OVERVIEW OF MITOXANTRONE-A POTENTIAL CANDIDATE FOR TREATMENT OF BREAST CANCER

PREETHI S., HITEHS KUMAR, VISHAL B. RAWAL, RAMKISHAN AJMEER, VIKAS JAIN*
*Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India
Email: drramkishan@yahoo.com

ABSTRACT

Anthraquinones are one of the popular classes of aromatic compounds which possess potential anticancer properties by suppressing the nucleic acid formation and proteins essential to the survival of cancerous cells. Mitoxantrone (MT) is an antibiotic and antineoplastic agent belonging to the anthracene class of compounds which exhibit minimal incident of drug resistance. It is a synthetic anticancer drug, bound to enzyme topoisomerase IIα inhibitor, and intercalates DNA topoisomerase IIα, preventing re-ligations in DNA strands fragmentation and disruption of DNA repair. The expression of this enzyme was used tumor cells marker because of its key function in cell proliferation. The cleavable complex of topoisomerase IIα is hypothesized to damage the DNA and may enhance apoptosis in tumor cell proliferation. The susceptibility of cells to mitoxantrone is associated with cell topoisomerase IIα protein and lowered resistance in breast cancer line cell lines to topoisomerase IIα inhibitors. MT is an ABC transporter in breast cancer, also designated to be associated with “Breast cancer resistance protein” (BCRP) and it is also a cell cycle non-specific anti-cancer drug and P-glycoprotein substrate. Multiple drug resistance is one of the major drawbacks of this drug which can be avoided by reducing the efflux of the drug from cancer cells by formulating drug by using lipophilic carriers. This manuscript discusses about MT’s source, chemistry, pharmacodynamics, and toxicity profile, and a few patents related information.

Keywords: Breast cancer, Anthraquinone, Mitoxantrone, Nano formulation, Multiple drug resistance

INTRODUCTION

Cancer is emerging as a major problem globally, both in developed and developing countries. Currently, every year 10 million new cancer cases are diagnosed across the globe [1]. By the end of 2021, cancer rates could rise by 50 % which may account for 15 million new cases and with a projected death fig. of 8.8 million. By 2030, over 21.7 million cancer cases and 13 million cancer deaths are predicted [2–4]. Every year breast cancer affects 2.1 million women and with being frequently reported in the female population [1, 5]. In India, 1.73 million cases were reported in the year 2020, which also contributes to the highest cancer-related mortalities among women [6–8]. Considering high morbidity and mortality associated with breast cancer treatment in the last few decades, cytostatic as well as cytoxic drugs have been developed [9, 10] the anthraquinone class of antineoplastic agents exhibits better therapeutic efficiency to treat breast cancer compared to that of anthracyclines [11]. Anthraquinone derivatives exhibit antitumor activity by binding to DNA polymerase in tumor cells that results in inhibition of cell growth (cytostatic) or even cell necrosis (cytotoxicity) [12, 13].

Anthraquinone (C₂₄H₁₂O₃) is an aromatic organic compound also known as dioxo anthracene or anthrace Dione [14]. Anthraquinones can be obtained from natural as well as synthetic sources; the compounds of this class have a rigid structure consisting of a flat tricyclic aromatic anthracene which contains two keto groups located at the 9th and 10th positions. The tricyclic anthraquinone core gets embedded in the DNA double helix of abnormal cells, which undergo a specific redox reaction that generates superoxide radical anion (•O₂⁻) [15]. The bioactive properties of 9,10-anthraquinone (IUPAC: 9,10-dioxoanthracene) are as shown in fig. 1 [16–24]. Anthraquinone compounds have potential anticancer properties as they can inhibit the synthesis of nucleic acid and proteins of cancer cells [25–27].

Fig. 1: Bioactive properties of 9, 10 anthracene dine
Anthraquinone derivatives bind to DNA of cancer cells and inhibit the topoisomerase II enzyme, making them as effective cancer cell growth inhibitors [28]. Binding of these derivatives with topoisomerase-II results in a cleavable complex, which induces the breakage of DNA strands, leading to cell death through apoptosis [29]. Food and Drug Administration (FDA) has approved four naturally and synthetic anthraquinone derivatives for cancer treatment which have the capability to interact with the DNA sequence and result in apoptosis [30]. Drugs derived from anthraquinone derivatives currently in use for cancer therapy are Daunorubicin, Doxorubicin, Mitoxantrone, and Amsacrine [31].

One such anthracenedione derivative is Mitoxantrone (MT), a synthetic anticancer agent, which was originally designed as a simplified analogue of the anthraquinone-containing anthracyclines [32, 33]. MT is an antibiotic with an antineoplastic activity that interferes with the growth and metastasis of cancer cells in the body [34, 35]. MT is a doxorubicin analogue and is generally used in combination with other chemotherapeutic agents to improve its antitumor activity, minimize dose-related side effects [36, 37]. Simultaneously Neidhart et al. In 1980, conducted a prospective comparison of antineoplastic agents for breast cancer, mitoxantrone and doxorubicin as therapy for minimally pretreated patients with breast cancer. So MT is the promising antitumor agent which improves the therapeutic efficacy and it is used in metastatic breast cancer treatment [38–41]. The clinical trial data on metastatic breast cancer treatment, MT monotherapy had shown average positive response in approx. 33 % of patients with no prior chemotherapy exposure [42]. The toxic effects related to MT such as cardiotoxicity and gastrointestinal effect like nausea, vomiting, fatigue were comparatively lower than other anthraquinone derivatives.

MT is used effectively in disease-modifying therapy (DMT), which can also be employed in the therapy of acute non-lymphocytic prostate cancer and leukemia. MT is a novel photosensitizer for photodynamic therapy for breast cancer and reported to cause MCF-7 cell death in vitro [43]. Recent advancements in Nano drug delivery technology and photodynamic therapy have the potential to become an effective alternative to surgery for advanced breast cancer, which reduces the total exposure of the drug to healthy tissues and organs [44, 45]. This review aims to summarize MT as a therapeutic molecule for breast cancer in case of both benign and malignant tumor, including its source, structural modification, physicochemical properties, mechanism, pharmacological action, its multiple drug resistance, pharmacokinetics and metabolism. A comprehensive survey of relevant various Nano formulations is provided, with innovations made in recent years to improve drug resistance and therapeutic effectiveness [46, 47].

Mitoxantrone-source, structural modification, physicochemical properties

MT (1, 4-bis-[2-(dimethylamino) ethyl-amino]-9,10-anthracenedione) is being developed by the American Cyanamid Company and the Midwest Research Institute as a possible chemotherapeutic agent. Murdock et al. performed structural modifications of MT that included 5,8-dihydroxylation of the anthracenedione nucleus and replacement of both terminal dimethylamino groups with hydroxethyl functions [46]. The MT compound was primarily developed from balloon pen ink ingredient, although it was discovered to have antitumor activity after a routine screening by the National Cancer Institute (NCI) [49–51]. Mitoxantrone (fig. 2) is a hydroxyquinone with amino functionalities attached to aliphatic side groups, but it lacks an amino sugar moiety at the C9 position [50–52]. The basis for the mitoxantrone structure was drawn on discovery of ant leukemic agents with a distinct N-0-O triangular pharmacophore (fig. 3) which is previously there in anthracyclines and the amino group is removed, which was considered to have involved in anthracycline cardio toxic [51–53]. The physicochemical properties of MT are given in table 1 [54–60].

![Structure of mitoxantrone](image)

![Triangular pharmacophore](image)

Table 1: Physicochemical properties of mitoxantrone

Characteristics	Physical properties
Occurrence	The synthetic compound belongs to the class of organic compounds.
Chemical class	Anthracenes
IUPAC	1,4-dihydroxy-5,8-bis[2-(2-hydroxyethylamino) ethyl amino] anthracene-9,10-dione and 1,4-dihydroxy-5,8-bis[2-((2-hydroxyethyl) amino)[ethyl] amino]-9,10-anthracenedione dihydrochloride
Molecular formula	C_{28}H_{20}N_{10}O_{8} and C_{22}H_{28}N_{10}O_{7} • 2HCl
Molecular weight	Mitoxantrone: 444.5 g/mol, Mitoxantrone hydrochloride: 517.41 g/mol
Melting point	203–205 °C
Purity	>98.0%
Appearance	Blue-black solid
Solubility	Slightly soluble in methanol; sparingly soluble in water, practically insoluble in acetonitrile, acetone and chloroform.
Stability	15 °C to 25 °C (59 °C to 77 °F) under refrigeration.
Route of administration	Intravenous, Intraperitoneal, Continuous and intermittent infusion.

![Triangular pharmacophore](image)
Anticancer effects of mitoxantrone and possible pathways

Mitoxantrone exhibits its anticancer activity by acting as an intercalating agent. It inhibits both RNA and DNA synthesis. It is six to seven times more potent than anthracycline derivatives in inhibiting the incorporation of 3H-thymidine and 3H-uridine into DNA and RNA thus disrupting their replication respectively. It also binds to an enzyme called topoisomerase II, which tends to breakage of the DNA strands and stops the synthesis of DNA, resulting in cell death via apoptosis as shown (fig. 4) [61–63]. In addition, mitoxantrone has been reported to exhibit anticancer activity by various mechanisms like autophagy [64–66], paraptosis [67], radiosensitization [68, 69], aberrant cell metabolism [70–72].

![Mechanism of action of mitoxantrone on cytotoxicity activity](image)

Fig. 4: Mechanism of action of mitoxantrone on cytotoxicity activity

There are multiple mechanisms by which MT shows its anticancer activity which is identified by several scientists through their research findings. Lown et al. [73] have demonstrated that, on increasing the concentration of MT progressively to already relaxed PM2-DNA, it shows an intercalative binding with isolated DNA plasmid, MT could also possibly show extensive inter DNA cross-linking with side arms of DNA, making a network of linked molecules. Similarly, Foye et al. [74] discuss that MT binds to isolated DNA at two sites, i.e. (1) Intercalation is seen between base pairs which are successive to each other and (2) Electrostatic interaction with DNA, occurring between amine side chains present in MT and phosphate groups present in DNA. The other study on the basis of in vivo study of interactions between MT and tumor cellular DNA demonstrated that, a) MT does not cause any changes in DNA supercoiling like other classical drugs with intercalating properties. b) It induces protein-related double and single strands DNA fragment and c) MT potentially disrupts single strands of non-protein-based DNA [75].

Mitoxantrone–targeting topoisomerase II inhibitor for cancer therapy

Topoisomerase inhibitors (TI), inhibits cancer cell proliferation by avoiding DNA replication, arousing DNA damage, and thus provoking cell cycle arrest. The DNA topoisomerase enzyme is divided into two types: type I and type II [74]. The DNA topology is altered by Type I topoisomerases by passing a single DNA strand by breaking in the opposing single strand and cleaving it with an active site that is tyrosine residue, producing a phosphodiester link with the enzyme [76]. Type II A topoisomerases, which include eukaryotic topoisomerase II and II, have a three-domain structure that spans the A and B subunits that form the homodimer (or heterotramer in prokaryotes) as shown in (fig. 5). The N-terminal domain consists an ATP-binding region (ATPase domain), a core domain containing a TOPRIM fold and a DNA-binding region, and a C-terminal domain of unknown function [76, 77]. Eukaryotic TOP II A has three sections known as the N-, gate, DNA gate, C-gate, and the catalytic Tyr805, which is responsible for cleavage present in the DNA-gate. Topoisomerase II alters the structure of DNA strands by breaking and reconnecting the phosphodiester backbone of DNA using identical active site tyrosine residues [78]. This is accomplished through the production of temporary, enzyme-bridged double-strand breaks. This enzyme is commonly utilized as a marker of cancer cells due to its function in cell proliferation [77]. TOP II plays a critical part throughout the replication of DNA and its main activities are chromosomal segregation. Topoisomerases I, IIα, and IIβ are the targets for commercialized anti-cancer agents [78]. Topoisomerase IIα (Topo IIα) is the target of multiple chemotherapeutics such as anthracyclines and other intercalators, such as mitoxantrones [79]. It plays a vital role in DNA replication and has been associated in breast cancer with the proliferation of cellular and HER2/new protein overexpression [80]. Mitoxantrone may act as the topoisomerase IIα catalytic cycle. But, most likely by interfering with the activities of the enzyme, all of it stimulates the creation of protein-linked DNA strand breaks[81]. The cleavable complex is hypothesized to damage the DNA, to cause toxicity, and causes apoptosis in tumor cells. The sensitivity of cells to mitoxantrone depends on cell topoisomerase II α protein and lowered topoisomerase II resistance in breast cancer line cell lines to topoisomerase IIα inhibitors [82].

![Structure of topoisomerase IIα](image)

Fig. 5: Structure of topoisomerase IIα

(Topoisomerase IIα enzymes with bound DNA and Two sub-family kind domains (The DNA ribbon is dark blue; the chain A of topoisomerase IIα is red; the chain B is light blue)) [83].
Mechanism of topoisomerase II inhibitor for cancer therapy

Prevention of the enzyme-DNA topoisomerase takes place by some of the generally accepted mechanisms at molecular level that are mentioned below [84, 85].

Substrate competitive inhibition

To the topoisomerase active site, an inhibitor molecule is attached which blocks the DNA substrate from binding. There are no known inhibitors that are topoisomerase-specific which function in this way, however present research on DNA-competitive inhibitors of other DNA-binding proteins imply that this mechanism might potentially function in DNA topoisomerases II [86].

Topoisomerase poisons mechanism

The DNA re-ligation is blocked by the protein-DNA-drug complex which is ternary. It prevents the enzyme from forming a "cleavage complex." This drug inhibits enzyme turnover and accumulation of cytotoxic cleavage complex within the cell in excessive quantities [87].

Potent inhibition of the ATP

The ATP binding site has one competitive inhibition of the type II topoisomerases that prevent enzymic activation by ATP-hydrolysis. Type II topoisomerase is necessary for ATP synthesis as well as for the domain which binds ATP is distinct from the DNA binding domain. Further, the dependency or absence of DNA topoisomerases is distinguishable from the Mg 2+ for catalytic activity. Mg2+ appears to be required for Type IA and Type II topoisomerases, however, catalytic action is required for Type IB topoisomerases if Mg 2+ is not present [87].

The stabilization of the cleavage complex

It is the topoisomerase IIs mechanism which encompasses the production of a ternary complex that is locked of cleaved DNA, protein, and antineoplastic medication, which grows and produces cytotoxicity [85]. Anthracyclines, such as mitoxantrones, are anthracyclines that target type II A topoisomerases in the treatment of breast cancer. These agents are bound to cleaved DNA/protein complexes, blocking DNA binding and seal the enzyme to the cleavage complex [88]. This cleavage complex develops and causes a breakdown of the DNA strand and finally cell death. The most commonly known topoisomerase poisons work is the interplay of the generally accepted mechanisms at molecular level that are induced by topoisomerase poisons. Despite the fact that no anticancer drugs with this mechanism of inhibition are currently on the market [93].

Nano formulation development strategy of mitoxantrone

With its beneficial safety profile, MT has recently gained more attention as the therapeutic compound in the treatment of cancer therapy [84]. Even though, MT is classified as a Class III drug according to the Biopharmaceutical Drug Deposition and Classification System (BDDCS), owing to its low permeability, low metabolism and bioavailability. MT has limited therapeutic responses because of its drug resistance in tumor cells which is a most concern in malignancy [96, 97]. To address the low permeability of the drug across the cell membrane, incorporation of the hydrophobic drug (MT) into lipophilic carrier system, like liposomes, polymeric mixed micelles, nanoparticles such as NLCs, SLNs, Nano-diamond NPs, gold NPs, Albumin NPs, graphene oxide NPs, iron NPs etc. have been extensively reported [90-101].

The incorporation of MT in lipophilic carrier system is employed to overcome many challenges such as modulation sustained drug release, reverse multidrug resistance (MDR), and improve its bioavailability [102, 103]. Several research studies show that nanotechnology imparts stable formulation of MT, improve its bioavailability and therapeutic efficacy [104-107]. Nano drug delivery methods are advanced techniques for delivering drugs to tumor cells with minimal drug leakage to healthy cells [108, 109]. The development of MT’s Nano formulations can resolve the drug resistance in cancer cells and minimize drug efflux and enhance the retention of MT in malignant cells [33, 110]. Lu et al. have developed the solid lipid nanoparticles (SLNs) of MT, which improved the drug resistance in breast cancer and its lymph node metastases in mice. These MT-loaded SLNs depicted sustained release of the drug which have effectively inhibited the breast cancer and lymph node cancer in nude mice model with no toxicity in normal tissues and have reduced the lymph node cancer size up to 1.85±27.42 mm 3 compared to MT alone (119.32±57.30 mm 3) [111].

To improve the therapeutic targeting of MT, Though et al. developed Nanodiamonds (NDs) for the promising delivery of MT. NDs with diameters of about 5 nm and demonstrated their ability to enhance drug resistance while slowing tumor growth development, they evaluated the MT Nanodiamond complex, on the MDA-MB-231-Luc-D3H2LN in TNBC cell line that was virally transduced for resistance to MT, the comprehensive complex enhanced drug retention and efficacy. The results of the in vitro analysis suggested that MT Nano diamond could be a better drug delivery system for drug-resistant cancers [112]. Furthermore, Ling et al. synthesized cagareen hybrid nanostructured lipid carriers (NLCs) to improve the sustained drug release, bioavailability and anticancer efficacy for MT through the oral route. Results of the study depicted that the oral bioavailability of drug-loaded Nanocarriers was increased 3.5 times than free drug. The cytotoxicity investigation depicted that the MT Nanocarriers significantly enhances the anticancer efficacy compared to pure MT against MCF-7/MX cells and diminished the BCRP associated drug resistance [122].

Likewise, MT was utilized to reduce the MDR effect with photosensitive properties and improve anticancer efficacy. Thus, MT was mixed with poly[(c-caprolactone)-phloroglucin F68 to prepare micelles. When it was subjected to close-infrared light and induced irradiation, MDR’s influence on MCF-7/ADR cells was reversed by photochemical interactions. This resulted in cytotoxicity of cancer cells. Usually, MT causes apoptosis in MCF-7/ADR cells by producing ROS and decreasing P-glycoprotein activity. These mixed micelles effectively reversed the MDR effect via photodynamic therapy [112]. MT possesses broad range of therapeutic effects to against advanced breast cancer [123]. It is found to be highly effective in ovarian cancer [124], colon cancer, non-Hodgkin's lymphoma, acute myeloid leukemia [125-127], bladder cancer [128], prostate cancer [129], and glioblastomas [113, 130]. The various Nano formulations loaded with MT for effective treatment in breast cancer therapy and various cancer treatment are compiled in (table 2).
Nano formulation	Method of preparation	Major component of the delivery system	Purpose	Key findings/conclusion
Multifunctional lipid-sodium glycocholate Nano carriers	Emulsification-ultra-sonication method	Compritol 888, Miglyol 812, lecithin	Combination therapy by combining the "BCRP bypassing effect."	Co-encapsulation of the hydrophilic anticancer drug, BCRP inhibitor, into TMLGNs is an effective platform for MDR reversal [39]. The release of Cholesterol-substituted pullulan polymer NPs is proportional to acidity. Also, larger NPs have shown better inhibition of cancer cells in the bladder due to migration than smaller NP [49].
Hydrophobically modified Pullulan Nanoparticles	Nano Precipitation method	Pullulan, cholesterol	Prevent the growth of cancer cells in the bladder and the migration of MB49 cells with nanoparticles	NLDGs of small size show high efficacy of drug encapsulation, long-term release characteristics, desired pharmacokinetics, and cytotoxicity [98].
Novel nanostructured lipid-dextran-sulfate hybrid carriers (NLDGs)	Emulsification-ultra-sonication Method	Lipid-based drug delivery system.	Delivers water-soluble cytotoxic drug in cancer chemotherapy for MDR.	
MT-PFP/PPP mixed micelles	Solvent Evaporation method	Poly(e-caprolactone), poly (d, Lactide-co-glycolide), poly (ethylene glycol) phlorotic F68.	To examine the photosensitizing properties of MT clinically used as a PDT.	MT-PFP/PPP micelles were able to decrease P-gp activity, increase ROS levels and cell uptake, which reversed the MDR effect after irradiation and triggered cell apoptosis [112].
Plant virus-based Nanoparticles	Ultracentrifugation method	Plant virus-based nanoparticles drug delivery system.	Delivery of MT prevents poor penetration of the blood-brain barrier. A novel approach to active delivery of antitumor drugs against breast cancer and lymph node metastases, with a therapeutic effect that is both inspiriring and low in side effects.	Uptake of CPMV-MT in U87-MG glioblastoma cells and this encapsulated MT maintain its therapeutic potential [113]. PS08 cell lymph node tumor model was effectively developed, and the suppression of MTO-SLN against the metastases was promising. The MTO-SLN was promising in the per cent inhibition of the tumor growth [114].
Soluble lipid nanoparticles	Film dispersion-ultrasonication method	Lecithin and Compritol®888		
Nano diamond	-	Nano diamonds	To improve drug tolerance	Improved efficacy and drug retention in an MDA-MB-231-Luc-D3H2LN [115]. Enhance the encapsulation of breast cancer cells, increased oral bioavailability, and anti-tumor activity [116].
Nanostructured lipid-carrageenan hybrid carriers	Emulsification-ultra-sonication method	Compritol 888 AT0, miglyol 812, cremophor RH40 and lecithin	To improve oral bioavailability, encapsulation efficiency, and reduce cytotoxicity	MT-BSANP-folate NPs increased the intraceluler uptake of trapped MT in SKOV3 cell to enhance anticancer activity by passive accumulation [117].
Folate-conjugated Albumin Nanoparticles	Chemical cross-linking with glutaraldehyde (Coacervation method)	Folate, Bovine serum albumin	To exhibit significant Cytotoxic effects on CD44-positive cell line.	NPs attached effectively to the receptor binding site demonstrate considerable cytotoxic effects in CD44-positive cell lines on cell viability [118].
Hyaluronic acid/ polyethylene glycol nanoparticles	Nano precipitation and lypophilisation	Hyaluronic acid, polyethylene glycol		NPs with enhanced performance, site targeting, controlled drug release, and increased drug penetration [119].
Phospholipid-amorphous calcium carbonate hybrid nanoparticles	Faele solvent-diffusion method	Ammonium carbonate, anhydroxyl calcium, Chloride, PL(3100), DSPE-PEG2000, DSPE-PEG-FA	Enforce the delivery of active agents within cancer cells with increased drug penetration	AuNPs-PEGs-MT enhanced stability, loading efficiency of Mitoxantrone (1.9-fold), and cytotoxicity [120].
PEGylated Gold Nano complexes	Chemical reduction	Gold chloride trihydrate, Methoxy polyethylene glycol thiol		

Metabolism and its metabolites

The liver is the primary site of MT metabolism [131]. The metabolism of MT involves the microsomal pathway and/or peroxidase enzymes, including neutrophil myeloperoxidase are involved [132]. Its metabolites have been discovered in the bone marrow, kidney, heart, spleen, and lungs, in addition to the liver [127]. Inhibition of the functioning of cytochrome P450 combined oxidase function in a human hepatoma-derived cell line reduced the inhibitory effect of MT on cell proliferation. A rat hepatocyte model and human breast cancer cells both produced similar results [128–131]. Furthermore, phase II metabolism, namely conjugation with glucuronic acid and reduced glutathione (GSN), plays an important part in the MT detoxification process [133, 134]. Numerous pre-clinical studies have been carried out in rats, rabbits and anaeesthetized pigs to identify different metabolites. Smyth et al. reported the oxidative metabolism of terminal hydroxyl groups of parent molecule (MT), causing the formation of the metabolites A and B. They have identified metabolites of mitoxantrone in plasma and urine. The metabolism in humans and animals indicated that MT might conjugate with glucuronic acid and glutathione [135]. Richard et al. separated several metabolites of MT in rabbits were identified as the mono and dicarboxylic acid derivatives [136].

They also evaluated the excrution of mitoxantrone in bile and urine. Mitoxantrone is mostly eliminated by the bile route, with minor levels excreted through the urine. The metabolite naphtoquinol xaline brings cellular damage to newborn cardiomyocytes that are isolated from rats [135]. This metabolite has already been discovered to be an in vivo MT product of biotransformation in humans, rats and pigs.
When examining the variability among interspecies, the metabolic distinction allaying humans and rats is that the mono as well as dicarboxylic acid derivatives of MT were substantial bioproducts from human metabolism, whereas they are negligible in rats [136]. Except for the results reported by Shipp et al. in that no studies have been conducted that relate MT bioproducts to its most extreme undesirable impact i.e. late irreversible cardiotoxicity [137–139].

Pharmacokinetics

According to Biopharmaceutical Drug Disposition and Classification System, MT is a class III drug that is poorly absorbed when given orally [96, 140]. The pharmacokinetics properties of MT are being studied in cancer patients as well as in animals through different routes of administration (intravenous, intraperitoneal, intra-peritoneal, and intra-arterial) and were examined by HPLC and total radioactivity method [141]. After intravenous injection, MT has a rapid dispersion followed by a longer clearance process distinguished by extensive accumulation in highly perfused organs, according to pharmacokinetic experiments in humans and laboratory animals. Intravenous administration of MT follows a three-phase method for elimination from the blood plasma, a fast initial (α) distribution phase with a half-life (0.1 h), an intermediate (β) half-life distribution phase (1.1 h), and a terminal gamma elimination phase (γ) (42.6 h) with a half-life of 12 d [75, 95]. After five days of the urinary sample collection, Albert et al., in their study, stated that about the whole MT dose was retrieved in an unaltered form at a rate of 6.5 percent (range: 5.2-7.9 %) [75]. Despite the persistence of MT in the tissues, the pharmacokinetics of the drug did not appear to be affected by repeated daily administration for five days or at 3-week intervals for up to 12 courses, with no significant changes in the terminal half-life, urinary excretion, and volume of distribution [75, 142]. A steep dose-response curve, dose-limiting myelosuppression, and extensive tissue binding have been reported by systemic administration of MT. However, since MT is non-vesicant, regional drug administration can effectively solve these problems. Mitoxantrone is often delivered into a deep tissue compartment from which it is slowly retrieved, as illustrated by its prolonged plasma terminal phase half-life, extraordinarily large volume of distribution (Vd), and a relatively substantial quantity of mitoxantrone (>15 % of the administered dose) was found in necropsy tissues 35 d after dosing [82, 117]. These outcomes back up a pharmacologic justification for using mitoxantrone in an irregular dosage regimen.

Multiple drug resistance of mitoxantrone

Drug resistance tumor cells are considered to be a major concern of cancer chemotherapy. The principal aspect of clinical failure and death in cancer patients is due to resistance to chemotherapy. Patients who acquire resistance to cytotoxic treatment often develop resistance to several ant leukemic drugs, leading to multidrug resistance (MDR) phenotype in cancerous tissue. MT is a cell cycle non-specific anti-cancer drug and P-glycoprotein substrate used in the treatment of breast cancer [143]. Mitoxantrone transporter is identified as ABC-transporter in a breast cancer-derived cell line and is designated as "breast cancer resistance protein" (BCRP) and also as "mitoxantrone resistance-associated protein" [144, 145]. The resistance occurs by possible mechanisms like decreased accumulation of intracellular drugs, often with over-expression of P-glycoprotein (MDR1) mediating increased drug efflux, enzymatic modifications that minimize susceptibility to DNA damage or improve DNA repair, altered drug metabolism, distribution, and binding site [146–149]. The inhibition of downstream death signaling pathways are all forms of drug resistance mechanisms generally observed with mitoxantrone [150–152]. In clinical studies, it is observed that efflux transport is carried out by ATP-binding cassette (ABC) transporters, which transport substrate drugs from the cell in an energy-dependent manner against a concentration gradient [150]. P glycoproteins (P-gp) and multidrug resistance proteins (MRPs) are two transmembrane xenobiotic transporter proteins that imparts a significant role in clinical drug resistance in drug-sensitive human breast cancer cells [152–156]. BCRP overexpresses several chemotherapeutic drugs, including mitoxantrone, aclacinomycin, and doxorubicin, out of the cell to several cancer cell lines [157–159].

S. No.	Toxicities	Treatment	Dose	Drug delivery system	Main findings
1	Cardiovascular toxicity,	Advanced breast cancer	12 mg/m² every 3 mo	MT intravenous infusion	Cardiac disease has been found in cancer patients who received cumulative doses either alone or in conjunction with other cytotoxic agents. Elevated risk of leukaemia in 0.25% of patients (n=802) has been observed [168].
	Congestive heart failure		(140 mg/m²²)		
	and AML		for 5 d or 14 mg/		
	Hematological Effects	ANLL	3 d for 3 d	MT intravenous infusion	
2	Neutropenia	Prostate cancer	2-5 mg/m²	MT intravenous infusion	
3	Gastrointestinal toxicity	Breast cancer	12 mg/m²	MT intravenous infusion	
4	Hematologic toxicity	Malignant lymphoma and	6-18 mg/m²	PEQylated liposomal	Extreme leukopenia was found in only one patient (16 mg/m²). Some hematological toxicity symptoms include thrombocytopenia, erythrophenia, and a drop-in hemoglobin level.
5	and Non-hematologic	Advanced solid tumor		mitoxantrone-loaded into	
	toxicities			small unilamellar vesicles	
6	Alopecia	Breast cancer	12 mg/m²	MT intravenous infusion	

*= maximum cumulative lifetime dose; *1= MT in combination with methylprednisolone; MS: Multiple sclerosis; LVEF: Left ventricular ejection fraction; n=Number of patients; AML: Acute myelogenous leukemia; ANLL: Acute Non-Lymphoblastic Leukemia; CR: complete remission ALT: Alanine aminotransferase.
Sri K et al. investigated in key role of multidrug resistance protein (MRP1) and ATP binding cassette Subfamily C Member 1 (ABCC1) in MT cross-resistance in the MCF7 cell line. The MCF7/VP resistant cell line exhibits elevated levels of MRP1 compared to the MCF7/WT parental cell line. MCF7/VP cells are 6–10 times relatively more resistant to MT than MCF7/WT cells. MT efflux is ATP-dependent and inhibited by cyclosporine A and sulfhydrylproazone. With these agents, inhibition of MT efflux sensitizes cells to MT cytotoxicity and partially reverses MT resistance in MCF7/VP cells. It concluded that overexpression of MRP1 in MCF7/VP cells is expected to be enhance the MT efflux and resistance [160].

Potent inhibition of BCRP to minimize drug efflux is a promising approach to overcome drug resistance limitations [161–163]. However, because MT is a substrate of the BCRP efflux transporter, tumor cells are extremely resistant to it [156]. To improve MT efficacy, Nancarriers drug delivery that can minimize efflux, prolong drug retention in drug-resistant cancer cells, and induce complexity in tissues can be developed.

Toxicity of mitoxantrone

MT is a synthetic derivative with an antitumor activity similar to that of anthracyclines but with less toxicity [164]. The toxicity profile of MT is associated with the total dose administered. It is usually well-tolerated at standard doses [165]. Anemia, cardiotoxicity, neutropenia, and liver toxicity were some of the most commonly reported unexpected side effects in Phase II/III clinical trials [166, 167]. Liver injury linked to MT is possibly due to hypersensitivity reaction [168]. The published data also indicate many other toxic effects (table 3). Most of these side effects were intermediate or mild, such as nausea, abdominal pain, vomiting, fever, or bone marrow suppression. The major long-term toxicity is dose-dependent and is a strict limiting factor for the duration of treatment [169]. To reduce the risk of cardiac events, the drug should be administered slowly and carefully through an intravenous route (over 30 min, as it may cause severe local tissue damage) and administration of MT has shown good tolerance at an acceptable level [109]. Analogues of MT with much lower cardiotoxicity are currently being investigated in experimental animal models [58, 138].

Patents on mitoxantrone and related formulations

The records were found using a variety of databases, including Google Patents, Espacenet, WPO, and the USPTO search engines. Terminologies like mitoxantrone, mitoxantrone formulations for cancer, use of mitoxantrone in breast cancer, etc., were used to perform a search in different databases. Considering patents written in English, we concentrated on the relevant material, title, abstract, and study status. There are some patents on the MT-based drug delivery system that were considered for this review and are listed in (table 4).

Nano-carrier system	Therapeutic agent	Therapeutic indication	Patent application number	Patent proprietor	Outcome
Liposome	Mitoxantrone	Non-Hodgkin’s lymphoma, myeloma, advanced breast cancer, bladder, ovarian and hematopoietic carcinomas	US6086297A-1999	Univ British Columbia [CA]	Liposomal formulations of mitoxantrone [175]
Sustained-release implant	Mitoxantrone	Entity tumor/Solid tumors	CN101176710A-2008	Jinan Shuihu Medical Science [CH]	Mitoxantrone sustained-release agent for curing tumors [176]
Nanoparticles	Mitoxantrone	Prolongs the survival time of S180 mice, improves the efficacy, and reduces systemic toxicity	CN10764827A-2018	Univ Capital Medical Sciences	Mesoporous silicon dioxide-methotrexate-mitoxantrone nanoparticles [177]
Liposome	Mitoxantrone	High entrapment rate, strong stability and short half-life	CN103622999A-2014	Univ Jilin	Cardioprotective nanoparticles and its application in antitumor drugs [178]
TRACER	Mitoxantrone	Pharmaceutical preparations and application of MT as a lymph tracer.	CN102397561A-2012	Univ Shenyang Pharmaceutical	Application of mitoxantrone as lymph tracer [179]

CONCLUSION

MT is an antibiotic with an antineoplastic activity that interferes with the growth and spread of cancer cells in the body. In spite of being potential anticancer drug, Mitoxantrone’s utility is limited due to low permeability, low metabolism, bioavailability, drug resistance, cardiotoxicity, and gastrointestinal disorders. Mitoxantrone targeting topoisomerase II inhibitor for cancer therapy. To address these drawbacks, MT is now being formulated as Nanocarrier systems to enhance permeability, bioavailability, efficient tumor targeting, controlled drug release and drug resistance. The reviewed literature in this article emphasis on the recent advances of MT-containing Nano-drug delivery systems, such as Nano-diamond, PEGylated Gold Nano-complexes, lipid-based nanoparticles such as SLNs, NLCCs, micelles, and other lipid-based nanoparticles, transdermal cubic phases, and photodynamic therapy, as a better option for increasing the effectiveness of DDS in tumor treatment. However, till date, these Nano formulations containing MT are used only in vitro and in vivo cell line studies.

FUTURE DIRECTION

In the future, Nanotechnology-based approaches such as SEDDS, Quantum dots, Carbon nanotubes, can be used as a promising therapeutic solution for targeting drug resistance and its low permeability. MT appears to be metabolized in the liver and hence further studies must be carried out to determine the effect of liver dysfunction on the disposition and toxicity of MT. Hence it is concluded that this literature serves as a valuable resource for a comprehensive review of MT as the potential target moiety for developing Nano strategies for clinical use. To overcome the drug resistance and toxicity issues which are currently research progress needs to be focused and improved on nanotechnology-based approaches.

ABBREVIATIONS

BC: Breast cancer, TNBC: Triple-negative breast cancer, MT: Mitoxantrone, DNA: Deoxyribonucleic acid, RNA: Ribonucleic acid, ABC transporter: ATP-binding cassette transporter, BCRP: Breast cancer resistance protein, FDA: Food and Drug Administration, DMT: Disease-modifying therapy, TOP2A: Topoisomerase inhibitor type II, NCI: National Cancer Institute, PM2: Plaque morphology mutant, BDDCS: Biopharmaceutical Drug Deposition and Classification System, NPs: Nanoparticles, NLCCs: Nano structured lipid carriers, SLNs: Solid lipid nanoparticles, MDR: Multidrug resistance, NDs: Nano diamonds, BSANPs: Bovine serum albumin nano particles, PFp: poly(ε-caprolactone)-(pluronic F68-poly(ε-caprolactone), PLGA: Poly D, L-lactic-glycolic acid, PEG: Polyethylene glycol, NLCCs: Nanostructured lipid-carrageenan hybrid carriers, NLDGs: Novel nanostructured lipid-dextran sulfate hybrid carriers, PL/AGC:
Phospholipid/amorphous calcium carbonate, CHP: Cholesterol-substituted pullulan polymers, TMLGNNs: Three-in-one multifunctional lipid sodium glycocholate nanoparticles, PDT: Photodynamic therapy, HPLC: High performance liquid chromatography, Vd: volume of distribution, MRP: Multidrug resistance protein, MS: Multiple sclerosis, LVEF: Left ventricular ejection fraction, AML: Acute myelogenous leukemia, ANLL: Acute Non-lymphoblastic Leukemia, CR: complete remission, ALT: Alanine aminotransferase, SEDDS: Self-emulsifying drug delivery systems.

ACKNOWLEDGMENT
All the authors have contributed equally for the work done.

FUNDING
Nil

AUTHORS CONTRIBUTIONS
All authors have contributed equally.

CONFLICT OF INTERESTS
The authors declare that they have no conflict of interest.

REFERENCES
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30. doi: 10.3322/caac.21590, PMID 31912902.
2. Eaton L. World cancer rates set to double by 2020. Br Med J. 2003;326(7392):728. doi: 10.1136/bmj.326.7392.728/a, PMID 12676827.
3. The authors declare that they have no conflict of interest.

AUTHORS CONTRIBUTIONS
All authors have contributed equally.

CONFLICT OF INTERESTS
The authors declare that they have no conflict of interest.
31. Díaz Munoz G, Miranda IL, Sartori SK, de Rezende DC, Díaz MAN. Anthraquinones: an overview. Stud Nat Prod Chem. 2018;58:313-38. doi: 10.1016/B978-0-444-64056-7-00011-8.

32. DeVita Jr V, Rosenberg SA, DeVita-Cancer HS. Principles and practice of oncology [Jul]; 2001.

33. Feofanov A, Sharonov S, Fleury F, Kudelina I, Nabiev I. Quantitative confocal spectral imaging analysis of mitoxantrone within living K562 cells: intracellular accumulation and distribution of monomers, aggregates, naphtoquinone metabolite, and drug-target complexes. Biophys J. 1997;73(6):3282-36. doi: 10.1016/S0006-3495(97)83785-7. PMID 9414246.

34. Lorna De Leoz MA, Chua MT, Ann Endomasa-Arias MA, Concepcion GP, Cruz LJ, De Leoz MLA. A modified procedure for the preparation of mitoxantrone. Philpp. Sci. 2006;135(2):83-92.

35. Von Hoiff DF, Colman CA, Forseh B. Activity of mitoxantrone in a human tumor cloning system. Cancer Res. 1981;41(5):1853-5. PMID 7214352.

36. Neidhart JA, Gochnour D, Roach R, Hoth D, Young D. A comparison of mitoxantrone and doxorubicin in breast cancer. J Clin Oncol. 1986;4(5):672-7. doi: 10.1200/JCO.1986.4.5.672. PMID 3517241.

37. Zee-Cheng PH, Cheng CC. Antineoplastic agents. Structure-activity relationship study of bis [substituted aminoaIly] anthraquinones. J Med Chem. 1978;21(3):291-4. doi: 10.1021/jm00120a012. PMID 628005.

38. YAP HY, Yap ITY, Blumenschin GR, Schell FC, Buzdar A, Valdivieso M BG. Dihydroxyanthracenedione: A promising new drug in the treatment of metastatic breast cancer. Ann Intern Med. 1981 Dec 1;95(6):694.

39. Ling G, Zhang T, Zhang P, Sun J, He Z. Synergistic and complete reversal of the multidrug resistance of mitoxantrone hydrochloride by three-in-one multifunctional lipid-sodium glycolate nanocarriers based on simultaneous BCRP and Bcl-2 inhibition. Int J Nanomedicine. 2016;11:4077-91. doi: 10.2147/IJNN.S95576. PMID 27601896.

40. Smith IE, Stuart-Harris R, Pavlidis N, Bozek T. Mitoxantrone (Novantrone) as single agent and in combination chemotherapy in the treatment of advanced breast cancer. Cancer Treat Rev. 1985;10(6):374-40. doi: 10.1016/0305-7372(85)90020-8. PMID 6661753.

41. Neidhart JA, Gochnour D, Roach RW, Steinberg JA, Young D. Mitoxantrone versus doxorubicin in advanced breast cancer: A randomized cross-over trial. Cancer Treat Rev. 1983;10(6):Suppl B:41-6. doi: 10.1016/0305-7372(83)90021-x. PMID 636277.

42. Bruemf G, Hain N, Ben-Baruch N, Sukses A. Second-line chemotherapy with mitoxantrone as a single agent in metastatic breast cancer. J Chemother. 1993;5(1):43-6. doi: 10.1080/11229213.1993.11373920. PMID 8459264.

43. Montazabreda A-RR, Sazgarnia A, Bahreyni-Toosi MH, Ahmadi A, Shakeri-Zadeh A, Alievadov A. Mitoxantrone as a prospective photosensitizer for photodynamic therapy of breast cancer. Photodiag Photodyn Ther. 2012;Mar;9(1):46 -51. doi: 10.1016/j.pdpt.2011.08.004. PMID 22369728.

44. Carter KA, Wang S, Geng J, Luo D, Shao S, Lovell JF. Metal chelation modulates phototherapeutic properties of mitoxantrone-loaded porphyrin-phospholipid liposomes. Mol Pharm. 2016; Feb;13(2):420-7. doi: 10.1021/acs.molpharmaceut.5b00653. PMID 26691879.

45. Jain V, Kumar H, Anod HV, Chand P, Gupta NV, Dey S, Kesharwani SS. A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer. J Control Release. 2020;326(Apr):28-47. doi: 10.1016/j.jconrel.2020.07.003. PMID 32635502.

46. Bowden GT, Peng YM AD. Comparative molecular pharmacology of the anthracene anticancer drugs bisanthranol and mitoxantrone. Proc Am Assoc Cancer Res. 1984;25(Mar):296.

47. Chand P, Kumar H, Badurri N, Gupta NV, Bettala VQ, Madhunapantula SV, Kesharwani SS, Dey S, Jain V. Design and evaluation of cabazitaxel loaded NLCs against breast cancer cell lines. Colloids Surf B Biointerfaces. 2021 Mar;199:111535. doi: 10.1016/j.colsurfb.2021.111535.

48. Cornbleet MA, Stuart Harris RC, Smith IE, Coleman RE, Rubens RD, McDonald IT, Mouriden HT, Rainer H, van Oosterom AT, Smyth IF SJ. Mitoxantrone for the treatment of advanced breast cancer: single-agent therapy in previously untreated patients. Eur J Cancer Clin Oncol. 1984;20(9):1141-6. doi: 10.1016/S0277-5379(84)80122-6. PMID 6541135.

49. Tao X, Tao T, Wen Y, Yi J, He L, Huang Z, Nie Y, Yao X, Wang Y, He C, Yang X. Novel delivery of mitoxantrone with hydrophobically modified pululano nanoparticles to inhibit bladder cancer cell and the effect of nano-drug size on inhibition efficiency. Nanoscale Res Lett. 2018;13(1):345. doi: 10.1186/s11671-018-2769-x. PMID 30377872.

50. Carmen Avendano JCC, Avendano C, Menendez JC, Carmen Avendano JCC, Avendano C, Menendez JC. Anticancer drugs acting via radical species. Med Chem Anticancer Drugs. 2015;2:133-9.

51. Cheng CC. The design, synthesis and development of a new class of potent anitneoplastic anthraquinones. Prog Med Chem. 1983;20:93-118. doi: 10.1016/s0078-6469(08)70127-0.

52. Adamson RH. Letter: Duomenyicin [NSC-82151] and adriamycin (NSC-123127): a hypothesis concerning antitumor activity and cardiotoxicity. Cancer Chemother Rep. 1974;58:293. PMID 4841712.

53. Durr FE. Biochemical pharmacology and tumor biology of mitoxantrone and related anthraquinones. Cancer Res. 1983;43:1212-38. doi: 10.1159/00054813. doi: 10.1016/S0006-2952(38)90172-3.

54. Preethi S. Mitoxantrone injection product monograph. Novopharm Limited. Rose BD editor. Mitoxantrone. 153 ed. Waltham, MA; 2008.

55. Richmond Hill O. Mitoxantrone injection package insert. Pharmaceutical partners of Canada; 2021.

56. Et CM. Mitoxantrone (Novantron) Drugs.com. 2021.

57. Saint Laurent Q. Mitoxantrone injection, US product monograph. Hospira Healthcare Corporation; 2014.

58. Stuart-Harris RC, Smith IE. Mitoxantrone, a phase II study in the treatment of patients with advanced breast carcinoma and other solid tumours. Cancer Chemother Pharmacol. 1982;8(2):179-82. doi: 10.1007/BF00255480. PMID 7105382.

59. Durr FE, Wallace RE Citarella RV. Molecular and biochemical pharmacology of mitoxantrone. Cancer Treat Rev. 1983;10:3-11.

60. Minotti G, Menna P, Salvadori E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacological development in anthracytin drug resistance and cardiotoxicity. Pharmacol Rev. 2004;56(2):185-229. doi: 10.1124/pr.56.2.6. PMID 15169927.

61. Mitoxantrone injection product monograph. Novopharm Limited. Rose BD editor. Mitoxantrone. 153 ed. Waltham, MA; 2008.
68. Su Z, Li Z, Wang C, Tian W, Lan F, Liang D, Li J, Li D, Hou H. A novel rhin derivative: activation of Rac1/NADPH pathway enhances sensitivity of nasopharyngeal carcinoma cells to radiotherapy. Cell Signal. 2019;54:35-45. doi: 10.1016/j.cellsig.2018.11.015. PMID 30463023.

69. Koerner SK, Hanai J, Bai S, Jernigan FE, Oki M, Komabaca, Shuto E, Sukhatme VP, Sun L, BS, Koerner SK HJB. Design and synthesis of emodin derivatives as novel inhibitors of ATP- citrate lyase. Eur J Med Chem. 2017;126:920-8. doi: 10.1016/j.ejmech.2016.12.018. PMID 27979879.

70. YYW QW, Wang Q, Yan YZ, Phjion 8-0-β-glucopyranoside inhibits cleavage cell renal cancer bydownregulating hexokinase II and inhibiting glycolysis. Biomed Pharmacother.
71. Huang K, Jiang L, Huang K JLL. Development of anthraquinone analogs as phosphoglycerate mutase 1 inhibitors. Molecules. 2019;24(5):845.

72. Lown JW, Hanstock CC, Bradley RD SD, Lown JW, Hanstock CC, Bradley BD, Scraba DG, Lown JW, Hanstock CC, Bradley RD SD. Interactions of the antagonist agents mitoxantrone and bisantrene with deoxyribonucleic acids studied by electron microscopy. Mol Pharmacol. 1984;29(1):178-84.

73. Sfe WO, Vajragupta O, Meng J, Sengupta SK. DNA-topoisomerase II binding specificity and RNA polymerase inhibitory activity of bis[aminallyl]anthraquinones and bis[methylthion]vinylquinolinium iodides. J Pharm Sci. 1982;71(2):253-7. doi: 10.1002/jps.2600710228. PMID 7038093.

74. Alberts DS, Yei L, Peng M, Bowden GT, Dalton WS, Mackel C. Pharmacology of mitoxantrone: mode of action and pharmacokinetics x section. Hematology/Oncology. 1985;107:101-7.

75. Garnier F, Debat H, Nadal M. Type IA DNA topoisomerasers: A universal core and multiple activities. Methods Mol Biol. 2018;1709:1-20. doi: 10.1007/978-1-4939-7459-7_1. PMID 29177730.

76. Fry AM, Chresta CM, Davies SM, Claire Walker MC, Harris AL, Fry AM, Chresta CM, Davies SM, Claire Walker MC, Harris AL. Topoisomerase level and chemosensitivity in human tumor cell lines. Cancer Res. 1991;51(24):6592-5. PMID 1660343.

77. Depowski PL, Rosenthal SI, Brien TP, Stylos S, Johnson RL, Ross LA. New of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22(1):11-23. doi: 10.1007/s11095-004-9900-4. PMID 15771225.

78. Zhang P, Ling G, Pan X, Zhang P, Ling G, Pan X, Sun J, Zhang T. Novel nanostructured lipid-dextran sulfate hybrid carriers overcome tumor multidrug resistance of mitoxantrone. Nanomedicine Nanotechnology, Biomed. 2012;8(2):185-93.

79. Benet LZ, Broccati F, Oprea TL. BDDCS applied to over 900 drugs. AAPS J. 2011;13(4):519-47. doi: 10.1208/s12248-011-9299-9. PMID 21818695.

80. Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Clin Pharmacokinet. 2006;45(1):51-61. doi: 10.2165/00003495-200645010-00003. PMID 1660343.

81. Mussi SV, Silva RC, Oliveira MC, Lucchi CM, Azevedo RB, Ferreira LA. New approach to improve encapsulation and antitumor activity of doxorubicin loaded in solid lipid nanoparticles. Eur J Pharm. 2013;69(1-2):82-90. doi: 10.1016/j.ejps.2012.10.025. PMID 23178339.

82. Singh R, Mehra NK, Jain V, Jain NK. Gemcitabine-loaded smart carbon nanotubes for effective targeting to cancer cells. J Drug Target. 2013 Jul 14;21(6):581-92. doi: 10.3109/1061186X.2013.773826. PMID 23448494.

83. Pommier Y, Leo E, Zhang H, Marchand C. DNA topoisomerasers and their poisoning by anticancer and antibacterial drugs. Biochemistry. 1993 Mar 16;32(10):2717-24. doi: 10.1021/bi00061a033. PMID 8383523.

84. Bisacchi GS, Manchester JL. A new-class antibacterial-astom. Lessons in drug discovery and development: a critical analysis of more than 50 years of effort toward ATPase inhibitors of DNA gyrase and topoisomerase IV. ACS Med Chem Lett. 2015 Jan 9;4(1):4-11. doi: 10.1021/ml50013t. PMID 27620144.

85. Lindsey RH, Pendleton M, Ashley RE, Mercer SL, Deweese JE, Osheroff N. Catalytic core of human topoisomerase IIa enzyme in DNA-enzyme interactions and drug mechanism. Biochemistry. 2014 Oct 21;53(41):6595-602. doi: 10.1021/bi500791h. PMID 25280260.

86. Gibson EG, Deweese JE. Covalent poisons of topoisomerase II. Curr Top Pharmacol. 2013;17(1):1-12.

87. Deweese JE, Osheroff N. The DNA cleavage reaction of topoisomerase II: Wolf in sheep’s clothing. Nucleic Acids Res. 2009 Feb;37(3):730-48. doi: 10.1093/nar/gkn937. PMID 19042970.
103. Doughty JC, Kane E, Cooke TG, Mc Ardle CS. Mitoxantrone and methotretate chemotherapy with and without mitomycin C in the regional therapy of locally advanced breast cancer. Breast. 2002;11(1):97-9. doi: 10.1054/brest.2001.10316, PMID 14965654.

104. Hagemeister F, Cabanillas F, Coleman M, Gregory SA, Zinzani PL. The role of mitoxantrone in the treatment of indolent lymphomas. Oncologist. 2005;10(2):150-9. doi: 10.1634/thencologist.10-2-150, PMID 15790217.

105. Von Hoff DD, Pollard E, Kuhn J, Murray E, Colman CA. Phase I clinical investigation of 1,4-dihydroxy-5,8-bis ([(2-[2- hydroxyethyl] amino) ethyl) amino)]-9-[10-anthracenedione dihydrochloride (NSC 301739), a new anthrancene cancer. Cancer Res. 1980;40(5):1516-8. PMID 7370989.

106. Shenkenberg TD, Von Hoff DD, Mitoxantrone: A new anticancer drug with significant clinical activity. Ann Intern Med. 1986 Jul 1;105(1):67-81. doi: 10.7326/0003-4819-105-1-67, PMID 3521429.

107. Lahloumawila H, formulation and in vitro evaluation of poly(d, l-lactide-co-glycolide) (plga) nanoparticles of ellagic acid and its effect on human breast cancer, mcfc-7 cell line. Int J Curr Pharm Res 2021;13(5):56-62. doi: 10.22159/ijcpr.2021v13i5

108. Kesavarwani SS, Jain V, Dey S, Sharma S, Malbya P, Kumar VA. An overview of advanced formulation and nanotechnology-based approaches for solubility and bioavailability enhancement of silymarin. J Drug Deliv Sci Technol. 2020 Dec;60. doi: 10.1016/j.jddst.2020.10.021, PMID 1052021.

109. Du Q, Chen H. The methyloxazolones in Citrus reticulata Blanco cv. ponkan and their antiproliferative activity against cancer cells. Food Chem. 2010;119(2):567-72. doi: 10.1016/j.foodchem.2009.06.059.

110. Lu B, Xiong SB, Yang H, Yin XD, Chao RB. Solid lipid nanoparticles of mitoxantrone for local injection against breast cancer and its lymph node metastases. Eur J Pharm Sci. 2006;28(1-2):86-95. doi: 10.1016/j.ejps.2006.01.001, PMID 16472996.

111. Li Z, Cai Y, Zhao Y, Yu H, Zhou H, Chen M. Polymeric mixed micelles loaded mitoxantrone for overcoming multidrug resistance in breast cancer via photodynamic therapy. Int J Nanomedicine. 2017;12:6595-604. doi: 10.2147/IJN.S138235, PMID 29919756.

112. Lam P, Lin RD, Steinmetz NF. Delivery of mitoxantrone using a plant virus-based nanoparticle for the treatment of glioblastomas. J Mater Chem B. 2018;6(37):5888-95. doi: 10.1039/C8TB01191E, PMID 30923616.

113. Lu B, Xiong SB, Yang H, Yin XD, Chao RB. Solid lipid nanoparticles of mitoxantrone for local injection against breast cancer and its lymph node metastases. Eur J Pharm Sci. 2006;28(1-2):86-95. doi: 10.1016/j.ejps.2006.01.001, PMID 16472996.

114. Toh TB, Lee DK, Hou W, Abdullah LN, Nguyen J, Ho D, Chow EK. Nanodiamond-mitoxantrone conjugate: enhanced drug retention in chemoresistant breast cancer cells. Mol Pharm. 2014;11(8):2683-91. doi: 10.1021/mp5001108, PMID 24687631.

115. Ling G, Zhang T, Zhang P, Sun J, He Z. Nanostructured lipid-carrageenan hybrid carriers (NLCCs) for controlled delivery of mitoxantrone hydrochloride to enhance antitumor activity bypassing the BCRP-mediated efflux. Drug Dev Ind Pharm. 2016;42(8):1351-9. doi: 10.3109/03639045.2015.1139579, PMID 26754913.

116. Zhang LC, Hou SX, Zhang JQ, Hu WJ, Wang CY. Preparation, characterization, and in vivo evaluation of mitoxantrone-loaded, folate-conjugated albumin nanoparticles. Arch Pharm Res. 2010;33(8):1193-8. doi: 10.1007/s12272-010-0089-x, PMID 20803312.

117. Sargazi A, Kamali N, Shiri F, Heidari Majd M. Hyaluronic acid/polyethylene glycol nanoparticles for controlled delivery of mitoxantrone. Artif Cells Nanomed Biotechnol. 2010;38(3):500-9. doi: 10.1080/21694101.2010.532462, PMID 28503952.

118. Wang C, Han M, Liu X, Chen S, Hu F, Sun J, Yuan H. Mitoxantrone-preloaded water-responsive phospholipid-amorphous calcium carbonate hybrid nanoparticles for targeted and cancer effective therapy. Int J Nanomedicine. 2019;14:1509-17. doi: 10.2147/IJN.S1959976, PMID 30880961.

119. Yoon JH, Cho HJ, Jin HE, Maeng HJ. Mitoxantrone-loaded pegylated gold nanocomplexes for cancer therapy. J Nanosci Nanotechnol. 2019;19(2):687-90. doi: 10.1166/jnn.2019.15902, PMID 30360142.

120. Toh TB, Lee DK, Hou W, Abdullah LN, Nguyen J, Ho D, Chow EK. Nanodiamond-mitoxantrone conjugate: enhanced drug retention in chemoresistant breast cancer cells. Mol Pharm. 2014;11(8):2683-91. doi: 10.1021/mp5001108, PMID 24687631.

121. Development D, Pharmacy I. Nanostructured lipid-carrageenan hybrid carriers (NLCCs) for controlled delivery of mitoxantrone hydrochloride. J Nanosci Nanotechnol. 2015;15(5):2888-93. doi: 10.1007/s11010-015-2395-0, PMID 25839864.

122. Wang C, Han M, Liu X, Chen S, Hu F, Sun J, Yuan H. Mitoxantrone-preloaded water-responsive phospholipid-amorphous calcium carbonate hybrid nanoparticles for targeted and cancer effective therapy. Int J Nanomedicine. 2019;14:1509-17. doi: 10.2147/IJN.S1959976, PMID 30880961.

123. Smithy JF, Macpherson JS, Warrington PS, Leonard RCF, Wolf CR. The clinical pharmacology of mitoxantrone. Cancer Chemother Pharmacol. 1986;17(2):149-52. doi: 10.1007/BF00367644, PMID 3719884.

124. Richard B, Fabre G, De Sousa G, Fabre I, Rahmani R, Cano JP. Interspecies variability in mitoxantrone metabolism using primary cultures of hepatocytes isolated from rat, rabbit and humans. Biochem Pharmacol. 1991;41(2):255-62. doi: 10.1016/0006-2952(91)90494-m, PMID 19908976.

125. Alberts DS, Peng YM, Leigh S, Davis TP, Woodward DL. Disposition of mitoxantrone in patients. Cancer Treat Rev. 1983;10(3):253-67. doi: 10.1016/0305-7372(83)90018-x, PMID 6661732.

126. Chackrelli FS, Morrison JA, Cosulich DB, Perkinson NA, Ridge DN, Sun FW, Murdock KC, Woodward DL, Arnold ET.
Identification of human uridine monophosphate metabolites. Cancer Res. 1986;46(9):4858-61. PMID 3731132.

138. Richard B, Fabre G, Desousa G, Cano JP. Metabolism of mitoxantrone by hepatocytes in primary culture isolated from different species including man. Proc Am Assoc Cancer Res. 1987;28:672.

139. Benet LZ, Broccatelli F, Oppeo TL. BDCCs applied to over 900 drugs. AAPS J. 2011;13(4):519-47. doi: 10.1208/s12248-011-9290-9. PMID 21818965.

140. Batra VK, Morrison JA, Woodward DL, Sivert NS, Yacobi A. Pharmacokinetics of mitoxantrone in man and laboratory animals. Drug Metab Rev. 1986;17(3-4):311-29. doi: 10.3109/03602538609098294. PMID 3552542.

141. Alberts DS, Peng Y, Leigh S, Davis TP, Woodard DL. Disposition of Mitoxantrone in cancer patients. Cancer Res. 1985;45(4):1879-84.

142. Kilmer PD. Review article: review artickle. Journal Theory, Pract Crit Card J. 2010;11(3):369-73. doi: 10.1177/1464414410365020.

143. Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK. A multidrug resistance transporter from human MCF-7 breast cancer cells (mitoxanthrone anthracelines: transporter proteins). Med Sci. 1998;95(Dec):15655-70.

144. Miyake K, Mckley L, Litman T, Zhan Z, Robey R, Cristensen B, Brangi M, Greenberger L, Dean M, Fojo T, Bates SE. Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: demonstration of homology to ABC transport genes. Cancer Res. 1999;59(1):8-13. PMID 9902175.

145. Zhu X, Wong H, Chang KF, Cui J, Law MC, Cheng TC, Hu X, Chow LMC, Chan TH. Triazole bridged flavonoid dimers as potent, non-toxic, and highly selective breast cancer resistance protein (BCRP/ABCG2) inhibitors. J Med Chem. 2019 Sep 26;62(18):8578-608. doi: 10.1021/acs.jmedchem.9b00963. PMID 31465868.

146. Gillet JP, Gottesman MM. Mechanisms of multidrug resistance in cancer. In: Methods Mol Biol. 2010;759:47-76. doi: 10.1007/978-1-60761-416-6_4. PMID 19994920.

147. Gerlach JH, Kartner N, Bell DR, Ling V. Multidrug resistance. Cancer Surv. 1986;5(1):25-46. PMID 2885085.

148. Fischbein RJ, Dimmitt LA, Daily BM, Gafken GJ. First-line chemotherapy of advanced breast cancer with mitoxantrone, cyclophosphamide, and 5-fluorouracil resistance. J Clin Oncol. 2020 Jun 30;38(13):10.1200/jco.20.03983. doi: 10.1200/JCO.20.03983. PMID 32665669.

149. Pollihan CL, Weisman LS, Alexander AH. Characterization of the multidrug resistance (MDR-1) gene: structure, expression, and function. Curr Opin Cell Biol. 1995;7(1):28-34. doi: 10.1016/0955-0674(95)80016-2. PMID 7717474.

150. Lipton RB, Corbett TH. Establishm...
and vincristine. Oncology. 1989;46(4):208-11. doi: 10.1159/000226717, PMID 2740063.
174. Bally Marcel B, Barber Lanì W, Chang Charmaine W, Lim Howard J, Madden Thomas D. Liposomal Formulations Mitoxantrone; 1999.
175. Wei J Sun. Mingxing. [Mingxing St Juan; wei]. Mitoxantrone sustained-release implantation agent curing entity tumour; 2008.
176. Ming Pssnwyw, Classifications. Mesoporous silicon dioxide-methotrexate-mitoxantrone nanoparticles as well as preparation, activity and application thereof; 2018.
177. Qiang Lh, Pei Jin. Cardiolipin-containing new liposome preparation, and its application in antitumor drugs; 2014.
178. Cheng XF, Min Wang, Shujun Wang. Application of mitoxantrone as lymph tracer; 2012.