The sarcoma diagnostic interval: a systematic review on length, contributing factors and patient outcomes

Vicky Soomers 1, Olga Husson 2, Robin Young 4, Ingrid Desar 5, Winette Van der Graaf 6,7

ABSTRACT

Sarcomas are rare and heterogeneous mesenchymal tumours of soft tissue or bone, making them prone to late diagnosis. In other malignancies, early diagnosis has an impact on stage of disease, complexity of therapeutic procedures, survival and health-related quality of life (HRQoL). Little is known about what length of diagnostic interval should be considered as delay in patients with bone (BS) or soft tissue sarcomas (STS). To quantify total interval (defined as time from first symptom to histological diagnosis) and its components, identify contributing factors to its length and determine the impact on patients’ outcome in terms of mortality and HRQoL. A systematic review was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Seventy-six articles out of 2310 met the predefined inclusion criteria. Total intervals, varied broadly; 9–120.4 weeks for BS and 4.3–614.9 weeks for STS. Older age and no initial radiological examinations were contributing factors for a long interval in BS, while in STS results were conflicting. The impact of length of total interval on clinical outcomes in terms of survival and morbidity remains ambiguous; no clear relation could be identified for both BS and STS. No study examined the impact on HRQoL. The length of total interval is variable in BS as well as STS. Its effect on outcomes is contradictory. There is no definition of a clinically relevant cut-off point that discriminates between a short or long total interval.

INTRODUCTION

Sarcomas are a rare group of solid malignant mesenchymal tumours, which comprise more than 70 histological subtypes. They have considerable heterogeneity with respect to age of onset, anatomic location, tempo of progression and outcome. Approximately 80% of sarcomas originate in soft tissue, the remainder in bone. Sarcomas form a typical example of rare cancers, with an estimated European incidence averaging 4–5 per 100,000 per year. Patients with rare cancers have a higher mortality rate than those with common cancers because of delays to accurate diagnosis and subsequent suboptimal or inadequate treatment, fewer developments in novel therapies and reduced opportunities to participate in clinical trials.

Early and accurate diagnosis of cancer is important to optimise patient outcomes in terms of local disease control, overall survival and health-related quality of life (HRQoL). The absence of a typical and uniform sarcoma presentation, the lack of public awareness, and the limited experience of primary and secondary healthcare professionals with sarcomas can result in a prolonged total interval and late referral to specialist sarcoma centres. The total interval is the time between first symptoms and (preferably histological) diagnosis (figure 1). To date, the impact of late referrals on sarcoma patient outcomes has been understudied and reports have been contradictory.

To inform interventions that shorten the total interval, better insights are needed into the determinants of each component of the total interval, such as sociodemographic, clinical, psychological and healthcare factors. The aim of this systematic review is to examine the total interval of sarcoma patients by quantifying its length, identifying contributing factors and determine the impact on patients’ outcome in terms of mortality and HRQoL.

MATERIAL AND METHODS

Search strategy
We conducted a systematic review according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A computerised search of the literature through PubMed (1946–present), MEDLINE (1950–present), EMBASE (1974–present), Web of Science (1945–present) and Cochrane Library was carried out with the help of a librarian of the Radboudumc by two researchers (vs and OH) on 28 February 2019.
The search strategy combined terms related to ‘sarcoma’, ‘delayed diagnosis’, ‘early diagnosis’ or ‘referral’. The search string is presented in online supplementary material A.

Selection criteria
Studies were included if they met the following criteria: (1) study participants had a proven diagnosis of sarcoma; (2) the total interval or any of its components as defined in figure 1 were available and (3) the full-text paper was available in English. Reviews were excluded because they did not contain original data and single case reports were excluded to limit selection bias.

Definition
The following definition was used: the total interval, defined as time between first symptoms and (histological) diagnosis, which includes both a patient and diagnostic interval; the latter can be further divided into a primary, secondary and tertiary care interval. The intervals and their associated time points are illustrated in figure 1. This figure was adapted from Olesen et al57 by adding a tertiary interval, consistent with centralised sarcoma care pathways.

Data extraction and synthesis
Study design, inclusion period, study population, length of total interval and its components, and effect of total interval on outcomes, such as metastases at diagnosis, overall survival and HRQoL, were extracted from included articles. Factors influencing length of total interval or its components were extracted and organised as tumour-specific factors (eg, histology), patient specific (eg, age) or healthcare related (eg, available imaging studies). Based on our clinical experience, previous reports and different healthcare providers treating these groups of patients, we expected to find different results for bone sarcoma (BS) and soft tissue sarcoma (STS), and data were thus presented in separate tables. Due to the heterogeneity of inclusion criteria and methods, it was not possible to conduct a meta-analysis, so results were reported descriptively.

RESULTS
Included articles
Our search yielded 2304 unique hits. The reference lists of relevant articles were searched for additional studies which resulted in six additional publications versus and OH screened titles and abstracts of these 2310 publications, 109 studies met the inclusion criteria. After careful independent full-text screening by versus and OH, 62 studies were included in this review. The flow chart of this selection procedure is presented in figure 2.

Bone sarcomas
Length of total interval
Thirty-four studies involving a total of 17 258 patients investigated the total interval in BS (table 1)8–41; five of these studies prospectively collected follow-up data. A broad range in the length of the total interval was found, which varied from 9 to 120.4 weeks.

Components of the total interval
The impact of patient intervals was measured in 19 studies (mean 4.1–34.1 weeks), eight studies measured the primary care interval (mean 5–32.3 weeks), whereas the secondary (mean 2.5–7.1 weeks) and tertiary care intervals (mean 2–17.4 weeks) were measured in two and three studies respectively (table 1).
Effect of tumour-specific factors

Several factors were studied as determinants of the length of the total interval. Interestingly, tumour-specific factors such as tumour size or grade did not appear to influence the length of total interval.22 26 27 41 Patients with sarcomas located in the trunk were shown to have a longer interval than those who have sarcomas in the extremities (29 vs 14 weeks; p<0.001) by Lawrenz et al (n=1792).41 Tumour histology was found to be of influence on the total interval. Goedhart et al performed a retrospective study among 102 patients with high-grade BS and reported a significantly longer patient interval and secondary care interval for chondrosarcoma versus Ewing sarcoma and osteosarcoma,21 which resulted in a significantly longer total interval, with a mean of 98.3 weeks for chondrosarcoma, versus 22.9 and 23.3 weeks for Ewing sarcoma and osteosarcoma, respectively.

Four other studies reported similar results on total intervals for Ewing sarcoma and osteosarcoma; all had a trend towards a longer diagnostic pathway for patients with Ewing sarcoma.12 14 20 40 In a study by Widhe et al (n=106), the longer diagnostic pathway in Ewing sarcoma was a result of both a longer patient and primary care component12 whereas a study by Sneppen et al (n=124), reported a four times longer diagnostic interval for Ewing sarcoma than for osteosarcoma patients despite similar patient intervals.26 Lawrenz et al illustrated that intermediate-grade tumours had a longer diagnostic interval (52 weeks) compared with high-grade BS (12 weeks; p<0.001).41 In contrast, a study focusing only on BS of the foot (n=32) presented opposite results: a median total interval of 32.3 weeks for chondrosarcoma, vs 64.5 weeks and 77.4 weeks for osteosarcoma and Ewing sarcoma, respectively.15

Another small study (n=6) reported that half of patients with osteosarcoma of the foot had a considerable patient delay, resulting in a mean total interval of 120.4 weeks.16

Effect of patient-specific factors

Gender was not associated with the length of the total interval in four studies,12 26 39 40 however, there was evidence that patient age was a factor. Six studies reported a significantly longer total interval for older teenagers, adolescents or adults compared with younger children or (younger) teenagers (<12 vs ≥12–22 years11 22; <20 vs ≥20–86 years36; <22 vs ≥22 years27; 0–14 vs 15–19 vs 20–29 years40; <12 versus ≥12 years11). Furthermore, Desandes et al found young adults were more at risk for a longer total interval than patients in puberty (15–19 vs 20–24 years; 10.1 vs 21.4 weeks respectively; p=0.04).35 Lawrenz et al (n=1792) investigated age (mean 30.7 years) as a continuous variable and reported every additional year of age was associated with a 1.3 weeks longer total interval.41
Author; year	Study design, inclusion period and country	Study population	Age (years)	Patient interval in weeks	Primary care interval in weeks	Secondary care interval in weeks	Tertiary care interval in weeks	Diagnostic interval in weeks	Total interval in weeks
Kammerer 2012	Retrospective 1972–2010 Germany	36 osteosarcoma of jaw	33.9 (2-81)*†	15.9 (4.3–103.2)*†	NR	NR	NR	NR	NR
Pan 2010	Retrospective 2003–2008 Malaysia	30 osteosarcoma around the knee joint	17 (9-34)*†	10 (0–49)*†	5*	5 (0–24)*†	2*	NR	17 (4–55)*†
Widhe 2010	Retrospective 1980–2002 Sweden	106 chest wall chondrosarcoma	57*	12.9 (0–507.4)*†	19.35 (0.43–847.1)*†	NR	NR	NR	34.4 (4.3–855.7)*†
Goyal 2004	Retrospective 1990–2002 UK	103 bone sarcoma	15 (4–22)*†	4.3*	NR	NR	NR	6.88*	16.34 (4.3–197.8)*†
Widhe 2007	Retrospective 1981–2000 Sweden	26 Ewing sarcoma of the rib	16 (6–26)*†	10.75 (0–43)*†	12.9 (0–43)*†	NR	NR	NR	NR
Widhe 12	Retrospective 1983–1995 Sweden	102 osteosarcoma	15.8 (5.5–29.5)*†	6 (1–26)*†	9 (1–52)*†	NR	NR	NR	15 (2–75)*†
Guerra 2006	Retrospective 1985–2001 Brazil	198 osteosarcoma	15.7*	NR	NR	NR	NR	NR	22.6*
Brotzmann 2013	Retrospective 1969–2008 Switzerland	32 bone sarcoma of the foot	NR	NR	NR	NR	NR	NR	43*
Bacci 1999	Retrospective 1979–1997 Italy	618 Ewing sarcoma	NR	13*	NR	NR	NR	NR	120.4 (6–48)*†
Bacci 2000	Retrospective 1983–1999 Italy	965 high-grade osteosarcoma of the extremity	NR	5.2*	NR	NR	NR	4.8*	10.5 (1–59)*†
Bacci 2002	Retrospective 1980–1999 Italy	1071 high-grade osteosarcoma of the extremity	<15: n=501¶ ≥15: n=570¶	NR	NR	NR	NR	10.7*	9.0* (p<0.016)
Bacci 2007	Retrospective 1983–2006 Italy	888 Ewing sarcoma family tumour	<12: n=160¶ ≥12: n=728¶	NR	NR	NR	NR	NR	75%§

Continued
Author; year	Study design, inclusion period and country	Study population	Age (years)	Patient interval in weeks	Primary care interval in weeks	Secondary care interval in weeks	Tertiary care interval in weeks	Diagnostic interval in weeks	Total interval in weeks
Goedhart 2016	Retrospective 2000–2012 The Netherlands	102 high-grade bone sarcoma	30.0 (5–89)†	NR	NR	NR	NR	NR	NR
Brasme 2014	Prospective 1988–2000 France	436 Ewing sarcoma	12‡	NR	NR	NR	NR	NR	10‡
Kim 2009	Retrospective 1985–2005 Korea	26 osteosarcoma and doctor delay >45 days	30.2 (4–67)†	NR	NR	NR	NR	NR	45.2‡
Simpson 2005	Retrospective 1965–2005 Scotland	40 Ewing sarcoma of upper limb	19 (3–57)†	25.8 (4.3–774)‡†	NR	NR	NR	NR	35‡
Wurtz 1999	Retrospective 1975–1995 USA	68 bone sarcoma of pelvic girdle	41 (5–82)†	NR	NR	NR	NR	NR	43 (25.8 (4.3–206.4)†
Sneppen 1984	Retrospective 1962–1979 Denmark	84 osteosarcoma	28 (8–86)†	6.9*	NR	NR	NR	7.3*	27.5 (8.6–154.8)†
Nandra 2015	Retrospective 1985–2010 UK	2360 bone sarcomas	22‡	NR	NR	NR	NR	NR	16‡
Vadillo 2011	Retrospective 1952–2007 Peru	135 bone sarcomas of the jaw	31 (1–80)†	13*	19.7*	NR	NR	NR	50.1*
Ashwood 2003	Prospective 1997–1998 UK	100 tumour service	36.3*	63.6 (0–111.8)†	NR	NR	NR	NR	58 (2.3–516)*†
George 2012	Retrospective 2011 UK	107 sarcoma of which: 47 sarcoma	32.1 (2.2–47.3)†	32.3 (0–55.9)†	NR	NR	NR	NR	NR
Martin 2007	Retrospective 2001–2003 USA	235 patients; 66 with sarcoma	22.2 (15–29)‡†	NR	NR	NR	NR	NR	10.7*
Smith 2011	Prospective 1985–2009 UK	2568 bone sarcomas	25‡	NR	NR	NR	NR	NR	16‡
Grimer 2006	Prospective 1986–2006 UK	1460 bone sarcoma	NR	NR	NR	NR	NR	NR	16‡
Lawrenz 2018	Retrospective 1990–2014 UK	bone sarcoma: 1446 non-metastatic 346 metastatic	30.7*	NR	NR	NR	NR	NR	54.8* vs 29.9*
Author; year	Study design, inclusion period and country	Study population	Age (years)	Patient interval in weeks	Primary care interval in weeks	Secondary care interval in weeks	Tertiary care interval in weeks	Diagnostic interval in weeks	Total interval in weeks
-------------	--	-----------------	-------------	--------------------------	-------------------------------	-------------------------------	-------------------------------	--------------------------	----------------------
Balmant 2018	Retrospective 2007–2011 Brazil	1257 osteosarcoma and Ewing sarcoma	0-29¶	NR	NR	NR	NR	NR	NR
			0-14¶ (46%)	NR	NR	NR	NR	NR	NR
			15–19¶ (33%)	NR	NR	NR	NR	NR	NR
			20–29¶ (21%)	NR	NR	NR	NR	NR	NR
Bielack 2002	Retrospective 1980–1998 German/Austrian/Swiss	1702 high-grade osteosarcomas	16.7†	NR	NR	NR	NR	NR	9.9‡
Chen 2017	Retrospective 2004–2012 USA	364 malignancies of which 30 bone sarcoma	16.5‡	NR	NR	NR	NR	NR	12.4‡
Desandes 2018	Retrospective 2012–2013 France	993 malignancies of which 48 bone sarcoma	NR	NR	NR	NR	NR	NR	NR
			15–19 [n=33]	NR	NR	NR	NR	NR	NR
			20–24 [n=15]	NR	NR	NR	NR	NR	10.1‡
Petrilli 2006	Prospective 1987–1996 Brazil	209 high-grade osteosarcomas	14 (2.4–24.5)*†	NR	NR	NR	NR	NR	18.4*
Yang 2009	Retrospective 1994–2005 Hong Kong	51 osteosarcoma	13 (3–20)††	4.3 (0–51.4)††	NR	NR	NR	3 (0–50)††	8.7 (0–51.6)††
Younger 2018	Retrospective 2015 UK	558 sarcoma of which 140 bone sarcoma	64.1 (18–96)*†	56.7%§	NR	NR	NR	NR	NR

*Mean.
†Range within brackets.
§Median.
¶% of delays attributed to this interval.
※Included age group.
NR, not reported.
interval (p<0.00). In contrast Guerra et al (n=253) found no significant relationship between age (range 0–30 years) and the length of the total interval.14 Younger et al found no relationship between age and patient interval nor diagnostic interval.38

The presenting symptom did not predict the length of the total interval in four studies.12 13 22 26 Study results (n=4) on the influence of pain symptoms on the total interval are contradictory, with some studies suggesting a shortening of the interval, no influence or even a longer total interval.12 13 22 26

Effect of healthcare system-related factors
The influence of the year of first presentation was studied in five studies. None showed evidence of shortening total intervals over the past 30–50 years.10 14 22 26 41 despite advances in healthcare models including the introduction of cancer pathways and dedicated specialist sarcoma centres.

The location of first presentation to a healthcare professional was investigated among patients with Ewing sarcoma. The diagnostic interval was significantly longer when presenting to a general practitioner (GP) compared with the accident & emergency department (p=0.04).11

The influence of radiology and pathology investigations on the diagnostic interval were reported in two studies.10 12 When no imaging studies were ordered at the patient’s first contact with a healthcare professional, a longer diagnostic interval was observed. When imaging was incorrectly interpreted as normal, which was the case in 35% of patients with chondrosarcoma at non-specialist centres, this resulted in an even longer diagnostic interval (21 vs 9.5 months). At non-specialist centres, only 26% (n=39) of chondrosarcomas biopsied were correctly diagnosed as malignant, while at specialist sarcoma centres, 94% (n=34) were correctly diagnosed.10 A descriptive study by Ashwood et al highlighted how imaging studies performed prior to referral to a specialist centre often had to be repeated because they did not provide all the required information, and biopsies or surgeries performed by the referring teams often complicated the patient’s subsequent management.29

A qualitative study in Malaysia by Pan et al (n=30) demonstrated the multifactorial nature of diagnostic delay, which was dependent on the patient perception of symptoms and complaints, the influence of traditional healers and the proximity of health clinics.9 A Brazilian study with 1257 BS patients found differences in diagnostic intervals between geographic regions, possibly explained by the availability of CT scan equipment and the difference in number of hospital beds per region.10

Relationship between total interval and outcomes
The influence of delay on clinical outcomes of BS patients has been investigated in 20 of the 34 included BS studies (table 2).10 11 13 15 17–25 27 28 31 33 36 37 39 41

In 12 of these studies (n=7414), no significant association between length of the total interval (mean total interval between 8.7 and 50.1 weeks) and overall survival was found.11 15 19 21 22 25 27 28 33 36 37 39 However, one of these studies (n=1702) found that patients with a longer total interval more often had metastatic disease at diagnosis than those with a short total interval.39

One study of 965 high-grade osteosarcomas of the extremities diagnosed between 1983 and 1999, identified an inverse relationship between the total interval and the stage of disease;19 the patient interval was significantly shorter in patients with metastatic disease compared with patients with localised disease (4.1 vs 6.0 weeks), ultimately resulting in a shorter total interval (9.0 vs 10.7 weeks). The total interval was significantly shorter in patients who later relapsed than in patients who remained free of disease after 5 years. However, this difference lost significance when patients were analysed according to disease stage at presentation. In a secondary analysis of this patient population, including patients diagnosed between 1980 and 1983 (n=1071),18 patients with a diagnostic interval <2 months were significantly more likely to have metastases at diagnosis than those with a longer interval (56.1% vs 45.2%; p<0.0009).

Two other studies by the same research group in patients with Ewing sarcoma and Ewing sarcoma family of tumours (ESFT), both demonstrated that a diagnostic interval <2 months was associated with an increased likelihood of metastases at diagnosis (table 2),17 20 impact on overall survival was not reported.

A study with 1792 BS patients showed that a longer duration of symptoms was associated with longer survival (HR 0.996, 95% CI 0.994 to 0.998).41 This continuous association was lost when patients were compared in categories (<or >4 months; HR 0.935 95% CI 0.743 to 1.177).

In contrast, four studies with a combined number of 386 patients with chondrosarcoma, osteosarcoma and Ewing sarcoma, and mean total intervals between 10.7 and 35 weeks, reported a negative impact of a long total interval on stage and survival.10 23 24 31

No study has reported on the association between length of the total interval on patient-reported outcomes including HRQoL.

Soft tissue sarcoma
Length of total interval
Thirty-six studies investigated the total interval for STS (table 3).27 30–35 38 42–69 A combined total of 16 845 patients were included and, reflecting STS heterogeneity, the total interval varied tremendously; between 4.3 and 614.9 weeks.

Components of the total interval
Eleven studies examined the length of one or more components of the total interval.30 38 44 47 50–52 54 58 59 63 Patient intervals varied between a median of 1.3–17.2 weeks, the primary care interval lasted 0.1–13.3 weeks, the secondary care interval varied between 1.1 and 6.9 weeks and the tertiary care interval was 2.1–7.9 weeks.
Table 2 The effect of diagnostic interval on stage or metastases at diagnosis, or overall survival (OS) for bone sarcomas

Author; year	Study design, inclusion period and country	Study population	Age (years)	Total interval in weeks	Stage of disease or metastases at diagnosis	OS
Widhe 2010	Retrospective 1980–2002 Sweden	106 chest wall chondrosarcoma	57*	34.4 (4.3–855.7)†‡	NR	
Goyal 2004	Retrospective 1990–2002 UK	103 bone sarcoma	15 (4–22)†‡	16.34 (4.3–197.8)†‡	NR	
Brotzmann 2013	Retrospective 1969–2008 Switzerland	32 bone sarcoma of the foot	NR	43†	No association	
Bacci 1999	Retrospective 1979–1997 Italy	618 Ewing sarcoma	NR	18 ‡	Stage: no association	
Bacci 2000	Retrospective 1993–1999 Italy	965 high-grade osteosarcoma extremity	NR	10.5 (1–59)*‡	No association	
Bacci 2002	Retrospective 1980–1999 Italy	High-grade osteosarcoma extremity 891 localised disease 180 metastasized disease	<15: n=501§ ≥15: n=570§	10.9*	45.2% diagnostic interval <2 months	NR
Bacci 2007	Retrospective 1983–2006 Italy	888 Ewing sarcoma family tumour <12: n=160§ ≥12: n=728§	<2 months: n=215§ ≥2 months: n=658§	35.5% metastatic disease 15.9% metastatic disease (p<0.0001)	NR	
Goedhart 2016	Retrospective 2000–2012 The Netherlands	19 chondrosarcoma	30.0 (5–89)*‡	98.3*	Metastatic disease	5 years OS
		29 Ewing sarcoma	22.9* (p<0.01)	23.3* (p<0.01)		
		54 osteosarcoma				
Brasme 2014	Prospective 1988–2000 France	436 Ewing sarcoma	12†	10†	No association	
Kim 2009	Retrospective 1985–2005 Korea	26 osteosarcoma and doctor delays >45 days	30.2 (4–67)*‡	NR	NR	
Simpson 2005	Retrospective 1965–2005 Scotland	19 Ewing sarcoma of upper limb	19 (3–57)*‡	35†	A higher Enneking stage resulted in greater mortality (p=0.02)	NR
Wurtz 1999	Retrospective 1975–1995 USA	68 bone sarcoma of pelvic girdle	41 (8–82)*‡	43†	No association	

Continued
Table 2 Continued

Author; year	Study design, inclusion period and country	Study population	Age (years)	Total interval in weeks	Stage of disease or metastases at diagnosis	OS		
Nandra 2015 27	Retrospective 1985–2010 UK	2668 bone sarcoma	22†	16†	No association	No association		
Vadillo 2011 28	Retrospective 1952–2007 Peru	135 bone sarcoma of the jaw	31 (1–80)*‡	50.1*	NR	No association		
Martin 2007 31	Retrospective 2001–2003 USA	30 bone sarcoma	22.2 (15–29)*‡	15.7*	Osteosarcoma: diagnostic interval 259 days longer for patients with advanced stage disease than those with localised disease (p<0.01)	NR		
Grimer 2006 33	Prospective 1986–2006 UK	1460 bone sarcoma	NR	16†	NR	No association		
Lawrenz 2018 41	Retrospective 1990–2014 UK	Bone sarcoma 1446 non-metastatic 346 metastatic	30.7*	16†	45.8* vs 29.9*	No association	P=0.009	Non-metastatic cohort: longer interval, better survival (HR 0.996). No association > or < 4 months.
Bielack 2002 39	Retrospective 1980–1998 German/Austrian/Swiss	1702 high grade osteosarcoma	16.7*	9.9†	Longer diagnostic interval: more primary metastases (p=0.007)	No association		
Pettrilli 2006 36	Prospective 1987–1996 Brazil	209 high grade osteosarcoma	14 (2.4–24.5)*‡	18.4*	No association	No association		
Yang 2009 37	Retrospective 1994–2005 Hong Kong	51 osteosarcoma	13 (3–20)†‡	8.7 (0–51.6)†‡	No association	No association		

*Mean. †Median. ‡Range within brackets. §Included group.
Author; year	Study design, time period and country	Study population	Age (years)	Patient interval (weeks)	Primary care interval (weeks)	Secondary care interval (weeks)	Tertiary care interval (weeks)	Diagnostic interval (weeks)	Total interval (weeks)
Golman 2007	Retrospective 1991-2004 Israel	73 synovial sarcoma	38 (8-82)†	NR	NR	NR	NR	NR	77.4 (8.6–202.1)†
Amant 2003	Retrospective 1990-2002 Belgium	6 endometrial stromal sarcoma	34*	NR	NR	NR	NR	NR	614.9 (103.2–1754.4)*†
Nakamura 2011	Retrospective 2001-2009 Japan	100 STS, referred for additional resection	57 (0–89)‡*	12.9 (4.3–309.6)*†	NR	NR	NR	NR	15%§
Pavlik 2003	Retrospective 1975-2002 USA	29 angiosarcoma of the scalp	71*	NR	NR	NR	NR	NR	21.9 (0–73.5)*†
Rougraff 2012	Retrospective 1992-2007 USA	381 grade 3 STS of extremity or flank	NR	NR	NR	NR	NR	NR	66.6‡
Rougraff 2006	Retrospective 1992-2003 USA	624 sarcoma: 382 soft-tissue sarcoma	NR	NR	NR	NR	NR	NR	73.3 (0.25–362.8)‡†
Ferrari 2010	Retrospective 1977–2005 Italy	575 STS	≤21†	NR	NR	NR	NR	NR	8.6 (1–258)†
Pratt 1978	Retrospective 1962–1976 USA	46 rhabdomyosarcoma of head or neck	5.9 (0.3–20.5)*†	NR	NR	NR	NR	NR	4.3–19.3*
Bandopadhay 2016	Retrospective 1991–2010 USA	391 primary pulmonary artery sarcoma	52 (14–94)*†	NR	NR	NR	NR	NR	14.3*
Brouns 2003	Retrospective 1999–2001 Belgium	100 STS	50.5 (3–88)*†	17.2 (8.6–1032)*†	NR	NR	NR	NR	25.8 (8.6–339.7)*†
Chaudu 2003	Retrospective 1955–1999 Scotland	109 STS	33.4 (10-77)‡†	NR	NR	NR	NR	NR	86‡
Clark 2005	Prospective 2003–2004 UK	31 STS with referral >3 months (19.5%)	59 (34–84)*†	NR	NR	NR	NR	NR	94.6 (1.72–412.8)‡‡
Johnson 2008	Prospective/recall 2005 UK	162 STS	53 (16–88)*†	1.3*	28.4‡†	2.4*	6.9*	25.0*	40.4*
Lawrence 1986	Retrospective 1977–1978 and 1983–1984	2355 STS and 3457 STS	>18‡	NR	NR	NR	NR	NR	4.3*
Park 2010	Retrospective 1997–2008 Korea	18 grade 3 STS of the extremity with delay >1 year	44.8 (15-79)*†	NR	NR	NR	NR	NR	51.6–154.8*†
Seinen 2010	Retrospective 2003–2009 Sweden	33 retroperitoneal sarcoma (1 GIST)	66 (21-86)*†	3.3 (0-73.1)*†	2.1 (0-34.9)*†	5.1 (0.3–160)*†	1.1 (0.1–69)*†	13.4 (4.3–172)*†	NR
Bruun 1976	Retrospective 1962–1974 Denmark	7 oral sarcoma	29 (10-81)*†	6.9‡†	NR	NR	15.9†	NR	
Cooper 1996	Retrospective 1984–1993 Ireland	18 STS interval >4 weeks	43 (2-89)*†	36%§	23%§	11%§	NR	NR	28*

Continued
Author; year	Study design, time period and country	Study population	Age (years)	Patient interval (weeks)	Primary care interval (week)	Secondary care interval (week)	Tertiary care interval (week)	Diagnostic interval (week)	Total interval (week)
Antillon 2008	Retrospective 2000–2007 Guatemala	47 rhabdo-myosarcoma	6 (1–17)†	NR	NR	NR	NR	8.6 (2–51.6)†	25.8 (3–154.8)†
	33 non-rhabdo-myosarcoma	11 (2–17)†	43 (0–156)†	NR	NR	NR	NR	50 (0–362)†	98 (0–364)†
Chotel 2008	Retrospective 1985–2006 UK	33 synovial sarcoma	12.3 (3–16)†	NR	NR	NR	NR	21 (4–78)†	16 weeks (2–104)†
Durve 2004	Retrospective 1980–2000 UK	14 rhabdo- myosarcoma of ear and temporal bone	4.5 (1.0–8.6)†	NR	NR	NR	NR	NR	NR
Watson 1994	Retrospective 1985–1992 Australia	40 STS of extremity	59 (14–87)†	NR	NR	NR	NR	NR	520.1 (8.3–2115.6)†
Monnier 2005	Retrospective 1982–2002 France	66 dermatofibrosarcoma protuberans	43 (8–81)†	NR	NR	NR	NR	NR	NR
Dyrop 2013	Retrospective 2007–2010 Denmark	258 STS	NR	NR	NR	NR	NR	2007: 4*	2010: 2.6*
Buvarp Dyrop 2016	Retrospective 2014–2015 Denmark	545 referred patients of which: 102 sarcoma patients (88 soft tissue 14 bone)	55 (0–93)†	NR	NR	NR	NR	NR	NR
George 2012	Retrospective 2011 UK	66 STS	≥18†	4.3 (0–516)†	13.3 (1.7–154.8)†	NR	NR	NR	NR
Martin 2007	Retrospective 2001–2003 USA	38 STS	22.2 (15–29)†	NR	NR	NR	NR	NR	24.9†
Smith 2011	Prospective 1985–2009 UK	2366 STS	57*	NR	NR	NR	NR	NR	26*
Griner 2009	Prospective 1986–2006 UK	1460 STS	NR	NR	NR	NR	NR	NR	26*
Chen 2017	Retrospective 2004–2012 USA	364 malignancies of which 18 STS	14*	NR	NR	NR	NR	NR	7.2*
Nandra 2015	Retrospective 1985–2010 UK	2277 STS	57*	NR	NR	NR	NR	NR	26*
Desandes 2018	Retrospective 2012–2013 France	993 malignancies of which 43 STS	NR	NR	NR	NR	NR	NR	22.9*
Smolle 2019	Retrospective 1982–2014 UK	248 synovial sarcomas	37†	NR	NR	NR	NR	NR	52*
Younger 2018	Retrospective 2015 UK	558 sarcoma of which 418 STS	64.1 (18–96)†	NR	NR	NR	NR	NR	NR

Continued
Effect of tumour-specific factors

Three studies found no relationship between tumour size and length of the total interval, one study (n=575) in children and adolescents found that larger tumours were associated with a longer total interval (both for tumours <5 vs ≥5 cm and <10 vs ≥10 cm), while a study in adults (n=162) reported that smaller tumours (median 8 cm) were associated with a longer total interval.

Five studies reporting on the influence of tumour localisation have yielded contradictory results. Chotel et al (n=33) reported that synovial sarcoma of the knee or elbow had a longer total interval than tumours at other sites and Smolle et al found synovial sarcomas located superficially had a longer interval than deeply located tumours (n=248; 2 years vs 12 months). However, two other studies found no relationship between tumour site and total interval.

In children and adolescents, Ferrari et al (n=575) reported a longer total interval for STS of the extremities compared with tumours at other sites; the authors attributed this difference to the underlying tumour histology, which for extremity tumours was more likely to consist of non-rhabdomyosarcomas and thus to encompass a broad spectrum of tumour biologies including low-grade STS. There are limited data specifically exploring the relationship between tumour histology and total interval, but Nandra et al (n=277) identified that low-grade sarcomas were associated with a longer total interval.

Effect of patient-specific factors

Patient gender, level of education and measures of social deprivation were not associated with length of total interval. The effect of patient age was examined in five studies. Ferrari et al (n=575) established that children over 10 years old had a longer total interval than those younger than 10 years old. Desandes et al (n=43) found the same result when comparing age groups 15–19 vs 20–24 years (15.4 vs 48.7 weeks; p=0.04). Smolle et al found no difference for patients with synovial sarcoma older or younger than 16 years old. A large retrospective study of almost 5000 sarcoma patients found no difference in total interval in patients older and younger than the median study age of 57 years. A Sarcoma UK survey (n=558) established no association between age and patient interval or total interval.

Two studies in children examined the effect of presenting symptoms on the total interval. The first (n=575) found no significant difference in the length of total interval between patients presenting with a swelling or with a specific symptom (e.g., urethral obstruction). The second in 33 patients with synovial sarcoma found the presence of a lump led to a shorter doctor interval, while a periarticular location or presence of a joint contracture led to both a longer patient and a longer doctor interval.
Effect of healthcare system-related factors
The influence of the year of first presentation was studied in two publications, which did not find an improvement in total interval over the past 30–40 years.66

In a study of 162 STS patients surveyed in 2005, the median patient interval was just 1.3 weeks, while the median primary care interval was 25.0 weeks;47 if patients were reassured by the first medical professional they consulted (eg, their GP), it took twice as long to be referred on to an appropriate specialist centre.

Another single centre study of 545 patients with suspected sarcoma referred to a specialist clinic in Denmark reported a median total interval of 25.1 weeks;59 120 patients (19%) had a sarcoma (88 soft tissue, 14 BS), 68 patients (12%) had another malignancy.58 Patients referred to the centre with prior investigations in their local hospital had a longer total interval than those with investigations in the sarcoma centre (median 13.3 vs 23.7 weeks). Synovial sarcoma patients with an unplanned resection had a longer diagnostic interval than those referred directly to a sarcoma centre (24 vs 12 months; p=0.001).68

Relationship between total interval and patient outcomes
The influence of the length of total interval on clinical outcomes in STS patients has been reported in 10 retrospective studies (table 4).27 43 54 61–63 65–67 69

Five of these studies observed no effect on survival.43 61–63 65–67 69 One study (n=2 277) reported that patients with STS treated between 1985 and 2010 with a longer total interval (26 vs 20 weeks) had a significantly improved survival rate, even when stratified by disease stage.27 This pattern was consistent for all histological subtypes apart from rhabdomyosarcoma where survival was significantly better with a short total interval (n=34, 16 vs 52 weeks total interval). Furthermore, patients undergoing unplanned resections prior to specialist referral had a lower 1-year mortality rate than patients referred directly. These patients tended to have small, superficial, low-grade tumours, which are associated with a better prognosis.

Three studies reported that patients with a shorter total interval had improved overall survival rates.43 63 67 Ferrari et al analysed the risk of death for 575 children at different time intervals and found worse survival with increased diagnostic interval and with diagnostic intervals <1 month vs 1–3 months (HR 1.4 (95% CI 0.7 to 2.6)) and <1 month vs >12 months (HR 3.6 (95% CI 1.7 to 8.0)), respectively.67 Bandyopadhyay et al (n=391) reported that the odds of death increased by 46% for every doubling of the diagnostic interval.43

No study has investigated the influence of the length of the total interval on patient-reported outcomes.

DISCUSSION
To the best of our knowledge, there is no published systematic review on the sarcoma total diagnostic interval.

Analysis of the length of the total interval is complex, as it is influenced by many different factors. In sarcomas, assessment of the total interval is further challenged by the heterogeneity of the disease, the rarity of the group and the presence of 70+ subtypes.

Focusing on the patient interval, it might be anticipated that patients who consult a doctor early have a reason for doing so (eg, worrying, severe symptoms or evidence of rapid progression), which would result in a quicker referral for investigation and a shorter diagnostic interval.21 43 and vice versa.12 13 26 54 However, some aspecific symptoms such as pain have given contradictory results.22 26

Both patient and doctor intervals might be influenced by the biological behaviour of the sarcoma. The usually indolent chondrosarcomas had a longer total interval than the more aggressive osteosarcoma and Ewing sarcomas,12 14 21 26 and non-rhabdomyosarcoma STS had a longer total interval than rhabdomyosarcomas or soft tissue ESFT.67

Furthermore, tumour location influences the length of the total interval, with atypical tumour presentations increasing the difficulties in diagnosis and prolonging the diagnostic interval.

There are two main findings from studies of the primary and secondary care intervals. First, if at initial presentation the assessing clinician is falsely reassured or makes an incorrect diagnosis, the diagnostic interval is severely prolonged.47 65 67 Second, patients undergoing an unplanned resection prior to referral to a specialist centre have a lower 1-year mortality rate than those referred directly to a specialist centre.27 This finding may be due to selection bias, as patients undergoing unplanned resections have smaller, superficial and lower grade tumours, which are known factors associated with a better prognosis.

The influence of the length of the total interval on clinical outcomes remains unclear. It might be predicted that sarcomas with more aggressive behaviour have a shorter total interval and worse survival outcomes, while sarcomas with indolent behaviour have a longer total interval and improved survival. Alternatively, it may be expected that shorter total intervals lead to earlier treatment and better outcomes. For STS, we found conflicting results, which is not surprising with over 70 histological subtypes with different clinical behaviours. Most BS studies from our review do not report an association between length of total interval and survival as well. Researchers have argued that this lack of an association, often referred to as the ‘waiting-time paradox’, may be due to the fact that the studies have not been able to adjust for the aggressiveness of the tumour.

To date, the influence of total interval on morbidity, HRQoL and other patient-reported outcomes has not been assessed. Based on the available literature in other malignancies, improving the total interval will likely influence the level of patient satisfaction, fear and morbidity. The importance of these outcomes is demonstrated by Mesko et al who studied factors most commonly causing
Table 4 The influence of length of the total interval on outcomes for STS

Ref.	Study design, time period and country	Study population	Age (years)	Total interval (weeks)	Influence on stage or metastases at diagnosis	Influence on survival
Gofman et al 2007	Retrospective 1991–2004 Israel	73 synovial sarcoma	38 (8–82)†	77.4 (8.6–202.1)†	NR	Total interval ≤1 year resulted in better systemic control (HR 0.3; p=0.037). No effect on overall survival.
Amant et al 2003	Retrospective 1990–2002 Belgium	15 endometrial stromal sarcoma	34‡	NR	Stage 4 disease in 5/6 with missed diagnosis, compared with 1/9 in correct diagnosis group. No data on diagnostic interval in the latter group.	NR
Nakamura et al 2011	Retrospective 2001–2009 Japan	100 STS, referred for additional resection	57 (0–89)‡†	25.843–17)*‡	NR	5 years survival: 54.4% (66.8% without metastases, 5.9% with metastases)
						12/43 metastases vs 6/51 metastases (p=0.04)
						77% (48 patients without metastases)
Rougraff et al 2012	Retrospective 1992–2007 USA	381 grade 3 STS of extremity or flank	NR	66.6 20†	No association	No association
Rougraff et al 2007	Retrospective 1992–2003 USA	624 sarcoma: 382 soft tissue sarcoma	NR	No association	No association	No association
		278 high-grade STS	73.3 (0.25–362.8)††	No association	No association	No association
		104 low-grade STS	127.4 (0.25–256)††	No association	No association	No association
Ferrari et al 2010	Retrospective 1977–2005 Italy	575 STS	≤21§	8.6 (1-258)†	No association	Risk of death increased the longer the diagnostic interval (p=0.002)
Bandyopadhyay et al 2016	Retrospective 1991–2010 USA	391 primary pulmonary artery sarcoma	52 (14–94)*†	14.3*	NR	For every doubling diagnostic interval, the odds of death increased by 46% (p<0.001)
Chotel et al 2008	Retrospective 1985–2006 UK	33 synovial sarcoma	12.3 (3-16)‡†	98 (2–364)‡†	NR	No association
Nandra et al 2015	Retrospective 1985–2010 UK	2277 STS	57*	NR	No association	1-year mortality (13%), survivors longer total interval (20 vs 26 weeks)
Smolle et al 2019	Retrospective 1982–2014 UK	248 synovial sarcomas	37‡	52*	NR	No association (<1 year versus >1 year)

Continued
litigation in sarcoma cases in the USA. In 81% of cases, a delay in diagnosis was part of the complaint, a further 7% were about misdiagnosis and 11% about unnecessary amputation. Primary care doctors and orthopaedic specialists were most common defendants in delay in diagnosis cases.

In neither BS or STS did our review identify a clear cut-off point for appropriate versus inappropriate length of total interval or its components. Apart from the contradictory results in terms of influence of the length of the interval on survival, several other factors make it difficult to draw firm conclusions. First, the design of most studies was retrospective, increasing the chance of recall bias with regard to self-reported outcomes such as dates of first symptoms. Second, many studies included a small number of heterogeneous patients, which made them unsuitable for subtype analysis. Although we excluded case reports, we included case series because they reflect the sort of research that has been done in this area, and show how heterogeneous the population is. Third, the inclusion criteria of studies differed; some studies only considered those patients who reported a diagnostic delay, which made it impossible to compare this group to the entire sarcoma population. Furthermore, diagnostic delay was defined differently throughout the literature. One of the limitations of this review is that we had to work with these different definitions, which made comparisons difficult. We propose for future reports that the date of pathological diagnosis is used as the endpoint of the diagnostic interval. Furthermore, studies included in this review were conducted over the past 50 years. During this period, radiological and histological diagnostic techniques have evolved, treatment options have improved, and, in some countries, diagnostic pathways with referrals of suspected lumps to centralised sarcoma services have developed, which may have influenced our results.

Centralised sarcoma care may improve diagnostic pathways and there is an increasing number of (inter) national guidelines for the diagnosis and management of sarcomas. Centralising care at sarcoma centres with a multidisciplinary team improves the diagnostic interval because patients (1) do not lose time at local hospitals, (2) receive appropriate imaging for tumour staging and (3) get a higher rate of correct preoperative pathologic diagnosis. Improvement of these factors decrease tumour size and stage at diagnosis, resulting in an increase of the quality of surgery and improvement of survival outcomes in several of these studies. Best practices of different countries could be integrated to develop the optimal diagnostic pathway. In order for such guidelines to be successfully implemented, one needs strong political support with continuous attention to raise awareness and optimise the system by following a quality and control cycle.
CONCLUSION
This review confirms the complexity of the total interval to sarcoma diagnosis. Published studies give contradictory results in terms of determinants for a long total interval as well as its influence on outcomes. The impact of a long interval on HRQoL has not been studied. To present a clinically relevant cut-off point that discriminates between a short or long interval is thus impossible. Such a cut-off point, which can differ between histological subtypes, is necessary to make guidelines more evidence based, help to guide patients and support the sarcoma diagnostic process. Furthermore, to improve care we need to understand the impact of the total interval on HRQoL of patients diagnosed with a sarcoma. Future research should include relevant outcomes for patients, as well as focus on areas where a change in management could make a difference, such as in increased public awareness, education of primary and secondary healthcare providers and improved access to specialist centres.

Author affiliations
1Medical Oncology, Radboudumc, Nijmegen, The Netherlands
2Institute of Cancer Research, London, UK
3Psychosocial research and epidemiology, Antoni van Leeuwenhoek Netherlands Cancer Institute, Amsterdam, Netherlands
4Medical Oncology, Weston Park Hospital, Sheffield, UK
5Medical Oncology, Radboudumc, Nijmegen, Gelderland, The Netherlands
6Medical Oncology, Radboudumc, Amsterdam, The Netherlands
7Medical Oncology, Radboudumc, Nijmegen, The Netherlands

Contributors All authors have contributed to this manuscript and have agreed to submit the manuscript to ESMO open for publication.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, provided the original work is properly cited, any changes made are indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD
Vicky Soomers http://orcid.org/0000-0003-0019-3968

REFERENCES
1 Stillcr CA, Trama A, Serrano D, et al. Descriptive epidemiology of sarcomas in Europe: report from the RARECARE project. Eur J Cancer 2013;49:684–95.
2 Blay J-Y, Coindre J-M, Ducimetière F, et al. The value of research collaborations and consortia in rare cancers. Lancet Oncol 2016;17:e62–9.
3 DeSantis CE, Kramer JL, Jemal A. The burden of rare cancers in the United States. CA Cancer J Clin 2017;67:261–72.
4 McPhail S, Johnson S, Greenberg D, et al. Stage at diagnosis and early mortality from cancer in England. Br J Cancer 2015;111:Suppl 1:S108–15.
5 Olesen F, Hansen RP, Vedsted P. Delay in diagnosis: the experience in Denmark. Br J Cancer 2009;101 Suppl 2:S5–8.
6 Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097.
7 Weller D, Vedsted P, Rubin G, et al. The Aarhus statement: improving design and reporting of studies on early cancer diagnosis. Br J Cancer 2012;106:1262–7.
8 Kämmner PW, Shabazfar N, Vorkshori Makoei N, et al. Clinical, therapeutic and prognostic features of osteosarcoma of the jaws – experience of 36 cases. J Craniofac Surg 2012;24:541–8.
9 Pan KL, Chan WH, Chia YY. Initial symptoms and delayed diagnosis of osteosarcoma around the knee joint. J Orthop Surg 2010;18:55–7.
10 Widhe B, Bauer HCF. Diagnostic difficulties and delays with chest wall chondrosarcoma: a Swedish population based Scandinavian sarcoma group study of 106 patients. Acta Oncol 2011;50:435–40.
11 Goyal S, Roscoe J, Ryder WDJ, et al. Symptom interval in young people with bone cancer. Eur J Cancer 2004;40:2280–6.
12 Widhe B, Widhe T. Initial symptoms and clinical features in osteosarcoma and Ewing sarcoma. Journal of Bone & Joint Surgery - American Volume (Research Support, Non-U. S. Gov’t) 2000;82:667–74.
13 Widhe B, Widhe T, Bauer HCF. Ewing sarcoma of the rib—initial symptoms and clinical features: tumor missed at the first visit in 21 of 26 patients. Acta Orthop 2007;78:840–4.
14 Guerra RB, Testa MD, Mistry A, LdaC, et al. Comparative analysis between osteosarcoma and Ewing’s sarcoma: evaluation of the time from onset of signs and symptoms until diagnosis. Clinics 2015;61:99–106.
15 Bro tzmann M, Hefti F, Baumhoer D, et al. Do malignant bone tumors of the foot have a different biological behavior than sarcomas at other skeletal sites? Sarcoma 2013;2013:1–8.
16 Biscaglia R, Gasbarrini A, Böhl ing T, et al. Osteosarcoma of the bones of the Foot—an easily misdiagnosed malignant tumor. Mayo Clin Proc 1998;73:842–7.
17 Bacci G, Di Fiore M, Rimondini S, et al. Delayed diagnosis and tumor stage in Ewing’s sarcoma. Oncol Rep 1999;6:465–6.
18 Bacci G, Ferrari S, Longhi A, et al. High-grade osteosarcoma of the extremity: differences between localized and metastatic tumors at presentation. J Pediatr Hematol Oncol 2002;24:27–30.
19 Bacci G, Ferrari S, Longhi A, et al. Delay in diagnosis of high-grade osteosarcoma of the extremities, has it any effect on the stage of disease? Tumor 2000;86:204–6.
20 Bacci G, Balladelli A, Forini C, et al. Ewing’s sarcoma family tumours - Differences in clinicopathological characteristics at presentation between localised and metastatic tumours. J Bone Joint Surg Br 2007;89B:1229–33.
21 Goedhart LM, Gerbers JG, Ploegmakers JWW, et al. Delay in diagnosis and its effect on clinical outcome in high-grade sarcoma of bone: a referral oncological centre study. Orthop Surg 2016;8:122–8.
22 Brasseme JF, Chartrousse M, Obertin A, et al. Time to diagnosis of Ewing tumors in children and adolescents is not associated with metastasis or survival: a prospective multicenter study of 436 patients. Journal of Clinical Oncology (Multicenter Study Research Support, Non-U. S. Gov’t) 2014;32:1935–40.
23 Kim MS, Lee S-Y, Cho WH, et al. Prognostic effects of doctor-associated diagnostic delays in osteosarcoma. Arch Orthop Trauma Surg 2009;129:1421–5.
24 Simpson PMS, Reid R, Porter D. Ewing’s sarcoma of the upper extremity: presenting symptoms, diagnostic delay and outcome. Sarcoma 2005;9:15–20.
25 Wurtz LD, Peabody TD, Simon MA. Delay in the diagnosis and treatment of primary bone sarcoma of the pelvis. J Bone Joint Surg Am 1999;81:317–25.
26 Sneepen O, Hansen LM. Presenting symptoms and treatment delay in osteosarcoma and Ewing’s sarcoma. Acta radiol 1984;23:159–62.
27 Nandra R, Hwang N, Matharu GS, et al. One-Year mortality in patients with bone and soft tissue sarcomas as an indicator of delay in presentation. Annals 2015;97:425–33.
28 Vadillo RM, Contreras SJS, Canales JCG. Prognostic factors in patients with jaw sarcomas. Braz Oral Res 2011;25:421–6.
29 Ashwood N, Witt JD, Hallam PJ, et al. Analysis of the referral pattern to a supraglottic bone and soft tissue tumour service. Ann R Coll Surg Engl 2003;85:272–6.
30 George A, Grimer R. Early symptoms of bone and soft tissue sarcomas: could they be diagnosed earlier? Annals 2012;94:261–6.
31 Martin S, Ulrich C, Munsell M, et al. Delays in cancer diagnosis in underinsured young adults and older adolescents. Oncologist (Research Support, N. I. H., Extramural Research Support, Non-U.S. Gov’t) 2007;12:816–24.
32 Smith GM, Johnson GD, Grimer RJ, et al. Trends in presentation of bone and soft tissue sarcomas over 25 years: little evidence of earlier diagnosis. Annals 2011;93:542–7.
33 Grimer RJ. Size matters for sarcomas! Annals 2006;88:519–24.
34 Chen J, Muller CA. Patterns of diagnosis and misdiagnosis in pediatric cancer and relationship to survival. J Pediatr Hematol Oncol 2017;39:e110–5.
Desandes E, Brugière L, Moliné F, et al. Adolescent and young adult oncology patients in France: heterogeneity in pathways of care. *Pediatr Blood Cancer* 2018;65:e27235.

Petrelli AS, de Camargo B, Filho VO, et al. Results of the Brazilian osteosarcoma treatment group studies III and IV: prognostic factors and impact on survival. *J Clin Oncol* 2006;24:1161–8.

Yang JYK, Cheng FWT, Wong KC, et al. Initial presentation and management of osteosarcoma, and its impact on disease outcome. *Hong Kong Med J* 2009;15:434–9.

Younger E, Husson O, Bennister L, et al. Age-Related sarcoma patient experience: results from a national survey in England. *BMC Cancer* 2018;18:991.

Bielack SS, Kempf-Bielack B, Delling G, et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on the German cooperative osteosarcoma Study Group protocols. *J Clin Oncol* 2002;20:776–90.

Balmant NV, de Paula Silva N, de OSM deSSR, et al. Delays in the health care system for children, adolescents, and young adults with bone tumors in Brazil. *J Biol Pediatria* 2018.

Lawrenz JM, Stryon JP, Parry M, et al. Longer duration of symptoms at the time of presentation is not associated with worse survival in primary bone sarcoma. *Bone Joint J* 2018;100-B:652–61.

Pratt CB, Smith JW, Woerner S, et al. Factors leading to delay in the diagnosis and affecting survival of children with head and neck rhabdomyosarcoma. *Pediatrics* 1978;61:30–4.

Bandyopadhyay D, Panchabhai BS, Bajaj NS, et al. Primary pulmonary artery sarcoma: a close associate of pulmonary embolism—20—year observational analysis. *J Thorac Oncol* 2016;6:2992–601.

De Silva MVC, Barrett A, Reid R. Premonitory pain preceding swelling: a distinctive clinical presentation of synovial sarcoma which may prompt early detection. *Sarcoma* 2003;7:131–5.

Clark MA, Thomas JM, Delay in referral to a specialist soft-tissue sarcoma unit. *Eur J Surg Oncol* 2005;31:443–8.

Johnson GD, Smith G, Dramis A, et al. Delays in referral of soft tissue sarcomas. *Sarcoma* 2008;2008:1–7.

Lawrence W, de Camaro J, Collins D, et al. Adult soft tissue sarcomas. A pattern of care survey of the American College of surgeons. *Annals of Surgery* 1986;205:349–59.

Park JH, Kang CH, Kim CH, et al. Sarcoma of the extremity with a delayed diagnosis. *Am J Surg* 1986;205:349–59.

Chavanne W, Donegan WL, Natarajan N, et al. Factors leading to delay in diagnosis of soft tissue sarcomas. *Sarcoma* 2017;8:2592–601.

Seinen J, Almquist M, Styring E, et al. Delays in the management of retroperitoneal sarcomas. *Sarcoma* 2010;2010:1–4.

Bruun JP. Time lapse by diagnosis of oral cancer. *Oral Surgery, Oral Medicine, Oral Pathology* 1976;42:139–49.

Cooper TM, Sherman M, Collins D, et al. Soft tissue sarcoma of the extremity. *Ann R Coll Surg Engl* 1996;78:453–6.

Antillon F, Castellanos M, Valverde P, et al. Treating pediatric soft tissue sarcomas in a country with limited resources: the experience of the Unidad Nacional de Oncologia Pediatria in Guatemala. *Pediatr Blood Cancer* 2006;46:734–9.

Chotel F, Unnithan A, Chandrasekar CR, et al. Variability in the presentation of synovial sarcoma in children. *Bone Joint J* 2008;90-B:1090–6.

Durve DV, Kaneanagor RG, Albert D, et al. Paediatric rhabdomyosarcoma of the ear and temporal bone. *Clin Otolaryngol Allied Sci* 2004;29:32–7.

Watson DI, Coventry BJ, Langlois SL, et al. Soft-Tissue sarcoma of the extremity. experience with limb-sparing surgery. *Med J Aust* 1994;160:412–6.

Monnier D, Vidal C, Martin L, et al. Dermatofibrosarcoma protuberas: a population-based cancer registry descriptive study of 66 consecutive cases diagnosed between 1982 and 2002. *J Eur Acad Dermatol Venereol* 2006;20:1237–42.

Buvarp Dyrop H, Vedsted P, Raedkjær M, et al. Imaging and investigations before referral to a sarcoma center delay the final diagnosis of musculoskeletal sarcoma. *Acta Orthopaedica* 2017:1–6.