Cycling area can be a confounder and effect modifier of the association between helmet use and cyclists’ risk of death after a crash

Daniel Molina-Soberanes1, Virginia Martínez-Ruiz1,2,3, Daniel Águila Gordo1,4, Luis Miguel Martín-delosReyes1, Mario Rivera-Izquierdo3,3 & Pablo Lardelli-Claret1,2,3

The effect of helmet use on reducing the risk of death in cyclists appears to be distorted by some variables (potential confounders, effect modifiers, or both). Our aim was to provide evidence for or against the hypothesis that cycling area may act as a confounder and effect modifier of the association between helmet use and risk of death of cyclists involved in road crashes. Data were analysed for 24,605 cyclists involved in road crashes in Spain. A multiple imputation procedure was used to mitigate the effect of missing values. We used multilevel Poisson regression with province as the group level to estimate the crude association between helmet use and risk of death, and also three adjusted analyses: (1) for cycling area only, (2) for the remaining variables which may act as confounders, and (3) for all variables. Incidence–density ratios (IDR) and their 95% confidence intervals were calculated. Crude IDR was 1.10, but stratifying by cycling area disclosed a protective, differential effect of helmet use: IDR = 0.67 in urban areas, IDR = 0.34 on open roads. Adjusting for all variables except cycling area yielded similar results in both strata, albeit with a smaller difference between them. Adjusting for cycling area only yielded a strong association (IDR = 0.42), which was slightly lower in the adjusted analysis for all variables (IDR = 0.45). Cycling area can act as a confounder and also appears to act as an effect modifier (albeit to a lesser extent) of the risk of cyclists’ death after a crash.

The hypothesis that helmet use decreases the risk of death in cyclists involved in road crashes has been supported in most previous works, including recent meta-analyses 1,2. However, the magnitude of this association varies widely across studies, including some which in fact reported an inverse association. For example, in a Spanish study that applied a Bayesian network model to a national police-based database, Aldred et al.3 found a higher risk of death or severe injury after a crash in helmeted cyclists compared to non-helmeted ones (relative risk = 1.3). Among the reasons for the discrepancies among studies (which may include, but are not limited to, small sample size, e.g., no large studies have estimated negative effects of helmet use on head injury), confounding and effect modification stand out. These are two theoretically different concepts: confounding is a bias which must be removed; effect modification reflects a real biological effect which should be detected and communicated4.

With regard to confounding, it seems clear that helmeted and non-helmeted cyclists differ in many other characteristics which may affect their risk of death after a crash, and these differences preclude an unbiased estimate of the possible causal association between helmet use and death5–9. Unfortunately, in a recent meta-analysis highlighting the protective effect of helmet use by cyclists, Høye1 found that adjusting for confounders was uncommon: researchers adjusted mostly for age or sex, if at all. However, cyclist- or environment-related characteristics may influence the strength of the true causal relationship between helmet use and death, acting as effect modifiers. An example of this phenomenon is the speed of the collision. For example, it could be

1Department of Preventive Medicine and Public Health, School of Medicine, University of Granada, Avenida de la Investigación 11, Building A, 8th Floor, CP 18016 Granada, Spain. 2Centre for Biomedical Research in Network of Epidemiology and Public Health (CIBERESP), Madrid, Spain. 3Health Research Institute of Granada (Instituto Biosanitario de Granada, ibs.GRANADA), Granada, Spain. 4Cardiology Service, University General Hospital, Ciudad Real, Spain. *email: virmruiz@ugr.es
The aim of this study is to search for evidence for or against the hypothesis that cycling area may act as a confounder and an effect modifier of the association between helmet use and risk of death among cyclists involved in road crashes.

Discussion

In line with most previous studies, our final results show an inverse relationship between cyclists’ helmet use and death. The magnitude of this association (IDR 0.45 after adjustment for all variables; i.e. risk reduction of 55%) was very similar from that observed in previous meta-analyses and not very different from that reported in Australia after helmet laws were introduced. These estimates are important in the road safety area. To contextualize it, a recent meta-analysis has pointed out that seatbelts reduce fatal injuries by 44% among rear seat occupants.

Although a causal interpretation cannot be ascribed to this association (as is the case for any observational study of this nature), it provides another piece of evidence in favour of the protective effect of helmets on the risk of a cyclist’s death after a crash. However, the main utility of our study is to stress the need for observational study designs to give careful consideration to the strong confounding or modifier effect of some variables which may be easily overlooked. Regarding the protective effect of helmet use, cycling area is an excellent example of a confounder. Although mandatory legislation such as that currently in effect in Spain, Israel, Chile or Slovakia might be a main determinant of differences in the prevalence of helmet use depending on cycling area, this is not the only cause. Several other studies have reported similar results, with the higher prevalence of helmet use on open roads explained by factors such as sport cycling and differences in risk perception. In addition, the association between the area where the crash occurred and its severity is well documented in previous studies.

It is not easy to find published examples of actual variables which should be considered potential confounders or effect modifiers. Cycling area (open road vs. urban setting) is an excellent example of a variable which can act as a confounder and (indirectly) as an effect modifier in the causal link between helmet use and death. The directed acyclic graph depicted in Fig. illustrates this dual role. Helmet use is mandatory in Spain for cycling on open roads but not in urban areas (except for children under 16 years old). Therefore, the distribution of cycling area is clearly unbalanced between helmeted and non-helmeted cyclists involved in road crashes. Furthermore, cycling area strongly affects the travelling speed of both cyclists and other vehicles on the road, which in turn is the main determinant of cyclists’ risk of death after a collision. These facts make cycling area a potentially strong confounder, opening a backdoor (non-causal) path between helmet use and death, and thus biasing toward the null any estimates of the causal path. Furthermore, cycling area is a major ascendant variable that influences collision speed by setting speed limits for each of the two environments. Therefore, the speed at the time of the crash would be related to the amount of kinetic energy at impact and, as hypothesized above, may in turn modify the magnitude of the causal association between helmet use and death.

Figure 1. Directed acyclic graph of the theoretical model for the confounding or modifier effect of cycling area on the causal path between helmet use and death.
Variable	Categories	All	Urban areas	Open roads						
	N	%	N	%	N	%	N	%	N	%
Death										
No	24,263	98.61	16,408	99.00	7855	97.81				
Yes	239	0.97	65	0.39	174	2.17				
Unknown	103	0.42	101	0.61	2	0.02				
Helmet use										
No	6932	28.17	6068	36.61	864	10.76				
Yes	11,083	45.04	4603	27.77	6480	80.69				
Unknown	6590	26.87	5903	35.62	687	8.55				
Sex										
Male	20,321	82.59	12,959	78.19	7362	91.67				
Female	3926	15.96	3266	19.71	660	8.22				
Unknown	358	1.45	349	2.11	9	0.11				
Age groups (years)										
< 10	299	1.22	270	1.63	29	0.36				
≥ 10–15	1045	4.25	909	5.48	336	4.19				
≥ 15–20	2453	9.97	2070	12.49	383	4.77				
≥ 20–25	1895	7.70	1606	9.69	289	3.60				
≥ 25–30	1928	7.84	1510	9.11	418	5.20				
≥ 30–35	2183	8.87	1526	9.21	657	8.18				
≥ 35–40	2608	10.60	1601	9.66	1007	12.54				
≥ 40–45	2467	10.03	1433	8.65	1034	12.88				
≥ 45–50	2187	8.89	1208	7.29	979	12.19				
≥ 50–55	1872	7.61	1071	6.46	801	9.97				
≥ 55–60	1494	6.07	821	4.95	673	8.38				
≥ 60–65	1114	4.53	543	3.28	571	7.11				
≥ 65–70	913	3.71	444	2.68	469	5.84				
≥ 70–75	523	2.13	253	1.53	270	3.36				
≥ 75	511	2.08	304	1.83	207	2.58				
Unknown	1113	4.52	1005	6.06	108	1.34				
Nationality										
Spanish	17,936	72.90	11,757	70.94	6179	76.94				
Foreign	651	2.65	230	1.39	421	5.24				
Unknown	6018	24.46	4587	27.68	1431	17.82				
Reason for cycling										
Work-related	1014	4.12	818	4.94	196	2.44				
Other reason	10,899	44.30	5014	30.25	5885	73.28				
Unknown	12,692	51.58	10,742	64.81	1950	24.28				
Cycling infractions										
No	10,555	42.90	6211	37.47	4344	54.09				
Yes	4315	17.54	3116	18.80	1199	14.93				
Unknown	9735	39.57	7247	43.73	2488	30.98				
Type of crash										
Collision with moving vehicle	14,143	57.48	9930	59.91	4213	52.46				
Other	10,462	42.52	6644	40.09	3818	47.54				
Road surface										
Normal	21,306	86.59	14,102	85.09	7204	89.70				
Altered	1983	8.06	1178	7.11	805	10.02				
Unknown	1316	5.35	1294	7.81	22	0.27				
Weather conditions										
Good	20,061	81.53	12,707	76.67	7354	91.57				
Bad	1570	6.38	974	5.88	596	7.42				
Unknown	2974	12.09	2893	17.46	81	1.01				
Traffic lane characteristics										
Intersection	10,075	40.95	7225	43.59	2850	35.49				
Other	14,530	59.05	9349	56.41	5181	64.51				
Time of day										
00:00–02:59	343	1.39	299	1.80	44	0.55				
03:00–05:59	152	0.62	126	0.76	26	0.32				
06:00–08:59	1959	7.96	1384	8.35	575	7.16				
09:00–11:59	5938	24.13	3054	18.43	2884	35.91				
12:00–14:59	5765	23.43	3670	22.14	2095	26.09				
15:00–17:59	3812	15.49	2820	17.01	992	12.35				
18:00–20:59	4931	20.04	3715	22.41	1216	15.14				
21:00–23:59	1705	6.93	1506	9.09	199	2.48				

Continued
include open roads which may allow speed limits of almost double (90 km/h). Lastly, although Aldred et al. because, as in any police-based register, less severe crashes are underrepresented. If helmet use causes a true effect of helmet use was much greater in rural areas than on urban roads. These authors identified an interaction...behaves in both these ways. Second, our results stress the need to carefully address heterogeneity associated with crash severity, and thus with a fatal outcome. In Denmark, Kaplan et al. found severe injuries to be more frequent on rural roads than in dense urban settings. The authors hypothesized that safety in numbers might affect their associations, but it seems more plausible to attribute these differences to the speed of the vehicles involved in crashes. In Spain, speed limits in urban areas are set at 50 km/h maximum. Rural areas include open roads which may allow speed limits of almost double (90 km/h). Lastly, although Aldred et al. explicitly recognized the possible confounding role of cycling area on their estimate of the association between helmet use and crash severity, it seems surprising that they did not control for this factor.

With respect to other confounders, our results also show that cyclist- and environment-related factors tend to mask the inverse relationship between helmet use and death (i.e., an IDR of 1.10 in the crude estimate vs. 0.81 after adjustment for all variables except cycling area). After adjustment for cycling area, these factors continue to bias the association away from the null, albeit to a very small extent (i.e., an IDR of 0.42 or 0.45). This pattern is consistent with that found in several previous studies.

Regarding the hypothetical role of cycling area as an effect modifier, our results also provide evidence in support of this role, although the effect was smaller. The differences in our point estimates of IDR in the two strata defined by cycling area seem to point clearly to a stronger protective effect of helmet use on open roads, where collision speeds are likely higher. This pattern was evident in our crude IDR; however, the differences were smaller for the corresponding adjusted estimates given that their 95% CI overlapped, and the high P value does not allow us to rule out chance as the only explanation for these differences. Unfortunately, comparisons between these findings and previous studies are hampered by the lack of published studies on this topic. We identified only one similar study (from France), in which Amoros et al. found—as we did—that the protective effect of helmet use was much greater in rural areas than on urban roads. These authors identified an interaction between helmet use and area of the crash for the risk of severe injuries.

Apart from its observational design, other limitations related mainly with our data source may compromise the validity of our estimates. Our database is not supported by any coroner’s report, thus, the cause of death cannot be identified objectively, and it could have been due to other unrelated causes. Selection bias may arise between helmet use and risk of death is supported by our results. The findings for the role of cycling area as an effect modifier, however, are less clear although our results point towards this effect. These results have two practical implications. First, we provide an excellent real-life example for teaching purposes in two topics that are highly relevant to epidemiology, e.g., confounding and effect modification, given that it is not easy to find a variable which can behave in both these ways. Second, our results stress the need to carefully address heterogeneity...
across observational studies in attempts to analyse the magnitude of effect of protective interventions such as helmet use. Our results draw attention to the need for road safety researchers to be alert to the potentially important effect that some easily overlooked variables may have on causal mechanisms inferred from estimates of the magnitude of association. Otherwise, the direction of the estimated associations could be incorrect, as in some of the studies mentioned above. This would be an example of Simpson's paradox.

Methods
We analysed the case series comprising all 24,605 cyclists involved in road crashes in Spain from 2014 to 2017, as recorded in the Spanish Register of Victims of Road Crashes maintained by the Spanish National Directorate of Traffic. Except for data from two regions (Catalonia and Basque Country), for which information is lacking for 2014 and 2015, this is a nationwide, anonymized police-based database that contains data on every crash recorded by the national police corps in which at least one person was injured. We excluded crashes that occurred in Ceuta and Melilla—Spanish cities located overseas that have no open roads. Because the database is anonymized and maintained by a third party, and there was no intervention, this study was exempt from the requirement to seek informed consent or ethics committee approval.

Our exposure variable was helmet use (yes/no), and our outcome was death within the first 30 days after the crash (yes/no). Other covariates were individual characteristics of the cyclists, and environmental variables. Further information and details on the selection of variables were reported previously. These variables are summarized in Table 1.

The proportion of missing values for our exposure variable (helmet use) was greater than 25%. Assuming that a non-despicable proportion could have been missed due to a missing-at-random mechanism, we used the Stata’s command ICE to implement a multiple imputation procedure with 50 iterations according to the chained equations method proposed by Van Buuren, as suggested by the existing literature. We considered that there could be differences in our data nested in the province where the crashed occurred, so a multilevel model was used (with cyclist and province as aggregation levels). Because death was an infrequent outcome, we used Poisson regression modelling to obtain the incidence—death ratio with 95% confidence intervals (IDR; 95% CI) in order to quantify the magnitude of association between helmet use and the risk of death. The estimates for each imputed dataset were combined by applying Rubin’s method with the MIM command. We obtained crude IDR estimates for the whole sample, and for two strata according to cycling area, and three additional IDR: adjusting (1) only for cycling area, (2) for the remaining variables which could act as confounders, and (3) for all variables. The P value for the interaction term between helmet use and cycling area was obtained in crude and adjusted models. All statistical analyses were done with Stata software.

Data availability
The data underlying this article were provided by Spanish National Directorate of Traffic by permission. Data will be shared on request to the corresponding author with permission of Spanish National Directorate of Traffic.

Received: 26 July 2021; Accepted: 21 January 2022
Published online: 24 February 2022

References
1. Høye, A. Bicycle helmets—To wear or not to wear? A meta-analyses of the effects of bicycle helmets on injuries. Accid. Anal. Prev. 117, 83–97 (2018).
2. Olivier, J. & Creighton, P. Bicycle injuries and helmet use: A systematic review and meta-analysis. Int. J. Epidemiol. 46, 278–292 (2017).
3. Aldred, R., García-Herrero, S., Anaya, E., Herrera, S. & Mariscal, M. A. Cyclist injury severity in Spain: A Bayesian analysis of police road injury data focusing on involved vehicles and route environment. Int. J. Environ. Res. Public Health 17, 96 (2020).
4. Knottnerus, J. A. & Tugwell, P. Confounding obscures our view, effect modification is part of reality. J. Clin. Epidemiol. 114, v–vi (2019).
5. Esmaeilikia, M., Radun, I., Grzebieta, R. & Olivier, J. Bicycle helmets and risky behaviour: A systematic review. Transp. Res. Pt F-Traffic Psychol. Behav. 60, 299–310 (2019).
6. Bambach, M. R., Mitchell, R. J., Grzebieta, R. H. & Olivier, J. The effectiveness of helmets in bicycle collisions with motor vehicles: A case-control study. Accid. Anal. Prev. 53, 78–88 (2013).
7. Ritter, N. & Vance, C. The determinants of bicycle helmet use: Evidence from Germany. Accid. Anal. Prev. 43, 95–100 (2011).
8. Fyhri, A., Bjørnskau, T. & Backer-Grøndahl, A. Bicycle helmets—A case of risk compensation?. Transp. Res. Pt F-Traffic Psychol. Behav. 15, 612–624 (2012).
9. Dagher, J. H., Costa, C., Lamoureux, J., de Guise, E. & Feyz, M. Comparative outcomes of traumatic brain injury from biking accidents with or without helmet use. Can. J. Neurol. Sci. 43, 56–64 (2016).
10. Jeppsson, H. & Lubbe, N. Simulating Automated Emergency Braking with and without Torricelli Vacuum Emergency Braking for cyclists: Effect of brake deceleration and sensor field-of-view on accidents, injuries and fatalities. Accid. Anal. Prev. 142, 105538 (2020).
11. Olivier, J., Boufous, S. & Grzebieta, R. The impact of bicycle helmet legislation on cycling fatalities in Australia. Int. J. Epidemiol. 48, 1197–1203 (2019).
12. Høye, A. How would increasing seat belt use affect the number of killed or seriously injured light vehicle occupants?. Accid. Anal. Prev. 88, 175–186 (2016).
13. Olivier, J., Esmaeilikia, M. & Grzebieta, R. Bicycle helmets: systematic reviews on legislation, effects of legislation on cycling exposure, and risk compensation. https://trid.trb.org/view/1596919 (2018). Accessed June 28, 2021.
14. Amoros, E., Chiron, M., Martin, J.-L., Thélot, B. & Laumon, B. Bicycle helmet wearing and the risk of head, face, and neck injury: A French case–control study based on a road trauma registry. Inj. Prev. 18, 27–32 (2012).
15. Harlos, S. et al. Urban and rural patterns of bicycle helmet use: Factors predicting usage. Inj. Prev. 5, 183–188 (1999).
16. Schmidt, C. W. et al. Bicycling rates and the prevalence of helmet usage in Wisconsin. WMJ 119, 91–95 (2020).
17. Molina-Soberanes, D. et al. Individual and environmental factors associated with death of cyclists involved in road crashes in Spain: a cohort study. BMJ Open 9, e028039 (2019).
The authors declare no competing interests.

Author contributions

We wish to thank the Spanish General Traffic Directorate (DGT) for allowing access to their database of traffic accidents with victims, and K. Shashok for improving the use of English in the manuscript.

Acknowledgements

We wish to thank the Spanish General Traffic Directorate (DGT) for allowing access to their database of traffic accidents with victims, and K. Shashok for improving the use of English in the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to V.M.-R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2022