Storage Temperature, Controlled Atmosphere, and 1-Methylcyclopropene Effects on α-Farnesene, Conjugated Trienols, and Peroxidation in Relation with Superficial Scald, Pithy Brown Core, and Fruit Quality of ‘d’Anjou’ Pears during Long-term Storage

Yan Wang1

Department of Horticulture, Oregon State University, Mid-Columbia Agricultural Research and Extension Center, 3005 Experiment Station Drive, Hood River, OR 97031

ABSTRACT. Alternatives to ethoxyquin (Etq) are needed for controlling superficial scald of ‘Anjou’ european pears (Pyrus communis) during long-term storage. The current commercial standard storage conditions [Etq + −1 °C + controlled atmosphere (CA) with 1.5 kPa O2] reduced scald occurrence compared with control fruit (−1 °C + CA) during 6–8 months storage. At 1 °C in air, 1-methylcyclopropene (1-MCP) fumigation at 0.15 µL·L−1 at harvest was more efficient on reducing scald than Etq but did not prevent scald during 6–8 months storage. The 1-MCP-treated fruit at 1 °C in air developed their ripening capacity at 20 °C following 6–8 months storage but had deceased shipping ability (softening and yellowing of fruit). Although Etq inhibition of scald was associated with the inhibition of α-farnesene oxidation to conjugated trienols (CTols); 1-MCP reduced α-farnesene synthesis and thereby the availability of substrate to oxidize to CTols. CA storage at 1.5 kPa O2 totally prevented scald and retarded the loss of shipping ability without affecting the ripening capacity of 1-MCP-treated fruit at 1 °C through further decreases in the syntheses of ethylene, α-farnesene and CTols during 6–8 months storage. In addition, 1-MCP prevented a CA-induced disorder, pithy brown core (PBC), in ‘Anjou’ pears possibly through enhancing an oxidative/reductive metabolic balance during extended storage. In conclusion, the combinations of 1 °C + 1-MCP + CA is a potential commercial alternative to Etq for scald control while allowing the 1-MCP-treated ‘Anjou’ pears to recover ripening capacity during the shelf life period after 6–8 months storage.

‘Anjou’ is the most widely produced european pear cultivar in the Pacific northwestern United States with annual sales of ≥222 million kilograms (Northwest Horticultural Council, 2013). Superficial scald, resulting from necrosis of the hypodermal cortical tissue and manifested as brown or black patches on the fruit skin, is the most devastating physiological disorder of ‘Anjou’ fruit during long-term storage (Chen et al., 1990b; Whitaker, 2007). The cellular damage to the peel is thought to be induced and exacerbated by CTols, the oxidation products of the sesquiterpene (E,E)-α-farnesene (Chen et al., 1990b; Whitaker, 2007). CA storage at low O2 (i.e., ≤1 kPa O2) may control scald (Chen et al., 1993; Mellenthin et al., 1980); however, other disorders are increased by the same low-O2 conditions [e.g., PBC and black speck (BS)] (Chen and Varga, 1989, 1997) as well as insufficient softening during the shelf life period following storage (Matthies and Rudell, 2011). The current commercial control of scald on ‘Anjou’ pear is a postharvest treatment with the antioxidant Etq (Hansen and Mellenthin, 1979). However, this treatment often causes considerable phytotoxicity, leaves Etq residue in fruit, and is often not adequate for scald control with long-term storage (Bai et al., 2009; Chen et al., 1990a, 1990b). The European Union withdrew authorization for plant protection products containing Etq in 2009. A continuing registration of Etq in the United States is not assured since European pear is the only horticultural crop registered for postharvest use. Therefore, alternatives to Etq for controlling scald of ‘Anjou’ pears are needed.

Ethylene biosynthesis is associated with superficial scald of apple (Malus ×domestica) and ‘Anjou’ pear fruit through its regulation of the synthesis of α-farnesene in the fruit peel (Bai et al., 2006; Gapper et al., 2006; Jung and Watkins, 2008; Lurie and Watkins 2012). 1-Methylcyclopropene is an inhibitor of ethylene perception that retards ethylene-dependent responses such as ripening, senescence, and certain fruit disorders (Sisler and Serek, 1997; Sisler et al., 2003). Previous research demonstrated that 1-MCP inhibits ethylene synthesis and scald development in apples and european pears during storage (Argenta et al., 2003; Chen and Spotts, 2005; Fan and Mattheis, 1999; Isidoro and Almeida, 2006; Watkins et al., 2000). However, it interferes with ‘Anjou’ pear’s ability to ripen normally after storage (Bai et al., 2006; Chen and Spotts, 2005). ‘Anjou’ pear is enjoyed by consumers when the fruit have ripened to a buttery...
and juicy texture at warm temperatures following cold storage (Sugar and Basile, 2013; Villalobos-Acuna and Mitcham, 2008). Several strategies have been investigated to initiate ripening capacity in 1-MCP-treated european pears without consistent success, such as harvesting fruit at a more mature stage, post-storage ethylene conditioning, and warm temperature conditioning (Argenta et al., 2003; Bai et al., 2006; Xie et al., 2014). In european pears, storage temperatures ranging from –1 to 10 °C play a crucial role in the stimulation of ethylene biosynthesis during subsequent ripening at room temperatures (Sfakiotakis and Dilley, 1974; Sugar and Basile, 2013). Our previous research indicated that 1-MCP-treated ‘Anjou’ pears could recover their ripening capacity after long-term storage in air at storage temperature higher than –1 °C (i.e., 1 °C) but developed unacceptable scald, softening, and yellowing during long-term storage (Xie et al., 2014).

The objectives of this study were to characterize the biochemical basis behind storage temperature, CA, and 1-MCP effects on controlling scald and PBC and to evaluate the combination of elevated storage temperature (1 °C) and CA (1.5 kPa O2) on the ability of 1-MCP to control scald and extend the packing season while allowing the development of ripening capacity in ‘Anjou’ pears.

Materials and Methods

Fruit and Treatments. ‘Anjou’ pears were harvested at commercial maturity [fruit flesh firmness (FF) = 65.7 N] from mature trees in the orchard of the Mid-Columbia Agriculture Research and Extension Center in Hood River, OR (lat. 45.7°N, long. 121.3°W, elevation 150 m, average annual rainfall ≈800 mm). Defect-free fruit were randomly packed in 40 wooden boxes (80 fruit per box) with standard perforated polyethylene liners and were immediately moved to a cold room at –1 °C and >90% relative humidity. On the second day after harvest, 20 boxes of the cold fruit were exposed to 0.15 m L–1 1-MCP (SmartFresh®; AgroFresh, Spring House, PA) in an airtight room (39.8 m3) with a circulation fan at 0 °C for 24 h according to the application procedures recommended by the manufacturer. Fruit of 10 boxes were drenched with Etq at 2700 mg L–1 (Decco Cerexagi, Monrovia, CA) at 20 °C for 30 s. After treatments, 10 boxes of nontreated (as control) and 10 boxes of Etq-treated fruit were moved to a CA room at –1 °C; 10 boxes of 1-MCP-treated fruit to a cold room in air at 1 °C; 10 boxes of 1-MCP-treated fruit moved to another CA room at 1 °C. In each of the two CA rooms (35.6 m3), a semistatic O2 concentration of 1.5 kPa O2 was established within 3 d of harvest via purified N2 (10 boxes) and CO2 concentration with 2 mL 10% (w/v) trichloroacetic acid (TCA). After centrifugation at 10,000 g, for 15 min, a 2-mL aliquot of the supernatant was used for assay of AsA spectrophotometrically at 265 nm in 100 mM potassium phosphate buffer (pH 5.6), before and after 15 min incubation with 5 units AsA oxidase. The AsA content was determined from the absorbance difference and compared with a standard curve with the results expressed as milligram per kilogram fresh weight. MDA concentration was measured according to the corrected thiobarbituric acid (TBA) method (Hodges et al., 1999). Two grams of the frozen cortex tissue was ground and extracted in 5 mL of 10% (w/v) trichloroacetic acid (TCA). After centrifugation at 10,000 g, for 15 min, a 2-mL aliquot of the supernatant was mixed with 2 mL 10% TCA containing 0.6% (w/v) TBA. The mixture was heated to 100 °C for 20 min, quickly cooled, and centrifuged at 10,000 g, for 10 min. The supernatant was collected and absorbance was then measured at 450, 532, and 600 nm. The MDA concentration was calculated according to the formula: 6.45 × (A532 – A600) – 0.56 × A450 and the results expressed as micromole per kilogram fresh weight. Flesh leakage...
was determined using the method described by Redman et al. (1986). Sliced plugs (5 g each) were rinsed twice in distilled water, then placed in 30 mL of distilled water and exposed to a –25-kPa vacuum for 2 min. The sample was then shaken for 30 min. One milliliter of the solution was centrifuged at 10,000 g to for 5 min and the absorbance of the supernatant measured at 280 nm using a spectrophotometer as described above. The samples were then frozen at –20 °C, thawed, and a second absorbance measurement of the medium taken. The ratio of the first and second absorbance measurements was defined as the relative leakage ratio (RLR).

Decay and physiological disorders. On day 7 at 20 °C, 50 fruit of each replication were evaluated for decay, scald, and then cut longitudinally and transversely to assess PBC. Any pathological lesion was considered as decay and expressed as percentage of incidence. The occurrence of scald was expressed as the percentage of fruit affected with commercially unacceptable scald (>0.6 mm2). PBC was expressed as percentage of incidence regardless of the degree of severity (Chen and Varga, 1997).

Shipping ability. Shipping ability of European pears is defined using FF (i.e., FF > 44.5 N) and skin color (i.e., degree of greenness) after cold storage and before shipping (Sugar and Basile, 2013). Fruit color and FF were measured on 10 fruit of each replicate on day 1 at 20 °C after removal from cold storage. The fruit peel color was determined on opposite sides of the equator of each fruit with a colorimeter (CR-400; Minolta Camera, Osaka, Japan) with an 8-mm-diameter aperture using CIE illuminant. Color values a* and b* were converted to hue angle \(h^* = \arctangent \left(\frac{\sqrt{b^* - (a*)^2}}{a^*} \right) \). FF was measured on 10 fruit per replication using a fruit texture analyzer (model GS-14; Guss Manufacturing, Strand, South Africa) with an 8-mm probe that penetrates 9 mm in 0.9 s. Two measurements were obtained per fruit on opposite sides of the equatorial region after removal of 20-mm-diameter peel discs.

Physical and chemical attributes which represent eating quality. Ripening capacity was determined as competency of fruit softening and decrease in the amount of extractable juice (EJ) at room temperature (Sugar and Basile, 2013; Xie et al., 2014). Ten fruit of each replicate were removed from cold storage and ripened for 7 d at 20 °C. FF was determined as described above. After FF determination, 100 g of flesh tissue was ground for 3 min in a juice extractor (model 6001; Acme Juicer Manufacturing, Sierra Madre, CA) equipped with a uniform strip of milk filter (Schwartz Manufacturing, Two Rivers, WI). EJ was measured in a 100-mL graduated cylinder and expressed as milliliter per kilogram fresh weight. Soluble solid content (SSC) of the juice was determined using a digital refractometer (Atago, Tokyo, Japan). Titratable acidity (TA) was determined by titrating 10 mL of the juice to an endpoint pH 8.1 using 0.1 N NaOH with a commercial titration system (model T80/20; Schott-Gerate, Hofheim, Germany) and expressed as percentage (grams per 100 mL juice) of malic acid equivalents.

Statistical analysis. The experimental design was completely randomized. There were three replications per treatment at each evaluation period. The data were subjected to analysis of variance using Statistica (version 6; StatSoft, Tulsa, OK). When appropriate, means were separated by Fisher’s protected least significant difference (LSD) test at \(P < 0.05 \).

Results

Ethylene production and respiration rate. EPR was not detectable at harvest. For the control fruit (–1 °C + CA), EPR was approx. 0.3 \(\mu L \cdot kg^{-1} \cdot h^{-1} \) at 2 months and thereafter, increased gradually to a maximum of 7.6 \(\mu L \cdot kg^{-1} \cdot h^{-1} \) at 8 months of storage (Fig. 1A). Etq treatment (–1 °C + Etq + CA) did not affect EPR during the 8 months of storage. 1-MCP-treated fruit started to have EPR of 0.5 \(\mu L \cdot kg^{-1} \cdot h^{-1} \) at 4 months and increased gradually to 4.6 \(\mu L \cdot kg^{-1} \cdot h^{-1} \) at 8 months in air at 1 °C. CA reduced EPR in the 1-MCP-treated fruit to 0.2 and 2.2 \(\mu L \cdot kg^{-1} \cdot h^{-1} \) at 4 and 8 months of storage at 1 °C (Fig. 1A). Fruit RR at harvest was 5.1 \(L \cdot kg^{-1} \cdot h^{-1} \cdot CO_2 \). RR of the control and Etq-treated fruit remained relatively unchanged for 2 months, and thereafter increased gradually until 8 months. 1-MCP inhibited RR significantly for 8 months in air or CA at 1 °C. There was no significant difference in RR of the 1-MCP-treated fruit between air and CA storage at 1 °C over 8 months (Fig. 1B).

\(\alpha \)-Farnesene and CTols. \(\alpha \)-Farnesene concentration in ‘Anjou’ fruit peel was \(\approx 6.0 \) nmol cm\(^{-2} \) at harvest time. The control fruit accumulated \(\alpha \)-farnesene to a peak of 37.0 nmol cm\(^{-2} \) at 6 months and declined thereafter to 32.3 nmol cm\(^{-2} \) at 8 months (Fig. 2A). Etq treatment did not affect \(\alpha \)-farnesene accumulation in fruit peel over the 8 months in storage. 1-MCP reduced \(\alpha \)-farnesene accumulation to 21.2 and 25.0 nmol cm\(^{-2} \) after

![Fig. 1.](image)
6 and 8 months storage in air at 1 °C, respectively. CA further reduced α-farnesene concentration in the 1-MCP-treated fruit to 10.5 and 17.9 nmol·cm⁻² at 6 and 8 months storage at 1 °C, respectively (Fig. 2A). CTols were not detectable in the fruit peel at harvest. CTols in control fruit increased gradually and significantly throughout the storage period and reaching a maximum of 6.2 nmol·cm⁻² after 8 months (Fig. 2B). Eq treatment decreased CTols production significantly; CTols accumulated after 4 months in storage and reached a maximum of 3.3 nmol·cm⁻² after 8 months. 1-MCP reduced CTols concentration to 1.1 and 2.5 nmol·cm⁻² after 6 and 8 months storage in air at 1 °C, respectively. CA further reduced CTols concentration to 0.5 and 1.7 nmol·cm⁻² in the 1-MCP-treated fruit after 6 and 8 months storage at 1 °C, respectively (Fig. 2B).

Lipid peroxidation, flesh leakage, and AsA. MDA content decreased at 2 months and then increased gradually in all the treatments (Fig. 3A). In the control and Eq-treated fruit, PBC-damaged fruit had a higher MDA content than non-PBC fruit during 6–8 months storage. Eq treatment did not affect MDA content. After 4 months storage, 1-MCP retarded the increase of MDA in the fruit in air at 1 °C. The 1-MCP-treated fruit accumulated the least amount of MDA during 6–8 months storage in CA at 1 °C. The increased RLR observed with storage time (Fig. 3B) is likely due to the increasing senescence of the control and Eq-treated fruit. 1-MCP treatment slowed the RLR increase after 6 months. The 1-MCP-treated fruit had the lowest RLR during 6–8 months storage in CA at 1 °C. Fruit with PBC had significantly higher RLR values ($P < 0.05$) than undamaged fruit. AsA content decreased gradually in the
control fruit and the PBC-damaged fruit had a lower AsA than no-PBC fruit during 6–8 months (Fig. 3B). Etq treatment did not affect AsA content. 1-MCP slowed the AsA reduction in fruit stored in air at 1 °C during 6–8 months of storage. 1-MCP-treated fruit in CA at 1 °C had the highest AsA content during 6–8 months storage.

DISORDERS. Etq treatment reduced scald incidence to 8.3% and 12.2% from 53.2% and 87.7% of the control fruit after 6 and 8 months storage, respectively. Scald incidences were 3.6% and 6.5% in the 1-MCP-treated fruit after 6 and 8 months, respectively, in air at 1 °C. CA prevented scald incidence of the 1-MCP-treated fruit over 8 months of storage at 1 °C (Table 1). Scald incidence was highly correlated with CTols concentration in the fruit peel after 6 and 8 months storage (Fig. 4). The control fruit developed 3.2% and 5.9% PBC and 3.5% and 6.8% decay after 6 and 8 months storage, respectively. Although Etq treatment did not affect PBC and decay significantly, 1-MCP prevented PBC and reduced decay in air and in CA at 1 °C ($P < 0.05$) (Table 1).

SHIPPING ABILITY. The control fruit decreased in FF from 65.7 to 62.2 N gradually throughout the 8-month storage period (Fig. 5A). Etq treatment did not affect FF throughout the storage period. 1-MCP-treated fruit decreased in FF to 57.0 N in air at 1 °C after 8 months. 1-MCP-treated fruit in CA at 1 °C had 61.5 N firmness after 8 months storage. Control fruit peel h^0 decreased gradually from 116.0 to 109.1 during 8 months in storage. Etq treatment did not affect h^0 significantly during 8 months storage, whereas 1-MCP-treated fruit decreased h^0 to 101.2 in air at 1 °C after 8 months. However, at 1 °C CA retained h^0 at 110.0 in the 1-MCP-treated fruit after 8 months in storage (Fig. 5B).

EATING QUALITY. The control fruit softened to 45.0, 15.5, 15.8, and 20.6 N with EJ decreased to 685, 622, 625, and 636 mL kg$^{-1}$ after 7 d at 20 °C following 2, 4, 6, and 8 months storage, respectively (Fig. 6A and B). Etq treatment did not affect fruit capacity to ripen. 1-MCP-treated fruit started softening to 28.4 and 23.8 N and EJ decreased to 646 and 635 mL kg$^{-1}$ after 7 d at 20 °C following 6 and 8 months storage in air at 1 °C; CA did not affect FF and EJ significantly ($P < 0.05$) in the 1-MCP-treated fruit at 1 °C (Fig. 6A and B). SSC of the control fruit increased from 13.1% to 13.9% during 8 months storage; none of the treatments affected SSC (Fig. 6C). TA of the control fruit decreased 47% over 8 months of storage. Etq did not affect TA. TA of the 1-MCP-treated fruit decreased 33% in air and 20% in CA after 8 months storage at 1 °C (Fig. 6D).

Discussion

SUPERFICIAL SCALD. Scald is the most destructive storage disorder influencing the postharvest management of ‘Anjou’ pears (Chen and Spotts, 2005; Mattheis and Rudell, 2011). ‘Anjou’ pears may develop significant amount of scald and 100% in air after 3 and 5 months, respectively, at –1 °C (Xie et al., 2014). CA is a supplement to low temperature for extending storage life (mainly for eating quality) of European pears (Hansen and Mellenthin, 1979). A standard CA (1.5 kPa O$_2$) delayed or reduced scald in ‘Anjou’ pears in this and other studies (Chen et al., 1990a; Mattheis and Rudell, 2011; Mattheis et al., 2013). CA at low O$_2$ (≤1 kPa O$_2$) may control scald but can induce or increase other disorders such as BS, PBC, or losses of ripening capacity (Chen and Varga, 1989; Mattheis and Rudell, 2011; Mellenthin et al., 1980). A reliable CA protocol that prevents scald while avoiding the development of other disorders has not been identified or applied commercially. In the present study, the commercial standard Etq treatment (Etq + –1 °C + CA) reduced scald but did not prevent it for 6–8 months storage (Fig. 2); these results are in accordance with Bai (2010) and Chen et al. (1990b). Its efficacy is affected by many factors such as production lot, year, harvest maturity, and Etq application timing (Bai et al., 2009; Chen et al., 1990b).

The buildup of CTols, the oxidation products of α-farnesene, in fruit peel wax layers has been directly linked to tissue necrosis since application of certain CTols onto intact fruit provokes damage symptoms similar to superficial scald (Rowan et al., 2001). In this study, scald incidence had a positive correlation with the concentration of CTols in ‘Anjou’ fruit peel after 6 and 8 months storage (Fig. 5), as was observed by Bai et al. (2009) and Chen et al. (1990b) in ‘Anjou’ pears and by Isidoro and Almeida (2006) in ‘Rocha’ pears. Etq treatment did not affect the accumulation of α-farnesene in ‘Anjou’ fruit peel; however, based on the reduced accumulation of CTols (Fig. 1), it appeared to inhibit the oxidation of α-farnesene. However,

Table 1. Superficial scald, pithy brown core (PBC), and decay after 7 d at 20 °C following storage influenced by ethoxyquin (Etq), 1-methylcyclopropene (1-MCP), storage temperature, and controlled atmosphere (CA) in ‘Anjou’ pears after 6 and 8 mo. storage.

	Scald (%)	PBC (%)	Decay (%)	Scald (%)	PBC (%)	Decay (%)
6 mo.				8 mo.		
–1 °C + CA	53.2 a	3.6 a	4.0 a	87.7 a	6.5 a	7.3 a
–1 °C + Etq + CA	8.3 b	3.2 a	3.5 a	12.2 b	5.9 a	6.8 a
1 °C + 1-MCP	3.6 c	0 b	0 b	6.5 c	0 b	1.6 b
1 °C + 1-MCP + CA	0 d	0 b	0 b	0 d	0 b	0.3 b

*CA conditions at 1.5 kPa O$_2$ + <1% CO$_2$.
*Etq at 2700 mg L$^{-1}$.
*1-MCP at 0.15 μL L$^{-1}$.
*Different letters indicate significant differences among treatments according to Fisher’s protected LSD test at $P < 0.05$.
As a consequence, the 1-MCP-treated fruit at 1°C and Etq-treated fruit (–1°C after 4 months in air at 1°C after inhibition of scald. In this study, EPR and the syntheses of oxidation of α-farnesene during 8 months in air at 1°C inhibited scald and other fruit quality attributes in 'Conference' pears. Argenta et al. (2003) reported that 1-MCP at 0.1–1.0 μL.L⁻¹ prevented scald in 'Anjou' pears for 8 months in air at 1°C. The differences in results between other studies and ours may be due to number of factors (e.g., production location, year, harvest maturity), which are known to influence the susceptibility of 'Anjou' pears to scald (Calvo et al., 2015; Mattheis and Rudell, 2011; Mattheis et al., 2013). PITHY BROWN CORE. PBC and BS are the major physiological disorders affecting 'Anjou' pears in long-term CA storage (Chen and Varga, 1989, 1997; Mattheis and Rudell, 2011). While BS (brown spots scattered randomly on the peel tissue and affecting five to six layers of hypodermal cells) arises from low O₂, PBC (pithy and brown tissue in the core area between the carpels or encompassing the entire core) is a CO₂-induced disorder that occurs when fruit are stored in low O₂ (Chen and Varga, 1997; Hansen and Mellenthin, 1979). Although <1 kPa O₂ substantially increases the risk, PBS and BS are observed frequently under standard commercial CA storage conditions (1–2 kPa O₂ ± <1 kPa CO₂) after extended storage and their occurrences are affected by factors such as harvest maturity, tree vigor, growing season temperature, delayed cooling, storage temperature, and extended CA (Chen and Varga, 1989). In the present study, PBC but not BS was observed in the standard CA (1.5 kPa O₂ ± <1 kPa CO₂) after 6 and 8 months storage, as was reported by Mattheis and Rudell (2011) in certain lots of 'Anjou' pears in 1.5 kPa O₂ ± 0.5 kPa CO₂. 1-MCP treatment totally prevented PBC in 'Anjou' pears for 8 months in CA storage (Table 1).

The browning disorders of European pears may result from a disruption in the typical oxidative/reductive metabolic balance caused by low-O₂ environments, particularly in the presence of high CO₂ (Larrigaudière et al., 2001a, 2001b). CA conditions result in an accumulation of ethanol in 'Anjou' pears (Mattheis et al., 2013) and active oxygen species (AOS) such as O₂⁻ and H₂O₂ in 'Conference' pears (Larrigaudière et al., 2001a, 2001b). These compounds are toxic to fruit tissues causing lipid peroxidation and protein denaturation that in turn result in membrane disintegration and cellular decompartmentalization (Kays, 1997; Veltman et al., 1999). Plants have several enzymatic and nonenzymatic antioxidant defense mechanisms that counteract membrane oxidative damage caused by AOS (Kays, 1997; Larrigaudière et al., 2001a). Among the antioxidant systems, AsA appears to play an important role in the occurrence of the browning disorder in 'Conference' pears (Eccher Zerbini et al., 2002; Franck et al., 2003). It has been suggested that AsA protects against browning and that browning in pears is initiated when AsA drops below a threshold value (Eccher Zerbini et al., 2002; Veltman et al., 1999). This study demonstrated that the CA-induced PBC in 'Anjou' fruit appears to be related to membrane lipid peroxidation as indicated by increased MDA and RLR. MDA is widely used as an indicator of membrane lipid peroxidation during plant senescence and environmental stress (Hodges et al., 1999) and RLR is an indicator of tissue and membrane integrity in fruit and other plant tissues (Lu and Toivonen, 2016).

![Fig. 5. (A) Fruit firmness (FF) and (B) skin color (hue) influenced by ethoxyquin (Etq), 1-methylcyclopropene (1-MCP), storage temperature, and controlled atmosphere (CA) of 'Anjou' pear during long-term storage; Etq at 2700 mg·L⁻¹, 1-MCP at 0.15 μL·L⁻¹, CA conditions at 1.5 kPa O₂ ± <1% CO₂, storage temperature at –1 and 1°C. Values are means ± sd (n = 3).](image-url)

other factors likely also influence scald development (e.g., antioxidants in fruit peel) since CTols levels do not always correlate well with scald occurrence (Rowan et al., 2001; Tsantili et al., 2007). The synthesis of α-farnesene in fruit peel is regulated by ethylene production (Bai et al., 2006; Gapper et al., 2006; Jung and Watkins, 2008; Lurie and Watkins, 2012). We have reported that 1-MCP at 0.15 μL·L⁻¹ applied prestorage blocks ethylene production by decreasing the expression of ethylene synthesis and perception genes (i.e., PcACSI, PcACO1, PcETR1, PcETR2) and the accumulation of α-farnesene, thereby reducing the availability of substrate for oxidation to CTols, as a consequence, prevents scald in 'Anjou' pears during 8 months in air storage at –1°C (Xie et al., 2014). Gapper et al. (2006) demonstrated that 1-MCP inhibited the ethylene-induced α-farnesene synthase gene PcAFS1 expression in 'Anjou' pears stored at –1°C, and both synthesis and oxidation of α-farnesene were substantially reduced, resulting in inhibition of scald. In this study, EPR and the syntheses of α-farnesene and CTols increased in the 1-MCP-treated fruit after 4 months in air at 1°C, but was still lower than that in the Etq-treated fruit (–1°C + Etq + CA) during 4–8 months storage. As a consequence, the 1-MCP-treated fruit at 1°C developed less scald incidence than Etq-treated fruit after 6 and 8 months. The standard CA storage further reduced EPR and the syntheses of α-farnesene and CTols in the 1-MCP-treated fruit at 1°C, completely preventing scald occurrence during 8 months in storage; these results are in agreement with those of Rizzolo et al. (2005) that CA prolonged or enhanced the effect of 1-MCP on inhibiting scald and other fruit quality attributes in 'Conference' pears.
1-MCP is believed to extend storage life of European pears in part through reduced oxidative stress (Larrigaudière et al., 2004). In this study, ‘Anjou’ pears decreased AsA significantly during CA storage, as previously reported in ‘Rocha’ (Silva et al., 2010; Veltman et al., 2000) and ‘Conference’ (Franck et al., 2003; Veltman et al., 2000) pears. The 1-MCP-treated fruit retained a higher AsA content and lower MDA and RLR compared with the non-1-MCP-treated fruit, especially the PBC-damaged fruit, during 6–8 months CA storage. PBC-damaged fruit had a lower AsA and higher MDA and RLR than the non-PBC-damaged fruit. What predisposes some fruit in the same CA atmosphere to maintain a higher concentration of AsA and resistance to PBC than other fruit in the same production lot remains to be elucidated.

Decay. 1-MCP at 0.15 μL·L⁻¹ reduced naturally inoculated decay of ‘Anjou’ pears after 6 and 8 months in storage (Table 1). Argenta et al. (2003) and Spotts et al. (2007) also reported that 1-MCP ≥ 0.1 μL·L⁻¹ reduced decay of ‘Anjou’ pears during storage. Although the mechanism of action is not understood, it is possible that delayed senescence and an enhanced antioxidant system in fruit treated with 1-MCP may increase the fruit’s resistance to fungal pathogens. As a consequence, 1-MCP may be considered as a complementary component in an integrated decay control strategy for ‘Anjou’ pears.

Shipping ability. The current commercial procedures prefer ‘Anjou’ pears maintained a higher FF and green color on entry into the shipment and distribution chain to withstand mechanical damage and as indicators of high fruit quality (Sugar and Basile, 2013). Low storage temperature at −1 °C is critical for retaining FF and green color of ‘Anjou’ pears during long-term storage; both FF and green color decreased significantly at elevated storage temperatures (Porritt, 1964; Xie et al., 2014). 1-MCP at 0.15 μL·L⁻¹ did not retard the decrease in FF and green color of ‘Anjou’ pears in air at 1 °C (Fig. 6A and B). Standard CA storage reduced ethylene production and RRs and retained FF and green color of the 1-MCP-treated fruit during 8 months of storage at 1 °C. Ethylene synthesis may not be the only trigger for the losses of FF and green color since 1-MCP-treated fruit in air at 1 °C had a lower EPR but lower FF and green color than the control fruit in CA at −1 °C during 8 months storage. It seems that the low storage temperature (−1 °C) plays a more important role than 1-MCP in retaining FF and green color in ‘Anjou’ pears. Porritt (1964) reported that the most effective storage temperature for maintaining quality in European pears is −1 °C and a slight increase in temperature significantly increased fruit respiration and ripening rates.

Eating quality. Consumer acceptance for European pears is mainly dependent on the development of ripening capacity, sugar content, and acidity (Kappel et al., 1995). European pears are enjoyed for their buttery-juicy texture with fully characteristic flavor after ripening. For ‘Anjou’ pears, ripening capacity is defined as the ability of the fruit to soften to between 14 and 23 N with an EJ of <650 mL·kg⁻¹ within 7 d at 20 °C after removal from cold storage (Xie et al., 2014). However, European pears are generally resistant to ripening at harvest.
(Sugar and Basile, 2013; Villalobos-Acuña and Mitcham, 2008; Xie et al., 2014). In order for ‘Anjou’ pears to develop an appropriate ripening capacity, they must develop competency to produce ethylene internally at a sufficient rate to activate and complete the ripening process. In air at 1 °C, ‘Anjou’ pears with optimum harvest maturity require ≈60–90 d of post-harvest chilling to develop their ripening capacity and a high eating quality (Sugar and Basile, 2013; Xie et al., 2014). In this study, ‘Anjou’ pears did not develop ripening capacity until 4 months in the standard CA storage at 1 °C.

1-MCP inhibits ethylene function and synthesis in climacteric fruit by competing for the binding site of ethylene receptors, an irreversible process once a high enough dose of 1-MCP occupies the ethylene binding receptors (Blankenship and Dole, 2003). Plant tissues have been shown to vary widely in their ability to regenerate new ethylene receptors (Blankenship and Dole, 2003). 1-MCP-treated ‘Anjou’ pears might totally shut down the formation of new binding receptors when stored at –1 °C since 1-MCP-treated fruit do not develop their ripening capacity until 8 months in storage (Xie et al., 2014). A continuing challenge for commercializing 1-MCP on European pears is how to reinitiate the ripening capacity of 1-MCP-treated fruit following cold storage. Increasing storage temperature to 1 °C recovered ripening capacity but increased scald incidence, softening, and yellowing of the 1-MCP-treated ‘Anjou’ pears after 6–8 months storage in air. The recovery of ripening capacity from 1-MCP-induced inhibition may result from production of new receptors at 1 °C after long-term storage (Xie et al., 2014).

In this study, we found that the standard CA storage conditions (1.5 kPa O₂ + <1.0 kPa CO₂) further inhibited ethylene production and thereby prevented scald, retained FF and green color, and did not affect the ripening capacity of 1-MCP-treated ‘Anjou’ pears after 6–8 months in storage at 1 °C. The combinations of 1 °C + 1-MCP + CA with 1.5 kPa O₂, therefore, may be an alternative to Etq for controlling scald while allowing the 1-MCP-treated fruit to ripen during the shelf life period after long-term storage. In addition, increasing storage temperature from –1 to 1 °C will provide other potential benefits such as energy and cost savings since maintaining low temperature during fruit storage is an important aspect regarding energy consumption (Kittemann et al., 2015). Future investigations are warranted to, for examples, optimize storage temperature and 1-MCP application rate at commercial CA storage scales/conditions.

Literature Cited

Anet, E.F.L.J. 1972. Superficial scald, a functional disorder of stored apples. IX. Effect of maturity and ventilation. J. Sci. Food Agr. 23:763–769.

Argenta, L.C., X.T. Fan, and J.P. Mattheis. 2003. Influence of 1-methylocyclopropene on ripening, storage life, and volatile production by ‘d’Anjou’ cv. pear fruit. J. Agr. Food Chem. 51:3858–3864.

Bai, J. 2010. Comparison of CA, 1-MCP and ethoxyquin treatments in altering α-farnesene metabolism and reducing superficial scald of ‘d’Anjou’ pears. Acta Hort. 857:37–43.

Bai, J., J.P. Mattheis, and N. Reed. 2006. Re-initiating softening ability of 1-methylocyclopropene-treated ‘Bartlett’ and ‘d’Anjou’ pears after regular air or controlled atmosphere storage. J. Hort. Sci. Biotechnol. 81:959–964.

Bai, J., X. Yin, B.D. Whitaker, K. Deschuytter, and P.M. Chen. 2009. Combination of 1-methylocyclopropene and ethoxyquin to control superficial scald of ‘Anjou’ pears. HortTechnology 19:521–525.

Blankenship, S.M. and J.M. Dole. 2003. 1-Methylocyclopropene, a review. Postharvest Biol. Technol. 28:1–25.

Calvo, G., A.P. Candan, M. Civello, J. Giné-Bordonaba, and C. Larrigaudière. 2015. An insight into the role of fruit maturity at harvest on superficial scald development in ‘Beuré D’Anjou’ pear. Sci. Hort. 192:173–179.

Chen, P.M. and R.A. Spotts. 2005. Changes in ripening behaviors of 1-MCP-treated ‘d’Anjou’ pears after storage. Intl. J. Fruit Sci. 5:3–18.

Chen, P.M. and D.M. Varga. 1989. ‘Black Speck’, a superficial disorder of ‘d’Anjou’ pears after prolonged CA storage, p. 146–156. In: J.K. Fellman (ed.). Controlled atmospheres for storage and transport of perishable agricultural commodities. Washington State Univ., Pullman, WA.

Chen, P.M. and D.M. Varga. 1997. Determination of optimum controlled atmosphere regimes for the control of physiological disorders of ‘d’Anjou’ pears after short-term, mid-term or long-term storage, p. 85–90. In: E.J. Mitcham (ed.). Apples and pears. Post-harvest Hort. Ser. No. 16(2). Univ. California, Davis, CA.

Chen, P.M., D.M. Varga, E.A. Mielske, T.J. Facteau, and S.R. Drake. 1990a. Control of superficial scald on ‘d’Anjou’ pears by ethoxyquin: Effect of ethoxyquin concentration, time and method of application, and a combined effect with controlled atmosphere storage. J. Food Sci. 55:167–170.

Chen, P.M., D.M. Varga, E.A. Mielske, T.J. Facteau, and S.R. Drake. 1990b. Control of superficial scald on ‘d’Anjou’ pears by ethoxyquin: Oxidation of α-farnesene and its inhibition. J. Food Sci. 55:171–175.

Chen, P.M., R.J. Varga, and Y.Q. Xiao. 1993. Inhibition of α-farnesene biosynthesis and its oxidation in the peel tissue of ‘d’Anjou’ pears by low-O₂/elevated CO₂ atmospheres. Postharvest Biol. Technol. 3:215–223.

Eccher Zerbini, P., A. Rizzolo, A. Brambilla, P. Cambiaggi, and M. Grassi. 2002. Loss of ascorbic acid during storage of Conference pears in relation to the appearance of brown heart. J. Sci. Food Agr. 82:1007–1013.

Fan, X.T. and J.P. Mattheis. 1999. Development of apple superficial scald, soft scald, core flush, and greasiness is reduced by MCP. J. Agr. Food Chem. 47:3063–3068.

Franck, C., M. Baetens, J. Lammertyn, N. Scheerlinck, and B.M. Nicolla. 2003. Ascorbic acid mapping to study core breakdown. Postharvest Biol. Technol. 30:133–142.

Gapper, N.E., J. Bai, and B.D. Whitaker. 2006. Inhibition of ethylene-induced α-farnesene synthase gene PcAFS1 expression in ‘d’Anjou’ pears with 1-MCP reduces synthesis and oxidation of α-farnesene and delays development of superficial scald. Postharvest Biol. Technol. 41:225–233.

Hansen, E. and W.M. Mellenthin. 1979. Commercial handling and storage practices for winter pears. Oregon Agr. Exp. Sta. Spec. Rpt. 550.

Hodges, D.M., J.M. Delong, C.M. Forney, and P.K. Prange. 1999. Improving the thiobarbituric acid reactive-substances assay for estimating lipid peroxidation in plant tissue containing anthocyanin and other interfering compounds. Planta 207:604–611.

Isidoro, N. and D.P.F. Almeida. 2006. α-Farnesene, conjugated trienols, and superficial scald in ‘Rocha’ pear as affected by 1-methylocyclopropene and diphenylamine. Postharvest Biol. Technol. 42:49–56.

Jung, S.K. and C.B. Watkins. 2008. Superficial scald control after delayed treatment of apple fruit with diphenylamine (DPA) and 1-methylocyclopropene (1-MCP). Postharvest Biol. Technol. 50:45–52.

Kappel, F., R. Fisher-Fleming, and E.J. Hogue. 1995. Ideal pear harvest chilling to develop their ripening capacity and a high eating quality (Sugar and Basile, 2013; Xie et al., 2014). In this study, ‘Anjou’ pears did not develop ripening capacity until 8 months in storage (Xie et al., 2014).

Kays, S.J. 1997. Postharvest physiology of perishable plant products. Washington State Univ., Pullman, WA.

Kittemann, D., R. McCormick, and D.A. Neuwald. 2015. Effect of high temperature and 1-MCP application or dynamic controlled atmosphere on energy savings during apple storage. European J. Hort. Sci. 80:33–38.

Larrigaudière, C., I. Lenthéric, E. Pinto, and M. Vendrell. 2001a. Short term effects of air and controlled atmosphere storage on antioxidant metabolism in Conference pears. J. Plant Physiol. 158:1015–1022.
Larrigaudière, C., E. Pinto, I. Lentheric, and M. Vendrell. 2001b. Involvement of oxidative processes in the development of core browning in controlled atmosphere stored pears. J. Hort. Sci. Biotechnol. 76:157–162.

Larrigaudière, C., R. Vilaplana, Y. Soria, and I. Recasens. 2004. Oxidative behavior of ‘Blanquilla’ pears treated with 1-methylcyclopropene during cold storage. J. Sci. Food Agr. 84:1871–1877.

Logan, B.A., S.C. Grace, W.W. Adams, III, and B. Demmig-Adams. 1998. Seasonal differences in xanthophyll cycle characteristics and antioxidants in Mahonia repens growing in different light environments. Oecologia 116:9–17.

Lu, C. and M.A. Toivonen. 2000. Effect of 1 and 100 kPa O 2 atmospheric pretreatments of whole ‘Spartan’ apples on subsequent quality and shelf life of slices stored in modified atmosphere packages. Postharvest Biol. Technol. 18:99–107.

Lurie, S. and C.B. Watkins. 2012. Superficial scald, its etiology and control. Postharvest Biol. Technol. 65:44–60.

Mattheis, J.P., D. Felicetti, and D.R. Rudell. 2013. Pithy brown core in ‘d’Anjou’ pear (Pyrus communis L.) fruit developing during controlled atmosphere storage at pO2 determined by monitoring chlorophyll fluorescence. Postharvest Biol. Technol. 86:259–264.

Mattheis, J.P. and D. Rudell. 2011. Responses of ‘d’Anjou’ pear (Pyrus communis L.) fruit to storage at low oxygen set-points determined by monitoring fruit chlorophyll fluorescence. Postharvest Biol. Technol. 60:125–129.

Mellenthin, W.M., P.M. Chen, and S.B. Kelly. 1980. Low oxygen effects on dessert quality, scald prevention, and nitrogen metabolism of ‘d’Anjou’ pear fruit during long-term storage. J. Amer. Soc. Hort. Sci. 105:522–526.

Northwest Horticultural Council. 2013. Northwest Horticultural Council pear facts. 8 Aug. 2015. <http://www.nwhort.org/pearfacts.html>.

Porrít, S.W. 1964. The effect of temperature on postharvest physiology and storage life of pears. Can. J. Plant Sci. 44:568–579.

Redman, R.E., J. Heraldson, and L.V. Gusta. 1986. Leakage of UV-absorbing substances as a measure of salt injury in leaf tissue of woody species. Physiol. Plant. 67:87–91.

Rizzolo, A., P. Cambiagi, M. Grassi, and P. Eccher Zerbini. 2005. Influence of 1-methylcyclopropene and storage atmosphere on changes in volatile compounds and fruit quality in Conference pears. J. Agr. Food Chem. 53:9781–9789.

Rowan, D.D., M.B. Hunt, S. Fielder, J. Norris, and M.S. Sherburn. 2001. Conjugated triene oxidation products of α-farnesene induce symptoms of superficial scald on stored apples. J. Agr. Food Chem. 49:2780–2787.

Sfakiotakis, E.M. and D.R. Dilley. 1974. Induction of ethylene production in ‘Bosc’ pears by postharvest cold stress. HortScience 9:336–338.

Silva, F.J.P., M.H. Gomes, F. Fidalgo, J.A. Rodrigues, and D.P.F. Almeida. 2010. Antioxidant properties and fruit quality during long-term storage of ‘Rocha’ pear: Effects of maturity and storage conditions. J. Food Qual. 33:1–20.

Sisler, E.C., T. Alwan, R. Goren, M. Serek, and A. Apelbaum. 2003. 1-Substituted cyclopropenes: Effective blocking agents for ethylene action in plants. Plant Growth Regulat. 40:223–228.

Sisler, E.C. and M. Serek. 1997. Inhibitors of ethylene responses in plants at the receptor level: Recent developments. Physiol. Plant. 100:577–582.

Spotts, R.A., P.L. Sholberg, P. Randall, M. Serdani, and P.M. Chen. 2007. Effects of 1-MCP and hexanal on decay of d’Anjou pear fruit in long-term cold storage. Postharvest Biol. Technol. 44:101–106.

Sugar, D. and S.R. Basile. 2013. Integrated ethylene and temperature conditioning for induction of ripening capacity in ‘Anjou’ and ‘Comice’ pears. Postharvest Biol. Technol. 83:9–16.

Tsanitili, E., N.F. Gapper, J. Azquiza, B.D. Whitaker, and C.B. Watkins. 2007. Ethylene and α-farnesene metabolism in green and red skin of three apple cultivars in response to 1-methylcyclopropene (1-MCP) treatment. J. Agr. Food Chem. 55:5267–5276.

Veltman, R.H., R.M. Kho, A.C.R. Van Schaik, M.G. Sanders, and J. Oosterhaven. 2000. Ascorbic acid and tissue browning in pears (Pyrus communis L. cvs “Rocha” and “Conference”) under controlled atmosphere conditions. Postharvest Biol. Technol. 19:129–137.

Veltman, R.H., M.G. Sanders, S.T. Persijn, H.W. Peppelenbos, and J. Oosterhaven. 1999. Decreased ascorbic acid levels and brown core development in pears (Pyrus communis cv. Conference). Physiol. Plant. 107:39–45.

Villalobos-Acuña, M.G. and E.J. Mitcham. 2008. Ripening of european pears: The chilling dilemma. Postharvest Biol. Technol. 49:187–200.

Watkins, C.B., J.F. Nock, and B.D. Whitaker. 2000. Responses of early, mid and late season apple cultivars to postharvest application of 1-methylcyclopropene (1-MCP) under air and controlled atmosphere storage conditions. Postharvest Biol. Technol. 19:17–32.

Whitaker, B.D. 2007. Oxidation products of α-farnesene associated with superficial scald development in d’Anjou pear fruits are conjugated trienols. J. Agr. Food Chem. 55:3708–3712.

Xie, X., J. Song, Y. Wang, and D. Sugar. 2014. Ethylene synthesis and ripening capacity of 1-MCP treated ‘d’Anjou’ pears affected by storage temperatures. Postharvest Biol. Technol. 97:1–10.