Holographic image reconstruction by a Josephson junction

Razmik A. Hovhannisyan, Taras Golod, and Vladimir M. Krasnov

Department of Physics, Stockholm University, AlbaNova University Center, SE-10691 Stockholm, Sweden

A general problem of magnetic sensors is a trade-off between spatial resolution and field sensitivity: with decreasing sensor size the resolution is improved but the sensitivity is deteriorated. Here we present a novel method of magnetic image reconstruction by a single Josephson junction, which can resolve the problem. The method resembles holography, with the diffraction-like $I_c(H)$ pattern serving as a hologram. It represents an example of quantum holography of electronic wave functions, corresponding in this case to the macroscopic superconducting condensate. We show theoretically and verify experimentally that the method allows super-resolution imaging with a nm-scale spatial resolution not limited by the junction size. We demonstrate that planar Josephson junctions facilitate both high field sensitivity and high spatial resolution, thus obviating the trade-off problem in magnetic scanning probe imaging.

Magnetic scanning probe microscopy (SPM) has been rapidly developing in recent decades. Magnetic force (MFM) [1–7], Superconducting Quantum Interference Device (SQUID) [8–10], Hall-probe [11–13] and NV-center [14–19] microscopies achieved remarkable advances. However, many magnetic sensors suffer from the trade-off problem between spatial resolution and magnetic field sensitivity. For example, SQUIDs detect a fraction of the flux quantum, Φ_0 [20–22]. Therefore, their field sensitivity is inversely proportional to the pickup loop area, while spatial resolution is determined by the loop size. Thus, miniaturization leads to improvement of resolution at the expense of sensitivity.

Coherent nature of the superconductivity enables observation of quantum-mechanical phenomena in macroscopic objects [23–25]. Josephson effect appears as a result of electronic wave function interference between two superconducting electrodes [26]. It leads to diffraction-like Fraunhofer modulation of the critical current as a function of magnetic field, $I_c(H)$. In Ref. [27] it was proposed to use a single sandwich-type Josephson junction (JJ) as an SPM sensor. This enables ultimate miniaturization and improves spatial resolution [13], but the trade-off problem persists. In Ref. [28] it was argued that planar JJs [29–31] would allow at least partial obviating of the problem. Local magnetic field, $H^*(x)$, leads to distortion of $I_c(H)$ [32] and $H^*(x)$ is encoded in the shape of $I_c(H)$. Restoration of this information would allow super-resolution imaging not limited by the JJ size [33]. This requires solution of an inverse problem - reconstruction of unknown $H^*(x)$ from the known $I_c(H)$. This is imaged by a JJ. We assume that the JJ is “short” and does not screen the field. The direct problem, i.e., calculation of $I_c(H)$ for a given $H^*(x)$, was solved in Ref. [32]. The field induces a gradient of Josephson phase shift, $d\varphi/dx = \alpha H_y$. A small magnetic object creates a step-like phase shift,

$$\varphi^*(x) = \alpha \int_0^x H^*(\xi) d\xi. \quad (1)$$

I_c is obtained by maximization of the Josephson current,

$$I_c = \frac{L/2}{-L/2} \int J_c(x) \sin[\alpha H x + \varphi^*(x) + \varphi_0] \, dx, \quad (2)$$

with respect to φ_0. Here $J_c(x)$ is the critical current density, which may vary along the JJ [33–35]. Our goal is to solve the inverse problem: reconstruct $H^*(x)$ from a given $I_c(H)$. Below we briefly describe our approach with more details available in the Supplementary [41].

Application of the inverse Fourier transform to Eq. (2) yields a system of two equations for $\varphi^*(x)$ [41]:

$$J_c(x) \sin[\varphi^*(x)] = \frac{\alpha}{2\pi} \int_{-\infty}^{\infty} \cos[\alpha x H + \varphi_0(H)] I_c(H) dH, \quad (3)$$

$$J_c(x) \cos[\varphi^*(x)] = \frac{\alpha}{2\pi} \int_{-\infty}^{\infty} \sin[\alpha x H + \varphi_0(H)] I_c(H) dH. \quad (4)$$
The unknown \(\varphi_0(H) \) should be obtained from the maximization criterion, \(\partial I_c/\partial \varphi_0 = 0 \), which gives:

\[
\varphi_0(H) = \frac{\pi}{2} - \arctan \left(\frac{A(H)}{B(H)} \right). \tag{5}
\]

Here \(A(H) = \int_{-L/2}^{L/2} J_c(x) \sin \left(\alpha H x + \varphi^*(x) \right) dx \) and \(B(H) = \int_{-L/2}^{L/2} J_c(x) \cos \left(\alpha H x + \varphi^*(x) \right) dx \). In the absence of the object, \(\varphi^* = 0 \), for a uniform JJ, \(J_c(x) = I_c/L \), the term \(A \) vanishes because the integrand is odd in \(x \). In this case, Eq. (5) yields \(\varphi_0 = \pi/2 \) and \(I_c(f) \) exhibits Fraunhofer modulation, \(I_{c0} \sin(\pi f)/\pi f \), where \(f = \Phi/\Phi_0 = H/H_0 \) is the normalized flux and \(H_0 \) is the flux quantization field. Substitution of \(\varphi_0 = \pi/2 \) and the Fraunhofer \(I_c(H) \) in Eqs. (3,4) leads to \(\sin(\varphi^*) = 0 \), \(\cos(\varphi^*) = 1 \), verifying reconstruction of the trivial case.

For \(H^* \neq 0 \), \(\varphi_0 \) may depend both on \(H \) and \(H^* \), preventing a straightforward solution. As usual, the inverse problem requires additional knowledge about the object. In SPM we are primarily interested in imaging of small magnetic objects, such as vortices or domain walls, with spatially symmetric \(H^*(x) \). When a symmetric object is placed in the middle of a JJ with a symmetric \(J_c(x) \), the term \(A(H) \) in Eq. (5) vanishes again, so that \(\varphi_0 = \pi/2 \) and the inverse solution, Eqs. (3,4), remains unambiguous. The most accurate reconstruction is achieved using \(\tan[\varphi^*] \) obtained by solving both Eqs. (3) and (4). Mutual division of Eqs. (3) and (4) eliminates the \(J_c(x) \) term. This is important for practical application when \(J_c(x) \) is not confidently known. All solutions presented below are obtained this way.

To verify the method, first we consider the well calibrated case of AV. Vortex stray fields induce the Josephson phase shift \(\varphi^* \),

\[
\varphi^*(x) = -V \arctan \left(\frac{x-x_v}{|z_v|} \right). \tag{6}
\]

Here \(V \) is the vorticity, and \(x_v, z_v \) are AV coordinates. Figure 2(a) shows the calculated total flux induced by AV at different locations \((x_v, z_v)\) \cite{29}. It corresponds to SPM scan with zero height, \(y_v \) = 0. When the JJ approaches the vortex along the middle line, \(x = 0 \), the growing induced flux and phase shift \(\varphi^* \), Eq. (6), lead to a progressive shift and distortion of \(I_c(H) \) patterns \cite{32, 37, 38, 42}. This is shown in Fig. 2(b) for three positions of an antivortex, indicated by arrows. Dashed black lines in Fig. 2(c) represent inverse problem solutions, \(H^*(x) \), reconstructed from these \(I_c(H) \) patterns. They coincide with the actual profiles, shown by blue, olive and red lines in Fig. 2(c), confirming the successful image reconstruction. Interestingly, unlike a conventional pixel-by-pixel SPM scanning, here the complete one-dimensional distribution \(H^*(x) \) within the JJ is obtained at once. Therefore, it would be sufficient to scan just in the \(z \)-direction to obtain the full two-dimensional \(H^*(x, z) \) map, speeding up the imaging process.

For experimental verification we use planar Nb-CuNi-Nb JJs, as shown in Figure 3(d). Several devices were studies, each containing one or two JJs with the lengths \(L \approx 5.4 \mu m \) and a vortex trap in the middle of the electrode, \(x_v = 0 \), at different distances, \(z_v \), from the JJs. Details about device fabrication, characterization and the experimental setup can be found in Refs. \cite{29, 31, 37, 42} and the Supplementary \cite{41}. Black symbols in Fig. 3(a-c) show measured \(I_c(H) \) patterns at \(T \approx 6.6 K \), (a) in the absence of a vortex, and with a trapped antivortex at (b) \(z_v = 0.94 \mu m \) and (c) \(z_v = 0.36 \mu m \). A progressive distortion, similar to that in Fig. 2(b) can be seen. Red lines represent fits using \(\varphi^* \) from Eq. (6) with the actual \(L, x_v \) and \(z_v \), and the prefactor \(V \) as the only fitting parameter \cite{37}. Black line in Fig. 3(e) represents the reconstructed AV field, obtained from the experimental \(I_c(H) \) from (c). The red line shows the expected \(H^*(x) \) obtained from the fit using Eq. (6) in Fig. 3(c). The quantitative agreement is apparent. The width at half-maximum of the reconstructed \(H^*(x) \) is \(\sigma \approx 400 \mu m \leq 1 L \), confirming the super-resolution ability of the method. However, the accuracy of reconstruction is much better than \(\sigma \). The inset in Fig. 3(e) shows a close-up on the half-maximum region. It is seen that the discrepancy of fitted and reconstructed profiles is \(\Delta \sigma \approx 20 \mu m \). It represents the actual spatial resolution of the method.

As shown in the Supplementary \cite{41}, the resolution is limited only by the maximum flux range \(\Phi/\Phi_0 \), i.e., the number of lobes in \(I_c(H) \). In Fig. 3(f) we show the relative accuracy of reconstruction of the width, \(\Delta \sigma/\sigma \), and the height, \(\Delta H^*/H^*(0) \), as a function of the inverse flux range. It can be seen that the accuracy of both quantities rapidly improves for \(\Phi/\Phi_0 > 5 \) and practically vanishes.

![FIG. 1. A sketch of the considered SPM experiment. A planar Josephson junction is employed as a sensor for imaging of a small magnetic objects with a local field \(H^* \).](image-url)
for $\Phi/\Phi_0 > 10$. The experimental reconstruction in Fig. 3 (e) is made for $\Phi/\Phi_0 = \pm 8$, see Fig. 3 (c), which is enough to achieve the remarkable ~ 20 nm accuracy.

Our method resembles the Fourier-transform holography [33–35], with diffraction-like $I_c(H)$ patterns serving as holograms. In holography the image quality increases with increasing the size of the hologram, i.e., with increasing the number of stored interference fringes. In our case the number of fringes corresponds to the number of lobes, i.e., to the flux range Φ/Φ_0. However, the specifics of our case is that the hologram is created by interference of the object with electronic wave functions of the condensate. In this respect it has a connection with electronic quantum holography [36], which, however occurs at a macroscopic scale in superconducts.

To demonstrate holographic imaging of an external object, we place the JJ in a low-temperature MFM and measure its response to the local field induced by the MFM tip (for details, see the Supplementary [41]). The tip creates a monopole-like field with a large ~ 190 Oe field at the tip [43]. To reduce its invasiveness, we placed the tip at a significant height $h \simeq 1.7 \mu m$ above the center of the JJ. The black line in Fig. 3 shows corresponding experimental $I_c(H)$ modulation. Even at this height the tip strongly shifts and distorts the $I_c(H)$ pattern. The black line in Fig. 3 (h) shows reconstructed tip-induced phase shift $\varphi^*(x)$. The blue line is a smooth fit, the derivative of which yields the tip-induced field, shown by the blue line in Fig. 3 (i). The red line in (i) represents the expected tip field at the tip-JJ height of $\simeq 1.7 \mu m$ [41]. The agreement is very good. To cross check the correctness, we also calculated expected $I_c(H)$ modulation for the reconstructed φ^*. It is shown by the red line in Fig. 3 (g). The agreement with experimental $I_c(H)$ is good, confirming the validity of reconstruction.

Finally, we discuss advantages of the planar geometry. Although the holographic method is applicable to any type of JJs, good resolution requires 5-10 lobes of $I_c(H)$ and the field range $\pm 5 - 10H_0$. This field should be small enough to be noninvasive for both object and sensor. Therefore, JJs with a high field sensitivity (small H_0) are preferred. In this respect, planar JJs with inherently small H_0 [29,31] have a major advantage compared to conventional overlap JJs. For our JJs $H = 6 - 8$ Oe, see Figs. 3 (a-c), is sufficient for achieving the spatial accuracy of ~ 20 nm. Furthermore, as demonstrated in Ref. [29], the planar geometry allows simple implementation of a control line for producing homogeneous magnetic field locally in the JJ. This facilitates acquisition of many $I_c(H)$ lobes without disturbance of the object.
FIG. 3. Experimental verification of holographic reconstruction of a field from Abrikosov vortex in the junction electrode (a-c,e) and external MFM tip (g-i). (a-c) Measured $I_c(H)$ (black symbols) (a) without a vortex and with a trapped antivortex at (b) $z_v = 0.94 \mu m$ and (c) $z_v = 0.36 \mu m$ from a junction. Red lines show fits, using Eq. (6). (d) SEM image of a planar Nb-CuNi-Nb junction with a vortex trap (false color). (e) Field profiles from AV. The back line represents holographic reconstruction of the experimental $I_c(H)$ pattern from (c). The red line shows the expected profile from the corresponding fit by Eq. (6). The inset represents a close-up on the half-maximum region and demonstrates the spatial accuracy of reconstruction of ~ 20 nm. (f) The relative accuracy of reconstruction versus the inverse flux range Φ_0/Φ for the case in (c). Blue and olive symbols show the relative accuracy of the width at half-maximum, $\Delta \sigma/\sigma$, and height of the maximum $\Delta H^* / H^*(0)$, respectively. (g) Black symbols represent measured $I_c(H)$ pattern with MFM tip at $h \simeq 1.7 \mu m$ above the JJ, as sketched in the inset. Red line represents $I_c(H)$ calculated using the reconstructed $\varphi^*(x)$. (i) Reconstructed tip-induced phase shift in the JJ (black) and its spline (blue). (h) Field of the tip obtained from the reconstructed $\varphi^*(x)$ (blue) and the anticipated monopole-like tip field at the tip height of $\simeq 1.7 \mu m$ (red).

The ultimate field resolution of such sensor is determined by the flux noise. For our JJs it is $\sim 10^{-7} \Phi_0/\sqrt{Hz}$ at $T = 4.2$ K [29]. Taking into account the flux quantization field $H_0 \simeq 1$ Oe, it translates to the ultimate field sensitivity of 10^{-11} Oe/\sqrt{Hz}. It is remarkable that, contrary to conventional imaging techniques, which suffer from the trade-off problem between sensitivity and resolution, in the discussed holographic method the high field sensitivity is accompanied by the high spatial resolution.

To conclude we derived theoretically and verified experimentally a novel method of magnetic image reconstruction by a single Josephson junction. The method resembles the holography, with the diffraction-like $I_c(H)$ pattern serving as a hologram. It allows super-resolution
image reconstruction with nano-scale spatial resolution not limited by the junction size. The method allows ob-
viation of the trade-off problem between sensitivity and resolution, typical for conventional imaging techniques, which directly probe the total flux or field in a sensor. We demonstrated that application of a planar Joseph-
son junction for such holographic imaging facilitates both high field sensitivity and high spatial resolution, which is beneficial for scanning probe microscopy.

ACKNOWLEDGMENTS

We are gratefully to V.V. Dremov, S.Yu. Grebenchuk and V.S. Stolyarov for stimulating discussions and assist-
ance with MFM measurements.

[1] H. J. Hug, B. Stiefel, P. Van Schendel, A. Moser, R. Hofer, S. Martin, H.-J. Gunterodt, S. Porthun, L. Abel-
mann, J. Loder, G. Bochi and R. C. O’Handley, Quantitative magnetic force microscopy on perpendicularly magnetized samples, J. Appl. Phys. 83, 5609 (1998).

[2] A. Volodin, K. Temst, C. Van Haesendonck, Y. Bruynser-
eaede, M. Montero, and I. K. Schuller, Magnetic-force micro-
scopy of vortices in thin niobium films: Correlation between the vortex distribution and the thickness dependent film morphology, Europhys. Lett. 58, 582 (2002).

[3] H. Polshyn, T. R. Naibert, and R. Budakian, Imaging phase slip dynamics in micron-size superconducting rings, Phys. Rev. B 97, 184501 (2018).

[4] T. R. Naibert, H. Polshyn, R. Garrido-Menacho, M. Durkin, B. Wolin, V. Chua, I. Mondragon-Shem, H. Hughes, N. Mason, and R. Budakian, Imaging and controlling vortex dynamics in meso-
soscopic superconductor–normal-metal–superconductor ar-
rays, Phys. Rev. B 103, 224526 (2021).

[5] H. Polshyn, T. Naibert, and R. Budakian, Manipulating multivortex states in superconducting structures, Nano Lett. 19, 5476 (2019).

[6] V. V. Dremov, S. Y. Grebenchuk, A. G. Shiskin, D. S. Baranov, R. A. Hovhannisyan, O. V. Skryabina, N. Lebedev, I. A. Golovchanskiy, V. I. Chichkov, C. Brun, T. Cren, V. M. Krasnov, A. A. Golubov, D. Roditchev and V. S. Stolyarov , Local josephson vortex generation and manipulation with a magnetic force microscope, Nat. Commun. 10, 4009 (2019).

[7] S. Y. Grebenchuk, R. A. Hovhannisyan, V. V. Dremov, A. G. Shiskin, V. I. Chichkov, A. A. Golubov, D. Roditchev, V. M. Krasnov, and V. S. Stolyarov , Observation of interacting josephson vortex chains by magnetic force microscopy, Phys. Rev. Res. 2, 023105 (2020).

[8] J. R. Kirtley and J. P. Wikswo Jr, Scanning SQUID mi-
croscopy, Ann. Rev. Mat. Sc. 29, 117 (1999).

[9] M. E. Huber, N. C. Koshnick, H. Bluhm, L. J. Archuleta, T. Azua, P. G. Bjoransson, B. W. Gardner, S. T. Halloran, E. A. Lucero, and K. A. Moler, Gradiometric micro-SQUID suszeptometer for scanning measurements of mesoscopic samples, Rev. Sci. Instr. 79, 053704 (2008).

[10] V. Bouchiat, Detection of magnetic moments using a nano-SQUID: limits of resolution and sensitivity in nearfield squid magnetometry, Supercond. Sci. Technol. 22, 064002 (2009).

[11] C. Granata and A. Vettolieri, Nano superconducting quantum interference device: A powerful tool for nanoscale investigations, Phys. Rep. 614, 1 (2016).

[12] J. R. Kirtley, L. Paulius, A. J. Rosenberg, J. C. Palmstrom, C. M. Holland, E. M. Spanton, D. Schiessl, C. L. Jermain, J. Gibbons, Y.-K.-K. Fung, M. E. Huber, D. C. Relph, M. B. Ketchen, G. W. Gibson, K. A. Moler, Scanning squid susceptometers with sub-micron spatial resolution, Rev. Sci. Instr. 87, 093702 (2016).

[13] D. Vasyukov, Y. Anahory, L. Embon, D. Halbertal, J. Cuppens, L. Neeman, A. Finkler, Y. Segev, Y. Myasoedov, M. L. Rappaport, M. E. Huber and E. Zeldov, A scanning superconducting quantum interference device with single electron spin sensitivity, Nat. Nanotechnol. 8, 639 (2013).

[14] A. Uri, A. Y. Meltzer, Y. Anahory, L. Embon, E. O. Lachman, D. Halbertal, N. Hr, Y. Myasoedov, M. E. Huber, A. F. Young and E. Zeldov, Electrically tunable multiterminal squid-on-tip, Nano Lett. 16, 6910 (2016).

[15] P. Josephs-Franks, L. Hao, A. Tzalenchuk, J. Davies, O. Kazakov, J. Gallop, L. Brown, and J. Macfarlane, Measurement of the spatial sensitivity of miniature squids using magnetic-tipped STM, Supercond. Sc. Technol. 16, 1570 (2003).

[16] L. Embon, Y. Anahory, Z. L. Jelic, E. O. Lachman, Y. Myasoedov, M. E. Huber, G. P. Mikitik, A. V. Silhanek, M. V. Milosevic, A. Gurevich, and E. Zeldov, Imaging of super-fast dynamics and flow instabilities of supercon-
ducting vortices, Nat. Commun. 8, 85 (2017).

[17] A. Grigorenko, S. Bending, T. Tamegai, S. Ooi, and M. Henini, A one-dimensional chain state of vortex matter, Nature 414, 728 (2001).

[18] B. Kalisky, J. Kirtley, E. Nowadnick, R. Dinner, E. Zel-
dov, Ariando, S. Wenderich, H. Hilgenkamp, D. Feld-
mann, and K. Moler, Dynamics of single vortices in grain boundaries: I-V characteristics on the femtovolt scale, Appl. Phys. Lett. 94, 202504 (2009).

[19] P. Maletinsky1, S. Hong, M. S. Grinolds, B. Hausmann, M. D. Lukin, R. L. Walsworth, M. Loncar and A. Yacoby, A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres, Nat. Nanotechn. 7, 320 (2012).

[20] L. Rondin, J.-P. Tetienne, P. Spinicelli, C. Dal Savio, K. Karrai, G. Daniele, A. Thiaville, S. Rohart, J.-F. Roch, and V. Jacques, Nanoscale magnetic field mapping with a single spin scanning probe magnetometer. Appl. Phys. Lett. 100, 153118 (2012).

[21] Q.-C. Sun, T. Song, E. Anderson, A. Brunner, J. Förster, T. Shal moyavea, T. Taniguchi, K. Watanabe, J. Gräfe, Rainer Stöhr, X. Xu, and Jörg Wrachtrup, Magnetic do-

mains and domain wall pinning in atomically thin CrBr3 revealed by nanoscale imaging, Nat. Commun. 12, 1989 (2021).

[22] J.P. Tetienne, A. Lombard, D. A. Simpson, C. Ritchie, J. Lu, P. Mulvaney, and L. C. L. Hollenberg, Scanning
Nanospin Ensemble Microscope for Nanoscale Magnetic and Thermal Imaging, *Nano Lett.* 16, 326 - 333 (2016).

[23] M. Barbiero, S. Castelletto, Q. Zhang, Y. Chen, M. Charnley, S. Russelle, and M. Gu, Nanoscale magnetic imaging enabled by nitrogen vacancy centres in nanodiamonds labelled by iron–oxide nanoparticles, *Nanoscale* 12, 8847–8857 (2020).

[24] D. Koelle, R. Kleiner, F. Ludwig, E. Dantsker, and J. Clarke, High-transition-temperature superconducting quantum interference devices, *Rev. Mod. Phys.* 71, 631 (1999).

[25] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, R. Barends, R. Collins, W. Courney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, Alan Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, A. Kandala, R. Kinder, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knys, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, V. M. Krasnov, Josephson junctions in a local inhomogeneous magnetic field, *Phys. Rev. B* 101, 144507 (2020).

[26] A. Kandala, K. Temme, A. D. Corcoles, A. Mezzacapo, J. M. Chow, and J. M. Gambetta, Error mitigation extends the computational reach of a noisy quantum processor, *Nature* 574, 505 (2019).

[27] A. Barone and G. Paterno, Physics and applications of the Josephson effect (Wiley, 1982).

[28] B. Plourde and D. Van Harlingen, Design of a scanning josephson junction microscope for submicron-resolution magnetic imaging, *Rev. Sci. Instr.* 70, 4344 (1999).

[29] T. Golod, O. Kapran, and V. Krasnov, Planar superconductor-ferromagnet-superconductor josephson junctions as scanning-probe sensors, *Phys. Rev. Appl.* 11, 014062 (2019).

[30] V. Kogan, V. Dobrovitski, J. Clem, Y. Mawatari, and R. Mints, Josephson junction in a thin film, *Phys. Rev. B* 63, 144501 (2001).

[31] A. A. Boris, A. Rydh, T. Golod, H. Motzkau, A. Klushin, and V. M. Krasnov, Evidence for nonlocal electrodynamics in planar josephson junctions, *Phys. Rev. Lett.* 111, 117002 (2013).

[32] V. M. Krasnov, Josephson junctions in a local inhomogeneous magnetic field, *Phys. Rev. B* 101, 144507 (2020).

[33] A. M. Bruckstein, R. J. Holt, and A. N. Netravali, Holographic image representations: the fourier transform method, in International Conference on Image Analysis and Processing (Springer, 1997) pp. 30–37.

[34] T. Latychevskiaia and H.-W. Fink, Practical algorithms for simulation and reconstruction of digital in-line holograms, *Appl Optics* 54, 2424 (2015).

[35] A. P. Vetal, D. Singh, R. K. Singh, and D. Mishra, Reconstruction of apertured fourier transform hologram using compressed sensing, *Optics and Lasers in Eng.* 111, 227 (2018).

[36] C. R. Moon, L. S. Mattos, B. K. Foster, G. Zeltzer, and H. C. Manoharan, Quantum holographic encoding in a two-dimensional electron gas, *Nat. Nanotech.* 4, 167 (2009).

[37] T. Golod, A. Pagliero, and V. M. Krasnov, Two mechanisms of josephson phase shift generation by an abrikosov vortex, *Phys. Rev. B* 100, 174511 (2019).

[38] T. Golod, R. A. Hovhannisyan, O. M. Kapran, V. V. Dremov, V. S. Stolyarov, and V. M. Krasnov, Reconfigurable josephson phase shifter, *Nano Lett.* 21, 5240 (2021).

[39] R. C. Dyens and T. A. Fulton, Supercurrent density distribution in josephson junctions, *Phys. Rev. B* 3, 3015 (1971).

[40] V. Krasnov, V. Oboznov, and N. F. Pedersen, Fluxon dynamics in long josephson junctions in the presence of a temperature gradient or spatial nonuniformity, *Phys. Rev. B* 55, 14486 (1997).

[41] See the supplementary information at..., which contains additional description of: I. Experimental methods, II. Additional clarifications about inverse problem solution, III. Spatial resolution, IV. Image improvement methods.

[42] T. Golod, A. Rydh, and V. Krasnov, Detection of the phase shift from a single abrikosov vortex, *Phys. Rev. Lett.* 104, 227003 (2010).

[43] C. Di Giorgio, A. Scarfato, M. Longobardi, F. Bobba, M. Iavarone, V. Novosad, G. Karapetrov and A.M. Cucolo, Quantitative magnetic force microscopy using calibration on superconducting flux quanta, *Nanotechnology*, 30, 314004 (2019).