MicroRNAs as Potential Signatures of Environmental Exposure or Effect: A Systematic Review

Karen Vrijens,1 Valentina Bollati,2 and Tim S. Nawrot1,3

1Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium; 2Center of Molecular and Genetic Epidemiology, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; 3Department of Public Health and Primary Care, Environment and Health Unit, Leuven Univeristiy, Leuven, Belgium

BACKGROUND: The exposome encompasses all life-course environmental exposures from the prenatal period onward that influence health. MicroRNAs (miRNAs) are interesting entities within this concept as markers and causation of disease. MicroRNAs are short oligonucleotide sequences that can interact with several mRNA targets.

OBJECTIVES: We reviewed the current state of the field on the potential of using miRNAs as biomarkers for environmental exposure. We investigated miRNA signatures in response to all types of environmental exposure to which a human can be exposed, including cigarette smoke, air pollution, nanoparticles, and diverse chemicals; and we examined the health conditions for which the identified miRNAs have been reported (i.e., cardiovascular disease, cancer, and diabetes).

METHODS: We searched the PubMed and ScienceDirect databases to identify relevant studies.

RESULTS: For all exposures incorporated in this review, 27 miRNAs were differentially expressed in at least two independent studies. miRNAs that had expression alterations associated with smoking observed in multiple studies are miR-21, miR-34b, miR-125b, miR-146a, miR-223, and miR-340; and those miRNAs that were observed in multiple air pollution studies are miR-9, miR-10b, miR-21, miR-128, miR-143, miR-155, miR-222, miR-223, and miR-338. We found little overlap among in vitro, in vivo, and human studies between miRNAs and exposure. Here, we report on disease associations for those miRNAs identified in multiple studies on exposure.

CONCLUSIONS: miRNA changes may be sensitive indicators of the effects of acute and chronic environmental exposure. Therefore, miRNAs are valuable novel biomarkers for exposure. Further studies should elucidate the role of the mediation effect of miRNA between exposures and effect through all stages of life to provide a more accurate assessment of the consequences of miRNA changes.

Citation: Vrijens K, Bollati V, Nawrot TS. 2015. MicroRNAs as potential signatures of environmental exposure or effect: a systematic review. Environ Health Perspect 123:399–411; http://dx.doi.org/10.1289/ehp.1408459

Introduction

Most common diseases result from the combined effect of genes and environmental factors and the interactions between them. Epigenetic effects and non-coding gene products have gained research focus over the last two decades because protein-coding genes cannot account for all observed genomic effects. Here we focus on microRNAs (miRNAs) as key regulators of development, growth, differentiation, and those miRNAs that were observed in multiple air pollution studies are miR-21, miR-10a, and miR-10b. Distinct “hairpin loci that give rise to identical mature miRNAs have numbered suffixes” (e.g., mir-281-1, mir-281-2). The mature sequences are designated “mir.”

miRNA characteristics. miRNA-mediated gene silencing is accomplished by base pairing of the 5′ region of miRNAs with the target mRNA sequence, leading to translational repression and/or mRNA degradation (Ambros 2004). miRNAs have been paradoxically shown to up-regulate gene expression by enhancing translation under specific conditions (Vasudevan et al. 2007). The effect of miRNA expression on gene expression is not linear, as multiple miRNAs may target the same mRNA, and the majority of miRNAs contain multiple binding sites for miRNAs, generating a highly complex regulatory network system (Saetrom et al. 2007). For details on miRNA synthesis, biogenesis, miRNA mechanism of action, see Figure 1 and reviews by Djuricovic et al. (2011) and Murchison and Hannon (2004).

miRNA nomenclature. miRNAs are named using the “miR” prefix and a unique identifying number (e.g., miR-1, miR-2). The identifying numbers are assigned sequentially, with identical miRNAs having the same number, regardless of organism. Paralogous sequences whose mature miRNAs differ at only one or two positions are given lettered suffixes: for example, miR-10a and miR-10b.

miRNA analysis techniques suitable for large epidemiological studies. In recent years, miRNA expression changes following exposure to environmental toxicants, even before disease onset, have gained researchers’ interest. The measure of miRNAs in large epidemiological studies needs to be high throughput and sensitive enough to detect small changes in healthy subjects. At the same time, techniques need to be affordable in order to be conducted in large population studies. Moreover, given the complexity of phenomena induced by exposure but not fully explained by an effect on a single transcript, current research is going toward genome-wide techniques. Another challenge is tissue specificity of miRNAs: The availability of only noninvasive samples in epidemiological studies conducted on healthy populations limits our capability to

Address correspondence to T.S. Nawrot, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium. Telephone: 32-11-268382. E-mail: tim.nawrot@uhasselt.be

We thank emeritus professor H.A. Roels (Université catholique de Louvain, Brussels, Belgium) for critical discussions and reading of the manuscript.

K.V. is a postdoctoral researcher of the Research Foundation–Flanders (FWO). V.B. and T.S.N. received support from the European Union Programme “Ideas” (ERC-2011-StG 282413 and ERC-2012-StG 310898).

The funders had no role in study design, data collection, decision to publish, or preparation of the manuscript.

The authors declare they have no actual or potential competing financial interests.

Received: 22 March 2014; Accepted: 14 January 2015; Advance Publication: 16 January 2015; Final Publication: 1 May 2015.

Environmental Health Perspectives • VOLUME 123 | NUMBER 5 | May 2015
investigate target tissues and opens important questions on the meaning of those markers in surrogate tissues. In epidemiological research, free and exosomal miRNAs in body fluids are interesting study objects because of their potential to serve as a proxy for tissue-specific miRNAs. A limitation of this approach is that these miRNAs differ between different body fluids, and their function is not clear. Although miRNAs hold promise as exposure biomarkers, recent studies have been primarily disease focused [reviewed by Etheridge et al. (2011)].

Genome-wide miRNA analysis can be achieved by amplification-based [real-time quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR)], hybridization-based (microarrays), and sequencing-based [next-generation sequencing (NGS)] technologies. Method selection depends on the type of sample to be analyzed and the RNA preparation protocol used. qRT-PCR is considered the gold standard because of its sensitivity, specificity, accuracy, and simple protocols. qRT-PCR can evaluate candidate miRNA expression or array plates that include a large number of miRNAs in one reaction, to OpenArray™ (Applied Biosystems, Life Technologies), which allows the simultaneous amplification of a very large panel of miRNAs using nanoscale volumes. In a recent review, Prokopec et al. (2013) compared qRT-PCR to different array-based platforms used to study miRNAs/miRNAs.

Several miRNA microarray chip platforms that are commercially available [e.g., Affymetrix GeneChip™ 3.0 miRNA array (Affymetrix Inc.), Agilent Human miRNA Microarray system (Agilent Technologies), Exiqon miRCURY LNA™ microarray (Exiqon Inc.)] differ in probe design and detection stringency. The limitation of this microarray chip method is the availability and stringency of probes on the chip platform that pair with miRNAs of interest. Microarrays have the advantage of being easily correlated to miRNA expression data, thus providing functional information. Furthermore, unlike other current miRNA analysis techniques, microarrays allow fast analysis of miRNAs without an arbitrary preselection step. However, the large amount of data produced can generate false-positive results, and the time-consuming step of validation by qRT-PCR is almost necessary.

NGS strategies based on deep sequencing overcome some of the technical drawbacks of probe-based methodologies, especially the ability to detect only previously known sequences (Schulte et al. 2010). As miRNAs are sequenced directly, information about sequence variations or posttranscriptional RNA editing becomes available for further analysis. The newly developed Nanostring nCounter 27 (Nanostring Technologies Inc.) uses two sequence-specific capture probes to allow for discrimination between similar variants of a single miRNA. NGS technologies [e.g., Illumina/Solexa (Illumina Inc.), GA Roche/454 GS FLX Titanium (Roche Diagnostics Corp.), and ABI/SOLID (Applied Biosystems)] allow complete “miRnomes” to be sequenced and allow for the discovery of novel miRNAs and isoforms. Another benefit of NGS technology is the ability to detect only previously known miRNAs without an arbitrary pre selection protocols. qRT-PCR is almost necessary.

400 VOLUME 123 | NUMBER 5 | May 2015 • Environmental Health Perspectives

Figure 1. Overview of miRNA biogenesis. The canonical maturation of a miRNA includes the production of the primary miRNA transcript (pri-miRNA) by RNA polymerase II or III (Pol II/III) and cleavage of the pri-miRNA by the microprocessor complex Drosha–DGCR8 (Pasha) in the nucleus. The resulting precursor hairpin, the pre-miRNA, is exported from the nucleus by Exportin-5–Ran-GTP. In the cytoplasm, the RNASae Dicer in complex with the double-stranded RNA-binding protein TRBP cleaves the pre-miRNA hairpin to its mature length. The functional strand of the mature miRNA is loaded together with Argonaute (Ago2) proteins into the RNA-induced silencing complex (RISC), where it guides RISC to silence target miRNAs through mRNA cleavage, translational repression, or deadenylation, whereas the passenger strand (black) is degraded.

Figure 2. Flowchart of included studies.
MicroRNAs as potential signatures of the exposome

is that it can identify precursor and primary miRNAs as well as their mature forms. NGS will likely become the gold standard for miRNA analysis because of its ability to sequence short fragments in a high-throughput mode. The choice between these methods is a key factor in establishing the possibility of success of any epidemiological study. Each method has pros and cons and should be evaluated based on the specific research.

Methods

Search strategy and selection criteria. To identify the articles relevant to this topic, we undertook a comprehensive search of the PubMed (http://www.ncbi.nlm.nih.gov/pubmed) and ScienceDirect (http://www.sciencedirect.com/) databases initially using “microRNA” and “environmental exposure” as key terms. We did additional searches in which we replaced “microRNA” with “mir,” “miRNA,” or “epigenetic changes” and we substituted “environmental exposure” with “smoking,” “passive smoking,” “cigarette smoke,” “air pollution,” “nanoparticle exposure,” “bisphenol A,” “endocrine disruptors,” or “chemical exposure” in every possible combination. We also considered review articles as well as references found in our literature search. We excluded articles not written in English. The PubMed search covered 1 January 1980 to 1 June 2014. Articles dealing only with the description of single nucleotide polymorphisms (SNPs) in miRNA genes were disregarded, as were those articles dealing only with the description of miRNAs in nonmammalian species. A flowchart detailing the search strategy is presented in Figure 2. For miRNAs differentially expressed in response to more than one personal or environmental exposure, we researched disease phenotypes correlated with

Table 1. miRNAs that are responsive to personal or environmental exposure and their roles in human disease.

miRNA	Regulated	Exposure	Diseases	Sources
Let-7e	Down	TCDD	HCC, lung, pituitary, and breast cancer, GEP tumors	Feitelson and Lee 2007; Qian et al. 2009; Rahman et al. 2009; Sakurai et al. 2012; Takamizawa et al. 2004
Let-7g	Down	BPA, PM	Lung cancer, GEP tumors, breast cancer	Rahman et al. 2009; Sakurai et al. 2012
mir-9	Up	Aluminum	Hodgkin lymphoma, breast cancer	Leucci et al. 2012; Ma et al. 2010
mir-10b	Down	Formaldehyde, PM	Gastric cancer	Kim K et al. 2011
mir-21	Down	Smoking	Diabetes type 2	Zampetaki et al. 2010
mir-26b	Up	DEP, metal-rich PM	Breast cancer, glioblastoma, neo-intimal lesions, cardiac hypertrophy, atherosclerosis	Ji et al. 2007; Raitoharju et al. 2011; van Rookj et al. 2007; Volinia et al. 2006
mir-31	Down	DEP, BPA, PF0A	Medulloblastoma, T-cell leukemia	Earle et al. 2010; Liu et al. 2011; Perkins et al. 2007
mir-34b	Down	Smoking (2×)	CRC, pancreatic, mammary, ovarian, and renal cell carcinoma	Vogt et al. 2011
mir-92b	Down	Smoking, DDT	Medulloblastoma	Genovesi et al. 2011
mir-122	Down	Smoking	HCC	Bai et al. 2009
mir-125b	Down	DEP	Breast cancer, head and neck cancer	Nakai et al. 2014; Zhang et al. 2011
mir-135b	Down	DEP	Medulloblastoma, T-cell leukemia	Vogt et al. 2011
mir-142	Down	Formaldehyde	Heart failure	Voellenkle et al. 2010
mir-143	Down	Smoking, PM, ozone	Colon cancer	Zhu et al. 2009
mir-146a	Down	BPA, aluminum sulfate (2×)	Postpartum psychosis, type 2 diabetes	Weigelt et al. 2013; Zampetaki et al. 2010
mir-149	Up	BPA, DDT	Melanoma	Jin et al. 2011
mir-155	Up	PM	Breast cancer, Hodgkin lymphoma, B-ALL	Chang et al. 2011; Kong et al. 2014; Palma et al. 2014
mir-181a	Down	Formaldehyde	Leukemia, glioma, NSCLC, breast cancer, metabolic syndrome, and CAD	Gao et al. 2010; Hulsmans et al. 2012; Marcucci et al. 2008; Ota et al. 2011; Shi et al. 2008
mir-203	Down	Smoking, formaldehyde	Myeloma	Wong et al. 2011
mir-205	Up	Smoking (2×)	Heart failure, lung cancer	Thum et al. 2007; Yamahe et al. 2006
mir-206	Up	Smoking, RDX	Myocardial infarct, slows ALS progression, myotonic dystrophy	Gambardella et al. 2010; Shan et al. 2009; Williams et al. 2009
mir-222	Up	Metal-rich PM, BPA	Severe preeclampsia, thyroid carcinoma, prostate cancer, breast cancer	Hu et al. 2009; Miller et al. 2008; Pallante et al. 2006
mir-223	Down	Smoking	AML	Eycholzer et al. 2010
mir-338-5p	Down	Formaldehyde	Heart failure, atherosclerosis	Greco et al. 2012; Kin et al. 2012
mir-340	Down	Smoking	NA	NA
mir-638	Up	BPA, DDT, arsenic	Lupus nephritis	Dai et al. 2009
mir-863	Up	BPA, DDT, arsenic	CTCL, nasopharyngeal carcinoma, burns	Liang et al. 2012; Ralfkiaer et al. 2011; Yi et al. 2012

Abbreviations: ACC, acute lymphocytic leukemia; ALS, amyotrophic lateral sclerosis; AML, acute myeloid leukemia; B-ALL, B-cell acute lymphocytic leukemia; BPA, bisphenol A; CAD, coronary artery disease; CRC, colorectal carcinoma; CTCL, cutaneous T-cell lymphoma; DDT, dichlorodiphenyltrichloroethane; DEP, diesel exhaust particles; GEP, gastroenteropancreatic; HCC, hepatocellular carcinoma; NA, not applicable; NSCLC, non-small cell lung carcinoma; PFOA, perfluorooctanoic acid; PM, particulate matter; RDX, hexahydro-1,3,5-trinitro-s-triazine; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin.
them by searching each of these miRNAs on the Human microRNA Disease Database (HMDD; http://202.38.126.151/hmdd/mirna/md/) and the miR2Disease Base (http://www.mir2disease.org/). Results of these searches are presented in Table 1, including the direction of regulation (up or down) of the miRNA and the ensuing phenotype.

Results

Smoking-induced changes in miRNA expression. The most studied environmental factor in relation to epigenetics is smoking; it was among the first factors shown to affect the miRNA machinery in humans (Spira et al. 2004). Results of in vitro studies concerning smoking and miRNAs are summarized in Table 2. Izzotti et al. (2009) analyzed miRNA expression patterns in the lungs of mice exposed to passive cigarette smoke, and they established life-course–related miRNA expression changes by comparing miRNA expression in lungs from unexposed newborn, postweaning, and adult mice. These researchers observed developmental-stage–specific miRNA expression profiles in which miRNAs that were highly expressed in newborns tended to be less expressed in adult mice and vice versa, whereas miRNA expression in postweaning mice was intermediate (Izzotti et al. 2009). Results from in vivo studies concerning smoking and miRNAs are shown in Table 3.

Two studies reported a comparison between miRNA and mRNA whole genome expression patterns for smokers and nonsmokers (Schembri et al. 2009; Takahashi et al. 2013). Takahashi et al. (2013) reported that quitting smoking altered the plasma miRNA profiles to resemble those of nonsmokers. In addition, Let-7c and miR-150 could be of importance in the initiation of smoke-induced decline of lung function, because genes that were associated with lung function impairment in genome-wide association studies have been reported to be significantly enriched in binding sites for these miRNAs, namely STAT3 (Qu et al. 2009) and TNFR-II (D’hulst et al. 2006).

The effect of in utero exposures on health during childhood and later in life is a growing area of research interest with major public health implications (Gluckman et al. 2008). An adaptive response in the fetus to in utero exposures can result in persistent changes into adulthood. miRNA expression levels in placenta can affect health later in life (Maccani et al. 2011). Studies on miRNA expression and human exposure at different stages of life (in utero, adult) are included in Table 4.

Not surprisingly, miRNAs that are frequently observed to be down-regulated in Table 2. In vitro studies on the effects of smoking on differential miRNA expression.

miRNA	miR function	Regulation	Tissue/cell type	Source
mir-15a	Tumor suppressor	Down	Primary bronchial epithelial cells	Schembri et al. 2009
mir-125b	Targets p53, stress response			
mir-199a	Oncogene activation			
mir-218	Tumor suppressor			
mir-31	Apoptosis, tumor suppressor	Up	Normal and cancer lung cells	Xi et al. 2010
mir-21	Fatty acid synthesis, apoptosis	Up	Human squamous carcinoma cells	Zhang et al. 2014
mir-452	Targets CDK1	Down	Human alveolar macrophages	Graff et al. 2012

Table 3. In vivo studies on the effects of smoking on differential miRNA expression.

miRNA	miR function	Regulation	Tissue/cell type	Source
mir-34b	p53 effector	Down	Mouse lung	Izzotti et al. 2011
mir-421	Targets SMAD4, polycomb gene CBX7, ATM			
mir-450b	No validated targets			
mir-466	No validated targets			
mir-469	Mouse miR not validated			
mir-135b	Inflammation, oxidative stress	Up	Mouse lung	Halappanavar et al. 2013
mir-206	Targets SERP1, BDNF, FOX1P	Up	Rat serum	Wu et al. 2013
mir-132b	Targets LAG1, FTY72	Up	Mouse lung and plasma	Huang et al. 2012
mir-30e	Targets UBC5, UBE21, MUC17	Down		
mir-125b	Targets p53, stress response			
mir-128	Apoptosis			
let-7a	Cell proliferation, angiogenesis	Down	Mouse lung	Izzotti et al. 2009
let-7b	Cell proliferation, angiogenesis	Down		
let-7f	Cell proliferation, angiogenesis	Down		
miR-21	Fatty acid synthesis, apoptosis Up PlasmMV	Badrnya et al. 2014		
mir-150	Hematopoiesis			
let-48	Stress response			
let-144	Stress response, cell growth and differentiation	Down		
miR-125a	Oncogene activation, RDS	Down		
miR-140	p53 effector			
miR-192	Oncogene activation			
miR-431	Protein repair, oncogene activation	Down		
miR-92b	Tumor suppressomiR	Down	Mouse serum	Yuchuan et al. 2014
miR-668	Inflammation			
miR-700	Inflammation			
let-7a	Apoptosis			
miR-19a	OncomiR			
miR-142	Immunology			
miR-191	OncomiR			
miR-350	Unknown			

Abbreviations: oncomiR, miR with oncogenic properties; RDS, reactive oxygen species; suppressomiR, tumor suppressor miR.

Table 4. Human studies on the effects of exposure to smoking on differential miRNA expression.

miRNA	miR function	Regulation	Tissue/cell type	Source
miR-16	p53, cell cycle, JAK/STAT signaling	Down	Placenta	Maccani et al. 2010
miR-21	Fatty acid synthesis, apoptosis	Down	Spermatozoa	Herberth et al. 2013
mir-146a	Inflammation, NFκB mediator	Down	Spermatozoa	Marczylo et al. 2012
mir-223	Immunology			
mir-129	Cell cycle regulation, apoptosis	Down	Spermatozoa	Marczylo et al. 2012
mir-834	Inflammation			
mir-340	Cell migration and invasion	Down	Spermatozoa	Van Pottelberge et al. 2011
mir-365	Targets NKX2.1			
mir-143	Cardiogenesis		Gastric tissue	Stätnitz et al. 2013
mir-21	Fatty acid biosynthesis, apoptosis	Down	Gastric tissue	Stätnitz et al. 2013
mir-454	Inflammation, NFκB mediator	Down	Induced sputum	Van Pottelberge et al. 2011
mir-150	Hemopathoieisis			
mir-203	DNA damage response			
mir-340	Cell migration and invasion	Down		
miR-443	Unknown			
miR-226	Immunology			
mir-29b	Apoptosis			
RNU6-2	Reference miR			

MV, microvesicles.

Vrijens et al.
response to smoking have also been identified as down-regulated in lung (Takamizawa et al. 2004), pancreatic (Vogt et al. 2011), and stomach (Rahman et al. 2009) cancer. Development of cardiovascular disease is associated with up-regulation of miR-206 (Shan et al. 2009), and this miRNA has significantly higher expression levels in smokers than in nonsmokers. Furthermore, two miRNAs that are frequently down-regulated in association with cigarette smoke (i.e., miR-21 and miR-146a) have lower expression levels in individuals with type 2 diabetes compared with healthy controls (Zampetaki et al. 2010). Therefore, these miRNAs could support the observation that smoking is an independent risk factor for type 2 diabetes (Cho et al. 2009). Human studies concerning smoking-induced changes of miRNA expression are summarized in Table 4. Figure 3 is a Venn diagram displaying the common and distinct miRNAs from in vitro, in vivo, and human studies on smoking-induced miRNA alterations. miR-125b and miR-21, identified in in vitro and human studies, respectively, were also reported in in vivo studies. Furthermore, several miRNAs were identified in multiple studies, such as miR-34b and miR-146a.

Table 1 summarizes miRNAs with altered expression in response to environmental and/or personal exposures reported in at least two independent studies, along with their known roles in disease etiology. miRNAs observed in association with either environmental or personal exposures are often associated with cancer; in particular, breast and lung cancer and leukemia have been frequently reported (Table 1). Furthermore, many aberrations in the cardiovascular system have been reported, such as hypertension, heart failure, myocardial infarct, and atherosclerosis. Exposures such as air pollution and smoking can cause cardiovascular disease and cancer (Pope et al. 2011); however, the data shown in Table 1 indicate that the listed miRNAs play a causative role in disease etiology, rather than being merely a marker of exposure.

Air pollution exposure and miRNA expression. Particulate matter (PM) is a complex mixture of small particles and liquid droplets. Particle pollution is made up of a number of components, including acids, organic chemicals, metals, and soil or dust particles. The size of particles is directly linked to their potential to cause health problems (Brunekreef and Holgate 2002). Although the clinical effects of PM exposure are obvious, the underlying mechanism of disease initiation and progression is less well understood. miRNAs play a pivotal role in maintaining healthy lungs (Nana-Sinkam et al. 2009). Because the lungs are an important target site for PM, we suggest that miRNAs could underlie the observed health effects of PM exposure. In vitro studies on air pollution and miRNAs are summarized in Table 5.

In a cohort study of steel plant workers, Bollati et al. (2010) examined the effect of PM exposure on miRNA expression. Blood samples were collected at the beginning of the working week (‘preexposure’) and at the end of the working week (‘postexposure’). PM mass and metal components measured in the plant were correlated with miRNA expression analyses of blood samples. Urinary 8-hydroxy-2′-deoxyguanosine (8-OH-dG) levels were measured as a readout of oxidative stress. Both miR-222 and miR-21 were significantly increased in post-versus preexposure samples, and only miR-21 expression levels were positively correlated with 8-OH-dG (Bollati et al. 2010). Oxidative stress has been reported to induce miR-21 expression (Cheng et al. 2009). Because the lungs are an important target site for PM, we suggest that miRNAs could underlie the observed health effects of PM exposure. In vitro studies on air pollution and miRNAs are summarized in Table 5.
reported to change gene expression patterns in nasal and lung cells (Kim et al. 2002; Li et al. 2007). The miRNAs reported to be down-regulated in association with formaldehyde exposure have been reported to be involved in the development of diverse tumors (e.g., breast and gastrointestinal cancer, melanoma) as well as heart failure (Table 1). Given the

miRNA	miRNA function	Regulation	Tissue/cell type	Pollutant	Source
miR-21	Fatty acid synthesis, apoptosis	Up	Peripheral blood	300 μg PM$_{2.5}$/m3 DEP	Yamamoto et al. 2013
miR-30e	Targets KLF3, MUC17	Up	Spermatozoa	Metal-rich PM	Bollati et al. 2010
miR-10b	Angiogenesis	Up	Spermatozoa	Metal-rich PM	Li et al. 2012a
miR-128					

Abbreviations: DEP, diesel exhaust particles; MV, microvesicles; OncomiR, miR with oncogenic properties; PM$_{2.5}$, particulate matter ≤ 2.5 μm in aerodynamic diameter.

Figure 4. Venn diagram displaying common and distinct microRNAs associated with air pollution exposure in *in vitro* and human studies. miRNAs in bold type were identified in more than one study included in this meta-analysis.
capability of formaldehyde to pass deep into lung tissue and enter systemic circulation, the link with cardiovascular disease and cancer has been widely discussed [reviewed by Kim KH et al. (2011)]. Interestingly, mir-181a, one of the miRNAs down-regulated after formaldehyde exposure, was reported to affect the DNA damage response in breast cancer, enabling the identification of aggressive breast tumors based on increased mir-181a expression (Bisso et al. 2013).

Endocrine disruptors. Organochlorine pesticides and plasticizing agents are ubiquitous environmental endocrine-disrupting compounds that impact human health (Rubin 2011). Bisphenol A (BPA) is an industrial plasticizer often used as a coating in food cans and in plastic bottles (Kang et al. 2006). Dichlorodiphenyltrichloroethylene (DDT) is a well-known organochlorine pesticide. Because DDT is very persistent in the environment, accumulates in fatty tissues, and can travel long distances in the upper atmosphere, residues from historical use remain a current threat to human health.

DDT and BPA have been reported to interfere with endogenous estrogen and thyroid hormone, leading to aberrations of the reproductive, immune, and central nervous systems (Chevrier et al. 2013; Liu et al. 2013). DDT (Waliszewski et al. 2001) and BPA (Takahashi and Oishi 2000) cross the placental barrier and can induce in utero effects that could lead to detrimental effects later in life.

Soto et al. (2013) reported that prenatal exposure to BPA can alter mammary development and lead to breast cancer in humans. From a clinical perspective, it is interesting that decreased expression of let-7f has been associated with increased breast cancer risk (Sakurai et al. 2012), and treatment of MCF-7 breast cancer cells with BPA resulted in reduced let-7f expression (Tilghman et al. 2012). Furthermore, mir-146a has been proposed to induce an Alzheimer’s disease pathway (Jiang et al. 2013) and is up-regulated after BPA exposure (Table 1). Therefore, the neurodegenerative consequences of BPA exposure could at least partially be attributed to mir-146a. In vitro studies could provide researchers with interesting miRNAs that have potential to be used as biomarkers for chemical exposure.

Polychlorinated biphenyls (PCBs) were widely used organic chemicals until their production was banned because of environmental concerns (Porta and Zumeta 2002). PCBs are stable compounds that bioaccumulate in fatty tissues (Steele et al. 1986); they have been reported to cause systemic changes in gene expression (Ceccatidli et al. 2006), suggesting that miRNA regulation could be involved in this process. Tsukimori

Table 7. Studies on nanoparticle-induced changes in miRNA expression.

miRNA	miR function	Regulation	Pollutant Source	
mir-21	Fatty acid synthesis, apoptosis	Up	0.268 or 0.162 mg carbon black NP	Bourdon et al. 2012
mir-135b	Inflammation, oxidative stress	Up	70 nm silica NP	Nagano et al. 2013
mir-146	Inflammation, NFκβ mediator	Up	100 nm gold NP	Balansky et al. 2013
mir-122	Stress response	Up		
mir-192	Oncogene activation	Up		
Let-7a	Cell proliferation, angiogenesis	Up		
mir-183	OncomiR	Up		

Table 8. In vitro studies on chemically induced changes in miRNA expression.

miRNA	miR function	Regulation	Tissue/cell type	Chemical	Source
let-7g	Cell proliferation, angiogenesis	Down	MCF-7 cells	BPA	Tilghman et al. 2012
let-7f	Cell proliferation, angiogenesis	Down	MCF-7 cells	DDT	Tilghman et al. 2012
mir-21	Fatty acid biosynthesis, apoptosis	Up	Jurkat T cell line	Arsenic	Sturchio et al. 2014
mir-26b	Wnt, p53, autophagy, TGF-β	Up	Jurkat T cell line	Arsenic	Sturchio et al. 2014
mir-342-3p	Tumor suppressomIR	Down	MCF-7 cells	BPA, DDT	Tilghman et al. 2012
mir-15b	Tumor suppressor targeting BCL2	Down	MCF-7 cells	BPA, DDT	Tilghman et al. 2012
mir-222	Cell cycle regulation	Up	MCF-7 cells	BPA, DDT	Tilghman et al. 2012
mir-638	No known function	Up	MCF-7 cells	DDT	Tilghman et al. 2012
mir-863	Immunology, oxidative stress	Down	MCF-7 cells	DDT	Tilghman et al. 2012
mir-1919	No known function	Down	MCF-7 cells	DDT	Tilghman et al. 2012
mir-27b	Angiogenesis	Down	MCF-7 cells	DDT	Tilghman et al. 2012
mir-92b	Tumor suppressomIR	Down	MCF-7 cells	DDT	Tilghman et al. 2012
mir-1308	No known function	Up	Human placental cell lines	Arsenic	Avisar-Whiting et al. 2010
mir-146a	Inflammation, NFκβ mediator	Up	Human placental cell lines	Arsenic	Avisar-Whiting et al. 2010
mir-150	Hematopoiesis	Down	Jurkat T cell line	Arsenic	Sturchio et al. 2014
mir-30d	Autophagy	Up	Jurkat T cell line	Arsenic	Sturchio et al. 2014
mir-142	Immunology	Up	Jurkat T cell line	Arsenic	Sturchio et al. 2014
mir-181a	Apoptosis, oncomIR	Up	Human bronchiolar epithelial cells	Arsenic	Beazheld et al. 2011
mir-219	Fatty acid biosynthesis, apoptosis	Up	HUVEC cells	Arsenic	Li et al. 2012
mir-24	Apoptosis	Up	HUVEC cells	Arsenic	Li et al. 2012
mir-229a	Apoptosis	Up	HUVEC cells	Arsenic	Li et al. 2012
mir-35a	Lipid metabolism	Up	HUVEC cells	Arsenic	Li et al. 2012
mir-198	Cell proliferation	Up	HUVEC cells	Arsenic	Li et al. 2012
mir-508-5p	Cell invasion and migration	Up	HUVEC cells	Arsenic	Li et al. 2012
mir-1252	No known function	Up	HUVEC cells	Arsenic	Li et al. 2012
mir-181a	Apoptosis, oncomIR	Up	HUVEC cells	Arsenic	Li et al. 2012
mir-181b	Apoptosis, oncomIR	Up	HUVEC cells	Arsenic	Li et al. 2012
mir-181d	Apoptosis, oncomIR	Up	HUVEC cells	Arsenic	Li et al. 2012

Abbreviations: NP, nanoparticles; oncomIR, miR with oncogenic properties.

Figure 5. Venn diagram displaying common and distinct microRNAs associated with arsenic exposure in in vitro and human studies. miRNAs in bold type were identified in more than one study included in this meta-analysis.
et al. (2008) reported an association between maternal PCB exposure and fetal toxicity, impaired fetal growth, and pregnancy loss.

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has been reported to adversely affect the immune system in rats (Faith and Luster 1979). In addition, Camacho et al. (2004) reported that TCDD exposure of pregnant mice affected the immune system of fetuses by suppressing T-cell function.

Arsenic. Environmental exposure to arsenic, especially to trivalent inorganic arsenic (As³⁺), is a health concern given the high concentrations present in groundwater across the world (Fendorf et al. 2010). Exposure to arsenic has been associated with increased risk of cancer due to genomic instability (Dulout et al. 1996), and long-term arsenic exposure has been observed to induce peripheral vascular injury (Teng 2008). A Venn diagram showing the common and distinct miRNAs from in vitro and human studies on arsenic-induced miRNA alterations is presented in Figure 5. Only miRNA-21 was associated with arsenic exposure in in vitro model systems and in human studies. Three miRNAs were identified by at least two independent studies on arsenic exposure and miRNA expression, namely, miR-26b, miR-181a, and miR-222.

Aluminum sulfates. Aluminum is the most widely distributed metal in the environment and is extensively used in daily life. Chronic exposure of animals to aluminum is associated with behavioral and neuro-pathological changes (Fulgenzi et al. 2014). Epidemiological studies have shown poor performance in cognitive tests and a higher incidence of cancer due to genomic instability (Dulout et al. 1996), and long-term arsenic exposure has been observed to induce peripheral vascular injury (Teng 2008). A Venn diagram showing the common and distinct miRNAs from in vitro and human studies on arsenic-induced miRNA alterations is presented in Figure 5. Only miRNA-21 was associated with arsenic exposure in in vitro model systems and in human studies. Three miRNAs were identified by at least two independent studies on arsenic exposure and miRNA expression, namely, miR-26b, miR-181a, and miR-222.

Hexahydro-1,3,5-trinitro-s-triazine (RDX). The polynitramine explosive RDX is a heavily used second-generation high explosive, and its use can result in the contamination of soils, sediments, and water (Davis et al. 2004). RDX exposure has been reported to be toxic to the neural and immune systems and to increase tumor incidence in several cancers (Garcia-Reyero et al. 2011; Sweeney et al. 2012).

Diethylstilbestrol (DES). The synthetic estrogen DES was prescribed to pregnant women from the 1940s to the 1960s in order to prevent miscarriages; however, DES was later reported to be responsible for increasing breast cancer in the mothers and gynecologic tumor incidence in their exposed daughters (Greenberg et al. 1984; Mittendorf 1995).

Perfluorooctanoic acid (PFOA). Perfluoroalkyl chemicals (PFCs) are highly stable and widely used in industrialized countries. PFCs are both lipophobic and hydrophobic; thus, after absorption they will bind to proteins in serum and liver rather than accumulate in lipids. PFOA is one of the most commonly used PFCs.

miRNAs are omnipresent in the genome and are important regulators of gene expression in response to intracellular as well as environmental cues. In this review, we examined the response of the miRNA machinery to personal and environmental exposures, including air pollution, cigarette smoking, and chemicals such as endocrine disruptors. miRNAs have been proposed as biomarkers for disease; however, the literature also reveals their potential to be used as biomarkers of environmental exposure.

In different studies on the same environmental pollutant, overall the identified miRNAs showed similar patterns of expression regulation. In studies where smoking-induced changes were investigated, the general observation was a down-regulation of expression. For example, miR-125b was down-regulated in response to cigarette smoke in both primary human bronchial epithelial cells (Schembri et al. 2009) and mouse lung tissue (Izzotti et al. 2009). However, when unique miRNAs had altered expression patterns in response to different sources, the results were inconsistent.
environmental exposures, their direction of regulation could be the same (10/25 miRNAs) or the opposite (15/25 miRNAs; 60%). The different exposures we discussed here have their own unique health effects, so one would not expect them to have the same effect on the miRNA machinery. However, there is sometimes a discrepancy when looking at the same exposure indicator; for example, in response to smoking, miR-21 has been reported to be up-regulated in some studies and down-regulated in others (Table 4). Part of the discrepancy can be explained by the different exposure models that were used.

In general, different in vitro studies show little overlap, potentially because of the complex miRNA–mRNA networks that underlie the observations and the differences in exposure used across studies. In studies of the same environmental pollutant in vitro, in vivo, or in humans, identified miRNAs were quite distinct (Figures 3–5). This can be explained in part by the observation that animal models do not always reflect genomic responses that occur in humans (Seok et al. 2013). Discrepancy between different studies might also stem from differences in exposure duration. For example, in a study in rats, the duration of exposure uniquely influenced expression patterns of the individual miRNAs (Izzotti et al. 2011).

Human epidemiological studies are necessary to observe exposure-related effects on miRNAs. Understanding the exposome requires putting together pieces of a complex puzzle. Epidemiological studies need input from experimental studies to identify good candidate biomarkers, and results from epidemiological studies often need follow-up by experimental studies to investigate mechanisms of action and to study tissue dependency of effects because human studies are most often performed in easily accessible tissues such as blood and saliva as a surrogate for the actual target tissues.

Currently, epidemiological studies on microRNA often involve free or exosomal miRNAs present in saliva or other body fluids. However, it is not clear whether these observed miRNA changes are a true reflection of the body’s response and can really predict health effects. In blood, miRNAs within the exosomes have been shown to overlap with cellular miRNA profiles: Cheng et al. (2014) observed that exosomes derived from blood were enriched for miRNAs and that miRNA profiles between blood cells and the cell-free exosomal fraction showed important overlap.

Because miRNAs can regulate mRNA expression in both a negative manner and a positive manner (Vasudevan et al. 2007) and because many miRNAs can bind the same mRNA (Sactrom et al. 2007), it is difficult to draw conclusions from miRNA studies without information on the concurrent mRNA(s) expression pattern. However, this information is rare in current reports on epidemiological studies of miRNAs. The findings of this review underscore the complex networks that are built by miRNAs and the miRNAs they regulate because one miRNA can influence many mRNAs according to the timing and pattern of expression.

Many of the reviewed studies used large-scale microarray profiling, but follow-up and validation with more quantitative approaches often lags behind. This delay is understandable because of the cost and labor intensity inherent to these techniques; however, it is important to confirm the miRNAs that are responsive to environmental exposures.

Researchers are currently publishing extensive lists of miRNAs that are responsive to environmental exposures and showing their utility as biomarkers of effect. Future research should focus on identifying the molecular mechanism behind miRNA expression changes in response to exposure to determine whether the changes in miRNA expression are merely a symptom of the (patho)physiological processes the organism undergoes after exposure, or whether miRNAs are the drivers responsible for these changes. Izzotti and Pulliero (2014) recently reviewed the putative mechanisms of action behind miRNAs’ response to environmental exposure. However, the effect of the identified miRNAs on putative mRNA targets should also be studied to determine whether the change in miRNA expression has functional consequences and which mRNAs are true miRNA targets under the given circumstances.

At present, little is known about whether environmental exposures induce long-term changes in human miRNA expression or whether these have a transient character. To address this problem, more longitudinal studies should be conducted to examine the long-term effects of exposure. Results from animal studies suggest that miRNA expression changes in response to formaldehyde exposure are transient and revert to normal levels after recovery from exposure (Rager et al. 2014), but Izzotti et al. (2011) reported that miRNA profiles in target organs did not recover 1 week after cessation of long-term cigarette smoke exposure. In a study in humans, Takahashi et al. (2013) observed that miRNA expression profiles of individuals who quit smoking resembled those of nonsmokers.

Follow-up in future generations is necessary to determine the heritability of the miRNA expression changes. It would be very interesting to examine the effect of in utero environmental exposures on development of disease in later life and the role miRNAs play in inducing these health effects. Furthermore, long-term longitudinal studies would allow us to distinguish between cause and effect of miRNA expression and environmental exposure, and would also allow us to estimate the contribution of miRNAs to disease development. Studies have shown that miRNAs can be used as biomarkers of disease as well as biomarkers for environmental exposure and that miRNAs hold great potential to explain disease etiology.

Table 10. Human studies on chemically induced changes in miRNA expression.

miRNA	miR function	Regulation	Tissue/cell type	Chemical	Source
miR-191	Oncogenic	Up	Peripheral blood	PCB-189	Guida et al. 2013
miR-146a	Inflammation, NFκB mediator	Up	Fetal brain cells	Aluminum	Pogue et al. 2009
miR-9	Neuronal differentiation	Up	Fetal brain cells	Aluminum	Lukiw and Pogue 2007
miR-125b	Targets p53, stress response	Up	Fetal brain cells	Aluminum	Lukiw and Pogue 2007
miR-128	Apoptosis	Up	Fetal brain cells	Aluminum	Lukiw and Pogue 2007
miR-199a	Uncore gene activation	Up	Serum	PFOA	Wang et al. 2012
miR-21	Fatty acid biosynthesis, apoptosis	Up	Blood samples	Arsenic	Kong et al. 2012
miR-26b	Wnt, p53, autophagy, TGF-β	Up	Blood samples	Arsenic	Kong et al. 2012
Let-7a	Cell proliferation, angiogenesis	Up	Blood samples	Arsenic	Kong et al. 2012
miR-16	DNA damage response	Up	Cord blood	Arsenic	Rager et al. 2014
miR-17	DNA damage response	Up	Cord blood	Arsenic	Rager et al. 2014
miR-20a	Angiogenesis	Up	Cord blood	Arsenic	Rager et al. 2014
miR-20b	Hypoxia	Up	Cord blood	Arsenic	Rager et al. 2014
miR-26b	Wnt, p53, autophagy, TGF-β	Up	Cord blood	Arsenic	Rager et al. 2014
miR-54	Angiogenesis	Up	Cord blood	Arsenic	Rager et al. 2014
miR-107	Targets Notch2	Up	Cord blood	Arsenic	Rager et al. 2014
miR-126	Angiogenesis	Up	Cord blood	Arsenic	Rager et al. 2014
miR-195	Tumor suppressor	Up	Cord blood	Arsenic	Rager et al. 2014
miR-454	Unknown	Up	Cord blood	Arsenic	Rager et al. 2014
miR-24	Oncogenic	Down	Plasma	PAH	Deng et al. 2014
miR-27a	Apoptosis, Erk	Up	Plasma	PAH	Deng et al. 2014
miR-29	Apoptosis	Up	Plasma	PAH	Deng et al. 2014
miR-142	Immunology	Up	Plasma	PAH	Deng et al. 2014
miR-150	Hematopoiesis	Up	Plasma	PAH	Deng et al. 2014

Abbreviations: Oncogenic, miR with oncogenic properties; PAH, polycyclic aromatic hydrocarbon; suppressor, tumor suppressor miR.
in rat uterus after developmental exposure to the polybrominated diphenylether PBDE 99 and PCB. Toxicol. Sci. 2006;91:221–233.

Chang S, Wang RH, Akagi K, Kim KA, Martin BK, Cavallone L, et al. 2011. Tumor suppressor BRCA1 epigenetically controls oncogenic microRNA-155. Nat Med 17(10):1275–1282.

Cheng L, Sharpies RA, Scicluna BJ, Hill AF. 2014. Exosomes provide a protective and enriching source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J Extracell Vesicles 3:23743; doi:10.3402/jev.v2i2.23743.

Cheng Y, Liu X, Zhang S, Lin Y, Yang J, Zhang C. 2009. MicroRNA-21 protects against the H2O2-induced injury on cardiac myocytes via its target gene PDCDA4. J Mol Cell Cardiol 47(1):125–14.

Cheng Y, Zhang C. 2010. MicroRNA-21 in cardiovascular disease. J Cardiovasc Transl Res 3(3):251–255.

Chevrier J, Guenier RB, Bradman A, Holland NT, Calafat AM, Eskesen B, et al. 2013. Maternal urinary bisphenol A during pregnancy and maternal and neonatal thyroid function in the CHAMACOS study. Environ Health Perspect 121(3):257–262.

Chow CH, Chan FC, Ng MY, Lam D, et al. 2009. miRNA expression patterns in renal biopsies of lupus nephritis patients. Rheumatol Int 29(5):769–776.

Clay CC, Manier-Hew K, Gerriets JE, Wang TT, Postlethwait EM, Evans MJ, et al. 2014. Early life oxygen exposure results in dysregulated innate immune function and altered microRNA expression in airway epithelium. PLoS One 9(3):e90401; doi:10.1371/journal.pone.0090401.

Contreras J, Rao DS. 2012. MicroRNAs in inflammation and immune responses. Leukemia 26(2):404–413.

Dai Y, Sui W, Lan H, Yan Q, Huang H, Huang Y. 2009. Comprehensive analysis of microRNA expression patterns in renal biopsies of lupus nephritis patients. Rheumatol Int 29(7):749–754.

Davis JL, Wani AH, O’Neal BR, Hansen LD. 2004. RDX induces senescence-like growth arrest in prostate cancer cells. Environ Health Perspect 112(1):45–54.

Deng Q, Huang S, Zhang X, Zhang W, Feng J, Wang T, et al. 2014. Plasma microRNA expression and micronucleus frequency in workers exposed to polycyclic aromatic hydrocarbons. Environ Health Perspect 122:719–725; doi:10.1289/ehp.1307080.

D’Hulst AI, Bracke KR, Maes T, De Bleecker JL, Pauwels RA, Joos GF, et al. 2006. Role of tumour necrosis factor-alpha receptor P75 in cigarette smoke-induced pulmonary inflammation and emphysema. Eur Respir J 28:102–112.

Djuricnovic S, Nahvi A, Green R. 2011. A parsimonious model for gene regulation by miRNAs. Science 331(6017):550–553.

Dulout FN, Grillo CA, Seoane AI, Maderna CR, Nilsson R, Cangelosi MA, et al. 2004. RDX exposure alters the growth and DNA damage response in adult rat hippocampus and heart. Toxicol Sci 71(5):679–685.

Exosomes provide a protective and enriched source of extracellular microRNA. Vesicles 3:23743; doi:10.3402/jev.v2i2.23743.

Faith RE, Luster ML. 1979. Investigations on the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on parameters of various immune functions. Ann NY Acad Sci 320:564–571.

Feitelson MA, Lee J. 2007. Hepatitis B virus integration, fragile sites, and hepatocarcinogenesis. Cancer Lett 252(2):157–170.

Fendorf S, Michael HA, van Geen A. 2010. Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science 328(5982):1123–1127.

Ferronetti D, De Smaele E, Po A, Di MercatoLillio T, Tosi E, Espinola MS, et al. 2009. MicroRNA profiling in human medulloblastoma. Int J Cancer 125(11):2567–2577.

Fossati S, Baccarrelli A, Zanobetti A, Hoxha M, Vokonas PS, Wright RO, et al. 2014. Ambient particulate air pollution and miRNAs in elderly men. Epidemiology 25(1):88–97.

Fry RC, Rager JE, Bauer B, Sebastian F, Peden DB, Jaspers I, et al. 2014. Air toxins and epithigenic effects: ozone altered microRNAs in the sputum of human subjects. Am J Physiol Lung Cell Mol Physiol 306(12):L1129–L1137.

Fulgenzi A, Vietti D, Ferrero ME. 2014. Aluminium involvement in neurotoxicity. Biomed Res Int 2014:758323; doi:10.1155/2014/758323.

Gambardella S, Rinaldi G, Lezzi SM, Viola A, Loro E, Angelini C, et al. 2010. Overexpression of microRNA-206 in the skeletal muscle from myotonic dystrophy type 1 patients. J Transl Med 8:48; doi:10.1186/1479-5876-8-48.

Gao W, He HW, Wang ZM, Zhao H, Lian XQ, Wang YS, et al. 2012. Plasma levels of lipotabominol-related miR-122 and miR-270 are increased in patients with hyperlipidemia and associated with coronary artery disease. Lipids Health Dis 11:55; doi:10.1186/1479-5876-11-55.

Gao W, Yu Y, Cao H, Shen H, Li X, Pan S, et al. 2010. Deregulated expression of miR-21, miR-143 and miR-181A in non small cell lung cancer is related to clinicopathologic characteristics or patient prognosis. Biomed Pharmacother 64(6):399–408.

Garcia-Reyero N, Habib T, Pirooznia M, Gust KA, Gong P, Warner C, et al. 2011. Conserved toxic responses across divergent phylogenetic lineages: a meta-analysis of the neurotoxic effects of RDX among multiple species using toxico genomics. Environ Toxicol 2003:580–594.

Genovesi LA, Carter KW, Gottardo NG, Giles KM, Dallas PB. 2011. Integrated analysis of miRNA and mRNA expression in childhood medulloblastoma compared with normal stem cells. PLoS One 6(9):e23035; doi:10.1371/journal.pone.0023035.

Gluckman PD, Hanson MA, Cooper C, Thornburg KL. 2008. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 359(11):61–73.

Graff JW, Powers LS, Dickson AM, Kim J, Reisetter AC, Gambardella S, Rinaldi G, Lezzi SM, Viola A, Loro E, Angelini C, et al. 2010. Overexpression of microRNA-206 in the skeletal muscle from myotonic dystrophy type 1 patients. J Transl Med 8:48; doi:10.1186/1479-5876-8-48.

Greenberg ER, Barnes AB, Resseguie L, Barrett JA, Dallas PB. 2011. Integrated analysis of miRNA and mRNA expression in childhood medulloblastoma compared with normal stem cells. PLoS One 6(9):e23035; doi:10.1371/journal.pone.0023035.

Guida M, Marra M, Zullo F, Guida M, Trifuoggi M, Guida M, Marra M, Zullo F, Guida M, Trifuoggi M, Calafat AM, Eskenazi B, et al. 2013. Maternal and neonatal thyroid function in the CHAMACOS study. Environ Health Perspect 121:138–144.

Guida M, Marra M, Zullo F, Guida M, Trifuoggi M, Calafat AM, Eskenazi B, et al. 2013. Maternal and neonatal thyroid function in the CHAMACOS study. Environ Health Perspect 121:138–144.

Guida M, Marra M, Zullo F, Guida M, Calafat AM, Eskenazi B, et al. 2013. Maternal and neonatal thyroid function in the CHAMACOS study. Environ Health Perspect 121:138–144.

Guida M, Marra M, Zullo F, Guida M, Trifuoggi M, Calafat AM, Eskenazi B, et al. 2013. Maternal and neonatal thyroid function in the CHAMACOS study. Environ Health Perspect 121:138–144.

Guida M, Marra M, Zullo F, Guida M, Trifuoggi M, Calafat AM, Eskenazi B, et al. 2013. Maternal and neonatal thyroid function in the CHAMACOS study. Environ Health Perspect 121:138–144.

Guida M, Marra M, Zullo F, Guida M, Trifuoggi M, Calafat AM, Eskenazi B, et al. 2013. Maternal and neonatal thyroid function in the CHAMACOS study. Environ Health Perspect 121:138–144.

Guida M, Marra M, Zullo F, Guida M, Trifuoggi M, Calafat AM, Eskenazi B, et al. 2013. Maternal and neonatal thyroid function in the CHAMACOS study. Environ Health Perspect 121:138–144.
expression in human peripheral blood mononuclear cells. Mutat Res 753(1–2):98–104.

Halappanavar S, Nikota J, Wu D, Pogue AI, Eckern C, Hill JM. 2011. Uprolunication of micro RNA-146a (miRNA-146a), a marker for inflammatory neurodegeneration, in sporadic Creutzfeldt-Jakob disease (sCDJ) and Gerstmann-Straussler-Scheinker (GSS) syndrome. J Toxicol Environ Health A 74(22–24):1460–1468.

Lukiv WJ, Pogue AI. 2007. Induction of specific micro RNA (miRNA) species by ROS-generating metal sulfates in primary human brain cells. J Inorg Biochem 101(9):1285–1298.

Ma L, Young J, Prabhala, Pan E, Westtagh P, Muth D, et al. 2010. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12(3):247–256.

Maccani MA, Avisitt-Whitting, M, Banister CE, McGonigal B, Paddy JD, Marsit CJ. 2010. Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-15a, and miR-146a in the placenta. Epigenetics 5(7):583–589.

Maccani MA, Paddy J, DS, Marsit CJ. 2011. miR-16 and miR-21 expression in the placenta is associated with fetal growth. PLoS One 6(6):e21210; doi:10.1371/journal.pone.0021210.

Marcucci G, Radmacher MD, Maharry K, Mrzek K, Robert AG, Paschka P, et al. 2008. MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl Med 358(18):1919–1928.

Marczylo EL, Mao LK, Konje JC, Gant TW, Marczylo TH. 2012. Smoking induces differential miRNA expression in human spermatozoa: a potential transgenerational epigenetic concern? Epigenetics 7(1):60–66.

Miller MR, Shaw CA, Langrish JP. 2012. From particles to patients: oxidative stress and the cardiovascular effects of air pollution. Future Cardiol 8(4):577–602.

Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro CL, et al. 2008. MicroRNA-212/221 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem 283(44):28987–29003.

Mittendorf R. 1995. Teratogen update: carcinogenesis and teratogenesis associated with exposure to diethylstilbestrol (DES) in utero. Teratology 51(6):435–445.

Motta Angelici L, Nordio F, Bellati V, Fossati S, Frascati F, et al. 2013. Integrative analysis of miRNA and inflammatory gene expression after acute particulate matter exposure. Toxicol Sci 132(2):307–316.

Murchison EP, Hannon GJ. 2004. miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr Opin Genet Dev 14(1):75–81.

Nagano T, Higashisaka A, Kuniied A, Iwahara Y, Tanaka K, Nagano K, et al. 2013. Liver-specific miRNAs as biomarkers of nonalcoholic-induced liver damage. Nanotechnology 24(41):405102; doi:10.1088/0957-4484/24/40/405102.

Nagel R, Le Sage C, Dixoando B, van der Waal M, Oude Vielink JA, Beljin A, et al. 2008. Regulation of the adenosinom polypoly coline gene by the miR-135 family in colorectal cancer. Cancer Res 68(14):5795–5802.

Nakamachi H, Taccioni C, Palatini M, Fernandez-Dymering C, Cui K, Kim T, et al. 2014. Loss of miR-125B-1 contributes to head and neck cancer development by dysregulating TACSTD2 and MAPK pathway. Oncogene 33(6):702–712.

Nana-Sinkam SP, Hunter MG, Nuevo GJ, Schmittgen TD, Gelinas R, GaJUS D, et al. 2009. Integrating the microRNome into the study of lung disease. Am J Respir Crit Care Med 179(1):14–19.
formaldehyde exposure alters miRNA expression profiles in human lung cells. Environ Health Perspect 119:494–500; doi:10.1289/ehp.1002164.

Rahman MM, Qian ZR, Wang EL, Santana R, Kudo E, Nakasuno M, et al. 2009. Frequent overexpression of HMGA1 and 2 in gastrointestinal neuroendocrine tumours and its relationship to let-7 downregulation. Br J Cancer 100(3):501–510.

Rathore JH, Luytjelsen LP, Levula M, Oskala N, Mennderman A, Tarkka M, et al. 2011. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis 219(1):211–217.

Rafikhaer A, Hagedorn PB, Bangaard N, Lavendord MB, Ahler CB, Svensson L, et al. 2011. Diagnostic microRNA expression profiling in cutaneous T-cell lymphoma (CTCL). Blood 118(2):5891–5900.

Rubin BS. 2011. Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol 121(1–2):27–34.

Saetrom P, Heale BS, Nguyen N, Robertson SA, Saetrom P, Heale BS, Snøve O Jr, Aagaard L, Alluin J, et al. 2009. Characterization of an NF-kB-regulated miRNA. J Biol Chem 284(37):25913–25924.

Scapoli L, Palmieri AL, Luizzi M, Pezzetti F, Rubini C, Girardi A, et al. 2010. MicroRNA expression profiling of oral carcinoma identifies new markers of tumor progression. Int J Immunopathol Pharmacol 2:2286–2296.

Schmidt F, Olsdorfer MB, Ebel RM, Gustafsson AM, Zhang X, Engelmann GH, et al. 2009. MicroRNAs as modulators of smoking-induced gene expression changes in human airway epithelium. Proc Natl Acad Sci USA 106(7):2319–2324.

Schulte JH, Marschall T, Martin M, Rosenstiel P, Mestdagh P, Schlierf S, et al. 2010. Deep sequencing reveals differential expression of microRNAs in favorably versus unfavorable neuroblastoma. Nucleic Acids Res 38(17):5919–5928.

Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, et al. 2013. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA 110(9):3067–3072.

Shan ZX, Lin QX, Fu YH, Deng CY, Zhou ZL, Zhu JN, et al. 2009. Upregulated expression of miR-1/miR-206 in a rat model of myocardial infarction. Biomed Biochem Acta 68(4–5):571–576.

Shi L, Cheng Z, Zhang J, Li R, Zhao P, Fu Z, et al. 2008. hsa-miR-181a and hsa-miR-181b function as tumor suppressors in human glioma cells. Brain Res 1236:185–193.

Singh NP, Singh UP, Guan H, Nagarkatti P, Nagarkatti M. 2012. Prenatal exposure to TCDD triggers significant modulation of microRNA expression profile in the thymus that affects consequent gene expression. PLoS One 7(9):e45054; doi:10.1371/journal.pone.0045054.

Song MK, Park YK, Ryu JC. 2013. Polycyclic aromatic hydrocarbon (PAH)-mediated upregulation of hepatic microRNA-181 family promotes cancer cell migration by targeting MAPK phosphatase-5, regulating the activation of p38 MAPK. Toxicol Appl Pharmacol 273(1):130–139.

Soto AM, Brisken C, Schaebener C, Sonnenschein C. 2013. Does cancer start in the womb? Altered mammalian gland development and predisposition to breast cancer due to in utero exposure to endocrine disruptors. J Mammary Gland Biol Neoplasia 18(2):199–208.

Spira A, Banerje J, Shah V, Liu G, Schenbri F, Yang X, et al. 2004. Effects of cigarette smoke on the human airway epithelial cell transcriptome. Proc Natl Acad Sci USA 101(27):10143–10148.

Stáněk Z, Juhász K, Tóth C, Gombos K, Natali PG, Ember I. 2013. Evaluation of MicroRNA expression pattern of gastric adenocarcinoma associated with socioeconomic, environmental and lifestyle factors in northwestern Hungary. Anticancer Res 33(8):3195–3200.

Steelie G, Stehr-Green P, Welty E. 1988. Estimates of the biologic half-life of polychlorinated biphenyls in human serum [Letter]. Environ Health Perspect 79:506–528.

Sterchio E, Colombo T, Boccia P, Carucci N, Meconi C, Minoia C, et al. 2014. Arsenic exposure triggers a shift in microRNA expression. Sci Total Environ 472:567–580.

Sweeney LM, Okolica MR, Gut CP Jr, Gargas ML. 2012. Cancer mode of action, weight of evidence, and proposed cancer reference value for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Regul Toxicol Pharmacol 64(1):235–254.
MicroRNAs as potential signatures of the exposome

Weigelt K, Bergink V, Burgerhout KM, Pescatori M, Petrocca F, et al. 2006. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103(7):2257–2261.

Waliszewski SM, Aguirre AA, Infanzon RM, Silva CS, Silício J. 2001. Organochlorine pesticide levels in maternal adipose tissue, maternal blood serum, umbilical blood serum, and milk from inhabitants of Veracruz, Mexico. Arch Environ Contam Toxicol 40(3):432–438.

Wang C, Yang C, Chen X, Yao B, Yang C, Zhu C, et al. 2011. Altered profile of seminal plasma microRNAs in neonatal exposure to perfluorooctane sulfonic acid results in aberrant changes in miRNA expression profile and levels in developing rat livers. Environ Toxicol; doi:10.1002/tox.21949 [Online 13 January 2014].

Wang H, Zhang P, Chen W, Feng D, Jia Y, Xie L. 2012. Serum microRNA signatures identified by Solexa sequencing predict sepsis patients' mortality: a prospective observational study. PLoS One 7(6):e38885; doi:10.1371/journal.pone.0038885.

Wang J, Zhang Y, Zhang W, Jin Y, Dai J. 2012. Association of perfluorooctanoic acid with HDL cholesterol and circulating miR-26b and miR-199-3p in workers of a fluorochemical plant and nearby residents. Environ Sci Technol 46(17):9274–9281.

Wang X, Ha T, Liu L, Zou J, Zhang X, Kalbfleisch J, et al. 2013. Increased expression of microRNA-146a decreases myocardial ischaemia/reperfusion injury. Cardiovasc Res 97(3):432–442.

Wang Y, Li Z, He C, Wang D, Yuan X, Chen J, et al. 2010. MicroRNAs expression signatures are associated with lineage and survival in acute leukemias. Blood Cells Mol Dis 44(3):191–197.

Weigelt K, Bergink V, Burgerhout KM, Pescatori M, Wijkhuys A, Broeßge HA. 2013. Down-regulation of inflammation-protective microRNAs 146a and 212 in monocytes of patients with postpartum psychosis. Brain Behav Immun 29:147–155.

White NM, Bao TT, Grigull J, Youssef YM, Girgis A, Diamandis M, et al. 2011. miRNA profiling for clear cell renal cell carcinoma: biomarker discovery and identification of potential controls and consequences of miRNA dysregulation. J Urol 186(3):1077–1083.

Wild C. 2005. Complementing the genome with an "exposome": the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomarkers Prev 14(8):1847–1850.

Williams AH, Valdez G, Morlesi V, Qi X, McAnally J, Elliott JL, et al. 2009. MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 326(5969):1549–1554.

Wong KY, Liang R, So CC, Jin DY, Costello JF, Chim CS. 2011. Epigenetic silencing of MiR203 in multiple myeloma. Br J Haematol 154(5):569–578.

Wu J, Yang T, Li X, Yang Q, Liu R, Huang J, et al. 2013. Alteration of serum miR-206 and miR-133b is associated with lung carcinogenesis induced by 4-(methylnitosamino)-1-(3-pyridyl)-1-butane. Toxicol Appl Pharmacol 267(3):238–246.

Wu ZS, Wu Q, Wang CQ, Wang XN, Huang J, Zhao JJ, et al. 2011. miR-340 inhibition of breast cancer cell migration and invasion through targeting of oncprotein c-Met. Cancer 117(13):2842–2852.

Xu S, Yang M, Tao Y, Xu H, Shan J, Inchauste S, et al. 2010. Cigarette smoke induces C/EBP-β-mediated activation of miR-31 in normal human respiratory epithelia and lung cancer cells. PLoS One 5(10):e13764; doi:10.1371/journal.pone.0013764.

Xiao C, Calado DP, Galier G, Thai TH, Patterson HC, Wang J, et al. 2007. MiR-195 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131(1):146–159.

Xu CC, Han WQ, Xiao B, Li NN, Zhu DL, Gao PJ. 2008. Differential expression of microRNAs in the aorta of spontaneously hypertensive rats [in Chinese]. Sheng Li Xue Bao 60(4):553–560.

Yamagishi M, Nakano K, Miyake A, Yamochi T, Kagami Y, Tsutsumi A, et al. 2012. Polycytemediated loss of miR-31 activates NF-kB pathway in adult T cell leukemia and other cancers. Cancer Cell 21(1):121–135.

Yamamoto M, Singh A, Sava F, Pui M, Tebbutt SJ, Carlsten C. 2013. MicroRNA expression in response to controlled exposure to diesel exhaust: attenuation by the antioxidant N-acetylcysteine in a randomized crossover study. Environ Health Perspect 121:670–675; doi:10.1289/ehp.1205963.

Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, et al. 2006. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer cell 9(3):189–198.

Yi C, Wang Q, Wang L, Huang Y, Li L, Liu L, et al. 2012. MiR-663, a microRNA targeting p21(WAF1/ CIP1), promotes the proliferation and tumorigenesis of nasopharyngeal carcinoma. Oncogene 31(41):4421–4432.

Yuchuan H, Ya D, Jie Z, Jingyin C, Yanrong L, Dongliang L. 2014. Circulating miRNAs might be promising biomarkers to reflect the dynamic pathological changes in smoking-related interstitial fibrosis. Toxicol Ind Health 30 (2):182–191.

Zampetaki A, Kiechel S, Drozdoz I, Willeit P, Mayr U, Prokopi M, et al. 2010. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107(6):810–817.

Zhang B, Pan X. 2009. RDX induces aberrant expression of microRNAs in mouse brain and liver. Environ Health Perspect 117:231–240; doi:10.1289/ehp.11841.

Zhang JX, Song W, Chen ZH, Wei JH, Liao YJ, Lei J, et al. 2013. Prognostic and predictive value of a microRNA signature in stage II colon cancer: a microRNA expression analysis. Lancet Oncol 14(12):1295–1306.

Zhang Y, Tan T, Zhong X, Cheng C. 2014. Nicotine upregulates microRNA-21 and promotes TGF-β-dependent epithelial-mesenchymal transition of esophageal cancer cells. Tumour Biol 35(7):7063–7072.

Zhang Y, Yan LX, Wu QN, Du ZM, Chen J, Yao B, et al. 2011. miR-125b is methylated and functions as a tumor suppressor by regulating the ETS1 proto-oncogene in human invasive breast cancer. Cancer Res 71(10):3552–3562.