A KOHNO–DRINFELD THEOREM FOR QUANTUM WEYL GROUPS

VALERIO TOLEDANO LAREDO

ABSTRACT. Let \(g \) be a complex, simple Lie algebra with Cartan subalgebra \(h \) and Weyl group \(W \). In [MTL], we introduced a new, \(W \)–equivariant flat connection on \(h \) with simple poles along the root hyperplanes and values in any finite–dimensional \(g \)–module \(V \). It was conjectured in [TL] that its monodromy is equivalent to the quantum Weyl group action of the generalised braid group of type \(g \) on \(V \) obtained by regarding the latter as a module over the quantum group \(U_\hbar g \). In this paper, we prove this conjecture for \(g = \mathfrak{sl}_n \).

1. Introduction

One of the many virtues of quantum groups is their ability to describe the monodromy of certain first order systems of Fuchsian PDEs. If \(U_\hbar g \) is the Drinfeld–Jimbo quantum group of the complex, simple Lie algebra \(g \), the universal \(R \)–matrix of \(U_\hbar g \) yields a representation of Artin’s braid group on \(n \) strings \(B_n \) on the \(n \)–fold tensor product \(V^\otimes n \) of any finite–dimensional \(U_\hbar g \)–module \(V \). A fundamental, and paradigmatic result of Kohno and Drinfeld establishes the equivalence of this representation with the monodromy of the Knizhnik–Zamolodchikov equations for \(g \) with values in \(V^\otimes n \) [Dr3, Dr4, Dr5, Ko1]. Lusztig, and independently Kirillov–Reshetikhin and Soibelman realised that \(U_\hbar g \) also yields representations of another braid group, namely the generalised braid group \(B_g \) of Lie type \(g \) [Lu1, KR, So]. Whereas the \(R \)–matrix representation is a deformation of the natural action of the symmetric group \(S_n \) on \(n \)–fold tensor products, these representations of \(B_g \) deform the action of (a finite extension of) the Weyl group \(W \) of \(g \) on any finite–dimensional \(g \)–module \(V \).

The aim of this paper is to show that these quantum Weyl group representations describe the monodromy of the flat connection introduced in [MTL] and, independently, in [FMTV]. More precisely, realise \(B_g \) as the fundamental group of the orbit space \(h_{\text{reg}}/W \) of the set of regular elements of a Cartan subalgebra \(h \) of \(g \) under the action of \(W \) [Br]. Then, one can define a flat vector bundle \((V, \nabla_\kappa) \) with fibre \(V \) over \(h_{\text{reg}}/W \) [MTL]. The connection \(\nabla_\kappa \) depends upon a parameter \(\hbar \in \mathbb{C} \) and it was conjectured in [TL] that, when \(\hbar \) is regarded as a formal variable, its monodromy is equivalent to the quantum Weyl group action of \(B_g \) on \(V \). This conjecture was checked in [TL] for a number of pairs \((g, V)\) including vector representations of classical Lie algebras and adjoint representations of simple Lie algebras.

In the present paper, we prove this conjecture for \(g = \mathfrak{sl}_n \), so that \(B_g = B_n \). The proof relies on the Kohno–Drinfeld theorem for \(U_\hbar \mathfrak{sl}_k \) via the use of the dual pair \((\mathfrak{gl}_k, \mathfrak{gl}_n)\). Our main observation is that the duality between \(\mathfrak{gl}_k \) and \(\mathfrak{gl}_n \) derived from their joint action on the space \(\mathcal{M}_{k,n} \) of \(k \times n \) matrices exchanges \(\nabla_\kappa \) for \(\mathfrak{sl}_k \) and the Knizhnik–Zamolodchikov connection for \(\mathfrak{sl}_k \), thus acting as a simple–minded integral transform. This shows the equivalence of the monodromy representation of \(\nabla_\kappa \) for \(\mathfrak{sl}_n \) with a suitable \(R \)–matrix representation for \(U_\hbar \mathfrak{sl}_k \). The proof is completed by noting that the duality between \(U_\hbar \mathfrak{gl}_k \) and \(U_\hbar \mathfrak{gl}_n \) exchanges the \(R \)–matrix representation of \(U_\hbar \mathfrak{gl}_k \) with the quantum Weyl group representation of \(U_\hbar \mathfrak{sl}_n \).

Date: 8 May 2001.
This may be schematically summarised by the following diagram

\[
\begin{array}{c}
\nabla_{KZ}, \mathfrak{sl}_k \quad \mathcal{M}_{k,n} \quad \nabla_\kappa, \mathfrak{sl}_n \\
KD \\
R^\vee, U_h \mathfrak{sl}_k \quad \mathcal{M}^h_{k,n} \quad W_h, U_h \mathfrak{sl}_n
\end{array}
\]

The structure of the paper is as follows. In section 2, we give the construction of the connection \(\nabla_\kappa \) following [MTL]. We show in section 3 that the duality between \(\mathfrak{gl}_k \) and \(\mathfrak{gl}_n \) identifies the Knizhnik–Zamolodchikov connection for \(n \)-fold tensor products of symmetric powers of the vector representation of \(\mathfrak{sl}_k \) and the connection \(\nabla_\kappa \) for \(\mathfrak{sl}_n \). In section 4 we recall the definition of the Drinfeld–Jimbo quantum groups \(U_h \mathfrak{gl}_k \) and \(U_h \mathfrak{gl}_n \) and, in section 5, show how they jointly act on the quantum \(k \times n \) matrix space \(S_h(\mathcal{M}^*_k) \). The corresponding \(R \)-matrix and quantum Weyl group representations of \(B_n \) on \(S_h(\mathcal{M}^*_k) \) are shown to coincide in section 6. Section 7 contains our main result.

Acknowledgements. This paper was begun at the Research Institute for Mathematical Sciences of Kyoto University. I am very grateful to M. Kashiwara for his invitation to spend the summer of 1999 at RIMS and to RIMS for its hospitality and financial support. During my stay, I greatly benefitted from very stimulating and informative discussions with M. Kashiwara and B. Feigin. I also wish to express my gratitude to A. D’Agnolo, P. Baumann, B. Enriquez, J. Millson, R. Rouquier and P. Schapira for innumerable, useful and friendly conversations.

2. Flat connections on \(\mathfrak{h}_{\text{reg}} \)

The results in this section are due to J. Millson and the author [MTL]. They were obtained independently by De Concini around 1995 (unpublished). Let \(\mathfrak{g} \) be a complex, simple Lie algebra with Cartan subalgebra \(\mathfrak{h} \) and root system \(R \subset \mathfrak{h}^* \). Let \(\mathfrak{h}_{\text{reg}} = \mathfrak{h} \setminus \bigcup_{\alpha \in R} \text{Ker}(\alpha) \) be the set of regular elements in \(\mathfrak{h} \) and \(V \) a finite-dimensional \(\mathfrak{g} \)-module. We shall presently define a flat connection on the topologically trivial vector bundle \(\mathfrak{h}_{\text{reg}} \times V \) over \(\mathfrak{h}_{\text{reg}} \). We need for this purpose the following simple flatness criterion due to Kohno [Ko2]. Let \(B \) be a complex, finite-dimensional vector space and \(\mathcal{A} = \{ H_i \}_{i \in I} \) a finite collection of hyperplanes in \(B \) determined by the linear forms \(\phi_i \in B^*, i \in I \).

Lemma 2.1. Let \(F \) be a finite-dimensional vector space and \(\{ r_i \} \subset \text{End}(F) \) a family indexed by \(I \). Then,

\[
\nabla = d - \sum_{i \in I} \frac{d\phi_i}{\phi_i} r_i \tag{2.1}
\]

defines a flat connection on \((B \setminus \mathcal{A}) \times F \) iff, for any subset \(J \subseteq I \) maximal for the property that \(\bigcap_{j \in J} H_j \) is of codimension 2, the following relations hold for any \(j \in J \)

\[
[r_j, \sum_{j' \in J} r_{j'}] = 0 \tag{2.2}
\]
For any $\alpha \in R$, choose root vectors $e_\alpha \in \mathfrak{g}_\alpha, f_\alpha \in \mathfrak{g}_{-\alpha}$ such that $[e_\alpha, f_\alpha] = h_\alpha = \alpha^\vee$ and let

$$\kappa_\alpha = \frac{\langle \alpha, \alpha \rangle}{2} (e_\alpha f_\alpha + f_\alpha e_\alpha) \in U\mathfrak{g}$$

be the truncated Casimir operator of the $\mathfrak{sl}_2(\mathbb{C})$–subalgebra of \mathfrak{g} spanned by $e_\alpha, h_\alpha, f_\alpha$. Note that κ_α does not depend upon the particular choice of e_α and f_α and that $\kappa_{-\alpha} = \kappa_\alpha$.

Theorem 2.2. The one–form

$$\nabla^h_\kappa = d - \hbar \sum_{\alpha > 0} \frac{d\alpha}{\alpha} \kappa_\alpha = d - \frac{\hbar}{2} \sum_{\alpha \in R} \frac{d\alpha}{\alpha} \kappa_\alpha$$

defines, for any $h \in \mathbb{C}$, a flat connection on $\mathfrak{h}_{\text{reg}} \times V$.

Proof. By lemma 2.1, we must prove that for any rank 2 subsystem $R_0 \subseteq R$, the following holds for any $\alpha \in R_0^+ = R_0 \cap R^+$

$$[\kappa_\alpha, \sum_{\beta \in R_0^+} \kappa_\beta] = 0$$

This may be proved by an explicit computation by considering in turn the cases where R_0 is of type $A_1 \times A_1, A_2, B_2$ or G_2 but is more easily settled by the following elegant observation of A. Knutson [Kn]. Let $\mathfrak{g}_0 \subseteq \mathfrak{g}$ be the semi–simple Lie algebra with root system R_0, $\mathfrak{h}_0 \subset \mathfrak{h}$ its Cartan subalgebra and $\mathfrak{c}_0 \subset Z(U\mathfrak{g}_0)$ its Casimir operator. Then, $\sum_{\beta \in R_0^+} \kappa_\beta - \mathfrak{c}_0$ lies in $U\mathfrak{h}_0$ so that (2.5) holds since κ_α commutes with \mathfrak{h}_0.

Let G be the complex, connected and simply–connected Lie group with Lie algebra \mathfrak{g}, T its torus with Lie algebra \mathfrak{h}, $N(T) \subset G$ the normaliser of T and $W = N(T)/T$ the Weyl group of G. Let $B_\mathfrak{g} = \pi_1(\mathfrak{h}_{\text{reg}}/W)$ be the generalised braid group of type \mathfrak{g} and $\sigma : B_\mathfrak{g} \to N(T)$ a homomorphism compatible with

$$B_\mathfrak{g} \xrightarrow{\sigma} N(T) \xrightarrow{\gamma} \mathfrak{h}_{\text{reg}} \leftarrow \mathfrak{h}_{\text{reg}}/W$$

We regard $B_\mathfrak{g}$ as acting on V via σ. Let $\tilde{\mathfrak{h}}_{\text{reg}} \rightarrow \mathfrak{h}_{\text{reg}}$ be the universal cover of $\mathfrak{h}_{\text{reg}}$ and $\mathfrak{h}_{\text{reg}}/W$.

Proposition 2.3. The one–form $p^*\nabla^h_\kappa$ defines a $B_\mathfrak{g}$–equivariant flat connection on $\tilde{\mathfrak{h}}_{\text{reg}} \times V = p^*(\mathfrak{h}_{\text{reg}} \times V)$. It therefore descends to a flat connection on the vector bundle

$$V \rightarrow \tilde{\mathfrak{h}}_{\text{reg}} \times B_\mathfrak{g} \times V$$

$$\rightarrow \mathfrak{h}_{\text{reg}}/W$$

which is reducible with respect to the weight space decomposition of V and unitary if $h \in i\mathbb{R}$.

Proof. The action of $B_\mathfrak{g}$ on $\Omega^*(\tilde{\mathfrak{h}}_{\text{reg}} \times V) = \Omega^*(\tilde{\mathfrak{h}}_{\text{reg}}) \otimes V$ is given by $\gamma \mapsto (\gamma^{-1})^* \otimes \sigma(\gamma)$. Thus, if $\gamma \in B_\mathfrak{g}$ projects onto $w \in W$, we get using $p \cdot \gamma^{-1} = w^{-1} \cdot p$,

$$\gamma^* p^* \nabla^h_\kappa \gamma^{-1} = d - \frac{\hbar}{2} \sum_{\alpha \in R} dp^* w\alpha/p^* w\alpha \otimes \sigma(\gamma)\kappa_\alpha \sigma(\gamma)^{-1}$$
Since $\kappa_\alpha = \frac{(\alpha, \alpha)}{2}(e_\alpha f_\alpha + f_\alpha e_\alpha)$ is independent of the choice of the root vectors e_α, f_α, Ad($\sigma(\gamma)$)$\kappa_\alpha = \kappa_{\gamma}$ and (2.8) is equal to $p^* \nabla^h$ as claimed. $p^* \nabla^h$ is flat by theorem 2.2, commutes with the fibrewise action of \mathfrak{h} because each κ_α is of weight 0 and is unitary because the κ_α are self-adjoint.

Thus, for any homomorphism $\sigma : B_\mathfrak{g} \to N(T)$ compatible with (2.9), proposition 2.3 yields a monodromy representation $\rho^h_\alpha : B_\mathfrak{g} \to GL(V)$ which permutes the weight spaces compatibly with W. By standard ODE theory, ρ^h_α depends analytically on the complex parameter h and, when $h = 0$, is equal to the action of $B_\mathfrak{g}$ on V given by σ. We record for later use the following elementary

Proposition 2.4. Let $\gamma \in B_\mathfrak{g} = \pi_1(\mathfrak{h}_{\text{reg}}/W)$ and $\tilde{\gamma} : [0, 1] \to \mathfrak{h}_{\text{reg}}$ be a lift of γ. Then,

$$\rho^h_\alpha(\gamma) = \sigma(\gamma) \mathcal{P}(\tilde{\gamma})$$

(2.9)

where $\mathcal{P}(\tilde{\gamma}) \in GL(V)$ is the parallel transport along $\tilde{\gamma}$ for the connection ∇^h on $\mathfrak{h}_{\text{reg}} \times V$.

Proof. Let $\tilde{\gamma} : [0, 1] \to \mathfrak{h}_{\text{reg}}$ be a lift of γ and $\tilde{\gamma}$ so that $\tilde{\gamma}(1) = \gamma^{-1}\tilde{\gamma}(0)$. Then, since the connection on $p^*(\mathfrak{h}_{\text{reg}} \times V)$ is the pull–back of ∇^h, and that on $(p^*(\mathfrak{h}_{\text{reg}} \times V))/B_\mathfrak{g}$ the quotient of $p^* \nabla^h$, we find

$$\rho^h_\alpha(\gamma) = \mathcal{P}(\gamma) = \sigma(\gamma) \mathcal{P}(\tilde{\gamma}) = \sigma(\gamma) \mathcal{P}(\tilde{\gamma})$$

(2.10)

By [Br], $B_\mathfrak{g}$ is presented on generators T_i, $i = 1 \ldots n$ labelled by a choice of simple roots α_i of R with relations

$$T_i T_j T_i \cdots = T_j T_i T_j \cdots$$

(2.11)

for any $1 \leq i < j \leq n$ where each side of (2.11) has a number of factors equal to the order of $s_i s_j$ in W and $s_i \in W$ is the orthogonal reflection across the hyperplane Ker(α_k). T_i projects onto $s_i \in W$. An explicit choice of representatives of T_1, \ldots, T_n in $\pi_1(\mathfrak{h}_{\text{reg}}/W)$ may be given as follows. Let $t \in \mathfrak{h}_{\text{reg}}$ lie in the fundamental Weyl chamber so that $\langle t, \alpha \rangle > 0$ for any $\alpha \in R_+$. Note that for any simple root α_i, the intersection $t_{\alpha_i} = t - \frac{1}{2}(t, \alpha_i)\alpha_i$ of the affine line $t + C \cdot \alpha_i$ with Ker(α_i) does not lie in any other root hyperplane Ker(β), $\beta \in R \setminus \{\alpha_i\}$. Indeed, if $\langle t_{\alpha_i}, \beta \rangle = 0$ then

$$2\langle t, \beta \rangle = \langle t, \alpha_i \rangle \langle \alpha_i, \beta \rangle = \langle t, \beta - s_i \beta \rangle$$

(2.12)

whence $\langle t, \beta \rangle = -\langle t, s_i \beta \rangle$, a contradiction since s_i permutes positive roots different from α_i. Let now D be an open disc in $t + C \cdot \alpha_i$ of center t_{α_i} such that its closure \overline{D} does not intersect any root hyperplane other than Ker(α_i). Consider the path $\gamma_i : [0, 1] \to t + C \cdot \alpha_i$ from t to $s_i t$ determined by $\gamma_i(0, 1/3] \cup [2/3, 1]$ is affine and lies in $t + R \cdot \alpha_i \subset D$, $\gamma_i(1/3)$, $\gamma_i(2/3) \in \partial D$ and $\gamma_i(1/3, 2/3]$ is a semicircular arc in ∂D, positively oriented with respect to the natural orientation of $t + C \cdot \alpha_i$. Then, the image of γ_i in $\mathfrak{h}_{\text{reg}}/W$ is a representative of T_i in $\pi_1(\mathfrak{h}_{\text{reg}}/W, Wt)$.

3. Knizhnik–Zamolodchikov equations and dual pairs

We show in this section that the joint action of \mathfrak{gl}_k and \mathfrak{gl}_n on the space $\mathcal{M}_{k,n}$ of $k \times n$ matrices identifies the connection ∇^h for $\mathfrak{g} = \mathfrak{sl}_n$ and the Knizhnik–Zamolodchikov connection for \mathfrak{sl}_k.

Let \(S(\mathcal{M}_{k,n}^*) = \mathbb{C}[x_{11}, \ldots, x_{kn}] \) be the algebra of polynomial functions on \(\mathcal{M}_{k,n} \). The group \(GL_k \times GL_n \) acts on \(S(\mathcal{M}_{k,n}^*) \) by
\[
(g_k, g_n) p(x) = p(g_k x g_n)
\]
and leaves the homogeneous components \(S^d(\mathcal{M}_{k,n}^*) \) of \(S(\mathcal{M}_{k,n}^*) \), \(d \in \mathbb{N} \), invariant. The decomposition of \(S(\mathcal{M}_{k,n}^*) \) under \(GL_k \times GL_n \) is well–known (see e.g., [Zh], §132) which we follow closely or [Mc, §1.4]. Let \(N_k, N_n \) be the groups of \(k \times k \) and \(n \times n \) upper triangular unipotent matrices respectively.

Lemma 3.1.
\[
S(\mathcal{M}_{k,n}^*)^N_k \times N_n = \mathbb{C}[\Delta_1, \ldots, \Delta_{\min(k,n)}]
\]
where \(\Delta_l(x) = \det(x_{ij})_{1 \leq i,j \leq l} \) is the \(l \)th principal minor of the matrix \(x \).

Proof. Assume for simplicity that \(k \leq n \). Let \(D \subset S(\mathcal{M}_{k,n}^*) \) be the subset of matrices \(x \) such that \(\Delta_i(x) \neq 0 \) for \(i = 1 \ldots k \). By the Gauss decomposition, any \(x \in D \) is conjugate under \(N_k^c \times N_n^c \) to a unique \(k \times n \) matrix \(d(x) \) with the same principal minors as \(x \), diagonal principal \(k \times k \) block and the remaining columns equal to zero. Consider now the \(k \times n \) matrix
\[
m(x) = \begin{pmatrix} \Delta_1(x) & \Delta_2(x) & \cdots & \Delta_{k-1}(x) & \Delta_k(x) & 0 & \cdots & 0 \\ -1 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & -1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & 0 & 0 & \cdots & 0 \end{pmatrix}
\]
Since \(\Delta_i(m(x)) = \Delta_i(x) \), \(1 \leq i \leq k \), \(m(x) \) is also conjugate to \(d(x) \), and therefore to \(x \), under \(N_k^c \times N_n^c \). Thus, by density of \(D \), a polynomial \(p \in S(\mathcal{M}_{k,n}^*) \) is invariant under \(N_k \times N_n \) if and only if it is a polynomial in \(\Delta_1, \ldots, \Delta_k \). \(\square \)

Let \(Y_p \subset \mathbb{N}^p \) be the set of Young diagrams with at most \(p \) rows. For \(\lambda \in Y_p \), set \(|\lambda| = \sum_{i=1}^p \lambda_i \) and let \(V^{(p)}_\lambda \) be the irreducible representation of \(GL_p(\mathbb{C}) \) of highest weight \(\lambda \).

Theorem 3.2. As \(GL_k \times GL_n \)–modules,
\[
S^d(\mathcal{M}_{k,n}^*) \cong \bigoplus_{\lambda \in Y_{\min(k,n)}, |\lambda|=d} V^{(k)}_\lambda \otimes V^{(n)}_\lambda
\]

Proof. Assume again \(k \leq n \) for simplicity. By lemma 3.1, the highest weight vectors for the action of \(GL_k(\mathbb{C}) \times GL_n(\mathbb{C}) \) on \(S(\mathcal{M}_{k,n}^*) \) are the polynomials in \(\Delta_1, \ldots, \Delta_k \) which are eigenvectors for the torus of \(GL_k \times GL_n \). Since \(\Delta_l \) is of weight \(\varpi_l^{(k)} \oplus \varpi_l^{(n)} \), where \(\varpi_l^{(p)} \) is the \(l \)th fundamental weight of \(GL_p \), the highest weight vectors are the monomials \(\Delta_1^{m_1} \cdots \Delta_k^{m_k} \) with corresponding pair of Young diagrams \((\lambda, \lambda) \) where
\[
\lambda = (m_1 + \cdots + m_k, m_2 + \cdots + m_k, \ldots, m_k)
\]
Thus, 3.4 holds since \(\Delta_l \) is a homogeneous function of degree \(l \). \(\square \)

As a \(\mathfrak{gl}_k \)–module,
\[
S(\mathcal{M}_{k,n}^*) = \mathbb{C}[x_{11}, \ldots, x_{kn}] \otimes \cdots \otimes \mathbb{C}[x_{1n}, \ldots, x_{kn}]
\]
and is therefore acted upon by the \(\mathfrak{gl}_k \)-intertwiners \(\tilde{\Omega}^{(k)}_{ij} \), \(1 \leq i < j \leq n \), defined by
\[
\tilde{\Omega}^{(k)}_{ij} = \sum_a 1^{\otimes(i-1)} \otimes X_a \otimes 1^{\otimes(j-i-1)} \otimes X^a \otimes 1^{\otimes(n-j)}
\] (3.7)
where \(\{X_a\}, \{X^a\} \) are dual basis of \(\mathfrak{gl}_k \) with respect to the pairing \(\langle X, Y \rangle = \text{tr}(XY) \). On the other hand, given that the \(\mathfrak{sl}_n \)–module, \(\mathcal{S}(\mathcal{M}^*_{k,n}) \) is acted upon by the operators \(\kappa^{(n)}_{ij} \), \(1 \leq i < j \leq n \), where
\[
\kappa^{(n)}_{ij} = e_a f_a + f_a e_a
\] (3.8)
is the truncated Casimir operator of the \(\mathfrak{sl}_n \)–subalgebra of \(\mathfrak{gl}_n \) corresponding to the root \(\alpha = \theta_i - \theta_j \). Let \(e_1, \ldots, e_p \) be the canonical basis of \(\mathbb{C}^p \) and \(E^{(p)}_{ab} e_c = \delta_{bc} e_a \), \(1 \leq a, b \leq p \) the corresponding basis of \(\mathfrak{gl}_p \) with dual basis \(E^{(p)}_{ba} \). Let \(1 \leq i < j \leq n \), then

Proposition 3.3. The following holds on \(\mathcal{S}(\mathcal{M}^*_{k,n}) \)
\[
2\tilde{\Omega}^{(k)}_{ij} = \kappa^{(n)}_{ij} - E^{(n)}_{ii} - E^{(n)}_{jj}
\] (3.9)

Proof. By (3.7), \(\tilde{\Omega}^{(k)}_{ij} \) acts on \(\mathcal{S}(\mathcal{M}^*_{k,n}) \) as
\[
\tilde{\Omega}^{(k)}_{ij} = \sum_{1 \leq a, b \leq k} x_{ai} \partial_{bi} x_{bj} \partial_{aj}
\] (3.10)
where \(x_{rc} \) and \(\partial_{rc} \) are the operators of multiplication by and derivation with respect to \(x_{rc} \). On the other hand, given that the \(\mathfrak{sl}_2(\mathbb{C}) \)–triple \(\{e_\alpha, h_\alpha, f_\alpha\} \) corresponding to the root \(\alpha = \theta_i - \theta_j \) of \(\mathfrak{sl}_n \) is \(\{E^{(n)}_{ij}, E^{(n)}_{ii} - E^{(n)}_{jj}, E^{(n)}_{ji}\} \), the following holds on \(\mathcal{S}(\mathcal{M}^*_{k,n}) \)
\[
\kappa^{(n)}_{ij} = \sum_{1 \leq a, b \leq k} x_{ai} \partial_{aj} x_{bj} \partial_{bi} + x_{bj} \partial_{bi} x_{ai} \partial_{aj}
\] (3.11)
Substracting, we find
\[
2\tilde{\Omega}^{(k)}_{ij} - \kappa^{(n)}_{ij} = - \sum_{1 \leq a, b \leq k} \delta_{ab} x_{ai} \partial_{bi} + \delta_{ab} x_{bj} \partial_{aj} = - E^{(n)}_{ii} - E^{(n)}_{jj}
\] (3.12)
as claimed \(\blacksquare \)

Let \(\lambda \in \mathbb{V}_{\min(k,n)} \) and \(V^{(n)}_{\lambda} \) the corresponding simple \(GL_n \)–module. By theorem 3.2, \(V^{(n)}_{\lambda} \) may be identified with the subspace of vectors of highest weight \(\lambda \) for the action of \(\mathfrak{gl}_k \) on \(\mathcal{S}(\mathcal{M}^*_{k,n}) \). Denote by \(\iota : V^{(n)}_{\lambda} \rightarrow \mathcal{S}(\mathcal{M}^*_{k,n}) \) the corresponding \(\mathfrak{gl}_n \)–equivariant embedding and let \(\mu = (\mu_1, \ldots, \mu_n) \in \mathbb{N}^n \) be a weight of \(V^{(n)}_{\lambda} \).

Lemma 3.4. The embedding \(\iota \) maps the subspace \(V^{(n)}_{\lambda}[\mu] \subset V^{(n)}_{\lambda} \) of weight \(\mu \) onto the subspace \(M^\mu_{\lambda} \) of vectors of highest weight \(\lambda \) for the action of \(\mathfrak{gl}_k \) on
\[
S^\mu \mathbb{C}^k = S^{\mu_1} \mathbb{C}^k \otimes \cdots \otimes S^{\mu_n} \mathbb{C}^k \subset \mathbb{C}[x_{11}, \ldots, x_{k1}] \otimes \cdots \otimes \mathbb{C}[x_{1n}, \ldots, x_{kn}]
\] (3.13)
where \(S^{\mu_j} \mathbb{C}^k \) is the space of polynomials in \(x_{1j}, \ldots, x_{kj} \) which are homogeneous of degree \(\mu_j \). The corresponding isomorphism
\[
\bigoplus_{\nu \in \mathfrak{S}_n, \mu} V^{(n)}_{\lambda}[\nu] \cong \bigoplus_{\nu \in \mathfrak{S}_n, \mu} M^\nu_{\lambda}
\] (3.14)
is equivariant with respect to \(\mathfrak{S}_n \) which acts on \(\bigoplus_{\nu \in \mathfrak{S}_n, \mu} S^\nu \mathbb{C}^k \) by permuting the tensor factors and on \(V_{\lambda} \) by regarding \(\mathfrak{S}_n \) as the subgroup of permutation matrices of \(GL_n(\mathbb{C}) \).
PROOF. The equality $\iota(V^{(n)}_\lambda)[\mu] = M^\mu_\lambda$ holds because $S^\mu C^k$ is the subspace of $S(M^*_k, n)$ of weight μ for the \mathfrak{gl}_n–action since $E_i^{(m)} x_j = \delta_{ij} m x_{ij}^{(m)}$. The \mathfrak{S}_n–equivariance stems from the fact that the permutation of the tensor factors in $S^\bullet C^k \otimes \cdots \otimes S^\bullet C^k \cong S^\bullet (C^k \otimes C^n)$ is given by the action of $\mathfrak{S}_n \subset GL_n(C)$ action on C^n.

Let $D_n = \{(z_1, \ldots, z_n) \in C^n | z_i = z_j \text{ for some } 1 \leq i < j \leq n \}$ and $X_n = C^n \setminus D_n$. Regard $C_0^n = \{(z_1, \ldots, z_n) \in C^n | \sum_{j=1}^n z_j = 0 \}$ as the Cartan subalgebra of diagonal matrices in \mathfrak{sl}_n and $X_0^n = C_0^n \setminus D_n$ as the set of its regular elements. Since the inclusion $X_0^n \subset X_n$ is a homotopy equivalence, $\pi_1(X_n) \cong \pi_1(X_0^n) = B_n$ are generated by $T_1 \ldots T_{n-1}$ with

$$T_i T_j = T_j T_i \quad \text{if } |i - j| \geq 2$$

(15)

$$T_{i+1} T_i = T_{i+1} T_{i+1} - 1 \quad \text{if } i = 1 \ldots n - 1$$

(16)

Define $\Omega_{ij}^{(k)} \in \text{End}_{\mathfrak{gl}_n}(S^\mu C^k)$ by (3.7) where now $\{X_a, \{X^a\}$ are dual basis of \mathfrak{sl}_n and extend the connection (2.8) to X_n in the obvious way. The following is the main result of this section.

Theorem 3.5. $f : X_n \to M^\mu_\lambda \subset S^\mu C^k \otimes \cdots \otimes S^\mu C^k$ is a horizontal section of the Knizhnik–Zamolodchikov connection

$$\nabla^\mu_{KZ} = d - \bar{h} \sum_{1 \leq i < j \leq n} \frac{dz_i - dz_j}{z_i - z_j} \Omega_{ij}^{(k)}$$

(17)

iff the $V^{(n)}_\lambda[\mu]$–valued function $g = f \cdot \prod_{1 \leq i < j \leq n} (z_i - z_j)^{h(\mu_i + \mu_j + 2 \mu_i \mu_j/k)}$ is a horizontal section of

$$\nabla^\mu_\kappa = d - h \sum_{1 \leq i < j \leq n} \frac{dz_i - dz_j}{z_i - z_j} \kappa_{ij}^{(n)}$$

(18)

where $\bar{h} = 2h$.

PROOF. Let $1^{(k)} = \sum_{i=1}^k E_i^{(k)}$ be the generator of the centre of \mathfrak{gl}_n so that, in obvious notation, $\bar{\Omega}^{(k)}_{ij} = \Omega^{(k)}_{ij} + \frac{1}{k} \pi_1^{(k)}(\mathfrak{gl}_n) \pi_1(1^{(k)})$. The operators $2\Omega^{(k)}_{ij}$ and $\kappa_{ij}^{(n)}$ both act on $M^\mu_\lambda \cong V^{(n)}_\lambda[\mu]$ and, by proposition 3.3, their restrictions differ by $-\mu_i - \mu_j$. The claim follows since, for any $1 \leq l \leq n$, $\pi_l(1^{(k)})$ acts on $S^\mu C^k$ as multiplication by μ_l.

Remark. When $k = 2$ and λ is of the form $(|\mu|/2, |\mu|/2, 0, \ldots, 0)$, where $|\mu| = \sum_{i=1}^n \mu_i$, theorem 3.3 is a representation–theoretic analogue of the coincidence between the Kapovich–Millson bending flows on the space of n–gons in \mathbb{R}^3 with side lengths μ_1, \ldots, μ_n [KM] and the Gel’fand–Cetlin flows on the Grassmannian $Gr_2(C^n)$ [GS] observed by Hausmann and Knutson in the context of Gel’fand–McPherson duality [HK]. I am grateful to J. Millson for a careful explanation of this coincidence.

Remark. An interesting relation between ∇_κ and the Knizhnik–Zamolodchikov connection was recently noted by Felder, Markov, Tarasov and Varchenko in [FMTV], where a variant of the connection (2.4) is independently introduced and studied. One of the main results of [FMTV] is that, for any simple Lie algebra \mathfrak{g}, the connection ∇_κ with values in a tensor product $V_1 \otimes \cdots \otimes V_n$ of n simple \mathfrak{g}–modules is, when supplemented by suitable dynamical parameters, bispectral to (i.e., commutes with) the Knizhnik–Zamolodchikov connection for \mathfrak{g} with values in the same n–fold tensor product. An analogous result is obtained in [TV] for a difference analogue of the connection ∇_κ. By comparison, theorem 3.3 can only hold for $\mathfrak{g} = \mathfrak{sl}_n$, since it relies on the ‘coincidence’ of the regular Cartan of \mathfrak{gl}_n with the configuration...
space of \(n \) ordered points in \(\mathbb{C} \), and asserts the \textit{equality} of the two connections.

To relate the monodromy representations of \(B_n \) corresponding to \(\nabla^h_{KZ} \) and \(\nabla^h_{\kappa} \), we need to specify how these induce flat connections on \(X_n/\mathfrak{S}_n \) and \(X_n^0/\mathfrak{S}_n \) respectively. For \(\nabla^h_{KZ} \), we let \(\mathfrak{S}_n \) act on the fibre

\[
\bigoplus_{\nu \in \mathfrak{S}_n, \mu} M^\nu_{\mu} \subset \bigoplus_{\nu \in \mathfrak{S}_n, \mu} S^\nu \mathbb{C}^k
\]

by permuting the tensor factors and take the quotient connection. For \(\nabla^h_{\kappa} \), we use the construction of proposition \ref{prop:construction} and the homomorphism \(\sigma : B_n \to SL_n(\mathbb{C}) \) given by

\[
T_j \mapsto \exp(E_{j,j+1}^{(n)}) \exp(-E_{j+1,j}^{(n)}) \exp(E_{j,j+1}^{(n)}) = \begin{pmatrix}
1 & & & \\
& \ddots & & \\
& & 1 & \\
& & & -1 \end{pmatrix}
\]

where the off–diagonal terms are the \((j, j + 1)\) and \((j + 1, j)\) entries. A direct computation, or \cite[thm. 3.3]{T}, show that the assignment \eqref{eq:assignment} does indeed extend to a homomorphism \(B_n \to SL_n(\mathbb{C}) \). Choose the generators \(T_1 \ldots T_{n-1} \) of \(B_n \) as at the end of section \ref{sec:corollary}.

\begin{corollary}
Let \(\mu \) be a weight of \(V_\lambda \) and
\[
\pi^h_{\kappa} : B_n \to GL(\bigoplus_{\nu \in \mathfrak{S}_n, \mu} V_\lambda[v]), \quad \pi^h_{KZ} : B_n \to GL(\bigoplus_{\nu \in \mathfrak{S}_n, \mu} M^\nu_{\mu})
\]

the monodromy representations of the braid group \(B_n \) corresponding to the connections \eqref{eq:KZ} and \eqref{eq:kappa} respectively. Then, for any \(j = 1 \ldots n - 1 \),

\[
\pi^{2h}_{KZ}(T_j) = \pi^h_{KZ}(T_j) \cdot e^{-\pi ih \left(E_{jj}^{(n)} + E_{j+1,j+1}^{(n)} + 2E_{jj}^{(n)} E_{j+1,j+1}^{(n)} / k \right)} \cdot e^{i\pi E_{jj}^{(n)}}
\]

\end{corollary}

\textbf{Proof.} Let \(s_j = SL_n(\mathbb{C}) \) be the right–hand side of \eqref{eq:assignment} so that \(s_j = (j, j + 1) \cdot e^{i\pi E_{jj}^{(n)}} \) in \(GL_n(\mathbb{C}) \). Let \(\mathcal{P}^h_{KZ}, \mathcal{P}^h_{\kappa} \) denote parallel transport for \(\nabla^h_{KZ} \) and \(\nabla^h_{\kappa} \) respectively. Then, by theorem \ref{thm:corollary} and proposition \ref{prop:connection}, the following holds on \(M^\nu_{\mu} \cong V_\nu[h] \),

\[
\pi^{2h}_{KZ}(T_j) = (j,j + 1) \mathcal{P}^{2h}_{KZ}(T_j)
\]

\[
= (j,j + 1) e^{-\pi ih \left(\nu_j + \nu_{j+1} + 2\nu_j/\nu_{j+1} / k \right)} e^{i\pi E_{jj}^{(n)} E_{j+1,j+1}^{(n)} / k} \mathcal{P}^h_{\kappa}(T_j)
\]

\[
= s_j \mathcal{P}^h_{\kappa}(T_j) e^{i\pi E_{jj}^{(n)} E_{j+1,j+1}^{(n)} / k} e^{-\pi ih \left(E_{jj}^{(n)} + E_{j+1,j+1}^{(n)} \right)} e^{i\pi E_{jj}^{(n)}}
\]

as claimed. \hspace{1cm} \Box

4. The Quantum Group \(U_{gl_\mathfrak{p}} \)

In this, and the following sections, we work over the ring \(\mathbb{C}[h] \) of formal power series in the variable \(h \). All tensor products of \(\mathbb{C}[h] \)-modules are understood to be completed in the \(h \)-adic topology. For \(p \in \mathbb{N} \), let \(a_{ij} = 2\delta_{ij} - \delta_{|i-j| = 1}, 1 \leq i, j \leq p \), be the entries of the Cartan matrix
of type A_{p-1} and let $U_h\mathfrak{g}l_p$ be the corresponding Drinfeld–Jimbo quantum group \cite{Dr1, Dr2} i.e., the algebra over $\mathbb{C}[\hbar]$ topologically generated by elements $E_i, F_i, i = 1 \ldots p - 1$ and $D_i, i = 1 \ldots p$ subject to the q–Serre relations

$$[D_i, D_j] = 0$$

(4.1)

$$[D_i, E_j] = (\delta_{ij} - \delta_{ij+1})E_j \quad [D_i, F_j] = -(\delta_{ij} - \delta_{ij+1})F_j$$

(4.2)

$$[E_i, F_j] = \delta_{ij} \frac{e^{\hbar H_i} - e^{-\hbar H_i}}{e^{h} - e^{-h}}$$

(4.3)

$$\sum_{k=0}^{1-a_{ij}} (-1)^k \left[\frac{1 - a_{ij}}{k} \right] E_i^k E_j E_i^{1-a_{ij}-k} = 0, \quad \forall i \neq j$$

(4.4)

$$\sum_{k=0}^{1-a_{ij}} (-1)^k \left[\frac{1 - a_{ij}}{k} \right] F_i^k F_j F_i^{1-a_{ij}-k} = 0, \quad \forall i \neq j$$

(4.5)

where $H_i = D_i - D_{i+1}$ and, for any $n \geq k \in \mathbb{N},$

$$[n] = \frac{e^{nh} - e^{-nh}}{e^{h} - e^{-h}}$$

(4.6)

$$[n]! = [n][n-1] \ldots [1]$$

(4.7)

$$\left[\frac{n}{k} \right] = \frac{[n]!}{[k]![n-k]!}$$

(4.8)

$U_h\mathfrak{g}l_p$ is a topological Hopf algebra with coproduct Δ and counit ε given by

$$\Delta(D_i) = D_i \otimes 1 + 1 \otimes D_i$$

(4.9)

$$\Delta(E_i) = E_i \otimes e^{\hbar H_i} + 1 \otimes E_i$$

(4.10)

$$\Delta(F_i) = F_i \otimes 1 + e^{-\hbar H_i} \otimes F_i$$

(4.11)

and

$$\varepsilon(E_i) = \varepsilon(F_i) = \varepsilon(D_i) = 0$$

(4.12)

Note that $I = D_1 + \cdots + D_p$ is central so that $U_h\mathfrak{g}l_p \cong U_h\mathfrak{s}l_p \otimes \mathbb{C}[I][\hbar]$ as Hopf algebras where the coproduct on $\mathbb{C}[I][\hbar]$ is given by $\Delta(I) = I \otimes 1 + 1 \otimes I$ and $U_h\mathfrak{s}l_p \subset U_h\mathfrak{g}l_p$ is the closed Hopf subalgebra generated by E_i, F_i and $H_i, i = 1, \ldots, p - 1.$

By a finite–dimensional representation of $U_h\mathfrak{g}l_p$ we shall mean a $U_h\mathfrak{g}l_p$–module which is topologically free and finitely generated over $\mathbb{C}[\hbar]$ and on which I acts semisimply with eigenvalues in \mathbb{C}. Choose an algebra isomorphism $\phi : U_h\mathfrak{g}l_p \to U\mathfrak{g}l_p[\hbar]$ mapping each D_i onto E_{ii} \cite{Dr2, prop. 4.3} and let V be a finite–dimensional $\mathfrak{g}l_p$–module on which $1^{(p)} = \sum_{i=1}^{p} E_{ii}$ acts semisimply. Then, $U\mathfrak{g}l_p[\hbar]$ acts on $V[\hbar]$ and the latter becomes, via ϕ, a finite–dimensional representation of $U_h\mathfrak{g}l_p$. Conversely,

Proposition 4.1. Let V be a finite–dimensional representation of $U_h\mathfrak{g}l_p$ and $V = V/hV$ the corresponding $\mathfrak{g}l_p$–module. Then, as $U_h\mathfrak{g}l_p$–modules,

$$V \cong V[\hbar]$$

(4.13)

Proof. Since I is diagonalisable on V and commutes with $U_h\mathfrak{g}l_p$, we may assume that it acts on V as multiplication by a scalar $\lambda \in \mathbb{C}$. Since V is topologically free, $V \cong V[\hbar]$ as $\mathbb{C}[\hbar]$–modules so that V is a deformation of the finite–dimensional $\mathfrak{s}l_p$–module V. Since $\mathfrak{s}l_p$ is
simple, \(H^1(\mathfrak{sl}_p, V) = 0 \) and \(V \) is isomorphic, as \(\mathfrak{sl}_p \), and therefore as \(\mathfrak{gl}_p \)-module to the trivial deformation of \(V \). Thus, \(V \cong V[h] \) as \(U \mathfrak{gl}_p[h] \), and therefore as \(U_h \mathfrak{gl}_p \)-modules.

Corollary 4.2. Let \(U, V \) be finite-dimensional \(\mathfrak{gl}_p \)-modules on which \(1^{(p)} \) acts semisimply. If \(U \otimes V \) decomposes as

\[
U \otimes V \cong \bigoplus W \cdot N_W
\]

for some \(\mathfrak{gl}_p \)-modules \(W \) and multiplicities \(N_W \in \mathbb{N} \), then, as \(U_h \mathfrak{gl}_p \)-modules,

\[
U[h] \otimes V[h] \cong \bigoplus W \cdot N_W[h]
\]

Proof. By (4.14), both sides of (4.15) have the same specialisation at \(h = 0 \) and are therefore isomorphic by proposition 4.1.

5. **The dual pair** \((U_h \mathfrak{gl}_k, U_h \mathfrak{gl}_n)\)

We shall need the analogue of theorem 3.2 in the setting of the algebra \(S_h(\mathcal{M}^*_k, n) \) of functions on quantum \(k \times n \) matrix space. With the exception of theorems 5.4 and 5.5, this section follows [Ba, §1.5] (see also [Ga]). By definition, \(S_h(\mathcal{M}^*_k, n) \) is the algebra over \(\mathbb{C}[h] \) topologically generated by elements \(X_{ij}, 1 \leq i \leq k, 1 \leq j \leq n \) with relations

\[
X_{ij}X_{kl} = \begin{cases}
X_{kl}X_{ij} & \text{if } k > i \text{ and } l < j \text{ or } k < i \text{ and } l > j \\
e^{-h}X_{kl}X_{ij} & \text{if } k > i \text{ and } l = j \text{ or } k = i \text{ and } l > j \\
X_{kl}X_{ij} - (e^h - e^{-h})X_{kj}X_{il} & \text{if } k > i \text{ and } l > j
\end{cases}
\]

\(S_h(\mathcal{M}^*_k, n) \) is \(\mathbb{N} \)-graded by decreeing that each \(X_{ij} \) is of degree 1 and we denote its homogeneous components by \(S^d_h(\mathcal{M}^*_k, n), d \in \mathbb{N} \). For any \(k \times n \) matrix \(m \) with entries \(m_{ij} \in \mathbb{N} \), set

\[
X^m = X_{11}^{m_{11}} \cdots X_{kn}^{m_{kn}} = X_{11}^{m_{11}} \cdots X_{1n}^{m_{1n}} \cdots X_{kn}^{m_{kn}}
\]

By the commutation relations (5.1), the \(X^m \), with \(m \in \mathcal{M}_k, n \) such that \(|m| = d \), span \(S^d_h(\mathcal{M}^*_k, n) \), where \(|m| = \sum_{i,j} m_{ij} \).

Theorem 5.1 (Parshall–Wang). The monomials \(X^m, m \in \mathcal{M}_k, n, \) are linearly independent over \(\mathbb{C}[h] \). In particular, the set \(\{X^m\}_{|m| = d} \) is a \(\mathbb{C}[h] \)-basis of \(S^d_h(\mathcal{M}^*_k, n) \).

Proof. This is proved in [PW, thm. 3.5.1] for \(k = n \) and over the field \(\mathbb{C}(q) \) of rational functions of \(q = e^h \) rather than over \(\mathbb{C}[h] \). The proof however works equally well for \(k \neq n \) and, as remarked in [PW], over \(\mathbb{C}[h] \). \(\square \)

As in the classical case, \(S_h(\mathcal{M}^*_k, n) \) is a module algebra over \(U_h \mathfrak{gl}_k \otimes U_h \mathfrak{gl}_n \). This may be seen in the following way. For any \(l \in \mathbb{N} \), one readily checks that the assignement

\[
X_{ij} \rightarrow \sum_{l'=1}^l X_{il'} \otimes X_{l'j}
\]

(5.3)
Lemma 5.2. \(\Delta_{kln} : S_h(M_{k,n}^*) \to S_h(M_{k,l}^*) \otimes S_h(M_{l,n}^*) \) such that, for any \(l, m \in \mathbb{N} \), the following diagram commutes

\[
\begin{array}{ccc}
S_h(M_{k,n}^*) & \xrightarrow{\Delta_{kln}} & S_h(M_{k,l}^*) \otimes S_h(M_{l,n}^*) \\
\Delta_{knn} & & 1 \otimes \Delta_{lmn} \\
S_h(M_{k,m}^*) \otimes S_h(M_{m,n}^*) & \xrightarrow{\Delta_{klm} \otimes 1} & S_h(M_{k,l}^*) \otimes S_h(M_{l,m}^*) \otimes S_h(M_{m,n}^*)
\end{array}
\]

In particular, \(S_h(M_{k,k}^*) \) and \(S_h(M_{n,n}^*) \) are topological bialgebras with comultiplications \(\Delta_{kkk} \) and \(\Delta_{nnn} \) respectively and counit \(\varepsilon(X_{ij}) = \delta_{ij} \). Moreover, the maps \(\Delta_{kkn} \) and \(\Delta_{knm} \) give \(S_h(M_{k,n}^*) \) the structure of a \(S_h(M_{k,k}^*)_S(M_{n,n}^*) \) bicomodule algebra each homogeneous component of which is invariant under \(S_h(M_{k,k}^*) \) and \(S_h(M_{n,n}^*) \) since \(\Delta_{kln}(S_h(M_{k,k}^*)) \subset S_h(M_{k,k}^*) \otimes S_h(M_{l,l}^*) \).

We shall need a columnwise (resp. rowwise) description of the coaction of \(S_h(M_{k,k}^*) \) (resp. \(S_h(M_{n,n}^*) \)) on \(S_h(M_{k,n}^*) \). Consider the quantum \(k \) and \(n \)–dimensional planes i.e., the algebras \(S_h(M_{k,1}^*) \) and \(S_h(M_{1,n}^*) \). By the commutation relations (5.1) and theorem 5.1, these may be embedded as subalgebras of \(S_h(M_{k,n}^*) \) via the maps

\[
c_j : S_h(M_{k,n}^*) \to S_h(M_{k,n}^*), \quad c_j(X_{ij}) = X_{ij} \tag{5.5}
\]

\[
r_i : S_h(M_{1,n}^*) \to S_h(M_{k,n}^*), \quad r_i(X_{ij}) = X_{ij} \tag{5.6}
\]

with \(1 \leq i \leq k, 1 \leq j \leq n \). By (5.4), \(S_h(M_{k,1}^*) \) is a left algebra comodule over \(S_h(M_{k,k}^*) \) and \(S_h(M_{1,n}^*) \) a right algebra comodule over \(S_h(M_{n,n}^*) \).

Lemma 5.2. As left, \(\mathbb{N} \)–graded \(S_h(M_{k,n}^*) \)–comodules,

\[
S_h(M_{k,n}^*) \cong S_h(M_{k,1}^*)^{\otimes n} \tag{5.7}
\]

via the map \(\Phi : p_1 \otimes \cdots \otimes p_n \to c_1(p_1) \cdots c_n(p_n) \). Similarly, as right, \(\mathbb{N} \)–graded \(S_h(M_{n,n}^*) \)–comodules,

\[
S_h(M_{k,n}^*) \cong S_h(M_{1,n}^*)^{\otimes k} \tag{5.8}
\]

via \(\Psi : q_1 \otimes \cdots \otimes q_k \to r_1(q_1) \cdots r_k(q_k) \).

Proof. The map \(\Phi \) clearly preserves the grading and, by theorem 5.1, restricts to a \(\mathbb{C}[h] \)–linear isomorphism of homogeneous components since it bijectively maps the monomial basis of \(S_h(M_{k,1}^*)^{\otimes n} \) onto the basis \(X^m \) of \(S_h(M_{k,n}^*) \). The fact that \(\Phi \) itself is an isomorphism follows easily because any element of \(S_h(M_{1,n}^*)^{\otimes k} \) or \(S_h(M_{k,n}^*) \) is the convergent sum of its homogeneous components. As readily checked, the diagram

\[
\begin{array}{ccc}
S_h(M_{k,k}^*) \otimes S_h(M_{k,1}^*) & \xrightarrow{1 \otimes c_j} & S_h(M_{k,k}^*) \otimes S_h(M_{k,n}^*) \\
\Delta_{kk1} & & \Delta_{kkn} \\
S_h(M_{k,1}^*) & \xrightarrow{c_j} & S_h(M_{k,n}^*)
\end{array}
\]

extends uniquely to an algebra homomorphism \(\Delta_{kln} : S_h(M_{k,n}^*) \to S_h(M_{k,l}^*) \otimes S_h(M_{l,n}^*) \) such that, for any \(l, m \in \mathbb{N} \), the following diagram commutes

\[
\begin{array}{ccc}
S_h(M_{k,n}^*) & \xrightarrow{\Delta_{kln}} & S_h(M_{k,l}^*) \otimes S_h(M_{l,n}^*) \\
\Delta_{knn} & & 1 \otimes \Delta_{lmn} \\
S_h(M_{k,m}^*) \otimes S_h(M_{m,n}^*) & \xrightarrow{\Delta_{klm} \otimes 1} & S_h(M_{k,l}^*) \otimes S_h(M_{l,m}^*) \otimes S_h(M_{m,n}^*)
\end{array}
\]
is commutative for any \(1 \leq j \leq n\) and therefore so is

\[
(S_h(M_{k,k}^*) \otimes S_h(M_{k,1}^*))^n \xrightarrow{\mu^{(n)} \otimes \Phi} S_h(M_{k,k}^*) \otimes S_h(M_{k,n}^*)
\]

\[
\Delta_{kkl} \xrightarrow{\otimes} \Delta_{knn}
\]

where \(\mu^{(n)} : S_h(M_{k,k}^*)^n \rightarrow S_h(M_{k,n}^*)\) is the \(n\)-fold multiplication. This proves \((5.8)\). The proof of \((5.8)\) is identical. \(\blacksquare\)

We turn now to the action of \(U_{h\mathfrak{gl}_k} \otimes U_{h\mathfrak{gl}_n}\) on \(S_h(M_{k,n}^*)\). For \(p = k, n\), consider the vector representation of \(U_{h\mathfrak{gl}_p}\), i.e., the module \(V = \mathbb{C}^p[h]\) with basis \(e_1, \ldots, e_p\) and action given by

\[
D_i = E_{ii}, \quad E_i = E_{i+1}, \quad F_i = E_{i+1}
\]

(5.11)

where \(E_{ab}e_c = \delta_{bc}e_a\). Let \(e^1, \ldots, e^p \in V^*\) be the dual basis of \(e_1, \ldots, e_p\), \(U_{h\mathfrak{gl}_p}^\ast\), the restricted dual of \(U_{h\mathfrak{gl}_p}\) and \(t_{ij} \in U_{h\mathfrak{gl}_p}^\ast\) the matrix coefficient defined by

\[
t_{ij}(x) = \langle e^i, xe_j \rangle
\]

(5.12)

Proposition 5.3. The assignment \(X_{ij} \rightarrow t_{ij}\) extends uniquely to a bialgebra morphism \(\kappa_p : S_h(M_{k,p}^*) \rightarrow U_{h\mathfrak{gl}_p}^\ast\).

Proof. We need to check that the \(t_{ij}\) satisfy the relations \((5.1)\), i.e., that when evaluated on \(\Delta(x), x \in U_{h\mathfrak{gl}_p}\),

\[
t_{ij} \otimes t_{kl} = \begin{cases}
 t_{kl} \otimes t_{ij} & \text{if } k > i \text{ and } l < j \text{ or } k < i \text{ and } l > j \\
 e^{-h}t_{kl} \otimes t_{ij} & \text{if } k > i \text{ and } l = j \text{ or } k = i \text{ and } l > j \\
 t_{kl} \otimes t_{ij} - (e^h - e^{-h})t_{kj} \otimes t_{il} & \text{if } k > i \text{ and } l > j

\end{cases}
\]

(5.13)

Let \(R' = R \in \text{End}(V \otimes V)\) where \(\sigma \in \text{GL}(V \otimes V)\) is the flip and \(R\) is the universal \(R\)-matrix of \(U_{h\mathfrak{gl}_p}\) acting on \(V \otimes V\). Then \([12], [CP], \S 8.3.G]\)

\[
R = \left(e^h \sum_{i=1}^{p} E_{ii} \otimes E_{ii} + \sum_{1 \leq i \neq j \leq p} E_{ii} \otimes E_{jj} + (e^h - e^{-h}) \sum_{1 \leq i < j \leq p} E_{ij} \otimes E_{ji} \right)
\]

(5.14)

so that the matrix entries of \(R'\) are

\[
R'_{ik,jl} = \begin{cases}
 e^{\delta_{ij} h} & \text{if } i = l \text{ and } k = j \\
 e^h - e^{-h} & \text{if } i = j, k = l \text{ and } j > l \\
 0 & \text{otherwise}
\end{cases}
\]

(5.15)

From \((5.15)\), one readily checks that both sides of \((5.13)\) coincide when evaluated on any \(A \in \text{End}(V \otimes V)\) commuting with \(R'\). Since \(R'\) is a \(U_{h\mathfrak{gl}_p}^\ast\)-intertwiner, \(\kappa\) extends to an algebra morphism which respects the counit and coproduct since \(\Delta(t_{ij}) = \sum_{q=1}^{p} t_{iq} \otimes t_{qj}\). \(\blacksquare\)

Theorem 5.4.

1. The maps \(\kappa_p, p = k, n\) of proposition \(5.3\) give \(S_h(M_{k,n}^*)\) the structure of an algebra module over \(U_{h\mathfrak{gl}_k} \otimes U_{h\mathfrak{gl}_n}\) with invariant homogeneous components \(S_h^d(M_{k,n}^*)\), \(d \in \mathbb{N}\).
2. The maps Φ, Ψ of lemma 5.3 yield isomorphisms

$$S_h(\mathcal{M}^*_k, n) \cong S_h(\mathcal{M}^*_k, 1)^{\otimes n} \quad \text{and} \quad S_h(\mathcal{M}^*_n, k) \cong S_h(\mathcal{M}^*_1, 1)^{\otimes k}$$

(5.16)

as \mathbb{N}–graded $U_h\mathfrak{gl}_k$ and $U_h\mathfrak{gl}_n$–modules respectively.

3. The action of the generators $E_q^{(p)}, F_q^{(p)}, p = 1 \ldots p - 1$ and $D_q^{(p)}, q = 1 \ldots p$ of $U_h\mathfrak{gl}_p$, $p = k, n$ in the monomial basis $X^m, m \in \mathcal{M}_{k,n}$, is given by

$$D_i^{(k)} X^m = \sum_{j=1}^n m_{ij} X^m$$

(5.17)

$$E_i^{(k)} X^m = \sum_{j=1}^n m_{ij+1} \prod_{j'=j+1}^n e^{\hbar (m_{ij'} - m_{i+1,j'})} X^{m+\epsilon_{ij} - \epsilon_{i+1,j}}$$

(5.18)

$$F_i^{(k)} X^m = \sum_{j=1}^n m_{ij} \prod_{j'=j+1}^{j-1} e^{-\hbar (m_{ij'} - m_{i,j+1})} X^{m-\epsilon_{ij} + \epsilon_{i,j+1}}$$

(5.19)

where $(\epsilon_{ab})_{cd} = \delta_{ac} \delta_{bd}$, and

$$D_j^{(n)} X^m = \sum_{i=1}^k m_{ij} X^m$$

(5.20)

$$E_j^{(n)} X^m = \sum_{i=1}^k m_{ij+1} \prod_{i'=i+1}^k e^{\hbar (m_{ij'} - m_{i+1,j})} X^{m+\epsilon_{ij} - \epsilon_{i+1,j}}$$

(5.21)

$$F_j^{(n)} X^m = \sum_{i=1}^k m_{ij} \prod_{i'=i+1}^{i-1} e^{-\hbar (m_{ij'} - m_{i,j+1})} X^{m-\epsilon_{ij} + \epsilon_{i,j+1}}$$

(5.22)

Proof. Using the transposition anti–involution τ on $S_h(\mathcal{M}^*_k, n)$ given by $\tau(X_{ij}) = X_{ji}$, we may regard $S_h(\mathcal{M}^*_k, n)$ as a right algebra module over $S_h(\mathcal{M}^*_k, 1) \otimes S_h(\mathcal{M}^*_n, 1)$ and therefore, via the pairings $\langle \cdot, \cdot \rangle : S_h(\mathcal{M}^*_m, n) \otimes U_h\mathfrak{gl}_m \to \mathbb{C}[[\hbar]]$, $m = k, n$, given by proposition 5.3 as a left algebra module over $U_h\mathfrak{gl}_k \otimes U_h\mathfrak{gl}_n$. This proves (i) and (ii). Explicitly, for $x^{(m)} \in U_h\mathfrak{gl}_m$, $m = k, n$ and $p \in S_h(\mathcal{M}^*_k, n)$

$$x^{(k)} p = (x^{(k)} \otimes 1, \tau \otimes 1 \cdot \Delta_{kkn}(p))$$

(5.23)

$$x^{(n)} p = (1 \otimes x^{(n)}, \Delta_{knn}(p))$$

(5.24)

Using (5.23) and (5.11), one gets

$$D_i^{(k)} X_{i'}^j = \delta_{ii'} X_{ij}$$

(5.25)

$$E_i^{(k)} X_{i'}^j = \delta_{i+1,i'} X_{ij}$$

(5.26)

$$F_i^{(k)} X_{i'}^j = \delta_{i,i'} X_{i+1,j}$$

(5.27)

Using the algebra module property $x^{(pq)} = \mu(\Delta(x)p \otimes q)$ where $x \in U_h\mathfrak{gl}_k$, $p, q \in S_h(\mathcal{M}^*_k, n)$ and $\mu : S_h(\mathcal{M}^*_k, n)^{\otimes 2} \to S_h(\mathcal{M}^*_k, n)$ is multiplication, (4.9)–(4.11) and the commutation relations (5.1) shows by induction on $m \in \mathbb{N}$ that

$$D_i^{(k)} X_{i'}^j = \delta_{ii'} m X_{ij}^m$$

(5.28)

$$E_i^{(k)} X_{i'}^j = \delta_{i+1,i'} [m] X_{ij} X_{i+1,j}^{m-1}$$

(5.29)

$$F_i^{(k)} X_{i'}^j = \delta_{i,i'} [m] X_{ij}^{m-1} X_{i+1,j}$$

(5.30)
Let $\Delta^{(a)} : U_h \mathfrak{gl}_k \rightarrow U_h \mathfrak{gl}_k^{\otimes d}$, $a \in \mathbb{N}^*$ be recursively defined by $\Delta^{(1)} = \text{id}$, $\Delta^{(a+1)} = \Delta \otimes \text{id}^{(a)} \cdot \Delta^{(a)}$. Then, by (4.3)–(4.7)

$$\Delta^{(a)} D_i^{(k)} = \sum_{b=1}^{a} 1^{(b)} \otimes D_i^{(k)} \otimes 1^{(a-b)}$$

$$\Delta^{(a)} E_i^{(k)} = \sum_{b=1}^{a} 1^{(b)} \otimes E_i^{(k)} \otimes (e^{hH_i^{(k)}})^{0(b-a)}$$

$$\Delta^{(a)} F_i^{(k)} = \sum_{b=1}^{a} (e^{-hH_i^{(k)}})^{0(b-1)} \otimes F_i^{(k)} \otimes 1^{0(a-b)}$$

The formulae (5.17)–(5.19) now follow from the algebra module property and (5.31)–(5.33). The proof of (5.20)–(5.22) is similar.

The following result is proved in [Ba] and [Ga] for the quantum groups $U_q \mathfrak{gl}_k, U_q \mathfrak{gl}_n$ by a different method.

Theorem 5.5. For any $d \in \mathbb{N}$, the $U_h \mathfrak{gl}_k \otimes U_h \mathfrak{gl}_n$–module $S^d_h(\mathcal{M}_{k,n}^*)$ decomposes as

$$S^d_h(\mathcal{M}_{k,n}^*) \cong \bigoplus_{\lambda \in \mathcal{Y}_{\min}(k,n), |\lambda|=d} V_{\lambda}^{(k)} [h] \otimes V_{\lambda}^{(n)} [h]$$

Proof. By theorem 5.1, $S^d_h(\mathcal{M}_{k,n}^*)$ has no torsion, and is therefore a topologically free $\mathbb{C}[h]$–module. Moreover, by (5.17)–(5.22), $S^d_h(\mathcal{M}_{k,n}^*)/hS^d_h(\mathcal{M}_{k,n}^*)$ is the $\mathfrak{gl}_k \otimes \mathfrak{gl}_n$–module $S^d(\mathcal{M}_{k,n}^*)$. The conclusion follows from theorem 3.2 and proposition 4.1.

6. Braid group actions on quantum matrix space

We compare in this section two actions of the braid group B_n on the algebra $S_h(\mathcal{M}_{k,n}^*)$ of functions of quantum $k \times n$ matrix space. The first is the \tilde{R}–representation obtained by regarding $S_h(\mathcal{M}_{k,n}^*)$ as the $U_h \mathfrak{gl}_k$–module $S_h(\mathcal{M}_{k,n}^*) \otimes \mathfrak{gl}_n$. The second is the quantum Weyl group action of B_n on $S_h(\mathcal{M}_{k,n}^*)$ viewed as a $U_h \mathfrak{gl}_n$–module. We will show that these representations essentially coincide, thus extending to the q–setting the fact that the symmetric group S_n acts on $(\mathcal{C}^{*C^k})^\otimes n \cong S(\mathcal{M}_{k,n}^*)$ via the permutation matrices in $GL_n(\mathbb{C})$.

More precisely, for any $1 \leq j \leq n$, let R_j^\vee be the universal R–matrix of $U_h \mathfrak{gl}_k$ acting on the j and $j+1$ tensor copies of $S_h(\mathcal{M}_{k,n}^*) \cong S_h(\mathcal{M}_{k,1}^*)^\otimes n$ and S_j the quantum Weyl group element of $U_h \mathfrak{gl}_n$ corresponding to the simple root $\alpha_j = \theta_j - \theta_{j+1}$. We will show that

$$R_j^\vee = S_j \cdot e^{-h(D_j^{(n)}) + D_j^{(n)} D_{j+1}^{(n)/k}} \cdot e^{i\pi D_j^{(n)}}$$

where $D_1^{(n)}, \ldots, D_n^{(n)}$ are the generators of the Cartan subalgebra of $U_h \mathfrak{gl}_n$. The proof of (6.1) is based upon the following observation, which we owe to B. Feigin. Both sides of (6.1) only act upon the j and $j+1$ tensor copies of $S_h(\mathcal{M}_{k,1}^*)^\otimes n$ so that its proof reduces to a computation in $S_h(\mathcal{M}_{k,1}^*)^\otimes 2 \cong S_h(\mathcal{M}_{k,2}^*)$. Since both sides intertwine the action of $U_h \mathfrak{gl}_k$ on $S_h(\mathcal{M}_{k,2}^*)$, it suffices to compare them on highest weight vectors. These, and the action of R_j^\vee are computed in [6.1]. The action of S_j is computed in [6.2].
Remark. It is easy to check that neither action of B_n is compatible with the algebra structure of $S_h(M_{k,n})$, so that (5.1) cannot be proved by merely checking it on the generators X_{ij}. This stems from the fact that quantum Weyl group operators are not group–like.

6.1. R–matrix action on singular vectors. For any $d \in \mathbb{N}$, let $S_h^d \mathbb{C}^k$ be the homogeneous component of degree d of $S_h(M_{k,k})$. By (5.17)–(5.19), $S_h^d \mathbb{C}^k$ is a deformation of the d–th symmetric power $S^d \mathbb{C}^k$ of the vector representation of \mathfrak{gl}_k. Let $\mu_1, \mu_2 \in \mathbb{N}$, then

Lemma 6.1. As $U_h\mathfrak{g}l_k$–modules,

$$S_{\mu_1} \mathbb{C}^k \otimes S_{\mu_2} \mathbb{C}^k \cong \bigoplus_{i=0}^{\min(\mu_1, \mu_2)} V^{(i)}_{\mu_1+\mu_2-i} [h] \quad (6.2)$$

where $V^{(i)}_{\mu_1+\mu_2-i}$ is the irreducible representation of \mathfrak{gl}_k with highest weight $(a, b, 0, \ldots, 0)$. The corresponding highest weight vectors v_{μ_1, μ_2} are given by

$$v_{\mu_1, \mu_2}^i = \sum_{a=0}^{\min(\mu_1, \mu_2)} (-1)^a \left[\begin{array}{c} i \\ a \end{array} \right] e^{ha(\mu_2-a+1)} X_{11}^{\mu_1-i+a} X_{21}^{i-a} X_{12}^{\mu_2-a} X_{22}^{a} \quad (6.3)$$

Proof. The decomposition (6.2) follows from the Pieri rules for \mathfrak{gl}_k and corollary 4.2. Fix $i \in \{0, \ldots, \min(\mu_1, \mu_2)\}$. By (5.17), any $v \in S_{\mu_1} \mathbb{C}^k \otimes S_{\mu_2} \mathbb{C}^k$ of weight $(\mu_1 + \mu_2 - i, i, 0, \ldots, 0)$ is of the form

$$v = \sum_{a=0}^{i} c_a X_{11}^{\mu_1-i+a} X_{21}^{i-a} X_{12}^{\mu_2-a} X_{22}^{a} \quad (6.4)$$

for some constants $c_a \in \mathbb{C}$. By (1.1) and (5.18), $\Delta(E_j)v = 0$ for any $j \geq 2$ so that v is a highest weight vector iff

$$\Delta(E_1)v = \sum_{a=0}^{i} c_a [i-a] e^{h(\mu_2-a)} X_{11}^{\mu_1-i+a} X_{21}^{i-a} X_{12}^{\mu_2-a} X_{22}^{a}$$

$$+ \sum_{a=0}^{i} c_a [a] X_{11}^{\mu_1-i+a} X_{21}^{i-a} X_{12}^{\mu_2-a+1} X_{22}^{a-1} \quad (6.5)$$

is equal to zero. This yields $c_a = -c_{a-1} e^{h(\mu_2-a+2)} [i-a+1]/[a]$ and therefore

$$c_a = (-1)^a \left[\begin{array}{c} i \\ a \end{array} \right] e^{ha(\mu_2-a+1)} c_0 \quad (6.6)$$

whence (6.3). \hfill \Box

Let R be the universal R–matrix of $U_h\mathfrak{g}l_k$ and $R^\vee = \sigma \cdot R : S_{\mu_1} \mathbb{C}^k \otimes S_{\mu_2} \mathbb{C}^k \to S_{\mu_2} \mathbb{C}^k \otimes S_{\mu_1} \mathbb{C}^k$ the corresponding $U_h\mathfrak{g}l_k$–intertwiner, where σ is the permutation of the tensor factors.

Proposition 6.2. The following holds on $S_{\mu_1} \mathbb{C}^k \otimes S_{\mu_2} \mathbb{C}^k \bigoplus S_{\mu_2} \mathbb{C}^k \otimes S_{\mu_1} \mathbb{C}^k$,

$$R^\vee v_{\mu_1, \mu_2}^i = (-1)^i e^{h((\mu_1-i)(\mu_2-i)-i-\mu_1\mu_2/k)} v_{\mu_2, \mu_1}^i \quad (6.7)$$

Proof. For any $1 \leq i \leq k - 1$, let $s_i = (i \ i + 1) \in \mathfrak{S}_k$ be the ith elementary transposition and let

$$w_0 = (1 \ k)(2 \ k - 1) \cdots (\left\lfloor \frac{k}{2} \right\rfloor \left\lceil \frac{k}{2} \right\rceil) \quad (6.8)$$
be the longest element of \mathfrak{S}_k. Consider the following reduced expression for w_0

$$w_0 = s_{k-1} \cdots s_1 s_{k-1} \cdots s_2 \cdots s_{k-1} s_{k-2} s_{k-1} s_{i_{k(k-1)/2}}$$

(6.9)

and let $\beta_j = s_{i_1} \cdots s_{i_{j-1}} (\theta_{i_j} - \theta_{i_{j+1}})$ be the associated enumeration of the positive roots of \mathfrak{sl}_k so that

$$\beta_1 = \theta_{k-1} - \theta_k, \quad \beta_2 = \theta_{k-2} - \theta_k, \quad \cdots \quad \beta_{k-1} = \theta_1 - \theta_k,$$

$$\beta_k = \theta_{k-2} - \theta_{k-1}, \quad \cdots \quad \beta_{k-3} = \theta_1 - \theta_{k-1},$$

$$\beta_{k(k-1)/2} = \theta_1 - \theta_2.$$

(6.10)

Let $E_{\beta_j}, F_{\beta_j} \in U_h \mathfrak{sl}_k$, $1 \leq j \leq k(k - 1)/2$ be the corresponding quantum root vectors so that $E_{\beta_j} = E_i$ and $F_{\beta_j} = F_i$ whenever β_j is the simple root α_i. [Lu2, prop. 1.8]. Then, [KR, LS, RQ, CP, thm. 8.3.9]

$$R = \exp \left(h \sum_{i=1}^{k-1} H^i \otimes H_i \right) \prod_{j=1}^{k(k-1)/2} \exp_q \left((q - q^{-1}) E_{\beta_j} \otimes F_{\beta_j} \right)$$

(6.11)

where $\{H^i\}_{i=1}^{k-1} \subset \mathfrak{h}$ is the basis of the Cartan subalgebra of \mathfrak{sl}_k dual to $\{H_i\}_{i=1}^{k-1}$ with respect to the pairing $\langle X, Y \rangle = \text{tr}(XY)$, $q = e^{\hbar}$,

$$\exp_q(x) = \sum_{n \geq 0} q^{n(n-1)/2} \frac{x^n}{[n]!}$$

(6.12)

and the product in (6.11) is taken so that the factor $\exp_q \left((q - q^{-1}) E_{\beta_j} \otimes F_{\beta_j} \right)$ is placed to the left of $\exp_q \left((q - q^{-1}) E_{\beta_j'} \otimes F_{\beta_j'} \right)$ whenever $j > j'$. To compute $R v_i^{\mu_1, \mu_2}$, note that for any positive root $\beta \neq \theta_1 - \theta_2$ and $0 \leq a \leq \mu_1$,

$$E_{\beta} X_{11}^{\mu_1-a} X_{21}^{a} = 0$$

(6.13)

since, by (5.17), $(\mu_1 - a, a, 0, \ldots, 0) + \beta$ is not a weight of $S^\mu_\mu \mathbb{C}^k$. Thus, using (5.17)–(5.19)

$$R v_i^{\mu_1, \mu_2} = \exp \left(h \sum_{i=1}^{k-1} H^i \otimes H_i \right) \exp_q \left((q - q^{-1}) E_1 \otimes F_1 \right) v_i^{\mu_1, \mu_2}$$

$$= \sum_{0 \leq a \leq i \leq \mu_1} \sum_{0 \leq n \leq i-a} (-1)^a e^{h a (\mu_2-a+1)} \frac{i}{a} e^{h ((\mu_1-i+a+n)(\mu_2-a-n) + (i-a-n)(a+n)+\mu_1\mu_2/k)}$$

$$\cdot \frac{e^{h n(n-1)/2}(e^{\hbar} - e^{-\hbar})^n}{[n]!} \cdot \frac{[i-a]!(\mu_2-a)!}{[i-a-n]!\mu_2-a-n)!}$$

$$\cdot X_{11}^{\mu_1-i+a+n} X_{21}^{i-a-n} \otimes X_{12}^{\mu_2-a-n} X_{22}^{a+n}$$

(6.14)

which, upon setting $\alpha = a + n$, yields

$$e^{h ((\mu_1-i)(\mu_2-i)-i+\mu_1\mu_2/k)} \sum_{\alpha=0}^i (-1)^\alpha \frac{i}{\alpha} e^{h (i-\alpha)(\mu_1-i+\alpha+1)} S^\mu_\alpha X_{11}^{\mu_1-i+\alpha} X_{21}^{i-a} \otimes X_{12}^{\mu_2-a} X_{22}^{a}$$

(6.15)

where

$$S^\mu_\alpha = e^{h a (\mu-a+1)} \sum_{n=0}^\alpha (-1)^n \frac{\alpha}{n} \frac{\mu-a+n+1)!}{\mu-a)!} e^{h (\alpha-n)(\mu-a-n+1)+hn(n-1)/2(e^{\hbar} - e^{-\hbar})^n}$$

(6.16)
We claim that $S_\alpha^\mu = 1$ for any $\alpha \leq \mu \in \mathbb{N}$ so that (6.7) holds. Indeed, using

$$
\begin{bmatrix} \alpha \\ a \end{bmatrix} = \delta_{\alpha > a} \begin{bmatrix} \alpha - 1 \\ a \end{bmatrix} e^{-ha} + \delta_{\alpha > 0} \begin{bmatrix} \alpha - 1 \\ a - 1 \end{bmatrix} e^{h(\alpha - a)}
$$

(6.17)

one readily finds

$$S_\alpha^\mu = e^{2h(\mu - \alpha + 1)} S_{\alpha - 1}^{\mu - 1} - (e^{2h(\mu - \alpha + 1)} - 1) S_{\alpha - 1}^\mu$$

(6.18)

whence $S_\alpha^\mu = 1$ by induction on α since $S_0^\mu = 1$ for any $\mu \in \mathbb{N}$.

6.2. Quantum Weyl group action on singular vectors. Let E, F, H be the standard generators of $U_\hbar \mathfrak{sl}_2$.

Lemma 6.3. The following holds in $S_\hbar(\mathcal{M}^*_{k,2})$,

$$E \, v_i^{\mu_1,\mu_2} = [\mu_2 - i] \, v_i^{\mu_1+1,\mu_2-1}$$

(6.19)

$$F \, v_i^{\mu_1,\mu_2} = [\mu_1 - i] \, v_i^{\mu_1-1,\mu_2+1}$$

(6.20)

$$H \, v_i^{\mu_1,\mu_2} = (\mu_1 - \mu_2) \, v_i^{\mu_1,\mu_2}$$

(6.21)

Proof. By (5.21),

$$E \, v_i^{\mu_1,\mu_2} = \sum_{a=0}^{i} (-1)^a \begin{bmatrix} a \\ i \end{bmatrix} e^{ha(\mu_2-a+1)} [\mu_2-a] e^{h(i-2a)} X_{11}^{\mu_1-i+a} X_{21}^{i-a} X_{12}^{\mu_2-a-1} X_{22}^a$$

$$+ \sum_{a=0}^{i} (-1)^a \begin{bmatrix} a \\ i \end{bmatrix} e^{ha(\mu_2-a+1)} [a] X_{11}^{\mu_1-i+a} X_{21}^{i-1+a} X_{12}^{\mu_2-a-1} X_{22}$$

(6.22)

$$= \sum_{a=0}^{i} (-1)^a \begin{bmatrix} a \\ i \end{bmatrix} e^{ha(\mu_2-a+1)} [\mu_2-a] e^{h(i-2a)} X_{11}^{\mu_1-i+a+1} X_{21}^{i-a} X_{12}^{\mu_2-a-1} X_{22}$$

$$- \sum_{a=0}^{i} (-1)^a \begin{bmatrix} a \\ i \end{bmatrix} e^{h(a+1)(\mu_2-a)} [i-a] X_{11}^{\mu_1-i+a+1} X_{21}^{i-a} X_{12}^{\mu_2-a-1} X_{22}$$

$$= [\mu_2 - i] \sum_{a=0}^{i} (-1)^a \begin{bmatrix} a \\ i \end{bmatrix} e^{ha(\mu_2-a)} X_{11}^{\mu_1+1-i+a} X_{21}^{i-a} X_{12}^{\mu_2-1-a} X_{22}$$

$$= [\mu_2 - i] v_i^{\mu_1+1,\mu_2-1}$$
Similarly, by (5.22),
\[
F v_i^{\mu_1,\mu_2} = \sum_{a=0}^{i} (-1)^a \binom{i}{a} e^{h(\mu_2-a+1)} \left[\mu_1 - i + a \right] X^{\mu_1-i+a-1} X^{\mu_2-a+1} + \sum_{a=0}^{i} (-1)^a \binom{i}{a} e^{h(\mu_2-a+1)} \left[\mu_1 - i - a \right] e^{-h(\mu_1-\mu_2-2a)} X^{\mu_1-i+a} X^{\mu_2-a+1} X^{\mu_2-a+1} X^{\mu_2-a+1} X^{\mu_2-a+1} X^{\mu_2-a+1} \]
\[
= \sum_{a=0}^{i} (-1)^a \binom{i}{a} e^{h(\mu_2-a+1)} \left[\mu_1 - i + a \right] X^{\mu_1-i+a-1} X^{\mu_2-a+1} X^{\mu_2-a+1} X^{\mu_2-a+1} X^{\mu_2-a+1} X^{\mu_2-a+1} \]
\[
= [\mu_1 - i] \sum_{a=0}^{i} (-1)^a \binom{i}{a} e^{h(\mu_2-a+1)} X^{\mu_1-i+a} X^{\mu_2-a+1} X^{\mu_2-a+1} X^{\mu_2-a+1} X^{\mu_2-a+1} X^{\mu_2-a+1} \]
\[
= [\mu_1 - i] v_i^{\mu_1-1,\mu_2+1} \quad (6.23)
\]

Finally, (6.21) follows from (5.20) □

Let now
\[
S = \exp_{q^{-1}}(q^{-1} Eq^{-1}) \exp_{q^{-1}}(-F) \exp_{q^{-1}}(qEq^{-1})q^{H(H+1)/2} \quad (6.24)
\]
be the generator of the quantum Weyl group of $U_q \mathfrak{sl}_2$ (Lus, KR, So), we use the form given in (Kla, Ser) where $q = e^{\hbar}$ and the q-exponential is defined by (6.12).

Proposition 6.4. The following holds in $S_H(M^*_k,2)$,
\[
S v_i^{\mu_1,\mu_2} = (-1)^{\mu_1-i} q^{(\mu_1-i)(\mu_2-i+1)} v_i^{\mu_2,\mu_1} \quad (6.25)
\]

Proof. Fix $\mu, i \in \mathbb{N}$ with $2i \leq \mu$. By lemma 6.3, the vectors $u_k = v_i^{\mu-i-k, i+k}$, with $0 \leq k \leq \mu - 2i$ satisfy
\[
E u_k = [k] u_{k-1} \quad (6.26)
\]
\[
F u_k = [\mu - 2i - k] u_{k+1} \quad (6.27)
\]
\[
H u_k = (\mu - 2i - 2k) u_k \quad (6.28)
\]
and therefore span the indecomposable $U_q \mathfrak{sl}_2$-module of dimension $\mu - 2i + 1$. Moreover,
\[
u_k = \frac{[\mu - 2i - k]!}{[\mu - 2i]!} F^{\mu-2i} u_0 = \frac{[\mu - 2i - k]!}{[\mu - 2i]!} E^{\mu-2i-k} u_{\mu-2i} \quad (6.29)
\]

Since $\text{Ad}(S) H = -H$, $S u_0$ is proportional to $u_{\mu-2i}$ and, by (6.24) is therefore equal to
\[
(-1)^{\mu-2i} q^{\mu-2i} \frac{F^{\mu-2i}}{[\mu - 2i]!} u_0 = (-1)^{\mu} q^{\mu-2i} u_{\mu-2i} \quad (6.30)
\]

Next, using $\text{Ad}(S) F = -q^{-H} E$ and (6.29), we find
\[
S u_k = \frac{[\mu - 2i - k]!}{[\mu - 2i]!} \text{Ad}(S) F^{k} S u_0 = (-1)^{\mu-k} q^{(k+1)(\mu-2i-k)} u_{\mu-2i-k} \quad (6.31)
\]
Thus, setting $\mu = \mu_1 + \mu_2$, so that $v_i^{\mu_1,\mu_2} = u_{\mu_2-i}$, we find
\[
S v_i^{\mu_1,\mu_2} = (-1)^{\mu_1-i} q^{(\mu_1-i)(\mu_2-i+1)} v_i^{\mu_2,\mu_1} \quad (6.32)
\]
as claimed ■

6.3. **Identification of R and quantum Weyl group actions.** Fix $1 \leq j \leq n$ and let R^j be the universal R-matrix of $U_\hbar \mathfrak{g}_{k}$ acting on the j and $j+1$ tensor copies of $S_h(\mathcal{M}_{k,1}^*)^{\otimes n}$. Let S_j be the element of the quantum Weyl group of $U_\hbar \mathfrak{g}_{n}$ corresponding to the simple root $\theta_j - \theta_{j+1}$.

Theorem 6.5. The following holds on $S_h(\mathcal{M}_{k,1}^*)$:

$$R^j_j = S_j \cdot e^{-\hbar(D^{(n)}_j + D^{(n)}_{j+1}/k)} \cdot e^{i\pi D^{(n)}_j} \quad (6.33)$$

Proof. Let $U_\hbar \mathfrak{g}_{l,1} \subset U_\hbar \mathfrak{g}_{n}$ be the Hopf subalgebra generated by $E^{(n)}_j, F^{(n)}_j, D^{(n)}_j, D^{(n)}_{j+1}$. By (6.20)–(6.22), $U_\hbar \mathfrak{g}_{l,1}$ only acts upon the variables $X_{ij}, X_{ij+1}, 1 \leq i \leq k$. Thus, $U_\hbar \mathfrak{g}_{l,1}$ and therefore S_j only act on the j and $j+1$ tensor copies $S_h(\mathcal{M}_{k,1}^*)_j, S_h(\mathcal{M}_{k,1}^*)_{j+1}$ of $S_h(\mathcal{M}_{k,1}^*)^{\otimes n} \cong S_h(\mathcal{M}_{k,1}^*)$. Since this is also the case of R^j, the proof of (6.33) reduces to a computation on the $U_\hbar \mathfrak{g}_{l,1} \otimes U_\hbar \mathfrak{g}_{l,2}$-module $S_h(\mathcal{M}_{k,1}^*)_j \otimes S_h(\mathcal{M}_{k,1}^*)_{j+1} \cong S_h(\mathcal{M}_{k,2}^*)$. Both sides of (6.33) clearly commute with $U_\hbar \mathfrak{g}_{l,1}$, so it is sufficient to check their equality on the singular vectors of

$$S_h(\mathcal{M}_{k,1}^*)_j \otimes S_h(\mathcal{M}_{k,1}^*)_{j+1} = \bigoplus_{\mu_1, \mu_2 \in \mathbb{N}} S_h^{\mu_1} \mathbb{C}^k \otimes S_h^{\mu_2} \mathbb{C}^k \quad (6.34)$$

i.e., on the vectors $v_i^{\mu_1, \mu_2} \in S_h^{\mu_1} \mathbb{C}^k \otimes S_h^{\mu_2} \mathbb{C}^k$ of lemma 6.1. By propositions 6.2 and 6.4,

$$R^j_j v_i^{\mu_1, \mu_2} = S_j \cdot e^{-\hbar(\mu_1 + \mu_2)/k}(-1)^{\mu_1} v_i^{\mu_1, \mu_2} \quad (6.35)$$

whence (6.33) since, for any $1 \leq l \leq n$, $D^{(n)}_l$ gives the \mathbb{N}-grading on $S_h(\mathcal{M}_{k,1}^*)$ ■

Remark. The coincidence of the two representations of B_n studied above was also noted by Baumann [Ba, prop. 12] in the special case when both actions are restricted to the subspace $S_h^{\mu_1} \mathbb{C}^k \otimes \cdots \otimes S_h^{\mu_n} \mathbb{C}^k$ of $S_h(\mathcal{M}_{k,n}^*)$ where $\mu_1 = \cdots = \mu_n = 1$.

7. **Monodromic realisation of quantum Weyl group operators**

The following is the main result of this paper. It was conjectured for any simple Lie algebra \mathfrak{g} by De Concini around 1995 (unpublished) and, independently, in [TL]. We prove it here for $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$.

Theorem 7.1. Let $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$, V a finite-dimensional \mathfrak{g}-module, μ a weight of V and

$$V^\mu = \bigoplus_{\nu \in W^\mu} V[\nu] \quad (7.1)$$

the direct sum of the weight spaces of V corresponding to the Weyl group orbit of μ. Let $\pi^h_\alpha : B_\hbar \rightarrow GL(V^\mu[\hbar])$ be the monodromy representation of the connection

$$d - \hbar \sum_{\alpha > 0} \frac{d\alpha}{\alpha} \pi_V(\kappa_\alpha) \quad (7.2)$$

obtained by regarding \hbar as a formal variable. Let $\pi_W : B_\hbar \rightarrow GL(V^\mu[\hbar])$ be the quantum Weyl group action obtained by regarding $V[\hbar]$ as a $U_\hbar \mathfrak{g}$-module with $\hbar = 2\pi i\hbar$. Then, π^h_α and π_W are equivalent.
PROOF. We may assume that V is irreducible with highest weight $\lambda = (\lambda_1, \ldots, \lambda_n)$ where $\lambda_i \in \mathbb{N}$. Regard V as a \mathfrak{gl}_n-module by letting $1^{(n)} = \sum_{j=1}^n E_{jj}^{(n)}$ act as multiplication by $|\lambda| = \sum_{i=1}^n \lambda_i$ and fix some $k \geq n$. By lemma 3.4, $V[\nu]$ is isomorphic to the space M^ν_λ of singular vectors of weight λ for the diagonal action of \mathfrak{gl}_k on

$$S^\nu \mathcal{C}^k = S^{\nu_1} \mathcal{C}^k \otimes \cdots \otimes S^{\nu_n} \mathcal{C}^k \subset S(\mathcal{M}_{k,n}^\nu)$$

(7.3)

and, by corollary 3.3, the monodromy representation of the Knizhnik–Zamolodchikov connection (3.17) on \mathfrak{gl}_n is related by

$$\pi^\nu_{KZ}(T_j) = \pi^\nu(T_j)e^{-\pi \hbar (E_{jj}^{(n)} + E_{j+1,j+1}^{(n)} + 2E_{j,j+1}^{(n)} - E_{j+1,j+1}/k)} e^{i \pi E_{jj}^{(n)}}$$

(7.4)

where $\hbar = 2h$.

We shall now use the Kohno–Drinfeld theorem to relate π^ν_{KZ} to the R-matrix representation of B_ν corresponding to the action of $U_h \mathfrak{gl}_k$ on $S^\nu \mathcal{C}^k[h]$. Let for this purpose $\phi : U_h \mathfrak{gl}_k \to U \mathfrak{gl}_k$ be an algebra isomorphism whose reduction mod \hbar is the identity and which acts as the identity on the Cartan subalgebras i.e., $\phi(D_i^{(k)}) = E_{ii}^{(k)}$, $1 \leq i \leq k$ [Dr2, prop. 4.3]. Then, $U_h \mathfrak{gl}_k$ act on each $S^{\nu_j} \mathcal{C}^k[h]$ via ϕ and on

$$S^{\nu_1} \mathcal{C}^k[h] \otimes \cdots \otimes S^{\nu_n} \mathcal{C}^k[h] = S^{\nu_1} \mathcal{C}^k \otimes \cdots \otimes S^{\nu_n} \mathcal{C}^k[h] = S^\nu \mathcal{C}^k[h]$$

(7.5)

via the n-fold coproduct $\Delta^{(n)} : U_h \mathfrak{gl}_k \to U_h \mathfrak{gl}_k^{\otimes n}$ recursively defined by

$$\Delta^{(1)} = \text{id}$$

(7.6)

$$\Delta^{(a+1)} = \Delta \otimes \text{id}^{\otimes (a-1)} \circ \Delta^{(a)}, \quad a \geq 1$$

(7.7)

where $\Delta = \Delta^{(2)}$ is given by (1.9)–(4.11).

Let Δ_0 be the standard, cocommutative coproduct on $U \mathfrak{gl}_k$ so that $U \mathfrak{gl}_k$ acts on $S^\nu \mathcal{C}^k$ via $\Delta_0^{(n)} : U \mathfrak{gl}_k \to U \mathfrak{gl}_k^{\otimes n}$ defined as in (7.8)–(7.11) with Δ replaced by Δ_0. Since $\Delta = \Delta_0 + o(\hbar)$

and $H^1(s_1, s_2, s_3) = 0$, there exists a twist $F = 1 \otimes 1 + o(\hbar) \in U \mathfrak{gl}_k^{\otimes (2)}[h]$ such that, for any $x \in U_h \mathfrak{gl}_k$,

$$\phi \otimes \phi \circ \Delta(x) = F \Delta_0(\phi(x)) F^{-1}$$

(7.8)

It follows that the actions of $U_h \mathfrak{gl}_k$ and $U \mathfrak{gl}_k[h]$ on $S^\nu \mathcal{C}^k$ are related by

$$\phi^{\otimes (n)} \circ \Delta^{(n)}(x) = F^{(n)} \Delta_0^{(n)}(\phi(x)) F^{(n)-1}, \quad x \in U_h \mathfrak{gl}_k$$

(7.9)

where $F^{(n)} \in U \mathfrak{gl}_k^{\otimes n}[h]$ is recursively defined by

$$F^{(1)} = 1$$

(7.10)

$$F^{(a+1)} = F \otimes 1^{\otimes (a-1)} \cdot \Delta_0 \otimes \text{id}^{\otimes (a-1)}(F^{(a)}), \quad a \geq 1$$

(7.11)

Let now $M^\nu_\lambda \subset S^\nu \mathcal{C}^k$ and $M^\nu_{\lambda, \hbar} \subset S^\nu \mathcal{C}^k[h]$ be the subspaces of vectors of highest weight λ for the actions of \mathfrak{gl}_k and $U_h \mathfrak{gl}_k$ respectively. We shall need the following

Lemma 7.2. $F^{(n)} M^\nu_{\lambda, \hbar} \subset M^\nu_{\lambda, \hbar}$.

Proof. Let $S^\nu \mathcal{C}^k(\lambda) \subset S^\nu \mathcal{C}^k$ and $S^\nu \mathcal{C}^k[h](\lambda) \subset S^\nu \mathcal{C}^k[h]$ be the isotypical components of types V_λ and $V_\lambda[h]$ for \mathfrak{gl}_k and $U_h \mathfrak{gl}_k$ respectively. The subspace $F^{(n)} S^\nu \mathcal{C}^k(\lambda)[h]$ is invariant under $U_h \mathfrak{gl}_k$ by (7.3) and its reduction mod \hbar is equal to $S^\nu \mathcal{C}^k(\lambda)$ since $F^{(n)} = 1^{\otimes (n)} + o(\hbar)$. Thus, by proposition 1.4, $F^{(n)} S^\nu \mathcal{C}^k(\lambda)[h]$ is isomorphic to $S^\nu \mathcal{C}^k(\lambda)[h]$ and therefore contained in $S^\nu \mathcal{C}^k[h](\lambda)$. Since this holds for any λ, the inclusion is an equality. Noting
now that $F^{(n)}$ is equivariant for the action of the Cartan subalgebras of \mathfrak{gl}_k and $U_h\mathfrak{gl}_k$ since
\[\Delta_0 \circ \phi(h) = \phi \circ \Delta(h) \text{ for any } h \in h, \]
we get that
\[F^{(n)} M^\nu_\lambda[h] = F^{(n)} \left(S^\nu C^k(\lambda)[h] \right) \]
\[= F^{(n)} \left(S^\nu C^k(\lambda)[h] \right)[\lambda] \]
\[= S^\nu C^k[h](\lambda)[\lambda] \]
\[= M^\nu_{h,\lambda} \] (7.12)
as claimed.

Summarising, we have an action of B_n on $\bigoplus_{\nu \in \mathbb{N}_n} M^\nu_\lambda$ via the monodromy of the Knizhnik–Zamolodchikov connection and an action of B_n on $\bigoplus_{\nu \in \mathbb{N}_n} M^\nu_{h,\lambda}$ via the R–matrix representation of $U_h\mathfrak{sl}_k$. Drinfeld’s theorem [Dr3, Dr4, Dr5] asserts that the twist F may be chosen so that
\[F^{(n)} : \bigoplus_{\nu \in \mathbb{N}_n} M^\nu_\lambda[h] \rightarrow \bigoplus_{\nu \in \mathbb{N}_n} M^\nu_{h,\lambda} \] (7.13)
is B_n–equivariant so that, for any $1 \leq j \leq n - 1$,
\[\pi_W^j(T_j) = F^{(n)} R_j^\nu F^{(n)} \] (7.14)
where R_j^ν is the universal R–matrix for $U_h\mathfrak{sl}_k$ acting on the j and $j + 1$ copies of $\bigoplus_{\nu \in \mathbb{N}_n} S^\nu C^k[h]$ and $h = \pi_i h$.

Let now $S_h(\mathcal{M}_{k,n}^*) \cong (S_h(\mathcal{M}_{1,k}^*))^\otimes n$ be the algebra of functions on quantum $k \times n$ matrix space defined in section 2 and, for any $\nu \in \mathbb{N}_n$, let
\[S^\nu C^k \subseteq S^\nu C^k \otimes \cdots \otimes S^\nu C^k \] (7.15)
be the space of polynomials which are homogeneous of degree ν_j in the variables X_{1j}, \ldots, X_{kj}, for any $1 \leq j \leq n$. By (7.17)–(7.19), $S^\nu C^k/hS^\nu C^k$ is the \mathfrak{sl}_k–module $S^\nu C^k$ so that, by proposition 4.1, we may identify $S^\nu C^k$ with $S^\nu C^k[h]$ as $U_h\mathfrak{sl}_k$–modules.

By theorem 5.3 and the fact that the \mathbb{N}–grading on the jth tensor factor of $S_h(\mathcal{M}_{k,n}^*) \cong (S_h(\mathcal{M}_{1,k}^*))^\otimes n$ is given by the action of $D_j^{(n)}$, the space $M^\nu_{h,\lambda}$ is isomorphic to the subspace $V^{(n)}_\lambda[\nu][h] \subset V^{(n)}_\lambda[h]$ of weight ν. Using now theorem 5.3, we find
\[\pi_W^j(T_j) = F^{(n)} \cdot S_j \cdot e^{-h(D_j^{(n)} + (n)D_{j+1}^{(n)}/k)} \cdot e^{jD_j^{(n)}} \cdot F^{(n)} \]
\[\cdot e^{\pi h(E_j^{(n)} + E_j^{(n)} + 2E_j^{(n)}E_{j+1}^{(n)}/k)} \cdot e^{\pi E_j^{(n)}} \] (7.16)
where $S_j = \pi_W(T_j)$ is the quantum Weyl group element of $U_h\mathfrak{sl}_n$ corresponding to the simple root $\alpha_j = \theta_j - \theta_{j+1}$. Since for any l, $E_l^{(n)} = D_l^{(n)}$ on $V^\mu \cong \bigoplus_{\nu \in \mathbb{N}_n} M^\nu_\lambda$ we get
\[\pi_W^j(T_j) = F^{(n)} \cdot S_j e^{-h(D_j^{(n)} - (n)D_{j+1}^{(n)}/k)} F^{(n)} \]
\[= F^{(n)} \cdot S_j e^{-hD_j^{(n)}/2} \cdot F^{(n)} \]
\[= F^{(n)} \cdot e^{h\rho^{(n)}/2} S_j e^{-h\rho^{(n)/2}} F^{(n)} \] (7.17)
where $\rho^{(n)} = \frac{1}{2} \sum_{j=1}^n (n - 2j + 1) D_j^{(n)}$ is the half–sum of the positive (co)roots of \mathfrak{sl}_n. ■
Remark. Theorem 7.1 is proved in [TL] for the following pairs \((g, V)\) where \(g\) is a simple Lie algebra and \(V\) an irreducible, finite–dimensional representation

1. \(g = \mathfrak{sl}_2\) and \(V\) is any irreducible representation.
2. \(g = \mathfrak{sl}_n\) and \(V\) is a fundamental representation.
3. \(g = \mathfrak{so}_n\) and \(V\) is the vector or a spin representation.
4. \(g = \mathfrak{sp}_n\) and \(V\) is the defining vector representation.
5. \(g = e_6, e_7\) and \(V\) is a minuscule representation.
6. \(g = g_2\) and \(V\) is the 7–dimensional representation.
7. \(g\) is any simple Lie algebra and \(V \cong g\) its adjoint representation.

References

[Ba] P. Baumann, The \(q\)–Weyl Group of a \(q\)–Schur Algebra, preprint, 1999.
[Br] E. Brieskorn, Die Fundamentalgruppe des Raumes der Regulären Orbits einer Endlichen Komplexen Spiegelungsgruppe, Invent. Math. 12 (1971), 57–61.
[CP] V. Chari, A. Pressley, A Guide to Quantum Groups. Cambridge University Press, Cambridge, 1994.
[Dr1] V. G. Drinfeld, Quantum Groups, Proceedings of the International Congress of Mathematicians, Berkeley 1986, 798–820.
[Dr2] V. G. Drinfeld, On Almost Cocommutative Hopf Algebras, Leningrad Math. J. 1 (1990), 321–342.
[Dr3] V. G. Drinfeld, Quasi–Hopf Algebras, Leningrad Math. J. 1 (1990), 1419–57.
[Dr4] V. G. Drinfeld, On Quasitriangular Quasi–Hopf Algebras and on a Group that is closely connected with \(\text{Gal}(\overline{Q}/Q)\), Leningrad Math. J. 2 (1991), 829–860.
[Dr5] V. G. Drinfeld, On the Structure of Quasitriangular Quasi-Hopf Algebras, Functional Anal. Appl. 26 (1992), 63–65.
[FMTV] G. Felder, Y. Markov, V. Tarasov, A. Varchenko, Differential Equations Compatible with KZ Equations, Math. Phys. Anal. Geom. 3 (2000), 139–177.
[Ga] F. Galdi, Ph.D. dissertation, Università di Roma II "Tor Vergata", 1995.
[GS] V. Guillemin, S. Sternberg, The Gel'fand–Cetlin System and Quantization of the Complex Flag Manifolds, J. Funct. Anal. 52 (1983), 106–128.
[HK] J.–C. Hausmann, A. Knutson, Polygon Spaces and Grassmannians, Enseign. Math. 43 (1997), 173–198.
[Ho] R. Howe, Remarks on Classical Invariant Theory, Trans. Amer. Math. Soc. 313 (1989), 539–570.
[Ji1] M. Jimbo, A \(q\)-Difference Analogue of \(U(g)\) and the Yang–Baxter Equation. Lett. Math. Phys. 10 (1985), 63–69.
[Ji2] M. Jimbo, A \(q\)-Analogue of \(U\mathfrak{gl}(N + 1)\), Hecke Algebra, and the Yang–Baxter Equation, Lett. Math. Phys. 11 (1986), 247–252.
[KM] M. Kapovich, J. Millson, The Symplectic Geometry of Polygons in Euclidean Space, J. Differential Geom. 44 (1996), 479–513.
[Ka] M. Kashiwara, Private Note on Finite–Dimensional Representations of Quantized Affine Algebras, unpublished notes.
[KR] A. N. Kirillov, N. Reshetikhin, \(q\)-Weyl Group and a Multiplicative Formula for Universal \(R\)-Matrices, Comm. Math. Phys. 134 (1990), 421–431.
[Kn] A. Knutson, personal communication to J. Millson, May 1999.
[Ko1] T. Kôno, Quantized Enveloping Algebras and Monodromy of Braid Groups, preprint, 1988.
[Ko2] T. Kôno, Integrable Connections Related to Manin and Schechtman’s Higher Braid Groups, Illinois J. Math. 34 (1990), 476–484.
[LS] S. Z. Levendorskii, Y. S. Soibelman, Some applications of the Quantum Weyl Groups, J. Geom. Phys. 7 (1990), 241–254.
[Lu1] G. Lusztig, On Quantum Groups, J. Algebra 131 (1990), 466–475.
[Lu2] G. Lusztig, Finite–Dimensional Hopf Algebras Arising from Quantized Universal Enveloping Algebra. J. Amer. Math. Soc. 3 (1990), 257–296.
[Lu3] G. Lusztig, Introduction to Quantum Groups. Progress in Mathematics, 110. Birkhäuser Boston, 1993.
[Mc] I. G. Macdonald, Symmetric Functions and Hall Polynomials. 2nd edition, Oxford University Press, 1995.
[MTL] J. Millson, V. Toledano Laredo, Casimir Operators and Monodromy Representations of Generalised Braid Groups, in preparation.
[PW] B. Parshall, J.–P. Wang, Quantum Linear Groups. Mem. Amer. Math. Soc. 89 (1991), n. 439.
A KOHNO–DRINFELD THEOREM FOR QUANTUM WEYL GROUPS

[Ro] M. Rosso, An analogue of P.B.W. Theorem and the Universal R-Matrix for \(U_{h}\mathfrak{sl}(N + 1) \). Comm. Math. Phys. 124 (1989), 307–318.

[Sa] Y. Saito, PBW Basis of Quantized Universal Enveloping Algebras, Publ. Res. Inst. Math. Sci. 30 (1994), 209–232.

[So] Y. S. Soibelman, Algebra of Functions on a Compact Quantum Group and its Representations, Leningrad Math. J. 2 (1991), 161–178.

[TV] V. Tarasov, A. Varchenko, Difference Equations Compatible with Trigonometric KZ Differential Equations, Internat. Math. Res. Notices 2000, 801–829.

[Ti] J. Tits, Normalisateurs de Tores. I. Groupes de Coxeter Etendus, J. Algebra 4 (1966), 96–116.

[TL] V. Toledano Laredo, Monodromy Representations of Generalised Braid Groups and Quantum Weyl Groups, in preparation.

[Zh] D. P. Zhelobenko, Compact Lie Groups and their Representations, Translations of Mathematical Monographs, Vol. 40. American Mathematical Society, 1973.

MSRI
1000 Centennial Drive
Berkeley, CA 94720–5070
toledano@msri.org

PERMANENT ADDRESS :

INSTITUT DE MATHEMATIQUES DE JUSSIEU
UMR 7586, CASE 191
UNIVERSITE PIERRE ET MARIE CURIE
4, PLACE JUSSIEU
F–75252 PARIS CEDEX 05
toledano@math.jussieu.fr