The influence of immediately loaded basal implant treatment on patient satisfaction

CURRENT STATUS: UNDER REVIEW

BMC Oral Health BMC Series

Fadia Awadalkreem fadiadent@hotmail.com
Universite Clermont Auvergne Faculte de Chirurgie Dentaire
Corresponding Author
ORCID: 0000-0001-9185-2492

Nadia Khalifa
University of Sharjah College of Medicine

Asim Satti
Khartoum State Ministry Of Health

Ahmed Mohamed Suleiman
University of Khartoum, Faculty of Dentistry

DOI: 10.21203/rs.2.18984/v1

SUBJECT AREAS Head & Neck Surgery

KEYWORDS Patient Satisfaction, Basal implants, Implant Supported Prosthesis
Abstract

Background: Improving patient satisfaction and quality of life is of great importance when considering the different prosthetic treatment options for patients with severely resorbed residual alveolar ridges. We aimed to evaluate and compare patients’ satisfaction when changing from fixed, removable, and/or conventional implant prostheses to basal implant-supported prostheses.

Methods: Sixty patients with a history of fixed, removable, and/or conventional implant prostheses who received basal implant-supported prostheses (BCS Ö, IHDE Implant System) were included in this study. Direct interviews were conducted using a four-section questionnaire that covered sociodemographic data, clinical examination, information on previous prostheses, and new implant information. The obtained data were statistically analysed using a Wilcoxon signed-rank test and chi-square test.

Results: Patients were predominantly female, partially edentulous, and aged between 40 and 59 years. Patients’ general satisfaction with basal implants was very high (7.7 out of 8). Patients’ satisfaction with comfort, mastication, speech, and aesthetics significantly improved with the new basal implants. Males aged between 40 and 59 years and patients who had previously used both fixed and removable prostheses were generally the most satisfied. Although some patients had complaints, they still had high satisfaction and would choose the same treatment modality again.

Conclusions: Basal implant-supported prostheses have a positive impact on oral health and highly increase patients’ satisfaction.
INTRODUCTION

The ultimate goal of dental and orofacial treatment is not only to treat oral disease but also to improve patients’ quality of life.1 Tooth decay, periodontal disease, trauma, tumour resection, and orthognathic treatment are the most common causes of tooth loss,2 resulting in aesthetic, functional, psychological, and social implications2–4 that reduce patients’ quality of life.5,6

Many prosthetic options have been made available for replacing missing teeth, including fixed, removable (acrylic and metallic dentures), and implant-supported prostheses.7,8 The choice between the different options depends on many factors such as the patient’s age, gender, medical condition, occupation, socioeconomic status, number and position of missing teeth, condition of the remaining teeth, opposing dentition, quality and quantity of residual bone, dentist and technician expertise, and patient preference.9

Fixed prostheses and removable dentures have been the traditional methods for replacing missing teeth.7,8 However, in cases of severe ridge resorption, these methods have many drawbacks, such as loss of retention, instability, difficulty in mastication, speech problems, and patient discomfort—all issues that negatively impact patient satisfaction.10–12

With recent advances in dentistry, implants are now considered the gold standard treatment for replacing missing teeth. Many implant systems have been developed and distributed in the dental market, one of which is the basal implant.12–22 In this system, the implant is anchored to the basal/cortical bone,12–22 which is useful in cases of severe alveolar ridge resorption, when bone grafting is prohibited due to
the patient’s general medical condition, and when a more conservative treatment with lower cost is needed.12−14,16,20−22 The BCS\textregistered implant is a special type of basal implant, consisting of one piece that is inserted through a crestal approach, just like the other endo-osseous implants, and then anchored deeply inside the basal bone through its horizontal plates.12−14,19 Lazarov13 revealed in a prospective cohort study that the use of Strategic Implant\textregistered prosthesis (BECES/BCS, KOS, KOS Plus, and BOI) is a safe and efficient procedure with a high success rate and without peri-implantitis. He followed up 1019 BECES/BCS cases for more than 48 and up to 57 months and reported a cumulative survival rate of 97.5%.

Several studies8,11,23−31 have been conducted to evaluate patients’ satisfaction with endo-osseous implant-supported prostheses using a number of parameters including mastication, aesthetics, speech, comfort, and overall satisfaction, while other studies32−40 have used quality of life questionnaires such as the Oral Heath Impact Profile and the Geriatric Oral Health Assessment Index to evaluate patient satisfaction and improvement in oral-health-related quality of life.

Although the use of basal implant-supported prosthesis has been documented as an alternative treatment for patients with severe ridge resorption,12−22 there is a paucity of knowledge on how this treatment affects patients’ satisfaction and quality of life compared with their previous prosthetic treatment. To our knowledge, this is the first study to consider the evaluation of patient satisfaction following fixed immediately loaded basal implant-supported prosthesis. Therefore, this study aimed to evaluate and compare patients’ satisfaction when changing from fixed, removable, and/or conventional implant prostheses to basal implant-supported prostheses.
MATERIALS AND METHODS

Patient selection and informed consent

The study was approved by the ethical committee of Khartoum Dental Teaching Hospital (Khartoum, Sudan) and the Sudanese Ministry of Health, State Khartoum, number: [WK/OS/ AETEA/44/1]. The study was undertaken with the understanding and written consent of each participant and in accordance with the Declaration of Helsinki.

After approval, all the patients planning to receive BCS® basal implants (Dr. Ihde Dental AG, Gommiswald, Switzerland) at the Implant Department at Khartoum Dental Teaching Hospital between December 2014 and December 2017 were screened using the following criteria: 1) insufficient residual bone volume preventing the use of conventional implant unless preceded with a bone grafting procedure that was precluded due to patient general health, patient request for more conservative treatment, and/or financial circumstances; 2) history of wearing fixed, removable, and/or conventional implant prosthesis; 3) patient’s willingness to participate in the study after a full description of the study protocol and signing the informed consent form.

Surgical and prosthetic procedure

All the patients were treated by the same maxillofacial surgeon and prosthodontist. Implant osteotomy was performed under infiltration local anaesthesia using the flapless technique. Three to ten BCS+ basal implants (3.5 or 4.5 mm width × 14, 17, 20, 23, 26, and 29 mm length) were inserted in each jaw using the conventional protocol (Fig. 1a, b). Implant length and width were determined using panoramic and cone beam computed tomography (CT) views. The primary fixation torque was
35 Ncm for all the implants. Implants were splinted using a metal framework, over which an acrylic or porcelain veneer material were added according to the hard and soft tissue loss. Immediate functioning circular and/or segment bridges were constructed and cemented within 3 days of insertion. Patients were provided with oral hygiene instructions, and follow-up visits were planned at 1 week and 1, 3, 6, and 12 months thereafter. At each follow-up visit, both clinical and radiographical examinations were conducted. Complications were reported and dealt with.

Questionnaire design

Direct interviews were conducted using a questionnaire published by Zitzmann and Marinello\(^26\) with some modifications. Our questionnaire consisted of four sections. Section A contained seven socio-demographic items: patient’s name, code, age, gender, occupation, residence, and telephone number. Section B comprised the clinical examination of the patient (i.e. dental status chart). Section C contained previous prosthesis data: type of previous restoration, duration of prosthesis, evaluation of previous prosthesis (i.e. satisfaction with comfort, mastication, appearance, and speech), reasons for change, how the patient found out about the new implant system, and the patient’s expectations for the new system. Section D contained basal implant data: evaluation of basal implant prosthesis (i.e. satisfaction with comfort, mastication, appearance, and speech), patient’s complaints, dentist visits required after treatment, and probability of choosing this type of treatment again. Sections A, B, and C were completed before the implant treatment, while section D was completed after 1 year of prosthesis’s functioning except the patient’s complaint data, which were addressed in the first follow up visit (one week after implant insertion).
Patient satisfaction measurement

Participants rated their level of satisfaction regarding comfort, speech, appearance, and mastication as excellent (2), average (1), or poor (0). The overall satisfaction was the sum of the patient’s comfort, speech, appearance, and mastication scores, calculated for the previous prosthesis and the new basal implant; therefore, it ranged from 0 to 8.

Data were collected, tabulated, and statistically analysed using IBM SPSS version 22. A p value < 0.05 was considered statistically significant. Wilcoxon signed-rank and chi-square tests were used to analyse the data.

RESULTS

Participants’ characteristics

A total of 60 patients were enrolled in the study, 37 (61.7%) of whom were female and 23 (38.3%) male. The age of the patients ranged from 20 to 73 years. Patients were categorised into three age groups, and the largest group was 40–59 years (34, 56.7%). Clinical examination revealed that half of the patients (51.7%) were partially edentulous (Table 1).

Participants’ knowledge of basal implants

Regarding how the patients had heard about basal implants, 90% had been referred to the implant department by other dentists, 11.7% had heard about implant treatments on the television, 3.3% were advised about implants by their friends, and 3.3% had read about implant treatments in newspapers and on the Internet (Table 2).

Participants’ expectations

Regarding their expectations about implant treatment, nearly all patients (98.3%
expected a fixed treatment modality, 49% expected to improve their mastication, 39% expected to improve their aesthetics, and 50% expected better retention of their prosthesis (Table 2).

Types of previous prosthesis

All patients had a history of tooth replacement: 35 (58.3%) had removable prostheses, 19 (31.7%) had fixed prostheses, 4 (6.7%) had both fixed and removable prostheses, and 2 (3.3%) had conventional implant-supported prostheses (Table 3).

Reasons for prosthesis change

As for the reasons for changing their previous prosthesis, the main reasons for changing fixed prosthesis were caries/fracture of the abutment (65.2%) and poor retention (39.1%), while the main reasons for changing removable prosthesis were poor retention (56.4%) and patient discomfort (33.3%). Most patients mentioned more than one reason (Table 3).

Patient satisfaction

The Wilcoxon signed-rank test showed a statically significant difference between the mean scores of patients’ overall satisfaction with the previous prosthesis (5.4 ± 1.7) and the basal implant (7.7 ± 0.7) (p = 0.0001*) (Fig. 2, Table 4).

The chi-square test showed a statistically significant difference in patients’ satisfaction with comfort, mastication, speech, and aesthetics when comparing the previous prosthesis with the basal implant (Table 4). More than half of the patients (55%) evaluated their satisfaction with comfort with the previous prosthesis as average, whereas 96.7% rated it as excellent with the new implant (p = 0.0001).

Most patients (93.3%) assessed their satisfaction with mastication as excellent after the implant treatment, whereas 43.3% rated it as average with the previous
prosthesis (p = 0.0001). About half of the patients (56.7%) evaluated their satisfaction with the aesthetics of their previous prosthesis as excellent, which increased to 88.3% with the basal implant (p = 0.0001). A total of 76.7% of the patients rated their speech with their previous prosthesis as excellent, which increased to 93.3% with the new implant (P = 0.034) (Table 5).

None of the patients needed or presented for an emergency visit after the implant treatment, although some presented at the follow-up visits with treatable complaints that were dealt with (Table 6). The following complaints were included: amount of teeth shown (3.3%), problem in S sound phonation (3.3%), difficulty in maintaining oral hygiene instruction (1.7%), discomfort (1.7%), and spaces between the teeth (1.7%) (Table 6). However, during their scheduled follow-up visits, all patients insisted they would choose the same treatment modality again.

The Wilcoxon signed-rank test showed a statistically significant difference between previous and current prosthesis satisfaction for both genders (p = 0.001*, p = 0.001*) and across all age groups (p = 0.004*, 0.001*, 0.007*), and patients aged 40–59 showed a higher improvement in satisfaction than the other age groups (Table 7).

DISCUSSION

The main goal of oral rehabilitation is not only to replace missing teeth with a prosthesis that will last for life but also to improve patients’ quality of life and satisfaction. The latter relies on many factors, such as function (mastication, speech), comfort, aesthetics, and self-esteem.4

According to the existing literature,8,11,23–31 patient satisfaction is evaluated using both general and specific questions that focus on a particular aspect in order to
avoid the false positive responses associated with general questions. The questionnaire used in this study contained both general parameters (overall satisfaction) and specific parameters most commonly used in previous studies to investigate patients’ oral health satisfaction, i.e. comfort, appearance, mastication, and speech.$^8,11,23–31$

The rehabilitation of patients with severe ridge resorption using implant-supported prosthesis presents a huge challenge. The treatment plan involves a bone grafting procedure to improve the bone-implant foundation area, but this procedure may be limited by the age and medical condition of the patient, the extension of the edentulous space, cost efficiency, surgeon expertise, donor site morbidity, and patient preference. Basal implants have been prescribed as an alternative treatment for these patients with a high success rate, less severe complications, and lower cost and number of surgeries.$^{12–14,20,21}$ There is an increased need for clinical research to evaluate patient satisfaction and quality of life in relation to this treatment modality as a major parameter indicating implant success.

Most patients enrolled in this study were female, in line with previous studies$^{41–43}$ reporting that females are more prone to dental caries, which is one of the main causative factors of tooth loss. Additionally, females tend to visit dental clinics more often than males, increasing the possibility of tooth extraction and edentulism.41,42

Khalifa et al.43 reported a low percentage of complete edentulism among the Sudanese population, as individuals seemed to have extracted only teeth that hurt. Moreover, the high cost of implant prostheses for completely edentulous patients combined with low economic status may limit those seeking implant treatment to
In accordance with other studies conducted by Saha et al., Annibali et al., Pommer et al., Annibali et al., and Kohli et al., most of our patients were referred by other dentists. This could be due to the limited information available about implants in developing countries; therefore, dentists are still the main source of information about implants, followed by friends, and online media. Thus, it is necessary to increase patients’ awareness about implant treatment including basal implants. Patients’ expectations are an important parameter that has a great impact on their satisfaction. Similar to other studies, our results showed that patients’ main expectations of basal implant treatment included having a fixed treatment modality and improving their mastication, aesthetics, and retention relative to their previous prostheses. Many authors reported that in cases of severe ridge resorption, conventional removable prostheses may have some drawbacks that might adversely affect patient satisfaction, such as denture instability (especially the mandibular denture), inefficient mastication, poor retention, and discomfort. These drawbacks increase in the case of severe ridge resorption. On the other hand, several techniques have been advanced in order to optimise the aesthetic and functional outcomes of the prosthetic rehabilitation of patients with severe alveolar ridge resorption including the bone graft procedure, use of short implants, use of ‘All-on-4 concept’, and utilisation of remote basal bone areas for anchorage such as the cortical bone of the nasal floor and maxillary sinus, pterygoid plate of the sphenoid bone, zygomatic bone, inferior cortex of the mandible, and buccal and lingual cortex of the mandible for basal implants.
The main reasons given by our patients for changing from a fixed conventional prosthesis were caries and fracture of the abutment, which is similar to numerous previous studies.24,52–54 Goodacre et al.52 noted that the most common complications associated with conventional fixed partial dentures were caries, need for endodontic treatment, loss of retention, aesthetics, periodontal disease, tooth fracture, and prosthesis/porcelain fracture. Pjetursson et al.23 reported in a meta-analysis that the most frequent complications with fixed prostheses were of biological nature, such as caries and loss of pulp vitality. De Backer et al.53 reported that the most common fixed prosthesis complications were irreversible ones such as caries, loss of retention, fracture of the framework, abutment fracture, and periodontal and apical problems. Younes et al.54 found that the most frequent complications encountered with resin bonded dental prostheses were de-bonding, caries, and periodontal breakdown.

Basal implants are a special type of implant integrated mainly in the strongest basal bone, providing a high degree of support, stability, and retention to patients with severe ridge resorption, something that cannot be achieved with a removable prosthesis. Basal implants also allow for immediate restoration, which decreases patients’ discomfort and omits the need for transitional or temporary restoration. This treatment also minimises the cost and time required, offering a more conservative approach compared with bone grafting procedures.12–22 All of these factors may have contributed to the high overall satisfaction rates obtained in this study. Despite the lack of knowledge regarding patient satisfaction and quality of life in relation to basal implants specifically, the results of this study are in line with other conventional endo-osseous implant results,23,28,31,36–39 indicating that
patients’ quality of life significantly improved after treatment with implant-supported prostheses.

The strongest anchorage obtained with basal implants offers stable occlusal units leading to good chewing function.12,13,16,18,21 Most of the patients in our study reported a significant improvement in their satisfaction with mastication from average to excellent after basal implant treatment, a finding that matches the findings of S. Ihde and A. Ihde12,18 and Scortecci15 and is in accordance with other studies on endo-osseous implant treatment showing improved mastication with implant-supported prostheses.$^{55−59}$

Since speech is usually affected by edentulism, improving patients’ speech is one of the main purposes of replacing missing teeth.11 According to the literature on conventional implants,23,30,40 implant-supported prostheses improve patients’ speech because of their limited tissue coverage, minimal or no interference with the tongue and lips, and the fact that they do not require palatal or rugae area coverage. Our study showed that patients’ satisfaction with speech significantly improved with basal implants. However, two of the patients in the study complained about their phonation when pronouncing the letter S. The same complaint was reported in the studies of Goodacre et al.52 and Heydecke et al.,30 who observed that a greater number of speech problems occurred when restoring the maxillary arch with conventional fixed implant-supported prosthesis compared to removable implant-supported prosthesis. This was attributed to air escaping through the space required for oral hygiene maintenance between the edentulous ridge and the fixed implant prosthesis.

There was a significant improvement in patients’ satisfaction with aesthetics after
basal implant treatment, which is in accordance with the findings of Emami et al., Zitzmann and Marinello, Gurgel et al., and Annali et al., concluding that implant treatment produced a significant improvement in patients’ satisfaction with aesthetics, eating, degree of comfort, and phonetics, as well as general satisfaction. Two patients in our study complained about the small size of the artificial teeth. In general, in implant prosthesis construction, the artificial teeth are smaller than natural teeth in order to decrease the occlusal table, minimise or avoid the cantilever effect, prevent offset forces, and increase the axial loading. Out findings matched the occlusal considerations discussed in the studies of Misch and Wang, Kim et al., Yi et al., and Abichandani et al.

Easy cleaning and oral hygiene maintenance are essential for maintaining good peri-implant health. All patients in this study were able to maintain their oral hygiene habits except for one who experienced some difficulty. This matches the results of Annali and Pjetursson et al., but is in contrast with Yi et al., who reported that it was more difficult to maintain oral hygiene after implant prosthesis. Despite the limitation of the relatively small sample size in the present study, the high level of patient satisfaction obtained suggests that basal implant-supported prostheses (BCS) in edentulous and partially edentulous patients have a positive impact on patient satisfaction and hence enhance their quality of life. There were marked improvements in patients’ overall satisfaction and specific satisfaction with comfort, aesthetics, mastication, and speech. Further research needs to evaluate patient satisfaction and the oral health impact of basal implants using a larger sample size and a longer follow-up period.
Abbreviations

BCS*
Basal Cortical Screw Implant

Declarations

Acknowledgements

The authors would like to express their great thanks to Dr. Abdelnasir Gafer, Oral and Maxillofacial Surgeon and Dr. Motaz Sayed Alhassan, Prosthodontic Specialist at the Khartoum Teaching Dental Hospital, Implant Department who performed the surgical and prosthodontic treatment for the patients of the study. Our thanks are also extended to Dr. Manar Abdelrahman, Associate Professor in Biostatistics, for helping devise the evaluation sheets used in the study.

Funding

The study received no funding.

Availability of data and materials

Datasets the current study are not publicly available.

Authors’ contributions

Awadalkreem F conception and design of the study, acquisition of data, drafting of the manuscript, and critical revision of the manuscript. Khalifa N, and Suleiman A critical revision of the questionnaire, and analysis and interpretation of data, drafting of the manuscript, and revising the manuscript critically for important intellectual content. Satti A statistical analysis and interpretation of data.

Ethics approval and consent to participate

The study was approved by the ethical committee of Khartoum Dental Teaching Hospital (Khartoum, Sudan) and the Sudanese Ministry of Health, State Khartoum,
number: [WK/OS/ AETEA/44/1]. The study was undertaken with the understanding and written consent of each participant and in accordance with the Declaration of Helsinki.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Authors’ information

1 BDS, MSc, PhD; Assistant Professor; Department of Oral Rehabilitation/Prosthodontic Division, University of Khartoum/ Faculty of Dentistry, Khartoum, Khartoum; Sudan.

2 BDS, MSc, PhD; Assistant Professor; Chair of the Department of Preventive and Restorative Dentistry, University of Sharjah /Faculty of Dental Medicine, Sharjah, Sharjah, United Arab Emirates.

3 BDS, MSc, Head of Department of Computing and Research; Federal Ministry of Health, Khartoum Teaching Dental Hospital, Khartoum, Khartoum, Sudan.

4 BDS, MSc, FFDRCS, FSMSB; Professor; Department of Oral and Maxillofacial Surgery, University of Khartoum/ Faculty of Dentistry, Khartoum, Khartoum, Sudan.

References

1. Swelem AA, Gurevich KG, Fabrikant EG et al. Oral health-related quality of life in partially edentulous patients treated with removable, fixed, fixed-removable, and implant-supported prosthesis. *Int J Prosthodont* 2014 27: 338-347.
2. Bagramian RA, Garcia-Godoy F, Volpe AR. The global increase in dental caries. A pending public health crisis. *Am J Dent* 2009 22: 3–8.

3. Musacchio E, Perissinotto E, Binotto P et al. Tooth loss in the elderly and its association with nutritional status, socio-economic and life style factors. *Acta Odontol Scand* 2007 65: 78–86.

4. Akpata E, Otoh E, Enwonwu C, Adeleke O et al. Tooth loss, chewing habits, and food choices among older Nigerians in Plateau State: a preliminary study. *Community Dent Oral Epidemiol* 2011 39: 409–415.

5. Bortoluzzi MC, Traebert J, Lasta R et al. Tooth loss, chewing ability and quality of life. *Contemp Clin Dent* 2012 3: 393–397.

6. Gerritsen AE, Allen PF, Witter DJ et al. Tooth loss and oral health-related quality of life: a systematic review and meta-analysis. *Health Qual Life Outcomes* 2010 8: 126.

7. Jenei A, Sandor J, Hegedus C et al. Oral health-related quality of life after prosthetic rehabilitation: a longitudinal study with the OHIP questionnaire. *Health Qual Life Outcomes* 2015 13: 99.

8. Zou Y, Zhan D. Patients’ expectation and satisfaction with complete denture before and after the therapy. *Vojnosanit Pregl* 2015 72: 495–498.

9. Al-Quran F A, Al- Ghalayini RF, Al-Zu’bi BN. Single-tooth replacement: factors affecting different prosthetic treatment modalities. *BMC Oral Health* 2011 11: 34.

10. Aquilino SA, Shugars DA, Bader JD et al. Ten-year survival rates of teeth adjacent to treated and untreated posterior bounded edentulous spaces. *J Prosthet Dent* 2001 85: 455–460.

11. Da Cunha MC, Santos JF, Santos M et al. Patients’ expectation before and
satisfaction after full-arch fixed implant-prosthesis rehabilitation. *J Oral Implantology* 2015 41: 235-239.

12. Ihde S, Ihde A. *Immediate Loading Guideline to Successful Implantology*. pp 7-18. Munich: International Implant Foundation, 2010.

13. Lazarov A. Immediate functional loading: Results for the concept of the strategic implant®. *Ann Maxillofac Surg* 2019 9: 78-88.

14. Ghalaut P, Shekhawat H, Meena B. Full-mouth rehabilitation with immediate loading basal implants: A case report. *Nat J Maxillofac Surg* 2019 10: 91-94.

15. Scortecci G. Basal Implantology. New York: Springer International Publishing, 2019.

16. Ihde S, Kopp S, Maier T. Comparison of implant survival with implants placed in acceptable and compromised bone: a literature review. *J Maxillofac Oral Surg* 2009 8: 1-7.

17. Odin G, Misch C, Binderman I et al. Fixed rehabilitation of severely atrophic jaws using immediately loaded basal disk implants after in situ bone activation. *J Oral Implantol* 2012 38: 611-616

18. Ihde S. *Principles of BOI: Clinical, Scientific, and Practical Guidelines to 4-D Dental Implantology*. 1st ed, pp 1-10. Heidelberg, Germany: Springer-Verlag, 2005.

19. Singh M, Batra R, Das D et al. A novel approach for restoration of hemisected mandibular first molar with immediately loaded single piece BCS implant: A case report. *J Oral Biol Craniofac Res* 2017 7: 141-146.

20. Ihde S, Ihde A. *Introduction into the Work with Strategic Implants*. 3rd ed. Munich, Germany: The International Implant Foundation Publishing, 2017.

21. Scortecci G. Immediate function of cortically anchored disk-design implants
without bone augmentation in moderately to severely resorbed completely edentulous maxillae. *J Oral Implantol* 1999 25: 70–79.

22. Ihde S. Restoration of the atrophied mandible using basal osseointegrated implants and fixed prosthetic superstructures. *Implant Dent* 2001 10: 41–45.

23. Pjetursson BE, Karoussis I, Burgin W et al. Patients’ satisfaction following implant therapy. A 10-year prospective cohort study. *Clin Oral Implants Res* 2005 16: 185–193.

24. Grey EB, Harcourt D, O'Sullivan D et al. A qualitative study of patients' motivations and expectations for dental implants. *Br Dent J* 2013 214: E1.

25. Gurgel BC, Pascoal AL, Souza BL et al. Patient satisfaction concerning implant-supported prostheses: an observational study. *Braz Oral Res* 2015 29.

26. Zitzmann NU, Marinello CP. Treatment outcomes of fixed or removable implant-supported prostheses in the edentulous maxilla. Part I: patients' assessments. *J Prosthet Dent* 2000 83: 424–433.

27. Al-Omiri MK, Hammad OA, Lynch E et al. Impacts of implant treatment on daily living. *Int J Oral Maxillofac Implants* 2011 26: 877–786.

28. Awad MA, Lund JP, Dufresne E et al. Comparing the efficacy of mandibular implant-retained overdentures and conventional dentures among middle-aged edentulous patients: satisfaction and functional assessment. *Int J Prosthodont* 2003 16: 117–722.

29. Strassburger C, Heydecke G, Kerschbaum T. Influence of prosthetic and implant therapy on satisfaction and quality of life: a systematic literature review. Part 1--Characteristics of the studies. *Int J Prosthodont* 2004 17: 83–93.

30. Heydecke G, Boudrias P, Awad MA et al. Within-subject comparisons of maxillary fixed and removable implant prostheses: Patient satisfaction and
choice of prosthesis. *Clin Oral Implants Res* 2003 14: 125–130.

31. Annibali S, Vestri AR, Pilotto A et al. Patient satisfaction with oral implant rehabilitation: evaluation of responses to a questionnaire. *Ann Stomatol (Roma)* 2010 1: 2–8.

32. Petricevic N, Celebic A, Rener-Sitar K. Improvement of Patient’s Satisfaction and Oral Health-Related Quality of Life by the Implant and Prosthodontic Treatment. In Virdi PM (ed) *Oral Health Care. Prosthodontics, Periodontology, Biology, Research and Systemic Conditions.* pp 25–52. London: IntechOpen, 2012.

33. Inglehart M, Bagramian R. Oral health related quality of life: An introduction. In *Oral Health Related Quality of Life.* 1st ed, pp 13–28. Chicago: Quintessence, 2002.

34. Kumar VV, Jacob PC, Ebenezer S et al. Implant supported dental rehabilitation following segmental mandibular reconstruction- quality of life outcomes of a prospective randomized trial. *J Craniomaxillofac Surg* 2016 44: 800–810.

35. Awad MA, Lund JP, Shapiro SH et al. Oral health status and treatment satisfaction with mandibular implant overdentures and conventional dentures: a randomized clinical trial in a senior population. *Int J Prosthodont* 2003 16: 390–396.

36. Berretin-Felix G, Nary Filho H, Padovani CR et al. A longitudinal study of quality of life of elderly with mandibular implant-supported fixed prostheses. *Clin Oral Implants Res* 2008 19: 704–708.

37. Fillion M, Aubazac D, Bessadet M et al. The impact of implant treatment on oral health related quality of life in a private dental practice: a prospective cohort study. *Health Qual Life Outcomes* 2013 11: 197.
38. Alzarea BK. Assessment and evaluation of Quality of Life (OHRQoL) of patients with dental implants using the Oral Health Impact Profile (OHIP-14) - A Clinical Study. *J Clin Diagn Res* 2016 10: ZC57–ZC60.

39. Furuyama C, Takaba M, Inukai M et al. Oral health-related quality of life in patients treated by implant-supported fixed dentures and removable partial dentures. *Clin Oral Implants Res* 2012 23: 958–962.

40. Emami E, Heydecke G, Rompre PH et al. Impact of implant support for mandibular dentures on satisfaction, oral and general health-related quality of life: a meta-analysis of randomized-controlled trials. *Clin Oral Implants Res* 2009 20: 533–544.

41. Kida IA, Astrom AN, Strand GV et al. Clinical and socio-behavioral correlates of tooth loss: a study of older adults in Tanzania. *BMC Oral Health* 2006 6: 5.

42. Seman K, Abdul Manaf H, Ismail AR. Association between functional dentition with inadequate calorie intake and underweight in elderly people living in ‘Pondok’ in Kelantan. *Arch Orofac Sci* 2007 2: 10–19.

43. Khalifa N, Allen PF, Abu-bakr NH et al. Factors associated with tooth loss and prosthodontic status among Sudanese adults. *J Oral Sci* 2012 54: 303–312.

44. Saha A, Dutta S, Vijaya V et al. Awareness among patients regarding implants as a treatment option for replacement of missing teeth in Chattisgarh. *J Int Oral Health* 2013 5: 48–52.

45. Pommer B, Zechner W, Watzak G et al. Progress and trends in patients' mindset on dental implants. I: level of information, sources of information and need for patient information. *Clin Oral Implants Res* 2011 22: 223–229.

46. Pommer B, Zechner W, Watzak G et al. Progress and trends in patients' mindset on dental implants. II: implant acceptance, patient-perceived costs
and patient satisfaction. *Clin Oral Implants Res* 2011 22: 106-112.

47. Kohli S, Bhatia S, Kaur A *et al*. Patients awareness and attitude towards dental implants. *Indian J Dent* 2015 6: 167-171.

48. Kohli S, Bhatia S, Kaur A, T R. Public knowledge and acceptance of dental implant treatment in Malaysian population. *J Interdiscip Dentistry* 2014 4: 76-80.

49. Heydecke G, Thomason JM, Awad MA *et al*. Do mandibular implant overdentures and conventional complete dentures meet the expectations of edentulous patients? *Quintessence Int* 2008 39: 803-809.

50. Baracat LF, Teixeira AM, dos Santos MB *et al*. Patients' expectations before and evaluation after dental implant therapy. *Clin Implant Dent Relat Res* 2011 13: 141-145.

51. De Lima EA, dos Santos MB, Marchini L. Patients' expectations of and satisfaction with implant-supported fixed partial dentures and single crowns. *Int J Prosthodont* 2012 25: 484-490.

52. Goodacre CJ, Bernal G, Rungcharassaeng K *et al*. Clinical complications in fixed prosthodontics. *J Prosthett Dent* 2003 90: 31-41.

53. De Backer H, Van Maele G, De Moor N *et al*. An up to 20-year retrospective study of 4-unit dental prosthesis for the replacement of 2 missing adjacent teeth. *Int J Prosthodont* 2008 21: 259-266.

54. Younes F, Raes F, Berghe LV *et al*. A retrospective cohort study of metal-cast resin-bonded fixed dental prostheses after at least 16 years. *Eur J Oral Implantol* 2013 6: 1-10.

55. Prithviraj DR, Madan V, Harshamayi P *et al*. A comparison of masticatory efficiency in conventional dentures, implant retained or supported
overdentures and implant supported fixed prostheses: A literature review. *J Dent Implant* 2014 4: 153-157.

56. Fueki K, Kimoto K, Ogawa T *et al*. Effect of implant-supported or retained dentures on masticatory performance: a systematic review. *J Prosthet Dent* 2007 98: 470-477.

57. Mancuso DN, Goiato MC, Gennari Filho H *et al*. Bite force and masticatory efficiency in implant-retained dentures: literature review. *Dent Today* 2008 27: 56-58.

58. Berretin-Felix G, Machado WM, Genaro KF *et al*. Effects of mandibular fixed implant-supported prostheses on masticatory and swallowing functions in completely edentulous elderly individuals. *Int J Oral Maxillofac Implants* 2009 24: 110-117.

59. Van der Bilt A, Burgers M, van Kampen FM *et al*. Mandibular implant-supported overdentures and oral function. *Clin Oral Implants Res* 2010 21: 1209-1213.

60. Misch CE, Wang HL. Immediate occlusal loading for fixed prostheses in implant dentistry. *Dent Today* 2003 22: 50-56.

61. Kim Y, Oh TJ, Misch CE *et al*. Occlusal considerations in implant therapy: clinical guidelines with biomechanical rationale. *Clin Oral Implants Res* 2005 16: 26-35.

62. Yi SW, Carlsson GE, Ericsson I *et al*. Patient evaluation of treatment with fixed implant-supported partial dentures. *J Oral Rehabil* 2001 28: 998-1002.

63. Abichandani SJ, Bhojaraju N, Guttal S *et al*. Implant protected occlusion: A comprehensive review. *Eur J Prosthodont* 2013 1: 29–36.

Tables
Table 1. Participants’ characteristics

Variable	Number of patients
Gender	
Male	23
Female	37
Age (years)	
20–39	16
40–59	34
60 and above	10
Dentition	
Upper/lower complete edentulous jaws	17
One complete and one partially edentulous jaw	12
Upper/lower partially edentulous jaws	31

Table 2. Participants’ knowledge and expectations regarding basal implants
Source of knowledge	Frequency
Referred from another dentist	54
Television	7
Friends	2
Newspaper and internet	2

Patients’ expectations about implant treatment	Frequency
Fixed modality	59
Improved retention	50
Improved mastication	49
Improved aesthetics	39

Table 3. Participants’ previous prosthesis type (fixed/removable/conventional implant) and reasons for changing to new basal implant
Types of previous prosthesis (% out of 60 patients)	Frequency
Removable prosthesis	35
Fixed prosthesis	19
Fixed and removable prosthesis	4
Conventional implant-supported prosthesis	2

Fixed prosthesis (% out of 23 patients)	Frequency
Caries/fracture of abutment	15
De-cementation/de-bonding	15
Inability to chew properly	4
Discomfort	4
Need for fixed prosthesis	1

Removable prosthesis (% out of 39 patients)	Frequency
Poor retention	22
Discomfort	13

Inability to chew properly	Frequency
Caries/fracture of abutment	8
Need for fixed prosthesis	5
Aesthetics	1

Table 4. Participants’ overall satisfaction with previous prostheses and current basal implant

	Mean	SD	95% CI Lower Bound	95% CI Upper Bound
Previous prosthesis	5.4	1.7	4.9	5.8
Current prosthesis	7.7	0.7	7.5	7.9

Table 5. Comparison of patients’ satisfaction with comfort, mastication, aesthetics, and speech with previous prosthesis and current basal implant
Metric	Excellent (%)	Average (%)	Poor (%)	Excellent (%)	Average (%)	Poor (%)
Comfort	13 (21.7)	33 (55)	14 (23.3)	58 (96.7)	2 (3.3)	0 (0)
Mastication	20 (33.3)	26 (43.3)	14 (23.3)	56 (93.3)	4 (6.7)	0 (0)
Aesthetics	34 (56.7)	23 (38.3)	3 (5)	53 (88.3)	7 (11.7)	0 (0)
Speech	46 (76.7)	13 (21.7)	1 (1.7)	56 (93.3)	4 (6.7)	0 (0)

*Wilcoxon Signed Ranks test *P value is significant*

Table 6. Participants’ complaints after basal implant treatment and probability of choosing the same treatment again
Patients’ complaints	Teeth shown	Number of Patients
S sound		2
Difficultly in maintaining OHI		1
Discomfort		1
Spaces between teeth		1
Would you choose the same treatment again	Yes	60
	No	-

Table 7. Comparison of patients’ satisfaction with comfort, mastication, aesthetics, and speech with previous prosthesis and basal implant by gender and age group
Age (years)	Previous Prostheses	Basal Implant		
	Mean	SD	Mean	SD
Male	5.3	1.4	7.8	0.4
Female	5.4	1.4	7.6	0.4
20–39	6	1.8	7.7	0.5
40–59	5.1	1.7	7.9	0.4
60 and above	5.1	1.4	7.3	1.3

SD: standard deviation. *Wilcoxon Signed Ranks test* *P value is significant*
Figure 1

1a. BCS ® basal implant design. Fig.1. b. A three-dimensional cone-beam comput
Figure 2

Participants’ overall satisfaction with previous prostheses and current basal impl: