I will discuss recently solved Quantum Mechanical—Quantum Electrodynamical problem in this lectures. It was solved numerically in papers [1, 2], and then analytical solution was found in papers [3, 4].

We will use convenient in atomic physics Gauss units: $e^2 = \alpha = 1/137$. Magnetic fields $B > m_e^2 e^3$ we will call strong while $B > m_e^3 / e^2$ we will call superstrong.

Important quantity in the problem under consideration is Landau radius $a_H = 1/\sqrt{eB}$ called magnetic length in condensed matter physics.

Let us consider hydrogen atom in external homogeneous magnetic field B. At strong B Bohr radius a_B is larger than a_H, so there are two time scales in the problem: fast motion in the perpendicular to magnetic field plane and slow motion along the magnetic field. That is why adiabatic approximation is applicable: averaging over fast motion we get one-dimensional motion of electron along the magnetic field in effective potential

$$U(z) \approx \frac{-e^2} {\sqrt{z^2 + a_H^2}}.$$

The energy of a ground state can be estimated as

$$E_0 = -2m \left(\int U(z)dz \right)^2 \approx -me^4 \ln \left(B/m^2 e^3 \right)$$

and it goes to minus infinity when B goes to infinity.

We will see that radiative corrections qualitatively change this result: ground state energy goes to finite value when B goes to infinity. This happens due to screening of the Coulomb potential.

Since at strong B reduction of the number of space dimensions occurs and motion takes place in one space and one time dimensions it is natural to begin

1 The article is published in the original.
let us take as an interpolating formula the following expression:

\[\bar{P}(t) = \frac{2t}{3 + 2t}. \]

(9)

The accuracy of this approximation is better than 10%. Substituting (9) into (7) we get:

\[
\Phi = 4\pi g \int_{-\infty}^{\infty} \frac{e^{ikz}d\ell}{k^2 + 4g^2(k^2/2m^2)/(3 + k^2/2m^2)}
= \frac{4\pi g}{1 + 2g^2/3m^2} \left[\frac{1}{k^2} + \frac{2g^2/3m^2}{k^2 + 6m^2 + 4g^2} \right] e^{ikz}d\ell
\]

(10)

In the case of heavy fermions \(m \gg g \) the potential is given by the tree level expression; the corrections are suppressed as \(g^2/m^2 \). In the case of light fermions \(m \ll g \):

\[
\Phi(z)\big|_{m \ll g} = \begin{cases}
\pi e^{-2|z|}, & z \ll \frac{1}{g} \ln \left(\frac{g}{m} \right) \\
-2\pi g \left(\frac{3m^2}{3g^2} \right) |z|, & z \gg \frac{1}{g} \ln \left(\frac{g}{m} \right)
\end{cases}
\]

(11)

For \(m = 0 \) we have Schwinger model—the first gauge invariant theory with a massive vector boson. Light fermions make a continuous transition from \(m > g \) to \(m = 0 \) case. The next two figures correspond to \(g = 0.5, m = 0.1 \). The expression for \(\mathcal{V} \) contains \(\mathcal{P} \).

To find the modification of the Coulomb potential in \(D = 4 \) we need an expression for \(\Pi \) in strong \(B \).

One starts from electron propagator \(G \) in strong \(B \). Solutions of the Dirac equation in homogenous constant in time \(B \) are known, so one can write spectral representation of electron Green function. Denominators contain \(k^2 - m^2 - 2eB \), and for \(B \gg m/e \) and \(k^2 \ll eB \) in sum over levels lowest Landau level (LLL, \(n = 0 \)) dominates. In coordinate representation transverse part of LLL wave function is:

\[\Psi \sim \exp((-x^2 - y^2)eB) \]

which in momentum representation gives \(\Psi \sim \exp((k_x^2 - k_y^2)/eB) \) (gauge in which \(\vec{A} \equiv 1/2[\vec{B} \times \vec{r}] \) is used).

Substituting electron Green functions into polarization operator we get:

\[
\Pi_{\mu\nu} \sim e^2 eB \int dq_x dq_y \exp \left(\frac{q_x^2 + q_y^2}{eB} \right) \times \exp \left(\frac{(q + k)^2}{eB} \right) dq_z d\gamma_\nu d\gamma_\mu
\]

(12)
\[
\Phi = \frac{4\pi e}{(k_1^2 + k_2^2)} \left(1 - \frac{\alpha}{3\pi} \ln \left(\frac{eB}{m^2}\right) + \frac{2e^2B}{\pi} \exp\left(-\frac{k_1^2}{2eB}\right) \psi^2 \left(\frac{k_1^2}{4m^2}\right)\right).
\]

(13)

\[
\Phi(z) = 4\pi e \int \frac{e^{ikz}dk_{1}dk_{2}}{(k_1^2 + k_2^2)} \left(1 - \frac{2e^2B}{\pi} \exp\left(-\frac{k_1^2}{2eB}\right)\right) \frac{1}{(2\pi)^2}.
\]

(14)

\[
\Phi(z) = \frac{e}{|z|} \left[1 - e^{-\sqrt{6m_e}|z|} + e^{-\sqrt{2/\pi}e^3B|z|}\right].
\]

(15)

\[
\Phi(z) \bigg|_{e^{-3B/m_e^2}} = \frac{e}{|z|} \left[1 + O\left(\frac{e^3B}{m_e^2}\right)\right]
\]

(16)

For magnetic fields \(B \ll 3m_e^2/e^3 \) the potential is the Coulomb up to small power suppressed terms: in full accordance with the \(D = 2 \) case, where \(g^2 \) plays the role of \(e^2B \). In the opposite case of superstrong magnetic fields \(B \gg 3m_e^2/e^3 \) we get:

\[
\Phi(z) = \begin{cases}
\frac{e}{|z|} & |z| > \frac{1}{m}, \\
\frac{e^{-\sqrt{2/\pi}e^3B|z|} - 1}{m} & 1/m > |z| > \frac{1}{\sqrt{2/\pi}e^3B}, \\
\frac{1}{\sqrt{2/\pi}e^3B} \ln \left(\frac{e^3B}{\sqrt{2/\pi}e^3B}\right) & |z| < 1/m.
\end{cases}
\]

(17)

\[
V(z) = -e\Phi(z).
\]

(18)

Spectrum of the Dirac equation in constant in space and time magnetic field is well known:

\[
e^2 = m^2 + p_x^2 + (2n + 1 + \sigma_z)eB,
\]

(19)

\(n = 0, 1, 2, 3, \ldots; \sigma_z = \pm 1 \). For \(B > B_{cr} = m_e/e \) the electrons are relativistic with only one exception: electrons from lowest Landau level \((n = 0, z = -1) \) can be non-relativistic.

In what follows we will study the spectrum of electrons from LLL in the Coulomb field of the proton modified by the superstrong \(B \).

Spectrum of Schrödinger equation in cylindrical coordinates \((\rho, z) \) in the gauge, where \(\vec{A} = 1/2[\vec{B}r] \) is:

\[
E_{p,n,\sigma_z} = \left(n + \frac{|m| + m + 1 + \sigma_z}{2}\right)eB + \frac{p_\rho^2}{m_e} + \frac{p_z^2}{2m_e}.
\]

(20)

LLL corresponds to \(n = 0, \sigma_z = -1, m = 0, -1, -2, \ldots \).

A wave function factorizes on those describing free motion along a magnetic field with momentum \(p_\rho \) and those describing motion in perpendicular to magnetic field plane:

\[
R_{0m}(\vec{p}) = [\pi(2a_H^2)^{1/2}m!\left|m!\right|^{-1/2}]
\times \rho^{m} \exp \left[-im\rho - \rho^2/(4a_H^2)\right]
\]

(21)

\[
\Psi_{n0m-1} = R_{0m}(\vec{p}) \chi_n(z),
\]

(22)

where \(\chi_n(z) \) is the solution of the Schrödinger equation for electron motion along a magnetic field:

\[
\left[-\frac{1}{2m} \frac{d^2}{dz^2} + U_{eff}(z)\right] \chi_n(z) = E_n \chi_n(z).
\]

(23)

Without screening the effective potential is given by the following formula:

\[
U_{eff}(z) = -e^2 \int \frac{R_{0m}(\vec{p})^2}{\sqrt{\rho^2 + z^2}} d\rho,
\]

(24)
For $|z| \gg a_H$, the effective potential equals to the Coulomb potential:
\[
U_{\text{eff}}(z) \big|_{z \gg a_H} = \frac{e^2}{|z|}
\]
(25)
and effective potential is regular at $z = 0$:
\[
U_{\text{eff}}(0) \sim -\frac{e^2}{|a_H|}.
\]
(26)

Since $U_{\text{eff}}(z) = U_{\text{eff}}(-z)$, the wave functions are odd or even under reflection $z \to -z$; the ground states (for $m = 0, -1, -2, ...$) are described by even wave functions.

To calculate the ground state of hydrogen atom in the textbook “Quantum Mechanics” by L.D. Landau and E.M. Lifshitz the shallow-well approximation is used:
\[
E_{\text{sw}} = -2m_e\left[\int_{a_H}^{a_H} U(z)dz\right]^2
\]
(27)
\[
= -(m_e e^2/2)\ln\left(B/(m_e^2 e^4)\right).
\]

Let us derive this formula. The starting point is one-dimensional Schrödinger equation:
\[
-\frac{1}{2\mu} \frac{d^2}{dz^2} \chi(z) + U(z)\chi(z) = E_0 \chi(z).
\]
(28)

Neglecting E_0 in comparison with U and integrating we get:
\[
\chi'(a) = 2\mu \int_0^a U(x)\chi(x)dx,
\]
(29)
where we assume $U(x) = U(-x)$, that is why x is even.

The next assumptions are: 1. the finite range of the potential energy: $U(x) \neq 0$ for $a > x > -a$; 2. χ under-
(condition for the potential to form a shallow well) we get that, indeed, \(|E_{\text{eff}}| \ll |E| \) and that the variation of \(\chi \) inside the well is small, \(\Delta z/\chi \sim \mu |U| a^2 \ll 1 \). Concerning the one-dimensional Coulomb potential, it satisfies this condition only for \(a \ll 1/(m e^2) \equiv a_b \).

This explains why the accuracy of log\(^2\) formula is very poor.

Much more accurate equation for atomic energies in strong magnetic field was derived by B. M. Karnakov and V. S. Popov [5]. It provides a several percent accuracy for effective potential transforms into series are negligible.

The energies of the ODD states are:

\[
E_{\text{odd}} = -\frac{m e^4}{2\pi^2} + O\left(\frac{m e^2}{B}\right), \quad n = 1, 2, \ldots \tag{34}
\]

So, for superstrong magnetic fields \(B \approx m_e^2/e^3 \) the deviations of odd states energies from the Balmer series are negligible.

When screening is taken into account an expression for effective potential transforms into

\[
\tilde{U}_{\text{ef}}(z) = -e^2 \int \frac{R_{am}(\tilde{\rho}) \tilde{\rho}^2 d^2 \rho}{\sqrt{\tilde{\rho}^2 + z^2}} \times \left[1 - e^{-\left(6m_e^2/2\pi\right)B + 6m_e^2z} \right] \tag{35}
\]

The original KP equation for LLL splitting by the Coulomb potential is:

\[
\ln (H) = \lambda + 2\ln \lambda + 2\psi\left(1 - \frac{1}{\lambda}\right) + \ln 2 + 4\gamma + \psi(1 + |m|), \tag{36}
\]

where \(\psi(x) \) is the logarithmic derivative of the gamma function; it has simple poles at \(x = 0, -1, -2, \ldots \)

The modified KP equation, which takes screening into account looks like:

\[
\ln \left(\frac{H}{1 + e^2 H/3\pi}\right) = \lambda + 2\ln \lambda + 2\psi\left(1 - \frac{1}{\lambda}\right) \tag{37}
\]

\[+ \ln 2 + 4\gamma + \psi(1 + |m|),
\]

\[E = -\left(m e^4/2\right)\lambda^2. \]

In particular, for a ground state \(\lambda = 11.2, E_0 = -1.7 \text{ keV}. \)

In conclusion,

1. (1) analytical expression for charged particle electric potential in \(d = 1 \) is given; for \(m < g \) screening take place at all distances;

2. (2) analytical expression for charged particle electric potential \(\Phi(z, \rho = 0) \) at superstrong \(B \) at \(d = 3 \) is found; screening take place at distances \(|z| \ll 1/m_e \);

3. (3) an algebraic formula for the energy levels of a hydrogen atom originating from the lowest Landau level in superstrong \(B \) has been obtained.

ACKNOWLEDGMENTS

I am grateful to the organizers of Baikal Summer School for their hospitality. I was supported by the grant RFBR 11-02-00441.

REFERENCES

1. A. E. Shabad and V. V. Usow, “Modified the Coulomb Law in a Strongly Magnetized Vacuum,” Phys. Rev. Lett. 98, 180403 (2007).

2. A. E. Shabad and V. V. Usow, “Electric Field of a Pointlike Charge in a Strong Magnetic Field and Ground State of a Hydrogenlike Atom,” Phys. Rev. D: Part. Fields 77, 025001 (2008).

3. M. I. Vysotsky, “Atomic Levels in Superstrong Magnetic Fields and \(D = 2 \) QED of Massive Electrons: Screening,” JETP Lett. 92, 15 (2010).

4. B. Machet and M. I. Vysotsky, “Modification of the Coulomb Law and Energy Levels of the Hydrogen Atom in a Superstrong Magnetic Field,” Phys. Rev. D: Part. Fields 83, 025022 (2011).

5. B. M. Karnakov and V. S. Popov, “A Hydrogen Atom in a Superstrong Magnetic Field and the Zeldovich Effect,” J. Exp. Theor. Phys. 97, 890 (2003).