Original Research Article

Synergistic hypolipidemic and hypoglycemic effects of mixtures of Lactobacillus nagelii/betanin in a mouse model

Antonio Rivera¹, Elvia Becerra-Martínez², Yesenia Pacheco-Hernández³, Gerardo Landeta-Cortés⁴, Nemesio Villa-Ruano⁵*
¹Centro de investigación en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla. Ciudad Universitaria, C.P. 72570, Puebla, ²Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional, CP 07738, Ciudad de, ³Centro de Investigación en Biotecnología Aplicada-IPN, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcom-Tapetitla Km 1.5, CP 90700, Tlaxcala, ⁴Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla, CP 72570, Puebla, México. ⁵CONACyT-Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla, CP 72570, Puebla, México
*For correspondence: Email: necho82@yahoo.com.mx; Tel: +52 2214246608

Sent for review: 20 November 2019
Revised accepted: 17 May 2020

Abstract

Purpose: To determine the nutraceutical effect of mixtures containing Lactobacillus nagelii/betanin on the carbohydrate and lipid metabolism of mice.

Methods: Lactobacillus nagelii and betanin were isolated from the raw materials. These components were subsequently assessed for their anti-hyperglycemic and hypolipidemic activities, and administered individually or combined in normoglycemic and diabetic mice. These animals were subjected to a standard OGTT and given an atherogenic diet.

Results: The combination of L. nagelii (2.0 × 10⁹ CFU/mL) and betanin (30 mg/kg body weight) exerted a significant (p < 0.01) and prolonged reduction of postprandial blood glucose (30 - 120 min). Interestingly, a mixture of L. nagelii (1 × 10⁷ CFU/mouse/day) with betanin (10 mg/kg body weight) administered for 30 days, produced favourable effects (p < 0.01) in the lipid profile of mice previously treated with an atherogenic diet. These mixtures significantly ameliorated (p < 0.01) hypoinsulinemia, hyperleptinemia and increased the levels of adiponectin.

Conclusion: The simultaneous administration of L. nagelii and betanin in mice produced a beneficial change in blood glucose and lipids in mice, indicating a synergistic nutraceutical effect. However, there is a need to develop this therapy further for potential application in humans

Keywords: Lactobacillus nagelii, Betanin, Anti-hyperglycemic, Hypolipidemic

INTRODUCTION

For centuries, traditional beverages and colored berries have been used as natural sources to treat diverse illnesses [1]. The “Pulque” from Agave sp. and the “coyol wine” from the fermented sap of Acrocomia mexicana are typical fermented juices produced in provinces of Mexico. Despite the low nutritional properties of these beverages [2,3], they are considered as therapeutic agents because of their microbiological and antioxidant content [4,5]. It
has been demonstrated that the combination of probiotics and prebiotics with antioxidant activity produce substantial beneficial effects in human health [6].

Common probiotics (i.e., Lactobacillus sp. and Bifidobacterium sp.) and fructooligosaccharides from diverse plants promote the synthesis of inhibitory substances such as H2O2, bacteriocins and organic acids. These components regulate the growth of pathogenic bacteria because of their antimicrobial properties [6]. On the other hand, betalains are considered as nutraceuticals due to their capacity to improve lipid profile in humans [7,8]. Some medicinal plants such as those of the Phytolacca genus are used as traditional medicines and their berries are frequently consumed to treat diverse health problems including type 2 diabetes mellitus (DM2) [7-9]. The berries of these plants accumulate high amounts of betalains with antioxidant activity. In addition, the leaves and berries of some plants belonging to the Phytolacca genus have been tested in murine models in order to explore their anti-obesity activities [9].

These reports suggest that some bioactive compounds from the Phytolacca genus should be involved in the beneficial changes observed in animal models [9]. Currently, the effect of mixtures containing untested Lactobacillus sp. and betanin on the metabolism of lipids and carbohydrates has not been investigated. Thus, the aim of this study was to determine the effect of L. nagelii, isolated from the medicinal "coyol wine", and betanin isolated from the medicinal plant Phytolacca thyrsiflora, on blood glucose and lipid profile of mice.

EXPERIMENTAL

Plant source

Berries of Phytolacca thyrsiflora Fenzl ex J.A. Schmidt were collected in Yaonáhuac Puebla, México (19°52‘23.80”N, 97°27‘49.47”O) from November 2016 to March 2017. P. thyrsiflora was identified by Ramiro Cruz-Durán and a holotype (162543) was kept at FCME-UNAM herbarium. Crude sap from Acrocomia mexicana (syn. A. aculeata) was collected between November 2016 and April 2017 in San Miguel del Puerto, Pochutla, México (15°55‘8.27”N, 96°10‘25.44”O) and transported in ice to avoid spontaneous fermentation. A reference voucher 155384 of A. mexicana was certified and deposited in the same institution.

Purification of betanin from Phytolacca thyrsiflora

Berries of Phytolacca thyrsiflora (500 g) were homogenized in a mortar for immediate extraction with 1 L of acidified acetone (0.01% HCl) in the dark for 12 h at 4°C. The extract was filtered with Whatman filter paper 1 and then partitioned with 250 mL of chloroform. The aqueous phase was recovered and concentrated to a minimal volume (about 1 mL). The extract was subsequently separated by reversed-phase high-performance liquid chromatography (RP-HPLC). This experimental procedure was done using a Dionex Ultimate 3000 coupled to a diode array detector DAD-3000, equipped with a Varian Cromospher C18 column (250 - 4.5 mm ID, 5 µm particle size). A Hewlett Packard 1050 system coupled to a HP G1306A diode array detector was used to scale the purification of betanin. The mobile phase, flow rate, temperature and wavelengths were those reported by Luczkiewicz and Cisowsky [10].

Authentic betanin (Sigma-Aldrich Co.) was used to determine the retention time of this compound in RP-HPLC experiments. Betanin from P. thyrsiflora was collected manually according to the elution profile in multiple runs and finally lyophilized for further use. A calibration curve using authentic betanin was made to quantify this compound in P. thyrsiflora berries (mg 100 g fresh weight−1).

Assessment of betanin on enzymes involved in carbohydrate hydrolysis

In vitro inhibitory assays using alpha-amylase and alpha-glucosidase (Sigma-Aldrich Co.) were done under the conditions previously reported [11]. IC50 were estimated from the dose response curves (0.005-0.5 mg mL−1) using betanin isolated from P. thyrsiflora. The data were processed using GraphPad Prism 7.02.

Isolation and identification of L. nagelii from “coyol wine”

The crude sap from A. mexicana (20 mL) was deposited in a sterile glass flask and thawed on ice for subsequent incubation and lightly shaken (60 rpm) for 24 h at 30°C. One millilitre of the fermented sap was centrifuged at 10,000 g for 2 min and the precipitate was recovered in 100 µL of 15% glycerol. Different volumes (10 - 50 µL) were inoculated in Petri dishes containing MRS culture medium [12]. The Petri dishes were incubated under microaerophilic conditions using an anaerobic jar (Oxoid™) at 30°C for 2 days in the dark. The identity of the species was initially
corroborated with biochemical characterization [12] and by molecular tests performed on the basis of 16s rRNA gene sequence analyses [4,13]. Amplicons were cloned in TOPO-TA cloning vector (Invitrogen™) and sequenced in an ABI PRISM 3700 apparatus. The genic sequences were contrasted with the information available at NCBI database.

For further experiments, Lactobacillus nagelii was routinely grown in liquid MRS for 24 h under microaerophilic conditions. The CFU/mL of L. nagelii administrated to the mice were estimated by measuring the optical density at 600 nm and also, by direct colony plate counting as reported for Lactobacillus sp. [14]. The OD600 values were correlated with the number of CFU in accordance with the same report [14]. Two concentrations of L. nagelii were adjusted to 2 × 10^9 and 1 × 10^7 CFU/mL based on OD600 readings. The CFU administrated to the mice were selected based on the bioactive concentrations of Lactobacillus sp. which produced a noticeable immunomodulatory effect in mouse model [14-16]. Each stock of L. nagelii was centrifuged, pelleted and then resuspended in 50 μL of sterile phosphate buffered saline before administration.

**Animals**

Institute of Cancer Research (ICR) male mice were kept at 25 °C and 50 % relative humidity under a cycle of 12 h light and 12h dark [24]. Water was administered as previously reported [24]. The animal experiments were approved by the institutional ethical committee (approval no. R1627). These procedures were conducted in accordance with the Mexican norm NOM-062-ZOO-1999 and with International Standards on Animal Welfare [25].

**Administration of L. nagelii and betanin in glucose tolerance test**

Institute of Cancer Research (ICR) male mice (8-week old weighing approximately 30 g) were separated into 8 groups of 6 animals and fed by oral gavage (2 mL/kg). The first experimental group was fed a soluble glucose solution (Glucox^{MR}, 1.5 g/kg) and betanin (30 mg/kg). The second experimental group was fed with a mixture of a soluble glucose solution (Glucox^{MR}, 1.5 g/kg) and fresh L. nagelii cells (2 × 10^9 CFU/mL). The third experimental group was administrated with a soluble glucose solution (Glucox^{MR}, 1.5 g/kg) mixed with fresh L. nagelii cells (2 × 10^9 CFU/mL) and betanin (30 mg/kg body weight). Diabetic mice previously treated with streptozotocin (groups 4 - 6), were evaluated using the same conditions described for the groups 1 - 3 [17]. Animals with basal glucose levels higher than 200 mg/dL after 2 h of an OGTT were considered as diabetics. The control groups (normoglycemic and diabetic mice) were only fed with a soluble glucose solution (Glucox^{MR} 1.5 g/kg body weight). Blood samples were obtained from the tail vein at 0, 15, 30, 60 and 120 min. Blood plasma was obtained by centrifugation at 3000 g for 10 min. Blood glucose was measured in accordance with the SPINREACT® protocol whereas the levels of plasma insulin were determined with commercial ELISA kits (Sigma-Aldrich Co.).

**Administration of L. nagelii and betanin in mice subjected to high fat diet**

Four groups of six mice were fed by oral gavage twice a day for 30 days with an atherogenic diet (2 mL/kg body weight) previously reported [9]. The diet of the first experimental group was mixed with 10 mg betanin/kg body weight. The diet of the second experimental group was mixed with 1 × 10^7 of L. nagelii CFU/mouse/day. The diet of the third experimental group was combined with 1 × 10^7 CFU/mouse/day and betanin (10 mg/kg body weight). Two other control groups (4-5) were fed with the atherogenic diet/water (2 mL/kg body weight) and with a standard laboratory diet (LabDiet®)/water (2 mL/kg body weight). The body weights of the mice were measured every 5 days. At the end of the experimental procedure, the contents of cholesterol and triglycerides in mice were determined in accordance with a previous report [24] whereas blood glucose was determined using SPINREACT® reagent. Insulin leptin, and adiponectin, were quantified using commercial ELISA kits (Sigma-Aldrich Co).

**Statistical analysis**

ANOVA coupled with a Dunnett’s test (p < 0.05 and p < 0.01) were conducted to determine statistically significant differences in the biochemical profile among the animal groups assayed. The data were processed using GraphPad Prism 7.02 software.

**RESULTS**

**Betanin content and its inhibitory activity on hydrolytic enzymes**

The chemical profile of the berries from P. thysiflora revealed betanin as the most abundant compound (about 97 %) in the pigment fraction (Figure 1). According to the results, the content of betanin was 276 mg 100 g fresh weight⁻¹. Enzymatic assays revealed that betanin...
produced a moderate inhibition on alpha-amylase (IC$_{50}$, 117.3 ± 1.6 µg/mL) and alpha glucosidase (IC$_{50}$, 146.6 ± 2.5 µg/mL).

Interestingly, in this experimental group, the levels of insulin at 15 - 30 min increased when compared with those of the untreated group (Table 1). The single administration of $L$. nagelii exerted a more sustained anti-hyperglycemic effect than that of pure betanin (Figure 3 A).

### Figure 1: Detection of betanin by Reversed-Phased High-Performance Liquid Chromatography. A, authentic standard of betanin. B, betanin isolated from berries of *Phytolacca thyrsiflora*

#### Identity of *Lactobacillus* sp.

The *Lactobacillus* species isolated from “coyol wine” showed similar biochemical parameters such as those described by Edwards et al. [12]. Blast-N and ClustalW alignments of the 16S ribosomal gene sequence revealed a high similarity (>98%) between the isolated sequence and those reported for $L$. nagelii in the gen bank of the NCBI (Figure 2).

### Figure 2: 16S ribosomal gene sequence from the *Lactobacillus* sp. isolated from the fermented sap of *Acrocomia mexicana*

#### Anti-hyperglycemic activity

Oral administration of betanin in normoglycemic mice produced a significant decrease ($p < 0.05$) in the glucose levels at 30 min. However, after 30 min, this effect was not significant (Figure 3 A).

Nevertheless, no significant changes in the levels of insulin were observed (Table 1). Simultaneous administration of both components resulted in a significant decrease of blood glucose ($p < 0.01$) which stayed low during the test (Figure 3 A).

Remarkably, the combination of betanin and $L$. nagelii produced a substantial reduction of blood glucose in treated mice (about 35 %).

A significant anti-hyperglycemic effect of betanin ($p < 0.05$) was observed in diabetic mice between 30 and 60 min, which suggested a more prolonged effect than in normoglycemic mice (Figure 3B). In comparison with the hyperglycemic control, mice treated with betanin showed a significant and prolonged insulinogenic effect after 15 min (Table 2).
Table 1: Plasma insulin (mU L\(^{-1}\)) of normoglycemic mice following different treatments

| Component          | 0 min  | 15 min  | 30 min  | 60 min  | 90 min  | 120 min |
|--------------------|--------|---------|---------|---------|---------|---------|
| Control group      | 5.5±0.15 | 8.7±0.32 | 17.7±0.26 | 16.2±0.18 | 8.2±0.37 | 3.3±0.32 |
| Betanin            | 4.9±0.18 | 12.3±0.24* | 25.5±0.32* | 15.9±0.32 | 8.5±0.31 | 3.8±0.28 |
| L. nagelii         | 6.1±0.35 | 9.1±0.41 | 18.0±0.27 | 17.7±0.14 | 8.3±0.25 | 3.6±0.14 |
| Betanin + L. nagelii | 5.2±0.32 | 17.2±0.81* | 27.3±0.63* | 16.2±0.39 | 7.9±0.65 | 4.9±0.43 |

*The results are presented as the mean ± SEM of samples from six mice (n=6). *p < 0.01 in comparison with control group.

Table 2: Plasma insulin (mU L\(^{-1}\)) of diabetic mice under different treatments

| Component          | 0 min  | 15 min  | 30 min  | 60 min  | 90 min  | 120 min |
|--------------------|--------|---------|---------|---------|---------|---------|
| Control group      | 2.6±0.09 | 3.1±0.05 | 2.4±0.09 | 2.0±0.08 | 3.1±0.02 | 3.3±0.32 |
| Betanin            | 2.3±0.03 | 2.8±0.06 | 5.8±0.07* | 5.3±0.04* | 5.9±0.05* | 4.7±0.04* |
| L. nagelii         | 3.1±0.09 | 3.5±0.07 | 3.7±0.06* | 2.8±0.09 | 2.2±0.08 | 2.9±0.02 |
| Betanin + L. nagelii | 2.8±0.01 | 5.9±0.02* | 7.2±0.05* | 6.4±0.03* | 6.3±0.06* | 5.2±0.05* |

*The results are presented as the mean ± SEM of samples from six mice (n=6). *p < 0.01 in comparison with control group.

The administration of L. nagelii cells produced a statistically significant reduction (p < 0.05) between 30 - 60 min, however, such effect was not observed after 60. This consequence was not apparently related to the production of insulin (Table 2). Interestingly, the anti-hyperglycemic activity was significantly increased (p < 0.01) and sustained during the test after the simultaneous administration of betanin and L. nagelii cells (Figure 3B).

Hypolipidemic activity

Prolonged administration of pure betanin and L. nagelii cells generated significant decreases (p < 0.01) in body weight, liver weight, LDL-c, triglycerides as well as a significant increase (p < 0.01) in HDL-c (Figure 4A-F). Surprisingly, slight increase in HDL-c levels was observed for L. nagelii treatment compared with betanin treatment.

The oral administration of betanin and L. nagelii cells substantially improved the lipid profile and decreased body (~28%) and liver (35%) weights of treated mice. The mixtures of betanin and L. nagelii cells produced an evident reduction of blood glucose at the end of the treatment (Table 3). Under prolonged administration (30 days), the levels of insulin and leptin decreased whereas the levels of adiponectin increased in mice treated with the mixture of betanin and L. nagelii.

Figure 4: Lipid profile of mice treated with mixtures of L. nagelii and betanin. A, total cholesterol content; B, LDL-c content. C, HDL-c content. D, triglyceride content. E, body weight. F, liver weight. S, standard diet; F, fat diet (atherogenic diet); F+B, fat diet plus betanin; F+L, fat diet plus Lactobacillus nagelii cells; F+BL, fat diet plus betanin and L. nagelii cells. Bars represent the SD (n=6). *p < 0.01 compared with standard diet; +p < 0.01 compared with atherogenic diet.

Table 3: Levels* of glucose (mg dL\(^{-1}\)), insulin (mU L\(^{-1}\)), leptin (ng mL\(^{-1}\)) and adiponectin (µg mL\(^{-1}\)) in mice after the administration of an atherogenic diet (AD) combined with L. nagelii/betanin for 30 days

| Group                | Glucose  | Insulin | Leptin  | Adiponectin |
|----------------------|----------|---------|---------|-------------|
| Standard diet (control) | 84.4±1.48* | 6.5±1.10* | 1.7±0.15* | 2.5±0.11* |
| AD                   | 118.6±2.33 | 23.5±1.88 | 7.4±0.17 | 0.5±0.04 |
| AD + betanin         | 97.3±0.38* | 11.4±0.42* | 3.1±0.27* | 4.1±0.42* |
| AD + L. nagelii      | 99.8±3.51* | 13.9±0.54* | 3.9±0.58* | 4.3±0.30* |
| AD + betanin + L. nagelii | 95.4±1.39* | 9.1±0.83* | 2.8±0.33* | 4.9±0.67* |

*The results are presented as the mean ± SEM of samples from six mice (n=6). *p < 0.01 in comparison with the group treated with AD.

Rivera et al.
Trop J Pharm Res, June 2020, 19(6): 1273
DISCUSSION

The berries of *P. thyrsiflora* are rich in betanin, a common nutraceutical found in beetroot. Interestingly, these plant organs are used to prepare traditional beverages in the northern highlands of Puebla, Mexico. The endogenous levels of betanin in *P. thyrsiflora* were similar to those reported for *Phytolacca americana*, beetroot cultivars and the Malabar spinach [18,19]. Thus, the berries of *P. thyrsiflora* can be considered as a potential source to obtain betanin.

It is known that steroidal alkaloids are abundant constituents of the leaves and shoots of the *Phytolacca* genus [20]; however, the presence of these anti-nutrients in its berries is undetectable [20]. The inhibitory effect of betanin on alpha amylase and alpha glucosidase suggests that this compound may be participating as a possible modulator of carbohydrate absorption. However, further in vivo trials are required to support these enzymatic findings. The results on the administration of pure betanin in normoglycemic mice, strongly suggest that this natural pigment produces a significant anti-hyperglycemic effect in this animal model.

A previous study on the prolonged administration of betanin (aglycone) demonstrated a significant reduction of glucose levels in BALB/c mice [21]. Nevertheless, the present work suggests the effect of betanin (glucoside form of betanin) in postprandial glucose regulation. Contrary to the betanin effect, the administration of *L. nagelii* produced a more prolonged anti-hyperglycemic activity with no modifications on insulin levels. This property of *L. nagelii* cells could probably be related to their natural capacity to transform glucose into lactic acid. However, the participation of gut microbiota in the absorption of glucose cannot be discarded.

A similar biochemical tendency was previously reported with oral administration of viable lyophilized cells of *Lactobacillus rhamnosus* and *Lactobacillus delbrueckii* subsp. *vulgaricus* in the same normoglycemic mouse model [22]. These results suggest that *L. nagelii* may be acting as a peripheral regulator of glucose absorption during postprandial situation. Nevertheless, the possible interaction of *L. nagelii* with gut microbiota should be investigated in further works. On the other hand, the present investigation suggests that betanin can exert a sustained anti-hyperglycemic effect in diabetic mice whereas the single administration of *L. nagelii* was apparently less effective in diabetic model than in the normoglycemic mice.

Remarkably, a combination of both components resulted in a significant anti-hyperglycemic effect in the diabetic model. This synergistic effect could probably be based in the capacity of *L. nagelii* for converting glucose into lactic acid plus the moderate anti-alpha amyrase/anti-alpha glucosidase and insulinogenic effects of betanin. Beneficial effects such as body weight loss, liver weight loss, decreases of LDL-c and triglycerides as well a substantial increase in HDL-c were observed. This experimental evidence may be related to the strong antioxidant activity of betanin and its capacity to ameliorate LDL-c oxidation [7].

The findings of this investigation suggest that a prolonged administration of *L. nagelii* cells could also contribute in the regulation of cholesterol and triglycerides in mice. Consequently, treated mice showed a significant decrease in body weight (about 28 %) and liver weight (about 35 %). This evidence shows the anti-obesity potential of the mixture of betanin and *L. nagelii*. Similar changes in lipid profile were reported by the continuous administration of *Lactobacillus plantarum* in obese rats [23]. However, the observed effect was lower than that of *L. nagelii*. Furthermore, the present work suggests that betanin could be one of the principal anti-obesity agents in *Phytolacca* berries [9].

The results obtained in this work shows that mixtures of betanin and *L. nagelii* produce favorable changes in the biosynthesis of key hormones involved in the metabolism of lipids and carbohydrates (insulin, leptin, adiponectin and insulin). Thus, the effect of these mixtures could probably ameliorate insulin resistance.

CONCLUSION

Betanin and *Lactobacillus nagelii* have been isolated and identified from *P. thyrsiflora* and the Mexican “coyol wine”, respectively. The results of the single or combined administration of these components in mice show a substantial improvement in the metabolism of carbohydrates and lipids. Simultaneous administration of both components produces a significant enhancement of anti-hyperglycemic and hypolipidemic activities. These properties may be related to the natural capacity of *L. nagelii* to metabolize glucose to lactic acid. The beneficial effect may be linked to a moderate anti-alpha-amyrase and anti-alpha-glucosidase activities of betanin as well as its effect on insulin synthesis. The design of new food products based on these constituents should be considered.
DECLARATIONS

Acknowledgement

We would like to thank Mr. Max Long for his kind assistance in proofreading. N.V-R. dedicates this work to the memory of Juan Nepomuseno Parra. We also thank CONACyT-Mexico for the project Catedras-578 granted to NVR (ID 4079).

Conflict of interest

No conflict of interest is associated with this study.

Contribution of authors

We declare that this work was done by the authors named in this article and all liabilities pertaining to claims relating to the content of this article will be borne by the authors. We declare that this work was done by the authors named in this article and all liabilities pertaining to claims relating to the content of this article will be borne by the authors. All the authors named in this work participated equally in the design of experimental procedures, collection, analysis of the data and writing.

Open Access

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/road), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

REFERENCES

1. Shad AA, Shah HU, Bakht J. Ethnobotanical assessment and nutritive potential of wild food plants. J Animal Plant Sci 2013; 23(1): 92-97.
2. Balick MJ. 1990. Production of cooyal wine from Acrocomia mexicana (Areceae) in Honduras. Econ Bot 1990; 44: 89-93.
3. Escalante A, Soto DRL, Gutiérrez VJE, Giles-Gómez M, Bolivar F, López-Munguia A, Pulque, a traditional Mexican alcoholic fermented beverage: historical, microbiological and technical aspects. Front Microbiol 2016; 7: 26.
4. Alcántara-Hernández RJ, Rodríguez-Álvarez JA, Valenzuela-Encinas C, Gutiérrez-Miceli FA, Castañón-González H, Marsch R, Ayora-Talavera T, Dendooven L. The bacterial community in ‘taberna’ a traditional beverage of Southern Mexico. Lett Appl Microbiol 2010; 51(5): 558-563.
5. Santiago-Urbina JA, Arias-García JA, Ruiz-Terán F. Yeast species associated with spontaneous fermentation of taberna, a traditional palm wine from the southeast of Mexico. Ann Microbiol 2014; 65: 287–296.
6. Pandey KR, Naik SR, Babu V, Vakil BV. Probiotics, prebiotics and synbiotics- a review. J Food Sci Technol 2015; 52(12): 7577–7587.
7. Tesoriere L, Allegra M, Butera D, Livrea MA. Absorption, excretion, and distribution of dietary antioxidant betalains in LDLs: potential health effects of betalains in humans. Am J Clin Nut 2004; 80(4): 941–945.
8. Vasconcellos J, Conte-Junior C, Silva D, Petrucci AP, Paschoalín L, Alvaeres TS. Comparison of total antioxidant potential, and total phenolic, nitrate, sugar, and organic acid contents in beetroot juice, chips, powder, and cooked beetroot. Food Sci Biotechnol 2016; 25: 79-84.
9. Kyran GR, Raju AB. Antiobesity effect of Phytolaccaceae in rats. Environ Exp Biol 2014; 12: 95-99.
10. Luczkiewicz M, Cisowsky W. The RP-HPLC analysis of anthocyanins. Chromatographia 1998; 48: 360-365.
11. Villa-Ruano N, Pacheco-Hernández Y, Cruz-Duran R, Lozoya-Gloria E, Betancourt-Jiménez MG. Seasonal variation in phytochemicals and nutraceutical potential of Begonia nelumbifolia consumed in Puebla, México. J Food Sci Technol 2017; 54(6): 1484–1490.
12. Edwards CG, Collins MD, Lawson PA, Rodríguez AV. Lactobacillus nagellii sp. nov., an organism isolated from a partially fermented wine. Int J Syst Evol Microbiol 2000; 50: 699–702.
13. Lacerda ICA, Gomes FCO, Borelli BM, Faria CLJ, Franco GR, Mourão MM, Morais PB, Rosa CA. Identification of the bacterial community responsible for traditional fermentation during sour cassava starch, cachaça and minas cheese production using culture-independent 16s rRNA gene sequence analysis. Braz J Microbiol 2011; 42(2): 650-657.
14. Khan MW, Zadeh M, Bere P, Gounaris E, Owen J, Klaenhammer T, Mohamadzadeh M. Modulating intestinal immune responses by lipoteichoic acid-deficient Lactobacillus acidophilus. Immunotherapy 2012; 4(2): 151–161.
15. Carrol IM, Andrus JM, Bruno-Bárcena JM, Klaenhammer TR, Hassam HM, Threadgill DS. Anti-inflammatory properties of Lactobacillus gasseri expressing manganese superoxide dismutase using the interleukin 10-deficient mouse model of colitis. Am J Physiol Gastr Liver Physiol 2007; 293(4): 729–738.
16. Saber R, Zadeh M, Pakanati KC, Bere P, Klaenhammer T, Mohamadzadeh M. Lipoteichoic acid-deficient Lactobacillus acidophilus regulates downstream signals. Immunotherapy 2011; 3(3): 337–347.
17. Zarua MZ, Manosroi A, Akhisa T, Manosroi W, Rangdaeng S, Manosroi J. Hypoglycemic activity of the Anisopus mannii N. E. Br. methanol leaf extract in Trop J Pharm Res, June 2020; 19(6): 1275
normal and alloxan-induced diabetic mice. J Complement Integ Med 2013; 10(1): 37-46.
18. Kumar SS, Manoj P, Nimisha G, Giridhar P. Phytoconstituents and stability of betalains in fruit extracts of Malabar spinach (Basella rubra L.). J Food Sci Technol 2016; 53(11): 4014-4022.
19. Jerz G, Skotski T, Fiege K, Winterhalter P, Wybraniec S. Separation of betalains from berries of Phytolacca americana by ion-pair high-speed counter-current chromatography. J Chromatogr 2008; 1190(1-2): 63-73.
20. De Smet PAGM. Phytolacca americana. In: De Smet PAGM, Keller K, Hansel R, Chandler RF, editors. Adverse effect of herbal drugs 2. Heidelberg: Springer Berlin 1993. p. 253-261.
21. Lugo-Radillo A, Delgado-Enciso I, Peña-Beltrán E. Betanidin significantly reduces blood glucose levels in BALB/c mice fed with an atherogenic diet. Nat Prod Bioprospec 2012; 2(4): 154–155.
22. Honda K, Moto M, Uchida U, He F, Hashizume N. Anti-diabetic effects of lactic acid bacteria in normal and type 2 diabetic mice. J Clin Biochem Nutr 2012; 51(2): 96-101.
23. Salaj R, Štolfová J, Šoltesová A, Hertelyová S, Hijoová EE, Bertková I, Strojny I, Kružliak P, Bomba A. The effects of two Lactobacillus plantarum strains on rat lipid metabolism receiving a high fat diet. Sci World J 2013; 2013(8): 135142.
24. Villa-Ruano N, Pacheco-Hernández Y, Becerra-Martinez E, Zárate-Reyes JA, Cruz-Durán R. Chemical profile and pharmacological effects of the resin and essential oil from Bursera slechtendalii: A medicinal “copal tree” of southern Mexico. Fitoterapia 2018; 128: 86-92
25. Terrestrial Animal Health Code. Use of animals in research and education. World Organisation for Animal Health, Volume 1, Chapter 7.8; 2019.