Figure S11: Combination treatment of numerous cancer cell lines using 968 and MDC. A-E) Histograms depicting specific data points collected from dose curves for 968, MDC, or 968 and MDC in the indicated cell lines. The Y-axes represent the number of cells in culture after 6 days of drug treatment, while the X-axes are positioned at the starting number of cells. Values indicated with * were calculated from dose curves, and their error bars represent the standard deviation from the nearest experimental measurement. Drug concentrations are reported in µM. F-J) Combination Index (CI) calculated for 968 and MDC when used to treat the indicated cell lines, used at a ratio of IC₅₀(968) µM 968 to 60 µM MDC in any given case, where IC₅₀(968) was the IC₅₀ for 968 for that particular cell line. The CI was calculated at regular intervals that represent a specific fraction (5%) of normal cell growth. Plots were determined considering the two drugs as either mutually exclusive (black circles) or mutually nonexclusive (white circles). Error bars in A-E represent the standard deviation of three separate experiments.
Figure S12: LN-229 treated with 968 and Z-Don. Cells were cultured in the presence of 968, Z-Don, or a combination of 968 and Z-Don (at a ratio of 6.4 μM 968: 40 μM Z-Don) for 6 days and then counted. The Y-axis represents the number of cells in culture after 6 days of drug treatment, while the X-axis is positioned at the starting number of cells. Values marked with * were calculated from dose curves, and error bars represent the standard deviation from the nearest experimental measurement.
Supplemental Methods:

Method of Chou and Talalay:

The method of Chou and Talalay was used to determine drug synergism.\(^{38}\) The results from the growth assays (performed as described in materials and methods) were used to determine the fraction of normal cell growth (F_g) for each drug treatment (the drugs were used individually, or in combination, over a range of concentrations), with the ‘no drug’ treatment being considered the maximum F_g (i.e. 100% cell growth). The data were then plotted as linearized dose curves: $\log[(1/F_g) - 1]$ was plotted against the log of the drug dose. The resulting plots were fitted using Excel, and the slope and IC\(_{50}\) (determined from the X intercept) of each line was determined. These values allowed estimations of the concentration of each drug, or combination of drugs, required to obtain a certain fraction of the maximum growth of a cell line ($Dose_{F_g}$) by the formula:

$$Dose_{F_g} = Dose_{IC_{50}} \left[\frac{1 - F_g}{F_g} \right]^{\frac{1}{m}}$$

where $Dose_{IC_{50}}$ is the IC\(_{50}\) of a drug or combination of drugs as calculated from the linearized dose curve, and m is the slope of that line.

$Dose_{F_g}$ was calculated for values of F_g between 0.95 and 0.05 in 0.05 increments. Because drugs in combinations were administered at a constant ratio $Fraction(A): Fraction(B)$ (in this study, generally IC\(_{50}(A):IC_{50}(B)$)), the relative concentration of each individual drug ($Dose_A$ or $Dose_B$) in any given value of $Dose_{F_g}$ for the drug combination is determined by the equation:
Synergistic, additive, or antagonistic effects of various drug combinations on cells were then determined via calculation of the combination index (CI):

\[
CI = \frac{Dose_A}{(Dose_{fg})_A} + \frac{Dose_B}{(Dose_{fg})_B} + \alpha \cdot \frac{Dose_A Dose_B}{(Dose_{fg})_A (Dose_{fg})_B}
\]

where \((Dose_{fg})_A\) is the concentration of drug A needed to obtain a given \(Fg\) value, and \(Dose_A\) is the concentration of that drug required to obtain the same value of \(Fg\) when drug A and drug B are used simultaneously. \((Dose_{fg})_B\) and \(Dose_B\) are analogous values for the second drug. The value \(\alpha\) is equal to 1 if the two drugs are mutually nonexclusive, and 0 if the drugs are mutually exclusive. CI values equal to 1 indicate drug combinations that produce additive effects, those greater than 1 indicate antagonistic effects, and those less than 1 indicate synergistic effects. The CI value was determined for each value of \(Fg\) and plotted for either value of \(\alpha\).

Sample CI Calculation:

MDA-MB-231 cells were cultured with varying concentrations of 968, Z-Don, or a combination of 968 and Z-Don, as indicated. Linearized dose curves (plotted as \(\log[1/Fg]-1\) vs. \(\log\) total drug)) for the conditions are shown in Figure SI3. Data obviously outside the linear measurement range are not included on the plots.
Figure S13: Dose curves for 968 (white circles), Z-Don (black circles), and the combination of 968 and Z-Don (white triangles) when applied to MDA-MB-231 cells.

The IC₅₀ for each drug or drug combination was calculated from the lines on the graph (Table S11).

	Z-Don	968	Co-dose
y-intercept	-2.52	-1.42	-4.46
slope	1.52	2.52	3.18
x-intercept = -1 * y-intercept / slope	1.65	0.56	1.40
IC₅₀ = 10^xx-intercept	45.07	3.66	25.37
IC₅₀ determined in Sigmaplot	37.5	4.2	n.a.

Table S11: IC₅₀ values for assorted drug treatments. IC₅₀ values (micromolar) were determined from best-fit linearized dose curves in Excel, and from sigmoidal dose curves in Sigmaplot.

Below is a step-by-step calculation of CI for the combination of Z-Don and 968 in MDA-MB-231 cells, at an arbitrarily selected Fg value of 0.9. Of note is that two IC₅₀ values were
determined for each drug/cell dose curve. We report IC$_{50}$ values derived from sigmoidal curves in Sigmaplot throughout the work, and we similarly use these values as the arbitrary ratio of drug A to drug B in combination dose curves. Thus, the ratio of Z-Don to 968 ($Fraction(A):Fraction(B)$) in this example was 37.5:4.2 - these values allow the calculation of $Dose_A$ and $Dose_B$. However, the calculation of $Dose_{Fg}$, requires the use of the slope of the linearized dose data. Therefore, the IC$_{50}$ values derived from those lines are used to calculate $Dose_{Fg}$. Also note that Figure SI3 shows that the plots for 968 (white circles) and Z-Don (black circles) are not parallel. As such, it cannot be conclusively determined if 968 and Z-Don are mutually exclusive or mutually nonexclusive. Thus, CI calculations were conducted for both possibilities.

Step-by-step calculation (units removed for clarity):

$$(Dose_{Fg})_A \text{ (for Z-Don)} = IC_{50} \times \left(\frac{1-F_g}{F_g} \right)^{1/\mu} = 45.07 \times \left(\frac{1-0.9}{0.9} \right)^{1/1.52} = 10.64$$

$$(Dose_{Fg})_B \text{ (for 968)} = IC_{50} \times \left(\frac{1-F_g}{F_g} \right)^{1/\mu} = 3.65 \times \left(\frac{1-0.9}{0.9} \right)^{1/1.52} = 1.53$$

$$(Dose_{Fg})_C \text{ (for the co-dose)} = IC_{50} \times \left(\frac{1-F_g}{F_g} \right)^{1/\mu} = 25.37 \times \left(\frac{1-0.9}{0.9} \right)^{1/3.18} = 12.70$$

$Dose_A \text{ (for Z-Don)} = (Dose_{Fg})_C \left[\frac{Fraction(A)}{Fraction(A)+Fraction(B)} \right] = 12.70 \times \frac{37.5}{37.5 + 4.2} = 11.42$

$Dose_B \text{ (for 968)} = (Dose_{Fg})_C \left[\frac{Fraction(B)}{Fraction(A)+Fraction(B)} \right] = 12.70 \times \frac{4.2}{37.5 + 4.2} = 1.28$

and finally
\[CI = \frac{Dose_A}{(Dose_{Fg})_A} + \frac{Dose_B}{(Dose_{Fg})_B} + \alpha \cdot \frac{Dose_ADose_B}{(Dose_{Fg})_A(Dose_{Fg})_B} \]

\[= \frac{11.42}{10.64} + \frac{1.28}{1.53} + (1 \text{ or } 0) \cdot \frac{11.42 \cdot 1.28}{10.64 \cdot 1.53} \]

giving \(CI = 1.91 \) for mutually exclusive drugs (\(\alpha = 0 \)) or \(CI = 2.81 \) for mutually nonexclusive drugs (\(\alpha = 1 \)).

Table SI2 shows these calculations for a full range of Fractional growth (\(Fg \)) values, and Figure SI4 shows the resulting CI plot.

\(Fg \)	\((Dose_{Fg})_A \)	\((Dose_{Fg})_B \)	\((Dose_{Fg})_C \)	\(Dose_A \)	\(Dose_B \)	\(CI \alpha=0 \)	\(CI \alpha=1 \)
0.95	6.52	1.14	10.04	9.03	1.01	2.27	3.51
0.90	10.64	1.53	12.70	11.42	1.28	1.91	2.81
0.85	14.42	1.84	14.69	13.21	1.48	1.72	2.46
0.80	18.13	2.11	16.39	14.74	1.65	1.60	2.23
0.75	21.90	2.36	17.95	16.14	1.81	1.50	2.06
0.70	25.83	2.61	19.43	17.47	1.96	1.43	1.93
0.65	30.01	2.86	20.88	18.77	2.10	1.36	1.82
0.60	34.53	3.11	22.33	20.08	2.25	1.30	1.72
0.55	39.51	3.38	23.82	21.42	2.40	1.25	1.64
0.50	45.07	3.66	25.37	22.81	2.56	1.20	1.56
0.45	51.42	3.96	27.02	24.30	2.72	1.16	1.48
0.40	58.83	4.30	28.82	25.92	2.90	1.12	1.41
0.35	67.69	4.68	30.83	27.72	3.11	1.07	1.35
0.30	78.63	5.12	33.13	29.79	3.34	1.03	1.28
0.25	92.75	5.66	35.86	32.25	3.61	0.99	1.21
0.20	112.04	6.34	39.26	35.30	3.95	0.94	1.14
0.15	140.84	7.28	43.81	39.40	4.41	0.89	1.06
0.10	190.85	8.75	50.68	45.57	5.10	0.82	0.96
0.05	311.79	11.77	64.12	57.67	6.46	0.73	0.84

Table SI2: Calculations of CI values for different values of Fg for MDA-MB-231 cells treated with 968 and Z-Don. \((Dose_{Fg})_A \) and \(Dose_A \) are calculated for Z-Don, while \((Dose_{Fg})_B \) and \(Dose_B \) are calculated for 968, and \((Dose_{Fg})_C \) is calculated for the combination dose.
Figure S14: Combination Index (CI) plot for MDA-MB-231 cells treated with 968 and Z-Don. CI values were determined assuming that the drugs were mutually exclusive (black circles) or mutually nonexclusive (white circles).