Research Article

Childhood Cognition and Age-Related Change in Standing Balance Performance From Mid to Later Life: Findings From a British Birth Cohort

Joanna M. Blodgett, MSc,* Diana Kuh, PhD, Rebecca Hardy, PhD, Daniel H. J. Davis, PhD MRCP, and Rachel Cooper, PhD

MRC Unit for Lifelong Health and Ageing at UCL, London, UK

*Address correspondence to: Joanna M. Blodgett, PhD, MRC Unit for Lifelong Health and Ageing at UCL, 33 Bedford Place, London WC1B 5JU, UK. E-mail: joanna.blodgett.16@ucl.ac.uk

Received: June 2, 2018; Editorial Decision Date: November 19, 2018

Decision Editor: Anne Newman MD, MPH

Abstract

Background: Cognitive processing plays a crucial role in the integration of sensory input and motor output that facilitates balance. However, whether balance ability in adulthood is influenced by cognitive pathways established in childhood is unclear, especially as no study has examined if these relationships change with age. We aimed to investigate associations between childhood cognition and age-related change in standing balance between mid and later life.

Methods: Data on 2,380 participants from the MRC National Survey of Health and Development were included in analyses. Repeated measures multilevel models estimated the association between childhood cognition, assessed at age 15, and log-transformed balance time, assessed at ages 53, 60–64, and 69 using the one-legged stand with eyes closed. Adjustments were made for sex, death, attrition, anthropometric measures, health conditions, health behaviors, education, other indicators of socioeconomic position (SEP), and adult verbal memory.

Results: In a sex-adjusted model, 1 standard deviation increase in childhood cognition was associated with a 13% (95% confidence interval: 10, 16; \(p < .001 \)) increase in balance time at age 53, and this association got smaller with age (cognition × age interaction: \(p < .001 \)). Adjustments for education, adult verbal memory, and SEP largely explained these associations.

Conclusions: Higher childhood cognition was associated with better balance performance in midlife, with diminishing associations with increasing age. The impact of adjustment for education, cognition and other indicators of SEP suggested a common pathway through which cognition is associated with balance across life. Further research is needed to understand underlying mechanisms, which may have important implications for falls risk and maintenance of physical capability.

Keywords: Life course, Balance, Cognition, Age-related decline

The ability to balance underlies nearly all physical movement at each stage of life from an infant learning to stand to an older adult trying to avoid a fall. Age-related decline in balance ability is a particular concern due to high incidence of falls in older individuals (1), and growing evidence that poor balance performance is also associated with higher disability, morbidity, and mortality rates (2,3). Yet balance remains an under-recognized and frequently overlooked aspect of physical health (4,5).

Neural processing plays a crucial role in integrating the sensory input and motor output involved in successfully balancing (6). Given that the brain undergoes significant development throughout childhood and adolescence (7), the neural processes involved in balance could be a result of early establishment of synapses and neural connectivity (8). Further investigation of neurological development and its contribution to balance could identify a period in early life, during which cognitive processes involved in balance may be formed.

Previous analyses of the MRC National Survey of Health and Development (NSHD) (9,10) and a Danish cohort study (11) have demonstrated that higher cognition in early life (at ages 8–18) was associated with better balance performance at ages 53 and 50, respectively. However, no study has investigated these associations with balance in later life nor investigated serial measures of balance...
ability to see if these associations change with age. Studies examining age-related decline in physical capability have prioritized more proximal age-related factors, such as chronic health conditions, health care utilization, and other psychosocial factors (12–14). Conversely, the life course approach suggests that physical and social factors in early and midlife contribute to health and disease risk in later life (15). Here, childhood cognition may be associated with peak balance ability and subsequent age-related change for several reasons: childhood cognition is considered to be an initial indicator of lifetime cognitive ability, it is associated with lifelong socioeconomic pathways and it is predictive of health behaviors, all of which relate to balance ability (16–18).

The objectives of this analysis were to (a) examine the associations between childhood cognition and standing balance at three ages in mid and later life; (b) assess whether these associations change with age; and (c) investigate the impact of adjusting for adult cognition, education, anthropometric measures, and sociobehavioural factors.

Methods

Study Sample

The NSHD is a nationally representative study of 5,362 males and females born within 1 week in March 1946 in England, Scotland, and Wales. Study members have been assessed up to 24 times since birth and were most recently examined by trained research nurses at ages 53 \((n = 2,988) \), 60–64 \((n = 2,229) \) and 69 \((n = 2,149) \). Reasons for nonparticipation include death, emigration, refusal, and incapacity ([19 Supplementary Figure 1]. Participants provided written consent at each data collection. Ethical approval for the most recent visit (at age 69) was given by Queen Square Research Ethics Committee (13/ LO/1073) and Scotland A Research Ethics Committee (14/SS/1009).

Measurement of Balance

At ages 53, 60–64, and 69, participants were asked to fold their arms across their chest and, when indicated by the nurse, stand on their preferred leg and raise the contralateral foot off the floor for a maximum of 30 seconds. The test was undertaken first with eyes open and then repeated with eyes closed, with the eyes closed score used in these analyses due to a ceiling effect with eyes open. Balance time was measured in seconds at age 53 and in milliseconds at ages 60–64 and 69. At age 53, 93.4% of participants who underwent assessment completed an eyes closed balance test, 94.8% completed the test at age 60–64, while 92.3% completed the test at age 69. Reasons for noncompletion of tests were recorded by the nurse. Those who were unable to complete the test due to health reasons were excluded from primary analyses.

Childhood Cognition

Childhood cognition was ascertainment at age 15 when participants completed the Alice Heim (AH4) test of fluid intelligence, the Watts–Vernon reading test, and a study-specific test of mathematical ability (17,20). Each test score was standardized and then summed to create an overall cognitive score which was then standardized to the analytical sample (mean of 0, SD [standard deviation] of 1). Consistent with other NSHD analyses, if the score was missing at age 15, scores from comparable examinations of global cognition at ages 11 or 8 \((n = 165) \) were used (17,21,22).

Covariates

Covariates were chosen based on a review of the literature and previous NSHD findings (2,17,22–26). Anthropometric measures, health conditions, and behaviors were assessed at ages 53, 60–64, and 69. Height and BMI \((kg/m^2)\), derived from nurse-measured height and weight, were considered as continuous measures (23). Four chronic health conditions were ascertained using a series of self-reported questions on knee pain, respiratory symptoms, history of diabetes, and cardiovascular events (2). Individuals reported the frequency they participated in sports, vigorous leisure activities or exercise (never, 1–4 times/month, 5+ times/month) and whether they smoked cigarettes (never, past smoker, current smoker) (24).

Paternal occupational class, reported at age 4 (or ages 11 or 15 if missing at age 4 \([n = 45] \)), and own occupational class, reported at age 53 (or ages 43 or 36 if missing at age 53 \([n = 83] \)), were based on the Registrar General’s Social Classification (25) and were grouped into three categories: I (professional) and II (intermediate); III NM (skilled nonmanual) and III M (skilled manual); IV (partly skilled manual) and V (unskilled manual) (27). Maternal education was classified into four categories: primary only; primary and further education; secondary only; secondary and further education.

Educational attainment by age 26 was categorized into five groups: degree or higher; A levels or equivalent (typically attained at age 18); O levels or equivalent (typically attained at age 16); clerical course or equivalent; and none. While education is often conceptualized as a measure of socioeconomic position (SEP) (28), here, it is considered separately as a mediator due to the clearly established pathway from childhood cognition to education and adult cognition (17). Adult verbal memory was measured at each age using a 15-item word-learning task that assesses fluid ability (17,22). The total score (max: 45 over three trials) was standardized to the analytical sample such that the mean was 0 and the SD was 1. As multilevel models assume that any missing data are missing at random, we also adjusted for binary indicators for mortality (ie, died between ages 53 and 69) and attrition (ie, permanent attrition between ages 53 and 69 not due to death) (26).

Statistical Analyses

Repeated measures multilevel models (MLMs) were used to examine the associations between childhood cognition and balance time and to assess if this changed with age. MLMs, with fitted random intercepts and slopes, allow for variation both between individuals and within individuals over time (29). The age intercept was set to zero at age 53 for all models. Due to the skewed distribution of balance times, balance was log-transformed and all estimates are presented as percent change in balance time (30). Initial models tested if the association between childhood cognition and balance deviated from linearity and if there were any interactions between childhood cognition and sex or age. This selected model was then adjusted for sex, death, attrition, and anthropometric measures. The following covariates were then added sequentially: chronic health conditions, health behaviors, socioeconomic indicators, education, and verbal memory. Any nonlinear and sex by age interaction terms were included where relevant.

The analytical sample included individuals with a balance time at one or more ages, childhood cognition score and complete covariate data \((n = 2,380; \text{Supplementary Figure 1}) \). Sensitivity analyses were conducted to test the sex-adjusted association in the maximal available sample and to test all models in the sample with a value of zero imputed where scores were missing due to health reasons (166 additional observations, but only \(n = 49 \) additional participants) in keeping with previous analyses in NSHD (16).

Results

Men had higher childhood cognition, educational attainment, occupational class, and balance times at all ages than women, but lower
Variable	Men (n = 1,185)	Women (n = 1,195)
Childhood cognition, mean (SD)	0.12 (1.01)	-0.04 (0.95)
Balance time (s), median (IQR)		
Age 53	5 (3–10), n = 1,101	4 (3–7), n = 1,134
Age 60–64	3.79 (2.53–5.73), n = 829	3.27 (2.25–4.83), n = 902
Age 69	2.98 (1.98–4.87), n = 803	2.91 (1.91–4.31), n = 817
Height (m), mean (SD)		
Age 53	1.75 (0.06), n = 1,126	1.62 (0.06), n = 1,170
Age 60–64	1.75 (0.07), n = 862	1.62 (0.06), n = 935
Age 69	1.74 (0.06), n = 830	1.60 (0.06), n = 869
BMI (kg/m²), mean (SD)		
Age 53	27.4 (4.1), n = 1,126	27.3 (5.2), n = 1,167
Age 60–64	27.9 (4.1), n = 861	28.0 (5.5), n = 935
Age 69	28.1 (4.5), n = 842	28.2 (5.7), n = 873
Paternal occupational class, n (%)		
I professional/II intermediate	320 (27.0)	308 (25.8)
III skilled (nonmanual or manual)	583 (49.2)	586 (49.0)
IV partly skilled/V unskilled	282 (23.8)	301 (25.2)
Maternal education, n (%)		
Secondary and further education	141 (11.9)	143 (12.0)
Secondary only	143 (12.1)	131 (11.0)
Primary and further education	190 (16.0)	164 (13.7)
Primary only	711 (60.0)	757 (63.3)
Own occupational class, n (%)		
I professional/II intermediate	620 (52.3)	444 (37.2)
III skilled (non-manual or manual)	440 (37.1)	509 (42.6)
IV partly skilled/V unskilled	125 (10.6)	242 (20.3)
Knee pain, n (%)		
Age 53	169 (15.1)	237 (20.4)
Age 60–64	172 (19.9)	224 (23.8)
Age 69	147 (17.4)	187 (21.4)
Respiratory symptoms, n (%)		
Age 53	219 (19.4)	211 (18.0)
Age 60–64	173 (19.8)	174 (18.1)
Age 69	205 (25.2)	200 (21.9)
History of angina, stroke or MI, n (%)		
Age 53	65 (5.8)	34 (2.9)
Age 60–64	103 (11.7)	46 (4.9)
Age 69	142 (16.3)	87 (9.6)
History of diabetes, n (%)		
Age 53	37 (3.1)	26 (2.2)
Age 60–64	92 (9.4)	74 (7.0)
Age 69	128 (13.3)	104 (10.2)
Leisure time physical activity, n (%)		
Age 53	None	
1–4 times/month	513 (45.5)	573 (48.9)
5+ times/month	222 (19.7)	198 (16.9)
Age 60–64	393 (34.8)	402 (34.3)
1–4 times/month	546 (46.5)	574 (62.1)
5+ times/month	110 (13.0)	142 (15.4)
Age 69	191 (22.6)	208 (22.5)
None	520 (59.4)	578 (60.0)
1–4 times/month	99 (11.3)	128 (13.3)
5+ times/month	257 (29.3)	258 (26.8)
Smoking status, n (%)		
Age 53	Current	
Current	254 (22.5)	259 (22.1)
Previous smoker	575 (51.0)	527 (44.9)
Never smoker	299 (26.5)	387 (33.0)
Age 60–64	Current	
Current	111 (12.4)	117 (12.1)
Previous smoker	519 (58.2)	507 (52.3)
Never smoker	262 (29.4)	346 (35.7)
verbal memory (all \(p < .001\); Table 1). Men were also less likely to have respiratory symptoms and more likely to have a history of diabetes and cardiovascular events and to have died between ages 53 and 69 (all \(p < .05\); Table 1). Those excluded due to missing covariate data (\(n = 405\) were similar to the main analytical group (\(n = 2,380\), but were more likely to have a lower childhood SEP (\(p < .01\), to be a current or ex-smoker (\(p < .05\) and to have lower childhood cognition (\(p < .001\)).

In men, median balance time decreased from 5 seconds (Q1, Q3: 3, 10; \(n = 1,101\)) at age 53–3.79 seconds (2.53, 5.73; \(n = 829\)) at age 60–64 and 2.98 seconds (1.98, 4.87; \(n = 803\)) at age 69. In women, median balance time decreased from 4 seconds (3, 7; \(n = 1,134\)) at age 53–3.27 seconds (2.25, 4.83; \(n = 902\)) at age 60–64 and 2.91 seconds (1.91, 4.31; \(n = 817\)) at age 69 (Table 1).

Sex-adjusted multilevel models (\(n = 2,380\), obs = 4,926), including a childhood cognition by age interaction, demonstrated that a 1 \(\text{SD} \) increase in childhood cognition was associated with a 13% (95% confidence interval [CI]: 10%, 16%) increase in balance time at age 53 (\(p < .001\); Table 2, Model 1). The interaction between childhood cognition and age indicated that this association weakened over time (childhood cognition \(\times \) age interaction term: by \(-0.6\% \text{ per } \text{SD} \) cognition for every year increase in age [95% CI: 0.3%, 0.8%], \(p < .001\); Table 2, Model 1; Figure 1). Thus, a 1 \(\text{SD} \) increase in childhood cognition was associated, in sex-adjusted models, with 7% (5%, 9%) and 4% (1%, 7%) increases in balance times at ages 60–64 and 69, respectively.

The associations between higher childhood cognition and better balance times at the intercept (age 53) remained fairly constant with the addition of death and attrition (Table 2, Model 2), anthropometric indicators (Table 2, Model 3), chronic health conditions (Table 2, Model 4) and health behaviors (Table 2, Model 5). The addition of socioeconomic indicators (Table 2, Model 6), educational attainment (Table 2, Model 7) and verbal memory (Table 2, Model 8) partially attenuated the association between childhood cognition and balance, with the lowest intercept estimate of 6% ([3%, 10%], \(p < .001\); Model 7) in the education-adjusted model. In the fully adjusted model, the estimates were further attenuated (3% [-1%, 7%] at 53 y/intercept, \(p = .13\); Model 9).

When the sex-adjusted model was repeated in the maximal available sample (\(n = 2,783\); obs = 6,379), the estimates remained consistent with those in the restricted sample (Figure 1). When scores that were missing due to health reasons were included (imputed with balance time of 0 second), the main findings did not change (Supplementary Table 1).

Discussion

Higher childhood cognition was associated with better balance performance in midlife, with diminishing associations with increasing age. This association remained robust to adjustment for death, attrition, anthropometric factors, chronic health conditions, and health behaviors. It was largely explained by education, adult verbal memory, and other socioeconomic indicators, suggesting that the association between childhood cognition and later life balance acts largely via cognitive and socioeconomic pathways.

Our findings are consistent with two previous sets of analyses in NSHD and one other Danish study demonstrating an association between higher cognition in early life and better balance performance in midlife (10,11,23). Our study builds on this evidence by demonstrating that although the sex-adjusted association is strongest in midlife (at age 53), it remains at later ages (ages 60–64 and 69).

The attenuation in effect size after adjustment for SEP, education, and verbal memory suggests that these factors may mediate the association between childhood cognition and balance.

Explanations of Findings

The reliance of balance on higher level cognitive processes could extend back past current cognitive ability to the initial formation of neural connections in early life. The cerebellum, an area of the brain heavily involved in balance, undergoes substantial development early in life (7,31) with continual maturation until approximately 15 years of age (32). Childhood may represent a sensitive period necessary for the development of important synapses and neural connectivity involved in successfully balancing. As cognitive ability in childhood is the start of a lifelong cognitive pathway (16–18), it may provide the earliest opportunity for successful interventions.

Our findings suggest that the associations between early life cognition and balance may be mediated by education, adult verbal memory, and SEP. First, balance ability across life is strongly dependent on cognitive processes involved in sensori-motor integration of the nervous system. This is consistent with partial attenuation of the estimates when education and adult verbal memory were added to the model. It is known that cognitive ranking remains fairly consistent...
Table 2. Results from Multilevel Models Demonstrating Percent (%) Difference in Mean Balance Time by Childhood Cognition (n = 2,380 Individuals, 4,926 Observations)

Model	Coefficient (%)	p Value	Coefficient (%)	p Value
Model 1 + death + attrition	13 (10, 16)	<.001	-0.6 (-0.8, -0.3)	<.001
Model 2 + anthropometric	12 (10, 15)	<.001	-0.5 (-0.8, -0.3)	<.001
Model 3 + chronic health conditions	12 (9, 14)	<.001	-0.6 (-0.8, -0.3)	<.001
Model 3 + health behaviors	11 (8, 13)	<.001	-0.5 (-0.8, -0.3)	<.001
Model 3 + SEP	8 (5, 11)	<.001	-0.6 (-0.8, -0.3)	<.001
Model 3 + education	6 (3, 10)	<.001	-0.4 (-0.7, -0.04)	.03
Model 3 + verbal memory	9 (6, 12)	<.001	-0.6 (-0.8, -0.3)	<.001
Fully adjusted	3 (-1, 7)	.15	-0.3 (-0.7, -0.02)	.04

1 Age is centered at age 53 = 0 in all models. 2 Adjusted for age, sex, age × sex (note: age × sex interaction indicates that sex differences in balance ability decreased with age). 3 Adjusted for model 1 + death, attrition, death × age, death × sex, death × age × sex. 4 Adjusted for model 2 + smoking history, BMI. 5 Adjusted for model 3 + smoking history, leisure time physical activity. 6 Adjusted for model 3 + maternal education, paternal social class, adulthood social class. 7 Adjusted for model 3 + educational attainment by age 26, age × educational attainment by age 26. 8 Adjusted for model 3 + verbal memory. 9 Adjusted for all covariates in Models 1–8.

Figure 1. Predicted mean log-transformed balance by age for different levels of childhood cognition from a sex-adjusted multilevel model (n = 2,788, obs = 6,379)

Strengths and Limitations

This study has several important strengths. Firstly, the availability of longitudinal, prospectively ascertained data on cognitive ability and multiple measures of balance performance offered a novel opportunity to investigate this association. As the sample was age homogenous, there was no confounding by age. Cognitive ability and other covariates were prospectively collected, thus limiting recall bias. The use of multilevel models in the analyses increased the statistical power by allowing us to include individuals with any balance data over the three clinical visits from ages 53 to 69 (three balance scores: n = 1,329, two balance scores: n = 548, one balance score: n = 503).

Missing data due to loss to follow-up, death, inability to complete balance assessments due to health reasons and incomplete data on covariates could bias the results as it is known that those who were lost to follow-up tended to have poorer health than those included in the study sample (19,37,38). We did adjust for indicators of death and attrition, examined the sex-adjusted model in the maximal available sample and conducted a sensitivity analysis that included those who were unable to complete the assessment due to health reasons; the results did not change. We modeled the association in various stages to this evidence suggests that it is also a predictor of overall health in older age.

We observed that the association between childhood cognition and balance was smaller at older ages. This suggests that there is an advantage of higher childhood cognition on midlife balance but that this advantage gets smaller with age, or equivalently that those with higher cognition in childhood having a steeper decline in balance ability. This advantage in midlife may decrease as age-related impairments in visual, vestibular, or musculoskeletal cues begin to emerge. These age-related impairments may lead to differences in balance ability between older adults that are not observed in younger adults. Individual variation in these more proximal factors, such as sarcopenia and multiple morbidities may thus begin to outweigh balance capability, and its reliance on cognition, developed earlier in life. Further consideration of age-related change in the sensory input systems involved in balance is needed.
identify factors that may mediate the association between childhood cognition and balance. Consequently, we adjusted for intermediate variables on the causal pathway (i.e., education, adult verbal memory); as such, the impact of adjustment needs to be interpreted with caution.

Implications
Establishing neural pathways early in life may influence peak balance ability and have long-term advantages in the face of age-related decline in the systems underlying balance ability. Understanding how cognition across all stages of life may impact balance ability and its decline could help inform interventions to combat physical decline (39,40). This could contribute to improving peak balance ability, delaying the onset of balance decline and minimizing rate of decline in mid and later life. Early life intervention studies designed to improve childhood cognitive potential and its long-term consequences (41) should include adult balance ability as an outcome. Ongoing research is currently investigating bidirectional associations between adult cognition and balance ability to better understand the mechanism by which cognition may impact balance.

In conclusion, understanding the mechanisms underlying the positive association between higher childhood cognition and better midlife balance performance may have important implications for falls risk and the maintenance of physical capability.

Supplementary Material
Supplementary data are available at The Journals of Gerontology, Series A: Biological Sciences and Medical Sciences online.

Funding
This work was supported by the UK Medical Research Council (Programme codes MC_UU_12019/4, MC_UU_12019/1, and MC_UU_12019/2). J.M.B. also receives support from UCL, the Canadian Centennial Scholarship Fund and the Canadian Institute of Health Research and D.H.J.D. from the Wellcome Trust (WT107467). The MRC National Survey of Health and Development is funded by the UK Medical Research Council. The funders of the study had no role in the study design, data collection, data analysis, data interpretation, writing of the report, or the decision to submit the article for publication.

Acknowledgments
Data used in this publication are available to bona fide researchers upon request to the NSHD Data Sharing Committee via a standard application procedure. Further details can be found at http://www.nshd.mrc.ac.uk/data. DOI: 10.5522/NSHD/Q101; 10.5522/NSHD/Q102; 10.5522/NSHD/Q103.

Conflict of Interest Statement
None declared.

References
1. Soriano TA, DeCherrie LV, Thomas DC. Falls in the community-dwelling older adult: a review for primary-care providers. Clin Interv Aging. 2007;2:545–554.
2. Cooper R, Strand BH, Hardy R, Patel KV, Kuh D. Physical capability in mid-life and survival over 13 years of follow-up: British birth cohort study. BMJ. 2014;348:g2219. doi:10.1136/bmj.g2219
3. Cooper R, Kuh D, Hardy R; MRC National Survey of Health and Development (HALCyon) Study Teams. Objectively measured physical capability levels and mortality: systematic review and meta-analysis. BMJ. 2010;341:c4467. doi:10.1136/bmj.c4467
4. Li E, Eckstrom E, Harmer P, Fitzgerald K, Voit J, Cameron KA. Exercise and fall prevention: narrowing the research-to-practice gap and enhancing integration of clinical and community practice. J Am Geriatr Soc. 2016;64:425–431. doi:10.1111/jgs.13925
5. Tinetti ME, Gordon C, Sogolow E, Lapin P, Bradley EH. Fall-risk evaluation and management: challenges in adopting geriatric care practices. Gerontologist. 2006;46:717–725. doi:10.1093/geront/46.6.717
6. Merla JL, Spaulding SJ. The balance system. Phys Occup Ther Geriatr. 2009;15:21–36. doi:10.1080/1J14815n01_02
7. Tierney MS, Lenroot RK, Greenstein DK, Tran L, Person R, Giedd JN. Cerebellum development during childhood and adolescence: a longitudinal morphometric MRI study. Neuroimage. 2010;49:63–70. doi:10.1016/j.neuroimage.2009.08.016
8. Chuang HT. A critical period of brain development: studies of cerebral glucose utilization with PET. Prev Med. 1998;27:184–188. doi:10.1006/pmed.1998.0274
9. Kuh D, Hardy R, Butterworth S, et al. Developmental origins of midlife gap strength: findings from a birth cohort study. J Gerontol A Biol Sci Med Sci. 2006;61:702–706. doi:10.1093/gerona/61.7.702
10. Kuh D, Cooper R, Hardy R, Gurakar J, Richards M; MUSCLE Study Team. Lifetime cognitive performance is associated with midlife physical performance in a prospective national birth cohort study. Psychosom Med. 2009;71:38–48. doi:10.1097/PSY.0b013e31818a1620
11. Meencke RH, Osler M, Mortensen EL, Hansen ÅM. Is intelligence in early adulthood associated with midlife physical performance among Danish males? J Aging Health. 2016;28:530–545. doi:10.1177/0898264315594139
12. Feng Z, Lugtenberg M, Franne C, et al. Risk factors and protective factors associated with incident or fracture of maxillary-cumulating older adults: a systematic review of longitudinal studies. PLoS One. 2017;12:e0178383. doi:10.1371/journal.pone.0178383
13. Chen CM, Chang WC, Lan YT. Identifying factors associated with changes in physical functioning in an older population. Geriatr Gerontol Int. 2015;15:156–164. doi:10.1111/ggi.12243
14. Sibbritt DW, Byles JE, Regan C. Factors associated with decline in physical functional health in a cohort of older women. Age Ageing. 2007;36:382–388. doi:10.1093/aging/afm017
15. Kuh D, Karunanathan S, Bergman H, Cooper R. A life-course approach to healthy ageing: maintaining physical capability. Proc Nutr Soc. 2014;73:237–248. doi:10.1017/S0032666513003923
16. Hurst L, Stafford M, Cooper R, Hardy R, Richards M, Kuh D. Lifetime socioeconomic inequalities in physical and cognitive aging. Am J Public Health. 2013;103:1641–1648. doi:10.2105/AJPH.2013.301240
17. Richards M, Shipley B, Fuhrer R, Wadsworth ME. Cognitive ability in childhood and cognitive decline in mid-life: longitudinal birth cohort study. BMJ. 2004;328:532. doi:10.1136/bmj.37972.513819.EE
18. Gow AJ, Johnson W, Pattie A, et al. Stability and change in intelligence from age 11 to ages 70, 79, and 87: the Lothian Birth Cohorts of 1921 and 1936. Psychol Aging. 2011;26:232–240. doi:10.1037/a0021072
19. Kuh D, Wong A, Shah I, et al. The MRC National Survey of Health and Development reaches age 70: maintaining participation at older ages in a birth cohort study. Eur J Epidemiol. 2016;31:1135–1147. doi:10.1007/s10654-016-0217-8
20. Pigeon DA. Details of the fifteen year tests. In: Douglas J, Ross J, Simpson H, eds. All Our Future. London: Davies; 1968:194–197.
21. Richards M, Barnett JH, Xu MK, et al.; MRC National Survey of Health and Development scientific and data collection team. Lifetime effect and midlife cognitive function: prospective birth cohort study. Br J Psychiatry. 2014;204:194–199. doi:10.1192/bjp.bp.113.128942
22. Cooper R, Richards M, Kuh D. Childhood cognitive ability and age-related changes in physical capability from midlife: findings from a British Birth Cohort Study. Psychosom Med. 2017;79:785–791. doi:10.1097/PSY.0000000000000482
23. Kuh D, Hardy R, Butterworth S, et al. Developmental origins of midlife physical performance: evidence from a British Birth Cohort. Am J Epidemiol. 2006;164:110–121. doi:10.1093/aje/kwj193
24. Cooper R, Muniz-Terrera G, Kuh D. Associations of behavioural risk factors and health status with changes in physical capability over 10 years of follow-up: the MRC National Survey of Health and Development. BMJ Open. 2016;6:e009962. doi:10.1136/bmjopen-2015-009962
25. Galobardes B, Shaw M, Lawlor DA, Lynch JW, Davey Smith G. Indicators of socioeconomic position (part 2). J Epidemiol Community Health. 2006;60:95–101. doi:10.1136/jech.2004.028092
26. Botoseneanu A, Liang J. The effect of stability and change in health behaviors on trajectories of body mass index in older Americans: a 14-year longitudinal study. J Gerontol A Biol Sci Med Sci. 2012;67:1075–1084. doi:10.1093/gerona/gl073
27. Strand BH, Cooper R, Hardy R, Kuh D, Guralnik J. Lifelong socioeconomic position and physical performance in midlife: results from the British 1946 birth cohort. Eur J Epidemiol. 2011;26:475–483. doi:10.1007/s10654-011-9562-9
28. Galobardes B, Shaw M, Lawlor DA, Lynch JW, Davey Smith G. Indicators of socioeconomic position (part 1). J Epidemiol Community Health. 2006;60:7–12. doi:10.1136/jech.2004.023531
29. Lininger M, Spybrook J, Cheatham CC. Hierarchical linear model: thinking outside the traditional repeated-measures analysis-of-variance box. J Athl Train. 2015;50:438–441. doi:10.4085/1062-6050-49.5.09
30. Cole TJ, Kryakin YV. Sympercents: symmetric percentage differences on the 100 log(e) scale simplify the presentation of log transformed data. Stat Med. 2000;21:2287–2290. doi:10.1002/sim.1008
31. Knickmeyer RC, Goutard S, Kang C, et al. A structural MRI study of human brain development from birth to 2 years. J Neurosci. 2008;28:12176–12182. doi:10.1523/JNEUROSCI.3479-08.2008
32. Goddard S. Reflexes, Learning and Behavior: A Window Into the Child’s Mind. Eugene, OR: Fern Ridge Press; 2002.
33. Deary IJ, Whitman MC, Starr JM, Whalley LJ, Fox HC. The impact of childhood intelligence on later life: following up the Scottish Mental Surveys of 1932 and 1947. J Pers Soc Psychol. 2004;86:130–147. doi:10.10370022-3514.86.1.130
34. Schwartz JE, Friedman HS, Tucker JS, Tomlinson-Keasey C, Wingard DL, Criqui MH. Sociodemographic and psychosocial factors in childhood as predictors of adult mortality. Am J Public Health. 1995;85:1237–1245. doi:10.2105/AJPH.85.9.1237
35. Kuh D, Shah I, Richards M, Mishra G, Wadsworth M, Hardy R. Do childhood cognitive ability or smoking behaviour explain the influence of lifetime socio-economic conditions on premature adult mortality in a British post war birth cohort? Soc Sci Med. 2009;68:1565–1573. doi:10.1016/j.socscimed.2009.02.006
36. Calvin CM, Deary IJ, Fenton C, et al. Intelligence in youth and all-cause mortality: systematic review with meta-analysis. Int J Epidemiol. 2011;40:626–644. doi:10.1093/ije/dyq190
37. Wadsworth M, Kuh D, Richards M, Hardy R. Cohort profile: the 1946 National Birth Cohort (MRC National Survey of Health and Development). Int J Epidemiol. 2006;35:49–54. doi:10.1093/ije/dyi201
38. Kuh D, Pierce M, Adams J, et al.; NSHD scientific and data collection team. Cohort profile: updating the cohort profile for the MRC National Survey of Health and Development: a new clinic-based data collection for ageing research. Int J Epidemiol. 2011;40:e1–e9. doi:10.1093/ije/dyq231
39. Siltanen S, Portegijs E, Saajanaho M, et al. The combined effect of lower extremity function and cognitive performance on perceived walking ability among older people: a 2-year follow-up study. J Gerontol A Biol Sci Med Sci. 2018;73:1568–1573. doi:10.1093/gerona/gly103
40. Houston DK, Neiberg RH, Miller ME, et al. Physical function following a long-term lifestyle intervention among middle aged and older adults with type 2 diabetes: the look AHEAD study. J Gerontol A Biol Sci Med Sci. 2018;73:1552–1559. doi:10.1093/gerona/glz204
41. Glass N. Sure Start: the development of an early intervention programme for young children in the United Kingdom. Child Soc. 1999;13:257–264. doi:10.1002/CHI569