Mammalian Expression of Virus-Like Particles for Advanced Mimicry of Authentic Influenza Virus

Chia-Ying Wu¹, Yi-Chun Yeh¹, Yu-Chih Yang¹, Ching Chou¹, Ming-Tsan Liu², Ho-Sheng Wu², Jia-Tsrong Chan³, Pei-Wen Hsiao¹*

¹ Agricultural Biotech Research Center, Academia Sinica, Taipei, Taiwan, ² Center for Disease Control, Department of Health, Taipei, Taiwan, ³ Genomics Research Center, Academia Sinica, Taipei, Taiwan

Abstract

Background: Influenza A viruses are major human and animal pathogens with huge economic and societal impact from illness, hospitalizations, and deaths. Virus-like particles (VLPs) of influenza virus have been suggested as a vaccine candidate offering improved safety and efficacy. To develop this concept further, we established a flexible platform to efficiently generate different subtypes of mammalian-expressed influenza VLPs. Here we demonstrate that these mammalian VLPs strongly resemble the authentic viruses in structure, particle size and composition of host factors, and even glycosylation of viral antigens.

Methodology/Principal Findings: In this study, a mammalian VLP system was established by stable co-expression of four influenza structural proteins (HA, NA, M1, and M2) in a Vero cell line. By replacing the surface glycoproteins of HA and NA, we converted the H3N2-VLP subtype to H5N1-VLP. After centrifugation purification of conditioned media, the particle morphologies, average sizes, and hemagglutination abilities of secreted VLPs were characterized, and the VLP constituents were identified by LC/MS/MS. Protease protection assays demonstrated that specific cellular proteins that co-purified with influenza virions were integrated into mammalian VLPs. The glycosylation profiles of mammalian VLPs as revealed by deglycosylation assays were similar to that of progeny viruses produced from Vero cells. Vaccination of mice with 2.5 μg and above of H5N1-VLP elicited H5-specific IgG1 antibodies and resulted in full protection against lethal infection with homologous virus. These results provide compelling evidence that mammalian VLPs closely emulate the exterior of authentic virus particles not only in antigen presentation but also in biological properties and should provide promising vaccine candidates.

Conclusions/Significance: This flexible mammalian influenza VLP system offers a superior alternative to the conventional reverse genetic vaccine platform without concerns over inadequate presentation of immune antigens or limitations imposed by the manipulation of real viruses.

Citation: Wu C-Y, Yeh Y-C, Yang Y-C, Chou C, Liu M-T, et al. (2010) Mammalian Expression of Virus-Like Particles for Advanced Mimicry of Authentic Influenza Virus. PLoS ONE 5(3): e9784. doi:10.1371/journal.pone.0009784

Editor: Charlotte Hauser, Institute of Bioengineering and Nanotechnology, Singapore

Received October 7, 2009; Accepted February 28, 2010; Published March 22, 2010

Copyright: © 2010 Wu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was financially supported by a National Science Council grant (NSC 95-2745-B-001-003) and the Summit Project from Academia Sinica. Also, Core Facilities for Proteomics Research is supported by NSC 98-3112-B-001-023. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: pwhsiao@gate.sinica.edu.tw

Introduction

Influenza infection is a major threat to human health and results in significant morbidity and mortality worldwide. According to World Health Organization estimates, seasonal influenza epidemics infect 5~15% of the global population annually and are responsible for more than 3–5 million hospitalizations and about 250,000 to 500,000 deaths per year (http://www.who.int/mediacentre/factsheets/fs211/en/index.html). Recently, in addition to the yearly circulating seasonal influenza variants caused by antigenic drift, other influenza virus strains with pandemic potential such as the highly pathogenic avian H5N1 or emerged novel A/H1N1 pose greater threats than in the past (http://www.who.int/csr/disease/avian_influenza/country/en/ and http://www.who.int/csr/don/2009_08_19/en/index.html) since they have become better adapted to humans by reassortment. The most efficient way of reducing the transmission of and the subsequent huge economic loss caused by seasonal or pandemic outbreaks of influenza is preventive vaccination. The manufacture of the current licensed influenza vaccines, either in the form of a split subvirion (disrupted, highly purified virus) or a subunit vaccine (purified hemagglutinin, HA, and neuraminidase, NA), is absolutely dependent on fertilized chicken eggs as a production bioreactor. This method has substantial limitations since the manufacturing capacity is restricted by the availability of eggs, which may be insufficient to meet the urgent requirements for vaccine during a pandemic [1,2]. In addition, these vaccines induce antibodies primarily to the viral HA and are efficacious in healthy adults, but display lower protective rates in high-risk groups (e.g., the elderly) and may be poorly immunogenic in young children. These problems are compounded once the wild population of virus undergoes significant antigenic drift in the HA.
component [1,3,4,5,6]. Consequently, the protective immunity elicited by inactivated vaccines is of too short a duration to protect from newly developed influenza variants. Therefore, the development of vaccines with cross-protective efficacy to allow a rapid response to influenza evolution and/or to prolong the efficacy of vaccination needs to be addressed.

Recently, the use of noninfectious virus-like particle (VLPs) that self-assemble by spontaneous interactions of viral structural proteins has been considered to offer good potential for advanced vaccines for a wide range of viruses that cause disease in humans [7]. It is worth noting that a VLP-based human papillomavirus (HPV) vaccine produced in yeast system is capable of inducing protective immune response against the HPV responsible for cervical cancer was approved for the market in 2006 [8].

Influenza VLPs expressed by recombinant baculovirus systems that present multi-component antigens, including HA and matrix 1 (M1), with or without NA, and that are capable of inducing cognate or innate immune responses against homologous or heterologous strains of influenza virus, have been widely described [9,10,11,12,13,14,15]. Alternatively, a further improvement in the preparation of seasonal influenza vaccines licensed in Europe uses reverse genetics in mammalian cell-based culture systems rather than in eggs [6]. Using mammalian cell culture systems such as Vero or MDCK cells as adaptive hosts for vaccine viruses has several advantages, not only increasing the flexibility and consistency of the manufacture process but also recovering the host-dependent specific glycosylation of viral antigens which may not be glycosylated properly in egg- or baculovirus-dependent systems. In eukaryotic cells, protein glycosylation is involved in correct folding or directing the cellular localization of newly translated proteins and plays important roles in protein function. Different glycosylation patterns underlie some of the differences between various strains of the influenza virus. Generation of mammalian influenza VLPs has previously been achieved by transient coexpression of HA and NA proteins in human 293T cells [16]. For vaccine production purposes, we included here not only HA and NA but also the matrix proteins M1 and M2 in our mammalian VLP expression system since both M1 and M2 have equally critical roles in influenza virus assembly and budding processes, suggesting their similar importance for mammalian VLP budding efficiency [17,18,19,20,21,22]. The incorporation of M1 and M2 into mammalian VLPs not only increased the VLP production yield but also supplemented interior viral antigens, which may provide highly conserved T-cell and B-cell epitopes to fight homologous and heterologous viruses [23,24].

In light of the great threats posed by seasonal and pandemic influenza infection, any improved means for the development of effective and safe vaccine candidates is worthwhile pursuing. In this study, we have developed a flexible platform for the efficient production of mammalian influenza VLPs by simply co-expressing four influenza virus proteins, HA, NA, M1, and matrix 2 (M2) in Vero cells. We have successfully created mimics of two different subtypes of virus by replacement of surface antigens HA and NA. These noninfectious mammalian VLPs mimic the authentic virions not only in their morphology and functional HA but also other important constituents. The close similarity of the glycosylation patterns of the viral surface antigens (HA) seen between VLPs constructed by transformed Vero cells and authentic virus which had been expanded in Vero cells implies that these nonpathogenic mammalian VLPs have similar antigenicity to wild virus particles. Taken together, these findings suggest that this mammalian VLP system presents a practical new approach to safe and effective vaccine production, which has none of the drawbacks of the egg-based or the baculovirus culture-based methodology, and is an alternative to the conventional reverse genetics approaches used in influenza vaccine manufacture.

Results

Establishment of mammalian system generating influenza virus-like particles (VLPs)

In this study, we used mammalian cell culture-based approaches to generate influenza VLPs. To stably transfect the viral genes of HA, NA, M1, and M2 critical for VLP production into cultured Vero or Vero E6 cell lines, we designed four gene expression cassettes and placed these into two vectors as illustrated (Fig. 1A). A tetracycline repressor gene and tet operator-regulated gene expression cassette were also inserted in the plasmid expressing M1 and M2, giving the vector pC16/TO-M1-M2. By stable transfection of the M1–M2 vector into Vero cells, we generated founder cells that would not express the M1–M2 transgene until doxycycline (Dox) induction. Another two tet operator-regulated, CMV promoter-driven expression cassettes were inserted separately into the other plasmid carrying HA and NA genes, giving the expression vector pC14/TO-HA-NA. After stable transfection of pC14/TO-HA-NA vector into an M1–M2 founder cell line, a mammalian-expressed VLP system was established.

To verify that co-expression of all four viral genes was indeed driven by the inducible promoter (CMV-TO), total cell lysates of quadruple-transfected Vero cell line of H3N2 were analyzed by Western blot with specific viral antibodies against H3, M1, and M2 (Fig. 1B). As there is no available antibody to N2, we used RT-PCR to confirm the expression of the N2 gene. The cellular localization of H3 was also observed by confocal laser scanning microscopy (Fig. 1D). The utility of this system as an alternative platform to reverse genetics for vaccine development was shown by the simple substitution of a separate plasmid carrying the HA and NA genes of H3N2 with those of H5N1 (Figs. 1C and E). The resulting quadruple H5N1-VLP cell line again co-expressed HA and NA, this time of the H5 and N1 varieties. So far, we have obtained two subtypes of quadruple Vero cell lines that generated the putative H3N2- and H5N1-VLPs, respectively.

Morphology and antigen presentation of purified H3N2- and H5N1-VLPs

To investigate whether the H3N2- and H5N1-VLPs assembled and budded from the quadruple-transfectant cell lines, the media surrounding Dox-induced cells were collected and purified by cosedimentation in sucrose density gradient centrifugation. The morphologies of mammalian VLPs purified from culture medium of transfected cells were negative stained with 2% uranyl acetate and compared to their reciprocal viruses propagated in Vero cells using TEM (Figs. 2A and B). The VLPs displayed generally spherical morphologies and densely stained cores. The spike projections on the surface of VLPs were no different in appearance to those on authentic influenza viruses. The HA and NA glycoproteins on the surface of VLPs were immunogold labeled with individual specific antibodies and counterstained with gold spheres coupled to secondary antibodies (Figs. 2C and D).

Dynamic light scattering (DLS) determination of average particle size of mammalian VLPs

To complement the morphology analysis by TEM, the average sizes of secreted VLPs in native solution were estimated by DLS assays. To be an effective vaccine, it has been proposed that...
particles ranging from 20 to 200 nm could facilitate the drainage of free antigens to the lymph nodes and induce strong responses in dendritic cells (DC) for long-term protective purposes [25]. Laser-based DLS can monitor changes in Brownian motion of nanoparticles in solution, giving information related to the average size and frequency distribution of particles. As shown in Fig 3, the average diameters of H3N2- and H5N1-VLPs, as determined by DLS, were 108.2±17.9 nm and 125.6±10.5 nm, respectively (at pH 7.4, 25°C), and are comparable to the sizes obtained for their reciprocal viruses (H3N2: 133.5±15.4 nm and H5N1: 104.1±12.4 nm). The size distributions of both subtypes of VLPs ranged from 70–200 nm (95% CI), suggesting that the mammalian VLPs were in the preferred size range for DC uptake and promise to stimulate a potent immune response (Fig. 3). DLS will

Figure 1. Construction and cellular expression of influenza virus-like particles (VLPs) in mammalian cells. (A) Diagrams of mammalian expression vectors of influenza VLPs. Indicated are the CMV constitutive promoter (CMV), tetracycline repressor gene (TetR), polyadenylation signals (PA), CMV doxycycline (Dox)-inducible promoter (CMV-TO), chimeric intron (In), encephalomyocarditis virus internal ribosomal entry site (IRES), and influenza genes (M1 and M2, matrix 1 and 2; HA, hemagglutinin; NA, neuraminidase). (B), (C) Expression of viral genes in selected quadruple VLP producer cells. The total cell lysates were extracted from VLP producer cells without (−) or with (+) Dox induction, and then probed with respective specific antibodies against HA, NA, M1, and M2 in Western blot assays. Expression of N2 was detected by RT-PCR. Molecular masses of expressed HA, NA, M1, and M2 are indicated on the right. (D), (E) In vivo immunofluorescence staining of expressed viral proteins in VLP producer cells with antibodies against HA and NA (red) as marked and counterstained with DAPI (blue).

doi:10.1371/journal.pone.0009784.g001
be a useful approach to monitor the batch-to-batch consistency of VLPs by rapidly providing information on the whole population of particles. Together, the DLS and TEM measurements of mammalian VLPs were consistent and show the VLPs to be of comparable size and morphology to native influenza viruses.

Identification of VLP composition and VLP-associated cellular proteins
To verify the protein constituents of mammalian-expressed VLPs, 10 µg of H3N2- and H5N1-VLPs were separated on a 7.5–17.5% gradient gel, and stained with Coomassie blue (Fig. 4A and

Figure 2. Morphology and antigen presence determinations of purified mammalian VLPs. (A), (B) Secreted VLPs and virus were purified by sucrose density gradient ultracentrifugation, negatively stained with 2% uranyl acetate, and observed by TEM at 100,000× magnification; pictures of respective virus strains are shown below the VLPs. (C), (D) Immunogold electron microscopy of purified VLPs. The primary antibodies used are shown below individual panels. Secondary antibody was goat anti-rabbit conjugated to 12 nm gold beads.

doi:10.1371/journal.pone.0009784.g002
C) or probed with specific antibodies against viral proteins in separate experiments (Fig. 4B and D). Besides the viral proteins HA, NA, M1, and M2, we also observed a wide spectrum of minor bands in the VLPs similar to the authentic viruses (Fig. 4A and C). To identify the basic protein profiles of these VLPs, the more evident protein bands (indicated by arrows in Fig. 4A and C) were excised from the gels, subjected to in-gel trypsin digestions, and analyzed by liquid chromatography-tandem mass spectrometry (LC/MS/MS). The major VLP constituents identified by searching against the NCBI database are shown as Tables 1 and 2. We found that HA and NA proteins of mammalian VLPs were distributed in multiple gel slices in addition to the expected locations shown in Table 1. This likely reflects the fact that they are the most abundant proteins in VLPs and form HA and NA protein oligomers (Fig. 4B and D). In addition, we identified another 22 VLP-associated cellular proteins that are identical or functionally analogous to those cellular proteins commonly found in the interior or exterior of influenza virions [26]. Most of them could be classified into functional groups including cytoskeleton protein, extracellular matrix (ECM) proteins, heat shock proteins, annexins, tetraspanins, and glycolytic enzymes. It is worth noting that we also identified several unique cellular proteins (listed in Table 2) with very high Mascot scores, which are possibly involved in VLPs biosynthesis. For real viruses, recruitment or encapsidation of some cellular proteins into the virion may be a critical behavior supporting the completion of the life cycle by some specific interaction with viral proteins or RNA. However, in this case, the mammalian influenza VLP has the components of viral (by transfection) and cellular proteins (by recruitment) without package of any viral genetic material. The cellular proteins identified in our VLPs might be actively involved in the normal virus life cycle, especially during virus assembly and budding from the host cells.

To characterize the functionality of the HA spike on mammalian VLPs, hemagglutination assays were performed (Fig. 4E). VLP preparations reacted with 0.75% guinea pig erythrocytes had significant hemagglutination activities, with titers of 2^7 for H3N2-VLPs and 2^6 for H5N1-VLPs in samples containing 3.5 mg of VLPs. Both H3N2 and H5N1 viruses of same amount as VLPs were at similar titers (2^7) of HA activity. This result suggests that the HA spikescompassing around the surface of mammalian VLPs are in a native orientation and function as those of active authentic viruses.

Confirmation of cellular proteins associated and incorporated into mammalian VLPs

Following proteomic identification of incorporated cellular proteins, several viral and associated cellular proteins were further

Figure 3. Dynamic light scattering (DLS) measurements of particle sizes and distributions of mammalian VLPs in solution. Average particle diameters of H3N2-VLPs (A), H3N2 virus (B), and H5N1-VLPs (C), and H5N1 virus (D) in phosphate buffer (pH 7.4), at 25°C. Two representative determinations of different batches of VLPs and virus are shown as red and green lines. The size distribution of VLP populations ranged from 70 to 200 nm with a 95% confidence interval (CI).

doi:10.1371/journal.pone.0009784.g003
Figure 4. Characterization of purified mammalian VLPs. The total proteins of purified H3N2-VLPs and H3N2 virus (A) and H5N1-VLPs and H5N1 virus (C) were resolved by SDS-PAGE in a 7.5–17.5% gradient gel and stained with Coomassie blue. Molecular masses of protein markers are shown on the right. Each relevant band, as marked with an arrow and a number, was subjected to LC/MS/MS analysis to identify its composition. The

Figure 4. Characterization of purified mammalian VLPs. The total proteins of purified H3N2-VLPs and H3N2 virus (A) and H5N1-VLPs and H5N1 virus (C) were resolved by SDS-PAGE in a 7.5–17.5% gradient gel and stained with Coomassie blue. Molecular masses of protein markers are shown on the right. Each relevant band, as marked with an arrow and a number, was subjected to LC/MS/MS analysis to identify its composition. The
identified viral protein bands of H3N2- and H5N1-VLPs (marked with parentheses in panels A and C) confirmed by Western blot analyses with relevant specific antibodies for H3N2-VLPs and virus (B) and for H5N1-VLPs and virus (D). The relative abundances of HA and NA, quantified by Chemigenius 2 (SYNGENE, Frederick, MD) and GeneTools (version 3.07) software, were 4:1 for H3N2-VLPs and 3:2 for H5N1-VLPs. The HA protein attributes to 12.8% and 18% of total proteins in H3N2- and H5N1-VLPs, respectively. (E) Assessment of HA function by hemagglutination assay. The amounts of mammalian VLPs or virus used are indicated, in a twofold serial dilution. TNE (buffer of VLPs) and PBS were included as the negative controls in the hemagglutination assays.
doi:10.1371/journal.pone.0009784.g004

characterized by Western blot and immunogold labeling. To rule out the possibility that identified proteins may be due to non-specific contamination such as co-purification of microvesicles or exosomes with VLPs, the mammalian influenza VLP preparations were subjected to a protease protection assay that has been shown to efficiently remove microvesicles from HIV-1 virion preparations [27,28]. After trypsin incubation, H5N1-VLPs were re-purified by sucrose cushion ultracentrifugation and subjected to Western blot analysis with antibodies against HA, NA, M1, M2, β-actin, tubulin, annexin A2, and clathrin (Fig. 5A). Both HA and NA proteins were lost from the VLPs after trypsin digestion, demonstrating that these proteins were located on the outside of the membrane envelope, integral and attached to the VLP surface. Most co-purified contaminants were eliminated by the protease digestion. However, several representative cellular proteins expected to be inside the virion such as actin, tubulin, and annexin A2 were still found to be present in the protease-digested VLPs, which indicates that these cellular proteins were specifically incorporated into the structure of VLPs (Fig. 5A).

In contrast, a unique cellular protein identified in this study, clathrin heavy chain, an important component of the clathrin-coated pits mediating the endocytosis of many receptors, ion channels, transporters, and other transmembrane proteins as well as various soluble macromolecules and viruses, was lost following protease treatment (Fig. 5A) [29,30]. This finding raised two possibilities: Firstly, clathrin is associated with contaminants rather than the VLPs, or secondly, clathrin is indeed incorporated into VLPs but is exposed on the surface like HA and NA. To resolve this issue, we used immunogold labeling to look for the presence of clathrin on the surface of intact, undigested VLPs (Fig. 5B). This assay did show clathrin staining on the surface of intact VLPs, just as for HA and NA (Figs. 2C and D).

Generally, the results of two independent LC/MS/MS analyses of H5N1- and H3N2-VLPs and Western blotting in this study resemble the reported proteome of influenza virus [26], which suggests that the assembly of influenza VLPs shares much similarity with real virus assembly and escape. Taken together, these data confirm that the mammalian-expressed influenza VLPs are very similar to the authentic viruses, a considerable advantage to their use in further vaccine development.

Glycosylation profiling of influenza VLPs

Glycosylation of viral surface antigens is critical for immune recognition, receptor binding, inflammation, and pathogenicity, and therefore has a major influence on the efficacy of vaccine antigens [31,32]. For example, the common phenomenon of amino acid substitutions of the viral HA due to egg-adaptation and the consequent altered glycosylations severely affect the antigenicity of influenza virus [33]. As demonstrated by N-glycan footprinting analyses of HA, the use of different cell lines for replication of the same virus results in different N-glycosylation patterns on HA, which can be attributed to host-mediated changes in the amino acid sequence and potential glycosylation sites of HA, further influencing the antigenic properties of manufactured virus [34,35,36]. Therefore, the glycosylation status of HA and NA antigens in the VLPs were assessed to look for any change that would affect the antigenicity and immune response of a VLP-based vaccine. We compared the N-glycosylation patterns of H3N2- and H5N1-VLPs produced from Vero cells to the glycan profiles of authentic viruses by performing deglycosylation assays with N-endoglycosidases PNGase F and Endo-H. PNGase F can remove all types of N-linked oligosaccharides from glycoproteins such as complex, hybrid, and high-mannose type, whereas Endo-H cleaves the chitinose core of high-mannose and hybrid oligosaccharides from N-linked glycoproteins. As shown in Figure 6A, most of the modified HA and NA (labeled as HA1**+NA** and HA2** in purified H5N1-VLP was seen as two major bands in the SDS-PAGE gel before deglycosylation (lane 1); their apparent molecular masses were around 56 and 30 kDa, respectively (Fig. 6B and C, lanes 1). After treatment of H5N1-VLPs with PNGase F, HA1, HA2, and NA bands increased their mobility to molecular masses of 40, 27, and 52 kDa, respectively (Fig. 6A, B, and C, lanes 2), demonstrating that the two predominant viral surface antigens were mainly glycosylated by N-linked oligosaccharides. Of note, one form of NA marked as (π) in Fig. 6C whose mobility was not changed by reaction with both enzymes suggests NA may have other types of post-translational modification. When the glycosylated HA from H5N1-VLP was treated with Endo-H, the deglycosylation reaction was only partial; therefore the original bands and the Endo-H digested residue bands marked as (δ) of HA1 and HA2 can be seen simultaneously (Fig. 6B, lane 6). However, the HA of H5N1 virus propagated in Vero cells was resistant to Endo-H digestion, suggesting the sugars linked to the viral HA are complex type (Fig. 6B, lane 8). The partial sensitivity of HA in H5N1-VLPs to Endo-H may be a result of hybrid glycan chains as the overwhelming expression of viral protein may lead to incomplete glycosylation. However, as the great majority of NA can be deglycosylated by Endo-H, the NA proteins of H5N1-VLP may possess more high-mannose than complex glycans (Fig. 6C, lane 4). In parallel, the deglycosylation assays were performed on H3N2-VLPs (Fig. 6D). With H3 glycoprotein, incubation with Endo-H or PNGase F reduced the molecular mass by 16 kDa or by 25 kDa, respectively, suggesting a higher content of high-mannose or hybrid types than complex type in the H3 glycan pool (Fig. 6D, lanes 2–3). Our results suggest that VLPs generated from this platform will have similar glycosylation profiles to the authentic viruses that result from infection in the same host species. Collectively, the mammalian VLPs resemble the real viruses in particle size, morphology, protein composition, and glycosylation profiles and therefore offer great potential as safe and effective influenza vaccine antigens.

Humoral immune response of VLPs

To investigate the vaccine effect of mammalian expressed VLPs, we vaccinated mice with VLPs without adjuvantation and analyzed the antibody response and protection from viral infection. Mice (BALB/c; n = 12) were vaccinated twice (day 0 and 21) via intramuscular injection with purified H5N1-VLP or inactivated whole virus of H5N1-pseudotyped vaccine strain (recombinant H5N1 engineered by reverse genetics) at two antigen doses (2.5 μg and 10 μg). Blood samples were collected
Table 1. Mammalian VLPs associated viral and cellular proteins identified by mass spectrometry (LC/MS/MS).

SDS-PAGE and LC/MS/MS Analysis

Protein Type	Protein Name	Mass (Da)	Protein band number^a	Mascot score^b	Sequence coverage (%)^c	Reported in influenza virion^d
Viral proteins						
Hemagglutinin (H5)	64163	5, 6, 10ⁱ	227, 812, 1053	26, 18, 40		yes
Neuraminidase (N1)	51298	6	71	10		
Hemagglutinin (H8)	63595	/4	/239	/24		
Neuraminidase (N2)	52018	/5	/230	/40		
Matrix 1 protein (M1)	27860	10/10	35/45	36/16		
Matrix 2 protein (M2)	11157	11/11	34/44	50/35		
Cytoskeletal proteins						
β-actin	41710	8/8	1519/447	72/73		yes
β-tubulin	49639	7/7	41/655	15/72		yes
myosin IA	118204	2/2	175/41	7/2	tropomyosin 4 & 1	
Similar to myosin IC	107102	3/3	898/107	42/15		
ECM proteins						
integrin alpha 3	118333	2/2	896/69	27/20	Integrin beta 1	
integrin alpha 5	119919	2/2	687/174	37/22		
Heat shock proteins						
Heat shock 90kDa protein	83185	4/4	435/368	40/43	HSP 27 kDa	
Heat shock 70kDa protein	72288	5/5	615/503	54/50		
Heat shock 27kDa protein	22768	6	112	44		yes
Annexin						
annexin A11	54443	9/7	284/282	38/38		yes
annexin A2	53564/38576	7, 9/7	1087, 361/153, 613	43, 41/26, 49		
Tetraspanin						
CD81 molecule	25741	6	117	33		yes
CD9 molecule	25380	7	27	11		yes
Glycolytic enzymes						
enolase 1	47182	9	1011	70		yes
Similar to phosphoglycerate kinase 1	44558	8	572	71	phospho-glycerate kinase	
Pyruvate kinase	64479	1/6	248/354	45/51		yes
glyceraldehyde-3-phosphate dehydrogenase	35959	6/6	64/48	23/25	yes	
Unclassified proteins						
2'-3'-cyclic nucleotide 3'-phosphodiesterase	47509	8	306	56	yes	
aldo-keto reductase family 1	35992	7	99	23	yes	
WD repeat domain 18	48167	8	78	18	WD repeat-containing protein 1	
gamma-glutamyltransferase 1	61261	6/6	76/71	4/10	yes	
Peroxiredoxin 2	21878	7	28	9	Peroxiredoxin 1	

^aExcised protein bands were numbered as indicated by arrows 1–11 of Fig. 4A and C.

^bFor this search a Mascot score ≥25 is significant (p≤0.05).

^cSequence coverage is based on peptides with unique sequence.

^dViral and cellular proteins have been reported in influenza virion [26].

^eThe band number, Mascot score, and sequence coverage of cellular proteins both identified in H5N1- and H3N2-VLPs were signalized as A/B.

^fThe band number, Mascot score, and sequence coverage of single protein distributed in multiple locations was presented as A, B.

doi:10.1371/journal.pone.0009784.t001
to analyze humoral immune response before primary (day -1) and after immunizations (day 14 and 35) (Fig. 7A). Sera were tested for influenza virus-specific IgG antibodies by ELISA against baculovirus produced H5 glycoprotein, or mammalian expressed H5N1-VLP and H3N2-VLP (Fig. 7B). Mice vaccinated with H5N1-VLP showed a robust response of IgG antibodies against H5 protein and H5N1-VLP. The ELISA titers of both antigen doses against H5 protein and H5N1-VLP were higher than 1:200,000. By contrast, their titers against H3N2-VLP were insignificant (<1:25,000). This suggests that H5N1-VLP was highly immunogenic, stimulating highly specific antibodies against the H5 epitopes. Whole virus vaccine resulted in ELISA titers of approximately 1:100,000; while being highly immunogenic, the H5-specific titer was considerably lower than with the VLP vaccine (Fig. 7B). However, ELISA titers for VLP vaccine group showed a robust response of IgG antibodies against H5 protein and H5N1-VLP (Fig. 7B). A/B. This suggests that H5N1-VLP was as "clean" as the inactivated split virus and lack of signal detecting other host proteins in this experiment.

The IgG antibody isotypes distribution elicited by vaccination is indicative of the type of T cell immune response, as subsets of antigen-specific helper T cells regulate the production of different IgG isotypes via secreting different cytokines. The IgG1 isotype in mice is believed to signal a Th2 response, whereas the IgG2a isotype indicates more of a Th1 response. ELISA test was further used to measure the class and IgG isotypes of antigen-specific antibodies in response to the VLP and whole virus vaccines. As shown, the antibodies induced by VLP were predominantly IgG1 isotype, much less in IgG2a, and low or undetectable in IgG2b and IgA (Fig. 7D, left). By contrast, the antibodies induced by whole virus vaccine were mainly IgG2a, less in IgG1, and negligible in IgG2b and IgA. These results suggest that mammalian VLP vaccine at the two antigen doses induced primarily a Th2 response, whereas whole virus vaccine stimulated a mixed Th1/Th2 response with Th1 more dominant at higher antigen dosage.

Vaccine induced hemagglutination-inhibition (HI) activity and protection against viral infection

The HI assay is the most widely accepted serological test for influenza immunity and is the gold standard measure of functional HA-specific antibodies after vaccination. The serological criteria currently used for approval of pandemic vaccines in the US are based on seasonal influenza vaccines, with seroconversion (i.e. a minimum 4-fold rise in HI titer) rate >40% and seroprotection (i.e. HI titer >1:40) rate ≥70% in adults younger than 65. Antibodies elicited by each vaccine candidate were evaluated for their ability to inhibit the VLP-induced agglutination of guinea pig red blood cells (Fig. 7E). After the second dose (day 35), the seroprotective HI titers were induced in 83.3% of mice that received 2.5 µg and 10 µg VLP vaccine with mean HI titer reaching about 1:60 (Fig. 7F). When the antigen dose of VLP vaccine was decreased to 0.3 µg and 1.5 µg, the reciprocal seroprotective rate dropped to 12.5% and 25%. Seroprotective rates of corresponding whole virus vaccine were 75% and 87.5%, respectively, in analogous experiments.

All mice vaccinated with VLP vaccine, whole virus vaccine or mock control were challenged intranasally with a predetermined lethal dose of H5N1-pseudotyped recombinant virus to evaluate the protective efficacy of each vaccine candidate. All mice which received 2.5 µg and 10 µg VLP vaccine survived after the viral challenge, in contrast to the mock control mice that all died within 7 days after infection (Fig. 8A). Lower dose (0.3 µg and 1.5 µg) of VLP vaccine compromised the survival rate (50% and 25%, respectively), which is consistent with a lower seroprotection rate. Whole virus vaccine (2.5 µg and 10 µg) resulted in protection against the viral challenge; the exception was one mouse in the g dose group that lost weight and temperature changes of test mice were indicative illness and mice vaccinated with high-dose VLP and whole virus vaccine returned to their original weight by day 13 post-challenge (Fig. 8C, D), a result consistent with the survival outcome. However, mice vaccinated with low-dose VLP had more prominent weight loss and temperature decrease; nevertheless some of the survivors recovered at later time.

Table 2. Unique cellular proteins identified by LC/MS/MS with high Mascot scores in mammalian VLPs.

Protein Name	Mass (Da)	Protein band number**	Mascot score*	Sequence coverage (%)c
Clathrin heavy chain 1 (Cytoplasmic vesicles formation)	192276	1	3242	63
Spectrin (interact with actin) Beta (non-erythrocytic)	274472	1	1146	35
Plexin B2 (interact with cytoskeleton)	203451	1	757	26
Similar to CD109	161515	1	738	23
Prostaglandin F2 receptor negative regulator	116885	2/2	1035/136	44/18
Na+/K+-ATPase alpha 1	112838	3/3	1266/452	42/29
Tumor rejection antigen (gp96)	92555	3/3	1016/614	52/60
Flotillin I	47384	9	1048	68

*Excised protein bands were numbered as indicated by arrows 1–11 of Fig. 4A and C.

**For this search a Mascot score $≥25$ is significant ($p<0.05$).

cSequence coverage is based on peptides with unique sequence.

*The band number, Mascot score, and sequence coverage of cellular proteins both identified in H5N1- and H3N2-VLPs were signalized as A/B.
In this study, we have established a platform to generate mammalian influenza VLPs by the directed expression of four viral structural proteins (HA, NA, M1, and M2). We have also demonstrated the flexibility of this approach by exchanging the surface antigens of HA and NA to generate VLPs mimicking two subtypes of influenza (Figs. 2 and 4). When examined by TEM, the VLPs were found to closely resemble influenza virus in size, particle morphology, and fine structure of the surface spikes (Figs. 2 and 3). LC/MS/MS analyses and protease protection assays revealed that the cellular constituents specifically present in authentic virus were also incorporated into the mammalian VLPs, which implied that the particular interactions between host proteins and viral proteins involved in the biosynthesis of VLPs probably reflected similar processes during virus assembly and assembly.

Figure 5. Specific integration of cellular proteins in influenza VLPs. Purified H5N1-VLPs were either mock-treated (Untr.) or digested overnight with typsin (Prot.) followed by purification with a 20% sucrose cushion. Mock-treated VLPs (lane 1) or typsin-treated VLPs (lane 2), 2.5 μg each, were further analyzed by Western blotting with antibodies against the indicated proteins including HA, NA, M1, M2, β-actin, tubulin, annexin A2, and clathrin (A). Molecular weight markers are marked on the left. (B) Immunogold labeling of clathrin on the surface of purified VLPs. Secreted VLPs purified from conditioned medium were immunogold labeled with antibody against clathrin, negatively stained with 2% uranyl acetate, and observed by electron microscopy (100,000× magnification).

doi:10.1371/journal.pone.0009784.g005

Discussion

In this study, we have established a platform to generate mammalian influenza VLPs by the directed expression of four viral structural proteins (HA, NA, M1, and M2). We have also demonstrated the flexibility of this approach by exchanging the surface antigens of HA and NA to generate VLPs mimicking two subtypes of influenza (Figs. 2 and 4). When examined by TEM, the VLPs were found to closely resemble influenza virus in size, particle morphology, and fine structure of the surface spikes (Figs. 2 and 3). LC/MS/MS analyses and protease protection assays revealed that the cellular constituents specifically present in authentic virus were also incorporated into the mammalian VLPs, which implied that the particular interactions between host proteins and viral proteins involved in the biosynthesis of VLPs probably reflected similar processes during virus assembly and assembly.
budding as the real virus (Table 1 and Figs. 4, 5). The glycosylation profiles of HA and NA spike in mammalian VLPs were examined by N-deglycosylation (Fig. 6). In both cases, the glycosylation profiles of HA were highly similar to that of influenza virus replicating in the Vero cells. Taken together, all these data demonstrate that VLPs produced by this mammalian cell-based system are a promising vaccine candidate.

Recently, clinical trials of HPV VLPs have led to FDA approval of the vaccine [37,38]. Furthermore, influenza VLPs produced in baculovirus systems have shown promise as safe and high-yielding vaccines against influenza infection in preclinical animal models [9,10,11,12,13,14,15,39]. Clinical studies for baculovirus-expressed influenza VLPs are currently being undertaken. In this study, we demonstrate that vaccination with mammalian expressed VLPs provided full protection against lethal infection with the homologous strain at doses as low as 2.5 μg VLP (0.45 μg HA) using two dose regimen in BALB/c mice. All these successes indicate that the VLP-based vaccine approach is an attractive alternative to replace or complement conventional inactivated influenza vaccine and subunit vaccines with improved safety and efficacy, especially for children and the elderly.

In this study, we successfully applied a mammalian system to produce influenza VLPs on a preclinical scale by stable co-expression of four viral proteins. Typically, our pilot production in human vaccine production, including influenza, polio virus, rabies virus, smallpox, vesicular stomatitis virus, herpes simplex virus and rotavirus. Currently, the WHO recommends only the use of Vero cells to prepare viruses for vaccine production by reverse genetics [47]. For this reason, we chose Vero and Vero E6 cell lines as the most widely acceptable cell substrate by regulatory authorities to produce a wide range of viruses for human vaccine production, including influenza, polio virus, rabies virus, smallpox, vesicular stomatitis virus, herpes simplex virus and rotavirus. Currently, the WHO recommends only the use of Vero cells to prepare viruses for vaccine production by reverse genetics [47]. For this reason, we chose Vero and Vero E6 cell lines rather than any other human or non-human mammalian cell lines to produce VLPs. In fact, our studies demonstrate that vaccination in mice with VLP without adjuvant formulation elicited high-titer antibodies only against HA but not other proteins (Fig. 7). Vaccinated mice survived perfectly with two doses of VLP vaccines at 2.5 μg and 10 μg levels via intramuscular immunization, and they all survived the subsequent lethal viral challenge. No adverse effects were found before and after viral challenge throughout the 56-day experiment. We should note that the humoral immune response elicited by mammalian expressed VLP is different from that of baculovirus-derived VLPs, suggesting a distinction between the two forms of VLPs. Such difference may be attributed to the glycosylation profile, host protein contents, the overall particle structure that present antigens, or other factors.

In addition, this report focused on the characterization of advanced mammalian VLPs and the methodology of their production. We nonetheless propose that this will be a promising new agent to address influenza infection because 1) we have demonstrated here the preclinical-scale production of mammalian VLPs; 2) we have shown, by a simple exchange of surface antigens, that our development platform is flexible and can shorten the lead time for adjusting the match of vaccine specificity against the circulating strains of viruses; 3) this approach for the expression of VLPs will alleviate safety restrictions and bottlenecks associated with dependence on live viruses; and 4) this methodology will permit rapid and scaleable production, independent of a reliance on egg availability for vaccine manufacturing.
Materials and Methods

Cells, plasmids, and antibodies

Vero cells were obtained from the Bioresource Collection and Research Center, (Hsinchu, Taiwan) and maintained in minimal essential medium (HyClone, South Logan, UT) supplemented with 10% fetal bovine serum (Gibco, San Diego, CA) in a humidified incubator at 37°C with 5% CO₂. The cDNAs of M1 and M2 derived from the sequences of influenza A/Taiwan/083/2006 virus were cloned into the backbone modified from pcDNA6/TR Invitrogen, Carlsbad, CA) linked by IRES separately into a single eukaryotic expression vector to give the plasmid pC16/TO-M1-M2 (Fig. 1A). The cDNAs of HA and NA were synthesized sequences based on the distinct virus strains of A/Taiwan/083/2006 and A/Hanoi/30408/2005/H5N1 (a kind gift from Dr. Po-Huang Liang at the Institute of Biological Chemistry, Academia Sinica) optimized for mammalian codon usage and further cloned into expression vectors as illustrated for pC14/TO-HA-NA (Fig. 1A). For the mammalian H3N2- and H5N1-VLPs producer cells, the plasmid pC16/TO-M1-M2 was stably transfected into Vero cells to derive a founder cell line, which was further transfected with HA-NA expression vectors to obtain the quadruple co-expression cell line with HA, NA, M1, and M2 proteins. To confirm the gene expression of N2 in the H5N2-VLP producer cell line, total RNAs were extracted separately from cells with and without doxycycline (Dox) induction and RT-PCR assays were performed using a primer pair corresponding to the internal sequence of the N2 gene. These primers were N2-F, 5'-ATTAGGCCTTCCGCTGTTGGAAGCAT-3' and N2-R, 5'-GATTCTGACTCCTGG-GTGCTCTAGA-3'. Expression of the proteins was confirmed by Western blot analyses and immunofluorescence staining as follows. Quadruple VLP-expression cells were induced with Dox for 48 h, or left untreated as a control. The cells were then fixed in 4% paraformaldehyde for 10 min and immersed in 0.05% Triton-X 100 for 1 min. After blocking with 1% gelatin, the cells were incubated with distinct primary specific antibodies, followed by incubation with goat anti-mouse or goat anti-rabbit IgG conjugated with Cy3 dye. Fluorescence images were acquired by confocal microscopy (LSM 510 META NLO DuoScan, Carl Zeiss, GmbH). The antibodies used in this study were polyclonal: H3 (ab20084), N1 (ab21305), M1 (ab20734), annexin A2 (ab41803), and clathrin (ab21679) from Abcam (Cambridge, MA); β-actin (sc-1616-R) from Santa Cruz Biotechnology (Santa Cruz, CA), and monoclonal: M2 (ab5416), and tubulin (ab6160) from Abcam and H5 (MCA2660, used for IFA) from AbD Serotec (Raleigh, NC). Rabbit polyclonal antibody against H5 used for Western blotting was provided by Dr. Che Ma (Genomics Research Center, Academia Sinica).

Dynamic light scattering (DLS) determination of particle size

Stock solutions of mammalian VLPs were diluted to 0.1 μg/mL in 20 mM phosphate buffer at pH 7.4, passed through 0.45-μm filters, and analyzed on a Nano ZS particle-size analyzer (Malvern Zetasizer, Malvern Instruments Ltd, UK). For each sample analyzed by DLS, two consecutive measurements were taken on a single sample and measured with a light-scattering data collection time of 60 s. The accompanying software (NanoV510) was used to convert the intensity-based measurement to a size distribution based on the number of particles in each size class, and was presented as a diagram of curves.
showing the frequency distribution of the sample where the area under the curve was proportional to the numbers of VLPs or virus detected in the relevant size range. The average diameters of VLPs or virus were then calculated as the mean size of particle population ± standard deviation (SD) of three independent experiments.

Protease treatment of mammalian VLPs

Purified H5N1-VLPs equivalent to 50 μg of proteins were incubated for 18 h at 37 °C with or without 20 μg of MSG-Trypsin (G-Biosciences, St. Louis, MO) in buffer containing 20 mM Tris-HCl (pH 8.0) and 1 mM CaCl₂. The treated and untreated VLP preparations were separately diluted to 7 mL with TNE buffer containing 30 μM PMSF (Sigma, St. Louis, MO), concentrated through a 20% sucrose cushion by ultracentrifugation (200,000×g, 2 h at 4 °C in a Beckman SW41Ti rotor) and then subjected to Western blot analyses.

Deglycosylation of mammalian VLP proteins

Purified VLPs equivalent to 10 μg of proteins were denatured by heating for 10 min at 100°C in the presence of 0.5% SDS and 40 mM DTT. Next, either PNGase F or Endo-H (New England Biolabs, Ipswich, MA) was added and the mixture incubated for 1 h at 37°C in 1×G7 or G5 reaction buffers (New England Biolabs). Subsequently, samples were subjected to protein gel electrophoresis and Western blot analyses.

Figure 8. Vaccine Protection against lethal-dose challenge of H5N1 virus. At day 42, vaccinated mice were challenged intranasally with a lethal dose (100 LD₅₀) of recombinant H5N1 (NIBRG-14) virus and monitored daily for weight loss and mortality. The percentages of survival rate and changes of body weight and temperature were recorded. (A) Survival for H5N1-VLP groups, (B) survival for IWV groups. Mice that lost greater than 30% body weight were euthanized. (C) Body weight and temperature for H5N1-VLP groups. For the groups receiving 0.3 μg and 1.5 μg antigen dose, only data of surviving mice are shown. (D) Body weight and temperature for IWV groups.

doi:10.1371/journal.pone.0009784.g008
Identification of VLP relevant protein bands by LC/MS/MS

Proteins separated in one-dimensional polyacrylamide gels were sequentially isolated and subjected to in gel tryptic digestion prior to mass spectrometric analysis. Briefly, the protein bands from the 1-D gel were manually excised from the gel and cut into small pieces (~0.5 mm²). The gel pieces were washed in a microcentrifuge tube with a solution containing 50% methanol and 5% acetic acid for 2–3 h, twice with a solution of 25 mM NH₄HCO₃ in 50% acetonitrile for 10 min each, and then dried in a vacuum centrifuge. After DTT reduction and iodoacetamide alkylation, a solution containing 75 µg of sequencing grade modified trypsin (Promega Corporation, Madison, WI) in 25 µL of 25 mM NH₄HCO₃ was added and incubated with dried gel pieces for 12–16 h at 37°C. Following digestion, tryptic peptides were extracted twice for 15 min each with 50% acetonitrile containing 5% formic acid under vortexing. The extracted solutions were pooled and evaporated to dryness under vacuum. The dried pellet was re-dissolved in 10–20 µL of 0.1% formic acid for LC/MS/MS analysis as described below. The NanoLC-nanoESI-MS/MS analysis was performed on a nanoAcquity system (Waters, Milford, MA) connected to an LTQ-Orbitrap XL hybrid mass spectrometer (Thermo Electron, Bremen, Germany) equipped with a PicoView nanospray interface (New Objective, Woburn, MA). Peptide mixtures were loaded onto a 75 µm × 25 cm BEH C18 column (Waters) packed with 1.7 µm particles with a pore size of 130 Å and were separated using a segmented gradient from 5% to 50% solvent B (acetonitrile with 0.1% formic acid) over 90 min at a flow rate of 300 nL/min and a column temperature of 35°C. Solvent A was 0.1% formic acid in water. The mass spectrometer was operated in the data-dependent mode. Briefly, survey full-scan MS spectra were acquired in the orbitrap (m/z 350–1600) with the resolution set to 60,000 at m/z 400 and automatic gain control (AGC) target at 106. The 10 most intense ions were sequentially isolated for CID MS/MS fragmentation and detection in the linear ion trap (AGC target at 7000) with previously selected ions dynamically excluded for 90 s. Ions with single and/or unrecognized charge state were also excluded. The MS and MS/MS raw data were processed with Bioworks 3.3.1 and searched against an in-house generated NCBI protein database using Mascot Daemon 2.2 server. Search criteria used were trypsin digestion, variable modifications set as carbamidomethyl (C) and oxidation (M), allowing up to 2 missed cleavages, mass accuracy of 10 ppm on the parent ion and 0.60 Da on the fragment ions.

Virus propagation, hemagglutination, and serological tests

Influenza virus A/Taiwan/083/2006 and H5N1 (NIBRG-14) strains (National Institute for Biological Standards and Control, Potters Bar, U.K.) were propagated in Vero (for VLP comparison) or MDCK cells (for viral challenge). To assess hemagglutination, 3.5 µg of VLPs or virus and their serial 2-fold dilutions were mixed with a 0.75% suspension of guinea pig red blood cells in 96 well plates. Plates were incubated for 1 h and hemagglutination was assessed by eye. The highest dilution of VLPs or virus giving hemagglutination was determined as 1 HA unit.

To assess hemagglutination inhibition (HI) titers, sera were treated with a receptor-destroying enzyme and heat-inactivated (30 min, 56°C), tested in 2-fold dilutions starting with an initial dilution of 1:10, then mixed with 8 HA units of H5N1-VLP and incubated at room temperature. After 1 h, a 0.75% suspension of guinea pig red blood cells was added and hemagglutination was assessed 2 h later by eye. HI titer is expressed as the reciprocal of the highest dilution that showed 50% inhibition of hemagglutination. All samples were tested in triplicate.

ELISA plates (Nunc) were coated with indicated H5 glycoprotein, VLPs, or virus at 4°C overnight and blocked with 1% casein (Blocker Casein, Pierce, Rockford, IL) in PBS. ELISA plates were then incubated with serum samples of indicated dilution for 1 h at 37°C, traced with HRP-conjugated secondary Ab, and developed with TMB substrate (Pierce). They were washed with PBST five times between each step of ELISA. Finally, for the ELISA readout, the absorbance of each well at 450 nm wavelength (4150) was measured using a microplate reader (Power Wave XS, Bio-Tek).

Vaccination and viral challenge

Female BALB/c mice (6 weeks old) were purchased from the National Laboratory Animal Center, and randomly assigned to receive two doses of vaccine 21 days apart. Vaccines of 0.3 µg, 1.5 µg, 2.5 µg, or 10 µg H5N1-VLPs comprised of either 0.054 µg, 0.27 µg, 0.45 µg, or 1.8 µg of H5 glycoprotein, and whole virus vaccine were grown in chicken embryo, inactivated by formalin and applied at 2.5 µg or 10 µg doses. Vaccines or PBS (as mock control) were given by intramuscular injection into the quadriceps. Blood was collected from mice via the retro-orbital sinus, transferred to a tube containing a serum separator and clot activator, and allowed to clot at room temperature. Sera were removed after centrifugation and stocked at −80°C. The immunized mice were challenged intranasally with a recombinant H5N1 virus, NIBRG-14, with a lethal dose (100-fold lethal dose to 50% of mice) as performed previously [46]. The mice were monitored daily for 14 days after the challenge for survival and morbidity (i.e. weight loss, inactivity and body temperature). All animal experiments were evaluated and approved by the Institutional Animal Care and Use Committee of Academia Sinica.

Acknowledgments

We thank the Core Facilities of Academia Sinica for technical support of this study; Biophysics Core Facility for DLS analysis, Electron Microscopy Core Facility for TEM analysis, and Core Facilities for Proteomics Research for proteomic analysis. We also thank Dr. Che Ma for kindly providing antibody against H5, Dr. Po-Huang Liang for providing cDNAs of H5 and N1, and Drs. Harry Wilson and Heiko Kuhn (Editorial Office of Agricultural Biotechnology Research Center, Academia Sinica) for critical suggestions and editing this manuscript.

Author Contributions

Conceived and designed the experiments: PWH. Performed the experiments: CYW. Contributed reagents/materials/analysis tools: MTL HSW. Wrote the paper: CYW PWH. Requested financial support: PWH. Coordinated all of the experiments: PWH.

References

1. Nicholson KG (2009) Influenza and vaccine development: a continued battle. Expert Rev Vaccines 8: 373–374.
2. Pandey A, Singh N, Sambhara S, Mittal SK (2010) Egg-independent vaccine strategies for highly pathogenic H5N1 influenza viruses. Hum Vaccin 6.
27. Ott DE, Brett IC (2007) Changing perspective on immunization against influenza. Vaccine 25: 3062–3065.
26. Sambhara S, Stephenson I (2009) Moving influenza vaccines forward. Expert Rev Vaccines 8: 373–377.
25. Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, et al. (2008) Distinct domains of the influenza A virus M2 protein cytoplasmic tail mediate binding to the M1 protein and facilitate virus budding. J Virol 82: 3514–3524.
24. Johansson BE, Brett IC (2007) Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. N Engl J Med 356: 1928–1943.
23. Johansson BE, Brett IC, Francisco PA, Ahmed A, et al. (2007) Influenza virus particles elicit broader immune responses than whole virion inactivated influenza virus or recombinant hemagglutinin. Vaccine 25: 3871–3879.
22. Bright RA, Elam BM, C Burlington, MD, USA. J Virol 74: 365–372.
21. Mahmood K, Elam BM, C Burlington, MD, USA. J Virol 74: 365–372.
20. Tao P, Lao M, Zhu D, Qu S, Yang Z, et al. (2000) Influenza virus assembly: effect of influenza virus glycoproteins on the membrane association of M protein. J Virol 74: 8709–8719.
19. Enami M, Enami K (1996) Influenza virus hemagglutinin and neuraminidase, but not the matrix protein, are required for assembly and budding of plasmid-derived virus-like particles. J Virol 70: 1111–1123.
18. Enami M, Enami K (1996) Influenza virus induces protective immunity against homologous and heterologous strains of influenza virus. J Virol 70: 6653–6657.
17. Ali A, Avalos RT, Ponimaskin E, Nayak DP (2000) Influenza virus induces protective immunity against homologous and heterologous strains of influenza virus. J Virol 74: 100: 5813–5818.
16. Chen BJ, Leser GP, Morita E, Lamb RA (2007) Influenza virus hemagglutinin affects receptor binding and immune response. Proc Natl Acad Sci U S A 104: 1645–1651.
15. McGinn CM, Pekoz A (2006) Distinct domains of the influenza A virus M2 protein cytoplasmic tail mediate binding to the M1 protein and stimulate membrane association of the matrix protein. J Virol 74: 6653–6657.
14. Galarza JM, Latham T, Cupo A (2005) Virus-like particle vaccine conferred complete protection against a lethal influenza virus challenge. J Virol 79: 4232–4336.
13. Ali A, Avalos RT, Ponimaskin E, Nayak DP (2000) Influenza virus induces protective immunity against homologous and heterologous strains of influenza virus. J Virol 74: 100: 5813–5818.
12. Bright RA, Elam BM, C Burlington, MD, USA. J Virol 74: 365–372.
11. Bright RA, Elam BM, C Burlington, MD, USA. J Virol 74: 365–372.
10. Bright RA, Elam BM, C Burlington, MD, USA. J Virol 74: 365–372.