A DOLBEAULT–DIRAC SPECTRAL TRIPLE FOR QUANTUM PROJECTIVE SPACE

BISWARUP DAS, RÉAMONN Ó BUACHALLA, AND PETR SOMBERG

Abstract. The notion of a Kähler structure for a differential calculus was recently introduced by the second author as a framework in which to study the noncommutative geometry of the quantum flag manifolds. It was subsequently shown that any covariant positive definite Kähler structure has a canonically associated triple satisfying, up to the compact resolvent condition, Connes’ axioms for a spectral triple. In this paper we begin the development of a robust framework in which to investigate the compact resolvent condition, and moreover, the general spectral behaviour of covariant Kähler structures. This framework is then applied to quantum projective space endowed with its Heckenberger–Kolb differential calculus. An even spectral triple with non-trivial associated K-homology class is produced, directly q-deforming the Dirac–Dolbeault operator of complex projective space. Finally, the extension of this approach to a certain canonical larger class of compact quantum Hermitian symmetric spaces is discussed in detail.

Contents

1. Introduction 2
2. Preliminaries 6
2.1. Complex, Hermitian, and Kähler Structures on Differential Calculi 6
2.2. Metrics, Adjoints, and the Hodge Map 8
2.3. CQH-Complex and CQH-Hermitian Spaces 9
2.4. Dolbeault–Dirac Spectral Triples 11
2.5. Analytic K-Homology and the Anti-Holomorphic Euler Characteristic 12
3. CQH-Complex Spaces of Gelfand Type 13
3.1. Hodge Decomposition of the Laplacian 14
3.2. CQH-Complex Spaces of Gelfand Type 16
4. Drinfeld–Jimbo Quantum Groups and CQH-Hermitian Spaces 17
4.1. Highest and Lowest Weight Vectors 17
4.2. CQH-Complex Spaces and Leibniz Constants 18
4.3. Laplacian Eigenvalues for CQH-Hermitian Spaces of Gelfand Type 21
4.4. Connectedness for Gelfand Type CQH-Complex Spaces 25
5. CQH-Complex Spaces of Order I and Spectral Triples 24
5.1. Positivity for Leibniz Constants 25

The second author acknowledges FNRS support through a postdoctoral fellowship within the framework of the MIS Grant “Antipode” grant number F.4502.18. The second and third authors acknowledge support from the Eduard Čech Institute within the framework of the grants GACR P201/12/G028 and GACR 19–28628X.
A DOLBEAULT–DIRAC SPECTRAL TRIPLE FOR QUANTUM PROJECTIVE SPACE

5.2. CQH-Complex Spaces of Order I
5.3. CQH-Hermitian Spaces of Order I and Solidity
5.4. Solidity and Dolbeault–Dirac Spectral Triples
6. A Dolbeault–Dirac Spectral Triple for Quantum Projective Space
6.1. Quantum Projective Space as a Quantum Homogeneous Space
6.2. An Order I presentation of the CQH-Complex Space
6.3. A Dolbeault–Dirac Pair of Spectral Triples for Quantum Projective Space
7. Compact Quantum Hermitian Symmetric Spaces
7.1. The Quantum Homogeneous Spaces
7.2. The Heckenberger–Kolb Calculi and their Kähler Structures
7.3. Compact Quantum Hermitian Symmetric Spaces of Weak Gelfand Type
7.4. Towards Order II CQH-Hermitian Spaces
Appendix A. CQGAs, Quantum Homogeneous Spaces, and Frobenius Reciprocity
A.1. Hopf algebras and CQGAs
A.2. CMQGA-Homogeneous Spaces
A.3. Takeuchi’s Equivalence
A.4. Frobenius Reciprocity for Quantum Homogeneous Spaces
Appendix B. Drinfeld–Jimbo Quantum Groups
B.1. Drinfeld–Jimbo Quantised Enveloping Algebras $U_q(g)$
B.2. Type 1 Representations
B.3. Quantised Coordinate Algebras $O_q(G)$
B.4. The Hopf Algebra $O_q(SU_n)$
B.5. Quantum Integers
Appendix C. Decomposing $\Omega^{(0,\bullet)}$ into Irreducible $U_q(sl_n)$-Modules
C.1. Skew Young Diagrams and Young Tableaux
C.2. The Decomposition
References

1. Introduction

In Connes’ K-theoretic approach to noncommutative geometry, spectral triples generalise Riemannian spin manifolds and their associated Dirac operators to the noncommutative setting. The question of how to reconcile the theory of spectral triples with Drinfeld–Jimbo quantum groups is one of the major open problems in noncommutative geometry. Since their appearance in the 1980s, quantum groups have attracted serious and significant attention at the highest mathematical levels. In the compact case the foundations of their noncommutative topology and their noncommutative measure theory have now been firmly established. By contrast, the noncommutative spectral geometry of quantum groups is still very poorly understood. Indeed, despite a large number of important contributions over the last thirty years, there is still no consensus on how to construct a spectral triple for $O_q(SU_2)$, probably the most basic example of a quantum group. These difficulties aside, the prospect of reconciling these two areas still holds...
great promise for their mutual enrichment. On one hand it would provide quantum groups with powerful tools from operator algebraic K-theory and K-homology. On the other hand, it would provide the theory of spectral triples with a large class of examples of fundamental importance with which to test and guide the future development of the subject.

One of the most important lessons to emerge from the collected efforts to understand the noncommutative geometry of quantum groups is that quantum homogeneous spaces tend to be more amenable to geometric investigation than quantum groups themselves. Philosophically, one can think of the process of forming a quantum homogeneous spaces as quotienting out the most exotic noncommutativity of the quantum group. This produces quantum spaces which are closer to their classical counterparts, and which possess more recognisable differential structures. The prototypical example here is the standard Podleś sphere, the Drinfeld–Jimbo q-deformation of the Hopf fibration presentation of the 2-sphere S^2. In contrast to the case of $O_q(SU_2)$, the Podleś sphere admits a canonical spectral triple which directly q-deforms the classical Dolbeault–Dirac operator of the 2-sphere $[12]$. Moreover, it is the most widely and consistently accepted example of a spectral triple in the Drinfeld–Jimbo setting. The Podleś sphere also forms a well-behaved and motivating example for Majid’s Hopf algebraic theory of braided noncommutative geometry $[37]$. In particular, it admits an essentially unique differential calculus, the Podleś calculus, to which Majid was able to apply his quantum frame bundle theory to directly q-deform the classical Kähler geometry of the 2-sphere (cf. $[38]$).

The Podleś sphere is itself a special example of a large and very beautiful family of quantum homogeneous spaces: the compact quantum Hermitian symmetric spaces $[34, 14]$. In one of the outstanding results of the algebraic approach to the noncommutative geometry of quantum groups, Heckenberger and Kolb showed that the compact quantum Hermitian symmetric spaces admit an essentially unique q-deformation of their classical Dolbeault double complex. This result forms a far reaching generalisation of the Podleś calculus endowed with Majid’s complex structure, and strongly suggests that the compact quantum Hermitian symmetric spaces, or more generally the quantum flag manifolds, have a central role to play in reconciling quantum groups and spectral triples.

The Heckenberger–Kolb classification, however, contains no generalisation of the Kähler geometry of the Podleś sphere (cf. $[38]$). In a recent paper by the second author, the notion of a noncommutative Kähler structure was introduced to provide a framework in which to do just this. In the quantum homogeneous space case many of the fundamental results of Kähler geometry have been shown to follow from the existence of such a structure. For example, it implies noncommutative generalisations of Lefschetz decomposition, the Lefschetz and Kähler identities, Hodge decomposition, the hard Lefschetz theorem, and the refinement of de Rham cohomology by Dolbeault cohomology. The existence of a Kähler structure was verified for the quantum projective spaces in $[47]$, and it was conjectured that a Kähler structure exists for all the compact quantum Hermitian spaces. The conjecture was verified, for all but a finite number of values of q, for the quantum Grassmannians in $[32]$, and for the quantum quadrics in $[13]$. Finally, the conjecture was settled for all the compact quantum Hermitian spaces by Matassa in $[39]$.

The Dolbeault–Dirac operator $D_{\nabla} := \partial + \partial^\dagger$ associated to a Kähler structure is a natural candidate for a noncommutative Dirac operator. In $[11]$ the authors associated to any covariant positive definite Hermitian structure $(\Omega^{0,\bullet}, \kappa)$, over a quantum homogeneous space $B = G^{\text{co}(H)}$, a Hilbert space $L^2(\Omega^{0,\bullet})$, carrying a bounded $*$-representation ρ of B. Moreover, D_{∇} was shown to act on $L^2(\Omega^{0,\bullet})$ as an essentially self-adjoint operator, with bounded commutators $[D_{\nabla}, b]$, for all $b \in B$. Hence, to show that the triple $(B, L^2(\Omega^{0,\bullet}), D_{\nabla})$ is a spectral triple, it remains to verify the compact resolvent condition. Even in the Drinfeld–Jimbo case, however, it is not clear at present how to conclude the compact resolvent condition from the properties of a general
covariant Kähler structure. (See §7.4.4 for a brief discussion on how this might be achieved.) In the study of classical homogeneous spaces, a difficult problem can often be approached by assuming restrictions on the multiplicities of the $U(\mathfrak{g})$-modules appearing in an equivariant geometric structure [27]. Taking inspiration from this approach, we choose to focus on covariant complex structures of weak Gelfand type, that is to say, those for which $\Omega(0,k)$ is multiplicity free as a $U_q(\mathfrak{g})$-module. This implies diagonalisability of the Dolbeault–Dirac operator D_∂ over irreducible modules, which when combined with the considerable geometric structure of the calculus, allows us to make a number of strong statements about the spectral behaviour of D_∂. In particular, for those covariant complex structures of Gelfand type, that is to say, those for which $\Omega(0,k)$ is multiplicity free, we produce a sufficient set of routinely verifiable conditions for D_∂ to have compact resolvent.

To place our efforts in context, we briefly recall previous spectral calculations for quantum groups, and in particular for quantum flag manifolds. The construction of spectral triples over quantum groups can be very roughly divided into two approaches. The first is isospectral deformation, as exemplified by the work of Neshveyev and Tuset, who constructed isospectral Dirac operators for all the Drinfeld–Jimbo quantum groups [44]. In this approach one takes as an ansatz that the spectrum of the Dirac survives q-deformation unchanged. A representation of the quantum group is then constructed around this ansatz so as to retain bounded commutators. This approach has the advantage of avoiding the need for spectral calculations, but the disadvantage that the spectral triples produced are too close to the classical case to be completely natural. By contrast, the second approach constructs canonical q-deformations of the classical spin geometry of a space, and then calculates the spectrum of the resulting q-deformed Dirac. The prototypical examples here are the Dąbrowski–Sitarz construction of a spectral triple on the Podleś sphere, as discussed above, and Majid’s spectral calculations for his Dolbeault–Dirac operator over the Podleś sphere, as also mentioned above. This is, moreover, the approach followed in this paper, and just as for the Podleś examples, an unavoidable consequence is a q-deformation of the classical spectrum.

At around the same time as these works, Krähmer introduced an influential algebraic Dirac operator for the compact quantum Hermitian symmetric spaces, which gave a commutator realisation of their Heckenberger–Kolb calculus [29]. A series of papers by Dąbrowski, D’Andrea, and Landi, followed, where spectral triples were constructed for the all quantum projective spaces [9, 8]. This approach used a noncommutative generalisation of the Parthasarathy formula [51] to calculate the Dirac spectrum and hence verify Connes’ axioms. Matassa would subsequently reconstruct this spectral triple [11] in a more formal manner by connecting with the work of Krähmer and Tucker–Simmons [30]. This approach was subsequently extended to the quantum Lagrangian Grassmannian $O_q(L_2)$, a C-series compact quantum Hermitian symmetric space [40, 42]. We note that in the quantum setting the Parthasarathy relationship with the Casimir is much more involved than in the classical case. This reflects our poor understanding of Casimirs in the Drinfeld–Jimbo setting, and the resulting challenges associated with a quantum Casimir approach to spectral calculations.

One of the primary purposes of a spectral triple is to serve as unbounded representatives for the K-homology classes of a C^*-algebra. Having an unbounded representative constructed in such a geometric manner has a number of advantages. In particular, it allows us to convert index theory calculations into questions about the Dolbeault cohomology of the complex structure. In [11] the index of the associated K-homology class has been shown to be equal to the anti-holomorphic Euler characteristic of the calculus. This is calculable using Hodge decomposition in general. In particular, in the noncommutative Fano setting, it follows from the Kodaira vanishing theorem for noncommutative Kähler structures that all cohomologies are concentrated in degree zero [49]. Hence, the index will be non-zero and the associated K-homology class non-trivial. This
is particularly important given the well-known difficulty of applying Connes’ local index formula in the quantum group setting.

This paper forms part of a series of works investigating the noncommutative geometry of the quantum flag manifolds and their connections with Nichols algebras, Schubert calculus, and non-commutative projective algebraic geometry \[2, 48, 53\]. It is intended that this paper will serve as a point of contact between these areas and operator algebraic \(K\)-theory. Moreover, in its discussion of order I and order II presentations, the paper can be regarded as a first step towards a systematic extension of the classical results on Harish-Chandra modules (cf. \[26, 55\]) to the quantum group setting. The typical structure here is a pair \((\mathfrak{g}, K)\) consisting of a real reductive Lie group \(G\) with complexified Lie algebra \(\mathfrak{g}\), and a compact subgroup \(K \subset G\), for which the differential of \(\text{Ad}(K)\) and the restriction \(\text{ad}(\mathfrak{g})|_K\) are compatible. The representation category \(\mathcal{C}(\mathfrak{g}, K)\) of \((\mathfrak{g}, K)\)-modules, if an infinitesimal character is specified, is characterized by the existence of finitely irreducible representations of \(K\) termed the collection of minimal \(K\)-types (every irreducible \((\mathfrak{g}, K)\)-module with an infinitesimal character contains one of these \(K\)-types.) As we shall discuss in the present article, this property conveniently carries over to the quantum group setting. Moreover, there is analogous transfer of the other important related structures such as the Hecke algebra of the pair \((\mathfrak{g}, K)\), dualities, and so on, which will be treated elsewhere.

The paper is organised as follows: In §2 we recall the necessary basics of differential calculi, complex structures, and Kahler structures, as well as their interaction with compact quantum matrix group algebras as originally considered in \[11\]. We also recall the necessary basics of spectral triples and \(K\)-homology.

In §3, we show that the Laplacian \(\Delta_\sigma\) decomposes with respect to Hodge decomposition, allowing us to deduce the spectrum of \(\Delta_\sigma\) from the spectrum of the operator \(\nabla^* \nabla\). Restricting to the covariant case, we then consider multiplicity-free comodules as a framework in which to present complex structures of Gelfand type. In this case, it is observed that the operator \(\nabla^* \nabla\) always diagonalises over irreducible comodules.

In §4, we restrict for the first time to the setting of Drinfeld–Jimbo quantum groups, exploiting the associated highest weight structure of their representation theory. In particular we consider products of a highest weight form \(\omega\), with powers of a zero form \(z^l\), for \(l \in \mathbb{N}_0\). The form \(z^l \omega\) is shown to always be an eigenvector of the Laplacian, and the corresponding eigenvalues \(\mu_l\) are described explicitly. Such sequences \(\{\mu_l\}_{l \in \mathbb{N}_0}\) of eigenvalues form the basis of our approach to the spectrum of the Dolbeault–Dirac operator.

In §5, we abstract the representation theoretic properties of \(\mathbb{C}\mathbb{P}^{n-1}\) and introduce the notion of an order I compact quantum homogeneous complex space. We then establish a necessary and sufficient set of conditions (given in terms of the eigenvalue sequences \(\{\mu_l\}_{l \in \mathbb{N}_0}\) discussed above) for such a space to have a Dolbeault–Dirac operator with compact resolvent.

In §6 we examine our motivating example \(O_q(\mathbb{C}\mathbb{P}^{n-1})\). We begin by recalling the necessary details about its definition as a quantum homogeneous space, its Heckenberger–Kolb calculus, and its covariant complex and Kahler structures. We then construct an order I presentation for the calculus in §6.2. This allows us to apply the general framework of the paper and to prove one of its main results:

Theorem 6.21 For quantum projective space \(O_q(\mathbb{C}\mathbb{P}^{n-1})\), endowed with its Heckenberger–Kolb calculus, and its unique covariant Kahler structure, a pair of spectral triples is given by

\[
\left(O_q(\mathbb{C}\mathbb{P}^{n-1}), L^2(\Omega^0), D_\theta \right), \quad \left(O_q(\mathbb{C}\mathbb{P}^{n-1}), L^2(\Omega^0), D_\sigma \right).
\]
In §7 we generalise the notion of Gelfand type to weak Gelfand type, and determine which non-exceptional compact quantum Hermitian symmetric spaces satisfy the condition. We show that in addition to $O_q(\mathbb{C}P^{n-1})$, we have the quantum 2-plane Grassmannians $O_q(\mathbb{G}_2)$, the odd and even dimensional quantum quadrics $O_q(\mathbb{Q}_n)$. The extension of the framework of the paper to this larger class of examples is then discussed in detail.

We finish with three appendices. In the first we recall the basic definitions of compact quantum group algebras, and quantum homogeneous spaces. In the second we recall basic results about Drinfeld–Jimbo quantised enveloping algebras and their representation theory. In the third we use Frobenius reciprocity for quantum homogeneous spaces, along with some classical branching laws, to derive the decomposition of the anti-holomorphic forms into irreducible $U_q(\mathfrak{sl}_n)$-modules.

Acknowledgements: The authors would like to thank Marco Matassa, Elmar Wagner, Fredy Díaz García, Andrey Kruтов, Simon Brain, Bram Mesland, Branimir Čačić, Adam Rennie, Paolo Saracco, Kenny De Commer, Matthias Fischmann, Peter Littelmann, Willem A. de Graaf, Jan Šťovíček, and Adam-Christiaan van Roosmalen, for useful discussions during the preparation of this paper. The second author would like to thank IMPAN Wroclaw for hosting him in November 2018, and would also like to thank Klaas Landsman and the Institute for Mathematics, Astrophysics and Particle Physics for hosting him in the winter of 2017 and 2018.

2. Preliminaries

We recall necessary details about complex, Hermitian, and Kähler structures for differential calculi. We highlight in particular the Dirac and Laplace operators associated to an Hermitian structure, as well as the associated Hodge theory, which plays a central in our spectral calculi. We highlight in particular the Dirac and Laplace operators associated to an Hermitian structure, as well as the associated Hodge theory, which plays a central in our spectral calculi. We recall necessary details about complex, Hermitian, and Kähler structures for differential calculus. We recall necessary details about complex, Hermitian, and Kähler structures for differential calculus. We recall necessary details about complex, Hermitian, and Kähler structures for differential calculus. We recall necessary details about complex, Hermitian, and Kähler structures for differential calculus. We recall necessary details about complex, Hermitian, and Kähler structures for differential calculus.

2.1. Complex, Hermitian, and Kähler Structures on Differential Calculi. In this subsection we recall the basic definitions and results for complex structures. For a more detailed introduction see [16], [17], and [2]. Moreover, for an excellent presentation of classical complex and Kähler geometry see [22].

Recall that a differential calculus is a differential graded algebra $(\Omega^* \simeq \bigoplus_{k \in \mathbb{N}_0} \Omega^k, d)$ which is generated in degree 0 as a differential graded algebra, which is to say, it is generated as an algebra by the elements a, db, for $a, b \in \Omega^0$. We denote the degree of a homogeneous element $\omega \in \Omega^*$ by $|\omega|$. For a given algebra B, a differential calculus over B is a differential calculus such that $B = \Omega^0$. A differential calculus is said to be of total degree $m \in \mathbb{N}$ if $\Omega^m \neq 0$, and $\Omega^k = 0$, for all $k \in \mathbb{N}$. A differential \ast-calculus over a \ast-algebra B is a differential calculus over B such that the \ast-map of B extends to a (necessarily unique) conjugate linear involutive map $\ast: \Omega^* \to \Omega^*$ such that $d(\omega^*) = (d\omega)^*$, and

$$(\omega \wedge \nu)^* = (-1)^{|k|} \nu^* \wedge \omega^*, \quad \text{for all } \omega \in \Omega^k, \nu \in \Omega^l.$$

For a Hopf algebra, and P a left A-comodule algebra, a differential calculus Ω^* over P is said to be covariant if the coaction $\Delta_L : P \to A \otimes P$ extends to a (necessarily unique) comodule algebra structure $\Delta_L : \Omega^* \to A \otimes \Omega^*$, with respect to which the differential d is a left A-comodule map.

Definition 2.1. A complex structure $\Omega^{\ast, \ast}(\Omega^*, \ast)$ for a differential \ast-calculus (Ω^*, \ast), over a \ast-algebra A, is an \mathbb{N}_0-algebra grading $\bigoplus_{(a,b) \in \mathbb{N}_0^2} \Omega^{(a,b)}$ for Ω^* such that, for all $(a, b) \in \mathbb{N}_0^2$:
1. $\Omega^k = \bigoplus_{a+b=k} \Omega^{(a,b)}$,
2. $(\Omega^{(a,b)}, \partial) = \Omega^{(b,a)}$,
3. $d\Omega^{(a,b)} \subseteq \Omega^{(a+1,b)} \oplus \Omega^{(a,b+1)}$.

We call an element of $\Omega^{(a,b)}$ an (a,b)-form. Denoting by $\text{proj}_{\Omega^{(a+1,b)}}$ and $\text{proj}_{\Omega^{(a,b+1)}}$, the projections from Ω^{a+b+1} onto $\Omega^{a+1,b}$, and $\Omega^{a,b+1}$ respectively, we can define the operators

$$
\partial|\Omega^{(a,b)} := \text{proj}_{\Omega^{(a+1,b)}} \circ d, \quad \overline{\partial}|\Omega^{(a,b)} := \text{proj}_{\Omega^{(a,b+1)}} \circ d.
$$

Part 3 of the definition of a complex structure then implies the following identities

$$
d = \partial + \overline{\partial}, \quad \partial \circ \partial = - \partial \circ \overline{\partial}, \quad \partial^2 = 0, \quad \overline{\partial}^2 = 0.
$$

Thus $(\bigoplus_{(a,b) \in \mathbb{N}_0^2} \Omega^{(a,b)}, \partial, \overline{\partial})$ is a double complex, which we call the Dolbeault double complex of the $\Omega^{(\cdot, \cdot)}$. Moreover, it is easily seen that

$$(1) \quad \partial(\omega^*) = (\overline{\partial}\omega)^*, \quad (\overline{\partial}\omega^*) = (\partial\omega)^*, \quad \text{for all } \omega \in \Omega^*.$$

For any complex structure $\Omega^{(\cdot, \cdot)} = \bigoplus_{(a,b) \in \mathbb{N}_0^2} \Omega^{(a,b)}$, a second complex structure, called its opposite complex structure, is given by $\overline{\Omega}^{(\cdot, \cdot)} = \bigoplus_{(a,b) \in \mathbb{N}_0^2} \overline{\tau}^{(a,b)}$, where $\overline{\tau}^{(a,b)} = \Omega^{(b,a)}$.

For a left Λ-comodule algebra P, and a covariant differential $*$-calculus Ω^* over P, we say that a complex structure for Ω^* is covariant if $\Omega^{(a,b)}$ is a left Λ-sub-comodule of Ω^*, for all $(a,b) \in \mathbb{N}_0^2$. A direct consequence of covariance is that the maps ∂ and $\overline{\partial}$ are left Λ-comodule maps.

Definition 2.2. An Hermitian structure $(\Omega^{(\cdot, \cdot)}, \sigma)$ for a differential $*$-calculus Ω^*, of even total dimension $2n$, is a pair consisting of a complex structure $\Omega^{(\cdot, \cdot)}$, and a central real $(1,1)$-form σ, called the Hermitian form, such that, with respect to the Lefschetz operator

$$
L_\sigma : \Omega^* \to \Omega^*, \quad \omega \mapsto \sigma \wedge \omega,
$$

isomorphisms are given by

$$(2) \quad L_\sigma^{-k} : \Omega^k \to \Omega^{2n-k}, \quad \text{for all } 1 \leq k < n.$$

For L the Lefschetz operator of an Hermitian structure, we denote

$$
P^{(a,b)} := \begin{cases}
\{ \alpha \in \Omega^{(a,b)} | L^{n-a-b+1}(\alpha) = 0 \}, & \text{if } a+b \leq n, \\
0, & \text{if } a+b > n.
\end{cases}
$$

Moreover, we denote $P^k := \bigoplus_{a+b=k} P^{(a,b)}$, and $P^* := \bigoplus_{k \in \mathbb{N}_0} P^k$. An element of P^* is called a primitive form.

Proposition 2.3. [Lefschetz decomposition] For L the Lefschetz operator of an Hermitian form, an A-bi-comodule decomposition, called the Lefschetz decomposition, is given by

$$
\Omega^{(a,b)} \simeq \bigoplus_{j \geq 0} L^j(P^{(a-j,b+j)}).
$$

Finally, we come to the definition of a Kähler structure, a simple strengthening of the Hermitian structure requirements, but one with profound consequences.

Definition 2.4. A Kähler structure $(\Omega^{(\cdot, \cdot)}, \kappa)$ for a differential $*$-calculus is an Hermitian structure such that $d\kappa = 0$. We call κ a Kähler form.
One of the most important consequences of the Kähler condition (which is not necessarily true for a general Hermitian structure) is the equality, up to a scalar multiple of the three Laplacian operators

\[\Delta_\partial = \Delta_\bar{\partial} = \frac{1}{2} \Delta_d. \]

Let \(A \) be a Hopf algebra, \(P \) a left \(A \)-comodule algebra, and \(\Omega^* \) a covariant \(*\)-calculus over \(P \). A covariant Hermitian structure for \(\Omega^* \) is an Hermitian structure \((\Omega^{\bullet\bullet}, \sigma)\) such that \(\Omega^{\bullet\bullet} \) is a covariant complex structure, and such that the Hermitian form \(\sigma \) is left \(A \)-coinvariant, which is to say \(\Delta_L(\sigma) = 1 \otimes \sigma \). A covariant Kähler structure is a covariant Hermitian structure which is also a Kähler structure. Note that in the covariant case, in addition to being a \(P\text{-}\overline{P}\)-bimodule \(*\)-homomorphism, \(L \) is also a left \(A \)-comodule map.

2.2. Metrics, Adjoints, and the Hodge Map. In classical Hermitian geometry, the Hodge map of an Hermitian metric is related to the associated Lefschetz decomposition through the well-known Weil formula \([56, \text{Theorem 1.2}],[22, \text{Proposition 1.2.31}]\). In the noncommutative setting we take the direct generalisation of the Weil formula for our definition of the Hodge map.

Definition 2.5. The Hodge map associated to an Hermitian structure \((\Omega^{\bullet\bullet}, \sigma)\) is the morphism uniquely defined by

\[*_\sigma(L^j(\omega)) = (-1)^{k-kj+\frac{1}{2}k(n-j)}j!\frac{1}{(n-j-k)!}L^{n-j-k}(\omega), \quad \omega \in P^{(a,b)} \subseteq P^k, \]

Many of the basic properties of the classical Hodge map can now be understood as consequences of the Weil formula. (See \([47, \text{§4.3}]\) for a proof.)

Lemma 2.6. Let \(\Omega^* \) be a differential \(*\)-calculus, of total dimension \(2n \). For \((\Omega^{\bullet\bullet}, \sigma)\) a choice of Hermitian structure for \(\Omega^* \) and \(*_\sigma\) the associated Hodge map, it holds that:

1. \(*_\sigma\) is a \(*\)-map,
2. \(*_\sigma(\Omega^{(a,b)}) = \Omega^{(n-b,n-a)}\),
3. \(*_\sigma^2(\omega) = (-1)^k\omega, \quad \text{for all } \omega \in \Omega^k\),
4. whenever \(\Omega^* \) is a covariant calculus over a left \(A \)-comodule algebra, and \((\Omega^{\bullet\bullet}, \sigma)\) is a covariant Hermitian structure, then \(*_\sigma\) is a left \(A \)-comodule map.

Reversing the classical order of construction we now define a metric in terms of the Hodge map.

Definition 2.7. The metric associated to the Hermitian structure \((\Omega^{\bullet\bullet}, \sigma)\) is the unique map \(g_\sigma : \Omega^* \otimes_B \Omega^* \to A \) for which \(g(\Omega^k \otimes_B \Omega^l) = 0 \), for all \(k \neq l \), and

\[g_\sigma(\omega \otimes_B \nu) = *_\sigma(\omega^* \wedge \nu), \quad \omega, \nu \in \Omega^k. \]

We finish with an easy but novel observation that directly generalises the classical situation. The result is needed in \([44]\) but holds true in the general setting of (not necessarily covariant) Hermitian structures, so we state it here.

Lemma 2.8. For any Hermitian structure \((\Omega^{\bullet\bullet}, \sigma)\), the Hodge operator restricts to linear isomorphisms

\[*_\sigma : \overline{\partial} \Omega^* \to \partial^d \Omega^*, \quad *_\sigma : \overline{\partial} \Omega^* \to \overline{\partial} \Omega^*. \]

Proof. The fact that \(*_\sigma(\overline{\partial} \Omega^*)\) is contained in \(\partial^d \Omega^* \) follows from

\[*_\sigma(\overline{\partial} \omega) = (-1)^{k} *_\sigma \circ \overline{\partial} \circ *_\sigma(\omega) = (-1)^{k+1} \partial^d *_\sigma(\omega) \in \partial^d \Omega^*, \quad \text{for } \omega \in \Omega^k. \]
Similarly, the fact that \(*_{\sigma}(\partial^\dagger \Omega^*) \) is contained in \(\overline{\partial} \Omega^* \) follows from
\[
{\sigma}(\partial^\dagger \omega) = -\frac{1}{2} \sigma^ \circ \overline{\partial} \circ *{\sigma}(\omega) = (-1)^{2n-k+1} \overline{\partial}(*_{\sigma}(\omega)) \in \overline{\partial} \Omega^*, \quad \text{for } \omega \in \Omega^k.
\]
Thus since \(*_{\sigma} : \Omega^* \rightarrow \Omega^* \) is a linear isomorphism, it must restrict to an isomorphism between \(\overline{\partial} \Omega^* \) and \(\partial^\dagger \Omega^* \). The proof of the second isomorphism is completely analogous, and hence omitted. \(\square \)

2.3. CQH-Complex and CQH-Hermitian Spaces. We now recall the definition of the various compact quantum homogeneous spaces which form the framework for our investigation of Dolbeault–Dirac operators. These definitions detail a natural list of compatibility conditions between differential calculi, complex structures, and Hermitian structures on one hand and compact quantum algebras on the other.

Definition 2.9. A compact quantum calculus homogeneous space is a triple \(\mathcal{B} = (B = A^{co(H)}, \Omega^*, \text{vol}) \),
comprised of the following elements:

1. \(B = A^{co(H)} \) a CMQGA-homogeneous space, for which \(A \) is a domain,
2. \(\Omega^* \) a covariant differential \(* \)-calculus over \(B \), finite-dimensional as an object in \(A_\text{mod}_0 \), and of total degree \(m \in \mathbb{N} \),
3. \(\text{vol} : \Omega^m \simeq B \) an isomorphism in \(A_\text{mod}_0 \), which is also a \(* \)-map, and with respect to which the integral
\[
\int := h \circ \text{vol} : \Omega^m \rightarrow \mathbb{C}
\]
is closed, which is to say, satisfies \(\int d\omega = 0 \), for all \(\omega \in \Omega^{m-1} \).

Definition 2.10. A compact quantum homogeneous complex space, or a CQH-complex space, is a pair \(\mathcal{B} = (B, \Omega^{(\bullet \bullet)}) \) where

1. \(B = A^{co(H)} \) a CQH-calculus space,
2. \(\Omega^{(\bullet \bullet)} \) is covariant complex structure for \(\Omega^* \).

The associated opposite CQH-complex space is the pair \(\mathcal{C}^{op} := (B, \overline{\Omega}^{(\bullet \bullet)}) \)

In the same spirit, a CQH-Hermitian space is a CQH-calculus space endowed with an Hermitian structure in a natural way. The interaction here, however, is a little more subtle.

Definition 2.11. A compact quantum homogeneous Hermitian space, or alternatively a CQH-Hermitian space, is a triple \((\mathcal{C}, \Omega^{(\bullet \bullet)}, \sigma) \) consisting of

1. \(\mathcal{C} = (B, \Omega^{(\bullet \bullet)}) \) a CQH-complex space,
2. \((\Omega^{(\bullet \bullet)}, \sigma) \) a covariant Hermitian structure for the differential \(* \)-calculus \(\Omega^* \in \mathcal{B} \),
3. \(\text{vol} = *_{\sigma}|_{\Omega^\geq 2} : \Omega^{2n} \rightarrow B \), where \(2n \) is the total dimension of the constituent calculus of \(\mathcal{B} \),
4. the associated metric \(g \) is positive definite, which is to say,
\[
g(\omega, \omega) \in B_+ := \left\{ \sum_{i=1}^l \lambda_i b_i^* b_i \neq 0 \mid b_i \in B, \lambda_i \in \mathbb{R}_{>0}, l \in \mathbb{N} \right\}.
\]

For any CQH-Hermitian space, composing \(h \) with \(g \) gives a sesqui-linear map
\[
\langle \cdot, \cdot \rangle : \Omega^{(\bullet \bullet)} \otimes_B \Omega^{(\bullet \bullet)} \rightarrow \mathbb{C}, \quad \omega \otimes \nu \mapsto h \circ *_{\sigma}(\omega^*) \wedge \nu.
\]
We note that positivity of \(g \), together with positivity of the Haar state \(h \), imply that \(\langle \cdot, \cdot \rangle \) is an inner product. We finish with the obvious extension of these definitions to the Kähler case.
Definition 2.12. A compact quantum Kähler homogeneous space, or a CQH-Kähler space, is a CQH-Hermitian space $K = (B, \Omega^{\bullet, \bullet}, \kappa)$ such that the covariant Hermitian structure $(\Omega^{\bullet, \bullet}, \kappa)$ is a Kähler structure.

2.3.1. Hodge Theory. We now recall the noncommutative generalisation of Hodge theory associated to any CQH-Hermitian space. Hodge decomposition will play a central role in our calculation of Laplace operator spectra, and the implied equivalence between harmonic forms and cohomology groups allows us to calculate the Dirac operator index in terms of the anti-holomorphic holomorphic Euler characteristic of the calculus.

The exterior derivatives $d, \partial, \overline{\partial}$ are adjointable with respect to the inner product. Moreover, as established in [47, §5.3.3], their adjoints also are expressible in terms of the Hodge operator:

\[
\begin{align*}
d^\dagger &= - * \circ d \circ * \sigma, \\
\partial^\dagger &= - * \circ \overline{\partial} \circ * \sigma, \\
\overline{\partial}^\dagger &= - * \circ \partial \circ * \sigma.
\end{align*}
\]

For any Hermitian structure on a differential calculus, generalising the classical situation, we define the d-, ∂-, and $\overline{\partial}$-Dirac operators to be respectively,

\[
D_d := d + d^\dagger, \quad D_\partial := \partial + \partial^\dagger, \quad D_{\overline{\partial}} := \overline{\partial} + \overline{\partial}^\dagger.
\]

Moreover, we define the d-, ∂-, and $\overline{\partial}$-Laplace operators to be

\[
\Delta_d := (d + d^\dagger)^2, \quad \Delta_\partial := (\partial + \partial^\dagger)^2, \quad \Delta_{\overline{\partial}} := (\overline{\partial} + \overline{\partial}^\dagger)^2.
\]

We introduce d-harmonic, ∂-harmonic, and $\overline{\partial}$-harmonic forms, respectively, according to

\[
\begin{align*}
H_d &= \ker(\Delta_d), \\
H_\partial &= \ker(\Delta_\partial), \\
H_{\overline{\partial}} &= \ker(\Delta_{\overline{\partial}}).
\end{align*}
\]

For the case of CQH-Hermitian space, it was shown in [11, Corollary] that the Dirac and Laplace operators are diagonalisable. Just as in the classical case, this allows us to show ([47, Lemma 6.1]) that the harmonic forms admit the following alternative presentation

\[\tag{4} H_d = \ker(d) \cap \ker(d^\dagger), \quad H_\partial = \ker(\partial) \cap \ker(\partial^\dagger), \quad H_{\overline{\partial}} = \ker(\overline{\partial}) \cap \ker(\overline{\partial}^\dagger).\]

Moreover, as shown in [47, Theorem 6.2], building on earlier work in [33], diagonalisability also allows us to conclude the following noncommutative generalisation of Hodge decomposition for Hermitian manifolds.

Theorem 2.13 (Hodge decomposition). For a CQH-Hermitian space, direct sum decompositions of Ω^\bullet, orthogonal with respect to $\langle \cdot, \cdot \rangle$, are given by

\[
\begin{align*}
\Omega^\bullet &= H_d \oplus d\Omega^\bullet \oplus d^\dagger \Omega^\bullet, \\
\Omega^\bullet &= H_\partial \oplus \partial \Omega^\bullet \oplus \partial^\dagger \Omega^\bullet, \\
\Omega^\bullet &= H_{\overline{\partial}} \oplus \overline{\partial} \Omega^\bullet \oplus \overline{\partial}^\dagger \Omega^\bullet.
\end{align*}
\]

From Hodge decomposition it is easy to conclude the following equivalence of harmonic forms and cohomologies, see [47, §6.2] for details.

Corollary 2.14. It holds that

\[
\begin{align*}
\ker(d) &= H_d \oplus d\Omega^\bullet, \\
\ker(\partial) &= H_\partial \oplus \partial \Omega^\bullet, \\
\ker(\overline{\partial}) &= H_{\overline{\partial}} \oplus \overline{\partial} \Omega^\bullet,
\end{align*}
\]

and so, we have isomorphisms

\[
\begin{align*}
H^k_d &\to H^k_d, \\
H^{(a,b)}_\partial &\to H^{(a,b)}_\partial, \\
H^{(a,b)}_{\overline{\partial}} &\to H^{(a,b)}_{\overline{\partial}}.
\end{align*}
\]
2.4. Dolbeault–Dirac Spectral Triples. In this subsection we recall the definition of a spectral triple, Connes’ notion of a noncommutative Riemannian spin manifold [7]. For a presentation of the classical Dolbeault–Dirac operator of an Hermitian manifold as a commutative spectral triple, see [11] or [17]. For a standard reference on the general theory of spectral triples, see [18] or [6]. Motivated by our construction of spectral triples from CQH-Hermitian spaces, we find it convenient to break the definition into two parts.

Definition 2.15. A bounded-commutator triple, or simply a BC-triple, \((A, \mathcal{H}, D)\) consists of a unital *-algebra \(A\), a separable Hilbert space \(\mathcal{H}\) endowed with a faithful *-representation \(\rho : A \to \mathcal{B}(\mathcal{H})\), and \(D : \text{dom}(D) \to \mathcal{H}\) a densely-defined self-adjoint operator on \(\mathcal{H}\), such that

1. \([D, \rho(a)]\subseteq \text{dom}(D)\) for all \(a \in A\),
2. \([D, \rho(a)]\) is a bounded operator, for all \(a \in A\).

An even BC-triple is a BC-triple \((A, \mathcal{H}, D)\) together with a \(\mathbb{Z}_2\)-grading \(\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1\) of Hilbert spaces, with respect to which \(D\) is a degree 1 operator, and \(\rho(a)\) is a degree 0 operator, for each \(a \in A\).

It was shown in [11] that every CQH-Hermitian space automatically gives a BC-triple. We now briefly recall this construction. Let \(\mathcal{H} = (B, \Omega^{(\bullet, \bullet)}, \sigma)\) be a CQH-Hermitian space, with constituent quantum homogeneous space \(B = \mathcal{A}^{\text{com}(\mathcal{H})}\). We denote by \(L^2(\Omega^*)\) the Hilbert space completion of \(\Omega^*\) with respect to its inner product \(\langle \cdot , \cdot \rangle\). By [47, Lemma 5.2.1] the \(\mathbb{N}_0^2\)-grading of the complex structure is orthogonal with respect to \(\langle \cdot , \cdot \rangle\), hence we have the following decomposition of Hilbert spaces

\[
L^2(\Omega^*) = \bigoplus_{(a, b) \in \mathbb{N}_0^2} L^2(\Omega^{(a,b)}).
\]

The constituent Hopf algebras of \(\mathcal{H}\) are CMQGAs, in particular, they are finitely generated. This implies that the Hilbert space \(L^2(\Omega^*)\) is separable [11, §2]. As observed in [11], the fact that \(A\) is a domain implies that a faithful *-representation \(\rho : B \to \mathcal{B}(L^2(\Omega^*))\) is given by

\[
\rho(b)\omega := b\omega, \quad \text{for } \omega \in \Omega^*, \ b \in B.
\]

Moreover, boundedness of the commutators \([D_\partial, m]\), and \([D_{\nabla}, m]\) follows from a routine application of the Leibniz rule [11].

It follows from the basic theory of unbounded operators [52, §13] that the Dirac operators \(D_\partial\) and \(D_{\nabla}\), as well as the Laplace operators \(\Delta_\partial\) and \(\Delta_{\nabla}\), are essentially self-adjoint, see [11] for details. By abuse of notation we will not distinguish notationally between an operator and its closure. As observed in [11], it now follows from [11, Proposition 2.1] that, for \(\text{dom}(D_\partial)\), and \(\text{dom}(D_{\nabla})\), the domain of the closures of the respective Dirac operators,

\[
\rho(b)\text{dom}(D_\partial) \subseteq \text{dom}(D_\partial), \quad \rho(b)\text{dom}(D_{\nabla}) \subseteq \text{dom}(D_{\nabla}), \quad \text{for all } b \in B.
\]

Collecting these observations together gives us the following proposition.

Proposition 2.16 ([11]). For a CQH-Hermitian space \(\mathcal{H} = (B, \Omega^{(\bullet, \bullet)}, \sigma)\), with constituent quantum homogeneous space \(B\), a pair of BC-triples, which we call a Dolbeault–Dirac pair, is given by

\[
(B, L^2(\Omega^{(0,0)}), D_\partial), \quad (B, L^2(\Omega^{(0,\bullet)}), D_{\nabla}).
\]
Corollary 2.17. The Hilbert space decompositions
\[L^2(\Omega^{0,0}) = \bigoplus_{k \in 2\mathbb{N}_0} L^2(\Omega^{k,0}) \oplus \bigoplus_{k \in 2\mathbb{N}_0+1} L^2(\Omega^{0,k}), \]
\[L^2(\Omega^{0,0}) = \bigoplus_{k \in 2\mathbb{N}_0} L^2(\Omega^{0,k}) \oplus \bigoplus_{k \in 2\mathbb{N}_0+1} L^2(\Omega^{0,k}), \]
define an even structure for the holomorphic, and anti-holomorphic, spectral triples respectively.

Finally, we come to the definition of a spectral triple, which we present as a BC-triple whose unbounded operator D has compact resolvent.

Definition 2.18. A spectral triple is a BC-triple (A, \mathcal{H}, D) such that
\[(1 + D^2)^{-1} \in \mathcal{K}(\mathcal{H}), \]
where $\mathcal{K}(\mathcal{H})$ denotes the compact operators on \mathcal{H}.

As discussed in the introduction, it is not clear at present how to conclude the compact resolvent condition from the properties of a general CQH-Hermitian space. (See §7.4.4 for a brief discussion on how this might be achieved.) Hence, in our examples we resort to calculating the spectrum explicitly, and directly confirming the appropriate eigenvalue growth. We do, however, know two important general results. Firstly, since the $*$-map satisfies $\Delta = \Delta_\partial \circ *$ we have the following lemma.

Lemma 2.19. [11] For a CQH-Hermitian space, the operator $D_\sigma : \Omega^{(0,0)} \rightarrow \Omega^{(0,0)}$ has compact resolvent if and only if the operator $D_\sigma : \Omega^{(0,0)} \rightarrow \Omega^{(0,0)}$ has compact resolvent.

Secondly, we know from [11] that the operators D_σ and D_τ are diagonalisable on $L^2(\Omega^*)$. Hence, a CQH-Hermitian space gives a spectral triple if and only if the eigenvalues $\{\mu_n\}_{n \in \mathbb{N}_0}$ of Δ_σ (with repetitions representing multiplicities) tend to infinity. When dealing with questions of eigenvalue growth, we find the following notation useful.

Notation 2.20. For $T : \text{dom}(T) \rightarrow \mathcal{H}$ a diagonalisable operator on a separable Hilbert space \mathcal{H}, we write $\sigma_T(D) \rightarrow \infty$ to denote that the eigenvalues of T (with repetitions representing multiplicities) tend to infinity.

2.5. Analytic K-Homology and the Anti-Holomorphic Euler Characteristic. Let us now recall the basics of analytic K-homology, bearing in mind that one of the main aims of this paper is to establish a connection between K-theoretic index theory and the Dolbeault cohomology of noncommutative Hermitian structures.

Definition 2.21. Let A be a separable unital C*-algebra. A Fredholm module over A is a triple (\mathcal{H}, ρ, F), where \mathcal{H} is a Hilbert space, $\rho : A \rightarrow \mathcal{B}(\mathcal{H})$ is a $*$-representation, and $F : \mathcal{H} \rightarrow \mathcal{H}$ a bounded linear operator, such that
\[F^2 - 1, \quad F - F^*, \quad [F, \rho(a)], \]
are all compact operators, for any $a \in A$. An even Fredholm module is a Fredholm module (ρ, F, \mathcal{H}) together with a \mathbb{Z}_2-grading $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1$ of Hilbert spaces, with respect to which F is a degree 1 operator, and $\rho(a)$ is a degree 0 operator, for each $a \in A$.

The direct sum of two even Fredholm modules is formed by taking the direct sum of Hilbert spaces, representations, and operators. For (\mathcal{H}, ρ, F) an even Fredholm module, and $U : \mathcal{H} \rightarrow \mathcal{H}'$ a degree-0 unitary transformation, the triple $(\mathcal{H}', U^* \rho U, U^* FU)$ is again a Fredholm module. This defines an equivalence relation on Fredholm modules over A, which we call unitary equivalence.
Moreover, we say that a norm continuous family of Fredholm modules \((\rho, \mathcal{H}, F_t)\), for \(t \in [0,1]\), defines an operator homotopy between the two Fredholm modules \((\rho, \mathcal{H}, F_0)\) and \((\rho, \mathcal{H}, F_1)\).

Definition 2.22. The \(K\)-homology group \(K^0(A)\) of a \(C^*\)-algebra \(A\) is the abelian group with one generator for each unitary equivalence class of even Fredholm modules, subject to the following relations: For any two even Fredholm modules \(x_0, x_1\),

1. \([x_0] = [x_1]\) if there exists an operator homotopy between \(x_0\) and \(x_1\),
2. \([x_0 \oplus x_1] = [x_0] + [x_1]\), where \(\oplus\) denotes addition in \(K^0(A)\).

Denoting the Fredholm operator \(F_+ := F|_{\mathcal{H}_+}: \mathcal{H}_+ \to \mathcal{H}_-\), a well-defined group homomorphism is given by

\[
\text{Index} : K^0(A) \to \mathbb{Z}, \quad [F]_K \mapsto \text{Index}(F_+).
\]

Spectral triples are important primarily because they provide unbounded representatives for \(K\)-homology classes. For a spectral triple \((A, \mathcal{H}, D)\), its bounded transform is the operator

\[
b(D) := \frac{D}{\sqrt{1 + D^2}} \in B(\mathcal{H}),
\]

defined via the functional calculus. Denoting by \(\mathcal{A}\) the closure of \(\rho(A)\) with respect to the operator topology of \(B(\mathcal{H})\), a Fredholm module is given by \((\mathcal{H}, \rho, b(D))\). (See \[5\] for details.)

For a classical Hermitian manifold, the index of the Dolbeault–Dirac operator, and the associated index of its \(K\)-homology class, are equal to the holomorphic Euler characteristic of the manifold. This picture extends to the noncommutative setting.

Definition 2.23. Let \(H := (B, \Omega^{\bullet, \bullet}, \sigma)\) be a CQH-Hermitian space with constituent differential calculus \(\Omega^\bullet \in B\) of total dimension \(2n\). The anti-holomorphic Euler characteristic of \(H\) is given by

\[
\chi_{\bar{\partial}} := \sum_{k=1}^{n} (-1)^k \dim_{\mathbb{C}} (H^{0,k}).
\]

The following proposition now allows us to conclude non-triviality of the \(K\)-homology class of a Dolbeault–Dirac spectral triple from non-vanishing of the Euler characteristic.

Proposition 2.24. [11, §5.2] For a CQH-Hermitian space \((B, \Omega^{\bullet, \bullet}, \sigma)\), with an associated pair of Dolbeault–Dirac spectral triples, it holds that

\[
\text{Index}(b(D_0)) = \text{Index}(b(D_{\bar{\partial}})) = \chi_{\bar{\partial}}.
\]

The calculation of cohomology groups can in general be quite difficult. However, in the Kähler setting there exists a powerful noncommutative generalisation of the Kodaira vanishing theorem [49]. In the more specialised Fano setting, this implies vanishing of all higher cohomologies, implying that the anti-holomorphic Euler characteristic is equal to \(\dim_{\mathbb{C}} (H^{0,0})\). Since \(H^{0,0}\) always contains the identity element of \(B\), this implies that the \(K\)-homology class of \(b(D_{\partial})\) is always non-zero in the Fano setting.

3. CQH-Complex Spaces of Gelfand Type

In this section we begin our examination of the spectral behaviour of the Laplacian operator associated to a CQH-Hermitian space. Our strategy is to exploit the subtle interactions between the Laplace spectrum, Hodge decomposition, and comodule multiplicities. This leads us to focus on a special type of CQH-Hermitian space, Gelfand type spaces, for which the problem is
significantly more tractable. The work of this section underlies our investigation of the Drinfeld–Jimbo case in §.

3.1. Hodge Decomposition of the Laplacian. We decompose the Laplacian with respect to Hodge decomposition and then, in Corollary 3.6, show that \(\sigma_P(\Delta) \to \infty \) if and only if \(\sigma_P(\partial) \to \infty \). We should emphasise the fact that nowhere in this subsection do we make any assumption on multiplicities, all results hold for a general CQH-Hermitian space.

Lemma 3.1. For any CQH-Hermitian space, the Laplacian operator \(\Delta \) admits a direct sum decomposition with respect to Hodge decomposition \(\Omega^\bullet = H^\bullet \oplus \partial\Omega^\bullet \oplus \partial\partial H^\bullet \), namely

\[
\Delta = 0 \oplus \partial H^\bullet \oplus \partial\partial H^\bullet.
\]

Proof. By definition, \(\Delta \) restricts to the zero map on the harmonic forms \(H^\bullet \). For a non-harmonic \(\omega \in \Omega^\bullet \), we have

\[
\Delta(\partial\omega) = (\partial\partial + \partial\partial)(\partial\omega) = \partial\partial(\partial\omega) \in \partial\Omega^\bullet.
\]

Thus we see that \(\partial\Omega^\bullet \) is closed under the action of \(\Delta \), and moreover, that \(\Delta|_{\partial\Omega^\bullet} = \partial\partial \).

Similarly, \(\partial\partial\Omega^\bullet \) is closed under the action of \(\Delta \), and that \(\Delta \) restricts to the operator \(\partial\partial \) on \(\partial\partial\Omega^\bullet \). \(\square \)

Lemma 3.2. For any CQH-Hermitian space, it holds that \([\Delta, \partial] = [\Delta, \partial\partial] = 0 \).

Proof. Starting with the first commutator, for \(\omega \in \Omega^\bullet \), we see that

\[
[\Delta, \partial](\omega) = \Delta \circ \partial(\omega) - \partial \circ \Delta(\omega) = \partial\partial(\partial\omega) - \partial\partial(\partial\omega) = 0.
\]

Vanishing of the commutator \([\Delta, \partial] \) is established similarly. \(\square \)

Proposition 3.3. For a CQH-Hermitian space, with constituent quantum homogeneous space \(B = A^\omega(H) \), left \(A \)-comodule isomorphisms are given by

1. \(\overline{\partial} : \partial\Omega^\bullet \to \overline{\partial}\Omega^\bullet \),
2. \(\overline{\partial}^\dagger : \overline{\partial}\Omega^\bullet \to \overline{\partial}^\dagger\Omega^\bullet \).

Proof. Since by assumption the calculus \(\Omega^\bullet \) and the Hermitian structure \((\Omega^\bullet, \kappa) \) are covariant, the maps \(\overline{\partial} \) and \(\overline{\partial}^\dagger \) are left \(A \)-comodule maps. Hence, it suffices to show that \(\overline{\partial} \) and \(\overline{\partial}^\dagger \) are linear isomorphisms. By Hodge decomposition \(\overline{\partial}\Omega^{(0,\bullet)} \) is orthogonal to the space of harmonic forms, and so, the kernel of the restriction of the Laplacian to \(\overline{\partial}\Omega^{(0,\bullet)} \) is trivial. Now Lemma 3.1 tells us that the Laplacian restricts to \(\overline{\partial}\overline{\partial} \) on the subspace \(\overline{\partial}\overline{\partial}\Omega^{(0,\bullet)} \), giving us that

\[
\ker(\overline{\partial}\overline{\partial}|_{\overline{\partial}\overline{\partial}\Omega^{(0,\bullet)}}) = 0.
\]

Similarly, the kernel of the restriction of \(\overline{\partial}\overline{\partial}^\dagger \) to the subspace \(\overline{\partial}\overline{\partial}^{(0,\bullet)} \) is trivial. Since the Laplacian is a self-adjoint operator, its restrictions to the subspaces \(\overline{\partial}\Omega^{(0,\bullet)} \) and \(\overline{\partial}^{(0,\bullet)} \Omega \) are diagonalisable. Thus, both operators

\[
\overline{\partial}\overline{\partial} : \overline{\partial}\Omega^\bullet \to \overline{\partial}^\dagger\Omega^\bullet,
\overline{\partial}^\dagger : \overline{\partial}^\dagger\Omega^\bullet \to \overline{\partial}\Omega^\bullet,
\]

A DOLBEAULT–DIRAC SPECTRAL TRIPLE FOR QUANTUM PROJECTIVE SPACE

are diagonalisable with trivial 0-eigenspaces. From this we see that we can construct explicit
inverses for ∂ and ∂^\dagger, implying that both maps are isomorphisms as required. □

We now discuss the relationship between the eigenvalues of Δ_{∂} and its decomposition with respect
to Hodge decomposition. In doing so, we find the following notation useful:

Notation 3.4. For $f : W \to W$ a linear operator on a vector space W, we denote by $E(\mu, f)$
the eigenspace of an eigenvalue μ of f.

Corollary 3.5. The non-zero eigenvalues of the following three operators coincide:

1. $\Delta_{\partial} : \Omega^{(0,\bullet)} \to \Omega^{(0,\bullet)}$,
2. $\mathcal{D} \mathcal{D}^\dagger : \mathcal{D}^\dagger \Omega^{(0,\bullet)} \to \mathcal{D}^\dagger \Omega^{(0,\bullet)}$,
3. $\mathcal{D} \mathcal{D}^\dagger : \mathcal{D} \Omega^{(0,\bullet)} \to \mathcal{D} \Omega^{(0,\bullet)}$.

Moreover, for any eigenvalue μ of Δ_{∂} with finite multiplicity, it holds that

$$\dim \mathbb{C} \left(E(\mu, \Delta_{\partial}) \right) = 2 \dim \mathbb{C} \left(E(\mu, \mathcal{D} \mathcal{D}^\dagger | \mathcal{D}^\dagger \Omega^{(\bullet,\bullet)}) \right) = 2 \dim \mathbb{C} \left(E(\mu, \mathcal{D} \mathcal{D}^\dagger | \mathcal{D} \Omega^{(\bullet,\bullet)}) \right).$$ \hspace{1cm} (8)

Proof. The decomposition of Δ_{∂} with respect to Hodge decomposition, as given in Lemma 3.1
above, implies that its non-zero eigenvalues are equal to the union of the eigenvalues of $\mathcal{D} \mathcal{D}^\dagger | \mathcal{D}^\dagger \Omega^{(\bullet,\bullet)}$ and the eigenvalues of $\mathcal{D} \mathcal{D}^\dagger | \mathcal{D} \Omega^{(\bullet,\bullet)}$. Hence, for any eigenvalue μ,

$$E(\mu, \Delta_{\partial}) = E(\mu, \mathcal{D} \mathcal{D}^\dagger | \mathcal{D}^\dagger \Omega^{(\bullet,\bullet)}) \oplus E(\mu, \mathcal{D} \mathcal{D}^\dagger | \mathcal{D} \Omega^{(\bullet,\bullet)}).$$

Moreover, Lemma 3.2 and Proposition 3.3 together imply that the set eigenvalues of the operators $\mathcal{D} \mathcal{D}^\dagger | \mathcal{D}^\dagger \Omega^{(\bullet,\bullet)}$ and $\mathcal{D} \mathcal{D}^\dagger | \mathcal{D} \Omega^{(\bullet,\bullet)}$ coincide and have the same multiplicity. The fact that these three
operators have a common set of non-zero eigenvalues now follows, as does that identity for
multiplicities given in (8). □

An immediate consequence of the above corollary is now given. In short, it says that verifying
the compact resolvent for the Laplacian can be reduced to verifying the condition for either
$\mathcal{D} \mathcal{D}^\dagger | \mathcal{D}^\dagger \Omega^{(\bullet,\bullet)}$ or $\mathcal{D} \mathcal{D}^\dagger | \mathcal{D} \Omega^{(\bullet,\bullet)}$.

Corollary 3.6. Assuming finite-dimensional cohomologies, the following three conditions are
equivalent:

1. $\sigma_P (\Delta_{\partial} : \Omega^{(0,\bullet)} \to \Omega^{(0,\bullet)}) \to \infty$,
2. $\sigma_P (\mathcal{D} \mathcal{D}^\dagger : \mathcal{D}^\dagger \Omega^{(0,\bullet)} \to \mathcal{D}^\dagger \Omega^{(0,\bullet)}) \to \infty$,
3. $\sigma_P (\mathcal{D} \mathcal{D}^\dagger : \mathcal{D} \Omega^{(0,\bullet)} \to \mathcal{D} \Omega^{(0,\bullet)}) \to \infty$.

We finish with an easy observation which follows from the equality of Laplacians in the Kähler
case. While not needed elsewhere, the identity is interesting as an alternative description of the
action of the Laplacian Δ_{∂} on anti-holomorphic forms.

Lemma 3.7. For a CQH-Kähler space K, the operators Δ_{∂} and $\partial^\dagger \partial$ coincide on $\Omega^{(0,\bullet)}$.

Proof. From (3) we know that in the Kähler case $\Delta_{\partial} = \Delta_\partial$. Thus the identity follows from the
fact that $\Delta_\partial = \partial \partial^\dagger + \partial^\dagger \partial$ restricts to $\partial^\dagger \partial$ on $\Omega^{(0,\bullet)}$. □
3.2. CQH-Complex Spaces of Gelfand Type. In this subsection we introduce CQH-Complex Spaces of Gelfand Type. As shown in Lemma 3.11 below, the Laplacians associated to CQH-Hermitian spaces of Gelfand type admit a particularly nice diagonalisation, which makes the calculation of their spectrum significantly more tractable. We begin by introducing graded multiplicity free comodules as a convenient abstract framework in which to discuss comodule multiplicities for covariant calculi.

Definition 3.8.

1. We say that a left A-comodule F is multiplicity-free if for any irreducible left A-comodule V, it holds that
 $$\dim \mathbb{C}(\text{Hom}^A(V,F)) = 1.$$

2. A graded left A-comodule P is a left A-comodule, together with an \mathbb{N}_0-algebra grading $P = \bigoplus_{m \in \mathbb{N}_0} P_m$, such that each P_m is a left A-sub-comodule of P, or equivalently, such that the decomposition $P = \bigoplus_{m \in \mathbb{N}_0} P_m$ is a decomposition in the category A-Mod.

3. We say that a graded comodule $P = \bigoplus_{m \in \mathbb{N}_0} P_m$ is graded multiplicity-free if the left A-comodule P_m is multiplicity-free, for all $m \in \mathbb{N}_0$.

An elementary, but very useful, observation about multiplicity-free comodules is presented in the following lemma. The proof is a direct application of Schur's lemma, and so, is omitted.

Lemma 3.9. Let P be a graded multiplicity-free left A-comodule, $\varphi : P \to P$ a degree-0 left A-comodule map, and V an irreducible A-sub-comodule of P. Then φ acts on V as a scalar multiple of the identity. Consequently, φ is diagonalisable on P.

We now present the notion of a CQH-complex space of Gelfand type. The definition is given in terms of graded multiplicity-free comodules, and is followed by a direct application of Lemma 3.9.

Definition 3.10. We say that a CQH-complex space $C = (B, \Omega(\cdot, \cdot))$ is of Gelfand type if $\Omega(0, \cdot)$ is a graded multiplicity-free left A-comodule. We say that a CQH-Hermitian space is of Gelfand type if its constituent CQH-complex space is of Gelfand type.

Since the Laplacian is a self-adjoint operator, we already know that it is diagonalisable. However, since it is a degree-0 operator, Corollary 3.9 implies the following stronger result.

Lemma 3.11. For a CQH-Hermitian space of Gelfand type, the Laplacian Δ_{∂} acts on every irreducible left A-sub-comodule of $\Omega(0, \cdot)$ as a scalar multiple of the identity.

We now use the various symmetries of the Dolbeault double complex to find four equivalent formulations of Gelfand type. We begin with the symmetry induced by the \ast-map of the calculus.

Lemma 3.12. For $C = (B, \Omega(\cdot, \cdot))$ a CQH-complex space, the following conditions are equivalent:

1. C is of Gelfand type,
2. C^{op}, the opposite CQH-complex space, is of Gelfand type,
3. the graded left A-comodule $\Omega(\cdot, 0)$ is graded multiplicity-free.

Proof.

1 \iff 3 The image of an irreducible A-sub-comodule of Ω^\ast under the \ast-map is again an irreducible A-sub-comodule. Thus if $\Omega^{0,k} = \bigoplus_{\alpha} \Omega^{0,k}_\alpha$ denotes a decomposition of $\Omega^{0,k}$ into irreducible A-sub-comodules, then a decomposition of $\Omega^{k,0}$ into irreducible A-sub-comodules
is given by
\[\Omega^{(k,0)} \simeq \bigoplus_{\alpha} (\Omega^{(k,0)}_{\alpha})^*. \]

Thus we see that \(\Omega^{(k,0)} \) is multiplicity-free if and only if \(\Omega^{(0,k)} \) is multiplicity-free, which is to say \(C \) is of Gelfand type if and only if \(C^{op} \) is of Gelfand type.

If we additionally assume the existence of a covariant Hermitian structure, then the symmetries induced by the Hodge map imply two additional equivalent formulations of Gelfand type. Note that in this case the Gelfand condition can be verified on any of the outer edges of the Hodge diamond.

Lemma 3.13. For \(H = (B, \Omega^{(\ast,\ast)}, \sigma) \) a CQH-Hermitian space, the following conditions are equivalent:

1. \(H \) is of Gelfand type,
2. the graded left \(A \)-comodule \(\Omega^{(\ast,n)} \) is graded multiplicity-free,
3. the graded left \(A \)-comodule \(\Omega^{(n,\ast)} \) is graded multiplicity-free.

Proof.

1 \(\Leftrightarrow \) 2 By Lemma 2.6, the Hodge map \(* \sigma \) associated to \(\sigma \) restricts to a left \(A \)-comodule isomorphism \(* \sigma : \Omega^{(0,\ast)} \simeq \Omega^{(\ast,0)} \). Thus \(\Omega^{(\ast,n)} \) is graded multiplicity-free if and only if \(\Omega^{(0,\ast)} \) is graded multiplicity-free, which is to say, if and only if \(H \) is of Gelfand type.

1 \(\Leftrightarrow \) 3 By Lemma 7.7 above, \(H \) is of Gelfand type, if and only if \(\Omega^{(\ast,0)} \) is graded multiplicity-free. Moreover, using the Hodge map, just as above, we see that \(\Omega^{(n,\ast)} \) is graded multiplicity-free if and only if \(\Omega^{(0,\ast)} \) is graded multiplicity-free, giving the required equivalence.

□

4. **Drinfeld–Jimbo Quantum Groups and CQH-Hermitian Spaces**

From now on we restrict to the case of Drinfeld–Jimbo quantised enveloping algebras \(U_q(g) \) and their quantised coordinate algebras \(O_q(G) \), as presented in \([18] \). This allows us to exploit the associated highest weight structure on the category of rational \(U_q(g) \)-modules, leading to the construction of canonical sequences of eigenvalues in \(\sigma_P(\Delta_\sigma) \). In the next section, under suitable assumptions, we decompose \(\sigma_P(\Delta_\sigma) \) into unions of such sequences allowing us to give sufficient and necessary conditions for \(\sigma_P(\Delta_\sigma) \rightarrow \infty \).

4.1. **Highest and Lowest Weight Vectors.** In this subsection we examine the behaviour of highest weight vectors in an \(O_q(G) \)-comodule algebra \(P \). We show that the space of highest weight elements is a multiplicative submonoid of \(P \). Moreover, we show that in the graded multiplicity-free case, any pair of highest weight vectors commute up to a scalar. The algebra of anti-holomorphic forms \(\Omega^{(0,\ast)} \) of a covariant complex structure is then presented as a motivating example.
Definition 4.1. For any \(Z \in \mathcal{O}_q(G) \text{-Mod} \), with respect to the \(U_q(g) \)-action induced by the dual pairing \(U_q(g) \times \mathcal{O}_q(G) \to \mathbb{C} \), we denote

\[
Z_{hw} := \{ f \in Z \mid f \text{ is a highest weight vector of } Z \},
\]

\[
Z_{lw} := \{ f \in Z \mid f \text{ is a lowest weight vector of } Z \}.
\]

Lemma 4.2. For a left \(\mathcal{O}_q(G) \)-comodule algebra \(P \), which is to say a monoid object in the category \(\mathcal{O}_q(G) \text{-Mod} \), it holds that

1. \(\text{wt}(ab) = \text{wt}(ba) = \text{wt}(a) + \text{wt}(b) \) for all \(a, b \in P \),
2. the multiplication of \(P \) restricts to the structure of a monoid on \(P_{hw} \) and \(P_{lw} \).

Proof. Let \(a, b \in P_{hw} \), then for \(k = 1, \ldots, r \),

\[
E_k \triangleright (ab) = (K_k \triangleright a)(E_k \triangleright b) + (E_k \triangleright a)(1 \triangleright b) = 0.
\]

Moreover, \(K_k \triangleright (ab) = (K_k \triangleright a)(K_k \triangleright b) = q^{\text{wt}_k(a) + \text{wt}_k(b)} ab \). Thus \(ab \in P_{hw} \). To show that we have a monoid it remains to show that the unit of \(P \) is contained in \(P_{hw} \). This follows directly from the properties of a dual pairing as seen from

\[
X \triangleright 1 = \langle S(X), 1 \rangle 1 = \varepsilon(S(X))1 = \varepsilon(X)1.
\]

In this subsection we discuss graded multiplicity-free comodules for the Drinfeld–Jimbo quantum groups. This allows us to produce a collection of identities describing proportionality relations between certain highest weight vectors. For the special case of CQH-Hermitian spaces, these identities will be our main tool for calculating the spectrum of a Dolbeault–Dirac operator. The proof of the following lemma is elementary and hence omitted.

Lemma 4.3. Let \(A \simeq \bigoplus_{i \in \mathbb{N}_0} A_i \) be a graded multiplicity-free \(\mathcal{O}_q(G) \)-comodule, and \(a, b \in A_{lw} \) such that

1) \(|a| = |b| \),
2) \(\text{wt}(a) = \text{wt}(b) \),
3) \(b \neq 0 \).

Then there exists a uniquely defined scalar \(C \in \mathbb{C} \) such that \(a = Cb \).

Definition 4.4. A graded \(A \)-comodule algebra is a graded \(A \)-comodule \(P = \bigoplus_{i \in \mathbb{N}_0} P_i \), which is also an \(A \)-comodule algebra, such that the grading and multiplication of \(P \) combine to give it the structure of a graded algebra.

The following result now follows immediately from Lemma 4.3.

Corollary 4.5. Let \(P \) a graded multiplicity-free \(A \)-comodule algebra. If \(c, d \in P_{lw} \) such that \(dc \neq 0 \), then there exists a unique scalar \(C \in \mathbb{C} \) such that

\[
\text{cd} = C \text{dc}.
\]

Example 4.6. The simplest example of a left \(\mathcal{O}_q(G) \)-comodule algebra is a quantum homogeneous space \(\mathcal{O}_q(M) = \mathcal{O}_q(G)^{\mathcal{O}_q(H)} \). As discussed in \([7]\) the highest weight monoid is always finitely generated as a monoid. However, as we will see in \([10]\) and \([11]\) the number of generators has strong consequences for the complexity of the spectrum of the Dolbeault–Dirac operators constructed to a CQH-Hermitian spaces over \(\mathcal{O}_q(M) \).

Example 4.7. Each of the following objects are left \(\mathcal{O}_q(G) \)-comodule algebras

\[
\Omega^*, \quad \Omega^{0,\bullet}, \quad \Omega^{\bullet,0}.
\]
Lemma 4.2 implies that the respective multiplications restrict to monoid structures on the sets

\[\Omega_{\text{hw}}^{\bullet}, \quad \Omega_{\text{hw}}^{(0, \bullet)}, \quad \Omega_{\text{hw}}^{(\bullet, 0)}. \]

Note that by restriction of the monoid structure of \(\Omega_{\text{hw}}^{\bullet} \), we have the following monoid actions

\[\Omega_{\text{hw}}^{(0, \bullet)} \times \Omega_{\text{hw}}^{(\bullet, n)} \to \Omega_{\text{hw}}^{(\bullet, n)} \]

Moreover, restricting to highest weight forms of degree zero, we have the following monoid action

\[\mathcal{O}_q(M)_{\text{hw}} \times \Omega_{\text{hw}}^{(a, b)} \to \Omega_{\text{hw}}^{(a, b)}, \quad \text{for all } (a, b) \in \mathbb{N}_0^2. \]

Remark 4.8. The previous examples can be extended to a more formal general setting using the language of relative Hopf modules over comodule algebras. Let \(A \) be a Hopf algebra, and \((P, \Delta_P) \) a left \(A \)-comodule algebra. A relative Hopf \(P \)-module algebra \(\mathcal{N} \) is a left \(A \)-comodule \((\mathcal{N}, \Delta_{\mathcal{N}}) \), which is also a module over the algebra \(P \), satisfying the compatibility condition

\[\Delta_{\mathcal{N}}(p, n) = \Delta_P(p) \Delta_{\mathcal{N}}(n), \quad \text{for all } p \in P, n \in \mathcal{N}. \]

Alternatively, considering \(P \) as a monoid object in the category \(^A \text{Mod} \), a relative Hopf \(P \)-module algebra is just a module object over \(P \) in the category \(^A \text{Mod} \). It is instructive to observe that any object in \(\mathcal{O}_q(G)_{\text{hw}} \text{Mod} \), which is a relative Hopf \(\mathcal{O}_q(G) \)-module algebra.

Following the same argument as in Lemma 4.2, one can now establish the following result, formalising the actions appearing in Example 4.7.

Lemma 4.9. For \(P \) a left \(\mathcal{O}_q(G) \)-comodule algebra and \(\mathcal{N} \) a relative Hopf \(P \)-module algebra, the action of \(P \) on \(\mathcal{N} \) restricts to the structure of a \(\mathcal{P}_{\text{hw}} \)-space

\[\mathcal{P}_{\text{hw}} \times \mathcal{N}_{\text{hw}} \to \mathcal{N}_{\text{hw}}, \quad (p, n) \mapsto pn. \]

4.2. CQH-Complex Spaces and Leibniz Constants

In this subsection we apply the general results of the previous subsection to the CQH-complex spaces of Gelfand type. As a result we identify a collection of constants, which we call Leibniz constants, intrinsic to the structure of calculus. First however, we prove a useful result relating highest weight vectors and the \(* \)-map of a covariant \(* \)-calculus.

Lemma 4.10. For a CQH-complex space \(C = (B, \Omega^{\bullet, \bullet}) \), the \(* \)-map of the constituent calculus

\[\Omega^\bullet \in B \]

restricts to a bijection between \(\Omega^\bullet_{\text{hw}} \) and \(\Omega^\bullet_{\text{hw}} \). Moreover, the bijection is an anti-monoid map.

Proof. For any \(\omega \in \Omega^\bullet_{\text{hw}} \), we have, for \(k = 1, \ldots, \text{rank}(g) \),

\[F_k \triangleright \omega^* = \langle S(F_k), \omega^* \rangle_{\langle 0 \rangle} = \langle S^2(F_k)^*, \omega\langle -1 \rangle \omega_{\langle 0 \rangle} \rangle^* = \langle \langle S^{-3}(F_k^*), \omega\langle -1 \rangle \omega_{\langle 0 \rangle} \rangle, \omega^* \rangle.

A direct calculation confirms that \(S^{-3}(F_k^*) = -q^{-4}k^{-2}E_k \). Thus, since \(\omega \) is by assumption a highest weight vector, we must have that \(F_k \triangleright \omega^* = 0 \). Analogously, it can be shown that \(K_k \triangleright \omega^* = q^{-\text{rank}(g)} \omega^* \). Hence, \(\omega \) is a lowest weight element of \(\Omega^\bullet \). The proof that \(* \) sends lowest weight forms to highest weight forms is analogous. Thus since the \(* \)-map is an involution, it must induce a bijection between highest and lowest weight forms. Moreover, since the \(* \)-map is an anti-algebra map, it restricts to an anti-monoid map between \(\Omega^\bullet_{\text{hw}} \) and \(\Omega^\bullet_{\text{hw}} \).

We now restrict to the Gelfand case, beginning with a following lemma which is a direct consequence of Corollary 4.5.
Corollary 4.12. For every non-harmonic element \(z \in \mathcal{O}_q(M)_{\text{hw}} \), there exist non-zero constants \(\lambda_z, \zeta_z \in \mathbb{C} \), uniquely defined by

\[
(\partial_z)z = \lambda_z z \partial_z, \quad \overline{(\partial_z)}z = \zeta_z \overline{z} \partial_z.
\]

We call \(\lambda_z \), and \(\zeta_z \), the holomorphic Leibniz constant, and anti-holomorphic Leibniz constant, of \(z \) respectively.

Proof. By faithfulness of the representation \(\rho \), as defined in (4), the product \(\overline{z} \partial z \) is non-zero. Since the complex structure is of Gelfand type by assumption, Lemma 4.11 implies the existence and uniqueness of the constants \(\lambda_z \) and \(\zeta_z \).

Corollary 4.13. For any \(z \in \mathcal{O}_q(M)_{\text{hw}} \), with Leibniz constant \(\lambda_z \), and \(l \in \mathbb{N}_0 \), it holds that

1. \(\partial z^l = (l)_{\lambda_z} z^{l-1} \partial z \),
2. \(\overline{\partial z}^l = (l)_{\zeta_z} z^{l-1} \overline{\partial z} \),

where \((l)_{\lambda_z} \) and \((l)_{\zeta_z} \) are quantum integers, as presented in (4.3).

Proof. Let us assume that the required identity holds for some \(l > 1 \), then

\[
\partial z^{l+1} = (\partial z)z^l + z \partial z^l = \lambda_z z^l \partial z + (l)\lambda_z z^l \partial z = (\lambda_z^l + (l)\lambda_z) z^l \partial z = (l+1)\lambda_z z^l \partial z.
\]

The required formula now follows by an inductive argument. The formula for \(\overline{\partial z}^l \) is established analogously.

In what follows it proves very useful to have a simple relationship between the holomorphic and anti-holomorphic Leibniz constants. While it is not clear that such a relation exists in general, the assumption of a certain type of self-conjugacy on zero forms is enough to imply an inverse relation between \(\lambda_z \) and \(\zeta_z \).

Definition 4.14. We say that a quantum homogeneous space \(\mathcal{O}_q(M) = \mathcal{O}_q(G)^{\text{co}(H)} \) is self-conjugate if every irreducible sub-comodule \(V \subseteq \mathcal{O}_q(M) \) is a \(* \)-closed subspace, which is to say \(V = \{ v^* | v \in V \} \).

The following technical lemma serves as a useful means of checking \(* \)-invariance of an irreducible submodule \(V \) in terms of the highest weight vectors of \(V \).

Lemma 4.15. For a quantum homogeneous space \(\mathcal{O}_q(M) = \mathcal{O}_q(G)^{\text{co}(H)} \), and an element \(z \in \mathcal{O}_q(M)_{\text{hw}} \), the irreducible sub-comodule \(U_q(\mathfrak{g})z \) is a \(* \)-closed subspace if and only if \(z^* \in U_q(\mathfrak{g})z \).

Proof. Since \(z \) is a highest weight vector of the irreducible comodule \(U_q(\mathfrak{g})z \), for every \(v \in U_q(\mathfrak{g})z \), there exists an \(X \in U_q(\mathfrak{g}) \), such that \(X \circ z = v \). Note next that

\[
v^* = (X \circ z)^* = (\langle S(X), z_{(1)} \rangle z_{(2)})^* = \overline{\langle S(X), z_{(1)} \rangle z_{(2)}}.
\]
Recalling now that we have a dual pairing of Hopf $*$-algebras, we see that
\[
\langle S(X), z(1) \rangle z^*_z(2) = \langle S^2(X)^* , z(1)_z \rangle z^*_z(2)
\]
\[
= \langle S^{-2}(X^*), z^*(1)_z \rangle z^*_z(2)
\]
\[
= \langle S(S^{-3}(X^*)^*), z^*_z(1) \rangle z^*_z(2)
\]
\[
= S^{-3}(X^*) \triangleright z^*.
\]
Thus if we assume that $z^* \in U_q(\mathfrak{g})z$, then we necessarily have $v^* \in U_q(\mathfrak{g})z$, for all $v \in U_q(\mathfrak{g})z$, implying that $U_q(\mathfrak{g})z$ is $*$-closed. The opposite implication is obvious. □

We finish by showing that the assumption of self-conjugacy does indeed imply an inverse relation between the Leibniz constants λ_z and ζ_z.

Proposition 4.16. Let H be a self-conjugate CQH-Hermitian space of Gelfand type. For any $z \in \mathcal{O}_q(M)_{\text{hw}}$ with real Leibniz constants, it holds that
\[
(\overline{\partial} z) z = \lambda_z^{-1} \partial z,
\]
or equivalently
\[
\zeta_z = \lambda_z^{-1}.
\]

Proof. Applying the $*$-map to the identity $(* \partial z) z = \lambda_z \partial z$ gives us the new identity
\[
(\overline{\partial} z) z = \lambda_z^{-1} \partial z = (\overline{\partial} z^*) z^*.
\]
Lemma 4.10 combined with our assumption that H is self-conjugate, implies that z^* is a lowest weight vector of the irreducible module $U_q(\mathfrak{g})z$. Thus there exists an $X \in U_q(\mathfrak{g})$ such that $X \triangleright z^* = z$. A routine weight argument will confirm that
\[
X^2 \triangleright (z^* \overline{\partial} z^*) = (X \triangleright z^*) \overline{\partial} (X \triangleright z^*) = z \overline{\partial} z.
\]
Analogously, $X^2 \triangleright ((\overline{\partial} z^*) z^*) = (\overline{\partial} z) z$. Thus applying X^2 to both sides of (9) gives the required identity $(\overline{\partial} z) z = \lambda_z^{-1} z \overline{\partial} z$.

□

4.3. **Laplacian Eigenvalues for CQH-Hermitian Spaces of Gelfand Type.** In this final subsection we show that for a CQH-Hermitian spaces of Gelfand type, Hodge decomposition is a decomposition of $\mathcal{O}_q(M)_{\text{hw}}$-spaces. Combining this result with the Hodge decomposition of the Laplacian, we compute the eigenvalues of a general sequence of eigenvectors of the form $z^l \omega$, where $z \in \mathcal{O}_q(M)_{\text{hw}}$, and $\omega \in \mathcal{M}_{\text{hw}}(\mathcal{O}_q(M))$. In the next section, our strategy is to decompose the point spectrum of the Laplacian into a finite union of such sequences and to use this to conclude that, under sufficient assumptions, $\sigma_H(\Delta_q) \to \infty$. As discussed in [4], the general ideas of this section can be extended to the general weak Gelfand setting with sufficient care.

Note that in this subsection we make heavy use of the quantum integer notation as presented in [3.5].

Lemma 4.17. Let $H = (M, \Omega^{\bullet \bullet}, \sigma)$ be a CQH-Hermitian space of Gelfand type, and $z \in \mathcal{O}_q(M)_{\text{hw}}$. Then, for every $\omega \in \mathcal{M}_{\text{hw}}(\mathcal{O}_q(M))$, there exists unique scalars $A_{z, \omega}, B_{z, \omega} \in \mathbb{C}$, such that

1. $\partial z \wedge *_{\sigma}(\omega) = A_{z, \omega} z(\partial \circ *_{\sigma}(\omega))$,
2. $\overline{\partial} z \wedge \overline{\partial} \omega = B_{z, \omega} z(\overline{\partial} \overline{\partial}(\omega))$.

Proof.

1. Note first that both sides of the identity are highest weight vectors. Next we see that
\[
K_i \triangleright (\partial z \wedge *_{\sigma}(\omega)) = \partial (K_i \triangleright z) \wedge *_{\sigma}(K_i \triangleright \omega) = q^{wt_z(z)+wt_\omega(\omega)} \partial z \wedge *_{\sigma}(\omega).
\]
Proposition 4.19. For any CQH-complex space of Gelfand type, with constituent quantum homogeneous space \(O \) decomposition of highest weight forms into \(l \)-all set\(\). Thus \(z(\partial \circ \ast_{\sigma}(\omega)) \neq 0 \), then the existence of the required constant would follow from Lemma 4.3. However, by Lemma 2.8 the form \(\ast_{\sigma}(\omega) \) is contained in \(\partial^l \Omega^* \), and so, \(\partial^l \circ \ast_{\sigma}(\omega) \neq 0 \). Thus it follows from faithfulness of the representation \(\rho \), as defined in (4), that the product \(z(\partial \circ \ast_{\sigma}(\omega)) \neq 0 \) as required.

2. The proof is analogous to the proof of 1, and so, is omitted.

\[\square \]

We now use the existence of the constant \(A_{z,\omega} \) presented in the above lemma to establish an identity needed for the proofs of Proposition 4.19 and Theorem 4.20.

Corollary 4.18. It holds that

\[\overline{\mathcal{F}}(z^l l_\omega) = (A_{z,\omega}(l)\lambda_z + 1) z^l \overline{\mathcal{F}}(\omega). \]

Proof. From the identity \(\overline{\mathcal{F}} = - \ast_{\sigma} \circ \partial \circ \ast_{\sigma} \), we have that

\[\overline{\mathcal{F}}(z^l l_\omega) = - \ast_{\sigma} \circ \partial \circ \ast_{\sigma}(z^l l_\omega) \]
\[= - \ast_{\sigma} \circ \partial (z^l \ast_{\sigma}(\omega)) \]
\[= - \ast_{\sigma} ((l)\lambda_z z^{l-1} \partial z \wedge \ast_{\sigma}(\omega) + z^l(\partial \circ \ast_{\sigma}(\omega))) \]
\[= (l)\lambda_z z^{l-1} \ast_{\sigma}(\partial z \wedge \ast_{\sigma}(\omega)) - z^l(\ast_{\sigma} \circ \partial \circ \ast_{\sigma}(\omega)). \]

Recalling Lemma 4.17 we see that there exists a scalar \(A_{z,\omega} \) such that

\[\overline{\mathcal{F}}(z^l l_\omega) = -(l)\lambda_z z^l A_{z,\omega}(\ast_{\sigma} \circ \partial \circ \ast_{\sigma}(\omega)) + z^l \overline{\mathcal{F}}(\omega) \]
\[= (A_{z,\omega}(l)\lambda_z + 1) z^l \overline{\mathcal{F}}(\omega). \]

\[\square \]

With these results in hand we are now ready to show that Hodge decomposition implies a decomposition of highest weight forms into \(\Omega_q(M)_{\text{hw}} \)-subspaces.

Proposition 4.19. For any CQH-complex space of Gelfand type, with constituent quantum homogeneous space \(\Omega_q(M) \), the spaces \(\overline{\Omega}^{(0,*)}_{\text{hw}} \) and \(\overline{\Omega}^{(0,*)}_{\text{hw}} \) are \(\Omega_q(M)_{\text{hw}} \)-subsets of the \(\Omega_q(M)_{\text{hw}} \)-set \(\Omega^{(0,*)}_{\text{hw}} \).

Proof. Consider elements \(\omega \in \overline{\Omega}^{(0,*)}_{\text{hw}} \), and \(z \in \Omega_q(M)_{\text{hw}} \). Since Hodge decomposition is a decomposition of left \(\Omega_q(G) \)-comodules, either \(U_q(g)z^l \omega \subseteq \overline{\Omega}^{(0,*)}_{\text{hw}} \), or \(U_q(g)z^l \omega \subseteq \overline{\Omega}^{(0,*)}_{\text{hw}} \), for all \(l \in \mathbb{N}_0 \). In particular either \(z^l \omega \in \overline{\Omega}^{(0,*)}_{\text{hw}} \), or \(z^l \omega \in \overline{\Omega}^{(0,*)}_{\text{hw}} \). We observe that

\[\overline{\mathcal{F}}(z^l l_\omega) = \overline{\mathcal{F}}(z^l) \wedge \omega + z^l \overline{\mathcal{F}}(\omega) = (l)\lambda_z z^{l-1} \overline{\mathcal{F}}(\omega). \]

Thus \(\overline{\mathcal{F}}(z^l l_\omega) = 0 \) if and only if \(\overline{\mathcal{F}}(\omega) = 0 \). This means that \(z\omega \in \overline{\Omega}^{(0,*)}_{\text{hw}} \) if and only if \(z^l \omega \in \overline{\Omega}^{(0,*)}_{\text{hw}} \), for all \(l \in \mathbb{N}_0 \).

Now, for \(l = 1 \), this is zero if and only if \(B_{z,\omega} = -1 \). In that case, for \(l > 1 \), recalling that \(q \in \mathbb{R} \) (and hence not a complex root of unity), we have

\[\overline{\mathcal{F}}(z^l l_\omega) = (l)\lambda_z + 1) z^l \overline{\mathcal{F}}(\omega) \neq 0. \]
However, this contradicts our earlier observation that $z^l \omega \in \mathcal{O}^{(0, \bullet)}$ if and only if $z\omega$ is contained in $\mathcal{O}^{(0, \bullet)}$. Hence, we are forced to conclude that $\mathcal{O}^{(0, \bullet)}_{\text{hw}}$ is closed under the action of $\mathcal{O}_q(M)_{\text{hw}}$. The proof that $\mathcal{O}^{(0, \bullet)}_{\text{hw}}$ is closed under the action of $\mathcal{O}_q(M)_{\text{hw}}$ is analogous. \hfill \Box

We now use this lemma to construct an explicit sequence of eigenvalues starting from an element $z \in \mathcal{O}_q(M)_{\text{hw}}$, and a form $\omega \in \mathcal{O}^{(0, k)}_{\text{hw}}$. In the next section, we introduce an approach to verifying the compact resolvent condition based around such sequences of eigenvalues. The eigenvalues are presented in terms of quantum λ_z-integers, and quantum λ_z^{-1}-integers, where as usual λ_z is the Leibniz constant of z. In the case of quantum projective space, as presented in §6, we see that eigenvalues of its Dolbeault–Dirac operator are exactly of this form, with the quantum λ_z-integers q-deforming the integer eigenvalues of the classical operator.

Theorem 4.20. Let $H := (B, \Omega^{(\bullet, \bullet)}_q, \sigma)$ be a CQH-Hermitian space of Gelfand type. For any form ω in $\mathcal{O}^{(0, k)}_{\text{hw}}$, and $z \in \mathcal{O}_q(M)_{\text{hw}}$, it holds that

1. $z^l \omega$ is an eigenvector of $\Delta_{\mathcal{O}}$ for all $l \in \mathbb{N}_0$,
2. denoting by μ_ω the eigenvalue of ω, it holds that

$$\Delta_{\mathcal{O}}(z^l \omega) = \left(A_{z, \omega}(l) \lambda_z + 1 \right) \left(B_{z, \omega}(l) \lambda_z^{-1} + 1 \right) \mu_\omega z^l \omega.$$

Proof. By Corollary 4.18, we have that

$$\mathcal{O}(z^l \omega) = \mathcal{O}(z^l) \wedge \mathcal{O}^{1, 1} + z^l (\overline{\partial}^l \omega) = (l) \lambda_z^{-1} z^l \mathcal{O}^{l, 1} \wedge \mathcal{O} \omega + z^l (\overline{\partial}^l \omega).$$

Lemma 4.17 implies that there exists a uniquely defined scalar $B_{z, \omega}$ such that

$$\mathcal{O}(z^l \omega) = (l) \lambda_z^{-1} z^l \mathcal{O}^{l, 1} \wedge \mathcal{O} \omega + z^l (\overline{\partial}^l \omega)$$

$$= B_{z, \omega}(l) \lambda_z^{-1} z^l \overline{\partial}^l \omega + z^l (\overline{\partial}^l \omega)$$

$$= (B_{z, \omega}(l) \lambda_z^{-1} + 1) z^l \overline{\partial}^l \omega.$$

From Proposition 4.19 above, we know that $z^l \omega \in \mathcal{O}^{(0, \bullet)}$. Moreover by Hodge decomposition of the Laplacian, we know that $\Delta_{\mathcal{O}}$ restricts to $\overline{\partial}^l$ on $\mathcal{O}^{(0, \bullet)}$. Combining these facts with Corollary 4.18, we now see that

$$\Delta_{\mathcal{O}}(z^l \omega) = \overline{\partial}^l (z^l \omega)$$

$$= (1 + A_{z, \omega}(l) \lambda_z) \overline{\partial}^l (z^l \omega)$$

$$= (1 + A_{z, \omega}(l) \lambda_z) (1 + B_{z, \omega}(l) \lambda_z^{-1}) z^l \overline{\partial}^l (\omega)$$

$$= (1 + A_{z, \omega}(l) \lambda_z) (1 + B_{z, \omega}(l) \lambda_z^{-1}) \Delta_{\mathcal{O}}(z^l \omega)$$

$$= (1 + A_{z, \omega}(l) \lambda_z) (1 + B_{z, \omega}(l) \lambda_z^{-1}) \mu_\omega z^l \omega,$$

establishing the required identity. \hfill \Box

4.4. Connectedness for Gelfand Type CQH-Complex Spaces. We finish with a discussion of connectedness in the Gelfand type setting, proving that it is equivalent to finite dimensionality of the zeroth cohomology group H^0. This is an interesting, and useful, application of the notion of Gelfand type, especially given the difficulty of demonstrating connectedness in general. We begin by recalling the standard definition of connectedness for a differential calculus.

Definition 4.21. We say that a differential calculus (Ω^\bullet, d) is connected if

$$H^0 = \ker(d : \Omega^0 \rightarrow \Omega^1) = \mathbb{C}1.$$
It is important to note that if Ω^\bullet is endowed with a complex structure $\Omega(\bullet, \bullet)$, then an elementary application of the $*$-map demonstrates that the calculus is connected if and only if
\[\ker(\partial : \Omega^{(0,0)} \to \Omega^{(1,0)}) = \ker(\overline{\partial} : \Omega^{(0,0)} \to \Omega^{(0,1)}) = \mathbb{C}1. \]

Note that the following lemma does not rely on our discussions above. What is used is no more than a multiplicity-free assumption for 0-forms (as implied by Gelfand type) and the assumption that we are working with Drinfeld–Jimbo quantum groups.

Lemma 4.22. Let $\mathbf{C} = (\mathbf{B}, \Omega(\bullet, \bullet))$ be a CQH-complex space for which Ω^0 is multiplicity-free as a left \mathbf{A}-comodule. Then the following are equivalent:

1. The constituent different calculus $\Omega^\bullet \subseteq \mathbf{B}$ is connected,
2. $\dim_{\mathbb{C}} (H^0) < \infty$.

Proof. Assume that H is not connected, which is to say, assume that $\mathcal{O}_q(M)$ contains a $\overline{\partial}$-closed element y which is not a scalar multiple of the identity. Denote by $y = \sum_k y_k$ the decomposition of y into summands which are homogeneous with respect to the decomposition of $\mathcal{O}_q(M)$ into irreducible $U_q(\mathfrak{g})$-modules. Since Ω^0 is multiplicity-free by assumption, and $\overline{\partial}$ is a left $U_q(\mathfrak{g})$-module map, $\overline{\partial}y = 0$ if and only if $\overline{\partial}y_k = 0$, for all k. Hence, we can assume, without loss of generality, that y is homogeneous with respect to the decomposition of $\mathcal{O}_q(M)$ into irreducibles. By Schur’s lemma every element in the irreducible module containing y must be $\overline{\partial}$-closed. Thus we can assume, without loss of generality, that y is a weight vector with non-zero weight. Since weights are additive $K_i \triangleright y^l = q^{\text{wt}_i(y)} y^l$, for any $l \in \mathbb{N}_0$, and $i = 1, \ldots, \text{rank}(\mathfrak{g})$. Thus the weights of the elements y^l are distinct, for each l. In particular, the set $\{y^l \mid l \in \mathbb{N}_0\}$ is linearly independent, and so, infinite dimensional. Since $\overline{\partial}y = 0$, the Leibniz rule implies that $\overline{\partial}(y^l) = 0$, for all $l \in \mathbb{N}_0$. This means that the space of harmonic elements is infinite dimensional, and so, by Hodge decomposition H^0 is infinite dimensional. The proof in the other direction is trivial, meaning that we have established the required equivalence. \square

5. **CQH-Complex Spaces of Order I and Spectral Triples**

In this section we introduce the notion of CQH-complex space of order I, which can be viewed as an abstraction of the essential representation theoretic properties of the space of holomorphic forms of complex projective space. Necessary and sufficient conditions are then produced for a CQH-Hermitian space to give a Dolbeault–Dirac pair of spectral triples, under the assumption that its underlying CQH-complex space is of order I.

As shown in Theorem 7.11, the only compact quantum Hermitian symmetric space of order I is $\mathcal{O}_q(\mathbb{C}P^{n-1})$. We formalise its properties for three principal reasons. Firstly, the abstract picture helps to clarify and elucidate the processes at work for quantum projective space. Secondly, it sets the stage for our subsequent investigation of the compact quantum Hermitian spaces of weak Gelfand type, highlighting the subtle but significant changes that occur when passing to this more general setting. Finally, it is hoped that new examples will arise from non-Drinfeld–Jimbo quantisations of $U_q(\mathfrak{g})$. In fact, it is important to note that the only essential feature of $U_q(\mathfrak{g})$ used in this paper is the preservation under q-deformation of the highest weight structure of the category of $U(\mathfrak{g})$-modules.

Note that in this subsection we make heavy use of the quantum integer notation as presented in [B.3].
5.1. Positivity for Leibniz Constants. In this subsection we give sufficient conditions for real Leibniz constants to be positive. As well as being an interesting observation in its own right, positivity must hold for any CQH-Hermitian space satisfying \(\sigma_r(\Delta_\sigma) \to \infty \), as we will see in §5.2.

Lemma 5.1. Let \(H = (B, \Omega^{(\bullet \bullet)}, \sigma) \) be a self-conjugate CQH-Hermitian space of Gelfand type, with constituent quantum homogeneous space \(O_q(M) \). For any \(z \in O_q(M)_{\text{hw}} \), and \(l \in \mathbb{N}_0 \),

\[
\Delta_{\sigma}(z^l \partial z) = (A_{z, \partial z}(l) \lambda_z + 1)(l + 1) \lambda_z^{-1} \mu_z z^l,
\]

where \(\mu_z \) is the \(\Delta_{\sigma} \)-eigenvalue of \(z \), and as usual \(\lambda_z \) is the Leibniz constant of \(z \).

Proof. For \(\mu_z \) the \(\Delta_{\sigma} \)-eigenvalue of \(z \),

\[
\partial z \wedge \overline{\partial z} = \partial z \wedge (\mu_z z) = \mu_z \lambda_z^{-1} z \partial z = \lambda_z^{-1} z \partial (\mu_z z) = \lambda_z^{-1} z \partial \overline{\partial z}.
\]

Thus we see that \(B_{z, \partial z} = \lambda_z^{-1} \). Equation (10) now follows from Theorem 4.20. \(\Box \)

Proposition 5.2. Let \(H = (B, \Omega^{(\bullet \bullet)}, \sigma) \) be a connected self-conjugate CQH-Hermitian space of Gelfand type. For any non-harmonic \(z \in O_q(M)_{\text{hw}} \), with real Leibniz constant \(\lambda_z \), it holds that

1. \(\lambda_z \notin (-1, 0) \),
2. if \(A_{z, \partial z} \neq 0 \), then \(\lambda_z \in \mathbb{R}_{>0} \).

Proof.

1. Assume that \(-1 < \lambda_z < 0\). As \(l \to \infty \), the sign of the scalar

\[
(l + 1) \lambda_z^{-1} = \frac{1 - \frac{\lambda_z^{-1}(l+1)}{1 - \lambda_z^{-1}}}{1 - \lambda_z^{-1}}
\]

alters, and its absolute value goes to infinity. Moreover, \((l) \lambda_z \) is positive for all \(l \in \mathbb{N}_0 \), implying that \(A_{z, \partial z}(l) \lambda_z + 1 \) will eventually have a constant sign. Thus there exist values of \(l \) for which the eigenvalue in (10) is negative. However, this contradicts the fact that \(\Delta_{\sigma} \) is a positive operator, forcing us to conclude that \(\lambda_z \notin (-1, 0) \). Moreover, if \(\lambda_z = -1 \), then \(\lfloor 2 \lambda_z \rfloor = 0 \), implying that \(z^2 \) is harmonic, contradicting our assumption that \(H \) is connected. Thus we must have that \(\lambda_z \notin (-1, 0) \).

2. For \(\lambda_z < -1 \), assuming that \(A_{z, \partial z} \neq 0 \) allows one to produce a negative eigenvalue for \(\Delta_{\sigma} \), just as above. Since this again contradicts the positivity of \(\Delta_{\sigma} \), we are forced to conclude that \(-1 < \lambda_z \). Taken together with the fact that \(\lambda_z \notin [-1, 0) \), this means that \(\lambda_z \in \mathbb{R}_{>0} \).

\(\square \)

5.2. CQH-Complex Spaces of Order I. In this subsection we introduce the notion of a CQH-complex space of order I. This collects the properties of Gelfand type and self-conjugacy together with the existence of a ladder presentation—a particularly convenient form for the decomposition of the exact anti-holomorphic forms into irreducibles. When reading the definition below, it is important to bear Proposition 4.19 in mind, in particular the fact that \(\overline{\Omega}^{(0 \bullet)} \) is an \(O_q(M)_{\text{hw}} \)-subspace of \(\Omega^{(0 \bullet)} \).

The definition is an abstraction of the \(U_q(a_{1n}) \)-module structure of the anti-holomorphic forms of complex projective form, and in particular of the \(K \)-types appearing in the decomposition into irreducibles. (See §1 and 55 for a more detailed discussion of Vogan’s minimal \(K \)-types.)
Definition 5.3. Let $C = (B, \Omega^{(\bullet, \bullet)})$ be a CQH-complex space. A ladder presentation for C is a pair (z, Θ), where $z \in O_q(M)_{\text{herm}}$, and $\Theta \subseteq \partial \Theta^{(0, \bullet)}$ is a finite subset of homogeneous forms (that is $\Theta = \cup_k \Theta_k$, where $\Theta_k := \Theta \cap \Theta^{(0,k)}$) satisfying
\begin{equation}
\Theta^{(0,k)} \simeq \bigoplus_{\omega \in \Theta_k} \bigoplus_{l \in \mathbb{N}_0} U_q(\mathfrak{g}) z^l \omega.
\end{equation}

A ladder presentation (z, Θ) is said to be real if the Lefschetz constant of z is a real number, which is to say, if $\lambda_z \in \mathbb{R}$. Moreover, (z, Θ) is said to be positive if the Lefschetz constant of z is a positive real number, which is to say, if $\lambda_z \in \mathbb{R}_{>0}$.

It is instructive to note that in the Hermitian case we have the following implication of the existence of a ladder presentation.

Lemma 5.4. Let $H = (B, \Omega^{(\bullet, \bullet)}, \sigma)$ be a CQH-Hermitian space of Gelfand type. If (z, Θ) is a ladder presentation of $(B, \Omega^{(\bullet, \bullet)})$, then
\begin{equation}
\mathcal{D}^{(0,k)} \simeq \bigoplus_{\omega \in \Theta_k} \bigoplus_{l \in \mathbb{N}_0} U_q(\mathfrak{g}) z^l \mathcal{D} \omega,
\end{equation}
for all k.

Proof. Operating by \mathcal{D} on the decomposition (11) associated to (z, Θ) gives
\begin{equation}
\mathcal{D} \Theta^{(0,k)} \simeq \bigoplus_{\omega \in \Theta_k} \bigoplus_{l \in \mathbb{N}_0} U_q(\mathfrak{g}) \mathcal{D}(z^l \omega),
\end{equation}
for all k.

By Hodge decomposition
\begin{equation}
\mathcal{D}^{(0,k)} = \mathcal{D}^{(0,k-1)} \oplus \mathcal{H}^{(0,k+1)} \oplus \mathcal{H}^{(0,k)} = \mathcal{D}^{(0,k+1)} \oplus \mathcal{D}^{(0,k)},
\end{equation}
where in the last identity we have used the fact that $\mathcal{D}^{(0,k-1)} \oplus \mathcal{D}^{(0,k+1)} \oplus \mathcal{H}^{(0,k)}$ is an isomorphism, as established in Proposition 5.3. Moreover, since H is assumed to be of Gelfand type, and $\mathcal{D}(z^l \omega)$ and $z^l \mathcal{D} \omega$ are clearly highest weight elements of the same degree, it follows from Lemma 4.3 that they are linearly proportional. Thus, as claimed,
\begin{equation}
\Theta^{(0,k)} \simeq \bigoplus_{\omega \in \Theta_k} \bigoplus_{l \in \mathbb{N}_0} U_q(\mathfrak{g}) z^l \mathcal{D} \omega.
\end{equation}

Finally, we come to the definition of order I. As stated above, this can be viewed as a non-commutative generalisation of quantum projective space. More explicitly, it can be viewed as a non-commutative generalisation of the properties of $\mathbb{C}P^{n-1}$ considered as the homogeneous space $SU_n/U_{n-1} \simeq U_n/U_{n-1} \times U_1$.

Definition 5.5. A CQH-complex space C is said to be of order I if it is
1. self-conjugate,
2. of Gelfand type,
3. admits a real ladder presentation.

Note that if C is of order I, properties 1 and 2 of the definition together imply that every highest weight space contains an element of the form $z^l \omega$, for some $l \in \mathbb{N}_0$, and some $\omega \in \Theta$. The notion of an order II presentation, which deals with CQH-spaces of weak Gelfand type, is discussed in §7 along with the motivating quantum flag manifolds.
5.3. CQH-Hermitian Spaces of Order I and Solidity. In this subsection we introduce a crucial property, which we call solidity, for those CQH-Hermitian spaces whose underlying CQH-complex spaces are of order I. In the next subsection, it will be shown that solidity is equivalent to the Laplace operator having eigenvalues tending to infinity.

Definition 5.6. Let \(H = (B, \Omega^{(\bullet \bullet)}, \sigma) \) be a CQH-Hermitian space.

1. We say that \(H \) is solid if \((B, \Omega^{(\bullet \bullet)}) \) admits a real ladder presentation \((z, \Theta)\) and satisfies
 \[
 (a) \quad \lambda_z = 1, \\
 (b) \quad A_{z, \omega} \neq 0 \text{ or } B_{z, \omega} \neq 0.
 \]

2. We say that \(H \) is solid if \((B, \Omega^{(\bullet \bullet)}) \) admits a real ladder presentation \((z, \Theta)\) and satisfies
 \[
 (a) \quad 1 < \lambda_z, \\
 (b) \quad A_{z, \omega} \neq 0, \\
 (c) \quad B_{z, \omega} \neq \lambda_z - 1.
 \]

3. We say that \(H \) is solid if \((B, \Omega^{(\bullet \bullet)}) \) admits a real ladder presentation \((z, \Theta)\) and satisfies
 \[
 (a) \quad 0 < \lambda_z < 1, \\
 (b) \quad A_{z, \omega} \neq \lambda_z - 1, \\
 (c) \quad B_{z, \omega} \neq 0.
 \]

4. We say that \(H \) is solid if it is either solid, solid, or solid.

In practice it can be difficult to directly verify condition (b) in (12) and conditions (b) and (c) in (13) and (14). The following two lemmas give more convenient reformulations of condition (b) in (13) and condition (b) in (14). As is easily confirmed, the proof extends to analogous reformulations of condition (c) in (13) and condition (c) in (14).

Lemma 5.7. Let \(H \) be a CQH-Hermitian space of order I, and \((z, \Theta)\) a ladder presentation of \(H \). For any \(\omega \in \Theta \), the following are equivalent:

1. \(A_{z, \omega} \neq 0 \),
2. \(\partial z \wedge \omega \) is a non-primitive form.

Proof. From the defining formula of the Hodge map, and centrality of the Kähler form, for any \(\omega \in \Omega^{(0,k)} \), we have
 \[
 \partial z \wedge *_{\sigma}(\omega) = \frac{(-1)^{k+1}}{2} i^{-1} \frac{1}{(n-k)!} \partial z \wedge L^{n-k}(\omega)
 \]
 \[
 = \frac{(-1)^{k+1}}{2} i^{-1} \frac{1}{(n-k)!} \partial z \wedge \sigma^{n-k} \wedge \omega
 \]
 \[
 = \frac{(-1)^{k+1}}{2} i^{-1} \frac{1}{(n-k)!} \sigma^{n-k} \wedge \partial z \wedge \omega
 \]
 \[
 = \frac{(-1)^{k+1}}{2} i^{-1} \frac{1}{(n-k)!} L^{n-k}(\partial z \wedge \omega).
 \]
 Thus we see that \(\partial z \wedge *_{\sigma}(\omega) \neq 0 \) if and only if \(L^{n-1} \partial z \wedge \omega \neq 0 \), which is to say, if and only if \(\partial z \wedge \omega \) is a non-primitive form. \(\square \)

Lemma 5.8. Let \(H \) be a CQH-Hermitian space of order I, and \((z, \Theta)\) a real ladder presentation of \(H \). If \(A_{z, \omega} \neq 0 \), then for any \(\omega \in \Theta \), the following are equivalent:

1. \(A_{z, \omega} \neq \lambda_z - 1 \),
2. \(\omega \wedge \partial z \) is a non-primitive form.

Proof. By faithfulness of the representation \(\rho \), as defined in (6), both \(*_{\sigma}(\omega)z\) and \((\partial \circ *_{\sigma}(\omega))z \) are non-zero forms. Since both forms have the same weight and degree, Lemma 8.3 and Lemma 4.3 imply the existence of scalars \(C, C' \in \mathbb{C} \) such that
 \[
 z *_{\sigma}(\omega) = C *_{\sigma}(\omega)z, \quad (\partial \circ *_{\sigma}(\omega))z = C'z \quad (\partial \circ *_{\sigma}(\omega)).
 \]
Combining these two identities with Lemma 4.14 we see that
\[
\partial z \wedge z \ast (\omega) = C(\partial z \wedge \ast (\omega))z = CA_{z,\omega}z(\partial \circ \ast (\omega))z = CC' A_{z,\omega} z^2(\partial \circ \ast (\omega)).
\]
Moreover,
\[
\partial z \wedge z \ast (\omega) = \lambda_z z(\partial z \wedge \ast (\omega)) = \lambda_z A_{z,\omega} z^2(\partial \circ \ast (\omega)).
\]
Since \(A_{z,\omega} \neq 0\) by assumption, comparing the two expressions for \(\partial z \wedge z \ast (\omega)\) gives us that
\[
CC' = \lambda_z.
\]
Returning now to (15), we apply \(\partial\) to the first identity to obtain
\[
\partial z \wedge \ast (\omega) + z(\partial \circ \ast (\omega)) = C(\partial \circ \ast (\omega))z + (-1)^{|\ast \omega|} C \ast (\omega) \wedge \partial z.
\]
Now by (15) and (16) it holds that \(C(\partial \circ \ast (\omega))z = CC'(\partial \circ \ast (\omega)) = \lambda_z z(\partial \circ \ast (\omega)).\) Hence
\[
\partial z \wedge \ast (\omega) = (\lambda_z - 1) z(\partial \circ \ast (\omega)) + (-1)^{|\ast (\omega)|} C \ast (\omega) \wedge \partial z.
\]
Thus we see that \(\ast (\omega) \wedge \partial z = 0\) if and only if \(\partial z \wedge \ast (\omega) = (\lambda_z - 1) z(\partial \circ \ast (\omega)).\)
Following the same argument as given in Lemma 5.7 above, it can be shown that the form \(\ast (\omega) \wedge \partial z\) is non-zero if and only if the form \(\omega \wedge \partial z\) is non-primitive. The claimed equivalence now follows.

5.4. Solidity and Dolbeault–Dirac Spectral Triples. In this subsection, we show that for a CQH-Hermitian space of order \(I\), the eigenvalues of its Laplacian tend to infinity if and only if it is solid. Combining this equivalence with Proposition 2.16 we can give necessary and sufficient conditions for a CQH-Hermitian space to give a Dolbeault–Dirac pair of spectral triples. For the convenience of the reader we break the proof into two parts.

Lemma 5.9. The Laplacian of a CQH-Hermitian space \(H\) of order \(I\) has eigenvalues tending to infinity only if \(H\) has finite dimensional anti-holomorphic cohomologies and all ladder presentations are solid.

Proof. If the eigenvalues of \(\Delta_{\overline{\omega}}\) tend to infinity then by definition no eigenvalue can have infinite multiplicity, and in particular 0 cannot have infinite multiplicity. By Hodge decomposition this is equivalent to the complex structure having finite-dimensional anti-holomorphic cohomologies, giving us one part of the implication.

Next we show that \(\lambda_z \geq 0\). Since we have just shown that \(\dim (H^{(0,0)}) < \infty\), Proposition 4.22 implies that the calculus is connected. Thus Proposition 5.2 tells us that either \(\lambda_z > 0\), or \(\lambda_z < -1\) and \(A_{z,\overline{\omega}} = 0\). In the latter case, Proposition 5.2 implies that
\[
\Delta_{\overline{\omega}}(z^l \overline{\partial z}) = (l)\lambda_z^{-1}.
\]
Since \((l)\lambda_z^{-1}\) converges as \(l \to \infty\), this contradicts our assumption that \(\sigma_{\bar{F}}(\Delta_{\overline{\omega}}) \to \infty\). Thus we are forced to conclude that \(\lambda_z\) is positive.

For a general ladder presentation \((z, \Theta)\), we now have three possibilities: \(0 < \lambda_z < 1\), \(\lambda_z = 1\), or \(1 < \lambda_z\).

1. Let us assume that \(\lambda_z = 1\). If \(A_{z,\omega}\) and \(B_{z,\omega}\) are both zero, for some \(\omega \in \Theta\), then it follows directly from Theorem 4.20 that \(\mu_{\omega}\) is an eigenvalue of \(\Delta_{\overline{\omega}}\) with infinite-dimensional multiplicity. Thus if \(\lambda_z = 1\), then \((z, \Theta)\) must be solid\(^p\).
2. Let us assume that $1 < \lambda_z$, and show that if condition (b) or (c) of the definition of solid$^+$ does not hold for H, then $\sigma_P(\Delta_\sigma)$ has a limit point. We start with condition (b), which is to say, let us assume that $A_{z,\omega} = 0$, for some $\omega \in \Theta$. It follows directly from Theorem 1.20 that, in this case,

$$\Delta_\sigma(z^l\omega) = (1 + B_{z,\omega}(l)\lambda_z^{-1})z^l\omega,$$

for all $l \in \mathbb{N}_0$.

Looking now at the limit of this sequence of eigenvalues, we see that

$$\lim_{l \to \infty} (1 + B_{z,\omega}(l)\lambda_z^{-1}) = 1 + B_{z,\omega} \lim_{l \to \infty} (l)\lambda_z^{-1}$$

$$= 1 + B_{z,\omega} \frac{1}{1 - \lambda_z^{-1}}$$

Thus $\sigma_P(\Delta_\sigma)$ has a limit point in \mathbb{R}.

Let us next assume that condition (c) of the definition of solid$^+$ does not hold, which is to say, let us assume that $B_{z,\omega} = \lambda_z^{-1} - 1$, for some $\omega \in \Theta$. The limit of the eigenvalues of $z^l\omega$, as $l \to \infty$, is given by

$$\lim_{l \to \infty} \left((1 + A_{z,\omega}(l)\lambda_z) \left(1 + B_{z,\omega}(l)\lambda_z^{-1}\right)\right) = \lim_{l \to \infty} \left((1 + A_{z,\omega}(l)\lambda_z) \left(1 - (1 - \lambda_z^{-1})\frac{1 - \lambda_z^{-l}}{1 - \lambda_z^{-1}}\right)\right)$$

$$= \lim_{l \to \infty} \left((1 + A_{z,\omega} \frac{1}{1 - \lambda_z^{-1}})\lambda_z^{-l}\right)$$

$$= \lim_{l \to \infty} \left(\lambda_z^{-l} + A_{z,\omega} \frac{\lambda_z^{-l} - 1}{1 - \lambda_z^{-1}}\right)$$

$$= \frac{A_{z,\omega}}{\lambda_z^{-1} - 1}$$

Thus the point spectrum of Δ_σ again has a limit point in \mathbb{R}.

Taking these two results together we see that if either of the requirements for a solid$^+$ fail to hold for (z, Θ), then the eigenvalues of Δ_σ do not tend to infinity. Thus we are forced to conclude that (z, Θ) is solid$^+$.

3. Finally, for the case of $0 < \lambda_z < 1$, an argument analogous to that in 2 verifies that if $\sigma_P(\Delta_\sigma) \to \infty$, then (z, Θ) must be solid$^+$.

\square

Theorem 5.10. Let H be a CQH-Hermitian structure of order 1. Then the following are equivalent:

1. $\sigma_P(\Delta_\sigma) \to \infty$,
2. H is solid and has finite dimensional anti-holomorphic cohomologies.

Proof. By Lemma 5.9 above, we need only show that 2 implies 1. Since the complex structure is of order 1 by assumption, it is in particular of Gelfand type. Thus by Lemma 5.9 the Laplacian $\Delta_{\sigma} : \Omega^{(0,k)} \to \Omega^{(0,k)}$ acts on any irreducible $U_q(\mathfrak{g})$-submodule $V \subseteq \Omega^{(0,k)}$ as a scalar multiple of the identity. This scalar can be determined by letting Δ_{σ} act on any element of V. In particular, it can be determined by letting Δ_{σ} act on a highest weight vector of V. Since we are assuming that H admits a ladder presentation (z, Θ), every highest weight space must contain an element of the form $z^l\omega$, for some $l \in \mathbb{N}_0$, and some $\omega \in \Theta$. Thus, if the eigenvalues of $z^l\omega$ tend to infinity, for each $\omega \in \Theta$, then we know that the eigenvalues of $\Delta_{\sigma} : \Omega^{(0,\bullet)} \to \Omega^{(0,\bullet)}$
tend to infinity, and have finite multiplicity. Since by assumption we have finite dimensional anti-holomorphic cohomologies, Corollary 3.6 says that this is sufficient to imply that \(\sigma \rho(\Delta_{\sigma}) \to \infty \).

Let us now break the rest of the proof into the three cases where \((z, \Theta)\) is either solid\(^0\), solid\(^+\), or solid\(^-\).

1. We first assume that \((z, \Theta)\) is solid\(^0\), and recall for convenience the identity from Theorem 4.20 above:
\[
\Delta_{\sigma}(z^l \omega) = (1 + A_{z,\omega}(l)\lambda_z)(1 + B_{z,\omega}(l)\lambda_z^{-1})z^l \omega.
\]
Looking at the first factor, we see that since \(A_{z,\omega} \neq 0\),
\[
\lim_{l \to \infty} (1 + A_{z,\omega}(l)\lambda_z) = 1 + A_{z,\omega} \lim_{l \to \infty} ((l)\lambda_z) = \infty.
\]
Similarly, the second factor tends to infinity, as \(l \to \infty\). Thus the eigenvalues of \(z^l \omega\) tend to infinity, with finite multiplicity, for all \(\omega \in \Theta\).

2. Let us now assume that \((z, \Theta)\) is solid\(^+\). Just as in the solid\(^0\) case, the first factor tends to infinity. Looking next at the limit of the second factor, we see
\[
\lim_{l \to \infty} (1 + B_{z,\omega}(l)\lambda_z^{-1}) = 1 + B_{z,\omega} \lim_{l \to \infty} \left(\frac{1 - \lambda_z^{-(l+1)}}{1 - \lambda_z^{-1}} \right) = 1 + \frac{B_{z,\omega}}{1 - \lambda_z^{-1}}.
\]
Since we are assuming that \(B_{z,\omega} \neq \lambda_z^{-1} - 1\), we see that the second factor does not approach zero. Combining these two observations, we see that the eigenvalues of \(z^l \omega\) go to infinity, with finite multiplicity, as \(l\) goes to infinity, for all \(\omega \in \Theta\).

3. An analogous argument proves that the existence of a solid\(^-\) ladder presentation implies that the eigenvalues of \(z^l \omega\) go to infinity, with finite multiplicity, as \(l\) goes to infinity.

\(\square\)

Combining together the results of this section we arrive at the following result, which will be used in the next section to construct spectral triples for \(O_q(CP^{n-1})\).

Theorem 5.11. Let \(H = (B, \Omega^{(*)}, \sigma)\) be a CQH-Hermitian space of order I, with constituent quantum homogeneous space \(O_q(M)\). Then a Dirac–Dolbeault pair of spectral triples is given by
\[
\left(O_q(M), L^2(\Omega^{(0,*)}), D_{\sigma} \right), \quad \left(O_q(M), L^2(\Omega^{*(0)}), D_\partial \right),
\]
if and only if \(H\) is solid and has finite dimensional anti-holomorphic cohomologies.

6. A Dolbeault–Dirac Spectral Triple for Quantum Projective Space

We are now ready to apply the general framework developed in the previous sections to our motivating example \(O_q(CP^{n-1})\) \cite{14, 43}. We begin by recalling the necessary basics about \(O_q(CP^{n-1})\) and its Heckenberger–Kolb calculus. We then construct an order I presentation of the associated CQH-space. This allows us to verify the compact resolvent condition by demonstrating solidity, and hence produce a Dolbeault–Dirac pair of spectral triples for \(O_q(CP^{n-1})\) with non-trivial \(K\)-homology class.

6.1. Quantum Projective Space as a Quantum Homogeneous Space. Consider the Hopf subalgebra \(U_q(sl_{n-1}) \subseteq U_q(sl_n)\) generated by the elements
\[
K_i, E_j, F_j \quad \text{for} \quad i = 1, \ldots, n - 1, \quad \text{and} \quad j = 1, \ldots, n - 2.
\]
Note that $U_q(sl_{n-1})$ canonically embeds into $U_q(l_{n-1})$ as a subalgebra. For any irreducible $U_q(sl_{n-1})$-module V_μ, and any $m \in \mathbb{Z}$, we see that there exists an irreducible representation of $U_q(l_{n-1})$ on V_μ, extending the action of $U_q(sl_{n-1})$, uniquely determined by

$$K_{n-1} \triangleright v = q^m v,$$

for v a highest weight vector in V_μ.

We denote this irreducible representation by $V_\mu(m)$, and call m the weight of K_{n-1}.

As standard, we use the superscript \circ to denote the Hopf dual of a Hopf algebra. Dual to the Hopf algebra embedding $\iota : U_q(l_{n-1}) \to U_q(sl_n)$, we have the Hopf algebra map $\iota^\circ : U_q(sl_n)^\circ \to U_q(l_{n-1})^\circ$. By construction $O_q(SU_n) \subseteq U_q(sl_n)^\circ$, and so, we can consider the restriction map

$$\pi := \iota^\circ|_{O_q(SU_n)} : O_q(SU_n) \to U_q(l_{n-1})^\circ,$$

as well as the Hopf subalgebra $O_q(U_{n-1}) := \pi(O_q(SU_n))$. Quantum projective space $O_q(\mathbb{C}P^{n-1})$ is the quantum homogeneous space associated to the surjective Hopf $*$-algebra map $\pi : O_q(SU_n) \to O_q(U_{n-1})$, which is to say, it is the space of coinvariants

$$O_q(\mathbb{C}P^{n-1}) = O_q(SU_n)^{\text{coin}(O_q(U_{n-1}))}.$$

A standard set of generators for $O_q(\mathbb{C}P^{n-1})$ is given by

$$\left\{ z_{ij} := u_n^i S(u_n^j) \mid i, j = 1, \ldots, n \right\}.$$

6.1.1. **The Heckenberger–Kolb Calculus.** We present the calculus in two steps, beginning with Heckenberger and Kolb’s classification of first-order differential calculi over $O_q(\mathbb{C}P^{n-1})$, and then discussing the maximal prolongation of the direct sum of the two calculi identified.

First, we recall that a **differential map** between two differential calculi (Ω^*, d) and (Γ^*, δ), is a degree-0 algebra map $\varphi : \Omega^* \to \Gamma^*$ such that $\varphi \circ \delta = \delta \circ \varphi$. Moreover, a first-order differential calculus is a differential calculus of total dimension 1. We say that a first-order differential calculus is irreducible if Ω^1 is irreducible as a bimodule over Ω^0.

Theorem 6.1. [19 Theorem 7.2] There exist exactly two non-isomorphic irreducible, left-covariant, finite dimensional, first-order differential calculi over $O_q(\mathbb{C}P^{n-1})$.

We denote these two calculi by $\Omega^{(1,0)}$ and $\Omega^{(0,1)}$. Moreover, we denote their direct sum by $\Omega^1 := \Omega^{(1,0)} \oplus \Omega^{(0,1)}$ and call it the **Heckenberger–Kolb first-order differential calculus** of $O_q(\mathbb{C}P^{n-1})$.

For a proof of the following lemma see [43 Lemma 5.2].

Lemma 6.2. Bases of $\Phi(\Omega^{(1,0)})$ and $\Phi(\Omega^{(0,1)})$ are given respectively by

$$\left\{ e_a^+ := [\partial z_{aa}] \mid a = 1, \ldots, n - 1 \right\}, \quad \left\{ e_a^- := \overline{[\partial z_{aa}]} \mid i = 1, \ldots, n - 1 \right\}.$$

Moreover, it holds that

$$[\partial z_{aa}] = \overline{[\partial z_{aa}]} = [\partial z_{ab}] = \overline{[\partial z_{ab}]} = 0,$$

for all $a, b = 1, \ldots, n - 1$.

We now present the action of the generators of $U_q(l_{n-1})$ on the basis elements of $V^{(0,k)}$. The proof is a direct calculation in terms of the dual pairing [22] and the definition of the action [26].

Lemma 6.3. The only non-zero actions of the generators of $U_q(l_{n-1})$ on the basis elements of $V^{(0,1)}$ are given by

$$E_k \triangleright e_k^+ = q^2 e_{k+1}^+,$$

$$K_k \triangleright e_a^- = q^{-\delta_{a,n-1} - \delta_{a,a-1}} e_a^-,$$

$$F_k \triangleright e_{k+1}^- = q^{-2} e_k^-.$$
Proof. The first identity is established by the calculation
\[E_k \triangleright e_a = E_k \triangleright (\partial z_{na}) = [(E_k \triangleright z_{na})] = q^2 \delta_{ka} (\partial z_{n,k+1}) = q^2 \delta_{ka} e_{k+1}. \]
The other two identities are established similarly. \(\square \)

We say that a differential calculus, over an algebra \(A \), of total degree greater than or equal to 2, extends a first-order calculus if there exists a differential injection, which is to say, an injective differential map, from the first-order calculus to the differential calculus. Any first-order calculus admits an extension \((\Omega^*, d)\) which is maximal in the sense that, for any other extension \((\Gamma^*, \delta)\), there exists a unique surjective differential map \(\varphi : \Omega^* \to \Gamma^* \). We call this extension, which is necessarily unique up to differential isomorphism, the maximal prolongation of the first-order calculus. The maximal prolongation of a covariant calculus is again covariant. (See [46, §2.5] for a more detailed discussion in the notation of this paper.)

We denote the maximal prolongation of the Heckenberger–Kolb first-order calculus by \(\Omega^* \), and call it the Heckenberger–Kolb differential calculus. Note that since \(\Omega^* \) is covariant, it is a monoid object in \(\mathcal{O}_q(\text{Proj}^n)\text{-Mod}_0 \). Consequently, since Takeuchi’s equivalence is a monoidal equivalence, \(\Phi(\Omega^*) \) is a monoid object in \(\mathcal{O}_q(\text{Proj}^{n-1})\text{-Mod}_0 \). We denote the multiplication in \(\Phi(\Omega^*) \) by \(\wedge \). We call a subset \(I \subseteq \{1, \ldots, n-1\} \) ordered if \(i_1 < \cdots < i_k \). For any two ordered subsets \(I, J \subseteq \{1, \ldots, n-1\} \), we denote
\[e_i^+ \wedge e_j^- := e_{i_1}^+ \wedge \cdots \wedge e_{i_k}^+ \wedge e_{j_1}^- \wedge \cdots \wedge e_{j_l}^- \]
where \(J = \{j_1, \ldots, j_l\} \). We now collect some basic facts about \(\Phi(\Omega^*) \) as an algebra. Part 1 was established in [19, §3.3]. For a proof of parts 2 and 3 see [46, Proposition 5.8].

Theorem 6.4. For \(\Omega^* \) the Heckenberger–Kolb calculus of \(\mathcal{O}_q(\text{Proj}^{n-1}) \):

1. \(\Phi(\Omega^k) \) has dimension \(\binom{2n-2}{k} \).
2. A basis of \(\Phi(\Omega^k) \) is given by
 \[\left\{ e_i^+ \wedge e_j^- \mid I, J \subseteq \{1, \ldots, n-1\} \text{ ordered subsets such that } |I| + |J| = k \right\} \]
3. A full set of relations for \(\Phi(\Omega(\Omega^*)) \) is given by
 \[e_i^+ \wedge e_i^- + q^{-1} e_i^- \wedge e_i^+ , \quad e_i^- \wedge e_i^- , \quad \text{for } i, j = 1, \ldots, n-1, \text{ such that } i < j. \]

We now use the given basis of \(\Phi(\Omega^*) \) to define a complex structure for the calculus. Consider first the subspaces of \(\Phi(\Omega^*) \) defined by
\[V^{(a,b)} := \text{span}_\mathbb{C}\left\{ e_i^+ \wedge e_j^- \mid I, J \subseteq \{1, \ldots, n-1\} \text{ ordered subsets with } |I| = a, |J| = b \right\}. \]

Two immediate consequences of the definition of \(V^{(a,b)} \) are that
\[\dim_\mathbb{C} V^{(a,b)} = \binom{n-1}{a} \binom{n-1}{b} , \quad \text{and} \quad \Phi(\Omega^k) \simeq \bigoplus_{a+b=k} V^{(a,b)} , \quad \text{for all } k. \]

The following proposition is implied by the presentation of [20, §3.3.4]. (Alternatively, see [46, §6, §7] for a direct proof in the notation of this paper.)

Theorem 6.5. For \(\Omega^* \) the Heckenberger–Kolb calculus over \(\mathcal{O}_q(\text{Proj}^{n-1}) \), there is a unique covariant complex structure \(\Omega^{(\bullet, \bullet)} \) on \(\Omega^* \) such that
\[\Phi(\Omega^{(a,b)}) = V^{(a,b)}. \]
As shown in [47, Lemma 4.17] there exists a left $O_q(SU_n)$-coinvariant form $\kappa \in \Omega^{(1,1)}$ uniquely defined by

$$[\kappa] = i \sum_{a=1}^{n-1} e^-_a \wedge e^+_a = i \sum_{a=1}^{n-1} (K^a_a \triangleright e^+_a) \wedge (K^{-a}_a \triangleright e^-_a).$$

This $(1,1)$-form is a direct q-deformation of the fundamental form of the classical Fubini–Study Kähler metric on complex projective space. As the following theorem shows, much of the associated Kähler geometry survives intact under q-deformation, see [47, §4.5] for details.

Theorem 6.6.

1. The pair $(\Omega^{(\cdot,\cdot)}, \kappa)$ is a covariant Hermitian structure for Ω^\bullet.
2. Up to real scalar multiple of κ, it is the unique covariant Hermitian structure for the calculus Ω^\bullet.
3. The pair $(\Omega^{(\cdot,\cdot)}, \kappa)$ is a Kähler structure for Ω^\bullet.
4. There exists an open interval $I \subseteq \mathbb{R}$, containing 1, such that the associated metric g_κ is positive definite, for all $q \in I$.

Thus we see that, for every $q \in I$, quantum projective space $O_q(\mathbb{C}P^{n-1})$, endowed with the Heckenberger–Kolb calculus, is a CQH-Hermitian space with an associated pair of Dolbeault–Dirac BC-triples.

We finish with some results on the anti-holomorphic cohomology of the Heckenberger–Kolb calculus of $O_q(\mathbb{C}P^{n-1})$. Taken together, these two results determine the anti-holomorphic Euler characteristic of the calculus.

Theorem 6.7 ([24] Corollary 4.2). The Heckenberger–Kolb calculus $\Omega^\bullet_q(\mathbb{C}P^{n-1})$ is connected, which is to say $H^0 = \mathbb{C}1$.

Theorem 6.8. ([10] Proposition 7.2) For the unique covariant complex structure $\Omega^{(\cdot,\cdot)}$ of the Heckenberger–Kolb calculus $\Omega^\bullet_q(\mathbb{C}P^{n-1})$, it holds that

$$H^{(0,k)} = 0,$$

for all $k = 1, \ldots, n-1$.

Corollary 6.9. The anti-holomorphic Euler characteristic of $\Omega^{(\cdot,\cdot)}$ is given by

$$\chi_{\partial}(\Omega^\bullet) = \sum_{i=0}^{n-1} (-1)^i \dim_{\mathbb{C}} (H^{(0,i)}) = \dim_{\mathbb{C}} (H^{(0,0)}) = 1.$$
6.2. An Order I presentation of the CQH-Complex Space. In this subsection we introduce a distinguished family of highest weight forms \(\nu_k \in \mathcal{O}^{(0,k)} \), for \(k = 1, \ldots, n - 2 \), and use them to produce a ladder presentation (recall Definition 5.3) of the complex structure in Theorem 6.15. From this we then conclude in Corollary 6.16 that \(\mathcal{O}_q(\mathbb{CP}^{n-1}) \) is an order 1 CQH-complex space.

We begin by identifying a highest weight element of \(\mathcal{O}_q(\mathbb{CP}^{n-1}) \), and then calculate its associated Leibniz constants.

Lemma 6.11. The element \(z_{1n} \) is a highest weight vector of \(\mathcal{O}_q(\mathbb{CP}^{n-1}) \), with weight
\[
\wt(z_{1n}) = \omega_1 + \omega_{n-1}.
\]
Moreover, it holds that
\[
(\partial z_{1n}) z_{1n} = q^2 z_{1n} \partial z_{1n}, \quad (\overline{\partial} z_{1n}) z_{1n} = q^{-2} z_{1n} \overline{\partial} z_{1n}.
\]

Proof. The fact that \(z_{1n} \in \mathcal{O}_q(\mathbb{CP}^{n-1}) \), with the given weight, is a direct consequence of the definition of the action \(\triangleright \) and the dual pairing, as presented in [3.3] and [3.4]. To establish (18) we use the unit \(U : \Omega^{(1,0)} \otimes \mathcal{O}_q(\mathbb{CP}^{n-1}) \otimes \Omega^{(1,0)} \) of Takeuchi’s equivalence. Note first that
\[
U((\partial z_{1n}) z_{1n}) = U(\partial z_{1n}) z_{1n} = \text{proj}_{\Omega^{(1,0)}} \left(\sum_{a,b=1}^n u_a^b S(u_n^a) \mathcal{O}_q(\mathbb{CP}^{n-1}) [\partial z_{ab}] z_{1n} \right)
\]
\[
= \sum_{a=1}^{n-1} u_a^1 S(u_n^a) z_{1n} \mathcal{O}_q(\mathbb{CP}^{n-1}) [\partial z_{an}].
\]

From the defining relations of \(\mathcal{O}_q(SU_n) \) given in [3.4], it is easy to conclude the identity
\[
u_a^1 S(u_n^a) z_{1n} = q^2 z_{1n} u_a^1 S(u_n^a), \quad \text{for all } a \neq n.
\]

Hence, as claimed,
\[
U((\partial z_{1n}) z_{1n}) = q^2 z_{1n} \sum_{a=1}^{n-1} u_a^1 S(u_n^a) \mathcal{O}_q(\mathbb{CP}^{n-1}) [\partial z_{an}] = q^2 U(z_{1n} \partial z_{1n}).
\]
The second identity comes from Lemma 4.16 and the fact that \(\mathcal{O}_q(\mathbb{CP}^{n-1}) \) is self-conjugate, as established in Corollary 4.16. Alternatively, it can be calculated directly just as for the first identity.

In the \(q \)-deformed setting it is no longer guaranteed that \(\omega \wedge \omega = 0 \), for all forms \(\omega \). However, as the following lemma shows, this identity does hold true for forms of type \(\partial z_{1j} \).

Corollary 6.12. It holds that
1. \(\overline{\partial} z_{1j} \wedge \overline{\partial} z_{1,j-1} = -q^{-1} \overline{\partial} z_{1,j-1} \wedge \overline{\partial} z_{1j}, \) for all \(j = 3, \ldots, n \),
2. \(\overline{\partial} z_{1j} \wedge \overline{\partial} z_{1j} = 0, \) for all \(j = 2, \ldots, n \).

Proof. By Corollary 4.13,
\[
0 = \overline{\partial}^2 (z_{1n}^2) = (2)_q \overline{\partial} (z_{1n} \overline{\partial} z_{1n}) = (2)_q \overline{\partial} z_{1n} \wedge \overline{\partial} z_{1n}.
\]
Assuming now that \(\overline{\partial} z_{1j} \wedge \overline{\partial} z_{1j} = 0 \), for some \(j \geq 3 \), we see that
\[
0 = F_{j-1} \triangleright (\overline{\partial} z_{1j} \wedge \overline{\partial} z_{1j}) = \overline{\partial} z_{1j} \wedge (F_{j-1} \triangleright \overline{\partial} z_{1j}) + (F_{j-1} \triangleright \overline{\partial} z_{1j}) \wedge (K_{j-1}^{-1} \triangleright \overline{\partial} z_{1j})
\]
\[
= \overline{\partial} z_{1j} \wedge \overline{\partial} (F_{j-1} \triangleright z_{1j}) + \overline{\partial} (F_{j-1} \triangleright z_{1j}) \wedge (K_{j-1}^{-1} \triangleright z_{1j})
\]
\[
= q^{-2} \overline{\partial} z_{1j} \wedge \overline{\partial} z_{1,j-1} + q^{-3} \overline{\partial} z_{1,j-1} \wedge \overline{\partial} z_{1j}.
\]
Thus whenever $\overline{\partial}z_{1,j} \wedge \overline{\partial}z_{1,j} = 0$, we necessarily have that
$$\overline{\partial}z_{1,j} \wedge \overline{\partial}z_{1,j-1} = -q^{-1}\overline{\partial}z_{1,j-1} \wedge \overline{\partial}z_{1,j}.$$
Assume next that
$$\overline{\partial}z_{1,j} \wedge \overline{\partial}z_{1,j-1} = -q^{-1}\overline{\partial}z_{1,j-1} \wedge \overline{\partial}z_{1,j}.$$
(20)

Operating by F_{j-1} gives us that
$$0 = F_{j-1} \triangleright (\overline{\partial}z_{1,j} \wedge \overline{\partial}z_{1,j-1} + q^{-1}\overline{\partial}z_{1,j-1} \wedge \overline{\partial}z_{1,j})$$
$$= q^{-1}\overline{\partial}z_{1,j-1} \wedge \overline{\partial}z_{1,j-1} + q^{-3}\overline{\partial}z_{1,j-1} \wedge \overline{\partial}z_{1,j-1}$$
$$= (q^{-1} + q^{-3})\overline{\partial}z_{1,j-1} \wedge \overline{\partial}z_{1,j-1}.$$

Thus we see that whenever (20) holds, we necessarily have that
$$\overline{\partial}z_{1,j-1} \wedge \overline{\partial}z_{1,j-1} = 0.$$

The corollary now follows by an inductive argument. □

Lemma 6.13. For $k = 0, \ldots, n - 2$, a highest weight vector is given by

$$\nu_k = \sum_{l=0}^{k} (-q)^l z_{1,n-l} \overline{\partial}z_{1,n} \wedge \cdots \wedge \overline{\partial}z_{1,n-l} \wedge \cdots \wedge \overline{\partial}z_{1,n-k} \in \Omega^{(0,k)},$$

(21)

where $\overline{\partial}z_{1,n-l}$ denotes that the factor $\overline{\partial}z_{1,n-l}$ has been omitted. Moreover, it holds that
$$\text{wt}(\nu_k) = (k+1)\varpi_1 + \varpi_{n-k-1}.$$

Proof. Since it is clear that ν_k is a weight vector, we need only show that $E_i \triangleright \nu_k = 0$, for all $i = 1, \ldots, n-1$. Note first that, for $1 \leq i \leq n - k - 1$, we must have $E_i \triangleright \nu_k = 0$. Next, for any $i = n-k, \ldots, n-1$, Lemma 6.3 and (21) imply that
$$E_i \triangleright \left(\sum_{l=0}^{n-i-2} (-q)^l z_{1,n-l} \overline{\partial}z_{1,n} \wedge \cdots \wedge \overline{\partial}z_{1,n-l} \wedge \cdots \wedge \overline{\partial}z_{1,n-k}\right)$$

is equal to the following sum
$$\sum_{l=0}^{n-i-2} (-q)^l z_{1,n-l} \overline{\partial}z_{1,n} \wedge \cdots \wedge \overline{\partial}z_{1,n-l} \wedge \cdots \wedge \overline{\partial}z_{1,i+1} \wedge \overline{\partial}(K_i \triangleright z_{1,i+1}) \wedge \cdots \wedge \overline{\partial}z_{1,n-k}.$$

Lemma 6.3 implies that this sum is equal to
$$q^3 \sum_{l=0}^{n-i-2} (-q)^l z_{1,n-l} \overline{\partial}z_{1,n} \wedge \cdots \wedge \overline{\partial}z_{1,n-l} \wedge \cdots \wedge \overline{\partial}z_{1,i+1} \wedge \overline{\partial}z_{1,i+1} \wedge \cdots \wedge \overline{\partial}z_{1,n-k},$$

which by Corollary 6.12 is equal to zero. Similarly, it holds that
$$E_i \triangleright \left(\sum_{l=n-i+1}^{k} (-q)^l z_{1,n-l} \overline{\partial}z_{1,n} \wedge \cdots \wedge \overline{\partial}z_{1,n-l} \wedge \cdots \wedge \overline{\partial}z_{1,n-k}\right) = 0.$$
Thus $E_i \triangleright \nu_k = 0$, for all $i = 1, \ldots, n - 1$. Finally, as a direct examination confirms, ν_k is a weight vector of weight $(k + 1)z + w_{n-k-1}$, and so, ν_k is a highest weight vector as claimed. □

Corollary 6.14. For the form $\overline{\nu}_k \in \overline{\mathcal{K}}^{(0,k)}_{\mathbb{R}_w}$, it holds that:

1. $\overline{\nu}_k = (k + 1)qz \overline{\partial}z_{1,n} \wedge \cdots \wedge \overline{\partial}z_{1,n-k}$,
2. $\overline{\nu}_k \neq 0$,
3. $\nu_k \in \overline{\mathcal{N}}(0,k+1)$, for $k = 0, \ldots, n - 1$.

Proof.

1. By the commutation relations of Corollary 6.12, we see that

$$\overline{\nu}_k = \sum_{l=0}^{k} (-q)^l \overline{\partial}z_{1,n-l} \wedge \overline{\partial}z_{1,n-l} \wedge \overline{\partial}z_{1,n-k}$$

$$= \sum_{l=0}^{k} q^{2l} \overline{\partial}z_{1,n-l} \wedge \overline{\partial}z_{1,n-k}$$

$$= (k + 1)qz \overline{\partial}z_{1,n} \wedge \cdots \wedge \overline{\partial}z_{1,n-k}.$$

2. If the coset of \(\overline{\nu}_k \) in $\Phi(\Omega^\ast)$ were non-zero, then it is clear that $\overline{\nu}_k$ would have to be non-zero. Unfortunately, by Lemma 6.2, we have that

$$[\overline{\nu}_k] = (k + 1)q^2 [\overline{\partial}z_{1,n}] \wedge \cdots \wedge [\overline{\partial}z_{1,n-k}] = 0.$$

On the other hand, the coset of \(\overline{\partial}z_{n1} \wedge \cdots \wedge \overline{\partial}z_{n,n-k} \) in $\Phi(\Omega^\ast)$ is non-zero, as we see from

$$[\overline{\partial}z_{n1} \wedge \cdots \wedge [\overline{\partial}z_{n,n-k}] = e_1 \wedge \cdots \wedge e_{k+1}.$$

Hence $\overline{\partial}z_{n1} \wedge \cdots \wedge \overline{\partial}z_{n,n-k} \neq 0$. Now as a routine calculation confirms, there exists a non-zero $\gamma \in \mathbb{R}$, such that

$$\left(F_{n-k}^{k+2} \cdots F_{n-k-1}^{k+2} F_{n-k-2}^{k+1} \cdots F_{1}^{k+1} \right) \triangleright \nu_k = \gamma \overline{\partial}z_{n1} \wedge \cdots \wedge \overline{\partial}z_{n,n-k}.$$

Thus $\overline{\partial}z_{n1} \wedge \cdots \wedge \overline{\partial}z_{n,n-k}$ must be non-zero as claimed.

3. Since ν_k is a highest weight vector, and Hodge decomposition is a decomposition of left $U_q(\mathfrak{gl}_n)$-modules, the fact that the complex structure is of Gelfand type implies that ν_k is either $\overline{\nu}$-exact, $\overline{\nu}$-coexact, or harmonic. Since we have just shown that $\overline{\nu}_k \neq 0$, we must have that ν_k is $\overline{\nu}$-coexact as claimed. □

With these results in hand we are now ready to establish the main result of this subsection, an order 1 presentation of C.

Theorem 6.15. Denoting \(\Theta := \{ \overline{\partial} \nu_k \, | \, k = 0, \ldots, n-2 \} \), the pair \((z_1 \nu, \Theta)\) is a real ladder presentation for \(\mathcal{O}_q(\mathbb{C}P^{n-1}) \). Moreover, it holds that
\[
H^{(0,0)} = \mathcal{C}1, \quad H^{(0,m)} = 0, \quad \text{for } m = 1, \ldots, n-1.
\]

Proof. Example 4.6 together with Lemma 6.11 and Lemma 6.13 imply that \(z_1^l \nu_k \) and \(z_1^l \overline{\partial} \nu_k \) are highest weight vectors, for all \(l \in \mathbb{N}_0 \), and \(k = 0, \ldots, n-1 \). Moreover, it follows from Lemma 6.11 and Lemma 6.13 that
\[
\text{wt}(z_1^l \nu_k) = \text{wt}(z_1^l \overline{\partial} \nu_k) = (l + k + 1) \nu_1 + \nu_{n-k} + l \nu_{n-1}.
\]

Comparing this with the list of highest weights appearing in the decomposition of \(\Omega^{(0,k)} \) in Lemma 4.5 and recalling that \(\Omega^{(0,k)} \) is multiplicity-free, we see that every non-trivial highest weight space of \(\Omega^{(0,k)} \) contains an element of the form \(z_1^l \overline{\partial} \nu_{k-1} \), or \(z_1^l \nu_k \), for some \(l \in \mathbb{N}_0 \). Hence
\[
\Omega^{(0,0)} = \mathcal{C}1 \oplus \bigoplus_{l \in \mathbb{N}_0} U_q(\mathfrak{s}l_n)(z_1^l \nu_k), \quad \Omega^{(0,k)} \cong \bigoplus_{l \in \mathbb{N}_0} U_q(\mathfrak{s}l_n)(z_1^l \overline{\partial} \nu_{k-1}) \oplus \bigoplus_{l \in \mathbb{N}_0} U_q(\mathfrak{s}l_n)(z_1^l \nu_k).
\]

Proposition 4.19 tells us that \(\overline{\partial} \Omega^{(0,k-1)}_{\text{hw}} \) and \(\overline{\partial} \Omega^{(0,k+1)}_{\text{hw}} \) are \(\mathcal{O}_q(\mathbb{C}P^{n-1})_{\text{hw}} \)-subsets of \(\Omega^{(0,k)}_{\text{hw}} \). Thus \(z_1^l \overline{\partial} \nu_{k-1} \in \overline{\partial} \Omega^{(0,k-1)}_{\text{hw}} \), and \(z_1^l \nu_k \in \overline{\partial} \Omega^{(0,k+1)}_{\text{hw}} \). As a direct consequence
\[
\bigoplus_{l \in \mathbb{N}_0} U_q(\mathfrak{g})(z_1^l \overline{\partial} \nu_{k-1}) = \overline{\partial} \Omega^{(0,k-1)}_{\text{hw}}, \quad \bigoplus_{l \in \mathbb{N}_0} U_q(\mathfrak{g})(z_1^l \nu_k) = \overline{\partial} \Omega^{(0,k+1)}_{\text{hw}}.
\]

Thus we see that the anti-holomorphic harmonic forms are exactly as claimed in (22). Finally, we see that \((z_1 \nu, \Theta)\) is a ladder presentation of the calculus, which since the Leibniz constants of \(z_1 \nu \) are \(q^2 \) and \(q^{-2} \), is a real ladder presentation.

\[\square\]

Combining this result with Lemma 4.5 and Corollary 4.6 now gives us the following corollary.

Corollary 6.16. The \(\text{CQH-complex space} \mathcal{O}_q(\mathbb{C}P^{n-1}) \) is order 1.

We finish by observing that Proposition 6.8 can be concluded directly from Theorem 6.15. Explicitly, since the space of harmonic forms \(H^{(0,k)} \) is trivial, for all \(k > 0 \), the bijection between harmonic forms and cohomology classes presented in Corollary 2.14 gives us the following result.

Corollary 6.17. For all \(k > 0 \), the anti-holomorphic cohomology groups \(H^{(0,k)} \) are trivial.

6.3. A Dolbeault–Dirac Pair of Spectral Triples for Quantum Projective Space. In this subsection we verify solidity for the unique covariant Kähler structure of \(\mathcal{O}_q(\mathbb{C}P^{n-1}) \). We then conclude that the Kähler structure gives a Dolbeault–Dirac pair of spectral triples.

Lemma 6.18. It holds that
\[
i) \ A_{z_1 \overline{\partial} \nu_k} \neq 0, \quad \text{ii) } \ A_{z_1^2 \overline{\partial} \nu_k} \neq q^2 - 1, \quad \text{for } k = 0, \ldots, n-2.
\]

Proof. 1. By Lemma 5.7 non-vanishing of \(A_{z_1 \overline{\partial} \nu_k} \) is equivalent to \(\partial z_1 \nu_k \wedge \overline{\partial} \nu_k \) being a non-primitive form. As usual, we would like to demonstrate this by considering the coset of \(\partial z_1 \nu_k \wedge \overline{\partial} \nu_k \) in \(\Phi(\Omega^*) \). Unfortunately, this coset is trivial. On the other hand, since the Lefschetz map \(L \) is a left \(U_q(\mathfrak{s}l_n) \)-module map, \(\partial z_1 \nu_k \wedge \overline{\partial} \nu_k \) is primitive if and only if \(X \triangleright (\partial z_1 \nu_k \wedge \overline{\partial} \nu_k) \) is primitive, for any \(X \in U_q(\mathfrak{s}l_n) \). If we now fix
\[
X := F_{n-1}^{k+2} \cdots F_1^{k+2},
\]
a routine calculation will confirm that
\[[X \triangleright (\partial z_{1n} \wedge \overline{\nu}_k)] = \gamma \epsilon_{n-k-1}^e \wedge \epsilon_{n-1}^- \wedge \cdots \wedge \epsilon_{n-k-1}^-, \]
for a certain non-zero scalar \(\gamma \in \mathbb{R} \). Note next that
\[(23) \quad [L^{(n-1)-(k+2)+1} X \triangleright (\partial z_{1n} \wedge \overline{\nu}_k)] = \gamma [k^{n-k-2}] \wedge \epsilon_{n-k-1}^+ \wedge \epsilon_{n-1}^- \wedge \cdots \wedge \epsilon_{n-k-1}^-. \]
It was shown in [47, Lemma 4.18] that \([k]^{n-k-2}\) is a non-zero scalar multiple of
\[\sum_{I \in O(n-k-2)} e_I^+ \wedge e_I^-, \]
where summation is over all ordered subsets of cardinality \(n - k - 2 \). This implies that (23) is equal to a non-zero scalar multiple of
\[e_1^+ \wedge \cdots \wedge e_{n-k-1}^+ \wedge e_1^- \wedge \cdots \wedge e_{n-1}^- . \]
Thus we see that \(X \triangleright (\partial z_{1n} \wedge \overline{\nu}_k) \) is non-primitive, implying that \(\overline{\nu}_k \wedge \partial z_{1n} \) is non-primitive. It now follows from Lemma 5.17 that \(A_z \overline{\nu}_k \neq 0 \) as claimed.

2. Using an analogous argument to the one found above, it can be confirmed that \(\overline{\nu}_k \wedge \partial z_{1n} \) is non-primitive. Lemma 5.15 then implies that \(A_z \overline{\nu}_k \neq q^2 - 1 \) as claimed.

Lemma 6.19. It holds that
\[B_{z, \overline{\nu}_k} = q^2, \quad \text{for all } k = 0, \ldots, n - 2. \]

Proof. Following the same argument as Lemma 6.14 one can establish the identity
\[\overline{\nu}_k \wedge z_{1j} = q^{-1} z_{1j} \overline{\nu}_k, \quad \text{for all } j = 2, \ldots, n - 1. \]
It now follows from Corollary 6.12 that
\[\overline{\nu}_k \wedge z_{1n} = \sum_{l=0}^{k} (-q)^l \overline{\nu}_k \wedge z_{1,n-l} \overline{\nu}_k \wedge \cdots \wedge \overline{\nu}_k \wedge z_{1,n-k} \]
\[= q^2 z_{1n} \overline{\nu}_k \wedge \overline{\nu}_k \wedge \cdots \wedge \overline{\nu}_k \wedge z_{1,n-k} \]
\[+ q^{-1} \sum_{l=1}^{k} (-q)^l z_{1,n-l} \wedge \overline{\nu}_k \wedge \overline{\nu}_k \wedge \cdots \wedge \overline{\nu}_k \wedge z_{1,n-k} \]
\[= q^2 z_{1n} \overline{\nu}_k. \]
Denoting by \(\mu_{\nu_k} \) the \(\Delta_{\overline{\nu}} \)-eigenvalue of \(\nu_k \), the claimed value of \(B_{z, \overline{\nu}_k} \) now follows from
\[\overline{\nu}_k \wedge \overline{\nu}_k = \mu_{\nu_k} \overline{\nu}_k \wedge \nu_k = q^2 \mu_{\nu_k} z_{1n} \wedge \overline{\nu}_k = q^2 z_{1n} \wedge \overline{\nu}_k. \]

Corollary 6.20. The CQH-Hermitian space \(\mathcal{O}_q(\mathbb{C}P^{n-1}) \) is solid, for all \(q \in \mathbb{R} \setminus \{-1, 0\} \).

The following theorem and corollary, the main results of this section, and indeed two of the principal results of the paper, now follow directly from Theorem 5.11 and the fact that \(\Omega(\bullet, \bullet) \) is connected and has vanishing higher-order anti-holomorphic cohomologies (as shown in Lemma 6.17).

Theorem 6.21. A Dolbeault–Dirac pair of spectral triples is given by
\[\left(\mathcal{O}_q(\mathbb{C}P^{n-1}), L^2(\Omega(\bullet, \bullet)), D_\partial \right), \quad \left(\mathcal{O}_q(\mathbb{C}P^{n-1}), L^2(\Omega(\bullet, \bullet)), D_{\overline{\nu}} \right). \]
In the classical setting, complex projective space is a very special example of a flag manifold. This picture extends directly to the quantum group setting, where \(O \). The operators \(O \) quantum flag manifold \(S \) in particular, \(S \) of Gelfand type, which we term \(\text{weak Gelfand type} \). In this section we carefully recall this material, and introduce a natural weakening of the definition \(S \) \(S \) case of \(\text{Hermitian symmetric type} \) the Heckenberger–Kolb classification of differential calculi presented above for \(\text{Hermitian symmetric type} \) the associated quantum flag manifold is of \(\text{irreducible} \), are also referred to as the \(\text{compact quantum Hermitian symmetric spaces} \), along with the names associated to the various series. See [1] for a more detailed discussion.

7. Compact Quantum Hermitian Symmetric Spaces

In the classical setting, complex projective space is a very special example of a flag manifold. This picture extends directly to the quantum group setting, where \(O_q(CP^n) \) is a very special type of quantum flag manifold \(O_q(G/LS) \) [14]. Moreover, for those quantum flag manifolds of Hermitian symmetric type the Heckenberger–Kolb classification of differential calculi presented above for \(O_q(CP^n) \) extends directly, as does the existence of a unique covariant Kähler structure. In this section we carefully recall this material, and introduce a natural weakening of the definition of Gelfand type, which we term \(\text{weak Gelfand type} \). We classify those non-exceptional compact quantum Hermitian symmetric spaces satisfying this new condition, and discuss in detail the extension of the order I framework to this more general setting.

7.1. The Quantum Homogeneous Spaces. Let \(g \) be a complex simple Lie algebra of rank \(r \) and \(U_q(g) \) the corresponding Drinfeld–Jimbo quantised enveloping algebra. For \(S \) a subset of simple roots, consider the Hopf \(* \)-subalgebra \(U_q(l_S) := \langle K_i, E_j | i = 1, \ldots, r; j \in S \rangle \).

From the Hopf \(* \)-algebra embedding \(\iota : U_q(l_S) \hookrightarrow U_q(g) \), we get the dual Hopf \(* \)-algebra map \(\iota^* : U_q(g)^o \rightarrow U_q(l_S)^o \). By construction \(O_q(G) \subseteq U_q(g)^o \), so we can consider the restriction map \(\pi_S := \iota|_{O_q(G)} : O_q(G) \rightarrow U_q(l_S)^o \), and the Hopf \(* \)-subalgebra \(O_q(L_S) := \pi_S(O_q(G)) \subseteq U_q(l_S)^o \). We call the CMQGA-homogeneous space, associated to the surjective Hopf \(* \)-algebra map \(\pi : O_q(G) \rightarrow O_q(L_S) \), the quantum flag manifold associated to \(S \), and denote it by \(O_q(G/L_S) := O_q(G)^{\cos(O_q(L_S))} \).

We see that the definition of \(O_q(CP^n) \), as given in the previous section, corresponds to the special case of \(S = \{ \alpha_1, \ldots, \alpha_{n-2} \} \subseteq \Pi(\mathfrak{sl}_n) \).

If \(S = \{1, \ldots, r\} \setminus \{ \alpha_i \} \), where \(\alpha_i \) has coefficient 1 in the highest root of \(g \), then we say that the associated quantum flag manifold is of \(\text{Hermitian symmetric type} \). In the classical limit of \(q = 1 \), these homogeneous spaces reduce to the family of compact Hermitian symmetric spaces [1], motivating us to call them the \(\text{compact quantum Hermitian symmetric spaces} \). These algebras are also referred to as the \(\text{irreducible} \) quantum flag manifolds, and the \(\text{cominuscule} \) quantum flag manifolds, again reflecting terminology in the classical setting. Presented below is a useful diagrammatic presentation of the set of simple roots defining the compact quantum Hermitian symmetric spaces, along with the names associated to the various series. See [1] for a more detailed discussion.

7.2. The Heckenberger–Kolb Calculi and their Kähler Structures. We now recall the extension of Theorem [6.1] the Heckenberger–Kolb classification of first-order differential calculi over \(O_q(CP^n) \), to the setting of compact quantum Hermitian symmetric spaces.

Theorem 7.1. [19] Theorem 7.2. For \(S \) a subset of simple roots of Hermitian symmetric type, there exist exactly two non-isomorphic, irreducible, left-covariant, finite-dimensional, first-order differential calculi of finite dimension over \(O_q(G/L_S) \).
We call the maximal prolongation of the direct sum of these two calculi the Heckenberger–Kolb calculus of $\mathcal{O}_q(G/L_S)$, and denote it by $\Omega^\bullet_q(G/L_S)$. It was shown in [20] that $\Omega^\bullet_q(G/L_S)$ has classical dimension, and admits a left $\mathcal{O}_q(G)$-covariant $N_0^\mathbb{Z}$-grading $\Omega^{(\bullet, \bullet)}$ satisfying conditions 1 and 3 of the definition of a complex structure. It was later shown in [39] that the $*$-algebra structure of $\mathcal{O}_q(G/L_S)$ extends to the structure of a differential $*$-calculus on $\Omega^\bullet_q(G/L_S)$, for each compact quantum Hermitian symmetric space. Moreover, it was shown that the $N_0^\mathbb{Z}$-grading $\Omega^{(\bullet, \bullet)}$ is a covariant complex structure with respect to this $*$-structure. Finally, we note that since $\Omega^{(1,0)}$ and $\Omega^{(0,1)}$ are non-isomorphic as objects in $\mathcal{O}_q(G/L_S)\text{Mod}_0$, this is the unique covariant complex structure for $\Omega^\bullet_q(G/L_S)$.

It was observed in [47, §4.5] that, for each $\Omega^\bullet_q(G/L_S)$, the space of $(1,1)$-forms contains a left-coinvariant real form κ which is unique up to real scalar multiple. Moreover, by extending the argument of [47, §4.5] for the case of $\mathcal{O}_q(\mathbb{C}P^{n-1})$, the form κ is easily seen to be a closed central element of $\Omega^\bullet_q(G/L_S)$. We now recall a conjecture originally proposed in [47, §39].

Conjecture 7.2. For every compact quantum Hermitian symmetric space $\mathcal{O}_q(G/L_S)$, the pair $(\Omega^{(\bullet, \bullet)}, \kappa)$ is a covariant Kähler structure for the Heckenberger–Kolb calculus of $\mathcal{O}_q(G/L_S)$.

The conjecture was motivated by the Kähler structure of $\mathcal{O}_q(\mathbb{C}P^{n-1})$, as presented in [46, §4.5] and as originally considered in [47]. This was generalised to the quantum Grassmannians $\mathcal{O}_q(\text{Gr}_{n,r})$ in [32], for all but a finite number of values of q. The conjecture was verified for the odd and even quantum quadrics $\mathcal{O}_q(\mathbb{Q}_n)$ in [13], again for all but a finite number of values of q. Finally, the conjecture was completely settled for all the compact quantum Hermitian symmetric spaces in [39].

Theorem 7.3. [39, Theorem 5.10] For $q \in \mathbb{R}\setminus\{-1,0\}$, and $\Omega^\bullet_q(G/L_S)$ the Heckenberger–Kolb calculus of the compact quantum Hermitian symmetric space $\mathcal{O}_q(G/L_S)$, the pair $(\Omega^{(\bullet, \bullet)}, \kappa)$ is a covariant Kähler structure.

Using a direct generalisation of the proof [47 Lemma 5.21], the following lemma can now be established.
Corollary 7.4. For each compact quantum Hermitian symmetric space $O_q(G/L_S)$, there exists an open interval $I \subseteq \mathbb{R}$ around 1, such that the associated metric g_q is positive definite, for all $q \in I$. Hence, $O_q(G/L_S)$, endowed with its Heckenberger–Kolb calculus, is a CQH-Hermitian space, for all $q \in I$, with an associated pair of Dolbeault–Dirac BC-triples.

7.3. Compact Quantum Hermitian Symmetric Spaces of Weak Gelfand Type. As is shown below, the only compact quantum Hermitian symmetric space of Gelfand type is $O_q(CP^{n-1})$. However, the notion admits a natural generalisation, retaining many of the features of Gelfand type CQH-complex spaces, as we now present.

Definition 7.5. We say that a CQH-complex space $C = (B, \Omega(\cdot, \cdot))$ is of weak Gelfand type if $\partial \Omega(0, \cdot)$ is a graded multiplicity-free left A-comodule. We say that a CQH-Hermitian space is of weak Gelfand type if its constituent CQH-complex space is of weak Gelfand type.

Note first that all the results of §3.1 and §4.1 hold since neither make any assumptions about multiplicities. Moreover, the proof of Lemma 3.11 generalises directly to the weak Gelfand setting giving us the following lemma.

Lemma 7.6. For a CQH-Hermitian space of weak Gelfand type, the Laplacian Δ_γ acts on every irreducible left A-sub-comodule of $\partial \Omega(0, \cdot)$, and $\overline{\partial} \Omega(0, \cdot)$, as a scalar multiple of the identity.

Just as in the Gelfand setting, we can use the various symmetries of the Dolbeault double complex to find a number of equivalent formulations of weak Gelfand type. We omit the proof, which is a straightforward generalisation of the proof in the Gelfand case.

Lemma 7.7. Let $C = (B, \Omega(\cdot, \cdot))$ be a quantum homogeneous complex space, then the following conditions are equivalent:

1. C is of weak Gelfand type,
2. C^{op}, the opposite CQH-complex space, is of weak Gelfand type,
3. the graded left A-comodule $\partial \Omega(\cdot, 0)$ is graded multiplicity-free.

For the case of a quantum homogeneous Hermitian space, the definition of weak Gelfand type admits an additional number of equivalent formulations. We omit the proof of the following lemma, which is an easy consequence of Lemma 2.8, Lemma 3.3, and Lemma 7.7 above.

Lemma 7.8. For $H = (B, \Omega(\cdot, \cdot), \sigma)$ a CQH-Hermitian space, the following are equivalent:

1. H is of Gelfand type,
2. the graded left A-comodule $\overline{\partial} \Omega(0, \cdot)$ is graded multiplicity-free,
3. the graded left A-comodule $\overline{\partial} \Omega(\cdot, 0)$ is graded multiplicity-free,
4. the graded left A-comodule $\partial \Omega(\cdot, \cdot)$ is graded multiplicity-free,
5. the graded left A-comodule $\partial \Omega(\cdot, n)$ is graded multiplicity-free,
6. the graded left A-comodule $\overline{\partial} \Omega(n, \cdot)$ is graded multiplicity-free,
7. the graded left A-comodule $\overline{\partial} \Omega(n, \cdot)$ is graded multiplicity-free.

Finally, we note that this lemma implies that the assumptions of Lemma 4.22 hold in the weak Gelfand setting. Hence we again have an equivalence between connectivity and finite-dimensionality of H^0.

We would now like to identify those compact quantum Hermitian symmetric spaces which are of weak Gelfand type. As observed by Stokmann and Dijkhuizen [14], the preservation under q-deformation of the Weyl character formula implies that, for any subset S of simple roots, the branching rules for the inclusion $U_q(l_S) \hookrightarrow U_q(g)$ are the same as in the classical case:
Proposition 7.9. Let \(\mu \in \mathbb{P}^+ \). The multiplicity of any irreducible \(U_q(\mathfrak{sl}) \)-module in the decomposition of \(V_\mu \) into irreducible \(U_q(\mathfrak{sl}) \)-modules is the same as in the classical \(q = 1 \) case.

For any quantum homogeneous space \(B = A^{\text{co}(H)} \), and any left \(H \)-comodule \(V \), Frobenius reciprocity tells us that the multiplicities of a right \(A \)-comodule in \(\Psi(V) \) is completely determined by the branching rules for the the quantum homogeneous space. Thus we get the following corollary.

Corollary 7.10. A compact quantum Hermitian symmetric space, endowed with its Heckenberger–Kolb calculus, is of (weak) Gelfand type if and only if the classical compact Hermitian space \(G/L_S \) is of (weak) Gelfand type.

To the best of our knowledge this question has not been explicitly addressed in the literature. However, there exist numerous suitable formulations of the necessary classical branching laws. (For example, we point the reader to the Young diagram approach of [28], which is very similar in spirit to the presentation of \((\mathcal{C}) \). This allows us to answer the question with relative ease for the non-exceptional cases.) To keep the paper to a reasonable length, we postpone a presentation of the technical details of the proof of the following theorem.

Theorem 7.11. The non-exceptional compact quantum Hermitian spaces, for which the covariant complex structure of the associated Heckenberger–Kolb calculus is of weak Gelfand type, are precisely those presented in the following two diagrams: The first identifies four countable families:

The second diagram identifies three isolated examples, arising from low dimensional redundancies in the table of compact quantum Hermitian spaces given above.

Of these CQH-complex spaces, only quantum projective space \(\mathcal{O}_q(\mathbb{P}^{n-1}) \) is of Gelfand type.

For the two exceptional cases, that is, the quantum Cayley plane \(\mathcal{O}_q(\mathbb{O}^2) \), and the quantum Freudenthal variety \(\mathcal{O}_q(\mathbb{F}) \), an explicit presentation of the necessary branching laws does not
seem to have appeared in the literature. Hence, it is most likely necessary to derive them from a general framework, such as the Littlemann path model \[36,35\]. We postpone such intricacies to later work, and for now satisfy ourselves with Conjecture 7.13, as motivated in §7.4.2.

7.4. Towards Order II CQH-Hermitian Spaces. In the previous subsection we presented the definition of weak Gelfand type and discussed those results which carry over from the Gelfand setting. In this subsection we detail some of the new behaviours that arise in the weak Gelfand setting. We finish with some conjectures, motivated by the discussion of the subsection.

7.4.1. Hodge Decomposition and the $O_q(M)_{hw}$-Action. In the weak Gelfand case Proposition 4.19 is no longer guaranteed to hold. Explicitly, for any $\omega \in \partial\Omega^{(0,\bullet)}$, and $z \in O_q(G/L_S)_{hw}$, it is no longer guaranteed that the product $z\omega$ is contained in $\partial\Omega^{(0,\bullet)}$. This forces us to consider highest weight vectors of the form $\Pi\partial\Omega^{(z\omega)}$, for the projection operator $\Pi\partial : \Omega^{(0,\bullet)} \to \partial\Omega^{(0,\bullet)}$, associated to Hodge decomposition. Such forms are still eigenvectors of $\Delta\partial$, with an important observation being that $\Delta\partial (\Pi\partial(z\omega)) = \partial\partial (z\omega)$.

7.4.2. Spherical Generators. By the considerations of §4.1, the weights of the highest weight vectors of $O_q(G/L_S)$ form an additive submonoid $Z_S \subseteq \mathfrak{h}$ under addition. By Proposition 7.9, it is clear that the minimal number of generators of Z_S, considered as a monoid, is the same in the classical $q = 1$ case. A distinguished minimal set of generators for Z_S, the spherical weights, was presented in the classical case by Krämer in \[31\, Tabelle 1\], and reproduced here in the table immediately below.

Quantum Hermitian Symmetric Space $O_q(G/L_S)$	Spherical Weights of $O_q(G/L_S)$
$O_q(Gr_{r,s})$	$\varpi_1 + \varpi_{r+s-1}, \varpi_2 + \varpi_{r+s-2}, \ldots, \varpi_r$
$O_q(Q_{2n+1})$	$2\varpi_1, \varpi_2$
$O_q(L_m)$	$2\varpi_1, 2\varpi_2, \ldots, 2\varpi_n$
$O_q(Q_{2n})$	$2\varpi_1, 2\varpi_2$
$O_q(S_{2m})$	$\varpi_2, \varpi_4, \ldots, \varpi_{2m-2}$ or $2\varpi_{2m-1}$ or $2\varpi_{2m}$
$O_q(S_{2m+1})$	$\varpi_2, \varpi_4, \ldots, \varpi_{2m-2}, \varpi_{2m} + \varpi_{2m+1}$
$O_q(O\mathbb{P}^2)$	$\varpi_1 + \varpi_5, \varpi_6$
$O_q(F)$	$2\varpi_1, 2\varpi_2, 2\varpi_6$

In this table, the Dynkin nodes for the $A, B, C,$ and D-types are labelled in increasing order from left to right. For the exceptional cases, we again number from left to right in increasing order, finishing with the side node. Finally, note that for the spherical weights of $O_q(S_{2m})$, the weight $2\varpi_{2m-1}$ or $2\varpi_{2m}$ appears depending on the defining crossed node.
Comparing this table with the classification of Theorem 7.11, we make the following observation, which for convenience we present in the form of a lemma.

Lemma 7.12. The non-exceptional compact quantum Hermitian symmetric spaces $O_q(G/L_S)$ of Gelfand type are exactly those for which Z_S is generated by a single element, and those of weak Gelfand type are exactly those for which Z_S which are generated by two elements.

Thus to accommodate the compact quantum Hermitian symmetric spaces of weak Gelfand type, it is necessary to generalise the order I requirements and consider irreducible $U_q(g)$-modules of the form

$$U_q(g)\Pi_\Omega(y^{l_1}z^{l_2}\omega),$$

for $y, z \in O_q(M)$, $\omega \in \Omega_{hw}^{(0,k)}$, and $l_1, l_2 \in \mathbb{N}_0$.

Coming finally to the exceptional cases, we note that, from the table of spherical weights below, $O_q(\Omega P^2)$ has 2 spherical generators, while $O_q(F)$ has 3. Speculating that Lemma 7.12 extends to the non-exceptional setting, we make the following conjecture.

Conjecture 7.13.

1. The quantum Cayley plane $O_q(\Omega P^2)$, endowed with its Heckenberger–Kolb calculus, is of weak Gelfand type.
2. The quantum Freudenthal variety $O_q(F)$, endowed with its Heckenberger–Kolb calculus, is not of weak Gelfand type.

7.4.3. **Leibniz Constants.** In the weak Gelfand setting, Leibniz constants are not guaranteed to exist, which is to say Corollary 4.12 does not necessarily hold. We do however have the following lemma, whose proof is a direct generalisation of Corollary 4.12.

Lemma 7.14. Let C be a CQH-complex space of weak Gelfand type, with constituent quantum homogeneous space $O_q(M)_{hw}$, and $z \in O_q(M)_{hw}$ a non-harmonic element. Then there exist non-zero constants $\lambda_z, \zeta_z \in \mathbb{C}$, uniquely defined by

$$\Pi_\partial (((\partial z) z) = \lambda_z \Pi_\partial (z\partial z), \quad \Pi_{\overline{\partial}} ((\overline{\partial z}) z) = \zeta_z \Pi_{\overline{\partial}} (z\overline{\partial} z),$$

where $\Pi_\partial, \Pi_\overline{\partial}$ are the projections from Ω^\bullet to $\partial \Omega^\bullet$, and $\overline{\partial} \Omega^\bullet$, respectively, given by Hodge decomposition.

We now see that Proposition 4.16 extends directly to the weak Gelfand setting.

Corollary 7.15. Let C be a CQH-complex space with constituent quantum homogeneous space $O_q(M)$. If $O_q(M)$ is self-conjugate, then, for any $z \in O_q(M)$ such that $\lambda_z, \zeta_z \in \mathbb{R}$, we have $\zeta_z = \lambda_z^{-1}$.

Proof. Note first that we have the identity $\ast \circ \Pi_\partial = \Pi_{\overline{\partial}} \circ \ast$. Using this identity, the proof of Proposition 4.16 now carries over directly to the weak Gelfand setting.

7.4.4. **Some Conjectures.** Taking the above novel features into account, it is possible to generalise the order I framework, to an order II framework, and include the compact quantum Hermitian symmetric spaces of weak Gelfand type. Solidity can be shown to extend to this setting, as well as its equivalence with the compact resolvent of the Dolbeault–Dirac operator. This gives us a robust set of tools with which to construct spectral triples for the compact quantum Hermitian symmetric spaces of weak Gelfand type. Preliminary investigations strongly suggest that solidity holds, motivating us to make the following conjecture.
Conjecture 7.16. Let $O_q(G/L_S)$ be a compact quantum Hermitian symmetric space of weak Gelfand type, and let $(\Omega^{0,*}, \kappa)$ be its covariant Kähler structure, unique up to real scalar multiple. A Dirac–Dolbeault pair of spectral triples is given by

$$\left(O_q(G/L_S), L^2(\Omega^{0,0}), \bar{D}_\partial \right), \quad \left(O_q(G/L_S), L^2(\Omega^{0,*}), D_\bar{\partial} \right).$$

Moreover, the associated K-homology class of each spectral triple is non-trivial.

In the above conjecture we restrict to those compact quantum Hermitian symmetric spaces of weak Gelfand type, reflecting the fact that the approach of this paper naturally extends to this subfamily of spaces. However, there is no reason to suspect that the compact resolvent condition does not hold for all the compact quantum Hermitian symmetric spaces. Verifying the condition in this more general setting requires a more formal approach, based on the classical proof of the compact resolvent condition for general Dirac operators [17, §4]. This is at present being undertaken in the setting of noncommutative Sobolev spaces [3], and so, we are motivated to reformulate a conjecture originally presented in [47] (see remark below for further details on the original conjecture).

Conjecture 7.17. Let $O_q(G/L_S)$ be a compact quantum Hermitian symmetric space, and let $(\Omega^{0,*}, \kappa)$ be its covariant Kähler structure, unique up to real scalar multiple. A Dirac–Dolbeault pair of spectral triples is given by

$$\left(O_q(G/L_S), L^2(\Omega^{0,0}), \bar{D}_\partial \right), \quad \left(O_q(G/L_S), L^2(\Omega^{0,*}), D_\bar{\partial} \right).$$

Moreover, the associated K-homology class of each spectral triple is non-trivial.

Remark 7.18. We note that the original version of this conjecture was made by the second author in [47, Conjecture 7.19]. In this version, it was necessary to additionally conjecture that $(\Omega^{0,*}, \kappa)$ formed a Kähler structure as Matassa's proof in [39] had not yet appeared. Moreover, non-triviality of the associated K-homology classes was not discussed.

Appendix A. CQGAs, Quantum Homogeneous Spaces, and Frobenius Reciprocity

In this appendix we recall the basics of cosemisimple Hopf algebras, compact matrix quantum groups algebras, quantum homogeneous spaces, as well as some natural compatibility requirements between them. We then recall the version of Takeuchi’s categorical equivalence for quantum homogeneous spaces most suited to our purposes. Finally, we present an extension of Frobenius reciprocity to the setting of quantum homogeneous spaces.

A.1. Hopf algebras and CQGAs. All algebras are assumed to be unital and defined over \mathbb{C}. All unadorned tensor products are defined over \mathbb{C}. The symbols A and H will denote Hopf algebras with comultiplication Δ, counit ε, antipode S, unit 1, and multiplication m. We use Sweedler notation throughout, and denote $a^+ := a - \varepsilon(a)1$, for $a \in A$, and $A^+ = A \cap \ker(\varepsilon)$.

For any left A-comodule (V, Δ_L), its space of matrix elements is the sub-coalgebra

$$\mathcal{C}(V) := \text{span}_{\mathbb{C}}\{(\text{id} \otimes f)\Delta_L(v) \mid f \in \text{Lin}_{\mathbb{C}}(V, \mathbb{C}), v \in V \} \subseteq A.$$
1. There is an isomorphism $A \simeq \bigoplus_{V \in \hat{A}} C(V)$, where \hat{A} denotes the equivalence classes of left A-comodules.
2. The abelian category ^AMod of left A-comodules is semisimple.
3. There exists a unique linear map $\mathbf{h}: A \to \mathbb{C}$, which we call the Haar measure, such that $\mathbf{h}(1) = 1$, and
 $$(\text{id} \otimes \mathbf{h}) \circ \Delta(a) = \mathbf{h}(a)1, \quad (\mathbf{h} \otimes \text{id}) \circ \Delta(a) = \mathbf{h}(a)1.$$

While the assumption of cosemisimplicity is enough for most of our requirements, when discussing positive definiteness we need the following stronger structure from [15].

Definition A.2. A compact matrix quantum group algebra, or a CMQGA, is a finitely generated cosemisimple Hopf \ast-algebra A such that $\mathbf{h}(a^*a) > 0$, for all non-zero $a \in A$.

It is important to note that every CMQGA admits a (not necessarily unique) C^*-algebraic completion to a compact matrix quantum group in the sense of Woronowicz [58]. Moreover, every compact matrix quantum group contains a dense CMQGA [15].

A.2. CMQGA-Homogeneous Spaces

A left A-comodule algebra P is a comodule which is also an algebra such that the comodule structure map $\Delta_L : P \to A \otimes P$ is an algebra map. Equivalently, it can be defined as a monoid object in ^AMod, the category of left A-comodules. For a left A-comodule V with structure map Δ_R, we say that an element $v \in V$ is coinvariant if $\Delta_L(v) = 1 \otimes v$. We denote the subspace of all A-coinvariant elements by $^\text{coinv}(A)V$, and call it the coinvariant subspace of the coaction. We use the analogous conventions for right comodules.

Definition A.3. A homogeneous right H-coaction on A is a coaction of the form $(\text{id} \otimes \pi) \circ \Delta$, where $\pi : A \to H$ is a surjective Hopf algebra map. A quantum homogeneous space $B := A^{^\text{co}(H)}$ is the coinvariant subspace of such a coaction.

As is easily verified, every quantum homogeneous space $B := A^{^\text{co}(H)}$ is a subalgebra of A. Moreover, the coaction of A restricts to a left A-coaction $\Delta_L : B \to A \otimes B$ giving it the structure of a left A-comodule algebra. We finish with a convenient, and natural, definition, which identifies the class of homogeneous spaces we will concern ourselves with in this paper.

Definition A.4. A CMQGA-homogeneous space is a quantum homogeneous space given by a Hopf \ast-algebra projection $\pi : A \to H$, such that A and H are CMQGA’s.

A.3. Takeuchi’s Equivalence

We briefly recall Takeuchi’s equivalence [54], or more precisely a special case of the bimodule version of Takeuchi’s equivalence. For a more detailed presentation we refer the reader to [54, 19], or [46, 47]. Throughout this subsection, A and H will be Hopf algebras, $\pi : A \to H$ a Hopf algebra map, and $B = A^{^\text{co}(H)}$ the associated quantum homogeneous space.

Definition A.5. The category ^A_bMod has as objects B-bimodules \mathcal{F}, endowed with a left A-comodule structure $\Delta_L : \mathcal{F} \to A \otimes \mathcal{F}$, such that

1. $\mathcal{F}B^+ \subseteq B^+ \mathcal{F}$
2. $\Delta_L(bf) = \Delta_L(b)\Delta_L(f)\Delta_L(b')$, for all $b, b' \in B, f \in \mathcal{F}$.

The morphisms in ^A_bMod are those B-bimodule homomorphisms which are also homomorphisms of left A-comodules. The usual bimodule tensor product \otimes_B can be used to give the category a monoidal structure defined by

$$\Delta_L : \mathcal{F} \otimes_B \mathcal{D} \to A \otimes \mathcal{F} \otimes_B \mathcal{D}, \quad f \otimes d \mapsto f_{(1)}d_{(-1)} \otimes f_{(0)} \otimes_B d_{(0)}, \quad \mathcal{F}, \mathcal{D} \in ^A_b\text{Mod}.$$
Lemma A.8. \(\text{Frobenius Reciprocity) on } U \) from \(U \) to \(H \), with respect to the natural isomorphism
\[
\Phi(F) := \text{F}(B^+ F), \quad \text{and if } g : F \to D \text{ is a morphism in } \text{Mod}_H, \text{then } \Phi(g) : \Phi(F) \to \Phi(D) \text{ is the map to which } g \text{ descends on } \Phi(F).
\]

Moreover, for any right \(H \)-comodule \(V \), we denote by \(\text{Hom}_H(U, V) \) the space of \(H \)-comodule maps from \(U \) to \(V \), with respect to the \(H \)-comodule structure induced on \(U \) by \(\pi \).

Theorem A.7 (Takeuchi’s Equivalence). An adjoint equivalence of categories between \(\text{Mod}_H \) and \(\text{Mod} \) is given by the functors \(\Phi \) and \(\Psi \) and the natural isomorphisms
\[
\Phi : \text{Mod} \to \text{Mod}_H, \quad \Psi : \text{Mod}_H \to \text{Mod},
\]
\[
\Phi(F) := \text{F}(B^+ F), \quad \Psi(V) := A \square_H V, \text{ and if } \gamma \text{ is a morphism in } \text{Mod}_H, \text{then } \Psi(\gamma) := \text{id} \otimes \gamma.
\]

We define the \textit{dimension} of an object \(F \) in \(\text{Mod}_H \) to be the vector space dimension of \(\Phi(F) \).

Note that by cosemisimplicity of \(A \), the category \(\text{Mod}_H \) is semisimple, and so, \(\text{Mod}_H \) must also be semisimple.

A.4. Frobenius Reciprocity for Quantum Homogeneous Spaces

In this subsection we present a direct Hopf algebraic generalisation of Frobenius reciprocity for equivariant vector bundles over a homogeneous space. The proof is a direct generalisation of the classical proof, so we will not state it. Moreover, there exists a large number of related formulations of this result in the literature. For example, it is established in the compact quantum group setting in \([14, \S22.12]\).

The result is stated for two Hopf algebras \(A \) and \(H \), and a surjective Hopf map \(\pi : A \to H \). For \(U, W \) two right \(A \)-comodules, we denote by \(\text{Hom}^A(U, W) \) the space of right \(A \)-comodule maps from \(U \) to \(W \). Moreover, for any right \(H \)-comodule \(V \), we denote by \(\text{Hom}^H(U, V) \) the space of right \(H \)-comodule maps from \(U \) to \(V \), with respect to the right \(H \)-comodule structure induced on \(U \) by \(\pi \).

Lemma A.8 (Frobenius Reciprocity). For \(U \in \text{Mod}_A \) and \(V \in \text{Mod}_H \), it holds that
\[
\dim_C \left(\text{Hom}^A(U, A \square_H V) \right) = \dim_C \left(\text{Hom}^H(U, V) \right).
\]
Appendix B. Drinfeld–Jimbo Quantum Groups

In this appendix we recall some basic material about semisimple complex Lie algebras \(\mathfrak{g} \) and their associated Drinfeld–Jimbo quantised enveloping algebras \(U_q(\mathfrak{g}) \). We also discuss their type 1 representation theory, along with the associated quantum coordinate algebras \(\mathcal{O}_q(G) \). Throughout, where basic proofs or details are omitted we refer the reader to \([25, \S 6, \S 7, \S 9]\). We then specialise to the \(A \)-series quantum coordinate algebra \(\mathcal{O}_q(SU_n) \). We recall its explicit FRT-presentation and identify it with the abstract quantum coordinate algebra presentation via a dual pairing of Hopf algebras. We finish with some standard material on Young diagrams necessary for an unambiguous presentation of the branching laws of \([6]\).

B.1. Drinfeld–Jimbo Quantised Enveloping Algebras \(U_q(\mathfrak{g}) \). Let \(\mathfrak{g} \) be a finite-dimensional complex simple Lie algebra of rank \(r \). We fix a Cartan subalgebra \(\mathfrak{h} \) with corresponding root system \(\Delta \subseteq \mathfrak{h}^* \), where \(\mathfrak{h}^* \) denotes the linear dual of \(\mathfrak{h} \). Let \(\Delta^+ \) be a choice of positive roots, and let \(\Pi = \{ \alpha_1, \ldots, \alpha_r \} \) the corresponding set of simple roots. Denote by \((\cdot, \cdot) \) the symmetric bilinear form induced on \(\mathfrak{h}^* \) by the Killing form of \(\mathfrak{g} \), normalised so that any shortest simple root \(\alpha_i \) satisfies \((\alpha_i, \alpha_i) = 2 \). The coroot \(\alpha_i^\vee \) of a simple root \(\alpha_i \) is defined by

\[
\alpha_i^\vee := \frac{2\alpha_i}{(\alpha_i, \alpha_i)}, \quad \text{where } d_i := \frac{2}{(\alpha_i, \alpha_i)}.
\]

The Cartan matrix \((a_{ij})_{ij} \) of \(\mathfrak{g} \) defined by \(a_{ij} := (\alpha_i^\vee, \alpha_j) \).

Let \(q \in \mathbb{R} \) such that \(q \neq -1, 0, 1 \), and denote \(q_i := q^{d_i} \). The quantised enveloping algebra \(U_q(\mathfrak{g}) \) is the noncommutative associative algebra generated by the elements \(E_i, F_i, \) and \(K_i, K_i^{-1} \), for \(i = 1, \ldots, r \), subject to the relations

\[
K_iE_j = q_i^{a_{ij}}E_jK_i, \quad K_iF_j = q_i^{-a_{ij}}F_jK_i, \quad K_iK_j = K_jK_i, \quad K_iK_i^{-1} = K_i^{-1}K_i,
\]

along with the quantum Serre relations which we omit (see \([25, \S 6.1.2]\) for details). A Hopf algebra structure is defined on \(U_q(\mathfrak{g}) \) by setting

\[
\Delta(K_i) = K_i \otimes K_i, \quad \Delta(E_i) = E_i \otimes K_i + 1 \otimes E_i, \quad \Delta(F_i) = F_i \otimes 1 + K_i^{-1} \otimes F_i
\]

\[
S(E_i) = -E_iK_i^{-1}, \quad S(F_i) = -K_iF_i, \quad S(K_i) = K_i^{-1}, \quad \varepsilon(E_i) = \varepsilon(F_i) = 0, \quad \varepsilon(K_i) = 1.
\]

A Hopf \(*\)-algebra structure, called the compact real form, is defined by

\[
K_i^* := K_i, \quad E_i^* := K_iF_i, \quad F_i^* := E_iK_i^{-1}.
\]

Finally, we denote by \(U_q(\mathfrak{n}_+) \), and \(U_q(\mathfrak{n}_-) \), the unital subalgebras of \(U_q(\mathfrak{g}) \) generated by the elements \(E_1, \ldots, E_r \), and \(F_1, \ldots, F_r \), respectively.

B.2. Type 1 Representations. The set of fundamental weights \(\{ \varpi_1, \ldots, \varpi_r \} \) of \(\mathfrak{g} \) is the dual basis of simple coroots \(\{ \alpha_1^\vee, \ldots, \alpha_r^\vee \} \), which is to say

\[
(\alpha_i^\vee, \varpi_j) = \delta_{ij}, \quad \text{for all } i, j = 1, \ldots, r.
\]

We denote by \(\mathcal{P} \) the integral weight lattice of \(\mathfrak{g} \), which is to say the \(\mathbb{Z} \)-span of the fundamental weights. Moreover, \(\mathcal{P}^+ \) denotes the cone of dominant integral weights, which is to say the \(\mathbb{N}_0 \)-span of the fundamental weights.

The elements \(K_i \) are simultaneously diagonalisable on any finite-dimensional \(U_q(\mathfrak{g}) \)-module \(V \). We call the corresponding eigenspaces weight spaces, and call an element of a weight space a
weight vector. A vector \(z \in V \) is a highest weight vector if it is a weight vector and
\[
E_i \triangleright v = 0, \quad \text{for all } i = 1, \ldots, r.
\]
A \(\mathcal{U}_q(\mathfrak{g}) \)-module \(V \) is irreducible if and only if it is of the form \(\mathcal{U}_q(\mathfrak{g})z \), for \(z \) a highest weight vector. Moreover, the space of highest weight elements of any irreducible module is necessarily 1-dimensional.

For any dominant integral weight \(\lambda \in \mathbb{P}^+ \), there exists a finite-dimensional irreducible \(\mathcal{U}_q(\mathfrak{g}) \)-module \(V_\lambda \), unique up to isomorphism, with a highest weight vector \(v \) satisfying
\[
K_i \triangleright v = q^{(\alpha_i, \rho)}v = q^{(\alpha_i^\vee, \rho)}v, \quad \text{for all } i = 1, \ldots, r.
\]
We call \(V_\lambda \) a type-1 module. Moreover, the space of highest weight elements of any irreducible module is necessarily 1-dimensional.

For any dominant integral weight \(\lambda \in \mathbb{P}^+ \), there exists a finite-dimensional irreducible \(\mathcal{U}_q(\mathfrak{g}) \)-module \(V_\lambda \), unique up to isomorphism, with a highest weight vector \(v \) satisfying
\[
K_i \triangleright v = q^{(\alpha_i, \rho)}v = q^{(\alpha_i^\vee, \rho)}v, \quad \text{for all } i = 1, \ldots, r.
\]
We call \(V_\mu \) a type-1 representation of weight \(\mu \). For any such highest weight vector \(v \), we find it convenient to denote
\[
\text{wt}(v) := \mu, \quad \text{and} \quad \text{wt}_i(v) := \mu_i, \quad \text{where} \quad \mu = \sum_{i=1}^{r} \mu_i \omega_i.
\]
We denote by \(\mathcal{U}_q(\mathfrak{g}) \text{-type}_1 \) the full subcategory of \(\mathcal{U}_q(\mathfrak{g}) \)-modules whose objects are finite sums of type-1 modules \(V_\mu \). It is clear that \(\mathcal{U}_q(\mathfrak{g}) \text{-type}_1 \) is abelian, semisimple, and equivalent to the category of finite dimensional representations of \(\mathfrak{g} \). Moreover, the Weyl character formula remains unchanged under \(q \)-deformation, which is to say, for any \(\mu \in \mathbb{P}^+ \), the dimensions of the weight spaces of the \(\mathcal{U}_q(\mathfrak{g}) \)-module \(V_\mu \) have the same as the dimensions as for the corresponding classical \(\mathfrak{g} \)-module. Finally, denote by \(\mathcal{U}_q(\mathfrak{g}) \text{-LF}_1 \) the full subcategory of \(\mathcal{U}_q(\mathfrak{g}) \)-modules whose objects are (not necessarily finite) sums of the type-1 modules. (Note that \(\text{LF} \) stands for locally finite.)

B.3. Quantised Coordinate Algebras \(\mathcal{O}_q(G) \). Let \(V \) be a finite dimensional \(\mathcal{U}_q(\mathfrak{g}) \)-module, \(v \in V \), and \(f \in V^* \), the linear dual of \(V \). Consider the function
\[
\epsilon_{v,f}^V : \mathcal{U}_q(\mathfrak{g}) \to \mathbb{C}, \quad X \to f(X(v)).
\]
The coordinate ring of \(V \) is the subspace
\[
C(V) := \text{span}_\mathbb{C} \{ \epsilon_{v,f}^V \mid v \in V, f \in V^* \} \subseteq \mathcal{U}_q(\mathfrak{g})^\ast.
\]
In fact, we see that \(C(V) \subseteq \mathcal{U}_q(\mathfrak{g})^\ast \), and that a Hopf subalgebra of \(\mathcal{U}_q(\mathfrak{g})^\ast \) is given by
\[
\mathcal{O}_q(G) := \bigoplus_{V \in \mathcal{U}_q(\mathfrak{g}) \text{-type}_1} C(V).
\]
We call \(\mathcal{O}_q(G) \) the type-1 Hopf dual of \(\mathcal{U}_q(\mathfrak{g}) \), or alternatively the quantum coordinate algebra of \(G \), where \(G \) is the unique connected, simply connected, complex algebraic group having \(\mathfrak{g} \) as its complex Lie algebra.

By construction \(\mathcal{O}_q(G) \) is cosemisimple. Moreover, dualising the compact real form of \(\mathcal{U}_q(\mathfrak{g}) \) gives a Hopf \(* \)-algebra structure on \(\mathcal{O}_q(G) \), with respect to which it is a CQGA. Indeed, since every finite-dimensional irreducible representation of \(\mathcal{U}_q(\mathfrak{g}) \) is contained in a tensor power of its fundamental vector representation, \(\mathcal{O}_q(G) \) is finitely generated and hence a CQMA.

The evaluation pairing \(\mathcal{O}_q(G) \times \mathcal{U}_q(\mathfrak{g}) \to \mathbb{C} \) is by constructions a dual pairing of Hopf algebras. In particular it gives us a dual pairing of Hopf \(* \)-algebras, which is to say
\[
\langle X^*, f \rangle = \langle X, S(f)^* \rangle, \quad \langle X, f^* \rangle = \langle S(X)^*, f \rangle, \quad \forall X \in \mathcal{U}_q(\mathfrak{g}), f \in \mathcal{O}_q(G).
\]
For any left \(\mathcal{O}_q(G) \)-comodule algebra \((V, \Delta_L) \), we can define a left \(\mathcal{U}_q(\mathfrak{g}) \)-module structure on \(V \) according to
\[
(26) \quad \mathcal{U}_q(\mathfrak{g}) \times V \to V, \quad (X, v) \mapsto \langle S(X), v(-1) \rangle v(0).
\]
This gives us the equivalence of categories

$$O_q(G)_{\text{Mod}} \rightarrow U_q(\mathfrak{g}) \mathbf{F}_1, \quad (V, \Delta) \mapsto (V, \triangleright).$$

We will use this equivalence throughout the paper, tacitly identifying $O_q(G)$-comodules and $U_q(\mathfrak{g})$-modules of type-1. For any left $O_q(G)$-comodule algebra \mathcal{P}, a useful result is that, for $X \in U_q(\mathfrak{g})$, and $a, b \in \mathcal{P}$, we have

$$X \triangleright (ab) = (X_{(3)} \triangleright a)(X_{(1)} \triangleright b).$$

B.4. The Hopf Algebra $O_q(SU_n)$

For $q \in \mathbb{R}\setminus\{-1, 0\}$, let $O_q(M_n)$ be the unital complex algebra generated by the elements u^i_j, for $i, j = 1, \ldots, n$ satisfying the relations

$$
u^i_k u^j_k = q u^j_k u^i_k, \quad u^i_k u^j_k = q u^j_k u^i_k, \quad 1 \leq i < j \leq n; 1 \leq k \leq n,$$

$$u^i_k u^j_k = u^j_k u^i_k, \quad u^i_k u^j_l = u^j_l u^i_k + (q - q^{-1}) u^i_k u^j_l, \quad 1 \leq i < j < l \leq n; 1 \leq k \leq l \leq n.$$

A bialgebra structure on $O_q(M_n)$, with coproduct Δ and counit ε, is uniquely determined by $\Delta(u^i_j) := \sum_{k=1}^n u^i_k \otimes u^j_k$ and $\varepsilon(u^i_j) := \delta_{ij}$. Let \det_n, the quantum determinant, denote the element

$$\det_n := \sum_{\sigma \in S_n} (-q)^{\ell(\sigma)} u^{\sigma(1)}_{\sigma(2)} \cdots u^{\sigma(n)}_{\sigma(n)} = \sum_{\sigma \in S_n} (-q)^{\ell(\sigma)} u^{\sigma(1)} \sigma(2) \cdots u^{\sigma(n)},$$

with summation taken over all permutations σ of the set $\{1, \ldots, n\}$, and $\ell(\sigma)$ the number of inversions in σ. As is well known [25, §9.2.2], \det_n is a central and group-like element of $O_q(M_n)$.

Consider next the quotient algebra $O_q(M_n)/\langle \det_n - 1 \rangle$, where $\langle \det_n - 1 \rangle$ denotes the ideal generated by $\det_n - 1$. Note that the maps Δ and ε descend to a well-defined bialgebra structure on the quotient algebra, which in addition can be endowed with a Hopf algebra structure by taking

$$S(u^i_j) := (-q)^{i-j} \sum_{\sigma \in S_{n-1}} (-q)^{\ell(\sigma)} u^{\sigma(k_1)}_{\sigma(k_2)} \cdots u^{\sigma(k_{n-1})}_{\sigma(k_n)},$$

$$= (-q)^{i-j} \sum_{\sigma \in S_{n-1}} (-q)^{\ell(\sigma)} u^{\sigma(k_1)}_{\sigma(k_2)} \cdots u^{\sigma(k_{n-1})}_{\sigma(k_n)},$$

where $\{k_1, \ldots, k_{n-1}\} := \{1, \ldots, n\} \setminus \{j\}$, and $\{l_1, \ldots, l_{n-1}\} := \{1, \ldots, n\} \setminus \{i\}$ as ordered sets. Finally, a Hopf $*$-algebra structure can be defined by setting $(u^i_j)^* := S(u^i_j)$. We denote this Hopf $*$-algebra by $O_q(SU_n)$, and call it the quantum special unitary group of degree n.

We now present a Hopf algebra isomorphism between $O_q(SU_n)$ and the type-1 Hopf dual of $U_q(\mathfrak{sl}_n)$. A non-degenerate dual pairing of Hopf algebras between $O_q(SU_n)$ and $U_q(\mathfrak{sl}_n)$ is uniquely determined by

$$\langle K_i, u^i_j \rangle = q^{\delta_{i-j} - \delta_{i-l}}, \quad \langle E_i, u^{i+1}_j \rangle = 1, \quad \langle F_i, u^{i+1}_j \rangle = 1,$$

with all other pairings of generators being zero. This determines a Hopf algebra embedding of $O_q(SU_n)$ into $U_q(\mathfrak{sl}_n)^\circ$, the image of which is precisely the quantum coordinate algebra of $U_q(\mathfrak{sl}_n)$.

B.5. Quantum Integers

Quantum integers are ubiquitous in the study of quantum groups. In this paper they play a significant role in describing the spectrum of noncommutative Dolbeault–Dirac operators. There are two different but related formulations for quantum integers, so we take care to clarify our choice of conventions.

For $q \in \mathbb{C}$, the quantum q-integer $(m)_q$ is the complex number

$$(m)_q := 1 + q + q^2 + \cdots + q^{m-1}.$$
Note that when $q \neq 1$, we have the identity

$$(m)_q = \frac{1 - q^m}{1 - q}.$$

We contrast this with the alternative (perhaps more standard) version of quantum integers:

$$[l]_q := q^{-m+1} + q^{-m+3} + \cdots + q^{m-3} + q^{m-1}.$$

It is instructive to note that the two conventions are related by the identity

$$[m]_q = q^{-1-m}(m)_{q^2}.$$

The second version of quantum integers was used in [47], but will not be used in this paper. Instead, we adopt the first formulation, it being the one which arises naturally in our spectral calculations, as is most readily evidenced by Corollary 4.13.

Appendix C. Decomposing $\Omega^{(0,\bullet)}$ into Irreducible $U_q(\mathfrak{sl}_n)$-Modules

In this appendix, we use Frobenius reciprocity to decompose $\Omega^{(0,\bullet)}$ into irreducible left $U_q(\mathfrak{sl}_n)$-submodules. As a direct application, we prove that $\mathcal{O}_q(\mathbb{C}P^{n-1})$, endowed with its Heckenberger–Kolb calculus, is of Gelfand type and self-conjugate.

Presentations of the irreducible modules occurring in the anti-holomorphic forms have previously appeared in both the classical [23, Proposition 5.2] and quantum group literature [8, Proposition 5.5]. We re-establish the presentation here so as to completely guarantee consistency of conventions, and to give a self-contained exposition of how such presentations are obtained for the benefit of non-experts.

C.1. Skew Young Diagrams and Young Tableaux. A Young diagram is a finite collection of boxes arranged in left-justified rows, with the row lengths in non-increasing order. We see that Young diagrams with p rows are equivalent to integer partitions of order p, which is to say p-tuples

$$\mu = (\mu_1, \ldots, \mu_p) \in \mathbb{N}_0^p,$$

such that $\mu_1 \geq \cdots \geq \mu_p$.

We denote by F^μ the Young diagram corresponding to an integer partition μ. For a partition $\mu = (\mu_1, \ldots, \mu_p)$, its conjugate $\mu' = (\mu'_1, \ldots, \mu'_p)$ is the unique partition of order μ_1 such that μ'_s is equal to the number of boxes in the sth column of F^μ. Note that the Young diagram $F^{\mu'}$ can be obtained from F^μ by reflecting it along its northwest-southeast diagonal.

We can put a partial order on the set of all Young diagrams, or equivalently, a partial order on the set of all integer partitions, by defining $\mu \succeq \nu$ whenever $\mu_i \geq \nu_i$, for all $i = 1, \ldots, p$, with the possible addition of trailing zeros. For any pair $\mu \succeq \nu$, the associated skew Young diagram $F^{\mu \setminus \nu}$ is given by removing from F^μ all boxes belonging to the obvious superimposition of F^{ν} on F^μ.

The weight of a skew Young diagram is the number of boxes in the diagram, which is to say,

$$|\mu \setminus \nu| := \sum_{i=1}^p \mu_i - \nu_i \in \mathbb{N}_0.$$

In what follows, we find the following alternative presentation of partitions useful. Denote by e_i, for $i = 1, \ldots, p$, the standard generators of the monoid \mathbb{N}_0^p. The fundamental partitions are given by

$$\varnothing_k := e_1 + e_2 + \cdots + e_k,$$

for $k = 1, \ldots, p$.

In this appendix, we use Frobenius reciprocity to decompose $\Omega^{(0,\bullet)}$ into irreducible $U_q(\mathfrak{sl}_n)$-submodules. As a direct application, we prove that $\mathcal{O}_q(\mathbb{C}P^{n-1})$, endowed with its Heckenberger–Kolb calculus, is of Gelfand type and self-conjugate.
Note that any partition $\mu = (\mu_1, \ldots, \mu_p)$ can be expressed as the sum of fundamental partitions:

$$\mu = (\mu_1 - \mu_2)\varpi_1 + (\mu_2 - \mu_3)\varpi_2 + \cdots + (\mu_{p-1} - \mu_p)\varpi_{p-1} + \mu_p\varpi_p.$$

A horizontal strip is a skew Young diagram where every column contains at most one box. Alternatively, horizontal strips can be presented in terms of pairs of integer partitions $\mu \succeq \nu$ such that, for p the order of μ,

$$\mu_1 \geq \nu_1 \geq \mu_2 \geq \nu_2 \geq \cdots \geq \mu_p \geq \nu_p.$$

(31)

We denote by $HSC(\mu)$ the set of all partitions $\mu \succeq \nu$ such that $F^{\mu \setminus \nu}$ is a horizontal strip.

As suggested by the notation, we have an obvious bijection between the irreducible representations of the quantised enveloping algebra $U_q(sl_n)$, and Young diagrams with $r = \text{rank}(\mathfrak{g})$ rows. Explicitly, let V_μ be an irreducible $U_q(\mathfrak{g})$-module, with defining a dominant integral weight $\mu \in P^+$. Expressing μ in terms of the fundamental weights as $\mu = \sum_{i=1}^r a_i \varpi_i$, we have the corresponding partition $\mu = \sum_{i=1}^r a_i \varpi_i$, and hence the corresponding Young diagram F^μ.

C.2. The Decomposition. Applying Frobenius reciprocity requires an understanding of the branching rules for the inclusion $U_q(l_{n-1}) \hookrightarrow U_q(sl_n)$. However, as explained in greater detail in [47] the fact that Weyl's character formula remains unchanged under q-deformation implies that the branching laws are equivalent to the classical case. The branching laws for the inclusion $l_{n-1} \hookrightarrow sl_n$ admit a well-known formulation originally due to Weyl [57] (see also [23, Proposition 5.1]) which allows us to immediately write down the corresponding q-deformed branching laws.

Lemma C.1. For any partition μ, with corresponding irreducible $U_q(sl_n)$-module V_μ, an isomorphism of $U_q(l_{n-1})$-modules is given by

$$V_\mu \simeq \bigoplus_{\nu \in HSC(\mu)} V_{\varpi}(\nu_{n-1} - |\mu \setminus \nu|), \quad \text{where} \quad \nu = \sum_{i=1}^{n-1} \nu_i \varpi_i, \quad \text{and} \quad \varpi := \nu_{n-1} \varpi_{n-1},$$

(32)

for ϖ_i the fundamental partitions, and summation is over all partitions $\nu \in HSC(\mu)$, where $HSC(\mu)$ is the set of partitions complementary to the horizontal strips of μ (as defined in Appendix C.1). In particular, the decomposition is multiplicity-free for each V_μ.

In preparation for the application of Frobenius reciprocity below, we now consider two specific applications of the branching rules for the case of $U_q(sl_3)$. The presentation here is given in terms of Young diagrams, with the intention of providing the reader with some visual intuition.

Example C.2. We begin with an explicit example of the branching procedure for the inclusion $U_q(l_2) \hookrightarrow U_q(sl_3)$, corresponding to the quantum homogeneous space $O_q(\mathbb{CP}^2)$. Consider the partition $\mu := (3, 2)$ with corresponding Young diagram:

We present the 6 possible partitions $\nu \in HSC(\mu)$ in Young diagram form, highlighting those boxes which form horizontal strips:
Removing the highlighted boxes, we arrive at the set of Young diagrams corresponding to the partitions in $HSC(\mu)$:

\[
\begin{array}{ccc}
\begin{array}{ccc}
| & | & |
\end{array} &
\begin{array}{ccc}
| & | & |
\end{array} &
\begin{array}{ccc}
| & | & |
\end{array}
\end{array}
\]

Next we present the Young diagrams of the partitions $\nu = \nu - 2z_2$. We do this in two steps, first highlighting the boxes to be removed from F^ν in order to arrive at $F^{\nu'}$:

\[
\begin{array}{ccc}
\begin{array}{ccc}
| & | & |
\end{array} &
\begin{array}{ccc}
| & | & |
\end{array} &
\begin{array}{ccc}
| & | & |
\end{array}
\end{array}
\]

Removing the highlighted columns we arrive at the following list of Young diagrams, where \emptyset denotes the empty Young diagram:

\[
\begin{array}{ccc}
\begin{array}{ccc}
| & | & |
\end{array} &
\begin{array}{ccc}
| & | & |
\end{array} &
\begin{array}{ccc}
| & | & |
\end{array}
\end{array}
\]

Thus the decomposition of V_μ into irreducible $U_q(sl_2)$-modules is given by

\[
V_\mu \simeq V_{\varpi_1} \oplus V_{2\varpi_1} \oplus V_{3\varpi_1} \oplus C \oplus V_{\varpi_2} \oplus V_{2\varpi_2}.
\]

(33)

Finally, subtracting the number of boxes removed in the first step, from the number of columns removed in the second step, gives us the weight of K_2. Explicitly, the decomposition of V_μ into irreducible $U_q(sl_2)$-modules is given by

\[
V_\mu \simeq V_{\varpi_1}(2) \oplus V_{2\varpi_1}(0) \oplus V_{3\varpi_1}(-2) \oplus C(1) \oplus V_{\varpi_2}(-1) \oplus V_{2\varpi_2}(-3).
\]

(34)

Note that while the decomposition of V_μ into $U_q(sl_2)$-submodules contains multiplicities, the decomposition into $U_q(sl_2)$-modules is multiplicity-free.

Example C.3. As we saw in the previous example, the Young diagram presentation of the branching process can be understood as a combination of two steps:

1. Remove from a Young diagram F^ν a horizontal strip $F^\nu(\nu')$.
2. Remove all columns of height $n - 1$.

Thus finding all possible $U_q(sl_n)$-modules whose $U_q(sl_{n-1})$-branching contains a given module V amounts to finding all possible Young diagrams which can be operated on by steps 1 and 2 to produce the Young diagram corresponding to V.

Let us apply this process to a concrete example corresponding to the case of $O_q(CP^3)$: For the $U_q(sl_4)$-module V_{ϖ_1} we will find all possible $U_q(sl_4)$-modules whose branching contains V_{ϖ_1} as a decomposition. Recall first that V_{ϖ_1} has the corresponding Young diagram:
We reverse step 2 by adding an arbitrary number \(k \in \mathbb{N}_0 \) of columns of height 3 to obtain the Young diagram:

\[
F^{k\varpi_3 + \varpi_1} = \begin{array}{cccc}
\bullet & \bullet & \bullet & \cdots \\
\bullet & \bullet & \bullet & \cdots \\
\bullet & \bullet & \bullet & \cdots \\
\end{array}
\]

To reverse step 1, we must find all possible Young diagrams \(F^\mu \) such that

\[
k\varpi_3 + \varpi_1 \in \text{HSC}(\mu).
\]

In fact, we see that there exist exactly two such families of Young diagrams. The first, for a general \(l \in \mathbb{N}_0 \), is given by

\[
P^{k\varpi_3 + (l+1)\varpi_1} := \begin{array}{cccc}
\bullet & \bullet & \bullet & \cdots \\
\bullet & \bullet & \bullet & \cdots \\
\bullet & \bullet & \bullet & \cdots \\
\end{array}
\]

The second, for a general \(l \in \mathbb{N}_0 \), is given by

\[
P^{k\varpi_3 + 2\varpi_2 + l\varpi_1} := \begin{array}{cccc}
\bullet & \bullet & \bullet & \cdots \\
\bullet & \bullet & \bullet & \cdots \\
\bullet & \bullet & \bullet & \cdots \\
\end{array}
\]

To perform this process for \(U_q(\mathfrak{sl}_3) \)-branching, we need to take care of the weight of \(K_3 \). Let us assume that we want to branch to the representation \(V_{\varpi_1}(c) \), for some \(c \in \mathbb{Z} \). As we saw in the previous example, the weight of \(K_3 \) is precisely the number of boxes removed in step 1 minus the number of columns removed in step 2. Thus we see that the branched representation \(\varpi_3 + (l+1)\varpi_1 \) contains \(V_{\varpi_1}(c) \) if and only if \(l - k = c \), while the branched representation \(\varpi_3 + \varpi_2 + l\varpi_1 \) contains \(V_{\varpi_1}(c) \) if and only if \(l - k + 1 = c \).

Returning now to the general case of \(O_q(\mathbb{C}^{n-1}) \). We would now like a complete description of the \(U_q(\mathfrak{sl}_n) \)-modules appearing in the irreducible decomposition of \(\Omega^{(0,k)} \). First, however, we need to identify the inducing representations \(V^{(0,k)} \) as \(U_q(\mathfrak{sl}_n) \)-modules. (Note that we present the trivial case of \(V^{(0,0)} \) to highlight the fact that its weight does not follow the general pattern for the higher forms.)

Corollary C.4. We have the following isomorphisms of left \(U_q(\mathfrak{sl}_{n-1}) \)-modules

\[
V^{(0,0)} \simeq \mathbb{C}(0), \quad V^{(0,k)} \simeq V_{\varpi_{n-k-1}}(-k-1), \quad \text{for } k = 1, \ldots, n-1.
\]

Proof. Since the isomorphism \(V^{(0,0)} \simeq \mathbb{C}(0) \) is obvious, we can move directly onto the higher forms. Recalling that \(e_i^+ \wedge e_i^- = 0 \), for all \(i \), we see from Lemma 6.3 that

\[
E_j \triangleright (e_{n-1}^- \wedge \cdots \wedge e_{n-k}^-) = 0, \quad \text{for } j = 1, \ldots, n-2.
\]

Another application of Lemma 6.3 confirms that

\[
K_j \triangleright (e_{n-1}^- \wedge \cdots \wedge e_{n-k}^-) = q^{\delta_{j,n-k}} e_{n-1}^- \wedge \cdots \wedge e_{n-k}^-, \quad \text{for } j = 1, \ldots, n-2.
\]
Hence $e_{n-1} \wedge \cdots \wedge e_{n-k}$ is a $U_q(\mathfrak{sl}_n)$-highest weight vector of weight ϖ_{n-k-1}.

Recalling that the dimension of universal enveloping algebra modules is unchanged under q-deformation, we see that

$$\dim \left(U_q(\mathfrak{sl}_n) e_{n-1} \wedge \cdots \wedge e_{n-k} \right) = \binom{n-1}{k}.$$

Recalling from Theorem 6.3 that $\Phi(\Omega^{(0,k)})$ is also an $(\binom{n-1}{k})$-dimensional space, we see that

$$U_q(\mathfrak{sl}_n) e_{n-1} \wedge \cdots \wedge e_{n-k} = V^{(0,k)}.$$

Thus $V^{(0,k)}$ is isomorphic, as a $U_q(\mathfrak{sl}_n)$-module, to $V_{\varpi_{n-k-1}}$. Finally, Lemma 6.3 tells us that

$$K_{n-1} \triangleright (e_{n-1} \wedge \cdots \wedge e_{n-k}) = q^{-k-1} e_{n-1} \wedge \cdots \wedge e_{n-k}.$$

Hence $V^{(0,k)}$ is isomorphic, as a $U_q(l_{n-1})$-module, to $V_{\varpi_{n-k-1}}(-k-1)$, as claimed. □

Lemma C.5. The complex structure $\Omega^{(\cdot \cdot \cdot)}$ is of Gelfand type. Moreover, an irreducible $U_q(\mathfrak{sl}_n)$-module appears in the decomposition of $\Omega^{(0,k)}$ into irreducibles only if its highest weight is of the form

1. 0, when $k = 0$,
2. $(l+k+1)\varpi_1 + \varpi_{n-k-1} + l\varpi_{n-1}$, for $l \in \mathbb{N}_0$, when $k = 0, \ldots, n-2$,
3. $(l+k)\varpi_1 + \varpi_{n-k} + l\varpi_{n-1}$, for $l \in \mathbb{N}_0$, when $k = 2, \ldots, n-1$.

Proof. Lemma [C.1] tells us that the decomposition of any $U_q(\mathfrak{sl}_n)$-module into $U_q(l_{n-1})$-submodules is multiplicity-free. Frobenius reciprocity, as presented in Proposition [A.8] now implies that $\Omega^{(\cdot \cdot \cdot)}$ is of Gelfand type.

Let us now assume that $k = 1, \ldots, n-2$. By Corollary [C.4] above, $V^{(0,k)}$ is isomorphic to $V_{\varpi_{n-k-1}}(-k-1)$ as a $U_q(l_{n-1})$-module. Lemma [C.4] tells us that $V_{\varpi_{n-k-1}}(-k-1)$ appears as a $U_q(l_{n-1})$-submodule, of some $U_q(\mathfrak{sl}_n)$-module V_μ, if and only if there exists a $\nu = \sum_{i=1}^{n-1} \nu_i \varpi_i$ in HSC(μ) such that $V = \varpi_{n-k-1}$ and $\nu_{n-1} - |\mu \setminus \nu| = -k-1$. Note first that a partition ν satisfies $V = \varpi_{n-k-1}$ if and only if

$$\nu = l\varpi_{n-1} + \varpi_{n-k-1}, \quad \text{for some } l \in \mathbb{N}_0.$$

Next, recall that $\nu \in$ HSC(μ), for some partition μ, if and only if (31) is satisfied. Thus any μ must be of the form

$$l\varpi_{n-1} + \varpi_{n-k-1} + a\varpi_1, \quad \text{or} \quad l\varpi_{n-1} + \varpi_{n-k} + a\varpi_1, \quad \text{for some } a \in \mathbb{N}_0.$$

Next we see that the identity $\nu_{n-1} - |\mu \setminus \nu| = -k-1$ is satisfied in the first case if and only if $l-a = -k-1$, and in the second case if $l - (a+1) = -k-1$. Thus $V^{(0,k)}$ appears as a summand in the decomposition of V_μ into irreducible $U_q(l_{n-1})$-modules if and only if

$$\mu = (l+k+1)\varpi_1 + \varpi_{n-k-1} + l\varpi_{n-1}, \quad \text{or} \quad \mu = (l+k)\varpi_1 + \varpi_{n-k} + l\varpi_{n-1}.$$

Frobenius reciprocity, for the inclusion $U_q(l_{n-1}) \hookrightarrow U_q(\mathfrak{sl}_n)$, now tells us that a left $U_q(\mathfrak{sl}_n)$-module appears as a submodule of $\Omega^{(0,k)}$ if and only if its highest weight is of the form (37), as claimed. The proofs for the cases $k = 0$, and $k = n-1$, are analogous, and so, we omit them. □

Corollary C.6. Quantum projective space $O_q(\mathbb{C}P^{n-1})$ is self-conjugate.

Proof. From Lemma [C.5] above we see that the irreducible submodules of $\Omega^{(0,0)}$ are distinct in dimension. Since the dimension of an irreducible $U_q(\mathfrak{sl}_n)$-module V is clearly equal to the dimension of its image under the \ast-map, $O_q(\mathbb{C}P^{n-1})$ must be self-conjugate. □
References

[1] R. J. Baston and M. G. Eastwood, The Penrose transform. Its interaction with representation theory, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1989. Oxford Science Publications.

[2] E. Beggs and P. S. Smith, Noncommutative complex differential geometry, J. Geom. Phys., 72 (2013), pp. 7–33.

[3] E. J. Beggs and T. Brzeziński, Noncommutative differential operators, Sobolev spaces and the centre of a category, J. Pure Appl. Algebra, 218 (2014), pp. 1–17.

[4] T. Brzeziński and R. Wisbauer, Corings and comodules, vol. 309 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2003.

[5] A. Carey and J. Phillips, Unbounded Fredholm modules and spectral flow, Canad. J. Math., 50 (1998), pp. 673–718.

[6] A. L. Carey, J. Phillips, and A. Rennie, Spectral triples: examples and index theory, in Noncommutative geometry and physics: renormalisation, motives, index theory, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich, 2011, pp. 175–265.

[7] A. Connors, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994.

[8] F. D’Andrea and L. Dąbrowski, Dirac operators on quantum projective spaces, Comm. Math. Phys., 295 (2010), pp. 731–790.

[9] F. D’Andrea, L. Dąbrowski, and G. Landi, The noncommutative geometry of the quantum projective plane, Rev. Math. Phys., 20 (2008), pp. 979–1006.

[10] F. D’Andrea and G. Landi, Geometry of quantum projective spaces, in Noncommutative geometry and Physics, vol. 3, 2013, pp. 373–416.

[11] B. Das, R. Ó Buachalla, and P. Somberg, Dolbeault–Dirac spectral triples on quantum homogeneous spaces. In preparation.

[12] L. Dąbrowski and A. Sitarz, Dirac operator on the standard Podleś quantum sphere, in Noncommutative geometry and quantum groups (Warsaw, 2001), vol. 61 of Banach Center Publ., Polish Acad. Sci. Inst. Math., Warsaw, 2003, pp. 49–58.

[13] F. Díaz, R. Ó Buachalla, and E. Wagner, A noncommutative Kähler structure for the rank 2 quantum quadric. In preparation.

[14] M. Dijkhuizen and J. Stokman, Quantized flag manifolds and irreducible *-representations, Comm. Math. Phys. (2), 203 (1999), pp. 297–324.

[15] M. S. Dijkhuizen and T. H. Koornwinder, CQG algebras: a direct algebraic approach to compact quantum groups, Lett. Math. Phys., 32 (1994), pp. 315–330.

[16] I. Forsyth, B. Mesland, and A. Rennie, Dense domains, symmetric operators and spectral triples, New York J. Math., 20 (2014), pp. 1001–1020.

[17] T. Friedrich, Dirac operators in Riemannian geometry, vol. 25 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2000. Translated from the 1997 German original by Andreas Nestke.

[18] J. M. Gracia-Bondía, J. C. Várilly, and H. Figueroa, Elements of noncommutative geometry, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Boston, Inc., Boston, MA, 2001.

[19] I. Heckenberger and S. Kolb, The locally finite part of the dual coalgebra of quantized irreducible flag manifolds, Proc. London Math. Soc. (3), 89 (2004), pp. 457–484.

[20] ———, De Rham complex for quantized irreducible flag manifolds, J. Algebra, 305 (2006), pp. 704–741.

[21] N. Higson and J. Roe, Analytic K-homology, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000. Oxford Science Publications.

[22] D. Huybrechts, Complex geometry: an introduction, universitext, Springer–Verlag, 2005.

[23] A. Ikeda and Y. Taniguchi, Spectra and eigenforms of the Laplacian on S^n and $P^n(C)$, Osaka J. Math., 15 (1978), pp. 515–546.

[24] M. Khalkhali and A. Moatadelro, Noncommutative complex geometry of the quantum projective space, J. Geom. Phys., 61 (2011), pp. 2436–2452.

[25] A. Klimyk and K. Schmüdgen, Quantum Groups and Their Representations, Texts and Monographs in Physics, Springer-Verlag, 1997.

[26] A. W. Knapp and D. A. Vogan, Jr., Cohomological induction and unitary representations, vol. 45 of Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 1995.

[27] T. Kobayashi, Multiplicity-free representations and visible actions on complex manifolds, Publ. Res. Inst. Math. Sci., 41 (2005), pp. 497–549.
A DOLBEAULT–DIRAC SPECTRAL TRIPLE FOR QUANTUM PROJECTIVE SPACE

[28] K. Koike and I. Terada, Young diagrammatic methods for the restriction of representations of complex classical Lie groups to reductive subgroups of maximal rank, Adv. Math., 79 (1990), pp. 104–135.

[29] U. Krämer, Dirac operators on quantum flag manifolds, Lett. Math. Phys., 67 (2004), pp. 49–59.

[30] U. Krämer and M. Tucker-Simmons, On the Dolbeault-Dirac operator of quantized symmetric spaces, Trans. London Math. Soc., 2 (2015), pp. 33–36.

[31] M. Krämer, Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen, Compositio Math., 38 (1979), pp. 129–153.

[32] A. Krutov, R. Ó Buachalla, and K. R. Strung, A noncommutative Fano structure for the quantum Grassmannians. In preparation.

[33] J. Kustermans, G. J. Murphy, and L. Tuset, Quantum groups, differential calculi and the eigenvalues of the laplacian, Trans. Amer. Math. Soc., 357 (2005), pp. 4681–4717.

[34] V. Lakshmibai and N. Reshetikhin, Quantum deformations of flag and schubert schemes, C. R. Acad. Sci. Paris, 313 (1991), pp. 121–126.

[35] P. Littelmann, Paths and root operators in representation theory, Ann. of Math., 142, pp. 499–525.

[36] S. Majid, Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995.

[37] M. Matassa, Kähler structures on quantum irreducible flag manifolds. arXiv preprint math.QA/1901.09544.

[38] R. Ó Buachalla, Quantum bundle description of quantum projective spaces, Comm. Math. Phys., 316 (2012), pp. 345–373.

[39] A. Pal, Induced representation and Frobenius reciprocity for compact quantum groups, Proc. Indian Acad. Sci. Math. Sci., 105 (1995), pp. 157–167.

[40] R. Parthasarathy, Dirac operator and the discrete series, Ann. of Math. (2), 96 (1972), pp. 1–30.

[41] W. Rudin, Functional analysis, International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, second ed., 1991.

[42] J. T. Stafford, Noncommutative projective geometry, in Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Higher Ed. Press, Beijing, 2002, pp. 93–103.

[43] D. A. Vogan, Jr., Representations of real reductive Lie groups, vol. 15 of Progress in Mathematics, Birkhäuser, Boston, Mas., 1981.

[44] A. Weil, Introduction à l’étude des variétés kähleriennes, no. 1267 in Publications de l’Institut de Mathématique de l’Université de Nancago, VI., Hermann, Paris, 1958.

[45] H. Weyl, The classical groups. Their invariants and representations, Princeton Landmarks in Mathematics, Princeton University Press, 1997.

[46] S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys., 111 (1987), pp. 613–665.
