Proteomic Analysis of Colorectal Cancer Reveals Alterations in Metabolic Pathways

MECHANISM OF TUMORIGENESIS*

Xuezhi Bi‡§, Qingsong Lin‡§¶, Tet Wei Foo‡§, Shashikant Joshi‡, Tao You‡, Han-Ming Shen||, Choon Nam Ong||, Peh Yean Cheah**, Kong Weng Eu**, and Choy-Leong Hew‡ ‡‡

Colorectal cancer is the second leading killer cancer worldwide and presently the most common cancer among males in Singapore. The study aimed to detect changes of protein profiles associated with the process of colorectal tumorigenesis to identify specific protein markers for early colorectal cancer detection and diagnosis or as potential therapeutic targets. Seven pairs of colorectal cancer tissues and adjacent normal mucosa were examined by two-dimensional gel electrophoresis at basic pH range (pH 7–10). Intensity changes of 34 spots were detected with statistical significance. 16 of the 34 spots were identified by MALDI-TOF/TOF tandem mass spectrometry. Changes in protein expression levels revealed a significantly enhanced glycolytic pathway (Warburg effect), a decreased gluconeogenesis, a suppressed gluconoronic acid pathway, and an impaired tricarboxylic acid cycle. Observed changes in protein abundance were verified by two-dimensional DIGE. These changes reveal an underlying mechanism of colorectal tumorigenesis in which the roles of impaired tricarboxylic acid cycle and the Warburg effect may be critical. *Molecular & Cellular Proteomics 5:1119–1130, 2006.

Colorectal cancer (CRC)1 is the third most common type of cancer in both men and women and the second leading cause of cancer death in developed countries. In the United States, about 145,290 new cases of CRC are expected in 2005 with about 56,290 people expected to die of the disease, accounting for about 10% of cancer deaths.2 In Singapore, CRC has overtaken lung cancer as the most common malignancy in the male population in recent years. Statistical data have shown that CRC is the leading cancer and accounts for 15.3% of all cancers in males and 14.7% in females during the period of 1988–1992 (1). On the other hand, it has also been shown that ~90% of the patients can be cured by surgery if the cancer is detected at an early stage. Therefore, the early diagnosis is important for proper control of CRC (2).

The elucidation of signaling pathways involved in cancer progression; identification of biomarkers for early detection, prognosis, and response to treatment; determination of novel targets for drug discovery; and therapeutic intervention are important goals for cancer research by multiplex technologies (3). Early detection and diagnosis of CRC and defining treatment targets rely on the understanding of molecular mechanism of carcinoma development (4). Proteomic approaches are promising tools for the discovery of new cancer biomarkers and therapeutic drug targets (4).

Several groups have carried out proteomic studies of CRC previously (5–12). A number of proteins with altered expression levels were identified. However, most studies focused on the proteins in the pH range of 4–7 due to the difficulties to achieve a good resolution of basic proteins (pH 7–10) by isoelectric focusing (13). However, mitochondrial proteins, histones, and ribosomal proteins, which have important cellular functions such as energy metabolism, apoptosis, DNA replication, transcription, and translation, are among the proteins with basic pl (14). The study of mitochondrial protein function is particularly important in cancer research as it is involved in oxidative phosphorylation, energy production, apoptosis, and release of reactive oxygen species, all of which have been associated with tumorigenesis (14). Most of the glycolytic enzymes and mitochondrial proteins such as tricarboxylic acid cycle enzymes were proven to have alkaline pl (15). There is increasing evidence linking mitochondrial dysfunction to tumorigenesis. Fumarate hydratase and succinate dehydrogenase were shown to play a role in tumorigenesis (16–18). So far, the only proteomic study of the basic proteins of colon tissue was two-dimensional gel electrophoresis (2-DE) separation of crypt proteins without any comparison with tumor samples (15). Thus a more comprehensive study of cancer samples above pl 7.0 needs to be further explored.
This study reports the 2-DE analysis of basic proteins (pH 7–10) from paired CRC tissues and corresponding adjacent normal controls. Several metabolic pathway alterations were found to be related to colorectal tumorigenesis that were verified by 2-D DIGE. Pathway analysis revealed that impaired tricarboxylic acid cycle and the Warburg effect may be critical in colorectal tumorigenesis.

EXPERIMENTAL PROCEDURES

Samples—Colonic tissues including tumor and adjacent mucosa from seven patients with Stage 3 CRC were collected from freshly isolated surgical resections in the operating room of the Singapore General Hospital. All tissues were immediately snap frozen in liquid nitrogen after the pathological examination. Frozen tissues were mounted on Tissue-Tek® tissue freezing medium (O.C.T.), and 10-μm sections were prepared using a Leica cryostat at −25 °C. Random sections from different portions of the tumor and mucosa tissues were mixed to make up to a total weight of ~200 mg.

Protein Extraction—Approximately 200 mg of a tissue sample were homogenized using an Ettan sample grinding kit (Amersham Biosciences). The sample was homogenized in an equal volume of 40 mM Tris-HCl, pH 8 (200 μl) together with 4 μl of 10 μM Halt protease inhibitor mixture (EDTA-free) and 2 μl of endonuclease (Sigma). The sample mixture was vortexed and incubated for 30 min at room temperature. Three volumes of modified lysis buffer (9.5 mM urea, 4% CHAPS, 2 mM tributylphosphine) were added thereafter according to Galvani et al. (19). Furthermore the sample was vortexed and incubated for 1 h at room temperature followed by centrifugation at 20,000 × g for 20 min. The supernatant was then subjected to ultracentrifugation at 75,000 rpm at 20 °C for 1 h.

Reduction and Alkylation—5 mM tributylphosphine was added to the sample, and the sample was vortexed and incubated at room temperature for 1 h with constant shaking followed by the addition of 15 mM iodoacetamide to alkylate the free thiol groups. The sample mixture was vortexed and kept in the dark at room temperature for 1.5 h with constant shaking. Alkylation was stopped by adding an equal volume of sample buffer (7 M urea, 2 M thiourea, 4% CHAPS) and incubated for another 5 min. Interfering components were removed by the 2-D Clean-Up Kit™ (GE Healthcare). Protein concentration was determined using the RC DC protein assay (Bio-Rad) using bovine γ-globulin as the standard.

Two-dimensional Gel Electrophoresis—IEF was performed using a Protean IEF Cell (Bio-Rad) with a 17-cm ReadyStrip, pH 7–10 (Bio-Rad). 100 μg of protein sample diluted in 300 μl of rehydration buffer (7 M urea, 2 M thiourea, 4% CHAPS, 0.5% IPG buffer pH 6–11) were loaded with each IPG strip and in-gel rehydrated overnight. The sample without reduction and alkylation, 12 μl/ml DeStreak reagent (GE Healthcare) was added before focusing.

The IPG strip was rehydrated and focused at 20 °C, starting with passive rehydration for 4 h followed by 12 h active rehydration at 50 V. The focusing was started at 250 V for 15 min (rapid voltage ramping), 500 V for 1 h, and 1,000 V for 1 h followed by linearly ramping to 10,000 V over 3 h and then kept at 10,000 V until 60,000 V-h were reached.

After IEF, the IPG strips were immediately stored in a −80 °C freezer or equilibrated with 0.375 M Tris-HCl, pH 8.8, 6 M urea, 20% glycerol, 2% SDS. For those samples without reduction and alkylation, the IPG strip was first treated with 130 mM DTT for 10 min followed by 135 mM iodoacetamide for 10 min with constant shaking. The equilibrated strip was transferred to the top of a 12% SDS-polyacrylamide gel and fixed with 1% low melting agarose in SDS-Tris-glycine running buffer with a trace of bromphenol blue. Electrophoresis was carried out using a Protean II Xli system (Bio-Rad) with constant current (30 mA/gel) at 15 °C for ~4.5 h until the dye front had reached the bottom of the gel.

Gel Staining and Image Analysis—All gels were fixed in a fixation solution (40% methanol, 10% acetic acid) for at least 1 h and then stained according to the modified silver staining method of Blum et al. (20). Briefly gels were sensitized in 0.8 mM sodium thiosulfate for 1 min, rinsed with water for 1 min, and then incubated for 20 min in 0.2% silver nitrate with 0.02% (v/v) formaldehyde. The gels were then soaked for 3–5 min in developing buffer (3% Na2CO3 with 0.05% (v/v) formaldehyde and 0.01 mM sodium thiosulfate), and the development was stopped in 1.4% Na2-EDTA. The gels were scanned in a Bio-Rad GS-710 densitometer using PDQUEST 7.3 software (Bio-Rad). Image analysis was carried out with PDQUEST 7.31 2D software package (Bio-Rad) including the quantitative analysis. At least four replicates of each sample pair were compared, and the gel images were normalized based on the total spot volume of each gel.

2-D DIGE and Analysis—50 μg of each of normal mucosa and tumor protein extracts were minimally labeled with Cy3 and Cy5 fluorescent dyes according to the manufacturer’s instructions (GE Healthcare). An internal standard pool generated by combining equal amounts of extracts from all seven pairs of mucosa and tumor tissues (in total 14 samples) was labeled with Cy2 fluorescent dye. The labeling reaction was performed on ice for 30 min in the dark and quenched with 10 mM lysine for 10 min on ice in the dark. Equal amounts (50 μg) of quenched Cy3-labeled normal mucosa and Cy5-labeled tumor samples from each patient together with the aliquoted 50 μg of Cy2-labeled internal standard pool (described above) were focused using IPG strips (ReadyStrip, Bio-Rad, pH 7–10, 17 cm) in the Protean IEF Cell (Bio-Rad) as mentioned above with the addition of DeStreak reagent (GE Healthcare). The IPG strips were equilibrated with equilibration buffers containing 2% DTT and 2.5% iodoacetamide for 10 min each sequentially. The second 12% SDS-PAGE was then carried out for all seven gels simultaneously as described above.

The Cy2- (mixed internal standard), Cy3- (normal), and Cy5- (tumor) labeled proteins in each gel were visualized using a Typhoon 9410TM (GE Healthcare) fluorescence scanner at 480/530 nm for Cy2, 520/590 nm for Cy3, and 620/680 nm for Cy5 dyes. Gels were then silver-stained as described above. Image analysis was carried out with DeCyder 5.01 software (GE Healthcare). The DeCyder differential in-gel analysis module was used for pairwise comparisons of each pair of normal and tumor samples with its corresponding internal mixed standard present on each gel and for the calculation of normalized spot average abundance changes (12).

Trypsin Digestion and MALDI-TOF/TOF MS and MS/MS Analysis—Spots of interest were excised and digested with sequencing grade modified porcine trypsin (Promega) as described previously (21). Briefly gel pieces were washed in 100 mM ammonium bicarbonate buffer and then destained in potassium ferricyanate. The gel pieces were then dehydrated in acetonitrile and dried in a SpeedVac before being rehydrated on ice for 40 min in trypsinization buffer (12.5 ng/μl trypsin, 20 mM NH4HCO3, pH 8.0). Proteins were digested overnight at 37 °C. Peptides were extracted with 20 mM NH4HCO3, 50% acetonitrile, and 0.1% trifluoroacetic acid (v/v) sequentially. All extracts were saved, pooled, then lyophilized, and redissolved in 0.1% trifluoroacetic acid. After desalting with a Millipore Zip plate (Millipore Corp.), samples were finally dissolved in 5 mg/ml α-cyano-4-hydroxycinnamic acid matrix in 50% acetonitrile, 0.1% trifluoroacetic acid. MS and MS/MS spectra were obtained using the ABI 4700 Proteomics Analyzer MALDI-TOF/TOF mass spectrometer (Applied Biosystems) operating in a result-dependent acquisition mode. Peptide mass maps were acquired in reflectron mode (1-keV accelerating.
voltage) with 1,000 laser shots per spectrum. 6 external standards (mass standard kit for the 4700 Proteomics Analyzer calibration mixture, Part Number 4333604, Applied Biosystems) were used to calibrate each spectrum to a mass accuracy within 50 ppm. The MS/MS data were acquired with stop conditions so that 3,000–6,000 laser shots were accumulated for each spectrum. The MS together with MS/MS spectra were searched against the International Protein Index (IPI) human database Version 3.10 (57,478 sequences; 25,254,519 residues) using the software GPS Explorer™ Version 3.0 and MASCOT 2.0 (Matrix Science). Searches were performed without restriction of protein Mr or pI and with mandatory carbamidomethylation of cysteines and variable oxidation of methionine residues. One trypsin miscleavage was allowed. Peptide mass tolerance and fragment mass tolerance were set to 150 ppm and 0.4 Da, respectively. High confidence identifications have statistically significant search scores (greater than 95% confidence interval, equivalent to MASCOT expect value <0.05), are consistent with the protein experimental pI and Mr, and account for the majority of ions present in the mass spectra.

Data Analysis—Matched gel images by PDQUEST were imported into the in-house developed bioinformatics program Systematic Proteomics Laboratory Analysis & Storage Hub (SPLASH) (on-line demonstration available at oncoproteomics.nus.edu.sg/login) and were analyzed statistically. Gel spots with intensity changes greater than 2.0-fold with a confidence interval above 95% (two-sample t test; p < 0.05) were considered as statistically significant changes.

RESULTS

The Basic 2-D Map of Colorectal Tumor Tissue—We were able to optimize the 2-D conditions for the high pI range protein profiling of the CRC tissues with (a) alkylation of the
Proteomic Analysis of Colorectal Cancer

Table I
List of proteins from human CRC tissue resolved on pH 7–10 2-DE gels and identified by MALDI-TOF/TOF MS
SNARE, soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptors; ALB, albumin; cds, coding sequence.

Spot no.	Protein name	IPI_Human accession no.	Molecular mass Da	pl	No. of matched peaks	Protein score	Ion score	Sequence coverage	Highest ranking non-homologous protein score	
1	β-Globin gene from a thalassemia patient, complete cds	IPI00382950	19,204	6.28	11	367	274	65	50	
2	Phosphatidylethanolamine-binding protein	IPI00219446	21,027	7.42	9	169	128	40	40	
3	ALB protein	IPI00216773	46,442	5.77	7	116	102	13	52	
4	Peptidyl-prolyl cis-trans isomerase A	IPI00419585	18,098	7.82	8	85	41	42	57	
5	β-Globin gene from a thalassemia patient, complete cds	IPI00382950	19,204	6.28	8	374	294	46	40	
6	β-Globin gene from a thalassemia patient, complete cds	IPI00382950	19,204	6.28	8	313	250	46	51	
7	Peptidyl-prolyl cis-trans isomerase A	IPI00419585	18,098	7.82	12	232	166	45	100	
8	Cofilin, non-muscle isoform	IPI00012011	25,543	8.51	13	218	110	57	44	
9	28-kDa Golgi SNARE protein	IPI00029447	29,062	9.36	8	68	68	16	41	
10	Hemoglobin δ chain	IPI00473011	16,028	7.97	4	88	46	28	44	
11	Profilin-1	IPI00216691	15,085	8.48	7	132	98	28	42	
12	Peroxiredoxin 1	IPI00000874	22,324	8.27	13	451	358	55	39	
13	28-kDa Golgi SNARE protein	IPI00029447	29,062	9.36	8	68	68	16	41	
14	Hemoglobin δ chain	IPI00473011	16,028	7.97	4	88	46	28	44	
15	Profilin-1	IPI00216691	15,085	8.48	7	132	98	28	42	
16	Mn-Superoxide dismutase, mitochondrial precursor	IPI00022314	24,878	8.35	4	188	156	22	49	
17	Mn-Superoxide dismutase, mitochondrial precursor	IPI00022314	24,878	8.35	6	93	66	25	43	
18	Triosephosphate isomerase	IPI00643696	26,937	6.45	13	218	110	57	44	
19	Splice isoform 1 of heat shock cognate 71-kDa protein	IPI00038365	71,082	5.37	22	466	405	24	58	
20	Heat shock 70-kDa protein 1A	IPI00514377	70,280	5.48	7	430	365	15	51	
21	Glyceraldehyde-3-phosphate dehydrogenase	IPI00219018	36,070	8.58	3	140	131	12	36	
22	Annexin A2	IPI00455315	38,677	7.56	8	344	260	23	40	
23	Glyceraldehyde-3-phosphate dehydrogenase	IPI00219018	36,070	8.58	3	129	114	12	38	
24	Glyceraldehyde-3-phosphate dehydrogenase	IPI00219018	36,070	8.58	3	62	43	8	42	
25	Phosphodiesterase 5A isoform 3	IPI00066543	94,996	5.74	9	56	17	42		
26	α enolase	IPI00465248	47,350	6.99	10	311	253	36	45	
27	α enolase	IPI00465248	47,350	6.99	10	314	233	32	52	
28	β-Globin gene from a thalassemia patient, complete cds	IPI00382950	19,204	6.28	4	223	200	29	39	
29	Glyceraldehyde-3-phosphate dehydrogenase	IPI00552282	37,086	8.08	1	58	58	4	35	
30	Heterogeneous nuclear ribonucleoprotein H1 (HNRPH1)	IPI00026230	49,517	5.89	6	126	107	16	32	
31	Glyceraldehyde-3-phosphate dehydrogenase	IPI00219018	36,070	8.58	4	75	63	12	45	
32	53-kDa protein (pyruvate kinase 3)	IPI00383237	58,314	7.58	14	373	304	36	49	
33	Glyceraldehyde-3-phosphate dehydrogenase	IPI00219018	36,070	8.58	5	91	61	17	43	
34	Glyceraldehyde-3-phosphate dehydrogenase	IPI00219018	36,070	8.58	5	377	355	23	48	
35	Fructose-bisphosphate aldolase C	IPI00418262	39,699	6.46	4	125	111	15	43	
36	Transketolase variant	IPI00644970	68,547	7.9	8	153	96	20	39	
37	Voltage-dependent anion-selective channel protein 1	IPI00216308	30,737	8.63	9	290	225	40	44	
38	Phosphoglycerate kinase 1	IPI00169383	44,854	8.3	10	256	209	35	41	
39	Phosphoglycerate kinase 1	IPI00169383	44,854	8.3	10	381	311	37	42	
Spot no.	Protein name	IPI_Human accession no.	Molecular mass Da	pl	No. of matched peaks	Protein score	Ion score	Sequence coverage %	Highest ranking non-homologous protein score	
---------	--------------	-------------------------	------------------	----	---------------------	---------------	-----------	---------------------	---	
40	Phosphoglycerate kinase 1	IPI00169383	44,854	8.3	5	105	83	15	13	39
41	Fructose-bisphosphate aldolase C	IPI00418262	39,699	6.46	3	110	93	12	41	
42	Fructose-bisphosphate aldolase A	IPI00465439	39,720	8.39	6	60	16	17	43	
43	Fructose-bisphosphate aldolase A	IPI00465439	39,720	8.39	11	100	65	19	55	
44	α2 globin variant	IPI00410714	15,328	8.72	1	67	56	10	36	
45	Galectin-3	IPI00465431	26,098	8.61	7	205	152	17	42	
46	Keratin type II cytoskeletal 1	IPI00556624	66,198	8.16	2	70	66	1	57	
47	ALB protein	IPI00216773	46,442	5.77	7	57	29	16	36	
48	Transgelin (smooth muscle protein)	IPI00216138	22,522	8.88	22	298	160	73	45	
49	Complement C3 precursor	IPI00164623	188,586	6.02	12	63	44	8	49	
50	Complement C3 precursor	IPI00164623	188,586	6.02	2	58	53	1	44	
51	Catalase	IPI00465436	59,816	6.95	12	211	138	32	66	
52	Glyceraldehyde-3-phosphate dehydrogenase	IPI00219018	36,070	8.58	4	80	64	11	68	
53	Hypothetical protein	IPI00448985	25,790	6.14	3	94	77	21	70	
54	Glyceraldehyde-3-phosphate dehydrogenase	IPI00219018	36,070	8.58	3	59	49	8	52	
55	Keratin 8 variant	IPI00418411	53,705	5.52	6	114	101	13	46	
56	Heterogeneous nuclear ribonucleoprotein A2/B1 isoform A2 (HNRPA2B1)	IPI00477522	37,332	9.08	8	170	88	24	41	
57	Flavin reductase	IPI00219910	22,751	7.12	2	89	78	17	37	
58	22-kDa protein	IPI00218414	22,316	8.38	22	142	112	36	40	
59	Creatine kinase, ubiquitous mitochondrial precursor	IPI00024638	47,406	8.6	6	212	170	18	41	
60	71-kDa protein	IPI00479291	71,833	8.41	9	58	18	42		
61	34-kDa protein	IPI00412577	34,598	8.84	3	55	34	9	43	
62	GTP-AMP phosphotransferase, mitochondrial	IPI00465256	25,419	9.16	6	126	74	34	43	
63	Single-stranded DNA-binding protein mitochondrial precursor	IPI00029744	17,249	9.59	3	155	111	26	44	
64	β actin	IPI00550724	42,078	5.29	3	82	74	13	38	
65	Malate dehydrogenase, mitochondrial precursor	IPI00291006	35,965	8.92	3	89	73	15	36	
66	Carbonyl reductase (NADPH) 1	IPI00295386	30,510	8.55	3	73	48	14	48	
67	Keratin 1	IPI00556624	66,198	8.16	4	63	51	9	40	
68	Neutropilopeptide h3 (prostatic binding protein)	IPI00219446	21,072	7.12	3	74	58	21	40	
69	Heat shock 70-kDa protein 8 isoform 1 variant	IPI00643188	71,083	5.28	7	57	44	9	35	
70	Glyceraldehyde-3-phosphate dehydrogenase	IPI00219018	36,070	8.6	7	188	161	16	77	
71	Transgelin	IPI00216138	22,522	8.9	12	189	121	29	43	
72	Glyceraldehyde-3-phosphate dehydrogenase, liver	IPI00219018	36,070	8.6	3	160	125	12	39	
73	57-kDa protein (keratin 10)	IPI00479902	56,699	5.1	4	66	27	10	42	
74	Glyceraldehyde-3-phosphate dehydrogenase	IPI00219018	36,202	8.6	3	90	64	12	47	
75	Malate dehydrogenase, mitochondrial	IPI00291006	35,965	8.9	8	253	224	15	39	
76	Malate dehydrogenase, mitochondrial	IPI00291006	35,965	8.9	2	107	94	7	41	
77	Hypothetical protein FLJ39660	IPI00176356	34,561	8.1	7	62	20	51		
78	Carbonic anhydrase II	IPI00218414	29,285	6.9	2	115	96	11	46	
79	UDP-glucose 6-dehydrogenase	IPI00306420	55,674	6.7	18	476	354	25	57	
80	Phosphoenolpyruvate carboxykinase, mitochondrial precursor	IPI00294380	71,447	7.6	4	73	31	7	43	
81	UTP-glucose-1-phosphate uridylyltransferase 2	IPI00395676	55,813	7.7	10	79	34	15	49	
reduced thiol groups prior to IEF (22) and (b) the use of in-gel sample rehydration. We chose the pH 7–10 strips for profiling of the basic proteins from CRC samples. We established the reference 2-D map of colorectal tumor tissue. In the pH 7–10 range, a total of 991 spots were clearly detected by silver staining (Fig. 1). Major spots were excised and identified via mass spectrometry (Fig. 1 and Table I). Among the identified proteins, most of them were glycolytic enzymes and mitochondrial proteins, involved in the tricarboxylic acid cycle and ATP energy metabolism, and metabolite carrier channels, etc. This is concordant with the 2-DE analysis of colon crypt by Li et al. (15).

2-DE Identification of Proteins That Exhibited Alterations Consistent among All Seven Cancer Patients—Seven pairs of tumor and normal mucosa were resolved by pH 7–10 2-DE and analyzed by PDQUEST. Gel images of four pairs of samples could be matched by the software. The gel images of the remaining three pairs required manual intervention to match to the other four pairs.

In total, 38 gels from four patients, 2443, 2446, 2466, and 2498, containing at least four replicates for each sample, were compared with each other. 420 spots matched across all the gels while spot count for each gel varied from 639 to 991. After statistical analysis of the normalized quantities of matched spots, we identified 17 spots that were significantly up-regulated and 17 spots that were significantly down-regulated with intensity changes greater than 2-fold with confidence intervals at least 95% (two-sample t-test, \(p < 0.05 \)).

Corresponding spots in 30 gels from the remaining three patients, 2361, 2378, and 2433, were also compared manually. These spots were also found to exhibit alterations in the same manner with similar statistical significance.

Of the total 34 spots, we identified 16 (Fig. 2, a and b), accounting for 11 proteins (Table II). Most of these proteins belonged to various biochemical pathways such as the glucuronate metabolism, glycolysis, gluconeogenesis, and the tricarboxylic acid cycle, whereas others were related to cytoskeletal remodeling such as TGLN protein (transgelin-2) and the nitrogen metabolic enzyme carbonic anhydrase II (CA2) (Table II).
To simplify the image analysis process and to avoid gel-to-gel variation, we further carried out the 2-D DIGE to verify protein alterations found by the traditional 2-DE. Major spot changes found by DIGE were consistent with those found by silver-stained 2-DE analysis. Previously found alterations in spots 83, 101, 78 and 79, and 70 and 72 were clearly visualized in color (Fig. 3).

DISCUSSION

In this study, we focused on the analysis of proteins with basic pI values, most of which were missed by most researchers in previous proteomic studies of CRC (7, 10, 12). Although there are equal amounts of proteins with basic (>7) or acidic (<7) pI values in most eukaryotic organisms (13), most important cytosolic glycolytic and mitochondrial tricarboxylic acid cycle enzymes are basic proteins as demonstrated by the proteomic analysis of human colon crypt (15) and further confirmed by our study.

Glycolysis has been shown to be elevated in almost all cancers, the so-called “Warburg effect” (23). And many cancers show dysfunction of mitochondria (14, 23, 24). The
increased aerobic glycolysis for ATP generation in cancer cells is frequently associated with mitochondrial respiration defects and hypoxia (25, 26). A recent report showed that inhibition of glycolysis in colon cancer cells could overcome drug resistance (against common anticancer agents) associated with mitochondrial respiratory defect and hypoxia (27). The mitochondrial enzyme succinate dehydrogenase, which links tricarboxylic acid cycle dysfunction to oncogenesis via hypoxia-inducible factor (HIF)-1α was also demonstrated recently (18).

Proteomics is a powerful approach to identify signaling proteins and to decipher the complex signaling circuitry or pathways involved in tumor growth. Together with genomics, proteomics is able to characterize different types of tumors and thus to define new therapeutic targets for future drug treatment (28). Our 2-DE data showed up-regulation of glycolytic enzymes such as aldolase A, enolase 1, GAPDH, etc., thus providing a proteomic evidence that the Warburg effect had occurred in CRC. Meanwhile the key regulatory enzyme phosphoenolpyruvate carboxykinase in gluconeogenesis was down-regulated. The up-regulation of enolase 1 and GAPDH were confirmed by a separate study using ICAT LC-MS analysis.3 The ICAT results also revealed some other up-regulated glycolytic enzymes: phosphoglycerate kinase 1, pyruvate kinase 3 isoform 1, triosephosphate isomerase 1, and dihydrolipoyl dehydrogenase. Down-regulation of UDP-glucose 6-dehydrogenase (UGDH) and UDP-glucose pyrophosphorylase 2 indicated a suppressed glucuronic acid anabolism. The down-regulation of UGDH was also confirmed by the ICAT studies. The 2-DE data also revealed an impaired tricarboxylic acid cycle in CRC as evidenced by down-regulation of enzymes at the early entrance steps such as aconitase and aconitate hydratase and up-regulation of malate dehydrogenase at the exit step. These findings suggested extensive alterations in metabolic pathways that have not been well defined before (Table II). It has the potential for the design of marker panels to assist in early diagnostics and therapeutic strategies in CRC (11, 29–31).

A recent report using 2-D DIGE and MS with the pH range of 4–7 found that in colon cancer some proteins such as succinate dehydrogenase subunit A, succinyl-CoA 3-ketoacid coenzyme A transferase, aldehyde dehydrogenase, and carbonic anhydrase I were down-regulated, whereas several other proteins such as triosephosphate isomerase and keratins 8 and 18 were up-regulated (10). The use of wider pH range (pH 4–9) agarose 2-DE and MS techniques for CRC tissues led to the detection of elevated expressions of various basic proteins (9) and confirmation of proteins known to exhibit altered expression levels in CRC, i.e. carbonic anhydrase 1, peptidyl-prolyl isomerase A, manganese superoxide dismutase, keratin 18, enolase 1 and pyruvate kinase 3 (7, 32–35). In addition, these investigators also found elevated expressions of the following proteins: pyruvate dehydrogenase beta, pyruvate kinase-3, triosephosphate isomerase 1, aldolase A, phosphoglycerate kinase 1, and malate dehydrogenase 2.

Table II

Spot no.	Protein name	Average ratio (T/M)	Predicted molecular mass (kDa)	Predicted pl	Biological function	Ref.
27	Enolase 1	2.436	47.1	7.01	Glycolysis	9, 36
43	Fructose-bisphosphate aldolase A (ALDA)	5.154	39.9	8.49	Glycolysis	9, 36
70	GAPDH	31.668	36.0	8.57	Glycolysis	36b
72	GAPDH	60.408	36.0	8.57	Glycolysis	36b
102	GAPDH	2.347	36.0	8.57	Glycolysis	36b
103	GAPDH	2.487	36.0	8.57	Glycolysis	36b
75	Malate dehydrogenase, mitochondrial precursor (MDH)	2.996	35.5	8.92	Tricarboxylic acid cycle	9
76	Malate dehydrogenase, mitochondrial precursor (MDH)	4.654	35.5	8.92	Tricarboxylic acid cycle	9
71	TAGLN protein transgeline	4.406	22.2	8.41	Cytoskeleton/structural	9, 10
80	Phosphoenolpyruvate carboxykinase, mitochondrial precursor (PEPCK)	0.247	71.5	7.56	Gluconeogenesis	36b
78	Carbonic anhydrase II (CA2)	0.17	29.3	6.87	Nitrogen metabolism	d
79	UGDH	0.208	55.7	6.73	Glucuronate	d
81	UDP-glucose pyrophosphorylase 2 (UGP2)	0.286	55.8	7.69	Glucuronate	d
82	UDP-glucose pyrophosphorylase 2 (UGP2)	0.314	55.8	7.69	Glucuronate	d
83	Aconitate hydratase, mitochondrial precursor	0.163	86.1	7.36	Tricarboxylic acid cycle	b
101	Aconitase 2	0.164	86.3	7.62	Tricarboxylic acid cycle	b

* Tumor versus normal mucosa.
* Alteration in CRC reported for the first time.

3 Q. Lin, T. K. Lim, T. You, S. L. Lo, S. B. Joshi, H.-M. Shen, C. N. Ong, P. Y. Cheah, K. W. Eu, C. C. Ming, M. C. M. Chung, and C.-L. Hew, manuscript in preparation.

Table II

Spot no.	Protein name	Average ratio (T/M)	Predicted molecular mass (kDa)	Predicted pl	Biological function	Ref.
27	Enolase 1	2.436	47.1	7.01	Glycolysis	9, 36
43	Fructose-bisphosphate aldolase A (ALDA)	5.154	39.9	8.49	Glycolysis	9, 36
70	GAPDH	31.668	36.0	8.57	Glycolysis	36b
72	GAPDH	60.408	36.0	8.57	Glycolysis	36b
102	GAPDH	2.347	36.0	8.57	Glycolysis	36b
103	GAPDH	2.487	36.0	8.57	Glycolysis	36b
75	Malate dehydrogenase, mitochondrial precursor (MDH)	2.996	35.5	8.92	Tricarboxylic acid cycle	9
76	Malate dehydrogenase, mitochondrial precursor (MDH)	4.654	35.5	8.92	Tricarboxylic acid cycle	9
71	TAGLN protein transgeline	4.406	22.2	8.41	Cytoskeleton/structural	9, 10
80	Phosphoenolpyruvate carboxykinase, mitochondrial precursor (PEPCK)	0.247	71.5	7.56	Gluconeogenesis	36b
78	Carbonic anhydrase II (CA2)	0.17	29.3	6.87	Nitrogen metabolism	d
79	UGDH	0.208	55.7	6.73	Glucuronate	d
81	UDP-glucose pyrophosphorylase 2 (UGP2)	0.286	55.8	7.69	Glucuronate	d
82	UDP-glucose pyrophosphorylase 2 (UGP2)	0.314	55.8	7.69	Glucuronate	d
83	Aconitate hydratase, mitochondrial precursor	0.163	86.1	7.36	Tricarboxylic acid cycle	b
101	Aconitase 2	0.164	86.3	7.62	Tricarboxylic acid cycle	b

* Tumor versus normal mucosa.
* Alteration in CRC reported for the first time.

Proteomic Analysis of Colorectal Cancer

1126 Molecular & Cellular Proteomics 5.6
peptidyl-prolyl isomerase A, enolase I (α), prolyl-4-hydroxylase β subunit, voltage-dependent anion channel 2, γ-lactate dehydrogenase M chain, and transgelin-2 (9) in primary CRC tissues. Our results not only confirmed alterations of expression levels of the alkaline proteins recently reported (9, 10) but also found new proteins (aconitase, phosphoenolpyruvate carboxykinase, UGDH, and UDP-glucose pyrophosphorylase 2) that exhibited altered expression level that have not been reported in CRC previously (Table II). Alterations of these proteins indicated abnormal metabolic pathways, such as impairment of the tricarboxylic acid cycle, reduction of the gluconeogenesis, and suppression of glucuronic acid synthesis, which may play critical roles in the onset of CRC.

Unwin et al. (36) were the first to demonstrate by proteomics that the elevated glycolytic pathway (Warburg effect) occurred in renal cancer tissue; this was further supported by increased glycolytic gene expression in 24 different cancers by functional genomics (24). Our results and other published protein expression pattern changes in CRC, as summarized in Fig. 4, suggest that alterations of the following major metabolic pathways are involved in the CRC tumorigenesis: elevated glycolysis, down-regulated gluconeogenesis, decreased glucuronate metabolism, and impaired tricarboxylic acid cycle (Krebs cycle). These metabolic pathways have been shown to be regulated by intracellular signaling (HIF-1α-mediated hypoxia pathway (37, 38)) and extracellular signaling (glycosaminoglycan (GAG) pathways (39), Wnt pathway (40), and vascular endothelial growth factor (41, 42)). Hereby we propose a mechanism of tumorigenesis of CRC (Fig. 4). Alteration of the expression of tricarboxylic acid cycle enzymes, i.e. down-regulation of aconitase and up-regulation of malate dehydrogenase, results in deficiency of the intermediate metabolite α-oxoglutarate (α-ketoglutarate), a critical co-substrate for Fe²⁺/α-oxoglutarate-dependent hydroxylases (prolyl hydroxylase and asparaginyl hydroxylase (factor inhibiting HIF-1)) that catalyze hydroxylation of HIF-1α subunit (43–45). In CRC, the Warburg effect and the impaired tricarboxylic acid cycle result in the accumulation of a glycolytic metabolite, pyruvate, and the tricarboxylic acid cycle intermediate oxaloacetate, both leading to inactivation of prolyl hydroxylases, independent of either 2-oxoglutarate or oxygen (46). Deficiencies in enzyme activities of prolyl hydroxylases and factor inhibiting HIF-1 result in reduced hydroxylation of Pro-402 and Pro-564 at the N-terminal transcriptional activation domain and Asn-803 at the C-terminal transcriptional activation domain of HIF-1α (47–49). Reduced hydroxylation of Pro-402 and Pro-564 diminishes the binding of the von Hippel-Lindau tumor suppressor to the oxygen-dependent degradation domain of HIF-1α (50, 51), leading to reduced ubiquitination and subsequent proteasome degradation of HIF-1α. Reduced hydroxylation of Asn-803 at the C terminus of HIF-1α facilitates its binding to CBP/p300. As a result, the stabilized phosphorylated HIF-1α translocates to the nucleus and dimerizes with its partner HIF-1β (aryl hydrocarbon re-
ceptor nuclear translocator) followed by interaction with CBP/p300 to form a CBP/p300-HIF-1 complex, promoting the expression of various HIF-1-targeted genes (52) including most glycolytic enzymes, such as aldolase, GAPDH, enolase, etc. HIF-1 also down-regulates hypoxia-responsive element-containing genes such as UGDH, a key enzyme for the conversion of UDP-glucose to UDP-glucuronate, an essential and/or critical precursor for synthesis of extracellular matrix including glycosaminoglycans, hyaluronans, proteoglycans, etc., leading to further disruption of the GAG signaling pathway (39). GAGs play an important role in the regulation of Wnt signaling, which has been shown to be involved in the onset of CRC (40).

The transcription factor HIF-1α is the key regulator of the glycolytic response and the Warburg effect in carcinogenesis (25, 53–56). Overexpression of HIF-1α, resulting from intratumoral hypoxia and genetic alterations, has been demonstrated in common human cancers including colon cancer and their metastases (37) and is correlated with tumor angiogenesis and patient mortality (38). It will be interesting to see whether the mechanism proposed above is applicable to other cancers.

Acknowledgments—We thank Shihui Wu and Wee Wee Tan for assistance in sample preparation. We are also grateful to the staff in the Protein and Proteomics Centre, Department of Biological Sciences, National University of Singapore for technical support.

* This work was supported by Singapore Cancer Syndicate Grant MU-0003 and Academic Research Funds R-154-000-193-112 from the Ministry of Education, Singapore and R-154-000-193-640 from the Office of Life Sciences, National University of Singapore (to C.-L. H and C. N. O.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

§ These authors contributed equally to this work.
¶ Recipient of the Lee Kuan Yew Postdoctoral Fellowship.
‡‡ To whom correspondence should be addressed. Tel.: 65-6516-2692; Fax: 65-6779-5671; E-mail: dbshead@nus.edu.sg or dbshead@nus.edu.sg.
Proteomic Analysis of Colorectal Cancer

Chem. 279, 14391–14397

45. Hausinger, R. P. (2004) FeII/ketoglutarate-dependent hydroxylases and related enzymes. Crit. Rev. Biochem. Mol. Biol. 39, 21–68

46. Lu, H., Dalgaard, C. L., Mohyeldin, A., McFate, T., Tait, A. S., and Verma, A. (2005) Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1. J. Biol. Chem. 280, 41928–41939

47. Hopfl, G., Ogunshola, O., and Gassmann, M. (2004) HIFs and tumors—causes and consequences. Am. J. Physiol. 286, R608–R623

48. Semenza, G. L. (2001) HIF-1, O2, and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 107, 1–3

49. Semenza, G. L. (2001) HIF-1 and mechanisms of hypoxia sensing. Curr. Opin. Cell Biol. 13, 167–171

50. Bruick, R. K., and McKnight, S. L. (2002) Transcription. Oxygen sensing gets a second wind. Science 295, 807–808

51. Bruick, R. K. (2003) Oxygen sensing in the hypoxic response pathway: regulation of the hypoxia-inducible transcription factor. Genes Dev. 17, 2614–2623

52. Semenza, G. L. (2003) Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3, 721–732

53. Minchenko, A., Leshchinsky, I., Opentanova, I., Sang, N., Srinivas, V., Armstead, V., and Caro, J. (2002) Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. J. Biol. Chem. 277, 6183–6187

54. Semenza, G. L., Roth, P. H., Fang, H. M., and Wang, G. L. (1994) Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem. 269, 23757–23763

55. Semenza, G. L. (1998) Hypoxia-inducible factor 1 and the molecular physiology of oxygen homeostasis. J. Lab. Clin. Med. 131, 207–214

56. Lu, H., Forbes, R. A., and Verma, A. (2002) Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J. Biol. Chem. 277, 23111–23115