LORENTZIAN PARA-SASAKIAN MANIFOLDS WITH GENERALIZED SYMMETRIC METRIC CONNECTION

OĞUZHAN BAHADIR
DEPARTMENT OF MATHEMATICS, FACULTY OF ARTS AND SCIENCES,
K.S.U. KAHRAMANMARAS, TURKEY
E-MAILS: OGUZBAHA@GMAIL.COM

Abstract. In this paper, we defined new metric connection for Lorentzian para-Sasakian manifolds which is called generalized symmetric metric connection of type (α, β). Quarter-symmetric and semi-symmetric connections are two samples of this connection such that $(\alpha, \beta) = (0, 1)$ and $(\alpha, \beta) = (1, 0)$, respectively. We get some basic concept with respect to generalized symmetric metric connection in a LP-Sasakian manifolds. Finally we consider CR-submanifolds with respect to generalized metric connection.

AMS Classification: 53C15, 53C25, 53C40.

Keywords: Lorentzian para-Sasakian manifold, generalized symmetric metric connections.

1. Introduction

In [5], H. A. Hayden introduced a metric connection with non-zero torsion on a Riemannian manifold. The properties of Riemannian manifolds with semi-symmetric (symmetric) and non-metric connection have been studied by many authors ([1], [2], [4], [7], [20], [18]). The idea of quarter-symmetric linear connections in a differential manifold was introduced by S.Golab [4]. A linear connection is said
to be a quarter-symmetric connection if its torsion tensor \mathcal{T} is of the form

$$\mathcal{T}(X,Y) = u(Y)\varphi X - u(X)\varphi Y,$$

for any vector fields X, Y on a manifold, where u is a 1-form and φ is a tensor of type $(1,1)$. If $\varphi = I$, then the quarter-symmetric connection is reduced to a semi-symmetric connection. Hence quarter-symmetric connection can be viewed as a generalization of semi-symmetric connection.

A linear connection ∇ is said to be generalized symmetric connection if its torsion tensor T is of the form

$$T(X,Y) = \alpha\{u(Y)X - u(X)Y\} + \beta\{u(Y)\varphi X - u(X)\varphi Y\},$$

for any vector fields X, Y on a manifold, where α and β are smooth functions. φ is a tensor of type $(1,1)$ and u is a 1-form. Moreover, the connection ∇ is said to be a generalized symmetric metric connection if there is a Riemannian metric g in M such that $\nabla g = 0$, otherwise it is non-metric.

In the equation (2), if $\alpha = 0$ ($\beta = 0$), then the generalized symmetric connection is called β-quarter-symmetric connection (α-semi-symmetric connection), respectively. Moreover, if we choose $(\alpha, \beta) = (1,0)$ and $(\alpha, \beta) = (0,1)$, then the generalized symmetric connection is reduced to a semi-symmetric connection and quarter-symmetric connection, respectively. Hence a generalized symmetric connection can be viewed as a generalization of semi-symmetric connection and quarter-symmetric connection. This two connection are important for both the geometry study and applications to physics.

On the other hand, in 1989, K. Matsumoto [8] introduced the notion of Lorentzian para-Sasakian manifolds. I. Mihai and R. Rosca [10] studied the same manifolds independently and they obtained several results on such manifolds. Lorentzian para-Sasakian manifolds have also been studied by K. Matsumoto and I. Mihai [9], I. Mihai, A.A. Shaikh and U. C. De [11]. S. K. Srivastava and R. P. Kushwaha studied Lorentzian para-Sasakian manifolds admitting a special semi symmetric recurrent metric connection [17]. In [12] S.Y. Perktas, E. Kilic and M, M, Tripathi investigated curvature tensors with respect to semi-symmetric connection in a Lorentzian para-Sasakian manifold. It is shown that a Lorentzian para-Sasakian manifold with semi-symmetric non-metric connection is an η-Einstein manifold [13]. In [19] O. Bahadir
get some results with Lorentzian para-Sasakian manifold with quarter-symmetric non-metric connection.

In the present paper, we defined new connection for Lorentzian para-Sasakian manifold, generalized symmetric metric connection. This connection is the generalized form of semi-symmetric metric connection and quarter-symmetric metric connection. Section 2 is devoted to preliminaries. In section 3, we get generalized symmetric metric connection for a Lorentzian para-Sasakian manifold. In section 4, we calculate curvature tensor and ricci tensor of Lorentzian para-Sasakian with respect to generalized symmetric metric connection. Moreover it is shown that if a Lorentzian para-Sasakian manifold is Ricci semi-symmetric with respect to generalized symmetric metric connection, then the manifold is a generalized η– Einstein manifold with respect to generalized symmetric metric connection. section 5, we study CR-submanifolds a Lorentzian para-Sasakian with respect to generalized symmetric metric connection. Furthermore, we get integrability conditions of the distributions on CR-submanifolds.

2. Preliminaries

A differentiable manifold of dimension n is called Lorentzian para-Sasakian (briefly, LP-Sasakian) [8, 10], if it admit a $(1, 1)$ tensor field ϕ, a contravariant vector field ξ, a $1-$ form η and Lorentzian metric g which satify

$$\eta(\xi) = -1, \quad (3)$$
$$\phi^2(X) = X + \eta(X)\xi, \quad (4)$$
$$g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y), \quad (5)$$
$$g(X, \xi) = \eta(X), \quad (6)$$
$$\nabla_X \xi = \phi X, \quad (7)$$
$$\nabla_X \phi (Y) = g(X, Y)\xi + \eta(Y)X + 2\eta(X)\eta(Y)\xi, \quad (8)$$

where ∇ is Levi-Civita connection with respect to the Lorentzian metric g. It can be easily seen that in an LP-Sasakian manifold the following relations hold:

$$\phi \xi = 0, \quad \eta(\phi X) = 0, \quad rank \phi = n - 1, \quad (9)$$
If we write
\[\Phi(X, Y) = g(\phi X, Y), \]
for any vector field \(X \) and \(Y \), then the tensor field \(\Phi(X, Y) \) is a symmetric (0,2) tensor field \[8\]. Also, since the vector \(\eta \) is closed in an LP-Sasakian \[8, 11\] manifold, we have
\[(\nabla_X \eta)Y = \Phi(X, Y), \quad \Phi(X, \xi) = 0, \]
for any vector field \(X \) and \(Y \).

Let \(M \) be an \(n \)-dimensional LP-Sasakian manifold. Then the following relations hold \[11, 9\]:
\[g(R(X, Y)Z, \xi) = \eta(R(X, Y)Z) = g(Y, Z)\eta(X) - g(X, Z)\eta(Y), \]
\[R(\xi, X)Y = g(X, Y)\xi - \eta(Y)X, \]
\[R(X, Y)\xi = \eta(Y)X - \eta(X)Y, \]
\[R(\xi, X)\xi = X + \eta(X)\xi, \]
\[S(X, \xi) = (n - 1)\eta(X), \]
\[S(\phi X, \phi Y) = S(X, Y) + (n - 1)\eta(X)\eta(Y) \]
for any vector fields \(X, Y \) and \(Z \), where \(R \) and \(S \) are the curvature and Ricci tensors of \(M \), respectively.

A LP-Sasakian manifold \(M \) is said to be generalized \(\eta \)-Einstein if its Ricci tensor \(S \) is of the form
\[S(X, Y) = ag(X, Y) + b\eta(X)\eta(Y) + cg(\phi X, Y), \]
for any \(X, Y \in \Gamma(TM) \), where \(a, b \) and \(c \) are scalar functions such that \(b \neq 0, c \neq 0 \). If \(c = 0 \) then \(M \) is called \(\eta \)-Einstein manifold.

Let \(M \) be a submanifold of a LP-Sasakian manifold \(M' \). The Gauss and Weingarten formulas are given
\[\nabla_X Y = \nabla'_X Y + h(X, Y), \quad \forall X, Y \in \Gamma(TM'), \]
\[\nabla_X N = -A_N X + \nabla'_X N, \quad \forall N \in \Gamma(T^\perp M'), \]
where \(\{\nabla_X Y, A_N X\} \) and \(\{h(X, Y), \nabla'_X N\} \) belong to \(\Gamma(TM') \) and \(\Gamma(T^\perp M') \), respectively.
3. Generalized Symmetric Metric Connection in a LP- Sasakian manifold

Let ∇ be a linear connection and ∇ be a Levi-Civita connection of an LP-Sasakian manifold M such that

$$\nabla_X Y = \nabla_X Y + H(X, Y),$$

for any vector field X and Y. Where H is a tensor of type $(1, 2)$. For ∇ to be a generalized symmetric metric connection of ∇, we have

$$H(X, Y) = \frac{1}{2} [T(X, Y) + T'(X, Y) + T'(Y, X)],$$

where T is the torsion tensor of ∇ and

$$g(T'(X, Y), Z) = g(T(Z, X), Y).$$

From (2) and (23) we get

$$T'(X, Y) = \alpha \{\eta(X)Y - g(X, Y)\xi\} + \beta \{\eta(Y)\phi X - g(\phi X, Y)\xi\}.\quad (24)$$

Using (2), (22) and (24) we obtain

$$H(X, Y) = \alpha \{\eta(Y)X - g(X, Y)\xi\} + \beta \{\eta(Y)\phi X - g(\phi X, Y)\xi\}.\quad (25)$$

Corollary 1. For an LP-Sasakian manifold, generalized symmetric metric connection ∇ of type (α, β) is given by

$$\nabla_X Y = \nabla_X Y + \alpha \{\eta(Y)X - g(X, Y)\xi\} + \beta \{\eta(Y)\phi X - g(\phi X, Y)\xi\}.\quad (26)$$

If we choose $(\alpha, \beta) = (1, 0)$ and $(\alpha, \beta) = (0, 1)$, generalized symmetric metric connection is reduced a semi-symmetric metric connection and quarter-symmetric metric connection as follows:

$$\nabla_X Y = \nabla_X Y + \eta(Y)X - g(X, Y)\xi,\quad (27)$$

$$\nabla_X Y = \nabla_X Y + \eta(Y)\phi X - g(\phi X, Y)\xi.\quad (28)$$

From (27), (28), (11) and (23) we have the following proposition
Proposition 2. Let M be an LP- Sasakian manifold with generalized symmetric metric connection. We have the following relations:

\[
(\nabla_X \phi)Y = [(1 - \beta)g(X,Y) + (2 - 2\beta)\eta(X)\eta(Y) - \alpha\Phi(X,Y)]\xi + (1 - \beta)\eta(Y)X - \alpha\eta(Y)\phi X,
\]

\[
\nabla_X \xi = (1 - \beta)\phi X - \alpha X - \alpha\eta(X)\xi,
\]

\[
(\nabla_X \eta)Y = (1 - \beta)\Phi(X,Y) - \alpha g(\phi X, \phi Y),
\]

for any $X, Y, Z \in \Gamma(TM)$.

4. Curvature Tensor

Let M be an n- dimensional LP-Sasakian manifold. The curvature tensor \mathcal{R} of the generalized symmetric metric connection ∇ on M is defined by

\[
\mathcal{R}(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z,
\]

Using (26), (29) and Proposition 2 we have

\[
\mathcal{R}(X, Y)Z = \mathcal{R}(X, Y)Z + K_1(Y, Z)X - K_1(X, Z)Y + K_2(Y, Z)\phi X - K_2(X, Z)\phi Y
\]

\[
+ \{K_3(X, Y)Z - K_3(Y, X)Z\} \xi,
\]

where

\[
K_1(Y, Z) = (\alpha \beta - \alpha)\Phi(Y, Z) + \alpha^2 g(Y, Z) + (\alpha^2 + \beta - \beta^2)\eta(Y)\eta(Z),
\]

\[
K_2(Y, Z) = (\beta^2 - 2\beta)\Phi(Y, Z) - \alpha(1 - \beta)g(Y, Z),
\]

\[
K_3(X, Y)Z = \{((\alpha^2 + \beta)g(Y, Z) + \alpha\beta\Phi(Y, Z)\} \eta(X),
\]

\[
R(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z.
\]

From (31) we have the following lemma

Lemma 3. Let M be an n- dimensional LP- Sasakian manifold with generalized symmetric metric connection. Then we have the following equations:

\[
\mathcal{R}(X, Y)\xi = (1 - \beta + \beta^2)(\eta(Y)X - \eta(X)Y) + \alpha(1 - \beta)(\eta(X)\phi Y - \eta(Y)\phi X),
\]

\[
\mathcal{R}(\xi, Y)Z = \{-\alpha\Phi(Y, Z) + (1 - \beta)g(Y, Z) - \beta^2\eta(Y)\eta(Z)\} \xi + (-1 + \beta - \beta^2)\eta(Z)Y + \alpha(1 - \beta)\eta(Z)\phi Y
\]

\[
\mathcal{R}(\xi, Y)\xi = (1 - \beta + \beta^2)(\eta(Y)\xi + Y) + \alpha(\beta - 1)\phi Y,
\]

for any $X, Y, Z \in \Gamma(TM)$.
The Ricci tensor \overline{S} of an LP-Sasakian manifold M with respect to generalized symmetric metric connection ∇ is given by

$$\overline{S}(Y, Z) = \sum_{i=1}^{n} \varepsilon_{i} g(R(e_{i}, Y)Z, e_{i}).$$

where $X, Y \in \Gamma(TM)$, $\{e_{1}, e_{2}, ..., e_{n}\}$ is an orthonormal frame and $\varepsilon_{i} = g(e_{i}, e_{i})$.

From (30) we have

$$\overline{S}(Y, Z) = \sum_{i=1}^{n} \varepsilon_{i} \{g(R(e_{i}, Y)Z, e_{i}) + K_{1}(Y, Z)e_{i} - K_{1}(e_{i}, Z)g(Y, e_{i}) + K_{2}(Y, e_{i})g(\phi e_{i}, e_{i}) - K_{2}(e_{i}, Z)g(\phi Y, e_{i}) + \{K_{3}(e_{i}, Y)Z - K_{3}(Y, e_{i})Z\} \eta(e_{i})\}.$$ \hspace{1cm} (35)

Since the Ricci tensor of the Levi-Civita connection ∇ is given by

$$S(X, Y) = \sum_{i=1}^{n} \varepsilon_{i} g(R(e_{i}, X)Y, e_{i}),$$

then by using (31), (32), (33) and (35) we get

$$\overline{S}(Y, Z) = S(Y, Z) + \{-(n-1)(1 - \beta + \beta^{2}) + \alpha(\beta - 1)trace\Phi\} \eta(Y)\eta(Z).$$ \hspace{1cm} (36)

Φ and Ricci tensor of the Levi-Civita connection are symmetric, thus from (36) we have the following corollary:

Corollary 4. Let M be an n–dimensional LP–Sasakian manifold. Then the Ricci tensor \overline{S} of generalized symmetric metric connection ∇ is symmetric.

Lemma 5. Let M be an n–dimensional LP–Sasakian manifold. Then we have.

$$\overline{S}(Y, \xi) = \{ (n-1)(1 - \beta + \beta^{2}) + \alpha(\beta - 1)trace\Phi \} \eta(Y),$$ \hspace{1cm} (37)

$$\overline{S}(\phi Y, \phi Z) = \overline{S}(Y, Z) + \{ (n-1)(1 - \beta + \beta^{2}) + \alpha(\beta - 1)trace\Phi \} \eta(Y)\eta(Z),$$ \hspace{1cm} (38)

for any $X, Y \in \Gamma(TM)$.

Proof. Using (3), (9) and (16) in the equation (36), we get (37)

By using (5), (9) and (17) in the equation (36), we have (38). \hfill \square

Theorem 6. Let M be an n–dimensional LP–Sasakian manifold. If M is Ricci semi-symmetric with respect to generalized symmetric metric connection , then we have the following statements:
(i) \(M \) is generalized \(\eta \) Einstein manifold with respect to generalized symmetric metric connection of type \((\alpha, \beta)\),

(ii) \(M \) is \(\eta \) Einstein manifold with respect to generalized symmetric metric connection of type \((0, \beta)\),

(iii) \(M \) is Einstein manifold with respect to generalized symmetric metric connection of type \((\alpha, 0) \) \((\alpha \neq 1)\).

Proof. Let \(\overline{R}(X,Y)\mathcal{S} = 0 \) be on \(M \) for any \(X, Y, Z, U \in \Gamma(TM) \), then we have

\[
\mathcal{S}(\overline{R}(X,Y)Z,U) + \mathcal{S}(Z,\overline{R}(X,Y)U) = 0. \tag{39}
\]

If we choose \(Z = \xi \) and \(X = \xi \) in (39), we get

\[
\mathcal{S}(\overline{R}(\xi,Y)\xi,U) + \mathcal{S}(\xi,\overline{R}(\xi,Y)U) = 0. \tag{40}
\]

Using Lemma 3 and Lemma 5 in (40), we obtain

\[
(1 - \beta + \beta^2)\mathcal{S}(Y,U) + \alpha(\beta - 1)\mathcal{S}(\Phi Y,U) \tag{41}
\]

\[
= \{(n - 1)(1 - \beta + \beta^2) + \alpha(\beta - 1) \} \{-\alpha\Phi(Y,U) + (1 - \beta)g(Y,U) - \beta^2 \eta(Y)\eta(U)\}.
\]

If one substitutes \(Y = \phi Y \) in the equation (41) and using (37), we get

\[
(1 - \beta + \beta^2)\mathcal{S}(\phi Y,U) + \alpha(\beta - 1)\mathcal{S}(Y,U) \tag{42}
\]

\[
= \{(n - 1)(1 - \beta + \beta^2) + \alpha(\beta - 1) \} \{(1 - \beta)\Phi(Y,U) - \alpha g(Y,U) - \alpha \beta \eta(Y)\eta(U)\}.
\]

From the (41) and (42), we obtain

\[
(1 - \beta + \beta^2)\mathcal{S}(Y,U) \tag{43}
\]

\[
= \{(n - 1)(1 - \beta + \beta^2) + \alpha(\beta - 1) \} \{\alpha \beta \Phi(Y,U) - (1 - \beta)(1 - \beta + \beta^2 - \alpha^2)g(Y,U)

+ (-\beta^4 + \beta^3 - \beta^2 + \alpha^2 \beta^2 - \beta \alpha^2)\eta(Y)\eta(U)\}.
\]

Thus, for \(\alpha = 0 \) and \(\beta = 0 \) we get the following equations:

\[
\mathcal{S}(Y,U) = (n - 1)(1 - \beta)g(Y,V) - (n - 1)\beta^2 \eta(Y)\eta(U), \tag{44}
\]

\[
(1 - \alpha^2)\mathcal{S}(Y,U) = (1 - \alpha^2)(n - 1 - \alpha \text{ trace } \Phi)g(Y,U). \tag{45}
\]

Equations (43), (44) and (45) tell us proof is completed. \(\square \)
5. CR-SUBMANIFOLDS OF AN LP-SASAKIAN MANIFOLD WITH GENERALIZED
SYMMETRIC METRIC CONNECTION

Definition 7. [20] An \(n \)-dimensional Riemannian manifold \(M \) of an LP-Sasakian
manifold \(M' \) is called a CR-submanifold if \(\xi \) is tangent to \(M \) and there exists on \(M \)
a differentiable distribution \(D: x \to D_x \subset T_x(M) \) such that
(i) \(D \) is invariant under \(\phi \), i.e. \(\phi D \subset D \).
(ii) The orthogonal complement distribution \(D^\perp: x \to D^\perp_x \subset T^\perp_xM \) of the distribu-
tion \(D \) on \(M \) is totally real \(\), i.e. \(\phi D^\perp \subset T^\perp M \).

Definition 8. [20] The distribution \(D \) (resp., \(D^\perp \)) is called horizontal (resp., ver-
tical) distribution. The pair \((D, D^\perp) \) is called \(\xi \)-horizontal (resp., \(\xi \)-vertical) if \(\xi \in \Gamma(D) \) (resp., \(\xi \in \Gamma(D^\perp) \)). The CR-submanifold is also called \(\xi \)-horizontal
(resp., \(\xi \)-vertical) if \(\xi \in \Gamma(D) \) (resp., \(\xi \in \Gamma(D^\perp) \)).

The orthogonal complement \(\phi D^\perp \) in \(T^\perp M \) is given by
\[
TM = D \oplus D^\perp, \quad T^\perp M = \phi D^\perp \oplus \mu,
\]
where \(\phi \mu = \mu \).

Let \(M \) be a CR-submanifold of an LP-Sasakian manifold \(M' \) with generalized
symmetric metric connection \(\nabla \). For any \(X \in \Gamma(TM') \) and \(N \in \Gamma(T^\perp M') \) we can write
\[
X = PX + QX, \quad PX \in \Gamma(D), \quad QX \in \Gamma(D^\perp), \quad (46)
\]
\[
\phi N = BN + CN, \quad BN \in \Gamma(D^\perp), \quad CN \in \Gamma(\mu). \quad (47)
\]
The Gauss and weingarten formulas with respect to \(\nabla \) are given, respectively,
\[
\nabla_X Y = \nabla'_{X} Y + \overline{h}(X,Y) \quad (48)
\]
\[
\nabla_X N = -\overline{A}_N X + \nabla^\perp_X N \quad (49)
\]
for any \(X, Y \in \Gamma(TM') \), where \(\nabla'_{X}, \overline{A}_N X \in \Gamma(TM') \). Here, \(\nabla', \overline{h} \) and \(\overline{A}_N \)
are called the induced connection on \(M \), the second fundamental form and the
Weingarten mapping with respect to \(\nabla \). From \([19] \), \([20] \) and \([18] \) we have
\[
\nabla'_{X} Y + \overline{h}(X,Y) = \nabla_{X} Y + h(X,Y) + \alpha \{ \eta(Y)X - g(X,Y)\xi \} + \beta \{ \eta(Y)\phi X - g(\phi X,Y)\xi \}
\]
Using (46) and (47) in above the equation and comparing the tangential and normal components on both sides we obtain

\[
P\nabla Y = P\nabla Y + \alpha \eta(Y)PX - \alpha g(X,Y)P\xi + \beta \eta(Y)\phi PX - \beta g(\xi, Y)P\xi \tag{50}
\]

\[
\tilde{h}(X,Y) = h(X,Y) + \beta \eta(Y)\phi QX \tag{51}
\]

\[
Q\nabla Y = Q\nabla Y + \alpha \eta(Y)QX - \alpha g(X,Y)Q\xi - \beta \phi QX. \tag{52}
\]

for any \(X, Y \in \Gamma(TM').\)

Theorem 9. Let \(M\) be a CR-submanifold of an LP-Sasakian manifold \(M'\) with generalized symmetric metric connection \(\tilde{\nabla}\). Then we have the following expression:

(i) If \(M\) \(\xi\)− horizontal, \(X, Y \in \Gamma(D)\) and \(D\) is parallel with respect to \(\tilde{\nabla}\), then the induced connection \(\nabla\) is a generalized symmetric metric connection.

(ii) If \(M\) is \(\xi\)− vertical, \(X, Y \in \Gamma(D^\perp)\) and \(D^\perp\) is parallel with respect to \(\tilde{\nabla}\) then the induced connection \(\nabla\) is a generalized symmetric non-metric connection.

(iii) The Gauss formula with respect to generalized symmetric metric connection is of the form

\[
\nabla X Y = \nabla X Y + \beta \eta(Y)\phi QX. \tag{53}
\]

(iv) The weingarten formula with respect to generalized symmetric metric connection is of the form

\[
\nabla X N = -A X + \nabla X N + \alpha \eta(N)X + \beta \eta(N)\phi X - \beta g(\phi X, N)\xi. \tag{54}
\]

Proof. Using (48) and (51) we have (iii). Moreover, from (26) and Weingarten formula, we get (iv).

In view of (50), if \(M\) \(\xi\)− horizontal, \(X, Y \in \Gamma(D)\) and \(D\) is parallel with respect to \(\tilde{\nabla}\), we obtain

\[
\nabla X Y = \nabla X Y + \alpha \eta(Y)X - \alpha g(X,Y)\xi + \beta \eta(Y)\phi X - \beta g(\phi X, Y)\xi. \tag{55}
\]

This equation is verifying (i).

On the other hand, In view of (52) if \(M\) is \(\xi\)− vertical, \(X, Y \in \Gamma(D^\perp)\) and \(D^\perp\) is parallel with respect to \(\tilde{\nabla}\), we have

\[
\nabla X Y = \nabla X Y + \alpha \eta(Y)X - \alpha g(X,Y)\xi - \beta g(\phi X, Y)\xi. \tag{56}
\]

Using (56) we get

\[
(\nabla X g)(Y, Z) = \beta \{\eta(Y)g(\phi X, Z) + \eta(Z)g(\phi X, Y)\}. \tag{57}
\]
Thus, we have (ii).

□

Lemma 10. Let M be a CR-submanifold of an LP-Sasakian manifold M' with generalized symmetric metric connection. Then

\[h(X, \phi PY) + \beta \eta(Y)\phi QX + \nabla_X^\perp QY = Ch(X, Y) - \alpha \eta(Y)\phi QX + \phi Q
\]

\[P^\perp X \phi PY - PA_{\phi QY}X - \beta g(\phi X, \phi QY)P\xi = K(X, Y)P\xi + (1 - \beta)\eta(Y)PX \]

\[-\alpha \eta(Y)\phi PX + \phi P\nabla_X Y + \beta \eta(Y)\eta(QX)P\xi, \]

\[Q^\perp X \phi PY - QA_{\phi QY}X - \beta g(\phi X, \phi QY)Q\xi = K(X, Y)Q\xi + (1 - \beta)\eta(Y)QX \]

\[+ B\eta(Y) + \beta \eta(Y)QX + \beta \eta(Y)\eta(QX)Q\xi, \]

for any $X, Y \in \Gamma(TM)$, where $K(X, Y) = (1 - \beta)g(X, Y) + (2 - 2\beta)\eta(Y)\eta(Y) - \alpha g(X, \phi Y)$.

Proof. We know that $\nabla_X \phi Y = (\nabla_X \phi)Y + \phi(\nabla_X Y)$.

By virtue of Proposition(2, 33) and (34), we get

\[\nabla_X \phi PY + h(X, \phi PY) + \beta \eta(Y)\phi QX - A_{\phi QY}X + \nabla_X^\perp QY - \beta g(\phi X, \phi QY)\xi = (1 - \beta)\eta(Y)X - \alpha \eta(Y)\phi X \]

\[+ \{(1 - \beta)g(X, Y) + (2 - 2\beta)\eta(Y)\eta(Y) - \alpha g(X, \phi Y))\xi + \phi \nabla_X Y + \phi h(X, Y) + \beta \eta(Y)(QX + \eta(QX))\xi. \]

Using (10) and (17) and the above equation, comparing the normal, horizontal and vertical components, we have (58)-(60). □

Lemma 11. Let M be a ξ-vertical CR-submanifold of an LP-Sasakian manifold M' with generalized symmetric metric connection. Then

\[\phi P[Y, Z] = A_{\phi Y}Z - A_{\phi Z}Y + (\beta - 1)\{\eta(Z)Y - \eta(Y)Z \}
\]

for any $Y, Z \in \Gamma(D^\perp)$.

Proof. For any $Y, Z \in \Gamma(D^\perp)$, We know that $\nabla_X \phi Y = (\nabla_X \phi)Y + \phi(\nabla_X Y)$. Using Proposition(2, 33) and (34), we get

\[-A_{\phi Z}Y + \nabla_Y^\perp \phi Z - \beta g(\phi Y, \phi Z)\xi = \{(1 - \beta)g(Y, Z) + (2 - 2\beta)\eta(Y)\eta(Z) - \alpha g(Y, \phi Z))\xi \]

\[+ (1 - \beta)\eta(Z)Y - \alpha \eta(Z)\phi Y + \phi \nabla_Y Z + \phi h(Y, Z) + \beta \eta(Z)\phi^2 QY \]

By using (58), we obtain

\[\phi \nabla_Y Z = -A_{\phi Z}Y + \{-g(Y, Z) + (1 - \beta)\eta(Y)\eta(Z) + \alpha g(Z, \phi Y)\}Z \]

\[- B\eta(Y, Z) + (\beta - 1)\eta(Z)Y - \beta \eta(Z)(\phi QY + \phi^2 QY). \]
Interchanging Y and Z, we have
\[
\phi\nabla_Z Y = -A_{\phi Y} Z + \{-g(Y, Z) + (-2 + \beta)\eta(Y)\eta(Z) + \alpha g(Z, \phi Y)\}\xi \\
- Bh(Y, Z) + (\beta - 1)\eta(Y)Z - \beta\eta(Y)(\phi QZ + \phi^2 QZ).
\]

By subtracting, we completed the proof. \hfill \Box

This lemma is verifying the following theorem.

Theorem 12. Let M be a $\xi-$ vertical CR-submanifold of an LP-Sasakian manifold M' with generalized symmetric metric connection. Then the distribution D^\perp is integrable if and only if
\[
A_{\phi Y} Z - A_{\phi Z} Y = (\beta - 1)\{\eta(Y)Z - \eta(Z)Y\},
\]
for any $Y, Z \in \Gamma(D^\perp)$.

Corollary 13. Let M be a $\xi-$ vertical CR-submanifold of an LP-Sasakian manifold M' with generalized symmetric metric connection of type $(\alpha, 1)$. Then the distribution D^\perp is integrable if and only if
\[
A_{\phi Y} Z = A_{\phi Z} Y,
\]
for any $Y, Z \in \Gamma(D^\perp)$.

Corollary 14. Let M be a $\xi-$ vertical CR-submanifold of an LP-Sasakian manifold M' with semi-symmetric metric connection. Then the distribution D^\perp is integrable if and only if
\[
A_{\phi Y} Z - A_{\phi Z} Y = \eta(Z)Y - \eta(Y)Z,
\]
for any $Y, Z \in \Gamma(D^\perp)$.

Proposition 15. Let M be a $\xi-$ vertical CR-submanifold of an LP-Sasakian manifold M' with generalized symmetric metric connection. Then
\[
\phi Ch(X, Y) = Ch(\phi X, Y) = Ch(X, \phi Y)
\]
for any $X, Y \in \Gamma(D)$.

Proof. From (60) we get
\[
Q\nabla_X \phi Y = \{(1 - \beta)g(X, Y) - \alpha g(X, \phi Y)\}Q\xi + Bh(X, Y)
\]
(65)
and
\[
Q\nabla_{\phi X}\phi Y = \{(1 - \beta)g(\phi X, Y) - \alpha g(X, Y)\}Q\xi + Bh(\phi X, Y). \tag{66}
\]
Interchanging \(X\) and \(Y\) in (65) we have
\[
Q\nabla_{Y}^\prime\phi X = \{(1 - \beta)g(Y, X) - \alpha g(\phi Y, \phi X)\}Q\xi + Bh(\phi X, Y). \tag{67}
\]
Replacing \(X\) by \(\phi X\) we obtain
\[
Q\nabla_{Y}^\prime\phi X = \{(1 - \beta)g(\phi X, Y) - \alpha g(X, Y)\}Q\xi + Bh(\phi X, Y). \tag{68}
\]
Subtracting (66) from (68)
\[
Q(\nabla_{\phi X}^\prime\phi Y - \nabla_{Y}^\prime X) = 0. \tag{69}
\]
Thus, we get
\[
\nabla_{\phi X}^\prime\phi Y - \nabla_{Y}^\prime X \in D. \tag{70}
\]
Moreover, from (58), we find
\[
h(X, \phi Y) = Ch(X, Y) + \phi Q\nabla_{X}^\prime Y \tag{71}
\]
Replacing \(X\) by \(\phi X\) and \(Y\) by \(\phi Y\) in (71) we obtain
\[
h(\phi X, Y) = Ch(\phi X, \phi Y) + \phi Q\nabla_{\phi X}^\prime \phi Y. \tag{72}
\]
Interchanging \(X\) and \(Y\) in (71), we get
\[
h(\phi X, Y) = Ch(X, Y) + \phi Q\nabla_{Y}^\prime X. \tag{73}
\]
Subtracting (72) from (73) and using (70), we have
\[
Ch(\phi X, \phi Y) = Ch(X, Y),
\]
Replacing \(X\) by \(\phi X\) in the last equation we find
\[
Ch(\phi^2 X, \phi Y) = Ch(\phi X, Y),
\]
Thus, we obtain
\[
Ch(X, \phi Y) = Ch(\phi X, Y).
\]
Using (65) we obtain
\[
Q\nabla_{X}^\prime \phi^2 Y = \{(1 - \beta)g(X, \phi Y) - \alpha g(X, \phi^2 Y)\}Q\xi + Bh(X, \phi Y). \tag{74}
\]
Thus,

\[Q\nabla'_X Y = \{(1 - \beta)g(X, \phi Y) - \alpha g(X, Y)\}Q\xi + Bh(X, \phi Y). \]

(75)

Using (75) in (71), we have

\[h(X, \phi Y) = Ch(X, Y) + \phi Bh(X, \phi Y). \]

(76)

Applying \(\phi\) on both sides, we obtain

\[\phi h(X, \phi Y) = \phi Ch(X, Y) + \phi Bh(X, \phi Y). \]

(77)

Using (47) in (77), proof is completed.

Theorem 16. Let \(M \) be a \(\xi\)-horizontal CR-submanifold of an LP-Sasakian manifold \(M' \) with generalized symmetric metric connection. Then the distribution \(D \) is integrable if and only if

\[h(\phi X, Y) = h(\phi Y, X), \]

for any \(X, Y \in \Gamma(D) \).

Proof. From (60) we get

\[Q\nabla'_X \phi Y = B h(X, Y). \]

Replacing \(X \) by \(\phi X \) we have

\[Q\nabla'_\phi X \phi Y = B \phi h(\phi X, Y). \]

Interchanging \(X \) and \(Y \) we obtain

\[Q\nabla'_\phi X \phi Y = B h(\phi X, \phi Y). \]

Subtracting last two equations, we find

\[Q[\phi X, \phi Y] = B\{h(\phi X, Y) - h(\phi Y, X)\}. \]

Proof is completed.

\(\square\)
References

[1] N. S. Agashe and M. R. Chafle, A semi symmetric non-metric connection in a Riemannian manifold, Indian J. Pure Appl. Math. 23 (1992), 399-409.

[2] U. C. De and D. Kamilya, Hypersurfaces of Riemannian manifold with semi-symmetric non-metric connection, J. Indian Inst. Sci. 75 (1995), 707-710.

[3] A. Friedmann, J. A. Schouten, Über die geometrie der halbsymmetrischen Übertragung, Math. Zeitschr. 21(1924), 211-223.

[4] S. Golab, On semi-symmetric and quarter-symmetric linear connections, Tensor 29 (1975), 249-254.

[5] H. A. Hayden, Subspaces of a space with torsion, Proc. London Math. Soc. 34(1932), 27-50.

[6] S. K. Hui, S. Uddin, C. Ozel, and A. A. Mustafa, Warped Product Submanifolds of LP-Sasakian Manifolds, Hindawi Publishing Corporation, Discrete Dynamics in Nature and Society, Volume 2012, Article ID 868549, 11 pages.

[7] Y. Liang, On semi-symmetric recurrent-metric connection, Tensor 55 (1994), 107-112.

[8] K. Matsumoto, On Lorentzian Paracontact manifolds, Bull. Yamagata Univ. Natur. Sci. 12(2) (1989), 151-156.

[9] K. Matsumoto, I. Mihai, On a certain transformation in a Lorentzian para Sasakian manifold, Tensor (N. S.) 47 (1988), 189-197.

[10] I. Mihai, R. Rosca, On Lorentzian P-Sasakian manifolds, Classical Analysis, World Scientific Publ., Singapore, (1992), 155-169.

[11] I. Mihai, A.A. Shaikh, U. C. De, On Lorentzian para-Sasakian manifolds, Rendiconti del Seminario Mat. di Messina, Serie II (1999).

[12] S.Y. Perktas, E. Kilic, M, M, Tripathi, On a semi-symmetric connection in a Lorentzian para-Sasakian manifold, Differential Geometry-Dynamical Systems, Vol.12, 2010, pp.299-310.

[13] Yuksel Perktas S., Kilic E., Keles S., On a Semi-symmetric Non-metric Connection in an LP-Sasakian Manifold, Int. Electron. J. Geom., vol.3, No.2, 15-25, 2010.

[14] S. Sharfuddin, S.I. Husain, Semi-symmetric metric connexions in almost contact manifolds, Tensor. 30 (1976), 133-139.

[15] B. G. Schmidt, Conditions on a connection to be a metric connection, Commun. Math. Phys. 29 (1973), 55-59.

[16] J. A. Schouten, Ricci calculus, Springer, 1954.

[17] Sunil Kumar Srivastava and R. P. Kushwaha, Lorentzian Para Sasakian Manifolds Admitting Special Semi Symmetric Recurrent Metric Connection, Global Journal of Science Frontier Research Mathematics and Decision Sciences Volume 13 Issue 7 Version 1.0 Year 2013 Type : Double Blind Peer Reviewed International Research Journal

[18] M.M Tripathi, A new connection in a Riemannian manifold, International Journal of Geometry. 1 (2006), 15-24.
[19] Oguzhan Bahadir (2016) Lorentzian para-Sasakian manifold with quatersymmetric non-metric connection, Journal of Dynamical Systems and Geometric Theories, 14:1, 17-33, DOI: 10.1080/1726037X.2016.1177920

[20] De, U. C. and Sengupta, A. K. CR-submanifolds of a Lorentzian para-Sasakian manifold, Bull. Malaysian Math. Sci. Soc. 23, 99-106, 2000.