ABSTRACT

Background. Despite the degree of scientific development of the medical science CNS congenital malformations are about 25% of all congenital malformations in children and their proportion in the structure of perinatal and infant mortality to date is about 30%. Therefore, prenatal diagnosis, prevention and prediction of this pathology have a high profile in many countries of the world. Etiologically in addition to genetic disorders the embryogenesis disorders subject to the action of exo- and endotoxins, the infectious factors are factors of their occurrence. Hydrocephalus is one of the most common congenital malformations of the nervous system in young children. It is diagnosed in 0.1–2.5% of newborns.

Subjects and Methods. The analysis of the congenital hydrocephalus incidence in the Chernivtsi region for 2007–2016 and the comparison of this indicator with some countries according to EUROCAT data were carried out.

Results. According to EUROCAT the population congenital hydrocephalus incidence ranges from 0.11 to 0.57 %. The congenital hydrocephalus incidence in the Chernivtsi region did not exceed the statistics for Ukraine over the studied period, only in 2012 and 2014 this statistic was higher than the national one. Among the analyzed countries the highest overall incidence over the studied period occurred in Ukraine (0.57 %) and the lowest – in Portugal (0.11 %).

Conclusions. Probable risk factors of the development of congenital hydrocephalus are the presence of TORCH infection in the pregnant woman, spouses living near motorways, unregistered marriage, influence of chemical factors on both male and female, father’s rough labour before pregnancy, smoking and serving in the army. Probable factors for preventing congenital hydrocephalus in children are higher education of the parents and folic acid intake in the first trimester of pregnancy. These factors need to be taken into account when planning pregnancy to prevent fetal congenital hydrocephalus.

Key Words: Congenital hydrocephalus, Chernivtsi region, risk factors, incidence, children

Accepted: 03.28.2019

ÖZET

Amaç: Tıp biliminin bilimsel gelişim derecesine rağmen, MSS doğuştan malformasyonlar, çocuklarda tüm doğuştan malformasyonların yaklaşık% 25’idir ve bu nedenle kadın perinatal ve bebek ölümünün yapıskan oranını% 30’dur. Bu nedenle doğum öncesi takı, bu patolojinin önlenmesi ve öngörülmesi dünyanın birçok ülkesinde yüksek bir profil sahiptir. Etiyolojik olarak genetik bozuklukla ekrak, okço- ve endotoksonların etkisi, maruz kalan embriyogenez bozukluklar, bulaşıcı faktörlerin oluşturularını bir faktördür. Hidrosefali, küçük çocuklarda sinir sisteminin en sık görülen konjenital malformasyonlarından biridir. Yenidoğanların% 0.1-2.5’inde teşhis edilir.

Hastalar ve yöntem: Chernivtsi bölgesinde 2007-2016 yılları için congenital hidrosefali insidansının analizi ve bu göstergenin bazı ülkelerde EUROCAT verilerine göre karşılaştırılması yapıldı.

Bulgular: EUROCAT’a göre popülasyon konjenital hidrosefali insidansı % 0.11 ile 0.57 arasında değişmektedir. Chernivtsi bölgesindeki congenital hidrosefali insidansı, incelenen süre boyunca Ukrayna istatistiklerini aşmadı, sadece 2012 ve 2014 yıllarında bu istatistikler ulusal olandan daha yüksekti. Analiz edilen ülkeler arasında, incelenen dönem boyunca en yüksek toplam insidans Ukrayna (0.57 %) ve en düşük - Portekiz'de (0.11 %) mejdana gelmiştir.

Sonuç: Konjenital hidrosefali gelişimini olası risk faktörleri, hamile kadına TORCH enfeksiyonunun varlığı, otoyollar yakınında yaşayan eşer, kayıt dışı evlilik, hem erkek hem de dişi üzerindeki kıyısal faktörlerin etkisi, hamilelik öncesinde bağımlılık eğitimi alması, orduya sigara içmesi ve askerden hizmet vermesidir. Çocuklarda konjenital hidrosefali olasılıknesinde muhitemel faktörler, ebeveynlerin yüksek eğitimi ve gerilgenin ilk üç ayda folik asit alımıdır. Fetal konjenital hidrosefali’yi önlemek için hamileliği planlarken bu faktörlerin dikkate alınması gereklidir.

Anahtar Sözcüller: Konjenital hidrosefali, Chernivtsi bölgesi, risk faktörleri, insidans, çocuklar

Geliş Tarihi: 26.07.2017
Kabul Tarihi: 28.03.2019
INTRODUCTION

Since its inception the human society strives for a continuous improvement of the habitat through the introduction of the latest technological processes, operational excellence, transport network and various branches of science and technology development. However, at the same time, annually increasing environmental footprint has a negative impact on the public health – so-called "Ecologically Related diseases" proceed.

Congenital malformations (CM), along with neoplasms, bronchial asthma and some other diseases have been recognized by many scientists as indicators of ecological ill-being of the environment (1, 2).

Dynamics of the change in these indicators progression study in time can be used to conduct a comprehensive assessment of the ecological state of the environment and the quality of life of the population, as well as to assess the efficiency of preventive measures in the region.

The epidemiology and the risk factors for the occurrence of CM referred to the relevance of the study have resulted largely from the growth of this pathology in children, despite the continuous preventive measures. According to the WHO 4–6% of children with CM are born in the world every year, while the mortality rate is 30–40%. Among the newborns the incidence of CM which is occurred immediately after birth ranges from 2.5 to 4.5% and in the light of defects occurred during the first year of life it reaches 5% (3).

According to V.I. Kulakov (4), E.N.Whitby et al. (5), the influence of congenital anomalies on the overall structure of infant mortality is increasing. The studies conducted in different countries have shown that 25–30% of all perinatal losses are associated with anatomical defects in organs. Among the stillborn children CM is diagnosed in 15–20% of cases (1, 3, 6).

Despite the degree of scientific development of the medical science CNS congenital malformations are about 25% of all congenital malformations in children and their proportion in the structure of perinatal and infant mortality to date is about 30% (7,8). Often associated with the pronounced CNS structural changes the resistant epileptic seizures and crude neurological semiology occur. Therefore, prenatal diagnosis, prevention and prediction of this pathology have a high profile in many countries of the world. Etiologically in addition to genetic disorders the embryogenesis disorders subject to the action of exo- and endotoxins, the infectious factor (herpesvirus, cytomegalovirus, toxoplasma, etc.) is a factor of their occurrence(9,10,11). This pathology has not only medical, but also state and social significance, which is especially relevant in terms of an unstable demographic situation.

Hydrocephalus is one of the most common CM of the nervous system in infants (1, 4, 12). It is diagnosed in 0.1–2.5% of newborns (6, 13). The main etiological factor of progressive hydrocephalus of non-tumor genesis in newborns and infants is congenital hydrocephalus as an isolated defect of the development of the nervous system in combination with other anomalies of the brain and spinal cord (14, 15).

The possibility of early non-invasive diagnosis of progressive hydrocephalus appeared as a result of the active introduction of CT, MRI, ultrasonic methods of investigation, in particular, neurosonography (NSG), transcranial dopplerography (TCDG) of the vessels of the brain (16, 17) to the clinical practice.

Thus, according to the literature, NSG is the main method of diagnosis of progressive hydrocephalus in infants, taking into account its advantages, it allows to determine the degree of hydrocephalus, its morphological form, level of occlusion of the liquor pathways, concomitant pathology and also to evaluate the effectiveness of non-surgical treatment, to conduct surgical treatment in a timely manner, to evaluate the effectiveness of liquor draining surgeries, to identify possible complications (18; 19; 20). An ultrasound study is extremely important in the antenatal diagnosis of congenital hydrocephalus and associated neural tube defects beginning with the second trimester of pregnancy (7, 21).

The purpose of our work was to study the incidence and the main risk factors for the formation of hydrocephalus in children of Chernivtsi region.

SUBJECTS and METHODS

The research of the frequency of congenital hydrocephalus was conducted in Chernivtsi region at the premises of medical genetic center. The reports of the Chernivtsi Regional Diagnostic Center of the Ministry of Health of Ukraine were used – Form No. 49 (healthy). "Report on the provision of medical and genetic care" No. 141 (2007–2016) approved by the Regulation of the Ministry of Health of Ukraine of 16 June 1993. Also, the data on the number and morbidity of the children population of the region contained in the statistical yearbooks of Chernivtsi region (2007–2016) was analyzed.

For the analysis of the risk factors for the development of the congenital hydrocephalus the retrospective method was used to study the genetic case report forms (f. No. 149/0) approved by the Regulation of the Ministry of Health of Ukraine of 13 December 1999 for 2000–2016. The medical records of 38 children with congenital hydrocephalus (24 boys and 14 girls) aged 0–18 living in the Chernivtsi region were selected. Diagnosis of congenital hydrocephalus for all examined children was made in the neonatal period. The medical records of the 44 children (26 boys and 18 girls) were taken to identify risk factors. The control group was formed on a population basis, since only those children whose parents were permanently residing in the Chernivtsi region were subject to registration. The following data was collected from their parents: their age at the time of pregnancy, social status, pregnancy number, social habits, education, place of residence, place of work, somatic morbidty, presence of FPI, threat of miscarriage, fetal hydrops, hypanomion, loop of cord and gestational age; if the given child was born as a term fetus or as a premature fetus. The gynecological health, abortions and miscarriages in history. Planned or unplanned pregnancy. Folic acid intake in the first trimester of pregnancy and stress. Detection of TORCH infection during pregnancy. The contraceptives and other drugs intake.

The incidence of cases of congenital hydrocephalus was calculated as the ratio of the cases of this pathology registered by the medical genetic service during the given period of time to the number of births and multiplied by 1000:

\[
\text{congenital malfunctions frequency} = \frac{\text{congenital malfunction (total)} \times 1000}{\text{number of newborns}}
\]

The strength of the association of the features under study was determined using the Odds Ratio (OR), which was performed by the formula:

\[
OR = \frac{A \times N}{A \times D + B \times C}
\]

where A is the presence of the congenital hydrocephalus and the feature under the study, B – the presence of a congenital hydrocephalus and the absence of a feature to be studied; C – the absence of a congenital hydrocephalus and the presence of a feature to be studied; D – the absence of a congenital hydrocephalus and the absence of a feature to be studied.

For OR, the confidence interval (CI) was calculated at 95% level of significance. If the odds ratio was less than 1, then the risk was reduced if \(r \) = 1, then there was no risk, if more than 1, then there was a risk.

For the assertion of the probability of difference, the usual accepted in medical-biological studies value of the probability level (p) <0,05 was taken into account. With such values of “p”, the observed changes in the studied attributes are valid for 95 or more cases out of 100.

All data was analyzed by nonparametric methods of variation statistics using the MedCal (2006) computer program (22).

RESULTS

The analysis of the congenital hydrocephalus incidence in Chernivtsi region for 2007–2016 and the comparison of this indicator with some countries according to EUROCAT data (Table 1) has been carried out.
inherent in the Slavic population (29).

Account for about the half of all marriages (25, 26, 27, 28) and in general are living together with their parents, insufficient family income and multi-

hydrocephalus (OR = 7.02). Other social factors, such as: future parents are living together with their parents, insufficient family income and multi-

pathology in a child (OR = 4.74). Also, this factor may indicate that a woman mother's risk factors include smoking and alcohol abuse before and during pregnancy. In father, the risk factor is only tobacco smoking.

As clinical work has shown the formation of CNS defects in a child is most often associated with intrauterine infection with herpesviruses, cytomegalovirus and also respiratory viruses, whereas the connection of toxoplasma and mycoplasma infections with central nervous system disorders in a child is discussed (1; 23; 24). The viral infections of herpes and toxoplasmic and mycoplasma infections with central nervous system pathology. So, in our study, it was found that when a family lives close to the placenta, which makes it possible to transmit the virus from mother to fetus.

The social factors may also be a risk factor for the development of this pathology. So, in our study, it was found that when a family lives close to the motorway, there is a significant risk factor for the development of congenital hydrocephalus (OR = 7.02). Other social factors, such as: future parents are living together with their parents, insufficient family income and multi-

national marriage are also risk factors of this pathology. It should be noted that according to other authors inter-ethnic marriages, including as a result of migration, are widespread in Ukraine and in their various populations can account for about the half of all marriages (25, 26, 27, 28) and in general are inherent in the Slavic population (29).

The age of mother and father at the time of conception of a child plays an important role in the development of CM, namely, congenital hydrocephalus. Thus, we have shown that the young age of a mother (under 18 years of age) and an elderly mother and father (over 35 years) represent a risk factor for the CNS pathology. In different regions of Ukraine there is a tendency to increase the variance of the age of getting married and this indicator depends on the degree of urbanization of a particular population (30, 31, 32, 33).

The education of parents also plays a role in the development of this pathology. This can be explained by the attitude of spouses to pregnancy, planning of the future child, prevention of the impact of various physical and chemical factors, as well as critical view of bad habits. Thus, it has been shown that higher education of parents is a protection factor against the development of this pathology and mother's secondary and incomplete secondary education and father's incomplete secondary and special secondary education are risk factors of congenital hydrocephalus. Marriage assortativity can play a potential influence on the health of descendants and this phenomenon has also been studied in the Ukrainian and Slavic populations (34).

Also the registration of marriage plays an important role for women. When pregnant in an unregistered marriage a woman experiences constant stress, which is one of the reliable risk factors for the development of this central nervous system malfunction (OR = 9.95). The social status of the spouses plays an important role in the development of this pathology. Thus, with the social status of the "worker" of mother and father, as well as in the rough labour, there is a significant risk factor for the development of congenital hydrocephalus. The risk factor is the fact that father was in the army before pregnancy. Perhaps this is associated with chronic stress and rough labour in the conditions of this service.

The effect of chemical factors on mother and father before and during pregnancy is a reliable risk factor for this CNS pathology. We analyzed the influence of harmful habits on the development of this pathology. So, mother’s risk factors include smoking and alcohol abuse before and during pregnancy. In father, the risk factor is only tobacco smoking.

Consequently, the congenital hydrocephalus incidence in children of Chernivtsi region is low, compared to Ukraine and is on average 0.24 ‰ per study period. Probable risk factors of the development of congenital hydrocephalus are the presence of TORCH infection in the pregnant woman, spouses living near motorways, unregistered marriage, chemical factors exposure on both male and female, father's rough labour before pregnancy, smoking and serving in the army. Probable factors for preventing congenital hydrocephalus in children are higher education of the parents and folic acid intake in the first trimester of pregnancy. These factors need to be taken into account when planning pregnancy to prevent fetal congenital hydrocephalus.

It should be noted that the research we have undertaken is harmoniously associated with a number of recent studies generally aimed at increasing the genetic culture of Ukrainian population (35, 36).
REFERENCES

No conflict of interest was declared by the authors.

Table 2. The most important risk factors of developing hydrocephalus in children of Chernivtsi region

Risk factor	OR	CI	Difference probability
Male sex of a child	1.19	0.49–2.90	
Pregnancy:			
I pregnancy	0.59	0.23–1.55	
II pregnancy	0.92	0.33–2.51	
III pregnancy	1.69	0.53–5.40	
Prematurity	3.57	1.02–12.54	
Unplanned pregnancy	0.22	0.08–0.56	p<0.05
Folic acid intake in the first trimester of pregnancy	0.37	0.15–0.90	p<0.05
Anemia of pregnancy	1.59	0.66–3.83	
Threatened miscarriage	0.48	0.18–1.25	
Recent pregnancy gestosis	1.40	0.48–4.07	
TORCH infection in pregnant	3.60	1.13–11.43	p<0.05
Drug intake during pregnancy	0.96	0.27–3.44	
Fetal hydrops	4.74	0.92–24.41	
Hypammon	0.57	0.05–6.52	
Social factors:			
The spouses live with parents	1.30	0.54–3.12	
Insufficient family income	1.41	0.57–3.45	
The family lives near motorways	7.02	2.27–21.69	p<0.05
Multi-national marriage	2.08	0.62–7.01	
Mother’s age at the time of pregnancy:			
Less than 18 years	3.69	0.37–37.01	
26–35 years	0.40	0.14–1.18	
More than 35 years	3.09	0.74–12.91	
Father’s age at the time of impregnation:			
Less than 18 years	0.57	0.05–6.52	
26–35 years	0.80	0.28–2.26	
More than 35 years	1.17	0.22–6.18	
Mother’s education:			
Secondary	2.43	0.95–6.19	
Incomplete secondary	8.06	0.92–70.32	
Secondary special	0.06	0.01–0.47	
Higher	0.17	0.05–0.56	
Influence of physical factors during pregnancy:			
In the city	0.97	0.38–2.41	
Living in the country	0.97	0.38–2.41	
Living in the country	0.99	0.40–2.48	
Unregistered marriage	9.95	1.96–50.53	p<0.05
Mother’s social status – a worker	1.96	0.76–5.02	
Mother’s rough labour during pregnancy	6.52	1.31–32.40	
Mother’s psychoemotional stress	1.06	0.38–2.95	
Influence of chemical factors during pregnancy:			
Female smoking	17.14	5.06–58.13	p<0.05
Coffee overuse during pregnancy	1.46	0.41–5.24	
Alcohol overuse during pregnancy	0.64	0.21–0.96	
1.03	0.43–2.46		
Father’s education:			
Secondary	0.97	0.41–2.32	
Incomplete secondary	8.06	0.92–70.33	
Secondary special	2.08	0.62–7.01	
Higher	0.22	0.07–0.67	p<0.05
Influence of physical factors on father before pregnancy			
In the army before conception	2.27	0.85–6.08	
Father served in the army before conception	8.67	2.81–26.78	p<0.05
Father’s rough labour before conception	3.64	1.34–9.88	p<0.05
Father’s psychoemotional stress	0.99	0.30–3.25	
Influence of chemical factors on the father before pregnancy			
Male smoking	37.50	10.32–136.3	p<0.05
Male smoking	3.00	1.22–7.39	p<0.05
Female smoking	0.73	0.23–2.28	
Alcohol overuse during pregnancy	0.91	0.32–2.33	

Conflict of interest

No conflict of interest was declared by the authors.

REFERENCES

1. Антонов ОВ. Проблемы и перспективы мониторинга врожденных пороков развития у детей. Проблемы социальной гигиены, здравоохранения и истории медицины 2007; 1: 6-8 (in Russian).

2. Алдашева НМ, Лобзова АБ, Кузнецова ТВ. Влияние средовых факторов на частоту врожденных пороков развития у плодов. Физиология, морфология и патология человека и животных в условиях Киргизстана. 2008; 8: 381-386 (in Russian).

3. Демикова НС, Лапина АС, Путинцев АН. Шмелева НН. Информационно-справочная система по врожденным порокам развития в медицинской практике и образовании. Врач и информационные технологии. 2007; 6: 33-36 (in Russian).
Alesandrovna et al. 2019; 30: 241-245

4. Kulkov VI. Reproductive health and well being of women. 2007; 7(1): 7-9 (in Russian).

5. Whitby E.H. Low field strength magnetic resonance imaging of the neonatal brain / E.H. Whitby, M.N. Paley, M.F. Smith, A. Spriug, N. Woodhouse, and P.D. Griffiths // Archives of Disease in Childhood (Fetal and Neonatal). 2003; 88 (3): 203-208.

6. Пушкин В.А. Структура врожденных пороков развития нервной системы в Черновицкой области и факторы риска их развития // Современная медицина: актуальные вопросы: сб. ст. по матер. IV междунар. науч.-практ. конф. Новосибирск: СибБАК. 2012 (in Russian).

7. Баращенюк Ю.И. Перинатальная неврология. Москва: Медиа Сфера. 1998; 352c. (in Russian).

8. Алдашева Н.М. Лобзова А.В. Боконбаева С.Дж. Оценка факторов риска врожденных пороков развития. Педиатрия. 2010; 89(1): 43-46 (in Russian).

9. Андреева Л.П. Кулешов Н.П. Мутовин Г.Р. Наследственные и врожденные болезни: вклад в детскую заболеваемость и инвалидность, подходы к профилактике. Педиатрия. 2007; 86(3): 8-14 (in Russian).

10. Антонов О.В. Богачева Е.В. Комарова А.А. Антонова И.В. Роль фактора сезонности в формировании врожденных пороков развития. Бюллетень сибирской медицины. 2012; 3: 135-138 (in Russian).

11. Volpe J. Neurology of the Newborn. 5th Ed., Saunders. 2008; 1094 p.

12. Орлов Ю.О. Марущенко Л.Л. Проценко И.П. Результаты лечения пациентов с гидроцефалией в детской нейрохирургической клинике. Фундаментальные мед. исследования. 2012; 43: 17-19 (in Russian).

13. Filiptsova OV, Kobets MN, Kobets YuN. Some aspects of genetics and pharmacogenetics understanding by pharmacy students in Ukraine: Economic Aspect. Gazi Med. J. 2017. 28(2): 79-84.

14. Of thankfulness to. Atramentova LA, Filiptsova OV, Osipenko SYu. Genetic demography of Ukrainian urban populations in the 1990s: the ethnic composition of the migration flow in the Kharkiv population. Russ J Genet. 2002. 38(7):816-23.

15. Atramentova LA, Filiptsova OV, Mukhin VN, Osipenko SYu. Genetic Demography of Ukrainian Urban Populations in the 1990s: Ethnic Geographic Characteristics of Migration in the Donetsk Population. Russ J Genet. 2002. 38(10):1189-95.

16. Atramentova LA, Meshcheriakova IP, Filiptsova OV. Characteristics of migration in the population of Yevpatoria (Crimea). Russ J Genet. 2014. 50(9):994-1002.

17. Atramentova LA, Filiptsova OV, Osipenko SYu. Genetic demography of Ukrainian urban populations in the 1990s: ethnicity and birthplaces of migrants to the Poltava population. Genetika. 2002. 38(9):1276-81.

18. Atramentova LA, Filiptsova OV. Spatial characteristics of marriage migration in the Belgorod population. Russ J Genet. 2005. 41(5):553-62.

19. Atramentova LA, Mukhin VN, Filiptsova OV. Genetic demographic processes in Ukrainian population in 1990. The marriage structure of the Donetsk population. Genetika. 2000. 36(1):93-9.

20. Atramentova LA, Filiptsova OV. Genetic Demographic Processes in Ukrainian Urban Populations in the 1990s: The Marriage Structure of the Poltava Population. Russ J Genet. 1999. 35(12):1464-70.

21. Селютин МЮ, Евдокимов ВИ, Сидоров ГА. Врожденные пороки развития как показатель экологического состояния окружающей среды. Научные ведомости. Серия Медицина. Фармация. 2014; 11(382): 173-177.

22. Флетчер Р. Флетчер С. Вагнер Е. Клиническая эпидемиология. Основы доказательной медицины. Москва: Медиа Сфера. 1998; 352c.

23. Kulkarni AV, Shams I. Quality of life in children with hydrocephalus: results from the Hospital for Sick Children, Toronto. J Neurosurg. 2007; 107(Suppl 5): 358-364. doi: 10.3171/PED-07/11/358.

24. Vinchon M, Baroncini M, Delestret I. Adult outcome of pediatric hydrocephalus. Childs Nerv Syst.2012;28:847-54. doi:10.1007/s00381-012-1723-y.

25. Atramentova LA, Filiptsova OV, Osipenko SYu. Genetic demography of Ukrainian urban populations in the 1990s: the ethnic composition of the migration flow in the Kharkiv population. Russ J Genet. 2002. 38(7):816-23.

26. Atramentova LA, Filiptsova OV, Mukhin VN, Osipenko SYu. Genetic Demography of Ukrainian Urban Populations in the 1990s: Ethnic Geographic Characteristics of Migration in the Donetsk Population. Russ J Genet. 2002. 38(10):1189-95.

27. Atramentova LA, Meshcheriakova IP, Filiptsova OV. Characteristics of migration in the population of Yevpatoria (Crimea). Russ J Genet. 2014. 50(9):994-1002.

28. Atramentova LA, Filiptsova OV, Osipenko SYu. Genetic demography of Ukrainian urban populations in the 1990s: ethnicity and birthplaces of migrants to the Poltava population. Genetika. 2002. 38(9):1276-81.

29. Atramentova LA, Filiptsova OV. Spatial characteristics of marriage migration in the Belgorod population. Russ J Genet. 2005. 41(5):553-62.

30. Atramentova LA, Mukhin VN, Filiptsova OV. Genetic demographic processes in Ukrainian population in 1990. The marriage structure of the Donetsk population. Genetika. 2000. 36(1):93-9.

31. Atramentova LA, Filiptsova OV. Genetic Demographic Processes in Ukrainian Urban Populations in the 1990s: The Marriage Structure of the Poltava Population. Russ J Genet. 1999. 35(12):1464-70.

32. Atramentova LA, Filiptsova OV. Genetic Demographic Processes in Ukrainian Urban Populations in 1990s: The Marriage Structure of the Kharkiv Population. Russ J Genet. 1998. 34(8):941-46.

33. Atramentova LA, Meshcheriakova IP, Filiptsova OV. Reproduction characteristics and Crow’s index in different groups of Yevpatoria population. Russ J Genet. 2013. 49(12):1219-26.

34. Atramentova LA, Filiptsova OV. Genetic demographic structure of the Belgorod population: age, ethnicity, education, and occupation. Russ J Genet. 2005. 41(6):669-74.

35. Filiptsova OV, Kobets MN, Kobets YuN. Some aspects of genetics and pharmacogenetics understanding by pharmacy students in Ukraine. Egypt J Med Hum Genet. 2015. 16(1):61-6.

36. Filiptsova O, Nabora O, Kobets M, Kobets J. Pharmacogenetic Tests in Ukraine: Economic Aspect. Gazi Med. J. 2017. 28(2): 79-84.