\textbf{B}_n\text{-generalized geometry and } G^2_2\text{-structures} \\

\textit{Roberto Rubio} \footnote{Mathematical Institute, 24-29 St Giles, Oxford OX1 3LB, UK, rubio@maths.ox.ac.uk} \\

\textbf{Abstract} \\
We introduce the concept of \(G^2_2\)-structure on an orientable 3-manifold \(M\) using the setting of generalized geometry of type \(B_n\), study their local deformation by making use of a Moser-type argument, and give a description of the cone of \(G^2_2\)-structures.

\section{Introduction} \\
Generalized geometry was originally introduced in [Hit03] as, naively, the differential geometry resulting from replacing the tangent bundle \(T\) of a manifold \(M\) with the sum of the tangent and cotangent bundles, \(T \oplus T^*\), which is naturally endowed with an \(\text{SO}(n,n)\)-structure. Classical concepts have then generalized analogues, such as generalized metrics and generalized Calabi-Yau or generalized complex structures. An interesting feature of this geometry is that the bundle of differential forms \(\bigwedge^* T^* M\) becomes a bundle of spinors, in which some of these structures are formulated. For instance, a generalized Calabi-Yau structure is given by a closed section of \(\bigwedge^{ev} T^* M \otimes \mathbb{C}\) or \(\bigwedge^{od} T^* M \otimes \mathbb{C}\) consisting of pure spinors.

The generalized tangent space \(T \oplus T^*\) can be further modified by adding new pieces. The simplest one is the rank 1 trivial bundle over \(M\), which we denote by 1. Since the natural metric of \(T \oplus T^* \oplus 1\) has signature \((n+1,n)\), the group of symmetries becomes \(\text{SO}(n+1,n)\). As this group is of Lie type \(B_n\), we call this geometry generalized geometry of type \(B_n\), from now on \(B_n\)-geometry. Correspondingly, ordinary generalized geometry is called \(D_n\)-geometry. Exceptional geometries based on the split real forms \(E_n\) have also been studied as, for example, in [Hul07].

\(B_n\)-geometry was originally introduced by Baraglia in [Bar12] (Section 2.4). It also arises as a particular case of the more general situation studied
Section 2 of the present work is devoted to stating the basic features of B_n-geometry.

In Section 3 we introduce G_2^3-structures on an orientable 3-manifold M as suggested by Baraglia. G_2^3-structures are defined by analogy with generalized Calabi-Yau structures. They are given by a closed section ρ of $\bigwedge^\bullet T^*$ consisting of non-pure spinors. We consider the existence and equivalence of G_2^3-structures on compact orientable 3-manifolds. While G_2^3-structures with non-vanishing degree 0 component, $\rho_0 \neq 0$, exist on any 3-manifold, those with $\rho_0 = 0$ only exist on orientable mapping tori. In fact any mapping torus of an orientable surface can be endowed with such a G_2^3-structure (Theorem 3.6). In Section 3.2 we show that the Moser argument in symplectic geometry can be modified to obtain the result that a small deformation within the cohomology class does not change the structure up to generalized diffeomorphism (Theorem 3.12). We finish by describing the cone of G_2^3-structures inside $H^\bullet(M)$ in Theorem 3.13.

The author wishes to thank his supervisor Nigel Hitchin for introducing him to this subject and for his constant support and generosity. This work was been possible thanks to a Fellowship for Graduate Courses in Universities and Colleges funded by Fundación Caja Madrid.

2 B_n-generalized geometry

2.1 The Courant algebroid $T \oplus T^* \oplus 1$

Let M be a differentiable manifold of dimension n with tangent bundle T and cotangent bundle T^*. Let 1 denote the trivial bundle of rank 1 over M. Define the B_n-generalized tangent bundle by $T \oplus T^* \oplus 1$. The sections of this bundle are called generalized vector fields and are naturally endowed with a signature $(n+1, n)$ inner product given by

$$(X + \xi + \lambda, Y + \eta + \mu) = \frac{1}{2}(i_X\eta + i_Y\xi) + \lambda\mu,$$

where $X + \xi + \lambda, Y + \eta + \mu \in C^\infty(T \oplus T^* \oplus 1)$. Together with the canonical orientation on $T \oplus T^* \oplus 1$, this endows $T \oplus T^* \oplus 1$ with the structure of an $SO(n+1, n)$-bundle. We introduce a Courant bracket on $C^\infty(T \oplus T^* \oplus 1)$ via

$$[X + \xi + \lambda, Y + \eta + \mu] = [X, Y] + \mathcal{L}_X\eta - \mathcal{L}_Y\xi - \frac{1}{2}d(i_X\eta - i_Y\xi) + \mu d\lambda - \lambda d\mu + (i_Xd\mu - i_Yd\lambda),$$

so that $(T \oplus T^* \oplus 1, (\cdot, \cdot), [\cdot])$ is a Courant algebroid in the sense of [LWX97].
The infinitesimal orthogonal transformations of $T \oplus T^* \oplus 1$ are given by the elements

$$
\begin{pmatrix}
E & \beta & -2\alpha \\
B & -E^t & -2A \\
A & \alpha & 0
\end{pmatrix} \in C^\infty(\mathfrak{so}(T \oplus T^* \oplus 1))
$$

such that $E \in \text{End}(T)$, $\beta \in \bigwedge^2 T$, $B \in \bigwedge^2 T^*$, the B-field already present in D_n-geometry, $\alpha \in T$ and $A \in T^*$, the A-field which will be relevant in B_n-geometry. The exponentiation of a $B + A$-field gives the element

$$(B, A) := \exp(B + A) = \begin{pmatrix} 1 & 1 & -2A \\ B - A \otimes A & 1 & -2A \\ A & 1 \end{pmatrix} \in C^\infty(\text{SO}(T \oplus T^* \oplus 1)),
$$

which acts by $(B, A) (X + \xi + \lambda) = X + \xi + i_X B - 2\lambda A - i_X A A + \lambda + i_X A$.

The composition law of these elements in $C^\infty(\text{SO}(T \oplus T^* \oplus 1))$ is

$$(B, A)(B', A') = (B + B' + A \wedge A', A + A').$$

Note that A-fields do not commute and their product involves a 2-form.

Their action on the Courant bracket is given by the following result.

Proposition 2.1. Let $(B, A) \in C^\infty(\text{SO}(T \oplus T^* \oplus 1))$. For generalized vector fields $u = X + \xi + \lambda$ and $v = Y + \eta + \mu$, we have

$$
[(B, A)u, (B, A)v] = (B, A)[u, v] + i_Y i_X (dB + A \wedge dA) - 2i_Y i_X dA \cdot A + i_Y i_X dA + 2(\lambda i_Y dA - \mu i_X dA).
$$

In particular, the action of (B, A) commutes with the Courant bracket if and only if A and B are closed.

Define the group

$$\Omega^2_{cl} (M) = \{(B, A) \in C^\infty(\text{SO}(T \oplus T^* \oplus 1)) \mid B \in \Omega^2_{cl} (M), A \in \Omega^1_{cl} (M)\}.$$

The group $\Omega^2_{cl} (M)$ is a central subgroup in $\Omega^2_{cl} (M)$, so $\Omega^2_{cl} (M)$ is the central extension $1 \to \Omega^2_{cl} (M) \to \Omega^2_{cl} + 1 (M) \to \Omega^1_{cl} (M) \to 1$.

Proposition 2.2. The group of orthogonal transformations of $T \oplus T^* \oplus 1$ preserving the Courant bracket is $\text{Diff} (M) \ltimes \Omega^2_{cl} + 1 (M) =: \text{GDiff} (M)$, called the group of generalized diffeomorphisms of M. The product is given by

$$(f \ltimes (B, A)) \circ (g \ltimes (D, C)) = fg \ltimes (g^* B, g^* A)(D, C)$$

$$= fg \ltimes (g^* B + D + g^* A \wedge C, g^* A + C).$$
We describe $\mathfrak{gDiff}(M)$, the Lie algebra of GDif(M), by differentiating the action of a smooth one-parameter family of generalized diffeomorphisms $F_t = f_t \times (B_t, A_t)$ such that $F_t \circ F_s = F_{t+s}$ and $F_0 = \text{id}$. By Proposition 2.2 and $F_t \circ F_s = F_{t+s}$ we have the three equations

$$f_{t+s} = f_t \circ f_s, \quad A_{t+s} = A_s + f_s^* A_t, \quad B_{t+s} = B_s + f_s^* B_t + f_s^* A_t \wedge A_s.$$

The first equation says that $\{f_t\}$ is a one-parameter subgroup of diffeomorphisms of M. Let X be the corresponding vector field. From the second equation, $A_t = \int_0^t f_s^* a \, ds$, where $a = \frac{dB_t}{dt} \big|_{t=0}$. And from the third equation,

$$\frac{dB_t}{dt} \big|_{t=s} = f_s^* \frac{dB_t}{dt} \big|_{t=0} + f_s^* \frac{dA_t}{dt} \big|_{t=0} \wedge A_s,$$

so $B_t = \int_0^t (f_s^* b + f_s^* a \wedge A_s) \, ds$, where $b = \frac{dB_t}{dt} \big|_{t=0}$ and A_s depends on a.

Using the convention $L_X Y = -\frac{d}{dt} \big|_{t=0} f_t^* Y$ for the Lie derivative of a vector field Y, we see that the infinitesimal action of the one-parameter subgroup $\{F_t\}$ is

$$-\frac{d}{dt} \bigg|_{t=0} F_{ts}(Y + \eta + \mu) = L_X (Y + \eta + \mu) - i_Y b + 2\mu a - i_Y a,$$

which only depends on the action of (X, b, a). We thus make the identification

$$\mathfrak{gDiff}(M) = \mathcal{C}^\infty(T) \oplus \Omega^1_{cl}(M) \oplus \Omega^1_{cl}(M).$$

Conversely, given an infinitesimal generalized diffeomorphism (X, b, a), we can integrate it to a one-parameter subgroup of generalized diffeomorphisms using the equations above.

Remark 2.3. It is also possible to integrate a time-dependent infinitesimal generalized diffeomorphism. From (X_t, b_t, a_t), we get $B_t = \int_0^t (f_s^* b_s + f_s^* a_s \wedge A_s) \, ds$ and $A_t = \int_0^t f_s^* a_s \, ds$, using a method analogous to that used to show Proposition 2.3 in [Gua11].

Remark 2.4. We map $\mathcal{C}^\infty(T \oplus T^* \oplus 1)$ to $\mathfrak{gDiff}(M)$ by

$$(X + \xi + \lambda) \mapsto (X, d\xi, d\lambda),$$

so that we regard $X + \xi + \lambda$ as defining an infinitesimal generalized diffeomorphism. Its natural action on sections of $T \oplus T^* \oplus 1$ gives an action of a generalized vector field on generalized vector fields, called the Dorfman product

$$(X + \xi + \lambda)(Y + \eta + \mu) = [X, Y] + L_X \eta + i_X \mu - i_Y \xi + 2\mu d\lambda - i_Y d\lambda.$$

The antisymmetrization of the Dorfman product gives the Courant bracket defined above.
2.2 Differential forms as spinors

By analogy with D_n-generalized geometry, the differential forms $\bigwedge^n T^*M$ are a Clifford module over the algebra $C^\infty(Cl(T \oplus T^* \oplus 1))$ with an action defined by

$$(X + \xi + \lambda) \cdot \varphi = i_X \varphi + \xi \wedge \varphi + \lambda \tau \varphi,$$

where $\tau \varphi = \varphi^+ - \varphi^-$ for the even φ^+ and odd φ^- parts of φ. Thus, τ defines an involution of $\bigwedge^n T^*M$. The action defined above satisfies the Clifford condition

$$(X + \xi + \lambda)^2 \cdot \varphi = (X + \xi + \lambda)^2 \varphi,$$

as τ anticommutes with interior and exterior products.

The action of B and A fields, $B, A \in C^\infty(so(T \oplus T^* \oplus 1))$, on $\bigwedge^n T^*M$ via the spinorial representation $\sigma : C^\infty(Spin(T \oplus T^* \oplus 1)) \to \text{Aut}(\bigwedge^n T^*M)$ is given by the Lie algebra action $\sigma(B) \varphi = -B \wedge \varphi$, $\sigma(A) \varphi = -A \wedge \tau \varphi$, and the Lie group action

$$\sigma(\exp(B)) \varphi = -B \wedge \varphi,$$

$$\sigma(\exp(A)) \varphi = -A \wedge \tau \varphi.$$

Since B and A commute, the action of a $B + A$-field is given by

$$\sigma(\exp(B + A)) \varphi = e^{-B} e^{-A \tau} \varphi = e^{-A \tau} e^{-B} \varphi.$$

The Lie derivative of a spinor with respect to a generalized vector field $X + \xi + \lambda$, as also for generalized vector fields in Remark 2.4, is defined by mapping the vector field to the infinitesimal generalized diffeomorphism $(X, d\xi, d\lambda) \in g\text{diff}(M)$ and differentiating the action of the one-parameter subgroup $\{F_t\}$ to which it integrates:

$$L_{X + \xi + \lambda} \varphi = -\frac{d}{dt} {\big|}_{t=0} F_t \varphi = L_X \varphi + d\xi \wedge \varphi + d\lambda \tau \varphi.$$

The Lie derivative of a spinor satisfies a Cartan formula, where the interior product is replaced by the Clifford action, $d((X + \xi + \lambda) \cdot \varphi) + (X + \xi + \lambda) \cdot d\varphi = L_{X + \xi + \lambda} \varphi$.

The differential forms $\bigwedge^n T^*M$ are endowed with an $SO(T \oplus T^* \oplus 1)$-invariant pairing with values in $\bigwedge^n T^*M$ coming from the Chevalley pairing on spinors ([Che54]). Let α be the anti-involution defined by $\alpha(\omega) = (-1)^{(\deg \omega \cdot \frac{n}{2})} \omega$ on forms of pure degree ω and extended linearly. For $\text{rk} T = \dim M$ odd, the pairing is given by

$$\langle \varphi, \psi \rangle = \left[\alpha(\varphi^-) \wedge \psi^+ - \alpha(\varphi^+) \wedge \psi^-\right]_{\text{top}},$$

while for $\text{rk} T = \dim M$ even, it is given by

$$\langle \varphi, \psi \rangle = \left[\alpha(\varphi^+) \wedge \psi^+ + \alpha(\varphi^-) \wedge \psi^-\right]_{\text{top}}.$$
Remark 2.5. In the case of 3-manifolds,
\[
\langle \varphi, \psi \rangle = [\alpha(\varphi^+) \wedge \psi^- - \alpha(\varphi^-) \wedge \psi^+]_{\text{top}}
\]
\[
= [(\varphi_0 - \varphi_2) \wedge (\psi_1 + \psi_3) - (\varphi_1 - \varphi_3) \wedge (\psi_0 + \psi_2)]_{\text{top}}
\]
\[
= \varphi_0 \psi_3 + \psi_0 \varphi_3 - \varphi_1 \wedge \psi_2 - \psi_1 \wedge \varphi_2,
\]
and, in particular, \(\langle \varphi, \varphi \rangle = 2(\varphi_0^0 \varphi_3^3 - \varphi_1^1 \wedge \varphi_2^2) \), thus defining a quadratic form of signature \((4, 4)\).

3 \(G_2^2 \)-structures on 3-manifolds

In [Hit03], for \(n = 2m \), generalized Calabi-Yau structures are defined by a complex closed form \(\varphi \) that is either even or odd which is a pure spinor and satisfies \(\langle \varphi, \bar{\varphi} \rangle \neq 0 \). This structure defines a reduction to the stabilizer of the spinor field, \(\text{SU}(m, m) \).

In the case of a 3-manifold, we pointwise have a seven-dimensional generalized tangent space with an inner product of signature \((4, 3)\). Its space of spinors is eight-dimensional and equipped with a signature \((4, 4)\) inner product. In this setting, pure spinors correspond to null spinors with respect to the inner product, while non-pure spinors correspond to non-null spinors. Moreover, up to scalar multiplication, there are only two orbits under the action of \(\text{Spin}(4, 3) \): the null ones and the non-null ones. Hence, all non-null spinors have isomorphic stabilizers. While the stabilizer of a non-zero spinor in \(\text{Spin}(7) \) is the compact exceptional Lie group \(G_2 \), for the group \(\text{Spin}(4, 3) \), the stabilizer of a non-null spinor is its non-compact real form \(G_2^2 \). The study of the structure given on a 3-manifold by a section of \(\bigwedge^\bullet T^*M \) consisting of closed non-null spinors motivates the following definition.

Definition 3.1. A \(G_2^2 \)-generalized structure on a 3-manifold \(M \) is an everywhere non-null section of the real spinor bundle, \(\rho \in \Omega^\bullet(M) \), such that \(d\rho = 0 \). For the sake of brevity, we call them \(G_2^2 \)-structures.

Remark 3.2. Given a section \(\rho \in \Omega^\bullet(M) \) consisting of closed null spinors, its annihilator \(\text{Ann}(\rho) \subset T \oplus T^* \oplus 1 \) defines an integrable real Dirac structure, i.e., a maximal isotropic subbundle of \(T \oplus T^* \oplus 1 \) involutive with respect to the Courant bracket. The involutivity is a consequence of the closedness of \(\rho \), as in Proposition 1 of [Hit03].

3.1 Existence of \(G_2^2 \)-structures

From the non-nullity condition we have that \(\langle \rho, \rho \rangle = 2(\rho_0^0 \rho_3^3 - \rho_1^1 \wedge \rho_2^2) \) defines a volume form on \(M \), so \(G_2^2 \)-structures only exist over orientable manifolds.
In fact, given any volume form \(\omega \), \(c + \omega \) defines a \(G_2 \)-structure for any constant \(c \neq 0 \). Since \(\rho \) is closed, \(\rho_0 \) must be a constant.

From now on, \(M \) will denote a compact orientable 3-manifold. Let \(\text{GDiff}^+(M) \) be the group of orientation-preserving generalized diffeomorphisms.

Proposition 3.3. Up to \(\text{GDiff}^+(M) \)-equivalence, a \(G_2 \)-structure \(\rho \) with \(\rho_0 \neq 0 \) on \(M \) is of the form \(c + \omega \) for \(c \neq 0 \) and \(\omega \) a volume form, and

1. is completely determined by the cohomology classes
 \[([\rho_0], \langle \rho, \rho \rangle) \in (H^0(M, \mathbb{R}) \setminus \{0\}) \oplus (H^3(M, \mathbb{R}) \setminus \{0\}). \]

Proof. Let \(\rho = \rho_0 + \rho_1 + \rho_2 + \rho_3 \) be a \(G_2 \)-structure with \(\rho_0 \neq 0 \). It is equivalent, by the action of the closed \((B + A)\)-field \(\left(-\frac{\rho_2}{\rho_0}, -\frac{\rho_3}{\rho_0} \right) \) to

\[
\rho_0 + \frac{1}{\rho_0} (\rho_0 \rho_3 - \rho_1 \wedge \rho_2) = \rho_0 + \frac{1}{2\rho_0} \langle \rho, \rho \rangle,
\]

which is of the form \(c + \omega \) for \(c \neq 0 \) and \(\omega \) a volume form, as stated in the first part. By Moser’s theorem ([Mos65]), any two volume forms in the same cohomology class are diffeomorphic. \(\square \)

We deal now with the existence of \(G_2 \)-structures with \(\rho_0 = 0 \).

Proposition 3.4. If a compact 3-manifold is endowed with a \(G_2 \)-structure such that \(\rho_0 = 0 \), then it is diffeomorphic to the mapping torus of a symplectic surface by a symplectomorphism. Conversely, any such mapping torus can be endowed with a \(G_2 \)-structure with \(\rho_0 = 0 \).

Proof. From \(\rho_0 = 0 \) and \(\langle \rho, \rho \rangle \neq 0 \) we get \(\rho_1 \wedge \rho_2 \neq 0 \), so we have nowhere vanishing closed 1-forms and 2-forms \(\rho_1 \) and \(\rho_2 \). We can perform a small deformation on \(\rho_1 \) to give it rational periods (as shown for instance in [Lis70]). A suitable multiple has integral periods and defines a fibration \(\pi : M \to S^1 \).

To define \(\pi \), take a base point \(m \in M \) and let \(\pi(x) = e^{2\pi i \int_{x_0}^x \rho_1 dt} \) where \(c(t) \) is any curve joining \(m \) and \(x \). Let \(X \) be the unique vector field satisfying \(i_X \rho_2 = 0 \) and \(i_X \rho_1 = 1 \) (so it is transversal to the fibration, \(d\pi(X) \neq 0 \)). Integrate the vector field \(X \) to a one-parameter subgroup of diffeomorphisms \(\{f_t\} \) such that \(f_0 = id \). Let \(S \) be the fibre over the point \(m \in M \). By the transversality, we have that \(M \) is diffeomorphic to the mapping torus of \(f_1 \), i.e., the manifold

\[
\frac{S \times [0, 1]}{\{(x, 0) \sim (f_1(x), 1)\}_{x \in S}}.
\]
The diffeomorphism is given by \([(y, t)] \mapsto f_t(y) \in M\). Furthermore, \(\mathcal{L}_X \rho_2 = d(i_X \rho_2) = 0\), so \(f_t^* \rho_2 = \rho_2\) and the fibres have a symplectic structure given by the restriction of \(\rho_2\), which is closed and non-degenerate in every fibre \(f_t(S)\). Thus, \(S\) is a symplectic manifold and \(f_1\) is a symplectomorphism.

For the second part, let \(M_f\) be the mapping torus of an orientable surface \((S, \omega)\) by a symplectomorphism \(f\). We define a 2-form \(\rho_2\) on \(M_f\) as the form which is fibrewise \(\omega\). The form \(\rho_2\) is well defined since \(f^* \omega = \omega\). Let \(\rho_1\) be the pullback of a non-vanishing 1-form over the circle. The form \(\rho_1 + \rho_2\) then defines a \(G_2\)-structure on \(M_f\).

Lemma 3.5. The mapping torus of an orientable surface \(S\) by an orientation-preserving diffeomorphism is diffeomorphic to the mapping torus of \(S\) by a symplectomorphism.

Proof. Let \(f\) be the orientation-preserving diffeomorphism and let \(\omega\) be a volume form of the surface \(S\). The 2-forms \(f^* \omega\) and \(\omega\) have the same volume and hence define the same cohomology class in \(H^2(S, \mathbb{R})\). We apply Moser’s argument (\[Mos65\]) to the family \(\omega_t = t \omega + (1 - t) f^* \omega\), so we get a family of diffeomorphisms \(\{\varphi_t\}\), with \(\varphi_0 = \text{id}\), such that \(\varphi_t^* \omega_t = \omega\). Then, we have that \((\varphi_1 \circ f)^* = \varphi_1^* f^* \omega = \omega\), i.e., \(\varphi_1 \circ f\) is a symplectomorphism, and \(\{\varphi_t \circ f\}\) defines a diffeotopy between \(f\) and \(\varphi_1 \circ f\) which makes the mapping torus of \(f\) diffeomorphic to the mapping torus of \(\varphi_1 \circ f\).

The following theorem is a consequence of the two previous results.

Theorem 3.6. A compact 3-manifold \(M\) admits a \(G_2\)-structure with \(\rho_0 = 0\) if and only if \(M\) is the mapping torus of an orientable surface by an orientation-preserving diffeomorphism.

Remark 3.7. From a \(G_2\)-structure with \(\rho_0 = 0\) on a 3-manifold \(M\) we define a symplectic structure on \(M \times S^1\) by \(\rho_2 + \rho_1 \wedge d\theta\), where \(d\theta\) denotes the usual 1-form on \(S^1\) and we really mean the pullbacks of forms on \(M\) and \(S^1\) to \(M \times S^1\). More generally, the condition that a 3-manifold \(M\) fibres over the circle is equivalent to the existence of a symplectic structure on \(M \times S^1\), as addressed in \[FY11\].

Remark 3.8. After acting by a generalized diffeomorphism, a \(G_2\)-structure \(\rho\) with \(\rho_0 = 0\) can be written as \(\rho_1 + \rho_2\). This is a co-symplectic structure on the 3-manifold in the sense of \[Lib59\]. In this context, statements similar to the ones in this section have been obtained in \[Li08\].
3.2 Deformation of G_2^2-structures

Inspired by the Moser argument for symplectic geometry, we study whether a small perturbation of a G_2^2-structure (on a compact 3-manifold M) within its cohomology class may change the G_2^2-structure up to equivalence by

$$G \text{Diff}_0(M) = \{ f \times (B, A) \in G \text{Diff}(M) \mid f \in \text{Diff}_0(M), B \text{ and } A \text{ are exact} \}.$$

Let $\rho^0, \rho^1 \in \Omega^* (M)$ be two G_2^2-structures representing the same cohomology class, $\rho^1 - \rho^0 = d\varphi$, and sufficiently close to have that each form $\rho^t = \rho^0 + t(\rho^1 - \rho^0)$ is a G_2^2-structure, i.e., $\langle \rho^t, \rho^t \rangle \neq 0$, for $0 \leq t \leq 1$. We would like to have a one-parameter family of generalized diffeomorphisms $\{F_t\}$ such that $F_t^* \rho^t = \rho^0$, making equivalent all the G_2^2-structures between ρ^0 and ρ^1. We will be looking for $\{F_t\}$ coming from a time-dependent generalized vector field $\{X_t + \xi_t + \lambda_t\}$. By differentiating $F_t^* \rho^t = \rho^0$ and using Cartan’s formula, we then have

$$0 = \frac{d}{dt} [F_t^* \rho^t] = F_t^* \left[\frac{d\varphi}{dt} + L_{X_t + \xi_t + \lambda_t} \rho^t \right] = F_t^* [d\varphi + d((X_t + \xi_t + \lambda_t) \cdot \rho^t)] = 0.$$

So, in order to find such generalized vector fields it will suffice to solve the equation $d((X_t + \xi_t + \lambda_t) \cdot \rho^t) = d(-\varphi)$, or equivalently, to solve the equation $(X_t + \xi_t + \lambda_t) \cdot \rho^t = -\varphi$ where we are allowed to modify φ by the addition of a closed form depending on t. This latter equation corresponds to φ being in the image of the Clifford product of the sections of the rank 7 vector bundle $T \oplus T^* \oplus 1$ by ρ^t. The spinor ρ^t defines a map $T \oplus T^* \oplus 1 \to \bigwedge^* T^* M$. Since ρ^t is non-null, this map is injective (the annihilator of a non-null spinor is trivial). From the antisymmetry of the Clifford product with respect to the pairing, $(v_m, \rho^t, \rho^t_m) = 0$, where v_m and ψ_m lie over $m \in M$, and the image is $\{\rho^t\}^\perp = \{ \psi \in \bigwedge^* T^* M \mid \langle \rho^t, \psi \rangle = 0 \}$. Thus, ρ^t defines an isomorphism between the rank 7 vector bundles $T \oplus T^* \oplus 1$ and $\{\rho^t\}^\perp$. Consequently, for the equation $(X_t + \xi_t + \lambda_t) \cdot \rho^t = -\varphi$ to have a solution and then apply the Moser argument, we must have $\varphi \in C^\infty(\{\rho^t\}^\perp)$.

Proposition 3.9. Any sufficiently small perturbation $\{\rho^t\}$ within the cohomology class of a G_2^2-structure ρ^0 such that $\rho^0_0 \neq 0$ is equivalent to ρ^0 under the action of the group $G \text{Diff}_0(M)$.

Proof. We have that $\rho^t_0 = \rho^0_0 \neq 0$. Since we can add any closed form to φ, we can arbitarily modify its degree 3 part. The Moser argument applies by setting $\varphi^t_3 = \frac{1}{\rho^0_0} \langle \rho^t, \varphi_o + \varphi_1 + \varphi_2 \rangle$, so that we have $\langle \rho^t, \varphi^t \rangle = 0$.

When $\rho_0 = 0$, the result remains true but involves some technicalities.
Lemma 3.10. Let ρ be a G_2^3-structure with $\rho_0 = 0$ and $[\rho_1] \in H^1(M, \mathbb{Q})$. There exists an operator $R : \Omega^*(M) \to \Omega^*_R(M)$ such that $\varphi + R\varphi \in C^\infty(\{\rho\}^\perp)$.

Proof. By considering a multiple of ρ we can consider $[\rho_1] \in H^1(M, \mathbb{Z})$. By Proposition 3.4, M fibres over the circle with fibre S. First, define the constant $c = \langle \langle \rho, \varphi \rangle \rangle/[\rho_1 \wedge \rho_2]$. Add the closed form $c\rho_2$ to φ; then the cohomology class of $\langle \rho, \varphi + c\rho_2 \rangle$ is trivial. Thus, $\langle \rho, \varphi + c\rho_2 \rangle = d\alpha$ for some 2-form α. Choose a metric on M. Using the Hodge decomposition, the codifferential d^* and the Green operator G, we may take $\alpha = d^*G(\rho, \varphi')$. Integrate α over the fibres to get a function g on the circle. Since $\rho_1 \wedge \rho_2 \neq 0$, the fibres are homological and ρ_2 is closed, then $\int_S \rho_2 = c' \neq 0$ for any fibre S. Let $f = g/c'$.

The 2-form $\alpha_0 = \alpha - f\rho_2$ has zero integral along the fibres. The metric on M induces a metric on any fibre S, for which we define the codifferential d^*_S, harmonic operator H_S and Green operator G_S such that

$$\alpha_{0|S} = H_S\alpha_{0|S} + d_S(d_S^*G_S\alpha_{0|S}) + d_S^*(d_SG_S\alpha_{0|S}).$$

For degree reasons, $d_SG_S\alpha_{0|S} = 0$, and from $\int_S \alpha_{0|S} = 0$, $H_S\alpha_{0|S} = 0$. We then have, over each fibre S, $\alpha_{0|S} = d_S\beta$ where $\beta = d_S^*G_S\alpha_{0|S}$. Since the metric on M determines a smoothly varying family of metrics over the fibres, we have a globally smooth 1-form β such that $\alpha_0 - d\beta$ is zero restricted to a fibre.

Let X be the vector field transversal to the fibration such that $i_X\rho_1 = 1$, and let $\gamma = -i_X(\alpha_0 - d\beta)$. We have that $\alpha_0 - d\beta = \gamma \wedge \rho_1$. By differentiating this expression we get

$$d\alpha = d(\alpha_0 + f\rho_2) = df \wedge \rho_2 + \rho_1 \wedge d\gamma.$$

Define $R\varphi = c\rho_2 + df + d\gamma \in \Omega^*_R(M)$. Since c, f and γ have been uniquely defined, R defines an operator on differential forms. We have by construction that $\langle \rho, \varphi + R\varphi \rangle = 0$, i.e., $\varphi + R\varphi \in C^\infty(\{\rho\}^\perp)$. \hfill \Box

Let $Q\varphi \in C^\infty(T \oplus T^* \oplus 1)$ be the unique generalized vector field such that $Q\varphi \cdot \rho = -(\varphi + R\varphi)$. Thus Q defines an operator $\Omega^*(M) \to C^\infty(T \oplus T^* \oplus 1)$.

Proposition 3.11. Any sufficiently small perturbation $\{\rho'\}$ within the cohomology class of a G_2^3-structure ρ_0 such that $\rho_0^2 = 0$ is equivalent to ρ_0 by $G\text{Diff}_0(M)$.

Proof. When $[\rho_0^2] \in H^1(M, \mathbb{Q})$, we use Lemma 3.10 to produce an operator R_t for each ρ' and we define $\varphi' = \varphi + R_t\varphi$, so that $\langle \rho', \varphi' \rangle = 0$ and the Moser argument applies.

For the general case, we prove an analogous result in a neighbourhood of a G_2^3-structure with rational degree 1 part and use a density argument.
We drop the superindex \(t \) for the sake of brevity. Consider \(\rho + \lambda \beta \), with \(\lambda > 0 \) and \(\beta \in \Omega^*_c(M) \) such that \(\beta_0 = 0 \). We want to solve the equation
\[u \cdot (\rho + \lambda \beta) = -\varphi \]
up to addition of closed forms. To do that, consider
\[(u_0 + \nu u_1 + \lambda^2 u_2 + \ldots) \cdot (\rho + \lambda \beta) = -(\varphi + R \varphi + \lambda \gamma_1 + \lambda^2 \gamma_2 + \ldots), \]
for closed forms \(\gamma_i \). We solve it iteratively, starting with \(u_0 \cdot \rho = -\varphi + R \varphi \), which has solution \(u_0 = Q \varphi \). We then have \(u_1 \cdot \rho = -(Q \varphi \cdot \beta + \gamma_1) \). We define the operator \(P : \Omega^*(M) \to \Omega^*(M) \) by \(P \varphi = Q \varphi \cdot \beta \) and consider \(\gamma_1 = RP \varphi \). The equation becomes \(u_1 \cdot \rho = -(P \varphi + RP \varphi) \), whose solution is \(u_1 = QP \varphi \). For \(j \geq 2 \) we have \(u_j \cdot \rho = -u_{j-1} \cdot \beta + \gamma_j = -P^j \varphi + \gamma_j \). By taking \(\gamma_j = RP^j \varphi \), the solution is given by \(u_j = QP^j \varphi \). We thus obtain a formal solution of (**) by
\[Q(\varphi + \lambda P \varphi + \lambda^2 P^2 \varphi + \ldots) \cdot (\rho + \lambda \beta) = -\varphi + R(\varphi + \lambda P \varphi + \lambda^2 P^2 \varphi + \ldots). \]
To see the convergence of the series \(\varphi + \sum_{j=1}^{\infty} \lambda^j P^j \varphi \) for \(\lambda \) sufficiently small, we consider Sobolev spaces \(H_s(T \oplus T^* \oplus 1) \) and \(H_s(\Lambda^*(M)) \) with norms \(|| \cdot ||_s \). Since the operator \(Q \) is defined in terms of the Green operator and integration over the fibres, it is bounded, and so is the operator \(P \). For \(s \) sufficiently large and any \(\beta \) such that \(||v \cdot \beta||_s \leq ||v||_s \), there exists some constant \(C_s \) such that \(||P \varphi||_s \leq C_s ||\varphi||_s \).

Take \(\lambda \) such that \(0 < \lambda < \frac{1}{2c_\varphi} \). Then, \(\varphi + \sum_{j=1}^{\infty} \lambda^j P^j \varphi \) is a Cauchy sequence and converges to a form \(\Phi \in H_s(\Lambda^*(M)) \). Equation (*) becomes
\[u \cdot (\rho + \lambda \beta) = -(\varphi + R \Phi) \]
and a solution is given by \(Q \Phi \in H_s(T \oplus T^* \oplus 1) \).

We have that for any \(\rho \) such that \([\rho_1] \in H^1(M, Q) \), there exists a neighbourhood for which there is a solution in \(H_s(T \oplus T^* \oplus 1) \). Since \(\varphi \in \Omega^*_c(M) \) belongs to \(H_s(\Lambda^*(M)) \) for any \(s \), we have that the solution belongs to \(H_s \) for any \(s \). Thus, the series defines \(\Phi \in C^\infty(\Lambda^*(M)) \), we have that \(Q \Phi \in C^\infty(T \oplus T^* \oplus 1) \) is a solution of \(u \cdot \rho' = -\varphi \) up to closed forms, and the Moser argument applies. Since there exists a solution in an open neighbourhood of any rational form, by density of the rational forms, there exists a solution for any closed form \(\rho \) and the Moser argument applies.

We summarize Propositions 3.9 and 3.11 in the following theorem.

Theorem 3.12. Any sufficiently small perturbation \(\{ \rho' \} \) within the cohomology class of a \(G^2 \)-structure \(\rho^0 \) is equivalent to \(\rho^0 \) by \(GDiff_0(M) \).
3.3 The cone of G_2^3-structures

Inspired by the cones of Kähler and symplectic structures inside the second cohomology group of a manifold, we raise a similar question for G_2^3-structures on compact 3-manifolds. What are the cohomology classes $[\rho] \in H^\bullet(M, \mathbb{R})$ which have a representative in $\Omega^\bullet(M, \mathbb{R})$ defining a G_2^3-structure compatible with the orientation of M? From the homogeneity of the condition $\langle \rho, \rho \rangle > 0$, it is clear that these elements form an open cone in $H^\bullet(M, \mathbb{R})$.

Consider a mixed degree cohomology class $[\rho] \in H^\bullet(M, \mathbb{R})$ satisfying $[\rho_0][\rho_3] - [\rho_1][\rho_2] > 0 \in H^\bullet(M, \mathbb{R})$. In the case that $[\rho_0] \neq 0$, i.e., $\rho_0 \neq 0$, consider a non-vanishing form ω representing the degree 3 class $[\rho_0^2 \rho_3 - \rho_1^2 \rho_2]$. Define $\rho' = \rho_0 + \rho_1 + \rho_2 + \frac{1}{\rho_0}(\omega + \rho_1 \wedge \rho_2)$, which satisfies $\langle \rho', \rho' \rangle = 2\omega$ and is thus a G_2^3-structure representing $[\rho]$.

On the other hand, for a class $[\rho]$ with $[\rho_0] = 0$, i.e., $\rho_0 = 0$, the condition $\langle \rho, \rho \rangle = -2[\rho_1][\rho_2] > 0$ must be satisfied. Moreover, $[\rho_1]$ and $[\rho_2]$ must be represented by non-vanishing forms. From Theorem 5 in [Thu86], the set of cohomology classes C_1 in $H^1(M, \mathbb{R})$ which can be represented by a non-singular closed 1-form constitutes an open set described as follows. Define the norm X for $\omega \in H^2(M, \mathbb{R})$ as the infimum of the negative parts of the Euler characteristics of embedded surfaces defining ω, and extend this definition to $H^1(M, \mathbb{R})$ using Poincaré duality. Namely, the norm of a 1-form φ in M is

$$||\varphi||_X = \min\{\chi_-(S) \mid S \subset M \text{ properly embedded surface dual to } \varphi\},$$

where $\chi_-(S) = \max\{-\chi(S), 0\}$. The unit ball for this norm is a polytope called the Thurston ball B_X. The set of 1-cohomology classes C_1 represented by non-vanishing 1-forms consists of the union of the cones on some open faces, so-called fibred faces, of the Thurston ball, minus the origin.

For each element $\alpha = [a] \in C_1$, given by a non-singular a, take $h \in H^2(M, \mathbb{R})$ such that $h \cup a > 0$. Lemma 2.2 in [FV12] ensures that we can always find a representative Ω of the class h, such that $\Omega \wedge a > 0$. Hence, if we define

$$C = \{(\alpha, \beta) \in C_1 \oplus H^2(M, \mathbb{R}) \mid \alpha \cup \beta < 0\},$$

we have that the cone of G_2^3-structures with $\rho_0 = 0$ in $H^\bullet(M, \mathbb{R})$ is given by $C \oplus H^3(M, \mathbb{R})$. To sum up, we have the following theorem.

Theorem 3.13. The cone of G_2^3-structures, or G_2^3-cone, is given by

$$\{[\rho] \in H^\bullet(M, \mathbb{R}) \mid [\rho_0] \neq 0 \text{ and } [\rho_0][\rho_3] - [\rho_1][\rho_2] > 0\} \cup (C \oplus H^3(M, \mathbb{R})).$$
References

[Bar12] D. Baraglia. Leibniz algebroids, twistings and exceptional generalized geometry. *J. Geom. Phys.*, 62(5):903–934, 2012.

[Che54] Claude C. Chevalley. *The algebraic theory of spinors*. Columbia University Press, New York, 1954.

[CSX09] Z. Chen, M. Stienon, and P. Xu. On Regular Courant Algebroids. *ArXiv e-prints*, math.DG:0909.0319, September 2009.

[FV11] Stefan Friedl and Stefano Vidussi. Twisted Alexander polynomials detect fibered 3-manifolds. *Ann. of Math. (2)*, 173(3):1587–1643, 2011.

[FV12] Stefan Friedl and Stefano Vidussi. Construction of symplectic structures on 4-manifolds with a free circle action. *Proc. Roy. Soc. Edinburgh Sect. A*, 142(2):359–370, 2012.

[Gua11] M. Gualtieri. Generalized complex geometry. *Ann. of Math. (2)*, 174(1):75–123, 2011.

[Hit03] N. Hitchin. Generalized Calabi-Yau manifolds. *Q. J. Math.*, 54(3):281–308, 2003.

[Hul07] C. M. Hull. Generalised geometry for M-theory. *Journal of High Energy Physics*, 7:79, July 2007.

[Li08] Hongjun Li. Topology of co-symplectic/co-Kähler manifolds. *Asian J. Math.*, 12(4):527–543, 2008.

[Lib59] Paulette Libermann. Sur les automorphismes infinitésimaux des structures symplectiques et des structures de contact. In *Coll. Géom. Diff. Globale*, pages 37–59. Centre Belge Rech. Math., Louvain, 1959.

[LWX97] Zhang-Ju Liu, Alan Weinstein, and Ping Xu. Manin triples for Lie bialgebroids. *J. Differential Geom.*, 45(3):547–574, 1997.

[Mos65] Jürgen Moser. On the volume elements on a manifold. *Trans. Amer. Math. Soc.*, 120:286–294, 1965.

[Thu86] W.P. Thurston. A norm for the homology of 3-manifolds. *Mem. Amer. Math. Soc.*, 59(339):i–vi and 99–130, 1986.

[Tis70] D. Tischler. On fibering certain foliated manifolds over S^1. *Topology*, 9:153–154, 1970.