Extending Feynman’s Formalisms for Modelling Human Joint Action Coordination

Vladimir G. Ivancevic, Eugene V. Aidman and Leong Yen

Abstract

The recently developed Life–Space–Foam approach to goal-directed human action deals with individual actor dynamics. This paper applies the model to characterize the dynamics of co-action by two or more actors. This dynamics is modelled by: (i) a two-term joint action (including cognitive/motivational potential and kinetic energy), and (ii) its associated adaptive path integral, representing an infinite-dimensional neural network. Its feedback adaptation loop has been derived from Bernstein’s concepts of sensory corrections loop in human motor control and Brooks’ subsumption architectures in robotics. Potential applications of the proposed model in human–robot interaction research are discussed.

Keywords: Psycho–physics, human joint action, path integrals

1 Introduction

Recently [1] we have suggested a generalized motivational/cognitive action, generating Lewinian force–fields [2,3] on smooth manifolds. On the other hand, cognitive neuroscience investigations, including fMRI studies of human co-action, suggest that cognitive and neural processes supporting co-action include joint attention, action observation, task sharing, and action coordination [4,5,6,7]. For example, when two actors are given a joint control task (e.g., tracking a moving target on screen) and potentially conflicting controls (e.g., one person in charge of acceleration, the other – deceleration), their joint performance depends on how well they can anticipate each other’s actions. In particular, better coordination is achieved when individuals receive real-time feedback about the timing of each other’s actions [7].

2 The Action–Amplitude Model

To model the dynamics of the joint human action, we associate each of the actors with an n–dimensional (nD, for short) Riemannian Life–Space manifold, that is a set of their own time dependent trajectories, $M_\alpha = \{x^i(t_i)\}$ and $M_\beta = \{y^j(t_j)\}$, respectively. Their associated tangent bundles contain their individual nD (loco)motion velocities, $TM_\alpha = \{\dot{x}^i(t_i) = dx^i/dt_i\}$ and $TM_\beta = \{\dot{y}^j(t_j) = dy^j/dt_j\}$.

Following [1], we use the modelling machinery consisting of:

1. Adaptive joint action (1)–(3) at the top–master level, describing the externally–appearing deterministic, continuous and smooth dynamics, and

2. Corresponding adaptive path integral (5) at the bottom–slave level, describing a wildly fluctuating dynamics including both continuous trajectories and Markov chains. This lower–level joint dynamics can be further discretized into a partition function of the corresponding statistical dynamics.
2.1 Adaptive joint action

By adapting and extending classical Wheeler–Feynman action–at–a–distance electrodynamics and applying it to human co-action, we propose a two-term psycho–physical action (summation convention is always assumed):

$$A[x, y; t_i, t_j] = \frac{1}{2} \int_{t_i}^{t_j} \int_{t}^{t_j} \alpha_i \beta_j \delta(T_{ij}^2) \dot{x}_i(t) \dot{y}_j(t) \ dt_i \ dt_j + \frac{1}{2} \int_t^{t_j} g_{ij} \dot{x}_i(t) \dot{x}_j(t) \ dt$$

with $$T_{ij}^2 = [x^i(t_i) - y^i(t_j)]^2$$, where $$IN \leq t_i, t_j, t \leq OUT$$. (1)

The first term in (1) represents potential energy of the cognitive/motivational interaction between the two agents $$\alpha$$ and $$\beta$$.

It is a double integral over a delta function of the square of interval $$T^2$$ between two points on the paths in their Life–Spaces; thus, interaction occurs only when this interval, representing the motivational cognitive distance between the two agents, vanishes. Note that the cognitive (loco)motions of the two agents $$\alpha[x^i(t_i)]$$ and $$\beta[y^i(t_j)]$$, generally occur at different times $$t_i$$ and $$t_j$$ unless $$t_i = t_j$$, when cognitive synchronization occurs.

The second term in (1) represents kinetic energy of the physical interaction. Namely, when the cognitive synchronization in the first term takes place, the second term of physical kinetic energy is activated in the common manifold, which is one of the agents’ Life Spaces, say $$M_{\alpha} = \{x^i(t_i)\}$$.

The reason why we have chosen the action (1) as a macroscopic model for human joint action is that $$A$$ naturally represents the transition map,

$$A[x, y; t_i, t_j] : \text{MENTAL INTENTION} \xrightarrow{\text{Synch}} \text{PHYSICAL ACTION},$$

from mutual cognitive intention to joint physical action, in which the joint action starts after the mutual cognitive intention is synchronized. In simple words, “we can efficiently act together only after we have tuned–up our intentions.”

Similarly, if we have the joint action of three agents, say $$\alpha_i, \beta_j$$ and $$\gamma_k$$ (e.g., $$\alpha_i$$ in charge of acceleration, $$\beta_j$$ – deceleration and $$\gamma_k$$ – steering), we can associate each of them with an nD Riemannian Life–Space manifold, say $$M_{\alpha} = \{x^i(t_i)\}; \ M_{\beta} = \{y^i(t_j)\}; \ M_{\gamma} = \{z^i(t_k)\}$$, respectively, with the corresponding tangent bundles containing their individual (loco)motion velocities, $$TM_{\alpha} = \{\dot{x}^i(t_i) = dx^i/dt_i\}; \ TM_{\beta} = \{\dot{y}^i(t_j) = dy^i/dt_j\}$$ and $$TM_{\gamma} = \{\dot{z}^i(t_k) = dz^i/dt_k\}$$. Then, instead of (1) we have

$$A[t_i, t_j, t_k; t] = \frac{1}{2} \int_{t_i}^{t_j} \int_{t_k}^{t_j} \int_{t_k}^{t_j} \alpha_i(t_i) \beta_j(t_j) \gamma_k(t_k) \delta(T_{ijk}^2) \dot{x}_i(t_i) \dot{y}_j(t_j) \dot{z}_k(t_k) \ dt_i \ dt_j \ dt_k$$

$$+ \frac{1}{2} \int_t^{t_j} W_{rs}^M(t, q, \dot{q}) \dot{q}_r \dot{q}_s \ dt, \quad \text{(where } IN \leq t_i, t_j, t_k, t \leq OUT)$$

(2)

with $$T_{ijk}^2 = [x^i(t_i) - y^i(t_j)]^2 + [y^i(t_j) - z^i(t_k)]^2 + [z^i(t_k) - x^i(t_i)]^2$$.

The triple joint action (2) has a considerably more complicated geometrical structure than the bilateral co–action (1). It actually happens in the common 3nD Finsler manifold $$M_J = M_{\alpha} \cup M_{\beta} \cup M_{\gamma}$$, parameterized by the local joint coordinates dependent on the common time $$t$$. That is, $$M_J = \{q^r(t), r = 1, ..., 3n\}$$. Geometry of the joint manifold $$M_J$$ is defined by the Finsler metric function $$ds = F(q^r, dq^r)$$, defined by

$$F^2(q, \dot{q}) = g_{rs}(q, \dot{q}) \dot{q}_r \dot{q}_s, \quad \text{(where } g_{rs} \text{ is the Riemann metric tensor)}$$

(3)

\(^1\)Although, formally, this term contains cognitive velocities, it still represents ‘potential energy’ from the physical point of view.

\(^2\)as well as its ND–generalizations
and the Finsler tensor $C_{rst}(q, \dot{q})$, defined by (see [9, 10])

$$C_{rst}(q, \dot{q}) = \frac{1}{4} \frac{\partial^3 F^2(q, \dot{q})}{\partial q^r \partial q^s \partial q^t} = \frac{1}{2} \frac{\partial g_{rs}}{\partial q^r} \frac{\partial}{\partial q^s} \frac{\partial}{\partial q^t}. \tag{4}$$

From the Finsler definitions (3)–(4), it follows that the partial interaction manifolds, $M_\alpha \cup M_\beta$, $M_\beta \cup M_\gamma$, and $M_\alpha \cup M_\gamma$, have Riemannian structures with the corresponding interaction kinetic energies,

$$T_{\alpha\beta} = \frac{1}{2} g_{ij} \dot{x}^i \dot{y}^j, \quad T_{\alpha\gamma} = \frac{1}{2} g_{ik} \dot{x}^i \dot{z}^k, \quad T_{\beta\gamma} = \frac{1}{2} g_{jk} \dot{y}^j \dot{z}^k.$$

2.2 Adaptive path integral

At the slave level, the adaptive path integral (see [1]), representing an infinite–dimensional neural network, corresponding to the adaptive bilateral joint action (1), reads

$$\langle \text{OUT} | \text{IN} \rangle := \int \mathcal{D}[w, x, y] e^{i A[x, y; t_i, t_j]}, \tag{5}$$

where the Lebesgue integration is performed over all continuous paths $x^i = x^i(t_i)$ and $y^j = y^j(t_j)$, while summation is performed over all associated discrete Markov fluctuations and jumps. The symbolic differential in the path integral (5) represents an adaptive path measure, defined as a weighted product

$$\mathcal{D}[w, x, y] = \lim_{N \to \infty} \prod_{s=1}^{N} w_{ij}^s dx^i dy^j, \quad (i, j = 1, ..., n). \tag{6}$$

Similarly, in case of the triple joint action, the adaptive path integral reads,

$$\langle \text{OUT} | \text{IN} \rangle := \int \mathcal{D}[w; x, y, z; q] e^{i A[t, t_j; t_k; t]}, \tag{7}$$

with the adaptive path measure defined by

$$\mathcal{D}[w; x, y, z; q] = \lim_{N \to \infty} \prod_{S=1}^{N} w_{ijkr}^S dx^i dy^j dz^k dq^r, \quad (i, j, k = 1, ..., n; r = 1, ..., 3n). \tag{8}$$

3 Chaos and Bernstein–Brooks Adaptation

From previous sections, we can see that for modelling a two–actor co–action the Riemannian geometry is sufficient. However, it becomes insufficient for modelling the joint action of 3 or more actors, due to an intrinsic chaotic coupling between the individual actors. In this case we have to use the Finsler geometry, which is a generalization of the Riemannian one. This corresponds to the well-known fact in chaos theory that in continuous–time systems chaos cannot exist in the phase plane – the third dimension of the system phase–space is necessary for its existence. This also corresponds to the well-known fact of life that a trilateral (or, multilateral) relation is many times more complex then a bilateral relation. (It is so in politics, in business, in marriage, in romantic relationships, in friendship, everywhere... Physicists would say that any bilateral relation(ship) between Alice and Bob is very likely to crash if Chris comes in between, or at least it
becomes much more complicated.) This is also related to Lotka–Volterra systems [20, 21], other competing systems [22], as well as interacting Morris–Lecar neurons [25].

The adaptive path integrals (5) and (7) incorporate the local Bernstein adaptation process [11, 12] according to Bernstein’s discriminator concept

\[\text{desired state } SW(t + 1) = \text{current state } IW(t) + \text{adjustment step } \Delta W(t). \]

The robustness of biological motor control systems in handling excess degrees of freedom has been attributed to a combination of tight hierarchical central planning and multiple levels of sensory feedback–based self–regulation that are relatively autonomous in their operation [13]. These two processes are connected through a top–down process of action script delegation and bottom–up emergency escalation mechanisms. There is a complex interplay between the continuous sensory feedback and motion/action planning to achieve effective operation in uncertain environments (such as movement on uneven terrain cluttered with obstacles). In case of three or more actors, the multifaceted feedback/planning loop has the purpose of chaos control [14, 15].

Complementing Bernstein’s motor/chaos control principles is Brooks’ concept of computational subsumption architectures [18, 19], which provides a method for structuring reactive systems from the bottom up using layered sets of behaviors. Each layer implements a particular goal of the agent, which subsumes that of the underlying layers.

For example, a robot’s lowest layer could be “avoid an object”, on top of it would be the layer “wander around”, which in turn lies under “explore the world”. The top layer in such a case could represent the ultimate goal of “creating a map”. In this configuration, the lowest layers can work as fast-responding mechanisms (i.e., reflexes), while the higher layers can control the main direction to be taken in order to achieve a more abstract goal.

The substrate for this architecture comprises a network of finite state machines augmented with timing elements. A subsumption compiler compiles augmented finite state machine descriptions into a special–purpose scheduler to simulate parallelism and a set of finite state machine simulation routines. The resulting networked behavior function can be described conceptually as:

\[\text{final state } w(t + 1) = \text{current state } w(t) + \text{adjustment behavior } f(\Delta w(t)). \]

The Bernstein weights, or Brooks nodes, \(w^s_{ij}(t) \) in [23] are updated by the Bernstein loop during the joint transition process, according to one of the two standard neural learning schemes, in which the micro–time level is traversed in discrete steps, i.e., if \(t = t_0, t_1, ..., t_s \) then \(t + 1 = t_1, t_2, ..., t_{s+1} \):

1. A self–organized, unsupervised (e.g., Hebbian–like [16]) learning rule:

\[w^s_{ij}(t + 1) = w^s_{ij}(t) + \frac{\sigma}{\eta}(w^s_{ij}(t) - w^{s,a}_{ij}(t)), \quad (9) \]

where \(\sigma = \sigma(t), \eta = \eta(t) \) denote signal and noise, respectively, while new superscripts \(d \) and \(a \) denote desired and achieved micro–states, respectively; or

2. A certain form of a supervised gradient descent learning:

\[w^s_{ij}(t + 1) = w^s_{ij}(t) - \eta \nabla J(t), \quad (10) \]

where \(\eta \) is a small constant, called the step size, or the learning rate, and \(\nabla J(n) \) denotes the gradient of the ‘performance hyper–surface’ at the \(t \)–th iteration.
Both Hebbian and supervised learning are used in local decision making processes, e.g., at the intention formation phase (see [1]). Overall, the model presents a set of formalisms to represent time-critical aspects of collective performance in tactical teams. Its applications include hypotheses generation for real and virtual experiments on team performance, both in human teams (e.g., emergency crews) and hybrid human-machine teams (e.g., human-robotic crews). It is of particular value to the latter, as the increasing autonomy of robotic platforms poses non-trivial challenges, not only for the design of their operator interfaces, but also for the design of the teams themselves and their concept of operations.

4 Conclusion

In this paper we have applied the previously developed Life Space Foam approach to model the dynamics of co-action by two or more agents. This dynamics is modelled by:

1. a two-term adaptive joint action, including mental cognitive/motivational potential and physical kinetic energy, and

2. its associated adaptive path integral, representing an infinite-dimensional neural network.

Its feedback adaptation loop has been derived from Bernstein’s concepts of sensory corrections loop in human motor control and Brooks’ subsumption architectures in robotics. The presented model demonstrates that in case of trilateral or multilateral joint action we have the strong possibility of chaotic behavior. Potential applications of the proposed model in human–robot interaction research are discussed.

References

[1] V. Ivancevic, E. Aidman, Life-space foam: A medium for motivational and cognitive dynamics. Physica A 382, 616–630, 2007.
[2] K. Lewin, Field Theory in Social Science. Univ. Chicago Press, Chicago, 1951.
[3] K. Lewin, Resolving Social Conflicts, and, Field Theory in Social Science. Am. Psych. Assoc., Washington, 1997.
[4] L. Fogassi, P.F. Ferrari, B. Gesierich, S. Rozzi, F. Chersi, G. Rizzolatti, Parietal lobe: From action organization to intention understanding. Science, 29, 662–667, 2005.
[5] G. Knoblich, S. Jordan, Action coordination in individuals and groups: Learning anticipatory control. J. Exp. Psych.: Learning, Memory & Cognition, 29, 1006–1016, 2003.
[6] R.D. Newman-Norlund, M.L. Noordzij, R.G.J. Meulenbroek, H. Bekkering, Exploring the brain basis of joint action: Co-ordination of actions, goals and intentions. Soc. Neurosci. 2(1), 48–65, 2007.
[7] N. Sebanz, H. Bekkering, G. Knoblich. Joint action: bodies and minds moving together. Tr. Cog. Sci. 10(2), 70–76, 2006.

Note that we could also use a reward–based, reinforcement learning rule [17], in which system learns its optimal policy:

\[\text{innovation}(t) = |\text{reward}(t) - \text{penalty}(t)|. \]
[8] J.A. Wheeler, R.P. Feynman, *Classical Electrodynamics in Terms of Direct Interparticle Action*. Rev. Mod. Phys., 21, 425–433, 1949.

[9] Ivancevic, V., Ivancevic, T.: *Geometrical Dynamics of Complex Systems*. Springer, Series: Microprocessor-Based and Intelligent Systems Engineering, Vol. 31, (2006)

[10] Ivancevic, V., Ivancevic, T.: *Applied Differfential Geometry: A Modern Introduction*. World Scientific, Series: Mathematics, (2007)

[11] N.A. Bernstein, *The Coordination and Regulation of Movements*. Pergamon, London, 1967.

[12] N.A. Bernstein, *Some emergent problems of the regulation of motor acts*. In: H.T.A. Whiting (Ed.) *Human Motor Actions: Bernstein Reassessed*, 343–358. North Holland, Amsterdam, 1982.

[13] N.A. Bernstein, M.L. Latash, M.T. Turvey (Eds), *Dexterity and its development*. Hillsdale, NJ, England: Lawrence Erlbaum Associates, 1996.

[14] E. Ott, C. Grebogi, J.A. Yorke, Controlling chaos. Phys. Rev. Lett. 64, 11961199, 1990.

[15] V. Ivancevic, T. Ivancevic, High-Dimensional Chaotic and Attractor Systems. Springer, Series: Springer, Intelligent Systems, Control and Automation: Science and Engineering, Vol. 32, 2007

[16] D.O. Hebb, *The Organization of Behavior*, Wiley, New York, 1949.

[17] R.S. Sutton, A.G. Barto, *Reinforcement Learning: An Introduction*. MIT Press, Cambridge, MA, 1998.

[18] R.A. Brooks, *A Robust Layered Control System for a Mobile Robot*. IEEE Trans. Rob. Aut., 2(1), 14–23, 1986.

[19] R.A. Brooks, *Elephants Don’t Play Chess*. Robotics and Autonomous Systems 6, 3–15, 1990.

[20] K. Wang, Z. Teng and H. Jiang, On The Permanence For n-Species Non-Autonomous LotkaVolterra Competitive System With Infinite Delays And Feedback Controls, IJB 1(1), 29–43, 2008.

[21] X. Meng and L. Chen, Permanence and Global Stability in an Impulsive LotkaVolterra N-Species Competitive System with Both Discrete Delays and Continuous Delays, IJB 1(2), 179–196, 2008.

[22] Z. Luo and Z.-R. He, Optimal Harvesting Problem for an Age-Dependent n-Dimensional Competing System with Diffusion, IJB 1(2), 133–145, 2008.

[23] J. Jiao and L. Chen, Global Attractivity of a Stage-Structure Variable Coefficients Predator-Prey System with Time Delay and Impulsive Perturbations on Predators, IJB 1(2), 197–208, 2008.

[24] Q. Gan, R. Xu and P. Yang, Bifurcation Analysis for a Predator-Prey System with Prey Dispersal and Time Delay, IJB 1(2), 209–224, 2008.

[25] S. Q. Ma, Q. S. Lu, Q. Y. Wang and Z. S. Feng, Effects of Time Delay on Two Neurons Interaction MorrisLecar Model, IJB 1(2), 161–170, 2008.