Abstract

The cause of climate change detection is very tedious and complex phenomenon. For the purpose, the behaviour identification of climatic variable using long term historical database is very important. In present study, highlights the climatic variability has been identified using the non-parametric Mann-Kendall, and Sen’s slope estimators over north-eastern region of India. In this study long term precipitation data has been considered during 1901-2015. The non-parametric tests have been tested at the 5% level of significance. The non-parametric tests were applied at eight north-eastern states i.e., Arunachal Pradesh, Assam, Manipur, Meghalaya, Mizoram, Nagaland, Tripura and West-Bengal of India. This type of study is very necessary for long-term agricultural and water resources planning of the states.

References

1. Aitken, A. P. (1973). Assessing systematic errors in rainfall-runoff models. Journal of Hydrology, 20(2), 121-136.
2. Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A. M. G., ... & Tagipour, A. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research: Atmospheres, 111(D5).
3. Alexandersson, H. (1986). A homogeneity test applied to precipitation data. International Journal of Climatology, 6(6), 661-675.
4. Alexandersson, H., & Moberg, A. (1997). Homogenization of Swedish temperature data. Part I: Homogeneity test for linear trends. International Journal of Climatology, 17(1), 25-34.
5. Arnold JG, Allen PM. 1996. Estimating hydrologic budgets for three Illinois watersheds. Journal of Hydrology 176(1-4): 57-77.
6. Aziz, O. I. A., & Burn, D. H. (2006). Trends and variability in the hydrological regime of the Mackenzie River Basin. Journal of hydrology, 319(1), 282-294.
7. Basistha, A., Arya, D. S., & Goel, N. K. (2009). Analysis of historical changes in rainfall in the Indian Himalayas. International Journal of Climatology, 29(4), 555-572.
8. Bayazit, M., & Önöz, B. (2007). To prewhiten or not to prewhiten in trend analysis?. Hydrological Sciences Journal, 52(4), 611-624.
9. Bayazit, M., & Önöz, B. (2007). To prewhiten or not to prewhiten in trend analysis?. Hydrological Sciences Journal, 52(4), 611-624.
10. Bradley, R. S., Diaz, H. F., Eischeid, J. K., Jones, P. D., Kelly, P. M., & Goodess, C. M. (1987). Precipitation fluctuations over Northern Hemisphere land areas since the mid-19th century. Science, 237(4811), 171-175.
11. Brunetti, M., Buffoni, L., Mangianti, F., Maugeri, M., & Nanni, T. (2004). Temperature, precipitation and extreme events during the last century in Italy. Global and planetary change, 40(1), 141-149.
12. Brunetti, M., Buffoni, L., Mangianti, F., Maugeri, M., & Nanni, T. (2004). Temperature, precipitation and extreme events during the last century in Italy. Global and planetary change, 40(1), 141-149.
13. Buffoni, L., Maugeri, M., & Nanni, T. (1999). Precipitation in Italy from 1833 to 1996. Theoretical and Applied Climatology, 63(1), 33-40.
14. Chandniha, S. K., Kansal, M. L., & Anvesh, G. (2014). Watershed Sustainability Index Assessment of a Watershed in Chhattisgarh, India. Current World Environment, 9(2), 403.
15. Chandniha, S. K., Meshram, S. G., Adamowski, J. F., & Meshram, C. (2016). Trend analysis of precipitation in Jharkhand State, India. Theoretical and Applied Climatology, 1-14.
16. Chaudhary, A., Abhyankar, V. P., 1979. Does precipitation pattern foretell Gujarat climate becoming arid Mausam, 30, pp. 85–90
17. Chen, F., Xu, Q., Chen, J., Birks, H. J. B., Liu, J., Zhang, S., ... & Wang, Z. (2015). East Asian summer monsoon precipitation variability since the last deglaciation. Scientific reports, 5.
18. Chowdhury, M. S. H., Gudmundsson, C., Izumiyama, S., Koike, M., Nazia, N., Rana, M. P., ... & Redowan, M. (2014). Community attitudes toward forest conservation programs through collaborative protected area management in Bangladesh. Environment, development and sustainability, 16(6), 1235-1252.
19. Cubasch, U., Meehl, G. A., Boer, G. J., Stouffer, R. J., Dix, M., Noda, A., ... & Yap, K. S. (2001). Projections of future climate change. in: JT Houghton, Y. Ding, DJ Griggs, M. Noguer, PJ Van der Linden, X. Dai, K. Maskell, and CA Johnson (eds.): Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel, 526-582.
20. Dash, S. K., Jenamani, R. K., Kalsi, S. R., & Panda, S. K. (2007). Some evidence of
climate change in twentieth-century India. Climatic change, 85(3), 299-321.
21. Déry, S. J., & Wood, E. F. (2005). Decreasing river discharge in northern Canada. Geophysical Research Letters, 32(10).
22. Déry, S. J., & Wood, E. F. (2005). Decreasing river discharge in northern Canada. Geophysical Research Letters, 32(10).
23. Déry, S. J., & Wood, E. F. (2005). Decreasing river discharge in northern Canada. Geophysical Research Letters, 32(10).
24. Dinpashoh, Y., Jhajharia, D., Fakheri-Fard, A., Singh, V. P., & Kahya, E. (2011). Trends in reference crop evapotranspiration over Iran. Journal of Hydrology, 399(3), 422-433.
25. Dinpashoh, Y., Jhajharia, D., Fakheri-Fard, A., Singh, V. P., & Kahya, E. (2011). Trends in reference crop evapotranspiration over Iran. Journal of Hydrology, 399(3), 422-433.
26. Douglas, E. M., Vogel, R. M., & Kroll, C. N. (2000). Trends in floods and low flows in the United States: impact of spatial correlation. Journal of hydrology, 240(1), 90-105.
27. Duhan, D., & Pandey, A. (2013). Statistical analysis of long term spatial and temporal trends of precipitation during 1901–2002 at Madhya Pradesh, India. Atmospheric Research, 122, 136-149.
28. Easterling, D. R., Evans, J. L., Groisman, P. Y., Karl, T. R., Kunkel, K. E., & Ambenje, P. (2000). Observed variability and trends in extreme climate events: a brief review. Bulletin of the American Meteorological Society, 81(3), 417-425.
29. Fujibe, F., Yamazaki, N., Katsuyama, M., & Kobayashi, K. (2005). The increasing trend of intense precipitation in Japan based on four-hourly data for a hundred years. Sola, 1, 41-44.
30. García-Ruiz, J. M., López-Moreno, J. I., Vicente-Serrano, S. M., Lasanta–Martínez, T., & Beguería, S. (2011). Mediterranean water resources in a global change scenario. Earth-Science Reviews, 105(3), 121-139.
31. Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S., & Xavier, P. K. (2006). Increasing trend of extreme rain events over India in a warming environment. Science, 314(5804), 1442-1445.
32. Groisman, P. Y., Knight, R. W., & Karl, T. R. (2012). Changes in intense precipitation over the central United States. Journal of Hydrometeorology, 13(1), 47-66.
33. Groisman, P. Y., Knight, R. W., Easterling, D. R., Karl, T. R., Hegerl, G. C., & Razuvaev, V. N. (2005). Trends in intense precipitation in the climate record. Journal of climate, 18(9), 1326-1350.
34. Guhathakurta, P., & Rajeevan, M. (2008). Trends in the rainfall pattern over India. International Journal of Climatology, 28(11), 1453-1469.
35. Guttmann, N. B. (1999). Accepting the standardized precipitation index: a calculation algorithm. JAWRA Journal of the American Water Resources Association, 35(2), 311-322.
36. Hamed, K. H., & Rao, A. R. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, 204(1-4), 182-196.
37. Hasan, M. M., & Dunn, P. K. (2011). Two Tweedie distributions that are near-optimal for modelling monthly rainfall in Australia. International Journal of Climatology, 31(9), 1389-1397.
38. Hayes, S. C., Strosahl, K. D., & Wilson, K. G. (1999). Acceptance and commitment therapy: An experiential approach to behavior change. Guilford Press.
39. IPCC, 2007: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., ... & Miller, H. L. (2007): summary for policymakers. Climate change, 2007, 79.
40. IPCC, 2014: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., ... & Kriemann, B. (2014). IPCC, 2014: summary for policymakers. Climate change.
41. Iwashima, T., & Yamamoto, R. (1993). NOTES AND CORRESPONDENCE: A Statistical Analysis of the Extreme Events: Long-Term Trend of Heavy Daily Precipitation. Journal of the Meteorological Society of Japan. Ser. II, 71(5), 637-640.

42. Jaagus, J. (2006). Climatic changes in Estonia during the second half of the 20th century in relationship with changes in large-scale atmospheric circulation. Theoretical and Applied Climatology, 83(1), 77-88.

43. Jain, S. K., & Kumar, V. (2012). Trend analysis of rainfall and temperature data for India. Current Science, 37-49.

44. Jhajharia, D., Dinpashoh, Y., Kahya, E., Singh, V. P., & Fakheri-Fard, A. (2012). Trends in reference evapotranspiration in the humid region of northeast India. Hydrological Processes, 26(3), 421-435.

45. Kendall, M. (1975). Multivariate analysis. Charles Griffin.

46. Khaliq, M. N., Ouarda, T. B. M. J., St-Hilaire, A., & Gachon, P. (2007). Bayesian change-point analysis of heat spell occurrences in Montreal, Canada. International journal of climatology, 27(6), 805-818.

47. Khan, S., Gabriel, H. F., & Rana, T. (2008). Standard precipitation index to track drought and assess impact of rainfall on water tables in irrigation areas. Irrigation and Drainage Systems, 22(2), 159-177.

48. Krishnakumar, K. N., Rao, G. P., & Gopakumar, C. S. (2009). Rainfall trends in twentieth century over Kerala, India. Atmospheric environment, 43(11), 1940-1944.

49. Kumar, K. K., & Parikh, J. (2001). Indian agriculture and climate sensitivity. Global environmental change, 11(2), 147-154.

50. Kumar, V., Jain, S. K., & Singh, Y. (2010). Analysis of long-term rainfall trends in India. Hydrological Sciences Journal–Journal des Sciences Hydrologiques, 55(4), 484-496.

51. Kumar, V., Jain, S. K., & Singh, Y. (2010). Analysis of long-term rainfall trends in India. Hydrological Sciences Journal–Journal des Sciences Hydrologiques, 55(4), 484-496.

52. Kumar, V., Jain, S. K., and Singh, Y. (2010). “Analysis of long-term rainfall trends in India.” Hydrological Sciences Journal, 55(4), 484-496.

53. Lacombe, G., & McCartney, M. (2014). Uncovering consistencies in Indian rainfall trends observed over the last half century. Climatic change, 123(2), 287-299.

54. Lacombe, G., & McCartney, M. (2014). Uncovering consistencies in Indian rainfall trends observed over the last half century. Climatic change, 123(2), 287-299.

55. Lal, M., Nozawa, T., Emori, S., Harasawa, H., Takahashi, K., Kimoto, M., ... & Numaguti, A. (2001). Future climate change: Implications for Indian summer monsoon and its variability. Current science, 1196-1207.

56. Lettenmaier, D. P., Wood, E. F., & Wallis, J. R. (1994). Hydro-climatological trends in the continental United States, 1948-88. Journal of Climate, 7(4), 586-607.

57. Lloyd-Hughes, B., & Saunders, M. A. (2002). A drought climatology for Europe. International journal of climatology, 22(13), 1571-1592.

58. Loo, Y. Y., Billa, L., & Singh, A. (2015). Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia. Geoscience Frontiers, 6(6), 817-823.

59. Loukas, A., & Vasiliades, L. (2004). Probabilistic analysis of drought spatiotemporal characteristics in Thessaly region, Greece. Natural Hazards and Earth System Science, 4(5/6), 719-731.
60. Luis, M. D., Raventós, J., González-Hidalgo, J. C., Sánchez, J. R., & Cortina, J. (2000). Spatial analysis of rainfall trends in the region of Valencia (East Spain). Int. J. Climatol, 20(12), 1451-1469.

61. Maheras, P. (1988). Changes in precipitation conditions in the western Mediterranean over the last century. International Journal of Climatology, 8(2), 179-189

62. Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 245-259.

63. Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 245-259.

64. Manton, M. J., Della-Marta, P. M., Haylock, M. R., Hennessy, K. J., Nicholls, N., Chambers, L. E., ... & Inape, K. (2001). Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961–1998. International Journal of Climatology, 21(3), 269-284.

65. McMichael, A. J., & Haines, A. (1997). Global climate change: the potential effects on health. BMJ: British Medical Journal, 315(7111), 805.

66. Mirza, M. M. Q. (2002). Global warming and changes in the probability of occurrence of floods in Bangladesh and implications. Global environmental change, 12(2), 127-138.

67. Mirza, M. Q., Warrick, R. A., Ericksen, N. J., & Kenny, G. J. (1998). Trends and persistence in precipitation in the Ganges, Brahmaputra and Meghna river basins. Hydrological Sciences Journal, 43(6), 845-858.

68. Mirza, M. Q., Warrick, R. A., Ericksen, N. J., & Kenny, G. J. (1998). Trends and persistence in precipitation in the Ganges, Brahmaputra and Meghna river basins. Hydrological Sciences Journal, 43(6), 845-858.

69. Mishra, A. K., & Desai, V. R. (2005). Drought forecasting using stochastic models. Stochastic Environmental Research and Risk Assessment, 19(5), 326-339.

70. Mishra, A. K., Özger, M., & Singh, V. P. (2009). An entropy-based investigation into the variability of precipitation. Journal of Hydrology, 370(1), 139-154.

71. Mondal, A., Kundu, S., & Mukhopadhyay, A. (2012). Rainfall trend analysis by Mann-Kendall test: A case study of north-eastern part of Cuttack district, Orissa. International Journal of Geology, Earth and Environmental Sciences, 2(1), 70-78.

72. Mooley, D. A., & Parthasarathy, B. (1984). Fluctuations in all-India summer monsoon rainfall during 1871–1978. Climatic Change, 6(3), 287-301.

73. Mooley, D. A., & Parthasarathy, B. (1984). Fluctuations in all-India summer monsoon rainfall during 1871–1978. Climatic Change, 6(3), 287-301.

74. Mooley, D. A., & Parthasarathy, B. (1984). Fluctuations in all-India summer monsoon rainfall during 1871–1978. Climatic Change, 6(3), 287-301.

75. Murphy, B. F., & Timbal, B. (2008). A review of recent climate variability and climate change in southeastern Australia. International journal of Climatology, 28(7), 859-879.

76. Nicholls, N., & Lavery, B. (1992). Australian rainfall trends during the twentieth century. International Journal of Climatology, 12(2), 153-163.

77. Novotny, E. V., & Stefan, H. G. (2007). Stream flow in Minnesota: indicator of climate change. Journal of Hydrology, 334(3), 319-333.

78. Oguntunde, P. G., Abiodun, B. J., & Lischeid, G. (2011). Rainfall trends in Nigeria, 1901–2000. Journal of Hydrology, 411(3), 207-218.

79. Osborn, T. J., & Briffa, K. R. (2000). Revisiting timescale-dependent reconstruction of climate from tree-ring chronologies. Dendrochronologia, 18, 9-25.
80. Partal, T., & Kahya, E. (2006). Trend analysis in Turkish precipitation data. Hydrological processes, 20(9), 2011-2026.

81. Partal, T., & Kahya, E. (2006). Trend analysis in Turkish precipitation data. Hydrological processes, 20(9), 2011-2026.

82. Patra, J. P., Mishra, A., Singh, R., & Raghuvanshi, N. S. (2012). Detecting rainfall trends in twentieth century (1871–2006) over Orissa State, India. Climatic Change, 111(3-4), 801-817.

83. Pettitt, A. N. (1979). A non-parametric approach to the change-point problem. Applied statistics, 126-135.

84. Pettitt, A. N. (1979). A non-parametric approach to the change-point problem. Applied statistics, 126-135.

85. Pettitt, A. N. (1980). A simple cumulative sum type statistic for the change-point problem with zero-one observations. Biometrika, 67(1), 79-84.

86. Praskievicz, S., & Chang, H. (2009). A review of hydrological modeling of basin-scale climate change and urban development impacts. Progress in Physical Geography, 33(5), 650-671.

87. Rajeevan, M., Pai, D. S., Kumar, R. A., & Lal, B. (2007). New statistical models for long-range forecasting of southwest monsoon rainfall over India. Climate Dynamics, 28(7-8), 813-828.

88. Rauch, W., & DeToffol, S. (2006, December). Climate change induced trends in high resolution rainfall. In Proceedings of the 7th International Workshop on Precipitation in Urban Areas: Extreme Precipitation, Multi source Data Measurement and Uncertainty (pp. 7-10).

89. Rind, D., Goldberg, R., & Ruedy, R. (1989). Change in climate variability in the 21st century. Climatic change, 14(1), 5-37.

90. Roy, S. S., & Rouault, M. (2013). Spatial patterns of seasonal scale trends in extreme hourly precipitation in South Africa. Applied Geography, 39, 151-157.

91. Sarker, R. P., & Thapliyal, V. (1988). Climate change and variability. Mausam, 39, 127-138.

92. Sen Roy, S., & Balling, R. C. (2004). Trends in extreme daily precipitation indices in India. International Journal of climatology, 24(4), 457-466.

93. Shi, G., Cai, W., Cowan, T., Ribbe, J., Rotstain, L., & Dix, M. (2008). Variability and trend of North West Australia rainfall: observations and coupled climate modeling. Journal of Climate, 21(12), 2938-2959.

94. Shiau, J. T. (2006). Fitting drought duration and severity with two-dimensional copulas. Water resources management, 20(5), 795-815.

95. Shrestha, A. B., Wake, C. P., Dibb, J. E., & Mayewski, P. A. (2000). Precipitation fluctuations in the Nepal Himalaya and its vicinity and relationship with some large scale climatological parameters. International Journal of Climatology, 20(3), 317-327.

96. Sikka, D. R., & Gadgil, S. (1980). On the maximum cloud zone and the ITCZ over Indian, longitudes during the southwest monsoon. Monthly Weather Review, 108(11), 1840-1853.

97. Singh, N., & Sontakke, N. A. (2002). On climatic fluctuations and environmental changes of the Indo-Gangetic plains, India. Climatic Change, 52(3), 287-313.

98. Singh, P., Kumar, V., Thomas, T., & Arora, M. (2008). Changes in rainfall and relative humidity in river basins in northwest and central India. Hydrological Processes, 22(16), 2982-2992.
99. Singh, P., Kumar, V., Thomas, T., & Arora, M. (2008). Changes in rainfall and relative humidity in river basins in northwest and central India. Hydrological Processes, 22(16), 2982-2992.

100. Singh, V. P., & Woolhiser, D. A. (2002). Mathematical modeling of watershed hydrology. Journal of hydrologic engineering, 7(4), 270-292.

101. Sinha Ray, K. C., & De, U. S. (2003). Climate change in India as evidenced from instrumental records. Bulletin of the World Meteorological Organization, 52(1), 53-58.

102. Sinha Ray, K. C., & Srivastava, A. K. (1999). Is there any change in extreme events like droughts and heavy rainfall. INTROPMET-97, IIT New Delhi, 2-5.

103. Some'e, B. S., Ezani, A., & Tabari, H. (2012). Spatiotemporal trends and change point of precipitation in Iran. Atmospheric research, 113, 1-12.

104. Some'e, B. S., Ezani, A., & Tabari, H. (2012). Spatiotemporal trends and change point of precipitation in Iran. Atmospheric research, 113, 1-12.

105. Srivastava, H. N., Sinha Ray, K. C., Dikshit, S. K., & Mukhopadhyaya, R. K. (1998). Trends in rainfall and radiation over India. Vayu Mandal, 1, 41-45.

106. Stacy, E. W., & Mihram, G. A. (1965). Parameter estimation for a generalized gamma distribution. Technometrics, 7(3), 349-358.

107. Suppiah, R., & Hennessy, K. J. (1998). Trends in total rainfall, heavy rain events and number of dry days in Australia, 1910–1990. International Journal of Climatology, 18(10), 1141-1164.

108. Tabari, H., & Aghajanloo, M. B. (2013). Temporal pattern of aridity index in Iran with considering precipitation and evapotranspiration trends. International Journal of Climatology, 33(2), 396-409.

109. Tabari, H., & Aghajanloo, M. B. (2013). Temporal pattern of aridity index in Iran with considering precipitation and evapotranspiration trends. International Journal of Climatology, 33(2), 396-409.

110. Tabari, H., Abghari, H., & Hosseinzadeh Talaei, P. (2012). Temporal trends and spatial characteristics of drought and rainfall in arid and semiarid regions of Iran. Hydrological Processes, 26(22), 3351-3361.

111. Tabari, H., Somee, B. S., & Zadeh, M. R. (2011). Testing for long-term trends in climatic variables in Iran. Atmospheric Research, 100(1), 132-140.

112. Tabari, H., Somee, B. S., & Zadeh, M. R. (2011). Testing for long-term trends in climatic variables in Iran. Atmospheric Research, 100(1), 132-140.

113. Tabari, H., Taye, M. T., & Willems, P. (2015). Statistical assessment of precipitation trends in the upper Blue Nile River basin. Stochastic environmental research and risk assessment, 29(7), 1751-1761.

114. Thapliyal, V., & Kulshrestha, S. M. (1991). Climate changes and trends over India. Mausam, 42(4), 333-338.

115. TÜREKEŞ, M., SÜMER, U. M., & Kilic, G. (1996). ERRATUM: OBSERVED CHANGES IN MAXIMUM AND MINIMUM TEMPERATURES IN TURKEY. International Journal of Climatology, 16(10), 1195-1195.

116. Umran Komuscu, A. (1999). Using the SPI to analyze spatial and temporal patterns of drought in Turkey. Drought Network News (1994-2001), 49.

117. Villarini, G., & Vecchi, G. A. (2013). Projected increases in North Atlantic tropical cyclone intensity from CMIP5 models. Journal of Climate, 26(10), 3231-3240.

118. Villarini, G., Smith, J. A., & Vecchi, G. A. (2013). Changing frequency of heavy rainfall
Mann-Kendall, and Sen’s Slope Estimators for Precipitation Trend Analysis in North-Eastern States of India

over the central United States. Journal of Climate, 26(1), 35

119. Von Storch, H. (1999). Misuses of statistical analysis in climate research. In Analysis of Climate Variability (pp. 11-26). Springer Berlin Heidelberg.

120. Wang, Y., & Zhou, L. (2005). Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation. Geophysical Research Letters, 32(9).

121. Wang, Y., & Zhou, L. (2005). Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation. Geophysical Research Letters, 32(9).

122. Westra, S., Alexander, L. V., & Zwiers, F. W. (2013). Global increasing trends in annual maximum daily precipitation. Journal of Climate, 26(11), 3904-3918.

123. Yue, S., Pilon, P., & Cavadias, G. (2002). Power of the Mann–Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series. Journal of hydrology, 259(1), 254-271.

124. Yue, S., Pilon, P., & Cavadias, G. (2002). Power of the Mann–Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series. Journal of hydrology, 259(1), 254-271.

125. Yue, S., Pilon, P., & Cavadias, G. (2002). Power of the Mann–Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series. Journal of hydrology, 259(1), 254-271.

126. Zeng, N., Zhao, F., Collatz, G. J., Kalnay, E., Salawitch, R. J., West, T. O., & Guanter, L. (2014). Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude. Nature, 515(7527), 394.

127. Zong-xue, X. U., & Nan, Z. (2006). Long-term trend of precipitation in the Yellow River basin during the past 50 years. 地理研究, 25(1), 27-34.

Index Terms

Computer Science

Information Sciences

Keywords

Mann-Kendall test, Sen's slope estimators, North-Eastern states, Climate Change