Measurement of Bottom versus Charm as a Function of Transverse Momentum with Electron-Hadron Correlations in $p+p$ Collisions at $\sqrt{s} = 200$ GeV

A. Adare, S. Afanasiev, C. Aidala, N.N. Ajitanand, Y. Akiba, H. Al-Bataineh, J. Alexander, K. Aoki, L. Aploncetche, R. Armendariz, S.H. Aronson, J. Asai, E.T. Atomsaa, R. Averbeck, T.C. Aves, B. Auzmoun, V. Babintsev, M. Bai, G. Baksay, L. Baksay, A. Baldissensi, K.N. Barish, P.D. Barnes, B. Bassalleck, A.T. Batsey, S. Bathe, S. Batsouli, V. Bublis, C. Baumann, A. Bazilevsky, S. Belikov, R. Bennett, A. Berdnikov, Y. Berdnikov, A.A. Bickel, J.G. Boissevein, H. Borel, K. Boyle, M.L. Brooks, H. Buesching, V. Bumazhnikov, G. Bunce, F. Butsyk, C.M. Camacho, S. Campbell, B.S. Chang, W.C. Chang, J.-L. Charvet, S. Chernenko, J. Chiba, C.Y. Chi, M. Chiu, I.J. Choi, R.K. Choudhury, T. Chujko, M. Chung, A. Churyum, V. Cianciolo, Z. Citron, C.R. Cleven, B.A. Cole, M.P. Comets, P. Constantin, M. Csanad, T. Csörgő, T. Dahms, S. Dairaku, K. Das, G. David, M.B. Deaton, K. Dehmelt, H. Delagrange, A. Denisov, D. Dent, D. Entenri, A. Deshpande, E.J. Desmond, O. Dietzsch, A. Dion, M. Donadelli, O. Dapri, A. Drees, K.A. Drees, A.K. Dubey, A. Durum, D. Dutta, V. Dzhordzhadze, Y.V. Efremenko, J. Egemen, F. Ellinghaus, W.S. Emmann, T. Engelmore, A. Enkonizono, H. En'yo, S. Esumi, K.O. Eyser, B. Fadim, D.E. Fields, M. Finger, J.R., F. Fleuret, S.L. Fokin, Z. Fraenkel, E. Frank, A.D. Frawley, K. Fujirii, Y. Fukao, T. Fusayasu, S. Gadrat, I.G. Garishvili, H. Gong, M. Goin, J. Gosset, Y. Goto, Granier de Cassagnac, N. Grau, S.V. Greene, M. Grosse Perdekamp, T. Gunji, H.-A. Gustafsson, T. Hachiya, A. Hadi, H. Hagenman, J.S. Haggerty, H. Hamagaki, R. Han, H. Harada, E.P. Hartouni, K. Haruna, E. Hashim, R. Hayano, M. Heffner, T.K. Hemmick, T. Hester, X. He, H. Hiejima, J.C. Hill, R. Hobbs, M. Hohlmann, W. Holzmann, K. Homma, B. Hong, T. Horaguchi, D. Hornbach, S. Huang, T. Ichihara, R. Ichimiya, Y. Ikeda, K. Imai, J. Imrek, M. Inaba, Y. Inoue, D. Isenhower, L. Isenhower, M. Ishihara, T. Isobe, K. Issah, A. Isupov, D. Ivanischev, B.V. Jacak, J. Jia, J. Jin, O. Jimouchi, B.M. Johnson, S.S. Joo, D. Jouan, F. Kajihara, S. Kancetani, J.H. Kang, H. Kanou, J. Kapustinsky, D. Kawall, A.V. Kazantsev, T. Kemap, A. Khanzadeev, K.M. Kijima, J. Kikuchi, B.I. Kim, D.H. Kim, D.J. Kim, D. E. Kim, S.H. Kim, E. Kinney, K. Kiriluk, K. Kiss, E. Kistenev, A. Kiyomichi, J. Klaven, C. Klein-Boeing, L. Kochenda, V. Kachokov, B. Komkov, M. Konno, J. Koster, D. Kotchetkov, A. Kozlov, A. Král, A. Kravitz, J. Kubart, G.J. Kunde, S. Kurihara, K. Kurita, G. Kurosawa, M.J. Kweon, Y. Kwon, S.S. Kyle, R. Lacey, Y.-S. Lai, J.-S. Lai, J.G. Lajoie, D. Layton, A. Lebedev, D.M. Lee, K.B. Lee, M.K. Lee, M.J. Leitich, M.A.L. Leite, B. Lenzi, P. Liebing, L. Liška, A. Litvinenko, H. Liu, M.X. Liu, X. Li, B. Love, D. Lynch, C.F. Maguire, Y.I. Makdisi, A. Malakhot, M.D. Malik, V.I. Manko, E. Mannel, Y. Mao, L. Marsak, H. Masui, F. Matathias, M.C. Mccumber, P.L. Mcgaughery, N. Meredith, Y. Mika, P. Mikes, E. Miller, A. Milov, S. Mioduszewski, M. Mishra, J.T. Mitchell, M. Mitrovski, A.K. Mohanty, Y. Morino, A. Morreale, D.P. Morrison, T.V. Moukhanov, D. Mukhopadhyay, J. Murata, G. Nagant, S. Nagamiya, Y. Nagata, J.L. Nagle, M. Naglis, M.I. Nagy, I. Nakagawa, Y. Nakamiya, T. Nakamura, K. Nakano, J. Newby, M. Nguyen, B.E. Norman, R. Nourcie, A.S. Nynian, E.O. O'Brien, S.X. Oda, C.A. Ogilvie, H. Ohnishi, H. Okada, J. Okada, M. Oka, O.O. Omwadi, Y. Onuki, A. Oskarsson, M. Ouchida, K. Ozawa, R. Pak, D. Pal, A.P.T. Palounek, V. Pantuev, V. Papavassiliou, J. Parker, W.J. Park, S.F. Pate, H. Pei, J.-C. Peng, H. Pereira, V. Peresedov, D.Yu. Persessounko, C. Pinenberg, M.L. Purschke, A.K. Purwar, H. Qu, J. Rák, A. Rakotozafindrabane, I. Ravinovich, K.F. Reid, S. Rembeczki, M. Reuter, K. Reygers, R. Riabov, R. Riabov, D. Roach, G. Roche, S.D. Rolnick, A. Romana, M. Rosati, S.S.E. Rosendahl, P. Rosnet, P. Rukoyatkin, R. Ružička, V.L. Rykov, B. Sahlu, S. Saito, A. Sakaguchi, S. Sakai, K. Sakashita, H. Sakata, V. Samsonov, S. Sato, T. Sato, S. Sawada, K. Sedgwick, J. Seele, R. Seidl, A. Yu. Semenov, V. Semenov, R. Seto, D. Sharma, I. Shein, A. Shevel, T.-A. Shibata, K. Shigaki, M. Shimomura, K. Shoji, P. Shukla, A. Sickles, C.L. Silva, D. Silvermyr, C.C. Silvestre, K.S. Sim, B.K. Singh, C.P. Singh, V. Singh, S. Skutnik, M. Slunečka, A. Soldatov, R.A. Soltz, W.E. Sondheim, S.P. Sorensen,
The momentum distribution of electrons from semi-leptonic decays of charm and bottom for mid-rapidity $|y| < 0.35$ in $p+p$ collisions at $\sqrt{s} = 200$ GeV is measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) over the transverse momentum range $2 < p_T < 7$ GeV/c. The ratio of the yield of electrons from bottom to that from charm is presented. The ratio is determined using partial $D/\bar{D} \to e^{\pm}K^{\mp}X$ (K unidentified) reconstruction. It is found that the yield of electrons from bottom becomes significant above 4 GeV/c in p_T. A fixed-order-plus-next-to-leading-log (FONLL) perturbative quantum chromodynamics (pQCD) calculation agrees with the data within the theoretical and experimental uncertainties. The extracted total bottom production cross section at this energy is $\sigma_{b}\pm0.35 < 3.9^{+1.2}_{-1.1}$ (stat) $^{+1.4}_{-1}$ (sys) μb.

PACS numbers: 13.85.Qk, 13.20.Fc, 13.20.He, 25.75.Dw

Measurements of heavy flavor production (charm and bottom) in $p+p$ collisions present stringent tests for pQCD calculations. For instance, while bottom production at the Tevatron is well described by next-to-leading order (NLO) pQCD, the cross section for charm production at high p_T, though compatible within the theoretical uncertainties, is higher than the preferred theoretical value by $\sim50\%$. Measurement of heavy flavor in $p+p$ collisions also provides an important baseline for study of the medium created in relativistic heavy-ion collisions. The PHENIX experiment at RHIC has measured single electrons from the semi-leptonic decay of heavy flavor at mid-rapidity in $p+p$ and Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. Strong suppression of the single electron yield at high p_T, which includes contributions from both charm and bottom decays, was observed in central Au+Au collisions. This effect is conventionally attributed to energy loss by the parent parton in the medium; one also expects the energy loss suffered by bottom quarks to be significantly less than that suffered by charm quarks due to the difference in their masses. Clearly, for both pQCD comparisons and the heavy-ion reference, one wants to disentangle the yields of charm and bottom at RHIC energies.

In this Letter, we present the yield ratio of single electrons from bottom to those from heavy flavor at mid-rapidity in $p+p$ collisions at $\sqrt{s}=200$ GeV, using partial $D/\bar{D} \to e^{\pm}K^{\mp}X$ (K unidentified) reconstruction.

The data were collected with the PHENIX detector in the 2005 and 2006 RHIC runs using its two central arm spectrometers. Each spectrometer covers $|y| < 0.35$ in pseudorapidity and $\Delta \phi = \pi/2$ in azimuth. The arms include drift chambers (DC) and pad chambers (PC1,2,3) for charged particle tracking, a ring imaging Čerenkov detector (RICH) and an electromagnetic calorimeter (EMCal) for electron identification and triggering. Beam-beam counters (BBCs), covering pseudorapidity $3.1 < \eta < 3.9$, measure the position of the collision vertex along the beam (z_{vtx}) and provide the interaction trigger. In the 2005 run, helium bags were placed in the space between the beam pipe and DC to reduce photon conversions. The bags were removed in 2006.

Two data sets are used for the analysis: (1) a minimum bias (MB) data set recorded with the BBC trigger, and (2) an electron enriched sample, recorded with a level-1 'ERT' trigger requiring a combination of EMCal and RICH information in coincidence with the BBC trigger. The BBC trigger cross section is $23.0^{+0.4}_{-0.3}$ mb. Since only $\sim53\%$ of inelastic $p+p$ collisions satisfy the BBC trigger condition, only a fraction of the inclusive electron production events are triggered. This fraction, which is p_T and process independent, is determined to be 0.79 ± 0.02. After selection of good runs and a vertex cut of $|z_{vtx}| < 25$ cm, an integrated luminosity ($\int Ldt$) in the ERT data of 1.77 pb$^{-1}$ in the 2005 run and 4.22 pb$^{-1}$ in the 2006 run are used for this analysis.

Charged particle tracks are reconstructed using the DC and PC1. The momentum resolution is $\sim1\%$ at $p_T \sim 1$ GeV/c, and the momentum scale is calibrated within 1%. Electron identification (eID) is performed using the RICH and EMCal. The purity of the electron sample is better than 99% for $1 < p_T < 5$ GeV/c. Our previous measurement determined the spectrum of the single electrons from heavy flavor in the 2005 run. Inclusive
electron spectra from the 2005 run and the 2006 run are consistent within 5% after taking into account a contribution from the increased photon conversion due to the absence of the helium bags.

The spectrum of the single electrons from heavy flavor is determined using the “cocktail method” [3, 4]. The electron spectrum from all known sources except semi-leptonic decay of heavy flavor is calculated using a Monte Carlo simulation and subtracted from the inclusive spectrum in the cocktail method. The dominant source of background is the π0 Dalitz decay. The cocktail also includes contributions from quarkonium (J/ψ, Υ) and the Drell-Yan process, which were neglected in our previous measurements [2, 4]. These contributions are negligible (smaller than 1% in background) for $p_T < 1$ GeV/c but, become significant at high p_T (above 10% for $p_T > 2.5$ GeV/c) [10]. The signal to background ratio increases with increasing p_T, approaching unity for $p_T \sim 3$ GeV/c [3].

The systematic uncertainties of the inclusive electron spectrum includes the uncertainty in luminosity (9.6%), geometrical acceptance (3%), e+e− detection efficiency (2%), and the ERT trigger efficiency (4% at $p_T > 2$ GeV/c). The uncertainty in the cocktail method is p_T dependent (3% at $p_T \sim 2$ GeV/c, increasing to 9% at 9 GeV/c).

The ratio of $(b \rightarrow e)$ to $(c \rightarrow e + b \rightarrow e)$ is extracted from the correlation between the heavy flavor electrons and associated hadrons [11]. The extraction is based on partial reconstruction of the $D/D \rightarrow e^\pm K^\mp X$ decay. The invariant mass of unlike-charge-sign electron-hadron pairs reveals a correlated signal below the meson mass of ~ 1.9 GeV/c2, because of the charge correlation in the D decays. Pairs are formed between a trigger electron (2.0 $< p_T < 7.0$ GeV/c) and an oppositely charged hadron (0.4 $< p_T < 5.0$ GeV/c). The acceptances of positive and negative charged particles are forced to be identical by a geometrical acceptance cut. Since the momentum range of well charged kaon identification is limited, K identification is not performed but the mass of all reconstructed hadrons is set to be that of the K. Most e^+e^- pairs are then removed by an electron veto cut for the hadrons. The reconstructed mass of e^+e^- pairs has a clear peak at low mass. The remaining background e^+e^- pairs are removed by requiring $M_{ee} > 80$ MeV/c2, where the pair mass is calculated assuming both particles in the pair are electrons.

Depending on the origin of the trigger electrons, the inclusive reconstructed electron-hadron pairs are: (1) unlike-sign pairs from charm, (2) unlike-sign pairs from bottom, (3) combinatorial background where the electron is a background electron and (4) background from unlike-sign hadron-hadron pairs due to hadron contamination in the electrons. The main background source is the combinatorial background (3) and almost all background electrons are from e^+e^- pair creation. Like-sign electron-hadron pairs are used to subtract this background. Since electrons from e^+e^- pair creation and hadrons do not contribute to charge correlated signals, subtraction using like-sign pairs cancels out completely the combinatorial background where the trigger electron is from e^+e^- pair creation (3). Only the negligibly small ($<1\%$) contribution from K_{ee}^0 decay is not canceled out by the subtraction in the background (3). The contribution from hadron contamination (4) is also less than a 1% effect due to the excellent electron identification. After the subtraction, the reconstructed pairs include a contribution from bottom (2) due to not identifying K. The contribution from bottom (2) is much smaller than that from charm (1) due to the bottom decay modes and kinematics. The reconstructed pairs also contain a signal from partial reconstruction of heavy flavor hadrons and a contribution from a combination of heavy flavor electrons and hadrons from jet fragmentation. The ratio of the yield of unlike-sign pairs to that of like-sign pairs is about 1.1 for invariant masses (M_{eK}) below 1.9 GeV/c2.

The fraction of bottom contribution to the electrons from heavy flavor is obtained as follows:

$$\frac{N_{b \rightarrow e}}{N_{c \rightarrow e + b \rightarrow e}} = \frac{\epsilon_c - \epsilon_{b\rightarrow e}}{\epsilon_c - \epsilon_{data}},$$ \hspace{1cm} (1)

where ϵ_{data} is the tagging efficiency in real data and $\epsilon_{c(b)}$ is the tagging efficiency for charm (bottom) production. These are defined as

$$\epsilon_{data} \equiv \frac{N_{pair}}{N_{e(HF)}}, \hspace{1cm} (2)$$

$$\epsilon_c \equiv \frac{N_{c \rightarrow e + b \rightarrow e}}{N_{c \rightarrow e + b \rightarrow e}}, \hspace{1cm} \epsilon_b \equiv \frac{N_{b \rightarrow e}}{N_{b \rightarrow e}},$$ \hspace{1cm} (3)

where $N_{e(HF)}$ is the number of measured heavy flavor electrons. N_{pair} is the number of background subtracted unlike-sign electron-hadron pairs for invariant mass within $0.4 < M_{eK} < 1.9$ GeV/c2, which corresponds to the mass range of charmed hadrons. Here, $N_{c(b) \rightarrow e + b \rightarrow e}$ is the number of reconstructed signals within $0.4 < M_{eK} < 1.9$ GeV/c2 for charm (bottom) production.

Figure 4 shows the M_{eK} distribution of the reconstructed signals, which is normalized by the yield of heavy flavor electrons ($N_{e(HF)}$) in the range $3 < p_T < 4$ GeV/c (panel a) and $4 < p_T < 5$ GeV/c (panel b). The tagging efficiency in real data, ϵ_{data}, is determined by the integration of the M_{eK} distribution in Fig. 4 from $M_{eK} = 0.4$ to 1.9 GeV/c2 as a function of electron p_T.

The tagging efficiencies for charm and bottom production, ϵ_c and ϵ_b, are calculated with the combination of PYTHIA and EVTGEN [12, 13]. PYTHIA is used to simulate charm and bottom production in $p+p$ collisions at $\sqrt{s} = 200$ GeV and is tuned to reproduce heavy flavor hadron ratios: $D^+/D^0 = 0.45 \pm 0.10$, $D_s/D^0 = 0.25 \pm 0.10$, $\Lambda_c/D^0 = 0.10 \pm 0.05$, $B^+/B^0 = 0.50$, $B_s/B^0 = 0.40 \pm 0.20$, and $B_{baryon}/B^0 = 0.20 \pm 0.15$ [10, 14, 13, 12, 17].
PHENIX acceptance for the reconstructed signal in the 2006 run. The electron p_T range is 3.0 - 4.0 GeV/c (a) and 4.0 - 5.0 GeV/c (b). The ratios, $(b \to e)/(c \to e + b \to e)$, in solid lines are 0.26 (a) and 0.63 (b). Error bars (boxes) indicate statistical (systematic) uncertainties.

Figure 1 shows the resulting bottom fraction, $(b \to e)/(c \to e + b \to e)$ as a function of electron p_T compared to a FONLL calculation [18]. The points show the experimental result. Vertical arrows are used to indicate upper and lower limits. The solid line is a FONLL prediction and the dotted lines represent the uncertainty of this FONLL prediction.

In Fig. 3, the single electron spectra for charm and bottom are measured from the ratio, $(b \to e)/(c \to e + b \to e)$, and the spectrum of the electrons from heavy flavor decays. The top panel shows the resulting single electron spectra from charm (triangles) and bottom (squares) compared to the FONLL predictions [18]. The measured spectrum of single electrons (circles) is also shown for reference. The middle (bottom) panel show the ratio of the measured cross sections to the FONLL calculation for charm (bottom) production. The shaded area shows the uncertainty in the FONLL prediction. The larger mass makes this uncertainty smaller in the case of bottom quarks. These calculations agree with the data for bottom production. The same is true for charm within the theoretical uncertainty with a ratio of data/FONLL of ~ 2. A similar tendency was obtained at the Tevatron [1,2].

The electron spectrum from bottom shown in Fig. 3 is integrated from $p_T = 3$ to 5 GeV/c and gives $4.8^{+1.8}_{-1.6}$(stat)$^{+1.9}_{-1.8}$(sys) nb. This spectrum is then extrapolated to $p_T = 0$ using the shape predicted by pQCD. PYTHIA with varying intrinsic k_T ($1.5 < k_T < 10$ GeV/c) and FONLL with varying factorization (μ_F) and renormalization (μ_R) scales (0.5 $< \mu_F, \mu_R/\sqrt{m^2 + p_T^2} < 2$) are used to evaluate the systematic uncertainty (12%) to this extrapolation. The extrapolation results in a bottom cross section at mid-rapidity of $d\sigma_{bc}/dy \mid_{y=0} = \ldots$
hadron ratios described above. Using hvqmnr ± shaded area shows the uncertainty in the FONLL prediction.

The fraction of bottom in heavy flavor electrons is determined to be $3 \pm 3\text{(stat)} \pm 1\text{(sys)} \mu b$ with 90% confidence level. However, according to our measurements, R_{AA}, of greater than 0.33 with the same confidence level. However, according to our measurements, R_{AA} is $0.25 \pm 0.05 \text{(stat)} \pm 0.05 \text{(sys)}$ at $5 < p_T < 6 \text{ GeV}/c$ [4] in the 0-10% central Au+Au collisions. At the same time the current level of uncertainty in the measurement precludes us from placing significant limits on the possible energy loss of bottom quarks.

In conclusion, the ratio of the yield of electrons from bottom to that from charm has been measured in $p+p$ collisions at $\sqrt{s} = 200 \text{ GeV}$. The ratio provides the first measurement of the spectrum of electrons from bottom at RHIC. FONLL calculations [18] agree with this result, which provides an important baseline for the study of heavy quark production in the hot and dense matter created in Au+Au collisions.

We thank the staff of the Collider-Accelerator and Physics Departments at BNL for their vital contributions. We acknowledge support from the Office of Nuclear Physics in DOE Office of Science, NSF and a sponsored research grant from Renaissance Technologies (U.S.A.), MEXT and JSPS (Japan), CNPq and FAPESP (Brazil), NSFC (China), MSMT (Czech Republic), IN2P3/CNRS, and CEA (France), BMBF, DAAD, and AvH (Germany), OTKA (Hungary), DAE (India), ISF (Israel), KRF and KOSEF (Korea), MES, RAS, and FAAE (Russia), VR and KAW (Sweden), U.S. CRDF for the FSU, US-Hungary Fulbright, and US-Israel BSF.

* Deceased

1 PHENIX Spokesperson: jacak@skipper.physics.sunysb.edu

[1] D. Acosta et al., Phys. Rev. D 71, 032001 (2005).

[2] D. Acosta et al., Phys. Rev. Lett. 91, 241804 (2003).

[3] S. S. Adler et al., Phys. Rev. Lett. 97, 252002 (2006).

[4] S. S. Adler et al., Phys. Rev. Lett. 98, 172301 (2007).

[5] M. Gyulassy and M. Plumer, Phys. Lett. B243, 432 (1990).

[6] Y. L. Dokshitzer and D. E. Kharzeev, Phys. Lett. B519, 199 (2001).

[7] H. van Hees et al., Phys. Rev. Lett. 73, 192301 (2008).

[8] K. Adcox et al., Nucl. Instrum. Methods Phys. Res. Sect. A499, 469 (2003).

[9] S. S. Adler et al., Phys. Rev. C 75, 024909 (2007).

[10] Y. Morino, arXiv:0905.3504 [nucl-ex].

[11] C. Albajar et al., Phys. Lett. B186, 237 (1987).

[12] T. Sjostrand, Comput. Phys. Commun. 82, 74 (1994).

[13] D. Lange, Nucl. Instrum. Methods A462, 152 (2001).

[14] D. Acosta et al., Phys. Rev. Lett. 91, 241804 (2003).

[15] L. Gladilin, [hep-ex/0912061]

[16] G. Alves et al., Phys. Rev. Lett 77, 2388 (1996).

[17] Particle Data Group 2007.

[18] M. Cacciari et al., Phys. Rev. Lett 95, 122001 (2005); private communication

[19] M. L. Mangano et al., Nucl. Phys. B405, 507 (1993).

[20] H. L. Lai et al., Eur. Phys. J. C12, 375 (2000).

[21] A. Adare et al. Phys. Lett. B670, 313 (2009).