Chapter 25
Vegetables

Evelyn Klocke, Thomas Nothnagel, and Günter Schumann

25.1 Introduction

Vegetables are a target for many transformation purposes. From the first trials for herbicide resistance until now, transformation protocols have been developed for almost all important vegetable crops. *Agrobacterium*-mediated transfer is the base for most transformation protocols for vegetables, as in other crops. Some special method investigations like plastid transformation (see also Chap. 2) and others are outlined below.

With rapidly rising capacities for DNA sequencing, databases for plant genomes are expanding very fast. The abundance of genomic data has an influence on projects for the genetic transformation of various vegetables. The availability of genes is no longer a bottleneck for this work. Increasing knowledge about genomes and a broad public access to DNA data banks boost new possibilities of creating gene constructs for transformation of vegetables. Moreover, the latest RNAi technology (see Chap. 5) will affect the transformation techniques for vegetable crops.

This chapter gives a short overview of GM technology in vegetables. Particularly vegetable crops for the temperate climate in Europe and America are considered (Table 25.1). Special emphasis is placed on the current trends of vegetable transformation, focusing especially on potential practical applications. Some of the investigations belonging to fundamental research are important for an understanding of processes like gene expression, plant development and production of metabolites in vegetables.
Table 25.1 Review of genetically engineered vegetables, the aim (or target character) and the description of the transgene. This table contains experiments with established transgenic plants only. Experiments with marker or reporter genes exclusively are only listed as examples.

Character	Transgene	Transgene description	Aim	References
Solanum lycopersicon L.	TMV CP	Tobacco mosaic virus (TMV) coat protein	Tolerance to TMV and tomato mosaic virus (ToMV)	Nelson et al. (1988)
Virus resistance	V1	Tomato yellow leaf curl virus (TYLCV) capsid protein	Delayed disease symptoms	Kunik et al. (1994)
TYLCV C1,	TYLCV CP	Truncated C1 and T-Rep genes of tomato yellow leaf curl	Resistance to TYLCV	Brunetti et al. (1997), Antignus et al. (2004), Yang et al. (2004), Fuentes et al. (2006)
- T-Rep		virus (TYLCV)		
TLCV Rep	TLCV CP	Replicase – tomato leaf curl virus (TLCV)	Resistance to TLCV	Praveen et al. (2005)
	TSWV N	Tomato spotted wilt virus (TSWV) nucleoprotein	Resistance to TSWV	Kim et al. (1994), Ultzen et al.
	N	Gene from Nicotiana tabacum	Resistance to TMV and ToMV	Whitham et al. (1996)
	N/Sw-5	Lettuce isolate of TSWV (TSWV-Bl)	Resistance to TSWV	Gubba et al. (2002)
	CMV-Cp	Cucumber mosaic virus (CMV) coat protein	Resistance to TMV, Verticillium and Phytophthora	Provvidenti and Gonsalves (1995), Tomassoli et al. (1999)
	CMV	Truncated replicase from CMV	Moderate resistance in T1 progeny to CMV	Nunome et al. (2002)
Fungal resistance	Chi-I,II/Glu-I, II	Class I chitinase and class I β-1,3 glucanase	Resistance to Fusarium oxysporum f. sp. lycopersici	Jongedijk et al. (1995)
	pcht28	Chitinase	Resistance to V. dahliae race 2	Tabaeizadeh et al. (1999)
	tlpD34, M-GLU, Mj-AMP1	Pathogenesis-related protein (PRP)	Alternaria solani resistance	Radhajeyalakshmi et al. (2005), Schaefer et al. (2005)
	CABPR1, CABPOA1	PRP	Phytophthora capsici enhanced tolerance	Sarowar et al. (2006)
	NPR1	Arabidopsis gene; systemic acquired resistance (SAR)	SAR to F. oxysporum f. sp. lycopersici	Lin et al. (2004)
	pRB7/Thi2.1	Arabidopsis thionin; SAR	SAR to F. oxysporum f. sp. lycopersici	Chan et al. (2005)
Resistance Type	Gene/Pathogen/Species	Description	Reference(s)	
--------------------------	---	--	---	
Bacterial resistance	**bO** Bacterio-opsin **NPR1**	SAR to *Ralstonia solanacearum*	Rizhsky and Mittler (2001)	
	pRB7/Thi2.1	SAR to *R. solanacearum*	Lin et al. (2004)	
	Mi-1, a, Mi-1.2	Resistance to *Meloidogyne incognita*	Chan et al. (2005)	
	HD-1	*Bt* resistance	Vos et al. (1998), Goggin et al. (2004)	
	Mi-1, a	Gene from *L. peruvianum*	Fischhoff et al. (1987), Delannay et al. (1989)	
	StLS1::PI-II/rbes1A::PCI	Protease inhibitors	Vos et al. (1998)	
	codA Choline oxidase from *Arthrobacter globiformis*	Temperature tolerance (chilling tolerance)	Park et al. (2004a)	
	LeGPAT Glycerol-3-phosphate acyltransferase	Temperature tolerance (chilling tolerance)	Sui et al. (2007)	
	cAPX Cytosolic ascorbate peroxidase	Temperature tolerance (heat stress) and UV-B tolerance	Wang et al. (2006)	
	CBF1 *Arabidopsis C* repeat/dehydration-	Water stress (drought)	Hsieh et al. (2002a)	
	responsive element binding factor 1	Chilling, drought and salt tolerance	Lee et al. (2003b)	
	ABRC1/CBF1 ABRC1-stress-inducible promoter	Water stress (drought)	Roy et al. (2006)	
	from barley HAV22 and CBF1			
	bspA Boiling stable protein from *Populus tremula*	Salt tolerance	Gisbert et al. (2000), Rus et al. (2001), Muñoz-Mayor et al. (2008)	
	HLA1 Gene from *Saccharomyces cerevisiae*			
	AtNHX1 Gene from *Arabidopsis*	Salt tolerance	Zhang and Blumwald (2001)	
	BADH Gene from *Atriplex hortensis*	Salt tolerance	Jia et al. (2002)	
Parthenocarpy	**DefH9-iaaM** Genes from *Pseudomonas syringae* pv. savastanoi and *Antirrhinum majus*		Ficcadenti et al. 1999	
	rolB *A. rhizogenes*-derived gene		Carmi et al. (2003)	

(continued)
Character	Transgene	Transgene description	Aim	References
Fruit ripening	CaCel1	Endo-1,4-β-D-glucanase from pepper	Prolonged shelf life	Harpster et al. (2002b)
	ACC	RNAi gene silencing	Antisense	Xiong et al. (2005)
	GAD	Glutamate decarboxylase		Kisaka et al. (2006)
Taste/flavour	E8-monellin	Gene from *Discoreophyllum cummnsii*	Sweetness	Penarrubia et al. (1992)
	Thaumatin	Gene from *Thaumatococcus daniellii*	Sweet taste and liquorice aftertaste	Bartoszewski et al. (2003)
	Δ-9 Desaturase gene	Desaturase gene from *S. cerevisiae*	Changes in the profile of flavour compounds	Wang et al. (1996)
	Adh 2	Alcohol dehydrogenase cDNA	Improved flavour characteristics	Speirs et al. (1998)
Nutritional value	crtI	Phytoene desaturase from *Erwinia uredovora*	Threefold increased β-carotene content	Römer et al. (2000)
	chi	Chalcone isomerase from *Petunia*	Elevated flavanol end-products in the fruit peel	Muir et al. (2001)
	LC/C1	Maize transcription factors	Tenfold higher flavonoid glycoside content	Le Gall et al. (2003)
	HQT	Hydroxycinnamoyl transferase	Increased levels of antioxidant chlorogenic acid (CGA)	Niggeweg et al. (2004)
	DETI	Endogenous photomorphogenesis gene, RNAi gene silencing	Carotenoid and flavonoid content	Davuluri et al. (2005)
	tLcy-b	Lycopene β-cyclase	Conversion of lycopene to β-carotene under field conditions	Giorio et al. (2007)
	Del/Ros1	Transcription factor from *Antirrhinum majus* that regulates anthocyanin production		Butelli et al. (2008)
Processing quality	ipt	Isopentenyl transferase	Higher fruit solids	Martineau et al. (1995)
	LepG, LeExp1	Ripening regulated fruit PG gene and expansin	Increased fruit firmness and juice viscosity	Kalamaki et al. (2003a, b), Powell et al. (2003)
	ySAMdc	Adenosylmethionine decarboxylase from yeast	Increased lycopene content and enhanced fruit quality	Mehta et al. (2002)
Pharmaceuticals	Miraculin	Gene from *Richadella dulcifica*	Twentyfold higher miraculin content, low-calorie sweetener for diabetic	Sun et al. (2007)
Gene	Description	Application	Reference(s)	
------	---	---	--	
ACEI	Angiotensin-I-converting enzyme inhibitor, TMV-mediated transformation	Antihypertensive tomato fruits	Hamamoto et al. (1993)	
Gp	Rabies glycoprotein, (Agrobacterium tumefaciens) (A.t.)-mediated	Vaccine, oral animal immunization, e.g. raccoons	McGarvey et al. (1995)	
P1-2A3C	Polyprotein + protease gene from foot-and-mouth disease virus	Oral immunization, e.g. guinea pigs	Pan et al. (2008)	
RSV-F	Respiratory syncytial virus fusion gene	Vaccine	Sandhu et al. (2000)	
ctxB	Cholera toxin B subunit, A.t.-mediated	Vaccine against cholera	Jani et al. (2002), Jiang et al. (2007), Sharma et al. (2008)	
VP1	Coat protein of enterovirus 71 (EV71)	Vaccine against hand-foot-and-mouth disease	Chen et al. (2006a)	
PRS-S1S2S	Synthetic hepatitis B virus (HBV) Partial gene of hepatitis E virus	Large surface antigen gene	Lou et al. (2007)	
ORF2 (HEV-E2)	Synthetic hepatitis B virus (HBV) Partial gene of hepatitis E virus	Vaccine	Ma et al. (2003)	
Aβ	Human β-amyloid	Vaccine against Alzheimer's disease	Youm et al. (2008)	
sDPT	Synthetic immunoprotective exotoxin epitopes	Vaccine against diphteria–pertussis–tetanus (DPT)	Soria-Guerra et al. (2007)	
AChE	Human acetylcholinesterase	Preventing organophosphate intoxication	Mor et al. (2001)	
IL-12	Mouse interleukin-12	Recombinant protein for mucosal administration	Gutiérrez-Ortega et al. (2005)	
TaxK	Taxadiene from Taxus baccata		Kovacs et al. (2007)	
AAT	Modified human α-1-antitrypsin	Therapeutic protein	Agarwal et al. (2008)	
GmIFS2	Isoflavone synthase from Glycine max	Isoflavone production for health benefits	Shih et al. (2008)	
AChE	Human acetylcholinesterase	Vaccine against Alzheimer's disease	Youm et al. (2008)	
sDPT	Synthetic immunoprotective exotoxin epitopes	Vaccine against diphteria–pertussis–tetanus (DPT)	Soria-Guerra et al. (2007)	
AChE	Human acetylcholinesterase	Preventing organophosphate intoxication	Mor et al. (2001)	
IL-12	Mouse interleukin-12	Recombinant protein for mucosal administration	Gutiérrez-Ortega et al. (2005)	
TaxK	Taxadiene from Taxus baccata		Kovacs et al. (2007)	
AAT	Modified human α-1-antitrypsin	Therapeutic protein	Agarwal et al. (2008)	
GmIFS2	Isoflavone synthase from Glycine max	Isoflavone production for health benefits	Shih et al. (2008)	
AChE	Human acetylcholinesterase	Vaccine against Alzheimer's disease	Youm et al. (2008)	
sDPT	Synthetic immunoprotective exotoxin epitopes	Vaccine against diphteria–pertussis–tetanus (DPT)	Soria-Guerra et al. (2007)	
AChE	Human acetylcholinesterase	Preventing organophosphate intoxication	Mor et al. (2001)	
IL-12	Mouse interleukin-12	Recombinant protein for mucosal administration	Gutiérrez-Ortega et al. (2005)	
TaxK	Taxadiene from Taxus baccata		Kovacs et al. (2007)	
AAT	Modified human α-1-antitrypsin	Therapeutic protein	Agarwal et al. (2008)	
GmIFS2	Isoflavone synthase from Glycine max	Isoflavone production for health benefits	Shih et al. (2008)	
AChE	Human acetylcholinesterase	Vaccine against Alzheimer's disease	Youm et al. (2008)	
sDPT	Synthetic immunoprotective exotoxin epitopes	Vaccine against diphteria–pertussis–tetanus (DPT)	Soria-Guerra et al. (2007)	
AChE	Human acetylcholinesterase	Preventing organophosphate intoxication	Mor et al. (2001)	
IL-12	Mouse interleukin-12	Recombinant protein for mucosal administration	Gutiérrez-Ortega et al. (2005)	
TaxK	Taxadiene from Taxus baccata		Kovacs et al. (2007)	
AAT	Modified human α-1-antitrypsin	Therapeutic protein	Agarwal et al. (2008)	
GmIFS2	Isoflavone synthase from Glycine max	Isoflavone production for health benefits	Shih et al. (2008)	
AChE	Human acetylcholinesterase	Vaccine against Alzheimer's disease	Youm et al. (2008)	
sDPT	Synthetic immunoprotective exotoxin epitopes	Vaccine against diphteria–pertussis–tetanus (DPT)	Soria-Guerra et al. (2007)	
AChE	Human acetylcholinesterase	Preventing organophosphate intoxication	Mor et al. (2001)	
IL-12	Mouse interleukin-12	Recombinant protein for mucosal administration	Gutiérrez-Ortega et al. (2005)	
TaxK	Taxadiene from Taxus baccata		Kovacs et al. (2007)	
AAT	Modified human α-1-antitrypsin	Therapeutic protein	Agarwal et al. (2008)	
GmIFS2	Isoflavone synthase from Glycine max	Isoflavone production for health benefits	Shih et al. (2008)	
AChE	Human acetylcholinesterase	Vaccine against Alzheimer's disease	Youm et al. (2008)	
sDPT	Synthetic immunoprotective exotoxin epitopes	Vaccine against diphteria–pertussis–tetanus (DPT)	Soria-Guerra et al. (2007)	
AChE	Human acetylcholinesterase	Preventing organophosphate intoxication	Mor et al. (2001)	
IL-12	Mouse interleukin-12	Recombinant protein for mucosal administration	Gutiérrez-Ortega et al. (2005)	

Capsicum annuum L.

Gene	Description	Antiallergenicity	Herbicide resistance	Basta resistance	Reference(s)
Lyc e1, Lyc e3	RNAi gene silencing	Low allergenic tomato fruits			Le et al. (2006a, b), Lorenz et al. (2006)
pat					Tsaftaris (1996)

(continued)
Character	Transgene	Transgene description	Aim	References
Virus resistance	CMV-CP	Cucumber mosaic virus coat protein	Resistance against cucumber mosaic virus	Zhu et al. (1996)
	CMV	cDNA of CMV satellite RNA		Kim et al. (1997)
	CMV-CP, ToMV-CP	CMV-CP gene, tomato mosaic virus CP gene		Shin et al. (2002a)
	TMV-CP, PPI1	Tobacco mosaic virus CP gene, pepper PMMV interaction 1 transcription factor gene		Lee et al. (2004)
	CMV-CP, TMV-CP	CMV-CP gene, TMV-CP gene	Field performance	Cai et al. (2003)
Fruit ripening	CaCel1	Supression of endo-1,4-β-D-glucanase from pepper	Influence on cell wall	Harpster et al. (2002a)
Flower development	OsMADS1	Rice OsMADS1 gene	Phenotypic effect	Kim et al. (2001)
Solanum melongena L.				
Insect resistance	cry	Bt genes	Resistance against *Leptinotarsa decemlineata*	Arpaia et al. (1997, 2007), Iannacone et al. (1997), Jelenkovic et al. (1998)
	cry	Bt gene	Against *Leptinotarsa decemlineata*, field test	Acciarri et al. (2000), Mennella et al. (2005)
	cry	Bt gene	Against *Leucinodes orbonalis*	Kumar et al. (1998)
	cry	Bt gene	Impact on *Tetranychus urticae* and *Phytoseiulus persimilis*, laboratory test	Rovenská et al. (2005)
	OZC	Oryzacystatin gene	Effect *Myzus persicae* and *Macrosiphum euphorbiae*	Ribeiro et al. (2006)
Fungal resistance	D-9 Desaturase	D-9 Desaturase gene from yeast	Resistance against *Verticillium dahliae*, changes in fatty acids	Xing and Chin (2000)
	Dm-AMP1	Antimicrobial defensin from *Dahlia merckii*	Against *Botrytis cinera*	Turrini et al. (2004)
Phenomenon	Gene/Protein	Function/Resistance	Source(s)	
---------------------------	---------------------	--	----------------------------------	
Nematode resistance	Mi-1.2	Mi-1.2 gene	Goggin et al. (2006)	
Abiotic stress	mtlD	Mannitol-1-phosphodehydrogenase gene	Prabhavathi et al. (2002)	
Embryo development	Atgrp-5	A. thaliana glycin-rich gene 5	Magioli et al. (2001)	
Parthenocarpy	DefH9-iaaM	Pseudomonas syringae gene + regulatory sequences of ovule-specific gene from Antirrhinum majus	Rotino et al. (1997), Donzella et al. (2000)	
Raphanus sativus L. Flower development	GI	Antisense GIGANTEA (GI) gene fragment	Curtis et al. (2002), Curtis (2003)	
Abiotic stress	LEA	Late embryogenesis abundant gene	Park et al. (2005a)	
Brassica oleracea L.	B22IV, B22VI	Capsid gene and antisense gene VI of Cauliflower mosaic virus (CaMV)	Passelegue and Kerlan (1996)	
Insect resistance	PVY-cry	Potato virus Y capsid gene	Radchuk et al. (2000)	
	cry	Insect resistance of broccoli against e.g. Pieris rapae, Plutella xylostella	Metz et al. (1995a, b), Cao et al. (2001, 2002, 2005), Chen et al. (2008b)	
		Insect resistance of broccoli against P. xylostella using chemically inducible promoter	Bates et al. (2005), Cao et al. (2006a)	
	cry	Insect resistance of cabbage against P. xylostella	Jin et al. (2000), Bhattacharya et al. (2002)	
	cry	Insect resistance of cauliflower against P. xylostella	Kuvsinov et al. (2001), Chakrabarty et al. (2002)	
Character	Transgene	Transgene description	Aim	References
-----------	-----------	-----------------------	-----	------------
Insect resistance of cabbage against *P. xylostella*, chloroplast transformation	*cry*	Bt		Liu et al. (2008)
Tests against *P. xylostella* and *Spodoptera litura*	TI	Trypsin inhibitor gene from *Ipomoea batatas*		Ding et al. (1998)
Tests against *Heliothis armigera* and *Pieris rapae*	CpTI	Cowpea trypsin inhibitor		Hao and Ao (1997), Lv et al. (2005)
Tests against *Helicoverpa armigera*	sporamin, spoaMAR	Use of promoter pPspoa/cassette with matrix-attached region (MAR)		Chen et al. (2006b)
Alternaria resistance	ThEn42	*Trichoderma harzianum* endochitinase gene (cDNA)		Mora and Earle (2001)
Xanthomonas campestris resistance	GO	Glucose oxidase gene from *Aspergillus niger*		Lee et al. (2002)
Heavy metal tolerance	CUP1	Structural gene of yeast metallothionein gene		Hasegawa et al. (1997)
Salt tolerance	betA	Bacterial gene for biosynthesis of glycinebetaine		Bhattacharya et al. (2004)
Tolerance to a prolonged submergence	vhb	*Vitreoscilla* haemoglobin overexpression		Li et al. (2005)
Ethylene biosynthesis	ACC	Tomato antisense 1-aminocyclopropane-1-carboxylic acid oxidase gene		Henzi et al. (1999, 2000)
Ethylene/cytokinin biosynthesis	ACO II/IPT	Broccoli antisense ACC oxidase II and isopentenyl transferase gene		Gapper et al. (2002, 2005)
Ethylene production, delay of chlorophyll loss	ACC	ACC oxidase (sense/antisense), ACC synthase (cDNAs)		Higgins et al. (2006)
Cytokinin biosynthesis	ipt	Retarding effect on post-harvest yellowing		Chen et al. (2001)
Ethylene biosynthesis	boers	Mutant broccoli ethylene response sensor gene		Chen et al. (2004)
Influence of post-harvest protease activity	BoCP5	Broccoli antisense gene of cystein protease		Eason et al. (2005)
Retarding effect on post-harvest yellowing	BoINV2	Antisense construct of BoINV2 (soluble acid invertase)		Eason et al. (2007)
Gene function	**Gene**	**Gene product**	**Gene function**	**Ref.**
------------------	----------	------------------	------------------	---------
BoCLH1	Antisense chlorophylase gene	Retarding effect on post-harvest yellowing and chlorophyll degradation	Chen et al. (2008a)	
Self incompatibility	SLG	S locus glycoprotein gene	Self incompatibility	Sato et al. (1991), Toriyama et al. (1991a, b)
	SLR1	Antisense SLR1 glycoprotein gene	Self incompatibility	Franklin et al. (1996)
	SRK, SLG	S locus receptor kinase gene, S locus glycoprotein gene	Self incompatibility	Conner et al. (1997)
Male sterility	DTx-A	Cytotoxic diphtheria toxin A-chain (DTx-A) gene + tapetum-specific promoter	Male sterility	Lee et al. (2003c)
Pharmaceuticals	B5/SARS-CoV	Vaccinia virus glycoprotein B5, human SARS coronavirus glycoprotein	Production of antigens	Pogrebnyak et al. (2006)
Gene function	Ac Tpase	Ds-based two-element transposon system	Transposon activity, insertional mutagenesis	Mckenzie et al. (2002), Mckenzie and Dale (2004)
Brassica rapa L.	bar/TuMV-Nla	Basta resistance, *Turnip mosaic virus* NIa protease	Method in planta	Qing et al. (2000), Xu et al. (2008)
Herbicide resistance	TMV-L	*Tobacco mosaic virus*	L coat protein gene	Jun et al. (1995)
Virus resistance	TuMV-Nlb	Antisense *Turnip mosaic virus* NIb	TuMV-resistance, method in planta	Yu et al. (2007)
Insect resistance	cry	*Bt*	Insect resistance against *Pieris rapae, Plutella xylostella, Trichoplusia ni*	Cho et al. (2001)
	Cry	*Bt*	Insect resistance, influence on nontarget insects	Kim et al. (2008)
	CpTI	Cowpea trypsin inhibitor + antibacterial peptide gene	Resistance against *P. rapae and Erwinia aroidae*	Zhao et al. (2006a, b)
Bacterial resistance	Antibacterial gene	Antibacterial peptide gene	Resistance against *E. aroidae*	Wang et al. 2002
Self incompatibility	SLG, SRK	S locus glycoprotein gene, S receptor kinase gene	Self incompatibility	Shiba et al. (1995, 2000), Takasaki et al. (1999, 2000, 2001)
	SP11	S locus protein 11	Self incompatibility	Shiba et al. (2001), Sato et al. (2003, 2004)
Character	Transgene	Transgene description	Aim	References
-------------------	-----------	--	--	----------------------------------
Male sterility	BcMF6	Antisense pollen-expressed polygalacturonase gene BcMF6	Pollen development, A9 promoter	Zhang et al. (2008)
	CYP86MF	Antisense fragment of the CYP86MF gene and the tapetum-specific A9 promoter		Yu et al. (2004), Cao et al. (2006b)
Flower development	OsMADS1	Rice floral development gene (MADS box gene)		Shin et al. (2003)
	BrFLC1, 2, 3	Floral repressor gene	Flowering time	Kim et al. (2007a)
Plant physiology	pRiA4, pRi1855	Genes in pRiA4 and pRi1855	Auxin synthesis, root and plant growth	He et al. (1994, 2000)
Abiotic stress	otsA/LEA	Trehalose-6-phosphate synthase/late embryogenesis abundant protein	Environment stress tolerance	Park et al. (2003), (2005b)
	Cu/ZnSOD, CAT, SOD, CAT	Maize superoxide dismutase and/or catalase gene	Resistance to SO2 (chloroplast transformation)	Tseng et al. (2007)
	E. coli	E. coli superoxide dismutase and/or catalase gene	Resistance to SO2	Tseng et al. (2008)
Metabolic engineering	MAM1, CYP79F, CYP83A1	Arabidopsis cDNAs	Aliphatic glucosinolate biosynthesis	Zang et al. (2008a)
	CYP79B2, CYP79B3, CYP83B1	Arabidopsis cDNAs	Indol glucosinolate metabolism, plant defence	Zang et al. (2008b)
	GLO, JMT	L-Guluno-γ-lactone oxidase (vitamin C metabolism)/jasmonic methyl transferase	Fungal resistance	Min et al. (2007)
Lactuca sativa L.	bar, glu, EPSPS	β-1,3-Glucanase from Arthrobacter spp. Decarboxylase gene from mushroom	Basta and Roundup resistance	McCabe et al. (1999), Mohapatra et al. (1999), Torres et al. (1999), Nagata et al. (2000)
Herbicide resistance	glu, oxdc	Resistance against Bremia lactucae, Sclerotinia sclerotiorum	Resistance against Bremia lactucae, Sclerotinia sclerotiorum	Dede (1998), Dias et al. (2006)
Category	Gene/Protein/Pathway	References		
-------------------------	--	---		
Virus resistance	Lettuce mosaic virus (LMV) coat protein gene	Gilbertson (1996), Dinant et al. (1997)		
	Coat protein gene of Lettuce big-vein associated virus (LBVaV)	Sense and antisense orientation		
	Nucleocapsid protein gene of Tomato spotted wilt virus (TSWV) and Lettuce infectious yellow virus (LIYV)	Falk (1996), Pang et al. (1996)		
Insect resistance	Proteinase inhibitor II (PIN2) from *Solanum americanum*	Against cabbage looper		
	A. rhizogenes rolAB genes	Response to auxin		
	Overexpression of a pumpkin gibberellin (GA) 20-oxidase gene	Controlling plant stature		
	Ethylene mutant receptor etr1-1 confers ethylene insensitivity	Effect on the regeneration properties		
	Post-transcriptional gene silencing	Nitrate content		
	Iron storage protein	High yield, high iron content and rapid growth rate		
Metabolic engineering	Single-chain monellin gene	Flavour and quality		
and functional food	Synthetic miraculin gene	Taste-modifying proteins, sweetness-inducing activity		
	Stilbene synthase gene from *Parthenocissus henryana*	Key enzyme in resveratrol biosynthesis		
	E. coli asparagine synthetase A gene	inulin content increased		
	A. thaliana cation exchanger A H+/Ca2+	Increased Ca content		
	ABF3, ABA, LEA	Tolerance to drought and cold stress		
	A. rhizogenes rolAB genes	Tolerance to salt stress and water stress		
	Response to auxin	Water stress resistance (drought, salt, cold)		
	Ethylene mutant receptor etr1-1 confers ethylene insensitivity	Effect on the regeneration properties		
	Post-transcriptional gene silencing	Nitrate content		
	Iron storage protein	High yield, high iron content and rapid growth rate		
	Single-chain monellin gene	Flavour and quality		
	Synthetic miraculin gene	Taste-modifying proteins, sweetness-inducing activity		
	Stilbene synthase gene from *Parthenocissus henryana*	Key enzyme in resveratrol biosynthesis		
	E. coli asparagine synthetase A gene	inulin content increased		
	A. thaliana cation exchanger A H+/Ca2+	Increased Ca content		

(continued)
Table 25.1 (continued)

Character	Transgene	Transgene description	Aim	References
R2R3-MYB	Flavonoid biosynthesis factor from *A. thaliana*	Anthocyanin biosynthesis	Park et al. (2008)	
TC/VTE1, γ-	Tocopherol cyclase, γ-tocopherol methyltransferase		Cho et al. (2005), Lee et al. (2007a)	
TMT				
ipt		Pathogenesis-related glucanase gene linked to a tapetum-specific promoter	Maturity regulation	McCabe et al. 2001
Male sterility	PR-Glu	Pathogenesis-related glucanase gene linked to a tapetum-specific promoter		Curtis et al. (1996b)
Pharmaceuticals	CTB-Pins, sCTB	Cholera toxin B subunit (human proinsulin)	Human therapeutic protein	Kim et al. (2006), Ruhlman et al. (2007)
	sLTB, SARS-CoV	*E. coli* heat-labile enterotoxin B subunit, severe acute respiratory syndrome coronavirus		Li et al. (2006), Kim et al. (2007b)
	MV-H	Measles virus hemagglutinin		Webster et al. (2006)
	E2-CSFV, CP	Glycoprotein of swine fever virus, cystein protease from *Fasciola hepatica*	Oral animal vaccination	Legocki et al. (2005)
	HBsAg	Antigen of hepatitis B virus		Kapusta et al. (1999, 2001), Kawashima et al. (2001)
	hITF	Human intestinal trefoil factor		Zuo et al. (2001)
	ChIFN-α	Chicken α-interferon against vesicular stomatitis virus	Preventing infectious diseases of poultry	Song et al. (2008)
	IFS	Soybean isoflavone genistein	Phytooestrogen	Liu et al. (2007b)
Carrot (*Daucus carota* L.)	pat		Glufosinate resistance, Liberty resistance	Dröge et al. (1992), Drogelaser et al. (1994), Chen and Punja (2002)
Herbicide	ALS	Mutant acetolactate synthase gene	Imazapyr resistance	Aviv et al. (2002)
resistance	Chit	Chitinase genes from tobacco, petunia, bean	Against *Rhizoctonia, Alternaria, Botrytis, Sclerotinia*	Linthorst et al. (1990), Broglie et al. (1991)
	chi-2	Chitinase genes from tobacco, bean, barley	Against *Rhizoctonia, Alternaria, Botrytis, Sclerotinia*	Gilbert et al. (1996), Punja and Raharjo (1996), Jayaraj and Punja (2007)
	CHIT36	Microbial endochitinase *Trichoderma harzianum*	Against *Alternaria, Botrytis*	Baranski et al. (2008)
MF3	Microbial factor from *Pseudomonas fluorescens*	Against *Alternaria, Botrytis*	Baranski et al. (2007)	
-----------------------------	---	--------------------------------	------------------------	
tlp	Rice thaumatin-like protein		Chen and Punja (2002), Punja (2005)	
ltp	Wheat lipid transfer-protein (PR)	Resistance against *Erysiphe heraclei*	Jayaraj and Punja (2007)	
HLP	Human lysozyme protein		Takaichi and Oeda (2000)	
AP24	Tobacco PR-5 osmotin + chitinase + glucanase	Against *Alternaria, Cercospora, Erysiphe*	Tigelaar et al. (1996), Melchers and Stuiver (2000)	
Functional food	CAX1 *A. thaliana* cation exchanger1 H+/Ca2+	Increase Ca content, functional food	Park et al. (2004b)	
	bkt β-carotene ketolase gene from alga *Haematococcus pluvialis*	Fucntional food, neutraceutical	Jayaraj et al. (2008), Jayaraj and Punja (2008)	
Pharmaceuticals	LTB E. coli heat-labile enterotoxin (LTB)	Against cholera and diarrhoea	Rosales-Mendoza et al. (2007, 2008)	
GAD65	Autoantigen in human insulin-dependent diabetes mellitus (IDDM)		Porceddu et al. (1999), Avesani et al. (2003)	
MPT64	*Mycobacterium tuberculosis* gene		Wang et al. (2001)	
HepB	Hepatitis B virus surface protein		Imani et al. (2002)	
tt830-844	Measles-unrelated T cell epitope (tt830-844)		Bouche et al. (2003, 2005)	
MV	Immunodominant antigen of the measles virus		Marquet-Blouin et al. (2003)	
Cucumis melo L. Virus resistance	CMV-WL Coat protein-mediated resistance (CP-MR)	Resistance to *Cucumber mosaic virus* (CMV)	Gonsalves et al. (1994)	
	ZYMV, WMV CP-MR	Resistance to *Watermelon virus* 2 (WMV 2) and *Zucchini yellow mosaic virus* (ZYMV)	Fang and Grumet (1993), Clough and Hamm (1995)	
	ZYMV, WMV2, CMV CP-MR	Resistance to WMV 2, ZYMV and CMV	Fuchs et al. (1998)	
Abiotic stress	HLA1 Gene from *Saccharomyces cerevisae*	Salt tolerance	Bordas et al. (1997)	
Fruit ripening	CmACO1-AS ACC oxidase antisense	Improved shelf life	Nuñez-Palenius et al. (2006)	

(continued)
Character	Transgene	Transgene description	Aim	References
	MEL1	Melon ACC oxidase antisense	Extended shelf life	Ayub et al. (1996), Guis et al. (2000)
	ACC	Apple ACC oxidase antisense	Ten days longer shelf life	Silva et al. (2004)
Cucumis pepo L.	CMV-CP	Coat protein-mediated resistance (CP-MR)	Resistance to *Cucumber mosaic virus* (CMV)	Tricoli et al. (1995), Fuchs et al. (1998)
Virus resistance	ZYMV, WMV	CP-MR	Resistance to *Watermelon virus* 2 (WMV 2) and *Zucchini yellow mosaic virus* (ZYMV)	Clough and Hamm (1995), Fuchs and Gonsalves (1995), Tricoli et al. (1995)
Cucumis sativus L.	CMV-C-CP, CMV-O-CP	CP-MR	Resistance to CMV	Gonsalves et al. (1992), Nishibayashi et al. (1996a)
Virus resistance	pCAMSV	54-kDA replicase gene of CFMMV		
Fungal resistance	RCC2	Rice chitinase cDNA	Resistance to *Botrytis cinerea*	Tabei et al. (1998), Kishimoto et al. (2002, 2003)
	CHI2	Cucumber class III chitinase gene	Resistance strategy to gray mould *Botrytis cinerea*	Kishimoto et al. (2004)
Abiotic stress	HLA1	Gene from *Saccharomyces cerevisae*	Salt tolerance under in vitro conditions	Bordas et al. (1997)
	DHN10, DHN24	Dehydrin from *Solanum sagarandium*	Temperature tolerance (increased chilling tolerance)	Yin et al. (2004), Yin et al. (2006b)
Parthenocarpy	DefH9-iaaM	Genes from *Pseudomonas syringae* pv.		
		savastanoi and *Antirrhinum majus*		
Taste	Thaumatin II	Gene from *Thaumatococcus daniellii*		
Pharmaceuticals	mSOD1	Superoxide dismutase (SOD) from cassava		
Citrus lanatus (Thunb.) MATSUM. & NAKAI	CGMMV-CP	CP-MR	*Cucumber green mottle mosaic virus* (CGMMV)	Park et al. (2005d)
Virus resistance				
Abiotic stress	HLA1	Gene from *Saccharomyces cerevisae*	Salt tolerance	Ellul et al. (2003)
Pisum sativum L.

| Herbicide resistance | bar | | Basta resistance | Schroeder et al. (1993), Shade et al. (1994) |
|----------------------|-----|--------------------------|--|

Fungal resistance	Vst1, PGIP	Stillbene synthase gene (Vst1) from grape, polygalacturonase inhibiting protein (PGIP) from raspberry

Phaseolus vulgaris (L.)

| Herbicide resistance | bar | | Glufosinate ammonium resistance | Aragão et al. (2002) |
|----------------------|-----|--------------------------|--|

Herbicide resistance	BGMV-BR, bar rep-TrAP-Ren, BC1	Coat protein from Bean golden mosaic virus and Basta resistance

Virus resistance	AMV-CP	Chimeric coat protein

Virus resistance

AMV-CP	Chimeric coat protein

Insect resistance

AI-1, Al-2	α-Amylase inhibitors 1, 2 from Phaseolus vulgaris

Phaseolus vulgaris (L.)

Insect resistance	AI-1, Al-2	α-Amylase inhibitors 1, 2 from Phaseolus vulgaris

Virus resistance	AMV-CP	Chimeric coat protein

Fungal resistance

Fungal resistance	Vst1, PGIP	Stillbene synthase gene (Vst1) from grape, polygalacturonase inhibiting protein (PGIP) from raspberry

Fungal resistance	Vst1, PGIP	Stillbene synthase gene (Vst1) from grape, polygalacturonase inhibiting protein (PGIP) from raspberry

Insect resistance

Insect resistance	AI-1, Al-2	α-Amylase inhibitors 1, 2 from Phaseolus vulgaris

Insect resistance	AI-1, Al-2	α-Amylase inhibitors 1, 2 from Phaseolus vulgaris

Cichorium intybus L. & *C. endivia* L.

Herbicide resistance	csr1-1	Mutant acetolactate synthase gene from A. thaliana

Metabolic engineering	6G-FFT	6G-Fructosyltransferase from onion

Metabolic engineering	6G-FFT	6G-Fructosyltransferase from onion

Cichorium intybus L. & *C. endivia* L.

Herbicide resistance	csr1-1	Mutant acetolactate synthase gene from A. thaliana

Metabolic engineering	6G-FFT	6G-Fructosyltransferase from onion

Metabolic engineering	6G-FFT	6G-Fructosyltransferase from onion

Cichorium intybus L. & *C. endivia* L.

Herbicide resistance	csr1-1	Mutant acetolactate synthase gene from A. thaliana

Metabolic engineering	6G-FFT	6G-Fructosyltransferase from onion

Metabolic engineering	6G-FFT	6G-Fructosyltransferase from onion

(continued)
Character	Transgene	Transgene description	Aim	References
Male sterility	6-SPT	6-Fructosyltransferase from barley	Synthesized branched fructans and	Sprenger et al. (1997)
	barnase and bar	Tapetum-specific promoter and barnase gene from *Bacillus amyloliquefaciens*	tetrasaccharide bifurcose	
Spinacea oleracea L.	pat	Pat gene from *Steptomyces hygroscopicus*	Herbicide resistance	Wells (1999), Burgos et al. (2001)
Virus resistance	CMV-CP	Coat protein genes	Herbicide resistance	Yang et al. (1997)
Asparagus officinalis L.	bar	Phosphinothricin acetyl transferase	Basta resistance	Cabrera-Ponce et al. (1997)
Onion (*Allium cepa* L.)	bar, CP4	*Bt* hybrid genes	Herbicide resistance	Eady et al. (2003a)
Insect resistance	Cry1Ab, Cry1Ca	*Bt* hybrid genes	Beet armyworm resistance	Zheng et al. (2005)
Allium tuberosum L. & A. porrum L.	ALS	Acetolactate synthase (ALS) gene from chlorsulfuron resistant *Arabidopsis mutant*	Hybrid breeding	Park et al. (2002)
Insect resistance	cry	*Bt* hybrid gene which encodes domains I and II of Cry1Ab and domain III of Cry1Ca	Herbicide and Roundup resistance	Zheng et al. (2004)
25.2 Economically Important Vegetable Families

25.2.1 Solanaceae

25.2.1.1 Solanum lycopersicon L.

In the family Solanaceae, besides tobacco, tomato has played a key role in genetic engineering techniques in the past years. Among the other vegetable crops, tomato fulfils the basic requirements for gene transfer, which includes its character as a model object for in vitro culture techniques (Bhatia et al. 2004), its moderately sized genome with 950 Mb (Shibata 2005) applicable to recent sequencing technology and its importance as vegetable crop for the fresh market and for processing. Hence, it is not surprising that the first commercialized transgenic food crop ever brought to market was Calgene’s ‘Flavr Savr’ tomato in 1994. It was followed in 1995 by DNA Plant Technology’s ‘Endless Summer’. ‘Flavr Savr’ was a success with consumers but failed economically for a variety of reasons (Martineau 2001). In 1996 Zeneca launched a transgenic processing tomato product that was the best selling tomato paste in the United Kingdom during 1999—2000. The paste reduced processing costs and resulted in a 20% lower price (Redenbaugh and McHughen 2004).

Considerable success has been achieved in introducing virus resistance (Kunik et al. 1994; Whitham et al. 1996; Gubba et al. 2002), fungi resistance (Jongedijk et al. 1995; Tabaeizadeh et al. 1999; Radhajeyalakshmi et al. 2005; Sarowar et al. 2006) and bacteria resistance based on systemic acquired resistance (SAR; Rizhsky and Mittler 2001; Lin et al. 2004; Chan et al. 2005). Insect resistance (see also Chap. 10) has been engineered by using bacterial genes derived from Bacillus thuringiensis ssp. kurstaki (Bt genes; Fischhoff et al. 1987; Delannay et al. 1989) or a proteinase inhibitor from potato (Abdeen et al. 2005) which is a part of the plant natural defence mechanism against herbivores. Furthermore Mi-1, a Lycopersicon peruvianum gene which confers resistance against the three economically important root-knot nematode species (Meloidogyne incognita, M. javanica, M. arenaria; Roberts and Thomason 1986; Goggin et al. 2004), is also active against the potato aphid, Macrosiphum euphorbiae (Vos et al. 1998).

Other limiting factors in the horticultural production are abiotic stresses (see Chap. 8), such as extreme temperature, drought and salinity. A transformation system with chloroplast-targeted codA gene of Arthrobacter globiformis (for method, see Chap. 2), which encodes choline oxidase to catalyse the conversion of choline to glycinebetaine, was successfully established with tomato cv. ‘Money-maker’ (Park et al. 2004a). The study demonstrates a better fitness of transgenic plants after chilling at 3 ºC for 7 days with regard to their survivability and the fruit set. Other efforts were made to engineer chilling tolerance by ectopic expression of Arabidopsis CBF1 (Hsieh et al. 2002a, b).

Most commercial tomato cultivars are sensitive to salinity. Considerable genetic knowledge of salt tolerance (Foolad 2004) is the basis for transgenic strategies
to overcome this problem (Gisbert et al. 2000; Rus et al. 2001; Jia et al. 2002; Muñoz-Mayor et al. 2008). Due to the complexity of the trait in many cases the increased transgenic salt tolerance was only marginal. However, advancement was the creation of transgenic tomato plants by overexpressing a vacuolar Na⁺/H⁺ antiport with the \(\text{AtNHX1} \) gene from \(\text{Arabidopsis} \) (Zhang and Blumwald 2001). Transgenic plants grown in the presence of 200 \(\mu \text{M} \) sodium chloride flowered and produced fruits.

While most of the above-mentioned traits were agronomical and benefitted primarily the grower and the producer, currently significant efforts are also being made to improve nutrients and consumer qualities. Although technically more difficult and therefore not ideal for the grower, there are many potential opportunities for enhancing nutritional value (Bird et al. 1991; Römer et al. 2000; Muir et al. 2001; Le Gall et al. 2003; Giorio et al. 2007) and organoleptic qualities such as taste (Penarrubia et al. 1992; Bartoszewski et al. 2003) and aroma in the tomato fruits. Important quality parameters of fresh fruits are volatile compounds, which often do not meet the high standards of flavour required by the consumer. For instance the \(\Delta-9 \) \(\text{desaturase} \) gene from \(\text{Saccharomyces cerevisiae} \) expressed in tomato showed changes in certain flavour compounds (Wang et al. 1996). The overexpression of a non-specific alcohol dehydrogenase gene in tomato fruits (Speirs et al. 1998) altered the levels of aroma determining aldehydes and alcohols. In a preliminary taste trial, the authors identified fruits with elevated alcohol dehydrogenase activity and higher level of alcohols as having a more intense ‘ripe fruit’ flavour.

Tomato plants have been designed to produce a range of proteins and biomolecules. The cholera toxin B protein has been expressed in tomato plants, and the feasibility to elicit an immune response in mice has been demonstrated (Jiang et al. 2007). Recently Butelli et al. (2008) expressed two transcription factors from \(\text{Antirrhinum majus} \) \(\text{L.} \) in tomato; the fruit of the plants accumulated anthocyanins at levels substantially higher than previously reported for efforts to engineer anthocyanin accumulation in tomato and at concentrations comparable to the anthocyanin levels found in blackberries and blueberries.

Tomato fruits contain proteins with high allergenic potential (Jäger and Wüthrich 2002). Genetic engineering could be an approach to remove allergens. This was demonstrated in a remarkable way by Le et al. (2006a, b), who designed tomatoes with reduced allergenicity by dsRNAi-mediated inhibition of \(\text{ns-LPT} \) (\(\text{Lyc e} 1 \) and \(\text{Lyc e} 3 \), respectively) expression (for details on gene silencing, see Chap. 5). Furthermore it was demonstrated that silencing of the \(\text{Lyc} \) genes by means of RNAi contributes to reducing skin reactivity and is passed on to the next generation of fruits (Lorenz et al. 2006).

25.2.1.2 Solanum melongena L.

Eggplant (aubergine) is native to India. Today it is an important crop in tropical and warm parts of the temperate zone. Like other plants of the family Solanaceae it
suffers from severe diseases, insect attacks and abiotic stress, leading to high crop loss every year.

In vitro culture methods were used comprehensively to improve the eggplant cultivars (for reviews, see Collonnier et al. 2001; Kashyap et al. 2003). Due to the good response in tissue culture the first attempts at genetic engineering for eggplant were accomplished soon after the first reports on plant transformation of Arabidopsis and tomato (Guri and Sink 1988; Rotino and Gleddie 1990). So far, a number of useful genes have been introduced to eggplant. General aspects of genetic modification of plants are discussed in Chap. 1.

Parthenocarpic transgenic eggplants have been successfully achieved by transferring a gene construct consisting of bacterial iaaM gene and DefH9 promoter, specifically to the placenta and ovules (Rotino et al. 1997). Donzella et al. (2000) reported on the field performance of the transgenic pathenocarpic hybrids. They concluded that the transgenic parthenocarpic hybrids allowed an increase in productivity up to 25%.

It was shown that an introduced bacterial mannitol-1-phosphodehydrogenase (mtlD) gene evokes a multifactor abiotic stress tolerance (Prabhavathi et al. 2002). Transgenic eggplants featured an improved tolerance to salt, drought and chilling stress. Recently, Prabhavathi and Rajam (2007) described that mannitol-accumulating transgenic eggplants exhibit resistance to fungal wilts. The data suggest that the mtlD gene could be useful for both plant biotic and abiotic stress tolerance.

Further efforts are being made to develop eggplant cultivars with resistance against fungal diseases. The fatty acid composition has an impact on resistance to Verticillium dahliae. Transfer of yeast Δ-9 desaturase gene in eggplant displayed the linkage between plant fatty acid content and the resistance traits (Xing and Chin 2000). After successful transformation with an antimicrobial defensin gene from Dahlia merckii, Turrini et al. (2004) found transgenic eggplants had an improved resistance against Botrytis cinera.

In tomato the Mi-1.2 gene confers resistance against nematodes, whiteflies and potato aphids (Nombela et al. 2003). Expression of the tomato Mi-1.2 gene in eggplants causes resistance against nematodes only, not aphids (Goggin et al. 2006). There is the assumption that the genetic background plays an important role for gene function.

Under the tropical climate eggplant is infested by a number of insect pests. Plant protease inhibitors have a defensive function, targeting leaf-feeding insects like aphids. Transgenic eggplants with an oryzacystatin gene coding for an inhibitor of cystein proteinases have been obtained by Agrobacterium-mediated transfer (Ribeiro et al. 2006). In feeding tests the population growth and the survival of Mycus persicae Sulzer and Macrosiphum euphorbiae Thomas were reduced.

The most destructive insects on eggplants are the Colorado potato beetle (CPB; Leptinotarsa decemlineata Say) and the eggplant shoot and fruit borer (ESFB; Leuconodes orbonalis Guen.). There are a number of reports about Bt transgenic eggplants, describing the transformation procedure. Furthermore, the impact of transgenic Bt eggplants on the target insects (CPB or EFSB) as well as on non-target arthropods has been examined thoroughly (Chen et al. 1995; Rovenská et al. 2005;
Arpaia et al. 2007). Connected with current announcements to introduce Bt eggplant in commercial use, there is a comprehensive analysis about the potential impacts of Bt eggplants on economic surplus in India (Krishna and Qaim 2007, 2008). Safety tests for the Bt eggplant have been conducted in India, starting in greenhouses and now moving on to large-scale field trials.

25.2.1.3 Capsicum annuum L.

Peppers are cultivated and used around the world as sweet peppers, such as the bell pepper, or as pungent chilli peppers. Pepper originated in the tropics. Today pepper is cultivated also in the subtropics and in temperate climates as a staple vegetable crop. Belonging to the family Solanaceae well known for plants with an excellent tissue culture and transformation capability, pepper is a recalcitrant exception. First, Liu et al. (1990) reported about Agrobacterium-mediated transformation of bell pepper. They showed the principal possibility of pepper transformation with foreign genes like nptII and gus. In 1993, US patent 5262316 (Engler et al. 1993) described the co-cultivation of explant material from the pepper plant with A. tumefaciens or A. rhizogenes carrying an exogenous DNA sequence. Therefore the invention related to a method for genetically transforming and regenerating pepper plants. Despite a detailed description of the transformation procedure, the patent gives no clearness about the regeneration efficiency. Over the past 15 years a few other groups (e.g. Zhu et al. 1996; Manoharan et al. 1998; Pozueta-Romero et al. 2001; Li et al. 2003; Lee et al. 2004) have been working on the improvement of the transformation system for pepper. In summary it should be stated that the pepper transformation is not a routine method and is highly dependent on genotype and explant source.

Due to the importance of pepper, genetic engineering is (despite the low efficiency of the transformation protocols) a promising tool to improve some cultivars. Pepper yields are endangered every year by severe virus diseases. Kim et al. (1997) induced cDNA of the satellite RNA of the Cucumber mosaic virus (CMV) into the pepper genome. The authors described an attenuation of the symptoms in T1 hot pepper plants. In spite of the positive results there are no more publications with such strategy. Some concerns about the biosafety could be the cause for that.

Another strategy, the virus coat protein mediated protection, was more widely applied (Zhu et al. 1996). Shin et al. (2002a) reported about the testing of transgenic pepper plants expressing the coat proteins of CMV and Tomato mosaic virus (ToMV). Cai et al. (2003) gave a detailed report about the development of CMV- and TMV-resistant transgenic chilli pepper, the field performance of some progenies and a biosafety assessment.

It was demonstrated that the expression of tobacco stress-induced gene 1 (Tsi 1) in pepper enhanced the resistance of the transgenic pepper plants to various pathogens, including viruses, bacteria and oomycetes (Shin et al. 2002b). Transcriptional regulatory genes may have an impact on the overall disease resistance in pepper.
The risk to overcome such broad resistance should be low, therefore it is a strategy worth further investigation.

The Chinese government approved commercialization of pimientos (Spanish pepper) in the late 1990s, although more detailed information is missing (http://www.chinadaily.com.cn/english/doc/2006-02/14/content_519769.htm).

In India the performance of transgenic bell pepper and chilli with snowdrop lectine gene has been examined in field trials in 2002 (http://www.indiaresource.org/issues/agbiotech/2003/fieldsoftrial.html). The additional lectine gene should evoke resistances against lepidopteran, coleopteran and homopteran pests. Experiments have been performed under the umbrella of Rallis India Ltd and the Bangalore Tata Group. Common knowledge about some results is strictly limited.

Due to its simplicity, herbicide resistance was often the first published genetically engineered trait. Surprisingly that is not correct for pepper. There exists a brief mention by Tsaftaris (1996). A Korean team (Lee et al. 2007b) reported on a conference about the environmental evaluation of herbicide-resistant peppers.

Korean scientists (Kim et al. 2001) introduced rice MADS box genes into pepper, studying the impact of such genes on the plant development.

Harpster et al. (2002a) investigated the function of the CaCel1 gene by silencing in transgenic pepper. The consequences for fruit ripening process in T3 plants in a greenhouse were examined. This is the only example that genes isolated from pepper are used for the investigation of their function in pepper. But there are plenty of isolated and notified pepper genes and cDNAs used for further gene expression studies in plants easily accessible for transformation, like Arabidopsis, tobacco or tomato; some of the latest of such works were published by e.g. An et al. (2008), Hong et al. (2008), Hwang et al. (2008), Oh et al. (2008).

25.2.2 Brassicaceae (Brassica oleracea L., B. rapa L., Raphanus sativus L.)

Substantial work on the elaboration and application of genetic transformation for Brassica vegetable crops is in progress throughout the world. Brassica vegetables encompass important vegetables, such as cauliflower, broccoli, cabbage and Brussels sprouts. In the Asian cuisine in countries like China, India and Korea Brassica rapa L. vegetables play an important role. The high variability of crucifers, their economic impact and their good responsiveness to biotechnological approach are considerable factors so that, from the first possibilities for genetic engineering to date, Brassica species are a promising object for such techniques. The development of plants with useful traits is relatively advanced. Despite this only a few field testings with transgenic brassicas have been performed. Commercial cultivars seem to be not in sight.

Early after the first reports of successful transformation of B. oleracea using A. tumefaciens with marker genes (David and Tempé 1988; Srivastava et al. 1988; De Block et al. 1989) this technique was applied for the investigation of
self-incompatibility (Sato et al. 1991; Thorsness et al. 1991; Toriyama et al. 1991a, b). Due to difficulties in transforming *B. rapa*, similar works for *B. rapa* were published later (Takasaki et al. 1999, 2000, 2001). A valuable trait for breeding purposes, self-incompatibility in Brassicaceae is genetically controlled by some *S* locus genes. Transformation technology has opened up new possibilities to investigate the expression and interaction of the *S* locus genes.

Male sterility is another breeding feature of great worth, enabling *F*₁ hybrid production on a large scale. In the past decade researchers reported about new approaches concerning the male sterility of *Brassica* species. It should be mentioned that this is a cutting-edge topic with regard to environmental concerns about possible transgene escape. No pollen development could be a solution for safe plant containment. Lee et al. (2003c) obtained several transgenic plants from cabbage, *B. oleracea* ssp. *capitata*, by way of *Agrobacterium*-mediated transformation to test the activity of anther-specific promoter isolated from Chinese cabbage. With that promoter, the expression of the cytotoxic diphtheria toxin A-chain (*DTx*-A) gene resulted in male-sterile cabbages. Using RNA antisense technology (see Chap. 5) and a tapetum-specific promoter (Yu et al. 2004; Zhang et al. 2008) could develop male-sterile Chinese cabbage.

Another possibility to get transgenic plants without dissemination of transgenes via pollen could be chloroplast transformation (Nugent et al. 2006; Liu et al. 2007a, 2008). Liu et al. (2008) reported the acquired insect resistance of cabbage after chloroplast genetic engineering with a *Bt* gene, demonstrating the efficiency of the genetic modification of plastids. They cited Bock (2007) that the plastid transformation is a prerequisite method to produce vaccines or therapeutic proteins in plants. So far, this general statement has not been realized for *Brassica* vegetables. Although the *Brassica* vegetable crops are important, to date only Pogrebnyak et al. (2006) has reported the *Agrobacterium*-mediated transformation of collard and cauliflower with, respectively, a smallpox vaccine candidate gene and a gene coding for SARS coronavirus spike protein.

Every year the yield losses caused by diseases and by insect attacks are high. For the whole complex of engineering disease and pest resistance, many reports are available for both *B. oleracea* and *B. rapa*. Table 25.1 gives a brief overview about the latest publications in that field. Generally, the methods of transformation are well established and a number of scientific teams are performing the transformation of *Brassica* with a high efficacy.

There is a great interest in having a controlled influence on postharvest physiological processes. To gain a deep understanding of the role of ethylene, cytokinin and other factors, broccoli was used as a model species (Henzi et al. 1999, 2000; Chen et al. 2001; Gapper et al. 2005; Higgins et al. 2006). In connection with the improved availability of isolated genes and cDNAs, new studies for postharvest yellowing show the effect of additionally introduced *Brassica* genes in broccoli (Chen et al. 2004, 2008a; Eason et al. 2007). Kim et al. (2007a) transferred floral repressor genes isolated before from *B. rapa* to Chinese cabbage. The results demonstrate that it is feasible to control the flowering time and the undesirable bolting of Chinese cabbage.
Improved access to genes originating from sequencing projects is also reflected in other current works for *Brassica* transformation. For instance, *Arabidopsis* cDNAs were used for metabolic engineering of aliphatic or indole glucosinolates of *B. rapa* (Zang et al. 2008a, b).

Since various factors of abiotic stress seriously impair the growth and development of *Brassica* crops, approaches for improved abiotic stress tolerance are an objective for a number of transformation projects. So far, the investigations have encompassed bacterial, yeast and plant genes. The genetic improvement of heavy metal tolerance in cauliflower by transfer of the yeast metallothionein gene (*CUP1*) was demonstrated by Hasegawa et al. (1997). Li et al. (2005) delivered the gene coding for *Vitreoscilla* haemoglobin (*vhb*) into cabbage. They observed that the overexpression of VHb protein affects the plant’s tolerance of submergence stress. The introduction of the bacterial *beta* gene for the synthesis of glycinebetaine causes a higher salinity tolerance in transgenic cabbage (Bhattacharya et al. 2004). For Chinese cabbage Tseng et al. (2007, 2008) explored the possibility of overcoming the phytotoxic effect of sulfur dioxide and salt stress. They transferred genes coding for superoxide dismutase and catalase from maize and *Escherichia coli*, respectively.

Belonging to the family Brassicaceae, radish (*Raphanus sativus* L.) is a further most common crucifer vegetable consumed worldwide. Radish is greatly recalcitrant in tissue culture. For that reason there are only a few reports about radish transformation. Moreover these reports describe transformation protocols trying to overcome difficulties with tissue culture and regeneration efficiency. Curtis et al. (2002) used the floral-dip method for producing transgenic radish plants with the *GIGANTEA* (*GI*) gene from *Arabidopsis*. Park et al. (2005a) elaborated a transformation protocol via sonification and vacuum infiltration of germinated seeds with *Agrobacterium*, successfully transferring a LEA gene (late embryogenesis abundant) from *B. napus*. The accumulation of the foreign protein in radish conferred an increased drought and salt tolerance.

25.2.3 Fabaceae (*Pisum sativum* L., *Phaseolus vulgaris* L.)

Whereas most crop species of the Fabaceae are used as protein or oil plants in food industry or animal nutrition, e.g. soybean, chickpea, pea, bean, lentil and others, a few species are also used as vegetables. Two examples are reviewed in this chapter: the garden pea (*Pisum sativum* L.) and the snap bean (*Phaseolus vulgaris* L.). For fresh, frozen or canning purposes, green premature seeds or juvenile pods of the garden pea are harvested and green pods in an early seed development stage of the snap bean are harvested.

After overcoming a number of difficulties during in vitro culture and regeneration, the first transgenic pea plants were reported by de Kathen and Jacobsen (1990) and Puonti-Kaerlas et al. (1990). The transfer of herbicide resistance (*bar*) as a potentially useable trait was reported but not carried through to commercial release
(Schroeder et al. 1993; Shade et al. 1994). Partial resistance to Alfalfa mosaic virus (AMV) was observed in transgenic pea engineered with a chimeric virus coat protein (Grant et al. 1998; Timmerman-Vaughan et al. 2001).

Another strategy focused on conferring resistance to pea weevil (Bruchus pisorum L.) by expression of an α-amylase inhibitor (α-AI) and the phytohemagglutinin promoter from Phaseolus vulgaris (Shade et al. 1994; Schroeder et al. 1995; Morton et al. 2000; De Sousa-Majer et al. 2004; Collins et al. 2006).

A fungal resistance approach was reported by Richter et al. (2006) who transformed via Agrobacterium tumefaciens two antifungal genes coding for a polygalacturonase-inhibiting protein (PGIP) from raspberry (Rubus idaeus L.) or the stilbene synthase (Vst1) from grape.

Analogous to pea, genetic engineering in bean was for a long time limited by the absence of efficient methodologies, from in vitro regeneration systems up to transformation systems. Now, transformation approaches via Agrobacterium, electroporation and particle-gun have been achieved (Genga et al. 1991; McClean et al. 1991; Dillen et al. 1995; Kim and Minamikawa 1997).

The first transgenic plant progeny was published by Russell et al. (1993). In a biolistic approach they transferred marker and reporter genes (pat, gus) and also a coat protein gene isolated from the Bean golden mosaic virus (BGMV).

The team of Aragão et al. (1996, 1998) obtained transgenic plants using different genes of BGMV in antisense orientation and showed resistance. Faria et al. (2006) achieved transgenic beans with a vector that contained a mutated virus replication gene (rep). Stability of the transgene loci and BGMV resistance were observed in some plant progenies. Bonfim et al. (2007) explored the concept of using an RNA interference construct to silence the ACI viral gene region of BGMV.

The methionine content was significantly increased in transgenic lines engineered via biolistic methods with a gene coding for the methionine-rich storage albumin from the Brazil nut (Aragão et al. 1996, 1999). The same group (Aragão et al. 2002) reported the transfer of herbicide resistance mediated by the bar gene to bean.

Transgenic kidney bean with the late embryogenesis abundant (LEA) protein gene from Brassica napus was produced by using a sonication and vacuum infiltration Agrobacterium-mediated transformation approach. Plants expressed a high level of the LEA gene showed a high tolerance to salt and water deficit stress (Liu et al. 2005). Whereas a commercial exploitation of GM peas in the medium term is expected especially for dry (seed) pea production (herbicide tolerance, resistance to insects, fungi and virus diseases), a commercial usage of the GM beans is in the long term not expected.

Meanwhile, genetic transformation has been reported in all the major legume crops, like Cicer arietinum L., Cajanus cajan L., Vigna, Phaseolus, Lupinus, Vicia and Lens species, but with the exception of soybean, transgenic plants have not yet been commercially released. A translation of knowledge of genomics or functional genomics in the model legumes Medicago truncatula and Lotus japonicus will open new transgenic approaches in future.
25.2.4 Cucurbitaceae [Cucumis sativus L., C. melo L., Cucurbita pepo L., Citrullus lanatus (THUNB.) Matsun. & Nakai., and other cucurbit species]

The cucurbit family (Cucurbitaceae) includes three genera of valuable crop species: Cucumis, Cucurbita and Citrullus. In the genus Cucumis, cucumber (C. sativus) and melon (C. melo) are the two main crops. Squash, pumpkin and zucchini belong to the genus Cucurbita, which includes the cultivated species C. pepo, C. moschata, C. maxima, C. argyrosperma and C. ficifolia. In the genus Citrullus, watermelon is the only species of economic importance (Bates et al. 1990).

Since the first report about successful transformation of cucumber using A. rhizogenes (Trulson et al. 1986), a lot of work has been done to establish and improve transformation efficiency not only in C. sativus (Schulze et al. 1995; Nishibayashi et al. 1996b; He et al. 2008), but also in Cucumis melo (Fang and Gurmet 1990; Valles and Lasa 1994; Galperin et al. 2003; Cürük et al. 2005; Rhimi et al. 2007; Nuñez-Palenius et al. 2007), Cucurbita pepo (Katavic et al. 1991; di Toppi et al. 1997), Citrullus lanatus (Choi et al. 1994; Cho et al. 2008) and C. colocynthis (Dabauza et al. 1997).

The progress made with the application of this technique is reviewed by Yin et al. (2005). The use of viral coat protein genes to confer resistance has been approved for several virus diseases (Gaba et al. 2004). The commercially most successful has been zucchini engineered for resistance to the Zucchini yellow mosaic virus and Watermelon mosaic virus 2 with coat protein genes. The transgenic zucchini traded firstly by Seminis is a cross with Asgrow’s transgenic crookneck squash. The Asgrow Company received permission for commercial use in the United States in 1995.

During the past several years, genetic engineering approaches have been employed to develop transgenic cucurbit plants with enhanced tolerance to abiotic stress. In order to induce chilling tolerance in cucumber, the expression pattern of a Solanum sogarandinum pGt::Dhn10 gene encoding a dehydrin DHN10 protein was analysed (Yin et al. 2004). The transgenic lines exhibited a slight enhanced chilling and a freezing tolerance either comparable to or less than the non-transgenic control. Another significant advancement was the transformation of different watermelon [Citrullus lanatus (THUNB.)] cultivars expressing the Saccharomyces cerevisiae HAL1 gene related to salt tolerance (Ellul et al. 2003). The halotolerance observed in T3 lines confirmed the inheritance of the trait and supports the potential usefulness as a tool for genetic engineering of salt-stress protection.

From a commercial aspect, parthenocarpy is a cost-effective solution to improve fruit set. Moreover, the seedlessness of fruits can increase consumer acceptance. In cucumber the pDefH9::iaaM construct was successfully introduced into the genome and 70—90% of the fruits produced by the transgenic lines were parthenocarpic (Yin et al. 2006a).
25.2.5 Asteraceae

25.2.5.1 Lactuca sativa L.

Lettuce (Lactuca sativa L.) is a major fresh vegetable and is becoming increasingly more important in Europe in the convenience area, e.g. salad mixtures. In Egypt and Asian countries lettuce stems and leaves are consumed in dishes of various kinds, in cooked, raw, pickled or dried form (Ryder 1986). Lettuce belongs to the family Asteraceae, with approximately 100 species of Lactuca. Only the four species L. sativa L., L. serriola L., L. saligna L. and L. virosa represent the important breeding pool. They are self-fertilized diploids and can be crossed with each other. Modern lettuce breeding is geared towards the areas of disease/insect resistance, improved quality and increased yield.

First, Michelmore et al. (1987) transferred a nptII gene for kanamycin resistance using A. tumefaciens. Chupeau et al. (1989) transformed lettuce protoplasts with the nptII gene using electroporation. Later an iceberg lettuce was successfully transformed with the reporter gene gus (Torres et al. 1993). Today transformation using A. tumefaciens has become routine in lettuce.

Herbicide-resistant transgenic lettuce was reported by several authors using the bar gene (McCabe et al. 1999; Mohapatra et al. 1999) and a glyphosate oxidase gene (GOX; Torres et al. 1999; Nagata et al. 2000).

Plants transformed with genes encoding enzymes that hydrolyse fungal cell walls, such as the β-1,3-glucanase from Arthrobacter spp. (Dede 1998) or an oxalate decarboxylase gene from edible mushroom (Dias et al. 2006), showed increased resistance against downy mildew (Dede 1998) and Sclerotinia sclerotiorum (Dias et al. 2006).

The virus coat protein strategy was successfully applied to enhance resistance to the Lettuce mosaic virus (LMV; Dinant et al. 1993, 1997, 1998; Gilbertson 1996) and the Lettuce big vein associated virus (LBVaV) and the Mirafiori lettuce virus (MLV; Kawazu et al. 2006). A transferred nucleocapsid protein gene of the lettuce isolate of Tomato spotted wilt virus (TSWV) increased the resistance to TSWV (Pang et al. 1996) and Lettuce infectious yellow virus (LIYV; Falk 1996).

A proteinase inhibitor (PIN2) gene from Solanum americanum Mill. was used to generate resistance to cabbage looper caterpillars (Trichoplusia ni Hübner; Xu et al. 2004; Chye et al. 2006; Xie et al. 2007).

Male sterility (see also Chap. 14) as prerequisite of hybrid breeding could be induced by expressing a β-1,3-glucanase gene linked with a tapetum-specific promoter, resulting in the dissolution of the callose wall during the microsporogenesis (Curtis et al. 1996b).

Another research area is designed to influence plant physiology and tolerances to environmental stress. Lettuce engineered with genes coding enzymes of the proline biosynthesis resulted in salt- and temperature-tolerant plants (Curtis et al. 1996a; Pileggi et al. 2001). Overexpression of an Arabidopsis ABF3 gene (Vanjildorj et al. 2005),
or the late embryogenesis abundant protein (LEA) gene from *Brassica napus* (Park et al. 2005c) enhanced cold, salt and drought tolerance, too.

A number of examples for the transgenic improvement of horticultural and nutritional quality were reported, especially in the past decade, such as monellin or miraculin synthesis for changes in flavour components (Penarrubia et al. 1992; Sun et al. 2006), increased tocopherol (Cho et al. 2005; Lee et al. 2007a), iron and Ca content (Goto et al. 2000; Park et al. 2009), or the anthocyanin biosynthesis (Park et al. 2008).

Analogous to other crops, pharmaceuticals could be an interesting area for application of genetic engineering in lettuce. Reports so far include the transfer of genes coding the cholera toxin B protein (Kim et al. 2006; Ruhlman et al. 2007), a measles virus haemagglutinin (Webster et al. 2006), an antigen of the hepatitis B virus (Kapusta et al. 1999, 2001; Kawashima et al. 2001) or a human intestinal trefoil factor (Zuo et al. 2001). Further potential applications for oral animal vaccinations were tested, such as against the *Swine fever virus* (Legocki et al. 2005) or the *Vesicular stomatitis virus* of poultry (Song et al. 2008).

Contrary to the high input in transgenic research, transgenic lettuce has not been commercialized so far.

25.2.5.2 *Cichorium intybus* L., *C. spinosum* L., *C. endivia* L.

Cichorium intybus L. (chicory, radicchio) is cultivated as biennial crop widespread in Europe and the world, whereas *C. endivia* L. and *C. spinosum* L. are annuals predominately grown in Europe and North Africa.

First, Sun et al. (1991) reported *A. rhizogenes*-mediated transgenic *C. intybus* which was converted from biennial to annual flowering. Later Genga et al. (1994) and Abid et al. (1995) described the transfer of *gus* gene to radicchio, using *A. tumefaciens*. Herbicide resistance was engineered by an acetolactate synthase gene from *A. thaliana* (Vermeulen et al. 1992; Lavigne et al. 1995). Herbicide resistance is of economic interest because the growth rate of the chicory seedlings in the field is low and fast-developing weeds can suppress them.

A transgenic approach to engineer male sterility as a prerequisite for hybrid breeding was developed and first demonstrated by Mariani et al. (1990, 1992). Next, Bejo Zaden B.V. (The Netherlands) engineered male sterile chicory and radicchio, using a chimeric gene construct of *barnase* gene from *Bacillus amyloliquefaciens*, a tapetum-specific promoter and the selective marker gene *bar*. Bejo received the license to produce F1 hybrids of chicory and radicchio in 1995; however the licence is not longer valid. Another request for the authorization of salad and GM chicory or radicchio was withdrawn. Today the marketing of these GM vegetables is not allowed in the European Union (EU).

Other approaches focused on metabolic engineering. Transgenic chicory with a 6G-fructosyltransferase from onion (Vijn et al. 1997) or barley (Sprenger et al. 1997) synthesized fructan of the inulin neoseries or branched fructans of the graminan type, respectively. Both may be interesting as potential functional food for diet or in diabetic therapy.
25.2.6 Apiaceae (*Daucus carota* L.)

The family Apiaceae contains approximately 113 cultivated species distributed worldwide. About 21% are used as vegetables, but only carrot, celery and fennel with greater commercial importance (Rubatzky et al. 1999; Pistrick 2002).

Carrot has been extensively studied as a model species for tissue culture, plant somatic embryogenesis and protoplast fusion (Ammirato 1986) and was therefore predestined for transformation approaches. The first transgenic carrots were reported after *A. rhizogenes* infection by Tepfer (1984). Shortly after, Langride et al. (1985) obtained transgenic plants by electroporation of suspension protoplasts with naked DNA. Later, transgenic plants were obtained by *A. tumefaciens* infection of various carrot plant explants and cells (Scott and Draper 1987; Thomas et al. 1989; Wurtele and Bulka 1989).

Herbicide resistance was first introduced into carrot via direct gene transfer of the *pat* gene (Dröge et al. 1992; Drogelaser et al. 1994). Chen and Punja (2002) introduced the *bar* gene and Aviv et al. (2002) a mutant acetolactate gene (ALS) from *Arabidopsis thaliana* causing resistance to herbicide Imazapyr.

A number of genes have been introduced to enhance resistance to fungal pathogens, such as chitinases, glucanases, thaumatin-like protein, osmotin and lysozyme. Resistance has been engineered by using chitinases cloned from petunia and tobacco (Linthorst et al. 1990), from beans (Broglie et al. 1991) or from *Trichoderma harzianum* (Baranski et al. 2008). A thaumatin-like protein from rice was expressed in carrot and showed enhanced tolerance to six fungal pathogens (Chen and Punja 2002; Punja 2005). Transgenic carrots with the tobacco osmotin (AP24) in combination with a chitinase and a glucanase gene also expressed broad-spectrum tolerance (Tigelaar et al. 1996; Melchers and Stuiver 2000). Carrot lines which constitutively expressed a human lysozyme showed enhanced resistance to *E. heraclei* and *A. dauci* (Takaichi and Oeda 2000). The microbial factor (MF3) from *Pseudomonas fluorescens* enhanced the resistance to *Alternaria* sp. and *Botrytis cinerea* (Baranski et al. 2007).

An interesting field is the production of biopharmaceuticals. A number of transgenic carrots have been engineered to produce proteins or potential human vaccines, such as enterotoxin (LTB) against cholera and diarrhea (Rosales-Mendoza et al. 2008), the *MPT64* gene of *Mycobacterium tuberculosis* (Wang et al. 2001), the major hepatitis B virus surface protein (Imani et al. 2002), an immunodominant antigen of the measles virus (Bouche et al. 2003, 2005; Marquet-Blouin et al. 2003) and glutamic acid decarboxylase (GAD65) as an autoantigen in autoimmune type 1 diabetes mellitus (Porceddu et al. 1999; Avesani et al. 2003).

Currently two approaches focus on functional foods or nutraceuticals. It was demonstrated that transgenic carrots expressing the *Arabidopsis* H*/Ca*2+ transporter CAX1 increase their calcium content up to 50% compared with the control. Enhancing the concentration of bioavailable calcium in vegetables could prevent calcium malnutrition and reduce the incidence of osteoporosis (Park et al. 2004b). Furthermore, carrots have been engineered into the ketocarotenoid biosynthetic
pathway by introducing a β-carotene ketolase gene from the alga *Haematococcus pluvialis*. Transgenic carrots converted up to 70% of total carotenoids to novel ketocarotenoids, showing that carrots are suitable for applications to the functional food, nutraceutical and aquaculture industries (Jayaraj et al. 2008; Jayaraj and Punja 2008).

Transgenic plants have also been obtained in celery (*Apium graveolens* L.; Catlin et al. 1988) and caraway (*Carum carvi* L.; Krens et al. 1997). Both papers describe the establishment of an *Agrobacterium*-mediated transformation protocol, at the moment only of academic value.

At the present time, there are no transgenic carrot cultivars or other Apiaceae commercially available on the market.

25.2.7 Chenopodiaceae (*Spinacia oleracea* L.)

Spinach (*Spinacia oleracea* L.) is one of the most nutritious vegetables, due to a high content of β-carotene and folate; furthermore it is a rich source of vitamin C, calcium, iron, phosphorous sodium and potassium. Current breeding is mainly focused on a number of pests, bacterial and fungal diseases and viruses, as well as on improved nutrition. To increase the resistance level, particular emphasis is given to biotechnological approaches.

The first transformed spinach was reported by Al-Khayri (1995) after introduction of the *gus* gene. Other researchers used these protocols to engineer spinach that carried the coat protein gene for the *Cucumber mosaic virus* (Yang et al. 1997), the *nptII* and *gfp* gene (Zhang and Zeevaart 1999), or the gene for glyphosate tolerance (Wells 1999; Bevitori 2000; Burgos et al. 2001).

No transgenic plants have been commercialized so far.

25.2.8 Liliaceae

25.2.8.1 *Allium cepa* L., *A. porrum* L., *A. sativum* L.

The onion (*Allium cepa*) and its close relatives leek (*A. porrum*) and garlic (*A. sativum*) are very important vegetable crops on a worldwide scale. As monocotyledons, *Allium* species have proven to be recalcitrant to in vitro regeneration and genetic engineering (Eady 1995; Eady et al. 1996; Barandiaran et al. 1998). So it took until 2000, when Eady et al. (2000) published the first repeatable protocol for the production of transgenic *A. cepa* plants, followed by a successful garlic transformation (Kondo et al. 2000). The latter is of particular interest, because garlic breeding has been limited to the clonal selection of wild varieties or mutants, due to the loss of fertile flowers.

Transgenic onion plants tolerant to herbicides (see Chap. 9) containing glyphosate or poshinothricin were recovered by Eady et al. (2003a). The same group
(Eady et al. 2003b) demonstrated that the integration and expression of foreign genes are essentially not different to the Mendelian fashion. The results suggest that the herbicide resistance transformed in elite onion germplasm is expressed and inherited in such a way that it will have a normal agronomic function.

With respect to the beet armyworm (*Spodoptera exigua* Hübner), the most important pest in *Allium* cultivation for (sub)tropical zones, a transgenic pest management strategy seems to be the only way to overcome this problem. Garlic and shallot plants (Zheng et al. 2004, 2005) have been engineered with synthetic *Bt* gene. The produced transgenic *A. cepa* plants grew well in the greenhouse, had a normal phenotype, produced bulbs and were completely resistant to the beet armyworm (Zheng et al. 2005).

25.2.8.2 *Asparagus officinalis* L.

Transgenic asparagus (*Asparagus officinalis* L.) was successfully achieved by *A. tumefaciens*-mediated transformation (Delbreil et al. 1993; Limanton-Grevet and Jullien 2001), microprojectile bombardment (Cabrera-Ponce et al. 1997; Li and Wolyn 1997) and electroporation of protoplasts (Mukhopadhyay and Desjardins 1994). In most experiments the *nptII* marker gene and the *gus* reporter gene were transformed and expressed. Additionally, transgenic asparagus with the *bar* gene was reported by Cabrera-Ponce et al. (1997). A commercial application is not known.

25.3 Conclusions

The commercial applications of genetic engineering technology to vegetables lag far behind those of agricultural crops. As the global acreage of transgenic agricultural crops has expanded dramatically since their introduction in 1996, it is paradoxical that the trend in vegetables is the opposite.

Within the past 15 years alone in the United States and the EU, over 1240 transgenic field trials for vegetables have been documented (Fig. 25.1). Although the number of trials is indicative of who is working on what vegetable, it does not accurately reflect the absolute activity. On the trial number basis, tomato accounts for over half. Transformation technology is potentially an effective tool for vegetable breeding in fields that are not easily accessible by conventional breeding techniques. Nevertheless no more commercial utilization is expected in the near future in Europe or the United States. Only a few GM cultivars are licensed for different countries, such as tomato, zucchini, chicory and eggplant. Despite the transgenic zucchini cultivation in the United States on probably 10 000 ha, no market launch is expected in the EU. In China, GM peppers are supposed to be cultivated. However, reliable information is not yet available, because a lot of the research is being done in the private sector. Commercial utilization of *Bt*-eggplants...
in India and the Philippines will start in 2009; and the use of GM garden peas is expected in the medium term.

For the whole complex of engineering disease and pest resistance, as well as abiotic stress tolerance, a lot of reports are available. It could be assumed that in the future transgenic methods will be increasingly used for that purpose, due of the growing awareness of the problems connected with the global climate changes.

While the first transgenic vegetables were strongly tailored to the needs of the producers, incentives are needed to share the benefits. Vegetables with clear benefits for the consumers are needed to develop demand. Although technically more difficult, there are many potential opportunities for enhancing the nutritional value or consumer appeal of vegetables through genetic engineering. In addition to modification of flavour, research projects to increase the content of vitamins, minerals or nutraceuticals in vegetables are in progress. Despite the fact that transformation is a powerful approach to plant improvement, the major impediment to genetically engineered vegetables is the reluctance of the consumer and subsequently the market.

References

Abdeen A, Virgos A, Olivella E, Villanueva J, Aviles X, Gabarra R, Prat S (2005) Multiple insect resistance in transgenic tomato plants over-expressing two families of plant proteinase inhibitors. Plant Mol Biol 57:189–202

Abid M, Palms B, Derycke R, Tissier JP, Rambour S (1995) Transformation of chicory and expression of the bacterial uidA and nptII genes in the transgenic regenerants. J Exp Bot 46:337–346
Acciarri N, Vitelli G, Arpaia S, Mennella G, Sunseri F, Rotino GL (2000) Transgenic resistance to the Colorado potato beetle in Bt-expressing eggplant fields. Hortscience 35:722–725

Agarwal S, Singh R, Sanjay I, Amla DV (2008) Expression of modified gene encoding functional human α-1-antitrypsin protein in transgenic tomato plants. Transgenic Res 17:881–896

Al-Khayri JM (1995) Genetic transformation in Spinacia oleracea L. (Spinach). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 34. Springer, Heidelberg, pp 229–238

Ammirato PV (1986) Carrot. In: Evans DA, Sharp WR, Ammirato PV (eds) Handbook of plant cell culture, vol 4. Macmillan, New York, pp 457–499

An SH, Sohn KH, Choi HW, Hwang IS, Lee SC, Hwang BK (2008) Pepper pectin methylesterase inhibitor protein CaPMEI1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance. Planta 228:61–78

Antignus Y, Vunsh R, Lachman O, Pearsisman M, Maslenin L, Hananya U, Rosner A (2004) Truncated Rep gene originated from Tomato yellow leaf curl virus-Israel [Mild] confers strain-specific resistance in transgenic tomato. Ann Appl Biol 144:39–44

Aragão FJL, Barros LGM, Brasileiro ACM, Ribeiro SG, Smith FD, Sanford JC, Faria JC, Rech EL (1996) Inheritance of foreign genes in transgenic bean (Phaseolus vulgaris L.) co-transformed via particle bombardment. Theor Appl Genet 93:142–150

Aragão FJL, Ribeiro SG, Barros LGM, Brasileiro ACM, Maxwell DP, Rech EL, Faria JC (1998) Transgenic beans (Phaseolus vulgaris L.) engineered to express viral antisense RNAs show delayed and attenuated symptoms to bean golden mosaic geminivirus. Mol Breed 4:491–499

Aragão FJL, Barros LGM, de Sousa MV, Grossi de Sá MF, Almeida ERP, Gander ES, Rech EL (1999) Expression of a methionine-rich storage albumin from the Brazil nut (Bertholletia excelsa HBK, Lecythidaceae) in transgenic bean plants (Phaseolus vulgaris L., Fabaceae). Genet Mol Biol 22:445–449

Aragão FJL, Vianna GR, Albino MMC, Rech EL (2002) Transgenic dry bean tolerant to the herbicide glufosinate ammonium. Crop Sci 42:1298–1302

Arpaia S, Mennella G, Onofaro V, Perri E, Sunseri F, Rotino GL (1997) Production of transgenic eggplant (Solanum melongena L.) resistant to Colorado potato beetle (Leptinotarsa decemlineata Say). Theor Appl Genet 95:329–334

Arpaia S, Di Leo GM, Fiore MC, Schmidt JEU, Scardi M (2007) Composition of arthropod species assemblages in Bt-expressing and near isogenic eggplants in experimental fields. Environ Entomol 36:213–227

Avesani L, Falorni A, Tornielli GB, Marusic C, Porceddu A, Polverari A, Faleri C, Calcinaro F, Pezzotti M (2003) Improved in planta expression of the human islet autoantigen glutamic acid decarboxylase (GAD65). Transgenic Res 12:203–212

Aviv D, Amsellem Z, Gressel J (2002) Transformation of carrots with mutant acetolactate synthase for Orobanche (broomrape) control. Pest Manage Sci 58:1187–1193

Ayub R, Guis M, Amor MB, Gillot L, Roustan JP, Latché A, Bouzayen M, Pech JC (1996) Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nat Biotechnol 14:862–866

Barandiaran X, Di Pietro A, Martín J (1998) Biolistic transfer and expression of a uidA reporter gene in different tissues of Allium sativum L. Plant Cell Rep 17:737–741

Baranski R, Klocke E, Nothnagel T (2007) Enhancing resistance of transgenic carrot to fungal pathogens by the expression of Pseudomonas fluorescence microbial factor (MF3) gene. Physiol Mol Plant Pathol 71:88–95

Baranski R, Klocke E, Nothnagel T (2008) Chitinase CHIT36 from Trichoderma harzianum enhances resistance of transgenic carrot to fungal pathogens. J Phytopathol 156:513–521

Bartoszewski G, Niedziela A, Szwacka M, Niemirowicz-Szczytt K (2003) Modification of tomato taste in transgenic plants carrying a thaumatin gene from Thaumatococcus daniellii Benth. Plant Breed 122:347–351

Bates DM, Robinson RW, Jeffrey C (1990) Biology and utilization of the Cucurbitaceae. Cornell University, Ithaca
Bates SL, Cao J, Zhao JZ, Earle ED, Roush RT, Shelton AM (2005) Evaluation of a chemically inducible promoter for developing a within-plant refuge for resistance management. J Econ Entomol 98:2188–2194

Bean SJ, Gooding PS, Mullineaux PM, Davies DR (1997) A simple system for pea transformation. Plant Cell Rep 16:513–519

Bevitori RA (2000) Partial cDNA sequences coding for ACCASE in diclofop-resistant and susceptible ryegrass and glyphosate-tolerant spinach development. Dissertation, University of Arkansas, Fayetteville

Bhatia P, Ashwath N, Senaratna T, Midmore D (2004) Tissue culture studies of tomato (Lycopersicon esculentum). Plant Cell Tiss Org 78:1–21

Bhattacharya RC, Viswakarma N, Bhat SR, Kirti PB, Chopra VL (2002) Development of insect-resistant transgenic cabbage plants expressing a synthetic cryIA(b) gene from Bacillus thuringiensis. Curr Sci India 83:146–150

Bhattacharya RC, Maheswari M, Dineshkumar V, Kirti PB, Bhat SR, Chopra VL (2004) Transformation of Brassica oleracea var. capitata with bacterial betaA gene enhances tolerance to salt stress. Sci Hort 100:215–227

Bird CR, Ray JA, Fletcher JD, Boniwell JM, Bird AS, Teulieres C, Blain I, Bramley PM, Schuch W (1991) Using antisense RNA to study gene function inhibition of carotenoid biosynthesis in transgenic tomatoes. Nat Biotechnol 9:635–639

Bock R (2007) Plasmid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opin Biotechnol 18:100–106

Bonfim K, Faria JC, Mendes EA, Aragão FJL (2007) RNAi-mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol Plant Microbe Interact 20:717–726

Bordas M, Dabauza M, Salvador A, Roig LA, Serrano R, Moreno V (1997) Transfer of the yeast salt tolerance gene HAL1 to Cucumis melo L. cultivars and in vitro evaluation of salt tolerance. Transgenic Res 6:41–50

Bouche FB, Marquet-Blouin E, Yanagi Y, Steinmetz A, Muller CP (2003) Neutralising immunogenicity of a polyepitope antigen expressed in a transgenic food plant: a novel antigen to protect against measles. Vaccine 21:2065–2072

Bouche FB, Steinmetz A, Yanagi Y, Muller CP (2005) Induction of broadly neutralizing antibodies against measles virus mutants using a polyepitope vaccine strategy. Vaccine 23:2074–2077

Broglie K, Chet I, Holliday M (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254:1194–1197

Brunetti A, TavaZZa M, Noris E, TavaZZa R, Caciagli P, Ancora G, Crespi S, Accotto GP (1997) High expression of truncated viral rep protein confers resistance to tomato yellow leaf curl virus in transgenic tomato plants. Mol Plant Microbe Interact 10:571–579

Burgos NR, Bevitori RA, Candole B, Rajguru S, Talbert RE, Morelock TE (2001) Roundup Ready spinach (Spinacia oleracea L.) update. In: University of Arkansas and Texas (ed) National spinach conference. University of Arkansas and Texas, Fayetteville, p. 14

Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, Schijlen EGWM, Hall RD, Bovy AG, Luio J, Martin C (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26:1301–1308

Cabrera-Ponce JL, Lopez L, Assad-Garcia N, Medina-Arevalo C, Bailey AM, Herrera-Estrella L (1997) An efficient particle bombardment system for the genetic transformation of asparagus (Asparagus officinalis L.). Plant Cell Rep 16:255–260

Cai WQ, Fang RX, Shang HS, Wang X, Zhang FL, Li YR, Zhang JC, Cheng XY, Wang GL, Mang KQ (2003) Development of CMV- and TMV-resistant chili pepper: field performance and biosafety assessment. Mol Breed 11:25–35

Cao J, Shelton AM, Earle ED (2001) Gene expression and insect resistance in transgenic broccoli containing a Bacillus thuringiensis cry1Ab gene with the chemically inducible PR-1a promoter. Mol Breed 8:207–216
Cao J, Zhao JZ, Tang JD, Shelton AM, Earle ED (2002) Broccoli plants with pyramided cry1Ac and cry1C Bt genes control diamondback moths resistant to Cry1A and Cry1C proteins. Theor Appl Genet 105:258–264

Cao J, Shelton AM, Earle ED (2005) Development of transgenic collards (Brassica oleracea L. var. acephala) expressing a cry1Ac or cry1C Bt gene for control of the diamondback moth. Crop Prot 24:804–813

Cao J, Bates SL, Zhao JZ, Shelton AM, Earle ED (2006a) Bacillus thuringiensis protein production, signal transduction, and insect control in chemically inducible PR-1a/cry1Ab broccoli plants. Plant Cell Rep 25:554–560

Cao JS, Yu XL, Ye WZ, Lu G, Xiang X (2006b) Functional analysis of a novel male fertility CYP86MF gene in Chinese cabbage (Brassica campestris L. ssp. chinensis makino). Plant Cell Rep 24:715–723

Carmi N, Salts Y, Dedicaova B, Shabtai S, Barg R (2003) Induction of parthenocarpy in tomato via specific expression of the rolB gene in the ovary. Planta 217:726–735

Catlin D, Ochoa O, McCormick S, Quiros CF (1988) Celery transformation by Agrobacterium tumefaciens: cytological and genetical analysis of transgenic plants. Plant Cell Rep 7:100–103

Chakrabarty R, Viswakarma N, Bhat SR, Kirti PB, Singh BD, Chopra VL (2002) Agrobacterium-mediated transformation of cauliflower: optimization of protocol and development of Bt-transgenic cauliflower. J Biosci 27:495–502

Chan YL, Prasad V, Chen SKH, Liu PC, Chan MT, Cheng CP (2005) Transgenic tomato plants expressing an Arabidopsis thionin (Thi2.1) driven by fruit-inactive promoter battle against phytopathogenic attack. Planta 221:386–393

Chen HF, Chang MH, Chiang BL, Jeng ST (2006a) Oral immunization of mice using transgenic tomato fruit expressing VP1 protein from enterovirus 71. Vaccine 24:2944–2951

Chen HJ, Wang SJ, Chen CC, Yeh KW (2006b) New gene construction strategy in T-DNA vector to enhance expression level of sweet potato sporamin and insect resistance in transgenic Brassica oleracea. Plant Sci 171:367–374

Chen LFO, Hwang JY, Chang YS, Sun CW, Yang SF (2001) Transformation of broccoli (Brassica oleracea var. italica) with isopentenyltransferase gene via Agrobacterium tumefaciens for post-harvest yellowing retardation. Mol Breed 7:243–257

Chen LFO, Huang JY, Wang YH, Chen YT, Shaw JF (2004) Ethylene insensitive and post-harvest yellowing retardation in mutant ethylene response sensor (boers) gene transformed broccoli (Brassica oleracea var. italica). Mol Breed 14:199–213

Chen LFO, Lin CH, Kelkar SM, Chang YM, Shaw JF (2008a) Transgenic broccoli (Brassica oleracea var. italica) with antisense chlorophyllase (BoCLH1) delays postharvest yellowing. Plant Sci 174:25–31

Chen M, Zhao JZ, Shelton AM, Cao J, Earle ED (2008b) Impact of single-gene and dual-gene Bt broccoli on the herbivore Pieris rapae (Lepidoptera: Pieridae) and its pupal endoparasitoid Pteromalus puparum (Hymenoptera: Pteromalidae). Transgenic Res 17:545–555

Chen Q, Jelenkovic G, Chin CK, Billings S, Eberhardt J, Goffreda JC, Day P (1995) Transfer and transcriptional expression of coleopteran cryIIIB endotoxin gene of Bacillus thuringiensis in eggplant. J Am Soc Hort Sci 120:921–927

China Daily (2006) http://www.chinadaily.com.cn/english/doc/2006-02/14/content_519769.htm. Accessed 27 Feb 2009

Cho HS, Cao J, Ren JP, Earle ED (2001) Control of lepidopteran insect pests in transgenic Chinese cabbage (Brassica rapa ssp pekinensis) transformed with a synthetic Bacillus thuringiensis cry1C gene. Plant Cell Rep 20:1–7

Cho EA, Lee CA, Kim YS, Baek SH, de los Reyes BG, Yun SJ (2005) Expression of gammatocopherol methyltransferase transgene improves tocopherol composition in lettuce (Lactuca sativa L.). Mol Cell 19:16–22
Cho MA, Moon CY, Liu JR, Choi PS (2008) *Agrobacterium*-mediated transformation in *Citrullus lanatus*. Biol Plant 52:365–369

Choi PS, Soh WY, Kim YS, Yoo OJ, Liu JR (1994) Genetic transformation and plant regeneration of watermelon using *Agrobacterium tumefaciens*. Plant Cell Rep 13:344–348

Chung E, Seong E, Kim YC, Chung EJ, Oh SK, Lee S, Park JM, Joung YH, Choi D (2004) A method of high frequency virus-induced gene silencing in chili pepper (*Capsicum annuum* L. cv. Bukang). Mol Cell 17:377–380

Chupeau MC, Bellini C, Guerche P, Maisonneuve B, Vastra G, Chupeau Y (1989) Transgenic plants of lettuce (*Lactuca sativa*) obtained through electroporation of protoplasts. Bio/Technology 7:503–508

Chye ML, Sin SF, Xu ZF, Yeung EC (2006) Serine proteinase inhibitor proteins: Exogenous and endogenous functions. In Vitro Cell Dev Plant 42:100–108

Clough GH, Hamm PB (1995) Coat protein transgenic resistance to watermelon mosaic and zucchini yellows mosaic virus in squash and cantaloupe. Plant Dis 79:1107–1109

Collins CL, Eason PJ, Dunshea FR, Higgins TJV, King RH (2006) Starch but not protein digestibility is altered in pigs fed transgenic peas containing alpha-amylase inhibitor. J Sci Food Agr 86:1894–1899

Collonnier C, Fock I, Kashyap V, Rotino GL, Daunay MC, Lian Y, Mariska IK, Rajam MV, Servaes A, Dureux G, Sihachakr D (2001) Applications of biotechnology in eggplant. Plant Cell Tiss Org 65:91–107

Conner JA, Tantikanjana T, Stein JC, Kandasamy MK, Nasrallah JB, Nasrallah ME (1997) Transgene-induced silencing of S-locus genes and related genes in *Brassica*. Plant J 11:809–823

Curtis IS (2003) The noble radish: past, present and future. Trends Plant Sci 8:305–307

Curtis IS, He C, Power JB, Mariotti D, de Laat A, Davey MR (1996a) The effect of *Agrobacterium rhizogenes* rolAB genes in lettuce. Plant Sci 115:123–135

Curtis IS, He C, Scott R, Power JB, Davey MR (1996b) Genomic male sterility in lettuce, a baseline for the production of F1 hybrids. Plant Sci 113:113–119

Curtis IS, Power JB, de Laat AMM, Caboche M, Davey MR (1999) Expression of a chimeric nitrate reductase gene in transgenic lettuce reduces nitrate in leaves. Plant Cell Rep 18:889–896

Curtis IS, Nam HG, Yun JY, Seo KH (2002) Expression of an antisense GIGANTEA (GI) gene fragment in transgenic radish causes delayed bolting and flowering. Transgenic Res 11:249–256

Cürek S, Cetiner S, Elman C, Xia X, Wang Y, Yeheskel A, Zilberstein L, Perl-Treves R, Watad AA, Gaba V (2005) Transformation of recalcitrant melon (*Cucumis melo*) cultivars is facilitated by wounding with carborundum. Eng Life Sci 5:169–177

Dabauza M, Bordas M, Salvador A, Roig LA (1997) Plant regeneration and *Agrobacterium*-mediated transformation of cotyledon explants of *Citrullus colocynthis* (L.) Schrad. Plant Cell Rep 16:888–892

David C, Tempé J (1988) Genetic transformation of cauliflower (*Brassica oleracea* L. var. *botrytis*) by *Agrobacterium rhizogenes*. Plant Cell Rep 7:88–91

Davuluri GR, van Tuinen A, Fraser P, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J, Bramley PM, Pennings HMI, Bowler C (2005) Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 23:890–895

De Block M, De Brouwer D, Tenning P (1989) Transformation of *Brassica napus* and *Brassica oleracea* using *Agrobacterium tumefaciens* and the expression of the *bar* and *neo* genes in the transgenic plants. Plant Physiol 91:694–701

De Kathen A, Jacobsen HJ (1990) *Agrobacterium*-mediated transformation of *Pisum sativus* L. using binary and cointegrate vectors. Plant Cell Rep 9:276–279

De Sousa-Majer MJ, Turner NC, Hardie DC, Morton RL, Lamont B, Higgins TJV (2004) Response to water deficit and high temperature of transgenic peas (*Pisum sativum* L.)
containing a seed-specific alpha-amylase inhibitor and the subsequent effects on pea weevil (*Bruchus pisorum* L.) survival. J Exp Bot 55:497–505

Dede Y (1998) Development of the downy mildew pathogen *Bremia lactucae* on transgenic lettuce expressing a bacterial β-1,3-glucanase. Turk J Agric For 22:313–321

Delannay X, LaVallee BJ, Proksch RK, Fuchs RL, Sims SR, Greenplate JT, Marrone PG, Dodson RB, Augustine JJ, Layton JG, Fischhoff DA (1989) Field performance of transgenic tomato plants expressing the *Bacillus thuringiensis* var. *kurstaki* insect control protein. Bio/Technology 7:1265–1269

Delbreil B, Guerche P, Jullien M (1993) *Agrobacterium*-mediated transformation of *Asparagus officinalis* L. long-term embryogenic callus and regeneration of transgenic plants. Plant Cell Rep 12:129–132

Di Toppi LS, Pecchioni N, Durante M (1997) *Cucurbita pepo* L. can be transformed by *Agrobacterium rhizogenes*. Plant Cell Tiss Org 51:89–93

Dias BBA, Cunha WG, Morais LS, Vianna GR, Rech EL, de Capdeville G, Aragão FJL (2006) Expression of an oxalate decarboxylase gene from *Flammulina* sp. in transgenic lettuce (*Lactuca sativa*) plants and resistance to *Sclerotinia sclerotiorum*. Plant Pathol 55:187–193

Dillen W, Engler G, Van Montagu M, Angenon G (1995) Electroporation-mediated DNA delivery to seedling tissue of *Phaseolus vulgaris* L. (common bean). Plant Cell Rep 15:119–124

Dinant S, Blaise F, Kusiak C, Astier-Manifacier S, Albouy J (1993) Heterologous resistance to potato virus Y in transgenic tobacco plants expressing the coat protein gene of lettuce mosaic potyvirus. Phytopathology 83:818–824

Dinant S, Maisonneuve B, Albouy J, Chupeau Y, Chupeau MC, Bellec Y, Gaudefroy F, Kusiak C, Souche S, Robaglia C, Lot H (1997) Coat protein gene-mediated protection in *Lactuca sativa* against lettuce mosaic potyvirus strains. Mol Breed 3:75–86

Dinant S, Kusiak C, Cailleteau B, Derbaet J, Chupeau MC, Chupeau Y, Le TAH, Delon R, Albouy J (1998) Field resistance against potato virus Y infection using natural and genetically engineered resistance genes. Eur J Plant Pathol 104:377–382

Ding LC, Hu CY, Yeh KW, Wang PJ (1998) Development of insect-resistant transgenic cauliflower plants expressing the trypsin inhibitor gene isolated from local sweet potato. Plant Cell Rep 17:854–860

Donzella G, Spena A, Rotino GL (2000) Transgenic parthenocarpic eggplants: superior germplasm for increased winter production. Mol Breed 6:79–86

Dröge W, Broer I, Pühler A (1992) Transgenic plants containing the phosphinothricin-N-acetyltransferase gene metabolize the herbicide 1-phosphinothricin (glufosinate) differently from untransformed plants. Planta 187:142–151

Dröge-Laser W, Siemeling U, Pühler A, Broer I (1994) The metabolites of the herbicide 1-phosphinothricin (glufosinate) – identification, stability, and mobility in transgenic, herbicide-resistant, and untransformed plants. Plant Physiol 105:159–166

Dubois V, Botton E, Meyer C, Rieu A, Bedu M, Maisonneuve B, Mazier M (2005) Systematic silencing of a tobacco nitrate reductase transgene in lettuce (*Lactuca sativa* L.). J Exp Bot 56:2379–2388

Eady CC (1995) Towards the transformation of onions (*Allium cepa*). NZ J Crop Hort 23:239–250

Eady CC, Lister CE, Suo Y, Schaper D (1996) Transient expression of *uidA* constructs in *in vitro* onion (*Allium cepa* L.) cultures following particle bombardment and *Agrobacterium*-mediated DNA delivery. Plant Cell Rep 15:958–962

Eady CC, Weld RJ, Lister CE (2000) *Agrobacterium tumefaciens*-mediated transformation and transgenic-plant regeneration of onion (*Allium cepa* L.). Plant Cell Rep 19:376–381

Eady C, Davis S, Farrant J, Reader J, Kenel F (2003a) *Agrobacterium tumefaciens*-mediated transformation and regeneration of herbicide resistant onion (*Allium cepa*) plants. Ann Appl Biol 142:213–217

Eady CC, Reader J, Davis S, Dale T (2003b) Inheritance and expression of introduced DNA in transgenic onion plants (*Allium cepa*). Ann Appl Biol 142:219–224
Eason JR, Ryan DJ, Watson LM, Hedderley D, Christey MC, Braun RH, Coupe SA (2005) Suppression of the cysteine protease, aleurain, delays floret senescence in *Brassica oleracea*. Plant Mol Biol 57:645–657

Eason JR, Ryan DJ, Watson LM, Pinkney T, Hedderley D, Christey MC, Braun RH, Coupe SA (2007) Suppressing expression of a soluble acid invertase (*BoINV2*) in broccoli (*Brassica oleracea*) delays postharvest floret senescence and downregulates cysteine protease (*BoCP5*) transcription. Physiol Plant 130:46–57

Ellul P, Rios G, Atarés A, Roig LA, Serrano R (2003) The expression of the *Saccharomyces cerevisiae* HAL1 gene increases salt tolerance in transgenic watermelon (*Citrullus lanatus*) (Thunb.) Matsun. & Nakai.]. Theor Appl Genet 107:462–469

Engler DE, Guri AZ, Lauritis JA, Schloemer LMP (1993) Genetically transformed pepper plants and methods for their production. US Patent 07/796152(5262316)

Falk BW (1996) Basic approaches to lettuce virus control. Iceberg Lettuce Advisory Board Annu Rep 1996:70–74

Fang G, Gurmet R (1990) *Agrobacterium tumefaciens* mediated transformation and regeneration of muskmelon plants. Plant Cell Rep 9:160–164

Fang G, Grumet R (1993) Genetic engineering of potyvirus resistance using constructs derived from the zucchini yellow mosaic virus coat protein gene. Mol Plant Microbe Interact 6:358–367

Faria JC, Albino MMC, Dias BBA, Cançado LJ, da Cunha NB, Silva LD, Vianna GR, Aragão FJL (2006) Partial resistance to *Bean golden mosaic virus* in a transgenic common bean (*Phaseolus vulgaris* L.) line expressing a mutated *rep* gene. Plant Sci 171:565–571

Ficcadenti N, Sestili S, Pandolfini T, Cirillo C, Rotino GL, Spena A (1999) Genetic engineering of parthenocarpic fruit development in tomato. Mol Breed 5:463–470

Fischhoff DA, Bodwish KS, Perlak FJ, Marrone PG, McCormick SM, Niedermeyer JG, Dean DA, Kusano-Kretzmer K, Mayer EJ, Rochester DE, Rogers SG, Fraley RT (1987) Insect tolerant transgenic tomato plants. Bio/Technology 5:807–813

Foolad MR (2004) Recent advances in genetics of salt tolerance in tomato. Plant Cell Tiss Org 76:101–119

Franklin TM, Oldknow J, Trick M (1996) *SLR1* function is dispensable for both self-incompatible rejection and self-compatible pollination processes in *Brassica*. Sex Plant Reprod 9:203–208

Fuchs M, Gonsalves D (1995) Resistance of transgenic hybrid squash ZW-20 expressing the coat protein genes of zucchini yellow mosaic virus and watermelon mosaic virus 2 to mixed infections by both potyviruses. Bio/Technology 13:1466–1473

Fuchs M, Klas FE, McFerson JR, Gonsalves D (1998) Transgenic melon and squash expressing coat protein genes of aphid-borne viruses do not assist the spread of an aphid non-transmissible strain of cucumber mosaic virus in the field. Transgenic Res 7:449–462

Fuentes A, Ramos PL, Fiallo E, Callard D, Sánchez Y, Peral R, Rodríguez R, Pujol M (2006) Intron-hairpin RNA derived from replication associated protein *CI* gene confers immunity to Tomato yellow leaf curl virus infection in transgenic tomato plants. Transgenic Res 15: 291–304

Gaba V, Zelcer A, Galon A (2004) Cucurbit biotechnology – the importance of virus resistance. In Vitro Cell Dev Plant 40:346–358

Gajc-Wolska J, Szwacka M, Malepszy S (2003) Sensory characteristic of cucumber fruits (*Cucumis sativus* L.) with thaumatin gene. Acta Hort 604:449–451

Gajc-Wolska J, Szwacka M, Malepszy S (2005) The evaluation of cucumber fruit quality (*Cucumis sativus* L.) transgenic line with thaumatin gene. Folia Hort 17/2:23–28

Gal-On A, Wolf D, Antignus Y, Patlis L, Ryu KH, Min BE, Pearlsman M, Lachman O, Gaba V, Wang Y, Shiboleith YM, Yang J, Zelcer A (2005) Transgenic cucumbers harboring the 54-kDa putative gene of *Cucumber fruit mottle mosaic tobamovirus* are highly resistant to viral infection and protect non-transgenic scions from soil infection. Transgenic Res 14:81–93

Galperin M, Patlis L, Ovadia A, Wolf D, Zelcer A, Kenigsbuch D (2003) A melon genotype with superior competence for regeneration and transformation. Plant Breed 122:66–69
Gapper NE, McKenzie MJ, Christey MC, Braun RH, Coupe SA, Lill RE, Jameson PE (2002) *Agrobacterium tumefaciens*-mediated transformation to alter ethylene and cytokinin biosynthesis in broccoli. Plant Cell Tiss Org 70:41–50

Gapper NE, Coupe SA, McKenzie MJ, Scott RW, Christey MC, Lill RE, McManus MT, Jameson PE (2005) Senescence-associated down-regulation of 1-aminocyclopropane-1-carboxylate (ACC) oxidase delays harvest-induced senescence in broccoli. Funct Plant Biol 32:891–901

Genga A, Cerjotti A, Bollini R, Bernacchia G, Allavena A (1991) Transient gene expression in bean tissue by high velocity microprojectile bombardment. J Genet Breed 45:129–134

Genga A, Giansante L, Bernacchia G, Allavena A (1994) Plant regeneration from *Cichorium intybus* L. leaf explants transformed by *Agrobacterium tumefaciens*. J Genet Breed 48:25–32

Giannino D, Nicolodi C, Testone G, Frugis G, Pace E, Santamaria P, Guardasole M, Mariotti D (2008) The overexpression of asparagine synthetase A from *E. coli* affects the nitrogen status in leaves of lettuce (*Lactuca sativa* L.) and enhances vegetative growth. Euphytica 162:11–22

Gilbert MO, Zhang YY, Punja ZK (1996) Introduction and expression of chitinase encoding genes in carrot following *Agrobacterium*-mediated transformation. In Vitro Cell Dev Plant 32:171–178

Gilbertson RL (1996) Management and detection of LMV: production of LMV resistant lettuce and LMV coat protein antibodies. Iceberg Lettuce Advisory Board Annu Rep 1996:78–81

Giorio G, Stigliani AL, D’Ambrosio C (2007) Agronomic performance and transcriptional analysis of carotenoid biosynthesis in fruits of transgenic HighCaro and control tomato lines under field conditions. Transgenic Res 16:15–28

Gisbert C, Rus AM, Bolarin MC, López-Coronado JM, Arrillaga I, Montesinos C, Caro M, Serrano R, Moreno V (2000) The yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant Physiol 123:393–402

Goggin FL, Shah G, Williamson VM, Ullman DE (2004) Instability of Mi-mediated nematode resistance in transgenic tomato plants. Mol Breed 13:357–364

Goggin FL, Jia LL, Shah G, Hebert S, Williamson VM, Ullman DE (2006) Heterologous expression of the Mi-1.2 gene from tomato confers resistance against nematodes but not aphids in eggplant. Mol Plant Microbe Interact 19:383–388

Gonsalves D, Chee P, Provvidenti R, Seem R, Slichtom JL (1992) Comparison of coat protein-mediated and genetically-derived resistance in cucumbers to infection by cucumber mosaic virus under field conditions with natural challenge inoculations by vectors. Nat Biotechnol 10:1562–1570

Gonsalves D, Cue B, Yepes M, Fuchs M, Ling KS, Namba S, Chee P, Slichtom JL, Gonsalves D (1994) Transferring cucumber mosaic virus-white leaf strain coat protein into *Cucumis melo* L. and evaluating transgenic plants for protection against infections. J Am Soc Hort Sci 119:345–355

Goto F, Yoshihara T, Saiki H (2000) Iron accumulation and enhanced growth in transgenic lettuce plants expressing the iron-binding protein ferritin. Theor Appl Genet 100:658–664

Grant J, Pither-Joyce M, Fifield W, Cooper P, Timmerman-Vaughan G (1998) Partial resistance to alfalfa mosaic virus in transgenic pea (*Pisum sativum* L.). In: Opportunities for high quality, healthy and added value crops to meet European demands. Eur Conf Grain Legumes 3:372–373

Gubba A, Gonsalves C, Stevens MR, Tricoli DM, Gonsalves D (2002) Combining transgenic and natural resistance to obtain broad resistance to tospovirus infection in tomato (*Lycopersicon esculentum* mill). Mol Breeding 9:13–23

Guis M, Ben Amor M, Latche A, Pech JC, Roustan JP (2000) A reliable system for the transformation of cantaloupe charentais melon (*Cucumis melo* L. var. *cantalupensis*) leading to a majority of diploid regenerants. Sci Hort 84:91–99

Guri A, Sink KC (1988) *Agrobacterium* transformation of eggplant. J Plant Physiol 133:52–55

Gutiérrez-Ortega A, Sandoval-Montes C, Olivera-Flores TJ, Santos-Argumendo L, Gómez-Lim M (2005) Expression of functional interleukin-12 from mouse in transgenic tomato plants. Transgenic Res 14:877–885
Hamamoto H, Sugiyama Y, Nakagawa N, Hashida Y, Matsunaga Y, Takemoto S, Watanabe Y, Okada Y (1993) A new tobacco mosaic virus vector and its use for the systemic production of angiotensin-I-converting enzyme inhibitor in transgenic tobacco and tomato. Bio/Technology 11:930–932

Hao Y, Ao GM (1997) Transgenic cabbage plants harbouring cowpea trypsin inhibitor (CpTI) gene showed improved resistance to two major insect pests Pieris rapae L. and Heliothis armigera. FASEB J 11:A868

Hardegger M, Sturm A (1998) Transformation and regeneration of carrot (Daucus carota L.). Mol Breed 4:119–129

Harpster MH, Brummell DA, Dunsmuir P (2002a) Suppression of a ripening-related endo-1,4-β-glucanase in transgenic pepper fruit does not prevent depolymerization of cell wall polysaccharides during ripening. Plant Mol Biol 50:345–355

Harpster MH, Dawson DM, Nevins DJ, Dunsmuir S, Brummell DA (2002b) Constitutive overexpression of a ripening-related pepper endo-1,4-β-glucanase in transgenic tomato fruit does not increase xyloglucan depolymerization or fruit softening. Plant Mol Biol 50:357–369

Hasegawa I, Terada E, Sunai R, Wakita H, Shinmachi F, Noguchi A, Nakajima M, Yazaki J (1997) Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP1). Plant Soil 196:277–281

He YK, Wang YJ, Gong ZH, Wei ZM, Xu ZH (1994) Root development initiated by exogenous auxin synthesis genes in Brassica sp. crops. Plant Physiol Biochem 32:493–500

He YK, Xue WX, Sun YD, Yu XH, Liu PL (2000) Leafy head formation of the progenies of transgenic plants of Chinese cabbage with exogenous auxin genes. Cell Res 10:151–160

He Z, Duan ZZ, Liang W, Chen F, Yao W, Liang H, Yue C, Sun Z, Chen F, Dai J (2008) Mannose selection system used for cucumer transformation. Plant Cell Rep 25:953–958

Henzi MX, Christey MC, McNeil DL, Davies KM (1999) Agrobacterium rhizogenes-mediated transformation of broccoli (Brassica oleracea L. var. italic) with an antisense 1-aminocyclopropane-1-carboxylic acid oxidase gene. Plant Sci 143:55–62

Henzi MX, Christey MC, McNeil DL (2000) Morphological characterisation and agronomic evaluation of transgenic broccoli (Brassica oleracea L. var. italic) containing an antisense ACC oxidase gene. Euphytica 113:9–18

Higgins JD, Newbury HJ, Barbara DJ, Muthumeenakshi S, Puddephat IJ (2006) The production of marker-free genetically engineered broccoli with sense and antisense ACC synthase 1 and ACC oxidases 1 and 2 to extend shelf-life. Mol Breed 17:7–20

Hong JK, Choi HW, Hwang IS, Kim DS, Kim NH, Choi DS, Kim YJ, Hwang BK (2008) Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance. Planta 227:539–558

Hsieh TH, Lee JT, Chang YY, Chan MT (2002a) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130:618–626

Hsieh TH, Lee JT, Yang PT, Chiu L-H, Chang YY, Wang YC, Chan MT (2002b) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1089–1094

Hwang EW, Park SC, Byun MO, Choi M, Kwon HB (2008) Overexpression of zinc finger protein of Capsicum annuum (PIF1) in tobacco enhances cold tolerance. Genes Genomics 30:93–99

Iannacone R, Grieco P.D, Cellini F (1997) Specific sequence modifications of a cry3B endotoxin gene result in high levels of expression and insect resistance. Plant Mol Biol 34:485–496

Imani J, Berting A, Nitsche S, Schaefer S, Gerlich WH, Neumann KH (2002) The integration of a major hepatitis B virus gene into cell-cycle synchronized carrot cell suspension cultures and its expression in regenerated carrot plants. Plant Cell Tiss Org 71:157–164

India Resource Center (2003) http://www.indiaresource.org/issues/agbiotech/2003/fieldsoftrial. html. Accessed 10 Dec 2008

Jäger L, Wüthrich B (2002) Nahrungsmittelallergien und -intoleranzen. Urban and Fischer, Jena
Jani D, Meena LS, Rizwan-ul-Haq QM, Singh Y, Sharma AK, Tyagi AK (2002) Expression of cholera toxin B subunit in transgenic tomato plants. Transgenic Res 11:447–454

Jayaraj J, Punja ZK (2007) Combined expression of chitinase and lipid transfer protein genes in transgenic carrot plants enhances resistance to foliar fungal pathogens. Plant Cell Rep 26:1539–1546

Jayaraj J, Punja Z (2008) Transgenic carrot plants accumulating ketocarotenoids show tolerance to UV and oxidative stresses. Plant Physiol Biochem 46:875–883

Jayaraj J, Devlin R, Punja Z (2008) Metabolic engineering of novel ketocarotenoid production in carrot plants. Transgenic Res 17:489–501

Jelenkovic G, Billings S, Chen Q, Lashomb J, Hamilton G, Ghidii G (1998) Transformation of eggplant with synthetic cryIIIA gene produces a high level of resistance to the Colorado potato beetle. J Am Soc Hort Sci 123:19–25

Jia GX, Zhu ZQ, Chang FQ, Li YX (2002) Transformation of tomato with the BADH gene from Atriplex improves salt tolerance. Plant Cell Rep 21:141–146

Jiang XL, He ZM, Peng ZQ, Qi Y, Chen Q (2007) Cholera toxin B protein in transgenic tomato fruit induces systemic immune response in mice. Transgenic Res 16:169–175

Jin RG, Liu YB, Tabashnik BE, Borthakur D (2000) Development of transgenic cabbage (Brassica oleracea var. capitata) for insect resistance by Agrobacterium tumefaciens-mediated transformation. In Vitro Cell Dev Plant 36:231–237

Jongedijk E, Tigelaar H, van Roekel JSC, Bres-Vloemans SA, Dekker I, van den Elzen PJM, Cornelissen BJC, Melchers LS (1995) Synergistic activity of chitinases and β-1,3-glucanases enhances fungal resistance in transgenic tomato plants. Euphytica 85:173–180

Jun SI, Kwon SY, Paek KY, Paek KH (1995) Agrobacterium-mediated transformation and regeneration of fertile transgenic plants of chinese cabbage (brassica campestris ssp. pekinensis cv. ‘spring flavor’). Plant Cell Rep 14:620–625

Kalamaki MS, Harpster MH, Palys JM, Labavitch JM, Reid DS, Brummell DA (2003a) Simultaneous transgenic suppression of LePG and LeExp1 influences rheological properties of juice and concentrates from a processing tomato variety. J Agric Food Chem 51:7456–7464

Kalamaki MS, Powell ALT, Stuijs K, Labavitch JM, Reid DS, Bennett AB (2003b) Transgenic overexpression of expansin influences particle size distribution and improves viscosity of tomato juice and paste. J Agric Food Chem 51:7465–7471

Kapusta J, Modelska A, Figlerowicz M, Pniewski T, Letellier M, Lisowa O, Yusibov V, Koprowski H, Plucienniczak A, Legocki AB (1999) A plant-derived edible vaccine against hepatitis B virus. FASEB J 13:1796–1799

Kapusta J, Modelska A, Pniewski T, Figlerowicz M, Jankowski K, Lisowa O, Plucienniczak A, Koprowski H, Legocki AB (2001) Oral immunization of human with transgenic lettuce expressing hepatitis B surface antigen. Adv Exp Med Biol 495:299–303

Kashyap V, Kumar SV, Collonnier C, Fusari F, Haicour R, Rotino GL, Sibachakr D, Rajam M (2003) Biotechnology of eggplant. Sci Hort 97:1–25

Katavic V, Jelaska S, Bakran-Petricioli T, David C (1991) Host-tissue differences in transformation of pumpkin (Cucurbita pepo L.) by Agrobacterium rhizogenes. Plant Cell Tiss Org 24:35–42

Kawashima CG, Baba EH, Hansen E (2001) Expression of recombinant hepatitis B virus antigen HBsAg in transgenic plant callus. Protein Peptide Lett 8:97–100

Kawazu Y, Fujiyama R, Sugiyanta K, Sasaya T (2006) A transgenic lettuce line with resistance to both lettuce big-vein associated virus and mirafiori lettuce virus. J Am Soc Hort Sci 131:760–763

Kim JH, Botella JR (2004) Etr1-1 gene expression alters regeneration patterns in transgenic lettuce stimulating root formation. Plant Cell Tiss Org 78:69–73

Kim JW, Minamikawa T (1997) Stable delivery of a canavalin promoter-β-glucuronidase gene fusion into French bean by particle bombardment. Plant Cell Physiol 38:70–75

Kim JW, Sun SSM, German TL (1994) Disease resistance in tobacco and tomato plants transformed with the tomato spotted wilt virus nucleocapsid gene. Plant Dis 78:615–621
Kim SJ, Lee SJ, Kim BD, Paek KH (1997) Satellite-RNA-mediated resistance to cucumber mosaic virus in transgenic plants of hot pepper (Capsicum annuum cv. Golden Tower). Plant Cell Rep 16:825–830
Kim S, Kim SR, An CS, Hong YN, Lee KW (2001) Constitutive expression of rice MADS box gene using seed explants in hot pepper (Capsicum annuum L.). Mol Cell 12:221–226
Kim SY, Park BS, Kwon SJ, Kim J, Lim MH, Park YD, Kim DY, Suh SC, Jin YM, Ahn JH, Lee YH (2007a) Delayed flowering time in Arabidopsis and Brassica rapa by the overexpression of FLOWERING LOCUS C (FLC) homologs isolated from Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Cell Rep 26:327–336
Kim TG, Kim MY, Kim BG, Kang TJ, Kim YS, Jang YS, Arntzen CJ, Yang MS (2007b) Synthesis and assembly of Escherichia coli heat-labile enterotoxin B subunit in transgenic lettuce (Lactuca sativa L.) using Agrobacterium-mediated transformation system. Plant Cell Tiss Org 87:203–210
Kim YH, Kang JS, Il Kim J, Kwon M, Lee S, Cho HS, Lee SH (2008) Effects of Bt transgenic Chinese cabbage on the herbivore Mamestra brassicae (Lepidoptera : Noctuidae) and its parasitoid Microplitis mediator (Hymenoptera : Braconidae). J Econ Entomol 101:1134–1139
Kim YS, Kim BG, Kim TG, Kang TJ, Yang MS (2006) Expression of a cholera toxin B subunit in transgenic lettuce (Lactuca sativa L.) using Agrobacterium-mediated transformation system. Plant Cell Rep 19:214–220.
Kisaka H, Kida T, Miwa T (2006) Antisense suppression of glutamate decarboxylase in tomato (Lycopersicon esculentum L.) results in accumulation of glutamate in transgenic tomato fruits. Curr Top Microbiol 23:267–274
Kishimoto K, Nishizawa Y, Tabei Y, Hibi T, Nakajima M, Akutsu K (2002) Detailed analysis of rice chitinase gene expression in transgenic cucumber plants showing different levels of disease resistance to gray mold (Botrytis cinerea). Plant Sci 162:655–662
Kishimoto K, Nakajima M, Nishizawa Y, Tabei Y, Hibi T, Akutsu K (2003) Response of transgenic cucumber expressing a rice class I chitinase gene to two fungal pathogens with different infectivities. J Gen Plant Pathol 69:358–363
Kishimoto K, Nishizawa Y, Nakajima M, Hibi T, Akutsu K (2004) Transgenic cucumber expressing an endogenous class III chitinase gene has reduced symptoms from Botrytis cinerea. J Gen Plant Pathol 70:314–320
Kondo T, Hasegawa H, Suzuki M (2000) Transformation and regeneration of garlic (Allium sativum L.) by Agrobacterium-mediated gene transfer. Plant Cell Rep 19:989–993
Kovacs K, Zhang L, Linforth RST, Whittaker B, Hayes CJ, Fray RG (2007) Redirection of carotenoid metabolism for the efficient production of taxadiene [taxa-4(5),11(12)-dienel in transgenic tomato fruit. Transgenic Res 16:121–126
Krens FA, Keizer LCP, Capel IEM (1997) Transgenic caraway, Carum carvi L.: a model species for genetic engineering. Plant Cell Rep 17:39–43
Krishna VV, Qaim M (2007) Estimating the adoption of Bt eggplant in India: who benefits from public-private partnership? Food Policy 32:523–543
Krishna VV, Qaim M (2008) Potential impacts of Bt eggplant on economic surplus and farmers’ health in India. Agric Econ 38:167–180
Kumar PA, Mandaokar A, Sreenivasu K, Chakrabarti SK, Bisaria S, Sharma SR, Kaur S, Sharma RP (1998) Insect-resistant transgenic brinjal plants. Mol Breed 4:33–37
Kunik T, Salomon R, Zamir D, Navot N, Zeidan M, Michelson I, Gafni Y, Czosnek H (1994) Transgenic tomato plant expression the tomato yellow leaf curl virus capsid protein are resistant to the virus. Bio/Technology 12:500–504
Kuvshinov V, Koivu K, Kanerva A, Pehu E (2001) Transgenic crop plants expressing synthetic cry9Aa gene are protected against insect damage. Plant Sci 160:341–353
Langridge WHR, Li BJ, Szalay AA (1985) Electric-field mediated stable transformation of carrot protoplasts with naked DNA. Plant Cell Rep 4:355–359
Lavigne C, Manac’h H, Gyourd C, Gasquez J (1995) The cost of herbicide resistance in white-chicory: ecological implications for its commercial release. Theor Appl Genet 91:1301–1308
Le LQ, Mahler V, Lorenz Y, Scheurer S, Biemelt S, Vieths S, Sonnewald U (2006a) Reduced allergenicity of tomato fruits harvested from Lyc e 1-silenced transgenic tomato plants. J Allergy Clin Immun 118:1176–1183

Le LQ, Scheurer S, Fötisch K, Enrique E, Barta J, Biemelt S, Vieths S, Sonnewald U (2006b) Design of tomato fruits with reduced allergenicity by dsRNAi-mediated inhibition of ns-LTP (Lyc e 3) expression. Plant Biotechnol J 4:231–242

Le Gall G, DuPont MS, Mellon FA, Davis AL, Collins GJ, Verhoeyen ME, Colquhoun IJ (2003) Characterization and content of flavonoid glycosides in genetically modified tomato (Lycopersicon esculentum) fruits. J Agric Food Chem 51:2438–2446

Lee HS, Kwon EJ, Kwon SY, Jeong YJ, Lee EM, Jo MH, Kim HS, Woo IS, Shimmyo A, Yoshida K, Kwak SS (2003a) Transgenic cucumber fruits that produce elevated level of an anti-aging superoxide dismutase. Mol Breed 11:213–220

Lee JT, Prasad V, Yang PT, Wu JF, Ho THD, Charrn YY, Chan MT (2003b) Expression of Arabidopsis CBF1 regulated by an ABA/stress inducible promoter in transgenic tomato confers stress tolerance without affecting yield. Plant Cell Environ 26:1181–1190

Lee K, Lee SM, Park SR, Jung J, Moon JK, Cheong JJ, Kim M (2007a) Overexpression of Arabidopsis homogentisate phytyltransferase or tocopherol cyclase elevates vitamin E content by increasing γ-tocopherol level in lettuce (Lactuca sativa L.). Mol Cell 24:301–306

Lee SM, Kim BS, Cho H, Kim D, Jin YM (2007b) Environmental evaluation of GM hot pepper in newly synthesized material differences. Proc Pacif Rim Conf Biotechnol Bacillus thuringiensis Environ Impact 6:137–138

Lee YH, Yoon IS, Suh SC, Kim HI (2002) Enhanced disease resistance in transgenic cabbage and tobacco expressing a glucose oxidase gene from Aspergillus niger. Plant Cell Rep 20:857–863

Lee YH, Chung KH, Kim Hu, Jin YM, Kim HI, Park BS (2003c) Induction of male sterile cabbage using a tapetum-specific promoter from Brassica campestris L. ssp pekinensis. Plant Cell Rep 22:268–273

Lee YH, Kim HS, Kim JY, Jung M, Park YS, Lee JS, Choi SH, Her NH, Lee JH, Hyung NI, Lee CH, Yang SG, Harn CH (2004) A new selection method for pepper transformation: callus-mediated shoot formation. Plant Cell Rep 23:50–58

Legocki AB, Miedzinska K, Czaplińska M, Plucieniczak A, Wędrzychowicz H (2005) Immunoprotective properties of transgenic plants expressing E2 glycoprotein from CSFV and cysteine protease from Fasciola hepatica. Vaccine 23:1844–1846

Li BC, Wolyn DJ (1997) Recovery of transgenic asparagus plants by particle gun bombardment of somatic cells. Plant Sci 126:59–68

Li D, Zhao K, Xie B, Zhang B, Luo K (2003) Establishment of a highly efficient transformation system for pepper (Capsicum annuum L.). Plant Cell Rep 21:785–788

Li HY, Ramalingam S, Chye ML (2006) Accumulation of recombinant SARS-CoV spike protein in plant cytosol and chloroplasts indicate potential for development of plant-derived oral vaccines. Exp Biol Med 231:1346–1352

Li X, Peng RH, Fan HQ, Xiong AS, Yao QH, Cheng ZM, Li Y (2005) Vitreoscilla hemoglobin overexpression increases submergence tolerance in cabbage. Plant Cell Rep 23:710–715

Limantov-Grechet A, Jullien M (2001) Agrobacterium-mediated transformation of Asparagus officinalis L.: molecular and genetic analysis of transgenic plants. Mol Breed 7:141–150

Lin WC, Lu CF, Wu JW, Cheng ML, Lin YM, Yang NS, Green SK, Wang JF, Cheng CP (2004) Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Transgenic Res 13:567–581

Linhorst HJM, van Loon LC, van Rossum CMA, Mayer A, Bol JF, van Roekel SC, Melenhoff EJS, Cornelissen BJAC (1990) Analysis of acidic and basic chitinase from tobacco and petunia and their constitutive expression in transgenic tobacco. Mol Plant Microbe Interact 3:252–258

Liu CW, Lin CC, Chen JJW, Tseng MJ (2007a) Stable chloroplast transformation in cabbage (Brassica oleracea L. var. capitata L.) by particle bombardment. Plant Cell Rep 26:1733–1744
Liu CW, Lin CC, Yiu JC, Chen JJW, Tseng MJ (2008) Expression of a Bacillus thuringiensis toxin (cry1Ab) gene in cabbage (Brassica oleracea L. var. capitata L.) chloroplasts confers high insecticidal efficacy against Plutella xylostella. Theor Appl Genet 117:75–88

Liu RR, Hu YL, Li HL, Lin ZP (2007b) Production of soybean isoflavone genistein in non-legume plants via genetically modified secondary metabolism pathway. Metab Eng 9:1–7

Liu SJ, Hu YL, Wang XL, Zhong J, Lin ZP (2006) High content of resveratrol in lettuce transformed with a stilbene synthase gene of Parthenocissus henryana. J Agric Food Chem 54:8082–8085

Liu W, Parrott WA, Hildebrand DF, Collins GB, Williams EG (1990) Agrobacterium induced gall formation in bell pepper (Capsicum annuum L.) and formation of shoot-like structures expressing introduced genes. Plant Cell Rep 9:360–364

Liu ZC, Park BJ, Kanno A, Kameya T (2005) The novel use of a combination of sonication and vacuum infiltration in Agrobacterium-mediated transformation of kidney bean (Phaseolus vulgaris L.) with lea gene. Mol Breed 16:189–197

Lorenz Y, Enrique E, Le QL, Fötisch K, Retzek M, Biemelt S, Sonnewald U, Vieths S, Scheurer S (2006) Skin prick tests reveal stable and heritable reduction of allergenic potency of gene-silenced tomato fruits. J Allergy Clin Immun 118:711–718

Lou XM, Yao QH, Zhang Z, Peng RH, Xiong AS, Wang HK (2007) Expression of the human hepatitis B virus large surface antigen gene in transgenic tomato plants. Clin Vaccine Immunol 14:464–469

Lv LL, Lei JJ, Song M, Li LY, Cao BH (2005) Study on transformation of cowpea trypsin inhibitor gene into cauliflower (Brassica oleracea L. var. botrytis). Afr J Biotechnol 4:45–49

Ma Y, Lin SQ, Gao Y, Li M, Luo WX, Zhang J, Xia NS (2003) Expression of ORF2 partial gene of hepatitis E virus in tomatoes and immunoactivity of expression products. World J Gastroenterol 9:2211–2215

Magioli C, Barróco RM, Rocha CAB, de Santiago-Fernandes LD, Mansur E, Engler G, Margis-Pinheiro M, Sachetto-Martins G (2001) Somatic embryo formation in Arabidopsis and eggplant is associated with expression of a glycine-rich protein gene (Atgrp-5). Plant Sci 161:559–567

Manoharan M, Vidya CSS, Sita GL (1998) Agrobacterium-mediated genetic transformation in hot chilli (Capsicum annuum L. var. Pusa jwala). Plant Sci 131:77–83

Mariani C, de Beuckeleer M, Truettner J, Leemans J, Goldberg RB (1990) Induction of male- sterility in plants by a chimeric ribonuclease gene. Nature 347:737–741

Mariani C, Gosselé V, de Beuckeleer M, de Block M, Goldberg RB, de Greef W, Leemans J (1992) A chimeric ribonuclease-inhibitor gene restores fertility to male sterile plants. Nature 357:384–387

Marquet-Blouin E, Bouche FB, Steinmetz A, Muller CP (2003) Neutralizing immunogenicity of transgenic carrot (Daucus carota L.)-derived measles virus hemagglutinin. Plant Mol Biol 51:459–469

Martineau B (2001) First fruit: the creation of the Flavr Savr tomato and the birth of biotech foods. McGraw-Hill, New York

Martineau B, Summerfelt KR, Adams DF, de Verna JW (1995) Production of high solids tomatoes through molecular modification of levels of the plant growth regulator cytokinin. Bio/Technology 13:250–254

McCabe MS, Schepers F, van der Arend A, Mohapatra U, de Laat AMM, Power JB, Davey MR (1999) Increased stable inheritance of herbicide resistance in transgenic lettuce carrying a petE promoter-bar gene compared with a CaMV 35S-bar gene. Theor Appl Genet 99:587–592

McCabe MS, Garratt LC, Schepers F, Jordi WIRM, Stoopen GM, Davelaar E, van Rhijn JHA, Power JB, Davey MR (2001) Effects of P_SAG12 IPT gene expression on development and senescence in transgenic lettuce. Plant Physiol 127:505–516

McClean P, Chee P, Held B, Simental J, Drong RF, Slightom J (1991) Susceptibility of dry bean (Phaseolus vulgaris L.) to Agrobacterium infection – transformation of cotyledonary and hypocotyl tissues. Plant Cell Tiss Org 24:131–138
McGarvey PB, Hammond J, Dienelt MM, Hooper DC, Fu ZF, Dietzschold B, Koprowski H, Michaels FH (1995) Expression of the rabies virus glycoprotein in transgenic tomatoes. Bio/Technology 13:1484–1487

Mckenzie N, Dale PJ (2004) Mapping of transposable element Dissociation inserts in Brassica oleracea following plant regeneration from streptomycin selection of callus. Theor Appl Genet 109:333–341

Mckenzie N, Wen LY, Dale PJ (2002) Tissue-culture enhanced transposition of the maize transposable element Dissociation in Brassica oleracea var. ‘Italica’. Theor Appl Genet 105:23–33

Mehta RA, Cassol T, Li N, Ali N, Handa AK, Mattoo AK (2002) Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat Biotechnol 20:613–618

Melchers LS, Stuiver MH (2000) Novel genes for disease-resistance breeding. Curr Opin Plant Biol 3:147–152

Mennella G, Acciarri N, D’Alessandro A, Perrone D, Arpaia S, Sunseri F, Rotino GL (2005) Mixed deployment of Bt-expressing eggplant hybrids as a reliable method to manage resistance to Colorado potato beetle. Sci Hort 104:127–135

Metz TD, Dixit R, Earle ED (1995a) Agrobacterium tumefaciens-mediated transformation of broccoli (Brassica oleracea var. italica) and cabbage (B. oleracea var. capitata). Plant Cell Rep 15:287–292

Metz TD, Roush RT, Tang JD, Shelton AM, Earle ED (1995b) Transgenic broccoli expressing a Bacillus thuringiensis insecticidal crystal protein – implications for pest resistance management strategies. Mol Breed 1:309–317

Michelmore RW, Marsh E, Seely S, Landry B (1987) Transformation of lettuce (Lactuca sativa) mediated by Agrobacterium tumefaciens. Plant Cell Rep 6:439–442

Min BW, Cho YN, Song MJ, Noh TK, Kim BK, Chae WK, Park YS, Choi YD, Harn CH (2007) Successful genetic transformation of Chinese cabbage using phosphomannose isomerase as a selection marker. Plant Cell Rep 26:337–344

Mohapatra U, McCabe MS, Power JB, Schepers F, van der Arend A, Davey MR (1999) Expression of the bar gene confers herbicide resistance in transgenic lettuce. Transgenic Res 8:33–44

Mor TS, Sternfeld M, Soreq H, Arntzen CJ, Masson HS (2001) Expression of recombinant human acetylcholinesterase in transgenic tomato plants. Biotechnol Bioeng 75:259–266

Mora AA, Earle ED (2001) Resistance to Alternaria brassicicola in transgenic broccoli expressing a Trichoderma harzianum endochitinase gene. Mol Breed 8:1–9

Morton RL, Schroeder HE, Bateman KS, Chrispeels MJ, Armstrong E, Higgins TJV (2000) Bean α-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proc Natl Acad Sci USA 97:3820–3825

Muir SR, Collins GJ, Robinson S, Hughes S, Bovy A, de Vos CHR, van Tunen AJ, Verhoeven ME (2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonoids. Nat Biotechnol 19:470–474

Mukhopadhyay S, Desjardins Y (1994) Direct gene-transfer to protoplasts of two genotypes of Asparagus officinalis L. by electroproportion. Plant Cell Rep 13:421–424

Muñoz-Mayor A, Pineda B, García-Abellán JO, García-Sogo B, Moyano E, Atares A, Vicente-Agulló F, Serrano R, Moreno V, Bolarín MC (2008) The HAL1 function on Na+ homeostasis is maintained over time in salt-treated transgenic tomato plants, but the high reduction of Na+ in leaf is not associated with salt tolerance. Physiol Plant 133:288–297

Nagata RT, Dusky JA, Ferl RJ, Torres AC, Cantliffe DJ (2000) Evaluation of glyphosate resistance in transgenic lettuce. J Am Soc Hort Sci 125:669–672

Nelson RS, McCormick SM, Delannay X, Dube P, Layton J, Anderson EJ, Kaniewska M, Proksch RK, Horsch RB, Rogers SG, Fraley RT, Beachy RN (1988) Virus tolerance, plant growth, and field performance of transgenic tomato plants expressing coat protein from tobacco mosaic virus. Bio/Technology 6:403–409
Niggeweg R, Michael AJ, Martin C (2004) Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat Biotechnol 22:746–754

Niki T, Nishijima T, Nakayama M, Hisamatsu T, Oyama-Okubo N, Yamazaki H, Hedden P, Lange T, Mander LN, Koshioka M (2001) Production of dwarf lettuce by overexpressing a pumpkin gibberellin 20-oxidase gene. Plant Physiol 126:965–972

Nishibayashi S, Hayakawa T, Nakajima M, Suzuki M, Kaneko H (1996a) CMV protectin in transgenic cucumber plants with an introduced CMV-O cp gene. Theor Appl Genet 93:672–678

Nishibayashi S, Kaneko H, Hayakawa T (1996b) Transformation of cucumber (Cucumis sativus L.) plants using Agrobacterium tumefaciens and regeneration from hypocotyl explants. Plant Cell Rep 15:809–814

Nombela G, Williamson VM, Muniz M (2003) The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitely Bemisia tabaci. Mol Plant Microbe Interact 16:645–649

Nugent GD, Coyne S, Nguyen TT, Kavanagh TA, Dix PJ (2006) Nuclear and plastid transformation of Brassica oleracea var. botrytis (cauliflower) using PEG-mediated uptake of DNA into protoplasts. Plant Sci 170:135–142

Nuñez-Palenius HG, Cantliffe DJ, Huber DJ, Ciardi J, Klee HJ (2006) Transformation of a muskmelon ‘Galía’ hybrid parental line (Cucumis melo var. reticulatus Ser.) with an antisense ACC oxidase gene. Plant Cell Rep 25:198–205

Nuñez-Palenius HG, Febres VJ, Ochoa-Alejo N, Klee HJ, Cantliffe DJ (2007) Effects of explant source on regeneration and genetic transformation efficiency in Galia melon (Cucumis melo L.) male and female parental lines. Agrociencia 41:853–861

Nunome T, Fukumoto F, Terami F, Hanada K, Hirai M (2002) Development of breeding materials of transgenic tomato plants with a truncated replicase gene of cucumber mosaic virus for resistance to the virus. Breed Sci 52:219–223

Oh SK, Bek KH, Park JM, Yi SY, Yu SH, Kamoun S, Choi D (2008) Capsicum annuum WRKY protein CaWRKY1 is a negative regulator of pathogen defense. New Phytol 177:977–989

Pan L, Zhang Y, Wang Y, Wang B, Wang W, Fang Y, Jiang S, Lv J, Wang W, Sun Y, Xie Q (2008) Foliar extracts from transgenic tomato plants expressing the structural polyprotein, P1-2A, and protease, 3C, from foot-and-mouth disease virus elicit a protective response in guinea pigs. Vet Immunol Immunopathol 121:83–90

Pang SZ, Jan FJ, Carney K, Stout J, Tricoli DM, Quemada HD, Gonsalves D (1996) Post-transcriptional gene silencing and consequent tospovirus resistance in transgenic lettuce are affected by transgene dosage and plant development. Plant J 9:899–909

Park BJ, Liu ZC, Kanno A, Kameya T (2005a) Transformation of radish (Raphanus sativus L.) via sonication and vacuum infiltration of germinated seeds with Agrobacterium harboring a group 3 LEA gene from B. napus. Plant Cell Rep 24:494–500

Park BJ, Liu ZC, Kanno A, Kameya T (2005b) Genetic improvement of Chinese cabbage for salt and drought tolerance by constitutive expression of a B. napus LEA gene. Plant Sci 169:553–558

Park BJ, Liu ZC, Kanno A, Kameya T (2005c) Increased tolerance to salt- and water-deficit stress in transgenic lettuce (Lactuca sativa L.) by constitutive expression of LEA. Plant Growth Reg 45:165–171

Park EJ, Jeknić Z, Sakamoto A, DeNoma J, Yuwansiri R, Murata N, Chen THH (2004a) Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. Plant J 40:474–487

Park JS, Kim JB, Cho KJ, Cheon CI, Sung MK, Choong MG, Roh KH (2008) Arabidopsis R2R3-MYB transcription factor AtMYB60 functions as a transcriptional repressor of anthocyanin biosynthesis in lettuce (Lactuca sativa). Plant Cell Rep 27:985–994

Park MY, Yi NR, Lee HJ, Kim ST, Kim M, Park JH, Kim JK, Lee JS, Cheong JJ, Choi YD (2002) Generation of chlorsulfuron-resistant transgenic garlic plants (Allium sativum L.) by particle bombardment. Mol Breed 9:171–181
Park S, Kim CK, Pike LM, Smith RH, Hirschi KD (2004b) Increased calcium in carrots by expression of an Arabidopsis H+/Ca2+ transporter. Mol Breed 14:275–282
Park S, Elless MP, Park J, Jenkins A, Lim W, Chambers E, Hirschi KD (2009) Sensory analysis of calcium-biofortified lettuce. Plant Biotechnol J 7:110–117
Park SH, Jun SS, An GH, Hong YN, Park MC (2003) A comparative study on the protective role of trehalose and LEA proteins against abiotic stresses in transgenic Chinese cabbage (Brassica campestris) overexpressing CaLEA or otsA. J Plant Biol 46:277–286
Park SM, Lee JS, Jegal S, Jeon BY, Jung M, Park YS, Han SL, Shin YS, Her NH, Lee JH, Lee MY, Ryu KH, Yang SG, Ham CH (2005d) Transgenic watermelon rootstock resistant to CGMMV (cucumber green mottle mosaic virus) infection. Plant Cell Rep 24:350–356
Passelegue E, Kerlan C (1996) Transformation of cauliflower (Brassica oleracea var. botrytis) by transfer of cauliflower mosaic virus genes through combined cocultivation with virulent and avirulent strains of Agrobacterium. Plant Sci 113:79–89
Penarrubia L, Kim R, Giovannoni J, Kim SH, Fischer RL (1992) Production of the sweet protein monellin in transgenic plants. Bio/Technology 10:561–564
Pileggi M, Pereira AAM, Silva JD, Pileggi SAV, Verma DPS (2001) An improved method for transformation of lettuce by Agrobacterium tumefaciens with a gene that confers freezing resistance. Braz Arch Biol Technol 44:191–196
Pistrick K (2002) Current taxonomical overview of cultivated plants in the families Umbelliferae and Labiatae. Genet Resour Crop Evol 49:211–225
Pogrebnyak N, Markley K, Smirnov Y, Brodzik R, Bandurska K, Koprowski H, Golovkin M (2006) Collard and cauliflower as a base for production of recombinant antigens. Plant Sci 171:677–685
Porceddu A, Falorni A, Ferradini N, Cosentino A, Calcinaro F, Faleri C, Cresti M, Lorenzetti F, Brunetti P, Pezzotti M (1999) Transgenic plants expressing human glutamic acid decarboxylase (GAD65), a major autoantigen in insulin-dependent diabetes mellitus. Mol Breed 5:553–560
Powell ALT, Kalamaki MS, Kurien PA, Gurrieri S, Bennett AB (2003) Simultaneous transgenic suppression of LePG and LeExp1 influences fruit texture and juice viscosity in a fresh market tomato variety. J Agric Food Chem 51:7450–7455
Pozueta-Romero J, Houllé G, Caniñas L, Schantz R, Chamorro J (2001) Enhanced regeneration of tomato and pepper seedling explants for Agrobacterium-mediated transformation. Plant Cell Tiss Org 83:311–318
Prabhavathi V, Rajam MV (2007) Mannitol-accumulating transgenic eggplants exhibit enhanced resistance to fungal wilts. Plant Sci 173:50–54
Prabhavathi V, Yadav JS, Kumar PA, Rajam MV (2002) Abiotic stress tolerance in transgenic eggplant (Solanum melongena L.) by introduction of bacterial mannitol phosphodehydrogenase gene. Mol Breed 9:137–147
Praveen S, Kushwaha CM, Mishra AK, Singh V, Jain RK, Varma A (2005) Engineering tomato for resistance to tomato leaf curl disease using viral rep gene sequences. Plant Cell Tiss Org 83:311–318
Provvidenti R, Gonsalves D (1995) Inheritance of resistance to cucumber mosaic virus in a transgenic tomato line expressing the coat protein gene of the white leaf strain. J Heredity 86:85–88
Punja ZK (2005) Transgenic carrots expressing a thaumatin-like protein display enhanced resistance to several fungal pathogens. Can J Plant Pathol 27:291–296
Punja ZK, Raharjo SHT (1996) Response of transgenic cucumber and carrot plants expressing different chitinase enzymes to inoculation with fungal pathogens. Plant Dis 80:999–1005
Puonti-Kaerlas J, Eriksson T, Engstrom P (1990) Production of transgenic pea (Pisum sativum L.) plants by Agrobacterium tumefaciens-mediated gene transfer. Theor Appl Genet 80:246–252
Qing CM, Fan L, Lei Y, Bouchez D, Tourneur C, Yan L, Robaglia C (2000) Transformation of pakchoi (Brassica rapa L. ssp. chinensis) by Agrobacterium infiltration. Mol Breed 6:67–72
Radchuk VV, Blune YB, Ryschka U, Schumann G, Klocke E (2000) Regeneration and transformation of some cultivars of headed cabbage. Russ J Plant Physiol 47:400–406
Radhajeyalakshmi R, Velazhahan R, Balasubramanian P, Doraiswamy S (2005) Overexpression of thaumatin-like protein in transgenic tomato plants confers enhanced resistance to Alternaria solani. Arch Phytopathol 38:257–265

Raj SK, Singh R, Pandey SK, Singh BP (2005) Agrobacterium-mediated tomato transformation and regeneration of transgenic lines expressing Tomato leaf curl virus coat protein gene for resistance against TLCV infection. Curr Sci India 88:1674–1679

Redenbaugh K, McHughen A (2004) Regulatory challenges reduce opportunities for horticultural biotechnology. Calif Agric 58:106–115

Rhim A, Hernould M, Boussaid M (2007) Agrobacterium mediated transformation of Tunisian Cucumis melo cv. Maazoun. Afr J Biotechnol 6:2162–2165

Ribeiro APO, Pereira EJG, Galvan TL, Picano MC, Picoli EAT, da Silva DJH, Fari MG, Otoni WC (2006) Effect of eggplant transformed with oryzacystatin gene on Myzus persicae and Macrosiphum euphorbiae. J Appl Entomol 130:84–90

Richter A, de Kathen A, de Lorenzo G, Briviba K, Hain R, Ramsay G, Jacobsen HJ, Kiesecker H (2006) Transgenic peas (Pisum sativum) expressing polygalacturonase inhibiting protein from raspberry (Rubus idaeus) and stillbene synthase from grape (Vitis vinifera). Plant Cell Rep 25:1166–1173

Rizhsky L, Mittler R (2001) Inducible expression of bacterio-opsin in transgenic and tomato plants. Plant Biol 46:313–323

Roberts PA, Thomason J (1986) Variability in reproduction of isolates of Meloidogyne incognita and M. javanica on resistant tomato genotypes. Plant Dis 70:547–551

Römer S, Fraser PD, Kiano JW, Shipton CA, Misawa N, Schuch W, Bramley PM (2000) Elevation of the provitamin A content of transgenic tomato plants. Nat Biotechnol 18:666–669

Rosales-Mendoza S, Soria-Guerra RE, Olivera-Flores MTD, López-Revilla R, Argüello-Astorga GR, Jiménez-Bremont JF, García-de la Cruz RF, Loyola-Rodríguez JP, Alpuche-Solis AG (2007) Expression of Escherichia coli heat-labile enterotoxin b subunit (LTB) in carrot (Daucus carota L.). Plant Cell Rep 26:969–976

Rovenská GZ, Zemek R, Schmidt JEU, Hilbeck A (2005) Altered host plant preference of Tetranychus urticae and prey preference of its predator Phytoseiulus persimilis (Acari : Tetranychidae, Phytoseiidae) on transgenic Cry3Bb-eggplants. Biol Control 33:293–300

Roy R, Purty RS, Agrawal V, Gupta SC (2006) Transformation of tomato cultivar ‘Pusa Ruby’ with bspA gene from Populus tremula for drought tolerance. Plant Cell Tiss Org 84:55–67

Rubatzky VE, Quiros CF, Simon PW (1999) Carrots and related vegetable Umbelliferae. CABI, New York

Ruhlman T, Ahangari R, Devine A, Samsam M, Daniell H (2007) Expression of cholera toxin B-proinsulin fusion protein in lettuce and tobacco chloroplasts – oral administration protects against development of insulinis in non-obese diabetic mice. Plant Biotechnol J 5: 495–510

Rus AM, Estañ MT, Gisbert C, Garcia-Sobo B, Serrano R, Caro M, Moreno V, Bolarín MC (2001) Expressing the yeast HAL1 gene in tomato increases fruit yield and enhances K⁺/Na⁺ selectivity under salt stress. Plant Cell Environ 24:875–880

Russell DR, Wallace KM, Bathe JH, Martinell BJ, McCabe DE (1993) Stable transformation of Phaseolus vulgaris via electric-discharge mediated particle-acceleration. Plant Cell Rep 12:165–169

Ryder EJ (1986) Lettuce breeding. In: Bassett MJ (ed) Breeding vegetable crops. AVI, Westport, pp 433–474
Sandhu JS, Krasnyanski SF, Domier LL, Korban SS, Osadjan MD, Buetow DE (2000) Oral immunization of mice with transgenic tomato fruit expressing respiratory syncytial virus-F protein induces a systemic immune response. Transgenic Res 9:127–135

Sarowar S, Kim YJ, Kim EN, Kim KD, Choi YJ, Hyung NI, Shin JS (2006) Constitutive expression of two pathogenesis-related genes in tomato plants enhanced resistance to oomycete pathogen Phytophthora capsici. Plant Cell Tiss Org 86:7–14

Sato T, Thorsness MK, Kandasamy MK, Nishio T, Hirai M, Nasrallah JB, Nasrallah ME (1991) Activity of an S locus gene promoter in pistils and anthers of transgenic Brassica. Plant Cell 3:867–876

Sato Y, Fujimoto R, Toriyama K, Nishio T (2003) Commonality of self-recognition specificity of S haplotypes between Brassica oleracea and Brassica rapa. Plant Cell Tiss Org 86:7–14

Sato Y, Okamoto S, Nishio T (2004) Diversification and alteration of recognition specificity of the pollen ligand SP11/SCR in self-incompatibility of Brassica and Raphanus. Plant Cell 16:3230–3241

Schaefer SC, Gasic K, Cammune B, Broekaert W, van Damme EJM, Peumans WJ, Korban SS (2005) Enhanced resistance to early blight in transgenic tomato lines expressing heterologous plant defense genes. Planta 222:858–866

Schroeder HE, Scholtz AH, Wardley-Richardson T, Spencer D, Higgins TJV (1993) Transformation and regeneration of two cultivars of pea (Pisum sativum L.). Plant Physiol 101:751–757

Schroeder HE, Gollasch S, Moore A, Tabe LM, Craig S, Hardie DC, Chrispeels MJ, Spencer D, Higgins TJV (1995) Bean α-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L.). Plant Physiol 107:1233–1239

Schulze J, Balko C, Zellner B, Koprek T, Hänsch R, Nerlich A, Mendel RR (1995) Biologic transformation of cucumber using embryogenic suspension cultures: long-term expression of reporter genes. Plant Sci 112:192–206

Scott RJ, Draper J (1987) Transformation of carrot tissue derived from proembyonic suspension cells: A useful model system for gene expression in plants. Plant Mol Biol 8:265–274

Shade RE, Schroeder HE, Pueyo JJ, Tabe LM, Murdock LL, Higgins TJV, Chrispeels MJ (1994) Transgenic pea seeds expressing the α-amylase inhibitor of the common bean are resistant to bruchid beetles. Bio/Technology 12:793–796

Sharma MK, Singh NK, Jani D, Sisodia R, Thungapathra M, Gautam JK, Meena LS, Singh Y, Ghosh A, Tyagi AK, Sharma AK (2008) Expression of toxin co-regulated pilus subunit A (TCPA) of Vibrio cholerae and its immunogenic epitopes fused to cholera toxin B subunit in transgenic tomato (Solanum lycopersicum). Plant Cell Rep 27:307–318

Shiba H, Hinata K, Suzuki A, Isogai A (1995) Breakdown of self-incompatibility in Brassica by the antisense RNA of the SLG gene. Proc Jpn Acad B Phys 71:81–83

Shiba H, Kimura N, Takayama S, Hinata K, Suzuki A, Isogai A (2000) Alteration of the self-incompatibility phenotype in Brassica by transformation of the antisense SLG gene. Biosci Biotechnol Biochem 64:1016–1024

Shiba H, Takayama S, Iwano M, Shimosato H, Funato M, Nakagawa T, Che FS, Suzuki G, Watanabe M, Hinata K, Isogai A (2001) A pollen coat protein, SP11/SCR, determines the pollen S-specificity in the self-incompatibility of Brassica species. Plant Physiol 125:2095–2103

Shibata D (2005) Genome sequencing and functional genomics approaches in tomato. J Gen Plant Pathol 71:1–7

Shih CH, Chen Y, Wang M, Chu IK, Lo C (2008) Accumulation of isoflavone genistin in transgenic tomato plants overexpressing a soybean isoflavone synthase gene. J Agric Food Chem 56:5655–5661

Shin J, Cho H, Chung YY, Park MC (2003) Transformation of rice OsMADS1 gene causes homeotic mutations in floral organs of Chinese cabbage (Brassica campestris). J Plant Biol 46:46–51

Shin R, Han JH, Lee GJ, Peak KH (2002a) The potential use of a viral coat protein gene as a transgene screening marker and multiple virus resistance of pepper plants coexpressing coat proteins of cucumber mosaic virus and tomato mosaic virus. Transgenic Res 11:215–219
Shin R, Park JM, An JM, Paek KH (2002b) Ectopic expression of Tsi1 in transgenic hot pepper plants enhances host resistance to viral, bacterial, and oomycete pathogens. Mol Plant Microbe Interact 15:983–989
Silva JA, da Costa TS, Lucchetta L, Marini LJ, Zanuzzo MR, Lara N, Lara FR (2004) Characterization of ripening behavior in transgenic melons expressing an antisense 1-aminocyclopropane-1-carboxylic acid oxidase gene from apple. Postharvest Biol Technol 32:263–268
Sobolev AP, Segre AL, Giannino D, Mariotti D, Nicolodi C, Briosi E, Amato ME (2007) Strong increase of foliar inulin occurs in transgenic lettuce plants (Lactuca sativa L.) overexpressing the asparagus synthetase A gene from Escherichia coli. J Agr Food Chem 55:10827–10831
Song L, Zhao DG, Wu YJ, Li Y (2008) Transient expression of chicken alpha interferon gene in lettuce. J Zhejiang Univ Sci B 9:351–355
Soria-Guerra RE, Rosales-Mendoza S, Marquez-Mercado C, Lopez-Revilla R, Castillo-Collazo R, Alpuce-Solis AG (2007) Transgenic tomatoes express an antigenic polypeptide containing epitopes of the diphtheria, pertussis and tetanus exotoxins, encoded by a synthetic gene. Plant Cell Rep 26:961–968
Speirs J, Lee E, Holt K, Kim YD, Scott NS, Loveys B, Schuch W (1998) Genetic manipulation of alcohol dehydrogenase levels in ripening tomato fruit affects the balance of some flavor aldehydes and alcohols. Plant Physiol 117:1047–1058
Sprenger N, Schellenbaum L, van Dun K, Boller T, Wiemken A (1997) Fructan synthesis in transgenic tobacco and chicory plants expressing barley sucrose:fructan 6-fructosyltransferase. FEBS Lett 400:355–358
Srivastava V, Reddy AS, Guha-Mukherjee S (1988) Transformation and regeneration of Brassica oleracea mediated by an oncogenic Agrobacterium tumefaciens. Plant Cell Rep 7:504–507
Sui N, Li M, Zhao SJ, Li F, Liang H, Meng QW (2007) Overexpression of glycerol-3-phosphate acyltransferase gene improves chilling tolerance in tomato. Planta 226:1097–1108
Sun HJ, Cui ML, Ma B, Ezura H (2006) Functional expression of the taste-modifying protein, miraculin, in transgenic lettuce. FEBS Lett 580:620–626
Sun HJ, Kataoka H, Yano M, Ezura H (2007) Genetically stable expression of functional miraculin, a new type of alternative sweetener, in transgenic tomato plants. Plant Biotechnol J 5:786–777
Sun LY, Touraud G, Charbonnier C, Tepfer D (1991) Modification of phenotype in Belgian endive (Cichorium intybus) through genetic transformation by Agrobacterium rhizogenes: conversion from biennial to annual flowering. Transgenic Res 1:14–22
Szwacka M, Krzymowsk M, Osuch A, Kowalczyk ME, Malepszy S (2002) Variable properties of transgenic cucumber plants containing the thaumatin II gene from Thaumatococcus daniellii. Acta Physiol Plant 24:173–185
Tabaeizadeh Z, Agharbaoui Z, Harrak H, Poysa V (1999) Transgenic tomato plants expressing a Lycopersicon chilense chitinase gene demonstrate improved resistance to Verticillium dahliae race 2. Plant Cell Rep 19:197–202
Tabei Y, Kitade S, Nishizawa Y, Kikuchi N, Kayano T, Hibi T, Akutsu K (1998) Transgenic cucumber plants harboring a rice chitinase gene exhibit enhanced resistance to gray mold (Botrytis cinerea). Plant Cell Rep 17:159–164
Takaichi M, Oeda K (2000) Transgenic carrots with enhanced resistance against two major pathogens, Erysiphe heraclei and Alternaria dauci. Plant Sci 153:135–144
Takasaki T, Hatakeyama K, Watanabe M, Toriyama K, Isogai A, Hinata K (1999) Introduction of SLG (S locus glycoprotein) alters the phenotype of endogenous S haplotype, but confers no new S haplotype specificity in Brassica rapa L. Plant Mol Biol 40:659–668
Takasaki T, Hatakeyama K, Suzuki G, Watanabe M, Isogai A, Hinata K (2000) The S receptor kinase determines self-incompatibility in Brassica stigma. Nature 403:913–916
Takasaki T, Hatakeyama K, Watanabe M, Toriyama K, Hinata K (2001) Homology-dependent suppression of stigma phenotype by an antisense S-locus glycoprotein (SLG) gene in Brassica rapa L. Breed Sci 51:89–94
Tepfer D (1984) Transformation of several species of higher plants by *Agrobacterium rhizogenes*: sexual transmission of transformed genotypes and phenotypes. Cell 37:959–967

Thomas JC, Guiltinan MJ, Bustos S, Thomas T, Nessler C (1989) Carrot (*Daucus carota*) hypocotyl transformation using *Agrobacterium tumefaciens*. Plant Cell Rep 8:354–357

Thorsness MK, Kandasamy MK, Nasrallah ME, Nasrallah JB (1991) A *Brassica* S-locus gene promoter targets toxin gene expression and cell death to the pistil and pollen of transgenic *Nicotiana*. Dev Biol 143:173–184

Tigelaar H, Suiver MH, Molendijk L, Troost-van Deventer E, Sela-Buurlage MB, Storms J, Plooster J, Sijb bolts F, Custers J, Apotheker-de Groot M, Melchers LS (1996) Broad spectrum fungal resistance in transgenic carrot plants. Phytopathology 86:57

Timmerman-Vaughan GM, Pither-Joyce MD, Cooper PA, Russell AC, Goulden DS, Butler R, Grant JE (2001) Partial resistance of transgenic peas to alfalfa mosaic virus under greenhouse and field conditions. Crop Sci 41:846–853

Tomassoli L, I lardi V, Barba M, Kaniewski W (1999) Resistance of transgenic tomato to cucumber mosaic cucumovirus under field conditions. Mol Breed 5:121–130

Toriyama K, Stein JC, Nasrallah ME, Nasrallah JB (1991a) Transformation of *Brassica oleracea* with an S-locus gene from *Brassica campestris* changes the self-incompatibility phenotype. Theor Appl Genet 81:769–776

Toriyama K, Thorsness MK, Nasrallah JB, Nasrallah ME (1991b) A *Brassica* S locus gene promoter directs sporophytic expression in the anther tapetum of transgenic *Arabidopsis*. Dev Biol 143:427–431

Torres AC, Cantli ffe DJ, Laughner B, Bieniek M, Nagata R, Ashraf M, Ferl RJ (1993) Stable transformation of lettuce cultivar South Bay from cotyledon explants. Plant Cell Tiss Org 34:279–285

Torres AC, Nagata RT, Ferl RJ, Bewick TA, Cantli ffe DJ (1999) In vitro assay selection of glyphosate resistance in lettuce. J Am Soc Hort Sci 124:86–89

Tricoli DM, Carney KJ, Russell PF, McMaster JR, Groff DW, Hadden KC, Him mel PT, Hubbard JP, Boeshore ML, Quemada HD (1995) Field evaluation of transgenic squash containing single or multiple virus coat protein gene constructs for resistance to cucumber mosaic virus, watermelon mosaic virus 2, and zucchini yellow mosaic virus. Bio/Technology 13: 1458–1465

Trulson AJ, Simpson RB, Shahin EA (1986) Transformation of cucumber (*Cucumis sativus* L.) plants with *Agrobacterium rhizogenes*. Theor Appl Genet 73:11–15

Tsaftaris A (1996) The development of herbicide-tolerant transgenic crops. Field Crop Res 45:115–123

Tseng MJ, Liu CW, Yiu JC (2007) Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts. Plant Physiol Biochem 45:822–833

Tseng MJ, Liu CW, Yiu JC (2008) Tolerance to sulfur dioxide in transgenic Chinese cabbage transformed with both the superoxide dismutase containing manganese and catalase genes of *Escherichia coli*. Sci Hort 115:101–110

Turrini A, Sbrana C, Pitto L, Ruffini Castiglione M, Giorgetti L, Briganti R, Bracci T, Evangelista M, Nuti MP, Giovanetti M (2004) The antifungal Dm-AMP1 protein from *Dahlia merckii* expressed in *Solanum melongena* is released in root exudates and differentially affects pathogenic fungi and mycorrhizal symbiosis. New Phyto 163:393–403

Ulltzen T, Gielen J, Venema F, Westerbroek A, de Haan P, Tan ML, Schram A, van Grinsven M, Goldbach R (1995) Resistance to tomato spotted wilt virus in transgenic tomato hybrids. Euphytica 85:159–168

Valles MP, Lasa JM (1994) *Agrobacterium*-mediated transformation of commercial melon (*Cucumis melo* L., cv. Amarillo Oro). Plant Cell Rep 13:145–148

Vanjildorj E, Bae TW, Riu KZ, Kim SY, Lee HY (2005) Overexpression of *Arabidopsis ABF3* gene enhances tolerance to drought and cold in transgenic lettuce (*Lactuca sativa*). Plant Cell Tiss Org 83:41–50
Vermeulen A, Vaucheret H, Pautot V, Chupeau Y (1992) Agrobacterium mediated transfer of a mutant Arabidopsis acetolactate synthase gene confers resistance to chlorsulfuron in chicory (Cichorium intybus L.). Plant Cell Rep 11:243–247

Vijn I, van Dijken A, Sprenger N, van Dun K, Weisbeek P, Wienken A, Smeekens S (1997) Fructan of the inulin neoseries is synthesized in transgenic chicory plants (Cichorium intybus L.) harbouring onion (Allium cepa L.) fructan:fructan 6G-fructosyltransferase. Plant J 11:387–398

Vos P, Simons G, Jesse T, Wijbrandy J, Heinen L, Hogers R, Frijters A, Groenendijk J, Diergaard P, Reijmans M, Fierens-Onstenk J, de Both M, Peleman J, Liharska T, Hontelez J, Zabeau M (1998) The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids. Nat Biotechnol 16:1365–1369

Wang C, Chin CK, Ho CT, Hwang CF, Polashock JJ, Martin CE (1996) Changes of fatty acids and fatty acid-derived flavor compounds by expressing the yeast α-9 desaturase gene in tomato. J Agric Food Chem 44:3399–3402

Wang GL, Fang HJ, WangHX, Li HY, Wei YT (2002) Pathogen-resistant transgenic plant of Brassica pekinensis by transferring antibacterial peptide gene and its genetic stability. Acta Bot Sin 44:951–955

Wang LJ, Ni DA, Chen YN, Lee ZM (2001) The expression of Mycobacterium tuberculosis MPT64 protein in transgenic carrots. Acta Bot Sin 43:132–137

Wang Y, Wisniewski M, Meilan R, Cui M, Fuchigami L (2006) Transgenic tomato (Lycopersicon esculentum) overexpressing cAPX exhibits enhanced tolerance to UV-B and heat stress. J Appl Hort 8:87–90

Webster DE, Smith SD, Pickering RJ, Strugnell RA, Dry IB, Wesselingh SL (2006) Measles virus hemagglutinin protein expressed in transgenic lettuce induces neutralising antibodies in mice following mucosal vaccination. Vaccine 24:3538–3544

Wells JJ (1999) Yellow nutsedge control in summer vegetables and development of glycosate-tolerant spinach. Dissertation, University of Arkansas, Fayetteville

Whitham S, McCormick S, Baker B (1996) The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc Natl Acad Sci USA 93:8776–8781

Williams ME (1995) Genetic engineering for pollination control. Trends Biotechnol 13:344–349

Wurtele ES, Bulka K (1989) A simple, efficient method for the Agrobacterium-mediated transformation of carrot callus cells. Plant Sci 61:253–262

Xie J, Ouyang XZ, XiaKF, Huang YF, PanWB, CaiYP, XuXP, LiBJ, XuZF (2007) Chloroplast-like organelles were found in nuculeate sieve elements of transgenic plants overexpressing a proteinase inhibitor. Biosci Biotechnol Biochem 71:2759–2765

Xing JS, Chin CK (2000) Modification of fatty acids in eggplant affects its resistance to Verticillium dahliae. Physiol Mol Plant Pathol 56:217–225

Xiong AS, Yao OD, Peng RH, Li X, Han PL, Fan HQ (2005) Different effects on ACC oxidase gene silencing triggered by RNA interference in transgenic tomato. Plant Cell Rep 23:639–646

Xu HJ, Wang XF, Hong Z, Fan L (2008) An intensive understanding of vacuum infiltration transformation of pakchoi (Brassica rapa ssp. chinensis). Plant Cell Rep 27:1369–1376

Xu ZF, Teng WL, Chye ML (2004) Inhibition of endogenous trypsin- and chymotrypsin-like activities in transgenic lettuce expressing heterogeneous proteinase inhibitor SaPIN2a. Planta 218:623–629

Yang Y, Al-Khayri JM, Anderson EJ (1997) Transgenic spinach plants expressing the coat protein of cucumber mosaic virus. In Vitro Cell Dev Plant 33:200–204

Yang Y, Sherwood TA, Patte CP, Hiebert E, Polston JE (2004) Use of Tomato yellow leaf curl virus (TYLCV) Rep gene sequences to engineer TYLCV resistance in tomato. Phytopathology 94:490–496

Yin Z, Pawłowicz I, Bartoszewski G, Malinowski R, Malepszy S, Rorat T (2004) Transcriptional expression of a Solanum sogarandinum pGt::Dhn10 gene fusion in cucumber, and its correlation with chilling tolerance in transgenic seedlings. Cell Mol Biol Lett 9:891–902

Yin Z, Piątkowska A, Szwacka M, Malepszy S (2005) Transgenic cucumber — a current state. Folia Hort 17:73–90
Yin Z, Malinowski R, Ziółkowska A, Sommer H, Malepszy S (2006a) The DefH9-iaaM-containing construct efficiently induces parthenocarpy in cucumber. Cell Mol Biol Lett 11:279–290

Yin Z, Rorat T, Szabala BM, Ziółkowska A, Malepszy S (2006b) Expression of a Solanum sogarandinum SK3-type dehydrin enhances cold tolerance in transgenic cucumber seedlings. Plant Sci 170:1164–1172

Youm JW, Jeon JH, Kim H (2008) Transgenic tomatoes expressing human beta-amyloid for use as a vaccine against Alzheimer’s disease. Biotechnol Lett 30:1839–1845

Yu XL, Cao JS, Ye WZ, Wang YQ (2004) Construction of an antisense CYP86MF gene plasmid vector and production of a male-sterile Chinese cabbage transformant by the pollen-tube method. J Hortic Sci Biotech 79:833–839

Yu ZD, Zhao SY, He QW (2007) High level resistance to Turnip mosaic virus in Chinese cabbage (Brassica campestris ssp. pekinensis (Lour) Olsson) transformed with the antisense Nb gene using marker-free Agrobacterium tumefaciens infiltration. Plant Sci 172:920–929

Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

Zhang HX, Zeevaart JAD (1999) An efficient Agrobacterium tumefaciens mediated transformation and regeneration system for cotyledons of spinach (Spinacia oleracea L.). Plant Cell Rep 18:640–645

Zhang Q, Huang L, Liu TT, Yu XL, Cao JS (2008) Functional analysis of a pollen-expressed polygalacturonase gene BcMF6 in Chinese cabbage (Brassica campestris L. ssp. chinesis Makino). Plant Cell Rep 27:1207–1215

Zang YX, Kim JH, Park YD, Kim DH, Hong SB (2008a) Metabolic engineering of aliphatic glucosinolates in Chinese cabbage plants expressing Arabidopsis MAM1, CYP79F1, and CYP83A1. BMB Reports 41:472–478

Zang YX, Lim MH, Park BS, Hong SB, Kim DH (2008b) Metabolic engineering of indole glucosinolates in Chinese cabbage plants by expression of Arabidopsis CYP79B2, CYP79B3, and CYP83B1. Mol Cell 25:231–241

Zhao JL, Liang AH, Zhu Z, Tang YX (2006a) Regeneration of Chinese cabbage transgenic plants expressing antibacterial peptide gene and cowpea trypsin inhibitor gene. Euphytica 150:397–406

Zhao J, Xu h, Zhu Z, Liang A (2006b) Transformation of modified cowpea trypsin inhibitor gene and anti-bacterial peptide gene in Brassica pekinensis protoplasts mediated by Agrobacterium tumefaciens. Euphytica 149:317–326

Zheng SJ, Henken B, Ahn YK, Krens FA, Kik C (2004) The development of a reproducible Agrobacterium tumefaciens transformation system for garlic (Allium sativum L.) and the production of transgenic garlic resistant to beet armyworm (Spodoptera exigua Hübner). Mol Breed 14:293–307

Zheng SJ, Henken B, de Maagd RA, Purwito A, Krens FA, Kik C (2005) Two different Bacillus thuringiensis toxin genes confer resistance to beet armyworm (Spodoptera exigua Hübner) in transgenic Bi-shallots (Allium cepa L.). Transgenic Res 14:261–272

Zhu YX, Ouyang WJ, Zhang YF, Chen ZL (1996) Transgenic sweet pepper plants from Agrobacterium-mediated transformation. Plant Cell Rep 16:71–75

Zuo XF, Zhang XY, Shan L, Xiao CY, He DX, Ru BG (2001) Expression of human intestinal trefoil factor (hITF) gene in lettuce. Acta Bot Sin 43:1047–1051

Zuo XF, Zhang YK, Wu BB, Chang X, Ru BG (2002) Expression of the mouse metallothionein mutant beta beta-cDNA in the lettuces (Lactuca sativa L.). Chin Sci Bull 47:558–562