Data Article

Dataset on phytochemical screening, FTIR and GC–MS characterisation of *Azadirachta indica* and *Cymbopogon citratus* as reducing and stabilising agents for nanoparticles synthesis

Oladotun P. Bolade\(^a\), Anuoluwa A. Akinsiku\(^a\), Alaba O. Adeyemi\(^b\), Akan B. Williams\(^a\), Nsikak U. Benson\(^{a,*}\)

\(^{a}\) Department of Chemistry, Covenant University, Km 10 Idiroko Road, Ota, Nigeria
\(^{b}\) Department of Biochemistry, Covenant University, Km 10 Idiroko Road, Ota, Nigeria

Abstract

The dataset for this article contains phytochemical and FTIR data for three different extracts from two indigenous medicinal plants obtained from Ogun State, Southwest Nigeria and the GC–MS characterisation data for their ethanolic extracts. To obtain this data, the leaves of *Azadirachta indica* and *Cymbopogon citratus* were collected from the premises of Covenant University, Nigeria. The plants were dried, pulverized and extracted with ethanol, distilled water and ethanol:water (50:50), before phytochemical screening (qualitative and quantitative), FTIR and GC–MS analyses were carried out. The dataset provides insight into the presence of bioactive phyto-constituents such as polyphenols and tannins as potential precursors for green-based nanoparticle synthesis.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Corresponding author.

E-mail address: nsikak.benson@covenantuniversity.edu.ng (N.U. Benson).
Specifications Table

Subject area	Chemistry, Biology
More specific subject area	Analytical Chemistry, Phytochemistry and Nanotechnology
Type of data	Table, figure, image
How data was acquired	Fourier Transform Infrared Spectroscopy (FTIR, AGILENT CARY 630) Gas Chromatography-Mass Spectroscopy (GC–MS, AGILENT 7890A GC/5977 MS)
Data format	Raw, analysed
Experimental factors	Phytochemicals (Fresh leaves were air-dried, pulverized, extracted with ethanol, distilled water, ethanol/water (1:1) and concentrated using rotary extractor under reduced pressure. Crude extracts were used for qualitative phytochemical analysis) FTIR (Range – 4000-650 cm^{−1}, Resolution – 8 cm^{−1}, Microlab PC software with ATR sampling unit) GCMS (Column - 30 mm × 0.25 mm ID × 0.25 μm film, Carrier gas - Helium, flow - 1.0 ml/min, electron ionization - 70 Ev, Software - Masshunter)
Experimental features	Phytochemical analysis of carbohydrates, tannins, saponins, flavonoids, alkaloids, anthocyanins, betacyanins, quinones, glycosides, cardiac glycosides, terpenoids, triterpenoids, phenols, coumarins, steroids, acids, FTIR scan of functional groups and GCMS scan of bioactive constituents.
Data source location	Ota, Nigeria
Data accessibility	Data included in this article
Related research article	[1] P. Dubey, P. Sharma, V. Kumar, FTIR and GC–MS spectral datasets of wax from Pinus roxburghii Sarg. needles biomass, Data Brief. 15 (2017) 615–622. doi:10.1016/j.dib.2017.09.074. [2] K.M. Hammi, M. Hammami, C. Rihouey, D. Le Cerf, R. Ksouri, H. Majdoub, GC-EI-MS identification data of neutral sugars of polysaccharides extracted from Zizyphus lotus fruit, Data Brief. 18 (2018) 680–683. doi:10.1016/j.dib.2018.01.085.

Value of the data

- The dataset provides insight into the exact phyto-constituents, which are responsible for stabilization and reduction of metal ions during nanoparticles formation, thereby aiding proposition of mechanistic pathways for these reactions.
- The data provides information on the most potent of the locally selected plants for biosynthesis of nanoparticles using readily available indigenous plants in Southwest Nigeria.
- The methods used can be extended to other indigenous plants, forming a large database capable of informing researchers on the active plant(s) for nanoparticle synthesis.
- The dataset can be used for educational purposes, drug synthesis and multidisciplinary research. Similar data articles can be found in [1,2].

1. Data

The dataset on phytochemical screening of three extracts of Azadirachta indica and Cymbopogon citratus is presented in Table 1. FTIR spectra and data of different crude extracts of each plant are presented in Figs. 1 and 2 and Table 2, respectively. GC–MS chromatogram/TIC of phyto-constituents
of ethanolic extracts of plants and identification data of each constituent is provided in Figs. 3 and 4 and Tables 3 and 4, respectively.

Table 1
Phytochemical screening of ethanol, water and ethanol/water (1:1) extracts of *Azadirachta indica* and *Cymbopogon citratus* leaves.

Biochemicals / Inference	CHO	TAN	SAP	FLA	ALK	ANTHO	BETA	QUIN	GLY	CARD-GLY	TER	TRI-TERP	PHE	COU	STE	ACIDS
Ethanol extract																
C. citratus	-	+	+	+	+	-	+	-	+	+	-	-	-	-	-	-
A. indica	-	+++	+	-	-	-	+	-	-	-	-	-	-	-	-	-
Ethanol:water (1:1) extract																
C. citratus	-	+	-	-	-	+	-	+	+	-	-	-	-	-	-	-
A. indica	-	+++	-	+	+	-	-	-	-	+	-	-	-	-	-	-
Water extract																
C. citratus	-	+	-	-	+	-	-	+	-	-	-	-	-	-	-	-
A. indica	-	+++	-	-	+	-	-	-	-	-	-	-	-	-	-	-

+ = trace amount; ++ = moderately present; +++ = highly present; - = absent.

CHO – Carbohydrates, TAN – Tannins, SAP – Saponins, FLA – Flavonoids, ALK – Alkaloids, ANTHO – Anthocyanins, BETA – Betacyanin, QUIN – Quinones, GLY – Glycosides, CARD-GLY – Cardiac, Glycosides, TER – Terpenoids, TRI-TERP – Triterpenoids, PHE – Phenols, COU – Coumarins, STE – Steroids.

Fig. 1. FTIR spectrum of three extracts of *Cymbopogon citratus* leaves.
Fig. 2. FTIR spectrum of three extracts of *Azadirachta indica* leaves.

Table 2
FTIR frequency/intensity table for ethanol, water and ethanol/water extracts of *Cymbopogon citratus* and *Azadirachta indica* leaves.

FTIR Absorption frequency (cm⁻¹)/intensity	\(C. \ citratus \) extracts	\(A. \ indica \) extracts
Ethanol	881 (m) 1048 (s) 1089 (m) 1275 (w) 1383 (w) 1640 (w) 2979 (w) 2974 (w) 3357 (m,b) – –	Ethanol 881 (m) 1048 (m) 1089 (w) – – 1640 (m) – – 2891 (w) 3316 (s,b) – –
Ethanol/water	881 (m) 1048 (m) 1089 (w) – – – – 1640 (m) – – – – 3316 (s,b) – –	Ethanol 881 (w) 1048 (w) 1089 (w) – – 1640 (m) – – – – 3264 (s,b) – –
Water	– – – – – – – – 1637 (m) – – – – 3331 (s,b) – –	Water – – – – – – – – – – – –

m – medium, s – strong, w – weak, b – broad.

Fig. 3. TIC of *Cymbopogon citratus* ethanolic extract.
Table 3
Identification of phyto-constituents in ethanolic extract of *C. citratus* leaves using GC–MS.

Ret. time	Area %	IUPAC name of compound	Mol. wt.	Mol. formula
6.92	0.2126	Cyclohexane, 1,3,5-trimethyl-, (1,3,5-trimethylcyclohexane)	126.2392	C₆H₁₈
9.14	0.2154	2-Acetylcylobutane	126.1531	C₇H₁₀O₂
9.30	0.4783	1,6-Octadien-3-ol, 3,7-dimethyl-	154.2493	C₁₀H₁₈O
		OR Linalool		
10.47	2.6532	4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-	144.1253	C₉H₁₄O₄
10.65	0.5139	Cyclooctane, ethenyl-	138.2499	C₁₀H₁₈
10.88	0.2167	Furane-2-carboxyhydradine, N₂-(1-methylhexyldieno)-	152.2334	C₁₀H₁₆O₂
11.02	0.7758	7-Oxabicyclo[4.1.0]heptane, 1-methyl-4-(1-methylthienyl)-	152.2334	C₁₀H₁₆O₂
11.87	0.2083	Oxiranecarboxaldehyde, 3,3-dimethyl-3-(4-methyl-3-pentenyl)-	168.2328	C₁₀H₁₆O₂
11.93	0.2702	Benzoic acid, 2,3-dihydro-	120.1485	C₈H₁₀O
12.29	6.6959	2,6-Octadien-3,7-dimethyl-	152.2334	C₁₀H₁₆O₂
12.49	0.6401	Geraniol	154.2493	C₁₀H₁₆O₂
12.60	2.545			
12.96	9.115	Citral	152.2334	C₁₀H₁₆O₂
13.10	1.1612	Epoxy-linalooloxide		
13.20	1.1323			
13.44	0.3872	Cyclopentane, (1-methyl)-	112.2126	C₅H₁₀
13.69	0.4762	2-Methoxy-4-vinylphenol	150.1745	C₆H₁₀O₂
13.88	0.5025	Bicyclo[2.2.2]octan-1-amine		
13.98	0.3829	3-Cyclopropylcarboxyloxydodecane		
14.49	0.217	Triallylsilane	152.3088	C₈H₁₆Si
14.58	0.1855	3-Heptanol, 2-methyl-	130.2279	C₇H₁₆O
14.64	0.1943	1,5-Heptadiene, 3,3-dimethyl-, (E)-		
14.95	0.8738	Geranyl acetate	196.2860	C₁₂H₂₂O₂
15.17	0.2231	Cyclopropanemethanol,α,2-dimethyl-2-(4-methyl-3-pentenyl)-, [1,α, (R*)]-		
15.30	0.514	Vanillin	152.1473	C₁₀H₁₆O₂
15.65	0.3534	3,5-Heptadien-3-ethylidene-6-methyl-	150.2176	C₁₀H₁₆O₂
16.09	0.4413	Adamantan	136.2340	C₁₀H₁₆
16.40	0.4469	3-Cyclopropylpropionic acid, but-3-yn-2-yl ester	177.457	C₇H₁₄ClO
16.59	0.4452	2-Propanol, 1,1,1-trichloro-2-methyl-	177.457	C₇H₁₄ClO
16.95	0.9541	2,6-Octadien-3,7-dimethyl-	152.2334	C₁₀H₁₈O₂
17.44	0.7992	3-Cyclohexene-1-acetaldehyde,α,4-dimethyl-	152.2334	C₁₀H₁₈O₂
17.76	0.6387	3-n-Propyl-2-pyrazolin-5-one	126.2334	C₈H₁₀N₂O
17.85	0.3297	4-Methyl-5H-furan-2-one	98.0999	C₈H₁₀O₂
18.11	0.3635	Dodecanoic acid	200.3178	C₁₁H₂₄O₂
19.00	0.1681	1-Methyl-3-n-propyl-2-pyrazolin-5-one	140.1830	C₈H₁₄N₂O
19.21	0.4101	Selina-6-en-4-ol		
Table 3 (continued)

Ret. time	Area %	IUPAC name of compound	Mol formular	Mol wt.
19.76	0.1779	2-(2-Hydroxyethylthio)proionic acid	C₉H₁₈O₂	228.3709
20.89	0.2064	Pheny lacetiformic acid, 4-hydroxy-3-methoxy-	C₁₀H₁₂O₃	194.1840
21.23	0.3042	Tetradecanoic acid	C₁₄H₂₈O₂	228.3709
21.45	0.2678	Benzene, 1,1'-ethyldenebis-	C₁₄H₁₄	182.2610
21.56	0.2124	Pyridine, 4-[[1,1-dimethylthyl]thio]-	C₉H₁₄N	159.1616
22.30	0.3018	p-Hydroxycinnamic acid, ethyl ester	C₁₀H₁₀O₃	194.1840
22.52	0.3048	2,4-Dihydroxybenzoic acid, 3-(4-hydroxy-3-methoxyphenyl)-	C₁₂H₁₀O₄	256.4241
22.64	0.2731	Benzene, 1,1'-ethylidenebis-	C₁₄H₁₄	182.2610
22.75	0.2752	Pyridine, 4-[[1,1-dimethylthyl]thio]-	C₉H₁₄N	159.1616
23.02	0.3048	2,4-Dihydroxybenzoic acid, 3-(4-hydroxy-3-methoxyphenyl)-	C₁₂H₁₀O₄	256.4241
23.23	0.7845	Phyto l	C₂₀H₄₀O	296.5310
23.56	0.3048	2,4-Dihydroxybenzoic acid, 3-(4-hydroxy-3-methoxyphenyl)-	C₁₂H₁₀O₄	256.4241
23.71	0.3048	2,4-Dihydroxybenzoic acid, 3-(4-hydroxy-3-methoxyphenyl)-	C₁₂H₁₀O₄	256.4241
24.05	0.3311	Heptadecanoic acid	C₁₇H₃₄O₂	270.4507
24.45	0.3048	2,4-Dihydroxybenzoic acid, 3-(4-hydroxy-3-methoxyphenyl)-	C₁₂H₁₀O₄	256.4241
24.64	0.1456	Hexadecanoic acid, ethyl ester	C₁₈H₃₆O₂	284.4772
24.85	0.3048	2,4-Dihydroxybenzoic acid, 3-(4-hydroxy-3-methoxyphenyl)-	C₁₂H₁₀O₄	256.4241
25.05	0.3048	2,4-Dihydroxybenzoic acid, 3-(4-hydroxy-3-methoxyphenyl)-	C₁₂H₁₀O₄	256.4241
25.45	0.2124	Pyridine, 4-[[1,1-dimethylthyl]thio]-	C₉H₁₄N	159.1616
25.64	0.3048	2,4-Dihydroxybenzoic acid, 3-(4-hydroxy-3-methoxyphenyl)-	C₁₂H₁₀O₄	256.4241
26.03	1.6582	Diboroxane, triethyl[(4-methyl-2-pyridyl)amino]-	C₁₈H₂₈N	280.4455
26.30	3.8736	9,12-Octadecadienoic acid (ZZ)-	C₂₀H₂₈O₂	278.4296
26.71	3.6845	9,12,15-Octadecatrienoic acid, (ZZ,Z)-	C₂₁H₃₀O₂	278.4296
26.79	0.1683	Cyclooctene, 3-ethyl-	C₈H₁₀O	124.1555
26.88	0.3048	2,4-Dihydroxybenzoic acid, 3-(4-hydroxy-3-methoxyphenyl)-	C₁₂H₁₀O₄	256.4241
26.97	0.988	Ethyl 9,12,15-octadecatrienoate	C₂₀H₃₆O₂	312.5304
27.11	0.2389	p-Menth-2-en-9-ol, trans-	C₁₈H₃₆O	278.4296
27.24	0.3048	2,4-Dihydroxybenzoic acid, 3-(4-hydroxy-3-methoxyphenyl)-	C₁₂H₁₀O₄	256.4241
27.44	0.2377	5,9-Undecadien-2-one, 6,10-dimethyl-, (E)-	C₁₄H₁₄O	231.2700
27.57	0.2752	Naphtho[2,1-b:3,4-b']difuran, 2,3,8,9-tetrahydro-2,9-dimethyl-	C₁₄H₁₄O	231.2700
27.77	0.4932	Cyclohexanol, 5-methyl-2-(1-methylethenyl)-	C₁₀H₁₆O	154.3493
28.62	0.2172	1,6,10,14-Hexadecatetraen-3-ol, 3,7,11,15-tetramethyl-, (E,E)-	C₂₀H₃₄O₂	290.4834
29.42	0.4722	Eicosanoic acid	C₂₀H₄₀O	312.5304
29.65	0.2219	Methyl 19-methyl-ecisanoate	C₂₀H₄₀O	312.5304
30.77	0.3075	9-Tricosene, (Z)-	C₂₃H₄₆	322.6113
31.86	0.527	9-Tricosene, (Z)-	C₂₃H₄₆	322.6113
34.22	0.2424	9-Tricosene, (Z)-	C₂₃H₄₆	322.6113
36.85	0.3863	9-Tricosene, (Z)-	C₂₃H₄₆	322.6113
37.81	2.8508	9-Tricosene, (Z)-	C₂₃H₄₆	322.6113
38.92	2.0079	9-Tricosene, (Z)-	C₂₃H₄₆	322.6113
39.21	0.8589	Butane, 2,2-bis(5-acetyl-2-thienyl)-	C₇H₈O₂	194.1840
39.25	0.1678	Squalene	C₁₇H₃₆	240.4677
39.98	4.4543	Nonacosane	C₃₀H₆₀	410.7180
39.65	0.8589	Butane, 2,2-bis(5-acetyl-2-thienyl)-	C₇H₈O₂	194.1840
40.21	1.9876	Tetratriacontane	C₃₄H₇₁O	480.8494
40.48	0.2395	9,19-Cyclolanost-24-en-3-ol, (3.beta.)-	C₃₀H₅₁O	430.7061
40.91	0.4325	4-[5-[(3,4-Diethoxy-benzyl]-[1,2,4]oxadiazol-3-yl]-furazan-3-ylamine	C₃₀H₅₁O	430.7061
Table 3 (continued)

Ret. time	Area %								
41.48	0.6734	Cannabidiol		41.73	0.8292	Eicosane		43.54	0.3269
41.94	0.5473	Cyclopropane-1-carboxamide, 2-butyl-N-(5,6,7,8-tetrahydro-7,7-dimethyl-5-oxoquinazolin-2-yl)-		42.67	0.382	3-Methoxy-17beta-(O-nitrobenzoyloxy)-estra-1,3,5(10)-triene		43.30	0.1722

Table 4

Identification of phyto-constituents in ethanolic extract of *A. indica* leaves using GC–MS.

Ret. time	Area %								
6.85	0.263	Thiazole, 4,5-dihydro-2-methyl-		8.00	0.4441	2-Hexanoic acid		8.67	0.1883
10.43	4.0847	4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-		11.42	0.2128	N-Aminopyrrolidine		11.76	0.4228
11.83	0.2203	D-Alanine, N-allyloxycarbonyl-, decyl ester		12.04	0.1826	2(1H)Pyrimidinone,4-amino-1,1-dimethyl-		12.47	0.2256
12.61	0.2274	N-[5-[3,4-Dimethoxy-benzyl]-[1,3,4]thiadiazol-2-yl]-3-fluoro-benzamide		13.42	0.3247	Malic Acid		13.67	0.2593
15.56	0.2434	1H-Cycloprop[e]azulene, 1a,2,3,4,4a,5,6,7b-octahydro-1,1,4,7-tetramethyl-, [1aR-(1a.alpha.,4.alpha.,4a.beta.,7b.alpha.]-		15.75	0.1914	trans-Cinnamic acid		15.94	0.2789
16.17	0.0296	Dodecanoic acid, ethyl ester		16.23	0.1632	L-Proline, 1-acetyl-		16.54	0.1983
16.89	0.3327	Cycloloxane, 1-ethenyl-1-methyl-2-(1-methylene)-4-(1-methylene)-		17.37	0.0883	2-Hydroxy-1-(1’-pyrrolidyl)-1-buten-3-one		17.96	0.1632
17.96	0.0792	Palmitoleic acid		18.08	0.0193	Dodecanoic acid		18.19	0.3327
18.30	0.2576	Fumaric acid, cyclobutyl ethyl ester		18.54	0.2239	Phosphate, methyl(1-methylethyl)phenyl-		18.78	0.1632
18.78	0.0792	Carbamic acid, methylphenyl-, ethyl ester		19.09	0.2487	Ethyl.alpha.-d-glucopyranoside		20.22	0.3267
20.22	0.3267	D-Glucopyranoside, methyl		20.29	0.2465	d-Glycerol-gluco-heptose		21.54	0.2506
21.54	0.2506	Sorbitol		22.32	0.5687	Piperidine, 1-(1-penteny1)-		22.53	0.2716
22.53	0.2716	L-Galactitol		22.90	0.2182	Cyclohexane, 1,5-diisopropyl-2,3-dimethyl-		23.91	0.2894
23.91	0.2894	Palmitoleic acid		24.33	7.424	n-Hexadecanoic acid		24.40	0.1754
24.40	0.1754	d-Oxatricyclo[4.4.1.0(1,6)jundecan-2-ol		24.63	1.0398	Hexadecanoic acid, ethyl ester		25.54	0.1899
25.54	0.1899	Heptadecanoic acid		25.80	0.4054	3-Heptanol, 3,5-dimethyl-		26.31	11.5639
26.31	11.5639	Phytol		26.71	9.7212	9,12,15-Octadecatrienoic acid, (Z,Z,Z)-		26.89	1.5401
26.89	1.5401	Octadecanoic acid		27.04	7.424	n-Hexadecanoic acid		27.04	7.424

Mol. wt.

Ret. time	Area %								
C21H30O2	314.4617	C20H42	282.5475	C21H30O2	314.4617	C20H42	282.5475	C21H30O2	314.4617

Mol. wt.
Ret. time	Area %	IUPAC name of compound	Mol formular	Mol weight
26.97	1.4276	Ethyl 9,12,15-octadecatrienoate	C_{20}H_{38}O_2	312.5304
27.25	0.329	Octadecanoic acid, ethyl ester	C_{10}H_{20}O_2	300.5026
27.58	0.2923	Naphtho[2,1-b:7,8-b']difuran, 1,2,9,10-tetrahydro-2,9-dimethyl-	C_{10}H_{20}O_2	300.5026
28.06	0.2169	1-Heneicosyl formate	C_{20}H_{42}O_2	340.5836
28.40	0.2843	Benzyl-beta-d-glucoside	C_{10}H_{18}O_4	183.1614
29.02	0.213	Z.Z-8,10-Hexadecadien-1-ol acetate	C_{20}H_{42}O_2	326.5792
29.28	0.6416	Eicosanoic acid	C_{20}H_{40}O_2	320.5304
29.65	0.2674	Methyl 19-methyl-eicosanoate	C_{20}H_{42}O_2	320.5304
30.78	0.2073	Cyclotetradecane, 1,7,11-trimethyl-4-(1-methylethyl)-	C_{20}H_{40}O_2	320.5304
30.82	0.245	Eicosane	C_{20}H_{40}O_2	90.1928
30.96	1.0086	Hexadicanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester	C_{10}H_{20}O_4	300.5026
31.07	0.254	Glycerol 1-palmitate	C_{10}H_{20}O_2	300.5026
31.41	0.2199	Bis(2-ethylhexyl) phthalate	C_{20}H_{42}O_2	326.5792
31.55	0.2299	Docosanoic acid	C_{20}H_{40}O_2	326.5792
31.87	0.6983	Nonadecanoic acid, ethyl ester	C_{10}H_{20}O_4	300.5026
32.64	0.2932	Cyclopentadecanone, 2-hydroxy-	C_{10}H_{20}O_2	300.5026
32.70	0.2054	9,12,15-Octadecatrienoic acid, ethyl ester, (Z,Z,Z)-	C_{20}H_{42}O_2	326.5792
32.95	3.8689	Ethanol, 2-(octadecyloxy)-	C_{20}H_{40}O_2	326.5792
33.01	1.9763	Linolenic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester (Z,Z,Z)-	C_{20}H_{40}O_2	326.5792
33.09	0.309	Benzene, 1,2-dimethoxy-4-nitro-	C_{8}H_{8}NO_4	183.1614
33.17	0.8062	Fumaric acid, pent-4-en-2-yl tridecyl ester	C_{20}H_{40}O_2	326.5792
33.41	0.1787	Squalene	C_{30}H_{60}O_2	412.6908
33.59	0.1721	Octacosyl acetate	C_{30}H_{60}O_2	412.6908
33.59	0.213	1-Nonadecene	C_{19}H_{38}O_2	520.7581
33.96	0.8867	4-Cyclohexene-1,2-dicarboximide, N-butyl-, cis-	C_{20}H_{42}O_2	400.6801
34.31	0.1877	Triacontyl acetate	C_{30}H_{60}O_2	412.6908
34.31	0.1877	Triacontyl acetate	C_{30}H_{60}O_2	412.6908
34.51	0.1877	Triacontyl acetate	C_{30}H_{60}O_2	412.6908
34.71	0.1877	Triacontyl acetate	C_{30}H_{60}O_2	412.6908
34.96	0.1877	Triacontyl acetate	C_{30}H_{60}O_2	412.6908
35.19	0.1877	Triacontyl acetate	C_{30}H_{60}O_2	412.6908
35.25	0.1877	Triacontyl acetate	C_{30}H_{60}O_2	412.6908
35.66	0.1877	Triacontyl acetate	C_{30}H_{60}O_2	412.6908
35.91	0.1877	Triacontyl acetate	C_{30}H_{60}O_2	412.6908
36.48	0.1877	Triacontyl acetate	C_{30}H_{60}O_2	412.6908
36.84	0.1877	Triacontyl acetate	C_{30}H_{60}O_2	412.6908
37.01	0.1877	Triacontyl acetate	C_{30}H_{60}O_2	412.6908
37.29	0.1877	Triacontyl acetate	C_{30}H_{60}O_2	412.6908
38.09	0.1877	Triacontyl acetate	C_{30}H_{60}O_2	412.6908
38.36	0.1877	Triacontyl acetate	C_{30}H_{60}O_2	412.6908
38.74	0.1877	Triacontyl acetate	C_{30}H_{60}O_2	412.6908
39.18	0.1877	Triacontyl acetate	C_{30}H_{60}O_2	412.6908
39.66	0.1877	Triacontyl acetate	C_{30}H_{60}O_2	412.6908
40.00	0.1877	Triacontyl acetate	C_{30}H_{60}O_2	412.6908
40.21	0.1877	Triacontyl acetate	C_{30}H_{60}O_2	412.6908
40.48	0.1877	Triacontyl acetate	C_{30}H_{60}O_2	412.6908
40.91	0.1877	Triacontyl acetate	C_{30}H_{60}O_2	412.6908
41.36	0.1877	Triacontyl acetate	C_{30}H_{60}O_2	412.6908
41.47	0.1877	Triacontyl acetate	C_{30}H_{60}O_2	412.6908
41.61	0.1877	Triacontyl acetate	C_{30}H_{60}O_2	412.6908
41.93	0.1877	Triacontyl acetate	C_{30}H_{60}O_2	412.6908
42.65	0.1877	Triacontyl acetate	C_{30}H_{60}O_2	412.6908
2. Experimental design, materials and methods

2.1. Sample collection

Fresh leaves of two (2) indigenous plants namely Cymbopogon citratus and Azadirachta indica were collected in March 2018 from Covenant University, Nigeria. The leaf samples were thoroughly washed in distilled water before air-drying at room temperature for 21 days. Dried leaves were then pulverized and preserved in airtight containers until further use.

2.2. Sample preparation and characterisation

For phytochemical screening, 25 g of pulverized plant leaves was extracted with 125 mL of three solvents namely; ethanol, distilled water and ethanol/water (1:1) for 72 h. The plant extracts were filtered and concentrated using rotary evaporator under reduced pressure. Preliminary phytochemical analysis was carried out to test for the presence of tannins, saponins, flavonoids, alkaloids, anthocyanins, betacyanins, quinones, glycosides, cardiac glycosides, terpenoids, phenols, coumarins, steroids and acids in all the three extracts following the standard test methods [3,4].

Also, 10 g of each powdered plant material was extracted with ethanol, distilled water and ethanol/distilled water (1:1), respectively, for 72 h. The extracts were filtered and concentrated to 1 mL using BUCHI rotary evaporator under reduced pressure. Then, 1 mL of crude ethanolic, water and ethanol/water extracts were taken for FTIR analysis, while 1 mL ethanolic extracts were taken in amber GC vials for GC–MS analysis.

2.3. Fourier transform infrared spectroscopy analysis

The extracts were analysed using Agilent Cary 630 FTIR spectrometer equipped with Microlab PC software with ATR sampling unit with a resolution of 8 cm⁻¹ and scan range of 4000 cm⁻¹ to 650 cm⁻¹.

2.4. Gas chromatography mass spectroscopy analysis

The GC–MS analysis was carried out using Agilent 7890 A gas chromatograph coupled with a 5977 A mass spectrometer. The temperature programme of the GC was maintained at an initial temperature of 50 °C with a hold for 1 min, followed by gradual increase to 300 °C at 7 °C/min for 14 min. 1 μL of each sample was injected in the split mode (split ratio 1:10). The identification of components was based on retention time on the capillary column and matching the GC mass spectra with the National Institute of Standards and Technology (NIST) library.

Acknowledgements

The authors are thankful to Covenant University, Nigeria for providing institutional and publication support.
Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.08.133.

References

[1] P. Dubey, P. Sharma, V. Kumar, FTIR and GC–MS spectral datasets of wax from Pinus roxburghii Sarg. needles biomass, Data Brief 15 (2017) 615–622. https://doi.org/10.1016/j.dib.2017.09.074.

[2] K.M. Hammi, M. Hammami, C. Rihouey, D. Le Cerf, R. Ksouri, H. Majdoub, GC-EI-MS identification data of neutral sugars of polysaccharides extracted from Zizyphus lotus fruit, Data Brief 18 (2018) 680–683. https://doi.org/10.1016/j.dib.2018.01.085.

[3] V. Varadharajan, U.K. Janarthanan, V. Krishnamurthy, Physicochemical, phytochemical screening and profiling of secondary metabolites of Annona squamosa leaf extract, World J. Pharm. Res. 1 (2012) 1143–1164.

[4] S. Ali, M.R. Khan, M.S. Irfanullah, Z. Zahra, Phytochemical investigation and antimicrobial appraisal of Parrotiopsis jacquemontiana (Decne) Rehder, BMC Complement Altern. Med. 18 (43) (2018) 1–15. https://doi.org/10.1186/s12906-018-2114-z.