agar, Antibiotic resistance

Cite This Article: Zeba Gul Burki, Mukhtiar Hassan, Faiza Naseer, Sohail Ahmad, Samiullah Burki, Mohammad Saleem, Attiya Nazish, and Shafiq-ur-Rehman, “Isolation and Characterization of Microbial Contamination from Computer Accessories used in Different Department of Hazara University and Diagnostic Laboratories of District Mansehra, Pakistan.” American Journal of Infectious Diseases and Microbiology, vol. 3, no. 3 (2015): 112-124. doi: 10.12691/ajidm-3-3-4.

1. Introduction

The skin floras include 1000 different species of bacteria belonging to 19 different phyla have been isolated from human skin, are usually non-pathogenic either commensal or mutualistic (Bhalla et al., 2007). Bacteria prevents pathogenic organisms from colonizing on the skin surface, either by competing for nutrients or secreting chemicals against them and by stimulating skin's immune system as well (Grice et al., 2009; Oluduro et al., 2011). However, microbes cause skin diseases via penetrating into the blood stream and fabricate life-threatening diseases, particularly in people with weak immune system (Cogen et al., 2008). E.g. Pseudomonas aeruginosa, a pathogenic mutualist bacterium, causes gastro, respiratory, osteo and skin infections via blood but it produces a substances that inhibits the growth of fungus species like Candida krusei, Candida albicans, Torulopsis glabrata, Saccharomyces cerevisiae & Aspergillus fumigatus and bacteria like Helicobacter pylori (Krausse et al., 2005). The skin flora strengthens the person’s immunity.

Computers are widely used in every aspect of our occupational, recreational and residential environments. In the university setting, students have 100% access to computers, 92.1% regularly use the Internet and 73.3% regularly check e-mail (Ali et al., 2013). A research
conducted in a hospital ICU revealed that computer keyboards and door knobs had higher rates of bacterial colonization with methicillin-resistant S. aureus (MRSA) and other potential nosocomial pathogens. They become responsible for transmission of microbes in the ICU setting (Bures et al., 2000). In another study in 2006, it has been reported that potential pathogens, including Coagulase-negative Staphylococci, Diphtheroids, Micrococcus species, Bacillus species, Staphylococcus aureus, Enterococcus species and non fermentative gram-negative rods were found in 25 computer keyboards in two intensive care units and six nursing units (Rutala et al., 2006). Coagulase-Negative Staphylococcus aureus, usually found on the skin or in the nasal areas. It appears colonization with methicillin-resistant S. aureus (MRSA) has been reported that potential pathogens, including Coagulase-negative Staphylococci, Diphtheroids, Micrococcus species, Bacillus species, Staphylococcus aureus, Enterococcus species and non fermentative gram-negative rods were found in 25 computer keyboards in two intensive care units and six nursing units (Rutala et al., 2006). Coagulase-Negative Staphylococcus aureus, usually found on the skin or in the nasal areas. It appears colonization with potential pathogens, including Coagulase-negative Staphylococci, Diphtheroids, Micrococcus species, Bacillus species, Staphylococcus aureus, Enterococcus species and non fermentative gram-negative rods were found in 25 computer keyboards in two intensive care units and six nursing units (Rutala et al., 2006).

2. Materials and Methods

A one year study was conducted in the Microbiology Department of Hazara University, Mansehra, during January to December 2010. Total 150 samples were collected from computer keyboards and mouse by sterile swabs from different Departments, Digital libraries of Hazara University and different Diagnostic Laboratories of District Mansehra. In this study bacterial pathogens were isolated and their antimicrobial susceptibility was studied (Forbes et al., 2007).

a. Sampling Sites and their Collections: Samples were collected from the computer hardware’s of different location divided into three groups.

- **Group A:** 50 samples were taken from different departments and offices of Hazara University Mansehra.
- **Group B:** Another 50 samples were collected from computer labs of Hazara University, Mansehra.
- **Group C:** 50 other samples were collected from different diagnostic laboratories of Manshehra.

b. Sterilization of the Glassware: All the glassware and equipments such as test tubes, petri dishes, spreader, wire loops, beakers and flasks were sterilized in an autoclave at 121°C and 15psi pressure for 15 min. Before sterilization, glass wares were wrapped in the aluminum foil to prevent contamination.

c. Media Preparation: 500ml distilled water was taken in flask, for boiling placed on hot plate, then added 18.45gm of media in the flask (Table 1). Shook the mixture until homogenization. That homogenized media was autoclaved to eliminate contamination. Now media were poured in sterile petri dishes inside the laminar flow hood.

d. Identification of bacterial isolates: The bacteria were isolated on autoclaved media. The media after cooling down were aseptically poured in the test tubes and petri dishes under laminar flow hood. The specimens were spread by using a sterilized wire loop on nutrient agar. After 24 hours incubation at 37°C in aerobic conditions, these plates were examined for any growth. Furthermore the positive growth plates were sub cultured on specific media such as EMB and MSA agar. Isolated colonies of bacteria were identified by morphological appearance and different biochemical tests (Koneman, 2006; Sahara et al., 2011). The following tests were performed for the identification of bacteria:

1. Indole Production Test
2. Methyl Red Voges-Proskauer (MRVP) Test
3. Citrate Utilization Test
4. Catalase Test
5. Coagulase Test

Table 1. Culture Medias and their Composition
Media

Nutrient Agar
Mannitol Salt Agar
Muller Hinton Agar
Eosin methylene blue (EMB)
pH 7.1±0.2 at 25°C
Tryptone Water
pH 7.3±0.2 at 25°C

1. **Indole Test:** Test organism inoculates into trypton broth, rich source of amino acid tryptophan. Indole positive bacteria such as *E. coli* produces tryptophans, an enzyme that cleaves tryptophan, produces Indole and other products. When Kovac’s reagent (P-dimethylaminobenzaldehyde) adds to a broth with Indole, a dark pink color develops. The Indole test must be read by 48hrs of incubation because the insole can be further degraded if prolong the incubation occurs. The acidic pH produced by *E. coli* limits its growth (Winn et al., 2006).

2. **Methyl red and Voges-Proskauer Test:** After 24-48hrs of incubation the MR-VP broth splits into two tubes. One tube is used for the MR test and the other for VP test. MR-VP media contain glucose and peptone. All enteric bacteria oxidize glucose for energy. *E. coli* is one of the bacteria that produce acids and causing the pH to drop below 4.4. When an acid indicator methyl red is added to this acidic broth it give cherry red color resulting in MR positive test. The reagents
used for the VP test are Barrett’s reagents and when Barrett’s reagents are added to a broth it gives pink-burgundy color resulting in positive VP test. This color may take 20-30 min to develop.

3: Citrate Test: This test utilizes Simon’s citrate media to determine if a bacterium can grow utilizing citrate as its sole carbon and energy source. Simon’s media contain bromothymol blue, a pH indicator with a range of 6.0 to 7.6. Bromothymol blue is yellow at acidic pH (around 6) and gradually changes to blue at more alkaline pH (around 7.6). Un inoculated Simon’s citrate agar has pH of 6.9. So it’s an intermediate green color. Growth of bacteria in the media leads to the development of a blue color (positive citrate). Enterobacter and Klebsiella are citrate positive while E.coli is negative. Thus E.coli + + - - results on the IMVIC tests, while Enterobacter and Klebsiella give the reverse - - ++.

4: Catalase Test: The presence of catalase enzyme in the test isolate is detected by using of H2O2. When a small amount of bacterial isolate is added to hydrogen peroxide, bubbles of oxygen or froth produce and show catalase positive result. This test is used to differentiate between different bacterial species in the lab. It is done by placing a drop of H2O2 on a microscope slide by using an applicator stick, touches the colony and smears a sample into H2O2.

5: Coagulase Test: The enzyme coagulase causes plasma to clot by converting fibrinogen to fibrin and organisms to agglutinate in small quantities of plasma. The test is performed by adding some blood plasma to a drop of normal saline on a slide by using an applicator stick touch the colony and smears a sample into the diluted plasma. Agglutination indicates that the test is coagulase positive (Qian et al., 2007).

c. Antimicrobial susceptibility Test: The antimicrobial susceptibility test or disc diffusion method is used for each bacterial isolate on Mueller Hinton agar as a growth medium. 25 ml of media is poured in 90 mm sterile petri dishes and incubate at 37°C overnight to check sterility.

f. Inoculation preparation: Tryptic Soya broth is made for inoculum preparation. 5ml of broth medium is dispensed in test tubes and sterilized by autoclaving at 121°C for 15 mints. The test tubes are cooled and kept in an incubator for 24 hours at 35°C to check the sterility. Then each of identified clinical isolate is inoculated in sterilized test tubes containing media and placed in incubator for 2-6 hrs at 35°C.

3. Results

a. Sample collection: It was observed that out of 50 samples from group “A” numerous, or uncountable bacterial colonies were found in most of the samples except sample No. 4, 6-8, 10, 12, 15, 17, 19, 20, 23-25, 28, 30, 33, 34, 37-39, 41, 44, 46-47, 49-50 (Table 2). Out of 50 Samples collected from group “B”, uncountable bacterial colonies were found in most of the samples except sample No.1, 3, 6, 8, 11, 13, 16, 21, 27, 30, 34, 37, 39, 41, 43, 49, 50 (Table 3). Out of 50 samples collected from group “C”, numerous uncountable bacterial colonies were found in most of the samples except sample No. 1, 3, 6, 9-10, 12, 16, 21, 29, 32, 35, 37, 39, 43, 48 (Table 4).

S. No	Sample Code	No of Bacterial Count/ml.	Value in Log.	S. No	Sample Code	No of Bacterial Count/ml.	Value in Log.
1	Law.Ch.M	82×10⁸	5.91	26	M.M	Uncountable	-
2	Law.L.M	Uncountable	-	27	M.K	Uncountable	-
3	Law.Z.M	Uncountable	7.04	28	M.Z.M	136×10⁶	7.13
4	Bio.HOD.K	65×10⁹	5.81	29	M.J.M	Uncountable	-
5	Bio.L.M	Uncountable	-	30	M.Sh.K	75×10⁹	5.87
6	Bio. M	90×10⁹	5.95	31	M.Ds.K	Uncountable	-
7	Eng.Ch.K	55×10⁹	5.74	32	M.Ch.K	Uncountable	-
8	Eng.K.	35×10⁹	4.54	33	Gen.M	147×10⁷	6.16
9	Eng.L.K	Uncountable	-	34	Gen.K	202×10⁵	4.30
10	Edu.HODM	20×10⁷	3.36	35	Gen. L	Uncountable	-
11	Edu.Lab.K	Uncountable	-	36	Mt.M	Uncountable	-
12	Edu.M	75×10⁹	5.87	37	Mt.K	167×10⁶	6.22
13	Edu.K	Uncountable	-	38	Mt.HOD.K	75×10⁵	3.87
14	IT.Ch.M	Uncountable	-	39	Mt.M	98×10⁵	3.99
15	IT.Lab1.M	155×10⁹	5.19	40	PS.M	Uncountable	-
16	IT.Lab2.K	Uncountable	-	41	PS.K1	112×10⁷	5.05
17	Z. HOD.K	80×10⁹	5.90	42	PS.K2	Uncountable	-
18	Z.Lab.K	Uncountable	-	43	PS.L1.M	Uncountable	-
19	Ph. HOD.K	82×10⁹	6.91	44	FA.M	Uncountable	-
20	Ph. L1.K	110×10⁹	7.04	45	FA.K	Uncountable	-
21	Ph. L2.K	Uncountable	-	46	FA.Ch.M	134×10⁵	5.1
22	Ph. L3.K	Uncountable	-	47	HPE.1	166×10³	5.22
23	Phs.M	112×10⁹	5.05	48	HPE.K1	Uncountable	-
24	Bot.L.M	185×10⁹	6.26	49	HPE.K2	175×10⁹	6.24
25	Bot.L.K	198×10⁹	6.23	50	HPE.2	188×10⁹	6.27

Total 50 samples were collected from different Departments (group “A”) of Hazara University out of which 23 were uncountable or numerous and 27 were countable.
Table 3. Bacterial counts in samples collected from digital libraries of university (Group “B”)

S. No	Sample Code	No of Bacterial Count/ml.	Value in Log.	S. No	Sample Code	No of Bacterial Count/ml.	Value in Log.
1	Mi.DL.M1.	230×10^5	7.36	26	Ge.DL.K2.	Uncountable	
2	Mi.DL.M2.	Uncountable		27	Ge.DL.K3.	241×10^5	6.38
3	Mi.DL.K1.	225×10^5	5.35	28	IT.DL.M1.	Uncountable	
4	Mi.DL.K2.	Uncountable		29	IT.DL.M2.	Uncountable	
5	Mi.DL.K3.	Uncountable		30	IT.DL.M3.	230×10^5	7.36
6	Mi.DL.M2.	235×10^5	7.40	31	IT.DL.M4.	Uncountable	
7	Ge.DL.M1.	Uncountable		32	IT.DL.M5.	Uncountable	
8	Ge.DL.M2.	188×10^4	6.27	33	IT.DL.M6.	Uncountable	
9	Ge.DL.M3.	Uncountable		34	IT.DL.K1.	237×10^5	7.37
10	Ge.DL.K1.	Uncountable		35	IT.DL.K2.	Uncountable	
11	Edu.DL.M1.	205×10^5	7.31	36	IT.DL.K3.	Uncountable	
12	Edu.DLM2.	Uncountable		37	IT.DL.K4.	215×10^5	7.33
13	Edu.DL.M3.	198×10^5	7.29	38	IT.DL.K5.	Uncountable	
14	Edu.DL.M4.	Uncountable		39	Edu.DL.M3.	Uncountable	
15	Edu.DL.K1.	Uncountable		40	Edu.DL.M4.	Uncountable	
16	Edu.DL.K2.	213×10^5	7.32	41	Edu.DL.M4.	235×10^5	7.37
17	Edu.DL.K3.	Uncountable		42	Ph.DL.M1.	Uncountable	
18	Edu.DL.K4.	Uncountable		43	Ph.DL.M2.	220×10^5	7.34
19	Edu.DL.M5.	Uncountable		44	Ph.DL.K1.	Uncountable	
20	Edu.DL.M6.	Uncountable		45	Ph.DL.K2.	Uncountable	
21	Edu.DL.K5.	233×10^5	7.36	46	Ph.DL.K3.	Uncountable	
22	Eng.DL.M1.	Uncountable		47	Ph.DL.K4.	Uncountable	
23	Eng.DL.M2.	Uncountable		48	Ph.DL.K5.	Uncountable	
24	Eng.DL.K1.	Uncountable		49	Ph.DL.M3.	220×10^5	7.34
25	Eng.DL.K2.	Uncountable		50	Ph.DL.M4.	220×10^5	7.34

Total 50 samples were collected from different Digital labs (group “B”) of Hazara University out of which 33 were uncountable or numerous and 17 were countable.

Table 4. Bacterial counts in samples collected from different diagnostic laboratories of Mansehra (Group “C”)

S. No	Sample Code	No of Bacterial Count/ml.	Value in Log.	S. No	Sample Code	No of Bacterial Count/ml.	Value in Log.
1	AL.DL.M1.	240×10^5	7.38	26	MA.DL.K3.	Uncountable	
2	AL.DL.M2.	Uncountable		27	MA.DL.M3.	Uncountable	
3	ALDL.K1.	225×10^5	6.35	28	MA.DL.M4.	Uncountable	
4	ALDL.K2.	Uncountable		29	MA.DLM5.	230×10^5	7.36
5	ALDL.K3.	Uncountable		30	MA.DL.M6.	Uncountable	
6	ALDL.M3.	235×10^5	7.40	31	MA.DL.K3.	Uncountable	
7	LDL.M4.	Uncountable		32	MA.DL.K4.	237×10^5	7.37
8	ALDL.K4.	Uncountable		33	MA.DL.K5.	Uncountable	
9	ALDL.M5.	205×10^5	7.31	34	MA.DL.K6.	Uncountable	
10	ALDL.K5.	198×10^5	7.29	35	NA.DL.K1.	225×10^5	7.35
11	MA.DL.K1.	Uncountable		36	NA.DL.M1.	Uncountable	
12	MA.DL.M1.	199×10^5	7.29	37	NA.DL.M2.	235×10^5	7.37
13	MA.DL.M2.	Uncountable		38	NA.DL.M3.	Uncountable	
14	ST.DL.M1.	Uncountable		39	NA.DL.M4.	220×10^5	7.34
15	ST.DL.M2.	Uncountable		40	NA.DL.K2.	Uncountable	
16	ST.DL.M3.	238×10^5	7.37	41	NA.DL.K3.	Uncountable	
17	ST.DL.M4.	Uncountable		42	NA.DL.K4.	Uncountable	
18	ST.DL.K5.	215×10^5	7.33	43	NA.DL.K5.	234×10^5	6.37
19	ST.DL.K1.	Uncountable		44	NA.DL.M5.	Uncountable	
20	ST.DL.K2.	Uncountable		45	NA.DL.M6.	Uncountable	
21	ST.DL.K3.	215×10^5	7.33	46	NA.DL.M7.	Uncountable	
22	ST.DL.K4.	Uncountable		47	ST.DL.M2.	Uncountable	
23	ST.DL.K5.	Uncountable		48	ST.DL.M3.	200×10^5	7.30
24	MA.DL.K2.	Uncountable		49	ST.DL.M4.	Uncountable	
25	MA.DL.K2.	Uncountable		50	ST.DL.M5.	Uncountable	

Total 50 samples were collected from different Digital labs (group “C”) of Hazara University out of which 35 were uncountable or numerous and 15 were countable.
b. **Samples Dilutions:** To know the numbers of bacterial colonies in each sample serial dilutions were prepared for up to seven dilutions to give countable growth on nutrient agar (Figure 1).

c. **Identification and characterization of Microorganisms found in the samples:** Different samples were collected from computer accessories by sterile swabs and inoculated on nutrient agar by spreading method. The numbers of colonies were determined with the help of the colony counter (Figure 2).

d. **Identification using selective media:** The bacterial cultures grown on nutrient agar were further inoculated on selective media.

e. **Growth on EMB Agar:** The Eosin methylene blue (EMB) agar was used for isolation of enteric gram negative lactose fermenters. In some of samples green metallic sheen was appeared on EMB media, which had shown the presence of *E. coli* (Figure 3).

f. **Mannitol Salt Agar:** For further confirmations another selective media Mannitol salt agar was used. The appearance of yellow colonies confirmed the presence of *S. aureus* (Figure 4).

g. **Catalase Test:** The colonies from EMB medium and Mannitol salt agar medium were picked and placed on a slide. A drop of hydrogen peroxide was put with the help of the wire loop and formation of bubble indicated the positive result. *E. Coli, Klebsiella, S. aureus* and *S. epidermidis* showed catalase positive (Figure 5).
h. IMVIC Test: These biochemical tests were performed only for G -ve bacteria. These tests were conducted to confirm E.coli, Klebsiella etc. Details of these tests are as under;

- **Indole Test:** Trypton broth was prepared, picked the colony from EMB media, put in the broth and incubated for 48hrs at 37°C. After 48hrs Kovac’s reagent was put in it which gave a dark pink ring resulting in a positive test (Figure 6).

![Figure 6. Indole Negative test and Indole Positive test](image)

- **Methyl red test:** Methyl Red (MR) and Vogues proskaur (VP) were added to the Trypton Water broth for bacterial growth. The broth was separated into two different tubes, one for the addition of MR and other for VP. After 24hrs of incubation, 2-3 drops of Methyl red were put in one test tube. It gave cherry red color it indicates a positive result and yellow color in case of negative result. *E coli* showed methyl red positive and *Klebsiella* methyl red negative (Figure 7).

![Figure 7. Methyl red Negative test and Methyl red Positive test](image)

- **Vogues proskaur:** After 24hrs of incubation Barrett’s reagent was added to a broth. It remained yellow in case of negative results and it changed into pink color for positive results. *E.coli* was found to be VP negative and *Klebsiella* VP positive (Figure 8).

![Figure 8. Vogues proskaur Negative test (*E.coli*)](image)

- **Simmons’s citrate:** media were prepared and put in test tubes. The colonies from EMB media were picked with the help of the wire loop and streaked. Blue color indicated the positive result and no color change for the negative result. *E.coli* was citrate negative and *Klebsiella* citrate was positive (Figure 9).

![Figure 9. Simmon citrate blue positive test (*Klebsiella*) and negative test (*E. coli*)](image)

- **Coagulase Test:** Blood was centrifuged and one drop of plasma was placed on a slide. The colonies

![Figure 10. Coagulase positive test (*S.aureus*)](image)
were picked from Mannitol salt agar and put on the slide. Agglutination indicated the positive result. *S. aureus* was coagulase positive (Figure 10).

Table 5. Biochemical tests for identification of *E. coli*

Specie	Indole Production test	Methyl Red Test	Voges Proskauer test	Citrate Utilization test	Catalase Test
E. coli	+ive	+ive	+ive	-ive	+ive

The following 70 samples were *E. coli* positive.

Out of 50 samples from group “A”, 28 samples were *E. coli* Negative except samples No.1, 3, 4, 5, 7, 8, 10, 13, 19, 22, 26, 27, 30, 31, 33, 34, 36, 37, 40, 45, 49 (Table 2). Out of 50 samples from group “B”, 25 samples were *E. coli* Negative except samples No.2, 3, 6, 7, 8, 9, 11-13, 15, 16, 19, 22, 24, 25, 27, 28, 31, 35, 37, 40, 44, 45, 48, 50 (Table 3). Out of 50 samples from group “C”, 23 samples were *E. coli* Negative except samples No.1, 3, 7, 8, 10, 14-16, 19, 21, 25-27, 33, 35, 36, 38, 39, 41-44, 48 (Table 4).

Table 6. Biochemical tests for the occurrence of *Klebsiella*

Specie	Indole Production test	Methyl Red Test	Voges Proskauer test	Citrate Utilization test	Catalase Test
Klebsiella	-ive	-ive	+ive	+ive	+ive

The following 30 samples are Klebsiella positive.

Out of 50 samples from group “A” most of the samples are *Klebsiella* Negative except samples No.2, 6, 9, 11, 12, 21, 28, 29, 32, 35, 38, 42 (Table 2). Out of 50 samples from group “B” most of the samples are *Klebsiella* Negative except samples No. 1, 10, 14, 26, 29, 30, 32, 34, 42, 43 (Table 3). Out of 50 samples from group “C” most of the samples are *Klebsiella* Negative except samples No. 6, 22, 24, 28, 31, 32, 40, 49 (Table 4).

Table 7. Biochemical tests for the occurrence of *S. aureus*

Specie	Catalase Test	Coagulase Test
S. aureus	+ive	-ive

The following 25 samples are *S. aureus* positive.

Out of 50 samples from group “A” 42 samples were *S. aureus* Negative except samples No. 14, 16, 17, 25, 39, 43, 46, 50 (Table 2). Out of 50 samples 42 samples were *S. aureus* Negative except samples No. 17, 20, 23, 33, 36, 39, 41, 49 (Table 3). Out of 50 samples 41 samples were *S. aureus* Negative except samples No. 2, 4, 5, 9, 17, 20, 23, 29, 30 (Table 4).

Table 8. Biochemical tests for the occurrence of *S. epidermidis*

Specie	Catalase Test	Coagulase Test
S. epidermidis	-ive	+ive

The following 25 samples are *S. epidermidis* positive.

Out of 50 samples from group “A” most of the samples were *S. epidermidis* Negative except samples No.15, 18, 20, 23, 41, 44, 48 (Table 2). Out of 50 samples from group “B” most of the samples were *S. epidermidis* Negative except samples No. 4, 5, 18, 21, 38, 46, 47 (Table 3). Out of 50 samples from group “C” most of the samples were *S. epidermidis* Negative except samples No. 11-13, 18, 20, 34, 37, 45-47, 50 (Table 4).

Table 9. Number of samples isolated from different specimens

S. #	Samples	No of Isolates	Percentage
01	Keyboard	74	49.33
02	Mouse	76	50.66
Total		150	100

Table 10. Number of Bacteria isolated during the study (n=150)

S. No.	Isolated Bacteria	Quantity	Percentage
1	*E. coli*	70	46.66
2	*Klebsiella spp.*	30	20
3	*Staph. aureus*	25	16.66
4	*Staph. epidermidis*	25	16.66
Total		150	99.986

4. Sensitivity of Antibiotics

Sensitivity of antibiotics against different microbes and the resistance of these microbes against antibiotic were used.

- **Escherichia coli:**
 The activity of Meropenem was maximal against *E. coli*. All other antibiotics have activity in the decreasing order of Sulbactum + Cefoperazone > Piperacillin + Tazobactam > Doxycline, Gentamycin > Ciprofloxacin > Cefotaxime > Amoxicillin > Amoxil + Clavulanic acid, Sulphamethizole + Trimethoprim > Vancomycin > Erythromycin, Cephradine. The resistance of *E. coli* showed against Erythromycin was maximal. The other drug resistance was in the decreasing order of Vancomycin, Amoxil + Clavulanic acid > Sulphamethizole + Trimethoprim > Cephradine > Ciprofloxacin > Gentamycin > Doxycline > Cefotaxime > Piperacillin + Tazobactam > Sulbactum + Cefoperazone > Meropenem shown in Table 11, Figure 12.

- **Klebsiella:**
 The activity of Meropenem was maximal against Klebsiella. All other antibiotics have activity in decreasing order of Piperacillin + Tazobactam > Ciprofloxacin, Sulbactum + Cefoperazone > Gentamycin, Doxycline > Amoxicillin + Clavulanic acid, Amoxicillin + Sulphamethizole + Trimethoprim > Cefotaxime > Vancomycin > Cephradine > Erythromycin. The resistance of Klebsiella showed against Amoxicillin + Clavulanic acid was maximal. Other drugs resistance was in the decreasing order of Amoxicillin, Sulphamethizole + Trimethoprim > Cephradine, Cefotaxime > Gentamycin > Ciprofloxacin > Vancomycin, Doxycline > Erythromycin > Sulbactum +
Cefoperazone > Piperacillin + Tazobactam > Meropenem (Table 12, Figure 13).

Table 11. Antibiotics Sensitivity against E. coli strains in Percentage

Sensitivity Pattern	AMOXIL, CLAVULANICACID	AMOXICILLIN	CEPHRADINE	CEFACLOR	CEFTIZOXIME	CIPROFLOXACIN	ENOXACIN	ERYTHROMYCIN	MEROPENEM	GENTAMYCIN	DOXICYCILIN	VANCOMYCIN	SULPHAMETHAXAZOLE, TRIMTHOPRIM	SULBACTUM, CEFOPERAZONE	PIPRAICILLIN, TAZOBACTUM
Sensitive	18.19	22.24	3.3	23.68	27.8	27.1	41.41	2.63	67.22	42.93	39.47	7.89	14.15	63.15	52.63
Intermediate	0	0	26	10.52	27.8	7.25	12.12	0	26.1	6.75	13.15	5.26	8.35	21.05	28.94
Resistant	81.81	77.76	70.7	65.78	44.4	65.65	53.53	97.36	6.68	50.5	47.36	86.84	77.5	15.78	18.42

Figure 12. Antibiotics Sensitivity of E. coli strains in Percentage

Table 12. Antibiotics Sensitivity against Klebsiella strains in Percentage

Sensitivity Pattern	AMOXIL, CLAVULANICACID	AMOXICILLIN	CEPHRADINE	CEFACLOR	CEFTIZOXIME	CIPROFLOXACIN	ENOXACIN	ERYTHROMYCIN	MEROPENEM	GENTAMYCIN	DOXICYCILIN	VANCOMYCIN	SULPHAMETHAXAZOLE, TRIMTHOPRIM	SULBACTUM, CEFOPERAZONE	PIPRAICILLIN, TAZOBACTUM
Sensitive	16.17	21.05	3.25	21.21	3.25	42.74	42.1	57.58	72.72	30.3	39.47	39.47	13.15	63.15	70.7
Intermediate	0	0	25.04	14.15	25.04	8.78	5.26	0	22.88	8.09	13.15	13.15	7.89	21.05	19.19
Resistant	83.83	78.94	71.71	64.64	71.71	48.48	52.63	42.42	4.4	61.61	47.36	47.36	78.94	15.78	10.81
Figure 13. Antibiotics Sensitivity of Klebsiella strains in Percentage

- **Staph. Aureus**

 The activity of Vancomycin was maximal against *Staph. aureus*. All other antibiotics have activity in decreasing order of Doxycycline > Amoxicillin > Sulbactum + Cefoperazone > Gentamycin, Meropenem > Ciprofloxacin, Piperacillin + Tazobactam > Cephradine > Amoxil + Clavulanic acid > Erythromycin > Cefixoxime > Sulphamethizole + Trimethoprim. The resistance of *Staph. aureus* against Gentamycin was maximal. The other drug resistance was in the decreasing order of Cephradine > Sulphamethizole + Trimethoprim > Erythromycin, Cefixoxime, Ciprofloxacin > Amoxicillin > Piperacillin + Tazobactam > Meropenem > Sulbactum + Cefoperazone > Doxycycline > Vancomycin.

Table 13. Antibiotics Sensitivity against Staph. Aureus strains in percentage

Sensitivity Pattern	AMOXIL, CLAVULANIC ACID	AMOXICILLIN	CEPHRADINE	CEFACLOR	Ceftizoxime	CIPROFLOXACIN	ENOXACIN	ERYTHROMYCIN	MEROPEMEN	GENTAMYCIN	DOXYCYCLIN	VANCOMYCIN	SULPHAMETHAXAZOLE, TRIMETHOPRIM	SULBACTUM, CEFOPERAZONE	PIPERACILLIN, TAZOBACTUM
Sensitive	47.72	47.72	42.85	42.85	26.84	27.27	24.25	31.81	31.81	22.23	82.82	28.59	28.59	28.59	28.59
Intermediate	0	0	0	6.65	6.65	12.55	59.09	11.11	20.45	4.54	17.17	8.68	19.9	19.9	19.9
Resistant	52.27	52.27	52.27	50.5	50.5	60.6	13.63	64.64	47.72	63.63	60.6	8.5	51.51	51.51	51.51

- **Staph.epidermidis**

 The activity of Vancomycin was maximal against *Staph.epidermidis*. All other antibiotics have activity in decreasing order of Doxycycline > Amoxicillin, Amoxicilin + Clavulanic acid, Sulbactum + Cefoperazone, Piperacillin + Tazobactam > Sulphamethizole + Trimethoprim > Erythromycin, Meropenem, Cephradine > Ciprofloxacin, Cefixoxime, Gentamycin. The resistance of *Staph.epidermidis* against both Erythromycin and Gentamycin is maximal. The other drug resistance was in the decreasing order of Sulphamethizole + Trimethoprim, Cilipenem, Cefixoxime, Ciprofloxacin > Cephradine, Amoxicillin, Amoxicilin + Clavulanic acid > Sulbactum + Cefoperazone > Piperacillin + Tazobactam > Doxycycline > Vancomycin shown in Table 14, Figure 15.
Figure 14. Antibiotics Sensitivity of Staph. aureus strains in percentage

Figure 15. Antibiotics Sensitivity against Staph. Epidermidis strains in percentage
5. Discussion

The existing study was aimed to assess the bacteriological number and types of computer accessories used in Hazara University and different diagnostic laboratories of Mansehra. 150 samples were collected by sterilizing swabs from different PCs used in different departments and different diagnostic laboratories of Mansehra. These samples were arranged in 3 different groups named as group “A”, “B” and “C”. For each sample serial dilutions were prepared for up to seven dilutions and cultivated on nutrient agar for evaluating the total number of bacterial counts. Similarly, samples were isolated and further confirmed by performing different biochemical tests such as Indole test, Coagulase test, Catalase test and MRVP test.

Out of 150 samples 70 samples were E. coli positive, 30 were Klebsiella positive, 25 were S. aureus positive and 25 were S.epidemidis positive. The reasons for these results were unhygienic conditions and multiple users. Even samples collected from single user computer keyboards and mouse also gave uncountable microbes. Most enteric pathogenic bacteria, including E. coli, Klebsiella, S. Areas have a high prevalence as a contaminant because they shed from the body, clothing, beddings and nostrils to the nearby areas and easily discharge by several human activities including talking, sneezing and physical contact with moist skin (Itah and Ben, 2004). That’s why associated with numerous diseases like urinary tract, gastrointestinal (diarrhea) and nosocomial infections. Along with these, organisms carried by the wind can be moved from users to the surroundings (Oluduro et al., 2011). While S.epidemidis infrequently presupposes an opportunistic pathogen, has a role in causing human infections like endocarditis (Anastasiades et al., 2009). So, places like offices, laboratories, internet café, customer service departments, etc. surrounded by a lot of people moving in and out, are likely to have a large number of people sick due to skin dermatitis, seasonal infections, allergies, sneezing and hypersensitivities (Tagoe and Kumi-Ansah, 2011).

Antibiotic sensitivity was also performed to check their activity against specific antibiotics. The activity of Meropenem against E.coli was maximum 67.22% and showed maximum resistance about 97.36% against Erythromycin shown in Table 11, quite similar to the findings of early workers. They reported 77% resistance of Amoxil + Clavulanic acid, 76% Sulphamethaxazole + Trimethoprim and 68% for Ciprofloxacin while our readings were 81%, 77.5% and 66% respectively (Ejaz et al., 2011).

The activity of Meropenem was maximal about 72.72% against Klebsiella and resistance was maximal in Amoxicil + Clavulonic acid about 83.83% as shown in Table 12, very near to the earlier findings i.e. 81.81% resistance (Kacmaz and Sultan, 2007). Staph aureus showed maximal activity against Vancomycin about 82.82% and maximal resistance against Erythromycin about 64.64% as shown in Table 13 while Mehdinejad et al., in 2008 had been reported that Staph. aureus has maximal activity against Vancomycin about 92.5% and maximal resistance against Erythromycin about 62.4%, very close to our results. Vancomycin had shown maximal activity of 72.72% against Staph. epidermidis and its resistance was 90.9% against both Erythromycin and Gentamycin (Table 14).

The resistance against antibiotic have many reasons such as incomplete or in sequence course of treatment, multiple use of antibiotics both for G +ve and G –ve bacteria, OTC drugs like antibiotics without any prescription, unethical approach of marketing, low trading potency (less than 100% results) and the most important cause is self medication (Tenover, 2006). So, it is recommended that proper diagnosis, clinical tests, starts from lower potency to higher potency and natural food therapy is required.

6. Conclusion

In conclusion, the isolation of the bacteria from computer accessories is a clear indication that the methods of sterilization or aseptic procedures adopted by the operators are less/not effective in significantly reducing the level of the pathogenic microbes on these surfaces to an acceptable level. It is also noticed that the level of knowledge among users in computer centers about the presence of microbes on computer accessories and their cleanliness is very poor.

So, it is strongly recommended that proper disinfectant like alcohol should be used on a regular basis for cleaning of computers and their surroundings to reduce the microbial load, especially for multiple-user sites. Hand hygiene before and after use of computers must be done by the students and public awareness programs should be encouraged (Rutala et al., 2006; Enemuor et al., 2012).

Table 14. Antibiotics Sensitivity against Staph. epidermidis strains in percentage
Sensitivity Pattern
Sensitive
Intermediate
Resistant
Acknowledgment

We would like to thank all staff members of different departments of Hazara University and different public Laboratories of Mansehra to cooperate in the collection of samples.

Conflict of Interest

There is no conflict of interest between Authors or any organization that sponsored the research.

References

[1] Ali WS, Alkezali KA, Taha BM. Bacterial Contamination of Computer Keyboards and Mice in a University Setting. Journal of Biology, Agriculture and Healthcare. 2013; 3(18): 11-15.

[2] Anastasiades P, Advokat HM, Slowe WS. Infection control practices in the university environment. South African Journal of Epidemiology and Infection. 2009; 23(3): 22-26.

[3] Bures S, Fishbain JT, Uyehara CF, Parker JM, Berg BW. Computer keyboards and faucet handles as reservoirs of nosocomial pathogens in the intensive care unit. American Journal of Infection and Control. 2000; 28(6): 465-471.

[4] Cogen AL, Nizet V, Gallo RL. Skin microbiota: a source of disease or defence. British Journal of Dermatology. 2008; 158(3): 442-455.

[5] David MZ, Daum RS. Community-Associated Methicillin-Resistant Staphylococcus aureus: Epidemiology and Clinical Consequences of an Emerging Epidemic. Clinical Microbiology Review. 2010; 23(3): 616-687.

[6] Ejaz H, Haq I, Zafar A, Mahmood S, Javed MM. Urinary tract infections caused by extended spectrum β-lactamase (ESBL) producing Escherichia coli and Klebsiella pneumonia. African Journal of Biotechnology. 2011; 10(73): 16661-16666.

[7] Enemueru SC, Apeh TA, Ogunibiheju O. Microorganisms associated with computer keyboards and mice in a university environment. American Journal of Microbiology Research. 2012; 6(20): 4424-4426.

[8] Forbes BA, Sahm DF, Weissfeld AS. Bailey and Scott’s Diagnostic Microbiology. 12th edition. Mosby Elsevier, China.

[9] Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC. Topographical and Temporal Diversity of the Human Skin microbiome. Science. 2009; 324(5931): 1190-1192.

[10] Itah AY, Ben AE. Incidence of enteric bacteria and Staphylococcus aureus in day care centers in Akwa-Ibom State, Nigeria. Southeast Asian Journal of Tropical Medicine and Public Health. 2004; 35(1): 202-209.

[11] Kacmaz B, Sultan N. In vitro susceptibilities of Escherichia coli and Klebsiella spp. To ampicillin-sulbactam and amoxicillin-clavulanic acid. Japanese Journal of infectious diseases. 2007; 60(4): 227-229.

[12] Koneman EW. Koneman’s Color Atlas and Textbook of Diagnostic Microbiology. 2006; 6: 38-46.

[13] Krausse R, Piening K, Ullmann U. Inhibitory effects of various micro-organisms on the growth of Helicobacter pylori. Letter in Applied Microbiology. 2005; 40(1): 81-86.

[14] Mehndiejad M, Sheikh AF, Jolodar A. Study of methicillin resistance in staphylococcus aureus and species of coagulase negative staphylococci isolated from various clinical specimens. Pakistan Journal of Medical Sciences. 2008; (24): 719-724.

[15] Oluduro AO, Ubani EK, Ofozie, IE. Bacterial assessment of electronic hardware user interfaces in Ille-Ife, Nigeria. Journal of Basic Applied Pharmaceutical Sciences. 2011; 32(3), 323-334.

[16] Qian Q, Eichelberger K, Kirby JE. Rapid Identification of Staphylococcus aureus in Blood Cultures by Use of the Direct Tube Coagulase Test Journal of Clinical Microbiology. 2007; 45(7): 2267-2269.

[17] Ratala WA, White MS, Gergen MF, Weber DJ. Bacterial Contamination of Keyboards: Efficacy and Functional Impact of Disinfectants. Infection Control and Hospital Epidemiology. 2006; 27(4): 372-377.

[18] Tagoe D, Kumi-Ansah F. Computer keyboard and mice: Potential sources of disease transmission and infection. International Journal of Public Health. 2011; 1(2): 5611-5619.

[19] Tenover FC. Mechanisms of antimicrobial resistance in bacteria. American Journal of Infection Control. 2006; 34(5): 64-73.

[20] Winn W, Allen S, Janda W, Koneman E, Procop G, Schreckenberger P, Woods G. Color atlas and textbook of diagnostic microbiology. Lippincott Williams & Wilkins, Philadelphia, PA. 2006; 6th edition.

[21] Zahera M, Rastogi C, Singh P, Iram S, Khalid S, Kushwaha A. Isolation, Identification and Characterization of Escherichia Coli from Urine Samples and their Antibiotic Sensitivity Pattern. European Journal of Experimental Biology. 2011; 1(2): 118-124.

Appendix 1. Antibiotic Disc Zone Diameter Interpretive Chart

Antibacterial Agent	Disc Potency (mcg)	Resistant (R)	Intermediate (I)	Sensitive (S)
Amoxi-Clave (Amoxicillin + Clavulanic Acid)	30	<19	-	>20
Effimox (Amoxicillin)	25	<11	-	>12
ceydine (Cephadrine)	30	<14	15-17	>18
Cefixox (Cefotaxime Sodium)	30	<10	11-19	>20
Ciprozan (Ciprofloxacin)	5	<15	16-20	>21
Ecin (Erythromycin)	15	<13	14-17	>18
Cilpenem (Meropenem)	10	<19	20-26	>27
Genta (Gentamycin)	10	<12	13-14	>15
Doxil (Doxycline)	30	<12	13-15	>16
Vancorin (Vancomycin)	30	<12	13-15	>16
Actum (Sulbactum + Cefoperazone)	105	<15	16-20	>21
Cotrim (Trimethoprim + Sulphamethoxazole)	25	<10	11-15	>16

Appendix 2. Antimicrobial Discs and their potencies used in this study
S. #	Generic Name	Brand Name	Antibiotic Group	Code	Disc Potency (mcg)
1.	Erythromycin	Ecin	Macrolides	E	15
2.	Meropenem	Cilipenem	Carbapenem	MEM	10
3.	Gentamycin	Genta	Aminoglycosides	CN	10
4.	Doxycycline	Doxil	Tetracycline	DO	30
5.	Vancomycin	Vancorin	Glycopeptides	VA	30
6.	Chloramphenicol	Chloroptic	Protein synthesis inhibitor	C	30
7.	Amoxicillin + Clavulanic Acid	Amoxi-clave	Penicillin	AMC	30
8.	Amoxicillin	Effimox	Penicillin	AML	25
9.	Cephradine	Caydine	Cephalosporins	CE	30
10.	Ceftriaxime Sodium	Cefizox	Cephalosporins	ZOX	30
11.	Ciprofloxacin	Ciprozan	Quinolones	CIP	5
12.	Ampicillin	Amicil	Penicillin	AM	10
13.	Imipenem	Tienam	Cell Wall Synthesis Inhibitor	IPM	10
14.	Nalidixic Acid	Negram	Quinolones	NA	30
15.	Ofloxacin	Foraxin	Quinolones	OFX	5
16.	Trimethoprim + Sulphamethoxazole	Cotrim	Folic Acid Inhibitor	SXT	25
18.	Cefoperazone + Sulbactam	Actum	Cephalosporins	SCF	105
19.	Piperacillin + Tazobactam	Tazobact	Penicillin	TZP	110