Uracil-DNA Glycosylase Is Involved in DNA Demethylation and Required for Embryonic Development in the Zebrafish Embryo*S

Received for publication, February 25, 2014, and in revised form, April 16, 2014. Published, JBC Papers in Press, April 16, 2014, DOI 10.1074/jbc.M114.561019

Di Wu, Luxi Chen, Qingrui Sun, Xiaotong Wu, Shunji Jia, and Anming Meng

From the State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China

Background: Ung implication in DNA demethylation and embryonic development is poorly understood.

Results: unga knockdown in the zebrafish embryo increases global DNA methylation level, inhibits transcription, and causes embryonic lethality whereas its overexpression produces opposite effects on DNA methylation and transcription.

Conclusion: Unga is involved in postfertilization DNA demethylation and transcription.

Significance: The findings shed new light on Ung function in DNA demethylation and embryonic development.

Uracil-DNA glycosylase (Ung) is a component of the base excision repair process and has the ability to remove uracil from U:G mispairs in DNA. However, its implications in development of vertebrate embryos are poorly understood. In this study, we found that zebrafish uracil-DNA glycosylase a (Unga) is maternally expressed at high levels and accumulated in nuclei during cleavage and blastulation periods. Knockdown of unga in zebrafish embryos causes an increase of the global DNA methylation level concomitantly with a reduction of overall transcriptional activity in the nucleus, ultimately resulting in embryonic lethality during segmentation period. Conversely, unga overexpression is sufficient to reduce the global DNA methylation level, to increase H3K4me3 and H3K27me3 marks, and to activate genome transcription. Furthermore, overexpression of unga(D132A) mRNA, encoding a mutant Unga without DNA glycosylase activity, does not affect global DNA methylation level, indicating that its involvement in DNA demethylation is dependent on its glycosylase activity. These results together suggest that Ung is implicated in postfertilization genomic DNA demethylation, zygotic gene transcription, and normal embryonic development in zebrafish.

The genome of animal embryos at fertilization is transcriptionally inactive and needs to be reprogrammed before the activation of genome transcription and the specification of cell lineages. The reprogramming of the embryonic genome generally involves DNA demethylation, at least in part, which erases 5-methylcytosines (5mC) inherited from male and female gametes and allows the genome permissive for remodifications (1, 2). In mammals, the paternal genome is rapidly demethylated immediately after fertilization, and the global DNA methylation (GDM) level of the zygotic genome continues decreasing until the morula stage, which is followed by lineage-specific newborn de novo methylation (3–7). During Xenopus embryogenesis, the GDM level of the genome declines progressively during the cleavage stages and reaches the lowest at the midblastula transition (MBT) (8). It is presumed that the postfertilization demethylation of the zygotic genome in vertebrate embryos is a necessary step for further epigenetic modifications and lineage-specific gene transcription repression.

In zebrafish embryos, it remains controversial whether parental genomes undergo DNA demethylation immediately after fertilization. Mhanni and Mcgowan disclosed, based on methylation-sensitive restriction enzyme digestion of genomic DNA, that the GDM level of the zygotic genome declines after fertilization and starts to bounce back at blastula stages (9), which was confirmed by immunochemistry with an anti-5mC antibody (10). Recently, DNA methylation profiling by whole genome shotgun bisulfite sequencing also detected a moderate decrease of the GDM level during early cleavage stages in zebrafish embryos (11). However, Jiang et al. reported that postfertilization demethylation of parental genomes may not occur, and that, upon zygotic genome activation, many loci in maternal chromosomes of embryos are remethylated to the state observed in the sperm (12).

One central question is how the parental genomes in an embryo are demethylated to acquire embryonic totipotency and to activate genome transcription. In mouse zygotes, the dioxygenase TET3 (Ten-Eleven Translocation 3) acts to demethylate the paternal genome by converting 5mC to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine before the first mitosis (13–16). However, it seems that dioxygenase-catalyzed DNA demethylation may not function in the zebrafish zygote because 5-hydroxymethylcytosine is rarely detected in early zebrafish embryos (11, 12).
Ung in DNA Demethylation and Zygotic Genome Activation

uracil-DNA glycosylase (UDG) family and participates in base excision repair process by removing uracil from U:G and U:A mispairs in DNA (17). We demonstrate that unga is implicated in postfertilization DNA demethylation and zygotic gene transcription activation and is required for normal embryonic development.

EXPERIMENTAL PROCEDURES

Zebrafish Strain and Microinjection—Tuebingen strain was used in this study with ethical approval from the Animal Care and Use Committee of Tsinghua University. For producing homogeneous embryos, in vitro fertilization was performed, and a fraction of embryos was then fixed at desired time points. When needed, mRNAs, morpholinos, BrUTP, and BrdUTP were individually or in combination microinjected into the yolk or cytoplasm of one-cell stage embryos and collected for analysis at later stages. The dose of BrUTP and BrdUTP was 5 pmol and 1 pmol per embryo, respectively. The mRNAs were injected at a dose of 500 pg per embryo, and morpholinos were injected at a dose of 10 ng per embryo unless otherwise stated. For mRNA synthesis, the coding sequence of zebrafish unga (ENSDARG00000042527) was fused to the coding sequence of mcherry, which were together subcloned into pXT7 vector. The mutant form of unga, unga(D132A), was modified from other unga-containing vectors. Information on other constructs is described in the other sections. The sequences of unga-MO and cMO are 5'-GCTTTTCTGTGCCATGATTTCCACA-3' and 5'-GCTTTTCTGTGCCATGATTTCCACA-3' (mutated bases are underlined), respectively. Embryos were incubated in Holtfreter’s solution at 28.5 °C and staged according to Kimmel et al. (18).

Whole Mount in Situ Hybridization—The antisense RNA probe was in vitro synthesized in the presence of digoxigenin-labeled UTP. Whole mount in situ hybridization was performed using the commonly used protocol.

Immunostaining—Zebrafish embryos at desired stages were fixed by 4% polyformaldehyde for 1 day at 4 °C, dechorionated manually, and dehydrated with methanol. After being stored at -20 °C for 1 h, embryos were rehydrated with 2% PTX (2% Triton X-100 in PBS) and treated in 2 M HCl for 1 h at room temperature followed by neutralizing in 100 mM Tris-HCl (pH 8.5) for 15 min. Embryos were washed with 2% PTX three times, 10 min each, incubated in the block solution (1% BSA, 10% goat serum, 0.3 M glycine in 2% PTX) for 1 h, and transferred to the block solution containing a primary antibody for incubation overnight at 4 °C, followed by washing with 2% PTX six times, 5 min for the first two times and 30 min for the last four times, at room temperature. Next, embryos were incubated in fluorescence-conjugated secondary antibody overnight at 4 °C. After being washed with 2% PTX six times, embryos were mounted and observed by confocal microscopy. Confocal laser scanning was done by the Zeiss LSM710-3 channel system and manipulated by ZEN software. Staining intensity measurement was done by ImageJ software. The following primary antibodies were used: mouse anti-5mC (Abcam ab10805, 1:500), mouse anti-5mC (Abcam ab51552, 1:100), rabbit anti-H3 (Abcam ab1791, 1:500), mouse anti-H3 (EASYBIO BE3015, 1:200), mouse anti-BrdUTP (Santa Cruz sc-32323, 1:100), anti-ssDNA (IBL JP18731, 1:100), rabbit anti-Ung (GeneTex GTX103236, 1:200), rabbit anti-H3K4me3 (Abcam ab8580, 1:100), and rabbit anti-H3K27me3 (Millipore 07-449, 1:100). The secondary antibodies were 488-nm conjugated anti-mouse, 543-nm conjugated anti-mouse, 488-nm conjugated anti-rabbit, and 543-nm conjugated anti-rabbit secondary antibodies (Jackson ImmunoResearch diluted 1:200 for use).

DNA Dot Blotting—Genomic DNA was extracted from 256-cell stage embryos using an Animal DNA Kit (DP324, TIANGEN Biotech Co.). All of the purified DNA samples were diluted to a concentration of 50 ng/μl. The diluted samples were denatured at 95 °C for 10 min, quenched on ice and then spotted individually in a desired volume onto a piece of BioTrace™ NT nitrocellulose membrane (Pall Co., T126211), followed by thermal cross-linking at 80 °C for 2 h. The membrane was incubated with the block solution (TBS with 0.5% Tween 20, 5% BSA) for 1 h and then in the block solution containing anti-5mC primary antibody (Abcam ab10805, 1:1000) overnight at 4 °C. The membrane was washed with TBS, 0.5% Tween 20 three times, 10 min each, and then incubated in HRP-conjugated anti-mouse secondary antibody overnight at 4 °C or 1 h at room temperature. Following wash with TBS, 0.5% Tween 20 three times 10 min each, the membrane was incubated in ECL substrate solution for 1 min and then exposed to a film for 5 min.

Western Blotting and Cytoplasmic/Nuclear Fractionation Using Embryonic Lysates—Embryos were dechorionated at a desired stage by Pronase treatment and deyolked by pipetting with a 200-μl tip. Embryonic cells were collected after centrifugation at 1000 rpm for 3 min and then lysed in TNE buffer (100 μl for 200 embryos). The lysate was centrifuged at 12,000 rpm for 10 min, and the supernatant was collected. Following addition of SDS loading buffer, the sample was denatured at 95 °C for 10 min, and an aliquot (equivalent to 40 embryos) was loaded onto an SDS-polyacrylamide gel. Cytoplasmic and nuclear proteins were fractionated using the Nuclear and Cytoplasmic Extraction Kit (CWBIO CW0199B) according to the manufacturer’s instruction. The used antibodies were: anti-H3 (Abcam ab1791, 1:5000), anti-α tubulin (Sigma T5168, 1:1000), anti-H3 (EASYBIO BE3015, 1:10,000), anti-Ung (GeneTex GTX103236, 1:2000), and anti-actin (Santa Cruz Biotechnology I-19, 1:1000) primary antibodies; HRP-conjugated anti-mouse, HRP-conjugated anti-rabbit, and HRP-conjugated anti-goat secondary antibodies (Jackson ImmunoResearch, 1:5000).

Transcriptome Analysis—Total RNA was isolated from zebrafish embryos at the desired stages using the RNeasy Mini Kit (Qiagen 74104). The RNAs were sequenced by BGI Tech using Illumina HiSeq™ 2000 Sequencing System. Sequencing quality evaluation, gene expression annotation, and screening of differentially expressed genes were performed by BGI Tech. Then we did more analysis based on results of DEG (differentially expressed gene) screening.

Genes detected by RNA seq in early wild-type zebrafish embryos were categorized into three classes: Z, M2Z, and M4Z. For a Z gene, its transcript read was <2/million (two in a million of total transcripts) in one-cell stage embryos likely due to an absence of its maternal transcripts and got higher in 512-cell stage embryos presumably due to its transcription after the...
zygotic genome activation; the transcript read of a M1Z1 gene was >2/million in one-cell stage embryos and became further higher in 512-cell stage embryos presumably due to its transcription after the zygotic genome activation; the transcript read of a M1Z1 gene was more than 2/million in one-cell stage embryos and became lower in 512-cell stage embryos presumably due to degradation of its maternal transcripts and silence of zygotic transcription.

DNA Glycosylase Activity Assay

—Sequence coding for zebrafish Ung or Ung(D132A) was cloned into the expression vector pGEX-6P-1. The recombinant plasmid was transformed into Escherichia coli BL21 cells. The expression of the recombinant protein was induced by isopropyl 1-thio-\(\beta\)-D-galactopyranoside at 1 mM for 4 h at 20 °C. The recombinant protein was purified using a nickel-nitrilotriacetic acid spin column. E. coli UDG was purchased from New England Biolabs (M0280).

For in vitro assay of DNA glycosylase activity, 100-ng DNA oligonucleotides and 30–300 ng of recombinant protein were incubated in 10 \(\mu\)l of 20 mM Tris-HCl, 1 mM EDTA, and 1 mM dithiothreitol for 30 min at 37 °C. The reaction was stopped by adding 90 mM NaOH and 10 mM EDTA and heating at 95 °C for 5 min. The product was separated on polyacrylamide gel followed by ethidium bromide staining.

Statistical Analyses—Data averaged from multiple samples were expressed as mean ± S.D. Significance of difference between two treatments was analyzed using Student’s t test. Significance levels are indicated in the corresponding context.

RESULTS

The Global DNA Methylation Level Dynamically Changes during Zebrafish Early Embryogenesis—Previous papers reported contradictory conclusions about postfertilization DNA methylation pattern during zebrafish early embryogenesis. We set out to reinvestigate the GDM, by co-immuno-staining using anti-5mC and anti-histone 3 (H3) antibodies, during the first 10 cell cycles of zebrafish embryos. The ratio of 5mC/H3 intensities in the nucleus, named relative GDM level, was calculated to allow comparison among embryos at different stages. Results showed that the GDM level tended to decrease gradually from 1-cell (20 min postfertilization) to 8-cell (1.25 h...
postfertilization (hpf) stages, then maintained roughly unchanged until 32-cell (or 64-cell) stage and thereafter rebounded (Fig. 1). These dynamic changes are similar to those revealed previously by the HpaII/MspI end-labeling assay (9) and by whole genome bisulfite sequencing (see Fig. 1E in Ref. 11). Given that the GDM level showed a decrease far earlier prior to MBT, we speculated that maternal factors might contribute to such a demethylation process.

Unga Transcripts Are Maternally Supplied in Zebrafish Early Embryos—To search for maternal factors possibly related to DNA demethylation, we analyzed RNA profiles of unfertilized eggs and embryos at different stages by RNA seq and found 29 maternal genes whose products have been previously reported to involve DNA demethylation in various species (Table 1). Among them, unga, which encodes a uracil-DNA glycosylase superfamily member (19), has the most abundant transcripts in eggs. Its duplicate gene, ungb, does not have transcripts in eggs (data not shown). Unexpectedly, transcripts of tet1-3 and tdg, which are known to be involved in active DNA demethylation during early mouse embryogenesis (13–15, 20), were not detected in eggs. Then, our further study had been focused on unga.

We investigated the spatiotemporal expression pattern of unga by whole mount in situ hybridization. Transcripts of unga were present in immature eggs of different stages and in embryos with uniform distribution during early cleavage period (Fig. 2A). Its expression was reduced to an undetectable level at the 50% epiboly stage (5.3 hpf) and resumed after the bud stage. During segmental period, its transcripts were ubiquitously present with enrichment in the neural tube and tailbud. These results imply that unga may play distinct roles during cleavage period and segmentation period.

Unga Protein Is Located in Nuclei of Blastomeres of Zebrafish Embryos—If Unga functions immediately after fertilization, it is possible that the unga protein should be present in early embryos. Currently there are no anti-zebrafish Unga antibodies available, prompting us to test the utility of an anti-human UNG antibody in fish. To verify the efficacy of this antibody, we designed the antisense unga reporter and by whole mount in situ hybridization. Transcripts of unga were present in immature eggs of different stages and in embryos with uniform distribution during early cleavage period (Fig. 2A). Its expression was reduced to an undetectable level at the 50% epiboly stage (5.3 hpf) and resumed after the bud stage. During segmental period, its transcripts were ubiquitously present with enrichment in the neural tube and tailbud. These results imply that unga may play distinct roles during cleavage period and segmentation period.

TABLE 1

Identification of zebrafish genes possibly involving DNA demethylation

Genes demethylation-related genes	Zebrafish homologs	Normalized transcript number per million at different stages					
Genes	**Species**	**Gene ID** （ Truman ）	**Gene names**	**Egg**	**1c**	**512c**	**1000c**
Tet3	Mouse (13, 35, 36)	ENSDARG00000062646	tet3	0	0	0	0.84
MBD	Human (37, 38)	ENSDARG00000025699	mbd1	17.21	4.46	31.09	65.56
	Mouse (39)	ENSDARG00000088407	mbd1	7.5	9.75	21.48	8.22
	Zebrafish (33)	ENSDARG00000034851	hinfp	26.93	15.04	22.04	172.71
	Human (41)	ENSDARG00000025774	mepc2	59.42	74.66	26	74.11
	Zebrafish (33)	ENSDARG00000014218	gzc-112083	0	0	0.57	4.36
	Xenopus (40)	ENSDARG00000019147	gzd45g	0	0	9.33	1.84
	Mouse (41)	ENSDARG00000027744	gzd45ba	0	0	85.91	5.87
	Human (41)	ENSDARG00000043581	gzd45aa	0	0	2.26	0.67
	Zebrafish (33)	ENSDARG00000013576	gzd45bb	0.83	0	36.45	34.04
DNA Glycosylase	Human (42)	ENSDARG00000086450	tdg	2.5	3.34	1.98	21.97
	E. coli (43, 44)	ENSDARG00000042527	unga	765.2	537.91	85.06	103.96
	Mouse (47, 48)	ENSDARG00000069729	mpg	0	0	1.7	1.51
	Chick (45, 46)	ENSDARG00000094922	ungb	0	0	0	0.84
	Arabidopsis (83, 44)	ENSDARG00000042881	mryh	1.67	23.4	8.48	16.77
	Chick (45, 47)	ENSDARG00000054843	apex1	272.93	412.28	46.35	35.38
	Mouse (47, 48)	ENSDARG00000018061	neil1	1.39	1.95	42.11	28.17
	Human (48, 49)	ENSDARG00000042881	mryh	19.16	12.54	17.8	19.12
	Zebrafish (33)	ENSDARG00000074898	muty3	123.83	70.2	33.63	80.65
	E. coli (50, 51)	ENSDARG00000077197	ros1	0.56	0	0	0.76
	Zebrafish (50, 51)	ENSDARG00000077253	alkb6	0.56	0	6.5	5.2
	Mouse (52)	ENSDARG00000059856	alkb2	1.39	3.06	0	0.84
	Mouse (52)	ENSDARG00000045606	alkb3	9.44	8.91	3.67	12.88
	Mouse (52)	ENSDARG00000045606	alkb1	4.44	13.37	8.48	12.74
	Mouse (52)	ENSDARG00000071166	alkb7	0	0	9.04	18.95
	Mouse (52)	ENSDARG00000037906	alkb5	1.11	7.52	61.32	118.38
	Mouse (52)	ENSDARG00000063003	alkb4	321.24	103.35	0.85	10.06
	Mouse (52)	ENSDARG00000052247	alkb8	1.11	37.61	38.15	26.49
	Mouse (52–55)	ENSDARG00000060256	apobec2b	0	0	0.85	0
	Zebrafish (50, 51)	ENSDARG00000034604	dcket	25.54	10.31	7.63	26.16
	Human (52–55)	ENSDARG00000036990	zgc-103586	2.78	2.23	5.93	3.69

* Related references are indicated.
Ung in DNA Demethylation and Zygotic Genome Activation

mcherry mRNA and decreased by unga knockdown and showed a mutual rescuing effect if both mRNA and MO were injected (Fig. 2, C and D), suggesting that this antibody reacts with endogenous Unga protein in zebrafish embryos. By Western blotting, we found that Unga protein was detectable in embryos from the one-cell stage onward (Fig. 2E). Analysis of nuclear and cytoplasmic fractions indicated that Unga protein was predominantly present in nuclei (Fig. 2F). Immunofluorescence assay could detect weak Unga signal in nuclei of 4-cell stage embryos (data not shown) and stronger signals in nuclei in embryos at later stages (Fig. 2G). Thus, Unga is similar to human UNG2 that is localized in the nucleus (21), suggesting that Unga functions in the nucleus.

Unga Possesses Uracil Excision Activity—Bacterial and mammalian UDG/Ung proteins have activity to excise uracil from DNA (17, 22, 23). We tested whether zebrafish Unga possesses similar activity. We found that, like E. coli UDG (22), recombinant Unga efficiently released uracil from mispairing U:G in double-stranded oligonucleotides in in vitro assays (Fig. 3, A and B). However, we did not detect excision of other mispairing bases such as T:G, A:G, G:G, C:G, or 5mC:G.

We further investigated the uracil excision activity of Unga in zebrafish embryos through dUTP incorporation assay. Embryos were injected at the one-cell stage with BrdUTP in combination with mcherry or unga-mcherry mRNA, cMO, or unga-MO and fixed at 64-cell and sphere stages for co-immunostaining using anti-BrdU and anti-ssDNA antibodies. The relative BrdUTP incorporation level was estimated as the ratio of BrdU signal intensity to ssDNA signal intensity in nuclei. Results showed that unga knockdown enhanced but unga overexpression hindered incorporation of dUTPs into newly synthesized DNA in zebrafish embryos (Fig. 3, C–F), supporting the notion that Unga can function to remove uracil bases from DNA molecules.

Unga Knockdown Increases and Overexpression Decreases Global DNA Methylation Level in Zebrafish Pre-MBT Embryos—
A recent paper reported a possible involvement of Ung2 in active DNA demethylation in the mouse zygote (24). We asked whether unga was implicated in DNA demethylation during zebrafish early embryogenesis. When unga was knocked down by injecting 10 ng of unga-MO, embryos exhibited a significant increase of the relative GDM level as early as the 32-cell stage and at later stages as estimated by immunostaining with anti-5mC antibody (Fig. 4, A and B). The increase in GDM level in unga morphants at the 256-cell stage was also confirmed by dot blotting (Fig. 4C). Conversely, overexpression of unga-mcherry mRNA in zebrafish embryos resulted in a significant decrease of the relative GDM level, as detected by immunostaining at 128-cell and 256-cell stages (Fig. 4, D and E) and by dot blotting at the 256-cell stage (Fig. 4F). These results together suggest that Unga is involved in engendering and maintaining low levels of DNA methylation in the embryonic genome during pre-MBT period of zebrafish embryos.

Unga-mediated DNA Demethylation Relies on DNA Glycosylase Activity—Our next question was whether Ung-mediated DNA demethylation depended on its DNA glycosylase activity. Because the aspartate residue in the conserved water-activating loop motif GQDPY of Ung proteins has been shown to be crit-
ical for its catalytic activity (25), we generated a presumably inactive mutant of zebrafish Unga, Unga(D132A), which carried a mutation to alanine at position 132 (Fig. 5A). An in vitro assay confirmed that Unga(D132A) had much reduced activity to excise uracil bases from double-stranded DNA (Fig. 5B). Injection of unga(D132A) mRNA was unable to reduce the global DNA methylation level at the 256-cell stage; it instead resulted in an increase of the methylation level (Fig. 5, C and D), which might be due to a dominant negative effect. Nevertheless, we conclude that Unga regulation of DNA methylation is dependent on its glycosylase activity.

Unga-mediated DNA Demethylation Facilitates Histone Modifications of Chromatin in Zebrafish Embryos—Methylated histones in zebrafish embryos are observed just before and during MBT, marking chromatin regions for transcription or repression (26, 27). We asked whether Unga-mediated DNA demethylation would poise specific chromatin regions for histone modifications. To this end, we injected embryos at the one-cell stage with 500 pg of mcherry or unga-mcherry mRNA and examined H3K4me3 and H3K27me3, together with H3, at 256-cell and sphere stages by immunostaining with corresponding antibodies. Compared with mcherry-injected embryos, unga-mcherry-injected embryos exhibited an increase of the relative intensity of both H3K4me3 and H3K27me3, which was normalized to H3 intensity (Fig. 6, A–D). These results indicate that the genome may be unfettered by unga-stimulated hypomethylation for histone modifications.

unga Knockdown Inhibits Yet Its Overexpression Stimulates Nuclear Transcriptional Activity—Given that unga may participate in postfertilization DNA demethylation and regulate histone modifications, we further tested whether its knockdown or overexpression altered global transcriptional activity in the nucleus. We labeled newly synthesized RNAs by injecting 5-BrUTP together with unga-MO or unga-mcherry mRNA into one-cell stage embryos and then visualized incorporated BrUTPs by immunostaining embryos at different stages with anti-BrUTP and H3 antibodies. The relative transcriptional
activity of the genome was assessed as the ratio of BrUTP immunostaining intensity to H3 intensity in nuclei. Compared with cMO-injected embryos, embryos injected with 10 ng of unga-MO exhibited a significant decrease of the relative transcriptional activity at 256-cell, 1000-cell, and sphere stages (Fig. 7, A and B). In contrast, unga-mcherry-injected embryos at the 256-cell stage exhibited an increase of overall transcriptional activity in nuclei compared with mcherry-injected embryos (Fig. 7, C and D). These results imply that insufficiency of Unga may repress transcriptional activity of the genome due to higher levels of DNA methylation, and that excess Unga may stimulate nuclear transcriptional activity arising from DNA hypomethylation.

Zygotic Expression of Many Genes Is Altered with Changes of Unga Levels in Zebrafish Embryos—To further understand the profound impact of Unga-mediated demethylation on zygotic gene transcription, we performed genome-wide mRNA seq analysis for unga-mcherry-injected embryos at the 256-cell stage and unga morphants at the 1000-cell stage (Fig. 8). For each sample, transcripts of more than 10,000 genes were mapped to the zebrafish genome assembly version Zv9 (Fig. 8, A and D). Compared with mcherry-injected embryos, unga-mcherry-injected embryos at the 256-cell stage had 1254 up-regulated and 869 down-regulated genes (≥1.5-fold with a false discovery rate ≤0.005) (Fig. 8B and supplemental Tables S2 and S3). Validation of up-regulated genes by RT-PCR analysis revealed that 26 of 33 genes indeed showed a significant increase of expression by unga-mcherry overexpression (data not shown).

By comparing expression levels in between one-cell and 512-cell stage embryos based on our other RNA seq data (supplemental Table S1), we categorized all genes into three classes: MlZh (with increasing amount of transcripts from the one-cell stage onward), Z (zygotically transcribed), and MhZl (with decreasing amount of transcripts after the one-cell stage). More than 90% of the DEGs identified in this study could be successfully classified. We found that the majority of the DEGs between unga-mcherry- and mcherry-overexpressing embryos were Z or MlZh genes and that differently expressed Z genes mostly fell within the top one-third group as ranked by changing fold (Fig. 8C), supporting the idea that unga-promoted activity in nuclei with changes of unga levels in zebrafish embryos.
FIGURE 6. Histone modifications are facilitated by *unga* overexpression. A and B, representative confocal fluorescence images of embryos following co-immunostaining using anti-H3K4me3 (A) or anti-H3K27me3 (B) together with anti-H3 antibodies. Embryos were injected at the one-cell stage with 500 pg of mcherry (*mch*) or *unga*-mcherry (*unga-mch*) mRNA and fixed at 256-cell and sphere stages for immunostaining. C and D, relative immunostaining intensity of H3K4me3 (C) and H3K27me3 (D) normalized to H3. Ne, number of measured embryos; Nc, total number of measured nuclei. **, *p* < 0.05; ***, *p* < 0.01. Error bars, S.D.

FIGURE 7. *unga* knockdown or overexpression affects nuclear transcriptional activity. Embryos at the one-cell stage were injected with 5 pmol of BrUTP in combination with 10 ng of cMO, 10 ng of *unga*-MO, 500 pg of mcherry (*mch*) mRNA or 500 pg of *unga*-mcherry (*unga-mch*) mRNA and fixed at indicated stages for immunostaining with anti-BrUTP and anti-H3 antibodies. The immunostained embryos were imaged by confocal microscopy. The relative transcriptional activity is the ratio of BrUTP to H3 signal intensity in the nucleus. A and B, representative confocal images (A) and the average relative transcriptional activity (B) in MO-injected embryos. C and D, representative confocal images (C) and the average relative transcriptional activity (D) in mRNA-injected embryos. In image panels, a selected nucleus (indicated by an arrow) in the representative embryo is enlarged underneath. Ne, number of measured embryos; Nc, total number of measured nuclei. ***, *p* < 0.01. Error bars, S.D.
DNA hypomethylation may evoke zygotic transcription. Among the up-regulated genes in *unga-mcherry* embryos, many are related to nucleotide excision repair, base excision repair, or mismatch repair pathways (supplemental Table S2), suggesting that ectopic Unga induces a more active DNA repair system; and many are required for general transcription, which is consistent with enhanced genome transcriptional activity. Interestingly, some up-regulated genes could not function normally before cell lineage specification, e.g. *klfd*, which is normally expressed after the completion of gastrulation and crucial for hematopoiesis (28–30), and *gli3*, which controls neural induction and patterning (31, 32). It is likely that cell lineages could be abnormally specified due to hypomethylation.

Comparison between *unga-MO* and cMO-injected embryos at the 1000-cell stage identified 972 down-regulated and 400 up-regulated genes in *unga* morphants (Fig. 8E and supplemental Tables S4 and S5). Validation of down-regulated genes by RT-PCR analysis revealed that 30 of 35 genes showed significantly decreased expression levels in *unga* morphants (data not shown). We noted that the majority of differentially expressed genes were also *Z* or *M′Z*′ genes (Fig. 8F). These results suggest that many genes required for early embryonic development are repressed for transcription probably due to hypermethylation of the genome. Among the down-regulated genes in *unga* morphants, some are also related to transcription, which accords with a repression of general transcriptional activity in the morphants. Interestingly, knockdown of *unga* led to significant up-regulation of genes related to cell death, e.g. *bax, pcd2, pcd5, daxx,* and *didol*, which might be one of the reasons for embryonic lethality of *unga* morphants (see below).

unga Knockdown Causes Embryonic Lethality during Segmentation Period—We observed morphological changes of embryos depleted of *unga* during development (Fig. 9A). Like control embryos injected with cMO, embryos injected with 10 ng of unga-MO had no observable defects before 40% epiboly stage (5 hpf) except a slightly retarded epiboly; then, unga morphants continued to show a slower epibolic process and had a thinner germ ring with a smaller embryonic shield around the shield stage. A large proportion of morphants started to deform at the onset of segmentation, and none of them could survive beyond 12-somite stage (approximately 15 hpf) (Fig. 9B). These results imply that Unga is absolutely required for survival of zebrafish embryos. In contrast, embryos injected with 500 pg of *unga-mcherry* mRNA could develop beyond pharyngula period without severe morphological defects (Fig. 9C). It is likely that temporary DNA hypomethylation during early development may not severely disrupt normal developmental programs.
Ung in DNA Demethylation and Zygotic Genome Activation

DISCUSSION

In this study, we uncovered an implication of the base excision repair system in reprogramming the embryonic genome through DNA demethylation during zebrafish early embryogenesis. This function is mediated, at least in part, by Unga, a uracil-DNA glycosylase family member.

Currently, we do not know how Unga participates in DNA demethylation during zebrafish early embryogenesis. Our in vitro DNA glycosylase activity assays indicated that recombinant Unga alone is able to excise uracil base from mispairing U:G in double-stranded DNA, but not other bases (including 5mC) pairing with G (Fig. 3B). In physiological conditions, uracil bases could result from deamination of cytosine bases and misincorporation of dUMP. There might be several ways for Ung to take part in DNA demethylation. First, excision of misincorporated uracil bases by Ung may be followed by excision of a long stretch of adjacent dUMPs. There might be several ways for Ung to take part in DNA demethylation because the genome may not contain many misincorporated U bases.

Second, Ung may be involved in deaminase-mediated DNA demethylation because 5mC bases can be converted to thymine/cytosine bases through the AID/Apobec2/Gadd45/Mbd4 system (33, 34), and cytosine bases can be further deaminated to uracil bases. This mechanism has been recently suggested for active demethylation in mouse zygotes (24). A previous study has indicated that the AID/Apobec2/Gadd45/Mbd4 system is not working in zebrafish embryos before zygotic genome activation (33). In our DNA profiles, transcripts for aid, apobec2, dctd, mbd, and gadd45 genes were either absent or present in low amount during early embryogenesis (Table 1). It is unknown whether other deaminases may function together with Unga during early embryogenesis.

Third, Ung may be able to excise oxidation/deamination intermediates of 5-methylcytosines. This kind of activity of Unga was not detected in our in vitro glycosylase activity assays. We tried to use embryonic protein extracts from embryos at 4–16-cell stages together with recombinant Unga in these assays, but we still failed to detect removal of 5mC and A, T, or G mispairing with G (data not shown). We suspected that the method we used was not sufficiently sensitive to detect subtle changes in the composition of the substrate DNA. Therefore, more sensitive methods are needed to characterize Ung activity in detail. In addition, identification of oxidation and/or deamination enzymes in early zebrafish embryos will definitely help elucidate mechanisms controlling postfertilization DNA demethylation in this species.

The global DNA methylation level is related to chromatin modifications and genome transcription activity during early embryonic development. Overexpression of unga appears to cause an increase of both H3K4me3 and H3K27me3 marks (Fig. 6) as well as an enhancement of transcriptional activity at the pre-MBT stage (256-cell stage) (Fig. 7, C and D), suggesting that unga-mediated global DNA demethylation facilitates chromatin modifications, thereby poised chromatin for transcription activation or repression. Our transcriptome analysis by RNA seq indicated that the majority of affected genes in unga-over-expressing embryos were up-regulated and the majority in unga knockdown embryos were down-regulated, but still, some genes experienced an opposite change of expression (Fig. 8 and supplemental Tables S2–S5). This phenomenon is understandable given that different modifications of chromatin, availability of transcription factors, and mutual repression of some factors could all contribute to transcription of a specific gene.

A recent paper reports that mouse zygotes depleted of cytosine deaminase (AID) or Ung2 have higher levels of 5mC compared with wild-type zygotes (24). It appears that the involvement of the Ung-mediated base excision repair process in active demethylation of zygotes is conserved in vertebrates.

In summary, our findings shed light on the involvement of Ung in postfertilization DNA demethylation and in embryonic survival in zebrafish. Its underlying mechanisms need to be investigated in the future.

Acknowledgments—We thank the members of the Meng Laboratory for discussion and technical assistance.

REFERENCES
1. Smith, Z. D., and Meissner, A. (2013) DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14, 204–220
2. Feng, S., Jacobsen, S. E., and Reik, W. (2010) Epigenetic reprogramming in plant and animal development. Science 330, 622–627
3. Oswald, J., Engemann, S., Lane, N., Mayer, W., Olek, A., Fundele, R., Dean, W., Reik, W., and Walter, J. (2000) Active demethylation of the paternal genome in the mouse zygote. Curr. Biol. 10, 475–478
4. Mayer, W., Niveleau, A., Walter, J., Fundele, R., and Haaf, T. (2000) Demethylation of the zygotic paternal genome. Nature 403, 501–502
5. Santos, F., Hendrich, B., Reik, W., and Dean, W. (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol. 241, 172–182
6. Hajkova, P., Ancelin, K., Waldmann, T., Lacoste, N., Lange, U. C., Cesari, F., Lee, C., Almouzni, G., Schneider, R., and Surani, M. A. (2008) Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature 452, 877–881
7. Okada, Y., Yamagata, K., Hong, K., Wakayama, T., and Zhang, Y. (2010) A role for the elongator complex in zygotic paternal genome demethylation. Nature 463, 554–558
8. Stancheva, I., El-Maarrri, O., Walter, J., Niveleau, A., and Meehan, R. H. (2002) DNA methylation at promoter regions regulates the timing of gene activation in Xenopus laevis embryos. Dev. Biol. 243, 155–165
9. Mhanni, A. A., and McGowan, R. A. (2004) Global changes in genomic methylation levels during early demethylation of the zebrafish embryo. Dev. Genes Evol. 214, 412–417
10. MacKay, A. B., Mhanni, A. A., McGowan, R. A., and Krone, P. H. (2007) Immunological detection of changes in genomic DNA methylation during early zebrafish development. Genome 50, 778–785
11. Potok, M. E., Nix, D. A., Parnell, T. J., and Cairns, B. R. (2013) Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. Cell 153, 759–772
12. Jiang, L., Zhang, J., Wang, J. J., Wang, L., Zhang, L., Li, G., Yang, X., Ma, X., Sun, X., Cai, J., Zhang, J., Huang, X., Yu, M., Wang, X., Liu, F., Wu, C. I., He, C., Zhang, B., Ci, W., and Liu, J. (2013) Sperm, but not oocyte, DNA methylene is inherited by zebrafish early embryos. Cell 153, 773–784
13. Gu, T. P., Guo, F., Yang, H., Wu, H. P., Xu, G. F., Liu, W., Xie, Z. G., Shi, L., He, X., Jin, S. G., Iqbal, K., Shi, Y. G., Deng, Z., Szabó, P. E., Pfeifer, G. P., Li, J., and Xu, G. L. (2011) The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477, 606–610
14. Iqbal, K., Jin, S. G., Pfeifer, G. P., and Szabó, P. E. (2011) Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc. Natl. Acad. Sci. U.S.A. 108, 3642–3647
15. Wossidlo, M., Nakamura, T., Lepikhov, K., Marques, C. J., Zakharchenko, V., Boiani, M., Arand, J., Nakano, T., Reik, W., and Walter, J. (2011) 5-Hy-
Ung in DNA Demethylation and Zygotic Genome Activation

droxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat. Commun. 2, 241
16. Inoue, A., and Zhang, Y. (2011) Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science 334, 194
17. Sousa, M. M., Krokam, H. E., and Slupphaug, G. (2007) DNA-uracil and human pathology. Mol. Aspects Med. 28, 276–306
18. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., and Schilling, T. F. (1995) Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310
19. Krokam, H. E., Drablas, F., and Slupphaug, G. (2002) Uracil in DNA: occurrence, consequences and repair. Oncogene 21, 8935–8948
20. Cortázár, D., Kunz, C., Selfridge, H., Lettieri, T., Saito, Y., MacDougall, E., Wirz, A., Schuermann, D., Jacobs, A. L., Siegrist, F., Steinacher, R., Jirincic, J., Bird, A., and Schär, P. (2011) Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature 470, 419–423
21. Slupphaug, G., Markussen, F. H., Olsen, L. C., Aasland, R., Aasensther, N., Bakke, O., Krokam, H. E., and Helland, D. E. (1993) Nuclear and mitochondrial forms of human uracil-DNA glycosylase are encoded by the same gene. Nucleic Acids Res. 21, 2579–2584
22. Lindahl, T., Ljungquist, S., Siegert, W., Nyberg, B., and Sperens, B. (1977) DNA N-glycosidases: properties of uracil-DNA glycosidase from Escherichia coli. J. Biol. Chem. 252, 3286–3294
23. Visnes, T., Doseh, B., Pettersen, H. S., Hagen, L., Sousa, M. M., Akbari, M., Otterlei, M., Kavli, B., Slupphaug, G., and Krokan, H. E. (2009) Uracil in DNA and its processing by different DNA glycosylases. Philos. Trans. R Soc. Lond. B Biol. Sci. 364, 563–568
24. Santos, F., Peat, J., Burgess, H., Rada, C., Reik, W., and Dean, W. (2013) Active demethylation in mouse zygotes involves cytosine demination and base excision repair. Epigenetics Chromatin 6, 39
25. Parikh, S. S., Mol, C. D., Slupphaug, G., Bharati, S., Krokam, H. E., and Tainer, J. A. (1998) Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA. EMBO J. 17, 5214–5226
26. Vastenhouw, N. L., Zhang, Y., Woods, I. G., Imam, F., Regev, A., Liu, X. S., Rinn, J., and Schier, A. F. (2010) Chromatin signature of embryonic pluripotency is established during genome activation. Nature 464, 922–926
27. Lindeman, L. C., Andersen, L. S., Reiner, A. H., Li, N., Aanes, H., Østrup, O., Winata, C., Mathavan, S., Müller, F., Aleström, P., and Collas, P. (2011) Prepatternning of developmental gene expression by modified histones before zygotic genome activation. Dev. Cell 21, 993–1004
28. Oates, A. C., Pratt, S. J., Vail, B., Yan, Y. I., Ho, R. K., Johnson, S. L., Postlethwait, J. H., and Zon, L. I. (2001) The zebrafish klf family gene. Blood 98, 1792–1801
29. Fu, Y. F., Du, T. T., Dong, M., Zhu, K. Y., Jing, C. B., Zhang, Y., Wang, L., Fan, H. B., Chen, Y., Jin, Y., Yue, G. P., Chen, S. J., Chen, Z., Huang, Q. H., Jing, Q., Deng, M., and Liu, T. X. (2009) Mir-144 selectively regulates undifferentiated state following loss of APC. Cell 142, 930–942
30. He, Y. F., Li, B. Z., Li, Z., Liu, P., Wang, Y., Tang, Q., Ding, J., Jia, Y., Chen, Z., Li, L., Sun, Y., Li, X., Dai, Q., Song, C. X., Zhang, K., He, C., and Xu, G. L. (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307
31. Ito, S., D’Alessio, A. C., Tarazona, O. V., Hong, K., Sowers, L. C., and Zhang, Y. (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466, 1129–1133
32. Detich, N., Bovienzi, V., and Szyf, M. (2003) Valproate induces replication-independent active DNA demethylation. J. Biol. Chem. 278, 27586–27592
33. Himm, S., Just, G., Laceote, N., Moitessier, N., Szyf, M., and Mamer, O. (2008) On the mechanism of demethylation of 5-methylcytosine in DNA. Bioorg. Med. Chem. Lett. 18, 1046–1049
34. Jin, S. G., Tsark, W., Szabó, P. E., and Pfeifer, G. P. (2008) Haploid male germ cell- and oocyte-specific Mbd3l and Mbd3l2 genes are dispensable for early development, fertility, and zygotic DNA demethylation in the mouse. Dev. Dyn. 237, 3435–3443
35. Barreto, G., Schaefer, A., Marhold, J., Stach, D., Swaminathan, S. K., Handa, V., Doderlein, G., Maltry, N., Wü, W., Lyko, F., and Niehrs, C. (2007) Gadd45δ promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445, 671–675
36. Ma, D. K., Jang, M. H., Guo, J. U., Kibatake, Y., Chang, M. L., Pow-Anpongkul, N., Flavell, R. A., Lu, B., Ming, G. L., and Song, H. (2009) Neuronal activity-induced Gadd45β promotes epigenetic DNA demethylation and adult neurogenesis. Science 323, 1074–1077
37. Patra, S. K., Patra, A., Rizzi, F., Ghosh, T. C., and Bettuzzi, S. (2008) Demethylation of (cytosine-5-C-methyl) DNA and regulation of transcription in the epigenetic pathways of cancer development. Cancer Metastasis Rev. 27, 315–334
38. Agius, F., Kapoor, A., and Zhu, J. K. (2006) Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation. Proc. Natl. Acad. Sci. U.S.A. 103, 11796–11801
39. Kapoor, A., Agius, F., and Zhu, J. K. (2005) Preventing transcriptional gene silencing by active DNA demethylation. FEBS Lett. 579, 5889–5898
40. Jost, J. P., Siegmund, M., Sun, L., and Leung, R. (1995) Mechanisms of DNA demethylation in chicken embryos: purification and properties of a 5-methylcytosine-DNA glycosylase. J. Biol. Chem. 270, 9734–9739
41. Zhu, B., Zheng, Y., Hess, D., Anglicher, H., Schwarz, S., Siegmund, M., Thiry, S., and Jost, J. P. (2000) 5-Methylcytosine-DNA glycosylase activity is present in a cloned G/T mismatch DNA glycosylase associated with the chicken embryo. Mol. Biol. 31, 27586–27592
42. Guo, J. U., Su, Y., Zhong, C., Ming, G. L., and Song, H. (2011) Hydroxylase-mediated epigenetic DNA demethylation reverses RNA damage in Escherichia coli. Nature 419, 178–182
43. Roy, T. W., and Bhagwat, A. S. (2007) Kinetic studies of Escherichia coli AlkB using a new fluorescence-based assay for DNA demethylation. Nucleic Acids Res. 35, e147
44. Guo, J. U., Su, Y., Zhong, C., Ming, G. L., and Song, H. (2011) Hydroxylase of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145, 423–434
45. Bhutani, N., Brady, J. J., Damian, M., Sacco, A., Corbel, S. Y., and Blau, H. M. (2010) Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463, 1042–1047
46. Jost, J. P., Thiry, S., and Siegmund, M. (2002) 5-Methylcytosine-DNA glycosylase activity is present in a cloned G/T mismatch DNA glycosylase associated with the chicken embryo. Mol. Biol. 31, 27586–27592
47. Falnes, P. Ø., Johansen, R. F., and Seeberg, E. (2002) AlkB-mediated oxidation of DNA demethylation. FEBS Lett. 521, 444–454