ON GRADED CARTAN INVARIANTS OF SYMMETRIC GROUPS
AND HECKE ALGEBRAS

ANTON EVSEEV AND SHUNSUKE TSUCHIOKA

Abstract. We consider graded Cartan matrices of the symmetric groups and the
Iwahori-Hecke algebras of type A, which have entries in the ring $\mathbb{Z}[v, v^{-1}]$. These matrices
can also be interpreted as Gram matrices of the Shapovalov form on sums of weight
spaces of a basic representation of an affine quantum group. We present a conjecture
predicting the invariant factors of these matrices and give evidence for the conjecture
by proving its implications under a localization and certain specializations of the ring
$\mathbb{Z}[v, v^{-1}]$. This proves and generalizes a conjecture of Ando-Suzuki-Yamada on the in-
variants of these matrices over $\mathbb{Q}[v, v^{-1}]$ and also generalizes the first author’s recent
proof of the Külshammer-Olsson-Robinson conjecture over \mathbb{Z}.

1. Introduction

The main object of study in this paper is the graded Cartan matrix $C^v_{H_n(k; \eta)}$ of the
Iwahori-Hecke algebra of type A (see Definition 1.1) in quantum characteristic ℓ, whose
entries belong to the Laurent polynomial ring $\mathcal{A} = \mathbb{Z}[v, v^{-1}]$. To provide background and
motivation, we begin by describing the relevant constructions and results for the ungraded
case, obtained by substituting $v = 1$ (see §1.1). In §1.3 we move on to the graded case and
state conjectures and results on the “invariant factors” of $C^v_{H_n(k; \eta)}$, which are studied in
the rest of the paper. We freely use the notation and conventions of §1.7.

1.1. Generalized modular character theory of the symmetric groups. In [KOR],
Külshammer, Olsson, and Robinson initiated a study of an ℓ-analogue of the modular
character theory of the symmetric group \mathfrak{S}_n for an arbitrary integer $\ell \geq 2$. They showed
that many of the classical combinatorial aspects of representation theory of \mathfrak{S}_n over a field
of a prime characteristic p (such as cores, blocks and Nakayama conjecture) generalize to
the case when p is not necessarily a prime and is replaced by ℓ. Our interest focuses on
the generalized Cartan matrices defined in [KOR] §1 (ℓ-Cartan matrices, for short) and,
in particular, on their Smith normal forms over \mathbb{Z}. It is convenient to define ℓ-Cartan
matrices in terms of Hecke algebras rather than the symmetric groups. Throughout, we
consider the Hecke algebra $\mathcal{H}_n(k; \eta)$ defined as usual.

Date: February 16, 2015.
2000 Mathematics Subject Classification. Primary 81R50, Secondary 20C08.
Key words and phrases. symmetric groups, Hecke algebras, graded representation theory, modular rep-
resentation theory, Külshammer-Olsson-Robinson conjecture, Khovanov-Lauda-Rouquier algebras, gen-
eralized blocks, categorification, Lie theory, quantum groups.

The first author was partially supported by the EPSRC Postdoctoral Fellowship EP/G050244 and the
EPSRC grant EP/L027283.
The second author was supported in part by JSPS Kakenhi Grants 11J08363 and 2680005.
Definition 1.1. For a field F and $q \in F^\times$, $\mathcal{H}_n(F; q)$ is defined to be the F-algebra generated by $\{T_r \mid 1 \leq r < n\}$ subject to the relations

$$(T_r + 1)(T_r - q) = 0, \quad T_s T_{s+1} = T_{s+1} T_s T_{s+1}, \quad T_i T_u = T_u T_i$$

for $1 \leq r \leq n - 1, 1 \leq s \leq n - 2$ and $1 \leq t, u < n$ such that $|t - u| > 1$. For $\ell \geq 2$, we fix a field k_ℓ which has a primitive ℓ-th root of unity η_ℓ.

Definition 1.2. Let A be a finite-dimensional algebra over a field F.

(a) We denote by $\text{Mod}(A)$ the abelian category of finite-dimensional left A-modules and A-homomorphisms between them.

(b) We define the Cartan matrix C_A of A to be the matrix $([PC(D) : D'])_{D, D' \in \text{Irr}(\text{Mod}(A))} \in \text{Mat}_{\text{Irr}(\text{Mod}(A))}(\mathbb{Z})$ where $PC(D)$ is the projective cover of D.

1.2. The Külshammer-Olsson-Robinson conjecture.

Definition 1.3. Let X and Y be $n \times m$-matrices with entries in a commutative ring R. The matrices X and Y are said to be unimodularly equivalent over R if $Y = UXV$ for some $U \in \text{GL}_n(R)$ and $V \in \text{GL}_m(R)$. In this case, we write $X \equiv_R Y$.

Due to a result of Donkin [Don, §2.2], the matrix $C_{\mathcal{H}_n(k_\ell; \eta_\ell)}$ is unimodularly equivalent over \mathbb{Z} to the aforementioned ℓ-Cartan matrix of \mathfrak{S}_n. Since k_ℓ is a splitting field for $\mathcal{H}_n(k_\ell; \eta_\ell)$ (see also [Don, §2.2]), the Smith normal form of $C_{\mathcal{H}_n(k_\ell; \eta_\ell)}$ does not depend on the choice of k_ℓ or η_ℓ.

It is a standard result in modular representation theory (due to Brauer-Nesbitt) that, for a prime p and a finite group G, the elementary divisors of C_TpG are described in terms of p-defects of p-regular conjugacy classes of G. When p is replaced with a possibly composite number ℓ, the Smith normal form of $C_{\mathcal{H}_n(k_\ell; \eta_\ell)}$ is more complicated:

Theorem 1.4. Let $\ell \geq 2$. If $k \in \mathbb{Z}$, write $\ell_k = \ell/(\ell, k)$. For a partition λ, define

$$(1.1) \quad r_\ell(\lambda) = \prod_{k \in \mathbb{N}\setminus\ell \mathbb{Z}} \ell_k^{m_k(\lambda)} \cdot \left\lfloor \frac{m_k(\lambda)}{\ell} \right\rfloor ! \cdot \pi(\ell_k).$$

Then

$$C_{\mathcal{H}_n(k_\ell; \eta_\ell)} \equiv_{\mathbb{Z}} \text{diag}\left(\{r_\ell(\lambda) \mid \lambda \in \text{CRP}_\ell(n)\}\right),$$

where $\text{CRP}_\ell(n)$ is the set of ℓ-class regular partitions of n (see §1.7 below).

This result was proposed as a conjecture by Külshammer-Olsson-Robinson (see [KOR, Conjecture 6.4]) and is known as the KOR conjecture. The determinant of the Cartan matrix $C_{\mathcal{H}_n(k_\ell; \eta_\ell)}$ was first computed by Brundan and Kleshchev [BK1, Corollary 1] and was shown to agree with the conjecture in [KOR]. Hill proved Theorem 1.4 in the case when each prime divisor p of ℓ appears with multiplicity at most p in the prime decomposition of ℓ [Hil, Theorem 1.3]. Finally, Theorem 1.4 was proved in full generality by the first author [Evs, Theorem 1.1].

The proofs in [Hil] and [Evs] both use a reduction of the KOR conjecture to the problem of finding the Smith normal form of a certain $\text{Par}(d) \times \text{Par}(d)$ matrix which is smaller than $C_{\mathcal{H}_n(k_\ell; \eta_\ell)}$ where d is the ℓ-weight of a fixed block of $\mathcal{H}_n(k_\ell; \eta_\ell)$. The reduction is due to Hill: see [Hil, Theorem 1.1]; for an alternative approach, see [Evs] §3. Among the main conjectures and results of the present paper are Conjecture 1.9 which is a graded version of the reduced problem, and Corollary 3.17 which is a graded version of the reduction. The ungraded versions are recovered by substituting $v = 1$.

1.3. Graded Cartan matrices and Shapovalov forms. While the KOR conjecture is now a theorem, the proof in [EvS] relies on technical combinatorial arguments and does not give a satisfactory conceptual understanding of the result. In particular, unlike in the special case when \(\ell \) is a prime and the Brauer-Nesbitt result applies, it is hard to discern a link between the statement or the proof of the KOR conjecture and the group-theoretic structure of \(\mathfrak{g}_n \). In a search for better understanding, we consider a remarkable grading on the Hecke algebras discovered independently by Brundan-Kleshchev [BK2, Theorem 1.1] and Rouquier [Ro1, Corollary 3.20]. It is a consequence of an isomorphism between \(H_n(k_i; \eta_l) \) and a cyclotomic KLR algebra \(R^\Lambda_n(A_{\ell-1}^{(1)}) \) defined by Khovanov-Lauda [KL, §3.4] and Rouquier [Ro1, §3.2.6]. A similar isomorphism and grading exist for the degenerate case, i.e., for the symmetric group algebra \(\mathbb{F}_p \mathfrak{S}_n \) (see [BK2, Theorem 1.1] and [Ro1, Corollary 3.17]). Using the grading, one defines the graded Cartan matrix \(C^w_{H_n(k_i; \eta_l)} \) with entries in the ring \(\mathcal{O} = \mathbb{Z}[v, v^{-1}] \) (see Definition 3.12). It is a refinement of \(C^w_{H_n(k_i; \eta_l)} \) in the sense that we have \(C^w_{H_n(k_i; \eta_l)} = C^w_{H_n(k_i; \eta_l)}|_{v=1} \).

Remark 1.5. Rouquier [Ro2] has shown that interesting gradings are likely to exist for a large class of blocks of arbitrary finite groups. More precisely, he has constructed a grading on local blocks (i.e., blocks with normal defect group) whenever the defect group is abelian and has shown that, subject to the Broué abelian defect group conjecture, these gradings can be transferred to arbitrary blocks with abelian defect groups. A study of the corresponding graded Cartan matrices up to unimodular equivalence may be of considerable interest, though is beyond the scope of this paper.

An alternative approach to defining \(C^w_{H_n(k_i; \eta_l)} \) is via the Shapovalov form on the basic representation \(V(\Lambda_0) \) of the affine Kac-Moody Lie algebra of type \(A_{\ell-1}^{(1)} \) (see [BK1, Hil]). Generalizing to the graded case is natural from this point of view as well, as one can replace the universal enveloping algebra of the Kac-Moody algebra with its quantized version \(U_v(A_{\ell-1}^{(1)}) \). The corresponding quantum Shapovalov forms were studied by the second author [Tsu] and are reviewed in §3.1 below. The matrix \(C^w_{H_n(k_i; \eta_l)} \) can be described in terms of Gram matrices of quantum Shapovalov forms on weight spaces of \(V(\Lambda_0) \) (see Proposition 3.14). Since Shapovalov forms play an important role in representation theory of Lie algebras and quantum groups, this description provides further motivation of studying \(C^w_{H_n(k_i; \eta_l)} \).

1.4. A graded analog of the Külshammer-Olsson-Robinson conjecture. We propose the following graded version of the KOR conjecture.

Conjecture 1.6. For \(\ell \geq 2 \), we have (see also Definition 3.12)

\[
C^w_{H_n(k_i; \eta_l)} \equiv \mathcal{O} \text{ diag}(\{r^w_{\ell}(\lambda) \mid \lambda \in \text{CRP}_\ell(n)\}).
\]

(1.2)

Here we put \(\ell_k = \ell/(\ell, k) \) and for \(\lambda \in \text{Par} \) define

\[
r^w_{\ell}(\lambda) = \prod_{k \geq 1} \prod_{t = 1}^{[m_k(\lambda)/\ell]} \left(\ell_k t_{n(t_k)}\right),
\]

(1.3)

where the right-hand side is interpreted according to (1.7.4) and (1.7.5).

The second author stated this conjecture in the special case when \(\ell \) is a prime power (see [Tsu, Conjecture 6.18]) and computed the determinant of \(C^w_{H_n(k_i; \eta_l)} \), which agrees with the conjecture (see [Tsu, Theorem 6.11]).
for any \(\theta \) Theorem 1.10.

While \(C_{H_n(k;\mathbb{Z})}^u \) has a description in terms of affine Kazhdan-Lusztig polynomials by virtue of the graded version of Lascoux-Leclerc-Thibon-Ariki theory [BK3 Corollary 5.15] (see also [Tsu, Remark 5.7]), there is no easy combinatorial description for the entries of \(C_{H_n(k;\mathbb{Z})}^u \) in general. Nonetheless, we are able to reduce Conjecture 1.6 to a conjecture concerning matrices that do admit such a description up to unimodular equivalence over \(\mathbb{A} \).

Definition 1.8. For \(\ell \geq 2 \) and \(\lambda \in \text{Par} \), we define \(I^u_\ell(\lambda) \), \(J^u_\ell(\lambda) \in \mathbb{A} \) by

\[
I^u_\ell(\lambda) = \prod_{k \geq 1} \prod_{t=1}^{m_k(\lambda)/\ell} [\ell_k t_{\pi(\ell_k)}(\ell, k) t_{\pi(\ell_k)'}], \quad J^u_\ell(\lambda) = \prod_{k \geq 1} [\ell_k m_k(\lambda)],
\]

where again we put \(\ell_k = \ell / (\ell, k) \).

The following conjecture involves a matrix \(M_n \), which for the purposes of the statement may be assumed to be the character table of the symmetric group \(S_n \) (see Definition 2.1 and Remark 2.2 for details).

Conjecture 1.9. For \(\ell \geq 2 \) and \(n \geq 0 \), we have the following unimodular equivalence over \(\mathbb{A} \):

\[
(1.5) \quad M_n \text{ diag}(\{J^u_\ell(\lambda) \mid \lambda \in \text{Par}(n)\}) M_n^{-1} \equiv_{\mathbb{A}} \text{ diag}(\{I^u_\ell(\lambda) \mid \lambda \in \text{Par}(n)\}).
\]

In [3] we will show that Conjecture 1.9 implies Conjecture 1.6 (see Corollary 3.17). As is mentioned above, this generalizes a reduction in the ungraded case due to Hill.

1.5. Evidence for Conjecture 1.9. Although there is no a priori reason to assert that \(C_{H_n(k;\mathbb{Z})}^u \) is unimodularly equivalent to a diagonal matrix since \(\mathbb{A} \) is not a principal ideal domain (PID, for short), we can give evidence that such an equivalence is likely to exist, which suggests that a hidden structure lies behind it and that one is unlikely to see this structure just by considering the ungraded case.

Theorem 1.10. For \(\ell \geq 2 \) and \(n \geq 0 \), let \(X \) and \(D \) denote the matrices on the left-hand and right-hand sides of (1.5). Then, we have

(a) \(X \equiv_{\mathbb{Q}[v, v^{-1}]} D; \)
(b) for any \(0 \neq \theta \in \mathbb{Q} \), we have \(X|_{v=\theta} \equiv_{\mathbb{Z}[\theta, \theta^{-1}]} D|_{v=\theta}. \)

Hence, the unimodular equivalence of Conjecture 1.6 holds over \(\mathbb{Q}[v, v^{-1}] \) and holds over \(\mathbb{Z}[\theta, \theta^{-1}] \) when one substitutes any \(\theta \in \mathbb{Q}^x \) for \(v \).

The last statement follows from parts (a) and (b) due to Corollary 4.3.

Remark 1.11. We note the following consequence and special case:

(a) Combined with Corollary 3.15 Theorem 1.10 (a) settles affirmatively a conjecture of Ando-Suzuki-Yamada ([ASY Conjecture 8.2]) and further generalizes it to the case of an arbitrary \(\ell \geq 2 \), not necessarily a prime.
(b) The case \(\theta = 1 \) of Theorem 1.10 (b) corresponds to the KOR conjecture (Theorem 1.4).
Our proof of Theorem 1.10 relies on the fact that the equivalences in the theorem are over PIDs (see Remark 6.1). In part, the proof is a generalization of the one in [Evs]. Since \mathscr{A} is 2-dimensional, it appears that completely new ideas will be needed to prove a unimodular equivalence over \mathscr{A}. In particular, while the ungraded version of Conjecture 1.9 is easily reduced to the case when ℓ is a prime power (see [Hil]), there is no such apparent reduction in the graded case. The authors hope that this paper will help advertise Conjecture 1.9 (and its meaning) to a wide audience not restricted to representation theorists, as the conjecture is stated purely in the language of combinatorics and linear algebra.

1.6. Organization of the paper. In §2 we introduce the matrix M_n, which is the table of values of Young permutation characters of the symmetric group \mathfrak{S}_n. We also introduce a “p-local” and a multicolored version of M_n, and we prove a number of integrality results about these matrices that are needed later. In §3 we show how Conjecture 1.6 may be interpreted in terms of certain representations of quantum groups. We prove Theorem 3.10 which shows that the graded Cartan matrix $C^\nu_{R_n(k^{\infty})}$ (or $C^\nu_{\mathbb{Q}^{\infty}S_n}$) is unimodularly equivalent to a block-diagonal matrix with blocks of the form given by the left-hand side of (1.5). Using this, we show that Conjecture 1.9 implies Conjecture 1.6. Theorem 1.10 is proved in §4 and §5. In §6 we prove Theorem 1.10 (a) and reduce Theorem 1.10 (b) to Theorem 1.14 which asserts a certain unimodular equivalence over the local ring $\mathbb{Z}_{(p)}$ and is proved in §5. In §7 and §8, we discuss unimodular equivalences over arbitrary commutative rings and possible results that would be stronger than Theorem 1.10 but weaker than Conjecture 1.9, including possible further evidence in terms of equivalences over PIDs.

1.7. Notation and conventions.

1.7.1. Commutative rings. All commutative rings are assumed to contain a multiplicative identity, and homomorphisms between commutative rings are assumed to respect those identities. We denote by $\text{max-Spec}(R)$ the set of maximal ideals of a commutative ring R.

1.7.2. Matrices. Let R be a commutative ring. For any integer $\ell \geq 0$, we denote by $\text{Mat}_\ell(R)$ the algebra of all R-valued $\ell \times \ell$-matrices. More generally, $\text{Mat}_S(R)$ is the algebra of $S \times S$-matrices for any finite set S. For a finite set S, 1_S denotes the identity $S \times S$-matrix. For an assignment $S \to R$, $s \mapsto r_s$, we denote by $\text{diag}(\{r_s \mid s \in S\})$ the diagonal matrix with the (s, t)-entry equal to $\delta_{st} r_s$ for all $s, t \in S$. If $S = \sqcup_i S_i$ is a disjoint union and $M_i \in \text{Mat}_{S_i}(R)$ for each i, then $M = \oplus_i M_i$ is the block-diagonal matrix given by $M_{rs} = (M_i)_{rs}$ if $r \in S$ and s belong to the same subset S_i and $M_{rs} = 0$ otherwise. We say that matrices $X, Y \in \text{Mat}_m(R)$ are row (resp. column) equivalent over R if there exists $U \in \text{GL}_m(R)$ such that $X =UY$ (resp. $X = YU$).

1.7.3. Discrete valuation rings. When considering a discrete valuation ring R with valuation $\nu: K^\times \to \mathbb{Z}$, where K is the field of fractions of R, we set $\nu(0) = \infty$ where ∞ is a symbol satisfying $\infty > c$ for all $c \in \mathbb{Q}$. For a prime p, the valuation $\nu_p: \mathbb{Q}^\times \to \mathbb{Z}$ is defined by $\nu_p(p^m a/b) = m$ for $m \in \mathbb{Z}$ and $a, b \in \mathbb{Z} \setminus p\mathbb{Z}$. It corresponds to the discrete valuation ring $\mathbb{Z}_{(p)} = \{a/b \in \mathbb{Q} \mid b \not\in p\mathbb{Z}\}$.
1.7.4. **Integers.** We write \(\mathbb{N} = \{0, 1, 2, \ldots\} \) and \(\text{Prm} \) for the set of all prime numbers. For \(n \geq 1 \), we denote by \(\pi(n) \) the set of all prime divisors of \(n \). For \(n \geq 1 \) and a subset \(\Pi \subseteq \text{Prm} \), we define the \(\Pi \)-part of \(n \) by \(n_\Pi = \prod_{p \in \Pi} p^{\nu_p(n)} \). We write \(\Pi' = \text{Prm} \setminus \Pi \) and \(n_{\Pi'} = \text{Prm} \setminus \{p\} \) for all \(p \in \text{Prm} \). For \(a, b \geq 1 \), \((a, b) \) is the greatest common divisor of \(a \) and \(b \).

1.7.5. **Quantum rings.** Let \(v \) be an indeterminate. In much of the paper, we work over the field \(k = \mathbb{Q}(v) \) and its subring \(\mathcal{A} = \mathbb{Z}[v, v^{-1}] \). The \(\mathbb{Q} \)-algebra involution \(\text{bar}: k \to k \) is defined by \(\text{bar}(v) = v^{-1} \). For \(t \in \mathbb{Z} \), we write \(\text{Inf}_t: \mathcal{A} \to \mathcal{A} \) for the ring homomorphism given by \(v \mapsto v^t \). For \(m \geq 1 \) and \(n \in \mathbb{Z} \), the quantum integer \([n]_m \) is defined by \([n]_m = (v^m - v^{-m})/(v^m - v^{-m}) \in \mathcal{A} \). Note that \([n]_m|_{v=1} = n \). We set \([n]_m! = [n]_m[n-1]_m \cdots [1]_m \). For a field \(\mathbb{F} \) and \(q \in \mathbb{F}^\times \), the quantum characteristic of \(q \) is defined by \(\text{qchar}_q, \mathbb{F} = \min \{k \geq 1 \mid [k]_{v=q} = 0\} \) if the set on the right-hand side is non-empty and is set to be 0 otherwise.

1.7.6. **Groups and generalized characters.** Let \(G \) be a finite group. If \(R \) is a subring of \(\mathbb{C} \), we say that a function \(\chi: G \to \mathbb{C} \) is an \(R \)-generalized character of \(G \) if \(\chi \) belongs to the \(R \)-span of the irreducible characters of \(G \). By a generalized character we mean a \(\mathbb{Z} \)-generalized character. If \(g, h \in G \), we write \(g \equiv_G h \) if \(g \) and \(h \) are \(G \)-conjugate. If \(p \) is a prime, then, as usual, \(g_p, g_{p'} \in \langle g \rangle \subseteq G \) are the \(p \)-part and the \(p' \)-part of \(g \) respectively, so that \(g = g_p g_{p'} = g_p g_p \), the order of \(g_p \) is a \(p \)-power and the order of \(g_{p'} \) is prime to \(p \).

1.7.7. **Partitions.** We write \(\emptyset \) for the empty partition. For a partition \(\lambda = (\lambda_1, \lambda_2, \ldots) \), we define \(m_k(\lambda) = |\{i \geq 1 \mid \lambda_i = k\}| \) for \(k \geq 1 \). Also, \(\ell(\lambda) = \sum_{i \geq 1} m_i(\lambda) \) and \(|\lambda| = \sum_{i \geq 1} \lambda_i \). We denote by \(\text{Par}(n) \) (resp. \(\text{CRP}_s(n), \text{RP}_s(n) \)) the set of all (resp. \(s \)-class regular, \(s \)-regular) partitions of \(n \geq 0 \). Recall that, for \(s \geq 1 \), a partition \(\lambda \) is called

(i) **\(s \)-class regular** if we have \(m_{ks}(\lambda) = 0 \) for all \(k \geq 1 \),

(ii) **\(s \)-regular** if we have \(m_k(\lambda) < s \) for all \(k \geq 1 \).

We put \(\text{Par} = \bigsqcup_{n \geq 0} \text{Par}(n) \) and \(\text{Par}_m(n) = \{(\lambda(i))_{i=1}^m \in \text{Par}^m \mid \sum_{i=1}^m |\lambda(i)| = n\} \) for \(m, n \geq 0 \).

For \(n \geq 0 \), \(p \in \text{Prm} \) and \(\nu \in \text{CRP}_p(n) \), we define \(\text{Par}_p(n, \nu) = \{\lambda \in \text{Par}(n) \mid \sum_{s \geq 0} m_{jsp}(\lambda) p^s = m_j(\nu) \forall j \in \mathbb{N} \setminus p\mathbb{Z}\} \). Further, \(\text{Pow}_p(n) = \text{Par}_p(n, (1^n)) \) and \(\text{Pow}_p = \bigsqcup_{n \geq 0} \text{Pow}_p(n) \) is the set of the partitions with all parts being powers of \(p \).

For \(\lambda, \mu \in \text{Par} \), the partition \(\lambda + \mu \) is defined by \(m_i(\lambda + \mu) = m_i(\lambda) + m_i(\mu) \) for \(i \geq 1 \).

Acknowledgments. S.T. thanks Yuichiro Hoshi, Yoichi Mieda and Hiraku Kawanoue for discussions on [6]. In particular, Theorem 6.5 is due to Kawanoue (see Remark 6.8).

2. **The matrix \(M_n \)**

2.1. **Definition of \(M_n \).** As usual, the ring of symmetric functions is defined by \(\Lambda = \bigoplus_{n \geq 0} \lim_{m \to \infty} \mathbb{Z}[u_1, \ldots, u_m]_{|n}^m \) (see [Ful] 6 or [Mac] 1.2), where \(\mathbb{Z}[u_1, \ldots, u_m]_n \) is the set of homogeneous polynomials of degree \(n \).

The ring \(\Lambda \) is categorified by the module categories \(\{\text{Mod}(\mathcal{Q}G_n)\}_{n \geq 0} \). More precisely, let \(\chi_V \) denote the character afforded by a module \(V \in \text{Mod}(\mathcal{Q}G_n) \). For \(\mu \in \text{Par} \), consider the power sum symmetric function \(p_\mu = \prod_{i=1}^{\ell(\mu)} p_{\mu_i} \), where \(p_k = \sum_{j \geq 1} u_j^k \) for \(k \geq 1 \). Let \(C_\mu \)
be the conjugacy class of elements of cycle type \(\mu \) in \(S_n \). For \(\mu \in \text{Par} \), let
\[
(2.1) \quad z_\mu = \prod_{i \geq 1} m_i(\mu) \cdot t^{m_i(\mu)},
\]
so that \(\# C_\mu = |\mu|! / z_\mu \). Then the following character map is an isometry (see [Ful, §7.3]):
\[
(2.2) \quad \text{ch} : \bigoplus_{n \geq 0} \text{K}_0(\text{Mod}(\mathbb{Q} S_n)) \xrightarrow{\sim} \Lambda, \quad [V] \mapsto \sum_{\mu \in \text{Par}(n)} \frac{1}{z_\mu} \chi_V(C_\mu) p_\mu,
\]
where we write \(\chi_V(C_\mu) \) for the value of \(\chi_V \) on an arbitrary element of \(C_\mu \).

Definition 2.1. Let \(\lambda, \mu \in \text{Par}(n) \). Consider the parabolic subgroup
\[
S_\lambda = \text{Aut}(\{1, \ldots, \lambda_1\}) \times \text{Aut}(\{\lambda_1 + 1, \ldots, \lambda_1 + \lambda_2\}) \times \cdots \cong \bigotimes_{i \geq 1} S_{\lambda_i}
\]
of \(S_n \), and let \(\text{triv}_{S_\lambda} \) be its trivial representation. We set \(M_{\lambda, \mu} = \chi_{\text{Ind}_{S_\lambda}^{S_n} \text{triv}_{S_\lambda}}(C_\mu) \) and put \(M_n = (M_{\lambda, \mu}) \in \text{Mat}_{\text{Par}(n)}(\mathbb{Z}) \).

Remark 2.2. Recall the complete symmetric function \(h_\mu = \prod_{i \geq 1} h_{\mu_i} \) for \(\mu \in \text{Par} \) where
\[
(2.3) \quad \sum_{n \geq 0} h_n t^n = \prod_{i \geq 1} (1 - u_i t)^{-1} = \prod_{r=1}^\infty \exp \left(\frac{p_r t^r}{r} \right).
\]
There is a well-known identity \(\text{ch}([\text{Ind}_{S_\lambda}^{S_n} \text{triv}_{S_\lambda}]) = h_\lambda \) for \(\lambda \in \text{Par}(n) \) (see [Ful, §7.2, Lemma 4]). Further, we have
\[
(2.4) \quad h_\lambda = \sum_{\mu \in \text{Par}(n)} \frac{1}{z_\mu} M_{\lambda, \mu} p_\mu, \quad p_\lambda = \sum_{\mu \in \text{Par}(n)} M_{\lambda, \mu} m_\mu
\]
for \(\lambda \in \text{Par}(n) \), where \(m_\mu \) is the monomial symmetric function (i.e., the function whose image in \(\mathbb{Z}[n_1, \ldots, u_n]_n \) for \(m \geq \ell(\lambda) \) is the sum of the elements of the orbit of the monomial \(\prod_{j=1}^{\ell(\lambda)} u_j^{\lambda_j} \) under the action of \(S_m \) on the variables); see [Ful, §6, (11), (12)].

Using the second identity (2.4), we see that \(M_{\lambda, \mu} \) has the following explicit combinatorial descriptions:
(a) \(M_{\lambda, \mu} \) is the coefficient of \(\prod_{j=1}^{\ell(\lambda)} u_j^{\lambda_j} \) in \(\prod_{i \geq 1} (u_1^i + \cdots + u_i^{\ell(\lambda)})^{m_i(\mu)} \),
(b) \(M_{\lambda, \mu} = \# M_{\lambda, \mu} \) where
\[
\mathcal{M}_{\lambda, \mu} = \{ f : \{1, \ldots, \ell(\mu)\} \rightarrow \{1, \ldots, \ell(\lambda)\} \mid \sum_{j \in f^{-1}(i)} \mu_j = \lambda_i \text{ whenever } 1 \leq i \leq \ell(\lambda) \}.
\]

Remark 2.3. It is well known that the \(\mathbb{Z} \)-span of \(\{ \chi_{\text{Ind}_{S_\lambda}^{S_n} \text{triv}_{S_\lambda}} \mid \lambda \in \text{Par}(n) \} \) is the whole set of generalized characters of \(S_n \) (see [Ful §7.2, Corollary]); equivalently, the matrix \(M_n \) is row equivalent over \(\mathbb{Z} \) to the character table of \(S_n \) (in which, as usual, rows correspond to irreducible characters and columns to conjugacy classes, labeled by their cycle types). Therefore, as we claimed in §1.3, the matrix on the left-hand side of (1.5) stays in the same unimodular equivalence class if one replaces \(M_n \) by the character table of \(S_n \).

In the remainder of this section, we prove a number of results on the matrix \(M_n \) and some of its analogues, mainly of a combinatorial nature. Proposition 2.4 will not be used until §5.4. The results in §2.2 are used in §4 and §5 whereas the results of §2.3 are needed in §5.

Proposition 2.4. Let \(n \geq 0 \) and let \(\lambda, \mu \in \text{Par}(n) \).
(a) $M_{\lambda,\lambda} = \prod_{j \geq 1} m_j(\lambda)$ and $M_{\lambda,\lambda}$ divides $M_{\lambda,\mu}$;
(b) $\ell(\lambda) \leq \ell(\mu)$ if $M_{\lambda,\mu} > 0$;
(c) Let $p \geq 3$ be a prime, and assume that $M_{\lambda,\mu} > 0$ and $\lambda \neq \mu$. Then $\nu_p(M_{\lambda,\mu}) > \ell(\lambda) - \ell(\mu) + \sum_{j \geq 1} \nu_p(m_j(\mu)!)$.

Proof. (a) and (b) follow immediately from the combinatorial descriptions in Remark 2.2.

To prove (c), let C be the set of maps c: \{1, \ldots, \ell(\lambda)\} \rightarrow \text{Par} \setminus \{\emptyset\}$ such that $\sum_{k=1}^{\ell(\lambda)} c(k) = \mu$ and $|c(k)| = \lambda_k$ for $1 \leq k \leq \ell(\lambda)$. For $c \in C$, we define $\mathcal{M}_{\lambda,\mu}^c$ to be the set of maps $f \in \mathcal{M}_{\lambda,\mu}$ such that, whenever $1 \leq k \leq \ell(\lambda)$, there is a multiset equality

$$\{ \mu_j \mid j \in f^{-1}(k) \} = (c(k))_j \quad 1 \leq j \leq \ell(c(k)).$$

It is clear that $\mathcal{M}_{\lambda,\mu} = \bigsqcup_{c \in C} \mathcal{M}_{\lambda,\mu}^c$ (thus, we have $C \neq \emptyset$) and

$$\# \mathcal{M}_{\lambda,\mu}^c = \prod_{j \geq 1} \left(m_j(c(1)), m_j(c(2)), \ldots, m_j(c(\ell(\lambda))) \right).$$

It suffices to prove that $\nu_p(\# \mathcal{M}_{\lambda,\mu}^c) > \ell(\lambda) - \ell(\mu) + \sum_{j \geq 1} \nu_p(m_j(\mu)!)$ for $c \in C$. By Lemma 2.5,

$$\nu_p(\# \mathcal{M}_{\lambda,\mu}^c) - \nu_p(m_j(\mu)!) - \ell(\lambda) + \ell(\mu) = \sum_{k=1}^{\ell(\lambda)} \left(\sum_{j \geq 1} \nu_p(m_j(c(k))! \right) - 1 \geq 0$$

and the equality holds exactly when $\ell(c(k)) = 1$ for $1 \leq k \leq \ell(\lambda)$, i.e., when $\lambda = \mu$. \qed

Lemma 2.5. Let $p \geq 3$ be a prime and $\lambda \in \text{Par} \setminus \{\emptyset\}$. We have $\ell(\lambda) - \sum_{j \geq 1} \nu_p(m_j(\lambda)!) \geq 1$, and the equality holds exactly when $\ell(\lambda) = 1$.

Proof. Note that

$$\nu_p(a!) = \sum_{i=1}^{\infty} \lfloor a/p^i \rfloor \leq \sum_{i=1}^{\infty} a/p^i = a/(p-1)$$

for $a \geq 0$. Thus,

$$\ell(\lambda) - \sum_{j \geq 1} \nu_p(m_j(\lambda)!) \geq (1 - 1/(p-1)) \ell(\lambda) > 1$$

when $\ell(\lambda) \geq 3$. When $\ell(\lambda) = 1, 2$, we have $\nu_p(m_j(\lambda)!) = 0$ for all $j \geq 1$. \qed

2.2. p-local version $N_n^{(p)}$ of M_n. As in [Evs, §4], we consider a submatrix $N_n^{(p)}$ of M_n and use it to construct a certain block-diagonal matrix $L_n^{(p)}$, which is row equivalent over \mathbb{Z}_p to M_n, for any fixed prime p.

Definition 2.6. For $p \in \text{Prm}$ and $n \geq 0$, we define $N_n^{(p)} = M_n\big|_{\text{Pow}_p(n) \times \text{Pow}_p(n)}$ and

$$L_n^{(p)} = \bigoplus_{\nu \in \text{CRP}_n(n)} \bigotimes_{j \in \mathbb{N} \setminus \mathbb{P}} N_n^{(p)}_{m_j(\nu)}.$$

We regard $L_n^{(p)}$ as an element of $\text{Mat}_{\text{Par}(n)}(\mathbb{Z})$ by using the following identification:

(a) $\text{Par}(n) = \bigsqcup_{\nu \in \text{CRP}_n(n)} \text{Par}_p(n, \nu),$
(b) $\text{Par}_p(n, \nu) \overset{\sim}{\rightarrow} \prod_{j \in \mathbb{N} \setminus \mathbb{P}} \text{Pow}_p(m_j(\nu)), \quad \lambda \mapsto (\lambda(j))_{j \in \mathbb{N} \setminus \mathbb{P}}$ where $m_{p^*}(\lambda(j)) = m_{j_p^*}(\lambda).$
Lemma 2.9. Let $\mathbb{Z}_{(p)}$-algebra R and a family of homomorphisms $(r_j: R \to R)_{j \in \mathbb{N}_0}$, assume that

(i) there are maps $f, g: \text{Par} \to R$ such that

$$f(\lambda) = \prod_{j \in \mathbb{N}_0} r_j(f(\lambda_j)), \quad g(\lambda) = \prod_{j \in \mathbb{N}_0} r_j(g(\lambda_j))$$

for all $k \geq 0, \nu \in \text{CRP}_p(k)$ and $\lambda \in \text{Par}_p(k, \nu)$, where the assignment $\lambda \mapsto (\lambda_j)_{j \in \mathbb{N}_0}$ is defined as above.

(ii) for all $n \geq 0$, $M_n \text{diag}(\{f(\lambda) \mid \lambda \in \text{Par}(n)\})M_n^{-1}$ is R-valued.

Then, we have

(a) $N_k^{(p)} \text{diag}(\{f(\lambda) \mid \lambda \in \text{Pow}_p(k)\})(N_k^{(p)})^{-1}$ is R-valued for all $k \geq 0$,

(b) For a $\mathbb{Z}_{(p)}$-algebra R' with a homomorphism $\phi: R \to R'$, the following implication holds:

$$\forall k \geq 0, \phi(N_k^{(p)} \text{diag}(\{f(\lambda) \mid \lambda \in \text{Pow}_p(k)\})(N_k^{(p)})^{-1}) \equiv_{R'} \phi(\text{diag}(\{g(\lambda) \mid \lambda \in \text{Pow}_p(k)\}))$$

$$\implies \forall n \geq 0, \phi(M_n \text{diag}(\{f(\lambda) \mid \lambda \in \text{Par}(n)\})M_n^{-1}) \equiv_{R'} \phi(\text{diag}(\{g(\lambda) \mid \lambda \in \text{Par}(n)\})).$$

Proof. By [EVS] Lemma 4.8], the matrices M_n and $L_n^{(p)}$ are row equivalent over $\mathbb{Z}_{(p)}$ and hence over R. Thus, by (i), we have

$$M_n \text{diag}(\{f(\lambda) \mid \lambda \in \text{Par}(n)\})M_n^{-1} \equiv_R L_n^{(p)} \text{diag}(\{f(\lambda) \mid \lambda \in \text{Par}(n)\})(L_n^{(p)})^{-1}.$$

By (i), the right-hand side is just

$$\bigoplus_{\nu \in \text{CRP}_p(n)} \bigotimes_{j \in \mathbb{N}_0} N_{m_j(\nu)}^{(p)} \text{diag}(\{r_j(f(\lambda_j)) \mid \lambda_j \in \text{Pow}_p(m_j(\nu))\}(N_{m_j(\nu)}^{(p)})^{-1}.$$

We have shown that $N_n^{(p)} \text{diag}(\{f(\lambda) \mid \lambda \in \text{Pow}_p(n)\})(N_n^{(p)})^{-1}$ is a block submatrix of an R-valued matrix which is unimodularly equivalent to $M_n \text{diag}(\{f(\lambda) \mid \lambda \in \text{Par}(n)\})M_n^{-1}$ over R (note that, by (i), $r_1(f(\lambda)) = f(\lambda)$ for $\lambda \in \text{Pow}_p(n)$). Thus, (i) is proved. Part (ii) follows from the above equivalences and hypothesis (i).

Our next aim is to prove an integrality result (Proposition 2.12), which will be used in §5.3.

Definition 2.8. Let $p \in \text{Prm}$. For a sequence $\theta = (\theta_j)_{j \geq 0} \in \mathbb{Z}_{(p)}^N$ and $n \geq 0$, we define

$$a_\theta^{(p)}(n) = \sum_{\nu \in \text{Pow}_p(n)} \frac{1}{z_\nu} \prod_{j \geq 0} \theta_j^{m_j(\nu)}.$$

Lemma 2.9. Let $p \in \text{Prm}$. For any $\theta \in \mathbb{Z}^N_{(p)}$ and $n \geq 0$, we have

(a) $a^{(p)}_{\theta + \theta'}(n) = \sum_{k=0}^n a^{(p)}_{\theta}(k) a^{(p)}_{\theta'}(n-k)$, where $(\theta + \theta')_j := \theta_j + \theta'_j$ for $j \geq 0$,

(b) $a^{(p)}_{\theta}(n) \in \mathbb{Z}_{(p)}$ if $\nu_p(\theta_j) \geq j + 1$ for all $j \geq 0$,

(c) $a^{(p)}_{\theta}(n) \in \mathbb{Z}_{(p)}$ if there exist $s \in \mathbb{Z}_{\geq 1}$ and $c \in \mathbb{Z}_{(p)}$ such that $\theta_j = sc^j$ for all $j \geq 0$.

Proof. Consider the generating function $A_\theta = \sum_{n \geq 0} a^{(p)}_{\theta}(n)t^n$. We obtain the identity $A_\theta = \exp(\sum_{j \geq 0} p^{-j} \theta_j t^{p^j})$ by a straightforward calculation, similar to the one in the proof.
of \[\text{Mac Equation (I.2.14)}\]. Hence, \(A_{\theta+\varphi} = A_\theta A_{\varphi}\), and part (iii) follows by equating coefficients in \(t^n\). Part (ii) follows from the identity
\[
a_\theta^{(p)}(n) = \sum_{\nu \in \Pow_p(n)} \prod_{j \geq 0} \frac{1}{m_\nu^{(j)}} \left(\frac{\theta_j}{p^j}\right)^{m_\nu^{(j)}}.
\]
and the inequality \(\nu_p(d) \leq d\) (see \([2.5]\)).

To prove (iv), we recall a corollary of Brauer’s characterization of characters. Let \(G\) be a finite group. Then the characteristic function of a \(p\)-element \(x \in G\) is an \(O\)-generalized character of \(G\) (see \([8.19]\)) for a certain DVR \(O\) with \(\mathbb{Z}(p) \subseteq O \subseteq \mathbb{C}\). In particular, the characteristic function of \(\Sec_{p'}(1_{\mathfrak{e}_n}) = \bigsqcup_{\nu \in \Pow_p(n)} C_\nu\) is an \(O\)-generalized character of \(\mathfrak{S}_n\).

We denote by \(\langle \cdot, \cdot \rangle_{\mathfrak{e}_n}\) the usual inner product on the complex-valued class functions on \(G\), so that \(\{\chi_V \mid V \in \Irr(\Mod(\mathbb{C}G))\}\) is an orthonormal basis. Due to (iii), we may assume that \(s = 1\), so that \(\theta_j = c^j\) for all \(j\). We have
\[
a_\theta^{(p)}(n) = \sum_{\nu \in \Pow_p(n)} z^{-1}_\nu c^n = c^n \langle \chi_{\text{triv}_{\mathfrak{e}_n}} | \sum_{\nu \in \Pow_p(n)} C_\nu, \chi_{\text{triv}_{\mathfrak{e}_n}} \rangle_{\mathfrak{e}_n} \in \mathbb{Q} \cap \mathfrak{O} = \mathbb{Z}(p).
\]

Proposition 2.10. Let \(R \subseteq \mathbb{C}\) be a ring, and consider a map \(\xi : \Par(n) \to \mathbb{C}\) be a map for some \(n \geq 0\). If the class function \(\xi^d\) defined by \(\xi^d(C_\lambda) = \xi(\lambda)\) for \(\lambda \in \Par(n)\) is an \(R\)-generalized character of \(\mathfrak{S}_n\), then \(M_n \diag(\{\xi(\lambda) \mid \lambda \in \Par(n)\}) M_n^{-1}\) is \(R\)-valued.

Proof. Let \(T_n = (\chi_V(C_\lambda))_{V \in \Irr(\Mod(\mathbb{Q}\mathfrak{e}_n)), \lambda \in \Par(n)}\) be the character table of \(\mathfrak{S}_n\). Then, for \(V, W \in \Irr(\Mod(\mathbb{Q}\mathfrak{e}_n))\), the \((V, W)\)-entry of \(T_n \diag(\{\xi(\lambda) \mid \lambda \in \Par(n)\}) T_n^{-1}\) is equal to \(\langle \xi^d \chi_V, \chi_W \rangle_{\mathfrak{e}_n}\). Indeed, we have
\[
\langle \xi^d \chi_V, \chi_W \rangle_{\mathfrak{e}_n} = \sum_{\lambda \in \Par(n)} \frac{1}{z^\lambda} \chi_V(C_\lambda) \xi(\lambda) \chi_W(C_\lambda),
\]
and \(z^{-1}_\lambda \chi_W(C_\lambda)\) is the \((\lambda, W)\)-entry of \(T_n^{-1}\) due to the orthogonality relations. The result follows since \(M_n\) and \(T_n\) are row equivalent over \(\mathbb{Z}\) (see Remark 2.3).

Corollary 2.11. Let \(p \in \text{Prm}\) and \(n \geq 0\). For a map \(\xi : \Pow_p(n) \to \mathbb{C}\), if the class function \(\xi^d\) defined by
\[
\xi^d(C_\lambda) = \begin{cases}
\xi(\lambda) & \text{if } \lambda \in \Pow_p(n), \\
0 & \text{if } \lambda \in \Par(n) \setminus \Pow_p(n)
\end{cases}
\]
is a \(\mathbb{Z}(p)\)-generalized character of \(\mathfrak{S}_n\), then \(N_n^{(p)} \diag(\{\xi(\lambda) \mid \lambda \in \Pow_p(n)\}) (N_n^{(p)})^{-1}\) is \(\mathbb{Z}(p)\)-valued.

Proof. Put \(\widehat{M}_n = \bigoplus_{\nu \in \text{CRP}_p(n)} M_n|_{\Par_p(n, \nu) \times \Par_p(n, \nu)} \in \text{Mat}_{\Par_p(n)}(\mathbb{Z})\). Then \(M_n\) and \(\widehat{M}_n\) are row equivalent over \(\mathbb{Z}(p)\) by \([4.6]\). Thus, by Proposition 2.10 \(\widehat{M}_n \diag(\{\xi^d(C_\lambda) \mid \lambda \in \Par(n)\}) \widehat{M}_n^{-1}\) is \(\text{Mat}_{\Par_p(n)}(\mathbb{Z}(p))\). Now \(N_n^{(p)} \diag(\{\xi(\lambda) \mid \lambda \in \Pow_p(n)\}) (N_n^{(p)})^{-1}\) is simply the \(\Pow_p(n) \times \Pow_p(n)\)-submatrix of this matrix, so the result follows.

\[\square\]
Proposition 2.12. Let $p \in \text{Prm}$ and $n \geq 0$, $\ell \geq 2$ be integers. Put $r = \nu_p(\ell)$. Then, for any $a/b \in \mathbb{Z}_p$ with $a, b \in \mathbb{Z} \setminus p\mathbb{Z}$ and $a^2 - b^2 \in p\mathbb{Z}$, we have

$$N_n^{(p)} \text{diag} \left(\{ p^{-r(\lambda)} \prod_{j \geq 0} [\ell]_{p^{r+j}}^{m_{\rho_j}(\lambda)} | \lambda \in \text{Pow}_p(n) \} \right) (N_n^{(p)})^{-1} \in \text{Mat}_{\text{Pow}_p(n)}(\mathbb{Z}_p).$$

Proof. Put $\theta = (\theta_j)_{j \geq 0} \in \mathbb{Z}_p^n$ where $\theta_j = p^{-r}[\ell]_{p^{r+j}}|_{a/b}$. Consider the map $\xi : \text{Pow}_p(n) \to \mathbb{Q}$ given by $\nu \mapsto \prod_{j \geq 0} \theta_j^{m_{\rho_j}(\nu)}$. By Corollary 2.11, it is enough to show that ξ^λ is a $\mathbb{Z}(p)$-generalized character of \mathfrak{S}_n. From Frobenius reciprocity, for all $\lambda \in \text{Par}(n)$ we have

$$\langle \xi^\lambda, \chi_{\text{Ind}_\ell^\lambda \text{triv}_\lambda} \rangle_{\mathfrak{S}_n} = \langle \text{Res}_{\mathfrak{S}_n}^\lambda \xi^\lambda, \chi_{\text{triv}_\lambda} \rangle_{\mathfrak{S}_n} = \prod_{i=1}^{\ell(\lambda)} a_{\theta}^{(p)}(\lambda_i).$$

Therefore, since $\{ \chi_{\text{Ind}_\ell^\lambda \text{triv}_\lambda} | \lambda \in \text{Par}(n) \}$ is a \mathbb{Z}-basis of the abelian group of generalized characters of \mathfrak{S}_n, it suffices to show that $a_{\theta}^{(p)}(k) \in \mathbb{Z}_p$ for all $k \geq 0$.

Let $\theta_j^\nu = \ell_p(a/b)^{-(\ell-1)p^{r+j}}$ and $\theta_j^\nu = \theta_j - \theta_j^\nu$ for $j \geq 0$, so that $\theta = \theta^\nu + \theta^\nu$. We know that $a_{\theta^\nu}^{(p)}(k) \in \mathbb{Z}_p$ by Lemma 2.9 (a). Thus, by Lemma 2.9 (a), it is enough to show that $a_{\theta}^{(p)}(k) \in \mathbb{Z}_p$. By Lemma 2.9 (b), it will suffice to prove that $\nu_p(\theta_j^\nu) \geq j + 1$. Note that

$$\theta_j^\nu = \sum_{i=0}^{\ell-1} (a/b)^{2ip^{r+j}} - \ell \cdot (a/b)^{-(\ell-1)p^{r+j}} = \frac{\sum_{i=0}^{\ell-1} (a/b)^{2ip^{r+j}} - 1}{p^r} \cdot (a/b)^{-(\ell-1)p^{r+j}}.$$

Since the assumption that $a^2 - b^2 \in p\mathbb{Z}$ implies that $a^{2ip^{r+j}} - b^{2ip^{r+j}} \in p^{1+r+j}\mathbb{Z}$ for all $i \geq 0$ (see e.g. Proposition 5.1 and its proof), we are done. \hfill \Box

2.3. ℓ-colored version $M_{\ell,d}$ of M_n. Let R be a commutative ring and $A \in \text{Mat}_\ell(R)$ for some $\ell \geq 1$. Let $\{ v_1, \ldots, v_\ell \}$ be the standard basis of the free R-module R^ℓ. Then the symmetric power $\text{Sym}^m(R^\ell)$ has a basis $\{ v_{i_1} v_{i_2} \cdots v_{i_m} | (i_1, \ldots, i_m) \in \text{Mult}_m(\ell) \}$ where

$$\text{Mult}_m(\ell) = \{ (i_1, \ldots, i_m) \in \mathbb{Z}^m | 1 \leq i_1 \leq \cdots \leq i_m \leq \ell \}. $$

Since Sym^m is a functor from the category of finitely generated R-modules to itself, the endomorphism of R^ℓ given by A induces an endomorphism of $\text{Sym}^m(R^\ell)$, and the m-th symmetric power $\text{Sym}^m(A)$ is defined to be the matrix of this endomorphism with respect to the given basis (see e.g. [Ev], Equation (3.15)) for a more explicit description). Thus, $\text{Sym}^m(A) \in \text{Mat}_{\text{Mult}_m(\ell)}(R)$.

For $\ell, d \geq 0$, we define

$$\Omega_{\ell,d} = \bigcup_{\lambda \in \text{Par}(d)} \{ (\lambda, (i_1, \ldots, i_{\ell(\lambda)})) | 1 \leq i_j \leq \ell \ \forall j \text{ and } \lambda_j = \lambda_{j+1} \Rightarrow i_j \leq i_{j+1} \}. $$

There is a bijection $\Omega_{\ell,d} \cong \text{Par}_{\ell,d}$ given by $$(\lambda, j) \mapsto (\lambda^{(1)}, \ldots, \lambda^{(\ell)})$$ where $\lambda^{(j)}$ consists of the parts λ_k such that $i_k = j$ (see [HI], Notation 3.1).

Definition 2.13. For positive integers ℓ, d and $A \in \text{Mat}_\ell(\mathcal{A})$, we define (see [I.7.3])

$$S^d(A) = \bigoplus_{\lambda \in \text{Par}(d)} \bigotimes_{\ell \geq 1} \text{Sym}^{m_{\ell}(\lambda)}(\text{Infl}_\ell(A)).$$
We may view $S^d(A)$ as an $\Omega_{\ell,d} \times \Omega_{\ell,d}$-matrix via the identification

$$
\bigcup_{\lambda \in \Par(d)} \prod_{t \geq 1} \Mult_{\mu_{t}(\lambda)}(t) \overset{\sim}{\rightarrow} \Omega_{\ell,d},
$$

$$
\{(i_{t,1}, \ldots, i_{t,m_{t}(\lambda)})\}_{t \geq 1} \mapsto (\lambda, (i_{1,1}, i_{1,2}, \ldots, i_{1,m_{1}(\lambda)}, i_{2,1}, i_{2,2}, \ldots, i_{2,m_{2}(\lambda)}, \ldots)).
$$

Further, combining this with the above identification, we may (and do) view $S^d(A)$ as an element of $\Mat_{\Par(d)}(\mathcal{A})$.

Definition 2.14. The ℓ-colored ring of symmetric functions is defined by $\Lambda_{\ell} = \bigotimes_{t=1}^{\ell} \Lambda^{(t)}$, where each $\Lambda^{(t)}$ is a copy of Λ. We write $m_{\mu}(x)$ for the image of m_{μ} in $\Lambda^{(t)}$ and adopt a similar convention for the functions h_{μ} and p_{μ}. For $\ell \geq 1$ and $d \geq 0$, we define the matrices $M_{\ell,d}, K_{\ell,d} \in \Mat_{\Par(d)}(\mathbb{Z})$ by the following equations:

$$
p_{\lambda^{(t)}}^{(1)} \cdots p_{\lambda^{(t)}}^{(t)} = \sum_{\{\mu^{(t)}\}_{t=1}^{\ell} \in \Par(d)} (M_{\ell,d})^{(1)}_{\lambda^{(t)}, \mu^{(t)}} m_{\mu^{(t)}}^{(1)} \cdots m_{\mu^{(t)}}^{(t)}
$$

$$
= \sum_{\{\mu^{(t)}\}_{t=1}^{\ell} \in \Par(d)} (K_{\ell,d})^{(1)}_{\lambda^{(t)}, \mu^{(t)}} h_{\mu^{(t)}}^{(1)} \cdots h_{\mu^{(t)}}^{(t)}.
$$

Remark 2.15. $M_{1,n} = \tr M_n$ by (2.4) and $M_{\ell,n} = \bigoplus_{\sum_{i=1}^{\ell} n_i = n, n_i \geq 0} \bigotimes_{i=1}^{\ell} M_{1,n_i}$.

Remark 2.16. $M_{\ell,d}$ and $K_{\ell,d}$ are column equivalent over \mathbb{Z} since both of

$$
\{\prod_{i \in I} m_{\mu(i)}^{(i)} \mid \{\mu(i)\}_{i \in I} \in \Par(d)\}, \quad \{\prod_{i \in I} h_{\mu(i)}^{(i)} \mid \{\mu(i)\}_{i \in I} \in \Par(d)\}
$$

are bases of the same \mathcal{A}-lattice of the degree d part of Λ_{ℓ} (see [Ful, §6, Proposition 1]).

The following result is proved by the argument of [BK3, §5] (combine the relevant parts of the proofs of Lemma 5.2, Lemma 5.3 and Theorem 5.4 of op. cit.). It is similar to [Tsu, Proposition 2.3].

Proposition 2.17. Let \mathbb{F} be a field of characteristic 0 and $I = \{1, \ldots, \ell\}$ for a fixed integer $\ell \geq 0$. We regard the polynomial ring $V = \mathbb{F}[y_{n}^{(i)} \mid i \in I, n \geq 1]$ as a graded \mathbb{F}-algebra via $\deg y_{n}^{(i)} = n$ and denote by V_{d} the \mathbb{F}-vector subspace of V consisting of homogeneous elements of degree d for $d \geq 0$. Assume that we are given the following data:

(a) a ring involution $\sigma: \mathbb{F} \overset{\sim}{\rightarrow} \mathbb{F}$,

(b) a family of invertible matrices $A = (A^{(m)})_{m \geq 1}$ where $A^{(m)} = (a_{ij}^{(m)})_{i,j \in I} \in \GL_{I}(\mathbb{F})$,

(c) two bi-additive forms $\langle \cdot, \cdot \rangle_{S}$ and $\langle \cdot, \cdot \rangle_{K}: V \times V \rightarrow \mathbb{F}$ such that

- $\langle cf, g \rangle_{X} = \sigma(c) \langle f, g \rangle_{X}$ and $\langle f, cg \rangle_{X} = c \langle f, g \rangle_{X}$,

- $\langle 1, 1 \rangle_{X} = 1$, and $\langle 1, f \rangle_{X} = 0$ if $f \in V_{d}$ for some $d > 0$,

- $\langle my_{m}^{(i)} f, g \rangle_{S} = \langle f, \sum_{j \in I} a_{ij}^{(m)} \frac{\partial}{\partial y_{n}^{(j)}} \rangle_{S}$ and $\langle my_{m}^{(i)} f, g \rangle_{K} = \langle f, \frac{\partial}{\partial y_{n}^{(j)}} \rangle_{K}$

for $X \in \{S, K\}$ and $f, g \in V$, $c \in \mathbb{F}$, $m \geq 1$,

(d) a family of new variables $(x_{n}^{(i)})_{i \in I, n \geq 1}$ such that $x_{n}^{(i)} - y_{n}^{(i)} \in \mathbb{F}[y_{n}^{(i)} \mid 1 \leq m < n] \cap V_{n}$ for all $n \geq 1$.

Set $x_{X}^{(i)} = \prod_{k=1}^{\ell} x_{k}^{(i)}$, and $y_{X}^{(i)} = \prod_{k=1}^{\ell} y_{k}^{(i)}$ for $(\lambda, \bar{\lambda}) \in \Omega_{\ell,d}$, and define the transition matrix $P = (p_{\lambda,\mu}) \in \GL_{\Omega_{\ell,d}}(\mathbb{F})$ by $x_{X}^{(i)} = \sum_{(\mu, \bar{\lambda}) \in \Omega_{\ell,d}} p_{\lambda,\mu}^{(i)} y_{X}^{(j)}$. Then the Gram matrices...
Suppose further that for each \(M \).

Assume all the hypotheses of Proposition 2.17. Suppose further that the conditions are implied by the properties satisfied by the form \(\langle \cdot \rangle \).

Let \(\mathcal{P} \) be as in Proposition 2.17.

(a) There exists a unique bi-additive non-degenerate map \(\langle \cdot, \cdot \rangle_K : V \times V \to \mathbb{F} \) such that

\[\langle af, g \rangle_K = \sigma(a) \langle f, g \rangle_K, \langle f, ag \rangle_K = a \langle f, g \rangle_K \]

for all \(f, g \in V \), \(a \in \mathbb{F} \) and \(i \in I \).

(b) Suppose further that for each \(1 \leq i \leq \ell \) the variables \(\{ x_n^{(i)} \mid n \geq 1 \} \) and \(\{ y_n^{(i)} \mid n \geq 1 \} \) are related by the formal identity

\[1 + \sum_{n \geq 1} x_n^{(i)} t^n = \exp \left(\sum_{r \geq 1} y_r^{(i)} t^r \right). \]

Then, for any \(d \geq 0 \), the set of Schur functions

\[\left\{ \prod_{i \in I} s_{\lambda^{(i)}}(x^{(i)}) \mid \sum_{i \in I} |\lambda^{(i)}| = d \right\} \]

forms an orthonormal basis of the \(\mathbb{Z} \)-lattice \(\mathbb{Z}[x_n^{(i)} \mid i \in I, n \geq 1] \cap V_d \) of \(V_d \) with respect to \(\langle \cdot, \cdot \rangle_K \). Here, \(s_{\lambda^{(i)}} := \det(x_{\lambda^{(i)}+j,k})_{1 \leq j,k \leq |\lambda^{(i)}|} \) for \(\lambda \in \mathcal{P} \) and \(x_n^{(i)} = \delta_{m,0} \) for \(m \leq 0 \).

Note that the form \(\langle \cdot, \cdot \rangle_K : V \times V \to \mathbb{F} \) satisfying the conditions of Proposition 2.17 is clearly unique. Also, those conditions are implied by the properties satisfied by the form \(\langle \cdot, \cdot \rangle_K \) of Proposition 2.18.

Corollary 2.19. Assume all the hypotheses of Proposition 2.17. Suppose further that the variables \(\{ x_n^{(i)} \mid i \in I, n \geq 1 \} \) and \(\{ y_n^{(i)} \mid i \in I, n \geq 1 \} \) are related as in Proposition 2.18. Then

\[M_S = K_{\ell,d}^{-1} \left(\bigoplus_{\lambda \in \mathcal{P}(d)} \bigotimes_{t \geq 1} \text{Sym}^{m_t^{(\lambda)}}(A^{(t)}) \right) K_{\ell,d} M_K. \]

and \(M_K \in \text{GL}_{\mathcal{P}(d)}(\mathbb{Z}) \).

Proof. Let \(Y = \bigoplus_{\lambda \in \mathcal{P}(d)} \bigotimes_{t \geq 1} \text{Sym}^{m_t^{(\lambda)}}(A^{(t)}) \). We identify the ring \(V \) with \(\mathbb{F} \otimes \mathcal{A}_t \) by setting \(y_n^{(i)} = p_n^{(i)}/n \). Then, comparing the hypothesis with (2.3), we see that \(x_n^{(i)} = h_n^{(i)} \). Define \(w_{\mu} = \mu_1 \cdots \mu_{\ell(\mu)} \) for \(\mu \in \mathcal{P} \) and \(i \in I \), and let \(W = \text{diag}\{ w_{\mu^{(i)}} \mid (\mu^{(i)}, \ldots, \mu^{(i)}) \in \mathcal{P}(d) \} \). It follows from Definition 2.13 that the change-of-basis matrix \(P \) of Proposition 2.17 is given by \(P = K_{\ell,d}^{-1}W \). Hence, Proposition 2.17 yields

\[M_S = \sigma(K_{\ell,d})^{-1} \sigma(W) Y \sigma(W)^{-1} \sigma(K_{\ell,d}) M_K. \]
Observing that, when we view W as an $\Omega_{\ell,d} \times \Omega_{\ell,d}$-matrix, each block of W corresponding to a fixed $\lambda \in \text{Par}(d)$ is a scalar matrix and also that $\sigma(K_{\ell,d}) = K_{\ell,d}$ because $K_{\ell,d}$ is Q-valued, we obtain (2.3).

Thanks to Proposition 2.18, there exists $Q \in \text{GL}_{\text{Par}(d)}(\mathbb{Z})$ such that $M_K = \text{tr} Q \cdot Q.$ □

The following result is a quantized version of [Hil] Proposition 3.3, though our proof is different.

Theorem 2.20. For $\ell \geq 1$ and $A \in \text{Mat}_2(\mathcal{A})$, we have $M_{\ell,d}^{-1} S^d(A) M_{\ell,d} \in \text{Mat}_{\text{Par}(d)}(\mathcal{A})$ for any $d \geq 0$.

Proof. Let $I = \{1, \ldots, \ell\}$. By Remark 2.10, it will suffice to prove that $M_{\ell,d}^{-1} S^d(P) K_{\ell,d} \in \text{Mat}_{\text{Par}(d)}(\mathcal{A})$.

In the rest of the proof, we identify $k \otimes \Lambda_\ell$ with $V = k[y_n^{(i)} | i \in I, n \geq 1]$ by identifying $p_n^{(i)}/n$ with $y_n^{(i)}$. Write $A = (a_{ij})_{i,j \in I}$. Define new variables $x_n^{(i)} \in V$ by the identity (2.7).

Clearly, there exists a unique bi-additive map $\langle \cdot, \cdot \rangle : V \times V \to k$ such that

(a) $\langle cf, g \rangle_S = \text{bar}(c) \langle f, g \rangle_S$, $\langle f, cg \rangle_S = c \langle f, g \rangle_S$,

(b) $\langle 1, 1 \rangle_S = 1$, and $\langle 1, f \rangle_S = 0$ if f has zero constant term as a polynomial in the variables $y_n^{(i)}$.

(c) $\langle my_m^{(i)} f, g \rangle_S = \langle f, \sum_{j \in I} \text{Infl}_m(a_{ij}) \frac{\partial g}{\partial y^{(j)}_{m}} \rangle_S$

for $f, g \in V$, $c \in k$, $m \geq 1$, $i \in I$. Applying Corollary 2.19 with $\mathbb{F} = k$, $\sigma = \text{bar}$ and the form $\langle \cdot, \cdot \rangle_S$ supplied by Proposition 2.18, we obtain $M_S = K_{\ell,d}^{-1} S^d(A) K_{\ell,d} M_K$ (in the notation of Proposition 2.17) and $M_K \in \text{GL}_{\text{Par}(d)}(\mathbb{Z})$.

Thus, it is enough to show that $\langle x_n^{(i)}, x_m^{(j)} \rangle_S \in \mathcal{A}$ for $(\lambda, i) \in \Omega_{\ell,d}$, where $x_n^{(i)}$ is defined as in Proposition 2.17. We argue by induction on $|\lambda|$. Expanding (2.7), we obtain (2.9)

$$ x_n^{(i)} = \sum_{\lambda \in \text{Par}(n)} \prod_{k \geq 1} \frac{(q_k^{(i)})^{m_k(\lambda)}}{m_k(\lambda)!} \left(\sum_{j \in I} \text{Infl}_k(a_{ij}) \frac{\partial}{\partial y^{(j)}_{k}} \right)^{m_k(\lambda)} $$

and therefore $\partial x_n^{(i)} / \partial y^{(j)}_m = \delta_{ij} x_{m-n}$ for $i, j \in I$ and $m, n \geq 1$, where we put $x_{-1}^{(i)} = \delta_{i,0}$ for $\gamma < 0$ (see also [DcKK] page 129). Combining (2.9) with the defining property (c) of $\langle \cdot, \cdot \rangle_S$, we obtain the identity $\langle x_n^{(i)} f, g \rangle_S = \langle f, D_n^{(i)} g \rangle$ for all $f, g \in V$, $n \geq 1$, $i \in I$, where the differential operator $D_n^{(i)} : V \to V$ is defined by

$$ D_n^{(i)} = \sum_{\lambda \in \text{Par}(n)} \prod_{k \geq 1} \frac{1}{k^{m_k(\lambda)} m_k(\lambda)!} \left(\sum_{j \in I} \text{Infl}_k(a_{ij}) \frac{\partial}{\partial y^{(j)}_{k}} \right)^{m_k(\lambda)} $$

Let $V^{\mathcal{A}} = \mathcal{A}[x_n^{(i)} | (\lambda, i) \in \Omega_{\ell,d}]$. By the inductive hypothesis, it is enough to show that $D_n^{(i)}(V^{\mathcal{A}}) \subset V^{\mathcal{A}}$ for all $i \in I$, $n \geq 1$. By a straightforward calculation, one obtains the product rule $D_n^{(i)}(fg) = \sum_{s=0}^n D_s^{(i)}(f) D_{n-s}^{(i)}(g)$ for $f, g \in V$. Hence, it suffices to prove that $D_n^{(i)}(x_m^{(j)}) \in V^{\mathcal{A}}$ for all $i, j \in I$ and $n, m \geq 1$. We have

$$ D_n^{(i)}(x_m^{(j)}) = \sum_{\lambda \in \text{Par}(n)} \prod_{k \geq 1} \frac{\text{Infl}_k(a_{ij})^{m_k(\lambda)}}{k^{m_k(\lambda)} m_k(\lambda)!} x_{m-n}^{(j)}; $$

and the result now follows from Lemma 2.21. □

Lemma 2.21. For any $f \in \mathcal{A}$, we have $\sum_{\lambda \in \text{Par}(n)} \frac{1}{2^n} \prod_{k \geq 1} \text{Infl}_k(f)^{m_k(\lambda)} \in \mathcal{A}$.

Proof. For θ = (θ_k)_{k≥1} ∈ \mathcal{A}_{≥1} and n ≥ 0, we define b_θ(n) = \sum_{λ∈\text{Par}(n)} \frac{1}{z_λ} \prod_{k≥1} θ_k^{m_λ(k)} (cf. Definition \ref{def:2.3}). Similarly to Lemma \ref{lem:2.3} (m), we have b_{θ+θ'}(n) = \sum_{k=0}^{n} b_θ(k) b_{θ'}(n-k). Thus, it is enough to show that b_{θ_m}(n) ∈ \mathcal{A} for m ∈ \mathbb{Z} where θ_m = (±v^m, ±v^{2m}, ±v^{3m}, \ldots).

By the orthogonality relations, we have

\[\sum \frac{1}{z_λ} \prod_{k≥1} θ_k^{m_λ(k)} = (1 ± 1)/2,\] which implies that b_{θ_m}(n) = (v^{mn} ± v^{mn})/2.

\[\Box\]

3. Graded Cartan matrices of symmetric groups and Hecke algebras

In this section we recall the definition of graded Cartan matrices \(C_n^{\mathcal{H}_n(k;\bar{m})}\) and reduce the problem of finding their unimodular equivalence classes to the same problem for the matrix \(M_n\text{diag}(\{J_1(λ) | λ ∈ \text{Par}(n)\})M_n^{-1}\) (cf. Conjecture \[\ref{conj:1.9}\]).

3.1. Gram matrices of quantized Shapovalov forms. We now recall some of the definitions and results from \cite{Tsu} and, in particular, define the Gram matrix \(QSh^M(\mathcal{A})\) of a quantized Shapovalov form (cf. \cite{Tsu}, Definition 3.13). For the theory of quantum groups, the book \cite{Lus} is a standard reference.

Let \(A = (a_{ij})_{i,j∈I}\) be a symmetrizable generalized Cartan matrix and take the symmetrization \(d = (d_{ij})_{i∈I}\) of \(A\), i.e., the unique \(d ∈ \mathbb{Z}_{≥1}\) such that \(d_{ij}a_{ij} = d_{ji}a_{ji}\) for all \(i, j ∈ I\) and \(\gcd(d_{ij}) = 1\). We consider a root datum \((\mathcal{P}, \mathcal{P}', \Pi, Π')\) in the following sense:

(a) \(\mathcal{P}'\) is a free \(\mathbb{Z}\)-module of rank \(|2|I| - \text{rank}\, A\)| and \(\mathcal{P} = \text{Hom}_{\mathbb{Z}}(\mathcal{P}', \mathbb{Z})\),
(b) \(Π = \{h_i | i ∈ I\}\) is a \(\mathbb{Z}\)-linearly independent subset of \(\mathcal{P}'\),
(c) \(Π = \{α_i | i ∈ I\}\) is a \(\mathbb{Z}\)-linearly independent subset of \(\mathcal{P}\),
(d) \(α_i(h_j) = a_{ij}\) for all \(i, j ∈ I\).

We denote by \(Q^+ = \bigoplus_{i∈I} \mathbb{Z}_{≥0}α_i\) the positive part of the root lattice and denote by \(\mathcal{P}^+\) the set of dominant integral weights \(\{λ ∈ \mathcal{P} | ∀i ∈ I, λ(h_i) ∈ \mathbb{Z}_{≥0}\}\). For each \(i ∈ I\), \(\Lambda_i ∈ \mathcal{P}^+\) is a dominant integral weight determined modulo the subgroup \(\{λ ∈ \mathcal{P} | ∀i ∈ I, λ(h_i) = 0\}\) of \(\mathcal{P}\) by the condition that \(\Lambda_i(h_j) = δ_{ij}\) for all \(j ∈ I\).

Recall that the Weyl group \(W = W(A)\) is the subgroup of \(\text{Aut}(\mathcal{P})\) generated by \(\{s_i : \mathcal{P} →:\mathcal{P}, λ → λ - λ(h_i)α_i | i ∈ I\}\).

Definition 3.1. The quantum group \(U_ν = U_ν(A)\) is the unital associative \(k\)-algebra generated by \(\{e_i, f_i | i ∈ I\}\) and \(\{v^h | h ∈ \mathcal{P}'\}\) with the following defining relations:

(a) \(v^0 = 1\) and \(v^hv'^h = v^{h+h'}\) for any \(h, h' ∈ \mathcal{P}'\),
(b) \(v^h e_i v^{-h} = v^{α_i(h)}e_i v^h f_i v^{-h} = v^{-α_i(h)}f_i\) for any \(i ∈ I\) and \(h ∈ \mathcal{P}'\),
(c) \(e_i f_j - f_j e_i = δ_{ij}(K_i - K_i^{-1})/(v_i - v_i^{-1})\) for any \(i, j ∈ I\),
(d) \(\sum_{k=0}^{1-a_{ij}}(-1)^{k}e_i^{(k)}f_j^{(1-a_{ij}-k)} = 0\) for any \(i ≠ j ∈ I\),

where \(K_i = v^{d_i h_i}, v_i = v^{d_i}\) and \(e_i^{(n)} = e_i^n/[n]_d!\). \(f_i^{(n)} = f_i^n/[n]_d!\).

Let \(U^+_ν, U^-_ν, U^0_ν\) be the \(k\)-subalgebras of \(U_ν\) defined by

\[U^+_ν = \langle e_i | i ∈ I\rangle, \quad U^-_ν = \langle f_i | i ∈ I\rangle, \quad U^0_ν = \langle v^h | h ∈ \mathcal{P}'\rangle.\]

Then, the following is a triangular decomposition theorem for quantum groups \cite[§3.2]{Lus}:

(i) the canonical map \(U^-_ν \otimes_k U^0_ν \otimes_k U^+_ν → U_ν\) is a \(k\)-vector space isomorphism,
(ii) \(U^0_ν\) is canonically isomorphic to the group \(k\)-algebra \(k[\mathcal{P}']\).

For each \(λ ∈ \mathcal{P}^+\), we denote by \(V(λ)\) the integrable highest weight \(U_ν\)-module with highest weight \(λ\) and a fixed highest weight vector \(1_λ ∈ V(λ)\).
Proposition 3.2 ([Tsu, Proposition 3.8]). For $\lambda \in \mathcal{P}^+$, there exist unique bi-additive non-degenerate maps $\langle \cdot, \cdot \rangle_{\text{QSh}} : V(\lambda) \times V(\lambda) \to \mathbb{k}$ and $\langle \cdot, \cdot \rangle_{\text{RSh}} : V(\lambda) \times V(\lambda) \to \mathbb{k}$ with

(i) $\langle aw_1, w_2 \rangle_x = \text{bar}(a)\langle w_1, w_2 \rangle_x$, $\langle w_1, aw_2 \rangle_x = a\langle w_1, w_2 \rangle_x$ and $\langle w_1, w_2 \rangle_x = \text{bar}(\langle w_2, w_1 \rangle_x)$,
(ii) $\langle 1, 1 \rangle_x = 1$ and $\langle w_1, w_2 \rangle_{\text{QSh}} = \langle w_1, \Omega(w_2) \rangle_{\text{QSh}}$, $\langle uw_1, w_2 \rangle_{\text{QSh}} = \langle w_1, \Upsilon(u)w_2 \rangle_{\text{RSh}}$

for all $X \in \{\text{QSh}, \text{RSh}\}$ and for all $w_1, w_2 \in V(\lambda)$, $u \in U_v$ and $a \in \mathbb{k}$. Here, Ω and Υ are the \mathfrak{q}-antiinvolution and \mathfrak{q}-antiautomorphism of U_v defined by

$$\Omega(e_i) = f_i, \quad \Omega(f_i) = e_i, \quad \Omega(v^h) = v^{-h}, \quad \Omega(v) = v^{-1},$$

$$\Upsilon(e_i) = v^{-1}K_i e_i, \quad \Upsilon(f_i) = v^{-1}K_i f_i, \quad \Upsilon(v^h) = v^{-h}, \quad \Upsilon(v) = v^{-1}.$$

We denote by $P(\lambda) := \{\mu \in \mathcal{P} \mid V(\lambda)_{\mu} \neq 0\}$ the set of weights of $V(\lambda)$, which is W-invariant ([Lus, Proposition 5.2.7]). Let (\mathcal{L}) be the \mathfrak{a}-subalgebra of U_v^- generated by $\{f_i^{(n)} \mid i \in I, n \geq 0\}$. The constructions below use the following deep results:

(a) $(U_v^-)^{\mathfrak{a}}$ is an \mathfrak{a}-lattice of U_v^- (see [Lus, Theorem 14.4.3]),
(b) $V(\lambda)^{\mathfrak{a}} := V(\lambda)_{\nu} \cap V(\lambda)^{\mathfrak{a}}$ is an \mathfrak{a}-lattice of $V(\lambda)_{\nu}$ for $\nu \in P(\lambda)$ where $V(\lambda)^{\mathfrak{a}} := (U_v^-)^{\mathfrak{a}}|_{\lambda} \subseteq V(\lambda)$ (see [Lus, Theorem 14.4.11]).

Definition 3.3 ([Tsu, Proposition 3.13]). For $\lambda \in \mathcal{P}^+$ and $\mu \in P(\lambda)$, we define

$$\text{QSh}^M_{\lambda, \mu}(A) = (\langle w_i, w_j \rangle_{\text{QSh}})_{1 \leq i, j \leq \dim V(\lambda)_{\mu}}, \quad \text{RSh}^M_{\lambda, \mu}(A) = (\langle w_i, w_j \rangle_{\text{RSh}})_{1 \leq i, j \leq \dim V(\lambda)_{\mu}}$$

where $\{w_i \mid 1 \leq i \leq \dim V(\lambda)_{\mu}\}$ is an \mathfrak{a}-basis of $V(\lambda)^{\mathfrak{a}}_{\mu}$.

For any $n \geq 0$, define the equivalence relation \equiv on $\text{Mat}_n(\mathfrak{a})$ as follows:

$$X \equiv Y \iff \exists P \in \text{GL}_n(\mathfrak{a}), \quad \text{bar}(P^t)XP = Y.$$

For $Z \in \{\text{QSh}^M_{\lambda, \mu}(A), \text{RSh}^M_{\lambda, \mu}(A)\}$, the equivalence class of Z under \equiv does not depend on the choice of the basis in Definition 3.3. Thus, the \mathfrak{a}-unimodular equivalence classes of Z are uniquely determined. Note that by construction $^\nu Z = \text{bar}(Z)$. The following is implicit in ([Tsu, Proposition 3.16]).

Proposition 3.4. For $\lambda \in \mathcal{P}^+$ and $\mu \in P(\lambda)$, there exists an \mathfrak{a}-basis of $V(\lambda)^{\mathfrak{a}}_{\mu}$ whose associated $\text{QSh}^M_{\lambda, \mu}(A)$ is an $\mathfrak{a}^{\text{bar}}$-valued symmetric matrix.

Proof. Take an \mathfrak{a}-basis $(v_b)_b$ of $V(\lambda)^{\mathfrak{a}}_{\mu}$ of the form $v_b = G_b 1_{\lambda}$ with $G_b \in (U_v^-)^{\mathfrak{a}}$ and $G_b = G_b^{\text{bar}}$, where the bar involution $\bar{-} : U_v \to U_v$ is defined by

$$\bar{e_i} = e_i, \quad \bar{f_i} = f_i, \quad \bar{v^h} = v^{-h}, \quad \bar{v} = v^{-1}.$$

This is possible using the lower canonical basis of U_v^- (see the last paragraph of [Kac2]) or using [Lak, Theorem 6.5].

Let $\text{HC} : U_v \to U_v^0$ and $\text{ev}_\lambda : U_v^0 \to \mathbb{k}$ be the following maps:

(i) the Harish-Chandra projection $\text{HC} : U_v \to U_v^0$, which is the \mathbb{k}-linear projection from $U_v = U_v^0 \oplus (\sum_{i \in I} f_i U_v) + (\sum_{i \in I} U_v e_i)$ onto U_v^0;
(ii) the evaluation map $\text{ev}_\lambda : U_v^0 \to \mathbb{k}$, which is the \mathbb{k}-algebra homomorphism determined by the assignment $\text{ev}_\lambda(v^h) = v^{\lambda(h)}$ for each $h \in \mathcal{P}^\vee$.

These maps exist by parts (ii), (iii) in the triangular decomposition theorem respectively.

By the construction of $\langle \cdot, \cdot \rangle_{\text{QSh}}$ (see the proof of [Tsu, Proposition 3.8]), we have

$$\langle v_b, v_b'^\lambda \rangle_{\text{QSh}} = \text{ev}_\lambda(\text{HC}(\Omega(G_b)G_{b'})).$$
Theorem 6.49]) that $U_\hat{\mathbf{X}}$ matrix of type A,D,E and let

For Corollary 3.5.

□

Specialization to the basic representations.

3.2. Specialization to the basic representations. Let $X = (a_{ij})_{i,j \in I}$ be a Cartan matrix of type A,D,E and let $\tilde{X} = X^{(1)}$ be the extended Cartan matrix of X indexed by $\tilde{I} = \{0\} \cup I$ as in Figure 1. Let $(a_{ij})_{i,j \in \tilde{I}}$ be the numerical labels of \tilde{X} in Figure 1 and let $\delta = \sum_{i \in \tilde{I}} a_i \alpha_i$. We set $U_v = U_v(\tilde{X})$ and apply the notation of (3.1) to this algebra. By [Kac] Lemma 12.6, we have $P(\lambda_0) = \{w \lambda_0 - d \delta \mid w \in W, d \geq 0\}$.}

Figure 1. Finite and untwisted affine Dynkin diagrams of types A,D,E. Since $\text{HC}(\Omega(G_v)G^\prime_v) \in U_v^{0} \cap U_v^{\mathcal{A}}$, where $U_v^{\mathcal{A}}$ is an \mathcal{A}-subalgebra of U_v generated by

$\{v^h, e_i^{(n)}, f_i^{(n)} \mid i \in I, n \geq 0, h \in P^\vee\}$, and it is known (see [Lus2] Theorem 4.5) or [DDPW] Theorem 6.49]) that $U_v^{0} \cap U_v^{\mathcal{A}}$ is the \mathcal{A}-subalgebra of U_v^{0} generated by

$$\left\{ v^h, [K_i, 0] := \prod_{j=1}^n \frac{K_i v_j^{-1} - K_j v_i^{-1}}{v_i - v_j} \mid i \in I, n \geq 1, h \in P^\vee \right\},$$

(3.1) is \mathcal{A}-valued. Since $\Omega(G_v)G^\prime_v$ is bar-invariant, (3.1) is \mathcal{A}^{bar}-valued due to the isomorphism $U_v^{0} \cong k[P^\vee]$ (For an estimate of (3.1) when G_v is the lower canonical basis, see [Ka1] Problem 2). □

Corollary 3.5. For $\lambda \in P^+$ and $\mu \in P(\lambda)$, we have $QSh_{\lambda,\mu}^M(A) \equiv_{\mathcal{A}} \text{sh}^B QSh_{\lambda,\mu}^M(A)$.

The proof of Proposition 3.4 also shows that $RSh_{\lambda,\mu}^M(A)$ is \mathcal{A}-valued, which is again implicit in [Tsu] Proposition 3.16.

Proposition 3.6 ([Tsu] Proposition 3.16). For $\lambda \in P^+$ and $\mu \in P(\lambda)$, there exists an \mathcal{A}-basis of $V(\lambda)^\mathcal{A}_\mu$ whose associated $QSh_{\lambda,\mu}^M(A)$ and $RSh_{\lambda,\mu}^M(A)$ satisfy $DQSh_{\lambda,\mu}^M(A) = RSh_{\lambda,\mu}^M(A)$ for a diagonal matrix D all of whose diagonal entries belong to $v^\mathcal{A}$.

3.2. Specialization to the basic representations. Let $X = (a_{ij})_{i,j \in I}$ be a Cartan matrix of type A,D,E and let $\tilde{X} = X^{(1)}$ be the extended Cartan matrix of X indexed by $\tilde{I} = \{0\} \cup I$ as in Figure 1. Let $(a_{ij})_{i,j \in \tilde{I}}$ be the numerical labels of \tilde{X} in Figure 1 and let $\delta = \sum_{i \in \tilde{I}} a_i \alpha_i$. We set $U_v = U_v(\tilde{X})$ and apply the notation of (3.1) to this algebra. By [Kac] Lemma 12.6, we have $P(\lambda_0) = \{w \lambda_0 - d \delta \mid w \in W, d \geq 0\}$.

\[A_i \quad A_{\ell} \quad D_{\ell} \quad E_6 \quad E_7 \quad E_8 \]
Definition 3.7. For $d \geq 0$ and $w \in W$, we define $C^w_d(X)$ to be $\text{QSh}^M_{\Lambda_0,w\Lambda_0-d\delta}(\tilde{X})$. For $\ell \geq 2$, we put $C^w_{\ell,d} = C^w_d(A_{\ell-1})$.

The equivalence class of $C^w_d(X)$ under \equiv does not depend on the choice of $w \in W$ \cite{Tsu, Proposition 3.18}. The following is implicit in the proof of \cite{Tsu, Theorem 4.4]. For convenience, we give a proof.

Theorem 3.8. Let $X = (a_{ij})_{i,j \in I}$ be a Cartan matrix of type A, D or E, where $I = \{1, \ldots, \ell\}$. For any $d \geq 0$, we have $C^w_d(X) \equiv_{\mathcal{A}} M_{\ell,d}^{-1}S^d([X])M_{\ell,d}$ where $[X] = ([a_{ij}]) \in \text{Mat}_{I}(\mathcal{A})$.

Proof. Let $I = \{1, \ldots, \ell\}$. As in the proof of \cite{Tsu, Theorem 4.4], $V(A_0)_{\Lambda_0-d\delta}$ can be regarded as an \mathcal{A}-lattice of the polynomial ring $k[h_{i-r} | i \in I, r \geq 1]$. More precisely, defining new variables $y_r^{(i)}$ and $x_r^{(i)}$ (for $i \in I, r \geq 1$) by $y_r^{(i)} = h_{i-r}/[r]$ and \eqref{2.7}, we have

(i) $V(A_0)_{\Lambda_0-d\delta}$ has a k-basis $\{y_X^{(i)} | (\lambda, \bar{i}) \in \Omega_{\ell,d}\}$,

(ii) $V(A_0)_{\Lambda_0-d\delta}$ has an \mathcal{A}-basis $\{x_X^{(i)} | (\lambda, \bar{i}) \in \Omega_{\ell,d}\}$,

where $x_X^{(i)}$ and $y_X^{(i)}$ are defined as in Proposition \ref{2.17}. Moreover, by an identity in the proof of \cite{Tsu, Theorem 4.4]} \footnote{Our $x_r^{(i)}$ and $y_r^{(i)}$ correspond respectively to $\hat{P}_{i,r}^-$ and $h_{i,-r}$ in loc. cit.} (together with the definition of $\langle \cdot, \cdot \rangle_{\text{QSh}}$), we have

$$\langle sy_{s}^{(i)}H, y_{r_1}^{(i_1)} \cdots y_{r_m}^{(i_m)} \rangle_{\text{QSh}} = \left. H, \sum_{k=1}^{m} \delta_{s,r_k}[a_{i,i_k}]s^{y_{r_1}^{(i_1)} \cdots y_{r_k-1}^{(i_{k-1})} y_{r_{k+1}}^{(i_{k+1})} \cdots y_{r_m}^{(i_m)}] \right|_{\text{QSh}}$$

for $H \in k[h_{i-r} | i \in I, r \geq 1]$ and $i, i_k \in I, s, r_k \geq 1$. We can rewrite this identity as

$$\langle sy_{s}^{(i)}H, H' \rangle_{\text{QSh}} = \left. H, \sum_{j=1}^{\ell} \frac{\partial}{\partial y_{s}^{(j)}} H' \right|_{\text{QSh}}$$

Therefore, by Corollary \ref{2.19} we have $\langle (x_X^{(i)}, x_{\mu}^{(j)})_{\text{QSh}} \rangle_{(\lambda, \bar{i}),(\mu, \bar{j})} = K_{\ell,d}^{-1}S^d([X])K_{\ell,d}M_K$ where $M_K \in \text{GL}_{\text{Par}_{\ell-1}(d)}(\mathbb{Z})$. By Remark \ref{2.16} we are done.

\hfill \square

Lemma 3.9. For $\ell \geq 1$, there exist $Q_{\ell}, T_{\ell} \in \text{GL}_{\ell}(\mathcal{A})$ such that $Q_{\ell}A_{\ell}T_{\ell} = [A'_\ell]$ where $A'_\ell = \text{diag}(1, \ldots, 1, \ell+1) \in \text{Mat}_{\ell}(\mathcal{A})$.

Proof. Define $Q_{\ell} \in \text{Mat}_{\ell}(\mathcal{A})$ by

$$(Q_{\ell})_{ij} = \begin{cases} v^j[i] & \text{if } j = i \text{ or } j = i + 1, \\ v^j[i] & \text{if } j = i, \\ 0 & \text{otherwise}. \end{cases}$$

A straightforward calculation shows that the matrix $Q_{\ell}[A_{\ell}]$ is upper-triangular with diagonal entries $1, \ldots, 1, v^\ell[\ell + 1]$ and hence is column equivalent to $[A'_\ell]$ over \mathcal{A}. Also, $\det(Q_{\ell}[A_{\ell}]) = v^\ell[\ell + 1]$. We have $\det([A_{\ell}]) = \ell + 1$ by an easy inductive argument (cf. \cite{Tsu, proof of Corollary 4.5}). Hence, $\det(Q_{\ell}) = v^\ell$, so $Q_{\ell} \in \text{GL}_{\ell}(\mathcal{A})$.

\hfill \square

Theorem 3.10. For $\ell \geq 2$ and $d \geq 0$, we have

$$C^w_{\ell,d} \equiv_{\mathcal{A}} \bigoplus_{s=0}^{d} \left(M_s \text{diag}(\{\prod_{i \geq 1}[\ell]_{i}^{m_i(\lambda)} | \lambda \in \text{Par}(s)\})M_s^{-1} \right)_{\text{Par}_{\ell-2}(d-s)}.$$
Proof. By Theorem 3.8, we have \(C_{v,d}^\ell \equiv_{\mathcal{A}} M_{\ell-1,d}^{-1} S^d([A_{\ell-1}]) M_{\ell-1,d} \). Let \(Q_{\ell-1} \) and \(T_{\ell-1} \) be the matrices supplied by Lemma 3.9. By the functoriality of symmetric powers, \(S^d(Q_{\ell-1}) S^d([A_{\ell-1}]) = S^d([A'_{\ell-1}]) \). Further, the matrices \(M_{\ell-1,d}^{-1} S^d(Q_{\ell-1}) M_{\ell-1,d} \) and \(M_{\ell-1,d}^{-1} S^d(T_{\ell-1}) M_{\ell-1,d} \) belong to \(\text{GL}_{\text{par}_{\ell-1}(d)}(\mathcal{A}) \). Indeed, these matrices are \(\mathcal{A} \)-valued by Theorem 2.20 and their determinants are invertible elements of \(\mathcal{A} \) since that is the case for the determinants of \(Q_{\ell-1}, T_{\ell-1} \). Therefore,

\[
C_{v,d}^\ell \equiv_{\mathcal{A}} M_{\ell-1,d}^{-1} S^d([A_{\ell-1}]) M_{\ell-1,d}.
\]

It follows from Definition 2.13 that (see \[\text{[11.72]}\])

\[
S^d([A'_{\ell-1}]) = \bigoplus_{d_i \geq 0} \left(\left(\bigotimes_{j=1}^{\ell-2} 1_{\text{Par}(d_j)} \right) \otimes \text{diag}(\{\prod_{i \geq 1} [v_i^{m_i(\lambda)}] \mid \lambda \in \text{Par}(d_{\ell-1})\}) \right).
\]

Substituting this identity and the formula of Remark 2.15 into (3.3), we obtain

\[
C_{v,d}^\ell \equiv_{\mathcal{A}} \bigoplus_{s=0}^d \left(M_{1,s}^{-1} \text{diag}(\{\prod_{i \geq 1} [v_i^{m_i(\lambda)}] \mid \lambda \in \text{Par}(s)\}) M_{1,s} \right) \oplus [\text{Par}_{\ell-2}(d-s)].
\]

By Corollary 3.5 we have \(C_{v,d}^\ell \equiv_{\mathcal{A}} \text{tr} C_{v,d}^\ell \). Hence, transposing both sides of (3.4) and using the fact that \(\text{tr} M_{1,s} = M_s \) (see Remark 2.15), we obtain (3.2). \(\square \)

Remark 3.11. In the rest of the paper, we will see an implication of Conjecture 1.9 for “invariant factors” of \(C_{v,d}^\ell \) (Corollary 3.15) and give evidence for Conjecture 1.9 (Theorem 1.10). For Cartan matrices \(X \) of the other simply-laced finite types (D and E), we can prove the existence of \(Q_X, T_X \in \text{GL}_I(\mathcal{A}) \) such that

(a) \(Q_X[X]T_X = \text{diag}(\{1, \ldots, 1, \det[X]\}) \) for \(X \neq D_{2m} \),

(b) \(Q_X[X]T_X = \text{diag}(\{1, \ldots, 1, [2], [2]_{m-1}\}) \) for \(X = D_{2m} \),

where \(m \geq 2 \) (for the ungraded case \(v = 1 \), see \[\text{[Hil, Table 1]}\]). For the value of \(\det[X] \), see \[\text{[Tsu]}\] proof of Corollary 4.5]. These results allow us to analyze \(C_{v}^\ell(X) \) further. A conjectural formula for invariant factors of \(\text{QSh}_{\text{A}_{1},\mu}^{M}(Z) \) for \(\mu \in \text{P}(\Lambda_{0}) \) and evidence for it in the spirit of this paper when \(Z = X^{(1)} \) and \(X \) of type D or E as well as for the twisted affine A, D, E cases will be given elsewhere.

3.3. Graded Cartan matrices and implications of Conjecture 1.9.

Definition 3.12. Let \(A \) be a finite-dimensional graded algebra over a field \(\mathbb{F} \), i.e., \(A \) has a decomposition \(A = \bigoplus_{i \in \mathbb{Z}} A_i \) into \(\mathbb{F} \)-vector spaces such that \(A_i A_j \subseteq A_{i+j} \) for all \(i, j \in \mathbb{Z} \).

(a) We denote by \(\text{Mod}_{\text{gr}}(A) \) the abelian category of finite-dimensional left graded \(A \)-modules and degree preserving \(A \)-homomorphisms between them. The \(n \)-component of \(M \in \text{Mod}_{\text{gr}}(A) \) is denoted by \(M_n \). For \(M \in \text{Mod}_{\text{gr}}(A) \) and \(k \in \mathbb{Z} \), the shifted graded module \(M{\langle k \rangle} \) of \(M \) is defined to be the same module as \(M \) with the grading given by \((M{\langle k \rangle})_n = M_{k+n} \) for all \(n \in \mathbb{Z} \).

(b) Fix a grading on each simple \(A \)-module, and let \(\mathcal{S}(A) \) be the resulting set of graded simple modules. We define the graded Cartan matrix \(C_A^\mu \) of \(A \) by

\[
C_A^\mu = (\sum_{k \in \mathbb{Z}} [\text{PC}(D) : D{\langle -k \rangle}] v^k)_{D,D' \in \mathcal{S}(A)} \in \text{Mat}_{\mathcal{S}(A)}(\mathcal{A}),
\]

where \(\text{PC}(D) \) is the projective cover of \(D \in \text{Mod}_{\text{gr}}(A) \).
(c) Let\(\text{Proj}_{gr}(A) \) be the full subcategory of\(\text{Mod}_{gr}(A) \) consisting of graded projective \(A \)-modules. The Cartan pairing is defined as follows:

\[
\langle \cdot, \cdot \rangle : \left[\text{Proj}_{gr}(A) \right] \times \left[\text{Mod}_{gr}(A) \right] \rightarrow \mathcal{A}, \quad \langle [P], [M] \rangle = \sum_{k \in \mathbb{Z}} \dim \text{Hom}_A(P, M(k)) v^k,
\]

where \([M] \) denotes the image of \(M \) in the graded Grothendieck group \(\text{Mod}_{gr}(A) \) of \(\text{Mod}_{gr}(A) \), which has an \(\mathcal{A} \)-module structure given by \(v[N] = [N(-1)] \) for \(N \in \text{Mod}_{gr}(A) \).

Remark 3.13. (a) Each simple \(A \)-module has a unique grading up to grading shift (see [NVO, Theorem 9.6.8]). Moreover, each simple graded \(A \)-module has a unique graded projective cover. Consequently, changing \(\mathcal{S}(A) \) results in \(C_A^v \) being conjugated by a diagonal matrix with integer powers of \(v \) on the diagonal. Certainly, the \(\mathcal{A} \)-unimodular equivalence class of \(C_A^v \) does not depend on the choice of \(\mathcal{S}(A) \).

(b) \(C_A^v = (\langle [PC(D)], [PC(D')])_{D', D \in \mathcal{S}(A)} \) when \(\mathbb{F} \) is a splitting field for \(A \).

(c) \(C_A^v \) is a refinement of \(C_A \) in the sense that \(C_A^v|_{v=1} = C_A \).

Let \(\ell \geq 2 \) and \(n \geq 0 \). As usual, a partition \(\rho \) is an \(\ell \)-core if \(\rho \) contains no rim \(\ell \)-hooks. We denote by \(\text{Bl}_\ell(n) \) the set of tuples \((\rho, d) \) where \(\rho \) is an \(\ell \)-core and \(d \geq 0 \) is an integer such that \(|\rho| + \ell d = n \). It is well known that the set \(\text{Bl}_\ell(n) \) parameterizes the blocks of \(\mathcal{H}_n(k; \eta) \) (see [DJ]). When \(\ell = p \) is a prime, \(\text{Bl}_\ell(n) \) parameterizes the blocks of \(\mathbb{F}_p S_n \).

We denote by \(B_{\rho,d}^{(\ell)} \) the corresponding block algebra of \(A := \mathcal{H}_n(k; \eta) \) or of \(A := \mathbb{F}_p S_n \) for \((\rho, d) \in \text{Bl}_\ell(n) \) (for the latter case, \(\ell = p \) is a prime).

From now on, we view \(B_{\rho,d}^{(\ell)} \) as a graded algebra, with the grading defined by [BK1, Corollary 1] (cf. [L3]). Consequently, \(A \) becomes graded. Clearly, we have

\[
C_A^v \equiv \mathcal{A} \bigoplus_{(\rho, d) \in \text{Bl}_\ell(n)} C_{B_{\rho,d}^{(\ell)}}^v.
\]

In fact, the two sides are equal if appropriate choices are made.

By [BK3, Theorem 4.18], there is an isomorphism \(\iota : [\text{Proj}_{gr}(A)] \sim \rightarrow V(0)_\mathcal{A} \) as \(U_v(A_{\ell^{-1}}^{(1)}) \)-modules, which identifies the Cartan pairing \(\langle \cdot, \cdot \rangle \) with the form \(\langle \cdot, \cdot \rangle_{\text{RSh}} \) on \(V(0)_\mathcal{A} \). For \((\rho, d) \in \text{Bl}_\ell(n) \), we have \(\iota([\text{Proj}_{gr}(B_{\rho,d}^{(\ell)})]) = V(0)_\mathcal{A} = V(0)_{A_{\ell^{-1}}^{(1)}} \), where \(\beta_{\rho,d} = \sum_{i \in I} Z \geq 0 \alpha_i \) is defined as in [Tsu, Definition 5.5(c)] under the identification \(\hat{T} \cong \mathbb{Z}/\ell \mathbb{Z} \). Noting Remark 3.13 ([L]), we have \(C_{B_{\rho,d}^{(\ell)}}^v \equiv \text{RSh}^M_{A_{\ell^{-1}}^{(1)}} \) (see Definition 3.3).

By Proposition 3.6, Definition 3.7 and the fact that \(A_0 - \beta_{\rho,d} = wA_0 - d\delta \) for some \(w \in W(A_{\ell^{-1}}^{(1)}) \), we obtain the following result, which is implicit in the proof of [Tsu, Theorem 5.6].

Proposition 3.14. Let \(\ell \geq 2 \) and \(n \geq 0 \). For any \((\rho, d) \in \text{Bl}_\ell(n) \), we have \(C_{B_{\rho,d}^{(\ell)}}^v \equiv \mathcal{A} \) \(C_{\ell,d}^v \).

The following is an immediate consequence of Theorem 3.10.

Corollary 3.15. Let \(\ell \geq 2 \) and let \(d \geq 0 \). Conjecture [L9] implies that

\[
C_{\ell,d}^v \equiv \mathcal{A} \text{diag} \left(\sum_{\lambda} \{ \mathcal{I}_{\ell}^v(\lambda) \mid \lambda \in \text{Par}(s) \}^{\text{Par}_{\ell-2}(d-\delta)} \right).
\]
Lemma 3.16 ([BH Lemma 5.5]). For any \(\ell \geq 2 \) and \(n \geq 0 \), we have the multiset identity
\[
\bigcup_{(\rho,d) \in \text{Bl}(n)} \{\text{cut}_{\ell}(\lambda)\} |_{\text{Par}(d)} = \{\text{red}_{\ell}(\lambda) \mid \lambda \in \text{CRP}_{\ell}(n)\}
\]
where the maps \(\text{cut}_{\ell}, \text{red}_{\ell} : \text{Par} \to \text{Par} \) are defined as follows for \(k \geq 1 \):
\[
m_k(\text{red}_{\ell}(\lambda)) = \lfloor m_{k}(\lambda)/\ell \rfloor, \quad m_k(\text{cut}_{\ell}(\lambda)) = \begin{cases} m_k(\lambda) & \text{if } k \notin \ell \mathbb{Z}, \\ 0 & \text{otherwise.} \end{cases}
\]

Note that \(r_{v}^{\nu}(\lambda) = I_{\ell}^{\nu}(\text{red}(\lambda)) \) and \(I_{\ell}^{v}(\lambda) = I_{\ell}^{\nu}(\text{cut}(\lambda)) \) for all \(\lambda \in \text{Par} \). Combining these identities and Lemma 3.16 with (3.5) and Proposition 3.14, we see the following implication.

Corollary 3.17. Conjecture [L.6] implies Conjecture [L.6].

Remark 3.18. When \(\ell = p^r \) is a prime power, the equivalence (3.6) is nothing but [Tsu, Conjecture 6.8]. Similarly, Conjecture [L.6] reduces to [Tsu, Conjecture 6.18] in this case. Indeed, the Laurent polynomials \(I_{p,\nu}^{v}(\lambda) \) and \(r_{p,\nu}^{v}(\lambda) \) defined in loc. cit. satisfy \(I_{p,\nu}^{v}(\lambda) = I_{p}^{\nu}(\lambda) \) and \(r_{p,\nu}^{v}(\lambda) = r_{p}^{\nu}(\lambda) \).

4. Combinatorial reductions

4.1. Variants of unimodular equivalences.

Definition 4.1. Let \(R \) be a commutative ring, and let \(Y \) and \(Z \) be \(n \times m \)-matrices with entries in \(R \). We say that \(Y \) and \(Z \) are
(a) unimodularly pseudo-equivalent over \(R \) (abbreviated as \(Y \equiv_{\ell} Z \)) if we have \(\text{Cok}_{Y} \cong \text{Cok}_{Z} \text{ as } R\text{-modules} \text{ where } \text{Cok}_{T} = \text{Coker}(R^{m} \to R^{n}, \nu \mapsto T\nu) \text{ for } T \in \{Y, Z\} \),
(b) Fitting equivalent (abbreviated as \(Y \equiv_{\ell}^{F} Z \)) if \(\text{Cok}_{Y} \) and \(\text{Cok}_{Z} \) have the same Fitting invariants (see [Nor, §3.1]), i.e., we say that \(Y \equiv_{\ell}^{F} Z \) if \(\text{Fitt}_{d}(X) = \text{Fitt}_{d}(Y) \) whenever \(0 \leq d < r := \min\{m, n\} \) where the \(d \)-th Fitting ideal \(\text{Fitt}_{d}(T) \) of \(T \in \{Y, Z\} \) over \(R \) is the ideal of \(R \) generated by all \((r - d) \times (r - d) \)-minors of \(T \).

Proposition 4.2. The following general statements hold if \(\sim \in \{\equiv_{R}, \equiv_{R}^{F}, \equiv_{R}^{I}\} \):
(a) \(Y \equiv_{R} Z \implies Y \equiv_{R}^{I} Z \Rightarrow Y \equiv_{R}^{F} Z \),
(b) for a ring homomorphism \(\phi : R \to R' \) (see [L.7,1], \(Y \sim Z \implies \phi(Y) \sim \phi(Z) \)),
(c) Let \((X_{\lambda})_{\lambda \in \Lambda} \) and \((Y_{\lambda})_{\lambda \in \Lambda} \) be a family of \(R\)-valued matrices where \(\Lambda \) is a finite set and for each \(\lambda \in \Lambda \) the matrix \(X_{\lambda} \) has the same dimensions as \(Y_{\lambda} \). Then, \(\forall \lambda \in \Lambda, X_{\lambda} \sim Y_{\lambda} \implies \bigoplus_{\lambda \in \Lambda} X_{\lambda} \sim \bigoplus_{\lambda \in \Lambda} Y_{\lambda} \),
(d) \(Y \equiv_{R}^{F} Z \impliedby Y \equiv_{R}^{I} Z \) when \(R \) is a PID.
(e) \(Y \equiv_{R}^{F} Z \iff \forall m \in \text{max-Spec}(R), Y \equiv_{R}^{F} Z \),
(f) \(Y \equiv_{R}^{F} Z \iff Y \equiv_{R}^{I} Z \) when \(R \) is a semiperfect ring.

Proof. (a) is obvious and (b) is “Elementary Divisor Theorem”. When \(\sim \in \{\equiv_{R}, \equiv_{R}^{F}\} \), (c) is obvious. The right exactness of the functor \(R' \otimes_{R} - \) implies that \(R' \otimes_{R} \text{Cok}_{Y} \cong \text{Cok}_{\phi(Y)} \). Thus, the case \(\equiv_{R}^{F} \) follows. When \(\sim \in \{\equiv_{R}, \equiv_{R}^{I}\} \), (c) is obvious. The case \(\equiv_{R}^{F} \) follows from the equality \(\text{Fitt}_{d}(Y) \equiv_{R} Z \) where \(\text{Fitt}_{d}(Y) \equiv_{R} Z \) (see [Nor, §3.1, Exercise 3]). (d) follows from the fact that for ideals \(I \) and \(J \) in \(R \), we have \(I = J \iff \forall m \in \text{max-Spec}(R), I_{m} = J_{m} \) (see e.g. [Kum, Chapter IV, Corollary 1.4]). For (f), when \(R \) is a local ring, for any given two \(R\)-module surjections \(\alpha : R^{k} \twoheadrightarrow M, \beta : R^{k} \twoheadrightarrow N \), we can
lift any R-module isomorphism $f: M \sim \rightarrow N$ to the isomorphism $g: R^k \sim \rightarrow R^k$ such that $f \circ \alpha = \beta \circ g$ by the Nakayama Lemma. Thus, [□] holds when R is local. Since a semiperfect ring is the same thing as a finite direct product of local rings [Lam (23.11)], [□] follows by [□] (see also [LR (4.3)])]

By the reasoning used to prove Corollary 3.15 and Corollary 3.17 Proposition 4.2 [□] and [□] imply:

Corollary 4.3. Let R be a commutative ring with a ring homomorphism $\phi: \mathcal{A} \rightarrow R$. Suppose that Conjecture 1.9 holds when we specialise \mathcal{A} and $\equiv_{\mathcal{A}}$ to R and $\sim \in \{ =_{R}, \equiv_{R} \}$ respectively via ϕ, i.e., that
\[
\phi (M_n \text{diag}(\{ J^v_\ell (\lambda) \mid \lambda \in \text{Par}(n) \}) M_n^{-1}) \sim \text{diag}(\{ \phi(I^v_\ell (\lambda)) \mid \lambda \in \text{Par}(n) \})
\]
for all $n \geq 0$. Then we have $\phi(Y) \sim \phi(Z)$ if either
(i) Y and Z are the matrices on the two sides of (3.6), or
(ii) Y and Z are the matrices on the two sides of (1.2).

Throughout, we omit $\phi(-)$ if ϕ is evident when we apply Proposition 4.2 [□].

4.2. A pseudo-equivalence over $\mathbb{Z}(\nu)[v, v^{-1}]$.

Definition 4.4. For $n \geq 3$, we denote by $\Phi_n \in \mathbb{Z}[v]$ the n-th cyclotomic polynomial and put $\Psi_n = v^{-\phi(n)/2} \Phi_n \in \mathcal{A}^{\text{bar}}$ where ϕ is the Euler function: $\phi(n) = \#(\mathbb{Z}/n\mathbb{Z})^\times$.

It is easy to see that, for $n, m \geq 1$,
\[
[n]_m = \prod_{b \leq 3, 2mn \in b\mathbb{Z}, 2m \not\in b\mathbb{Z}} \Psi_b.
\]

Thus, each $I^v_\ell (\lambda)$ and $J^v_\ell (\lambda)$ is a product of certain scaled cyclotomic polynomials Ψ_b.

Definition 4.5. Let $p \in \text{Prm}$ and $z \in \mathbb{N} \setminus p\mathbb{Z}$. Let $P = \prod_{i \in I} \Psi_{b_i}$ be a finite product of scaled cyclotomic polynomials (with $b_i \geq 3$ for all $i \in I$, as in Definition 4.4). We define $\rho_z^{(p)}(P) = \prod_{(b_i)_z = z} \Psi_{b_i}$.

Recall the famous equality $\#\text{CRP}_s(n) = \#\text{RP}_s(n)$ for $s \geq 1$ and $n \geq 0$. We reserve the symbol $\varphi_{s, n}$ for an arbitrary bijection $\varphi_{s, n}: \text{RP}_s(n) \sim \rightarrow \text{CRP}_s(n)$ and put $\varphi_{s} = \sqcup_{n \geq 0} \varphi_{s, n}$. As a standard choice, we can take the Glaisher bijection (see [ASY §4], for example) for $s \geq 2$ or the Sylvester bijection for $s = 2$ (see [Bcs], for example).

Definition 4.6. Fix $M \geq 1$. For any $\lambda \in \text{Par}$, consider the decomposition $\lambda = \lambda_{\text{div}} + \lambda_{\text{reg}}$ defined by $m_a(\lambda_{\text{div}}) = M[m_a(\lambda)/M]$, $m_a(\lambda_{\text{reg}}) = m_a(\lambda) - m_a(\lambda_{\text{div}})$ for $a \geq 1$. We define a size-preserving auto-bijection $\beta_M: \text{Par} \sim \rightarrow \text{Par}$ by $\beta_M(\lambda) = \mu + \varphi_M(\lambda_{\text{reg}})$ where $m_a(\mu) = m_a(\lambda_{\text{div}})/M$ for $a \geq 1$ and $m_a(\mu) = 0$ for all $b \not\in M\mathbb{Z}$.

Definition 4.7. For $\ell \geq 2$, $k, t \geq 1$ and $p \in \text{Prm}$, define
\[
g_{k,t}^{(\ell,p)} = \begin{cases}
[\ell_p k_p (\ell) (p)] & \text{if } \nu_p(k) \geq \nu_p(\ell), \\
[\ell (p) k (p)] & \text{if } \nu_p(k) < \nu_p(\ell),
\end{cases}
\]
and set $I^v_{\ell, p}(\lambda) = \prod_{k \geq 1} \prod_{t=1}^{m_k(\lambda)} g_{k,t}^{(\ell,p)}$ for $\lambda \in \text{Par}$.

Further, we define $f_{k,t}^{(\ell)} = \ell_{k,t} \pi((\ell)) \pi(k,t)$, and note that $I^v_{\ell}(\lambda) = \prod_{k \geq 1} \prod_{t=1}^{m_k(\lambda)} f_{k,t}^{(\ell)}$.

Proposition 4.8. Let p be a prime, $\ell \geq 2$, and $z \in \mathbb{N} \setminus p\mathbb{Z}$. For any $\lambda \in \text{Par}$, we have
\[
\rho_z^{(p)}(I_\ell^v(\lambda)) = \rho_z^{(p)}(I_{\ell,p}^v(\beta_z/(z,2\ell))(\lambda)).
\]

First, we need two lemmas. Fix p and z to be as in the statement of the proposition. For any $k, t \geq 1$, define
\[
F_{k,t,z}^{(p)} = \{s \geq 0 \mid 2\ell t \in zp^s\mathbb{Z} \text{ and } 2(\ell, k)t_{\pi(\ell_k)' \setminus \pi(\ell_k)} \notin zp^s\mathbb{Z}\},
\]
\[
G_{k,t,z}^{(p)} = \begin{cases}
\{s \geq 0 \mid 2\ell t (p) k_{\pi(\ell_k)' \setminus \pi(\ell_k)} \in zp^s\mathbb{Z} \text{ and } 2(\ell, k)p_{\pi(\ell_k)' \setminus \pi(\ell_k)} \notin zp^s\mathbb{Z}\} & \text{if } \nu_p(k) \geq \nu_p(\ell), \\
\{s \geq 0 \mid 2\ell t (p) k_{\pi(\ell_k)' \setminus \pi(\ell_k)} \in zp^s\mathbb{Z} \text{ and } 2k \notin zp^s\mathbb{Z}\} & \text{if } \nu_p(k) < \nu_p(\ell).
\end{cases}
\]

The following is an immediate consequence of (4.1) and the definitions:

Lemma 4.9. For $k, t \geq 1$, we have $\rho_z^{(p)}(f_{k,t}^{(p)}) = \prod_{s \in F_{k,t,z}^{(p)}} \Psi_{zp^s}$ and $\rho_z^{(p)}(g_{k,t}^{(p)}) = \prod_{s \in G_{k,t,z}^{(p)}} \Psi_{zp^s}$.

Define $M = z/(z, 2\ell)$.

Lemma 4.10. For any $k, t \geq 1$, we have $\rho_z^{(p)}(f_{k,t,M}^{(p)}) = \rho_z^{(p)}(g_{k,t,M}^{(p)})$.

Proof. Due to Lemma 4.9, it is enough to show that $F_{k,t,M,z}^{(p)} = G_{k,t,M,z}^{(p)}$. Fix $s \geq 0$: we will show that $s \in F_{k,t,M,z}^{(p)}$ if and only if $s \in G_{k,t,M,z}^{(p)}$. Note that $M \notin p\mathbb{Z}$. If $2\ell t \notin zp^s\mathbb{Z}$, then s belongs to neither of the sets in question, for the first conditions in the definitions of those sets fail. Thus, we may assume that $2\ell t \in zp^s\mathbb{Z}$. Since we always have $2\ell M \in z\mathbb{Z}$ (due to the definition of M), now the first conditions in the definitions of $F_{k,t,M,z}^{(p)}$ and $G_{k,t,M,z}^{(p)}$ are guaranteed to hold. So we may focus on the second conditions: it remains to show that
\[
2(\ell, k)(tM)_{\pi(\ell_k)' \setminus \pi(\ell_k)} \in zp^s\mathbb{Z} \iff 2(kM)_{p_{\pi(\ell_k)' \setminus \pi(\ell_k)}} \in zp^s\mathbb{Z} \text{ if } \nu_p(k) \geq \nu_p(\ell),
\]
\[
2kM \in zp^s\mathbb{Z} \text{ if } \nu_p(k) < \nu_p(\ell).
\]

This follows from the conjunction of the following two equivalences:
\[
2(\ell, k)(tM)_{\pi(\ell_k)' \setminus \pi(\ell_k)} \in p^s\mathbb{Z} \iff 2(\ell t)_{p_{\pi(\ell_k)' \setminus \pi(\ell_k)}} \in p^s\mathbb{Z} \text{ if } \nu_p(k) \geq \nu_p(\ell),
\]
\[
2k \in p^s\mathbb{Z} \text{ if } \nu_p(k) < \nu_p(\ell)
\]
\[
\text{ and } 2(kM)_{p_{\pi(\ell_k)' \setminus \pi(\ell_k)}} \in z\mathbb{Z} \iff 2kM \in z\mathbb{Z}.
\]

The equivalence (4.2) is immediate in each of the cases on its right-hand side, so it remains only to prove (4.3).

We always have
\[
(2(\ell, k)tM)_{\pi(\ell_k)' \setminus \pi(\ell_k)} = (2\ell t M)_{\pi(\ell_k)'} \in z_{\pi(\ell_k)' \setminus \pi(\ell_k)}\mathbb{Z}
\]
since $2\ell M \in z\mathbb{Z}$. Further, $(2k)_{\pi(\ell_k)'} \in (2\ell)_{\pi(\ell_k)'}\mathbb{Z}$, so $(2kM)_{\pi(\ell_k)'} \in (2\ell t M)_{\pi(\ell_k)'}\mathbb{Z} \subseteq z_{\pi(\ell_k)' \setminus \pi(\ell_k)}\mathbb{Z}$.

This means that the truth values of the statements on both sides of (4.3) do not change if we replace z by $z_{\pi(\ell_k)}$. In other words, it is enough to show that for all $q \in \pi(\ell_k)$,
\[
\nu_q(2(\ell, k)) \geq \nu_q(z) \iff \nu_q(2kM) \geq \nu_q(z). \tag{4.4}
\]

Now $\nu_q(k) < \nu_q(\ell)$, so $\nu_q(2(\ell, k)) = \nu_q(2k)$. Using the definition of M, we obtain $\nu_q(2kM) = \nu_q(2k) + \nu_q(z) - \nu_q(2(\ell, z))$. If $\nu_q(2k) \geq \nu_q(z)$, then $\nu_q(2kM) = \nu_q(2k)$ and the equivalence (4.4) is clear. Otherwise, we have $\nu_q(2k) < \nu_q(2\ell) < \nu_q(z)$ and neither side of (4.4) holds. \qed
Proof of Proposition 4.6. Fix \(\lambda \in \text{Par} \), and let \(\lambda_{\text{div}}, \lambda_{\text{reg}}; \mu \) be as in Definition 4.6. It is clear that \(I_{\ell,p}^v(\beta_M(\lambda)) = I_{\ell,p}^v(\mu)I_{\ell,p}^v(\varphi_M(\lambda_{\text{reg}})) \). In the expansion \(I_{\ell}^v(\lambda) = \prod_{k \geq 1} \prod_{t = 1}^{m_k(\lambda)} f_{k,t}^{(t)} \), only \(t \in M \mathbb{Z} \) contribute to \(\rho_z^p(I_{\ell}^v(\lambda)) \) by Lemma 4.9, as \(2lt \in \mathbb{Z} \) implies \(t \in M \mathbb{Z} \). Further, \(\rho_z^p(I_{\ell,p}^v(\varphi_M(\lambda_{\text{reg}}))) = 1 \) by the same lemma, as \(2lt_pk_{l'} \notin \mathbb{Z} \) for any \(k \notin M \mathbb{Z} \) and \(t \geq 1 \). It follows that

\[
\rho_z^p(I_{\ell}^v(\lambda)) = \prod_{k \geq 1} \prod_{t = 1}^{m_k(\lambda)} \rho_z^p(f_{k,t}^{(t)}),
\]

\[
\rho_z^p(I_{\ell,p}^v(\beta_M(\lambda))) = \prod_{k \geq 1} \prod_{t = 1}^{m_k(\lambda)} \rho_z^p(g_{k,t}^{(t)}).
\]

The two right-hand sides are equal by Lemma 4.10.

Proposition 4.11. Let \(R \) be a commutative ring and let \(a \in R \). Suppose that \(a = \prod_{\lambda \in \Lambda} \prod_{x \in T_{\lambda}} x \) for a finite set \(\Lambda \) and a family of finite multisets \((T_{\lambda} \subseteq R)_{\lambda \in \Lambda} \) such that any \(x \in T_{\lambda} \) and \(x' \in T_{\lambda'} \) are coprime (i.e., \(xy + x'y' = 1 \) for some \(y, y' \in R \)) whenever \(\lambda \neq \lambda' \). Then, as \(R \)-modules, we have

\[
R/(a) \cong \bigoplus_{\lambda \in \Lambda} R/(\prod_{x \in T_{\lambda}} x).
\]

Proof. Observe that \((\prod_{x \in T_{\lambda}} x)_{\lambda \in \Lambda} \) are pairwise coprime (in the above sense): this follows from the elementary fact that if \(x, y, z \in R \) and \(x, y \) are both coprime to \(z \), then \(xy \) is coprime to \(z \). Now the proposition follows from the Chinese remainder theorem for ideals.

Corollary 4.12. For \(p \in \text{Prm} \) and \(n \geq 0, \ell \geq 2 \), we have

\[
\text{diag}(\{I_{\ell}^v(\lambda) \mid \lambda \in \text{Par}(n)\}) \cong \bigoplus_{\lambda \in \text{Par}(n)} \text{diag}(\{I_{\ell,p}^v(\lambda) \mid \lambda \in \text{Par}(n)\}).
\]

Proof. Whenever \(3 \leq b < c \) and \(c/b \) is not a \(p \)-power, there exist \(u, w \in \mathbb{Z}[v, v^{-1}] \) such that \(\Psi_u + \Psi_v = 1 \) (see [Fil, Lemma 2]). By Proposition 4.11, we have

\[
(4.5) \quad \text{Cok}_{\text{diag}}(\{f(\lambda) \mid \lambda \in \text{Par}(n)\}) \cong \bigoplus_{\lambda \in \text{Par}(n)} \bigoplus_{z \in \mathbb{Z}[v, v^{-1}]/(\rho_z^p(f(\lambda)))}
\]

as \(\mathbb{Z}[v, v^{-1}] \)-modules for any \(f \in \{I_{\ell}^v, I_{\ell,p}^v\} \). By Proposition 4.8, the isomorphism class of \((4.5)\) does not depend on the choice of \(f \).

4.3. A conditional proof of Theorem 1.10

Proof of Theorem 1.10 (a). For \(\lambda \in \text{Par} \) and \(\ell \geq 2 \) we have \(I_{\ell,p}^v(\lambda) = J_{\ell}^v(\lambda) \) for every sufficiently large \(p \in \text{Prm} \) (as \(g_{k,t}^{(t)} = [\ell]_k \) for \(p > \max(k, t, \ell) \)). Thus, Theorem 1.10(a) is a consequence of Corollary 4.12 (note that \(M_n \in \text{GL}_{\text{Par}(n)}(\mathbb{Q}) \)).

Recall the matrix \(N_n^{(p)} \) defined in 2.2. Applying Proposition 2.7 (a) for

\[
(4.6) \quad R = \mathbb{Z}[v, v^{-1}], \quad f = J_{\ell}^v, \quad g = I_{\ell,p}^v, \quad (r_j = \text{infl}_j : R \to R, v \mapsto v^j)_{j \in \mathbb{N}\setminus\mathbb{Z}},
\]

we get the following.
Proposition 4.13. For any $p \in \text{Prm}$, $\ell \geq 2$ and $n \geq 0$, the matrix $N_n^{(p)} \text{diag}(\{J_\ell^v(\lambda) | \lambda \in \text{Pow}_p(n)\})(N_n^{(p)})^{-1}$ is $\mathbb{Z}(p)[v, v^{-1}]$-valued.

Further, in §5 we will prove the following result.

Theorem 4.14. Suppose that $0 \neq \theta = a/b \in \mathbb{Q}$, where $a, b \in \mathbb{Z}$ and $(a, b) = 1$. Let p be a prime such that $a, b \notin p\mathbb{Z}$. Then, for any $\ell \geq 2$ and $n \geq 0$, we have

\begin{equation}
N_n^{(p)} \text{diag}(\{J_\ell^v(\lambda) | v = \theta \} \cap \text{Pow}_p(n)) (N_n^{(p)})^{-1} \equiv_{\mathbb{Z}(p)} \text{diag}(\{I_{\ell,p}^v(\lambda) | v = \theta \} \cap \text{Pow}_p(n)).
\end{equation}

Proof of Theorem 4.14. If either $\ell = 2$ or 3, then $v \geq 2$ and $n \geq 0$, we have

\begin{equation}
M_n \text{diag}(\{J_\ell^v(\lambda) | \lambda \in \text{Par}(n)\}) M_n^{-1} \equiv_{\mathbb{Z}(p)} \text{diag}(\{I_{\ell,p}^v(\lambda) | \lambda \in \text{Par}(n)\}).
\end{equation}

for any $p \in \{p \in \text{Prm} \mid p\mathbb{Z} \nsubseteq ab\} \cong \text{Spec}(\mathbb{Z}[a/b, b/a])$. Applying Proposition 4.12 (b) for $R' = \mathbb{Z}(p)$, $\phi = (R \to R', v \mapsto \theta)$ in addition to (4.6), we obtain

\begin{equation}
M_n \text{diag}(\{J_\ell^v(\lambda) | \lambda \in \text{Par}(n)\}) M_n^{-1} \equiv_{\mathbb{Z}(p)} \text{diag}(\{I_{\ell,p}^v(\lambda) | \lambda \in \text{Par}(n)\}).
\end{equation}

The unimodular equivalence (4.8) now follows by substituting $v = \theta$ to Corollary 4.12 and Proposition 4.12 (a).

5. Proof of Theorem 4.14
5.1. Elementary prime power estimates. The following fact is classical.

Proposition 5.1. Let p be a prime. Suppose that $x, y \in \mathbb{Z} \setminus p\mathbb{Z}$ satisfy $d := \nu_p(x - y) \geq 1$.

If either $p \geq 3$ or $d \geq 2$, then $\nu_p(x^n - y^n) = d + \nu_p(n)$ for all $n \geq 1$.

Proof. We have $x = y + p^d z$ for some $z \in \mathbb{Z} \setminus p\mathbb{Z}$. The binomial expansion yields

\[x^n - y^n = np^d z y^{n-1} + \sum_{k=2}^{n} \binom{n}{k} p^{kd} z^{k-1} y^{n-k}, \]

so it suffices to show that $\nu_p(\binom{n}{k}) + kd > d + \nu_p(n)$ for $2 \leq k \leq n$. Since $\nu_p(\binom{n}{k}) \geq \nu_p(n!)$, it is enough to prove the inequality $kd - \nu_p(n!) - d > 0$. Using (2.5), we easily see that $\nu_p(n!) \leq k - 1$ and that this inequality is strict unless $k = p = 2$. It follows that the desired inequality holds unless we have $d = 1$ and $k = p = 2$, which is ruled out by the hypothesis.

Corollary 5.2. Let $p \in \text{Prm}$ and let $a, b \in \mathbb{Z} \setminus p\mathbb{Z}$ with $a^2 - b^2 \in p\mathbb{Z}$. Then, we have $\nu_p([n]_m | v = a/b) = \nu_p(n)$ for all $n, m \geq 1$.

Proof. We may assume that $a^2 \neq b^2$: otherwise, $[n]_m | v = a/b = \pm n$. Consider $d \geq 1$ and $z \in \mathbb{Z} \setminus p\mathbb{Z}$ such that $a^2 - b^2 = p^d z$. Note that $d \geq 2$ if $p = 2$. By Proposition 5.1 we have

\[\nu_p([n]_m | v = a/b) = \nu_p \left(\frac{a^{2nm} - b^{2nm}}{a^{2m} - b^{2m}} \right) = (\nu_p(nm) + d) - (\nu_p(m) + d) = \nu_p(n). \]

Corollary 5.3. Let $p \geq 3$ be a prime and $a, b \in \mathbb{Z} \setminus p\mathbb{Z}$. Suppose that $a^2 - b^2 \notin p\mathbb{Z}$ and $a^{2n} - b^{2n} \in p\mathbb{Z}$ for some $n \geq 2$. Put $\gamma = \nu_p(a^{2n} - b^{2n})$ where $t_0 = \min\{t \geq 1 \mid a^{2t} - b^{2t} \in p\mathbb{Z}\}$ (t_0 exists and divides n). Then $\nu_p([n]_{p^t} | v = a/b) = \nu_p(n) + s + \gamma$ for any $s \geq 0$.

Proposition 5.4. Let $a, b \in \mathbb{Z} \setminus p\mathbb{Z}$ satisfy $a^{2n} - b^{2n} \notin p\mathbb{Z}$. Then, $\nu_p([n]_{p^r}) = 0$ for all $s \geq 0$.

Proof. The hypothesis implies that $a^{2np^s} - b^{2np^s} \notin p\mathbb{Z}$, whence we also have $a^{2n} - b^{2n} \notin p\mathbb{Z}$. Since $\nu_p([n]_{p^r}) = \nu_p((a^{2np^s} - b^{2np^s})/(a^{2n} - b^{2n}))$, the result follows.

5.2. Some definitions and results from [Evs] §5. For the remainder of §5 we fix a prime p and an integer $n \geq 0$. The matrices considered in the sequel implicitly depend on these parameters. Let $\ell \geq 2$ and $\theta = a/b \in \mathbb{Q} \setminus \{0\}$ be as in the statement of Theorem 4.14. We set $r = \nu_p(\ell)$. In what follows, diagonal matrices are generally denoted by lower-case letters.

Define the matrices $b^{(\ell, \theta)} = \text{diag}(\{ J_{\nu}(\lambda) \}_{\nu = \theta} | \lambda \in \text{Pow}_p(n))$ and $z = \text{diag}(\{ z_{\nu} \}_{\nu = \theta} | \lambda \in \text{Pow}_p(n))$, where z_{ν} is given by (2.1).

Lemma 5.5 ([Evs] Lemma 5.1). The matrices $(N_n^{(p)})^{-1}$ and $z^{-1}(\text{tr}N_n^{(p)})$ are column equivalent over $\mathbb{Z}(p)$.

We write $N = N_n^{(p)}$. It follows from the lemma that the left-hand side of Theorem 4.14 is unimodularly equivalent over $\mathbb{Z}(p)$ to the matrix $Y := Nb^{(\ell, \theta)}z^{-1}(\text{tr}N)$, so Theorem 4.14 is equivalent to the identity

$$Y \equiv_{\mathbb{Z}(p)} \text{diag}(\{ J^r_{\nu}(\lambda) \}_{\nu = \theta} | \lambda \in \text{Pow}_p(n))$$

Definition 5.6. (a) For $\lambda \in \text{Pow}_p$, we define partitions $\lambda^{< r}, \lambda^{\geq r}, \overline{\lambda}^r \in \text{Pow}_p$ by setting $m_p(\lambda^{< r}) = m_{p^{r+1}}(\lambda)$,

$$m_p(\lambda^{< r}) = \begin{cases} m_p(\lambda) & \text{if } i < r, \\ 0 & \text{if } i \geq r, \end{cases} \quad m_p(\overline{\lambda}^r) = \begin{cases} m_p(\lambda) & \text{if } i < r, \\ \sum_{j \geq r} p^{j-r}m_p(\lambda) & \text{if } i = r, \\ 0 & \text{if } i > r, \end{cases}$$

for all $i \geq 0$.

(b) For $\lambda \in \text{Pow}_p$, we set $x_{\lambda} = \prod_{s \geq 0} m_p(\lambda)!$ and $y_{\lambda} = \prod_{s \geq 0} p^{s m_p(\lambda)}$, so that $z_{\lambda} = x_{\lambda}y_{\lambda}$.

(c) We define the following seven elements of $\text{Mat}_{\text{Pow}_p(n)}(\mathbb{Z})$: $x = \text{diag}(\{ x_{\lambda} \}_{\lambda})$, $x_{<r} = \text{diag}(\{ x_{\lambda^{< r}} \}_{\lambda})$, $x_{\geq r} = \text{diag}(\{ x_{\lambda^{\geq r}} \}_{\lambda})$, $y_{<r} = \text{diag}(\{ y_{\lambda^{< r}} \}_{\lambda})$, $y_{r} = \text{diag}(\{ y_{\lambda^{\geq r}} \}_{\lambda})$, $\overline{\gamma}^r = \text{diag}(\{ \prod_{i \geq r} p^{m_p(\lambda)} \}_{\lambda})$ and $C^r(\nu)$, where the latter is given by

$$(C^r)_{\lambda, \nu} = \begin{cases} (N_n^{(p)})_{\lambda^{\geq r}, \nu} & \text{if } \overline{\lambda}^r = \overline{\nu}^r, \\ 0 & \text{if } \overline{\lambda}^r \neq \overline{\nu}^r. \end{cases}$$

Here, λ, μ run over all elements of $\text{Pow}_p(n)$.

Put $K^{(p, r)} = \{ \lambda \in \text{Pow}_p | \overline{\lambda}^r = \lambda \} \subseteq \text{Pow}_p$. For $\kappa \in K^{(p, r)}$, set $\text{Pow}_{p, r}(n, \kappa) := \{ \lambda \in \text{Pow}_p(n) | \overline{\lambda}^r = \kappa \}$. Observe that there is a bijection

$$\text{Pow}_{p, r}(n, \kappa) \overset{\sim}{\longrightarrow} \text{Pow}_p(m_{p^r}(\kappa)), \quad \lambda \mapsto \lambda^{\geq r}.$$
We will call a matrix \(Z \in \text{Mat}_{\text{Pow}(p)}(\mathbb{Q}) \) block-diagonal if \(Z_{\lambda,\mu} = 0 \) for all \(\lambda, \mu \in \text{Pow}(p) \) with \(\overline{\lambda} \neq \overline{\mu} \). In particular, \(C^{(r)} \) is block-diagonal. Applying Lemma 5.5 to each \(\kappa \in K^{(p,r)}_{n} := \text{Pow}(p) \cap K^{(p,r)} \) and noting that \(\text{Pow}(p) = \bigcup_{\kappa \in K^{(p,r)}_{n}} \text{Pow}_{p,r}(n, \kappa) \), we see that there exists a block-diagonal matrix \(W^{(r)} \in \text{GL}_{\text{Pow}(p)}(\mathbb{Z}(p)) \) such that \((C^{(r)})^{-1}W^{(r)} = (x^{<r}y^{<r})^{-1} \cdot \text{tr}C^{(r)} \). We define \(A^{(r)} = N(C^{(r)})^{-1} \) and \(U^{(r)} = (x^{<r})^{-1}A^{(r)} \), so that \(N = x^{<r}U^{(r)}C^{(r)} \).

In \(\S 5.3 \), we consider separate cases and use Corollaries 5.2 and 5.3 and Proposition 5.4 respectively. The cases of \(\S 5.3 \) and \(\S 5.4 \) will require the following specialization of [Evs, Lemma 5.6].

Lemma 5.7. Let \(R \) be a DVR with valuation \(\nu: K^{\times} \to \mathbb{Z} \), where \(K \) is the field of fractions of \(R \). Let \(I \) be a finite set. Suppose that \(P, Q, s = \text{diag} \{ s_{i} \mid i \in I \} \) and \(t = \text{diag} \{ t_{i} \mid i \in I \} \) are elements of \(\text{GL}_{I}(K) \) such that

\[
\nu(P_{ij} - \delta_{ij}) > \frac{\nu(t_{ij}) - \nu(t_{ij})}{2} \quad \text{and} \quad \nu(Q_{ij} - \delta_{ij}) > \frac{\nu(t_{ij}) - \nu(t_{ij})}{2}
\]

for all \(i,j \in I \). Then \(stPQs \equiv_{R} s^{2}t \).

Proof. Apply [Evs, Lemma 5.6] with \(\alpha_{i} = \nu(t_{ij})/2 \) and \(\beta_{i} = -\nu(t_{ij})/2 \). Verifying the hypotheses is straightforward.

5.3. Case \(a^{2} - b^{2} \in p\mathbb{Z} \)

This is a generalization of the case \(v = 1 \), and we generalize the proof in [Evs, \S 5], Proposition 2.12 being an extra needed ingredient.

Observe that \(z = x^{<r}x^{>r}y^{<r}y^{>r}y^{<r}. \) Put \(b^{(<r,\ell,\theta)} = \text{diag} \{ J_{\ell}(\lambda^{<r}) \mid \nu = \theta \mid \lambda \in \text{Pow}(p) \} \), \(b^{(\geq r,\ell,\theta)} = b^{(\ell,\theta)}(b^{(<r,\ell,\theta)})^{-1} \) and \(d = b^{(<r,\ell,\theta)}(x^{<r})^{-1} \). Let

\[
X = C^{(r)}b^{(\geq r,\ell,\theta)}(y^{r})^{-1}(C^{(r)})^{-1}W^{(r)}.
\]

Note that all the matrices in this product are block-diagonal, so \(X \) is block-diagonal. Setting also \(V = X \cdot \text{tr}U^{(r)} \cdot X^{-1} \), we have

\[
Y = N_{n}^{(\ell,\theta)}z^{-1} \cdot \text{tr}N \quad = x^{<r}U^{(r)}C^{(r)}b^{(<r,\ell,\theta)}b^{(\geq r,\ell,\theta)}(x^{<r}x^{>r}y^{<r}y^{>r}y^{<r})^{-1} \cdot \text{tr}C^{(r)} \cdot \text{tr}U^{(r)}x^{<r}
\]

(5.3)

\[
= x^{<r}U^{(r)}C^{(r)}d \cdot b^{(\geq r,\ell,\theta)}(y^{r})^{-1}(x^{<r}y^{<r})^{-1} \cdot \text{tr}C^{(r)} \cdot \text{tr}U^{(r)}x^{<r}
\]

(5.4)

\[
= x^{<r}U^{(r)}C^{(r)}d \cdot (C^{(r)})^{-1}C^{(r)}b^{(\geq r,\ell,\theta)}(y^{r})^{-1}(C^{(r)})^{-1}W^{(r)} \cdot \text{tr}U^{(r)}x^{<r}
\]

(5.5)

\[
= x^{<r}U^{(r)}C^{(r)}d(C^{(r)})^{-1}X \cdot \text{tr}U^{(r)}x^{<r}
\]

(5.6)

\[
= x^{<r}U^{(r)}d \cdot X \cdot \text{tr}U^{(r)}x^{<r}
\]

(5.7)

\[
= x^{<r}U^{(r)}dVx^{<r}
\]

(5.8)

\[
= x^{<r}U^{(r)}dVx^{<r}X
\]

(5.9)

\[
\equiv_{(p)} x^{<r}U^{(r)}dVx^{<r}.
\]

Here, Equations (5.3), (5.4), (5.5) and (5.7) follow from the defining equations of the matrices \(d, W^{(r)}, X \) and \(V \) respectively. Equations (5.6) and (5.8) follow from the facts that the matrices \(C^{(r)} \) and \(X \) are block diagonal and that any block-diagonal matrix commutes with \(b^{(<r,\ell,\theta)}, x^{<r}, y^{<r} \), and hence also with \(d \).
The equivalence (5.9) is due to the fact that \(X \in \text{GL}_{\text{Pow},p}(\mathbb{Z}_p) \), which may be proved as follows. Note that \((\overline{y}^{(r)})_{\lambda,\lambda} = p^{r\ell}(\lambda^{\geq r})\) for all \(\lambda \in \text{Pow}_p(n) \). We have

\[
C^{(r)}b^{(\geq r,\ell,\theta)}(\overline{y}^{(r)})^{-1}(C^{(r)})^{-1} = \bigoplus_{\kappa \in K^{(p)}} N^{(p)}_{m_{p^r}(\kappa)} \text{diag}\{p^{-r\ell(\mu)} \prod_{j \geq 0} [\ell]_{m_{p^r}(\mu)} \mid \mu \in \text{Pow}_p(m_{p^r}(\kappa))\}(N^{(p)}_{m_{p^r}(\kappa)})^{-1},
\]

where the right-hand side is interpreted via the identification (5.24): this identity is readily verified from the definitions of the matrices involved. By Proposition 5.2, the right-hand side of (5.10) is \(Z_{(p)} \)-valued. By Corollary 5.2, we have

\[
\nu_p((b^{(\geq r,\ell,\theta)})_{\lambda,\lambda}) = \nu_p \left(\prod_{i \geq r} [\ell]_{m_{p^r}(\lambda)} \right) = r\ell(\lambda^{\geq r}) = \nu_p((\overline{y}^{(r)})_{\lambda,\lambda}).
\]

for \(\lambda \in \text{Pow}_p(n) \). So the \(p \)-adic valuation of the determinant of the left-hand side of (5.10) is 0. Therefore, the left-hand side of (5.10) belongs to \(\text{GL}_{\text{Pow},p}(\mathbb{Z}_p) \). Since \(W^{(r)} \in \text{GL}_{\text{Pow},p}(\mathbb{Z}_p) \), we see that \(X \in \text{GL}_{\text{Pow},p}(\mathbb{Z}_p) \), as claimed.

We will complete the proof by applying Lemma 5.7 to the product \(x^{<r}U^{(r)}dVx^{<r} \). For \(\lambda \in \text{Pow}_p(n) \), define

\[
f^{(r)}_{\lambda} = \sum_{0 \leq s < r} (r-s)m_{p^s}(\lambda) \quad \text{and} \quad e^{(r)}_{\lambda} = \sum_{0 \leq s < r} \nu_p(m_{p^s}(\lambda)!).
\]

We have \(\nu_p(x^{<r}_{\lambda,\lambda}) = e^{(r)}_{\lambda} \). Using Corollary 5.2, we obtain

\[
\nu_p(d_{\lambda,\lambda}) = \nu_p(b^{(\geq r,\ell,\theta)}) - \nu_p(y^{<r}_{\lambda,\lambda}) - \nu_p(x^{<r}_{\lambda,\lambda}) = \sum_{0 \leq s < r} \nu_p([\ell]_{m_{p^s}(\lambda)}) - \sum_{0 \leq s < r} sm_{p^s}(\lambda) - e^{(r)}_{\lambda} = f^{(r)}_{\lambda} - e^{(r)}_{\lambda} = k^{(r)}_{\lambda} \quad \text{and}
\]

\[
\nu_p(I_{g,p}(\lambda)|_{v=\theta}) = \sum_{s \geq 0} \sum_{t = 1}^{m_{p^s}(\lambda)} \nu_p(g_{p^s,t}|_{v=\theta}) = \sum_{0 \leq s < r} \sum_{t = 1}^{m_{p^s}(\lambda)} (r + \nu_p(t) - s) = f^{(r)}_{\lambda} + e^{(r)}_{\lambda}
\]

(cf. Definition 4.17). The hypotheses of Lemma 5.7 are verified as follows. By [Evsev] Lemma 5.4, we have \(\nu_p(U^{(r)}_{\lambda,\mu} - \delta_{\lambda,\mu}) > \max\{k^{(r)}_{\lambda} - k^{(r)}_{\mu}, -1\} \) for all \(\lambda, \mu \in \text{Pow}_p(n) \), which implies the first desired inequality, namely

\[
(5.11) \quad \nu_p(U^{(r)}_{\lambda,\mu} - \delta_{\lambda,\mu}) > \frac{k^{(r)}_{\lambda} - k^{(r)}_{\mu}}{2}.
\]

The second desired inequality concerns \(V = X \cdot u(U^{(r)}) \cdot X^{-1} \) and follows from (5.11) because \(X \in \text{GL}_{\text{Pow},p}(\mathbb{Z}_p) \) is block-diagonal and the right-hand side of (5.11) depends only on \(\lambda^{\geq r} \) and \(\overline{U}^{r} \).

By Lemma 5.7, we have \(Y \equiv_{\mathbb{Z}_p} (x^{<r})^2d, \) and (5.11) follows because \(\nu_p((x^{<r}_{\lambda,\lambda})^2d_{\lambda,\lambda}) = f^{(r)}_{\lambda} + e^{(r)}_{\lambda} = \nu_p(I_{g,p}(\lambda)|_{v=\theta}) \) for all \(\lambda \in \text{Pow}_p(n) \).

5.4. Case \(a^2 - b^2 \notin p\mathbb{Z} \) and \(a^{2\ell} - b^{2\ell} \in p\mathbb{Z} \). Note that the assumption implies that \(p \geq 3 \). Let \(\gamma \) be as in Corollary 5.3. Applying that corollary, we obtain \(\nu_p(g^{(r)}_{p^s,t}|_{v=\theta}) = \gamma + r + \nu_p(t) \)
for all \(t \geq 1 \) and \(s \geq 0 \) (see Definition 4.7). Hence,
\[
(5.12) \quad \nu_p(I^r_{\ell,p}(\lambda)|_{v=\theta}) = (\gamma + r)\ell(\lambda) + \sum_{s \geq 0} \nu_p(m_{p,s}(\lambda)!) = (\gamma + r)\ell(\lambda) + \nu_p(x_\lambda).
\]

Consider the matrix \(K \in \text{Mat}_{\text{Pow}_{p}(n)}(\mathbb{Q}) \) such that \(N = xK \). For each \(\lambda \in \text{Pow}_{p}(n) \), we have \(M_{\lambda,\lambda} = x_\lambda \) by Proposition 2.4 respectively; moreover, the second summand is positive.

\[
\nu_p(b'_{\lambda,\lambda}) = \nu_p(I^r_{\ell,p}(\lambda)|_{v=\theta}) - \nu_p(z_\lambda) = \sum_{s \geq 0} m_{p,s}(\lambda)(r + s + \gamma) - \sum_{s \geq 0} (sm_{p,s}(\lambda) + \nu_p(m_{p,s}(\lambda)))
\]
\[
(5.13) \quad = (\gamma + r)\ell(\lambda) - \nu_p(x_\lambda).
\]

In order to verify the hypotheses of Lemma 5.7 we only need to show that \(\nu_p(K_{\lambda,\mu} - \delta_{\lambda,\mu}) > (\nu_p(b'_{\lambda,\lambda}) - \nu_p(b'_{\mu,\mu}))/2 \) for all \(\lambda, \mu \in \text{Pow}_{p}(n) \). This inequality is immediate if \(M_{\lambda,\mu} = 0 \) or if \(\lambda = \mu \) (as \(K_{\lambda,\lambda} = 1 \)). In the remaining case, we have
\[
\nu_p(K_{\lambda,\mu}) - \frac{\nu_p(b'_{\lambda,\lambda}) - \nu_p(b'_{\mu,\mu})}{2} = \frac{\nu_p(M_{\lambda,\mu}) - \nu_p(x_\lambda)}{2} + \frac{\nu_p(M_{\lambda,\mu}) - \nu_p(x_\mu + (\gamma + r)(\ell(\mu) - \ell(\lambda)))}{2} + \frac{\ell(\mu) - \ell(\lambda)}{2},
\]
where the first, second, and third summands are nonnegative by parts (a), (c), and (b) of Proposition 2.4 respectively; moreover, the second summand is positive.

By Lemma 5.7, \(Y \equiv_{\mathbb{Z}(p)} b'x^2 \). It follows from (5.12) and (5.13) that \(\nu_p(b'_{\lambda,\lambda}x_\lambda^2) = \nu_p(I^r_{\ell,p}(\lambda)|_{v=\theta}) \), so (5.1) holds.

5.5. Case \(a^{2\ell} - b^{2\ell} \notin p\mathbb{Z} \). By Proposition 5.3, the determinants of the matrices on both sides of (1.7) are invertible in \(\mathbb{Z}(p) \). Since both of these matrices are \(\mathbb{Z}(p) \)-valued (see Proposition 4.13), they are both unimodularly equivalent over \(\mathbb{Z}(p) \) to the identity matrix.

This completes the proof of Theorem 4.14 and hence of Theorem 1.10

6. Remarks on Possible Generalizations of Theorem 1.10

Our aim here is to demonstrate how far we still are from proving Conjecture 1.9 and to discuss natural statements that are stronger than Theorem 1.10 but are weaker than Conjecture 1.9, as well as implications between those statements. Proving some of them – if indeed they are true – would provide further evidence for Conjecture 1.9 and would be of interest in its own right.

Remark 6.1. In the proof of Theorem 1.10 (cf. 4.3), we have used the fact that the local-global correspondence holds when \(R \) is a PID by Proposition 4.2 (d) and (e), i.e.,
\[
Y \equiv_R Z \iff \forall m \in \text{max-Spec}(R), Y \equiv_{R_m} Z.
\]

An advantage of considering unimodular pseudo-equivalences \(\equiv'_R \) is that:

Proposition 6.2. Let \(R \) be a 1-dimensional Noetherian domain. For \(n \times m \)-matrices \(Y, Z \) with entries in \(R \), we have
\[
(6.1) \quad Y \equiv'_R Z \iff \forall m \in \text{max-Spec}(R), Y \equiv'_{R_m} Z
\]
if \(\text{Cok}_T = \text{Tor}_R(\text{Cok}_T) := \{ x \in \text{Cok}_T \mid \exists a \in R \setminus \{0\}, ax = 0 \} \) for \(T \in \{ Y, Z \} \) (for example, when \(n = m \) and \(\det T \neq 0 \) for \(T \in \{ Y, Z \} \)).

Proof. The \(\Rightarrow \) direction follows from Proposition 4.2 (1), so we need only prove the \(\Leftarrow \) direction. Since \(R \) is an integral domain, the intersection of any two non-zero ideals of \(R \) is non-zero, and in particular \(I := \text{Ann}_R(\text{Cok}_Y) \cap \text{Ann}_R(\text{Cok}_Z) \neq 0 \). Clearly, \(Y \equiv_R Z \Leftrightarrow Y \equiv_{R'} Z \) where \(R' := R/I \). Since \(R' \) is Artinian, \(\text{max-Spec}(R') \) is a finite set and the natural ring homomorphism \(R' \to \prod_{m \in \text{max-Spec}(R')} R'_m \) is an isomorphism (see [Mat, (24.C)]). Thus, \(Y \equiv_R Z \Leftrightarrow \forall m \in \text{max-Spec}(R'), Y \equiv_{R'_m} Z \) by Proposition 4.6 (3). Let \(\phi: R \to R' \) be the natural surjection. Since \(R'_m \cong R_{\phi^{-1}(m)}/I_{\phi^{-1}(m)} \) (see [Kun] Example 4.18 (a)], if \(Y \equiv_{R'_{\phi^{-1}(m)}} Z \) for all \(m \in \text{max-Spec}(R') \), then \(Y \equiv_R Z \). Noting that \(I \subseteq \phi^{-1}(m) \in \text{max-Spec}(R) \) for all \(m \in \text{max-Spec}(R') \), we deduce the result. \(\square \)

An advantage of considering Fitting equivalences \(\equiv_{\mathcal{A}} \) is that for a large class of rings \(R \) we have an algorithm to decide whether two explicitly given matrices \(Y \) and \(Z \) are Fitting equivalent or not (see [RFW] Chapter VIII and references therein). If we have \(Y \equiv_R Z \), then by Proposition 4.2 (1) it is not possible to demonstrate that \(Y \not\equiv_R Z \) by localization or specialization to a PID \(R' \). Thus, as far as unimodular equivalences over PIDs are concerned, the ultimate piece of evidence for Conjecture 1.9 would be to prove that \(X \equiv_{\mathcal{A}} D \), where \(X \) and \(D \) are the matrices on the two sides of (1.5).

Remark 6.3. If \(X \equiv_{\mathcal{A}} D \), then, in particular, \(X \equiv_{\mathcal{A}_{(\theta, \theta^{-1})}} D \) for any prime \(p \). Whether or not the latter equivalence holds is an interesting intermediate open problem.

Proposition 6.4. Let \(X \) and \(Y \) be \(n \times m \)-matrices with entries in \(\mathcal{A} \). If \(X|_{\theta = \theta} \equiv_{Z[\theta, \theta^{-1}]} Y|_{\theta = \theta} \) for all \(\theta \in \overline{\mathbb{Q}} \setminus \{0\} \), then \(X \equiv_{\mathcal{A}} Y \).

We conclude the paper by proving Proposition 6.4, which implies that, in order to show that \(X \equiv_{\mathcal{A}} D \), it would suffice to generalize Theorem 1.10 (3) by proving that \(X|_{\theta = \theta} \equiv_{Z[\theta, \theta^{-1}]} D|_{\theta = \theta} \) for all non-zero algebraic numbers \(\theta \). Despite Proposition 4.2 (3) and Proposition 6.2 proving the equivalence \(X \equiv_{Z[\theta, \theta^{-1}]} D \) for an arbitrary \(\theta \in \overline{\mathbb{Q}} \setminus \{0\} \) (if it is true) is likely to be considerably more difficult than proving Theorem 1.10 because \(Z[\theta, \theta^{-1}] \) is not integrally closed (equivalently, it is not a Dedekind domain) in general. However, it may be possible to use the methods of the present paper to prove that \(X \equiv_{\mathcal{A}} D \), where \(\mathcal{A} \) is the integral closure of the ring \(Z[\theta, \theta^{-1}] \) in its field of fractions, at least for some classes of algebraic numbers \(\theta \). Establishing whether \(X \) and \(D \) are Fitting equivalent or, indeed, settling Conjecture 1.9 is likely to require new ideas.

Proof of Proposition 6.4. The proposition is an immediate corollary of Theorem 6.5. \(\square \)

In the following, let \(S \) be the set of non-constant irreducible polynomials in \(\mathbb{Z}[v] \). Let \(\theta \in \overline{\mathbb{Q}} \setminus \{0\} \) be a root of \(f \in S \). For an ideal \(I \) of \(\mathcal{A} \), we denote by \(I|_{v=\theta} \) the image of \(I \) under the ring surjection \(\pi_\theta: \mathcal{A} \to Z[\theta, \theta^{-1}] \) given by \(v \mapsto \theta \). Then, by Gauss’s Lemma we have \(\text{Ker} \pi_\theta = \mathcal{A}/f \).

Theorem 6.5. Let \(I \) and \(J \) be ideals of \(\mathcal{A} \). If \(I|_{v=\theta} = J|_{v=\theta} \) in \(Z[\theta, \theta^{-1}] \) for all \(\theta \in \overline{\mathbb{Q}} \setminus \{0\} \), then \(I = J \).

Lemma 6.6. Let \(R \) be a Noetherian commutative ring. For any ideal \(I \) of \(R \), we have

\[
I = \bigcap_{I \subseteq m \in \text{max-Spec}(R)} \bigcap_{n \geq 1} (I + m^n).
\]
Proof. Replacing R with R/I, we may assume that $I = 0$. Let $J = \cap_{m \in \text{max-Spec}(R)} \cap_{n \geq 1} m^n$. For $m \in \text{max-Spec}(R)$, we have $J_m \subseteq \cap_{n \geq 1} m^n_m$ and $\cap_{n \geq 1} m^n_m = 0$ in R_m by Krull intersection theorem. So $J_m = 0$ for all m, whence $J = 0$ (see the proof of Proposition 6.2 (iii)). □

Lemma 6.7. Let $m \in \text{max-Spec}(\mathbb{Z}[v])$ and let $n \geq 1$. Then, $m^n \cap S$ is an infinite set.

Proof. It is well known that $m = (p, h)$ for some $p \in \text{Prm}$ and non-constant monic irreducible polynomial h which remains irreducible in $\mathbb{F}_p[v]$ (see [GP, Exercise 7.9]). For any $q \in \text{Prm}$ with $q \neq p$, put $f_q := p^n + q h^n \in m^n$. Then f_q is primitive by construction and is in S by Eisenstein’s criterion (applied to the prime q). □

Proof of Theorem 6.3. For $m \in \text{max-Spec}(\mathcal{A})$ and $n \geq 1$, there exists $f \in m^n \cap S$ such that $f \neq \pm v$ by Lemma 6.7 applied to $m \cap \mathbb{Z}[v] \in \text{max-Spec}(\mathbb{Z}[v])$. By the hypothesis, we have $I|_{v=\theta} = J|_{v=\theta}$ for a root $\theta \in \overline{\mathbb{Q}} \setminus \{0\}$ of f, whence $I + \mathcal{A} f = \pi^{-1}_\theta(I|_{v=\theta}) = \pi^{-1}_\theta(J|_{v=\theta}) = J + \mathcal{A} f$. Since $\mathcal{A} f \subseteq m^n$, it follows that $I + m^n = J + m^n$. By Lemma 6.6, we have $I = J$. □

Remark 6.8. We learned Theorem 6.3 from Hiraku Kawanoue. His proof yields the existence of $f \in S$ such that $I + \mathcal{A} f \neq J + \mathcal{A} f$ for ideals $I \neq J \subseteq \mathcal{A}$ and can be applied when we replace \mathbb{Z} by any unique factorization domain R which has infinitely many prime elements modulo R^\times. In order to keep this section short, we adapted the proof to one sufficient for Proposition 6.3. While the above proof depends on the description of $\text{max-Spec}(\mathbb{Z}[v])$ and does not allow the indicated generalization, it shares the same spirit with Kawanoue’s.

References

[ASY] M. Ando, T. Suzuki and H-F. Yamada, Combinatorics for graded Cartan matrices of the Iwahori-Hecke algebra of type A, Ann. Comb. 17 (2013), 427–442.

[Bes] C. Bessenrodt, A bijection for Lebesgue’s partition identity in the spirit of Sylvester, Discrete Math. 132 (1994), 1–10.

[BH] C. Bessenrodt and D. Hill, Cartan invariants of symmetric groups and Iwahori-Hecke algebras, J. Lond. Math. Soc. 81 (2010), 113–128.

[BK1] J. Brundan and A. Kleshchev, Cartan determinants and Shapovalov forms, Math. Ann. 324 (2002), 431–449.

[BK2] J. Brundan and A. Kleshchev, Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras, Invent. Math. 178 (2009), 451–484.

[BK3] J. Brundan and A. Kleshchev, Graded decomposition numbers for cyclotomic Hecke algebras, Adv. Math. 222 (2009), 1883–1942.

[DeKK] C. De Concini, V. Kac and D. Kazhdan, Boson-fermion correspondence over \mathbb{Z}, Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988), 124–137, Adv. Ser. Math. Phys. 7, World Sci. Publ., Teaneck, NJ, 1989.

[DDPW] B. Deng, J. Du, B. Parshall and J. Wang, Finite dimensional algebras and quantum groups. Mathematical surveys and monographs, v. 150. American Mathematical Society, Providence, RI, 2008.

[DJ] R. Dipper and G. James, Blocks and idempotents of Hecke algebras of general linear groups, Proc. London Math. Soc. 54 (1987), 57–82.

[Don] S. Donkin, Representations of Hecke algebras and characters of symmetric groups, Studies in memory of Issai Schur, 49–67, Progr. Math. 210, Birkhäuser Boston, Boston, MA, 2003.

[Evs] A. Evseev, Generalised Cartan invariants of symmetric groups, Trans. Amer. Math. Soc. 367 (2015), 2823–2851.

[Fil] M. Filaseta, Coverings of the integers associated with an irreducibility theorem of A. Schinzel, Number theory for the millennium, II (Urbana, IL, 2000), 1–24, A K Peters, Natick, MA, 2002.
W. Fulton, *Young tableaux*, London Mathematical Society Student Texts 35. Cambridge University Press, Cambridge, 1997.

M. Geck and G. Pfeiffer, *Characters of finite Coxeter groups and Iwahori-Hecke algebras*, London Mathematical Society Monographs, New Series, 21. The Clarendon Press, Oxford University Press, New York, 2000.

D. Hill, Elementary divisors of the Shapovalov form on the basic representation of Kac-Moody Lie algebras, J. Algebra 319 (2008), 5208–5246.

M. Isaacs, *Character theory of finite groups*, Academic Press, New York-London, 1976.

V.G. Kac, *Infinite dimensional Lie algebras*, 3 ed. Cambridge University Press, Cambridge, 1990.

M. Kashiwara, On crystal bases, Representations of groups (Banff, AB, 1994), 155–197, CMS Conf. Proc., 16, Amer. Math. Soc., Providence, RI, 1995.

M. Kashiwara, On crystal bases of the Q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 465–516.

B. Külshammer, J.B. Olsson and G.R. Robinson, Generalized blocks for symmetric groups, Invent. Math. 151 (2003), 513–552.

M. Khovanov and A. Lauda, A diagrammatic approach to categorification of quantum groups. I., Represent. Theory 13 (2009), 309–347.

E. Kunz, *Introduction to commutative algebra and algebraic geometry*, Birkhäuser, Boston, 1985.

V. Lakshmibai, Bases for quantum Demazure modules, Representations of groups (Banff, AB, 1994), 199–216, CMS Conf. Proc., 16, Amer. Math. Soc., Providence, RI, 1995.

T.Y. Lam, *A first course in noncommutative rings*, Graduate Texts in Mathematics, 131. Springer-Verlag, New York, 2001.

G. Lusztig, *Introduction to quantum groups*. Reprint of the 1994 edition. Modern Birkhäuser Classics. Birkhäuser/Springer, New York, 2010.

G. Lusztig, *Finite dimensional Hopf algebras arising from quantized universal enveloping algebras*, J. Amer. Math. Soc. 3 (1990), 257–296.

L.S. Levy and J.C.Robson, Matrices and pairs of modules, J. Algebra 29 (1974), 427–454.

I.G. Macdonald, *Symmetric functions and Hall polynomials*, 2 ed., Oxford University Press, Oxford, 1995.

H. Matsumura, *Commutative algebra*, 2 ed., Mathematics Lecture Note Series, 56. Benjamin/Cummings Publishing, 1980.

D.G. Northcott, *Finite free resolutions*, Cambridge Tracts in Mathematics, No.71. Cambridge University Press, Cambridge-New York-Melbourne, 1976.

C. Năstăsescu and F. Van Oystaeyen, *Methods of graded rings*, Lecture Notes in Mathematics, 1836. Springer-Verlag, Berlin, 2004.

R. Mines, F. Richman and W. Ruitenburg, *A course in constructive algebra*, Universitext. Springer-Verlag, New York, 1988.

R. Rouquier, 2-Kac-Moody algebras, arXiv:0812.5023.

R. Rouquier, Automorphismes, graduations et catégories triangulées. J. Inst. Math. Jussieu 10 (2011), 713–751.

S. Tsuchioka, Graded Cartan determinants of the symmetric groups, Trans. Amer. Math. Soc. 366 (2014), 2019–2040.

SCHOOL OF MATHEMATICS, UNIVERSITY OF BIRMINGHAM, EDGBASTON, BIRMINGHAM B15 2TT, UK

E-mail address: a.evseev@bham.ac.uk

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES, UNIVERSITY OF TOKYO, KOMABA, MEGURO, TOKYO, 153-8914, JAPAN

E-mail address: tshun@kurims.kyoto-u.ac.jp