Unidimensional continuous-variable quantum key distribution

Vladyslav C. Usenko¹,²,† and Frédéric Grosshans³,⁴,∗

¹Department of Optics, Palacký University, 17. listopadu 50, 772 07 Olomouc, Czech Republic
²Bogolyubov Institute for Theoretical Physics of National Academy of Sciences, Metrolohichna st. 14-b, 03680, Kiev, Ukraine
³Laboratoire de Photonique Quantique et Moléculaire, ENS Cachan, UMR CNRS 8537, F-94235 Cachan, France
⁴Laboratoire Aimé Cotton, CNRS, Université Paris-Sud and ENS Cachan, F-91405 Orsay, France

We propose the continuous-variable quantum key distribution protocol based on the Gaussian modulation of a single quadrature of the coherent states of light, which is aimed to provide simplified implementation compared to the symmetrically modulated Gaussian coherent-state protocols. The protocol waives the necessity in phase quadrature modulation and the corresponding channel transmittance estimation. The security of the protocol against collective attacks in a generally phase-sensitive Gaussian channels is analyzed and is shown achievable upon certain conditions. Robustness of the protocol to channel imperfections is compared to that of the symmetrical coherent-state protocol. The simplified unidimensional protocol is shown possible at a reasonable quantitative cost in terms of key rate and of tolerable channel excess noise.

PACS numbers: 03.67.Hk, 03.67.Dd

I. INTRODUCTION

Over the last three decades, quantum key distribution (QKD) [1] has emerged as a way to ensure the security of a secret key through the very nature of quantum states distributed between trusted parties. Recent developments in this field are concerned with the continuous-variables (CV) coding of key bits, e.g. [2–12, 14–20]. In particular, the Gaussian modulation of the field quadratures of squeezed [5–10] and coherent states of light [11, 12, 14–19]. Coherent state protocols are more promising experimentally [15, 15, 19], and the main goal of the present paper is to propose a further simplification of them. In particular, all published coherent-state protocols suppose a symmetrical amplitude and phase quadrature modulation (with the exception of the binary ZHRLO9 protocol [20], which was brought to our attention during the redaction this paper, discussed in the Sec. IV). However, the phase quadrature modulation is more technically demanding than the amplitude modulation, which can be accessed by directly adjusting the laser intensity, either through pumping modulation or light attenuation.

Thus, in the present paper we propose the unidimensional (UD) CV QKD protocol based on the Gaussian single-quadrature modulation of coherent states of light. We show the security of the protocol in a general phase-sensitive channel restricting eavesdropper only by the physicality constraints and keeping to the pessimistic worst-case assumptions. Then we compare the UD protocol to the standard coherent-state protocol and discuss the possible extensions. Our paper thus continues the tendency of technical simplifications. Then we compare the UD protocol to the standard coherent-state protocol. The simplified unidimensional protocol is shown possible at a reasonable quantitative cost in terms of key rate and of tolerable channel excess noise.

II. UNIDIMENSIONAL PROTOCOL

The central idea of the protocol is to modulate a single quadrature of coherent states, in contrast to the usual coherent-state protocols, where two quadratures are simultaneously modulated. This should provide simplified implementation, at the price of slightly degraded performances, as we show below. The scheme of the protocol is given in Fig. 1. One of the trusted sides, Alice, produces coherent states, e.g. with a laser source. Then she applies modulation in one of the quadratures (denoted as x), using modulator M, and displaces each coherent state according to a random Gaussian variable with displacement variance V_M. With no loss of generality we further assume the modulated quadrature x to be the amplitude quadrature. In this case the displacement can be performed by an intensity modulator. The mixture of the modulated states thus forms a "sausage" on a phase-space [see Fig. 1(a)]. Its thickness is the quadrature variance of a coherence state, i.e. 1 shot noise unit (SNU), and its length is $\sqrt{V_M + 1}$ SNU. The states are then sent to the remote trusted party Bob through a generally phase-sensitive channel with transmittance η_x, η_p and excess noise ϵ_x, ϵ_p in x and p-quadrature, respectively. Bob performs homodyne measurement of the modulated quadrature, using a homodyne detector, measuring most of the time the x-quadrature, and sometimes measuring the p-quadrature. This basis switching should be performed often enough to gather statistics on the properties of the channel in the p-quadrature. However, in the asymptotic limit of many repetition studied here, these measurements can be a vanishing fraction of the total data set and have a negligible impact on the key rate [22]. After sufficient number of runs, Alice and Bob analyze the security and extract a secret key from the x-quadrature data using a reverse-reconciliation procedure [12, 15].

¹Electronic address: usenko@optics.upol.cz
²Electronic address: frederic.grosshans@u-psud.fr

arXiv:1504.07093v1 [quant-ph], 27 Apr 2015
shown that, for the symmetrically modulated coherent-state general attacks for a CV QKD coherent-state protocol. It was has shown for the first time the composable security against finite size effects [39, 40] and coherent attacks is an ongoing Gaussian collective attacks [26–28] for high number of pulses.

lent entanglement-based scheme using a two-mode squeezed vacuum source. (a) Mixture of modulated coherent states on a phase-space (assuming x-quadrature was modulated). (b) Equivalent entanglement-based scheme using a two-mode squeezed vacuum source, mode A is measured by Alice using a homodyne detector, mode B is squeezed on the squeezer S and sent to channel.

In the following Section we estimate the security region of the UD protocol and compare it to the standard coherent-state based protocol.

III. SECURITY OF THE PROTOCOL

Let us study the protocol in detail and estimate its applicability.

A. Computing the Key Rate from the Covariance Matrix

The study of security of CV QKD protocols including finite size effects [39, 40] and coherent attacks is an ongoing research program [37, 38, 39, 42]. Very recently [33], Leverrier has shown for the first time the composable security against general attacks for a CV QKD coherent-state protocol. It was shown that, for the symmetrically modulated coherent-state protocol, the optimal attacks are the Gaussian attacks and the corresponding secret key rate tends to the one obtained for Gaussian collective attacks [26, 27] for high number of pulses.

We will compute the asymptotic key rate of our protocol against collective attacks. An approach similar to [33] can likely be applied to extend this security to general attack, but this work is kept for future research.

The extremality of Gaussian states [29] and subsequent optimality of Gaussian attacks [26, 27] allows to use the powerful covariance matrix formalism to estimate the amounts of information leaking to a potential eavesdropper under given channel conditions.

In the case of collective attacks the lower bound on the key rate is given by the difference between classical (Shannon) mutual information, available to the trusted parties (A and B), and the upper bound on the information extractable from the state possessed by an eavesdropper (E) and conditioned by the measurement results of the reference side of the classical post-processing algorithms, i.e. in the case of reverse reconciliation the lower bound reads:

\[K = I_{AB} - \chi_{BE}, \]

where $\chi_{BE} = S(E) - S(E|x_B)$ is the Holevo quantity [34], being the capacity of a bosonic channel between an eavesdropper and the reference side of the information reconciliation (Bob), quantified as the difference of von Neumann entropy $S(E)$ of the state, available to an eavesdropper, and the entropy $S(E|x_B)$ of the eavesdropper state, conditioned by the measurement results of the remote trusted party B [26, 27]. The positivity of the lower bound (1) means that the post-processing algorithms are able to distill the secure key [35, 36], i.e. that the protocol is secure under given channel conditions. In the cases where channel noise is present, the collective attack can be accessed through the assumption that the eavesdropper holds the purification of the state, shared between A and B, thus the entropies of the sub-states of the generally pure state are equal: $S(E) = S(AB)$ and $S(E|x_B) = S(A|x_B)$. The calculation of the von Neumann entropies, contributing to the Holevo quantity, is done, using the covariance matrix formalism, explicitly describing the Gaussian states, through the symplectic eigenvalues $\lambda_{1,2}$ and λ_{cond} of the respective covariance matrices γ_{AB} prior to and $\gamma_{A|x_B}$ after the measurement so that

\[\chi_{BE} = G\left(\frac{\lambda_1 - 1}{2}\right) + G\left(\frac{\lambda_2 - 1}{2}\right) - G\left(\frac{\lambda_{\text{cond}} - 1}{2}\right) \]

where $G(x) = (x+1) \log(x+1) - x \log x$ [42] is the bosonic entropic function [25].

B. Which Covariance Matrices are Physical?

To analyze the security of the protocol we switch to the equivalent entanglement-based (EPR) scheme [23], which allows the explicit description of trusted modes and their correlations. For the single quadrature protocol such scheme can be built, by taking a two-mode squeezed vacuum state of variance V and squeezing one of its modes with the squeezing parameter $-\log \sqrt{V}$, resulting in the covariance matrix:

\[
\gamma_{AB} = \begin{bmatrix}
V & 0 & \sqrt{V(V^2 - 1)} & 0 \\
0 & V & 0 & -\sqrt{V^2 - 1} \\
\sqrt{V(V^2 - 1)} & 0 & V^2 & 0 \\
0 & -\sqrt{V^2 - 1} & 0 & 1
\end{bmatrix}
\]

As stated above, the modulated quadrature is the intensity quadrature x. If Alice performs a homodyne measurement on the mode A, then the coherent state is conditionally prepared and is effectively sent to the remote party Bob. The EPR-scheme is then equivalent to the Gaussian displacement of coherent states along x quadrature with the variance $V_M = V^2 - 1$. As the states travel through the noisy and lossy
channel, the covariance matrix is transformed according to the channel parameters. However, since there is no modulation in the \(p \) quadrature, the correlation, and, respectively the channel transmittance in \(p \) cannot be estimated. The remote party can therefore only measure the variance of the channel output in \(p \). Thus, generally, the covariance matrix after the channel in terms of the modulation variance \(V_M \) has the form:

\[
\gamma'_{AB} = \begin{bmatrix}
\sqrt{1 + V_M} & \frac{1}{\sqrt{1 + V_M}} \sqrt{\eta_x V_M (1 + V_M)^{\frac{1}{2}}} & 0 \\
0 & \frac{1}{\sqrt{1 + V_M}} & \frac{1}{\sqrt{1 + V_M}} C_p \\
\frac{1}{\sqrt{\eta V_M (1 + V_M)^{\frac{1}{2}}}} & 1 + \eta_x (V_M + \epsilon_x) & 0 \\
0 & 0 & \sqrt{1 + V_M}
\end{bmatrix}
\]

where \(\eta_x \) and \(\epsilon_x \) are, respectively, the channel transmittance and excess noise, estimated by trusted parties through the measurement of \(x \) quadrature; \(V_p^B \) is the output variance of the mode B in \(p \)-quadrature, which is measured at the remote side, and \(C_p \) is the correlation between trusted modes in \(p \) quadrature, being unknown due to the fact that the quadrature is not modulated, which means that the channel transmittance is not estimated in \(p \).

The covariance matrix of the state, conditioned by Bob’s measurement in \(x \) is given by

\[
\gamma_A|_{x_B} = \gamma_A - \sigma_{AB}(X \gamma_B X)^{MP} \sigma_{AB}^T,
\]

where \(\gamma_A, \gamma_B \) are the submatrices of the covariance matrix \(\gamma'_{AB} \), describing the modes A and B individually; \(\sigma_{AB} \) is the submatrix of \(\gamma'_{AB} \), which characterizes correlation between modes A and B; \(MP \) stands for Moore Penrose (pseudo-) inverse of a matrix, and

\[
X = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}.
\]

In the general case the conditional matrix is thus given by

\[
\gamma_A|_{x_B} = \begin{bmatrix}
\sqrt{V_M + x (1 + \eta_x \epsilon_x)} & \frac{1}{\sqrt{V_M + x (1 + \eta_x \epsilon_x)}} \\
\frac{1}{\sqrt{V_M + x (1 + \eta_x \epsilon_x)}} & 0 \\
\frac{1}{\sqrt{1 + V_M}} & \frac{1}{\sqrt{1 + V_M}}
\end{bmatrix},
\]

Now let us estimate the lower bound on the key rate [1] for our single quadrature protocol. Shannon mutual information between the trusted parties is easily calculated from the first diagonal elements of matrices \(\gamma_A \) and \(\gamma_A|_{x_B} \):

\[
I_{AB} = \frac{1}{2} \log_2 \frac{V_A}{V_{AB}} = \frac{1}{2} \log_2 \left(1 + \frac{\eta_x V_M}{1 + \eta_x \epsilon_x} \right)
\]

On the other hand, the estimation of Holevo quantity \(\chi_{BE} \), representing the upper bound on information, available to an eavesdropper, should be done from the whole state and, thus, depends on the unknown correlation parameter \(C_p \). However, this unknown parameter is bounded by the requirement of the physicality of the state, which is given by the Heisenberg uncertainty principle, in terms of the covariance matrices being [25]

\[
\gamma'_{AB} + i \Omega \geq 0,
\]

where \(\Omega \) is the symplectic form

\[
\Omega = \bigoplus_{i=1}^n \omega, \quad \omega = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.
\]

This equation imposes physical constraints on the possible values of \(C_p \). Such constraint in the general case of noise present in both quadratures is given by the parabolic equation on the \(\{V_p^B, C_p\} \) plane:

\[
(C_p - C_0)^2 \leq \frac{V_M}{(1 + V_M)^2} (1 - \eta_x V_0^B) (V_p^B - V_0^B)
\]

with vertex \((V_0^B, C_0) \), defined as:

\[
V_0^B = \frac{1}{1 + \eta_x \epsilon_x}
\]

and

\[
C_0 = -\frac{V_0^B \sqrt{\eta_x V_0 M}}{(1 + V_M)^2}
\]

The first part of the Holevo quantity, \(S(AB) \), can be calculated from the symplectic eigenvalues \(\lambda_{1,2} \) that are given by square roots of the solutions of equation

\[
z^2 - \Delta z + \text{det} \gamma'_{AB} = 0,
\]

where \(\Delta = \text{det} \gamma_A + \text{det} \gamma_B + 2 \text{det} \sigma_{AB} \) is the second symplectic invariant the first one being \(\text{det} \gamma_A \). The second part, \(S(A|x_B) \), is calculated from \(\chi_{\text{cond}} = \sqrt{\text{det} \gamma_A|x_B} \). This allows to analytically derive the lower bound on the key rate and find the security bounds in terms of unknown correlation \(C_p \) upon given (measured) \(V_p^B \).

The corresponding physicality region and security within the physicality (dashed line) regions of the UD protocol. The pessimistic value of \(C_p \), which minimizes the key rate, is given as a bold solid line. Modulation variance \(V_M = 10 \), channel transmittance in \(x \): \(\eta_x = 0.1 \), noise in \(x \): \(\epsilon_x = 5\% \) SNR. Point \(A = (C_0, V_0^B) \) denotes the vertex of the parabola, described by (11). The lines 1, 2 and 3 correspond to the key rate dependencies given in Fig. [1]
C. Worst-Case C_p and Key Rate

Counter-intuitively, the key rate is not always a monotonously decreasing function of the correlation $|C_p|$. Indeed, it can be seen from Fig. 5 that upon certain values of variance V_p^B, the lower bound on the key rate can have a local minimum within the security region. Moreover, the security can be even lost and restored (see the dashed line at the inset in Fig. 5).

However, when the channel excess noise added in p-quadrature is small (i.e. when V_p^B is close to 1), the key rate is a monotonously decreasing function of the correlation $|C_p|$ (as can be also seen in Fig. 5) in the most of the physicality region, and the pessimistic value for C_p is typically the highest physically valid negative value C_{p}^{max}, which saturates inequality (11).

As the noise increases, the pessimistic value of C_p gets lower than C_{p}^{max} and must be found numerically. We thus consider the security region of our protocol as laying along the pessimistic value of C_p (given as bold line in Fig. 2) from C_0 to $V_p^{B,\text{max}}$, where physicality and security regions cross. In this case, a key rate computed at C_{p}^{max} is greater than the lower bound on the real key rate and is therefore too optimistic. However, when the pessimistic value of C_p is inside the parabola, the $\partial K/\partial C_p = 0$ at this point and the pessimistic value is usually close to C_{p}^{max}. These explains why this upper bound, computed below, is often a good approximation.

The parabola bounding the physicality region corresponds to a state saturating the Heisenberg inequality (9). Therefore, one of the symplectic eigenvalues $\lambda_2 = 1$ and $\lambda_1 = \sqrt{\det \gamma_{AB}}$ and eq. (2) becomes

$$\chi_{BE} \left(\frac{1}{2} \sqrt{\det \gamma_{AB}^C - \frac{1}{2}} \right) - G \left(\frac{1}{2} \sqrt{\det \gamma_{AB}^C} - \frac{1}{2} \right)$$ (15)

when $C_p = C_{p}^{\text{max}}$

When $V_M \gg 1$, i.e. in the strong-modulation limit, $\det \gamma_{AB}^C \gg 1$ and one can use the expansion of the bosonic function $G \left(\frac{1}{2} (\lambda - 1) \right) = \log \lambda + \log \frac{1}{2} - \log e + O \left(\frac{1}{\lambda} \right)$, to derive the following expression for the key rate upper bound:

$$K_{V_M \rightarrow \infty} \lesssim \frac{1}{2} \log \frac{\eta_x}{1 - 2\eta_x + \eta_x V_p^B \eta_B \eta_x} - \log \frac{1}{2} + G \left(\frac{1}{2} \left(\frac{1}{\eta_x} + \epsilon_x - 1 \right) \right) + O \left(\frac{1}{\eta_x V_M} \right)$$ (16)

with $D = \eta_x (1 + \eta_x \epsilon_x - \eta_x) (V_p^B(1 + \eta_x \epsilon_x) - 1)$, (17)

where \lesssim can be replaced by \simeq when C_{p}^{max} is indeed the worst C_p. If, furthermore, we are in the strong loss limit, where $\eta_x \ll 1$ (8) and V_p^B is close to 1, one can expand the remaining bosonic function and obtain

$$K_{V_M \rightarrow \infty} \lesssim \left[\left(\frac{1}{2} + \frac{1 - V_p^B}{2} \right) \eta_x - \sqrt{D} \right] \log e + O \left(\eta^2 + \frac{1}{\eta_x V_M} \right)$$ (18)

In the following Section we analyze the security of the UD protocol in the typical phase-insensitive Gaussian channels.

IV. PERFORMANCE FOR SYMMETRIC QUANTUM CHANNELS

In typical communication channels, one expects values of loss and excess noise in both quadratures to be symmetric. In this regime, $\eta_x = \eta_p = \eta$, $\epsilon_x = \epsilon = \epsilon_p = \epsilon$, and therefore, $V_p^B = 1 + \eta \epsilon$.

The previous equations then become

$$K_{V_M \rightarrow \infty} \lesssim \frac{1}{2} \log \frac{1}{1 - \eta + \eta \epsilon + \eta^2 \epsilon^2 + 2 \sqrt{D}} - \log \frac{1}{2} + G \left(\frac{1}{2} \left(\frac{1}{\eta} + \epsilon - 1 \right) \right) + O \left(\frac{1}{\sqrt{\eta} V_M} \right)$$ (19)

with $D = 2 \eta^2 \epsilon (1 + \eta \epsilon - \eta) (1 + \frac{1}{2} \eta \epsilon)$. (20)

$$K_{V_M \rightarrow \infty} \lesssim \left(\frac{1}{2} - \sqrt{2} \eta \epsilon \right) \log e + O \left(\eta^2 + \frac{1}{\sqrt{\eta} V_M} \right)$$ (21)

Note that equations (19) (21) describe well the lower bound on the key rate if the losses or noise in the channel are low,
i.e., \(\eta \to 1 \) or \(\epsilon \to 0 \), otherwise they give the result exceeding the lower bound on the key rate, and the latter needs to be calculated numerically using the pessimistic \(C_p \) within the physicality region.

We now compare the UD CV QKD protocol with the standard symmetrical modulation protocol \(\text{GG02} \) \[11, 12, 26, 27\] used over the same channel. We first assume a noiseless lossy channel, where \(\epsilon = 0 \).

In this case, eq. (11) becomes \(C_p = C_0 \) and eq. (13) gives therefore the key rate for our protocol. It becomes, for \(V_M \to \infty \)

\[
K_{V_M \to \infty}^{\text{sym}} = \frac{1}{2\sqrt{\eta}} \log \left(\frac{1 + \sqrt{\eta}}{1 - \sqrt{\eta}} \right) - \log e + O\left(\frac{1}{\sqrt{V_M}}\right) \quad (22)
\]

Its low transmission limit rate is \(\frac{3}{2} \log e \), slightly smaller than the key rate of the standard coherent-state protocol in the high modulation limit, given by \[41\]

\[
K_{V_M \to \infty}^{\text{GG02}} = -\frac{1}{2} \log (1 - \eta) \simeq \frac{\eta}{2} \log e \quad (23)
\]

In the general case, however, the channel noise is present and reduces the security of the protocol. The results of the calculations in this case are given in Fig. 4 in terms of the lower bound on the key rate upon fixed channel excess noise and in Fig. 5 in terms of the maximum tolerable channel excess noise versus channel loss upon strong modulation \(V_M = 100 \).

Evidently, the UD protocol demonstrates higher sensitivity to channel excess noise, which is the cost of technical simplification, but still provides the reasonable security region in terms of channel excess noise, even in the pessimistic assumption of the strongest physically possible collective attack. We also provide comparison with the case when the worst-case \(C_p \) is not estimated numerically but is optimistically taken as a bound to physicality \(C_{p}^{\text{max}} \) (so that the key rate is approximately given by \[21\] in the limit of strong modulation), the respective curve is given as the dot-dashed line in Fig. 5.

During the redaction of this paper, A. Leverrier drew our attention to ref. \[20\], where Zhao et al. have also introduced a single-modulation protocol, ZHRL09. Contrary to our independently developed protocol, it uses a binary modulation, simplifying even more the protocol implementation. However, its sensitivity to excess noise is orders of magnitude below the tolerable excess noise of the protocol presented here: an excess noise as small as \(\epsilon = 3 \times 10^{-3} \) does not allow any positive key rate beyond 1 dB losses, and \(\epsilon \simeq 10^{-3} \) does not allow to go beyond 4 dB losses. This extreme sensitivity renders ZHRL09 useless in practice. In their conclusion, Zhao et al. attribute this sensitivity to the binary modulation and predict that a Gaussian modulation would solve this problem. The present paper indeed proves this conjecture.

For the sake of comparison we also analyzed the protocol, in which no information is extracted from \(p \)-quadrature, but some modulation and measurement is performed to estimate the channel transmittance (and, equivalently, the correlation) in \(p \). This intermediate protocol provides the security region, which lays in between the symmetrical and completely asymmetrical counterparts, but requires modulation in both quadratures. It main interest it theoretical, since it allows to split the origin of the performance degradation of our protocol compared to GG02 between the degradation due to the asymmetric modulation and the one due to incomplete channel estimation.

Another possible option to improve the UD protocol could be the noise addition in \(p \) to decouple eavesdropper from the remote trusted party. However, it widens the physicality region, allowing for the stronger collective attacks, and thus, if the noise is strong enough, security is always broken before the physicality bound, meaning that additional noise in \(p \) makes the protocol inapplicable. Additionally, if channel estimation in \(p \) is performed, then the protocol shows the same performance as the standard squeezed-based protocol \([6, 12, 24, 27]\), since the homodyne detection on \(A \) projects the two-mode state on the single-mode squeezed state, getting more squeezed as the noise in \(p \) increases.

Further analysis of the protocol will include consideration of reduced post-processing efficiency \([35]\), composable security \([33]\), and finite-size effects \([39, 40]\), which, however, depend on the signal-to-noise ratio and number of samples, rather than the Gaussian modulation profile and thus will af-
fect the symmetrical and asymmetrical protocols similarly. The position of the pessimistic bound for the unmeasured correlation in p in particular does not depend of the post-processing efficiency.

V. SUMMARY AND CONCLUSIONS

We have proposed and investigated the unidimensional continuous-variable quantum key distribution protocol based on the Gaussian modulation of a single quadrature of coherent states of light, in which physicality bounds enable to limit the eavesdropping attacks and assess the security region. The protocol allows simpler technical realization with no need of phase quadrature modulation and full channel estimation at the cost of lower key rate and higher sensitivity to channel ex-

cess noise, compared to symmetrical coherent-state protocol. However, the performance of the protocol is still comparable to that of the symmetrical counterpart and allows for the practical implementation.

Acknowledgments

We thank Anthony Leverrier for drawing our attention to ref. [20]. The work of VCU was supported by the Project No. 13-27533J of the Czech Science Foundation and by the EU FP7 Project BRISQ2 under Grant Agreement No. 308803, co-financed by MSMTČR (7E13032). The work of FG was supported by the ANR-NSERC ANR-09-BLAN-0410-02 FRe-QueNCy project.

[1] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lütkenhaus, and M. Peev, Rev. Mod. Phys. 81, 1301 (2009)
[2] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Rev. Mod. Phys. 84, 621 (2012)
[3] T. C. Ralph, Phys. Rev. A 61, 010303(R) (1999)
[4] M. Hillery, Phys. Rev. A 61, 022309 (2000)
[5] D. Gottesman and J. Preskill, Phys. Rev. A 63, 022309 (2001)
[6] N.J. Cerf, M. Levy, and G. Van Assche, Phys. Rev. A 63, 052311 (2001)
[7] F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, Phys. Rev. Lett. 109, 100502 (2012)
[8] F. Furrer, Phys. Rev. A 90, 042325 (2014)
[9] L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, Nature Communication 3, 1083 (2012)
[10] T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, arXiv:1406.6174.
[11] F. Grosshans and Ph. Grangier, Phys. Rev. Lett. 88, 057902 (2002)
[12] F. Grosshans and Ph. Grangier, Proceedings of the 6th International Conference on Quantum Communications, Measurement, and Computing, arXiv.org:quant-ph/0204127 (2002)
[13] T. C. Ralph, in Quantum Information with Continuous Variables, edited by S. L. Braunstein and A. K. Pati (Kluwer Academic Publishers, The Netherlands, 2003), Chap. 21.
[14] Ch. Silberhorn, T. C. Ralph, N. Lütkenhaus and G. Leuchs, Phys. Rev. Lett. 89, 167901 (2002)
[15] F. Grosshans, F. Van Assche, J. Wenger, R. Brouli, N. J. Cerf, and Ph. Grangier, Nature 421, 238 (2003)
[16] C. Weedbrook, A. M. Lance, W. P. Bowen, T. Symul, T. C. Ralph, and P. K. Lam, Phys. Rev. Lett. 93, 170504 (2004)
[17] A. M. Lance, T. Symul, V. Sharma, C. Weedbrook, T. C. Ralph, and P. K. Lam, Phys. Rev. Lett. 95, 180503 (2005)
[18] P. Jouguet, D. Elkouss, and S. Kunz-Jacques, Phys. Rev. A 90, 042329 (2014)
[19] Y.-B. Zhao, M. Heid, J., and N. Lütkenhaus Phys. Rev. A 79, 012307 (2009)
[20] J. L. Duligall, M. S. Godfrey, K. A. Harrison, W. J. Munro, and I. G. Rarity, New J. Phys. 8, 249 (2006)
[21] H.-K. Lo, H. F. Chau, M. Ardehali, J. of Cryptology, 18, 133 (2005)
[22] F. Grosshans, N. J. Cerf, J. Wenger, R. Tualle-Bouri, and P. Grangier, Quantum Inf. Comput. 3, 535 (2003)
[23] F. Grosshans, M. G. A. Paris, F. Illuminati, and S. De Siena, J. Opt. B, 7, R19 (2005)
[24] M. Navascues, F. Grosshans, and A. Acín, Phys. Rev. Lett. 97, 190502 (2006)
[25] R. García-Patrón and N. J. Cerf, Phys. Rev. Lett. 97, 190503 (2006)
[26] S. Pirandola, S. L. Braunstein, and S. Lloyd, Phys. Rev. Lett. 101, 200504 (2008)
[27] M. M. Wolf, G. Giedke,and J. I. Cirac, Phys. Rev. Lett. 96, 080502 (2006)
[28] R. Renner and J. I. Cirac, Phys. Rev. Lett., 102, 110504 (2009)
[29] M. Christandl, R. König, and R. Renner, Phys. Rev. Lett. 102, 020504 (2009)
[30] A. Leverrier, R. Garcia-Patrón, R. Renner, and N. J. Cerf, Phys. Rev. Lett. 110, 030502 (2013)
[31] A. Leverrier, Phys. Rev. Lett. 114 070501 (2015)
[32] A. S. Holevo and N. R. F. Werner, Phys. Rev. A 63, 032312 (2001)
[33] Csiszar, I. and Korner, J., IEEE Transactions on Information Theory, Vol. IT-24, 339-348 (1978)
[34] J. Devetak and A. Winter, Phys. Rev. Lett. 93, 080501 (2004)
[35] J. Lodewyck et al., Phys. Rev. A 76, 042305 (2007);
[36] G. van Assche, Quantum Cryptography and Secret-Key Distillation (CUP, Cambridge, 2006)
[37] A. Leverrier, F. Grosshans, and P. Grangier, Phys. Rev. A, 81, 062343 (2010)
[38] L. Ruppert, V. C. Usenko, and R. Filip, Phys. Rev. A 90, 062310 (2014)
[39] F. Grosshans, Phys. Rev. Lett. 94, 020504 (2005)
[40] The basis of the logarithm used to compute entropic quantities (entropy, mutual and Holevo information, key rates), defines the unit used: base 2 for bits, base e for nats, base $10^{7/10}$ for decibans, etc.
[41] The order in which the limits $V_M \to \infty$ and $\eta_0 \to 0$ are taken is important and changes the result. In particular, the order taken here assumes $V_M \sqrt{\eta} \gg 1$