Preparation of \{001\}_c-oriented epitaxial (K, Na)NbO₃ thick films by repeated hydrothermal deposition technique

Takahisa SHIRAISHI¹, Yoshiharu ITO², MutsuoISHIKAWA³, HiroshiUCHIDA⁴, TakanoriKIGUCHI¹, Minoru K. KUROSAWA⁵, HiroshiFUNAKUBO² and Toyohiko J. KONNO¹

¹Institute for Materials Research, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai 980–8577, Japan
²Department of Materials Science and Engineering, Tokyo Institute of Technology, Yokohama 226–8502, Japan
³Department of Clinical Engineering, Faculty of Biomedical Engineering, Toin University of Yokohama, 1614 Kurogane-cho, Aoba-ku, Yokohama 225–8503, Japan
⁴Department of Materials and Life Sciences, Sophia University, Chiyoda-ku, Tokyo 102–8554, Japan
⁵Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, Yokohama 226–8502, Japan

\{001\}_c-oriented (K₀.₈₆Na₀.₁₄)NbO₃ thick films were prepared at 240°C on (100)SrRuO₃/(100)SrTiO₃ substrates by repeated hydrothermal deposition technique. The film thickness was found to increase linearly with the number of deposition cycles, and 60 µm-thick film was obtained after nine repetitions of the deposition. The K/(K+Na) ratio of the deposited thick films, measured by X-ray fluorescence spectroscopy, showed constant values regardless of the number of deposition cycles. Cross-sectional scanning electron microscopy images revealed uniformity of the obtained dense films with no obvious micro cracks and pores. Structural characterization based on X-ray diffraction, XRD 2θ–ω patterns and X-ray pole figure measurement, showed that the epitaxial relationship between the films and substrates with a \{001\}_c orientation was maintained throughout the deposition cycles. In addition, cross-sectional Raman spectra showed that 60 µm-thick (K₀.₈₆Na₀.₁₄)NbO₃ film had an orthorhombic structure. The dielectric constant, ε and tan δ showed frequency dependence. The average remanent polarization measured at 100 Hz was 8 µC/cm².

©2018 The Ceramic Society of Japan. All rights reserved.

Key-words: (K, Na)NbO₃ film, Thick film, Hydrothermal method, Low-temperature deposition, Epitaxial growth

[Received November 27, 2017; Accepted January 16, 2018]

1. Introduction

Piezoelectric films have been of great technological importance in the fields of sensors, actuators, and energy harvesting devices.¹⁻³ Especially, KNbO₃-based films have been widely investigated as candidates for the application in various devices because of their excellent piezoelectric and electromechanical properties, high Curie temperature, and the environmental friendliness.⁴⁻⁵ In order to improve the performance of these devices, it is necessary to design and control the physical properties of KNbO₃-based films, such as the film composition,⁶ crystal orientation,⁷ microstructure including the domain structure,⁸⁻¹⁰ and the remaining strain.⁹

Film thickness is also an important factor for enhancing piezoelectric properties.¹⁰⁻¹² It is especially well known that submillimeter-thick (~100 μm) films are required to achieve a high input/output signal range.¹³⁻¹⁵ So far, KNbO₃-based thick films have been prepared by various deposition methods, such as the sputtering, sol–gel, pulsed laser deposition, and aerosol deposition methods.¹⁶⁻¹⁹ There are many reports on the preparation of ~10 μm-thick films, but it is difficult to achieve submillimeter thicknesses due to the low deposition rates.

The hydrothermal method is a simple wet process using alkaline source solutions.²⁰ One of the important characteristics of this method is the ability of the film thickness to be increased easily by repetition of the process itself. We reported, for example, that 130 µm-thick KNbO₃ film with epitaxial growth was prepared by repeated the hydrothermal deposition.²¹ This finding indicated that the hydrothermal method may be suitable for the preparation of the submillimeter-thick KNbO₃-based films.

In the present study, we sought to extend this technique to a wider composition. Namely, we prepared a solid solution of KNbO₃–NaNbO₃, which is known to show superior piezoelectric properties to those of KNbO₃, with thicknesses of over 10 μm by repeated hydrothermal deposition technique. We also report the effect of repeated deposition on the composition, microstructure, and crystal structure.
2. Experimental

(K, Na)NbO₃ thick films were deposited at 240°C on (100)SrRuO₃//(100)SrTiO₃ substrates by repeated hydrothermal deposition technique. 50 nm-thick epitaxial SrRuO₃ layers were deposited as bottom electrodes by the radio-frequency magnetron sputtering method. The raw materials used for the hydrothermal deposition were Nb₂O₅ powders (0.25 g) and a mixed solution of KOH and NaOH (7.0 mol/dm³ and 20 cm³ in total). The mixed ratio of alkaline solutions [KOH]/([KOH]+[NaOH]) was 0.9 because of the maximum deposition rate was ascertained to be obtained in the [KOH]/([KOH]+[NaOH]) ratio.²²)

These source materials and substrates were sealed in an autoclave, which was set in a thermostat bath maintained at 240°C for 6 h. After the obtained films were removed from the autoclave, they were washed ultrasonically in distilled water, ethanol, acetone, and methanol, and then dried at 150°C for 1 h in air. In this study, the hydrothermal process from deposition to drying was defined as one cycle, which was repeated for nine cycles to obtain the final films.

The K/(K+Na) ratio of the deposited thick films was determined using X-ray fluorescence spectroscopy (PANalytical PW2404). The film thickness was measured using a surface profile meter (Veeco DEKTAK 3ST). The cross-sectional morphology of the deposited films was observed by scanning electron microscopy (SEM, HITACH S-4800). The crystal structure was investigated by X-ray diffractometry (XRD, Philips X’Pert MRD system). A pseudocubic index denoted as {hkl}c was used to indicate the diffraction peaks. Cross-sectional Raman spectra were measured across the thickness of the deposited films using the 514.5 nm line from an Ar⁺ laser. The spot size of laser was about 1 μm.

Pt top electrodes of 100 μm in diameter were deposited by electron beam evaporation to fabricate the capacitor structure of Pt//(K, Na)NbO₃//SrRuO₃. The dielectric and ferroelectric properties were measured using an impedance analyzer (Agilent 4194A) and ferroelectric tester (Toyo Technica, FCE fast).

3. Results and discussion

Figure 1(a) shows the film thickness and the deposition amount as functions of the number of deposition cycles. Both the film thickness and deposition amount increased linearly with the number of deposition cycles. 60 μm-thick film was obtained after nine deposition cycles, and the deposition was estimated to be about 6.5 μm per one cycle. Therefore, we confirmed that it was easy to prepare thick films by repeating hydrothermal deposition. Figure 1(b) shows the changes in the K/(K+Na) ratio of the deposited film for the number of deposition cycles. The measured K/(K+Na) ratio of 0.86 did not vary throughout the deposition cycles, indicating that it is possible to control the K/(K+Na) ratio with the hydrothermal method. It should be noted that the density of the films estimated from the deposition amount and the film thickness shown in Fig. 1(a) is about 4.5 g/cm³, a value almost identical to that of (K₀.₈₆Na₀.₁₄)NbO₃.²³,₂⁴

Figure 2 shows a cross-sectional SEM image of the 60 μm-thick (K₀.₈₆Na₀.₁₄)NbO₃ film. As seen, there were no obvious micro cracks or pores in the film, and the prepared film was dense, as already expected based on Fig. 1. It should be noted out that no obvious interfaces were observed between the (K₀.₈₆Na₀.₁₄)NbO₃ layers deposited in each cycle.

Figure 3(a) shows the XRD 2θ–ω patterns for films obtained after selected deposition cycles. All the patterns show only two sets of peaks originating from the {001}_c
planes. Figure 3(b) shows the X-ray pole-figure-plot measured at 2θ corresponding to the peak originating from the {110} plane for the films deposited after nine cycles. Four-fold spots at an inclination angle of about 45° were observed, indicating that the 60 μm-thick (K0.86Na0.14)NbO3 film was epitaxially grown with a {001} out-of-plane orientation. This also means that the epitaxial relationship between the film and substrate was maintained for all the films after various numbers of repeated deposition cycles. Figure 3(c) shows the film thickness dependencies of the out-of-plane lattice spacings estimated from the 002c and 020c diffraction peaks in Fig. 3(a).

Figures 4(a) shows the cross-sectional Raman spectra measured at the positions shown in Fig. 4(b) for 60 μm-thick (K0.86Na0.14)NbO3 film. These spectra were measured at about 6 μm intervals to avoid overlapping of the measurement positions. (The spectrum measured at position X was different from the spectra measured at other positions, because position X corresponded to the SrTiO3 substrate.) Raman spectra derived from (K0.86Na0.14)NbO3 (position I–IX) showed a similar spectrum regardless of the measurement position. It is considered that the crystal structure of 60 μm-thick (K0.86Na0.14)NbO3 film is orthorhombic, because the pattern of Raman spectra correspond to that reported for orthorhombic (K, Na)NbO3 material.26)–28) According to a theoretical analysis, orthorhombic (K, Na)-NbO3 material has Raman active optical modes of 4A1 + 4B1 + 3B2 + A2.26,29,30) In this case, Raman shifts at around 275, 539, and 602 cm⁻¹ were assigned to the vibration modes of v3, v2, and v1, respectively. Figure 4(c) shows the film thickness dependence of the Raman shifts estimated from v1, v2, and v3 shown in Fig. 4(a). As is apparent, no remarkable change was observed for the three Raman shifts, suggesting that uniform film with the same
Fig. 5. (a) Frequency dependencies of the relative dielectric constant, \(\varepsilon_r \), and \(\tan \delta \) and (b) \(P-E \) hysteresis loops for 60 \(\mu \)m-thick (K\(_{0.86}\)Na\(_{0.14}\))NbO\(_3\) film.

crystal structure in the film thickness direction was prepared by the repeated hydrothermal deposition technique. Figure 5(a) shows the frequency dependencies of the relative dielectric constant, \(\varepsilon_r \), and \(\tan \delta \) for the 60 \(\mu \)m-thick (K\(_{0.86}\)Na\(_{0.14}\))NbO\(_3\) film. \(\varepsilon_r \) decreased from 310 to 243 with increases in measurement frequency and showed 261 at 100 kHz. This value was larger than the value (of \(\varepsilon_r = 130 \)) for the hydrothermally-deposited (K\(_{0.88}\)Na\(_{0.12}\))NbO\(_3\) film with a thickness of 6 \(\mu \)m. There are some reports that \(\varepsilon_r \) increases with increases in the film thickness.\(^{22}\) It is therefore considered that the hydrothermally-deposited (K, Na)NbO\(_3\) films also showed the same tendency. In addition, a low dielectric loss of below 0.13 was observed in this frequency region. Figure 5(b) shows polarization-electric (\(P-E \)) hysteresis loops measured at 100 Hz for 60 \(\mu \)m-thick (K\(_{0.86}\)Na\(_{0.14}\))NbO\(_3\) film. Typical hysteresis loops due to ferroelectricity were observed, and the average remanent polarization was about 8 \(\mu \)C/cm\(^2\). This value was smaller than the value (of \(17 \mu \)C/cm\(^2\)) for the hydrothermally-deposited (K\(_{0.88}\)Na\(_{0.12}\))NbO\(_3\) film with a thickness of 6 \(\mu \)m.\(^{22}\) In addition, the \(P-E \) hysteresis loops were imprinted to the negative electric field region. In our previous report, it was observed that \(P-E \) hysteresis loops of 6 \(\mu \)m-thick (K\(_{0.88}\)Na\(_{0.12}\))NbO\(_3\) film were imprinted to the negative electric field region. The degree of the \(P-E \) hysteresis loop shift to the negative electric field region was almost the same with the present study. This means that the cause of the imprinting behavior was not the film itself but the film-SrRuO\(_3\) interface. As one possibility, Schottky barriers at the interface between electrode and film is considered.\(^{31}\) Since the \(P-E \) hysteresis loops shown in Fig. 5(b) were measured using the capacitor structure of Pt/(K\(_{0.86}\)Na\(_{0.14}\))NbO\(_3\)/SrRuO\(_3\), this asymmetric interface may have contributed to the imprinting behavior. The other is the contribution of impurities existing at interface.\(^{32}\) We have previously demonstrated that hydrothermally-synthesized (K, Na)NbO\(_3\) films include impurities, such as H\(_2\)O and OH\(^-\), arising from alkaline solutions.\(^{33}\) The present imprinting behavior can be explained if such impurities are present at the film-SrRuO\(_3\) interface formed by repeated deposition.

4. Conclusions

60 \(\mu \)m-thick (K\(_{0.86}\)Na\(_{0.14}\))NbO\(_3\) film was prepared at 240°C on (100)\(_\text{SrRuO}_3 \)//(100)\(_\text{SrTiO}_3 \) substrates by repeated hydrothermal deposition technique. The film thickness increased linearly with increases in the number of deposition cycles, and the deposition was estimated to be about 6.5 \(\mu \)m per one cycle. The K/(K+Na) ratio of the deposited thick films were constant throughout the deposition cycles. Cross-sectional SEM images indicated that no micro cracks or pores were present in the 60 \(\mu \)m-thick (K\(_{0.86}\)Na\(_{0.14}\))NbO\(_3\) film. Thick films possessing orthorhombic symmetry and were epitaxially grown on (100)\(_\text{SrRuO}_3 \)//(100)\(_\text{SrTiO}_3 \) substrates. The dielectric constant, \(\varepsilon_r \), decreased from 310 to 243 with increases in measurement frequency. The average remanent polarization measured at 100 Hz was 8 \(\mu \)C/cm\(^2\). It was hence demonstrated that the repeated hydrothermal deposition technique is an effective way of preparing submicron-thick piezoelectric films.

Acknowledgement This research was partially supported by the Japan Science and Technology Agency (JST) via the Adaptable and Seamless Technology Transfer Program through Target-driven R&D (A-STEP).

References

1) D. L. Polla and L. F. Francis, MRS Bull., 21, 59–61 (1996).
2) C.-B. Eom and S. Trolier-McKinstry, MRS Bull., 37, 1007–1017 (2012).
3) D. M. News and B. G. Elmegreen, X. H. Liu and G. J. Martyna, Adv. Mater., 24, 3672–3677 (2012).
4) Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya and M. Nakamura, Nature, 432, 84–87 (2004).
5) G. Shirane, R. Newnham and R. Pepinsky, Phys. Rev., 96, 581–588 (1954).
6) T. Shiraishi, M. Ishikawa, H. Uchida, T. Kiguchi, M. K. Kurosawa, H. Funakubo and T. J. Konno, Jpn. J. Appl. Phys., 56, 10PF04 (2017).
7) K. Tanaka, K. Suzuki, K. Nishiawa, T. Miki and K. Kato, Jpn. J. Appl. Phys., 44, 6885–6890 (2005).
8) P. Paruch, T. Tybell and J.-M. Triscone, Appl. Phys. Lett., 79, 530–532 (2001).
9) Y. Tanaka, T. Harigai, H. Adachi, N. Sakamoto, N.
Wakiya, H. Suzuki and E. Fujii, Appl. Phys. Lett., 102, 192901 (2013).
10) L. Lian and N. R. Sottos, J. Appl. Phys., 87, 3941–3949 (2000).
11) D. M. Kim, C. B. Eom, V. Nagarajan, J. Ouyang, R. Rameshi, V. Vaithyanathan and D. G. Schlom, Appl. Phys. Lett., 88, 142904 (2006).
12) S. Yokoyama, T. Ozeki, T. Oikawa and H. Funakubo, Jpn. J. Appl. Phys., 41, 6705–6708 (2002).
13) S. T. Lau, X. Li, Q. F. Zhou, K. K. Shung, J. Ryu and D. S. Park, Sens. Actuators A Phys., 163, 226–230 (2010).
14) Y. Jeon, Y. G. Seo, S. J. Kim and K. No, Integr. Ferroelectr., 30, 91–101 (2000).
15) R. A. Dorey and R. W. Whatmore, J. Electroceram., 12, 19–32 (2004).
16) J. Ryu, J. J. Choi, B. D. Hahn, D. S. Park and W. H. Yoon, Appl. Phys. Lett., 92, 012905 (2008).
17) K. Shibata, F. Oka, A. Ohishi, T. Mishima and I. Kanno, Appl. Phys. Express, 1, 011501 (2008).
18) I. Fujii, S. Tagata, T. Nakao, N. Koyama, H. Adachi and T. Wada, Jpn. J. Appl. Phys., 54, 10NA13 (2015).
19) L. Wang, K. Yao and W. Ren, Appl. Phys. Lett., 93, 092903 (2008).
20) T. Shiraishi, H. Einitshi, S. Yasui, M. Ishikawa, T. Hasegawa, M. Kurosawa, H. Uchida, Y. Sakashita and H. Funakubo, J. Ceram. Soc. Jpn., 121, 627–631 (2013).
21) T. Shiraishi, H. Einitshi, M. Ishikawa, T. Hasegawa, M. Kurosawa and H. Funakubo, MRS Online Proc. Libr., 1494, 291–296 (2013).
22) T. Shiraishi, H. Einitshi, S. Yasui, M. Ishikawa, T. Hasegawa, M. Kurosawa, H. Uchida, Y. Sakashita and H. Funakubo, Jpn. J. Appl. Phys., 50, 09ND11 (2011).
23) B.-P. Zhang, J.-F. Li, K. Wang and H. Zhang, J. Am. Ceram. Soc., 89, 1605–1609 (2006).
24) K. Kanie, H. Mizutani, A. Terabe, Y. Numamoto, S. Tsukamoto, H. Takahashi, M. Nakaya, J. Tani and A. Muramatsu, Jpn. J. Appl. Phys., 50, 09ND09 (2011).
25) V. J. Tennyery and K. W. Hang, J. Appl. Phys., 59, 4749–4753 (1968).
26) C. W. Ahn, H.-I. Hwang, K. S. Lee, B. M. Jin, S. Park, G. Park, D. Yoon, H. Cheong, H. J. Lee and I. W. Kim, Jpn. J. Appl. Phys., 49, 095801 (2010).
27) J. A. B. Saip, E. R. Moor and A. L. Cabrera, Solid State Commun., 135, 367–372 (2005).
28) Z. Wang, H. Gu, Y. Hu, K. Yang, M. Hu, D. Zhou and J. Guan, CrystEngComm, 12, 3157–3162 (2010).
29) C. Pithan, Y. Shiratori, J. Dornseifier, F.-H. Haegel, A. Magrez and R. Waser, J. Cryst. Growth, 280, 191–200 (2005).
30) K. Kakimoto, K. Akao, Y. Guo and H. Ohsato, Jpn. J. Appl. Phys., 44, 7064–7067 (2005).
31) C. Guerrero, J. Roldan, C. Ferrater, M. V. G. Cuenca, F. Sanchez and M. Varela, Solid-State Electron., 45, 1433–1440 (2001).
32) C. Yoshida, T. Tamura, K. Kondo and K. Takasaki, Appl. Phys. Lett., 79, 1339–1341 (2001).
33) T. Shiraishi, N. Kaneko, M. Kurosawa, H. Uchida, T. Hirayama and H. Funakubo, Jpn. J. Appl. Phys., 53, 05FE02 (2014).