RESONANCES FOR 1D HALF-LINE PERIODIC OPERATORS: II. SPECIAL CASE

TRINH TUAN PHONG

Abstract. The present paper is devoted to the study of resonances for a 1D Schrödinger operator with truncated periodic potential. Precisely, we consider the half-line operator $H^N = -\Delta + V$ and $H^N_L = -\Delta + V \mathbb{1}_{[0,L]}$ acting on $\ell^2(\mathbb{N})$ with Dirichlet boundary condition at 0 with $L \in \mathbb{N}$. We describe the resonances of H^N_L near the boundary of the essential spectrum of H^N as $L \to +\infty$ under a special assumption.

1. Introduction

Let V be a periodic potential of period p and $-\Delta$ be the (negative) discrete Laplacian on $l^2(\mathbb{Z})$. We define the 1D Schrödinger operators $H^Z := -\Delta + V$ acting on $l^2(\mathbb{Z})$:

\begin{equation}
(H^Z u)(n) = ((-\Delta + V)u)(n) = u(n-1) + u(n+1) + V(n)u(n), \quad \forall n \in \mathbb{Z}
\end{equation}

and $H^N := -\Delta + V$ acting on $l^2(\mathbb{N})$ with Dirichlet boundary condition (b.c.) at 0.

Denote by Σ_Z the spectrum of H^Z and Σ_N the spectrum of H^N. One has the following description for the spectra of H^\bullet where $\bullet \in \{\mathbb{N}, \mathbb{Z}\}$:

- Σ_Z is a union of disjoint intervals; the spectrum of H^Z is purely absolutely continuous (a.c.) and the spectral resolution can be obtained via the Bloch-Floquet decomposition (see [10] for more details).
- $\Sigma_N = \Sigma_Z \cup \{v_i\}_{i=1}^m$ where Σ_Z is the a.c. spectrum of H^N and $\{v_i\}_{i=1}^m$ are isolated simple eigenvalues of H^N associated to exponentially decaying eigenfunctions (c.f. [7]).

Pick a large natural number L, we set:

$H^N_L := -\Delta + V \mathbb{1}_{[0,L]}$ on $l^2(\mathbb{N})$ with Dirichlet boundary condition (b.c.) at 0.

It is easy to check that the operator H^N_L is self-adjoint. Then, the resolvent $z \in \mathbb{C}^+ \mapsto (z - H^N_L)^{-1}$ is well defined on \mathbb{C}^+. Moreover, one can show that $z \mapsto (z - H^N_L)^{-1}$ admits a meromorphic continuation from \mathbb{C}^+ to $\mathbb{C} \setminus ((-\infty, -2] \cup [2, +\infty))$ with values in the self-adjoint operators from l^2_{comp} to l^2_{loc}. Besides, the number of poles of this meromorphic continuation in the lower half-plane $\{\text{Im} E < 0\}$ is at most equal to L (c.f. [5, Theorem 1.1]).

This kind of results is an analogue in the discrete setting for meromorphic continuation of resolvents of partial differential operators (c.f. e.g. [8]).
Now, we define the resonances of H_N^L, the main objet to study in the present paper, as the poles of the above meromorphic continuation. The resonance widths, the imaginary parts of resonances, play an important role in the large time behavior of wave packets, especially the resonances of the smallest width that give the leading order contribution (see [8] for an intensive study of resonances in the continuous setting and [2, 4, 3, 1, 6] for a study of resonances of various 1D operators).

1.1. Resonance equation for the operator H_N^L. Let H_L be H_N^L restricted to $[0, L]$ with Dirichlet b.c. at L. Then, assume that
- $\lambda_0 \leq \lambda_1 \leq \ldots \leq \lambda_L$ are Dirichlet eigenvalues of H_L;
- $a_k = a_k(L) := |\varphi_k(L)|^2$ where φ_k is a normalized eigenvector associated to λ_k.

Then, resonances of H_N^L are solutions of the following equation (c.f. [5, Theorem 2.1]):

\[(1.2) \quad S_L(E) := \sum_{k=0}^{L} \frac{a_k}{\lambda_k - E} = -e^{-i\theta(E)}, \quad E = 2 \cos \theta(E).\]

where the determination of $\theta(E)$ is chosen so that $\text{Im}\theta(E) > 0$ and $\text{Re}\theta(E) \in (-\pi, 0)$ when $\text{Im}E > 0$.

Note that the map $E \mapsto \theta(E)$ can be continued analytically from \mathbb{C}^+ to the cut plane $\mathbb{C} \setminus ((-\infty, 2] \cup [2, +\infty))$ and its continuation is a bijection from $\mathbb{C} \setminus ((-\infty, 2] \cup [2, +\infty))$ to $(-\pi, 0) + i\mathbb{R}$. In particular, $\theta(E) \in (-\pi, 0)$ for all $E \in (-2, 2)$.

Taking imaginary parts of two sides of the resonance equation (1.2), we obtain that

\[(1.3) \quad \text{Im}S_L(E) = \text{Im} \sum_{k=0}^{L} \frac{a_k}{|\lambda_k - E|^2} = e^{\text{Im}E} \sin(\text{Re}\theta(E)).\]

Note that, according to the choice of the determination $\theta(E)$, whenever $\text{Im}E > 0$,
\[\sin(\text{Re}\theta(E))\] is negative and $\text{Im}S_L(E) > 0$. Hence, all resonances of H_N^L lie completely in the lower half-plane \{Im $E < 0$\}.

The distribution of resonances of H_N^L in the limit $L \to +\infty$ was studied intensively in [5]. All results proved in [5] assume that the real part of resonances are far from the boundary point of the spectrum Σ_Z and far from the point ± 2, the boundary of the essential spectrum of $-\Delta$. By "far", we mean the distance between resonances and $\partial \Sigma_Z \cup \{\pm 2\}$ is bigger than a positive constant independent of L.

In the present paper, we are interested in phenomena which can happen for resonances whose real parts are near $\partial \Sigma_Z$ but still far from ± 2. To study resonances below compact intervals in Σ_Z, the interior of Σ_Z, the author in [5] introduced an analytical method to simplify and resolve the equation
implies that, for all \(a_k \in \Sigma_Z \) near a boundary point \(E_0 \in \partial \Sigma_Z \). Hence, a different approach is thus needed to study resonances near \(\partial \Sigma_Z \).

We observe from (1.2) that the behavior of resonances is completely determined by spectral data \((\lambda_k)_k, (a_k)_k\) of \(H_L \). As pointed out in [5], the parameters \(a_k \) associated to \(\lambda_k \in \Sigma_Z \) near a boundary point \(E_0 \in \partial \Sigma_Z \) can have two different behaviors depending on the potential \(V \): Either \(a_k \approx \frac{1}{L} \) or \(a_k \) is much smaller, \(a_k \approx \frac{\lambda_k - E_0}{L} \). Each case requires a particular approach for studying resonances and note that the latter is the generic one. In this paper, we deal with the non-generic case i.e. \(a_k \approx \frac{1}{L} \) (c.f. [9] for the treatment of the generic case).

1.2. Description of resonances of \(H^\mathbb{N}_L \) near \(\partial \Sigma_Z \) in the non generic case. Let \(E_0 \in (-2, 2) \) be the left endpoint of the band \(B_i \) of \(\Sigma_Z \) and \(L = Np + j \) with \(0 \leq j \leq p - 1 \). We will study resonances in the domain \(D = [E_0, E_0 + \varepsilon_1] - i[0, \varepsilon_2] \) where \(\varepsilon_1 \approx \varepsilon^2 \) and \(\varepsilon_2 \approx \varepsilon^5 \) with \(\varepsilon > 0 \) small.

Note that, for eigenvalues \(\lambda_k \in \Sigma_Z \) near \(E_0 \), we have \(\lambda_k \approx E_0 + \frac{(k+1)^2}{L^2} \) (see Lemma 2.3). This leads us to make the rescaling \(z = L^2(E - E_0) \) and track down rescaled resonances \(\bar{z} \) in the new region \(\bar{D} = \bar{D}_\varepsilon = [0, \varepsilon_1 L^2] - i[0, \varepsilon_2 L^2] \). Corresponding to this rescaling, we define rescaled eigenvalues \(\bar{\lambda}_k = L^2(\lambda_k - E_0) \) and \(\bar{a}_k = L a_k \). Then, the resonance equation (1.2) is rewritten as

\[
 f_L(z) := \sum_{k=0}^L \frac{\bar{a}_k}{\bar{\lambda}_k - z} = -\frac{1}{L} e^{-i\theta(E_0 + \frac{k}{L})}.
\]

Our goal is to describe solutions of (1.4) in the domain \(\bar{D} \). Let \((\bar{\lambda}^i)_\ell \) with \(\ell \in [0, n_{i,\varepsilon}] \) be all (distinct) eigenvalues of \(H_L \) belonging to \([E_0, E_0 + \varepsilon_1] \subset B_i \). Note that \(n_{i,\varepsilon} \approx \varepsilon L \) for \(L \) large by Lemma 2.3. Here we use the (local) enumeration w.r.t. bands of \(\Sigma_Z \) to enumerate eigenvalues in the band \(B_i \). We renumber the corresponding \(a_k \) in the same way. Then, it suffices to study the rescaling resonance equation (1.4) in each rectangle \(D^i_n := [\bar{\lambda}^i_n, \bar{\lambda}^i_{n+1}] - i[0, \varepsilon^5 L^2] \) with \(0 \leq n \leq \varepsilon L/C_1 \) with \(C_1 > 0 \) large and in the rectangle \(\mathcal{R}^i = [0, \bar{\lambda}^i_0] - i[0, L^2 \varepsilon^5] \).

Lemma 2.3 implies that, for all \(\lambda_k \in \bar{B}_i \), the interior of \(B_i \), and close to \(E_0 \), \(\bar{\lambda}_k \approx (k + 1)^2 \) (we will use \(\bar{\lambda}_k \approx k^2 \) when \(k \geq 1 \)). Moreover, from our assumption on \(a_k \), the associated \(\bar{a}_k \) has the constant magnitude. Note that, in the non generic case, it is possible that \(E_0 \in \sigma(H_L) \) for \(L \) large. Then, according to our enumeration, \(\bar{\lambda}^i_0 = 0 \) and \(\bar{a}_0 \) is still of order 1 (c.f. [9, Remark 3.4]).

Here is our strategy to study resonances in the present case. For \(0 \leq n \leq \varepsilon L/C_1 \) with \(C_1 > 0 \) large, we define \(\Delta_n := \frac{\bar{\lambda}^i_{n+1} - \bar{\lambda}^i_n}{\varepsilon \ln(n+1)+1} \) and \(x_0 = \bar{\lambda}^i_{n+1} - \bar{\lambda}^i_n \). First of all, we establish the subregions in \(D^i_n \) and \(\mathcal{R}^i \) which contain no resonances. They are rectangles greyed out in Figures 1.1-1.3.
The white regions Ω_i^n, $\tilde{\Omega}_i^n$ and Ω^i in Figures 1.1-1.3 are the regions where we will study the existence and uniqueness of resonances.

Next, we give a description of resonances in Ω_i^n. Note that this domain corresponds to the case $n \gtrsim \frac{L}{\ln L}$.

$$\begin{align*}
\text{Figure 1.1. Resonance free region as } & \Delta_n < \frac{x_2^2}{\varepsilon L} \\
\text{Figure 1.2. Resonance free resonance as } & \Delta_n \geq \frac{x_2^2}{\varepsilon L} \\
\text{Figure 1.3. Resonance free region in } & \mathcal{R}^i = [0, \tilde{\lambda}_0^i] - i[0, L^2\varepsilon]
\end{align*}$$
Theorem 1.1. Assume that $n > \eta L$ and put $x_0 = \tilde{\lambda}_{n+1} - \tilde{\lambda}_n$.
Let Ω^i_n be the complement of two squares $[\tilde{\lambda}_n, \tilde{\lambda}_n + \Delta_n] + i[-\Delta_n, 0]$ and $[\tilde{\lambda}_{n+1}, \tilde{\lambda}_{n+1} - \Delta_n] + i[-\Delta_n, 0]$ in the rectangle $[\tilde{\lambda}_n, \tilde{\lambda}_n + 1] + i[-\frac{x_0^2}{\varepsilon L}, 0]$ (the region $ABCHGFED$ in Figure 1.1).
Then, there exists at least one rescaled resonance in Ω^i_n. Hence, $|\text{Im} z_n| \lesssim \frac{n^2}{\varepsilon L}$ for all resonances in Ω^i_n.
Moreover, if $-\frac{1}{L} e^{-i\theta(E_0)}$ belongs to $A'B'C'D' = f_L(ABCD)$, the rescaled resonance, says z_n, is unique and

$$|\text{Im} z_n| \leq \Delta_n = \frac{n}{\kappa \ln n} \times \frac{n}{\kappa L} \lesssim \frac{n^2}{\varepsilon L}.$$

For n smaller, our result is more satisfactory. We can be sure that there is one and only one resonance in $\tilde{\Omega}^i_n$.

Theorem 1.2. Pick $n < \frac{nL}{\kappa}$ with $\eta > 0$ small. Let $x_0 = \tilde{\lambda}_{n+1} - \tilde{\lambda}_n$ and $\tilde{\Omega}^i_n$ be the rectangle $[\tilde{\lambda}_n + \Delta_n, \tilde{\lambda}_{n+1} - \Delta_n] + i[-\frac{x_0^2}{\varepsilon L}, 0]$ in Figure 1.2.
Then, f_L is bijective from $\tilde{\Omega}^i_n$ on $f_L(\tilde{\Omega}^i_n)$ and $|f'_L(z)| \geq \frac{1}{n^2}$. Moreover, there exists a unique rescaled resonance \tilde{z}_n in $\tilde{\Omega}^i_n$. It satisfies,

$$|\text{Im} \tilde{z}_n| \lesssim \frac{n^2}{\varepsilon L}.$$

Finally, there are no rescaled resonances in $\tilde{\mathcal{R}}^i$.

Theorem 1.3. Pick $0 < \delta_1 < \tilde{\lambda}_0$ and ε small, fixed numbers.
Let $E_0 \in (-2, 2)$ be the left endpoint of the ith band B_i of Σ_Z. Let $(\lambda^i_j)_{j=0}^{n_i}$ be (distinct) eigenvalues of H_L in B_i.
Let Ω^i be the rectangle $[0, \lambda^i_0 - \delta_1] + i[-\frac{1}{\varepsilon L}, 0]$ in Figure 1.3.
Then, f_L is bijective from Ω^i on $f_L(\Omega^i)$ and $|f'_L(z)| \geq c > 0$. Moreover, $f_L(\Omega^i)$ does not contain the point $-\frac{e^{-i\theta(E_0)}}{L}$; hence, there are no resonances in Ω^i.

From Theorems 1.1-1.3, we figure out that $\text{Im} z$, the width of rescaled resonances, is always bounded by $\frac{n^2}{\varepsilon L}$ up to a constant factor. Hence, when $n \gg \varepsilon L$ (far from $\partial \Sigma_Z$), $|\text{Im} z|$ is smaller than εL as pointed out in [5]. However, when n is small (close to $\partial \Sigma_Z$), the width of rescaled resonances is much smaller. It can be smaller than $\frac{1}{L^2}$ up to a constant factor.

The basic idea to prove Theorems 1.1-1.3 is to simplify the rescaled resonance equation (1.4) as much as possible via Rouché’s theorem as we did for the generic case (c.f. [9]). In the generic case, when we approximate the sum $S_L(E)$ in a region close to the eigenvalue λ_i^i, we can simply keep the term $\frac{q}{\tilde{\lambda}_i - E}$ and replace the remaining sum by some appropriate number which is independent of E. Consequently, we obtain a very simple but efficient approximation by Rouché’s theorem. This enables us to obtain a detailed
description of resonances near $\partial \Sigma_Z$. However, in the present case, the situation is worse. In a domain near $\tilde{\lambda}_n$, if we keep the term $\frac{a_n}{\lambda_n - E}$ or two terms $\frac{a_n}{\lambda_n - E}$ and $\frac{a_{n+1}}{\lambda_{n+1} - E}$ or even more, we cannot find a suitable approximation for the sum of the other terms. We always have to deal with the situation that the error of our approximations for $f_L(z)$ cannot be good enough to apply Rouché’s theorem. So, the solution which we come up with is the following. We will only use Rouché’s theorem to replace RHS of (1.4) by the number $-\frac{1}{L} e^{-i\theta(E_0)}$. Instead of approximating $f_L(z)$, we will study explicitly the images of domains where we want to track down resonances under $f_L(z)$. Then, based on the shape of the images of involved domains through f_L as well as the relative position between them and the point $-\frac{1}{L} e^{-i\theta(E_0)} \in \mathbb{C}$, we can obtain the information on resonances.

Our paper is organized as follows. First of all, Section 2 is a recall of the behavior of spectral data of H_L introduced in [5, 9]. Next, in Section 3, we prove the free resonance regions in D_α and R^i. Finally, Section 4 is dedicated to the proofs of Theorems 1.1-1.3.

Notations: Throughout the present paper, we will write C for constants whose values can vary from line to line. Constants marked C_i are fixed within a given argument. We write $a \lesssim b$ if there exists some $C > 0$ independent of parameters coming into a, b s.t. $a \leq Cb$. Finally, $a \asymp b$ means $a \lesssim b$ and $b \lesssim a$.

2. Spectral data near the boundary of Σ_Z

From (1.2), resonances of H_N^L depend only on the spectral data of the operator H_L, i.e., the eigenvalues and corresponding normalized eigenvectors of H_L. In order to "resolve" the resonance equation (1.2), it is essential to understand how eigenvalues of H_L behave and what the magnitudes of $a_l := |\varphi_l(L)|^2$ are in the limit $L \to +\infty$.

Before stating the properties of spectral data of H_L, one defines the quasi-momentum of H_Z:

Let V be a periodic potential of period p and L be large. For $0 \leq k \leq p - 1$, one defines $\tilde{T}_k = \tilde{T}_k(E)$ to be a monodromy matrix for the periodic finite difference operators H_Z, that is,

\begin{equation}
\tilde{T}_k(E) = T_{k+p-1,k}(E) = T_{k+p-1}(E) \ldots T_k(E) = \begin{pmatrix}
 a_{p}^k(E) & a_{p-1}^k(E) \\
 a_{p-1}^k(E) & a_{p-2}^k(E)
\end{pmatrix}
\end{equation}

where $\{T_l(E)\}$ are transfer matrices of H^Z:

\begin{equation}
T_l(E) = \begin{pmatrix}
 E - V_l & -1 \\
 1 & 0
\end{pmatrix}.
\end{equation}

Besides, for $k \in \{0, \ldots, p - 1\}$ we write

\begin{equation}
T_{k-1}(E) \ldots T_0(E) = \begin{pmatrix}
 a_k(E) & b_k(E) \\
 a_{k-1}(E) & b_{k-1}(E)
\end{pmatrix}.
\end{equation}
We observe that the coefficients of \(\tilde{T}_k(E) \) are monic polynomials in \(E \). Moreover, \(a_k^p(E) \) has degree \(p \) and \(b_k^p(E) \) has a degree \(p - 1 \). The determinant of \(T_l(E) \) equals to 1 for any \(l \), hence, \(\det \tilde{T}_k(E) = 1 \). Besides, \(k \mapsto \tilde{T}_k(E) \) is \(p \)-periodic since \(V \) is a \(p \)-periodic potential. Moreover, for \(j < k \)

\[
\tilde{T}_k(E) = T_{k,j}(E)\tilde{T}_j(E)T_{k,j}^{-1}(E).
\]

Thus the discriminant \(\Delta(E) := \text{tr} \tilde{T}_k(E) = a_k^p(E) + b_k^{p-1}(E) \) is independent of \(k \) and so are \(\rho(E) \) and \(\rho(E)^{-1} \), eigenvalues of \(\tilde{T}_k(E) \). Now, one can define the Floquet quasi-momentum \(E \mapsto \theta_p(E) \) by

\[
(2.4) \quad \Delta(E) = \rho(E) + \rho^{-1}(E) = 2 \cos(p\theta_p(E)).
\]

Then, one can show that the spectrum of \(H_{N, \Sigma_Z} \), is the set \(\{ E | |\Delta(E)| \leq 2 \} \) and \(\partial\Sigma_Z = \{ E | |\Delta(E)| = 2 \text{ and } \tilde{T}_0(E) \text{ is not diagonal} \} \).

Note that each point of \(\partial\Sigma_Z \) is a branch point of \(\theta_p(E) \) of square-root type.

One decomposes \(\Sigma_Z \) into its connected components i.e. \(\Sigma_Z = \bigcup_{i=1}^{q} B_i \) with \(q < p \). Let \(c_i \) be the number of closed gaps contained in \(B_i \). Then, \(\theta_p \) maps \(B_i \) bijectively into \(\sum_{\ell=1}^{i-1} (1+c_\ell)\frac{\pi}{p} + \frac{\pi}{p}[0,c_i] \). Moreover, on this set, the derivative of \(\theta_p \) is proportional to the common density of states \(n(E) \) of \(H^Z \) and \(H^N \):

\[
\theta_p'(E) = \pi n(E).
\]

One has the following description for spectral data of \(H_L \).

Theorem 2.1. [5, Theorem 4.2] For any \(j \in \{0, \ldots, p - 1\} \), there exists \(h_j : \Sigma_Z \to \mathbb{R} \), a continuous function that is real analytic in a neighborhood of \(\Sigma_Z \) such that, for \(L = Np + j \),

1. The function \(h_j \) maps \(B_i \) into \(-(c_i + 1)\pi, (c_i + 1)\pi \) where \(c_i \) is the number of closed gaps in \(B_i \);
(2) the function \(\theta_{p,L} = \theta_p - \frac{b_j}{L-j} \) is strictly monotonous on each band \(B_i \) of \(\Sigma_Z \);

(3) for \(1 \leq i \leq q \), the eigenvalues of \(H_L \) in \(B_i \), the ith band of \(\Sigma_Z \), says \((\lambda_k^i) \) are the solutions (in \(\Sigma_Z \)) to the quantization condition

\[
(2.5) \quad \theta_{p,L}(\lambda_k^i) = \frac{k\pi}{L-j}, \quad k \in \mathbb{Z}.
\]

(4) If \(\lambda \) is an eigenvalue of \(H_L \) outside \(\Sigma_Z \) for \(L = Np + j \) large, there exists \(\lambda_\infty \in \Sigma_0^+ \cup \Sigma_j^- \setminus \Sigma_Z \) s.t. \(|\lambda - \lambda_\infty| \leq e^{-cl} \) with \(c > 0 \) independent of \(L \) and \(\lambda \).

When solving the equation (2.5), one has to do it for each band \(B_i \), and for each band and each \(k \) such that \(\frac{k\pi}{L-j} \in \theta_{p,L}(B_i) \), (2.5) admits a unique solution. But, it may happens that one has two solutions to (2.5) for a given \(k \) belonging to neighboring bands.

Remark 2.2. From [5, Section 4], we have the following behavior of \(a_k \) associated to \(\lambda_k \) which is close to \(\partial \Sigma_Z \).

Let \(E_0 \in \partial \Sigma_Z \) and \(L = Np + j \). We define \(d_{j+1} = a_{j+1}(E_0)(a_p^0(E_0) - \rho^{-1}(E_0)) + b_{j+1}(E_0)a_{p-1}^0(E_0) \) where \(a_{j+1}, b_{j+1}, a_p^0, a_{p-1}^0 \) are polynomials defined in (2.1) and (2.3). Then, one distinguishes two cases:

(1) If \(a_{p-1}^0(E_0) = 0 \), then

\[a_k = |\varphi_k(L)|^2 \asymp \left| \frac{\lambda_k - E_0}{L-j} \right| \quad \text{and} \quad |\varphi_k(0)|^2 \asymp \frac{1}{L_j}. \]

(2) If \(a_{p-1}^0(E_0) \neq 0 \), then

- if \(d_{j+1} \neq 0 \), one has

\[|\varphi_k(L)|^2 \asymp \frac{|\lambda_k - E_0|}{L-j} \quad \text{and} \quad |\varphi_k(0)|^2 \asymp \frac{|\lambda_k - E_0|}{L-j}. \]

- if \(d_{j+1} = 0 \), one has

\[|\varphi_k(L)|^2 \asymp \frac{1}{L-j} \quad \text{and} \quad |\varphi_k(0)|^2 \asymp \frac{|\lambda_k - E_0|}{L-j}. \]

Besides, according to [9], if \(E_0 \in \sigma(H_L) \) for \(L \) large, says \(E_0 = \lambda_k \), then the associated \(a_k \) is of order \(\frac{1}{L} \).

Finally, we would like to remind readers of the behavior of eigenvalues of \(H_L \) close to \(E_0 \).

Lemma 2.3. [9, Lemma 3.5] Let \(E_0 \in (-2, 2) \) be the left endpoint of the ith band \(B_i \) of \(\Sigma_Z \). Let \(\lambda_0^i < \lambda_1^i < \ldots < \lambda_{n_i}^i \) be eigenvalues of \(H_L \) in \(B_i \), the interior of \(B_i \).

Pick \(\varepsilon > 0 \) a small, fixed number and \(\varepsilon_1 \asymp \varepsilon^2 \). Let \(I = I_{\varepsilon_1} := [E_0, E_0 + \varepsilon_1] \subset (-2, 2) \cap \Sigma_Z \).

Assume that \(\lambda_k^i \) is an eigenvalue of \(H_L \) in \(I \). Then, \(k \leq \varepsilon(L-j) \) and
\[\lambda^i_k - E_0 \approx \frac{(k+1)^2}{L^2} \] (for \(k \geq 1 \), we will write \(\lambda^i_k - E_0 \approx \frac{\pi^2}{L^2} \) instead).

Moreover, there exists \(\alpha > 0 \) s.t. for any \(0 \leq n < k \leq \epsilon(L - j) \), we have

\[|k^2 - n^2| \leq |\lambda^i_k - \lambda^i_n| \leq \frac{\alpha |k^2 - n^2|}{L^2}. \]

Proof of Lemma 2.3. To simplify notations, we will skip the superscript \(i \) in \(\lambda^i_k \) of \(H_L \) throughout this proof.

First of all, from the property of \(\theta_p \) and \(h_j \) near \(E_0 \), we have, for any \(E \) near \(E_0 \),

\[\theta_{p,L}(E) - \theta_{p,L}(E_0) = c(L) \sqrt{|E - E_0| (1 + o(1))} \]

where \(|c(L)| \) is lower bounded and upper bounded by positive constants independent of \(L \).

Put \(L = Np + j \) where \(p \) is the period of the potential \(V \) and \(0 \leq j \leq p - 1 \). According to Theorem 2.1, \(\theta_{p,L}(E) \) is strictly monotone on \(B_i \). W.o.l.g., we assume that \(\theta_{p,L}(E) \) is strictly increasing on \(B_i \). Note that, in this lemma, we enumerate eigenvalues \(\lambda^i_\ell \) in \(B_i \) with the index \(\ell \) starting from 0. Then, we have to modify the quantization condition (2.5) in Theorem 2.1 appropriately. Recall that the quantization condition is \(\theta_{p,L}(\lambda_\ell) = \frac{\pi \ell}{L - j} \)

where \(\frac{n \pi}{L - j} \in \theta_{p,L}(B_i) \) with \(\ell \in \mathbb{Z} \). Assume that \(\theta_{p,L}(E_0) = \frac{m \pi}{p} \) with \(m \in \mathbb{Z} \).

Put \(\ell = \lambda N + \tilde{k} \) where \(\lambda \in \mathbb{Z} \) and \(0 \leq \tilde{k} \leq N - 1 \). We find \(\lambda, \tilde{k} \) such that

\[\frac{\ell \pi}{Np} - \theta_{p,L}(E_0) = (\lambda - m) \frac{\pi}{p} + \frac{\tilde{k} \pi + h_j(E_0)}{Np} > 0. \]

It is easy to see that, for \(N \) large, the necessary condition is \(\lambda - m \geq -1 \). Then, (2.8) yields

\[\tilde{k} \pi + h_j(E_0) > N \pi. \]

According to [5, Lemma 4.7], \(h_j(E_0) \in \frac{\pi}{2} \mathbb{Z} \). We observe that if \(h_j(E_0) < 0 \), there does not exist \(0 \leq \tilde{k} \leq N - 1 \) satisfying (2.9). Hence, \(h_j(E_0) \in \frac{\pi}{2} \mathbb{N} \).

We distinguish two cases. First of all, assume that \(h_j(E_0) \in \pi \mathbb{N} \). Then, the first \(\ell \) verifying (2.8) and \(\lambda^i_\ell \in \Sigma_L \) is \(\ell_0 = \frac{Np}{\pi} \theta_{p,L}(E_0) + 1 \). Next, consider the case \(h_j(E_0) \in \frac{\pi}{2} + \pi \mathbb{N} \). Then, the first \(\ell \) chosen is \(\ell_0 = \frac{Np}{\pi} \theta_{p,L}(E_0) + \frac{1}{2} \).

Put \(\ell_k = \ell_0 + k \) and we associate \(\ell_k \) to \(\lambda_k \), the \((k + 1)\)-th eigenvalue in \(B_i \).

Then, we always have

\[\theta_{p,L}(\lambda_k) - \theta_{p,L}(E_0) = \frac{(k + 1) \pi}{L - j} + \frac{c_0}{L - j}, \]

where \(c_0 = 0 \) if \(h_j(E_0) \in \pi \mathbb{Z} \) and \(c_0 = -\frac{\pi}{2} \) otherwise.

Hence, (2.7) and (2.10) yield \(\lambda_k - E_0 \approx \frac{(k + 1)^2}{L^2} \) for all \(\lambda_k \in I \) with \(\epsilon \) small and \(L \) large. Consequently, \(k \lesssim \epsilon(L - j) \). Finally, we will prove the inequality (2.6).
Recall that the functions $\theta_p(E_0 + x^2)$ and $h_j(E_0 + x^2)$ are analytic in x on the whole band B_i. Then, we can expand these functions near 0 to get

$$\theta_p(E_0 + x^2) = \theta_{p,0} + \theta_{p,1}\theta + \theta_{p,2}\theta + O(x^3)$$

where $\theta_{p,0} = \theta_p(E_0)$ and $\theta_{p,1} \neq 0$.

$$h_j(E_0 + x^2) = h_{j,0} + h_{j,1}\theta + h_{j,2}\theta + O(x^3)$$

where $h_{j,0} = h_j(E_0)$.

Put $x_k = \sqrt{\lambda_k - E_0}$. We can assume that $\theta_{p,L}$ is increasing on B_i. Then, (2.10) and the above expansions yield

$$\theta_{p,1}(L)x_k + \theta_{p,2}(L)x_k^2 + O(x_k^3) = \frac{(k + 1)\pi}{L - j} + \frac{c_0}{L - j}$$

where $\theta_{p,m}(L) = \theta_{p,m} - \frac{h_{j,m}}{L - j}$ for all $m \in \mathbb{N}$, $c_0 = 0$ if $h_j(E_0) \in \pi\mathbb{Z}$ and $c_0 = -\frac{\pi}{2}$ otherwise. Note that $|\theta_{p,1}(L)|$ is lower bounded and upper bounded by positive constants independent of L.

W.o.l.g., assume that $c_0 = 0$. Then, we have

$$x_k = \tilde{c}(L) \cdot \frac{(k + 1)\pi}{L - j} \cdot \frac{1}{1 + x_k g_L(x_k)}$$

where $|\tilde{c}(L)|$ is lower bounded and upper bounded by positive constants independent of L. Moreover, the function g_L is analytic near 0; g_L and its derivative are bounded near 0 by constants independent of L.

Let $0 \leq n < k \leq \varepsilon(L - j)$, the equation (2.12) yield

$$x_k - x_n = \tilde{c}(L) \cdot \frac{\pi(k - n)}{L - j} \cdot \frac{1}{1 + x_k g_L(x_k)} + \tilde{c}(L) \cdot \frac{n + 1}{L} \cdot \frac{x_n g_L(x_n) - x_k g_L(x_k)}{(1 + x_k g_L(x_k))(1 + x_n g_L(x_n))}.$$

Note that the second term of the right hand side (RHS) of (2.13) is bounded by $\varepsilon|x_k - x_n|$ up to a constant factor. Hence, there exists a constant C such that, for all $n < k \leq \varepsilon(L - j)$,

$$1 \cdot \frac{k - n}{L - j} \leq |x_k - x_n| \leq C \cdot \frac{k - n}{L - j}.$$

On the other hand, $x_k \asymp \frac{k + 1}{L}$ and $x_n \asymp \frac{n + 1}{L}$. We thus have $|\lambda_k - \lambda_n| = |x_k^2 - x_n^2| \asymp \frac{|k^2 - n^2|}{L^2}$ for all $0 \leq n < k \leq \varepsilon(L - j).$

\textbf{Remark 2.4.} For L large, the average distance between two consecutive, distinct eigenvalues (the spacing) is $\frac{1}{L}$. Lemma 2.3 says that, the spacing between eigenvalues near $\partial\Sigma_k$ is much smaller, the distance between λ_k^i and $\lambda_{k+1}^i \in I = [E_0, E_0 + \varepsilon_1]$ where $\varepsilon_1 \ll \varepsilon^2$ has magnitude $\frac{k + 1}{L}$.

This fact implies that the number of eigenvalues in the interval I is asymptotically equal to εL as $L \to +\infty$.

\section{Resonance free regions}

First of all, we state and prove the following lemma which will be useful for estimating $f_L(z)$.

Lemma 3.1. Pick $\eta > 0$ and $E_0 \in \partial \Sigma_z$. For $E \in J := [E_0, E_0 + \eta] + i\mathbb{R}$, we define $z = L^2(E - E_0)$ and $f_{\text{out}}(z) = \sum_{|\lambda_k - E_0| > 2\eta} \frac{\tilde{a}_k}{\lambda_k - z}$. Then,

$$\left| f_{\text{out}}(z) \right| \leq \frac{1}{\eta L} \quad \text{and} \quad \left| \text{Im} f_{\text{out}}(z) \right| \leq \frac{|\text{Im} z|}{\eta^2 L^3}$$

and

$$0 < f'_{\text{out}}(z) \leq \frac{1}{\eta^2 L^3} \quad \text{for all} \quad E \in [E_0, E_0 + \eta].$$

Proof of Lemma 3.1. Note that $|\tilde{\lambda}_k - z| > \eta L^2$ for all $|\lambda_k - E_0| > 2\eta$ and $E \in J$. On the other hand, $	ext{Im} f_{\text{out}}(z) = \text{Im} z \sum_{|\lambda_k - E_0| > 2\eta} \frac{\tilde{a}_k}{|\lambda_k - z|^2}$ and $f'_{\text{out}}(z) = \sum_{|\lambda_k - E_0| > 2\eta} \frac{\tilde{a}_k}{(\lambda_k - z)^2}$. Hence, the claim follows. \hfill \square

3.1. Near the poles of $f_L(z)$. Let $\lambda^i_0 < \lambda^i_1 < \ldots < \lambda^i_{n_i}$ be eigenvalues of H_L in B_1. With that enumeration, it is possible that $\lambda^i_0 = E_0$ for all L large. Note that if that case happens, the formula (2.6) in Lemma 2.3 still holds for any pair λ^i_0, λ^i_k with $0 < k \ll \varepsilon L$. In fact, E_0 is an eigenvalue of H_L or not will not affect our results at all.

For each $0 \leq n \leq \varepsilon L/C_1$ with $C_1 > 0$ large, the rectangle D_n contains $\tilde{\lambda}_n, \tilde{\lambda}_{n+1}$, two poles of the meromorphic function $f_L(z)$. Since the modulus of $f_L(z)$ is big near these points, there are no resonances in those regions. Following is a quantitative version of this observation.

Lemma 3.2. Let $E_0 \in (-2, 2)$ be the left endpoint of the band B_1 of Σ_z. Assume that $(\lambda^i_\ell)_{\ell \leq n_i}$ are (distinct) eigenvalues of H_L in B_1.

Put $I = [E_0, E_0 + \varepsilon_1] \subset B_1$ where $\varepsilon_1 \ll \varepsilon > 0$ small. For each $0 \leq n \leq \varepsilon L/C_1$ with $C_1 > 0$ large, we define

$$f_{n,L}(z) := \frac{\tilde{a}^i_n}{\lambda^i_n - z} + \frac{\tilde{a}^i_{n+1}}{\lambda^i_{n+1} - z}; \quad \tilde{f}_{n,L}(z) := f_L(z) - f_{n,L}(z)$$

where $z = L^2(E - E_0)$ with $E \in I - i[0, \varepsilon_1]$, $\Delta_n := \frac{1}{\kappa \ln(n+1)+1}$ where κ is a large constant.

Then,

- $|\tilde{f}_{n,L}(z)| \lesssim \frac{\ln(n+1)+1}{n+1}$ for all $z \in [\tilde{\lambda}^i_n, \tilde{\lambda}^i_{n+1}] + i\mathbb{R}$,
- $\tilde{f}'_{n,L}(z) \gtrsim \frac{1}{(n+1)^2}$ if z is real and $z \in [\tilde{\lambda}^i_n, \tilde{\lambda}^i_{n+1}]$,
- $|\text{Im} \tilde{f}_{n,L}(z)| \lesssim \frac{|\text{Im} z|}{\varepsilon L}$.

Consequently, for all $z \in \left[\tilde{\lambda}^i_n, \tilde{\lambda}^i_{n+1} \pm \Delta_n\right] \cap [0, \varepsilon_1 L^2] - i[0, \Delta_n],$

$$|f_L(z)| \gtrsim \frac{1}{\Delta_n} \gtrsim \frac{1}{\varepsilon L}. $$
Note that, in the definition of Δ_n, we choose κ to be large so that $\lambda_i - \Delta_n > 0$. Besides, $[\lambda_i^+, \lambda_i^- + \Delta_n]$ always belongs to $[0, \varepsilon_1 L^2]$ unless $n = 0$ and $\lambda^i = 0$ i.e. $E_0 \in \sigma(H_L)$ for any L large.

Proof of Lemma 3.2. We can choose $C_1 > 0$ large enough such that $\lambda_i^+ < E_0 + \varepsilon_1$ and $\lambda_i^- > E_0 + 2\varepsilon_1$ if $k > \varepsilon L$ and $\lambda_i^+ \in B_i$. Then, Lemma 3.1 yield

$$\sum_{\lambda_k \not\in [E_0, E_0 + 2\varepsilon_1]} \frac{\tilde{a}_k}{|\lambda_k - z|} \lesssim \frac{1}{\varepsilon_1 L} \lesssim \frac{\ln(n + 1) + 1}{n + 1}. \tag{3.5}$$

Hence, it suffices to prove the same bound for the sum S where

$$S = \sum_{k=0}^{n-1} \frac{\tilde{a}_k}{\lambda_k^i - z} + \sum_{k=n+2}^{\varepsilon L} \frac{\tilde{a}_k}{\lambda_k^i - z} =: S_1 + S_2.$$

Throughout the rest of the proof, we will omit the superscript i to lighten the notation.

Recall that, by Lemma 2.3, $|\lambda_k - \tilde{\lambda}_n| \asymp |k^2 - n^2|$ for all $k \neq n \in [0, \varepsilon L/C_1]$. Hence,

$$|S_1| \lesssim \sum_{k=0}^{n-1} \frac{\tilde{a}_k}{|\lambda_k - z|} \lesssim \sum_{k=0}^{n-1} \frac{\tilde{a}_k}{|\lambda_n - \lambda_k|} \lesssim \sum_{k=0}^{n-1} \frac{1}{(n - k)(n + k)} \lesssim \frac{\ln(n + 1) + 1}{n + 1}. \tag{3.6}$$

Next, we will estimate the sum S_2.

$$|S_2| \lesssim \sum_{k=n+2}^{\varepsilon L} \frac{\tilde{a}_k}{|\lambda_k - z|} \lesssim \sum_{k \geq n+2} \frac{1}{k^2 - (n + 1)^2} \lesssim \sum_{k \geq 1} \frac{1}{k(k + 2n + 2)} \lesssim \frac{\ln(n + 1) + 1}{n + 1}. \tag{3.7}$$

Hence, (3.5)-(3.7) yield $|\tilde{f}_{n,L}(z)| \lesssim \frac{\ln(n + 1) + 1}{n^2}$. Now, we will prove the second item of Lemma 3.2. Assume that z is real and $z \in [\tilde{\lambda}_n, \tilde{\lambda}_{n+1}]$. Then, by Lemma 3.1, we have

$$\tilde{f}'_{n,L}(z) \leq \sum_{k \leq \varepsilon L, k \neq n, n+1} \frac{\tilde{a}_k}{(\lambda_k - z)^2} + \frac{1}{\varepsilon_1^2 L^3} \leq \sum_{k=0}^{n-1} \frac{\tilde{a}_k}{(\lambda_n - \lambda_k)^2} + \sum_{k=n+2}^{\varepsilon L} \frac{\tilde{a}_k}{(\lambda_k - \lambda_{n+1})^2} + \frac{1}{\varepsilon_1^2 L^3} \lesssim \frac{1}{(n + 1)^2} + \frac{1}{\varepsilon_1^2 L^3} \lesssim \frac{1}{(n + 1)^2}. \tag{3.8}$$
On the other hand, for \(z \in [\tilde{\lambda}_n, \tilde{\lambda}_{n+1}] \) and \(n \geq 1 \), we have
\[
\tilde{f}_{n,L}(z) \geq \sum_{k=0}^{n-1} \frac{\tilde{a}_k}{(\lambda_n - \tilde{\lambda}_k)^2} \geq \sum_{k=0}^{n-1} \frac{1}{(n-k)^2(n+k)^2}
\]
(3.9)
\[
\geq \sum_{k=1}^{n} \frac{1}{k^2(2n-k)^2} \geq \frac{1}{n^2} \sum_{k=1}^{n} \frac{1}{k^2} \geq \frac{1}{n^2}.
\]

Moreover, if \(z \in [\tilde{\lambda}_0, \tilde{\lambda}_1] \), it’s easy to see that
\[
\tilde{f}_{n,L}(z) \geq \frac{\tilde{a}_2}{(\lambda_2 - \tilde{\lambda}_0)^2} \geq 1.
\]
(3.10)

Thanks to (3.8)-(3.10), we infer that \(\tilde{f}_{n,L}(z) \geq \frac{1}{(n+1)^2} \) for all \(\tilde{\lambda}_n \leq z \leq \tilde{\lambda}_{n+1} \).

Consequently, for \(z \in [\tilde{\lambda}_n, \tilde{\lambda}_{n+1}] + i \mathbb{R} \),
\[
|\text{Im} \tilde{f}_{n,L}(z)| \leq |\text{Im} \tilde{f}_{n,L}(\text{Re} z) \lesssim \frac{|\text{Im} z|}{(n+1)^2}.
\]
(3.11)

Finally, consider \(z \) which belongs to the square \([\tilde{\lambda}_n, \tilde{\lambda}_n + \Delta_n] - i[0, \Delta_n] \) or \([\tilde{\lambda}_{n+1} - \Delta_n, \tilde{\lambda}_{n+1}] - i[0, \Delta_n] \). W.o.l.g., assume that \(z \in [\tilde{\lambda}_n, \tilde{\lambda}_n + \Delta_n] - i[0, \Delta_n] \).

Then, there exists \(C > 0 \) such that
\[
|f_L(z)| \geq \frac{\tilde{a}_n}{|\lambda_n - z|} - \frac{\tilde{a}_{n+1}}{|\lambda_{n+1} - z|} - |\tilde{f}_{n,L}(z)| \geq \frac{1}{C \Delta_n} - \frac{C}{n} - \beta \frac{\ln n + 1}{n} \gtrsim \frac{1}{\Delta_n}
\]
(3.12)

if the constant \(\kappa \) in the definition of \(\Delta_n \) is chosen to be large.

\[
\begin{align*}
\text{3.2. Large imaginary part.} & \quad \text{For each } n, \text{ another region no containing resonances can be obtained from an estimate on } \text{Im} f_L(z). \text{ Contrary to the generic case, when } z \text{ is not too close to the real axis, } |\text{Im} f_L(z)| \text{ becomes large instead of being small } \text{w.r.t. } \left[\frac{1}{\varepsilon} \text{Im } (e^{-i\theta(E)}) \right]. \text{ Consequently, there are no resonances.}
\end{align*}
\]

Lemma 3.3. We assume the same hypotheses and notations in Lemma 3.2 and put \(x_0 := L^2(\lambda_{n+1}^i - \lambda_n^i) \times 2n + 1 \).

Then, for \(1 \leq n \leq \varepsilon L/C_1 \), we have \(|\text{Im} f_L(z)| \gtrsim \frac{1}{\varepsilon L} \) for all \(\frac{x_0^2}{\varepsilon^2} \leq |\text{Im} z| \leq \varepsilon^5 L^2 \).

Besides, the above statement still holds in the region \([0, \tilde{\lambda}_1^i] - i \left[\frac{1}{\varepsilon L}, \varepsilon^5 L^2 \right] \).

Proof of Lemma 3.3. Throughout the proof, we will skip all superscript \(i \) in \(\tilde{\lambda}_n^i, \tilde{a}_n^i \) associated to eigenvalues in \(B_i \).

First of all, we have
\[
|\text{Im} f_L(z)| \geq \frac{\tilde{a}_n |\text{Im} z|}{x^2 + |\text{Im} z|^2} + \frac{\tilde{a}_{n+1}|\text{Im} z|}{(x_0 - x)^2 + |\text{Im} z|^2} + \sum_{k=0}^{\varepsilon L} \frac{\tilde{a}_k |\text{Im} z|}{(\lambda_k - \text{Re} z)^2 + |\text{Im} z|^2}
\]
(3.13)
where $x := \text{Re} z - \tilde{\lambda}_n$.

Hence,

$$|\text{Im} f_L(z)| \gtrsim \frac{|\text{Im} z|}{x_0^2 + |\text{Im} z|^2} \gtrsim \frac{1}{\varepsilon L} \cdot \frac{1}{1 + \frac{x_0^2}{\varepsilon L^2}} \gtrsim \frac{1}{\varepsilon L}$$

for all $\frac{x_0^2}{\varepsilon L^2} \leq |\text{Im} z| \leq \varepsilon L$.

Now, assume that $\varepsilon L \leq |\text{Im} z| \leq \varepsilon^5 L^2$, we will find a good lower bound for the last term of RHS of (3.13). We compute

$$A := \sum_{k=0 \atop k \neq n,n+1}^{\varepsilon L} \frac{\alpha_k |\text{Im} z|}{(\lambda_k - \text{Re} z)^2 + |\text{Im} z|^2}$$

$$= \sum_{k=0}^{n-1} \frac{\alpha_k |\text{Im} z|}{(\lambda_k - \text{Re} z)^2 + |\text{Im} z|^2} + \sum_{k=n+2}^{\varepsilon L} \frac{\alpha_k |\text{Im} z|}{(\lambda_k - \text{Re} z)^2 + |\text{Im} z|^2}$$

$$\geq \varepsilon L \sum_{k=n+2}^{\varepsilon L} \frac{|\text{Im} z|}{|\text{Im} z|^2 + C(k-n)^2(k+n)^2}$$

$$\geq \varepsilon L \sum_{k=2}^{\varepsilon L / 2} \frac{|\text{Im} z|}{Ck^2(k+2n)^2 + |\text{Im} z|^2} \gtrsim y^{1/2} \int_2^{\frac{\varepsilon L}{2}} \frac{dt}{Ct^2(t+2n)^2 + y}$$

where $y := |\text{Im} z|^2 \geq \varepsilon^2 L^2 \gg 1$.

Let’s assume that $n \geq 1$. By the change of variables $t = y^{1/4} u$, we have

$$B := \int_2^{\frac{\varepsilon L}{2}} \frac{dt}{t^2(t+2n)^2 + y} = y^{-3/4} \int_2^{\frac{\varepsilon L y^{-1/4}}{2}} \frac{du}{C u^2(u+2ny^{-1/4})^2 + 1}.$$

Note that $\varepsilon L y^{-1/4} = \frac{\varepsilon L}{\sqrt{|\text{Im} z|}} \geq \frac{\varepsilon L}{\varepsilon L^2} = \frac{1}{\varepsilon L}$ for all $|\text{Im} z| \leq \varepsilon^5 L^2$. Hence, for $2\varepsilon < 10^{-3}$, we have

$$A \gtrsim y^{-1/4} \int_2^{100} \frac{du}{u^2(u+2ny^{-1/4})^2 + 1}$$

$$\gtrsim \frac{1}{\sqrt{|\text{Im} z|}} \int_2^{1000} \frac{du}{C u^2(u+2ny^{-1/4})^2 + 1}.$$

We observe that, if $\frac{n}{y^{1/4}} = \frac{n}{\sqrt{|\text{Im} z|}}$ is smaller than a positive constant, say α, i.e., $|\text{Im} z| \geq \frac{n^2}{\alpha}$, the above integral is lower bounded by a positive constant C_α. Then,

$$A \gtrsim \frac{C_\alpha}{\sqrt{|\text{Im} z|}} \gtrsim \frac{1}{\varepsilon^2 L} \text{ when } \frac{n^2}{\alpha} \leq |\text{Im} z| \leq \varepsilon^5 L^2.$$

Note that, if $\varepsilon L \geq \frac{n^2}{\alpha}$ i.e., $n \lesssim \sqrt{\varepsilon L}$, the above inequality holds true for all $\varepsilon L \leq |\text{Im} z| \leq \varepsilon^5 L^2$.

Finally, we consider the case $n \gtrsim \sqrt{\varepsilon L}$ and find a lower bound for $|\text{Im} f_L(z)|$.
in the domain $\varepsilon L \leq |\text{Im} z| \leq \frac{\alpha^2}{\varepsilon}$ where α is a large, fixed constant.

Thanks to the first inequality in (3.15), we have

$$A \gtrsim \sum_{k=0}^{n-1} \frac{|\text{Im} z|}{(\lambda_k - \text{Re} z)^2 + |\text{Im} z|^2} \gtrsim \sum_{k=0}^{n-1} \frac{|\text{Im} z|}{(\lambda_{n+1} - \lambda_k)^2 + |\text{Im} z|^2}$$

(3.17)

$$\gtrsim \sum_{k=0}^{n-1} \frac{|\text{Im} z|}{(n+1-k)^2(n+1+k)^2 + |\text{Im} z|^2} \gtrsim \sum_{k=2}^{n+1} \frac{|\text{Im} z|}{(2n+2-k)^2k^2 + |\text{Im} z|^2} \gtrsim \sum_{k=2}^{n+1} \frac{|\text{Im} z|}{n^2k^2 + |\text{Im} z|^2}$$

$$= \frac{y_1}{n} \sum_{k=2}^{n+1} \frac{1}{k^2 + y_1} \gtrsim \frac{y_1}{n} \int_2^{y_1} \frac{dt}{t^2 + y_1^2}$$

where $1 \leq \frac{\varepsilon L}{n} \leq y_1 := \frac{|\text{Im} z|}{n} \leq \frac{n}{\alpha}$. Here, we choose $\alpha \geq 3$. Then, by the change of variables $t := y_1u$, we have

$$A \gtrsim \frac{1}{n} \int_{2/y_1}^{(n+2)/y_1} \frac{du}{Cu^2 + 1} \gtrsim \frac{1}{n} \int_2^{\alpha} \frac{du}{u^2 + 1} \gtrsim \frac{1}{n} \gtrsim \frac{1}{\varepsilon L}$$

(3.18)

for all $\varepsilon L \leq |\text{Im} z| \leq \frac{\alpha^2}{\varepsilon}$.

Thanks to (3.16)-(3.18), we conclude that $|\text{Im} f_L(z)| \geq \frac{C}{\varepsilon L}$ with $\varepsilon L \leq |\text{Im} z| \leq \varepsilon^5 L^2$ for all $n \geq 1$.

Now, we consider the case $\text{Re} z \in [0, \lambda_1]$. For all $1 \leq |\text{Im} z| \leq \varepsilon^5 L^2$, we proceed as in (3.15) and (3.16) to get

$$|\text{Im} f_L(z)| \geq c_0 \sum_{k=2}^{\varepsilon L} \frac{|\text{Im} z|}{\alpha^2k^4 + |\text{Im} z|^2} \geq c_0 \sum_{k=2}^{\varepsilon L} \frac{|\text{Im} z|}{\alpha^2k^4 + |\text{Im} z|^2}$$

$$\geq \frac{c_0}{\sqrt{|\text{Im} z|}} \int_2^{\sqrt{|\text{Im} z|}} \frac{du}{\alpha^2u^4 + 1} \geq \frac{c_0}{\sqrt{|\text{Im} z|}} \int_{1000}^{10000} \frac{du}{\alpha^2u^4 + 1} \gtrsim \frac{1}{\varepsilon^2 L}.$$

(3.19)

On the other hand, for $0 < |\text{Im} z| < 1$, by putting $t = \frac{1}{\sqrt{|\text{Im} z|}} \geq 1$, we have

$$|\text{Im} f_L(z)| \geq t \int_{2t}^{\varepsilon L t} \frac{du}{Cu^4 + 1} \geq \frac{t}{C} \int_{2t}^{\varepsilon L t} \frac{du}{u^4} \gtrsim \frac{1}{t^2} \gtrsim |\text{Im} z|.$$

(3.20)

Thanks to (3.19) and (3.20), $|\text{Im} f_L(z)| \gtrsim \frac{1}{\varepsilon L}$ for all $1 \leq |\text{Im} z| \leq \varepsilon^5 L^2$ and $\text{Re} z \in [0, \lambda_1]$. Hence, the claim follows.

Thanks to Lemmata 3.2 and 3.3, we obtain free resonance regions illustrated in Figures 1.1-1.3.
4. RESONANCES CLOSEST TO THE REAL AXIS

In the present section, for each band B_i of ΣZ, we will study rescaled resonances in $\Omega_i, \tilde{\Omega}_i$ and Ω (see Figures 1.1-1.3).

Convention: Recall that we use the (local) enumeration $(\lambda^i_k)_{\ell \geq 0}$ for (distinct) eigenvalues in the band $B_i \ni E_0$ and the usual enumeration (λ_k) for eigenvalues of H_L outside the band B_i (written in increasing order and repeated according to their multiplicity). In the proofs of all results stated in this section, we will suppress the superscript i in $\tilde{\lambda}_i^k, \tilde{a}_i^k$ in order to lighten the notation. We will only specify the superscript i in case there is a risk of confusion. Note that, whenever we refer to λ_n, λ_{n+1} in this section, they are respectively $\lambda_i^n, \lambda_i^{n+1}$, the $(n+1)$-th and $(n+2)$-th eigenvalues in the band B_i. However, we will always use the notations λ_k or $\tilde{\lambda}_k$ to refer to the eigenvalues with the usual enumeration which does not depend on bands of ΣZ. Finally, as an abuse of notations, $\sum_{k \neq n}$ and $\sum_{k \neq n, n+1}$ stand for, respectively, $\sum_{\lambda_k \neq \lambda^n_i} \lambda_k, \lambda_{n+1}$.

When $E_0 = \inf \Sigma Z$ and we ignore eigenvalues outsider ΣZ, two enumerations will be the same and readers can actually think of this case while following our proof.

4.1. Resonances in Ω^n_i. Recall that the region Ω^n_i corresponds to the case $\Delta_n < \frac{x_0^2}{\varepsilon L}$ with $x_0 = \tilde{\lambda}_{n+1}^i - \tilde{\lambda}_n^i$ which is equivalent to $\kappa(n+1)(\ln(n+1)+1) \gtrsim \varepsilon L$ (see Lemma 3.2 for the def. of Δ_n). Then, $n \geq \frac{\eta L}{\ln L}$ with some small $\eta \approx \frac{\varepsilon}{\kappa}$.

The schema of studying resonances in Ω^n_i is split into two steps:

In Step 1, we will show that the number of solution of the resonance equation (1.4) is equal to that of the following equation by using Rouché’s theorem.

$$f(z) := f_L(z) + \frac{1}{L} e^{-i\theta(E_0)} = 0$$

(4.1)

Hence, we reduce our problem to count the number of solutions of (4.1). Note that, this number is exactly the cardinality of the set $f_L^{-1}(\{-\frac{1}{L} e^{-i\theta(E_0)}\})$, the inverse image of the number $-\frac{1}{L} e^{-i\theta(E_0)}$.

Next, in Step 2, we partition Ω^n_i into two parts, the rectangles $ABCD$ and $EFGH$. First of all, we will show that the image of the boundary of the rectangle $ABCD$ under f_L is still a simple contour and on this contour, $|f_L'(z)| \gtrsim \frac{1}{\eta^2}$. Then, by the Argument Principal to the holomorphic function f_L in Ω^n_i, we infer that f_L is a conformal map from $ABCD$ onto $f_L(ABCD)$ and its inverse is holomorphic as well. Hence, there is at most one resonance in this domain. The existence of that unique resonance depends on whether $f_L(ABCD)$ contains the point $-\frac{1}{L} e^{-i\theta(E_0)}$ or not.

Moreover, by studying $f_L(EFGH)$, we can conclude that there is at least one resonance which stays either in $ABCD$ or $EFGH$. Besides, if there is
a resonance in $ABCD$, that will be the unique resonance in Ω_{n}^{i}.

Let’s start the present subsection with the proof of the statement in Step 1:

Lemma 4.1. The equations (1.4) and (4.1) have the same number of solutions in Ω_{n}^{i}.

Proof of Lemma 4.1. Define $f(z)$ as in (4.1) and $g(z) := f_{L}(z) + \frac{1}{L}e^{-i\theta(E)}$. First of all, we observe that f and g are holomorphic in Ω_{n}^{i} since $\theta(E)$ is holomorphic in $[E_{0}, E_{0} + \varepsilon^{2}] + i\left[-\frac{\varepsilon^{2}}{L}, 0\right]$ for all $E_{0} \in (-2, 2)$.

Moreover,

$$|f(z) - g(z)| = \frac{1}{L} \left| e^{-i\theta(E)} - e^{-i\theta(E_{0})} \right|$$

$$\leq \frac{1}{L} \left| e^{-i\theta(E)} - e^{-i\theta(ReE)} \right| + \frac{1}{L} \left| e^{-i\theta(ReE)} - e^{-i\theta(E_{0})} \right|$$

$$\leq \frac{C}{L} |\text{Im}E| + \frac{C}{L} |\text{Re}E - E_{0}| \leq \frac{C}{L} \cdot \frac{n^{2}}{\varepsilon L^{3}} + \frac{C\varepsilon^{2}}{L} \leq \frac{C\varepsilon^{2}}{L}$$

where the constant C is independent of ε.

Hence, to carry out the proof of the present lemma, it suffices to show that

$$|f(z)| \gtrsim \frac{1}{L}$$
on the contour $\gamma_{n} = \partial \Omega_{n}^{i}$.

Indeed, assume that we have such an estimate for $f(z)$ on γ_{n}. Then, $|f(z) - g(z)| \leq |f(z)|$ on γ_{n}. Hence, thanks to Rouché’s theorem, f and g have the same number of zeros in the domain Ω_{n}^{i}.

Moreover, observe that $f_{L}(z)$ is real iff z is real. Hence, for $z \in \mathbb{R}$,

$$|f(z)| \geq |\text{Im}f(z)| = \frac{1}{L} \left| \text{Im} \left(e^{-i\theta(E_{0})} \right) \right| = \frac{|\sin \theta(E_{0})|}{L}.$$

Note that, $\sin (\theta(E_{0})) \neq 0$ since $E_{0} \in (-2, 2)$.

Hence, to prove (4.1), it is sufficient to show that

(4.2)

$$|f_{L}(z)| \gtrsim \frac{1}{\varepsilon L}$$
on $\gamma_{n} \setminus \mathbb{R}$.

We decompose the contour γ_{n} into horizontal and vertical line segments as in Figure 1.1.

First of all, on the segments AD, BC, DE, CH, $|f_{L}(z)|$ is big (the zone near poles $\tilde{\lambda}_{n}$ and $\tilde{\lambda}_{n+1}$ of $f_{L}(z)$). More precisely, according to Lemma 3.2, on these segments,

(4.3)

$$|f_{L}(z)| \gtrsim \frac{1}{\Delta_{n}} \gtrsim \kappa \frac{\ln(n + 1) + 1}{n + 1} \gtrsim \frac{1}{\varepsilon L}.$$

Next, on the segment FG, by Lemma 3.3, we have

(4.4)

$$|\text{Im}f_{L}(z)| \gtrsim \frac{1}{\varepsilon L}.$$

Finally, we study $f_{L}(z)$ on EF and GH. It suffices to consider the segment EF as $\tilde{\lambda}_{n}$ and $\tilde{\lambda}_{n+1}$ play equivalent roles.
Let \(z \in EF \), hence, \(z = \tilde{\lambda}_n - it \) with \(\Delta_n \leq t \leq \frac{\varepsilon L^2}{\varepsilon L} \).

Then,

\[
|\text{Im} f_{L}(z)| \geq |\text{Im} f_{n,L}(z)| = \frac{\tilde{a}_n}{t} + \frac{\tilde{a}_{n+1}t}{(\tilde{\lambda}_{n+1} - \tilde{\lambda}_n)^2 + t^2} \gtrsim \varphi(t)
\]

where \(\varphi(t) := \frac{1}{t} + \frac{t}{(\lambda_{n+1} - \lambda_n)^2 + t^2} \).

It’s easy to check that \(\varphi'(t) = -\frac{1}{t^2} + \frac{(\lambda_{n+1} - \lambda_n)^2 - t^2}{[(\lambda_{n+1} - \lambda_n)^2 + t^2]^2} \leq 0 \) for all \(t \neq 0 \).

Hence, \(\varphi(t) \) is (strictly) decreasing in the interval \([\Delta_n, \frac{\varepsilon L^2}{\varepsilon L}] \). Therefore,

\[
(4.5) \quad |\text{Im} f_{L}(z)| \gtrsim \varphi \left(\frac{\varepsilon L}{n^2} \right) \gtrsim \frac{\varepsilon L}{n^2} + \frac{1}{\varepsilon L \left(1 + \frac{n^2}{(\varepsilon L)^2} \right)} \gtrsim \frac{1}{\varepsilon L}.
\]

Thanks to (4.3)-(4.5), the claim in (4.2) follows and we have Lemma 4.1 proved. \(\square \)

Now, we describe the image of the rectangles \(ABCD \) and \(EFGH \). First of all, we consider the rectangle \(ABCD \) which is closer to the real axis.

Lemma 4.2. Let \(ABCD \) be the rectangle \([\tilde{\lambda}_n + \Delta_n, \tilde{\lambda}_{n+1} - \Delta_n] + i[-\Delta_n, 0] \) and \(\gamma_n^1 \) be its boundary.

Then, \(f_{L}(\gamma_n^1) \) is a simple contour. Besides, we have \(|f'_{L}(z)| \gtrsim \frac{1}{n^2} \) on \(\gamma_n^1 \).

Proof of Lemma 4.2. First of all, on the horizontal segment \(AB \) where \(\tilde{\lambda}_n + \Delta_n \leq z \leq \tilde{\lambda}_{n+1} - \Delta_n \), \(f_{L} \) is real-valued and

\[
f_{L}(z) = \sum_k \frac{\tilde{a}_k}{(\tilde{\lambda}_k - z)^2} \gtrsim \frac{1}{(\tilde{\lambda}_{n+1} - \tilde{\lambda}_n)^2} \gtrsim \frac{1}{n^2} > 0.
\]

Hence, \(f_{L}(z) \) is strictly increasing on \(AB \). Then, \(f_{L} \) is injective and it transforms \(AB \) into an interval \([m_{-}, m_{+}] \) in \(\mathbb{R} \). Note that, since Lemma 3.2, we have

\[
(4.6) \quad m_{-} = f_{L}(\tilde{\lambda}_n + \Delta_n) = \frac{\tilde{a}_n}{\Delta_n} + \frac{\tilde{a}_{n+1}}{\lambda_{n+1} - \tilde{\lambda}_n - \Delta_n} + f_{n,L}(\tilde{\lambda}_n + \Delta_n) \lesssim -\frac{1}{\Delta_n} < 0
\]

if the constant \(\kappa \) in the definition of \(\Delta_n \) is large enough.

Similarly, \(m_{+} = f_{L}(\tilde{\lambda}_{n+1} - \Delta_n) \gtrsim \frac{1}{\Delta_n} \gtrsim \frac{\ln L}{L} \) for all \(n > \frac{\eta L}{\ln L} \).
Now, for $z = x + iy \in \mathbb{C}$, we have

\begin{equation}
(4.7)

f'_L(z) = \sum_k \frac{\tilde{a}_k}{(\lambda_k - z)^2} = \sum_k \frac{\tilde{a}_k}{(\lambda_k - x - iy)^2}
\end{equation}

\begin{equation}
= \sum_k \frac{\tilde{a}_k}{(\lambda_k - x)^2} \cdot \frac{1}{\left(1 - \frac{iy}{\lambda_k - x}\right)^2}
= \sum_k \frac{\tilde{a}_k}{(\lambda_k - x)^2} \cdot \frac{\left(1 + \frac{iy}{\lambda_k - x}\right)^2}{\left[1 + \left(\frac{y}{\lambda_k - x}\right)^2\right]^2}
\end{equation}

Note that, for any holomorphic function f, $f'(z) = \frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y}$ with $z = x + iy$. Hence, $\frac{\partial}{\partial x} \text{Re} f_L(z) = \frac{\partial}{\partial y} \text{Im} f_L(z) = \text{Re} [f'_L(z)]$ and we put

\begin{equation}
(4.8)

p(x, y) := \text{Re} [f'_L(z)] = \sum_k \frac{\tilde{a}_k}{(\lambda_k - x)^2} \cdot \frac{1 - \left(\frac{y}{\lambda_k - x}\right)^2}{\left[1 + \left(\frac{y}{\lambda_k - x}\right)^2\right]^2}.
\end{equation}

Next, we study f_L on the line segment AD where $z = x + iy$ with $x = \lambda_n + \Delta_n$ and $-\Delta_n \leq y \leq 0$. In the present case, the identity (4.8) reads

\begin{equation}
(4.9)

\text{Re} [f'_L(z)] = \tilde{a}_n \frac{\Delta_n^2 - y^2}{(\Delta_n^2 + y^2)^2} + \sum_{k \neq n} \frac{\tilde{a}_k}{(\lambda_k - x)^2} \cdot \frac{1 - \left(\frac{y}{\lambda_k - x}\right)^2}{\left[1 + \left(\frac{y}{\lambda_k - x}\right)^2\right]^2}.
\end{equation}

along the segment AD.

Note that, for any $\lambda_k \neq \lambda_n$, we have $\left(\lambda_k - x\right)^2 \gtrsim n^2 \gg \Delta_n^2$ for all $z \in AD$. Recall that we are considering the case that $n \geq L_{\text{ef}}$. Hence, all the terms in RHS of (4.9) are positive for all $y \in [-\Delta_n, 0]$. This implies that

\begin{equation}
\frac{\partial}{\partial y} \text{Im} f_L(z) = \text{Re} [f'_L(z)] \gtrsim \sum_{k \neq n} \frac{\tilde{a}_k}{(\lambda_k - x)^2} \gtrsim \frac{1}{n^2}.
\end{equation}

Hence, along the segment AD, $\text{Im} f_L(z)$ is strictly increasing in $y = \text{Im} z$. As a result, $f_L(z)$ is injective on AD and

\begin{equation}
(4.10)

0 \geq \text{Im} f_L(z) \geq \text{Im} f_L(D) = \text{Im} f_L(\lambda_n + \Delta_n - i\Delta_n)
= -\frac{\tilde{a}_n}{2\Delta_n} - \sum_{k \neq n} \frac{\tilde{a}_k \Delta_n}{(\lambda_k - \lambda_n)^2 + \Delta_n^2} \times -\frac{1}{\Delta_n} - \frac{\Delta_n}{n^2} \times -\frac{1}{\Delta_n}.
\end{equation}
Note that, on AD, the $n-$th term $\frac{\tilde{a}_n y}{y^2 + \Delta_n^2}$ is much bigger than the sum of the other terms in $\text{Im} f_L(z)$. Precisely,

$$\text{Im} f_L(z) = \frac{\tilde{a}_n y}{y^2 + \Delta_n^2} \left(1 + O \left(\frac{1}{\kappa^2 \ln^2 n} \right) \right) = \frac{\tilde{a}_n y}{y^2 + \Delta_n^2} \left(1 + O \left(\frac{1}{\kappa^2 \ln^2 L} \right) \right).$$

Hence, the monotonicity of $\text{Im} f_L(z)$ in y on AD just comes from that of $\frac{\tilde{a}_n y}{y^2 + \Delta_n^2}$.

Next, we will estimate $\text{Re} f_L(z)$ on AD. For all $-\Delta_n \leq y \leq 0$, by Lemma 3.2, we have

$$\text{Re} f_L(z) = -\tilde{a}_n \frac{\Delta_n}{\Delta_n^2 + y^2} + \frac{\tilde{a}_k (\tilde{\lambda}_{n+1} - \tilde{\lambda}_n - \Delta_n)}{(\tilde{\lambda}_{n+1} - \tilde{\lambda}_n - \Delta_n)^2 + y^2} + \text{Re} f_{n,L}(z)$$

$$\approx -\frac{1}{\Delta_n} + O \left(\frac{\ln n}{n} \right).$$

Hence, when we choose the constant κ in the definition of Δ_n to be big enough, $-\frac{\tilde{a}_n \Delta_n}{\Delta_n^2 + y^2}$ becomes the dominating term in RHS of (4.11). Then, $\text{Re} f_L(z) \approx -\frac{1}{\Delta_n}$.

By the equivalent role between $\tilde{\lambda}_n$ and $\tilde{\lambda}_{n+1}$, we obtain a similar result for the image of BC under f_L, that is, the $\text{Im} f_L(z)$ is increasing in $y = \text{Im} z \in [-\Delta_n, 0]$, $\text{Re} f_L(z) \approx \frac{1}{\Delta_n}$ and $|f'_L(z)| \gtrsim \frac{1}{\Delta_n}$.

Finally, we consider f_L on $CD = \{ z = x - i\Delta_n | x \in [\tilde{\lambda}_n + \Delta_n, \tilde{\lambda}_{n+1} - \Delta_n] \}$. Note that, in the present case, the function $p_k(x, y)$ in (4.8) is strictly positive for any $k \neq n, n+1$ and non-negative otherwise. Hence, $\text{Re} f_L(z)$ is strictly increasing in x. Hence, on CD,

$$-\frac{1}{\Delta_n} \approx \text{Re} f_L(D) \leq \text{Re} f_L(z) \leq \text{Re} f_L(C) \approx \frac{1}{\Delta_n}.$$

Moreover, we have the following estimate for $|f'_L(z)|$:

$$|f'_L(z)| \geq \text{Re} [f'_L(z)] \gtrsim \frac{1}{n^2} \cdot \frac{1 - \left(\frac{\Delta_n}{\Delta_{n+2}} \right)^2}{1 + \left(\frac{\Delta_n}{\Delta_{n+2}} \right)^2} \gtrsim \frac{1}{n^2}$$

for all $x \in [\tilde{\lambda}_n + \Delta_n, \tilde{\lambda}_{n+1} - \Delta_n]$.

Finally, we give estimates on $\text{Im} f_L(z)$ on CD. First of all, on this segment, we have

$$-\text{Im} f_{n,L}(z) = \frac{\tilde{a}_n \Delta_n}{(\lambda_n - x)^2 + \Delta_n^2} + \frac{\tilde{a}_{n+1} \Delta_n}{(\lambda_{n+1} - x)^2 + \Delta_n^2}.$$

It’s easy to see that, as x varies in $[\tilde{\lambda}_n + \Delta_n, \tilde{\lambda}_{n+1} - \Delta_n]$, $\frac{\Delta_n}{\Delta_n} \lesssim -\text{Im} f_{n,L}(z) \lesssim \frac{1}{\Delta_n}$.
On the other hand, for \(x \in [\tilde{\lambda}_n + \Delta_n, \tilde{\lambda}_{n+1} - \Delta_n] \),
\[
-\operatorname{Im}\tilde{f}_{n,L}(z) = \Delta_n \sum_{k \neq n,n+1} \frac{\tilde{a}_k}{(\tilde{\lambda}_k - x)^2 + \Delta^2_n} \times \Delta_n \sum_{k \neq n,n+1} \frac{\tilde{a}_k}{(\tilde{\lambda}_k - x)^2} \times \frac{\Delta_n}{n^2}.
\]

Note that, \(\frac{1}{\Delta_n} \gg \frac{\Delta_n}{n^2} \). Hence, \(\operatorname{Im}f_L(z) \) varies from \(-\frac{1}{\Delta_n} \) to \(-\frac{\Delta_n}{n^2} \) on the CD. To sum up, the holomorphic function \(f_L \) is injective on each edge of the rectangle \(ABCD \). Hence, the image of each edge under \(f_L \) is a non-self-intersecting continuous curve. Obviously, since \(f_L(AB) \) is a segment in the real axis, it does not intersect the other curves. It’s easy to see that \(f_L(AD) \cap f_L(BC) = \emptyset \) as well. However, it’s not so evident that \(f_L(AD) \) and \(f_L(CD) \) only intersect at \(f_L(D) \). In order to prove that, it is necessary to use the estimate on the derivative of \(f_L(z) \). Note that \(|f'_L(z)| \gtrsim \frac{1}{n^2} \) on all edges of \(ABCD \). On the other hand, \(f_L \) is holomorphic in a neighborhood of the rectangle \(ABCD \). Hence, \(f_L \) is locally bi-holomorphic near any point on \(AB, BC, CD, DA \). Hence, \(f_L(AD) \) only intersects \(f_L(CD) \) at \(f_L(D) \). Hence, \(f_L(\gamma_n^1) \) is a simple contour and \(|f'_L(z)| \gtrsim \frac{1}{n^2} \) on \(\gamma_n^1 \).

Lemma 4.3. Let \(ABCD \) be the rectangle \([\tilde{\lambda}_n + \Delta_n, \tilde{\lambda}_{n+1} - \Delta_n] + i[-\Delta_n,0] \). Then, the function \(f_L(z) \) is a bijection from the rectangle \(ABCD \) onto \(f_L(ABCD) \) and its inverse in \(A'B'C'D' = f_L(ABCD) \) is holomorphic as well. Moreover,

\[
|f'_L(z)| \gtrsim \frac{1}{n^2} \text{ for all } z \text{ belonging to the rectangle } ABCD.
\]

Consequently, \(f_L(z) \) is a conformal map in the interior of the rectangle \(ABCD \), hence, the angles between boundary curves of \(A'B'C'D' \) are all 90°.

Proof of Lemma 4.3. Denote by \(\gamma_n^1 \) the boundary of the rectangle \(ABCD \). According to Lemma 4.2, \(f_L(\gamma_n^1) \) is a simple contour and \(f_L \) is injective in \(\gamma_n^1 \). Hence, for any interior point \(w \) of \(f_L(ABCD) \), the contour \(f_L(\gamma_n^1) \) travels counterclockwise around \(w \) exactly one times. Hence, thanks to Argument Principle, the equation \(f_L(z) = w \) in \(ABCD \) has the unique solution. In other words, \(f_L \) is injective in the interior of the rectangle \(ABCD \). By using Open Mapping Theorem, we infer that \(f_L(z) \) is bijective from the rectangle \(ABCD \) onto \(f_L(ABCD) \) and its inverse in \(f_L(ABCD) \) is holomorphic. Moreover, \(f'_L(z) \neq 0 \) for all \(z \) in the rectangle \(ABCD \). Hence, by using the Maximum Modulus Principle for the holomorphic function \(\frac{1}{f'_L} \), we have \(|f'_L(z)| \gtrsim \frac{1}{n^2} \) in \(ABCD \).

The holomorphic function \(f_L \) is therefore a conformal map in the rectangle \(ABCD \) and the claim follows. \(\square \)

We observe that the domain \(MNOP \setminus A'B'C'D' \) is included in the image of \(EFGH \) under \(f_L \).

Lemma 4.4. Put \(MNOP = \left[-\frac{1}{c\Delta_n}, \frac{1}{c\Delta_n} \right] - i \left[0, \frac{2|\sin \theta(E_0)|}{L} \right] \) with \(C > 0 \) large. Let \(A'B'C'D' = f_L(ABCD) \).
Assume that $-\frac{1}{L} e^{-i\theta(E_0)} \in MNOP \setminus A'B'C'D'$. Then,

$$f_L(EFGH) \supset MNOP \setminus A'B'C'D'.$$

We will skip the proof of Lemma 4.4 for a while and make use of this lemma to describe resonances in the domain Ω^i_n.

Proof of Theorem 1.1. Recall that, thanks to Lemma 4.1, the number of rescaled resonances z is the cardinality of $f_L^{-1}(\{-\frac{1}{L} e^{-i\theta(E_0)}\})$. Hence, for the existence of resonances, we have to check if the point $-\frac{1}{L} e^{-i\theta(E_0)}$ belongs to Ω^i_n. Note that $-\frac{1}{L} e^{-i\theta(E_0)}$ always stays inside the open rectangle $MNOP = \left[-\frac{C}{\Delta_n}, \frac{C}{\Delta_n}\right] - i \left[0, \frac{2\sin \theta(E_0)}{L}\right]$ where $C > 0$ is a big constant.

We consider two possibilities. First of all, assume that $-\frac{1}{L} e^{-i\theta(E_0)}$ belongs to $A'B'C'D'$. Then, by Lemma 4.3, there exists one and only one rescaled resonance z_n in $ABCD$. When that case happens, $|\text{Im} z_n| \leq \Delta_n = \frac{n}{\kappa L n} \approx \frac{n}{\kappa L}$. Note that, this case can not happen for all $\varepsilon \leq n > \eta L$. For example, when $n = \varepsilon L$ i.e., the real part of resonance is far from $\partial \Sigma_{\varepsilon}$ by a constant distance, there are no rescaled resonances in $ABCD$ according to [5, Theorem 1.2].

Now, assume that the other case happens i.e., $-\frac{1}{L} e^{-i\theta(E_0)} \notin MNOP \setminus A'B'C'D'$. In this case, $f_L(EFGH)$ contains $MNOP \setminus A'B'C'D'$ by Lemma 4.4. Then, $-\frac{1}{L} e^{-i\theta(E_0)}$ stays in the image of $EFGH$ under f_L. Hence, there exists a rescaled resonance in the rectangle $EFGH$ and note that the imaginary part of such a rescaled resonance is smaller than $-\frac{x^2}{\varepsilon L}$ and bigger than $-\Delta_n$. □

Finally, to complete the subsection, we state here the proof of Lemma 4.4.

Proof of Lemma 4.4. Note that $|\text{Re} f_L(z)|$ is bigger than $\frac{1}{C \Delta_n}$ on segments AD and BC if C is large enough.

Then, the hypothesis that $-\frac{1}{L} e^{-i\theta(E_0)} \in MNOP \setminus A'B'C'D'$ yields $\frac{\Delta_n}{n^2} \leq 2 \frac{|\sin \theta(E_0)|}{L}$. Hence,

$$\frac{\Delta_n}{n^2} \leq 2 \frac{|\sin \theta(E_0)|}{L} \leq \frac{1}{\varepsilon L} \leq \frac{1}{\Delta_n}.$$

By the open mapping theorem, the image of the open rectangle $EFGH$ is still a bounded domain in \mathbb{C}. From the study of the curve $f_L(CD)$ in Lemma 4.2, we know that, the imaginary part of $f_L(CD)$ increases from $-\frac{1}{\Delta_n}$ to $-\frac{\Delta_n}{n^2}$. Hence, it suffices to show that the imaginary part of f_L on all parts of the boundary of $EFGH$ except for CD is smaller than $-\frac{1}{\Delta_n}$ up to a constant factor.

First of all, by Lemma 3.3, $\text{Im} f_L(z) \lesssim -\frac{1}{\varepsilon L}$ on FG. Next, we consider segments ED and CH. By symmetry, it suffices to study the image of f_L on ED. \pagebreak
Let \(z \in ED \). Then, \(z = x - i\Delta_n \) with \(x \in [\lambda_n, \tilde{\lambda}_n + \Delta_n] \),

\[
-\text{Im} f_L(z) = \frac{\tilde{a}_n \Delta_n}{(\lambda_n - x)^2 + \Delta_n^2} + \Delta_n \sum_{k \neq n} \frac{\tilde{a}_k}{(\lambda_k - x)^2 + \Delta_n^2}.
\]

According to Lemma 3.2, the second term of RHS of (4.12) is bounded by \(\frac{\Delta_n}{n^2} \). On the other hand, the first term is bigger than \(\frac{\tilde{a}_n}{\Delta_n} \gg \frac{\Delta_n}{n^2} \) since \(n > \frac{nL}{\ln L} \). Hence,

\[
-\text{Im} f_L(z) = \frac{\tilde{a}_n \Delta_n}{(\lambda_n - x)^2 + \Delta_n^2} \left(1 + O \left(\frac{1}{\ln^2 L} \right) \right)
\]

uniformly in \(x \in [\lambda_n, \tilde{\lambda}_n + \Delta_n] \). Since the function \(\frac{\tilde{a}_n \Delta_n}{(\lambda_n - x)^2 + \Delta_n^2} \) is decreasing in \(x \in [\lambda_n, \tilde{\lambda}_n + \Delta_n] \), we infer that \(\text{Im} f_L(z) \) is strictly increasing, hence, \(f_L(z) \) is injective on \(ED \). Moreover,

\[
\text{Im} f_L(z) \asymp -\frac{1}{\Delta_n} \ll -\frac{1}{\epsilon L}.
\]

We consider now \(f_L(z) \) on the vertical segment \(EF \) where \(z = x + iy \) with \(x \equiv \lambda_n \) and \(\frac{x_0}{\epsilon L} \leq y \leq -\Delta_n \). Then,

\[
f_L'(z) = -\frac{\tilde{a}_n}{y^2} + \sum_{k \neq n} \frac{\tilde{a}_k}{(\lambda_k - \lambda_n)^2} \cdot \frac{(1 + \frac{iy}{\lambda_k - \lambda_n})^2}{\left[1 + \left(\frac{y}{\lambda_k - \lambda_n} \right)^2 \right]^2}.
\]

Hence,

\[
-\frac{\partial}{\partial y} \text{Im} f_L(z) = -\text{Re}[f_L'(z)] = \frac{\tilde{a}_n}{y^2} - \sum_{k \neq n} \frac{\tilde{a}_k}{(\lambda_k - \lambda_n)^2} \cdot \frac{1 - \left(\frac{y}{\lambda_k - \lambda_n} \right)^2}{\left[1 + \left(\frac{y}{\lambda_k - \lambda_n} \right)^2 \right]^2} \equiv s(y)
\]

For \(k \neq n \), let \(u_k := \frac{\psi^2}{(\lambda_k - \lambda_n)^2} \) and \(\psi(u_k) := \frac{1-u_k}{(1+u_k)^2} \). Then, \(\psi'(u_k) = \frac{u_k-3}{(u_k+1)^3} \).

Note that, in the present case,

\[
0 < u_k \lesssim \left(\frac{n}{\epsilon L} \right)^2 \cdot \frac{n^2}{n^2} \lesssim \left(\frac{n}{\epsilon L} \right)^2.
\]

Hence, for any \(n \leq \frac{\epsilon L}{C} \) with \(C \) large and \(k \neq n \), \(u_k \in (0, 1/2] \).

Hence, \(\psi(u_k) \) is decreasing and \(\frac{\psi}{2} = \psi \left(\frac{1}{2} \right) \leq \psi(u_k) \leq \psi(0) = 1 \).

Therefore, there exists a numeric constant \(\mu \) s.t.

\[
\frac{1}{\mu n^2} \leq s(y) \leq \frac{\mu}{n^2}.
\]
(4.15) and (4.16) yield that
\begin{equation}
- \frac{\partial}{\partial y} \text{Im} f_L(z) \geq \frac{c_0(\varepsilon L)^2}{n^4} - \frac{\mu}{n^2} \geq \frac{\mu}{n^2}
\end{equation}
for all \(n \leq \frac{c_1}{\varepsilon L} \) with \(C_1 = C_1(\alpha, c_0, \mu) \) large enough.

Hence, in the present case, \(\text{Im} f_L(z) \) is decreasing in \(y \). As a result, the function \(f_L(z) \) is injective on \(EF \) and \(|f'_L(z)| \geq |\text{Re}[f'(z)]| \gtrsim \frac{1}{n^2} \).

Besides, on \(EF \),
\begin{equation}
\text{Im} f_L(z) = \text{Im} f_L(\tilde{\lambda}_n - i\Delta_n) = \text{Im} f_L(E)
= -\frac{\tilde{a}_n}{\Delta_n} - \Delta_n \sum_{k \neq n} \frac{\tilde{a}_k}{(\lambda_k - \lambda_n)^2 + \Delta_n^2} \times \frac{1}{\Delta_n},
\end{equation}
and
\begin{equation}
\text{Im} f_L(z) \leq \text{Im} f_L \left(\tilde{\lambda}_n - i\frac{x_0^2}{\varepsilon L} \right) = \text{Im} f_L(F)
\leq -\frac{\tilde{a}_n \varepsilon L}{n^2} - \frac{n^2}{\varepsilon L} \sum_{k \neq n} \frac{\tilde{a}_k}{(\lambda_k - \lambda_n)^2 + \frac{n^4}{\varepsilon L^2}} \times \frac{\varepsilon L}{n^2} \lesssim \frac{1}{\varepsilon L}.
\end{equation}

By symmetry, we have the same conclusion for the image of \(GH \) under \(f_L \). To sum up, the images of \(ED, CH, EF, FG, GH \) under \(f_L \) stay below the horizontal \(y = -\frac{\tilde{C}}{\varepsilon L} \) in the complex plane with some positive constant \(\tilde{C} \).

Hence, the claim follows. \(\square \)

4.2. Resonances in \(\tilde{\Omega}_n^i \) and \(\Omega_n^i \). First of all, all sides of the rectangle \(\tilde{\Omega}_n^i \) are included in horizontal and vertical segments of \(\Omega_n^i \). Hence, Lemma 4.1 still hold for \(\tilde{\Omega}_n^i \). We will prove the existence and uniqueness of rescaled resonances in \(\tilde{\Omega}_n^i \).

Proof of Theorem 1.2. Let \(\tilde{\gamma}_n \) be the boundary of \(\tilde{\Omega}_n^i \).

It’s easy to check that, the monotonicity and the estimates we made for the real and imaginary part of \(f_L(z) \) and \(|f'_L(z)| \) on \(AB, BC, AD \) in Lemma 4.2 still hold for \(A_1B_1, A_1D_1, B_1C_1 \) of the contour \(\tilde{\gamma}_n \). Now, we study the image of \(C_1D_1 \) under \(f_L \). Let \(z = x + iy \in C_1D_1 \) with \(x \in [\tilde{\lambda}_n + \Delta_n, \tilde{\lambda}_{n+1} - \Delta_n] \) and \(y \equiv -\frac{x_0^2}{\varepsilon L} \).

Note that, in the present case, \(\Delta_n \geq \frac{x_0^2}{\varepsilon L} \). Hence, \(|\tilde{\lambda}_k - x| \geq |y| \) for all \(k \).

Moreover, for \(k \neq n, n+1 \), \(|\tilde{\lambda}_k - x| \gtrsim n \gg |y| \). Then, since (4.8), we have
\begin{equation}
\text{Re}[f'_L(z)] \gtrsim \sum_{k \neq n, n+1} \frac{1}{(\lambda_k - x)^2} \gtrsim \frac{1}{n^2}
\end{equation}
for all \(z \in C_1D_1 \).

Hence, \(\text{Re} f_L(z) \) is still strictly increasing in \(x \) on \(C_1D_1 \). Finally, we compute
the magnitude of $\text{Im}f_L(z)$ on C_1D_1.

$$-\text{Im}f_L(z) \geq -\text{Im}f_{n,L}(z) \asymp |y| \left(\frac{1}{(\lambda_n - x)^2 + y^2} + \frac{1}{(\lambda_{n+1} - x)^2 + y^2} \right)$$

(4.21) $\geq \frac{|y|}{n^2 + y^2} \geq \frac{1}{\varepsilon L}.$

Hence, $\text{Im}f_L(z) \leq -\frac{1}{\varepsilon L}$. Then, using the same argument as in Lemmata 4.2 and 4.3, we infer that f_L is bijective from $\tilde{\Omega}^i_n$ on $f_L(\tilde{\Omega}^i_n)$. Moreover, thanks to (4.21), we deduce that the point $-\frac{e^{-i\theta(K_0)}}{\varepsilon L}$ belongs to $f_L(\tilde{\Omega}^i_n)$. Hence, there exists a unique rescaled resonance in $\tilde{\Omega}^i_n$.

Finally, we show that, there are no rescaled resonances in \mathcal{R}^i.

Proof of Theorem 1.3. Note that if E_0 is an eigenvalue of H_L for L large i.e., $E_0 = \lambda_0^i$, we have $\mathcal{R}^i = \emptyset$. Let’s assume now that E_0 is not an eigenvalue of H_L for L large.

First of all, we will check that the rescaled resonance equation (1.4) in Ω^i can be replaced by $f_L(z) = -\frac{e^{-i\theta(K_0)}}{\varepsilon L}$.

Indeed, along the segment A_3B_3, $f_L(z)$ is real. Along B_3C_3, $|f_L(z)|$ is big. Along C_3D_3, $|\text{Im}f_L(z)|$ is big. Hence, to prove Lemma 4.1 for Ω^i, it suffices to check that $|f_L(z)| \gtrsim \frac{1}{\varepsilon L}$ on A_3D_3.

Put $z = iy \in A_3D_3$ with $0 \geq y \geq -\frac{1}{\varepsilon L}$. Assume that $\lambda_k^i \geq E_0 + 2\varepsilon_1$ with $\varepsilon_1 \ll \varepsilon_2$ for all $k > \varepsilon L$ and $\lambda_k^i \in B_i$. Then, by Lemma 3.1, we have

$$\text{Re}f_L(z) = \sum_{k=0}^{\varepsilon L} \frac{\tilde{\alpha}_k^i \tilde{\lambda}_k^i}{(\tilde{\lambda}_k^i)^2 + y^2} + O\left(\frac{1}{\varepsilon_1 L} \right).$$

(4.22)

For any $\lambda_k \notin B_i$, $|\tilde{\lambda}_k| = L^2|\lambda_k - E_0| \gtrsim L^2$. On the other hand, if $\lambda_k \in B_i$, we have $\lambda_k \neq E_0$ and $|\tilde{\lambda}_k| = L^2|\lambda_k - E_0| \geq L^2|\lambda_k^i - E_0| \gtrsim 1$. Hence, $|\tilde{\lambda}_k| \geq \frac{1}{\varepsilon L} \gg |y|$ for all λ_k. On the other hand, $\lambda_k^i > 0$ for all $\lambda_k^i \in B_i$.

Consequently,

$$\sum_{k \leq \varepsilon L} \frac{\tilde{\alpha}_k^i \tilde{\lambda}_k^i}{(\tilde{\lambda}_k^i)^2 + y^2} \ll \sum_{k \leq \varepsilon L} \frac{\tilde{\alpha}_k^i}{\tilde{\lambda}_k^i} \ll \sum_{k=1}^{\varepsilon L} \frac{1}{k^2} \ll 1.$$

(4.23)

The estimates (4.22) and (4.23) yield $\text{Re}f_L(z) \asymp 1$ on A_3D_3. Hence, Lemma 4.1 holds true for Ω^i.

Next, we will study the image of the contour $A_3B_3C_3D_3$ under f_L. On A_3B_3, $f_L(z)$ is real and strictly increasing. Hence

$$\sum_{k=0}^{L} \frac{\tilde{\alpha}_k}{\lambda_k} \leq f_L(z) \leq \sum_{k=0}^{L} \frac{\tilde{\alpha}_k}{\lambda_k - \lambda_0^i + \delta_1}$$

(4.24)
where C is a positive constant.

Thanks to Lemma 3.1 and (4.23), it is easy to see that \(\sum_{k=0}^{L} \frac{\tilde{a}_k}{\lambda_k} \asymp 1 \). Similarly, we have

\[
(4.25) \quad \sum_{k=0}^{L} \frac{\tilde{a}_k}{\lambda_k - \lambda_0 + \delta_1} = \frac{\tilde{a}_0}{\delta_1} + \sum_{k=1}^{\varepsilon L} \frac{\tilde{a}_k}{\lambda_k - \lambda_0 + \delta_1} + O \left(\frac{1}{\varepsilon_L} \right) \asymp \frac{1}{\delta_1}.
\]

Hence, \(f_L(z) \asymp 1 \) on the interval \(A_3B_3 \).

Next, we consider the segment \(A_3D_3 \). Since \(|\tilde{\lambda}_k| \gtrsim 1 \gg |y| \) for all \(\lambda_k \in \Sigma_Z \), we have

\[
(4.26) \quad \frac{\partial}{\partial y} \text{Im} f_L(z) = \text{Re}[f_L'(z)] = \sum_{k=0}^{L} \frac{\tilde{a}_k}{\lambda_k^2} \cdot \frac{1 - \frac{y^2}{\lambda_k^2}}{1 + \frac{y^2}{\lambda_k^2}} \gtrsim \sum_{k=0}^{L} \frac{\tilde{a}_k}{\lambda_k^2}
\]

where \(z = iy \) with \(0 \leq y \leq -\frac{1}{\varepsilon_L} \).

We will show that, for all \(z = x + iy \in \Omega^i \),

\[
(4.27) \quad \sum_{k=0}^{L} \frac{\tilde{a}_k}{(\lambda_k - x)^2 + y^2} \asymp 1.
\]

Indeed, since \(|\tilde{\lambda}_k - x| \gg |y| \) for all \(z = x + iy \in \Omega^i \) and all \(\lambda_k \in \Sigma_Z \), we have \((\lambda_k - x)^2 + y^2 \asymp (\tilde{\lambda}_k - x)^2 \). Then, argument as in (4.23), (4.25), we have (4.27) follow.

Consequently, \(\text{Im} f_L(z) \) is strictly increasing on \(A_3D_3 \) and \(|f_L'(z)| \gtrsim 1 \) on \(A_3D_3 \).

Now, we give estimates on the real and imaginary parts of \(f_L(z) \) on \(A_3D_3 \).

\[
(4.28) \quad 0 \geq \text{Im} f_L(z) \geq \text{Im} f_L(D_3) = \text{Im} f_L \left(-\frac{i}{\varepsilon_L} \right) \asymp -\frac{1}{\varepsilon_L} \left(\sum_{k=0}^{L} \frac{\tilde{a}_k}{\lambda_k^2} \right) \asymp -\frac{1}{\varepsilon_L}.
\]

Besides, as we proved before, \(\text{Re} f_L(z) \asymp 1 \) on \(A_3D_3 \).

Similarly, we have the same conclusion for \(f_L(z) \) on \(B_3C_3 \).

Finally, we study \(f_L \) on \(C_3D_3 \). Let \(z \in C_3D_3, \ z = x + iy \) where \(x \in [0, \tilde{\lambda}_0 - \delta_1] \) and \(y \equiv -\frac{1}{\varepsilon_L} \).

Using the equation (4.8), we can check easily that \(\text{Re}[f_L'(z)] \) is bigger than a positive constant on \(C_3D_3 \). Hence, \(\text{Re} f_L(z) \) is strictly increasing in \(x \).

Consequently, on \(C_3D_3 \),

\[
(4.29) \quad 1 \asymp \text{Re} f_L(D_3) \leq \text{Re} f_L(z) \leq \text{Re} f_L(C_3) \asymp 1.
\]

Finally, we compute the magnitude of \(\text{Im} f_L(z) \). For \(z = x + iy \in C_3D_3 \), (4.27) yield

\[
(4.30) \quad \text{Im} f_L(z) = y \left(\sum_{k=0}^{L} \frac{\tilde{a}_k}{(\lambda_k - x)^2 + y^2} \right) \asymp \frac{1}{\varepsilon_L}.
\]
To sum up, f_L is bijective from Ω^i to $f_L(\Omega^i)$ and $|f'_L(z)| \gtrsim 1$ for all $z \in \Omega^i$. Moreover, there exists a positive constant c such that $\text{dist}(0, f_L(\Omega^i)) \geq c$. Hence, $-\frac{e^{-i\theta(E_0)}}{L} \notin f_L(\Omega^i)$ which implies that there are no resonances in Ω^i. □

References

[1] B. M. Brown, S. Naboko, and R. Weikard. The inverse resonance problem for Jacobi operators. *Bull. London Math. Soc.*, 37(5):727–737, 2005.

[2] Alexei Iantchenko and Evgeny Korotyaev. Resonances for periodic Jacobi operators with finitely supported perturbations. *J. Math. Anal. Appl.*, 388(2):1239–1253, 2012.

[3] Alexei Iantchenko and Evgeny Korotyaev. Resonances for 1D massless Dirac operators. *J. Differential Equations*, 256(8):3038–3066, 2014.

[4] Alexei Iantchenko and Evgeny Korotyaev. Resonances for Dirac operators on the half-line. *J. Math. Anal. Appl.*, 420(1):279–313, 2014.

[5] Frédéric Klopp. Resonances for large one-dimensional "ergodic" systems (submitted, link arxiv:http://arxiv.org/abs/1210.1000).

[6] E. L. Korotyaev. Inverse resonance scattering for Jacobi operators. *Russ. J. Math. Phys.*, 18(4):427–439, 2011.

[7] B. Pavlov. Nonphysical sheet for perturbed Jacobian matrices. *Algebra i Analiz*, 6(3):185–199, 1994.

[8] Johannes Sjöstrand and Maciej Zworski. Complex scaling and the distribution of scattering poles. *J. Amer. Math. Soc.*, 4(4):729–769, 1991.

[9] Trinh Tuan Phong. Resonances for 1d half-line periodic operators: I. generic case (submitted), link arxiv: https://arxiv.org/abs/1509.03788.

[10] Pierre van Moerbeke. The spectrum of Jacobi matrices. *Invent. Math.*, 37(1):45–81, 1976.

(Trinh Tuan Phong) Laboratoire Analyse, Géométrie & Applications,
UMR 7539, Institut Galilée, Université Paris 13, Sorbonne Paris Cité,
99 avenue J.-B. Clément, 93430 Villetaneuse, France

Email: trinh@math.univ-paris13.fr