A comprehensive expression analysis of the expansin gene family in potato (Solanum tuberosum) discloses stress-responsive expansin-like B genes for drought and heat tolerances

Yongkun Chen¹, Bo Zhang², Canhui Li², Chunxia Lei¹, Chunyan Kong¹, Yu Yang¹, Ming Gong¹*

¹ School of Life Science, Yunnan Normal University, Kunming, China, ² Joint Academy of Potato Science, Yunnan Normal University, Kunming, China

* gongming63@163.com

Abstract

Expansin is a type of cell wall elongation and stress relaxation protein involved in various developmental processes and stress resistances in plant. In this study, we identified 36 potato (Solanum tuberosum L.) genes belonging to the expansin (StEXP) gene family from the genome reference. These genes included 24 α-expansins (StEXPAs), five β-expansins (StEXPBs), one expansin-like A (StEXLA) and six expansin-like B (StEXLBs). The RNA-Seq analysis conducted from a variety of tissue types showed 34 expansins differentially expressed among tissues, some of which only expressed in specific tissues. Most of the StEXPAs and StEXPB2 transcripts were more abundant in young tuber compared with other tissues, suggesting they likely play a role in tuber development. There were 31 genes, especially StEXLB6, showed differential expression under the treatments of ABA, IAA and GA3, as well as under the drought and heat stresses, indicating they were likely involved in potato stress resistance. In addition, the gene co-expression analysis indicated the StEXLBs likely contribute to a wider range of stress resistances compared with other genes. We found the StEXLA and six StEXLBs expressed differently under a range of abiotic stresses (salt, alkaline, heavy metals, drought, heat, and cold stresses), which likely participated in the associated signaling pathways. Comparing with the control group, potato growing under the drought or heat stresses exhibited up-regulation of the all six StEXLB genes in leaves, whereas, the StEXLB3, StEXLB4, StEXLB5 and StEXLB6 showed relatively higher expression levels in roots. This suggested these genes likely played a role in the drought and heat tolerance. Overall, this study has shown the potential role of the StEXP genes in potato growth and stress tolerance, and provided fundamental resources for the future studies in potato breeding.
Introduction

Expansins, a class of pH-dependent protein family, play a role in cell wall proliferation and growth [1,2]. Generally, it is believed that expansin binds to glucan-coated cellulose in cell wall causing reversible disruption of hydrogen bond between cellulose microfibrils and glucan matrix, which results in cell expansion or elongation through increasing cell wall extensibility [1,3–5]. The typical expansins (containing 250–275 amino acids and two conserved domains) are divided into four subfamilies: α-expansins (EXPA), β-expansins (EXPB), expansin-like A (EXLA), and expansin-like B (EXLB) [6].

A variety of expansin genes have been identified from a range of species. Among all these genes, the functions of EXPA and EXPB have been mostly studied, which are found to be involved in multiple processes of plant development through regulating the roles of cell walls [7,8]. For example, they are found to contribute to cell wall loosening in rice coleoptile [9,10], Arabidopsis petiole growth [11], tomato fruit softening [12], rose petal expansion [13], soybean root system architecture [14], cotton fiber elongation [15], and tobacco leaf enlargement and internode growth [16]. Expansins are also involved in cell expansion and cell wall changes induced by phytohormones such as gibberellin (GA), abscisic acid (ABA), auxin, and ethylene, as well as biotic and abiotic stresses including heat, drought, salt and heavy metals [7,17,18]. In specific, the overexpression of rose expansin gene RhEXPA4 in Arabidopsis enhances plant tolerance to drought stress, salt stress, and ABA content [19,20]. The overexpression of wheat expansin genes TaEXPB2 and TaEXPB23 increases the transgenic tobacco tolerance to drought [21], high salt and high temperature [22], oxidative stress [16,23,24], and water stress [25]. Some expansin genes are involved in the plant resistance to cadmium (Cd). For example, the heterologous expression of TaEXPA2 can increase the Cd resistance of tobacco [26]. Eleven expansin genes are involved in the response to Cd stress in the Cd hyperaccumulator of Phyto-lacca americana [27]. The roles of expansin genes playing in plant development and stress-resistance have provided opportunities in plant breeding for regulating leaf size, fruit growth, root development, biotic and abiotic stress resistance, etc. [28].

Parts of expansin genes have been identified in potato (Solanum tuberosum L.), but still largely restricted to those genes involved in its growth and development, and abiotic stresses. Specifically, nine StEXPAs have been recently found to be involved in the growth and development of tubers and stems, and StEXPA1, StEXPA4 and StEXPA5 are also hormone-regulated [29]. Two StEXP genes (PGSC0003DMG40029331 and PGSC0003DMG40009951) homologous to the Arabidopsis expansin11 (AT1G20190) showed expression increase under the cold plate-treatment, whereas significant decrease under the heat [30]. Although these results have been obtained, the research on StEXP family is still very limited. Potato is the third most important food crop in the world and often suffering from drought, heat, salt and some other environmental stresses. Several reports have shown that expansins participate in resistance to these stresses [18,28]. However, it is not clear which expansins are involved in which kinds of stresses in potato.

In this study, we identified potato expansins and their corresponding genes (StEXP) from the genome and transcriptomes, and then analyzed their phylogenetic relationships, gene and protein structures. The expression patterns of StEXPs in different organs as well as under different hormone and abiotic stress treatments are studied. Quantitative real-time PCR experiment was also performed to investigate the roles of seven StEXLs in multiple abiotic stress, such as salt, alkaline, heavy metals, drought, heat, and cold stresses.
Materials and methods

Genome-wide identification of expansin proteins and genes

A total of 130 expansin amino acid sequences from *Arabidopsis thaliana*, poplar (*Populus trichocarpa*) and rice (*Oryza sativa*) were used to search sequence homologs in the potato genome published on Phytozome v12 using BLAST program (https://phytozome.jgi.doe.gov/pz/portal.html#search?show=BLAST). Moreover, the keyword “expansin” was used to obtain expansin information from the Phytozome (https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Stuberosum) and the Spud DB Potato Genomics Resource (http://solanaceae.plantbiology.msu.edu/) databases. All the target amino acid sequences were downloaded and their conserved domains were analyzed at the Conserved Domain Database (CDD) (https://www.ncbi.nlm.nih.gov/cdd) with expect value < 0.05. After the repeated sequences and the sequences without pfam 03330 and pfam 01357 domains [7] were excluded from the target amino acid sequences, the remained were considered as candidate expansins. All the candidate expansins were then confirmed with online BLASTP (https://blast.ncbi.nlm.nih.gov/) and those without best hit being expansins were discarded.

StEXPs structure, conserved domain, motif, and phylogenetic analysis

Gene structure was obtained through aligning each expansin gene coding sequence (CDS) to the genomic DNA sequences and displayed using the online Gene Structure Display Server (GSDS) 2.0 (http://gsds.cbi.pku.edu.cn/). The Multiple Expectation Maximisation for Motif elicitation (MEME) tool (http://meme-suite.org/index.html) was used to identify conserved protein domain and motif. Multiple sequence alignments of *Arabidopsis*, rice, poplar, and potato expansins were performed using ClustalW within MEGA7 [31], and then the phylogenetic tree was constructed by MEGA7 (neighbor-joining method; Poisson correction model; 1,000 bootstrap tests).

Chromosomal localization of StEXP

StEXPs were mapped on potato chromosome and displayed by MapInspect software (http://mapinspect.apponic.com/) according to the potato expansin gene positions in the Spud DB database. The segmental duplicated and tandem repeated genes were determined through the ClustalW alignment comparison of all expansins with a threshold of similarity > 75% and their genomic locations, and tandem duplicated genes are restricted within the range of 100 kb distance [32].

Expression profiling of StEXP

The RNA-Seq data used for generating gene expression levels were downloaded from the Spud DB. These data were sequenced from many tissues of the heterozygous diploid potato (RH89-039-16 (RH)) or the doubled monoploid potato (Group Phureja clone DM1-3 (DM)) under various treatments. The sequenced tissues included tuber, root, stem, flower, petiole, stolon, tuber pith, tuber peels, and tuber cortex, and treatment condition covered 50 μmol L⁻¹ abscisic acid (ABA), 10 μmol L⁻¹ indole-3-acetic acid (IAA), 50 μmol L⁻¹ gibberellin A3 (GA3) and 10 μmol L⁻¹ 6-benzylaminopurine (BAP) for 24 h, and biotic and abiotic stresses such as 150 mmol L⁻¹ NaCl, 260 μmol L⁻¹ mannitol, 35°C high temperature for 24 h, and 2 days water stress, *Phytophthora infestans*, 2 mg ml⁻¹ BABA (DL-β-aminobutyric), and 10 μg ml⁻¹ BTH (benzo (1, 2, 3)-thiadiazole-7-carbothionic acid-S-methyl ester) [33]. Gene expression profiling was produced using MeV v4.9 [34]. The FPKM = 0 was replaced by FPKM = 0.01 and then
all the FPKM data were undergone log₂FPKM transformation. The fold change of gene differential expression was calculated as: log₂(FPKM_{Treatment} / FPKM_{Control}).

Weighted gene co-expression network analysis (WGCNA) of StEXP

WGCNA was performed to deduce the highly co-expressed gene clusters using the WGCNA program in R package [35]. An unsigned type of topological overlap matrix (TOM) was constructed with β = 16 and then the correlation between the potato expansin genes and the selected differentially expressed genes were analyzed. The resulted co-expression network was visualized using Cytoscape 3.6.1 [36] and analyzed using Network Analyzer in Cytoscape.

Quantitative real-time PCR (qRT-PCR) analysis of StEXLs

The hydroponic seedlings of tetraploid potato ‘Cooperation-88’ were transplanted to Pearl Rock Medium and cultured at 25°C (16 h light/8 h dark). These seedlings were firstly irrigated by 1/4 Hoagland’s nutrient solution for three times within 15 days. Then The Pearl Rock Medium of seedlings were overflowed thrice by 1/4 Hoagland’s nutrient solution containing 150 mmol L⁻¹ NaCl, 10 mmol L⁻¹ NaHCO₃, 5 mmol L⁻¹ ZnSO₄, 20% PEG6000, or 1/4 Hoagland’s solution, respectively. NaCl, NaHCO₃, ZnSO₄ and PEG6000 treated seedlings were cultured at 25°C for 24h. 1/4 Hoagland’s flowed seedlings were respectively placed at 35°C, 4°C and 25°C for 24h, as the heat, low temperature stress and control. All the seedlings were given the same photoperiod (16 h light/8 h dark). The root and leaf samples were collected for qRT-PCR analysis. Total RNA was isolated from all samples using Trizol (Invitrogen, USA) method and then reverse-transcribed into cDNA using PrimeScript RT reagent Kit with gDNA Eraser (Takara, China). qRT-PCR was performed on Roche LightCycler 96 Real Time PCR System (Roche, Switzerland) with a final volume of 20 μl containing 2 μl of a 1/10 diluted cDNA template, 10 μl of the 2× TB Green Premix Ex Taq II (Takara, China) and 1.5 μl (5 mM) of gene-specific forward and reverse primers. The specific primers were designed with Primer Premier 5.0 software (PREMIER Biosoft, USA) based on the conserved part of CDS sequences, all the primer sequences used in the qRT-PCR were listed in Supplement S1 Table. The qRT-PCR program was set to a 30s preincubation at 95°C, 2 step amplification of 45 cycles at 95°C for 5s and 60°C for 5s, following a 60°C to 97°C melting curve analysis at the final step. Three independent biological repetitions and three parallel reactions were conducted in qRT-PCR. The relative expression level of target genes was analyzed using the 2⁻^ΔΔCT method [37] with *S. tuberosum* elongation factor-1a (EF1α) used as the reference gene [38].

Results

Expansin and corresponding genes

A total of 36 candidate StEXPs were identified and shown in Table 1. According to the evolutionary analysis of amino acid sequences (Fig 1), 36 StEXP genes were divided into 4 subfamilies, StEXPA, StEXPB, StEXLA, and StEXLB, that contain 24, 5, 1 and 6 member(s), respectively (Table 1). The expansins encoded by these genes had 199–279 amino acids and their molecular weights were between 21.45 and 30.28 kD. In addition, the theoretical pl (isoelectric point) of these StEXPs proteins ranged from 4.68 to 9.87. Specifically, the pl of StEXPA6s and StEXPBs (except StEXPB5) were all more than 7.0, while that of the StEXLBs (except for StEXLB2) were below 7.0. As the averaged value of hydropathicity (GRAVY) of these proteins (except for StEXPA6, StEXPA10, StEXPA18, StEXPB4, and StEXLB1) were negative, most of the StEXPs were hydrophilic proteins. The instability coefficients of these expansins
were between 17.79 and 50.85 (only two expansins being more than 40), that is, most of these expansins were stable.

Table 1. Description of expansin's genes identified from potato genome.

Gene	Encoding amino acid no.	Molecular weight (kD)	Theoretical pI	GRAVY	Instability index	Aliphatic index
StEXPA1	241	25.96	9.49	-0.076	25.39	72.86
StEXPA2	256	28.05	9.38	-0.120	36.09	70.51
StEXPA3	259	27.99	9.43	-0.052	19.09	71.20
StEXPA4	257	28.06	9.39	-0.012	30.41	78.13
StEXPA5	239	25.54	9.36	-0.031	29.06	69.00
StEXPA6	260	28.28	9.32	0.026	36.26	72.08
StEXPA7	266	28.60	9.10	-0.029	23.60	65.34
StEXPA8	258	27.63	8.56	-0.132	23.91	68.49
StEXPA9	261	28.56	9.55	-0.013	29.59	76.25
StEXPA10	250	26.88	8.45	0.038	26.13	69.84
StEXPA11	257	27.68	8.97	-0.016	27.26	64.98
StEXPA12	256	28.72	9.87	-0.250	50.85	66.25
StEXPA13	267	28.96	8.60	-0.151	34.97	70.90
StEXPA14	247	26.46	7.52	-0.097	30.41	61.30
StEXPA15	249	26.57	9.14	-0.133	34.34	64.62
StEXPA16	263	28.68	9.48	-0.048	23.81	74.18
StEXPA17	257	27.55	9.03	-0.170	30.26	62.26
StEXPA18	269	29.48	9.26	0.052	25.30	61.71
StEXPA19	257	28.26	9.23	-0.163	25.63	68.29
StEXPA20	265	28.75	8.56	-0.075	35.62	76.98
StEXPA21	199	21.45	8.61	-0.221	30.98	72.91
StEXPA22	240	26.75	8.74	-0.123	27.71	78.33
StEXPA23	244	27.18	8.55	-0.417	27.05	65.90
StEXPA24	259	28.72	8.72	-0.179	28.42	71.51
StEXPB1	262	28.64	9.87	-0.066	30.71	82.67
StEXPB2	279	30.28	8.74	-0.092	37.47	75.13
StEXPB3	267	28.95	8.76	-0.052	39.48	71.20
StEXPB4	257	27.23	8.48	0.018	29.05	74.05
StEXPB5	256	27.61	5.35	-0.134	30.34	73.48
StEXLA1	260	28.33	8.39	0.021	29.87	79.88
StEXLB1	253	28.25	5.96	-0.108	18.96	77.83
StEXLB2	251	27.97	8.47	-0.230	17.79	78.09
StEXLB3	255	27.91	4.68	-0.248	40.85	73.80
StEXLB4	253	27.76	4.87	-0.206	35.28	80.20
StEXLB5	251	27.47	6.42	-0.139	38.23	78.84
StEXLB6	248	27.20	6.88	-0.229	27.75	76.61

https://doi.org/10.1371/journal.pone.0219837.t001

Phylogenetic analysis of expansins

Phylogenetic tree was constructed from 36 potato StEXPs, 36 Arabidopsis AtEXPs, 36 poplar PtEXPs, and 58 rice OsEXPs. These expansins were grouped into four clades (EXPA, EXPB, EXLA, and EXLB) based on species (Fig 1), indicating that expansins were highly conserved among species (Fig 1). The sequence similarities among EXPB, EXLA, and EXLB were more than that between them and EXPA, so EXLA and EXLB could be considered as a part of EXPB.
clade. In addition, the phylogenetic analysis showed expansins were most likely present before the differentiation of monocotyledon and dicotyledon, suggesting that expansins were evolved from the same ancestor (Fig 1).

The potato expansin phylogenetic tree divided 36 StEXP proteins into five clusters. All the StEXPB, StEXLA, and StEXLB proteins formed into one clade, while the 24 StEXPA proteins were divided into four clades, and one of them contained 19 proteins (Fig 2A).
Gene structure of StEXPs

Each of these 36 StEXPs contained 1–4 introns (Fig 2B). Specifically, StEXLA1, StEXLB3, and StEXLB4 each contained 4 introns, StEXPs, StEXPB, StEXLB1, StEXLB2, StEXLB5, and StEXLB6 each contained 3 introns, while the others each contained 1 or 2 intron(s). Among the 24 StEXAs, nine of them (StEXPA7, StEXPA8, StEXPA9, StEXPA13, StEXPA20, StEXPA21, StEXPA22, StEXPA23, and StEXPA24) each contained one intron, while the rest each had two introns. The genes within one subfamily were the same type due to they have similar length and similar intron, exons and motif structures (Fig 2B and 2C).

MEME analysis revealed that genes in the subfamilies of StEXPA, StEXPB and StEXL (StEXLA and StEXLB) had common motif and unique motifs. For example, each of the StEXPA3, StEXPA4, StEXPA6, StEXPA9, StEXPA16 and StEXPA19 had an additional motif (Motif 12) at N-terminals compared with the other StEXPs. Comparing the members of StEXPBs, StEXPB5 lacked Motif 4, StEXPB2 had an additional motif (Motif 14) at N-terminal, and StEXLB3 and StEXLB4 each had an additional motif (Motif 16) at C-terminal (Fig 2C, S1 Fig).
Chromosomal distribution of StEXP genes

The 36 StEXP genes were distributed on 11 of 12 chromosomes (chr. 1- chr. 10 and chr.12) of potato genome. chr. 3 and chr. 8 each contained the most seven StEXP genes. Six StEXPAs and 1 StEXPB were located on chr.3, and 2 StEXPAs and 5 StEXLBs were present on chr. 8. In comparison, only one StEXP was present on chr. 4 and chr. 12 (Fig 3). The 5 StEXPAs (StEXPA10 and StEXPA 21- StEXPA24) were located within a 29.0-kb region on chr. 3. And the 4 genes of StEXPA21-StEXPA24 were closely adjacent and their sequence similarity were more than 75%. Moreover, they were clustered together in phylogenetic tree. The four StEXLB genes on chr.8 (StEXLB1-StEXLB3 and StEXLB5) were located within a short region, had higher sequence similarity, and were clustered together in phylogenetic tree. The closely linked genes on chr. 3 or chr. 8 might be tandem repeated genes (Fig 3).

Moreover, among the 36 StEXP genes, there were four paralogous pairs, StEXPA8-StEXPA14, StEXPA11-StEXPA17, StEXPA13-StEXPA20, and StEXLB3-StEXLB4, that were dispersed segmental duplications.

Tissue-preferential expression of potato expansin

The gene members of StEXP showed significantly different expression levels. StEXPB2 transcript was the most abundant among StEXPs. It had the FPKM value of 852.8 in young tuber, while was absent in root, stem, flower, and other tissues (Fig 4A). This suggested that StEXPB2 played an important role during tuber development. StEXPA11, StEXPA16, StEXPA4, StEXPA14, and StEXLA1 transcripts also showed relatively high abundance in most tissues and their average FPKM values were 76.3, 56.3, 38.9, 32.56 and 23.65, respectively. However, StEXPA21 and StEXPB3 transcripts were absent in all tissues. Different StEXP genes are expressed differently among tissues. The average FPKM values of all StEXPs were 28.5 in roots and 20.0 in leaves, while it was only 1.3 in tuber peel.

Differential expression of StEXP after phytohormone treatment

Thirty-one of 36 StEXP genes responded to ABA, IAA, GA3, and BAP induction in different ways (Fig 4B, Table 2). Among them, there were 8, 7, 8, and 3 StEXP genes showed up-regulation under ABA, IAA, GA3, and BAP treatments, respectively (Fig 4B, Table 2). And all the StEXLB DEGs induced by ABA and GA3 were up-regulated. Specially, StEXPA7 and StEXLB6 were remarkably up-regulated by several hormones. StEXPA7 and StEXPA18 were up-
regulated by the three types of hormone (IAA, GA3 and BAP). Besides, five StEXP genes (StEXPA2, StEXPA8, StEXLB2, StEXLB5 and StEXLB6) were up-regulated by two of the four hormones (ABA, IAA, GA3 and BAP), and another 11 StEXP genes were up-regulated by one hormone. These results not only show the different expression patterns of potato expansin gene in response to different hormones but also reveal similar functions within the same expansin gene group.

Induced expression of StEXP exposure to biotic and abiotic stresses

Most of the identified StEXP genes were up- or down-regulated when exposed to different biotic and abiotic stresses (Fig 4C, Table 2). Specifically, StEXPs responded to NaCl and
mannitol treatments similarly. The number of differentially expressed genes (Log2 fold change >1) under NaCl and mannitol treatments was the same, with eight genes were up-regulated and nine were down-regulated. And StEXPA8, StEXPA19, StEXPB2 were up-regulated, while StEXPA4 and StEXLB4 were down-regulated under both treatments. There were 23 StEXP genes in response to water stress, with 14 of them being up-regulated and 9 of them down-regulated. Among the up-regulated genes, StEXPA4, StEXPA15, StEXLB1, StEXLB5 and StEXLB6 were up-regulated. StEXPA8, StEXPA19, and StEXPB2 were up-regulated, while StEXPA4 and StEXLB4 were down-regulated under both treatments. There were 23 StEXP genes in response to water stress, with 14 of them being up-regulated and 9 of them down-regulated. Among the up-regulated genes, StEXPA4, StEXPA15, StEXLB1, StEXLB5 and StEXLB6 showed 20-fold more transcript abundance than the control, and among the down-regulation genes, the transcription levels of StEXPA5, StEXPA11, StEXPA12, and StEXPA14 were decreased by nearly 95%. The expression levels of 18 genes were changed under high temperature stress, and seven of them (StEXPA7, StEXPA8, StEXPA18, StEXPA20, StEXPB4, StEXLB5 and StEXLB6) were up-regulated. StEXLB6 showed the highest expression levels under both drought and high temperature stresses, and its transcription levels under the two stresses were similar. While StEXPB2 was down-regulated the most by high temperature stress.

The effects of P. infestans and disease resistant inducer BABA on StEXP genes were very similar, but the effect was significantly different from that of BTH. Gene expression patterns (Fig 4C) showed that 14 StEXP genes were transcribed in similar ways when they were induced by P. infestans or BABA, whereas 10 of them were transcribed in an opposite way when induced by BTH (Fig 4C, Table 2).

In summary, most of the StEXPs showed more complex expression patterns in response to biotic and abiotic stresses than to hormones. Five genes (StEXPA1, StEXPA21, StEXPA23, StEXPA24 and StEXPB5) did not show significant transcription changes under either biotic and abiotic stresses or hormones. It was likely due to they had low expression level in tissues, because a small number of reads were detected from RNA-Seq data.

Weighted gene co-expression network analysis (WGCNA) of StEXPs

In the WGCNA, four StEXPs (StEXPA7, StEXPA18, StEXPA21 and StEXLB2) were found to be involved in the co-expression networks with other genes (Fig 5, S2 Fig). Specifically, StEXPA7 and StEXPA18 were involved in the same co-expression network and interacted with 409 genes. The directly adjacent genes of StEXPA7 were mainly associated with the development of cell wall and the formation of cytoskeleton. And the genes directly adjacent to StEXPA18 were involved in cell wall development, nutrient uptake and transport, and stress resistance. StEXPA21 was co-expressed only with a gene with unknown function. StEXLB2 and other 289 genes constituted a co-expression network. In this network, StEXLB2 was directly neighboring 18 genes, half of which had unknown functions and the other half were related to biotic and abiotic resistances (Table 3).

Expression patterns of StEXLs and co-expression network involved genes under abiotic stresses as determined by qRT-PCR

Our analysis above indicated that StEXLB genes contributed to the resistances of a wide range of abiotic stresses. qRT-PCR results (Fig 6) confirmed that six StEXLs (StEXLB1, StEXLB3, StEXLB4, StEXLB5, and StEXLB6) and StEXLA1 were significantly up-regulated in roots and leaves under drought stress. And among the seven up-regulated genes, the transcription levels of StEXLB3, StEXLB4, StEXLB5 and StEXLB6 in roots changed the most, which were 56.0, 28.4, 70.1 and 21.2 folds higher than that of control, respectively. StEXLB1-6 genes were up-regulated under the heat treatment, in which, the StEXLB3, StEXLB4, StEXLB5 and StEXLB6 transcription levels in roots were the highest four, which were 11.7, 9.6, 94.3 and 56.4 folds greater than that of control, respectively. The genes StEXLB2-SteXLB4 were up-regulated under the ZnSO_{4} stress and their transcription levels were significantly increased in roots. And
among them, StEXLB4 were up-regulated the most, with 6.4 folds greater of that in control. Although the four genes (StEXLB3-StEXLB6) showed mild expression level under NaCl, NaHCO₃ and cold treatments, they were involved in a wide range of plant resistance.

The qRT-PCR analyses of 4–5 genes within the co-expression network of StEXPA7, StEXPA18 and StEXLB2 were also be performed. StEXPA7 and StEXPA18 which were co-expressed in a same network (S2 Fig) showed similar expression patterns. They both were significantly induced under drought, NaCl and heat stresses in root, and cold induced in leaf (Fig

Table 2. The expression levels of potato expansin genes (StEXPs) under hormone and stress treatments.

Gene	ABA	IAA	GA3	BAP	Salt	Mannitol	35°C	Water stress	P. infestans	BABA	BTH		
StEXPA1													
StEXPA2	2.77	1.14		-1.70		-1.99		-1.74	-10.19				
StEXPA3	-2.84	-1.06		-2.96		-1.99							
StEXPA4	-1.55	-1.41	-2.64	-2.34	2.19	4.23							
StEXPA5	-1.79		-3.76	-3.25	1.28	3.11							
StEXPA6	-2.49			1.71	-1.38	2.03							
StEXPA7	11.23	11.12	11.41	3.08									
StEXPA8	2.57	1.51	3.98	2.57	1.47	1.35							
StEXPA9	-1.83			1.56									
StEXPA10	-3.04			-1.12	2.14								
StEXPA11	-2.80			-4.08	-2.44	-5.53	2.70						
StEXPA12	1.26			-2.59	-2.82								
StEXPA13	-1.52												
StEXPA14	-2.95			-3.25	-2.56	-3.47	2.43						
StEXPA15	-1.45			-1.34	1.76	-1.33	-4.25	1.50					
StEXPA16	1.62		-1.66		-1.05								
StEXPA17	1.91		-1.07	1.15					11.89		2.36		
StEXPA18	-2.09	1.84	2.39	2.25									
StEXPA19	2.07		1.57	1.51		7.47							
StEXPA20	1.08								1.93				
StEXPA21									7.47				
StEXPA22	1.34												
StEXPA23													
StEXPA24													
StEXPB1	-2.14		-2.87	-1.21	-1.27	-3.31							
StEXPB2	-3.01	1.11	1.88	1.34	-10.38	4.77							
StEXPB3	-1.70		-2.02			5.32							
StEXPB4	-4.61	2.02	2.20	1.37	5.83	-1.97	3.58						
StEXPB5													
StEXLA1			-1.04						-1.07				
StEXLB1	2.49		-3.04	-1.21	6.75	1.63	2.54						
StEXLB2	3.77	1.07		-1.72			2.92	-2.99					
StEXLB3	-3.20			-4.32	-1.60	-2.80							
StEXLB4	4.21		-2.02	-1.59	-2.55	-1.43	-5.25						
StEXLB5	7.86	-1.83	2.44	1.92	3.54	7.90	-3.34	-14.33					
StEXLB6	17.98	11.41		13.90	14.70	-2.03	-9.05						
	(8)		(2)	(8)	(17)	(5)	(45)	(7)	(11)	(40)	(2)	(11)	(10)

Note: The data is the log₂(Fold change) >1. The number in front of and in bracket are the gene No. of up- and down-regulated, respectively.

https://doi.org/10.1371/journal.pone.0219837.t002
In the co-expression network of StEXA7, 3 direct adjacent genes were analyzed by qRT-PCR, of which, EXT1 (PGSC0003DMG400011599) and ADF2 (PGSC0003DMG400029916) were similar to StEXPA7 (Fig 7), with up-regulation under drought, NaCl and heat stresses in root. And the expression of them were significantly correlated (Table 4). In the co-expression network of StEXPA18, POE1 (PGSC0003DMG400030033) and PME (PGSC0003DMG400018037) were significantly correlated to StEXPA18 (Table 5). The most obvious response of StEXLB2 was the up-regulation under ZnSO$_4$ treatment in root (Fig 6). ERF (PGSC0003DMG400013401), APOD (PGSC0003DMG400022342), CP (PGSC0003DMG400018037) and miraculin (PGSC0003DMG400015219), these co-expressed genes also exhibited a response to ZnSO$_4$ (Fig 7). The abiotic responsive correlations of ERF, APOD and CP to StEXLB2 were significantly (Table 6).

Discussion

Expansins have been recently found in many plant species. For example, there were 52 expansins (36 EXPAs, 6 EXPBs, 3 EXLAs, and 7 EXLBs) identified in tobacco [7]. In tomato, 38 expansins were found, which include 25 EXPAs, 8 EXPBs, 1 EXLA, and 4 EXLBs [8]. In this study, we identified a total of 36 potato expansins, including 24 EXPAs, 5 EXPBs, 1 EXLA, and 6 EXLBs. The difference in gene copies in expansin family and subfamily among species is likely due to biological evolution resulting from varied requirements in growth and development of plant and environmental adaptation [8]. In addition, the varied motif structures
among different subfamilies of expansins indicate their possible differences in action and function. For example, of the 11 cadmium-responded differential expression expansins in *P. americana*, EXPA was down-regulated while EXPB was up-regulated [27]. In potato, all StEXPBs were differential expression under ABA treatment (Fig 4B). Whether the genes in one subfamily show similar functions in potato need to be validated.

Gene expression pattern can provide insights into gene function. That expansins were involved in root or root hair development and stress tolerance have been reported in many species, such as *A. thaliana* [60,61], grapevine [62], and Tibetan wild barley [63]. The potato expansin genes, such as *StEXPAS*, *StEXPA11*, *StEXPA14*, and *StEXPA16*, had higher expression levels in root, leaf and stem than in other tissues, indicated that they might take effects in plant development. They also expressed in high levels under IAA and GA3 treatments. In Jung’s report [29], these 4 expansin genes were involved in tuber development and etiolated stem elongation, and also be induced in varying degrees under IAA treatment. Expansin genes also participated in the development of tuber in some species, such as *Rehmannia glutinosa*, *Smallanthus sonchifolius* [64,65]. Simultaneously, expansins are pleiotropic and play multiple roles during plant growth and development as well as stress resistance. For example, the over-expression of *TaEXPA2* and *TaEXPB23* from wheat not only contributed to the drought resistance ability of transgenic tobacco, but also increased its seed number, and *TaEXPB23* was also involved in leaf area development and internode length [16]. Many potato *StEXPs* were found to be involved in plant growth and stress resistance too. Most of the adjacent genes of *StEXPA7*

Label	Annotation	Function	Reference
SAUR	SAUR^a^ family protein	Regulate plant growth and development, promote cell expansion.	[39]
GT	Glycosyltransferase	Involved in the biosyntheses of cell-wall polysaccharides.	[40]
EXT1	Extensin Ext1	Involved in building and maintaining the growing primary cell wall.	[41]
ADF2	Pollen specific actin-depolymerizing factor 2	Reorganizing the actin cytoskeleton.	[42]
POE1	Pollen en e 1 allergen and extensin family protein	Developmental regulators in plant tissues.	[43]
POD44	Peroxidase 44	Tolerant stress, biosynthesis and degradation of lignin in cell walls, auxin catabolism, etc.	[44]
PME	Pectinesterase	Involved in cell wall stiffening.	[45]
PEPT	Oligopeptide transporter	Involve in amino acids, nitrogen, or carbon transport.	[46]
OR	Oxidoreductase	Redox activity.	[47]
NPT	Inorganic phosphate transporter	Acquisition of Phosphorus in roots.	[48]
CPOD1	Cationic peroxidase 1	Biotic and abiotic stress.	[49]
AAT	Anthocyanin acyltransferase	Anthocyanin synthesis.	[50]
P450	Cytochrome P450		
Miraculin	Miraculin	Biotic and abiotic stress.	[51,52]
LRR	Leucine-rich repeat protein	Endoplasmic reticulum retention.	[53]
KDEL1	KDEL^b^ motif-containing protein 1	Biotic and abiotic stress.	[54]
ERF	Ethylene-responsive transcription factor	Biotic and abiotic stress.	[55,56]
CP	Cysteine protease	Involved in suberization of tuber development.	[57]
ANP	Anthranilate N-benzoyltransferase protein	Disease resistance.	[58]
UPF0497	UPF^c^0497 membrane protein	Response to abiotic stress.	[59]
unknown	Gene of unknown function		

^a^SAUR Small auxin-up RNAs.
^b^KDEL motif: Lys-Asp-Glu-Leu.
^c^UPF uncharacterized protein family.
or StEXPA18 in their co-expression network were related with the development of cell wall (Fig 5, Table 3), and StEXPA7 and StEXPA18 could also be induced by abiotic stresses (Fig 7).

![Expression profiles of potato expansin-like genes under various abiotic stresses.](https://doi.org/10.1371/journal.pone.0219837.g006)
Expansins expression in potato discloses drought and heat responsive expansin-like B genes

A

SIEXPA7

Relative expression level

0.6
0.5
0.4
0.3
0.2
0.1
0.0
Control Drought NaCl ZnSO4 35°C 4°C

Leaf Root

EXT1

Relative expression level

0.12
0.11
0.10
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01
Control Drought NaCl ZnSO4 35°C 4°C

Leaf Root

ADF2

Relative expression level

0.12
0.11
0.10
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01
Control Drought NaCl ZnSO4 35°C 4°C

Leaf Root

UN

Relative expression level

0.5
0.4
0.3
0.2
0.1
0.0
0
0
0
0
0
0
0
0
0
0
0
Control Drought NaCl ZnSO4 35°C 4°C

Leaf Root

B

SIEXPA18

Relative expression level

0.3
0.24
0.2
0.16
0.12
0.08
0.04
0
Control Drought NaCl ZnSO4 35°C 4°C

Leaf Root

POE1

Relative expression level

0.05
0.04
0.03
0.02
0.01
0
Control Drought NaCl ZnSO4 35°C 4°C

Leaf Root

PME

Relative expression level

0.2
0.15
0.1
0.05
0
Control Drought NaCl ZnSO4 35°C 4°C

Leaf Root

CPD1

Relative expression level

0.04
0.03
0.02
0.01
0
Control Drought NaCl ZnSO4 35°C 4°C

Leaf Root

C

ERF

Relative expression level

0.06
0.055
0.05
0.045
0.04
0.035
0.03
0.025
0.02
0.015
0.01
0.005
0
Control Drought NaCl ZnSO4 35°C 4°C

Leaf Root

APD

Relative expression level

0.2
0.15
0.1
0.05
0
Control Drought NaCl ZnSO4 35°C 4°C

Leaf Root

CP

Relative expression level

2.5
2
1.5
1
0.5
0
Control Drought NaCl ZnSO4 35°C 4°C

Leaf Root

Miracinulin

Relative expression level

1.0
0.8
0.6
0.4
0.2
0
Control Drought NaCl ZnSO4 35°C 4°C

Leaf Root
In comparison with StEXPA7 and StEXPA18, StEXLB2 was associated with more biotic and abiotic stresses related genes in the co-expression network (Fig 5, Table 3). The qRT-PCR analysis and the co-expression network deduced by the expression in diploid potato were showed a similar correlation implied potato expansins act in common modes among different genotypes.

ABA is a stress signal [66], which could up-regulate eight potato expansin genes. Of these eight genes, there were 5 StEXLBs (Table 2). StEXLB4, StEXLB5, and StEXLB6 showed changed expression levels under ABA, high temperature, and water stresses (Fig 4B and 4C; Fig 5), indicated that they also work in a wide range of abiotic resistances. In addition, it had been reported that the overexpression of PtEXPA8 in Populus tomentosa and AstEXPA1 in Agrostis stolonifera enhanced the transgenic plants tolerance to many stresses [67,68]. It also indicates that expansin has potential of resistance to wide abiotic stresses. The qRT-PCR confirmed the above results, all the 6 StEXLB genes could be induced by one or more stress treatments. In tomato, the closely related species of potato, there were three of four SlEXLB genes inducible by stress treatments [8]. More specificity of the pleiotropic roles of EXLB in tolerance to abiotic stresses. Furthermore, StEXLBs were mainly distributed on chromosome 8 (Fig 3), and StEXLB3 and StEXLB4 were the potential duplicated gene pairs, suggesting a selective advantage exists for retaining these gene copies [69]. Therefore, we speculate that the EXLB subfamily in potato may also play important roles in plant adaptability [69,70].

The expansin genes can loosen cell walls, and the loosened cell walls can lead to vulnerable cells that are easy to be damaged by biotic invaders [71]. We predicted that the up-regulations of StEXPA5, StEXPB3, and StEXLB1 were likely to increase cell wall loosening, thus increase the chance of P. infestans invasion. The down-regulations of StEXPA2, StEXPA6, StEXPA11, StEXPA15, StEXPB4, StEXLB4, StEXLB5, and StEXLB6 were likely to improve the potato resistance to disease. The induction mechanisms of disease resistance inducers BTH and BABA are different [72], which could be indicated by the different responsible patterns of StEXP genes. The inducers can work much efficiently only when the induction of disease resistance by inducers is similar to the way that plant responses. The way that StEXPs responded to P. infestans is the same as that of BABA induction, therefore BABA likely induced the resistance to P. infestans in potato through activating expansins.

Conclusions

In this study, 36 putative expansin genes in potato were identified and analyzed. The StEXP gene family was divided into four groups based on phylogenetic analysis, indicating that

Table 4. Pearson’s correlation coefficient of StEXPA7, EXT1, ADF2 and an unknown function gene.

	StEXPA7	EXT1	ADF2
EXT1	0.889**		
ADF2	0.871**	0.945**	
UN	0.028	0.257	0.113

Pearson’s correlation coefficients were calculated using PROC CORR of SAS 9.4.

**" indicates P<0.01

https://doi.org/10.1371/journal.pone.0219837.t004
Table 5. Pearson’s correlation coefficient of StEXPA18, POE1, PME and CPOD1.

	StEXPA18	POE1	PME	CPOD1
POE1	0.759**			
PME	0.679*	0.450		
CPOD1	0.456	0.772**	0.282	

Pearson’s correlation coefficients were calculated using PROC CORR of SAS 9.4.

” indicates P<0.05

” indicates P<0.01.

https://doi.org/10.1371/journal.pone.0219837.t005

Table 6. Pearson’s correlation coefficient of StEXLB2, ERF, APOD, CP and miraculin.

	StEXLB2	ERF	APOD	CP
ERF	0.947**			
APOD	0.740**	0.851**		
CP	0.621*	0.594*	0.369	
Miraculin	0.463	0.434	0.226	0.910**

Pearson’s correlation coefficients were calculated using PROC CORR of SAS 9.4.

” indicates P<0.05

” indicates P<0.01.

https://doi.org/10.1371/journal.pone.0219837.t006

StEXP genes showed a high level of functional divergence. StEXP genes exhibited tissue-specific expression patterns and distinctly modulated by exogenous hormones, biotic or abiotic stress conditions. The preferential expression of StEXPB2 in young tubers indicated its role in tuber development. Many of the StEXP genes, especially the StEXLB subfamily members, were significantly up-regulated under water stress, high temperature, and other abiotic stress conditions. The tissue-specific expression patterns of expansin genes would provide insights for their functional characterization in potato. These results were valuable for understanding the biological functions of expansins during the growth and development of potato, especially tuber development.

Supporting information

S1 Fig. Motifs of potato expansins.
(TIF)

S2 Fig. The co-expression network involved in potato expansins genes (StEXPs).
(TIF)

S1 Table. Primers for qRT-PCR analysis.
(DOCX)

Author Contributions

Conceptualization: Yongkun Chen, Canhui Li, Ming Gong.

Data curation: Yongkun Chen, Bo Zhang.

Formal analysis: Yongkun Chen, Bo Zhang, Chunxia Lei, Chunyan Kong, Yu Yang.
Funding acquisition: Ming Gong.

Investigation: Yongkun Chen, Bo Zhang, Chunxia Lei, Chunyan Kong, Yu Yang.

Methodology: Yongkun Chen, Bo Zhang, Chunxia Lei, Chunyan Kong, Yu Yang.

Project administration: Canhui Li, Ming Gong.

Resources: Canhui Li.

Software: Yongkun Chen, Bo Zhang.

Supervision: Canhui Li, Ming Gong.

Validation: Canhui Li, Ming Gong.

Visualization: Yongkun Chen, Bo Zhang.

Writing – original draft: Yongkun Chen.

Writing – review & editing: Yongkun Chen, Canhui Li, Ming Gong.

References

1. Cosgrove DJ. Loosening of plant cell walls by expansins. Nature. 2000; 407:321–326. https://doi.org/10.1038/35030000 PMID: 11014181

2. Cosgrove DJ. Growth of the plant cell wall. Nat Rev Mol Cell Biol. 2005; 6:850–861. https://doi.org/10.1038/nrm1746 PMID: 16261190

3. McQueen-Mason S, Durachko DM, Cosgrove DJ. Two endogenous proteins that induce cell wall extension in plants. Plant Cell. 1992; 4:1425–1433. https://doi.org/10.1101/tpc.4.11.1425 PMID: 11538167

4. McQueen-Mason SJ, Cosgrove DJ. Expansin mode of action on cell walls (analysis of wall hydrolysis, stress relaxation, and binding). Plant Physiol. 1995; 107:87–100. https://doi.org/10.1104/pp.107.1.87 PMID: 11536663

5. Zenoni S, Reale L, Tornielli GB, Lanfaloni L, Porceddu A, Ferrarini A, et al. Downregulation of the *Petunia hybrida* α-expansin gene *PhEXP1* reduces the amount of crystalline cellulose in cell walls and leads to phenotypic changes in petal limbs. Plant Cell. 2004; 16:295–308. https://doi.org/10.1101/tpc.018705 PMID: 14742876

6. Sampedro J, Cosgrove DJ. The expansin superfamily. Genome Biol. 2005; 6:242. https://doi.org/10.1186/gb-2005-6-2-242 PMID: 16356276

7. Ding A, Marowa P, Kong Y. Genome-wide identification of the expansin gene family in tobacco (*Nicotiana tabacum*). Mol. Genet. Genomics. 2016; 291:1891–1907. https://doi.org/10.1007/s00438-016-1226-8 PMID: 27329217

8. Lu Y, Liu L, Wang X, Han Z, Ouyang B, Zhang J, et al. Genome-wide identification and expression analysis of the expansin gene family in tomato. Mol Genet. Genomics. 2016; 291:587–608. https://doi.org/10.1007/s00438-015-1133-4 PMID: 26499956

9. Cho HT, Kende, H. Expression of expansin genes is correlated with growth in deepwater rice. Plant Cell. 1997; 9:1661–1671. https://doi.org/10.1105/tpc.9.9.1661 PMID: 9338967

10. Choi D, Lee Y, Cho HT, Kende H. Regulation of expansin gene expression affects growth and development in transgenic rice plants. Plant Cell. 2003; 15:1386–1398. https://doi.org/10.1105/tpc.011965 PMID: 12782731

11. Cho HT, Cosgrove DJ. Altered expression of expansin modulates leaf growth and pedicel abscission in *Arabidopsis thaliana*. P Natl Acad Sci USA. 2000; 97:9783–9788. https://doi.org/10.1073/pnas.160276997 PMID: 10931949

12. Brummell DA, Howie WJ, Ma C, Dunsmuir P. Postharvest fruit quality of transgenic tomatoes suppressed in expression of a ripening-related expansin. Postharvest Biol Tec. 2002; 25:209–220. https://doi.org/10.1016/s0925-5214(01)00179-x

13. Yamada K, Takahashi R, Fujitani C, Mishima K, Yoshida M, Joyce DC, et al. Cell wall extensibility and effect of cell-wall-loosening proteins during rose flower opening. J Jpn Soc Hortic Sci. 2009; 78:242–251. https://doi.org/10.2503/jshs1.78.242

14. Guo W, Zhao J, Li X, Qin L, Yan X, Liao H. A soybean β-expansin gene *GmEXPB2* intrinsically involved in root system architecture responses to abiotic stresses. Plant J. 2011; 66:541–552. https://doi.org/10.1111/j.1365-313X.2011.04511.x PMID: 21261763
15. Bajwa KS, Shahid AA, Rao AQ, Bashir A, Aftab A, Husnain T. Stable transformation and expression of GNEXA8 fiber expansin gene to improve fiber length and micronaire value in cotton. Front. Plant Sci. 2015; 6:838. https://doi.org/10.3389/fpls.2015.00838 PMID: 26583018

16. Chen Y, Han Y, Zhang M, Zhou S, Kong X, Wang W. Overexpression of the wheat expansin gene TaEXPA2 improved seed production and drought tolerance in transgenic tobacco plants. PLoS ONE. 2016; 11:e0153494. https://doi.org/10.1371/journal.pone.0153494 PMID: 27073898

17. Xu Q, Xu X, Shi Y, Xu J, Huang B. Transgenic tobacco plants overexpressing a grass PpEXP1 gene exhibit enhanced tolerance to heat stress. PLoS ONE. 2014; 9:e100792. https://doi.org/10.1371/journal.pone.0100792 PMID: 25003197

18. Le Gall H, Philippe F, Domon JM, Gillet F, Pelloux J, Rayon C. Cell wall metabolism in response to abiotic stress. Plants. 2015; 4:112–116. https://doi.org/10.3390/plants4010112 PMID: 27135320

19. Dai F, Zhang C, Jiang X, Kang M, Yin X, Lü P, et al. RnNAC2 and RnEXP4 are involved in the regulation of dehydration tolerance during the expansion of rose petals. Plant Physiol. 2012; 160:2064–2082. https://doi.org/10.1104/pp.112.207720 PMID: 23093360

20. Lü P, Kang M, Jiang X, Dai F, Gao J, Zhang C. RhEXP4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis. Planta. 2013; 237:1547–1559. https://doi.org/10.1007/s00425-013-1867-3 PMID: 23503758

21. Li F, Xing S, Guo Q, Zhao M, Zhang J, Gao Q, et al. Drought tolerance through over-expression of the expansin gene TaEXPB23 in transgenic tobacco. J. Plant Physiol. 2011; 168:960–966. https://doi.org/10.1016/j.jplph.2010.11.023 PMID: 21316798

22. Han YY, Li AX, Li F, Zhao MR, Wang W. Characterization of a wheat (Triticum aestivum L.) expansin gene, TaEXPB23, involved in the abiotic stress response and phytohormone regulation. Plant Physiol Bioch. 2012; 54:49–58. https://doi.org/10.1016/j.plaphy.2012.02.007 PMID: 22381655

23. Han Y, Chen Y, Yin S, Zhang M, Wang W. Over-expression of TaEXPB23, a wheat expansin gene, improves oxidative stress tolerance in transgenic tobacco plants. J. Plant Physiol. 2015; 173:62–71. https://doi.org/10.1016/j.jplph.2014.09.007 PMID: 25462079

24. Chen Y, Ren Y, Zhang G, An J, Yang J, Wang Y, et al. Overexpression of the wheat expansin gene TaEXPA2 improves oxidative stress tolerance in transgenic Arabidopsis plants. Plant Physiol Bioch. 2018; 124:190–198. https://doi.org/10.1016/j.jplph.2018.01.020 PMID: 29413415

25. Li AX, Han YY, Wang X, Chen YH, Zhao MR, Zhou SM, et al. Root-specific expression of wheat expansin gene TaEXPB23 enhances root growth and water stress tolerance in tobacco. Environ Exp Bot. 2015; 110:73–84. https://doi.org/10.1016/j.envexpbot.2014.10.002

26. Ren Y, Chen Y, An J, Zhao Z, Zhang G, Wang Y, et al. Wheat expansin gene TaEXPA2 is involved in conferring plant tolerance to Cd toxicity. Plant Sci. 2018; 270:245–256. https://doi.org/10.1016/j.plantsci.2018.02.022 PMID: 29576078

27. Chen Y, Zhi J, Zhang H, Li J, Zhao Q, Xu J. Transcriptome analysis of Phytolacca americana L. in response to cadmium stress. PloS ONE. 2017; 12(9):e0184681. https://doi.org/10.1371/journal.pone.0184681 PMID: 28898278

28. Marowa P, Ding AM, Kong YZ. Expansins: roles in plant growth and potential applications in crop improvement. Plant Cell Rep. 2016; 35:949–965. https://doi.org/10.1007/s00429-016-1948-4 PMID: 26888755

29. Jung J, O’Donoghue EM, Dijkwel PP, Brummell DA. Expression of multiple expansin genes is associated with cell expansion in potato organs. Plant Sci. 2010; 179:75–85. https://doi.org/10.1016/j.plantsci.2010.04.007

30. Hastil estari BR, Lorenz J, Reid S, Hofmann J, Pscheidt D, Sonnewald U, et al. Deciphering source and sink responses of potato plants (Solanum tuberosum L.) to elevated temperatures. Plant Cell Environ. 2018; 41(11):2600–2616. https://doi.org/10.1111/pce.13366 PMID: 29869794

31. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016; 33:1870–1874. https://doi.org/10.1093/molbev/msw054 PMID: 27004904

32. Huang S, Gao Y, Liu J, Peng X, Niu X, Fei Z, et al. Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum. Mol Genet Genomics. 2012; 287:495–513. https://doi.org/10.1007/s00438-012-0696-6 PMID: 22570076

33. Potato Genome Sequencing Consortium. Genome sequence and analysis of the tuber crop potato. Nature. 2011; 475:189. https://doi.org/10.1038/nature10158 PMID: 21743474

34. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques. 2003; 34:374. https://doi.org/10.2144/03342mt01 PMID: 12613259
35. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008; 9:559. https://doi.org/10.1186/1471-2105-9-559 PMID: 19114008

36. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13:2498–2504. https://doi.org/10.1101/gr.1239303 PMID: 14597658

37. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat. Protop. 2008; 3:1101–1108. PMID: 18546601

38. Nicot N, Hausman JF, Hoffmann L, Evers D. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot. 2005; 56:2907–2914. https://doi.org/10.1093/jxb/eri285 PMID: 16188960

39. Ren H, Gray WM. SAUR proteins as effectors of hormonal and environmental signals in plant growth. Mol Plant. 2015; 8:1153–1164. https://doi.org/10.1016/j.molp.2015.05.003 PMID: 25983207

40. Keegstra K, Raikhel N. Plant glycosyltransferases. Curr Opin Plant Biol. 2001; 4:219–224. https://doi.org/10.1016/S1369-5266(00)00164-3 PMID: 11312132

41. Lamport DTK, Kieliszewski MJ, Chen Y, Cannon MC. Role of the extensin superfamily in primary cell wall architecture. Plant Physiol. 2011; 156:11–9. https://doi.org/10.1104/pp.110.169011 PMID: 21415277

42. Nakano K, Kuwayama H, Kawasumi M, Numata O, Takaine M. GMF is an evolutionarily developed Adf/cofilin-super family protein involved in the Arp2/3 complex-mediated organization of the actin cytoskeleton. Cytoskeleton. 2010; 67:373–382. https://doi.org/10.1002/cm.20451 PMID: 20517925

43. Hu B, Liu B, Liu L, Liu C, Xu L, Ruan Y. Epigenetic control of Pollen Ole e 1 allergen and extensin family gene expression in Arabidopsis thaliana. Acta Physiol Plant. 2014; 36:2203–2209. https://doi.org/10.1007/s11738-014-1597-6

44. Yoshida K, Koathien P, Matsui T, Kawaoka A, Shinmyo A. Molecular biology and application of plant peroxidase genes. Appl Microbiol Biot. 2003; 60:665–670. https://doi.org/10.1114/0001786 PMID: 12664144

45. Al-Qsous S, Carpenterle E, Klein-Eude D, Burel C, Mareck A, Dauchel H, et al. Identification and isolation of a pectin methyltransferase isofom that could be involved in flax cell wall stiffening. Planta. 2004; 219:369. https://doi.org/10.1002/0042-0076-14261 PMID: 15048571

46. Koh S, Wiles AM, Sharp JS, Naider FR, Becker JM, Stacey G. An oligopeptide transporter gene family in Arabidopsis. Plant Physiol. 2002; 128:21. https://doi.org/10.1104/pp.128.1.21 PMID: 11788749

47. Lüthje S, Döring O, Heuer S, Lüthen H, Böttger M. Oxidoreductases in plant plasma membranes. BBA-Rev Biomembranes. 1997; 1331:81–102. https://doi.org/10.1016/S0304-4157(96)00016-0

48. Liu C, Muchhal US, Uthappa M, Kononowicz AK, Rahgorthma KG. Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiol. 1998; 116:91–99. https://doi.org/10.1104/pp.116.1.91 PMID: 9449838

49. Liu C, Muchhal US, Uthappa M, Kononowicz AK, Rahgorthma KG. Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiol. 1998; 116:91–99. https://doi.org/10.1104/pp.116.1.91 PMID: 9449838

50. Al-Qsous S, Carpenterle E, Klein-Eude D, Burel C, Mareck A, Dauchel H, et al. Identification and isolation of a pectin methyltransferase isofom that could be involved in flax cell wall stiffening. Planta. 2004; 219:369. https://doi.org/10.1002/0042-0076-14261 PMID: 15048571

51. Al-Qsous S, Carpenterle E, Klein-Eude D, Burel C, Mareck A, Dauchel H, et al. Identification and isolation of a pectin methyltransferase isofom that could be involved in flax cell wall stiffening. Planta. 2004; 219:369. https://doi.org/10.1002/0042-0076-14261 PMID: 15048571

52. Koh S, Wiles AM, Sharp JS, Naider FR, Becker JM, Stacey G. An oligopeptide transporter gene family in Arabidopsis. Plant Physiol. 2002; 128:21. https://doi.org/10.1104/pp.128.1.21 PMID: 11788749

53. Lüthje S, Döring O, Heuer S, Lüthen H, Böttger M. Oxidoreductases in plant plasma membranes. BBA-Rev Biomembranes. 1997; 1331:81–102. https://doi.org/10.1016/S0304-4157(96)00016-0

54. Liu C, Muchhal US, Uthappa M, Kononowicz AK, Rahgorthma KG. Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiol. 1998; 116:91–99. https://doi.org/10.1104/pp.116.1.91 PMID: 9449838

55. Al-Qsous S, Carpenterle E, Klein-Eude D, Burel C, Mareck A, Dauchel H, et al. Identification and isolation of a pectin methyltransferase isofom that could be involved in flax cell wall stiffening. Planta. 2004; 219:369. https://doi.org/10.1002/0042-0076-14261 PMID: 15048571

56. Mohan S, Ma PWK, Williams WP, Luthe DS. A naturally occurring plant cysteine protease possesses remarkable toxicity against insect pests and synergizes Bacillus thuringiensis toxin. PloS ONE. 2008; 3:e1786. https://doi.org/10.1371/journal.pone.0001786 PMID: 18335057
57. Roberts E, Kutchan T, Kolattukudy PE. Cloning and sequencing of cDNA for a highly anionic peroxidase from potato and the induction of its mRNA in suberizing potato tubers and tomato fruits. Plant Mol Biol. 1988; 11:15–26. https://doi.org/10.1007/BF00016010 PMID: 24272154
58. Reinhard K, Matern U. The biosynthesis of phytoalexins in Dianthus caryophyllus L. cell cultures: induction of benzoyl-CoA:anthranilate N-benzoyltransferase activity. Arch Biochem Biophys. 1989; 275:295–301. https://doi.org/10.1016/0003-9861(89)90376-7 PMID: 2817901
59. Bai X, Liu X, Zhai H, Zhu Y, Cai H, Ji W, et al. Arabidopsis UPF0497 family member At2g39530 is responsive to different abiotic stresses. J. Northeast Agr Univ. 2013; 44:139–144. https://doi.org/10.19720/j.cnki.issn.1005-9369.2013.10.024
60. Cho HT, Cosgrove DJ. Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell. 2002; 14:3237–3253. https://doi.org/10.1105/tpc.006437 PMID: 12468740
61. Lin C, Choi HS, Cho HT. Root hair-specific EXPANSIN A7 is required for root hair elongation in Arabidopsis. Mol Cells. 2011; 31:393–7. https://doi.org/10.1007/s10059-011-0046-2 PMID: 21359675
62. Santo SD, Vannozzi A, Tornielli GB, Fasoli M, Venturini L, Pezzotti M, et al. Genome-wide analysis of the expansin gene superfamily reveals grapevine-specific structural and functional characteristics. PLoS ONE. 2013; 8:e62206. https://doi.org/10.1371/journal.pone.0062206 PMID: 23614035
63. He X, Zeng J, Cao F, Ahmed IM, Zhang G, Vincze E, et al. HvEXPB7, a novel β-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress. J Exp Bot. 2015; 66:7405–7419. https://doi.org/10.1093/jxb/erv436 PMID: 26417018
64. Sun P, Guo Y, Qi J, Zhou L, Li X. Isolation and expression analysis of tuberous root development related genes in Rehmannia glutinosa. Mol Biol Rep. 2010; 37:1069–79. https://doi.org/10.1007/s11033-009-9834-6 PMID: 19774491
65. Duan Y, Xue T, Li J, Teng J, Zhang A, Sheng W, et al. In vitro induction of yacon tuberous root and identification of genes associated with tuberous root expansion. J Anim Plant Sci. 2015; 25:1753–1763.
66. Jiang F, Hartung W. Long-distance signalling of abscisic acid (ABA): the factors regulating the intensity of the ABA signal. J Exp Bot. 2007; 59:37–43. https://doi.org/10.1093/jxb/erm127 PMID: 17595196
67. Liu H, Li H, Zhang H, Li J, Xie B, Xu J. The expansin gene PttEXPA8, from poplar (Populus tomentosa) confers heat resistance in transgenic tobacco. Plant Cell Tiss Org. 2016; 126:353–359. https://doi.org/10.1007/s11240-016-0003-8
68. Zhang H, Xu Q, Xu X, Liu H, Zhi J, et al. Transgenic tobacco plants expressing grass AstEXP41, gene show improved performance to several stresses. Plant Biotechnol Rep. 2017; 11:331–337. https://doi.org/10.1007/s11186-017-0454-7
69. Guimaraes LA, Mota APZ, Araujo ACG, de Alencar Figueiredo LF, Pereira BM, de Passos Saraiva MA, et al. Genome-wide analysis of expansin superfamily in wild Arachis discloses a stress-responsive expansin-like B gene. Plant Mol Biol. 2017; 94:79–96. https://doi.org/10.1007/s11103-017-0594-8 PMID: 28243841
70. Zhu Y, Wu N, Song W, Yin G, Qin Y, Yan Y, et al. Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies. BMC Plant Biol. 2014; 14:93. https://doi.org/10.1186/1471-2229-14-93 PMID: 24720629
71. Ding X, Cao Y, Huang L, Zhao J, Xu C, Li X, et al. Activation of the indole-3-acetic acid–amido synthetase GH3-8 suppresses expansin expression and promotes salicylate-and jasmonate-independent basal immunity in rice. Plant Cell. 2008; 20:228–240. https://doi.org/10.1105/tpc.107.055657 PMID: 18192436
72. Barilli E, Rubiales D, Amalfitano C, Evidente A, Prats E. BTH and BABA induce resistance in pea against rust (Uromyces pisi) involving differential phytoalexin accumulation. Planta. 2015; 242:1095–1106. https://doi.org/10.1007/s00425-015-2339-8 PMID: 26059606