Snowmass White Paper: prospects for the measurement of top-quark couplings

Gauthier Durieux,a Abel Gutiérrez Camacho,b Luca Mantani,c Víctor Miralles1, b,d Marcos Miralles López,b María Moreno Liácer,b René Poncelet,e Eleni Vryonidou,f Marcel Vosb

aCERN, Theoretical Physics Department, Geneva 23 CH-1211, Switzerland
bIFIC, Universitat de València and CSIC, Spain
cDAMTP, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, United Kingdom
dINFN, Sezione di Roma, Piazzale A. Moro 2, I-00185 Roma, Italy
eCavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, United Kingdom
fDepartment of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom

ABSTRACT: In this contribution to the 2021 Snowmass community planning exercise that informs the American strategy for particle physics, we present the prospects for measurements of the top-quark couplings at future colliders. Projections are presented for the high luminosity phase of the Large Hadron Collider and a future Higgs/electroweak/top factory electron-positron collider. Results are presented for the expected bounds on Wilson coefficients of the relevant SMEFT operators from a global fit to the top physics sector.
1 Introduction

High-energy colliders provide a wealth of measurements of the rates, asymmetries and differential cross sections of a large number of processes. The Standard Model Effective Field Theory offers a systematic framework to order all these data and search for subtle patterns of deviations from the Standard Model. Fits of the dimension-six operator coefficients to projections for future experiments moreover offer an excellent benchmark to understand the constraining power of future data sets, without assuming ad-hoc scenarios for beyond-the-Standard-Model phenomena.

Since the discovery of the top quark, the Tevatron and LHC experiments have developed an extensive program of measurements of top-quark properties and interactions. Several groups have performed global fits to the SMEFT operator coefficients that affect the top-quark sector [1–3] or the top/Higgs/electroweak sector [4, 5].

Also bottom-quark production is experimentally distinguishable from other QCD processes that lead to final states with jets, thanks to precise vertex detectors and sophisticated flavour tagging algorithms. As the left-handed top and bottom quarks are part of the same weak-isospin doublet, and share a dependence on certain Wilson coefficients [6, 7], we consider both third-generation quarks together in this work,
including the bottom-quark operators that affect top-quark or otherwise relevant observables in our fit.

The new collider facilities contemplated in the global road maps for particle physics (see Ref. [8] for the 2020 update of the European strategy) are expected to improve the measurement of top- and bottom-quark interaction rates and properties. The remaining LHC program, including the high-luminosity upgrade (HL-LHC), can provide precise rate measurements for rare top production processes and can extend the classical hadron-collider top production processes well into the boosted regime [9]. The main strength of an electron-positron collider operated above the top-quark pair production threshold is that it enables an ultra-precise characterisation of the top-quark electroweak (EW) interactions [10]. Finally, a new hadron or lepton collider that pushes the energy frontier to the 10 TeV scale may open up a new kinematic regime, strongly enhancing the sensitivity to four-quark operators [7].

In this contribution, we study the impact of the HL-LHC and several future electron-positron collider scenarios on the top- and bottom-quark sectors of the SMEFT. All the fits presented here have been performed using the HEPfit package [11]. We do not provide quantitative results for the potential of the highest-energy options (FCClh, muon collider, advanced electron-positron collider), but discuss some qualitative features.

2 SMEFT basis

Effects of new physics in the couplings of the top quark can be described as effective interactions of SM particles at energies below a new physics matching scale Λ. These effective interactions can be parameterised in terms of a set of Wilson coefficients C_i of dimension-six operators O_i in the effective Lagrangian,

$$L_{\text{eff}} = L_{\text{SM}} + \left(\frac{1}{\Lambda^2} \sum_i C_i O_i + \text{h.c.} \right) + \mathcal{O} \left(\Lambda^{-4} \right), \quad (2.1)$$

where, for this work, the sum runs over the operators shown in Tables 1 and 2 that involve top and bottom quarks, as described below, and which can be interpreted in terms of new physics mediators. This EFT preserves the Lorentz and gauge symmetries of the SM, and operators with odd dimension are omitted since they violate baryon or lepton number.

These dimension-six operators contribute to the collider observables that we consider in this work. The leading-order contribution is given by the interference of the dimension-six operators with the SM, which generates linear terms in the operator coefficients divided by the square of the new physics scale Λ. Quadratic contributions are generated by squaring the amplitudes featuring a dimension-six operator insertion and lead to terms of order Λ^{-4}, the same order as the interference
Table 1. Here we present the Wilson coefficients that have been fitted in our analysis in terms of those of Table 2. Those in first block are related with the two-quark operators, those in the second block with the four-quark operators and the last block is related with the two-quark two-lepton operators.

of the SM with the dimension-eight operators that we ignore in this work. Even if the known quadratic terms are often included in SMEFT fits [12], we opt for a more conservative approach here and include only the linear ones. For the two-quark operators similar constraints could be obtained while using linear and linear plus quadratic terms, for most of the Wilson coefficients, as shown in Ref. [13]. For the four-quark operators the inclusion of quadratic terms helps to eliminate the blind directions since they reduce the possibility of having strong cancellations among the different contributions. This effect can be observed when comparing the results of Ref. [5] (where only linear terms are included) with the results of Ref. [4] (where linear and quadratic terms are considered). Note also that, considering only linear terms, we lose sensitivity to the four-quark operators featuring a colour-singlet top current, since they do not interfere with the dominant QCD amplitudes for pair production. We refer to Ref. [1] for a detailed study on the contributions of the top-quark operators to the observables included.

The number of operators involved in the SMEFT description is prohibitive if one adopts the most general flavour structure. We focus on the operator coefficients of the Warsaw basis [14] (see also Refs. [15, 16]) that involve at least one top quark, as well as the bottom-quark operators that affect the observables included in our study. Motivated by the minimal flavour violation ansatz, a $U(2)_q \otimes U(2)_u \otimes U(2)_d$ symmetry is imposed among the first two generations, as in the conventions proposed by the LHC Top Working Group [12]. The three lepton generations are treated
Operators

Relevant operators

Coefficient	Operator	Coefficient	Operator
\(C_{\psi Q} \)	\((Q_{\gamma^\mu}Q)\left(\varphi^\dagger_i \overrightarrow{D}_{\mu j} \varphi \right)\)	\(C_{\psi Q}^3 \)	\((Q_{\gamma^\mu}\bar{Q})\left(\varphi^\dagger_i \overrightarrow{D}_{\mu j}^i \varphi \right)\)
\(C_{\psi t} \)	\((\bar{t}_{\gamma^\mu} t)\left(\varphi^\dagger_i \overrightarrow{D}_{\mu j} \varphi \right)\)	\(C_{\psi b} \)	\((b_{\gamma^\mu} b)\left(\varphi^\dagger_i \overrightarrow{D}_{\mu j} \varphi \right)\)
\(C_{t_{\varphi}} \)	\((Q t)\left(\varphi^\dagger \varphi \right)\)	\(C_{t G} \)	\((i\sigma_{\mu\nu} T^A t)\left(\varphi^\dagger G_{\mu\nu}^A \right)\)
\(C_{tW} \)	\((\bar{Q} R^I \sigma_{\mu\nu} t)\left(\varphi^\dagger W_{\mu\nu} \right)\)	\(C_{t B} \)	\((\bar{Q} R^I \sigma_{\mu\nu} t)\left(\varphi^\dagger B_{\mu\nu} \right)\)
\(C_{q_{q}}^{(ijkl)} \)	\((\bar{q}_l \gamma^\mu q_j)(\bar{q}_k \gamma^\mu q_l)\)	\(C_{q_{q}}^{3(ijkl)} \)	\((\bar{q}_l \gamma^\mu q_j)(\bar{q}_k \gamma^\mu q_l)\)
\(C_{u_{u}}^{(ijkl)} \)	\((\bar{u}_l \gamma^\mu u_j)(\bar{u}_k \gamma^\mu u_l)\)	\(C_{u_{u}}^{8(ijkl)} \)	\((\bar{u}_l \gamma^\mu T^A u_j)(\bar{d}_k \gamma^\mu T^A d_l)\)
\(C_{q_{u}}^{8(ijkl)} \)	\((\bar{q}_l \gamma^\mu T^A q_j)(\bar{u}_k \gamma^\mu T^A u_l)\)	\(C_{q_{u}}^{8(ijkl)} \)	\((\bar{q}_l \gamma^\mu T^A q_j)(\bar{d}_k \gamma^\mu T^A d_l)\)
\(C_{i Q}^1 \)	\((Q_{\gamma^\mu} Q)\left(\bar{t}_{\gamma^\mu} t\right)\)	\(C_{i Q}^3 \)	\((Q_{\gamma^\mu} Q)\left(\bar{t}_{\gamma^\mu} t\right)\)
\(C_{i t} \)	\((\bar{t}_{\gamma^\mu} t)\left(\bar{t}_{\gamma^\mu} t\right)\)	\(C_{i b} \)	\((b_{\gamma^\mu} b)\left(\bar{t}_{\gamma^\mu} t\right)\)
\(C_{e Q} \)	\((Q_{\gamma^\mu} Q)\left(\bar{e}\gamma^\mu e\right)\)	\(C_{e t} \)	\((\bar{e}\gamma^\mu e)\left(\bar{e}\gamma^\mu e\right)\)
\(C_{e b} \)	\((b_{\gamma^\mu} b)\left(\bar{e}\gamma^\mu e\right)\)	\(C_{e b} \)	\((b_{\gamma^\mu} b)\left(\bar{e}\gamma^\mu e\right)\)

| Table 2. | Here we show the most relevant operators whose linear combinations have been fitted in this work. The first block are two-quark operators, the second block are four-quark operators and the last block are two-quark two-lepton operators. In these operators \(Q \) is the left-handed doublet of the two heaviest quarks, the Latin letters are flavour indices, \(\tau^I \) are the Pauli matrices, \(T^A = \lambda^A / 2 \) with \(\lambda^A \) the Gell-Mann matrices. |

The operator coefficients included in our analysis are listed in Table 1 and the operators are defined in Table 2. The selected sub-set of operators consists of three main blocks: the two-quark operators that modify top- and bottom-quark electroweak couplings and the \(t\bar{t}\)-gluon vertex, the four-quark operators of the type \(q\bar{q} t\bar{t} \) (i.e. two light quarks and two heavy quarks) and the two-lepton-two-heavy-quark operators of the type \(e^+ e^- t\bar{t} \) and \(e^+ e^- b\bar{b} \). The four-quark operators are best probed at hadron colliders, while \(e^+ e^- \) colliders can provide better bounds on the two-lepton-two-quark operators. Both types of machines can provide bounds on the two-fermion operators and a direct comparison is possible for this set. As in Ref. [12] we use the linear combinations \(O_{\psi Q}^1 \equiv O_{\psi Q}^1 - O_{\psi Q}^3 \) and \(O_{\psi Z} \equiv - \sin \theta_W O_{qB} + \cos \theta_W O_{qW} \), and, likewise, \(C_{i Q}^{-1} \equiv C_{i Q}^1 - C_{i Q}^3 \), as indicated in Table 2.
3 Prospects for the HL-LHC

In this section, we discuss the projections for the HL-LHC top physics measurements included in our fit.

The LHC is a top-quark factory that produces enormous samples of $t\bar{t}$ events and sizeable samples for rare top processes. The prospects for measurements at the LHC for the full 3000 fb$^{-1}$ expected after the high-luminosity phase of the LHC are based on an extrapolation from current (run 2) measurements. The measurements that form the basis for the HL-LHC projection are listed in Table 3, the inputs used for each observable can be found in App. A.

The projections of the measurements of rare top-quark production processes are modelled on the S2 scenario used to predict the precision of Higgs coupling measurements in Ref. [17]. This scenario envisages that many statistical and experimental uncertainties scale as $1/\sqrt{L_{\text{int}}}$, where L_{int} is the integrated luminosity. For the complete HL-LHC programme, experimental uncertainties are reduced by a factor 5. Theory and modelling uncertainties are divided by two, with respect to today’s state of the art. This assumes N2LO calculations will be achieved for rare associated production processes, and that Monte Carlo modelling can significantly be improved in the next decade.

To gain the maximal sensitivity to the EFT coefficients, differential measurements are included in our analysis. As in Ref. [13], for the $pp \to t\bar{t}Z$ and $pp \to t\bar{t}\gamma$ processes, differential measurements as a function of the Z-boson and photon p_T are included, enhancing the sensitivity to C_{tZ}, in particular [18].

For the top-quark pair production process, statistics is abundant and measurements in the bulk already reach a precision of a few %. The inclusive cross section measurement is currently limited to a 2% uncertainty [43] by the uncertainty on the integrated luminosity. This uncertainty is expected to be reduced to approximately 1% at the HL-LHC [9]. Currently, theory uncertainties of the N2LO calculation are at the level of 3–4% for the inclusive cross section [19]. These might be reduced to roughly half with the calculation of the N3LO corrections and the improvement of the proton PDFs. Even in that case, theory uncertainties are likely to remain the limiting factor.

The $t\bar{t}$ charge asymmetry is a subtle effect at the LHC, but it brings important information to EFT fits [44]. As a ratio, it can be precisely predicted [45]. Modelling uncertainties play an important role [21] and are likely to limit future progress in the inclusive measurement. Therefore, a less aggressive scenario is adopted, where all experimental systematic uncertainties are improved by a factor 1/2 and only the statistical uncertainty scales with $1/\sqrt{L_{\text{int}}}$.

For top-quark pair production, differential measurements of the cross section [20] and the charge asymmetry [21] as a function of the invariant mass of the $t\bar{t}$ system are considered. A promising avenue for progress is the boosted regime, where the
sensitivity to four-fermion operators increases considerably [46]. Measurements of the cross section and charge asymmetry for $t\bar{t}$ systems produced at large invariant mass already play an important role in the constraints on the four-fermion operators and their weight will increase if measurements on bulk $t\bar{t}$ are limited by experimental or theoretical systematic uncertainties. To take maximal advantage of this potential, the range of the projections is extended further into the high-$m_{t\bar{t}}$ tail than the current run 2 measurements. More details in the binning that has been considered can be found in App. C.

The 95% probability bounds from a fit to the current data are shown as the dark red bars in Fig. 1. The data include LHC run 2 and run 1 measurements and several legacy results from the Tevatron, LEP, and SLD experiments. The light red bars present the extrapolation to the complete HL-LHC program, with an integrated luminosity of 3 ab$^{-1}$.

Across the board, the HL-LHC program is expected to improve the bounds by a factor of two to four with respect to the current run 2 limits, both for individual bounds and global fit results. Exceptions are the individual bounds on $C_{\phi Q}^{-}$ and $C_{\phi Q}^{3}$, that continue to depend on the Zbb measurements at the Z-pole.

Generally, the progress envisaged in the S2 scenario is limited by the theory and modelling uncertainties, while statistical and experimental uncertainties are expected to be sub-dominant in nearly all measurements in the S2 scenario. Therefore,

Process \rightarrow Observable	\sqrt{s}	L_{int}	Experiment	SM	Ref.
$pp \rightarrow tt$	$d\sigma/dm_{t\bar{t}}$ (15+3 bins)	13 TeV	140 fb$^{-1}$	CMS	[19] [20]
$pp \rightarrow t\bar{t}$	$dA_{C}/dm_{t\bar{t}}$ (4+2 bins)	13 TeV	140 fb$^{-1}$	ATLAS	[19] [21]
$pp \rightarrow tH + tH_{q}$	σ	13 TeV	140 fb$^{-1}$	ATLAS	[22] [23]
$pp \rightarrow t\bar{t}Z$	$d\sigma/dp_{Z}^2$ (7 bins)	13 TeV	140 fb$^{-1}$	ATLAS	[24] [25]
$pp \rightarrow t\bar{t}\gamma$	$d\sigma/dp_{\gamma}^2$ (11 bins)	13 TeV	140 fb$^{-1}$	ATLAS	[26, 27]
$pp \rightarrow tZq$	σ	13 TeV	77.4 fb$^{-1}$	CMS	[29] [30]
$pp \rightarrow t\gamma q$	σ	13 TeV	36 fb$^{-1}$	CMS	[31] [31]
$pp \rightarrow tW$	σ	13 TeV	36 fb$^{-1}$	CMS	[22, 32] [33]
$pp \rightarrow t\bar{b}$ (s-ch)	σ	8 TeV	20 fb$^{-1}$	LHC	[34, 35, 36]
$pp \rightarrow tW$	σ	8 TeV	20 fb$^{-1}$	LHC	[37]
$pp \rightarrow tq$ (t-ch)	σ	8 TeV	20 fb$^{-1}$	LHC	[34, 35, 36]
$t \rightarrow Wb$	F_0, F_L	8 TeV	20 fb$^{-1}$	LHC	[38] [39]
$p\bar{p} \rightarrow tb$ (s-ch)	σ	1.96 TeV	9.7 fb$^{-1}$	Tevatron	[40] [41]
$e^-e^+ \rightarrow bb$	R_b, A_{FBLR}^{bb}	~ 91 GeV	202.1 pb$^{-1}$	LEP/SLD	- [42]

Table 3. Measurements included in the EFT fit of the top-quark electroweak sector. For each measurement, the process, the observable, the centre-of-mass energy, the integrated luminosity and the experiment/collider are given. The last two columns list the references for the predictions and measurements that are included in the fit. LHC refers to the combination of ATLAS and CMS measurements. In a similar way, Tevatron refers to the combination of CDF and D0 results, and LEP/SLD to different experiments from those two accelerators.
Figure 1. The 95% probability bounds on the Wilson coefficients for dimension-six operators that affect the top-quark production and decay measurements listed in Table 3 after run 2 of the LHC (in dark red) and prospects for the bounds expected after completion of the complete LHC program, including the high-luminosity stage (in light red). Only linear terms proportional to Λ^{-2} are taken into account in the dependence of the observables on the Wilson coefficients. The individual bounds obtained from a single-parameter fit are shown as solid bars, while the global or marginalised bounds obtained fitting all Wilson coefficients at once are indicated by the full bars (shaded region in each bar). The correlations between the Wilson coefficients obtained in the global fit can be found in App. B.

Improving the accuracy of fixed-order predictions beyond the factor two envisaged in the S2 scenario, which already assumes significant advances in the theoretical calculations, will lead to a direct improvement of the sensitivity. This will, however, likely require N^3LO precision for $2 \to 3$ processes with top quarks in the final state.

The boosted regime is indeed confirmed as one of the keys to improving bounds on the operators that affect the top-quark pair production process. In particular, the high-m_t tail of the top-quark pair production measurements provides a significant reduction in the allowed regions of the four-quark operators, which shrink by a factor between two and five (depending on the operator) thanks to the enhanced sensitivity in this regime and the more pronounced improvement in the measurement. This effect is present even in a fit that only includes the linear ($\mathcal{O}(\Lambda^{-2})$) terms in the
parameterisation of the EFT dependence.

The marginalised bounds on the four-fermion operators remain an order of magnitude worse than the individual bounds after the HL-LHC, even if both individual and global bounds improve considerably. This is due to unresolved correlations between the coefficients. The same feature is observed in recent fits to the top sector of the SMEFT [1, 2] and in global Higgs/EW/top fits [4, 5]. Stricter limits can be obtained if the dimension-six-squared terms proportional to Λ^{-4} are included in the fit [4].

Two-quark two-lepton operators, omitted in this section, can also be probed at the LHC. Dedicated signal regions, for instance with off-Z-peak dilepton invariant masses in $pp \to t\bar{t}\ell^+\ell^-$ [47–49], would increase their sensitivity.

4 Prospects for e^+e^- colliders

In this section, we study the impact of precision measurements in $e^+e^- \to b\bar{b}$ and $e^+e^- \to t\bar{t}$ production, using operating scenarios of the main circular and linear collider concepts.

Prospects for the $e^+e^- \to b\bar{b}$ process are included that are based on the full-simulation studies of the ILD concept [50] at $\sqrt{s} = 250$ GeV. The prospects are based on realistic estimates of efficiency and acceptance, including the signal losses required to ensure a robust calibration of the flavour tagging efficiency. The statistical uncertainties on the measurements of the cross section and forward-backward asymmetry are complemented by polarisation and flavour-tagging systematics. For the Z-pole runs we use the projections for R_b and A_{FB} provided by the FCCee and CEPC projects for their “TeraZ” runs at the Z-pole.

The $e^+e^- \to t\bar{t}$ process opens up for centre-of-mass energies that exceed twice the top mass (i.e. $\sqrt{s} \gtrsim 350$ GeV) and probes the electroweak couplings of the top quark at tree-level. Data taken with different beam polarisations at linear colliders can be used to distinguish the photon and Z-boson couplings [7, 10, 51, 52]. At circular colliders, a measurement of the final state polarisation using the semi-leptonically decaying top quarks can also be used to separate the two contributions [53]. We base our prospects on the study of statistically optimal observables defined at leading order on the $e^+e^- \to t\bar{t} \to WbWb$ differential distribution [7]. This $WbWb$ final state also receives contribution from single top production which become sizeable at high centre-of-mass energies. Realistic acceptance, identification and reconstruction efficiencies are estimated from full-simulation studies for the ILC and CLIC in Ref. [51, 54]. Since they were performed only for sub-set of centre-of-mass energies and beam polarisations, overall efficiency factors are extrapolated as a functions of the centre-of-mass energy. They drop significantly for the TeV centre-of-mass energies of ILC and CLIC since a degradation of top-selection and flavour-tagging capabilities is expected in this regime.
Figure 2. Comparison of current LHC constraints with HL-LHC ones, and those deriving from ILC runs at 250, 500 and 1000 GeV. The limits on the $q\bar{q}t\bar{t}$ and C_{tG} coefficients are not shown, since the e^+e^- collider measurements considered are not sensitive to them, but all operators are included in the global fit. The improvement expected from the HL-LHC on these coefficients is shown in Fig. 1. The solid bars provide the individual limits of the single-parameter fit and the shaded ones the marginalised limits of the global fit. The correlations between the Wilson coefficients obtained in the global fit can be found in App. B.

In Fig. 2, the impact of runs at different centre-of-mass energies is illustrated. The current bounds in brown are compared to HL-LHC ones in red. The subsequent bars add data at $\sqrt{s} = 250$ GeV, 500 GeV and 1 TeV. The beam polarisations and integrated luminosities of the different ILC stages are summarised in Table 4. Only the electroweak operators are presented, as the e^+e^- data have the strongest impact there, but results corresponds to a global analysis, including also the $q\bar{q}t\bar{t}$ operators and C_{tG}.

The dark green bar shows that the “Higgs factory” run improves the bounds on bottom-quark operators, including $C_{3\phi Q}$ and $C_{-\phi Q}$ and $C_{\phi b}$. The improvement is especially pronounced for the individual bounds. As expected, data above the top-quark pair production threshold is required to improve the bounds on the top-quark operators.

Runs at two different centre-of-mass energies above the top-quark pair produc-
Figure 3. Comparison of the constraints expected from a combination of HL-LHC and lepton collider data. The limits on the $q\bar{q}t\bar{t}$ and C_{tG} coefficients are not shown, since the e^+e^- collider measurements considered are not sensitive to them, but all operators are included in the global fit. The improvement expected from the HL-LHC on these coefficients is shown in Fig. 1. The solid bars provide the individual limits of the single-parameter fit and the shaded ones the marginalised limits of the global fit. The correlations between the Wilson coefficients obtained in the global fit can be found in App. B.

...tion threshold are required to disentangle the $e^+e^-t\bar{t}$ operator coefficients from the two-fermion operator coefficients [7]. The two sets of operators have very different scaling with energy: the sensitivity to four-fermion operators grows quadratically, while it is constant or grows only linearly for two-fermion operators. In a fit to data taken at a single centre of mass, linear combinations of their coefficients remain degenerate and form blind directions. The combination of runs at two different centre-of-mass energies effectively disentangles them and provides global fit constraints close to the individual bounds.

Several further processes are accessible to e^+e^- colliders, but have not been taken into account in this study. The top-quark Yukawa coupling can be determined through the tree-level dependence of the associated $e^+e^-\to t\bar{t}H$ production process. This requires runs with a centre-of-mass energy above 500–550 GeV. At linear colliders, where the luminosity grows with energy, there is a broad plateau up to about 1.5 TeV where $e^+e^-\to t\bar{t}H$ is accessible. Based on full-simulation studies of Ref. [55]...
we expect an improvement in the constraint on $C_{t\bar{t}e}$ by a factor two with respect to the HL-LHC.

In Fig. 3, we compare the bounds expected from the HL-LHC and from the final stages of the CEPC, FCC-ee, ILC and CLIC. The centre-of-mass energies, integrated luminosities and beam polarisations envisaged for each of these projects are given in Table 4. The circular colliders (FCC-ee and CECP) operated at and slightly above the $t\bar{t}$ threshold are expected to improve constraints on the bottom- and top-operators by factors 5 and 2 for some two-fermion operators. Indeed, their “TeraZ” runs provide very competitive bounds (individual ones, in particular) on two-fermion bottom-operator coefficients. Their constraining power on four-fermion operators is, however, limited by the energy reach. Since, at these colliders, the two runs above the $t\bar{t}$-threshold are very close the two-fermion and four-fermion operators are harder to disentangle. The global limits remain significantly above the individual bounds.

The linear colliders (ILC and CLIC), operated at two centre-of-mass energies above the $t\bar{t}$ threshold, can provide very tight bounds on all operators. The bounds on four-fermion operators take advantage of the energy-growing sensitivity and become very competitive if e^+e^- collision data at a centre-of-mass energy greater than 1 TeV is available. The ILC1000 and CLIC3000 bounds of $O(10^{-3})$ on the $e^+e^-t\bar{t}$ operators are by far the tightest top-sector SMEFT constraints that can be achieved at any future collider considered in this work.\footnote{A muon collider or advanced linear collider have the potential to improve these bounds further.}

Table 4

Machine	Polarisations	Energy	Luminosity	Reference
ILC	$P(e^+, e^-):(\pm 30\%, \mp 80\%)$	250 GeV	2 ab$^{-1}$	[56]
		500 GeV	4 ab$^{-1}$	
		1 TeV	8 ab$^{-1}$	
CLIC	$P(e^+, e^-):(0\%, \pm 80\%)$	380 GeV	1 ab$^{-1}$	[57]
		1.4 TeV	2.5 ab$^{-1}$	
		3 TeV	5 ab$^{-1}$	
FCC-ee	Unpolarised	Z-pole	150 ab$^{-1}$	[58]
		240 GeV	5 ab$^{-1}$	
		350 GeV	0.2 ab$^{-1}$	
		365 GeV	1.5 ab$^{-1}$	
CEPC	Unpolarised	Z-pole	57.5 ab$^{-1}$	[58]
		240 GeV	20 ab$^{-1}$	
		350 GeV	0.2 ab$^{-1}$	
		360 GeV	1 ab$^{-1}$	
5 Pushing the energy frontier

Several projects have been defined that extend the energy of colliders well beyond the TeV scale. Collisions at a centre-of-mass energy of 10 TeV and beyond could be achieved at a large (100 km circumference) hadron collider [59, 60], at a linear electron-positron collider implementing novel accelerating techniques [61], or at compact circular muon colliders [62]. The potential of these machines for the SMEFT fit lies mainly in the energy-growing sensitivity to new physics. In the top- and bottom-quark sectors of the SMEFT, the sensitivity to four-fermion operators shows a strong increase [7, 46, 63, 64]. For a given measurement precision, bounds derived in higher-energy collisions are therefore much stronger than those derived from measurements at lower energy.

We illustrate the increased sensitivity with the dependence of the differential cross section at high $m_{t\bar{t}}$ to C_{tu}^8 and C_{tG}. At the LHC, the cross section measurement in the boosted regime (with $m_{t\bar{t}} > 1.4$ TeV), yields the following relation with the Wilson coefficient:

$$\sigma(m_{t\bar{t}} > 1.4 \text{ TeV}) = 1.8 \text{ pb} \times [1 + 0.3 \cdot C_{tG} + 0.1 \cdot C_{tG}^2 + 0.1 \cdot C_{tu}^8 + 0.3 \cdot (C_{tu}^8)^2 + ...] \quad (5.1)$$

A 100 TeV pp collider has a seven times larger energy reach and one could envisage a measurement with $m_{t\bar{t}} > 10$ TeV that would have the following dependence:

$$\sigma(m_{t\bar{t}} > 10 \text{ TeV}) = 0.1 \text{ pb} \times [1 + 0.3 \cdot C_{tG} + 1.8 \cdot C_{tG}^2 + 3 \cdot C_{tu}^8 + 256 \cdot (C_{tu}^8)^2 + ...] \quad (5.2)$$

The increase in the factors that multiply the Wilson coefficients is very clear for the quadratic term of C_{tG} and for both the linear and quadratic terms in C_{tu}^8 (and similarly for the other four-fermion operator coefficients).\(^2\)

We therefore expect that FCChh and SPPC measurements in the 10 TeV regime, with precision comparable to that of current boosted measurements at the LHC, could provide bounds that are a factor 20 sharper than the HL-LHC prospects, bringing the constraints down from $\mathcal{O}(1 \text{ TeV}^{-2})$ to $\mathcal{O}(0.1 \text{ TeV}^{-2})$. This, of course, requires that techniques be developed to efficiently trigger, select and reconstruct events with highly boosted top quarks [65, 66] and that the experimental response and Monte Carlo modelling be controlled to a similar level.

6 Conclusion

New energy-frontier colliders are expected to provide an important push for top- and bottom-quark physics. We assess this potential in the framework of the Standard

\(^2\)Note that here we are showing the impact on linear and quadratic terms since many studies include both contributions. We remark that in the quantitative analysis presented in this work only linear terms are considered, as explained above.
Model Effective Field Theory, performing fits to measurement projections in several scenarios.

For the study of rare top production processes at the High-Luminosity phase of the LHC, we adopt the S2 scenario that is also used for Higgs measurements [17]. It envisages a strong ($\propto 1/\sqrt{L_{\text{int}}}$) reduction of experimental uncertainties and a reduction by a factor two for theory and modelling uncertainties. For the very abundant top-quark pair production, a more conservative scenario is adopted. Across the board, the HL-LHC is expected to improve bounds on Wilson coefficients by a factor three with respect to the current results that are dominated by LHC run 2. Global bounds on two-fermion operator coefficients are expected to range between 0.03 TeV$^{-2}$ and 6 TeV$^{-2}$, while four-fermion operator coefficients remain of order 1 due to strong degeneracies.

A new electron-positron collider can provide very tight bounds on bottom-quark operators and — if operated above the $t\bar{t}$ production threshold — on the top-quark ones. Constraints on the two-fermion operator coefficients that affect the top- and bottom-quark electroweak couplings improve by up to two orders of magnitude, reaching order 0.1 TeV$^{-2}$ for most coefficients. With runs at several energies above the $t\bar{t}$ production threshold the entire sector can be tightly constrained. Operation at TeV centre-of-mass energies would yield bounds of order 10^{-3} TeV$^{-2}$ on the $e^+e^-t\bar{t}$ operator coefficients, making them the most precisely constrained operators in the top sector of the SMEFT. The Z-pole run offers the best bounds on the two-fermion bottom-quark operators.

An energy-frontier proton collider is expected to further improve the bounds on four-fermion operators involving a pair of top quarks. While no systematic and quantitative projections have been released, the increased sensitivity to $q\bar{q}t\bar{t}$ operators in the highly boosted regime offers the potential for an order-of-magnitude improvement with respect to the HL-LHC projections at a 100 TeV proton collider.

Acknowledgments

The work of VM is supported by the Italian Ministry of Research (MUR) under the grant PRIN20172LNEEZ. EV has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme(Grant agreement No. 949451) and from a Royal Society University Research Fellowship through grant URF/R1/201553. RP acknowledges the support from the Leverhulme Trust and the Isaac Newton Trust, as well as the use of the DiRAC Cumulus HPC facility under Grant No. PPSP226. The work of MV is supported by the projects No. PGC2018-094856-B-100 (MICINN), PROMETEO-2018/060 (Generalitat Valenciana) and ILINKB20065 (CSIC). The work of MMLL is supported by the projects SEJI-2020/037 (Generalitat Valenciana) and RYC2019-
028510-I (MICINN). The work of AGC is supported by the program JAEICU-21-IFIC-6 (CSIC).

A Appendix: Inputs included in the fits

LHC and HL-LHC inputs

$pp \to t\bar{t}$	Measured (fb·GeV$^{-1}$)	SM (fb·GeV$^{-1}$)	LHC Unc. (fb·GeV$^{-1}$)	HL-LHC Unc. (fb·GeV$^{-1}$)						
	theo.	exp.	stat.	sys. + mod.	tot.	theo.	exp.	stat.	sys. + mod.	tot.
$m_{t\bar{t}}$: (250-400)	344.2	328.09	32.68	1.604	13.19	13.29	21.34	0.3465	6.600	6.660
$m_{t\bar{t}}$: (400-460)	871.7	883.38	111.28	4.784	41.29	41.57	55.64	1.0335	20.65	20.67
$m_{t\bar{t}}$: (480-560)	542.8	545.13	72.26	4.737	23.07	23.55	36.13	1.0233	11.54	11.58
$m_{t\bar{t}}$: (560-640)	315.3	318.36	46.58	4.561	14.22	14.93	23.29	0.9653	7.110	7.18
$m_{t\bar{t}}$: (640-720)	189.9	182.33	24.41	2.433	8.395	9.446	12.21	0.9356	4.198	4.30
$m_{t\bar{t}}$: (720-800)	108.6	109.27	18.79	3.748	5.468	6.629	9.395	0.8907	2.734	2.85
$m_{t\bar{t}}$: (800-900)	62.5	64.83	10.94	2.253	3.026	3.772	5.470	0.467	1.513	1.59
$m_{t\bar{t}}$: (900-1000)	36.97	36.59	6.877	1.550	1.988	2.521	3.439	0.3348	0.994	1.05
$m_{t\bar{t}}$: (1000-1200)	17.84	19.15	3.904	0.6554	0.9134	1.12	1.952	0.1416	0.4567	0.48
$m_{t\bar{t}}$: (1150-1300)	9.005	9.060	2.020	0.4129	0.5086	0.6551	1.010	0.08920	0.2543	0.27
$m_{t\bar{t}}$: (1300-1500)	3.815	4.256	1.113	0.2151	0.2024	0.2954	0.5565	0.04647	0.1012	0.11
$m_{t\bar{t}}$: (1500-1700)	1.769	1.777	0.5259	0.1441	0.1108	0.1817	0.2630	0.03113	0.0554	0.064
$m_{t\bar{t}}$: (1700-2000)	0.6941	0.6806	0.2203	0.0614	0.0397	0.0728	0.1101	0.01298	0.01985	0.0237
$m_{t\bar{t}}$: (2000-2300)	0.1905	0.23647	0.0994	0.0315	0.0170	0.0386	0.0497	0.00747	0.00850	0.0113
$m_{t\bar{t}}$: (2300-2600)*	–	0.12738	0.0640	–	–	–	0.0320	0.005416	0.00300	0.0072
$m_{t\bar{t}}$: (2600-3000)*	–	0.04184	0.0209	–	–	–	0.01045	0.002688	0.00103	0.0033
$m_{t\bar{t}}$: (3000-3500)*	–	0.01170	0.00551	–	–	–	0.002926	0.001271	0.000317	0.0015
$m_{t\bar{t}}$: (3500-4000)*	–	0.00329	0.001643	–	–	–	0.000822	0.000674	0.00097	0.00077

Table 5. We show the unfolded bin contents for the absolute parton-level differential cross-section measurement. The correlations are shown in Fig. 4.

$pp \to t\bar{t}$	Measured (%)	SM (%)	LHC Unc. (%)	HL-LHC Unc. (%)						
	theo.	exp.	stat.	sys. + mod.	tot.	theo.	exp.	stat.	sys. + mod.	tot.
$m_{t\bar{t}}$: (0-500)	0.45	0.55	0.0770	0.309	0.340	0.460	0.0385	0.0667	0.170	0.183
$m_{t\bar{t}}$: (500-750)	0.51	0.72	0.1008	0.219	0.210	0.304	0.0504	0.0474	0.105	0.115
$m_{t\bar{t}}$: (750-1000)	1.00	0.79	0.1106	0.533	0.460	0.704	0.0553	0.1152	0.230	0.257
$m_{t\bar{t}}$: (1000-1500)	1.69	0.96	0.1344	0.776	0.270	0.822	0.0672	0.1677	0.135	0.215
$m_{t\bar{t}}$: (1500-2000)*	–	1.01	0.1414	–	–	–	0.0707	0.5703	0.624	0.846
$m_{t\bar{t}}$: (2000-2500)*	–	1.10	0.1540	–	–	–	0.0770	1.4750	0.683	1.625
$m_{t\bar{t}}$: (2500-3000)*	–	1.85	0.2590	–	–	–	0.1295	5.4213	1.147	5.541

Table 6. We show the values included for the charged asymmetry. The correlations are shown in Fig. 5.
Table 7. We show the unfolded bin contents for the absolute parton-level differential cross-section measurement. The correlations are shown in Fig. 6.

$pp \to t\bar{t}Z$	Measured (fb \cdot GeV$^{-1}$)	SM (fb \cdot GeV$^{-1}$)	LHC Unc. (fb \cdot GeV$^{-1}$)	HL-LHC Unc. (fb \cdot GeV$^{-1}$)
	theo. stat. sys. mod. tot.			
p_T^Z: (0-40)	1.47 0.263 0.53 0.23 0.21	0.615 0.132 0.114 0.050 0.165 0.163		
p_T^Z: (40-70)	4.32 0.543 0.94 0.60 0.51	1.223 0.272 0.203 0.130 0.253 0.349		
p_T^Z: (70-110)	4.24 0.555 0.75 0.54 0.36	0.993 0.278 0.162 0.117 0.182 0.270		
p_T^Z: (110-160)	4.4 0.429 0.55 0.43 0.39	0.800 0.215 0.118 0.093 0.197 0.248		
p_T^Z: (160-220)	1.75 0.261 0.31 0.15 0.13	0.371 0.131 0.067 0.033 0.066 0.100		
p_T^Z: (220-290)	0.58 0.130 0.16 0.047 0.034	0.174 0.065 0.035 0.010 0.017 0.041		
p_T^Z: (290-360)	0.56 0.071 0.11 0.055 0.057	0.132 0.036 0.023 0.012 0.029 0.038		

Table 8. We show the unfolded bin contents for the absolute parton-level differential cross-section measurement. The correlations are shown in Fig. 7.

$pp \to t\bar{t}Y$	Measured (fb \cdot GeV$^{-1}$)	SM (fb \cdot GeV$^{-1}$)	LHC Unc. (fb \cdot GeV$^{-1}$)	HL-LHC Unc. (fb \cdot GeV$^{-1}$)
	theo. stat. sys. mod. tot.			
p_T^Y: (20-25)	1.782 0.006 0.116 0.168 0.108 0.231	0.043 0.04 0.036 0.054 0.070		
p_T^Y: (25-30)	1.328 0.040 0.089 0.052 0.092 0.138	0.020 0.019 0.011 0.046 0.051		
p_T^Y: (30-35)	0.966 0.0302 0.072 0.026 0.060 0.097	0.0151 0.016 0.0056 0.030 0.0342		
p_T^Y: (35-40)	0.705 0.0205 0.058 0.015 0.042 0.0753	0.0103 0.0125 0.0032 0.021 0.0248		
p_T^Y: (40-47)	0.474 0.0100 0.04 0.0096 0.048 0.0629	0.0089 0.0086 0.0201 0.024 0.0254		
p_T^Y: (47-55)	0.333 0.0094 0.031 0.0067 0.017 0.056	0.0047 0.0067 0.014 0.0085 0.0199		
p_T^Y: (55-70)	0.221 0.0218 0.056 0.019 0.038 0.061	0.0028 0.0041 0.00082 0.0041 0.0058		
p_T^Y: (70-85)	0.122 0.0128 0.0031 0.014 0.0026 0.0069 0.0158	0.0016 0.0030 0.00056 0.0035 0.0046		
p_T^Y: (85-100)	0.060 0.006037 0.0017 0.005 0.0014 0.00068 0.0086	0.00084 0.0011 0.00029 0.0034 0.0036		
p_T^Y: (100-120)	0.020 0.002373 0.00077 0.001 0.00044 0.00080 0.00314	0.00039 0.00065 0.000005 0.00040 0.00077		
p_T^Y: (120-300)	0.009 0.006750 0.00238 0.00045 0.000885 0.00014 0.00144	0.000049 0.000097 0.000028 0.000068 0.000069		

Table 9. The data shown is the inclusive cross-section written in fb for all the channels except for the W Helicities (F_0 and F_L).
Figure 4

Correlation matrix included for the differential cross section of $pp \rightarrow t\bar{t}$ extracted from [20]. Cells are filled if the correlation is higher than 10% in absolute value.

| $A_{F \text{max}}$ (bins) |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| (0 - 500) | 1.00 | -0.19 | 1.00 | 0.35 | 0.13 | -0.35 | 1.00 | -0.40 |
| (500 - 700) | -0.19 | 1.00 | 0.35 | 1.00 | -0.40 | 0.13 | -0.40 | 1.00 |
| (700 - 1000) | -0.35 | 1.00 | 0.35 | 1.00 | -0.40 | 0.13 | -0.40 | 1.00 |
| (1000 - 1300) | 0.13 | -0.40 | 1.00 | -0.27 | 0.10 | 0.10 | -0.27 | 1.00 |
| (1500 - 2000) | 0.13 | -0.40 | 1.00 | -0.27 | 0.10 | 0.10 | -0.27 | 1.00 |
| (2000 - 2000) | -0.27 | 1.00 | -0.15 | 0.10 | 0.20 | 1.00 | -0.15 | 0.20 |
| (3000 - 4000) | 0.10 | -0.15 | 1.00 | 0.20 | 1.00 | -0.15 | 1.00 | 0.20 |
| (4000 - 4000) | 0.10 | -0.15 | 1.00 | 0.20 | 1.00 | -0.15 | 1.00 | 0.20 |

Figure 5

Correlation matrix included for the differential measurements of the charged asymmetry of $pp \rightarrow t\bar{t}$ extracted from [21]. Cells are filled if the correlation is higher than 10% in absolute value.
Figure 6. Correlation matrix included for the differential measurements of the charged asymmetry of $pp \rightarrow t\bar{t}Z$ extracted from [25]. Cells are filled if the correlation is higher than 10% in absolute value.

Figure 7. Correlation matrix included for the differential measurements of the charged asymmetry of $pp \rightarrow t\bar{t}\gamma$ extracted from [28]. Cells are filled if the correlation is higher than 10% in absolute value.
Future e^+e^- colliders inputs: $e^+e^- \rightarrow b\bar{b}$

Machine	Polarisation	Energy	Luminosity	Observable	Value
ILC		250 GeV	2 ab$^{-1}$	σ_b	3182 ± 4930 fb
	$P(e^+, e^-)$:(−30%, +80%)			A_{FB}^b	0.6267 ± 0.000738
		500 GeV	4 ab$^{-1}$	σ_b	693.5 ± 11.88 fb
				A_{FB}^b	0.6194 ± 0.001140
		1 TeV	8 ab$^{-1}$	σ_b	168.10 ± 0.311 fb
				A_{FB}^b	0.617 ± 0.001342
	$P(e^+, e^-)$:(+30%, −80%)			σ_b	960.6 ± 1.774 fb
		250 GeV	2 ab$^{-1}$	A_{FB}^b	0.426 ± 0.00201
		500 GeV	4 ab$^{-1}$	σ_b	203.9 ± 0.442 fb
				A_{FB}^b	0.493 ± 0.00268
		1 TeV	8 ab$^{-1}$	σ_b	49.21 ± 0.145 fb
				A_{FB}^b	0.507 ± 0.00335
CLIC		380 GeV	1 ab$^{-1}$	σ_b	964.6 ± 2.03 fb
	$P(e^+, e^-)$(0%, +80%)			A_{FB}^b	0.680 ± 0.002
		1.5 TeV	2.5 ab$^{-1}$	σ_b	57.8 ± 0.311 fb
				A_{FB}^b	0.674 ± 0.005
		3 TeV	5 ab$^{-1}$	σ_b	14.41 ± 0.0923 fb
	$P(e^+, e^-)$(0%, −80%)			A_{FB}^b	0.673 ± 0.008
		380 GeV	1 ab$^{-1}$	σ_b	329.8 ± 1.01 fb
		1.5 TeV	2.5 ab$^{-1}$	σ_b	19.61 ± 0.153 fb
				A_{FB}^b	0.520 ± 0.011
		3 TeV	5 ab$^{-1}$	σ_b	4.88 ± 0.0505 fb
				A_{FB}^b	0.522 ± 0.015
FCC	Unpolaried	Z-pole	150 ab$^{-1}$	σ_b	8340800 ± 2449 fb
		240 GeV	5 ab$^{-1}$	A_{FB}^b	0.23365 ± 0.000130
		365 GeV	1.5 ab$^{-1}$	σ_b	647.2 ± 1.341 fb
				A_{FB}^b	0.591 ± 0.0016
CEPC	Unpolaried	Z-pole	57.5 ab$^{-1}$	σ_b	8340800 ± 1947 fb
		240 GeV	20 ab$^{-1}$	A_{FB}^b	0.23365 ± 0.000130
		365 GeV	1 ab$^{-1}$	σ_b	647.2 ± 1.51 fb
				A_{FB}^b	0.591 ± 0.00200

Table 10. Inputs included to restrict the bottom quark sector
Future e^+e^- colliders inputs: $e^+e^- \rightarrow t\bar{t}$

ILC500	Uncertainty	Uncertainty	Correlation
	Individual	Global	
$C_{\varphi Q}$	0.032	0.11	1.0000 0.8221 0.9412 0.9381
$C_{\varphi t}$	0.032	0.11	0.8221 1.0000 0.9379 0.9409
C_{tW}	0.0007	0.014	0.9411 0.9379 1.0000 0.9986
C_{tZ}	0.0008	0.016	0.9381 0.9409 0.9986 1.0000

ILC500+ ILC1000	Uncertainty	Uncertainty	Correlation
	Individual	Global	
$C_{\varphi Q}$	0.0268	0.0759	1.0000 0.306 0.734 0.720 -0.397 0.255 0.315 -0.227
$C_{\varphi t}$	0.0268	0.0764	0.306 1.0000 0.724 0.738 0.261 -0.317 -0.354 0.326
C_{tW}	0.00057	0.0079	0.734 0.724 1.0000 0.991 0.120 -0.160 0.178 -0.084
C_{tZ}	0.00065	0.0090	0.720 0.738 0.991 1.0000 0.093 -0.225 0.125 -0.129
C_{tQ}	0.00024	0.00041	-0.397 0.261 0.120 0.093 1.0000 -0.279 -0.180 0.184
C_{eQ}	0.00034	0.00053	0.255 -0.317 -0.160 -0.225 -0.279 1.0000 0.204 -0.055
C_{lt}	0.00029	0.00048	0.315 -0.354 0.178 0.125 -0.180 0.204 1.0000 -0.280
C_{et}	0.00025	0.00040	-0.227 0.326 -0.084 -0.129 0.184 -0.055 -0.280 1.0000

Table 11. Inputs included to restrict the top-quark sector in the ILC working at 500 GeV. These constraints come from an analysis with the optimal observables from Ref. [7]. The details of the ILC configuration can be found in Tab. 4.

CLIC	Uncertainty	Uncertainty	Correlation
	Individual	Global	
$C_{\varphi Q}$	0.065	0.127	1.0000 -0.097 0.509 0.585 -0.312 0.185 0.305 -0.256
$C_{\varphi t}$	0.065	0.128	-0.097 1.0000 0.593 0.604 0.310 -0.249 -0.266 0.259
C_{tW}	0.00125	0.0114	0.599 0.593 1.0000 0.992 0.110 -0.118 0.136 -0.082
C_{tZ}	0.00144	0.0130	0.585 0.604 0.992 1.0000 0.098 -0.148 0.112 -0.104
C_{lQ}	0.00012	0.00015	-0.312 0.310 0.110 0.098 1.0000 -0.114 -0.233 -0.026
C_{eQ}	0.00019	0.00021	0.185 -0.249 -0.118 -0.148 -0.114 1.0000 -0.066 -0.162
C_{lt}	0.00015	0.00018	0.305 -0.266 0.136 0.112 -0.233 -0.066 1.0000 -0.131
C_{et}	0.00013	0.00015	-0.256 0.259 -0.082 -0.104 -0.026 -0.062 -0.162 -0.131 1.0000

Table 12. Inputs included to restrict the top-quark sector in the ILC working at 500 GeV and 1000 GeV. These constraints come from an analysis with the optimal observables from Ref. [7]. The details of the ILC configuration can be found in Tab. 4.

Table 13. Inputs included to restrict the top-quark sector in CLIC. These constrains come from an analysis with the optimal observables from Ref. [7]. The details of the CLIC configuration can be found in Tab. 4.
Table 14. Inputs included to restrict the top-quark sector in the FCC−ee. These constrains come from an analysis with the optimal observables from Ref. [7]. The details of the FCC−ee configuration can be found in Tab. 4.

Table 15. Inputs included to restrict the top-quark sector in CEPC. These constrains come from an analysis with the optimal observables from Ref. [7]. The details of the CEPC configuration can be found in Tab. 4.

B Appendix: Correlation matrices

In the following we show the correlation matrices obtained for the different scenarios that we have considered.
Figure 8. Correlation matrix obtained for the global fit including the data of the LHC, Tevatron and LEP.
Figure 9

Correlation matrix obtained for the global fit including the data of the HL-LHC, Tevatron and LEP.
Figure 10. Correlation matrix obtained for the global fit including the data of the HL-LHC, Tevatron, LEP and ILC working at 250 GeV.
Figure 11. Correlation matrix obtained for the global fit including the data of the HL-LHC, Tevatron, LEP and ILC working at 250 GeV and 500 GeV.
Figure 12. Correlation matrix obtained for the global fit including the data of the HL-LHC, Tevatron, LEP and ILC working at 250 GeV, 500 GeV and 1000 GeV.
Figure 13. Correlation matrix obtained for the global fit including the data of the HL-LHC, Tevatron, LEP and the final stage of CLIC.
Figure 14. Correlation matrix obtained for the global fit including the data of the HL-LHC, Tevatron, LEP and the final stage of CEPC.
Figure 15. Correlation matrix obtained for the global fit including the data of the HL-LHC, Tevatron, LEP and the final stage of FCC.
Appendix: Binning for the differential measurements

The binning of the cross section measurement is based on the CMS measurement of Ref. [20], combining analyses targeting the resolved and boosted topologies. This analysis is available on HEPDATA under: https://www.hepdata.net/record/ins1901295

The binning of the charge asymmetry measurement is based on the ATLAS run 2 analysis reported in Ref. [21].

In both cases, the $m_{t\bar{t}}$ range is extended with several further bins to take advantage of the greater reach of the full HL-LHC programme and the energy-growth of the sensitivity of some operators. The final binning is given in Table 16. Bins that have changed with respect to Refs. [20, 21], and additional bins, are indicated with an asterisk (*).

observable	binning					
σ vs. $m_{t\bar{t}}$ [GeV]	bin 1	bin 2	bin 3	bin 4	bin 5	bin 6
250-400	400-480	480-560	560-640	640-720	720-800	
bin 7	bin 8	bin 9	bin 10	bin 11	bin 12	
800-900	900-1000	1000-1150	1150-1300	1300-1500	1500-1700	
bin 13	bin 14	bin 15	bin 16	bin 17	bin 18	
1700-2000	2000-2300	2300-2600*	2600-3000*	3000-3500*	3500-4000*	
A_C vs. $m_{t\bar{t}}$ [GeV]	bin 1	bin 2	bin 3	bin 4	bin 5	bin 6
500-750	750-1000	1000-1500	1500-2000*	2000-2500*	2500-3000*	

Table 16. The binning for the cross section and charge asymmetry differential measurements in $pp \rightarrow t\bar{t}$. Bins that differ from those used in the run 2 analyses are indicated with an asterisk (*).
References

[1] I. Brivio, S. Bruggisser, F. Maltoni, R. Moutafis, T. Plehn, E. Vryonidou, S. Westhoff, and C. Zhang, *O new physics, where art thou? A global search in the top sector*, JHEP 02 (2020) 131, arXiv:1910.03606 [hep-ph].

[2] N. P. Hartland, F. Maltoni, E. R. Nocera, J. Rojo, E. Slade, E. Vryonidou, and C. Zhang, *A Monte Carlo global analysis of the Standard Model Effective Field Theory: the top quark sector*, JHEP 04 (2019) 100, arXiv:1901.05965 [hep-ph].

[3] A. Buckley, C. Englert, J. Ferrando, D. J. Miller, L. Moore, M. Russell, and C. D. White, *Constraining top quark effective theory in the LHC Run II era*, JHEP 04 (2016) 015, arXiv:1512.03360 [hep-ph].

[4] J. J. Ethier, G. Magni, F. Maltoni, L. Mantani, E. R. Nocera, J. Rojo, E. Slade, E. Vryonidou, and C. Zhang (SMEFiT), *Combined SMEFT interpretation of Higgs, diboson, and top quark data from the LHC*, JHEP 11 (2021) 089, arXiv:2105.00006 [hep-ph].

[5] J. Ellis, M. Madigan, K. Mimasu, V. Sanz, and T. You, *Top, Higgs, Diboson and Electroweak Fit to the Standard Model Effective Field Theory*, JHEP 04 (2021) 279, arXiv:2012.02779 [hep-ph].

[6] G. Durieux, A. Irles, V. Miralles, A. Peñuelas, R. Pöschl, M. Perelló, and M. Vos, *The electro-weak couplings of the top and bottom quarks – global fit and future prospects*, JHEP 12 (2019) 098, arXiv:1907.10619 [hep-ph].

[7] G. Durieux, M. Perelló, M. Vos, and C. Zhang, *Global and optimal probes for the top-quark effective field theory at future lepton colliders*, JHEP 10 (2018) 168, arXiv:1807.02121 [hep-ph].

[8] *2020 Update of the European Strategy for Particle Physics* (CERN Council, Geneva, 2020).

[9] P. Azzi et al., *Report from Working Group 1: Standard Model Physics at the HL-LHC and HE-LHC*, CERN Yellow Rep. Monogr. 7 (2019) 1, arXiv:1902.04070 [hep-ph].

[10] M. S. Amjad et al., *A precise characterisation of the top quark electroweak vertices at the ILC*, Eur. Phys. J. C 75 (2015) 512, arXiv:1505.06020 [hep-ex].

[11] J. De Blas et al., *HEPfit: a code for the combination of indirect and direct constraints on high energy physics models*, Eur. Phys. J. C 80 (2020) 456, arXiv:1910.14012 [hep-ph].

[12] J. A. Aguilar-Saavedra, C. Degrande, G. Durieux, F. Maltoni, E. Vryonidou, C. Zhang, et al., *Interpreting top-quark LHC measurements in the standard-model effective field theory*, arXiv:1802.07237 [hep-ph].

[13] V. Miralles, M. M. López, M. M. Llácer, A. Peñuelas, M. Perelló, and M. Vos, *The top quark electro-weak couplings after LHC Run 2*, JHEP 02 (2022) 032, arXiv:2107.13917 [hep-ph].
[14] B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek, *Dimension-Six Terms in the Standard Model Lagrangian*, JHEP **10** (2010) 085, arXiv:1008.4884 [hep-ph].

[15] J. A. Aguilar-Saavedra, *A Minimal set of top anomalous couplings*, Nucl. Phys. **B812** (2009) 181, arXiv:0811.3842 [hep-ph].

[16] C. Zhang and S. Willenbrock, *Effective-Field-Theory Approach to Top-Quark Production and Decay*, Phys. Rev. **D83** (2011) 034006, arXiv:1008.3869 [hep-ph].

[17] M. Cepeda *et al.*, *Report from Working Group 2: Higgs Physics at the HL-LHC and HE-LHC*, CERN Yellow Rep. Monogr. **7** (2019) 221, arXiv:1902.00134 [hep-ph].

[18] O. Bessidskaia Bylund, F. Maltoni, I. Tsinikos, E. Vryonidou, and C. Zhang, *Probing top quark neutral couplings in the Standard Model Effective Field Theory at NLO in QCD*, JHEP **05** (2016) 052, arXiv:1601.08193 [hep-ph].

[19] M. Czakon, P. Fiedler, and A. Mitov, *Total Top-Quark Pair-Production Cross Section at Hadron Colliders Through O(α_s^4)*, Phys. Rev. Lett. **110** (2013) 252004, arXiv:1303.6254 [hep-ph].

[20] A. Tumasyan *et al.* (CMS), *Measurement of differential t¯t production cross sections in the full kinematic range using lepton+jets events from proton-proton collisions at √s = 13 TeV*, Phys. Rev. D **104** (2021) 092013, arXiv:2108.02803 [hep-ex].

[21] ATLAS Collaboration, *Inclusive and differential measurement of the charge asymmetry in t¯t events at 13 TeV with the ATLAS detector*, ATLAS-CONF-2019-026.

[22] LHC Higgs Cross Section Working Group (D. de Florian et al.), *Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector*, 2/2017, 10.23731/CYRM-2017-002, arXiv:1610.07922 [hep-ph].

[23] ATLAS Collaboration, *A combination of measurements of Higgs boson production and decay using up to 139 fb⁻¹ of proton–proton collision data at √s = 13 TeV collected with the ATLAS experiment*, ATLAS-CONF-2020-027 (2020).

[24] A. Broggio, A. Ferroglia, R. Frederix, D. Pagani, B. D. Pecjak, and I. Tsinikos, *Top-quark pair hadroproduction in association with a heavy boson at NLO+NNLL including EW corrections*, JHEP **08** (2019) 039, arXiv:1907.04343 [hep-ph].

[25] G. Aad *et al.* (ATLAS), *Measurements of the inclusive and differential production cross sections of a top-quark-antiquark pair in association with a Z boson at √s = 13 TeV with the ATLAS detector*, Eur. Phys. J. C **81** (2021) 737, arXiv:2103.12603 [hep-ex].

[26] G. Bevilacqua, H. Hartanto, M. Kraus, T. Weber, and M. Worek, *Hard Photons in Hadroproduction of Top Quarks with Realistic Final States*, JHEP **10** (2018) 158, arXiv:1803.09916 [hep-ph].

[27] G. Bevilacqua, H. Hartanto, M. Kraus, T. Weber, and M. Worek, *Precise predictions for t¯γ/t¯t cross section ratios at the LHC*, JHEP **01** (2019) 188, arXiv:1809.08562 [hep-ph].
[28] ATLAS Collaboration, Measurements of inclusive and differential cross-sections of combined $t\bar{t}\gamma$ and $tW\gamma$ production in the $e\mu$ channel at 13 TeV with the ATLAS detector, JHEP 09 (2020) 049, arXiv:2007.06946 [hep-ex].

[29] CMS Collaboration, Measurement of the associated production of a single top quark and a Z boson in pp collisions at $\sqrt{s} = 13$ TeV, Phys. Lett. B779 (2018) 358, arXiv:1712.02825 [hep-ex].

[30] CMS Collaboration, Observation of Single Top Quark Production in Association with a Z Boson in Proton-Proton Collisions at $\sqrt{s} = 13$ TeV, Phys. Rev. Lett. 122 (2019) 132003, arXiv:1812.05900 [hep-ex].

[31] CMS Collaboration, Evidence for the associated production of a single top quark and a photon in proton-proton collisions at $\sqrt{s} = 13$ TeV, Phys. Rev. Lett. 121 (2018) 221802, arXiv:1808.02913 [hep-ex].

[32] R. Frederix, D. Pagani, and M. Zaro, Large NLO corrections in $t\bar{t}W^\pm$ and $t\bar{t}t\bar{t}$ hadroproduction from supposedly subleading EW contributions, JHEP 02 (2018) 031, arXiv:1711.02116 [hep-ph].

[33] CMS Collaboration, Measurement of the cross section for top quark pair production in association with a W or Z boson in proton-proton collisions at $\sqrt{s} = 13$ TeV, JHEP 08 (2018) 011, arXiv:1711.02547 [hep-ex].

[34] M. Aliev, H. Lacker, U. Langenfeld, S. Moch, P. Uwer, and M. Wiedermann, HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR, Comput. Phys. Commun. 182 (2011) 1034, arXiv:1007.1327 [hep-ph].

[35] P. Kant, O. Kind, T. Kintscher, T. Lohse, T. Martini, S. Mölbitz, P. Rieck, and P. Uwer, HatHor for single top-quark production: Updated predictions and uncertainty estimates for single top-quark production in hadronic collisions, Comput. Phys. Commun. 191 (2015) 74, arXiv:1406.4403 [hep-ph].

[36] ATLAS and CMS Collaborations, Combinations of single-top-quark production cross-section measurements and $|f_{LV}|V_{tb}|$ determinations at $\sqrt{s} = 7$ and 8 TeV with the ATLAS and CMS experiments, JHEP 05 (2019) 088, arXiv:1902.07158 [hep-ex].

[37] N. Kidonakis, Two-loop soft anomalous dimensions for single top quark associated production with a W^- or H^-, Phys. Rev. D 82 (2010) 054018, arXiv:1005.4451 [hep-ph].

[38] A. Czarnecki, J. G. Körner, and J. H. Piclum, Helicity fractions of w bosons from top quark decays at next-to-next-to-leading order in qcd, Phys. Rev. D 81 (2010) 111503.

[39] ATLAS and CMS Collaborations, Combination of the W boson polarization measurements in top quark decays using ATLAS and CMS data at $\sqrt{s} = 8$ TeV, JHEP 08 (2020) 051, arXiv:2005.03799 [hep-ex].

[40] N. Kidonakis, Next-to-next-to-leading logarithm resummation for s-channel single top quark production, Phys. Rev. D 81 (2010) 054028.
[41] CDF and D0 Collaborations, *Observation of s-channel production of single top quarks at the Tevatron*, Phys. Rev. Lett. **112** (2014) 231803, arXiv:1402.5126 [hep-ex].

[42] S. Schael *et al.* (ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group), *Precision electroweak measurements on the Z resonance*, Phys. Rept. **427** (2006) 257, arXiv:hep-ex/0509008.

[43] M. Aaboud *et al.* (ATLAS), *Measurement of the t¯t production cross-section using eµ events with b-tagged jets in pp collisions at √s=13 TeV with the ATLAS detector*, Phys. Lett. B **761** (2016) 136, [Erratum: Phys.Lett.B 772, 879–879 (2017)], arXiv:1606.02699 [hep-ex].

[44] C. Zhang, N. Greiner, and S. Willenbrock, *Constraints on Non-standard Top Quark Couplings*, Phys. Rev. **D86** (2012) 014024, arXiv:1201.6670 [hep-ph].

[45] M. Czakon, D. Heymes, A. Mitov, D. Pagani, I. Tsinikos, and M. Zaro, *Top-quark charge asymmetry at the LHC and Tevatron through NNLO QCD and NLO EW*, Phys. Rev. D **98** (2018) 014003, arXiv:1711.03945 [hep-ph].

[46] M. Perello Rosello and M. Vos, *Constraints on four-fermion interactions from the t¯t charge asymmetry at hadron colliders*, Eur. Phys. J. C**76** (2016) 200, arXiv:1512.07542 [hep-ex].

[47] G. Durieux, F. Maltoni, and C. Zhang, *Global approach to top-quark flavor-changing interactions*, Phys. Rev. D **91** (2015) 074017, arXiv:1412.7166 [hep-ph].

[48] M. Chala, J. Santiago, and M. Spannowsky, *Constraining four-fermion operators using rare top decays*, JHEP **04** (2019) 014, arXiv:1809.09624 [hep-ph].

[49] A. M. Sirunyan *et al.* (CMS), *Search for new physics in top quark production with additional leptons in proton-proton collisions at √s = 13 TeV using effective field theory*, JHEP **03** (2021) 095, arXiv:2012.04120 [hep-ex].

[50] Y. Okugawa, A. Irles, V. Lohezic, S. Amjad, R. Yonamine, F. Richard, H. Yamamoto, and R. Poschl, *Production and electroweak couplings of 3rd generation quarks at the ILC*, PoS LeptonPhoton2019 (2019) 170.

[51] M. S. Amjad, M. Boronat, T. Frisson, I. Garcia, R. Poschl, E. Ros, F. Richard, J. Rouene, P. R. Femenia, and M. Vos, *A precise determination of top quark electro-weak couplings at the ILC operating at √s = 500 GeV*, arXiv:1307.8102 [hep-ex].

[52] H. Abramowicz *et al.*, (CLICdp), *Top-Quark Physics at the CLIC Electron-Positron Linear Collider*, JHEP **11** (2019) 003, arXiv:1807.02441 [hep-ex].

[53] P. Janot, *Top-quark electroweak couplings at the FCC-ee*, JHEP **04** (2015) 182, arXiv:1503.01325 [hep-ph].

[54] H. Abramowicz *et al.*, *Higgs physics at the CLIC electron–positron linear collider*, Eur. Phys. J. C**77** (2017) 475, arXiv:1608.07538 [hep-ex].
[55] T. Price, P. Roloff, J. Strube, and T. Tanabe, *Full simulation study of the top Yukawa coupling at the ILC at $\sqrt{s} = 1$ TeV*, Eur. Phys. J. C75 (2015) 309, arXiv:1409.7157 [hep-ex].

[56] A. Aryshev et al. (editors), *The International Linear Collider: Report to Snowmass 2021*, arXiv:2203.07622 [physics.acc-ph].

[57] A. Robson and P. Roloff, *Updated CLIC luminosity staging baseline and Higgs coupling prospects*, arXiv:1812.01644 [hep-ex].

[58] G. Bernardi et al., *The Future Circular Collider: a Summary for the US 2021 Snowmass Process*, arXiv:2203.06520 [hep-ex].

[59] A. Abada et al. (FCC), *FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3*, Eur. Phys. J. ST 228 (2019) 755.

[60] C.-S. S. Group, *CEPC-SPPC Preliminary Conceptual Design Report. 1. Physics and Detector*, (2015).

[61] B. Cros and P. Muggli (ALEGRO), *ALEGRO input for the 2020 update of the European Strategy*, arXiv:1901.08436 [physics.acc-ph].

[62] D. Stratakis et al. (International Muon Collider), *A Muon Collider Facility for Physics Discovery*, arXiv:2203.08033 [physics.acc-ph].

[63] J. A. Aguilar-Saavedra, B. Fuks, and M. L. Mangano, *Pinning down top dipole moments with ultra-boosted tops*, Phys. Rev. D91 (2015) 094021, arXiv:1412.6654 [hep-ph].

[64] C. Englert, K. Nordstrom, L. Moore, and M. Russell, *Giving top quark effective operators a boost*, Phys. Lett. B763 (2016) 9, arXiv:1607.04304 [hep-ph].

[65] R. Kogler et al., *Jet Substructure at the Large Hadron Collider: Experimental Review*, Rev. Mod. Phys. 91 (2019) 045003, arXiv:1803.06991 [hep-ex].

[66] B. Nachman et al., *Jets and Jet Substructure at Future Colliders*, arXiv:2203.07462 [hep-ph].