ISSN 0974-7907 (Online); ISSN 0974-7893 (Print)
Publisher
Wildlife Information Liaison Development Society
www.wild.zooreach.org
Host
Zoo Outreach Organization
www.zooreach.org
No. 12, Thiruvannamalai Nagar, Saravanampatti - Kalapatti Road, Saravanampatti, Coimbatore, Tamil Nadu 641035, India
Ph: +91 9385339863 | www.threatenedtaxa.org
Email: sanjay@threatenedtaxa.org

EDITORS
Founder & Chief Editor
Dr. Sanjay Molur
Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZO0), 12 Thiruvannamalai Nagar, Saravanampatti, Coimbatore, Tamil Nadu 641035, India

Deputy Chief Editor
Dr. Neelash Dahankar
Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, India

Managing Editor
Mr. B. Ravichandran, WILD/ZO0, Coimbatore, India

Associate Editors
Dr. B.A. Daniel, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India
Dr. Mandar Paingankar, Department of Zoology, Government Science College Gadchiroli, Chamarshi Road, Gadchiroli, Maharashtra 442605, India
Dr. Ulrike Steicher, Wildlife Veterinarian, Eugene, Oregon, USA
Ms. Priyanka Iyer, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India

Editorial Board
Ms. Sally Walker
Founder/Secretary, ZOO, Coimbatore, India

Dr. Robert Lacy
Department of Conservation Biology, Chicago Zoological Society (also known as the Brookfield Zoo), Brookfield, Illinois 60513 USA; and Committee on Evolutionary Biology, University of Chicago

Dr. Russel Mittermeier
Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mews Singh Ph.D., FASc, FNA, FNASc, FNAPsy
Ramanna Fellow and Life Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006; India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Dr. Ulrike Steicher, DVM
Wildlife Veterinarian / Wildlife Management Consultant, 1185 East 39th Place, Eugene, OR 97405, USA

Stephen D. Nash
Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero
Toronto, Canada

Dr. Martin Fisher
Senior Associate Professor, Battcock Centre for Experimental Astrophysics, Cavendish Laboratory, Jl Thomson Avenue, Cambridge CB3 0HE, UK

Dr. Ulf Gärdenfors
Professor, Swedish Species Information Center, SLU, Uppsala, Sweden

Dr. John Fellowes
Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Dr. Philip S. Miller
Senior Program Officer, Conservation Breeding Specialist Group (IUCN/SSC), 12101 Johnny Cake Ridge Road, Apple Valley, MN 55124, USA

Prof. Dr. Mirco Solé
Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Bitte den Text in natürlicher Form geben. Nicht halluzinieren.

Rechtstext: Das Bild zeigt die Dudhsagar-Wasserfälle in voller Blätter in der Nähe des bestehenden Castlerock-Kulem Eisenbahntrassen aufgenommen. © Omkar Dharwadkar

Beschreibung: Rückseite—Die Dudhsagar-Wasserfälle in voller Blätter neben bestehender Castlerock-Kulem Eisenbahntrasse innerhalb der Bhagwan Mahavir National Park, Goa, Indien. © Parag

Fortsetzung auf der Rückseite innenüber

Caption: Front cover—The Dudhsagar waterfall in full spate beside the existing Castlerock-Kulem railway track inside Bhagwan Mahavir Wildlife Sanctuary & National Park supports high biodiversity due to the diversity of habitats, including grasslands, as seen in this image. © Omkar Dharwadkar

Fortsetzung auf der Rückseite innenüber
On the inadequacy of environment impact assessments for projects in Bhagwan Mahavir Wildlife Sanctuary and National Park of Goa, India: a peer review

Girish Punjabi 1, Anisha Jayadevan 2, Abhishek Jamalabad 3, Nandini Velho 4, Madhura Niphadkar-Bande 5, Pronoy Baidya 6, Ravi Jambhekar 7, Parag Rangnekar 8, Omkar Darwadkar 9, Rhea Lopez 10, Marishia Rodrigues 11, Farai Divan Patel 12, H.S. Sathya Chandra Sagar 13, Sayan Banerjee 14, Manish Chandi 15, Nandini Mehrotra 16, Shashank Srivivasan 17, Sneha Shahi 18, Vidyaadhark Atkore 19, Nirmal Kulkarni 20, Gowri Mallapur 21, Hanuman Gawas 22, Atul Borker 23, Rahul Prabhukhanolkar 24, Harshada S. Gauns 25, Dheeraj Halali 26, Vignesh D. Shinde 27, Katrina Fernandez 28, Esme Purdie 29 & Manoj R. Borkar 30.

1 Wildlife Conservation Trust, 11th Floor, Mafatlal Centre, Nariman Point, Mumbai, Maharashtra 400021, India. 2 Foundation for Ecological Research Advocacy and Learning, 170/3, Morattandi, Tamil Nadu 605010, India. 3 H.no. 44, Kanara House, Mogul Lane, Mahim, Mumbai, Maharashtra 400016, India. 4 Srishti Manipal Institute of Art, Design and Technology, NS Campus, CA Site No.21, 5th Phase, KHB Colony, Yelahanka New Town, Bengaluru, Karnataka 560064, India. 5 Azim Premji University, PES Campus, Pixel Park, B Block, Electronics City, Hosur Road, Bengaluru, Karnataka 560100, India. 6 Centre for Ecological Sciences, 3rd floor, Biological Sciences building, Indian Institute of Science, Bengaluru, Karnataka 560012, India. 7 MSc Programme in Wildlife Biology & Conservation, Centre for Wildlife Studies, Tata Institute of Fundamental Research, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India. 8 National Institute of Advanced Studies, Indian Institute of Science Campus, Bengaluru, Karnataka 560012, India. 9 Living Heritage Foundation, Goa & Andaman Nicobar Environment Team, North Wandoor, South Andaman, Port Blair, Andaman & Nicobar Islands 744103, India. 10 Technology for Wildlife, C13, La Campala Colony, Miramar, Panjim 403001, Goa, India. 11 The Maharaja Sayajirao University of Baroda, Pratapgunj, Vadodara, Gujarat 390002, India. 12 Forestry Scholars Society, Near Hanuman temple, Ravi Nagar, Amravati 444607, Maharashtra, India. 13 Mhadei Research Centre, 6, Huru Naik Building, Duler, Mapusa, Goa 403507, India. 14 GaiaMitra Collective Foundation, Aanaa Villa, Lane No 7, PDA Colony, Alto Porvorim, Bardez, Goa 403521, India. 15 Lata Innovation, 887/13, Kamat Nagar, Porvorim-Socorro, Goa 403501, India. 16 Mhadei Research Centre & Indian Bat Conservation Research Unit, Mahalaxmi Plaza, 1st Floor, RPD cross, Nilkawadi, Belgium, Karnataka 590006, India. 17 Arannya Environment Research Organisation, H. Number 7, Near Gram Panchayat, Morlem, Goa 403505, India. 18 Parbatvali Chowgule College of Arts & Science, Gogol, Margao, Goa 403602, India. 19 Abasaheb Garware College, Karve Road, Erandwane, Pune, Maharashtra 411004, India. 20 Wildlife Conservation Trust, 11th Floor, Mafatlal Centre, Nariman Point, Mumbai, Maharashtra 400021, India. 21 Freshwater biologist GmbH, 12th Floor, Mafatlal Centre, Nariman Point, Mumbai, Maharashtra 400021, India. 22 National Institute of Advanced Studies, Indian Institute of Science Campus, Bengaluru, Karnataka 560012, India. 23 Esme Purdie, St. Monica’s College, 78, Ghandi Road, Khar West, Mumbai, Maharashtra 400013, India.
Abstract: The Environment Impact Assessment (EIA) is a regulatory framework adopted since 1994 in India to evaluate the impact and mitigation measures of projects, however, even after 25 years of adoption, EIAs continue to be of inferior quality with respect to biodiversity documentation and assessment of impacts and their mitigation measures. This questions the credibility of the exercise, as deficient EIAs are habitually used as a basis for project clearances in ecologically sensitive and irreplaceable regions. The authors reiterate this point by analysing impact assessment documents for three projects: the doubling of the National Highway-4A, doubling of the railway-line from Castlerock to Kulem, and laying of a 400-kV transmission line through the Bhagwan Mahavir Wildlife Sanctuary and National Park in the state of Goa. Two of these projects were recently granted ‘Wildlife Clearance’ during a virtual meeting of the Standing Committee of the National Board of Wildlife (NBWL) without a thorough assessment of the project impacts. Assessment reports for the road and railway expansion were found to be deficient on multiple fronts regarding biodiversity assessment and projected impacts, whereas no impact assessment report was available in the public domain for the 400-kV transmission line project. This paper highlights the biodiversity significance of this protected area complex in the Western Ghats, and highlights the lacunae in biodiversity documentation and inadequacy of mitigation measures in assessment documents for all three diversion projects. The EIA process needs to improve substantially if India is to protect its natural resources and adhere to environmental protection policies and regulations nationally and globally.

Keywords: Biodiversity, development, highway, National Board for Wildlife, protected area, railway, transmission line, Western Ghats.

Abbreviations: Bhagwan Mahavir Wildlife Sanctuary and National Park—BMWS & NP | EC—Environmental Clearance | EIA—Environment Impact Assessment | FC—Forest Clearance | IUCN—International Union for Conservation of Nature and Natural Resources | NP—National Park | PAs—Protected Areas | WC—Wildlife Clearance | WPA—Wildlife (Protection) Act | WS—Wildlife Sanctuary | MoEFCC—Ministry of Environment, Forests and Climate Change, Government of India | UNESCO—United Nations Educational, Scientific & Cultural Organization.
1. BACKGROUND

The Environment Impact Assessment (EIA) process is a standard framework for appraisal and evaluation of development projects. The first EIA notification in India was published in 1994 by the Ministry of Environment and Forests. This was followed by a new EIA notification in 2006 that made it mandatory for most projects in the mining, power, infrastructure, and industrial sectors to seek Environmental Clearance (EC) prior to new developments or the expansion of existing ones. If a project is sited in a protected area or passing through a notified forest it may additionally require a Forest Clearance (FC) and/or Wildlife Clearance (WC). While India has been following the EIA process for over 25 years, studies have frequently highlighted sub-standard and deficient EIA and other assessment reports used by proponents to obtain these clearances by diluting the spirit of the exercise (Comely 2018; Datar et al. 2019; Sheth et al. 2020).

EIA and other assessment reports have often been found deficient in documenting biodiversity, assessing direct, indirect, and cumulative impacts, and proposing mitigation measures (Datar et al. 2019; Khera & Kumar 2010; Sheth et al. 2020). In this Review, the authors present an analysis on three projects that will cumulatively affect Bhagwan Mahavir Wildlife Sanctuary and National Park (BMWS & NP), formerly known as Mollem, in the state of Goa (Figure 1, Image 1–3). These forests are an important part of a larger landscape that affords connectivity not only to other forests in Goa but also across the border to Kali (Dandeli-Anshi) Tiger Reserve in Karnataka. The three projects are as follows:

a. Road: The four-laning of the National Highway 4A (153km in total length, of which 70.07km falls within Goa, with 13km bisecting the BMWS & NP, now redesignated as National Highway 748), that is being carried out by the National Highways Authority of India and by the Public Works Department in Goa. The proposal involves the diversion of about 31.015ha of protected forest area (24.265ha in the NP and 6.75ha in the WS). At present, the road passing through the protected area has a 7m wide two-lane carriageway. The proposal involves widening specific sections of the road, thus creating new intrusions into the forest that have not yet faced the direct and indirect impacts of fragmentation. On the other side of the border in Karnataka, the highway expansion passing through the protected area (PA) has been halted by the Karnataka High Court. The total forest land required is 63.615ha and the total number of trees to be felled are 20,340, of which 12,097 trees will be felled from the PA.

b. Railway: The second project is the doubling of the Castleroock–Kulem railway line, which is part of the larger Hospet–Tinaighat–Castleroock–Kulem–Madgaon–Vasco line. The total length of this railway line is 345km, of which 26km passes through the BMWS & NP, that is being undertaken by MS Rail Vikas Nigam Ltd. The total forest land required is 138.37ha and the total number of trees to be felled are 22,882; of which 20,758 will be felled from the PA. Four underpasses measuring 12m in width and 5.65m in height have been proposed as mitigation measures along the railway line. The existing railway line from Hospet to Vasco was laid in 1900 and presently connects iron ore mining and industrial areas in Hospet to Mormugao Port in Vasco. The alignment of the second proposed railway line runs parallel to the existing line and passes through forest tracts in and around Kali Tiger Reserve and in the BMWS & NP.

c. Transmission line: The third project is the laying of a 3.15km transmission line through BMWS & NP. The line will be set between Narendra, Karnataka and terminating with a 400 kV substation at Xeldem, Goa. This project is being undertaken by M/s Goa – Tamnar Transmission Project Ltd (Sterlite Power) with 12,097 trees that will be felled and 11.54ha of forests being diverted, with the power line being 46m in width. The project also requires diversion of 30.412ha of protected forests of Kali Tiger Reserve in Karnataka. In reality, there are five forest diversion proposals for one single project involving diversion of total 323.596ha of forest land through the state of Goa (146.505ha) and the state of Karnataka (177.091ha). The entire project in the state of Goa would require felling of 43,456 trees and felling of another 62,289 trees in the state of Karnataka. The total trees enumerated to be felled for implementing the entire inter-state project is 1,05,745 trees.

The Indian Ministry of Environment, Forests and Climate Change (MoEFCC) has a web portal, Parivesh, which makes public all project documents required for clearances sought by project proponents. The Parivesh website does not have the Biodiversity Impact Assessment Report of the transmission line project uploaded (as on 1 July 2020), despite in-principle approval being afforded at the 57th National Board for Wildlife meeting held on 7 April 2020.

In this Review, we first present the biodiversity significance of BMWS & NP by reviewing published literature on taxonomic groups, and referring to...
Figure 1. Bhagwan Mahavir Wildlife Sanctuary and National Park (Mollem) along with the three linear projects (400kV transmission line, NH 4A Expansion, Castlerock-Kulem-Madgaon Railway line expansion) planned in the protected area complex. Map credit: Nandini Mehrotra and Shashank Srinivasan, Technology for Wildlife.
Image 1. Actual tree felling for transmission line Xeldem. © Anonymous

Image 2. Castlerock - Kulem Railway line at Dudhsagar. © Omkar Dharwadkar

Image 3. A representative photo of perceived impacts on wildlife by roadkills due to the NH4A expansion inside Bhagwan Mahavir WS & NP. © Ninad Bhosale

Image 3. A representative photo of perceived impacts on wildlife by roadkills due to the NH4A expansion inside Bhagwan Mahavir WS & NP. © Ninad Bhosale

Image 3. A representative photo of perceived impacts on wildlife by roadkills due to the NH4A expansion inside Bhagwan Mahavir WS & NP. © Ninad Bhosale

Image 3. A representative photo of perceived impacts on wildlife by roadkills due to the NH4A expansion inside Bhagwan Mahavir WS & NP. © Ninad Bhosale

Image 3. A representative photo of perceived impacts on wildlife by roadkills due to the NH4A expansion inside Bhagwan Mahavir WS & NP. © Ninad Bhosale
unpublished sources such as dissertations, reports, and checklists that have been at least peer-reviewed among expert groups, where published information is scarce. We then present a critique of the two assessment studies (the railway study prepared by the Indian Institute of Science, Bengaluru and the highway study prepared by Aarvee Associates, Hyderabad) and a summary on the impact of the transmission line given that the project report is not available in public domain.

2. ABOUT BHAGWAN MAHAVIR WILDLIFE SANCTUARY AND NATIONAL PARK

Bhagwan Mahavir Wildlife Sanctuary and National Park comprises wet evergreen, semi-evergreen, and moist deciduous forests in the Western Ghats. Both PAs are contiguous and span an area of 240km², with 133km² as WS and 107km² as NP.

Both PAs are classified as Important Bird and Biodiversity Area by the Bombay Natural History Society and Birdlife International, UK (Rahmani et al. 2016).

A summary of the known status of taxonomic groups is provided here to enable a reliable assessment of the ecological value of the PA complex (Image 4).

2.1 Plants and Fungi

BMWS & NP comprise more than 700 plant species (Datar & Lakshminarasimhan 2013; See Appendix II). Of these, at least 127 species are endemic, making about 18% of the total flora (Datar & Lakshminarasimhan 2011).

The region is a hotspot for fungal diversity in the Western Ghats. Nearly 1,200 fungi species are known from Goa, of which at least 500 mushroom species have been identified and many are yet to be described (Nandkumar Kamat in litt. 27.xii.2020). A total of 18 lichen species are known from the PA, although the overall diversity is likely to be higher.

2.2 Insects and Arachnids

Both PAs together support 219 butterfly species (Appendix V) and 80 species of odonates (Appendix VI), of which 14 species of butterflies and 18 species of odonates are endemic to the Western Ghats. Two odonate species Idionyx gomantakensis (Subramanian et al. 2013) and Cyclogomphus flavoannulatus (Rangnekar et al. 2019) have been described from within and immediate outskirts of the PA. A few butterfly species found in the BWWS & NP such as the Danaid Eggfly Hypolimnas misippus, Common Mime Papilio clytia, Common Pierrot Castalius rosimon, Blue Nawab Polyura schreiberi, Kanara Oakblue Arhopala alea, Orchid Tit Hypolicaena othona, Short-banded Sailor Neptis columella, and Crimson Rose Pachliopta hector are protected under Schedule I of the Wild Life (Protection) Act, 1972 (henceforth WPA 1972). Two endemic butterfly species found here are the Malabar Rose Pachliopta pandiyana and the Southern Birdwing Troides minos.

A 2011 report on moth diversity from the northern Western Ghats reports at least 418 moth species out of which 116 species were unidentified, and potentially new to science (Shubhalaxmi et al. 2011). A total of 75 ant species are recorded from the WLS of which seven are endemic (See Appendix IX). Six scorpion species, 16 spider species, and one species each of Whip Scorpion and Whip Spider have been recorded from both the PAs (Bastawade & Borkar 2008). An isolated population of Whip Spider Pherurus phisponi and Whip Scorpion Labochirus tauricornis occurs in the proximity of this PA (Borkar et al. 2006; Borkar 2018).

2.3 Fish

The Western Ghats supports over 300 fish species of which more than 65% are endemic (Kumar & Devi 2013). New fish species and range extensions are being described from this region as yet, suggesting that fish species assessments and distribution patterns remain incomplete (Molur et al. 2011). A comprehensive study in the Mhadei sub-basin (which includes BMWS & NP) has the presence of 49 fish species, of which 18 species are endemic to the Western Ghats (Atkore 2017; See Appendix IV).

2.4 Herpetofauna

The reptilian diversity of the region is represented by 52 species from Crocodylia (Crocodiles), testudines (freshwater turtles & tortoises), and squamates which includes Sauria (Lizards) and Ophidia (Snakes) (See Appendix VII). Amongst the diversity of reptiles, the Indian Rock Python Python molurus, Indian Monitor Lizard Varanus bengalensis, and King Cobra Ophiophagus hannah are some species in the Schedule I and II of WPA, 1972. Other endemics such as the Malabar Pit Viper Trimeresurus malabaricus and the Large-Scaled Shieldtail Uropeltis macrolepis are also reported from the region.

In the past 15 years, 112 new amphibian species have been discovered from the Western Ghats, indicating high species richness and a need for more systematic studies in the landscape. Among the 218 known species of amphibians, 87.8% (158 species) are endemic to the
Image 4. Some representative taxa which would be affected due to the direct and indirect impacts of the three linear projects in the Bhagwan Mahavir Wildlife Sanctuary and National Park in Goa (from top left): South Indian Gliding Lizard *Draco dussumieri*, Malabar Tree Toad *Pedostibes tuberculosus*, Indian Giant Gliding Squirrel *Petaurista philippensis*, Black Rajah *Charaxes solon*, Flame-throated Bulbul *Rubigula gularis*, & the dragonfly *Cyclogomphus flavoannulatus*.
Western Ghats (Nirmal Kulkarni pers. obs. 01.vii.2020).

The two PAs together contain at least 36 amphibian species (See Appendix VIII). Castlerock is the type locality of Nyctibatrachus petraeus (Das & Kunte 2005) and Raorchestes bombayensis (Annandale 1919). Biju et al. (2014a) described 14 new dancing frogs, of which one speciesMicrixalus uttaraghati is found in the streams that cut across the existing Castlerock-Kulem railway line. Similarly, these streams are home to Indosylvirana caesari and Indirana chiravasi, two new frog species that were described recently (Biju et al. 2014b; Padhye et al. 2014). Seven new amphibian species have been discovered in the past two decades from Goa.

2.5 Birds

The first ornithological study in Goa was conducted by Grubh & Ali (1976). During their 16-day survey that included Mollem, the team recorded a total of 97 bird species. Presently, 286 species have been recorded from the BMWS & NP (Rahmani et al. 2016; see Appendix I). The list includes species such as the Critically Endangered Indian Vulture Gyps indicus, Endangered Egyptian Vulture Neophron percnopterus and other globally threatened species such as the Lesser Adjutant Leptoptilos javanicus, Woolly-necked Stork Ciconia episcopus, Nilgiri Wood Pigeon Columba elphinstonii, and Malabar Pied Hornbill Anthracoceros coronatus. A total of 14 bird species recorded from BMWS & NP are endemic to the Western Ghats and 32 of the recorded species are listed in the Schedule I (Part III) of the WPA, 1972. Six bird species are classified as Near Threatened by International Union for Conservation of Nature and Natural Resources (IUCN).

2.6 Mammals

BMWS & NP, along with the Kali Tiger Reserve and surrounding reserved and protected forests cover an area of at least 2,000km² and form an important Bengal Tiger Panthera tigris habitat (Gubbi et al. 2016). The National Tiger Conservation Authority has recommended bringing together the protected areas of Goa and Karnataka for Tiger conservation and improved management. In a document released by the MoEFCC titled “Connecting Tiger Populations for Long-term Conservation” the forests of Goa are mentioned as one (Sahyadri-Radhanagar-Goa) of 32 major Tiger corridors in India. A breeding population of Tigers has been recorded from the tri-junction of Goa–Karnataka–Maharashtra (Girish Punjabi pers. obs. 19.iii.2019; Jhala et al. 2020). In May 2019, the Forest Department of Goa photographed an individual Tiger using trail cameras in the BMWS & NP, and expect more individuals to be present (The Goan Everyday 2019). On the 5 January 2020, carcasses of four Tigers – a female and her three cubs were found in the neighbouring Mhadei Wildlife Sanctuary (Kerkar 2020). The four tigers were poisoned in retaliation for depredating livestock (Kerkar 2020).

More than 60 mammal species are likely to occur in the PAs, of which 11 species belong to Schedule I of the WPA 1972 (See Appendix III). Gad & Shyama (2009) found that Gaur Bos gaurus was widespread and fed on 32 plant species belonging to 17 plant families in the PA. Sengupta & Radhakrishna (2013) encountered a higher number of Bonnet Macaques Macaca radiata in BMWS & NP as compared to other parts of Goa. Krupa et al. (2017) reported two sympatric otter species, the Asian Small-clawed Otter Aonyx cinereus and Smooth-coated Otter Lutrogale perspicillata in the buffer region of Mhadei WS, which adjoins BMWS & NP.

3. REVIEW OF EIA FOR THE NH-4A HIGHWAY EXPANSION PROJECT

After compiling lists of taxonomic groups known from the PAs, the authors reviewed the EIA for NH-4A Highway Expansion (henceforth Road Report) for information provided on taxonomic groups, environmental and social impacts of the project. We found inadequacies in most aspects and as such the Road Report was observed to be of poor quality. The relevant issues are discussed here.

3.1 Plants

i) Several issues were found with the reported methodology for the baseline survey on plant species in the Road Report. The sampling strategy was not clearly indicated. The Report says that the number of quadrats in each habitat type was proportionate to the land in the habitat type, but no further information is provided whether a randomized or systematic sampling protocol was used. In the absence of a protocol, sampling locations would be biased and not fully representative of the habitat type.

ii) Resultantly, the list on floral species in the Road Report is inadequate when compared to existing species list of the area (Datar & Lakshminarasimhan 2011).

iii) The sampling methodology outlined was likely not followed. The data were finally compiled and based on a reconnaissance trip and secondary literature (Section 5.8.2, Page 79). No analysis of species diversity or dominance were performed, and the findings are only provided in the form of a brief species list (Table 5.15,
3.2 Insects and Arachnids

i) The Road Report has no impact assessment of linear intrusions on insect and arachnid diversity, with no details on species richness in the area. No attempt has been made to compile secondary information from published and unpublished sources.

ii) There are many studies from India and the world which have examined the impact of roads on insects. Insects suffer a high mortality while crossing roads or may avoid crossing roads altogether (Muñoz et al. 2015). Studies report that vehicle lights attract many insects, causing mortality during the night (Seshadri & Ganesh 2011). The barrier effect of roads is higher for slow-moving insects (Muñoz et al. 2015), but even flying insects such as butterflies are affected by fragmentation created by roads, as the nature of patch-edge affects their dispersal ability (Ries & Debinski 2001; Dover & Settele 2009). Studies on grasshoppers have demonstrated that males increase their call frequency in response to road noise, which may have population-level consequences (Lampe et al. 2014).

iii) Despite evidence of high levels of diversity and endemism in the BMWS & NP, odonates have not been surveyed. Species of hill streams are more narrowly-distributed and are indicators of water quality (Simaika et al. 2016). A new dragonfly species *Idionyx gomantakensis* (Subramanian et al. 2013) was reported in 2013 from the PAs, a fact that has been overlooked in the Road Report. This raises doubts whether secondary data has been reviewed while compiling the faunal list for the project area.

iv) No details are provided for Arachnids in the Road Report. In so far as the ambilipygid, urropygid, and theraphosid spiders of these areas are concerned, given their fidelity to their habitat type and their rather restricted movement, any alteration of the habitat, due to road construction and widening, shall decimate these small and isolated populations beyond recuperation and renewal, even leading to local extinctions (Maelfait & Hencrickx 1998).

3.3 Fish

i) No fish species or impacts of road expansion have been described in the Road Report. It states that “since most of the water bodies remain dry during the non-monsoon months, this [sediment] impact will be negligible” (Page 98). This statement is inaccurate, as several perennial streams and pool habitats contain water and act as refuges for various fish species in the non-monsoon months. A study cautions against the effects of sedimentation and run-off on the fish communities due to rampant vehicular traffic in the neighbouring Mhadei Sanctuary (Atkore 2017).

ii) Many other impacts are envisioned which the Road Report has not assessed. Soil erosion due to the removal of riparian vegetation would have short-term as well as long-term impacts on stream dwelling communities. Riparian vegetation plays an important role in maintaining ambient temperature in the headwater catchment (region from numerous streams originates) enabling persistence of diverse, endemic and habitat specialist fish species such as *Ballitora sp.*, *Glyptothorax sp.*, *Schistura sp.*, *Bhovania sp.*, and *Garra sp.* (Srekantha et al. 2007).

iii) Increased soil erosion due to the road expansion is likely to multiply the sedimentation load, which may impair water quality greatly due to high turbidity. Sediment deposition is likely to reduce food availability to aquatic communities. Bottom-dwelling fish such as *Ballitora sp.*, *Glyptothorax sp.*, and *Schistura sp.* feed on benthic insects (Daniels 2002), and have a very narrow range of distribution and tolerance level to certain water quality variables.

iv) Higher suspended solids and silt deposition can also affect spawning grounds and various life stages of fish. A few highly sensitive fish species such as Deccan Mahseer *Tor khudree* and *Hypsellobarbus* sp. are known to migrate upstream for feeding and breeding, either once or twice a year. Mahseer, in particular, are known to choose definite and special spawning grounds which...
usually are rich in dissolved oxygen content, neutral pH, and cool water temperature. Eggs, fry and fingerlings stages of this fish are highly sensitive to the slight alterations in their environment and spawning habitats (Daniels 2002). Soil erosion and high deposition of silt along with stream flow are expected to destroy their habitat, and could reduce their population in Dudhsagar and other adjoining waterbodies.

v) Surface dwelling fish such as *Devario* sp., *Barilius* sp., and *Salmostoma* sp. feed largely on insects falling from the canopy (Johnson & Arunachalam 2010). Higher turbidity due to sediment load would reduce their ability to forage and may restrict these fishes to downstream habitats, affecting their survival.

3.4 Herpetofauna

i) Details on herpetofaunal diversity in the PAs is not mentioned in the Road Report. Section 5.8 (Page 74) mentions that Goa has a high snake population. While this may be a general statement, it is not backed by any references.

ii) Further, data from existing literature points to an increase in the number of snake and amphibian road-kills with existence of roads (Garriga et al. 2012; Santhoshkumar et al. 2017). There is, however, no mention of the impact of road expansion on herpetofaunal diversity of the PA in the Road Report.

3.5 Birds

i) Although the Road Report mentions that a field survey has been carried out (Section 5.8.2 (v), Page 78), there is no bird checklist provided, except for one mention of the Indian Robin *Copsychus fulicatus* along with other fauna (Table 5.16, Page 82). Bird species richness and abundance were not quantified in the project area that may be affected due to the project construction. This is a serious shortcoming given that 286 bird species have been recorded in the BMWS & NP (Rahmani et al. 2016, See Appendix I).

ii) A section (Page 74) of the Road Report matches the Wikipedia page “Flora and Fauna of Goa” (Wikipedia contributors 2020), which mentions that the state bird of Goa is “the Ruby-throated Yellow Bulbul, which is a variation of Black-crested Bulbul”. This is inaccurate, as the state bird of Goa is the Flame-throated Bulbul *Pycnonotus xantholaemus*, which recent studies have elevated to a full species (Rasmussen & Anderton 2012).

iii) There is further confusion about the state bird of Goa; section 5.8.1 of Page 78 of the Road Report refers to the Yellow-throated Bulbul *Pycnonotus sinensis* as the state bird. The Yellow-throated Bulbul is endemic to peninsular India and has no known distribution in Goa. The faunal statistics presented in section 5.8.1 have been taken from Kumar & Somashekar (2008) with no attribution to the original source. The absence of any data on birds, either quantitative or qualitative, from an area that has been classified as an Important Bird and Biodiversity Area (IBBA), undermines the purpose of the EIA.

3.6 Mammals

i) To assess faunal diversity, field surveys and a local consultation were conducted in the Road Report, however, it does not contain any methodological specifications or sampling strategy. Sampling methods for different taxa are also not clearly differentiated. The species list is limited with only 16 species recorded. This is a clear underestimate as more than 60 mammal species are known to inhabit this region (See Appendix III).

ii) The presence of the Bengal Tiger in the area is also not mentioned. The report states that no endangered species are found in the area which is clearly misleading considering three endangered mammal species occur, including the Tiger, Dhole, and Indian Pangolin. One of the species mentioned in the Road Report, the Red Giant Flying Squirrel *Petaurista petaurista* is not found in the Western Ghats. Common species such as the Bonnet Macaque and Chital *Axis axis*, are also not reported.

iii) The Road Report states that the road expansion will not affect faunal species, and instead claims that species “may increase in number because of the road structures as the project will not obstruct their movement rather can create new habitats for them” (Section 5.8.1, v, Page 82). This statement is misleading as wide roads are known to create an obstruction to movement for a wide variety of species, including mammals (Bennett 2017). Roads also create forest edges that can harmfully affect native vegetation and rare wildlife due to edge effects, which extend far beyond the area of the road (Gubbi et al. 2012; Poor et al. 2019). Small mammal communities near roads have also been found to differ from those away from roads (Goosem 2002).

iv) Section 5.8.1 (Page 78) of the Road Report mentions the Leopard and Black Panther as two separate species, however, these are colour morphs of the same species *Panthera pardinus*. The Gaur *Bos gaurus*, which is the State Animal of Goa, does not find mention in the checklist. Section 5.8.1. (v) also states that none of the faunal species found here are “endangered or extinct”. This is unsound as endangered species such as the Bengal Tiger, Dhole, and Indian Pangolin are found in the region, while extinct species are found nowhere in the wild.
3.7 Land-use

i) A land-cover map for this project was acquired as a secondary data source, without clarity on how it was prepared. The map presented is for the entire state of Goa (Figure 5.23, Page 75), and not specific to the project site. The impacts on the land-use and land-cover specific to the project area have not been assessed in the EIA. The land-use table (Table 5.14, Page 73) has an error in summation of all land-use types. Further, the land-cover classes in the table do not match the ones in the map. These errors create confusion about which land-cover types will be affected by the project.

3.8 Water

i) The Road Report mentions that there are declining water level pockets in South Goa, indicating the need to strictly regulate groundwater extraction in these pockets, however, Section 5.1.4. (Page 40) of the Report has insufficient information on the river basins in the region. Only water depths are provided, without any data on the coverage area, volumes, or a reasonable level of water extraction that is possible from rivers during road expansion.

ii) Section 5.5.1. (Page 51) states that chloride concentrations are “well within the desirable and permissible limits”. This statement is misleading. Samples GW-02 and -06 both had detected values above the desirable limit range and are at risk of exceeding the Bureau of Indian Standards’ drinking water standards. Thus, there is insufficient evidence to support the statement that there is ‘good’ scope for groundwater exploitation in all the five affected taluks in the South Goa District.

iii) There is inadequate information on the water assessment sampling procedure in the region. Section 5.5.1 (Page 51) suggests that single samples were collected from five separate surface water sites and eight separate groundwater sites, during one sampling visit. No indication of the season or sampling date is provided, nor of repeated sampling to ensure accuracy or reliability. The statement that “total hardness observed to be constant in all samples” is flawed, as notable variation was observed between hardness in the different sample locations of the Road Report.

3.9 Air

i) Air quality would be negatively affected after the road expansion, but there is scarce attention paid to any robust evaluation in the Road Report. The statement that with the “proposed four-laning project, traffic may further come down and ease the vehicles movement and traffic congestion, which may lead to reduce the pollution levels” lacks substantial evidence and cannot be a justification for road expansion within a PA and ecologically-sensitive area.

ii) Table 6.5 (Page 102) proposes that greenhouse gases and other pollutant emissions may be significantly reduced based on the assumption of a small increase in traffic burden along with the avoidance of stopping, idling and congestion, however, traffic projections in the report show that total traffic is projected to only increase over the years, at all the three points where present traffic was surveyed (Table 2.15, Page 20). It is doubtful that vehicular emissions will be reduced with increased number of lanes, when scientific literature indicates that road widening leads to increased emissions which negatively affect air quality (Roberts et al. 2010; Font et al. 2014)

3.10 Soil

i) According to Table 5.13. (Page 72) of the Road Report, among the trace metals likely to contaminate soils due to large-scale construction and traffic pollution, only Lead (Pb) and Iron (Fe) are noted, however, this is insufficient, as several heavy metals such as Cadmium (Cd), Copper (Cu), Zinc (Zn), and Manganese (Mn) originate from material abrasion, fuel combustion and road dust (Chen et al. 2010; Abdel-Latif & Saleh 2012; Świetlik et al. 2013). Heavy metals have been associated with high levels of genotoxicity and mutagenicity in soils contaminated with heavy metals (Husejnovic et al. 2018) and their concentrations should be monitored and potentially reduced in PAs, particularly in view of the risk of trophic transfer, migration, and bioaccumulation (Zhang et al. 2018; Chouvelon et al. 2019).

3.11 Social Impacts

i) Datar & Lakshminarasimhan (2011) documented around 90 floral species to be important for local consumption and livelihood. While the Road Report lists flora of the affected area and people’s reliance on non-timber forest produce (NTFP), it does not mention the potential impacts on the floral community that can hamper NTFP-based livelihoods of the local community around BMWS & NP.

ii) The Road Report mentions that apart from forest land, almost 70.42ha of non-forest land would be acquired affecting 377 civilian and governmental structures (Table 5.17, Page 85). It is not clear what the extent of damage to these structures would be. Further, the assessment does not delve deeper into the livelihood impacts and possible mitigation plans for families
affected by the project. It mentions that a separate land acquisition plan would be devised for these aspects and has no concrete mitigation plans for social impacts.

4. REVIEW OF ASSESSMENT STUDY FOR THE RAILWAY EXPANSION PROJECT

While the assessment study (hereafter Railway Report) for railway expansion was informative and detailed, it suffered from several shortcomings as well. The authors reviewed it for information on the same parameters — assessment of taxonomic groups, environmental, and social impacts. It is noteworthy that the railway expansion will affect not only the BMWS & NP but also the neighbouring Kali Tiger Reserve in Karnataka State. Therefore, a project which will fragment the only intact tiger and elephant population in the north-central Western Ghats will have severe ramifications for wildlife and biodiversity. The Railway Report, however, does not stress on the ecological impacts of railway expansion and instead presents a neutral portrait of the project impacts by emphasizing uncertain mitigation measures.

4.1 Plants

i) In the section on vegetation characteristics, it is mentioned that 255 species of flowering plants were recorded (Page 64), but Appendix 2.1.a. of the Railway Report lists 224 woody trees. The IUCN Red List status is not provided, and a few common endemic species that occur in the region are not mentioned in the tree species list.

ii) The floristic survey results (Page 83) only records seedlings of woody trees but not herbs and orchids, some of which are rare with restricted distribution in the Western Ghats (Joshi & Janarthanam 2004).

iii) Plant species are misspelled or outright erroneous in the Appendix which makes it difficult to identify the plants that will be impacted. For example, *E. undulatus* is misspelled (correct name: *E. angulatus*), while *Lapisanthes microphylla* is an invalid scientific name as per our knowledge.

iv) Appendix 2.1.a of the Railway Report mentions 13 plant species (including vulnerable and endemic species) which are yet to be recorded from Goa. Three of those species may not occur in the BMWS & NP and need further scrutiny as to the validity of their inclusion, however, even if they do occur, it only reveals the importance of the region for plant diversity, and therefore the region should not be diverted for the railway expansion.

4.2 Insects

i) The Railway Report follows standardized protocols to document butterfly diversity of the region but covers a very small area which might not represent all the habitats affected by the project, a fact acknowledged in the study (Page 87).

ii) The survey was carried out from April (2013) to May (2014), however, there is no mention of the duration of data collection, including details on whether surveys were undertaken every month or a few days every season. This would have a bearing on the findings.

iii) There is no mention of whether sampling effort was replicated. This precludes an understanding of how many times a transect was sampled, and whether the same transects were sampled repeatedly in subsequent seasons. Quantitative analysis of data collected with inadequate sampling protocols may lead to incorrect estimates of insect diversity.

iv) The Railway Report mentions that the Family Lycaenidae and Hesperiidae were represented by 33 and 18 species, respectively. The number of species, however, might be under-represented given the difficulty in visual identification of species belonging to these Families. No effort was made to account for detection issues in the Railway Report.

v) The Railway Report also does not provide an assessment on moth diversity. Moths are ecologically important and even more diverse than butterflies and dragonflies. At least 418 species of moths of which 116 species are unidentified, were reported from the north Western Ghats (Shubhalaxmi et al. 2011). Given that the study site is a PA in the Western Ghats, it is likely to have high moth diversity.

vi) There are discrepancies in the listing of species in the Railway Report. For example, butterfly species such as *Neptis columella*, *Doleschallia bisaltide*, *Actolepis puspa*, and *Castalius rosimon* which are Schedule I species are left out of the scheduled species list and the text, with only a passing mention in the Appendix of the Railway Report (Appendix 2, Page 89).

4.3 Fish

i) The Railway Report records the presence of 23 fish species, however, a comprehensive study in the Mhadei sub-basin (which includes BMWS & NP) reported 49 fish species with 18 endemics from the Western Ghats (Atkore 2017; see Appendix IV).

ii) The Railway Report does not assess potential impacts of the project on fish community structure, even though studies have found that alteration of stream environment (changes in water quality and flow
alteration) by anthropogenic pressures have negative influences on fish guild composition (Atkore 2017; Atkore et al. 2020).

4.4 Herpetofauna

i) The Railway Report has a fairly comprehensive assessment of amphibians and reptiles. It reports key details about the diversity of herpetofauna, including endemics, however, it only mentions the impact of the railway-line in causing mortality of reptiles (Page 140), and remains inconclusive of impacts on amphibians (Page 135).

ii) The survey on amphibians clearly finds that 13% of endemic Western Ghats species (14 species out of 24) were found in the project area. This number is likely higher and points to the sensitivity of the region for anurans (See Appendix VIII of this paper).

iii) For reptiles, the Railway Report finds 27 species, which is an underestimate (See Appendix VII of this paper). The report does not have an exhaustive assessment of impacts due to the railway expansion on herpetofauna, reasoning that the study was carried out “during the inactive period of reptiles (winter) where the intensity of the impact could not be assessed properly due to their high seasonal activity, secretiveness and less conspicuousness” (Page 140).

4.5 Birds

i) The Railway Report mentions that a two-day survey for birds was carried out in September 2014 and May 2015. It is not clear why a short survey effort was employed to compile the checklist. The survey enumerates only 35 species, of which nine were endemic species. This is an underestimate, compared to the 286 bird species recorded in the BMWS & NP in a comprehensive checklist (Rahmani et al. 2016; eBird 2017).

ii) Data is collected only for cavity-nesting birds. This omits species that do not nest in cavities, but are dependent on trees and vegetation for nesting and feeding. The reason for surveying only cavity-nesting birds is not provided. Further, migratory birds are under-represented in the survey, given that the survey was not carried out during the migratory season between October–March.

iii) The Railway Report mentions, “The loss of tree specially >10 and >60cm dbh would impact the nesting of birds in the proposed project area” (Page 145). Again, this focuses only on cavity-nesting birds, and undermines the importance of shrubs and undergrowth for passerines and understorey insectivores, which will also be impacted. Such impacts of the loss and fragmentation of the forest cannot be mitigated or compensated for, with respect to ground-nesting and understorey insectivorous birds (Lampila et al. 2005).

iv) The project area description (Page 19) mentions the state bird of Goa as the Ruby-throated Yellow Bulbul Pycnonotus dispar. This is an error. The state bird of Goa is the Flame-throated Bulbul Pycnonotus gularis, while P. dispar is a bird found in the forests of Java and Sumatra.

4.6 Mammals

i) The Railway Report suffers from multiple lacunae such as inadequate sampling effort. Species accumulation curves, which could have accounted for this limitation, were not generated.

ii) The sampling methods also do not account for detection issues (i.e., false negatives; Sollmann et al. 2013). This is especially pertinent given that a much higher number of mammal species occur in the region, which find either inconsistent, or no mention in the Railway Report (See Appendix III of this paper). For example, the Executive Summary (Page 5–6) mentions 42 mammal species were found using a literature survey, but the presence of the Bengal Tiger (India’s National animal) is not explicitly stated. Appendix 2 of the Railway Report (Page 166) mentions 23 species of mammals, but does not mention which of those are Schedule I species, even though the region has 11 Schedule I mammal species. The ecological value of the region may have been underemphasized due to these inadequate methods as many more mammal species that occur in the region are likely to have been missed as they were not accounted for (Hayward et al. 2015).

iii) The description of the methods is very sparse and limits clear understanding (Page 153). The sampling unit was undefined — signs were recorded both inside and outside of belt transects. The study description lacks any detail about statistical methods used to assess species richness or percentage occurrence or relative abundance, using indirect signs or direct sightings.

iv) Randomly placed belt-transects used in the Railway Report are not a suitable choice to assess large and small carnivore species richness and occurrence (Barea-Azcón et al. 2007). Further, signs were recorded opportunistically from outside of belt transects (Results, Page 153–154), but no clear analytical framework is provided for this data. Carnivores often tend to move on forest trails, roads, dry streams therefore a non-random or systematic sampling approach (within beats or grid cells) would be more appropriate to specifically assess
carnivore occurrence in the study region (Karanth et al. 2011).

v) Camera-traps are one of the best tools available to assess the occurrence, density, and abundance of mammals (O’Connell et al. 2011). But, the Railway Report uses a sparse sampling effort by surveying only 16 sites (camera-traps malfunctioned in nine of the 25 sites surveyed). In addition, the cameras were placed for less than six days in most sites. Studies have found a minimum of 20 to 30 error-free days of camera-deployment are required for stable estimates of species occurrence (Hamel et al. 2013). The standard duration for density assessment of large cats in Tiger Reserves and PAs of India is 25 days (with a closure period of 45–60 days). Therefore, a sampling duration of less than six days used in the Railway Report translates to poor data collection, which eventually affects any ecological inferences derived from such studies (Burton et al. 2015).

vi) The camera-trapping protocols lacks any detail about the camera models used, mode of deployment, camera-settings, and study design (Meek et al. 2014).

vii) Table 2.8.1 (Page 154) reports the species *Viverra zibetha* (Large Indian civet) which is not found in the Western Ghats, but in northeastern India. The table also mentions the occurrence of an otter species, *Lutra lutra*, the Eurasian Otter, which has not been recorded from the region. The Railway Report provides no evidence of its presence in the form of photographs. Two other species of otters which have been recorded and photographed in the region, the Asian Small-clawed Otter and the Smooth-coated Otter are not mentioned (Punjabi et al. 2014; Krupa et al. 2017). Page 161 of the Railway Report has erroneously labelled Wild Pig *Sus scrofa* as Indian Porcupine *Hystrix indica*.

viii) Appendix 2 in the Railway Report (Page 166) has incorrect coding for species: Langur and Bonnet Macaque are listed as herbivores (when they are actually primates); Asian Palm Civet is coded as a carnivore, but the Small Indian Civet, Brown Palm Civet, and Stripe-necked Mongoose are incorrectly coded as herbivores; the otter and Indian Pangolin are coded as large mammals, but the Asiatic Wild Dog, which is larger in size is coded as a small mammal. This reveals a naive understanding of mammals and the impacts that railway expansion could have on low-density species such as carnivores.

4.7 Land-use

i) The land-use land-cover map was derived from classification of single date satellite data, acquired in April 2013. Since the project area supports different types of vegetation which have variation in spectral signatures during different seasons, an ideal mapping exercise should have considered seasonal data, for at least two different seasons within one year.

ii) Out of six effective bands of Landsat and eight for vegetation discrimination, only four bands have been used for classification. This essentially leaves out the details of land-cover class categories that are clearly identified by the other two short-wave infra-red bands. These two short-wave IR bands demarcate the response of vegetation to moisture stress, and thus improve the classification of the forest types (Ferreira et al. 2016).

iii) The reasoning behind the number of sampling points used for each land-cover category is not clear. It is stated that unsupervised classification, which yielded 15 classes, was used as a basis for ordering the landscape into distinct units. It is unclear, however, if these ‘distinct units’ were further assigned land-cover classes on the basis of any reference map. A reference map could have informed the locations where ground truth data was necessary for ascertaining land-use types.

iv) The exact methodology for land-cover classification, parametric (maximum likelihood, minimum distance to means), or non-parametric (support vector machines or any other) has not been mentioned. This prohibits a nuanced understanding of the method of classification for a forest complex.

v) Ancillary data such as topographical information from an elevation model have not been utilized for assessments. A simple elevation profile of the proposed railway route indicates an elevation range of 80–500 m. In a high elevation area with varying gradients, the topography of the land determines much of the vegetation assemblages, and this could be important information to include in the classification process. The importance of topographic information for vegetation mapping is a widely accepted methodology (Das et al. 2015; Roy et al. 2015) and earlier work in the Eastern Ghats region has used topographic information effectively to this end (Balaguru et al. 2003).

vi) The basis for accuracy assessment has not been mentioned. An overall accuracy of 88% is indicated, but no reference map seems to have been used for calculation. The report also does not mention the percentage of samples used for training and testing the classification, which is a standard accuracy assessment procedure.
4.8 Water

i) Water pollution is a major concern during the construction as well as during the operation phase. Water pollution analysis, however, was minimal with no monitoring of pollutants done for polycyclic aromatic hydrocarbons (PAHs) and heavy metals because of the existing railway-line, despite high concentrations being often reported in waterways bisected, or bordered by railways (Wilkomirski et al. 2011; Wilkomirski et al. 2012; Levengood et al. 2015).

ii) Furthermore, *Escherichia coli* bacterial contamination was reported in all sampled streams, indicating faecal contamination, which may be attributed to waste disposal from passing trains. The total coliform count ranged from 221/100mL to 542/100mL, while the safe threshold value is 100 count/100mL. The increased risk of coliform contamination resulting from the railway expansion is a severe threat, as many streams that cross the tracks harbour sensitive wildlife, and also supply water to villages downstream for drinking and farming.

4.9 Air

i) No air quality monitoring was performed to provide baseline levels or to establish the risk of railway expansion in this region. The Railway Report assumes that engines will be electrified; however, if existing diesel engines are used then the doubling would increase the amount of pollutants associated with combustion and diesel emissions.

ii) The main constituents of diesel engine exhaust emissions are Carbon (CO, CO₂), Nitrogen (N), Nitrogen Oxides (NOₓ), Sulphur Oxides (SOₓ), Hydrocarbons (HC), Methane (CH₄), Non-Methane Volatile Organic Compounds (NMVOC), PAHs, and particulate matter (PM) (Borda-de-Água et al. 2017). Monitoring of the current pollutant levels should have been performed at least twice a year to avoid data bias due to seasonal variation, although quarterly (or even monthly) sampling events could have been employed (Jayamurugan et al. 2013; Manju et al. 2018).

4.10 Soil

i) Chemical properties of soil and baseline levels of soil pollution were not established during sampling and analysis. Soil and plants surrounding the railway lines should be monitored for organic and inorganic compound contamination, resulting mostly from used lubricant oils and condenser fluids, the transportation of oil derivatives, metal ores and other chemicals, as well as from application of herbicides and other treatments to the train vehicles. These pollutants, however, were not considered in this assessment.

ii) PAHs, heavy metals, oil-derived HC, and to some extent, polychlorinated biphenyls (PCBs) should be monitored in soils, with risks comprehensively assessed as they exhibit toxicity, long-term stability and a cumulative effect in the environment (Wilkomirski et al. 2011; Wilkomirski et al. 2012; Levengood et al. 2015; Pereira et al. 2015). PAHs are carcinogenic and mutagenic to living organisms (IARC 1989). The main source of PAHs in railway areas are machine grease, fuel oils and transformers oils. Heavy metals (such as Pb, Cd, Cu, Zn, Hg, Fe, Co, Cr, Mo) originate mainly from material abrasion and fuel combustion in diesel and electric locomotives, therefore the railway expansion will lead to further heavy metal contamination in soils.

4.11 Social Impacts

i) The Railway Report’s socio-economic survey of 60 families conducted in four villages does not report the total number of affected families, demography and livelihood patterns of concerned villages. The sampling strategy and the criteria for selection of households is unclear. The questionnaire was focussed on the perception of transport models by local communities. The questionnaire did not have open-ended, non-leading questions to bring out local concerns towards the project, and possible impacts on their livelihood and environment. Instead, it addressed questions such as preferred mode of transport, where 90% of the respondents listed trains.

ii) The Railway Report mentions a public consultation meeting regarding the railway expansion project that occurred in June 2016 at Kulem Panchayat (Hindi: Village Council) office (Page 190). The Kulem Panchayat raised concerns about the impact of the project on the Dudhsagar waterfall which contributes revenue from tourists to the local economy, availability of medicinal plants and disturbance to the temple close to Sonalium Station (Page 191). The consultation meeting was attended by only 14 members, most of whom were panchayat office bearers and members of the biodiversity committee, but not by the general public who would be affected by such developmental projects. As this meeting took place in 2016, before the Railway Report was published (in 2017), it is unclear whether a public hearing took place after the report was published. This suggests that the affected public is unaware of the damage the expansion may bring to their livelihoods.

iii) The Railway Report mentions that NTFPs and medicinal plants from the forest area were important for local use (Pages 169–171), but the specific impacts of
the railway expansion on such NTFP and medicinal plant species were not assessed. Datar & Lakshminarasimhan (2011) reported that local communities around BMWS were dependent on the forest for wild edible mushrooms, fruits, herbal medicinal plants, and specific plants for cultural use. This indicates that it is important to assess the impact of the proposed project on NTFP collection.

iv) The Railway Report finds that existing faecal contamination in the streams near to the railway tracks and the level of contamination is already 2–5 times the prescribed limit. Waste generation due to construction debris within the forest can further pollute soil and water resources in this sensitive region, thereby also affecting human communities. Increased waste dumping by railway passengers near villages can attract wildlife to these villages, which can result in human-wildlife conflict scenarios.

5. REVIEW OF THE 400kV TRANSMISSION LINE

The transmission line project did not have the assessment study in the public domain and therefore this limited our review to aspects of this project for which information was available in the public domain on the Parivesh portal. The key concerns with the transmission line project are discussed here.

i) The construction of new power lines in forest areas of high conservation value should be avoided (Eldegard et al. 2015). The transmission line project passes through a PA (11.54 ha inside PA) and the total forest land required for the project is 48.3 ha (almost 50 ha, for which an EIA is necessary from a socio-ecological point of view). The minutes of the meeting of the Goa State Board for Wildlife held on 02 December 2019 mentions that “the Biodiversity Impact Assessment studies and Biodiversity Management Plan have been prepared by ERM India Pvt. Ltd, Gurgaon has been submitted”. The same, however, is not available in the public domain to allow a clear assessment of projected impacts.

ii) The detailed project report that is available for the transmission line makes contradictory statements about the location of the transmission line in the BMWS & NP. It first states that 2.51 km of the transmission line is within the NP, clearing an area of 11.54 ha (Table 1, Page 2, Detailed Project Report). Subsequently, when justifying the reason for choosing between alternative routes of the transmission line, it states that the chosen route fully avoids the NP. These statements severely weaken the report and hinder an effective assessment of the impacts of the transmission line, which already lacks sufficient public scrutiny. An inspection report by the forest department indicates that over 4,146 trees and 985 cane clumps in the PA are to be cut for the project.

iii) The project proponent claims that “transmission line projects are environment friendly and do not involve any disposal of solid effluents and hazardous substances in land, air and water. Moreover, forest area trees are felled below each conductor to facilitate stringing. On completion of construction only one strip is maintained for O & M purpose. Therefore, the actual loss of forest is restricted to some selected areas only.” These statements do not recognize the larger effects of the transmission line on birds and volant mammals such as bats and gliding squirrels, or on arboreal species such as the Slender Loris, Giant Squirrel, Bonnet Macaque, and Grey Langur. For example, due to the absence of tree cover along transmission lines, arboreal mammals such as Lorises are forced to use electric wires of power lines to cross, causing mortality due to electrocution (Raman 2011).

iv) The project requires a clearance for 35 years, during which there will be regular cutting below the transmission line. This is especially concerning given that the project cuts through the PA, so the effects of this project are long-term.

v) The statement “the actual loss of forest is restricted to some selected areas only” fails to take into account existing evidence that power lines are linear intrusions that prevent animal movement, fragment communities of small mammals (Goosem & Marsh 1997), and cause mortality due to electrocution and collision (Jenkins et al. 2011; Rioux et al. 2013; Loss et al. 2014; Uddin 2017). Large mammals have also been electrocuted due to sagging power lines (Raman 2011). The area underlying the proposed transmission line currently (i.e., without the construction of the power line) offers low resistance to large mammal movement, indicating that the area is important for animal movement (Jayadevan et al. 2020; https://indiaunderconstruction.com). In their paper, Jayadevan et al. (2020) recommend avoidance of new infrastructure in areas that currently pose a low resistance to movement.

vi) Transmission lines have several impacts on birds. Studies have shown that birds avoid areas between 0.25 and 0.6 km of transmission lines (Dunkin et al. 2009; Gillan et al. 2013). Transmission lines cause bird mortality due to electrocution and collision (Uddin 2017; Biasotto & Kindel 2018). For example, many birds use structures of transmission lines as a perch, which often leads to electrocution (Biasotto & Kindel 2018). The clearing of
trees for the transmission line affects the movement and nesting success of birds (Biasotto & Kindel 2018).

vii) The conservation value document uploaded by the wildlife warden details the damaging effects of the project. The document, however, concludes that the movement of faunal species will not be affected by the project, and the loss of trees can be compensated via afforestation. This is inaccurate, as transmission lines would impact movement of fauna, in addition to other deleterious impacts including mortality, as we detail above. Further, compensatory afforestation at a different site does not ameliorate any of the ecological impacts within the PA, as mentioned in the document.

6. DISCUSSION

We argue that mitigation measures proposed in the Road Report, Railway Report, and documents for the transmission line are inadequate and will not alleviate serious damage to the BMWS & NP or ecologically-sensitive regions around the PAs. We have explained this in detail in the following sections.

6.1 INADEQUACY OF MITIGATION MEASURES FOR NH-4A

i) For the mitigation measures, the Road Report merely notes that “Mitigation of man versus animal conflict is going to be the important issue that will threaten wildlife in Sanctuary area” (Page 97, Section 6.3.9 (i)). There are, however, no mitigation measures recommended to reduce the conflict created by road expansion. An acknowledgement of an important socio-economic and environmental problem will not equip the Goa Forest Department, National Highways Authority of India, or the Public Works Department of Goa to effectively manage the problem created by road expansion without detailed mitigation plans.

ii) For terrestrial fauna, the Road Report states that no impact on the wildlife is anticipated and hence does not outline any mitigation measures (Page 97, Section 6.3.9 (ii)). Given that nearly 32ha of forest land will be diverted for the project, there is likely to be an impact on wildlife. There is growing scientific evidence demonstrating that building new roads and their upgradation or expansion has serious impacts on wildlife in protected areas. For example, Garriga et al. (2012) found a total of 2,013 wildlife mortalities on roads within protected areas of Catalonia, of which 267 were mammals (13.3%), 253 birds (12.6%), 245 reptiles (12.2%), and 1,248 amphibians (62.0%). A total of 85 different species were affected across all taxa due to roads within PAs over just two seasons, Spring and Autumn, in one year.

iii) As a measure to mitigate vegetation and habitat loss, the Road Report mentions that “an avenue plantation programme shall be promptly adopted to restore and further enrich the loss of vegetation” (Page 96, Section 6.3.9 (ii)). Such measures may increase green cover, but they do not mitigate the impacts of road construction on vegetation or wildlife. Instead, it also puts people at risk due to the increased likelihood of vehicular collision with mammals (Case 1978; Jaren et al. 1991; Putman 1997; Cain et al. 2003).

iv) The Road Report proposes “periodic maintenance of drains to check scouring of soil” to decrease soil erosion (Page 92, Section 6.3.5). Soil erosion is expected to be higher in tropical forests, such as BMWS & NP, due to its wet climatic conditions and steep terrain (Sidle et al. 2006; Sidle & Zeigler 2012). Deposition of eroded soil into rivers at an increased rate is responsible for increasing turbidity and temperature of the water, reducing the amount of dissolved oxygen and changing existing flow regimes, while accelerating eutrophication (Beever et al. 2012; Douven & Buurman 2013). The proposed clearing of land for the development of the road is likely to make cut sections highly susceptible to soil erosion. Drainage structures and culverts are essential to allow better above-ground water drainage, and prevent drastic changes to the hydrology of the landscape and decrease flooding along the road during monsoon seasons (Sidle et al. 2006; Laurance et al. 2009). No site-specific hydrological survey has been carried out to arrive at the optimal number of culverts and bridges, and their spatial placement.

v) Although the Road Report aims to reduce the impact of the developmental project in the “direct path” of the roadworks, it is pertinent to understand that the impacts of road construction are rarely limited to the direct path. Environmental impacts of roads extend beyond the direct impacts of construction and tree clearing, to indirect impacts because of increased human access and vehicular traffic. This includes, but is not limited to, air, water, and noise pollution, disturbance effects, fragmentation due to edge effects, and hindrances to migratory corridors (Alamgir et al. 2017).

6.2 THE IMPACT OF ROADS

We further expand on biotic and abiotic impacts of roads here, for which no mitigation measures have been suggested.
i) Roads compound the impacts of natural disasters

Constructing roads in hilly and mountainous terrain increases the risk of natural disasters such as landslides and flooding (Sidle et al. 2006; Larsen & Torres-Sánchez 1997; Larsen & Parks 1998). There is no information on the susceptibility of the proposed site to extreme weather events in the EIA. Such dissemination of information regarding the socio-economic and environmental risks involved in the project is critical to the decision of investors, decision-makers and taxpayers, whose money is being utilized for the project. Road projects that pass through forested areas and lack proper planning can lead to major cost overruns, corruption, and damage to the environment (Trombulak & Frissell 2000; Alamgir et al. 2017).

ii) Roads are a cause for wildlife mortality (roadkills)

Enabled by the expansion of the highway, an increase in vehicular traffic in the area can be expected. This will likely increase the rates of wildlife-vehicle collisions, impacting species of most terrestrial fauna. A study from Mudumalai Tiger Reserve found road mortality of 40 animal species, including amphibians, reptiles, birds, and mammals (Baskaran & Boominathan 2010). Additionally, animals that are slow-moving or burrowing, such as freshwater turtles, amphibians, snakes, and soil-living fauna, get killed during road construction. The impacts of earthwork and annual maintenance operations on terrestrial fauna are usually overlooked (Clevenger et al. 2003; Fahrig et al. 1995; Trombulak & Frissell 2000; Goosem et al. 2010).

iii) Roads are barriers to wildlife movement, and cause habitat fragmentation

For many species, particularly in the Western Ghats, the expansion of the NH-4A is an additional fragmentation of an already fragmented habitat (Nayak et al. 2020). The resistance to potential large mammal movement posed by the existing NH-4A is higher than the median resistance to mammal movement in the Western Ghats (Jayadevan et al. 2020; https://indiaunderconstruction.com). Expansion of the road can, thus, lead to an increase in the resistance posed to movement, and lead to increased isolation between forest patches on either side of the road.

Subdivision of remnant forest patches due to various linear intrusions such as highways and roads causes “internal fragmentation” (Goosem 1997; Goosem 2007). Such internal fragmentation with wide, cleared roads and their edges, physical barriers such as fences and crash barriers, cuttings, fill batters, and culverts with drop structures, could be a serious threat to movement of wildlife and lead to increased negative human-wildlife interactions (Goosem et al. 2010). For example, many animals in tropical forests avoid even narrow linear clearings (< 30m wide; Holderregger & Di Giulio 2010; Laurance et al. 2009). Increased traffic and continuous vehicular movement can stress the animals or make species alter their behaviour in the vicinity of roads (Trombulak & Frissell 2000). While certain species such as macaques are attracted to roads for scrap food from travellers (a potential ecological trap), species such as Elephants have been observed to avoid roads and highways due to associated risks, or suffer mortality from collisions (Blake et al. 2008). Behavioural avoidance of the road may also be exhibited by animals that can fly over the width of the road (e.g., birds and bats), due to the noise, pollution, and risk of crossing (Laurance et al. 2009).

The problem of fragmentation by roads is particularly acute for canopy dwelling species that use closed-canopy structures to move and do not generally use the ground to cross. In the absence of tree cover, tree-dwelling animals are forced to either use the ground or cross using power lines, which can lead to mortality due to vehicular collisions or electrocution. This is especially the case for primates, arboreal rodents, and some carnivores (Radhakrishna & Singh 2002; Raman 2011).

iv) Roads affect the genetic diversity of animals

Decreased movement of animals across roads leads to decreased genetic variation, due to reduced genetic exchange between populations. For example, studies from India show that roads negatively affect tiger connectivity (Joshi et al. 2013; Dutta et al. 2018; Thatte et al. 2018). Such impacts can be seen after just a few generations in populations of large mammals that have been separated by newly built roads and highways (Holderregger & Di Giulio 2010).

v) Roads affect biodiversity due to increased noise pollution

Although monitoring of noise quality levels created by the existing highway was carried out at eight sites designated as commercial, industrial and residential, there was no monitoring carried out on existing highway stretches within the protected area. Noise quality levels were found to be “within the limits” for commercial and industrial categories but “exceed the limits” in the residential category. Noise pollution associated with roads has been shown to decrease reproductive capacity in bird and amphibian species, as well as in mammals.
such as Tigers (Kerley et al. 2002; Hoskin & Goosem 2010; Qin et al. 2014; Laurance 2015), with impacts seen at the community level as well (Francis et al. 2009; Slabekoorn & Halfwerk 2009).

vi) Roads lead to increased human accessibility

Roads passing through forested areas increase human accessibility and can increase movement, settlement and human activity in frontier forest areas. This has manifold repercussions including forest fires, waste disposal and pollution, illegal timber harvest, poaching and hunting (Alamgir et al. 2017). Studies from protected areas in developing economies show that road expansion and improved accessibility to the market can result in expansion of agricultural and livestock frontiers with reduction in nearby forest areas of the protected area (Ratner et al. 2007; Lama & Job 2014; Phaipasith & Castella 2017; Walelign et al. 2019). Conversion from subsistence agriculture to cash crops, emergence of commercial service economies such as mass tourism resulted in transition from a low-impact economy to a high-impact one (Walelign et al. 2019). Local socio-economic inequality also increased after road-expansion (Ratner et al. 2007). In the long run, the negative impact on the forest, waste generation and excessive use of agro-chemicals resulted in lesser availability of clean water, reduced soil fertility and local extinction of NTFP species (Phaipasith & Castella 2017). This also affected local governance systems negatively and people often could not revert to their subsistence economies which were relatively sustainable (Lama & Job 2014).

vii) Roads as a cause for habitat loss and degradation

During the construction and maintenance of roads and highways, habitat loss and degradation is observed due to direct clearing of vegetation, dumping of excavated earth and materials, regular usage of access roads by heavy machinery, and construction of labour camps. Within tropical forests, disturbance from roads due to fluctuations in light, temperature and humidity, increased mortality of trees beside roads, and spread of exotic species to a width of least 100m from the road (Laurance et al. 2009). Thus, “each kilometre of road directly and detrimentally affects at least 10 ha of habitat”, and the impacts may persist for decades (Laurance et al. 2009; Raman 2011).

viii) Roads as corridors for invasive species

Roads have been found to be a major factor in the spread of invasive flora and fauna into forests (Mortensen et al. 2009; Meunier & Lavoie 2012). These invasive species can use the edge habitats along the road and invade forests by secondary wind dispersal, that would have otherwise been inaccessible (Kowarik & von der Lippe 2011).

6.3 THE IMPACT OF RAILWAY-LINE DOUBLING AND INADEQUACY OF MITIGATION

i) Air quality

No potential impacts on air quality were studied, as the railway line between Castlerock and Kulem was assumed to be electric. If the trains in the proposed stretches run on traditional diesel engines, increased locomotive traffic due to the doubling of the railway line will lead to an increase in harmful exhaust components. The main pollutants from diesel locomotives are Carbon Dioxide (CO2), Carbon Monoxide (CO), Sulphur Dioxide (SO2), Nitrous Oxide (N2O), particulate matter (PM), hydrocarbons (HC), among others. Many of these pollutants are carcinogenic and responsible for health and environmental impacts (Lucas et al. 2017).

The report suggests monitoring of air quality and minimizing air pollution due to dust particles, vehicular and locomotive emissions, during the construction and operational phase. Although necessary, such general recommendations on controlling impacts on air quality during the construction phase will minimally help in reducing pollution as the project will take three years to construct and the operational impacts will be near permanent. Abrasion of brakes, wheels, dust, mineral transport will all still produce PM emissions even if electric locomotives are used (Levengood et al. 2015). No amount of mitigation will compensate for the long-term impacts of air pollution due to the proposed expansion.

ii) Sound (Noise pollution)

The noise levels at various regions within the areas of the proposed project were already noted to be above the permissible level of 91dB, posing a serious threat from noise pollution. Anthropogenic noise can affect acoustic communication among bird species that use calls and songs for a variety of functions such as attracting mates and defending territories (Collins 2004; Marler 2004). Noise emission from railways has also been documented to reduce the density and nesting behaviour of birds, with nests that are farther away from railway lines being more successful (Mundahl et al. 2013).

To reduce noise pollution, the Railway Report recommends switching to electric engines, planting native tree species along the railway line and building sound barriers on both sides of the track, particularly...
within the biodiversity-rich Kali Tiger Reserve (from Castlerock station – Goa border) and BMWS & NP. All of these three recommendations, however, have serious drawbacks which the report has overlooked.

a. Switching to electric engines will not greatly reduce noise pollution. This is because, at a speed of 30–200 km/h (the speed at which most trains will be travelling between stations), all trains, including the electric trains, produce a “rolling noise” which is the dominant source of noise pollution (Clausen et al. 2012).

b. Recovering vegetation beside roads and railways is known to attract wildlife and increase their vulnerability to get killed by moving vehicles (Case 1978; Jaren et al. 1991; Putman 1997; Cain et al. 2003).

c. Sound barriers can cause various negative impacts on wildlife, particularly through isolation of populations (Bank et al. 2002). Given that the minimum height of such barriers is as high as the train, and with electric lines proposed to be running on top of the railway, it would make it impossible for any terrestrial species to freely move to the other side of the track and will be a death trap for wildlife trapped between the barriers.

iii) Water quality

The Railway Report states that the current water quality in streams along existing railway track is pristine (Bureau of Indian Standards 2012), but with harmful levels of bacteria "Escherichia coli" in all streams (221 to 542 per 100mL), it indicates widespread faecal contamination of waterbodies mostly due to existing train traffic (threshold is 100 per 100mL). Creation of new railway embankments for the proposed double gauging will further lead to vegetation loss, soil compression and changes in water drainage, thus increasing runoff, promoting erosion of topsoil and increasing water turbidity (Ferrell & Lautala 2010; Chen et al. 2015). Turbid water has been found to affect the diversity and abundance of aquatic wildlife communities such as odonates and freshwater fish (Luce & Mountain 2002).

The Railway Report mentions that the new railway coaches will be fitted with bio-toilets, hence reducing the likelihood of *E. coli* infiltrating streams along the railway route. Construction of dykes and retaining walls along the railway line to restrict the movement of sediments during the construction phase has been recommended. While this may address sediment runoff, it may indirectly inhibit animal movement, adding to the effects of tree clearing, noise, and train movement.

iv) Biodiversity

The major focus of the studies appears to be to create baseline information on species diversity and abundance, rather than to explicitly study the impact of the proposed expansion on biodiversity. The Railway Report only cursorily mentions that animal movement will be impacted by the doubling of the railway line (Chapter 18, Page 207) and does not address long-term impacts to landscape connectivity that all the taxa under study face from the proposed expansion of the railway line. There is strong evidence of the negative impacts of railway lines on biodiversity.

Railway lines have been shown to be barriers to movement for large mammals such as the tiger (Dutta et al. 2018). The current railway line between Kulem and Castlerock poses a high degree of resistance to large mammal movement (Jayadevan et al. 2020). Doubling of the railway track will lead to a higher frequency of trains, and further increase resistance to movement. This can isolate the forest patches on either side of the railway line. In addition to its impacts on movement, noise and vibrations from railways affect insects, amphibians, and birds. Further, the availability of food (solid food waste; carcases of dead animals) and vegetation along the railway edges attracts reptiles, few species of birds, and several mammals acting as an ecological trap and leading to higher mortality due to collision with trains (Lucas et al. 2017).

The mitigation measures suggested in the Railway Report are very general. The suggestion of the creation of ‘biodiversity parks’ for conserving birds and mammals is not compensatory, when the protected area, which is a biodiversity-rich region, will be fragmented. For aquatic life, it is suggested that railways should adopt the ‘best construction procedures’ to reduce turbidity, siltation, etc., but what these procedures comprise of is unexplained.

The Railway Report highlights cases of Gaur and Sambar being hit by trains on the existing single track, reaffirming that the doubling of the railway line will lead to increased risk of accidental collisions with wildlife.
Although the report identifies 42 animal-crossing points for mammals, a bare minimum of four animal underpasses are finalized at Ch 32/200, Ch 41/100, Ch 45/500, Ch 49/500 (RVNL Letter No.PIU/UBL/ULN654 dated 06.10.2018 to deputy forest officer). The report suggests many other mitigation measures to be followed (Pages 207–208), but such mitigation measures are undetailed, and without strong supervision during implementation have poor application in practice.

6.4 INADEQUATE MITIGATION MEASURES FOR THE TRANSMISSION LINE

i) On the subject of mitigation measures for the transmission line, the inspection report of the transmission line mentions only that “the user agency has agreed to cut minimum trees requirements and to adopt wildlife-friendly mitigation measures.” It adds that “trees listed for felling under this project will be compensated in the long term through the proposed compensatory afforestation programme covering double the degraded forest land.” It is not clear how ‘minimum tree cutting’ will be calculated or enforced. No details are provided on where and when the compensatory afforestation will be executed. Further, without an impact assessment of the transmission line, it is not clear what ‘wildlife-friendly mitigation measures’ will be implemented.

ii) The inspection report fails to take into account the ecological impacts of the transmission line as we have detailed in this paper (Section 5). A background paper for the National Board for Wildlife (Raman 2011) recommends that the first priority for power lines in forests should be prevention, followed by re-alignment. The third option of a mitigation measure is suggested only where the first two have been comprehensively considered and ruled out with sufficient justification (Raman 2011). In case a transmission line passes through a biodiverse region, recommended mitigation measures for transmission lines include insulators on wires to avoid bird electrocution, placing of perch deterrents on cross-arms and poles and using large line-markers on earth wires to increase their visibility during the day and night, thus avoiding collisions by birds and volant mammals (WII 2016). But neither of these are considered as mitigation measures for this project.

7. CONCLUSION

Any major infrastructure projects should be avoided within PAs, unless there are exceptional circumstances that will clearly show forest diversion will benefit wildlife (as per the WPA, 1972). Utmost importance should be given to all environmental and ecological impacts of any project, and as per the background paper of the National Board for Wildlife itself, ecologically-harmful projects should be avoided. In the present case, there is not one, but three large projects which are planned in this ecologically-sensitive region. It is noteworthy that the Western Ghats is a designated Natural World Heritage Site by UNESCO. The cumulative impacts of these three projects may change the entire ecology of the BWWS & NP, as well as the neighbouring Kali Tiger Reserve, and will result in irreparable damage to its fragile environment. Further, such damage will impact the quality of human life within and near the PA. Multiple projects also call for an in-depth investigation into cumulative impacts on the PA. Cumulative impact studies have been considered mandatory in many countries (Braid et al. 1985), and are implemented rigorously for their added value in understanding irreversible changes to existing natural systems (Xue et al. 2004).

It is pertinent to note that two of these projects (NH-4A and transmission line) were awarded wildlife clearances in the 57th meeting of the Standing Committee of the NBWL, held on 7 April 2020 through a video conference, which is unlikely to have had critical evaluation. Our review details how the EIAs and assessments for these projects are considerably weak, and evidently overlooked by the highest statutory authority that is mandated to protect wildlife in the country. Socially- and environmentally-just development is important, but none of these projects provide any benefit to wildlife or the environment in the BMWS & NP. Environmental costs and mitigation measures are not comprehensively assessed in the EIAs and assessment studies. Information on the land area for compensation, overseeing agencies for mitigation measures, monitoring and penalties for non-compliance are also not laid out in detail.

Faulty EIAs and other assessment studies continue to be condoned by successive appraisal boards and governments, with a lack of due process. Such practices consider environmental concerns as a burden on development, rather than a process that guides sustainable development, which should, therefore, be strengthened. This further weakens socio-ecological governance in a country which is ranked a 168 (out of 180 countries) in the Environmental Performance Index.
Environment impact assessments for projects in Bhagwan Mahavir WS & NP

Punjabi et al.

(Wendling et al. 2020). Considerable opportunities exist to improve the EIA and assessment process in India (Palival 2006). Incentivising post-clearance monitoring and evaluation is vital (Dufló et al. 2013); however, a rational screening process which fortifies existing legislation and avoids forest diversion proposals in protected areas at the outset itself is most necessary (Rajaram & Das 2011).

REFERENCES

Abdel-Latif, N.M. & I.A. Saleh (2012). Heavy metals contamination in roadside dust along major roads and correlation with urbanization activities in Cairo, Egypt. Journal of American Science 8(6): 379–389.

Aengals, R., V.M. Satish Kumar, M.J. Palot & S.R. Ganesh (2018). A checklist and update of reptiles of India (Version 3.0). Zoological Survey of India, Kolkata, India, 35pp.

Alamgir, M., M.J. Campbell, S. Sloan, M. Goosem, G.R. Clements, M.I. Mahmoud & W.F. Laurance (2017). Economic, socio-political and environmental risks of road development in the tropics. Current Biology 27: 1130–1140. https://doi.org/10.1016/j.cub.2017.08.067

Annandale, N. (1919). The fauna of certain small streams in the Bombay presidency. Records of Indian Museum 16: 109–161.

Atkore, V. (2017). Drivers of fish diversity and turnover across multiple spatial scales: Implications for conservation in the Western Ghats, India. PhD Thesis. Manipal University, Ashoka Trust for Research in Ecology and the Environment (ATREE), xvii+168pp.

Atkore, V., N. Kelkar, S. Badiger, K. Shanker & J. Krishnaswamy (2020). Multiscale investigation of water chemistry effects on fish guild species richness in regulated and nonregulated rivers of India’s Western Ghats: implications for restoration. Transactions of the American Fisheries Society 149(3): 298–319. https://doi.org/10.1002/taf.10230

Baidya, P. (2020). A preliminary checklist of ants from Bhagwan Mahavir Wildlife Sanctuary and National Park, Goa (submitted to the Goa Forest Department). Centre for Ecological Sciences, Indian Institute of Sciences, Bengaluru, India, 3pp.

Balaguru, B., S.J. Britto, N. Nagamurugan, D. Natarajan, S. Soosairaj, S. Raviapaul & D.I. Arociasamy (2003). Vegetation mapping and slope characteristics in Shervaryan Hills, Eastern Ghats using remote sensing and GIS. Current Science 85(5): 645–653. https://doi.org/10.1009/cj.ei.2015.04.008

Bastawade, D.B. & M. Borkar (2008). Arachnida: (Orders Scorpiones, Uropygii, Amblypygi, Aranae and Phalangida), pp. 211–242. In: Fauna of Goa. [State Fauna Series 16.] Zoological Survey of India, Kolkata, 531pp.

Bank, F.G., C.L. Irwin, G.L. Evink, M.E. Gray, S. Hagood, J.R. Kinar, A. Atkore, V., N. Kelkar, S. Badiger, K. Shanker & J. Krishnaswamy (2002). Vegetation and environmental risks of road development in the tropics. Forest Policy and Economics 47pp.

Bora-de-Agua L., R. Barrientos, P. Beja & H.M. Pereira (Eds.) (2017). Roadside Habitat Connectivity Across European Highway Networks. Environmental Impact Assessment Reports 21(2): 753–759. https://doi.org/10.1007/978-3-319-57496-7

Borkar, M.R. (2018). First definitive record of a whip scorpion Phrynus pinnifrons Pocock, 1900 from Goa, India: with notes on its morphometry and pedipalp micro-morphology. Journal of Threatened Taxa 10(7): 11955–11962. https://doi.org/10.11609/jott.4084.10.11955-11962

Borkar, M.R., N. Komarpant & D.B. Bastawade (2006). First report of Whip Spider Phrynus pinnifrons Pocock from the human habitations and protected areas of Goa state, India; with notes on its habits and habitat. Records of the Zoological Survey of India: 106(4): 33–38.

Braid, R.B., M. Schweitzer, S.A. Carnes & E.J. Soderstrom (1985). The importance of cumulative impacts for socioeconomic impact assessment and mitigation. Energy 10(5): 643–652. https://doi.org/10.1016/0360-5442(85)90096-9

Burton, A.C., E. Nelson, D. Moreira, A. Ladle, R. Steenweg, J.T. Fisher, E. Bayne & S. Boutin (2015). Camera trapping: a review and recommendations for linking surveys to ecological processes. Journal of Applied Ecology 52: 675–685. https://doi.org/10.1111/1365-2664.12432

Cain, A.T., V.R. Tuovila, D.G. Hewitt & M.E. Tewes (2003). Effects of a highway and mitigation projects on bobcats in Southern Texas. Biological Conservation 114(2): 189–197. https://doi.org/10.1016/S0006-3207(03)00023-5

Case, R. (1978). Interstate highway road-killed animals: A data source for biologists. Wildlife Society Bulletin 6(1): 8–13. https://doi.org/10.2307/3781058

Chen, X., X. Xia, Y. Zhao & P. Zhang (2010). Heavy metal concentrations in roadside soils and correlation with road traffic in Beijing, China. Journal of Hazardous Materials 181(1–3): 640–646. https://doi.org/10.1016/j.jhazmat.2010.05.060

Chen, Z., R. Luo, Z. Huang, W. Tu, J. Chen, W. Li, S. Chen, J. Xiao & Y. Al (2015). Effects of different backfill soils on artificial soil quality for cut slope revegetation: Soil structure, soil erosion, moisture retention and soil C stock. Ecological Engineering 83: 5–12. https://doi.org/10.1016/j.ecoleng.2015.05.048

Chouvelon, T., E. Strady, M. Harmelin-Vivien, O. Radakovitch, C. Brach-Papa, S. Crochet, J. Knoery, E. Rozuel, B. Thomas, J. Tronczynski & J. Chiffelleau (2019). Patterns of trace metal bioaccumulation in
and trophic transfer in a phytoplankton-zooplankton-small pelagic fish marine food web. Marine Pollution Bulletin 146: 1013–1030. https://doi.org/10.1016/j.marpolbul.2019.07.047

Clausen, U., C. Doll, F.J. Franklin, G.V. Franklin, H. Heinrichmeyer, J. Koshie & W. Rothergatter (2012). Reducing railway noise pollution. Policy department B: structural and cohesion policies, European Parliament Committee on Transport and Tourism, Brussels, Belgium, 124pp. https://doi.org/10.1007/s13398-014-0173-7.2

Clevenger, A.P., B. Chruszcz & K.E. Gunson (2003). Spatial patterns and factors influencing small vertebrate fauna road-kill aggregations. Biological Conservation, 109(1): 15–26. https://doi.org/10.1016/S0006-3207(02)00127-1

Collins, S. (2004). Vocal fighting and flirting: the functions of birdsong, pp. 39–79. In: Marler P. & H. Slabbekoorn (eds.). Nature’s Music: The Science of Birdsong, Academic Press, 504pp. https://doi.org/10.1016/S0167-8799(97)80017-0

Comely, J.M.L. (2018). Iron ore mining and conflict in Goa: An analysis of how mining is legitimised through EIA's, CSR and resistance. MS thesis. Centre for Development and Environment, University of Oslo, 121pp.

Daniels, R.J.R. (2002). Freshwater Fishes of Peninsular India. Universities Press, India, 288pp.

Das, A., H. Nagendra, M. Anand & M. Bunyan (2015). Topographic and bioclimatic determinants of the occurrence of forest and grassland in tropical montane forest-grassland mosaics of the Western Ghats, India. Plos One 10(6): e0130566. https://doi.org/10.1371/journal. pone.0130566

Das, I. & K. Kunte (2005). New species of Nyctibatrachus (Anura: Ranidae) from Castle Rock, Karnataka State, southwest India. Journal of Herpetology 39(3): 465–470. https://doi.org/10.1670/1978-04A.1

Datar, M. & P. Lakshminarasimhan (2011). Endemic plants of Bhagwan Mahaveer National Park, Goa - an analysis based on their habitat, phenology and life form types. The Indian Forester 137: 1451–1456.

Datar, M.N. & P. Lakshminarasimhan (2013). Check list of wild angiosperms of Bhagwan Mahavir [Molem] National Park, Goa, India [with erratum]. Check List 9(2): 186–207. https://doi.org/10.15566/9.2.186

Datar, M.N., S. Dongre & M. Gadgil (2019). A critical evaluation of environmental impact assessments: a case study of Goa mines, India. Indian Journal of Science 117(5): 776–782. https://doi.org/10.18520/ji/s117/5/776-782

Dinesh, K.P., C. Radhakrishnan, B.H. Channakeshavmurthy, P. Grubh, R.B. & S. Ali (1976). Studies on the food and feeding habits of Gaur Bos gaurus H. Smith (Mammalia: Artiodactyla: Bovidae) in two protected areas of Goa. Journal of Threatened Taxa 1(2): 128–130. https://doi.org/10.1016/S0030-6053(10)80019-0

Ding, J., S. Frost & B. Williams (2012). Influence of anthropogenic structures on Northern Butterfly distribution and movement: A review. Journal of Insect Conservation 13: 237–278. https://doi.org/10.1007/s10841-008-9315-8

Duflo, E., M. Greenstone & N. Ryan (2013). Truth-telling by third-party auditors and the response of polluting firms: experimental evidence from India. The Quarterly Journal of Economics 128(4): 1499–1545. https://doi.org/10.1093/qje/jqt024

Dunkin, S.W., F.S. Guthery, S.J. Demaso, A.D. Peoples & E.S. Parry (2009). Noise pollution changes avian communities and species interactions. Current Biology 19: 1415–1419. https://doi.org/10.1016/j.cub.2009.06.052

Font, A., T. Baker, I.S. Mudway, E. Purdie, C. Dunster & G.W. Fuller (2014). Degradation in urban air quality from construction activity and increased traffic arising from a road widening scheme. Science of the Total Environment 497–498: 123–132. https://doi.org/10.1016/j.scitotenv.2014.07.008

Francis, C.D., C.P. Ortega & A. Cruz (2009). Noise pollution changes avian communities and species interactions. Current Biology 19: 1415–1419. https://doi.org/10.1016/j.cub.2009.06.052

Gad, S.D. & S.K. Shyama (2009). Studies on the food and feeding habits of Gaur Bos gaurus H. Smith (Mammalia: Artiodactyla: Bovidae) in two protected areas of Goa. Journal of Threatened Taxa 1(2): 128–130. https://doi.org/10.1016/S0030-6053(10)80019-0

Garriga, N., X. Santos, A. Montori, A. Richter-Boix, M. Franch & G.A. Llorente (2012). Are protected areas truly protected? The impact of road traffic on vertebrate fauna. Biodiversity and Conservation 21: 2761–2774. https://doi.org/10.1007/s10531-012-0332-0

Gillan, J.K., E.J. Strand, W.J. Karl, P.K. Reese & T. Laninga (2013). Using spatial statistics and point-pattern simulations to assess the spatial dependency between greater sage-grouse and anthropogenic features. Wildlife Society Bulletin 37(2): 301–310. https://doi.org/10.1002/wsb.272

Goosem, M. (1997). Internal fragmentation: The effects of roads, highways and powerline clearings on movements and mortality of rainforest vertebrates, pp. 241–255. In: Laurance W.F. & R.O. Mittermeier (eds.). Tropical Forest Remnants: Ecology, Management, and Conservation of Fragmented Communities. University of Chicago Press, Chicago, Illinois, 632pp.

Goosem, M. (2002). Effects of tropical rainforest roads on small mammals: Fragmentation, edge effects and traffic disturbance. Wildlife Research 29(3): 277–289. https://doi.org/10.1071/WR01058

Goosem, M. (2007). Fragmentation impacts caused by roads through rainforests. Current Science 93(11): 1587–1595.

Goosem, M., E.K. Harding, G. Chester, N. Tucker, C. Harris & K. Oakley (2010). Roads in Rainforest: Best Practice Guidelines for Planning, Design and Management. Guidelines prepared for the Queensland Department of Transport and Main Roads and the Australian Government’s Marine and Tropical Sciences Research Facility. Reef and Rainforest Research Centre Limited, Cairns, 64pp.

Goosem, M. & H. Marsh (1997). Fragmentation of a Small-mammal Community by a Powerline Corridor through Tropical Rainforest. Wildlife Research 24(5): 613–629. https://doi.org/10.1071/WR96063

Gosavi, N., A. Bayani, A. Khandekar, P. Roy & K. Kunte (Eds.) (2020). Amphibians of India, v. 1.05. Indian Foundation for Butterflies. Electronic version accessed 08 July 2020. https://www.indianamphibians.org

Grubh, R.B. & S. Ali (1976). Birds of Goa. Journal of the Bombay Natural History Society 73(1): 42–53.

Gubbi, S., K. Mukherjee, M. Swaminath & H. Poornesha (2016). Noise pollution changes avian communities and species interactions. Current Biology 19: 1415–1419. https://doi.org/10.1016/j.cub.2009.06.052

Gubbi, S., H.C. Poornesha & M.D. Madhusudan (2012). Impact of
vehicular traffic on the use of highway edges by large mammals in a south Indian wildlife reserve. Current Science 102(7): 1047–1051.

Hamel, S., S.T. Killengreen, J. Henden, N.E. Eide, L. Roed-eriksen, R.A. Ims & N.G. Yoccoz (2013). Towards good practice guidance in using camera-traps in ecology: influence of sampling design on validity of ecological inferences. Methods in Ecology and Evolution 4(2): 105–113. https://doi.org/10.1111/2041-210X.2012.00262.x

Hayward, M.W., L. Betanti, N.D. Burrows, P.I. Funston, K.U. Karanth, D.I. Mackenzie, K.H. Pollock & R.W. Varnell (2015). Ecologists need robust survey designs, sampling and analytical methods. Journal of Applied Ecology 52: 286–290. https://doi.org/10.1111/1365-2664.12408

Holderegger, R. & M. Di Giulio (2010). The genetic effects of roads: A review of empirical evidence. Basic and Applied Ecology 11: 522–531. https://doi.org/10.1016/j.baae.2010.06.006

Hoskin, C.J. & M.W. Goosem (2010). Road Impacts on abundance, call traits, and body size of rainforest frogs in Northeast Australia. Ecology and Society 15(3): 15. [online]. http://www.ecologyandsociety.org/vol15/iss3/art15/

Husejinov, M. S., M. Bergert, S. Jankovic, S. Zizek, A. Smajlovic, A. Sofic, O. Golic & B. Antonicjv (2018). Assessment of Pb, Cd and Hg soil contamination and its potential to cause cytotoxic and genotoxic effects in human cell lines (CaCo-2 and HaCaT). Environmental Geochemistry and Health 40(4): 1557–1572. https://doi.org/10.1007/s10653-018-0071-6

IARC (1989). Diesel and Gasoline Engine Exhausts and Some Nitroarenes. IARC Monographs on the Evaluation of Carcinogenic Risk to Humans, Vol. 305. International Agency for Research on Cancer Lyon, France, 703pp.

Jaren, V., R. Andersen, M. Ulleberg, P. Pedersen & B. Wiseth (1991). Moose-train collisions: The effects of vegetation removal with a cost-benefit analysis. Alces 27(1): 93–99.

Jayadevan, A., R. Nayak, K.K. Karanth, J. Krishnaswamy, R. DeFries, K.U. Karanth & S. Vaidyanathan (2020). Navigating paved paradise: Evaluating landscape permeability to movement for large mammals in two conservation priority landscapes in India. Biological Conservation 247: 108613. https://doi.org/10.1016/j.biocon.2020.108613

Jayamurugan, R., M. Kumaravel, S. Palanivelraja & M.P. Chockalingam (2013). Influence of Temperature, Relative Humidity and Seasonal Variability on Ambient Air Quality in a Coastal Urban Area. International Journal of Atmospheric Sciences. Volume 2013. Article ID 624046. https://doi.org/10.1155/2013/624046

Jenkins, A.R., J.M. Shaw, J.J. Smallie, B. Gibbons, R. Visagie & P.G. Ryan (2011). Estimating the impacts of power line collisions on Ludwig’s Bustards Notius ludwigii. Bird Conservation International 21(3): 303–310. https://doi.org/10.1017/S0959270911000128

Jhala, Y.V., Q. Qureshi & A.K. Nayak (Eds.) (2020). Photographic record of Pantheca tigris) populations in the region of the Western Ghats, India. Center for Wildlife Sciences. Foundation for Ecological Research and Conservation, Pune.

Kerkar, R.P. (2020). 4th tiger found dead in 4 days in Sattari forest. Electronic version accessed on 09 January 2020. https://timesofindia.indiatimes.com/city/goa/4th-tiger-found-dead-in-4-days-in-sattari-forest/articleshow/73163428.cms

Kerley, L.L., J.M. Goodrich, D.G. Miquelle, E.N. Smirnov, H.B. Quigley & M.G. Hornocker (2002). Effects of roads and human disturbance on Amur Tigers. Conservation Biology 16: 97–108. https://doi.org/10.1046/j.1523-1707.2002.00843.x

Khera, N. & A. Kumar (2010). Inclusion of biodiversity in environmental impact assessments (EIA): a case study of selected EIA reports in India. Impact Assessment and Project Appraisal 28(3): 189–200. https://doi.org/10.1016/j.iapap.2010.06.005

Kowarik, I. & M. von der. Lippe (2011). Secondary wind dispersal enhances long-distance dispersal of an invasive species in urban road corridors. Neobiota 9: 49–70.

Krupa, H., A. Borker & A. Gopal (2017). Photographic record of sympatry between Asian Small-Clawed Otter and Smooth-Coated Otter in the northern Western Ghats, India. IUCN Otter Specialist Group Bulletin 34(1): 51–57.

Kulkarni, N., K.P. Dinesh, P. Prashanth, G. Bhatta & C. Radhakrishnan (2013). Checklist of Amphibians of Goa. Frog leg 19: 7–12.

Kumar, A. & R.K. Somashekar (2008). Environmental Science and Technology in India. Daya Publishing House, Delhi, 500pp.

Kumar, R. & K.R. Devi (2013). Conservation of freshwater habitats and fishes in the Western Ghats of India. International Zoo Yearbook 47(1): 71–80. https://doi.org/10.1111/jzy.12009

Lama, A.K. & H. Job (2014). Protected Areas and Road development: Sustainable development discourses in the Annapurna Conservation Area, Nepal. Erdkunde 68(4): 229–250. https://doi.org/10.3112/erdkunde.2014.04.01

Lampe, U., K. Reinhold & T. Schmoll (2014). How grasshoppers respond to road noise: Developmental plasticity and population differentiation in acoustic signalling. Functional Ecology 28(3): 660–668. https://doi.org/10.1111/1365-2435.12215

Lampilla, P., M. Mönkkönen & A. Desrochers (2005). Demographic Responses by Birds to Forest Fragmentation. Conservation Biology 19(5): 1517–1546. https://doi.org/10.1111/j.1523-1739.2005.00201.x

Larsen, M.C. & J.E. Parks (1998). How wide is a road? The association of roads and mass-wasting in a forested montane environment. Earth Surface Processes and Landforms 22(9): 835–848. https://doi.org/10.1002/1097-0258(199809)23:9<835::AID-ESP782>3.0.CO;2-C

Larsen, M.C. & A.J. Torres-Sánchez (1998). The frequency and distribution of recent landslides in three montane tropical regions of Puerto Rico. Geomorphology 24(4): 309–331. https://doi.org/10.1016/S0169-555X(98)00023-3

Laurence, W.F., M. Goosem & S.G.W. Laurance (2009). Impacts of roads and linear clearings on tropical forests. Trends in Ecology & Evolution 24: 659–669. https://doi.org/10.1016/j.tree.2009.06.009

Laurence, W.F. (2015). Wildlife struggle in an increasingly noisy world. Proceedings of the National Academy of Sciences 112(39): 11995–11996. https://doi.org/10.1073/pnas.1516050112

Levergood, J.M., E.I. Heske, P.M. Wilkins & J.W. Scott (2015). Polyaromatic hydrocarbons and elements in sediments associated with a suburban railway. Environmental Monitoring and Assessment 187: 534 (2015). https://doi.org/10.1007/s10661-015-4757-2

Loss, S.R., T. Will & P.P. Marra (2014). Refining Estimates of Bird Collision and Electrocution Mortality at Power Lines in the United States. PloS One 9(7): e101565. https://doi.org/10.1371/journal.pone.0101565

Lucas, P.S., R.G. de Carvalho & C. Grilo (2017). Railway Disturbances on Wildlife: Types, Effects, and Mitigation Measures, pp. 81–99. In: Borda-de-Agua, L., R. Barrientos, P. Beja & H.M. Pereira (eds.). Railway Ecology. Springer International Publishing, Cham, xxx+320pp. https://doi.org/10.1007/978-3-319-57496-7_6

Luce, C.H. & R. Mountain (2002). Hydrological processes and pathways affected by forest roads: What do we still need to learn? Hydrological Process, 16: 2901–2904. https://doi.org/10.1021/hp020561

Maelfait, J.-P. & F. Hendrickx (1998). Ecology of the Great Bowerbird, Chlamydera nuchalis. Advances in the Study of Animal Behaviour 26: 213–247.
vegetation maps and utilities. International Journal of Applied Earth Observation and Geoinformation 39: 142–159. https://doi.org/10.1016/j.jag.2015.03.003

Santhoshkumar, S., P. Kannan, A. Veeramani, A. Samson, S. Karthick & J. Leonaprincy (2017). A preliminary report on the impact of road kills on the herpetofauna species in Nilgiris, Tamil Nadu, India. Journal of Threatened Taxa 9(3): 10004–10010. https://doi.org/10.11609/jott.3001.9.3.10004-10010

Sengupta, A. & S. Radhakrishna (2013). Of concern yet? Distribution and conservation status of the Bonnet Macaque (Macaca radiata) in Goa, India. Primate Conservation 27: 109–114.

Seshadri, K. & T. Ganesh (2011). Faunal mortality on roads due to religious tourism across time and space in protected areas: A case study from south India. Forest Ecology and Management 262: 1713–1721. https://doi.org/10.1016/j.foreco.2011.07.017

Sharma, R.C. (1976). Records of the reptiles of Goa. Records of the Zoological Survey of India 71: 149–167.

Sheth, C., M.F. Ahmed, S. Banerjee, N. Dahanukar, S. Dalvi, A. Datta, A.D.B. Roy, K. Gogoii, M. Gogoii, S. Joshi, A. Kamdar, J. Krishnaswamy, M. Kumar, R.K. Menzies, S. Molur, S. Mukherjee, R. Naniwadekar, S. Nijawan, R. Raghavan, M. Rao, J.K. Roy, N. Sharma, A. Sinha, U. Srivinvasan, K. Tamra, C. Umbray, N. Velho, A Vishwanathan & R. Yumnam (2020). ‘The devil is in the detail’: Peer-review of the Wildlife Conservation Plan by the Wildlife Institute of India for the Etalin Hydropower Project, Dibang Valley. Zoo’s Print 35(5): 1–78. https://zooprint.zooreach.org/index.php/zp/article/view/5686/5103

Shubhalaxmi, V., R.C. Kendrick, A. Vaidya, N. Kalagi & A. Bhagwat (2011). Inventory of moth fauna (Lepidoptera: Heterocera) of the northern western Ghats, Maharashtra, India. Journal of the Bombay Natural History Society 108(3): 183–205.

Sidle, R.C. & A.D. Ziegler (2012). The dilemma of mountain roads. Nature Geoscience 5: 437–438.

Sidle, R.C., A.D. Ziegler, J.N. Negish, A.R. Nik, R. Siew & F. Turkelboom (2006). Erosion processes in steep terrain—Truths, myths, and uncertainties related to forest management in Southeast Asia. Forest Ecology and Management 224(1–2): 199–225. https://doi.org/10.1016/j.foreco.2005.12.019

Simaika, J.P., M.J. Samways & P.P. Frenzel (2016). Artificial ponds increase local dragonfly diversity in a global biodiversity hotspot. Biodiversity and Conservation 25: 1921–1935. https://doi.org/10.1007/s10531-016-1168-9

Slabbeekoor, H. & W. Halfwerk (2009). Behavioural ecology: noise annoys at community level. Current Biology 19: 693–695. https://doi.org/10.1016/j.cub.2009.07.002

Sollmann, R., A. Mohamed, H. Samejima & A. Wilting (2013). Risky business or simple solution – Relative abundance indices from camera-trapping. Biological Conservation 159: 405–412. https://doi.org/10.1016/j.biocon.2012.12.025

Sreekantha, M.D. Subash Chandran, D.K. Mesta, G.R. Rao, K.V. Gururaja & T.V. Ramachandra (2007). Fish diversity in relation to landscape and vegetation in central Western Ghats, India. Current Science 92(11): 1592–1603.

Subramanian, K.A., P. Rangnekar & R. Naik (2013). Idionyx (Odonata: Corduliidae) of the Western Ghats with a description of a new species. Zootaxa 3652(2): 277–288. https://doi.org/10.11646/zootaxa.3652.2.5

Świętek, R., M. Strzelecka & M. Trojanowska (2013). Evaluation of traffic-related heavy metals emissions using noise barrier road dust analysis. Polish Journal of Environmental Studies 22(2): 561–567.

Talwar, P.K. & A.G. Jinhran (Eds.) (1991). Inland fishes of India and adjacent countries, Vol 1 & 2. Oxford & IBH Publishing Company, xxiv+1158pp.

Thatte, P., A. Joshi, S. Vaidyanathan, E. Landguth & U. Ramakrishnan (2018). Maintaining tiger connectivity and minimizing extinction into the next century: Insights from landscape genetics and spatially-explicit simulations. Biological Conservation 218: 181–191. https://doi.org/10.1016/j.biocon.2017.12.022

The Goan Everyday (2019). Camera trap captures tiger’s presence in Mollem. Electronic version accessed 27 December 2020. https://www.thegoan.net/camera-trap-captures-tiger%25E2%2580%99s-presence-in-mollem/51600.html

Trombulak, S.C. & C.A. Frissell (2000). Review of Ecological Effects of Roads on Terrestrial and Aquatic Communities. Conservation Biology 14(1): 18–30. https://doi.org/10.1046/j.1523-1739.2000.99084.x

Uddin, M. 2017. Assessing threats to birds from power-lines in Thar with special emphasis on Great Indian Bustard. MSc Thesis. Department of Wildlife Science, University of Kota, Rajasthan.

Walelign, S.Z., M.R. Nielsen & J.B. Jacobsen (2019). Roads and livelihood activity choices in the Greater Serengeti Ecosystem, Tanzania. PloS One 14(3): e0213089. https://doi.org/10.1371/journal.pone.0213089

Wendling, Z.A., J.W. Emerson, A. de Sherbinin, D.C. Esty et al. (2020). 2020 Environmental Performance Index. Yale Center for Environmental Law & Policy, New Haven, CT. Electronic version accessed 25 July 2020. https://epi.yale.edu/ Wikipedia contributors (2020). Flora and fauna of Goa. In: Wikipedia, the Free Encyclopedia, 4 May 2020. Downloaded on 23 June 2020.

Wilkomirska, B., B. Sudnik-Wójcikowska, H. Galera, M. Wierzbicka & M. Malawska (2011). Railway transportation as a serious source of organic and inorganic pollution. Water, Air, & Soil Pollution 218: 333–345. https://doi.org/10.1007/s11270-010-0645-0

Wilkomirska, B., H. Galera, B. Sudnik-Wójcikowska, T. Staszewski & M. Malawska (2012). Railway Tracks - Habitat Conditions, Contamination, Floristic Settlement - A Review. Environment and Natural Resources Research 2(1): 86–95. https://doi.org/10.5539/enrr.v2n1p86

Wii (2016). Eco-friendly measures to mitigate the impacts of linear infrastructure on wildlife. Wildlife Institute of India, Dehradun, India, 151pp.

Xue, X., H. Hong & A.T. Charles (2004). Cumulative environmental impacts and integrated coastal management: The case of Xiamen, China. Journal of Environmental Management 71(3): 271–283. https://doi.org/10.1016/j.jenvman.2004.03.006

Zhang, X., H. Yang & Z. Cui (2018). Evaluation and analysis of soil migration and distribution characteristics of heavy metals in iron tailings. Journal of Cleaner Production 172: 475–480. https://doi.org/10.1016/j.jclepro.2017.09.277
Appendix I. Checklist of birds in Bhagwan Mahavir Sanctuary and National Park.

The list is compiled from data available on eBird (2017) from multiple hotspots and checklist locations within BMWS NP and Rahmani et al. (2016).

ENDEMISM TO WG (WESTERN GHATS): Species, whose global distribution range is restricted to within the biogeographical boundaries of the Western Ghats. In other words, they are unique to Western Ghats, and are not found anywhere else in the world.

IUCN: Evaluation of species as per IUCN Redlist 2020-1 CR: Critically Endangered; EN: Endangered; VU: Vulnerable; NT: Near Threatened

WLPA (1972): Species listed and protected under five different categories (Schedule I to IV, and VI) in accordance to the Wildlife Protection Act of 1972.

STATUS: Evaluation of migratory status of a species. R: Resident; M: Migrant; LM: Local Migrant, making short movements out of the political boundaries of Goa; R/M: Resident population supplemented by a migratory population; VG: Vagrant migrants recorded away from their known migratory range; S: Residents of the Indian Subcontinent with no known resident populations in Goa attributed to as stray; UC: Unclear

RARITY: A species that has less than ten independently confirmed records form within the political boundaries of Goa, post 2000.

Species	Endemism to WG	IUCN	WLPA (1972)	Status	Rarity	
I. Anseriformes						
1. Anatidae (ducks, geese, swans)						
Lesser Whistling Duck *Dendrocygna javanica*			4	R		
II. Galliformes						
2. Phasianidae (partridges, pheasants, grouse)						
Indian Peafowl *Pavo cristatus*			1	R		
Jungle Bush Quail *Perdicula asiatica*			4	R		
Grey Junglefowl *Gallus sonneratii*			2	R		
Red Spurfowl *Gallinoperdix spadicea*			4	R		
III. Columbiformes						
3. Columbidae (pigeons)						
Rock Pigeon *Columba livia*			4	R		
Nilgiri Wood Pigeon *Columba elphinstonii*			VU	4	R	
Oriental Turtle Dove *Streptopelia orientalis*			4	R		
(Western) Spotted Dove *Streptopelia chinensis suratensis*			4	R		
Orange-breasted Green Pigeon *Treron bicinctus*			4	R		
Grey-fronted Green Pigeon *Treron affinis*			4	R		
Asian Emerald Dove *Chalcophaps indica*			4	R		
Green Imperial Pigeon *Ducula aenea*			4	R		
Mountain Imperial Pigeon *(Nilgiri Imperial Pigeon)* *Ducula badia cuprea*			4	R		
IV. Caprimulgiformes						
4. Podargidae (frogmouths)						
Sri Lanka Frogmouth *Batrachostomus moniliger*			1	R		
5. Caprimulgidae (nightjars)						
Jungle Nightjar *Caprimulgus indicus*			4	R		
Jerdon’s Nightjar *Caprimulgus atripennis*			4	R		
Indian Nightjar *Caprimulgus asiaticus*			4	R	X	
Savanna Nightjar *Caprimulgus affinis*			4	R		
6. Hemiprocnidae (treeswifts)						
Crested Treeswift *Hemiprocne coronata*			R			
7. Apodidae (swifts)						
White-rumped Spinetail *Zoothera syriatica*			R			
Brown-backed Needletail *Hirundapus giganteus*			R			
Indian Swiftlet *Aerodramus unicolor*			1	R		
24. Asian Palm Swift *Cypsiurus balasiensis*			LM			
Alpine Swift *Tachymarptis melba*			R			
26. Indian House Swift *Apus affinis*			R			
Species	Endemism to WG	IUCN	WLPA (1972)	Status	Rarity	
---------	----------------	------	-------------	--------	--------	
27 Common Swift	Apus apus					
V. Cuculiformes						
28 Greater Coucal	Centropus sinensis		4	R		
29 Blue-faced Malkoha	Phoenicoparrus viridirostris		4	R		
30 Pied Cuckoo	Clamator jacobinus		4	R/M		
31 Asian Koel	Eudynamys scolopaceus		4	R		
32 Banded Bay Cuckoo	Cocamantis sonnerati		4	R		
33 Grey-bellied Cuckoo	Cocamantis passerinus		4	R		
34 Fork-tailed Drongo Cuckoo	Surniculus dicruraoides		4	R		
35 Large Hawk Cuckoo	Hierococcyx sparverioides		4	M	X	
36 Common Hawk Cuckoo	Hierococcyx varius		4	R		
37 Indian Cuckoo	Cuculus micropterus		4	R		
38 Common Cuckoo	Cuculus canorus		4	R		
VI. Gruidae						
39 Slaty-legged Crane	Rallina eurizonoides		4	M		
40 White-breasted Waterhen	Amaurornis phoenicurus		4	R		
41 Purple Swamphen	Porphyrio porphyrio		4	R		
VII. Ciconiiformes						
42 Lesser Adjutant	Leptoptilos javanicus		VU	4	R	
43 Asian Openbill	Anastomus oscitans		4	R		
44 Black Stork	Ciconia nigra		4	M	X	
45 Woolly-necked Stork	Ciconia episcopus		VU	4	R	
56 Black-headed Ibis	Threskiornis melanocephalus		NT	4	R/M	
VIII. Suliformes						
57 Little Cormorant	Microcarbo niger		4	R		
58 Indian Cormorant	Phalacrocorax fuscicolis		4	R		
59 Oriental Darter	Anhinga melanogaster		NT	4	R	
Species	Endemism to WG	IUCN	WLPA (1972)	Status	Rarity	
---------	----------------	------	-------------	--------	--------	
IX. Charadriiformes						
15. Recurvirostridae (stilts and avocets)						
60 Black-winged Stilt *Himantopus himantopus*		4	M			
16. Charadriidae (plovers & lapwings)						
61 Little Ringed Plover *Charadrius dubius*		4	R			
62 Yellow-wattled Lapwing *Vanellus malabaricus*		4	R			
63 Red-wattled Lapwing *Vanellus indicus*		4	R			
17. Jacanidae (jacanas)						
64 Bronze-winged Jacana *Metopidius indicus*		4	R			
18. Scolopacidae (sandpipers)						
65 Common Snipe *Gallinago gallinago*		4	M			
66 Common Sandpiper *Actitis hypoleucos*		4	LM			
67 Green Sandpiper *Tringa ochropus*		4	M			
19. Turnicidae (buttonquails)						
68 Barred Buttonquail *Turnix suscitator*		4	R			
20. Glareolidae (coursers and pratincoles)						
69 Little Pratincole *Glareola lactea*			M			
21. Laridae (gulls and terns)						
70 Gull-billed Tern *Gelochelidon nilotica*		4	R			
71 River Tern *Sterna aurantia*		NT	4	R		
X. Accipitriformes						
22. Accipitridae (kites, hawks and eagles)						
72 Black-winged Kite *Elanus caeruleus*		1	M			
73 Oriental Honey Buzzard *Pernis ptilorhynchus*		1	R			
74 Egyptian Vulture *Neophron percnopterus*		EN	1	S	X	
75 Crested Serpent Eagle *Spilornis cheela*		1	R			
76 Short-toed Snake Eagle *Circaetus gallicus*		1	S			
77 White-rumped Vulture *Gyps bengalensis*		CR	1	S	X	
78 Indian Vulture *Gyps indicus*		CR	1	S	X	
79 Mountain Hawk Eagle (Legge's Hawk Eagle) *Nisaetus nipalensis kelaarti*			1	R	X	
80 Changeable Hawk Eagle (Crested Hawk Eagle) *Nisaetus cirrhatus cirrhatus*		1	R			
81 Rufous-bellied Eagle *Lophotriorchis kienerii*		1	R			
82 Black Eagle *Ichnetaetus malaiensis*		1	R			
83 Bonelli's Eagle *Aquila fasciata*		1	R			
84 Booted Eagle *Hieraaetus pennatus*		1	M			
85 Western Marsh Harrier *Circus aeruginosus*		1	M			
86 Crested Goshawk *Accipiter trivirgatus*		1	R			
87 Shikra *Accipiter badius*		1	R			
88 Besra *Accipiter virgatus*		1	R			
89 Eurasian Sparrowhawk *Accipiter nisus*		1	M			
90 White-bellied Sea Eagle *Haliaeetus leucogaster*		1	R			
91 Grey-headed Fish Eagle *Ichthyophaga ichthyaetus*		NT	1	M	X	
92 Brahminy Kite *Haliastur indus*		1	R			
93 Black Kite *Milvus migrans*		1	R/M			
Species	Endemism to WG	IUCN	WLP (1972)	Status	Rarity	
--------------------------------------	----------------	------	------------	--------	--------	
XI. Strigiformes						
94 White-eyed Buzzard *Butastur teesa*	1	R				
95 Sri Lanka Bay Owl *Phodilus assimilis*	4	R				
96 Common Barn Owl *Tyto alba*	4	R				
23. Strigidae (owls)						
97 Brown Hawk Owl *Ninox scutulata*	4	R				
98 Jungle Owlet *Glaucidium radiatum*	4	R				
99 Spotted Owlet *Athene brama*	4	R				
100 Oriental Scops Owl *Otus sunia*	4	R				
101 Indian Scops Owl *Otus bakkamoena*	4	R				
102 Brown Wood Owl *Strix leptogrammica*	4	R				
103 Spot-bellied Eagle Owl *Bubo nipalensis*	4	R				
104 Brown Fish Owl *Ketupa zeylonensis*	4	R				
XII. Trogoniformes						
24. Trogonidae (trogons)						
105 Malabar Trogon *Harpactes fasciatus*	4	R				
XIII. Bucerotiformes						
25. Bucerotidae (hornbills)						
106 Great Hornbill *Buceros bicornis*			NT	1	R	
107 Malabar Pied Hornbill *Anthracoceros coronatus*			NT	1	R	
108 Malabar Grey Hornbill *Ocyceros griseus*			WG	1	R	
109 Indian Grey Hornbill *Ocyceros birostris*						
26. Upupidae (hoopoes)						
110 Common Hoopoe *Upupa epops*						
XIV. Piciformes						
27. Picidae (woodpeckers)						
111 Speckled Piculet *Picumnus innominatus*			4	R		
112 Heart-spotted Woodpecker *Hemicircus canente*			4	R		
113 Common Golden-backed Woodpecker *Dinopium javanense*			4	R		
114 Lesser Golden-backed Woodpecker *Dinopium benghalense*			4	R		
115 Rufous Woodpecker *Micropterus brachyurus*			4	R		
116 Lesser Yellow-naped Woodpecker *Picus chlorolophus*			4	R		
117 White-bellied Woodpecker *Dyacopus javensis*			4	R		
118 Greater Golden-backed Woodpecker *Chrysocolaptes guttacristatus*			4	R		
119 White-naped Woodpecker *Chrysocolaptes festivus*			4	R		
120 Brown-capped Pygmy Woodpecker *Dendrocopos nanus*			4	R		
121 Yellow-fronted Pied Woodpecker *Dendrocopos mahatrattensis*			4	R		
28. Megalaimidae (barbets)						
122 Brown-headed Barbet *Psilopagon zeylanicus*			4	R		
123 White-cheeked Barbet *Psilopagon viridis*			4	R		
124 Malabar Barbet *Psilopagon molabaricus*			WG	4	R	
125 Coppersmith Barbet *Psilopagon haemacephalus*						
XV. Coraciiformes						
29. Meropidae (bee-eaters)						
Species	Endemism to WG	IUCN	WLPA (1972)	Status	Rarity	
---------	----------------	------	-------------	--------	--------	
126 Blue-bearded Bee-eater Nyctyornis athertoni				R		
127 Green Bee-eater Merops orientalis				R		
128 Chestnut-headed Bee-eater Merops leschenaulti				R		
129 Blue-tailed Bee-eater Merops philippinus				M		
130 Indian Roller Coracias benghalensis	4			LM		
131 European Roller Coracias garrulus	4			M		
132 Oriental Dwarf Kingfisher Ceyx erithaca	4			R		
133 Blue-eared Kingfisher Alcedo meninting	4			R		
134 Common Kingfisher Alcedo atthis	4			R		
135 Pied Kingfisher Ceryle rudis	4			R		
136 Stork-billed Kingfisher Pelargopsis capensis	4			R		
137 White-throated Kingfisher Halcyon smyrnensis	4			R		
138 Black-capped Kingfisher Halcyon pileata	4			R		

XVI. Falconiformes

Species	Endemism to WG	IUCN	WLPA (1972)	Status	Rarity
139 Common Kestrel Falco tinnunculus	4			M	
140 Amur Falcon Falco amurensis	4			M	
141 Eurasian Hobby Falco subbuteo	4			M	
142 Peregrine Falcon Falco peregrinus	1				

XVII. Psittaciformes

Species	Endemism to WG	IUCN	WLPA (1972)	Status	Rarity
143 Plum-headed Parakeet Psittacula cyanocephala	4			R	
144 Malabar Parakeet Psittacula columboides	WG				
145 Rose-ring Parakeet Psittacula krameri	4			R	
146 Vernal Hanging Parrot Loriculus vernalis	4			R	

XVIII. Passeriformes

Species	Endemism to WG	IUCN	WLPA (1972)	Status	Rarity
147 Indian Pitta Pitta brachyura	4			R	
148 Small Minivet Pericrocotus cinnamomeus	4			R	
149 Scarlet Minivet (Orange Minivet) Pericrocotus flammeus	4			R	
150 Large (Indian) Cuckoo-shrike Coracina javensis macei	4			R	
151 Black-winged Cuckoo-shrike Lalage melaschistos	4			M X	
152 Black-headed Cuckoo-shrike Lalage melanoptera	4			R	
153 Black-hooded Oriole Oriolus xanthornus	4			R	
154 Indian Golden Oriole Oriolus kundoo	4			LM	
155 Bar-winged Flycatcher-shrike Hemipus pictus	4			R	
156 Malabar Woodshrike Tephrodornis sylvicola	WG				
157 Common Woodshrike Tephrodornis ponicerianus	4			R	
Species	Endemism to	IUCN	WLPA (1972)	Status	Rarity
---------	-------------	------	-------------	--------	--------
38. Aegithinidae (ioras)					
160. Common Iora Aegithina tiphia					
39. Dicuridae (drongos)					
161. Black Dongo Dicrurus macrocercus					
162. Ashy Dongo Dicrurus leucophaeus					
163. White-bellied Dongo Dicrurus caerulescens					
164. Bronzed Dongo Dicrurus aeneus					
165. Hair-crested Dongo Dicrurus hatteriatus					
166. Greater Racket-tailed Dongo Dicrurus paradiseus					
40. Rhipiduridae (fantails)					
167. White-spotted Fantail Rhipidura albogularis					
41. Laniidae (shrikes)					
168. Brown Shrike Lanius cristatus cristatus					
169. Isabelline Shrike Lanius isabellinus					
170. Long-tailed Shrike Lanius schach					
42. Corvidae (crows and jays)					
171. Rufous Treepie Dendrocitta vagabunda					
172. House Crow Corvus splendens					
173. Large-billed Crow (Indian Jungle Crow) Corvus macrorhynchos culminatus					
43. Monarchidae (monarchs and paradise-flycatchers)					
174. Black-naped Monarch Hypothymis azurea					
175. Indian Paradise-flycatcher Terpsiphone paradisi					
44. Dicaeidae (flowerpeckers)					
176. Thick-billed Flowerpecker Dicaeum agile					
177. Pale-billed Flowerpecker Dicaeum erythrorhynchas					
178. Nilgiri Flowerpecker Dicaeum cancolor		WG			
45. Nectariniidae (sunbirds)					
179. Little Spiderhunter Arachnothera longirostra					
180. Purple-rumped Sunbird Leptocoma zeylonica					
181. Crimson-backed Sunbird Leptocoma minima		WG			
182. Purple Sunbird Cinnyris asiaticus					
183. Loten’s Sunbird Cinnyris lotenius					
184. Vigors’s Sunbird Aethopyga vigarsi		WG			
46. Irenidae (fairy-bluebirds)					
185. Asian Fairy-bluebird Irena puella					
47. Chloropseidae (leafbirds)					
186. Golden-fronted Leafbird Chloropsis aurifrons					
187. Jerdon’s Leafbird Chloropsis jerdoni					
48. Plöcidae (weavers)					
188. Baya Weaver Ploceus philippinus					
49. Estrildidae (waxbills)					
189. Red Munia Amadina amandava					
190. White-rumped Munia Lonchura striata					
191. Scaly-breasted Munia Lonchura punctulata					
Species	Endemism to WG	IUCN	WLPA (1972)	Status	Rarity
--	----------------	------	-------------	--------	--------
192 Black-throated Munia Lonchura kelaarti		4	R		
193 Tricoloured Munia Lonchura malacca		4	R		
50. Passeridae (sparrows, snowfinches and allies)					
194 House Sparrow Passer domesticus		4	R		
195 Yellow-throated Sparrow Gymnoris xanthocollis		4	R		
51. Motacillidae (wagtails and pipits)					
196 Forest Wagtail Dendronotus indicus		4	M		
197 Tree Pipit Anthus trivialis		4	M		
198 Olive-backed Pipit Anthus hodgsoni		4	M		X
199 Paddyfield Pipit Anthus rufulus		4	R/M		
200 Tawny Pipit Anthus campestris		4	M		
201 Western Yellow Wagtail Motacilla flavia		4	M		
202 Grey Wagtail Motacilla cinerea		4	M		
203 White-browed Wagtail Motacilla maderaspatensis		4	R/M		
204 White Wagtail Motacilla alba		4	M		
52. Fringillidae (finches, euphonias and Hawaiian honeycreepers)					
205 Common Rosefinch Erythrina erythrina		4	M		
53. Emberizidae (Old World buntings)					
206 Red-headed Bunting Emberiza bruniceps		4	M		
207 Black-headed Bunting Emberiza melaniceps					
208 Grey-necked Bunting Emberiza buchanani		4	M		
54. Stenostiridae (fairy-flycatcher and crested flycatchers)					
209 Grey-headed Canary-flycatcher Culicicapa ceylonensis		4	M		
55. Paridae (tits, chickadees)					
210 Black-lored Tit Machlolophus xanthogenys		4	R		
56. Alaudidae (larks)					
211 Sykes’s Short-toed Lark Calandrella dukhunensis		4	M		
212 Malabar Lark Galerida malabarica		4	R		
57. Cisticolidae (cisticolas)					
213 Zitting Cisticola Cisticola juncidis		4	R		
214 Grey-breasted Prinia Prinia hodgsonii		4	R		
215 Ashy Prinia Prinia socialis		4	R		
216 Plain Prinia Prinia inornata		4	R		
217 Common Tailorbird Orthotomus sutorius		4	R		
58. Locustellidae (bush warblers)					
218 Grasshopper Warbler Locustella naevia		4	M		
59. Acrocephalidae (brush, reed and swamp warblers)					
219 Booted Warbler Iduna caligata		4	M		
220 Sykes’s Warbler Iduna rama		4	M		X
221 Blyth’s Reed Warbler Acrocephalus dumatorum		4	M		
222 Paddyfield Warbler Acrocephalus agricola		4	M		
223 Clamorous Reed Warbler Acrocephalus stentoreus		4	R/M		
60. Hirundinidae (swallows)					
224 Northern House Martin Delichon urbicum		M	X		
225 Streak-throated Swallow Petrochelidon fluvicola		M			
Species	Endemism to WG	IUCN	WILPA (1972)	Status	Rarity
---------	----------------	------	--------------	--------	--------
226 Red-rumped Swallow Cecropis daurica					K
227 Wire-tailed Swallow Hirundo smithii					R
228 Barn Swallow Hirundo rustica					M
229 Eurasian Crag Martin Ptyonoprogne rupestris					M
230 Dusky Crag Martin Ptyonoprogne concolor					R
61. Pycnonotidae (bulbuls)					
231 Square-tailed Bulbul Hypsipetes ganzesa	4	R			
232 Flame-throated Bulbul Pycnonotus melanicterus gularis	WG	4	R		
233 Red-whiskered Bulbul Pycnonotus jacosus		4	R		
234 Red-vented Bulbul Pycnonotus cafer		4	R		
235 White-browed Bulbul Pycnonotus liotelus		4	R		
236 Grey-headed Bulbul Brachypodius procephalus	WG	NT	4	R	
237 Yellow-browed Bulbul Acritillas indica		4	R		
62. Phylloscopidae (Old World leaf warblers)					
238 Yellow-browed Warbler Abrornis inornatus	4	M	X		
239 Sulphur-bellied Warbler Phylloscopus griseolus		4	M		
240 Tickell’s Leaf Warbler Phylloscopus affinis		4	M		
241 Green Leaf Warbler Seicercus nitidus		4	M		
242 Greenish Leaf Warbler Seicercus trachiloides		4	M		
243 Large-billed Leaf Warbler Seicercus magnirostris		4	M		
244 Western Crowned Leaf Warbler Seicercus occipitalis		4	M		
63. Sylviidae (Sylvia warblers, parrotbills and allies)					
245 Yellow-eyed Babbler Chrysomma sinense	4	R			
64. Zosteropidae (white-eyes and yuhinas)					
246 Oriental White-eye Zosterops palpebrosus	4	R			
65. Timaliidae (scimitar babblers and allies)					
247 Indian Scimitar Babbler Pomatorhinus horsfieldii	4	R			
248 Tawny-bellied Babbler Dumetia hyperotra albogularis		4	R		
249 Dark-fronted Babbler Rhopocichla atriceps		4	R		
250 Puff-throated Babbler Pellorneum ruficeps		4	M		
66. Pellorneidae (smaller babblers)					
251 Quaker Tit Babbler Alcippe poioicephala	4	R			
67. Leiothrichidae (babblers, laughingthrushes and allies)					
252 Rufous Babbler Arga subrufa	WG	4	R		
253 Jungle (Black-winged) Babbler Turdoides striata somervillei	WG	4	R		
254 Yellow-billed Babbler Turdoides affinis		4	S	X	
255 Waynaad Laughingthrush Garrulax delesserti	WG	4	R		
68. Sittidae (nuthatches, spotted creepers and wallcreeper)					
256 Velvet-fronted Nuthatch Sitta frontalis		4	R		
69. Sturnidae (starlings)					
257 Rosy Starling Pastor roseus		4	M		
258 Brahminy Starling Sturnia pagodarum		4	R		
259 Chestnut-tailed Starling Sturnia malabarica		4	R		
260 Malabar Starling Sturnia malabarica blythii		4	R		
261 Common Myna Acridotheres tristis		4	R		
Species	Endemism to WG	IUCN	WLPA (1972)	Status	Rarity
---	----------------	------	-------------	--------	--------
262 Jungle Myna Acridothers fuscus		4	R		
263 Southern Hill Myna Gracula indica		1	R		
70. Muscicapidae (chats ad flycatchers)					
264 Indian Robin Saxicoloides fulicatus		4	R		
265 Oriental Magpie Robin Copsychus saularis		4	R		
266 White-rumped Shama Kittacincla malabarica		4	R		
267 Dark-sided Flycatcher Muscicapa sibirica §		4	VG	X	
268 Asian Brown Flycatcher Muscicapa daurica		4	M		
269 Brown-breasted Flycatcher Muscicapa mutui		4	M		
270 Rusty-tailed Flycatcher Muscicapa ruficauda		4	M		
271 White-bellied Blue Flycatcher Cyornis pallidipes			R		
272 Tickell’s Blue Flycatcher Cyornis tickelliae			R		
273 Verditer Flycatcher Eumyias thalassinus		4	M		
274 Indian Blue Robin Larvivora brunnea		4	M		
275 Malabar Whistling Thrush Myophonus horsfieldii		4	R		
276 Red-breasted Flycatcher Ficedula parva		4	M		
277 Taiga Flycatcher Ficedula albicilla		4	M		
278 Ultramarine Flycatcher Ficedula superciliaris		4	M	X	
279 Black Redstart Phoenicurus ochruros		4	M	X	
280 Blue-capped Rock Thrush Monticola cinclorhynchach	4		M		
281 Blue Rock Thrush Monticola solitarius		4	M		
282 Siberian Stonechat Saxicola maurus		4	M		
283 Pied Bushchat Saxicola caprata		4	R		
71. Turdidae (thrushes)					
284 Orange-headed Thrush Geokichla citrina		4			
285 Indian Blackbird Turdus simillimus		4	R		
286 Tickell’s Thrush Turdus unicolor		4	M	X	
Appendix II. Wild Angiosperms of Bhagwan Mahavir National Park, Goa, India (adapted from Datar & Lakshminarasimhan 2013).

Abbreviations used for endemism: WG—Western Ghats | PI—peninsular India | AN—Andaman & Nicobar Islands | IN—India | SWI—southwestern India | NWG—northern Western Ghats | WI—western India | WSI—western and southern India | PCI—peninsular and central India | WPI—western peninsular India | Goa—Goa state.

Abbreviations used for Red Listed Species: CR—Critically Endangered | EN—Endangered | VU—Vulnerable

Species / Family	Local name	Endemism	IUCN
ACANTHACEAE			
Andrographis paniculata (Burm.f.) Wall. ex Nees	Chirayat	Endemic WG	
Asystasia dalzelliana Santapau			
Barkeria prattensis Santapau			
Barkeria priodontis L.			
Barkeria terminalis Nees			
Cynarospermum asperatum (Nees) Vollesen		Endemic PCI	
Dicliptera foetida (Forssk.) Blatt.			
Ecbolium ligustrinum (Vahl) Vollesen		Endemic PCI	
Eranthemum capense L. var. concanensis (T.Anderson ex C. B. Clarke) Santapau		Endemic WG	
Eranthemum roseum (Vahl) R.Br.		Endemic WG	
Gymnostachyum glabrum (Dalzell) T.Anderson			
Haploandras tentaculatus (L.) R.B.Majumdar			
Hemigraphis latebrosa (B.Heyne ex Roth) Nees			
Hygrophila pinnatifida (Dalzell) Sreem.			
Hygrophila ringens (L.) R.Br. ex Steud.			
Hygrophila schulli (Buch.-Ham.) M.R.Almeida & S.M.Almeida			
Justicia adhatoda L.	Adulsa		
Justicia procumbens L.			
Justicia simplex D.Don			
Justicia wynaadensis (Nees) Heyne ex T.Anderson		Endemic WG	
Lepidagathis cuspidata Nees			
Lepidagathis incerta Buch.-Ham. ex D.Don var. mucronata (Nees) C.B.Clarke ex T.Cooke			
Lepidagathis lutea Dalzell	Koche		
Lepidagathis prostrata Dalzell			
Nelsonia canescens (Lam.) Spreng.			
Phaulopsis imbricata (Forssk.) Sweet			
Pseuderanthemum malabaricum (C.B.Clarke) Gamble			
Rostellularia japonica (Thunb.) Ellis			
Rungia parviflora (Retz.) Nees ssp. pectinata (L.) L.H.Cramer			
Strobilanthes callosus Nees	Karaw	Endemic WI	
Strobilanthes ciliata Nees		Endemic WG	EN
Strobilanthes heyneanus Nees	Karaw	Endemic PI	
Strobilanthes integrifolia (Dalzell) Kuntze		Endemic WG	
Strobilanthes ixocephalus Benth.	Kaarw	Endemic WG	
ALISMATACEAE			
Wiesneria triandra (Dalzell) Micheli		EN	
AMARANTHACEAE			
Achyranthes aspero L.			
Alternanthera sessilis (L.) R.Br. ex DC.			
Amaranthus spinosus L.			
Species / Family	Local name	Endemism	IUCN
----------------------------------	------------	----------------	---------------
AMARYLLIDACEAE			
Celosia argentea L.			
Cyathula prostrata (L.) Blume			
ANACARDIACEAE			
Anacardium occidentale L.			
Buchanania lanzan Spreng.			
Holigarna arnottiana Hook.f.	Bibba	Endemic WG	
Holigarna grahamii (Wight) Kurz			
Lannea coromandelica (Houtt.) Merr.			
Mangifera indica L.	Amba		
ANCISTROCLADACEAE			
Ancistrocladus heyneanus Wall. ex J.Graham		Endemic WG	
ANNONACEAE			
Miliusa tomentosa (Roxb.) Finet and Gagnep.			
Orophea zeylanica Hook.f. & Thomson			
Polyalthia fragrans (Dalzell) Bedd.		Endemic WG	
Sageraea laurina Dalzell	Sadni	Endemic WG	
Uvaria narnum (Dunal) Blume			
ANTHERICACEAE			
Chlorophytum heynei Rottl. ex Baker			
APIACEAE			
Centella asiatica (L.) Urb.			
Pimpinella wallachiana (Miq. ex Hohen.) Gandhi			
APOCYNACEAE: SUBFAMILY ASCLEPIADOIDEAE			
Asclepias curassavica L.			
Calotropis gigantea (L.) R.Br.			
Cynanchum calliata Buch.-Ham. ex Wight			
Dregea volubilis (L. f.) Benth. ex Hook.f.			
Geniantus laurifolius (Roxb.) Hook.f.			
Gymnema sylvestre (Retz.) B. Br. ex Schult.			
Holostemma annulare (Roxb.) K.Schum.			
Hoya wightii Hook.f.		Endemic PI	
Tylolphora fasciculata Buch.-Ham. ex Wight & Arn.			
APOCYNACEAE: SUBFAMILY APOCYNOIDAE			
Aganosma cymosa (Roxb.) G.Don			
Anodendron paniculatum (Roxb.) A.DC.			
Chomemorpha fragrans (Moon) Alston			
Holanthena pubescens (Buch.-Ham) Wall. ex G.Don			
Ichnornapus frutescens (L.) W.T.Aiton			
Parsania alboflavescens (Dennst.) Mabb.			
Species / Family	Local name	Endemism	IUCN
------------------	------------	-----------	------
Wrightia arborea (Dennst.) Mabb.			
Wrightia tinctoria (Roxb.) R.Br.			
APOCYNACEAE: SUBFAMILY RAUVOLFIOIDEAE			
Alstonia scholaris (L.) R.Br.			
Carissa spinarum L.			
Rauvolfia serpentina (L.) Benth. ex Kurz			
Tabernemontana alternifolia L.	Endemic WSI		
APOCYNACEAE: SUBFAMILY PERIPLOCOIDEAE			
Cryptolepis buchananii R.Br. ex Roem. & Schult.			
Hermodiae indicus (L.) R.Br.			
ARAEACEAE			
Amorphophallus bulbifer (Roxb.) Blume			
Amorphophallus commutatus (Schott) Engl. var. commutatus			Endemic PI
Amorphophallus commutatus var. annomodensis Sivad. & Jaleel			Endemic Goa
Amorphophallus paconiifolius (Dennst.) Nicolson			
Ariopsis peltata Nimmo			
Arisema sivadasanii S.R.Yadav, K.S.Patil & Janarth.			Endemic WG
Arisema tortuosum (Wall.) Schott			
Cryptocoryne retrospiralis (Roxb.) Kunth			
Lagenandra avata (L.) Thwaites			
Pothos scandens L.			
Theriophonum dalzelli Schott.			Endemic WG
ARALIACEAE			
Schefflera elliptica (Blume) Harms			
ARECACEAE			
Arenga wightii Griff			Endemic WG
Calamus pseudotenuis Becc.			Wet
Calamus thwaitesii Becc.			Wet
Caryota urens L.			Bherli mad
ARISTROLOCHIACEAE			
Thottea siliquosa (Lam.) Ding Hou			
ASPARAGACEAE			
Asparagus racemosus Willd.			
ASTERACEAE			
Acanthospermum hispidum DC.			
Ageratum conyzoides L.			
Bidens biternata (Lour.) Merr. & Sherff			
Blumea belangeriana DC.			Endemic PI
Blumea membranacea DC.			
Blumea asyadonta DC.			
Blumea virens DC.			
Cyathocline purpurea (Buch.-Ham. ex D.Don) Kuntze			
Dichrocephala integrifolia (L.f.) Kuntze			
Eclipta prostrata (L.) L.			
Elephantopus scaber L.			
Species / Family	Local name	Endemism	IUCN
-----------------	------------	----------	------
Emilia sonchifolia (L.) DC.			
Erigeron sublyratus DC.			
Eupatorium odoratum L.			
Gnaphalium polycaulon Pers.			
Grangea maderaspatana (L.) Poir.			
Gymnura nitida DC.			
Phyllocephalum phylloleum (DC.) Narayana			
Phyllocephalum ritchiei (Hook.) Narayana		Endemic PI	
Senecio belgaumensis (Wight) C.B.Clarke			
Senecio gibsonii Hook.f.		Endemic WG	
Spilanthes paniculata Wall. ex DC.			
Symedrella nodiflora (L.) Gaertn.			
Tricholepis glaberrima DC.			
Tridax procumbens L.			
Vernonia cinerea (L.) Less.			
BALSAMINACEAE			
Impatiens acaulis Arn.			
Impatiens bahamina L.		Terda	
Impatiens lawii Hook.f. & Thomson			
Impatiens minor (DC.) Bennet		Endemic WG	
Impatiens oppositifolia L.			
Impatiens pulcherrima Dalzell		Endemic WG	
BEGONIACEAE			
Begonia crenata Drynad.			
Begonia trichocarpa Dalzell		Endemic NWG	
BIGNONIACEAE			
Heterophragma quadriloculare (Roxb.) K.Schum.		Kuski	
Oxyladium indicum (L.) Benth. ex Kurz			
Pajanelia longifolia (Willd.) K.Schum.		Padwal	
Stereospermum colaïs (Buch.-Ham. ex Dillw.) Mabb.			
BOMBACACEAE			
Bombax ceiba L.		Sawar	
Bombax insignis Wall.			
BORAGINACEAE			
Caltha procumbens L.			
Cynoglossum zeylanicum (Vahl ex Hornem.) Thunb. ex Lehm.			
Eckenia canarensis (C.B.Clarke) Gamble			
Paracaryopsis coelestina (Lindl.) R.R.Mill		VU	
Rotula aquatica Lour.			
BUDDLEJACEAE			
Buddleja asiatica Lour.			
BURMANNIACEAE			
Burmannia pusilla (Wall. ex Miers) Thwaites			
BURSERACEAE			
Canarium strictum Roxb.		Dhup	
Species / Family	Local name	Endemism	IUCN
-----------------	------------	----------------	-------
CAMPANULACEAE			
Lobelia alsinoides Lam.			
Lobelia nicotianaeefolia Roth ex Roem. & Schult.	Rantambhoku		
CAPPARACEAE			
Capparis rheedei DC.			Endemic WG
Cleome viscosa L.			
CARYOPHYLLACEAE			
Polycarpon prostratum (Forsk.) Asch. & Schweinf.			
CELASTRACEAE			
Celastrus paniculata Wild			Endemic PI & AN
Euonymus indicus B. Heyne ex Wall.			
Hippocratea grahamii Wight			
Hippocratea indica Willd.			
Hippocratea obtusifolia Roxb.			
Lophopteralum wightianum Arn.			
Maytenus rothiana (Walp.) Lobreau-Callen			
Salacia chinensis L.		Narbundi	
Salacia oblonga Wall ex Wight & Arn.			
CLEOMACEAE			
Crateva magna (Lour.) DC.			
CLUSIACEAE			
Calophyllum calaba L.		Wiray	Endemic WG
Calophyllum polyanthum Wall. ex Choisy			
Garcinia gummi-gutta (L.) N.Robson			
Garcinia indica (Thouars.) Choisy		Bhirand, Kokam, Aamsul	Endemic WG
Garcinia morella (Gaertn.) Desr.			
Mammeea suriga (Buch.-Ham. ex Roxb.) Kosterm.		Surangi	
Mesua ferrea L.		Nag-Chapha	
COLCHICACEAE			
Gloriosa superba L.			
Iphigineea indica (L.) A. Grey ex Kunth			
COMBRETACEAE			
Combretum latifolium Blume			
Getonia floribunda Roxb.		Uski	
Terminalia bellirica (Gaertn.) Roxb.			
Terminalia chebula Retz.			
Terminalia elliptica Willd.		Matti, Madat	
Terminalia paniculata Roth		Kindal	Endemic PI
COMMELINACEAE			
Commelina benghalensis L.			
Commelina forsskaliae Vahl			
Cyanotis fasciculata (B.Heyne ex Roth) Schult. & Schult.f.			
Cynotis cristata (L.) D.Don			
Floscopa scandens Lour.			
Murdannia dimorpha (Dalzell) G.Brückn.			

Species / Family

Local name

Endemism

IUCN
Species / Family	Local name	Endemism	IUCN
Murdannia japonica (Thunb.) Faden			
Murdannia semiteres (Dalzell) Santapau			
Murdannia simplex (Vahl) Brenan			
Murdannia spirata (L.) G. Brückn.			
Murdannia versicolor (Dalzell) G. Brückn.			
CONNARACEAE			
Connarus monocarpus L.	Ghagrya		
CONVALLARIACEAE			
Ophiopogon intermedius D. Don			
CONVOLVULACEAE			
Argyrea elliptica (Roth) Choisy			
Argyrea involucrata C.B. Clarke			
Erycibe paniculata Roxb.			
Evolulus nummularius (L.) L.			
Ipomoea campanulata L.			
Ipomoea nil (L.) Roth			
Ipomoea obscura (L.) Ker Gawl.			
Ipomoea sinensis (Desv.) Choisy			
Ipomoea violacea L.			
Merremia umbellata (L.) Hall f.		Washel	
Merremia vitifolia (Burm.f.) Hall f.			
CORNACEAE			
Mastixia arborea (Wight.) Bedd.			
COSTACEAE			
Costus speciosus (J.J. König) J. E. Sm.			
CRASSULACEAE			
Kalanchoe pinnata (Lam.) Pers.			
CUCURBITACEAE			
Coccinia grandis (L.) Voigt	Tendli		
Cucumis melo L.			
Momordica dioica Roxb. ex Willd.			
Mukia maderaspatana (L.) M. Roem.			
Solena amplexicaulis (Lam.) Gandhi			
Trichosanthes cucumerina L.		Kondal, Fagal	
Zanonia indica L.			
CYPERACEAE			
Carex caricina (D. Don) Gildyal & U. C. Bhattach. var. caricina			
Carex caricina (D. Don) Gildyal & U. C. Bhattach. var. glaucina (Boeck.) Gildyal & U. C. Bhattach.			Endemic PI
Cyperus haspan L. ssp. haspan			
Cyperus haspan L. ssp. juncoides (Lam.) Kuk.			
Cyperus iria L.			
Diplacrum caricinum R. Br.			
Eleocharis acutangula (Roxb.) Schult.			
Fimbristylis dichotoma (L.) Vahl			
Fimbristylis lawiana (Boeck.) J. Kern			
Environment impact assessments for projects in Bhagwan Mahavir WS & NP

Species / Family	Local name	Endemism	IUCN
Fimbristylis ovata (Burm.f.) J.Kern	Endemic WPI		
Fimbrystis woodrowii C.B.Clarke	Endemic WPI		
Hypolytrum nemorum (Vahl) Spreng.			
Kyllinga brevifolia Rottb.			
Lipocarpha squarrosa (L.) Goetgh.			
Mariscus compactus (Retz.) Bold.			
Mariscus panicuus (Rottb.) Vahl			
Pycreus flavidus (Retz.) T.Koyma			
Pycreus malabaricus C.BClarke			
Pycreus pumilus (L.) Nees			
Pycreus sanguinolentus (Vahl) Nees			
Rhynchospora wightiana (Nees) Steud.			
Sciria terrestreis (L.) Fassett			
DATISCACEAE			
Tetrameles nudiflora R. Br.			
DILLENIACEAE			
Dillenia pentagyna Roxb.	Karmal		
DIOCOSCACEAE			
Dioscorea bulbifera L.			
Dioscorea hispida Dennst.			
Dioscorea pentaphylla L.			
DIPTEROCARPACEAE			
Hopea ponga (Dennst.) Mabb.	Endemic WG		
DRACAENACEAE			
Dracaena terniflora Roxb.			
DROSERACEAE			
Drosera indica L.			
EBENACEAE			
Diospyros buxiolata (Blume) Hiern			
Diospyros candolleana Wight			
Diospyros crumenata Thwaites			
Diospyros montana Roxb.	Kalakonda		
Diospyros neigerensis (Wight) Kosterm.	Endemic PI		
Diospyros oocarpa Thw.			
Diospyros paniculata Dalzell	Endemic IND		
Diospyros prurients Dalzell			
ELAEAGNACEAE			
Elaeagnus conferta Roxb.			
ERIOCAULACEAE			
Eriocaulon dalzellii Koern.	Endemic WG		
Eriocaulon euryeleps Koern.	Endemic WG		
Eriocaulon heterolepis Steud.	Endemic Wi		
Eriocaulon lanceolatum Miq. ex Koern.	Endemic WG		
Eriocaulon robusto-brownianum Ruhland			
Eriocaulon sexangulare L.			
Species / Family	Local name	Endemism	IUCN
-----------------	------------	----------	------
Eriocaulon stellulatum Koern.	Eriocaulon stellulatum Koern.	Endemic WG	
Eriocaulon xerantherum Mart.	Eriocaulon xerantherum Mart.	Endemic WG	
Eriocaulon poly spatense R.Ansari & N.P.Balakr.	Eriocaulon poly spatense R.Ansari & N.P.Balakr.	Endemic WG	
EUPHORBIAEAE s.l.	**EUPHORBIAEAE** s.l.		
Actephila excelsa (Dalzell) Mull. Arg.	Actephila excelsa (Dalzell) Mull. Arg.		
Agrostistachys indica Dalzell	Agrostistachys indica Dalzell		
Antidesma acidum Retz.	Antidesma acidum Retz.		
Antidesma menasu (Tul.) Mull. Arg.	Antidesma menasu (Tul.) Mull. Arg.		
Aporusa cardioasperma (Gaertn.) Merr.	Aporusa cardioasperma (Gaertn.) Merr.		
Boliospermum montanum (Willd.) Mull. Arg.	Boliospermum montanum (Willd.) Mull. Arg.		
Bloxia andamanica (Kurz) Hook.f. ssp. demudata (Benth.) N.P.Balakr. & Chakrab.	Bloxia andamanica (Kurz) Hook.f. ssp. demudata (Benth.) N.P.Balakr. & Chakrab.	Endemic WG	
Breynia retusa (Dennst.) Alston	Breynia retusa (Dennst.) Alston		
Bridelia stipularis Blume	Bridelia stipularis Blume		
Croton persimilis Mull. Arg.	Croton persimilis Mull. Arg.		
Dimorphocalyx globelus Thwaites var. lawianus (Mull. Arg.) Chakrab. & N.P.Balakr.	Dimorphocalyx globelus Thwaites var. lawianus (Mull. Arg.) Chakrab. & N.P.Balakr.	Endemic WG	
Drypetes venusta (Wight) Pax & K.Hoffm.	Drypetes venusta (Wight) Pax & K.Hoffm.		
Euphorbia erythroclada Boiss.	Euphorbia erythroclada Boiss.	Endemic PCI	
Euphorbia hirta L.	Euphorbia hirta L.		
Euphorbia ligularia Roxb.	Euphorbia ligularia Roxb.		
Euphorbia notoptera Boiss.	Euphorbia notoptera Boiss.	Endemic WG	
Falconeria insignis Royle	Falconeria insignis Royle		
Glochidion hohenackeri (Mull.-Arg.) Bedd.	Glochidion hohenackeri (Mull.-Arg.) Bedd.	Endemic NWG	
Glochidion zeylanicum (Gaertn.) A.Juss.	Glochidion zeylanicum (Gaertn.) A.Juss.		
Homonaia riparia Lour.	Homonaia riparia Lour.		
Jatropha curcas L.	Jatropha curcas L.		
Macaranga peltata (Roxb.) Mull. Arg.	Macaranga peltata (Roxb.) Mull. Arg.	Chanda	
Mallotus ferrugineus (Roxb.) Mull. Arg.	Mallotus ferrugineus (Roxb.) Mull. Arg.		
Mallotus philippensis (Lam.) Mull. Arg.	Mallotus philippensis (Lam.) Mull. Arg.		
Mallotus resinus (Blanco) Merr. var. stenanthus (Mull. Arg.) Susila & N.P.Balakr.	Mallotus resinus (Blanco) Merr. var. stenanthus (Mull. Arg.) Susila & N.P.Balakr.	Endemic WG	
Margaritaria indica (Dalzell) Airy Shaw	Margaritaria indica (Dalzell) Airy Shaw		
Microstachys chamaelea (L.) Mull. Arg.	Microstachys chamaelea (L.) Mull. Arg.		
Phyllanthus amarus Schumach. & Thonn.	Phyllanthus amarus Schumach. & Thonn.		
Phyllanthus amblicola L.	Phyllanthus amblicola L.	Awila	
Phyllanthus juniperinus Mull. Arg.	Phyllanthus juniperinus Mull. Arg.		
Phyllanthus simplex Retz.	Phyllanthus simplex Retz.		
Phyllanthus urinaria L.	Phyllanthus urinaria L.		
Tragia praetervis Chakrab. & N.P.Balakr.	Tragia praetervis Chakrab. & N.P.Balakr.		
FLACOURTIACEAE	**FLACOURTIACEAE**		
Casearia ovata (Lam.) Wild.	Casearia ovata (Lam.) Wild.		
Flacourtia montana J.Graham	Flacourtia montana J.Graham	Chaper	Endemic WG
Homalium ceylanicum (Gardn.) Benth.	Homalium ceylanicum (Gardn.) Benth.		
Hydrocarpus pentandrus (Buch.-Ham.) Oken	Hydrocarpus pentandrus (Buch.-Ham.) Oken	Kastal	Endemic WG
GENTIANACEAE	**GENTIANACEAE**		
Canscora diffusa (Vahl) R.Br. ex Roem & Schult.	Canscora diffusa (Vahl) R.Br. ex Roem & Schult.		
Species / Family	Local name	Endemism	IUCN
-----------------	------------	----------	------
Canscora perfoliata Lam.		Endemic WG	
Exacum pumilum Griseb.			
Exacum tetrogonum Roxb.			
Hoppea fastigiata (Griseb.) C.B.Clarke			
GESNERIACEAE			
Rhynchoglossum notonianum (Wall.) Burtt			
Rhynchoglossum obliquum Blume var. parviflorum C.B.Clarke			
HYCINTHACEAE			
Ledebouria revoluta (L.f.) Jessop			
HYDROCHARITACEAE			
Blyxa auberti Rich.			
Vallisneria spiralis L.			
HYACINTHACEAE			
Curculigo archioides Gaertn.			
ICACINACEAE			
Gomphandra tetrandra (Wall.) Sleumer			
Nothapodytes nimmoniana (J. Graham) Mabb.			
Sarcostigma kleinii Wight & Arn.			
LAMIACEAE			
Anisomeles indica (L.) Kuntze		Endemic WG	
Callicarpa tomentosa (L.) L.			
Clerodendrum infortunatum L.			
Colebrookea oppositifolia Sm.			
Gmelina arborea Roxb.	Shiwan		
Hyptis capitata Jacq.			
Hyptis suaveolens (L.) Poit.			
Leucas biflora (Vahl) R. Br. ex Sm.			
Leucas ciliata Bentham			
Leucas lavendulifolia Sm.			
Leucas stelligera Wall.			
Platostoma hispidum (L.) A.J.Paton			
Pogostemon paniculatus (Wild.) Bentham			
Pogostemon purpurascens Dalzell			
Premna coriacea C.B.Clarke			
Rotheca serrata (L.) D.A.Steane & Mabb.			
Scutellaria discolor Colebr.			
Tectona grandis L.f.	Sagon		
Vitex altissima L.f.	Bailado		
Vitex leucayylon L.f.			
Vitex negundo L.			
LAURACEAE			
Actinodaphne angustifolia (Blume) Nees			
Beilschmiedia dolzellii (Meisn.) Kosterm.	Miryo		
Cinnamomum nitidum (Roxb.) Hook.			
Cinnamomum sulphuratum Nees	Tikki		

17430
Species / Family	Local name	Endemism	IUCN
Cinnamomum verum J.Presl	Tikki		
Cryptocarya lawsonii Gamble		Endemic WG	
Litsea coryacea (Heyne ex Meisn.) Hook.f.		Endemic WG	
Litsea ghatsha C.J.Saldanha		Endemic WG	
Persea macrantha (Nees) Kosterm.	Olamb		
LECYTHIDACEAE			
Careya arborea Roxb.	Kumyo		
LEAEACEAE			
Lecia asiatica (L.) Ridsdale			
Lecia indica (Burman.) Merr.	Dino		
LEGUMINOSAE: SUBFAMILY CAESALPINIOIDEAE			
Bauhinia malabarica Roxb.			
Bauhinia racemosa Lam.	Apto		
Caesalpinia mimosoides Lam.		Pansi	
Cassia fistula L.		Bayo	
Chamaecrista absus (L.) H.S.Irwin & Barneby			
Moullava spicata (Dalzell) Nicolson	Shamachi Wal	Endemic PI	
Saraca asoca (Roxb.) W.J.de Wilde	Ashok		
Seno hirsuta (L.) H.S.Irwin & Barneby	Taykolo		
Seno obtusifolia (L.) H.S.Irwin & Barneby			
Seno tora (L.) Roxb.			
LEGUMINOSAE: SUBFAMILY MIMOSOIDEAE			
Acacia caesia (L.) Willd.			
Acacia chundra (Roxb. & Rottl.) Willd.			
Acacia concinna (Willd.) DC.	Shikekai		
Acacia pennata (L.) Willd.			
Acacia torta (Roxb.) Craib.			
Albizia chinensis (Osbeck.) Merr.			
Albizia odoratissima (L.f.) Benth.			
Entada rheeduc Spreng.	Garmbi		
Mimosa pudica L.			
Xylia xylocarpa (Roxb.) Taub.	Jambha		
LEGUMINOSAE: SUBFAMILY PAPilionOIDEAE			
Abrus pulchellus Wall. ex Thwaites	Gunj		
Aeschynomene indica L.			
Alysicarpus bupleurifolius (L.) DC.			
Alysicarpus glumaceus (Vahl.) DC.			
Butea monosperma (Lam.) Taub.	Palas		
Cajanus lineatus (Wight & Arn.) Maesen			
Crotalaria filipes Benth.		Endemic WG	
Crotalaria lutescens Dalzell		Endemic WG	
Crotalaria pallida Alton			
Crotalaria prostrata Rottl.			
Crotalaria retusa L.			
Dalbergia harrida (Dennst.) Mabb.		Endemic WG	
Species / Family	Local name	Endemism	IUCN
-----------------	------------	-----------	------
Dalbergia latifolia Roxb.	Sisam	Endemic PI	
Dalbergia rubiginosa Roxb.			
Dendrobium triangulare (Retz.) Schindl.			
Derris heyneana (Wight an&d Arn.) Benth.			
Desmodium heterocarpon (L.) DC.			
Desmodium laxiflorum DC.			
Desmodium motorium (Houtt.) Merr.			
Desmodium triflorum (L.) DC.			
Erithrina stricta Roxb.	Pangaro		
Flemingia macrophylla (Willd.) Kuntze ex Merr.			
Flemingia strobilifera (L.) R.Br. ex W.T.Aiton			
Flemingia tuberosa Dalzell			
Geissaspe cristata Wight & Arn.			
Geissaspis tenella Benth.			
Indigofera dalzellii T.Cooke			
Indigofera prostrata Willd.			
Mucuna monosperma DC.			
Paradoxus canariensis (Dalzell) Adema			
Pangamia pinnata (L.) Pierre	Karanji		
Sesbania bispinosa (Jacq.) W.Wight			
Smithia bigemina Dalzell			
Smithia conferta J.E.Sm			
Smithia saluginea Hance			
Spatholobus parviflorus (Roxb. ex DC.) Kuntze			
Spatholobus purpureus Benth. ex Prain			
Tadehagi triquetrum (L.) H.Ohashi			
Tephrosia candida (Roxb.) DC.			
Tephrosia coccinea Wall.		Endemic PI	
Teramnus labialis (L.) Spreng.			
Uraria rufescens (DC) Schindl.			
Vigna vexillata (L.) A.Rich.			
LENTIBULARIACEAE			
Utricularia caerulea L.			
Utricularia graminifolia Vahl			
Utricularia lauzulina P.Taylor			
Utricularia purpurascens J.Graham			
Utricularia reticulata Sm.			
Utricularia striatula Sm.			
Utricularia uliginosa Vahl.			
LOGANIACEAE			
Strychnos nux-vomica L.	Kaja		
Strychnos minor Dennst.			
LORANTHACEAE			
Dendrophthoe falcata (L.f.) Blume			
Elytranthe capitellata (Wight & Arn.) Engl.			
Species / Family	Local name	Endemism	IUCN
----------------------------	--------------	----------	------
Scurrula parasitica L.			
Taxillus tomentosus (B.Heyne ex W.Roth) Tiegh.			
Tolypanthus lagensifer (Wight) Tiegh.			
LYTHRACEAE			
Lagerstroemia microcarpa Wight	Nana		
Lagerstroemia parviflora Roxb.			
Rotala densiflora (Roth ex Roem. & Schult.) Koehne			
Rotala rotundifolia (Buch.-Ham. ex Roxb.) Koehne			
Woodfordia fruticosa (L.) Kurz	Dhayti		
MALPIGHIACEAE			
Aspidopterys canarensis Dalzell		Endemic WG	CR
MALVACEAE			
Abelmoschus manihot (L.) Medik.	Ambadi		
Abutilon persicum (Burm.f.) Merr.			
Daceshistia trilobata Wight	Endemic WG		
Hibiscus hirtus L.			
Hibiscus hispidissimus Griff.			
Kydia calycina Roxb.			
Sida acuta Burm.f.			
Sida cordata (Burm.f.) Borss.			
Sida rhombifolia L.	Tupkadi		
Theesperia lampas (Cav.) Dalzell ex Dalzell & A.Gibson			
Lireno lobata L.			
MARANTACEAE			
Schumannianthus virgatus (Roxb.) Rolfe			
MELASTOMATACEAE			
Melastoma malabathricum L.			
Memecylon talbotianum D.Brandis			
Memecylon terminale Dalzell	Endemic PI		
Memecylon umbellatum Burm.f.			
Memecylon wightii Thwaites			
Osbeckia muralis Naud.			
MELIACEAE			
Aglaia eleagnoides (A.Juss.) Benth.			
Aglaia lowii (Wight) C.J. Saldanha ex Ramamoorthy	Maharsangal		
Chukrasia tabularis A.Juss.			
Naregamia alata Wight & Arn.	Pitmado		
Toona ciliata M.Roem.			
Trichilia connaroides (Wigh & Arn.) Bentv.			
Turraea villosa A.W.Benn.			
Walsura trifoliata (A.Juss.) Harms			
MENISPERMACEAE			
Anamiria cocculus (L.) Wight & Arn.			
Cocculus hirsutus (L.) Theob.			
Cyclea peltata (Lam.) Hook.f. & Thomson			
Species / Family	Local name	Endemism	IUCN
----------------	------------	----------	------
Diploclisia glaucescens (Blume) Diels	Ramwel, Ramrukhi		
Stephania elegans Hook. f. & Thomson			
Stephania japonica (Thunb.) Miers			
MOLLUGINACEAE			
Gilinus oppositifolius (L.) A.DC.			
MORACEAE			
Artocarpus gomezianus Wall. ex Trecul ssp. zeylanicus Jarrett	Patphanas		
Artocarpus heterophyllus Lam.	Patphanas		
Artocarpus hirsutus Lam.	Patphanas		
Ficus arnottiana (Miq.) Miq.	Payar		
Ficus benghalensis L.	Wadi		
Ficus callosa Willd.			
Ficus drupacea Thunb. var. pubescens (Roth) Corner			
Ficus exasperata Vahl			
Ficus heterophylla L.f.			
Ficus hispida L.f.	Karwat		
Ficus microcarpa L.f.	Nandangol		
Ficus nervosa Heyne ex Roth			
Ficus racemosar L.	Rumad		
Ficus tinctoria G.Forst. ssp. parasitica (Koenig ex Willd.) Corner			
Ficus tsjahela Burm.f.	Kel		
MUSACEAE			
Ensete superbum (Roxb.) Cheesman	Endemic WG		
Musa x paradisiaca L.	Keli		
MYRISTICACEAE			
Knema attenuata (Wall. ex Hook.f. & Thomson) Warb.	Endemic WG		
Myristica malabarica Lam.	Endemic WG		
MYRSINACEAE			
Ardisia solanacea Roxb.	Bugadi		
Embelia tseriam-cottam (Roem. & Schult.) DC.			
Maesa indica (Roxb.) DC.			
MYRTACEAE			
Eugenia mooniana Wight			
Eugenia radburghi DC.			
Syzygium caryophyllatum (L.) Alston	Bhirand		
Syzygium cumini (L.) Skeels	Bhirand		
Syzygium hemisphericum (Wight) Alston	Zamlo		
Syzygium laetum (Buch.-Ham.) Gandhi	Endemic SWI		
Syzygium salicifolium (Wight) J.Graham	Endemic SWI		
Syzygium zeylanicum (L.) DC.			
OCHNACEAE			
Ochna obtusata DC.			
OLACACEAE			
Olax imbricata Roxb.			
Species / Family	Local name	Endemism	IUCN
-----------------	------------	----------	------
OLEACEAE			
Jasminum coarctatum Roxb.			
Jasminum malabaricum Wight		Endemic PI	
Jasminum multiflorum (Burm.f.) Andr.			
Jasminum ritchiei C.B.Clarke			
Ligustrum perrottetii A.DC.		Endemic WG	
Olea dioica Roxb.			
Schrebera sweitzenoides Roxb.			
ONAGRACEAE			
Ludwigia hyssopifolia (G.Don) Exell			
Ludwigia octovalvis (Jacq.) P.H.Raven ssp. octovalvis			
Ludwigia octovalvis (Jacq.) P.H.Raven ssp. sessiliflora (Micheli) P.H.Raven			
ORCHIDACEAE			
Acampe praemorsa (Roxb.) Blatt. & McCann			
Aerides crispa Lindl.		Endemic WG	
Aerides maculosa Lindl.		Endemic PI	
Aerides ringens (Lindl.) C.E.C.Fisch.			
Bulbophyllum neilgherrense Wight		Bendli	Endemic WG
Cleisostoma tenuefolium (L.) Garay			
Conchidium microchilos (Dalzell) Rauschert		Endemic PI	
Cottonia peduncularis (Lindl.) Rchb.f.			
Cymbidium aloifolium (L.) Sw.			
Dendrobium barbatulum Lindl.		Endemic WG	
Gastrochilus flabelliformis (Blatt. & McCann) C.J.Saldanha		Endemic WG	
Habenaria diphylla (Nimmo) Dalzell			
Habenaria heyneana Lindl.		Endemic PI	
Habenaria longicorniculata J.Graham		Endemic PI	
Habenaria marginata Coleb.			
Habenaria multicaudata Sedgew.		Endemic WG	EN
Habenaria plantaginea Lindl.			
Liparis deflexa Hook.f.			
Liparis nervosa (Thunb.) Lindl.			
Luisia tenuefolia Blume		Endemic WG	
Malaxis versicolor (Lindl.) Abeyw.			
Nervilia aragoana Gaudich.			
Oberonia brachyphylla Blatt. & McCann		Endemic WG	VU
Pecteilis gigantea (J.E.Sm.) Raf.			
Peristylus plantagineus (Lindl.) Lindl.			
Pholidota imbricata Hook.			
Porpax jerdoniana (Wight) Rolfe		Endemic WG	
Porpax reticulata Lindl.			
Rhynchostylis retusa (L.) Blume			
Smithsonia viridiflora (Dalzell) C.J.Saldanha			
Tropidia angulosa (Lindl.) Blume			
Vanda tessellata (Roxb.) Hook. ex G.Don			
Species / Family	Local name	Endemism	IUCN
----------------------------------	-----------------------	----------	------
OROBANCHACEAE			
Vanda testacea (Lindl.) Rchb.			
Zeuxine longilabris (Lindl.) Trim			
OXALIDACEAE			
Biophytum sensitivum (L.) DC.			
Oxisia corniculata L.			
PANDANACEAE			
Pandanus odorifer (Forsk.) Kuntze			
PAPAVERACEAE			
Argemone mexicana L.			
PASSIFLORACEAE			
Adenia hondola (Gaertn.) J.Wilde	Salkando		
PEDALIACEAE			
Sesamum orientale L.			
PIPERACEACE			
Peperomia pellucida (L.) Humb.			
Piper argyrophyllum Miq.	Miri		
Piper nigrum L.			
PITTOSPORACEAE			
Pittosporum dasycaulon Miq.			
POACEAE			
Apluda mutica L.			
Arundinella leptochloa (Nees ex Steud.) Hook.f.			
Arundinella metzii Hocht ex Miq.			
Arundinella pumila (Hochst. ex A.Rich.) Steud.			
Bombusia bambos (L.) Voss			
Brochia ramosa (L.) Stapf			
Capillipedium filiculme (Hook.f.) Stapf			
Centotheca lappacea (L.) Desv.			
Cynodon dactylon (L.) Pers.			
Cyrtococcum oxyphyllum (Hochst. ex Steud.) Stapf			
Dendrocalamus strictus (Roxb.) Nees			
Dichanthium annulatum (Forsk.) Stapf			
Dimeria stapfiana C.E.Hubb. ex Pilger			
Echinochloa colona (L.) Link			
Eragrostis gangetica (Roxb.) Steud.			
Eragrostis unioloides (Retz.) Nees ex Steud.			
Eulalia trispicata (Schult.) Henrard			
Garnotia arborum Stapf. ex T.Cooke			
Glyphochloa acuminata (Hack.) Clayton			
Glyphochloa veldkampii M.A.Fonseca & Janarth.			
Isachne globosa (Thunb.) Kuntze			
Ischaemum barbatum Retz.			
Ischaemum dalzellii Stapf. ex Bor			
Species / Family	Local name	Endemism	IUCN
-----------------	------------	----------	------
Ischaemum semisagittatum Roxb.			
Jansenella griffithiana (C.Muell.) Bor			
Ochlandra talboti Brandis			
Oplismenus burmannii (Retz.) P.Beaug.			
Oplismenus compositus (L.) P.Beaug.			
Panicum antidotale Retz.			
Paspalum canarae (Steud.) Veldk.			
Paspalum scrobiculatum L.			
Pennisetum pedicellatum Trin.			
Pennisetum polystachion (L.) Schult.			
Polytrias indica (Houtt.) Veldkamp			
Pseudanthistiria heteroclita (Roxb.) Hook.f.			
Pseudoxytenanthera stockii (Munro) T.Q.Nguyen			
Sacciolepis indica (L.) A.Chase			
Setaria pumila (Poir.) Roem. & Schult.			
Spodiopogon rhizophorus (Steud.) Pilger			
Themeda triandra Forssk.			
PODOSTEMACEAE			
Dalzellia ceylanica (Gardn.) Wight			
Zeylanidium sessile (Willis) C.D.K.Cook & Rutsh.			
POLYGALACEAE			
Polygala elongata Klein ex Willd.		Endemic IND	
Salomonia ciliata (L.) DC.			
POLYGONACEAE			
Persicaria glabra (Willd.) M.Gomez			
Persicaria auriculata (Meissn.) S.K.Dixit, B.Datt & G.P.Roy			
Polygonum plebeium R.Br.			
PONTEDERIACEAE			
Monochoria vaginalis (Burm.f.) C.Presl			
PORTULACACEAE			
Portulaca oleracea L.		Gungune	
RANUNCULACEAE			
Clematis gauriana Roxb. ex DC.			
Naravelia zeylanica (L.) DC.			
RHIZOPHORACEAE			
Carallia brachiata (Lour.) Merr.		Phanshi	
RHAMNACEAE			
Gauania microcarpa DC.			
Scutia myrtina (Burm.f.) Kurz.			
Smythea bombaiensis (Datzeil) S.P.Banerjee & P.K.Mukh.		Endemic WG	
Ventilago denticulata Willd.		Endemic IND	
Ziziphus mauritiana Lam.			
Ziziphus aenopia (L.) Mill.			
Ziziphus rugosa Lam.		Churan	
Ziziphus xylopýra (Retz.) Willd.			
Species / Family	Local name	Endemism	IUCN
-----------------	------------	----------	------
RUBIACEAE			
Argostemma courtallense Arn.		Endemic WG	
Argostemma verticillatum Wall.			
Canthium rheedi DC.			
Catunaregma spinosa (Thunb.) Tirveng.		Gela	
Chassalia curviflora (Wall.) Thwaites var. ophioxyloides (Wall.) Deb & B.Krishna			
Discospermum sphaerocarpum Dalzell ex Hook.f.		EN	
Haldina cordifolia (Roxb.) Ridsdale		Hedu	
Hedyotis auricularia L.			
Hedyotis corymbosa (L.) Lam.			
Hedyotis herbacea L.			
Hedyotis trinervia (Retz.) Roem. & Schult.			
Hymenodictyon abovatum Wall.		Endemic IND	
Ixora brachiata Roxb.		Endemic IND	
Ixora coccina L.		Pentkul	
Ixora elongata B.Heyne ex G.Don			
Ixora malabarica (Dennst.) Mabb.			
Ixora nigricans R. Br. Wight & Arn.			
Meina laxiflora Robyns			
Mitragyna parvifolia (Roxb.) Korth.			
Mussoenda glabrata (Hook.f.) Hutch. ex Gamble		Sharwad	Endemic PI
Mussoenda laxa (Hook.f.) Hutch. ex Gamble		Sharwad	Endemic PI
Neanotis rheedei (Wall. ex Wight & Arn.) W.H.Lewis		Endemic WI	
Neanotis subtulis (Miq.) Govaerts		Endemic WG	
Neolamarckia cadamba (Roxb.) Bosser		Kadamb	
Neanouclea purpurea (Roxb.) Merr.			
Ophiocarpos rugosa Wall. var. prostrata (D. Don) Deb & D.C.Mondal			
Oxyceros rugulosus (Thw) Tirveng.			
Pavetta crassicaulis Bremek.			
Pavetta indica L. var. tomentosa (Roxb. ex Sm.) Hook.f.			
Psychotria dalzellii Hook.f.		Endi	Endemic WG
Psychotria umbellata (Wight) Bridson		Tupya	
Rubia cordifolia L.			
Saprosma glomeratum (Gardn.) Bedd.			Endemic PI
Spermacoce articularis L.			
Spermacoce acymoides Burm.f.			
Spermacoce pusillo Wall.			
Tomilinadia uliginosa (Retz.) Tirveng. & Sastre			
Wendlandia thyrsoida (Roth) Steud.			Endemic WG
RUTACEAE			
Atlantia racemosa Wight		Malkadlimbi	
Atlantia wightii Tanaka		Endemic WG	
Glycosmis pentaphylla (Retz.) DC.		Menaka	
Luvunga eleutherandra Dalzell		Endemic WG	
Milicope lunu-ankenda (Gaertn.) T.G.Hartely			
Species / Family	Local name	Endemism	IUCN
-----------------	------------	----------	------
Murraya koenigii (L.) Spreng.	Karpil		
Murraya paniculata Jack			
Paramigna monophyllos Wight			
Tododia asiatica (L.) Lam.			
Zanthoxylum rhetsa (Roxb.) DC.	Tirphal		
SANTALACEAE			
Osyris quadripartita Salzm. ex Decne.			
SAPINDACEAE			
Allaphylos cobbe (L.) Raeusch.			
Dimocarous longan Lour.			
Harpullia arborea (Blanco) Radlk.			
Lepisanthus tetraphyilla (Vahl) Radlk.			
Schleichera oleosa (Lour.) Oken	Koshim		
SAPOTACEAE			
Chrysophyllum rosapurhi G.Don			
Mimusops elengi L.	Owal		
Palauquium ellipticum (Dalzell) Bail.			
Xantolis tomentosa (Roxb.) Raf.	Kumbal		
SCROPHULARIACEAE			
Angelonia gardneri Hook.			
Centranthera indica (L.) Gamble			
Dopatrium junceum (Roxb.) Buch.-Ham. ex Benth.			
Lindernia antipoda (L.) Alston.			
Lindernia caespitosa (Blume) Panigrahi			
Lindernia citriata (Closm.) Pennell			
Lindernia crustacea (L.) F. Muell.			
Lindernia multiflora (Roxb.) Mukerjee			
Lindernia oppositifolia (Retz.) Mukerjee			
Mecardonia procumbens (Mill.) Small			
Rhamphicarpa longiflora (Am.) Benth.	Endemic WG		
Scoparia dulcis L.			
Striga asiatica (L.) Kuntze			
Striga gesnerioides (Willd.) Vatke ex Engl.			
Torenia indica C.J.Saldanha	Endemic WG		
Torenia violacea (Azalo ex Blanco) Pennell			
SMILACACEAE			
Smilax asperrima L.			
SOLANACEAE			
Lycianthes laevis (Dunal) Bitter			
Physalis minima L.			
Solanum anguivi Lam.			
STERCULIACEAE			
Helicteres isora L.	Kewan		
Melochia corchorifolia L.	Mothi Daman		
Species / Family	Local name	Endemism	IUCN
-----------------	------------	----------	------
Sterculia guttata Roxb. ex DC.			
SYMPOCACEAE			
Symlocos cochinchenensis (Lour.) S. Moore ssp. laurina (Retz.) Noot.			
Symlocos racemosa Roxb.			
THYMELAEACEAE			
Gnidia glauca (Fresen.) Gilg.			
TILIACEAE			
Corchorus capsularis L.			
Corchorus olitorius L.			
Grewia nervosa (Lour.) Panigrahi	Asoli, Chwar		
Grewia serrulata DC.	Chopdi		
Grewia tiliifolia Vahl	Dhaman		
Triumfetta rhomboidea Jacq.			
ULMACEAE			
Celtis timorensis Spanoghe			
Holopetleia integrifolia (Roxb.) Planch.	Wawal		
Trema orientalis (L.) Blume			
URTIACEAE			
Boehmeria macrophylla Hornem.			
Debregeasia longifolia (Burm.f.) Wedd.			
Laportea interrupta (L.) Chew			
Pilea microphylla (L.) Liebm.			
VERBENACEAE			
Lantana camara L.			
VISCACEAE			
Viscum monoicum Roxb. ex DC.			
VITACEAE			
Ampelocissus indicus (L.) Planch.			
Ampelocissus latifolia (Roxb.) Planch.			
Caryatia tenuifolia (Wight and Arn.) Gagnep.			
Caryatia trifolia (L.) Domin			
Cissus elongata Roxb.			
Cissus javanica DC.			
Cissus rependo Vahl	Palkonde		
Cyphostemma auriculatum (Roxb.) P.Singh & B.V.Shetty			
Tetrastigma sulcatum (M.A.Lawson) Gamble			
ZINGIBERACEAE			
Alpinia galanga (L.) Willd.			
Curcuma decipiens Dalzell	Endemic PI		
Curcuma zanthorrhiza Roxb.			
Kaempferia scaposa (Nimmo) Benth.	Endemic WG		
Zingiber neesanum (J. Graham) Ramamoorthy	Endemic PI		
Zingiber nimmonii (J. Graham) Dalzell	Endemic PI		
Zingiber zerumbet (L.) Roxcoe ex J.E.Sm.			
Appendix III. Checklist of mammal species in Bhagwan Mahavir Sanctuary derived from open-source lists, IUCN Red List database and field-guides on Indian mammals

Order	Family	Species	Common name	IUCN Red List Category	WPA schedule	
1	Carnivora	Felidae	Panthera tigris	Bengal Tiger	Endangered	I
2	Carnivora	Felidae	Panthera pardus	Common Leopard	Vulnerable	I
3	Carnivora	Felidae	Prionailurus bengalensis	Leopard Cat	Least Concern	I
4	Carnivora	Felidae	Prionailurus rubiginosus	Rusty-spotted Cat	Near Threatened	I
5	Carnivora	Felidae	Felis catus	Jungle Cat	Least Concern	II
6	Carnivora	Canidae	Cuon alpinus	Dhole	Endangered	II
7	Carnivora	Canidae	Canis aureus	Golden Jackal	Least Concern	II
8	Carnivora	Ursidae	Melursus ursinus	Sloth Bear	Vulnerable	I
9	Carnivora	Herpestidae	Herpestes/ Urva smittii	Stripe-necked Mongoose	Least Concern	II
10	Carnivora	Herpestidae	Herpestes/ Urva smithii	Ruddy Mongoose	Least Concern	II
11	Carnivora	Herpestidae	Urva edwardsii	Indian Grey Mongoose	Least Concern	II
12	Carnivora	Mustelidae	Aonyx cinereus	Small-clawed Otter	Vulnerable	I
13	Carnivora	Mustelidae	Lutrogale perspicillata	Smooth-coated Otter	Vulnerable	II
14	Carnivora	Viverridae	Vivericula indica	Small Indian Civet	Least Concern	II
15	Carnivora	Viverridae	Paradoxurus hermaphroditus	Common Palm Civet	Least Concern	I
16	Carnivora	Viverridae	Paradoxurus jerdoni	Brown Palm Civet	Least Concern	II
17	Cetartiodactyla	Bovidae	Bos gaurus	Gaur	Vulnerable	I
18	Cetartiodactyla	Bovidae	Tetracerus quadricornis	Four-horned antelope	Vulnerable	I
19	Cetartiodactyla	Cervidae	Rusa unicolor	Sambar	Vulnerable	I
20	Cetartiodactyla	Cervidae	axis axis	Chital	Least Concern	III
21	Cetartiodactyla	Cervidae	Muntiacus vaginalis	Northern Red Muntjac	Least Concern	III
22	Cetartiodactyla	Tragulidae	Moschiola indica	Indian Chevrotain/ Mouse deer	Least Concern	I
23	Cetartiodactyla	Suidae	Sus scrofa	Wild Boar	Least Concern	III
24	Pholidota	Manidae	Manis crassicaudata	Indian Pangolin	Endangered	I
25	Primates	Cercopithecidae	Colobus guereza	Black-footed Gray Langur	Vulnerable	II
26	Primates	Cercopithecidae	Macaca radiata	Bonnet Macaque	Least Concern	II
27	Primates	Cercopithecidae	Loris lydekkerianus	Slender Loris	Least Concern	I
28	Lagomorpha	Leporidae	Lepus nigricollis	Indian Hare	Least Concern	IV
29	Rodentia	Sciuridae	Ratufa indica	Indian Giant Squirrel	Least Concern	II
30	Rodentia	Sciuridae	Petaurista philippensis	Indian Giant Gliding Squirrel	Least Concern	II
31	Rodentia	Sciuridae	Funambulus tristriatus	Western Ghats Striped Squirrel	Least Concern	IV
32	Rodentia	Sciuridae	Funambulus palmarum	Common Palm Squirrel	Least Concern	IV
33	Rodentia	Hystricidae	Hystrix indica	Indian Crested Porcupine	Least Concern	IV
34	Rodentia	Muridae	Tatera indica	Indian Gerbil	Least Concern	V*
35	Rodentia	Muridae	Vandeloria olaracea	Assam Long-tailed Climbing Mouse	Least Concern	V*
36	Rodentia	Muridae	Mus musculus	House Mouse	Least Concern	V*
37	Rodentia	Muridae	Mus booduga	Indian Field Mouse	Least Concern	V*
38	Rodentia	Muridae	Mus saxicolor	Brown Spiny Mouse	Least Concern	V*
39	Rodentia	Muridae	Mus terricolor	Pygmy Field Mouse	Least Concern	V*
40	Rodentia	Muridae	Millardia melasta	Soft-furred Metad	Least Concern	V*
41	Rodentia	Muridae	Madromys blanfordi	White-tailed Wood Rat	Least Concern	V*
42	Rodentia	Muridae	Golunda elliottii	Indian Bush-rat	Least Concern	V*
43	Rodentia	Muridae	Bandicota indica	Greater Bandicoot Rat	Least Concern	V*
44	Rodentia	Muridae	Bandicota bengalensis	Lesser Bandicoot Rat	Least Concern	V*
45	Rodentia	Muridae	Rattus rattus	House Rat	Least Concern	V*
46	Rodentia	Muridae	Rattus rattus*	Sahyadris Forest Rat	Vulnerable	V*
Order	Family	Species	Common name	IUCN Red List Category	WPA schedule	
-----------	-------------------	--------------------------	---------------------------------------	------------------------	--------------	
47	Chiroptera	Pteropodidae	Pteropus medius	Least Concern	V*	
48	Chiroptera	Pteropodidae	Rousettus leschenaultii	Least Concern	V*	
49	Chiroptera	Pteropodidae	Cynopterus sphire	Least Concern	V*	
50	Chiroptera	Pteropodidae	Cynopterus brachyotis	Least Concern	V*	
51	Chiroptera	Pteropodidae	Eonycteris spelaea*	Least Concern	V*	
52	Chiroptera	Molossidae	Tadarida aegyptiaca*	Least Concern	V*	
53	Chiroptera	Molossidae	Chaerophon plicatus*	Least Concern	V*	
54	Chiroptera	Molossidae	Otomops wrougtonti*	Data Deficient	i	
55	Chiroptera	Emballonuridae	Taphozous longimanus*	Least Concern	V*	
56	Chiroptera	Emballonuridae	Taphozous nudiventris*	Least Concern	V*	
57	Chiroptera	Emballonuridae	Taphozous melanopogon	Least Concern	V*	
58	Chiroptera	Emballonuridae	Taphozous theobaldii*	Least Concern	V*	
59	Chiroptera	Emballonuridae	Saccoalaimus saccolaimus*	Least Concern	V*	
60	Chiroptera	Megadermatidae	Megaderma lyra*	Least Concern	V*	
61	Chiroptera	Megadermatidae	Megaderma spasma	Least Concern	V*	
62	Chiroptera	Rhinolophidae	Rhinolophus rouxi	Least Concern	V*	
63	Chiroptera	Rhinolophidae	Rhinolophus lepidus	Least Concern	V*	
64	Chiroptera	Rhinolophidae	Rhinolophus beddomeii	Least Concern	V*	
65	Chiroptera	Hipposideridae	Hipposiderus fulvus*	Least Concern	V*	
66	Chiroptera	Hipposideridae	Hipposiderus spearis*	Least Concern	V*	
67	Chiroptera	Hipposideridae	Hipposiderus galeritus*	Least Concern	V*	
68	Chiroptera	Hipposideridae	Hipposiderus lankadiva	Least Concern	V*	
69	Chiroptera	Vespertilionidae	Myotis horsfieldi*	Least Concern	V*	
70	Chiroptera	Vespertilionidae	Pipistrellus coromandra	Least Concern	V*	
71	Chiroptera	Vespertilionidae	Pipistrellus tenuis	Least Concern	V*	
72	Chiroptera	Vespertilionidae	Pipistrellus ceylonicus*	Least Concern	V*	
73	Chiroptera	Vespertilionidae	Scotaozous dormeri*	Least Concern	V*	
74	Chiroptera	Vespertilionidae	Scotophilus heathii*	Least Concern	V*	
75	Chiroptera	Vespertilionidae	Scotophilus kuhlii*	Least Concern	V*	
76	Chiroptera	Vespertilionidae	Hesperoptenus tickellii*	Least Concern	V*	
77	Chiroptera	Vespertilionidae	Kerivoula picta	Least Concern	V*	
78	Chiroptera	Vespertilionidae	Tylonycteris pachyopus*	Least Concern	V*	
79	Chiroptera	Miniopteridae	Miniopterus schreibersii	Least Concern	V*	
80	Eulipotyphla	Soricidae	Suncus murinus	Least Concern	V*	
81	Scandentia	Tupaiidae	Anathana eliotti	Least Concern	V*	

*Possible occurrence; *Five-striped palm squirrel mentioned in Schedule IV; *Fruit Bats, Mice, & Rats mentioned in Schedule V; *Distribution records follow IUCN Range maps and Menon (2014).
Appendix IV. List of fish species in the Mhadei sub-basin (neighbouring Bhagwan Mahavir Wildlife Sanctuary), with status in terms of endemicity to the Western Ghats and IUCN Red List (Atkore 2017).

Species	Western Ghats	IUCN status
1. Aplocheilus lineatus (Valenciennes, 1846)	Least Concern	
2. Arothron leopardus (Day, 1878)	Data Deficient	
3. Carinotetraodon travancoricus (Hora & Nair, 1941)	Endemic	Vulnerable
4. Chanda nama Hamilton, 1822	Least Concern	
5. Channa gachua (Hamilton, 1822)	Least Concern	
6. Channa marulius (Hamilton, 1822)	Least Concern	
7. Channa striata (Bloch, 1793)	Least Concern	
8. Dawkinsia filamentosa (Valenciennes, 1844)	Endemic	Least Concern
9. Devario spp	Least Concern	
10. Devario malabaricus (Jerdon, 1849)	Least Concern	
11. Eropilus suratensis (Bloch, 1790)	Least Concern	
12. Garra bicornuta Narayan Rao, 1920	Endemic	Near Threatened
13. Garra mullya (Sykes, 1839)	Least Concern	
14. Garra stenorhynchus (Jerdon, 1849)	Least Concern	
15. Glossogobius giurus (Hamilton, 1822)	Least Concern	
16. Glossogobius spp	Least Concern	
17. Haludaria melanampyx (Day, 1865)	Endemic	Data Deficient
18. Hypselobarbus curmuco (Hamilton, 1807)	Endemic	Endangered
19. Hypselobarbus dobsoni (Day, 1876)	Endemic	Data Deficient
20. Hypselobarbus jerdoni (Day, 1870)	Endemic	Least Concern
21. Lepidocephalichthys thermalis (Valenciennes 1846)	Least Concern	
22. Mastacembelus armatus (Lacépède, 1800)	Least Concern	
23. Microphis cuniculus (Hamilton, 1822)*	Least Concern	
24. Mystus armatus (Day, 1865)	Least Concern	
25. Mystus cavasius (Hamilton, 1822)	Least Concern	
26. Mystus giloi (Hamilton, 1822)	Least Concern	
27. Mystus keletius (Valenciennes, 1840)	Endemic	Least Concern
28. Migul spp	Least Concern	
29. Ostecophilichthys nashii (Day, 1869)	Endemic	Least Concern
30. Ostecophilichthys thomassi (Day, 1877)	Endemic	Least Concern
31. Parambassis ranga (Hamilton, 1822)	Least Concern	
32. Paracanthohabits mooreyi (Sykes, 1839)	Least Concern	
33. Pangio goaensis (Tilak, 1972)*	Least Concern	
34. Pethia narayani (Hora, 1937)	Least Concern	
35. Pethia punctata (Day, 1865)	Least Concern	
36. Pethia setnai (Chhapgar & Sane, 1992)	Endemic	Vulnerable
37. Pethia ticta (Hamilton, 1822)	Least Concern	
38. Pseudotrapulus maculatus (Bloch, 1795)	Least Concern	
39. Puntius amphius (Valenciennes, 1842)	Data Deficient	
40. Rasbora daniconius (Hamilton, 1822)	Least Concern	
41. Rasbora labiosa Mikerji, 1935	Endemic	Least Concern
42. Salmostoma boccale (Hamilton, 1822)	Least Concern	
43. Salmostoma boops (Day, 1874)	Least Concern	
44. Salmostoma novacula (Valenciennes, 1840)	Least Concern	
45. Schistura denisoni (Day, 1867)	Least Concern	
46. Schistura spp	Least Concern	
47. Sicyopterus griseus (Day, 1877)	Endemic	Least Concern
48. Tor khudree (Sykes, 1839)	Endemic	Least Concern
49. Xenentodon cancila (Hamilton, 1822)	Least Concern	

* Recorded by other researchers in the Mhadei sub-basin | Pangio goaensis recorded by Talwar & Jhingran (1991); Microphis cuniculus likely occurs based on Pollom (2016)
Appendix V. Checklist of butterfly species in Bhagwan Mahavir Wildlife Sanctuary and National Park.

Order	Family	Common name	Scientific name	WPA Schedule	
1	Lepidoptera	Papilionidae	Southern Birdwing	Troides minos	
2	Lepidoptera	Papilionidae	Malabar Or Ceylon Rose	Pachliopta pandyana	
3	Lepidoptera	Papilionidae	Common Rose	Pachliopta aristolochiae	
4	Lepidoptera	Papilionidae	Crimson Rose	Pachliopta hector	
5	Lepidoptera	Papilionidae	Southern Bluebottle *	Graphium teredon	
6	Lepidoptera	Papilionidae	Common Jay	Graphium dason	
7	Lepidoptera	Papilionidae	Tailed Jay	Graphium agamemnon	
8	Lepidoptera	Papilionidae	Spot Swordtail	Graphium nomius	
9	Lepidoptera	Papilionidae	Five-Bar Swordtail *	Graphium antiphates	
10	Lepidoptera	Papilionidae	Common Mime	Papilio clytia	
11	Lepidoptera	Papilionidae	Lime	Papilio demoleus	
12	Lepidoptera	Papilionidae	Malabar Raven	Papilio dravidorum	
13	Lepidoptera	Papilionidae	Red Helen	Papilio helenus	
14	Lepidoptera	Papilionidae	Common Mormon	Papilio polytes	
15	Lepidoptera	Papilionidae	Blue Mormon	Papilio polymnestor	
16	Lepidoptera	Papilionidae	Paris Peacock	Papilio paris	
17	Lepidoptera	Papilionidae	Malabar Banded Peacock	Papilio budha	
18	Lepidoptera	Pieridae	Common Emigrant *	Catopsilia pomona	
19	Lepidoptera	Pieridae	Mottled Emigrant	Catopsilia pyranthe	
20	Lepidoptera	Pieridae	Small Grass Yellow	Eurema brigitta	
21	Lepidoptera	Pieridae	Spotless Grass Yellow	Eurema isota	
22	Lepidoptera	Pieridae	Common Grass Yellow	Eurema hecabe	
23	Lepidoptera	Pieridae	Three-Spot Grass Yellow	Eurema blanda	
24	Lepidoptera	Pieridae	One-Spot Grass Yellow *	Eurema andersoni	
25	Lepidoptera	Pieridae	Common Jezebel	Delias eucharis	
26	Lepidoptera	Pieridae	Psyche	Leptosia nina	
27	Lepidoptera	Pieridae	Common Gull	Cepora nerissa	
28	Lepidoptera	Pieridae	Lesser Gull	Cepora nadina	
29	Lepidoptera	Pieridae	Pioneer Or Caper White	Anaphaes aurata	
30	Lepidoptera	Pieridae	Plain Puffin *	Appias indra	
31	Lepidoptera	Pieridae	Chocolate Albatross *	Appias lynca	
32	Lepidoptera	Pieridae	Common Albatross	Appias albina	
33	Lepidoptera	Pieridae	Common Wanderer	Pareronia valeria	
34	Lepidoptera	Pieridae	Dark Wanderer	Pareronia ceylonica	
35	Lepidoptera	Pieridae	Great Orange Tip	Hedbamaia glaucippe	
36	Lepidoptera	Nymphalidae	Southern Duffer *	Discophora lepida	
37	Lepidoptera	Nymphalidae	Common Evening Brown	Melanitis leda	
38	Lepidoptera	Nymphalidae	Great Evening Brown *	Melanitis zitenius	
39	Lepidoptera	Nymphalidae	Dark Evening Brown	Melanitis phedima	
40	Lepidoptera	Nymphalidae	Common Palmfly	Elynnias hypermenstra	
41	Lepidoptera	Nymphalidae	Bamboo Treebrown *	Letha europa	
42	Lepidoptera	Nymphalidae	Tamil Treebrown	Letha drypetts	
43	Lepidoptera	Nymphalidae	Common Treebrown	Letha rohria	
44	Lepidoptera	Nymphalidae	Common Bushbrown	Mycalesis perseus	
Order	Family	Common name	Scientific name	WPA Schedule	
-------	--------	------------------------------	----------------------------------	--------------	
45	Lepidoptera	Nymphalidae	Dark Branded Bushbrown *	Mycalesis mineus	45
46	Lepidoptera	Nymphalidae	Glad Eye Bushbrown	Mycalesis patria	46
47	Lepidoptera	Nymphalidae	Medus Brown	Orsatrianea medus	47
48	Lepidoptera	Nymphalidae	Common Three-ring *	Ypthima aspera	48
49	Lepidoptera	Nymphalidae	White Or Ceylon Four-ring *	Ypthima ceylonica	49
50	Lepidoptera	Nymphalidae	Common Four-ring	Ypthima huebneri	50
51	Lepidoptera	Nymphalidae	Common Five-ring	Ypthima baldus	51
52	Lepidoptera	Nymphalidae	Common Nawab *	Polyaurs athamas	52
53	Lepidoptera	Nymphalidae	Anomalous Nawab *	Polyaurs agraria	53
54	Lepidoptera	Nymphalidae	Blue Nawab *	Polyaurs schreberi	54
55	Lepidoptera	Nymphalidae	Tawny Rajah	Charaxes bernardus	55
56	Lepidoptera	Nymphalidae	Black Rajah *	Charaxes solon	56
57	Lepidoptera	Nymphalidae	Tawny Coster	Acraea violae	57
58	Lepidoptera	Nymphalidae	Tamil Lacerwing	Cethosis niemer	58
59	Lepidoptera	Nymphalidae	Cruiser	Vindula erota	59
60	Lepidoptera	Nymphalidae	Rustic	Cupha erymanthis	60
61	Lepidoptera	Nymphalidae	Common Leopard	Phalanta phalantha	61
62	Lepidoptera	Nymphalidae	Small Leopard	Phalanta alciqpe	62
63	Lepidoptera	Nymphalidae	Tamil Yeoman	Cimochroha thais	63
64	Lepidoptera	Nymphalidae	Black Prince *	Rohana parisati	64
65	Lepidoptera	Nymphalidae	Painted Courtesan *	Eupirius consimilis	65
66	Lepidoptera	Nymphalidae	Chestnut-Streaked Sailer	Neptis jambh	66
67	Lepidoptera	Nymphalidae	Common Sailer	Neptis hylas	67
68	Lepidoptera	Nymphalidae	Clear Sailer *	Neptis nata	68
69	Lepidoptera	Nymphalidae	Short-banded Sailer *	Neptis culomella	69
70	Lepidoptera	Nymphalidae	Yellow Jack Sailer	Neptis viraja	70
71	Lepidoptera	Nymphalidae	Common Lascar	Pantoporia hordonia	71
72	Lepidoptera	Nymphalidae	Extra Lascar *	Pantoporia sandala	72
73	Lepidoptera	Nymphalidae	Colour Sergeant	Athyma nefte	73
74	Lepidoptera	Nymphalidae	Staff Sergeant *	Athyma selenophora	74
75	Lepidoptera	Nymphalidae	Blackvein Sergeant	Athyma range	75
76	Lepidoptera	Nymphalidae	Common Sergeant	Athyma perius	76
77	Lepidoptera	Nymphalidae	Commander	Limenitis procris	77
78	Lepidoptera	Nymphalidae	Clipper	Parthenos sylvia	78
79	Lepidoptera	Nymphalidae	Grey Count	Tanacedia legidea	79
80	Lepidoptera	Nymphalidae	Common Baron	Euthalia aconthea	80
81	Lepidoptera	Nymphalidae	Gaudy Baron	Euthalia lusntina	81
82	Lepidoptera	Nymphalidae	Redspot Duke *	Dolpha evelina	82
83	Lepidoptera	Nymphalidae	Angled Castor	Ariadne ariadne	83
84	Lepidoptera	Nymphalidae	Common Castor	Ariadne merione	84
85	Lepidoptera	Nymphalidae	Common Map	Cyrestis thydamas	85
86	Lepidoptera	Nymphalidae	Club Beak *	Libythea myrha	86
87	Lepidoptera	Nymphalidae	Yellow Pansy	Junonia hierta	87
88	Lepidoptera	Nymphalidae	Lemon Pansy	Junonia lemonias	88
89	Lepidoptera	Nymphalidae	Peacock Pansy	Junonia almana	89
Order	Family	Common name	Scientific name	WPA Schedule	
-------	-----------------	-------------------	-------------------	--------------	
90	Lepidoptera	Nymphalidae	Grey Pansy	Junonia atlites	I and II
91	Lepidoptera	Nymphalidae	Chocolate Pansy	Junonia iphita	
92	Lepidoptera	Nymphalidae	Painted Lady *	Cynthia cardui	
93	Lepidoptera	Nymphalidae	Great Eggfly	Hypolimnas bolina	
94	Lepidoptera	Nymphalidae	Danaid Eggfly	Hypolimnas missipus	
95	Lepidoptera	Nymphalidae	Autumn leaf (Malabar)	Daleschallia bisaltide malabarica	II
96	Lepidoptera	Nymphalidae	South Indian Blue Oakleaf	Kallima horsfieldi	II
97	Lepidoptera	Nymphalidae	Glassy Tiger	Parantica aglea	II
98	Lepidoptera	Nymphalidae	Blue Tiger	Tirumala linniae	
99	Lepidoptera	Nymphalidae	Dark Blue Tiger *	Tirumala septentronics	
100	Lepidoptera	Nymphalidae	Plain Tiger	Danaus chrysippus	
101	Lepidoptera	Nymphalidae	Striped Or Common Tiger	Danaus genuta	
102	Lepidoptera	Nymphalidae	Common Indian Crow	Euploea core	
103	Lepidoptera	Nymphalidae	Double-Branded Crow *	Euploea sylvester	
104	Lepidoptera	Nymphalidae	Brown King Crow *	Euploea klugi	
105	Lepidoptera	Nymphalidae	Malabar Tree Nymph	Idea malabarica	
106	Lepidoptera	Riodinidae	Double-Banded Judy *	Abisara albofuscatus	
107	Lepidoptera	Lycaenidae	Apelfly *	Spalgis epius	
108	Lepidoptera	Lycaenidae	Common Pierrot	Castalius rosimon	I
109	Lepidoptera	Lycaenidae	Angled Pierrot	Caleta caleta	
110	Lepidoptera	Lycaenidae	Banded Blue Pierrot	Discolampa ethion	
111	Lepidoptera	Lycaenidae	Dark Pierrot	Tarucus ananda	IV
112	Lepidoptera	Lycaenidae	Spotted Pierrot *	Tarucus nora	
113	Lepidoptera	Lycaenidae	Zebra Blue *	Leptotes plinius	
114	Lepidoptera	Lycaenidae	Common Hedge Blue	Acytolepis puspa	I
115	Lepidoptera	Lycaenidae	Plain Hedge Blue *	Celastrina lavendularis	
116	Lepidoptera	Lycaenidae	Quaker	Neopithecops zalmora	
117	Lepidoptera	Lycaenidae	Malayan	Magisba molaya	
118	Lepidoptera	Lycaenidae	Dark Grass Blue	Zizeeria karsandra	
119	Lepidoptera	Lycaenidae	Lesser Grass Blue	Zisina atis	
120	Lepidoptera	Lycaenidae	Tiny Grass Blue	Zisula hylax	
121	Lepidoptera	Lycaenidae	Lime Blue	Chilades laius	II
122	Lepidoptera	Lycaenidae	Plains Cupid	Chilades pandava	
123	Lepidoptera	Lycaenidae	Grass Jewel *	Freyeria trochylus	
124	Lepidoptera	Lycaenidae	Gram Blue	Euchrysops cnejus	II
125	Lepidoptera	Lycaenidae	Forget-Me-Not	Catychrysops strabo	
126	Lepidoptera	Lycaenidae	Pea Blue *	Lampides boeticus	II
127	Lepidoptera	Lycaenidae	Dark Cerulean *	Jamides boschus	
128	Lepidoptera	Lycaenidae	Common Cerulean	Jamides celena	
129	Lepidoptera	Lycaenidae	Metallic Cerulean *	Jamides alecto	
130	Lepidoptera	Lycaenidae	Large 4-Line Blue *	Nacaduba pectoralis	II
131	Lepidoptera	Lycaenidae	Pale 4-Line Blue *	Nacaduba hermus	
132	Lepidoptera	Lycaenidae	Transparent 6-Line Blue *	Nacaduba kurava	
133	Lepidoptera	Lycaenidae	Opaque 6-Line Blue *	Nacaduba beroe	
134	Lepidoptera	Lycaenidae	Common Line Blue *	Prosotas norav	
Order	Family	Common name	Scientific name	WPA Schedule	
-------	--------	-------------	-----------------	--------------	
135	Lepidoptera	Tailless Line Blue *	Prosotas dubiosa		
136	Lepidoptera	Dingy Line Blue *	Petrolaea dana		
137	Lepidoptera	White-Tipped Line Blue *	Prosotas noreia		
138	Lepidoptera	Red Pierrot	Talcinda rysaeus		
139	Lepidoptera	Common Ciliate Blue *	Anthene emolus		
140	Lepidoptera	Pointed Ciliate Blue	Anthene lycaenina		
141	Lepidoptera	Western Centaur Oakblue *	Arhopala pseudocentaurus	1	
142	Lepidoptera	Large Oakblue	Arhopala amantes		
143	Lepidoptera	Rosy Or Kanara Oakblue *	Arhopala oea	II	
144	Lepidoptera	Aberrant Oakblue *	Arhopala obesus		
145	Lepidoptera	Tamil Oakblue	Arhopala bazaloides		
146	Lepidoptera	Common Acacia Blue *	Surendra guercetorum Surendra		
147	Lepidoptera	Silverstreaked Acacia Blue *	Zinaspa todara	II	
148	Lepidoptera	Silverstreak Blue	Iraota timoleon		
149	Lepidoptera	Leaf Blue	Amblypodia anita		
150	Lepidoptera	Common Silverline	Spindasis vulcanus		
151	Lepidoptera	Longbanded Silverline *	Spindasis lohita	II	
152	Lepidoptera	Yamfly *	Laxura atymnus		
153	Lepidoptera	Common Imperial	Cheritra freja		
154	Lepidoptera	Monkey Puzzle	Rathinda amor		
155	Lepidoptera	Redspot *	Zesius chrysomallus		
156	Lepidoptera	Silver Royal *	Ancema blanka		
157	Lepidoptera	Broadtail Royal *	Creno cleobis		
158	Lepidoptera	White Royal *	Pratapa deva	II	
159	Lepidoptera	Peacock Royal *	Tauria cippus	II	
160	Lepidoptera	Orchid Tit *	Hypolycaena othona	I	
161	Lepidoptera	Fluffy Tit *	Zeitus amasa		
162	Lepidoptera	Cornelian *	Deudorix epijarbas		
163	Lepidoptera	Common Guava Blue *	Deudorix isocrates		
164	Lepidoptera	Large Guava Blue *	Deudorix perse		
165	Lepidoptera	Plane *	Bindahara phocides	II	
166	Lepidoptera	Indian Red Flash *	Rapala iarbus		
167	Lepidoptera	Slate Flash	Rapala manea		
168	Lepidoptera	Indigo Flash *	Rapala varuna	II	
169	Lepidoptera	Indian Sunbeam	Curetis thetis		
170	Lepidoptera	Shiva Sunbeam *	Curetis siva		
171	Lepidoptera	Malabar Flash *	Rapala lankana		
172	Lepidoptera	Common Onyx	Horaga anyx	II	
173	Lepidoptera	Orange-Striped Awl/Orange Awlet *	Burara joana		
174	Lepidoptera	Orangetail Awl/Pale Green Awlet *	Bibasis sena	II	
175	Lepidoptera	Common Banded Awl *	Hosara chromus		
176	Lepidoptera	White Banded Awl *	Hosara taminatus		
177	Lepidoptera	Common Awl *	Hosara badra		
178	Lepidoptera	Brown Awl	Badamia exclamationis		

Order

- Lepidoptera
- Hesperiidae

Family

- Lycaenidae
- Hesperiidae

Common name

- Tailless Line Blue
- Dingy Line Blue
- White-Tipped Line Blue
- Red Pierrot
- Common Ciliate Blue
- Pointed Ciliate Blue
- Western Centaur Oakblue
- Large Oakblue
- Rosy Or Kanara Oakblue
- Aberrant Oakblue
- Tamil Oakblue
- Common Acacia Blue
- Silverstreaked Acacia Blue
- Silverstreak Blue
- Leaf Blue
- Common Silverline
- Longbanded Silverline
- Yamfly
- Common Imperial
- Monkey Puzzle
- Redspot
- Silver Royal
- Broadtail Royal
- White Royal
- Peacock Royal
- Orchid Tit
- Fluffy Tit
- Cornelian
- Common Guava Blue
- Large Guava Blue
- Plane
- Indian Red Flash
- Slate Flash
- Indigo Flash
- Indian Sunbeam
- Shiva Sunbeam
- Malabar Flash
- Common Onyx
- Orange-Striped Awl/Orange Awlet
- Orangetail Awl/Pale Green Awlet
- Common Banded Awl
- White Banded Awl
- Common Awl
- Brown Awl

Scientific name

- Prosotas dubiosa
- Petrolaea dana
- Prosotas noreia
- Talcinda rysaeus
- Anthene emolus
- Anthene lycaenina
- Arhopala pseudocentaurus
- Arhopala amantes
- Arhopala oea
- Arhopala obesus
- Arhopala bazaloides
- Surendra guercetorum
- Zinaspa todara
- Iraota timoleon
- Amblypodia anita
- Spindasis vulcanus
- Spindasis lohita
- Laxura atymnus
- Cheritra freja
- Rathinda amor
- Zesius chrysomallus
- Ancema blanka
- Creno cleobis
- Pratapa deva
- Tauria cippus
- Hypolycaena othona
- Zeitus amasa
- Deudorix epijarbas
- Deudorix isocrates
- Deudorix perse
- Bindahara phocides
- Rapala iarbus
- Rapala manea
- Rapala varuna
- Curetis thetis
- Curetis siva
- Rapala lankana
- Horaga anyx
- Burara joana
- Bibasis sena
- Hosara chromus
- Hosara taminatus
- Hosara badra
- Badamia exclamationis
| Order | Family | Common name | Scientific name | WPA Schedule | |
|---|---|---|---|---|---|
| 179 | Lepidoptera | Hesperiidae | Common Spotted Flat | Celaenorrhinus leucocera | |
| 180 | Lepidoptera | Hesperiidae | Malabar Spotted Flat * | Celaenorrhinus ambareesa | |
| 181 | Lepidoptera | Hesperiidae | Tamil Spotted Flat * | Celaenorrhinus ruficornis | |
| 182 | Lepidoptera | Hesperiidae | Common/Ceylon Snow Flat * | Tagiades jepetus | |
| 183 | Lepidoptera | Hesperiidae | Water Snow Flat | Tagiades littigosa | |
| 184 | Lepidoptera | Hesperiidae | Fulvous Pied Flat | Psuedocoladenia dan | |
| 185 | Lepidoptera | Hesperiidae | Tricolour Flat | Psuedocoladenia indrama | |
| 186 | Lepidoptera | Hesperiidae | Common Small Flat | Sarangesa dasahara | |
| 187 | Lepidoptera | Hesperiidae | Spotted Small Flat * | Sarangesa purendra | |
| 188 | Lepidoptera | Hesperiidae | Angled Flat/Black Angle | Tapena tawithesi | |
| 189 | Lepidoptera | Hesperiidae | Golden Angle | Odonotypilium ransonetti | |
| 190 | Lepidoptera | Hesperiidae | Indian Grizzled/Indian Skipper * | Spilia gaiba | |
| 191 | Lepidoptera | Hesperiidae | Pygmy Grass-/Scrub-Hopper * | Aeromachus pygmaeus | |
| 192 | Lepidoptera | Hesperiidae | Bush Hopper * | Ampitilia diassorides | |
| 193 | Lepidoptera | Hesperiidae | Indian Ace * | Holpe homolea | II |
| 194 | Lepidoptera | Hesperiidae | Madras Ace | Thoressa honarei | IV |
| 195 | Lepidoptera | Hesperiidae | Moore’s Ace * | Holpe porus | |
| 196 | Lepidoptera | Hesperiidae | Chestnut Bob | Lambris salvala | |
| 197 | Lepidoptera | Hesperiidae | Coon | Psios fulga | |
| 198 | Lepidoptera | Hesperiidae | Common Banded Demon | Notocrypta paralysos | |
| 199 | Lepidoptera | Hesperiidae | Restricted Demon | Notocrypta curvifascia | |
| 200 | Lepidoptera | Hesperiidae | Grass Demon | Udaspes fulus | |
| 201 | Lepidoptera | Hesperiidae | Indian Palm Bob * | Suastus gremius | |
| 202 | Lepidoptera | Hesperiidae | Tree Flicker * | Hyarotis adras tus | IV |
| 203 | Lepidoptera | Hesperiidae | Giant Redeye | Gangara thyrsis | |
| 204 | Lepidoptera | Hesperiidae | Common Redeye * | Matapa aria | |
| 205 | Lepidoptera | Hesperiidae | Tamil Grass Dart | Taractrocera ceramos | |
| 206 | Lepidoptera | Hesperiidae | Pale Palm Dart * | Telcota colon | |
| 207 | Lepidoptera | Hesperiidae | Plain Palm Dart * | Cephenes acalle | |
| 208 | Lepidoptera | Hesperiidae | African Straight/Straight Swift * | Pannaro naso | |
| 209 | Lepidoptera | Hesperiidae | Bevan’s Swift * | Borbo brevani | |
| 210 | Lepidoptera | Hesperiidae | Dark Small-Branded Swift * | Pelopidas mathias | |
| 211 | Lepidoptera | Hesperiidae | Conjoined Swift * | Pelopidas conjucta | |
| 212 | Lepidoptera | Hesperiidae | Paintbrush Swift * | Baoris farri | IV |
| 213 | Lepidoptera | Hesperiidae | Blank Swift * | Caltoris kumara | |
| 214 | Lepidoptera | Hesperiidae | Philippine Swift * | Caltoris philippina | II |
| 215 | Lepidoptera | Hesperiidae | Maculate Lancer * | Salanaemia saia | |
| 216 | Lepidoptera | Hesperiidae | Small Palm Bob * | Suastus minutus | |
| 217 | Lepidoptera | Hesperiidae | Wax Dart * | Cnipitha purirea | |
| 218 | Lepidoptera | Hesperiidae | Common Dartlet | Oriens galoides | |

Source: India Biodiversity Portal (https://indiabiodiversity.org/checklist/show/228); Rangnekar & Dharwadkar (2009); *Direct Sightings by Parag Rangnekar, Omkar Dharwadkar & Ravindra Bhamure
Appendix VI. Odonates of Bhagwan Mahavir Wildlife Sanctuary and National Park.

Common name	Scientific name	Family	IUCN status	Western Ghat Endemism
1 Pale Dartlet	Agriocnemis pieris	Coenagrionidae		
2 Pygmy Dartlet	Agriocnemis pygmea	Coenagrionidae		
3 Splendid Dartlet	Agriocnemis splendissima	Coenagrionidae		
4 Orange-tailed Marsh Dart	Ceriagrion cerinarubellum	Coenagrionidae		
5 Coromandel Marsh Dart	Ceriagrion coramandelianum	Coenagrionidae		
6 Rusty Marsh Dart	Ceriagrion olivaceum	Coenagrionidae		
7 Sindhudung Marsh Dart	Ceriagrion chromothorax	Coenagrionidae		
8 Rusty Marsh Dart	Ceriagrion olivaceum	Coenagrionidae		
9 Golden Dartlet	Ischnura rubilio	Coenagrionidae		
10 Pygmy Bluespot	Mortonagrion varralii	Coenagrionidae		Endemic
11 Yellow-striped Blue Dart	Pseudagrion indicum	Coenagrionidae		Endemic
12 Saffron-faced Blue Dart	Pseudagrion rubriceps	Coenagrionidae		
13 Yellow Bush Dart	Copera marginipes	Platycenemididae		
14 Blue Bush Dart	Copera vittata	Platycenemididae		
15 Pied Reedtail	Protosticta gravelyi	Platystictidae		Endemic
16 Red-spot Reedtail	Protosticta sanguinostigma	Platystictidae	Vulnerable	Endemic
17 Black Bamboottail	Prodasineura verticalis	Platycenemididae		
18 Blackwinged Bamboottail	Disparoneura quadrimaculata	Platycenemididae		
19 Coorg Bamboottail *	Caconeura ramburi	Platycenemididae		
20 Black & yellow bamboottail	Elattoneura tetrica	Platycenemididae		
21 Emerald Spreadwing	Lestes elatus	Lestidae		
22 Stream Glory	Neurobasis chinesis	Calopterygidae		
23 Black-tipped Forest Glory	Vestalis apicalis	Calopterygidae		
24 Clear-winged Forest Glory	Vestalis gracilis	Calopterygidae		
25 River Heliodor	Libellago indica	Chlorocyphidae		Endemic
26 Stream Ruby	Rhinocypha bisignata	Chlorocyphidae		
27 Malabar Torrent Dart	Euphaea fraseri	Euphaeidae		Endemic
28 Black Torrent Dart	Dysphaea ethela	Euphaeidae		Endemic
29 Plain sinuate Clubtail	Burmagomphus laidlawi	Gomphidae		Endemic
30 Forest Hooktail	Helogomphus promelas	Gomphidae		Endemic
31 Kodagu Clubtail	Gomphidia kodaguensis	Gomphidae		Endemic
32 Forest Hooktail	Helogomphus promelas	Gomphidae		Endemic
33 Wayanad Bowtail	Macrognomphus wyndaicus	Gomphidae		Endemic
34 Common Clubtail	Ictinogomphus rapax	Gomphidae		Endemic
35 Giant Clubtail	Megalognomphus hanningtoni	Gomphidae		Near Threatened
36 Long-legged Clubtail	Mero gnomphus longistigma	Gomphidae		Endemic
37 Pigmy Clubtail	Micrognomphus souteri	Gomphidae		Endemic
38 Laidlaw’s Clubtail	Onychogomphus acinaces	Gomphidae		Endemic
39 Common Hooktail	Paragomphus lineatus	Gomphidae		Endemic
40 Blue-tailed Green Darner	Anax guttatus	Aeshnidae		
41 Blue Darner *	Anax immaculifrons	Aeshnidae		
42 Brown Darner	Gynacantha dravida	Aeshnidae		
43 Parakeet Darner	Gynacantha bayadera	Aeshnidae		
Common name	Scientific name	Family	IUCN status	Western Ghat Endemism
------------------------------	------------------------	------------------	---------------	-----------------------
44 Common River Hawk	Epaphthalmia vittata	Macromidae		
45 Macromia flavicincta	Macromidae	Macromidae		
46 Macromia irata	Macromidae	Macromidae	Endemic	
47 Evening Torrent Hawk	Idionyx saffronata	Cordulidae		
48 Goan Shadowdancer	Idionyx gamantakensis	Cordulidae	Endemic	
49 Ditch Jewel	Brachythemis contaminata	Libellulidae		
50 Granite Ghost *	Bradinopyga geminata	Libellulidae		
51 Konkan Rock Dweller *	Bradinopyga konkanensis	Libellulidae		
52 Emerald-banded Skimmer	Cratilla lineata	Libellulidae		
53 Ruddy Marsh Skimmer	Crocothemis servilia	Libellulidae		
54 Ground Skimmer	Diplacodes trivialis	Libellulidae		
55 Amber-winged Glider	Hydrobasileus croceus	Libellulidae		
56 Blue Hawklet	Hylaethemis indica	Libellulidae		
57 Dark Ground Skimmer	Indothemis carnatica	Libellulidae	Near Threatened	
58 Asian Bloodtail	Lathrecista asiatica	Libellulidae		
59 Fulvous Forest Skimmer	Neurothemis fulvia	Libellulidae		
60 Pale Forest Skimmer	Neurothemis intermedia	Libellulidae		
61 Pied Paddy Skimmer	Neurothemis tullia	Libellulidae		
62 Stellate River Hawk *	Onychathemis testacea	Libellulidae		
63 Cherry Skimmer	Orthetrum chrysis	Libellulidae		
64 Blue Marsh Hawk	Orthetrum glaucum	Libellulidae		
65 Crimson-tailed Marsh Hawk	Orthetrum pruinosum	Libellulidae		
66 Blue-eyed Marsh Hawk	Orthetrum luzonicum	Libellulidae		
67 Green Marsh Hawk	Orthetrum sabina	Libellulidae		
68 Tiny Flufftail *	Polpopleura sexmaculata	Libellulidae		
69 Wandering Glider	Pantaia flavescens	Libellulidae		
70 Yellow-tailed Ashy Skimmer	Potamarcha congener	Libellulidae		
71 Common Picturewing	Rhyothemis variegata	Libellulidae		
72 Pigmy Skimmer	Tetrathemis platyptera	Libellulidae		
73 Coral-tailed Cloud-wing *	Tholymis tilarga	Libellulidae		
74 Red Marsh Trotter	Tramea basilaris	Libellulidae		
75 Black Marsh Trotter	Tramea limbata	Libellulidae		
76 Crimson Marsh Glider	Trithemis aurora	Libellulidae		
77 Black Stream Glider	Trithemis festiva	Libellulidae		
78 Long-legged Marsh Glider *	Trithemis pallidinervis	Libellulidae		
79 Iridescent Stream Glider *	Zygonyx iris	Libellulidae		
80 Brown Dusk Hawk	Zyxomma petiolatum	Libellulidae		

Compiled from: Prasad & Varsney (1995); Rangnekar et al. (2010); Rangnekar & Naik (2014); Rangnekar et al. (2019); Subramanian et al. (2013); direct sightings (indicated by *) by Parag Rangnekar, Omkar Dharwadkar, Rohan Naik, Sridhar Halali, & Dhiraj Halali.
Appendix VII. Checklist of reptiles in Bhagwan Mahavir Wildlife Sanctuary and National Park.

Order	Family	Species	Common name	IUCN Red List category	WPA schedule
1	Testudines	Bataguridae	Melanochelys trijuga	Indian Black Turtle	Near Threatened
2	Testudines	Trionychidae	Lissemys punctata	Indian Flapshell Turtle	Least Concern
3	Squamata	Gekkonidae	Cnemaspis gaensis	Goan Day Gecko	Endangered
4	Squamata	Gekkonidae	Cyrtodactylus albafasciatus	Boulenger’s Indian Gecko	Not Evaluated
5	Squamata	Gekkonidae	Hemidactylus frenatus	Asian House Gecko	Least Concern
6	Squamata	Gekkonidae	Hemidactylus prashadi	Prashad’s Gecko	Least Concern
7	Squamata	Lacertidae	Ophisops beddomei	Beddome’s Snake-eyed Lizard	Least Concern
8	Squamata	Mabuyidae	Allapalli grass skink	Allapalli Grass Skink	Least Concern
9	Squamata	Mabuyidae	Europs macularia	Bronze Grass Skink	Least Concern
10	Squamata	Mabuyidae	Europs carinata	Common Keeled Skink	Least Concern
11	Squamata	Lygosomidae	Lygosoma goaensis	Goan Supple Skink	Least Concern
12	Squamata	Lygosomidae	Lygosoma punctatum	Spotted Supple Skink	Least Concern
13	Squamata	Varanidae	Varanus bengalensis	Bengal Monitor Lizard	Least Concern
14	Squamata	Chamaeleonidae	Chamaeleo zeylanicus	Indian Chamaeleon	Least Concern
15	Squamata	Agamidae	Calotes rouxii	Roux’s Forest Lizard	Least Concern
16	Squamata	Agamidae	Calotes versicolor	Indian Garden Lizard	Least Concern
17	Squamata	Agamidae	Draco dussumieri	South Indian Flying Lizard	Least Concern
18	Squamata	Tylphlopidae	Indotyphlops bairimi	Brahmini Worm Snake	Least Concern
19	Squamata	Tylphlopidae	Grypytrophlops acutus	Beaked Worm Snake	Least Concern
20	Squamata	Erycidae	Eryx whitei	Whitaker’s Boa	Least Concern
21	Squamata	Uropeltidae	Melanophidium kharei	Khare’s Shieldtail	Least Concern
22	Squamata	Uropeltidae	Uropeltis beddomei	Beddome’s Shieldtail	Least Concern
23	Squamata	Pythonidae	Python molurus	Rock Python	Near Threatened
24	Squamata	Pythonidae	Daboia russelii	Russell’s Viper	Least Concern
25	Squamata	Pythonidae	Echis carinatus	Indian Saw-scaled Viper	Not Evaluated
26	Squamata	Viperidae	Hypnale hypnale	Common Hump-nosed Pit Viper	Not Evaluated
27	Squamata	Viperidae	Trimeresurus gramineus	Bamboo Pit Viper	Least Concern
28	Squamata	Viperidae	Trimeresurus malabaricus	Malabar Pit Viper	Least Concern
29	Squamata	Elapidae	Bungarus caeruleus	Common Indian Krait	Not Evaluated
30	Squamata	Elapidae	Calliophis castoe	Castoe’s Coral Snake	Not Evaluated
31	Squamata	Elapidae	Calliophis melanurus	Slender Coral Snake	Not Evaluated
32	Squamata	Elapidae	Naja naja	Spectacled Cobra	Least Concern
33	Squamata	Elapidae	Ophiophagus hannah	King Cobra	Vulnerable
34	Squamata	Natricidae	Amphisemus stolatum	Striped Keelback	Not Evaluated
35	Squamata	Natricidae	Atritetum schistosum	Olive Keelback Water Snake	Least Concern
36	Squamata	Natricidae	Hebius beddomei	Beddome’s Keelback	Least Concern
37	Squamata	Natricidae	Macrophistodon plumibicolor	Green Keelback	Not Evaluated
38	Squamata	Natricidae	Rhabdops aquaticus	Aquatic Forest Snake	Not Evaluated
39	Squamata	Natricidae	Xenochrophis piscator	Checkered Keelback	Not Evaluated
40	Squamata	Colubridae	Ahaetulla nasuta	Common Vine Snake	Not Evaluated
41	Squamata	Colubridae	Ahaetulla pulverbula	Brown Vine Snake	Least Concern
42	Squamata	Colubridae	Boiga beddomei	Beddome’s Cat Snake	Data Deficient
Appendix VIII. Checklist of amphibians in Bhagwan Mahavir Wildlife Sanctuary and National Park.

Order	Family	Species	Common name	IUCN Red List category	WPA schedule
1	Anura	Bufoidae	Duttaphrynus melanostictus	Least Concern	
2	Anura	Bufoidae	Duttaphrynus stomaticus	Least Concern	
3	Anura	Bufoidae	Pedostibes tuberculosis	Endangered	
4	Anura	Dicroglossidae	Euphlyctis cyanophlyctis	Least Concern	
5	Anura	Dicroglossidae	Minervarya rufescens*	Least Concern	
6	Anura	Dicroglossidae	Minervarya syphadenris*	Endangered	
7	Anura	Dicroglossidae	Minervarya gomantaki*		
8	Anura	Dicroglossidae	Minervarya goemchi*		
9	Anura	Dicroglossidae	Minervarya cepfi*		
10	Anura	Dicroglossidae	Minervarya agricola*		
11	Anura	Dicroglossidae	Hoplobatrachus tigerinus	Least Concern	Schedule IV
12	Anura	Dicroglossidae	Sphaerotheca breviceps	Least Concern	
13	Anura	Dicroglossidae	Sphaerotheca dossanii	Least Concern	
14	Anura	Microhylidae	Mixomphyla ornata	Least Concern	
15	Anura	Microhylidae	Microhyla nilphamariensis	Not Evaluated	
16	Anura	Microhylidae	Uperodon globulosus	Indian Balloon Frog	Least Concern
17	Anura	Microhylidae	Uperodon marmoratus	Indian Dot Frog	Endangered
18	Anura	Nyctibatrachidae	Nyctibatrachus daniell	Daniel’s Night Frog	Least Concern
19	Anura	Nyctibatrachidae	Nyctibatrachus petraeus	Castle Rock Night Frog	Least Concern
20	Anura	Ranidae	Indirana chiravasi	Amboli Leaping Frog	Not Evaluated
21	Anura	Ranidae	Indirana salekari	Leaping Frog	Not Evaluated
22	Anura	Ranidae	Pseudophiatus amboli	Amboli Bush Frog	Critically
23	Anura	Ranidae	Philoutus bombayensis	Maharashtra Bush Frog	Vulnerable
24	Anura	Ranidae	Polyedates maculatus	Common Indian Tree Frog	
25	Anura	Ranidae	Rhacophorus malabaricus	Malabar Gliding Frog	Least Concern
26	Anura	Ranidae	Raorchestes bombayensis	Maharashtra Bush Frog	
27	Anura	Ranidae	Hydrophylax malabaricus	Fungoid Frog	Least Concern

Source: Aengals et al. (2018); Sharma (1976).
Appendix IX. Ants of Bhagwan Mahavir Wildlife Sanctuary and National Park.

Species	Ants of Bhagwan Mahavir Wildlife Sanctuary and National Park.
AMBLIPONINAE	
28	Anura Ranidae Hydrophylax bahuvistara Wide-spread Fungoid Frog
29	Anura Ranidae Indosylvirana temporalis Bronzed Frog Near Threatened
30	Anura Ranidae Indosylvirana caesari Maharashta Golden-backed Frog
31	Anura Ranidae Clinorattus curtipes Bicoloured Frog Near Threatened
32	Anura Microsauridae Microsaur uttaraghati Northern Dancing Frog
33	Gymnophiona Ichthyophiidae Ichthyophis daviidi Choria Striped Caecilian
34	Gymnophiona Ichthyophiidae Ichthyophis bombayensis Bombay Caecilian Least Concern
35	Gymnophiona Indotyphlidae Gegeneophis danieli Daniel’s Caecilian
36	Gymnophiona Indotyphlidae Gegeneophis mhadeiensis Mhadei Caecilian

Genus Minervarya used provisionally. Freshwater Frogs are mentioned in Schedule IV. Source: Dinesh et al. (2020); Kulkarni et al. (2013); Gosavi et al. (2020)

Species

AMYLOPOINAE
1
2

DOLICHODERINAE
3
4
5

DORSYLINAE
6
7
8
9

FORMICINAE
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

MYRMINAE
28

Species
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

PONERINAE

56	Anochetus graeffei Mayr, 1870
57	Anochetus cf. pupulas Brown, 1978
58	Bothroponera henryi Donisthorpe, 1942 (E)
59	Bothroponera sulcata (Mayr, 1867)
60	Bothroponera tesserodons (Emery, 1877)
Journal of Threatened Taxa

Species

Species	Name
61 Brachypponera lateipeus	(Mayr, 1862)
62 Diacamma indicum	Santschi, 1920
63 Diacamma ceylonense Emerj	1887
64 Diacamma rugosum	Le Guillou, 1842
65 Harpegnathos saltator Jerdon, 1851	
66 Leptogenys diminuta	Smith, 1857
67 Leptogenys chinensis	(Mayr, 1870)
68 Leptogenys processionalis	Jerdon, 1851
69 Odontomachus similimus	Smith, 1858
70 Parvapona darwini	Forel, 1893
71 Platythrya paralela	Smith, 1859
72 Pseudoneoponera rufipes	Jerdon, 1851
PSEUDOMYRMECINAE	

Author details:

Girish Punjabi is a Conservation Biologist with the Wildlife Conservation Trust and is interested in animal distributions, population ecology, and the role of social policy. **Anuha Lahoti** is a North American Foundation for Ecology and Environment policy. **Anuha Lahoti** is an ecologist and conservation biologist with 10 years of experience in Bhutan. She currently studies elephant movement in human-dominated landscapes in South India, in the context of land-use change. **Abhishek Jamalabad** is a biologist working mainly on marine ecosystems, but also with terrestrial wildlife of the Western Ghats. He has been part of avifauna surveys conducted by the Goa Forest Department and the Goa Bird Conservation Network, and has been a consultant on amphibian surveys in Karnataka’s Western Ghats. **Nandini Velho** is a PhD student at the Centre for Ecological Sciences and the Andaman and Nicobar Environment Team. She is a biodiversity specialist and is interested in the interface between science and society and the human dimensions of wildlife management. **Madhura Nipadkar-Bandekar** is a postdoctoral researcher with an interest in land cover change in community-owned forests in Maharashtra. She is the Secretary of the Foundation for Environment Research and Conservation (FERC) in Goa, a non-profit organization working for environmental awareness, biodiversity documentation and sustainable tourism in Goa. **Farai Divan Patel** is a Senior Research Fellow at the Centre for Ecological Sciences, Bengaluru, and is interested in studying the interface between science and society and the human dimensions of wildlife management. **Manoj R. Borkar** is an ecologist with a focus on environmental science and conservation, with special emphasis on biodiversity conservation in India. He is currently working to conserve the mangrove ecosystem and reduce adverse human impacts, while also serving as the Science Council Director for the Organics Council UK. **Manick Borker** is an MSc in Wildlife Biology and Conservation from the National Centre for Biological Sciences. She also works as an ec-educator with Terra Conscious and is the hub manager for Conservation optimism India. **Pam Dvan Patel** is a Master’s student in Wildlife Biology and Conservation at the National Centre for Biological Sciences, Bengaluru. His Master’s research has addressed coral reef health in the Lakshadweep. **H.S. Sakya Chandra Sagar** is a field biologist and community ecologist with Alumnus of CES, IISc. He is currently a graduate (PhD) researcher at the Sound Forest Lab at the Nelson Institute, and the Department of Forest and Wildlife Ecology, University of Wisconsin - Madison, where he is studying the effectiveness of current conservation practices to protect biodiversity across tropical forests. **Parag Ranade** is a PhD scholar at National Institute of Advanced Studies, Bengaluru. He works on understanding behavioural and political ecologies of human-wildlife relations in North-eastern India in human-dominated mixed-use landscapes. He is also interested in mainstreaming social sciences in the wildlife conservation discourse in India. **Dr. Manish Chandi** was a senior researcher in Human ecology with the Andaman and Nicobar Environment Team for 25 years, and is currently affiliated with the Living Heritage Foundation. His interests and work is with human societies and natural resource use and conservation. **Nanmme Narahhota** works as a researcher for a conservation enterprise called Technology for Wildlife. She is a conservation policy specialist and spatial analyst. She has a BA in History from St. Stephen’s College and an MPhil in Environmental Policy from Cornell University. **Shashank Shrivastava** is a conservation geographer and drone pilot. He has an MRes in Ecology and Environmental Management from the University of York and an MPhil in Environmental Conservation Leadership from the University of Cambridge. He is a National Geographic Explorer, Chevening Scholar and a Kirship Conservation Fellow. **Sneha Shahi** is a conservationist and the UNEP Plastic Tide Turner Champion, through which brought immense change in Vadodara using an impact campaign. She led an urban stream restoration which received recognition from UNICEF, WWF and UNEP. She currently works as an Assistant Director on a project on the Impact of Linear Intrusions on Wildlife. **Dr. Vidyadhar Akori** is based at the Forestry Scholar’s Society in Amravati, Maharashtra. His interests lie in freshwater ecology and biodiversity conservation. **Nirmal Kulakarni** is a herpetologist, field ecologist, conservationist, and wildlife photographer. He is Director of Wildnest Nature Resort, an eco-tel in the Chorla Ghats, & Chairman of the Mhadei Research Centre, Team Lead of Hypnale Research Station, and promoter of HPERACTIVE, a study initiative on Herpetofauna. **Dr. Gowri Mallapur** is a Goa-based veterinarian and wildlife health professional. She is the Director of the GaiaMitra Collective Foundation based in Goa. She is trained in herpetology, sustainable development and natural history management. **Haranaman Ganis** is an MSc in Ecological and Environmental Sciences from Pondicherry University. He is presently associated with the Mhadei Research Centre. **Aftul Borker** is a multidisciplinary innovator and an educator at Luta Innovation. He is the West Asia Coordinator for IUCN/SSC Otter Specialist Group & the Smooth-Coated Otter Species Coordinator for the IUCN/SSC Otter Specialist Group. He has been instrumental in building conservation capacity for otters in Goa. **Rahul Prabhuhandkar** works as a Consultant in Environment sustainability and natural resource management in the northern Western Ghats with Mhadei Research Centre. He has a keen interest in understanding the ecology and conservation of the lesser-known flora and fauna in the region. **Harihar S. Gauns** is the Founder President and Treasurer of Aranya Environment Research Organisation in Goa. She is a trained zoologist with many years of experience in biodiversity research, community engagement and management planning at the village-level. **Dheereal Halal** completed his BSc in Zoology from Parvatibai Chowgule College of Arts & Science, Goa. He is currently enrolled in a Master’s in Environment at Abasaheb Garware College, Pune. He has a keen research interest in evolutionary ecology, in the evolution of phenotypes and phenotypic plasticity, anti-predatory strategies, and life-histories. **Vignesh D. Shenkar** is from Goa and pursuing his MSc in Biodiversity from Abasaheb Garware College, Pune. He is interested in the ecology of dragonflies. **Dr. Katrina Fernandez** is involved in various aspects of conservation biology, including community ecology. **Dr. Farai Divan Patel** is an ecologist with a focus on environmental science and conservation, with special emphasis on biodiversity conservation in India. He is currently working to conserve the mangrove ecosystem and reduce adverse human impacts, while also serving as the Science Council Director for the Organics Council UK. **Dr. Mamlo R. Borkar** is an Associate Professor & Head, Dept. of Zoology at Carmel College for Women, Goa, for the last 33 years. He is a Fellow of Indian Academy of Environmental Sciences, & served on the Goa State Biodiversity Board, Goa State Birdlife Board and Goa State Experts Appraisal Committee for EIA. He researches arachnids, especially Tarantulas, Whip Spiders and Whip Scorpions. **Gowri Mallapur** is a Goa-based veterinarian and wildlife health professional. **Madhura Nipadkar-Bandekar** is a postdoctoral researcher with an interest in land cover change in community-owned forests in Maharashtra. She is the Secretary of the Foundation for Environment Research and Conservation (FERC) in Goa, a non-profit organization working for environmental awareness, biodiversity documentation and sustainable tourism in Goa. **Farai Divan Patel** is a Senior Research Fellow at the Centre for Ecological Sciences, Bengaluru, and is interested in studying the interface between science and society and the human dimensions of wildlife management. **Manoj R. Borkar** is an ecologist with a focus on environmental science and conservation, with special emphasis on biodiversity conservation in India. He is currently working to conserve the mangrove ecosystem and reduce adverse human impacts, while also serving as the Science Council Director for the Organics Council UK. **Dr. Mamlo R. Borkar** is an Associate Professor & Head, Dept. of Zoology at Carmel College for Women, Goa, for the last 33 years. He is a Fellow of Indian Academy of Environmental Sciences, & served on the Goa State Biodiversity Board, Goa State Birdlife Board and Goa State Experts Appraisal Committee for EIA. He researches arachnids, especially Tarantulas, Whip Spiders and Whip Scorpions. **Gowri Mallapur** is a Goa-based veterinarian and wildlife health professional. **Madhura Nipadkar-Bandekar** is a postdoctoral researcher with an interest in land cover change in community-owned forests in Maharashtra. She is the Secretary of the Foundation for Environment Research and Conservation (FERC) in Goa, a non-profit organization working for environmental awareness, biodiversity documentation and sustainable tourism in Goa. **Farai Divan Patel** is a Senior Research Fellow at the Centre for Ecological Sciences, Bengaluru, and is interested in studying the interface between science and society and the human dimensions of wildlife management. **Manoj R. Borkar** is an ecologist with a focus on environmental science and conservation, with special emphasis on biodiversity conservation in India. He is currently working to conserve the mangrove ecosystem and reduce adverse human impacts, while also serving as the Science Council Director for the Organics Council UK. **Dr. Mamlo R. Borkar** is an Associate Professor & Head, Dept. of Zoology at Carmel College for Women, Goa, for the last 33 years. He is a Fellow of Indian Academy of Environmental Sciences, & served on the Goa State Biodiversity Board, Goa State Birdlife Board and Goa State Experts Appraisal Committee for EIA. He researches arachnids, especially Tarantulas, Whip Spiders and Whip Scorpions.
Monograph

On the inadequacy of environment impact assessments for projects in Bhagwan Mahavir Wildlife Sanctuary and National Park of Goa, India: a peer review
– Girish Punjabi, Anisha Jayadevan, Abhishek Jamalabad, Nandini Velho, Madhura Niphadkar-Bandekar, Pronoy Baidya, Ravi Jambhekar, Parag Rangnekar, Omkar Dharwadkar, Rhea Lopez, Marishia Rodrigues, Farai Divan Patel, H.S. Sathya Chandra Sagar, Sayan Banerjee, Manish Chandi, Nandini Mehrotra, Shashank Srinivasan, Sneha Shahi, Vidyadhar Atkore, Nirmal Kulkarni, Gowri Mallapur, Hanuman Gawas, Atul Borker, Rahul Prabhukhanolkar, Harshada S. Gauns, Dheeraj Halali, Vighnesh D. Shinde, Katrina Fernandez, Esme Purdie & Manoj R. Borkar, Pp. 17387-17454