Three novel species and a new record of *Daldinia* (Hypoxylaceae) from Thailand

Sarunyou Wongkanoun\(^1\), Kevin Becker\(^4\), Kanthawut Boonmee\(^1\), Prasert Srikitkulchai\(^2\), Nattawut Boonyuen\(^3\), Boonchuai Chainuwong\(^2\), Jennifer Luangsa-ard\(^3\), Marc Stadler\(^4\)

Received: 17 April 2020 / Revised: 24 August 2020 / Accepted: 26 August 2020

Abstract

In an investigation of stromatic Xylariales in Thailand, several specimens of *Daldinia* were discovered. Three novel species (*D. flavogranulata*, *D. phadaengensis*, and *D. chiangdaoensis*) were recognized from a molecular phylogeny based on concatenated ITS, LSU, RPB2, and TUB2 sequence data, combined with morphological characters and secondary metabolite profiles based on high performance liquid chromatography coupled to diode array detection and mass spectrometry (HPLC-MS). The major components detected were cytochalasins (in *D. flavogranulata* and *D. chiangdaoensis*) and daldinin type azaphilones (in *D. phadaengensis*). In addition, *D. brachysperma*, which had hitherto only been reported from America, was found for the first time in Asia. Its phylogenetic affinities were studied, confirming previous suspicions from morphological comparisons that the species is closely related to *D. eschscholtzii* and *D. bambusicola*, both common in Thailand. *Daldinia flavogranulata*, one of the new taxa, was found to be closely related to the same taxa. The other two novel species, *D. phadaengensis* and *D. chiangdaoensis*, share characters with *D. korfii* and *D. kretzschmarioroides*, respectively.

Keywords Ascomycota · Sordariomycetes · Chemotaxonomy · Three new species

Introduction

The genus *Daldinia* was erected by Cesati and De Notaris (1863) in honor of the Swiss monk, Agostino Daldini. Today, it is one of largest genera in the Hypoxylaceae (Ascomycota, Xylariales). Traditionally, *Daldinia* species were recognized by the internal concentric zones below the perithecial layer in their stroma and by the presence of KOH-
extractable pigments on and below their stromatal surface (Ju et al. 1997). The latest world monograph of the genus compiled morphological, ultra-structural, and chemotaxonomic data for more than a thousand specimens and cultures, and included a preliminary phylogeny based on ITS sequence data (Stadler et al. 2014). Daldinia species are extremely prolific secondary metabolite producers, and the metabolites of their stromata and cultures can be used as taxonomic markers, while others exert selective and prominent activities in biological systems (Helaly et al. 2018).

While the majority of Daldinia species are associated with dicots, some of them like D. bambusicola are associated with bamboo (monocot) in Thailand (Ju et al. 1997). Hsieh et al. (2005) reported that D. bambusicola is closely related to D. caldariorum based on TUB2 and ACTA1 sequences. In India, Daldinia graminis and D. sacchari are found on sugarcane (Dargan and Thind 1985). Narmani et al. (2018) revealed that D. sacchari is phylogenetically related to D. eschscholtzii, and even isolated two new cytochalasins, which are the characteristic stromatal metabolites of the D. eschscholtzii complex. Furthermore, several species of Daldinia produce stromata on fire-damaged woods, including D. vernicosa, D. loculata, D. caldariorum, D. gelatinoides, and D. loculatooides (Stadler et al. 2014).

Stromata of some species of Daldinia (i.e., D. placentiformis, D. korfii, and D. kretschnarioides) appear morphologically similar to Hypoxylon as they are lacking internal concentric zones. However, the affinities of these species to Daldinia were confirmed by ITS and TUB2 sequences, and by the fact that stromata of D. korfii contain cytochalasins and concentricol B (Sir et al. 2016b). These compounds can be used as molecular markers for D. concentrica, D. eschscholtzii, and some members of the D. eschscholtzii group (Quang et al. 2002; Stadler et al. 2014). Morphologically, D. kretschnarioides is very closely linked to Hypoxylon, while multiple loci analyses and metabolomics profiles indicate a closer relationship with Daldinia (Wongkanoun et al. 2019). The phylogenetic affinities of Daldinia and allied genera were also recently confirmed using a multi-locus phylogeny in two independent studies by Wendt et al. (2018) and Daranagama et al. (2018). They used many type and authentic strains of the stromatic Xylariales, which led to a rearrangement of the genera, and provided a phylogenetic backbone tree of these pyrenomycetes for the first time. Recently, some strains representing important lineages of the Hypoxylaceae have been selected for a phylogenomic study relying on high quality genomes and the first papers on comparative functional genomics (Wibberg et al. 2020) and on the occurrence of ITS polymorphisms (Stadler et al. 2020) have been published. Nevertheless, numerous species of the Hypoxylaceae remain to be recollected and cultured, and new taxa are steadily being discovered in particular from tropical countries.

In the course of taxonomic studies on stromatic Xylariales in Thailand, involving extensive field work, we have recently encountered three new species and a new record for the country. The present study is dedicated to their description and illustration, and we also provide evidence on their phylogenetic position and their chemotaxonomy.

Materials and methods

Survey and sample collection

Stromatic Xylariales were collected in selected forests, i.e., community forests, national parks, and reforestation areas (Pha Daeng Zinc Mine area) in Thailand. Macrophotographs were taken using a Canon 60D digital camera (Canon Inc. Tokyo, Japan). Fungal cultures were obtained using a multiple spore isolation method (Sir et al. 2016a). Germinated ascospores were transferred to new agar plates. Axenic cultures and vouchers were deposited in Thailand Bioresource Research Center (TBRC, BCC) and BIOTEC Bangkok Herbarium (BBH), respectively. Scanning electron microscopy (SEM) was carried out using a conventional procedure as described by Kuhnhert et al. (2017).

Morphological characterizations and HPLC profiling

Morphological characters, such as stromatal size and shapes, perithecia, asci, and ascospores were examined in accordance with Stadler et al. (2014) using an Olympus ZX31 (Olympus Corporation, Tokyo, Japan) and a dissecting microscope Olympus SZ61 (Olympus). Fungal cultures were obtained on several media, i.e., oatmeal agar (Difco OA), potato dextrose agar (Difco PDA), and yeast malt glucose agar (1% malt extract, 0.4% glucose, and 0.4% yeast extract; agar 1%; YMGA). The morphological studies were carried out on 9 cm Petri dishes. Conidiogenous cells and conidiophore branching patterns of the anamorph were investigated as proposed by Ju and Rogers (1996). Furthermore, stromatal color, KOH-extractable pigments, and cultures are recorded using the color chart of Rayner (1970). For chemotaxonomic studies, stromatal secondary metabolites were extracted with acetone and analyzed using high performance liquid chromatography coupled with diode array and high resolution electrospray mass spectrometric detection (HPLC/DAD-HRESIMS) in a similar manner as described by Yuyama et al. (2018) and Kretz et al. (2019). Instrumental settings and conditions were the same as described in Kuhnhert et al. (2017).

DNA extraction, PCR, and sequencing

A method based on cetyltrimethyl ammonium bromide (CTAB) was used to extract total genomic DNA from the
mycelia according to Mackill and Bonman (1995). The internal transcribed spacer regions (ITS) and partial sequences of the large subunit of the rDNA (LSU), RNA polymerase II (RPB2), and beta tubulin (TUB2) were amplified, following the standard primers introduced by White et al. (1990; ITS1, ITS4 and ITS5), Vilgalys and Hester (1990; LR7), Bunyard et al. (1994; LORR), Liu et al. (1999; RP2–5F and 7Cr), and O’Donnell and Cigelnik (1997; T1 and T22), according to the protocols of Otto et al. (2016) and Wendt et al. (2018). The polymerase chain reaction (PCR) products were purified and sequenced using the same primers as used for the PCR reaction. DNA sequences were checked and assembled using BioEdit v. 7.2.5 (Hall 2013). All newly generated sequences were submitted to GenBank (https://www.ncbi.nlm.nih.gov/) and listed in Table 1.

Phylogenetic analyses

All sequences were aligned in MUSCLE (Edgar 2004) and refined by direct examination. Multiple sequence alignments were analyzed with closely matched sequences and other reference taxa obtained from GenBank as shown in Table 1. Sequences were analyzed using maximum parsimony (MP), maximum likelihood (ML), and Bayesian algorithm (MB). The MP analysis was performed in PAUP*4.0b10 (Swofford 2002), and all characters were equally weighted and gaps were treated as missing data. The most parsimonious trees were obtained from heuristic searches: 100 replicates of stepwise random addition and tree-bisection-reconnection (TBR) as branch swapping algorithm. Maximum parsimony bootstrap supports (MPBS) were estimated by 100 replicates (10 replicates of stepwise random sequence addition). Tree length, consistency index (CI), retention index (RI), relative consistency index (RC), and homoplasy index (HI) were estimated. The ML tree and bootstrap analyses (MLBS) were conducted through the CIPRES Science Gateway V. 3.3 (Miller et al. 2010) using RAxML 8.2.4 (Stamatakis 2014) with the BFGS method to optimize GTR rate parameters. Bayesian posterior probabilities (BPP) of the branches were computed using MrBayes 3.0B4 (Huelsenbeck and Ronquist 2001) with the best-fit model (GTR + I + G) selected by AIC in Mr Modeltest 2.2 (Nylander 2004), tested with hierarchical likelihood ratios (hLRs). Three million generations were run in four Markov chains and sampled every 100 generations with a burn-in value set at 3000 sampled trees. Sequence alignments were deposited at TreeBase (submission ID 25485: www.treebase.org).

Sequences of Graphostoma platystomum CBS 270.87 and Xylaria hypoxylon CBS 12260 obtained from GenBank were used as outgroups. The RAxML based phylogenetic tree is shown in Fig. 6.

Results and discussion

Molecular phylogeny

Sixty-one new sequences were generated and included into a combined ITS, LSU, RPB2, and TUB2 dataset to clarify the phylogenetic relationships of newly collected Thai specimens of Daldinia and distinguish them from other species and genera in the Hypoxylaceae (Table 1). PCR amplifications yielded approximately 840 bp, 1213 bp, 829 bp, and 1583 bp of ITS, LSU, RPB2, and TUB2 sequences. The dataset of the multi-locus DNA sequences included 67 taxa from the Hypoxylaceae based on Annulohypoxylon (5), Daldinia (35), Hypoxylon (12), Hypomontagnella (4), Jackrogersella (3), and Pyrenopolyporus (6). The combined dataset consisted of 4465 characters, of which 2600 were constant, 1434 parsimony informative, and 431 uninformative. In MP analysis, a CI of 0.357, a RI of 0.638, and a HI of 0.643 yielded three equally most parsimony trees. The phylogenetic tree included 5 major clades: a Daldinia clade subdivided into five branches (D I–D V) and one clade each representing Pyrenopolyporus (Py), Hypomontagnella (Hy), Annulohypoxylon, and Jackrogersella (AJ) and Hypoxylon (H) (Fig. 6). Clade D I, accommodating D. flavogranulata (BCC 89363, BCC 89365, and BCC 89376) and D. caldarium appeared monophyletic and was supported with high bootstrap values. These data are in agreement with the morphological characters. Clade D II also group with a strong bootstrap support and comprised D. bambusicola and D. brachysperma. Clade D III included the D. eschscholtzii complex, where D. placentiformis and D. theissenii were grouping as a strongly supported monophyletic clade. The strongly supported clade D IV grouped with clades D II and D III as sister clades and consisted of D. kretzschmarioides, D. kretzschmarioides, D. kretzschmarioides, D. phadangensis (BCC 89349, BCC 89350), and D. chiangdaensis (BCC 88220, BCC 88221). In agreement with the morphological evidence, the four taxa were separated in a highly supported clade (100% BSMP, 100% BSML, and 1.00 BPP). Clade D V also formed a fully statistically supported, monophyletic clade (100% BSMP, 100% BSML, 1.00 BPP) appearing as sister clade to clades D II and D III. Within clade D V, two moderately supported subclades were observed; the first one consisting of D. andina, D. concenitra, D. dennisi, D. loculatoidea, D. macaronesica, and D. steglichii and the second one comprising D. petriniae, D. pyrenaica, D. subvernicosa, and D. vernicosa. The fully supported clade Py contained Pyrenopolyporus species as sister clade to D V. Clade Hy included representatives of the recently erected genus Hypomontagnella (Lambert et al. 2019) represented...
Species	Strains	Country	GenBank accession numbers	Reference	Status			
Annulohypoxylon annulatum	CBS 140775	Texas	KY610418, KY610418, KY624263, KX376353	Kuhnert et al. (2017; TUB2), Wendt et al. (2018; ITS, LSU, RPB2)	ET			
A. moriforme	CBS 123579	Martinique	KX376321, KY610425, KY624289, KX271261	Kuhnert et al. (2017; ITS, TUB2), Wendt et al. (2018; LSU, RPB2)				
A. nitens	MFLUCC 12.0823	Thailand	KJ934991, KJ934992, KJ934994, KJ934993	Damanagama et al. (2015)				
A. stygium	MUCL 54601	French Guiana	KY610409, KY610475, KY624292, KX271263	Wendt et al. (2018)				
A. truncatum	CBS 140778	Texas	KY610419, KY610419, KY624277, KX376352	Kuhnert et al. (2017; TUB2), Wendt et al. (2018; ITS, LSU, RPB2)	ET			
Daldinia andina	CBS 114736	Ecuador	AM749918, KY610430, KY624239, KC977259	Bitzer et al. (2008; ITS), *D. grandis*, Kuhnert et al. (2014; TUB2), Wendt et al. (2018; LSU, RPB2)	HT			
D. bambusicola	CBS 122872	Thailand	KY610385, KY610431, KY624241, AY951688	Hsieh et al. (2005; TUB2), Wendt et al. (2018; ITS, LSU, RPB2)	HT			
D. bambusicola	TBRC 8878	Thailand	MH922869, MH922870, MK165431, MK165422	Wongkanoun et al. (2019)				
D. bambusicola	TBRC 8879	Thailand	MH922872, MH938543, MK165432, MK165423	Wongkanoun et al. (2019)				
D. bambusicola	BCC27937	Thailand	MN153861, MN153876, MN172217, N/a	This study				
D. bambusicola	BCC33678	Thailand	MN153860, MN153877, MN172218, N/a	This study				
D. brachysperma	BCC33676	Thailand	MN153854, MN153878, N/a, MN172205	This study				
D. caldariorum	BCC88220	Thailand	MN153850, MN153851, MN172208, MN172197	This study				
D. chiangdaoensis	BCC88221	Thailand	MN153851, MN153852, MN172209, MN172198	This study				
D. concentrica	CBS 113277	Germany	KU683756, KU683756, KU684289, KU684128	U'Ren et al. 2016				
D. demissii	CBS 114741	Australia	JX658477, KY610435, KY624244, KC977262	Stadler et al. (2014; ITS), Kuhnert et al. (2014; TUB2), Wendt et al. (2018; LSU, RPB2)	HT			
Species	Strains	Country	GenBank accession numbers	Reference	Status			
------------------------------	------------	------------	------------------------------------	--	--------			
Daldinia eschscholtzii	MUCL 45435	Benin	JX658484 KY610437 KY624246 KC977266	Stadler et al. (2014; ITS), Kuhnert et al. (2014; TUB2), Wendt et al. (2018; LSU, RPB2)				
Daldinia eschscholtzii	TBRC 8876	Thailand	MH938532 MH938541 MK165429 MK165420	Wongkanoun et al. (2019)				
Daldinia eschscholtzii	BCC27887	Thailand	MN153861 MN153878 MN172214 N/A	This study				
Daldinia flavogramulata	BCC89363	Thailand	MN153856 MN153873 MN172211 MN172200	This study				
Daldinia flavogramulata	BCC89365	Thailand	MN153857 MN153874 MN172212 MN172201	This study				
Daldinia flavogramulata	BCC89376	Thailand	MN153858 MN153875 MN172213 MN172202	This study				
Daldinia korfi	EBS 067	Argentina	KY204018 N/A N/A N/A	Sir et al. (2016b)				
Daldinia korfi	EBS 473	Argentina	KY204020 N/A N/A N/A	Sir et al. (2016b)				
Daldinia kretzschmarioroides	TBRC 8875	Thailand	MH938531 MH938540 MK165425 MK165416	Wongkanoun et al. (2019)	ET			
Daldinia loculatoides	CBS 113279	UK	AF176982 KY610438 KY624247 KX271246	Johannesson et al. (2000; ITS), Wendt et al. (2018; LSU, RPB2)	ET			
Daldinia macaronesica	CBS 113040	Spain	KY610398 KY610477 KY624294 KX271266	Wendt et al. (2018)	PT			
Daldinia phadengensis	BCC89349	Thailand	MN153852 MN153869 MN172206 MN172195	This study				
Daldinia phadengensis	BCC89350	Thailand	MN153853 MN153870 MN172207 MN172196	This study				
Daldinia petriniae	MUCL 49214	Austria	AM749937 KY610439 KY624248 KC977261	Bitzer et al. (2008; ITS), Kuhnert et al. (2014; TUB2), Wendt et al. (2018; LSU, RPB2)	ET			
Daldinia placentiformis	MUCL 47603	Mexico	AM749921 KY610440 KY624249 KC977278	Bitzer et al. (2008; ITS), Kuhnert et al. (2014; TUB2), Wendt et al. (2018; LSU, RPB2)				
Daldinia pyrenaica	MUCL 53969	France	KY610413 KY610413 KY624274 KY624312	Wendt et al. (2018)				
Daldinia steglichii	MUCL 43512	Papua New Guinea	KY610399 KY610479 KY624250 KX271269	Wendt et al. (2018)				
Daldinia subvernosa	TBRC 8877	Thailand	MH938533 MH938542 MK165430 MK165421	Wongkanoun et al. (2019)	HT			
Daldinia theissenii	CBS 113044	Argentina	KY610388 KY610441 KY624251 KX271247	Wendt et al. (2018)	PT			
Daldinia vernicosa	CBS 119316	Germany	KY610395 KY610442 KY624252 KC977260	Kuhnert et al. (2014; TUB2), Wendt et al. (2018; ITS, LSU, RPB2)	ET			
Graphostroma platystomum	CBS 270.87	France	JX658535 DQ836906 KY624296 HG934108	Stadler et al. (2014; ITS), Zhang et al. (2006; LSU), Koukol et al.				
Species	Strains	Country	GenBank accession numbers	Reference	Status			
----------------------------	-----------	---------------	----------------------------	---	--------------			
Hypomontagnella monticulosa	MUCL 54604	French Guiana	KY610404, KY610487, KY624305, XX71273	Wendt et al. (2018; TUB2), Wendt et al. (2018; LSU, RPB2)	ET			
Hypomontagnella monticulosa	BCC69203	Thailand	MN153864, MN153881, MN172219, MN172204	This study				
Hypomontagnella monticulosa	BCC69203	Thailand	MN153865, MN153882, MN172220, MN172203	This study				
Hypomontagnella submunticulosa	CBS 115280	France	KC968923, KY610457, KY624226, KC977267	Kuhnert et al. (2014; ITS, TUB2), Wendt et al. (2018; LSU, RPB2)				
Hypoxylon crocopeplum	CBS 119004	France	KC968907, KY610445, KY624255, KY977268	Kuhnert et al. (2014; ITS, TUB2), Wendt et al. (2018; LSU, RPB2)				
Hypoxylon fragiforme	MUCL 51264	Germany	KC477229, KM186295, KM186296, XX71282	Stadler et al. (2013; ITS), Daranagama et al. (2015; LSU, RPB2), Wendt et al. (2018; TUB2)	ET			
Hypoxylon fuscum	CBS 113049	France	KY610401, KY610482, KY624299, XX71271	Wendt et al. (2018)	ET			
Hypoxylon haematostroma	MUCL 53301	Martinique	KC968911, KY610484, KY624301, KC977291	Kuhnert et al. (2014; ITS, TUB2), Wendt et al. (2018; LSU, RPB2)	ET			
Hypoxylon haematostroma	BCC50533	Thailand	MN153866, MN153883, MN172221, N/A	This study				
Hypoxylon investiens	CBS 118183	Malaysia	KC968925, KY610450, KY624259, KC977270	Kuhnert et al. (2014; ITS, TUB2), Wendt et al. (2018; LSU, RPB2)	ET			
Hypoxylon lateripigmentum	MUCL 53304	Martinique	KC968933, KY610486, KY624304, KC977290	Kuhnert et al. (2014; ITS, TUB2), Wendt et al. (2018; LSU, RPB2)				
Hypoxylon lenormandii	CBS 119003	Ecuador	KC968943, KY610452, KY624261, KC977273	Kuhnert et al. (2014; ITS, TUB2), Wendt et al. (2018; LSU, RPB2)	HT			
Hypoxylon petriniae	CBS 114746	France	KY610405, KY610491, KY624279, XX71274	Kuhnert et al. (2017; TUB2), Wendt et al. (2018; ITS, LSU, RPB2)	HT			
Hypoxylon rickii	MUCL 53309	Martinique	KC968932, KY610416, KY624281, KC977288	Kuhnert et al. (2014; ITS, TUB2), Wendt et al. (2018; LSU, RPB2)	ET			
Hypoxylon rubiginosum	MUCL 52887	Germany	KC477232, KY610469, KY624266, KY624311	Stadler et al. (2013; ITS), Wendt et al. (2018; LSU, RPB2), Wendt et al. (2018; TUB2)	ET			
Hypoxylon samuelsii	MUCL 51843	Guadeloupe	KC968916, KY610466, KY624269, KC977286	Kuhnert et al. (2014; ITS, TUB2), Wendt et al. (2018; TUB2)	ET			
Species	Strains	Country	GenBank accession numbers	Reference	Status			
-------------------------	-----------	-----------	---------------------------	--	-------------			
			ITS	LSU	RPB2	TUB2		
Jackrogersella cohaerens	CBS 119126	Germany	KY610396	KY610497	KY624270	KY624314	Wendt et al. (2018)	(2018; LSU, RPB2)
Jackrogersella minutella	CBS 119015	Portugal	KY610381	KY610424	KY624235	KX271240	Kuhnert et al. (2017; TUB2), Wendt et al. (2018; ITS, LSU, RPB2)	
Jackrogersella multiformis	CBS 119016	Germany	KC477234	KY610473	KY624290	KX271262	Kuhnert et al. (2014; ITS), Kuhnert et al. (2017; TUB2), Wendt et al. (2018; LSU, RPB2)	
Pyrenopolyporus hunteri	MUCL 52673	Ivory Coast	KY610421	KY610472	KY624309	KU159530	Kuhnert et al. (2017; TUB2), Wendt et al. (2018; ITS, LSU, RPB2)	
Pyrenopolyporus laminosus	MUCL 53305	Martinique	KC968934	KY610485	KY624303	KC977292	Kuhnert et al. (2014; ITS, TUB2), Wendt et al. (2018; LSU, RPB2)	
Pyrenopolyporus laminosus	TBRC 8871	Thailand	MH938527	MH938536	MK165424	MK165415	Wongkanoun et al. (2019)	
Pyrenopolyporus nicaraguensis	BCC89383	Thailand	MN153855	MN153872	MN172210	MN172199	This study	
Pyrenopolyporus symphyon	CBS 117739	Burkina Faso	AM749922	KY610489	KY624307	KC977272	Bizzer et al. (2008; ITS), Kuhnert et al. (2014; TUB2), Wendt et al. (2018; LSU, RPB2)	
Xylaria hypoxylon	TBRC 8873	Thailand	MH938529	MH938538	MK165428	MK165419	Wongkanoun et al. (2019)	
	CBS12260	Sweden	KY610407	KY610495	KY624231	KX271279	Sir et al. (2016a; TUB2), Wendt et al. (2018; ITS, LSU, RPB2)	ET
by *H. monticulosa* and *H. submonticulosa*. Clade AJ comprises species of *Annulohypoxylon* and *Jackrogersella*, while clade H includes species of *Hypoxylon*, which is in agreement with data of Wendt et al. (2018).

In summary, the phylogeny allowed for a clear separation of the taxa that are described below as new, even though the topology of the phylogenetic tree was not in accordance with the grouping of *Daldinia* as proposed by Stadler et al. (2014) based on ITS sequences, chemotaxonomy, and morphology. This may be due to different modes of taxon selection and the variability of ITS.

Taxonomy

Daldinia chiangdaoensis Srikitkulchai, Wongkanoun, M. Stadler & Luangsa-ard, sp. nov. Fig. 1. MB 833760

Etymology. “chiangdaoensis” referring to the locality where the type specimen was collected.

Holotype: Thailand: Chiang Mai Province, Chiang Dao, Ban Hua Thung community forest, 19.420° N, 98.971° E, hill evergreen forest, on decaying dicot wood, 13 December 2017, P. Srikitkulchai 6 S. Wongkanoun (BBH 47512).

Ex-holotype strain: BCC 88220. DNA sequences of ex-holotype strain: MN153850 (ITS), MN153867 (LSU), MN172208 (RPB2), MN172197 (TUB2).

Fig. 1 *Daldinia chiangdaoensis* (BBH 47512). a–e Stromatal habit. d Stromatal surface and ostioles with pigments in 10% KOH. e Longitudinal section of stroma showing perithecia and the tissue below the perithecial layer. f Perithecia (white arrow). g Ascus. h Ascus and ascospore showing germ slit (white arrow). i Ascospore by SEM. j Ascospore showing germ slit (white arrow). k Ascospore in KOH showing dehiscent perispore (black arrow). Scale is indicated by bars (e 2 mm, f 0.5 mm, g–h 10 μm, i 2 μm, j–l 5 μm)
Fig. 2 *Daldinia phadaengensis* (BBH 47511). a, c Stromatal habit. b Stromatal surface with ostioles with pigments in 10% KOH. d Longitudinal section of stroma showing perithecia and the tissue below the perithecial layer. e Perithecia. f Cells of the tissue below the perithecial layer in distilled water under light microscope. g Perithecium in distilled water under light microscope. h–i Ascospores by SEM. j Ascospore showing germ slit. k–l Ascospores in KOH showing dehiscent perispore (black arrow). Scale is indicated by bars (a 10 mm, c 5 mm, d 1 mm, e 0.5 mm, g 0.1 mm, h–l 5 μm)
Table 2 Comparison of morphological and chemotaxonomic characters of species with massive stromata and long tubular perithecia and *Daldinia* species that are similar to *flavogranulata*

Taxon	Metabolite (stroma)	KOH-extractable pigments	Ascospore perispore	Ascospore germ slit	Ascospore size (μm)
Daldinia flavogranulata	C, cytochalasins, BNT	Dark brown to blackish brown to reddish brown, uncellular, irregularly ellipsoid, with narrow rounded end (13–15) 15–18 (19) × 6–8 (−10) μm (x = 16.45 × 7.19 μm, n = 50), with straight to slightly curved germ slit covering full spore length on convex side, perispore dehiscent in 10% KOH, smooth.	Dehiscent	Spore length, dorsal	(10.3–14) 13–16 (17) × 4.8–6.2 μm
Daldinia bambusicola	C, cytochalasins, BNT	Dark brown to blackish brown, uncellular, irregularly ellipsoid, with narrow rounded end (13–15) 15–18 (19) × 6–8 (−10) μm (x = 16.45 × 7.19 μm, n = 50), with straight to slightly curved germ slit covering full spore length on convex side, perispore dehiscent in 10% KOH, smooth.	Dehiscent	Spore length, dorsal	(10.3–14) 13–16 (17) × 4.8–6.2 μm
Daldinia brachysperma	C, cytochalasins, BNT	Dark brown to blackish brown, uncellular, irregularly ellipsoid, with narrow rounded end (13–15) 15–18 (19) × 6–8 (−10) μm (x = 16.45 × 7.19 μm, n = 50), with straight to slightly curved germ slit covering full spore length on convex side, perispore dehiscent in 10% KOH, smooth.	Dehiscent	Spore length, dorsal	(10.3–14) 13–16 (17) × 4.8–6.2 μm
Daldinia caldariorum	C, cytochalasins, BNT	Dark brown to blackish brown, uncellular, irregularly ellipsoid, with narrow rounded end (13–15) 15–18 (19) × 6–8 (−10) μm (x = 16.45 × 7.19 μm, n = 50), with straight to slightly curved germ slit covering full spore length on convex side, perispore dehiscent in 10% KOH, smooth.	Dehiscent	Spore length, dorsal	(10.3–14) 13–16 (17) × 4.8–6.2 μm
Daldinia chiangdaoensis	C, cytochalasins, BNT	Dark brown to blackish brown, uncellular, irregularly ellipsoid, with narrow rounded end (13–15) 15–18 (19) × 6–8 (−10) μm (x = 16.45 × 7.19 μm, n = 50), with straight to slightly curved germ slit covering full spore length on convex side, perispore dehiscent in 10% KOH, smooth.	Dehiscent	Spore length, dorsal	(10.3–14) 13–16 (17) × 4.8–6.2 μm
Daldinia placentiformis	C, cytochalasins, BNT	Dark brown to blackish brown, uncellular, irregularly ellipsoid, with narrow rounded end (13–15) 15–18 (19) × 6–8 (−10) μm (x = 16.45 × 7.19 μm, n = 50), with straight to slightly curved germ slit covering full spore length on convex side, perispore dehiscent in 10% KOH, smooth.	Dehiscent	Spore length, dorsal	(10.3–14) 13–16 (17) × 4.8–6.2 μm

Teleomorph. *Stromata* superficial, hemispherical to spherical, with conspicuous perithecial outlines, (11–) 16–20 mm long, 9–11 mm broad, 4–5 mm thick; surface Olivaceous (48) to Dull Green (70), with 10% KOH - extractable pigments Vinaceous Gray (116) or Fuscous Black (104); dark brown to reddish brown granules forming a thin crust above perithecial layer; the tissue between perithecia orange brown or gray; the tissue below the perithecial layer without internal concentric zones, gray or black, 2.1–3.2 mm thick. *Perithecia* monostichous, obvoid to lanceolate 1.14–1.43 mm high, 0.29–0.43 mm broad; ostioles papillate.

Asci cylindrical, spore bearing part (62–) 75–87 × 12–15 μm, 8 spored; apical apparatus bluing in Melzer’s reagent, discoid, (0.6–) 1 × 1.7–2.2 μm (x = 0.96 × 1.93 μm, n = 10). *Ascospores* dark brown to blackish brown, unicellular, irregularly ellipsoid, with narrow rounded end (13–15) 15–18 (19) × 6–8 (−10) μm (x = 16.45 × 7.19 μm, n = 50), with straight to slightly curved germ slit covering full spore length on convex side, perispore dehiscent in 10% KOH, smooth.

Culture characteristics. Colonies on OA reaching the edge of the Petri dish in 3 weeks, at first whitish, becoming velvety to felty, Grayish Lavender (98); reverse Dark Purple (36) and Herbage Green (71), azonate with distinct margins (Fig. 5b1). Colonies on YMGA, reaching the edge of the Petri dish in 3 weeks, azonate, aerial mycelium at first whitish becoming velvety to felty, smoke, Rosy Vinaceous (58); reverse Olivaceous (48) (Fig. 5b2). Colonies on PDA, reaching the edge of the Petri dish 9 cm in 3 weeks, aerial mycelium at first whitish, becoming Rosy Vinaceous (58); reverse Olivaceous (48) (Fig. 5b3).

Anamorph on OA. *Conidiophores* with virgariella-like to (much more frequently) nodulisporium-like branching patterns as defined in Ju and Rogers (1996), erect, main axis hyaline to pale green and smooth to roughened. *Conidiogenous cells* cylindrical, hyaline, finely roughened, 11–13 (−27) 3–4 μm (x = 19.60 × 4.3 μm, n = 5). *Conidia* hyaline to pale green, smooth, ellipsoid, 7–8 × 3–4 μm (x = 7.6 × 3.6 μm, n = 10).

Anamorph on YMGA. *Conidiophores* with the same branching pattern and dimensions of conidiogeneous cells and conidia as on OA.

Anamorph on PDA not observed even after up to 3 months.
Secondary metabolites. 1,1′-Binaphthalene-4,4′,5,5′-tetrol (BNT, 1), cytochalasans (Supplementary Fig. S1).

Notes. There are three species that are most similar to D. chiangdaensis in producing massive, azonate tissue below the perithecial layer and oboviod perithecia as the following details: D. placentiformis, D. korfii, and D. kretzschmarioides. The former species differs in its ascospores size ranges, 14.5–16 × 6.5–7 µm, 1,1′-Binaphthalene-4,4′,5,5′-tetrol (BNT, 1) Dalldinia kretzschmarioides differs in the production of a green olivaceous pigment and a brown KOH-extractable pigment from the outer stroma. The ascospore size range of D. chiangdaensis is larger than that of D. kretzschmarioides [(13–15)18–19–(5–6)–8–10] vs 13–15 (–16) × (4–5) 5–6 µm. Phylogenetic relationships revealed that DNA sequences of D. chiangdaensis clustered together with D. kretzschmarioides supported by high bootstrap values (Fig. 6). Morphologically, D. korfii (Sir et al. 2016b) differs by its ascospores size ranges, (10.3–11–14–16) × (4.8–5.2–6.2) (–7). Our molecular data also confirmed a clear separation with strong statistical support as shown in Fig. 6.

Dalldinia phadaengensis Srikitkulchai, Wongkanoun, M. Stadler & Luangsa-ard, sp. nov. Fig. 2. MB 833761

Etymology. “phadaengensis” referring to the locality where the type specimen was collected.

Holotype. Thailand: Tak Province, Pha Daeng, Pha Daeng Zinc Mine, 16.665′ N, 98.649′ E, reforestation forest, on decaying dicot wood, 6 September 2018, P. Srikitikulchai & S. Wongkanoun (BBH 47511).

Ex-holotype strain: BCC 89349. DNA sequences of ex-holotype strain: MN153852 (ITS), MN153869 (LSU), MN172206 (RPB2), MN172195 (TUB2).

Teleomorph. Stromata superficial, spreading flat over the substrate, pulvinate, with inconspicuous perithecial outlines, 15–18 (–25) mm long, 9–13 (–16) mm broad, 1.4–2 mm thick; surface Vinaceous Gray (116) to Pale Pulpish Gray (117), with 10% KOH producing Isabelline (65) and Cinnamon (62) extractable pigments; dark brown or blackish brown granules forming a thin crust above perithecial layer; the tissue between perithecia gray or blackish brown; the tissue below perithecial layer without internal concentric zones, gray, 0.57–0.85 mm thick. Perithecia monostichous, obovoid to lanceolate 0.71–0.85 mm high, 0.28–0.35 mm broad; ostiolo umbilicate to slightly raised discoid.

Asci cylindrical; apical apparatus not observed. Ascospores dark brown to blackish brown, unicellular, irregularly ellipsoid, with narrow rounded ends, (11–14–16 (–18) × 5–6 µm (5.45 × 14.05 µm, n = 50) with straight to slightly oblique germ slit covering ca. 2/3 length of the spore on convex side, perispore dehiscent in 10% KOH, smooth.

Culture characteristics. Colonies on OA reaching the edge of the Petri dish 9 cm in 2 weeks, zonate, at first whitish becoming Smoke Gray (106), with distinct margins; reverse Herbage Green (18) (Fig. 5a1). Colonies on YMGA, reaching the edge of the Petri dish 9 cm in a week, azonate, aerial mycelium initially whitish, becoming velvety to felly, Olivaceous (48); reverse Brick (59) and Cinnamon (52) (Fig. 5a2). Colonies on PDA, reaching the edge of the Petri dish 9 cm in 1 week, aerial mycelium initially whitish, becoming Olivaceous (48), Dark Herbage Green (69) and yellow green (71); reverse Gray Olivaceous (107) to Smoke Gray (106) (Fig. 5a3).

Anamorph on OA. Conidiophores with virgariella-like to (much more frequently) nodulisporium-like branching patterns as defined in Ju and Rogers (1996), erect, main axis hyaline to pale green and smooth to roughened. Conidiogenous cells cylindrical, hyaline, finely roughened, 15–18 (–20) µm × 3 (X = 16.8 × 3 µm, n = 10). Conidia hyaline to pale yellow, smooth, ellipsoid, 6–7 × 3–4 µm (X = 6.2 × 3.04 µm, n = 25).

Anamorph on YMGA similar to that on OA.

Cultures on PDA not producing anamorphic structures in 3 months.

Secondary metabolites. BNT (1); daldinins A1 (2) and A4 (3) (Hashimoto 1994).

Notes. Dalldinia phadaengensis is morphologically similar to D. chiangdaensis, D. korfii, and D. kretzschmarioides in lacking internal concentric zones below the perithecial layer. The new species is distinguishable from the aforementioned species by morphology as well as by comparison of the molecular phylogenetic data. Strikingly, D. phadaengensis also differs from the other species by having yellowish orange KOH-extractable stromatal pigments and the tissue below the perithecial layer, and has the thinnest tissue below the perithecial layer (1.4–2 mm) of all known Dalldinia species. Table 2 provides a synopsis of the morphological characters and secondary metabolites of this group of Dalldinia species and the related genus Pyrenopolyporus. Dalldinia placentiformis, another morphologically similar species, which has so far not been found in Thailand, has olivaceous pigments, owing to the presence of daldinone A (Bitzer et al. 2008). Daldinin A derivatives were originally isolated from a species referred to as “D. concentrica” by Hashimoto (1994), which was revised as D. childiae by Stadler et al. (2014). They are chemically similar to the lenormandins and fragirubrins that are known from Hypoxylon species (Kuhner et al. 2015; Surup et al. 2018). However, this is the first time they have been identified as a major metabolites in a species that does not belong to the D. childiae group as defined by Stadler et al. (2014). Several peaks corresponding to cytochalasans were also observed but could not be further elucidated without preparative isolation, which was not possible due to scarcity of material. A major unknown compound (UCP) was also detected, whose molecular formula could not yet be identified.
Daldinia flavogranulata Srikitikulchai, Wongkanoun, M. Stadler & Luangsa-ard, sp. nov. Fig. 3 MB 833762

Etymology. “flavogranulata” refers to the yellow granules forming a thin layer above the perithecia.

Holotype: Thailand: Tak Province, Pha Daeng, Pha Daeng Zinc Mine, 16.665′N, 98.649′E, reforestation forest, on bamboo trunk (Bambusoideae) in fire damaged area, 6 September 2018, P. Srikitikulchai & S. Wongkanoun (BBH 47510).

Ex-holotype strain: BCC 89363. DNA sequences of ex-holotype strain: MN153856 (ITS), MN153873 (LSU), MN172211 (RPB2), MN172200 (TUB2).

Teleomorph. Stromata superficial, hemispherical, pulvinate or peltate the base broadly attached to the substrate, with conspicuous perithecial outlines, 3.6–4 cm long, 2.8–3 cm wide, 0.9–1 cm thick; surface Vinaceous Gray (116) or Purplish Gray (128), with 10% KOH producing Livid Vinaceous (83) or Brown Vinaceous (84) extractable pigments; yellow granules form a thin layer above the perithecia; the tissue between perithecia blackish brown or white; the tissue below the perithecial layer Olivaceous Buff (89) and Greenish Olivaceous (90), composed of alternating zones, darker zone dark brown to

Fig. 4 Daldinia brachysperma (BBH 25493). a–b Stroma. c Stromatal surface and negative pigment test in 10% KOH. d Longitudinal section of stroma showing the tissue below the perithecial layer with internal concentric zones. e Perithecia. f Tissue below perithecial layer under light microscope. g Ascospore by SEM. h Ascospore showing germ slit (black arrow). i–j Ascospores by scanning electron microscopy. k Ascospore. Scale is indicated by bars (a, b 5 mm, e 0.5 mm, d 2 mm, h 5 μm, g, i–k 2 μm)
blackish brown 0.14–0.28 mm thick, lighter zones white, 0.42–0.57 mm thick. *Perithecia* monostichous, obvoid, lanceolate 0.87–1 mm × 0.21–0.28 mm; ostioles papillate. *Asci* cylindrical, 256–260 μm total length, the spore-bearing part, 100–108 × 8 μm; apical apparatus rectangular in outline, bluing in Melzer’s reagent, 0.5–1 high, 2–2.5 μm wide. *Ascospores* dark brown to blackish brown, unicellular, irregularly ellipsoid (9–10–11–12) × 4–5 μm (x = 10.44 × 4.64 μm, n = 25) with straight to slightly curved germ slit covering 2/3 length of the spore on convex side, without dehiscent perispore in 10% KOH.

Culture characteristics. Colonies on OA, reaching the edge of the Petri dish in 2 weeks, zonate, at first Dark Green (21), Dark Bluish Green (24); reverse Herbage Green (17) (Fig. 5e1). Colonies on YMGA, reaching the edge of the Petri dish in 2 weeks, aerial mycelium at first whitish becoming smoke, Herbage Green (17) and Green (20); reverse Dark Green (21) and Yellow Green (18) (Fig. 5e2). Colonies on PDA, reaching the edge of the Petri dish in 3 weeks, aerial mycelium at first whitish becoming Green (50), Dark Green (21), Herbage Green (17); reverse Green (50) (Fig. 5e3).

Teleomorph. *Stromata* superficial, stromatal surface smooth to slightly wrinkled, peltate, 2–5 mm high, fertile part 3–5 mm high, 6–8 mm wide, with narrow, smooth to slightly wrinkled stipe attached to substrate, with inconspicuous perithecial outlines, surface Fuscous Black (104) and Grayish Sepia (106), dull reddish brown granules immediately beneath stromatal surface, without apparent KOH-extractable pigments; the tissue between perithecia grayish brown, pithy, wooly; the tissue below the perithecial layer composed of internal concentric zones, darker zones blackish brown, 0.2 mm thick, lighter zones white, 0.4–0.8 mm thick. *Perithecia* monostichous, obvoid to slightly lanceolate, 0.6–0.8 mm high × 0.3 mm broad; ostioles slightly papillate, inconspicuous.

Asci fragmentary, without visible apical apparatus, not bluing in Melzer’s reagent. *Ascospores* dark brown to blackish brown, unicellular, irregularly ellipsoid, with narrowly rounded to almost acute ends, 6–7 × 3–4 (x = 6.88 × 3.48 μm, n = 25), with straight to slightly oblique germ slit germ slit covering ca. 2/3 length of the spore on convex side, perispore dehiscent in 10% KOH, smooth under light microscope, but revealing conspicuous ornamentations by SEM; epispore smooth.

Culture characteristics. Colonies on OA, reaching the edge of the Petri dish 9 cm in 1 week, azonate, at first whitish becoming floccose, Chestnut (40), Green (20), Herbage Green (17) and producing Dull Green (70) pigments, with distinct margins; reverse Pale Vinaceous (85) to Vinaceous Buff (86) (Fig. 5c1). Colonies on YMGA, reaching the edge of the Petri dish 9 cm in 1 week, azonate, aerial mycelium at first whitish, becoming velvety to felty, Dull Green (70), Dark Herbage Green (79) or Yellow Green (71); reverse Pale Vinaceous (85) to Vinaceous Buff (86) (Fig. 5c2). Colonies on PDA,
reaching the edge of the Petri dish 9 cm in 1 week, azonate, at first whitish, becoming floccose, Olivaceous (4); reverse Grayish Gray (110) to Olivaceous Black (108) (Fig. 5c3).

Anamorph on OA. *Conidiophores* with nodulisporium-like branching patterns as defined in Ju and Rogers (1996), erect, main axis hyaline to pale green and smooth to roughened. *Conidiogenous cells* cylindrical, hyaline, finely roughened, 10–15 (–18) × 3–4 μm (\(\bar{x} = 14.00 \times 3.60 \mu m, n = 10\)). *Conidia* hyaline to pale yellow, smooth, ellipsoid, 4–5 × 2–3 μm (\(\bar{x} = 4.48 \times 2.64 \mu m, n = 25\)).

Anamorph on YMGA and PDA similar to that on OA.

Secondary metabolites. BNT (1) in traces and a multitude of peaks corresponding to cytochalasans that could not further elucidated without preparative isolation, which was not possible due to scarcity of material. Additionally, two unidentifiable peaks (UCB1, UCB2) not corresponding to cytochalasans were detected.

Notes. The Thai specimen of *D. brachysperma* corresponds well with the descriptions made in Ju et al. (1997) and Stadler et al. (2014). This species is distinctive for its stromatal morphology and the characteristic short ascospores. The HPLC profile matched the data reported by Stadler et al. (2014). The phylogenetic position and the characteristics of the anamorph are reported here for the first time, and this confirmed the affinities of this species to the *D. eschscholtzii* group as postulated by Stadler et al. (2014) (Figs. 6, 7, and 8).

Conclusion

The present study focused on the taxonomy of *Daldinia* in Thailand, from which only four species (*D. bambusicola, D. eschscholtzii, D. kretzschmarioides, D. subvernicosa*) had been recorded. Here, we describe three additional novel taxa and a new...
Kretz et al. (2019) as well as representative cytochalasans from Stromata associated with bamboo ..

Therefore, either artificial stromata production or re-collection of the scarce stromatal material representing the type specimens.remain to be isolated and identified, which was not possible from secondary metabolites have been detected in the stromata of these species by chemotaxonomic methodology, but these metabolites remain to be isolated and identified, which was not possible from the scarce stromatal material representing the type specimens. Therefore, either artificial stromata production or re-collection of the fungi in the field will be necessary in the future to accomplish this task. Daldinia as well as other genera of the stromatic Xylariales in Thailand (e.g., Pyrenopolyporus and in particular the large genus Hypoxylon) need further studies. Apart from molecular systematics and chemotaxonomy, this also concerns the generation of data based on innovative technologies such as genomics, proteomics, and metabolomic data in order to explore the full biotechnological potential of these fungi.

Dichotomous key of Daldinia in Thailand

1a Stromata associated with bamboo ..2

1b Stromata not associated with bamboo3

2a Stromata not found in fire-damaged area; ascospores dark unicellular, ellipsoid, brown to blackish brown, 8–9 (–10) × 4–5 μm .. *D. bambusicola*

2b Stromata found in fire-damaged area; ascospores dark brown to blackish brown, unicellular, ellipsoid–inequilateral (9–) 10–11 (–12) × 4–5 μm *D. flavogranulata*

3a Stromata with internal concentric zones below the perithecial layer ..4

3b Stromata without internal concentric zones below the perithecial layer ..6

4a Stromata with short stout stipe; ascospores dark brown to blackish brown, unicellular, ellipsoid–inequilateral, with narrowly rounded to almost acute ends, 6–7 × 3–4 μm *D. brachysperma*

4b Stromata without a stipe ..5

5a KOH-extractable pigment immediately mouse gray; ascospores dark brown to blackish brown, rectangular, subglobose, often oriented transverse to the ascal axis, the basal ascospore often ellipsoid, oblong to elongate (5–) 8–10 × 12–15 μm *D. subvernicosa*

5b KOH-extractable pigments mouse gray, appearing with delay (several minutes); ascospores 11–12 (–13) × (5–) 6–7 μm *D. eschscholtzii*

6a KOH-extractable pigment cinnamon; scarce tissue below perithecial layer; ascospores dark brown to blackish brown, ellipsoid–inequilateral, with narrow rounded ends, (11–) 14–16 (–18) × 5–6 μm *D. phaadagensis*

6b KOH-extractable pigment vinaceous; massive tissue below perithecial layer ..7

7a KOH-extractable pigment mouse gray; ascospores ellipsoid, (4–) 5–6 × 13–15 (–16) *D. kretzschmariodes*

7b KOH-extractable pigment vinaceous gray; ascospores inequilateral with narrowly rounded end (13–) 15–18 (–19) × (5–) 6–8 (–10) *D. chiangdaoensis*

Acknowledgments Sarunyoo gratefully acknowledges Ton Kra Biotechnology M.Sc. scholarship from the Faculty of Biotechnology, Rangsit University. This work benefited from the sharing of expertise within the DFG priority program “Taxon-omics: New Approaches for Discovering and Naming Biodiversity” (SPP 1991) funded by the Deutsche Forschungsgemeinschaft, who granted a PhD position to K.B. The authors thank Ms. Jirawan Kumsao for sample collections in Ban Hua Thung community forest in northern Thailand. Our warmest thanks go to Christopher Lambert and Frank Surup for help with the interpretation of the HPLC profiles.

Author contributions SW did the isolation of compounds, morphological and molecular analyses as well as writing of the manuscript. MS, NB and JYL edited the manuscript, PS and KB (Rangsit University) contributed to the experimental designs. BC did the DNA extractions and PCR amplifications. KB did the chemical analysis of the stromata.

Funding Open Access funding provided by Projekt DEAL. This research was supported by the Cluster and Management Program Office (CPMO, NSTD) grant number P-19-51796, the Technology and Innovation Management Department grant number P-18-50644 in the Pha Daeng Mine’s area, Tak Province, and EU Horizon 2020 Research Innovation and Staff Exchange program (MSCA-RISE) project “GoMyTri” Grant No. 645701. This research also benefited from funding by the Deutsche Forschungsgemeinschaft (DFG) in the priority program “Taxon-omics: New Approaches for Discovering and Naming Biodiversity (SPP 1991).
Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Bitzer J, Læssøe T, Fourrier J, Kummer V, Decock C, Tichy HV, Piepenbring M, Persøh D, Studler M (2008) Affinitis of Phylacia and the daldinoid Xylariae, inferred from chemotypes of cultures and ribosomal DNA sequences. Mycol Res 112:251–270

Bunyard BA, Nicholson MS, Rossye DJ (1994) A systematic assessment of Morchella using RFLP analysis of the 28S ribosomal RNA gene. Mycologia 86:762–772

Cesati V, De Notaris G (1863) Schema di classificazione degli sfericiidi italicheri piz' o meno appartenenti al genere Sphaeria nell'antico significato attribuitoglide Persono. Commentario della Società Criminalologica Italiana 1(4):177–420

Daranagama DA, Camporesi E, Tian Q, Chamayuang S, Studler M, Hyde KD (2015) Anthostomella is polyphyletic comprising several genera in Xylariaeae. Fungal Divers 73:203–238

Daranagama DA, Hyde KD, Sir EB, Thambbugala KM, Tian Q, Samarakoon MC, McKenzie EHC, Jayasiri SC, Tippomma S, Bhat JD, Liu X, Studler M (2018) Towards a natural classification and backbone tree for Graphostromateaeae, Hypoxylaceae, Lopodostomataceae and Xylariaceae. Fungal Divers 88:1–165

Dargan JS, Third KS (1985) Xylariaeae of India. VIII Genus Daldinia Ces & de Not - a further segregation into two new subgenera. Kavaka 12:113–118

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

Hall TA (2013) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

Hashimoto T (1994) Structures of daldinins A–C, three novel azaphilone derivatives from ascomycete fungus Daldinia concentrica. Chem Pharm Bull 42:2397–2399

Helaly SE, Thongbai B, Studler M (2018) Diversity of biologically active secondary metabolites from endophytic and saprotrophic fungi of the ascomycete order Xylariales. Nat Prod Rep 35:992–1014

Hsieh HM, Ju YM, Rogers JD (2005) Molecular phylogeny of Hypoxylon and closely related genera. Mycologia 97:844–865

Hueslenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:115–755

Johannesson H, Læssøe T, Stenlåd J (2000) Molecular and morphological investigation of the genus Daldinia in northern Europe. Mycol Res 104:275–280

Ju YM, Rogers JD (1996) A revision of the genus Hypoxylon. Mycologia memo no.2 20. APS Press, St. Paul, 365 pp

Ju YM, Rogers JD, San Martin F (1997) A revision of the genus Daldinia. Mycotaaxon 61:243–293

Koukol O, Kelnarova I, Cermek K (2015) Recent observations of sooty bark disease of sycamore maple in Prague (Czech Republic) and the phylogenetic placement of Cryptostroma corticale. For Pathol 45:21–27

Kretz R, Wendt L, Wongkanoun S, Luangsa-Ard JJ, Surup F, Helaly SE, Nourmeur SR, Studler M, Stradal TEB (2019) The effect of cytchalasans on the actin cytoskeleton of eukaryotic cells and preliminary structure-activity relationships. Biomolecules 9(2):E73

Kuhnt et al, Fournier J, Persoh D, Luangsa-arj JJ, Studler M (2014) New Hypoxylon species from Martinique and new evidence on the molecular phylogeny of Hypoxylon based on ITS rDNA and –tubulin data. Fungal Divers 64:181–203

Kuhnt et al, Surup F, Sir EB, Lambert C, Hyde KD, Hladki AI, Romero Al, Studler M (2015) Lenomandins A–G, new azaphilones from Hypoxylon lenomandii and Hypoxylon jaklitichii sp. nov., recognised by chemotaxonomic data. Fungal Divers 71:165–184

Kuhnt et al, Sir EB, Lambert C, Hyde KD, Hladki AI, Romero AI, Rohde M, Studler M (2017) Phylogenetic and chemotaxonomic resolution of the genus Annulohypoxylon (Xylariaceae) including four new species. Fungal Divers 85:1–43

Lambert C, Wendt L, Hladki AI, Studler M, Sir EB (2019) Hypomontagnella (Hypoxylaceae): a new genus segregated from Hypoxylon by a polyphasic taxonomic approach. Mycol Prog 18:187–201.

Liu YL, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from and RNA polymerase II subunit. Mol Biol Evol 16:1799–1808

Mackill DJ, Bonman JM (1995) Classifying japonica rice cultivars with RAPD markers. Crop Sci 35:889–894

Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. Gateway computing environments workshop (GCE), IEEE, San Diego, Supercomputer Center, La Jolla, CA, USA, Nov 14, 1–8

Narmani A, Pichai S, Palani P, Arzanlou M, Surup F, Studler M (2018) Daldinia sacchari (Hypoxylaceae) from India produces the new cytochalasins saccalasins A and B and belongs to the D. esscholtzi species complex. Mycol Prog 18:175–185

Nylander JAA (2004) MrModeltest v. 2.0. Evolutionary biology centre. Upssala University (program distributed by the author)

O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic line of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 7:103–116

Otto A, Laub A, Wendt L, Porzel A, Schmidt J, Palfner G, Becerra J, Krüger D, Studler M, Wessjohann L, Westermann B, Arnold N (2016) Chilenopeptins A and B, peptaibols from the Chilean Sepedonium aff. chalciporum KSH 883. J Nat Prod 79:929–938

Quang DN, Hashimoto T, Tanaka M, Baumgartner M, Studler M, Asakawa Y (2002) Concentricoles B, C and D, three novel squalene–type triterpenoids from the ascomycete Daldinia concentrica. Phytochemistry 61:345–353

Rayner RW (1970) A mycological colour chart. Commonwealth Mycological Institute, Kew and British Mycological Society

Sir EB, Kuhnter E, Lambert C, Hladki AI, Romero AI, Studler M (2016a) New species and reports of Hypoxylon from Argentina recognized by a polyphasic approach. Mycol Prog 15:42

Sir EB, Lambert C, Wendt L, Hladki AI, Romero AI, Studler M (2016b) A new species of Daldinia (Xylariaceae) from the Argentine sub-tropical mountain forest. Mycosphere 7:596–614

Studler M, Kuhnter E, Persoh D, Fournier J (2013) The Xylariaceae as model example for a unified nomenclature following the “One Fungus–One Name” (1F1N) Concept. Mycology 4:5–21

Studler M, Læssøe T, Fourrier J, Decock C, Schmeschek B, Tichy HV, Persoh D (2014) A polyphasic taxonomy of Daldinia (Xylariaceae). Stud Mycol 77:1–143
Stadler M, Lambert C, Wibberg D, Kalinowski J, Cox RJ, Kolarik M, Kuhnert E (2020) Intragenomic polymorphisms in the ITS region of high quality genomes of the Hypoxylaceae (Xylariales, Ascomycota). Mycol Prog 19:235–245

Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

Surup F, Narmani A, Wendt L, Pfütze S, Kretz R, Becker K, Menbrivès C, Giosa A, Elliott M, Petit C, Rohde M, Stadler M (2018) Identification of fungal fossils and novel azaphilone pigments in ancient carbonised specimens of Hypoxylon fragiforme from forest soils of Châtillon-sur-Seine (Burgundy). Fungal Divers 92:345–356

Swofford DL (2002) PAUP*4.0b10: phylogenetic analysis using parsimony (*and other methods). Sinauer, Sunderland. https://doi.org/10.1111/j.0014-3820.2002.tb00191.x

Triebel D, Peršoh D, Wollweber H, Stadler M (2005) Phylogenetic relationships among Daldinia, Entonaema and Hypoxylon as inferred from ITS nrDNA sequences. Nova Hedw 80:25–43

U'Ren JM, Miadlikowska J, Zimmerman NB, Lutzoni F, Stajich JE, Arnold AE (2016) Contributions of North American endophytes to the phylogeny, ecology, and taxonomy of Xylariaceae (Sordariomycetes, Ascomycota). Mol Phylogenet Evol 98:210–232

Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4239–4246

Wendt L, Sir EB, Kuhnert E, Heitkämper S, Lambert C, Hladki AI, Romero AI, Luangsa-ard JJ, Sritikitkulchai P, Peršoh D, Stadler M (2018) Resurrection and emendation of the Hypoxylaceae, recognised from a multi-gene genealogy of the Xylariales. Mycol Prog 17:115–154

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Chapter 38. In: Innis M, Gelfand D, Sninsky J, White T (eds) PCR protocols: a guide to methods and applications. Academic Press, Orlando, pp 315–322

Wibberg D, Stadler M, Lambert C, Bunk B, Spröer C, Rückert C, Kalinowski J, Cox RJ, Kuhnert E (2020) High quality genome sequences of thirteen Hypoxylaceae (Ascomycota) strengthen the phylogenetic family backbone and enable the discovery of new taxa. Fungal Divers, in press. https://doi.org/10.1007/s13225-020-00447-5

Wongkanoun S, Wendt L, Stadler M, Luangsa-ard JJ, Sritikitkulchai P (2019) A novel species and a new combination of Daldinia from Ban Hua Thung community forest in the northern part of Thailand. Mycol Prog 18:553–564

Yuyama KT, Wendt L, Surup F, Kretz R, Chepkirui C, Wittstein K, Boonlarppradab C, Wongkanoun S, Luangsa-ard JJ, Stadler M, Abraham WR (2018) Cytochalasans act as inhibitors of biofilm formation of Staphylococcus aureus. Biomolecules 8:129

Zhang N, Castlebury LA, Miller AN, Huhndorf SM, Schoch CL, Seifert KA, Rossman AY, Rogers JD, Kohlmeyer J, Volkmann-Kohlmeyer B, Sung GH (2006) An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. Mycologia 98:1076–1108

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.