Search for new physics in high \( p_T \) like-sign dilepton events at CDF II

T. Aaltonen, B. Álvarez González, S. Amerio, D. Amidei, A. Anastassov, A. Anno, J. Antos, G. Apollinari, J.A. Appel, A. Apresyan, T. Arisawa, A. Artikov, J. Asaad, W. Ashmanskas, B. Auerbach, A. Aurisano, M. Azfar, W. Badgett, A. Barbrow, V.E. Barnes, B.A. Barnett, P. Barria, P. Bartos, M. Bacewa, G. Bauer, F. Bedeschi, D. Beecher, S. Behari, G. Belletti, J. Bellinger, D. Benvenuti, A. Bharti, M. Binkley, D. Bisello, I. Bizjak, K.R. Bland, B. Blumenfeld, A. Bocci, A. Bodek, D. Bortolato, J. Boudreau, A. Boveia, L. Brigliadori, A. Brisuda, C. Bromberg, E. Brucken, M. Bucciantonio, J. Budagov, H.S. Bueh, S. Budit, K. Burket, G. Busetto, P. Bussey, A. Buzatu, C. Calancha, S. Camarda, M. Campanelli, S. Campbell, F. Canelli, B. Carls, D. Carlsfiled, R. Carosi, S. Carrillo, S. Caron, B. Casal, M. Casarsa, A. Castro, P. Catastini, D. Cauz, V. Cavaliere, M. Cavallotto, F. Cerri, L. Cerrito, Y.C. Chen, M. Chertok, G. Chiarelli, G. Chlachidze, F. Chlebana, K. Cho, D. Chokheli, J.P. Chung, Y.S. Chung, C.I. Ciobanu, M.A. Ciocio, A. Clark, C. Clarke, G. Compagnola, M.E. Convery, J. Conway, M. Corbo, M. Cordelli, C.A. Cox, D.J. Cox, F. Crescioli, C. Cuenca Almenar, J. Cuevas, R. Culbertson, D. Dagenhart, N. D'Ascenzo, M. Datta, P. de Barbaro, S. De Cecco, G. De Lorenzo, M. Dell'Orso, C. Deluca, L. Demortier, J. Deng, M. Denino, F. Devoto, M. d'Errico, A. Di Canto, B. Di Ruzza, J.R. Dittmann, M. D'Onofrio, S. Donato, P. Dong, M. Dorigo, T. Dorigo, K. Ebina, A. Elagin, A. Eppig, E. Erbacher, D. Errede, N. Ershad, R. Eusse, H.C. Fang, S. Farrington, J. Feindt, J.P. Fernandez, C. Ferrara, R. Field, G. Flanagan, R. Forrest, M.J. Frank, M. Franklin, J.C. Freeman, Y. Furic, M. Gallinaro, J. Galyardt, J.E. Garcia, A.F. Garfinkel, P. Garosi, H. Gerberich, E. Gerchtein, S. Giagu, V. Giakoumopoulou, P. Giannetti, K. Gibson, C.M. Ginsburg, N. Giokaris, P. Giromini, M. Giunta, G. Giugni, V. Glagolev, D. Gienzinski, M. Gold, D. Goldin, N. Goldschmidt, A. Golossanov, G. Gomez, G. Gomez-Ceballos, M. Goncharov, O. González, I. Gorelov, A.T. Goshaw, K. Goulianos, G. Grinstein, C. Grosso-Pilcher, R.C. Group, J. Guimarães da Costa, Z. Gunay-Unalan, C. Haber, S.R. Hahn, E. Halkiadakis, A. Hamaguchi, J.Y. Han, F. Happacher, K. Haru, M. Hare, M. Hare, R.F. Harr, K. Hatakeyama, C. Hays, M. Heck, J. Heinrich, M. Herndon, S. Hewamana, D. Hidas, A. Hocker, W. Hopkins, D. Horn, S. Hou, R.E. Hughes, M. Hurwitz, U. Husemann, N. Hussain, M. Hussein, J. Huston, G. Intorizzo, M. Iori, A. Ivanov, E. James, D. Jiang, B. Jayatilaka, E.J. Jeon, M.K. Jha, S. Jindariani, W. Johnson, J. Jones, K.K. Joo, S.Y. Jun, T.R. Junk, T. Kamon, P.E. Karchin, A. Kasumi, Y. Kato, W. Ketchum, J. Keung, V. Khotilovich, B. Kilminster, I. Kim, H.S. Kim, H.W. Kim, J.E. Kim, M.J. Kim, S.B. Kim, S.H. Kim, Y.K. Kim, N. Kimura, M. Kiriy, S. Klimenko, K. Kondo, D.J. Kong, J. Konigsberg, A.V. Kotwal, M. Krop, J. Kroll, D. Krop, N. Krannawitt, M. Kruse, V. Krutelyov, T. Kuhl, M. Kurata, S. Kwang, A.T. Laasanen, S. Lami, S. Lammel, C. Lancaster, R.L. Lander, K. Lannon, A. Lath, G. Latino, T. LeCompte, E. Lee, H.S. Lee, J.S. Lee, S.W. Lee, S. Leone, J.D. Lewis, A. Limosani, C. Lin, J. Linacre, M. Lindgren, C. Lipse, A. Lister, D.O. Litvintsev, C. Liu, Q. Liu, S. Lockwitz, A. Loginov, D. Lucchesi, J. Lueck, P. Luken, G. Luung, J. Lynn, R. Lysak, R. Madrak, K. Maeshima, K. Makhou, S. Malik, G. Manca, A. Manousakis-Katsikakis, F. Margaroli, C. Marino, M. Martínez, R. Martínez-Ballarín, P. Mastrandrea, M.E. Mattson, P. Mazzanti, K.S. McFarland, P. McIntyre, R. McNulty, A. Mehta, P. Mehta, A. Menzione, C. Mesropian, T. Miao, D. Mietlicki, A. Mitra, H. Miyake, S. Moed, N. Moggi, M.N. Mondragon, C.S. Moon, R. Moore, M.J. Morello, J. Morlock, P. Movilla Fernandez, A. Mukherjee, T. Muller, P. Murat, M. Mussini, N. Nachtmann, Y. Nagai, J. Naganuma, I. Nakano, A. Napier, J. Nett, C. Neu, M.S. Neubauer, J. Nielsen, L. Nodulman, O. Norniella, E. Nurse, L. Oakes, S.H. Oh, Y.D. Oh, I. Oksuzian, T. Okusawa, R. Orava, L. Ortolan, S. Pagan Griso, C. Pagliarone, E. Palencia, V. Papadic, A.A. Paramonov, J. Patrick, G. Pauletta, M. Paulini, C. Paus, D.E. Pellett, A. Penzo, T.J. Phillips, G. Piacentino, E. Pianori, J. Pilot, P. Pitts, C. Plager, L. Pondrom, R. Porter, K. Potamianos, O. Poukhov, F. Prokoskina, A. Pronko, F. Ptohos, E. Pueschel, G. Punzi, J. Pursley, A. Rahaman, V. Ramakrishnan, N. Ranjan, J. Redondo, P. Renton, M. Rescigno, T. Riddle, F. Rimondi,
L. Ristori, A. Robson, T. Rodrigo, T. Rodriguez, E. Rogers, S. Rolli, R. Roser, M. Rossi, F. Rubbo, F. Ruffini, A. Ruiz, J. Russ, V. Rusi, A. Safonov, W.K. Sakamoto, Y. Sakurai, L. Santii, L. Sartori, K. Sato, V. Savelyev, A. Savoy-Navarro, P. Schlabach, A. Schmidt, E.E. Schmidt, M.P. Schmidt, M. Smith, T. Schwarz, L. Scodellaro, A. Scribano, F. Scuri, A. Sedov, S. Seidel, Y. Seiya, A. Semenov, F. Sforza, A. Sfyrla, S.Z. Shalhout, T. Shears, P.F. Shepard, M. Shimojima, S. Shiraiishi, M. Shochet, I. Shreyber, A. Simonenko, P. Sinervo, A. Sissakian, K. Sliwa, S. Somalwar, V. Sorin, P. Squillaciotti, M. Stancari, M. Stanitzki, R. St. Denis, B. Stelzer, O. Stelzer-Chilton, D. Stentz, J. strologas, G.L. Strycker, Y. Sudo, A. Sukhanov, I. Suslov, K. Takemasu, Y. Takeuchi, J. Tang, M. Tecchio, P.K. Teng, J. Thom, G.A. Thompson, E. Thomson, P. Titto-Guzmán, S. Tkaczuk, D. Toback, S. Tokar, K. Tollemison, T. Tomura, D. Tonelli, S. Torre, D. Torretta, P. Totaro, M. Trovato, Y. Tu, F. Ukegawa, S. Uozumi, A. Varganov, F.F. Vázquez, G. Velez, C. Vellidis, M. Vidal, I. Vila, R. Vilar, J. Vizán, M. Vogel, G. Volpi, P. Wagner, R.L. Wagner, T. Wakisaka, R. Wallay, S.M. Wang, A. Warburton, D. Waters, M. Weinberger, W.C. Wester III, B. Whitehouse, D. Whiteson, A.B. Wicklund, E. Wicklund, S. Wilbur, F. Wick, H.H. Williams, J.S. Wilson, P. Wilson, B.L. Winer, P. Wittich, S. Wolbers, H. Wolfe, T. Wright, X. Wu, Z. Wu, K. Yamamoto, J. Yamaoka, T. Yang, U.K. Yang, Y.C. Yang, W.-M. Yao, G.P. Yeh, K. Yie, J. Yoh, K. Yorita, T. Yoshida, G.B. Yu, I. Yu, S.S. Yu, J.C. Yun, A. Zanetti, Z. Zeng, S. Zucchelli, 

(CDF Collaboration)
We present a search for new physics in events with two high $p_T$ leptons of the same electric charge, using data with an integrated luminosity of 6.1 fb$^{-1}$. The observed data are consistent with standard model predictions. We set 95% C.L. lower limits on the mass of doubly-charged scalars decaying to like-sign dileptons, $m_{H^\pm\pm} > 190 - 245$ GeV/$c^2$, depending on the decay mode and coupling.

PACS numbers: 12.60.-i, 13.85.Rm, 14.65.-q, 14.80.-j

---

*Deceased

1With visitors from 4Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy, 4University of CA Irvine, Irvine, CA 92697, USA, 4University of CA Santa Barbara, Santa Barbara, CA 93106, USA, 4University of CA Santa Cruz, Santa Cruz, CA 95064, USA, 4CERN, CH-1211 Geneva, Switzerland, 4Cornell University, Ithaca, NY 14853, USA, 4University of Cyprus, Nicosia CY-1678, Cyprus, 4Office of Science, U.S. Department of Energy, Washington, DC 20585, USA, 4University College Dublin, Dublin 4, Ireland, 4University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017, 4Universidad Iberoamericana, Mexico D.F., Mexico, 4Iowa State University, Ames, IA 50011, USA, 4University of Iowa, Iowa City, IA 52242, USA, 4Kinki University, Higashi-Osaka City, Japan 577-8502, 4Kansas State University, Manhattan, KS 66506, USA, 4University of Manchester, Manchester M13 9PL, United Kingdom, 4Queen Mary, University of London, London, E1 4NS, United Kingdom, 4University of Melbourne, Victoria 3010, Australia, 4Muons, Inc., Batavia, IL 60510, USA, 4Nagasaki Institute of Applied Science, Nagasaki, Japan, 4National Research Nuclear University, Moscow, Russia, 4University of Notre Dame, Notre Dame, IN 46556, USA, 4Universidad de Oviedo, E-33007 Oviedo, Spain, 4Texas Tech University, Lubbock, TX 79409, USA, 4Universidad Tecnica Federico Santa Maria, 110 Valparaiso, Chile, 4Yarmouk University, Irbid 211-63, Jordan, 4hOn leave from J. Stefan Institute, Ljubljana, Slovenia,

A wide variety of models of new physics predict events with two like-sign leptons, a signature which has very low backgrounds from the standard model. Examples include doubly-charged Higgs bosons [1], supersymmetry [2], heavy neutrinos [3], like-sign top quark production [4], and fourth-generation quarks [5].

CDF examined the like-sign dilepton data with integrated luminosity of 110 pb$^{-1}$ in Run I [6] and 1 fb$^{-1}$ in Run II [7], observing in Run II a modest excess of events above the standard model expectation (44 ob-
served, 33.2 ± 4.7 expected).

In this Letter, we present a study of events with like-sign dileptons with an integrated luminosity of 6.1 fb$^{-1}$ collected by the CDF II detector. We search for a localized excess of events in a model-independent manner by comparing the observed events to the standard model prediction using a Kolmogorov-Smirnov test in several kinematic variables and assessing the statistical consistency. In addition, we set limits on a specific model: pair production of doubly-charged scalars which decay to $t\bar{t}$. In addition, we set limits on a specific model: kinematic variables and assessing the statistical consistency by comparing the observed events to the standard model prediction using a Kolmogorov-Smirnov test in several kinematic variables and assessing the statistical consistency. We search for a limit on the rate of $W$+jets production or $t\bar{t}$ production with semi-leptonic decays, with one prompt lepton and a second lepton due to the semi-leptonic decay of a $b$- or $c$-quark meson.

Events were recorded by CDF II \cite{12, 13}, a general purpose detector designed to study collisions at the Fermilab Tevatron $p\bar{p}$ collider at $\sqrt{s} = 1.96$ TeV. A charged-particle tracking system immersed in a 1.4 T magnetic field consists of a silicon microstrip tracker and a drift chamber. Electromagnetic and hadronic calorimeters surround the tracking system and measure particle energies. Drift chambers located outside the calorimeters detect muons. We examine data taken between August 2002 and September 2010, corresponding to an integrated luminosity of 6.1 fb$^{-1}$.

The data acquisition system is triggered by $e$ or $\mu$ candidates \cite{14} with transverse momentum $p_T$, greater than 18 GeV/$c$. Electrons and muons are reconstructed offline and selected if they have a pseudorapidity $|\eta|$, magnitude less than 1.1, $p_T \geq 20$ GeV/$c$ and satisfy the standard CDF identification and isolation requirements \cite{14}. An additional requirement is made to suppress electrons from photon conversions, by rejecting electron candidates with a collinear intersecting reconstructed track. Jets are reconstructed in the calorimeter using the JETCLU \cite{13} algorithm with a clustering radius of 0.4 in azimuth-pseudorapidity space and calibrated \cite{17}. Jets are selected if they have $p_T \geq 15$ GeV/$c$ and $|\eta| < 2.4$. Missing transverse momentum $E_T$, is reconstructed using fully corrected calorimeter and muon information \cite{14}.

We select events with at least two isolated leptons (electrons or muons), two of which have the same electric charge. The leading lepton must have $p_T > 20$ GeV/$c$, $|\eta| < 1.1$ and be isolated in both the calorimeter and the tracker. The second lepton must satisfy the same requirements, with the exception that it needs only have $p_T > 10$ GeV/$c$. We require that the two leptons come from the same primary vertex and have a dilepton invariant mass $m_{\ell\ell}$ of at least 25 GeV/$c^2$ to reduce backgrounds from pair production of bottom quarks. Finally, we reject events with three or more leptons if they contain a pair of opposite-sign leptons or like-signed electrons in the window, $m_{\ell\ell} \in [86, 96]$ GeV/$c^2$. Like-signed electrons pairs may be produced by the radiation of a hard photon, see below, which is negligible for muons. In each event, we calculate $H_T$, the scalar sum of the lepton $p_T$, the jet $E_T$ and the missing transverse momentum.

Irreducible backgrounds to the like-sign dilepton signature with prompt like-sign leptons are rare in the SM; they are largely from $WZ$ and $ZZ$ production. These backgrounds are modeled using simulated events generated by PYTHIA \cite{19} with the detector response simulated with a GEANT-based algorithm CDFSIM \cite{20}.

The dominant irreducible background comes from $W$+jets production or $t\bar{t}$ production with semi-leptonic decays, with one prompt lepton and a second lepton due to the semi-leptonic decay of a $b$- or $c$-quark meson. This (“fake”) background is described using a lepton misidentification model from inclusive jet data applied to $W$+jets events, validated in orthogonal jet samples and in events with like-sign dileptons but low invariant mass: $m_{\ell\ell} \in [15, 25]$ GeV/$c^2$.

The second largest source of background comes from processes which produce electron-positron pairs; either the electron or positron emits a hard photon leading to an asymmetric conversion (e.g. $e^-_\text{hard} \rightarrow e^-_\text{soft} + e^+_\text{hard}$) where the track for the $e^-_\text{hard}$ determines the charge. This mechanism is well-described by the detector simulation, and is validated in events with like-sign electron pairs which have a conversion-tagged electron. The major contributions via this mechanism are from $Z/\gamma^*+\text{jets}$ and $t\bar{t}$ production with fully leptonic decays. Estimates of the backgrounds from $Z/\gamma^*+\text{jets}$ processes are modeled using simulated events generated by PYTHIA normalized to data in opposite-sign events. The detector response for both $Z+$jets and $t\bar{t}$ processes is evaluated using CDFSIM, where, to avoid double-counting, the like-sign leptons are required to originate from the $W$ or $Z$ boson decays rather than from misidentified jets.

An additional contribution to the background is due to associated production of a $W$ boson with a prompt photon. If the $W$ boson decays to an electron (muon) and the photon converts too early to be identified as a conversion, the event can be reconstructed with a like-sign $ee$ ($e\mu$) signature. The rate of $W\gamma$ production the efficiency for finding conversions is validated in a sample of like-sign dilepton events with a conversion-tagged electron.

Backgrounds from charge-misidentification are insignificant, as the charge of a particle with momentum of 100 GeV/$c$ is typically determined with a significance greater than 5σ \cite{10}.

The dominant systematic uncertainty is the 50% uncertainty of the lepton misidentification rate, due to possible contamination of leptons from $W$ and $Z$ boson decays in the inclusive jet data. This gives a 20% uncertainty on the total background. Additional uncertainties are due to the jet energy scale \cite{17}, contributions from additional interactions, and descriptions of initial and fi-
TABLE I: Predicted and observed event yields in like-sign lepton events. Uncertainties included statistical and systematic contributions. Entries written as — are negligible.

| Process       | Total $\ell\ell$ | $\mu\mu$ | ee | $e\mu$ |
|---------------|------------------|---------|----|--------|
| $t\bar{t}$    | $0.1 \pm 0.1$    | $0.1 \pm 0.1$ |    |        |
| $Z \to \ell\ell$ | $26.6 \pm 3.4$  | $17.0 \pm 2.8$ | $9.7 \pm 2.1$ |        |
| WW, WZ, ZZ    | $28.4 \pm 1.4$  | $7.9 \pm 0.9$  | $6.0 \pm 0.4$ | $14.5 \pm 0.8$ |
| $W(\rightarrow E+)$ | $16.2 \pm 3.4$  | $8.1 \pm 1.8$  | $8.0 \pm 1.8$ |        |
| Fake Leptons  | $51.6 \pm 24.2$ | $8.2 \pm 5.3$  | $22.1 \pm 8.9$ | $21.3 \pm 10.6$ |
| Total         | $123.0 \pm 24.6$ | $16.1 \pm 5.4$ | $53.3 \pm 9.5$ | $53.6 \pm 10.9$ |
| Data          | 145              | 14      | 66 | 65     |

FIG. 1: Distribution of jet multiplicity, missing transverse momentum, leading lepton $p_T$ and sub-leading lepton $p_T$ in observed like-sign dilepton events and expected backgrounds. The VV contribution includes WW, WZ, ZZ and $W\gamma$.

dional state radiation [21] and uncertainties in the parton distribution functions [22, 23].

Table I shows the observed and predicted event yields. Figure 1 shows kinematic distributions of observed and predicted like-sign lepton events.

We calculate the maximum Kolmogorov-Smirnov (KS) distance for each of the distributions $m_{\ell\ell}$, $E_T$, $N_{jets}$, lepton $p_T$ and $H_T$. A large KS distance value would indicate a localized excess in one of these variables, though this test is not sensitive to discrepancies in the total yield. In each case, the standard model $p$-value (probability to observe a result at least this discrepant from the standard model) does not indicate significant deviation from the background-only hypothesis; see Table II.

This larger dataset does not show evidence of the excess seen in the previous analysis [7] that was based on 1 fb$^{-1}$ of integrated luminosity. The background from misidentified leptons was calculated using a different technique, which gives a larger estimate in the original dataset than the previous analysis, though consistent within systematic uncertainties.

Observing no excess, we report our sensitivity in terms of limits on doubly-charge scalar bosons decaying to like-sign electron pairs, muon pairs or electron-muon pairs. Simulated events are generated with MADEVENT [24], showering and hadronization is performed by PYTHIA passed through the CDF II full detector simulation. Figure 2 shows the observed and expected standard model spectra in the $ee$, $\mu\mu$ and $e\mu$ channels.

The largest uncertainties on the signal model are due to energy resolution and lepton identification efficiencies, which are minor compared to the background uncertainties. In each case, we treat the unknown underlying quantity as a nuisance parameter and measure the distortion of the dilepton mass spectrum for positive and negative fluctuations.

The dilepton mass spectrum is in good agreement with the standard model prediction, and we calculate 95% confidence level upper limits on the production cross section of doubly-charged Higgs bosons, using frequentist statistics with the unified ordering scheme [25]. The $Z/\gamma^*$ coupling and therefore production cross-section of the doubly-charged Higgs boson depends on whether it is a member of a singlet, doublet or triplet, as shown in Fig. 3 and Tables III and IV.

In summary, we present a search for new physics in events with two high $p_T$ leptons of the same electric charge using data with an integrated luminosity of 6.1 fb$^{-1}$. The observed data are consistent with standard model predictions. We set 95% confidence level lower limits on the mass of doubly-charged scalars decaying to like-sign dileptons, $m_{H^{\pm\pm}} > 190-245$ GeV/c$^2$, depending on the decay mode and coupling.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research...
FIG. 3: Observed upper limits at 95% C.L. on the production cross-section for doubly-charged Higgs, assuming 100% branching fraction to $ee$, $\mu\mu$ or $e\mu$, compared to results from D0 [9]. Also shown are next-to-leading-order theoretical calculations of the cross-section, assuming the Higgs is a member of a singlet, doublet or triplet.

TABLE IV: Lower limits at 95% C.L. on $H^{++}$ masses by channel, for singlet, doublet and triplet theories. All in units of GeV/$c^2$.

| Channel | Triplet | Doublet | Singlet |
|---------|---------|---------|---------|
| $ee$    | 225     | 210     | 205     |
| $e\mu$  | 210     | 195     | 190     |
| $\mu\mu$| 245     | 220     | 205     |

Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

[1] V. Rentala, W. Shephard, and S. Su, arxiv:hep-ph/1105.1379
[2] S. Weinberg, Phys. Rev. D 13 (1976) 974.; H. Goldberg, Phys. Rev. Lett. 50 (1983) 1419.; J. Alwall et al., Phys. Rev. D 79 (2009) 075020.
[3] S. Abachi et al. (D0 Collaboration), Phys. Rev. Lett. 76, 3271 (1996); F. del Aguila et al., Phys. Lett. B 670, 399 (2009).
[4] J. Cao, L. Wang, L. Wu and J. M. Yang, arXiv:hep-ph/1101.4456. E. L. Berger, Q. H. Cao, C. R. Chen, C. S. Li and H. Zhang, arXiv:hep-ph/1101.5625.

[5] P.H. Frampton, P.Q. Hung and M. Sher, Phys. Rept. 330, 263 (2000); B. Holdom, W.S. Hou, T. Hurth, M.L. Mangano, S. Sultansoy, G. Unel, PMC Phys. A3, 4 (2009).

[6] D. Acosta et al., (CDF Collaboration), Phys. Rev. Lett. 93, 061802 (2004).

[7] A. Abulencia et al., (CDF Collaboration), Phys. Rev. Lett. 98, 221803 (2007).

[8] D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 93, 221802 (2004).

[9] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 101, 071803 (2008).

[10] CMS PAS HIG-11-001

[11] Article in preparation

[12] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 032001 (2005).

[13] CDF uses a cylindrical coordinate system with the $z$ axis along the proton beam axis. Pseudorapidity is $\eta \equiv -\ln(\tan(\theta/2))$, where $\theta$ is the polar angle relative to the proton beam direction, and $\phi$ is the azimuthal angle while $p_T = |p| \sin \theta$, $E_T = E \sin \theta$.

[14] A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 97, 082004 (2006); D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 94, 001803 (2005).

[15] F. Abe et al (CDF Collaboration), Phys. Rev. D 45, 001448 (1992).

[16] A. Abulencia et. al. (CDF Collaboration), J. Phys. G: Nucl. Part. Phys. 2457, (2007).

[17] A. Bhatti et al., Nucl. Instrum. Methods 566, 375 (2006).

[18] Missing transverse momentum, $\not E_T$, is defined as the magnitude of the vector $\sum_i E_T^i \hat{n}_i$, where $E_T^i$ are the magnitudes of transverse energy contained in each calorimeter tower $i$, and $\hat{n}_i$ is the unit vector from the interaction vertex to the tower in the transverse $(x, y)$ plane.

[19] T. Sjostrand et al., Comput. Phys. Commun. 238 135 (2001), version 6.422.

[20] E. Gerchtein et al., arXiv:physics/0306031 (2003).

[21] A. Abulencia et al. (CDF Collaboration), Phys. Rev. D. 73 32003 (2006).

[22] J. Pumplin et al. (CTEQ Collaboration), J. High. Energy Phys. 07 (2002) 012.

[23] A. D. Martin et al. (MRST Collaboration), Phys. Lett. B 356 89 (1995).

[24] J. Alwall et al. J. High Energy Phys. 09 (2007) 028, version 4.4.24.

[25] G. Feldman and R. Cousins, Phys. Rev. D 57, 3873 (1998).