Moduli spaces for finite-order jets of Riemannian metrics

Gordillo, A., Navarro, J. and Sancho, J.B.

March 5, 2009

Abstract

We construct the moduli space of \(r \)-jets of Riemannian metrics at a point on a smooth manifold. The construction is closely related to the problem of classification of jet metrics via differential invariants.

The moduli space is proved to be a differentiable space which admits a finite canonical stratification into smooth manifolds. A complete study on the stratification of moduli spaces is carried out for metrics in dimension \(n = 2 \).

Introduction

Let \(X \) be an \(n \)--dimensional smooth manifold. Fixed a point \(x_0 \in X \) and an integer \(r \geq 0 \), we will denote by \(J^r_{x_0} M \) the smooth manifold of \(r \)--jets at \(x_0 \) of Riemannian metrics on \(X \). On the manifold \(J^r_{x_0} M \), there exists a natural action of the group \(\text{Diff}_{x_0} \) of germs at \(x_0 \) of local diffeomorphisms leaving \(x_0 \) fixed, so it yields an equivalence relation on \(J^r_{x_0} M \):

\[
j^r_{x_0} g \equiv j^r_{x_0} \bar{g} \iff j^r_{x_0} (\tau^* g) = j^r_{x_0} \bar{g},\quad \text{for some } \tau \in \text{Diff}_{x_0}.
\]

The quotient space \(M^r_n := J^r_{x_0} M / \text{Diff}_{x_0} \) is called moduli space for \(r \)--jets of Riemannian metrics in dimension \(n \). It depends neither on the point \(x_0 \) nor on the \(n \)--dimensional manifold \(X \) chosen.

The purpose of this paper is to study the structure of moduli spaces \(M^r_n \).

Moduli spaces \(M^r_n \) have been studied in the literature through their function algebras \(\mathcal{C}^\infty (M^r_n) := \mathcal{C}^\infty (J^r_{x_0} M)^{\text{Diff}_{x_0}} \). This function algebra \(\mathcal{C}^\infty (M^r_n) \) is nothing but the algebra of differential invariants of order \(\leq r \) of Riemannian metrics. Muñoz and Valdés (\[8,9\]) prove that it is an essentially finitely-generated algebra and they determine the number of its functionally independent generators. In a more general setting, Vinogradov (\[15\]) has pointed out a simple and natural relationship between the algebra of differential invariants of homogeneous geometric structures and their characteristic classes. (See also \[14\].)

Let us also mention that in \[13\] García and Muñoz obtain a moduli space for linear frames, which has structure of smooth manifold.

However, apart from some trivial exceptions, moduli spaces \(M^r_n \) of jet metrics are not smooth manifolds, but they possess a differentiable structure in a more general sense: that of a differentiable space. (The typical example of differentiable space is a closed
subset $Y \subseteq \mathbb{R}^m$ where a function $f: Y \to \mathbb{R}$ is said to be differentiable if it is the restriction to Y of a smooth function on \mathbb{R}^m, see [10].)

In addition, the differentiable structure of M^r_n is not too far from a smooth structure, since it admits a stratification by a finite number of smooth submanifolds. Our results can be summed up in the following

Theorem 0.1. Every moduli space M^r_n is a differentiable space and it admits a finite canonical stratification

$$M^r_n = S^r_{[H_0]} \sqcup \ldots \sqcup S^r_{[H_s]},$$

for locally closed subspaces $S^r_{[H_i]}$ which are smooth manifolds. Moreover, one of them is an open connected dense subset of M^r_n.

Each stratum of this decomposition of the space M^r_n consists of those jet metrics having essentially the same group of automorphisms. To be more precise, let us denote by $[H]$ the conjugacy class of a closed subgroup H of the orthogonal group $O(n)$. Then $S^r_{[H]}$ is the set of equivalence classes of jet metrics $j^r_{x_0}g$ whose group of automorphisms $\text{Aut}(j^r_{x_0}g)$ is conjugate to H, viewing $\text{Aut}(j^r_{x_0}g)$ as a subgroup of the orthogonal group $O(T_{x_0}X, g_{x_0}) \simeq O(n)$.

It is convenient to notice that Theorem 0.1 is not valid for semi-Riemannian metrics. For metrics of any signature, the problem lies on the existence of non-closed orbits for the action of Diff_{x_0} on the space $J^r_{x_0}M$ of r-jets of such metrics, which means that the corresponding moduli space $J^r_{x_0}M/\text{Diff}_{x_0}$ is not a T_1 topological space, and consequently, it does not admit a structure of differentiable space either.

In dimension $n = 2$, we improve the above theorem by determining exactly all the strata which appear in the decomposition of each moduli space M^r_2. Let us consider the only, up to conjugacy, closed subgroups of the orthogonal group $O(2)$: the finite group K_m of rotations of order m ($m \geq 1$), the dihedral group D_m of order $2m$ ($m \geq 1$), the special orthogonal group $SO(2)$ and $O(2)$ itself. The stratification of M^r_2 is determined by the following

Theorem 0.2. The strata in the moduli space $M^r_{n=2}$ correspond exactly to the following conjugacy classes: $[O(2)], [D_1], \ldots, [D_r-1], [K_1], \ldots, [K_{r-2}].$ (And also $[K_1]$, if $r = 4$.)

Finally, we include two appendices. In the first one, we give a brief discussion of the notion of differential invariant. In the second one, we analyze the equivalence problem for infinite-order jets of Riemannian metrics.

1 Preliminaries

1.1 Quotient spaces

Throughout this paper, we are going to handle geometric objects of a more general nature than smooth manifolds, which appear when one considers the quotient of a smooth manifold by the action of a Lie group.

Definition 1.1. Let X be a topological space. A sheaf of continuous functions on X is a map \mathcal{O}_X which assigns a subalgebra $\mathcal{O}_X(U) \subseteq \mathcal{C}(U, \mathbb{R})$ to every open subset $U \subseteq X$, with the following condition:
For every open subset $U \subseteq X$, every open cover $U = \bigcup U_i$ and every function $f : U \to \mathbb{R}$, it is verified

$$f \in \mathcal{O}_X(U) \iff f|_{U_i} \in \mathcal{O}_X(U_i), \ \forall i.$$

In particular, if $V \subseteq U$ are open subsets in X, then it is verified

$$f \in \mathcal{O}_X(U) \implies f|_V \in \mathcal{O}_X(V).$$

Definition 1.2. We will call ringed space the pair (X, \mathcal{O}_X) formed by a topological space X and a sheaf of continuous functions \mathcal{O}_X on X.

Although the concept of ringed space in the literature, specially in that concerning Algebraic Geometry, is much broader, the previous definition is good enough for our purposes.

Every open subset U of a ringed space (X, \mathcal{O}_X) is itself, in a very natural way, a ringed space, if we define $\mathcal{O}_U(V) := \mathcal{O}_X(V)$ for every open subset $V \subseteq U$.

Hereinafter, a ringed space (X, \mathcal{O}_X) will usually be denoted just by X, dropping the sheaf of functions.

Definition 1.3. Given two ringed spaces X and Y, a morphism of ringed spaces $\varphi : X \to Y$ is a continuous map such that, for every open subset $V \subseteq Y$, the following condition is held:

$$f \in \mathcal{O}_Y(V) \implies f \circ \varphi \in \mathcal{O}_X(\varphi^{-1}(V)).$$

A morphism of ringed spaces $\varphi : X \to Y$ is said to be an isomorphism if it has an inverse morphism, that is, there exists a morphism of ringed spaces $\phi : Y \to X$ verifying $\varphi \circ \phi = \text{Id}_Y$, $\phi \circ \varphi = \text{Id}_X$.

Example 1.4. (Smooth manifolds) The space \mathbb{R}^n, endowed with the sheaf $C^\infty_{\mathbb{R}^n}$ of smooth functions, is an example of ringed space. An n–smooth manifold is precisely a ringed space in which every point has an open neighbourhood isomorphic to $(\mathbb{R}^n, C^\infty_{\mathbb{R}^n})$. Smooth maps between smooth manifolds are nothing but morphisms of ringed spaces.

Example 1.5. (Quotients by the action of a Lie group) Let $G \times X \to X$ be a smooth action of a Lie group G on a smooth manifold X, and let $\pi : X \to X/G$ be the canonical quotient map.

We will consider on the quotient topological space X/G the following sheaf $C^\infty_{X/G}$ of “differentiable” functions:

For every open subset $V \subseteq X/G$, $C^\infty_{X/G}(V)$ is defined to be

$$C^\infty_{X/G}(V) := \{f : V \to \mathbb{R} : f \circ \pi \in C^\infty(\pi^{-1}(V))\}.$$

Note that there exists a canonical \mathbb{R}–algebra isomorphism:

$$C^\infty_{X/G}(V) \xrightarrow{\cong} C^\infty(\pi^{-1}(V))^G$$

$$f \quad \mapsto \quad f \circ \pi.$$
The pair \((X/G, \mathcal{C}^\infty_{X/G})\) is an example of ringed space, which we will call **quotient ringed space** of the action of \(G\) on \(X\).

As it would be expected, this space verifies the **universal quotient property**: Every morphism of ringed spaces \(\varphi : X \to Y\), which is constant on every orbit of the action of \(G\) on \(X\), factors uniquely through the quotient map \(\pi : X \to X/G\), that is, there exists a unique morphism of ringed spaces \(\tilde{\varphi} : X/G \to Y\) verifying \(\varphi = \tilde{\varphi} \circ \pi\).

Example 1.6. (Inverse limit of smooth manifolds) Sometimes we will consider an inverse system

\[\ldots \longrightarrow X_{r+1} \longrightarrow X_r \longrightarrow \ldots \longrightarrow X_1\]

of smooth mappings between smooth manifolds (or, with some more generality, an inverse system of ringed spaces).

The inverse limit \(\lim X_r\) is a ringed space in the following natural way. On \(\lim X_r\) it is considered the inverse limit topology, that is, the initial topology induced by the evident projections \(p_s : \lim X_r \to X_s\). A real function on an open subset of \(\lim X_r\) is said to be “differentiable” if it locally coincides with the composition of a projection \(p_s : \lim X_r \to X_s\) and a smooth function on \(X_s\).

The topological space \(\lim X_r\) endowed with the above sheaf of differentiable functions is a ringed space satisfying the suitable universal property:

For every ringed space \(Z\), there exists the bijection

\[
\text{Hom} (Z, \lim X_r) \cong \lim \text{Hom} (Z, X_r)
\]

\[
\varphi \mapsto (\ldots, p_r \circ \varphi, \ldots).
\]

Example 1.7. Let \(Z\) be a locally closed subspace of \(\mathbb{R}^n\). We define the sheaf \(\mathcal{C}^\infty_Z\) of differentiable functions on \(Z\) to be the sheaf of functions locally coinciding with restrictions of smooth functions on \(\mathbb{R}^n\). The pair \((Z, \mathcal{C}^\infty_Z)\) is another example of ringed space.

Definition 1.8. A **(reduced) differentiable space** is a ringed space in which every point has an open neighbourhood isomorphic to a certain locally closed subspace \((Z, \mathcal{C}^\infty_Z)\) in some \(\mathbb{R}^n\).

A map between differentiable spaces is called **differentiable** if it is a morphism of ringed spaces.

Theorem 1.9. (Schwarz [11],[10] Th. 11.14) Let \(G \to \text{Gl}(V)\) be a finite-dimensional linear representation of a compact Lie group \(G\). The quotient space \(V/G\) is a differentiable space.

More precisely: Let \(p_1, \ldots, p_s\) be a finite set of generators for the \(\mathbb{R}\)-algebra of \(G\)-invariant polynomials on \(V\); these invariants define an isomorphism of ringed spaces

\[
(p_1, \ldots, p_s) : V/G \cong Z \subseteq \mathbb{R}^s,
\]

\(Z\) being a closed subspace of \(\mathbb{R}^s\).
1.2 Normal tensors

Let X be an n–dimensional smooth manifold. Fix a point $x_0 \in X$ and a semi-Riemannian metric g on X of fixed signature (p, q), with $n = p + q$. Let us recall briefly some definitions and results:

Definition 1.10. A coordinate system (z_1, \ldots, z_n) in a neighbourhood of x_0 is said to be a normal coordinate system for g at the point x_0 if the geodesics passing through x_0 at $t = 0$ are precisely the “straight lines” \(\{ z_1(t) = \lambda_1 t, \ldots, z_n(t) = \lambda_n t \} \), where $\lambda_i \in \mathbb{R}$.

In particular, x_0 is the origin of any normal coordinate system for g at x_0.

Remark 1.11. Observe that we do not require $(\partial_{z_1}, \ldots, \partial_{z_n})$ to be an orthonormal basis of $T_{x_0}X$.

As it is well known, via the exponential map $\exp_g : T_{x_0}X \to X$, normal coordinate systems on X correspond bijectively to linear coordinate systems on $T_{x_0}X$. Therefore, two normal systems differ in a linear coordinate transformation.

Proposition 1.12. Let g, \bar{g} be two semi-Riemannian metrics on X. Let us also consider their corresponding exponential maps $\exp_g, \exp_{\bar{g}} : T_{x_0}X \to X$. For every $r \geq 0$ it is verified:

$$j^r_{x_0} g = j^r_{x_0} \bar{g} \implies j^{r+1}_0(\exp_g) = j^{r+1}_0(\exp_{\bar{g}}).$$

As a consequence of Proposition 1.12 whose proof is routine, normal coordinate systems at x_0 for a metric g are determined up to the order $r + 1$ by the jet $j^r_{x_0} g$. This fact will be used later on with no more explicit mention.

Definition 1.13. Let $r \geq 1$ be a fixed integer and let $x_0 \in X$. The space of normal tensors of order r at x_0, which we will denote by N_r, is the vector space of $(r + 2)$–covariant tensors T at x_0 having the following symmetries:

- T is symmetric in the first two and last r indices:

$$T_{ijkl\ldots k_r} = T_{ijkl\ldots k_r}, \quad T_{ijlk\ldots k_r} = T_{ijlk\ldots k_r}, \quad \forall \sigma \in S_r;$$

- the cyclic sum over the last $r + 1$ indices is zero:

$$T_{ijk\ldots k_r} + T_{ik\ldots k_rj} + \ldots + T_{ik\ldots j} = 0.$$

If $r = 0$, we will assume N_0 to be the set of semi-Riemannian metrics at x_0 of a fixed signature (p, q) (which is an open subset of $S^2T^*_{x_0}X$, but not a vector subspace).

A simple computation shows that, in general, $N_1 = 0$. Moreover, in [2] it is proved that $N_r, (r \geq 2)$ is a linear irreducible representation of the linear group $\text{GL}(T_{x_0}X)$.

To show how a semi-riemannian metric g produces a sequence of normal tensors $g^r_{x_0}$ at x_0, let us recall this classical result:

Lemma 1.14. *Gauss Lemma* Let (z_1, \ldots, z_n) be germs of coordinates centred at $x_0 \in X$. These coordinates are normal for the germ of a semi-Riemannian metric g if and only if the metric coefficients g_{ij} verify the equations

$$\sum_j g_{ij} z_j = \sum_j g_{ij}(x_0) z_j.$$
Let \((z_1, \ldots, z_n)\) be a normal coordinate system for \(g\) at \(x_0 \in X\) and let us denote:

\[
g_{ij,k_1 \ldots k_r} := \frac{\partial^r g_{ij}}{\partial z_{k_1} \cdots \partial z_{k_r}}(x_0).
\]

If we differentiate \(r + 1\) times the identity of the Gauss Lemma, we obtain:

\[
g_{ik_0,k_1 \ldots k_r} + g_{ik_1,k_2 \ldots k_r k_0} + \cdots + g_{ik_r,k_0 \ldots k_{r-1}} = 0.
\]

This property, together with the obvious fact that the coefficients \(g_{ij,k_1 \ldots k_r}\) are symmetric in the first two and in the last \(r\) indices, allows to prove that the tensor

\[
g_{x_0}^r := \sum_{ijk_1 \ldots k_r} g_{ij,k_1 \ldots k_r} dz_i \otimes dz_j \otimes dz_{k_1} \otimes \cdots \otimes dz_{k_r}
\]

is a normal tensor of order \(r\) at \(x_0 \in X\). This construction does not depend on the choice of the normal coordinate system \((z_1, \ldots, z_n)\).

Definition 1.15. The tensor \(g_{x_0}^r\) is called the \(r\)-th normal tensor of the metric \(g\) at the point \(x_0\). As a consequence of \(N_1 = 0\), the first normal tensor of a metric \(g\) is always zero, \(g_{x_0}^1 = 0\).

The normal tensors associated to a metric were first introduced by Thomas [13]. The sequence \(\{g_{x_0}, g_{x_0}^2, g_{x_0}^3, \ldots, g_{x_0}^r\}\) of normal tensors of the metric \(g\) at a point \(x_0\) totally determines the sequence \(\{g_{x_0}, R_{x_0}, \nabla_{x_0} R, \ldots, \nabla^{r-1}_{x_0} R\}\) of covariant derivatives at \(x_0\) of the curvature tensor \(R\) of \(g\) and vice versa (see [13]). The main advantage of using normal tensors is the possibility of expressing the symmetries of each \(g_{x_0}^r\) without using the other normal tensors, whereas the symmetries of \(\nabla^s_{x_0} R\) depend on \(R\) (recall the Ricci identities).

Remark 1.16. Using the exact sequence

\[
0 \rightarrow N_r \rightarrow S^{2T_{x_0}} X \otimes S^{r^* T_{x_0}^*} X \rightarrow T_{x_0}^* X \otimes S^{r+1} T_{x_0}^* X \rightarrow 0,
\]

where \(s\) stands for the symmetrization on the last \((r + 1)\)-indices, we obtain

\[
\dim N_r = \binom{n + 1}{2} \binom{n + r - 1}{r} - n \binom{n + r}{r + 1}.
\]

2 Differential invariants of metrics

In the remainder of the paper, \(X\) will always be an \(n\)-dimensional smooth manifold.

Let us denote by \(J^r M \rightarrow X\) the fiber bundle of \(r\)-jets of semi-Riemannian metrics on \(X\) of fixed signature \((p, q)\), with \(n = p + q\). Its fiber over a point \(x_0 \in X\) will be denoted \(J^r_{x_0} M\).

Let \(\text{Diff}_{x_0}\) be the group of germs of local diffeomorphisms of \(X\) leaving \(x_0\) fixed, and let \(\text{Diff}^r_{x_0}\) be the Lie group of \(r\)-jets at \(x_0\) of local diffeomorphisms of \(X\) leaving \(x_0\) fixed. We have the following exact group sequence:

\[
0 \rightarrow H^r_{x_0} \rightarrow \text{Diff}_{x_0} \rightarrow \text{Diff}^r_{x_0} \rightarrow 0,
\]
$H^r_{x_0}$ being the subgroup of Diff_{x_0} made up of those diffeomorphisms whose $r-$jet at x_0 coincides with that of the identity.

The group Diff_{x_0} acts in an obvious way on $J^r_{x_0}M$. Note that the subgroup $H^{r+1}_{x_0}$ acts trivially, so the action of Diff_{x_0} on $J^r_{x_0}M$ factors through an action of $\text{Diff}^{r+1}_{x_0}$.

Definition 2.1. Two $r-$jets $j^r_{x_0}g, j^r_{x_0}\tilde{g} \in J^r_{x_0}M$ are said to be **equivalent** if there exists a local diffeomorphism $\tau \in \text{Diff}_{x_0}$ such that $j^r_{x_0}\tilde{g} = j^r_{x_0}(\tau^*g)$.

Equivalence classes of $r-$jets of metrics constitute a ringed space. To be precise:

Definition 2.2. We call **moduli space** of $r-$jets of semi-Riemannian metrics of signature (p, q) the quotient ringed space

$$M^r_{p,q} := J^r_{x_0}M/\text{Diff}_{x_0} = J^r_{x_0}M/\text{Diff}^{r+1}_{x_0}.$$

In the case of Riemannian metrics, that is $p = n, q = 0$, the moduli space will be denoted M^r_n.

It is important to observe that the moduli space depends neither on the point x_0 nor on the chosen $n-$dimensional manifold:

Given a point \bar{x}_0 in another $n-$dimensional manifold \bar{X}, let us consider an arbitrary diffeomorphism

$$X \supset U_{x_0} \xrightarrow{\varphi} U_{\bar{x}_0} \subset \bar{X}$$

between corresponding neighbourhoods of x_0 and \bar{x}_0, verifying $\varphi(x_0) = \bar{x}_0$. Such a diffeomorphism induces an isomorphism of ringed spaces between the corresponding moduli spaces,

$$J^r_{\bar{x}_0}\bar{M}/\text{Diff}_{\bar{x}_0} \overset{\sim}{\longrightarrow} J^r_{x_0}M/\text{Diff}_{x_0}$$

$$[j^r_{x_0}\bar{g}] \quad \longrightarrow \quad [j^r_{x_0}\varphi^*\bar{g}],$$

which is independent of the choice of the diffeomorphism φ. So both moduli spaces are canonically identified.

Let us now consider the quotient morphism

$$J^r_{x_0}M \xrightarrow{\pi} J^r_{\bar{x}_0}\bar{M}/\text{Diff}_{\bar{x}_0} = M^r_{p,q}.$$

Recall that a function f defined on an open subset $U \subseteq M^r_{p,q}$ is said to be **differentiable** if $f \circ \pi$ is a smooth function on $\pi^{-1}(U)$, that is,

$$C^\infty(U) = C^\infty(\pi^{-1}(U))\text{Diff}_{x_0}.$$

Every semi-Riemannian metric g on X of signature (p, q) defines a map

$$X \xrightarrow{m_g} M^r_{p,q}$$

$$x \quad \mapsto \quad [j^r_xg],$$

which is “differentiable”, that is, it is a morphism of ringed spaces.

Definition 2.3. A **differential invariant** of order $\leq r$ of semi-Riemannian metrics of signature (p, q) is defined to be a global differentiable function on $M^r_{p,q}$.

Taking into account the ringed space structure of $M^r_{p,q}$, we can simply write:

$$\{\text{Differential invariants of order } \leq r\} = C^\infty(M^r_{p,q}) = C^\infty(J^r_{x_0}M)\text{Diff}_{x_0}.$$
A differential invariant \(h : \mathcal{M}^r_{p,q} \to \mathbb{R} \) associates with every semi-Riemannian metric \(g \) on \(X \) a smooth function on \(X \), denoted by \(h(g) \), through the formula \(h(g) := h \circ m_g \), that is,

\[
h(g)(x) = h(j^r_x g) .
\]

In any local coordinates, \(h(g) \) is a function smoothly depending on the coefficients of the metric and their subsequent partial derivatives up to the order \(r \),

\[
h(g)(x) = h(g_{ij}(x), \frac{\partial g_{ij}}{\partial x_k}(x), \ldots, \frac{\partial^r g_{ij}}{\partial x_{k_1} \ldots \partial x_{k_r}}(x)) ,
\]

which is equivariant with respect to the action of local diffeomorphisms,

\[
h(\tau^* g) = \tau^* (h(g)) .
\]

For a discussion on the concept of differential invariant, see Section 6.

3 A fundamental lemma

The aim of this section is to prove that there exist a certain linear finite-dimensional representation \(V^r \) of the orthogonal group \(O(p,q) \) and an isomorphism of ringed spaces

\[
\mathcal{M}^r_{p,q} \cong V^r / O(p,q) .
\]

This bijection is already known at a set-theoretic level (see [2] and also [7] for \(G \)-structures which posses a linear connection). We just add the fact that this bijection is an isomorphism of ringed spaces.

Let us fix for this entire section a local coordinate system \((z_1, \ldots, z_n) \) centred at \(x_0 \).

We will denote by \(N^r_{x_0} \) the smooth submanifold of \(J^r_{x_0} M \) formed by \(r \)-jets at \(x_0 \) of metrics of signature \((p,q) \) for which \((z_1, \ldots, z_n) \) is a normal coordinate system (that is, Taylor expansions of the coefficients of such metrics with respect to coordinates \((z_1, \ldots, z_n) \) satisfy the equations of the Gauss Lemma up to the order \(r \)).

Consider the subgroup of \(\text{Diff}_{x_0} \)

\[
H^1_{x_0} := \{ \tau \in \text{Diff}_{x_0} : j^1_{x_0} \tau = j^1_{x_0} (\text{Id}) \} .
\]

Note the following exact group sequence:

\[
0 \longrightarrow H^1_{x_0} \longrightarrow \text{Diff}_{x_0} \longrightarrow \text{Gl}(T_{x_0} X) \longrightarrow 0 ,
\]

where the epimorphism \(\text{Diff}_{x_0} \to \text{Gl}(T_{x_0} X) \) takes every diffeomorphism to its linear tangent map at \(x_0 \).

Lemma 3.1. There exists an isomorphism of ringed spaces

\[
\mathcal{N}^r_{x_0} \cong J^r_{x_0} M / H^1_{x_0} .
\]
Proof. Let us start by constructing a smooth section of the natural inclusion
\[N_{x_0}^r \hookrightarrow J_{x_0}^r M. \]

Given a jet metric \(j^r_{x_0}g \in J_{x_0}^r M \), consider a metric \(g \) representing it. Let \((\bar{z}_1, \ldots, \bar{z}_n)\) be the only normal coordinate system centred at \(x_0 \) with respect to \(g \) which satisfies \(d_{x_0} \bar{z}_i = d_{x_0} z_i \).

Let \(\tau \) be the local diffeomorphism which transforms one coordinate system into another: \(\tau^*(\bar{z}_i) = z_i \). The condition \(d_{x_0} \bar{z}_i = d_{x_0} z_i \) implies that the linear tangent map of \(\tau \) at \(x_0 \) is the identity, i.e. \(\tau \in H_{x_0}^1 \).

As \((\bar{z}_1, \ldots, \bar{z}_n)\) is a normal coordinate system for \(g \), \((z_1 = \tau^*(\bar{z}_1), \ldots, z_n = \tau^*(\bar{z}_n))\) is a normal coordinate system for \(\tau^*g \); that is, \(j^r_{x_0}(\tau^*g) \in N_{x_0}^r \).

Therefore, the section we were looking for is the following map:
\[j^r_{x_0} \quad \text{and} \quad \sigma \in H_{x_0}^1, \quad \text{for some} \quad \sigma \in H_{x_0}^1 \]

with \(\sigma \) depending on \(g \).

Let us now see that \(\varphi \) is constant on each orbit of the action of \(H_{x_0}^1 \). Let \(j^r_{x_0} g' \) be another point in the same orbit as \(j^r_{x_0} g \), so we can write \(g' = \sigma^* g \) for some \(\sigma \in H_{x_0}^1 \).

Since \((\bar{z}_1, \ldots, \bar{z}_n)\) are normal coordinates for \(g \), \((z_1 = \sigma^*(\bar{z}_1), \ldots, z_n = \sigma^*(\bar{z}_n))\) is a normal coordinate system for \(\sigma^* g \). Then \(z_i = \tau^*(\bar{z}_i) = \tau^*(\sigma^{-1}(z_i')) \), and, if we apply the definition of \(\varphi \), we get
\[\varphi(j^r_{x_0} g') = j^r_{x_0} (\tau^* \sigma^{-1} g') = j^r_{x_0} (\tau^* g) = \varphi(j^r_{x_0} g). \]

As \(\varphi \) is constant on each orbit of the action of \(H_{x_0}^1 \), it induces, according to the universal quotient property, a morphism of ringed spaces:
\[J^r_{x_0} M/H_{x_0}^1 \rightarrow N_{x_0}^r. \]

This map is indeed an isomorphism of ringed spaces, because it has an obvious inverse morphism, which is the following composition:
\[N_{x_0}^r \hookrightarrow J_{x_0}^r M \rightarrow J_{x_0}^r M/H_{x_0}^1. \]

Let us denote by \(\text{Gl}_n \) the general linear group in dimension \(n \):
\[\text{Gl}_n := \{ n \times n \text{ invertible matrices with coefficients in } \mathbb{R} \}. \]

Considering every matrix in \(\text{Gl}_n \) as a linear transformation of the coordinate system \((z_1, \ldots, z_n)\), we can think of \(\text{Gl}_n \) as a subgroup of \(\text{Diff}_{x_0} \).

Via the action of the group \(\text{Diff}_{x_0} \) on \(J_{x_0}^r M \), the subgroup \(\text{Gl}_n \), for its part, acts leaving the submanifold \(N_{x_0}^r \) stable, and then we can state the following

Lemma 3.2. There exists an isomorphism of ringed spaces
\[N_{x_0}^r/\text{Gl}_n \cong J_{x_0}^r M/\text{Diff}_{x_0} = M_{p,q}. \]
Proof. Via the epimorphism

\[\text{Diff}_{x_0} \longrightarrow \text{Diff}_{x_0}/H^1_{x_0} = \text{Gl}(T_{x_0}X), \]

the subgroup \(\text{Gl}_n \) gets identified with \(\text{Gl}(T_{x_0}X) \). Consequently, the subgroups \(H^1_{x_0} \) and \(\text{Gl}_n \) generate \(\text{Diff}_{x_0} \).

If we consider the isomorphism

\[N^r_{x_0} \longrightarrow J^r_{x_0} M/H^1_{x_0}^r \]

of Lemma 3.1 and take quotient with respect to the action of \(\text{Gl}_n \), we get the desired isomorphism:

\[N^r_{x_0}/\text{Gl}_n \approx (J^r_{x_0} M/H^1_{x_0}^r)/\text{Gl}_n = J^r_{x_0} M/\text{Diff}_{x_0}. \]

\[\square \]

Let us express the previous result in terms of normal tensors by using the following

Lemma 3.3. The map

\[N^r_{x_0} \longrightarrow N_0 \times N_2 \times \ldots \times N_r, \quad j^r_{x_0} g \longmapsto (g_{x_0}, g^2_{x_0}, \ldots, g^r_{x_0}) \]

is a diffeomorphism.

Proof. The inverse map is defined in the obvious way:

Given \((T^0, T^2, \ldots, T^r) \in N_0 \times N_2 \times \ldots \times N_r \), consider the jet metric \(j^r_{x_0} g \) which in coordinates \((z_1, \ldots, z_n) \) is determined by the identities

\[g_{ij,k_1 \ldots k_s} := \frac{\partial^s g_{ij}}{\partial z_{k_1} \ldots \partial z_{k_s}}(x_0) = T^s_{ij,k_1 \ldots k_s}, \quad s = 0, \ldots, r. \]

The symmetries of tensors \(T^s \) guarantee that the coefficients \(g_{ij} \) of the metric \(g \) verify the equations of the Gauss Lemma up to the order \(r \), that is, \(j^r_{x_0} g \in N^r_{x_0} \).

Combining Lemma 3.2 and Lemma 3.3 we obtain an isomorphism of ringed spaces:

\[M^r_{p,q} = J^r_{x_0} M/\text{Diff}_{x_0} \approx (N_0 \times N_2 \times \ldots \times N_r)/\text{Gl}(T_{x_0}X) \]

\[[j^r_{x_0} g] \longmapsto [(g_{x_0}, g^2_{x_0}, \ldots, g^r_{x_0})]. \]

Let us now fix a metric \(g_{x_0} \in N_0 \) at \(x_0 \) and let us consider the orthogonal group \(O(p, q) := O(T_{x_0}X, g_{x_0}) \). As the linear group \(\text{Gl}(T_{x_0}X) \) acts transitively on the space of metrics \(N_0 \), and \(O(p, q) \) is the stabilizer subgroup of \(g_{x_0} \in N_0 \), we obtain the following isomorphism:

\[(N_0 \times N_2 \times \ldots \times N_r)/\text{Gl}(T_{x_0}X) \approx (N_2 \times \ldots \times N_r)/O(p, q). \]

To sum up, we can state the main result of this section:
Lemma 3.4. (Fundamental Lemma) The moduli space $\mathcal{M}_{p,q}^r$ is isomorphic to the quotient space of a linear representation of the orthogonal group $O(p,q)$, through the following isomorphism of ringed spaces:

$$\mathcal{M}_{p,q}^r \cong \frac{(N_2 \times \ldots \times N_r)}{O(p,q)}.$$

This isomorphism takes every class $[g^r_x, \bar{g}] \in \mathcal{M}_{p,q}^r$, with $\bar{g}_x = g_x$, to the sequence of normal tensors $[(\bar{g}_x^2, \ldots, \bar{g}_x^r)] \in (N_2 \times \ldots \times N_r)/O(p,q)$.

4 Structure of the moduli spaces

Let V be a finite-dimensional linear representation of a reductive Lie group G. The \mathbb{R}-algebra of G-invariant polynomials on V is finitely generated (Hilbert-Nagata theorem, see [3]). Let p_1, \ldots, p_s be a finite set of generators for that algebra; by a result of Luna [6], every smooth G-invariant function f on V can be written as $f = F(p_1, \ldots, p_s)$, for some smooth function $F \in C^\infty(\mathbb{R}^s)$.

Theorem 4.1. (Finiteness of differential invariants, [8]) There exists a finite number $p_1, \ldots, p_s \in C^\infty(\mathcal{M}_{p,q}^r)$ of differential invariants of order $\leq r$ such that any other differential invariant f of order $\leq r$ is a smooth function of the former ones, i.e. $f = F(p_1, \ldots, p_s)$, for a certain $F \in C^\infty(\mathbb{R}^s)$.

Proof. By the Fundamental Lemma (3.4),

$$C^\infty(\mathcal{M}_{p,q}^r) = C^\infty((N_2 \times \ldots \times N_r)/O(p,q)),$$

and we can conclude by applying the above theorem by Luna to the linear representation $N_2 \times \ldots \times N_r$ of the orthogonal group $O(p,q)$.

Remark 4.2. Using the theory of invariants for the orthogonal group and the fact that the sequence of normal tensors $\{g_{x_0}, g_{x_0}^2, g_{x_0}^3, \ldots, g_{x_0}^r\}$ is equivalent to the sequence $\{g_{x_0}, R_{x_0}, \nabla_{x_0} R, \ldots, \nabla_{x_0}^{r-2} R\}$, it can be proved that the generators p_1, \ldots, p_s of Theorem 4.1 can be chosen to be Weyl invariants, that is, scalar quantities constructed from the sequence $\{g_{x_0}, R_{x_0}, \nabla_{x_0} R, \ldots, \nabla_{x_0}^{r-2} R\}$ by reiteration of the following operations: tensor products, raising and lowering indices, and contractions.

Theorem 4.3. In the Riemannian case, differential invariants of order $\leq r$ separate points in the moduli space $\mathcal{M}_{p,q}^r$.

Consequently, differential invariants of order $\leq r$ classify r-jets of Riemannian metrics (at a point).

Proof. For positive definite metrics, the orthogonal group $O(n)$ is compact. It is a well-known fact that, if V is a linear representation of a compact Lie group G, then smooth G-invariant functions on V separate the orbits of the action of G, or, in other words, the algebra $C^\infty(V/G)$ separates the points in V/G.

Using this, together with the Fundamental Lemma, we conclude our proof.
Neither assertion in Theorem 4.3 is valid for semi-Riemannian metrics. See Note in Subsection 5.2 for a counterexample. For such metrics, moduli spaces $M_{n,q}^r$ are generally pathological in a topological sense, since they have non-closed points (they are not T_1 topological spaces).

In the Riemannian case, Schwarz Theorem 1.9 and the Fundamental Lemma directly provide the following

Theorem 4.4. *In the Riemannian case, moduli spaces M_{n}^r are differentiable spaces."

More precisely: Let p_1, \ldots, p_s be the basis of differential invariants of order $\leq r$ mentioned in Theorem 4.1. These invariants induce an isomorphism of differentiable spaces

$$
(p_1, \ldots, p_s) : M_{n}^r \cong Z \subseteq \mathbb{R}^s,
$$

Z being a closed subspace of \mathbb{R}^s.

Although the differentiable space M_{n}^r is not in general a smooth manifold, its structure is not so deficient as it could seem at first sight, since we are going to prove that it admits a finite stratification by certain smooth submanifolds.

Definition 4.5. Let us consider $V_n = \mathbb{R}^n$ endowed with its standard inner product δ, and the corresponding orthogonal group $O(n) := O(V_n, \delta)$. We will denote by \mathcal{T} the set of conjugacy classes of closed subgroups in $O(n)$.

Given another n–dimensional vector space \bar{V}_n with an inner product $\bar{\delta}$, we can also consider the set $\bar{\mathcal{T}}$ of conjugacy classes of closed subgroups in $O(\bar{V}_n, \bar{\delta})$.

Observe that there exists a canonical identification

$$
\mathcal{T} \overset{\sim}{\longrightarrow} \bar{\mathcal{T}} , \quad [H] \mapsto [\varphi \circ H \circ \varphi^{-1}],
$$

where φ stands for any isometry $\varphi : V_n \to \bar{V}_n$.

As the identification is canonical (i.e. it does not depend on the choice of the isometry φ), from now on we will suppose that the set \mathcal{T} is just “the same” for every pair (V_n, δ).

Note that \mathcal{T} possesses a partial order relation: $[H] \leq [H']$, if there exist some representatives H and H' of $[H]$ and $[H']$ respectively, such that $H \subseteq H'$.

Definition 4.6. The group of automorphisms of a Riemannian jet metric $j^r_{x_0}g$ is defined to be the stabilizer subgroup $\text{Aut}(j^r_{x_0}g) \subseteq \text{Diff}^{+1}_{x_0} \times \mathbb{R}$ of $j^r_{x_0}g$:

$$
\text{Aut}(j^r_{x_0}g) := \{ j^{r+1}_{x_0} \tau \in \text{Diff}^{+1}_{x_0} : j^r_{x_0}(\tau^* g) = j^r_{x_0}g \}.
$$

Given $\tau \in \text{Diff}_{x_0}$, let us denote by $\tau_{*,x_0} : T_{x_0}X \to T_{x_0}X$ the linear tangent map of τ at x_0.

Lemma 4.7. *The group morphism

$$
\text{Aut}(j^r_{x_0}g) \quad \to \quad O(T_{x_0}X, g_{x_0}) \cong O(n)
$$

is injective.*
Proof. For any \(\tau \in \text{Diff}_{x_0} \) and any metric \(g \) on \(X \) we have the following commutative diagram of local diffeomorphisms:

\[
\begin{array}{ccc}
T_{x_0}X & \xrightarrow{\exp_{r}\tau} & X \\
\downarrow & & \downarrow \\
T_{x_0}X & \xrightarrow{\exp_{g}} & X \\
\end{array}
\]

If \(j^{r+1}_{x_0}\tau \in \text{Aut}(j^{r}_{x_0}g) \), that is, \(j^{r}_{x_0}(\tau^*g) = j^{r}_{x_0}g \), then \(j^{r+1}_{0}(\exp_{r}\tau g) = j^{r+1}_{0}(\exp g) \) because of Proposition 1.12.

Now, taking \((r+1)\)-jets in the above diagram, we obtain:

\[
j^{r+1}_{x_0}\tau = j^{r+1}_{0}(\exp g) \circ j^{r+1}_{0}\tau \circ j^{r+1}_{x_0}(\exp^{-1} g),
\]

hence \(j^{r+1}_{x_0}\tau \) is determined by its linear part \(\tau_* \).

By the previous lemma, the group \(\text{Aut}(j^{r}_{x_0}g) \) can be viewed as a subgroup (determined up to conjugacy) of the orthogonal group \(O(n) \).

Definition 4.8. The **type map** is defined to be the map

\[
t : \mathcal{M}^r \rightarrow T, \quad [j^{r}_{x_0}g] \mapsto [\text{Aut}(j^{r}_{x_0}g)].
\]

For each \([H] \in T\), the **stratum of type** \([H] \) is said to be the subset \(S_{[H]} \subseteq \mathcal{M}^r \) of those points of type \([H] \).

Theorem 4.9. (Stratification of the moduli space) The type map \(t : \mathcal{M}^r \rightarrow T \) verifies the following properties:

1. \(t \) takes a finite number of values \([H_0], \ldots, [H_k]\), one of which, say \([H_0]\), is minimum.

2. **Semicontinuity:** For every type \([H] \in T\), the set of points in \(\mathcal{M}^r \) of type \(\leq [H] \) is an open subset of \(\mathcal{M}^r \). In particular, every stratum \(S_{[H]} \) is a locally closed subspace of \(\mathcal{M}^r \).

3. Every stratum \(S_{[H]} \) is a smooth submanifold of \(\mathcal{M}^r \).

4. The (also called generic) stratum \(S_{[H_0]} \) of minimum type is a dense connected open subset of \(\mathcal{M}^r \).

Proof. Fix a positive definite metric \(g_{x_0} \) on \(T_{x_0}X \) and denote by \(O(n) \) its orthogonal group. The Fundamental Lemma 3.4 tells us that there exists an isomorphism

\[
\mathcal{M}^r = (N_2 \times \ldots \times N_r)/O(n).
\]

This isomorphism takes every class \([j^{r}_{x_0}\tilde{g}] \in \mathcal{M}^r\), with \(\tilde{g}_{x_0} = g_{x_0}\), to the sequence of normal tensors \([\tilde{g}^{2}_{x_0}, \ldots, \tilde{g}^{r}_{x_0}] \in (N_2 \times \ldots \times N_r)/O(n)\).

Let us check that the subgroup \(\text{Aut}(j^{r}_{x_0}\tilde{g}) \rightarrow O(n), j^{r+1}_{x_0}\tau \mapsto \tau_* \), coincides with the subgroup

\[
\text{Aut}(\tilde{g}^{2}_{x_0}, \ldots, \tilde{g}^{r}_{x_0}) := \{ \sigma \in O(n) : \sigma^*(\tilde{g}^{k}_{x_0}) = \tilde{g}^{k}_{x_0}, \forall k \leq r \}.
\]
It is clear that if an automorphism \(j^{r+1}_{x_0} \tau \) leaves \(j^r_{x_0}\check{g} \) fixed, then the sequence of its normal tensors must also remain fixed by the automorphism: \(\tau^*(\check{g}^k_{x_0}) = \check{g}^k_{x_0} \).

Reciprocally, given an automorphism \(\sigma : T_{x_0}X \to T_{x_0}X \) of the sequence of normal tensors \((\check{g}^2_{x_0}, \ldots, \check{g}^r_{x_0}) \), let us consider a normal coordinate system \(z_1, \ldots, z_n \) for \(\check{g} \) at \(x_0 \).

Via the identification provided by the exponential map \(\exp_x : T_{x_0}X \to X \), the map \(\sigma \) can be viewed as a diffeomorphism of \(X \) (a linear transformation of normal coordinates).

In normal coordinates, the expression of the normal tensor \(\check{g}^k_{x_0} \) corresponds to the expression of the homogeneous part of degree \(k \) of the jet metric \(j^r_{x_0}\check{g} \). Hence it is an immediate consequence that the linear transformation \(\sigma \) leaves \(j^r_{x_0}\check{g} \) fixed, i.e. \(j^{r+1}_{x_0}\sigma \in \text{Aut}(j^r_{x_0}\check{g}) \).

The identity \(\text{Aut}(j^r_{x_0}\check{g}) = \text{Aut}(\check{g}^2_{x_0}, \ldots, \check{g}^r_{x_0}) \) implies that the following diagram is commutative:

\[
\begin{array}{ccc}
\mathcal{M}_r & \xrightarrow{t} & \mathcal{T} \\
\mid & \mid & \\
(N_2 \times \ldots \times N_r)/O(n) & \xrightarrow{t} & \mathcal{T} \\
\mid & \mid & \\
[\check{g}^2_{x_0}, \ldots, \check{g}^r_{x_0}] & \mapsto & [\text{Aut}(\check{g}^2_{x_0}, \ldots, \check{g}^r_{x_0})].
\end{array}
\]

Therefore, our theorem has come down to the case of a linear representation \(V(= N_2 \times \ldots \times N_r) \) of a compact Lie group \(G(= O(n)) \) and the corresponding type map:

\[
\begin{array}{ccc}
V/G & \xrightarrow{t} & \mathcal{T} = \{\text{conjugacy classes of closed subgroups of } G\} \\
\mid & \mid & \\
[v] & \mapsto & [\text{Stabilizer subgroup of } v].
\end{array}
\]

For this type map, the analogous properties to 1 – 4 in the statement are well known (see [1], Chap. IX, §9, Th. 2 and Exer. 9).

\(\square \)

Remark 4.10. Except for trivial cases, the generic stratum has type \(H_0 = \{0\} \).

Remark 4.11. The dimension of the moduli space \(\mathcal{M}_r^n \) (or rather that of its generic stratum) can be deduced directly from the Fundamental Lemma and the formulae giving the dimensions of spaces \(N_r \) of normal tensors which were presented in Section 1.

The result (due, in a different language, to J. Muñoz and A. Valdés, [9]) is as follows:

\[
\begin{align*}
\dim \mathcal{M}_n^0 &= \dim \mathcal{M}_n^1 = 0, \quad \forall n \geq 1; \\
\dim \mathcal{M}_r^1 &= 0, \quad \forall r \geq 0; \\
\dim \mathcal{M}_2^r &= 1, \quad \dim \mathcal{M}_2^r = \frac{1}{2}(r+1)(r-2), \quad \forall r \geq 3; \\
\dim \mathcal{M}_n^r &= n + \frac{(r-1)n^2 - (r+1)n}{2(r+1)} \binom{n+r}{r}, \quad \forall n \geq 3, \; r \geq 2.
\end{align*}
\]
5 Moduli spaces in dimension $n = 2$

5.1 Stratification

We are going to determine the stratification of moduli spaces M^r_2 of r-jets of Riemannian metrics in dimension $n = 2$.

Let us consider the vector space $\mathbb{R}^2 = \mathbb{C}$, endowed with the standard Euclidean metric, and its corresponding orthogonal group $O(2)$. We will denote by (x, y) the Cartesian coordinates and by $z = x + iy$ the complex coordinate.

Let us denote by $\sigma_m : \mathbb{C} \to \mathbb{C}$ the rotation of angle $2\pi/m$ (that is, $\sigma_m(z) = \varepsilon_m z$, with $\varepsilon_m = \cos(2\pi/m) + i\sin(2\pi/m)$ a primitive mth root of unity) and by $\tau : \mathbb{C} \to \mathbb{C}$, $\tau(z) = \bar{z}$ the complex conjugation.

The only (up to conjugacy) closed subgroups of $O(2)$ are the following ones:

1. $SO(2) := \{ \varphi \in O(2) : \det \varphi = 1 \}$ (special orthogonal group),
2. $K_m := \langle \sigma_m \rangle$ (group of rotations of order m) ($m \geq 1$),
3. $D_m := \langle \sigma_m, \tau \rangle$ (dihedral group of order $2m$) ($m \geq 1$),
4. $O(2)$ itself.

All these subgroups are normal but the dihedral D_m.

The subgroup $SO(2)$ of rotations is identified with the multiplicative group $S_1 \subset \mathbb{C}$ of complex numbers of modulus 1,

$S_1 \overset{\alpha}{\longrightarrow} SO(2)$

$\rho_{\alpha} \mapsto \rho_{\alpha(z)} := \alpha z$.

Besides, every element in $O(2)$ is either ρ_{α} or $\tau \rho_{\alpha}$, for some $\alpha \in S_1$.

The action of $O(2)$ on \mathbb{R}^2 induces an action on the algebra $\mathbb{R}[x, y]$ of the polynomials on \mathbb{R}^2, to be more specific: $\varphi \cdot P(x, y) := P(\varphi^{-1}(x, y))$.

The following lemma provides us with the list of all invariant polynomials with respect to each of the subgroups of $O(2)$ above mentioned:

Lemma 5.1. The following identities hold:

1. $\mathbb{R}[x, y]^{K_m} = \mathbb{R}[x^2 + y^2, p_m(x, y), q_m(x, y)]$,
2. $\mathbb{R}[x, y]^{D_m} = \mathbb{R}[x^2 + y^2, p_m(x, y)]$,
3. $\mathbb{R}[x, y]^{O(2)} = \mathbb{R}[x^2 + y^2]^{SO(2)} = \mathbb{R}[x^2 + y^2]$,

with $p_m(x, y) = \text{Re}(z^m)$ and $q_m(x, y) = \text{Im}(z^m)$.

Proof. 1. Let us consider the algebra of polynomials on \mathbb{R}^2 with complex coefficients,

$\mathbb{C}[x, y] = \mathbb{C}[z, \bar{z}] = \bigoplus_{ab} \mathbb{C} z^a \bar{z}^b$.

Every summand is stable under the action of K_m, since

$\sigma_m \cdot (z^a \bar{z}^b) = \frac{1}{\varepsilon_m^a \varepsilon_m^b} z^a \bar{z}^b = \varepsilon_m^{b-a} z^a \bar{z}^b$.
This formula also tells us that the monomial \(z^a \bar{z}^b \) is invariant by \(K_m \) if and only if \(b-a \equiv 0 \mod m \), that is, \(b-a = \pm km \) for some \(k \in \mathbb{N} \). Then invariant monomials are of the form

\[
z^a \bar{z}^b = (z\bar{z})^a \bar{z}^{km} \quad \text{or} \quad z^a \bar{z}^b = (z\bar{z})^b \bar{z}^{km},
\]

whence

\[
\mathbb{C}[x,y]^{K_m} = \mathbb{C}[z\bar{z}, \bar{z}^m, z^m].
\]

As \(z\bar{z} = x^2 + y^2 \), \(z^m + \bar{z}^m = 2p_m(x,y) \) and \(z^m - \bar{z}^m = 2iq_m(x,y) \), we can conclude that

\[
\mathbb{C}[x,y]^{K_m} = \mathbb{C}[x^2 + y^2, p_m(x,y), q_m(x,y)],
\]

and particularly,

\[
\mathbb{R}[x,y]^{K_m} = \mathbb{R}[x^2 + y^2, p_m(x,y), q_m(x,y)].
\]

2. As \(D_m = \langle K_m, \tau \rangle \), we get

\[
\mathbb{C}[x,y]^{D_m} = (\mathbb{C}[x,y]^{K_m})^{\langle \tau \rangle} = \mathbb{C}[z\bar{z}, \bar{z}^m, z^m]^{\langle \tau \rangle} = \left(\bigoplus_k \mathbb{C}[z\bar{z}]z^{km} \right) + \left(\bigoplus_k \mathbb{C}[z\bar{z}]\bar{z}^{km} \right)^{\langle \tau \rangle}
\]

(as \(\tau \cdot z = \bar{z} \) and \(\tau \cdot \bar{z} = z \))

\[
= \bigoplus_k \mathbb{C}[z\bar{z}] (z^{km} + \bar{z}^{km}) = \mathbb{C}[z\bar{z}, z^m + \bar{z}^m] = \mathbb{C}[x^2 + y^2, p_m(x,y)],
\]

and, in particular,

\[
\mathbb{R}[x,y]^{D_m} = \mathbb{R}[x^2 + y^2, p_m(x,y)].
\]

3. Every summand in the decomposition

\[
\mathbb{C}[z, \bar{z}] = \bigoplus_{ab} \mathbb{C} z^a \bar{z}^b
\]

is stable under the action of \(SO(2) \), since for every \(\rho_\alpha \in SO(2) \) it is satisfied:

\[
\rho_\alpha \cdot (z^a \bar{z}^b) = \frac{1}{\alpha^a \bar{\alpha}^b} z^a \bar{z}^b.
\]

Moreover, this formula assures us that the only monomials \(z^a \bar{z}^b \) which are \(SO(2) \)-invariant are those verifying \(a = b \). Then,

\[
\mathbb{C}[x,y]^{SO(2)} = \mathbb{C}[z, \bar{z}]^{SO(2)} = \mathbb{C}[z\bar{z}] = \mathbb{C}[x^2 + y^2],
\]

whence

\[
\mathbb{R}[x,y]^{SO(2)} = \mathbb{R}[x^2 + y^2].
\]

Finally, this identity tells us that \(SO(2) \)-invariant polynomials are \(O(2) \)-invariant too, so the obvious inclusion \(\mathbb{R}[x,y]^{O(2)} \subseteq \mathbb{R}[x,y]^{SO(2)} \) is indeed an equality. \(\square \)
Corollary 5.2. With the same notations used in the previous lemma, it is verified:

1. D_m is the stabilizer subgroup of the polynomial $p_m(x, y)$, and there exists no polynomial in $\mathbb{R}[x, y]$ of degree $< m$ whose stabilizer subgroup is D_m.

2. $K_m(m \geq 2)$ is the stabilizer subgroup of the polynomial $p_m(x, y)+(x^2+y^2)q_m(x, y)$, and there exists no polynomial in $\mathbb{R}[x, y]$ of degree $< m+2$ whose stabilizer subgroup is K_m.

3. $K_1 = \{\text{Id}\}$ is the stabilizer subgroup of the polynomial $x + xy$, and there exists no polynomial in $\mathbb{R}[x, y]$ of degree < 2 whose stabilizer subgroup is K_1.

Proof. 1. Using that every element in $O(2)$ is either of the form ρ_α or of the form $\rho_\alpha \circ \tau$, it is a matter of routine to check that the stabilizer subgroup of the polynomial $p_m(x, y) = \text{Re}(z^m)$ is D_m.

If there were another polynomial $\bar{p}(x, y)$ of degree $< m$ with the same property, $\bar{p}(x, y)$ should be a power of x^2+y^2, because of Lemma 5.1(2), and in that case its stabilizer subgroup would be the whole $O(2)$, against our hypothesis.

2. According to Lemma 5.1(1), every K_m-invariant polynomial of degree $\leq m$ is of the form $\lambda p_m(x, y) + \mu q_m(x, y)$ (up to addition of a power of x^2+y^2). However, a polynomial of such a form does not have K_m as its stabilizer subgroup, but a larger dihedral group: after multiplying by a scalar, we can indeed assume $\lambda^2 + \mu^2 = 1$; if $\alpha = \lambda - i\mu$, then

$$\lambda p_m(x, y) + \mu q_m(x, y) = \text{Re}(\alpha z^m) = \text{Re}((\beta z)^m)$$

(with $\beta^m = \alpha$)

$$= \rho_{\beta^{-1}} \cdot \text{Re}(z^m) = \rho_{\beta^{-1}} \cdot p_m(x, y),$$

whose stabilizer subgroup is the dihedral group $\rho_{\beta^{-1}} \cdot D_m \cdot \rho_{\beta}$, which is conjugate to the stabilizer subgroup D_m of $p_m(x, y)$. (In particular, taking $\lambda = 0$, $\mu = -1$, we get that the stabilizer subgroup of $q_m(x, y)$ is $\rho_{\beta^{-1}} \cdot D_m \cdot \rho_{\beta}$, for $\beta^m = i$).

As no polynomial of degree $\leq m$ has the desired stabilizer subgroup K_m, and there are not any K_m-invariant polynomials of degree $m+1$ (up to a power of x^2+y^2), the following degree to be considered is $m+2$. The stabilizer subgroup of the polynomial $p_m(x, y)+(x^2+y^2)q_m(x, y)$, of degree $m+2$, is the intersection of the stabilizer subgroups of its two homogeneous components, $p_m(x, y)$ and $(x^2+y^2)q_m(x, y)$, that is,

$$D_m \cap (\rho_{\beta^{-1}} \cdot D_m \cdot \rho_{\beta}) = K_m \quad (\beta^m = i).$$

3. This case is trivial.

\[\square\]

Theorem 5.3. The strata in the moduli space \mathcal{M}_2 correspond exactly to the following types: $[O(2)], [D_1], \ldots, [D_{r-2}], [K_1], \ldots, [K_{r-4}]$. (And also $[K_1]$, if $r = 4$.)

Proof. It is a classical result (see [2]) that in dimension 2 every Riemannian metric can be written in normal coordinates (x, y) (in a unique way up to an orthogonal transformation) as follows:

$$g = dx^2 + dy^2 + h(x, y)(ydx - xdy)^2,$$

for some smooth function $h(x, y)$.
Observe that the stabilizer subgroup of $O(2)$ for the jet $j^h_{0}\,\!h$ is the same as that for $j^{k+2h}_{0}\,\!g$.

If we take $h(x, y) = 0$, we get a metric (the Euclidean one, i.e. $g = dx^2 + dy^2$) whose group of automorphisms (for any jet order) is $O(2)$.

Choosing $h(x, y) = p_m(x, y)$, we obtain an r–jet metric (with $r \geq m + 2$) whose stabilizer subgroup is D_m, because of Corollary 5.2 (1).

If we choose $h(x, y) = p_m(x, y) + (x^2 + y^2)q_m(x, y)$, we get an r–jet metric (with $r \geq m + 4$) whose stabilizer subgroup is K_m, by Corollary 5.2 (2).

If we make $h(x, y) = x + xy$, then we get an r–jet metric (with $r \geq 4$) whose stabilizer subgroup is K_1, according to Corollary 5.2 (3).

Finally, let us note that no r–jet metric can have $SO(2)$ as its stabilizer subgroup, since such a metric would correspond to a jet function $j^r_{0}\,\!h$ whose stabilizer subgroup should be $SO(2)$, which is impossible, because, by Lemma 5.1 (3), every $SO(2)$–invariant polynomial is also $O(2)$–invariant. □

Corollary 5.4. Every closed subgroup of $O(2)$, except for $SO(2)$, is the group of automorphisms of a jet metric $j^r_{0}\,\!g$ on \mathbb{R}^2 for some order r.

Corollary 5.5. The number of strata in M^r_2 is:

\[
\text{Number of strata in } M^r_2 = \begin{cases}
1 & \text{for } r = 0, 1, 2 \\
2 & \text{for } r = 3 \\
4 & \text{for } r = 4 \\
2r - 5 & \text{for } r \geq 5
\end{cases}
\]

5.2 Examples

Now we describe, without proofs, low order jets in dimension $n = 2$.

For order $r = 0, 1$ (and in any dimension n) moduli spaces M^r_2 come down to a single point.

Case $r = 2$.

The moduli space is a line:

\[
M^2_2 \longrightarrow \mathbb{R} \; , \; [j^2_{x_0}\,\!g] \longrightarrow K_g(x_0) \plane
\]

In other words, the curvature classifies 2–jets of Riemannian metrics in dimension $n = 2$.

In this case there is just one stratum, the generic one, whose type is $\,\!\{O(2)\}$.

Case $r = 3$.

The moduli space is a closed semiplane:

\[
M^3_2 \longrightarrow \mathbb{R} \times [0, +\infty) \; , \; [j^3_{x_0}\,\!g] \longrightarrow (K_g(x_0), |\text{grad}_{x_0}K_g|^2) \plane
\]

That is to say, the curvature and the square of the modulus of the gradient of the curvature classify 3–jet metrics in dimension $n = 2$.

18
Now we have two different strata:

The generic stratum $S_{[O_1]} = \mathbb{R} \times (0, +\infty)$, with type $[D_1]$. This stratum is the set of all classes of jets $j^3_{x_0}g$ verifying $\nabla_{x_0}K_g \neq 0$ (in this case, the group of automorphisms is the group of order 2 generated by the reflection across the vector $\nabla_{x_0}K_g$).

The non-generic stratum $S_{[O(2)]} = \mathbb{R} \times \{0\}$, with type $[O(2)]$, is the set of all classes of jets $j^3_{x_0}g$ verifying $\nabla_{x_0}K_g = 0$ (which are invariant with respect to every orthogonal transformation of normal coordinates).

Note: If we consider metrics of signature $(+, -, -)$, instead of Riemannian metrics, then the map

$$\mathbb{M}_2^3 \longrightarrow \mathbb{R} \times [0, +\infty)$$

is not injective, that is, differential invariants do not classify 3-jet metrics of signature $(+, -, -)$. To illustrate this, consider two metrics g, \tilde{g} of signature $(+, -, -)$, such that $K_g(x_0) = \tilde{K}_g(x_0)$, $\nabla_{x_0}K_g = 0$ and $\nabla_{x_0}\tilde{K}_g$ is a non-zero isotropic vector with respect to \tilde{g}_{x_0}. Both jets $j^3_{x_0}g, j^3_{x_0}\tilde{g}$ cannot be equivalent (because the gradient of the curvature at x_0 equals zero for the first metric, whereas it is non-zero for the other one), but its differential invariants coincide: $K_g(x_0) = \tilde{K}_g(x_0)$ and $|\nabla_{x_0}K_g|^2 = |\nabla_{x_0}\tilde{K}_g|^2 = 0$.

Case $r = 4$.

A set of generators for differential invariants of order 4 is given by the following five functions:

$$p_1(j^4_{x_0}g) = K_g(x_0),$$
$$p_2(j^4_{x_0}g) = |\nabla_{x_0}K_g|^2,$$
$$p_3(j^4_{x_0}g) = \text{trace (Hess}_{x_0}K_g),$$
$$p_4(j^4_{x_0}g) = \text{det (Hess}_{x_0}K_g),$$
$$p_5(j^4_{x_0}g) = \text{Hess}_{x_0}K_g(\nabla_{x_0}K_g, \nabla_{x_0}K_g),$$

where $\text{Hess}_{x_0}K_g := (\nabla dK_g)_{x_0}$ stands for the hessian of the curvature function at x_0.

These above functions satisfy the following inequalities:

$$p_2 \geq 0, \quad p_3^2 - 4p_4 \geq 0, \quad (2p_5 - p_2p_3)^2 \leq p_2^2(p_3^2 - 4p_4).$$

To say it in other words, these five differential invariants define an isomorphism of differentiable spaces

$$(p_1, \ldots, p_5) : \mathbb{M}_2^4 \longrightarrow Y \subset \mathbb{R}^5$$

Y being the closed subset in \mathbb{R}^5 determined by the inequalities

$$x_2 \geq 0, \quad x_2^3 - 4x_4 \geq 0, \quad (2x_5 - x_2x_3)^2 \leq x_2^2(x_3^2 - 4x_4).$$

In this case, the moduli space \mathbb{M}_2^4 has the following four strata:

- The generic stratum of all classes of jets $j^4_{x_0}g$ verifying that $\nabla_{x_0}K_g$ is not an eigenvector of $\text{Hess}_{x_0}K_g$ (therefore, the eigenvalues of $\text{Hess}_{x_0}K_g$ are different). The type of this stratum (group of automorphisms of its jets) is $[K_1 = \{\text{Id}\}]$.

19
- The stratum of those classes of jet metrics \(j^4_{x_0} g \) verifying that \(\text{grad}_{x_0} K_g \) is a non-zero eigenvector of \(\text{Hess}_{x_0} K_g \). Its type is \([D_1]\): the group of automorphisms of each jet metric is generated by the reflection across the vector \(\text{grad}_{x_0} K_g \).

- The stratum composed of those classes of jet metrics \(j^4_{x_0} g \) with \(\text{grad}_{x_0} K_g = 0 \) and verifying that the eigenvectors of \(\text{Hess}_{x_0} K_g \) are different. The type of this stratum is \([D_2]\): the group of automorphisms of each jet metric is generated by the reflections across either eigenvector of \(\text{Hess}_{x_0} K_g \).

- The stratum of all classes of jets \(j^4_{x_0} g \) with \(\text{grad}_{x_0} K_g = 0 \) and verifying that the eigenvectors of \(\text{Hess}_{x_0} K_g \) are both equal. The type of the stratum is \([O(2)]\).

6 Appendix A: On the notion of differential invariant of metrics

The aim of this Appendix A is to discuss the notion of differential invariant and to back up the Definition 2.3 given in Section 2.

The notion of differential invariant must be understood as a particular case of the concept of regular and natural operator between natural bundles (see [5] for an exposition of the theory of natural bundles). What follows is an adaptation of this point of view, getting around, though, the concept of natural bundle.

Let \(X \) be an \(n \)-dimensional smooth manifold. Let \(M \to X \) be the bundle of semi-Riemannian metrics of a fixed signature \((p,q)\) and let \(\mathcal{M}_X \) denote its sheaf of smooth sections.

Loosely speaking, the concept of differential invariant refers to a function “intrinsically, locally and smoothly constructed from a metric”. Rigorously, as it is a local construction, a differential invariant is a morphism of sheaves:

\[
f : \mathcal{M}_X \to C^\infty_X,
\]

where \(C^\infty_X \) stands for the sheaf of smooth functions on \(X \).

The intuition of “intrinsic and smooth construction” can be encoded by saying that the morphism \(f \) also satisfies the following two properties:

1.- **Regularity**: If \(\{g_s\}_{s \in S} \) is a family of metrics depending smoothly on certain parameters, the family of functions \(\{f(g_s)\}_{s \in S} \) also depends smoothly on those parameters.

 To be exact, let \(S \) be a smooth manifold (the space of parameters) and let \(U \subseteq X \times S \) be an open set. For each \(s \in S \), consider the open set in \(X \) defined as \(U_s := \{x \in X : (x,s) \in U\} \). A family of metrics \(\{g_s \in \mathcal{M}(U_s)\}_{s \in S} \) is said to be smooth if the fibre map \(U \to S^2T^*X, (x,s) \mapsto (g_s)_x \), is smooth. In the same way, a family of functions \(\{f_s \in C^\infty(U_s)\}_{s \in S} \) is said to be smooth if the function \(U \to \mathbb{R}, (x,s) \mapsto (f_s)(x) \), is smooth.

 In these terms, the regularity condition expresses that for each smooth manifold \(S \), each open set \(U \subseteq X \times S \) and each smooth family of metrics \(\{g_s \in \mathcal{M}(U_s)\}_{s \in S} \), the family of functions \(\{f(g_s) \in C^\infty(U_s)\}_{s \in S} \) is smooth.

2.- **Naturalness**: The morphism of sheaves \(f \) is equivariant with respect to the action of local diffeomorphisms of \(X \).

 That is, for each diffeomorphism \(\tau : U \to V \) between open sets of \(X \) and for each metric \(g \) on \(V \), the following condition must be satisfied:

\[
f(\tau^* g) = \tau^*(f(g)).
\]
Taking into account the previous comments, the suitability of the following definition is now clear:

Definition 6.1. A differential invariant associated to semi-Riemannian metrics (of the fixed signature) is a regular and natural morphism of sheaves $f : \mathcal{M}_X \to \mathcal{C}_X^\infty$.

Note that this definition of differential invariant seems to be far too general, since a differential invariant $f(g)$ is not assumed a priori to be constructed from the coefficients of the metric g and their subsequent partial derivatives. As we are going to show below, this question is clarified by a beautiful result by J. Slovák.

For every integer $r \geq 0$, we denote by $J^r M \to X$ the fiber bundle of r-jets of semi-Riemannian metrics on X (of the prefixed signature). The fiber bundle $J^\infty M \to X$ of ∞-jets of semi-Riemannian metrics is not a smooth manifold, but it can be endowed with the structure of a ringed space as follows. On $J^\infty M \to X$ we consider the inverse limit topology: $J^\infty M = \lim \leftarrow J^r M$; a function on an open set $U \subseteq J^\infty M$ is said to be differentiable if it is locally the composition of one of the natural projections $U \subseteq J^\infty M \to J^r M$ with a smooth function on $J^r M$. This way, $J^\infty M$ is a ringed space, with its sheaf of differentiable functions.

In a similar manner, the structure of a ringed space is defined for the fiber of the bundle $J^\infty M \to X$ over a given point $x_0 \in X$: $J^\infty x_0 M = \lim \leftarrow J^r x_0 M$.

Theorem 6.2. (Slovák) There exists the following bijective correspondence:

$$
\begin{array}{ccc}
\{\text{differentiable functions } \tilde{f} : J^\infty M \to \mathbb{R}\} & \xrightarrow{\sim} & \{\text{regular morphisms of sheaves } f : \mathcal{M}_X \to \mathcal{C}_X^\infty\} \\
\downarrow & & \downarrow \\
\{\text{regular morphisms of sheaves } \tilde{f} : \mathcal{M}_X \to \mathcal{C}_X^\infty\} & \xrightarrow{f} & \{\text{regular morphisms of sheaves } f : \mathcal{M}_X \to \mathcal{C}_X^\infty\}
\end{array}
$$

with $f(g)(x) := \tilde{f}(j^\infty x g)$.

The result by Slovák [12] refers, with a bit more of generality, to regular morphisms between sheaves of sections of fiber bundles.

If a regular morphism $\mathcal{M}_X \to \mathcal{C}_X^\infty$ is, furthermore, natural (that is, a differential invariant), then the corresponding smooth function $\tilde{f} : J^\infty M \to \mathbb{R}$ is determined by its restriction to the fiber $J^\infty x_0 M$ of an arbitrary point $x_0 \in X$. This assertion can be expressed more precisely in the following way.

Corollary 6.3. Fixed a point $x_0 \in X$, the set of differential invariants $f : \mathcal{M}_X \to \mathcal{C}_X^\infty$ is in bijection with the set of differentiable Diff_{x_0}-invariant functions $\tilde{f} : J^\infty x_0 M \to \mathbb{R}$.

Definition 6.4. A differential invariant $f : \mathcal{M}_X \to \mathcal{C}_X^\infty$ is said to be of order $\leq r$ if the corresponding differentiable function $\tilde{f} : J^\infty M \to \mathbb{R}$ factors through the projection $J^\infty M \to J^r M$.

Reformulating Corollary 6.3 for invariants of order r, we obtain that Definition 6.4 coincides with that originally given in Section 2 (Definition 2.3).
Corollary 6.5. Fixed a point \(x_0 \in X \), the set of all differential invariants
\[f : \mathcal{M}_X \to C^\infty_X \]
of order \(\leq r \) is in bijection with the set of all smooth \(\text{Diff}_{x_0} \)-invariant functions
\[\tilde{f} : J^r_{x_0} M \to \mathbb{R}. \]

7 Appendix B: Classification of \(\infty \)-jets of metrics

In Section 4 we have seen that differential invariants of order \(\leq r \) classify \(r \)-jets of Riemannian metrics at a point (Theorem \[\text{[3]} \]). We are now going to generalize this result for infinite-order jets.

In the proof of next lemma we will use the following well-known fact ([1], Chap. IX, § 9, Lemma 6):

Let \(G \) be a compact Lie group. Every decreasing sequence of closed subgroups \(H_1 \supseteq H_2 \supseteq H_3 \supseteq \cdots \) stabilizes, that is, there exists an integer \(s \) such that \(H_s = H_{s+1} = H_{s+2} = \cdots \).

Lemma 7.1. Let \(G \) a compact Lie group and let
\[\cdots \longrightarrow X_{r+1} \longrightarrow X_r \longrightarrow \cdots \longrightarrow X_1 \]
be an inverse system of smooth \(G \)-equivariant maps between smooth manifolds endowed with a smooth action of \(G \). There exists an isomorphism of ringed spaces:
\[(\lim_{\leftarrow} X_r)/G \cong \lim_{\leftarrow} (X_r/G) \]
\[\left(\ldots, x_2, x_1 \right) \longmapsto \left(\ldots, [x_2], [x_1] \right). \]

Proof. Because of the universal quotient property, compositions of morphisms
\[\lim_{\leftarrow} X_r \longrightarrow X_r \longrightarrow X_r/G \]
\[\left(\ldots, x_2, x_1 \right) \longmapsto \left[x_r \right] \]
induce morphisms of ringed spaces
\[(\lim_{\leftarrow} X_r)/G \longrightarrow (X_r/G) \]
\[\left(\ldots, x_2, x_1 \right) \longmapsto \left[x_r \right], \]
which, for their part, because of the universal inverse limit property, define a morphism of ringed spaces
\[(\lim_{\leftarrow} X_r)/G \overset{\varphi}{\longrightarrow} \lim_{\leftarrow} (X_r/G) \]
\[\left(\ldots, x_2, x_1 \right) \longmapsto \left(\ldots, [x_2], [x_1] \right). \]

It is easy to check that this morphism is surjective. Let us see that it is also injective.

First note that, given a point \(\left(\ldots, x_2, x_1 \right) \in \lim_{\leftarrow} X_r \), we can get the decreasing sequence \(H_{x_1} \supseteq H_{x_2} \supseteq H_{x_3} \supseteq \cdots \) of closed subgroups of \(G \), where \(H_{x_k} \) stands for the
stabilizer subgroup of x_k. This chain stabilizes, since G is compact, so for a certain s
 it is verified $H_{x_s} = H_{x_{s+1}} = H_{x_{s+2}} = \cdots$

Let now $[(\ldots, x_2, x_1)]$ and $[(\ldots, x'_2, x'_1)]$ be two points in $(\operatorname{lim} X_r)/G$ having the
 same image through φ, i.e. $[x_k] = [x'_k]$, for each $k \geq 0$. Write $x'_s = g \cdot x_s$ for some
 $g \in G$. As the morphisms $X_s \to X_k$ (with $s \geq k$) are G-equivariant, it is verified that
 $x'_k = g \cdot x_k$ for every $k \leq s$.

Let us show that the same happens when $k > s$. As $[x_k] = [x'_k]$, we have $x'_k = g_k \cdot x_k$
 for a certain $g_k \in G$: applying that $X_k \to X_s$ is equivariant yields $x'_s = g_k \cdot x_s$, and then (comparing with $x'_s = g \cdot x_s$)
 $g^{-1}g_k \in H_{x_k}$; since $H_{x_k} = H_{x_k}$, it follows that $g^{-1}g_k \in H_{x_k}$, and hence the condition $x'_k = g_k \cdot x_k$ is equivalent to $x'_k = g \cdot x_k$. In conclusion, $x'_k = g \cdot x_k$ for every $k > 0$, and therefore $[(\ldots, x_2, x_1)]$ and $[(\ldots, x'_2, x'_1)]$
 are the same point in $(\operatorname{lim} X_r)/G$.

Once we have proved that φ is bijective, it is routine to check that φ is an isomorphism of ringed spaces.

Definition 7.2. Let $x_0 \in X$ and let

$$J^\infty_{x_0} M := \operatorname{lim} J^r_{x_0} M$$

be the ringed space of ∞--jets of Riemannian metrics at x_0 on X. The quotient ringed space

$$M^\infty_n := J^\infty_{x_0} M / \Diff x_0$$

is called moduli space of ∞--jets of Riemannian metrics in dimension n.

In the same fashion as for finite-order jets, the moduli space M^∞_n depends neither on the choice of the point x_0 nor on that of the n--dimensional manifold X.

For every integer $r > 0$, we have an evident morphism of ringed spaces

$$M^\infty_n \to \operatorname{lim} \Diff x_0$$

and these morphisms allow us to define another morphism of ringed spaces:

$$M^\infty_n \to \operatorname{lim} \Diff x_0$$

Theorem 7.3. There exists an isomorphism of ringed spaces

$$M^\infty_n \to \operatorname{lim} \Diff x_0$$

Proof. Fix a local coordinate system (z_1, \ldots, z_n) centered at x_0. With the same notations as in Section 3, let us define

$$\mathcal{N}^\infty := \operatorname{lim} \mathcal{N}^r.$$

In other words, \mathcal{N}^∞ is the subspace of $J^\infty_{x_0} M$ formed by all those ∞--jets at x_0 of Riemannian metrics having (z_1, \ldots, z_n) as a normal coordinate system. All lemmas in
Section 3, with their corresponding proofs, remain valid when substituting the integer ∞ for r. In particular, our Fundamental Lemma 3.4 when $r = \infty$, gives us the desired isomorphism of ringed spaces:

\[
M_n^\infty = \left(\prod_{k \geq 2} N_k \right) / O(n) = \left(\lim \left(N_2 \times \cdots \times N_r \right) \right) / O(n)
\]

(by Lemma 7.1)

\[
= \lim \left((N_2 \times \cdots \times N_r) / O(n) \right) = \lim M_n^r.
\]

\[\square\]

Corollary 7.4. Differential invariants of finite order classify ∞—jets of Riemannian metrics: Two jet metrics $j_{x_0}^\infty g$ and $j_{x_0}^\infty \bar{g}$ are equivalent if and only if for each finite-order differential invariant h it is satisfied $h(g)(x_0) = h(\bar{g})(x_0)$.

Proof. According to Theorem 7.3 we get:

\[
j_{x_0}^\infty g \equiv j_{x_0}^\infty \bar{g} \iff j_{x_0}^r g \equiv j_{x_0}^r \bar{g}, \quad \forall r \geq 0.
\]

To complete our proof, it is sufficient to use the fact that differential invariants of order $\leq r$ classify r—jet metrics (Theorem 4.3).

\[\square\]

References

[1] N. Bourbaki, Groupes et algèbres de Lie, Masson, Paris (1982).

[2] D.B.A. Epstein, Natural tensors on Riemannian manifolds, *J. Differential Geom.* 10 (1975) 631–645.

[3] J. Fogarty, Invariant Theory, W.A. Benjamin Inc., New York (1969).

[4] P.L. García & J. Muñoz, Differential invariants on the bundles of linear frames, *J. Geom. Phys.*, Vol. 7, 3 (1990) 395–418.

[5] I. Kolár, P.W. Michor & J. Slovák, Natural operations in differential geometry, *Springer-Verlag*, Berlin (1993).

[6] D. Luna, Fonctions différentiables invariantes sous l’opération d’un groupe réductif, *Ann. Inst. Fourier* 26 1 (1976) 33–49.

[7] C. Martínez, J. Muñoz & A. Valdés, On the structure of the moduli of jets of G-structures with a linear connection, *Differential Geom. Appl.* 18 (2003) 271–283.

[8] J. Muñoz & A. Valdés, Génération des anneaux d’invariants différentiels des métriques riemanniennes, *C. R. Math. Acad. Sci. Paris* 323 Série I (1996) 643–646.

[9] J. Muñoz & A. Valdés, The number of functionally independent invariants of a pseudo–Riemannian metric, *J. Phys. A: Math. Gen.* 27 (1994) 7843–7855.
[10] J.A. NAVARRO & J.B. SANCHO, \(C^\infty \)-differentiable spaces, Lecture Notes in Mathematics 1824, Springer–Verlag (2003).

[11] G.W. SCHWARZ, Smooth functions invariant under the action of a compact Lie group, Topology 14 (1975) 63–68.

[12] J. SLOVÁK, Peetre theorem for nonlinear operators, Ann. Global Anal. Geom. 6 (1988) 273–283.

[13] T.Y. THOMAS, The differential invariants of generalized spaces, Chelsea Publishing Company, New York (1991). (First edition: Cambridge University Press, 1934.)

[14] A.M. VERBOVETSKY, A.M. VINOGRAĐOV & D.M. GESSLER, Scalar differential invariants and characteristic classes of homogeneous geometric structures, (Russian) Mat. Zametki, 51 (1992), no. 6, 15–26. English translation in Math. Notes, 51 (1992), no. 5–6, 543–549.

[15] A.M. VINOGRAĐOV, Scalar differential invariants, diffieties and characteristic classes, in Mechanics, Analysis and Geometry: 200 years after Lagrange, M. Francaviglia, ed., Elsevier, Amsterdam (1991) 379–416.