Photorhabdus heterorhabditis subsp. aluminescens subsp. nov., Photorhabdus heterorhabditis subsp. heterorhabditissubsp. nov., Photorhabdus australis subsp. thailandensis subsp. nov., Photorhabdus australis subsp. australis subsp. nov., and Photorhabdus aegyptia sp. nov. isolated from Heterorhabditis entomopathogenic nematodes

Ricardo A. R. Machado, Arthur Muller, Shimaa M. Ghazal, Aunchalee Thanwisai, Sylvie Pages, Helge B. Bode, Mona A. Hussein, Kamal M. Khalil, Louis S. Tisa

HAL Id: hal-03143425
https://hal.inrae.fr/hal-03143425
Submitted on 16 Feb 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
To cite this version:

Ricardo A. R. Machado, Arthur Muller, Shima M. Ghazal, Aunchalee Thanwisai, Sylvie Pages, et al.. Photorhabdus heterorhabditis subsp. aluminescens subsp. nov., Photorhabdus heterorhabditis subsp. heterorhabditissubsp. nov., Photorhabdus australis subsp. thailandensis subsp. nov., Photorhabdus australis subsp. australis subsp. nov., and Photorhabdus aegyptia sp. nov. isolated from Heterorhabditis entomopathogenic nematodes. International Journal of Systematic and Evolutionary Microbiology, Microbiology Society, 2021, 71 (1), 10.1099/ijsem.0.004610. hal-03143425
Photorhabdus heterorhabditis subsp. *aluminescens* subsp. nov., **Photorhabdus heterorhabditis** subsp. *heterorhabditis* subsp. nov., **Photorhabdus australis** subsp. *thailandensis* subsp. nov., **Photorhabdus australis** subsp. *australis* subsp. nov., and **Photorhabdus aegyptia** sp. nov. isolated from *Heterorhabditis* entomopathogenic nematodes

Ricardo A. R. Machado1,*, Arthur Muller1, Shimaa M. Ghazal2,3, Aunchalee Thanwisai4, Sylvie Pagès5, Helge B. Bode6, Mona A. Hussein7, Kamal M. Khalil3 and Louis S. Tisa8

TAXONOMIC DESCRIPTION

Machado et al., Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijsem.0.004610

Abstract

Three Gram-stain-negative, rod-shaped, non-spore-forming bacteria, BA1T, Q614T and PB68.1T, isolated from the digestive system of *Heterorhabditis* entomopathogenic nematodes, were biochemically and molecularly characterized to clarify their taxonomic affiliations. The 16S rRNA gene sequences of these strains suggest that they belong to the Gammaproteobacteria, to the family *Morganellaceae*, and to the genus *Photorhabdus*. Deeper analyses using whole genome-based phylogenetic reconstructions suggest that BA1T is closely related to *Photorhabdus akhursti*, that Q614T is closely related to *Photorhabdus heterorhabditis*, and that PB68.1T is closely related to *Photorhabdus australis*. *In silico* genomic comparisons confirm these observations: BA1T and *P. akhursti* 15138T share 68.8% digital DNA–DNA hybridization (dDDH), Q614T and *P. heterorhabditis* SF41T share 75.4% dDDH, and PB68.1T and *P. australis* DSM 17609T share 76.6% dDDH. Physiological and biochemical characterizations reveal that these three strains also differ from all validly described *Photorhabdus* species and from their more closely related taxa, contrary to what was previously suggested. We therefore propose to classify BA1T as a new species within the genus *Photorhabdus*, Q614T as a new subspecies within *P. heterorhabditis*, and PB68.1T as a new subspecies within *P. australis*. Hence, the following names are proposed for these strains: *Photorhabdus aegyptia* sp. nov. with the type strain BA1T (=DSM 111180T=CCOS 1943T=LMG 31957T), *Photorhabdus heterorhabditis* subsp. *aluminescens* subsp. nov. with the type strain Q614T (=DSM 111144T=CCOS 1944T=LMG 31959T) and *Photorhabdus australis* subsp. *thailandensis* subsp. nov. with the type strain PB68.1T (=DSM 111145T=CCOS 1942T). These propositions automatically create *Photorhabdus heterorhabditis* subsp. *heterorhabditis* subsp. nov. with SF41T as the type strain (currently classified as *P. heterorhabditis*) and *Photorhabdus australis* subsp. *australis* subsp. nov. with DSM17609T as the type strain (currently classified as *P. australis*).

Species of the bacterial genus *Photorhabdus* live in a close symbiotic relationship with *Heterorhabditis* entomopathogenic nematodes (EPNs) [1]. EPNs are soil-inhabiting organisms that parasitize and reproduce inside small arthropods [2, 3]. They colonize their prey by penetrating through the cuticle or natural openings such as the mouth, spiracles...
or the anus, and crawl towards the haemocoel where they release their *Photorhabdus* symbiotic bacterial partners [4]. *Photorhabdus* bacteria multiply, produce immunosuppressors, digestive proteins and secondary metabolites that cause toxæmia, septicemia and eventually kill the infected organism [1, 5–8]. The genus *Photorhabdus* was described by Boemare *et al*. in 1993 to include symbiotic bacteria of *Heterorhabditis* EPNs [9]. Since then, several species and subspecies have been described [9–24]. Currently, the genus *Photorhabdus* contains the following 19 species with validly published names: *Photorhabdus akhurstii*, *Photorhabdus asymbiotica*, *Photorhabdus australis*, *Photorhabdus bodei*, *Photorhabdus caribbeaeensis*, *Photorhabdus cinerea*, *Photorhabdus hainanensis*, *Photorhabdus heterorhabditis*, *Photorhabdus kaiyai*, *Photorhabdus khanii*, *Photorhabdus kleinii*, *Photorhabdus laumondii*, *Photorhabdus luminescens*, *Photorhabdus nanaonensis*, *Photorhabdus noeiniputensis*, *Photorhabdus stackebrandti*, *Photorhabdus tasmaniensis*, *Photorhabdus temperata* and *Photorhabdus thracensis*. *Photorhabdus laumondii* is divided into two subspecies: *P. laumondii* subsp. *laumondii* and *P. laumondii* subsp. *clarkei*; *Photorhabdus khanii* is divided into two subspecies: *P. khanii* subsp. *khanii* and *P. khanii* subsp. *guanajuatensis*; and *Photorhabdus luminescens* is divided into two subspecies: *P. luminescens* subsp. *luminescens* and *P. luminescens* subsp. *mexicana* [16, 17]. The selected primary form colony was further sub-cultured on NBTA plates [Luria–Bertani (LB) agar plates supplemented with 25 mg ml⁻¹ bromothymol blue and 4 mg ml⁻¹ triphenyl-2,3,5-tetrazolium chloride]. The selected primary form colony was further sub-cultured and maintained on LB agar plates at 28 °C. Cell morphology was observed under a Zeiss light microscope at a magnification of ×1000, with cells grown for 5 days at 28 °C on LB agar plates. Motility was tested on soft agar as described [29]. Catalase activity was tested on discs containing N,N-dimethyl-p-phenylenediamine oxalate and α-naphthol according to manufacturer’s conditions (Sigma-Aldrich). Catalase activity was determined by adding a drop of 10% (v/v) H₂O₂ into 50 µl of a liquid LB-grown, 24-h-old bacterial culture. The ability of bacterial strains to absorb dye was tested by growing the cells on NBTA agar containing bromothymol blue and triphenyl-2,3,5-tetrazolium chloride (Sigma-Aldrich) [30]. Bioluminescence was determined from liquid cultures using a TriStar LB 942 Multimode Microplate Reader (Berthold Technologies). API 20E strips were used according to manufacturer’s instructions (BioMérieux). In this case, strains BA1T, Q614T and PB68.1T were tested in parallel and the results obtained were compared to those published previously and obtained using all *Photorhabdus* type strains [16].

To molecularly characterize strains BA1T, Q614T and PB68.1T, we used bacterial cultures from a single primary form colony of each strain. Bacteria primary forms were determined by examining colony characteristics on NBTA plates [Luria–Bertani (LB) agar plates supplemented with 25 mg ml⁻¹ bromothymol blue and 4 mg ml⁻¹ triphenyl-2,3,5-tetrazolium chloride]. To physiologically, biochemically and morphologically characterize strains BA1T, PB68.1T and Q614T, we used bacterial cultures from a single primary form colony of each strain. Bacteria primary forms were determined by examining colony characteristics on NBTA plates [Luria–Bertani (LB) agar plates supplemented with 25 mg ml⁻¹ bromothymol blue and 4 mg ml⁻¹ triphenyl-2,3,5-tetrazolium chloride]. The selected primary form colony was further sub-cultured and maintained on LB agar plates at 28 °C. Cell morphology was observed under a Zeiss light microscope at a magnification of ×1000, with cells grown for 5 days at 28 °C on LB agar plates. Motility was tested on soft agar as described [29]. Catalase activity was tested on discs containing N,N-dimethyl-p-phenylenediamine oxalate and α-naphthol according to manufacturer’s conditions (Sigma-Aldrich). Catalase activity was determined by adding a drop of 10% (v/v) H₂O₂ into 50 µl of a liquid LB-grown, 24-h-old bacterial culture. The ability of bacterial strains to absorb dye was tested by growing the cells on NBTA agar containing bromothymol blue and triphenyl-2,3,5-tetrazolium chloride (Sigma-Aldrich) [30]. Bioluminescence was determined from liquid cultures using a TriStar LB 942 Multimode Microplate Reader (Berthold Technologies). API 20E strips were used according to manufacturer’s instructions (BioMérieux). In this case, strains BA1T, Q614T and PB68.1T were tested in parallel and the results obtained were compared to those published previously and obtained using all *Photorhabdus* type strains [16].

To molecularly characterize strains BA1T, Q614T and PB68.1T, we reconstructed phylogenetic relationships based on 16S rRNA gene sequences and whole genome sequences, and calculated sequence similarity scores. As the full genome sequences of certain type strains are not publicly available, the set of strains used to reconstruct phylogenetic relationships based on 16S rRNA gene sequences, whole genome sequences and biochemical tests are slightly different. Genome sequences of BA1T, Q614T and PB68.1T were obtained as described previously [6, 16, 17, 25]. Whole genome sequence similarities were calculated by the digital DNA–DNA hybridization (dDDH) method using formula 2 of the Genome-to-Genome Distance Calculator (GGDC) web service of the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ) [31–34]. Whole genome-based phylogenetic relationships were reconstructed using the Reference sequence Alignment based Phylogeny builder realphy 1.12 and FastTree 2.1.10 [35–39]. 16S rRNA genes were amplified by PCR and sequenced by Sanger sequencing [40, 41]. The 16S rRNA gene-based phylogenetic relationships were reconstructed using the maximum-likelihood method based on the Kimura two-parameter model in MEGA7 [42, 43]. Sequences were aligned with MUSCLE (version 3.8.31) [44]. The tree with the highest log likelihood (−3554.61) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying neighbour-joining and BioNJ algorithms to a matrix of pairwise distances estimated using the maximum composite likelihood approach.
and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (five categories (+G, parameter=0.7354)). The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 87.62% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. There were a total of 1348 positions in the final dataset. Graphical representation and editing of the phylogenetic tree were performed with the Interactive Tree of Life (version 3.5.1) [45, 46].

Phylogenetic reconstruction based on 16S rRNA gene sequences and 16S rRNA gene sequence similarity calculations indicate that the closest relatives of strain BA1T are P. akhurstii DSM 15138T (99.1%) and P. hainanensis DSM 22397T (99.1%), the closest relative of strain Q614T is P. heterorhabditis SF41T (99.3%) and the closest relative of strain PB68.1T is P. australis DSM 17609T (99.7%) (Figs 1 and 2). Lower sequence similarities were found to all validly described species of the genus Photorhabdus.

Given the high 16S rRNA gene sequence similarity scores observed and that 16S rRNA and housekeeping gene sequences provide insufficient information to resolve the phylogenetic relationships of this bacterial group, particularly of very closely related species [16, 17], and to fully meet the guidelines of the ad hoc Committee on Reconciliation of Approaches to Bacterial Systematics [47] that recommends the dDDH method as the gold standard for bacterial species circumscription, we reconstructed phylogenetic trees based on core genomes and calculated dDDH scores to determine the taxonomic position of these strains. Strain BA1T clusters together with P. akhurstii DSM 15138T and P. hainanensis DSM 22397T, Q614T clusters together with P. heterorhabditis SF41T, and PB68.1T clusters together with P. australis DSM 17609T (Fig. 3). The dDDH scores between BA1T and all Photorhabdus species were lower than 70% (Fig. 4). The dDDH scores between Q614T and all Photorhabdus species, except P. heterorhabditis SF41T, were lower than 70%. The dDDH scores between PB68.1T and all Photorhabdus species, except P. australis DSM 17609T, were lower than 70%. Strains Q614T and P. heterorhabditis SF41T share 75.4% dDDH (CI: 72.4–78.1%), and strains PB68.1T and P. australis DSM 17609T share 76.6% dDDH (CI: 73.6–79.4%). Given that the thresholds for species and subspecies delimitation are 70% and 79% dDDH, respectively, we propose to classify BA1T as a new Photorhabdus species, Q614T as a new subspecies within the species P. heterorhabditis and PB68.1T as a new subspecies within the species P. australis [16, 32, 47]. Biochemical characterization supports the status of BA1T, Q614T and PB68.1T as new taxa.
since they exhibit unique biochemical profiles, which differ from the profiles of other strains from other taxa (Table 1). Citrate utilization, acetoin and indole production, and urease activity are particularly suitable biochemical tests to differentiate the different species of the genus Photorhabdus (Table 1). Based on the results of this polyphasic approach, we propose the creation of Photorhabdus aegyptia sp. nov. with the type strain BA1T (＝DMS 111180T＝CCOS 1943T＝LMG 31957T), Photorhabdus heterorhabditis subsp. aluminascens subsp. nov. with the type strain Q614T (＝DMS 111144T＝CCOS 1944T＝LMG 31959T), and Photorhabdus australis subsp. thailandensis subsp. nov. with the type strain PB68.1T (＝DMS 111145T＝CCOS 1942T). These propositions automatically create Photorhabdus heterorhabditis subsp. heterorhabditis subsp. nov. with SF41T as the type strain (currently classified as P. heterorhabditis) and Photorhabdus australis subsp. australis with DSM 17609T as the type strain (currently classified as P. australis).

EMENDED DESCRIPTION OF PHOTORHABDUS AUSTRALIS (AKHURST ET AL. 2004) MACHADO ET AL. 2018

Photorhabdus australis (aus.tral.īs. L. fem. adj. australis: southern; the type strain of this species was detected in the southern hemisphere).

Maximum temperature for growth is 40°C. Yellow or no pigment; weakly pigmented. Most isolates are positive for DNase and most are negative for aesculin hydrolysis. Negative for urease and indole production. Most isolates produce acid from gluconate, variable for acid production from aesculin and negative for trehalose. Proteinaceous inclusions are rare. β-Galactosidase weak or positive. Annular haemolysis is variable on sheep blood and horse blood agars. Most isolates are negative for Tween 60 and Tween 80 esterases and most grow on myo-inositol. Natural habitat is Heterorhabditis EPNs; all isolates were obtained from human clinical specimens in Australia. The type strain of the species is 9802892T (＝CIP 108025T＝ACM 5210T).
DESCRIPTION OF PHOTORHABDUS AUSTRALIS SUBSP. AUSTRALIS SUBSP. NOV.

Photorhabdus australis subsp. *australis* (aus.tral.is. L. fem. adj. *australis*: southern; the type strain of the species was detected in the Southern Hemisphere).

Maximum temperature for growth is 40 °C. Yellow or no pigment; weakly pigmented. Most isolates are positive for DNase and most are negative for aesculin hydrolysis. Negative for urease and indole production. Most isolates produce acid from gluconate; variable for acid production from aesculin and negative for trehalose. Proteinaceous inclusions are rare. Weak β-galactosidase activity. Annular haemolysis is variable on sheep blood and horse blood agars. The type strain is symbiotically associated with *Heterorhabditis indica* EPNs. Their natural habitat is the intestines of these nematodes and the insects infected by them. The type strain of the subspecies is PB68.1T (=DMS 111145T=CCOS 1942T). Whole genome sequences of this strain are available in the NCBI data bank under accession number LOMY01.

EMENDED DESCRIPTION OF PHOTORHABDUS HETERORHABDITIS FERREIRA ET AL. 2014

Photorhabdus heterorhabditis (he.te.ro.rhab’d.it.is. N.L. gen. n. *heterorhabditis* of the nematode *Heterorhabditis*).

Cells are Gram-stain-negative, catalase-positive rods. Bioluminescence variable. Aerobic growth is preferred, with growth temperatures ranging from 24 to 42 °C in nutrient broth (NB) and from 24 to 35 °C in tryptic soy broth (TSB). Optimal growth in NB and TSB occurs at 30 °C. Colonies on NBTA are blue or blue-green. Indole production negative. Citrate utilization variable. Urease variable. Tryptophan deaminase variable. Acid is produced from N-acetylglucosamine, D-fructose, D-glucose, glycerol, D-mannose, maltose and D-xylene. Able to ferment glucose, hydrolyse arginine, aesculin and gelatin, and produce urease. Assimilates glucose, D-mannose, N-acetylglucosamine, maltose and potassium gluconate (weakly). Nitrate is not reduced. This strain was isolated from *Heterorhabditis*...
zealandica EPNs collected in South Africa. The type strain of the species is SF41ᵀ (=ATCC BAA-2479ᵀ=DSM 25263ᵀ).

DESCRIPTION OF PHOTORHABDUS HETERORHABDITIS SUBSP. HETERORHABDITIS SUBSP. NOV.

Photorhabdus heterorhabditis subsp. heterorhabditis (he. ro.hab’dit.is. N.L. gen. n. heterorhabditis of the nematode Heterorhabditis).

Cells are Gram-stain-negative, catalase-positive rods. Bioluminescent. Aerobic growth is preferred, with growth temperatures ranging from 24 to 42 °C in NB and from 24 to 35 °C in TSB. Optimal growth in NB and TSB occurs at 30 °C. Colonies on NBTA are blue or blue-green. Acid is produced from N-acetylglucosamine, d-fructose, d-glucose, glycerol, d-mannose, maltose and d-xylose. Able to ferment glucose, hydrolyse arginine, aesculin and gelatin, and produce urease. Assimilates glucose, d-mannose, N-acetylglucosamine, maltose and potassium gluconate (weakly). Indole production negative. Citrate utilization negative. Urease negative. Tryptophan deaminase positive. Nitrate is not reduced. This strain was isolated from Heterorhabditis zealandica EPNs collected in South Africa.

The type strain of the subspecies is SF41ᵀ (=ATCC BAA-2479ᵀ=DSM 25263ᵀ).

DESCRIPTION OF PHOTORHABDUS HETERORHABDITIS SUBSP. ALUMINESCENS SUBSP. NOV.

Photorhabdus heterorhabditis subsp. aluminescens (a.lu.mi.nes’cens. N.L. part. adj. aluminescens non-luminescing; for its incapability to produce bioluminescence).

Cells are large motile rods (4.5×1.0–10.0×2.0 µm). Colonies are mucoid, circular, slightly irregular margins, yellow or orange in colour with a diameter of approximately 2 mm after 48 h growth on LB agar. Maximum temperature for growth is 33–34 °C. Negative for β-galactosidase, arginine dihydrolase, lysine decarboxylase, ornithine decarboxylase, tryptophan deaminase and for H₂S, indole and acetoin production. Positive for citrate utilization, for urease and gelatinase activity, and for glucose oxidation. Annular haemolysis is observed on sheep blood agar. Natural habitat is Heterorhabditis EPNs. The type strain of the subspecies is Q614ᵀ (=DSM 111144ᵀ=CCOS 1944ᵀ=LMG 31959ᵀ). Whole genome sequences of this strain are available in the NCBI data bank under accession number JABBCS01.
Table 1. API20E-based phenotypic characters to differentiate all Photorhabdus species/subspecies. Strains *P. australis* subsp. *thailandensis* subsp. nov. PB68\(^1\), *P. aegyptia* sp. nov. BA1\(^7\), and *P. heterorhabditis* subsp. *aluminescens* subsp. nov. Q614\(^1\) were tested in parallel. The experiment was conducted twice. The obtained results were compared to those published previously [16]. For further information refer to the original studies [9–19,21,23,24,27].

Character	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
β-Galactosidase	–	–	w	w	–	–	–	–	–	–	–	w	v	–	–	–	–	–	+	–	–	–	–	–	v
Arginine dihydrolase	–	–	–	–	–	–	–	–	–	–	–	–	–	v	–	–	–	–	–	+	–	–	–	–	v
Lysine decarboxylase	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Ornithine decarboxylase	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Citrate utilization	+	+	+	+	+	+	+	v	v	–	v	–	+	+	–	–	+	–	+	+	–	+	–	+	v
H₂S production	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Urease	+	+	–	–	–	v	–	+	–	+	+	v	–	–	+	–	v	–	–	–	–	–	–	–	+
Tryptophan deaminase	–	–	v	v	v	+	–	–	+	–	+	v	–	+	+	+	v	–	–	–	–	–	–	+	
Indole production	+	–	–	–	–	–	–	–	–	+	+	v	–	v	v	v	–	–	–	–	–	–	–	–	+
Acetoin production	+	–	–	–	–	–	–	–	–	–	+	+	–	+	+	–	–	–	–	–	–	–	–	–	+
Gelatinase	+	+	+	+	–	–	v	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Glucose oxidation	+	+	w	+	+	+	+	v	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Mannitol oxidation	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Inositol oxidation	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Sorbitol oxidation	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Rhamnose oxidation	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Sucrose oxidation	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Melibiose oxidation	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Amygdalin oxidation	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Arabinose oxidation	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–
(Cytochrome) oxidase	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–
NO₃ production	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–
NO₂ reduction to N₂ gas	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	v	–	–	v	–	–	–	v
DESCRIPTION OF PHOTORHABDUS AEGYPTIA SP. NOV.

Photorhabdus aegyptia (ae.gyp’t.i.a. L. fem. adj. aegyptia pertaining to Egypt, the country where the entomopathogenic nematodes that host the type strain were originally collected).

Cells are motile, non-spore-forming rods (approx. 1.0 µm wide and 1.5–2.0 µm long), Gram-stain-negative, oxidase-negative and catalase positive. Colonies are mucoid, circular, slightly irregular margins, pale yellow in colour with a diameter of approximately 2 mm after 48 h growth on LB agar and produce light. Good growth occurs on LB at 28–30°C. Negative for β-galactosidase, arginine dihydrolase, lysine decarboxylase, ornithine decarboxylase, tryptophan deaminase and for H2S production. Positive for citrate utilization, for urease and gelatinase activity, for glucose oxidation and for indole acetoyn production. The type strain is symbiotically associated with Heterorhabditis indica EPN. Their natural habitat is the intestines of these nematodes and the insects infected by them. The type strain is BA17 (=DMS 111180=CCOS 19437=LMG 31957). Whole genome sequences of this strain are available in the NCBI data bank under accession number JFGV01

Funding information
The work of R.A.R.M. and A.M. is supported by the Swiss National Science Foundation (grant 186 094 to R.A.R.M.). The work of M.A.H. is supported by the National Research Centre (grant 12050137).

Acknowledgements
We thank the Swiss National Science foundation for financial support, the next Generation Sequencing Platform and the Interfaculty Bioinformatics Unit of the University of Bern for performing whole genome sequencing and providing high performance computing infrastructure, the Institute of Biology of the University of Neuchâtel (Switzerland) and the National Research Centre (Cairo, Egypt) for their support.

Conflicts of interest
The authors declare that there are no conflicts of interest.

References
1. Clarke DJ. Photorhabdus: a tale of contrasting interactions. Microbiology 2020;166:160907:335–348.
2. Poinar GO. Veremchuk G V. A new strain of entomopathogenic nemate and geographical distribution of Neopeltoides carpospasmae Weiser (Rhabditida, Steinernematidae). Zool Zhurna 1970:966–969.
3. Khan A, Brooks WM, Hirschmann H. Chromonema heliothidis n. gen., n. sp. (Steinernematidae, Nematoda), a parasite of Heliothis zeae (Noctuidae, Lepidoptera) and other insects. J Nematol 1976;8:159–168.
4. Kaya HK, Gaugler R. Entomopathogenic nematodes. Annu Rev Entomol 1993:38:181–206.
5. Lacey LA, Georgis R. Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. J Nematol 2012;44:218–225.
6. Tobias NJ, Mishra B, Gupta DK, Sharma R, Thines M et al. Genome comparisons provide insights into the role of secondary metabolites in the pathogenic phase of the Photorhabdus life cycle. BMC Genomics 2016;17:537.
7. Joyce SA, Clarke DJ. A hexA homologue from Photorhabdus regulates pathogenicity, symbiosis and phenotypic variation. Mol Microbiol 2003;47:1445–1457.
8. Blackburn M, Golubeva E, Bowen D, Fruenh-Constant RH. A novel insecticidal toxin from Photorhabdus luminescens, toxin complex A (TCA), and its histopathological effects on the midgut of Manduca sexta. Appl Environ Microbiol 1999;64:3036–3041.
9. Boemare NE, Akhurst RJ, Mourant RG. DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. Int J Syst Bacteriol 1993;43:249–255.
10. Akhurst RJ, Boemare NE, Janssen PH, Peel MM, Alfredson DA et al. Taxonomy of Australian clinical isolates of the genus Photorhabdus and proposal of Photorhabdus asymbiotica subsp. asymbiotica subsp. nov. and P. asymbiotica subsp. australis subsp. nov. Int J Syst Microbiol 2004;5:1301–1310.
11. Ferreira T, van Reenen C, Pagès S, Tailliez P, Malan AP et al. Photorhabdus luminescens subsp. nonieputensis subsp. nov., a symbiotic bacterium associated with a novel Heterorhabditis species related to Heterorhabditis indica. Int J Syst Evol Microbiol 2013;63:1853–1858.
12. Ferreira T, van Reenen CA, Endo A, Tailliez P, Pagès S et al. Photorhabdus heterorhabditis sp. nov., a symbiont of the entomopathogenic nemate Heterorhabditis zealandica. Int J Syst Evol Microbiol 2014;64:1540–1546.
13. Fischer-Le Saux M, Viallard V, Brunel B, Normand P, Boemare NE. Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P. luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata subsp. nov., P. temperata subsp. temperata subsp. nov. and P. asymbiotica sp. nov. Int J Syst Bacteriol 1999;49 Pt 4:1645–1656.
14. Glaeser SP, Tobias NJ, Thanwasi A, Chantratita N, Bode HB et al. Photorhabdus luminescens subsp. naamaenosensis subsp. nov., isolated from Heterorhabditis baujardi nematodes. Int J Syst Evol Microbiol 2017;67:1046–1051.
15. Haiz S, Stackebrandt E, Lang E, Schumann P, Ehlers R-U et al. Two new subspecies of Photorhabdus luminescens, isolated from Heterorhabditis bacteriophora (Nematoda: Heterorhabditidae): Photorhabdus luminescens subsp. kayii subsp. nov. and Photorhabdus luminescens subsp. thracensis subsp. nov. Syst Appl Microbiol 2004;27:36–42.
16. Machado RAR, Bruno P, Arce CCM, Liechti N, Köhler A et al. Photorhabdus khani subsp. guanajautensis subsp. nov., isolated from Heterorhabditis atacamensis, and Photorhabdus luminescens subsp. mexicana subsp. nov., isolated from Heterorhabditis mexicana entomopathogenic nematodes. Int J Syst Evol Microbiol 2019;69:652–661.
17. Machado RAR, Wüthrich D, Kuhnert P, Arce CCM, Thönen L et al. Whole-genome-based revisit of Photorhabdus phylogeny: proposal for the elevation of most Photorhabdus subspecies to the species level and description of one novel species Photorhabdus bodei subsp. nov., and one novel subspecies Photorhabdus laumondii subsp. clarkei subsp. nov. Int J Syst Evol Microbiol 2018;68:2664–2681.
18. Tailliez P, Larouci C, Gninbre N, Paule A, Pagès S et al. Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp. nov., P. luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp. nov., P. temperata subsp. hainii subsp. nov., P. temperata subsp. tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis comb. nov. Int J Syst Evol Microbiol 2010;60:1921–1937.
19. Tóth T, Lakatos T. Photorhabdus temperata subsp. cinerea subsp. nov., isolated from Heterorhabditis nematodes. Int J Syst Evol Microbiol 2008;58:2979–2981.
20. Thomas GM, Poinar GO. Xenorhabdus gen. nov., a genus of entomopathogenic, Nematophilic bacteria of the family Enterobacteriaceae. Int J Syst Bacteriol 1979;29:352–360.
21. Szaláigs E, Koch C, Fodor A, Burghardt J, Buss O et al. Phylogenetic evidence for the taxonomic heterogeneity of Photurhbusluminescens. Int J Syst Bacteriol 1997;47:402–407.

22. Orozco RA, Hill T, Stock SP. Characterization and phylogenetic relationships of Photurhbusluminescens subsp. sonorenais (γ-Proteobacteria: Enterobacteriaceae), the bacterial symbiont of the entomopathogenic nematode Heterorhabditis sonorensis (Nematoda: Heterorhabditidae). Curr Microbiol 2013;66:30–39.

23. An R, Grewal PS. Photurhbus temperata subsp. stackebrandtii subsp. nov. (Enterobacteriales: Enterobacteriaceae). Curr Microbiol 2010;61:291–297.

24. An R, Grewal PS. Photurhbusluminescens subsp. kleinii subsp. nov. (Enterobacteriales: Enterobacteriaceae). Curr Microbiol 2011;62:534–543.

25. Ghazal S, Hurst SG, Morris K, Abebe-Akefe F, Thomas WK et al. Draft genome sequence of Photurhbusluminescens strain BA1, an entomopathogenic bacterium isolated from nematodes found in Egypt. Genome Announc 2014;2:e00396–14.

26. Thanawais A, Tandhavanant S, Saiprom N, Waterfield NR, Ke Long P, Long PK et al. Diversity of Xenorhabdus and Photurhbus spp. and their symbiotic entomopathogenic nematodes from Thailand. PLoS One 2012;7:e43835.

27. Akhurst RJ, Boemare NE. A non-luminescent strain of Xenorhabdusluminescens (Enterobacteriaceae). Microbiology 1986;132:1917–1922.

28. Hussein MA, El-Soud AA. Isolation and characterization of two heterorhabditid and one steinernematid nematodes from Egypt. Int J Nematol 2006;16:7.

29. Tremblay J, Déziel E. Improving the reproducibility of Pseudomonas aeruginosa swarming motility assays. J Basic Microbiol 2008;48:509–515.

30. Akhurst RJ, Mournant RG, Baud L, Boemare NE. Phenotypic and DNA relatedness between nematode symbionts and clinical strains of the genus Photurhbus (Enterobacteriaceae). Int J Syst Bacteriol 1996;46:1034–1014.

31. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60.

32. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuener C, Michael V et al. Complete genome sequence of DSM 30083(T), the type strain (IUS/41(T)) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014;9:2.

33. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010;2:117–134.

34. Auch AF, Klenk H-P, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010;2:142–148.

35. Bertels F, Silander OK, Pachkov M, Rainey PB, vanNimwegen E. Automated recombination of whole-genome phylogenies from short-sequence reads. Mol Biol Evol 2014;31:1077–1088.

36. Lemoine F, Correia E, Leof V, Doppelt-Azoual O, Mareuil F et al. NGPhylogeny.fr: new generation phylogenetic services for non-specialists. Nucleic Acids Res 2019;47:W260–W265.

37. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009;26:1641–1650.

38. Lemoine F, Domelevo Entfellner J-B, Wilkinson E, Correia D, Dâvila Felipe M et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 2018;556:452–456.

39. Price MN, Dehal PS, Arkin AP. FastTree2—approximately maximum-likelihood trees for large alignments. PLoS ONE 2010;5:e9490.

40. Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC et al. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 1998;64:795–799.

41. Hill V, Kuhntert P, Erb M, Machado RAR. Identification of Photurhbus symbionts by MALDI-TOF MS. Microbiology 2020;166:mic00905.

42. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120.

43. Kumar S, Steger G, Tamura K. MG47: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874.

44. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797.

45. Chevenet F, Brun C, Bafuls A-L, Jacq B, Christen R. TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 2006;7:439.

46. Letunic I, Bork P. Interactive tree of life (iTOL) V3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016;44:W242–W245.

47. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464.