ERNIE 2.0: A CONTINUAL PRE-TRAINING FRAMEWORK FOR LANGUAGE UNDERSTANDING

Authors: Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao Tian, Hua Wu, Haifeng Wang

Presenter: Royal Sequeira
Facilitators: Raheleh Makki, Gordon Gibson
03 September, 2019
Contributions

- A framework for continuous incremental multi-task pre-training
- Outperforms BERT, XLNET on 16 tasks
Motivation

- Many existing models are based on co-occurrence of tokens and sequences
- ERNIE 2.0 incorporates lexical, syntactic, and semantic information
- A new task can be introduced any time during the training process
Multitask Learning

- Use large amounts of data across tasks and to learn a better representation of language.
ERNEIE 2.0: Training Process
ERNIE 2.0: Training Process
ERNIE 2.0: Training Process
ERNIE 2.0: Training Process
ERNEIE 2.0: Training Process
ERNIE 2.0: Training Process

Diagram showing the training process of ERNIE 2.0, including tasks, architectures, data, and a shared encoder. Each task is connected to a GPU, and there is an average loss calculated from the task losses. The diagram also illustrates the flow of data and weights update.
Framework

ERNIE 2.0: A Continual Pre-training framework for Language Understanding

Application
- Text Similarity
- Question Answering
- Sentiment Analysis
- Natural Language Inference

Fine-tuning

Continual Pre-Training
- Sequentially:
 - Task N
 - ...
 - Task 2
 - Task 1

Pre-training Tasks Construction
- Task 1
- Task 2
- Task 3
- ...
- Task N
- Big Data
- Prior Knowledge

Multi-Task Pre-training
- Pre-training Task 1
- Pre-training Task 2
- Pre-training Task 3
- ...
- Pre-training Task N
ERNIE Model

Word-aware Pre-training Task	Structure-aware Pre-training Task	Semantic-aware Pre-training Task
Knowledge Masking	Sentences Reordering	Discourse Relation
Token-Document Relation	Sentences Distance	IR Relevance
Capital Prediction		

Transformer Encoder

	[CLS]	token1	token2	token3	[SEP]	token1	token2	token3	[SEP]	token1	token2	token3	[SEP]
	+	+	+	+	0	+	+	+	+	+	+	+	+
	A	A	A	A	A	A	B	B	B	C	C	C	C
	+	+	+	+	+	+	+	+	+	+	+	+	+
	0	1	2	3	4	5	6	7	8	9	10	11	12
	+	+	+	+	+	+	+	+	+	+	+	+	+
	3	3	3	3	3	3	3	3	3	3	3	3	3

- **Token embedding**
- **Sentence embedding**
- **Position embedding**
- **Task Embedding**
ERNIE Loss

Sequence-Level Loss

Token-Level Loss

Encoder
Pre-training Tasks

- Word-aware pre-training tasks
- Structure-aware pre-training tasks
- Semantic-aware pre-training tasks
Word-aware Pre-training Tasks

- **Knowledge Masking Task: phrase and entity masking**
 - James was [MASK] by Jeremy
 - [MASK] [MASK] was written by George R. R. Martin

- **Capitalization Prediction Task: capitalized or not?**
 - james was kidnapped by jeremy

- **Token-Document Relation Prediction Task: token appears in other segments?**
 - A meme is an idea, behavior, or style that spreads from person to person within a culture
Structure-aware Pre-training Tasks

- Sentence Reordering Task: re-organize permuted sentences
- Sentence Distance Task:
 - 0: Two sentences are adjacent in the same document
 - 1: Two sentences are in the same document
 - 2: Two sentences are from two different documents
Semantic-aware Pre-training Tasks

- Discourse Relation Task
 - I took my umbrella this morning. [because] The forecast was rain in the afternoon

- IR Relevance Task
 - 0: Strong relevance
 - 1: Weak relevance
 - 2: Irrelevance
Experiments
Pre-training Data

- **English:**
 - Wikipedia
 - BookCorpus
 - Reddit
 - Discovery data (discourse relation data)

- **Chinese**
 - Data from Baidu Search Engine (news, IR, encyclopedia etc.)
Pre-training Settings

- **Base model**
 - 12 layers
 - 12 self-attention heads
 - 768-dimensional of hidden size

- **Large model**
 - 24 layers
 - 16 self-attention heads
 - 1024-dimensional of hidden size
Fine-tuning Tasks (English)

- GLUE (General Language Understanding Evaluation)
 - CoLA: syntax specification
 - SST-2: sentiment analysis
 - MNLI: multi-genre textual inference
 - RTE: recognizing textual entailment
 - WNLI: co-referencing information between two paragraphs
 - QQP: duplication of question pairs
 - MRPC: paraphrasing
 - STS-B: semantic text similarity
 - QNLI: natural language inference on question-answer pairs
 - AX: linguistic analysis of models
Pre-training Tasks (Chinese)

- Machine Reading Comprehension (MRC)
 - Chinese Machine Reading Comprehension 2018 (CMRC 2018)
 - Delta Reading Comprehension Dataset (DRCD)
 - DuReader
- Named Entity Recognition (NER)
- Natural Language Inference (NLI)
- Sentiment Analysis (SA)
- Semantic Similarity (SS)
- Question Answering (QA)
Results
English Tasks

Task(Metrics)	BASE model	LARGE model					
	Test	Dev	Test				
	BERT	ERNIE 2.0	BERT	XLNet	ERNIE 2.0	BERT	ERNIE 2.0
CoLA (Matthew Corr.)	52.1	55.2	60.6	63.6	65.4	60.5	63.5
SST-2 (Accuracy)	93.5	95.0	93.2	95.6	96.0	94.9	95.6
MRPC (Accuracy/F1)	84.8/88.9	86.1/89.9	88.0/-	89.2/-	89.7/-	85.4/89.3	87.4/90.2
STS-B (Pearson Corr./Spearman Corr.)	87.1/85.8	87.6/86.5	90.0/-	91.8/-	92.3/-	87.6/86.5	91.2/90.6
QQP (Accuracy/F1)	89.2/71.2	89.8/73.2	91.3/-	91.8/-	92.5/-	89.3/72.1	90.1/73.8
MNLI-m/mm (Accuracy)	84.6/83.4	86.1/85.5	86.6/-	89.8/-	89.1/-	86.7/85.9	88.7/88.8
QNLI (Accuracy)	90.5	92.9	92.3	93.9	94.3	92.7	94.6
RTE (Accuracy)	66.4	74.8	70.4	83.8	85.2	70.1	80.2
WNLI (Accuracy)	**65.1**	65.1	-	-	-	65.1	67.8
AX(Matthew Corr.)	34.2	37.4	-	-	-	39.6	48.0
Score	78.3	80.6	-	-	-	80.5	83.6
English Tasks

Task (Metrics)	BASE model		LARGE model				
	Test	Dev	Test				
	BERT	ERNIE 2.0	BERT	XLNet	ERNIE 2.0	BERT	ERNIE 2.0
CoLA (Matthew Corr.)	52.1/55.2	60.6/63.6	65.4/69.0	60.5/63.5			
SST-2 (Accuracy)	93.5/95.0	93.2/95.6	96.0/98.0	94.9/95.6			
MRPC (Accuracy/F1)	84.8/88.9	88.0/89.2	89.7/91.8	85.4/89.3	87.4/90.2		
STS-B (Pearson Corr./Spearman Corr.)	87.1/85.8	90.0/91.8	92.3/94.3	87.6/86.5	91.2/90.6		
QQP (Accuracy/F1)	89.2/71.2	91.3/91.8	92.5/94.3	89.3/72.1	90.1/73.8		
MNLI-m/mm (Accuracy)	84.6/83.4	86.6/89.8	89.1/91.6	86.7/85.9	88.7/88.8		
QNLI (Accuracy)	90.5/92.9	92.3/93.9	94.3/96.3	92.7/94.6	94.6/96.2		
RTE (Accuracy)	66.4/74.8	70.4/83.8	85.2/88.2	70.1/80.2	80.2/82.8		
WNLI (Accuracy)	65.1/65.1	-	-	65.1/67.8			
AX (Matthew Corr.)	34.2/37.4	-	-	39.6/48.0			
Score	78.3/80.6	-	-	80.5/83.6			
Chinese Tasks

Task	Metrics	BERT\textsubscript{BASE}	ERNIE 1.0\textsubscript{BASE}	ERNIE 2.0\textsubscript{BASE}	ERNIE 2.0\textsubscript{LARGE}								
		Dev	Test										
CMRC 2018	EM/F1	66.3/85.9	-	65.1/85.1	-	69.1/88.6	-	71.5/89.9	-	89.7/94.7	89.0/94.2		
DRCD	EM/F1	85.7/91.6	84.9/90.9	84.6/90.9	84.0/90.5	88.5/93.8	88.0/93.4	61.3/74.9	-	64.2/77.3	-		
DuReader	EM/F1	59.5/73.1	-	57.9/72.1	-	95.2	93.8	95.2	93.8	96.3	95.0	82.6	81.0
MSRA-NER	F1	94.0	92.6	95.0	93.8	95.7	95.5	96.1	95.8	96.1	95.8		
XNLI	Accuracy	78.1	77.2	79.9	78.4	81.2	79.7	82.6	81.0				
ChnSentiCorp	Accuracy	94.6	94.3	95.2	95.4	95.7	95.5	96.1	95.8				
LCQMC	Accuracy	88.8	87.0	89.7	87.4	90.9	87.9	90.9	87.9				
BQ Corpus	Accuracy	85.9	84.8	86.1	84.8	86.4	85.0	86.5	85.2				
NLPCC-DBQA	MRR/F1	94.7/80.7	94.6/80.8	95.0/82.3	95.1/82.7	95.7/84.7	95.7/85.3	95.9/85.3	95.8/85.8				
Task	Metrics	**BERT_{BASE}**	**ERNIE 1.0_{BASE}**	**ERNIE 2.0_{BASE}**	**ERNIE 2.0_{LARGE}**								
---------------	---------	----------------	----------------------	----------------------	-----------------------								
		Dev/ Test	Dev/ Test	Dev/ Test	Dev/ Test								
CMRC 2018	EM/F1	66.3/85.9	65.1/85.1	69.1/88.6	71.5/89.9								
DRCD	EM/F1	85.7/91.6	84.6/90.9	88.5/93.8	89.7/94.7								
DuReader	EM/F1	59.5/73.1	57.9/72.1	61.3/74.9	64.2/77.3								
MSRA-NER	F1	94.0/92.6	95.0/93.8	95.2/93.8	96.3/95.0								
XNLI	Accuracy	78.1/77.2	79.9/78.4	81.2/79.7	82.6/81.0								
ChnSentiCorp	Accuracy	94.6/94.3	95.2/95.4	95.7/95.5	96.1/95.8								
LCQMC	Accuracy	88.8/87.0	89.7/87.4	90.9/87.9	90.9/87.9								
BQ Corpus	Accuracy	85.9/84.8	86.1/84.8	86.4/85.0	86.5/85.2								
NLPCC-DBQA	MRR/F1	94.7/80.7	95.0/82.3	95.7/84.7	95.9/85.3								
		94.6/80.8	95.1/82.7	95.7/85.3	95.8/85.8								
Key takeaways

- ERNIE 2.0: Multitask learning done sequentially
- Outperforms BERT, XLNET on 16 tasks
Discussion Points

- Is this a scalable approach?
- How much does the order of pre-training tasks affect results in the downstream tasks?
- What ablation studies would you like to see performed?
- How much improvement in the downstream tasks can be attributed to the novelty in the architecture vs size of training data?
- What are some other potential pre-training tasks that can be added?
References

- https://arxiv.org/pdf/1907.12412.pdf
- https://ademcan.net/blog/2013/04/10/how-to-convert-pdf-to-png-from-the-command-line-on-a-mac/
Loss Calculation

- Loss(instance) = Loss(sentence loss) + \(\text{avg}(\text{token losses task}_1) \) + \(\text{avg}(\text{token losses task}_2) \) + \ldots + \(\text{avg}(\text{token losses task}_n) \)
- \(\text{Loss_batch} = \text{avg}(\text{Loss(instance)}) \)

Task	Token-Level Loss	Sentence-Level Loss
	Knowledge Masking	Sentence Reordering
Encyclopedia	✓	✓
BookCorpus	✓	✓
News	✓	✓
Dialog	✓	✓
IR Relevance Data	✗	✓
Discourse Relation Data	✗	✓

Table 2: The Relationship between pre-training task and pre-training dataset. We use different pre-training dataset to construct different tasks. A type of pre-trained dataset can correspond to multiple pre-training tasks.