INTRODUCTION

Acute chest pain is one of the commonest presentations to the Emergency Department, with half of the patients subsequently being hospitalised for assessment of suspected acute coronary syndrome. It accounts for 6% of all Emergency Department attendances in the UK, resulting in approximately 350,000 hospitalisations each year. In contemporary practice, the application of high-sensitivity cardiac troponin assays for the diagnosis of myocardial infarction is central to clinical pathways for acute chest pain. This has resulted in marked improvements in the detection of myocardial infarction but also myocardial injury, substantially altering the prevalence of the diagnoses of unstable angina and myocardial infarction. Moreover, high-sensitivity cardiac troponin assays can expedite the exclusion of myocardial infarction through so-called ‘rule-out’ pathways. Indeed, less than one in five patients are ultimately diagnosed with an acute coronary syndrome. However, because of their high sensitivity, these assays also have issues of specificity, and a large proportion of cardiac troponin elevations are unrelated to atherosclerotic plaque disruption or even not myocardial infarction. The differentiation between the various mechanisms responsible for myocardial injury and distinctive subtypes of myocardial infarction is critical because those with a classic or Type 1 myocardial infarction attributable to atherosclerotic plaque disruption are more likely to benefit from intensive pharmacotherapy and coronary revascularisation. Interestingly, only a half or less of patients admitted with cardiac troponin elevation are diagnosed with Type 1 myocardial infarction. Furthermore, neither cardiac troponin concentration thresholds nor background cardiovascular risk factors are sufficient to identify underlying conditions.
mechanisms of myocardial injury nor determine the subtypes of myocardial infarction.14,15 Therefore, invasive coronary angiography plays a pivotal role in the management of high-risk patients with acute chest pain,2 including those with cardiac troponin elevation.

Computed tomography coronary angiography (CTCA) has diagnostic accuracy and prognostic performance comparable to invasive coronary angiography in the diagnosis of obstructive coronary artery disease. It is associated with enhancing clinical diagnosis, better targeting of treatments, and improving clinical outcomes in patients with stable chest pain.16,17 Moreover, CTCA is cost-effective and reduces length of stay in patients with acute chest pain and without cardiac troponin elevation.18,19

To exclude underlying obstructive coronary artery disease, the European Society of Cardiology guidelines recommend CTCA for those with chronic coronary syndrome and a lower likelihood of the presence of haemodynamically significant stenosis,20 and for those with suspected acute coronary syndrome and a normal or inconclusive cardiac troponin concentration.21 However, it remains unclear whether patients with non-ST-segment elevation myocardial infarction would also benefit from CTCA by improving their downstream management and treatment. This review will examine the latest advances in CTCA in patients with acute chest pain, discuss the potential application of CTCA in those with suspected non-ST-segment elevation myocardial infarction, and highlight potential future developments in this area.

DIAGNOSIS OF NON-ST-SEGMENT ELEVATION MYOCARDIAL INFARCTION

Any elevation of a cardiac troponin concentration above the 99th centile upper reference limit defines myocardial injury. Under such a pre-requisite, myocardial infarction is diagnosed by a rise and fall in cardiac troponin in the context of clinical symptoms or electrocardiographic signs suggestive of myocardial ischaemia. Based on underlying pathophysiology contributing to oxygen supply–demand imbalance, myocardial infarction is further subclassified into five types: atherothrombosis (Type 1), acute mismatch between oxygen supply and demand unrelated to atherosclerotic plaque disruption (Type 2), cardiac death presumably due to myocardial ischaemia (Type 3), and consequences of coronary procedures (Types 4 and 5).22 Finally, an elevation in cardiac troponin in the absence of symptoms or signs of ischaemia is termed myocardial injury and can be acute (rise and fall of cardiac troponin) or chronic (persistently elevated). Although non-ischaemic aetiologies account for the majority of cardiac troponin elevations,23 differentiating and classifying myocardial injury and myocardial infarction are not always straightforward even among a panel of experts with pre-specified guidance.24,25

The presence of coronary atherosclerosis is a pre-requisite for Type 1 myocardial infarction and a common observation in Type 2 myocardial infarction. Although assessing coronary artery anatomy may aid in the distinction between myocardial injury and myocardial infarction, invasive coronary angiography has many limitations, especially when the infarct size is small.26,27

Currently, cardiac magnetic resonance imaging is recommended in patients with cardiac troponin elevation of undetermined aetiology.28 Based on the pattern of injury and dysfunction,29 it may distinguish myocardial infarction from myocardial injury,30 or alter a location of the infarct-related artery in non-ST-segment elevation myocardial infarction.31 However, the pattern of myocardial injury on imaging is not always specific for a disease or pathophysiological process,32 and the availability of cardiac magnetic resonance imaging service is limited.33

CTCA gives ready access to the non-invasive evaluation of coronary artery anatomy and any associated coronary artery disease, potentially avoiding the need for invasive coronary angiography.34 In those with cardiac troponin elevation in the absence of obstructive coronary artery disease, CTCA has greater sensitivity for the detection of atherosclerotic plaques and the identification of the infarct-related artery than invasive coronary angiography.35 Conversely, CTCA demonstrates that three-quarters of patients with cardiac troponin elevation and low clinical suspicion for acute coronary syndrome have no or minimal atherosclerotic plaques.36 Consequently, the likelihood of Type 1 myocardial infarction is extremely low when all coronary arteries are free from atherosclerotic plaques. Finally, it also offers an opportunity to evaluate other cardiothoracic structures and recognise alternative causes of myocardial injury. Therefore, CTCA provides important information to help guide the diagnosis and classification of aetiologies for myocardial injury (Figure 1).

CTCA has excellent diagnostic performance compared to invasive coronary angiography in patients with stable chest pain and a low-to-intermediate pre-test probability of coronary artery diameter stenosis ≥50%.37 Furthermore, the diagnostic performance of CTCA in patients with non-ST-segment elevation myocardial infarction has been demonstrated to be robust in the sub-study of the Very Early Versus Deferred Invasive Evaluation Using Computerized Tomography (VERDICT) trial.38 In this trial, 1023 out of 2147 patients with non-ST-segment elevation acute coronary syndrome (78% with myocardial infarction) underwent CTCA before invasive coronary angiography. Using invasive coronary angiography as the gold standard, the negative-predictive value for CTCA to exclude any diameter stenosis ≥50% was 91%. Among 24 patients who were falsely excluded by CTCA, only three had a lesion with diameter stenosis ≥50% in a major epicardial coronary artery by invasive coronary angiography. The positive-predictive value for CTCA to identify diameter stenosis ≥50% was 88%. Among 92 patients who were falsely included by CTCA, 17 had a non-diagnostic scan and 19 had previous coronary stenting. The negative-predictive value for patients with cardiac troponin elevation, an ischaemic electrocardiographic change, and a GRACE score >140 was 89%, 95%, and 95%, respectively. The overall negative- and positive-predictive values of CTCA remained similar when considering diameter stenosis ≥70% as the cut-off. Thus, CTCA has very similar diagnostic performance to invasive coronary angiography in the setting of non-ST-segment elevation myocardial infarction. It has excellent negative-predictive value and rarely misses an obstructive atherosclerotic lesion in a major epicardial coronary artery.
Non-ST-segment elevation myocardial infarction represents three-quarters of all contemporary myocardial infarctions, but many do not have obstructive coronary artery disease at the time of invasive coronary angiography. Prior to the advent of high-sensitivity cardiac troponin testing, randomised controlled trials of low-risk patients with acute chest pain reported that rates of invasive coronary angiography and coronary revascularisation within usual clinical care were low at less than 6 and 3%, respectively (Table 1). Implementation of CTCA was associated with a slight increase in the immediate use of invasive coronary angiography. However, around 50% of patients were directly discharged from the Emergency Department after CTCA, and fewer patients required subsequent non-invasive functional testing for myocardial ischaemia, resulting in shorter lengths of stay and a reduced cost at the Emergency Department. Similarly, compared with routine functional ischaemia testing, CTCA was associated with a higher rate of invasive coronary angiography and subsequent coronary revascularisation but again shorter lengths of stay.

In the era of high-sensitivity cardiac troponin testing, three randomised controlled trials have evaluated the clinical effectiveness of CTCA in patients presenting with suspected or diagnosed...
non-ST-segment elevation myocardial infarction (Table 1). The Better Evaluation of Acute Chest Pain with Computed Tomography Angiography (BEACON) trial recruited 500 patients with suspected acute coronary syndrome with only a minority (5%) having modest cardiac troponin elevation (within three times 99th centile upper reference limit). In contrast, the Rapid Assessment of Potential Ischaemic Heart Disease with CTCA (RAPID-CTCA) trial enrolled 1749 patients with suspected acute coronary syndrome with half of them ultimately being diagnosed with unstable angina or myocardial infarction. Both BEACON and RAPID-CTCA trials compared CTCA with standard of care. The CARdiovascular Magnetic eLsoNance imaging and computed Tomography Angiography (CARMENTA) trial randomly assigned 207 patients to either cardiac magnetic resonance imaging, CTCA, or standard of care in patients with suspected non-ST-segment elevation myocardial infarction who had cardiac troponin elevation but an inconclusive electrocardiogram.

Table 1. Summary of clinical management in major randomised controlled trials in suspected or diagnosed non-ST-segment elevation myocardial infarction

Patients with low risk^a	Patients with intermediate risk^b							
ACRIN PA 4005	**ROMICAT II**	**CATCH**	**COMPARE**	**CAD-Man**	**BEACON**	**RAPID-CTCA**	**CARMENTA**	
Controlled treatment	SoC by clinicians’ discretion	SoC by clinicians’ discretion	Exercise ECG or MPI	Exercise ECG	Invasive coronary angiography	SoC by clinicians’ discretion	SoC by clinicians’ discretion	SoC by clinicians’ discretion
Invasive coronary angiography	5% vs 4%	12% vs 8%	17% vs 12%	7% vs 3%	14% vs 100%	17% vs 13%	54% vs 61%	70% vs 100%
Diagnostic yield of obstructive CAD among patients referred to invasive coronary angiography	76% vs 44%	NR	71% vs 36%	92% vs 44%	75% vs 15%	NR	NR	85% vs 61%
Overall coronary revascularisation	3% vs 1%	5% vs 3%	10% vs 4%	4% vs 1%	10% vs 14%	9% vs 7%	34% vs 33%	NR
Length of stay	18 hours vs 23 hours	23 hours vs 31 hours	NR	14 hours vs 20 hours	30 hours vs 53 hours	6 hours vs 6 hours	2.2 days vs 2.0 days	4 days vs 5 days
Direct discharge	50% vs 23%	47% vs 12%	NR	NR	NR	63% vs 59%	NR	NR
Cost of care at 1 month	NR	$4289 vs $4060	NR	$2193 vs $2704	NR	$337 vs $511	NR	NR
Downstream non-invasive ischaemia testing	NR	20% vs 80%	2% vs 3%	NR	NR	4% vs 11%	19% vs 28%	NR
Additional finding	NA	NA	NA	NA	CTCa was associated with a lower rate of minor procedural complications (4% vs 11%)	NA	CTCa did not alter the rate of subsequent change in preventive treatments (63% vs 62%)	NA

CAD, coronary artery disease; CTCA, computed tomography coronary angiography; ECG, electrocardiogram; MPI, myocardial perfusion imaging; NA, not applicable; NR, not reported; SoC, standard of care.

The RAPID-CTCA trial reported the proportion of patients having abnormal ECG.

Statistics compare between CTCA and the controlled treatments.

^aPatients had neither history of CAD, ischaemic ECG, nor cardiac troponin elevation.

^bPatients had either history of CAD, ischaemic ECG, or high-sensitivity cardiac troponin elevation.

Thus, invasive coronary angiography and coronary revascularisation

Reflecting the lower risk trial population, only a minority of patients in the BEACON trial underwent invasive coronary angiography (13–17%) or coronary revascularisation (7–9%), and the 30-day rates of these procedures were unaffected by CTCA. In the overall RAPID-CTCA trial population, the rate of invasive coronary angiography was lower with CTCA than with standard of care (54% vs 61%) although there was no difference in the rates of coronary revascularisation. For those with cardiac troponin elevation in the RAPID-CTCA trial, the findings remained consistent, suggesting CTCA allows for the better selection of patients for coronary revascularisation even in higher risk patients. In the CARMENTA trial, both cardiac magnetic resonance imaging and CTCA reduced the proportion of patients referred to invasive coronary angiography during index hospitalisation (87 and 66% vs 100% for standard of care, respectively) and at one year (88 and 70% vs 100%). In contrast, the diagnostic yield for the presence of diameter stenosis ≥70% was greater with CTCA than with cardiac magnetic resonance imaging or standard of care (85% vs 69 and 61%, respectively).

Thus, these three trials demonstrate that CTCA reduces the requirement for invasive coronary angiography without affecting the use of coronary revascularisation especially in patients with suspected non-ST-segment elevation myocardial infarction. This has implications for resource management in hospitals where CTCA can help efficiently identify those who require invasive coronary angiography and access to coronary revascularisation.
Non-invasive ischaemia testing and length of stay
There is always a concern that the introduction of new tests will lead to so-called test inflation where new or incidental findings will lead to further testing. Indeed, in low-risk and asymptomatic populations, this is an inherent concern. However, in general, CTCA was associated with a reduced need for downstream or layering of testing in patients with non-ST-segment elevation myocardial infarction. In keeping with the rates of invasive coronary angiography, CTCA was associated with a reduced requirement for downstream non-invasive ischaemia testing. This was seen across all three trials and resulted in similar lengths of stay. Overall, these trials would suggest that CTCA has no or minimal impact on length of stay but does reduce the need for downstream non-invasive ischaemia testing without impacting on overall healthcare costs.

CLINICAL OUTCOMES OF NON-ST-SEGMENT ELEVATION MYOCARDIAL INFARCTION
Early randomised controlled trials of CTCA recruited low-risk patients with acute chest pain who tended to be younger, with greater female sex representation and more cardiovascular risk factors (Table 2). They were evaluated with previous generations of less sensitive cardiac troponin assays, and overall rates of myocardial infarctions were very low at less than 1%.18,19 The more recent randomised controlled trials evaluating the effects of CTCA in the era of high-sensitivity cardiac troponin testing recruited much higher risk populations with rates of index non-ST-segment elevation myocardial infarction between 5 and 70%, and mean GRACE scores of approximately 115.

Downstream clinical event rates are clearly determined by the length of follow-up and the risk of patients included in the trials. The follow-up duration of the BEACON trial was 30 days, and there was only one death and four possible recurrent acute coronary syndromes in 500 patients. The one-year event rate of death or myocardial infarction was comparable between the RAPID-CTCA (6%) and the CARMENTA (4%) trials. Nevertheless, patients with cardiac troponin elevation in the RAPID-CTCA trial appeared to have the highest risk as the one-year rate of death or myocardial infarction reached 8%.48 In the RAPID-CTCA and the CARMENTA trials, CTCA was associated with similar, albeit numerically lower, rates of major adverse cardiovascular events at one year: hazard ratio: 0.91 (95% confidence interval: 0.62–1.35) in the RAPID-CTCA trial and 0.64 (95% confidence interval: 0.18–2.27) in the CARMENTA trial.

Overall, contemporary trials enrolling higher risk patients including those with non-ST-segment elevation myocardial infarction have suggested that early CTCA can lead to accelerated management and tailored investigations and treatments but does not have a major impact on near- and short-term major adverse cardiovascular events. The high sensitivity and negative-predictive value of high-sensitivity cardiac troponin assays have meant that there is little scope for CTCA to identify unrecognised cases of non-ST-segment elevation myocardial infarction. Thus, there is no opportunity to prevent recurrent immediate or intermediate clinical events for those already diagnosed with non-ST-segment elevation myocardial infarction. However, CTCA does have a role in identifying those with cardiac troponin elevation who do not have Type 1 myocardial infarction and thereby improves on specificity for the diagnosis of non-ST-segment elevation myocardial infarction.

RISK STRATIFICATION OF NON-ST-SEGMENT ELEVATION MYOCARDIAL INFARCTION
Initial risk stratification is essential in the clinical pathway for non-ST-segment elevation myocardial infarction in order to allocate appropriate therapies proportionate to the projected risk. Currently recommended risk stratification schemes using clinical variables offer good predictive value for near- and short-term outcomes.9 However, those clinical variables may not always represent a target that could be modified to improve outcomes, and the recommended risk scores and models do not always have good long-term discriminative performance.30–32 In contrast, cardiac imaging can potentially identify treatable targets, recommending treatment selection, as well as providing more powerful risk stratification.33,34

In patients with stable chest pain, CTCA-defined risk stratification is superior to functional testing for myocardial ischaemia,35,36 a finding that was recently reaffirmed in the International Study of Comparative Health Effectiveness with Medical and Invasive Approaches (ISCHEMIA) trial.57 For patients with suspected or diagnosed non-ST-segment elevation myocardial infarction, similar excellent risk prediction is seen with CTCA. In the VERDICT trial, the long-term (a median of 4.2 years) follow-up of 978 patients who underwent CTCA suggested that the presence of diameter stenosis ≥50% by CTCA was associated with an increased risk of major adverse cardiovascular events independent of cardiac troponin elevation.58 In addition, the presence of diameter stenosis ≥50% in left main coronary artery, proximal left anterior descending artery, or two or more vascular territories by CTCA identified patients at the highest risk of long-term adverse outcomes. Finally, among those without diameter stenosis ≥50% by CTCA, the subsequent findings of invasive coronary angiography did not further distinguish patients at increased risk.

FUTURE DIRECTIONS
Diagnosis
Current diagnostic algorithms have accelerated the management of most patients with acute chest pain by excluding myocardial infarction. However, it is still uncertain and challenging in those assigned to the observe zone of cardiac troponin where a personalised approach based on clinical suspicion is required (Figure 2).21 On the other hand, most cardiac troponin elevations are related to either Type 2 myocardial infarction or myocardial injury. Again, the differentiation between Type 1 myocardial infarction, Type 2 myocardial infarction, and myocardial injury can be challenging, and the optimal investigations and treatments for these conditions remain to be established. This has led to the design of several clinical studies investigating the use of CTCA in patients with suspected or diagnosed non-ST-segment elevation myocardial infarction (Table 3).

The atherosclerotic plaque burden measured by calcium score is a simple gauge for long-term cardiovascular outcomes independent of diameter stenosis,59 and coronary calcium scoring can be
Table 2. Summary of background risk and clinical outcomes in major randomised controlled trials in suspected or diagnosed non-ST-segment elevation myocardial infarction

Patients with low risk^a	Patients with intermediate risk^b							
Age, yrs	ACRIN PA 4005	ROMICAT II	CATCH	CT-COMPARE	CAD-Man	BEACON	RAPID-CTCA	CARMENTA
---------	----------------	------------	-------	------------	----------	-------	------------	----------
Females, %	53	47	43	42	50	47	36	38
Diabetes mellitus, %	14	17	11	7	14	13	18	11
Hypertension, %	51	54	42	31	68	44	47	47
Hyperlipidaemia, %	27	45	38	25	53	35	40	34
Former or current smoker, %	33	49	64	23	53	44	61	38
Family history of CAD, %	29	27	25	33	12	42	31	46
Previous CAD, %	1	0	14	0	0	0	34	0
Ischaemic ECG, %	3	0	0	0	0	21	61	37
Elevated cardiac troponin, %	NR	0	0	0	NR	5	57	100
GRACE score	NR	NR	NR	NR	NR	83	115	115
GRACE > 140, %	NR	NR	NR	NR	NR	2	23	29
Downstream clinical events (CTCA vs control), %	1 yr 1 at 30 days	NR	11 yr 16 at median 39 months (including revascularisation and readmission for chest pain)	2 yr 1 at 1 year	4 yr 4 at median 3.3 years (including unstable angina, revascularisation, and stroke)	10 yr 9 at 30 days (including revascularisation)	6 yr 6 at 1 year	16 yr 23 at mean 1.5 years (including revascularisation, hospitalised heart failure, and procedure-related complications)
Overall long-term death or myocardial infarction during follow-up, %	NR	NR	1 at median 19 months	1 at 1 year	1 at median 3.3 years	NR	6 at 1 year	4 at median 1.3 years

CAD, coronary artery disease; CTCA, computed tomography coronary angiography; ECG, electrocardiogram; GRACE, Global Registry of Acute Coronary Events; NA, not applicable; NR, not reported.

The RAPID-CTCA trial reported the proportion of patients having abnormal ECG.

Clinical events were not consistently reported, and definitions varied between trials.

^a Patients had neither history of CAD, ischaemic ECG, nor cardiac troponin elevation.

^b Patients had either history of CAD, ischaemic ECG, or high-sensitivity cardiac troponin elevation.
a useful gatekeeper for deferral of invasive coronary angiography in patients with acute chest pain.60 The Randomized Controlled Trial of Early Coronary Calcium Scoring and Standard Care in Emergency Department Chest Pain Patients (ClinicalTrials.gov identifier, NCT02828761) is currently recruiting patients with intermediate risk and a cardiac troponin concentration within three times upper reference limit to evaluate the effect of coronary calcium scoring on diagnosis and management for patients in the observe zone. Another two studies, the Coronary CT Angiography for Improved Assessment of Suspected Acute Coronary Syndrome With Inconclusive Diagnostic Work-up (COURSE; ClinicalTrials.gov identifier, NCT03129659) and the Prospective Randomised Trial of Emergency Cardiac CT (PROTECT; ClinicalTrials.gov identifier, NCT03583320) will throw light on the
Table 3. Summary of ongoing clinical studies of computed tomography-based assessment in suspected or diagnosed non-ST-segment elevation myocardial infarction

ClinicalTrials.gov Identifier	Study design	Country	Patient no	Key inclusion	Key exclusion	Studied treatment	Primary endpoint
NCT02828761	Diagnostic, randomised controlled trial	United States	800	Acute chest pain at intermediate risk by HEART score	Previous CAD	Coronary calcium scoring vs SoC	Major adverse cardiovascular events at 30 days
NCT03129639 COURSE	Diagnostic, single group assignment	Netherlands	230	Suspected acute coronary syndrome in the observe zone based on high-sensitivity cardiac troponin	Previous CAD	CTCA	Diagnostic accuracy to identify acute coronary syndrome
NCT03583320 PROTECT	Diagnostic, randomised controlled trial	United Kingdom	230	Suspected acute coronary syndrome with initial high-sensitivity cardiac troponin in the intermediate range	Previous CAD	CTCA vs SoC	Length of stay up to 1 year
NCT04484119 DEFINE TYPE 2 M1	Observational	United States	50	Type 2 myocardial infarction	Other types of myocardial infarction	FFRct	Prevalence of obstructive CAD
NCT04742217 FAST-CCTA	Diagnostic, randomised controlled trial	Sweden	3500	Suspected acute coronary syndrome with an intermediate risk (HEART score >3)	Myocardial infarction	CTCA vs SoC	Death, hospitalisation because of myocardial infarction or unstable angina requiring revascularisation at 3 years
NCT03952351 TARGET-CCTA	Screening, randomised controlled trial	United Kingdom	2270	Suspected acute coronary syndrome and a high-sensitivity cardiac troponin concentration between 5ng/L and the 99th centile upper reference limit	Myocardial infarction	CTCA vs SoC	Cardiac death or myocardial infarction at median of 3 years

CAD, coronary artery disease; CTCA, computed tomography coronary angiography; FFRct, Fractional flow reserve by computed tomography; HEART, History, ECG, Age, Risk factors, and Troponin; SoC, standard of care.
effectiveness of CTCA in patients with a 'non-diagnostic' cardiac troponin concentration under the current clinical pathway.

CTCA visualises the coronary artery wall, enabling characterisation of atherosclerotic plaque morphology. Indeed, several visually assessed adverse plaque characteristics have been described, including positive remodelling, low attenuation, spotty calcification, and the napkin-ring sign. In patients with stable chest pain, these adverse features predict major adverse cardiovascular events.61,62 Beyond qualitative assessment, semi-automated quantification allows for a reproducible and detailed breakdown of atherosclerotic plaque morphology (Figure 3).63,64 It has been extensively validated against intracoronary imaging.65 Low-attenuation plaque is of particular interest since it correlates with the lipid-rich necrotic core central to the pathogenesis of Type 1 myocardial infarction. In addition, the burden of low-attenuation plaque is associated with an increase in cardiovascular risk score, calcium score, coronary artery diameter stenosis, and the incidence of myocardial infarction.66 In fact, compared with asymptomatic patients, those with acute chest pain have a greater volume of total and low-attenuation plaque, particularly those with non-ST-segment elevation myocardial infarction.67 In the RAPID-CTCA trial, the burden of total, noncalcified, and low-attenuation plaque were the strongest predictors of death or myocardial infarction at one year, independent of GRACE score and the presence of diameter stenosis ≥70%, among patients with suspected acute coronary syndrome.68 Furthermore, CTCA along with quantitative plaque analysis potentially helps discriminate acute coronary syndrome by characterising adverse plaque features.69,70

Additional computational fluid dynamics and advanced molecular imaging may enhance the identification of adverse features that are culprit for incident acute coronary syndrome.71,72 The Determining the Mechanism of Myocardial Injury and Role of Coronary Disease in Type 2 Myocardial Infarction (DEMAND-MI) study showed that two-thirds of patients with Type 2 myocardial infarction had coronary artery disease of any severity, of which half had not been identified previously. In addition, many of them were not treated with preventative therapies, suggesting missed treatment opportunities.73 Further substudies of the DEMAND-MI study and the DEFINing the Prevalence and Characteristics of Coronary Artery Disease Among Patients With Type 2 Myocardial Infarction Using CT-FFR (DEFINE Type 2 MI, ClinicalTrials.gov identifier, NCT04864119) study will use CTCA-based techniques to explore the prevalence of coronary artery disease, haemodynamically significant stenosis, and plaque characteristics among patients with Type 2 myocardial infarction. This information will increase our understanding of pathogenesis of Type 2 myocardial infarction and suggest potential treatment opportunities.

Ischaemia assessment and coronary revascularisation

Although CTCA is excellent at identifying normal coronary arteries and avoiding unnecessary invasive coronary angiography,47,48 the specificity of CTCA in discriminating anatomical (≥50% diameter stenosis) or functional (fractional flow reserve ≤0.80) obstruction remains imperfect.74 Fractional flow reserve derived from CTCA is a promising approach that improves discrimination of those at higher risk for future events.74 However, its use has not resulted in further improvement of major adverse cardiovascular events in patients with stable chest pain.75 The Cardiac CT in the treatment of acute CHest pain-2 (CATCH-2) trial showed that additional computed tomography perfusion imaging further reduced the utilisation of invasive coronary angiography in low-risk patients with acute chest pain,76 but it was underpowered to evaluate clinical outcomes. These findings are not definitive, and the role of CTCA-derived fractional flow reserve or computed tomography myocardial perfusion remains to be established in non-ST-segment elevation myocardial infarction. Ultimately, any advanced computed tomography-based functional assessment will need to demonstrate incremental diagnostic and prognostic value over CTCA in the value-based health care.77

Long-term outcomes

The principal advantage of CTCA is to identify unrecognised coronary atherosclerosis regardless of stenosis severity as an opportunity to apply preventative interventions, such as antiplatelet and statin therapies. The benefit of such interventions take many years to accrue as demonstrated in patients with stable chest pain.17,78 Thus, the greatest opportunity for CTCA to improve long-term clinical outcomes in those with acute chest pain may be in those who have myocardial infarction excluded but may still be at a high risk of future long-term cardiovascular events. Two ongoing randomised controlled trials, the
Randomized Evaluation of Coronary Computed Tomographic Angiography in Intermediate-risk Patients Presenting to the Emergency Department With Chest Pain (FAST-CCTA; ClinicalTrials.gov identifier, NCT04748237) and the Troponin in Acute Chest Pain to Risk Stratify and Guide Effective Use of Computed Tomography Coronary Angiography (TARGET-CCTA; ClinicalTrials.gov identifier, NCT03952351) trials, will determine the effectiveness of CCTA on long-term (≥3 years) major adverse cardiovascular events in such patients.

CONCLUSIONS

In patients with suspected non-ST-segment elevation myocardial infarction, electrocardiography and high-sensitivity cardiac troponin testing will remain the initial step for clinical evaluation, and invasive coronary angiography is still the routine clinical tool to determine the strategy of coronary revascularisation. CCTA has an increasingly important role in avoiding unnecessary invasive coronary angiography and reducing downstream non-invasive functional testing for myocardial ischaemia especially among those with low or intermediate risk. Moreover, CCTA is an excellent gatekeeper for the cardiac catheterisation laboratory, provides complementary information for patients with myocardial infarction in the absence of obstructive coronary artery disease, and can highlight alternative or incidental diagnoses for patients with non-ST-segment elevation myocardial infarction. There are several ongoing studies evaluating CCTA and its associated technologies that will define and potentially expand its application in patients with suspected or diagnosed non-ST-segment elevation myocardial infarction.

ACKNOWLEDGEMENTS

MNM is supported by the British Heart Foundation (FS/19/46/34445). AB and TS are supported by the Medical Research Council (MR/V007254/1 and MR/T029153/1, respectively). MCW is supported by the British Heart Foundation (FS/ICRF/20/26002). DEN is supported by the British Heart Foundation (CH/09/002, RG/16/10/32375, RE/18/5/34216) and is the recipient of a Wellcome Trust Senior Investigator Award (WT103782AIA).

DISCLOSURE

MCW has given talks for Canon Medical Systems and Siemens Healthineers. We declare no other competing interests related to this manuscript.

REFERENCES

1. Stepinska J, Lettino M, Ahrens I, Bueno H, Garcia-Castrollo L, Khoury A, et al. Diagnosis and risk stratification of chest pain patients in the emergency department: focus on acute coronary syndromes. A position paper of the Acute Cardiovascular Care Association. Eur Heart J Acute Cardiovasc Care 2020; 9: 76–89. https://doi.org/10.1177/ 204887619885346

2. Goodacre S, Cross E, Arnold J, Angelini K, Capewell S, Nicholl J. The health care burden of acute chest pain. Heart 2005; 91: 229–30. https://doi.org/10.1161/CIRCULATIONAHA.119.031429

3. Rolli F, Patrono C, Coller JP, Mueller C, Valgimigli M, Andreotti F, et al. ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur Heart J 2016; 37: 267–315. https://doi. org/10.1093/eurheartj/ehw320

4. Li YH, Lee CH, Huang WC, Wang YC, Su CH, Sung PH, et al. 2020 Focused Update of the 2012 Guidelines of the Taiwan Society of Cardiology for the Management of ST-Segment Elevation Myocardial Infarction. Acta Cardiol Sin 2020; 36: 285–307. https://doi.org/10.6515/ACS.20200736(4). 20200619A

5. Gulati M, Levy PD, Mukherjee D, Amsterdam E, Bhatt DL, et al, Writing Committee Members. 2021 AHA/ACC/AACVPR/ACCP/AGS/AGT/ASFA/ATS/ACR/EUR/SWISSTR/GPSM/SCPC/SDC/SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol 2021; 78: 2218–61. https://doi.org/10. 1016/j.jacc.2021.07.052

6. Reichlin H, Twerenbold R, Reiter M, Steuer S, Bassetti S, Balmelli C, et al. Introduction of high-sensitivity troponin assays: impact on myocardial infarction incidence and prognosis. Am J Med 2012; 125: 1205–13. https://doi.org/10.1016/j.amjmed.2012.07.015

7. D’Souza M, Sarkissian L, Saaby I, Poulsen TS, Gerke O, Larsen TB, et al. Diagnosis of unstable angina pectoris has declined markedly with the advent of more sensitive troponin assays. Am J Med 2015; 128: 852–60. https://doi.org/10.1016/j.amjmed. 2015.01.044

8. Anand A, Lee KK, Chapman AR, Ferry AV, Adamson PD, Strachan FE, et al. High-sensitivity cardiac troponin on presentation to rule out myocardial infarction: a stepped-wedge cluster randomized controlled trial. Circulation 2021; 143: 2214–24. https://doi. org/10.1161/CIRCULATIONAHA.120.052380

9. Hsia RY, Hale Z, Tabas JA. A national study of the prevalence of life-threatening diagnoses in patients with chest pain. JAMA Intern Med 2016; 176: 1029–32. https://doi.org/10.1001/jamainternmed.2016.2498

10. Puelacher C, Gugala M, Adamson PD, Shah A, Chapman AR, Anand A, et al. Incidence and outcomes of unstable angina compared with non-ST-elevation myocardial infarction. Heart 2019; 105: 1423–31. https://doi.org/10. 1136/heartjnl-2018-314035

11. Chapman AR, Adamson PD, Shah ASV, Anand A, Strachan FE, Ferry AV, et al. High-sensitivity cardiac troponin and the universal definition of myocardial infarction. Circulation 2020; 141: 161–71. https://doi. org/10.1161/CIRCULATIONAHA.119.042960

12. Pasterkamp G, den Ruiter HM, Libby P. Temporal shifts in clinical presentation and underlying mechanisms of atherosclerotic disease. Nat Rev Cardiol 2017; 14: 21–29. https://doi.org/10.1038/nrcardio.2016.166

13. Shah ASV, Anand A, Strachan FE, Ferry AV, Lee KK, Chapman AR, et al. High-sensitivity troponin in the evaluation of patients with suspected acute coronary syndrome: a stepped-wedge, cluster-randomised controlled trial. Lancet 2018; 392: 919–28. https://doi.org/10.1016/S0140-6736(18)31923-8
14. Wereski R, Kimenai DM, Taggart C, Doudesis D, Lee KK, Lowry MTH, et al. Cardiac troponin thresholds and kinetics to differentiate myocardial injury and myocardial infarction. Circulation 2021; 144: 528–38. https://doi.org/10.1161/CIRCULATIONAHA.121.054302

15. Wereski R, Kimenai DM, Bularga A, Taggart C, Lowe DJ, Mills NL, et al. Risk factors for type 1 and type 2 myocardial infarction. Eur Heart J 2022; 43: 127–35. https://doi.org/10.1093/eurheartj/ehab581

16. SCOT-HEART investigators. CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. Lancet 2015; 385: 2383–91. https://doi.org/10.1016/S0140-6736(15)60291-4

17. Newby DE, Adamson PD, Berry C, Boon NA, Dweck MR, et al. SCOT-HEART Investigators. Coronary CT angiography and 5-year risk of myocardial infarction. N Engl J Med 2018; 379: 924–33. https://doi.org/10.1056/NEJMoai1805971

18. Litt H, Gatsonis C, Snyder B, Singh H, Miller CD, Entringer DW, et al. CT angiography for safe discharge of patients with possible acute coronary syndromes. J Am Coll Cardiol 2022; 75: 3000–3007. https://doi.org/10.1016/j.jacc.2021.02.035

19. Hoffmann U, Truong QA, Bauersachs J, Bhatt DL, et al. 2020 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 2020; 41: 407–77. https://doi.org/10.1093/eurheartj/ehz425

20. Collet JP, Thiele H, Barbato E, Barthélémy O, Bauersachs J, Bhatt DL, et al. ESC Guidelines for the management of chronic coronary syndromes. Eur Heart J 2020; 41: 1393–1403. https://doi.org/10.1093/eurheartj/ehz625

21. Collet JP, Thiele H, Barbato E, Barthélémy O, Bauersachs J, Bhatt DL, et al. 2020 ESC Guidelines for the management of chronic coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 2021; 42: 1289–1367. https://doi.org/10.1093/eurheartj/ehaa575

22. Thysgen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al. Fourth universal definition of myocardial infarction (2018). J Am Coll Cardiol 2018; 72: 2231–64. https://doi.org/10.1016/j.jacc.2018.08.1038

23. McCarthy CP, Raber I, Chapman AR, Sandoval Y, Apple FS, Mills NL, et al. Myocardial injury in the era of high-sensitivity cardiac troponin assays: a practical approach for clinicians. JAMA Cardiol 2019; 4: 1034–42. https://doi.org/10.1001/jamacardio.2019.2724

24. Gard A, Lindahl R, Batra G, Hadzisamovanic N, Hjort M, Szummer KE, et al. Interphysician agreement on subclassification of myocardial infarction. Heart 2018; 104: 1284–91. https://doi.org/10.1136/heartjnl-2017-312409

25. Bularga A, Hung J, Daghem M, Stewart S, Taggart C, Wereski R, et al. Coronary artery and cardiac disease in patients with type 2 myocardial infarction: a prospective cohort study. Circulation 2022; 145: 1188–1200. https://doi.org/10.1161/CIRCULATIONAHA.121.058542

26. Bhatia S, Anstine C, Jaffe AS, Gersh BJ, Chandrasekaran K, Foley TA, et al. Cardiac magnetic resonance in patients with elevated troponin and normal coronary angiography. Heart 2019: 105: 1231–36. https://doi.org/10.1136/heartjnl-2018-314631

27. van Cauteren YJM, Smulders MW, Theunissen R, Gertsen SC, Adriansen BP, Bijvoet GP, et al. Cardiovascular magnetic resonance accurately detects obstructive coronary artery disease in suspected non-ST-elevation myocardial infarction: a sub-analysis of the CARMENTA trial. J Cardiovasc Magn Reson 2021; 23: 40. https://doi.org/10.1186/s12968-021-00723-6

28. Agewall S, Beltrame JF, Reynolds HR, Niessner A, Rosano G, Caforio ALP, et al. ESC working group position paper on myocardial infarction with non- obstructive coronary arteries. Eur Heart J 2017; 38: 143–53. https://doi.org/10.1093/eurheartj/ehw149

29. Bing R, Dweck MR. Myocardial fibrosis: why image, how to image and clinical implications. Heart 2019; 105: 1832–40. https://doi.org/10.1136/heartjnl-2019-315560

30. Vágó H, Szabo L, Dohy Z, Czimbalmos C, Tóth A, Suzai F, et al. Early cardiac magnetic resonance imaging in troponin-positive acute chest pain and non- obstructed coronary arteries. Heart 2020; 106: 992–1000. https://doi.org/10.1136/heartjnl-2019-316295

31. Heitner JF, Sendhilkumar A, Harrison JK, Klem I, Sketch MH, Ivanov A, et al. Identifying the infarct-related artery in patients with non-ST-segment-elevation myocardial infarction. Circ Cardiovasc Interv 2019; 12(S): https://doi.org/10.1161/CIRCINTERVENTIONS.118.007305

32. De Angelis G, De Luca A, Merlo M, Nucifora G, Rossi M, Stolfo D, et al. Prevalence and prognostic significance of ischemic late gadolinium enhancement pattern in non-ischemic dilated cardiomyopathy. Am Heart J 2020; 246: 117–24. https://doi.org/10.1016/j.ahj.2022.01.006

33. Keenan NG, Captur G, McCann GP, Berry C, Myerson SG, Fairbairn T, et al. Regional variation in cardiovascular magnetic resonance service delivery across the UK. Heart 2021: 107: 1974–79. https://doi.org/10.1136/heartjnl-2020-318667

34. Maurovich-Horvat P, Bosserdt M, Kofoed KE, Rieckmann N, Benedek T, et al. DISCHARGE Trial Group. CT or invasive coronary angiography in stable chest pain. N Engl J Med 2022; 386: 1591–1602. https://doi.org/10.1056/NEJMoa2200963

35. Aldrovandi A, Cademartiri F, Arduini D, Lina D, Ugo F, Maietti E, et al. Computed tomography coronary angiography in patients with acute myocardial infarction without significant coronary stenosis. Circulation 2012; 126: 3000–3007. https://doi.org/10.1161/CIRCULATIONAHA.112.117598

36. Nugent JP, Wang J, Louis JJ, O’Connell TW, Khosa F, Wong GC, et al. CCTA in patients with positive troponin and low clinical suspicion for ACS: a useful diagnostic option to exclude obstructive CAD. Emerg Radiol 2019; 26: 269–75. https://doi.org/10.1007/s10140-019-01668-1

37. Haase R, Schlattmann P, Gueret P, Andreini D, Pontone G, Alkadhi H, et al. Diagnosis of obstructive coronary artery disease using computed tomography angiography in patients with stable chest pain depending on clinical probability and in clinically important subgroups: meta-analysis of individual patient data. BMJ 2019; 365: j1945. https://doi.org/10.1136/bmj.l1945

38. Linde J, Kelbæk H, Hansen TE, Søgvardsen PE, Torp-Pedersen C, Rech J, et al. Coronary CT angiography in patients with non-ST-segment elevation acute coronary syndrome. J Am Coll Cardiol 2020; 75: 453–63. https://doi.org/10.1016/j.jacc.2019.12.012

39. Mehta SR, Granger CB, Boden WE, Sieg PG, Bassand JP, Faxon DP, et al. Early versus delayed invasive intervention in acute coronary syndromes. N Engl J Med 2009; 360: 2165–75. https://doi.org/10.1056/NEJMoai0807986

40. Kofoed KE, Kelbæk H, Hansen PR, Torp-Pedersen C, Heftsen D, Klevgaard L, et al. Early versus standard care invasive examination and treatment of patients with non-ST-segment elevation acute coronary syndrome. Circulation 2018; 137: 2741–50. https://doi.org/10.1161/CIRCULATIONAHA.118.037152

41. Lin WY, Hung Y, Lin GM, Lin CS, Liu JT, Cheng CC, et al. Profiles of hospitalized patients with angiographic coronary heart
42. Hulten E, Pickett C, Bittencourt MS, Villines TC, Petrello S, Di Carli ME, et al. Outcomes after coronary computed tomography angiography in the emergency department: a systematic review and meta-analysis of randomized, controlled trials. J Am Coll Cardiol 2013; 61: 880–92. https://doi.org/10.1016/j.jacc.2012.11.061

43. Linde JJ, Kofoed KE, Sørgaard M, Kelbæk H, Jensen GB, Nielsen WB, et al. Initial imaging-guided strategy versus routine care in patients with non-ST-segment elevation myocardial infarction. J Am Coll Cardiol 2019; 74: 2466–77. https://doi.org/10.1016/j.jacc.2019.09.027

44. Hamilton-Craig C, Fifoot A, Hansen M, Pincus M, Chan J, Walters DL, et al. Diagnostic performance and cost of CT angiography versus stress ECG — a randomized prospective study of suspected acute coronary syndrome chest pain in the emergency department (CATCH). Int J Cardiol 2013; 168: 5257–62. https://doi.org/10.1016/j.ijcard.2013.08.020

45. Dewey M, Rief M, Martus P, Kendziora B, Feger S, Dreger H, et al. Evaluation of computed tomography in patients with atypical angina or chest pain clinically referred for invasive coronary angiography: randomised controlled trial. BMJ 2016; 355. https://doi.org/10.1136/bmj.i5441

46. Dedic A, Lubbers MM, Schap J, Lammers J, Lambers EJ, Rensing BJ, et al. Coronary CT angiography for suspected ACS in the era of high-sensitivity troponins: randomized multicenter study. J Am Coll Cardiol 2016; 67: 16–26. https://doi.org/10.1016/j.jacc.2015.10.045

47. Gray AJ, Roobottom C, Smith JE, Goodacre S, Oatey K, O’Brien R, et al. Early computed tomography coronary angiography in patients with suspected acute coronary syndrome: randomised controlled trial. BMJ 2021; 374: 2106. https://doi.org/10.1136/bmj.n2106

48. Wang KL, Roobottom C, Smith JE, Goodacre S, Oatey K, O’Brien R, et al. Presentation cardiac troponin and early computed tomography coronary angiography in patients with suspected acute coronary syndrome: a pre-specified secondary analysis of the RAPID-CTCA trial. Eur Heart J Acute Cardiovasc Care 2022; 11: 570–79. https://doi.org/10.1093/ehjacc/zuaa057

49. Smulders MW, Kietelsaer B, Wildberger JE, Dagnelie PC, Brunner-La Rocca HP, Mingels AMA, et al. Initial imaging-guided strategy versus routine care in patients with non-ST-segment elevation myocardial infarction. J Am Coll Cardiol 2019; 74: 2466–77. https://doi.org/10.1016/j.jacc.2019.09.027

50. de Araújo Gonçalves P, Ferreira M, Apesteguia J, Aguiar C, Seabra-Gomes R, TIMI, PURSUIT, and GRACE risk scores: sustained prognostic value and interaction with revascularization in NSTE-ACS. Eur Heart J 2005; 26: 865–72. https://doi.org/10.1093/eurheartj/ehi187

51. Yan AT, Yan RT, Tan M, Casanova A, Labinaz M, Sridhar K, et al. Risk scores for risk stratification in acute coronary syndromes: useful but simpler is not necessarily better. Eur Heart J 2007; 28: 1072–78. https://doi.org/10.1093/eurheartj/ehm004

52. Chen CW, Hsieh YC, Hsieh MH, Lin YK, Huang CY, Yeh JS. Predictive power of in-hospital and long-term mortality of the GRACE, TIMI, revised CADILLAC and PAMI score in NSTE-ACS patients with diabetes - data from TSOAC-ACS-DM registry. Acta Cardiol Sin 2020; 36: 595–602. https://doi.org/10.6515/ACS.202011_36(6).20200326A

53. Chang H, Min JK, Rao SV, Patel MR, Simonetti OP, Ambrosio G, et al. Non-ST-segment elevation acute coronary syndromes: targeted imaging to refine upstream risk stratification. Circ Cardiovasc Imaging 2012; 5: 536–46. https://doi.org/10.1161/CIRCIMAGING.111.970899

54. Dugham M, Newby DE. Detecting unstable plaques in humans using cardiac CT: can it guide treatments? Br J Pharmacol 2021; 178: 2204–17. https://doi.org/10.1111/bjp.14896

55. Hoffmann U, Ferencik M, Udelson JE, Picard MH, Truong QA, Patel MR, et al. Prognostic value of noninvasive cardiovascular testing in patients with stable chest pain: insights from the PROMISE trial (prospective multicenter imaging study for evaluation of chest pain). Circulation 2017; 135: 2320–32. https://doi.org/10.1161/CIRCULATIONAHA.116.024360

56. Singh T, Bingham J, Dweck MR, van Beek EJR, Mills NL, Williams MC, et al. Exercise electrocardiography and computed tomography coronary angiography for patients with suspected stable angina pectoris: a post hoc analysis of the randomized SCOT-HEART trial. JAMA Cardiol 2020; 5: 920–28. https://doi.org/10.1001/jamacardio.2020.1567

57. Reynolds HR, Shaw LJ, Min JK, Page CB, Berman DS, Chaitman BR, et al. Outcomes in the ISCHEMIA trial based on coronary artery disease and ISCHEMIA severity. Circulation 2021; 144: 1024–38. https://doi.org/10.1161/CIRCULATIONAHA.120.049755

58. Kofoed KE, Engstrom T, Sigvardsen PE, Linde JJ, Torp-Pedersen C, de Knegt M, et al. Prognostic value of coronary CT angiography in patients with non-ST-segment elevation acute coronary syndromes. J Am Coll Cardiol 2021; 77: 1044–52. https://doi.org/10.1016/j.jacc.2020.12.037

59. Mortensen MB, Dzaye O, Steffeisen FH, Botker HE, Jensen JM, Rennov Sand NP, et al. Impact of plaque burden versus stenosis on ischemic events in patients with coronary atherosclerosis. J Am Coll Cardiol 2020; 76: 2803–13. https://doi.org/10.1016/j.jacc.2020.10.021

60. Grandhi GR, Mszar R, Cainszos-Arichira M, Rajan T, Latif MA, Bittencourt MS, et al. Coronary calcium to rule out obstructive coronary artery disease in patients with acute chest pain. JACC Cardiovasc Imaging 2022; 15: 271–80. https://doi.org/10.1016/j.jcmg.2021.06.027

61. Ferencik M, Mayrhofer T, Bittner DO, Emami H, Puchner SB, Lu MT, et al. Use of high-risk coronary atherosclerotic plaque detection for risk stratification of patients with stable chest pain: a secondary analysis of the PROMISE randomized clinical trial. JAMA Cardiol 2018; 3: 144–52. https://doi.org/10.1001/jamacardio.2017.4973

62. Williams MC, Moss AJ, Dweck M, Adamson PD, Alam S, Hunter A, et al. Coronary artery plaque characteristics associated with adverse outcomes in the SCOT-HEART study. J Am Coll Cardiol 2019; 73: 291–301. https://doi.org/10.1016/j.jacc.2018.10.066

63. Meah MN, Singh T, Williams MC, Dweck MR, Newby DE, Slomka P, et al. Reproducibility of quantitative plaque measurement in advanced coronary artery disease. J Cardiovasc Comput Tomogr 2021; 15: 333–38. https://doi.org/10.1016/j.jcct.2020.12.008

64. Tzolos E, McElhinney P, Williams MC, Cadet S, Dweck MR, Berman DS, et al. Repeatability of quantitative pericoronary adipose tissue attenuation and coronary plaque burden from coronary CT angiography. J Cardiovasc Comput Tomogr 2021; 15: 81–84. https://doi.org/10.1016/j.jcct.2020.03.007

65. Matsumoto H, Watanabe S, Kyo E, Tsuji T, Ando Y, Otaki Y, et al. Standardized volumetric plaque quantification and characterization from coronary CT angiography: a head-to-head comparison with invasive intravascular ultrasound. Eur Radiol 2019; 29: 6129–39. https://doi.org/10.1007/s00330-019-06219-3
66. Williams MC, Kwiecinski J, Doris M, McElhinney P, D’Souza MS, Cadet S, et al. Low-attenuation noncalcified plaque on coronary computed tomography angiography predicts myocardial infarction: results from the multicenter SCOT-HEART trial (Scottish computed tomography of the heart). *Circulation* 2020; 141: 1452–62. https://doi.org/10.1161/CIRCULATIONAHA.119.044720

67. de Knegt MC, Linde JJ, Fuchs A, Pham MHC, Jensen AK, Nordestgaard BG, et al. Relationship between patient presentation and morphology of coronary atherosclerosis by quantitative multidetector computed tomography. *Eur Heart J Cardiovasc Imaging* 2019; 20: 1221–30. https://doi.org/10.1093/ehjci/jey146

68. Meah MN, Tsolos E, Wang KL, Bularga A, Dweck MR, Curzen N, et al. Plaque burden and 1-year outcomes in acute chest pain. *JACC Cardiovasc Imaging* 2022. https://doi.org/10.1016/j.jcmg.2022.04.024

69. Puchner SB, Liu T, Mayrhofer T, Truong QA, Lee H, Fleg JL, et al. High-risk plaque detected on coronary CT angiography predicts acute coronary syndrome independent of significant stenosis in acute chest pain: results from the ROMICAT-II trial. *J Am Coll Cardiol* 2014; 64: 684–92. https://doi.org/10.1016/j.jacc.2014.05.039

70. Bittner DO, Mayrhofer T, Puchner SB, Lu MT, Maurovich-Horvat P, Ghemigian K, et al. Coronary computed tomography angiography-specific definitions of high-risk plaque features improve detection of acute coronary syndrome. *Circ Cardiovasc Imaging* 2018; 11(8). https://doi.org/10.1161/CIRCIMAGING.118.007657

71. Lee JM, Choi G, Koo BK, Hwang D, Park J, Zhang J, et al. Identification of high-risk plaques destined to cause acute coronary syndrome using coronary computed tomographic angiography and computational fluid dynamics. *JACC Cardiovasc Imaging* 2019; 12: 1032–43. https://doi.org/10.1016/j.jcmg.2018.01.023

72. Joshi NV, Vasey AT, Williams MC, Shah ASV, Calvert PA, Craighead FHM, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. *Lancet* 2014; 383: 705–13. https://doi.org/10.1016/S0140-6736(13)61754-7

73. Knuuti J, Ballo H, Juarez-Orozco LE, Saraste A, Koll F, Rutjes AWS, et al. The performance of non-invasive tests to rule-in and rule-out significant coronary artery stenosis in patients with stable angina: a meta-analysis focused on post-test disease probability. *Eur Heart J* 2018; 39: 3322–30. https://doi.org/10.1002/ehj.26727

74. Patel MR, Nergaard BL, Fairbairn TA, Nieman K, Akasaka T, Berman DS, et al. 1-year impact on medical practice and clinical outcomes of FFR_{CT}: the ADVANCE registry. *JACC Cardiovasc Imaging* 2020; 13: 97–105. https://doi.org/10.1016/j.jcmg.2019.03.003

75. Curzen N, Nicholas Z, Stuart B, Wilding S, Hill K, Shambrook J, et al. Fractional flow reserve derived from computed tomography coronary angiography in the assessment and management of stable chest pain: the FORECAST randomized trial. *Eur Heart J* 2021; 42: 3844–52. https://doi.org/10.1093/eurheartj/ehab444

76. Sørgaard MH, Linde JJ, Kühl JT, Kelbaek H, Hove JD, Forntiz GC, et al. Value of myocardial perfusion assessment with coronary computed tomography angiography in patients with recent acute-onset chest pain. *JACC Cardiovasc Imaging* 2018; 11: 1611–21. https://doi.org/10.1016/j.jcmg.2017.09.022

77. Douglas PS, Cerqueira MD, Berman DS, Chinnayyan K, Cohen MS, Lundbye JB, et al. The future of cardiac imaging: report of a think tank convened by the American College of Cardiology. *JACC Cardiovasc Imaging* 2016; 9: 1211–23. https://doi.org/10.1016/j.jcmg.2016.02.027

78. Douglas PS, Hoffmann U, Patel MR, Mark DB, Al-Khalidi HR, Cavanaugh B, et al. Outcomes of anatomical versus functional testing for coronary artery disease. *N Engl J Med* 2015; 372: 1291–1300. https://doi.org/10.1056/NEJMoa1415516