Threshold resummation for Drell-Yan production: theory and phenomenology

Marco Bonvini

Dipartimento di Fisica, Università di Genova & INFN, sezione di Genova

HP².3rd
GGI, Firenze, September 14–17, 2010

In collaboration with:
Stefano Forte, Giovanni Ridolfi
Plan of the talk:

- For which values of $\tau = Q^2 s$ is resummation important?
- Two prescriptions for resummation:
 - Minimal prescription
 - Borel prescription
- Subleading terms
- New phenomenological results:
 - Rapidity distributions at NNLO + NNLL
Plan of the talk:

- for which values of $\tau = \frac{Q^2}{s}$ is resummation important?
Plan of the talk:

- for which values of $\tau = \frac{Q^2}{s}$ is resummation important?
- two prescriptions for resummation
Plan of the talk:

- for which values of \(\tau = \frac{Q^2}{s} \) is resummation important?
- two prescriptions for resummation
 - the minimal prescription
Plan of the talk:

- for which values of $\tau = \frac{Q^2}{s}$ is resummation important?
- two prescriptions for resummation
 - the minimal prescription
 - the Borel prescription
Plan of the talk:

- for which values of $\tau = \frac{Q^2}{s}$ is resummation important?
- two prescriptions for resummation
 - the minimal prescription
 - the Borel prescription
 - subleading terms

Marco Bonvini
Threshold resummation for Drell-Yan production: theory and phenomenology
Plan of the talk:

- for which values of $\tau = \frac{Q^2}{s}$ is resummation important?
- two prescriptions for resummation
 - the minimal prescription
 - the Borel prescription
 - subleading terms
- new phenomenological results
Plan of the talk:

- for which values of $\tau = \frac{Q^2}{s}$ is resummation important?
- two prescriptions for resummation
 - the minimal prescription
 - the Borel prescription
 - subleading terms
- new phenomenological results
 - rapidity distributions at NNLO + NNLL
For which τ is resummation important?

$z \sim 1$: logarithmic enhancement \rightarrow resummation of $\frac{\log^k(1-z)}{1-z}$

\[\sigma(\tau) = \int_{\tau}^{1} \frac{dz}{z} L \left(\frac{\tau}{z} \right) \hat{\sigma}(z), \quad \tau = \frac{Q^2}{s}, \quad z = \frac{Q^2}{\hat{s}}.\]
For which τ is resummation important?

$z \sim 1$: logarithmic enhancement \rightarrow resummation of $\frac{\log^k(1-z)}{1-z}$

$$
\sigma(\tau) = \int_{\tau}^{1} \frac{dz}{z} \mathcal{L} \left(\frac{\tau}{z} \right) \hat{\sigma}(z), \quad \tau = \frac{Q^2}{s}, \quad z = \frac{Q^2}{\hat{s}}
$$

$z \sim 1$ always contained in the integration region
For which τ is resummation important?

$z \sim 1$: logarithmic enhancement \rightarrow resummation of $\frac{\log^k (1-z)}{1-z}$

\[\sigma(\tau) = \int_{\tau}^{1} \frac{dz}{z} L \left(\frac{\tau}{z} \right) \hat{\sigma}(z), \quad \tau = \frac{Q^2}{s}, \quad z = \frac{Q^2}{\hat{s}} \]

- $z \sim 1$ always contained in the integration region
- when does that region give the dominant contribution?
For which τ is resummation important?

$z \sim 1$: logarithmic enhancement \rightarrow resummation of $\frac{\log^k(1-z)}{1-z}$

$$\sigma(\tau) = \int_{\tau}^{1} \frac{dz}{z} \mathcal{L} \left(\frac{\tau}{z} \right) \hat{\sigma}(z), \quad \tau = \frac{Q^2}{s}, \quad z = \frac{Q^2}{\hat{s}}$$

- $z \sim 1$ always contained in the integration region
- when does that region give the dominant contribution?

Standard argument*: resummation is relevant at a given τ when the region of partonic $z \sim 1$ is enhanced by PDFs.

* S.Catani, D.de Florian, M.Grazzini (hep-ph/0102227)
For which τ is resummation important?

$z \sim 1$: logarithmic enhancement \rightarrow resummation of $\frac{\log^k(1-z)}{1-z}$

$$\sigma(\tau) = \int_{\tau}^{1} \frac{dz}{z} \mathcal{L} \left(\frac{\tau}{z} \right) \hat{\sigma}(z), \quad \tau = \frac{Q^2}{s}, \quad z = \frac{Q^2}{\hat{s}}$$

- $z \sim 1$ always contained in the integration region
- when does that region give the dominant contribution?

Standard argument*: resummation is relevant at a given τ when the region of partonic $z \sim 1$ is enhanced by PDFs.

N–space analysis
and saddle point argument

* S.Catani, D.de Florian, M.Grazzini (hep-ph/0102227)
Drell-Yan $q\bar{q}$ at NLO in N–space

$$\frac{\alpha_s}{\pi} 4C_F \left\{ \left[\frac{\log(1-z)}{1-z} \right]_+ - \frac{\log \sqrt{z}}{1-z} - \frac{1+z}{2} \log \frac{1-z}{\sqrt{z}} + \left(\frac{\pi^2}{12} - 1 \right) \delta(1-z) \right\}$$

For $N \gg 2$ more than 50% of the NLO is given by the log term.
Drell-Yan $q\bar{q}$ at NLO in N–space

\[
\frac{\alpha_s}{\pi} 4C_F \left\{ \left[\log \frac{1 - z}{1 - z} \right]_+ - \log \sqrt{z} - \frac{1 + z}{2} \log \frac{1 - z}{\sqrt{z}} + \left(\frac{\pi^2}{12} - 1 \right) \delta(1 - z) \right\}
\]
Drell-Yan $q\bar{q}$ at NLO in N–space

\[
\frac{\alpha_s}{\pi} 4C_F \left\{ \left[\frac{\log(1-z)}{1-z} \right]_+ - \frac{\log \sqrt{z}}{1-z} - \frac{1+z}{2} \log \frac{1-z}{\sqrt{z}} + \left(\frac{\pi^2}{12} - 1 \right) \delta(1-z) \right\}
\]

For $N \gtrsim 2$ more than 50% of the NLO is given by the log term
The Mellin inversion integral is dominated by the values of N in the proximity of the saddle point $N = N_0$:

$$\log \frac{1}{\tau} = -\frac{d}{dN} \log L(N) - \frac{d}{dN} \log \hat{\sigma}(N)$$

RHS: monotonically decreasing function, with singularity at small $N \geq 0$ saddle N_0 real, positive and unique.

$\tau \sim 1 \Rightarrow \log \frac{1}{\tau} \to 0 \Rightarrow N_0$ large

$\tau \ll 1 \Rightarrow \log \frac{1}{\tau}$ large $\Rightarrow N_0$ small

How small?
Saddle point argument

\[\sigma(\tau) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} dN \exp \left[N \log \frac{1}{\tau} + \log \mathcal{L}(N) + \log \hat{\sigma}(N) \right] \]

The Mellin inversion integral is dominated by the values of \(N \) in the proximity of the saddle point \(N = N_0 \):
Saddle point argument

\[\sigma(\tau) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} dN \exp \left[N \log \frac{1}{\tau} + \log \mathcal{L}(N) + \log \hat{\sigma}(N) \right] \]

The Mellin inversion integral is dominated by the values of \(N \) in the proximity of the saddle point \(N = N_0 \):

\[\log \frac{1}{\tau} = -\frac{d}{dN} \log \mathcal{L}(N) - \frac{d}{dN} \log \hat{\sigma}(N) \]
Saddle point argument

\[\sigma(\tau) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} dN \ exp \left[N \log \frac{1}{\tau} + \log \mathcal{L}(N) + \log \hat{\sigma}(N) \right] \]

The Mellin inversion integral is dominated by the values of \(N \) in the proximity of the saddle point \(N = N_0 \):

\[\log \frac{1}{\tau} = -\frac{d}{dN} \log \mathcal{L}(N) - \frac{d}{dN} \log \hat{\sigma}(N) \]

RHS: monotonically decreasing function, with singularity at small \(N \geq 0 \)
Saddle point argument

\[\sigma(\tau) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} dN \exp \left[N \log \frac{1}{\tau} + \log \mathcal{L}(N) + \log \hat{\sigma}(N) \right] \]

The Mellin inversion integral is dominated by the values of \(N \) in the proximity of the saddle point \(N = N_0 \):

\[\log \frac{1}{\tau} = -\frac{d}{dN} \log \mathcal{L}(N) - \frac{d}{dN} \log \hat{\sigma}(N) \]

RHS: monotonically decreasing function, with singularity at small \(N \geq 0 \)

\textbf{saddle} \(N_0 \) real, positive and unique
Saddle point argument

\[\sigma(\tau) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} dN \exp \left[N \log \frac{1}{\tau} + \log \mathcal{L}(N) + \log \hat{\sigma}(N) \right] \]

The Mellin inversion integral is dominated by the values of \(N \) in the proximity of the saddle point \(N = N_0 \):

\[\log \frac{1}{\tau} = -\frac{d}{dN} \log \mathcal{L}(N) - \frac{d}{dN} \log \hat{\sigma}(N) \]

RHS: monotonically decreasing function, with singularity at small \(N \geq 0 \)

saddle \(N_0 \) real, positive and unique

\[\tau \sim 1 \quad \Rightarrow \quad \log \frac{1}{\tau} \to 0 \quad \Rightarrow \quad N_0 \text{ large} \]
Saddle point argument

\[
\sigma(\tau) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} dN \exp \left[N \log \frac{1}{\tau} + \log \mathcal{L}(N) + \log \hat{\sigma}(N) \right]
\]

The Mellin inversion integral is dominated by the values of \(N \) in the proximity of the saddle point \(N = N_0 \):

\[
\log \frac{1}{\tau} = -\frac{d}{dN} \log \mathcal{L}(N) - \frac{d}{dN} \log \hat{\sigma}(N)
\]

RHS: monotonically decreasing function, with singularity at small \(N \geq 0 \)

saddle \(N_0 \) real, positive and unique

\(\tau \sim 1 \quad \Rightarrow \quad \log \frac{1}{\tau} \to 0 \quad \Rightarrow \quad N_0 \) large

\(\tau \ll 1 \quad \Rightarrow \quad \log \frac{1}{\tau} \) large \quad \Rightarrow \quad N_0 \) small
Saddle point argument

\[\sigma(\tau) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} dN \exp \left[N \log \frac{1}{\tau} + \log \mathcal{L}(N) + \log \hat{\sigma}(N) \right] \]

The Mellin inversion integral is dominated by the values of \(N \) in the proximity of the saddle point \(N = N_0 \):

\[\log \frac{1}{\tau} = -\frac{d}{dN} \log \mathcal{L}(N) - \frac{d}{dN} \log \hat{\sigma}(N) \]

RHS: monotonically decreasing function, with singularity at small \(N \geq 0 \)

\textbf{saddle} \(N_0 \) real, positive and unique

\(\tau \sim 1 \quad \Rightarrow \quad \log \frac{1}{\tau} \to 0 \quad \Rightarrow \quad N_0 \) large

\(\tau \ll 1 \quad \Rightarrow \quad \log \frac{1}{\tau} \) large \quad \Rightarrow \quad N_0 \) small

How small?
The figure shows the saddle point N_0 vs τ for different collider scenarios. For p-p collider (LHC), $\tau\gtrsim 0.003$, while for p-pbar collider (Tevatron), $\tau\gtrsim 0.02$. The curves are labeled as p-p and p-pbar, respectively. The plot represents the Drell-Yan production with $Q = 100$ GeV, using NNPDF 2.0 with $\alpha_s(m_Z) = 0.118$. The log contribution is dominant for $\tau\gtrsim 2$. The graph is part of Marco Bonvini's presentation on threshold resummation for Drell-Yan production: theory and phenomenology.
Saddle point N_0 vs τ

![Graph showing N_0 vs τ](image)

$N_0 \gtrsim 2 \implies$ the log contribution is dominant
Saddle point N_0 vs τ

$N_0 \gtrsim 2 \Rightarrow$ the log contribution is dominant

$\tau \gtrsim \begin{cases}
0.003 & \text{for } pp \text{ colliders (LHC)} \\
0.02 & \text{for } p\bar{p} \text{ colliders (Tevatron)}
\end{cases}$
To summarize:

resummation is relevant when log contribution is dominant (at hadron level)
log contribution is dominant (at parton level) for $N \gtrsim 2$
the Mellin inversion integral is dominated by the saddle point $N = N_0$
log contribution is dominant (at hadron level) when $N_0 \gtrsim 2$
resummation is relevant for $\tau \gtrsim \{0.003 \text{ for } pp \text{ colliders (LHC)}, 0.02 \text{ for } p\bar{p} \text{ colliders (Tevatron)} \}$

Much smaller than expected!
To summarize:

- resummation is relevant when log contribution is dominant (at hadron level)

\[N \gtrsim 2 \]

\[\tau \gtrsim \begin{cases} 0.003 & \text{for } pp \text{ colliders (LHC)} \\ 0.02 & \text{for } p\bar{p} \text{ colliders (Tevatron)} \end{cases} \]

Much smaller than expected!
Relevance of resummation

To summarize:

- Resummation is relevant when log contribution is dominant (at hadron level).
- Log contribution is dominant (at parton level) for $N \gtrsim 2$.

Much smaller than expected!
Relevance of resummation

To summarize:

- resummation is relevant when log contribution is dominant (at hadron level)
- log contribution is dominant (at parton level) for $N \gtrsim 2$
- the Mellin inversion integral is dominated by the saddle point $N = N_0$

Much smaller than expected!
To summarize:

- Resummation is relevant when log contribution is dominant (at hadron level).
- Log contribution is dominant (at parton level) for $N \gtrsim 2$.
- The Mellin inversion integral is dominated by the saddle point $N = N_0$.
- Log contribution is dominant (at hadron level) when $N_0 \gtrsim 2$.

Marco Bonvini

Threshold resummation for Drell-Yan production: theory and phenomenology
Relevance of resummation

To summarize:

- resummation is relevant when log contribution is dominant (at hadron level)
- log contribution is dominant (at parton level) for $N \gtrsim 2$
- the Mellin inversion integral is dominated by the saddle point $N = N_0$
- log contribution is dominant (at hadron level) when $N_0 \gtrsim 2$
- resummation is relevant for

$$\tau \gtrsim \begin{cases}
0.003 & \text{for } pp \text{ colliders (LHC)} \\
0.02 & \text{for } p\bar{p} \text{ colliders (Tevatron)}
\end{cases}$$
To summarize:

- resummation is relevant when log contribution is dominant (at hadron level)
- log contribution is dominant (at parton level) for $N \gtrsim 2$
- the Mellin inversion integral is dominated by the saddle point $N = N_0$
- log contribution is dominant (at hadron level) when $N_0 \gtrsim 2$
- resummation is relevant for

$$\tau \gtrsim \begin{cases}
0.003 & \text{for } pp \text{ colliders (LHC)} \\
0.02 & \text{for } p\bar{p} \text{ colliders (Tevatron)}
\end{cases}$$

Much smaller than expected!
Resummation is performed in N–space \((L = 2\beta_0\alpha_s \log \frac{1}{N})\)

\[
\hat{\sigma}^{\text{res}}(N) = g_0(\alpha_s) \exp \left[\frac{1}{\alpha_s} g_1(L) + g_2(L) + \alpha_s g_3(L) + \alpha_s^2 g_4(L) + \ldots \right]
\]

known up to g_4 (N3LL): S.Moch, J.A.M.Vermaseren, A.Vogt (hep-ph/0506288)
Resummation

Resummation is performed in N–space \((L = 2\beta_0\alpha_s \log \frac{1}{N}) \)

\[
\hat{\sigma}^{\text{res}}(N) = g_0(\alpha_s) \exp \left[\frac{1}{\alpha_s} g_1(L) + g_2(L) + \alpha_s g_3(L) + \alpha_s^2 g_4(L) + \ldots \right]
\]

known up to \(g_4 \) (N3LL): S.Moch, J.A.M.Vermaseren, A.Vogt (hep-ph/0506288)

Branch cut due to the Landau singularity for \(N > N_L = \exp \frac{1}{2\beta_0\alpha_s} \)

\[\begin{array}{c}
\text{N space} \\
N_L
\end{array}\]
Resummation is performed in N–space \((L = 2\beta_0\alpha_s \log \frac{1}{N})\)

\[
\hat{\sigma}^{\text{res}}(N) = g_0(\alpha_s) \exp \left[\frac{1}{\alpha_s} g_1(L) + g_2(L) + \alpha_s g_3(L) + \alpha_s^2 g_4(L) + \ldots \right]
\]

known up to g_4 ($N^3\text{LL}$): S.Moch, J.A.M.Vermaseren, A.Vogt (hep-ph/0506288)

Branch cut due to the Landau singularity for $N > N_L = \exp \frac{1}{2\beta_0\alpha_s}$
Resummation

Resummation is performed in N–space \((L = 2\beta_0 \alpha_s \log \frac{1}{N})\)

\[
\hat{\sigma}^{\text{res}}(N) = g_0(\alpha_s) \exp \left[\frac{1}{\alpha_s} g_1(L) + g_2(L) + \alpha_s g_3(L) + \alpha_s^2 g_4(L) + \ldots \right]
\]

known up to g_4 (N3LL): S.Moch, J.A.M.Vermaseren, A.Vogt (hep-ph/0506288)

Branch cut due to the Landau singularity for $N > N_L = \exp \frac{1}{2\beta_0 \alpha_s}$

The Mellin inverse does not exist
Minimal prescription

S.Catani, M.L.Mangano, P.Nason, L.Trentadue (hep-ph/9604351)

\[
\sigma_{\text{MP}}(\tau) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} dN \, \tau^{-N} \mathcal{L}(N) \, \hat{\sigma}_{\text{res}}(N)
\]

with \(c < N_L = \exp \frac{1}{2\beta_0 \alpha_s} \), as in the figure.
Minimal prescription

S. Catani, M. L. Mangano, P. Nason, L. Trentadue (hep-ph/9604351)

\[
\sigma_{\text{MP}}(\tau) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} dN \, \tau^{-N} \mathcal{L}(N) \hat{\sigma}^{\text{res}}(N)
\]

with \(c < N_L = \exp \frac{1}{2\beta_0 \alpha_s} \), as in the figure.

Good properties:
- well defined for all \(\tau < 1 \)
Minimal prescription

S. Catani, M. L. Mangano, P. Nason, L. Trentadue (hep-ph/9604351)

\[\sigma_{MP}(\tau) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} dN \, \tau^{-N} \mathcal{L}(N) \hat{\sigma}^{\text{res}}(N) \]

with \(c < N_L = \exp \frac{1}{2\beta_0 \alpha_s} \), as in the figure.

Good properties:

- well defined for all \(\tau < 1 \)
- exact for invertible functions
Minimal prescription

S. Catani, M. L. Mangano, P. Nason, L. Trentadue (hep-ph/9604351)

\[\sigma_{MP}(\tau) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} dN \, \tau^{-N} \mathcal{L}(N) \hat{\sigma}^{\text{res}}(N) \]

with \(c < N_L = \exp \frac{1}{2\beta_0 \alpha_s} \), as in the figure.

Good properties:
- well defined for all \(\tau < 1 \)
- exact for invertible functions
- asymptotic to the original divergent series

\[N \text{ space} \]

\[N_L \]

\[c \]
Minimal prescription

S. Catani, M. L. Mangano, P. Nason, L. Trentadue (hep-ph/9604351)

\[\sigma_{MP}(\tau) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} dN \; \tau^{-N} \mathcal{L}(N) \hat{\sigma}^{\text{res}}(N) \]

with \(c < N_L = \exp \frac{1}{2\beta_0 \alpha_s} \), as in the figure.

Good properties:
- well defined for all \(\tau < 1 \)
- exact for invertible functions
- asymptotic to the original divergent series

But...
- a non-physical region of the parton cross-section contributes
Minimal prescription

S.Catani, M.L.Mangano, P.Nason, L.Trentadue (hep-ph/9604351)

\[
\sigma_{\text{MP}}(\tau) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} dN \tau^{-N} \mathcal{L}(N) \hat{\sigma}^{\text{res}}(N)
\]

with \(c < N_L = \exp \frac{1}{2\beta_0 \alpha_s} \), as in the figure.

Good properties:
- well defined for all \(\tau < 1 \)
- exact for invertible functions
- asymptotic to the original divergent series

But...
- a non-physical region of the parton cross-section contributes
- difficult numerical implementation
Minimal prescription: non-physical contribution

\[\sigma_{MP}(\tau) = \int_{\tau}^{+\infty} \frac{dz}{z} \mathcal{L} \left(\frac{\tau}{z} \right) \hat{\sigma}_{MP}(z) \]

The integral extends to \(+\infty\), not to 1!
Minimal prescription: non-physical contribution

\[\sigma_{\text{MP}}(\tau) = \int_\tau^{+\infty} \frac{dz}{z} \, \mathcal{L} \left(\frac{\tau}{z} \right) \, \hat{\sigma}_{\text{MP}}(z) \]

The integral extends to \(+\infty\), not to 1!

\(\hat{\sigma}_{\text{MP}}(z > 1) \) suppressed by powers of \(\frac{\Lambda}{Q} \), but huge oscillations near \(z = 1 \)

![Graph showing the behavior of \(\hat{\sigma}_{\text{MP}}(z) \) for \(Q = 8 \text{ GeV} \)]
Minimal prescription: non-physical contribution

\[\sigma_{\text{MP}}(\tau) = \int_{\tau}^{+\infty} \frac{dz}{z} \mathcal{L} \left(\frac{\tau}{z} \right) \hat{\sigma}_{\text{MP}}(z) \]

The integral extends to $+\infty$, **not to** 1!

$\hat{\sigma}_{\text{MP}}(z > 1)$ suppressed by powers of $\frac{\Lambda}{Q}$, but huge oscillations near $z = 1$

The MP is more conveniently used in the N–space formulation.
Minimal prescription: non-physical contribution

\[\sigma_{\text{MP}}(\tau) = \int_{\tau}^{+\infty} \frac{dz}{z} \mathcal{L} \left(\frac{\tau}{z} \right) \hat{\sigma}_{\text{MP}}(z) \]

The integral extends to \(+\infty\), not to 1!

\(\hat{\sigma}_{\text{MP}}(z > 1) \) suppressed by powers of \(\frac{\Lambda}{Q} \), but huge oscillations near \(z = 1 \)

The MP is more conveniently used in the \(N \)-space formulation

Need for \(\mathcal{L}(N) \), for values of \(N \) where the Mellin transform of \(\mathcal{L}(x) \) does not converge
Borel prescription (1)

$$\hat{\sigma}^{\text{res}}(N)$$

Treat the divergent series $M^{-1}\hat{\sigma}^{\text{res}}(N)$ with Borel method:

$$\sum_{k=1}^{\infty} b_k \left[\frac{1}{k!} \int_{0}^{\infty} dw e^{-w} w^k \right]$$

Borel = $\int_{0}^{\infty} dw e^{-w} \sum_{k=1}^{\infty} b_k \frac{1}{k!} w^k$

the inner sum converges

the integral diverges (the series is not Borel-summable)

proposed solution: cut-off

S.Forte, G.Ridolfi, J.Rojo, M.Ubiali (hep-ph/0601048); R.Abbate, SF, GR (hep-ph/0707.2452); MB, SF, GR (hep-ph/0807.3830); MB, SF, GR (coming soon)
Borel prescription (1)

\[\hat{\sigma}^{\text{res}}(N) = \sum_{k=1}^{\infty} h_k(\bar{\alpha}) \bar{\alpha}^k \] \[\log^k \frac{1}{N} , \quad \bar{\alpha} = 2\beta_0 \alpha_s \]
Borel prescription (1)

\[\mathcal{M}^{-1}[\hat{\sigma}_{\text{res}}(N)] = \sum_{k=1}^{\infty} h_k(\bar{\alpha}) \, \bar{\alpha}^k \, \mathcal{M}^{-1} \left[\log^k \frac{1}{N} \right], \quad \bar{\alpha} = 2\beta_0 \alpha_s \]
Borel prescription (1)

\[M^{-1}[\hat{\sigma}^{\text{res}}(N)] = \sum_{k=1}^{\infty} h_k(\bar{\alpha}) \bar{\alpha}^k M^{-1}\left[\log^k \frac{1}{N} \right], \quad \bar{\alpha} = 2\beta_0 \alpha_s \]

Treat the divergent series \(M^{-1}(\hat{\sigma}^{\text{res}}(N)) \) with Borel method:

* S.Forte, G.Ridolfi, J.Rojo, M.Ubiali (hep-ph/0601048); R.Abbate, SF, GR (hep-ph/0707.2452); MB, SF, GR (hep-ph/0807.3830); MB, SF, GR (coming soon)
Borel prescription (1)

\[\mathcal{M}^{-1}[\hat{\sigma}_{\text{res}}(N)] = \sum_{k=1}^{\infty} h_k(\bar{\alpha}) \bar{\alpha}^k \mathcal{M}^{-1} \left[\log^k \frac{1}{N} \right], \quad \bar{\alpha} = 2\beta_0 \alpha_s \]

Treat the divergent series \(\mathcal{M}^{-1}(\hat{\sigma}_{\text{res}}(N)) \) with Borel method:

\[\sum_{k=1}^{\infty} b_k \]

* S.Forte, G.Ridolfi, J.Rojo, M.Ubiali (hep-ph/0601048); R.Abbate, SF, GR (hep-ph/0707.2452); MB, SF, GR (hep-ph/0807.3830); MB, SF, GR (coming soon)
Borel prescription (1)

\[M^{-1}[\hat{\sigma}^{\text{res}}(N)] = \sum_{k=1}^{\infty} h_k(\bar{\alpha}) \bar{\alpha}^k M^{-1}\left[\log^k \frac{1}{N}\right], \quad \bar{\alpha} = 2\beta_0 \alpha_s \]

Treat the divergent series \(M^{-1}(\hat{\sigma}^{\text{res}}(N)) \) with Borel method:

\[\sum_{k=1}^{\infty} b_k \left[\frac{1}{k!} \int_0^{+\infty} dw \ e^{-w} w^k \right] \]

* S.Forte, G.Ridolfi, J.Rojo, M.Ubiali (hep-ph/0601048); R.Abbate, SF, GR (hep-ph/0707.2452); MB, SF, GR (hep-ph/0807.3830); MB, SF, GR (coming soon)
Borel prescription (1)

\[M^{-1}[\hat{\sigma}^{\text{res}}(N)] = \sum_{k=1}^{\infty} h_k(\hat{\alpha}) \, \bar{\alpha}^k \, M^{-1} \left[\log^k \frac{1}{N} \right], \quad \bar{\alpha} = 2\beta_0 \alpha_s \]

Treat the divergent series \(M^{-1}(\hat{\sigma}^{\text{res}}(N)) \) with Borel method:

\[\sum_{k=1}^{\infty} b_k \left[\frac{1}{k!} \int_{0}^{+\infty} dw \, e^{-w} \, w^k \right] \quad \text{Borel} \quad \int_{0}^{+\infty} dw \, e^{-w} \sum_{k=1}^{\infty} \frac{b_k}{k!} \, w^k \]

* S.Forte, G.Ridolfi, J.Rojo, M.Ubiali (hep-ph/0601048); R.Abbate, SF, GR (hep-ph/0707.2452); MB, SF, GR (hep-ph/0807.3830); MB, SF, GR (coming soon)
Borel prescription (1)

\[M^{-1}[\hat{\sigma}_{\text{res}}(N)] = \sum_{k=1}^{\infty} h_k(\bar{\alpha}) \bar{\alpha}^k M^{-1}\left[\log^k \frac{1}{N}\right], \quad \bar{\alpha} = 2\beta_0 \alpha_s \]

Treat the divergent series \(M^{-1}(\hat{\sigma}_{\text{res}}(N)) \) with Borel method:*

\[\sum_{k=1}^{\infty} b_k \left[\frac{1}{k!} \int_0^{+\infty} dw \ e^{-w} w^k \right] \xrightarrow{\text{Borel}} \int_0^{+\infty} dw \ e^{-w} \sum_{k=1}^{\infty} \frac{b_k}{k!} w^k \]

- the inner sum converges

* S.Forte, G.Ridolfi, J.Rojo, M.Ubiali (hep-ph/0601048); R.Abbate, SF, GR (hep-ph/0707.2452); MB, SF, GR (hep-ph/0807.3830); MB, SF, GR (coming soon)
Borel prescription (1)

\[
\mathcal{M}^{-1} \left[\hat{\sigma}^{\text{res}}(N) \right] = \sum_{k=1}^{\infty} h_k(\bar{\alpha}) \bar{\alpha}^k \mathcal{M}^{-1} \left[\log^k \frac{1}{N} \right], \quad \bar{\alpha} = 2\beta_0 \alpha_s
\]

Treat the divergent series \(\mathcal{M}^{-1} (\hat{\sigma}^{\text{res}}(N)) \) with Borel method:

\[
\sum_{k=1}^{\infty} b_k \left[\frac{1}{k!} \int_{0}^{+\infty} dw \, e^{-w} \, w^k \right] \quad \text{Borel} = \int_{0}^{+\infty} dw \, e^{-w} \sum_{k=1}^{\infty} \frac{b_k}{k!} \, w^k
\]

- the inner sum converges
- the integral diverges (the series is not Borel-summable)

* S.Forte, G.Ridolfi, J.Rojo, M.Ubiali (hep-ph/0601048); R.Abbate, SF, GR (hep-ph/0707.2452); MB, SF, GR (hep-ph/0807.3830); MB, SF, GR (coming soon)
Borel prescription (1)

\[
\mathcal{M}^{-1}[\hat{\sigma}^{\text{res}}(N)] = \sum_{k=1}^{\infty} h_k(\bar{\alpha}) \bar{\alpha}^k \mathcal{M}^{-1}\left[\log^k \frac{1}{N}\right], \quad \bar{\alpha} = 2\beta_0 \alpha_s
\]

Treat the divergent series \(\mathcal{M}^{-1}(\hat{\sigma}^{\text{res}}(N)) \) with Borel method:

\[
\sum_{k=1}^{\infty} b_k \left[\frac{1}{k!} \int_0^{+\infty} dw \ e^{-w} w^k \right] \overset{\text{Borel}}{=} \int_0^{+\infty} dw \ e^{-w} \sum_{k=1}^{\infty} \frac{b_k}{k!} w^k
\]

- the inner sum converges
- the integral diverges (the series is not Borel-summable)
- proposed solution: cut-off \(C \) in the integral

* S.Forte, G.Ridolfi, J.Rojo, M.Ubiali (hep-ph/0601048); R.Abbate, SF, GR (hep-ph/0707.2452); MB, SF, GR (hep-ph/0807.3830); MB, SF, GR (coming soon)
Borel prescription (2)

\[\hat{\sigma}_{BP}(z, C) = \frac{1}{2\pi i} \oint_{C} \frac{d\xi}{\Gamma(\xi + 1)} \left[\log^{-1} \frac{1}{z} \right] + \int_{0}^{C} \frac{dw}{\bar{\alpha}} e^{-\frac{w}{\bar{\alpha}}} \Sigma \left(\frac{w}{\xi} \right) \]

where \(\Sigma(\bar{\alpha} \log \frac{1}{N}) \equiv \hat{\sigma}_{\text{res}}(N) \)
\[
\hat{\sigma}_{\text{BP}}(z, C) = \frac{1}{2\pi i} \oint_{C} \frac{d\xi}{\Gamma(\xi + 1)} \left[\log \xi^{-1} \frac{1}{z} \right] + \int_{0}^{C} \frac{dw}{\bar{\alpha}} e^{-\frac{w}{\bar{\alpha}}} \Sigma \left(\frac{w}{\xi} \right)
\]

where \(\Sigma(\bar{\alpha} \log \frac{1}{N}) \equiv \hat{\sigma}^{\text{res}}(N) \)

Remarks

- resummed expression at parton level \(\rightarrow \) easier numerical implementation
Borel prescription (2)

\[\hat{\sigma}_{BP}(z, C) = \frac{1}{2\pi i} \oint_{C} \frac{d\xi}{\Gamma(\xi + 1)} \left[\log^{\xi-1} \frac{1}{z} \right] + \int_{0}^{C} \frac{dw}{\bar{\alpha}} e^{-\frac{w}{\bar{\alpha}}} \Sigma \left(\frac{w}{\xi} \right) \]

where \(\Sigma(\bar{\alpha} \log \frac{1}{N}) \equiv \hat{\sigma}_{\text{res}}(N) \)

Remarks

- resummed expression at parton level \(\rightarrow \) easier numerical implementation
- asymptotic to the original divergent series
Borel prescription (2)

\[\hat{\sigma}_{BP}(z, C) = \frac{1}{2\pi i} \oint_C \frac{d\xi}{\Gamma(\xi + 1)} \left[\log^{\xi - 1} \frac{1}{z} \right] + \int_0^C \frac{dw}{\bar{\alpha}} e^{-\frac{w}{\bar{\alpha}}} \Sigma \left(\frac{w}{\xi} \right) \]

where \(\Sigma(\bar{\alpha} \log \frac{1}{N}) \equiv \hat{\sigma}^{\text{res}}(N) \)

Remarks

- resummed expression at parton level → easier numerical implementation
- asymptotic to the original divergent series
- parameter \(C \) to estimate ambiguity
Borel prescription (2)

\[
\hat{\sigma}_{\text{BP}}(z, C) = \frac{1}{2\pi i} \oint_C \frac{d\xi}{\Gamma(\xi + 1)} \left[\log(\xi - 1) \frac{1}{z} \right] + \int_0^C \frac{dw}{\bar{\alpha}} e^{-\frac{w}{\bar{\alpha}}} \Sigma \left(\frac{w}{\xi} \right)
\]

where \(\Sigma(\bar{\alpha} \log \frac{1}{N}) \equiv \hat{\sigma}^{\text{res}}(N) \)

Remarks

- resummed expression at parton level → easier numerical implementation
- asymptotic to the original divergent series
- parameter \(C \) to estimate ambiguity
- cut-off related to the inclusion of higher-twist terms \(e^{-\frac{C}{\bar{\alpha}}} \simeq \left(\frac{\Lambda^2}{Q^2} \right)^{C/2} \)
Borel prescription (2)

\[\hat{\sigma}_{BP}(z, C) = \frac{1}{2\pi i} \oint_{C} \frac{d\xi}{\Gamma(\xi + 1)} \left[\log^{\xi-1} \frac{1}{z} \right] + \int_{0}^{C} \frac{dw}{\bar{\alpha}} e^{-\frac{w}{\bar{\alpha}}} \Sigma \left(\frac{w}{\xi} \right) \]

where \(\Sigma(\bar{\alpha} \log \frac{1}{N}) \equiv \hat{\sigma}^{\text{res}}(N) \)

Remarks

- resummed expression at parton level \(\rightarrow \) easier numerical implementation
- asymptotic to the original divergent series
- parameter \(C \) to estimate ambiguity
- cut-off related to the inclusion of higher-twist terms \(e^{-\frac{C}{\bar{\alpha}}} \simeq \left(\frac{\Lambda^2}{Q^2} \right)^{C/2} \)
- \(z \) dependence under control:

\[\frac{\log \log \frac{1}{z}}{\log \frac{1}{z}} \]
Borel prescription (2)

\[\hat{\sigma}_{BP}(z, C) = \frac{1}{2\pi i} \oint_C \frac{d\xi}{\Gamma(\xi + 1)} \left[(1 - z)^{\xi-1} \right] + \int_0^C \frac{dw}{\bar{\alpha}} e^{-\frac{w}{\bar{\alpha}}} \Sigma \left(\frac{w}{\xi} \right) \]

where \(\Sigma(\bar{\alpha} \log \frac{1}{N}) \equiv \hat{\sigma}^{\text{res}}(N) \)

Remarks

- resummed expression at parton level \(\rightarrow \) easier numerical implementation
- asymptotic to the original divergent series
- parameter \(C \) to estimate ambiguity
- cut-off related to the inclusion of higher-twist terms \(e^{-\frac{C}{\bar{\alpha}}} \simeq \left(\frac{\Lambda^2}{Q^2} \right)^{C/2} \)
- \(z \) dependence under control:

\[\frac{\log^k \log \frac{1}{z}}{\log \frac{1}{z}} \quad \frac{\log^k (1 - z)}{1 - z} \]
Borel prescription (2)

\[\hat{\sigma}_{BP}(z, C) = \frac{1}{2\pi i} \oint_C \frac{d\xi}{\Gamma(\xi + 1)} \frac{(1 - z)^{\xi-1}}{\sqrt{z}^\xi} \left[\int_0^C \frac{dw}{\bar{\alpha}} e^{-\frac{w}{\bar{\alpha}}} \Sigma \left(\frac{w}{\xi} \right) \right] + \sqrt{z} \int_C d\xi \Gamma(\xi + 1) \]

where \(\Sigma(\bar{\alpha} \log \frac{1}{N}) \equiv \hat{\sigma}^{\text{res}}(N) \)

Remarks

- resummed expression at parton level → easier numerical implementation
- asymptotic to the original divergent series
- parameter \(C \) to estimate ambiguity
- cut-off related to the inclusion of higher-twist terms \(e^{-\frac{C}{\bar{\alpha}}} \simeq \left(\frac{\Lambda^2}{Q^2} \right)^{C/2} \)
- \(z \) dependence under control:

\[
\begin{align*}
\frac{\log^k \log \frac{1}{z}}{\log \frac{1}{z}} & \quad \frac{\log^k (1 - z)}{1 - z} & \quad \frac{\log^k \frac{1-z}{\sqrt{z}}}{1 - z}
\end{align*}
\]
Comparison with fixed order: Drell-Yan $q\bar{q}$ at NLO

$$\frac{\alpha_s}{\pi} 4C_F \left\{ \left[\log \frac{1 - z}{1 - z} \right] + \frac{\log \sqrt{z}}{1 - z} - \frac{1 + z}{2} \log \frac{1 - z}{\sqrt{z}} + \left(\frac{\pi^2}{12} - 1 \right) \delta(1 - z) \right\}$$
Comparison with fixed order: Drell-Yan $q\bar{q}$ at NLO

\[
\frac{\alpha_s}{\pi} 4C_F \left\{ \left[\frac{\log(1-z)}{1-z} \right]_+ - \frac{\log \sqrt{z}}{1-z} - \frac{1+z}{2} \log \frac{1-z}{\sqrt{z}} + \left(\frac{\pi^2}{12} - 1 \right) \delta(1-z) \right\}
\]
Comparison with fixed order: Drell-Yan $q\bar{q}$ at NLO

$$\frac{\alpha_s}{\pi} 4C_F \left\{ \left[\frac{\log(1 - z)}{1 - z} \right]_+ - \frac{\log \sqrt{z}}{2} - \frac{1 + z}{2} \log \frac{1 - z}{\sqrt{z}} + \left(\frac{\pi^2}{12} - 1 \right) \delta(1 - z) \right\}$$
Comparison with fixed order: Drell-Yan $q\bar{q}$ at NLO

\[
\frac{\alpha_s}{\pi} 4C_F \left\{ \left[\log \left(\frac{1-z}{1-z} \right) \right]_+ - \log \sqrt{z} - \frac{1+z}{2} \log \frac{1-z}{\sqrt{z}} + \left(\frac{\pi^2}{12} - 1 \right) \delta(1-z) \right\} \\
\left[\log \log \frac{1}{z} \right]
\left[\log \frac{1}{z} \right]_+
\]
Comparison with fixed order: Drell-Yan $q \bar{q}$ at NNLO

Discrepancy due to terms like $\log k (1 - z)$ → $\log k N$ ⇒ subleading
Comparison with fixed order: Drell-Yan $q\bar{q}$ at NNLO

Discrepancy due to terms like $\log^k(1-z) \rightarrow \frac{\log^k N}{N}$ \Rightarrow subleading
the BP can produce the same logs of MP

- indistinguishable at hadron level for $\tau \ll 1$ (always in phenomenological applications)
-
BP has an easier and faster numerical implementation
State of the art

- the BP can produce the same logs of MP
 - indistinguishable at hadron level for $\tau \ll 1$ (always in phenomenological applications)
 - BP has an easier and faster numerical implementation
- the BP can produce “more physical” logs
 - include some classes of subleading terms
 - better small–z behaviour
the BP can produce the same logs of MP
 indistinguishable at hadron level for \(\tau \ll 1 \) (always in phenomenological applications)
 BP has an easier and faster numerical implementation
the BP can produce “more physical” logs
 include some classes of subleading terms
 better small–\(z \) behaviour
there are subleading terms which are important
\[
\log^k(1 - z) \quad \text{and similar}
\]
and which are not included in the resummed expressions
State of the art

- the BP can produce the same logs of MP
 - indistinguishable at hadron level for $\tau \ll 1$ (always in phenomenological applications)
 - BP has an easier and faster numerical implementation
- the BP can produce “more physical” logs
 - include some classes of subleading terms
 - better small–z behaviour
- there are subleading terms which are important

$$\log^k(1 - z) \quad \text{and similar}$$

and which are not included in the resummed expressions
- the difference in the included subleading terms is useful to estimate the importance of these terms
\[
\frac{1}{\tau} \frac{d\sigma}{dQ^2 dY} = \int_{\sqrt{\tau} e^Y}^1 \frac{dx_1}{x_1} \int_{\sqrt{\tau} e^{-Y}}^1 \frac{dx_2}{x_2} \ f_1(x_1) f_2(x_2) \ C \left(\frac{\tau}{x_1 x_2}, Y - \frac{1}{2} \log \frac{x_1}{x_2} \right)
\]
\[
\frac{1}{\tau} \frac{d\sigma}{dQ^2 dY} = \int_{\sqrt{\tau}e^Y}^1 \frac{dx_1}{x_1} \int_{\sqrt{\tau}e^{-Y}}^1 \frac{dx_2}{x_2} f_1(x_1) f_2(x_2) C\left(\frac{\tau}{x_1 x_2}, Y - \frac{1}{2} \log \frac{x_1}{x_2}\right)
\]

Fourier transform of \(C(z, y) \) wrt \(y \)

\[
\tilde{C}(z, M) = \int_{-\infty}^{+\infty} dy \ C(z, y) \ e^{iMy}
\]
\[
\frac{1}{\tau} \frac{d\sigma}{dQ^2 dY} = \int_{\sqrt{\tau} e^y}^1 \frac{dx_1}{x_1} \int_{\sqrt{\tau} e^{-y}}^1 \frac{dx_2}{x_2} \ f_1(x_1) f_2(x_2) \ C\left(\frac{\tau}{x_1 x_2}, Y - \frac{1}{2} \log \frac{x_1}{x_2}\right)
\]

Fourier transform of \(C(z, y) \) wrt \(y \)

\[
\tilde{C}'(z, M) = \int_{\log \sqrt{z}}^{\log \sqrt{z}} dy \ C(z, y) \ e^{i M y}
\]
Impact in phenomenology: rapidity distributions (1)

\[\frac{1}{\tau} \frac{d\sigma}{dQ^2 dY} = \int_{\sqrt{\tau}e^Y}^{1} \frac{dx_1}{x_1} \int_{\sqrt{\tau}e^{-Y}}^{1} \frac{dx_2}{x_2} f_1(x_1) f_2(x_2) C \left(\frac{\tau}{x_1 x_2}, Y - \frac{1}{2} \log \frac{x_1}{x_2} \right) \]

Fourier transform of \(C(z, y) \) wrt \(y \)

\[\tilde{C}(z, M) = \int_{\log \sqrt{z}}^{\log \sqrt{z}} dy \ C(z, y) \left[1 + \mathcal{O}(y) \right] \]
\[\frac{1}{\tau} \frac{d\sigma}{dQ^2 dY} = \int_{\sqrt{e^{Y}}}^{1} \frac{dx_1}{x_1} \int_{\sqrt{e^{-Y}}}^{1} \frac{dx_2}{x_2} f_1(x_1) f_2(x_2) C \left(\frac{\tau}{x_1 x_2}, Y - \frac{1}{2} \log \frac{x_1}{x_2} \right) \]

Fourier transform of \(C(z, y) \) **wrt** \(y \)

\[\tilde{C}'(z, M) = \int_{-\log \sqrt{z}}^{\log \sqrt{z}} dy C(z, y) \left[1 + \mathcal{O}(y) \right] \]

Since \(|\log z| \simeq 1 - z \) **we have**

\[\tilde{C}'(z, M) = C(z) \left[1 + \mathcal{O}(1 - z) \right] \]
\[
\frac{1}{\tau} \frac{d\sigma}{dQ^2 dY} = \int_{\sqrt{\tau e^Y}}^{1} \frac{dx_1}{x_1} \int_{\sqrt{\tau e^{-Y}}}^{1} \frac{dx_2}{x_2} f_1(x_1) f_2(x_2) C \left(\frac{\tau}{x_1 x_2}, Y - \frac{1}{2} \log \frac{x_1}{x_2} \right)
\]

Fourier transform of \(C(z, y) \) wrt \(y \)

\[
\tilde{C}'(z, M) = \int_{-\log \sqrt{z}}^{\log \sqrt{z}} dy \ C(z, y) \ [1 + O(y)]
\]

Since \(|\log z| \simeq 1 - z \) we have

\[
\tilde{C}'(z, M) = C(z) \ [1 + O(1 - z)]
\]

or, back to \(y \) space,

\[
C(z, y) = C(z) \delta(y) \ [1 + O(1 - z)]
\]
After changing variables we get the compact expression

\[\frac{1}{\tau} \frac{d\sigma^{\text{res}}}{dQ^2dY} = \int_{\tau e^2|Y|}^{1} \frac{dz}{z} C^{\text{res}}(z) f_1 \left(\sqrt{\frac{\tau}{z} e^Y} \right) f_2 \left(\sqrt{\frac{\tau}{z} e^{-Y}} \right) \]

depends on \(C^{\text{res}}(z) = M - 1 \left[\hat{\sigma}^{\text{res}}(N) \right] \), the well-known rapidity-integrated resummed coefficient has the form of a convolution product→ both Borel and minimal prescriptions are applicable!

Results at NNLO + NNLL

\(\text{C++ code:} \)

NNLO:
C.Anastasiou, L.Dixon, K.Melnikov, F.Petriello (hep-ph/0312266)

extension with NNLL resummation (Borel and minimal)

interface to LHAPDF library
After changing variables we get the compact expression

\[
\frac{1}{\tau} \frac{d\sigma^{\text{res}}}{dQ^2 dY} = \int_{\tau e^2 |Y|}^{1} \frac{dz}{z} C^{\text{res}}(z) f_1 \left(\sqrt{\frac{\tau}{z} e^Y} \right) f_2 \left(\sqrt{\frac{\tau}{z} e^{-Y}} \right)
\]

depends on \(C^{\text{res}}(z) = \mathcal{M}^{-1} [\hat{\sigma}^{\text{res}}(N)] \), the well-known rapidity-integrated resummed coefficient.
Impact in phenomenology: rapidity distributions (2)

After changing variables we get the compact expression

\[
\int \frac{d\sigma_{\text{res}}}{\tau dQ^2 dY} = \int_{\tau e^{2|Y|}}^{1} \frac{dz}{z} C_{\text{res}}(z) f_1 \left(\sqrt{\frac{\tau}{z}} e^Y \right) f_2 \left(\sqrt{\frac{\tau}{z}} e^{-Y} \right)
\]

- depends on \(C_{\text{res}}(z) = \mathcal{M}^{-1} [\hat{\sigma}_{\text{res}}(N)] \), the well-known rapidity-integrated resummed coefficient
- has the form of a convolution product \(\rightarrow \) both Borel and minimal prescriptions are applicable!
After changing variables we get the compact expression

\[
\frac{1}{\tau} \frac{d\sigma^{\text{res}}}{dQ^2 dY} = \int_{e^{2|Y|}}^{1} \frac{dz}{z} C^{\text{res}}(z) f_1 \left(\sqrt{\frac{\tau}{z}} e^Y \right) f_2 \left(\sqrt{\frac{\tau}{z}} e^{-Y} \right)
\]

- depends on \(C^{\text{res}}(z) = \mathcal{M}^{-1} [\hat{\sigma}^{\text{res}}(N)] \), the well-known rapidity-integrated resummed coefficient
- has the form of a convolution product \(\rightarrow \) both Borel and minimal prescriptions are applicable!
After changing variables we get the compact expression

\[
\frac{1}{\tau} \frac{d\sigma^{\text{res}}}{dQ^2 dY} = \int_{\tau e^2 |Y|}^{1} \frac{dz}{z} C^{\text{res}}(z) \, f_1 \left(\sqrt{\frac{\tau}{z}} e^Y \right) \, f_2 \left(\sqrt{\frac{\tau}{z}} e^{-Y} \right)
\]

- depends on \(C^{\text{res}}(z) = M^{-1}[\hat{\sigma}^{\text{res}}(N)] \), the well-known rapidity-integrated resummed coefficient
- has the form of a convolution product \(\to \) both Borel and minimal prescriptions are applicable!

Results at NNLO + NNLL

C++ code:
- NNLO: C.Anastasiou, L.Dixon, K.Melnikov, F.Petriello (hep-ph/0312266)
Impact in phenomenology: rapidity distributions (2)

After changing variables we get the compact expression

\[
\frac{1}{\tau} \frac{d\sigma^{\text{res}}}{dQ^2 dY} = \int_{e^{2|Y|}}^{1} \frac{dz}{z} C^{\text{res}}(z) f_1 \left(\sqrt{\frac{\tau}{z} e^Y} \right) f_2 \left(\sqrt{\frac{\tau}{z} e^{-Y}} \right)
\]

- depends on \(C^{\text{res}}(z) = M^{-1} [\hat{\sigma}^{\text{res}}(N)] \), the well-known rapidity-integrated resummed coefficient
- has the form of a convolution product \(\rightarrow \) both Borel and minimal prescriptions are applicable!

Results at NNLO + NNLL

C++ code:

- **NNLO**: C.Anastasiou, L.Dixon, K.Melnikov, F.Petriello (hep-ph/0312266)
- extension with NNLL resummation (Borel and minimal)
After changing variables we get the compact expression

\[
\frac{1}{\tau} \frac{d\sigma^{\text{res}}}{dQ^2 dY} = \int_{\tau e^{2|Y|}}^{1} \frac{dz}{z} C^{\text{res}}(z) f_1 \left(\sqrt{\frac{\tau}{z}} e^Y \right) f_2 \left(\sqrt{\frac{\tau}{z}} e^{-Y} \right)
\]

- depends on \(C^{\text{res}}(z) = \mathcal{M}^{-1} [\hat{\sigma}^{\text{res}}(N)] \), the well-known rapidity-integrated resummed coefficient
- has the form of a convolution product → both Borel and minimal prescriptions are applicable!

Results at NNLO + NNLL

C++ code:
- NNLO: C.Anastasiou, L.Dixon, K.Melnikov, F.Petriello (hep-ph/0312266)
- extension with NNLL resummation (Borel and minimal)
- interface to LHAPDF library
W asymmetry at Tevatron with NNPDF2.0

$\sqrt{s} = 1.96$ TeV
$Q = \mu_R = \mu_F = M_W$
$\tau = 0.00168$

M. Bonvini, S. Forte, G. Ridolfi - preliminary
\[\tau \approx 0.04 \]

M. Bonvini, S. Forte, G. Ridolfi
preliminary

NPDF2.0

T. Becher, M. Neubert, G. Xu
(hep-ph/0710.0680)

MRST04NNLO
Rapidity distribution: DY (8 GeV) at NuSea

\[\tau \simeq 0.04 \]

M. Bonvini, S. Forte, G. Ridolfi
preliminary

\[\frac{d^2 \sigma}{dY} \text{ [pb/GeV]} \]

\[M = 8 \text{ GeV} \]

\[\frac{d^2 \sigma}{dY} \text{ [pb/GeV]} \]

\[\frac{d^2 \sigma}{dY} \text{ [pb/GeV]} \]

T. Becher, M. Neubert, G. Xu
(hep-ph/0710.0680)

NNPDF2.0

MRST04NNLO
DY rapidity distribution. Collider: pp Subprocess: Z+gamma

\[\sqrt{s} = 7.00 \text{ TeV} \]
\[Q = 1000 \text{ GeV} \]
\[\tau = 0.02041 \]
\[0.5 < \mu_R/Q < 2 \]
\[0.5 < \mu_F/Q < 2 \]

M. Bonvini, S. Forte, G. Ridolfi - preliminary
Rapidity distribution: DY (1 TeV) at LHC with NNPDF2.0

DY rapidity distribution. Collider: pp Subprocess: Z+gamma

$\sqrt{s} = 7.00$ TeV
$Q = 1000$ GeV
$\tau = 0.02041$
$0.5 < \mu_R/Q < 2$
$0.5 < \mu_F/Q < 2$

M. Bonvini, S. Forte, G. Ridolfi - preliminary
Rapidity distribution: Z at LHC with NNPDF2.0

DY rapidity distribution. Collider: pp Subprocess: $Z+\gamma$

- $\sqrt{s} = 7.00$ TeV
- $Q = M_Z$
- $\tau = 0.00017$
- $0.5 < \mu_R/Q < 2$
- $0.5 < \mu_F/Q < 2$

M. Bonvini, S. Forte, G. Ridolfi - preliminary
DY rapidity distribution. Collider: pp Subprocess: Z+gamma

\[\sqrt{s} = 7.00 \text{ TeV} \]
\[Q = M_Z \]
\[\tau = 0.00017 \]
\[0.5 < \mu_R/Q < 2 \]
\[0.5 < \mu_F/Q < 2 \]

M.Bonvini, S.Forte, G.Ridolfi - preliminary
DY rapidity distribution. Collider: pp Subprocess: W⁺

\(\sqrt{s} = 7.00 \text{ TeV} \)
\(Q = M_W \)
\(\tau = 0.00013 \)

\(0.5 < \mu_R/Q < 2 \)
\(0.5 < \mu_F/Q < 2 \)

M.Bonvini, S.Forte, G.Ridolfi - preliminary

Threshold resummation for Drell-Yan production: theory and phenomenology
DY rapidity distribution. Collider: pp Subprocess: W^+

- $\sqrt{s} = 7.00$ TeV
- $Q = M_W$
- $\tau = 0.00013$
- $0.5 < \mu_R/Q < 2$
- $0.5 < \mu_F/Q < 2$

M. Bonvini, S. Forte, G. Ridolfi - preliminary
Rapidity distribution: W^- at LHC with NNPDF2.0

DY rapidity distribution. Collider: pp Subprocess: W-$\sqrt{s} = 7.00\text{ TeV}$

$Q = M_W$

$\tau = 0.00013$

$0.5 < \mu_R/Q < 2$

$0.5 < \mu_F/Q < 2$

M. Bonvini, S. Forte, G. Ridolfi - preliminary
DY rapidity distribution. Collider: pp Subprocess: W^-

- $\sqrt{s} = 7.00$ TeV
- $Q = M_W$
- $\tau = 0.00013$
- $0.5 < \mu_R/Q < 2$
- $0.5 < \mu_F/Q < 2$

M.Bonvini, S.Forte, G.Ridolfi - preliminary
Conclusions

New results

Quantitative evaluation of τ for which resummation is important: much smaller than expected

Improved Borel prescription

New phenomenological results: rapidity distributions

Outlook

Include subdominant $1/N$ contributions (S.Moch, A.Vogt: hep-ph/0909.2124 and today talk)

Apply to other processes such as Higgs production
Conclusions

New results

- Quantitative evaluation of τ for which resummation is important: much smaller than expected
Conclusions

New results

- Quantitative evaluation of τ for which resummation is important: much smaller than expected
- Improved Borel prescription
Conclusions

New results

- Quantitative evaluation of τ for which resummation is important: much smaller than expected
- Improved Borel prescription
- New phenomenological results: rapidity distributions
Conclusions

New results

- Quantitative evaluation of τ for which resummation is important: much smaller than expected
- Improved Borel prescription
- New phenomenological results: rapidity distributions

Outlook

- Include subdominant $1/N$ contributions (S.Moch, A.Vogt: hep-ph/0909.2124 and today talk)
- Apply to other processes such as Higgs production
Conclusions

New results
- Quantitative evaluation of τ for which resummation is important: much smaller than expected
- Improved Borel prescription
- New phenomenological results: rapidity distributions

Outlook
- Include subdominant $1/N$ contributions
 (S.Moch, A.Vogt: hep-ph/0909.2124 and today talk)
Conclusions

New results

- Quantitative evaluation of τ for which resummation is important: much smaller than expected
- Improved Borel prescription
- New phenomenological results: rapidity distributions

Outlook

- Include subdominant $1/N$ contributions
 (S.Moch, A.Vogt: hep-ph/0909.2124 and today talk)
- Apply to other processes such as Higgs production
Backup slides
Expand the function

\[\frac{z^\alpha}{(1-z)\beta} \mathcal{L}(z) \]

on a polynomial basis (with suitable \(\alpha, \beta > 0 \))

- Compute the Mellin transform of \(\mathcal{L}(z) \) analytically
- Compute the complex Mellin inversion integral numerically
Borel prescription: practical implementation

- Compute the convolution integral

\[\int_{\tau}^{1} \frac{dz}{z} \mathcal{L} \left(\frac{\tau}{z} \right) \left[(1 - z)^{\xi - 1} \right]_+ \]

It is convenient to expand on a polynomial basis the function

\[\frac{1}{1 - z} \left[\frac{1}{z} \mathcal{L} \left(\frac{\tau}{z} \right) - \mathcal{L}(\tau) \right] \]

and compute the integral analytically

- Compute the complex \(\xi \) integral numerically
How BP works

Apply the BP to a power of $\log \frac{1}{N}$

$$M^{-1} \left(\log^k \frac{1}{N} \right) \bigg|_{BP} = \frac{\gamma(k + 1, C/\bar{\alpha})}{\Gamma(k + 1)} M^{-1} \left(\log^k \frac{1}{N} \right)$$

The BP essentially truncates the divergent sum