Supersolid and solitonic phases in one-dimensional Extended Bose-Hubbard model

Tapan Mishra

Indian Institute of Astrophysics, II Block, Kormangala, Bangalore, 560 034, India.

Ramesh V. Pai

Department of Physics, Goa University, Taleigao Plateau, Goa 403 206, India.

S. Ramanan

Centre for High Energy Physics, Indian Institute of Science, Bangalore 560012, India

Meetu Sethi Luthra and B. P. Das

Indian Institute of Astrophysics, II Block, Kormangala, Bangalore, 560 034, India.

(Dated: July 7, 2009)

We report our findings on quantum phase transitions in cold bosonic atoms in one dimensional optical lattice using the finite size density matrix renormalization group method in the framework of the extended Bose-Hubbard model. We consider wide ranges of values for the filling factors and the nearest neighbor interactions. At commensurate fillings, we obtain two different types of charge density wave phases and a Mott insulator phase. However, departure from commensurate fillings yield the exotic supersolid phase where both the crystalline and the superfluid orders coexist. In addition, we obtain signatures for solitary waves and also superfluidity.

PACS numbers: 03.75.Lm, 05.10.Cc, 05.30.Jp

I. INTRODUCTION

The supersolid phase, first reported in 4He [1], is characterized by the coexistence of the superfluid and crystalline orders. This phase has been predicted in several bosonic lattice systems [2, 3, 4, 5, 6, 7], however, there has been no unambiguous observation of this phase so far. Kim et al. had reported its observation in solid 4He [8], but a number of studies disagree with this claim [9, 10, 11].

In recent years, the advances in the manipulation of cold bosonic atoms in the optical lattices have opened up a new route to investigate quantum phase transitions [12, 13]. This approach has many advantages over the conventional solid state techniques, such as for example, flexibility in controlling the parameters and the dimension of the lattice by tuning the laser intensity. A system of cold bosonic atoms in an optical lattice can be adequately described by the Bose-Hubbard model [14, 15]. However, if the atoms possess long range interactions due to the presence of magnetic dipole moments, for example, they could exhibit a number of different novel phases. In particular, the existence of such interactions could result in the supersolid phase [2, 7, 16, 17]. The fairly recent observation of the Bose-Einstein condensation of 52Cr atoms [18], which have large magnetic dipole moments could ultimately lead to the observation of this unusual phase.

In this context, we re-investigate the system of bosonic atoms with the long range interaction using the extended Bose-Hubbard model given by

$$H = -t \sum_{<i,j>} (a_i^\dagger a_j + H.c) + \frac{U}{2} \sum_i n_i(n_i - 1) + V \sum_{<i,j>} n_in_j.$$ \hspace{1cm} (1)

Here t is the hopping amplitude between nearest neighboring sites $<i,j>$. $a_i^\dagger(a_i)$ is the bosonic creation (annihilation) operator obeying the Bosonic commutation relation $[a_i, a_j^\dagger] = \delta_{i,j}$ and $n_i = a_i^\dagger a_i$ is the number operator. U and V are the onsite and the nearest neighbor interactions, respectively. We rescale in unit of the hopping amplitude, t, setting $t = 1$, making the Hamiltonian and other quantities dimensionless.

In the absence of long range interactions, the model given in Eq. (1) reduces to the Bose-Hubbard model which exhibits a superfluid (SF) to Mott insulator (MI) transition at integer densities of bosons [14]. However, for non-integer densities, the system remains in the superfluid phase which is compressible and gapless. The Mott insulator phase, however, has finite gap and is incompressible. The extended Bose-Hubbard model, given in Eq. (1) has been studied earlier using different methods [2, 19, 20, 21] including DMRG [22, 23, 24]. The inclusion of the nearest neighbor interaction gives rise to the charge density wave (CDW) phase for integer and half integer densities [2, 19, 20, 21, 22, 23, 24] that has finite gap, finite CDW order parameter, vanishing compressibility.
pressibility and a peak in the density structure function at momentum $q = \pi$. In the CDW phase the bosons occupy alternate sites and the unoccupied ones being empty. For example, when the density $\rho = 1/2$, the distribution of bosons has a $| 1 0 1 0 1 0 \cdots \rangle$ structure while for $\rho = 1$ it is $| 2 0 2 0 2 0 \cdots \rangle$. To distinguish between these two CDW ground states, the former is referred to as CDW-I and the latter, CDW-II [2]. This model has been studied recently using quantum monte-carlo [2] resulting in the prediction of the supersolid phase when the density of the bosons is no longer commensurate. We re-investigate this model by departing from both half and integer filling for large and intermediate onsite interaction strengths and obtain the phase diagram using the finite size density matrix renormalization group (FS-DMRG) method [24, 2] and throw more light on the supersolid and solitonic phases.

This paper is organized as follows. In Sec. II we will discuss the method of our calculation using FS-DMRG. The results with discussion are presented in Sec. III followed by our conclusions in Sec. IV.

II. METHOD OF CALCULATION

To obtain the ground state wave function and the energy for the system of N bosons on a lattice of length L, interacting via an on-site and a nearest neighbor interaction, we use the FS-DMRG method with open boundary conditions [25, 26]. This method is best suited for one dimensional problems and has been widely used to study the Bose-Hubbard model [22, 23, 24, 26, 27]. We have considered four bosonic states per site and the weights of the states neglected in the density matrix formed from the left or right blocks are less than 10^{-6} [23]. In order to improve the convergence, at the end of each DMRG step, we use the finite-size sweeping procedure given in [23, 24]. Using the ground state wave function $|\psi_{LN}\rangle$ and energy $E_L(N)$, where N refers to the number of bosons and L, the length of the lattice, we calculate the following physical quantities and use them to identify the different phases. The chemical potential μ of the system having density $\rho = N/L$ is given by

$$\mu = \frac{\delta E_L(N)}{\delta N},$$

and the gapped and gapless phases are distinguished from the behavior of ρ as a function of μ [28]. The compressibility κ, which is finite for the SF phase, is calculated using the relation

$$\kappa = \frac{\delta \rho}{\delta \mu}. \quad (3)$$

The on-site local number density $\langle n_i \rangle$, defined as,

$$\langle n_i \rangle = \langle \psi_{LN} | n_i | \psi_{LN} \rangle, \quad (4)$$

gives information about the density distribution of different phases and finally the existence of the CDW phase is confirmed by calculating its order parameter:

$$O_{\text{CDW}} = \frac{1}{L} \sum_i (-1)^i \langle n_i \rangle. \quad (5)$$

When the ground state is a CDW, FS-DMRG calculation with open boundary leads to an artificial node in the density distribution at the center due to left-right symmetry. We circumvent this problem by working with odd number of sites. In our calculations, we start with five sites instead of usual choice of four sites and increase the length up to $L = 101$ adding two sites in each DMRG iteration [23]. After reaching the desired length $L = 101$, we vary the number of atoms N from 26 to 125 to scan a wide range of densities [28]. In this work we consider, two different values of the onsite interaction strengths: $U = 5$ and 10 and vary the nearest neighbor interaction strength V from 0 to U. The choice of U is guided by an earlier work [23] where a direct MI to CDW-II transition for $U = 10$ and a MI to SF to CDW-II for $U = 5$ were observed as V is varied at a density $\rho = 1$. In this work, we extend this calculation to a wider range of densities and obtain a richer phase diagram consisting of supersolid and solitonic phases in addition to SF, CDW-I and CDW-II. We begin our discussion for $U = 10$ and later comment on our results for $U = 5$.

III. RESULTS AND DISCUSSION

It is well known that the Bose-Hubbard model (Eq. 1 with $V = 0$) has a superfluid ground state when density ρ is not an integer and exhibits a quantum phase transition from the superfluid to the Mott insulator for integer densities [14] at a critical value of onsite interaction U_C that depends on ρ. (For example, $U_C \sim 3.4$ for $\rho = 1$ [22, 23].) The Mott insulator has finite gap and zero compressibility while the superfluid is gapless and compressible. In the presence of a finite nearest neighbor interaction V, an additional insulator phase, CDW, appears at commensurate densities. As noted in [22, 23], a CDW-I occurs at $\rho = 1/2$ and at $\rho = 1$, depending on the value of V either a MI or a CDW-II appears. Since we are dealing with only an on-site and a nearest neighbor interaction, the commensurate densities for model in Eq. (1) are integers and half integers. We begin by studying the possible phases at commensurate densities, before we investigate the phases at incommensurate densities.

The gapped phases are easily obtained from the dependence of the density ρ and the compressibility κ on the chemical potential μ. Figure 1 shows the dependence of ρ on μ for a fixed value of $U = 10$ and V ranging between 2 and 10. The gapped phases appear as plateaus with the gap equal to the width of the plateau, i.e., $\mu^+ - \mu^-$, where μ^+ and μ^-, respectively, are the values of the chemical potential at the upper and lower knee of the plateau. For
small values of V, Fig. 1 has only one plateau at $\rho = 1$. However, as we increases V an additional plateau appears at $\rho = 1/2$. We calculate the compressibility using Eq. 4 and is also given as a function of μ in Fig. 2 for two generic values of V. The smaller value, $V = 2$, has just one plateau at $\rho = 1$ while $V = 7$, has two, at densities $\rho = 1/2$ and 1. As expected, the compressibility is zero over the range of μ values where the plateaus occur, while it is finite elsewhere. The incompressible insulator and compressible superfluid regions can be separated out by picking up μ^+ and μ^- and plotting them in the $\mu-V$ plane. From Figs. 1 and 2 we see that, (i) a gapped phase occurs at $\rho = 1/2$ for $V \gtrsim 2.8$, (ii) for $\rho = 1$, the gap remains finite for all values of V and (iii) the gap is zero for other values of ρ.

The nature of the compressible and incompressible phases can further be understood from the local density distribution $\langle n_i \rangle$ and the charge density wave order parameter O_{CDW} given by Eqs. 4 and 5. The variation of local density as a function of the lattice sites are given in Figs. 3 and 4 for densities around $\rho = 1/2$ and 1. At commensurate densities, say, $\rho = 1/2$, the charge density wave nature of the phase is clearly observed for $V = 5.6$ in Fig. 3(c). Alternative variation of the density of bosons between one and zero is the signature of CDW-I phase, $\mid 1 0 1 0 1 0 \cdots \rangle$ type $2, 22$. Similarly, for density $\rho = 1$, the density oscillation of the type $\mid 2 0 2 0 2 0 \cdots \rangle$, for $V = 9$ suggest the CDW-II phase. From the gap, the compressibility and the density oscillations, we can conclude that for $U = 10$ and $\rho = 1/2$, we have a SF to CDW-I phase transition at $V \sim 2.8$. However, for $\rho = 1$, there is no superfluid phase and the transition is from MI to CDW-II at the critical value $V_C \sim 5.4$. These results are consistent with the earlier results in the literature $2, 22, 23$.

We now turn our attention to the case when ρ is not commensurate to the lattice length, i.e., $\rho \neq 1/2$ or 1. From Fig. 2 we observe that the compressibility is always finite for incommensurate densities indicating that these regions of the phase diagram correspond to the superfluid phase. However, the local density distribution and O_{CDW} reveal the richness of the phases present in the compressible regions of the phase diagram. Interesting phases appear when the nearest neighbor interaction is large enough to obtain a CDW-I or CDW-II phase at commensurate densities. Let us first consider densities close to 1/2. When V is less than the critical value, $V_C \sim 2.8$, for the SF-CDW transition, we expect only the superfluid phase. However, for $V > V_C$ the ground state shows solitonic behavior for densities close to $\rho = 1/2$. Fig. 3 shows the the local densities $\langle n_i \rangle$ as a function of the lattice sites i for different densities. The panel labeled (c) corresponds to the commensurate density $\rho = 1/2$ where we clearly observe the CDW nature of the ground state, (b) and (d) shows the density variations of the ground state where one boson has been added and removed from the system at $\rho = 1/2$ respectively. Similarly, panels (a) and (e) show the density variations when two bosons have been added and removed respectively. The density profiles can be understood as follows. Moving away from commensurate densities, the solitons distort the periodic ground state by breaking the long range crystalline order as a modulation in the density wave that minimizes the ground state energy of the system $2, 29$.

To understand the solitons we calculate the CDW order parameter for each unit cell. In contrast to the su-
perfluid and Mott insulator phases that have one site per unit, the unit cell of CDW phase consists of two lattice sites. Referring to these two sites as 1 and 2, we define the CDW order parameter per unit cell as

\[O_{\text{CDW}}^\text{cell} = \langle n_1 \rangle - \langle n_2 \rangle. \quad (6) \]

The CDW phase has two degenerate ground states corresponding to the two local density distributions \(| 1 0 1 0 1 0 \cdots \rangle\) and \(| 0 1 0 1 0 1 \cdots \rangle\). The CDW order parameter, \(O_{\text{CDW}}^\text{cell}\), for these two degenerate states is equal to 1 and -1 respectively. Figure 4 shows the \(O_{\text{CDW}}^\text{cell}\) for the same set of densities considered in Fig. 3. In Fig. 4 the center panel (c) has density \(\rho = 1/2\), while (b) and (d) represent the system in panel (c) with one boson added and removed respectively and (a) and (e) have two bosons added and removed with respect to (c). We notice that the \(O_{\text{CDW}}^\text{cell}\) is uniform and close to one for \(\rho = 1/2\). Since we work with odd number of sites with open boundaries, energy consideration leads to a CDW ground state which represents \(| 1 0 1 0 1 0 \cdots \rangle\) state. When we add or remove one boson from this state, we get two solitons that modulate the density distribution and break the long-range crystalline order. The extra particle or hole splits into two solitons of equal mass \(2\). The two solitons can move across the lattice without causing any energy, however, if we want to get rid of them, we need to spend lots of energy to flip the bosons.

Similarly, removal or addition of two bosons result in four solitons. Continuing this process results in more solitons, until a critical density is reached, when the density oscillation completely dies out and the superfluid phase is obtained. Therefore, starting with the CDW-I phase and changing the density from its commensurate value of \(\rho = 1/2\) by either adding or removing bosons, leads to solitons+SF phase that finally becomes a superfluid. The transition from solitonic to superfluid is more like a crossover rather than a real phase transition. The solitonic phase is obtained only very close to \(\rho = 1/2\) and remains stable for the entire range of \(V\) considered on the hole side (\(\rho < 1/2\)). However, on the particle side (\(\rho > 1/2\)), the solitonic phase remains stable only up to some critical value of \(V = V_C \sim 6.4\). For \(V > 6.4\), doping below half-filling breaks the CDW ground state into a solitonic state that eventually goes into a superfluid phase. However, this does not happen when bosons are added above half-filling. For example, the variation of \(\langle n_i \rangle\) as a function of sites \(i\) for three different densities are given in Fig. 5 for \(V = 9\). The panel (b) represents the CDW-I phase at \(\rho = 1/2\) while (a) and (c) respectively, correspond to the ground state with density obtained by removing and adding one boson to the CDW-I ground state. While a solitonic phase appears when bosons are removed (\(\rho < 1/2\)), Fig. 5(c) suggest that the CDW-I phase is robust for \(\rho > 1/2\). Similar behavior is also seen when doping around \(\rho = 1\). Fig. 6 shows \(\langle n_i \rangle\) as a function of \(i\) for densities around \(\rho = 1\). Panels (a) and (c) correspond to the density of the ground state obtained by removing and adding one boson to the CDW-II state (panel (b)) at a density \(\rho = 1\).

It turns out that for large \(V\), the region between \(1/2 < \rho < 1\), i.e., between CDW-I and CDW-II, always remains in the CDW phase even though the density is not commensurate to the lattice length. The CDW order in the system is determined by calculating the CDW order parameter given by Eq. 5 and is given in Fig. 7. For small values of \(V\), the \(O_{\text{CDW}}\) is zero for all the densities except at \(\rho = 1/2\) signalling the CDW-I phase. However, as \(V\) increases, an additional peak develops at \(\rho = 1\) for \(V > 5.4\) which corresponds to the CDW-II phase. The
most interesting feature is that the O_{CDW} remains finite in the region $1/2 < \rho < 1$ for large values of V. It may be noted that the compressibility for $1/2 < \rho < 1$ is always finite. So the bosons move freely on the CDW background and prefer to occupy sites which are already occupied. Consider a system with one extra boson added to the ground state corresponds to CDW-I. If the added boson occupies an empty site, the energy cost is only due to the nearest neighbor interaction and is of the order of $2V$. However, if the added boson occupies a site which is already occupied by an another boson, the energy cost is due to the onsite interaction and is of the order of U which is relatively smaller than $2V$ for large V. The extra bosons therefore move between the occupied sites with a finite hopping amplitude leading to a long range correlation in the lattice, which yields to finite compressibility in the region $1/2 < \rho < 1$ as shown in Fig. 2. Similar behavior persists for doping above $\rho > 1$ as given in Fig. 5.

Therefore we can conclude that for small V apart from commensurate fillings there exists no finite CDW order that is gapless and incompressible. But for large V the CDW order remains finite for incommensurate densities. As a result, the region in the phase diagram between CDW-I and CDW-II exhibits the coexistence of both the diagonal long range order(DLRO) and the off-diagonal long range order(ODLRO) which is the signature of the supersolid. In order to obtain the boundary that separates the supersolid phase in the phase diagram, we plot the O_{CDW} with respect to V for different densities as seen in Fig. 5. We note that the O_{CDW} increases sharply at some critical value of V, highlighting the transition to the CDW phase. To obtain this critical value of V, we take the derivatives of O_{CDW} with respect to V for different densities in the range $1/2 < \rho < 1$ and $\rho > 1$. The point where the derivative is a maximum is taken to be the critical point of transition to the CDW phase. The order parameters O_{CDW} as well as their derivatives as a function of V are shown in Fig. 5. The derivative shows a negligible peak for $\rho < 1/2$, but it shows a sharp peak for $\rho > 1/2$ indicating the existence of the CDW phase.

The phase diagram obtained by plotting the chemical potential, μ, corresponding to different densities as a function of V are given in Fig. 10. To identify the region where the gapped phases exist, we calculate the chemical potentials μ^+ and μ^- at $\rho = 1/2$ and 1 for all values of V in the thermodynamic limit and plot them in the $\mu - V$ plane. The boundary of the supersolid phase is obtained by calculating the chemical potential μ for

FIG. 5: (Color online) Variation of the local density $\langle n_i \rangle$ as a function of i for $V = 9$. Panel (a) shows the ground state density when a boson is removed from the state at $\rho = 1/2$ shown in panel (b), which is a CDW-I and panel (c) corresponds to the state obtained by adding a boson to $\rho = 1/2$ state.

FIG. 6: (Color online) Variation of the local density as a function of the lattice sites i for doping around $\rho = 1$. Panel (b) corresponds to the CDW-II phase at $\rho = 1$ and panels (a) and (c) to the state obtained by removing and adding a boson to the CDW-II state. Notice that the crystalline structure is preserved for these density changes. $V = 9$

FIG. 7: (Color online) O_{CDW} as a function ρ for different V. The two peaks at commensurate densities shows the existence of CDW-I and the CDW-II phases. The finite order parameter for large values of V in the incommensurate density range shows the signature of the supersolid phase.
FIG. 8: The CDW order parameter O_{CDW} as a function of V for different densities in the range $1/2 \leq \rho \leq 1$. Note that O_{CDW} increases as V increases.

FIG. 9: (Color online) CDW order parameters O_{CDW} (solid lines) and their derivatives with respect to V (broken lines) are given. For $V \geq V_C \sim 6.4$, the derivatives of the order parameters show peak at the transition to the CDW phase.

FIG. 10: (Color online) Phase diagram showing all the phases for $U = 10$

FIG. 11: (Color online) Phase diagram showing all the phases for $U = 5$

and the corresponding phase diagram is given in Fig. 11.

In this case the gapped regions such as CDW-I, CDW-II and MI shrink. There is no direct transition from MI to CDW-II in sharp contrast to $U = 10$. Rather there are continuous MI-SF and SF-CDW-II transitions. The supersolid phase occurs in a small region close to $\rho \lesssim 1$, but the trend is similar to that of $U = 10$ for $\rho > 1$.

IV. CONCLUSIONS

In summary, we have obtained the complete phase diagram for a single species bosonic atoms in the framework of the extended Bose-Hubbard model for two different values of the onsite interaction U. Our studies have been carried out using the FS-DMRG method for a large range of densities; $0.25 \leq \rho \leq 1.25$. In the large U limit, we obtain CDW-I, MI, CDW-II, SF, soliton and the supersolid phases and the transitions between them occurring at various critical values of the nearest neighbor interac-
The supersolid phase appears in the density range $0.5 < \rho < 1$ and $\rho > 1$ only in the large V regime. The solitons are found to exist for doping above half filling in the small V regime and for doping below half filling for the entire range of V. For an onsite interaction of intermediate strength ($U = 5$), we find an interesting change in the phase diagram. The supersolid phase becomes very small in the density range $0.5 < \rho < 1$ and it exists only at densities close to 1.

From an experimental point of view, in addition to the optical lattice, there is always a magnetic trap present, thereby making these systems inhomogeneous. Therefore, it makes it imperative to study this model in the presence of a harmonic trap, where all the phases coexist. Hence it becomes important to look for experimental signatures of these phases in the presence of a trap. We are currently working in that direction.

V. ACKNOWLEDGMENT

We thank G. Baskaran and D. Sen for useful discussions and comments. RVP would like to thank DST and CSIR (India) for support and C. N. Kumar for useful discussions. SR thanks Markus Müller for useful discussions.

[1] O. Penrose and L. Onsager, Phys. Rev. 104, 576 (1956).
[2] G. G. Batrouni, F. Hebert and R. T. Scaletter, Phys. Rev. Lett. 97, 087209 (2006).
[3] D. Heidarian and K. Damle, Phys. Rev. Lett. 95, 127206 (2005).
[4] R. G. Meiko et al, Phys. Rev. Lett. 95, 127207 (2005).
[5] Pinaki Sengupta, Leonid P. Pryadko, Fabien Alet, Matthias Troyer and Guido Schmid, Phys. Rev. Lett. 94, 207202 (2005).
[6] Stefan Wessel and Matthias Troyer, Phys. Rev. Lett. 95, 127205 (2005).
[7] V. W. Scarola et al., Phys. Rev. A 73, 051601(R) (2006).
[8] E. Kim and M. H. W. Chan, Nature (London) 427, 225 (2004); Science 305, 1941 (2004).
[9] A. S. C. Rittner and J. D. Reppy, Phys. Rev. Lett. 97, 165301 (2006).
[10] S. Sasaki, R. Ishiguro, F. Caupin, H. Maris and S. Balibar, Science 313, 1098 (2006).
[11] L. Pollet et al., Phys. Rev. Lett. 98, 135301 (2007).
[12] M. Greiner, O. Mandel, T. Esslinger, T. W. Haensch, and I. Bloch, Nature 415, 39 (2002).
[13] I. Bloch, J. Dalibard and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).
[14] M.P.A. Fisher, P.B. Weichmann, G. Grinstein and D.S. Fisher, Phys. Rev. B 40, 546 (1989).
[15] D. Jaksch, C. Brudon, J. I. Cirac, C. W. Gardiner and P. Zoller Phys. Rev. Lett. 81 3108 (1998).
[16] T. Mishra, R. V. Pai and B. P. Das, arXiv:0906.2551.
[17] L. Mathey, Phys. Rev. B, 75, 144510 (2007).
[18] A. Griesmaier, et al., Phys. Rev. Lett. 94, 160401 (2005).
[19] V. A. Kashurnikov and B. V. Svistunov, Phys. Rev. B 53, 11776 (1996).
[20] G. G. Batrouni, R. T. Scalettar, G. T. Zimanyi and A. P. Kampf, Phys. Rev. Lett. 74 2527 (1995).
[21] P. Niyaz, R. T. Scalettar, C. Y. Fong and G. G. Batrouni, Phys. Rev. B. 44, 7143 (1991).
[22] T. D. Kuhner and H. Monien, Phys. Rev. B 58, R14741 (1998).
[23] R. V. Pai and R. Pandit, Phys. Rev. B 71, 104508 (2005).
[24] T.D. Kuhner, S. R. White, H. Monien, Phys. Rev. B. 61,12474 (2000).
[25] S. R. White, Phys. Rev. Lett. 69, 2863 (1992); Phys. Rev. B 48, 10345 (1993).
[26] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
[27] Laura Urba et al Phys. B: At. Mol. Opt. Phys. 39 5187 (2006).
[28] S. Ramanan, T. Mishra, M. S. Luthra, R. V. Pai, B. P. Das, Phys. Rev. A 79, 013625 (2009).
[29] F. J. Burnell, Meera M. Parish, N. R. Cooper and S. L. Sonder, arXiv:0901.3366
[30] Manoranjan Kumar, Sujit Sarkar, S. Ramasesha, arXiv:0812.3059