Molecular subtype classification of urothelial carcinoma in Lynch syndrome

Therkildsen, Christina; Eriksson, Pontus; Höglund, Mattias; Jönsson, Mats; Sjödahl, Gottfrid; Nilbert, Mef; Liedberg, Fredrik

Published in:
Molecular Oncology

DOI:
10.1002/1878-0261.12325

Publication date:
2018

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Therkildsen, C., Eriksson, P., Höglund, M., Jönsson, M., Sjödahl, G., Nilbert, M., & Liedberg, F. (2018). Molecular subtype classification of urothelial carcinoma in Lynch syndrome. Molecular Oncology, 12(8), 1286-1295. https://doi.org/10.1002/1878-0261.12325
Molecular subtype classification of urothelial carcinoma in Lynch syndrome

Christina Therkildsen, Pontus Eriksson, Mattias Höglund, Mats Jönsson, Gottfrid Sjödahl, Mef Nilbert, and Fredrik Liedberg

1 The HNPCC register, Clinical Research Center, Copenhagen University Hospital, Hvidovre, Denmark
2 Division of Oncology and Pathology, Institution of Clinical Sciences, Lund University, Sweden
3 Division of Urological Research, Institution of Translational Medicine, Lund University, Sweden
4 Department of Urology, Skåne University Hospital, Malmö, Sweden
5 Danish Cancer Society Research Center, Copenhagen, Denmark

Keywords
bladder cancer; lynch syndrome; upper urinary tract urothelial carcinoma; urothelial carcinoma

Correspondence
F. Liedberg, Department of Urology, Skåne University Hospital, Malmö 205 02, Sweden; Department of Translational Medicine, Lund University, Jan Waldenstroms gata 7, SE-205 02 Malmö, Sweden
Fax: +4640337352
Tel: +4640331941
E-mail: fredrik.liedberg@med.lu.se

(Received 2 March 2018, revised 27 April 2018, accepted 17 May 2018, available online 19 June 2018)
doi:10.1002/1878-0261.12325

Lynch syndrome confers an increased risk for urothelial carcinoma (UC). Molecular subtypes may be relevant to prognosis and therapeutic possibilities, but have not to date been defined in Lynch syndrome-associated urothelial cancer. We aimed to provide a molecular description of Lynch syndrome-associated UC. Thus, Lynch syndrome-associated UCs of the upper urinary tract and the urinary bladder were identified in the Danish hereditary nonpolyposis colorectal cancer (HNPCC) register and were transcriptionally and immunohistochemically profiled and further related to data from 307 sporadic urothelial carcinomas. Whole-genome mRNA expression profiles of 41 tumors and immunohistochemical stainings against FGFR3, KRT5, CCNB1, RB1, and CDKN2A (p16) of 37 tumors from patients with Lynch syndrome were generated. Pathological data, microsatellite instability, anatomic location, and overall survival data were analyzed and compared with sporadic bladder cancer. The 41 Lynch syndrome-associated UC developed at a mean age of 61 years with 59% women. mRNA expression profiling and immunostaining classified the majority of the Lynch syndrome-associated UC as urothelial-like tumors with only 20% being genomically unstable, basal/SCC-like, or other subtypes. The subtypes were associated with stage, grade, and microsatellite instability. Comparison to larger datasets revealed that Lynch syndrome-associated UC shares molecular similarities with sporadic UC. In conclusion, transcriptomic and immunohistochemical profiling identifies a predominance of the urothelial-like molecular subtype in Lynch syndrome and reveals that the molecular subtypes of sporadic bladder cancer are relevant also within this hereditary, mismatch-repair defective subset.

1. Introduction

Heredity in upper urinary tract urothelial carcinoma particularly relates to the Lynch syndrome, which is caused by germline mutations in the mismatch repair (MMR) genes MLH1, MSH2, MSH6, or PMS2. The highest risks apply to colorectal cancer (50–80% lifetime risk) and endometrial cancer (40–60% lifetime risk) and Lynch syndrome patients have a higher risk for upper urinary tract urothelial cancer. Lynch syndrome is an inherited cancer predisposition syndrome caused by germline mutations in the mismatch repair (MMR) genes MLH1, MSH2, MSH6, or PMS2. The highest risks apply to colorectal cancer (50–80% lifetime risk) and endometrial cancer (40–60% lifetime risk). Lynch syndrome is associated with an increased risk for urothelial carcinoma (UC), which is a genetically heterogeneous cancer with molecular subtypes that may be relevant to prognosis and therapeutic possibilities. However, molecular subtypes have not been defined in Lynch syndrome-associated UC.

Methods

1.1. Identification of Lynch Syndrome-Associated UC

Lynch syndrome-associated UCs of the upper urinary tract and the urinary bladder were identified in the Danish hereditary nonpolyposis colorectal cancer (HNPCC) register. The register contains information on all Danish cases of HNPCC diagnosed since 1995. The register includes data on family history, personal history, and tumor characteristics. The information is updated every year by the Danish Cancer Registry.

1.2. Data Collection

Data on pathological characteristics, microsatellite instability, anatomic location, and overall survival were collected from patients with Lynch syndrome-associated UC. The data were obtained from hospital records and pathology reports.

1.3. RNA Expression Profiling

Whole-genome mRNA expression profiles of 41 tumors were generated using microarray technology. The profiles were analyzed using statistical methods to identify genes that were differentially expressed in Lynch syndrome-associated UC compared to sporadic UC.

1.4. Immunohistochemistry

Immunohistochemical stainings against FGFR3, KRT5, CCNB1, RB1, and CDKN2A (p16) were performed on formalin-fixed, paraffin-embedded tissue samples from 37 tumors. The stainings were analyzed using standardized methods to identify subtypes of Lynch syndrome-associated UC.

Results

2.1. Patient Characteristics

The Lynch syndrome-associated UC developed at a mean age of 61 years with 59% women. The tumors were located in the upper urinary tract in 71% of cases, the urinary bladder in 29% of cases, and the upper urinary tract and urinary bladder in 2% of cases.

2.2. Molecular Subtyping

Molecular subtyping of Lynch syndrome-associated UC using RNA expression profiling and immunohistochemistry revealed a predominance of the urothelial-like molecular subtype. Only 20% of the tumors were genomically unstable, basal/SCC-like, or other subtypes.

2.3. Comparison with Sporadic UC

Comparison to larger datasets revealed that Lynch syndrome-associated UC shares molecular similarities with sporadic UC. This suggests that the molecular subtypes of sporadic bladder cancer are relevant also within this hereditary, mismatch-repair defective subset.

Conclusion

Transcriptomic and immunohistochemical profiling identifies a predominance of the urothelial-like molecular subtype in Lynch syndrome and reveals that the molecular subtypes of sporadic bladder cancer are relevant also within this hereditary, mismatch-repair defective subset.

Abbreviations

GU, genomically unstable; HNPCC, hereditary nonpolyposis colorectal cancer; IHC, immunohistochemistry; MMR, mismatch repair; MSI, microsatellite instability; TMA, tissue microarray; UC, urothelial carcinoma; Uro, urothelial-like; UTUC, upper urinary tract urothelial carcinoma.
risk), but efficient surveillance and prophylactic risk reduction procedures have led to improved survival rates and prolonged life expectancy. This implies a longer time at-risk of developing less common tumor types such as urothelial cancer (UC) (Järvinen et al., 2009). We have recently shown a significantly increased incidence of UC in the Danish Lynch syndrome population, which applies to both genders and increases with age (Therkildsen et al., 2017). The upper urinary tract urothelial carcinomas (UTUC) are particularly overrepresented in Lynch syndrome with cumulative risks estimated between 6.0 and 15.4% for UTUC and 2.4–9.0% for bladder UC (Engel et al., 2012; van der Post et al., 2010; Watson et al., 2008). Development of UC in Lynch syndrome is associated to mutations in the MSH2 gene with such mutations in 65–70% of the UC in Lynch syndrome (Engel et al., 2012; Joost et al., 2015; van der Post et al., 2010; Skeldon et al., 2013).

Urothelial carcinomas of the upper urinary tract and the urinary bladder are morphologically and biologically similar (Krabbe et al., 2014). Differences in mutational profiles have been reported in high-grade tumors with more frequent mutations in FGFR3, HRAS, and CDKN2B in UTUC and in TP53 and RB1 in bladder UC (Sanford et al., 2015; Sfakianos et al., 2015). In assumingly sporadic tumors, defective mismatch-repair (MMR) is found in 11% of UTUC and in variable frequencies, most likely reflecting diverse assessment principles, in bladder UC (Catto et al., 2003; Metcalfe et al., 2018). Gene expression profiles have defined recurrent molecular subtypes in bladder UC and UTUC (Cancer Genome Atlas Research Network, 2014; Choi et al., 2014; Damrauer et al., 2014; Moss et al., 2017; Sjödahl et al., 2012), but have not been investigated in tumors from patients with Lynch syndrome. Here, we define molecular subtypes of UC linked to Lynch syndrome with comparison to a stage-matched cohort of sporadic UC using both mRNA and immunohistochemically based expression signatures.

2. Materials and methods

2.1. Patient and tumor selection

Eligible patients with urothelial cancer (UC) were identified through the national Danish hereditary non-polyposis colorectal cancer (HNPCC) registry as previously described (Joost et al., 2015). In brief, 92 UC had been surgically removed from 65 patients with Lynch syndrome between 1982 and 2013 of which tissues from 41 unique patients were available for analysis as no patient with samples from more than one tumor was available. All samples were investigated for microsatellite instability (MSI) with 19 tumors showing an MSI phenotype as previously described (Joost et al., 2015). The tumors developed in MMR mutation carriers (n = 40) or in deceased first-degree relatives, in which gene carrier status could not be evaluated through tumor analyses (n = 1). Pathologic re-evaluation was performed, tumor stage was determined according to the TNM 2009 classification, and tumor grading was applied using the WHO 1999 and 2004 systems. Surgery included transurethral resections of bladder cancers and nephroureterectomies for upper urinary tract tumors. The study was approved by the Scientific and Ethical Committee at the Capital Region of Denmark (HD-2007-0032 and H-17001916) and the Danish Data Protection Agency (2007-58-0015 and AHH-2017-071).

2.2. RNA extraction and mRNA profiling

Total RNA was extracted from FFPE tissue blocks, amplified and labeled using the SensationPlus labeling kit, and hybridized to Gene ST 1.0 Affymetrix microarrays at the SCIBLU genomics facility in Lund, Sweden. Raw data are deposited at the Gene Expression Omnibus repository (GSE104922). RNA subtype classification of urothelial Lynch syndrome tumors was compared to a reference dataset of 307 advanced, subtype classified bladder tumors (GSE83586). Direct comparison to other large available datasets, such as TCGA, was not performed due to differences in data type (microarray versus RNA-Seq, and sample quality FFPE-RNA versus fresh-frozen-RNA). For details on mRNA profiling and subtype classification, Appendix S1.

2.3. Tissue microarrays (TMA) and immunohistochemistry (IHC)-based subtype classification

For 36 of 41 tumors, sufficient tumor tissue to obtain two 1.0-mm tissue cores was available to construct a TMA. Tumors were classified as urothelial-like (Uro), basal/SCC-like and genomically unstable (GU) based on a previously described IHC-classifier (Pradere et al., 2017). For details Appendix S1.

2.4. Lynch syndrome in sporadic bladder cancer

To investigate undiagnosed Lynch syndrome in sporadic bladder cancer, we performed immunostaining for MLH1, MSH2, and MSH6 in an extended...
population-based cohort (n = 383) (Sjödahl et al., 2017) using antibodies against MLH1 (ES05, dilution 1:50, Dako, Glostrup, Denmark), MSH2 (FE11, dilution 1:50, Dako), and MSH6 (EP49, dilution 1:50, Dako) and the Dako Envision™ FLEX+ detection kit (Dako) following manufacturer’s instruction. In brief, 5 μm sections were deparaffinized and rehydrated and heat-induced epitope retrieval was performed using a PT Link (Dako) for 20 min at pH 9. The antibody stainings were performed in a Dako Autostainer Plus (Dako) using the Envision™ FLEX+ Mouse or Rabbit LINKER (Dako). Sections were counter-stained with hematoxylin and eosin, dehydrated, and preserved with coverslips using Permount™ mounting medium (Fisher Scientific, Hampton, NH, USA).

2.5. Statistical analysis

Overall survival (defined as time from surgery to date of death) for the 41 patients with Lynch syndrome urothelial cancer was compared to a reference cohort of sporadic bladder urothelial cancer (Sjödahl et al., 2012). To minimize the effect bias from T-stage, identical proportions of pTa/T1/ ≥ pT2 were achieved by randomly excluding 53 pT1 and one ≥ pT2 tumor, leaving 114 pTa, 42 pT1, and 90 ≥ pT2 tumors in the external survival dataset. For Kaplan–Meier visualization of overall survival, data were censored at 150 months, which affected eight nonevents and one event, all in the Lynch syndrome subset. Differences in survival were evaluated using logrank test and univariate Cox proportional hazard ratio. Associations between clinical characteristics and molecular data were investigated using Fisher’s exact test. Bonferroni corrections were used whenever relevant.

3. Results

3.1. Patient characteristics

The 41 Lynch syndrome-associated UCs were located in the bladder (n = 19), the ureter (n = 14), and the renal pelvis (n = 8) (Table 1). IHC-analysis showed loss of protein expression corresponding to the disease-predisposing MMR gene mutation in 98% of the samples, of which 46% were microsatellite instable and 54% were microsatellite stable. The majority of tumors (71%) developed in MSH2 mutation carriers. The tumors developed at mean age of 61 years (range 36 to 80 years) and with a preference for females (59%). Tumor stage was pTa or pT1 in 68% of the bladder cancers and in 59% of the upper urinary tract tumors. Previous metachronous cancer had developed in 32 patients and included 32 colorectal cancers, 12 endometrial cancers, and 18 UC.

3.2. Characterization of Lynch syndrome-associated tumors by gene expression profiling

We performed unsupervised hierarchical clustering of the Lynch syndrome-associated tumors (Fig. 1), using the top varying genes (n = 7569). This produced three major clusters, where Cluster 1 (n = 20) contained the majority of invasive tumors (≥ Ta) (4 pTa, 6 pT1, and 10 ≥ pT2). Cluster 2 (n = 11) contained 6 pTa, one pT1, and four ≥ pT2, and Cluster 3 (n = 10) contained 9 pTa and one ≥ pT2 tumor. The major division in the clustering was related to tumor stage, which showed significant difference between clusters (pTa versus ≥ pT1, P < 0.001). Furthermore, 65% of the UTUC were located in Cluster 1 and 72% of bladder tumors in Cluster 2 (Fisher’s exact test, P = 0.03). None of

Table 1. Descriptive data of the Lynch syndrome-associated UC. Description of the clinical and pathological tumor characteristics in the 41 urothelial carcinomas in patients with Lynch syndrome-associated UC. MSI = microsatellite instability and MSS = microsatellite stable tumors according to all five mononucleotide markers BAT-25, BAT-26, NR-21, NR-24, and MONO-27 used (5). MSI-low (MSI-L) indicates instability for one marker and MSI-high (MSI-H) for ≥ two markers.

Stage	Numbers (n = 41)	%
pTa	19	47
pT1	7	17
pT2	10	24
pT3	5	12
Grade (WHO 1999/2004)		
G1/LG	2	5
G2/HG	23	56
G3/HG	16	39
Gene affected		
MLH1	5	12
MSH2	29	71
MSH6	7	17
Carrier status		
First-degree relative	1	2
Carrier	32	78
Obligate carrier	8	20
MSI status		
MSS	22	54
MSI-L	7	17
MSI-H	12	29
Anatomic site		
Bladder	19	46
Ureter	14	34
Renal pelvis	8	20
the clusters were specifically associated with mutations in \textit{MSH6}, \textit{MLH1}, or \textit{MSH2}, but there was a significant difference in the rate of microsatellite instability (MSI) among the clusters, with Cluster 3 showing the lowest proportion of MSI (Fisher’s exact test, \(P = 0.01\)). A three-group ANOVA test indicated 806 significant genes \((P < 0.01\), Bonferroni corrected\) with the majority showing upregulation in Cluster 1. Gene ontology analysis showed broad enrichment of terms related to, for example, cell cycle regulation, metabolic and catabolic processes, and RNA processing (Table S1). Comparing global mRNA expression between Lynch syndrome-associated bladder tumors and upper urinary tract UC revealed no significant differences in gene expression patterns using \(t\)-test and SAM analysis (data not shown).

3.3. Lynch syndrome-associated UC in relation to sporadic bladder cancers

To compare Lynch syndrome-associated and sporadic UC, we combined mRNA data from the 41 Lynch syndrome tumors with data from 307 sporadic advanced bladder cancers (Sjödahl \textit{et al.}, 2017). Unsupervised hierarchical cluster analysis showed that Lynch syndrome tumors were distributed among the sporadic bladder cancers and did not form a distinct group separated from the main cohort of sporadic tumors. The Lynch syndrome tumors formed two aggregations consisting of Cluster 1 tumors and Cluster 3 tumors, respectively (Fig. 2A). Hence, the expression profiles of Lynch syndrome tumors seem to be more similar to each other than to sporadic tumors (Fig. 2A). To examine how the Lynch syndrome samples related to the molecular subtypes of bladder cancer, we arranged the reference dataset according to molecular subtype (Sjödahl \textit{et al.}, 2017) and inserted the Lynch syndrome UC into the dataset by placing them adjacent to the most similar sporadic tumor (Fig. 2B). The majority (33/41) grouped with bladder cancer of the Uro subtypes (18 UroA-Prog, two UroC, six Uro-Inf, and seven UroB) (Fig. 2B). The progressed UroA group (UroA-Prog) contained the majority of lower stage tumors in the reference dataset, and accordingly, 9 of 10 low-stage Cluster 3 Lynch syndrome tumors grouped with this subtype. Among

![Fig. 1. Gene expression analysis of Lynch syndrome-associated UC. Gene expression data from 41 Lynch syndrome-associated UC were median centered and subjected to hierarchical clustering analysis (Ward's algorithm, Pearson correlation). The three clusters identified were associated with tumor stage, grade (WHO 1999), and microsatellite instability, but not with affected gene. Heatmaps show three patterns of differentially expressed genes identified by three-group ANOVA between Cluster 1 and Cluster 3. MSS = microsatellite stable; MSI-low (MSI-L) indicates instability for one marker and MSI-high (MSI-H) for ≥ two markers. UT = Upper urinary tract.](image-url)
the remaining eight Lynch syndrome samples, three
grouped with the genomically unstable (GU), four
with the basal/SCC-like, and one with mesenchymal-
like bladder tumors. No significant difference in stage
(pTa/pT1 versus ≥ pT2) or affected MMR gene of
Lynch syndrome tumors was observed when grouped
by subtype. Similarly, we found no significant differ-
ence in the rate of MSI between cases clustering with
the UroA-Prog (MSI = 6, MSS = 11) versus those
clustering with the other Uro subtypes (MSI = 6,
MSS = 4, P = 0.3), nor when comparing the UroA-
Prog group to all other Lynch syndrome cases
(MSI = 13, MSS = 10, P = 0.2).

3.4. Molecular pathological analysis of Lynch
syndrome-associated urothelial carcinomas

The TMA sections were stained for markers associated
with molecular subtype, that is, antibodies for
FGFR3, CCNB1, KRT5, RB1, and CDKN2A (p16),
and examined for maintained urothelial-like stratifica-
tion of cell layers. The results were strongly reminis-
cent of sporadic bladder cancer, and 21 of 37 cases
showed urothelial-like histology, low stage, and grade,
thus sharing characteristics with the Uro subtype. This
was supported molecularly by stratified expression of
basal urothelial markers; for example, KRT5 expres-
sion and proliferation limited to the basal and supra-
basal layers, and high tumor-cell expression of FGFR3
in all cell layers (Fig. 3A). Among the non-Uro
classified cases, six were classified as GU with high
levels of CDKN2A (p16) and CCNB1, while four were
classified as basal/SCC-like due to up-regulation of
KRT5 and downregulation of FGFR3 (Fig. 3B). The
IHC staining did not differ in patterns compared to
sporadic UC. For example, the GU IHC-class con-
tained cases with RB1 loss and showed higher CCNB1
staining than Uro-classified cases (group mean 0.27
versus 0.13, t-test, P = 1.8 e-5) and four of six were of
stage ≥ pT2 (Fig. 3B). The basal/SCC-like cases were
all of stage ≥ pT2 and showed nonstratified KRT5
expression (Fig. 3A,B). The IHC-class corresponded to
the subtype defined by mRNA expression (Fig. 2B) in
the sporadic UC dataset in 69% of the cases (Fig. 3B).
Taken together, these data indicate that UCs in
patients with Lynch syndrome molecularly are compa-
rable to sporadic urinary UC.

3.5. Overall survival for Lynch syndrome-
associated and sporadic urothelial cancer

The 10-year crude survival for Lynch syndrome
patients with UC was 50%, which was similar for
stage-matched sporadic bladder cancer cohort
(n = 246) (Sjödahl et al., 2012). Univariate analysis
indicated no difference in outcome between the groups
(HR: 1.07, 95% CI: 0.63–1.82, logrank-P = 0.81)
(Fig. 4A). Furthermore, fundamental patient charac-
teristics such as gender distribution (Lynch syndrome:
24 females and 17 males; sporadic cancer: 80 females
and 228 males, Fisher’s exact test, $P = 4.6 \times 10^{-5}$) and age at diagnosis (60 years for Lynch syndrome and 73.5 years for sporadic cancer; Mann–Whitney, $P = 4.0 \times 10^{-7}$) (Fig. 4B) differed significantly between the two cohorts. Overall survival was not significantly influenced by MSI status within the MMR-deficient Lynch syndrome cohort (Fig. 5).

3.6. Lynch syndrome in sporadic advanced bladder cancer

To investigate whether advanced sporadic bladder tumors include potentially undiagnosed Lynch syndrome patients, we performed IHC for MLH1, MSH2, and MSH6 in a population-based cohort ($n = 383$) (Sjödahl et al., 2017). Only two tumors (0.5%) showed tumor-specific loss of staining for MLH1 and MSH6, respectively, suggestive of Lynch syndrome and thus have a negligible impact on the results.

4. Discussion

Based on mRNA and IHC profiling, we demonstrate that Lynch syndrome-associated UC segregates into three clusters associated with tumor stage, grade, and...
MSI status, which represent the main determinants of the global gene expression pattern (Fig. 1). When analyzed in the context of sporadic UC, Lynch syndrome-associated tumors clustered within the established molecular subtypes and together with sporadic tumors. Both mRNA-based and IHC-based molecular classifications resulted in the expected frequencies of molecular subtypes given the stage distribution in the cohort, which suggests that the predefined molecular subtypes dominate over genetic predisposition. At the molecular pathology level, most tumors demonstrated an urothelial-like (Uro) phenotype with low stage/grade, retained stratification of basal-intermediate cell layers, and frequent FGFR3 expression. Among T1 and ≥T2 cases, some tumors showed typical basal/squamous-like or genomically unstable phenotypes, confirming that all the three major UC phenotypes are represented also in Lynch syndrome. Data that compare molecular subtypes in UC of the upper and the lower urinary tract are scarce. In a gene expression study of 12 UTUC and 20 bladder UC, the basal subtype was suggested to be less frequent in UTUC (Sanford et al., 2015). Mutations in UTUC and bladder UC differed only for HRAS, CDKN2B, TP53, RB1, and ARID1A when investigated in a set of 59 high-grade UTUC and 102 high-grade bladder UC (Sanford et al., 2015; Sfakianos et al., 2015). Gene expression patterns did not differ between the 19 bladder UC and 22 UTUC in the present study; however, limited sample size and heterogeneous stage distribution preclude any firm conclusions.

The comparison with sporadic UTUC and bladder cancer revealed a female preponderance and younger age at first UC diagnosis for patients with Lynch syndrome. As previously reported (Pradere et al., 2017), UC linked to Lynch syndrome develops at a lower age than sporadic UC with mean 13.5 years earlier age at

Fig. 4. Patients with Lynch syndrome-associated UC have similar overall survival, but are diagnosed at younger age than patients with sporadic UC. (A) Kaplan–Meier estimates of overall survival for the 41 Lynch syndrome cases compared to a stage-matched subset of a cohort of sporadic UC of the bladder. No significant differences were observed (P = 0.81). (B) Histogram showing patients age at first UC diagnosis for all 41 Lynch syndrome cases and all cases in the sporadic cohort for which this information was available (n = 230). Y-axis is recalculated to percentages in order to account for large differences in cohort size.

Fig. 5. Overall survival stratified by MSI/MSS. Overall survival for MSI (blue) and MSS (red) Lynch syndrome-associated tumors (P = 0.14).
onset in our study. Lynch syndrome-associated tumor may have a better response to adjuvant chemotherapy after radical nephroureterectomy (Hollande et al., 2014). Long-term outcome is, however, also influenced by the high frequency of metachronous tumor development, which affected 78% of the Lynch syndrome patients in our study with metachronous development of 32 colorectal cancers and 18 UC.

Increased awareness of Lynch syndrome among patients with UC, particularly tumors of the upper urinary tract, is warranted as Lynch syndrome remains underdiagnosed (Audenet et al., 2012; Catto et al., 2003). Failure to recognize Lynch syndrome-associated cases implies missed chances for genetic counseling, surveillance programs for family members at increased risk, and potential precision therapy with anti-PD-1 inhibition for MMR-deficient UC (Le et al., 2015). Our findings suggesting that the predefined molecular subtypes dominate over genetic predisposition also emphasize the need to screen UC, or at least UTUC for MMR-defective tumors to identify patients with Lynch syndrome. Identified individuals diagnosed with UC should probably be subjected to lifelong surveillance, even if oncogenetic counseling based on gene mutation and gender might modify the risk of a recurrent tumor (Therkildsen et al., 2017). How gene-mutation carriers, especially MSH2, should be surveyed for UC is currently not known, and different methods are recommended; however, urinary cytology has a low sensitivity (29%) and thus not sufficient (Myrhøj et al., 2008).

Colorectal cancers that develop in Lynch syndrome show a better disease-specific survival than sporadic colorectal cancer, most likely due to the immunogenic signatures in MMR-defective tumors (Boland, 2016; Maccaroni et al., 2015). This hypothesis is further supported by the finding that MMR status predicts clinical benefit from PD-1 blockade in colorectal cancer (Le et al., 2015). The availability of immunotherapy for patients with MMR-defective tumors offers new hope in Lynch syndrome. Checkpoint inhibitors are since 2016 also available in UC following the approval of the PD-L1 inhibitor Atezolizumab in advanced UC (Rosenberg et al., 2016).

This report represents the first molecular subtyping of UC in Lynch syndrome and despite limited in size represents a large collection of this rare tumor entity with disease-predisposing MMR gene mutations/MMR protein loss in concordance with the germline mutation proven in 98% of the tumors. The MSI frequency of 46% is comparable to other studies, suggestive of a reduced sensitivity for this method in UC with the currently available markers (Amira et al., 2003). Study limitations relate to lack of data on disease-specific survival and limited availability of publicly available data on gene expression signatures from sporadic UTUC (Moss et al., 2017).

5. Conclusions

Urothelial carcinoma from patients with Lynch syndrome cluster according to MSI status, tumor location, and tumor grade and within the molecular subtypes established in sporadic UC. Urothelial-like tumors predominate, which is consistent with the pathological stage distribution. These data support that application of novel molecular diagnostics and targeted therapeutics developed in sporadic UC may be relevant also for patients with Lynch syndrome.

Acknowledgements

This research was supported by grants from the Swedish Research Council (2015-02767), Swedish Cancer Society (2016/314 and 2014/448), The Gunnar Nilsson Cancer Foundation, The Berta Kamprad Cancer Foundation, Gösta Jönsson Research Foundation, Governmental Funding of Clinical Research within the National Health Service and Biocare.

Author contributions

CT and MF had the idea for this study. MJ, GS, and PE undertook the tissue preparations and analyses; MH, CT, and FL supervised the acquisition of the data. CT, PE, and GS undertook the statistical analysis; all authors contributed to interpretation of the results and wrote the article, and contributed to the content. All authors approved the final version of the manuscript, including the authorship list.

References

Amira N, Rivet J, Soliman H, Cancel-Tassin G, Le Duc A, Janin A and Cussenot O (2003) Microsatellite instability in urothelial carcinoma of the upper urinary tract. J Urol 170, 1151–1154.

Audenet F, Colin P, Yates DR, Ouzzane A, Pignot G, Long JA, Soulie M, Phé V, Bensadoun H, Guy L et al. (2012) A proportion of hereditary upper urinary tract urothelial carcinomas are misclassified as sporadic according to a multi-institutional database analysis: proposal of patient-specific risk identification tool. BJU Int 110, E583–E589.

Boland CR (2016) Recent discoveries in the molecular genetics of Lynch syndrome. Fam Cancer 15, 395–403.
Cancer Genome Atlas Research Network (2014) Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322.

Catto JW, Xinarianos G, Burton JL, Meuth M and Hamdy FC (2003) Differential expression of hMLH1 and hMSH2 is related to bladder cancer grade, stage and prognosis but not microsatellite instability. Int J Cancer 105, 484–490.

Choi W, Porten S, Kim S, Willis D, Plimack ER, Hoffman-Censits J, Roth B, Cheng T, Tran M, Lee IL et al. (2014) Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 25, 152–165.

Damrauer JS, Hoadley KA, Chism DD, Fan C, Tiganelli Engel C, Loeffler M, Steinke V, Rahner N, Holinski-Feder Johnson WE, Li C and Rabinovic A (2007) Adjusting for batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127.

Holland C, Collin P, de la Motte Rouge T, Audent F, Yates DR, Phé V, Ouzzane A, Droupy S, Ruffion A, de La Taille A et al. (2014) Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc Natl Acad Sci USA 111, 3110–3115.

Engel C, Loeffler M, Steinke V, Rahner N, Holinski-Feder E, Dietmaier W, Schackert HK, Goergens H, von Knebel Doeberitz M, Goecke TO et al. (2012) Risks of less common cancers in proven mutation carriers with Lynch syndrome. J Clin Oncol 30, 4409–4415.

van der Post RS, Kiemeney LA, Lightenberg MJ, Wijites JA, Hulsbergen-van de Kaa CA, Bodmer D, Schaap L, Kets CM, van Krieken JH and Hoogerbrugge N (2010) Risk of urothelial bladder cancer in Lynch syndrome is increased, in particular among MSH2 mutation carriers. J Med Genet 47, 464–470.

Pradere B, Lotan Y and Roupret M (2017) Lynch syndrome in upper tract urothelial carcinoma: significance, screening, and surveillance. Curr Opin Urol 27, 48–55.

Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, Dawson N, O’Donnell PH, Balmanoukian A, Loriot Y et al. (2016) Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387, 1909–1920.

Sanford T, Porten S and Meng MV (2015) Molecular analysis of upper tract and bladder urothelial carcinoma: results from a microarray comparison. PLoS ONE 10, e0137141.
Sjödahl G, Lövgren K, Lauss M, Patschan O, Gudjonsson S, Chebil G, Aine M, Eriksson P, Månsson W, Lindgren D et al. (2013) Toward a molecular pathologic classification of urothelial carcinoma. *Am J Pathol* **183**, 681–691.

Skeldon SC, Semotiuk K, Aronson M, Holter S, Gallinger S, Pollett A, Kuk C, van Rhijn B, Boström P, Cohen Z et al. (2013) Patients with Lynch syndrome mismatch repair gene mutations are at higher risk for not only upper tract urothelial cancer but also bladder cancer. *Eur Urol* **63**, 379–385.

Therkildsen C, Ladelund S, Smith-Hansen L, Lindberg LJ and Nilbert M (2017) Towards gene- and gender-based risk estimates in Lynch syndrome; age-specific incidences for 13 extra-colorectal cancer types. *Br J Cancer* **117**, 1702–1710.

Watson P, Vasen HF, Mecklin JP, Bernstein I, Aarnio M, Järvinen HJ, Myrhøj T, Sunde L, Wijnen JT and Lynch HT (2008) The risk of extra-colonic, extra-endometrial cancer in the Lynch syndrome. *Int J Cancer* **123**, 444–449.

Supporting information

Additional supporting information may be found online in the Supporting Information section at the end of the article

Table S1. Differentially regulated genes and gene ontology terms in clusters 1–3.

Appendix S1. mRNA profiling, molecular subtype classification and TMA and IHC-based subtype classification.