Biodegradation of Paper Wastes by Freshwater Snails: Implications for Management

Gargi Nandy, Pranesh Paul, Rupsha Karmakar, Arnab Shee, Shaliny Prabha, and Gautam Aditya*

INTRODUCTION

The use of nonbiodegradable plastics raises concern about environmental problems. As a substitute/alternative, the papers and cardboards are considered in varied purposes including packaging, bearing the advantage of biodegradability.

In one sense, the reuse of the paper wastes will provide an extended lifeline and elongate the life cycle of a product of biological origin. As a waste, the degradation of paper or pulp would have added hazardous material in the environment.

In urban areas, the extensive landfill disposals of the paper wastes and mechanical and physical processed employed for paper degradation may cause potential hazard to the environment and public health. Besides, the paper and pulp mill effluents are also toxic to aquatic ecosystems, affecting the growth, development, reproduction, and behavioral responses of fishes and several other riverine and marine plants and animals. Thus, both manufacture and disposal of papers involve potential environmental hazards, affecting the biota and the environmental quality in general. In order to reduce the possible hazards and sustain the paper production, an effective management of paper wastes is required.

Among the various modes of thermochemical and mechanical processes of paper and pulp treatment, majority are expensive and unable to degrade specific compounds of paper wastes.
such as lignin, which persist in a different form following the treatments. In comparison, the application of the biological treatments including vermicomposting is safe environmentally and comparatively cost effective. Such biodegradation, a biologically catalyzed transformation of complex organic compounds into simple molecules, facilitates the restoration of the environmental condition with the reduction of environmental pollution.

Owing to the availability of a wide range of biological resources, an advantage of choosing one or many of the biological resources from natural habitat makes it a more feasible process.

In recent times, the use of the cellulase enzyme obtained from the terrestrial snail *Cornu aspersum* (O. F. Müller, 1774) (Gastropoda: Helicidae) in the degradation of the cellulose of the paper wastes into glucose monomers has been reported. The utilization of freshwater snails for the biodegradation of paper waste is a pioneer effort. The results are expected to highlight a prospective mechanism of degradation of the paper wastes for either entry as an elemental form in the biogeochemical cycle or enzymatic degradation into sugars. The efficacy of the snails in facilitating the process of paper waste degradation can be judged such that freshwater snails can be considered for the biodegradation process.

RESULTS

All the three species of freshwater snails, namely, *R. luteola*, *I. exustus*, and *P. acuta*, consumed the three different types of paper waste with considerable variations in amount consumed. As a result of the grazing and scraping by the snails during the

Figure 1. Photographs (magnification 4×) of the surface of paper (a) cardboard, (b) plain paper, and (c) newspaper of (1) control (without the presence of snails) and after 4 days of grazing and scraping activity of (2) *I. exustus*, (3) *R. luteola*, and (4) *P. acuta*.
feeding activity, prominent signs of degradation of the paper samples were observed (Figure 1). On a comparative scale, the per capita consumption of paper wastes remained highest for the snail *I. exustus* (2.25 ± 0.27 mg/day), followed by *R. luteola* (1.99 ± 0.34 mg/day) and *P. acuta* (1.88 ± 0.26 mg/day) (Figure 2). Among the three types of paper used for the study, the CB was consumed (4.65 ± 0.40 mg/individual/day) at the highest rate, while the NP was consumed (0.27 ± 0.02 mg/individual/day) the least amount by the snails. For the PP, the mean amount consumed was 1.19 ± 0.1 mg/individual/day. The consumption of papers by the snails varied significantly in the paper-specific consumption pattern as observed through the Kruskal−Wallis test (*K* = 181.762, df = 2, *p* < 0.0001) but no variation was observed in the species-specific pattern (*K* = 2.727, df = 2, *p* = 0.256). Following the consumption, the snail species produced a considerable amount of fecal pellets when CB was consumed (1.32 ± 0.1 mg/individual/day) as food (Figure 3) than for the NP (0.45 ± 0.05 mg/individual/day) or PP (0.84 ± 0.08 mg/individual/day). On a comparative scale, the fecal pellets produced by the snails were highest in *I. exustus*, followed by *R. luteola* and *P. acuta*, respectively. The results of the Kruskal−Wallis test indicated that the fecal matter egested by the snails remained significantly different based on the paper types (*K* = 61.673, df = 2, *p* < 0.0001) and the snail species (*K* = 15.982, df = 2, *p* = 0.0003) concerned, but no significant variations were observed in the amount of cellulose in the fecal pellets (Figure 4).

Apparently, following the consumption of paper materials, the snails assimilated some amount of cellulose within the body and released some amount in the fecal matter. The relative mortality of the snails in course of the experiment remained consistent but negligible. The snails produced considerable egg clutches (Figure 5) during the experimental period, indicating that the snails were adapted to the consumption and assimilation of the paper as a source of food. The egg production was high on PP diet for *P. acuta* (20 ± 5.43) and *R. luteola* (46.14 ± 18.40), but *I. exustus* did not oviposit when fed with PP. The fecundity was also high on CB diet with the production of egg clutches 29.7 ± 0.68 by *P. acuta*, 33.36 ± 7.45 by *R. luteola*, and *I. exustus* deposited only one clutch with 17 eggs. The total egg production as a function of snail species and paper types could be presented as follows: total egg = 1/(1 + exp[−(−5.149−0.324 * snail species + 0.253 * paper type)]), with model parameters being significant (intercept = −5.149 ± 0.077, Wald *χ*² = 4428.153, *p* < 0.0001; snail species = −0.324 ± 0.026, Wald *χ*² = 148.466, *p* < 0.0001;
Figure 3. Variations in the fecal matter egested by the snails following the consumption of papers, expressed in terms of the individuals (a,c) and the individuals/day (b,d). [Paper types: CB—cardboard, PP—plain paper, and NP—newspaper; snail species: IEX—L. exustus; RLU—R. lutoea and PAC—P. acuta]. The box plot represents the maximum and minimum and mean value (red lined o) of consumption value along with the outliers.

The relation of egg per clutch with the snail species and paper types could be presented as follows: egg/clutch = 1/\{1 + \exp[-(−6.022–0.104* snail species+ 0.462* paper type)]\}, and the model parameters were significant (intercept = -6.022 ± 0.109, Wald \(\chi^2\) = 30.145.29, \(p < 0.001\); snail species = -0.105 ± 0.034, Wald \(\chi^2\) = 9.29, \(p = 0.002\); paper type = 0.462 ± 0.036, Wald \(\chi^2\) = 164.123, \(p < 0.001\)). The regression equation of egg per individual could be presented as follows: egg/individual = 1/\{1 + \exp[-(−5.145–0.324* snail species + 0.253* paper type)]\} with the significant model parameters (intercept = -5.145 ± 0.204, Wald \(\chi^2\) = 634.108, \(p < 0.0001\); snail species = 0.324 ± 0.07, Wald \(\chi^2\) = 21.209, \(p < 0.0001\); paper type = 0.253 ± 0.069, Wald \(\chi^2\) = 13.208, \(p = 0.0002\). Thus, following the consumption of the paper as a food, the snails were able to survive and reproduce and the degradation of the paper was also achieved.

The disintegration and stretching of the fibrous structure of the papers due to the scraping by the snails were prominent in the scanning electron micrographs of the paper samples (Figure 6). The scanning electron micrographs (Figure 7) revealed the presence of paper fibers in the fecal samples also. Figure 8 shows the band intensity and absorbance of CB, PP, and NPs without (control) and after the grazing and scraping of snails, along with the fecal matter after the consumption of respective papers. The CB, PP, and NPs showed the presence of characteristic bands of pyran vibrations at \(\sim 800 \text{ cm}^{-1}\), C–H out-of-plane bend at 873–876 cm\(^{-1}\), aromatic C–H at 1031–1034 cm\(^{-1}\), C–O–C asymmetric vibrations at \(\sim 1162 \text{ cm}^{-1}\), C=O stretch at \(\sim 1261 \text{ cm}^{-1}\), and aromatic skeletal vibrations combined with C–H at \(\sim 1428 \text{ cm}^{-1}\). In comparison to the spectra of control, change in the wavenumber and/or absorbance of characteristics bands were observed on the paper samples, which indicated the chemical and physical changes\(^{35,36}\) of the papers following the grazing and scraping activities of the snails. An additional band of \(\text{CH}_3\) rocking vibration at \(\sim 712 \text{ cm}^{-1}\) in cellulose\(^{35}\) was observed on the fecal matters following the consumption of respective papers.

DISCUSSION

In respect to the use of the biological resources, the degradation of the paper wastes appears to be less costly.\(^{37}\) Microbe-derived cellulose degrading enzymes are often utilized for the degeneration of paper materials.\(^{17,38}\) The bacterial and fungal species isolated from the several metropolitan wastes produced considerable amount of glucose from the paper wastes.\(^{33}\) Waste degradation using earthworm *Eisenia fetida* through vermicomposting process is another potential way of waste management.\(^{39,40}\) Another study depicted that the degradation of paper cup waste was accelerated through vermicomposting process with bacteria and earthworm *Eudrilus eugeniae*.\(^{41,42}\) In recent years, the use of the cellulase enzyme obtained from the terrestrial snail *C. aspersum*\(^{22,43,44}\) in degradation of varied types of paper wastes indicates the significance of the snails\(^{45}\) in the bioremediation program of recovery and reuse of paper waste at a larger scale. In parity with the propositions of the use of the snails in the bioremediation of the paper waste, the present study is a pioneer effort to establish the potential of the freshwater snails in the recovery and the reuse of the cellulose present in the paper wastes, which otherwise would have added to the total pollution as a solid waste load.

The considerable decrease of weight of experimental papers used as food material of the snails within the experimental mesocosm indicates their ability to reduce the load of paper wastes from the environment. Among the three snail species,
the consumption rate was highest for \textit{I. exustus}. The CB paper was consumed at a higher rate than other two papers used for the experiment. As shown in the scanning electron microscopy (SEM) pictures, the disintegration and laxation of the paper’s fibers were prominent in the consumed paper samples in comparison with the control (kept in water only) paper samples. The cellulosic components of the consumed papers were digested through the enzymatic degradation within the gut of the snails. Part of the cellulosic materials of the experimental papers were assimilated within the snail body for energy production and the amount of cellulose that had been detected in the fecal matter of the snail species was the undigested part of lignocellulosic materials of the paper. The presence of paper fibers in the fecal pellets of the snails fed with papers was evident from the SEM micrographs. Thus, grazing and scraping by the snails over the paper waste will initiate the primary processing which will augment the degradation process in the natural environment.

\textbf{Figure 4.} Estimated amount of cellulose content (mean ± SE) of the fecal matter of the snails fed with different types of papers. (a) Cellulose in the fecal samples as function of snail species; (b) cellulose in the fecal samples as a function of paper types; (c) bar plot representing the consumption (mean ± SE) of three types of papers by three snail species [paper types: CB—cardboard, PP—plain paper, and NP—newspaper; snail species: IEX—\textit{I. exustus}; RLU—\textit{R. luteola} and PAC—\textit{P. acuta}].

\textbf{Figure 5.} Fecundity of the three snail species (IEX—\textit{I. exustus}; RLU—\textit{R. luteola}; and PAC—\textit{P. acuta}) fed with three different types of papers [CB—cardboard, PP—plain paper, and NP—newspaper].
of loose and disintegrated paper fibers through the fecal pellets will facilitate the microbial growth and enzymatic degradation or physical transformation. The degradation of paper waste using snails will reduce the biomass and process the solid waste.

Figure 6. SEM images of the three types of papers (a) cardboard, CB, (b) plain paper, PP, (c) and newspaper, NP of control set (1) and after 4 days of the grazing and scraping activity by *I. exustus* (2), *R. luteola* (3), and *P. acuta* (4). Magnification = 500×, Scale bar = 50 μm.

Figure 7. SEM images of the fecal pellets of (1) *I. exustus*, (2) *R. luteola*, and (3) *P. acuta* fed with three types of papers: (a) cardboard - CB, (b) plain paper - PP, and (c) newspaper - NP. Note the looseness of the fibers contrast to those of Figure 6. Magnification = 500×, scale bar = 50 μm.
wastes. The microbial activity on partially processed paper materials will eventually release the cellulose and glucose molecules which will be further degraded by microbes or physical transformation.

Several studies reported that the recycled cellulose fibers from pulp of paper wastes are a promising and sustainable source of biofuel, bio-ethanol, and other bio-commodities such as porous graphen, water-soluble fluorescent carbon dots, graphene oxide quantum dots, multifunctional carbon decorated graphene paper, porous carbon dots for tetracycline absorption, and metal recover by chemically modified paper waste pulp. The cellulose fibers from paper pulp are also being used as an aerogel to mitigate environmental problems such as oil spill cleaning. The paper wastes are also a promising source of nanocellulose which are now being used for multiple industrial sectors.

CONCLUSIONS

The three freshwater snail species R. luteola, I. exustus, and P. acuta efficiently consumed three types of paper—cardboard, newspaper, and plain writing paper which are common components of municipal solid wastes. The snail species oviposited a considerable number of egg clutches during the grazing and scraping of three snail species, along with the fecal matter after the consumption of respective papers. No absorbance scale is given in the plots as the FTIR spectra of the samples are normalized and shifted parallel to the x-axis.

The three snail species were able to survive and reproduce consuming only papers as food which indicates their efficacy in degradation of paper wastes. Therefore, further studies may be initiated to judge the efficacy of the snails under varied environmental conditions to degrade and process the paper waste. In addition, future study should be designed to assess the variations of life history traits of snail species fed with papers. Based on the effects of the paper wastes on the life history and ecological traits of freshwater snail species within their aquatic habitats, it can be discerned whether snail species can be effectively used for alleviation of pollutant load in aquatic systems.
experimental period, reflecting their ability of survival and reproduction while feeding on paper diet only. The amount of cellulose obtained from the fecal pellet of the snails can be extracted and purified for further utilization as raw material in commercial purposes. The degradation of paper waste using snails will reduce the biomass and process the solid wastes. The microbial activity on partially processed paper materials will eventually release the cellulose and glucose molecules which will be further degraded by microbes or by physical transformation.

Though the snail species were able to degrade the paper waste under laboratory conditions, future study should be designed to judge their efficacy in biodegradation of paper waste in natural or semi-natural habitats.

MATERIALS AND METHODS

Snail Collection and Maintenance. The snails were collected from the freshwater habitats in and around Kolkata and adjacent districts of West Bengal, India during the experimental period, between May and September 2018. A nylon insect collection net fitted in a circular iron frame of 40 cm diameter attached with a long handle was dragged along the surface and subsurface (~15–20 cm depth) of the ponds, bogs, and pools for the collection of *R. luteola* and *I. exustus*. The collection of the snail *P. acuta* was made from the sewage drains of the same area using a smaller net fitted to a rectangular frame of 10 × 30 cm size. In all instances, the collections were made from the different sites of the water bodies and the specimens were pooled into a plastic bag and brought to the laboratory. In the laboratory, the snails were placed in a plastic container (Tarson) following segregation of the respective species. The containers were adequately filled with tap water (pH = 7.2–7.5) and the snails were maintained at room temperature (27–30 °C). In the course of maintenance of the snails, lettuce leaves were provided *ad libitum* as food. At the end of every 24 h period, the water of the containers was replaced and the dead snails and food remnants were discarded to keep the culture container clean. The collection of the snails was continued during the period of the experiment to replenish the dead snails and keep the population of the respective species at a constant number. In all instances, irrespective of the species, snail individuals were kept in at least a 96 h period in the laboratory for acclimatization prior to their use in the experiments.

Experimental Design. In order to assess the consumption and resultant reduction in the biomass of the papers, three different types of papers were considered, namely, the newspaper (NP, from local newspaper), the plain writing paper (PP, A4 sized paper), and the cardboard (CB, from industrial cartons). The requisite amount of the papers was supplied paper. Estimation of the cellulose included acid digestion and removal of the hemicellulose and other components and estimation of the cellulose portion of the concerned material. The method employed for the extraction of lignin, hemicelluloses, and xyloignins using acetic acid/nitric acid reagent and the remaining portion, the cellulose is dissolved in sulfuric acid and estimated using the anthrone reagent.36,37

SEM and Fourier Transform Infrared Studies. The CB, PP, and NPs (with and without the grazing and scraping of the snails) along with the fecal matter of the snails were picked from the experimental container on the fourth day. All samples were dried in a hot air oven, and small pieces of papers and few fecal pellets were platinum-coated and respective micrographs were taken by a scanning electron microscope (EVO 18 special edition, Zeiss) to observe the surface structure and morphology. The SEM studies were carried out professionally at CRNN instrument facility, University of Calcutta, Salt Lake campus, Kolkata, India. The completely dried paper samples and fecal pellets (1.0 mg) were mixed with KBr (100 mg, IR spectroscopic grade, Sigma-Aldrich) and thoroughly mixed in mortar and pastels. The 13 mm KBr pellets were made from the mixture using a standard hydraulic press device under a pressure of 100 kN cm⁻² for Fourier transform infrared (FTIR) spectrum analysis. FTIR spectra of the pellets were recorded in the range of 500–2000 cm⁻¹ on a PerkinElmer Spectrum 1000 FTIR Spectrophotometer at 1 cm⁻¹ resolution. A part of the FTIR work was carried out professionally at the Central Instrument Facility, Bose Institute, Kolkata, India.

Data Analysis. The data obtained on the amount of the paper consumed by the snails, the fecal matter produced, and the amount of cellulose in the fecal matter were subjected to non-parametric Kruskal–Wallis test using the paper and snail types as the explanatory variables. In all instances, the data were represented as per capita consumption or per capita per day consumption and subsequently applied for the statistical analysis using XLSTAT software.99 The fecundity of the snails was also recorded during the experimental period in order to assess their ability to reproduce when they were provided with a paper diet. The data obtained on the total eggs, egg per clutch, and egg per individual were subjected to logistic
recession following a binomial generalized linear model with logit link. The expression of the logistic regression in the form of y (response variable) = $1/(1 + \exp[-(a + bx)])$ was used to deduce the effect of food type (types of paper) and snail species (explanatory variable) on the fecundity (response variable) of each snail species.

ACKNOWLEDGMENTS

The authors are grateful to the Head, Department of Zoology, University of Calcutta, Kolkata, India, for the facilities provided in carrying out this work (including the facilities from DST-FIST and UGC UPE II, Government of India, and CRNN, University of Calcutta). The Director, Zoological Survey of India is acknowledged for the kind help rendered in identification of the snail specimens. We acknowledge the constructive comments of two anonymous reviewers that enabled the enhancement of the paper to thus present state. We acknowledge Prof. Dipankar Chattopadhyay, Department of Polymer Science and Technology, University of Calcutta for providing FTIR facility for nine observations (Figure 5).

REFERENCES

1. Nowinska, A.; Baranowska, J.; Malinowski, M. The analysis of biodigester process of selected paper packaging waste. *Instruct. Ecol. Rural Areas* **2019**, *3*, 253–261.

2. Nguyen, S. T.; Feng, J.; Le, N. T.; Le, A. T.; Hoang, N.; Tan, V. B.; Duong, H. M. Cellulose aerogel from paper waste for crude oil spill cleaning. *Ind. Eng. Chem. Res.* **2013**, *52*, 18386–18391.

3. Joshi, R.; Ahmed, S. Status and challenges of municipal solid waste management in India: a review. *Cogent Environ. Sci.* **2016**, *2*, 1139434.

4. Ma, Y.; Hummel, M. M. M. S. A.; Määttänen, M.; Särkilähti, A.; Harlin, A.; Sixta, H. Upcycling of waste paper and cardboard to textiles. *Green Chem.* **2016**, *18*, 858–866.

5. Kumar, S.; Smith, S. R.; Fowler, G.; Velis, C.; Kumar, S. J.; Arya, S.; Rena, R.; Kumar, C.; Cheeseman, C. Challenges and opportunities associated with waste management in India. *R. Soc. Open Sci.* **2017**, *4*, 160764.

6. Mahanti, J. C. Clean India (Swachh Bharat) through reuse and recycling of wastes. *J. Pollut. Effic. Cont.* **2017**, *5*, 1–4.

7. Ahluwalia, I. J.; Patel, U. Solid waste management in India an assessment of resource recovery and environmental impact. Working paper no 356; Indian Council for Research on International Economic Relations: New Delhi, India, 2018; pp 1–42.

8. Lei, W.; Zhou, X.; Fang, C.; Li, Y.; Song, Y.; Wang, C.; Huang, Z. New approach to recycle office waste paper: Reinforcement for polyurethane with nano cellulose crystals extracted from waste paper. *Waste Manage.* **2019**, 95, 59–69.

9. Kumar, V.; Pathak, P.; Bhardwaj, N. K. Waste paper: An underutilized but promising source for nanocellulose mining. *Waste Manage.* **2020**, *102*, 281–303.

10. Hall, F. K. Paper Recycling and the Environment. *Paper recycling and the environment*; Rader, C., Baldwin, S. D., Cornell, D. D., Sadler, G. D., Stockel, R. F., Eds.; Plastic, rubber and paper recycling, ACS Symposium Series; American Chemical Society: Washington, DC, 1995; pp 286–295.

11. Sharples, A. D.; Evans, C. W. Impact of pulp and paper mill effluent on water quality and fauna in a New Zealand hydro-electric lake. *N. Z. J. Mar. Freshwater Res.* **1998**, *32*, 31–53.

12. Ali, M.; Sreekrishnan, T. R. Aquatic toxicity from pulp and paper mill effluents: a review. *Adv. Environ. Res.* **2001**, *5*, 175–196.

13. Hewitt, L. M.; Kovacs, T. G.; Dubé, M. G.; MacLarty, D. L.; Martel, P. H.; McMaster, M. E.; Paice, M. G.; Parrott, J. L.; van den Heuvel, M. R.; Van Der Kraak, G. J. Altered reproduction in fish exposed to pulp mill effluent. *J. Environ. Chem. Ecotoxicol.* **2003**, *167*, 167–172.

14. Mishra, A.; Tripathi, C. P. M.; Dwivedi, A. K.; Dubey, V. K. Acute toxicity and behavioral response of freshwater fish, *Mystus vittatus* exposed to pulp mill effluent. *J. Environ. Chem. Toxicol.* **2011**, *3*, 167–172.

15. Janda, B. W. Advances in Paper Fiber Recycling: Meeting the Challenge; Rader, C. P., Baldwin, S. D., Cornell, D. D., Sadler, G., Stockel, R. F., Eds.; ACS Symposium Series; American Chemical Society: Washington DC, 1995; pp 306–322.

16. Arena, U.; Mastellone, M. L.; Perugini, F.; Clift, R. Environmental assessment of paper waste management options by means of LCA methodology. *Ind. Eng. Chem. Res.* **2004**, *43*, 5702–5714.

17. van Wyk, J. P. H.; Mohulatsi, M. Biodegradation of waste paper by cellulase from Trichoderma viride. *Bioresour. Technol.* **2003**, *86*, 21–23.

18. Venelampi, O.; Weber, A.; Rönkkö, T.; Itävää, M. The biodegradation and disintegration of paper products in the composting environment. *Compost Sci. Util.* **2003**, *11*, 200–209.

19. Alvarez, J. L.; Larrucea, M. A.; Bermúdez, P. A.; Chicote, B. L. Biodegradation of paper waste under controlled composting conditions. *Waste Manage.* **2009**, *29*, 1514–1519.

20. Alexander, M. Biodegradation and bioremediation; Academic Press Inc. California, 1994; p 233.
(21) Aneyo, I. A.; Doherty, F. V.; Adebisin, O. A.; Hammed, M. O. Biodegradation of pollutants in waste water from pharmaceutical, textile and local dye effluent in Lagos, Nigeria. J. Health Pollut. 2016, 6, 34–42.

(22) Ndlou, T. M.; van Wyk, J. P. H. Saccharification of waste paper with cellulase from garden snails (Cornu aspersum). Int. J. Environ. Sci. Technol. 2019, 16, 3513–3522.

(23) Zealand, A. M.; Jeffries, M. J. The distribution of pond snail communities across a landscape: separating out the influence of spatial position from local habitat quality for ponds in south-east Northumberland, UK. Hydrobiologia 2009, 632, 177–187.

(24) Jana, B. B.; Das, S. Potential of freshwater mussel (Lamellidens marginalis) for cadmium clearance in a model system. Ecol. Eng. 1997, 8, 179–193.

(25) Zhou, Q.; Zhang, J.; Fu, J.; Shi, J.; Jiang, G. Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal. Chim. Acta 2008, 606, 135–150.

(26) Blagojevic, N. Z.; Vukasinovic-Pesic, V. L.; Grudic, V. V.; Pesic, V. M. Endemic freshwater snails as an environmental indicator of metal pollution of the Zeta River, Montenegro. J. Environ. Prot. Ecol. 2014, 15, 210–216.

(27) Gutiérrez, J. L.; Jones, C. G.; Strayer, D. L.; Irribarne, O. O. Mollusks as ecosystem engineers: the role of shell production in metal pollution of the Zeta River, Montenegro. Acta Trop. 2016, 164, 45–53.

(28) Devkota, R.; Brant, S. V.; Loker, E. S. A genetically distinct Schistosoma from Stadis lutola from Nepal related to Schistosoma turkestanicum: a phylogenetic study of schistosome and snail host. Acta Trop. 2016, 143, 279–292.

(29) Adhikari, C. R.; Parajuli, D.; Inoue, K.; Ohto, K.; Kawakita, H.; Li, L.; Li, B.; Sun, H.; Zhang, J. Compressible and conductive biological materials. ACS Omega 2020, 7, 27927–27936.

(30) Garg, P.; Gupta, A.; Satya, S. Vermicomposting of different types of waste using Eisenia fetida: A comparative study. Bioresour. Technol. 2006, 97, 391–395.

(31) Mathivanan, M.; Aravind Vishnu Saravana, G. A. V.; Baji, A.; Manoj kumar, J. Biodegradation of paper waste using Eisenia fetida by vermicomposting technology. IOP Conference Series: Earth and Environmental Science; IOP Publishing, 2017; Vol. 80, p 012051.

(32) Jabir, D. M.; Jabir, M. M. A study of biodegradation of waste papers by using bacteria isolated from the soil. Asian J. Microbiol. Biotechnol. Environ. Sci. 2016, 18, 225–229.

(33) Garg, P.; Gupta, A.; Satya, S. Vermicomposting of different types of waste using Eisenia fetida: A comparative study. Bioresour. Technol. 2006, 97, 391–395.

(34) Mathivanan, M.; Aravind Vishnu Saravana, G. A. V.; Baji, A.; Manoj kumar, J. Biodegradation of paper waste using Eisenia fetida by vermicomposting technology. IOP Conference Series: Earth and Environmental Science; IOP Publishing, 2017; Vol. 80, p 012051.

(35) Jabir, D. M.; Jabir, M. M. A study of biodegradation of waste papers by using bacteria isolated from the soil. Asian J. Microbiol. Biotechnol. Environ. Sci. 2016, 18, 225–229.

(36) Mathivanan, M.; Aravind Vishnu Saravana, G. A. V.; Baji, A.; Manoj kumar, J. Biodegradation of paper waste using Eisenia fetida by vermicomposting technology. IOP Conference Series: Earth and Environmental Science; IOP Publishing, 2017; Vol. 80, p 012051.