Composition of the Essential Oil of *Allium neapolitanum* Cirillo Growing Wild in Sicily and its Activity on Microorganisms Affecting Historical Art Crafts

Simona Casiglia¹, Maurizio Bruno¹*, Federica Senatore² and Felice Senatore³

¹ Department STEBICEF, University of Palermo, Viale delle Scienze, Parco d’Orléans II - 90128 Palermo, ITALY
² Department of Pharmacy, University of Salerno, Via G. Paolo II, 132 - 84084 Fisciano (SA), ITALY
³ Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano, 49 - 80131 Naples, ITALY

Abstract: Essential oil of the aerial parts of *Allium neapolitanum* Cirillo collected in Sicily were analyzed by gas-chromatography-flame-ionization detection and gas-chromatography-mass spectrometry. Nineteen compounds were identified in the oil and the main components were found to be (E)-chrysanthenyl acetate (28.1%), (Z)-chrysanthenyl acetate (23.8%), (E)-β-farnesene (9.6%), dimethyl trisulfide (9.6%), camphor (7.4%), methyl allyl disulfide (6.8%) and 1-methyl-3-allyl trisulfide (5.8%). The essential oil showed good antimicrobial activity against 11 strains of test microorganisms, including several species infesting historical material.

Key words: *Allium neapolitanum*, essential oil, (E)-chrysanthenyl acetate, (Z)-chrysanthenyl acetate, antimicrobial activity

1 INTRODUCTION

The genus *Allium* is the largest genus of the family Alliaceae and comprises more than 700 species distributed all over Europe, North America, Northern Africa and Asia, each differing in taste, form and colour, but close in biochemical, phytochemicals and nutraceutical content¹. The *Allium* genus is rich of flavonoids, saponins, sapogenins and volatile sulphur compounds and their characteristic organoleptic properties derive from the presence of non-volatile flavour precursors, alk(en)yl-L-cysteine sulfoxides². Many sulphur compounds found in *Allium* species are responsible for several biological properties such as antimicrobial³, antiprotozoal, antioxidant, antihypertensive, hypolipidaemic, hepatoprotective and antithrombotic activities⁴.

Allium neapolitanum Cirillo is a perennial bulbous plant, native to the Mediterranean Region and the Mid-East from Spain to Pakistan⁵. In Sicily it is a non common plant, growing below 1000 m s/l in pastures, cultivated grounds (vineyards and olive-grove) and dry, open habitats⁶.

Previous phytochemical studies on the composition of *A. neapolitanum* led to the isolation of thirteen flavonoid glycosides, based on kaempferol, quercetin and isorhamnetin⁷ and two canthin-6-one alkaloids with antibacterial activity⁸. Furthermore, the antioxidative properties of the aqueous extracts of bulbs, bulblets, leaves and flowers of *A. neapolitanum* were investigated showing a good antioxidant power⁹. It was also showed that the good antihypertensive effects of the aqueous extract of bulbs of *A. neapolitanum* could be associated to interactions with adrenergic receptor β2 antagonist, involved in blood pressure regulation¹⁰. Finally, the chloroform extract of this species was found to have antimicrobial activity on several bacteria and on *C. albicans*, in some cases better than streptomycin sulphate and nystatin, respectively, used as standard antibiotics¹¹. On the hand no report has been published on the composition of the essential oil of this species.

Several heterotrophic microorganisms (bacteria and fungi) have the ability to interact with historical organic materials such as textile, leather, paper, paintings, wood, papyri, incunabula and books, all consisting essentially of natural fibres. Microbial growth causes loss of strength and elongation, oxidation state, discoloration, changes in appearance, degree of polymerization and breakdown of molecular structure. Species of genus *Bacillus*, frequent in

*Correspondence to: Maurizio Bruno, Department STEBICEF, University of Palermo, Viale delle Scienze, Parco d’Orléans II - 90128 Palermo, ITALY
E-mail: maurizio.bruno@unipa.it
Accepted September 28, 2015 (received for review July 31, 2015)
Journal of Oleo Science ISSN 1345-8957 print / ISSN 1347-3352 online
http://www.jstage.jst.go.jp/browse/jos/ http://mc.manuscriptcentral.com/jocs
archives, libraries and on museum cellulosic objects can cause deep deteriorations of the items but the most dangerous microorganisms both for cellulose fibers and fibers of animal origin (wool, silk) belong to some genera of fungi: *Chaetomium*, *Myrothecium*, *Trichoderma*, *Fusarium*, *Penicillium* and *Aspergillus*.

Also the surfaces of stone monuments can be altered by fungal activity via hyphal penetration through the porous stone matrix and by the production of organic acids and pigments\(^2\). The growing interest on natural products that can be used as an alternative to synthetic chemicals in order to prevent and reduce the dangerous effects of microorganisms on historical artifacts\(^3\)–\(^5\) prompted us to investigate on the chemical composition and anti-microbial properties against several microorganism, including *Bacillus subtilis*, *Fusarium oxysporum* and *Aspergillus niger*, species infesting historical material\(^3\), of the essential oil from aerial parts of *A. neapolitanum*, growing wild in Sicily.

2 MATERIALS AND METHODS

2.1 Plant material

Aerial parts of *Allium neapolitanum* were collected 2 km west of Portella della Ginestra, Piana degli Albanesi, Palermo (Sicily, Italy) (37° 58' 33" N; 13° 14' 11" E; 790 m s/l), at the end of May 2014, from plants at the full flowering stage. Typical specimens (PAL 14/84), identified by Mr. Emanuele Schimmenti, have been deposited and have been deposited in the Department STEBICEF, University of Palermo, Palermo, Italy.

2.2 Isolation of the essential oil

The air-dried sample was ground in a Waring blender and then subjected to hydrodistillation for 3 h using n-hexane as solvent, according to the standard procedure previously described\(^6\). The oil was dried over anhydrous sodium sulphate and then stored in sealed vials, at \(-20 \, ^\circ\text{C}\), ready for the GC and GC-MS analyses. The sample yielded 0.22% of oil (w/w) (A.n.) with a typical garlic smell.

2.3 Qualitative and quantitative analyses

The essential oil was analyzed to determine the chemical components by GC and GC-MS as previously described and identification of constituents was made by comparison of their retention indices (R\(_f\)) with either those of the literature or with those of authentic compounds available in our laboratories\(^7\).

2.4 Microbial strains

The antimicrobial and antifungal activities of essential oil were tested against a panel which included eight bacteria species, selected as representative of the class of Gram positive and Gram negative (Table 2). The strains were grown on Tryptone Soya Agar (Oxoid, Milan, Italy) for the bacteria, Sabouraud Dextrose Agar (SDA) with chloramphenicol for yeasts and SDA for moulds. For the antimicrobial tests, Tryptone Soya broth (Oxoid, Milan, Italy) for bacteria and Sabouraud dextrose broth (SDB) for yeasts and fungal strains were used.

2.5 Antimicrobial screening

The antimicrobial activity was evaluated, as previously reported\(^8\), by determining the minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC), which includes minimum bactericidal (MBC) and minimum fungicidal concentrations (MFC), using the broth dilution method\(^9\).

3 RESULTS AND DISCUSSION

3.1 Chemical composition of the essential oil

Hydrodistillation of the aerial parts of *Allium neapolitanum* gave a yellow oil (A.n.). Overall, nineteen compounds were identified in the oil, representing 96.8% of the total components. The components are listed in Table 1 according to their retention indices on a HP 5MS column and are classified on the basis of their chemical structures into five classes.

The main class was represented by oxygenated monoterpenes with (E)-chrysanthenyl acetate (28.1%), (Z)-chrysanthenyl acetate (23.8%) and camphor (7.4%) as main compounds. Among the sulphur-containing compounds (23.6%), dimethyl trisulphide (9.6%), methyl allyl disulphide (6.8%) and 1-methyl-3-allyl trisulphide (5.8%) were the most abundant products. It is worthy of mention the good quantity of (E)-β-farnesene (9.6%), the only sesquiterpene hydrocarbon detected in the oil.

The comparison with the compositions of the essential oil from aerial parts of *Allium* sp. studied so far shows some interesting points. In fact, it is noteworthy that the percentage of sulphur-containing compounds varies drastically; *A. amplexouprasum*\(^10\) and *A. nigrum*\(^20\) are devoid of these compounds whereas other species such as *A. cepa* (100%)\(^\text{21}\), *A. fistulosum* (95.8%)\(^\text{22}\), *A. chinense* from Cuba (94.0%)\(^\text{23}\) and *A. tuberosum* from China (92.9%)\(^\text{24}\) are extremely rich of this class of compounds. The oil of *Allium neapolitanum* shows a moderate content of sulphur-containing compounds (23.6%) and it has to be pointed out that (E)-chrysanthenyl acetate, (Z)-chrysanthenyl acetate and (E)-β-farnesene have never been identified in significant amount in any *Allium* oil. Among the oxygenated monoterpenes present in *A. neapolitanum* only camphor has been identified in good amount (13.4%) in *A. roseum* var. odoratissimum from Tunisia\(^25\).
3.2 Biological activity

The antimicrobial and antifungal activities of essential oil were tested against a panel which included eight bacteria species, selected as representative of the class of Gram positive and Gram negative, one yeast and two moulds. The oil shows a good activity especially against *Bacillus subtilis*, *Staphylococcus aureus*, *Fusarium oxysporum* and *Aspergillus niger* (Table 2). Although for the two main compounds of the oil, *(E)-*chrysantheryl acetate and *(Z)-*chrysantheryl acetate, no biological properties have been reported, the good antimicrobial activity of the oil can be attributed to the presence of camphor, dimethyl trisulfide, methyl allyl disulfide and 1-methyl-3-allyl trisulfide, compounds already proved to be very active.

Previous studies on the structure-activity relationship of garlic metabolites showed antimicrobial activity for allyl disulfide, but not for allylsulfide suggesting that the disulfide bond may be important for the antimicrobial effect. Furthermore, it has been reported that the presence of the trisulfide bond, or of an extra sulphur in the molecule, may reduce the biological properties of the allylsulfide constituents of garlic oils. Consequently, the high antimicrobial activity of *A. neapolitanum* essential oil can be attributed to the presence both of allyldisulfides and camphor; the antibacterial and antifungal properties of the last one have been largely demonstrated.

The antimicrobial activity of other essential oils from *Allium* species have been also demonstrated. The essential oils of different *Allium nigrum* L. organs and *Allium roseum* var. *grandiflorum* subvar. *typicum* Regel., both collected in Tunisia, exhibited antimicrobial activity, especially against *Enterococcus faecalis* and *Staphylococcus aureus* and antifungal growth effect on *Fusarium solani* f. sp. *cucurbitae* and *Botrytis cinerea*. The es-

Table 1 Percent composition of the essential oils of *Allium neapolitanum* Cirillo (Alliaceae).

K_a	K_b	Component	A.n.	Ident.
1145	1532	Camphor	7.4	1, 2, 3
1235	1583	*(E)-*Chrysantheryl acetate **	28.1	1, 2
1257	1585	*(Z)-*Chrysantheryl acetate **	23.8	1, 2
1284	1597	Bornyl acetate	1.6	1, 2, 3

Oxygenated monoterpenes

K_a	K_b	Component	A.n.	
1317	1672	*(E)-*β-Farnesene	9.6	1, 2

Sesquiterpene hydrocarbons

K_a	K_b	Component	A.n.	
908	1235	2,5-Dimethylthiophene	r^d	1, 2
917	1257	Methyl allyl disulfide ; Methyl 2-propenyl disulfide	6.8	1, 2
926	1284	Diethyl disulfide	r^d	1, 2
952	1307	Methyl 1-propenyl disulfide	0.9	1, 2
973	1330	Dimethyl trisulfide; DMTS	9.6	1, 2
1083	1357	Di-2-propenyl disulfide; Diallyl disulfide	0.2	1, 2
1087	1380	Dipropyl disulfide	0.2	1, 2
1096	1403	Dipropenyl disulfide	0.1	1, 2
1137	1506	1-Methyl-3-allyl trisulfide	5.8	1, 2

Sulphur-containing compounds

K_a	K_b	Component	A.n.	
802	1168	Hexanal; Caproaldehyde	0.3	1, 2, 3

Carbonylic compounds

K_a	K_b	Component	A.n.	
2100	2100	Heneicosane	0.1	1, 2, 3
2300	2300	Tricosane	0.4	1, 2, 3
2500	2500	Pentacosane	0.7	1, 2, 3
2700	2700	Heptacosane	1.2	1, 2, 3

Hydrocarbons

K_a	K_b	Component	A.n.	
1235	1583	*(E)-*β-Farnesene	9.6	1, 2
1257	1585	*(Z)-*Chrysantheryl acetate **	23.8	1, 2
1284	1597	Bornyl acetate	1.6	1, 2, 3

TOTAL

Component	A.n.
96.8	

^a: HP-5 MS column; ^b: HP Innowax column; ^c: 1, retention index, 2: mass spectrum, 3: co-injection with authentic compound; ^d: t: trace, <0.05%; **: irregular terpene.
S. Casiglia, M. Bruno and F. Senatore et al.

Table 2 MIC (µg/mL) and MMC* (µg/mL) of essential oil from Allium neapolitanum.

Strain	A.n.	Ch	Am	Ke
Bacillus subtilis				
ATCC 6633	12.5(25)	12.5	NT	NT
Staphylococcus aureus				
ATCC 25923	25(50)	25	NT	NT
Staphylococcus epidermidis	12.5(25)	3.12	NT	NT
Streptococcus faecalis				
ATCC 29212	50	25	NT	NT
Escherichia coli				
ATCC 25922	25(50)	12.5	NT	NT
Klebsiella pneumoniae				
ATCC 10031	50(100)	50	NT	NT
Proteus vulgaris				
ATCC 13315	100	25	NT	NT
Pseudomonas aeruginosa				
ATCC 27853	100(>100)	100	NT	NT
Candida albicans				
ATCC 10231	50	NT	1.56	NT
Fusarium oxysporum				
ATCC 695	6.25(12.5)	NT	NT	3.12
Aspergillus niger				
ATCC 16401	6.25	NT	NT	3.12

* MBC are reported in brackets when different from MIC; NT: not tested; Ch: Chloramphenicol; Am: Amphotericin B; Ke: Ketoconazole.

The essential oil of the flowers of A. roseum var. odoratissimum from Tunisia showed good activity against Micrococcus luteus, Staphylococcus epidermidis and S. aureus. Also the oil of the flowers of A. rotundum from Iran indicates a good activity against Proteus mirabilis, Enterobacter cloacae, Klebsiella pneumoniae, Staphylococcus aureus and Bacillus subtilis. A good activity against Gram positive bacteria (Staphylococcus aureus, Enterococcus faecalis) was reported for the essential oil of A. schoenoprasum, collected in Turkey. On the other hand the oil obtained from the flowers of A. sphaerocephalon subsp. sphaerocephalon was proved to be quite active against Pseudomonas aeruginosa and Aspergillus niger. Shallot (Allium ascalonicum L.) oil was studied for its major diallyl sulfide content and its antimicrobial activity against food-borne pathogenic bacteria including Bacillus cereus, Campylobacter jejuni, Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica, Staphylococcus aureus, and Vibrio cholerae. Among them, E. coli O157:H7 and B. cereus were the most and the least sensitive strains, respectively. The oil had a bactericidal effect on C. jejuni, E. coli O157:H7, L. monocytogenes, S. aureus and V. cholerae but had a bacteriostatic effect on B. cereus and S. enterica.

The good antimicrobial activity detected for the essential oil of A. neapolitanum especially against Bacillus subtilis, Staphylococcus aureus, Fusarium oxysporum and Aspergillus niger, species infesting archives, libraries and historical cellulosic textiles objects quite frequently, makes this plant interesting for possible applications in the protection and disinestation of museum objects.

ACKNOWLEDGMENT

The GC and GC-MS spectra were performed at the Department of Pharmacy, University of Naples “Federico II”. The assistance of the staff was gratefully appreciated.
References

1) Hirschegger, P.; Jakse, J.; Trontelj, P.; Bohanec, B. Origins of Allium ampeloprasum horticultural groups and a molecular phylogeny of the section Allium (Alliaceae). Mol. Phylogenet. Evol. 54, 488-497 (2010).
2) Block, A. The organosulfur chemistry of the genus Allium: implications for the organic chemistry of sulfur. Angew. Chem. Int. Ed. Engl. 31, 1135-1178 (1992).
3) Casella, S.; Leonardi, M.; Melai, B.; Fratini, F.; Pistelli, L. The role of diallyl sulfides and dipropyl sulfides in the in vitro antimicrobial activity of the essential oil of garlic, Allium sativum L., and leek, Allium porrum L. [Comparative study]. Phytother. Res. 27, 380-383 (2013).
4) Tapiero, H.; Townsend, D.; Tew, K. Organosulfur compounds from Alliaceae in the prevention of human pathologies. Biomed. Pharmacother. 58, 183-193 (2004).
5) http://apps.kew.org/Kew Botanical Gardens, World Checklist of Selected Plant Families.
6) Giardina, G.; Raimondo, F. M.; Spadaro, V. A catalogue of plants growing in Sicily. Bocconea 20, 5-58 (2007).
7) Carotenuto, A.; Fattorusso, E.; Lanzotti, V.; Magna, S.; De Feo, V.; Cicala, C. The flavonoids of Allium neapolitanum. Phytochemistry 44, 949-957 (1997).
8) O’Donnell, G.; Gibbons, S. Antibacterial activity of two canthin-6-one alkaloids from Allium neapolitanum. Phytother. Res. 21, 653-657 (2007).
9) Nencini, C.; Cavollo, F.; Capasso, A.; Franchi, G. G.; Giorgi, G.; Micheli, L. Evaluation of antioxidative properties of Allium species growing wild in Italy. Phytother. Res. 21, 874-878 (2007).
10) Nencini, C.; Franchi, G. G.; Micheli, L. Cardiovascular receptor binding affinity of aqueous extracts from Allium species. Int. J. Food Sci. Tech. 61, 433-439 (2010).
11) Djurak, M.; Hakki Alna, M.; Ilčim, A. Antibacterial and antifungal activities of Turkish medicinal plants. Pharm. Biol. 39, 346-350 (2001).
12) Stupar, M.; Grbić, M. Lj.; Džamić, A.; Unković, N.; Kistić, M.; Jelikić, A.; Vukojević, J. Antifungal activity of selected essential oils and biocide benzaalkonium chloride against the fungi isolated from cultural heritage objects. S. Afr. J. Bot. 93, 118-124 (2014).
13) Casiglia, S.; Bruno, M.; Senatore, F. Volatile constituents of Dianthus rupicola L. from Sicily: activity against microorganisms affecting cellulosic objects. Nat. Prod. Res. 28, 1739-1746 (2014).
14) Casiglia, S.; Bruno, M.; Senatore, F. Activity against microorganisms affecting cellulosic objects of the volatile constituents of Leonotis nepetaefolia from Nicaragua. Nat. Prod. Commun. 9, 1637-1639 (2014).
15) Casiglia, S.; Ben Jemia, M.; Riccobono, L.; Bruno, M.; Scandalera, E.; Senatore, F. Chemical composition of the essential oil of Moluccella spinosa L. (Lamiaceae) collected wild in Sicily and its activity on microorganisms affecting historical textiles. Nat. Prod. Res. 29, 1201-1206 (2015).
16) Ben Jemia, M.; Rouis, Z.; Maggio, A.; Venditti, A.; Bruno, M.; Senatore, F. Chemical composition and free radical scavenging activity of the essential oil of Achillea ligustica All. wild growing in Lipari (Aeolian Islands, Sicily). Nat. Prod. Commun. 8, 1629-1632 (2013).
17) Loizzo, M.; Ben Jemia, M.; Senatore, F.; Bruno, M.; Menichini, F.; Tundis, R. Chemistry and functional properties in prevention of neurodegenerative disorders of five Cistus species essential oils. Food Chem. Toxicol. 59, 586-594 (2013).
18) Barry, A. The antimicrobial susceptibility test: Principles and Practices. Lea and Febiger, Philadelphia (1976).
19) Selim, Y. A.; Sakeran, M. I. Effect of Time Distillation on Chemical Constituents and Anti-Diabetic Activity of the Essential Oil from Dark Green Parts of Egyptian Allium ampeloprasum L. J. Ess. Oil Bearing Plants 17, 838-846 (2014).
20) Rouis-Soussli, L. S.; El Ayeb-Zakhama, A.; Mahjoub, A.; Flaminî, G.; Ben Jamnet, H.; Harzallah-Shkiri, F. Chemical composition and antibacterial activity of essential oils from the Tunisian Allium nigrum L. EXCLI Journal 13, 526-535 (2014).
21) Ehiabhi, O. S.; Edet, U. U.; Walker, T. M.; Schmidt, J. M.; Setzer, W. N.; Ogunwande, I. A.; Essien, E.; Ekundayoet, O. Constituents of essential oils of Apium graveolens L., Allium cepa L. and Voacanga africana Staph. from Nigeria. J. Essent. Oil-Bearing Plants 9, 126-132 (2006).
22) Pino, J. A.; Rosado, A.; Fuentes, V. Volatile flavor compounds from Allium fistulosum L. J. Essent. Oil Res. 12, 553-555 (2000).
23) Pino, J.; Fuentes, V.; Correa, M. T. Volatile constituents of Chinese chive (Allium tuberosum Rottl. ex Spren-gel) and rakkyo (Allium chinense G. Don.) J. Agric. Food Chem. 49, 1328-1330 (2001).
24) Yang, M. Y.; Zheng, F. P.; Duan, Y.; Xie, J. C.; Huang, M. Q.; Ren, T. L.; Sun, B. G. Analysis of volatiles in wild Chinese chive flowers by solvent extraction/solvent-assisted flavor evaporation coupled with gas chromatography-mass spectrometry. Shipin Kexue (Beijing, China) 32, 211-216 (2011).
25) Najjaa, H.; Neffati, M.; Zouari, S.; Anmar, E. Essential oil composition and antibacterial activity of different extracts of Allium roseum L., a North African endemic species. C. R. Chimie 10, 820-826 (2007).
26) Ben Hsouna, A.; Ben Halima N.; Abdelkafi, S.; Hamdi, N. Essential oil from Artemisia phaeolepis: chemical
composition and antimicrobial activities. J. Oleo Sci. 62, 973-980 (2013).
27) Avato, P.; Tursi, F.; Vitali, C.; Micolis, V.; Candido, V. Allylisulfide constituents of garlic volatile oil as antimicrobial agents. Phytotherapy 7, 239-243 (2000).
28) Corzo-Martinez, M.; Corzo, N.; Villamiel, M. Biological properties of onions and garlic. Trends Food Sci. Technol. 18, 609-625 (2007).
29) Mnayer, D.; Fabiano-Tixier, A. S.; Petitcolas, E.; Hamieh, T.; Nehme, N.; Ferrant, C.; Fernandez, X.; Chemat, F. Chemical composition, antibacterial and antioxidant activities of six essential oils from the Alliaceae family. (Allium sativum), onion (Allium cepa), leek (Allium porrum), Chinese chive (Allium tuberosum), shallot (Allium ascalonicum) and chive (Allium schoenoprasum). Molecules 19, 20034-20053 (2014).
30) Naganawa, R.; Iwata, N.; Ishikawa, K.; Fukuda, H.; Fujino, T.; Suzuki, A. Inhibition of microbial growth by ajoene, a sulfur-containing compound derived from garlic. Appl. Environ. Microbiol. 62, 4238-4242 (1996).
31) Mimica-Dukić, N.; Kujundžić, S.; Soković, M.; Couladis, M. Essential oil composition and antifungal activity of Foeniculum vulgare Mill. obtained by different distillation conditions. Phytother. Res. 17, 368-371 (2003).
32) Kordali, S.; Cakir, A.; Mavi, A.; Kilic, H.; Yildirim A. Screening of chemical composition and antifungal and antioxidant activities of the essential oils from three Turkish Artemisia species. J. Agric. Food Chem. 53, 1408-1416 (2005).
33) Kazemi, M. Chemical composition and antimicrobial activity of essential oil of Matricaria chamomilla. Bull. Environ. Pharmacol. Life Sci. 3, 148-153 (2008).
34) Rouis-Soussi, L. S.; Boughelleb-M Hamdi, N.; El Ayeb-Zakhama, A.; Flamini, G.; Ben Jannet, H.; Harzallah-Skhiri, F. Phytochemicals, antioxidant and antifungal activities of Allium roseum var. grandiflorum subvar. typicum Regel. South African J. Bot. 91, 63-70 (2014).
35) Delpou, A. A.; Yousefian, M.; Jafary Kelarjani, S. A.; Koshmoo, M.; Mirzanegad, S.; Mahdavi, V.; Mousavi, S. E.; Shirzad, E.; Afzali, M.; Javad Bayani, M. J.; Olyaei juybari, E.; Yahyapor, M. K. Antibacterial activity and composition of essential oils of flower Allium rotundum. Adv. Environ. Biol. 6, 1020-1025 (2012).
36) Dagdelen, S.; Bilenler, T.; Durmaz, G.; Gokbulut, I.; Hayaloglu, A. A.; Karabulut, I. Volatile composition, antioxidant and antimicrobial activities of herbal plants used in the manufacture of van herbyle (oth) cheese. J. Food Process. Preserv. 38, 1716-1725 (2014).
37) Lazarević, J. S.; Đorđević, A. S.; Zlatković, B. K.; Radulović, N. S.; Palić, R. M. Chemical composition and antioxidant and antimicrobial activities of essential oil of Allium sphaerocephalon L. subsp. sphaerocephalon (Liliaceae) inflorescences. J. Sci. Food Agric. 91, 322-329 (2011).
38) Rattanachaikunsopon, P.; Phumkhachorn, P. Shallot (Allium ascalonicum L.) oil: Diallyl sulfide content and antimicrobial activity against food-borne pathogenic bacteria. African J. Microbiol. Res. 3, 747-750 (2009).