CHY formulae in 4d

Yong Zhanga,b
aDepartment of Physics, Beijing Normal University, Beijing 100875, China
bCAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China

E-mail: yongzhang@itp.ac.cn

Abstract: In this paper, we develop a rather general way to reduce integrands with polarization involved in the Cachazo-He-Yuan formulae, such as the reduced Pfaffian, its compactification and its squeezing, as well as the new object for F^3 amplitude. We prove that the reduced Pfaffian vanishes unless evaluated on a certain set of solutions. It leads us to build up the 4d CHY formulae using spinors, which strains off many useless solutions. The supersymmetrization is straightforward and may provide a hint to understand ambitwistor string in 4d.
1 Introduction

A new formulation for S-matrix of massless particles in arbitrary dimensions, dubbed as Cachazo-He-Yuan (CHY) formulation, has been developed for a large variety of theories [1–4]. It expresses tree-level S-matrix as an integral over the moduli space of Riemann spheres, which are localized by a set of constraints, known as scattering equations [1, 5, 6]

\[\mathcal{E}_a := \sum_{b \neq a} \frac{s_{ab}}{\sigma_a - \sigma_b} = 0, \quad \text{for } a = 1, 2, \ldots, n, \quad (1.1) \]

where \(s_{ab} = (k_a + k_b)^2 = 2k_a \cdot k_b \), \(\sigma_a \) denotes the position of the \(a \)th puncture and we denote \(\sigma_{ab} := \sigma_a - \sigma_b \). It has been argued that what underpins the formulation is the ambitwistor string theory [7–9].

The formulation has been inspired by Witten’s revolutionary twistor string theory for \(\mathcal{N} = 4 \) super-Yang-Mills theory (SYM) in four dimensions [10], and in particular the Roiban-Spradlin-Volovich-Witten (RSVW) formulae for all tree amplitudes in the theory [11]. Originally CHY discovered scattering equations in attempts to rewrite the equations in the delta functions of RSVW formulae without using 4d spinor helicity variables [5], thus by construction they reduce to RSVW equations in four dimensions. More precisely, we have \(n - 3 \) different sets of 4d equations, which are polynomial equations of degree
\[d = 1, 2, \ldots, n-3.\] The \(n-3\) sectors are labeled by \(k' = d+1 = 2, \ldots, n-2,\) which coincide with helicity sectors. A set of equations, which are completely equivalent to RSVW equations, have been proposed in \cite{12} based on ambitwistor string theory in four dimensions. It turns out that they are more convenient for our purposes, and in particular for helicity amplitudes. To write the equations in sector \(k',\) we divide \(n\) particles into two sets of \(k'\) and \(n-k'\) particles denoted as \(-'\) and \('+\) respectively:

\[
E_b^i \equiv \tilde{\lambda}_b^i - t_i \sum_{p \in \pm} \frac{t_p \lambda_p^i}{\sigma_{bp}} = 0 \quad \text{for} \quad b \in -, \quad E_p^i \equiv \lambda_p^i - t_p \sum_{b \in \pm} \frac{t_b \lambda_b^i}{\sigma_{pb}} = 0 \quad \text{for} \quad p = +', (1.2)
\]

Here the variables are \(\sigma\)'s and \(t\)'s, which can be combined into \(n\) variables in \(\mathbb{C}^2, \sigma_a^\alpha = \frac{1}{t_a}(\sigma_a, 1).\) The \(\sigma_{bp}\) is the abbreviation of \(\sigma_b - \sigma_p.\) The \(-'\) and \('+\) are arbitrary two sets of the \(n\) external particles, with their length equal to \(k'\) and \(n-k'\) respectively. Different choices just correspond to different link representation \cite{13, 14}, which share the same solution of \(\sigma\)'s. In this paper, we reserve \(-\) and \(+\) as the negative and positive helicity sets of external particles and \(k\) the length of \(-,\) i.e. the number of external particles of negative helicity. \textit{A priori} there is no relation between solution sector and helicity sector.

We refer the readers to \cite{15} for the direct derivation of (1.2) from (1.1); in the same paper, it has been shown that (1.2) is equivalent to RSVW equations, and one can freely translate between the two forms. Each solution of (1.1) corresponds to a unique solution \(\{\sigma_a, t_a\}\) of (1.2) for some \(k',\) with identical cross-ratios of the \(\sigma\)'s. For each \(k',\) (1.2) have an Eulerian number of solutions, \(E_{n-3,k',-2},\) and the union of them for all sectors give \((n-3)!\) solutions of (1.1), with \((n-3)!) = \sum_{k'=2}^{n-2} E_{n-3,k'-2} [5, 16].

It is highly non-trivial to reduce the localized integral measure of CHY formula, with delta functions of (1.1), to that of 4d formula, with (1.2), for some \(k'\) sector. The reduction requires a sum over all sectors, and for each of them it results in a complicated conversion factor that depends on \(k'.\) In addition, after we plug in spinor-helicity variables for \(e.g.\) Yang-Mills amplitudes, the CHY integrand behaves very differently in different helicity and solution sectors. As we will see, the Pfaffian plays the role of “solution-filter”: it is non-vanishing only on the solution sector that coincides with the helicity sector, which is why we have a 4d formula for each helicity sector. What is even more interesting is that in the right sector, the polarization part of the CHY integrand exactly cancels the \(k'\)-dependent conversion factor from the measure! Thus two complications cancel out, and for YM we are left with a trivial Parke-Taylor factor in 4d.

Let’s make the statement more precisely. For gauge theory and gravity, the most important ingredient is a \(2n \times 2n\) skew matrix \(\Psi_n\)

\[
\Psi_n := \begin{pmatrix} A & -C^T \\ C & B \end{pmatrix}; \quad A_{ab} = \begin{cases} \frac{e_{ab}}{\sigma_{ab}} & a \neq b \\ 0 & a = b \end{cases}, \quad B_{ab} = \begin{cases} \frac{e_{ab}}{\sigma_{ab}} & a \neq b \\ 0 & a = b \end{cases}, \quad C_{ab} = \begin{cases} \frac{e_{ab}}{\sigma_{ab}} & a \neq b \\ -\sum_{c \neq a} C_{ac} & a = b \end{cases}, (1.3)
\]

and we define its reduced Pfaffian \(\text{Pf}^\mathbf{\Psi}_n := \frac{(-)^{a+b}}{\sigma_{ab}} \text{Pf}[\Psi_n]_{ab}\) with \(1 \leq a < b \leq n.\)

We try to factorize the \(\text{Pf}^\mathbf{\Psi}_n\) into two parts depending on particles of negative and positive helicity respectively. Then we show in the right sector that is consistent to the
helicity sector, each of the parts combines to a reduced determinant while in other sector one of the part must vanish. That is,

\[\text{Pf}' \Psi_n |_{k'} = \delta_{kk'} \text{det}' h_k \text{det}' \tilde{h}_{n-k}, \]

where the two matrices, the \(k \times k \) matrix \(h_k \) and \((n-k) \times (n-k) \) one \(\tilde{h}_{n-k} \) essentially introduced in [12] (see also [17, 18]) are given by

\[h_{ab} = \frac{(ab)}{\sigma_{ab}} \quad \text{for } a \neq b, \quad h_{aa} = -\sum_{b \neq a} t_b h_{ab} \quad a, b \in -, \]

\[\tilde{h}_{ab} = \frac{(ab)}{\sigma_{ab}} \quad \text{for } a \neq b, \quad \tilde{h}_{aa} = -\sum_{b \neq a} t_b \tilde{h}_{ab} \quad a, b \in +, \]

and we define \(\text{det}' h_k = \text{det} |h_k|_a^n/(t_a t_b) \) (similarly for \(\text{det}' \tilde{h}_{n-k} \)) where we use \(|h_k|_b^n \) to denote the minor with any row \(a \) and column \(b \) deleted.

We rearrange the \(\text{Pf}' \Psi_n \) using some fundamental gauge invariant or almost gauge invariant objects. It is either a (modified) trace of linearised field strength ornamented with some \(\sigma \)'s or \(C_{aa} \). We view the 4d scattering equations (1.2) as a change of variables: we refer to \(\lambda_{\mu \nu} \), \(\lambda_{\nu} \) and \(t_a, \sigma_a \) as “data” and the 4d scattering equations (1.2) as writing \(\lambda_{\mu \nu} \) and \(\lambda_{\nu} \) in terms of the data. After plugging in this change of variables, the \(C_{aa} \) in \(\Psi_n \) directly reduces to object made up of spinors. What left to do is to deal with all kind of trace. After all, somehow, we find the reduced Pfaffian reduces to the two reduced determinants. This way of reduction is rather general: not only the reduced Pfaffian, but also many other integrands, such as the reduced compactified Pfaffian used in EM, YMS, DBI amplitudes or the new object \(\mathcal{P}_n \) used in \(F^3, R^2, R^3 \) amplitudes are also related to these two (extended) matrices. It may even be applied at loop level [19].

The paper is organized as follows. In section 2, we introduce the CHY formulae in 4d. In section 3, we study the reduction of Pfaffians to 4d for \(k' = k \). First we see how \(\text{Pf}' \Psi_n \) factorizes in 4d in a manifestly gauge-invariant way, which naturally leads to the 4d matrices \(h_k \) and \(\tilde{h}_{n-k} \). Then we present the beautiful reduction of \(\text{Pf}' \Psi_n \) in a similar but more non-trivial way. In section 4, we move to general case with arbitrary \(k' \), which requires generalized version of \(h'_k \) and \(\tilde{h}'_{n-k} \) matrices. We show that both \(\text{Pf}' \Psi_n \) and \(\mathcal{P}_n \) reduce nicely into the generalized \(h'_k \) and \(\tilde{h}'_{n-k} \); while \(\text{Pf}' \Psi_n \) directly vanishes when \(k' \neq k \), \(\mathcal{P}_n \) does not and gives interesting formulae in 4d. The reduction of the reduced compactified Pfaffian and squeezed Pfaffian is put in Appendix B.C.

2 4d CHY formulae

We start with CHY formula for tree-level S-matrix of \(n \) massless particles:

\[M_n = \frac{1}{\text{vol SL}(2, \mathbb{C})} \int \prod_{a=1}^n d\sigma_a \prod_{a=1}^{n'} \delta(\mathcal{E}_a) \mathcal{I}_n(\{\sigma, k, \ldots\}) = \sum_{\text{solutions}} \frac{\mathcal{I}_n(\{\sigma, k, \ldots\})}{\text{det}' \Phi_n}, \]

where the precise definition of the integral measure including delta functions can be found in [1], and \(\mathcal{I}_n \) is the CHY integrand defines the theory. In the second equality one sums over
(n−3)! solutions of (1.1), evaluated on the integrand and the Jacobian, which is defined as a reduced determinant:
\[
\det' \Phi_n := \left| \frac{\det \Phi_n|_{pqr}}{|pqr|_{abc}} \right| \quad \text{with} \quad \Phi_{ab} = \frac{s_{ab}}{\sigma_a b}, \quad \text{for} \ a \neq b, \quad \Phi_{aa} = -\sum_{b \neq a} \Phi_{ab},
\]
where the \(n \times n \) matrix \(\Phi_n \), with entries \(\{\Phi_{ab}\} := -\partial\{E_a\}/\partial\{\sigma_b\} \), is the derivative matrix; the rows \(p, q, r \) and columns \(a, b, c \) are deleted (corresponding to deleted equations and variables, respectively), and we have two Fadeev-Popov factors, defined as \(|a b c| := \sigma_a b \sigma_b c \sigma_c a \).

For gauge theory and gravity, the most important ingredients is the reduced Pfaffian \(\text{Pf} \Psi_n \) given in (1.3). Many other integrands can be obtained by doing some operation on it. The CHY integrand for \(n \)-point Yang-Mills tree amplitudes reads
\[
T_n^{YM} = C_n \, \text{Pf} \Psi_n, \quad C_n = \frac{\text{Tr}(T_1 T_2 \ldots T_n)}{\sigma_1^2 \sigma_2^2 \ldots \sigma_n^2} + \text{permutations},
\]
where \(C_n \) is the color-dressed Parke-Taylor factor, with the sum over \((n−1)!\) inequivalent permutations.

The general 4d formula in solution sector \(k' \) for \(n \)-point amplitudes reads:
\[
M_{n,k'} = \frac{1}{\text{vol GL}(2, \mathbb{C})} \int \prod_{a=1}^n d^2 \sigma_a \prod_{b=c}^{t} \delta^2(E_b) \delta^2(E_p) I_n(\{\sigma, \lambda, \bar{\lambda}\}) = \sum_{k'-\text{sec. sol.}} \frac{I_n(\{\sigma, \lambda, \bar{\lambda}\})}{J_{n,k'}}
\]
where \(d^2 \sigma := d\sigma_a \frac{du_a}{t_a} \), and in addition to 4 deleted variables by \(\text{GL}(2) \), 4 redundant equations in (1.2) are deleted which give overall delta functions for momentum conservation. In the second equality, one first sums over the Eulerian number, \(E_{n−3,k′−2} \), solutions in sector \(k' \). The \(J_{n,k'} \) is the Jacobian of the localized \(2n − 4 \) integrals
\[
J_{n,k'} = \prod_{a=1}^n \left(\frac{\det (\{E_{\bar{b} \neq c,d} \Phi_{c,d} \} / \partial t_{a \neq m, \sigma_{a \neq u,v,w}})}{t_m \sigma_{a,u} \sigma_{v,w} \sigma_{w,u}} \right)
\]
where we have chosen to eliminate \(t_m, \sigma_u, \sigma_v, \sigma_w \) and \(E_{b=c,d}^{\bar{a}} \) with the FP factor \((c d)^2 \) (for \(E_{\bar{b} \neq p,q,r}^{\bar{a}} \) the FP factor is \([q r]^2 \)).

The relation between the two Jacobians is simple. Viewing (1.2) as a change of variables and plugging in it, we find
\[
\det' \Phi_n(\{s_{ab}, \sigma_a\})|_{k'} = J_{n,k'} \det' h_{k'} \det' \tilde{h}_{n-k'}.
\]
Here we don’t need to plug in any solutions, but simply make a change of variables, so this is really an equality between rational functions of the data, i.e. \(\lambda_b \)'s, \(\tilde{\lambda}_p \)'s, and \(\sigma_a, t_a \)'s. The two reduced determinants \(\det' h_{k'} \) and \(\det' \tilde{h}_{n-k'} \) can be thought as two resultants and are divided by \(\det' \Phi_n \) as discussed in [20]. We find that the quotient is just \(J_{n,k'} \). A conjecture about the closed form of \(J_{n,k'} \) is put in Appendix A.

Thanks to (1.4), then for gluon amplitudes, the integrand is nothing but the (color-dressed) Parke-Taylor factor \(I_n^{YM} = C_n \). Different from (2.1), any \(\frac{\sigma_{k\bar{m}}}{t_{k\bar{m}}} \frac{\sigma_{l\bar{p}}}{t_{l\bar{p}}} \) or \(\frac{\sigma_{k\bar{m}}}{t_{k\bar{m}}} \frac{\sigma_{l\bar{p}}}{t_{l\bar{p}}} \) with
b, c ∈ − and p, q ∈ + is GL(2, \mathbb{C}) invariant and any known 4d integrand added with these objects could be a new 4d integrand, for example we add some $\frac{\sigma_{\mu}}{\tau^p_q}$ to the I_n^{YM} and we get those for QCD in [21].

In this paper, we explicitly demonstrate the first identity (1.4). Compared to this identity, the second one (2.6) is a more boring one, as there is no polarization involved and just kinematics reducing to 4 dimensions. One can check as many points as we want, without any difficulties (we have checked up to 50 points with all solution sectors numerically). A proof based on direct inspection should be straightforward.

3 Reduced Pfaffian in 4d for the $k' = k$ sector

In this section, we show in a constructive way how the reduced Pfaffian factorizes in four dimensions for the solution sector that coincides with its helicity sector, $k' = k$. We will proceed in two steps: as a warm up, we show how it works for the vanishing Pfaffian $Pf\Psi_n$, which factorizes into two vanishing determinants in 4d; then we apply it to the more non-trivial case of the reduced Pfaffian and show $Pf'\Psi_n = det' h det' \tilde{h}$. The reason for doing so is that both $Pf\Psi_n$ and $Pf'\Psi_n$ have similar expansions, as first studied in [22], and we review them here.

From the definition of Pfaffian and thanks to the special structure of $2n \times 2n$ matrix Ψ_n, we can expand $Pf\Psi_n$ as a sum over $n!$ permutations of labels 1, 2, ..., n, denoted as $p \in S_n$

$$Pf\Psi_n = \sum_{p \in S_n} \text{sgn}(p) \Psi_p = \sum_{p \in S_n} \text{sgn}(p) \Psi_I \Psi_J \cdots \Psi_K,$$

(3.1)

where $\text{sgn}(p)$ denotes the signature of the permutation p and in the second equality, we use the unique decomposition of any permutation p into disjoint cycles I, J, \cdots, K given by

$$I = (a_1 a_2 \cdots a_i), \quad J = (b_1 b_2 \cdots b_j), \cdots, \quad K = (c_1 c_2 \cdots c_k);$$

(3.2)

each Ψ_p is the product of its “cycle factors” $\Psi_I \Psi_J \cdots \Psi_K$, which we define now. When the length of a cycle equals one, its cycle factor $\Psi_{(a)}$ is given by the diagonal of C-matrix:

$$\Psi_{(a)} := C_{aa} = - \sum_{b \neq a} \frac{\epsilon_a k_b}{\sigma_{ab}},$$

(3.3)

and when the length exceeds one e.g. $i > 1$, the cycle factor is given by

$$\Psi_I = \Psi_{(a_1 a_2 \cdots a_i)} := \frac{1}{i} \text{tr}(f_{a_1} f_{a_2} \cdots f_{a_i}) \quad \text{with} \quad f_{a}^{\mu \nu} = k_{a}^{\mu} \epsilon_{a}^{\nu} - \epsilon_{a}^{\mu} k_{a}^{\nu}. \quad (3.4)$$

Here $\sigma_{(a_1 a_2 a_3 \cdots a_i)} = \sigma_{a_1 a_2} \sigma_{a_2 a_3} \cdots \sigma_{a_i a_1}$. The trace is over Lorentz indices and $f_{a}^{\mu \nu}$ is the linearized field strengths of gluons. Note that the decomposition is manifestly gauge invariant: for cycle factors with length more than 1 (3.4), the trace of $f_{a}^{\mu \nu}$ is gauge invariant, while for 1-cycles, (3.3), the factor is gauge invariant on the support of scattering equations (1.1).
The reduced Pfaffian $\text{Pf}'\Psi_n$, as discussed in [22], is different from $\text{Pf}\Psi_n$. Because the $1^{\text{st}}, n^{\text{th}}$ columns and rows have been deleted, the numerator of the cycle containing 1 and n becomes $\frac{1}{2} \varepsilon_1 (f_{a_2} f_{a_3} \cdots f_{a_{n-1}}) \varepsilon_n$ instead of a trace. Then

$$\text{Pf}'\Psi_n = \sum_{p \in S_n} '\text{sgn}(p) W_I \Psi_{J \cdots K}, \quad (3.5)$$

with

$$W_I = W_{[12\cdots a_{i-1}n]} = \frac{\frac{1}{2} \varepsilon_1 (f_{a_2} f_{a_3} \cdots f_{a_{n-1}}) \varepsilon_n}{\sigma_{(12a_3\cdots a_{i-1}n)}}. \quad (3.6)$$

Here $I, J, \cdots K$ are the cycles of permutation p. The prime on the summation sign indicates that the sum is taken over all $p \in S_n$ such that 1 is changed into n. There are $(n-1)!$ such permutations in S_n so the sum consists of $(n-1)!$ terms.

The key observation in [22] allows us to expand the reduced Pfaffian in terms of building blocks, each of which is either the product of various closed cycles or an open cycle involving the two deleted labels. Closed cycles have a very good property that they will vanish unless all of their elements belong to same helicity. While the open cycle is much tougher, as it’s not gauge invariant individually (dependent on the gauge of the two deleted particles) and won’t vanish when their elements come from different helicity sets. As a warm up, we show in the first subsection the Pfaffian, which is the product of only closed cycles [22] factorizes. Though the Pfaffian equals zero, it very non-trivially factorizes into determinants of two matrices. Also it is the nature way to introduce the two matrices h_k and \tilde{h}_{n-k} (1.5). In the next subsection we carefully deal with the open cycle and finally factorize the reduced Pfaffian to two reduced determinants.

3.1 The Pfaffian in 4d

Let’s start with the Pfaffian, $\text{Pf}\Psi_n$. In 4 dimension, $f^{\mu\nu}$ reduces to a self-dual part and an anti-self-dual part: $f^{\mu\nu} \rightarrow e^{a\beta} f^{a\beta} + e^{\dot{a}\dot{\beta}} f^{\dot{a}\dot{\beta}}$. We denote these two parts as f^- and f^+ respectively. An important property is that any two adjoint linearised strength fields $f^+_b f^-_p$ in the trace can exchange their place if the helicity of b, p are different, i.e.

$$\cdots f^-_b f^+_p \cdots = \cdots f^+_p f^-_b \cdots. \quad (3.7)$$

So we can always reduce those traces where particles of negative or positive helicity are mixed each other to split ones which have a simple reduction in 4d. Then

$$\text{tr} \left(f_{a_1} f_{a_2} \cdots f_{a_i} \right) = \begin{cases} 2 \{a_1 a_2\} \{a_2 a_3\} \cdots \{a_i a_1\}, & \{a_1, a_2, \cdots a_i\} \subset -, \\ 2 \{a_1 a_{i-1}\} \{a_{i-1} a_{i-2}\} \cdots \{a_1 a_i\}, & \{a_1, a_2, \cdots a_i\} \subset +, \\ \{b_1 b_2\} \cdots \{b_x b_1\} [p_y p_{y-1}] \cdots [p_1 p_y], & \text{otherwise} \end{cases} \quad (3.8)$$

Here b_1, b_2, \cdots, b_x are all the particles of negative helicity from a_1, a_2, \cdots, a_i with their ordering unchanged and similarly p_1, p_2, \cdots, p_y are all the particles of positive helicity from a_1, a_2, \cdots, a_i with their ordering unchanged. Note that $\text{tr} \left(f_{a_1} f_{a_2} \cdots f_{a_i} \right)$ directly
vanishes if there is only one particle of negative helicity or only one particle of positive helicity in \(a_1, a_2, \ldots, a_i\). However we see that the remaining case still effectively vanish as we always add up all permutations (see (3.1)) while

\[
\sum_{\{\alpha\} \in \text{OP}({\{b_1, b_2, \ldots, b_x\}, \{p_1, p_2, \ldots, p_y\}})} \frac{1}{\sigma((\alpha))} = 0.
\]

Here the sum is over ordered permutations “OP”, namely permutations of the labels in the joined set \({\{b_1, b_2, \ldots, b_x\}, \{p_1, p_2, \ldots, p_y\}}\) such that the ordering within \({\{b_1, b_2, \ldots, b_x\}}\) and \({\{p_1, p_2, \ldots, p_y\}}\) is preserved. Therefore, in the sum of (3.1), we can effectively write

\[
\frac{1}{2} \text{tr} (f_{a_1} f_{a_2} \cdots f_{a_i}) \text{ in 4d in a remarkably simple way:}
\]

\[
\frac{1}{2} \text{tr} (f_{a_1} f_{a_2} \cdots f_{a_i}) = \begin{cases}
\langle a_1 a_2 \rangle \langle a_2 a_3 \rangle \cdots \langle a_i a_1 \rangle, & \{a_1, a_2, \ldots, a_i\} \subset - \\
\langle a_1 a_2 \rangle \langle a_2 a_3 \rangle \cdots \langle a_1 a_i \rangle, & \{a_1, a_2, \ldots, a_i\} \subset + \\
0, & \text{otherwise}
\end{cases}
\]

Motivated by (3.10), we recall the off-diagonal elements of the \(k \times k\) matrix \(h_{ab}\) and
\((n-k) \times (n-k)\) one \(\tilde{h}_{n-k}\) essentially introduced in [12] (see also [17, 18]):

\[
h_{ab} = \frac{\langle ab \rangle}{\sigma_{ab}} a \neq b, \ a, b \in - , \quad \tilde{h}_{ab} = \frac{\langle ab \rangle}{\sigma_{ab}} a \neq b, \ a, b \in + .
\]

It is clear that when we have any cycle factor with length at least 2, it must be given by the chain product of such off-diagonal elements

\[
\Psi_{(a_1 a_2 \cdots a_i)} \rightarrow \begin{cases}
\tilde{h}_{a_1 a_2} \tilde{h}_{a_2 a_3} \cdots \tilde{h}_{a_i a_1}, & \{a_1, a_2, \ldots, a_i\} \subset - \\
\tilde{h}_{a_1 a_2} \tilde{h}_{a_2 a_3} \cdots \tilde{h}_{a_1 a_i}, & \{a_1, a_2, \ldots, a_i\} \subset + \\
0, & \text{otherwise}
\end{cases}
\]

To this point we have not used scattering equations and solution sectors in four dimensions. The non-trivial part of the reduction concerns 1-cycle, or the diagonal entries of \(C\)-matrix. Note that \(\Psi_{(a)} = C_{aa}\) is only gauge invariant on the support of scattering equations, so it is not surprising that to reduce it nicely one needs to use scattering equations in four dimensions. Now we derive the explicit expression of \(C_{aa}\). When \(a \in - \) and \(a \in -'\), we have

\[
C_{aa}^- = - \sum_{b \in -', b \neq a} \frac{\langle ab \rangle [b\mu]}{[a\mu] \sigma_{ab}} - \sum_{p \in +'} \frac{\langle ap \rangle [p\mu]}{[a\mu] \sigma_{ap}}.
\]

Note that \(C_{aa}\) depends on \(\sigma\) and because of the 4d scattering equations (1.2), we can make the change of variables

\[
\tilde{\lambda}_b^\Lambda = t_b \sum_{p \in +'} \frac{t_p \lambda^\Lambda_p}{\sigma_{b p}} \quad \text{for} \ b \in -', \quad \lambda_p^\Lambda = t_p \sum_{b \in -'} \frac{t_b \lambda^\Lambda_b}{\sigma_{p b}} \quad \text{for} \ p = +',
\]

\[
\text{where } \lambda_a^\Lambda = \lambda_a^\Lambda (\sigma) \quad \text{for } \sigma \text{ is a solution of the 4d scattering equations (1.2)}.
\]
Such that C^{-}_a reduces to:

$$C^{-}_a = - \frac{1}{[ap]} \sum_{b \neq a;p} \left(\frac{(ab)t_b t_{p[p]}[p]}{\sigma_{bp}\sigma_{ab}} + \frac{(ab)t_b t_{p[p]}[p]}{\sigma_{pb}\sigma_{ap}} \right)$$

$$= - \frac{1}{[ap]} \sum_{b \neq a;p} \frac{(ab)t_b t_{p[p]}[p]}{\sigma_{bp}} \left(\frac{1}{\sigma_{ab}} - \frac{1}{\sigma_{ap}} \right)$$

$$= - \frac{1}{[ap]} \sum_{b \neq a;p} \frac{(ab)t_b t_{p[p]}[p]}{\sigma_{ab}\sigma_{ap}}. \quad (3.15)$$

In the last equality, we have collected the denominators together such that σ_{bp} is canceled. Now C^{-}_a factorizes into two factors

$$C^{-}_a = - \left(\sum_{b \neq a} t_b (ab) \right) \left(\sum_p t_a t_{p[p]} \right) = - \sum_{b \neq a; \ b \in +} t_b [ab] t_a \sigma_{ab} \quad (3.16)$$

All gauge dependence is in the latter factor and it can be eliminated by scattering equations as $t_0 \sum_{p \in +} \frac{t_p \lambda_p}{\sigma_{ap}} = \tilde{\lambda}_a$ (3.14).

Similarly we can work out the case of $a \in +$ and $a \in +'$

$$C^{+}_a = - \sum_{b \neq a; \ b \in +} t_b [ab] \quad (3.17)$$

We first discuss the $k' = k$ case and without loss of generality let’s consider $-'=-'$ which makes our discussion simpler. Then the above two cases are already enough here, postponing other two cases in the following sections. Miraculously, C^{-}_a reduces to diagonal entries of h_k or \tilde{h}_{n-k} [12] depending on the helicity:

$$h_{aa} = C^{-}_a = - \sum_{b \neq a; \ b \in -} t_b \langle ab \rangle \quad a \in -, \quad \tilde{h}_{aa} = C^{+}_a = - \sum_{b \in +} t_b [ab] \quad a \in +. \quad (3.18)$$

The important thing is that the diagonal entry is a linear combination of off-diagonal entries in that row/column. With these diagonal entries of h_k or \tilde{h}_{n-k}, the reduction for $\Psi_{(a_1 a_2 \cdots a_i)}$ with $i > 1$ or $i = 1$ (for $k' = k$) are both spelled out in one nice formula, (3.12).

We find $h_{a_1 a_2} h_{a_2 a_3} \cdots h_{a_i a_1}$ in (3.12) is just the ingredient of $\det h_k$,

$$\det h_k = \sum_{q \in S_k} \text{sgn}(q) h_{I_1} h_{I_2} \cdots h_{I_s}, \quad \text{with } h_I = h_{(a_1 a_2 \cdots a_i)} = h_{a_1 a_2} h_{a_2 a_3} \cdots h_{a_i a_1}, \quad (3.19)$$

where the sum is over all permutations of particles of negative helicity, i.e. $q \in S_k$ and I_1, I_2, \cdots, I_s are the cycles of the permutation q. Similarly works for $\tilde{h}_{a_1 a_2} \tilde{h}_{a_2 a_3} \cdots \tilde{h}_{a_i a_1}$.

Then, we see that $\text{Pf} \Psi_n$ factorizes to two parts depending on particles of negative or positive helicity respectively, with most of the terms vanishing and the surviving terms combining to $\det h_k$ or $\det \tilde{h}_{n-k}$.

$$\text{Pf} \Psi_n \mid_{k'=k} = \det h_k \det \tilde{h}_{n-k}. \quad (3.20)$$

 Obviously both $\det h_k$ and $\det \tilde{h}_{n-k}$ vanish since they both have a null vector; this is consistent with the fact that $\text{Pf} \Psi_n$ vanishes due to the two null vectors.
3.2 reduced Pfaffian in 4 dimensions

Now we turn to Pf\(\Psi_n\). Now we need to deal with the open cycle. Similarly, we can always reduce these mixed open brackets into split one as any two adjoint linearised strength fields \(f_b^\pm f_p^\pm\) in the kinematic numerator of open brackets \(\epsilon_1 \cdots f_b^\pm f_p^\pm \cdots \epsilon_n\) can exchange their place if the helicity of \(b, p\) are different, i.e.

\[
\epsilon_1 \cdots f_b^\pm f_p^\pm \cdots \epsilon_n = \epsilon_1 \cdots f_p^\pm f_b^\pm \cdots \epsilon_n.
\]

(3.21)

Note that this equality is true no matter what the helicity of 1 and \(n\) are. In the following demonstration we need to delete two columns and rows from negative and positive helicity set respectively, so we assign 1\(^-\) and \(n\)\(^+\). Using this property, we can always rearrange the kinematic numerator in a split form with the ordering of particles of negative helicity and the ordering of particles of positive helicity unchanged respectively. For example, with \(n>6\),

\[
\epsilon_1 \cdot f_b^\pm f_b^\mp f_b^\pm f_b^\pm f_b^\pm f_b^\pm \cdots f_p^\pm f_p^\pm = \cdots = \frac{2(12)(23)(34)(45)(56)(6n)}{[1\mu](n\mu)}.
\]

(3.22)

All \(\binom{n}{3}\) = 10 such kinematic numerators of open cycles whose ordering of negative and positive particles between 1 and \(n\) are 2, 3, 4 and 5, 6 respectively equal to \(\epsilon_1 \cdot f_b^\pm f_b^\pm f_b^\pm f_b^\pm f_b^\pm f_b^\pm \cdots f_p^\pm f_p^\pm \epsilon_n\). Further on, all such kinematic numerator can reduce to a product of some simple angle brackets and square brackets as shown in the last equality. Here \([\mu]\), \([\mu]\) are the reference of 1,\(n\) respectively.

For the general case with \(x\) particles of negative and \(y\) particles of positive helicity between 1 and \(n\), there are \(\binom{x+y}{x}\) cycles whose kinematic numerators are equal to those of a certain split open cycles and they all reduce to a product of some simple angle brackets and square brackets,

\[
\frac{1}{2}\epsilon_1 \cdot b_1 f_{b_2} f_{b_3} f_{b_4} f_{b_5} f_{b_6} f_{b_7} f_{b_8} f_{b_9} \cdots f_{p_1} f_{p_2} f_{p_3} f_{p_4} f_{p_5} f_{p_6} f_{p_7} f_{p_8} \cdots f_{p_{10}} f_{p_{11}} = \frac{\langle b_1 \rangle \langle b_2 \rangle \cdots \langle b_{x-1} \rangle \langle b_x \rangle \langle b_{x+1} \rangle \cdots \langle b_n \rangle}{[1\mu](n\mu)}.
\]

(3.23)

Here \([\mu]\), \([\mu]\) are the reference of 1,\(n\) respectively, i.e. \(\epsilon_1 = \frac{[\mu]}{[\mu]}\), \(\epsilon_n = \frac{[\mu]}{[\mu]}\) and we have used the reversed ordering \(p_y \cdot p_{y-1} \cdots \cdot p_1\) for later convenience.

Since \(\binom{x+y}{x}\) such open brackets share same kinematic numerator, we try to combine their denominators. They happen to be combined to the partial fraction identity (analogous to Kleiss-Kuijf relations of amplitudes),

\[
\binom{-1}{\rho} \sum_{\{\alpha\} \in \text{OP}(\{\beta\}, \{\rho\})} \frac{1}{\sigma(1,\{\alpha\}, n)} = \frac{1}{\sigma(1,\{\beta\}, n, \{\rho\})},
\]

(3.24)

here \(\{\alpha\}\) means \(a_2, a_3, \cdots, a_{x-1}\) and \(\{\beta\}\), \(\{\rho\}\) means \(b_1, b_2, \cdots, b_x\), and \(p_1, p_2, \cdots, p_y\) respectively. \(\{\rho\}\) denotes the reverse ordering of the labels \(\{\rho\}\).

Then \(\binom{-1}{\rho} \sum_{\{\alpha\} \in \text{OP}(\{\beta\}, \{\rho\})} \Psi_{[a_2 \cdots a_{x-1}n]}\) combines to

\[
\frac{1}{2}\epsilon_1 \cdot f_{b_1} f_{b_2} f_{b_3} f_{b_4} f_{b_5} f_{b_6} f_{b_7} f_{b_8} \cdots f_{p_1} f_{p_2} f_{p_3} f_{p_4} f_{p_5} f_{p_6} f_{p_7} f_{p_8} \cdots f_{p_{10}} f_{p_{11}} = \frac{h_{1b_1} h_{b_1 b_2} \cdots h_{b_{x-1} b_x} (b_x \mu)(b_{x+1} \mu)}{\sigma(b_x n)} \frac{h_{n p_1} h_{p_1 p_2} \cdots h_{p_{y-1} p_y} (\mu \sigma_{b_x n})}{[1\mu](n\mu)}
\]

(3.25)
In the first equality, we have plugged in (3.23). In the second equality, we have defined \(h_{[1b_1 b_2 \cdots b_n]} \) as \(h_{1b_1 h_{b_1} b_2 \cdots h_{b_{n-1}} b_n} \frac{(by \mu)}{(\mu)_{\sigma_{b_n}}} \) and \(\tilde{h}_{n(p_1 p_2 \cdots p_n)} \) as \(\tilde{h}_{n p_1 h_{p_1} p_2 \cdots h_{p_{n-1}} p_n} \frac{(\mu p)}{(\mu p)_{\sigma_{p_n}}} \). Here we can treat 1 as \(b_0 \) and if there is no particles of negative helicity between 1 and \(n \), \(\frac{(by \mu)}{(\mu)_{\sigma_{b_n}}} \) reduces to \(\frac{(by \mu)}{(\mu)_{\sigma_{b_1}}} \). Similarly we can treat \(n \) as \(p_0 \) and if there is no particles of positive helicity between 1 and \(n \), \(\frac{(\mu p_0)}{(\mu p)_{\sigma_{p_n}}} \) reduces to \(\frac{(\mu p_0)}{(\mu p)_{\sigma_{p_1}}} \). Note that these prefactors \(\frac{(by \mu)}{(\mu)_{\sigma_{b_n}}} \), \(\frac{(\mu p_0)}{(\mu p)_{\sigma_{p_n}}} \) only depend on \(b_x \) or \(c_y \) respectively.

Though \(\Psi_{[t_0 \cdots a_{-1} n]} \) has particles with mixed helicity, \(h_{[1b_1 b_2 \cdots b_n]} \) and \(\tilde{h}_{n(p_1 p_2 \cdots p_n)} \) do have only particles of negative or positive helicity respectively. Adding that closed cycles vanish unless all of their elements have same helicity, \(\text{Pf'} \Psi_n \) decouples to two parts which are dependent on particles of negative and positive helicity respectively,

\[
\text{Pf'} \Psi_n = \left(\text{sgn}(r) \sum_{\beta} h_{[1b_1 \cdots b_2]} \sum_{I \cdots J} h_I \cdots h_J \right) \left(\text{sgn}(\tilde{r}) \sum_{\rho} \tilde{h}_{[1p_1 \cdots p_2]} \sum_{K \cdots L} \tilde{h}_K \cdots \tilde{h}_L \right) (3.26)
\]

Here we have explicitly written out the open cycles to emphasise them. \(\beta, I, \cdots, J \) are the cycles of permutations \(r \) of negative helicity particles except 1 and \(\rho, K, \cdots, L \) are the cycles of permutations \(\tilde{r} \) of positive helicity except \(n \).

For example, with \(1^{-2} 3^+ 4^+ \),

\[
\text{Pf'} \Psi_4 = \left(h_{[1]} h_{[2]} + h_{[12]} \right) \left(\tilde{h}_{[4]} \tilde{h}_{[3]} + \tilde{h}_{[43]} \right),
\]

with \(1^{-2} 3^+ 4^+ 5^+ \),

\[
\text{Pf'} \Psi_5 = \left(h_{[1]} h_{[2]} h_{[3]} + h_{[1]} h_{[23]} + h_{[12]} h_{[3]} + h_{[13]} h_{[2]} + h_{[123]} \right) \times \left(\tilde{h}_{[5]} \tilde{h}_{[4]} + \tilde{h}_{[54]} \right). (3.28)
\]

Without the loss of generality, we let \(- = \{1, 2, \cdots, k\} \) and \(+ = \{k+1, k+2, \cdots, n\} \). We try to prove the two parts in (3.26) combine to two reduced determinants of matrices \(h_{c,k} \) and \(\tilde{h}_{c,n-k} \) respectively, defined as \(\text{det'} h_{c,k} = \frac{\text{det} |h_{b,c}|_{c}}{t_{b,c}} \) and \(\text{det'} \tilde{h}_{c,n-k} = \frac{\text{det} |h_{b,c}|_{n-k}}{t_{b,c}} \) with \(b, c \in - , p, q \in + \). \(h_k \) has a null vector \(\{t_1, t_2, \cdots, t_k\} \) and \(\tilde{h}_{n-k} \) has a null vector \(\{t_{k+1}, t_{k+2}, \cdots, t_n\} \).

Note that

\[
\text{det} |h_{b,c}|_{c} = (-)^{x} \text{det} |h_{b,c}|_{c},
\]

\[
\left| h_{b,c} \right|_{h_{b,c} \rightarrow h_{1c}} = (-)^{x} \sum_{r \in S_{k-1}} \text{sgn}(r) h_{(b,c)} \left| h_{b,c} \rightarrow h_{1c} \right|_{h_{b,c} \rightarrow h_{1c}} \right\}_{h_{b,c} \rightarrow h_{1c}} (3.29)
\]

Here \(r \) is any permutation of particles of negative helicity except 1, and \((b_x \cdots) , I, \cdots, J \) are the cycles of \(r \). \(c \) can be anyone of \(1, 2, \cdots, k \).

Since

\[
h_{[1b_1 b_2 \cdots b_n]} = \langle \frac{(b \mu)}{\langle \mu \rangle_{\sigma_{b_n}}} h_{b_1 b_2 \cdots b_{n-1} b_n} \rangle_{h_{b_1 b_1} \rightarrow h_{1b_1}} = \langle \frac{(b \mu)}{\langle \mu \rangle_{\sigma_{b_n}}} (b_1 b_2 \cdots b_n) \rangle_{h_{b_1 b_1} \rightarrow h_{1b_1}} \right\}, (3.30)
\]
we write the first part in the RHS of (3.26) as a sum over all possible \(b_x \), i.e. \(b_x = 1, 2, \cdots k \). This equality can also be seen by collecting terms with the same prefactor \(\frac{(b_x \mu)_{\langle \mu \rangle}}{(\langle \nu \rangle_{\nu})} \).

\[
\text{sgn}(r) \sum_{\beta} h_{1b_1b_2} \cdots h_{J} = \frac{1}{2} \left(\text{sgn}(r) \sum_{\beta'} h_{1b_1b_2} \cdots h_{J} \right) \quad (3.31)
\]

Here \(\beta = \{ b_1, \cdots, b_{x-1} \} \), \(\beta' = \{ b_1, \cdots, b_{x-1} \} \), \(I, \cdots, J \) are the cycles of permutations of particles of negative helicity except 1 and \(b_x \). Then each term of the summation in RHS of the above equation equals \(\det \left[\bar{h}_{k}^{b_x} \right] \) up to a prefactor. Summing over all possible \(b_x \), i.e. \(b_x = 1, 2, \cdots k \), gives the left parenthesis of RHS in (3.26). Similar derivations leads to the right parenthesis.

Then

\[
Pf' \Psi_n = \left(\sum_{b_x = 1}^{k} \frac{\langle b_x \mu \rangle_{\langle \mu \rangle_{\mu}}}{\langle \nu \rangle_{\nu}} \det \left[h_{k}^{b_x} \right] \right) \left(\sum_{p_y = k+1}^{n} \frac{[\mu p_y]}{[\nu \sigma_{1p_y}]} \det \left[h_{k-n}^{p_y} \right] \right). \quad (3.32)
\]

We insert \(\frac{t_{b_x} t_{n}}{t_{1} t_{b_x}} \) in every term of the first sum of above equation and \(\frac{t_{1} t_{p_y}}{t_{n} t_{p_y}} \) in every term of the second sum, which doesn’t change the value of Pf' \(\Psi_n \). Then

\[
Pf' \Psi_n = \left(\sum_{b_x = 1}^{k} \frac{\langle b_x \mu \rangle t_{b_x} t_{n}}{\langle \mu \nu \rangle_{\mu}} \det \left[h_{k}^{b_x} \right] \right) \left(\sum_{p_y = k+1}^{n} \frac{[\mu p_y] t_{1} t_{p_y}}{[\nu \sigma_{1p_y}]} \det \left[h_{k-n}^{p_y} \right] \right). \quad (3.33)
\]

While all \(\frac{\det [h_k]^{b_x}_{\mu \nu}}{t_{1} t_{b_x}} \) with \(b_x = 1, 2, \cdots, k \) reduce to \(\det' h_k \), all \(\frac{\det [h_{k-n}^{k-p_y}_{\mu \nu}]}{t_{n} t_{p_y}} \) with \(p_y = k + 1, k + 2, \cdots, n \) reduce to \(\det' h_{k-n} \). Then

\[
Pf' \Psi_n = \frac{\sum_{b_x = 1}^{k} \frac{t_{b_x} t_{n} (b_x \mu)}{\sigma_{b_x \mu}}}{\langle \mu \nu \rangle_{\mu}} \sum_{p_y = k+1}^{n} \frac{t_{1} t_{p_y} [\mu p_y]}{[\nu \sigma_{1p_y}]} \det' h_k \det' h_{k-n}. \quad (3.34)
\]

All gauge dependence of particle 1 and \(n \) combine to one factor respectively and on the support of 4d scattering equation (1.2),

\[
t_{n} \sum_{b_e} \frac{t_{b_e} \lambda_{b_e}^{\alpha}}{\sigma_{n b}} = \lambda_{n}^{\alpha}, \quad t_{1} \sum_{p \in \tilde{\nu}} \frac{t_{p} \lambda_{p}^{\tilde{\nu}}}{\sigma_{1p}} = \tilde{\lambda}_{1}^{\tilde{\nu}}, \quad (3.35)
\]

the two prefactors before the determinants in (3.34) reduce to 1 respectively. Then we get

\[
Pf' \Psi_n \big|_{k' = k} = \det' h_k \det' h_{k-n}. \quad (3.36)
\]
For example, with $1^{-2}3^{-4}4+5^+$,

$$Pf'\Psi_5 = \left((h_{(23)} + h_{(2)}h_{(3)}) \frac{\langle 1\mu \rangle}{\langle 5\mu \rangle \sigma_{15}} + (h_{(2)} h_{h_{22} h_{12}} h_{(3)} + h_{(32)}) h_{h_{23} h_{13}} \frac{\langle 2\mu \rangle}{\langle 5\mu \rangle \sigma_{25}} \right) \cdots \left(\frac{\langle 3\mu \rangle}{\langle 5\mu \rangle \sigma_{35}} \right) \bigg) \times \left(\frac{\langle 4\mu \rangle}{\langle 1\mu \rangle \sigma_{14}} \frac{\langle 5\mu \rangle}{\langle 1\mu \rangle \sigma_{15}} \right)

\left(\frac{h_{(4)}}{\langle 1\mu \rangle \sigma_{15}} + \frac{h_{(4)}}{\langle 1\mu \rangle \sigma_{14}} \right) \frac{h_{h_{k_{44} h_{54}}}}{h_{h_{k_{44} h_{54}}}}

= \sum_{a=1}^{3} \frac{\langle b_{x} \mu \rangle}{5 \mu \sigma_{b_{x} s_{5}}} \det |h_{3}|^{a_{x}} \sum_{b_{y}=4}^{5} \frac{\langle \mu p_{y} \rangle}{\langle 1 \mu \rangle \sigma_{1 p_{y}}} \det |h_{2}|^{b_{y}}

= \text{det}' h_{3} \text{det}' \tilde{h}_{2}

(3.37)

4 Extension to all solution sectors

We have arrived at (3.32) without using the explicitly form of 1-length cycle, i.e. C_{aa}. When extended to all solution sectors, those cycles whose length are longer than 1 don’t change, while the 1-length cycles change to C_{aa} with the solutions of k' sectors plugged in. That is, we need to enhance the origin two matrices to $h_{k'}$ and \tilde{h}_{n-k} with their diagonal entries depending on the solution sector k' while the off-diagonal entries unchanged. The expression of C_{aa} with $a \in -$ and $a \in -$ has been given in (3.16). Note that this expression is true even when $k' \neq k$,

$$h_{aa} = - \sum_{b \in -'} t_{b} \langle ab \rangle a \in - a \in -'.

(4.1)

Now we derive the expression of C_{aa} with a a not consistent in helicity sector and solution sector. When $a \in -$ but $a \notin -$', we have

$$C_{aa} = - \sum_{p \in +', p \neq a} \frac{\langle ap \rangle [p \mu]}{\langle a \mu \rangle \sigma_{ap}} - \sum_{b \in -'} \frac{\langle ab \rangle [b \mu]}{\langle a \mu \rangle \sigma_{ab}}

(4.2)

After we plug in the changes of variables (3.14), unlike (3.15), terms with $a \in +'$ and $p = a$ both contribute.

$$C_{aa} = - \frac{1}{\langle a \mu \rangle} \sum_{p \in +', p \neq a} \frac{\langle ab \rangle t_{b} t_{p} [p \mu]}{\sigma_{ab} \sigma_{ap}} + \frac{\langle ab \rangle t_{b} t_{p} [p \mu]}{\sigma_{bp} \sigma_{ab}} + \sum_{b \in -'} \frac{\langle ab \rangle t_{b} t_{a}}{\sigma_{ba}^{2}}

(4.3)

The first term on the RHS also factorizes into two parts following the trick used in (3.15), (3.16),

$$- \frac{1}{\langle a \mu \rangle} \sum_{p \in +', p \neq a} \frac{\langle ab \rangle t_{b} t_{p} [p \mu]}{\sigma_{ab} \sigma_{ap}} = - \left(\sum_{b \in -'} \frac{t_{b} t_{b} t_{a} [a \mu]}{\sigma_{ab}} \right) \left(\sum_{p \in +', p \neq a} \frac{t_{p} [p \mu]}{\sigma_{ap} [a \mu]} \right) = 0

(4.4)
while it vanishes as shown in the last equality because the part in the first parenthesis vanishes on the support of 4d scattering equation (1.2), (note that \(a \in +' \))

\[
t_a \sum_{b \in -'} \frac{t_b \lambda_b^a}{\sigma_{ab}} = \lambda_a^\alpha
\]

then we see that \(C_{aa} \) only has contribution from the term of \(p = a \), and we obtain

\[
C_{aa} = - \sum_{b < c, b, c \in -'} \frac{\langle bc \rangle t_b t_c \sigma_{bc}}{\sigma_{ba}^2 \sigma_{ca}^2} \quad \text{when } a \in - \text{ but } a \notin -'.
\]

Consequently, we have

\[
h_{aa} = -t_a^2 \sum_{b < c, b, c \in -'} \frac{t_b t_c \sigma_{bc} \langle bc \rangle}{\sigma_{ab}^2 \sigma_{ac}^2} \quad a \in - \text{ but } a \notin -',
\]

By a parity transformation, we can directly obtain \(\tilde{h}_{aa} \)

\[
\tilde{h}_{aa} = - \sum_{b \in a \in +'} \frac{t_b [ab]}{t_a \sigma_{ab}} \quad a \in + \text{ and } a \notin +'
\]

\[
\tilde{h}_{aa} = -t_a^2 \sum_{b < c, b, c \in +'} \frac{t_b t_c \sigma_{bc} [bc]}{\sigma_{ab}^2 \sigma_{ac}^2} \quad a \in + \text{ but } a \notin +'.
\]

When \(k' = k \), these extended matrices come back to their original ones. When \(k' \neq k \), one of \(\det h_{k'}^k \), \(\det h_{n-k}^{k'} \) must vanish. Further more, when \(k' < k \), after deleting appropriate row and column of \(h_{k'}^k \), the determinant of the remaining matrix still vanishes, so does the \(h_{n-k}^{k'} \) when \(k' > k \), which results in the vanishing of Pf\({\Psi}_n \) in \(k' \neq k \) sectors. We will discuss this in sec.4.1. Some integrands receive the contribution from the \(k' \neq k \) sectors, such as \(P_n \), which will be discussed in sec.4.2.

4.1 the vanishing of reduced Pfaffian in other sectors

We start from the equation (3.32). Note that we have got this by deleting the 1\(^{\text{st}}\) and \(n\(^{\text{th}}\) rows and columns of \(\Psi_n \). We can also delete other rows and columns to get a similar expression. What’s more, along the demonstration of (3.5) to (3.32), we don’t use the scattering equations (1.2), in other words (3.32) is true for any solutions. After (3.32) , the scattering equation is used and we demonstrate (3.36). Now we move to other solution sectors. Without loss of generality, let’s consider \(- = \{1, 2, \ldots, k\} \) while \(-' = \{1, 2, \ldots, k'\} \), which makes our discussion simpler. Then when \(k' < k \), further on, we can also and always delete \((k' + 1)^{\text{th}} \) and \(n^{\text{th}} \) column and row instead of the of 1\(^{\text{th}}\) and \(n^{\text{th}} \) ones, then the reduced Pfaffian becomes

\[
Pf \Psi_n = \left(\sum_{b_y = 1}^{k} \frac{\langle b_y | b \rangle}{\langle n | b \rangle} \det |h_{k'}^{k'}|_{k' + 1} \right) \left(\sum_{p_y = k + 1}^{n} \frac{[\mu p_y]}{[k' + 1, \mu] \sigma_{k' + 1, p_y}} \det |\tilde{h}_{n-k}^{n-k'}|_{p_y} \right)
\]

Notice that we still have to calculate the determinants of series of matrices. Instead of both summations in RHS of (4.9) being combined to simple factors as shown in (3.34), we show
that the determinants of matrices \(|h^\prime_{k}|_{b_x=1,2,\ldots,k}\) in the first summation vanish identically.

These matrices all come from the original matrix \(h^\prime_{k}\) with the \((k'+1)\)th column deleted and the 1\(^{st}\), 2\(^{nd}\), \ldots, \(k\)\(^{th}\) row deleted respectively. An important observation is that the first \(k'\) columns of these matrices are linearly dependent as

\[
t_1\eta_1 + t_2\eta_2 + \cdots + t_{k'}\eta_{k'} = 0
\]

(4.10)

here \(\eta_1, \eta_2, \ldots, \eta_{k'}\) are the 1\(^{st}\), 2\(^{nd}\), \ldots, \(k\)\(^{th}\) columns of anyone of matrices \(|h^\prime_{k}|_{b_x=1,2,\ldots,k}\) with \(b_x=1,2,\ldots,k\). This is equivalent to say that

\[
\sum_{b=1}^{k'} t_b h_{ab} = 0, \text{ for } a = 1, 2, \ldots, k
\]

(4.11)

These equations come from two totally different origins as \(a \leq k'\) or \(a > k'\).

For the case of \(a \in \{1,2,\ldots,k',k\}'\), i.e. \(a = 1,2,\ldots,k'\), the establishment of (4.11) come from the fact that the diagonal elements \(h_{aa}\) are a linear combination of some off-diagonal entries as shown in (4.1) with some appropriate coefficients.

While for the cases of \(a > k'\), note that \(a\) now belongs to the set \(+\)' and the validity of (4.11) come from the change of variables (3.14). What we need here is the cases of \(a = k'+1, k'+2, \ldots, k\),

\[
t_a \sum_{b \in \{1,2,\ldots,k\}'} t_b \lambda_{ab}^{0} = \lambda_{a}^{0} \quad \text{for } a = k'+1, k'+2, \ldots, k
\]

(4.12)

Obviously after we act \(\lambda_{a}\) on both sides of above equation, both sides vanish, that is

\[
\sum_{b=1}^{k'} t_b h_{ab} = \sum_{b=1}^{k'} t_b \langle ab \rangle = 0 \quad \text{for } a = k'+1, k'+2, \ldots, k
\]

(4.13)

After understanding (4.10), now it is easy to understand the vanishing of all matrices \(|h^\prime_{k}|_{b_x=1,2,\ldots,k}\) with \(b_x=1,2,\ldots,k\). We take a multiple of the \(a\)\(^{th}\) row of these matrix by \(t_a\) for \(a = 1,2,\ldots,k'\), and then add 2\(^{nd}\), 3\(^{rd}\), \ldots, \(k'\)\(^{th}\) column to the 1\(^{st}\) column; in this way we obtain a new 1\(^{st}\) column whose entries all equal to zero because of (4.10). Since we just do some fundamental operation on these matrices and we obtain a column with all entries equal to zero, all determinants of these matrices vanish.

When \(k' < k\), the determinants of matrices in the first summation in (4.9) vanish; when \(k' > k\), the determinants of matrices in the second summation in (4.9) vanish. Pf\(\tilde{\Psi}_{n}\) only receives the contribution of \(k' = k\) sector, then we proved the identity (1.4) given in the introduction.

In the reduction of Pf\(\tilde{\Psi}_{n}\), we reorganize the Pfaffian using some fundamental (almost) gauge invariant objects and then deal with these objects, finally we reconstruct the reduced Pfaffian using \(\det h_{k}\) and \(\det \tilde{h}_{n-k}\). This procedure is quite general. The reduced Pfaffian can be thought as putting two kinematic of the deleted particles in higher
dimensions and the Lorentz contraction of them and anything else vanish unless contraction of them each other equal to 1 \(^1\). Similarly, we can put polarizations of \(m\) pairs of particles in higher dimension and then we get the reduced compactified Pfaffian, which is the integrand of Einstein-Maxwell, Einstein-Maxwell-scalar, Yang-Mills-scalar, Born-Infeld amplitudes. This can be viewed as the “fancy reduced Pfaffian” as we may meet several open brackets in each term of the expansion. Further more, the reduced squeezed Pfaffian, which is the integrand of Einstein-Yang-Mills, can be obtained by some combination of the reduced compactified Pfaffian. So all these methods can be applied in the reduced squeezed Pfaffian, too. These are presented in the Appendix B, C.

There are some integrands that can’t be organized as a matrix, let alone its Pfaffian, such as the \(\mathcal{P}_n \) used in \(F^3, R^2, R^3 \) amplitudes. We can still reduce it into objects related to \(\det h_k \) and \(\tilde{\det} h_{n-k} \) and make some properties manifest. Besides, it receives the contribution from several sectors and one need to add up all of these to get the corresponding amplitudes, as discussed in the following subsection.

4.2 the new object \(\mathcal{P}_n \) for higher dimension operator

As shown in [21], as a generalization of the reduced Pfaffian in Yang-Mills theory, \(\mathcal{P}_n \) is a new, gauge-invariant object that leads to gluon amplitudes with a single insertion of \(F^3 \), and gravity amplitudes by Kawai-Lewellen-Tye relations. When reduced to four dimensions for given helicities, this new object vanishes for any solution of scattering equations on which the reduced Pfaffian is non-vanishing. This intriguing behavior in four dimensions explains the vanishing of graviton helicity amplitudes produced by the Gauss-Bonnet \(R^2 \) term, and provides a scattering-equation origin of the decomposition into self-dual and anti-self-dual parts for \(F^3 \) and \(R^3 \) amplitudes.

No matter what \(\mathcal{P}_n \) is, it must be gauge invariant. It’s most natural to start from the expansion of Pfaffian in a manifest gauge invariant way (3.1). Reorganize these gauge invariant objects according to their length and we define the minimal gauge invariant and gauge invariant objects \(P \) as

\[
P_{i_1 i_2 \cdots i_r} := \sum_{|I_1|=i_1, |I_2|=i_2, \ldots, |I_r|=i_r} \Psi_{I_1} \Psi_{I_2} \cdots \Psi_{I_r},
\]

with \(i_1 + i_2 + \cdots + i_r = n \) and the convention \(i_1 \leq i_2 \cdots \leq i_r \).

Then Pfaffian can be written as

\[
Pf \Psi_n = \sum_i (-)^{n-m} P_{i_1 i_2 \cdots i_m} = 0,
\]

Decorated with some appropriate coefficient, \(P \) can be used to build up some unknown CHY integrands, such as the new integrand is defined as

\[
\mathcal{P}_n = \sum_{1 \leq i_1 \leq i_2 \cdots \leq i_m \leq n} (-)^{n-m} \left(N_{i>1} + c \right) P_{i_1 i_2 \cdots i_m},
\]

\(^1\)Here is some subtlety. We have to complex \(k_1, k_n \) set in higher dimensions such that they dotting anything else equal to 0, while they dotting each other equal to 1. It is just a mathematics trick after all nothing about \(k_1, k_n \) changes beyond the reduced Pfaffian.
where \(N_{\ell > 1} \) denotes the number of indices in \(i_1, i_2, \ldots, i_m \) which are larger than 1, or the number of cycles with length at least 2; \(c \) is just any constant because we can add any multiple of (4.15) without changing the answer.

In 4d, \(\text{Pf} \Psi_n \) reduce to the determinants of \(h_k^{l'} \) and \(\tilde{h}_{n-k}^{l'} \). Similarly we define

\[
H_{i_1 i_2 \cdots i_\ell} = \sum_{|I_1| = i_1, |I_2| = i_2, \ldots, |I_\ell| = i_\ell} h_{I_1}h_{I_2} \cdots h_{I_\ell},
\]

(4.17)

with \(i_1 + i_2 + \cdots + i_\ell = k \) and the convention \(i_1 \leq i_2 \cdots \leq i_\ell \). Then \(h_k^{l'} \) can be rewritten as a sum of \(H \) and similarly works \(\tilde{H}_{n-k}^{l'} \),

\[
\det h_k^{l'} = \sum_{\{i\}^\ell_k} (-)^{k-\ell} H_{i_1 i_2 \cdots i_\ell}, \quad \det \tilde{h}_{n-k}^{l'} = \sum_{\{i\}^\ell_{n-k}} (-)^{n-k-\ell} \tilde{H}_{i_1 i_2 \cdots i_\ell},
\]

(4.18)

where we have introduced shorthand notation for the summation range, \(\{i\}^\ell_k \) means \(i_1 + i_2 + \cdots + i_\ell = k \) and \(i_1 \leq i_2 \leq \cdots \leq i_\ell \) and similarly for \(\{i\}^\ell_{n-k} \).

Further, similar to the definition of (4.16), we define two auxiliary objects \(\mathcal{H}_k^{l'} \) and \(\tilde{\mathcal{H}}_{n-k}^{l'} \),

\[
\mathcal{H}_k^{l'} = \sum_{\{i\}^\ell_k} (-)^{k-\ell} N_{i_1 > 1} H_{i_1 i_2 \cdots i_\ell}, \quad \tilde{\mathcal{H}}_{n-k}^{l'} = \sum_{\{i\}^\ell_{n-k}} (-)^{n-k-\ell} N_{i_1 > 1} \tilde{H}_{i_1 i_2 \cdots i_\ell}.
\]

(4.19)

Thanks to (3.12), \(P \) reduces to several products \(H \) and \(\tilde{H} \) in 4d,

\[
P_{i_1 i_2 \cdots i_m} = \sum_{j_1 j_2 \cdots j_\ell} H_{j_1 j_2 \cdots j_\ell} \tilde{H}_{\tilde{j}_1 \tilde{j}_2 \cdots \tilde{j}_\ell},
\]

(4.20)

Here the sum is over all distinct partition of \(i_1 i_2 \cdots i_m \) into two parts \(j_1 j_2 \cdots j_\ell \) and \(\tilde{j}_1 \tilde{j}_2 \cdots \tilde{j}_\ell \), with \(j_1 + j_2 + \cdots + j_\ell = k \) and \(\tilde{j}_1 + \tilde{j}_2 + \cdots + \tilde{j}_\ell = n - k \). Dividing \(N_{i_1 > 1} \) in (4.16) into two parts \(N_{j_1 > 1} \) and \(N_{\tilde{j}_1 > 1} \) (set \(c = 0 \)) which depend on \(-\) and \(+\) sets respectively, \(P_n \) reduces to:

\[
\mathcal{P}_n = \left(\sum_{\{i\}^\ell_k} (-)^{k-\ell} N_{i_1 > 1} H_{i_1 i_2 \cdots i_\ell} \right) \left(\sum_{\{i\}^\ell_{n-k}} (-)^{n-k-\ell} \tilde{H}_{i_1 i_2 \cdots i_\ell} \right)
\]

\[
+ \left(\sum_{\{i\}^\ell_k} (-)^{k-\ell} H_{i_1 i_2 \cdots i_\ell} \right) \left(\sum_{\{i\}^\ell_{n-k}} (-)^{n-k-\ell} N_{i_1 > 1} \tilde{H}_{i_1 i_2 \cdots i_\ell} \right)
\]

(4.21)

where each mix summation over \(i \) and \(\tilde{i} \) decouples to two independent summation over \(i \) and over \(\tilde{i} \) respectively. Then

\[
\mathcal{P}_n |_{k'} = \mathcal{H}_k^{l'} \det \tilde{h}_{n-k}^{l'} + \det h_k^{l'} \tilde{\mathcal{H}}_{n-k}^{l'}.
\]

(4.22)

When \(k' = k \), both terms in the RHS of (4.22) vanish, which is orthogonal to \(\text{Pf} \Psi_n \) and answers the vanishing of \(R^2 \) theory which is a Gauss-Bonnet term in 4 dimensions. When
$k' < k$, the second term vanishes and \mathcal{P}_n reduces to $\mathcal{H}_k \det \tilde{h}_{n-k}$, which gives the self-dual amplitude of F^3, R^3 theory etc. When $k' > k$, the first term vanishes and \mathcal{P}_n reduces to $\det h_{k'} \mathcal{H}_{n-k'}$, which gives the anti-self-dual amplitude of those theory.

For example, the integrand for F^3 theory reads $I_{F^3} = C_n \mathcal{P}_n$. In 4 dimension, when $k' < k$, $I_{F^3}^{F^3}$ reads

$$I_{F^3}^{F^3} = \frac{C_n \mathcal{H}_k^k \det \tilde{h}_{n-k}}{\det h_{k'} \det \tilde{h}_{n-k'}}.$$ (4.23)

Here $\det h_{k'} \det \tilde{h}_{n-k'}$ comes from the transition of two forms of scattering equations as shown in (2.6).

5 Discussion

In CHY representation, the fundamental gauge invariant objects are quite common, either C_{aa} or the trace of some linearised field strength together with some σ's. In this paper, we find a rather general way to reduce this gauge invariant objects into that made up of spinors using 4d scattering equations. Particularly, we show how the reduced Pfaffian reduces to some determinants and why it vanishes on the support of most solutions. This explains why only some particular solutions contribute to the YM or GR amplitudes according to their helicity structure in 4d and provides a basis for dividing the solutions of scattering equations into MHV,NMHV,\cdots,MHV sectors which contributes to corresponding YM or GR amplitudes respectively, also seen in [23].

We extend this methods to reduced compactified Pfaffian where some polarizations are set in higher dimensions, which is building block for EM, EMS, YMS or DBI amplitudes. We give the explicit reduction results of the compactified Pfaffian up to 3 pairs of particles whose polarizations are set in higher dimension and provides the general way to get the reduction with arbitrary pairs. Another interesting integrand with polarization involved is the reduced squeezed Pfaffian, which is the building block of EYM theory [3,4,24,25]. As it can be expressed by some combination of the reduced compactified Pfaffian, its reduction in 4d is directly obtained from that of the reduced compactified Pfaffian. The results of one and two gluon color traces are explicitly presented in the Appendix C.

Even some integrands which can’t be organized as a matrix, let alone its Pfaffian, such as the new integrand \mathcal{P}_n used in F^3, R^2, R^3 theory, also can be enclosed in this procedure. We decompose \mathcal{P}_n to some fundamental gauge invariant objects, reduce these fundamental gauge invariant objects first and then organize them into a compacted form, which apparently shows most information of the \mathcal{P}_n, and explains the orthogonality of F^3 and YM amplitudes, the vanishing of Gauss-Bonnet term R^2 and the self-dual and anti-self-dual amplitudes of F^3 or R^3 amplitudes in 4d. In fact, we use these properties to guess what the compacted form in 4d of \mathcal{P}_n should be, then fix the coefficient of the fundamental gauge invariant objects and finally get the \mathcal{P}_n. This is quite general to find the CHYintegrand of an unknown theory. Even when the scattering equations or σ dependence of the entries in the matrix Ψ_n has been changed, their CHY integrand are very likely to be decomposed into some C_{aa} or trace like fundamental gauge invariant objects. And we
can reduce these objects first, organize them into a form manifest showing some properties the theory requires and finally confirm their CHY integrand. This can even be applied at loop level, as shown in \([19, 26]\).

Instead of reducing all kinds of integrands in 4d, we now turn to the general 4d CHY formulae. After overcoming the obstacles to reduce integrands with polarization involved, the calculation of CHY formulae becomes much simpler. We develop the 4d CHY formulae to directly calculate the amplitude of the some theory. The reduced Pfaffian behaves like a solution filter, making the building of 4d CHY formulae natural. As if the general CHY formulae has been reduced to 4d CHY formulae and the number of solutions decrease from \((n - 3)!\) to \(E_{n-3,k'-2}\).

We have discussed the reduction of the reduced compactified Pfaffian and squeezed Pfaffian in Appendix B, C and discussed how the valid solution sector shift from the helicity sector. The more polarizations there are, the more efficient our procedure is. Even when there is no polarization involved, and the reduced compactified Pfaffian totally reduce to \(P!A_n\) times something, our reduction procedure still holds and it tells us only the \(k' = n/2\) solution sector contributes. This means CHY formulae of some effective field theory such as Born-Infeld, Dirac-Born-Infeld, Non-Linear Sigma Model, Special Galileon theories with \(P!A_n\) acting as CHY integrand also reduce to a set of 4d CHY formulae. Even for some theories that receive the contribution of several solution sectors such as those with \(P_n\) acting as CHY integrand, the physical meaning of 4d CHY formulae is also apparent: the contribution from the \(k' < k\) sectors gives self-dual amplitude and that of \(k' > k\) gives anti-self-dual amplitudes.

Many good properties shared by CHY formulae are still inherited by the 4d CHY formulae. The soft limits has been discussed in \([15, 27–30]\). Factorisation should also be easy to study. Not only the CHY formulae have a simple representation in 4d, 4d CHY formulae can also help us understand the CHY formulae in general dimension. Besides, the supersymmetrization of the 4d CHY formulae is directly and we just need to replace the \(\bar{\lambda}^\alpha_a\) with \(\{\bar{\lambda}^\alpha_a | \eta^\beta_a\}\) in the scattering equation in (2.4) as shown in \([15]\). This way we can involve fermions in CHY formulae, for example we use SYM amplitudes to build up QCD amplitudes as shown \([31]\). In the same paper, we use two set of spinors to describe the massive Higgs, which has been generalized to calculate form factors \([32, 33]\).

We tentatively study whether the solutions divide beyond in 4d. Especially we hope something interesting come out in 6 dimensions where we also have a good spinor representation \([34–36]\) and some nice result of CHY formulae in 6d comes out. We can treat a massive particle in 4d as a massless particles in 6d, especial the massive loop particles in 4d. Up to now, our result is negative and we didn’t find the solutions of scattering equation divide again in other dimension.

CHY formulae has been extended to 1-loop level, as discussed in \([37, 38]\). It has been known that what underpins the CHY formulae is ambitwistor string. And ambitwistor string theory has been extended to 1-loop level, as shown in \([7, 39, 40]\). However we find the solutions at 1-loop level don’t divide into several sectors again in SYM or SUGRA theory. CHY formulae has singular solutions at 1-loop, how about 4d CHY formulae and how does it contribute to the divergence bubble or tadpole? Also it is interesting to check
whether the integrand still factorizes to two objects that depend on particles of negative helicity or positive helicity respectively. Also it will help us to build the general 1-loop CHY integrand.

As discussed in [41], also it is very useful to study the positivity of the jacobian or integrand in 4d CHY formulae. (2.6) is a useful identity as it link several objects. As shown in [41], detˈΦn(\{s_{ab}, σ_a\}) is positive at the positive region. We know that detˈh_k′detˈh_{n−k′} is exactly the result of PfˈΨ_n with k′ external particles of negative helicity. If the 4d jacobian J_{n,k′} is also positive at the positive region, it strongly supports that the YM amplitude is also positive in some regions.

Acknowledgments

Yong Zhang thanks S. He and F. Teng very much for discussions. Y.Z.’s research is partly supported by NSFC Grants No. 11235003.

\section{A conjecture on J_{n,k′}}

In this section, without making confusion, we denote \(\frac{s_{a}−s_{b}}{s_{a}+s_{b}} = (ab)\). We have strong evidence to support the following conjecture,

\[
J_{n,k′} = \frac{1}{\prod_{a=1}^{n} t_{a}^{2} \prod_{b<\cdot<q} (bp)^{2}} \sum_{1\leq x\leq n−k′−2, 1\leq y\leq k′−2}^{b<c,p<q} \prod_{1\leq x\leq n−k′−2} (b_{x}c_{x})(p_{y}q_{y})(p_{y}q_{y})(d_{xy}r_{yx})^{2} \tag{A.1}
\]

Here the sum is over all \(b_{1}<c_{1}, b_{2}<c_{2}, \cdots, b_{n−k′−2}<c_{n−k′−2}; b_{1}, b_{2}, c_{2}, \cdots, b_{n−k′−2}, c_{n−k′−2} \in −'\) and \(p_{1}<q_{1}, p_{2}<q_{2}, \cdots, p_{k′−2}<q_{k′−2}; p_{1}, p_{2}, q_{2}, \cdots, p_{k′−2}, q_{k′−2} \in +'\). The \(x^{th}\) row of matrix \(d\) is \(−'\{b_{x}, c_{x}\}\) for \(1\leq x\leq n−k′−2\) and the \(y^{th}\) row of matrix \(r\) is \(+'\{p_{y}, q_{y}\}\) for \(1\leq y\leq k′−2\). When \(k′=2\) or \(n−2\), \((d_{xy}r_{yx})^{2}\) reduces to 1. We have numerically checked this formula up to 9 points in all solution sectors, and 15 points in \(k′=3\) sector.

Here are some examples.

For the MHV solution sector, it can be analytically proved that

\[
J_{n,2} = \frac{(bc)^{n−4}(bc)^{n−4}}{\prod_{a=1}^{n} t_{a}^{2} \prod_{p\in+'} (bp)^{2} (cp)^{2}} \tag{A.2}
\]

Here \(\{b, c\} = −'\). After deleting the 4 columns and rows about \(b, c\) of the matrix in (2.5) with a compensate \(\sum_{p\in+'} t_{a}^{2} t_{b}^{2} (bc)^{2} (bc)^{2}\), the minor becomes a “diagonal” matrix whose diagonal entries are \(2 \times 2\) matrices and their determinants can be easily calculated out as \(\frac{(bc)(bc)}{(bc)^{2}}\) \(\frac{1}{(pb)^{2} (pc)^{2}}\) \(t_{p}^{2}\) for \(p = +'\), then we get (A.2).

For the NMHV solution sector,

\[
J_{6,3} = \frac{1}{\prod_{a=1}^{n} t_{a}^{2} \prod_{b<\cdot,p\in+'} (bp)^{2}} \sum_{b<c,p<q} (bc)(pq)(pq)(dr)^{2} \tag{A.3}
\]
Here \(d,r \) is a particle label as the breviate of \(d_{11}, r_{11} \) and \(\{ b,c,d \} = -', \{ p,g,r \} = +' \).

\[
J_{7,3} = \frac{1}{\prod_{a=1}^{n} t_a^2 \prod_{b \in -',p \in +'} (bp)^2} \sum_{b_1 < c_1, b_2 < c_2, p < q} (b_1 c_1)(b_1 c_1)(b_2 c_2)(b_2 c_2)(pq)[pq](d_1 r_1)^2(d_2 r_2)^2 \tag{A.4}
\]

Here \(d_1, d_2 \) is a particle label as the breviate of \(d_{11}, d_{21} \) and \(\{ b_1, c_1, d_{11} \} = -', \{ b_2, c_2, d_{21} \} = -' \). \(r_1, r_2 \) is a particle label as the breviate of \(r_{11}, r_{12} \) and \(\{ p, q, r_{11}, r_{12} \} = +' \). Note that this restrain doesn’t fix \(r_{11}, r_{12} \) totally as \(r_{11}, r_{12} \) can exchange their value. However it doesn’t affect the value of \(J_{7,3} \) as we always sum over all \(b_1 < c_1, b_2 < c_2 \).

\[
J_{n,3} = \frac{1}{\prod_{a=1}^{n} t_a^2 \prod_{b \in -',p \in +'} (bp)^2} \sum_{b < c, p < q} \left(\prod_{1 \leq x \leq n-5} (b_x c_x)(b_x c_x)(pq)[pq](d_x r_x)^2 \right) \tag{A.5}
\]

Here \(d_x \) is a particle label as the breviate of \(d_{x1} \) and \(\{ b_x, c_x, d_x \} = -' \). \(r_x \) is a particle label as the breviate of \(r_{1x} \) and \(\{ r_{11}, r_{12}, \ldots, r_{1,n-5} \} = +' \setminus \{ p, q \} \).

For NNMHV solution sector,

\[
J_{8,4} = \frac{1}{\prod_{a=1}^{n} t_a^2 \prod_{b \in -',p \in +'} (bp)^2} \sum_{b_1 < c_1, b_2 < c_2, p_1 < q_1, p_2 < q_2} (b_1 c_1)(b_1 c_1)(b_2 c_2)(b_2 c_2)(p_1 q_1)[p_1 q_1](p_2 q_2)[p_2 q_2] \\
\times (d_1 r_{11})^2(d_1 r_{12})^2(d_1 r_{21})^2(d_1 r_{22})^2 \tag{A.6}
\]

Here \(\{ b_1, c_1, d_{11}, d_{12} \} = -', \{ b_2, c_2, d_{21}, d_{22} \} = -', \{ p_1, q_1, r_{11}, r_{12} \} = +', \{ p_2, q_2, r_{21}, r_{22} \} = +' \). Note that this restrain doesn’t fix \(d_{11}, d_{12} \) totally as \(d_{11}, d_{12} \) can exchange their value neither does \(r_{11}, r_{12} \). In most cases, it doesn’t affect the value of \(J_{8,4} \) however a few cases do rely on particular ordering of \(d_{11}, d_{12} \) or \(r_{11}, r_{12} \), leaving a further study to fix the final expression of \(J_{n,k'} \).

B The reduced compactified Pfaffian in 4d

In the main text, we have discussed the reduced Pfaffian which we delete 1\(^{\text{th}}\) and \(n \text{th} \) rows and columns of the matrix \(\Psi_n \). Then we introduce the open cycle to reduce it into two reduced determinants. Also we can effectively think that we set the momenta of the particles \(1,n \) in higher dimension and they dotting everything equal to zero unless they dotting themselves equal to 1 to make the complement \(\prod_{i=1}^{n} \). Then we can still decompose the reduced Pfaffian into some (modified) closed cycles. One closed cycle must contain \(1,n \) both or vanish if it just contains one of them, and then it reduces to open cycle as \(k_1, k_n \) are set in higher dimension. This can be extended to other cases as now we set the polarisation of some pairs of particles in higher dimension. We call it reduced compactified Pfaffian which is the building block for EM, EMS, YMS amplitudes, as discussed in [4]. Then we can use the similar trick to reduce the reduced compactified Pfaffian in 4d.

We donate the set of particles whose polarisation are set in higher dimension as \(\gamma \) and those that are not as \(\mathbf{h} \). Besides, we divide \(\mathbf{h} \) into \(\mathbf{h}^- \) and \(\mathbf{h}^+ \) whose helicity are negative.
we effectively set the momenta of \(e^- \). Obviously, the length of set \(\gamma \) must be even. Further on, we let the polarisation of particles in \(\gamma \) be anyone of an orthogonal bases and they dotting each other equal to 1 or 0, donated as \(\delta^{I_a I_b} \). Then the compactified Pfaffian can be think of as being deleted the rows and columns of \(\gamma \) in the last \(n \) rows and columns of the matrix \(\Psi_n \) donated as \(\text{Pf}'|\Psi_n|^{(\gamma)+n} \) and complement it with a Pfaffian. That is,

\[
\text{Pf}'\Psi_{n;m} = \text{Pf}'|\Psi_n|^{(\gamma)+n} \text{Pf}[\mathcal{X}]_\gamma \tag{B.1}
\]

with

\[
\text{Pf}[\mathcal{X}]_\gamma = \sum_{\{a,b\} \in \text{p.m.}(\gamma)} \text{sgn}(\{a,b\}) \frac{\delta^{I_{a_1} I_{b_1}} \delta^{I_{a_2} I_{b_2}} \cdots \delta^{I_{m} I_{b_m}}}{\sigma_a b_1 \sigma_{a_2} b_2 \cdots \sigma_m b_m}. \tag{B.2}
\]

Here \(2m \) is length of the set \(\gamma \). First we considering the case with \(m = 1 \), that is only one pair of particles donated as \(e_1, e_2 \) that needs dimension reduction. For simplicity, we also delete the rows and columns of \(e_1, e_2 \) in the first \(n \) rows and columns to satisfy the mass dimension, i.e. we effectively set the momenta of \(e_1, e_2 \) in higher dimension. Then in the expansion of the reduced compactified Pfaffian, all cycles that contain \(e_1, e_2 \) vanish unless they contain and only contain both \(e_1, e_2 \). Then this cycle, which equals to \(\frac{\delta^{I_{a_1} I_{b_2}}}{\sigma_{e_1 e_2}} \), factor out, leaving all other cycles normal as if \(e_1, e_2 \) not existed. They factor into two determinants of two matrices in 4d, just like the factorisation of Pfaffian in (3.20), with the diagonal elements equal to \(C_{aa} \) plugging a certain solution sector \(k' \), as expressed in (4.1),(4.7),(4.8). One of two determinants of these two matrices will vanish trivially unless \(k' = \tilde{k} + 1 \). That is, we need to assign \(e_1, e_2 \) to into two sets, for example, we let \(-' = h^- \cup \{e_1\} \) and \(+' = h^+ \cup \{e_2\} \). Then the reduced compactified Pfaffian with only one pair of particles needing dimension reduction reduces to

\[
\text{Pf}'\Psi_{n;1}|_{k'} = \delta_{\tilde{k} + 1, k'} \frac{1}{\sigma_{e_1 e_2}} \det |h_{k'}|^e_1 \det |\tilde{h}_{n-k'}|^e_2 \delta^{I_{a_1} I_{b_2}}. \tag{B.3}
\]

The expression of \(h_{ab} \) with \(a, b \in h^- \) and \(\tilde{h}_{ab} \) with \(a, b \in h^+ \) are given in (3.11),(4.1),(4.8). Here we can extend the definition domain from \(- \) to \(h^- \cup \{e_1\} \) and from \(+ \) to \(h^+ \cup \{e_2\} \), to enclose \(h_{e_1 b} \) or \(\tilde{h}_{e_2 b} \), though it is not important as such entries will always been deleted from the matrices \(h_{k'} \) and \(\tilde{h}_{n-k'} \) in the above equation. In this case, the exchange of \(e_1 \leftrightarrow e_2 \) will affect the expression of the diagonal elements of \(h_{k'} \) and \(\tilde{h}_{n-k'} \) but it won’t affect the final result. For later convenience, we write the above equation in a slightly different way,

\[
\text{Pf}'\Psi_{n;1}|_{k'} = \delta_{\tilde{k} + 1, k'} \frac{1}{\sigma_{e_1 e_2}} \det |h_{k'}|^e_1 \det |\tilde{h}_{n-k'}|^e_2 \text{Pf}[\mathcal{X}]_\gamma. \tag{B.4}
\]

Now we consider the case with \(m = 2 \), i.e. 4 particles donated as \(e_1, e_2, e_3, e_4 \) need dimension reduction. There are be 3 perfect matching to make pairs in the expansion of \(\text{Pf}[\mathcal{X}]_n \), as shown in (B.2). We can take these perfect individually and at last add them up. For example, we consider a perfect matching that \(e_1, e_2 \) a pair and \(e_3, e_4 \) a pair. Still we effectively set the momenta of \(e_1, e_2 \) in higher dimension and then \(\frac{\delta^{I_{a_1} I_{b_2}}}{\sigma_{e_1 e_2}} \) factors out.
The left pair e_3, e_4 must be adjoint and enclosed in one cycle and it reduces to an open cycle similar to (3.6) with the polarisations on the ends replaced by kinematics as

$$\text{tr}(f^+_a f^+_{a_2} f^+_{a_3} \cdots f^+_2 f^+_{a_1}) = k_{e_3} \text{tr}(f^+_a f^+_{a_2} f^+_{a_3} \cdots f^+_2 f^+_{a_1}) \delta^{l_{e_3} l_{e_4}}$$

(B.5)

Here f^+_b just means the polarisation of particle e is set in higher dimension and f^+_a means when reduced to 4 dimension, the helicity of particle a can be negative or positive. Also any two adjoint linearised strength fields $f^+_b f^+_2$ in the trace can exchange their place if the helicity of b, p are different. So we use this property to split the kinematic numerator of this open cycle in respect of negative and positive helicity first, then use the partial fraction identity to split out the denominator, and finally cut the open cycle into two closed cycles,

$$(-)^{|\rho|} \sum_{\{a\} \in \text{OP}(\{\beta\}, \{\rho\})} \frac{\text{tr}(f^+_a f^+_{a_2} f^+_{a_3} \cdots f^+_2 f^+_{a_1})}{\sigma_{a_2 a_3 a_4} \cdots \sigma_{a_{s-1} a, \sigma_{a_3 e_2} \sigma_{e_3 e_4}}}
\hspace{0.5cm} = \hspace{0.5cm} \hat{h}_{e_3 b_1} \hat{h}_{b_2 b_2} \hat{h}_{b_2 - b_3} \hat{h}_{b_3 e_3} \hat{h}_{e_4 p_3} \hat{h}_{p_3 p_3} \hat{h}_{p_1 e_3}
\hspace{0.5cm} = \hspace{0.5cm} \hat{h}_{(b_1 b_2 - b_3)} \hat{h}_{b_3 e_4} \hat{h}_{b_3 e_3} \hat{h}_{(p_1 p_2 - p_3)} \hat{h}_{p_3 p_3} \hat{h}_{e_3 p_3}
$$

(B.6)

Here $h_{e b} = (\sigma_{e b})^{-1}$, $\hat{h}_{e p} = \frac{|\rho|}{|\rho| p}$. Compared to (3.25), we have replaced the $e_1^- = \frac{|\rho|}{|\rho|}$ or $e_1^+ = \frac{|\rho|}{|\rho| p}$ by $k_e = |e|^e$, and then the prefactor $\frac{(b_2 b_3)}{(n_2 p)} \sigma_{e_2 s e_3}$ are replaced by $\frac{(b_2 e_3)}{\sigma_{b_2 s e_3}} = \frac{|e|}{|e|} \sigma_{e_2 s e_3} \frac{|e_p|}{|e_p|} = \hat{h}_{e_3 e_3}$. Then followed by other closed cycles, similar to (3.32), the perfect matching with $\{e_1, e_2\}$ a pair and $\{e_3, e_4\}$ a pair gives

$$\delta_{k+2, k'}^l \frac{1}{\sigma_{e_1 e_2}} \left(\sum_{b_x \in \{e_3\}, h^-} h_{b_x e_4} \text{det} |h_{k'|e_1 e_3}| \right) \left(\sum_{p_y \in \{e_4\}, h^+} \hat{h}_{p_y e_3} \text{det} |h_{n-k'|e_2 e_4}| \right) \delta^{l_1 l_2} \delta^{l_3 l_4}$$

(B.7)

The factor $\delta_{k+2, k'}^l$ come from the fact that we must assign e_1, e_2 in different sets and e_3, e_4 in different sets, for example $- = h^- \cup \{e_1, e_3\}$ and $+ = h^+ \cup \{e_2, e_4\}$. In this case, the exchange of $e_1 \leftrightarrow e_2$ or $e_3 \leftrightarrow e_4$ doesn’t affect the final result. The exchange of $\{e_1, e_2\} \leftrightarrow \{e_3, e_4\}$ doesn’t affect the final result. The other two perfect matching can be think of as the exchange of $\{e_1, e_2, e_3, e_4\} \leftrightarrow \{e_1, e_3, e_2, e_4\}$ and $\{e_1, e_2, e_3, e_4\} \leftrightarrow \{e_1, e_4, e_2, e_3\}$.

However we have a cleverer choice that each perfect matching in (B.2) must share the same coefficient $\text{Pf}^l |\Phi_{n:2, i}^{\{\gamma\}+n}$. We can read this coefficient $\text{Pf}^l |\Phi_{n:2, i}^{\{\gamma\}+n}$ from (B.7) and then the reduced compactified Pfaffian with two pairs of particles needing dimension reduction reduces to

$$\text{Pf}^l |\Phi_{n:2, i}^{\{\gamma\}+n}(k') = \delta_{k+2, k'}^l \left(\sum_{b_x \in \{e_3\}, h^-} h_{b_x e_4} \text{det} |h_{k'|e_1 e_3}| \right) \left(\sum_{p_y \in \{e_4\}, h^+} \hat{h}_{p_y e_3} \text{det} |h_{n-k'|e_2 e_4}| \right) \frac{\sigma_{e_1 e_3}}{\sigma_{e_1 e_2}} \text{Pf}^l |\chi|_\gamma$$

(B.8)

One can change the $\{e_1, e_2, e_3, e_4\}$ by any other permutation and it won’t change the final result. They just different representation of $\text{Pf}^l |\Phi_{n:2, i}^{\{\gamma\}+n}$ as the choice of prefactor in
\[B.5 \] is rather arbitrary: one choose \(h_{b_5 e_3} \) as prefactor as well as \(h_{e_4 b_1} \), so does \(\hat{h}_{p_y e_4} \) and \(\hat{h}_{p_1 e_3} \).

Now we consider the case with \(m = 3 \), i.e., 6 particles donated as \(e_1, e_2, e_3, e_4, e_5, e_6 \) need dimension reduction. Still we consider the perfect matching with \(\{ e_1, e_2 \} \) a pair, \(\{ e_3, e_4 \} \) a pair and \(\{ e_5, e_6 \} \) a pair first. Still we effectively set the kinematics of \(e_1, e_2 \) in higher dimension and then \(\delta^{e_1 e_2}_{\sigma e_1 e_2} \) factors out. The left two pairs \(\{ e_3, e_4 \} \) and \(\{ e_5, e_6 \} \) must be adjoin in the trace respectively, or vanish. However these two pairs can be enclose in two different cycles or in a common cycle. The former case is simpler. We split the open cycles, cut it into modified open cycles and rearrange them together with other closed cycles into determinants. That is, those of the expansion of \(\text{Pf}^\Psi_{m;2} \) to that contain such cycles \(\frac{\text{tr} (f_{e_1}^\alpha f_{e_2}^\alpha \cdots f_{e_3}^{\alpha+} f_{e_4}^{\alpha+} f_{e_5}^{\alpha+} f_{e_6}^{\alpha+})}{\sigma_{(e_3 \cdots e_4)} \sigma_{(e_5 \cdots e_6)}} \) reduce to

\[
\frac{\delta_{k+3,k'} \cdot 1}{\sigma_{e_1 e_2}} \left(\sum_{b_5 \in \{e_5\} \cup \{e_6\}} h_{b_5 e_4} h_{c_2 e_6} \det \left| \mathbf{h}_{k|e_1 e_2 e_5} \right| \right) \times \left(\sum_{p_y \in \{e_1\} \cup \{e_2\} \cup \{e_5\} \cup \{e_6\}} \hat{h}_{p_y e_3} \hat{h}_{q_w e_5} \det \left| \mathbf{h}_{k-n' | e_2 e_4 e_6} \right| \right) \delta I_{e_1} I_{e_2} \delta I_{e_3} I_{e_4} \delta I_{e_5} I_{e_6} . \tag{B.9}
\]

The factor \(\delta_{k+3,k'} \) come from the fact that we must assign each pair of particles in this perfect matching into different sets, for example \(-' = h^- \cup \{ e_1, e_3, e_5 \} \) and \(+' = h^+ \cup \{ e_2, e_4, e_6 \} \). In this case, the exchange of particles in each pair doesn’t affect the final result. The exchange of different pairs also doesn’t affect the final result.

However the case where \(\{ e_3, e_4 \} \) and \(\{ e_5, e_6 \} \) are enclosed in a common cycle also contribute and we need to deal with it more carefully. We find that the equation (B.5) can be extended to

\[
\text{tr} (f_{e_3}^\gamma f_{a_1}^{\alpha+} \cdots f_{e_1}^\gamma f_{a_2}^{\alpha+} f_{e_2}^{\alpha+} f_{a_3}^{\alpha+} f_{e_3}^\gamma) = k_{e_4} \cdot f_{a_1}^{\alpha+} \cdots f_{a_3}^{\alpha+} k_{e_5} \delta I_{e_5} I_{e_6} k_{e_6} \cdot f_{a_3}^{\alpha+} \cdots f_{a_2}^{\alpha+} k_{e_3} \delta I_{e_3} I_{e_4} \tag{B.10}
\]

or even more general form. Still any two adjoin linearised strength fields \(f_{a}^{\gamma} \) in the trace can exchange their place if the helicity of \(b, p \) are different. However this time the exchanging is blocked by \(f_{a}^{\gamma} \). So we treat the region \(f_{e_3}^\gamma f_{a_1}^{\alpha+} \cdots f_{a_3}^{\alpha+} f_{e_2}^{\alpha+} \) individually and split the kinematic numerator of these region separately, followed by the splitting of denominators using partial fraction identity. Finally,

\[
(-)^{|\rho|} \sum_{\{\alpha\} \in \text{OP}(\{\beta\}, \{\rho^T\})} \frac{\text{tr}(\cdots f_{e_3}^{\gamma} f_{a_3}^{\alpha+} \cdots f_{a_2}^{\alpha+} f_{e_2}^{\alpha+} \cdots)}{\sigma_{e_3 e_2} \sigma_{e_2 e_1} \cdots \sigma_{e_1 e_3} \sigma_{e_2 e_1} \sigma_{e_3 e_2} \cdots} = \cdots \hat{h}_{e_3 b_1} \hat{h}_{b_1 b_2} \cdots \hat{h}_{b_{x-1} b_2} \hat{h}_{b_2 e_{x-1}} \hat{h}_{e_{x-1} y_2} \hat{h}_{p_y p_{y-1}} \hat{h}_{p_{y-1} y_2} \hat{h}_{p_1 e_3} \frac{\sigma_{e_3 e_2}}{\sigma_{e_3 e_4}} \cdots \tag{B.11}
\]
Here we have given the general form with arbitrary pairs of particles in \(h \) enclosed in a common trace. \(h_{e_{1}b} = \frac{\langle e_{1}b \rangle}{\sigma_{e_{1}b}} \), \(\bar{h}_{e_{1}p} = \frac{\langle e_{1}p \rangle}{\sigma_{e_{1}p}} \). And \(\tilde{f}^{h}_{e_{r}e_{r+1}} \) is the linearised strength fields next to \(f^{h}_{e_{r}e_{r+1}} \). It could just be \(\tilde{f}^{h}_{e_{r}e_{r+1}} \) and at this case \(\frac{\sigma_{e_{r}e_{r+1}}}{\sigma_{e_{r}e_{r+1}}} \) reduces to 1.

Compared to (B.6), here comes out a factor \(\frac{\sigma_{e_{3}e_{4}}}{\sigma_{e_{3}e_{4}}} \). We can think there is also a factor \(\frac{\sigma_{e_{3}e_{4}}}{\sigma_{e_{3}e_{4}}} = 1 \) in equation (B.6). However there is something different essentially. For example, in the former case, \(\frac{\text{tr}(f^{h}_{e_{3}e_{4}}f^{h}_{e_{5}e_{6}})}{\sigma_{(e_{3}e_{4})}} \frac{\text{tr}(f^{h}_{e_{5}e_{6}}f^{h}_{e_{3}e_{4}})}{\sigma_{(e_{5}e_{6})}} \), \(e_{3} \) groups with \(e_{4} \) and \(e_{5} \) groups with \(e_{6} \), while in the later case, \(\frac{\text{tr}(f^{h}_{e_{3}e_{4}}f^{h}_{e_{5}e_{6}}f^{h}_{e_{3}e_{4}})}{\sigma_{(e_{3}e_{4}e_{5}e_{6})}} \), \(e_{3} \) groups with \(e_{5} \) and \(e_{4} \) groups with \(e_{6} \). In the former case, the group pairs are consistent with the perfect matching pairs and the exchanging of particles in the same perfect matching pair is identical, while in the latter cases, the group pairs are not consistent with the perfect matching pairs and the exchanging of particles in the same perfect matching pair is two different contributions. However it is still not tough. The reduction of those that contain such cycles \(\frac{\text{tr}(f^{h}_{e_{3}e_{4}}f^{h}_{e_{5}e_{6}}f^{h}_{e_{3}e_{4}})}{\sigma_{(e_{3}e_{4}e_{5}e_{6})}} \) in the expansion of \(\text{Pf}^{h}[\Psi_{n;2}]_{k'} \) can be got from (B.9) by exchanging \(e_{5} \leftrightarrow e_{3} \) if ignoring the factor \(\frac{\sigma_{e_{3}e_{4}}}{\sigma_{e_{3}e_{4}}} \) and the reduction of those that contain such cycles \(\frac{\text{tr}(f^{h}_{e_{3}e_{4}}f^{h}_{e_{5}e_{6}}f^{h}_{e_{3}e_{4}})}{\sigma_{(e_{3}e_{4}e_{5}e_{6})}} \) in the expansion of \(\text{Pf}^{h}[\Psi_{n;2}]_{k'} \) can be got from that of \(\frac{\text{tr}(f^{h}_{e_{3}e_{4}}f^{h}_{e_{5}e_{6}}f^{h}_{e_{3}e_{4}})}{\sigma_{(e_{3}e_{4}e_{5}e_{6})}} \) by exchanging \(e_{5} \leftrightarrow e_{6} \). Taking all the perfect matching into consideration, then the reduced compactified Pfaffian with three pairs of particles needing dimension reduction reduces to

\[
\text{Pf}^{h}[\Psi_{n;3}]_{k'} = \delta_{k+3,k'} \left(\frac{\sigma_{e_{3}e_{4}}}{\sigma_{e_{1}e_{2}}} \left(\sum_{b_{x} \in \{e_{3}\}, \lambda_{h}} h_{b_{x}e_{4}} h_{e_{2}e_{6}} \text{det} |h_{e_{1}e_{3}e_{5}}| \right) \right) \times \left(\sum_{p_{y} \in \{e_{4}\}, \lambda_{h}^{+}, q_{w} \in \{e_{6}\}, \lambda_{h}^{+}, p_{y} \neq q_{w}} \tilde{h}_{p_{y}e_{5}} \tilde{h}_{w_{e_{3}}e_{5}} \text{det} |\tilde{h}_{n-k'}|_{e_{2}e_{4}e_{6}} \right) + \left(e_{5} \leftrightarrow e_{3} \right) - \left(e_{5} \leftrightarrow e_{6} \right) \right) \text{Pf}[X]_{y}.
\]

(B.12)

The minus before the exchanging of \(e_{5} \leftrightarrow e_{6} \) comes from \(\sigma_{e_{5}e_{6}} = -\sigma_{e_{6}e_{5}} \) and \(\sigma_{e_{5}e_{6}} \) is absorbed in \(\text{Pf}[X]_{y} \). When it comes to the cases with \(m \geq 3 \), there are no more new objects coming out and just some more calculation and we can always reduce the reduced compactified Pfaffian into some determinants.

As there is always a \(\delta_{k+m,k'} \) in the reduction of the reduced compactified Pfaffian, considering the contribution solution sector of the reduced Pfaffian, it is derived that the helicity of the photons in EM must be conserved.
C the reduced squeezed Pfaffian

We write the reduced compactified Pfaffian (B.1), (B.2) in a slightly different way,

\[
Pf'_{\Psi; m:n} = \sum_{\{a,b\} \in \text{p.m.}(\gamma)} (-1)^m \frac{\text{Tr}(T^{I_{a_1} T^{I_{b_1}}})}{\sigma_{a_1,b_1} \sigma_{b_1,a_1}} \frac{\text{Tr}(T^{I_{a_2} T^{I_{b_2}}})}{\sigma_{a_2,b_2} \sigma_{b_2,a_2}} \cdots \frac{\text{Tr}(T^{I_{a_m} T^{I_{b_m}}})}{\sigma_{a_m,b_m} \sigma_{b_m,a_m}} \times \text{sgn}(\{a,b\}) \sigma_{a_1,b_1} \sigma_{a_2,b_2} \cdots \sigma_{a_{m-1},b_{m-1}} \sigma_{b_{m-1},a_m} \text{Pf}[\Psi]_{h,a_1,b_1,a_2,b_2,\cdots,a_{m-1},b_{m-1}; h}
\]

(C.1)

Here we use \(\text{Pf}[\Psi]_{h,a_1,b_1,a_2,b_2,\cdots,a_{m-1},b_{m-1}; h}\) to show what column and rows are left in the matrix \(\Psi_n\). \(\frac{\text{Tr}(T^{I_{a_1} T^{I_{b_1}}})}{\sigma_{a_1,b_1} \sigma_{b_1,a_1}}\) can be seen as a two-gluon Parke-Taylor factor. As shown in [4], it can be extended to a Parke-Taylor factor with arbitrary number of gluons,

\[
C_{a_1,a_2,\cdots,a_s} = \sum_{\omega \in \mathbb{S}_s/\mathbb{Z}_s} \frac{\text{Tr}(T^{I_{\omega(a_1)} T^{I_{\omega(a_2)}} \cdots T^{I_{\omega(a_s)}}})}{\sigma_{\omega(a_1) \omega(a_2)} \sigma_{\omega(a_2) \omega(a_3)} \cdots \sigma_{\omega(a_s) \omega(a_1)}}.
\]

(C.2)

We denote the set of gluons as \(g\) and the subsets sharing in the same color trace as \(\text{Tr}_1, \text{Tr}_2, \cdots, \text{Tr}_m\). Then the half integrand for EYM of such color trace are given by

\[
C_{\text{Tr}_1} \cdots C_{\text{Tr}_m} \sum_{a_1 < b_1 \in \text{Tr}_1} \cdots \sum_{a_{m-1} < b_{m-1} \in \text{Tr}_m} \text{sgn}(\{a,b\}) \sigma_{a_1,b_1} \cdots \sigma_{a_{m-1},b_{m-1}} \text{Pf}[\Psi]_{h,a_1,b_1,a_2,b_2,\cdots,a_{m-1},b_{m-1}; h} \cdot
\]

(C.3)

The reduction of \(\text{Pf}[\Psi]_{h,a_1,b_1,a_2,b_2,\cdots,a_{m-1},b_{m-1}; h}\) can be obtained from the above section (the explicit form with \(m = 1, 2, 3\) are given in (B.4), (B.8), (B.12) except removing \(\text{Pf}[\Psi]_{h, a, b}\) respectively). Here we present the reduction of the reduced squeezed Pfaffian for EYM amplitudes with single gluon color trace,

\[
C_{g} \det |h|_h^- \det |\tilde{h}|_h^+
\]

(C.4)

and that of double gluon color traces

\[
C_{\text{Tr}_1} C_{\text{Tr}_2} \sum_{e_1 < e_2 \in \text{Tr}_1} \left(\sum_{b_e \in \{e_1\} \cup \mathbb{h}^-} h_{b_e} \epsilon_{e_1} \det |[h]_{e_1}^[b_e]_{e_1}| \right) \left(\sum_{p_y \in \{e_2\} \cup \mathbb{h}^+} \tilde{h}_{p_y} \epsilon_{e_2} \det |[\tilde{h}]_{e_2}^{p_y}| \right) \sigma_{e_1 e_2}^2
\]

(C.5)

References

[1] Freddy Cachazo, Song He, and Ellis Ye Yuan. Scattering of Massless Particles in Arbitrary Dimensions. Phys. Rev. Lett., 113(17):171601, 2014. [arXiv:1307.2199].

[2] Freddy Cachazo, Song He, and Ellis Ye Yuan. Scattering of Massless Particles: Scalars, Gluons and Gravitons. JHEP, 07:033, 2014. [arXiv:1309.0885].
[3] Freddy Cachazo, Song He, and Ellis Ye Yuan. *Einstein–Yang–Mills Scattering Amplitudes From Scattering Equations*. JHEP, 1501:121, 2015. [arXiv:1409.8256].

[4] Freddy Cachazo, Song He, and Ellis Ye Yuan. *Scattering Equations and Matrices: From Einstein To Yang-Mills, DBI and NLSM*. JHEP, 07:149, 2015. [arXiv:1412.3479].

[5] Freddy Cachazo, Song He, and Ellis Ye Yuan. *Scattering in Three Dimensions from Rational Maps*. JHEP, 10:141, 2013. [arXiv:1306.2962].

[6] Freddy Cachazo, Song He, and Ellis Ye Yuan. *Scattering Equations and Kawai-Lewellen-Tye orthogonality*. Phys. Rev., D90(6):065001, 2014. [arXiv:1306.6575].

[7] Tim Adamo, Eduardo Casali, and David Skinner. *Ambitwistor Strings and the Scattering Equations at One Loop*. JHEP, 10:141, 2014. [arXiv:1312.3828].

[8] Lionel Mason and David Skinner. *Ambitwistor Strings and the Scattering Equations*. JHEP, 1407:048, 2014. [arXiv:1311.2564].

[9] Eduardo Casali, Yvonne Geyer, Lionel Mason, Ricardo Monteiro, and Kai A. Roehrig. *New Ambitwistor String Theories*. JHEP, 11:038, 2015. [arXiv:1506.08771].

[10] Edward Witten. *Perturbative gauge theory as a string theory in twistor space*. Commun. Math. Phys., 252:189–258, 2004. [hep-th/0312171].

[11] Radu Roiban, Marcus Spradlin, and Anastasia Volovich. *On the tree level S matrix of Yang-Mills theory*. Phys. Rev., D70:026009, 2004. [hep-th/0403190].

[12] Yvonne Geyer, Arthur E. Lipstein, and Lionel J. Mason. *Ambitwistor Strings in Four Dimensions*. Phys. Rev. Lett., 113(8):081602, 2014. [arXiv:1404.6219].

[13] Nima Arkani-Hamed and Jaroslav Trnka. The Amplituhedron. JHEP, 10:030, 2014.

[14] Song He. *A Link Representation for Gravity Amplitudes*. JHEP, 10:139, 2013.

[15] Song He, Zhengwen Liu, and Jun-Bao Wu. *Scattering Equations, Twistor-string Formulas and Double-soft Limits in Four Dimensions*. JHEP, 07:060, 2016. [arXiv:1604.02834].

[16] Freddy Cachazo and Guojun Zhang. *Minimal Basis in Four Dimensions and Scalar Blocks*. 2016. [arXiv:1601.06305].

[17] Freddy Cachazo and David Skinner. *Gravity from Rational Curves in Twistor Space*. Phys. Rev. Lett., 110(16):161301, 2013. [arXiv:1207.0741].

[18] Freddy Cachazo, Lionel Mason, and David Skinner. *Gravity in Twistor Space and its Grassmannian Formulation*. SIGMA, 10:051, 2014. [arXiv:1207.4712].

[19] Song He and Oliver Schlotterer. *Loop-level KLT, BCJ and EYM amplitude relations*. 2016.

[20] Freddy Cachazo. *Resultants and Gravity Amplitudes*. 2013. [arXiv:1301.3970].

[21] Song He and Yong Zhang. *New Formulas for Amplitudes from Higher-Dimensional Operators*. JHEP, 02:019, 2017. [arXiv:1608.08448].

[22] C. S. Lam and York-Peng Yao. *Evaluation of the Cachazo-He-Yuan gauge amplitude*. Phys. Rev., D93(10):105008, 2016. [arXiv:1602.06419].

[23] Yi-Jian Du, Fei Teng, and Yong-Shi Wu. *Characterizing the solutions to scattering equations that support tree-level N^k MHV gauge/gravity amplitudes*. 2016. [arXiv:1608.06040].

[24] Dhritiman Nandan, Jan Plefka, Oliver Schlotterer, and Congkao Wen. *Einstein-Yang-Mills from pure Yang-Mills amplitudes*. 2016. [arXiv:1607.05701].
[25] Tim Adamo, Eduardo Casali, Kai A. Roehrig, and David Skinner. *On tree amplitudes of supersymmetric Einstein-Yang-Mills theory*. JHEP, 12:177, 2015. [arXiv:1507.02207].

[26] Song He, Oliver Schlotterer, and Yong Zhang. New BCJ representations for one-loop amplitudes in gauge theories and gravity. 2017.

[27] Freddy Cachazo, Song He, and Ellis Ye Yuan. New Double Soft Emission Theorems. Phys. Rev., D92(6):065030, 2015.

[28] Song He, Yu-tin Huang, and Congkao Wen. Loop Corrections to Soft Theorems in Gauge Theories and Gravity. JHEP, 12:115, 2014.

[29] Massimo Bianchi, Song He, Yu-tin Huang, and Congkao Wen. *More on Soft Theorems: Trees, Loops and Strings*. Phys. Rev., D92(6):065022, 2015. [arXiv:1406.5155].

[30] Burkhard U. W. Schwab and Anastasia Volovich. Subleading Soft Theorem in Arbitrary Dimensions from Scattering Equations. Phys. Rev. Lett., 113(10):101601, 2014.

[31] Song He and Yong Zhang. *Connected formulas for amplitudes in standard model*. 2016. [arXiv:1607.02843].

[32] Song He and Zhengwen Liu. A note on connected formula for form factors. 2016. [arXiv:1608.04306].

[33] Andreas Brandhuber, Edward Hughes, Rodolfo Panerai, Bill Spence, and Gabriele Travaglini. The connected prescription for form factors in twistor space. 2016. [arXiv:1608.03277].

[34] Zvi Bern, John Joseph Carrasco, Tristan Dennen, Yu-tin Huang, and Harald Ita. Generalized Unitarity and Six-Dimensional Helicity. Phys. Rev., D83:085022, 2011.

[35] Andreas Brandhuber, Dimitrios Korres, Daniel Koschade, and Gabriele Travaglini. One-loop Amplitudes in Six-Dimensional (1,1) Theories from Generalised Unitarity. JHEP, 02:077, 2011.

[36] Tristan Dennen and Yu-tin Huang. Dual Conformal Properties of Six-Dimensional Maximal Super Yang-Mills Amplitudes. JHEP, 01:140, 2011.

[37] Song He and Ellis Ye Yuan. *One-loop Scattering Equations and Amplitudes from Forward Limit*. Phys. Rev., D92(10):105004, 2015. [arXiv:1508.06027].

[38] Freddy Cachazo, Song He, and Ellis Ye Yuan. *One-Loop Corrections from Higher Dimensional Tree Amplitudes*. JHEP, 08:008, 2016. [arXiv:1512.05001].

[39] Yvonne Geyer, Lionel Mason, Ricardo Monteiro, and Piotr Tourkine. One-loop amplitudes on the Riemann sphere. 2015. [arXiv:1511.06315].

[40] Yvonne Geyer, Lionel Mason, Ricardo Monteiro, and Piotr Tourkine. Loop Integrands for Scattering Amplitudes from the Riemann Sphere. Phys. Rev. Lett., 115(12):121603, 2015. [arXiv:1507.00321].

[41] Freddy Cachazo, Sebastian Mizera, and Guojun Zhang. Scattering Equations: Real Solutions and Particles on a Line. 2016. [arXiv:1609.00008].