Point-of-care testing technologies for the home in chronic kidney disease: a narrative review

Richard Bodington 1, Xenophon Kassianides 2 and Sunil Bhandari 2

1Sheffield Kidney Institute, Northern General Hospital, Sheffield, UK and 2Department of Renal Research, Hull Royal Infirmary, Hull, UK

Correspondence to: Richard Bodington; E-mail: r.bodington@nhs.net

ABSTRACT

Point-of-care testing (POCT) performed by the patient at home, paired with eHealth technologies, offers a wealth of opportunities to develop individualized, empowering clinical pathways. The non-dialysis-dependent chronic kidney disease (CKD) patient who is at risk of or may already be suffering from a number of the associated complications of CKD represents an ideal patient group for the development of such initiatives. The current coronavirus disease 2019 pandemic and drive towards shielding vulnerable individuals have further highlighted the need for home testing pathways. In this narrative review we outline the evidence supporting remote patient management and the various technologies in use in the POCT setting. We then review the devices currently available for use in the home by patients in five key areas of renal medicine: anaemia, biochemical, blood pressure (BP), anticoagulation and diabetes monitoring. Currently there are few devices and little evidence to support the use of home POCT in CKD. While home testing in BP, anticoagulation and diabetes monitoring is relatively well developed, the fields of anaemia and biochemical POCT are still in their infancy. However, patients’ attitudes towards eHealth and home POCT are consistently positive and physicians also find this care highly acceptable. The regulatory and translational challenges involved in the development of new home-based care pathways are significant. Pragmatic and adaptable trials of a hybrid effectiveness–implementation design, as well as continued technological POCT device advancement, are required to deliver these innovative new pathways that our patients desire and deserve.

Keywords: chronic kidney disease, delivery of healthcare, eHealth, home-based care, point-of-care systems, point-of-care testing

INTRODUCTION

Point-of-care testing (POCT) in healthcare refers to the analysis of patient samples beside or close to the patient. POCT can be used in three settings: by a healthcare professional (HCP) in a healthcare setting, by an HCP in the patient’s home or by the patient in their own home. The reason for POCT in the former two settings is to reduce the time between test and decision (primarily in emergency/acute medicine, the time from admission to a decision on disposition) [1]. To this end, POCT has been shown to be effective, at least in the emergency department and ambulatory care clinic [1]. However, improvements in healthcare processes do not reliably translate into meaningful changes for patients; the effects of introducing POCT to a clinical process can be complex and are often not properly evaluated subsequently [2].

The outcome focus when POCT is used at home by the patient is different. The National Health Service (NHS) England makes it clear in their ‘long-term plan’ that health innovation...
and development of new models of care must be accelerated to give patients greater control over their care [3, 4]. There is increasing acknowledgement of patients as ‘experts by experience’, allowing them a role in the management of their conditions is likely to lead to better concordance and improve health outcomes. POCT performed by the patient at home offers a wealth of opportunities to develop individualized, empowering clinical pathways. The non-dialysis-dependent chronic kidney disease (NDD-CKD) patient who is at risk of or may already be suffering from a number of associated complications of CKD represents an ideal patient group for the development of such initiatives. Renal medicine physicians have a track record of early adoption of such technologies, as exemplified by widespread use of the ‘PatientView’ web portal [5].

Remote patient management presents a potential opportunity in renal medicine to improve clinical outcomes and patient quality of life (QoL) while boosting patient engagement with their disease management [6]. This has been demonstrated in studies in peritoneal dialysis (PD) and home haemodialysis (HD); patients on these programmes report improved satisfaction and comfort, with the suggestion of improved outcomes in terms of treatment concordance and access dysfunction [7–9]. The recent coronavirus disease 2019 (COVID-19) pandemic has made such programmes highly topical, with efforts made to limit travel and hospital visits by integrating home management into existing healthcare programmes [10, 11]. In order for improved home-based healthcare to be delivered, interplay between telehealth solutions and POCT needs to exist. eHealth, where healthcare provision and related processes take place through the cost-effective and secure use of information and communication technologies (ICTs), consists of the electronic patient record (EPR), telemedicine, mobile health applications (mHealth) and associated POCT devices [12]. The World Health Organization (WHO) has previously set the development of eHealth solutions among its top priorities [12].

eHealth solutions have been shown to be attractive to patients; a randomised controlled trial (RCT) of 601 patients receiving care at home through the LifeView (AmericanTeleCare) system, making use of devices such as blood pressure (BP) monitors and glucometers, demonstrated high acceptance and engagement with the intervention (91% completion of 1-year follow-up) [13]. The eHealth-based TAKE-IT trial, involving 189 adolescent and young adult kidney transplant patients, utilizing eHealth to deliver coaching, problem-solving skill sessions and reminders, led to a significant improvement in medication adherence in these patients [14]. A Cochrane review and meta-analysis including 43 studies (RCTs and quasi-RCTs, N = 6617) found that eHealth can aid in dietary sodium intake and fluid management [15]. Similarly, the use of mHealth in HD patients was recently systematically reviewed (22 studies: 4 RCTs, 16 cohort studies and 2 mixed methods studies), highlighting potential positive outcomes with regards to QoL, patient satisfaction and user acceptance with possible cost-saving implications. However, as in the Cochrane review, the authors emphasized the absence of evidence with regards to cost-effectiveness and safety [16].

Such results underline the benefit of remote patient monitoring and the rationale behind the movement towards chronic disease home-based management. The majority of eHealth technology already exists and could be readily applied to the care of patients; the exception is the POCT technologies themselves [12]. POCT devices can be incorporated into eHealth solutions, and patients managing their conditions with a POCT device have greater motivation to be involved in the management of their condition and greater confidence in their doctors. Additionally, in the field of diabetes, significant improvement in clinical outcomes such as glycaemic control has been demonstrated by patients who use a home POCT device [2]. However, devices and their associated pathways need to demonstrate accuracy, validity and non-inferiority to traditional care [2]. eHealth and home POCT introduce a number of potential safety concerns over traditional care, such as data security and patient and staff training; extreme care should be taken when any eHealth and POCT intervention is used in place of traditional care without full validation [17]. Consequently, the WHO has issued their ASSURED guidance to aid in the development of POCT devices and their pathways (Table 1) [18].

POCT, as with laboratory testing, is subject to several international standards to ensure quality. It is paramount that quality assurance is maintained alongside efficient record keeping and results interpretation [19]. Continuous and ideally bidirectional flow of data between potentially hundreds of POCT devices, the laboratory information system and the EPR should be engineered to make this possible [19, 20]. A number of programmes, such as POCcelerator (Siemens Healthineers, Erlangen, Germany) and RALS Web 3 (Alere Informatics, Charlottesville, VA, USA), have been designed to fulfil these roles of data collection and review, internal quality control (IQC), external quality assurance (EQA) and, via intelligent dashboards, data-driven decision making. Systems can be further enhanced through the use of ‘machine learning’ and programmable alerts, as currently seen in the analysis of implantable loop recorders in cardiology [21]. The vast amount of data analysed by such systems, assessing the regular testing of hundreds of patients, presents an ideal opportunity for the discovery of new insights via the use of machine learning/artificial intelligence [22]. However, ICT alone is inadequate to ensure the quality of such pathways. Appropriately trained staff need to be vigilant in reviewing results and communicating concerns regarding device and patient factors, while ensuring sufficient patient training on the use of their devices. Hence the work involved in the implementation of a new POCT pathway can appear monumental and involves a transformation of diagnostic services and care provision [23]. The UK Medicines and Healthcare Products Regulatory Agency has recently published guidance on the implementation of POCT solutions [24]. Advice includes the creation of a specialist POCT committee composed of laboratory staff, clinicians, specialist nurses, nursing staff, information technology specialists, pharmacists and finance specialists responsible for the overall service, IQC and EQA. Identifying all stakeholders early in the implementation of a POCT pathway will allow topics such as record keeping, accreditation and maintenance to be addressed while troubleshooting logistic and equipment problems [24]. Integration of POCT pathways into existing systems is often expensive and difficult and

| Table 1. WHO ASSURED criteria for evaluating POCT devices in resource limited environments |
|-----------------|-----------------|-----------------|
| **Affordable** | **Sensitive** | **Specific** |
| **User-friendly**| **Rapid and robust** | **Equipment-free** |
| **Deliverable to end users** | | |

Adapted from Kosack et al., 2015 [48]
many initiatives suffer from a lack of dedicated support [19]. Without specialist support, POCT pathways lack quality control, become isolated and are liable to become unsafe and ineffective [19].

Thousands of POCT devices have been developed in academic labs, but only a minority are able to analyse untreated samples and involve processes that make them suitable for home use [12]. A small percentage of these devices have been commercialized and only a few of these have been successfully evaluated and integrated into clinical practice [12]. Devices that are suitable and licensed for home monitoring make up an even smaller proportion [12]. Additionally, large healthcare organizations are slow to change routine clinical practice and care pathways must be optimized to gain the maximum benefit from a POCT device [2]. Despite this, the global POCT market is worth >US$28 billion, with an estimated 5-year compound growth rate of ~9% [18].

Home POCT has been integral to diabetes care for years and other fields, namely that of anticoagulation, have established the use of home testing pathways [25]. CKD is a common and long-term condition with high associated healthcare costs. Innovative pathways including home POCT have the potential to improve patients’ health status and allow them to understand and take greater control of their health [26]. The POCT devices themselves are the weak link in the development of such pathways and their review in the field of renal medicine has been neglected. This article outlines the technologies present for POCT at home and reviews the currently available devices relevant to renal medicine and the evidence supporting their use.

OUTLINE OF POCT TECHNOLOGIES

A great amount has been written about the design and function of the multitude of POCT devices that have been developed; these have been the subject of numerous detailed reviews and are beyond the scope of this article [2, 12, 27]. Table 2 briefly summarizes the technologies used in POCT to add context to the later discussion [25, 28–35].

CLINICAL APPLICATIONS

A number of the markers of interest in CKD are challenging to measure via POCT; for example, the complexity of creatinine’s specimen matrix makes it prone to many confounders and the haemolysis associated with finger-pricking makes potassium measurement almost impossible via this method [36]. Additionally, CKD poses a number of additional challenges to the developers of POCT devices over and above those experienced in the general population. Fluctuations in volume status, the developers of POCT devices over and above those experienced in the general population. Fluctuations in volume status, the degree of correlation with the LH750 (r = 0.99), with a coefficient of variation (CV) of 7.1% (unpublished data, Entia) (Table 3). The device has been used successfully in the iron-deficiency anaemia population and currently Luma is undergoing deployment at a number of NHS trusts to assess the utility of the device in the ESA-prescribed NDD-CKD population, with studies yet to report. The fact that this device is the only haematology POCT device on the market for home use makes it a promising candidate for wider use within healthcare services once service evaluations are complete. The company is also developing a similar device for monitoring the full blood count (FBC) aimed at the oncology market.

Hemocue (Radiometer Medical, Copenhagen, Denmark) has been making Hb monitoring devices for ~35 years. The HemoCue Hb 801 System represents their most recent device iteration. The device measures 143 × 87 × 45 mm and weighs ~250 g. The device measures Hb concentration by absorptiometry in <1 s in 10 µL of capillary blood. Earlier iterations of the HemoCue Hb System have shown good correlation with central laboratory testing and have subsequently been considered suitable for monitoring Hb levels in selected patient groups, such as obstetric and paediatric surgery patients, in the professional setting [47, 74] (Table 3). The authors are unaware of any use of this device by patients. However, the HemoCue WBC DIFF System, a similar if slightly larger and prohibitively expensive device (~£4000) using macroscopically similar microcuvettes, has been used by patients in their own homes [25, 45]. In a trial of 14 breast cancer patients undergoing chemotherapy, 42 HemoCue results were compared with lab measurements within 3 h [45]. The mean difference (MD) between methods for white cell count (WCC) was 0.36 × 10^3/L [standard deviation (SD)]
Table 2. A summary of the various technologies employed in POCT

Technology	Technical summary	Advantages	Disadvantages	Application examples
Dipsticks	Paper-backed device supporting one or several porous reagent pads; reflectance technology gives a colour change allowing qualitative/semi-quantitative estimation of the analyte. Analyte applied directly to pad (cf. LFA). Can be paired with automated dipstick readers allowing more objective measure of analyte presence and a level of quantification. Readers vary from bench-top devices (negate some of the simplicity and economy of dipstick testing), to colorimetric smartphone-based detector apps (hold greater opportunities in terms of home use and ease of deployment) \[25, 26\]	Simple in design, use and manufacture; therefore, cheap and well suited to use in resource-limited settings \[18\]. Portable and easily disposable. Can detect >10 analytes simultaneously	Subjective nature of reagent colour change prone to interpretation error. Multi-reagent strips can be misread due to misalignment with the key. Excessively dilute or concentrated urine may lead to errors in interpretation	Siemens Multistix (10 parameter urinalysis) Bayer Ketostix (single parameter ketone urinalysis)
LFA	Composed of a number of abutted pads mounted on backing card. Sample applied to sample pad and drawn by capillary action through several pads and into contact with reagents and a label to produce a visible marker of detection. Most read after 5–15 min; display a control line (as proof of assay validity) and one or more test lines allowing qualitative or semi-quantitative estimation of analyte/s. Multiplexing possible by the use of multiple test strips or multiple test lines on the same strip. Colorimetric, fluorescent, electrochemical or enzymatic detection systems designed \[26\]. Can be read by eye or via a reader tool which may improve accuracy of quantification \[18\]	As per dipsticks can be multiplexed to detect >10 analytes simultaneously. Simple, portable, easily disposable and low cost	Label in LFA should be detectable over a large and clinically useful range, have low nonspecific binding, be stable in storage, low-cost and be easily conjugated with its biological compound without losing activity \[18\]. Sensitivity an issue	Clearblue pregnancy test (urine human chorionic gonadotropin) SD Biosensor Lateral Flow Test (saliva severe acute respiratory syndrome coronavirus 2)
Paper-based analytical devices (μPAD)	Microfluidic channels are created by printing hydrophobic or hydrophilic material onto paper. Screen printing is widely used. A μPAD made from a few stacked layers of patterned paper is able to	Paper’s 3D fibrous structure facilitates pump-free wicking, and is fluid permeable so allows creation of multi-layered devices with vertical as well as horizontal flow \[12\].	As with LFA sensitivity an issue, a problem particularly predominant in microbiological assays. Enzyme-, silver- or gold-based amplification schemes can be used to increase the	Beginning to transition from research to commercial applications: no devices in widespread commercial use PTS Diagnostics CardioChek Home Use Analyser (serum POCT at home in CKD: a review
Technology	Technical summary	Advantages	Disadvantages	Application examples
-----------------------------	---	--	---	---
Paper can act as a microcuvette for the storage of reagents and can be machined, by printing or other methods, in similar ways to silicone for a fraction of the cost [23]. Screen printing technique and is inexpensive and readily reproducible [18]				
Can be paired with electro-chemical or potentiostat readers. These can be bought for USD $90 and provide high sensitivity for the reading of multiplexed µPADs [26]				
Innovation continually reducing the price and need for user input into such devices. Potentially able to overcome some of the limitations of LFA and µPAD		Components formally expensive, challenging to miniaturize and required additional user steps (thereby reducing usability and introducing error)	Abbott Point of Care iSTAT (multi-cassette device allowing analysis of various serum parameters, e.g. creatinine)	
Does not rely on the use of appropriate labels. Able to perform high-quality analyses not currently possible in other devices (e.g. five-part FBC differentiation and quantification)				
Limited by the ability of the reagents to be stored effectively within the cell and also by the need for electricity, increasing complexity and expense				Radiometer Medical HemoCue WBC DIFF (serum FBC and five-part differential)
With the exception of wearable glucose meters, wearable POCT devices remain in the early stages of development, interest primarily focussed on military and sports science applications. Abbott Diabetes Care Freestyle Libre (interstitial fluid glucose)				
1.01, correlation \(r \) 0.86, limits of agreement (LOA) \(-1.61 \times 10^3/\) L–2.34 \(\times 10^3/\) L (7.1% of measurement pairs outside of the LOA). The LOA was wider than is considered clinically acceptable and the device was not considered suitable for use at home.

In another oncology study, 60 outpatients and 22 inpatients on active treatment were asked to test themselves using the same device, this time in the hospital only, with results compared with lab FBCs. Fifty-seven percent of the patients were able to conduct a self-test on this machine after a single demonstration with no further help needed; after follow-up guidance, 96% were judged able to test in their own homes. Ninety percent of the patients were successful in filling and placing the cuvette on their first try, with no difference in success observed between younger and older individuals. All results were within the predefined acceptable range of \(\pm 1 \times 10^9/\) L for WCC.

Table 2. (continued)

Technology	Technical summary	Advantages	Disadvantages	Application examples
Smartphone-based	Smartphones contain processing, data acquisition, display and transmitting technologies that can integrate with and supplement home POCT devices; apps may allow the smartphone to act as a POCT device alone. There are three levels of smartphone involvement with POCT: 1. Self-contained POC devices receive, process and analyse a sample, the smartphone then acts to receive, store and send the data produced [29] 2. Use of hardware that supplements the abilities of a smartphone. E.g. an optics system that illuminates a test strip with the smartphone acting as sensor (via the camera) and analyser [29] 3. Use of systems and sensors available on the smartphone alone; the phone becomes the POC device	Increasing smartphone integration has benefits in terms of ease of deployment, use and low cost [13]. The ICT in smartphones is robust and well developed. May allow better integration into user’s life	Concerns regarding data security. Issues of integration with varying smartphone models	HemaApp (application estimates Hb via the phone’s flash, infra-red emitter and camera alone) Holomic rapid diagnostics reader (HRDR-200) (opto-mechanical attachment and smartphone app that allows the phone to act as a LFA reader)

LFA, lateral flow assay.
Table 3. Summary of key devices licensed or suitable for home use in anaemia management, biochemical analysis and anticoagulation monitoring with selected devices for hypertension and diabetes care.

Device	Design (test)	Analytical performance	Approved for home use (evidence supporting home use)
Anaemia management			
Entia Luma	Centrifugation and photometric detection with reagent-free cuvette (Hb)	Unpublished data, Entia (2020): Precision analysis using fixed control blood (103 repeats) at low (Hb 75 g/L), normal (Hb 125 g/L), high (Hb 175 g/L) Hb values: CV 5.2, 3.1, 2.6, respectively. Paired capillary and venous blood samples (n = 376) Luma versus lab-based Hb measurement (Beckman Coulter LH750) showed high correlation between devices (r = 0.99, CV 7.1%)	Yes (Unpublished data: Service evaluations currently on going in three NHS trusts with CKD patients)
EKF Diagnostics HemoControl	Photometric azide methemoglobin method (Hb and estimated Hct)	Singh et al. (2015) [41]: In detecting Hb <125 g/L in 485 prospective blood donors: Sensitivity 98.1%, intra-class correlation 0.78, CV 2.2%, Max. tolerance 3 g/L at 150 g/L.	No (No)
DiaSpect	Photometric detection with reagent free cuvettes (Hb)	Singh (2015) [41]: In detecting Hb <125 g/L in 485 prospective blood donors: Sensitivity 98.1%, intra-class correlation 0.78, CV 2.19%	No (No)
Hemocue Hemocue WBC DIFF	RBC lysed and WBC nuclei stained, sample imaged. Concentration calculations via automated image recognition technology (total WBC, neutrophils, lymphocytes, eosinophils, basophils, monocytes)	Bui (2016) [42]: n = 60; WBC DIFF versus lab Cell-Dyn Sapphire; r > 0.95 for leucocyte, neutrophil and lymphocyte counts. r = 0.772 leucocytes, 0.817 neutrophils and 0.798 lymphocytes. Intra-assay reproducibility was insufficient for lymphocytes Karawajczyk (2017) [43]: n = 158; WBC DIFF versus lab Cell Dyn Sapphire, median CV 2.22% WCC, 2.44% neutrophils, 8.56% lymphocytes and 15.2% monocytes. Deviation >15% between methods in 9% WCC, 28.7% neutrophil counts and 48% lymphocyte counts. Utility is limited to WCC and neutrophil counts only. Dunwoodie (2018) [44]: The imprecision (SD) values between the duplicate samples for neutrophils were 0.18 in the low range (<2 x 10^9/L, n = 54), 0.43 in the normal range and 0.56 in the high range (>7 x 10^9/L, n = 47). Lymphocyte counts are less well correlated but still clinically acceptable	No (Yes, Lohman et al. (2018) [45]: n = 14, WBC DIFF versus lab: MD WCC 0.36 x 10^9/L, SD: 1.01, r = 0.86, 7.1% of measurement pairs outside LOA. LOA outside those considered acceptable for clinical use at home. Otto Mattsson et al. (2020) [25]: n = 82; All results recorded as a result of self-testing were within pre-defined acceptable range. Fifty-seven percentage able to conduct a test after single demonstration, 96% judged able to test in own homes. Dunwoodie (2018) [44]: n = 50; high correlation between measurement pairs (HCP test versus patient test, R^2 = 0.921, P < 0.001)]
HemoCue Hb System	Absorptiometry (Hb)	Back (2004) [46]: n = 497. Imprecision from duplicate	No (No)
Device	Design (test)	Analytical performance	Approved for home use (evidence supporting home use)
--------	--------------	------------------------	--
Biochemical analysis Nova biomedical StatSensor and StatSensor Xpress Creatinine	Amperometry [creatinine and calculation of eGFR (StatSensor only)]	Samples 0.5–1.1%. Correlation against the ICSH reference method >0.99, with mean bias of 0.10 g/dL. Imprecision calculated from duplicate samples on the Hemocue Hb system was 0.75%. Akhtar et al. (2008) [47]: n = 540: For detection of Hb <125 g/L sensitivity 94.1%, specificity 95.2%, versus ICSH reference method r = 0.99. Other studies have reported sensitivity 56–94.7%; specificity 80.1–100% for capillary blood	No (No)
Hemocue Hemocue Albumin 201	Photometry via immunoturbidometric reaction (urinary albumin)	Heerspink (2008) [50]: n = 259: Hemocue Albumin 201 versus laboratory technique: no sig. difference between the median urinary albumin concentration in the first morning void (P = 0.082), intra-individual variability in patients excreting >30 mg/day (P = 0.459) and the prediction of microalbuminuria in 24-h collections (P = 0.103) between the two methods	No (No)
Sarafidis (2008) [51]: n = 165; diagnosis of microalbuminuria using laboratory urinary albumin excretion as reference (Hemocue versus conventional dipsticks versus laboratory ACR). Sensitivity and specificity 92% and 98%			
Device	Design (test)	Analytical performance	Approved for home use (evidence supporting home use)
---	--------------------------------------	--	---
Anticoagulation monitoring			
Roche Diagnostics	Amperometry (prothrombin time and INR)	Hospitals: 98-paired INR results; 93.5% CoaguChek XS results within 0.5 of laboratory INR. CV < 5%. Bereznicki (2006) [53]; Community setting: 59-paired results; high correlation between methods ($r = 0.91$). About 94.6% of results within 15% of the lab value. No INR results varied by >20% or >0.5 from lab values. McCahon et al. (2018) [57]: Xprecia Stride versus laboratory versus CoaguChek INR results ($n = 102$ laboratory, 205 parallel coagulometer tests) showed good correlation: Xprecia Stride versus laboratory $r = 0.83$, Xprecia Stride versus CoaguChek $r = 0.92$. CV < 5%. Piacenza et al. (2017) [58]: $n = 163$ compared Xprecia Stride versus laboratory; high precision with a CV < 3%. Analytical accuracy within acceptable range (Lin’s concordance $= 0.962$). Results tally with Siemens’ in house testing.	Yes: Many studies including: McCahon (2007) [54]: TTR: PSM 70% versus controls 64%. 45% patients performing IQC, 82% performing EQA on a regular basis. da Silva Saraiva (2016) [55]: $n = 31$, no sig. change in QoL throughout course of use as assessed using DASS score. Chapman (1999) [56]: $n = 45$, usability was high (error messages 6.3%)
Siemens Healthcare Diagnostics	Amperometry (prothrombin time and INR)	McCahon et al. (2018) [57]: Xprecia Stride versus laboratory versus CoaguChek INR results ($n = 102$ laboratory, 205 parallel coagulometer tests) showed good correlation: Xprecia Stride versus laboratory $r = 0.83$, Xprecia Stride versus CoaguChek $r = 0.92$. CV < 5%. Piacenza et al. (2017) [58]: $n = 163$ compared Xprecia Stride versus laboratory; high precision with a CV < 3%. Analytical accuracy within acceptable range (Lin’s concordance $= 0.962$). Results tally with Siemens’ in house testing.	No: (No)
Hypertension		Needs regular calibration against a standard oscillometric device. Nair (2008) [59]: $n = 89$, BPro versus MC3000 standard oscillometric device, sitting standing and lying, readings within ±5 (SD < 8) mmHg. Komori (2013) [60]: $n = 15$ BPro versus standard ABPM device; values in arms-raised position higher in BPro (SBP: 129 ± 14 versus 108 ± 14 mmHg, $P < 0.01$; DBP: 83 ± 13 versus 64 ± 11 mmHg, $P < 0.01$). No sig. difference in other arm positions. Harju (2018) [61]: $n = 28$, BPro versus arterial line post-operatively; BPro inaccurate, Bland–Altman plot 19.8 ± 16.7 mmHg, LOA – 20.1–59.6 mmHg, Spearman’s $r = 0.61$. Movement sig. increased failure rate ($P < 0.001$)	Yes: AAMI and ESH validated. [Yes: Komori (2013) [60]: $n = 50$, BPro versus standard ABPM device, no sig. difference in awake mean DBP or sleep mean SBP, however, sig. difference in awake mean SBP and mean sleep DBP (BPro 122 ± 13 versus standard 127 ± 11 mmHg, $P < 0.01$ and BPro 71 ± 8 versus standard 64 ± 8 mmHg, $P < 0.01$, respectively). Correlation between devices: 0.54 for 24-h SBP and 0.52 for awake SBP; moderate agreement, considered acceptable for ABPM use]
HealthSTATS International	Non-inflating cuff; modified applanation tonometry (BP, pulse)	Needs regular calibration against a standard oscillometric device. Nair (2008) [59]: $n = 89$, BPro versus MC3000 standard oscillometric device, sitting standing and lying, readings within ±5 (SD < 8) mmHg. Komori (2013) [60]: $n = 15$ BPro versus standard ABPM device; values in arms-raised position higher in BPro (SBP: 129 ± 14 versus 108 ± 14 mmHg, $P < 0.01$; DBP: 83 ± 13 versus 64 ± 11 mmHg, $P < 0.01$). No sig. difference in other arm positions. Harju (2018) [61]: $n = 28$, BPro versus arterial line post-operatively; BPro inaccurate, Bland–Altman plot 19.8 ± 16.7 mmHg, LOA – 20.1–59.6 mmHg, Spearman’s $r = 0.61$. Movement sig. increased failure rate ($P < 0.001$)	Yes: AAMI and ESH validated. [Yes: Komori (2013) [60]: $n = 50$, BPro versus standard ABPM device, no sig. difference in awake mean DBP or sleep mean SBP, however, sig. difference in awake mean SBP and mean sleep DBP (BPro 122 ± 13 versus standard 127 ± 11 mmHg, $P < 0.01$ and BPro 71 ± 8 versus standard 64 ± 8 mmHg, $P < 0.01$, respectively). Correlation between devices: 0.54 for 24-h SBP and 0.52 for awake SBP; moderate agreement, considered acceptable for ABPM use]
Maisense	Cuff-less; calculation of pulse transit time via embedded electrodes and force sensor (BP, pulse)	Needs regular calibration against a standard oscillometric device. Boubouchairepoulou (2017) [64]: $n = 85$, Freescan versus mercury sphygmomanometer, MD in paired	No: AAMI validated in the non-ambulatory setting (No)
P < 0.001), but 18% of patients were unable to achieve a result with the device, most commonly due to air in the cuvette [44] (Table 3). It is important to specify that although the cuvettes and sampling techniques are superficially similar, it cannot be assumed that the results for this device can be applied to the HemoCue Hb systems or are applicable to CKD patients. No device is authorized for home use.

While a number of other devices for professional use are small and simple enough for potential use at home, such as DiaSpect (EKF Diagnostics, Cardiff, UK), none have been evaluated for patient use (Table 3) [44]. Furthermore, even for the Luma and WBC DIFF devices, the integration of home POCT haematology devices into clinical care has yet to be demonstrated and there are significant regulatory and economic hurdles to...
overcome before this can be done, in addition to issues about the transfer of results onto hospital EPR systems.

Hypertension

Good BP control is one of the key interventions that can slow renal decline [75]. Thus it follows that home BP monitoring is one of the most important aspects in nephrology; devices that can aid effective BP control have a great potential to improve renal outcomes in NDD-CKD patients. Ambulatory BP monitoring (ABPM) is the preferred method for diagnosing hypertension [76]. However, the principle advantage of ABPM, multiple readings, especially at night, is the main reason that the devices may not be acceptable to patients; they are uncomfortable and disturb sleep [76]. ABPM also has costs in terms of time and money associated with travel to and from hospitals for fitting and device drop-off [76]. Home BP monitoring (HBPM) is a more acceptable alternative to ABPM, with similar benefits over clinic monitoring, and consequently it is also endorsed in guidelines for both confirmation of diagnosis and in the monitoring of hypertension [77].

BP monitors can be defined as cuff and non-cuff devices; cuffed devices can be designed to be fitted to the upper arm, wrist or finger [27]. Few studies have rigorously assessed BP monitoring devices against each other despite significant differences between commercially available models [78]. No significant differences in mean BP were noted when several fully automated oscillometric upper arm devices meeting American National Standards Institute (ANSI) standards were compared with a standard manual mercury sphygmomanometer or a manual aneroid sphygmomanometer in a review of the literature [78]. However, a significantly higher mean BP was noted with a fully automated cuffed wrist device compared with the mercury sphygmomanometer (153 ± 28/87 ± 18 versus 137 ± 20/80 ± 11 mmHg; P < 0.001) [78]. Meanwhile, a finger BP cuff device was noted to give significantly lower readings than a mercury sphygmomanometer (114/69 versus 129/78 mmHg; P < 0.05) [78].

Non-inflating wristwatch-like devices, such as BPro (HealthSTATS International, Singapore), utilizing a pulse wave acquisition system via modified applanation tonometry to acquire arterial radial pulse waves and calculate BP, have been shown in several studies to correlate well with upper arm BP measurement but remain prohibitively expensive (>£2000) (Table 3) [27, 79, 80]. Fully cuff-less BP monitoring devices able to calculate BP based on pulse transit time currently have limited validation data, in addition to a high calibration failure rate and frequent need for recalibration, although the Freescan (Mainsense, Zhubei, Taiwan) device has achieved ANSI validation for non-ambulatory use (Table 3) [17, 27, 81]. Bard et al. [60] have comprehensively reviewed these technologies, their advancement and limitations [82].

In patients suffering hypertension alone, remote BP monitoring has been shown to improve BP control and treatment adherence [83]. The evidence is less clear in those with CKD and hypertension. A systematic review on the subject of remote home management in dialysis-dependent or transplanted CKD patients assessed three randomized studies that focussed on BP control [26]. No significant difference in systolic BP (SBP) or diastolic BP (DBP) was noted in the patients who used remote monitoring of their BP versus standard care [26]. However, in dialysis-dependent patients, remote monitoring did allow optimization of weight gain and reduced ultrafiltration volumes, albeit in a small sample size (N = 120) [26]. Despite this apparent lack of effectiveness, patients and nephrologists consistently showed a positive attitude towards remote monitoring, with 96% of patients in one study stating that they would like to continue using their BP monitor [26, 84]. Similarly, in another study, 91% of 601 CKD patients assigned to home monitoring completed a year of monitoring with an average of 14.2 completed virtual clinics per year and 14.9 BP readings per month [85].

The use of BP devices at home is well established but the associated eHealth technologies are only just emerging. HBPM is effective in hypertensive patients and shows a lack of efficacy in dialysis-dependent patients; however, there is a lack of evidence in NDD-CKD patients. Currently a fully automated oscillometric upper arm BP monitor with wireless connectivity to a mobile app for the storage and transmission of results appears to be the most reliable, acceptable and cost-effective method of monitoring. However, with ongoing development, wristwatch devices and completely cuff-less devices are likely to become increasingly prominent in hypertension monitoring [82].

Biochemical analysis

Monitoring of electrolytes, urea and creatinine is important in the routine care of CKD patients and the benefits of home monitoring of these parameters are easy to imagine. However, in this field there are currently very few devices available that are potentially suitable and none that are currently authorized for home use.

The small and user-friendly StatSensor Xpress Creatinine (Nova Biomedical, Waltham, MA, USA) is 91 × 58 × 23 mm and weighs 75 g, making it potentially suitable for home use, with acceptable concordance to lab-based systems at creatinine values <600 μmol/L (Table 3) [48]. However, other investigators have found the sister device, StatSensor Creatinine, substantially exceeded predefined analytical error limits of 8.87% for creatinine and 10% for estimated glomerular filtration rate (eGFR; creatinine 15%, eGFR 13%), with greater variation in results compared with other POC devices such as the i-STAT (Table 3) [49].

A number of other companies and universities (Kalium Health, Cambridge, UK; University of Cambridge, University of California, etc.) are currently developing paper-based analytical devices and microcell devices for the sensing of potassium, phosphate, urea and creatinine, with great promise for use in the home setting, but they currently lack any significant real-world data for their use [86, 87]. The effect of haemolysis in finger-prick blood samples has proven very difficult to overcome.
in microcell devices. The use of wearables in this area is promising, with the SWEATCH sweat potassium sensor as an example, but it similarly lacks data to support its home use [34].

Diabetes mellitus care

Diabetes mellitus is the most common aetiology of CKD and good glycaemic control is an important factor in renal disease progression [88]. POCT has long been part of the care of patients with diabetes; glucose meters have the largest share of the POCT market and dominate the home testing market [28]. There are a large number of commercially available glucose meters that are small, light and simple-to-use and are licensed for use at home; evidence supporting their use exists in the general diabetes and CKD-diabetes populations [89–91].

Continuous and flash continuous glucose monitoring (CGM and FGM, respectively), which measure interstitial glucose concentrations either continuously (CGM) or on patient demand (FGM), have been shown to be effective in CKD patients. The DIALYDIAB pilot study used the iPro2 (Medtronic, Minneapolis, MN, USA) to monitor glycaemic control in 15 HD-dependent diabetic patients. Patients were followed up for 12 weeks, with CGM taking place in Weeks 6 and 12 after the device was fitted by a nurse specialist. The study concluded that CGM led to more frequent changes in the treatment regimen, resulting in improved glycaemic control and decreased frequency of hypoglycaemia [92]. Despite performance of QoL assessments, the impact of such a regimen on QoL was not commented on in the study [92]. A further pilot study assessed the same patient group (n = 28 type 2 diabetes patients using the Navigator device; Abbott Laboratories, Abbott Park, IL, USA). CGM-facilitated change in insulin management at the beginning of the trial led to a significant decrease in HbA1c at 3 months (8.4 ± 1.0% to 7.6 ± 1.0%; P < 0.001) and a significant decrease in hyperglycaemia [93]. A randomized trial comparing CGM with self-monitoring of blood glucose (n = 30; CKD G3) indicated that the proportion of time CGM patients were hyperglycaemic decreased from baseline to Week 6 (65.4 ± 22.4% to 54.6 ± 23.6%; P = 0.033) with no significant change in hypoglycaemic time. Both self-monitoring and CGM were successful in improving glycaemic control (HbA1c baseline 9.9 ± 1.2; end of trial 9.0 ± 1.5% (P < 0.001), with no difference between the two modalities (P = 0.869) [94]. Within the caveats of the small and short-term studies presented CGM appears to afford the same benefits to diabetic CKD patients as to the general diabetic population [93, 95]. The analytical performance of two popular CGM devices for home use is summarized in Table 3.

The integration of smartphones with BP and glucose monitoring devices is particularly key in diabetes care. DiaFit is a smartphone app that allows integration and storage of diabetic patients’ dietary intake, physical activity (via integration with a Fitbit; San Francisco, CA, USA), medication use, blood glucose values (via Bluetooth upload or manual entry) and general wellbeing [96]. The physician can view this information and communicate with the patient via the app. Although such an app represents no technological innovation, increased usability and effective integration of data can deliver significant benefits for patients. Similar innovative apps may prove vital to realizing the greatest gain from home testing pathways.

Anticoagulation monitoring

Anticoagulation is commonly required in CKD patients and anticoagulants are among the most prescribed drugs in this patient group [97]. However, despite the standard use of direct oral anticoagulants in the general population, the pharmacodynamic properties of these drugs limit their use in advanced CKD, with multiple guidelines suggesting warfarin to be the safest choice in patients with creatinine clearance <15 mL/min/1.73 m² [98]. As CKD and declining eGFR represent a paradoxical state of hypercoagulability with increased haemorrhagic risk, INR home monitoring with POCT devices represents an attractive prospect [99].

Compared with the other POCT device applications mentioned in this review, there is a relative wealth of data surrounding the use of home POCT in anticoagulation. There are a small number of INR monitors available for home use; however, the majority of the studies supporting use at home have been conducted with the CoaguCheck XS (Roche Diagnostics, Rotkreuz, Switzerland) (Table 3). The CoaguCheck XS (dimensions 138 × 78 × 28 mm; weight 127 g) provides amperometric determination of prothrombin time and INR using capillary blood in <1 min, with an INR measurement range of 0.8–8.0. Initial studies using CoaguCheck technology indicated excellent correlation with laboratory measures (r = 0.95, 85% consistency with laboratory method) (Table 3) [100] and a potential reduction in bleeding rates (n = 128; home monitoring versus usual care: incidence of bleeding at 3 months with home monitoring 15%, with usual care 36%; P < 0.01) [101]. A later RCT (N = 2922) suggested that there was no difference in the time to first event (stroke, major bleeding episode or death) between participants using home devices and those being monitored traditionally (hazard ratio 0.88 [95% confidence interval (CI) 0.75–1.04]; P = 0.14) [102]. It did, however, demonstrate a significant improvement in satisfaction with care and QoL in patients in the home monitoring group (P = 0.002 and P < 0.001, respectively), with these results ratified more recently [102, 103]. The Xprecia Stride (Siemens Healthineers; dimensions: 40 × 170 × 70 mm) is a pocket-sized device that functions in a similar fashion as the CoaguCheck XS, with an INR measurement range of 0.8–4.5. Studies have compared this device with both laboratory equipment (ACL TOP 700, Werfen, Milan, Italy) and the CoaguCheck XS and have demonstrated strong linear correlation between the device and laboratory and CoaguCheck systems (r = 0.83 and r = 0.92, respectively) (Table 3); however, device usability data and patient-related outcomes were not reported [57, 58].

The positive impact of coagulation home monitoring has been highlighted in a recent Cochrane review (28 RCTs, N = 8950); despite the low quality of evidence, improved QoL and a reduced rate of thromboembolic events was seen with home monitoring [104]. Sharma et al. [105] also performed a systematic review and economic evaluation on the use of these devices (26 RCTs, N = 8763), which despite clinical heterogeneity among the trials, indicated an improved time in therapeutic range (TTR) with self-testing [weighted MD 4.4% (95% CI 1.71–7.18); P = 0.02] and cost-effectiveness given the positive effect on thromboembolic event incidence [105]. Self-monitoring was also deemed to be cost-saving, with a reported net savings of £112 million in the NHS if 10% of the current 950 000 patients on vitamin K antagonists were to switch to home POC coagulation monitoring [106]. No studies specific to CKD have been carried out with the Xprecia Stride or CoaguCheck. The positive trends exhibited with home monitoring of anticoagulation via the use of POCT could reasonably be transferrable to the CKD population, but this remains to be proven.

CONCLUSION

CKD is a common and increasing health problem with high associated healthcare costs [26]. Remote home management,
made possible through eHealth pathways and suitable POCT devices, has great potential to improve health outcomes for these patients and help them understand their condition and engage more with their care [26]. Such pathways are highly in keeping with numerous steering committees’ forward plans [3, 4]. Patient motivation is a key part of CKD management and eHealth has already shown itself to be an effective tool in CKD patients; however, the development of the POCT devices themselves has been the weak link in this innovation and has held back the development of increasingly integrated pathways [14]. Home self-testing using a POCT device is still in its infancy in all fields other than diabetes care, hypertension and anticoagulation monitoring; in haematology and electrolyte measurement few devices suitable for home use exist and evidence supporting their use is absent. However, where the devices are well-developed, evidence shows the benefits of their use both in terms of clinical and patient-centred outcomes. Patients’ attitudes towards eHealth and home POCT are consistently positive and physicians also find this care highly acceptable [14, 26, 107]. POCT devices need to be valid, operate with minimal user involvement and be cost-effective [12]. New care pathways need to be created, utilizing eHealth, to maximize the benefit of such devices; these pathways must be safe, non-inferior and effectively integrated within the wider healthcare system. It seems prudent to incorporate patient smartphones into these care pathways due to the wealth of ICT they contain that can supplement, or even allow the phone to become, a POCT device. Such integration enables interventions to become scalable across socio-economic groups [96].

Currently there are few devices and little evidence to support the use of home POCT in CKD; regulatory and translational challenges loom large. Evidencing the benefits of these care pathways and the subsequent calculation of financial reimbursement is challenging. Pragmatic and adaptable trials of a hybrid effectiveness-implementation design, as well as continued technological POCT device advancement, are required to deliver these innovative new pathways that our patients desire and deserve [17, 25]. The need for this change has been greatly enhanced by the current COVID-19 pandemic.

FUNDING
This work was written independently and received no funding.

CONFLICT OF INTEREST STATEMENT
This article has not been published previously in whole or part. X.K. and R.B. declare no conflicts of interest. S.B. is working on a project funded by an Innovate UK grant with Entia but declares no conflicts of interest.

REFERENCES
1. Goyder C, San Tan P, Verbakel J et al. Impact of point-of-care panel tests in ambulatory care: a systematic review and meta-analysis. BMJ Open 2020; 10: e032132
2. Larsson A, Greig-Plytczuk R, Huisman A. The state of point-of-care testing: a European perspective. Ups J Med Sci 2015; 120: 1–10
3. Alderwick H, Dixon J. The NHS Long Term Plan. London: British Medical Journal Publishing Group, 2019
4. Iacobucci G. NHS England’s Five Year Plan. London: British Medical Journal Publishing Group, 2014
5. Hazara AM, Durrans K, Bhandari S. The role of patient portals in enhancing self-care in patients with renal conditions. Clin Kidney J 2020; 13: 1–7
6. Wallace EL, Rosner MH, Alscher MD et al. Remote patient management for home dialysis patients. Kidney Int Rep 2017; 2: 1009–1017
7. Chaudhuri S, Han H, Muchiatti C et al. Remote treatment monitoring on hospitalization and technique failure rates in peritoneal dialysis patients. Kidney 360 2020; 1: 191–202
8. Morosetti M, Fama MI. MO029 Clinical and social advantages of remote patient monitoring in home dialysis. Nephrol Dial Transplant 2020; 35(Suppl 3): gfaa140.MO029
9. Li L, Perl J. Can remote patient management improve outcomes in peritoneal dialysis? Contrib Nephrol 2019; 197: 113–123
10. El Shamy O, Tran H, Sharma S et al. Tele nephrology with remote peritoneal dialysis monitoring during coronavirus disease 19. Am J Nephrol 2020; 51: 480–482
11. Cozzolino M, Piccoli GB, Ikizler TA et al. The COVID-19 infection in dialysis: are home-based renal replacement therapies a way to improve patient management? J Nephrol 2020; 33: 629–631
12. Christodouloucs DC, Kaur B, Chorti P. From point-of-care testing to eHealth diagnostic devices (eDiagnostics). ACS Cent Sci 2018; 4: 1600–1616
13. Ishani A, Christopher J, Palmer D et al. Telehealth by an interprofessional team in patients with CKD: a randomized controlled trial. Am J Kidney Dis 2016; 68: 41–49
14. Foster BJ, Pai ALH, Zelikovsky N et al. A randomized trial of a multicomponent intervention to promote medication adherence: the Teen Adherence in Kidney Transplant Effectiveness of Intervention Trial (TAKE-IT). Am J Kidney Dis 2018; 72: 30–41
15. Stevenson JK, Campbell ZC, Webster AC et al. eHealth interventions for people with chronic kidney disease. Cochrane Database Syst Rev 2019; 8: CD012379
16. Yang X, Chen H, Qazi H et al. Intervention and evaluation of mobile health technologies in management of patients undergoing chronic dialysis: scoping review. JMR mHealth 2020; 8: e15549
17. Wang C, Ku E. eHealth in kidney care. Nat Rev Nephrol 2020; 16: 368–370
18. Syedmoradi L, Daneshpour M, Alvandipour M et al. Point of care testing: the impact of nanotechnology. Biosens Bioelectron 2017; 87: 373–387
19. Shaw JV. Practical challenges related to point of care testing. Pract Lab Med 2015; 4: 22–29
20. Francis AJ, Martin CL. A practical example of PoCT working in the community. Clin Biochem Rev 2010; 31: 93–97
21. Krittanawong C, Rogers AJ, Johnson KW et al. Integration of novel monitoring devices with machine learning technology for scalable cardiovascular management. Nat Rev Cardiol 2021; 18: 75–91
22. Pasipoularides A. COVID-19, big data: how it will change the way we practice medicine. QJM 2020; 10.1093/qjmed/hcaa299
23. Verhees B, van Kuijik K, Simonse L. Care model design for E-health: integration of point-of-care testing at Dutch general practices. Int J Environ Res Public Health 2017; 15: 4
24. Medicines and Healthcare Products Regulatory Agency. Management and use of IVD point of care test devices. 2021. https://www.gov.uk/government/publications/in-vitro-diagnostic-point-of-care-test-devices/management-
and-use-of-ivd-point-of-care-test-devices#references-and-bibliography (15 March 2021, date last accessed)

25. Otto Mattsson T, Lindhart CL, Schöley J et al. Patient self-testing of white blood cell count and differentiation: a study of feasibility and measurement performance in a population of Danish cancer patients. *Eur J Cancer Care* 2020; 29: e13189

26. He T, Liu X, Li Y et al. Remote home management for chronic kidney disease: a systematic review. *J Telemed Telecare* 2016; 23: 3–13

27. Park SH, Zhang Y, Rogers JA et al. Recent advances of biosensors for hypertension and nephropathy. *Curr Opin Nephrol Hypertens* 2019; 28: 390–396

28. St John A, Price CP. Existing and emerging technologies for point-of-care testing. *Clin Biochem Rev* 2014; 35: 155–167

29. Ra M, Muhammad MS, Lim C et al. Smartphone-based point-of-care urinalysis under variable illumination. *IEEE J Transl Eng Health Med* 2017; 6: 2800111

30. Tighe P. Quality targets in dipstick urinalysis. *Aced Qual Assur* 2004; 10: 52–54

31. Lei R, Huo R, Mohan C. Current and emerging trends in point-of-care urinalysis tests. *Expert Rev Mol Diagn* 2020; 20: 69–84

32. Dincer C, Bruch R, Kling A et al. Multiplexed point-of-care testing – xPOCT. *Trends Biotechnol* 2017; 35: 728–742

33. Pal A, Nadiger VG, Goswami D et al. Conformal, waterproof electronic decals for wireless monitoring of sweat and vaginal pH at the point-of-care. *Biosens Bioelectron* 2020; 112206

34. Yasin OZ, Attia Z, Dillon JJ et al. Noninvasive blood potassium measurement using signal-processed, single-lead ECG acquired from a handheld smartphone. *J Electrocardiol* 2015; 50: 620–625

35. Wang EJ, Li W, Hawkins D et al. HemaApp: noninvasive blood screening of hemoglobin using smartphone cameras. *Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp ’16)*. New York: Association for Computing Machinery, 2016: 593–604

36. Shephard M, Mathew T. Point-of-care testing for kidney disease. In: A practical guide to global point-of-care testing. Melbourne, Australia: CSIRO Publishing, 2016: chap. 11

37. Maule W. Point-of-care testing: is it a paradox in internationally normalised ratio measurements? *J Med Lab Sci Technol* S Afr 2020; 2: 109–113

38. Bewley B, O’Rahilly S, Tassell R et al. Evaluation of the analytical specificity and clinical application of a new generation hospital-based glucose meter in a dialysis setting. *Point Care* 2009; 8: 61–67

39. Ogawa T, Murakawa M, Matsuda A et al. Endogenous factors modified by hemodialysis may interfere with the accuracy of blood glucose-measuring device. *Hemodial Int* 2012; 16: 266–273

40. Calzavacca P, Tee A, Licari E et al. Point-of-care measurement of serum creatinine in the intensive care unit. *Ren Fail* 2012; 34: 13–18

41. Singh A, Dubey A, Sonker A et al. Evaluation of various methods of point-of-care testing of haemoglobin concentration in blood donors. *Blood Transfus* 2015; 13: 233

42. Bui HN, Bogers J, Cohen D et al. Evaluation of the performance of a point-of-care method for total and differential white blood cell count in clozapine users. *Int J Lab Hematol* 2016; 38: 703–709

43. Karawajczyk M, Haile S, Grabski M et al. The HemoCue WBC DIFF system could be used for leucocyte and neutrophil counts but not for full differential counts. *Acta Paediatr* 2017; 106: 974–978

44. Dunwoodie EH. *Home Testing of Blood Counts in Patients with Cancer*. MD thesis, University of Leeds, 2018

45. Lohman AC, van Rijn I, Lindhardt CL et al. Preliminary results from a prospective study comparing white blood cell and neutrophil counts from a laboratory to those measured with a new device in patients with breast cancer. In *Vivo* 2018; 32: 1283–1288

46. Back S-E, Magnusson C, Norlund L et al. Multiple-site analytic evaluation of a new portable analyzer, HemoCue Hb 201+, for point-of-care testing. *Point Care* 2004; 3: 60–65

47. Akhtar K, Sherwani RK, Rahman K et al. HemoCue photometer: a better alternative of hemoglobin estimation in blood donors? *Indian J Hematol Blood Transfus* 2007; 60: 1263–1267

48. Kosack CS, De Kiewiet W, Bayrak K et al. Evaluation of the Nova StatSensor® Xpress™ creatinine point-of-care hand-held analyzer. *PLoS One* 2015; 10: e0122433

49. van der Heijden C, Roosens L, Cluckers H et al. Analytical and clinical performance of three hand-held point-of-care creatinine analyzers for renal function measurements prior to contrast-enhanced imaging. *Clin Chim Acta* 2019; 497: 13–19

50. Heerspink HJ, Witte EC, Bakker SJL et al. Screening and monitoring for albuminuria: The performance of the HemoCue point-of-care system. *Kidney Int* 2008; 74: 377–383

51. Saraﬁdis PA, Riehle J, Bobojevic Z et al. A comparative valuation of various methods for microalbuminuria screening. *Am J Nephrol* 2008; 28: 324–329

52. Sobieraj-Teague M, Daniel D, Farrelly Be t al. Accuracy and clinical usefulness of the CoaguChek S and XS Point of Care devices when starting warfarin in a hospital outreach setting. *Thromb Res* 2009; 123: 909–913

53. Bereznicki LR, Jackson SL, Peterson GM et al. Accuracy and clinical utility of the CoaguChek XS portable international normalised ratio monitor in a pilot study of warfarin home monitoring. *J Clin Pathol* 2007; 60: 311–314

54. McCa hon D, Murray ET, Jowett S et al. Patient self-management of oral anticoagulation in routine care in the UK. *J Clin Pathol* 2007; 60: 1263–1267

55. da Silva Saraiva S, Orsi FA, Santos MP et al. Home management of INR in the public health system: feasibility of self-management of oral anticoagulation and long-term performance of individual POC devices in determining INR of *Thromb Thrombolysis* 2016; 42: 146–153

56. Chapman DC, Stephens MA, Hamann GL et al. Accuracy, clinical correlation, and patient acceptance of two hand-held prothrombin time monitoring devices in the ambulatory setting. *Ann Pharmacother* 1999; 33: 775–780

57. McCa hon D, Roalfe A, Fitzmaurice DA. An evaluation of the Xpress® Stride coagulation system (Xprecia Stride) for utilisation in anti-coagulation management. *J Clin Pathol* 2018; 71: 20–26

58. Piacenza F, Galeazzi R, Cardelli M et al. Accuracy and clinical performance of three hand-held point-of-care creatinine analyzers for renal function measurements prior to contrast-enhanced imaging. *Clin Chim Acta* 2019; 497: 13–19

59. Nair D, Tan S-Y, Gan WeH et al. The use of ambulatory blood pressure: the validation of a novel wrist-bound tonometric radial arterial wave capture to measure ambulatory blood pressure in patients with breast cancer. In *Vivo* 2018; 32: 1283–1288

60. Komori T, Eguchi K, Hoshide S et al. Comparison of wrist-type and arm-type 24-h blood pressure monitoring devices for ambulatory use. *Blood Press Monit* 2013; 18: 57–62
61. Harju J, Vehkaaja A, Kumpulainen P et al. Comparison of noninvasive blood pressure monitoring using modified arterial applanation tonometry with intra-arterial measurement. J Clin Monit Comput [Internet] 2018; 32: 13–22
62. Boubouchairoupolou N, Kollias A, Chiu Be et al. A novel cuffless device for self-measurement of blood pressure: concept, performance and clinical validation. J Hum Hypertens 2017; 31: 479–482
63. Wu C-C, Chao PC-P. PS 05–04 VALIDATION OF THE FRESCAN PULSE TRANSIT TIME-BASED BLOOD PRESSURE MONITOR. J Hypertens 2016; 34: e142
64. Bailey T, Bode BW, Christiansen MP et al. The performance and usability of a factory-calibrated flash glucose monitoring system. Diabetes Technol Ther 2015; 17: 787–794.
65. Fokkert MJ, Van Dijk PR, Edens MA et al. Performance of the FreeStyle Libre Flash glucose monitoring system in patients with type 1 and 2 diabetes mellitus. BMJ Open Diabetes Res Care 2017; 5: e000520
66. Olafsdottir AF, Attvall S, Sandgren U et al. A clinical trial of the accuracy and treatment experience of the flash glucose monitor FreeStyle Libre in adults with type 1 diabetes. Diabetes Technol Ther 2017; 19: 164–172
67. Nakamura K, Balo A. The accuracy and efficacy of the Dexcom G4 Platinum Continuous Glucose Monitoring System. J Diabetes Sci Technol 2015; 9: 1021–1026
68. Peyer TA, Nakamura K, Price D et al. Hypoglycemic accuracy and improved low glucose alerts of the latest Dexcom G4 Platinum Continuous Glucose Monitoring System. Diabetes Technol Ther 2015; 17: 548–554
69. Boscarini, Galasso S, Facchinetti A et al. FreeStyle Libre and Dexcom G4 Platinum sensors: accuracy comparisons during two weeks of home use and use during experimentally induced glucose excursions. Nutr Metab Cardiovasc Dis 2018; 28: 180–186
70. Macdougall IC. Quality of life and anemia: the nephrology experience. Semin Oncol 1998; 25: 39–42
71. Mikhail A, Brown C, Williams JA et al. Renal association clinical practice guideline on anaemia of chronic kidney disease. BMC Nephrol 2017; 18: 345
72. Kidney Disease: Improving Global Outcomes Anemia Work Group. KDIGO clinical practice guideline on anaemia of chronic kidney disease. Kidney Int Suppl 2012; 2: 279–335.
73. Bodington R, Bhandari S. Falling usage of hospital-based emergency care during the COVID-19 pandemic in the UK. JR Coll Physicians Edinb 2020; 50: 207–214
74. Chutprotanate A, Yasaeng C, Virakabutra T et al. Systematic comparison of four point-of-care methods versus the reference laboratory measurement of hemoglobin in the surgical ICU setting: a cross-sectional method comparison study. BMC Anesthesiol 2016; 18: e85
75. Peterson JC, Adler S, Burkart JM et al. Blood pressure control, proteinuria, and the progression of renal disease. Ann Intern Med 1995; 123: 754–762
76. Ringrose JS, Bapuji R, Coutinho W et al. Patient perceptions of ambulatory blood pressure monitoring testing, tolerability, accessibility, and expense. J Clin Hypertens (Greenwich) 2020; 22: 16–20
77. Bozza RJ, Constanti M, Floyd CN et al. Hypertension in adults: summary of updated NICE guidance. BMJ 2019; 367: i5310
78. Lopez LM, Taylor JR. Home blood pressure monitoring: point-of-care testing. Ann Pharmacother 2004; 38: 868–873
79. Warner BE, Velardo C, Salvi D et al. Feasibility of telemonitoring blood pressure in patients with kidney disease (Oxford Heart and Renal Protection Study-1): observational study. JMIr Cardio 2018; 2: e11332
80. Theilade S, Lajer M, Hansen TW et al. 24-hour central aortic systolic pressure and 24-hour central pulse pressure are related to diabetic complications in type 1 diabetes – a cross-sectional study. Cardiovasc Diabetol 2013; 12: 122
81. Schoot TS, Weenk M, van de Bilt TH et al. A new cuffless device for measuring blood pressure: a real-life validation study. J Med Internet Res 2016; 18: e85
82. Bard DM, Joseph J, van Helmond N. Cuff-less methods for blood pressure telemonitoring. Front Cardiovasc Med 2019; 6: 40
83. Liu S, Dunford SD, Leung YW et al. Reducing blood pressure with Internet-based interventions: a meta-analysis. Can J Cardiol 2013; 29: 613–621
84. Rifkin DE, Abdelmalek JA, Miracle CM et al. Linking clinical and home: a randomized, controlled clinical effectiveness trial of real-time, wireless blood pressure monitoring for older patients with kidney disease and hypertension. Blood Press Monit 2013; 18: 8–15
85. Crowley ST, Belcher J, Choudhury D et al. Targeting access to kidney care via telehealth: the VA experience. Adv Chronic Kidney Dis 2017; 24: 22–30
86. University of Cambridge Enterprise. Cambridge spin-out Kalium Health secures £950k investment. https://www.entreprise.cam.ac.uk/news/university-spin-out-kalium-health-secures-950k-investment (15 March 2021, date last accessed)
87. Ray A, Eparza S, Wu D et al. Measurement of serum phosphate levels using a mobile sensor. Analyst 2020; 145: 1841–1848
88. Hah Al, Moltitch ME. Management of diabetes mellitus in patients with chronic kidney disease. Clin Diabetes Endocrinol 2015; 1: 2
89. Maruta GH, Shah JH, Hoffman RM et al. Intensified blood glucose monitoring improves glycemic control in stable, insulin-treated veterans with type 2 diabetes: the Diabetes Outcomes in Veterans Study (DOVES). Diabetes Care 2003; 26: 1759–1763
90. Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. Continuous glucose monitoring and intensive treatment of type 1 diabetes. N Engl J Med 2008; 359: 1464–1476
91. Martin S, Schneider B, Heinemann L et al. Self-monitoring of blood glucose in type 2 diabetes and long-term outcome: an epidemiological cohort study. Diabetologia 2006; 49: 271–278
92. Joubert M, Fourmy C, Henri P et al. Effectiveness of continuous glucose monitoring in dialysis patients with diabetes: the DIALYDIAB pilot study. Diabetes Res Clin Pract 2015; 107: 348–354
93. Képénékian L, Smagala A, Meyer L et al. Continuous glucose monitoring in hemodialyzed patients with type 2 diabetes: a multicenter pilot study. Clin Nephrol 2014; 82: 240–246
94. Yeoh E, Lim BK, Fun S et al. Efficacy of self-monitoring of blood glucose versus retrospective continuous glucose monitoring in improving glycaemic control in diabetic kidney disease patients. Nephrology 2018; 23: 264–268
95. Davis GM, Galindo RJ, Migdal AL et al. Diabetes technology in the inpatient setting for management of hyperglycemia. Endocrinol Metab Clin North Am 2020; 49: 79–93
96. Modave F, Bian J, Rosenberg E et al. DiaFit: the development of a smart app for patients with type 2 diabetes and obesity. JMIR Diabetes 2016; 1: e5

97. Jain N, Reilly RF. Clinical pharmacology of oral anticoagulants in patients with kidney disease. Clin J Am Soc Nephrol 2019; 14: 278–287

98. Kumar S, Lim E, Covic A et al. Anticoagulation in concomitant chronic kidney disease and atrial fibrillation: JACC review topic of the week. J Am Coll Cardiol 2019; 74: 2204–2215

99. Law JP, Pickup L, Townend JN et al. Anticoagulant strategies for the patient with chronic kidney disease. Clin Med (Lond) 2020; 20: 151–155

100. Gardiner C, Williams K, Mackie J et al. Patient self-testing is a reliable and acceptable alternative to laboratory INR monitoring. Br J Haematol 2005; 128: 242–247

101. Jackson SL, Peterson GM, Vial JH et al. Improving the outcomes of anticoagulation: an evaluation of home follow-up of warfarin initiation. J Intern Med 2004; 256: 137–144

102. Matchar DB, Jacobson A, Dolor R et al. Effect of home testing of international normalized ratio on clinical events. N Engl J Med 2010; 363: 1608–1620

103. Barcellona D, Mastino D, Marongiu F. Portable coagulometer for vitamin K-antagonist monitoring: the patients’ point of view. Patient Prefer Adherence 2018; 12: 1521–1526

104. Heneghan CJ, Spencer EA, Mahtani KR. Cochrane corner: self-monitoring and self-management of oral anticoagulation. Heart 2017; 103: 895–896

105. Sharma P, Scotland G, Cruickshank M et al. Is self-monitoring an effective option for people receiving long-term vitamin K antagonist therapy? A systematic review and economic evaluation. BMJ Open 2015; 5: e007758

106. Craig JA, Chaplin S, Jenks M. Warfarin monitoring economic evaluation of point of care self-monitoring compared to clinic settings. J Med Econ 2014; 17: 184–190

107. Lindhardt CL, Mattsson TO, Mebrouk J. Point-of-care used in the treatment of older patients with cancer. The perception and experience of nurses. Appl Nurs Res 2020; 53: 151268