Supplementary Materials

Weight Function Method for Stress Intensity Factors of Semi-Elliptical Surface Cracks on Functionally Graded Plates Subjected to Non-Uniform Stresses

Kun-Pang Kou, Jin-Long Cao, Yang Yang and Chi-Chiu Lam

Nomenclature

Symbol	Description
a	crack depth of a semi-elliptical surface crack
c	half crack length of a semi-elliptical surface crack
D_1, D_2, D_3	weight function coefficients
D_{D1}, D_{D2}, D_{D3}	weight function coefficients for deepest point
D_{S1}, D_{S2}, D_{S3}	weight function coefficients for surface point
D_{P1}, D_{P2}, D_{P3}	weight function coefficients for general point
E	Young’s modulus
E_0, E_1	Young’s modulus of starting face constituent, ending face constituent
E_{tip}	Young’s modulus at the crack tip
E_{up}	modified Young’s modulus at the crack tip
F	boundary correction factors
F_0, F_1	boundary correction factors for reference stress intensity factors K^s_{r1} and K^s_{r2}
h	half height of functionally graded plate
K	stress intensity factor
$K_r(a)$	reference stress intensity factor related to crack length
K^D_{r1}, K^D_{r2}	reference stress intensity factors of deepest point
K^S_{r1}, K^S_{r2}	reference stress intensity factors of surface point
K^p_{r1}, K^p_{r2}	reference stress intensity factors of general point
Q	shape factor for an ellipse
t	thickness of functionally graded plate
w	half width of functionally graded plate
Y_0, Y_1	boundary correction factors for reference stress intensity factors K^D_{r1} and K^D_{r2}
Z_0, Z_1	boundary correction factors for reference stress intensity factors K^D_{r1} and K^D_{r2}
σ_0	nominal or characteristic stress
$\sigma(x)$	local stress distribution normal to the prospective crack face
ν	Poisson’s ratio
ϕ	parametric angle of an elliptical surface crack

1. Detailed Derivation Process and Explanation

1.1 Detailed Explanation of Equation (15) in the Manuscript.
The relationship between the crack opening displacement \(u(x,a) \) and the weight function \(m(x,a) \) was derived by Rice [5], and it is expressed as follows:

\[
m(x,a) = \frac{E_{\text{yp}}}{K_r(a)} \frac{\partial u(x,a)}{\partial x} \quad \text{(S1)}
\]

Thus, the first derivative of the weight function with respect to \(x \) can be written in the following form.

\[
\frac{\partial m(x,a)}{\partial x} = \frac{E_{\text{yp}}}{K_r(a)} \frac{\partial}{\partial x} \left[\frac{\partial u(x,a)}{\partial x} \right] \quad \text{(S2)}
\]

The second derivative of the weight function with respect to \(x \) can be written in the following form.

\[
\frac{\partial^2 m(x,a)}{\partial x^2} = \frac{E_{\text{yp}}}{K_r(a)} \frac{\partial}{\partial x} \left[\frac{\partial^2 u(x,a)}{\partial x^2} \right] \quad \text{(S3)}
\]

The following derivation of the additional condition for a surface crack with depth \(a \) is from the reference [24]. Let us consider displacements \(u \) and \(v \) in the vicinity of the point \((0,0)\). Because the \(x \)-axis is an axis of symmetry, no shear stresses will be acting there.

\[\tau(x,0) = 0 \quad \text{(S4)} \]

Along the free surface of the plate it holds:

\[\tau(0,y) = \sigma_y(0,y) = 0 \quad \text{(S5)} \]

For stresses \(\sigma_x \) and \(\tau \) developable by power series as:

\[
\sigma_x = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{mn} x^m y^n \quad \tau = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} B_{mn} x^m y^n \quad \text{(S6)}
\]

The following equation is obtained according to conditions (S4) and (S5):

\[B_{00} = B_{0y} = A_{0y} = 0 \quad \text{(S7)} \]

The relationship between deflections \(u, v \) and shear distortion \(\gamma \) is:

\[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = \gamma \quad \text{(S8)} \]

The following equation is obtained by taking the derivative of (S8) with respect to \(x \) and using the strain component \(\varepsilon_x = \partial u / \partial x \).

\[
\frac{\partial^2 u}{\partial x^2} = \frac{\partial \gamma}{\partial x} - \frac{\partial^2 v}{\partial x \partial y} - \frac{\partial \gamma}{\partial x} \frac{\partial \varepsilon_x}{\partial y} \quad \text{(S9)}
\]

By using Hooke’s law, we obtain:

\[
\varepsilon_x = \sigma_{\varepsilon_x} + n \sigma_y; \quad \gamma = \tau y / G \quad \text{(S10)}
\]

\[
m = \begin{cases} 1/E & \text{for plane stress} \\ (1-v^2)/E & \text{for plane strain} \end{cases} \quad \text{and} \quad n = \begin{cases} -v/E & \text{for plane stress} \\ -(1+v)/E & \text{for plane strain} \end{cases}
\]
The equilibrium condition gives:

\[\frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau}{\partial x} = 0 \]

(S11)

The following expression is obtained from Equations (S9), (S10) and (S11).

\[\frac{\partial^2 u}{\partial x^2} = \left(\frac{1}{G} + n \right) \frac{\partial \tau}{\partial x} - m \frac{\partial \sigma_y}{\partial y} \]

(S12)

The second derivative of \(u \) at point \((0, 0)\) is as follows:

\[\frac{\partial^2 u}{\partial x^2} \bigg|_{x=0} = \left(\frac{1}{G} + n \right) B_{10} - m A_{10} = 0 \]

(S13)

That is, directly at the surface of the plate, the curvature of the crack contour disappears [24].

Based on Equations (S5), (S6), (S7) and (S12), it can be proved that the curvature of the crack contour at the surface \((x = 0)\) vanishes, as follows.

\[\frac{\partial^2 u(x,a)}{\partial x^2} \bigg|_{x=0} = 0 \]

(S14)

Consequently, the second derivative of the weight function at \(x = 0 \) must also be zero. Thus, in the case of an edge or surface crack, Equation (S3) can be written as follows [6,24]:

\[\frac{\partial^2 m_u(x,a)}{\partial x^2} \bigg|_{x=0} = 0 \]

(S15)

1.2. Detailed Explanation of Equation (17) in the Manuscript.

The explanation of the sentence “Due to the weight function for the surface point of a semi-elliptical surface crack is derived from the weight function for the embedded penny-shape crack, therefore, the weight function in Equation (11) must vanish at \(x=a \) [25]” in the manuscript is as follows.

The closed form weight function for an embedded circular crack (embedded penny-shape crack) is given [25]:

\[m_x(a,x,\theta) = \frac{1}{\pi \sqrt{\pi a}} \sqrt{\frac{(a^2 - x^2)}{a^2 + x^2 - 2ax \cos \theta}} \]

(S16)

Shen et al. [25] derived the weight function for the surface point B of a semi-elliptical surface crack from Equation (S16); it is expressed as follows.

\[m_u(x,a) = \frac{2}{\sqrt{\pi x}} \left\{ 1 - \sqrt{\frac{x}{a}} \right\} = \frac{2}{\sqrt{\pi x}} \left[1 - \left(\frac{x}{a} \right)^{1/2} \right] \]

(S17)

The weight function for the surface point in the manuscript is given by analogy with the equation (21) in reference [25].

\[m_x(x,a) = \frac{2}{\sqrt{\pi x}} \left(\frac{x}{a} \right)^{1/2} \left\{ 1 + D_{51} \left(\frac{x}{a} \right) + D_{52} \left(\frac{x}{a} \right)^2 + D_{53} \left(\frac{x}{a} \right)^3 \right\} \]

(S18)

Since the equation (21) in the reference must satisfy the condition that the weight function is zero at the crack tip \((x = a)\) [25]; therefore, the weight functions in Equations (S17) and (S18) are equal to zero at \(x=a \), leading to:

\[m_x(x,a) \bigg|_{x=a} = 0 \]

(S19)
1.3. Detailed Explanation of Equations (19) and (20) in the Manuscript.

The deepest point \((\phi = \pi/2)\) and surface point \((\phi = 0)\) are special cases of general points [26]. Fett et al. [24] pointed out that for a surface crack with depth \(a\), the curvature of the crack contour at the surface \((x = 0)\) vanishes. That is, the condition that the curvature of the crack contour at \(x = 0\) is zero should be satisfied if the general point infinitely approaches the deepest point \((\phi \rightarrow \pi/2)\).

\[
\frac{\partial^2 u(x, a, \phi)}{\partial x^2} \bigg|_{x=0, \phi \rightarrow \pi/2} = 0
\]

(S20)

Consequently, the second derivative of the weight function of the general point at \(x = 0\) should also be zero.

\[
\frac{\partial^2 m_{p1}(x, a, \phi)}{\partial x^2} \bigg|_{x=0, \phi \rightarrow \pi/2} = 0
\]

(S21)

Finally, we obtain:

\[
\frac{\partial^2 m_{p1}(x, a)}{\partial x^2} \bigg|_{x=0} = 0
\]

(S22)

As explained in the previous derivation, the weight function for the surface point must be zero at the crack tip \((x = a)\) [25]. The condition that the weight function of the surface point is zero at \(x = a\) should be satisfied if the general point is infinitely approaching the surface point \((\phi \rightarrow 0)\).

\[
m_{p2}(x, a, \phi) \bigg|_{x=a, \phi \rightarrow 0} = 0
\]

(S23)

Consequently, the Equation (19) in the manuscript is obtained:

\[
m_{p2}(x, a) \bigg|_{x=a} = 0
\]

(S24)

Notice: For references cited in supplementary materials, please refer to the corresponding references in the manuscript.

2. Detailed Derivation Process of Equations (41), (42), (43) and (44)

\[
\frac{\partial}{\partial x^2} \left[\frac{2}{\pi a \sin \phi} \left[\left(1 - \frac{x}{a \sin \phi} \right)^{\frac{1}{2}} + D_{p1} \left(1 - \frac{x}{a \sin \phi} \right)^{\frac{1}{2}} + D_{p2} \left(1 - \frac{x}{a \sin \phi} \right)^{\frac{1}{2}} \right] \right] \bigg|_{x=0} = 0
\]

\[
= \left[\frac{2}{\pi a \sin \phi} \left(\frac{3}{4} \left(1 - \frac{x}{a \sin \phi} \right)^{\frac{5}{2}} - \frac{1}{4} D_{p1} \left(1 - \frac{x}{a \sin \phi} \right)^{\frac{5}{2}} - \frac{3}{4} D_{p2} \left(1 - \frac{x}{a \sin \phi} \right)^{\frac{5}{2}} \right) \right] \bigg|_{x=0} = 0
\]

\[
\Rightarrow 3 - D_{p1} + 3D_{p2} = 0
\]

(41)
\[
\begin{align*}
&\left\{ \frac{2}{\sqrt{\pi a \sin \phi}} \left[\left(\frac{x}{a \sin \phi} \right)^{\frac{1}{3}} + D_{p3} \left(\frac{x}{a \sin \phi} - 1 \right)^{\frac{1}{3}} + D_{p4} \left(\frac{x}{a \sin \phi} - 1 \right)^{\frac{2}{3}} \right] \right\} \\
&= \frac{2}{\sqrt{\pi a \sin \phi}} \left[\left(\frac{1}{\sin \phi} - 1 \right)^{\frac{1}{3}} + D_{p3} \left(\frac{1}{\sin \phi} - 1 \right)^{\frac{1}{3}} + D_{p4} \left(\frac{1}{\sin \phi} - 1 \right)^{\frac{2}{3}} \right] = 0
\end{align*}
\]

\[
\Rightarrow 1 + D_{p3} \left(\frac{1}{\sin \phi} - 1 \right) + D_{p4} \left(\frac{1}{\sin \phi} - 1 \right)^2 = 0 \tag{42}
\]

\[
K_v^p = \sigma_0 \int_0^{\sin \phi} \left[\frac{2}{\sqrt{\pi a \sin \phi}} \left(1 - \frac{x}{a \sin \phi} \right)^{\frac{1}{3}} + D_{p3} \left(1 - \frac{x}{a \sin \phi} \right)^{\frac{1}{3}} + D_{p4} \left(1 - \frac{x}{a \sin \phi} \right)^{\frac{2}{3}} \right] dx
\]

\[
+ \sigma_0 \int_{\sin \phi}^{\pi} \left[\frac{2}{\sqrt{\pi a \sin \phi}} \left(\frac{x}{a \sin \phi} - 1 \right)^{\frac{1}{3}} + D_{p3} \left(\frac{x}{a \sin \phi} - 1 \right)^{\frac{1}{3}} + D_{p4} \left(\frac{x}{a \sin \phi} - 1 \right)^{\frac{2}{3}} \right] dx
\]

\[
= \sigma_0 \sqrt{\frac{2}{\pi a \sin \phi}} \left[-2a \sin \phi \left(1 - \frac{x}{a \sin \phi} \right)^{\frac{2}{3}} + \frac{2}{3} a \sin \phi D_{p3} \left(1 - \frac{x}{a \sin \phi} \right)^{\frac{1}{3}} \right]_{\sin \phi}^{\pi}
\]

\[
+ \frac{2}{5} a \sin \phi D_{p4} \left(1 - \frac{x}{a \sin \phi} \right)^{\frac{2}{3}} \bigg|_{\sin \phi}
\]

\[
= \sigma_0 \sqrt{\frac{2}{\pi a \sin \phi}} \left[2a \sin \phi + \frac{2}{3} a \sin \phi D_{p3} + \frac{2}{5} a \sin \phi D_{p4} \right]
\]

\[
+ \sigma_0 \sqrt{\frac{2}{\pi a \sin \phi}} \left[2a \sin \phi \left(\frac{1}{\sin \phi} - 1 \right)^{\frac{1}{3}} + \frac{2}{3} a \sin \phi D_{p3} \left(\frac{1}{\sin \phi} - 1 \right)^{\frac{2}{3}} \right]
\]

\[
+ \frac{2}{5} a \sin \phi D_{p4} \left(\frac{1}{\sin \phi} - 1 \right)^{\frac{2}{3}} = \sigma_0 \sqrt{\frac{\pi a}{Q}} Z_0
\]

\[
\Rightarrow \left[1 + \frac{1}{3} D_{p3} + \frac{1}{5} D_{p4} \right] + \left[\left(\frac{1}{\sin \phi} - 1 \right)^{\frac{1}{3}} + \frac{1}{3} D_{p3} \left(\frac{1}{\sin \phi} - 1 \right)^{\frac{2}{3}} + \frac{1}{5} D_{p4} \left(\frac{1}{\sin \phi} - 1 \right)^{\frac{2}{3}} \right] = \pi \sqrt{\frac{1}{8Q \sin \phi} Z_0 = \frac{1}{Q \sin \phi} V_0} \tag{43}
\]
\[K_{2r}^{a} = \int_{0}^{\sin \phi} \sigma_{i} \left(1 - \frac{x}{a} \right) \left\{ \frac{2}{\pi a \sin \phi} \left(1 - \frac{x}{a \sin \phi} \right)^{\frac{3}{2}} + D_{p_{1}} \left(1 - \frac{x}{a \sin \phi} \right)^{\frac{1}{2}} + D_{p_{2}} \left(1 - \frac{x}{a \sin \phi} \right)^{\frac{3}{2}} \right\} \, dx \]

\[+ \int_{0}^{\sin \phi} \sigma_{i} \left(1 - \frac{x}{a} \right) \left\{ \frac{2}{\pi a \sin \phi} \left(\frac{x}{a \sin \phi} - 1 \right)^{\frac{1}{2}} + D_{p_{3}} \left(\frac{x}{a \sin \phi} - 1 \right)^{\frac{1}{2}} + D_{p_{4}} \left(\frac{x}{a \sin \phi} - 1 \right)^{\frac{3}{2}} \right\} \, dx \]

\[= \sigma_{i} \left(1 - \frac{x}{a} \right) \left\{ \frac{2}{\pi a \sin \phi} \left[2 \sin \phi \left(1 - \frac{x}{a \sin \phi} \right)^{\frac{3}{2}} - \frac{2}{3} a \sin \phi D_{p_{1}} \left(1 - \frac{x}{a \sin \phi} \right)^{\frac{3}{2}} \right] \right\} \left[\sin \phi \right]_{0}^{\sin \phi} \]

\[+ \frac{\sigma_{i}}{a} \int_{0}^{\sin \phi} \left\{ \frac{2}{\pi a \sin \phi} \left[-2 \sin \phi \left(1 - \frac{x}{a \sin \phi} \right)^{\frac{3}{2}} - \frac{2}{3} a \sin \phi D_{p_{1}} \left(1 - \frac{x}{a \sin \phi} \right)^{\frac{3}{2}} \right] \right\} \, dx \]

\[= \sigma_{i} \sqrt{\frac{2}{\pi a \sin \phi}} \left[2 \sin \phi + \frac{2}{3} a \sin \phi D_{p_{1}} + \frac{2}{5} a \sin \phi D_{p_{2}} \right] \]

\[- \frac{\sigma_{i}}{a} \sqrt{\frac{2}{\pi a \sin \phi}} \left[\frac{4}{3} a^{2} \sin^{2} \phi + \frac{4}{15} a^{2} \sin^{2} \phi D_{p_{1}} + \frac{4}{35} a^{2} \sin^{2} \phi D_{p_{2}} \right] \]

\[= a \sigma_{i} \sqrt{\frac{2}{\pi a \sin \phi}} \left[2 \sin \phi + \frac{2}{3} \sin \phi D_{p_{1}} + \frac{2}{5} \sin \phi D_{p_{2}} \right] \]

\[- a \sigma_{i} \sqrt{\frac{2}{\pi a \sin \phi}} \left[\frac{4}{3} \sin^{2} \phi + \frac{4}{15} \sin^{2} \phi D_{p_{1}} + \frac{4}{35} \sin^{2} \phi D_{p_{2}} \right] \]

\[\theta \phi \rho \]
\[\int_{a \sin \phi}^{b} \sigma_0 \left(1 - \frac{x}{a} \right) \sqrt{\frac{2}{\pi a \sin \phi}} \left[\left(\frac{x}{a \sin \phi} - 1 \right)^{\frac{1}{2}} + D_{p_1} \left(\frac{x}{a \sin \phi} - 1 \right)^{\frac{1}{2}} + D_{p_2} \left(\frac{x}{a \sin \phi} - 1 \right)^{\frac{1}{2}} \right] \, dx \]

\[= \sigma_0 \left(1 - \frac{x}{a} \right) \sqrt{\frac{2}{\pi a \sin \phi}} \left[2a \sin \phi \left(\frac{x}{a \sin \phi} - 1 \right)^{\frac{1}{2}} + \frac{2}{3} a \sin \phi D_{p_1} \left(\frac{x}{a \sin \phi} - 1 \right)^{\frac{1}{2}} \right] \bigg|_{a \sin \phi}^{b} \]

\[+ \sigma_0 \left(1 - \frac{x}{a} \right) \sqrt{\frac{2}{\pi a \sin \phi}} \left[2a \sin \phi \left(\frac{x}{a \sin \phi} - 1 \right)^{\frac{1}{2}} + \frac{2}{3} a \sin \phi D_{p_2} \left(\frac{x}{a \sin \phi} - 1 \right)^{\frac{1}{2}} \right] \bigg|_{a \sin \phi}^{b} \]

\[= a \sigma_0 \sqrt{\frac{2}{\pi a \sin \phi}} \left[\frac{4}{3} \sin^2 \phi \left(\frac{x}{a \sin \phi} - 1 \right)^{\frac{3}{2}} + \frac{4}{15} \sin^2 \phi D_{p_1} \left(\frac{x}{a \sin \phi} - 1 \right)^{\frac{3}{2}} \right] \bigg|_{a \sin \phi}^{b} \]

\[+ \frac{4}{35} \sin^2 \phi D_{p_2} \left(\frac{x}{a \sin \phi} - 1 \right)^{\frac{7}{2}} \bigg|_{a \sin \phi}^{b} \]

\[\Rightarrow \left[1 + \frac{1}{3} D_{p_1} + \frac{1}{5} D_{p_2} \right] - \left[\frac{2}{3} \sin \phi + \frac{2}{15} \sin \phi D_{p_1} + \frac{2}{35} \sin \phi D_{p_2} \right] \]

\[+ \left[\frac{2}{3} \sin \phi \left(\frac{1}{\sin \phi} - 1 \right)^{\frac{3}{2}} + \frac{2}{15} \sin \phi D_{p_1} \left(\frac{1}{\sin \phi} - 1 \right)^{\frac{3}{2}} + \frac{2}{35} \sin \phi D_{p_2} \left(\frac{1}{\sin \phi} - 1 \right)^{\frac{7}{2}} \right] \]

\[= \pi \sqrt{\frac{1}{8Q \sin \phi}} Z = \sqrt{\frac{1}{Q \sin \phi}} V' \quad (44) \]

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).