A numerical solution for heat transfer past a stretching sheet with ohmic dissipation and suction or injection problem using Haar wavelet quasilinearization method

Nor Artisham, C.G. a Suazlan, M.A. b

 aCentre for Foundation Studies in Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
 bScience in Engineering Department, Faculty of Engineering, International Islamic University Malaysia, PO. Box 10, Kuala Lumpur, 50728, Malaysia

Abstract

This paper represents a numerical analysis for heat transfer of a Jeffrey fluid flow past a stretching sheet with ohmic dissipation and suction/injection. The partial differential equations are reduced into a set of convenient nonlinear ordinary differential equations with the boundary conditions. Haar wavelet quasilinearization method (HWQM) is used to solve ordinary differential equations. The effect of various related parameters on velocity and temperature profiles are computed and analyzed. Then, comparison is made between the numerical results of proposed method with existing numerical solutions found in the literature, and reasonable agreement is noted. © Published under licence by IOP Publishing Ltd.

SciVal Topic Prominence

Topic: Stretching Sheet | Stagnation Point Flow | MHD Flow

Indexed keywords

Engineering controlled terms:
- Boundary conditions
- Flow of fluids
- Heat transfer
- Nonlinear equations
- Numerical methods

Engineering uncontrolled terms:
- Injection problems
- Nonlinear ordinary differential equation
- Numerical results
- Numerical solution
- Ohmic dissipation
- Quasi-linearization methods
- Stretching sheet
- Temperature profiles

Engineering main heading:
- Ordinary differential equations

Funding details

Funding sponsor:
International Islamic University Malaysia

Funding number:
IIUM
The authors are appreciative of the International Islamic University Malaysia for financial support. This work was performed under IIUM Research Initiative Grant Scheme (RIGS) with Grant No. RIGS17-081-066.

ISSN: 17426588
Source Type: Conference Proceeding
Original language: English
Publisher: Institute of Physics Publishing

References (37)

1. Vajravelu, K., Rollins, D.
 Heat transfer in a viscoelastic fluid over a stretching sheet (Open Access)
 (1991) Journal of Mathematical Analysis and Applications, 158 (1), pp. 241-255. Cited 75 times.
 doi: 10.1016/0022-247X(91)90280-D
 View at Publisher

2. Crane, L.J.
 Flow past a stretching plate
 (1970) Zeitschrift für angewandte Mathematik und Physik ZAMP, 21 (4), pp. 645-647. Cited 2360 times.
 doi: 10.1007/BF01587695
 View at Publisher

3. Zheng, L., Wang, L., Zhang, X.
 Analytic solutions of unsteady boundary flow and heat transfer on a permeable stretching sheet with non-uniform heat source/sink
 (2011) Communications in Nonlinear Science and Numerical Simulation, 16 (2), pp. 731-740. Cited 80 times.
 doi: 10.1016/j.cnsns.2010.05.022
 View at Publisher

4. Gireesha, B.J., Ramesh, G.K., Abel, M.S., Bagewadi, C.S.
 Boundary layer flow and heat transfer of a dusty fluid flow over a stretching sheet with non-uniform heat source/sink
 (2011) International Journal of Multiphase Flow, 37 (8), pp. 977-982. Cited 52 times.
 doi: 10.1016/j.ijmultiphaseflow.2011.03.014
 View at Publisher

5. Ramesh, G.K., Gireesha, B.J., Bagewadi, C.S.
 MHD flow of a dusty fluid near the stagnation point over a permeable stretching sheet with non-uniform source/sink
 (2012) International Journal of Heat and Mass Transfer, 55 (17-18), pp. 4900-4907. Cited 46 times.
 doi: 10.1016/j.ijheatmasstransfer.2012.05.003
 View at Publisher
6. Shehzad, S.A., Alsaedi, A., Hayat, T., Alhuthali, M.S. (2014) *PLoS ONE*, 9 (1). doi: 10.1371/annotation/96dcc12e-4cef-4dcb-abf3-dac7dc04ac7

7. Cao, L., Si, X., Zheng, L., Pang, H. (2015) *Bound. Value Probl.*, 63, pp. 1-18.

8. Vajravelu, K. (1994) *Journal of Mathematical Analysis and Applications*, 188 (3), pp. 1002-1011. doi: 10.1006/jmaa.1994.1476

9. Muthucumaraswamy, R. (2002) *Forschung im Ingenieurwesen/Engineering Research*, 67 (3), pp. 129-132. doi: 10.1007/s10010-002-0083-2

10. El-Arabawy, H.A. (2009) *Journal of Mathematics and Statistics*, 5 (3), pp. 159-166. doi: 10.3844/jmssp.2009.159.166

11. Elbashbeshy, E.M.A., Bazid, M.A.A. (2004) *Applied Mathematics and Computation*, 158 (3), pp. 799-807. doi: 10.1016/j.amc.2003.08.141

12. Sultana, T., Saha, S., Rahman, M.M., Saha, G. (2009) *J. Mech. Eng.*, 40 (1), pp. 22-28. doi: 10.3844/jmssp.2009.159.166

13. Rajeswari, R., Jothiram, B., Nelson, V.K. (2009) *Chemical Reaction, Heat and Mass Transfer on Nonlinear MHD Boundary Layer Flow through a Vertical Porous Surface in the Presence of Suction*, 3 (49-52), pp. 2469-2480. doi: 10.3844/jmssp.2009.159.166
| | Authors | Title | Publication Details |
|---|--|---|---|
| 14 | Elbashbeshy, E.M.A., Emam, T.G., Abdel-wahed, M.S. | Mass transfer over unsteady stretching surface embedded in porous medium in the presence of variable chemical reaction and suction/injection | (2011) *Applied Mathematical Sciences*, 5 (9-12), pp. 557-571. Cited 2 times.
http://www.m-hikari.com/ams/ams-2011/ams-9-12-2011/emamAMS9-12-2011.pdf |
| 15 | Kumari, M., Nath, G. | Mixed convection boundary layer flow over a thin vertical cylinder with localized injection/suction and cooling/heating | (2004) *International Journal of Heat and Mass Transfer*, 47 (5), pp. 969-976. Cited 51 times.
http://www.journals.elsevier.com/international-journal-of-heat-and-mass-transfer/doi: 10.1016/j.ijheatmasstransfer.2003.08.014 View at Publisher |
| 16 | Siri, Z., Ghani, N.A.C., Kasmani, R.M. | Heat transfer over a steady stretching surface in the presence of suction | (Open Access)
(2018) *Boundary Value Problems*, 2018 (1), art. no. 126. Cited 5 times.
http://www.springerlink.com/content/1687-2770/doi: 10.1186/s13661-018-1019-6 View at Publisher |
| 17 | Ghani, N.A.C., Siri, Z. | Heat transfer over a steady stretching surface in the presence of suction | (Open Access)
(2018) *J. Phys. Conf. Ser.*, 1139, pp. 1-8. View at Publisher |
| 18 | Pandey, A.K., Kumar, M. | Effect of viscous dissipation and suction/injection on MHD nanofluid flow over a wedge with porous medium and slip | (Open Access)
(2016) *Alexandria Engineering Journal*, 55 (4), pp. 3115-3123. Cited 38 times.
http://www.elsevier.com/wps/find/journaldescription.cws_home/724292/description#description doi: 10.1016/j.aej.2016.08.018 View at Publisher |
| 19 | Jalipour, B., Jafarmadar, S., Ganji, D.D., Shotorban, A.B., Taghavifar, H. | Heat generation/absorption on MHD stagnation flow of nanofluid towards a porous stretching sheet with prescribed surface heat flux | (2014) *Journal of Molecular Liquids*, 195, pp. 194-204. Cited 42 times. doi: 10.1016/j.molliq.2014.02.021 View at Publisher |
| 20 | Ganapathirao, M., Ravindran, R. | Non-uniform Slot Suction/Injection into Mixed Convective MHD Flow over a Vertical Wedge with Chemical Reaction | (Open Access)
(2015) *Procedia Engineering*, 127, pp. 1102-1109. Cited 4 times.
http://www.sciencedirect.com/science/journal/18777058 doi: 10.1016/j.proeng.2015.11.472 View at Publisher |
| 21 | Maity, S., Singh, S.K., Kumar, A.V. | Unsteady three dimensional flow of Casson liquid film over a porous stretching sheet in the presence of uniform transverse magnetic field and suction/injection | (2016) *Journal of Magnetism and Magnetic Materials*, 419, pp. 292-300. Cited 19 times. doi: 10.1016/j.jmmm.2016.06.004 View at Publisher |
Pal, D., Mondal, H.
Hydromagnetic non-Darcy flow and heat transfer over a stretching sheet in the presence of thermal radiation and Ohmic dissipation
(2010) Communications in Nonlinear Science and Numerical Simulation, 15 (5), pp. 1197-1209. Cited 52 times.
doi: 10.1016/j.cnsns.2009.05.051
View at Publisher

Pal, D., Mandal, G.
Hydromagnetic convective-radiative boundary layer flow of nanofluids induced by a non-linear vertical stretching/shrinking sheet with viscous-Ohmic dissipation
(2015) Powder Technology, 279, pp. 61-74. Cited 45 times.
www.elsevier.com/locate/powtec
doi: 10.1016/j.powtec.2015.03.043
View at Publisher

Hayat, T., Shafiq, A., Alsaedi, A.
Hydromagnetic boundary layer flow of Williamson fluid in the presence of thermal radiation and Ohmic dissipation (Open Access)
(2016) Alexandria Engineering Journal, 55 (3), pp. 2229-2240. Cited 39 times.
http://www.elsevier.com/wps/find/journaldescription.cws_home/724292/description#description
doi: 10.1016/j.aej.2016.06.004
View at Publisher

Upreti, H., Pandey, A.K., Kumar, M.
MHD flow of Ag-water nanofluid over a flat porous plate with viscous-Ohmic dissipation, suction/injection and heat generation/absorption (Open Access)
(2018) Alexandria Engineering Journal, 57 (3), pp. 1839-1847. Cited 18 times.
http://www.elsevier.com/wps/find/journaldescription.cws_home/724292/description#description
doi: 10.1016/j.aej.2017.03.018
View at Publisher

Ganga, B., Ansari, S.M.Y., Ganesh, N.V., Hakeem, A.A.
(2015) J. Nigerian Math. Soc., 34 (2), pp. 181-194. Cited 28 times.

Mishra, A., Pandey, A.K., Kumar, M.
AIP Conf. Proc., 9, pp. 99-115.

Ahmad, K., Wahid, Z.
(2015) Conf: Global Eng. Appl. Sci. Conf.

Chen, C.F., Hsiao, C.H.
Haar wavelet method for solving lumped and distributed-parameter systems
(1997) IEE Proceedings: Control Theory and Applications, 144 (1), pp. 87-93. Cited 362 times.
doi: 10.1049/ip-cta:19970702
View at Publisher
A numerical solution for nonlinear heat transfer of fin problems using the Haar wavelet quasilinearization method

Mt Aznam, S., Che Ghani, N.A., Chowdhury, M.S.H.

(2019) Results in Physics, 14, art. no. 102393. Cited 3 times.
http://www.elsevier.com/wps/find/journaldescription.cws_home/725996/description#description
doi: 10.1016/j.rinp.2019.102393

View at Publisher

Bellman, R.E., Kalaba, R.E.

(1965)

Mt Aznam, S.

(2012)

Ghani, N.A.C.

(2012)

Ghani, N.A.C.

(2018)

Mandelzweig, V.B., Tabakin, F.

Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs

(2001) Computer Physics Communications, 141 (2), pp. 268-281. Cited 191 times.
doi: 10.1016/S0010-4655(01)00415-5

View at Publisher

Saeed, U., Rehman, M.U.

Haar wavelet-quasilinearization technique for fractional nonlinear differential equations

(2013) Applied Mathematics and Computation, 220, pp. 630-648. Cited 28 times.
doi: 10.1016/j.amc.2013.07.018

View at Publisher

Kaur, H., Mittal, R.C., Mishra, V.

Haar wavelet solutions of nonlinear oscillator equations

(2014) Applied Mathematical Modelling, 38 (21-22), pp. 4958-4971. Cited 16 times.
www.elsevier.com/locate/apm.2014.03.019
doi: 10.1016/j.apm.2014.03.019

View at Publisher

© Copyright 2020 Elsevier B.V., All rights reserved.
What is Scopus
Content coverage
Scopus blog
Scopus API
Privacy matters

Copyright © . All rights reserved. Scopus® is a registered trademark of Elsevier B.V.

We use cookies to help provide and enhance our service and tailor content. By continuing, you agree to the use of cookies.