MEASUREMENT OF TRANSPORT PROPERTIES OF
PEROVSKITE CATHODES

R. Ganeshananthan and Anil V. Virkar
Department of Materials Science & Engineering, University of Utah
122. S. Central Campus Drive, Salt Lake City, Utah 84112, USA

ABSTRACT

Conductivity relaxation experiments were conducted on porous
La0.5Sr0.5CoO3-δ (LSC50) samples over a temperature range from 350 to
750°C, and over an oxygen partial pressure, \(p_{O_2}\), switch between 0.04 and
0.06 atm in order to determine the surface exchange coefficient, \(k_{chem}\).
The normalized conductivity data could be fitted to a first order kinetic
equation. The time constant decreased with decreasing temperature
between ~750 and ~450°C, but sharply increased with decreasing
temperature between 450 and 350°C. The corresponding \(k_{chem}\) was
estimated using three models: (a) a porous body model wherein it is
assumed that the kinetics of surface exchange is the slowest; (b) solution
to the diffusion equation assuming the particles can be approximated as
spheres; (c) solution to the diffusion equation assuming the particles can
be approximated as cylinders. The values of \(k_{chem}\) obtained from the three
models were in good agreement. In all cases, it was observed that \(k_{chem}\)
increases with decreasing temperature between 750 and 450°C, but below
450°C, it sharply decreases with further decrease in temperature.

INTRODUCTION

Mixed Ionic and Electronic Conducting (MIEC) materials are often used as oxygen
separation membranes, in gas sensors and as cathodes in solid oxide fuel cells. The
description of transport in MIECs requires the knowledge of two parameters, the
chemical diffusion coefficient, \(D\), and the chemical surface exchange coefficient, \(k_{chem}\)
[1]. The former describes transport through bulk, while the latter describes transport
across gas phase/solid phase interfaces. The parameters \(D\) and \(k_{chem}\) are functions of
composition, microstructure, temperature and atmosphere. Conventional methods for
determining \(D\) and \(k_{chem}\) include radio isotope, \(^{18}\)O, exchange (analyzed using
secondary ion mass spectroscopy - SIMS), oxygen permeation experiments [2-4] and
conductivity relaxation. The conductivity relaxation technique has been widely used
because of simplicity of procedure, which involves measurement of conductivity as a
function of time upon an abrupt change in \(p_{O_2}\). When exposed to a \(p_{O_2}\) change, the
sample under test re-equilibrates to the new \(p_{O_2}\) with a concomitant change in
conductivity. This change can be an increase or decrease, depending on the new atmosphere and upon the defect chemistry. An analysis of the change of conductivity with time can be used to estimate D and k_{chem}.

The ratio of D to k_{chem} has units of length and is defined as the critical thickness, l_{cr} [5]. For sample thickness $>> l_{cr}$, the kinetics of oxygen exchange is governed by D. For sample thickness $<< l_{cr}$, the kinetics of oxygen exchange is governed by k_{chem}. Typically conductivity relaxation is conducted on dense bar-shaped samples of thickness $\geq l_{cr}$. On many materials, experimental work on dense samples over a temperature range between ~600 and 900°C has shown that both D and k_{chem} increase with increasing temperature, and follow an Arrhenius behavior [6-8]. The use of a porous sample with average particle size $<< l_{cr}$ to determine k_{chem} has been demonstrated by this group in previous work [9-11]. The experimental approach is identical to that used on dense bodies but the kinetics of equilibration was shown to depend only on k_{chem} without any influence from D. The equilibration times for porous MIEC samples of composition La$_{0.6}$Sr$_{0.4}$CoO$_{3-\delta}$ (LSC40) and La$_{0.5}$Sr$_{0.5}$FeO$_{3-\delta}$ (LSF20) increased with decreasing temperature over a temperature range from 600 to 800°C, especially at lower p_{O_2}'s [9-11]. That is, the relaxation time was smaller at lower temperatures and the corresponding calculated k_{chem} increased with decreasing temperature over the temperature range investigated. That is, the temperature dependence of k_{chem} obtained using dense samples reported in the literature and porous samples are opposite. Clearly, the temperature dependence of k_{chem} obtained from porous samples cannot be described by a thermally activated process. Increasing k_{chem} with decreasing temperature appears to be consistent with its possible dependence on oxygen surface coverage, in turn governed by an adsorption isotherm such as Langmuir.

This paper presents further conductivity relaxation work on La$_{0.5}$Sr$_{0.5}$CoO$_{3-\delta}$ (LSC50) using porous samples of a very fine particle size in an attempt to investigate surface exchange kinetics over a wider temperature range, down to 350°C. LSC50 was chosen as the MIEC material of choice because of its excellent ionic conductivity even at low temperatures. The critical thickness, l_{cr}, is expected to decrease with decreasing temperature. For this reason, samples of a very fine particle size were made so that the average particle size would be below l_{cr} to as low a temperature as possible. It is expected that surface kinetics will be rate limiting down to some temperature below which diffusion becomes sluggish – and a transition from surface exchange control to diffusion control is expected at lower temperatures.

The analysis of data is done using the porous sample model developed previously [9-11], and also by approximating the particle shape in the porous sample to spherical and cylindrical geometries and using the mathematical solutions of diffusion equations given by Crank [12]. The mathematical solutions to diffusion equations for flux across a surface and into the bulk involve both diffusion and surface exchange terms. However, for a particle size well below l_{cr} at a given temperature, the solutions are sensitive to surface
exchange kinetics only. The spherical and cylindrical models are then used to obtain values of k_{chem} down to a temperature where transition from surface exchange control to diffusion control occurs.

THEORETICAL BACKGROUND

When a porous MIEC sample placed in a chamber is subjected to an abrupt p_{O_2} change, four processes occur, each having a different time constant or a characteristic time. The four processes are: (a) Change of atmosphere in the chamber. (b) Transport of the gaseous atmosphere into the porous interstices of the porous sample. (c) Surface exchange on the interior surfaces of the porous body. (d) Chemical diffusion of oxygen into the particles of the sample. In order to determine k_{chem} by this technique, step (c) must be the slowest; that is, having a time constant or a characteristic time greater than for the other three processes. Figure 1 shows a schematic of the 4 processes that occur.

By selecting a small chamber size, and by using a high gas flushing rate, the time constant/characteristic time for process (a) can be made quite small. In reality the assumed 'step change' in p_{O_2} is not instantaneous and there is a finite gas exchange time. Gas exchange times of more than a few seconds can adversely affect the accuracy, especially at short time periods [13]. The time constant, τ_{ch}, to flush the chamber with the new atmosphere, as defined by den Otter et al. [14], is given by

$$\tau_{\text{ch}} = \frac{V_r \cdot T_{\text{STP}}}{\Phi_{\text{v,lot}} \cdot T_r}$$ \hspace{1cm} (1)

where V_r and T_r are the reactor volume and temperature, respectively, $\Phi_{\text{v,lot}}$ is the flow rate of the gas and T_{STP} refers to room temperature. Equation (1) assumes that the chamber can be treated as a continuously stirred tank reactor (CSTR), which requires perfect mixing (extreme limit of turbulent mixing) [15]. The experiments were conducted in a specially designed and built quartz tube. The effective volume of the sample chamber, i.e. chamber volume minus volume of sample and insulated current leads, was ~6.3±0.5 cm3. At a gas flow rate of 600 ml/min, the time constant for switching the atmosphere in the chamber at 800°C was approximately 0.17 sec. This calculation assumes a continuously stirred tank reactor (CSTR), which requires complete mixing, typical of extreme limit of turbulent behavior. Calculations using the effective tube diameter and volume flow rate, however, yield a Reynolds number of ~45 to 40 between 600 and 800°C, which corresponds to laminar flow and well below that for a turbulent flow. For a laminar flow, the change of atmosphere in the chamber cannot be described by a first order kinetic equation (implied in equation (1) as a time constant). Rather, the change of atmosphere essentially occurs as a step function (plug flow reactor (PFR)) [15]. Based on flow rates, chamber geometry, and sample dimensions, the estimated time for this step change across the sample was <0.09 second. That is, the time required for a complete change of atmosphere across the length of the sample in the chamber from the initial to final is <0.09 second. Thus, the assumption of CSTR overestimates the time required for chamber equilibration, and in reality the chamber flush time was closer to the
plug flow behavior. Even with the assumption of CSTR, however, the time constant is rather small. This gas exchange process is illustrated schematically by Figure 1-(a).

The application of conductivity relaxation technique to porous bodies assumes gas transport in the porous interstices to be much faster than kinetics of surface exchange. By ensuring that the sample is sufficiently porous and relatively thin, the time constant/characteristic time for process (b) can similarly be made very small. An estimate of the time required for gas diffusion to occur into the pores of such samples was made. This calculation was based on binary diffusion into the porous body. The effective diffusion coefficient, D_{eff}, of oxygen-nitrogen through porous bodies is given by [16]:

$$D_{\text{eff}} = \frac{D_{O_2-N_2} V_{r}}{\varepsilon}$$ \hspace{1cm} (2)

where $D_{O_2-N_2}$ is the binary diffusion coefficient of oxygen-nitrogen, which can be calculated using the Chapman-Enskog model [17], V_{r} is the porosity, and ε is the tortuosity factor. A one dimensional diffusion equation was solved numerically using D_{eff} and the time required for the P_{O_2} in the center of the sample to reach 99% of the P_{O_2} after the switch was calculated. For an assumed tortuosity factor of 5, the estimated time was between 0.055 and 0.14 sec over the temperature range investigated. This gas transport into the pores, process (b), is illustrated in Figure 1-(b).

Process (a) is not affected by the microstructure. Process (b), in general, is only weakly dependent on the microstructure of the porous sample. However, processes (c) and (d) are clearly dependent on the sample microstructure. The time constant for process (c), τ_{r}, governed by k_{chem} can be defined approximately by:

$$\tau_{r} \propto \frac{1}{S_{r} k_{\text{chem}}} \approx \frac{d}{k_{\text{chem}}}$$ \hspace{1cm} (3)

where S_{r} is the specific surface area of the body and d is the average particle size of the porous body. Similarly the time constant/characteristic time for process (d), τ_{D}, which is governed by \tilde{D}, can be described by:

$$\tau_{D} \propto \frac{d^{2}}{\tilde{D}}$$ \hspace{1cm} (4)

Clearly process (d) is more influenced by the average particle size due to the d^{2} dependence and τ_{D} decreases more rapidly with decreasing particle size than τ_{r}. A critical particle size, d_{cr}, can be defined at which τ_{r} and τ_{D} are equal. For $d < d_{cr}$, $\tau_{r} > \tau_{D}$, and for $d > d_{cr}$, $\tau_{r} < \tau_{D}$. By ensuring that $d << d_{cr}$, one can ensure that

1 Assuming porosity is high enough and pore size is sufficiently large (so that Knudsen diffusion is ignored).
Under such conditions, process (c), illustrated by Figure 1-(c), is the slowest and a porous body can be used to measure \(k_{chem} \) by conductivity relaxation. The use of a porous sample instead of a dense sample also closely resembles actual SOFC cathodes, which are porous and of a fine microstructure. The objective of this work was to investigate this regime of kinetic behavior.

In porous samples of very fine microstructure, diffusion in very small particles is assumed fast, so that the concentration is essentially uniform within the solid at any time during equilibration (for \(\tau_D \ll \tau_r \)). If the specific surface area of the porous body of volume fraction porosity \(V_v \) is given by \(S_V \) (in \(\text{cm}^2/\text{cm}^3 \) or \(\text{cm}^{-1} \)), the average concentration at time \(t \) is \(C(t) \) and the final equilibrated concentration is \(C_0 \), the mass balance of oxygen incorporation (or expulsion) is given by

\[
S_V k_{chem} (C_0 - C(t)) \frac{dt}{(1 - V_v)dC(t)} = \frac{(1 - V_v)dC(t)}{S_V k_{chem}}
\]

the integration of which gives

\[
\frac{C_o - C(t)}{C_o - C(0)} = \exp \left(-\frac{t}{\tau_r} \right)
\]

which represents first order kinetics with time constant given by

\[
\tau_r = \frac{(1 - V_v)}{S_V k_{chem}}
\]

Note that the time constant \(\tau_r \) is defined in terms of the specific surface area of the porous body, \(S_V \), rather than the average particle size, \(d \). This also means that if the above conditions are satisfied, the only relevant parameters are \(S_V \) and \(V_v \), and the kinetics of equilibration is independent of other microstructural features, such as particle shape. In terms of the normalized conductivity, \(g(t) \), the above may also be written as

\[
g(t) = \frac{\sigma(t) - \sigma(0)}{\sigma_\infty - \sigma(0)} = 1 - \exp \left(-\frac{t}{\tau_r} \right)
\]

where \(\sigma(0) \) is the conductivity of the sample before the switch in \(P_{O_2} \), \(\sigma(t) \) is the conductivity at time \(t \) after the switch and \(\sigma_\infty \) is the conductivity after the sample is equilibrated to the new \(P_{O_2} \). The experimental procedure consists of measuring the time dependence of conductivity after an abrupt change in atmosphere, fitting a first order kinetic equation to the normalized conductivity, \(g(t) \) vs. \(t \) plot, and determining the time constant, \(\tau_r \), which is related to \(k_{chem}, V_v \), and \(S_V \) by equation (7). The \(S_V \) can be determined using quantitative stereology [18]. Volume fraction porosity, \(V_v \), can be
measured by the fluid immersion method as well as by systematic point count using quantitative stereology [18]. From these measurements, k_{chem}, can be determined using porous samples, given in terms of measured parameters using equation (7).

Transport kinetics in porous samples can also be analyzed assuming that the particle geometry is approximately spherical or cylindrical. For spherical geometry, data can be analyzed using the diffusion equation:

$$\frac{\partial C}{\partial t} = \frac{D}{\partial r^2} \left(C + \frac{2 C}{r} \right) \quad 0 \leq r \leq a \quad (9)$$

where a is the particle radius, with the initial condition

$$C(r, 0) = C(0) \quad 0 \leq r \leq a$$

and boundary conditions

$$C(a, t) = C_o \quad t > 0$$

and

$$-D \frac{\partial C(r, t)}{\partial r} \mid _{r=a} = k_{chem} (C_o - C_s(t)) \quad t > 0 \quad (10)$$

where C_o is the concentration of oxygen in the particle after equilibration to a new pO_2, $C(0)$ is the initial concentration of oxygen in the particle corresponding to the initial pO_2, and $C_s(t)$ is the concentration of oxygen just inside the particle surface at time t. Using the solution to the diffusion equation given by Crank [12], the normalized conductivity, $g(t)$, for porous body containing spheres of radius a, assuming a linear relation between conductivity and concentration, can be described by\(^2\):

$$g(t) = \frac{\sigma(t) - \sigma(0)}{\sigma_{\infty} - \sigma(0)} = \frac{C(t) - C(0)}{C_o - C(0)} = \frac{M(t)}{M_{\infty}} = 1 - \sum_{n=1}^{\infty} \frac{6L^2 \exp(-\beta_n^2 \tilde{D}t/a^2)}{\frac{\beta_n^2}{L(L-1)}} \quad (11)$$

where $\sigma(0)$ is the initial conductivity, σ_{∞} is the conductivity after the sample is equilibrated to the new pO_2 (that corresponding to C_o), and $\sigma(t)$ is the conductivity after time t, which corresponds to $C(t)$, the average concentration at time t, defined as:

$$C(t) = \frac{3}{a^3} \int_0^a C(r, t)r^2dr \quad (12)$$

\(^2\) For the spherical geometry, this is only an approximation, and not valid rigorously.
\(M(t) \) is the net amount of oxygen that entered (left) in time \(t \) after the change in \(p_{O_2} \) and \(M_{\infty} \) is the net amount of oxygen that entered (left) after an infinite time following the change in \(p_{O_2} \). The \(\beta_n \)'s are the positive roots of the transcendental equation

\[
\beta_n \cot \beta_n + L - 1 = 0 \tag{13}
\]

where

\[
L = \frac{a k_{chem}}{\bar{D}} = \frac{a}{l_c} \tag{14}
\]

For a cylindrical geometry transport is analyzed in a long circular cylinder (length \(\gg r \)) using the diffusion equation:

\[
\frac{\partial C}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial C}{\partial r} \right), \quad 0 \leq r \leq a \tag{15}
\]

The same initial condition and boundary conditions given for the spherical geometry are applicable here. The normalized conductivity is given by [12]^3:

\[
g(t) = \frac{\sigma(t) - \sigma(0)}{\sigma_{\infty} - \sigma(0)} = \frac{C(t) - C(0)}{C_{\infty} - C(0)} = \frac{M(t)}{M_{\infty}} = 1 - \sum_{n=1}^{\infty} \frac{4l^2}{\beta_n^2} \exp\left(-\frac{L_{D}}{a^2}\right) \tag{16}
\]

The \(\beta_n \)'s are now given by the positive roots of the transcendental equation [12]

\[
\beta_n J_1(\beta_n) - LJ_0(\beta_n) = 0 \tag{17}
\]

where \(J_0 \) is the Bessel function of the first kind and of zeroth order, \(J_1 \) is the Bessel function of the first kind and of first order and \(L \) is defined in equation (14). The corresponding average concentration \(C(t) \) at time \(t \) is given by:

\[
C(t) = \frac{2}{a^2} \int_0^a C(r,t)rdr \tag{18}
\]

Frequently a 'sum-of-least-squares' fitting program is used to fit experimental data to these models, where a numerical procedure is necessary to obtain solutions to equations (13) and (17). Values of \(\beta_n \) can be easily obtained using a numerical procedure given by den Otter et al. [14] or root finding operations built into commercially available mathematical softwares. However, as noted previously, in the limit of \(a \ll l_c \) the solutions to the diffusion equations are sensitive only to the kinetics of surface exchange. Thus, although the 'least-squares' procedure gives values for both \(\bar{D} \) and \(k_{chem} \), only the

3 This also assumes a linear relationship between \(\sigma(t) \) and \(C(t) \), which is strictly valid only for cylinders aligned in one direction - the direction conductivity is measured.
The surface exchange term is meaningful as large variations in \bar{D} have little or no effect on the best fit. The objective of this paper is to present the results of a study on LSC50 from 350 to 800°C and compare values of k_{chem} obtained using the porous body analysis as well as using both spherical and cylindrical solutions for the diffusion equation particles in the porous body.

EXPERIMENTAL

LSC50 powder (Praxair Specialty Ceramics) was mixed with 25 wt.% carbon (HTW - Germany, 10-20 μm spherical particles) and attrition-milled in ethanol for 4 hrs. The dried powder was mixed with 3 wt.% ethylene glycol (as binder) and bars were die pressed uniaxially, and then isostatically pressed at 32,000 psi. The bars were heated at 1°C/min in air to 500°C to burn off carbon and create porosity, and sintered in air at 1000°C to fabricate porous bars fine particle size and large specific surface area. A few bar samples were also impregnated with epoxy and polished to a level finish for stereological analysis on a scanning electron microscope (SEM).

Silver mesh and paste were used to attach silver leads in a four-probe configuration. The sample was placed in a quartz chamber and inserted into a tube furnace for conductivity relaxation measurements. A thermocouple was placed inside the sample chamber to measure possible temperature fluctuations during measurements. Experiments were carried out between 350 and 800°C in 50 degree intervals for the P_0^2 switch from 0.06 to 0.04 atm and 0.04 to 0.06 atm. Measurements were also made at the larger P_0^2 step changes of 0.21 to 0.10 atm. Voltage and current were measured using a Solartron 1287 Electrochemical Interface and recorded using 'CorrWare' software from Scribner Associates.

RESULTS AND DISCUSSION

Figure 2 is a plot of the normalized conductivity, $g(t)$ vs. time for the LSC50 porous sample sintered at 1000°C. The plots are given for the P_0^2 step change from 0.06 to 0.04 atm at 750, 600, and 450°C (with data for 350°C given as an inset due to relatively long relaxation time). Data at other temperatures are not shown for the sake of clarity. The sample equilibration times decreased monotonically from 750°C (~55 sec) down to a minimum at ~500°C (~26 sec) to 450°C (~28 sec). Below this threshold the sample equilibration times increased quite sharply; 400°C (~45 sec) and 350°C (~150 sec) with decreasing temperature.

The k_{chem} is related to τ_r, S_v, and V_v, by equation (7) for the porous model. The pore surface area per unit volume, S_v, of the randomly oriented surfaces of a porous body can be obtained from the equation from quantitative stereology given by [18]

$$S_v = 2P_L \text{ cm}^{-1} \quad (19)$$
From the measurements of P_L, the S_V for the porous LSC50 sample sintered at 1000°C was estimated to be $\sim 29,000$ cm$^{-1}$. The V_v was measured to be ~ 0.71. The k_{chem} obtained between 750°C and 350°C from the measured τ_r, S_V and V_v for the porous sample model are plotted in Figure 3 vs. 1000/T for a P_O_2 step change from 0.06 to 0.04 atm. This figure clearly shows a monotonic increase in k_{chem} with decreasing temperature, from 1.35×10^{-6} cm/s at 750°C to 2.1×10^{-6} cm/s around 450°C. Below 450°C the k_{chem} appears to be thermally activated and decreases rapidly with decreasing temperature, to $\sim 1 \times 10^{-7}$ cm/s at 350°C.

The normalized conductivity data from the above sample were also fitted to the solutions for the spherical and cylindrical models, equations (11) and (16). SEM micrographs of the sample revealed a uniform microstructure with average particle size ~ 0.5 microns. Hence, the radius a was chosen as 0.25 micron. Figure 3 also shows plots of k_{chem} vs. 1000/T obtained from the spherical and cylindrical models for the LSC50 sample sintered at 1000°C. The results from the spherical and cylindrical geometry solutions show similar trends, with k_{chem} increasing with decreasing temperature between ~ 750 and ~ 500°C, and thereafter sharply decreasing with further decrease in temperature from ~ 500 to 350°C. The agreement between the results from the spherical and cylindrical geometry solutions and the porous sample model is very good. The value of k_{chem} obtained from the porous sample model, in which it is a-priori assumed that $\tau_r >> \tau_D$, lies between the values obtained from the spherical and cylindrical models.

CONCLUSIONS

The present work has shown that the chemical surface exchange coefficient, k_{chem}, can be determined using porous MIEC materials such that over a temperature range, the slowest process is that of surface exchange. Such a condition is realized when the particle size, d, in the porous body is much smaller than the critical length, l_{cr}. Under such conditions, the time response of normalized conductivity to an abrupt P_O_2 change can be described by a simple first order kinetics and the time constant can be uniquely related to k_{chem}. In the present work, three models were used for the estimation of k_{chem}: (a) Porous body model which depends only on S_V and V_v as the microstructural parameters, (b) A solution to the diffusion equation assuming the particles in the porous body to be spherical, and (c) A solution to the diffusion equation assuming the particles in the porous body to be cylindrical. For LSC50, the k_{chem} was determined for a P_O_2 step change between 0.04 and 0.06 atm. over a range of temperatures between 350 and 750°C. It was observed that the k_{chem} increased with decreasing temperature between 750 and ~ 450°C. This is in contrast to results on dense samples, which show that the k_{chem} decreases with decreasing temperature over the same range. Increasing k_{chem} with decreasing temperature determined using porous samples may indicate a role for surface adsorption by a model such as Langmuir. For temperatures in the range from 450 to
350°C, the k_{chem} determined using porous bodies sharply decreased with decreasing temperature, consistent with a thermally activated process over this range.

ACKNOWLEDGEMENT

This work was supported by the U.S. Department of Energy under Contract No. DE-FC26-02NT41602.

REFERENCES

1. H. J. M. Bouwmeester, H. Kruidhof and A. J. Burggraaf, Solid State Ionics, 72, 185-194 (1994).
2. S. Carter, A. Selcuk, R. J. Chater, J. Kajda, J. A. Kilner and B. C. H. Steele, Solid State Ionics, 53-56, 597-605 (1992).
3. I. Yasuda, K. Ogasawara, M. Hishinuma, T. Kawada and M. Dokiya, Solid State Ionics, 86-88, 1197-1201 (1996).
4. R. H. E. van Doorn, I. C. Fullarton, R. A. de Souza, J. A. Kilner, H. J. M. Bouwmeester and A. J. Burggraaf, Solid State Ionics, 96, 1-7 (1997).
5. B. C. H. Steele, Solid State Ionics, 75, 157 (1995).
6. J. E. ten Elshof, M. H. R. Lankhorst and H. J. M. Bouwmeester, J. Electrochem. Soc., 144 (3), (1997).
7. L. M. van der Haar, M. W. den Otter, M. Morskate, H. J. M. Bouwmeester and H. Verweij, J. Electrochem. Soc., 149 (3), J41-J46 (2002).
8. S. Wang, A. Verma, Y. L. Yang, A. J. Jacobson and Ben Abeles, Solid State Ionics, 140, 124-133 (2001).
9. Ramanan Ganeshananthan and Anil V. Virkar, “Electrical Conductivity Relaxation on Dense and Porous La0.6Sr0.4CoO3+δ”, in High Temperature Materials Chemistry Symposium in Honor of Professor C. B. Alcock, 204th Electrochemical Society Meeting, October 12-16, 2003, Orlando, FL.,
10. Ramanan Ganeshananthan and Anil V. Virkar, J. Electrochem. Soc., (2004), submitted.
11. Ramanan Ganeshananthan and Anil V. Virkar, “Surface Exchange Coefficient Measurements on Porous La0.8Sr0.2FeO3+δ by Conductivity Relaxation”, in Fifth International Symposium on Mixed Conducting Ceramics, 206th Electrochemical Society Meeting, October 3-8, 2004, Honolulu, HI.
12. J. Crank, Mathematics of Diffusion, 2nd Edition, p. 60, Oxford University Press, Oxford, UK, (1995).
13. W. Preis, E. Bucher and W. Sitte, J. Power Sources, 106(1-2), 116 (2002).
14. M.W. den Otter, H.J.M. Bouwmeester, B. A. Boukamp and H. Verweij, J. Electrochem. Soc., 148 (2), J1 (2001).
Figure 1. A schematic of the 4 processes that occur when an abrupt change in p_{O_2} is made: (a) change of atmosphere in the chamber; (b) gas transport into the porous interstices; (c) surface exchange on the interior surfaces; (d) chemical diffusion of oxygen into the particles.
Figure 2. Normalized Conductivity vs. time at 450, 600 and 750°C for the porous LSC50 sample sintered at 1000°C: P_{O_2} change from 0.06 to 0.04 atm. The inset shows data for 350°C.

Figure 3. k_{chem} vs. $1000/T$ for the porous sample, spherical and cylindrical geometry models: 350 to 700°C for the porous LSC50 sample sintered at 1000°C; P_{O_2} change from 0.06 to 0.04 atm.