Dark Matter in the Left Right Twin Higgs Model

Ethan Dolle

University of Arizona

Work done with Shufang Su, Jessica Goodman
Outline

- the Left-Right Twin Higgs Model
- Relic Density Analysis
- Direct and Indirect detection
- Conclusion
Left Right Twin Higgs Model

- Presented by Chacko, Goh, and Harnik
 - arXiv:hep-ph/0506256v1

- Motivation?
 - Little Hierarchy Problem

- Add a second higgs doublet \hat{H} to the SM that does not get a VEV
introduce dark matter

- add $H_{\hat{h}} \rightarrow (0,0,0,f_{\hat{h}})$
- explain which one is dark matter, why stable
- $H_{L_{\hat{h}}}=(H_1, H_2)$

- $H_2=S+iA$, explain why need $\delta=m_A-m_S$
- introduce $\delta=m_{h_1}-m_{H_2}$

- New Higgs: weak interactions \rightarrow WIMP
Left Right Twin Higgs Model

- Similar to Inert Higgs Doublet Model, proposed by Barbieri et al., the other paper
 - arXiv:hep-ph/0603188v2
 - SM higgs is heavy (Mh~500 GeV)
 - Charged, scalar, and pseudoscalar higgs are only extra particles
Left Right Twin Higgs Model

New particles in Twin Higgs Model

- Heavy gauge bosons
- Heavy top
- Heavy neutrinos
- Charged and neutral scalars
- Charged higgs
- Scalar and Pseudoscalar higgs

make a table show the difference
Relic Density Analysis

- WMAP: $0.093 < \Omega h^2 < 0.128$ at 2σ level

- Boltzman eq here

- Consider co-annihilation

- Used program micrOMEGAS_2.0 to calculate the relic abundance
 - calchep_2.4.4 used to calculate tree-level cross sections
Relic Density Analysis

- Modest choice of parameters yields two favored regions
Relic Density Analysis

- Modest choice of parameters yields two favored regions
 - Low mass: $M_{h2S} \leq M_w$
Relic Density Analysis

- Modest choice of parameters yields two favored regions
 - Low mass: $M_{h2S} \leq M_w$
 - High mass: $M_{h2S} \sim 500$ GeV
Relic Density Analysis

- Modest choice of parameters yields two favored regions
 - Low mass: $M_{h2S} \leq M_w$
 - High mass: $M_{h2S} \sim 500$ GeV

- PLOTS FOR NEXT SLIDES
 - High Mass:
 - $\Omega m g h^2$ vs f_1, for various delta
 - $\omega g h^2$ vs delta, for various f_1
 - $\Omega m g h^2$ contour in M_{h2S}-f_1 plane
 - Low Mass:
 - $\Omega m g h^2$ contour in M_{h2S}-f_1 plane
 - $\Omega m g h^2$ vs f_1???
Relic Density Analysis

point out two region, explain pole region
Direct Detection

- General idea: observe recoil of detector nuclei from dark matter collisions.
 - $S+G \rightarrow S+G$ through SM higgs exchange
 - $S+q \rightarrow A+q$ through Z exchange
 - Constrains S-A mass splitting to be non-zero

- Contributions from spin independent and spin dependent cross sections

- Spin independent contribution dominates
Direct Detection

- Best measurements to date:
 - Spin Independent:
 - Xenon10 2007 (BG subtract)
 - CDMS (Soudan) 2004+2005 (Ge)
 - Zeplin II
 - Spin Dependent:
 - NAIAD 2005 (neutron)

- Best projected measurements for future detectors:
 - Spin Independent
 - Super CDMS phase C
 - Zeplin4/Max
 - Xenon1T
 - Spin Dependent
 - NAIAD
direct Detection

- show results, difficult
Indirect Detection

- dark matter annihilate into gamma, neutrino, positron

- gamma
 - MOOnochromatic(?) gamma ray
 - $S,S\rightarrow\gamma,\gamma (\gamma,h) (\gamma,Z)$
 - Through loop processes only
 - Monochromatic
 - hadronization and fragmentation.
 - $S,S\rightarrow q,q_{\overline{b}}$ or $S,S\rightarrow Z,Z \rightarrow Z,q,q_{\overline{b}}$
 - final state charged particle radiation.
 - $S,S\rightarrow \gamma,W^+,W^-$
 - Unique signature
Indirect Detection

- formulas, $\Gamma \sim (\rho)^2$
- Increased events for areas of high density
 - Galactic Halo
- High dependence on halo dark matter density distribution, $J \, \delta \, \Omega = 1 - 100$
- Exp sentivity
Indirect Detection

- 3 plots, PLOTS>>>
 - $d(\sigma v)/dE$
 - ???

- NUMBERS>>>
 - THM Limits
 - Current Detector Limits, Future Limits
Conclusion

- Left Right Twin Higgs Model provides a natural dark matter candidate
- Can explain 100% of dark matter observed by WMAP
- Direct difficult
- Indirect detection: hadronization possible, other two difficult
- Thank you!