Factors associated with successful dietary changes in an energy-reduced Mediterranean diet intervention: a longitudinal analysis in the PREDIMED-Plus trial

Cesar I. Fernandez-Lazaro1 · Estefanía Toledo1,2 · Pilar Buil-Cosiales1,2,3 · Jordi Salas-Salvadó2,4,5,6 · Dolores Corella2,7 · Montserrat Fitó8,8 · J. Alfredo Martínez2,9,10 · Ángel M. Alonso-Gómez2,11 · Julia Wärnberg2,12 · Jesús Vieque13,14 · Dora Romaguera2,15 · José López-Miranda2,16 · Ramon Estruch2,17 · Francisco J. Tinahones1,18 · José Lapetra2,19 · Luís Serra-Majem2,20 · Aurora Bueno-Cavanillas13,21 · Josep A. Tur2,22 · Vicente Martin Sánchez13,23 · Xavier Pintó2,24 · Miguel Delgado-Rodríguez13,25 · Pilar Matía-Martín26 · Josep Vidal27,28 · Emilio Ros2,28,29 · Clotilde Vázquez30 · Lidia Daimiel31 · Beatriz SanJulián1 · Jesús F. García-Gavilán2,4 · Jose V. Sorli2,7 · Olga Castañer2,8 · M. Ángeles Zulet2,10 · Lucas Tojal-Sierra2,11 · Napoleón Pérez-Farínós2,12 · Alejandro Oncina-Canovas14 · Manuel Moñino2,15 · Antonio García-Rios2,16 · Emilio Sacanella2,17 · Rosa M. Bernal-Lopez2,18 · José Manuel Santos-Lozano2,19 · Zenaida Vázquez-Ruiz1,2 · Jananee Muralidharan2,4 · Carolina Ortega-Azorin2,7 · Alberto Goday2,8 · Cristina Razquin1,2 · Leire Goicoeia-Guemez2,11 · Miguel Ruiz-Canela1,2 · Nerea Becerra-Tomás2,4,6 · Helmut Schröder2,8 · Miguel A. Martínez González1,2,3 · for the PREDIMED-Plus investigators

Received: 2 May 2021 / Accepted: 1 October 2021 / Published online: 30 November 2021
© The Author(s) 2021

Abstract

Purpose Long-term nutrition trials may fail to respond to their original hypotheses if participants do not comply with the intended dietary intervention. We aimed to identify baseline factors associated with successful dietary changes towards an energy-reduced Mediterranean diet (MedDiet) in the PREDIMED-Plus randomized trial.

Methods Longitudinal analysis of 2985 participants (Spanish overweight/obese older adults with metabolic syndrome) randomized to the active intervention arm of the PREDIMED-Plus trial. Dietary changes were assessed with a 17-item energy-reduced MedDiet questionnaire after 6 and 12 months of follow-up. Successful compliance was defined as dietary changes from baseline of ≥ 5 points for participants with baseline scores < 13 points or any increase if baseline score was ≥ 13 points. We conducted crude and adjusted multivariable logistic regression models to identify baseline factors related to compliance.

Results Consistent factors independently associated with successful dietary change at both 6 and 12 months were high baseline perceived self-efficacy in modifying diet (OR6-month: 1.51, 95% CI 1.25–1.83; OR12-month: 1.66, 95% CI 1.37–2.01), higher baseline fiber intake (OR6-month: 1.62, 95% CI 1.07–2.46; OR12-month: 1.62, 95% CI 1.07–2.45), having > 3 chronic conditions (OR6-month: 0.65, 95% CI 0.53–0.79; OR12-month: 0.76, 95% CI 0.62–0.93), and suffering depression (OR6-month: 0.80, 95% CI 0.64–0.99; OR12-month: 0.71, 95% CI 0.57–0.88).

Conclusion Our results suggested that recruitment of individuals with high perceived self-efficacy to dietary change, and those who initially follow diets relatively richer in fiber may lead to greater changes in nutritional recommendations. Participants with multiple chronic conditions, specifically depression, should receive specific tailored interventions.

Trial registration ISRCTN registry 89898870, 24th July 2014 retrospectively registered http://www.isrctn.com/ISRCTN89898870.

Keywords PREDIMED-Plus · Dietary change · Factors · Dietary adherence · Mediterranean diet · Randomized controlled trials

* Miguel A. Martínez González
mamartinez@unav.es

Extended author information available on the last page of the article
Introduction

Randomized controlled trials (RCTs) are considered the gold standard for clinical nutrition research. They offer scientific evidence of the highest quality level to infer causality of the health effects of diet interventions [1]. However, an important potential limitation in intervention trials occurs when participants do not comply with the intended dietary intervention, which may lead to worthless results [2].

In long-term randomized nutritional trials, participants require a high level of commitment to modify their diet. When participants do not sufficiently adhere to their assigned intervention, no substantial between-group contrast may be attained, and the magnitude of dietary effects can be considerably reduced. Consequently, the results of such trials render misleading results or null findings. As such, after 8 years of follow-up in the Randomized Controlled Dietary Modification Trial of the Women’s Health Initiative (WHI), a low-fat dietary intervention did not significantly reduce the risk of breast cancer, total cancer, coronary heart disease, certain chronic diseases, and total mortality when compared with a usual high-fat diet [3, 4]. However, the trial failed to achieve the 14% intended fat difference between the intervention and control groups; in fact, only 8% of energy fat reduction was achieved. In addition, further challenges to compliance with interventions on low-carbohydrate diets have been reported [5]. Lack of adherence was also reported in the Multiple Risk Factor Intervention Trial (MRFIT), an intervention that intended to obtain reductions in serum cholesterol (with diet), smoking cessation, and treatment of hypertension [6]. Contrasts in dietary changes between the control and intervention groups in the MRFIT were insufficient as to observe significant differences on cardiovascular disease (CVD) [7]. Even in the PREDIMED trial, which successfully demonstrated strong evidence on the role of the Mediterranean diet (MedDiet) on primary prevention of CVD [8], stronger beneficial effects would have been expected if participants had greater adherence to the intervention diet and the low-fat diet as reported in complementary per-protocol analyses. In fact, the per-protocol analyses suggested a much stronger risk reduction in the MedDiet groups compared to the control group than the intention-to-treat analysis.

Total exclusion in advance of overall non-compliant participants in dietary interventions is unattainable as well as it is unrealistic to believe that the original standard during RCTs can be maintained in normal life. Moreover, it is well known that RCTs usually attain only a suboptimal external validity. However, RCTs represent the gold standard for causal inference and recruiting a population that theoretically may help to maximize compliance with the targeted dietary interventions will make the trial more feasible and will potentially ensure sufficient exposure contrast, contributing to make the RCT more informative from a causal inference point of view. Otherwise, costly, long-term trials may continue failing to respond to its original hypothesis. Determining which patients’ and which design components maximize compliance can help investigators identify the most appropriate candidates and modifiable study features that are amenable to be redesigned. Limited knowledge exists on participants’ characteristics which may predict compliance to an intervention fostering the adherence to a healthy dietary pattern such as the MedDiet [9–15]. Most of this research has been limited to cross-sectional studies [11–15], with few longitudinal studies examining factors that predict dietary change in clinical trials [9, 10]. Thus, we aimed to identify factors of compliance to an energy-reduced MedDiet (erMedDiet) after 6 and 12 months of follow-up in the PREDIMED-Plus (PREvención con DIeta MEDiterránea Plus) randomized trial, a 6-year parallel-group, multicenter weight-loss lifestyle intervention program.

Methods

Study design and participants

The present study is a longitudinal analysis restricted only to the intervention group of the PREDIMED-Plus trial. The study design and procedures of PREDIMED-Plus have been described in detail [16, 17]. In brief, it assesses the effect of an intensive lifestyle weight-loss intervention on the primary prevention of hard cardiovascular events. The intervention consists of an erMedDiet together with physical activity promotion and behavioral support for specific weight-loss goals on primary prevention of CVD events. More specifically, participants in the intervention group (n = 3406) regularly received individual motivational interviews and monthly phone calls, and attended group sessions in which trained dietitians encourage them to adopt suitable dietary and lifestyle changes. The erMedDiet intervention targeted a reduction of approximately 30% of estimated energy requirements, which represented a reduction goal of approximately 600 kcal/day [16, 17]. Moreover, the erMedDiet aimed to promote a better overall quality of the diet through the limitation of certain foods such as sugar-sweetened beverages, red and processed meats, butter and cream, added sugars, sweets and pastries, and refined cereals, including white bread, in favor of whole grains. Physical activity promotion included a face-to-face educational program [18] aimed to gradually increase participants’ aerobic physical activity levels to meet, at least, the World Health Organization (WHO) guidelines according to the participants’ age and
health status [19]. Recommendations of physical activities also included static exercises to improve resistance, strength, flexibility, and balance. On the other hand, participants in the control group (n = 3468) were encouraged to follow an unrestricted energy MedDiet, had biannual educational sessions on the traditional MedDiet with ad libitum caloric intake, and received usual care of general lifestyle recommendations.

Potential candidates to participate in the PREDIMED-Plus trial were overweight/obese [body mass index (BMI) 27–40 kg/m²] males (aged 55–75 years of age) and females (60–75 years of age), with metabolic syndrome [20], and free of CVD at enrollment. The recruitment of participants of the PREDIMED-Plus took place from September 2013 until October 2016 in 23 Spanish centers. After completing a 4-week run-in period after the initial screening visit, participants were allocated in a 1:1 ratio (either the intervention or control arm) using a computer-generated random allocation sequence stratified by sex, age (<65, 65–70, >70 years of age), and center, which was concealed to principal investigators and staff members. Couples in the same household were randomly assigned as a unit. The Institutional Review Boards approved the study protocol of the recruiting centers participating in the study, and the PREDIMED-Plus trial was retrospectively registered at the International Standard Randomized Controlled Trial (ISRCTN 89898870; registration date, 24 July 2014), https://www.isrctn.com/ISRCTN89898870?q=ISRCTN89898870. All participants provided written informed consent.

Outcome assessment

A 17-item erMedDiet questionnaire [16] was used to assess dietary adherence to the intervention group (Additional File 1: Table s1). The 17-point scale of erMedDiet adherence is an adapted version of the previously validated 14-item questionnaire used in the PREDIMED trial [21]. This modified version includes stricter cut-off points and additional items aimed to specifically capture the potential caloric restriction for existing weight-loss goals for the erMedDiet. Compliance with each of the 17 items of the questionnaire was scored with 1 point; otherwise, the score was 0 points. As such, the erMedDiet score ranged from 0 to 17, and the higher the score, the greater the adherence. Adherence to the erMedDiet was assessed by the PREDIMED-Plus trained dietitians at baseline and at each follow-up visit.

The outcome of the present study was to attain a successful response to the dietary intervention at 6- and 12-months of follow-up. Successful dietary response was defined as an increase in at least 5 points from baseline to follow-up in the erMedDiet score or any positive increase (≥ 1 point) for participants with 13 or higher scores at baseline. Participants, therefore, were classified as adherent and non-adherent based on their 17-item erMedDiet score change from baseline to 6-month and from baseline to 12-month follow-up visits (Additional File 1: Fig. s1).

Covariate assessment

Usual diet was ascertained at baseline and follow-up visits by trained dietitians throughout face-to-face interviews using the Spanish version of a previously validated 143-item semiquantitative food-frequency questionnaire (SFFQ) [22, 23]. Food consumption frequencies were registered in nine categories ranging from “never or seldom” to “≥ 6 times/ day” and food composition tables were used to calculate energy and nutrient intakes for each participant [24, 25]. An additional questionnaire was used to collect updated information in each visit about socio-demographics, personal and family history of disease, and lifestyles, including leisure-time physical activity, assessed by the Rapid Assessment of Physical Activity Questionnaires (RAPA-1 and RAPA-2) [26], the validated Minnesota-REGICOR short physical activity questionnaire [27], and the validated Spanish version of the Nurses’ Health Study questionnaire [28]. Weight and height were measured by registered dietitians with standardized procedures. Blood pressure was measured in triplicate by registered nurses using a validated semiautomatic oscillometer (Omron HEM 297 705C). Blood samples were collected after an overnight fast to determine levels of fasting blood glucose, among other determinations, with standard enzymatic methods.

Independent factors

Potential baseline factors of compliance to MedDiet were selected considering existing literature and preceding results of the PREDIMED trial [9, 10]. We categorized candidate factors in the following groups: socio-demographics, health-related characteristics, study design features, lifestyle behaviors, and baseline energy and nutrient intake. Sociodemographic characteristics included sex, age (<65 years, and ≥65 years), marital status (married, single, widowed, and others/missing), highest attained educational level (college/university, secondary, primary or less), occupation (retired, working, unemployed/unable to work, housewife), and number of people living in the household (continuous).

Health-related characteristics comprised family history of premature CVD (dichotomous), number of chronic conditions (≤3 and >3), self-reported score of nervousness and/or aggressiveness behavior (quartiles), body weight (continuous, per 5 kg), waist circumference (continuous, per 5 cm), systolic and diastolic blood pressure (both continuous, per 5 mm Hg), and fasting blood glucose (continuous, per 10 mg/dL). Family history of premature CVD was defined as any immediate family member deceased by CVD.
younger than 55 years for men, and 65 years for women; for number of chronic conditions the following diagnoses were considered: hypertension, obesity (BMI \(\geq 30 \, \text{kg/m}^2 \)), type 2 diabetes, hypercholesterolemia, cancer, and depression; self-reported measures of nervousness and/or aggressiveness behavior were self-reported on a scale from 1 (very low self-perception) to 10 (very high self-perception). **Study design features** included recruitment period (<1st year, between 1st and 2nd year, between 2nd and 3rd year, and after 3rd year of recruitment), and total field center workload (below and above the median). Recruitment year was referred to the period (years) in which participants were recruited, from the date of the first recruited participant (Sep/05/2013) to the date of the last recruited participant (Oct/31/2016); total field center workload was quantified as the number of participants per center. **Lifestyle behavior** included leisure-time physical activity (METs-min/week, quartiles) and RAPA test (sedentary/under-active, under-active regular-activities, under-active regular, and active), 30-s chair test (number of repeats, quartiles), smoking status (never, current, former), alcohol intake other than wine (\(\leq 5 \, \text{g/day} \) and \(> 5 \, \text{g/day} \)), sleeping (hours, quartiles), and self-efficacy for diet modification (little/some and high). Self-efficacy for diet modification was defined as participants’ beliefs in their ability to achieve dietary change with three options (little, some, or high); given the scarce number of participants responding “little”, we merged the two lower categories. **Energy and nutrient intake** factors comprised baseline total energy intake (kcal/day, sex-specific quartiles), predefined limits of energy intake (within limits: 500–3500 kcal for women and 800–4000 kcal/day for men, and beyond limits: < 500 or > 3500 kcal/day for women and < 800 or > 4000 kcal/day for men) were used to select the analytical sample [29], fruit + vegetable consumption (g/day, sex-specific quartiles), meat consumption (g/day, sex-specific quartiles), baseline dietary fat intake (%E, quartiles), fiber intake (g/day, sex-specific quartiles), carbohydrate quality index (CQI) (score, quartiles), and baseline 17-point erMedDiet adherence (score, quartiles). CQI referred to the quality of dietary carbohydrate intake and was constructed upon the following four carbohydrate quality domains: high total dietary fiber intake, low glycemic index, high whole-grain carbohydrate: total grain carbohydrate ratio, and high solid carbohydrate: total carbohydrate ratio [30].

Statistical analysis

Descriptive statistics, including means and standard deviations (SD) for quantitative variables and percentages for categorical variables, were used to describe baseline characteristics of participants categorized as **non-adherent** and **adherent** according to their 17-item erMedDiet score change from baseline to 6 and 12 months of follow-up. Chi-squared tests for categorical variables and Student’s t test (the assumption of normality was not violated given the large sample size) for continuous variables were used to assess differences between groups. We performed crude and adjusted multivariable logistic regression models to evaluate the probability of appropriate compliance according to the aforementioned baseline factors. Hence, odds ratios (OR) < 1 suggest **poor compliance** of dietary change, whereas ORs > 1 suggest **successful compliance**. For categorical variables, we used as reference the category which was expected a priori to show a greater odds of compliance, while the reference category for ordinal factors was considered the lowest category (usually, the first quartile). Tests of linear trend across categories of potential factors were run assigning the median to each category and treating the resulting variables as continuous. Participants with missing values in candidate factors were categorized as a separate group.

We conducted several sensitivity analyses using multivariable logistic regression models to corroborate the consistency of factors under different scenarios: excluding participants with any missing value; excluding participants with baseline score \(\geq 13 \) points in the 17-item erMedDiet adherence questionnaire; and using an alternative definition of the outcome, especially scoring \(> 12 \) points at follow-up (instead of our original definition, Additional File 1: Fig. s1).

All analyses were performed using Stata software, version 16.0 (StataCorp LP) using the PREDIMED-Plus database updated in March 2019. A two-sided p value < 0.05 was deemed as statistically significant.

Results

Sample characteristics

We excluded participants in the control group of the trial. Among the 3406 participants of the intervention arm of the PREDIMED-Plus trial, we excluded 409 (12%) individuals with missing data on the 17-item erMedDiet questionnaire either at baseline or during follow-up, and 12 (0.4%) participants with missing information of energy intake. The remaining 2985 individuals (1445 females and 1540 males) were included in our analyses. There were neither withdrawals nor losses to follow-up before the study completion (Fig. 1).

The mean (SD) age of the 2985 participants included in the study was 64.9 (4.9) years, 76% of them were married, 56% retired, 47% received primary education or less, and 45% never smoked. Baseline characteristics of participants according to their changes in the adherence to the 17-item erMedDiet from baseline to 6-month and 12-month follow-up period are shown in Table 1. At 6 months, nearly half of
the participants (49.5%) successfully attained an adequate change, while the proportion of adherent participants at 12 months was slightly higher (52.4%).

Factors of dietary change (6 months)

Table 2 shows the main results for the crude and multivariable logistic regression analyses for the association between baseline characteristics and dietary compliance after 6 and 12 months of follow-up in the intervention group of the trial. Baseline characteristics significantly associated with better compliance at 6-month follow-up in multivariable analyses were: moderate level of physical activity (METs-min/week), high self-reported self-efficacy at baseline to change their diet, moderate consumption of fruit + vegetables, moderate meat consumption, and high fiber intake. On the other hand, being single (vs. married), having more than three chronic conditions, and being a current smoker (vs. never smoker) were associated with poorer compliance. Regarding study design features, high total field center workload was the only predictor associated with poorer compliance. Additionally, participants with a previous diagnosis of type 2 diabetes and depression were less likely to adhere to the intervention (Table 3). Noteworthy, when introducing in the model the predictor chronic conditions categorized by the number of conditions (≤ 1, 2, 3, 4, and ≥ 5) instead of as a dichotomous variable (≤ 3 and > 3 conditions), the odds of compliance monotonically decreased as the number of chronic conditions increased (OR: 0.77, 95% CI 0.56, 1.04 for 2 conditions; OR: 0.75, 95% CI 0.55, 1.01 for 3 conditions; OR: 0.52, 95% CI 0.37, 0.73 for 4 conditions; OR: 0.41, 95% CI 0.25, 0.68 for ≥ 5 conditions; ref.: ≤ 1 conditions; data not shown). Additionally, the likelihood of successful compliance decreased across successive quartiles of higher baseline adherence to the erMedDiet score, probably representing a ceiling effect (Additional File 1: Table s2). The factors independently associated with dietary compliance at 6-month follow-up are shown in Fig. 2.

Sensitivity analyses

We re-ran the models under different assumptions (Additional File 1: Tables s3, s4, and s5). The baseline potential factors which were consistently independently associated with successful compliance after 6 and 12 months of follow-up in all sensitivity analyses included high self-reported self-efficacy for diet modification at baseline and higher fiber intake. Consistent potential factors of poor compliance included the presence of chronic conditions (both dichotomized and categorized), depression, and higher baseline adherence to erMedDiet scale. High field center workload was the only design feature associated with poor adherence. This finding might be related to a suboptimal proportion of staff with respect to participants in the centers with a higher number of participants. Of note, the association between higher fiber intake and higher compliance became inverse when we no longer adjusted for baseline adherence.
Table 1 Baseline characteristics of the intervention group in the PREDIMED-Plus trial \((n = 2,985)\) according to attained 6-month and 12-month adherence to a 17-item energy-reduced MedDiet score

Baseline characteristics	6-month follow-up	12-month follow-up	p value	6-month follow-up	12-month follow-up	p value
	Non-adherent\(^1\)	Adherent\(^1\) (increasing ≥ 5 points if baseline < 13p or any increase if baseline ≥ 13p)	p value	Non-adherent\(^1\)	Adherent\(^1\) (increasing ≥ 5 points if baseline < 13p or any increase if baseline ≥ 13p)	p value
Socio-demographics						
Sex, women	50.5	46.3	0.021	51.1	45.9	0.005
Age, years, mean (SD)	65.2 (4.9)	64.7 (5.0)	0.005	65.2 (5.0)	64.7 (4.9)	0.016
Marital status						
Married	73.8	77.2	0.034	73.1	77.6	0.020
Single	6.4	4.3		6.0	4.8	
Widowed	10.9	10.9		11.3	10.5	
Others/missing	9.0	7.6		9.6	7.1	
Attained education level			0.621			0.725
College/university	22.2	20.8		22.1	21.0	
Secondary	30.7	30.5		31.1	30.1	
Primary or less	46.4	47.5		45.9	47.9	
Occupation			0.657			0.833
Retired	55.9	55.6		55.0	56.5	
Working	20.1	22.0		21.0	21.1	
Unemployed or unable to work	8.0	7.9		8.2	7.7	
Housewife	15.3	13.9		15.1	14.1	
Number of people in household, mean (SD)	1.4 (1.1)	1.4 (1.2)	0.351	1.4 (1.1)	1.4 (1.0)	0.069
Baseline health-related characteristics						
Hypertension	84.4	82.9	0.260	83.5	83.8	0.802
Obesity	72.7	72.7	0.965	71.9	73.4	0.334
Type 2 diabetes	32.1	23.5	< 0.001	31.3	24.7	< 0.001
Hypercholesterolemia	71.1	68.7	0.154	70.1	69.8	0.853
\(^2\)Family history of premature CVD	12.3	13.1	0.557	12.9	12.5	0.787
Cancer	7.6	7.1	0.582	7.5	7.3	0.867
Depression	21.0	17.6	0.017	21.9	17.0	0.001
\(^3\)Average number of chronic conditions, mean (SD)	2.9 (1.0)	2.7 (1.0)	< 0.001	2.9 (1.0)	2.8 (1.0)	0.007
\(^4\)Self-reported measure of nervousness and/or aggressiveness behavior						
Q1 (low)	27.3	27.4		28.4	26.4	
Q2	37.6	35.8		37.5	36.0	
Q3	11.5	11.8		11.3	11.9	
Q4 (high)	23.6	25.0		22.8	25.7	
Body weight, kg, mean (SD)	85.8 (12.9)	87.2 (13.1)	0.003	85.9 (13.3)	87.0 (12.8)	0.023

\(^1\)Decreasing, equal or increment < 5 points; increasing ≥ 5 points if baseline < 13p or any increase if baseline ≥ 13p.
Table 1 (continued)

Baseline characteristics	6-month follow-up	12-month follow-up				
	Non-adherent¹ (decreasing, equal or increment < 5 points) (<i>n</i> = 1507)	Adherent¹ (increasing ≥ 5 points if baseline < 13p or any increase if baseline ≥ 13p) (<i>n</i> = 1478)	p value	Non-adherent¹ (decreasing, equal or increment < 5 points) (<i>n</i> = 1422)	Adherent¹ (increasing ≥ 5 points if baseline < 13p or any increase if baseline ≥ 13p) (<i>n</i> = 1563)	p value
Waist circumference, cm, mean (SD)	107 (10)	108 (10)	0.013	107 (10)	108 (10)	0.213
BMI, kg/m², mean (SD)	32.5 (3.4)	32.6 (3.5)	0.299	32.5 (3.4)	32.6 (3.5)	0.541
SBP, mmHg, mean (SD)	139 (18)	140 (17)	0.014	139 (17)	140 (17)	0.191
DBP, mmHg, mean (SD)	80.5 (9.9)	81.1 (9.9)	0.096	80.7 (10.2)	81 (9.7)	0.464
Fasting blood glucose, mg/dL, mean (SD)	113 (28)	112 (26)	0.197	113 (28)	112 (27)	0.249
Study design features						
Recruitment year	0.005		<0.001			
< 1st	0.6	7.4	11.3	6.9		
1st–2nd	25.4	25.6	24.0	26.9		
2nd–3rd	48.0	52.9	49.0	51.8		
> 3rd	16.1	14.1	15.8	14.4		
Total workload of center, participants, mean (SD)	151 (64)	154 (62)	0.330	152 (64)	153 (62)	0.547
Baseline lifestyles and behaviors						
Physical activity						
METs-min/week, mean (SD)	2498 (2312)	2332 (2170)	0.043	2398 (2180)	2431 (2301)	0.687
RAPA test	0.278		0.197			
Level 1 (sedentary or under-active)	18.4	18.8	19.5	17.9		
Level 2 (under-active regular—light activities)	35.3	37.0	36.8	35.6		
Level 3 (under-active regular)	17.3	18.3	16.3	19.1		
Level 4 (active)	29.0	25.8	27.4	27.4		
Chair test 30 s, repeats, mean (SD)	13.1 (4.9)	13.4 (4.7)	0.140	13.1 (4.9)	13.4 (4.7)	0.053
Smoking status, n (%)						
Never smokers	44.3	45.3	44.4	45.1		
Current smokers	13.9	12.7	14.2	12.5		
Former smokers	41.2	41.7	40.8	42.0		
Alcohol intake other than wine, g/day, mean (SD)	4.5 (8.6)	4.7 (8.3)	0.272	4.5 (9.0)	4.6 (8.0)	0.210
Sleeping, hours/day, mean (SD)	7.0 (1.2)	7.0 (1.2)	0.644	7.0 (1.2)	7.0 (1.2)	0.960
High perceived self-efficacy for diet modification	72.9	77.7	0.003	71.9	78.3	<0.001
Table 1 (continued)

Baseline characteristics	6-month follow-up	12-month follow-up				
	Non-adherent¹ (decreasing, equal or increment < 5 points)	Adherent¹ (increasing ≥ 5 points if baseline < 13p or any increase if baseline ≥ 13p)	p value	Non-adherent¹ (decreasing, equal or increment < 5 points)	Adherent¹ (increasing ≥ 5 points if baseline < 13p or any increase if baseline ≥ 13p)	p value
Baseline dietary pattern, total energy, and nutrient intake						
Baseline 17-item energy-reduced MedDiet score, mean (SD)	9.4 (2.3)	7.5 (2.6)	<0.001	9.5 (2.3)	7.5 (2.6)	<0.001
Total energy intake, kcal/day, mean (SD)	2365 (610)	2438 (588)	0.001	2356 (599)	2443 (598)	<0.001
Participants with total energy intake beyond predefined limits (Willett)	2.5	2.4	0.877	2.2	2.6	0.431
Baseline fruit + vegetable consumption, g/day, mean (SD)	714 (293)	676 (266)	<0.001	716 (290)	677 (270)	<0.001
Baseline meat consumption, g/day, mean (SD)	146 (60)	152 (59)	0.003	146 (60)	151 (59)	0.008
Baseline dietary fat intake, % E, mean (SD)	39.4 (6.8)	39.6 (6.3)	0.352	39.7 (6.7)	39.4 (6.4)	0.251
Baseline fiber intake, g/day, mean (SD)	27.2 (9.4)	26.1 (8.7)	<0.001	27.2 (9.5)	26.1 (8.7)	<0.001
Baseline carbohydrate Quality Index⁷, mean (SD)	10.1 (2.6)	9.6 (2.6)	<0.001	10.2 (2.5)	9.6 (2.6)	<0.001

Values are percentages of participants unless otherwise indicated.

BMI body mass index, CC chronic conditions, CVD cardiovascular disease, DBP diastolic blood pressure, E energy, MedDiet Mediterranean diet, MET metabolic equivalent, Q quartile, RAPA rapid assessment of physical activity, SBP systolic blood pressure

Data available in the intervention group of the PREDIMED-Plus trial (<i>n</i> = 2985); for marital status (<i>n</i> = 10 missing); for attained education level (<i>n</i> = 29 missing); for occupation (<i>n</i> = 20 missing); for number of people in household (<i>n</i> = 5 missing); for self-reported measure of nervousness and/or aggressiveness behavior (<i>n</i> = 26 missing); for SBP (<i>n</i> = 23 missing); for DBP (<i>n</i> = 23 missing); for fasting blood glucose (<i>n</i> = 42 missing); for RAPA test (<i>n</i> = 1 missing); for smoking status (<i>n</i> = 14 missing); for sleeping hours (<i>n</i> = 38 missing).

¹Adherence to Mediterranean diet was evaluated using a 17-point scale of adherence to an energy-reduced MedDiet questionnaire (1 point for each item). Participants with an increase of ≥ 5 points from baseline to follow-up were classified in the “adherent group”. Participants with ≥ 13 points at baseline and any positive increase (≥ 1 point) from baseline to follow-up were additionally classified in the “adherent group”. Detailed information is provided in Additional File 1: Figure s1.

²Family history of premature CVD was defined as any immediate family member deceased younger than 55 years for men and 65 years for women.

³Number of chronic conditions was calculated by summing the following chronic conditions (1 point for each condition): hypertension, obesity, type 2 diabetes, hypercholesterolemia, cancer, and depression.

⁴Self-reported measure of nervousness and/or aggressiveness behavior was reported on a scale from 1 (very low self-perception) to 10 (very high self-perception).

⁵Recruitment year was referred to the period (years) in which participants were recruited, from the date of the first recruited participant to the date of the last recruited participant (<1, 1–2, 2–3, and >3 years).

⁶Total workload of center was measured as the number of participants in the intervention group per center

⁷Carbohydrate Quality Index was referred to the quality of dietary carbohydrate intake (high total dietary fiber intake, low glycemic index, high whole-grain carbohydrate: total grain carbohydrate ratio, and high solid carbohydrate: total carbohydrate ratio.
Table 2 Odds ratios (OR) and 95% confidence intervals (95% CI) of attaining good adherence\(^1\) (increasing ≥ 5 points if baseline < 13p or any increase if baseline ≥ 13p\(^1\)) to the MedDiet intervention at 6 and 12 months of follow-up in the active intervention group of the PREDEM-Plus trial (\(n = 2,985\))

Baseline characteristics	n	OR (95% CI) for adherence (increasing ≥ 5 points if baseline < 13p or any increase if baseline ≥ 13p\(^1\)) to the MedDiet intervention (adherent vs. non-adherent) \(^2\)							
		6 month-follow-up	12 month-follow-up						
		Crude \(^3\)	\(p\) value	Multivariable\(^4\)	\(p\) value	Crude \(^3\)	\(p\) value	Multivariable\(^4\)	\(p\) value
Socio-demographics									
Sex									
Men	1540	1.00 (ref)	–						
Women	1445	0.84 (0.73–0.97)	0.021	1.19 (0.93–1.52)	0.173	0.81 (0.70–0.94)	0.005	1.10 (0.86–1.40)	0.470
Age, years									
< 65	1404	1.00 (ref)	–						
≥ 65	1581	0.88 (0.77–1.02)	0.094	0.86 (0.70–1.07)	0.171	0.89 (0.77–1.03)	0.109	0.80 (0.65–0.99)	0.039
Marital status									
Married	2253	1.00 (ref)	–						
Single	160	0.65 (0.47–0.90)	0.010	0.64 (0.44–0.93)	0.020	0.76 (0.55–1.04)	0.089	0.83 (0.57–1.20)	0.317
Widowed	325	0.96 (0.76–1.21)	0.710	0.97 (0.73–1.29)	0.837	0.87 (0.69–1.10)	0.254	0.92 (0.69–1.22)	0.544
Others/missing	247	0.81 (0.62–1.05)	0.114	0.84 (0.62–1.14)	0.253	0.70 (0.54–0.91)	0.008	0.75 (0.55–1.02)	0.066
Attained education level									
College/university	642	1.00 (ref)	–						
Secondary	913	1.06 (0.86–1.30)	0.581	0.94 (0.75–1.18)	0.602	1.02 (0.83–1.25)	0.847	0.85 (0.67–1.07)	0.164
Primary or less	1401	1.09 (0.90–1.31)	0.371	1.06 (0.84–1.33)	0.641	1.10 (0.91–1.33)	0.319	1.01 (0.80–1.27)	0.938
Missing	29	1.54 (0.72–3.27)	0.265	1.28 (0.56–2.96)	0.558	1.03 (0.49–2.16)	0.947	0.80 (0.35–1.85)	0.602
Occupation									
Retired	1665	1.00 (ref)	–						
Working	628	1.10 (0.92–1.32)	0.309	0.88 (0.68–1.14)	0.321	0.98 (0.82–1.18)	0.836	0.72 (0.56–0.93)	0.013
Unemployed or unable to work	237	1.00 (0.76–1.31)	0.999	0.81 (0.58–1.14)	0.226	0.92 (0.70–1.21)	0.568	0.69 (0.49–0.96)	0.029
Housewife	435	0.91 (0.74–1.13)	0.405	0.85 (0.65–1.11)	0.228	0.91 (0.73–1.12)	0.361	0.88 (0.67–1.15)	0.363
Missing	20	0.84 (0.35–2.04)	0.698	0.99 (0.36–2.70)	0.984	0.72 (0.30–1.76)	0.476	0.88 (0.32–2.39)	0.799
Number of people in household (continuous)									
Body weight, (per 5 kg)									
SBP (per 5 mm Hg)	2985	1.03 (0.96–1.11)	0.344	0.96 (0.88–1.05)	0.387	1.07 (0.99–1.14)	0.070	1.00 (0.92–1.09)	0.943
Waist circumference (per 5 cm)									
DBP (per 5 mm Hg)	2985	1.03 (0.99–1.07)	0.100	1.02 (0.97–1.07)	0.414	1.01 (0.98–1.05)	0.487	1.01 (0.96–1.07)	0.567

\(^1\)Family history of premature CVD

\(^2\)Number of chronic conditions

\(^3\)Self-reported measure of nervousness and/or aggressiveness behavior, score

\(^4\)Self-reported measure of nervousness and/or aggressiveness behavior, score
Table 2 (continued)

Table 2

Baseline characteristics	n	OR (95% CI) for adherence (increasing ≥ 5 points if baseline < 13p or any increase if baseline ≥ 13p) to the MedDiet intervention (adherent vs. non-adherent)			
		6 month-follow-up			
		Crude	p value	Multivariable	p value
Fasting blood glucose	2985	0.98 (0.96–1.01)	0.147	1.00 (0.97–1.03)	0.900
(per 10 mg/dL)					
Study design features					
< 1st	268	1.00 (ref)	–	1.00 (ref)	–
1st–2nd	761	1.45 (1.09–1.92)	0.010	1.11 (0.81–1.53)	0.510
2nd–3rd	1506	1.57 (1.20–2.04)	0.001	1.28 (0.94–1.74)	0.112
> 3rd	450	1.28 (0.95–1.74)	0.109	0.98 (0.69–1.40)	0.919
Total workload of center, participants in intervention group					
Below median (n ≤ 128)	1498	1.00 (ref)	–	1.00 (ref)	–
Above median (n > 128)	1487	0.81 (0.70–0.93)	0.003	**0.76 (0.65–0.90)**	**0.002**
Lifestyle behavior					
Physical activity					
Q1 (< 840)	778	1.00 (ref)	–	1.00 (ref)	–
Q2 (840–1818)	720	1.22 (0.99–1.49)	1.35 (1.06–1.71)	1.35 (1.06–1.71)	
Q3 (1819–3356)	762	1.09 (0.89–1.33)	1.27 (0.99–1.62)	1.01 (0.82–1.23)	
Q4 (> 3356)	725	0.88 (0.72–1.08)	0.057	1.04 (0.80–1.36)	0.619
RAPA test					
Level 1 (sedentary or under-active)	556	1.00 (ref)	–	1.00 (ref)	–
Level 2 (under-active regular—light activities)	1079	1.03 (0.84–1.26)	0.790	1.01 (0.80–1.28)	0.919
Level 3 (under-active regular)	531	1.04 (0.82–1.32)	0.733	1.12 (0.84–1.49)	0.436
Level 4 (active)	819	0.87 (0.70–1.08)	0.221	1.13 (0.86–1.50)	0.378
Smoking status, n (%)					
Never smokers	1337	1.00 (ref)	–	1.00 (ref)	–
Current smokers	397	0.90 (0.72–1.12)	0.348	**0.75 (0.57–0.98)**	**0.038**
Former smokers	1237	0.99 (0.85–1.16)	0.903	0.95 (0.78–1.16)	0.634
Missing	14	0.55 (0.18–1.66)	0.293	0.42 (0.13–1.40)	0.159
Alcohol intake other than wine					
Never	997	1.00 (ref)	–	1.00 (ref)	–
≤ 5 g/day	1266	1.05 (0.89–1.23)	0.603	0.93 (0.76–1.12)	0.432
> 5 g/day	722	1.12 (0.93–1.36)	0.235	0.95 (0.74–1.22)	0.683
Sleeping, hours/day					
Q1 (< 7)	964	1.00 (ref)	–	1.00 (ref)	–
Q2 (7)	984	0.99 (0.83–1.18)	0.98 (0.80–1.20)	0.94 (0.79–1.12)	
Q3 (8)	777	0.87 (0.72–1.05)	0.86 (0.70–1.06)	0.99 (0.82–1.20)	
Q4 (> 8)	260	1.14 (0.87–1.50)	0.763	1.10 (0.80–1.50)	0.634

European Journal of Nutrition (2022) 61:1457–1475
Table 2 (continued)

Baseline characteristics	n	OR (95% CI) for adherence (increasing ≥ 5 points if baseline < 13p or any increase if baseline ≥ 13p) to the MedDiet intervention (adherent vs. non-adherent)							
		6 month-follow-up							
		Crude3	p value	Multivariable4	p value	Crude3	p value	Multivariable4	p value
Self-efficacy for diet modification									
Little or some	738	1.00 (ref)	–						
High	2247	1.29 (1.09–1.53)	0.003	1.51 (1.25–1.83)	< 0.001	1.41 (1.19–1.66)	< 0.001	1.66 (1.37–2.01)	< 0.001
Total energy and nutrient intake									
Total energy intake, kcal/day									
Q1 (men < 2121; women < 1889)	747	1.00 (ref)	–						
Q2 (men 2121–2477; women: 1889–2214)	746	1.20 (0.98–1.47)	1.00 (0.78–1.27)	1.15 (0.94–1.40)	0.99 (0.78–1.27)				
Q3 (men 2478–2885; women: 2215–2564)	746	1.41 (1.15–1.73)	1.02 (0.79–1.32)	1.43 (1.17–1.75)	1.10 (0.84–1.42)				
Q4 (men > 2885; women: > 2564)	746	1.36 (1.11–1.67)	0.84 (0.62–1.13)	0.234	1.35 (1.11–1.66)	0.001	0.88 (0.66–1.19)	0.464	
Predefined limits of energy intake (Willet), kcal/day									
Within limits (men 800–4000; women 500–3500)	2913	1.00 (ref)	1.00 (ref)	1.00 (ref)	–	1.00 (ref)	–	1.00 (ref)	–
Beyond limits (men < 800 or > 4000; women < 500 or > 3500)	72	0.96 (0.60–1.54)	0.577	0.67 (0.39–1.17)	0.157	1.21 (0.75–1.94)	0.431	1.01 (0.58–1.75)	0.985
Fruit + vegetable consumption, g/day									
Q1 (men, < 473; women < 544)	747	1.00 (ref)	–						
Q2 (men 473–624; women 544–698)	746	1.13 (0.93–1.39)	1.31 (1.03–1.68)	0.92 (0.75–1.13)	0.96 (0.75–1.23)				
Q3 (men 625–795; women 699–886)	746	0.84 (0.69–1.03)	0.96 (0.73–1.25)	0.86 (0.70–1.06)	0.91 (0.70–1.20)				
Q4 (men > 795; women > 886)	746	0.80 (0.66–0.99)	0.004	0.97 (0.72–1.30)	0.417	0.73 (0.60–0.90)	0.002	0.82 (0.61–1.10)	0.171
Meat consumption, g/day									
Q1 (men < 114; women < 105)	747	1.00 (ref)	–						
Q2 (men 114–147; women 105–137)	746	1.30 (1.06–1.59)	1.30 (1.03–1.63)	1.15 (0.94–1.41)	1.10 (0.87–1.38)				
Q3 (men 148–188; women 138–174)	747	1.19 (0.97–1.46)	1.07 (0.85–1.35)	1.22 (1.00–1.49)	1.07 (0.85–1.36)				
Q4 (men > 188; women > 174)	745	1.34 (1.09–1.64)	0.015	1.14 (0.89–1.46)	0.610	1.22 (1.00–1.50)	0.053	0.97 (0.76–1.25)	0.745
Baseline dietary fat intake, % E, mean (SD)									
Q1 (< 35)	747	1.00 (ref)	–						
Q2 (35–39)	746	1.13 (0.93–1.39)	1.21 (0.96–1.53)	1.05 (0.86–1.29)	1.10 (0.87–1.38)				
Q3 (40–43)	746	1.08 (0.88–1.32)	1.14 (0.90–1.44)	0.95 (0.77–1.16)	0.98 (0.78–1.24)				
Q4 (> 43)	746	1.08 (0.88–1.32)	0.573	1.28 (1.00–1.64)	0.082	0.93 (0.76–1.13)	0.311	1.09 (0.85–1.40)	0.665
Fiber intake, g/day									
Q1 (men < 20; women < 21)	747	1.00 (ref)	–						
to the 17-item erMedDiet score. This circumstance was also observed when conducting the main analysis.

Discussion

The PREDIMED-Plus is an intensive nutritional intervention based on major long-term dietary behavioral change aimed to improve participants’ health outcomes, including their risk of cardiovascular events, which also includes regular physical activity and weight-loss goals [31]. We longitudinally examined baseline characteristics related to the attainment of successful dietary behavior changes. The most consistent factors of successful compliance were high baseline perceived self-efficacy to modify diet and high baseline fiber intake. In contrast, the presence of depression and multiple chronic diseases were factors independently associated with poorer compliance.
Socio-demographics

Previous studies have reported inconclusive results regarding the association between adherence to the MedDiet and socio-demographic characteristics, including sex [9–11, 13, 15, 32–34], or working status [9, 10, 34, 35]. However, married individuals compared to single people seem to respond better to intended dietary changes in previous studies [11, 34], probably because the greater predominance of structured and routine dietary habits among married persons. In our study, we did not find any consistent pattern.

Health-related characteristics

Individuals with multiple chronic conditions may benefit the most from adhering to a healthy dietary pattern. For instance, the MedDiet has demonstrated numerous positive effects on preventing chronic diseases and improving health outcomes, including type 2 diabetes and depression [8, 36]. Nevertheless, in our study, we found that participants with diabetes and those with a higher number of chronic conditions were less likely to attain high adherence. Prior findings in other studies showed similar results. For example, participants with obesity have been reported to show poorer MedDiet adherence [12], whereas having diabetes and suffering from a greater number of chronic conditions were independent factors of lower compliance [9, 10]. Additionally, our results suggested that a diagnosis of depression at baseline is a strong barrier to modify dietary behavior. Similar findings of poor behavior change among participants with depression have been observed in long-term dietary interventions [37], dietary weight-loss

Table 3 Association between each individual chronic condition (hypertension, obesity, type 2 diabetes, hypercholesterolemia, cancer, and depression) and good adherence1 (increasing ≥ 5 points if baseline < 13 or any increase if baseline ≥ 13) to the MedDiet at 6 and 12 months in the active intervention group of the PREDIMED-Plus trial (n = 2,985)

Baseline characteristics	n	OR (95% CI) for adherence (increasing ≥ 5 points if baseline < 13 or any increase if baseline ≥ 13)1 to the MedDiet intervention (adherent vs. non-adherent)2	Crude3 p value	Multivariable4 p value	Crude3 p value	Multivariable4 p value					
Health-related characteristics		Hypertension	No	488	1.00 (ref)	-					
		Yes	2497	0.89 (0.74–1.09)	0.260	0.81 (0.65–1.01)	0.063	1.03 (0.84–1.24)	0.802	0.95 (0.76–1.19)	0.655
		Obesity	No	815	1.00 (ref)	-					
		Yes	2170	1.00 (0.85–1.18)	0.965	0.81 (0.65–1.01)	0.067	1.08 (0.92–1.27)	0.334	1.10 (0.87–1.37)	0.425
		Type 2 diabetes	No	2154	1.00 (ref)	-					
		Yes	831	0.65 (0.55–0.76)	<0.001	0.69 (0.55–0.86)	0.001	0.72 (0.61–0.85)	<0.001	0.82 (0.66–1.02)	0.080
		Hypercholesterolemia	No	897	1.00 (ref)	-					
		Yes	2088	0.89 (0.76–1.04)	0.154	0.91 (0.76–1.08)	0.288	0.99 (0.84–1.15)	0.853	1.01 (0.85–1.21)	0.876
		Cancer	No	2765	1.00 (ref)	-					
		Yes	220	0.93 (0.70–1.22)	0.582	0.96 (0.70–1.31)	0.791	0.98 (0.74–1.29)	0.867	1.01 (0.74–1.39)	0.932
		Depression	No	2408	1.00 (ref)	-					
		Yes	577	0.80 (0.67–0.96)	0.017	0.80 (0.64–0.99)	0.036	0.73 (0.61–0.87)	0.001	0.71 (0.57–0.88)	0.002

Bold font is used for significant results for multivariate analysis

CI confidence intervals, MedDiet Mediterranean diet, OR odds ratios

1Adherence to Mediterranean diet was evaluated using a 17-point scale of adherence to an energy-reduced MedDiet questionnaire (1 point for each item). Participants with an increase of ≥ 5 points from baseline to follow-up were classified in the “adherent group”. Participants with ≥ 13 points at baseline and positive increase (≥ 1 point) from baseline to follow-up were additionally classified in the “adherent group”. Detailed information is provided in Additional File 1: Figure s1

2 ORs < 1 was referred as poorer adherence and ORs > 1 was referred as better adherence

3Multivariable model implied multivariable-adjusted logistic regression, adjusted for the same predictors than the logistic model of Table 2 with the addition of hypertension, obesity, type 2 diabetes, hypercholesterolemia, cancer, and depression, and the exclusion of chronic conditions
trials [38], and prevention programs for individuals with metabolic syndrome [39]. Moreover, depression has been associated with poorer attendance and early drop-outs in behavioral trials [40]. Potential explanations for these findings may rely on the inherent psychological characteristics of individuals with depression and on the established unhealthy dietary habits that may lead individuals with depression and other chronic conditions to their current health status; nutrition myths or misconceptions related to their diseases [41], and excessive nutritional information received from health care professionals and other sources such as family, friends, or websites [42], may additionally explain these findings. Based on these associations, future dietary behavioral RCTs should carefully collect information about participants’ psychological attributes at baseline, as this information is frequently sub-optimally collected [43]. Exclusion of individuals with depression would allow to identify probable candidates for early drop-outs and low compliance, and ensure a significant contrast between the intervention and control arms of future trials.

On the other hand, careful design of RCTs specifically targeting these participants with depression may be a desirable approach so that they could also benefit from tailored dietary interventions, but they will need very specific and particularly intensive intervention protocols. A more intense and specific dietary counseling with adapted information and personalized messages for individuals with chronic conditions is also highly warranted.

Lifestyle and behavior

In our study, high self-efficacy, a social cognitive theory component, was an important predictor of better compliance to the eMedDiet intervention at 6 months and 12 months of follow-up in the active intervention group of the PREDIMED-Plus trial (n=2,985). Adherence to Mediterranean diet was evaluated using a 17-point scale of adherence to an energy-reduced MedDiet questionnaire (1 point for each item). Participants with an increase of ≥ 5 points from baseline to follow-up were classified in the “adherent group”. Participants with ≥ 13 points at baseline and positive increase (≥ 1 point) from baseline to follow-up were additionally classified in the “adherent group”. Detailed information is provided in Additional File 1: Figure s1. Dietary fat intake was expressed as % of energy. Fiber intake was expressed in g/day. Recruitment year was referred to the period (years) in which participants were recruited, from the date of the first recruited participant (9/05/2013) to the date of the last recruited participant (10/31/2016). Nervousness/aggressiveness behavior was self-reported on a scale from 1 (very low self-perception) to 10 (very high self-perception). RAPA test levels were categorized as: level 1 (sedentary or under-active), level 2 (under-active regular – light activities), level 3 (under-active regular), and level 4 (active). Workload of center was measured as total number of persons-years of follow-up.
Consistent with our findings, high self-efficacy has been a promising predictor in weight-loss interventions and physical activity among overweight/obese populations [45]. Moreover, long-term maintenance of high self-efficacy has been associated with greater weight loss [46]. This evidence emphasizes the importance of collecting this information at baseline and incorporating specific strategies to maintain a high self-efficacy level throughout the follow-up period of the interventions. Negotiated goal setting, continuous persuasion, permanent performance feedback, shared decision-making, alternatives to overcome struggles faced by participants to improve their diets, and problem-solving strategies are different approaches which may improve and maintain self-efficacy along the trial. These strategies have been key in previous RCTs, such as the PREDIMED, to successfully improve participants’ adherence to the MedDiet in the intervention groups [8].

Dietary characteristics

Participants with a poorer baseline adherence to the erMedDiet score, had greater room for improvement whereas participants with higher adherence at baseline may face a ceiling effect. Therefore, it is not surprising to find better achievements among those with poorer scores at baseline. Interestingly, we found that higher fiber intake was a factor independently associated with better dietary changes. In previous studies, fiber intake resulted a robust predictor of weight loss and beneficial food-related behavioral changes [47, 48]. Participants with high fiber intake at baseline may be more health conscious and they may be more likely to better adapt to fiber-rich food patterns such, as the Mediterranean diet than individuals with poorer baseline fiber intake. This finding was observed after adjustment for the baseline adherence to the 17-item erMedDiet score. This is important, given that participants with poorer adherence to the MedDiet usually tend to have lower fiber intake, as it was the case in our study.

The current study has some limitations. First, information about the participants’ diet and health conditions was self-reported, and recall bias and misreporting may be present when using self-reported information. Nevertheless, their self-reported changes were paralleled by objective changes in cardiovascular risk factors as reported elsewhere [17, 30]. Second, the observational nature of the study limits causal inferences. Third, although we tested several characteristics to predict behavior change and adjusted for a wide array of potential confounding factors, failure to control for other factors may be possible and we cannot exclude residual confounding. Nevertheless, we examined multiple potential factors chosen according to the existing literature and some of our previous studies. And fourth, the PREDIMED-Plus includes an overweight/obese community-dwelling population with metabolic syndrome which is not representative of the general population. However, this population is becoming more predominant in developed and developing countries, increasing the actual practical interest of our findings. Despite the aforementioned limitations, the strength of our study relies on the evaluation of a high number of baseline candidate factors, the inclusion of several sensitivity analyses that corroborated our findings, and the use of high-quality prospective data with a very high retention rate from one of the largest nutritional trials, the PREDIMED-Plus trial.

Conclusions

The present study provides a better understanding of factors associated with successful compliance to a dietary intervention. Recruitment of individuals highly motivated to change their diet and of those who follow a fiber-rich dietary pattern but even so, they poorly adhere at baseline to the intended diet would potentially increase the needed contrast between the arms of a dietary intervention trial. Participants with multiple chronic conditions, particularly depression, should receive tailored protocols and specific attention, because they are not likely to respond to conventional interventions. Future studies should investigate strategies to promote better compliance among those individuals with features which predict poor compliance to the intended dietary behavior changes.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00394-021-02697-8.

Acknowledgements More extensive acknowledgments are included in the online Additional File 1.

Author contributions CIF-L, ET, PB-C, JS-S, DC, MF, JAM, AMA-G, JW, JV, DR, JLM, RE, FJT, JL, JLS-M, AB-C, JAT, VMS, XP, MD-R, PM-M, JV, ER, CV, LD, BS, JG, JVS, OC, MAZ, LT-S, NP-F, AO-C, MM, AG-R, ES, RMB-L, JMS-L, ZV-R, JM, CO-A, AG, CR, LG-G, MR-C, NB-T, HS, and MAM-G were involved in the study design and conducted the research; CIF-L and MAM-G analyzed the data; CIF-L and MAM-G wrote the manuscript; CIF-L, ET, PB-C, JS-S, DC, MF, JAM, AMA-G, JW, JV, DR, JLM, RE, FJT, JL, JLS-M, AB-C, JAT, VMS, XP, MD-R, PM-M, JV, ER, CV, LD, BS, JG, JVS, OC, MAZ, LT-S, NP-F, AO-C, MM, AG-R, ES, RMB-L, JMS-L, ZV-R, JM, CO-A, AG, CR, LG-G, MR-C, NB-T, HS, and MAM-G revised the manuscript and provided critical edits. MAM-G and CIF-L had primary responsibility for final content. All authors read and approved the final manuscript.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. The PREDIMED-Plus trial was supported by the European Research Council (advanced research grant 2014–2019, 340918 to MAM-G as PI) and by the official Spanish Institutions for funding scientific biomedical research, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn) and Instituto
References

1. Pan A, Lin X, Hemler E, Hu FB (2018) Diet and cardiovascular disease: advances and challenges in population-based studies. Cell Metab 27:489–496. https://doi.org/10.1016/j.cmet.2018.02.017

2. Satija A, Stampfer MJ, Rimm EB et al (2018) Perspective: are large, simple trials the solution for nutrition research? Adv Nutr 9:378–387. https://doi.org/10.1093/advances/nmy030

3. Howard BV, Van Horn L, Hsia J et al (2006) Low-fat dietary pattern and risk of cardiovascular disease: the Women’s Health Initiative randomized controlled dietary modification trial. JAMA 295:655–666. https://doi.org/10.1001/jama.295.6.655

4. Prentice RL, Caan B, Chlebowski RT et al (2006) Low-fat dietary pattern and risk of invasive breast cancer: the Women’s Health Initiative randomized controlled dietary modification trial. JAMA 295:629–642. https://doi.org/10.1001/jama.295.6.629

5. Orloff JN, Aronne LJ, Shukla AP (2018) The challenge of meeting prescribed carbohydrate intake goals in low-carbohydrate diet studies. Am J Clin Nutr 107:673–674. https://doi.org/10.1093/ajcn/npy023

6. Kjelsberg MO (1982) Multiple risk factor intervention trial: risk factor changes and mortality results. JAMA 295:629–642. https://doi.org/10.1001/jama.295.6.629

7. Willett WC, Stampfer MJ (1990) Dietary fat and cancer: another look. JAMA 295:655–666. https://doi.org/10.1001/jama.295.6.655

8. Fernández-Lázaro CI, Ruiz-Canela M, Martínez-González MA (2021) Deep dive to the secrets of the PREDIMED trial. Curr Opin Lipidol 32:62–69. https://doi.org/10.1097/MOL.0000000000000731

9. Zazpe I, Estruch R, Toledo E et al (2010) Predictors of adherence to a Mediterranean-type diet in the PREDIMED trial. Eur J Nutr 49:91–99. https://doi.org/10.1007/s00394-009-0053-7

10. Downer MK, Gea A, Stampfer M et al (2016) Predictors of short- and long-term adherence with a Mediterranean-type diet intervention: the PREDIMED randomized trial. Int J Behav Nutr Phys Act 13:67. https://doi.org/10.1186/s12966-016-0394-6

11. Hu EA, Toledo E, Diez-Espino J et al (2013) Lifestyles and risk factors associated with adherence to the Mediterranean diet: a baseline assessment of the PREDIMED trial. PLoS ONE 8:e60166. https://doi.org/10.1371/journal.pone.0060166

12. Patino-Alonso MC, Recio-Rodríguez JJ, Belío JFM et al (2014) Factors associated with adherence to the Mediterranean diet in the adult population. J Acad Nutr Diet 114:583–589. https://doi.org/10.1016/j.jada.2013.07.038

13. Ruggiero E, Di Castelnuovo A, Costanzo A et al (2019) Socio-economic and psychosocial determinants of adherence to the Mediterranean diet in a general adult Italian population. Eur J Public Health 29:328–335. https://doi.org/10.1093/eurpub/cky127

14. Peng W, Goldsmith R, Berry EM (2016) Demographic and lifestyle factors associated with adherence to the Mediterranean diet in relation to overweight/obesity among Israeli adolescents: findings from the Mabat Israeli national youth health and nutrition survey. Public Health Nutr 20:883–892. https://doi.org/10.1017/S1368946516002779

15. Grosso G, Marventano S, Buscemi S et al (2013) Factors associated with adherence to the Mediterranean diet among adolescents living in Sicily, southern Italy. Nutrients 5:4908–4923. https://doi.org/10.3390/nu5124908

16. Martínez-González MA, Buil-Cosiales P, Corella D et al (2019) Cohort Profile: Design and methods of the PREDIMED-Plus randomized trial. Int J Epidemiol 48:387–388o. https://doi.org/10.1093/ije/dyy225
17. Sayón-Orea C, Razquin C, Bulló M et al (2019) Effect of a Nutritional and Behavioral Intervention on energy-reduced Mediterranean diet adherence among patients with metabolic syndrome: interim analysis of the PREMEDI-PLUS randomized clinical trial. JAMA 322:1486–1499. https://doi.org/10.1001/jama.2019.14630

18. Schröder H, Cárdenas-Fuentes G, Martínez-González MA et al (2018) Effectiveness of the physical activity intervention program in the PREMEDI-PLUS study: a randomized controlled trial. Int J Behav Nutr Phys Act 15:110. https://doi.org/10.1186/s12966-018-0741-x

19. World Health Organization (2021) Physical activity and older adults. https://www.who.int/ncds/prevention/physical-activity/factsheet_oldadult/en. Accessed 1 Mar 2020

20. Alberti KGMM, Eckel RH, Grundy SM et al (2009) Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; International. Circulation 120:1640–1645. https:// doi.org/10.1161/CIRCULATIONAHA.109.192644

21. Schröder H, Zomeño MD, Martínez-González MA et al (2021) Validity of the energy-restricted Mediterranean Diet Adherence Screener. Clin Nutr 40:4971–4979. https://doi.org/10.1016/j.clinu.2021.06.030

22. de la Fuente-Arrillaga C, Vázquez Ruiz Z, Bet-Rastrollo M et al (2010) Reproducibility of an FFQ validated in Spain. Public Health Nutr 13:1364–1372. https://doi.org/10.1017/S1368980009993065

23. Fernández-Ballart JD, Piñol JL, Zazpe I et al (2010) Relative validity of a semi-quantitative food-frequency questionnaire in an elderly Mediterranean population of Spain. Br J Nutr 103:1808–1816. https://doi.org/10.1017/S00071145099993837

24. Moreiras O, Carbajal A, Cabrera L, Cuadrado C (2011) Tablas de Composición de Alimentos (Food Composition Tables), 15th edn. Pirámide, Madrid

25. Mataix-Verdú J, García-Díaz L, Manas M et al (2003) Tabla de Composición de Alimentos (Spanish Food Composition Tables), 4th edn. Universidad de Granada Press, Granada

26. Topolski TD, LoGerfo J, Patrick DL et al (2006) The rapid screener. Clin Nutr 40:4971–4979. https://doi.org/10.1016/j.clinu.2011.04.004

27. Molina L, Sarmiento M, Peñafiel J et al (2017) Validation of the Spanish version of the physical activity questionnaire used in the Nurses’ Health Study and the Health Professionals’ Follow-up Study. Public Health Nutr 8:920–927. https://doi.org/10.1079/PHN2005745

28. Willet WC (2013) Nutritional epidemiology, 3rd edn. Oxford University Press, New York

29. Martínez-González MA, Fernandez-Lazaro CI, Toledo E et al (2019) Carbohydrate quality changes and concurrent changes in cardiovascular risk factors: a longitudinal analysis in the PREMEDI-PLUS randomized trial. Am J Clin Nutr 111:291–306. https://doi.org/10.1093/ajcn-qjz298

30. Martínez-González MA, Corella D, Salas-Salvadó J et al (2012) Cohort profile: design and methods of the PREMEDI study. Int J Epidemiol 41:377–385. https://doi.org/10.1093/ije/dys250

31. Sánchez-Villegas A, Martínez JA, De Irala J, Martínez-González MA (2002) Determinants of the adherence to an “a priori” defined Mediterranean dietary pattern. Eur J Nutr 41:249–257. https://doi.org/10.1007/s00394-002-0382-2

32. González CA, Argilaga S, Agudo A et al (2002) Diferencias sociodemográficas en la adhesión al patrón de dieta mediterránea en poblaciones de España (sociodemographic differences in adherence to the Mediterranean dietary pattern in Spanish populations). Gac Sanit 16:214–221. https://doi.org/10.1016/S0213-9111(02)71664-6

33. Jurado D, Burgess-Garrido E, Díaz FJ et al (2012) Adherence to the Mediterranean dietary pattern and personality in patients attending a primary health center. J Acad Nutr Diet 112:887–891. https://doi.org/10.1016/j.jad.2012.02.026

34. Marventano S, Godos J, Platania A et al (2018) Mediterranean diet adherence in the Mediterranean healthy eating, aging and lifestyle (MEAL) study cohort. Int J Food Sci Nutr 69:100–107. https://doi.org/10.1080/09637486.2017.1332170

35. Sánchez-Villegas A, Delgado-Rodríguez M, Alonso A et al (2009) Association of the Mediterranean dietary pattern with the incidence of depression: the Seguimiento Universidad de Navarra/ University of Navarra follow-up (SUN) Cohort. Arch Gen Psychiatry 66:1090–1098. https://doi.org/10.1001/archgenpsychiatry.2009.129

36. Wang JB, Pierce JP, Ayala GX et al (2015) Baseline depressive symptoms, completion of study assessments, and behavior change in a long-term dietary intervention among breast cancer survivors. Ann Behav Med 49:819–827. https://doi.org/10.1007/s12160-015-9716-1

37. Somerset SM, Graham L, Markwell K (2011) Depression scores predict adherence in a dietary weight loss intervention trial. Clin Nutr 30:593–598. https://doi.org/10.1016/j.clinu.2011.04.004

38. Susin N, De Melo BR, Ludwig MWB et al (2016) Predictors of adherence in a prevention program for patients with metabolic syndrome. J Health Psychol 21:2156–2167. https://doi.org/10.1177/1359105315572451

39. Moroshko I, Brennan L, O’Brien P (2011) Predictors of dropout in weight loss interventions: a systematic review of the literature. Obes Rev 12:912–934. https://doi.org/10.1111/j.1467-789X.2011.00915.x

40. Lesser LI, Mazza MC, Lucan SC (2015) Nutrition myths and healthy dietary advice in clinical practice. Am Fam Physician 91:634–638

41. Ball L, Davmor R, Leveritt M et al (2016) Understanding the nutrition care needs of patients newly diagnosed with type 2 diabetes: a need for open communication and patient-focused consultations. Aust J Prim Health 22:416–422. https://doi.org/10.1071/PH15063

42. Somerset SM, Markwell K, Al-Foraith M (2013) A systematic review of baseline psychosocial characterisation in dietary randomised controlled trials for weight loss. Eur J Clin Nutr 67:697–702. https://doi.org/10.1038/ejcn.2013.77

43. Bandura A (1997) Self-efficacy: the exercise of control. W.H. Freeman and Company, New York

44. Teixeira PJ, Carraça EV, Marques MM et al (2015) Successful behavior change in obesity interventions in adults: a systematic review of self-regulation mediators. BMC Med 13:1–16. https://doi.org/10.1186/s10865-007-9135-2

45. Warziski MT, Sereika SM, Styn MA et al (2008) Changes in self-efficacy and dietary adherence: the impact on weight loss in the PREFER study. J Behav Med 31:81–92. https://doi.org/10.1007/s10865-007-9135-2

46. Mietkinas DC, Bray GA, Bely RA et al (2019) Fiber intake predicts weight loss and dietary adherence in adults consuming calorie-restricted diets: the POUNDS lost (Preventing Overweight Using Novel Dietary Strategies) study. J Nutr 149:1742–1748. https://doi.org/10.1093/jn/nxz117

47. Hiel S, Bindels LB, Pachikian BD et al (2019) Effects of a diet based on inulin-rich vegetables on gut health and nutritional behavior in healthy humans. Am J Clin Nutr 109:1683–1695. https://doi.org/10.1093/AJCN/NQZ001
Authors and Affiliations

Cesar I. Fernandez-Lazaro1 · Estefanía Toledo1,2 · Pilar Buil-Cosiales1,2,3 · Jordi Salas-Salvadó2,4,5,6 · Dolores Corella2,7 · Montserrat Fito4,8 · J. Alfredo Martínez2,9,10 · Ángel M. Alonso-Gómez11 · Julia Wärnberg2,12 · Jesús Vioque13,14 · Dora Romaguera2,15 · José López-Miranda2,16 · Ramon Estruch1,17 · Francisco J. Tinahones2,18 · José Lapetra2,19 · Luis Serra-Majem2,20 · Aurora Bueno-Cavanillas13,21 · Josep A. Tur2,22 · Vicente Martín Sánchez13,23 · Xavier Pinto2,24 · Miguel Delgado-Rodríguez13,25 · Pilar Matía-Martín26 · Josep Vidal27,28,29 · Clotilde Vázquez30 · Lidia Daimiel31 · Beatriz San Julián1 · Jesús F. García-Gavilán2,32 · Jose V. Sorli2,27 · Olga Castañer2,8 · M. Ángeles Zulet2,10 · Lucas Tojal-Sierra3,21 · Napoleón Pérez-Farinós2,12 · Alejandro Oncina-Canovas14 · Manuel Moñino2,15 · Antonio García-Rios2,16 · Emilio Sacanella2,17 · Rosa M. Bernal-Lopez2,7 · José Manuel Santos-Lozano2,19 · Zanaida Vázquez-Ruiz1,2 · Jananee Muralidharan2,4 · Carolina Ortega-Azorín2,7 · Alberto Goday2,8 · Cristina Razquin1,2 · Leire Goicoeza-Gúemez2,11 · Miguel Ruiz-Canela1,2 · Nerea Becerra-Tomás2,4,6 · Helmut Schröder2,8 · Miguel A. Martínez González1,2,32 · for the PREDIMED-Plus investigators

1 Department of Preventive Medicine and Public Health, Navarra University of Navarra, IdiSNA, C/ Irunlarrea, 31008 Pamplona, Spain
2 Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
3 Servicios de Atención Primaria, Navarra Regional Health Service (Osasunbidea), IdiSNA, Pamplona, Spain
4 Universitat Rovira I Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Reus, Spain
5 Nutrition Unit, University Hospital of Sant Joan de Reus, Reus, Spain
6 Institut d’Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
7 Department of Preventive Medicine, University of Valencia, Valencia, Spain
8 Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d’Investigació Mèdica (IMIM), Barcelona, Spain
9 Department of Nutrition, Food Sciences, and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain
10 Cardiometabolic Nutrition Group, IMDEA Food, CEI UAM + CSIC, Madrid, Spain
11 Bioaraba Health Research Institute, Cardiovascular, Respiratory and Metabolic Area, Osakidetza Basque Health Service, Araba University Hospital, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
12 Epi-Phaan Research Group, School of Health Sciences, Universidad de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), 29071 Málaga, Spain
13 CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
14 Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL-UMH), Alicante, Spain
15 Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
16 Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
17 Department of Internal Medicine, Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
18 Department of Endocrinology, Virgen de la Victoria Hospital, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Málaga, Málaga, Spain
19 Department of Family Medicine, Research Unit, Distrito Sanitario Atención Primaria Sevilla, Sevilla, Spain
20 Research Institute of Biomedical and Health Sciences (IUBS), University of Las Palmas de Gran Canaria and Centro Hospitalario Universitario Insular Materno Infantil (CHUMI), Canarian Health Service, Las Palmas of Gran Canaria, Spain
21 Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
22 Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-UNICS and IDISBA, Palma de Mallorca, Spain
23 Institute of Biomedicine (IBIOMED), University of León, León, Spain
24 Lipids and Vascular Risk Unit, Internal Medicine, Hospital Universitario de Bellvitge, Hospital de Llobregat, Barcelona, Spain
25 Division of Preventive Medicine, Faculty of Medicine, University of Jaén, Jaén, Spain
26 Department of Endocrinology and Nutrition, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Madrid, Spain
27 CIBER Diabetes Y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
28 Department of Endocrinology, Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
29 Lipid Clinic, Department of Endocrinology and Nutrition, Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain

30 Department of Endocrinology and Nutrition, Hospital Fundación Jiménez Díaz, Instituto de Investigaciones Biomédicas IISFJD, University Autonoma, Madrid, Spain

31 Nutritional Control of the Epigenome Group, IMDEA Food, CEI UAM + CSIC, Madrid, Spain

32 Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA