Therapeutic effect of cataract surgery with simultaneous intravitreal injection of aflibercept on diabetic macular edema
An observational study

Chu-Yu Yen, MD, Ju-Chuan Yen, MD, PhD, Chun-Chen Chen, MD, PhD, Hsiao-Yun Hu, PhD, Ming Chiao Tung, MD, Chun-Hung Cheng, MD, Po-Chen Tseng, MD

Abstract
This study aimed to investigate the therapeutic effect of cataract surgery along with simultaneous intravitreal injection (IVI) of aflibercept on diabetic macular edema (DME). This cohort study enrolled 106 patients aged >40 years with type 2 diabetes mellitus and DME who received cataract surgery from January 1, 2016, to October 31, 2020. The baseline and mean data of the following parameters were collected: age, sex, glycated hemoglobin level, diabetic retinopathy (DR) grading, previous DR treatments including IVI of anti–vascular endothelial growth factor and pan-retinal photocoagulation, intraocular pressure, use of intraocular pressure-lowering medication, central subfield thickness (CST), and log MAR visual acuity (VA). Patients were categorized into 2 groups based on whether they received aflibercept IVI or not during cataract surgery and were compared using the t test and Fisher exact test for continuous and discrete variables, respectively. Beta coefficient and standard error were calculated using multiple linear regression analysis to identify the explanatory variables predictive of the net change of CST and log MAR VA. There was no difference in the net change in CST (15.24 ± 45.07 μm vs 18.62 ± 33.84 μm, P = .772) and log MAR VA (−0.27 ± 0.29 vs −0.37 ± 0.31, P = .215). Gender, glycated hemoglobin level, aflibercept IVI during cataract surgery, and baseline CST did not interfere with the morphological and functional outcomes of DME in cataract surgery. Older age was significantly and independently associated with a greater net change in log MAR VA. Proliferative DR was significantly and independently associated with a greater net change in CST and log MAR VA. A greater baseline log MAR VA was significantly and independently associated with lower net change in log MAR VA. Simultaneous aflibercept IVI for treating DME may not interfere with the functional and tomographic parameters of cataract surgery relative to cataract surgery alone. Factors influencing the outcomes of patients with DME undergoing cataract surgery are as follows: age, baseline DR staging, and baseline VA. Identifying these factors of DME preoperatively may be an important consideration in preventing it from progressing and for improving the overall visual prognosis.

Abbreviations: BRB = blood–retina barrier, CST = central subfield thickness, DM = diabetes mellitus, DME = diabetic macular edema, DR = diabetic retinopathy, HbA1c = glycated hemoglobin, IOP = intraocular pressure, IVI = intravitreal injection, NPDR = nonproliferative DR, PDR = proliferative DR, PRP = pan-retinal photocoagulation, VA = visual acuity, VEGF = vascular endothelial growth factor.

Keywords: anti–vascular endothelial growth factor, cataract surgery, central subfield thickness, diabetic macular edema, diabetic mellitus, intravitreal injection, visual acuity

1. Introduction
Diabetic retinopathy (DR) is one of the leading causes of visual loss worldwide. At present, more than 93 million people are affected, of which one-third have vision-threatening DR.[1,2] Diabetic macular edema (DME), which is attributed to retinal barrier rupture secondary to angiogenesis and inflammation, is one of the major causes of visual impairment in DR.[3] This
condition may cause irreversible damage of the macula and permanent vision loss if left untreated. The aim of DME treatment is based on 2 aspects:

1. reduction of the vascular endothelial growth factor (VEGF) level, through either intravitreal injection (IVI) of anti-VEGF drug or retinal photocoagulation, and
2. inflammation control, primarily through IVI of steroids and its derivatives.

Previous studies revealed that inflammation associated with cataract surgery may exacerbate the breakdown of the blood-retina barrier (BRB), which could worsen DR and DME. The Diabetic Retinopathy Clinical Research Network also implicated that cataract surgery may increase the risk of developing DME and worsening visual acuity (VA) within 16 weeks of cataract extraction. In addition, the costs of treating DME following cataract surgery could be extremely high, at US$10,410 in average. In clinical practice, patients with DME who are prescribed cataract surgery commonly received IVI of an anti-VEGF drug preoperatively. Although the therapeutic effect of cataract surgery with simultaneous IVI of anti-VEGF had been well studied, most of them focused on ranibizumab or bevacizumab and evaluating other macular disorders such as age-related macular degeneration. The present study aims to investigate the therapeutic effect of cataract surgery with simultaneous IVI of aflibercept on DME.

2. Methods

2.1. Participants

This single-center observational study was approved by the Research Ethics Committee of Taipei City Hospital, Taiwan (TCHIRB-11003029-E) and followed the tenets of the Declaration of Helsinki. Written informed consent was obtained from each patient. Candidates of this study were patients aged over 40 with type 2 diabetes mellitus (DM) and DME, who underwent cataract surgery in Taipei City Hospital Renai Branch, Taiwan from January 1, 2016, to October 31, 2020. DM was defined as either fasting blood sugar ≥126 mg/dL, self-reported physician-diagnosed DM, or the use of hypoglycemic drug preoperatively. Eligibility was determined by 2 ophthalmologists (P.-C.T. and C.-Y.Y.), who evaluated retina appearance on fundus photographs to reach a consensus. Both the evaluators were blinded to all other patient and ocular data. For patients with gradable imaging results for both the eyes, the more severe one was recorded. Patients were considered treatment naive if they had not received anti-VEGF IVI or had not undergone PRP. IOP was measured in millimeter of mercury (mmHg) using a noncontact tonometer (Topcon CT-80; Topcon, Tokyo, Japan). CST was measured in μm using RTVue optical coherence tomography (Optovue Inc., Fremont, CA). Log MAR VA was evaluated by measuring the distance best-corrected VA under normal luminance with a log MAR VA chart at a distance of 6 m (20 feet). A larger value of log MAR VA indicated poorer VA, whereas a smaller value of log MAR VA indicated better VA. The net change in CST and log MAR VA was calculated by subtracting the value obtained at follow-up and that obtained at baseline.

2.2. Clinical data and potential factors

Baseline factors evaluated were age, sex, HbA1c level, DR grading, previous DR treatments including anti-VEGF IVI and pan-retinal photocoagulation (PRP), intraocular pressure (IOP), use of IOP-lowering medication, central subfield thickness (CST), and log MAR VA. HbA1c level was measured using high-performance liquid chromatography (Bio-Rad Laboratories, Inc, Hercules, CA.). The diagnosis of DR was based on fundus photography centered on the fovea, obtained using a fundus camera (Canon CR-2; Canon, Tokyo, Japan). Images were graded into no DR, mild/moderate/severe nonproliferative DR (NPDR), and proliferative DR (PDR) in accordance with the International Clinical DR severity scales. Eligibility was determined by 2 ophthalmologists (P.-C.T. and C.-Y.Y.), who evaluated retina appearance on fundus photographs to reach a consensus. Both the evaluators were blinded to all other patient and ocular data. For patients with gradable imaging results for both the eyes, the more severe one was recorded. Patients were considered treatment naive if they had not received anti-VEGF IVI or had not undergone PRP. IOP was measured in millimeter of mercury (mmHg) using a noncontact tonometer (Topcon CT-80; Topcon, Tokyo, Japan). CST was measured in μm using RTVue optical coherence tomography (Optovue Inc., Fremont, CA). Log MAR VA was evaluated by measuring the distance best-corrected VA under normal luminance with a log MAR VA chart at a distance of 6 m (20 feet). A larger value of log MAR VA indicated poorer VA, whereas a smaller value of log MAR VA indicated better VA. The net change in CST and log MAR VA was calculated by subtracting the value obtained at follow-up and that obtained at baseline.

2.3. Statistical analysis

SPSS version 22.0 (SPSS Inc., Chicago, IL) was used for all statistical analyses. Patients were divided into 2 groups based on whether or not they received aflibercept IVI during cataract surgery. Baseline characteristics were reported as counts and proportions or means ± standard deviations, as appropriate. The 2 groups were compared using t test and Fisher exact test for continuous and discrete variables, respectively. Beta coefficient and standard error were calculated using multiple linear regression analysis to identify the explanatory variables predictive of the net change in CST and log MAR VA. The explanatory variables were age, sex, HbA1c level, DR status, previous DR treatments including anti-VEGF IVI and PRP, aflibercept IVI administered during surgery, IOP, use of IOP-lowering medication, CST, and log MAR VA. Statistical significance was considered at P < .05.

3. Results

Of the 134 patients in this cohort, 9 had ungradable or unrecorded fundus images or clinical lab data, and 13 were lost to follow-up 3 months later. Among the patients with data during follow-up, 6 had unrecorded fundus images or clinical lab data. Finally, 106 patients were included in this study (Fig. 1).

3.1. Factors associated with DME

Characteristics of the included subjects (N = 106) are presented in Table 1. The mean age was 68.76 ± 9.09 years. A total of 17 (16.04%) patients underwent cataract surgery and received 2 mg aflibercept IVI (study group) and 89 (83.96%) underwent only cataract surgery (control group). Patients in the study group had more severe baseline DR staging (41.18% had mild NPDR, 23.53% had moderate NPDR, and 35.9% had PDR); in contrast, patients in the control group had mild baseline DR staging (53.3% had no DR, 13.48% had mild NPDR, 17.98% had moderate NPDR, and 14.61% had PDR). More patients are treatment naive in the control group (80.90%) than in the study group (47.06%). More patients received PRP in the study group (41.18%) than in the control group (16.85%). There was no difference in the baseline CST (341.20 ± 40.69 μm vs 339.80 ± 24.63 μm, P = .573), baseline log MAR VA (0.50 ± 0.30 vs 0.50 ± 0.32,
Participants between January 1, 2016 and October 31, 2020 (n = 134)

Excluded (n = 22)
- Ungradable or unrecorded fundus image (n = 9)
- Lost follow-up (n = 13)

Initially included in study cohort (2020) (n = 112)

Excluded (n = 6)
- Ungradable or unrecorded fundus image (n = 4)
- Missing clinical data (n = 2)

Final sample of patients available for analysis (n = 106)

P = .952), net change in CST (15.24 ± 45.07 μm vs 18.62 ± 33.84 μm, P = .772), and log MAR VA (−0.27 ± 0.29 vs −0.37 ± 0.31, P = .215) between the 2 groups.

Table 2 details the factors that significantly influenced the net change in CST and log MAR VA in multiple linear regression analysis. Gender (net change in CST: β = −6.047, P = .390; net change in log MAR VA: β = 0.004, P = .185), HbA1c level (net change in CST: β = −2.845, P = .367; net change in log MAR VA: β = −0.008, P = .558), aflibercept IVI during cataract surgery (net change in CST: β = 14.440, P = .369; net change in log MAR VA: β = 0.004, P = .772) did not interfere with the morphological and functional outcomes of DME in cataract surgery. Older age was significantly and independently associated with a greater net change in log MAR VA (β = 0.004, P = .037). PDR was significantly and independently associated with a greater net change in CST (β = 52.728, P = .004) and log MAR VA

Table 1
Demographic information of patients with diabetic macular edema undergoing cataract surgery.

	Total N = 106	Study group N = 17	Control N = 89	P value
Age (mean ± SD)	68.76 ± 9.09	69.59 ± 7.54	68.61 ± 9.38	.685
Gender (%)				.221
Male	48	10	38	
Female	58	7	51	
HbA1C (mean ± SD)	7.20 ± 1.24	7.19 ± 1.57	7.20 ± 1.18	.975
DR status (%)				<.001*
NDR	48	0	48	
Mild NPDR	19	7	12	
Moderate NPDR	20	4	16	
PDR	19	6	13	
Treatment naïve (%)				.006*
0	26	9	17	
1	80	8	72	
Previous IVI of anti-VEGF (%)				.045*
No	96	14	82	
Yes	10	3	7	
PRP (%)				.145
No	84	10	74	
Yes	22	7	15	
IOP (mean ± SD)	14.50 ± 3.63	15.66 ± 4.24	14.28 ± 3.48	.150
IOP-lowering medication (%)				.145
No	77	15	62	
Yes	29	2	27	
CST (baseline)	340.50 ± 46.17	341.20 ± 40.69	339.80 ± 44.63	.573
CST (net change)	18.08 ± 35.65	15.24 ± 45.07	18.62 ± 33.84	.772
Log MAR VA (baseline)	0.50 ± 0.32	0.50 ± 0.30	0.50 ± 0.32	.952
Log MAR VA (net change)	−0.36 ± 0.30	−0.27 ± 0.29	−0.37 ± 0.31	.215

CST = central subfield thickness, DR = diabetic retinopathy, HbA1C = glycated hemoglobin, IOP = intraocular pressure, IVI = intravitreal injection, NDR = no diabetic retinopathy, NPDR = nonproliferative diabetic retinopathy, PDR = proliferative diabetic retinopathy, PRP = pan-retinal photocoagulation, SD = standard deviation, VA = visual acuity, VEGF = vascular endothelial growth factor.

*P value < .05.
(β = 0.165, P = 0.045). A greater baseline log MAR VA was significantly and independently associated with lower net change in log MAR VA (β = −0.8, P < .001).

4. Discussion

The association between cataract surgery and DME has been widely investigated in previous studies. Inflammation occurring after cataract surgery results in edema or worsening of the preexisting edema in patients with DR. Kim et al reported that approximately 22% of patients with diabetes who underwent cataract surgery developed macular edema. As reported previously, the predictors of poor outcomes of DME following cataract surgery in patients with diabetes include early DME; hypertension; and the aqueous levels of VEGF, interleukin-6, and proteins. The most severe aspect of DME is attributed to disrupted BRB. In patients with the more severe form of DR owing to the abnormal BRB and choroidal morphology changes. Normally, retinal blood vascular endothelium is composed of tight junctions and could serve as the inner BRB, which prevents the leakage of serum and fluids into the retinal tissue. In patients with PDR, several molecular mechanisms, including the kalikrein-kinin system, VEGF, inflammation, and pericyte dropout could lead to BRB breakdown. In addition, the thickness of the subfoveal choroid as well as of the subfoveal medium choroidal vessel layer and choriocapillaris layer was significantly reduced. This may explain the poorer prognosis of DME observed in patients with PDR despite a greater CST decrease.

Our method still features several limitations. In Taiwan health insurance regulations, patients who received anti-VEGF IVI should be limited to HbA1c < 10% (mmol/mol); thus, patients who had poorer DM control were not included.
Chou et al reported that the HbA1c level in patients with DME was positively correlated with CST. This may explain why the change in CST and VA was not significantly different. In addition, a relatively lower number of cases may affect the significance level of CST. A large number of cases may help support the significance level in CST and VA. Second, although we excluded patients with observable, structural retinal disorders, such as epiretinal membrane and tractional maculopathy, detecting concurrent macular disease during DME is difficult and may lead to misinterpretation of retinal thickness. Further studies with a longer follow-up and a larger sample size are needed to confirm our results.

5. Conclusions
Simultaneous aflibercept IVI for treating DME may not interfere with the functional and tomographic parameters of cataract surgery relative to cataract surgery alone. Factors influencing the outcomes of patients with DME undergoing cataract surgery are as follows: age, baseline DR staging, and baseline VA. Identifying these factors of DME preoperatively may be an important consideration in preventing it from progressing and for improving the overall visual prognosis.

Author contributions
Conceptualization: Po-Chen Tseng.
Data curation: Chu-Yu Yen, Feng-Shiang Cheng, Hsiao-Yun Hu, Po-Chen Tseng.
Formal analysis: Chu-Yu Yen, Feng-Shiang Cheng, Hsiao-Yun Hu, Po-Chen Tseng.
Investigation: Chu-Yu Yen, Feng-Shiang Cheng, Hsiao-Yun Hu, Po-Chen Tseng.
Methodology: Chu-Yu Yen, Po-Chen Tseng.
Resources: Feng-Shiang Cheng, Hsiao-Yun Hu, Po-Chen Tseng.
Supervision: Chun-Chen Chen, Ju-Chuan Yen, Po-Chen Tseng, Tsung-Jen Wang, Yen-Jui Chang.
Validation: Chu-Yu Yen, Feng-Shiang Cheng, Hsiao-Yun Hu, Po-Chen Tseng.
Visualization: Po-Chen Tseng.
Writing – original draft: Chu-Yu Yen.
Writing – review & editing: Po-Chen Tseng.

References
[1] Lee R, Wong TY, Sabanayagam C. Epidemicology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis (Lond). 2015;2:17.
[2] Yin L, Zhang D, Ren Q, et al. Prevalence and risk factors of diabetic retinopathy in a Chinese population: a cross-sectional study. Medicine (Baltimore). 2020;99:e19236.
[3] Küchle M, Naumann GO. Studies of the blood-aqueous barrier in diabetes mellitus. Am J Ophthalmol. 1995;119:111–2.
[4] Musat O, Cernaz G, Latib M, et al. Diabetic macular edema. Rom J Ophthalmol. 2015;59:133–6.
[5] Wang L, Chen Z, Wang X. Clinical efficacy and acceptability of panretinal photocoagulation combined with conbercept for patients with proliferative diabetic retinopathy: a protocol for systematic review and meta-analysis. Medicine (Baltimore). 2021;100:e25611.
[6] Hu Y, Shen J, Peng Y. Clinical efficacy of intravitreal aflibercept injection versus vitrectomy with panretinal photocoagulation for patients with proliferative diabetic retinopathy: a protocol for systematic review and meta-analysis. Medicine (Baltimore). 2021;100:e25354.
[7] Romero-Aroca P. Managing diabetic macular edema: the leading cause of diabetes blindness. World J Diabetes. 2012;1:98–104.
[8] Sugimoto M, Ichio A, Nunome T, et al. Two-year result of intravitreal bevacizumab for diabetic macular edema using treat and extend protocol. Medicine (Baltimore). 2017;96:e6406.
[9] Sato S, Shmola H, Nagai N, et al. Predictive factors of better outcomes by monotherapy of an anti-vascular endothelial growth factor drug, ranibizumab, for diabetic macular edema in clinical practice. Medicine (Baltimore). 2017;96:e6459.
[10] Ferguson VM, Spalton DJ. Continued breakdown of the blood aqueous barrier following cataract surgery. Br J Ophthalmol. 1992;76:453–6.
[11] Dowler JG, Sehni KS, Hykin PG, et al. The natural history of macular edema after cataract surgery in diabetes. Ophthalmology. 1999;106:663–8.
[12] Pollack A, Dotan S, Oliver M. Progression of diabetic retinopathy after cataract extraction. Br J Ophthalmol. 1991;75:547–51.
[13] Baker CW, Almukhtar T, Bressler NM, et al; Diabetic Retinopathy Clinical Research Network Authors/Writing Committee. Macular edema after cataract surgery in eyes without preoperative central-involved diabetic macular edema. JAMA Ophthalmol. 2013;131:870–9.
[14] Schmier JK, Covert DW, Hulme-Lowe CK, et al. Treatment costs of cystoid macular edema among patients following cataract surgery. Clin Ophthalmol. 2016;10:477–83.
[15] Bressler SB, Baker CW, Almukhtar T, et al; Diabetic Retinopathy Clinical Research Network Authors/Writing Committee. Pilot study of individuals with diabetic macular edema undergoing cataract surgery. JAMA Ophthalmol. 2014;132:224–6.
[16] Moshfeghi AA, Shapiro H, Lemmon LA, et al. Impact of cataract surgery during treatment with ranibizumab in patients with diabetic macular edema. Ophthalmol Retina. 2018;2:86–90.
[17] Palacio MS, Fretas-Costa P, Beato JN, et al. Safety and effectiveness of cataract surgery with simultaneous intravitreal anti-VEGF in patients with previously treated exudative age-related macular degeneration. Acta Med Port. 2017;30:127–33.
[18] Photocoagulation for diabetic macular edema. Early treatment diabetic retinopathy study report number 1. Early treatment diabetic retinopathy study research group. Arch Ophthalmol. 1985;103:1796–806.
[19] Wilkinson CP, Ferris FL 3rd, Klein RE, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110:1677–82.
[20] Solomon SD, Chew E, Duh EJ, et al. Diabetic retinopathy: a position statement from the American Diabetes Association. Diabetes Care. 2017;40:412–8.
[21] Dowler JG, Hykin PG, Hamilton AM. Phacoemulsification versus extracapsular cataract extraction in patients with diabetes. Ophthalmology. 2000;107:457–62.
[22] Kim SJ, Equi R, Bressler NM. Analysis of macular edema after cataract surgery in patients with diabetes using optical coherence tomography. Ophthalmol. 2007;114:881–9.
[23] Panizzo G, Mura GD, Franzolin E, et al. Early DMO: a predictor of poor outcomes following cataract surgery in diabetic patients. The DICAT-II study. Eye (Lond). 2022;36:1687–3.
[24] Funatsu H, Yamashita H, Noma H, et al. Prediction of macular edema exacerbation after phacoemulsification in patients with nonproliferative diabetic retinopathy. J Cataract Refract Surg. 2002;28:1353.
[25] Homme RP, Singh M, Majumder A, et al. Remodeling of retinal architecture in diabetic retinopathy: disruption of oculomotor and visual functions by inflammatory gene products and pyroptosis. Front Physiol. 2018;9:1268.
[26] Sun JK, Lin MM, Lammer J, et al. Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with center-involved diabetic macular edema. JAMA Ophthalmol. 2014;132:1309–16.
[27] Gonçalves RS, Teixeira C, Coelho P. Recurrent diabetic macular edema: what to do. Case Rep Ophthalmol. 2017;8:465–74.
[28] Dong N, Xu B, Wang B, et al. Aqueous cytokines as predictors of macular edema in patients with diabetes undergoing uncomplicated phacoemulsification cataract surgery. JAMA Ophthalmol. 2011;21:276–81.
[34] Takamura Y, Kubo E, Akagi Y. Analysis of the effect of intravitreal bevacizumab injection on diabetic macular edema after cataract surgery. Ophthalmology. 2009;116:1151–7.

[35] Chen CH, Liu YC, Wu PC. The combination of intravitreal bevacizumab and phacoemulsification surgery in patients with cataract and coexisting diabetic macular edema. J Ocul Pharmacol Ther. 2009;25:83–9.

[36] Chae JB, Joe SG, Yang SJ, et al. Effect of combined cataract surgery and ranibizumab injection in postoperative macular edema in nonproliferative diabetic retinopathy. Retina. 2014;34:149–56.

[37] Cheema RA, Al-Mubarak MM, Amin YM, et al. Role of combined cataract surgery and intravitreal bevacizumab injection in preventing progression of diabetic retinopathy: prospective randomized study. J Cataract Refract Surg. 2009;35:18–25.

[38] Park SJ, Choi Y, Na YM, et al. Intraocular pharmacokinetics of intravitreal aflibercept (Eylea) in a rabbit model. Invest Ophthalmol Vis Sci. 2016;57:2612–7.

[39] Krohne TU, Eter N, Holz FG, et al. Intraocular pharmacokinetics of bevacizumab after a single intravitreal injection in humans. Am J Ophthalmol. 2008;146:508–12.

[40] Krohne TU, Liu Z, Holz FG, et al. Intraocular pharmacokinetics of ranibizumab following a single intravitreal injection in humans. Am J Ophthalmol. 2012;154:682–686.e2.

[41] Campbell M, Humphries P. The blood-retina barrier: tight junctions and barrier modulation. Adv Exp Med Biol. 2012;763:70–84.

[42] Eshaq RS, A aldlati AMZ, Alexander JS, et al. Diabetic retinopathy: breaking the barrier. Pathophysiology. 2017;24:229–41.

[43] Adhi M, Brewer E, Waheed NK, et al. Analysis of morphological features and vascular layers of choroid in diabetic retinopathy using spectral-domain optical coherence tomography. JAMA Ophthalmol. 2013;131:1267–74.

[44] Chou TH, Wu PC, Kuo JC. Relationship of diabetic macular oedema with glycosylated haemoglobin. Eye (Lond). 2009;23:1360–3.