Multiple scattering of channeled and non-channeled positively charged particles in bent monocrystalline silicon

W. Scandale, G. Arduini, F. Cerutti, L. S. Esposito, M. Garattini, S. Gilardoni, R. Losito, A. Masi, D. Mirarchi, S. Montesano, S. Redaelli, R. Rossi, G. Smirnov, L. Burmistrov, S. Dubos, V. Puill, A. Stocchi, L. Bandiera, V. Guidi, A. Mazzolari, M. Romangoni, F. Murtas, F. M. Addesa, G. Cavoto, F. Iacoangeli, F. Galluccio, A. G. Afonin, Yu. A. Chesnokov, A. A. Durum, V. A. Maisheev, Yu. E. Sandomirskiy, A. A. Yanovich, A. D. Kovalenko, A. M. Taratin, A. S. Denisov, Yu. A. Gavrikov, Yu. M. Ivanov, L. G. Maliarenko, J. Borg, T. James, G. Hall, M. Pesaresi

Abstract We present the results of an experimental study of multiple scattering of positively charged high-energy particles in bent samples of monocrystalline silicon. This work confirms the recently discovered effect of a strong reduction in the rms multiple scattering angle of particles channeled in the silicon (111) plane. The effect is observed in the plane orthogonal to the bending plane. We show in detail the influence of angular constraints on the magnitude of the effect. Comparison of the multiple scattering process at different energies indicates a violation of the law of inverse proportionality of the rms angle of channeled particles with energy. By increasing the statistics, we have improved the results of multiple scattering measurements for particles moving, but not channeled, in silicon crystals.

1 Introduction

A single crystal is a spatially ordered periodic structure consisting of atoms. Therefore, many processes of interaction of particles with crystalline media differ from similar processes in amorphous media [1–4]. So, in crystals, the effect of planar channeling is observed, when a positively charged particle moves between adjacent atomic layers [5]. Atomic centers (nuclei) are in continuous oscillatory thermal motion. The channeling particle can approach atomic centers and experience scattering.

In recent articles [6, 7], we reported the observation of a strong reduction in multiple scattering when channeling high-energy positively charged particles in the bent silicon (111) and (110) planes. Moreover, the effect was observed in the plane transverse to the bending plane of the crystal. The value of the rms of the scattering angle of channeled and non-channeled particles was measured in these experiments. According to the measurements, the rms of the multiple scattering angle for channeled particles was 2–6 times less than for non-channeled particles. It should be noted that the experiments performed differed noticeably from each other. In particular, in experiment [6], there was practically no restriction on the input geometric parameters of the particle beam, whereas in experiment [7], we selected particles with angles of entry into the crystal significantly less than the critical channeling angle. The comparison of the results of these two experiments stimulated us to further study the effect, in particular to investigate the influence of the geometric parameters of the beam on the rms scattering angles.

This new study is based on the experimental data obtained earlier in the experiments with focusing crystals [6]. A detailed description of the experiment can be found in Refs. [6, 8]. Here, we give the main details and motives of this experiment that are important for understanding.

A new study is motivated by the fact that the first experiments demonstrated the existence of the effect of reduction of multiple scattering but did not show how various input parameters of the particle beam can change the effect of multiple scattering for the
particles captured in the channeling mode. One of the main parameters is different angular characteristics of the channeling particles. There is no such information in the description of the experiment [6], and the experiment [7], which was performed in a strongly collimated particle beam. Thus, obtaining quantitative data on multiple scattering is necessary for a complete understanding of this process and implementing in programs for calculating the interaction of particles with single crystals.

Bent crystals are expected to be used in various high energy physics applications. In particular, it is planned to use them for collimation and extraction of proton and ion beams at the LHC collider [9]. To this end, the computer codes for calculating the passage of particles through crystals have been developed, and new results can be used in these programs.

The observed effect can be attributed to a large number of phenomena accompanying the channeling of particles in crystals. Such phenomena include Rutherford scattering, energy-loss processes, secondary electron emission, nuclear reactions, X-ray and gamma-ray production. The cross sections of these processes depend on the impact parameters involved in collisions with individual target atoms. A characteristic common feature of such processes is the suppression of the probability of multiple Coulomb scattering in comparison with non-channeling particles. It is important to note that the quantitative description of such processes is of a specific nature, i.e., there are no universal relations for their unified mathematical representation. A description of many of these processes can be found in the literature [4, 5, 10–12]. In addition, some simple explanations of the observed effect can be found in [6].

The article proposes an explanation of this phenomenon as a result of two competing processes of dechanneling and scattering, which helps to resolve the paradox.

The majority of calculations and experimental studies of multiple scattering are related to amorphous solids. However, there are several theoretical papers devoted to the scattering of non-channeled particles in monocristalline media [13–18]. These works and [19, 20] indicate that there are differences between two processes. However, as follows from these works, one should not expect a significant difference. For instance, Ref. [15, 16] suggests the suppression of the angle of multiple scattering by about 10 percent. Unfortunately, the relations presented in these works are difficult to use for comparison with experiment, since they (except [15, 16]) have not been finalized to a form convenient for numerical estimates.

Precise measurement of multiple scattering of non-channeling particles can shed light on the Ter-Mikaelyan effect and is also of practical importance since many experiments use silicon wafers in detectors.

It is important to note that we present results of measurement of the root-mean-square scattering angle in one plane. Naturally, the charged particle is scattered in two orthogonal planes (perpendicularly and along the channeling plane). However, it is not possible to measure multiple scattering in the channeling plane in a sufficiently thick crystal, due to the oscillating motion of the particle. Moreover, such a measurement is practically impossible in a straight (unbent) crystal due to the difficulty of separating channeling and non-channeling particles entering the crystal at the angles smaller than the critical one.

The paper is organized as follows. First, we give a short description of the experiments with focusing crystals and describe the procedure of the data analysis. In the subsequent sections we present the experimental results obtained with three crystals in the focusing mode, after which a discussion and conclusions follow.

2 Experiments with focusing crystals

The experimental study of focusing crystals was performed at the CERN using a pure 400 GeV/c proton beam and a 180 GeV/c beam of positive secondary particles for the measurements. A full and detailed description of the experiment is contained in the works [6, 8, 21, 22].

The list of studied crystals is taken from paper [8] and presented in Table 1. For the present study, we use the data collected for crystals 1, 3 and 4. Crystal 1 has dimensions: AB = 2.07 ± 0.01 mm, AD = 49.84 ± 0.02 mm, BC = 29.8 ± 0.02 mm. Crystal 3 is approximately the same size. Crystal 4 has the same AD and BC sizes as crystal 1 but AB = 4 mm. The height (not shown in the figure) of every crystal was 86 mm.

For particles channeled in (111) silicon planes, the critical angle was equal to 10.6 μrad and 15.8 μrad for 400 GeV/c and 180 GeV/c beams, respectively.

N	L_f	s_0	s_f	F	θ_f	R	P
1	5.503	0.492	0.0600	8.20	10.84	≈ 65	400
3	4.292	0.452	0.088	5.16	20.07	≈ 50	180
4	20.96	1.02	0.448	2.28	19.28	≈ 200	180
As a result, for every particle crossing the oriented crystal we obtained: (a) the horizontal and vertical coordinates; (b) the horizontal and vertical incident angles; (c) the horizontal and vertical outgoing angles after the crystal. The difference between the horizontal (vertical) outgoing and incoming angles gives the horizontal (vertical) deflection angle for each particle. Figure 1a illustrates the results in a two-dimensional plot of the horizontal angle of deflection versus the horizontal coordinate. The particles captured in the channeling regime and which passed through the body of crystal in this regime are located between lines $Q_+ Q'_+ \text{ and } Q_- Q'_-$. Selected in this way, the set of channeled particles undergoes multiple scattering in the vertical direction. Distributions of channeled and non-channeled particles over vertical scattered angles constitute one of the subjects of our study.

In addition, the data obtained for each case (channeled and non-channeled particles) were divided into 21 parts for crystals 1 and 3 (41 parts for the crystal 4) according to their horizontal coordinates. So, in section 0 we took particles with horizontal coordinates from -0.05 to 0.05 mm, in Sect. 1 those with horizontal coordinates from 0.05 to 0.15 mm, in section -1 those with horizontal coordinates from -0.05 to -0.15 mm and so on. Such a selection of the data allowed us to study the process of multiple scattering for different thicknesses.

The linear connection between x and z-coordinates (see Fig. 1b) was

$$z[\text{mm}] = 40 + x_0[\text{mm}] + kx[\text{mm}]$$

where the coefficient k is equal to 9.7 for crystals 1 and 3, and 5 for crystal 4. The variable x was from -1 to 1 mm for crystals 1 and 2, and from -2 to 2 mm for crystal 4 ($x_0 \approx 0$).

It should be noted that our collaboration (UA9) has carried out measurements of multiple scattering of 400 GeV/c protons [23] in single silicon crystals with orientations far from axial or planar channeling. That experiment was performed in parallel and at the same time and on the same installation as the experiments described here with focusing crystals. In [23], the background conditions were investigated. They showed that there is additional scattering of the protons on material in the beam (strip detectors and other matter). Background measurements in the experiment performed without a crystal show that the contribution of this background process can be described by a Gaussian with rms $\sigma_{bg} = 5$ μrad for a 400 GeV/c proton [23] and $\sigma_{bg} = 11.27$ μrad [7] for 180 GeV/c secondary beams. As explained in [6, 7, 23], the measured σ_m and corrected σ_{si} rms of angles of multiple scattering are determined by the relation:

$$\sigma_{si}^2 \approx \sigma_m^2 - \sigma_{bg}^2$$

where σ_m is the rms measurement resolution of the particle planar angle with the help of the silicon strip detectors. For definiteness, we will consider the case when the bending of the crystal lies in the horizontal plane xz (x and z, which are the transverse and longitudinal coordinates of the particle, respectively, see Fig. 1) Basically, we will study scattering in the plane orthogonal to the xz plane (i.e., in the vertical plane).
3 Analysis

It was shown (see, for example [1, 4, 24]) that in an amorphous homogeneous medium the distribution function of particles over small planar angles is described by the Gaussian distribution

\[
\rho(\theta) = \frac{dN}{d\theta} = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(\theta - \bar{\theta})^2}{2\sigma^2}\right),
\]

where \(\theta \) is the deflection angle relative to the mean angle \(\bar{\theta} \). The value \(\sigma \) is the rms of the distribution.

There are different formulas for the rms angle. For this study, we apply the recommendation of Ref. [24] to use a Gaussian approximation for the central 98% of the projected angular distribution, with the rms equal to:

\[
\sigma_0 = \frac{13.6 [\text{MeV}]}{\beta cp} \sqrt{l/X_0} [1 + 0.038 \ln(l/X_0)]
\]

where \(p \) and \(\beta c \) are the momentum and velocity of the incident particle, \(c \) is the velocity of light, \(l \), \(X_0 \) are the thickness of the scattering medium and its radiation length.

Hence, it can be seen that for a parallel beam of relativistic particles of fixed energy moving in an amorphous medium the process of multiple scattering depends only on the properties of this medium and does not depend on any initial conditions for the particle. However, this is not valid for the process of multiple scattering (in the vertical plane) of channeled particles. For example, channeled particles can have different oscillation amplitudes and therefore approach to within different distances from the atomic centers (nuclei) in the plane. Another example is the dependence on the initial angle of entry of particles into the crystal and departure from it.

In a real experiment, the scattering of a channeled particle can be influenced by many factors. We show the effect with a simplified example. Let the rms scattering angle depend on one parameter \(\tau \) (for example, the angle of the initial entry of the particle into the crystal in the horizontal plane). Then, in the general case, for a particle with this parameter, there is an rms scattering angle, which can be considered as a function \(\sigma(\tau) \) of this parameter. In addition, the function \(h(\tau) \) describing the particle density distribution as a function of \(\tau \) is naturally introduced. Then, we get a distribution function over \(\theta \) which takes into account the influence of \(\tau \).

\[
\rho(\theta) = \frac{1}{\sqrt{2\pi}} \int_{\tau_{\text{min}}}^{\tau_{\text{max}}} \frac{1}{\sigma(\tau)} \exp\left[-\theta^2/(2\sigma^2(\tau))\right] h(\tau) d\tau
\]

where \(\tau \) varies from \(\tau_{\text{min}} \) to \(\tau_{\text{max}} \). Under the assumption of a small change in the rms scattering angle \(\sigma(\tau) \), we can write a relation \(\sigma(\tau) = \sigma(0) + \nu(\tau) \) where the condition \(\nu(\tau)/\sigma(0) \ll 1 \) for the function \(\nu(\tau) \) is satisfied. Taking this into account we obtain for the distribution function

\[
\rho(\theta) \approx 1/\left(\sqrt{2\pi}\sigma(0)\right) \exp\left[-\theta^2/(2\sigma^2(0))\right] \int_{\tau_{\text{min}}}^{\tau_{\text{max}}} (1 + \nu(\tau)/\sigma(0)) \exp\left[\theta^2\nu(\tau)/\sigma^3(0)\right] h(\tau) d\tau
\]

Taking the first terms of the exponential expansion under the integral we obtain a further simplification

\[
\rho(\theta) \approx 1/\left(\sqrt{2\pi}\sigma(0)\right) \exp\left[-\theta^2/(2\sigma^2(0))\right] \int_{\tau_{\text{min}}}^{\tau_{\text{max}}} (1 + \nu(\tau)/\sigma(0) + \theta^2\nu(\tau)/\sigma^3(0)) h(\tau) d\tau
\]

It is easy to see that for the specified smallness of \(\nu \), the integral in Eq. (7) is approximately equal to 1 (with unit normalization of the function \(h(\tau) \)). Hence, it follows that under the above assumptions, the shape of the particle multiple scattering distribution remains approximately Gaussian. Our new analysis of the data collected in the experiment will be based on a study of the influence of various geometric parameters of the beam on the value of the rms scattering angle. And the content of the equations obtained justifies the Gaussian approximation of the beam particle distribution after scattering.

Note that for an amorphous medium \(h(\tau) = \delta(0) \) (\(\delta(0) \) is delta function) and the Gaussian function for small angle multiple scattering follows from Eq. (7).

It is also necessary to point out that in a real experiment at sufficiently large scattering angles, individual hard scattering processes begin to dominate. Therefore, the process of small-angle multiple scattering should be separated from such processes. In article [24] for this purpose, it is proposed to take into account only 98% of the particle angular distribution. We accept this general recommendation, and for more concreteness we consider the distribution of particles in the range from \(-2.5 \) to \(2.5 \) standard deviations relative to the average scattering angle. As a rule, this corresponded to 96–98% of the angular distribution.

4 Multiple scattering of non-channeled particles

In our previous paper [6], we presented the results of measurements of the vertical angles of multiple scattered particles at crystal thicknesses from 30 to 50 mm. In this work, we present a) the same results but with higher statistics, which improved the measurement...
Fig. 2 The measured value of the rms angle of positively charged particles moving outside the channeling region. The curve 1 corresponds to particles with a momentum of 400 GeV/c (crystal 1). For this case, for the convenience of comparison, the measurement results were multiplied by a factor of 400/180. The curves 2 and 3 correspond to a momentum of 180 GeV/c and crystals 3 and 4, respectively. The curve 4 is a calculation according to Eq. (4).

Fig. 3 Scattering in the transverse horizontal plane compared with the vertical plane. The upper part of the figure shows the rms angles for particles with a momentum of 180 GeV/c. Black and gray dots (and straight lines) correspond to the horizontal and vertical planes of crystal 3. Similarly, the red and blue colors for crystal 4. Below are the data for crystal 1 and particle momentum of 400 GeV/c with the same colors as for crystal 4.

accuracy significantly, and b) for the first time, present the results of measurements of multiple scattering of non-channeled particles in the horizontal plane (bending plane).

To find the rms angle of non-channeled particles, we used their vertical angular distributions. Particles were selected with an angle of entry into the crystal that exceeded the critical channeling angle by at least a factor 2. We used data only for particles with an entry angle in the opposite direction to the deflection angle due to bending.

Figure 2 illustrates the results of measurements of the vertical rms multiple scattering angle at 400 GeV/c (crystal 1) and 180 GeV/c (crystals 3 and 4). For comparison, the data for the first crystal were multiplied by a factor 400/180 in accordance with Eq. (4).

We also measured multiple scattering in the horizontal plane for the above-barrier particles (see Fig. 3). For this purpose, we selected particles with angles from 20 to 45 μrad relative to the optimal entrance direction for channeling.

As for the vertical angles we used particles with entry angles in the direction opposite to the deflection angle due to bending.

The results of measurements were approximated by linear functions of the crystal thickness. It should be noted that according to theory and, in particular, our measurements, the mean square of the angle of multiple scattering of particles in an amorphous medium is a linear function of thickness to good accuracy. However, for the rms scattering angle in a region of sufficiently large thickness, a linear function is also a good approximation.
5 Multiple scattering in the channeling region

In our previous work, when measuring the scattering of channeled particles, we did not try to strongly limit the geometric parameters of the beam. It seemed to us that this could create a false reduction in the observed effect. In those measurements, we demonstrated, for the first time, a decrease in the multiple scattering angle of channeled particles as compared to non-channeled ones. In the experiment, we recorded a decrease in the mean-square multiple scattering angle of channeled particles by a factor of about 2.

After publication we continued to study the data collected in the experiment and found that by changing the beam parameters it is possible to change the value of the rms scattering angle. Especially noticeable was the influence of the angle between the lines $Q^+ Q'_+$ and $Q^- Q'_-$. As can be seen from Fig. 1, the gap between the lines $Q^+ Q'_+$ and $Q^- Q'_-$ contains particles that have passed the entire thickness of the crystal in the channeling regime. We have divided this area into several narrow strips with sides parallel to the straight line QQ'. This straight line corresponds to the center of one of the strips, which we take as the zero level. The width of each strip was 10 μrad. In the lower direction relative to the zero level, the angular magnitude at the center of each strip increases, and vice versa in the opposite direction. For each strip, taking into account only particles inside it, we found the rms scattering angle as a function of the crystal thickness. These results are presented in Figs. 4 and 5 for 400 GeV/c and 180 GeV/c, respectively. In the interval $30 \text{ mm} < z < 50 \text{ mm}$, the functions σ_c (see Figs. 4 and 5) were approximated by the linear function $\text{const} + A_0 z$ for each strip.

Figure 6 shows the distribution of channeled particles depending on the angle relative to the straight line $Q Q'$. The part of the distribution on the left shows the tail of dechanneled particles. The distribution for 180 GeV/c differs from the distribution for 400 GeV/c due to a) a larger bending radius of the crystal and b) a smaller (by more than a factor 2) dechanneling length.

For 400 GeV/c particles, the rms angle σ_c increases with increase in length for all but one of the strips, which is at an extremity. This fact corresponds to values of the coefficient $A_0 > 0$. The results for the central strips ($-10, 0, 10$) are similar to each other.

For 180 GeV/c momentum, the behavior of the dependence of the scattering angle differs from the previous case. These differences are: a) only for particles in strips ($-5, 0, 5$) is the value of the scattering angle an increasing function of the thickness; b)For the centers of strips smaller than $-5 \mu \text{rad}$, the scattering angle is a decreasing function of thickness.
For the coordinates of the strip centers equal to $-35, -25, -15, -5, 0 \mu\text{rad}$, b for the coordinates of the strip centers equal to 0, 5, 15, 25 μrad

Note that for some measurement results the linear function is not an adequate approximation, but we have shown these approximations in the figure because they correctly indicate the trend of the of these results.

Figures 7 and 8 show rms multiple scattering angles as a function of crystal thickness. Here are the results for particles falling into the range of angles determined by the condition $-\phi_o < \phi < \phi_o$, where ϕ_o is the maximum capture angle of particles relative to the line $Q'Q$. It can be seen that for particles with a momentum of 400 GeV/c and for the same thickness, the rms angle changes little with ϕ_o. In addition, this function graph undergoes a slight bend at coordinates in the vicinity of 40 mm and a weakly pronounced maximum at a coordinate of about 45 mm. On the whole, all the results obtained here indicate a steady increase in the scattering angle with increasing thickness.

For 180 GeV/c particles, the situation is somewhat different. The scattering angle of particles with an angle ϕ_o (relative to the zero level) less than 16 μrad increases slowly with increasing crystal thickness, while at large angles a decrease in the rms scattering angle with thickness is observed. The coefficient $A_0 = 0.053 \pm 0.015, 0.038 \pm 0.01, 0 \pm 0.01, -0.065 \pm 0.014 \mu\text{rad/mm}$ for curves $\pm8, \pm16, \pm32, \pm48 \mu\text{rad}$, respectively.

Note that in the data presented in this article there are no results corresponding to a coordinate x near the crystal surface in order to avoid possible surface effects on the measurement results.
6 Discussion

6.1 Multiple scattering of non-channeled particles in the vertical plane

The new results we presented from measuring the rms multiple scattering angle of positively charged particles moving outside the channeling region do not contradict our previous data and are more accurate. Recall that we consider the scattering angle in the transverse plane perpendicular to the crystal bending plane (i.e., in the vertical plane in the geometry of the experiment).

In our previous study, we showed that the value of the rms angle of multiple scattering of non-channeled particles is slightly less than follows from Eq. (4). However, in order to state this confidently, it was necessary to improve the measurement accuracy. The new data confirm this statement.

It follows from theory that the rms multiple scattering angle of an ultrarelativistic particle in an amorphous medium is inversely proportional to its momentum (energy). Our measurements performed for two different energies confirm this result for non-channeled particles in a silicon monocrystal. The mean square multiple scattering angle can be considered a linear function of thickness over a relatively small distance from 30 to 50 mm of the substance. These conditions make it possible to write a universal equation for the rms multiple scattering angle in monocrystalline silicon

$$\langle \theta^2 \rangle = \left(\frac{\kappa}{E} \right)^2 \left(\frac{I}{X_0 + \delta} \right)$$

(8)

where coefficients $\kappa = 13.61 \pm 0.13, 12.98 \pm 0.13, 13.04 \pm 0.14 \text{ MeV/c}$ and $\delta = -0.058 \pm 0.0015, -0.027 \pm 0.0018, -0.045 \pm 0.0$ are found from measurements with crystals 1, 3 and 4, respectively.
Fig. 9 Approximations of the mean square multiple scattering angle for 400 GeV protons in monocrystalline silicon. The points are the experimental data. Curve 1 corresponds to Eq. (4), curve 2 is a linear approximation of Eq. (8), and curve 3 is Eq. (9) for $\varepsilon = 13.35$ MeV, $\omega = 0.063$.

Since the condition $l/X_0 \gg \delta$ is satisfied in the entire measurement region, we can find the proportionality coefficients (i.e., neglecting the value of δ). In this case, we get the results $\hat{\kappa} = 12.65 \pm 0.29$, 12.57 ± 0.19, 12.36 ± 0.18 MeV. These results are close to our previous measurements, but their accuracy is 1.5-2 times better.

Note that the first measurements of multiple scattering of 400 GeV/c protons were carried out by our collaboration in 2016 [23] for three silicon crystals 0.97, 1.94, and 4.02 mm thick. In the experiment, the crystals were oriented away from strong axes and planes. We combined the measurement data [23] with the data obtained in the experiment [6, 8] and obtained a description for the process from fractions of a mm to 50 mm of silicon thickness. For the universal Eq. (8), we got $\kappa = 12.76 \pm 0.09$ MeV, $\delta = -0.0074 \pm 0.0021$.

Figure 9 presents various approximations of the mean square scattering angle. It can be seen that a linear relationship describes experimental points well. The calculation according to Eq. (4) does not agree very well with the measurements. However, Eq. (4) can be written in the form

$$\sigma_n^2 = \left[\frac{\varepsilon}{\beta c p} \right]^2 \frac{l}{X_0^2} [1 + \omega \ln(l/X_0)]^2$$

where ε and ω are free parameters for the approximation. The best fit is for $\varepsilon = 13.35$ MeV and $\omega = 0.063$.

6.2 Multiple scattering of non-channeled particles in the horizontal plane

For this paper, we studied the scattering behavior in the vertical plane (the plane perpendicular to the bending plane). However, to complete the picture, we present measurements of the scattering of non-channeled positively charged particles (see Fig. 3) in the horizontal plane (bending plane). In contrast to the vertical plane, in this case even non-channeled particles move interacting with the potential of the plane. As previously indicated, the particles with the angles of entry into the crystal in the direction opposite to the deflection of the channeled beam were selected for the measurement. This corresponds to the process of planar volume reflection of particles in crystals [25, 26], and we observed such a reflection in this experiment.

In the case of volume reflection, the particle trajectory deviates slightly and one can expect that multiple scattering will be the same as in the vertical plane. Multiple scattering by volume reflection of particles was studied in [27]. According to this study, the mean square is equal to the sum of $\sigma_a^2 + \sigma_{v\tau}^2$, where the first term in the sum is equal to the mean square of multiple scattering in an amorphous medium and $\sigma_{v\tau}^2 = \int_{-\infty}^{+\infty} (\alpha - \bar{\alpha}) \rho(\alpha) d\alpha$ is a term that takes into account the interaction of a particle with the planar potential of a crystal, ($\bar{\alpha}$ is the mean angle of volume reflection, $\rho(\alpha)$ particle distribution over volume reflection angle. It is easy to see that the total mean square of the scattering angle in this case should be greater than vertically. This is demonstrated in Fig. 3.

The experimental points shown in Fig. 3 were approximated by straight lines. It can be seen that the scatter of the experimental points relative to these straight lines is noticeably larger than the statistical error. One can even see periodic deviations from straight lines. This suggests the presence of oscillations similar to those observed in [28]. The problem touched upon here requires further study.
6.3 Multiple scattering in the channeling range

Figures 4 and 7 and 5 and 8, show changes in the rms multiple scattering angle for particles with different angular restrictions relative to the straight line QQ' (see Fig. 1). Figures 4 and 5 show the behavior of the scattering angle in narrow strips, while Figs. 7 and 8 show the behavior of such an angle at different and sufficiently large particle capture angles. Note that only for crystal 1 and 4 did we have fairly large statistics for particles in the channeling range. The statistics accumulated on crystal 3 were sufficient for measurements of non-channeled particles but poor for particles in the channeling zone.

Particles found in the zone between the straight lines $Q_+ Q'_+$ and $Q_− Q'_−$ can be mainly of two types: a) particles that have passed through the entire crystal in the channeling regime and b) dechanneled particles.

Figure 6 gives a qualitative representation of the occurrence of dechanneled particles in crystals 1 and 4, i.e., for 400 and 180 GeV/c particles. In the figure, the zero angular coordinate corresponds to the maximum density of channeled particles. In the region of large negative angles, we see a tail of dechanneled particles. For crystal 4, this tail has a higher intensity compared to crystal 1. This can be explained by the following arguments: a) the dechanneling length for crystal 1 is 400/180 times greater than for crystal 4, and therefore, in the first case, fewer dechanneled particles are formed; b) the particles that dechanneled in the depth of the crystal quickly deviate from the direction of motion of the channeled particles. It is obvious that for a crystal with a smaller bending radius, dechanneled particles deviate faster from that direction.

A comparison of Figs. 4 and 5 shows that the rms scattering angle for the strips in the channeling region and away from the dechanneling region increases with increase in crystal thickness. This effect is more pronounced for crystal 1, while for crystal 4 it is much weaker. In the region where dechanneled particles are expected, a decrease in the rms scattering angle is observed with increase in thickness. For crystal 1, this effect is observed only for one strip (with a center at -30 μrads). Our results show that the process under consideration can be affected by dechanneled particles at certain crystal parameters and particle energy.

In general, the data presented in Figs. 4 and 5, as well as Figs. 7 and 8, show a reduction of the rms multiple scattering angle by 6–8 times in the channeling region compared to non-channeled particles.

6.4 Violation of the energy dependence of multiple scattering

As already stated, theory predicts inverse proportionality of the rms angle of small-angle multiple scattering with particle energy. To check this, similarly to our previous article, we plotted the dependence of the square of the multiple scattering angle divided by k^2 (see Fig. 1). Figures 4 and 5 show the behavior of the scattering angle in narrow strips, while Figs. 7 and 8 show the behavior of such an angle at different and sufficiently large particle capture angles. Note that only for crystal 1 and 4 did we have fairly large statistics for particles in the channeling range. The statistics accumulated on crystal 3 were sufficient for measurements of non-channeled particles but poor for particles in the channeling zone.

Figure 6 gives a qualitative representation of the occurrence of dechanneled particles in crystals 1 and 4, i.e., for 400 and 180 GeV/c particles. In the figure, the zero angular coordinate corresponds to the maximum density of channeled particles. In the region of large negative angles, we see a tail of dechanneled particles. For crystal 4, this tail has a higher intensity compared to crystal 1. This can be explained by the following arguments: a) the dechanneling length for crystal 1 is 400/180 times greater than for crystal 4, and therefore, in the first case, fewer dechanneled particles are formed; b) the particles that dechanneled in the depth of the crystal quickly deviate from the direction of motion of the channeled particles. It is obvious that for a crystal with a smaller bending radius, dechanneled particles deviate faster from that direction.

A comparison of Figs. 4 and 5 shows that the rms scattering angle for the strips in the channeling region and away from the dechanneling region increases with increase in crystal thickness. This effect is more pronounced for crystal 1, while for crystal 4 it is much weaker. In the region where dechanneled particles are expected, a decrease in the rms scattering angle is observed with increase in thickness. For crystal 1, this effect is observed only for one strip (with a center at -30 μrads). Our results show that the process under consideration can be affected by dechanneled particles at certain crystal parameters and particle energy.

In general, the data presented in Figs. 4 and 5, as well as Figs. 7 and 8, show a reduction of the rms multiple scattering angle by 6–8 times in the channeling region compared to non-channeled particles.

7 Calculations

7.1 About the calculation method

We also made calculations of the effect of multiple scattering suppression at channeling of particles in the plane (111) of silicon single crystals. These calculations were based on a recent paper [29]. In this paper, an analytical method was proposed for calculating multiple scattering during planar channeling of positively charged relativistic particles. In the article, the distribution function of channeling particles over transverse energy in a sufficiently thick crystal is constructed based on an approximate description of the diffusion process in a thin crystal layer. Thus, by dividing the entire thickness of the crystal into a sufficiently large number of parts, it is possible to find the function of the distribution of particles over transverse energy in each of the mentioned parts. This is equivalent to finding the distribution function for different crystal thicknesses. Then, it is convenient to move from the transverse energy distribution function to distribution functions over the oscillation amplitudes of channeling particles. With the help of such a function, it is possible to determine the number of particles approaching to the region of atomic nuclei. Taking into account the number of such particles and their residence time near the nuclei, it is possible to find the dependence of multiple scattering angles for different thicknesses.
Fig. 10 The dependence of the mean square multiple scattering angle divided by k^2 ($k = 13.6 \text{ [MeV/E]}$) as a function of thickness. The curves 1,1' and 2,2' and 3,3' correspond to measurements (in non-channeled a and channeled b regimes) for crystals 1, 3, 4, respectively. Measurements for crystal 1 were made for a momentum 400 GeV/c and for crystals 3 and 4 for a momentum 180 GeV/c. The data for channeling regimes were enlarged by a factor 20. Curve 4 corresponds to Eq. (4) and is independent of energy of particles.

7.2 Results

The method involves calculating the angles of multiple scattering for a beam of particles distributed uniformly over the entry angles ($\approx -\theta_c$ till $\approx \theta_c$) with respect to the (111) plane of the single crystal. Calculation results of rms scattering angle are shown in Fig. 11a. We compare the results of these calculations with the experimental data presented in Figs. 7 and 8 for the range of angles ± 20 and $\pm 32 \mu \text{rad}$, respectively. We believe that this choice of the angle range roughly corresponds to the specified ranges of input angles. This can be seen from Fig. 6. Indeed, most of the channeling beam particles is concentrated within the indicated limits. The excess of the critical angle by 2 times can be explained by the scattering of the beam in the detector material, as well as the measurement error of the corresponding angles. A small fraction of the beam in the region of large angles may be due to dechanneling.

The results of calculations presented in Fig. 11a demonstrate that the rms scattering angle of particles is an almost linear function of the thickness of a single crystal in the range of distances from 30 to 50 mm. It can be seen that the experimental points in order of magnitude give good agreement with the calculations. However, the experimental points for particles with a momentum of 400 GeV/c fit well with the linear function on the first part of the crystal (from 30 to 42 mm). Further, the experimental points rise by 25 percent above the calculated curve. For particles with a momentum of 180 GeV/c, the experimental points agree well with the linear function almost over the entire thickness, except for (may be) a few points at the beginning and end of the crystal. We think that this behavior of the experimental data can be explained by the presence of possible microdefects (microscratches, etc.) on both side surfaces of the single crystal. The presence of these defects can lead to local perturbations of the crystal lattice and the subsequent influence on the process under study. This confirms the fact that measurements of rms angles near both surfaces differed markedly and we do not present them in this paper. In addition, Fig. 1a shows a darkening on the right side (at a coordinate of about 0.9 mm), which corresponds to anomalous dechanneling of particles.
7.3 The violation of the inverse proportionality variation with energy

Figure 11b illustrates the result of dividing the calculated and experimental data by the previously introduced coefficient $k = 13.6[\text{MeV}/E]$. Thus, the experimental and calculated data confirm our conclusion that the behavior of the rms scattering angle does not satisfy inverse proportionality variation with energy.

Next, we assumed that the energy dependence of the rms angle of multiple scattering in planar channeling has the form $\sigma \sim 1/E^h$, where h is some constant. Using the generalized coefficient $K_c = (13.6[\text{MeV}]/E)^h$ one can find the constant h. For $h = 0.76 \pm 0.04$ the experimentally measured angles divided by the coefficient K_c for different particle momenta almost coincide at variation z from 30 mm till 42 mm (see the lower part of Fig. 11b). Theoretical curves coincide at $h = 0.70 \pm 0.01$.

According to the article [29], the violation of the inverse proportionality variation with energy of particles is determined by the fact that in the formula for calculating the rms angle of multiple scattering includes the distribution function of particles over transverse energies (amplitudes) at the current thickness of the crystal. Naturally, the rate of change of this function is determined by the particle dechanneling length.

Our experimental data allow us to estimate the dechanneling length for a 400 GeV/c beam and (111) plane of silicon equal to approximately 180 ± 15 cm. For a particle momentum of 180 GeV/c, this value is approximately in two times smaller. It is well known that a dechanneling length is an approximately linear function of an energy of particle [12]. The method for measuring the dechanneling length is described in [30]. The paper shows that the exponential character loss of particle beam from the channeling regime is established at crystal thicknesses much smaller dechanneling length. Thus, the dechanneling length of 180 GeV/c of positively charged particles measured in the work is 71 mm, and the thickness of the crystal used in the experiment was 23 mm.
7.4 Explanation of unusual scattering for the crystal 4.

Based on our calculations, we can try to explain the unusual behavior of the rms angle of multiple scattering for the crystal 4. According to calculations (see Fig. 11), the rms angle of multiple scattering on the thickness of this crystal from 30 to 50 millimeters changes very slowly from about 5.2 to 6.1 μrad. If you look in Fig. 8, it agrees quite well with a straight line for angles φ from -32 to 32 μrad. We remind that the theoretical curve is calculated for the total flow of particles captured in the channeling regime. From this we can conclude that the curve for the angles from -48 to 48 μrad corresponds to the rms angle for a mixture of channeled and dechanneled particles. Figure 6 also confirms this conclusion. It can be seen that at angles smaller than ~40 μrad, the decrease in the number of particles is replaced by their increase.

Let us find the rms angle of multiple scattering of a mixture of particles passed the entire crystal in the channeling regime and particles that also channeled some part of the path, and then dechanneled and exited the crystal at the same x-coordinate as channeled ones. Let us denote the total number of particles in the first fraction as N_c, and in the second fraction as N_d. Then, for the mean square scattering angles of each of the fractions, we can obtain the following relations:

\[
\langle \theta^2 \rangle_c = \frac{\int_{\theta_{\min}}^{\theta_{\max}} \theta^2 \frac{dN_c}{d\theta} d\theta}{N_c},
\]

\[
\langle \theta^2 \rangle_d = \frac{\int_{\theta_{\min}}^{\theta_{\max}} \theta^2 \frac{dN_d}{d\theta} d\theta}{N_d},
\]

where the choice of limit angles θ_{\min} and θ_{\max} is in agreement with the consideration in Sect. 3. The mean square of the scattering angle for the entire mixture of particles is

\[
\langle \theta^2 \rangle_T = \frac{\int_{\theta_{\min}}^{\theta_{\max}} \theta^2 \frac{dN_c}{d\theta} d\theta + \int_{\theta_{\min}}^{\theta_{\max}} \theta^2 \frac{dN_d}{d\theta} d\theta}{N_c + N_d} = \langle \theta^2 \rangle_c (1 - \gamma) + \langle \theta^2 \rangle_d \gamma
\]

where $\gamma = N_d/(N_c + N_d)$. As already mentioned, Eq. (12) is written for each of the 41 or 31 parts of the partition of the transverse x coordinate (see Sect. 2). For simplicity, we do not give the part number in the notation of the corresponding parameters in the equation.

Now we consider the two curves in Fig. 8. These curves correspond to angles ϕ_0 equal to 32 and 48 μrad, respectively. We can assume that the curve with $\phi_0 = 32 \mu$rad practically does not contain dechanneled particles. In other words, we will approximately assume that this curve corresponds to only particles captured in the channeling and reaching in this regime until the end of the crystal. This means that in this case $N_d \approx 0$ and $\gamma \approx 0$. The curve for angles $\phi_0 = 48 \mu$rad corresponds to some admixture of dechanneled particles. The number of dechanneled particles is equal to the difference between $N_T(48) - N_T(32) = N_T(48) - N_c(32)$ and $\gamma = (N_T(48) - N_c(32))/N_T(48)$. From Eq. (12), it can be seen that if the quantities γ, $\langle \theta^2 \rangle_c$, $\langle \theta^2 \rangle_d$ are known then the value $\langle \theta^2 \rangle_T$ can be calculated.

Figure 12 illustrates the quantities γ and $\langle \theta^2 \rangle_T$ found in this way. We see that the value of $\langle \theta^2 \rangle_T(48)$ is the sum of the two terms $\langle \theta^2 \rangle_T(48)$ (increasing with the thickness) and $\langle \theta^2 \rangle_T\gamma$ which is decreasing. Thus, the total rms angle is a decreasing function of thickness, while the rms angle of channeled particles is an increasing function. The behavior of the γ function can be understood from a review of Fig. 1a. It can be seen that dechanneling particles from the area near the straight line Q_+, Q'_+, i.e., they pass through almost the entire thickness of the crystal and therefore fall into the area of the specified angles $-\phi_0 < \phi < \phi_0$. The number of dechanneled particles decreases with the thickness of the crystal (i.e., when the x coordinate increase) and consequently the number of dechanneled particles decreases with the thickness of crystal (see Fig. 12).

For a beam with a momentum of 400 GeV/c, the effect of reducing the rms angle of multiple scattering was not observed due to the larger dechanneling length and the smaller bending radius of the crystal.

8 Conclusions

In this work, we have increased the statistics and also implemented tight control of the beam parameters and introduced restrictions on angular characteristics of particles that allowed to:

(a) Confirm the effect of a decrease in the rms scattering angle in comparison with non-channeled particles;
(b) Obtain a detailed picture of the change in scattering angle with different angular constraints;
(c) Show that the coefficient of scattering angle reduction is numerically increased up to 6-8 times (in comparison with non-channeled particles);
(d) Confirm the effect of the unusual behavior of the scattering angle as a function of the thickness. However, this is observed at sufficiently large angles relative to the zero level. Although there is not full understanding of this issue, it can be assumed that this behavior is a result of dechanneling processes;
(e) Find that the behavior of the rms scattering angle does not satisfy inverse proportionality variation with energy;
Fig. 12

(a) A relative number of dechanneled particles γ as a function of the crystal thickness.

(b) Root-mean-square angles of the multiple scattering $\langle \theta^2 \rangle^{0.5}$, $\langle \theta_T^2 \rangle^{0.5}$, $\langle \theta_c^2 \rangle^{0.5}$ shown by the data sets 1, 2 and 3, respectively (see the text), and the calculated root-mean-square angle for the distribution of the channeled particles (curve 4) as a function of the crystal thickness.

(f) Observe some features in the multiple scattering of non-channeled particles in the bending plane, possibly having an oscillatory character;

(g) Refine the results of multiple scattering of non-channeled particles;

(h) In general, conclude that our research expands knowledge about channeling and quasi-channeling of high-energy particles in monocrystalline silicon. Nevertheless, we believe that it is consistent with traditional theoretical views on these processes. Based on this approach, our calculations of the reduction of multiple scattering of channeling particles are in satisfactory agreement with experiment.

The effect considered here is also of great practical importance. For example, in [31] an application using two focusing crystals for focusing beams in two orthogonal planes was proposed. It can be expected that the effect of reducing multiple scattering will improve the performance of such a system of lenses. It is also important to understand the scattering of channeled particles in crystals for suggestions to use crystals for laser-plasma acceleration [32].

Acknowledgements The Imperial College group thanks the UK Science and Technology Facilities Council for financial support. The INFN authors acknowledge the support of the ERC Ideas Consolidator Grant No. 615089 CRYSBEAM. The IHEP participants of UA9 experiment acknowledge financial support of Russian Science Foundation (grant 17-12-01532). The corresponding author would like to thank V.V. Tikhomirov for useful discussion.

Data Availability Statement This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting the corresponding author.]

References

1. M.L. Ter-Mikaelian, *High energy electromagnetic processes in condensed media* (Wiley, New York, 1972)
2. H. Uberall, Phys. Rev. 103, 1055 (1956)
3. H. Uberall, Phys. Rev. 107, 223 (1957)
4. V.N. Baier, V.M. Katkov, V.M. Strakhovenko, *Electromagnetic processes at high energies in oriented single crystals* (World Scientific, Singapore, 1998)
5. J. Lindhard, Influence of crystal lattice on motion of energetic charged particles. Mat.-Fys. Medd. Dan. Vid. Selsk. 34(14), 64 (1965)

6. W. Scandale et al., Reduction of multiple scattering of high-energy positively charged particles during channeling in single crystals. Eur. Phys. J. C 79(12), 993 (2019). https://doi.org/10.1140/epjc/s10052-019-7515-8

7. W. Scandale et al., Observation of strong reduction of multiple scattering for channeled particles in bent crystals. Phys. Lett. B 804, 135396 (2020). https://doi.org/10.1016/j.physletb.2020.135396

8. W. Scandale et al., Comprehensive study of beam focusing by crystal devices. Phys. Rev. Accel. Beams 21(1), 014702 (2018). https://doi.org/10.1103/PhysRevAccelBeams.21.014702

9. W. Scandale et al., Observation of channeling for 6500 GeV/c protons in the crystal assisted collimation setup for LHC. Phys. Lett. B 758, 129 (2016)

10. D.S. Gemmell, Channeling and related effects in the motion of charged particles through crystals. Rev. Mod. Phys. 46(1), 129 (1974)

11. Y.H. Ohtsuki, Charged beam interaction with solids (Taylor Francis Ltd., London and New York, 1983)

12. V.M. Biryukov, Yu.A. Chesnokov, V.I. Kotov, Crystal channeling and its application at high-energy accelerators (Springer, Berlin, 1997), p. 219

13. V.A. Bazylev, V.V. Goloviznin, Quantum theory of channeled electron and positron scattering in a crystal. Zh. Eksp. Teor. Fiz. 82, 1204 (1982)

14. V.A. Bazylev, V.V. Goloviznin, Quantum theory of channeled electron and positron scattering in a crystal. Sov. Phys. JETP 55, 700 (1982)

15. V.L. Ljuboshits, M.I. Podgoretsky, Multiple Coulomb scattering of ultrarelativistic charged particles moving at small angles to crystallographic planes. Zh. Eksp. Teor. Fiz. 87, 717 (1984)

16. V.L. Ljuboshits, M.I. Podgoretsky, Multiple Coulomb scattering of ultrarelativistic charged particles moving at small angles to crystallographic planes. Sov. Phys. JETP 60, 409 (1984)

17. A.I. Akhiezer, N.F. Shul’ga, Influence of multiple scattering on the radiation of relativistic particles in amorphous and crystalline media. Sov. Phys. Usp. 30, 197–219 (1987)

18. V.V.Tikhomirov, “Relativistic particle incoherent scattering by the nuclei of crystal plane atoms”, [arXiv:2103.03141 [physics.acc-ph]]

19. A. Mazzolari, A. Sytov, L. Bandiera, G. Germogli, M. Romagnoni et al., Broad angular anisotropy of multiple scattering in a Si crystal. Eur. Phys. J. C 80(1), 63 (2020)

20. M. Pesaresi, W. Ferguson, J. Fulcher, G. Hall, M. Raymond, M. Ryan, O. Zorba, Design and performance of a high rate, high angular resolution beam telescope used for crystal channeling studies. J. Instrum. 6, P04006 (2011)

21. G. Hall, G. Auzinger, J. Borg, T. James, M. Pesaresi, M. Raymond, A high angular resolution silicon microstrip telescope for crystal channeling studies. Nucl. Instrum. Methods A 924, 175–180 (2019). https://doi.org/10.1016/j.nima.2018.08.060

22. W. Scandale et al., Measurements of multiple scattering of high energy protons in bent silicon crystals. Nucl. Instr. Meth. B 402, 291 (2017). https://doi.org/10.1016/j.nimb.2017.02.060

23. W. Scandale et al., Dechanneling of high energy particles in a long bent crystal. Nucl. Instr. Meth. B 438, 38 (2019)

24. A.M. Taratin, S.A. Vorobiev, Volume reflection of high-energy charged particles in quasi-channeling states in bent crystals. Phys. Lett. A 119, 425 (1987)

25. V.A. Maisheev, Volume reflection of ultrarelativistic particles in single crystals. Phys. Rev. ST Accel. Beams 10, 084701 (2007)

26. W.S. Scandale et al., Volume reflection dependence of 400 GeV/c protons on the bent crystal curvature. Phys. Rev. Lett. 101, 234801 (2008)

27. A.I. Sytov, V. Guidi, V.V. Tikhomirov, E. Bagli, L. Bandiera, G. Germogli, A. Mazzolari, Planar channeling and quasichanneling oscillations in a bent crystal. Eur. Phys. J. C 76(2), 77 (2016). https://doi.org/10.1140/epjc/s10052-016-3923-1

28. A. Ya. V. A. Chesnokov, Maisheev Study of reduction of multiple scattering of positively charged particles during channeling in (111) crystallographic silicon planes. Nucl. Instr. Meth. B 486, 11 (2021)

29. W. Scandale et al., Dechanneling of high energy particles in a long bent crystal. Nucl. Instr. Meth. B 438, 38 (2019)

30. V.D. Shiltsev, T. Tajima, Int. J. Modern Phys. A 34(34) (2019) 1943001. Summary of the Workshop on Beam Acceleration in Crystals and Nanostructures (Fermilab, 24–25 June). https://doi.org/10.1142/S0217751X19430012 (2019)