Universal scaling law for the velocity of dominoes toppling motion

Bo-Hua Sun

ABSTRACT

By using directed dimensional analysis and data fitting, an explicit universal scaling law for the velocity of dominoes toppling motion is formulated. The scaling law shows that domino propagational velocity is linearly proportional to the $1/2$ power of domino separation and thickness, and $-1/2$ power of domino height and gravitation. The study also proved that dominoes width and mass have no influence on the domino wave traveling velocity. The scaling law obtained in this paper is very useful to the dominoes game and will help the domino player to place the dominoes for fast speed and have a quick estimation on the speed without doing complicated multi-bodies dynamical simulation.

Introduction

The falling of dominoes is a successive toppling of regularly spaced elements in a periodic array plotted in Figure 1. The domino effect is not only an interesting game but also an important physical phenomena, and often be used to describes some social catastrophe, such as the cascading consequences of research misconduct.

The mechanics of domino falling has been studied extensively by number of leading scholars. In 1983, McLachlan et al. found a scaling law for the velocity $v$ in the limiting case of dominoes with zero thickness spaced in a straight line. With these assumptions McLachlan et al. the functional relation:

$$v_{\text{McLachlan}} = v(h, \lambda, g) = \sqrt{gh f\left(\frac{\lambda}{h}\right)},$$

where $g$ is gravitation acceleration, $h$ the height of the dominoes, $\lambda$ the spacing between dominoes, and $f(x)$ an undetermined function of $x$.

Efthimiou and Johnson proposed a $f(x)$ by complete elliptic integral of the first kind. Shi et al. developed a precise numerical model with consideration of multipoint impacts between dominoes. Shi et al. studies the toppling dynamics of a mass-varying domino system for which the mass of the domino changes at an exponential rate of its sequence number.

Szirtes and Rozsa studied domino by using dimensional analysis for a domino with equal thickness $\delta$, separation $\lambda$ and height $h$. Hence the five variables and their dimensions are listed in Table 1 below:

Szirtes and Rozsa applied dimensional analysis to find domino velocity, $v = v(h, \lambda, \delta, g)$. The problem has five variables

---

*School of Civil Engineering & Institute of Mechanics and Technology, Xi’an University of Architecture and Technology, Xi’an 710055, China. Correspondence and requests for materials should be addressed to B.S. (email: sunbohua@xauat.edu.cn)
Table 1. Dimensions of physical quantity

| Variables           | Symbol | Dimension |
|---------------------|--------|-----------|
| velocity            | $v$    | $LT^{-1}$ |
| height              | $h$    | $L$       |
| thickness           | $\delta$ | $L$      |
| separation          | $l$    | $L$       |
| gravitational acc.  | $g$    | $LT^{-2}$ |

The dimensional basis used is length ($L$) and time ($T$).

and two dimensions ($L$, $T$), therefore there are $5 - 2 = 3$ dimensionless variables $\Pi$ as follows:

$$\Pi_1 = \frac{v}{\sqrt{gh}}, \quad \Pi_2 = \frac{\lambda}{h}, \quad \Pi_3 = \frac{\delta}{h},$$

(2)

From dimensional analysis, $\Pi_1 = f(\Pi_2, \Pi_3)$, namely

$$v_{S} = \sqrt{ghf\left(\frac{\lambda}{h}, \frac{\delta}{h}\right)}$$

(3)

This relation is similar to Eq. (1) except the separation and height ratio $\delta/h$.

Although we have Eq. (1) and Eq. (3), there is no much useful information can be get from them, because the function $f\left(\frac{\lambda}{h}, \frac{\delta}{h}\right)$ is still undetermined. In the following, we will try to decode the function by using directed dimensional analysis proposed by Huntley and Siano.

Methods

0.1 Directed dimensional analysis

According to the directed dimensional analysis, we can distinct the length dimension in both $x$ and $z$ direction. The problem has five variables and three dimensions ($L_x, L_z$ and $T$) listed in Table 2 below:

Table 2. Dimensions of physical quantity

| Variables           | Symbol | Dimension |
|---------------------|--------|-----------|
| velocity            | $v$    | $L_xT^{-1}$ |
| height              | $h$    | $L_z$     |
| thickness           | $\delta$ | $L_x$      |
| separation          | $\lambda$ | $L_x$     |
| gravitational acc.  | $g$    | $L_xT^{-2}$ |

The dimensional basis used is length ($L_x, L_z$) and time ($T$).

Therefore there are $5 - 3 = 2$ dimensionless variables $\Pi$ as follows:

$$\Pi_1 = \frac{vh^2\frac{\lambda}{h}\delta^c}{\sqrt{gh}}$$, \quad $$\Pi_2 = \delta h^{a_1} \lambda^{b_1} g^{c_1}$$

(4)

where the exponents $a, b, c$ and $a_1, b_1, c_1$ can be determined by following dimensionless conditions: $\dim(\Pi_1) = \dim(\Pi_2) = L_x^0L_z^0T^0$, namely

$$\dim(\Pi_1) = L_x T^{-1} (L_z)^a (L_x)^b (L_x T^{-2})^c = L_x^{1+b}T^{-1-2c} L_z^a.$$

(5)

From dimensionless condition, $1 + b = 0$, $-1 - 2c = 0$ and $a + c = 0$, leads to $a = \frac{1}{2}, b = -1$ and $c = -\frac{1}{2}$. Hence, we have the first dimensionless variable

$$\Pi_1 = \frac{v}{\sqrt{g}} \frac{\sqrt{h}}{g}.$$

(6)
Similarly, we have $a_1 = 0, b_1 = -1$ and $c_1 = 0$ and the second dimensionless variable

$$\Pi_2 = \frac{\delta}{\lambda}. \tag{7}$$

From Buckingham dimensional theorem,\(^{15}\) the domino velocity $v = v(h, \lambda, \delta, g)$ can be replaced by $\Pi_1 = f(\Pi_2)$ as follows

$$v_{\text{Sun}} = \lambda \sqrt{\frac{g}{h}} f\left(\frac{\delta}{\lambda}\right). \tag{8}$$

This relation is a universal scaling law of dominoes toppling motion, where the function $f\left(\frac{\delta}{\lambda}\right)$ can be determined by experiments.

Stronge\(^9\) conducted comprehensive study with high-velocity photography on toppling of domino array, who obtained three data for domino dimensions: $h = 41.78 \text{mm}$, $\delta = 7.58 \text{mm}$:

| Table 3. Experimental data from Stronge\(^9\) |
|-----------------|----------------|----------------|----------------|
| height ($h$)   | thickness ($d$) | separation ($\lambda$) | velocity ($v$) |
| (m)            | (m)             | (m)             | (m/s)          |
| 0.04178        | 0.00758         | 0.0219          | 0.65           |
| 0.04178        | 0.00758         | 0.02949         | 0.80           |
| 0.04178        | 0.00758         | 0.03419         | 0.86           |

To determine the function $f(x)$, let’s us assume that it is a power function, i.e. $f\left(\frac{\delta}{\lambda}\right) \approx C\left(\frac{\delta}{\lambda}\right)\alpha$, where the $C$ is a constant and $\alpha$ is an exponent, both of them are to be confirmed with experimental data.

Using the data from the table 3, data fitting gives $C = 3.488$ and $\alpha = 1/2$, finally, we have an explicit velocity of dominoes toppling motion as follows:

$$v_{\text{Sun}} = C\lambda^{1-\alpha} \delta^\alpha \sqrt{\frac{g}{h}} = 3.488\lambda^{1/2} \sqrt{\frac{\delta g}{h}}. \tag{9}$$

This explicit scaling law for the velocity of dominoes toppling motion has never been reported in literature before, which is plotted in Figure 2.

![Figure 2. Scaling law of dominoes toppling motion.](image-url)
Influence of dominoes width and mass on the toppling velocity

All previous investigation did not take into account the dominoes width. The reason is perhaps that the dominoes width has little influence on the velocity of dominoes toppling motion, the problem is how to justify this statement.

Let’s us revisit this problem by using directed dimensional analysis. To introduce the domino’s width $w$ into the formula, we have to introduce a new dimension $L_y$ in y direction, hence there are five variables in the problem, which are listed in Table 4 below:

| Variables   | Symbol | Dimension |
|-------------|--------|-----------|
| velocity    | $v$    | $L_x T^{-1}$ |
| area        | $A$    | $L_x L_y$  |
| width       | $w$    | $L_y$      |
| separation  | $l$    | $L_x$      |
| gravitational acceleration | $g$ | $L_y T^{-2}$ |

The dimensional basis used is length ($L_x, L_y, L_z$) and time (T).

Therefore there are $5 - 4 = 1$ dimensionless variables $\Pi$ as follows:

$$\Pi = vA^a l^b g^c w^d.$$  \hspace{1cm} (10)

The dimension $\dim(\Pi) = L_x^{1+a+b-2c} L_z^{a+c} = L_x^{0} L_y^{d} T^{-1}$, hence, $a = \frac{1}{2}, b = -\frac{3}{2}$, $c = -\frac{1}{2}$ and $d = 0$.

Since the exponent of dominoes width is null, therefore, the domino’s width has no influence on the velocity of dominoes toppling motion. The reason behind this is that there is no other variables has dimension in y direction.

In other words, the weight of dominoes is not a dominate issue, but the cross-section area of dominoes is a vital parameter affecting the domino velocity.

Results

An explicit universal scaling law for the velocity of dominoes toppling motion has been formulated by using directed dimensional analysis. It is surprised to see that the domino velocity is not linearly proportional to $\sqrt{gh}$ as reported in literature (McLachlan\textsuperscript{4} and Szirtes and Rozsa\textsuperscript{6}).

This study shown that the domino wave propagation velocity is proportional to the $1/2$ power law of domino’s separation $\lambda$ and thickness $\delta$. The domino’s width has no influence to the domino’s velocity has also been proved. The scaling law obtained in this paper is very useful to the dominoes game and will help the domino player to place the dominoes for fast speed and have a quick estimation on the speed without doing complicated multi-bodies dynamical simulation.

References

1. Polaner, DM, FAAP, MD. and Shafer, SL. 2019. Falling Dominoes, Anesthesia & Analgesia, 128(4):613-614.
2. Daykin, DE. 1971. Falling dominoes. SIAM Review 13(4), 569.
3. Shaw, DE. 1978. Mechanics of a chain of dominoes. Am. J. Phys. 46(6), 640-642.
4. McLachlan, BG., Beaufre, G., Cox, AB., Gore, L.1983. Falling dominoes (de daykin). SIAM Rev. 25(3), 403.
5. Bert, CW. 1986. Falling dominoes. SIAM Rev. 28(2), 219-224.
6. Szirtes, T., Rozsa, P. 2006. Applied Dimensional Analysis and Modelling. Elsevier Science & Technology Books
7. Efthimiou, CJ., Johnson, MD. 2007. Domino waves. SIAM Rev. 49(1), 111-120.
8. Larham, R. 2008. Validation of a Model of the Domino Effect? arXiv:0803.2898.
9. Stronge, WJ. 1987. The domino effect: a wave of destabilizing collisions in a periodic array. Proc. R. Soc. A Math. Phys. Eng. Sci. 409(1836), 199-208.
10. Stronge, WJ., Shu, D. 1988. The domino effect: successive destabilization by cooperative neighbours. Proc. R. Soc. A Math. Phys. Eng. Sci. 418(1854), 155-163.
11. VanLeeuwen, JM. 2010. The domino effect. Am. J. Phys. 78(7), 721-727.
12. Fujii, F., Inoue, Y., Nitta, T. 2012. Modeling the domino wave propagation in contact mechanics. Trans. Jpn. Soc. Mech. Eng. Ser. C 78(788), 1133-1142.

13. Shi, T., Liu, Y., Wang, N., Liu, C. 2018. Toppling dynamics of regularly spaced dominoes in an array. J. Appl.Mech. 85(4), 041008.

14. Shi, T., Liu, Y., and Wang, N. 2019. Toppling dynamics of a mass-varying domino system. Nonlinear Dyn. https://doi.org/10.1007/s11071-019-05324-8.

15. Bridgman, PW. 1922. *Dimensional Analysis*. Yale University Press, New Haven.

16. Huntley, HE. 1967. *Dimensional Analysis*. Dover.

17. Siano, D. 1985. Orientational Analysis - A Supplement to Dimensional Analysis -I. J. Franklin Institute, 320:267.

18. Siano, D. 1985. Orientational Analysis - Tensor Analysis and The Group Properties of the SI Supplementary Units -II. J. Franklin Institute, 320:285.

**Acknowledgements**

The author appreciates the financial supports from Xi’an University of Architecture and Technology and Mr Zhe Liu for the preparation of Figure 1. This paper is dedicated with gratitude to my beloved mother, Qing-Ying XIE.

**Author contributions**

B.S. conceived the study, developed the theory, collected and analysed the experimental data and wrote the paper.

**Competing financial interests**

The authors declare that they have no competing financial interests.