1. Introduction

The understanding of the atomic interactions involved in crystal structures is fundamental in the crystal engineering field. In a first instance, this knowledge can be correlated with the crystal properties and, in a second instance, it can be applied to the design of crystalline materials for specific applications.

In molecular crystals, the crystal cohesion is attributed to weak attractive forces, unlike strong covalent interactions that hold the atoms bonded in a molecule. Some of these weak interactions, for example the hydrogen bonds between electronegative atoms, have been recognized and studied for a long time (Pimentel & McClellan, 1960; Jeffrey & Saenger, 1991; Steiner, 2002). Nonconventional and weaker hydrogen bonds between AH (AH = OH, NH, etc.) and soft bases (π systems) or between CH and B (B = O, N, etc.), π···π interactions, halogen bonds, cation···π interactions, have become the focus of interest in the last decades due to their potential role in supramolecular chemistry and in biochemical processes (Desiraju & Steiner, 2001; Metrangolo et al., 2008; Nishio et al., 2009; Schneider, 2009; Salonen et al., 2011).

Soft interactions between heavy p-block elements and electronegative atoms are frequent and have been shown to play a significant role in supramolecular chemistry. Tellurium is a chemical element showing this kind of soft interactions, also known as secondary bonding (Alcock, 1972). Organotellurium compounds have been investigated mainly in organic synthesis (Singh & Sharma, 2000; Petragnani & Stefani, 2005), but also in medicine (Ba et al., 2010), in materials science (Steigerwald & Sprinkle, 1987; Hails et al., 2001) and recently in polymerization processes (organotellurium-mediated living radical polymerization (TERP)) (Kitayama et al., 2010) and to protect materials (lubricants, polymers) from oxidation (Shanks et al., 2006).

The type of the Te···X interaction (and the secondary bonding interaction) and its relevance in the tellurium coordination polyhedra have been discussed (Alcock, 1972; Zukerman-Schpector & Haiduc, 2001). This chapter deals with the weak Te···halogen (Te···X) interactions found in organotellurium crystal structures and with the supramolecular...
arrangements derived from them. Some supramolecular self-assemblies based on Te···halogen secondary bonds have been described (Haiduc & Zukerman-Schpector, 2001; Zukerman-Schpector et al., 2002; Srivastava et al., 2004; Cozzolino et al., 2011). This chapter presents a systematic update including quantitative aspects. It is performed an analysis of the influence of several factors on the type of supramolecular pattern such as the polymorphism or the nature of halogen.

2. The Te···X contact in organotellurium compounds

The study of Te···X contacts was based on analysis of data from Version 5.32 (last update of May 2011) of the Cambridge Structural Database (CSD) (Allen, 2002), where organic and organometallic crystal structures determined from X-ray (or neutron) diffraction data are deposited. A search was performed with the aid of the ConQuest program (Version 1.13) (Bruno et al., 2002) in order to retrieve crystal structures containing organotellurium compounds and halogen atoms. Only organic structures with available atomic coordinates were considered and several additional exclusion conditions were applied. Structures with R factor > 0.1, and structures where tellurium or halogen atoms are disordered, were omitted. Moreover, structures with charged fragments were also eliminated. After an additional checking to remove multiple entries of the same structure, a set of 481 structures was accepted. A search of intermolecular distances between tellurium and halogen atoms was performed and the results were analyzed using the Vista program (Version 2.1) (CCDC, 1994).

If a random distribution of halogens around tellurium atom is supposed, a distance histogram showing only an exponential growth would be expected. However this was not the case and a maximum was observed before the exponential growth (Figure 1). This maximum can be attributed to the existence of a Te···X interaction. A similar behaviour has been reported, for example, in O···O distance histograms where a H-bonding maximum has been observed (Rowland & Taylor, 1996). In the case of Te···F distances, most compounds are perfluorinated, introducing a bias in their distribution. When these compounds are removed, the remaining population size is so small that the resulting histogram is not statistically significant. When Te···X secondary and Te-X covalent bond distance ranges are compared, the former is broader (Table 1), according to the weaker nature of Te···X interaction. The maximum of the Te···X peak was located at a distance lower than the sum of van der Waals radii (Bondi, 1964) eventhough the peak spreads beyond this reference value. The sum of van der Waals radii is highly used in order to determine whether an interaction is present or not. However, this value is rather arbitrary (it is an approximation) and it can not be considered as a cut-off. In fact, in the case of H-bonding the use of such cut-off criterium has been discouraged (Jeffrey & Saenger, 1991). So, in the case of Te···X, it seems that the interaction can be present beyond the sum of van der Waals radii although its force decreases, according with the electrostatic character of the interaction. The upper limit for the peak analysis has been situated at $1.10 \cdot \Sigma r_{vdW}$, corresponding approximately to the local minimum in the histogram (for X = Cl, Br, and I).

Two more considerations about Te···X distance ranges should be taken into account. The first one is the temperature effect on the distance. Half the structures used in the present study have been determined at low temperature. It is known that weak interaction distances are more temperature dependent than covalent bond distances (Forni et al., 2004). Two CSD structures, DMTEII and QIXZAY, showing Te···I contacts and measured both at 130K and at

www.intechopen.com
Supramolecular Arrangements in Organotellurium Compounds via Te···Halogen Contacts

Fig. 1. Histograms for the distribution of intermolecular Te···X distances

room temperature (see section 3.8), are well suited to carry out a distance comparison. In the case of QIXZAY the 130K experiment reveals a mean Te···I shortening of 0.050 Å while the mean Te-I bond shortening is just 0.005 Å, close to the experimental error (0.002 Å). DMTEII behaves in a similar way being the Te···I shortening even greater: 0.082 Å. So, every peak in the distance histograms is, in fact, the superposition of two peaks. However, the estimated difference in maximum positions (0.05 Å) is small compared with the peak width. Moreover, the number of structures defining every peak is not big enough to undertake a study of the temperature effect. The second consideration is the potential relation of Te···X distances vs the tellurium coordination. Eventhough this dependence should be expected, no differences were found. A greater number of structures may help to establish this dependence. In this context, a study carried out on tellurium supramolecular synthons established that no correlation exists between secondary bond distance and the coordination number of tellurium (Cozzolino et al., 2011).
The existence of intermolecular Te···X interactions is frequent in crystal structures of organotellurium compounds containing halogen atoms. Using the values showed in Table 1, the estimation of structures with Te···X interactions is about 60%. Of the total number of structures showing Te···X contacts, 13% of them exhibit Te···F interaction, 38%, Te···Cl, 20%, Te···Br and 29%, Te···I.

	d(σ)	q₁₀, q₉₀	n
Te···F	3.26(11)	2.96, 3.80	10
Te-F	1.989(4)	1.95, 2.02	43
σ rvdW	3.53		
Te···Cl	3.672(15)	3.42, 3.97	191
Te-Cl	2.521(3)	2.47, 2.61	546
σ rvdW	3.81		
Te···Br	3.88(2)	3.56, 4.25	121
Te-Br	2.693(5)	2.63, 2.79	234
σ rvdW	3.91		
Te···I	3.95(2)	3.67, 4.37	203
Te-I	2.944(4)	2.87, 3.04	383
σ rvdW	4.04		

Table 1. Te···X secondary and Te-X covalent bond distances (Å) in organotellurium crystal structures. The sum of van der Waals radii (Bondi, 1964), σ rvdw, is also included. d: mean value; σ: mean standard deviation; q₁₀, q₉₀: 10% and 90% percentiles; n: number of observations; covalent bond distances have been obtained in this work from organotellurium(IV) crystal structures from CSD

3. Supramolecular arrangements in organotellurium compounds

3.1 Method
A CSD search considering organic structures with deposited atomic coordinates, with R factor < 0.1, and without disorder involving Te and X was undertaken. After removing multiple entries of the same structure, a new search was carried out in order to retrieve structures showing intermolecular Te···X contacts. According to the results presented in section 2, a cut-off of σ rvdw + 10% Å was considered. In these structures, supramolecular patterns were investigated using the program Mercury (Version 2.4) (Macrae et al., 2008). A set of 616 organotellurium structures having halogen atoms was collected. The greater part of them, 490 (80%), contain the Te-X unit, i.e. at least one tellurium-halogen covalent bond. Four groups can be considered: (i) structures containing tellurium atoms with only one halogen atom bonded to it, i.e. having the C-Te(-X)₁ unit, (ii) structures containing tellurium atoms bonded to only two halogen atoms, i.e. having the C-Te(-X)₂ unit, (iii)
structures containing tellurium atoms with only three halogen atoms bonded to it, i.e. having the C-Te(-X)$_3$ unit, and (iv) structures containing tellurium atoms bonded to four halogen atoms, i.e. having the C-Te(-X)$_4$ unit. A fifth group (v) includes the remaining 126 structures of organotellurium compounds having halogen atoms but not Te-X units: structures with C-Te(-X)$_0$.

3.2 Structures of compounds containing the Te(-X)$_1$ unit

Te(-X)$_1$ unit (tellurium atom bonded to one halogen only), is a very simple unit and it is a good starting point to study supramolecular arrangements via Te···X contacts. Two arrangements are the more habitual in this group: (a) dimeric assembly, and (b) simple chain (Figure 2, Table 2).

![Fig. 2. Main supramolecular arrangements of compounds containing the Te(-X)$_1$ unit](image)

	F	Cl	Br	I	Total
Dimer	0	10	12	9	31
Simple chain	2	6	3	3	14
Total	2	16	15	12	45

Table 2. Summary of structures containing the Te(-X)$_1$ unit

a. In the dimer, the two Te-X rods are bonded by two Te···X secondary bonds. The majority is centrosymmetric, with X···Te-X angles around 90°.

In C-Te(II)-X (X = Cl, Br, I) compounds, dimers were observed. These compounds are not stable and the secondary bond stabilizes them. A new pattern is observed when weaker secondary bonds are considered (contact distances < Σ $r_{vdW} + 20\%$): a chain of dimers like a zigzag ladder (Figure 3) where two neighbour dimers are related by a symmetry centre. In this way, three TeX distances are present, being the Te-X rod length the shortest one. A great dispersion of distances was observed, not only in secondary bonds but in the “primary” bond as well.

Dimeric arrays were also observed in some molecules containing several Te-X units. In these cases the covalent skeleton increases the dimensionality of the whole arrangement. In this way, if two Te-X units are present, the structure contains chains, if there are four Te-X units by molecule, a sheet of dimers is formed (Figure 4).

b. In the simple chain, every rod is bonded to its neighbour using only one secondary bond. In some cases the chain is planar and neighbour rods are equivalent by translation. In the other cases, chains are generated by a screw binary axis or by a glide plane.
3.3 Structures of compounds containing the Te(-X)₂ unit

The most populated group of organotellurium compounds contains the C-Te(-X)₂ unit (only two halogen atoms bonded to tellurium). A lot of them have a C₂TeX₂ core showing a pseudotrigonal bipyramidal disposition with the halogen atoms in axial positions and a lone electron pair in an equatorial site (Figure 5).

A great diversity of arrangements is present in this group. Three of such arrangements are clearly the most usual: (a) dimer, (b) simple chain, and (c) chain of four-sided rings sharing opposite vertices. Other three arrangements, with more complicated patterns of secondary bonds, have also significant populations: (d) tetramer, (e) sheet, and (f) 3D-network (Figure 6, Table 3).
Fig. 6. Main supramolecular arrangements of compounds containing the Te(-X)$_2$ unit
Current Trends in X-Ray Crystallography

	F	Cl	Br	I	Total
Dimer	2	18	7	18	45
Simple chain	0	17	10	4	31
Chain of 4-membered rings	2	11	5	6	24
Tetramer	0	5	1	3	9
Sheet	0	2	0	2	4
3D-Network	0	1	2	2	5
Less frequent arrangements	2	1	2	3	8
Total	6	55	27	38	126

Table 3. Summary of structures containing the Te(-X)\(_2\) unit

a. Dimers formed by Te(-X)\(_2\) have the same connectivity as those described for Te(-X)\(_1\), i.e. two Te···X secondary bonds, and the majority are also centrosymmetric. Non centrosymmetric dimers are almost planar in absence of other interactions. Most X-Te···X angles are lesser than 90°, i.e. two rods are “moved away” relative to the rectangular disposition. This is a small difference respect to the Te(-X)\(_1\) dimers, where deviation from 90° were present in both directions. Only three dimers of angular Te(-X)\(_2\) were found, centrosymmetric all of them.

b. The Te(-X)\(_2\) simple chain is also referable to Te(-X)\(_1\) simple chains but here, planar chains are absent, the reason being that planar chains have the translation as unique symmetry element. In the case of Te(-X)\(_2\), this would imply the presence of an additional Te···X contact leading to a different kind of chain. So, rods in Te(-X)\(_2\) simple chains are equivalent by screw binary axes or by glide planes.

c. The third most common arrangement is a di-bridged chain made by 4-membered rings sharing opposite vertices (Te atoms). Three types of chain (polymer) can be considered when Te···X distances are analyzed. So, if 4-membered rings are not equal (6 structures), a dimer is present and this type of polymer will be named chain of dimers. If all 4-membered rings are equal, the basic unit in the polymer is an X-Te-X rod and two cases are possible. In the more symmetric one (7 structures), the two secondary bonds between neighbour rods are equal while in the less symmetric one (11 structures) are not. These two types of polymer will be named 1d- and 2d-polymer respectively. The three types of chain have also different internal symmetry. In the chains of dimers, 4-membered rings are centrosymmetric (rhomboids) and are disposed in zigzag. In six of the more symmetric polymers, there are symmetry centres in the middle of all rings, and moreover, binary axes, perpendicular to the chain direction, through the Te atoms, and glide planes. One symmetric polymer is helical, generated by a screw 4-fold axis, vs the zigzag disposition found in the other 6 structures. At last, polymers with two different secondary bonds between neighbours are generated by glide planes and adopt a zigzag conformation.

d. Another finite arrangement of Te(-X)\(_2\) is a cyclic tetramer, where a Te(-X)\(_2\) unit is bonded to every neighbour with two secondary bonds in a step-like manner. The tetramer has two different types of tellurium atoms: the two “middle” Te atoms defining a Te\(_2\)X\(_2\) ring are different from the two “terminal” Te atoms placed out of the Te\(_2\)X\(_2\) ring.
This arrangement implies the existence of two non-equivalent rods, thus forcing the structure to have more than one molecule in the asymmetric unit ($Z' > 1$). All the tetramers found are centrosymmetric.

e. Five structures with infrequent spatial groups ($Fd d 2$ and $I 4_1/acd$) adopt a symmetric polar 3D-network where all secondary bonds are equal. Every Te(-X)$_2$ rod is bonded to four neighbours, with two bonds from Te and one from every halogen.

f. A sheet with two secondary bond distances and where every rod is bonded to three neighbours is relatively usual. This arrangement can be described in two ways, depending on the distance ratio. In two structures, the best description is to consider them as centrosymmetric dimers (type (a)) bonded to four neighbours, involving the two Te and the two distant halogens of the dimer. For another two structures it is better to think in simple chains (type (b)) where every rod is bonded to another rod of a neighbouring chain by means of two Te···X bonds. Anyway, 4- and 12-membered rings are present.

g. Finally, four pairs of structures were found, each pair with its own arrangement: two chains and two sheets (Figure 7).

![Fig. 7. Less frequent supramolecular arrangements of compounds containing the Te(-X)$_2$ unit: C_c and C_d chains; S_c and S_d sheets](#)

3.4 Structures of compounds containing the Te(-X)$_3$ unit

This unit shows a T disposition derived of the tendency of halogen atoms to occupy axial positions (angle X-Te-X near to 180°). The dimeric arrangement (a) is adopted by most structures. The simple chain (b) and the chain of 4-membered rings (c) are present but are much less usual (Figure 8, Table 4).
Fig. 8. Main supramolecular arrangements of compounds containing the Te(-X)$_3$ unit: dimer (D); simple chain involving only axial halogen atoms (SC) or equatorial halogen atoms (SC-eq); 4-membered ring chain: chain of dimers (RC-CD), 2d-polymer involving only axial halogen atoms (RC-2d), and 2d-polymer involving equatorial (RC-2d-eq) halogen atoms.

	F	Cl	Br	I	Total
Dimer	0	10	4	3	17
Simple chain	0	3	1	1	5
Chain of 4-membered rings	1	1	2	1	5
Total	1	14	7	5	27

Table 4. Summary of structures containing the Te(-X)$_3$ unit

a. Dimer. As in Te(-X)$_1$ and Te(-X)$_2$ dimers, two units are linked by two secondary bonds. Axial halogen atoms are involved in them. Dimers are centrosymmetric and the equatorial halogen atom can be in different orientations. In most cases, the angle between the Te-X$_{eq}$ bond and the normal to planar core is less than 20º but in three cases this angle is significantly higher, 37-53º.
b. Simple chain. As in Te(-X)$_1$ and Te(-X)$_2$ simple chains, two units Te(-X)$_3$ are linked by one Te···X secondary bond. The link involves either axial (3 structures) or equatorial halogen (2 structures). As in Te(-X)$_2$ chains, units in Te(-X)$_3$ simple chains are equivalent by screw axes or by glide planes. It is remarkable that in one case, the screw axis is ternary and the chain turns to be helical, vs the zigzag disposition of the chains where binary screw axes are present.
c. In chains of 4-membered rings two cases have been found. In one of them, rings are defined by one axial halogen and the equatorial one. Chains are polymers with two Te···X distances (screw binary axis). In the other case, analogous to the Te(-X)$_2$ 4-membered ring chains, rings are defined only by axial halogen atoms and two
dispositions can be adopted: chain of dimers (centrosymmetric rings) and polymer with two Te···X distances (glide planes).

3.5 Structures of compounds containing the Te(-X)$_4$ unit
These compounds are ionic (or zwitterionic) and the coordination around the Te can be described as a tetragonal pyramid with the halogens and the tellurium in the basal plane and the carbon in the apical position of the pyramid. Two supramolecular patterns are relevant: (a) dimers and (b) simple chains (Figure 9, Table 5).

![Fig. 9. Main supramolecular arrangements of compounds containing the Te(-X)$_4$ unit](image)

	F	Cl	Br	I	Total
Dimer	0	6	4	6	16
Simple chain	0	2	3	2	7
Total	0	8	7	8	23

Table 5. Summary of structures containing the Te(-X)$_4$ unit

a. Dimers. As in Te(-X)$_1$, Te(-X)$_2$ and Te(-X)$_3$, dimers contain two secondary bonds. These bonds complete an octahedral coordination for every Te. All dimers are centrosymmetric except one with a binary axis instead.
b. Simple chains. Again, the secondary bond completes the octahedral coordination of tellurium atom. As in Te(-X)$_2$ and Te(-X)$_3$ chains, units in Te(-X)$_4$ simple chains are equivalent by screw axes or by glide planes.

3.6 Structures of compounds without Te-X units [Te(-X)$_0$]
This group is very heterogeneous from a chemical point of view, nevertheless some subsets can be established (Figure 10). A first subset (12 structures) was considered where neutral molecules contain one Te and halogen atoms. This subset can be considered a general case of the compounds studied in the previous sections: now the tellurium atom and the halogens are separated by more than one covalent bond, hereinafter Te(---X)$_n$. Therefore some above described arrangements were also found here: dimer (4 structures), simple chain (2 structures), and chain of dimers (2 structures).
In a second subset of 11 neutral ditellurides, known patterns were also found in more than half the cases, considering them as X---Te(---X). Every Te---X unit affords its own arrangement of secondary bonds: dimers (3 structures), and simple chains (3 structures).
When Te-Te bridges are considered, arrangements of higher dimensionality can exist. For example, a Te-Te unit can be bridging dimers to afford a chain of dimers. Analogously, the combination of chains of secondary bonds and Te-Te bridges can give three more complex arrangements: (i) double chains, (ii) sheets composed by parallel chains, and (iii) double sheets linked by perpendicular Te-Te bridges in a grid-like array.

In other neutral molecules having two tellurium atoms separated by other atoms, single chains of secondary bonds linked by the Te···Te core were observed.

The rest of structures (50) are ionic. In 19 of them, tellurium atoms are in the cationic moiety, halogen atoms are in the anion, and one secondary bond links both ions to give an 1:1 adduct. More complex adducts exist when more than two ions or solvent molecules are bonded by Te···X bonds.

![Fig. 10. Examples of supramolecular arrangements in the Te(-X)\(_0\) group: dimer (D); simple chain (SC); chain of dimers (CD); specific sheet (S\(_e\)); adduct (A). Superscripts stand for the number of atoms between Te and X atoms](https://www.intechopen.com)

3.7 Additional structural considerations

3.7.1 Polymorphism

A search for polymorphism was performed in order to study its relation with the arrangement. Eleven organotellurium compounds containing halogen atoms showed two polymorphic structures each one: two in the Te(-X)\(_1\) group, seven in the Te(-X)\(_2\) group, one in the Te(-X)\(_3\) group, and one in the Te(-X)\(_0\) group (Figure 11, Table 6). In ten cases, different
arrangements were observed for the polymorphic pair while in one case polymorphism is associated to a different packing of the same supramolecular entity (tetramers). Moreover, it is usual to observe a change of dimensionality between polymorphs.

![Diagram showing specific arrangements in polymorphic structures: Ta tetramer; Ca and Cb chains; Sa and Sb sheets](image-url)

Fig. 11. Some specific arrangements present in polymorphic structures: T_a tetramer; C_a and C_b chains; S_a and S_b sheets
Table 6. Supramolecular arrangements found in polymorphic structures. 0 = no Te···X contacts; D = dimer; SC = simple chain; RC = chain of 4-membered rings; T = tetramer; N = 3D-network; C\textsubscript{a}, C\textsubscript{b}, T\textsubscript{a}, S\textsubscript{a}, S\textsubscript{b}: specific chains (Fig. 7); S\textsubscript{4}: specific chain (Fig. 10); C\textsubscript{a}, C\textsubscript{b}, T\textsubscript{a}, S\textsubscript{a}, S\textsubscript{b}: specific chains, tetramer, sheets (Fig. 11); N\textsubscript{a} specific 3D-network.

Refcode	S. G.	Arrang.	D\textsubscript{c} (g cm-3)
PAZPTE	P-1 I2/a	T\textsubscript{a}	1.942 1.966
PAZPTE01		C\textsubscript{a}	
BTUPTE	C2/c P2\textsubscript{1}/c	0 D	2.106 2.017
BTUPTE01			
DIDMTE	P2\textsubscript{1}/c C2/c	S\textsubscript{a} RC	3.393 3.410
DIDMTE01			
CIFLEI	I4\textsubscript{1} P2\textsubscript{1}/c	N C\textsubscript{b}	2.556 2.534
CIFLEI01			
NUNHUZ	P-1 P-1	T T	2.256 2.287
NUNHUZ01			
SABCII	Pn lbca	0 D	1.669 1.666
SABCII01			
ASEHUB	P2\textsubscript{1}/c P2\textsubscript{1}/a	0 SC	1.759 1.737
ASEHUB01			
QIXZAY	P2\textsubscript{1}/n P2\textsubscript{1}/c	C\textsubscript{c} C\textsubscript{d}	3.138 3.263
QIXZAY03			
DIBTEP02	Fdd2 P2\textsubscript{1}/c	N S\textsubscript{b}	2.843 2.887
DIBTEP10			
BIPTTEI	P2\textsubscript{1}/n P2\textsubscript{1}/c	SC D	2.861 2.777
BIPTTEI01			
CLPHTE	P2\textsubscript{1}/n P2\textsubscript{1}2\textsubscript{1}2\textsubscript{1}	N\textsubscript{a} S\textsubscript{4}	2.316 2.365
CLPHTE01			
3.7.2 Halogen series

The set of organotellurium structures containing halogen atoms includes three complete series of halo compounds with the same molecular structure but different halogen, X = F, Cl, Br, I (Table 7). In the three series, bromo and iodo members are isostructural. In the second series, the chloro compound is also isostructural. When isostructurality is not present, arrangements are different.

Series	F	Cl	Br	I
	KEHBIJ	BIBBOE	BIBCEV	QIXZAY
	S_c	S	C_c	C_c
	GETHOC	BIBCAR	BIBBUK	DIBTEP02
	S_c	N	N	N
	FPHTEL	OPNTED10	DPHTEB01	CIFLEI
	RC	SC	N	N

Table 7. Supramolecular arrangements in complete halogen series. SC = simple chain; RC = chain of 4-membered rings; S = sheet; N = 3D-network; C_c, C_d, S_c: specific chains and sheet (Fig. 7); C_b, S_b: specific chain and sheet (Fig. 11)

Partial series of three and two members are also present in the set of compounds studied, and its abundance is significant: 20 and 47 series respectively. In these partial series, isostructurality is also frequent but examples of non-isostructural members with the same kind of supramolecular arrangement are present (Table 8).

Series	F	Cl	Br	I
		YASVAP	YASVET	
		RC	RC	
		IDEXY	IDEXOZ	
		RC	RC	
		TUWPAC	TUWPIK	
		RC	RC	

Table 8. Supramolecular arrangements in partial halogen series. RC = chain of 4-membered rings
3.8 Selection of structures
The following list collects relevant structures of this section (Table 9).

Refcode	Journal	Vol.	Page	Year
Structures of compounds containing the Te(-X)_2 unit				
a) Dimers				
BSEUTE	Acta Chem.Scand.A	29	763	1975
BTUTPE01	Acta Chem.Scand.A	29	738	1975
BZETBS	Acta Chem.Scand.	20	132	1966
BZETCS	Acta Chem.Scand.	20	132	1966
CEHFAW	Organometallics	18	803	1999
CETUTE	Acta Chem.Scand.A	29	763	1975
DONQEC	Inorg.Chem.	38	3994	1999
DONQIG	Inorg.Chem.	38	3994	1999
DONQOM	Inorg.Chem.	38	3994	1999
ERIBIQ	Organometallics	22	5473	2003
GEDSEO	Z.Kristallogr.	221	166	2006
HIFVOH	Acta Crystallogr., Sect.C	52	424	1996
OCICIN	Chem.-Eur.J.	12	2515	2006
OLODUO	Acta Crystallogr., Sect.C	59	571	2003
OLOFAW	Acta Crystallogr., Sect.C	59	571	2003
PETBIA	Z.Anorg.Allg.Chem.	633	127	2007
PETBIO	Z.Anorg.Allg.Chem.	633	127	2007
POYGEP	J.Organomet.Chem.	549	257	1997
POYGIT	J.Organomet.Chem.	549	257	1997
QANWEH	J.Organomet.Chem.	605	39	2000
QIYBAB	J.Organomet.Chem.	623	74	2001
QOKZIZ	Polyhedron	20	203	2001
ROCTAE	Inorg.Chem.	36	1890	1997
TEGZIP	Acta Crystallogr., Sect.C	52	2022	1996
WEXBIK	Khim.Get.Soedin., SSSR	417		1994
WOMDIL	Phosphorus, Sulfur, Silicon	123	313	1997
YEXWHI	Inorg.Chem.	33	6154	1994
YEXWON	Inorg.Chem.	33	6154	1994
YEXWUT	Inorg.Chem.	33	6154	1994
Dimers connected by covalent skeleton				
HOJJEV01	Angew.Chem., Int.Ed.	39	1796	2000
REDXEE	Eur.J.Inorg.Chem.	124	961	2006
b) Simple chains				
BRTEBA	Acta Crystallogr., Sect.B	35	849	1979
CEHKEF	Organometallics	18	803	1999
CIDKIQ	Inorg.Chem.	46	3275	2007
JABWUE	J.Am.Chem.Soc.	110	6762	1988
Structures of compounds containing the Te(-X)₂ unit

a) Dimers

Code	Title	Volume	Pages	Year
CIDKEG	*Inorg. Chem.*	46	3275	2007
CLPTEI	*Acta Crystallogr.*	15	887	1962
DMTEII	*Inorg. Chem.*	18	311	1979
GACXUD01	*Acta Crystallogr., Sect. C*	47	703	1991
GIPRED	*Angew. Chem., Int. Ed.*	46	8277	2007
GODKUG	*Z. Kristallogr.*	223	536	2008
HEXBOB	*Can. J. Chem.*	72	1844	1994
HOFKES	*Acta Crystallogr., Sect. C*	55	1339	1999
JATSIG	*J. Chem. Soc., Dalton Trans.*			
KONYAB	*Acta Crystallogr., Sect. C*	47	1858	1991
LAFNUB	*Z. Naturforsch., B: Chem. Sci.*	48	199	1993
OCICUZ	*Chem.-Eur. J.*	12	2515	2006
OFUTOZ	*Dalton Trans.*		4023	2008
PEKLMU	*J. Crystallogr. Spectrosc. Res.*	23	181	1993
SABCI01	*Acta Crystallogr., Sect. E*	61	o986	2005
SEPMAB	*J. Chem. Soc., Dalton Trans.*		907	1990
TUWNOO	*Dalton Trans.*		973	2003
TUWNUU	*Dalton Trans.*		973	2003
TUWPEG	*Dalton Trans.*		973	2003
UJAMIC	*J. Organomet. Chem.*	695	2532	2010
UJAMUC	*J. Organomet. Chem.*	695	2532	2010
UJORUH	*J. Organomet. Chem.*	695	2118	2010
UKAFAO	*Inorg. Chem.*	49	7577	2010
UKAFES	*Inorg. Chem.*	49	7577	2010
UKAIFIW	*Inorg. Chem.*	49	7577	2010
UKAFOC	*Inorg. Chem.*	49	7577	2010
UKAGET	*Inorg. Chem.*	49	7577	2010
UKAGIX	*Inorg. Chem.*	49	7577	2010
VOHVET	*J. Organomet. Chem.*	418	339	1991
WECQIF	*Z. Anorg. Allg. Chem.*	632	659	2006
WECQOL	*Z. Anorg. Allg. Chem.*	632	659	2006
WIDZOO	*Z. Anorg. Allg. Chem.*	633	1261	2007
b) Simple chains

Code	Journal	Volume	Pages	Year
ASEHUB01	Z.Kristallogr.	218	636	2003
BOQJIA	Acta Crystallogr., Sect. C	55	1930	1999
CEDDAQ	J.Org.Chem.	48	5149	1983
CEJP AJ	Heteroat.Chem.	16	316	2005
CLCHTE	Cryst.Struct.Commun.	9	533	1980
GOKFAO	Z.Kristallogr.	223	536	2008
IDEXEU	Inorg.Chem.	40	5169	2001
JILXAD	Acta Crystallogr., Sect. C	47	960	1991
KAKCOP	Aust.J.Chem.	58	119	2005
KEQCIT	Inorg.Chim.Acta	359	4619	2006
MIDWAY	Struct.Chem.	18	181	2007
NIJJQM	Polyhedron	16	2441	1997
OFUVER	Dalton Trans.	4023	2008	
OFUVIV	Dalton Trans.	4023	2008	
OPNITED10	J.Chem.Soc., Dalton Trans.	251	1982	
QOGPAD	Acta Crystallogr., Sect. C	57	749	2001
SEJPIG	Acta Crystallogr., Sect. C	46	251	1990
STECHB	Inorg.Chem.	11	3026	1972
TLCLTE	Cryst.Struct.Commun.	9	539	1980
UIJOSAO	J.Organomet.Chem.	695	2118	2010
UIJOSOC	J.Organomet.Chem.	695	2118	2010
VUZJJ	Acta Crystallogr., Sect. C	44	2182	1988
XUCNIS	Chin.J.Chem.	19	457	2001
XUCNOY	Chin.J.Chem.	19	457	2001
XRRAE	Dalton Trans.	39	2637	2010
XURSEJ	Dalton Trans.	39	2637	2010
YOWMEC	Acta Crystallogr., Sect. C	51	861	1995
YUFNUI	Z.Kristallogr.	210	306	1995

c) Chains of 4-membered rings

Code	Journal	Volume	Pages	Year
BZTELI10	Inorg.Chem.	14	1142	1975
CEGNOR	J.Chem.Soc., Dalton Trans.	23	1984	
HIQSUV	Acta Crystallogr., Sect. C	55	648	1999
IDEXIY	Inorg.Chem.	40	5169	2001
PTELDI10	Inorg.Chem.	12	2669	1973
YASVAP	Z.Anorg.Allg.Chem.	619	1269	1993
YASVET	Z.Anorg.Allg.Chem.	619	1269	1993
d) Tetramers

Reference	Journal/Conference	Volume	Issue	Year
IDEXOE	Inorg.Chem.	40	5169	2001
IDEXUK	Inorg.Chem.	40	5169	2001
LEVKED	J.Am.Chem.Soc.	128	14949	2006
MIHFIS	J.Flourine Chem.	102	301	2000
TUWNII	Dalton Trans.		973	2003
TUWPAC	Dalton Trans.		973	2003
TUWPIK	Dalton Trans.		973	2003
UKAFUI	Inorg.Chem.	49	7577	2010
UKAGAP	Inorg.Chem.	49	7577	2010
VOTSIG	Organometallics	11	954	1992
XUPXAI	Heterocycles	80	1339	2010
CERWIF	J.Organomet.Chem.	262	151	1984
COBPOY	J.Organomet.Chem.	268	141	1984
DIDMTE01	Dalton Trans.		6274	2008
FPHTEL	J.Chem.Soc., Dalton Trans.		2306	1980
MIHFEO	J.Flourine Chem.	102	301	2000
YUPHIB	Z.Anorg.Allg.Chem.	635	862	2009

e) Sheets

Reference	Journal/Conference	Volume	Issue	Year
BOHNAN	Acta Crystallogr., Sect.C	39	45	1983
BUNDIY	Inorg.Chem.	48	10330	2009
CIMFOT	Acta Crystallogr., Sect.C	40	1349	1984
IHOFIU	J.Organomet.Chem.	669	149	2003
LIMZEM	Acta Crystallogr., Sect.C	51	639	1995
NUNHUZ	Acta Crystallogr., Sect.C	54	995	1998
NUNHUZ01	Acta Crystallogr., Sect.C	54	995	1998
PHTECL	Inorg.Chem.	19	2556	1980
PIXPES	J.Organomet.Chem.	693	957	2008

f) 3D-Networks

Reference	Journal/Conference	Volume	Issue	Year
BIBBUK	Polyhedron	23	1629	2004
BBCAR	Polyhedron	23	1629	2004
CIFLEI	J.Chem.Soc., Dalton Trans.	869		1984
DIBTEP02	Inorg.Chem.	24	1814	1985
DPHTEB01	Acta Crystallogr., Sect.E	60	o2511	2004

g) Less frequent arrangements

Reference	Journal/Conference	Volume	Issue	Year
BIBCEV	Polyhedron	23	1629	2004
QIXZAY	J.Organomet.Chem.	623	74	2001
QIXZAY03	Inorg.Chem.	43	3742	2004
SIDGIW	Struct.Chem.	18	223	2007
COQNOL01	Inorg.Chem.	38	3994	1999
Structures of compounds containing the Te(-X)₃ unit

a) Dimers

Code	Journal	Year	Volume	Page
AZOFAW	J.Organomet.Chem.	2004	689	2092
BIPTEI01	Inorg.Chem.	1977	16	2318
BPYTEB	Inorg.Chem.	1977	16	612
CIDKAC	Inorg.Chem.	2007	46	3275
CUBFIP	Inorg.Chem.	2009	48	3239
DEFHAX	Acta Crystallogr., Sect.C	1985	41	1545
EOCTEC	J.Organomet.Chem.	1979	181	335
GEHDIH	Z.Anorg.Alg.Chem.	2006	632	893
GEHDON	Z.Anorg.Alg.Chem.	2006	632	893
GIZJEE	J.Chem.Soc., Dalton Trans.	1988	2363	
GOPLEC	Polyhedron	1998	17	2153
IMOZUF	Organometallics	2003	22	5069
SEPLUU	J.Chem.Soc., Dalton Trans.	1990	907	
WEQVAP	J.Organomet.Chem.	2000	598	49
XOPROK	Angew.Chem., Int.Ed.	2008	47	9982
ZATROB	Z.Kristallogr.	1995	210	552

b) Simple chains

Code	Journal	Year	Volume	Page
BONHUH	Cryst.Struct.Commun.	1982	11	1593
DOTLUT	J.Org.Chem.	1986	51	1692
PAFLIR	Inorg.Chem.	1992	31	1431
BIPTEI	Inorg.Chem.	1976	15	2728
UDHUW	Organometallics	2002	21	526

c) Chains of 4-membered rings

Code	Journal	Year	Volume	Page
WEQVET	J.Organomet.Chem.	2000	598	49
MUWBIP	J.Organomet.Chem.	2002	664	306
OLODIOI	Acta Crystallogr., Sect.C	2003	59	0571
WERWUM	J.Organomet.Chem.	2006	691	4807
YIHRAJ	Z.Anorg.Alg.Chem.	2007	633	1618

Structures of compounds containing the Te(-X)₄ unit

a) Dimers

Code	Journal	Year	Volume	Page
CIFVOD	J.Organomet.Chem.	2007	692	3081
CIFVUJ	J.Organomet.Chem.	2007	692	3081
CIFWAQ	J.Organomet.Chem.	2007	692	3081
CITMAT	Tetrahedron	1984	40	1607
CUCGOW	Can.J.Chem.	1984	62	32
DEBXOY	Appl.Organomet.Chem.	2005	19	1196
DEBXUE	Appl.Organomet.Chem.	2005	19	1196
Supramolecular Arrangements in Organotellurium Compounds via Te··· Halogen Contacts

133

ELAVAP Inorg.Chim.Acta 365 492 2011
IHIMAO J.Organomet.Chem. 694 2463 2009
IHIMES J.Organomet.Chem. 694 2463 2009
JASCAL Z.Anorg.Allg.Chem. 631 1524 2005
MECGEH Eur.J.Inorg.Chem. 958 2006
MECGOR Eur.J.Inorg.Chem. 958 2006
MTEMTE J.Chem.Soc.A 2018 1967
WUGVUQ J.Braz.Chem.Soc. 17 1566 2006
WUTJOK Z.Anorg.Allg.Chem. 629 215 2003

b) Simple chains
IJOHUK Inorg.Chem.Commun. 6 869 2003
IJOJAS Inorg.Chem.Commun. 6 869 2003
JASBUB Z.Anorg.Allg.Chem. 631 1524 2005
KEQCAL Inorg.Chim.Acta 359 4619 2006
MECGUX Eur.J.Inorg.Chem. 958 2006
WUGVIE J.Braz.Chem.Soc. 17 1566 2006
WUGVOK J.Braz.Chem.Soc. 17 1566 2006

Structures of compounds without Te-X units [Te(-X)$_n$] in Figure
CLPHTE01 Acta Crystallogr.,Sect.C 40 1011 1984
DIHHAE Bioinorg.Chem.Appl. 69263 2007
JATWAC Inorg.Chem. 38 519 1999
JEPBAH Acta Chem.Scand. 44 464 1990
YABXEF J.Fluorine Chem. 125 997 2004

Polymorphs
ASEHUB Z.Kristallogr. 218 636 2003
ASEHUB01 Z.Kristallogr. 218 636 2003
BIPTIE Inorg.Chem. 15 2728 1976
BIPTIE01 Inorg.Chem. 16 2318 1977
BTUPTE Acta Chem.Scand.A 29 738 1975
BTUPTE01 Acta Chem.Scand.A 29 738 1975
CIFLEI J.Chem.Soc.,Dalton Trans. 869 1984
CIFLEI01 J.Chem.Soc.,Dalton Trans. 869 1984
CLPHTE Acta Crystallogr 10 201 1957
CLPHTE01 Acta Crystallogr.,Sect.C 40 1011 1984
DIBTEP10 J.Organomet.Chem. 178 423 1979
DIDMTE J.Chem.Soc.,Dalton Trans. 316 1972
DIDMTE01 Dalton Trans. 6274 2008
NUNHUZ Acta Crystallogr.,Sect.C 54 995 1998
NUNHUZ01 Acta Crystallogr.,Sect.C 54 995 1998
PAZPTE J.Chem.Res. 145 1901 1979
PAZPTE01 J.Organomet.Chem. 549 257 1997
QIXZAY J.Organomet.Chem. 623 74 2001
Table 9. Short-form references to individual CSD entries. In blue, structures measured at low temperature

4. Conclusion

In the majority of structures having tellurium and halogens, intermolecular Te···X contacts are observed.

Despite the great chemical diversity found in these compounds, the majority of them can be grouped considering only a few supramolecular patterns, *i.e.*, dimer, simple chain and chain of 4-membered rings.

Isostructurality is frequent in series of compounds with the same molecular structure but different halogen and, moreover, in some non isostructural compounds the supramolecular arrangement is retained.

No relations have been found between supramolecular arrangements of polymorphs although due to the reduced number of cases can not ruled them out.
5. Acknowledgment

The authors gratefully acknowledge Dr D. Cendón for his valuable participation in the discussion and correction of the text.

6. References

Alcock, N. W. (1972). Secondary bonding to nonmetallic elements. *Adv. Inorg. Chem. Radiochem.*, Vol. 15(1), pp. 1-58, ISSN 0065-2792

Allen, F. H. (2002). The Cambridge Structural Database: a quarter of a million crystal structures and rising. *Acta Cryst.*, Vol. B58(3), pp. 380-388, ISSN 0108-7681

Ba, L. A.; Doering, M.; Jamier, V. & Jacob, C. (2010). Tellurium: an element with great biological potency and potential. *Org. Biomol. Chem.*, Vol. 8(19), pp. 4203-4216, ISSN 1477-0520

Bondi, A. (1964). Van der Waals Volumes and Radii. *J. Phys. Chem.*, Vol. 68(3), pp. 441-451, ISSN 1089-5639

Bruno, I. J.; Cole, J. C.; Edgington, P. R.; Kessler, M.; Macrae, C. F.; McCabe, P.; Pearson, J. & Taylor, R. (2002). New software for searching the Cambridge Structural Database and visualising crystal structures. *Acta Cryst.*, Vol. B58(3), pp. 389-397, ISSN 0108-7681

CCDC - Cambridge Crystallographic Data Centre (1994). Vista - A Program for the Analysis and Display of Data Retrieved from the CSD

Cozzolino, A. F.; Elder, P. J. W. & Vargas-Baca, I. (2011). A survey of tellurium-centered secondary-bonding supramolecular synthons. *Coord. Chem. Rev.*, Vol. 255(11-12), pp. 1426-1438, ISSN 0010-8545

Desiraju, G. R. & Steiner, T. (2001). *The weak hydrogen bond in structural chemistry and biology*, Oxford University Press, ISBN 0-19-850970-7, Oxford, UK

Forni, A.; Metrangolo, P.; Pilati, T. & Resnati, G. (2004). Halogen Bond Distance as a Function of Temperature. *Cryst. Growth Des.*, Vol. 4(2), pp. 291-295, ISSN 0022-0248

Haiduc, I. & Zukerman-Schpector, J. (2001). Supramolecular Self-Assembly Through Secondary Bonds in Organotellurium Chemistry. *Phosphorus, Sulfur, Silicon, Relat. Elem.*, Vol. 171(1), pp. 171-185, ISSN 1042-6507

Hails, J. E.; Cole-Hamilton, D. J.; Stevenson, J.; Bell, W.; Foster, D. F. & Ellis, D. (2001). A chemical assessment of the suitability of allyl iso-propyltelluride as a Te precursor for metal organic vapour phase epitaxy. *J. Cryst. Growth*, Vol. 224(1-2), pp. 21-31, ISSN 0022-0248

Jeffrey, G. A. & Saenger, W. (1991). *Hydrogen Bonding in Biological Structures*, Springer Verlag, ISBN 3-540-50839-2, Berlin, Germany

Kitayama, Y.; Chaiyasat, A.; Minami, H. & Okubo, M. (2010). Emulsifier-Free Organotellurium-Mediated Living Radical Emulsion Polymerization of Styrene; Polymerization Loci. *Macromolecules*, Vol. 43(18), pp. 7465-7471, ISSN 0024-9297

Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J. & Wood, P. A. (2008). Mercury CSD 2.0 - New Features for the Visualization and Investigation of Crystal Structures. *J. Appl. Cryst.*, Vol. 41(2), pp. 466-470, ISSN 0021-8898
Metrangolo, P.; Meyer, F.; Pilati, T.; Resnati, G. & Terraneo, G. (2008). Halogen bonding in supramolecular chemistry. *Angew. Chem. Int. Ed.*, Vol. 47(33), pp. 6114-6127, ISSN 1433-7581

Nishio, M.; Umezawa, Y.; Honda, K.; Tsuboyama, S. & Suezawa, H. (2009). CH/π hydrogen bonds in organic and organometallic chemistry. *Cryst. Eng. Comm.*, Vol. 11(9), pp. 1757-1788, ISSN 1466-8033

Petragnani, N. & Stefani, H. A. (2005). Advances in organic tellurium chemistry. *Tetrahedron*, Vol. 61(7), pp. 1613-1679, ISSN 0040-4020

Pimentel, G. C. & McClellan, A. L. (1960). *The Hydrogen Bond*, W. H. Freeman and Company, ISBN 978-0198558835, San Francisco, USA

Rowland, R. S. & Taylor, R. (1996). Intermolecular Nonbonded Contact Distances in Organic Crystal Structures: Comparison with Distances Expected from van der Waals Radii. *J. Phys. Chem.*, Vol. 100(18), pp. 7384-7391, ISSN 1089-5639

Salonen, L. M.; Ellermann, M. & Diederich, F. (2011). Aromatic rings in chemical and biological recognition: energetics and structures. *Angew. Chem. Int. Ed.*, Vol. 50(21), pp. 4808-4842, ISSN 1433-7581

Schneider, H. J. (2009). Binding Mechanisms in Supramolecular Complexes. *Angew. Chem. Int. Ed.*, Vol. 48(22), pp. 3924-3977, ISSN 1433-7581

Shanks, D.; Engman, L.; Mayte Pach, M. & Thomas Norrby, T. (2006). Probing the antioxidative properties of combinations of an organotellurium compound, BHT and thiol in oil. *Lubr. Sci.*, Vol. 18(2), pp. 87-94, ISSN 0954-0075

Singh, A. K. & Sharma, S. (2000). Recent developments in the ligand chemistry of tellurium. *Coord. Chem. Rev.*, Vol. 209(1), pp. 49-98, ISSN 0010-8545

Srivastava, P. C.; Bajpai, S.; Lath, R.; Bajpai, S. M.; Kumar, R. & Butcher, R. J. (2004). Molecular aggregates, zig-zag 2D-stairs, -ribbons and 3D-supramolecular networks of cyclic telluranes assisted by intermolecular Te···Cl and Te···Br secondary bonding. *Polyhedron*, Vol. 23(9), pp. 1629-1639, ISSN 0277-5387

Steigerwald, M. L. & Sprinkle, C. R. (1987). Organometallic synthesis of II-VI semiconductors. 1. Formation and decomposition of bis(organotelluro)mercury and bis(organotelluro)cadmium compounds. *J. Am. Chem. Soc.*, Vol. 109(23), pp. 7200-7201, ISSN 0002-7863

Steiner, T. (2002). The Hydrogen Bond in the Solid State. *Angew. Chem. Int. Ed.*, Vol. 41(1), pp. 48-76, ISSN 1433-7581

Zukerman-Schpector, J. & Haiduc, I. (2001). Diorganotellurium(IV) Dihalides and Secondary Bonding: Revisiting the Coordination Polyhedra. *Phosphorus, Sulfur, Silicon, Relat. Elem.*, Vol. 171(1), pp. 73-112, ISSN 1042-6507

Zukerman-Schpector, J.; Haiduc, I.; Camillo, R. L.; Comasseto, J. V., Cunha, R. L. O. R. & Jorge, A. (2002). Supramolecular self-assembly through tellurium···halogen secondary bonds: A hexagonal grid of Te₂Cl₂ and Te₆Cl₆ rings in the solid state structure of 1,1,3-trichloro-2,4,5,6-tetrahydro-1H-1λ₄-benzo[b]tellurophene. *Can. J. Chem.*, Vol. 80(11), pp. 1530-1537, ISSN 0008-4042
This book on X-ray Crystallography is a compilation of current trends in the use of X-ray crystallography and related structural determination methods in various fields. The methods covered here include single crystal small-molecule X-ray crystallography, macromolecular (protein) single crystal X-ray crystallography, and scattering and spectroscopic complimentary methods. The fields range from simple organic compounds, metal complexes to proteins, and also cover the meta-analyses of the database for weak interactions.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Angel Alvarez-Larena, Joan Farran and Joan F. Piniella (2011). Supramolecular Arrangements in Organotellurium Compounds via Te···Halogen Contacts, Current Trends in X-Ray Crystallography, Dr. Annamalai Chandrasekaran (Ed.), ISBN: 978-953-307-754-3, InTech, Available from: http://www.intechopen.com/books/current-trends-in-x-ray-crystallography/supramolecular-arrangements-in-organotellurium-compounds-via-te-halogen-contacts
