SHORT COMMUNICATION

Screening of ectoparasites from domesticated dogs for bacterial pathogens in Vientiane, Lao PDR

Hung Manh Nguyen1 | Watthana Theppannga2 | Khamsing Vongphayloth3 | Bounlom Douangneun2 | Stuart D. Blacksell4,5 | Matthew T. Robinson5,6

1Lao Tropical and Public Health Institute, Vientiane, Laos
2National Animal Health Laboratories, Vientiane, Laos
3Institut Pasteur du Laos, Vientiane, Laos
4Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
5Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
6Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos

Correspondence
Matthew T. Robinson, Microbiology Laboratory, Mahosot Hospital, LOMWRU, Vientiane, Laos.
Email: matthew.r@tropmedres.ac

Present address
Hung Manh Nguyen, Faculty of Medicine, Faculty of Nursing Sciences, Université Laval, Québec, QC, Canada

Funding information
The work carried out comes under the MORU Tropical Health Network, core funded by Wellcome (grant number 106698/Z/14/Z). Funds towards the project were also received from the Lao Tropical and Public Health Institute, Ministry of Health, Lao PDR. SDB and MTR are funded by Wellcome.

Abstract
Arthropod-borne diseases are widespread worldwide and are a complex interaction between animals, humans and ectoparasites. The understanding of the diversity and epidemiology of organisms transmitted by arthropod vectors, and the role of hosts and vectors in transmission of infections remain limited in Lao PDR. What knowledge does exist is primarily focused on more rural regions of the country. This study screened ectoparasites from domestic dogs in Vientiane city for the presence of bacterial pathogens of zoonotic importance. A total of 3,511 arthropod vectors were collected from 112 dogs. Vectors collected were Rhipicephalus sanguineus ticks, Ctenocephalides felis felis and Ctenocephalides felis orientis fleas and Heterodoxus spiniger lice. A sub-sample of vectors from each dog was analysed by PCR to identify the potential bacteria. From 129 vector pools, Rickettsia spp. was detected in 6.7% (7/105) pools of ticks, 86.4% (19/22) pools of fleas and both pools of lice. Sequencing analysis confirmed Rickettsia felis in 13 flea pools and one louse pool and Rickettsia asembonensis in six flea pools. Anaplasmataceae was identified in 14.3% (15/105) tick pools and 100% (22/22) flea pools. Sequencing revealed the presence of Anaplasma platys in ticks and Wolbachia pipientis in fleas. Leptospira spp. was detected in one tick and one louse pool, and Brucella spp. was detected in 12.4% (13/105) tick pools. All samples were negative for Bartonella spp., Coxiella burnetii and Borrelia burgdorferi. This is the first study providing evidence of R. asembonensis in fleas in Laos. Results from this study show arthropods are potential vectors to transmit zoonotic infection in Vientiane city, suggesting humans are at risk of zoonotic infections in the city.

KEYWORDS
arthropod, domesticated animals, flea, Laos, lice, ticks

1 | INTRODUCTION

The requirement of haematophagy and the ability to feed off different hosts (either in one life stage or across multiple life stages) mean ectoparasites are highly efficient transmitters of zoonotic diseases and, as such, are known vectors for a number of bacterial and viral...
pathogens of both veterinary and clinical importance (Leitner, Wali, Kincaid, & Costero-Saint Denis, 2015). Excellent examples are fleas and ticks, which are able to transmit a number of bacteria, many of which have been identified as emerging vector-borne diseases (Colwell, Dantas-Torres, & Otranto, 2011). There has been a rise in prevalence of tick-borne diseases in both clinical and veterinary settings in recent decades. The incidences have been attributed to Ixodidae ticks (hard ticks) as mode of transmission between animals and humans (Vannier & Krause, 2012). Spotted fever group rickettsia (SFGR) are commonly documented in humans who have had contact with animals and those who have reported exposure to arthropods. For instance, *Rickettsia felis* is the most widespread zoonotic pathogen transmitted by fleas (Assarasakorn et al., 2012; Kernif et al., 2012; Troyo et al., 2016; Varagnol et al., 2009), yet the number of actual cases is suspected to be much greater due to non-reporting and misdiagnosis.

Screening of ectoparasites and vectors in Southeast Asia has identified a number of important pathogens. *Ctenocephalides felis* fleas from cats in Bangkok, Thailand, were found to harbour a variety of *Bartonella* species including *B. henselae*, *B. claridgeiae* and *B. koehlerae*, whilst in north-eastern Thailand, strains similar to *B. elizabethae*, *B. rattim assimilis*, *B. rochalimae* and *B. tribocorum* were also reported (Assarasakorn et al., 2012; Billeter et al., 2013). There were various agents identified in ticks from the Thai-Myanmar border and Vietnam which include *Anaplasma*, *Ehrlichia*, and *Rickettsia*, among others. These agents are of veterinary importance, and a large population of stray dogs and cats, makes the potential for vector transmission of zoonotic pathogens an important aspect of public health.

Considering these aspects, the following study screened ectoparasite vectors from domestic dogs in Vientiane for the presence of bacterial pathogens of zoonotic importance.

2 | METHODS

Arthropods, including ticks, fleas and lice, were collected from dogs brought to eight veterinary clinics in Vientiane capital. Basic information was collected for each dog, including reason for visit and overall health. Arthropods were morphologically identified (Hopkins & Rothschild, 1953; Price & Graham, 1997; Walker, Keirans, & Horak, 2000; Yamaguti, Tipton, Keegan, & Toshioka, 1971) and pooled according to species, life stage, sex (adult ticks only) and the individual animal they were retrieved from.

DNA from arthropod pools was extracted using DNeasy Blood & Tissue Kit (Qiagen) following the manufacturer’s methodology with the following modification: incubation with protease K was a minimum of 1 hr to overnight, and DNA was eluted in two 50 µl volumes of TE buffer. DNA samples were assayed by conventional PCR targeting *Anaplasmataceae* 16S rRNA gene (Parola et al., 2000), and qPCR assays targeting *Rickettsia* spp. 17-kDa gene (Jiang et al., 2004), whilst *Anaplasmataceae*-positive PCR products from samples positive for *Rickettsia* spp. were checked with qPCRs targeting *Anaplasmataceae* 16S rRNA gene (Parola et al., 2000), and qPCR assays targeting *Rickettsia* spp. 17-kDa gene (Jiang et al., 2004), *Leptospira* spp. *rrs* gene (Smythe et al., 2002), *Borrelia burgdorferi* 23S rRNA gene (Courtney, Kostelnik, Zeidner, & Massung, 2004), *Bartonella* spp. 23S rRNA gene (BartAF GTG YTT TAT TCT GGT GCT TCA GCM G, BartAFam 6-FAM-TGC WGA TGT TCG YTC TGT TAT GCA TGA TAT TCT GGT GTT GCT TC, BartAR GCA ATA GCA GCT TCA GCM G), *Coxiella burnetii* IS1111 gene (Bounaadja et al., 2009), *Rickettsia* spp. positives were checked for *R. typhi* by qPCR targeting the *ompB* gene (Henry et al., 2007), whilst *Anaplasmataceae*-positive samples were checked with qPCRs for *Anaplasma phagocytophilum* msp2 gene (Courtney et al., 2004) and *Ehrlichia chaffeensis* 16S rRNA gene (Loftis, Massung, & Levin, 2003).

PCR products from samples positive for *Rickettsia* spp. and *Anaplasmataceae* were sequenced by Macrogen, and consensus sequences analysed on CLC Main Workbench version 7.8.1 (QIAGEN Aarhus A/S) and BLAST to compare with other sequences available in the GenBank database (http://blast.ncbi.nlm.nih.gov).

3 | RESULTS

In total, 3,511 arthropods were collected from 112 dogs in Vientiane city. Ticks (*n* = 3,151) were collected from 105 dogs, and all were identified as *Rhipicephalus sanguineus* (brown dog tick). Adults
accounted for 74.5% (43.0% of adults were female), whilst nymphs and larvae accounted for 24.8% and 0.7%, respectively. On average, dogs had 19 ticks removed (IQR: 6–45) with one dog having a maximum of 200. Fleas (n = 225) were found on 22 dogs and were identified as Ctenocephalides felis felis and Ct. felis orientis, and the median number of fleas per dog was 4 (IQR: 2–16). Two dogs had lice (n = 135), identified as Heterodoxus spiniger. There were 15 dogs carrying both ticks and fleas, whilst one dog carrying ticks and lice, and one dog with all three of these vectors. Due to large number of arthropods collected, a sub-sample from each dog was used for PCR analysis. Adult female ticks were split into 105 tick pools of one to 10 ticks, fleas were split into 22 pools (1 to 20 per pool) and two louse pools (consisting of one and 50 lice).

Rickettsia spp. were identified in 21.7% (28/129) of pools including 6.7% (7/105) tick pools, 86.4% (19/22) flea pools and both louse pools (100%, 2/2). No evidence of R. typhi was found. Sequencing of the 17-kDa gene identified two species of Rickettsia in flea and louse pools. Fourteen pools showed 99%–100% identity to R. felis URRXWCal2 (accession no. CP000053), whilst six pools showed 99%–100% identity to Rickettsia asembonensis 8294D3 (MK923744). Eight Rickettsia spp.-positive samples could not be identified to species level (one louse and seven tick pools). Leptospira spp. were detected in one tick and one louse pool, and one additional tick pool was likely positive. Anaplasmataceae were identified in 28.7% (37/129) pools (15 tick and 22 flea pools). No pools were positive for A. phagocytophilum or E. chaffeensis. Two Anaplasmataceae-positive tick pools showed 100% identity to Anaplasma platys (CP046391), whilst one flea pool showed 99% identity to Wolbachia pipientis (LN864488). There were 12.4% (13/105) tick pools that were potentially positive with Brucella spp. although this could not be confirmed by sequence analysis. All pools were negative for Bartonella spp. and Co. burnetii, whilst tick pools were negative for Bo. burgdorferi (summarized in Table 1). All sequence data were submitted to GenBank database under accession numbers MT469956–MT469975 and MT471981–MT471983.

Of 109 dogs, 55.0% were classified as being healthy and were attending the veterinary surgery for routine vaccinations, pregnancy health check, grooming or overnight boarding. Of these, 22 (36.7%) had vectors positive for one or more pathogen (Table 2). Of particular note regarding dogs that were not classified as healthy, both dogs with jaundice had vectors positive for Anaplasmataceae; the two dogs with visible rash were positive for Rickettsia spp., R. felis and/or Anaplasmataceae; the three dogs with an ‘infection’ were positive for R. felis and R. asembonensis; and the six dogs classified as being generally unwell had vectors positive for R. felis, R. asembonensis, Anaplasmataceae and/or Brucella spp.

TABLE 1
Summary of pathogens detected. Bracketed values depict number of positive pools in total number of pools tested

Vector species	Rhipicephalus sanguineus	Ctenocephalides felis	Heterodoxus springer	Method of identification
Rickettsia spp.	6.7% (7/105)	86.4% (19/22)	100% (2/2)	qPCR
R. felis	86.4% (19/22)	50% (1/2)	qPCR	
R. asembonensis	27.3% (6/22)	50% (1/2)	qPCR	
Anaplasmaeae	14.3% (15/105)	100% (22/22)	cPCR	
Anaplasma platys	100% (2/2)	100% (1/1)	qPCR	
Wolbachia pipientis	100% (1/1)	50% (1/2)	qPCR	
Leptospira spp.	1.9% (2/105)	50% (1/2)	qPCR	
Brucella spp.	12.4% (13/105)			

Subset of Anaplasmataceae PCR-positives were sequenced.
TABLE 2 Detection of pathogens in vectors based on health status of the host dog

Health status (n = 109)	Number of dogs with positive vectors						
	Positive for one or more bacteria	Rickettsia spp.	Rickettsia felis	Rickettsia asembonensis	Anaplasmataceae	Brucella spp.	Leptospira spp.
Healthy^a	22/60 (36.7%)	3 (5.0%)	2 (3.3%)	2 (3.3%)	9 (15.0%)	9 (15.0%)	1 (1.7%)
General unwellness^b	6/16 (37.5%)	3 (18.8%)	1 (6.3%)	1 (6.3%)	2 (12.5%)		
Abdominal pain/abscess	2/12 (16.7%)	2 (16.7%)	1 (8.3%)	1 (8.3%)			
Infection	3/3 (100%)	2 (66.7%)	1 (33.3%)				
Jaundice	2/2 (100%)						
Rash	2/2 (100%)	1 (50%)	1 (50%)				
Still birth	1/1 (100%)	1 (100%)					
Other^c	8/13 (61.5%)	3 (23.1%)	3 (23.1%)	1 (7.7%)	1 (7.7%)	1 (7.7%)	

^a‘Healthy’ includes dogs brought in for grooming, boarding, routine vaccinations or who were pregnant, and who showed no signs of abnormal health.

^b‘General unwellness’ includes dogs appearing ‘sad,’ pale, coughing, fever and/or loss of appetite.

^c‘Other’ health status includes dogs who visited the veterinary surgeons for surgery, were injured or have been diagnosed with tumors, paraplegia or canine distemper virus (CDV).

from dogs in northern Laos (Kernif et al., 2012). *Heterodoxus spiniger* has been previously identified in Laos (Beaucournu, Jouan, & Menier, 2001).

Rickettsia felis and *R. asembonensis* were detected in fleas and lice. In Laos, *R. felis* has been found in fleas collected from domesticated dogs outside of Vientiane (Varagnol et al., 2009) and has been confirmed as a human pathogen in Laos (Dittrich et al., 2014; Mayxay et al., 2015; Phongmany et al., 2006) suggesting potential interactions between humans and vectors. *Rickettsia asembonensis* has been mapped worldwide (Maina et al., 2019) and is confirmed in Southeast Asia, including Thailand and Malaysia (Low et al., 2017; Odhiambo, Maina, Taylor, Jiang, & Richards, 2014). This study reports the first detection, to our knowledge, of *R. asembonensis* in Laos. Although *R. asembonensis* is closely related to *R. felis*, little is known of its pathogenicity to humans although there is some molecular evidence (*gltA* and *ompB* sequences) of infection in humans and monkeys in Malaysia (Tay, Koh, Kho, & Sitam, 2015). Similar to many reports that fleas are the most common vector to be infected with *R. asembonensis*, this study only identified this agent in Ct. felis (Kocher et al., 2016; Maina et al., 2016; Oteo et al., 2014; Silva et al., 2017; Troyo et al., 2016). Other arthropods have been found to be infected with *R. asembonensis* including *Pulex simulans* and *Amblyomma ovale* from dogs and *Rhipicephalus microplus* from cows (Troyo et al., 2016); yet, ticks and lice were negative for *R. asembonensis* in our sample; and further investigation is needed to confirm the distribution of this agent in the country.

This study presented evidence of *Leptospira* spp. in *Rh. sanguineus* and *H. spiniger*. Canine leptospirosis has been demonstrated in a number of studies, suggesting a risk of human infection (Gay, Soupe-Gilbert, & Goarant, 2014; Weekes, Everard, & Levett, 1997). There are also questions as to whether *Leptospira* spp. can be vector transmitted (Wojcik-Fatla et al., 2012) although it is likely that ticks and lice here fed off an infected dog and it is the contaminated blood meal that is being detected.

Anaplasma platys and *W. pipientis* were detected in tick and flea pools, respectively. *Anaplasma platys* infection has been commonly reported in dogs and is described as being a potential human pathogen (Arraga-Alvarado et al., 2014; Geurden et al., 2018; Maggi, Mascarelli, Havenza, Naidoo, & Breitschwerdt, 2013; Matei et al., 2016). *Rhipicephalus sanguineus* ticks have been identified as the dominant vector in the transmission of *A. platys* (Cicuttin et al., 2014; Geurden et al., 2018; Ramos et al., 2014; Silva et al., 2016). *Wolbachia* spp. are common endosymbionts found in a number of insects (Gorham, Fang, & Durden, 2003); however, we are unaware of any evidence of human infestation.

A number of tick pools were suspected to be *Brucella* spp. positive, although this could not be confirmed by sequence analysis.

Transmission of *Brucella* spp. is via contact exposure to infected animals or by environmental contamination with infected fluids, although a number of studies have suggested the possibility of arthropod-borne transmission (Kosoy & Goodrich, 2018). As with *Leptospira* spp., it is likely that ticks fed on an infected dog and again we are detecting the blood meal. Either way, the possibility of *Brucella* spp. in pet dogs raises important public health implications. Previous work has serologically confirmed *Brucella* spp. in goats in Vientiane capital (Burns et al., 2018), and therefore, more work is needed to confirm the presence of *Brucella* spp. in dogs and *Rh. sanguineus* ticks.

Interestingly, the majority of dogs were classified as being healthy and showed no signs of an infection. Previously, it has been shown that the majority of dogs infected with *A. platys* show no clinical signs (Arraga-Alvarado et al., 2014; Shaw et al., 2001), and therefore, it is not surprising to obtain positive results from healthy dogs. If symptoms are present, both *Rickettsia* and *Anaplasma* usually have unspecific and mild presentations; both *Rickettsia* spp. and *A. platys* are known to cause anorexia, depression, fever and pale mucous membranes, all three of which were reported in 12 of these dogs.
This study highlights the prevalence of vectors and associated pathogens harboured on domesticated dogs in Vientiane, Lao PDR. Evidence on rickettsial infection with the presence of *R. felis* and the first detection of *R. asemobonensis* in arthropods in the country shows a high risk of infection to humans. Many other pathogens were also identified emphasizing that arthropods are potential vectors to transmit zoonotic infection. With both *Rh. sanguineus* and *C. felis* known to cause infestations within households (Hansford, Pietzsch, Cull, & Medlock, 2010; Rust & Dryden, 1997), control of arthropod vectors on domestic animals is both a veterinary and public health importance in the city of Vientiane, requiring greater attention in clinical diagnosis, treatment and prevention strategies.

CONCLUSION

This study highlights the prevalence of vectors and associated pathogens harboured on domesticated dogs in Vientiane, Lao PDR. Evidence on rickettsial infection with the presence of *R. felis* and the first detection of *R. asemobonensis* in arthropods in the country shows a high risk of infection to humans. Many other pathogens were also identified emphasizing that arthropods are potential vectors to transmit zoonotic infection. With both *Rh. sanguineus* and *C. felis* known to cause infestations within households (Hansford, Pietzsch, Cull, & Medlock, 2010; Rust & Dryden, 1997), control of arthropod vectors on domestic animals is both a veterinary and public health importance in the city of Vientiane, requiring greater attention in clinical diagnosis, treatment and prevention strategies.

ACKNOWLEDGEMENTS

The authors wish to thank the veterinary surgeons for their generous support and assistance with sample collection. We also thank Mjr Silas Davidson, Dr Takhampunya Ratree and colleagues at AFRIMS for their assistance in the identification of fleas and lice, and Dr Kristin Mullins, University of Maryland, for the *Bartonella* spp. qPCR. The authors also thank Dr Paul Newton (University of Oxford) for his advice and assistance during the study. This study was accepted by the National Animal Health Laboratory, Lao PDR.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ORCID

Hung Manh Nguyen https://orcid.org/0000-0001-5325-8329

Matthew T. Robinson https://orcid.org/0000-0003-1187-2712

REFERENCES

Arraga-Alvarado, C. M., Qurillo, B. A., Parra, O. C., Berrueta, M. A., Hegarty, B. C., & Breitschwerdt, E. B. (2014). Molecular evidence of *Anaplasma platys* infection in two women from Venezuela. *American Journal of Tropical Medicine and Hygiene*, 91, 1161–1165. https://doi.org/10.4269/ajtmh.14-0372

Assarasakorn, S., Veir, J. K., Hawley, J. R., Brewer, M. M., Morris, A. K., Hill, A. E., & Lappin, M. R. (2012). Prevalence of *Bartonella* species, hemoplasmas, and *Rickettsia felis* DNA in blood and fleas of cats in Bangkok, Thailand. *Research in Veterinary Science*, 93, 1213–1216. https://doi.org/10.1016/j.rvc.2012.03.015

Beaucaournu, J. C., Jouan, R., & Menier, K. (2001). Insectes ectoparasites du chien au Laos. *Revue de Médecine Vétérinaire*, 152, 77–82.

Billéter, S. A., Colton, L., Sangmaneedy, S., Sukswat, F., Evans, B. P., & Kosoy, M. Y. (2013). Molecular detection and identification of *Bartonella* species in rat fleas from northeastern Thailand. *American Journal of Tropical Medicine and Hygiene*, 89, 462–465. https://doi.org/10.4269/ajtmh.12-0483

Bounaada, L., Albert, D., Chenais, B., Henault, S., Zygmutn, M. S., Poljak, S., & Garin-Bastuji, B. (2009). Real-time PCR for identification of *Brucella* spp.: A comparative study of IS711, bscp31 and per target genes. *Veterinary Microbiology*, 137, 156–164. https://doi.org/10.1016/j.vetmic.2008.12.023

Burns, R. J. L., Douangneub, B., Theppangwa, W., Khounsy, S., Mukaka, M., Selleck, P. W., ... Blacksell, S. D. (2018). Serosurveillance of Coxiella (Q-fever) and Brucellosis in goats in selected provinces of Lao People’s Democratic Republic. *PLoS Neglected Tropical Diseases*, 12, e0006411. https://doi.org/10.1371/journal.pntd.0006411

Cicuttini, G. L., Brambati, D. F., Rodriguez Eguí, J. I., Lebrero, C. G., De Salvo, M. N., Beltran, F. J., ... Anda, P. (2014). Molecular characterization of *Rickettsia massiliae* and *Anaplasma platys* infecting *Rhipicephalus sanguineus* ticks and domestic dogs, Buenos Aires (Argentina). *Ticks and Tick-borne Disease*, 5, 484–488. https://doi.org/10.1016/j.ttbdis.2014.03.001

Colwell, D. D., Dantas-Torres, F., & Otranto, D. (2011). Vector-borne parasitic zoonoses: Emerging scenarios and new perspectives. *Veterinary Parasitology*, 182, 14–21. https://doi.org/10.1016/j.vetpar.2011.07.012

Courtney, J. W., Kostelnik, L. M., Zeidner, N. S., & Massung, R. F. (2004). Multiplex real-time PCR for detection of *Anaplasma phagocytophilum* and *Borrelia burgdorferi*. *Journal of Clinical Microbiology*, 42, 3164–3168. https://doi.org/10.1128/JCM.42.7.3164-3168.2004

Dantas-Torres, F. (2008). The brown dog tick, *Rhipicephalus sanguineus* (Lateville, 1806) (Acari: Ixodidae): From taxonomy to control. *Veterinary Parasitology*, 152, 173–185. https://doi.org/10.1016/j.vetpar.2007.12.030

Dittrich, S., Phommasone, K., Anantatat, T., Panyanivong, P., Slesak, G., Blacksell, S. D., ... Paris, D. H. (2014). *Rickettsia felis* infections and comorbid conditions, Laos, 2003–2011. *Emerging Infectious Diseases*, 20, 1402–1404. https://doi.org/10.3201/eid2008.131308

Gay, N., Soupe-Gilbert, M. E., & Goarant, C. (2014). Though not reservoirs, dogs might transmit *Leptospira* in New Caledonia. *International Journal of Environmental Research and Public Health*, 11, 4316–4325. https://doi.org/10.3390/ijerph110404316

Geurden, T., Becskei, C., Six, R. H., Maeder, S., Latrofa, M. S., Otranto, D., & Farkas, R. (2018). Detection of tick-borne pathogens in ticks from dogs and cats in different European countries. *Ticks and Tick Borne Diseases*, 9, 1431–1436. https://doi.org/10.1016/j.ttbdis.2018.06.013

Gorham, C. H., Fang, Q. Q., & Durden, L. A. (2003). *Wolbachia* endosymbionts in fleas (*Siphonaptera*). *Journal of Parasitology*, 89, 283–289. https://doi.org/10.1645/0022-3305(2003)089[0283:WEFS]2.0.CO;2

Gray, J., Dantas-Torres, F., Estrada-Pena, A., & Levin, M. (2013). Systematics and ecology of the brown dog tick, *Rhipicephalus sanguineus*. *Ticks and Tick Borne Diseases*, 4, 171–180. https://doi.org/10.1016/j.ttbdis.2012.12.003

Hansford, K. M., Pietzsch, M., Cull, B., & Medlock, J. M. (2010). Brown dog tick infestation of a home in England. *Veterinary Record*, 176, 129–130. https://doi.org/10.1136/vr.1175.3305-3-26

Henry, K. M., Jiang, J., Rozmajzl, P. J., Azad, A. F., Macaluso, K. R., & Richards, A. L. (2007). Development of quantitative real-time PCR assays to detect *Rickettsia typhi* and *Rickettsia felis*, the causative agents of murine typhus and flea-borne spotted fever. *Molecular and Cellular Probes*, 21, 17–23. https://doi.org/10.1016/j.mcp.2006.06.002

Hopkins, G. H. E., & Rothschild, M. (1953). An illustrated catalogue of the rathschild collection of fleas (*Siphonaptera*) in the British Museum, *Tungidae and Pulicidae*. London, UK: British Museum (Natural History).

Jiang, J., Chan, T.-C., Temenak, J. J., Dasch, G. A., Ching, W.-M., & Richards, A. L. (2004). Development of a quantitative real-time polymerase chain reaction assay specific for *Orientia tsutsugamushi*. *American Journal of Tropical Medicine and Hygiene*, 70, 351–356. https://doi.org/10.4269/ajtmh.2004.70.351
Loftis, A. D., Massung, R. F., & Levin, M. L. (2003). Quantitative re-
Maina, A. N., Fogarty, C., Krueger, L., Macaluso, K. R., Odhiambo, A.,
Leitner, W. W., Wali, T., Kincaid, R., & Costero-Saint Denis, A. (2015).
Maina, A. N., Jiang, J., Luce-Fedrow, A., St John, H. K., Farris, C. M., &
Oteo, J. A., Portillo, A., Portero, F., Zavala-Castro, J. E., Venzal, J. M.,
and not
Rickettsia felis
Anaplasma platys
Ctenocephalides felis
NGUYEN E t al .
Rickettsia asemboensis’ and
a1202018,
Journal of Medicine
and as an unexpected rich source of control DNA.
Mayxay, M., Sengvilaiphaseth, O., Chanthongth, A., Dubot-Peres, A.,
Rolain, J. M., Parola, P., ... Newton, P. N. (2015). Causes of fever in rural southern Laos. American Journal of Tropical Medicine and Hygiene, 93, 517–520. https://doi.org/10.4269/ajtmh.14-0772
Odhiambo, A. M., Maina, A. N., Taylor, M. L., Jiang, J., & Richards, A. L. (2014). Development and validation of a quantitative real-time polymerase chain reaction assay specific for the detection of Rickettsia felis and not Rickettsia felis-like organisms. Vector Borne Zoonotic Diseases, 14, 476–481. https://doi.org/10.1089/vbz.2013.1518
Oteo, J. A., Portillo, A., Portero, F., Zavala-Castro, J. E., Venzal, J. M.,
and Labruna, M. B. (2014). ‘Candidate Rickettsia asemboisensis’ and Wolbachia spp. in Ctenocephalides felis and Pulex irritans fleas removed from dogs in Ecuador. Parasites and Vectors, 7, 455. https://doi.org/10.1186/s13071-014-0455-0
Parola, P., Miller, R. S., McDaniel, P., Telford, S. R. 3rd, Rolain, J.-M.,
Wongsrichanalai, C., & Raoult, D. (2003). Emerging rickettsioses of the Thai-Myanmar border. Emerging Infectious Diseases, 9, 592-595. https://doi.org/10.3201/eid0905.020511
Parola, P., Roux, V., Camicas, J. L., Baradji, I., Brouqui, P., & Raoult, D. (2000). Detection of ehrlichiae in African ticks by polymerase chain reaction. Transactions of the Royal Society of Tropical Medicine and Hygiene, 94, 707–708. https://doi.org/10.1016/s0035 -9203(00)90243-8
Phongmany, S., Rolain, J.-M., Phetsouvahn, R., Blacksell, S. D., Soukkhaseum, V., Rasachack, B., ... Newton, P. N. (2006). Rickettsial infections and fever, Vientiane, Laos. Emerging Infectious Diseases, 12, 256–262. https://doi.org/10.3201/eid1202.050900
Price, M. A., & Graham, O. H. (1997). Chewing and sucking lice as parasites of mammals and birds. Technical Bulletin Number 1849. Agricultural Research Service, U.S. Department of Agriculture, USA.
Ramos, R. A., Latrofa, M. S., Giannelli, A., Lacasella, V., Campbell, B. E., Dantas-Torres, F., & Otranto, D. (2014). Detection of Anaplasma platys in dogs and Rhipicephalus sanguineus group ticks by a quantitative real-time PCR. Veterinary Parasitology, 205, 285–288. https://doi.org/10.1016/j.vetpar.2014.06.023
Rust, M. K., & Dryden, M. W. (1997). The biology, ecology and man-
agement of the cat flea. Annual Review of Entomology, 42, 451–447. https://doi.org/10.1146/annurev.ento.42.1.451
Shaw, S. E., Day, M. J., Birtles, R. J., & Breitschwerdt, E. B. (2001). Tick-
borne infectious diseases of dogs. Trends in Parasitology, 17, 74–80. https://doi.org/10.1016/S1471-4922(00)01856-0
Silva, A. B., Vizzoni, V. F., Costa, A. P., Costa, F. B., Moraes-Filho, J., Labruna, M. B., ... de Maria Seabra Nogueira, R. (2017). First report of a Rickettsia asembonisens related infecting flea in Brazil. Acta Tropica, 172, 44–49. https://doi.org/10.1016/j.actatropica.2017.04.004
Silva, C. B. D., Santos, H. A., Navarrete, M. G., Ribeiro, C. G., Gonzalez, B. C., Zaldivar, M. F., ... Massard, C. L. (2016). Molecular detection and characterization of Anaplasma platys in dogs and ticks in Cuba. Ticks and Tick Borne Diseases, 7, 938–944. https://doi.org/10.1016/j.ttbdis.2016.04.012
Smythe, L. D., Smith, I. L., Smith, G. A., Dohnt, M. F., Symonds, M. L., Barnett, L. J., & McKay, D. B. (2002). A quantitative PCR (TaqMan) assay for pathogenic Leptospira spp. BMC Infectious Diseases, 2, 13. https://doi.org/10.1186/1471-2334-2-13
Tay, S. T., Koh, F. X., Kho, K. L., & Sitam, F. T. (2015). Rickettsial infections in monkeys, Malaysia. Emerging Infectious Diseases, 21, 545–547. https://doi.org/10.3201/eid2103.141457
Taylor, A. J., Vongphayloth, K., Vogsouvath, M., Grandadam, M., Brey, P. T., Newton, P. N., ... Dittrich, S. (2016). Large-scale survey for tickborne bacteria, Khammouane Province, Laos. Emerging Infectious Diseases, 22, 1635–1639. https://doi.org/10.3201/eid2208.151969
Tilburg, J. J., Horrevorts, A. M., Peeters, M. F., Claessen, C. H., & Rossen, J. W. (2011). Identification by genotyping of a commercial antigen preparation as the source of a laboratory contamination with CoxIELla burnetii and as an unexpected rich source of control DNA. Journal of Clinical Microbiology, 49, 383–384. https://doi.org/10.1128/JCM.01491-10
Troyo, A., Moreira-Soto, R. D., Calderon-Arduenas, O., Mata-Somarribas, C., Ortiz-Tello, J., Barbieri, A. R., ... Taylor, L. (2016). Detection of rickettsiae in fleas and ticks from areas of Costa Rica with history of spotted fever group rickettsioses. Ticks and Tick Borne Diseases, 7, 1128–1134. https://doi.org/10.1016/j.ttbdis.2016.08.009
Vannier, E., & Krause, P. J. (2012). Human babesiosis. New England Journal of Medicine, 366, 2397–2407. https://doi.org/10.1056/NEJMra a1201808
Varagnol, M., Parola, P., Jouan, R., Beauccornu, J. C., Rolain, J. M., & Raoult, D. (2009). First detection of Rickettsia felis and Bartonella claridgeae in fleas from Laos. Clinical Microbiology and Infection, 15(Suppl 2), 334–335. https://doi.org/10.1111/j.1469-0691.2008.00272.x
Vongphayloth, K., Brey, P. T., Robbins, R. G., & Sutherland, I. W. (2016). First survey of the hard tick (Acari: Ixodidae) fauna of Nakai District, Khammouane Province, Laos, and an updated checklist of the ticks
of Laos. Systematic and Applied Acarology, 21, 166–180. https://doi.org/10.11158/saa.21.2.2
Walker, J. B., Keirans, J. E., & Horak, I. (2000). The genus Rhipicephalus (Acari, Ixodidae): A guide to the brown ticks of the world (p. 643). Cambridge, UK: Cambridge University Press.
Weekes, C. C., Everard, C. O., & Levett, P. N. (1997). Seroepidemiology of canine leptospirosis on the island of Barbados. Veterinary Microbiology, 57, 215–222. https://doi.org/10.1016/s0378-1135(97)00127-2
Wojcik-Fatla, A., Zajac, V., Cisak, E., Sroka, J., Sawczyn, A., & Dutkiewicz, J. (2012). Leptospirosis as a tick-borne disease? Detection of Leptospira spp. in Ixodes ricinus ticks in eastern Poland. Annals of Agricultural and Environmental Medicine, 19, 656–659.

Yamaguti, N., Tipton, V. J., Keegan, H. L., & Toshioka, S. (1971)._ticks of Japan, Korea, and the Ryukyu Islands. Brigham Young University Science Bulletin, Biological Series, 15, 226.

How to cite this article: Nguyen HM, Theppannga W, Vongphayloth K, Douangngeun B, Blacksell SD, Robinson MT. Screening of ectoparasites from domesticated dogs for bacterial pathogens in Vientiane, Lao PDR. Zoonoses Public Health. 2020;00:1-7. https://doi.org/10.1111/zph.12753