Prognostic significance of retention index of bone marrow on dual-phase 18F-fluorodeoxyglucose positron emission tomography/computed tomography in patients with diffuse large B-cell lymphoma

Chin-Chuan Chang, MDa,b, Shih-Feng Cho, MDc, Ya-Wen Chuang, MDa, Chia-Yang Lin, MDa, Ying-Fong Huang, MDa,d, Yu-Chang Tyan, PhDa,e,f,g,h

Abstract

The purpose of this study was to determine the prognostic significance of F-18 fluorodeoxyglucose (FDG) uptake on a dual-phase positron emission tomography/computed tomography (PET/CT), focusing on the increment in maximal standardized uptake value (SUVinc) of tumor and bone marrow (BM) between initial and delayed phase images and retention index (RI) of tumor and BM, in patients with diffuse large B-cell lymphoma (DLBCL).

From September 2009 to January 2013, 70 patients (37 males and 33 females, aged 60.6 ± 17.5 years) with DLBCL who had undergone dual-phase FDG PET/CT scans for pretreatment staging were enrolled. The patients subsequently received combination chemotherapy with rituximab. The dual-phase SUV, including SUVinc of tumor (SUVinc-t), RI of tumor (RI-t), SUVinc of BM, and RI of BM were measured. The clinical observation period was from September 2009 to December 2014. Both univariate and multivariate analyses were then used to assess the prognostic significance of SUVinc, RI, international prognostic index (IPI), gender, age, clinical stage, and laboratory tests.

The median follow-up time was 35.5 months. The 3-year overall survival (OS) for patients with low/high SUVinc-t (cut-off 2.0) and for patients with low/high RI-t (cut-off 2.0) were 87.5%/62.1% ($P = .08$) and 83.3%/62.7% ($P = .14$), respectively. The 3-year OS for patients with SUVinc-i < 0.35 and for those with SUVinc-i ≥ 0.35 were 73.2% and 53.3%, respectively ($P = .10$). The 3-year OS for patients with RI-i < 45 and for those with RI-i ≥ 45 were 72.7% and 37.5%, respectively ($P = .02$). Subsequently, the Cox multivariate forward proportional hazards model revealed that a higher RI-i (hazard ratio: 4.49; 95% confidence interval: 1.64–12.32; $P = .0035$) and IPI were independent prognostic factors affecting OS.

For patients with DLBCL, an elevated RI-i (≥45) was a predictor for shorter OS, independent of IPI score. It added to the value of pretreatment dual-phase FDG PET/CT scans.

Abbreviations: ASCT = autologous stem cell transplantation, BM = bone marrow, CHOP = cyclophosphamide, doxorubicin, vincristine, prednisolone, CI = confidence interval, CR = complete remission, DLBCL = diffuse large B-cell lymphoma, FDG = F-18 fluorodeoxyglucose, GOT = glutamate oxaloacetate transaminase, GPT = glutamate pyruvate transaminase, Hb = hemoglobin, HR = hazards ratio, IPI = international prognostic index, LDH = lactate dehydrogenase, NCCN = national comprehensive cancer network, NHL = non-Hodgkin lymphoma, OS = overall survival, PET/CT = positron emission tomography/computed tomography, R-CHOP = rituximab, cyclophosphamide, doxorubicin, vincristine, prednisolone, RI = retention index, RI-i = RI of SUVi, RI-t = RI of SUVt, ROC = receiver operating characteristic, SUV = standardized uptake value, SUV-1 = maximal SUV at one hour, SUV-2 = maximal SUV at two hours, SUVi = maximal SUV of the right posterior iliac crest, SUVinc = increment in maximal SUV, SUVinc-i = SUVinc of the right posterior iliac crest, SUVinc-t = SUVinc of the tumor, SUVi = maximal SUV of tumor.

Keywords: bone marrow, diffuse large B-cell lymphoma, dual-phase, FDG PET/CT, prognosis

Editor: Hongming Zhuang.

Funding/support: This work was supported by Research Grants MOST 103–2320-B-037–025 from the Ministry of Science and Technology, KMU-TP105E12, KMU-TP105PR06, KMU-M106029, 105KMOR02 and KMU-104003 (Aim for the Top 500 Universities Grant) from Kaohsiung Medical University, and NSYSUKMU106-P01 from NSYSU-KMU Research Project, Taiwan.

The authors declare they have no conflict of interests in publishing this study.

Supplemental Digital Content is available for this article.

Copyright © 2018 the Author(s). Published by Wolters Kluwer Health, Inc. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
1. Introduction

Diffuse large B cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma (NHL). It accounts for up to 30% of newly diagnosed cases in the western countries.[1] Positron emission tomography/computed tomography (PET/CT) using the radiopharmaceutics F-18 fluorodeoxyglucose (FDG) has played an important role for the diagnosis, for staging as well as therapeutic monitoring in patients with DLBCL.[2-4] Because the FDG uptake may reflect tumor aggressiveness and is proportional to the metabolic degree of viable tumor cells,[5] the interest in the use of FDG PET/CT to evaluate patient prognosis has been increasing.

DLBCL is characterized by its diversity in clinical course, morphology, immunophenotype, and cyrogencity. Because of the aggressive behavior and a wide range of clinical outcomes, identifying prognostic factors of the disease in order to enable stratification of patients for optimal treatment is very important. Chemotherapy with the CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisolone) regimen has been the mainstay of treatment for several decades. In the past 20 years, the international prognostic index (IPI) has been one of the most useful tools to evaluate the prognosis in patients with aggressive NHL. The 5-year overall survival (OS) for low risk (IPI: 0–1), low-intermediate risk (IPI: 2), high-intermediate risk (IPI: 3), and high risk (IPI: 4–5) is 73%, 51%, 43%, and 26%, respectively.[6]

In recent years, the addition of rituximab (an IgG1 monoclonal antibody against CD20) to CHOP chemotherapy (R-CHOP) has led to a significant improvement in the clinical outcomes.[7-9] For most patients with newly diagnosed DLBCL, R-CHOP has become the standard treatment. However, the clinical challenge exists. Although the usage of rituximab-containing chemotherapy as the standard therapy has brought patients with this kind of lymphoma to a markedly improved outcome, patients with poor response to the first-line treatment continue to present as a clinical difficulty. Early identification of patients at a high risk may allow for adoption of alternate therapeutic strategies, such as more intensive chemotherapy or upfront autologous stem cell transplantation (ASCT) after the first remission.[10,11]

Dual-phase FDG PET was initially conducted to increase the accuracy in the differentiation between benign and malignant tumors. This was because the FDG PET image at a single time-point lacks the dynamic information regarding the FDG uptake in a lesion, and there is sometimes overlap of the standardized uptake value (SUV), that is, the semiquantitative measurement of FDG uptake, between benign and malignant tumors. The retention index (RI) of the lesion, which is defined as the percentage change in maximal SUV (SUVmax) between initial and delayed phase images, has been found to have clinical potential to predict malignance[12,13] and patient prognosis.[14-15]

Another parameter derived from dual-phase FDG PET is the increment in SUVmax (SUVinc) of the tumor between initial and delayed phase image. One study has mentioned SUVinc of the tumor and BM, and to access their significance of FDG uptake on dual-phase PET/CT, focusing on SUVinc and RI of tumor and BM, and to access their independent relative to IPI and some clinical prognostic factors based on OS in patients with DLBCL.

2. Materials and method

2.1. Patient population

The review process and study design was approved by the Institutional Review Board of Kaohsiung Medical University Hospital [KMUHIRB-EI(1)-20160009]. Patient consent was waived because all clinical information was collected retrospectively via medical chart reviewing. However, informed consents upon admission for all of the medical procedures including the dual-phase FDG PET/CT scans were required. The data were securely protected, available only to investigators and analyzed anonymously. The medical records were reviewed of patients with DLBCL who were diagnosed between September 2009 and January 2013 and treated in Kaohsiung Medical University Hospital. The inclusion criteria looked for patients who had been pathologically diagnosed as DLBCL, subsequently received rituximab-containing chemotherapy, completed pre-treatment work-up, including history, physical examination, standard laboratory tests, as well as BM aspiration and biopsy, and received a dual-phase FDG PET/CT scan for pretreatment staging. The exclusion criteria included underlying history of other malignancy, younger than 18 years, and absence of a delayed-phase FDG PET/CT image, which covered the pelvic region. Ann Arbor staging criteria were used to stage patients clinically. The observation period was from September 2009 to December 2014.

2.2. FDG PET/CT acquisition

Every patient was asked to be fasting for at least 6 hours. The level of blood glucose was controlled to be under 150 mg/dL. After injection of F-18 FDG intravenously (7 MBq per kilogram), patients were asked to lie on the bed in order to minimize unnecessary muscular uptake. All of the FDG PET/CT images were acquired using the delicate PET/CT scanner (Discovery ST 16; GE Medical System, Waukesha, WI). One hour after FDG administration, spiral low-dose CT (140 kV, 80 mA, 1.0 second per rotation, 3.75 mm of section thickness, and 59.0 mm/s of the table speed) was performed from the vertex to leg. The whole-body emission imaging (4 minutes every bed position) was then acquired in a reverse direction. The whole-body maximum-pixel-intensity projection was used for visual evaluation of the disease extension and location. For patients who presented lesions with equivocal FDG uptake (SUV ~2.5), especially in the lymph nodes, an additional delayed-phase scan was performed 2 hours after FDG injection. The covering area of the delayed-phase scans was decided by nuclear medicine physician according to the suspicious lesion-presenting sites. PET data were reconstructed iteratively with CT attenuation correction after the decay
eters. The Mann analyze the correlations between metabolic and clinical param-
((percentages). The Spearman rank correlation test was used to
deviation) and categorical data are given as frequencies
cause. Continuous variables are presented as mean (standard
OS was de
2.5. Statistical analysis
curves to get the most discriminative value. Variables with
prognostic significance (defined as $P < .05$) in the univariate Cox
proportional hazards regression were then chosen into a
multivariate Cox proportional hazards models using forward
and stepwise selections. All these analyses were conducted using
MedCalc Statistical Software (MedCalc Software bvba, version
16.4.3, Ostend, Belgium; https://www.medcalc.org; 2016).
All statistical tests were 2-sided, and a
2-tailed $P < .05$ was considered significant.

3. Result

3.1. Patient characteristics

A total of 70 patients who met the eligible criteria were analyzed,
and the clinical characteristics are summarized in Table 1. There
were 37 (52.9%) men and 33 (47.1%) women with age range
from 20 to 94 years. Thirty-five (50%) patients were at early
stages (stage I or II), while the other 35 patients (50%) were
Table 1
Characteristics at diagnosis of all 70 patients with diffuse large B-cell lymphoma.

Variable	Value
Age, y	60.6±17.5
Gender	
Male	37 (52.9%)
Female	33 (47.1%)
Ann Arbor stage	
I	20 (28.6%)
II	15 (21.4%)
III	9 (12.9%)
IV	26 (37.1%)
IPI	
0–1	26 (37.1%)
2	26 (37.1%)
3	9 (12.9%)
4–5	9 (12.9%)
Primary lesions	
Lymph nodes	40 (57.1%)
Extranodal lesions	30 (42.9%)
Bone marrow involvement	
Yes	17 (24.3%)
No	53 (75.7%)
B symptoms	
Yes	31 (44.3%)
No	39 (55.7%)
ECOG performance status	
0	26 (37.1%)
>0	44 (62.9%)
Treatment	
R-COP	51 (72.9%)
R-COP	19 (27.1%)
Hemoglobin, g/dL	11.8±2.0
WBC, x10^3 μL	6.72±2.58
Platelet, x10^3/μL	233.7±104.9
Albumin, g/dL	3.5±0.6
Creatinine, mg/dL	0.85±0.37
GDT, IU/L	34.3±25.6
GPT, IU/L	29.1±29.7
LDH, IU/L	336.3±406.3
β2-microglobulin, μg/dL	286.7±166.5

3.3. Correlation between metabolic and clinical parameters

The correlation between hematological parameters and SUVi-1, SUVi-2, SUVinc-i, and RI-i were analyzed by Spearman rank correlation test. There was no significant correlation between the values of Hb and SUVi-1 (P = .949), SUVi-2 (P = .723), SUVinc-i (P = .713), and RI-i (P = .317). Similar results were noted in WBC counts (P = .495 for SUVi-1, P = .274 for SUVi-2, P = .267 for SUVinc-i, and P = .797 for RI-i), and platelet counts (P = .657 for SUVi-1, P = .937 for SUVi-2, P = .532 for SUVinc-i, and P = .573 for RI-i).

The correlations between BM status (regardless the involvement of lymphoma cells) and SUVi-1, SUVi-2, SUVinc-i, and RI-i were also analyzed. Significant correlations between BM involvement and SUVi-1 (P = .015), SUVi-2 (P = .008), and SUVinc-i (P = .039) were shown. However, there was no statistical significance between BM involvement and RI-i (P = .233). In the patients with BM involvement (n = 17), only 1 patient (5.9%) had RI-i ≥ 45. In the patients without BM involvement (n = 53), there were 44 (83.0%) patients with lower RI-i and 9 (17.0%) patients with higher RI-i. (Table S2, http://links.lww.com/MD/C78) On the Mann–Whitney rank-sum test, the RI-i did not reveal significant difference (P = .231) between patients with and without BM involvement. On the Kruskal–Wallis test, the RI-i did not reveal significant difference (P = .288) between patients with different IPI risk scores.

3.4. Overall survival based on dichotomization of metabolic parameters

Using ROC curve analysis, we used minimal P values to define the best discriminative cut-off values for SUVinc-t, SUVinc-i, and RI-i as 2.0, 0.35, 20, and 45, respectively. On the Kaplan–Meier survival analysis, patients with higher SUVinc-t, higher SUVinc-i, higher RI-t, and higher RI-i had poorer OS. The 3-year OS for patients with lower RI-i (<2.0; n = 52) was 87.5%/62.1% (P = .08) and 83.3%/62.7% (P = .14), respectively. The 3-year OS for patients with lower SUVinc-i (< 0.35; n = 50) and for those with higher SUVinc-i (≥ 0.35; n = 20) were 73.2% and 53.3%, respectively (P = .10; Fig. 2A). The 3-year OS for patients with lower RI-i (<45; n = 60) and higher RI-i (≥ 45; n = 10) were 72.7% and 37.5%, respectively (P = .02; Fig. 2B). The median survival time for the patients with higher RI-i (≥ 45) was 11.0 months [95% confidence interval (CI): 4.0–31.0]. A similar condition was noted in the patients without BM involvement (n = 53); patients with higher RI-i had significant shorter OS than those with lower RI-i (P = .004, Figure S2, http://links.lww.com/MD/C78).

3.5. Comparison of clinical impacts of other prognostic parameters

In the univariate analysis using the Cox proportional hazards model, older age, Hb, WBC count, albumin, LDH level, B
symptom, clinical stage, IPI risk score, and RI-i were all significant prognostic factors for OS. Patients with thrombocytopenia, elevated GOT, GPT, β2-microglobulin, higher ECOG, SUVinc-c, SUVinc-i, and RI-i had poorer OS, but the results were not statistically significant (Figure S3, http://links.lww.com/MD/C78). Then, the parameters with prognostic significance in univariate analysis were then chosen into the multivariate Cox proportional hazard regression with the forward and stepwise selection schemes. The final model revealed that IPI score 3 [hazards ratio (HR): 4.19; 95% CI: 1.50–11.73; \(P = .0063 \)], IPI score 4–5 [HR: 8.29 (2.71–25.31), \(P = .0002 \)], and higher RI-i [HR: 4.49 (1.64–12.32), \(P = .0035 \)] were poor independent prognostic factors (Table 2).

4. Discussion

The BM produces hematopoietic cells. It is well-known that BM reveals mildly increased FDG uptake in healthy subjects. Some of the patients with different diseases, however, can show relatively higher FDG uptake in the BM.\(^{25}\) Previous studies have mentioned that FDG uptake in the BM may reflect the BM activation in response to the inflammatory process.\(^{26,27}\) Bural et al\(^{26}\) reported that BM can show increased FDG uptake as a result of a systemic inflammatory response secondary to underlying malignancy. Lee et al\(^{21}\) also showed significant correlation between BM uptake and increased serum inflammatory markers. However, in the present study, we did not find significant correlation between BM SUV and hematological parameters.

To our best knowledge, this is the first study that has used the RI of BM on dual-phase FDG PET/CT to evaluate the prognostic significance in patients with DLBCL receiving rituximab-containing chemotherapy. For some malignant diseases, BM hypermetabolism depicted on FDG PET has been discussed as a survival prognostic factor in the literature.\(^{19–22,24}\) In DLBCL, however, most studies focused on the capacity of BM FDG uptake on PET/CT scans to detect BM involvement by the tumor cells.\(^{22–24}\) It is because BM involvement indicates stage IV disease and accounts for 1 point in the IPI scoring. In order to confirm the BM status, BM biopsy remains the gold standard. Knowledge about the prognostic value of BM FDG uptake is relatively lacking.\(^{38}\) Berthet et al\(^{39}\) reported that in patients with newly diagnosed DLBCL, BM status on FDG PET/CT was an independent predictor for progression free survival, but not for OS. In the present study, the RI of the right posterior iliac crest was an independent prognostic factor for predicting OS in patients with DLBCL, in addition to the IPI score. Although pending further validation with a larger patient population, this pilot study may bring about the concept that FDG PET/CT, as a noninvasive measurement, could help to stratify the high-risk patient group at pretreatment staging. More aggressive and intensive therapeutic strategies may be chosen.

For the reason of richer blood supply in the red marrow than in the yellow marrow, the BM involvements by a malignant tumor cells are most often (>90%) confined in the red marrow. However, the frequency of involvement may differ at different sites of the red marrow. Due to the inhomogeneous pattern of BM involvement of the malignant cells, and BM sampling via unilateral iliac biopsy only being able to assess a small portion of the entire BM, there is a difficulty to access the extent of BM involvement precisely at different marrow sites. In the present study, we chose the right posterior iliac crest as the representative site for BM FDG uptake because it corresponds to the site for BM biopsy. On the basis of present study results, SUVi-1, SUVi-2, and SUVinc-i showed significant correlations with BM involvement by the tumor cell, whereas RI-i failed to show any significance. We hypothesize that RI of BM, that is, dividing the SUVinc-i by the denominator.

It is well-known that dual-phase FDG PET/CT, based on the sustained FDG accumulation in the malignant tumors, improves the diagnostic accuracy in differentiating inflammation from malignancy.\(^{40,41}\) It also adds diagnostic values especially for evaluation of lymphatic nodal metastases.\(^{42,43}\) For the reason
Table 2

| Cox proportional hazards models analysis of potential prognostic factors affecting OS. |
|---------------------------------|------------------|-----------------|
| | Univariate analysis | Multivariate analysis |
| | HR (95% CI) | P | HR (95% CI) | P |
| Age (≥65 y) | 2.84 (1.19–6.79) | .019† | | |
| Hemoglobin (< vs ≥10 g/dL) | 2.60 (1.11–6.09) | .028† | | |
| WBC (< vs ≥5000 × 10^9/μL) | 2.63 (1.07–6.49) | .036* | | |
| Albumin (< vs ≥3.5 g/dL) | 2.51 (1.07–5.88) | .034* | | |
| LDH (≥ vs <192 IU/L) | 3.57 (1.39–9.16) | .008* | | |
| Platelet (< vs ≥160 × 10^9/μL)| 1.78 (0.75–4.25) | .194 | | |
| Creatinine (≥ vs <1.3 mg/dL) | 1.41 (0.33–6.05) | .642 | | |
| GOT (≥ vs <42 IU/L) | 1.34 (0.53–3.43) | .538 | | |
| GPT (≥ vs <40 IU/L) | 1.53 (0.56–4.15) | .403 | | |
| β2-microglobulin (≥ vs <340 μg/dL) | 1.66 (0.65–4.26) | .289 | | |
| B symptom (yes vs no) | 3.21 (1.30–7.89) | .011* | | |
| ECOG (≥ vs <0) | 1.77 (0.69–4.54) | .232 | | |
| Stage | | .024 | | |
| I | 0.89 (0.15–5.35) | .395 | | |
| II | 3.58 (0.80–16.03) | .218 | | |
| III | 4.08 (1.16–14.34) | .004 | | |
| IV | | | | |
| IPI | | | | |
| Low (0–1) | | | | |
| Low-intermediate (2) | 2.43 (0.63–9.42) | .198 | | |
| High-intermediate (3) | 7.45 (1.95–29.90) | .004 | 4.19 (1.50–11.73) | .0002† |
| High (4–5) | 10.3 (2.53–41.87) | .001* | 8.29 (2.71–25.31) | .00022 |
| BM involvement (yes vs no) | 1.12 (0.42–3.06) | .813 | | |
| SUVinc-t (≥ vs <2.0) | 3.30 (0.77–14.15) | .107 | | |
| SUVinc − i (≥ vs <0.35) | 1.95 (0.83–4.58) | .123 | | |
| RI-t (≥ vs <2.0) | 2.39 (0.71–8.10) | .160 | | |
| RI − i (≥ vs ≤ 45) | 2.77 (1.08–7.10) | .034 | 4.49 (1.64–12.32) | .0035* |

BM = bone marrow, CI = confidence interval, ECOG = Eastern Cooperative Oncology Group performance status, GOT = glutamate oxaloacetate transaminase, GPT = glutamate pyruvate transaminase, HR = hazard ratio, IPI = international prognostic index, LDH = lactate dehydrogenase, RI = retention index of maximal SUV of right posterior iliac crest., RI-t = retention index of maximal SUV of tumor, SUVinc-i = increment in maximal SUV of right posterior iliac crest, SUVinc-t = increment in maximal SUV of the tumor, WBC = white blood cell.

† Statistically significant.

1 The final model of the multivariate analysis was conducted using a forward Cox proportional hazards model.

that DLBCL is a kind of malignancy that would influence the lymphatic system (especially lymph nodes) of the whole body, we assume that dual-phase FDG PET/CT may play a potential role in improving the diagnostic and staging accuracy, particularly for the lymph nodes showing doubtful FDG uptake (SUV > 2.5) on the initial phase image. In the present study, the difference between SUVt-1 and SUVt-2 was significant (P < .0001). It may help to have precise staging; however, dual-phase SUV of the tumor did not produce significant enough values to predict OS.

BM hypermetabolism in malignancy is possibly associated with factors of both the host and the tumor itself. Micro-metastases in the BM may be the cause of increased metabolic status of BM. Secretion of stimulating cytokines such as colony-stimulating factors [44] interleukin-6, [45] and vascular endothelial growth factor [46] by the primary tumor may also associate with activation of metabolic status of BM. For host factors, coexisting illness such as hypoxemia presented by relatively lower Hb level and decreased PaO2 can to some degree stimulate hematopoiesis and cause BM hypermetabolism.

The results of the current study underlined the prediction of poor outcomes in the patients with higher RI of BM on the pre-treatment dual phased FDG PET/CT scan. A delayed phase image covering the pelvic region as well as the simple calculation to get the RI could provide the useful clinical information. According to the national comprehensive cancer network (NCCN) guideline for the treatment of DLBCL, interim restaging after 2 to 4 cycles of induction chemotherapy was suggested, especially for staged III and IV patients. Addition to IPI score, the higher RI of BM helped to identify the high-risk patients. More positive clinical strategy such as earlier interim restaging may be suggested to these patients with higher risk. On the contrary, early identification of high-risk patients allowed clinicians to choose more intensive or high-dose therapy, which is reported to be more beneficial than sequential chemotherapy, followed by stem cell transplantation after the first remission. [11]

There are some limitations in the present study. The most important ones are inherent to a retrospective design as well as the small patient population. The patient number with higher RI-t (≥45) was only 10, which may lead to a statistical bias. Another limitation of studies regarding DLBCL is the data collection that includes patients with different histological subtypes and possibly the use of different first-line regimens for chemotherapy. Further confirmatory results may be warranted with a prospective study design, larger study population, and a more specific histological subtype collection.
This study revealed that pretreatment dual-phase FDG PET/CT played an important role in predicting OS in patients with DLBCL receiving rituximab-containing chemotherapy. A pending external validation of an elevated RI-i (≥45) was a predictor for shorter OS, regardless of IPI score.

References

[1] Flowers CR, Sinha R, Vose JM. Improving outcomes for patients with diffuse large B-cell lymphoma. CA Cancer J Clin 2010;60:393–408.

[2] Cho SF, Chang CC, Liu YC, et al. Utilization of 18F-FDG PET/CT as a staging tool in patients with newly diagnosed lymphoma. Kaohsiung J Med Sci 2013;31:130–7.

[3] Tilly H, Vitolo U, Walewski J, et al. Diffuse large B-cell lymphoma (DLBCL); ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2012;23:vii78–82.

[4] Juweid ME, Strohbueck S, Hodakova OS, et al. Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol 2007;25:371–8.

[5] Schoder H, Noy A, Gonen M, et al. Intensity of 18F-FDG uptake distinguishes between indolent and aggressive non-Hodgkin’s lymphoma. J Clin Oncol 2005;23:4643–51.

[6] International Non-Hodgkin’s Lymphoma Prognostic Factors Project. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med 1993;329:987–94.

[7] Coiffler B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 2002;346:235–40.

[8] Habermann TM, Weller EA, Morrison VA, et al. Rituximab-CHOP versus CHOP alone or with maintenance rituximab in older patients with diffuse large-B-cell lymphoma. J Clin Oncol 2006;24:3121–7.

[9] Pfreundschuh M, Trumper L, Osterborg A, et al. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol 2006;7:397–91.

[10] Greb A, Bohlau J, Treille S, et al. High-dose chemotherapy with autologous stem cell support in first-line treatment of aggressive non-Hodgkin’s lymphoma: results of a comprehensive meta-analysis. Cancer Treat Rev 2007;33:338–46.

[11] Haux O, Lepage E, Guselbrecht C, et al. Survival benefit of high-dose therapy in poor-risk aggressive non-Hodgkin’s lymphoma: final analysis of the prospective LNHL87-2 protocol: a groupe d’Etude des lymphomes de l’Adulte study. J Clin Oncol 2000;18:3025–30.

[12] Lee S, Park T, Park S, et al. The clinical role of dual-time-point (18)F-FDG PET/CT in differential diagnosis of the thyroid incidentaloma. Nucl Med Commun 2005;26:861.

[13] Matthies A, Hickson M, Cuchiarra A, et al. Dual time point 18F-FDG PET for the evaluation of pulmonary nodules. J Nucl Med 2002;43:871–5.

[14] Lyshchik A, Higashi T, Nakamoto Y, et al. Dual-phase 18F-fluorodeoxy-D-glucose positron emission tomography as a prognostic parameter in patients with pancreatic cancer. Eur J Nucl Med Mol Imaging 2005;32:389–97.

[15] Sanghera B, Wong WL, Lodge MA, et al. Potential novel application of dual time point SUV measurements as a predictor of survival in head and neck cancer. Nucl Med Commun 2005;26:861–7.

[16] Chen HH, Lee BF, Su WC, et al. The increment in standardized uptake value density (SUVd) using dual-phase 18F-FDG PET is a promising prognostic factor in non-small-cell lung cancer. Eur J Nucl Med Mol Imaging 2013;40:1478–85.

[17] Bural GG, Torigian DA, Chen W, et al. Increased 18F-FDG uptake within the reticuloendothelial system in patients with active lung cancer on PET imaging may indicate activation of the systemic immune response. J Nucl Med 2010;1:23–5.

[18] Van de Wiele C, VandeVyver F, Debruyne C, et al. FDG PET by the bone marrow in NSCLC patients is related to TGF-beta but not to VEGF or G-CSF serum levels. Eur J Nucl Med Mol Imaging 2008;35:519–22.

[19] Prevost S, Boucher L, Larivee P, et al. Bone marrow hypermetabolism on 18F-FDG PET as a survival prognostic factor in non-small cell lung cancer. J Nucl Med 2006;47:539–65.

[20] Lee JW, Na JO, Kang DY, et al. Prognostic significance of FDG uptake of bone marrow on PET/CT in patients with non-small cell lung cancer after curative surgical resection. Clin Lung Cancer 2017;18:198–206.

[21] Lee JW, Seo KH, Kim ES, et al. The role of 18F-fluorodeoxyglucose uptake of bone marrow on PET/CT in predicting clinical outcomes in non-small cell lung cancer patients treated with chemoradiotherapy. Eur Radiol 2017;5:1912–21.

[22] Ciccone F, Loose D, Deren P, et al. Prognostic value of FDG uptake by the bone marrow in squamous cell carcinoma of the head and neck. Nucl Med Commun 2008;29:431–5.

[23] Mittal V, El Reyes T, Narula N, et al. The macroenvironment of lung cancer and therapeutic implications. Adv Exp Med Biol 2016;890:75–110.

[24] Cheson BD, Pfisterer B, Juweid ME, et al. Revised response criteria for malignant lymphoma. J Clin Oncol 2007;25:579–86.

[25] Murata Y, Kubota K, Yukihiro M, et al. Correlations between 18F-FDG uptake by bone marrow and hematological parameters: measurements by PET/CT. Nucl Med Biol 2006;33:999–1004.

[26] Inoue K, Goto R, Okada K, et al. A bone marrow F-18 FDG uptake exceeding the liver uptake may indicate bone marrow hyperactivity. Ann Nucl Med 2009;23:643–9.

[27] Nunez R, Rimi JN, Tronco GG, et al. Correlation of hematologic parameters with bone marrow and spleen uptake in FDG PET. Rev Esp Med Nucl 2003;24:107–12.

[28] Haznedar R, Aki SZ, Akdemir OU, et al. Value of 18F-fluorodeoxyglucose uptake in positron emission tomography/computed tomography in predicting survival in multiple myeloma. Eur J Nucl Med Mol Imaging 2011;38:1046–53.

[29] Adams HJ, Kwee TC, Fijnheer R, et al. Direct comparison of visual and quantitative bone marrow FDG-PET/CT findings with bone marrow biopsy results in diffuse large B-cell lymphoma: does bone marrow FDG-PET/CT live up to its promise? Acta Radiol 2015;56:1230–5.

[30] Chen YK, Yeh CL, Tsui CC, et al. F-18 FDG PET for evaluation of bone marrow involvement in non-Hodgkin lymphoma: a meta-analysis. Clin Nucl Med 2011;36:553–9.

[31] Pelosi E, Penna D, Doroukas A, et al. Bone marrow disease detection with FDG-PET/CT and bone marrow biopsy during the staging of malignant lymphoma: results from a large multicentre study. Q J Nucl Med Mol Imaging 2011;55:469–75.

[32] Paone G, Itri E, Haioun C, et al. Bone marrow involvement in diffuse large B-cell lymphoma: correlation between FDG PET uptake and type of cellular infiltrate. Eur J Nucl Med Mol Imaging 2009;36:745–50.

[33] Muslimani AA, Farag HL, Francis S, et al. The utility of 18-F-fluorodeoxyglucose positron emission tomography in evaluation of bone marrow involvement by non-Hodgkin lymphoma. J Clin Oncol 2008;26:409–12.

[34] Brunning RD, Bloomfield CD, McKenna RW, et al. Bilateral trephine bone marrow biopsies in lymphoma and other neoplastic diseases. Ann Intern Med 1975;82:363–6.

[35] Menon NG, Buchanan JG. Bilateral trephine bone marrow biopsies in Hodgkin’s and non-Hodgkin’s lymphoma. Pathology 1979;11:53–7.

[36] Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol 2014;32:1019–68.

[37] Adams HJ, Kwee TC, Fijnheer R, et al. Bone marrow 18F-fluorodeoxyglucose positron emission tomography/computed tomography cannot replace bone marrow biopsy in diffuse large B-cell lymphoma. Am J Hematol 2014;89:726–31.

[38] Hofman MS. Fluorodeoxyglucose positron emission tomography/computed tomography for evaluation of bone marrow involvement in lymphoma: when is it superior to biopsy? Leuk Lymphoma 2012;53:349–51.

[39] Berthelot L, Cochet A, Kanoun S, et al. In newly diagnosed diffuse large B-cell lymphoma, determination of bone marrow involvement with 18F-FDG PET/CT offers better diagnostic performance and prognostic stratification than does biopsy. J Nucl Med 2013;54:1284–50.

[40] Xin Y, Bhutani C, Dharajat Y, et al. Dual-time point FDG PET imaging in the evaluation of pulmonary nodules with minimally increased metabolic activity. Clin Nucl Med 2007;32:101–5.

[41] Yen TC, Ng KK, Ma SY, et al. Value of dual-phase 2-fluoro-2-deoxy-D-glucose positron emission tomography in cervical cancer. J Clin Oncol 2003;21:3651–8.

[42] Ma SY, See LC, Lai CH, et al. Delayed (18)F-FDG PET for detection of paraaortic lymph node metastases in cervical cancer patients. J Nucl Med 2003;44:1775–83.
[43] Shinya T, Rai K, Okumura Y, et al. Dual-time-point F-18 FDG PET/CT for evaluation of intrathoracic lymph nodes in patients with non-small cell lung cancer. Clin Nucl Med 2009;34:216–21.

[44] Takeuchi R, Kasagi K, Ohta H, et al. Diffuse bony uptake of thallium-201-chloride in the granulocyte colony-stimulating factor-producing lung carcinoma. J Nucl Med 1998;39:241–3.

[45] Kimura H, Yamaguchi Y, Sun L, et al. Establishment of large cell lung cancer cell lines secreting hematopoietic factors inducing leukocytosis and thrombocytosis. Jpn J Clin Oncol 1992;22:313–9.

[46] Choi JH, Kim HG, Lim HY, et al. Vascular endothelial growth factor in the serum of patients with non-small cell lung cancer: correlation with platelet and leukocyte counts. Lung Cancer 2001;33:171–9.