A further look at the truncated pentagonal number theorem

Shane Chern

Abstract. In this paper, we study the asymptotic behavior of the following function

\[M_k(n) := (-1)^{k-1} \sum_{j=0}^{k-1} \left(p(n - j(3j + 1)/2) - p(n - j(3j + 5)/2 - 1) \right), \]

which arises from Andrews and Merca’s truncated pentagonal number theorem.

Keywords. Partitions, Euler’s pentagonal number theorem, asymptotics.

2010MSC. 11P82, 05A17.

1. Introduction

In [3], Andrews and Merca studied a truncated version of Euler’s pentagonal number theorem. The motivation of their work arises from the non-negativity of the following function:

\[M_k(n) := (-1)^{k-1} \sum_{j=0}^{k-1} (-1)^j (p(n - j(3j + 1)/2) - p(n - j(3j + 5)/2 - 1)), \quad (1.1) \]

where \(n \) and \(k \) are positive integers, and \(p(n) \) denotes the number of partitions of \(n \) [2]. Andrews and Merca also gave a partition-theoretic interpretation of \(M_k(n) \). Namely, it denotes the number of partitions of \(n \) in which \(k \) is the least integer that is not a part and there are more parts > \(k \) than there are < \(k \).

Their proof of the non-negativity of \(M_k(n) \) relies on a clever reformulation of the generating function of \(M_k(n) \). Namely, if we put \(M_k(0) = (-1)^{k-1} \), then

\[M_k(q) := \sum_{n \geq 0} M_k(n) q^n = \frac{(-1)^{k-1}}{(q; q)_\infty} \sum_{j=0}^{k-1} (-1)^j q^{j(3j+1)/2} (1 - q^{2j+1}) \]

\[= (-1)^{k-1} + \sum_{n \geq 1} q^{(2) + (k+1)n} \frac{[n-1]}{[k-1]_q}, \quad (1.3) \]

where

\[(A: q)_n = \prod_{j=0}^{n-1} (1 - Aq^j), \]

and

\[\left[\begin{array}{c} A \\ B \end{array} \right]_q = \begin{cases} 0, & \text{if } B < 0 \text{ or } B > A, \\ \frac{(q)_A}{(q)_B (q)_A - q}, & \text{otherwise}. \end{cases} \]

One immediately sees that the non-negativity of \(M_k(n) \) for \(n \geq 1 \) follows from (1.3).
Now, if one fixes \(k \) and computes some values of \(M_k(n) \), one may notice that \(M_k(n) \) grows rapidly as \(n \) becomes large. This stimulates us to study the asymptotic behavior of \(M_k(n) \). In this paper, we shall show

Theorem 1.1. Let \(\epsilon > 0 \) be arbitrary small. Then as \(n \to \infty \), we have, for \(k \ll n^{\frac{1}{8} - \epsilon} \),

\[
M_k(n) = \frac{\pi}{12\sqrt{2}}kn^{-\frac{3}{2}}e^{\frac{2\pi}{\sqrt{3}}n^{-\frac{3}{4}}} + O \left(k^3n^{\frac{3}{2}}e^{\frac{2\pi}{\sqrt{3}}n^{-\frac{3}{4}}} \right).
\]

Remark 1.1. Here the assumption \(k \ll n^{\frac{1}{8} - \epsilon} \) ensures that \(O \left(k^3n^{\frac{3}{2}}e^{\frac{2\pi}{\sqrt{3}}n^{-\frac{3}{4}}} \right) \) is indeed an error term.

Apparently, (1.4) demonstrates the positivity of \(M_k(n) \) for sufficiently large \(n \) if we fix \(k \). In fact, this asymptotic formula allows us to have a better understanding of \(M_k(n) \). The interested reader may also compare (1.4) with the celebrated asymptotic expression for \(p(n) \) due to Hardy and Ramanujan [6]

\[
p(n) \sim \frac{1}{2\sqrt{6\pi n}} e^{\frac{2\pi}{\sqrt{3}}n^{\frac{3}{2}}}.
\]

2. Proof

Throughout this section, we let \(q = e^{2\pi i \tau} \) with \(\tau = x + iy \in \mathbb{H} \) (i.e. \(y > 0 \)). We also put

\[
y = \frac{1}{2\sqrt{6n}} \quad \text{and} \quad M = \sqrt{\left(\frac{12}{12 - \pi^2} \right)^2 - 1}.
\]

Note that we may take \(M \) to be other (positive) absolute constant. However, we choose the above value for computational convenience.

2.1. Asymptotics of \(\mathcal{M}_k(q) \) near \(q = 1 \). We first estimate \(\mathcal{M}_k(q) \) near \(q = 1 \).

Lemma 2.1. For \(|x| \leq My \), we have, as \(n \to \infty \) (and hence \(y \to 0^+ \)),

\[
\mathcal{M}_k(q) = -2e^{\frac{2\pi}{\sqrt{3}}k\tau^2}e^{\frac{2\pi}{\sqrt{6}}} + O \left(k^3n^{-\frac{3}{2}}e^{\frac{2\pi}{\sqrt{3}}n^{-\frac{3}{4}}} \right).
\]

Proof. We have

\[
1 - q^{2j+1} = 1 - e^{2(2j+1)\pi i \tau} = -2(2j + 1)\pi i \tau + \mathcal{E}_j,
\]

where

\[
|\mathcal{E}_j| = \left| e^{2(2j+1)\pi i \tau} - 1 - 2(2j + 1)\pi i \tau \right|
\]

\[
\leq e^{2|2(2j+1)\pi i \tau|} - 1 - |2(2j + 1)\pi i \tau|
\]

\[
\leq 4(2j + 1)^2|\tau|^2,
\]

since \(|2(2j + 1)\pi i \tau| < 1 \) for \(0 \leq j \leq k - 1 \) (which is ensured by the assumption \(k \ll n^{\frac{1}{8} - \epsilon} \)) whereas \(e^x - 1 - x \leq x^2 \) when \(0 < x < 1 \). Hence,

\[
\sum_{j=0}^{k-1} (-1)^{j} (1-q^{2j+1}) = \sum_{j=0}^{k-1} (-1)^{j} (-2(2j + 1)\pi i \tau) + \mathcal{E}
\]

\[
= (-1)^{k} 2\pi i k \tau + \mathcal{E},
\]
where
\[|\mathcal{E}| \leq \sum_{j=0}^{k-1} 4(2j + 1)^2 |\tau|^2 \ll k^3 y^2. \]

Consequently, we have
\[\sum_{j=0}^{k-1} (-1)^j q^{(3j+1)/2}(1 - q^{2j+1}) = (-1)^k 2\pi ik\tau + O(k^3 y^2). \quad (2.2) \]

Furthermore, we know from the modular inversion formula for Dedekind’s eta-function (cf. [7, p. 121, Proposition 14]) that
\[\left(\frac{q}{q} \right)_{\infty} = \frac{1}{\sqrt{-i\tau}} e^{-\frac{\pi i}{4\tau}} \left(1 + O \left(e^{-\frac{2\pi}{\tau}} \right) \right), \quad (2.3) \]

where the square root is taken on the principal branch, with \(z^{1/2} > 0 \) for \(z > 0 \). Hence,
\[\left(\frac{q}{q} \right)_{\infty} = \sqrt{-i\tau} e^{-\frac{\pi i}{4\tau}} + O \left(y^2 e^{-\frac{\pi y}{4\tau}} \right) \quad (2.4) \]

Finally, (2.1) follows from (1.2), (2.2), (2.4) and the fact that
\[\Im \left(\frac{-1}{\tau} \right) = \frac{y}{x^2 + y^2} \leq \frac{1}{y}. \]
This finishes the proof of Lemma 2.1. \(\square \)

2.2. Asymptotics of \(\mathcal{M}_k(q) \) away from \(q = 1 \). We next estimate \(\mathcal{M}_k(q) \) away from \(q = 1 \).

Lemma 2.2. For \(My < |x| \leq \frac{1}{2} \), we have, as \(n \to \infty \) (and hence \(y \to 0^+ \)),
\[\mathcal{M}_k(q) \ll kn^{-\frac{1}{2}} e^{-\frac{\pi y}{2\tau}}. \quad (2.5) \]

Proof. We first have the following trivial bound
\[\left| \sum_{j=0}^{k-1} (-1)^j q^{(3j+1)/2}(1 - q^{2j+1}) \right| \leq 2k. \quad (2.6) \]

On the other hand,
\[\log \left(\frac{1}{\left(\frac{q}{q} \right)_{\infty}} \right) = - \sum_{n \geq 1} \log(1 - q^n) \]
\[= \sum_{n \geq 1} \sum_{m \geq 1} \frac{q^{nm}}{m} \]
\[= \sum_{m \geq 1} \frac{q^m}{m(1 - q^m)}. \]

Hence,
\[\left| \log \left(\frac{1}{\left(\frac{q}{q} \right)_{\infty}} \right) \right| \leq \sum_{m \geq 1} \frac{|q|^m}{m|1 - q^m|} \]
\[\leq \sum_{m \geq 1} \frac{|q|^m}{m(1 - |q|^m)} - \frac{|q|}{1 - |q|} + \frac{|q|}{|1 - q|}. \]
It follows from (2.3) that
\[
\frac{1}{(|q|; |q|)_{\infty}} = \sqrt{q} e^{\frac{\pi i}{12}} \left(1 + O \left(e^{-\frac{\pi y}{2}} \right) \right). \tag{2.8}
\]
Furthermore, we know from the fact \(|x| > My\) that \(\cos(2\pi x) < \cos(2\pi My) \leq 1\).
Hence,
\[
|1 - q|^2 = 1 - 2e^{-2\pi y} \cos(2\pi x) + e^{-4\pi y} > 1 - 2e^{-2\pi y} \cos(2\pi My) + e^{-4\pi y}.
\]
Computing the Taylor expansion around \(y = 0\) yields
\[
\left| \frac{1}{(q; q)_{\infty}} \right| \ll \sqrt{y} \exp \left(\frac{1}{y} \left(\frac{\pi}{12} - \frac{1}{2\pi} \left(1 - \frac{1}{\sqrt{1+M^2}} \right) \right) \right). \tag{2.10}
\]
Finally, (2.5) follows from (2.6) and (2.10). \(\square\)

2.3. Applying Wright’s circle method. Let \(C\) denote the circle \(q = e^{2\pi i \tau} = e^{2\pi i (x+iy)}\) where \(x \in \left[-\frac{1}{2}, \frac{1}{2} \right] \). Cauchy’s integral formula tells us that
\[
M_k(n) = \frac{1}{2\pi i} \int_C \frac{M_k(q)}{q^{n+1}} dq
= \frac{1}{2\pi i} \int_C \left(e^{2\pi i \tau} \right) e^{-2\pi i \tau} \, dx
= \int_{|x| \leq My} + \int_{My < |x| \leq \frac{1}{2}} =: I_1 + I_2,
\tag{2.11}
\]
where the integrands in \(I_1\) and \(I_2\) are both \(M_k \left(e^{2\pi i \tau} \right) e^{-2\pi i \tau}.
\]
We first compute \(I_1\), which contributes to the main term. Our evaluation relies on a function \(P_s(u)\) defined by Wright [8]. For fixed \(M > 0\) and \(u \in \mathbb{R}_{>0}\), let
\[
P_s(u) := \frac{1}{2\pi i} \int_{1-Mi}^{1+Mi} v^s e^{u(v+\frac{1}{2})} \, dv.
\]
Wright [8, p. 138, Lemma XVII] showed that this function can be rewritten in terms of the \(I\)-Bessel function up to an error term.

Lemma 2.3 (Wright). We have, as \(u \to \infty\),
\[
P_s(u) = I_{s-1}(2u) + O(e^u), \tag{2.12}
\]
where \(I_\ell\) denotes the usual \(I\)-Bessel function of order \(\ell\).
We also recall that the asymptotic expansion of \(I_\ell(x)\) (cf. [1, p. 377, (9.7.1)]) states that, for fixed \(\ell\), when \(|\arg x| < \frac{\pi}{2}\),
\[
I_\ell(x) \sim e^x \sqrt{\frac{2\pi x}{\sqrt{2\pi}x}} \left(1 - \frac{4\ell^2 - 1}{8x} + \frac{(4\ell^2 - 1)(4\ell^2 - 9)}{2!(8x)^2} - \cdots \right). \tag{2.13}
\]
It follows from Lemma 2.1 that
\[
I_1 = \int_{|x| \leq M_y} e^{-2n \pi i x} \left(-2e^{\frac{\pi i}{4}} \pi k \tau^{\frac{3}{2}} e^{\frac{2n \pi i}{\sqrt{\tau}}} + O \left(k^3 n - \frac{2}{\pi} e^{\frac{2n \pi i}{\sqrt{\tau}}}
ight) \right) dx.
\]

Making the change of variables \(v = -i \tau / y \) yields
\[
I_1 = \int_{1-M_v}^{1+M_i} (-iy)e^{2n \pi y v} \left(-2e^{\frac{\pi i}{4}} \pi k (iy)^{\frac{3}{2}} e^{\frac{2n \pi y v}{\sqrt{6}}} + O \left(k^3 n - \frac{2}{\pi} e^{\frac{2n \pi y v}{\sqrt{6}}}
ight) \right) dv
\]
\[
= 2^{\frac{3}{2}} 3^{-\frac{7}{4}} \pi^2 k n^{-\frac{3}{4}} P_{\frac{1}{2}} \left(\frac{\pi \sqrt{n}}{\sqrt{6}}\right) + O \left(k^3 n - \frac{2}{\pi} e^{\frac{2n \pi y v}{\sqrt{6}}}
ight)
\]
\[
= 2^{\frac{7}{4}} 3^{-\frac{7}{4}} \pi^2 k n^{-\frac{3}{4}} I_{\frac{1}{2}} \left(\frac{2\pi \sqrt{n}}{\sqrt{6}}\right) + O \left(k^3 n - \frac{2}{\pi} e^{\frac{2n \pi y v}{\sqrt{6}}}
ight)
\]
\[
= \frac{\pi}{12\sqrt{2}} k n^{-\frac{3}{4}} e^{\frac{2n \pi y v}{\sqrt{6}}} + O \left(k^3 n - \frac{2}{\pi} e^{\frac{2n \pi y v}{\sqrt{6}}}
ight).
\] (2.14)

We now evaluate \(I_2 \). It follows from Lemma 2.2 that
\[
I_2 \ll \int_{M_y < |x| \leq \frac{1}{4}} kn^{-\frac{1}{4}} e^{\frac{\pi \sqrt{n}}{2\sqrt{\pi}}} e^{\frac{\pi \sqrt{n}}{\sqrt{6}}} dx \ll kn^{-\frac{1}{4}} e^{\frac{3n \pi x}{2\sqrt{6}}}.
\] (2.15)

Consequently, we know from (2.14) and (2.15) that as \(n \to \infty \),
\[
M_k(n) = \frac{\pi}{12\sqrt{2}} k n^{-\frac{3}{4}} e^{\frac{2n \pi y v}{\sqrt{6}}} + O \left(k^3 n - \frac{2}{\pi} e^{\frac{2n \pi y v}{\sqrt{6}}}
ight).
\]

This is our main result.

3. Closing remarks

There are more truncated theta series identities. Two interesting examples are due to Guo and Zeng [5]:
\[
\frac{(-q; q)^{\infty}}{(q; q)^{\infty}} \sum_{j=-k}^{k} (-1)^{j} q^{j^{2}} = 1 + (-1)^{k} \sum_{n \geq k+1} \frac{(-q; q)_{k} (-1; q)_{n-k} q^{(k+1)n}}{(q; q)_{n}} \left[\frac{n-1}{k}\right],
\] (3.1)

and
\[
\frac{(-q; q^{2})^{\infty}}{(q^{2}; q^{2})^{\infty}} \sum_{j=0}^{k-1} (-1)^{j} q^{j(2j+1)} (1 - q^{2j+1})
\]
\[
= 1 + (-1)^{k-1} \sum_{n \geq k} \frac{(-q; q^{2})_{k} (-q; q^{2})_{n-k} q^{2(k+1)n-k}}{(q^{2}; q^{2})_{n}} \left[\frac{n-1}{k-1}\right].
\] (3.2)

Let \(\overline{p}(n) \) denote the number of overpartitions of \(n \) (i.e., partitions of \(n \) where the first occurrence of each distinct part may be overlined) and let \(\text{pod}(n) \) denote the number of partitions of \(n \) wherein odd parts are not repeated. The above two identities respectively reveal the non-negativity of the following two functions (the notation of which is due to Andrews and Merca [4]) for \(n, k \geq 1 \):
\[
\overline{M}_{k}(n) := (-1)^{k} \sum_{j=-k}^{k} (-1)^{j} \overline{p}(n - j^{2}),
\] (3.3)
and

\[MP_k(n) := (-1)^{k-1} \sum_{j=0}^{k-1} (-1)^j \left(\text{pod}(n-j(2j+1)) - \text{pod}(n-(j+1)(2j+1)) \right). \] (3.4)

In [4], to answer a question of Guo and Zeng [5, p. 702], Andrews and Merca also presented the partition-theoretic interpretations of \(M_k(n) \) and \(MP_k(n) \):

- \(M_k(n) \) denotes the number of overpartitions of \(n \) in which the first part larger than \(k \) appears at least \(k + 1 \) times;
- \(MP_k(n) \) denotes the number of partitions of \(n \) in which the first part larger than \(2k - 1 \) is odd and appears exactly \(k \) times whereas all other odd parts appear at most once.

Using similar arguments to that in Sect. 2, we are also able to show the asymptotic behaviors of \(M_k(n) \) and \(MP_k(n) \).

Theorem 3.1. Let \(\epsilon > 0 \) be arbitrary small. Then as \(n \to \infty \), we have, for \(k \ll n^{1\over 12} - \epsilon \),

\[M_k(n) = \frac{1}{8} n^{-1} e^{\pi \sqrt{n}} + O \left(k^3 n^{-7} e^{\pi \sqrt{n}} \right). \] (3.5)

Remark 3.1. It is interesting to point out that the main term of \(M_k(n) \) is identical to the main term in the asymptotic expression of \(\mathcal{P}(n) \).

Theorem 3.2. Let \(\epsilon > 0 \) be arbitrary small. Then as \(n \to \infty \), we have, for \(k \ll n^{1\over 8} - \epsilon \),

\[MP_k(n) = \frac{\pi}{16} k n^{-{3\over 2}} e^{\pi {\sqrt{2}\over 4}} + O \left(k^3 n^{-7} e^{\pi {\sqrt{2}\over 4}} \right). \] (3.6)

Acknowledgements. I would like to thank George Andrews for some helpful suggestions.

References

1. M. Abramowitz and I. A. Stegun (eds.), *Handbook of mathematical functions with formulas, graphs, and mathematical tables*, United States Department of Commerce, National Bureau of Standards, 10th printing, 1972.
2. G. E. Andrews, *The theory of partitions*, Reprint of the 1976 original. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1998. xvi+255 pp.
3. G. E. Andrews and M. Merca, The truncated pentagonal number theorem, *J. Combin. Theory Ser. A* 119 (2012), no. 8, 1639–1643.
4. G. E. Andrews and M. Merca, Truncated theta series and a problem of Guo and Zeng, *J. Combin. Theory Ser. A* 154 (2018), 610–619.
5. V. J. W. Guo and J. Zeng, Two truncated identities of Gauss, *J. Combin. Theory Ser. A* 120 (2013), no. 3, 700–707.
6. G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, *Proc. London Math. Soc. (2)* 17 (1918), 75–115.
7. N. Koblitz, *Introduction to elliptic curves and modular forms*, Graduate Texts in Mathematics, 97. Springer-Verlag, New York, 1984. viii+248 pp.
8. E. M. Wright, Asymptotic partition formulae II. Weighted partitions, *Proc. London Math. Soc. (2)* 36 (1934), 117–141.