Latissimus Dorsi Tendon Repair
Rami George Alrabaa, M.D., and Christopher S. Ahmad, M.D.

Abstract: Latissimus dorsi tendon ruptures are less-common injuries that can occur in elite throwing athletes. Physical examination of the thrower with a latissimus injury may show ecchymosis of the upper arm and asymmetry of the posterior axillary fold along with possible weakness in shoulder adduction, extension, and internal rotation. Magnetic resonance imaging is used to confirm the diagnosis. Latissimus tendon ruptures are largely treated nonoperatively; surgical repair is only advocated for in professional throwing athletes with complete avulsion injuries or midsubstance latissimus tendon tears. Surgical repair options include the use of suture anchors, cortical suture buttons, or transosseous sutures via a single posterior axillary incision or a 2-incision technique. Given the limited literature on this topic, there have been no studies evaluating the different fixation options or surgical approaches for tendon repair. This article and accompanying video show the technique and discusses the technical pearls of a latissimus tendon repair using suture button fixation via a single-incision approach.

Latissimus dorsi tendon ruptures are less-common injuries and are of significance in the high-level athlete; these injuries have been documented in elite baseball pitchers, cross-fit athletes, in water-skiing sports, rock climbing, tennis, and golf.1-4 The latissimus originates from the inferior thoracic and lumbar spinous processes, iliac crests, and lower ribs, and externally rotates 90° before inserting onto the intertubercular groove of the humerus. The intimately associated teres major muscle runs deeps and superior to the latissimus and inserts on the medial lip of the intertubercular groove but also can coalesce with the latissimus to form one tendon. These muscles function in internal rotation, extension, and adduction of the humerus and are most active during the late cocking and acceleration phases of the pitching cycle.5

Athletes with latissimus injuries may complain of posterior shoulder pain with possible deformity of the posterior axillary fold. On examination, patients may have ecchymosis about the arm and posterolateral chest wall with loss of the posterior axillary fold, and there may be weakness and pain with resisted shoulder adduction and extension. Plain radiographs will be unremarkable and may show a small bone fragment in cases of tendon avulsion. Magnetic resonance imaging is obtained to confirm the diagnosis and rule out any other injuries of the shoulder girdle (Fig 1). Standard shoulder magnetic resonance imaging may not capture the latissimus musculotendinous unit, so the clinician may need to obtain an extended field of view to include the lateral chest wall if suspicion for a latissimus injury is high.5 Injury can occur at any location along the muscle tendon unit, with most common injuries being muscle belly strains. Tendon avulsions and midsubstance tendon tears can be surgically repaired whereas musculotendinous junctional tears and muscle belly strains are treated nonoperatively.1

Nonoperative treatment consists of a period of rest and pain control, followed by progressive shoulder range-of-motion exercises, and finally strengthening exercises. For complete latissimus avulsion injuries or midsubstance tendon tears in the elite or professional overhead throwing athlete, surgical repair is advocated. The 2 surgical approaches for repair include a single-incision technique for both tendon retrieval and repair and a dual incision technique that uses a
deltopectoral approach for exposure of the footprint and a posterior axillary incision for tendon retrieval. This article and accompanying video illustrate our technique for latissimus dorsi tendon repair using a single posterior axillary incision with suture button fixation (Video 1).

Surgical Technique

Patient Positioning

After anesthesia is administered, the patient is placed in the lateral decubitus position with the use of a bean bag immobilizer with the arm placed in a dynamic limb positioner (SPIDER2; Smith & Nephew, London, United Kingdom). The forearm is secured into the positioner so that the arm is abducted and internally rotated (Fig 2).

Exposure

The skin is marked extending from the arm into the posterior chest wall along the posterior axillary fold (Fig 3A). The incision along the arm is for the humeral footprint exposure, which remains relatively constant, and the incision along the posterior chest wall can be extended as needed for a retracted tendon. An 8- to 10-cm incision is made and taken down to the fascia. Self-retaining retractors are placed to tension the skin and subcutaneous tissues to aid in visualization and dissection (Fig 3B). A mix of blunt and sharp dissection is used in between the triceps and the pectoralis major to identify the retracted latissimus dorsi tendon along with the associated teres major. A seroma cavity often is encountered when dissection is performed near the tendon stump (Fig 3C). As dissection proceeds toward the humerus, care is taken to identify and preserve branches of the posterior brachial cutaneous nerve (Fig 3D). Once identified, the posterior brachial cutaneous nerve can be retracted posteriorly along with the triceps.
Tendon Preparation

Once the latissimus tendon is identified, a mixture of blunt and sharp dissection is used to mobilize the tendon from its proximal adhesions (Fig 4A) to allow for excursion back to its footprint onto the humerus. The tendon is provisionally tensioned and placed over the footprint to determine whether there is adequate mobilization of the tendon. Two SutureTape sutures (Arthrex; Naples, FL) are then passed through the tendon in simple running locking Krackow fashion to create 4 limbs of suture (Fig 4B). The tendon is then repeatedly tensioned to minimize creep. It is important to be aware of the proximity of the axillary nerve during this procedure, which is expected to be just deep and proximal to the tendon in the floor of the exposure.

Footprint Preparation

The humerus is maximally internally rotated to expose the intertubercular groove. One retractor is placed anteriorly to retract and protect the pectoralis major, biceps, and radial nerve. A second retractor is placed posteriorly to retract the triceps and branches of the posterior brachial cutaneous nerve, and a third retractor is placed at the apex of the wound to aid in visualization. Any remaining soft tissue on the footprint is debrided and the bone is abraded with a curette (Fig 5A). Once adequate exposure of the footprint is obtained, 2 unicortical drill holes are made with the appropriate drill size, one proximal and one distal about 1-2cm apart (Fig 5B), to accommodate passage of 2 suture buttons unicortically.
Fixation

Two suture buttons will be used for tendon fixation. The first set of SutureTape controlling the tendon is loaded onto a suture button in standard fashion according to the tension-slide technique with one limb entering proximally and exiting distally and the other limb entering distally and exiting proximally. With the button inserter, the loaded suture button is then placed through one of the unicortical drill holes and flipped to engage the cortex. The same sequence of events is repeated for the second suture button as it is loaded with the second set of SutureTape controlling the tendon, inserted through the second drill hole, and flipped to engage the cortex. It is essential to keep in mind that the latissimus tendon externally rotates 90° before inserting onto the humerus so the appropriate buttons are placed in the appropriate proximal or distal drill hole according to the orientation of the tendon as it would insert onto the footprint.

Once the buttons are placed, flipped, and are engaging the cortex, one suture tail from each of the buttons is passed through the substance of the tendon from deep to superficial using a free needle. These limbs that are passed through the tendon allow for the knots to lay superficially on the tendon and will serve as the post strand for knot tying. The suture limbs from each SutureTape are sequentially tensioned to reduce the tendon back to its footprint.
sutures are then tied using an arthroscopic knot pusher to facilitate knot tension deep in the wound (Fig 6D). An arthroscopic cutter is then used to leave short tails.

Closure

After irrigation, closure of the wound is performed in layers with buried interrupted absorbable suture for the deep dermal layer and a running subcuticular absorbable suture for the skin. A sterile dressing is applied, and the patient is placed in a sling. Postoperative radiographs are obtained to visualize the suture buttons abutting the cortex (Fig 7).

Postoperative Rehabilitation

The patient is placed in a sling postoperatively. Passive range-of-motion exercises are initiated 2 weeks postoperatively followed by strengthening exercises at 8 weeks. For pitchers, a throwing program is initiated by 16 weeks and return to sport is permitted 6 months postoperatively.

Discussion

The majority of patients with latissimus tendon injuries are treated successfully nonoperatively and surgical repair is only considered in elite or professional overhead athletes. Given that latissimus tendon injuries are uncommon, the literature contains mostly case reports and small case series. There have been some case series of professional baseball players showing successful outcomes with high rates of return to sport with nonoperative treatment. However, the
level of return to sport, effectiveness, and longevity of
the professional athlete with this injury have been
called into question after nonoperative treatment.
Erickson et al.8 reported on the largest case series of
11 latissimus ruptures treated operatively, showing
excellent outcomes with all patients able to return to
sport to the same level of competition. Other studies of
latissimus ruptures treated operatively are limited to
much smaller case series or single case reports.9,10
Other fixation options for latissimus tendon injuries
include suture anchor or transosseous tunnel
fixation.11 Given the rarity of this injury, there have been
no studies comparing the single- and dual-incision
techniques or different fixation options. Advantages
and disadvantages of our single-incision latissimus
tendon repair technique are presented in Table 1 fol-
lowed by pearls and pitfalls of the procedure in
Table 2.

![Postoperative radiographs of the right shoulder of a baseball pitcher status after right latissimus tendon repair as shown in this case. Anteroposterior (A) and axillary lateral (B) views show 2 suture buttons appropriately placed and engaging the humeral cortex. (SB, suture button.)](image)

Table 1. Advantages and Disadvantages of Latissimus Tendon Repair Through a Single-Incision Approach With Suture Button Fixation in the Lateral Decubitus Position

Advantages	Disadvantages
The single posterior axillary incision approach uses the same inci-	
sion for tendon retrieval and footprint exposure. This approach is	
tensionfree and can be extended to retrieve a retracted latissimus	
tendon.	The beach chair position may be more familiar to the surgeon, as
the orientation of the anatomy is altered in the lateral decubitus	
position.	
Although there have been no comparative studies of fixation op-	
tions for latissimus tendon repairs, biomechanical studies of distal
biceps repair have shown superior strength with suture button
fixation as opposed to suture anchors or bone tunnel fixation.12 | Surrounding neurovascular structures particularly the radial, axil-
ary, and posterior brachial cutaneous nerves are in close proximity
to the humeral footprint and retracted latissimus tendon. |

Table 2. Pearls and Potential Pitfalls of Single-Incision Latissimus Tendon Repair With Suture Button Fixation in the Lateral Decubitus Position

Pearls	Potential pitfalls
The humeral aspect of the incision to expose the humeral footprint	
remains relatively constant while the incision along the posterior	
chest wall can be extended to retrieve a retracted tendon.	Pertinent neuroanatomy should be thoroughly reviewed as the
axillary, radial, and posterior brachial cutaneous nerves are at risk	
during this procedure. The axillary nerve is expected to be just deep	
and proximal to the latissimus tendon in the floor of the exposure.	
A seroma cavity can be encountered as dissection proceeds closer to	
the latissimus tendon stump.	The latissimus tendon externally rotates 90° before inserting onto
the humerus and this must be kept in mind for the tendon to be	
repaired in proper orientation back to its footprint.	
The humerus is maximally internally rotated to adequately expose	
the intertubercular groove and the footprint of the latissimus	
tendon during this approach.	Excessive suturing of the dermal and subcuticular layers should be
avoided as that area can be sensitive.	
Sutures used to repair the tendon are cut short to prevent irritation.	
Arthroscopic knot pushers and arthroscopic suture cutters can be
utilized to facilitate knot tension deep in the wound as well as a
short tail. | |
References
1. George MS, Khazzam M. Latissimus dorsi tendon rupture. J Am Acad Orthop Surg 2019;27:113-118.
2. Donohue BF, Lubitz MG, Kremchek TE. Sports injuries to the latissimus dorsi and teres major. Am J Sports Med 2017;45:2428-2335.
3. Friedman MV, Stensby JD, Hillen TJ, Demertzis JL, Keener JD. Traumatic tear of the latissimus dorsi myotendinous junction: Case report of a crossfit-related injury. Sports Health 2015;7:548-552.
4. Park JY, Lhee SH, Keum JS. Rupture of latissimus dorsi muscle in a tennis player. Orthopedics 2008;31(10).
5. Erickson BJ, Ahmad CS, Romeo AA. Latissimus dorsi and teres major muscle injuries in pitchers. In: Ahmad CS, Romeo AA, eds. Baseball sports medicine. Philadelphia: Wolters Kluwer, 2019;231-244.
6. Schickendantz MS, Kaar SG, Meister K, Lund P, Beverley L. Latissimus dorsi and teres major tears in professional baseball pitchers: A case series. Am J Sports Med 2009;37:2016-2020.
7. Nagda SH, Cohen SB, Noonan TJ, Raasch WG, Ciccotti MG, Yocum LA. Management and outcomes of latissimus dorsi and teres major injuries in professional baseball pitchers. Am J Sports Med 2011;39:2181-2186.
8. Erickson BJ, Chalmers PN, Waterman BR, Griffin JW, Romeo AA. Performance and return to sport in elite baseball players and recreational athletes following repair of the latissimus dorsi and teres major. J Shoulder Elbow Surg 2017;26:1948-1954.
9. Cox EM, McKay SD, Wolf BR. Subacute repair of latissimus dorsi tendon avulsion in the recreational athlete: Two-year outcomes of 2 cases. J Shoulder Elbow Surg 2010;19(6):e16-e19.
10. Ellman MB, Yanke A, Juhan T, Verma NN, Nicholson GP, Bush-Joseph C, et al. Open repair of an acute latissimus tendon avulsion in a Major League Baseball pitcher. J Shoulder Elbow Surg 2013;22:e19-e23.
11. Lim JK, Tilford ME, Hamersly SF, Sallay PL. Surgical repair of an acute latissimus dorsi tendon avulsion using suture anchors through a single incision. Am J Sports Med 2006;34:1351-1355.
12. Mazzocca AD, Burton KJ, Romeo AA, Santangelo S, Adams DA, Arciero RA. Biomechanical evaluation of 4 techniques of distal biceps brachii tendon repair. Am J Sports Med 2007;35:252-258.