Association between LRP1 C766T polymorphism and Alzheimer’s disease susceptibility: a meta-analysis

Yun Wang1, Shengyuan Liu2, Jingjing Wang3, Jie Zhang3, Yaqiong Hua3, Hua Li3, Huibiao Tan3, Bin Kuai3, Biao Wang1 & Sitong Sheng1

Low density lipoprotein receptor-related protein 1 (LRP1) C766T polymorphism (rs1799986) has been extensively investigated for Alzheimer’s disease (AD) susceptibility. However, results in different studies have been contradictory. Therefore, we conducted a meta-analysis containing 6455 AD cases and 6304 controls from 26 independent case–control studies to determine whether there was an association between the LRP1 C766T polymorphism and AD susceptibility. The combined analysis showed that there was no significant association between LRP1 C766T polymorphism and AD susceptibility (TT + CT versus CC: OR = 0.920, 95% CI = 0.817–1.037, P = 0.172). In subgroup analysis, significant decreased AD susceptibility was found among Asian population in allele model (T versus C: OR = 0.786, 95% CI = 0.635–0.974, P = 0.028) and dominant model (TT + CT versus CC: OR = 0.800, 95% CI = 0.647–0.990, P = 0.040). Moreover, T allele of LRP1 C766T was statistically associated with late onset of AD (LOAD) (T versus C: OR = 0.858, 95% CI = 0.748–0.985, P = 0.029; TT + CT versus CC: OR = 0.871, 95% CI = 0.763–0.994, P = 0.040). In conclusion, our meta-analysis suggested that LRP1 C766T polymorphism was associated with lower risk of AD in Asian, and could reduce LOAD risk especially. Considering some limitations of our meta-analysis, further large-scale studies should be done to reach a more comprehensive understanding.

Alzheimer’s disease (AD), a progressive and lethal neurodegenerative disorder, has become a global challenge for the 21st century1. It is essentially characterised by cerebral senile plaques laden with β-amyloid peptide (Aβ), dystrophic neurites in neocortical terminal fields as well as neurofibrillary tangles of hyperphosphorylated microtubule-associated protein tau. Besides, loss of neurons and white matter, congophilic angiopathy, inflammation, and oxidative damage are also important pathological features of AD. It is believed that genetic factors, lifestyle and environmental factors synergistically give rise to AD. Variants associated with AD have been detected in more than 20 genes, which are involved in metabolism, inflammation, synaptic activity and intracellular trafficking.

Low density lipoprotein receptor-related protein 1 (LRP1) has been widely studied due to its pleiotropic roles in AD pathogenesis. LRP1 is ubiquitously expressed in various tissues, especially high in liver, lung and brain. In the central nervous system, LRP1 plays an important role in controlling Aβ metabolism and maintaining brain homeostasis. There are two forms of LRP1–soluble LRP1 and cell-surface LRP1. In plasma, soluble LRP1 binds to peripheral Aβ, and consequently prevents free Aβ access to the brain. As a cell surface receptor, LRP1 can control the endocytosis of multiple ligands, mediate cell signaling transductions and regulate gene expression through its intracellular domain. For instance, the interaction between amyloid precursor protein (APP) and cell-surface LRP1 leads to increased endosomal trafficking of APP, accelerating Aβ production. Besides that, Aβ can enter multiple cell types (e.g. abluminal brain endothelial cell and hepatic cell) through cell-surface LRP1, in which the ubiquitous apolipoprotein E (APOE) and activated alpha-2-macroglobulins (A2M) are chaperones.

1. College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China. 2. Department of Chronic Noncommunicable Disease Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, 518054, China. 3. HYK High-throughput Biotechnology Institute, Shenzhen, 518057, China. Yun Wang and Shengyuan Liu contributed equally to this work. Correspondence and requests for materials should be addressed to S.S. (email: ssst@hykgene.com)
and subsequently degraded by endopeptidase. Therefore, LRP1 are involved in the bulk transport, primary production, brain and systemic clearance of AD toxin Aβ, and thus plays a critical role in AD pathogenesis.

The silent C766T polymorphism in exon 3 of LRP1 gene (rs1799986) has attracted extensive attention since first reported as a risk factor for AD. However, results in different studies have been contradictory. The inconsistency is likely to relate with insufficient statistical power, racial differences or other demographic variables. Therefore, we conducted a comprehensive meta-analysis to determine whether there was an association between the LRP1 C766T polymorphism and AD susceptibility.

Results

Eligible studies. A total of 167 relevant studies were identified from initial database searching, of which 35 publications were included based on titles and abstracts (Fig. 1). Furthermore, 4 reviews, 1 duplicated publication and 3 studies with inadequate information were excluded after careful reading of the full text. Besides, manual search of references revealed 3 more articles. After primary data extracted from the 30 independent studies, 4 studies were excluded for genotype distribution of controls was not in Hardy-Weinberg equilibrium (HWE). Finally, 26 eligible studies containing 6455 AD cases and 6304 controls were included in our meta-analysis. The ethnicities of these subjects involved in the comparisons were diverse, including Caucasian (n = 16), Asian (n = 6), African (n = 1) and mixed (n = 3). Besides, LRP1 C766T genotype and allele distribution among AD cases and controls was summarized in Table 2, and the control group in all studies was in HWE.

Meta-analysis and meta-regression results. The combined analysis showed that there was no significant association between LRP1 C766T polymorphism and AD susceptibility in any genetic model (T versus C: OR = 0.905, 95% CI = 0.813–1.008, P = 0.069; TT versus CC: OR = 0.791, 95% CI = 0.622–1.005, P = 0.055; CT versus CC: OR = 0.915, 95% CI = 0.813–1.030, P = 0.139; TT + CT versus CC: OR = 0.920, 95% CI = 0.817–1.037, P = 0.172; TT versus CC + CT: OR = 0.815, 95% CI = 0.640–1.037, P = 0.095) (Table 3 and Fig. 2).

In subgroup analysis by ethnicity, T allele of LRP1 C766T was found to be associated with decreased AD susceptibility among Asian population (T versus C: OR = 0.786, 95% CI = 0.635–0.974, P = 0.028; TT + CT versus CC: OR = 0.800, 95% CI = 0.647–0.990, P = 0.040) (Fig. 3). However, we did not observe any association for all comparisons in Caucasians. When stratified by time of AD onset, we found T allele of LRP1 C766T may act as a protective factor for late onset of AD (LOAD) (T versus C: OR = 0.858, 95% CI = 0.748–0.985, P = 0.029; TT + CT versus CC: OR = 0.871, 95% CI = 0.763–0.994, P = 0.040) (Fig. 4), but no significant association was observed for early onset of AD (EOAD). Furthermore, no significant interaction was observed for APOE ε4 status (P > 0.05).
The results of univariate and multivariate meta-regression analyses showed that age, MMSE and/or APOE ɛ4 were not potential factor(s) for heterogeneity among those studies, but gender might contributed to the heterogeneity (as shown in Table 4).

Publication bias. Begg’s test and Egger’s test were performed to evaluate the publication bias of the included studies. The shape of Begg’s funnel plot appeared to be approximately symmetrical (Fig. 5). Besides, statistical significance was also not observed according to Egger’s test ($P > 0.05$, Table 3). In general, there was no publication bias in our included studies.

First author	Year	Country	Ethnicity	AD Controls	Criteria for AD diagnosis	Genotyping method	Source of control	Time of AD onset	Quality score
Yuan, Q. 50	2013	China	Asian	364 74.9 69.9 57%	NINCDS-ADRDA	PCR and Direct sequencing	HB Mixed	9	
Vargas, T. 50	2010	Spain	Caucasian	746 NA 73.7 66%	NINCDS-ADRDA and DSM-IV	TaqMan SNP Genotyping Assays	PB NA	12	
Vazquez-Higuera, J. L. 52	2009	Spain	Caucasian	246 76.6 72.9 65%	NINCDS-ADRDA	PCR-RFLP	PB Mixed	10	
Chen, Y. 53	2009	China	Asian	67 71.9 NA 34%	NINCDS-ADRDA	PCR-RFLP	PB NA	8	
Bahia, V. S. 53	2008	Brazil	Mixed	120 75.2 71.2 68%	NINCDS-ADRDA and DSM-IV	PCR-RFLP	PB Mixed	10	
Rodriguez, E. 53	2006	Spain	Caucasian	274 75.4 71.6 68%	NINCDS-ADRDA	PCR-RFLP	PB Mixed	8	
Forero, D. A. 53	2006	Colombia	Mixed	106 73.3 68.8 71%	NINCDS-ADRDA	PCR-RFLP	NA Mixed	7	
Pritchard, A. 53	2005	UK	Caucasian	250 NA 56.7 55%	NINCDS-ADRDA and DSM-III-R	PCR-RFLP	PB Early	9	
Pritchard, A. 53	2005	UK	Caucasian	183 NA 73.8 65%	NINCDS-ADRDA and DSM-III-R	PCR-RFLP	PB Late	9	
Bia, S. 50	2001	China	Asian	216 NA 74.7 NA 34%	NINCDS-ADRDA and DSM-IV	PCR-RFLP	PB Late	11	
Panza, F. 57	2004	Italy	Caucasian	166 69.4 NA 62%	NINCDS-ADRDA	Roche LightCycler Genotyping	PB Mixed	9	
Zheng, W. D. 58	2004	China	Asian	79 72.8 >65 49%	NINCDS-ADRDA	PCR-RFLP	PB Late	10	
Kolisch, H. 59	2003	Germany	Caucasian	212 73.1 NA 71%	DSM-IV	PCR-RFLP	PB + HB NA	12	
Helbecque, N. 60	2003	France	Caucasian	239 74.0 NA 65%	NINCDS-ADRDA and DSM-III-R	PCR-RFLP	HB NA	10	
Helbecque, N. 60	2003	France	Caucasian	56 85.0 NA 80%	NINCDS-ADRDA and DSM-III-R	PCR-RFLP	HB NA	9	
Berry, R. T. 60	2003	USA	African	111 71.3 NA 78%	NINCDS-ADRDA	PCR-RFLP	PB NA	11	
Bi, S. 60	2001	China	Asian	38 70.2 NA 45%	NINCDS-ADRDA	PCR-RFLP	PB NA	8	
Sanchez-Guerrua, M. 61	2001	Spain	Caucasian	305 75.5 71.8 68%	NINCDS-ADRDA	PCR-RFLP	PB Mixed	12	
McIlroy, S. P. 61	2001	UK	Caucasian	219 77.5 >65 67%	NINCDS-ADRDA and DSM-IV	PCR-SSCP	PB Late	12	
Prince, J. A. 62	2001	Sweden	Caucasian	204 NA 61% 171 NA 63%	NINCDS-ADRDA	PCR-SSCP	PB + HB NA	10	
Verpillat, P. 62	2001	France	Caucasian	274 65.5 56%	NINCDS-ADRDA and DSM-III-R	PCR-RFLP	PB NA	12	
Bullido, M. 63	2000	Spain	Caucasian	199 70.4 60%	NINCDS-ADRDA	PCR-RFLP	PB Late	10	
Hatanaka, Y. 63	2000	Japan	Asian	100 NA 76.6 68%	NINCDS-ADRDA	PCR-RFLP	PB Late	8	
Bertram, L. 63	2000	USA	Mixed	276 NA 71.7 NA 194 NA	NINCDS-ADRDA	PCR-SSCP	PB NA	11	
Beffert, U. 64	1999	Canada	Caucasian	225 NA 70.9 48%	NINCDS-ADRDA	PCR-RFLP	PB + HB NA	9	
Kamboh, M. 64	1998	USA	Caucasian	432 75.4 68.6 62%	NINCDS-ADRDA and DSM-III-R	PCR-SSCP	NA NA	9	
Lambert, J. C. 64	1998	France	Caucasian	558 71.8 68.8 62%	NINCDS-ADRDA and DSM-III-R	PCR-SSCP	NA NA	9	
Kang, D. E. 64	1997	USA	Caucasian	157 >65 73.2 53%	NINCDS-ADRDA	PCR-SSCP	PB Late	11	

Table 1. Characteristics of individual studies included in the meta-analysis. NINCDS: the National Institute of Neurological Disorders and Stroke; ADRDA: Alzheimer Diseases and Related Disorders Association; DSM: the Diagnostic and Statistical Manual of Mental Disorders; NA: not available; PB: population-based control; HB: hospital-based control. aNumber. bAge at survey. cAge at onset of Alzheimer’s disease. dPercentage of female.
Discussion

AD, as a continuum, bring about serious threat to human health. Considering early detection and intervention at the asymptomatic stage may offer better chance of therapeutic success, it is urgent to identify early diagnostic biomarkers. LRP1, a member of the LDL receptor family, is an endocytic receptor for more than 40 structurally diverse ligands. The findings of previous studies indicate that LRP1 and many of its ligands (eg. APOE and A2M) are co-deposited with Aβ in senile plaques in AD brains. Subsequent studies demonstrated that LRP1 modulates the clearance of Aβ via receptor-mediated pathway in central nervous system. Besides, soluble LRP1 provides an endogenous peripheral ‘sink’ activity for Aβ by preventing plasma free Aβ access to the brain. It has also been reported that LRP1 is responsible for a rapid peripheral uptake of Aβ by the liver, which plays a key role in systemic clearance of Aβ. On the other hand, endocytosis of LRP1 could modulate APP trafficking, and contribute to Aβ generation. Interestingly, LRP1 can regulate Aβ metabolism in two contrary sides.

The association between LRP1 polymorphisms and AD susceptibility also has been described extensively, especially exon 3 C766T polymorphism. Kang et al. first reported the LRP1 C766T polymorphism, and found a positive association between C allele and AD susceptibility. This finding was replicated in some following studies, but Kolsch et al. found the opposite result that carriers of a C allele were at lower risk of AD, while some failed to show any association between LRP1 C766T polymorphism and AD risk. Previously, three meta-analysis have tried to clarify the relationship between LRP1 C766T polymorphism and AD susceptibility, which one revealed a weak correlation of LRP1 CC genotype with AD, but other two separately studies showed that no positive evidence was involved in the relationship between this polymorphism and AD risk among overall and Chinese population. Since several factors could be responsible for these discrepancies, such as inadequate sample size, variability in phenotype definition and allele frequency polymorphisms in different ethnic backgrounds, we conducted a comprehensive meta-analysis with different genetic models in this study, to better clarify the association between LRP1 C766T polymorphism and AD susceptibility.

New results from our research did not show any association of LRP1 C766T polymorphism with AD susceptibility from 6455 AD cases and 6304 controls in overall population. This result is consistent with two published meta-analyses. Compared with the results from previous studies, our data from meta-analysis was relatively reliable to illustrate the association between LRP1 C766T polymorphism and AD susceptibility, because we used different genetic models with a larger number of case-controls. Due to that people in different ethnic populations may have different allele frequency, and can affect the heterogeneity, we additionally conducted subgroup analysis by ethnicity, time of AD onset and APOE ε4 status.

Table 2. LRP1 C766T genotype and allele distribution among AD cases and controls in the included studies. HWE: Hardy-Weinberg equilibrium. *P value for HWE test in controls.

First author	AD	Control	HWE										
	CC	CT	TT	T	C	T	CC	CT	TT	T	C	T	P*
Yuan, Q.	304	54	6	662	66	232	52	7	516	66	0.058		
Vargas, T.	559	172	15	1290	202	442	138	18	1022	174	0.079		
Vazquez-Higuera, J. L.	193	51	2	437	55	198	35	4	431	43	0.107		
Chen, Y.	59	8	0	126	8	56	19	2	131	23	0.800		
Bahia, V. S.	87	28	5	202	38	86	30	4	202	38	0.497		
Rodriguez, E.	211	NA	NA	NA	NA	233	NA	NA	NA	NA	0.576		
Forero, D.A.	84	22	0	190	22	78	18	1	174	20	0.972		
Pritchard, A.	337	115	14	789	143	334	132	11	800	154	0.629		
Bin, L.	189	26	1	404	28	179	21	0	379	21	0.433		
Panza F.	115	49	2	279	53	160	63	2	383	67	0.116		
Zheng, W. D.	72	6	1	150	8	139	16	1	294	18	0.478		
Kolosch, H.	145	59	8	349	75	250	84	3	584	90	0.156		
Helbecque, N.	216	70	9	562	88	290	108	14	688	136	0.321		
Perry, R. T.	97	14	0	208	14	74	4	0	152	4	0.816		
Bi, S.	31	6	1	68	8	24	13	3	61	19	0.516		
Sanchez-Guerra, M.	237	65	3	539	71	249	51	4	549	59	0.457		
McIlroy, S. P.	193	24	2	410	28	198	37	2	433	41	0.852		
Prince, J. A.	155	47	2	357	51	124	41	6	289	53	0.269		
Verpillar, P.	198	71	5	467	81	214	66	10	494	86	0.092		
Bullido, M. I.	151	47	1	349	49	173	66	4	412	74	0.417		
Hatanaka, Y.	83	17	0	183	17	200	45	1	445	47	0.358		
Bertram, L.	186	82	8	454	98	135	55	4	325	63	0.556		
Befert, U.	158	58	9	374	76	125	57	5	307	67	0.619		
Kamboh, M. I.	310	111	11	731	133	71	29	6	171	41	0.205		
Lambert, J. -C.	428	119	11	975	141	407	168	21	982	210	0.480		
Kang, D. E.	127	26	4	280	34	65	34	3	164	40	0.563		
The outcomes by subgroups revealed that T allele of LRP1 C766T could reduce the risk of AD in allele model (T vs. C) and dominant model (TT + CT vs. CC) among Asian population, no significant role was found in Caucasian group. In terms of onset age, the results from subgroup analysis showed that T allele of LRP1 C766T could act as a protective factor for late onset of AD, but no significant association with early onset of AD. This is also consistent with previous report.

It’s recognized that APOE ε4 is an important pathogenic factor for the development of AD. Several studies have revealed a possible protective effect of TT genotypes in carriers of APOE ε4 alleles. However, APOE ε4 status did not show that the influence of the association between LRP1 C766T polymorphism and AD susceptibility in our study. Moreover, our meta-regression analysis also showed that APOE ε4 status, age, and MMSE were not responsible for heterogeneity.

Population	Comparison	Sample size	Association	Heterogeneity	Publication bias
Overall	T vs. C	6181	0.905 (0.813, 1.008)	Random	0.031 43.0 0.849
	TT vs. CC	6074	0.791 (0.622, 1.005)	Fixed	0.623 0 0.971
	CT vs. CC	6181	0.915 (0.813, 1.030)	Random	0.031 37.5 0.758
	TT + CT vs. CC	6455	0.920 (0.817, 1.037)	Random	0.008 44.7 0.829
	TT vs. CC + CT	6074	0.815 (0.640, 1.037)	Fixed	0.683 0 0.972
Caucasian	T vs. C	4704	0.905 (0.801, 1.022)	Random	0.019 48.4 0.959
	TT vs. CC	4704	0.777 (0.595, 1.013)	Fixed	0.329 11.1 0.901
	CT vs. CC	4704	0.916 (0.795, 1.055)	Random	0.021 47.7 0.950
	TT + CT vs. CC	4978	0.926 (0.806, 1.065)	Random	0.008 52.3 0.861
	TT vs. CC + CT	4704	0.799 (0.612, 1.043)	Fixed	0.353 8.9 0.941
Asian	T vs. C	864	0.786 (0.635, 0.974)	Fixed	0.156 37.5 0.460
	TT vs. CC	864	0.642 (0.297, 1.386)	Fixed	0.764 0 0.786
	CT vs. CC	864	0.810 (0.648, 1.011)	Fixed	0.351 10.1 0.279
	TT + CT vs. CC	864	0.800 (0.647, 0.990)	Fixed	0.232 27.0 0.388
	TT vs. CC + CT	864	0.687 (0.315, 1.498)	Fixed	0.825 0 0.732
EOAD	T vs. C	355	0.966 (0.743, 1.257)	Fixed	0.332 9.3 0.977
	TT vs. CC	321	1.506 (0.477, 4.750)	Fixed	0.719 0 NA
	CT vs. CC	355	0.906 (0.699, 1.174)	Fixed	0.435 0 0.922
	TT + CT vs. CC	355	0.933 (0.727, 1.198)	Fixed	0.363 1.2 0.947
	TT vs. CC + CT	321	1.536 (0.484, 4.873)	Fixed	0.769 0 NA
LOAD	T vs. C	1524	0.858 (0.748, 0.985)	Fixed	0.423 1.7 0.346
	TT vs. CC	1524	0.678 (0.374, 1.229)	Fixed	0.889 0 0.994
	CT vs. CC	1524	0.880 (0.767, 1.009)	Fixed	0.176 29.2 0.702
	TT + CT vs. CC	1524	0.871 (0.763, 0.994)	Fixed	0.255 20.4 0.520
	TT vs. CC + CT	1524	0.714 (0.394, 1.294)	Fixed	0.875 0 0.861
APOE ε4+	T vs. C	924	0.706 (0.436, 1.145)	Random	0.051 54.6 0.446
	TT vs. CC	815	0.743 (0.320, 1.723)	Fixed	0.532 0 0.378
	CT vs. CC	924	0.716 (0.407, 1.257)	Fixed	0.048 55.2 0.683
	TT + CT vs. CC	1073	0.790 (0.475, 1.333)	Random	0.030 57.1 0.683
	TT vs. CC + CT	815	0.770 (0.331, 1.791)	Fixed	0.528 0 0.369
APOE ε4−	T vs. C	819	1.054 (0.894, 1.242)	Fixed	0.591 0 0.546
	TT vs. CC	819	0.883 (0.475, 1.641)	Fixed	0.924 0 0.776
	CT vs. CC	819	1.095 (0.926, 1.295)	Fixed	0.491 0 0.360
	TT + CT vs. CC	944	1.120 (0.967, 1.298)	Fixed	0.403 2.90 0.386
	TT vs. CC + CT	819	0.876 (0.470, 1.632)	Fixed	0.924 0 0.665

Table 3. Meta-analysis of LRP1 C766T polymorphism and AD susceptibility. OR: odds ratio; CI: Confidence interval; EOAD: early onset of AD; LOAD: late onset of AD. *Number of comparisons.

The outcomes by subgroups revealed that T allele of LRP1 C766T could reduce the risk of AD in allele model (T versus C) and dominant model (TT + CT versus CC) among Asian population, no significant role was found in Caucasian group. In terms of onset age, the results from subgroup analysis showed that T allele of LRP1 C766T could act as a protective factor for late onset of AD, but no significant association with early onset of AD. This is also consistent with previous report.

It’s recognized that APOE ε4 is an important pathogenic factor for the development of AD. Several studies have revealed a possible protective effect of TT genotypes in carriers of APOE ε4 alleles. However, APOE ε4 status did not show that the influence of the association between LRP1 C766T polymorphism and AD susceptibility in our study. Moreover, our meta-regression analysis also showed that APOE ε4 status, age, and MMSE were not responsible for heterogeneity.
LRP1 C766T polymorphism is a silent mutation, which does not change the amino acid sequence or splice site. Therefore, it is unlikely to alter the biological function by a direct causal effect with the polymorphism. Some studies consider that the LRP1 C766T polymorphism might be responsible for susceptibility to AD by interacting with other genes, such as APOE, MAPT, and MAPK8IP1. In addition, some speculate that LRP1 C766T may be in linkage disequilibrium with a deleterious mutation in the LRP1 gene, or with other biologically relevant mutations on neighboring genes, which affect LRP1 expression. Besides, several studies have a hypothesis that the LRP1 C766T polymorphism might alter the secondary structure of the LRP mRNA to affect the translation and stability of the protein. To date, the conclusion with LRP1 C766T polymorphism with AD susceptibility is conflicting, further genetic analyses of this locus are needed to illuminate the potential mechanism and the functional interactions with AD.

Some limitations of our meta-analysis should be acknowledged. The sample size in some subgroup analysis was small, which may increase the risk of false negatives or false positives. Besides, we did not perform subgroup analysis based on other factors participated in the progression of AD, such as educational background, due to a lack of sufficient information. Larger and broader independent investigations are required to better understand the role of LRP1 C766T polymorphism in AD pathogenesis.

In conclusion, our meta-analysis suggested that LRP1 C766T polymorphism was associated with lower risk of AD in Asian, and could reduce LOAD risk especially. Furthermore, large-scale studies should be performed to reach more understanding of this association.

Materials and Methods

Search strategy. We searched electronic databases PubMed, Embase and CNKI (up to August 2016) using the following keywords: ("Alzheimer's disease" or "Alzheimer disease" or "AD") and ("low density lipoprotein receptor-related protein 1" or "LDL receptor-related protein 1" or "LRP1") and ("polymorphism" or "SNP"
or "variant" or "genotype") without language restriction. The bibliographies of the retrieved studies were also screened to identify relevant publications.

Inclusion and exclusion criteria. The eligible studies had to meet all the following criteria: (1) a case-control study to evaluate the association between LRP1 C766T polymorphism and risk of AD; (2) useful data including sample size, allele or genotype distribution were given; (3) genotype distribution of controls followed the HWE. Accordingly, the exclusion criteria were as follows: (1) reviews, meta-analysis or editorial articles; (2) studies were provided with inadequate information; (3) for the studies with overlapping data, only the most relevant articles with the largest dataset were included in the final analysis.

The literature retrieval and inclusion were carried out in duplication by two independent reviewers.
Data extraction. Two reviewers independently extracted the following information: first author, year of publication, country, ethnicity, total number of cases and controls, mean age of cases and controls, proportion of female in cases and controls, AD diagnosis criteria, genotyping method, source of controls, time of AD onset, genotype or/and allele distribution in cases and controls. If conflicting results produced, two reviewers would review the publications again and reached a consensus by discussion.

Quality assessment. Two reviewers independently assessed the quality of each included studies in the meta-analysis according to the criteria of quality assessment (as referred in the Reference of 54, 55), and the disagreements were judged by the third reviewer to ensure a consistent outcome. Quality scores of studies ranged from 0 (the lowest) to 15 (the highest). Studies with quality scores among 10 to 15 were grouped into high quality studies and other studies scored between 0 and 9 were categorized into low quality studies.

Statistical analysis. HWE in controls was tested by a chi-square test. Summary odds ratio (OR) with confidence interval (95% CI) for genotypes and alleles were used to evaluate the strength of association between LRP1 C766T polymorphism and AD susceptibility. The significance of the pooled OR was measured using the Z-test. Four genetic models were performed in our meta-analysis: allele model (T versus C), codominant model (homozygote comparison (TT versus CC) and heterozygote comparison (CT versus CC)), dominant model (TT + CT versus CC), and recessive model (TT versus CC). The heterogeneity was also quantified with I² statistics. If no significant heterogeneity was found between the studies, the pooled OR was calculated by using the fixed effects model (the Mantel-Haenszel method) 56. Otherwise, the random effects model (the DerSimonian and Laird method) was applied 57. Both of univariate and multivariate meta-regression analyses were also carried out to explore potential sources of heterogeneity among studies. The log of the ORs from involved studies was using as dependent variables, and age, gender, Mini-Mental State Exam (MMSE) and/or APOE ε4 status as covariates. Publication bias was tested by Begg's test and Egger's test 58, 59. We also performed subgroup analysis according to ethnicity, time of AD onset and APOE ε4 status, respectively. Statistical analyses were conducted with Stata Version 11.0 (College Station, TX, USA), and a two-sided P < 0.05 was considered statistically significant.

Heterogeneity factors	Coefficient	95% CI	SE	P
Age				
Univariate	0.008	[−0.027, 0.043]	0.017	0.644
Multivariate	−0.018	[−0.051, 0.015]	0.015	0.251
Gender				
Univariate	1.864	[0.383, 3.345]	0.712	0.016
Multivariate	2.193	[0.233, 4.152]	0.907	0.031
MMSE				
Univariate	−0.081	[−0.344, 0.182]	0.127	0.532
Multivariate	0.004	[−0.268, 0.277]	0.126	0.975
APOE ε4 status				
Univariate	−0.048	[−0.440, 0.343]	0.186	0.798
Multivariate	0.190	[−0.252, 0.632]	0.204	0.37

Table 4. The potential sources of heterogeneity between LRP1 polymorphism and AD risk were evaluated by both of univariate and multivariate meta-regression analyses. SE = standard error; 95%CI = 95% confidence interval.

Figure 5. Funnel plot of association between LRP1 C766T polymorphism (TT + CT vs. CC) and AD susceptibility.
References

1. 2016 Alzheimer's disease facts and figures. Alzheimer’s & Dementia 12, 459–509 (2016).
2. Dartigues, J. F. Alzheimer's disease: a global challenge for the 21st century. The Lancet Neurology 8, 1082–1083 (2009).
3. Bettens, K., Sleeegers, K. & Van Broeckhoven, C. Genetic insights in Alzheimer's disease. The Lancet Neurology 12, 92–104 (2013).
4. Farrer, L. A. Expanding the genomic roadmap of Alzheimer's disease. The Lancet Neurology 14, 783–785 (2015).
5. Gaiteri, C., Mostafavi, S., Honey, C. J., De Jager, P. L. & Bennett, D. A. Genetic variants in Alzheimer disease - molecular and brain network approaches. Nature reviews. Neurology 12, 413–427 (2016).
6. Sagare, A. P., Deane, R. & Zlokovic, B. V. Low-density lipoprotein receptor-related protein 1: a physiological Abeta homeostatic mechanism with multiple therapeutic opportunities. Pharmacology & therapeutics 136, 94–105 (2012).
7. Lills, A. P., Van Duyun, L. B., Murphy-Urlich, J. E. & Strickland, D. K. LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiological reviews 88, 887–918 (2008).
8. Zlokovic, B. V., Deane, R., Sagare, A. P., Bell, R. D. & Winkler, E. A. Low-density lipoprotein receptor-related protein 1: a serial clearance homeostatic mechanism controlling Alzheimer's amyloid beta-peptide elimination from the brain. Journal of neurochemistry 115, 1077–1089 (2010).
9. Boucher, P. & Herz, J. Signaling through LRP1: Protection from atherosclerosis and beyond. Biochemical pharmacology 81, 1–5 (2011).
10. Liu, C. C. et al. Neuronal LRP1 regulates glucose metabolism and insulin signaling in the brain. The Journal of neuroscience: the official journal of the Society for Neuroscience 35, 5851–5859 (2015).
11. Tian, X. et al. LRP1-mediated intracellular antibody delivery to the Central Nervous System. Scientific reports 5, 11990 (2015).
12. Kanekiyo, T. & Bu, G. The low-density lipoprotein receptor-related protein 1 and amyloid-beta clearance in Alzheimer's disease. Frontiers in aging neuroscience 6, 93 (2014).
13. Kang, D. E. et al. Genetic association of the low-density lipoprotein receptor-related protein gene (LRP), an apolipoprotein E receptor, with late-onset Alzheimer's disease. Neurology 49, 56–61 (1997).
14. Hollenbach, E., Ackermann, S., Hyman, B. T. & Rebeck, G. W. Confirmation of an association between a polymorphism in exon 3 of the low-density lipoprotein receptor-related protein gene and Alzheimer's disease. Neurology 50, 1905–1907 (1998).
15. Zhou, Y. T. et al. Genetic association between low-density lipoprotein receptor-related protein gene polymorphisms and Alzheimer's disease in Chinese Han population. Neuroscience letters 444, 109–111 (2008).
16. Zhou, X. H., Yue, Y. H., Miao, H. J., Hong, Y. & Ka-Bi, N. Association of the low-density lipoprotein receptor-related protein gene 766CT polymorphism with Alzheimer's disease in Xijinjiang Uyghurs and Hans. Zhonghua yi xue yi chan xue za zhi = Zhonghua yixue yichuanxue zazhi = Chinese journal of medical genetics 25, 455–458 (2008).
17. Feng, Y. Q. et al. Correlation of the polymorphisms of apolipoprotein E gene and low-density lipoprotein receptor related protein gene with sporadic Alzheimer's disease. Journal of International Neurology and Neurosurgery 33, 9–12 (2006).
18. Chase, A. Alzheimer disease: advances in imaging of AD biomarkers could aid early diagnosis. Nature reviews. Neurology 10, 239 (2014).
19. Dubois, B. et al. Preclinical Alzheimer's disease: Definition, natural history, and diagnostic criteria. Alzheimer's & dementia: the journal of the Alzheimer's Association 12, 292–333 (2016).
20. Namiba, Y., Tomomaga, M., Kawasaki, H., Otomo, E. & Ikeda, K. Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer's disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain research 541, 163–166 (1991).
21. Rebeck, G. W., Harr, S. D., Strickland, D. K. & Hyman, B. T. Multiple, diverse senile plaque-associated proteins are ligands of an apolipoprotein E receptor, the alpha 2-macroglobulin receptor/low-density-lipoprotein receptor-related protein receptor. Annals of neurology 37, 211–217 (1995).
22. Arelin, K. et al. LRP and senile plaques in Alzheimer's disease: colocalization with apolipoprotein E and with activated astrocytes. Brain research. Molecular brain research 104, 38–46 (2002).
23. Kang, D. E. et al. Modulation of amyloid beta-protein clearance and Alzheimer's disease susceptibility by the LDL receptor-related protein pathway. The journal of clinical investigation 106, 1159–1166 (2000).
24. Kanekiyo, T. et al. Neuronal clearance of amyloid-beta by endocytic receptor LRP1. The Journal of neuroscience: the official journal of the Society for Neuroscience 33, 19276–19283 (2013).
25. Sagare, A. et al. Clearance of amyloid-beta by circulating lipoprotein receptors. Nature medicine 13, 1029–1031 (2007).
26. Tamaki, C. et al. Major involvement of low-density lipoprotein receptor-related protein 1 in the clearance of plasma free amyloid beta-peptide by the liver. Pharmaceutical research 23, 1407–1416 (2006).
27. Cam, J. A., Zerbinatti, C. V., Li, Y. & Bu, G. Rapid endocytosis of the low density lipoprotein receptor-related protein modulates cell surface distribution and processing of the beta-amyloid precursor protein. The Journal of biological chemistry 280, 15464–15470 (2005).
28. Bi, S., Zhang, Y., Wu, J., Wang, D. & Zhao, Q. Association between low-density lipoprotein receptor-related protein gene, butyrylcholinesterase gene and Alzheimer's disease in Chinese. Chinese medical sciences journal = Chung-kuo i hsueh k'o hsueh tsao chi 16, 71–75 (2001).
29. Chen, Y., Zhang, S. L. & Yue, Y. Relationship between the polymorphism of low-density lipoprotein receptor-related protein gene, butyrylcholinesterase-K variant and Alzheimer's disease. Practical Geriatrics 23, 132–134 (2009).
30. Lambert, J.-C., Vrèëze, F. W.-D., Amouyel, P. & Chartier-Harlin, M.-C. Association at LRP1 gene locus with sporadic late-onset Alzheimer disease. The Lancet 351, 1787–1798 (1998).
31. Kolsch, H. et al. Association of the C766T polymorphism of the low-density lipoprotein receptor-related protein gene with Alzheimer's disease. American journal of medical genetics. Part B, Neuropsychiatric genetics: the official publication of the International Society of Psychiatric Genetics 121B, 128–130 (2003).
32. Vargas, T. et al. A megalin polymorphism associated with promoter activity and Alzheimer's disease risk, American journal of medical genetics. Part B, Neuropsychiatric genetics: the official publication of the International Society of Psychiatric Genetics 153B, 895–902 (2013).
33. Bahia, V. S. et al. Polymorphisms of APOE and LRP genes in Brazilian individuals with Alzheimer disease. Alzheimer disease and associated disorders 22, 61–65 (2008).
34. Rodriguez, E. et al. Genetic interaction between two apolipoprotein E receptors increases Alzheimer's disease risk. Journal of neurology 253, 801–803 (2006).
35. Forero, D. A., Arboleda, G., Yonis, J. J., Parodi, R. & Arboleda, H. Association study of polymorphisms in LRP1, tau and 5-HTT genes and Alzheimer's disease in a sample of Colombian patients. Journal of neural transmission 113, 1253–1262 (2006).
36. Pritchard, A. et al. Association study and meta-analysis of low-density lipoprotein receptor related protein in Alzheimer's disease. Neuroscience letters 382, 221–226 (2005).
37. Panza, F. et al. Regional European differences in allele and genotype frequencies of low density lipoprotein receptor-related protein 1 polymorphism in Alzheimer's disease. American journal of medical genetics. Part B, Neuropsychiatric genetics: the official publication of the International Society of Psychiatric Genetics 126B, 69–73 (2004).
38. Zheng, W. D. et al. A genetic association study between the cardiovascular risk factor and late-onset Alzheimer Disease in Guangxi Han Chinese, Chinese Journal of Neuroimmunology and Neurology 11, 68–71+90 (2004).
39. Perry, R. T., Collins, J. S., Harrell, L. E., Acton, R. T. & Go, R. C. Investigation of association of 13 polymorphisms in eight genes in southeastern African American Alzheimer disease patients as compared to age-matched controls. American journal of medical genetics 105, 332–342 (2001).
40. Sanchez-Guerra, M. et al. Case-control study and meta-analysis of low density lipoprotein receptor-related protein gene exon 3 polymorphism in Alzheimer’s disease. Neurology letters 316, 17–20 (2001).
41. McIlroy, S. P. et al. Common polymorphisms in LRP and A2M do not affect genetic risk for Alzheimer disease in Northern Ireland. American journal of medical genetics 105, 502–506 (2001).
42. Prince, J. A. et al. Lack of replication of association findings in complex disease: an analysis of 15 polymorphisms in prior candidate genes for sporadic Alzheimer’s disease. European journal of human genetics: EJHG 9, 437–444 (2001).
43. Verpillat, P. et al. Use of haplotype information to test involvement of the LRP gene in Alzheimer’s disease in the French population. European journal of human genetics: EJHG 9, 464–468 (2001).
44. Beffert, U., Arguin, C. & Poirier, J. The polymorphism in exon 3 of the low density lipoprotein receptor-related protein gene is weakly associated with Alzheimer’s disease. Neuroscience letters 259, 29–32 (1999).
45. Bertram, L. et al. Candidate genes showing no evidence for association or linkage with Alzheimer’s disease using family-based methodologies. Experimental gerontology 35, 1353–1361 (2000).
46. Yang, L. et al. Association of FSI 1/2, ACE I/D, and LRP C/T polymorphisms with Alzheimer’s disease in the Chinese population: a meta-analysis of case-control studies. Genetics and molecular research: GMR 14, 1017–1024 (2015).
47. Greene, C. S., Penrod, N. M., Williams, S. M. & Moore, J. H. Failure to replicate a genetic association may provide important clues about genetic architecture. PLoS one 4, e5639 (2009).
48. Hatanaka, Y. et al. Low density lipoprotein receptor-related protein gene polymorphisms and risk for late-onset Alzheimer’s disease in a Japanese population. Clinical genetics 58, 319–323 (2000).
49. Kaneko, M. I., Ata, R. E. & DeKosky, S. T. Genetic association studies between Alzheimer’s disease and two polymorphisms in the low density lipoprotein receptor-related protein gene. Neuroscience letters 244, 65–68 (1998).
50. Yuan, Q., Wang, F., Xue, S. & Jia, J. Association of polymorphisms in the LRP1 and A2M genes with Alzheimer’s disease in the northern Chinese Han population. Journal of clinical neuroscience: official journal of the Neurosurgical Society of Australia 20, 253–256 (2013).
51. Bullido, M. J. et al. Alzheimer’s risk associated with human apolipoprotein E, alpha-2 macroglobulin and lipoprotein receptor related protein polymorphisms: absence of genetic interactions, and modulation by gender. Neuroscience letters 289, 213–216 (2000).
52. Vazquez-Higuera, J. L. et al. Genetic interaction between tau and the apolipoprotein E receptor LRP1 Increases Alzheimer’s disease risk. Dementia and geriatric cognitive disorders 28, 116–120, doi:10.1159/000234913 (2009).
53. Helbecque, N. et al. Islet-brain1/C-Jun N-terminal kinase interacting protein-1 (IB1/JIP-1) promoter variant is associated with Alzheimer’s disease. Molecular psychiatry 8, 413–422, 363 (2003).
54. Liu, S., Zeng, F. & Wang, C. et al. The nitric oxide synthase 3 G894T polymorphism associated with Alzheimer’s disease risk: a meta-analysis. Scientific Reports 5, 13598 (2015).
55. He, J., Liao, X. Y. & Zhu, J. H. et al. Association of MTHFR C677T and A1298C polymorphisms with non-Hodgkin lymphoma susceptibility: evidence from a meta-analysis. Scientific Reports 4, 6159 (2014).
56. Mantel, N. & Haenszel, W. Statistical aspects of the analysis of data from retrospective studies of disease. Journal of the National Cancer Institute 22, 719–748 (1959).
57. DerSimonian, R. & Kacker, R. Random-effects model for meta-analysis of clinical trials: an update. Experimental gerontology 35, 1353–1361 (2000).
58. DerSimonian, R. & Kacker, R. Operating characteristics of a rank correlation test for publication bias. Biometrics 50, 1088–1101 (1994).
59. Egger, M., Davey Smith, G., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. *Medical effects* 315, 629–634 (1997).
60. Bia, L. et al. Association study of the A2M and LRP1 Genes with Alzheimer disease in the Han Chinese. Biological psychiatry 58, 731–737 (2005).

Acknowledgements

This work was supported by Science and Technology project of Shenzhen (No. CXZZ201511117165117145) and Technology Research Project of Shenzhen (No. JSGG20160229154828546).

Author Contributions

Y.W. and S.L. contributed equally to this work, and they designed the study and wrote the main manuscript. J.W. and J.Z. collected the information of included articles. J.W. and Y.H. analyzed the data. H.L. and H.T. prepared figures and tables. B.K. and B.W. checked and revised the results. S.S. reviewed and approved the manuscript.

Additional Information

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.