An opioid-like system regulating feeding behavior in *C. elegans*

Mi Cheong Cheong1*†, Alexander B Artyukhin1‡, Young-Jai You2, Leon Avery1

1Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, United States; 2Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, United States

Abstract Neuropeptides are essential for the regulation of appetite. Here we show that neuropeptides could regulate feeding in mutants that lack neurotransmission from the motor neurons that stimulate feeding muscles. We identified *nlp-24* by an RNAi screen of 115 neuropeptide genes, testing whether they affected growth. NLP-24 peptides have a conserved YGGXX sequence, similar to mammalian opioid neuropeptides. In addition, morphine and naloxone respectively stimulated and inhibited feeding in starved worms, but not in worms lacking NPR-17, which encodes a protein with sequence similarity to opioid receptors. Opioid agonists activated heterologously expressed NPR-17, as did at least one NLP-24 peptide. Worms lacking the ASI neurons, which express *npr-17*, did not respond to naloxone. Thus, we suggest that *Caenorhabditis elegans* has an endogenous opioid system that acts through NPR-17, and that opioids regulate feeding via ASI neurons. Together, these results suggest *C. elegans* may be the first genetically tractable invertebrate opioid model.

DOI: 10.7554/eLife.06683.001

Introduction

Animal feeding behavior has been well studied because of its health relevance as well as its fundamental physiological and ecological importance. *Caenorhabditis elegans* is a useful model system for studying the genetic control of feeding (Avery, 2012). In *C. elegans*, feeding is dependent on the pumping motion of the pharynx, which results in the ingestion of food, and whose rate is an easily quantified measure of feeding. The pathways that control feeding are at least partly conserved from worms to mammals.

Control of animal feeding is not simple. Multiple peripheral and central signals, neuropeptides among them, modulate food intake. For example, α-melanocyte-stimulating hormone, a peptide which activates MC3 and MC4 melanocortin receptors and inhibits food intake (Meister, 2007), putative satiety signal peptide YY3–36 (PYY3–36) (Batterham et al., 2002), and cholecystokinin (Gibbs et al., 1973) participate in the termination of meals in mammals. Galanin is a peptide that stimulates feeding in satiated rats after intraventricular or intrahypothalamic injection. Opioids are also involved in controlling food intake, and they have many other biological effects (e.g., analgesia, drug addiction, and immune response). For example, the opioid agonist morphine increases food intake in mammals while the opioid blocker, naloxone, significantly decreases food intake (Martin et al., 1963).

The opioid system is composed of μ-opioid receptors (MORs), δ-opioid receptors (DORs), and κ-opioid receptors (KORs), and endogenous ligands for these receptors. Enkephalins, dynorphins, and β-endorphin peptides are produced by proteolytic cleavage of large protein precursors known as preproenkephalin, preprodynorphin, and proopiomelanocortin (POMC), respectively. These peptides form the opioid family. All opioid peptides share a common N-terminal YGGF signature sequence, which interacts with opioid receptors (Holtzman, 1974; Akil et al., 1998). Many researchers have shown that the opilioid system modulates food intake. β-endorphin stimulates food intake when...
When and how much an animal eats is controlled by a complex web of signals that are produced by the animal’s body and brain. Molecules called opioid neuropeptides are among these signals, and act to control eating in mammals by binding to receptors in the brain and body. These receptors can also bind to similar molecules called opiates (such as morphine); opiates are amongst the oldest drugs used by humans and have diverse effects ranging from pain relief to addiction. While the activities of opiates and opioid neuropeptides have been studied in mammals, relatively little is known about opioid signaling in simpler animals.

The mechanisms behind many biological processes have been investigated using a worm called *C. elegans* as a model system because it has a simple body plan and its genes can be altered easily. The feeding behavior of *C. elegans* is no exception. This worm feeds by contracting and relaxing its pharyngeal muscle to move food into its gut. When the worms sense that food is available, this ‘pharyngeal pumping’ is regulated by one type of nerve cell. Slow pharyngeal pumping also continues in starved worms when food is not available, possibly to encourage them to eat new potential sources of food. However, this slow pumping does not require the same type of nerve cell.

Cheong et al. hypothesized that the slow pumping in starved worms might depend on neuropeptide signaling instead, and have now tested this idea using engineered worms that made lower levels of a number of these molecules. The experiments uncovered a molecule called NLP-24 that promotes the slow pharyngeal pumping. This molecule is similar to opioid neuropeptides found in mammals. Worms that made less NLP-24 than normal grew more slowly; this suggests that they had problems feeding. Moreover, the levels of NLP-24 were found to increase in normal worms soon after they were deprived of food. Further experiments revealed the identity of the receptor for this molecule, which is also similar to mammalian opioid receptors.

The discovery that opioid signaling is involved in *C. elegans*’ feeding behavior may well, in future, also help to identify new molecular players involved in opioid signaling. Further studies might also help the search for ways to reduce the problematic side-effects that limit the usefulness of opiate drugs as medicines.

DOI: 10.7554/eLife.06683.002

Cheong et al. eLife 2015;4:e06683.

Peptide signals control MC-independent pumping

In well-fed *C. elegans*, pharyngeal pumping, the motion of the feeding muscles, is mostly determined by MC motor neuron activity in the pharynx (Raizen et al., 1995). The food stimulates the MC neuron,
which fires at the beginning of each pump, triggering a muscle action potential that makes the muscle contract. But a starved worm continually pumps at a low rate even in the absence of food. This pumping does not require MC neurons. This MC-independent pumping makes worms viable without MC, although they pump slowly, grow slowly, and are small and pale. We were curious how worms continue to pump without MC.

In mammals, neuropeptides modulate food intake. Over 250 neuropeptides encoded by 115 genes have been identified in *C. elegans* (Li and Kim, 2008). Most of their functions are still unknown. We hypothesized that MC-independent pumping might depend on neuropeptide signaling. To test our hypothesis, we made eat-2; egl-3 mutants, in which signals from both MC and neuropeptides are disrupted. eat-2 encodes an acetylcholine receptor subunit specific to the MC → muscle synapse; thus the mutants are functionally MC-minus (McKay et al., 2004). egl-3 encodes a protease necessary for neuropeptide processing, and thus the mutant lacks most neuropeptides (Husson et al., 2006). egl-3 mutants pumped at the wild-type rate. However, eat-2; egl-3 mutants pumped only 1/3 as fast as eat-2 mutants (Figure 1A). This result indicated that neuropeptides regulate pumping in the absence of MC neuron activity.

To identify neuropeptides that regulate pumping in the absence of MC function, we performed an RNAi (RNA interference) screen of neuropeptide genes. Because RNAi works less efficiently in the nervous system than in other tissues, we first tested egl-3 RNAi efficiency in two genetic backgrounds that enhance RNAi in neurons, rrf-3 and eri-1; lin-15b (Simmer et al., 2002; Wang et al., 2005). eat-2; egl-3 mutants grow slowly compared to eat-2 due to their slow pumping rate, showing that we could use growth rate as an indicator for the pumping defect. eat-2; eri-1; lin-15b mutants grew slowly after egl-3 RNAi, whereas rrf-3; eat-2 did not. This suggested that eat-2; eri-1; lin-15b mutants are more sensitive to RNAi in the cells that produce neuropeptides relevant to MC-independent pumping. Thus we used eat-2; eri-1; lin-15b for the RNAi screen.

From the RNAi screen of 115 neuropeptide genes we found several that changed the growth rate of eat-2; eri-1; lin-15b mutants. RNAi of five NLP (Neuropeptide-Like Proteins) family genes (nlp-2, nlp-12, nlp-14, nlp-24, and nlp-34) and 2 INS (INSulin related) family genes (ins-34 and ins-39) decreased growth rates compared to control (Supplementary file 1). Among these seven genes RNAi of nlp-24 delayed growth most. To validate the RNAi results, we constructed eat-2; nlp-24 double mutants and measured their pumping rate. As expected from RNAi results, the eat-2; nlp-24 mutants

![Figure 1](https://example.com/figure1.png)

Figure 1. MC neurons and neuropeptides redundantly control pumping rate. (A) Pumping rate in eat-2, egl-3 and eat-2, egl-3 mutants. egl-3 reduced pumping in eat-2 mutants. ***p < 0.001. (ANOVA + Tukey tests). (B) nlp-3 suppressed pumping and nlp-24 stimulated pumping in eat-2 mutants. ***Different from eat-2, p < 0.001 (ANOVA + Dunnett tests). In this and all figures, errors bars represent standard error.

DOI: 10.7554/eLife.06683.003
had decreased pumping rates compared to eat-2 (Figure 1B). Interestingly, RNAi of nlp-3 and nlp-13 improved the growth rate of eat-2 mutants, suggesting that peptides encoded by these genes might antagonize MC-independent pumping. Indeed, the eat-2; nlp-3 mutants have increased pumping rates compared to eat-2. These results demonstrate that nlp-24 increases pumping and nlp-3 suppresses pumping in the absence of MC neuron activity. Because eat-2; nlp-24 mutants do not pump as slowly as eat-2; egl-3 mutants (Figure 1A,B), we suggest that there may be other neuropeptides that act together with nlp-24 to stimulate pumping in the absence of MC neuron activity.

Based on these results we hypothesize that nlp-24 and nlp-3 regulate pumping rate in the absence of food when MC is inactive.

NLP-24 regulates pumping under starvation conditions

In mammals, one major mode of neuropeptide regulation is control of mRNA levels (Brady et al., 1990; Challis et al., 2003). Thus we measured the mRNA levels of nlp-3 and nlp-24 in well-fed and starved worms. nlp-3 mRNA levels were unaffected, but the nlp-24 increased after a 3 hr starvation, suggesting it plays a role in regulation of pumping during starvation (Figure 2A). Wild type worms initially pump slowly when taken off food, but increase pumping rate gradually during several hours of starvation (Avery and Horvitz, 1990). In confirmation, nlp-24 mutants showed a reduced pumping rate compared to wild type after 1 hr of starvation, and this defect was rescued by a transgene that encoded the wild-type copy of nlp-24 gene under control of its own promoter. Moreover, nlp-24 overexpression further increased the pumping rate in starved worms compared to non-transgenic worms (Figure 2B). These results indicate that nlp-24 stimulates pumping during starvation. egl-3 mutants, which lack most active neuropeptides, also had decreased pumping during starvation (Figure 2—figure supplement 1), showing that neuropeptides contribute to pumping during starvation.

NLP-24 is predicted to be processed into peptides contain YGGY sequences either internally or at the N-terminus (Nathoo et al., 2001; Janssen et al., 2008a) (Figure 2C). Comparing the sequence of NLP-24 peptides with that of human neuropeptides, we noted that the YGGY sequences are similar to the conserved YGGF sequence motif of endogenous opioids in humans (Snyder and Pasternak, 2003). Thus we hypothesize that nlp-24 potentially encodes endogenous opioids in C. elegans. Although no C. elegans opioid signaling system has been reported, a study identified NPR-17, a G protein coupled receptor, as most closely related to a predicted Brugia malayi ORL1 opioid receptor-like protein with 68% identity (Harris et al., 2010). They found that nlp-3, a neuropeptide gene, and npr-17 regulated avoidance behavior, suggesting NLP-3 and NPR-17 together could mediate a signal to control pain in C. elegans (Harris et al., 2010). In BLAST searches, we verified their finding further; NPR-17 is similar to human nociceptin receptor (28% identity), MOR (23% identity), DOR (23% identity) and to the KOR (24% identity) (Figure 2—figure supplement 2). Together these results suggested that NLP-24 peptides and NPR-17 receptor constitute an endogenous opioid system in C. elegans.

Opioids modulate pumping through NPR-17, a homolog of mammalian opioid receptors

Because NLP-24 stimulated C. elegans pumping under starvation conditions and because previous work and sequence homology suggested NPR-17 could be an opioid receptor, we tested whether opiates affect pumping, and whether NPR-17 mediates these effects. First, we treated starved wild type and npr-17 mutants with opioid agonist morphine and blocker naloxone and measured the pumping rate. As predicted, morphine stimulated pumping whereas naloxone suppressed pumping in wild type. Drugs get into intact worms inefficiently, both because the wild-type cuticle is poorly permeable (Partridge et al., 2008) and because foreign chemicals are actively pumped out (Broeks et al., 1996; Ardelli and Prichard, 2013). For instance, although 1 μM serotonin maximally stimulates pumping in dissected pharynx (Niacaris and Avery, 2003), roughly 10 mM is necessary to produce similar effects in intact animals (Horvitz et al., 1982; Hobson et al., 2006; Raizen et al., 2012). Thus we were not surprised that high concentrations of morphine (0.5 mM) and naloxone (10 mM) were necessary to produce these effects. Specificity was demonstrated by the observation that these effects were completely abolished by npr-17 mutations, showing that NPR-17 mediated the effects, suggesting it could be an opioid receptor in C. elegans (Figure 3A,B). We tested two different
alleles (tm3210 and tm3225) of npr-17 and both alleles gave the same results (Figure 3B and Figure 3—figure supplement 1). Taken together these results indicate that opioids stimulate C. elegans pumping and that NPR-17 might be a worm opioid receptor.

To further test whether npr-17 mediates nlp-24 action, we overexpressed nlp-24 in npr-17 mutants. nlp-24 overexpression in the wild type background caused faster pumping under starvation conditions as shown above. However, nlp-24 overexpressed in the npr-17 background did not increase the pumping rate (Figure 4A). nlp-24; npr-17 double mutants also pumped at the same rate as npr-17 mutants (Figure 4B). These results indicate that NPR-17 is downstream of NLP-24 and are consistent with the hypothesis that NPR-17 is a receptor for NLP-24-derived peptides to regulate pumping during starvation.
Next we examined whether NLP-24 peptides indeed function as opioids and NPR-17 as an opioid receptor using heterologous expression in HEK293 cells. We coexpressed NPR-17 in HEK293 cells with the promiscuous G protein G\textsubscript{\alpha}15 and administered synthetic NLP-24 peptides. In this heterologous system, only one of these peptides, GPYGYGamide, activated NPR-17 (Figure 5A), suggested that NLP-24 encodes at least one NPR-17 ligand. We also tested agonists specific for mammalian opioid receptor subtypes: loperamide for the MORs (DeHaven-Hudkins et al., 1999), SB205607 for the DORs (Fujii et al., 2004), and U69593 for the KORs (Towett et al., 2006). NPR-17 was also activated by loperamide and U69593 (Figure 5A). GPYGYGamide, loperamide, and U69593 activated NPR-17 in a dose-dependent manner, and these responses were abrogated by naloxone (Figure 5B). These results indicate that NPR-17 is an opioid receptor and NLP-24 peptide GPYGYGamide is a \textit{C. elegans} opioid.

We then tested whether NLP-24 peptides can activate human opioid receptors. We individually coexpressed each human opioid receptor in HEK293 cell with G\textsubscript{\alpha}15. We tested an agonist specific for each receptor subtype in addition to NLP-24 peptides. Mu-type opioid receptor (MOR-1) and kappa-type opioid receptor (KOR-1) responded only to YGGYGamide peptide, while delta-type opioid receptor (DOR-1) did not respond to any NLP-24 peptide (Figure 6). Thus \textit{C. elegans} has a peptide that can activate human opioid receptors, predicted to be produced from the same precursor that produces at least one ligand for the \textit{C. elegans} opioid receptor NPR-17, which can also be activated by vertebrate receptor-specific opioid agonists. These results suggested that \textit{C. elegans} and vertebrates share a conserved opioid system.

ASI neurons are required for opioid signaling and NPR-17 in ASI neurons is sufficient for opioid signaling

\textit{npr-17} was shown to be expressed in ASI neurons (Harris et al., 2010), a pair of head sensory neurons that regulate multiple food-related effects such as quiescence, dauer formation, and caloric-restriction-induced life span increase (Inoue and Thomas, 2000; Bishop and Guarente, 2007; Gallagher et al., 2013b). Because the pumping rate regulated by \textit{nlp-24} is also food-related and the receptor NPR-17 is known to be expressed in ASI, we tested whether ASI neurons are important for opioid signaling. When we treated worms whose ASI neurons were genetically ablated with naloxone,
there was no naloxone-induced reduction in pumping (Figure 7A). Thus the opioid blocker controlled pumping through ASI neurons. Next, to examine whether ASI neurons are the site of action of NPR-17, we expressed it in ASI using the ASI specific promoter, gpa-4. Expression of NPR-17 only in the ASI neurons completely restored the pumping reduction induced by naloxone treatment (Figure 7B and Figure 7—figure supplement 1). npr-17 is also expressed in intestine. We therefore also tested the effect of naloxone on worms engineered to express NPR-17 only in the intestine (using the ges-1 promoter). These worms were not rescued (Figure 7B and Figure 7—figure supplement 1). Thus NPR-17 in ASI mediated opioid signaling to regulate pumping during starvation.

While the insensitivity of npr-17 mutants to naloxone is consistent with NPR-17 being the naloxone receptor, the sign of the effect was initially surprising. In the absence of drug, npr-17 mutants pumped at the same rate as wild type, while they pumped faster than wild-type worms in the presence of naloxone. This would suggest that naloxone is an agonist rather than a blocker, but this is inconsistent with the known effect of naloxone of opioid receptors, as well as the measured effect on heterologously expressed NPR-17 (Figure 5B). An alternate hypothesis is that npr-17 worms, having lacked the receptor all their lives, had adapted to its absence. One of these adaptations was an increase in the basal pumping rate. In wild-type worms, in contrast, NPR-17 had always been around supporting basal pumping. When we suddenly removed this support by adding naloxone, the pumping rate went down. This hypothesis predicts that the chronic effects of naloxone on wild type should resemble those of the mutation. We thus grew wild-type worms to adulthood on naloxone, then measured the pumping rate after starvation either with or without naloxone. As predicted, wild-type worms grown and tested in the presence of naloxone pumped at the same rate as worms grown and tested without (Figure 7C). Furthermore, after chronic naloxone treatment worms tested in its absence showed a withdrawal effect: they pumped slightly faster. These results are consistent with the hypothesis that, in vivo as in vitro, naloxone acts as an NPR-17 blocker.

npr-17 is expressed in ASI neurons and nlp-24 is also expressed in ASI neurons (Figure 7—figure supplement 2C) (Nathoo et al., 2001). This suggests that NLP-24 peptides may be secreted by and act on ASI neurons in an autocrine manner. We also suspect that NLP-24 is secreted by other cells and acts hormonally on ASI neurons, because, NLP-24::GFP expression is increased in intestine after starvation (Figure 7—figure supplement 3). An NLP-24::mCherry fusion protein accumulates in coelomocytes (Figure 7—figure supplement 2B), specialized cells for endocytosis and degradation.

Figure 4. nlp-24 regulates pumping through npr-17. (A) Overexpressed nlp-24 in npr-17 mutants did not stimulate pumping. (B) In the npr-17 background, nlp-24 mutations have no effect on pumping rate in starved worms. (N.S. not significant, Student’s t-test).
DOI: 10.7554/eLife.06683.012
of secreted proteins (Fares and Grant, 2002), which have been found to accumulate other secreted peptide signals (Sieburth et al., 2007; Lee and Ashrafi, 2008). Our result is thus consistent with the idea that NLP-24 is a precursor for secreted peptides, supporting the idea that NLP-24 is secreted and sensed by NPR-17 in ASI neurons.

Figure 5. Activities of NLP-24 peptides and opioid agonists on NPR-17. Opioid agonists and NLP-24 peptide-mediated changes in intracellular calcium were measured with the calcium detector Fluo-4. (A) Calcium responses in human embryonic kidney 293 (HEK-293) cells transfected with NPR-17 and Gα15. All compounds were tested at 1 μM. Loperamide (μ agonist), SB205607 (δ agonist), U69593 (κ agonist) and GPYGYGamide activated NPR-17. Different from 0, *p < 0.05, **p < 0.01, ***p < 0.001, two-way ANOVA + sequential Bonferroni correction. (B) Dose-response curves of HEK-293 cells transfected with NPR-17 and Gα15. Loperamide, U69593 and NLP-24 peptide GPYGYGamide induced NPR-17 activation in a dose dependent manner, and these responses were suppressed by opioid blocker naloxone (10 μM). Responses were normalized to 1 μM loperamide. The loperamide effect is significant at p < 0.001, and the effects of U69593 and GPYGYGamide at p < 0.01, two-way ANOVA + sequential Bonferroni correction. Pooling the results from A and B, the effect of GPYGYGamide is significant at p < 0.001 (Stouffer’s weighted Z-score test).

DOI: 10.7554/eLife.06683.013
Together our results demonstrate that *C. elegans* has an endogenous opioid system, which modulates pumping during starvation. But what is the purpose of pumping in the absence of food? Following a suggestion by David Raizen (personal communication), we suggest that this pumping helps worms discover food in the environment, even when their external senses are unable to reliably detect it. According to this hypothesis, opioids help worms survive starvation by increasing the probability of catching food. In essence, food-independent pumping is (or facilitates) exploration. This is consistent with the finding that in many animals, including *C. elegans*, starvation increases exploration (Dallman et al., 1999; Torres et al., 2002).

This hypothesis suggested that, in addition to increasing pumping to enhance the chance of catching food, opioids might increase locomotion to enhance the chance of finding food. *C. elegans* locomotion is tightly related to nutritional status (Shtonda and Avery, 2006; Ben Arous et al., 2009). There are three potentially distinct locomotive states: roaming, dwelling, and quiescence (Fujiwara et al., 2002; You et al., 2008). Roaming is the food-seeking behavior; worms roam when the food is scarce. We therefore tested the effect of *nlp-24* mutation on locomotion in starved worms. Wild type spent 93% of the time roaming, but in *nlp-24* mutants this was reduced to 69% (Figure 8). An *nlp-24* transgene rescued the defect. Based on these results, we suggest that by increasing pumping and increasing exploration opioids help worms survive starvation.

Figure 6. Activities of NLP-24 peptides and agonists on MOR-1, DOR-1 and KOR-1. Opioid agonist and NLP-24 peptide-mediated changes in intracellular calcium were measured by the calcium detector Fluo-4. Agonists and peptides were tested at 1 μM. (A) Calcium responses in HEK-293 cell transfected with MOR-1 and Gα15. (B) Calcium responses in HEK-293 cell transfected with DOR-1 and Gα15. (C) Calcium responses in HEK-293 cell transfected with KOR-1 and Gα15. ***p < 0.001, **p < 0.01, *p < 0.05. (Two-way ANOVA with Bonferroni correction.) (D) Dose-response curves of HEK-293 cells transfected with MOR-1 or KOR-1 and Gα15. NLP-24 peptide YGGYGamide activated MOR-1 and KOR-1, and these responses were suppressed by the opioid blocker naloxone (10 μM). MOR-1 responses were normalized to 1 μM loperamide and KOR-1 to 1 μM U69593. The effects of YGGYGamide on MOR-1 and KOR-1 are significant at p < 0.001 (two-way ANOVA).

DOI: 10.7554/eLife.06683.014
Figure 7. ASI neurons are required for opioid-mediated feeding control. (A) Effect of naloxone on pumping. Worms genetically engineered to lack ASI neurons were not affected. ASI neurons were genetically ablated by the recCaspase method (Chelur and Chalfie, 2007; Beverly et al., 2011) (ASI−) ***Different from 0 mM, p < 0.001; N.S.
not significantly different from 0 mM (two-way ANOVA, concentration effect). The effect of naloxone on wild-type is significantly different from its effect on npr-17, \(p < 0.001 \) (two-way ANOVA, genotype x concentration interaction). (B) npr-17 expression in ASI neurons is required for opioid-mediated feeding control. npr-17 mutants were not affected by naloxone, but this phenotype was rescued with by expression of npr-17 under control of the ASI-specific promoter gpa-4. ***Different from 0 mM, \(p < 0.001 \), N.S., not significantly different from 0 mM (two-way ANOVA, concentration effect). The interaction between genotype and concentration is significant at \(p < 0.001 \) for Pges-1::npr-17 rescued vs WT, but not Pnrp-17::npr-17 or Pgpa-4::npr-17 rescued. The interaction between genotype and concentration is significant at \(p < 0.001 \) for Pnrp-17::npr-17 and Pgpa-4::npr-17 rescued vs npr-17, but not Pges-1::npr-17 rescued. (C) Chronic effect of naloxone on pumping. Worms grown to adulthood with or without 10 mM naloxone plate were then tested with or without 10 mM naloxone. ***\(p < 0.001 \); N.S. not significantly different. The stimulatory effect of taking naloxone away from worms grown in the presence of naloxone is significant at \(p < 0.05 \). (ANOVA + Tukey tests).

The following figure supplements are available for figure 7:

Figure supplement 1. npr-17 in ASI neurons are required for opioid-mediated feeding control.

DOI: 10.7554/eLife.06683.015

Figure supplement 2. nlp-24 expression.

DOI: 10.7554/eLife.06683.016

Figure supplement 3. Starvation induces nlp-24 expression in intestine.

DOI: 10.7554/eLife.06683.017

Discussion

We hope as a result of these studies to establish *C. elegans* as an invertebrate genetic model for the study of opioid signaling. Our results confirm previous indications that opioids have a long evolutionary history. Several researchers have found evidence that the opioid system might exist in invertebrates: peptides encoding opioids or opioid receptors were detected, and drugs such as naloxone that act on opioid receptors induced biological responses (Harrison et al., 1994). We confirm these results in *C. elegans* and add a crucial control: a mutant lacking the receptor fails to respond. Furthermore, like vertebrate opioids, worm opioids have a role in feeding behavior. nlp-24 encodes endogenous opioids and npr-17 an opioid receptor, and together they act to regulate feeding behavior. Opioids also participate in the immune system and pain mechanisms in vertebrates (McCarthy et al., 2001). nlp-24 and npr-17 may have related functions in *C. elegans*. nlp-24 expression is down regulated by a pathogenic bacterium, *Pseudomonas aeruginosa*, and a fungus, *Drechmeria coniospora* (Troemel et al., 2006; Pujol et al., 2008). npr-17 mediates ASH-mediated aversive behavior (Harris et al., 2010), a *C. elegans* model for pain.

Harris et al. (2010) found that nlp-3 affects ASH-mediated aversion upstream of NPR-17, and suggested therefore that NPR-17 might be an NLP-3 peptide receptor. We too found that nlp-3 mutation affects MC-independent pumping, although it had no effect on starved wild-type worms (Figure 2—figure supplement 3). While we cannot exclude the possibility that NLP-3 peptides are NPR-17 ligands, Harris et al.’s results are equally well explained by a model in which NLP-3 peptides affect NPR-17 indirectly by affecting the release of NLP-24 peptides.

We showed that opioids stimulate pumping during starvation. We started with the hypothesis that neuropeptides regulate pumping in the absence of MC activity. Thus, we performed experiments in starved worms. Opioid agonists and antagonists modulated pumping in starved worms, and the opioid mutant nlp-24 had decreased pumping in starvation. In the presence of food, in contrast, both nlp-24 mutants (Figure 2—figure supplement 4) and egl-3 mutants (Figure 1A) showed the same pumping rate as wild type. Nutritional state affected opioid activity: nlp-24 expression was increased by starvation (Figure 2A). Likewise, food deprivation and feeding changes endogenous opioid activity in mammals. In rats, food deprivation induces complex changes in the level of brain endogenous opioids, especially in the hypothalamus (Vaswani and Tejwani, 1986). In addition, opioid signaling may be involved in altering the hedonic taste/palatability of food in mammals (Bodnar, 2004).

Why does *C. elegans* need opioid signaling to control feeding during starvation? In a well-fed worm, pumping depends on MC motor neurons, which are active only in the presence of food.
But opioids modulated pumping independent of MC neurons: naloxone decreased pumping in eat-2 mutants, which lack MC neuromuscular transmission (McKay et al., 2004) (Figure 3—figure supplement 2). We speculate that, like a baby whose first response to any new object is to put it in its mouth, the worm cannot be sure if there is food around without taking some in. A well-fed worm avoids this dangerous test, but a starving worm continually pumps at a low rate even in the absence of food in order to detect any that might appear. Consistent with this, we found that opioids motivate worms to seek food by stimulating locomotion as well as pumping. Thus opioids make worms willing to search for food despite the high risk. Animals live in dynamic environments where food availability is variable. For survival in this environment, food-seeking behavior is important. Opioids help worms find food through risky pumping and exploration behaviors. Thus endogenous opioids may help worms survive in dynamic environments.

Opioids stimulated pumping through ASI neurons (Figure 7). ASI neurons are activated by nutrition and release DAF-7 TGF-β when the environment is favorable. daf-7 expression in ASI neurons regulates fat accumulation and food intake (Greer et al., 2008). ASI neurons also stimulate roaming behavior (Flavell et al., 2013). These results suggest that ASI neurons are important for modulating energy balance and feeding behavior. In mammals opioid receptors are expressed in the hypothalamus, which plays a central role in the control of food intake and the regulation of energy. Injection of opioid agonists or antagonists into the hypothalamus modulates food intake (Jenck et al., 1987; Li et al., 2006; Naleid et al., 2007). We suggest that opioids modulate C. elegans feeding through ASI neurons, similar to the way vertebrate opioids modulate feeding through the hypothalamus.

Which pharyngeal neurons are involved in opioid signaling? Our lab did several suppressor screens with slow pumping. From these screens, the most commonly mutated gene was slo-1. slo-1 mutations enhance neurotransmitter release (Wang et al., 2001). This enhancement is particularly striking for M4 and M5, the motor neurons that synapse on TB (terminal bulb) muscle (Albertson and Thomson, 1976; Chiang et al., 2006). We also screened for suppressors of the slow pumping and growth phenotypes of eat-2; egl-3 mutants. 7/15 suppressors were new slo-1 mutations. These results are consistent with the possibility that M4 might be involved in the opioid signaling response. We do not know yet how ASI neurons communicate with pharyngeal neurons. The pharyngeal and extrapharyngeal nervous systems are connected only by a bilateral pair of gap junctions between the extrapharyngeal RIP neurons and the pharyngeal I1 neurons (Albertson and Thomson, 1976), and I1s are not necessary for MC-independent pumping (Avery and Horvitz, 1989). This, together with the fact that ASI secretes several different peptides, suggests that communication is likely to be humoral.

Heterologously expressed NPR-17 was activated by specific MOR-1 and KOR-1 agonists. These results suggested that NPR-17 might be more similar to μ and κ type receptors than δ. We also tested...
pumping with these agonists. Among the three, loperamide induced nose muscle contraction similar to that caused by fluoxetine (Choy and Thomas, 1999), so that we could not measure the pumping rate. U69593 increased pumping in wild-type worms but not npr-17 mutants (Figure 9). These results suggest that NPR-17 might be similar to the KOR but do not exclude similarity to μ as well. Vertebrate opioid receptors are about 60% identical to each other (Chen et al., 1993). In BLAST results, NPR-17 showed 23% identity with MOR-1 and DOR-1 and 24% identity with KOR-1. The three vertebrate receptors almost certainly diverged from each other well after any common ancestor of nematodes and vertebrates, so NPR-17 is probably an ortholog of all three. Clearly, NPR-17 is not a close homolog of any particular vertebrate opioid receptor. Rather, we suggest that NPR-17 and the vertebrate receptors collectively derive from a common ancestor in which the outlines of opioid system function had already appeared. Further, NPR-17 appears to be functionally closer to vertebrate opioid receptors than any other molecularly characterized invertebrate receptor is.

We originally thought that NLP-24 might be related to opioids because it encodes peptides containing YGGY, similar to the YGGF sequence common to vertebrate opioids. In fact, of the six predicted NLP-24 peptides, YGGYGamide alone activated MOR-1 and KOR-1 expressed in human embryonic kidney 293 (HEK-293) cells. But, to our surprise, YGGYGamide did not detectably activate NPR-17 in the same system. In fact, the only peptide that worked was GPYGYGamide. By itself, this result might cast doubt on the idea that NLP-24 and NPR-17 are components of the C. elegans opioid system. The extreme version of this doubt would argue that NLP-24, like POMC, is a precursor for multiple peptides that act on distinct unrelated receptors, and that it is essentially coincidence that the NPR-17 ligand GPYGYGamide shares a precursor with the opioid YGGYGamide. But this idea fails to explain multiple lines of data suggesting NPR-17 is a bona fide opioid receptor, namely: (1) Heterologously expressed NPR-17 responds to opioid receptor agonists and the blocker naloxone. (2) Naloxone blocks the response of NPR-17 to GPYGYGamide. (3) npr-17 is necessary for the behavioral response of worms to opioid agonists and naloxone. (4) NPR-17 has sequence similarity to opioid receptors. A more parsimonious explanation of the discrepancy is that in the HEK-293 expression system, where we asked a single npr-17 product to work entirely through vertebrate proteins, we failed to completely reconstitute its in vivo activity. Of course, these ideas are not mutually exclusive. It may be that in the worm some form of NPR-17 does respond to YGGY-containing NLP-24 products, and that NLP-24 produces products that act on other receptors as well.

![Figure 9](https://example.com/figure9.png)

Figure 9. Opioid agonist effects in C. elegans. The δ agonist SB205607 did not affect pumping. κ agonist U69594 stimulated pumping in starved wild-type worms but not npr-17 mutants. *p < 0.01. N.S. not significant. (Two-way ANOVA). DOI: 10.7554/eLife.06683.020

Cheong et al. eLife 2015;4:e06683. DOI: 10.7554/eLife.06683

13 of 19
Our study confirms with molecular genetic data the previous pharmacological evidence that an invertebrate homolog of the vertebrate opioid system exists and has related functions. In the future, we hope this will enable the discovery of new molecular pathways through which opioids act and perhaps help to find ways to mitigate the side-effects that limit the usefulness of opiate drugs.

Materials and methods

Cultivation methods and strains

Worms were cultured routinely on NGMSR plates (Avery, 1993). All worms were maintained at 20°C on Escherichia coli strain HB101 unless indicated otherwise. The wild-type strain was C. elegans variant Bristol, strain N2. The following mutant strains were used in this study: DA465 eat-2(ad465) II, GR1328 eg1-3(nr2090) V, KP1873 eg1-3(nu349) V, DA2434 eat-2(ad465) II; eg1-3(nu349) V, DA2435 eat-2(ad465) II; eg1-3(nr2090) V, DA2467 eat-2(ad465) II; nlp-3(tm3023) X, DA2456 nlp-24(tm2105) V, DA2466 eat-2(ad465) II; nlp-24(tm2105) V, DA2457 npr-17(tm3210) III, DA2458 npr-17(tm3225) III, DA2561 adEx2561[npr-17::GFP Punc-122::RFP], DA2582 npr-17(tm3210) III; adEx2561[Pnpr-17::npr-17::GFP Punc-122::RFP], DA2583 npr-17(tm3225) III; adEx2561[Pnpr-17::npr-17::GFP Punc-122::RFP], DA2586 npr-17(tm3210) III; adEx2580[Pgpa-4::npr-17::SL2::RFP Punc-122::RFP], DA2587 npr-17(tm3210) III; adEx2587[Pges-1::npr-17::SL2::RFP Punc-122::RFP], DA2588 npr-17(tm3225) III; adEx2588[Pnlp-24::nlp-24::mCherry Punc-122::GFP], DA2589 npr-17(tm3225) III; adEx2589[Pges-1::nlp-24::mCherry Punc-122::GFP], DA2590 npr-17(tm3210) III; adEx2590[Pges-1::nlp-24::RFP Punc-122::RFP], DA2591 adEx2591[Pges-1::nlp-24::GFP Punc-122::RFP], DA2592 adEx2592[Pges-1::nlp-24::GFP Punc-122::RFP], DA2593 adEx2593[Pges-1::nlp-24::GFP Punc-122::RFP], PY7505 oysl84[Pges-1::TU813 Pgcy-27::TU814 Pgcy-27::eGFP Punc-122::DsRed] (Beverly et al., 2011) PY7005 was gift from Piali Sengupta.

Molecular biology and transgenesis

Most DNA constructs were made using overlap-extension PCR (Hobert, 2002). Briefly, to fuse two or more individual PCR products (PfuUltra High-Fidelity DNA Polymerase, stratagene, La Jolla, CA), we amplified with oligonucleotides that included 5' extensions complementary to the fusion target. Primers for making these constructs are listed in Supplementary file 2. A transcriptional reporter for nlp-24 was made by fusing the promoter of nlp-24 (~2262 to +1) to the coding sequence of GFP amplified from pPD95.77 (Fire et al., 1990). For an nlp-24 translational reporter (PnP-24::nlp-24::GFP), the genomic sequence of nlp-24 (~2760 to +316) was fused in frame to GFP followed by the unc-54 3' UTR from pPD95.77. For nlp-24 rescue and overexpression, we used an nlp-24 translational reporter. To make NLP-24 rescued with mCherry, the genomic sequence of nlp-24 (~2760 to +316) was fused in frame to mCherry followed by the unc-54 3' UTR from pAV1997 (Miedel et al., 2012). To make NLP-24::SL2::GFP, we used a pJG7-psm-SL2-GFP vector (a gift from Dr Cori Bargmann). The genomic sequence of nlp-24 (~3151 to +460) was ligated into the pJG7-psm-SL2-GFP vector. To make an npr-17 translational reporter (PnP-17::npr-17::GFP), we amplified GFP from pPD95.77 and inserted this PCR product in the genomic sequence of npr-17 (~5110 to +5545) before the stop codon, thus fusing GFP with the npr-17 3' UTR (+5548 to +6524). For site specific expression of npr-17, we used a vector from Douglas S Kim based on pSM into which was inserted SL2::RFP and the unc-54 3' UTR. First, npr-17 cDNA was amplified and ligated into the pSM-SL2::RFP vector as an Xmal/NheI fragment. Then, to express npr-17 in the ASI neurons, 2.5 kb of gpa-4 promoter amplified from N2 genomic DNA was cloned into this pSM npr-17 SL2::RFP construct using BamH and NotI. To express npr-17 in the intestine, 3 kb of ges-1 promoter was amplified from N2 genomic DNA and inserted into the pSM npr-17 SL2::RFP construct using BamH and NotI sites. To express in mammalian cell culture, npr-17 cDNA was amplified from N2 cDNA using MyTaq DNA polymerase (Bioline, Taunton, MA) to generate PCR products with a 5' Kozak consensus sequence and 3'-A overhang. This product was inserted into the PCDNA3.3 TOPO TA cloning vector (Invitrogen, Carlsbad, CA) according to the manufacturer's instructions.

Transgenic animals were generated by microinjection using a Zeiss Axio Observer A1 DIC microscope equipped with an Eppendorf Femtojet microinjection system. For the injection marker, we used Punc-122::GFP or Punc-122::RFP. 50 ng/μl of the fused construct or the plasmid was injected together with 50 ng/μl of the injection marker.
Measurement of pharyngeal pumping rates in starved worms

Worms were grown on NGMSR plates seeded with *E. coli* HB101 until the first day of adulthood, then transferred to NGMSR plates without food. After 1 hr at 20˚C, we measured the pumping rate by counting pharyngeal grinder movements for 1 min using a Wild M410 dissecting microscope at 64× magnification. For drug experiments, we prepared drug-containing plates by spreading 300 μl of a 10x aqueous drug solution on a 35 mm diameter plate, then waiting at least 3 hr for the drug to diffuse into the agar. First-day adults were then transferred to these plates and incubated for 1 hr at 20˚C before counting.

RNAi screen

RNAi was induced by feeding as described (Timmons et al., 2001), with the following modifications. Standard NGMSR agar was supplemented with 25 μg ml⁻¹ carbenicillin and 1 mM isopropyl β-D-1-thiogalactopyranoside and poured into 12-well plates. *E. coli* HT115 carrying the appropriate RNAi clones was grown in LB containing 100 μg ml⁻¹ carbenicillin at 37˚C overnight, then 50 μl drops were seeded onto plates, making sure the culture dried within 1–2 hr, and induced at 37˚C for 12 hr. Fourth stage larval (L4) worms were then transferred to the plates (3 worms per well) and allowed to grow to young adulthood at 20˚C for approximately 4 days. We tested a total of 115 different neuropeptide genes. We used the Ahringer RNAi library for 91 neuropeptide clones (Kamath and Ahringer, 2003). For 24 neuropeptides, we cloned PCR-amplified exons into the L4440 vector. Primers for making these constructs are listed in Supplementary file 3.

qRT-PCR

Total RNA was isolated using TRIzol (Life Technologies, Carlsbad, CA), and reverse transcribed using the Tetro cDNA Synthesis Kit (Bioline). The cDNA was quantified using Nanodrop (ND-1000) and used in qRT-PCR reactions. These reactions were performed on a CFX96 Real-Time PCR Detection System using the SensiMixPlus SYBR & Fluorescein Kit (Bioline). We used 500 ng of cDNA per sample in a total volume of 25 μl. Target genes were amplified using specific primers. Amplification and expression analysis were performed in triplicate. mRNA levels in the tested strains were normalized with ama-1, a housekeeping gene. For quantification, we used the Delta–delta Ct method. Primers were nlp-3 Forward TGTGTCTACTCTGCTCCCTATG, nlp-3 Backward TGATCATGTCTGGACGGAAAG for nlp-3 and nlp-24 Forward ACGGAGGTGGACGTTATGGA, nlp-24 Backward GAGACCGCCTCCTCCGTAT for nlp-24.

Cell culture and transfection

HEK-293 cells (ATCC, Manassas, VA) were cultured in DMEM supplemented with 10% FBS at 37˚C in a humidified atmosphere containing 5% CO₂. For stable cell line generation, we transfected with a 1:1 ratio of pcDNA3.3 containing 1 μg npr-17 and Gα15 cDNA (promiscuous G protein 15, Missouri S&T cDNA Resource Center) using X-tremeGENE HP DNA transfection reagent (Roche, Switzerland). Cells were seeded into 10 cm dishes and antibiotic (500 μg/ml G418) was added to the culture medium the next day. The selection medium was changed every 3 days until colonies formed. A single colony was picked, expanded, and tested by calcium imaging. Stable cell lines expressing human opioid receptor MOR-1, DOR-1 and KOR-1 were constructed similarly. MOR-1, DOR-1 and KOR-1 plasmids were provided by the Duke University GPCR Assay Bank.

Calcium imaging

HEK-293 cells cotransfected with NPR-17, MOR-1, DOR-1 or KOR-1 receptors and Gα15 were plated onto 35 mm MatTek glass bottom dishes for calcium imaging. When they reached 70–80% confluency calcium imaging was conducted using the Fluo-4 Direct Calcium assay kit (Molecular Probes, Carlsbad, CA). The cells were loaded with Fluo-4 Direct Calcium reagent and incubated at 37˚C for 50 min. For naloxone treatment, 10 μM naloxone was added in the Fluo-4 Direct Calcium reagent before incubation. Synthetic NLP-24 peptides (all synthesized with amidated C-termini), opioid agonists, and blockers diluted in HBSS (Hank’s Balanced Salt Solution) buffer were applied to the cell for 10 s, and fluorescence at 530 nm was monitored (excitation wavelength 470 nm) with a Zeiss Axio Observer A1 microscope and ZEN software. Experiments were conducted on three plates for each condition on three different days. Fluorescence was quantified using ImageJ. We imported images using the ImageJ Bio-Formats plugin and subtracted background, then measured the mean Integrated Density.
Locomotion assays
L4 worms were picked to an HB101-seeded NGMSR plate and given 12 hr to develop to adulthood. Adult worms were transferred to 6 cm NGMSR plates without food and incubated for 30 min. After 30 min, a single starved worm was then transferred to an individual 3.5 cm plate and its behavior recorded as described previously (Gallagher et al., 2013b). We used a 10 mm copper ring to constrain the worm. The light was then turned on and video capture proceeded at 1 frame/s for 1 hr. Recordings were made on a modified version of the nine-worm recording station described by Shtonda and Avery (2006) in which the worms were imaged through Computer MLM3X-MP macro zoom lenses onto Pointgrey GRAS-14S5M-C digital cameras. We used ImageJ to get x, y coordinates. We inverted each image and subtracted background. The light/dark threshold was adjusted to find the outline of the worm then we determined the coordinates of the worm centroid using the ‘Analyze Particles’ command in ImageJ. Finally, we used HMM analysis to define locomotive behavioral states (Gallagher et al., 2013a).

Statistical analysis
Pumping rates were tested for statistically significant effects by ANOVA and corrected for multiple testing by the Dunnett, Tukey, or sequential Bonferroni methods, as appropriate. Interactions (for instance, the difference between the effects of morphine and naloxone on wild-type and npr-17 in Figure 2), were tested by two-way ANOVA. Gene expression (Figure 2A) was tested by the interaction between gene (ama-1, nlp-3, or nlp-24) and nutritional state (well-fed or starved), with well-fed ama-1 as the base case. These tests were carried out on Ct measurements, not gene expression levels, since gene expression measurements are typically heteroscedastic.

Calcium imaging results were more complicated. In each experiment, a series of measurements was made of the effects of different drugs or drug concentrations. All measurements in a series were related by the use of cells sampled from the same population. Each series also included a blank in which buffer was added. For each condition, we first measured base fluorescence (f0), then added drug and measured fluorescence after 1 min (f1). We then pooled all the series measuring a given effect and tested log (f1/f0) in a two-way ANOVA with series and drug as the factors, no interaction, and the blank as the base case. This effectively normalizes each measurement to the blank in its own series and tests the residues for drug effects. Particularly for Figure 5B and Figure 6D this test is conservative, since it makes no use of the normalization to the maximal effect measured with loperamide or U69593.

Acknowledgements
This work was supported by research grant DK083593 from the US Public Health Service to LA. We thank Hamid Akbarali for providing morphine. nlp-24 and npr-17 strains were provided by the National Bioresource Project. Kristen Davis commented on the manuscript and helped with the locomotion assay.

Additional information
Funding

Funder	Grant reference	Author
U.S. Public Health Service	DK083593	Leon Avery

The funder had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author contributions
MCC, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article; ABA, Analysis and interpretation of data, Drafting or revising the article; Y-JY, Conception and design, Drafting or revising the article; LA, Conception and design, Analysis and interpretation of data, Drafting or revising the article.
Additional files

Supplementary file 1. Genes that affect the growth when knocked down by RNAi.
DOI: 10.7554/eLife.06683.021

Supplementary file 2. Primers for transgenic worms.
DOI: 10.7554/eLife.06683.022

Supplementary file 3. Primers for RNAi.
DOI: 10.7554/eLife.06683.023

References

Akil H, Owens C, Gutstein H, Taylor L, Curran E, Watson S. 1998. Endogenous opioids: overview and current issues. *Drug and Alcohol Dependence* **51:**127–140. doi: 10.1016/S0376-8716(98)00071-4.

Albertson DG, Thomson JN. 1976. The pharynx of *Caenorhabditis elegans*. *Philosophical Transactions of the Royal Society of London Series B, Biological Sciences* **275:**299–325. doi: 10.1098/rstb.1976.0085.

Ardelli BF, Prichard RK. 2013. Inhibition of P-glycoprotein enhances sensitivity of *Caenorhabditis elegans* to ivermectin. *Veterinary Parasitology* **191:**264–275. doi: 10.1016/j.vetpar.2012.09.021.

Avery L. 1993. The genetics of feeding in *Caenorhabditis elegans*. *Genetics* **133:**897–917.

Avery L. 2012. *C. elegans* feeding. *Wormbook* 1–23. doi: 10.1895/wormbook.1.150.1.

Avery L, Horvitz HR. 1989. Pharyngeal pumping continues after laser killing of the pharyngeal nervous system of *C. elegans*. *Neuron* **3:**473–485. doi: 10.1016/0896-6273(89)90206-7.

Avery L, Horvitz HR. 1990. Effects of starvation and neuroactive drugs on feeding in *Caenorhabditis elegans*. *The Journal of Experimental Zoology* **253:**263–270. doi: 10.1002/jez.1402530305.

Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, Wren AM, Brynes AE, Low MJ, Ghatel MA, Cone RD, Bloom SR. 2002. Gut hormone PYY(3-36) physiologically inhibits food intake. *Nature* **418:**650–654. doi: 10.1038/nature00887.

Ben Arous J, Laffont S, Chatenay D. 2009. Molecular and sensory basis of a food related two-state behavior in *C. elegans*. *PLOS ONE* **4:**e7584. doi: 10.1371/journal.pone.0007584.

Beverly M, Anbil S, Sengupta P. 2011. Degeneracy and neuromodulation among thermosensory neurons contribute to robust thermosensory behaviors in *Caenorhabditis elegans*. *The Journal of Neuroscience* **31:**11718–11727. doi: 10.1523/JNEUROSCI.1098-11.2011.

Bishop NA, Guarante L. 2007. Two neurons mediate diet-restriction-induced longevity in *C. elegans*. *Nature* **447:**545–549. doi: 10.1038/nature05904.

Bodnar RJ. 2004. Endogenous opioids and feeding behavior: a 30-year historical perspective. *Peptides* **25:**697–725. doi: 10.1016/j.peptides.2004.01.006.

Brady LS, Smith MA, Gold PW, Herkenham M. 1990. Altered expression of hypothalamic neuropeptide mRNAs in food-restricted and food-deprived rats. *Neuroendocrinology* **52:**441–447. doi: 10.1159/000125626.

Broeks A, Gerrard B, Allikmets R, Dean M, Plasterk RH. 1996. Homologs of the human multidrug resistance genes MRP and MDR contribute to heavy metal resistance in the soil nematode *Caenorhabditis elegans*. *The EMBO Journal* **15:**6132–6143. http://www.wormbase.org/db/misc/paper?name=WBPaper00002619.

Challis BG, Pinnock SB, Coll AP, Carter RN, Dickson SL, O’Rahilly S. 2003. Acute effects of PYY3-36 on food intake and hypothalamic neuropeptide expression in the mouse. *Biological and Biophysical Research Communications* **311:**915–919. doi: 10.1016/j.bbrc.2003.10.089.

Chelur DS, Chalfie M. 2007. Targeted cell killing by reconstituted caspases. *Proceedings of the National Academy of Sciences of USA* **104:**2283–2288. doi: 10.1073/pnas.0610877104.

Chen Y, Mestek A, Liu J, Yu L. 1993. Molecular cloning of a rat kappa opioid receptor reveals sequence similarities to the mu and delta opioid receptors. *The Biochemical Journal* **289:**625–628.

Chiang JT, Steciuk M, Sh Pond B, Avery L. 2006. Evolution of pharyngeal behaviors and neuronal functions in free-living soil nematodes. *The Journal of Experimental Biology* **209:**1859–1873. doi: 10.1242/jeb.02165.

Choy RK, Thomas JH. 1999. Fluoxetine-resistant mutants in *C. elegans* define a novel family of transmembrane proteins. *Molecular Cell* **4:**143–152. doi: 10.1016/S1097-2765(00)00362-7.

Dallman MF, Akana SF, Bhatnagar S, Bell ME, Choi S, Horsley C, Levin N, Meijer O, Soriano LR, Strack AM, Viau V. 1993. Effects of food restriction and neuroactive drugs on feeding in *Caenorhabditis elegans*. *The Journal of Neuroscience* **13:**10185–10203. doi: 10.1001/journal.neuro.130.24.10185.

DeHaven-Hudkins DL, Burgos JC, Cassel JA, Daubert JD, DeHaven RN, Mansson E, Nagasaka H, Yu G, Yaksh T. 1999. Loperamide (ADL 2-1294), an opioid antihyperalgesic agent with systemic selectivity. *The Journal of Pharmacology and Experimental Therapeutics* **289:**494–502.

Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O. 2008. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. *Nucleic Acids Research* **36:**W465–W469. doi: 10.1093/nar/gkn180.

Fares H, Grant B. 2002. Deciphering endocytosis in *Caenorhabditis elegans*. *Traffic* **3:**11–19. doi: 10.1034/j.1600-0854.2002.30103.x.

Fire A, White Harrison S, Dixon D. 1990. A modular set of lacZ fusion vectors for studying gene expression in *Caenorhabditis elegans*. *Gene* **93:**189–198. doi: 10.1016/0378-1119(90)90224-F.
Flavell SW, Pokela N, Macosko EZ, Albrecht DR, Larsch J, Bargmann CI. 2013. Serotonin and the neuropeptide PDF initiate and extend opposing behavioral states in C. elegans. Cell 154:1023–1035. doi: 10.1016/j.cell.2013.08.001.

Fujii H, Narita M, Mizoguchi H, Hirokawa J, Kawai K, Tanaka T, Tseng LF, Nagase H. 2004. Rational drug design and synthesis of a selective opioid receptor antagonist on the basis of the accessory site concept. Bioorganic & Medicinal Chemistry Letters 14:4241–4243. doi: 10.1016/j.bmcl.2004.06.004.

Furukawa T, Sengupta P, McIntire SL. 2002. Regulation of body size and behavioral state of C. elegans by sensory perception and the EGL-4 CGMP-dependent protein kinase. Neuron 36:1091–1102. doi: 10.1016/S0896-6273(02)01093-0.

Gallagher T, Bjorness T, Greene R, You YJ, Avery L. 2013a. The geometry of locomotive behavioral states in C. elegans. PLOS ONE 8:e59865. doi: 10.1371/journal.pone.0059865.

Gallagher T, Kim J, Oldenbroek M, Kerr R, You YJ. 2013b. ASI regulates satiety quiescence in C. elegans. The Journal of Neuroscience 33:9716–9724. doi: 10.1523/JNEUROSCI.4493-12.2013.

Gibbs J, Young RC, Smith GP. 1973. Cholecystokinin decreases food intake in rats. Journal of Comparative and Physiological Psychology 84:488–495. doi: 10.1037/h0034870.

Gosnell BA, Levine AS, Morley JE. 1986. The stimulation of food intake by selective agonists of mu, kappa and delta opioid receptors. Life Sciences 38:1081–1088. doi: 10.1016/0028-3908(86)90243-2.

Grandison L, Guidotti A. 1977. Stimulation of food intake by muscimol and beta endorphin. Neuropharmacology 16:533–536. http://www.sciencedirect.com/science/article/pii/0028390877900193. doi: 10.1016/0028-3908(77)90019-3.

Greer ER, Pérez CL, Van Gilst MR, Lee BH, Ashrafi K. 2008. Neural Molecular Dissection of a C. elegans sensory Circuit that regulates fat and feeding. Cell Metabolism 8:118–131. doi: 10.1016/j.cmet.2008.06.005.

Harris G, Mills H, Wragg R, Hapiak V, Castelletto M, Korchnak A, Komuniecki RW. 2010. The monoaminergic modulation of sensory-mediated averse responses in Caenorhabditis elegans requires glutamate/peptidergic cotransmission. The Journal of Neuroscience 30:7889–7899. doi: 10.1523/JNEUROSCI.0497-10.2010.

Harrison LM, Kastin AJ, Weber JT, Banks WA, Hurley DL, zadina JE. 1994. The opiate system in invertebrates. Peptides 15:1309–1329. doi: 10.1016/0196-9781(94)90159-7.

Hobert O. 2002. PCR fusion-based approach to create reporter gene constructs for expression analysis in transgenic C. elegans. Biotechniques 32:728–730.

Hobson RJ, Hapiak VM, Xiao H, Buehrler KL, Komuniecki PR, Komuniecki RW. 2006. SER-7, a Caenorhabditis elegans S-HT7-like receptor, is essential for the S-HT stimulation of pharyngeal pumping and egg laying. Genetics 172:159–169. doi: 10.1534/genetics.105.044495.

Holatzman SG. 1974. Behavioral effects of separate and combined administration of naloxone and d-amphetamine. The Journal of Pharmacology and Experimental Therapeutics 189:51–60.

Horvitz HR, Chalfie M, Trent C, Sulston JE, Evans PD. 1982. Serotonin and octopamine in the nematode Caenorhabditis elegans. Science 216:1012–1014. doi: 10.1126/science.6805073.

Husson SJ, Clynen E, Baggerman G, Janssen T, Schoofs L. 2006. Defective processing of neuropeptide precursors in Caenorhabditis elegans lacking proprotein convertase 2 (KPC-2/EGL-3); mutant analysis by mass spectrometry. Journal of Neurochemistry 98:1999–2012. doi: 10.1111/j.1471-4149.2006.04014.x.

Inoue T, Thomas JH. 2000. Targets of TGF-beta signaling in Caenorhabditis elegans dauer formation. Developmental Biology 217:192–204. doi: 10.1006/dbio.1999.9545.

Jackson A, Cooper SJ. 1986. An observational analysis of the effect of the selective kappa opioid agonist, U-50,488H, on feeding and related behaviours in the rat. Psychopharmacology 90:217–221. doi: 10.1007/BF00181245.

Janssen T, Husson SJ, Lindemans M, Mertens I, Rademakers S, Ver Donck K, Morley JE, Gysens H. 2008a. Functional characterization of three G protein-coupled receptors for pigment dispersing factors in Caenorhabditis elegans. The Journal of Biological Chemistry 283:15241–15249. doi: 10.1074/jbc.M709060200.

Janssen T, Meekop E, Lindemans M, Verstraeten K, Husson SJ, Temmerman L, Nachman RJ, Schoofs L. 2008b. Discovery of a cholecystokinin-gastrin-like signaling system in nematodes. Endocrinology 149:2826–2839. doi: 10.1210/en.2007-1772.

Jendek F, Gratton A, Wise RA. 1987. Opioid receptor subtypes associated with ventral segmental facilitation of lateral hypothalamic brain stimulation reward. Brain Research 423:34–38. doi: 10.1016/0006-8993(87)90281-3.

Kamath RS, Ahringer J. 2003. Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30:313–321. doi: 10.1016/S0098-7952(03)00050-1.

Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G. 1997. daf-2, an insulin receptor-like gene that regulates longevity and dauer formation in Caenorhabditis elegans. Science 277:942–946. doi: 10.1126/science.277.5328.942.

Lee BH, Ashrafi K. 2008. A TRPV1 channel modulates C. elegans neurosecretion, larval starvation survival, and adult lifespan. PLOS Genetics 4:e1000213. doi: 10.1371/journal.pgen.1000213.

Li C, Kim K. 2008. Neuropetides. WormBook 1–36. doi: 10.1895/wormbook.1.142.1.

Li D, Olszewski PK, Shi Q, Grace MK, Billington CJ, Kutz CM, Levine AS. 2006. Effect of opioid receptor ligands injected into the rostral lateral hypothalamus on c-fos and feeding behavior. Brain Research 1096:120–124. doi: 10.1016/j.brainres.2006.04.031.

Margules DL, Moisset B, Lewis MJ, Shibuya H, Pert CB. 1978. beta-Endorphin is associated with overeating in genetically obese mice (ob/ob) and rats (fa/fa). Science 202:988–991. doi: 10.1126/science.715455.

Martin WR, Wikler A, Eades CG, Pescov FT. 1963. Tolerance to and physical dependence on morphine in rats. Psychopharmacologia 4:247–260. doi: 10.1007/BF00408180.
McCarthy L, Wetzel M, Sliker JK, Eisenstein TK, Rogers TJ. 2001. Opioids, opioid receptors, and the immune response. Drug and Alcohol Dependence 62:111–123. doi: 10.1016/S0376-8716(00)00181-2.

McKay JP, Raizen DM, Gottschalk A, Schafer WR, Avery L. 2004. eat-2 and eat-18 are required for nicotinic neurotransmission in the Caenorhabditis elegans pharynx. Genetics 166:161–169. doi: 10.1534/genetics.166.1.161.

Meister B. 2007. Neurotransmitters in key neurons of the hypothalamus that regulate feeding behavior and body weight. Physiology & Behavior 92:263–271. doi: 10.1016/j.physbeh.2007.05.021.

Miedel MT, Graf NJ, Stephen KE, Long OS, Pak SC, Perlmuter DH, Silverman GA, Luke CJ. 2012. A pro-cathepsin L mutant is a luminal substrate for endoplasmic-reticulum-associated degradation in C. elegans. PLOS ONE 7:e40145. doi: 10.1371/journal.pone.0040145.

Naleid AM, Grace MK, Chimukangara M, Billington CJ, Levine AS. 2007. Paraventricular opioids alter intake of high-fat but not high-sucrose diet depending on diet preference in a binge model of feeding. American Journal of Physiology Regulatory, Integrative and Comparative Physiology 293:R99–R105. doi: 10.1152/ajpregu.00675.2006.

Nathoo AN, Moeller RA, Westlund BA, Hart AC. 2001. Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. Proceedings of the National Academy of Sciences of USA 98:14000–14005. doi: 10.1073/pnas.241231298.

Niacaris T, Avery L. 2003. Serotonin regulates repolarization of the C. elegans pharyngeal muscle. The Journal of Experimental Biology 206:223–231. doi: 10.1242/jeb.001010.

Partridge FA, Teele AW, Gravato-Nobre MJ, Schafer WR, Hodgkin J. 2008. The C. elegans glycosyltransferase BUS-8 has two distinct and essential roles in epidermal morphogenesis. Developmental Biology 317:549–559. doi: 10.1016/j.ydbio.2008.02.060.

Pujel N, Zugasti O, Wong D, Couiullalt C, Kurz CL, Schulinburg H, Exwbank JJ. 2008. Anti-fungal innate immunity in C. elegans is enhanced by evolutionary diversification of antimicrobial peptides. PLOS Pathogens 4:e1000105. doi: 10.1371/journal.ppat.1000105.

Raizen D, Song B, Trojanski N, You YJ. 2012. Methods for measuring pharyngeal behaviors. Wormbook 1–13. doi: 10.1895/wormbook.1.154.1.

Raizen DM, Lee PY, Avery L. 1995. Interacting genes required for pharyngeal excitation by motor neuron MC in Caenorhabditis elegans. Genetics 141:1365–1382.

Shtonda BB, Avery L. 2006. Dietary choice behavior in Caenorhabditis elegans. The Journal of Experimental Biology 209:89–102. doi: 10.1242/jeb.01955.

Sieburth D, Madison JM, Kaplan JM. 2007. PKC-1 regulates secretion of neuropeptides. Nature Neuroscience 10:49–57. doi: 10.1038/nn1810.

Simmer F, Tijsterman M, Parrish S, Kouchika SP, Fire A, Ahrringer J, Plasterk RH. 2002. Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Current Biology 12:1317–1319. doi: 10.1016/S0960-9822(02)01041-2.

Snyder SH, Pasternak GW. 2003. Historical review: opioid receptors. Trends in Pharmacological Sciences 24:198–205. doi: 10.1016/S0165-6147(03)00066-X.

Tepperman FS, Hirst M. 1983. Effect of intrahypothalamic injection of [D-Ala2,D-Leu5]enkephalin on feeding and temperature in the rat. European Journal of Pharmacology 96:243–249. doi: 10.1016/0014-2999(83)90313-8.

Timmons L, Court DL, Fire A. 2001. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263:103–112. doi: 10.1016/S0378-1119(00)00579-5.

Torres JB, Evangelista WS, Barras R, Guedes RN. 2002. Dispersal of Podisus nigrispinus (Het., Pentatomidae) nymphs preyin on tomato leafminfer: effect of predator release time, density and satiation level. Journal of Applied Entomology 126:326–332. doi: 10.1046/j.1439-0418.2002.00653.x.

Towell P, Kanu T, Juma F. 2006. Stimulation of mu and delta opioid receptors induces hyperalgesia while stimulation of kappa receptors induces antinociception in the hot plate test in the naked mole-rat (Heterocephalus glaber). Brain Research Bulletin 71:60–65. http://www.sciencedirect.com/science/article/pii/ S0361923006002449. doi: 10.1016/j.brainresbull.2006.08.001.

Tremel ER, Chu SW, Reinke V, Lee SS, Ausubel FM, Kim DH. 2006. p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLOS Genetics 2:e1725–e1739. doi: 10.1371/journal.pgen.0020183.

Vaswani KK, Tejwani GA. 1986. Food deprivation-induced changes in the level of opioid peptides in the pituitary and brain of rat. Life Sciences 38:197–201. doi: 10.1016/0024-3205(86)90012-3.

Wang D, Kennedy S, Conte D Jr, Kim JK, Gabel HW, Kamath RS, Mello CC, Ruvkun G. 2005. Somatic misexpression of germline P granules and enhanced RNA interference in retnoblastoma pathway mutants. Nature 436:593–597. doi: 10.1038/nature04010.

Wang ZW, Safiee O, Nonet ML, Salkoff L. 2001. SLO-1 potassium channels control quantal content of neurotransmitter release at the C. elegans neuromuscular junction. Neuron 32:867–881. doi: 10.1016/S0896-6773(01)00522-0.

You Y, Kim J, Raizen DM, Avery L. 2008. Insulin, cGMP, and TGF-beta signals regulate food intake and quiescence in C. elegans: a model for satiety. Cell Metabolism 7:249–257. doi: 10.1016/j.cmet.2008.01.005.