Scaling of the Saffman helicity integral in decaying magnetically-dominated turbulence

Hongzhe Zhou†, Ramkishor Sharma1 and Axel Brandenburg1,2,3,4

1Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, SE-10691 Stockholm, Sweden
2The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-10691 Stockholm, Sweden
3McWilliams Center for Cosmology & Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
4School of Natural Sciences and Medicine, Ilia State University, 3-5 Cholokashvili Avenue, 0194 Tbilisi, Georgia

(16 June 2022)

The Saffman helicity integral of Hosking and Schekochihin (2021, PRX 11, 041005) has emerged as an important quantity that may govern the decay properties of magnetically dominated turbulence. Using a range of different computational methods, we confirm that this quantity is indeed gauge-invariant and nearly perfectly conserved in the limit of large Lundquist numbers. For direct numerical simulations with ordinary viscosity and magnetic diffusivity operators, we find that the solution develops in a nearly self-similar fashion. In a diagram quantifying the instantaneous decay coefficients of magnetic energy and integral scale, we find that the solution evolves along a line that is indeed suggestive of the governing role of the Saffman helicity integral. The solution settles near a line in this diagram that is expected for a self-similar evolution of the magnetic energy spectrum. However, the solution may settle in a slightly different position when the magnetic diffusivity decreases with time, which would be compatible with the decay being governed by the reconnection time scale rather than the Alfvén time.

1. Introduction

The subject of decaying turbulence plays important roles in laboratory and engineering applications (Proudman & Reid 1954; Stalp et al. 1999), including superfluid (Nore et al. 1997) and supersonic ones (Kitsionas et al. 2009), as well as those where decaying temperature fluctuations are of interest (Warhaft & Lumley 1978), and in many areas of astrophysics ranging from star formation (Mac Low et al. 1998) to solar physics (Krause & Ruediger 1975) and especially the early Universe (Christensson et al. 2001; Campanelli 2007; Kahniashvili et al. 2010; Brandenburg et al. 2015). The application to the early Universe focusses particularly on the decay of magnetic fields and their associated increase of typical length scales during the radiation-dominated epoch from microphysical to galactic scales (Brandenburg et al. 1996); see also Durrer & Neronov (2013); ? and Vachaspati (2021) for reviews.

The properties of stationary Kolmogorov turbulence are governed by a constant flux of energy to progressively smaller scales. In decaying turbulence, however, this energy flux is time-dependent. The rate of energy decay is governed by certain conservation laws, such as the Loitsiansky integral (Proudman & Reid 1954) or the Saffman integral (Saffman...
The presence of a conservation law can also cause an inverse cascade. A famous example in magnetohydrodynamic (MHD) turbulence is magnetic helicity conservation, which can lead to a very pronounced increase of the typical length scale (Frisch et al. 1975; Pouquet et al. 1976). In an alternative approach by Ölesen (1997), it has been argued that the slope of the initial energy spectrum determines the temporal evolution of the spectrum. Ölesen (1997) found the possibility of an inverse cascade for a wide range of initial spectral slopes. His argument was based on the observation that the MHD equations are invariant under rescaling space and time coordinates, x and t, respectively. Here, the relation between spatial and temporal rescalings depends on the initial spectrum. Brandenburg & Kahniashvili (2017) found that this relation can, instead, also be governed by the presence of a conservation law. In both case, the formalism of Ölesen (1997) predicts a self-similar behavior of the energy spectrum. This can imply an increase of spectral energy at large length scales, i.e., an inverse cascade, or at least inverse transfer.

The presence of a conservation law can only affect the behavior of the system if the conserved quantity is actually finite. Thus, even though magnetic helicity is always conserved at large magnetic Reynolds numbers, it may not play a role if the magnetic helicity is zero. However, MHD turbulence always has nonvanishing fluctuations of magnetic helicity. Hosking & Schekochihin (2021) have shown that the integral I_H of the two-point correlation function of the local magnetic helicity density $h(x,t) = A \cdot B$, is invariant in the ideal (non-resistive) limit and also independent of the gauge $A \rightarrow A' = A - \nabla \Lambda$ for any scalar Λ. Here, $B = \nabla \times A$ is the magnetic field expressed in terms of the magnetic vector potential A. Hosking & Schekochihin (2021) argued that the conservation of I_H determines the decay of non-helical MHD turbulence. This may be of relevance for explaining the inverse cascading in non-helical magnetically dominated decaying turbulence (Brandenburg et al. 2015), which was also found independently for relativistic turbulence (Zrake 2014). Brandenburg et al. (2015) argued that the decay was compatible with the conservation of anastrophy, i.e., the mean squared vector potential, but this explanation remained problematic owing to the gauge dependence of A. Subsequent work by Brandenburg et al. (2017) with a different initial condition and lower resolution (1152^3 instead of 2304^3) found a somewhat faster decay compatible with the conservation of the standard Saffman integral, which is the two-point correlation function of momentum, which is proportional to the velocity u. This discrepancy suggests a possible dependence on the magnetic Reynolds and Lundquist numbers. Hosking & Schekochihin (2021) studied the conservation properties of I_H using also hyperviscosity and magnetic hyperdiffusivity to different degrees to study the dependence on the magnetic Reynolds and Lundquist numbers of the simulation, as well as justifying the role of the Sweet-Parker regime of magnetic reconnection.

The goal of the present paper is to provide independent evidence for the conservation properties of I_H using a range of different methods and to assess the reliability of the results at different stages during the decay. A particular difficulty is to determine the relevant length scale at which the Saffman helicity integral is to be evaluated. We begin by reviewing its definition in section 2, discuss then our numerical stimulation setup in section 3, and present our results in section 4. We conclude in section 5.

† An inverse cascade implies a local transfer in wavenumber space to smaller k. If the transfer is nonlocal, or if locality in k space is uncertain, one rather speaks just of inverse transfer.
2. Expressions for the Saffman helicity integral

In this section we introduce different expressions for the Saffman helicity integral, which we compare later in section 4.1.

2.1. The box-counting method

The Saffman helicity integral, I_H, is defined analogously to the Saffman integral in hydrodynamics (Saffman 1967), with u being replaced by h (Hosking & Schekochihin 2021), i.e.,

$$I_H = \int_{V_R} d^3r \langle h(x) h(x + r) \rangle.$$

(2.1)

Here, the angle brackets denote an ensemble average, and V_R is some volume with length scale R. We define the length scale of magnetic fluctuations as

$$\xi_M = \frac{\int dk \ k^{-1} E_M(k)}{\int dk \ E_M(k)},$$

(2.2)

where $E_M(k)$ is the magnetic energy spectrum. When R is much smaller than ξ_M, we have

$$I_H \approx \int_{V_R} d^3r \langle h(x) h(x) \rangle \propto R^3,$$

(2.3)

whereas when $R \gg \xi_M$, but at the same time much smaller than the system scale L, equation (2.1) can be written in an equivalent form by assuming that the volume average approximates the ensemble average (Hosking & Schekochihin 2021), i.e.,

$$I_H = \frac{1}{V_{V_R}} \langle H_{V_R}^2 \rangle, \quad H_{V_R} = \int_{V_R} d^3r \ h(r).$$

(2.4)

Within this asymptotic range, I_H is finite and independent of R, because the variance of the magnetic helicity H_{V_R} contained in V_R is expected to scale like $\langle H_{V_R}^2 \rangle \propto V_R^2 \left(V_R/\xi_M^3\right)^{-1} \propto V_R$ (Hosking & Schekochihin 2021).

To evaluate equation (2.4) in numerical simulations, we again replace the ensemble average by a moving average, and hence calculate

$$I_H = \frac{1}{VV_R} \int_V d^3x \left[\int_{V_R} d^3r \ h(x + r) \right]^2,$$

(2.5)

where V is the volume of the simulation box. We call this the box-counting (BC) method.

Upon a Fourier transformation, equation (2.5) can be recast as a weighted integral

$$I_H = \frac{1}{V} \int \frac{d^3k}{(2\pi)^3} \ w(k) \ h^*(k) h(k).$$

(2.6)

The weight function $w(k)$ depends on the shape of V_R. For a cubic region with length $2R$, we have

$$w(k) = w_{\text{cube}}(k) = 8R^3 \prod_{i=1}^{3} j_0^2(k_i R),$$

(2.7)

† We define the Fourier transform of $f(x)$ as $\tilde{f}(k) = \int d^3x f(x) e^{-ik \cdot x}$ and the inverse transformations as $f(x) = \int (2\pi)^{-3} d^3k \ \tilde{f}(k) e^{ik \cdot x}$.
whereas for a spherical region with radius R,

$$w(k) = w^{\text{BC}}_{\text{sph}}(k) = \frac{4\pi R^3}{3} \left[\frac{6j_1(kR)}{kR} \right]^2. \quad (2.8)$$

Here $j_0(x) = \sin x/x$ and $j_1(x) = (\sin x - x \cos x)/x^2$ are the first and second order spherical Bessel functions, respectively. Note also that in equation (2.8), $w^{\text{BC}}_{\text{sph}}(k)$ depends only on $k = |k|$. This allows us to rewrite equation (2.6) as just a one-dimensional integral,

$$I_H = \int_0^\infty dk \ w^{\text{BC}}_{\text{sph}}(k) \ Sp(h), \quad (2.9)$$

where

$$Sp(h) = \frac{1}{V} \frac{k^2}{(2\pi)^3} \int_{|k|=k} d\Omega_k \ \hat{h}^*(k)\hat{h}(k) \quad (2.10)$$

is the Fourier spectrum of the magnetic helicity density and Ω_k is the solid angle in Fourier space, normalized such that $\int dk \ Sp(h) = \langle h^2 \rangle$. The magnetic and kinetic energy spectra can then be written analogously as $E_M(k) = Sp(B)/\mu_0$ and $E_K(k) = \rho_0 Sp(u)/2$, where μ_0 is the magnetic permeability and ρ_0 is the mean density.

2.2. The correlation integral method

As an alternative to the BC method, equation (2.1) can be computed straightforwardly by approximating the ensemble average as a volume average, i.e.,

$$\langle h(x)h(x+r) \rangle = \frac{1}{V} \int_V d^3x \ h(x)h(x+r) = \frac{1}{V} \int \frac{d^3k}{(2\pi)^3} \ \hat{h}^*(k)\hat{h}(k)e^{ik\cdot r}, \quad (2.11)$$

which we call the correlation-integral (CI) method. The Saffman integral can then again be recast in the form of equation (2.6), but the weight functions are now slightly different. For a cubic region V_R we have

$$w(k) = w^{\text{CI}}_{\text{cube}}(k) = 8R^3 \prod_{i=1}^{3} j_0(k_i R), \quad (2.12)$$

and for a spherical region we have

$$w(k) = w^{\text{CI}}_{\text{sph}}(k) = \frac{4\pi R^3}{3} \frac{6j_1(kR)}{kR}. \quad (2.13)$$

Note that $w^{\text{CI}}_{\text{sph}}(k)$ can also be used in equation (2.9).

2.3. The fitting method

A third way of obtaining I_H is by extracting the coefficient of the leading order term of the spectrum of h. At small $k \ll \xi_M^{-1}$ (Hosking & Schekochihin 2021),

$$Sp(h) = \frac{I_H}{2\pi^2} k^2 + O(k^4), \quad (2.14)$$

given that $h(k)$ is statistically isotropic, and therefore

$$I_H = \lim_{k \to 0} \frac{2\pi^2}{k^2} Sp(h). \quad (2.15)$$

† Note that $Sp(h)$ is same as Θ in equation (32) of Hosking & Schekochihin (2021).
3. Application to decaying MHD turbulence simulations

3.1. Basic equations

We solve the compressible MHD equations in a cubic domain of size L^3 using an isothermal equation of state with constant sound speed c_s, so the gas pressure is $p = \rho c_s^2$, where ρ is the density. We allow for the possibility of hyperviscous and hyperdiffusive dissipation of kinetic and magnetic energies and solve the equations for A in the resistive gauge. The full set of equations is

\[
\begin{align*}
\frac{\text{D} \ln \rho}{\text{D} t} &= -\nabla \cdot \mathbf{u}, \\
\frac{\text{D} \mathbf{u}}{\text{D} t} &= -\xi^2_s \nabla \ln \rho + \frac{1}{\rho} \left[\mathbf{J} \times \mathbf{B} + \nabla \cdot (2\rho \nu_n \nabla^{(n-1)} \mathbf{S}) \right], \\
\frac{\partial \mathbf{A}}{\partial t} &= \mathbf{u} \times \mathbf{B} + \eta_n \nabla^{2n} \mathbf{A},
\end{align*}
\]

where $\mathbf{J} = \nabla \times \mathbf{B}/\mu_0$ is the current density, ν_n is the viscosity, η_n is the magnetic diffusivity, $S_{ij} = (\partial_i u_j + \partial_j u_i)/2 - \delta_{ij} \nabla \cdot \mathbf{u}/3$ are the components of the rate-of-strain tensor \mathbf{S}, and n denotes the degree of hyperviscosity or hyperdiffusivity with $n = 1$ corresponding to ordinary viscous diffusive operators in equations (3.2) and (3.3), respectively. Equation (3.3) is here formulated in the resistive gauge, i.e., the scalar potential is $\varphi = -\eta_n \nabla^{2(n-1)} \cdot \mathbf{A}$ in the uncured induction equation $\partial \mathbf{A}/\partial t = -\mathbf{E} - \nabla \varphi$, where $\mathbf{E} = -\mathbf{u} \times \mathbf{B} + \eta_n \nabla^{2(n-1)} \mu_0 \mathbf{J}$ is the electric field.

In some cases, we assume ν_n and η_n to be time-dependent, which is indicated by writing $\nu_n(t)$ and $\eta_n(t)$, respectively. In those cases, we assume a power law variation (for $t > \tau$),

\[
\nu_n(t) = \nu_n^{(0)} \left[\max(1, t/\tau) \right]^r, \quad \eta_n(t) = \eta_n^{(0)} \left[\max(1, t/\tau) \right]^r,
\]

where r is an exponent, τ is a decay time scale, and $\nu_n^{(0)}$ and $\eta_n^{(0)}$ denote the coefficients at early times. The motivation for time-dependent $\nu_n(t)$ and $\eta_n(t)$ is two-fold. On the one hand, perfect self-similarity can only be expected if $r = (1 - \beta)/(3 + \beta)$ is obeyed \cite{Yousef et al. 2004}. On the other hand, negative values of r are convenient from a numerical point of view because they allow us to consider Lundquist numbers that gradually increase as the energy of the turbulence at the highest wavenumbers decays.

3.2. Parameters and diagnostic quantities

In the following, we normalize the magnetic energy spectrum $E_M(k, t) \equiv \text{Sp} (\mathbf{B})/2\mu_0$ such that $\int \text{d} k \; E_M(k, t) = \langle \mathbf{B}^2/2\mu_0 \rangle \equiv \mathcal{E}_M$, where \mathcal{E}_M denotes the mean magnetic energy density. The magnetic integral scale ξ_M has been defined in equation (2.2), where $\xi_M^{-1}(t)$ corresponds approximately to the location where the spectrum peaks, and therefore $\xi_M^{-1}(0) \approx k_{\text{peak}}$. We define the generalized Lundquist number for hyperdiffusion as

\[
L_{\text{un}}(t) = \frac{v_{\text{A}} \text{rms} \xi_M^{2n-1}}{\eta_n},
\]

where v_{A} is the Alfvén velocity.

To characterize the decay of \mathcal{E}_M and I_H, and the increase of ξ_M, we define the instantaneous scaling coefficients

\[
p(t) = -\frac{\text{d} \ln \mathcal{E}_M}{\text{d} \ln t}, \quad p_H(t) = -\frac{\text{d} \ln I_H}{\text{d} \ln t}, \quad q(t) = \frac{\text{d} \ln \xi_M}{\text{d} \ln t}.
\]

Parametric representations of $p(t)$ vs $q(t)$ are useful in distinguishing different decay
behaviors (Brandenburg & Kahniashvili 2017). For purely hydrodynamic turbulence, for example, \(p(t) \) and \(q(t) \) tend to evolve along a line \(p/q \approx 5 \) toward a point where \(p = 10/7 \) and \(q = 2/7 \) (Proudman & Reid 1954), while for fully helical MHD turbulence, one sees an evolution along \(p/q \approx 1 \) toward \(p = q = 2/3 \) (Hatori 1984). In those cases, the spectrum evolves in an approximately self-similar manner of the form

\[
E(k, t) = \xi(t)^{-\beta} \phi(k\xi(t)),
\]

(3.7)

where \(\phi(\kappa) \) is a universal function, and \(\beta \) is an exponent that describes the gradual decline of the height of the peak. Self-similarity is not a stringent requirement, and perfect self-similarity can also not be expected in a numerical simulation owing to the limited range of scales that can be resolved. As shown by Olesen (1997), the ideal MHD equations are invariant under rescaling; see also appendix A.2. This causes additional constraints that will be discussed below. To understand the expectations following from self-similarity and invariance under rescaling, we recall the basic relations involving \(p \) and \(q \) in appendix A.

3.3. Role of Alfvén and reconnection times

As emphasized above, the ratio \(p/q \) is determined by the conserved invariant; see Brandenburg & Kahniashvili (2017) and appendix A. If \(B^2 \xi^1_M \sim \mathcal{E}^1_M \xi^1_M \) remains constant during the decay, then

\[
p = (1 + \beta)q.
\]

(3.8)

In particular, \(\beta = 0 \) when magnetic helicity is conserved, and \(\beta = 3/2 \) when the Saffman helicity integral is conserved.\[†\]

The decay time scale yields a second relation between \(p \) and \(q \). When the decay time is the Alfvén time, we have \(t_{\text{decay}} \sim \xi_M/\mathcal{E}^{1/2}_M \), and therefore

\[
1 = q + p/2.
\]

(3.9)

In that case, \(\beta = 2/q - 3 \), which is the relation expected from the invariance under rescaling the MHD equations; see appendix A.2. Alternatively, if MHD turbulence decay is controlled by slow (Sweet-Parker) reconnection, which occurs for \(Lu^{1/2n}_n \lesssim 10^4 \) (Loureiro et al. 2005, 2007), we have \(t_{\text{decay}} \sim Lu^{1/2n}_n \xi_M/\mathcal{E}^{1/2}_M \), which gives

\[
(8n - 2)q + (2n - 1)p = 4n + 2r,
\]

(3.10)

where we have also taken into account the time dependence of the hyperresistivity, \(\eta_n \sim t^{\alpha} \). Equation (3.8) together with equations (3.9) or (3.10) uniquely determine the values of \(p \) and \(q \). For non-helical decaying MHD turbulence, which is proposed by Hosking & Schekochihin (2021) to conserve \(I_H \), and therefore \(\beta = 3/2 \), we have \(p = 10/9 \) and \(q = 4/9 \) with an Alfvén time scale that is independent of \(n \) and \(r \). With the reconnection time scale we have instead

\[
p = \frac{10(2n + r)}{26n - 9}, \quad q = \frac{4(2n + r)}{26n - 9}.
\]

(3.11)

† Hosking & Schekochihin (2021) introduced the exponent \(\alpha \) and wrote the conserved quantity as \(B^\alpha \xi_M \). Then, \(\alpha = 2/(1 + \beta) \), which is 2 and 4/5 for \(\beta = 0 \) and 3/2, respectively.

‡ Note that for \(n \to \infty \), equation (3.10) does not yield equation (3.9). Mathematically, this is because \(n \) also enters in the expression for \(Lu_n \) itself. To see this, one can write instead \(Lu^{1/2m}_n \) to obtain \((4m + 4n - 2)q + (2m - 1)p = 4m + 2r \), which recovers equation (3.10) in the physically meaningful case \(m = n \), and equation (3.9) when \(m \to \infty \) with \(n < \infty \) enforced.
As initial condition we use a magnetic field with a given energy spectrum proportional to k^4 for $k < k_{\text{peak}}$ and proportional to $k^{-5/3}$ for $k > k_{\text{peak}}$, where k_{peak} denotes the position of the peak of the initial spectrum. We assume random phases, which make the field Gaussian distributed. The smallest wavenumber of the domain is k_1, and k_{peak} is taken to be 60 or 200; see Table 1 for a summary of the simulations. The corresponding data files for these runs can be found in the online material; see Zhou et al. (2022) for the published data sets used to compute each of the figures of the present paper.

We use the publicly available PENCIL CODE (Pencil Code Collaboration et al. 2021). By default, it uses sixth order accurate finite differences and the third-order Runge-Kutta timestepping scheme of Williamson (1980). The different methods for calculating I_H have been implemented and are publicly available since the revision of May 20, 2022.

By default, the code computes A in the resistive gauge, but we have also implemented the calculation of $A_C = A - \nabla A$ in the Coulomb gauge by solving $\nabla^2 A = \nabla \cdot A$ for the gauge potential Λ.

3.4. Initial conditions

As initial condition we use a magnetic field with a given energy spectrum proportional to k^4 for $k < k_{\text{peak}}$ and proportional to $k^{-5/3}$ for $k > k_{\text{peak}}$, where k_{peak} denotes the position of the peak of the initial spectrum. We assume random phases, which make the field Gaussian distributed. The smallest wavenumber of the domain is k_1, and k_{peak} is taken to be 60 or 200; see Table 1 for a summary of the simulations. The corresponding data files for these runs can be found in the online material; see Zhou et al. (2022) for the published data sets used to compute each of the figures of the present paper.

We use the publicly available PENCIL CODE (Pencil Code Collaboration et al. 2021). By default, it uses sixth order accurate finite differences and the third-order Runge-Kutta timestepping scheme of Williamson (1980). The different methods for calculating I_H have been implemented and are publicly available since the revision of May 20, 2022.

By default, the code computes A in the resistive gauge, but we have also implemented the calculation of $A_C = A - \nabla A$ in the Coulomb gauge by solving $\nabla^2 A = \nabla \cdot A$ for the gauge potential Λ.

4. Results

4.1. I_H from different methods

In Figure 1 we compare for run K60D1c the temporal dependence of I_H computed from the methods introduced in section 2: BC and CI methods with cubic and spherical regions V_R for each, and the fitting method. The produced I_H curves have different magnitudes, as expected from the fact that $w(k)$ are different; see figure 1(a). However, the scaling properties, i.e., the values of $p_H = -d\ln I_H/d\ln t$ are unchanged among all the methods; see figure 1(b). In what follows, we use the CI method with cubic regions throughout.

4.2. Gauge invariance

In Figure 2 we compare the R-dependence of the Saffman helicity integral at different times under the resistive gauge (black solid) and the Coulomb gauge (red dashed). Noticeable differences appear only at later times and at small $R \ll \xi_M$, or when R is close to the system scale L. The differences remain negligible in the asymptotic regime.

Run	N^3	$\mathcal{E}_M(0)$	k_{peak}	$\nu_n = \eta_n$	n	r	Lu_n
K200D3t	10243	3×10^{-3}	200	1×10^{-14}	3	-3/7	1.2 $\times 10 \rightarrow 8.5 \times 10^4$
K200D3c	10243	3×10^{-3}	200	1×10^{-14}	3	0	1.2 $\times 10 \rightarrow 1.4 \times 10^5$
K60D1c	10243	3×10^{-3}	60	5×10^{-6}	1	0	5.3 $\times 10 \rightarrow 2.5 \times 10^2$
K60D1bt	20483	7×10^{-4}	60	2×10^{-6}	1	-3/7	2.1 $\times 10^3 \rightarrow 7.5 \times 10^3$
K60D1bc	20483	7×10^{-4}	60	2×10^{-6}	1	0	1.3 $\times 10^3 \rightarrow 4.0 \times 10^3$
K60D3t	10243	3×10^{-3}	60	1×10^{-14}	3	-3/7	1.5 $\times 10^3 \rightarrow 6.3 \times 10^6$
K60D3bt	20483	7×10^{-4}	60	4×10^{-16}	3	-3/7	1.6 $\times 10^5 \rightarrow 3.2 \times 10^7$
K60D3bc	20483	7×10^{-4}	60	4×10^{-16}	3	0	1.7 $\times 10^5 \rightarrow 2.1 \times 10^8$

Table 1. Summary of runs, where N^3 is the resolution, $\mathcal{E}_M(0)$ is the initial magnetic energy, and Lu_n is the hyper-Lundquist number at the beginning and the end of the simulation. Runs ending with ‘c’ use a constant (hyper)diffusivity, whereas those with ‘t’ use a time-dependent value $\propto t^{-3/7}$.

4.1. I_H from different methods

In Figure 1 we compare for run K60D1c the temporal dependence of I_H computed from the methods introduced in section 2: BC and CI methods with cubic and spherical regions V_R for each, and the fitting method. The produced I_H curves have different magnitudes, as expected from the fact that $w(k)$ are different; see figure 1(a). However, the scaling properties, i.e., the values of $p_H = -d\ln I_H/d\ln t$ are unchanged among all the methods; see figure 1(b). In what follows, we use the CI method with cubic regions throughout.

4.2. Gauge invariance

In Figure 2 we compare the R-dependence of the Saffman helicity integral at different times under the resistive gauge (black solid) and the Coulomb gauge (red dashed). Noticeable differences appear only at later times and at small $R \ll \xi_M$, or when R is close to the system scale L. The differences remain negligible in the asymptotic regime.
for all t. Thus, even though h itself, and also its spectrum, are gauge-dependent, I_H is not [Hosking & Schekochihin 2021].

Let us point out at this point that $\text{Sp}(h)$ is not only gauge dependent, but it can provide some useful insight into the nature of gauge dependence. Candelieresi et al. (2011) used this fact to show that the advective gauge, where $\varphi = u \cdot A$, can lead to large gradients in the evolution of A, which can cause fatal inaccuracies in the nonlinear regime.

4.3. Energy and helicity density spectra

In figure 3 we present magnetic energy spectra $E_M(k) \equiv \text{Sp}(B)/2\mu_0$ and magnetic helicity density spectra $\text{Sp}(h)$ for run K60D1bt at different times. From the energy spectra, we see that the inertial range shifts both in k and in amplitude, but preserves the same spectral slopes at large and, more or less, also at small k. The initial k^4 subrange, however, does become slightly shallower at late times when the position of the peak of the spectrum has dropped below $k/k_1 \approx 10$. This is presumably a finite size effect, and so the late time evolution may not be reliable unless the initial k_{peak} value was large enough and the total number of mesh points was sufficient to resolve the inertial and sub-inertial ranges reasonably well. Since we do not know a priori what are the quantitative requirements on the initial k_{peak} and on the numerical resolution, we must regard our results with care and should discuss the possibility of artifacts as we reach the limits of what can be considered safe. Thus, we can conclude that, except for very late times, E_M has remained nearly self-similar. The magnetic helicity density spectrum has, just like $E_M(k)$, a $k^{-5/3}$ spectrum at the initial time for $k > k_{\text{peak}}$. At small k, however, $\text{Sp}(h)$ has a random noise spectrum $\propto k^2$, which remains unchanged also at late times. This agrees with our expectations; see equation (2.14), which allows us to determine I_H from the spectral value at small k.
4.4. Lundquist-number scaling of decay exponents

In figure 4(a), we present the time evolution of the normalized I_H for all runs with $2R/L = 0.23$. With increasing hyper-Lundquist number Lu_n (cf. table 1), I_H becomes progressively better conserved. The instantaneous decay exponents p_H vs Lu_n are plotted in figure 4(b) for different runs, along with the energy decay exponents p. While the latter only has a weak dependence on Lu_n and approaches the asymptotic value $10/9$ at large Lu_n, p_H decreases and is found to scale approximately as $\text{Lu}_n^{-1/4}$.

Note that the data points of p_H at the largest Lu_n values start to level off and even increase with decreasing Lu_n. We argue that this is an artifact due to the finite size of the computational domain, and not due to entering the fast-reconnection regime where the reconnection time scale becomes independent of Lu_n. In fact, for run K60D3bc, we have $\text{Lu}_n^{1/n} = 20$ at the end of the simulation, which is still far away from the predicted transition value $\sim 10^4$ (Loureiro et al. 2005, 2007).

To provide evidence of the limitation from a finite-size box, in figure 4(d), we plot the time evolution of the Saffman helicity integral $I_H(R)$. At small $R \lesssim \xi_M$, we see an R^3 scaling. Thus, $\langle H_V^2 \rangle / V_R$ is proportional to $V_R \propto R^3$, and therefore $\langle H_V^2 \rangle$ is proportional to V_R^2, as expected for a nearly space-filling distribution of magnetic helicity patches of small scale. At the end of the simulation, ξ_M has become comparable to the asymptotic scale chosen (vertical line), due to which I_H exhibits an accelerating decay; see the data points of p_H at the largest Lu_n values in figure 4(b).

It is worth noting that the mean magnetic helicity density $|H_V|$ is never exactly zero, but it is instead several orders of magnitude below its maximum value. Interestingly, the decline of the instantaneous decay coefficient of $|H_V|$, referred to here as p_{AB}, follows a similar decline with Lu_n as p_H; see figure 4(c).
In the Coulomb gauge, we have, for an isotropic field,

\[
\langle \tilde{h}^*(k_1)\tilde{h}(k_2) \rangle = \int \frac{d^3k'}{(2\pi)^3} \frac{d^3k''}{(2\pi)^3} \epsilon_{ijk} \epsilon_{abc} k'_i k''_c \langle \tilde{A}_i^*(k_1 - k') \tilde{A}_j^*(k') \tilde{A}_a(k_2 - k'') \tilde{A}_b(k'') \rangle. \tag{4.1}
\]

In the Coulomb gauge, we have, for an isotropic field,

\[
\langle \tilde{A}_i^*(k_1)\tilde{A}_j(k_2) \rangle = (2\pi)^3 \delta^3(k_1 - k_2) P_{ij}(k_1)M_A(k_1), \tag{4.2}
\]

where \(P_{ij}(k) = \delta_{ij} - k_i k_j / k^2 \), and \(M_A(k) \) is related to the magnetic energy spectrum via \(M_A(k) = 2\pi^2 E_M(k) / k^4 \). Taking advantage of the fact that \(\tilde{A}_i(k) \) is a Gaussian field at \(t = 0 \), we can decompose the four-point correlations into products of two-point correlations.
For any wave vectors \mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, and \mathbf{k}_4,

$$
\left< \tilde{A}_i^*(\mathbf{k}_1) \tilde{A}_j^*(\mathbf{k}_2) \tilde{A}_a(\mathbf{k}_3) \tilde{A}_b(\mathbf{k}_4) \right>
= \left< \tilde{A}_i^*(\mathbf{k}_1) \tilde{A}_j(\mathbf{k}_2) \right> \left< \tilde{A}_a(\mathbf{k}_3) \right> + \left< \tilde{A}_i^*(\mathbf{k}_1) \tilde{A}_a(\mathbf{k}_3) \right> \left< \tilde{A}_j^*(\mathbf{k}_2) \tilde{A}_b(\mathbf{k}_4) \right>
+ \left< \tilde{A}_i^*(\mathbf{k}_1) \tilde{A}_b(\mathbf{k}_4) \right> \left< \tilde{A}_j^*(\mathbf{k}_2) \tilde{A}_a(\mathbf{k}_3) \right>
= (2\pi)^6 \left[\delta^3(\mathbf{k}_1 + \mathbf{k}_2) \delta^3(\mathbf{k}_3 + \mathbf{k}_4) P_{ij}(\mathbf{k}_1) P_{ab}(\mathbf{k}_3) M_A(k_1) M_A(k_3)
+ \delta^3(\mathbf{k}_1 - \mathbf{k}_3) \delta^3(\mathbf{k}_2 - \mathbf{k}_4) P_{ia}(\mathbf{k}_1) P_{b}(\mathbf{k}_2) M_A(k_1) M_A(k_2)
+ \delta^3(\mathbf{k}_1 - \mathbf{k}_4) \delta^3(\mathbf{k}_2 - \mathbf{k}_3) P_{ib}(\mathbf{k}_1) P_{ja}(\mathbf{k}_2) M_A(k_1) M_A(k_2) \right].
$$

Together with equation (2.10), we find

$$
\operatorname{Sp}(h) = \frac{k^2}{2} \int_0^\infty dk' \int_\Delta^1 d\alpha \frac{k'^2 + \mu^2 k'^2 - 2\mu k'|\mathbf{k} - \mathbf{k}'|}{k'^2 |\mathbf{k} - \mathbf{k}'|^4} E_M(|\mathbf{k} - \mathbf{k}'|) E_M(k'),
$$

where $\alpha = \cos(\mathbf{k}, \mathbf{k}')$, and

$$
|\mathbf{k} - \mathbf{k}'| = \sqrt{k'^2 + k^2 - 2\alpha \mathbf{k} \cdot \mathbf{k}'}, \quad \mu = \frac{\alpha k' k - k'^2}{k' \sqrt{k'^2 + k^2 - 2\alpha \mathbf{k} \cdot \mathbf{k}'}}.
$$

Note that equation (4.3) is similar to the expression for $\operatorname{Sp}(B^2)$; see equation (27) of Brandenburg & Boldyrev (2020).

Consider a piecewise power-law spectrum,

$$
E_M(k) = \begin{cases}
E_{\text{peak}} (k/k_{\text{peak}})^4, & k \leq k_{\text{peak}} \\
E_{\text{peak}} (k/k_{\text{peak}})^{-5/3}, & k > k_{\text{peak}}
\end{cases},
$$

we have the relations

$$
E_{\text{peak}} = \frac{20}{17} \mathbf{E}_M \xi_M, \quad k_{\text{peak}} = \frac{1}{2 \xi_M}.
$$

The leading-order term ($\propto k^2$) of equation (4.4) can be readily obtained by taking $k = 0$ in the integrand, which gives

$$
\operatorname{Sp}(h) = \frac{136 E_{\text{peak}}^2}{95 k_{\text{peak}}^3} k^2 + O(k^3) = \frac{5120 \mathbf{E}_M^2 \xi_M^5}{323} k^2 + O(k^3).
$$

In figure 8(c), we show the normalized and compensated spectra

$$
\frac{\tilde{\operatorname{Sp}}(h)}{\sqrt{5120 \mathbf{E}_M^2 \xi_M^5 k^2} \operatorname{Sp}(h)}.
$$

which is indeed $\propto O(1)$ initially at small k, but then increases to $O(10)$ at later times. This could be caused by (i) the Lundquist number not being sufficiently high and/or (ii) the magnetic field becoming non-Gaussian at later times. To quantify the latter, we find the kurtosis of the magnetic field, defined as $-3 + \sum_{i=1}^3 (\langle B_i^4 \rangle / \langle B_i^2 \rangle^2)/3$, to be ~ -0.24 at the end of run K60D1bt. This is slightly larger in magnitude compared with earlier work [Brandenburg & Boldyrev (2020)]. Thus, we conclude that, for the presented runs, the Lundquist number is not yet sufficiently high and the influence from non-Gaussianity is subdominant.

The magnitude of I_H can be estimated from equation (2.16), and a proper normalization is

$$
\tilde{I}_H = \frac{323}{10240 \pi^2 \mathbf{E}_M^2 \xi_M^5} I_H \simeq 0.0032 \mathbf{E}_M^{-2} \xi_M^{-5} I_H,
$$

(4.10)
which is plotted in figure 3(d). The increasing value again highlights the non-idealness of our simulations.

4.6. Evolution in a \(pq \) diagram

To put our results into perspective, it is instructive to inspect the evolution in a \(pq \) diagram; see section 3.2. In figure 5, we plot \(pq \) diagrams for four representative runs. In each panel, the size of the symbols increases with time; the solid line corresponds to the Alfvén relation (3.9), and the dashed line gives the reconnection relation (3.10) for each run.

The most reliable runs are those in figures 5(c) and (d), where \(N^3 = 2048^3 \) mesh points have been used. We clearly see that the solution evolves along the \(\beta = 3/2 \) line, as expected when the decay is governed by the Saffman helicity integral. For a constant value of \(\eta_1 \), figure 5(d), the solution also reaches the line \(p = 2(1 - q) \), which is referred to as the self-similarity line; see the end of appendix A.3 for a discussion. For a time-dependent \(\eta_1(t) \), figure 5(c), the solution settles on a point below the scale-invariance line and is only slightly above the reconnection line. This might be indicative of reconnection playing indeed a certain role in the present simulations.

For our hyperviscous run K200D3t, the solution settles at much smaller values of \(p \) and \(q \) and is closer to the reconnection line than to the scale-invariance line, but the agreement in this case is not very good either. How conclusive this is in supporting the idea that reconnection plays a decisive role must therefore remain open. Nevertheless, also this solution lies close to the \(\beta = 3/2 \) line, supporting again the governing role of \(I_H \).

5. Conclusion

The present results have verified that the Saffman helicity integral is conserved in the limit of large Lundquist numbers. This implies that \(I_H \) can indeed control the decay behavior of MHD turbulence. On dimensional grounds, one would expect \(\beta = 3/2 \), i.e., the solution evolves in a \(pq \) diagram along a line where \(p = (1 + \beta)q = 5q/2 \). Our highest resolution simulations with \(2048^3 \) mesh points show that this is compatible with this expectation.

We have also shown that different methods of determining \(I_H \) all lead to the same result. The preferred method is based on the magnetic helicity density spectrum, \(S_p(h) \), which is also the simplest method. Furthermore, by comparing the resistive and Coulomb gauges, we find that \(I_H \) is indeed gauge invariant to high precision.

Whether or not the decay time is governed by the reconnection time rather than the Alfvén time remains uncertain, although our comparison between runs with constant and time-dependent ordinary magnetic diffusivities, i.e., \(\eta_1 = \text{const} \) and \(\eta_1 = \eta_1(t) \), suggest that the reconnection time scale might indeed be the relevant one. Clearly, high resolution simulations are required to obtain meaningful scaling results. A resolution of \(2048^3 \) is just beginning to yield conclusive results, but higher resolution would be desired to address the role of reconnection more conclusively.

We thank David Hosking and Kandaswamy Subramanian for helpful comments and discussions. This work was supported by the Swedish Research Council (Vetenskapsrådet, 2019-04234). Nordita is sponsored by Nordforsk. We acknowledge the allocation of computing resources provided by the Swedish National Allocations Committee at the
Scaling of the Saffman helicity integral

Appendix A. Self-similarity and invariance under rescaling

In sections 3.2 and 3.3 we discussed pq diagrams. In this appendix, we summarize the essential relations between p, q, and the exponent β, which describes the gradual decline of the spectral peak as it moves toward smaller k.

A.1. Self-similarity

A self-similar spectrum implies that its shape is given by a universal function $\phi = \phi(\kappa)$ such that the spectrum is of the form

$$E(k, t) = \xi(t)^{-\beta} \phi(k\xi(t)),$$ \hspace{1cm} (A 1)

where $\phi(\kappa)$ depends on just one argument $\kappa \equiv k\xi(t)$, and $\xi = \xi(t)$ is the temporal dependence of the integral scale, which can be used to describe the gradual shift of the peak of the spectrum towards smaller k.

A.2. Invariance under rescaling

Describing the time dependence of ξ through a power law $\xi \propto t^q$ means that a rescaling of length, $x \rightarrow x' = x\ell$ implies a rescaling of time, $t \rightarrow t' = t\ell^{1/q}$. Since $E(k, t)$ has dimensions

$$[E(k, t)] = [x]^3 [t]^{-2},$$ \hspace{1cm} (A 2)

Center for Parallel Computers at the Royal Institute of Technology in Stockholm and Linköping.
H. Zhou, R. Sharma, and A. Brandenburg

Conserved quantity dimension q $\beta = 2/q - 3$ $p = (\beta + 1)q$

		1	-1	0 (=0/4)
$\langle A \cdot B \rangle$	$[x^3 t]^{-2}$	2/3	0	2/3 (=4/6)
$\langle A^2 \rangle$ (?)	$[x^4 t]^{-2}$	1/2	1	1 (=8/8)
I_H	$[x^9 t]^{-4}$	4/9	3/2	10/9
I_u	$[x^5 t]^{-2}$	2/5	2	6/5 (=12/10)
Loitsiansky	$[x^7 t]^{-2}$	2/7	4	10/7 (=20/14)

Table 2. Summary of coefficients. The question mark on $\langle A^2 \rangle$ indicates that the significance of this quantity is questionable.

and since $\phi(k\xi(t))$ must not change under rescaling, we have

$$E(k\ell^{-1}, t\ell^{1/q}) = \ell^{3-2/q+\beta} \left[\xi(t)\ell\right]^{-\beta} \phi(k\xi),$$

and therefore $\beta = 2/q - 3$ or $q = 2/(\beta + 3)$; see Olesen (1997).

A.3. Relation to p

The exponent p quantifies the temporal scaling of $E_M = \int dk \ E_M(k,t) \propto t^{-p}$. Inserting (A 1), we have

$$t^{-p} \propto E_M = \xi_M(t)^{-(\beta+1)} \int d(k\xi_M) \ E_M(k\xi_M) \propto \xi_M(t)^{-(\beta+1)} \propto t^{-(\beta+1)q}$$

and therefore $p = (\beta + 1)q$. Using invariance under rescaling, we have

$$p = 2(1-q).$$

Table 2 lists various candidates of conserved quantities and the corresponding values of q, β, and p. In a pq diagram, this represents the line on which the instantaneous scaling coefficients $p(t)$ and $q(t)$ tend to settle; see Brandenburg & Kahniashvili (2017), where we called this the self-similarity line. However, if the reconnection time scale really becomes the dominant one, it may be more meaningful to call $p = 2(1-q)$ the scale-invariance line. It agrees with the assumption of the relevant time scale being the Alfvén time; see equation (3.9). On the other hand, if there really are two distinct scales that evolve differently, the result cannot be self-similar; see also section 11.2.3 of Schekochihin (2020) for a discussion.

REFERENCES

Brandenburg, Axel & Boldyrev, Stanislav 2020 The Turbulent Stress Spectrum in the Inertial and Subinertial Ranges. ApJ 892 (2), 80, arXiv: 1912.07499.

Brandenburg, Axel, Enqvist, Kari & Olesen, Poul 1996 Large-scale magnetic fields from hydromagnetic turbulence in the very early universe. Phys. Rev. D 54 (2), 1291–1300, arXiv: astro-ph/9602031.

Brandenburg, Axel & Kahniashvili, Tina 2017 Classes of Hydrodynamic and Magnetohydrodynamic Turbulent Decay. Phys. Rev. Lett. 118 (5), 055102, arXiv: 1607.01360.

Brandenburg, Axel, Kahniashvili, Tina, Mandal, Sayan, Pol, Alberto Roper,
Scaling of the Saffman helicity integral

Tevzadze, Alexander G. & Vachaspapi, Tanmay 2017 Evolution of hydromagnetic turbulence from the electroweak phase transition. Phys. Rev. D 96 (12), 123528, arXiv: 1711.03804.

Brandenburg, A., Kainiashvili, T. & Tevzadze, A. G. 2015 Nonhelical Inverse Transfer of a Decaying Turbulent Magnetic Field. PhRvL 114, 075001, arXiv: 1404.2238.

Campanelli, Leonardo 2007 Evolution of Magnetic Fields in Freely Decaying Magnetohydrodynamic Turbulence. Phys. Rev. Lett. 98 (25), 251302, arXiv: 0705.2308.

Candelaresi, Simon, Hubbard, Alexander, Brandenburg, Axel & Mitra, Dhrubaditya 2011 Magnetic helicity transport in the advective gauge family. Physics of Plasmas 18 (1), 012903–012903, arXiv: 1010.6177.

Christensson, Mattias, Hindmarsh, Mark & Brandenburg, Axel 2001 Inverse cascade in decaying three-dimensional magnetohydrodynamic turbulence. Phys. Rev. E 64 (5), 056405, arXiv: astro-ph/0011321.

Davidson, P. A. 2000 Was Loitsyansky correct? A review of the arguments. Journal of Turbulence 1 (1), 6.

Durrer, Ruth & Neronov, Andrii 2013 Cosmological magnetic fields: their generation, evolution and observation. Astron. Astrophys. Rev. 21, 62, arXiv: 1303.7121.

Frisch, U., Pouquet, A., Leorat, J. & Mazure, A. 1975 Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence. Journal of Fluid Mechanics 68, 769–778.

Hatori, Tadatsugu 1984 Kolmogorov-Style Argument for the Decaying Homogeneous MHD Turbulence. JPSJ 53 (8), 2539.

Hosking, David N. & Schekochihin, Alexander A. 2021 Reconnection-Controlled Decay of Magnetohydrodynamic Turbulence and the Role of Invariants. Physical Review X 11 (4), 041005, arXiv: 2012.01393.

Kainiashvili, Tina, Brandenburg, Axel, Tevzadze, Alexander G. & Ratra, Bharat 2010 Numerical simulations of the decay of primordial magnetic turbulence. Phys. Rev. D 81 (12), 123002, arXiv: 1004.3084.

Kitsionas, S., Federrath, C., Klessen, R. S., Schmidt, W., Price, D. J., Dursi, L. J., Gritschneder, M., Walch, S., Piontek, R., Kim, J., Jappsen, A. K., Ciecielag, P. & Mac Low, M. M. 2009 Algorithmic comparisons of decaying, isothermal, supersonic turbulence. A&A 508 (1), 541–560, arXiv: 0810.4599.

Krause, F. & Ruediger, G. 1975 On the Turbulent Decay of Strong Magnetic Fields and the Development of Sunspot Areas. Solar Physics 42 (1), 107–119.

Loureiro, N. F., Cowley, S. C., Dorland, W. D., Haines, M. G. & Schekochihin, A. A. 2005 X-Point Collapse and Saturation in the Nonlinear Tearing Mode Reconnection. Phys. Rev. Lett. 95 (23), 235003, arXiv: physics/0507206.

Loureiro, N. F., & Schekochihin, A. A. & Cowley, S. C. 2007 Instability of current sheets and formation of plasmoid chains. Physics of Plasmas 14 (10), 100703–100703, arXiv: astro-ph/0703631.

Mac Low, Mordecai-Mark, Klessen, Ralf S., Burkert, Andreas & Smith, Michael D. 1998 Kinetic Energy Decay Rates of Supersonic and Super-Alfvénic Turbulence in Star-Forming Clouds. Phys. Rev. Lett. 80 (13), 2754–2757, arXiv: astro-ph/9712013.

Nore, C., Abid, M. & Brachet, M. E. 1997 Decaying Kolmogorov turbulence in a model of superflow. Phys. of Fluids 9 (9), 2644–2669.

Olesen, P. 1997 Inverse cascades and primordial magnetic fields. Physics Letters B 398, 321–325, arXiv: astro-ph/9610154.

Pencil Code Collaboration, Brandenburg, Axel, Johansen, Anders, Bourdin, Philippe, Dobler, Wolfgang, Lyra, Vladimir, Rheinhardt, Matthias, Bingert, Sven, Haugen, Nils, Mee, Antony, Gent, Frederick, Babkovskaia, Natalia, Yang, Chao-Chin, Heinemann, Tobias, Dintrans, Boris, Mitra, Dhrubaditya, Candelaresi, Simon, Warnecke, Jörn, Käpylä, Petri, Schreiber, Andreas, Chatterjee, Piyali, Käpylä, Maarit, Li, Xiang-Yu, Krüger, Jonas, Aarnes, Jørgen, Sarson, Graeme, Oishi, Jeffrey, Schober, Jennifer, Plaxson, Raphael, Sandin, Chris, Karchniwy, Ewa, Rodrigues, Luiz, Hubbard, Alexander, Guererro, Gustavo, Snodin, Andrew, Losada, Illa, Pekkilä, Johannes & Qian, Chengeng 2021 The Pencil Code, a modular MPI code for partial
differential equations and particles: multipurpose and multiuser-maintained. The Journal of Open Source Software 6 (58), 2807, arXiv: 2009.08231.

Pouquet, A., Frisch, U. & Leorat, J. 1976 Strong MHD helical turbulence and the nonlinear dynamo effect. Journal of Fluid Mechanics 77, 321–354.

Proudman, I. & Reid, W. H. 1954 On the Decay of a Normally Distributed and Homogeneous Turbulent Velocity Field. Philosophical Transactions of the Royal Society of London Series A 247 (926), 163–189.

Saffman, P. G. 1967 The large-scale structure of homogeneous turbulence. Journal of Fluid Mechanics 27, 581–593.

Schekochihin, Alexander A. 2020 MHD Turbulence: A Biased Review. arXiv e-prints p. arXiv:2010.00699, arXiv: 2010.00699.

Stalp, Steven R., Skrbek, L. & Donnelly, Russell J. 1999 Decay of Grid Turbulence in a Finite Channel. Phys. Rev. Lett. 82 (24), 4831–4834.

Vachaspati, Tanmay 2021 Progress on cosmological magnetic fields. Reports on Progress in Physics 84 (7), 074901, arXiv: 2010.10525.

Warhaft, Z. & Lumley, J. L. 1978 An experimental study of the decay of temperature fluctuations in grid-generated turbulence. Journal of Fluid Mechanics 88, 659–684.

Williamson, J. H. 1980 Low-Storage Runge-Kutta Schemes. Journal of Computational Physics 35 (1), 48–56.

Yousef, Tarek A., Haugen, Nils Erland L. & Brandenburg, Axel 2004 Self-similar scaling in decaying numerical turbulence. Phys. Rev. E 69 (5), 056303, arXiv: astro-ph/0312505.

Zhou, H., Sharma, R. & Brandenburg, A. 2022 Datasets for Scaling of the Saffman helicity integral in decaying magnetically-dominated turbulence, doi:10.5281/zenodo.6640511 (v2022.06.14); see also http://www.nordita.org/~brandenb/projects/Saffman/ for easier access.

Zrake, Jonathan 2014 Inverse Cascade of Nonhelical Magnetic Turbulence in a Relativistic Fluid. ApJL 794 (2), L26, arXiv: 1407.5626.