Acute Effect of Intravenous Administration of Magnesium Sulfate on Serum Levels of Interleukin-6 and Tumor Necrosis Factor-α in Patients Undergoing Elective Coronary Bypass Graft With Cardiopulmonary Bypass

Parastou Aryana 1; Samira Rajaei 2; Abdolhamid Bagheri 3; Forouzan Karimi 4; Ali Dabbagh 1*

1 Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2 Immunology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3 Cardiology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
4 Immunology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

*Corresponding author: Ali Dabbagh, Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Tel: +98-9121972368; Fax: +98-2122074101; Email: alidabbagh@yahoo.com

Published online 2014 June 17.

1. Background
Cardiovascular problems are among the most common health issues. A considerable number of cardiac patients undergo cardiac surgery, and coronary artery disease patients constitute about two-thirds of all these surgeries. The application of cardiopulmonary bypass (CBP) usually results in some untoward effects.

2. Objectives
Studies have suggested magnesium sulfate (MgSO4) as an anti-inflammatory agent in a coronary artery bypass graft (CABG). This study aimed to assess the effect of an IV MgSO4 infusion during elective CABG (with CBP) on the blood levels of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α).

Materials and Methods:
During a 12 month period, after review board approval and based on inclusion and exclusion criteria, 90 patients were selected and entered randomly into one of the two study groups (MgSO4, or placebo). Anesthesia, surgery and CBP were performed in exactly the same way, except for the use of MgSO4 or a placebo. Both preoperative and postoperative plasma levels of IL-6 and TNF-α were checked and compared between the two groups using an ELISA.

Results:
There was no difference found between the two groups with regard to; gender, basic variables, Ejection Fraction (EF), CBP time and aortic cross-clamp time. The preoperative levels of IL-6 and TNF-α were not different; however, their postoperative levels were significantly higher in the placebo group (P value = 0.01 for IL-6 and 0.005 for TNF-α).

Conclusions:
This study showed that MgSO4 infusion could suppress part of the inflammatory response after CABG with CBP. This was demonstrated by decreased levels of interleukin-6 and TNF-α in postoperative serum levels in elective CABG with CBP.

Keywords: Magnesium; Interleukin 6; Tumor Necrosis Factor Alpha
(MgSO$_4$) solution has anti-inflammatory properties in many conditions (3-6, 30-33). In addition, it has also been demonstrated in a number of studies that magnesium can ‘modulate cellular events involved in inflammation’ while ‘activation of leukocyte and macrophage and the release of inflammatory cytokines’ are the characteristic features of this inflammatory syndrome (34, 35). Among the main proposed mechanisms for the anti-inflammatory effects of MgSO$_4$, the ‘phosphoinositide 3-kinase/Akt pathway’ is one of the most important ones. Meanwhile, another main mechanism seems to be the suppressing role of magnesium throughout the inflammatory process by the ‘activation of N-methyl-D-aspartate (NMDA) receptors. Since, magnesium is a natural antagonist of calcium ion and MgSO$_4$, which acts through inhibition of ‘N-methyl-D-aspartate dependent cellular pathways’(3-6, 30, 35, 36). On the other hand, it has been demonstrated that decreased plasma levels of magnesium can activate inflammatory neuromediators via the activation of ‘neuroendocrinological pathways (37). At the same time, other studies have demonstrated that NF-kappaB activation with simultaneous suppression of endotoxin, induces an increase in inflammatory mediators due to magnesium infusion in animals; furthermore, these mechanisms possibly work in a similar way in coronary artery bypass graft (CABG) patients (3-6, 34, 38-43). A number of cytokines have been named as pro-inflammatory ones; interleukin-6 (IL-6) and tumor necrosis alpha (TNF-α) are among them (26, 38, 44, 45). This randomized clinical trial study was designed and implemented to assess the effect of an intravenous magnesium sulfate (IV MgSO$_4$) infusion compared with a placebo, during elective CABG (with CPB) on the blood levels of IL-6 and TNF-α.

3. Materials and Methods

The study started from October 2011 for a 12 month period, after review board approval from the Shahid Beheshti University of Medical Sciences Research Committee. The study complied with current ethical considerations. Authors declare that:
• Informed consent was obtained from each patient included in the study
• The study protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki as reflected in a priori approval by the institution’s human research committee.

All patients in the operating room of Shahid Modarres (a university hospital affiliated to Shahid Beheshti University of Medical Sciences), undergoing elective CABG surgery were the target population, and 90 patients were selected and entered the study. The patients were randomly allocated in either the control group (45 patients) or the case group (45 patients) the case group received a MgSO$_4$ infusion and the control group received a placebo (Figure 1). Except for this classification, there were no differences between the two groups regarding; anesthesia method, surgical procedure, surgeons and physicians, or medical treatment protocols. In addition, the volume of the magnesium infusion and the placebo as well as their syringes were similar (50 mL syringes). Sample size determination was done after a power analysis (power = 0.8, β = 0.2, α = 0.02) using sample size software: PASS 2005; NCSS, LLC; UT, USA.

Patient entry to the study was done after obtaining an informed written consent and they were allocated into the two groups based on a computer table of random numbers and after considering the inclusion and exclusion criteria.

3.1. Inclusion and Exclusion Criteria Were as Follows

3.1.1. Inclusion Criteria
• Elective CABG using CPB
• Age 30-65 years

3.1.2. Exclusion Criteria
• Underlying heart failure (right sided or left sided, including low left ventricular ejection fraction, ie. preoperative LVEF < 25%)
• Underlying renal disease
• Underlying diabetes mellitus
• Underlying uncontrolled hypertension
• Underlying thyroid problems (hypo/hyperthyroidism, active or controlled)
• Underlying malabsorption (active or controlled)
• Underlying untreated arrhythmias
• Underlying inflammatory disease (active or controlled)
• Underlying uncorrected magnesium or calcium abnormalities
• Emergent or urgent CABG
• Patient refusal to enter or continue study

Figure 1: A Summary of Study Stages Are Presented in the Following Diagram
Table 1. Basic Variables in the Two Groups

	MgSO₄ group	Placebo group	P value
Gender			
Male	28	30	> 0.05
Female	17	15	-
Age, y	64 ± 8	62 ± 10	> 0.05
Weight, kg	73 ± 12	77 ± 6	> 0.05
LVEF, %	44 ± 12	47 ± 10	> 0.05
CPB time	96 ± 8	92 ± 12	> 0.05
ACC time	54 ± 6	57 ± 7	> 0.05

Abbreviations: MgSO₄, magnesium sulfate; CPB, cardiopulmonary bypass pump; LVEF, Left Ventricle Ejection Fraction; ACC, aortic cross-clamp.

Chi square.

There was no difference between the two groups regarding demographic variables including: gender, age, weight, ejection fraction (EF), cardiopulmonary bypass pump time, and aortic cross-clamp time (Table 1).

In the MgSO₄ group, the post-operative level of IL-6 was 67.6 ± 22.3 pg/ml; while in the placebo group, the post-operative level of IL-6 was 102.1 ± 33.7 pg/ml (P value = 0.01). Also, the postoperative level of TNF-α in the MgSO₄ group was 27.4 ± 4.2 pg/ml; while in the placebo group, the post-operative level of TNF-α was 44.7 ± 6.1 pg/ml (P value = 0.005).
5. Discussion
The results of this study demonstrated that administration of MgSO₄ solution in adult patients undergoing elective CABG could suppress part of the inflammatory response after CABG with CPB. This was demonstrated as decreased levels of IL-6 and TNF-α in postoperative serum. However, the two groups had no difference in regard to cardiopulmonary bypass items, surgical variables, or anesthetic parameters; this indicated that the underlying clinical situations for the study were largely identical in the two groups. Magnesium may ‘modulate cellular inflammation’ while ‘suppressing the inflammatory role of inflammatory cells and cytokines’ (34, 35) through the ‘activation of N-methyl-D-aspartate (NMDA) receptors’, ‘phosphoinositide 3-kinase/Akt pathway’ and suppression of inflammatory neuromediators through the activation of ‘neuro-endocrinological pathways’ as the main mechanisms; since, magnesium is a natural antagonist of calcium ion (3-6, 30, 35-37, 42). The inflammatory response after CPB is one of the most significant side effects of this surgical intervention, and a number of compensatory mechanisms and approaches have been proposed, though many remain equivocal (1, 2, 10, 12, 27, 45-49). Magnesium infusion is an easy and routine therapeutic agent, and its anti-inflammatory effects are an important effect of the drug (4, 31, 35, 39, 50, 51). There are many studies denoting the therapeutic effects of magnesium infusion on many other systems, including its positive effects on the cardiovascular and respiratory system, as well as its analgesic effects (30). Since the usage of magnesium infusion could lead to improved inflammatory status, according to this study, it can be recommended that a magnesium infusion is used to suppress some of the inflammation in a cost effective way.

5.1. Limitations
Among the study methods, the limited assessment epistodes of IL-6 and TNF-α assessments are among the main limitations of the study. Moreover, other interleukins could be helpful for making more exact assessments. The sample size was also limited.

Acknowledgements
The authors would like to acknowledge the kind help of physicians and nurses in the OR and ICU, Shahid Modarres Hospital, Tehran, Iran.

Authors’ Contributions
Parastou Aryana: study concept and design, acquisition of data, drafting of the manuscript, technical, and material support, and study supervision; Samira Rajaei: study concept and design, acquisition of data, analysis and interpretation of data, drafting of the manuscript, critical revision of the manuscript for important intellectual content and study supervision; Abdolhamid Bagheri: study concept and design, interpretation of data, and drafting of the manuscript; Forouzan Karimi: study concept and design, acquisition of data, analysis and interpretation of data, and drafting of the manuscript; Ali Dabbagh: study concept and design, acquisition of data, analysis and interpretation of data, drafting of the manuscript, critical revision of the manuscript for important intellectual content, statistical analysis, administrative, technical and material support, and study supervision.

Funding/Support
Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

References
1. Warren OJ, Smith AJ, Alexiou C, Rogers PL, Jawad N, Vincent C, et al. The inflammatory response to cardiopulmonary bypass: part 1--mechanisms of pathogenesis. J Cardiothorac Vasc Anesth. 2009;23(2):223-31.
2. Warren OJ, Watret AL, de Wit KL, Alexiou C, Vincent C, Darzi AW, et al. The inflammatory response to cardiopulmonary bypass: part 2--anti-inflammatory therapeutic strategies. J Cardiothorac Vasc Anesth. 2009;23(3):384-93.
3. Dabbagh A, Elyasi H, Razavi SS, Fathei M, Rajaei S. Intravenous magnesium sulfate for post-operative pain in patients undergoing lower limb orthopedic surgery. Acta Anesthesiol Scand. 2009;53(8):1088-91.
4. Dabbagh A, Rajaei S, Shamsolehrar MH. The effect of intravenous magnesium sulfate on acute postoperative bleeding in elective coronary artery bypass surgery. J Perianesthes Nurst. 2010;25(5):290-5.
5. Ferasatiksh R, Dabbagh A, Alavi M,ollahasadeghi G, Hydarpur E, Moghdam AA, et al. Effect of magnesium sulfate on extubation time and acute pain in coronary artery bypass surgery. Acta Anesthesiol Scand. 2008;52(10):1348-52.
6. Mirkheshti A, Aryani MR, Shojaei P, Dabbagh A. The Effect of Adding Magnesium Sulfate to Lidocaine Compared with Paracetamol in Prevention of Acute Pain in Hand Surgery Patients Under Intravenous Regional Anesthesia (IVRA). Int J Prev Med. 2012;3(9):616-21.
7. Serrano-CV Jr, Souza JA, Lopes NH, Fernandes JL, Nicolau JC, Blotta MH, et al. Reduced expression of systemic proinflammatory and myocardial biomarkers after off-pump versus on-pump coronary artery bypass surgery: a prospective randomized study. J Crit Care. 2010;25(2):305-12.
8. Alonso A, Whitten CW, Hill GE. Pump prime only aprotinin inhibits cardiopulmonary bypass-induced neutrophil CD83 up-regulation. Ann Thorac Surg. 1999;67(3):392-5.
9. Rajaei S, Dabbagh A. Risk factors for postoperative respiratory mortality and morbidity in patients undergoing coronary artery bypass grafting. Anesth Pain Med. 2012;2(2):60-5.
10. Dabbagh A, Rajaei S, Ahani MR. Sodium thiopental and mean arterial pressure during cardiopulmonary bypass. Asian Cardiovasc Thorac Ann. 2011;19(3-4):213-6.
11. Miller BE, Levy JH. The inflammatory response to cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 1997;11(3):355-66.
12. Patel JA, Ghatak SR. Peselizumab and its role in the treatment of myocardial infarction and in coronary artery bypass graft surgery: a review. Recent Pat Cardiovasc Drug Discov. 2008;3(2):445-52.
13. Murphy GS, Hessel EA 2nd, Groom RC. Optimal perfusion during cardiopulmonary bypass: an evidence-based approach. Anesth Analg. 2009;108(5):1394-407.
14. Lante W, Franke A, Weinhold C, Markewitz A. Immunoglobulin levels and lymphocyte subsets following cardiac operations: further evidence for a T-helper cell shifting. Thorac Cardiovasc Surg. 2005;53(1):16-22.
15. Wan S, Leclerc J, Vincent J. Cytokine responses to cardiopulmonary...
Intravenous magnesium sulfate as an adjunct to standard anesthetic techniques on the inflammatory response to cardiac surgery: a meta-analysis of randomized head-to-head trials. J Thorac Cardiovasc Surg. 2012;143(3):550–7.

Van Aelbroeck C, Engbler L, Faraoni D. Review of the fibrinolytic system: comparison of different fibrinolytics used during cardiopulmonary bypass. Recent Pat Cardiovasc Drug Discov. 2012;7(3):175–9.

Hill GE, Alonso A, Spurzem JR, Stammers AH, Robbins RA. Aprotinin and methylprednisolone equally blunt cardiopulmonary bypass-induced inflammation in humans. J Cardiothorac Vasc Anesth. 2009;23(1):243–8.

Koletsis EN, Baikoussis NG, Siminelakis SN, Papadopoulos GS. Strategies to prevent intraoperative lung injury during cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2009;23(1):237–31.

Heijmans J, Fransen E, Buurman W, Maessen J, Roekaerts P. Comparison of different antifibrinolytics used during cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2009;23(1):221–9.

Apostolakis EE, Padopoulos GS. lessons from the aprotonin saga: current perspective on antifibrinolytic therapy in cardiac surgery. Anesth. 2010;24(1):96–106.

Dowlings G, Chatterjee PK, Gupta M, Tam Tam HB, Xue X, Lewis D, et al. Magnesium sulfate reduces bacterial LPS-induced inflammation at the maternal-fetal interface. Placenta. 2012;33(5):392–8.

Sedghi M, Pourpak Z, Bavarian B, Safaralizadeh R, Zare A, Moin M. Low magnesium concentration in erythrocytes of children with acute asthma. Iran J Allergy Asthma Immunol. 2006;5(4):183–6.

Singh AK, Gaur S, Kumar R. A randomized controlled trial of intravenous magnesium sulphate as an adjunct to standard therapy in acute severe asthma. Iran J Allergy Asthma Immunol. 2008;7(4):221–9.

Mazur A, Maier JA, Rock E, Gueux E, Nowacki W, Rayssiguier Y. Magnesium and the inflammatory response: potential physiopathological implications. Arch Biochem Biophys. 2007;458(1):48–56.

Rayssiguier Y, Libako P, Nowacki W, Rock E. Magnesium deficiency and metabolic syndrome: stress and inflammation may retard calcium activation. Magnes. 2010;23(2):73–80.

Ren K, Dubner R. Central nervous system plasticity and persistent pain. J Orofac Pain. 1999;13(3):155–63.

Iezhita IN, Spasov AA, Kharitonova MV, Kravchenko MS. Effect of magnesium chloride on psychomotor activity, emotional status, and acute behavioral responses to clonidine, d-ampametaphen, arecoline, nicotine, apomorphine, and L-5-hydroxytryptophan. Nutr Neurosci. 2011;14(1):30–24.

Amash A, Holberg G, Sheiner E, Huleihel M. Magnesium sulfate normalizes placental interleukin-6 secretion in preeclampsia. J Interferon Cytokine Res. 2010;30(9):583–90.