Loneliness as a risk factor for frailty transition among Chinese old people

SHA SHA
Beijing Normal University

Xu Yuebin
Beijing Normal University

Chen Lin (linchen_988@163.com)
https://orcid.org/0000-0003-4024-6112

Research article

Keywords: loneliness, frailty, frailty transition, longitudinal, elderly, gender difference

Posted Date: September 24th, 2019

DOI: https://doi.org/10.21203/rs.2.14917/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published on August 24th, 2020. See the published version at https://doi.org/10.1186/s12877-020-01714-5.
Abstract

Background: loneliness has been observed to be associated with subsequent adverse outcomes. Our study aims to investigate whether and how loneliness is related to frailty transition.

Methods: our study used 8425 participants (aged>=60) from 2008 and 2011 waves of Chinese Longitudinal Healthy Longevity Survey (CLHLS). Loneliness was assessed by a single question asking how often the respondent feels lonely and isolated and grouped into three levels of loneliness: never, seldom and often. Frailty was contrasted in physical frailty and frailty index. Frailty transition as outcome variable has been designed as two types according the measurement of frailty: remaining robust or prefrail, improvement, worsening and remaining frail was used to describe the transition of physical frailty, and we created three categories of frailty index change to investigate the association between loneliness and frailty transition.

Results: greater loneliness reduced the possibility of remaining robust or prefrail physical frailty state after adjusting: odds ratios (95% CI) was 0.78(0.67-0.90), adjusted for age, gender, components number of frail scale at baseline and all other confounding variables. Greater loneliness was associated with an increased risk of worsening physical frailty after 3 years: compared with those never loneliness, the odds ratios (95% CI) for people who often loneliness were 1.19(1.01-1.40), adjusted for age, gender and components number of frail scale at baseline and all other confounding variables. The association between loneliness and the possibility of remaining robust or prefrail physical frailty states had no gender difference, adjusted for age and components number of frail scale at baseline, whereas loneliness was no longer significant in female participants after adjusting for all covariates. Male participants with often loneliness had an increased risk of worsening physical frailty state even with all covariates. By contrast, loneliness showed no significant relationship with physical frailty improvement and remaining frail. We found no significant relationship with loneliness under the model of the frailty index.

Conclusion: old adults with a high level of loneliness tend to be physical frailty state in the future, and male older with a high level of loneliness had an increased risk of worsening physical frailty state.

Introduction

Loneliness is a common and dissatisfaction feeling of one’s social relationship [1, 2]. Loneliness has been observed to be associated with subsequent adverse outcomes, such as mortality [3, 4], comorbidity [5, 6], poor functional ability [7, 8], depression [9], cognitive decline [10], frailty [11-14].

Frailty is a syndrome that predicts vulnerability to adverse outcomes and is recognized as a dynamic state with the potential for reversibility [15-18]. Studies have been focused on frailty transition, incidence and its associated factors [15, 19, 20] while several studies investigated the relationship between loneliness and frailty transition. Frailty was found to be linked with social loneliness in cross-section and longitudinal design [11, 21, 22]. There was also evidence that frailty is found to be associated with an increase in loneliness over time and that high level of loneliness is associated with an increased risk of becoming physically frail or prefrail in the future [2]. Our study used data from the Chinese Longitudinal Healthy Longevity Survey (CLHLS), aiming to investigate whether loneliness increased the risk of greater frailty in the future and how loneliness relates to frailty transition.

Research Methods

Questionnaire, design, and participants
The data comes from Chinese Longitudinal Healthy Longevity Survey (CLHLS) which was collected from half of the counties and cities and represents 85% of the total population of China[23]. The rationales, details of the survey design, data quality was described elsewhere[24, 25]. The questionnaire contained demographic information, lifestyle, diet, self-reported health, psychological health, activities of daily living (ADL) and instrumental activities of daily living (IADL). Follow-up interviews were conducted in 2000, 2005, 2008, 2011, 2014.

Our study utilizes the 2008 and 2011 waves of CLHLS. Briefly, among the 16786 participants (aged >=60 years) in 2008, 2728(16%) were lost to follow-up and 14058 (84%) remained. Among the 14058 participants, 5633 died before the 2011 wave and 8425 were alive in the 2011 wave. The Flowchart of the study is shown in Figure 1.

![Flowchart of participants](image.png)

Figure 1 flow diagram of participants

Loneliness

Loneliness was measured in the 2008 and 2011 waves with a single question asking how often the respondent feels lonely and isolated. The 5-point response scale ranged from “never” to “always”. Single-item questions are sometimes known as self-rating measures of loneliness as they can ask directly for the individual’s assessment of how lonely they feel. The single-question of loneliness has been used widely and proved to be valid and highly correlated with multi-item loneliness scales[26, 27]. Because the question on loneliness in CLHLS is highly skewed with fewer respondents in the “always” and “often” categories, we classified “sometimes” “often” and “always” into one category and “seldom” and “never” into another category to show the level of loneliness.

Frailty status

FRAIL Scale[28] was created to measure physical frailty for our study. Those who met three or more components were defined as frail, those 1 or 2 components as prefrail and those without any were defined as robust[28, 29]. Based on the CLHLS questionnaire design, we made some adjustments to the FRAIL Scale indicators. Each item of FRIL Scale was dichotomized and mapped to the interval 0-1. Fatigue, using the question of “Do you feel the older you get, the more useless you are?” The analysis codes “never” “seldom” “sometimes” as 0 and 1 if otherwise. Resistance was measured with “Can you continuously crouch and stand up three times?” and Ambulation with “Can you walk continuously for 1 kilometer at a time by yourself?”. For the two variables, the analysis recodes 0 for “without assistance” and 1 for otherwise. For illness, self-reporting of more than 5 kinds of illness was coded as 1. Loss of weight was measured by BMI (weight (in kilograms)/height (in meters) 2) and has the same cutoff points of underweight (<18.6).

Our study also used another model of the frailty index to measure the dimensions of frailty. It has been suggested that at least 30 deficits are needed in the frailty index[30]. We used 37 indicators of various
dimensions of frailty status, which coded as 1 when deficits happened and assigned a score of 2 if the interviewees had a serious illness that caused him/her to be hospitalized or bedridden two or more times[31-33]. Full description of the frailty index can be found in Table 1.

Table 1 list of items included in a frailty index

NO.	Items
1	ADLs: needs assistant in bathing
2	ADLs: needs assistant in dressing
3	ADLs: needs assistant in toileting
4	ADLs: needs assistant in indoor transferring
5	ADLs: needs assistant in continence
6	ADLs: needs assistant in eating
7	IADLs: unable to visit neighbors by himself/herself
8	IADLs: unable to go shopping by himself/herself
9	IADLs: unable to cook a meal by himself/herself
10	IADLs: unable to wash clothing by himself/herself
11	IADLs: unable to walk continuously for 1 kilometer at a time by himself/herself
12	IADLs: unable to lift a weight of 5kg
13	IADLs: unable to continuously crouch and stand up three times
14	IADLs: unable to take public transportation by himself/herself
15	Cognitive impairment (based on Mini Mental State Examination)
16	Poor self-reported health
17	Health state compared to past year
18	Poor interviewer-rated health
19	Vision loss
20	Psychological distress (based on usefulness, fearfulness)
21	Number of serious illnesses in the past two years*
22	Suffering from hypertension
23	Suffering from diabetes
24	Suffering from heart disease
25	Suffering from stroke or cerebrovascular disease
26	Suffering from bronchitis, emphysema, pneumonia, asthma
27	Suffering from tuberculosis
28	Suffering from cataract
29	Suffering from cancer
30	Suffering from Parkinson’s disease
31	Suffering from arthritis
32	Suffering from dementia
33	Functional limitations: unable to put hand behind neck
34	Functional limitations: unable to put hand behind lower neck
35	Functional limitations: unable to raise arm upright
36	Functional limitations: unable to stand up from sitting in a chair
37	Functional limitations: unable to pick up a book from floor

*Two or more serious illnesses in the past two years are assigned a value of 2.

Frailty transitions

The change in frailty status between the baseline in 2008 and follow-up in 2011 was used as the outcome. Frailty transitions had been created in two types in our study since we used two kinds of frailty models.

In a study by Gill et al[15], nine transitions of frailty were possible in physical frailty, including six transitions between three frailty states (robust, prefrail, frail) and each frailty state to death. The number of frailty states in the 2008 and 2011 waves was made. Four transitions between frailty states were designed in our study by a frail scale: remaining robust or prefrail, which means that the elderly have remained healthy to some extent; improvement, which means improvement or a change from
prefrail to robust or from frail to robust or prefrail; worsening, which is a transition to greater frailty; and remaining frail, meaning that the elderly have remained unhealthy. Change in the frailty index was classified into three categories: robust, which means that the frailty scores of the elderly had not changed; worsening, which means that the frailty scores of the elderly had increased; and improvement, which means that the frailty scores declined to a lesser frailty state in the follow-up year.

Covariates
Covariates were measured at baseline and included age, gender, living arrangement, residential area, education year, relative economic status, smoking, drinking alcohol and baseline physical frailty state. Living arrangement was coded as 0 if participants were living independently, otherwise as 1. The residential area was commonly used in studies about China because urban and rural areas differ greatly in socioeconomic development. Participants were asked about their educational year, which is used as a continuous variable in our study. Relative economic status was measured with the question: “How do you rate your economic status compared with others in your local area?”. The response was classified into three categories and we reverse-coded these so that higher categories indicated greater economic status (1=poor; 2=so so; 3=rich). Frailty transition between frailty states was highly dependent on preceding frailty state and baseline frailty state were viewed as components number of baseline frail scale.

Analytical sample
In total, 14058 participants were conclude in the 2008-2011 wave, of which 5633 died before 2011 wave and 8425 were re-interviewed at the 2011 wave. Analysis of physical frailty transition and loneliness in relation to frailty transition is based on 5839 (69%) participants with completed data by re-interviewed participants. Analysis of frailty index change is based on 5618 (67%) participants with completed data among re-interviewed participants. Compared with the participants who were in our main analytical sample (n=5839), those who were excluded due to the loss to follow-up were older, frailer, lonelier, less residence in rural, less education year, more smokers, and fewer drinkers.

Statistical analysis
Descriptive statistics at baseline were summarized using the mean (±standard deviation) or counts (percentages). Chi-Square test and student’s test were measured to compare age, living arrangement, residential area, education year, relative economic status, smoking, drinking alcohol and baseline frailty state, according to gender.
Frailty index scores were log-transformed for analysis, after addition of 0.01 to avoid logarithms of zero. Logistic regression was used to derive odds ratio of loneliness for physical frailty transition types and frailty index change types. Logistic regression was also conducted for female and male separately since frailty status transition was affected by gender. Estimates are shown adjusted for age and the number of components of baseline physical frailty and more others. Gender was also adjusted for all of the participants. All analysis was performed using statistical package STATA version 13.0. A p-value<0.05 was calculated as statistically significant.

Results
Table 2 summarized the characteristic of participants by gender. In total, the prevalence of often loneliness at baseline was 32.5%, and females tend to be lonelier than males. Compared with males,
female participants at baseline were older, having less education year, less smoker, less drinker, and having a greater frailty level both in physical frailty scale and frailty index at baseline.

Table 2 characteristic of the participants at baseline

	Total	Female	Male	p-value*
Age, mean(SD)	87.0(11.5)	89.3(11.6)	83.9(10.7)	<0.001
Residency: Rural, n(%)	8950(63.7)	5180(64.3)	3770(62.8)	0.066
Living arrangement: Ind., n(%)	2113(15.0)	1252(15.5)	861(14.3)	0.05
Education year, mean(SD)	2.0(3.3)	0.8(2.2)	3.5(3.9)	<0.001
Relative economic status: rich	2614(18.6)	1583(19.7)	1031(17.2)	<0.001
so so	9556(68.2)	5482(68.2)	4074(68.1)	
poor	1852(13.2)	970(12.1)	882(14.7)	
Current smoker, n(%)	2519(17.9)	454(5.6)	2065(34.4)	<0.001
Current drinker, n(%)	2517(17.9)	704(8.7)	1813(30.2)	<0.001
Loneliness, n(%)				
never	4534(37.8)	2240(34.3)	2294(42.1)	<0.001
seldom	3553(29.7)	1939(29.7)	1614(29.6)	
often	3894(32.5)	2357(36.1)	1537(28.2)	
No. of components of frail scale at baseline, mean(SD)	1.5(1.3)	1.8(1.3)	1.2(1.2)	<0.001
Frailty index score at baseline, mean(SD)	0.2(0.1)	0.2(0.1)	0.1(0.1)	<0.001

*Chi-Square test for proportions and student’s test for continuous measures

Table 3 shows the transition in frailty status between baseline and follow-up visit. At baseline, 2642(45.2%) participants at baseline were classified into the prefrail group, 2384(40.8%) participants into a robust group, 813(13.8%) populations into a frail group. There was a clear difference between female and male in the distribution of frail group at baseline, and 20.1% of female and 7.4% of the male were frail respectively. At follow-up year, 2627(45.0%) had remained in the same robust or prefrail states, whereas 1671(28.6%) had declined into greater frailty, 1215(20.1%) had recovered into the lower level of frailty and only 5.6% remained in the frail group. Among female participants, 39.5% had remained in the robust or prefrail state, whereas 29.8% of those in the robust or prefrail state at baseline worsened into frailty, and 22.0% of the female has recovered from greater frailty state. Among male participants, more than half remained in the robust or prefrail state, whereas 27.4% had worsened into greater frailty and 19.6% had recovered. Females tend to be worsened in physical frailty state more than males, whereas male had a lower prevalence of remaining frail than female.

Table 3 physical frailty transitions between baseline and follow-up

Frailty status (2008)	Frailty status (2011), n(%)	Total		
	nonfrail	prefrail	frail	
Total				2,384
nonfrail	1277(53.6)	905(38.0)	202(8.5)	2,384
prefrail	728(27.6)	1350(51.1)	564(21.3)	2,642
frail	89(10.9)	398(49.0)	326(40.1)	813
Female				989
nonfrail	466(47.1)	407(41.2)	116(11.7)	989
prefrail	314(22.6)	710(51.1)	365(26.3)	1,389
frail	48(8.0)	293(48.8)	259(43.2)	600
Male	811(58.1)	498(35.7)	86(6.2)	1,395
nonfrail	414(33.0)	640(51.1)	199(15.9)	1,253
prefrail	41(19.3)	105(49.3)	67(31.5)	213
The associations between physical frailty transition types and loneliness are shown in Table 4. In the remaining robust or prefrail group, after adjusting for age, gender and components number in the frail scale at baseline, significant trends in remaining frail state was associated with a high level of loneliness were observed. Compared to never loneliness participants, those who always feel lonely were unlikely to remain healthy (robust or prefrail) states. This association remained significant after further adjustment for other covariates, and the odds ratios (95% CI) for people who feel often lonely was 0.78 (0.67-0.90). In the worsening group, loneliness was a significant risk factor that a high level of loneliness was associated with worsened frailty states after 3 years. Often loneliness remained significant after further adjustment for full covariates, and the odds ratios (95% CI) for people who feel often lonely were 1.19 (1.01-1.40). In improvement and remaining frail group, loneliness showed no significant influence on frailty transition.

We also investigated whether the association between levels of loneliness and physical frailty transition differed by gender. Both female and male participants had shown a significant relationship between often loneliness and remaining nonfrail and prefrail, and the odds ratios (95% CI) for people of often loneliness were 0.81 (0.67-0.99) for female, 0.74 (0.61-0.90) for male participants. But the relationship is undermined and no longer significant after adjustment for other covariates in female participants. No significant association was found in female participants, but male participants with often loneliness had an increased risk of worsening physical frailty state even with all covariates, and the odds ratios (95% CI) adjusted for all covariates was 1.37 (1.07-1.75).

Table 5 shows odds ratios (95% CI) for change in the frailty index from baseline to a follow-up visit, according to loneliness. There were no significant associations between loneliness and change in a frailty index. These associations also showed no difference between genders.

Table 4

	Remaining nonfrail and prefrail	Worsening	Improvement	Remaining frail
Total (n=5802)				
never	Reference (1.13)	Reference	Reference	Reference
seldom	0.99 (0.87-1.13)	1.00 (1.00-1.14)	1.04 (0.90-1.23)	Reference
often	0.78 (0.68-0.89)	0.78 (0.67-0.90)	1.21 (1.03-1.42)*	Reference
Female (n=2952)				
never	Reference (1.18)	Reference	Reference	Reference
seldom	0.98 (0.81-1.18)	1.01 (0.83-1.21)	1.04 (0.85-1.27)	Reference
often	0.81 (0.67-0.99)*	0.84 (0.69-1.03)	1.09 (0.87-1.36)	Reference
Male (n=2850)				
never	Reference (1.20)	Reference	Reference	Reference
seldom	1.01 (0.84-1.20)	1.00 (0.84-1.20)	1.07 (0.87-1.31)	Reference
often	0.74 (0.61-0.90)**	0.73 (0.59-0.89)**	1.37 (1.09-1.74)**	Reference

***P<0.0001, **P<0.01, *P<0.05.

Model 1 adjusted for age, and components number of frail scale at baseline. Model 2 adjusted for age, components number of frail scale at baseline, residence, education year, smoking and drinking alcohol at baseline. In total participants, adjustment for gender was also performed.

Table 5

	Remaining nonfrail and prefrail	Worsening	Improvement	Remaining frail
Total (n=5802)				
never	Reference (1.13)	Reference	Reference	Reference
seldom	0.99 (0.87-1.13)	1.00 (0.88-1.14)	1.04 (0.91-1.23)	Reference
often	0.78 (0.68-0.89)	0.78 (0.67-0.90)	1.21 (1.03-1.42)*	Reference
Female (n=2952)				
never	Reference (1.18)	Reference	Reference	Reference
seldom	0.98 (0.81-1.18)	1.01 (0.83-1.21)	1.04 (0.85-1.27)	Reference
often	0.81 (0.67-0.99)*	0.84 (0.69-1.03)	1.09 (0.87-1.36)	Reference
Male (n=2850)				
never	Reference (1.20)	Reference	Reference	Reference
seldom	1.01 (0.84-1.20)	1.00 (0.84-1.20)	1.07 (0.87-1.31)	Reference
often	0.74 (0.61-0.90)**	0.73 (0.59-0.89)**	1.37 (1.09-1.74)**	Reference

***P<0.0001, **P<0.01, *P<0.05.
Discussion

The present study investigated the association between frailty transitions from baseline to a follow-up visit around 3 years later, according to loneliness at baseline. We found that 45.0% of the population could remain in the robust or prefrail states, with more than a quarter of population transferring to greater frailty. Transitions to greater physical frailty were more common than transitions to less physical frailty, and this characteristic of transition rates was consistent with the previous studies [35]. Female and male participants in our study showed different transition rates. Females tend to process into worsened physical frailty more than male, whereas male showed less likely to remain in the frail state than female. This will have to be further confirmed by other studies since an earlier study of old people in Hong Kong between 2001 and 2003 found that females were less likely to decline in frailty status than male [19].

Our study designed four kinds of physical frailty transition types: remaining robust or prefrail, improvement, worsening and remaining frail to certain the specific relationship between loneliness and frailty transition. Previous studies were not consistent in the association between loneliness and frailty: a cross-sectional study of Mexican community-dwelling elderly adults found that loneliness was independently associated with frailty [21], and the prospective study found the relationship between frailty and loneliness was bidirectional [2, 22]. In our study, we found that greater loneliness reduced the possibility of remaining robust or prefrail physical frailty, and this finding is consistent with an indication of English longitudinal aging study, which found that greater loneliness was associated with increased risk of physical frailty [2]. Previous studies showed that loneliness was related to declining in frailty components. Loneliness was associated with a higher risk of comorbidity [5, 6], functional decline, for example, ADL problems [7, 8], upper difficulties and poor mobility [7] and may predict subsequent cognitive decline [10], no matter the loneliness is transient or chronic [36]. We found evidence on the
relationship between loneliness and different frailty transition types, and that greater loneliness was associated with an increased risk of worsening physical frailty after 3 years. There have been no prospective studies to identify whether the association between levels of loneliness and physical frailty by gender. A study had shown that loneliness varied by gender [37]. Low resilience was associated significantly with loneliness, which was more pronounced in males [38]. Resilience was newly used in the field of frailty, and high resilience may be protective and facilitate maintenance of health status, which resulted in frailty [39, 40]. Previous research also indicated the stressful impact of loneliness on men by showing increased inflammatory responses [41]. The inflammatory response was a specific physiological basis to the geriatric syndrome of frailty [42], which may be a mechanism underlying the gender difference in the relationship between loneliness and physical frailty. Moreover, females tended to have more multifaceted networks that lead to more social support, whereas males obtained social relationship more on the public that may not always support [43]. Here, we found consistent evidence that there was a clear difference in the association between levels of loneliness and physical frailty between men and women. The association of high level of loneliness at baseline with remaining robust or prefrail frailty at follow-up visit remained significant between men and women, whereas loneliness was no longer significant in female participants after adjusting for all covariates. In addition, we found that the association between loneliness and worsening physical frailty was no longer significant in female participants, but male participants with often loneliness had an increased risk of worsening physical frailty state even with all covariates.

Our study also used another model of frailty, the frailty index, to further verify results on the relationship between loneliness and frailty transition. We found no relationship with loneliness and frailty change types by the frailty index, and this finding is similar with the finding in an earlier study [2], which may indicate that a broader definition of frailty does not have the same risk factors with physical frailty only. Our finding highlighted that loneliness was associated with physical frailty transition. This may imply that we should pay close attention to physical frail old adults with loneliness and the effect of frailty interventions might have different efficacy in a different kind of frail elderly.

The strength of our study includes the large sample size and the fact that CLHLS was aimed to investigate the determinants of health and longevity of older adults in China from a multidisciplinary perspective [31]. The study has limitations. In total participants, 69% has complete data on the frail scale and 67% has complete data on the frail index. Those who did not complete the questionnaire may tend to be frailier and lonelier. Our finding may underestimate the relationship between frailty transition and loneliness, especially in the model of the frailty index. The second limitation was the formulation of the loneliness may affect our results. The question was asking how often the respondent feels lonely and isolated, and earlier had examined that social isolation was related to future frailty, but the relationship is not significant after controlling comorbidity [44]. Considering this limitation, we conducted a physical frailty transition with frail scale, which contains comorbidity as an item in advance.

Conclusions

Loneliness declined the possibility of remaining robust or prefrail frailty states and greater loneliness is associated with increased risk of worsening frailty. The association between loneliness and physical frailty transition differ obviously between men and women. In contrast, loneliness showed no relationship with frailty transition under the frailty index, which may represent a broader scope of frailty.
Declarations

Abbreviations
CLHLS, Chinese Longitudinal Healthy Longevity Survey

Ethics approval and consent to participate
Not applicable since the dataset used in the study is publicly available.

Competing interests
None.

Funding
None.

Authors' contributions
SHASHA designed, drafted, and revised the text. SHASHA also performed the analyses. Xu yuebin drafted and revised the text. Chenlin revised and interpreted the results. All authors read and approved the final version of the manuscript.

Acknowledgements
The CLHLS datasets are publicly available at the Center for the Study of Aging and Human Development, Duke University (http://centerforaging.duke.edu/datadownloads). Researchers can obtain the datasets after sending a data user agreement to the CLHLS team. The English version of the questionnaires is free to download at the CLHLS website.

CLHLS is supported by funds from the U.S. National Institutes on Aging (NIA), China Natural Science Foundation, China Social Science Foundation, and UNFPA. The developers and funders of CLHLS do not bear any responsibility for the analyses or interpretations presented here.

References

[1] HAWKLEY L C, CACIOPPO J T. Loneliness Matters: A Theoretical and Empirical Review of Consequences and Mechanisms [J]. Ann Behav Med, 2010, 40(2): 218-27.
[2] GALE C R, WESTBURY L, COOPER C. Social isolation and loneliness as risk factors for the progression of frailty: the English Longitudinal Study of Ageing [J]. Age Ageing, 2018, 47(3): 392-7.
[3] LUO Y, WAITE L J. Loneliness and mortality among older adults in China [J]. J Gerontol B Psychol Sci Soc Sci, 2014, 69(4): 633-45.
[4] LUO Y, HAWKLEY L C, WAITE L J, et al. Loneliness, health, and mortality in old age: A national longitudinal study [J]. Social Science & Medicine, 2012, 74(6): 907-14.
[5] HAKULINEN C, PULKKI-RABACK L, VIRTANEN M, et al. Social isolation and loneliness as risk factors for myocardial infarction, stroke and mortality: UK Biobank cohort study of 479 054 men and women [J]. Heart, 2018, 104(18): 1536-42.
[6] HAWKLEY L C, THISTED R A, MASI C M, et al. Loneliness Predicts Increased Blood Pressure: 5-Year Cross-Lagged Analyses in Middle-Aged and Older Adults [J]. Psychology and Aging, 2010, 25(1): 132-41.
[7] PERISSINOTTO C M, CENZER I S, COVINSKY K E. Loneliness in Older Persons A Predictor of Functional Decline and Death [J]. Archives of Internal Medicine, 2012, 172(14): 1078-83.
[8] SHANKAR A, MCMUNN A, DEMAKAKOS P, et al. Social Isolation and Loneliness: Prospective Associations With Functional Status in Older Adults [J]. Health Psychology, 2017, 36(2): 179-87.
[9] CACIOPPO J T, HAWKLEY L C, THISTED R A. Perceived Social Isolation Makes Me Sad: 5-Year Cross-Lagged Analyses of Loneliness and Depressive Symptomatology in the Chicago Health, Aging, and Social Relations Study [J]. Psychology and Aging, 2010, 25(2): 453-63.

[10] ZHONG B L, CHEN S L, TU X, et al. Loneliness and Cognitive Function in Older Adults: Findings From the Chinese Longitudinal Healthy Longevity Survey [J]. J Gerontol B Psychol Sci Soc Sci, 2017, 72(1): 120-8.

[11] ROCKWOOD K, HOWLETT S E, MACKNIGHT C, et al. Prevalence, attributes, and outcomes of fitness and frailty in community-dwelling older adults: Report from the Canadian Study of Health and Aging [J]. Journals of Gerontology Series a-Biological Sciences and Medical Sciences, 2004, 59(12): 1310-7.

[12] BANDEEN-ROCHE K, XUE Q L, FERRUCCI L, et al. Phenotype of frailty: Characterization in the women's health and aging studies [J]. Journals of Gerontology Series a-Biological Sciences and Medical Sciences, 2006, 61(3): 262-6.

[13] KOJIMA G. Frailty as a predictor of disabilities among community-dwelling older people: a systematic review and meta-analysis [J]. Disability and Rehabilitation, 2017, 39(19): 1897-908.

[14] MAKIZAKO H, SHIMADA H, DOI T, et al. Physical Frailty Predicts Incident Depressive Symptoms in Elderly People: Prospective Findings From the Obu Study of Health Promotion for the Elderly [J]. Journal of the American Medical Directors Association, 2015, 16(3): 194-9.

[15] GILL T M, GAHBAUER E A, ALLORE H G, et al. Transitions between frailty states among community-living older persons [J]. Archives of Internal Medicine, 2006, 166(4): 418-23.

[16] K ROCKWOOD R A F, P STOLEE, D ROBERTSON, AND B L BEATTIE. Frailty in elderly people an evolving concept [J]. CMAJ, 1994, 150(4) (489-95.

[17] SLAETS J P J. Vulnerability in the elderly: Frailty [J]. Medical Clinics of North America, 2006, 90(4): 593-6.

[18] CLEGG A, YOUNG J, ILIFFE S, et al. Frailty in elderly people [J]. Lancet, 2013, 381(9868): 752-62.

[19] LEE J S, AUYEUNG T W, LEUNG J, et al. Transitions in frailty states among community-living older adults and their associated factors [J]. J Am Med Dir Assoc, 2014, 15(4): 281-6.

[20] KOJIMA G, TANIGUCHI Y, ILIFFE S, et al. Transitions between frailty states among community-dwelling older people: A systematic review and meta-analysis [J]. Ageing Res Rev, 2019, 50(81-8.

[21] HERRERA-BADILLA A, PATICIA NAVARRETE-REYES A, AMIEVA H, et al. LONELINESS IS ASSOCIATED WITH FRAILEY IN COMMUNITY-DWELLING ELDERLY ADULTS [J]. Journal of the American Geriatrics Society, 2015, 63(3): 607-9.

[22] HOOGENDIJK J E O, SUANET B, DENT E, et al. Adverse effects of frailty on social functioning in older adults: Results from the Longitudinal Aging Study Amsterdam [J]. Maturitas, 2016, 83(45-50.

[23] CHEN F, SHORT S E. Household Context and Subjective Well-Being Among the Oldest Old in China [J]. J Fam Issues, 2008, 29(10): 1379-403.

[24] GU D, DUBRING, M.E. . Assessment of Reliability of Mortality and Morbidity in the 1998–2002 CLHLS Waves [J]. In Y Zeng, DL Poston, DA Vlosky, and D Gu (eds) Healthy Longevity in China: Demographic, Socioeconomic, and Psychological Dimensions (Pp99-115) Dordrecht, The Netherlands: Springer 2008,

[25] GU D. General data assessment of the Chinese Longitudinal Healthy Longevity Survey in 2002 [J]. In Y Zeng, DL Poston, DA Vlosky, and D Gu (eds) Healthy Longevity in China: Demographic, Socioeconomic, and Psychological Dimensions (Pp39-59) Dordrecht, The Netherlands: Springer 2008,

[26] TILVIS R S, PITKALA K H, JOLKKONEN J, et al. Social networks and dementia [J]. Lancet, 2000, 356(9223): 77-8.

[27] PINQUART M, SORENSSEN S. Influences on loneliness in older adults: A meta-analysis [J]. Basic and Applied Social Psychology, 2001, 23(4): 245-66.

[28] ABELLAN VAN KAN G, ROLLAND Y M, MORLEY J E, et al. Frailty: toward a clinical definition [J]. J Am Med Dir Assoc, 2008, 9(2): 71-2.

[29] MORLEY J E, MALMSTROM T K, MILLER D K. A simple frailty questionnaire (FRAIL) predicts outcomes in middle aged African Americans [J]. Journal of Nutrition Health & Aging, 2012, 16(7): 601-8.

[30] SEARLE S D, MITNITSKI A, GAHBAUER E A, et al. A standard procedure for creating a frailty index [J]. BMC Geriatr, 2008, 8(24.

[31] YANG F, GU D. Predictability of frailty index and its components on mortality in older adults in China [J]. Bmc Geriatrics, 2016, 16(1)

[32] GOGGINS W B, WOO J, SHAM A, et al. Frailty index as a measure of biological age in a Chinese population [J]. Journals of Gerontology Series a-Biological Sciences and Medical Sciences, 2005, 60(8): 1046-51.

[33] GU D, DUBRING M E, SAUTTER J, et al. Frailty and mortality among Chinese at advanced ages [J]. J Gerontol B Psychol Sci Soc Sci, 2009, 64(2): 279-89.

[34] LIU Z Y, WEI Y Z, WEI L Q, et al. Frailty transitions and types of death in Chinese older adults: a population-based cohort study [J]. Clin Interv Aging, 2018, 13(947-56.
ZHONG B L, CHEN S L, CONWELL Y. Effects of Transient Versus Chronic Loneliness on Cognitive Function in Older Adults: Findings From the Chinese Longitudinal Healthy Longevity Survey [J]. American Journal of Geriatric Psychiatry, 2016, 24(5): 389-98.

ZHOU Z, WANG P, FANG Y. Loneliness and the risk of dementia among older Chinese adults: gender differences [J]. Aging & Mental Health, 2018, 22(4): 519-25.

ZEBHAUSER A, HOFMANN-XU L, BAUMERT J, et al. How much does it hurt to be lonely? Mental and physical differences between older men and women in the KORA-Age Study [J]. International Journal of Geriatric Psychiatry, 2014, 29(3): 245-52.

FERRUCCI L, GIALLAURIA F, SCHLESSINGER D. Mapping the road to resilience: Novel math for the study of frailty [J]. Mechanisms of Ageing and Development, 2008, 129(11): 677-9.

CESARI M, PRINCE M, THIYAGARAJAN J A, et al. Frailty: An Emerging Public Health Priority [J]. J Am Med Dir Assoc, 2016, 17(3): 188-92.

HERMES G L, ROSENTHAL L, MONTAG A, et al. Social isolation and the inflammatory response: sex differences in the enduring effects of a prior stressor [J]. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 2006, 290(2): R273-R82.

WALSTON J, MCBURNIE M A, NEWMAN A, et al. Frailty and activation of the inflammation and coagulation systems with and without clinical comorbidities - Results from the Cardiovascular Health Study [J]. Archives of Internal Medicine, 2002, 162(20): 2333-41.

STEVENS N. GENDER AND ADAPTATION TO WIDOWHOOD IN LATER LIFE [J]. Ageing and Society, 1995, 15(37-58.

STRAWBRIDGE W J, SHEMA S J, BALFOUR J L, et al. Antecedents of frailty over three decades in an older cohort [J]. Journals of Gerontology Series B-Psychological Sciences and Social Sciences, 1998, 53(1): S9-S16.

Figures

Figure 1 flow diagram of participants
flow diagram of participants