ON THE PERIODIC v_2-SELF-MAP OF A_1

PRASIT BHATTACHARYA1,*, PHILIP EGGER2, AND MARK MAHOWALD3

This paper is dedicated to the memory of Mark Mahowald (1931-2013).

Abstract. We prove that the minimal v_2-self-map of the 2-local spectrum A_1 has periodicity 32.

Keywords: stable homotopy, v_2-periodicity

Acknowledgments

The first and second authors would like to thank Mark Behrens, Bob Bruner, Paul Goerss, Mike Hill and Mike Mandell for their invaluable assistance and encouragement throughout this project, as well as Irina Bobkova for some helpful discussions.

Convention. Throughout this paper we work in the stable homotopy category of spectra localized at the prime 2.

1. Introduction

Let $K(n)$ be the n^{th} Morava K-theory. Let \mathcal{C}_0 be the category of 2-local finite spectra, $\mathcal{C}_n \subset \mathcal{C}_0$ be the full subcategory of $K(n-1)$-acyclics and \mathcal{C}_∞ be the full subcategory of contractible spectra. Hopkins and Smith [NilpII] showed that the \mathcal{C}_n are thick subcategories of \mathcal{C}_0 (in fact, they are the only thick subcategories of \mathcal{C}_0) and they fit into a sequence

$$\mathcal{C}_0 \supset \mathcal{C}_1 \supset \ldots \supset \mathcal{C}_n \supset \ldots \supset \mathcal{C}_\infty.$$

We say a finite spectrum X is of type n if $X \in \mathcal{C}_n \setminus \mathcal{C}_{n+1}$.

A self-map $v : \Sigma^k X \rightarrow X$ of a finite spectrum X is called a v_n-self-map if

$$K(n)_*(v) : K(n)_*(X) \rightarrow K(n)_*(X)$$

is an isomorphism. For a finite spectrum X, a self-map $v : \Sigma^k X \rightarrow X$ can also be regarded as an element of $\pi_k(X \wedge DX)$, where DX is the Spanier-Whitehead dual of X.

1Department of Mathematics, University of Notre Dame, 106 Hayes-Healy Hall, Notre Dame, IN 46556, USA
1Tel: +1(574) 631-7776
\ast Corresponding author

2,3Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208, USA
2Tel: +1(847)467-1958

E-mail addresses: *prasbhat@indiana.edu, 2philip.egger@math.northwestern.edu

Prasit Bhattacharya is supported in part by NSF through grant DMS-1105255.
For any ring spectrum E, let H_E denote the E-Hurewicz natural transformation

$$H_E : \pi_*(-) \rightarrow E_*(-).$$

Let $k(n)$ denote the connective cover of $K(n)$. If $v : S^k \rightarrow X \wedge DX$ is a v_n-self-map then $H_{k(n)}(v) \in k(n)_*(X \wedge DX)$ has to be the image of $v_n^m \in k(n)_* \cong \mathbb{F}_2[v_n]$, for some positive integer m, under the map

$$k(n)_* \iota : k(n)_* \rightarrow k(n)_*(X \wedge DX),$$

where $\iota : S^0 \rightarrow X \wedge DX$ is the unit map. The value m is called the \textit{periodicity} of the v_n-self-map v. We call v a \textit{minimal v_n-self-map} for X, if v is a v_n-self-map with smallest periodicity. An easy consequence of [NilpII, Theorem 9] is that the periodicity of a minimal v_n-self-map is always a power of 2.

Hopkins and Smith showed, among other things, that every type n spectrum admits a v_n-self-map and the cofiber of a v_n-self-map is of type $n + 1$. However, not much is known about the minimal periodicity of such v_n-self-maps.

The sphere spectrum S^0 is a type 0 spectrum with a v_0-self-map $2 : S^0 \rightarrow S^0$. The cofiber of this v_0-self-map is the type 1 spectrum $M(1)$. The spectrum $M(1)$ is known to admit a unique minimal v_1-self-map of periodicity 4. The cofiber of this v_1-self-map is denoted by $M(1, 4)$. In 2008, Behrens, Hill, Hopkins and the third author [BHHM] showed that the minimal v_2-self-map on $M(1, 4)$ is $v : \Sigma^{192}M(1, 4) \rightarrow M(1, 4)$, which has periodicity 32.

Instead of S^0, we can start with the type 0 spectrum $C\eta$, the cofiber of $\eta : S^1 \rightarrow S^0$. The spectrum $C\eta$ admits a non-zero v_0-self-map $2 \wedge 1_{C\eta} : C\eta \rightarrow C\eta$, with cofiber $M(1) \wedge C\eta := Y$. The type 1 spectrum Y admits eight minimal v_1-self-maps of periodicity 1. These eight maps are constructed in [DMS1] using stunted projective spaces. The cofiber of any of the v_1-self-maps is referred to as A_1. Though there are eight different v_1-self-maps, there are only four different homotopy types of the cofibers A_1 (see [DMS1] Proposition 2.1).

Let $A(1)$ be the subalgebra of the Steenrod algebra A generated by Sq^1 and Sq^2. It turns out that the cohomology of any homotopy type of A_1 is a free $A(1)$-module on one generator. However, different homotopy types of A_1 have different A-module structures, which are distinguished by the action of Sq^4. We depict the cohomologies of the four different spectra A_1 in Figure 1.1, where the red square brackets represent an action of Sq^4, the blue curved lines represent an action of Sq^2, and the black straight lines represent an action of Sq^1. The subalgebra $A(1)$ has four different A-module structures each of which corresponds to a homotopy type of A_1. Any A-module structure on $A(1)$ has a nontrivial Sq^4 action on the generator in degree 1 forced by the Adem relations. However, there are choices for Sq^4 actions to be trivial or nontrivial on generators in degree 0 and degree 2, thus giving us four different A-module structures. We denote different homotopy types of A_1 using the notation $A_1[ij]$ where i and j are the indicator functions for the action of Sq^4 on the generators in degree 0 and degree 2 respectively. The spectra $A_1[01]$ and $A_1[10]$ are self-dual, i.e. $A_1[01] = \Sigma^6DA_1[01]$ and $A_1[10] = \Sigma^6DA_1[10]$, whereas $A_1[00]$ and $A_1[11]$ are dual to each other, i.e. $A_1[00] = \Sigma^6DA_1[11]$. This is a consequence of the fact that

$$\chi(Sq^4) = Sq^4 + Sq^3Sq^1,$$

where $\chi : A \rightarrow A$ is the canonical antiautomorphism of the Steenrod algebra.
Figure 1.1. The A-module structures of $H^*(A_1[00])$, $H^*(A_1[10])$, $H^*(A_1[01])$ and $H^*(A_1[11])$.

It is worth noting that A_1 is created in a way similar to $M(1,4)$, where $C\eta$ is analogous to S^0, and Y is analogous to $M(1)$. Therefore, it is reasonable to ask whether A_1 has the same v_2-periodicity as $M(1,4)$. The minimal v_1-self-map of Y has periodicity 1, which is less than the periodicity of the minimal v_1-self-map on $M(1)$, which is 4. Hence, it is natural to ask if any of the four models of A_1 admit a v_2-self-map of periodicity 2^k, where $k \leq 4$. In [BHHM], the third author conjectured that the minimal v_2-self-map of A_1 should have periodicity 32. The goal of this paper is to prove the following

Main Theorem 1. For all four models of A_1, the minimal v_2-self-map

$$v : \Sigma^{102} A_1 \to A_1$$

has periodicity 32.

Notation 1.1. For any ring spectrum E, $\iota_E : S^0 \to E$ will denote the unit map. The unit map ι_E induces the the Hurewicz natural transformation

$$H_E : \pi_* \to E_*$$

as introduced earlier. When $E = A_1 \wedge DA_1$, we simply use $\iota : S^0 \to A_1 \wedge DA_1$ to denote the unit map. Let $i : S^0 \to A_1$ be the map that represents the inclusion of the bottom cell. Let $j : A_1 \wedge DA_1 \to A_1$ denote the map $1_{A_1} \wedge Di$.

Notation 1.2. To lighten the notations, we use $\text{Ext}_{T}(X)$ to denote $\text{Ext}_{T}(H^*(X), F_2)$, where T is a subalgebra of the Steenrod algebra A.

1.1. Outline. To prove Main Theorem 1, we use the fact that the spectrum tmf detects certain v_2-periodic elements. More specifically, the unit map $\iota_{k(2)} : S^0 \to k(2)$ factors through tmf, i.e. we have

$$\iota_{k(2)} : S^0 \xrightarrow{\iota_{tmf}} tmf \xrightarrow{\tau} k(2).$$

The induced map in homotopy

$$r_* : tmf_* \to k(2)_*$$

In [DM81], Davis and the third author claimed, incorrectly, that the periodicity of minimal v_2-self-maps on $M(1,4)$ and the two self-dual models of A_1, namely $A_1[01]$ and $A_1[10]$, as 8. After successfully correcting the v_2-periodicity of $M(1,4)$ in [BHHM], the v_2-periodicity of A_1 was called into question by the third author.
sends Δ^8, the periodicity generator of tmf_*, to v_3^{22}. Since A_1 is a type 2 spectrum, we know that Δ^8 has a nonzero image under the composition
\[
tmf_* \xrightarrow{r_*} \pi_*(2) \xrightarrow{k(2)_*} \pi_*(2)(A_1 \wedge DA_1).
\]
Therefore, from the commutative diagram
\[
\begin{array}{ccc}
tmf_* & \xrightarrow{tmf_*} & tmf_*(A_1 \wedge DA_1) \\
\downarrow{r_*} & & \downarrow{r_*(A_1 \wedge DA_1)} \\
\pi_*(2) & \xrightarrow{k(2)_*} & \pi_*(2)(A_1 \wedge DA_1)
\end{array}
\]
we see that $k(2)_*(v_3^{22})$ lifts to $tmf_*(A_1 \wedge DA_1)$. We can choose the lift to be $tmf_*\iota(\Delta^8)$. This does not eliminate the possibility that smaller powers of $k(2)_*(v_2)$ could lift to $tmf_*(A_1 \wedge DA_1)$. However, if $k(2)_*(v_2)$ and $k(2)_*(v_2^{32})$ do not lift to $tmf_*(A_1 \wedge DA_1)$, then they will not lift to $\pi_*(A_1 \wedge DA_1)$. So we analyse the map of Adams spectral sequences induced by $\iota : tmf \to k(2)$.

It is well-known that $H^*(tmf)$ as an A-module is isomorphic to $A//A(2)$, where $A(2)$ is the subalgebra of A generated by Sq^1, Sq^2 and Sq^3. Therefore, applying a change of rings formula, we see that $Ext^{s,t}_{A(2)}(X)$ is the E_2 page of the Adams spectral sequence
\[
E_2^{s,t} = Ext^{s,t}_{A(2)}(X) \Rightarrow tmf_{t-s}(X).
\]
Similarly, we have an Adams spectral sequence
\[
E_2^{s,t} = Ext^{s,t}_{E(2)}(X) \Rightarrow k(2)_{t-s}(X),
\]
which is a manifestation of the fact that $H^*(k(2)) = A//E(2)$.

The map $\iota : S^0 \to A_1 \wedge DA_1$ induces the following commutative diagram of spectral sequences
\[
\begin{array}{ccc}
Ext^{s,t}_{A(2)}(S^0) & \xrightarrow{tmf} & Ext^{s,t}_{A(2)}(A_1 \wedge DA_1) \\
\downarrow{\iota^*} & & \downarrow{\iota^*} \\
Ext^{s,t}_{E(2)}(S^0) & \xrightarrow{k(2)} & Ext^{s,t}_{E(2)}(A_1 \wedge DA_1)
\end{array}
\]
It is well known that
\[
v_2^8 \in Ext^8_{E(2)}(S^0)
\]
is the image of the non-nilpotent element $b^4_{3,0} \in Ext^8_{A(2)}(S^0)$ (see [Bau, Hen]).

Since A_1 is a type 2 spectrum, the element $\iota_*^{k(2)}(v_2^8) \in Ext^8_{E(2)}(A_1 \wedge DA_1)$ is non-nilpotent. Consequently,
\[
\iota_*^{tmf}(b^4_{3,0}) \in Ext^8_{A(2)}(A_1 \wedge DA_1)
\]
is non-nilpotent. Thus, $\iota_*^{k(2)}(v_2^{8n})$ lifts to a nonzero element of $Ext^{8n,48+8n}_{A(2)}(A_1 \wedge DA_1)$ for every $n \in \mathbb{N}$, which can be chosen to be $\iota_*^{tmf}(b^4_{3,0})$.

In Section 2, we warm up by computing $Ext^{s,t}_{A(2)}(A_1)$ using the May spectral sequence and compute its vanishing line for later use. In Section 3, we show that
\(\iota_*^{tmf}(b^4_{3,0}) \) admits a \(d_2 \) differential and \(\iota_*^{tmf}(b^8_{3,0}) \) admits a \(d_3 \) differential in the Adams spectral sequence

\[
E'^{s,t}_2 = \text{Ext}^{s,t}_{A(2)}(A_1 \wedge DA_1) \Rightarrow tmf_{t-s}(A_1 \wedge DA_1).
\]

This will imply the nonexistence of a 8-periodic or 16-periodic \(v_2 \)-self-map of \(A_1 \). We will recall the algebraic \(tmf \) resolution of [BHHM] and use the resulting spectral sequence to show that for every \(n \in \mathbb{N} \), the element \(\iota_*^{tmf}(b^{4n}_{3,0}) \) lifts to \(\text{Ext}^{3n,48n+8n}_A(A_1 \wedge DA_1) \) under the map induced by \(H_{tmf} \). Furthermore, we show that the lifts of \(\iota_*^{tmf}(b^4_{3,0}) \) and \(\iota_*^{tmf}(b^8_{3,0}) \) support a \(d_2 \) and a \(d_3 \) differential respectively in the Adams spectral sequence

\[
E'^{s,t}_2 = \text{Ext}^{s,t}_A(A_1 \wedge DA_1) \Rightarrow \pi_{t-s}(A_1 \wedge DA_1).
\]

This extra effort enables us to identify some \(d_2 \) and \(d_3 \) differentials in the above spectral sequence, which will play a crucial role in the proof of the existence of a 32-periodic \(v_2 \)-self-map of \(A_1 \). Thus, the existence of a 32-periodic \(v_2 \)-self-map of \(A_1 \) boils down to showing that the lift of \(\iota_*^{tmf}(b^{16}_{3,0}) \), which we’ll call \(\pi \), is a permanent cycle in the Adams spectral sequence

\[
E'^{s,t}_2 = \text{Ext}^{s,t}_A(A_1 \wedge DA_1) \Rightarrow \pi_{t-s}(A_1 \wedge DA_1).
\]

Note that \(\pi \) cannot be a target of a differential as its image in \(\text{Ext}^{32,192+32}_{E(Q_2)}(A_1 \wedge DA_1) \) is not a target of a differential. Further, \(\pi \) cannot support a nontrivial \(d_2 \) or \(d_3 \) differential by the Leibniz rule. In Section \([5]\), we use all prior knowledge of \(d_2 \) and \(d_3 \) differentials, including an important \(d_3 \) differential found in Section \([4]\), to show that the potential targets of \(d_r \) differentials for \(r \geq 4 \) are either zero or not present in the Adams \(E_4 \) page. This will conclude the proof of Main Theorem \([1]\).

Notation 1.4. For the rest of the paper, we will abusively denote any \(x \in \text{Ext}^{s,t}_{A(2)}(S^0) \) and \(\iota_*^{tmf}(x) \in \text{Ext}^{s,t}_{A(2)}(A_1 \wedge DA_1) \) and sometimes their lifts in \(\text{Ext}^{s,t}_A(S^0) \) and \(\text{Ext}^{s,t}_A(A_1 \wedge DA_1) \) respectively under \(H_{tmf} \), just by \(x \). This will allow us to suppress cumbersome notations. We will make sure that the ambient group in which \(x \) belongs is clear from the context.

1.2. *Use of Bruner’s Ext software.* We will use this software (see Appendix \([A]\) or [Bru] for a description of the program) for two purposes. Given any \(A(2) \)-module \(M \), finitely generated as an \(\mathbb{F}_2 \)-vector space, the program can compute the groups \(\text{Ext}^{s,t}_{A(2)}(M, \mathbb{F}_2) \) to the extent of identifying generators in each bidegree within a finite range, determined by the user. Since we are interested in \(\text{Ext}^{s,t}_{A(2)}(X) \) for finite spectra \(X \), such as \(A_1 \wedge DA_1 \), whose cohomology structures as \(A(2) \)-modules are known, this suits our task perfectly. The second purpose is the following: As any finite spectrum \(X \) is an \(S^0 \)-module, \(\text{Ext}^{*,*}_{A(2)}(X) \) is a module over \(\text{Ext}^{*,*}_{A(2)}(S^0) \). Given an element \(x \in \text{Ext}^{s,t}_{A(2)}(X) \), the action of \(\text{Ext}^{*,*}_{A(2)}(S^0) \) can be computed using the *dolifts* functionality of the software. Summary of the output of the Bruner’s program that is needed for some of the results in Section \([4]\) and Section \([5]\) are listed in Appendix \([B]\) and Appendix \([C]\) respectively.

One should also be aware that Main Theorem \([1]\) is by no means a consequence of the programming output. However, parts of the proof are reduced to pure algebraic computation, which can be performed using Bruner’s program.
2. Computation of $\text{Ext}^{s,t}_{A(2)}(A_1)$ and its Vanishing Line

J.P. May in his thesis \cite{May} introduced a filtration of the Steenrod algebra called the May filtration, which induces a filtration of the cobar complex $C(F_2, A_*, F_2)$. This filtration gives a trigraded spectral sequence

$$E_1^{s,t,u} = F_2[h_{i,j} : i \geq 1, j \geq 0] \Rightarrow \text{Ext}^{s,t}_{A}(S^0), |h_{i,j}| = (1, 2^j(2^i - 1), 2i - 1),$$

with differentials d_r of tridegree $(1, 0, 1 - 2r)$, which converges to the E_2 page of the Adams spectral sequence

$$\text{Ext}^{s,t}_{A}(S^0) \Rightarrow \pi_{t-s}(S^0).$$

The element $h_{i,j}$ corresponds to the class $[\xi^2]$ in the cobar complex $C(F_2, A_*, F_2)$. We stick to the notation introduced by Tangora in his thesis \cite{Tan}. For example, $h_{1,j}$ is abbreviated by h_j. Meanwhile, there are many elements $h_{i,j}$ that are not d_1-cycles in the May spectral sequence, however, even in these cases, the Leibniz rule means that $h_{i,j}^2$ will be d_1-cycles. To get around the awkwardness of talking about $h_{i,j}^2$ in later pages of the May spectral sequence, where $h_{i,j}$ may not even exist, Tangora uses $b_{i,j}$ to denote $h_{i,j}^2$ from the E_2 page onwards.

One can use the same May filtration on the subalgebra $A(2)$ of A, to obtain a filtration on the cobar complex $C(F_2, A(2)_*, F_2)$. Thus we get a May spectral sequence with finitely many differentials

$$F_2[h_0, h_1, h_2, h_{2,0}, h_{2,1}, h_{3,0}] \Rightarrow \text{Ext}^{s,t}_{A(2)}(S^0)$$

all of which have been computed (see \cite{DM}). The bigraded ring $\text{Ext}^{s,t}_{A(2)}(S^0)$ is the Adams E_2 page for the homotopy groups of tmf.

We have obtained A_1 by a series of cofibrations,

$$S^1 \xrightarrow{\eta} S^0 \longrightarrow C\eta$$

$$C\eta \xrightarrow{\nu} Y \longrightarrow A_1.$$

The maps 2, η and ν_1 are detected by h_0, h_1 and $h_{2,0}$, respectively, in the May spectral sequence. Using the fact that cofiber sequences induce long exact sequences of E_1 pages of the May spectral sequence, we get that the E_1 page of the May spectral sequence converging to $\text{Ext}^{s,t}_{A(2)}(A_1)$ is

$$F_2[h_2, h_{2,1}, h_{3,0}] \Rightarrow \text{Ext}^{s,t}_{A(2)}(A_1).$$

Alternatively, using a change of rings formula, we see that the cobar complex (whose cohomology is $\text{Ext}^{s,t}_{A(2)}(A_1)$) is

$$C(F_2, A(2)_*, A(1)_*) \cong C(F_2, (A(2)\parallel A(1))_*, F_2),$$

hence a quotient of $C(F_2, A(2)_*, F_2)$. Thus, the filtration on $C(F_2, A(2)_*, F_2)$ induces a filtration on $C(F_2, A(2)_*, A(1)_*)$ as a result of which $F_2[h_2, h_{2,1}, h_{3,0}]$ is a module over $F_2[h_0, h_1, h_2, h_{2,0}, h_{2,1}, h_{3,0}]$.

The d_1 differentials in the May spectral sequence

$$F_2[h_0, h_1, h_2, h_{2,0}, h_{2,1}, h_{3,0}] \Rightarrow \text{Ext}^{s,t}_{A(2)}(S^0)$$

...
come from the coproduct on \(A(2)_* \). It is well known that \(d_1(h_2) = 0 \), \(d_1(h_{2,1}) = h_1 h_2 \) and \(d_1(h_{3,0}) = h_0 h_{2,1} + h_2 h_{2,0} \). Under the quotient map
\[
\mathbb{F}_2[h_0, h_1, h_2, h_{2,0}, h_{2,1}, h_{3,0}] \twoheadrightarrow \mathbb{F}_2[h_2, h_{2,1}, h_{3,0}]
\]
all the images of the above differentials map to zero. Therefore, there are no \(d_1 \) differentials in the May spectral sequence
\[
\mathbb{F}_2[h_2, h_{2,0}, h_{3,0}] \Rightarrow \text{Ext}_{A(2)}(A_1).
\]
One can use Nakamura’s formula to compute higher May differentials. The operations \(\text{Sq}^i \) on the cobar complex of \(C(\mathbb{F}_2, A_*, \mathbb{F}_2) \), defined by \(\text{Sq}^i(x) = x \cup i x + \delta x \cup i + 1 x \) (see [Nak]), satisfy
\[
\begin{align*}
\text{Sq}^0(h_{i,j}) &= h_{i,j}^2 \\
\text{Sq}^0(b_{i,j}) &= b_{i,j}^2 \\
\text{Sq}^1(h_{i,j}) &= h_{i,j}^1 \\
\end{align*}
\]
as well as Cartan’s formulas (see [Nak, Proposition 4.4 and Proposition 4.5])
\[
\begin{align*}
\text{Sq}^0(xy) &= \text{Sq}^0(x) \text{Sq}^0(y) \\
\text{Sq}^1(xy) &= \text{Sq}^1(x) \text{Sq}^0(y) + \text{Sq}^0(x) \text{Sq}^1(y)
\end{align*}
\]
whenever \(x \) and \(y \) are represented by elements in appropriate pages of the May spectral sequence. In particular we have
\[
\begin{align*}
\text{Sq}^1(x^2) &= 0 \\
\end{align*}
\]
for every \(x \). The differential \(\delta \) in the cobar complex \(C(\mathbb{F}_2, A_*, \mathbb{F}_2) \), satisfies the relation
\[
\delta \text{Sq}^i = \text{Sq}^{i+1} \delta
\]
for \(i \geq 0 \) (see [Nak, Lemma 4.1]) and is often called Nakamura’s formula in the literature.

Since the May spectral sequence is obtained by filtering the cobar complex, the above formula helps in detecting differentials in the May spectral sequence. Since the cobar complex
\[
C(\mathbb{F}_2, A(2)_*, A(1)_*) \cong C(\mathbb{F}_2, (A(2)/A(1))_*, \mathbb{F}_2),
\]
is a quotient of \(C(\mathbb{F}_2, A(2)_*, \mathbb{F}_2) \), we apply (2.1) to find differentials in the May spectral sequence for \(A_1 \).

Lemma 2.2. In the May spectral sequence
\[
\mathbb{F}_2[h_2, h_{2,1}, h_{3,0}] \Rightarrow \text{Ext}^{s,t}_{A(2)}(A_1),
\]
we have
\[
\begin{align*}
\bullet \ d_2(b_{2,1}) &= h_{3}^3 \\
\bullet \ d_3(h_{3,0}) &= h_{3}^3 h_{2,1} \\
\bullet \ d_4(h_{3,0}^2) &= h_{2} h_{2,1}^2 \\
\end{align*}
\]
and the spectral sequence collapses at \(E_5 \).

Proof. In the May spectral sequence
\[
\mathbb{F}_2[h_0, h_1, h_2, h_{2,0}, h_{2,1}, h_{3,0}] \Rightarrow \text{Ext}^{s,t}_{A(2)}(S^0)
\]
the differentials \(d_2(b_{2,1}) = h_2^3 \) and \(d_4(b_{3,0}^2) = h_2b_{2,1}^2 \) translate into differentials in \(\text{Ext}_{A(2)}(A_1) \). In the cobar complex, \(b_{3,0} \) is represented by the element \([\xi_3|\xi_3]\). Since \(b_{3,0} = Sq_0h_{3,0} \), we apply (2.1), to obtain

\[
\begin{align*}
 d_3(Sq_0h_{3,0}) &= Sq_1(d_1h_{3,0}) \\
 &= Sq_1(h_0b_{2,1} + h_2b_{2,0}) \\
 &= h_0^2h_{2,2} + h_1^2h_{2,1}^2 + h_2^2h_{2,1} + h_3^2h_{2,0} \\
 &= h_2^2h_{2,1} \text{ in the May spectral sequence for } A_1.
\end{align*}
\]

Therefore, in the cobar complex \(C(F_2,A(2)) \), it must be the case that,

\[\delta([\xi_3|\xi_3]) = [\xi_2^2|\xi_2^2|\xi_2^2] + \text{elements of higher May filtration}. \]

As a result we have

\[d_3(b_{3,0}) = h_2^2h_{2,1}. \]

The May spectral sequence (2.3) does not have any differentials \(d_r \) for \(r \geq 5 \), consequently no differentials in the May spectral sequence

\[F_2[h_2,h_{2,1},h_{3,0}] \Rightarrow \text{Ext}^{*,*}_{A(2)}(A_1). \]

\[\square \]

In Figure 2.1 the solid line of slope 1 represents multiplication by \(h_1 \), the solid line of slope \(\frac{2}{3} \) represents multiplication by \(h_2 \), while the dotted line of slope \(\frac{1}{5} \) represents multiplication by \(h_{2,1} \). The element \(b_{3,0}^{1,2} \) is the periodicity generator of \(\text{Ext}^{*,*}_{A(2)}(A_1) \) and the blue part is simply a repetition of the earlier black pattern.
This matches the output of Bruner’s program \textcircled{Bru} for $Ext^{s,t}_{A(2)}(A_1)$, though different models of A_1 may have different extensions some of which might not be detected in the May spectral sequence.

Having computed the E_2 page $Ext^{s,t}_{A(2)}(A_1)$, we give a vanishing line of this spectral sequence, which will come in handy later on in the paper.

Lemma 2.4. The group $Ext^{s,t}_{A(2)}(A_1)$ is zero if

$$s > \frac{1}{5}(t - s) + 1,$$

and for $t - s \geq 29$, it is zero if

$$s > \frac{1}{5}(t - s).$$

In other words, there is a vanishing line

$$y = \frac{1}{5}x + 1.$$

Proof. Of the three generators of the E_1 page, h_2 has slope $\frac{1}{3}$, $h_{2,1}$ has slope $\frac{1}{5}$, and $h_{3,0}$ has slope $\frac{1}{6}$. However, while $Ext^{s,t}_{A(2)}(A_1)$ contains infinitely large powers of $h_{2,1}$ and $h_{3,0}$, it only contains powers up to 2 of h_2. Hence, the vanishing line of $Ext^{s,t}_{A(2)}(A_1)$ must have slope $\frac{1}{5}$, determined by $b_{2,1}^2$. Now, since $h_2b_{2,1}^2 = 0$, the vanishing line for stems greater than 29 is $y = \frac{1}{5}x$ and a glance at Figure 2.1 gives us the y-intercept of the overall vanishing line. \(\square\)

3. A d_2 and a d_3 differential

In this section we first show that $b_{1,0}^4$ and $b_{3,0}^8$ in $Ext^{s,t}_{A(2)}(A_1 \wedge DA_1)$ support a d_2 and a d_3 differential respectively. Then we show that these differentials lift to $Ext^{s,t}_{A(2)}(A_1 \wedge DA_1)$ under the map of spectral sequences induced by H_{tmf}. Some of the proofs in this section as well as in the subsequent sections use Bruner’s program \textcircled{Bru}. We provide Appendix A to help readers familiarize themselves with this software.

In the Adams spectral sequence

$$E_2^{s,t} = Ext^{s,t}_{A(2)}(S^0) \Rightarrow tmf_{t-s},$$

it is well known that $d_2(b_{1,0}^4) = e_0r$ and $d_3(b_{3,0}^8) = wgr$ (see \textcircled{Hen}). Using Bruner’s program, we see that e_0r and wgr both have nonzero images in $Ext^{s,t}_{A(2)}(A_1 \wedge DA_1)$.

Lemma 3.1. In the Adams spectral sequence

$$E_2^{s,t} = Ext^{s,t}_{A(2)}(A_1 \wedge DA_1) \Rightarrow tmf_{t-s}(A_1 \wedge DA_1)$$

we have $d_2(b_{1,0}^4) = e_0r$ and $d_3(b_{3,0}^8) = wgr$.

Proof. In the map of Adams spectral sequences,

$$E_2^{s,t} = Ext^{s,t}_{A(2)}(S^0) \Rightarrow tmf_{t-s}$$

we have $d_2(b_{1,0}^4) = e_0r$ and $d_3(b_{3,0}^8) = wgr$. \(\square\)
we have established that (beware of our abusive notations as explained in Notation 1.1)

$$Ext^{\cdot, t}_{A(2)}(S^0) \xrightarrow{\iota_m^{tmf}} Ext^{\cdot, t}_{A(2)}(A_1 \wedge DA_1)$$

and therefore

$$d_2(b^{4}_{3,0}) = e_0 r.$$

Since $d_2(b^{3}_{3,0}) = e_0 r$ in the Adams spectral sequence for tmf_*, it follows that we have a d_2-differential

$$d_2(b^{4}_{3,0}) = e_0 r.$$

As a consequence of the Leibniz rule, $d_2(b^{3}_{3,0}) = 0$ and hence $b^{3}_{3,0}$ and its image under ι_m^{tmf} are nonzero elements in the E_3 pages of Adams spectral sequences for tmf_* and $tmf_*(A_1 \wedge DA_1)$, respectively.

Since there is a d_3 differential $d_3(b^{3}_{3,0}) = wgr$ in the Adams spectral sequence for tmf_*, it will follow that $b^{3}_{3,0}$ supports a d_3-differential in the Adams spectral sequence for $tmf_*(A_1 \wedge DA_1)$, provided the image of wgr is nonzero in the E_3-page of the Adams spectral sequence for $tmf_*(A_1 \wedge DA_1)$. Thus we have to show that there does not exist a differential of the form $d_2(x) = wgr$.

Using Bruner’s program [Bru], we check that $wgr \in Ext^{19,95+19}_{A(2)}(S^0)$ maps nontrivially to $Ext^{19,95+19}_{A(2)}(A_1)$. Thus, if there exists an x such that $d_2(x) = wgr$ in

$$Ext^{\cdot, t}_{A(2)}(A_1 \wedge DA_1) \Rightarrow tmf_{t-s}(A_1 \wedge DA_1),$$

then the image of x, call it x', must be nontrivial under the map

$$j_\star : Ext^{17,96+17}_{A(2)}(A_1 \wedge DA_1) \rightarrow Ext^{17,96+17}_{A(2)}(A_1)$$

and we will have $d_2(x') = wgr$ in

$$Ext^{\cdot, t}_{A(2)}(A_1) \Rightarrow tmf_{t-s}(A_1).$$

There is exactly one generator of $Ext^{17,96+17}_{A(2)}(A_1)$, and that generator is $b^{4}_{3,0} \cdot y$ under the pairing

$$Ext^{8,48+g}_{A(2)}(S^0) \otimes Ext^{9,48+g}_{A(2)}(A_1) \rightarrow Ext^{17,96+17}_{A(2)}(A_1).$$

It is clear that $d_2(y) = 0$ as $Ext^{11,47+11}_{A(2)}(A_1) = 0$ (see Chart 2.1). Thus using the Leibniz rule, we see that

$$d_2(b^{4}_{3,0} y) = e_0 r \cdot y.$$

Using [Bru], we check that $e_0 r \cdot y = 0$. Therefore, wgr is nonzero in the E_3-page of the spectral sequence

$$Ext^{\cdot, t}_{A(2)}(A_1 \wedge DA_1) \Rightarrow tmf_{t-s}(A_1 \wedge DA_1),$$

and therefore

$$d_3(b^{3}_{3,0}) = wgr$$

in this spectral sequence. □
As a consequence of Lemma 3.1, we see that \(v_2^8 \) and \(v_2^{16} \) in \(k(2)_*(A_1 \wedge DA_1) \) do not lift to \(tmf_*(A_1 \wedge DA_1) \) and hence cannot lift to \(\pi_*(A_1 \wedge DA_1) \). Thus we have established:

Theorem 3.2. The spectra \(A_1 \) do not admit an 8-periodic or 16-periodic \(v_2 \)-self-map.

Next we describe an algebraic resolution which will allow us to lift the \(d_2 \) differential and the \(d_3 \) differential of Lemma 3.1 to the Adams spectral sequence \(E_2^{s,t} = Ext_{A/(2)}^{s,t}(A_1 \wedge DA_1) \Rightarrow \pi_{t-s}(A_1 \wedge DA_1). \)

We will briefly recall the resolution described in [BHHM, Section 5], and how it is used to lift elements of Ext groups over \(A/(2) \) to Ext groups over \(A \). Consider the \(A \)-module

\[
A \oplus A/(2) := A \otimes_{A/(2)} F_2
\]

and denote by \(A \oplus A/(2) \) the kernel of the augmentation map

\[
A \oplus A/(2) \to F_2.
\]

When we consider the triangulated structure of the derived category of \(A \)-modules, we get maps

\[
A \oplus A/(2) \to A \oplus A/(2)[1] \to \cdots
\]

and a resulting diagram

\[
\begin{array}{ccc}
F_2 & \to & A \oplus A/(2)[1] \\
\uparrow & & \uparrow \\
A \oplus A/(2) & \to & A \oplus A/(2)[1] \\
\uparrow & & \uparrow \\
A \oplus A/(2) & \to & A \oplus A/(2)[1]
\end{array}
\]

which we shall apply the functor \(Ext_{A/(2)}^{s,t}(H^*(X) \otimes \cdot, F_2) \) to get a spectral sequence, which we shall refer to as the algebraic \(tmf \) spectral sequence to reflect the fact that \(A \oplus A/(2) \) is the cohomology of \(tmf \). This spectral sequence will be trigraded, with \(E_1 \) page

\[
E_1^{s,t,n} = Ext_{A/(2)}^{s,t}(H^*(X) \otimes A \oplus A/(2) \oplus A \oplus A/(2) \otimes [n], F_2) \\
\cong Ext_{A/(2)}^{s-n,t}(H^*(X) \otimes A \oplus A/(2) \otimes [n], F_2)
\]

which converges to

\[
Ext_{A/(2)}^{s,t}(H^*(X), F_2).
\]

For any element in the algebraic \(tmf \) spectral sequence in tridegree \((s, t, n) \), we will refer to \(s \) as its Adams filtration, \(t \) as the internal degree and \(n \) as the algebraic \(tmf \) filtration. The differential \(d_r \) has tridegree \((1, 0, r) \). It is shown in [DM] that

\[
A \oplus A/(2) \cong \bigoplus_{i \geq 0} H^*(\Sigma^i bo_i),
\]

where \(bo_i \) denotes the \(i \)-th \(bo \)-Brown-Gitler spectrum of [GJM]. As a result the \(E_1 \) page of the algebraic \(tmf \) spectral sequence simplifies to

\[
E_1^{s,t,n} = \bigoplus_{i_1, \ldots, i_n \geq 0} Ext_{A/(2)}^{s-n-t-8(i_1 + \cdots + i_n)}(X \wedge bo_{i_1} \wedge \cdots \wedge bo_{i_n}) \Rightarrow Ext_{A/(2)}^{s,t}(X).
\]
We will attempt to exploit the relative sparseness of the E_1 page, especially its vanishing line properties, in the case when $X = A_1 \wedge DA_1$.

Remark 3.3 (The cellular structure of bo-Brown-Gitler spectra). The spectrum bo_0 is the sphere spectrum. The cohomology of the spectrum bo_1 as a module over the Steenrod algebra can be described through the following picture, with the generators labelled by cohomological degree:

```
  0   4   6   7
  ●   ●   ●   ●
```

where the black, blue and red lines describe the actions of Sq^1, Sq^2 and Sq^4 respectively. Note that the 4-skeleton of bo_1 is $C\nu$. Indeed, the bo_i’s fit together to form the following cofiber sequence:

$$bo_{i-1} \rightarrow bo_i \rightarrow \Sigma^{4i}B(i)$$

where $B(i)$ is the i-th integral Brown-Gitler spectrum as described in [GJM]. Therefore for every $i \geq 1$, the 7-skeleton of bo_i is bo_1 and the 4-skeleton of bo_i is $C\nu$.

One can compute $Ext^{s,t}_{A(2)}(A_1 \wedge DA_1 \wedge bo_i)$ from $Ext^{s,t}_{A(2)}(A_1 \wedge DA_1)$ using the Atiyah-Hirzebruch spectral sequence or with Bruner’s program [Bru].

Lemma 3.4. The group

$$Ext^{s,t}_{A(2)}(A_1 \wedge DA_1 \wedge bo_i \wedge \ldots \wedge bo_n)$$

is zero if $s > \frac{1}{5}(t - s) + 6$.

Proof. We showed in Lemma 2.4 that $Ext^{s,t}_{A(2)}(A_1)$ has a vanishing line $s = \frac{1}{5}(t - s)$ for $t - s \geq 30$ and a vanishing line of $s = \frac{1}{5}(t - s) + 1$ overall. The only generator of $Ext^{s,t}_{A(2)}(A_1)$ with a slope greater than $\frac{1}{5}$ is h_2, so if we kill off h_2 by considering $Ext^{s,t}_{A(2)}(A_1 \wedge C\nu)$ then the vanishing line is precisely $s = \frac{1}{5}(t - s)$.

As we mentioned in Remark 3.3 the 4-skeleton of any bo_i is $C\nu$ and the next cell is in dimension 6. So we can build bo_i by attaching finitely many cells to $C\nu$ of dimension ≥ 6. Hence by using the Atiyah-Hirzebruch spectral sequence and the fact that $\frac{1}{5}(x - 6) + 1 < \frac{1}{5}x$, one can see that the vanishing line of $A_1 \wedge bo_i$ is $s = \frac{1}{5}(t - s)$. One can build $A_1 \wedge bo_i \wedge \ldots \wedge bo_n$ from $A_1 \wedge bo_i$, iteratively using cofiber sequences, which depend on the cell structure of $bo_i \wedge \ldots \wedge bo_n$. Since we have already established that $Ext^{s,t}_{A(2)}(A_1 \wedge bo_i)$ has vanishing line $s = \frac{1}{5}(t - s)$ and that $bo_i \wedge \ldots \wedge bo_n$ is a connected spectrum, we conclude, using the Atiyah-Hirzebruch spectral sequence, that the vanishing line for $Ext^{s,t}_{A(2)}(A_1 \wedge bo_i \wedge \ldots \wedge bo_n)$ is $s = \frac{1}{5}(t - s)$.

However, DA_1 has cells in negative dimension, in fact the bottom cell is in dimension -6. Again by using the Atiyah-Hirzebruch spectral sequence, one concludes that the vanishing line for $Ext^{s,t}_{A(2)}(A_1 \wedge DA_1 \wedge bo_i \wedge \ldots \wedge bo_n)$ is

$$s = \frac{1}{5}(t - s + 6)$$

for any $i_k \geq 1$, completing the proof. \qed
Corollary 3.5. The group $\text{Ext}^s_A(A_1 \wedge DA_1)$ is zero if
\[s > \frac{1}{5}(t - s) + \frac{11}{5} \]
and for $t - s \leq 23$, it is zero if
\[s > \frac{1}{5}(t - s) + \frac{6}{5}. \]

The result is a straightforward consequence of Lemma 2.4, Lemma 3.4 and the algebraic tmf spectral sequence.

Lemma 3.6. The element $b^4_{3,0} \in \text{Ext}^{8,48+8}_A(A_1 \wedge DA_1)$ is in the image of the map

\[\text{Ext}^{8,48+8}_A(A_1 \wedge DA_1) \to \text{Ext}^{8,48+8}_A(A_1 \wedge DA_1). \]

Proof. Clearly $b^4_{3,0}$ is in bidegree $(s,t) = (8, 48 + 8) = (8, 56)$ of the E_1 page of the algebraic tmf spectral sequence, so we must verify that it is a permanent cycle, which we will do by showing that the E_1 page is zero in bidegree $(s,t) = (9, 56)$ when $n \geq 1$. Namely, we must show that for every $n \geq 1$, the group

\[\bigoplus_{i_1,\ldots,i_n \geq 1} \text{Ext}^{9-n,56-8(i_1+\cdots+i_n)}_A(A_1 \wedge DA_1 \wedge bo_{i_1} \wedge \cdots \wedge bo_{i_n}) \]

is zero. Using the vanishing line in Lemma 3.4, the group is zero for all $i_1,\ldots,i_n \geq 1$ such that
\[\frac{1}{5}(56 - 8(i_1 + \cdots + i_n) - 9 + n + 6) < 9 - n \]
or
\[(3.7) \quad \frac{1}{5}(53 + n - 8(i_1 + \cdots + i_n)) < 9 - n. \]

Of course, we have
\[\frac{1}{5}(53 + n - 8(i_1 + \cdots + i_n)) \leq \frac{1}{5}(53 - 7n), \]
and if $n > 4$, we also have
\[\frac{1}{5}(53 - 7n) < 9 - n. \]

Assume $n = 1$, then (3.7) becomes
\[\frac{1}{5}(54 - 8i_1) < 8, \]
or
\[i_1 > 1, \]
so it suffices to verify that
\[\text{Ext}^{8,48}_A(A_1 \wedge DA_1 \wedge bo_1) = 0. \]

Assume $n = 2$, then (3.7) becomes
\[\frac{1}{5}(55 - 8(i_1 + i_2)) < 7, \]
or
\[i_1 + i_2 > 2, \]
so it suffices to verify that

\[\text{Ext}^{7,40}_{A(2)}(A_1 \wedge DA_1 \wedge bo_1 \wedge bo_1) = 0. \]

Assume \(n = 3 \), then (3.7) becomes

\[\frac{1}{5}(56 - 8(i_1 + i_2 + i_3)) < 6, \]

or

\[i_1 + i_2 + i_3 > 3, \]

so it suffices to verify that

\[\text{Ext}^{6,32}_{A(2)}(A_1 \wedge DA_1 \wedge bo_1 \wedge bo_1 \wedge bo_1) = 0. \]

Assume \(n = 4 \), then (3.7) becomes

\[\frac{1}{5}(57 - 8(i_1 + i_2 + i_3 + i_4)) < 5, \]

or

\[i_1 + i_2 + i_3 + i_4 > 4, \]

so it suffices to verify that

\[\text{Ext}^{5,24}_{A(2)}(A_1 \wedge DA_1 \wedge bo_1 \wedge bo_1 \wedge bo_1) = 0. \]

For all four models of \(A_1 \), Bruner’s program [Bru] shows that all the groups we expected to be zero are in fact zero. \(\square \)

Corollary 3.8. For all \(n \in \mathbb{N} \), the elements \(b_{3,0}^{4n} \in \text{Ext}^{8n,48n+8n}_{A(2)}(A_1 \wedge DA_1) \) lift to \(\text{Ext}^{8n,48n+8n}_{A}((A_1 \wedge DA_1) \) under the map induced by \(H_{\text{tmf}} \).

Proof. Since \(A_1 \wedge DA_1 \) is a ring spectrum, it follows that the map

\[\text{Ext}^{s,t}_{A}(A_1 \wedge DA_1) \longrightarrow \text{Ext}^{s,t}_{A(2)}(A_1 \wedge DA_1) \]

induced by \(H_{\text{tmf}} \) is a map of algebras. By Lemma 3.6, \(b_{3,0}^{4n} \) lifts and thus \(b_{3,0}^{4n} \) lifts for every \(n \in \mathbb{N} \). \(\square \)

Remark 3.9. The lift of \(b_{3,0}^{4n} \in \text{Ext}^{8n,48n+8n}_{A(2)}(A_1 \wedge DA_1) \) to \(\text{Ext}^{8n,48n+8n}_{A}((A_1 \wedge DA_1) \) may not be unique. The conclusions of Lemma 3.10 will not depend on the choice of lift.

Lemma 3.10. In the Adams spectral sequence

\[E_{2}^{s,t} = \text{Ext}^{s,t}_{A}(A_1 \wedge DA_1) \longrightarrow \pi_{t-s}(A_1 \wedge DA_1) \]

there is a \(d_2 \)-differential

\[d_2(b_{3,0}^{4}) = \tilde{e}_0r = e_0r + R \]

and a \(d_3 \)-differential

\[d_3(b_{3,0}^{8}) = \tilde{w}gr = wgr + S \]

for some \(R \) and \(S \) in algebraic \(\text{tmf} \) filtration greater than zero.
Proof. Recall that the element \(e_0 r \in \text{Ext}_A^{10,47+10}(S^0) \) (see [Tan]) maps to a nonzero element in \(\text{Ext}_A^{10,47+10}(S^0) \) which is also called \(e_0 r \) in the literature, and that
\[
d_2(b_{3,0}^4) = e_0 r
\]
in
\[
\text{Ext}_{A(2)}^{10,47+10}(S^0) \implies \text{tmf}_{l-s}.
\]
In Lemma 3.1, we argued that \(e_0 r \) has a nonzero image under the map
\[
\text{Ext}_{A(2)}^{10,47+10}(S^0) \rightarrow \text{Ext}_{A(2)}^{10,47+10}(A_1 \wedge DA_1).
\]
Therefore by inspecting the commutative diagram
\[
\begin{array}{ccc}
\text{Ext}_A^{10,47+10}(S^0) & \longrightarrow & \text{Ext}_A^{10,47+10}(A_1 \wedge DA_1) \\
\downarrow & & \downarrow \\
\text{Ext}_{A(2)}^{10,47+10}(S^0) & \longrightarrow & \text{Ext}_{A(2)}^{10,47+10}(A_1 \wedge DA_1),
\end{array}
\]
we see that \(e_0 r \in \text{Ext}_A^{10,47+10}(S^0) \) has a nonzero image in \(\text{Ext}_A^{10,47+10}(A_1 \wedge DA_1) \). Since \(d_2(b_{3,0}^4) = e_0 r \) in \(\text{Ext}_{A(2)}^{1}(A_1 \wedge DA_1) \), it follows that
\[
d_2(b_{3,0}^4) = e_0 r + R
\]
in \(\text{Ext}_A(A_1 \wedge DA_1) \) for some \(R \) in algebraic tmf filtration greater than zero.
Consequently, \(d_2(b_{3,0}^8) = 0 \) in
\[
\text{Ext}_{A(2)}^{1}(A_1 \wedge DA_1) \implies \pi_{l-s}(A_1 \wedge DA_1),
\]
and clearly \(b_{3,0}^8 \) is not hit by a \(d_2 \) in this spectral sequence, otherwise it would be hit by a differential in
\[
\text{Ext}_{A(2)}^{1}(A_1 \wedge DA_1) \implies \text{tmf}_{l-s}(A_1 \wedge DA_1).
\]
However, \(b_{3,0}^8 \) could support a nonzero \(d_3 \). The element \(wgr \in \text{Ext}_A^{19,95+19}(S^0) \) maps to a nonzero element of \(\text{Ext}_A^{19,95+19}(S^0) \) we will also call \(wgr \). We showed, in Lemma 3.1, that the image of \(wgr \) is nonzero in \(\text{Ext}_A^{19,95+19}(A_1 \wedge DA_1) \). The diagram
\[
\begin{array}{ccc}
\text{Ext}_A^{19,95+19}(S^0) & \longrightarrow & \text{Ext}_A^{19,95+19}(A_1 \wedge DA_1) \\
\downarrow & & \downarrow \\
\text{Ext}_{A(2)}^{19,95+19}(S^0) & \longrightarrow & \text{Ext}_{A(2)}^{19,95+19}(A_1 \wedge DA_1),
\end{array}
\]
makes it clear that the image of \(wgr \) is nonzero in \(\text{Ext}_A^{19,95+19}(A_1 \wedge DA_1) \).

Note that \(wgr \in \text{Ext}_A^{19,95+19}(A_1 \wedge DA_1) \) cannot support a \(d_2 \)-differential as \(d_2(wgr) \) would have bidegree \((21, 94 + 21)\) and
\[
\text{Ext}_A^{21,94+21}(A_1 \wedge DA_1) = 0
\]
by Corollary 3.3. Moreover, \(wgr \) cannot be target of a \(d_2 \)-differential as this will force a \(d_2 \)-differential in \(\text{Ext}_{A(2)}(A_1 \wedge DA_1) \), which is not possible, as we argued in the proof of Lemma 3.1. Thus, \(wgr \) is in the \(E_3 \)-page.

From Lemma 3.1, we know that \(d_3(b_{3,0}^8) = wgr \) in the Adams spectral sequence for \(\text{tmf}_*(A_1 \wedge DA_1) \). It follows that
\[
d_3(b_{3,0}^8) = wgr + S,
\]
for some S in algebraic tmf filtration greater than zero, in the Adams spectral sequence for $\pi_*(A_1 \wedge DA_1)$.

4. Another d_3 differential

In the Adams spectral sequence

$$\text{Ext}^{s,t}_{A(2)}(S^0) \implies tmf_{t-s},$$

there is a well-known d_3 differential

$$d_3(v_2^0 h_1) = g^6.$$

The element g is Tangora’s name [Tan] for the element detected by $b_{2,1}^2$ in the E_∞ page of the May spectral sequence

$$F_2[h_{i,j} : i > 0, j \geq 0] \implies \text{Ext}^{s,t}_{A(2)}(S^0).$$

In the literature, the same name is adopted for its image in $\text{Ext}^{24,120+24}_{A(2)}(S^0)$. The goal of this section is to show that this differential induces a d_3 differential in

$$\text{Ext}^{s,t}_{A(2)}(A_1 \wedge DA_1) \implies tmf_{t-s}(A_1 \wedge DA_1)$$

and it lifts to a d_3 differential under the map of spectral sequences

$$\text{Ext}^{s,t}_{A(2)}(A_1 \wedge DA_1) \implies \pi_{t-s}(A_1 \wedge DA_1) \implies tmf_{t-s}(A_1 \wedge DA_1).$$

Lemma 4.1. In the Adams spectral sequence

$$\text{Ext}^{s,t}_{A(2)}(A_1 \wedge DA_1) \implies tmf_{t-s}(A_1 \wedge DA_1),$$

the element g^6 is killed by a d_3 differential

$$d_3(v_2^0 h_1) = g^6.$$

Proof. From the calculation in Lemma 2.2, it is clear that $g^6 = b_{2,1}^{12}$ has a nonzero image in $\text{Ext}^{24,120+24}_{A(2)}(A_1)$. Since we have a factorization of maps

$$\text{Ext}^{24,120+24}_{A(2)}(S^0) \implies \text{Ext}^{24,120+24}_{A(2)}(A_1 \wedge DA_1) \implies \text{Ext}^{24,120+24}_{A(2)}(A_1),$$

g^6 must also be nonzero in $\text{Ext}^{24,120+24}_{A(2)}(A_1 \wedge DA_1)$. Furthermore, because it is hit by a d_3 differential in

$$\text{Ext}^{s,t}_{A(2)}(S^0) \implies tmf_{t-s},$$

it must also be hit by a d_3 differential in

$$\text{Ext}^{s,t}_{A(2)}(A_1 \wedge DA_1) \implies tmf_{t-s}(A_1 \wedge DA_1).$$

However, this does not preclude the possibility that it might be hit by a d_2 differential in this spectral sequence. Indeed, there are elements $\tilde{x} \in \text{Ext}^{22,121+22}_{A(2)}(A_1 \wedge DA_1)$ that could support a d_2 differential

$$d_2(x) = g^6.$$
In such a case, x would have to map to a nonzero element $x \in \text{Ext}^{22,121+22}_{A(2)}(A_1)$ and there would exist a differential

$$d_2(x) = \partial$$

in

$$\text{Ext}^{s,t}_{A(2)}(A_1) \rightarrow \text{tmf}_{t-s}(A_1).$$

From the calculations of Lemma 2.2, there is exactly one possible nonzero $x \in \text{Ext}^{22,121+22}_{A(2)}(A_1)$. Using Bruner’s program [Bru] (see Equation (A.2)) we see that this x is a multiple of $g\beta^4_{3,0}$ under the pairing

$$\text{Ext}^{12,68+12}_{A(2)}(S^0) \otimes \text{Ext}^{10,53+10}_{A(2)}(A_1) \rightarrow \text{Ext}^{22,121+22}_{A(2)}(A_1)$$

$$g\beta^4_{3,0} \otimes \tau \rightarrow x.$$

Clearly $d_2(\tau) = 0$ as $\text{Ext}^{9,55+9}_{A(2)}(A_1) = 0$. We apply the Leibniz rule to see that

$$d_2(x) = g\beta^r \cdot \tau.$$

However, $g\beta^r \cdot \tau = 0$ in $\text{Ext}^{14,67+14}_{A(2)}(S^0)$, therefore $d_2(x) = 0$. Consequently, ∂ is present and nonzero in the E_3 page of the spectral sequence

$$\text{Ext}^{s,t}_{A(2)}(A_1 \wedge DA_1) \rightarrow \text{tmf}_{t-s}(A_1 \wedge DA_1).$$

Since we have a map of spectral sequences

$$\text{Ext}^{s,t}_{A(2)}(S^0) \rightarrow \text{tmf}_{t-s},$$

$$\text{Ext}^{s,t}_{A(2)}(A_1 \wedge DA_1) \rightarrow \text{tmf}_{t-s}(A_1 \wedge DA_1).$$

the result follows. \qed

Our next goal is to lift this d_3 differential to the Adams spectral sequence

$$\text{Ext}^{s,t}_{A(2)}(A_1 \wedge DA_1) \rightarrow \pi_{t-s}(A_1 \wedge DA_1).$$

The main tool at our disposal is the algebraic tmf spectral sequence, described in Section 3.

Notation 4.2. The elements of $E^{s,t,n}_{1}$, the E_1 page of the algebraic tmf spectral sequence for $A_1 \wedge DA_1$, which are nonzero permanent cycles, will detect nonzero elements of $\text{Ext}^{s,t}_{A}(A_1 \wedge DA_1)$. Therefore we place an element $x \in E^{s,t,n}_{1}$ in bidegree $(t-s-n, s+n)$. Thus the elements that may contribute to the same bidegree of $\text{Ext}^{s,t}_{A}(A_1 \wedge DA_1)$ are placed together. With this arrangement any differential in the algebraic tmf spectral sequence will look like Adams d_1 differential. The generators of

$$E^{s,t,n}_{1} = \bigoplus_{i_1, \ldots, i_n \geq 1} \text{Ext}^{s-n,t-8(i_1+\cdots+i_n)}_{A(2)}(A_1 \wedge DA_1 \wedge b_{i_1} \wedge \ldots \wedge b_{i_n})$$

will be denoted by dots in the following manner (recall that $b_{0} = S^0$):

- elements with $n = 0$ are denoted by a \bullet,
- elements with $n = 1, i_1 = 1$ are denoted by a \circ^1,
- elements with $n = 1, i_1 = 2$ are denoted by a \circ^2,
- elements with $n = 2, i_1 = 1, i_2 = 1$ are denoted by a \circ.

• and N/A stands for ‘not applicable,’ i.e. coordinates of the table which are irrelevant to our arguments.

Lemma 4.3. The elements g^6 and $v_2^{20}h_1$ lift to $\text{Ext}^s_t(A_1 \wedge DA_1)$ under the map $\iota_* : \text{Ext}^s_t(A_1 \wedge DA_1) \longrightarrow \text{Ext}^s_t(A_1 \wedge DA_1)$.

Proof. We use the algebraic tmf spectral sequence to show that g^6 and $v_2^{20}h_1$ lift to $\text{Ext}^s_t(A_1 \wedge DA_1)$. A d_r differential in the algebraic tmf spectral sequence will increase the algebraic tmf filtration by r. Since g^6 and $v_2^{20}h_1$ are in algebraic tmf filtration 0, they cannot be a target of a differential. We will now show that both g^6 and $v_2^{20}h_1$ cannot support a nonzero differential. The argument varies for different models of A_1.

Case 1. When $A_1 = A_1[01]$, Table 4.0.1 shows the relevant part of the E_1 page of the algebraic tmf spectral sequence.

$s \setminus t - s$	119	120	121
25	0	N/A	N/A
24	N/A	*••••* := $X_24'' \ni g^6$	N/A
23	N/A	N/A	N/A
22	N/A	0	N/A
21	N/A	N/A	*•* := $X_21'' \ni v_2^{20}h_1$
			$o^1_o^1o^1o^1$
			$o^2o^2o^2$

Elements of X_24'' or X_21'' in Table 4.0.1 clearly do not support a differential, and hence g^6 and $v_2^{20}h_1$ lift to $\text{Ext}^s_t(A_1 \wedge DA_1)$.

Case 2. The case $A_1 = A_1[10]$ is very similar to the previous one.

$s \setminus t - s$	119	120	121
25	0	N/A	N/A
24	N/A	*••••* := $X_24'' \ni g^6$	N/A
23	N/A	N/A	N/A
22	N/A	0	N/A
21	N/A	N/A	*•* := $X_21'' \ni v_2^{20}h_1$
			$o^1_o^1o^1o^1$
			$o^2o^2o^2$

Elements of X_24'' or X_21'' in Table 4.0.2 clearly do not support a differential, and hence g^6 and $v_2^{20}h_1$ lift to $\text{Ext}^s_t(A_1 \wedge DA_1)$.
Elements of X_{24}^0 or X_{21}^0 in Table 4.0.2 clearly do not support a differential, and hence g^6 and $v_2^{20}h_1$ lift to $\text{Ext}^{s,t}_{A}(A_1 \wedge DA_1)$.

Case 3. The analysis for $A_1 = A_1[00]$ or $A_1 = A_1[11]$ are the same as $A_1[00]$ and $A_1[11]$ are dual to each other. In either case the E_1-page of the algebraic tmf spectral sequence around stem 120 looks like the following:

	119	120	121
25	\bullet	N/A	N/A
24	N/A	$\circ \circ \circ \circ \circ$	g^6
23	N/A	N/A	N/A
22	N/A	$\bullet \bullet \bullet$	N/A
21	N/A	N/A	$v_2^{20}h_1$

Elements of X_{24}^0 in Table 4.0.3 clearly do not support a differential, and hence g^6 lifts to $\text{Ext}^{s,t}_{A}(A_1 \wedge DA_1)$. Unfortunately, it is possible that an element of X_{21}^0 might support a differential.

However, it is known that $v_2^{20}h_1$ is a multiple of $b_{3,0}^8$ under the pairing

$$\text{Ext}^{16,96+16}_{A(2)}(S^0) \otimes \text{Ext}^{5,25+5}_{A(2)}(S^0) \to \text{Ext}^{21,121+21}_{A(2)}(S^0)$$

$$b_{3,0}^8 \otimes v_2^{20}h_1 \mapsto v_2^{20}h_1.$$

Therefore the same is true for $v_2^{20}h_1 \in \text{Ext}^{21,121+21}_{A(2)}(A_1 \wedge DA_1)$ as

$$\iota_* : \text{Ext}^{s,t}_{A(2)}(S^0) \to \text{Ext}^{s,t}_{A(2)}(A_1 \wedge DA_1)$$

is a map of algebras. By Corollary 3.8, we know that $b_{3,0}^8$ lifts to $\text{Ext}^{16,96+16}_{A}(A_1 \wedge DA_1)$. If we show that $v_2^{4}h_1$ lifts to $\text{Ext}^{5,25+5}_{A}(A_1 \wedge DA_1)$ as well, then the result will follow as

$$H_{tmf_*} : \text{Ext}^{s,t}_{A}(A_1 \wedge DA_1) \to \text{Ext}^{s,t}_{A(2)}(A_1 \wedge DA_1)$$

is a map of algebras. Looking at Table 4.0.4 makes it clear that every element of $b_{3}^{-8}X_{21}^0$, including $v_2^{3}h_1$, lifts to $\text{Ext}^{5,25+5}_{A}(A_1 \wedge DA_1)$, and hence that every element of X_{21}^0, including $v_2^{20}h_1$, lifts to $\text{Ext}^{21,121+21}_{A}(A_1 \wedge DA_1)$.
The lift of \(v_2^{20}h_1 \in \text{Ext}_{A(2)}^{21,121+21}(A_1 \wedge DA_1) \) to \(\text{Ext}_{A}^{21,121+21}(A_1 \wedge DA_1) \) found in Lemma 4.3 is not unique. More precisely, every such lift is \(v_2^{20}h_1 + S \in \text{Ext}_{A}^{21,121+21}(A_1 \wedge DA_1) \) for some element \(S \) in the higher algebraic tmf filtration. Notice that the Adams differentials \(d_3(S) \) are zero for \(i \in \{2,3\} \) as there are no element of algebraic tmf filtration greater than zero in \(\text{Ext}_{A}^{10,10+47}(A_1 \wedge DA_1) \) and \(\text{Ext}_{A}^{11,11+47}(A_1 \wedge DA_1) \). Therefore the following lemma holds for any choice of lift of \(v_2^{20}h_1 \in \text{Ext}_{A(2)}^{21,121+21}(A_1 \wedge DA_1) \).

Lemma 4.4. In the Adams spectral sequence

\[
\text{Ext}^s_t(A_1 \wedge DA_1) \Rightarrow \pi_{t-s}(A_1 \wedge DA_1),
\]

there exists a \(d_3 \) differential

\[d_3(v_2^{20}h_1) = g^6. \]

Proof. Consider the map of Adams spectral sequence

\[
\begin{array}{ccc}
E_2^{s,t} = \text{Ext}^s_t(A_1 \wedge DA_1) & \Rightarrow & \pi_{t-s}(A_1 \wedge DA_1) \\
\downarrow & & \downarrow \\
E_2^{s,t} = \text{Ext}^s_{A(2)}(A_1 \wedge DA_1) & \Rightarrow & \text{tmf}_{t-s}(A_1 \wedge DA_1)
\end{array}
\]

induced by \(H_{tmf} \). The fact that \(g^6 \) and \(v_2^{20}h_1 \) are nonzero in the \(E_3 \) page of the Adams spectral sequence for \(\text{tmf}_{s}(A_1 \wedge DA_1) \) (see Lemma 4.1), forces \(g^6 \) and \(v_2^{20}h_1 \) have nonzero lift in the \(E_3 \) page of the Adams spectral sequence for \(\pi_{s}(A_1 \wedge DA_1) \). Moreover the map of \(E_3 \) pages of the spectral sequences commutes with differentials. Thus in the \(E_3 \) page of the Adams spectral sequence for \(\pi_{s}(A_1 \wedge DA_1) \)

\[d_3(v_2^{20}h_1) = g^6 + R, \]

where \(R \) is an element of algebraic tmf filtration greater than zero. Furthermore, Table 4.0.1, Table 4.0.2 and Table 4.0.3 make clear that in the bidegree of \(g^6 \), there are no elements of higher algebraic tmf filtration, and therefore \(R = 0 \). \(\square \)
5. A_1 Admits a 32-Periodic v_2-Self-Map

In Section 3, we established that the potential candidates for 8-periodic and 16-periodic v_2-self-maps on A_1 support a d_2 and a d_3 differentials respectively (see Lemma 3.10). So we know by the Leibniz formula that the candidates for 32-periodic v_2-self-map is a nonzero d_3-cycle. So the only way these candidates can fail to converge to an element of $\pi_*(A_1 \wedge DA_1)$ is by supporting a d_r differential for $r \geq 4$ in the Adams spectral sequence

$$E_2 = \text{Ext}_A(A_1 \wedge DA_1) \Rightarrow \pi_*(A_1 \wedge DA_1).$$

So we look for potential targets in $\text{Ext}^s_A(A_1 \wedge DA_1)$ when $t - s = 191$ with Adams filtration $s \geq 36$. In order to detect elements with $t - s = 191$ we use the algebraic tmf spectral sequence

$$E_1^{s,t} = \text{Ext}^{s-n,t}(A//A(2)^{\otimes n} \otimes H^*(X), \mathbb{Z}/2).$$

As pointed out in Remark 3.9 the candidates for 32-periodic v_2-self-map may not be unique. To show the existence it is enough to show that one of those candidates is a nonzero permanent cycle in the E_∞ page of the Adams spectral sequence. We conveniently choose $b^{3n}_{3,0} \in \text{Ext}^{8n,48n+8s}_A(A_1 \wedge DA_1)$ to be the lift of $b^{3n}_{3,0} \in \text{Ext}^{8n,48n+8s}_A(A_1 \wedge DA_1)$ whose algebraic tmf filtration is precisely zero.

Recall that, as an $A(2)$-module

$$A//A(2) = \bigoplus_{i \in \mathbb{N}} H^*(\Sigma^i b_0),$$

where the b_0 are the b_0 Brown-Gitler spectra defined by Goerss, Jones and the third author [GJM]. Because of this splitting we get

$$E_1^{s,t} = \bigoplus_{i_1, \ldots, i_n \geq 1} \text{Ext}^{s-n-t-8(i_1 + \ldots + i_n)}_{A(2)}(b_0 i_1 \wedge \ldots \wedge b_n, A_1 \wedge DA_1)$$

for the E_1 page of the algebraic tmf spectral sequence.

An easy consequence of the vanishing line established in Lemma 3.4 is the following.

Lemma 5.1. The only potential contributors to $\text{Ext}^s_A(A_1 \wedge DA_1)$ for $t - s = 191$ and $s \geq 36$ come from the following summands of the algebraic tmf E_1 page:

$$\text{Ext}^{s-t}_{A(2)}(A_1 \wedge DA_1)$$

$$\bigoplus_{1 \leq i \leq 3} \text{Ext}^{s-1-t-8i}_{A(2)}(A_1 \wedge DA_1 \wedge b_0)$$

$$\bigoplus_{1 \leq i \leq 2} \text{Ext}^{s-2-t-8i}_{A(2)}(A_1 \wedge DA_1 \wedge b_0 \wedge b_0)$$

$$\bigoplus \text{Ext}^{s-3-t-24}_{A(2)}(A_1 \wedge DA_1 \wedge b_0 \wedge b_0 \wedge b_0).$$

We know that, in the Adams spectral sequence for $A_1 \wedge DA_1$, $b^{16}_{3,0}$ can support d_r differential only if $r \geq 4$. The broad idea is to show that all potential targets for a d_r differential for $r \geq 4$ are either zero or do not lift to E_4 page. While the result holds for all models of A_1, the computations will be slightly different for different models, and so we will treat these models separately. Since $A_1[00]$ and $A_1[11]$ are Spanier-Whitehead dual to each other, we can treat the cases of $A_1[00]$ and $A_1[11]$ as one case. We will then have to treat the cases of the selfdual spectra $A_1[01]$ and
A_1[10] separately. The completeness of the tables in this section will be justified by the more detailed tables in Appendix C.

5.1. The case A_1 = A_1[00] or A_1 = A_1[11]. We begin by laying out, in Table 5.1.1 the elements of the E_1 page of algebraic tmf spectral sequence, in Notation 4.2. The table makes it clear that all elements with t−s = 191, with the possible exception of those in X_{36}^0, are permanent cycles in the algebraic tmf spectral sequence.

Table 5.1.1. E_1 page of the algebraic tmf spectral sequence for Ext^{t+s}_A(A_1 \wedge DA_1), where A_1 = A_1[00] or A_1 = A_1[11], stem 189-191

s \ t−s	189	190	191
40	0	0	0
39	0	{⊙⊙⊙⊙⊙⊙} := Y_{39}^0	{⊙⊙⊙⊙⊙⊙} := X_{39}^0
38	N/A	{⊙⊙⊙⊙⊙⊙} := Y_{38}^0	{⊙⊙⊙⊙⊙⊙} := X_{38}^0
37	N/A	{⊙⊙⊙⊙⊙⊙} := Y_{37}^1	{⊙⊙⊙⊙⊙⊙} := X_{37}^1
36	N/A	N/A	{⊙⊙⊙⊙⊙⊙} := X_{36}^1

Our goal is to show that every linear combination of elements in X_{36}^{i_1}\cdots\cdots{i_n} were either absent or zero in the E_1 page of the Adams spectral sequence. Using Bruner’s program (for details see Tables C.1.1, C.1.2, C.1.3, and C.1.4 of Appendix C), we observe that a lot of these elements are multiples of g^6 in the E_1 page of the algebraic tmf spectral sequence, which we record in Table 5.1.2.

Table 5.1.2. E_1 page of the algebraic tmf spectral sequence for Ext^{t+s}_A(A_1 \wedge DA_1), where A_1 = A_1[00] or A_1 = A_1[11], stem 70-71

s \ t−s	70	71
15	{⊙⊙⊙⊙⊙⊙} = g^{-6}Y_{39}^0	{⊙⊙⊙⊙⊙⊙} = g^{-6}X_{39}^0
14	{⊙⊙⊙⊙⊙⊙} = g^{-6}Y_{38}^0	{⊙⊙⊙⊙⊙⊙} = g^{-6}X_{38}^0
13	{⊙⊙⊙⊙⊙⊙} = g^{-6}X_{37}^1	{⊙⊙⊙⊙⊙⊙} = g^{-6}X_{37}^1
12	N/A	{⊙⊙⊙⊙⊙⊙} = g^{-6}X_{36}^1

Table C.1.1, C.1.2, C.1.3, and C.1.4 make clear that

- multiplication by g^6 surjects onto X_{39}^0 \oplus X_{39}^0 \oplus X_{37}^0 \oplus X_{37}^1 \oplus X_{36}^1 \oplus X_{36}^0 \oplus X_{36}^{1,1}, and
- Elements in g^{-1}(X_{39}^0 \oplus X_{38}^0 \oplus X_{37}^0 \oplus X_{37}^1 \oplus X_{36}^1 \oplus X_{36}^{1,1}) have nonzero images under multiplication by v_2^{30}h_1 if and only if multiplication by g^6 is nonzero.

Lemma 5.2. Every element of

X_{39}^0 \oplus X_{38}^0 \oplus X_{37}^0 \oplus X_{37}^1 \oplus X_{36}^1 \oplus X_{36}^{1,1}

is present in the Adams E_2 page, but is either zero or absent in the Adams E_4 page.
Proof. Notice that for any $x = g^6 \cdot y \in X^0_{39} \oplus X^0_{38} \oplus X^0_{37} \oplus X^1_{37} \oplus X^1_{36} \oplus X^1_{36}$, both x and y is a nonzero permanent cycle of the algebraic tmf spectral sequence. Indeed, the target of any differential supported by y, must have algebraic tmf filtration greater than y and from Table 5.1.2 it is clear no such element is present in appropriate bidegree. Hence y is present in the Adams E_2 page. Same argument holds for x.

Case 1. When $x = g^6 \cdot y \in X^0_{39} \oplus X^0_{38}$, clearly y is then a permanent cycle in the Adams spectral sequence. Using Leibniz rule, we see that

$$d_2(x) = d_2(g^6 \cdot y) = 0$$

and

$$d_3(v^2_{20}h_1 \cdot y) = v^2_{20}h_1 \cdot d_3(y) + d_3(v^2_{20}h_1) \cdot y = g^6 \cdot y = x.$$

Therefore, if $x = g^6 \cdot y$ is nonzero in E_3 page, then x is zero in E_4 page.

Case 2. When $x = g^6 \cdot y \in X^1_{37} \oplus X^1_{36} \oplus X^1_{36}$, then $d_r(y)$ for $r \geq 2$, if nonzero, must have algebraic tmf filtration greater than zero, as

$$\Ext_A(A_1 \wedge DA_1) \longrightarrow \pi_*(A_1 \wedge DA_1) \longrightarrow \Ext_A(A_2) \wedge DA_1 \longrightarrow \tmf_*(A_1 \wedge DA_1)$$

is a map of spectral sequence. Since there are no elements of algebraic tmf filtration greater than zero in bidegree $(s, 71 + s)$ for $s \geq 14$, it follows that $d_r(y) = 0$ for $r \geq 2$ and y a permanent cycle in the Adams spectral sequence. If y is a target of a differential in algebraic tmf spectral sequence or a Adams d_2 differential, then $x = 0$ in E_3 page. Consequently, $g^6x = 0$ in the E_3 page as well. If y is not a target of such differentials, then we have

$$d_3(v^2_{20}h_1 \cdot y) = v^2_{20}h_1 \cdot d_3(y) + d_3(v^2_{20}h_1) \cdot y = g^6 \cdot y = x.$$

In either case, $g^6 \cdot y = x = 0$ in E_4 page.

Case 3. When $x = g^6 \cdot y \in X^0_{37}$ and y is a permanent cycle, then we can argue $g^6 \cdot y = x = 0$ in the E_4 page as we did in the previous cases. If

$$d_2(y) = y'$$

then y' must belong to $g^{-1}Y^0_{39}$. Since multiplication by g^6 is a bijection between $g^{-1}Y^0_{39}$ and Y^0_{39}, we get

$$d_2(x) = d_2(g^6 \cdot y) = g^6 \cdot d_2(y) + d_2(g^6) \cdot y = g^6 \cdot y' \neq 0.$$

Therefore, x is absent in the E_4 page.

Thus we are left with the case when $x \in X^0_{36}$.

Lemma 5.3. Every element of X^0_{36} is either zero or absent in the Adams E_4 page.
Proof. X^0_{36} is spanned by three generators $\{s_1, t_1, t_2\}$. Using Bruner’s program (see), we explore the following relations:

\[
\begin{align*}
\ s_1 & = b_{3,0}^4 \cdot x_1 \\
\ t_1 & = b_{3,0}^4 \cdot y_1 = b_{3,0}^8 \cdot z_1 \\
\ t_2 & = b_{3,0}^4 \cdot y_2 = b_{3,0}^8 \cdot z_2 \\
\ Y^0_{38} & \ni e_0 r \cdot x_1 \neq 0 \\
\ e_0 r \cdot y_1 & = 0 \\
\ e_0 r \cdot y_2 & = 0 \\
\ Y^0_{39} & \ni wgr \cdot z_1 \neq 0 \\
\ Y^0_{39} & \ni wgr \cdot z_2 \neq 0
\end{align*}
\]

and $wgr \cdot z_1$ and $wgr \cdot z_2$ are linearly independent. In Bruner’s notation, $s_1 = 36_{64}$, $t_1 = 36_{65}$, $t_2 = 36_{66}$, $x_1 = 28_{32}$, $e_0 r \cdot x_1 = 38_{25}$, $y_1 = 28_{33}$, $y_2 = 28_{34}$, $z_1 = 20_1$, $wgr \cdot z_1 = 39_1$, $z_2 = 20_2$ and $wgr \cdot z_2 = 39_2$ (see Table C.1.5).

Table 5.1.3. E_1 page of the algebraic tmf spectral sequence for $\text{Ext}_{A}^s(t_1 \wedge DA_1)$, where $A_1 = A_1[00]$ or $A_1 = A_1[11]$

s\t-s	94	95	
23	0	0	
22	0	0	
21	0	0	
20	N/A		\(\bullet = z_1, \bullet = z_2 \) := Z_{20}
29			\(\bullet = x_1, \bullet = y_1, \bullet = y_2 \) := Z_{28}
28	N/A		

From the Table 5.1.3 it is clear that any element in Z_{20} and Z_{28} are permanent cycles.

Case 1. If $x = \epsilon_1 s_1 + \delta_1 t_1 + \delta_2 t_2 \neq 0$ in the Adams E_2 page with $\epsilon_1 \neq 0$, then

\[d_2(x) = \epsilon_1 (e_0 r \cdot x_1) \neq 0. \]

Thus x is not present in E_4 page.

Case 2. If $x = \delta_1 t_1 + \delta_2 t_2 \neq 0$, then

\[d_2(x) = 0. \]

If $x \neq 0$ in the Adams E_3 page then

\[d_3(x) = \delta_1 d_3(b_{3,0}^4 \cdot z_1) + \delta_2 d_3(b_{3,0}^4 \cdot z_2) = wgr \cdot (\delta_1 z_1 + \delta_2 z_2) \neq 0 \]

Thus x is not present in E_4 page.

This proves Theorem 1 in the cases $A_1 = A_1[00]$ or $A_1 = A_1[11]$.
5.2. **The case** $A_1 = A_1[01]$ or $A_1 = A_1[01]$. Even though, in principle, we should treat $A_1[01]$ and $A_1[10]$ as two different cases, but it turns out that Tables 5.2.1 and 5.2.2 are identical in both the case and the arguments remain exactly the same for both of them. For $A_1[01]$, refer to Tables C.2.1, C.2.2, C.2.3 and C.2.4 of Appendix C and for $A_1[10]$, refer to Tables C.3.1, C.3.2, C.3.3 and C.3.4 of Appendix C to observe that most of the elements in Table 5.2.1 are multiples by g^6 of elements in Table 5.2.2.

Table 5.2.1. E_1 page of the algebraic tmf spectral sequence for $Ext^*_A(A_1 \wedge DA_1)$, where $A_1 = A_1[01]$

$s \mid t - s$	190	191
39	0	$\bullet := X'''_{39}$
38	$\bullet \bullet := X''_{38}$	$\bullet := X''_{38}$
37	$\bullet \bullet \bullet := X''_{37}$	$\bullet \bullet \bullet := X''_{37}$
	$\circ_1 \circ_1 \circ_1 \circ_1 \circ_1 := X_{37}^{11}$	$\circ_1 \circ_1 \circ_1 \circ_1 \circ_1 := X_{37}^{11}$
36	N/A	$\circ \circ := X_{36}^{11}$

Table 5.2.2. E_1 page of the algebraic tmf spectral sequence for $Ext^*_A(A_1 \wedge DA_1)$, where $A_1 = A_1[01]$

$s \mid t - s$	70	71
15	0	$\bullet := g^{-6}X^0_{39}$
14	$\bullet \bullet := g^{-6}X^0_{38}$	$\bullet \bullet := g^{-6}X^0_{38}$
13	$\bullet \bullet \bullet := g^{-6}X^0_{37}$	$\bullet \bullet \bullet := g^{-6}X^0_{37}$
	$\circ_1 \circ_1 \circ_1 \circ_1 \circ_1 := g^{-6}X_{37}^{11}$	$\circ_1 \circ_1 \circ_1 \circ_1 \circ_1 := g^{-6}X_{37}^{11}$
12	N/A	$\circ \circ := g^{-6}X_{36}^{11}$

Tables C.2.1, C.2.2, C.2.3 and C.2.4 and Tables C.3.1, C.3.2, C.3.3 and C.3.4 make clear that

- multiplication by g^6 is surjective onto $X^0_{39} \oplus X^0_{38} \oplus X^0_{37} \oplus X^1_{37} \oplus X^{1,1}_{37}$, and
- elements in $g^{-6}(X^0_{39} \oplus X^0_{38} \oplus X^0_{37} \oplus X^1_{37} \oplus X^{1,1}_{37})$ have non-zero images under multiplication by $v_2^{10}h_1$ if and only if multiplication by g^6 is non-zero.

Lemma 5.4. All elements of

$$X^0_{39} \oplus X^0_{38} \oplus X^0_{37} \oplus X^1_{37} \oplus X^{1,1}_{36}$$

are present in the Adams E_2 page, but are zero in the Adams E_4 page.

Proof. Notice that for any $x = g^{10} \cdot y \in X^0_{39} \oplus X^0_{38} \oplus X^0_{37} \oplus X^1_{37} \oplus X^{1,1}_{36}$, both x and y is a nonzero permanent cycle of the algebraic tmf spectral sequence. Indeed, the target of any differential supported by y, must have algebraic tmf filtration greater than y and from Table 5.2.2 it is clear no such elements are present in appropriate bidegrees. Hence y is present in the Adams E_2 page. Same argument holds for x.

Any $y \in g^{-6}(X^0_{39} \oplus X^0_{38} \oplus X^0_{37} \oplus X^1_{37})$ is a permanent cycle in Adams spectral sequence, as it is clear from Table 5.2.2 that $Ext^s_{A}(A_1 \wedge DA_1) = 0$ for $s \geq 15$. If
$y \in g^{-6}X_{36}^{1,1}$, then y has algebraic tmf filtration greater than zero, therefore $d_r(y)$ must have algebraic tmf filtration greater than zero. From Table 5.2.2 we observe that $Ext_A^{s,70+s}(A_1 \wedge D A_1)$ when $s \geq 14$, does not contain any element of algebraic tmf filtration greater than zero. Therefore, any $y \in g^{-6}X_{36}^{1,1}$ is a permanent cycle as well.

Since $d_2(g^6) = 0$, for any $x = g^6 \cdot y \in X_{39}^0 \oplus X_{38}^0 \oplus X_{37}^1 \oplus X_{36}^1$

$$d_2(x) = d_2(g^6 \cdot y) = d_2(g^6) \cdot y + g^6 \cdot d_2(y) = 0.$$

Hence x is present in E_3 page.

If $x = g^6 \cdot y$ is nonzero in E_3 page, Bruner’s program shows that $v_2^{20}h_1 \cdot y$ is nonzero as well. Thus, using Leibniz rule

$$d_3(v_2^{20}h_1 \cdot y) = d_3(v_2^{20}h_1) \cdot y + v_2^{20}h_1 \cdot d_3(y) = g^6 \cdot y = x.$$

Thus, x is zero in E_4 page. \[\square\]
APPENDIX A. GENERAL REMARKS ON THE USE OF BRUNER’S PROGRAM

Since many of our proofs relied on the output of Bruner’s program, we append some facts about the program to justify our claims.

The program takes as input a graded module M over A (or $A(2)$) that is a finite dimensional \mathbb{F}_2-vector space and computes $\text{Ext}^s_A(M, \mathbb{F}_2)$ (or $\text{Ext}^s_{A(2)}(M, \mathbb{F}_2)$) for t in a user-defined range, and $0 \leq s \leq \text{MAXFILT}$, where one has $\text{MAXFILT} = 40$ by default. The structure of M as an A-module is encoded in a text file named M, placed in the directory A/samples in the way we will now describe.

The first line of the text file M consists of a positive integer n, the dimension of M as an \mathbb{F}_2-vector space, whose basis elements we will call g_0, \ldots, g_{n-1}. The second line consists of an ordered list of integers d_0, \ldots, d_{n-1}, which are the respective degrees of the g_i. Every subsequent line in the text file describes a nontrivial action of some Sq^k on some generator g_i. For instance, if we have

$$Sq^k(g_i) = g_{j_1} + \cdots + g_{j_l},$$

we would encode this fact by writing the line

$$i \ k \ l \ j_1 \ \ldots \ j_l$$

followed by a new line. Every action not encoded by such a line is assumed to be trivial. To ensure that such a text file in fact represents an honest A-module, we must run the newconsistency script, which will alert us if:

- the text file contains a line

$$i \ k \ l \ j_1 \ \ldots \ j_l$$

and it turns out that one of the d_j’s is not equal to $d_i + k$, or

- the module taken as a whole fails to satisfy a particular Adem relation.

Example A.1. Consider the A-module given by Figure A.1, where generators are depicted by dots and actions of Sq^1, Sq^2, and Sq^4 are depicted by black, blue and red lines respectively:

![Figure A.1. $H^*A_1[00]$ as an A-module](image)

Based on this picture, we get the text file in figure A.2, which we call $A1-00$.def: We go to the directory $A2$ and run
Now we are ready to compute. Running the script

```
./ dims 0 250&
```

will compute \(\text{Ext}_{A(2)}^{s,t}(A_1[00]) \) for \(0 \leq s \leq \text{MAXFILT} = 40 \) and \(0 \leq t \leq 250 \). The & is not strictly necessary, but may be a good idea if running a computation expected to take a long time and if one would like to do other things in the meantime. Then, to see the Ext group, one runs

```
./report summary
./vsu A1-00 > A1-00.tex
pdflatex A1-00.tex
```

to produce a pdf document \(A1-00.pdf \) resembling Figure A.3. As the figure makes apparent, the generators of the Ext group (as an \(\mathbb{F}_2 \) vector space) are stored in the computer with names such as \(s_g \), where \(s \) is the Adams filtration of the generator, and \(g \) is some way of ordering all generators of filtration \(s \). It should be emphasized that \(g \) is not the stem of the generator. In figure A.3 for instance, the generator \(1_2 \) is the second generator of filtration 1, but it is in stem 6. The figure also tells us the action of the Hopf elements \(h_0 \) through \(h_3 \), so that in our example, \(h_2 \) multiplied by the generator \(1_2 \) equals the generator \(2_2 \).

By running

```
./display 0 A1-00
```

to produce single-page pdf documents \(A1-00_1.pdf, A1-00_2.pdf \), it is also possible to see the Ext group in the visually more appealing form of a chart, as shown in figure A.4. What is gained in esthetics is however lost in completeness, as these charts only display the action of \(h_0 \) (via a vertical solid line), \(h_1 \) (via a solid line of slope 1), and \(h_2 \) (via a dotted line of slope \(\frac{1}{3} \)).
ON THE PERIODIC v_2-SELF-MAP OF A_1

A1-00

July 11, 2015

Notes:
1. Stem refers to the geometric total degree $n = t - s$, where t is the internal degree and s is the homological degree (or 'filtration').
2. If a stem is not printed, there are no elements in that stem.
3. The notation s_g refers to generator number g in filtration s.
4. Dashes (--) are used to indicate that an h_i multiplicity is beyond the range which has been calculated.

Table 1: Stem 0

n	s	g
0	0	0

Table 2: Stem 3

n	s	g
3	1	1

Table 3: Stem 5

n	s	g
5	1	1

Table 4: Stem 6

n	s	g
6	1	1

Figure A.3. First page of A1-00.pdf

The program is also capable of computing dual modules via the dualizeDef script, and tensor products via the tensorDef script. Both executables are conveniently located in the A/samples directory where we put our module definition text files. Thus, running
The file A1-00_A2 produces the text file ADA1-00_def, with which we proceed in the same way as earlier with A1-00_def.
While ADA1-00.pdf only shows the action of the Hopf elements h_9 through h_3, the scripts cocycle and dolifts enable the user to input a specific generator and find the action of much of $\text{Ext}_{A(2)}^{s,t}(S^0)$ on that specific generator. Let us do this with the generator $0_6 \in \text{Ext}_{A(2)}^{0,6}(A_1[00] \wedge DA_1[00])$ by going to directory A2 and running

```
./cocycle ADA1-00 0 6
```

which will create a subdirectory A2/ADA1-00/0_6. To find the action of all elements of $\text{Ext}_{A(2)}^{s,t}(S^0)$ with $0 \leq s \leq 20$ on 0_6, we go back to directory A2/ADA1-00 and run

```
./dolifts 0 20 maps
```

Now ADA1-00/0_6 will contain several text files, among them brackets.sym (which contains information about Massey products) and Map.aug (which contains information about the action of $\text{Ext}_{A(2)}^{s,t}(S^0)$ on 0_6).

The generators of $\text{Ext}_{A(2)}^{s,t}(S^0)$ are stored in the computer in the format s_g. In figure A.5, we include a list of important elements of $\text{Ext}_{A(2)}^{s,t}(S^0)$ and their s_g representation.

We’d like to know what $s_g(0_6) \in \text{Ext}_{A(2)}^{s,t}(A_1[00] \wedge DA_1[00])$ is in the notation of ADA1-00.pdf. Of course, $s_g(0_6)$ is in filtration s, so we only need to specify which of the generators in filtration s make up $s_g(0_6)$. If, for instance, we have

$$s_g(0_6) = s_{g1} + \ldots + s_{gn},$$

then ADA1-00/0_6/Map.aug will contain the lines

```
s g1 g
s g2 g
\ldots
s gn g.
```

Now, in the Adams spectral sequence

$$\text{Ext}_{A(2)}^{s,t}(S^0) \Rightarrow tf_{-s},$$

we have

$$d_2(b_3^{4}) = e_0 r = 10_{18} \in \text{Ext}_{A(2)}^{10,47+10}(S^0), d_3(b_3^{8}) = 19_{56} \in \text{Ext}_{A(2)}^{19,95+19}(S^0).$$

It follows that if $10_{18}(0_6) = 10_x \in \text{Ext}_{A(2)}^{8,8+47}(A_1 \wedge DA_1)$ and $19_{56}(0_6) = 19_y \in \text{Ext}_{A(2)}^{19,19+95}(A_1 \wedge DA_1)$, then $b_3^{4} \in \text{Ext}_{A(2)}^{8,48+8}(A_1 \wedge DA_1)$ supports a d_2 differential,
and \(b_{3,0}^4 \in Ext_{A(2)}^{16,96,16}(A_1 \wedge DA_1) \) supports a \(d_3 \) differential. By doing the above steps for all four versions of \(A_1 \), and checking the respective \texttt{Map.aug} files, each contain lines

\[
\begin{array}{c}
10 \times 18 \\
19 y 56,
\end{array}
\]

justifying the claim in Lemma 3.1.

Using the tools we have so far described, it is easy to verify the claim from the proof of Lemma 4.1 that for all four models of \(A_1 \) we have

\[
(A.2) \quad gb_{3,0}^4 \cdot 10_3 = 227.
\]

It is similarly easy to verify that if \(A_1 = A_1[00] \) or \(A_1 = A_1[11] \), we have

\[
ge_{0r} \cdot 10_3 = 0,
\]

while if \(A_1 = A_1[01] \) or \(A_1 = A_1[10] \), we have

\[
ge_{0r} \cdot 10_3 = 24_0 = g^6.
\]

Finally, in order to run the algebraic \textit{tmf} spectral sequence, we will also need do do computations involving the \textit{bo}-Brown-Gitler spectra. We give the \(A \)-module definitions for the cohomologies of \textit{bo}_1 and \textit{bo}_2 here:

\begin{verbatim}
4
0 4 6 7
0 4 1 1
0 6 1 2
0 7 1 3
1 2 1 2
1 3 1 3
2 1 1 3
\end{verbatim}

\((\lambda)\) The text file \texttt{bo1.def}
(b) The text file `bo2.def`
Appendix B. Tables from section 4

B.1. The cases $A_1 = A_1[00]$ or $A_1 = A_1[11]$.

Table B.1.1. $\text{Ext}_{A(2)}^{t,s}(A_1 \wedge DA_1)$

$t - s$	s	s_g	$t - s$	s	s_g	$t - s$	s	s_g
119	25	290	120	25	252	121	25	255
	120	25		121	25		121	25
119	24		120	24	2425	121	24	2428
	120	24		121	24		121	24
	120	24		121	24		121	24
	120	24		121	24		121	24
	120	24		121	24		121	24
119	23		120	23	2342	121	23	2347
	120	23		121	23		121	23
	120	23		121	23		121	23
	120	23		121	23		121	23
	120	23		121	23		121	23
	120	23		121	23		121	23
	120	23		121	23		121	23
	120	23		121	23		121	23
119	22		120	22	2264	121	22	2268
	120	22		121	22		121	22
	120	22		121	22		121	22
	120	22		121	22		121	22
	120	22		121	22		121	22
119	21		120	21		121	21	
	120	21		121	21		121	21

$t - s$	s	s_g	$t - s$	s	s_g
24	6	61	25	6	64
	25	62		6	63
24	5	525	25	5	527
	25	524		5	526
24	5	523		5	523
	25	522		5	522

x	$L_{3,0}^x$
527	2191
526	2190
Table B.1.2. $\text{Ext}^{s-1,t-8}_{A(2)}(A_1 \wedge DA_1 \wedge bo_1)$

$t-s$	s	s_g	$t-s$	s	s_g	$t-s$	s	s_g
119	25		120	25		121	25	
119	24		120	24		121	24	
119	23	22_5	120	23	22_13	121	23	22_9
119	23	22_4	120	23	22_10	121	23	22_8
119	23	22_3	120	23	22_9	121	23	22_7
119	23	22_2	120	23	22_8	121	23	22_6
			120	23	22_7	121	23	22_5
			120	23	22_6	121	23	22_4
			120	23	22_5	121	23	22_3
			120	23	22_2	121	23	22_2
119	22	21_31	120	22		121	22	21_33
119	22	21_30	120	22		121	22	21_32
119	21	20_51	120	21	20_57	121	21	20_52
119	21	20_50	120	21	20_56	121	21	20_52
119	21	20_49	120	21	20_55	121	21	20_58
119	21	20_48	120	21	20_54	121	21	20_59
119	21	20_47	120	21	20_53	121	21	20_58
119	21	20_46	120	21	20_52	121	21	20_58
119	21	20_45	120	21	20_51	121	21	20_57
119	21	20_44	120	21	20_49	121	21	20_55

Table B.1.3. $\text{Ext}^{s-1,t-16}_{A(2)}(A_1 \wedge DA_1 \wedge bo_2)$

$t-s$	s	s_g	$t-s$	s	s_g	$t-s$	s	s_g
119	25		120	25		121	25	
119	24		120	24		121	24	
119	23		120	23		121	23	
119	22		120	22		121	22	
119	21	20_0	121	21	20_2	121	21	20_1
			121	21	20_0	121	21	20_1

$t-s$	s	s_g	$t-s$	s	s_g
24	6		25	6	
24	5		25	5	40
Table B.1.4. $\text{Ext}_{A(2)}^{s-2,t-16}(A_1 \wedge DA_1 \wedge bo_1 \wedge bo_1)$

$t-s$	s	s_g	$t-s$	s	s_g	$t-s$	s	s_g
119	25	120	25	121	25			
119	24	120	24	121	24			
119	23	120	23	121	23			
119	22	201	120	22	205	121	22	2011
	22	200	120	22	204	121	22	2010
			120	22	203	121	22	209
			120	22	202	121	22	208
			121	22	207			
119	21	1941	120	21	1945	121	21	1947
	21	1940	120	21	1949	121	21	1955
	21	1939	120	21	1948	121	21	1954
	21	1938	120	21	1947	121	21	1953
	21	1937	120	21	1946	121	21	1952
	21	1936	120	21	1945			
119	21	1935	120	21	1944			
	21	1934	120	21	1943			
119	21	1933	120	21	1942			
	21	1932	120	21	1941			

$t-s$	s	s_g	$t-s$	s	s_g
24	6		25	6	
24	5		25	5	
B.2. The case $A_1 = A_1[01]$.

Table B.2.1. $\text{Ext}^{s,t}_{A_{1}(2)}(A_1 \wedge DA_1)$

$t-s$	s	s_g	$t-s$	s	s_g	$t-s$	s	s_g	
119	25	120	25	121	25	25	120	24	2414
119	24	120	24	121	24	24	120	24	2413
119	24	120	24	121	24	24	120	24	2412
119	24	120	24	121	24	24	120	24	2411
119	24	120	24	121	24	24	120	24	2410
119	23	120	23	121	23	23	120	23	2320
119	22	120	22	121	22	22	120	22	2241
119	22	120	22	121	22	22	120	22	2240
119	21	120	21	121	21	21	120	21	2160
119	21	120	21	121	21	21	120	21	2159
119	21	120	21	121	21	21	120	21	2158
119	21	120	21	121	21	21	120	21	2157
119	21	120	21	121	21	21	120	21	2156
119	21	120	21	121	21	21	120	21	2155
119	21	120	21	121	21	21	120	21	2154

$t-s$	s	s_g	$t-s$	s	s_g
24	6	25	6	51	
24	5	524	524		
24	5	523	523		
24	5	522	522		
24	5	521	521		

$\mathbf{x} \text{ b}_{1,0}^{s} \mathbf{x} \text{ b}_{25}^{s} \mathbf{x} \text{ b}_{25}^{2165}$
Table B.2.2. $\text{Ext}_{A(2)}^{s-1,t-8}(A_1 \wedge DA_1 \wedge bo_1)$

$t-s$	s	s_g	$t-s$	s	s_g	$t-s$	s	s_g
119	25	120	25	121	25			
119	24	120	24	121	24			
119	23	22_3	120	23	22_9	121	23	22_17
119	23	22_2	120	23	22_8	121	23	22_16
119	23	22_1	120	23	22_7	121	23	22_15
119	23	22_0	120	23	22_6	121	23	22_14
			120	23	22_5	121	23	22_13
			120	23	22_4	121	23	22_12
			121	23	22_11	121	23	22_10
119	22	120	22	121	22			
119	21	20_{45}	120	21	20_{51}	121	21	20_{56}
119	21	20_{44}	120	21	20_{50}	121	21	20_{55}
119	21	20_{43}	120	21	20_{49}	121	21	20_{54}
119	21	20_{42}	120	21	20_{48}	121	21	20_{53}
119	21	20_{41}	120	21	20_{47}	121	21	20_{52}
119	21	20_{40}	120	21	20_{46}	121	21	
119	21	20_{39}						
119	21	20_{38}						

Table B.2.3. $\text{Ext}_{A(2)}^{s-1,t-16}(A_1 \wedge DA_1 \wedge bo_2)$

$t-s$	s	s_g	$t-s$	s	s_g	$t-s$	s	s_g
119	25	120	25	121	25			
119	24	120	24	121	24			
119	23	120	23	121	23			
119	22	120	22	121	22			
119	21	120	21	121	21			
119	21	120	21	121	21			
119	21	120	21	121	21			
119	21	120	21	121	21			
24	6	25	6					
24	5	25	5	40				
Table B.2.4. \(\text{Ext}^{s-2,t-16}_{A(2)}(A_1 \wedge DA_1 \wedge bo_1 \wedge bo_1) \)

\(t-s\)	\(s\)	\(s_g\)	\(t-s\)	\(s\)	\(s_g\)	\(t-s\)	\(s\)	\(s_g\)
119	25	120	25	121	25			
119	24	120	24	121	24			
119	23	120F	23	121	23			
119	22	120	22	121	22	201	20	200
119	21	19_{29}	120	21	19_{37}	121	21	19_{39}
119	21	19_{28}	120	21	19_{36}	121	21	19_{38}
119	21	19_{27}	120	21	19_{35}			
119	21	19_{26}	120	21	19_{34}			
119	21	19_{25}	120	21	19_{33}			
119	21	19_{24}	120	21	19_{32}			
119	21	19_{23}	120	21	19_{31}			
119	21	19_{22}	120	21	19_{30}			
119	21	19_{21}						
119	21	19_{20}						

\(t-s\)	\(s\)	\(s_g\)	\(t-s\)	\(s\)	\(s_g\)
24	6	25	6		
24	5	25	5		
B.3. **The case** $A_1 = A_1[10]$.

Table B.3.1. $\text{Ext}^{a,t}_{A(2)}(A_1 \land DA_1)$

$t - s$	s	s_g	$t - s$	s	s_g	$t - s$	s	s_g
119	25	120	25	121	25	250		
119	24	2414	120	24	2418	121	24	2419
119	24	2413	120	24	2417			
119	24	2412	120	24	2416			
119	24	2411	120	24	2415			
119	23	2320	120	23	2324	121	23	2329
119	23	2320	120	23	2323	121	23	2328
119	23	2320	120	23	2322	121	23	2327
119	23	2320	120	23	2321	121	23	2326
119	22	2240	120	22	121	22	2211	
119	22	2239						
119	21	2161	120	21	2165	121	21	2166
119	21	2160	120	21	2164			
119	21	2159	120	21	2163			
119	21	2158	120	21	2162			
119	21	2157						
119	21	2156						
119	21	2155						

$t - s$	s	s_g	$t - s$	s	s_g
24	6	5	25	6	61
24	5	525	25	5	526
24	5	524	25	5	523
24	5	522			

$x \ b_{1,0}^* x$

$5_{26} \ 21_{66}$
Table B.3.2. $\text{Ext}_{A(2)}^{s-1,t-8}(A_1 \wedge DA_1 \wedge bo_1)$

$t-s$	s	s_g	$t-s$	s	s_g	$t-s$	s	s_g
119	25	120	25	121	25			
119	24	120	24	121	24			
119	23	22_1	120	23	22_2	121	23	22_7
119	23	22_1	120	23	22_2	121	23	22_6
119	22	22_0	120	23	22_4	121	23	22_4
119	22	22_0	120	23	22_4	121	23	22_3
119	22	22_0	120	23	22_4	121	23	22_2
119	22	22_0	120	23	22_4	121	23	22_3
119	21	20_45	120	21	20_51	121	21	20_56
119	21	20_44	120	21	20_50	121	21	20_55
119	21	20_43	120	21	20_49	121	21	20_54
119	21	20_42	120	21	20_48	121	21	20_53
119	21	20_41	120	21	20_47	121	21	20_52
119	21	20_40	120	21	20_46	121	21	20_52
119	21	20_39	120	21	20_46	121	21	20_52
119	21	20_38	120	21	20_46	121	21	20_52

$\text{Ext}_{A(2)}^{s-1,t-16}(A_1 \wedge DA_1 \wedge bo_2)$

$t-s$	s	s_g	$t-s$	s	s_g
24	6	25	6		
24	5	25	5	4_0	

$t-s$	s	s_g	$t-s$	s	s_g
119	25	120	25	121	25
119	24	120	24	121	24
119	23	120	23	121	23
119	22	120	22	121	22
119	21	120	21	121	21

$t-s$	s	s_g	$t-s$	s	s_g
24	6	25	6		
24	5	25	5		
Table B.3.4. $\text{Ext}^{s-2,t-16}_{A(2)}(A_1 \land DA_1 \land bo_1 \land bo_1)$

$t-s$	s	s_g	$t-s$	s	s_g	$t-s$	s	s_g
119	25	120	25	121	25			
119	24	120	24	121	24			
119	23	120	23	121	23			
119	22	120	22	121	22	201		
119	21	19_{29}	120	21	19_{37}	121	21	19_{39}
119	21	19_{28}	120	21	19_{36}	121	21	19_{38}
119	21	19_{27}	120	21	19_{35}	121	21	
119	21	19_{26}	120	21	19_{34}	121	21	
119	21	19_{25}	120	21	19_{33}	121	21	
119	21	19_{24}	120	21	19_{32}	121	21	
119	21	19_{23}	120	21	19_{31}	121	21	
119	21	19_{22}	120	21	19_{30}	121	21	
119	21	19_{21}		21			21	
119	21	19_{20}		21			21	

$t-s$	s	s_g	$t-s$	s	s_g
24	6		25	6	
24	5		25	5	
Appendix C. Tables from section 5

C.1. The case $A_1 = A_1[00]$ or $A_1 = A_1[11]$.

Table C.1.1. $\text{Ext}^{s,t}_{A_1}(A_1 \wedge DA_1)$

$t - s$	s	s_g									
70	15	15_2	71	15	15_4	190	39	39_1	191	39	39_5
70	15	15_1	71	15	15_3	190	39	39_2	191	39	39_4
70	14	14_{25}	71	14	14_{29}	190	38	38_{25}	191	38	38_{28}
70	14	14_{24}	71	14	14_{28}	190	38	38_{24}	191	38	38_{27}
70	14	14_{23}	71	14	14_{27}	190	38	38_{23}	191	38	38_{26}
70	14	14_{22}	71	14	14_{26}	190	38	38_{22}			
70	14	14_{21}	71	13	13_{46}	190	37	37_{42}	191	37	37_{47}
70	13	13_{45}	71	13	13_{52}	190	37	37_{41}	191	37	37_{46}
70	13	13_{44}	71	13	13_{51}	190	37	37_{40}	191	37	37_{45}
70	13	13_{43}	71	13	13_{50}	190	37	37_{39}	191	37	37_{44}
70	13	13_{42}	71	13	13_{49}	190	37	37_{38}	191	37	37_{43}
			71	13	13_{47}						
	190		36		36_{63}	191	36	36_{66}	191	36	36_{65}
	190		36		36_{62}	191	36	36_{61}	191	36	36_{64}

n	i_1, \ldots, i_n	x	y^x	$u_2^{axb}x$
0	0	15_5	39_5	36_69
0	0	15_4	39_4	36_68
0	0	15_3	39_3	36_67
0	0	15_2	39_2	36_66
0	0	15_1	39_1	36_65
0	0	14_{29}	0	0
0	0	14_{28}	38_{28}	35_{92}
0	0	14_{27}	38_{27}	35_{91}
0	0	14_{26}	38_{26}	35_{90}
0	0	14_{25}	38_{25}	35_{89}
0	0	14_{24}	38_{24}	35_{88}
0	0	14_{23}	38_{23}	35_{87}
0	0	14_{22}	38_{22}	35_{86}
0	0	14_{21}	38_{21}	35_{85}
0	0	13_{53}	0	0
0	0	13_{52}	0	0
0	0	13_{51}	37_{44}	34_{108}
0	0	13_{50}	37_{43}	34_{107}
0	0	13_{49}	37_{45} + 37_{45}	34_{107} + 34_{109}
0	0	13_{48}	37_{45} + 37_{46} + 37_{47}	34_{109} + 34_{110} + 34_{111}
0	0	13_{47}	37_{43} + 37_{45} + 37_{46}	34_{107} + 34_{109} + 34_{110}
Table C.1.2. \(\text{Ext}^{s-1,t-8}_{A(2)}(A_1 \wedge DA_1 \wedge bo_1)\)

\(t-s\)	\(s\)	\(s_g\)	\(t-s\)	\(s\)	\(s_g\)	\(t-s\)	\(s\)	\(s_g\)			
70	15	71	15	190	39	191	39				
70	14	71	14	190	38	191	38				
70	13	12.11	71	13	12.19	190	37	36.11	191	37	36.19
70	13	12.10	71	13	12.18	190	37	36.10	191	37	36.18
70	13	12.9	71	13	12.17	190	37	36.9	191	37	36.17
70	13	12.8	71	13	12.16	190	37	36.8	191	37	36.16
70	13	12.7	71	13	12.15	190	37	36.7	191	37	36.15
70	13	12.6	71	13	12.14	190	37	36.6	191	37	36.14
70	13	12.5	71	13	12.13	190	37	36.5	191	37	36.13
70	13	12.4	71	13	12.12	190	37	36.4	191	37	36.12
70	12	11.40	71	12	11.46	190	36	191	36	35.33	
70	12	11.39	71	12	11.45	191	36	35.32			
70	12	11.38	71	12	11.44	191	36	35.32			
70	12	11.37	71	12	11.43	191	36	35.32			
70	12	11.36	71	12	11.42	191	36	35.32			
70	12	11.35	71	12	11.41	191	36	35.32			

Table C.1.3. \(\text{Ext}^{s-1,t-16}_{A(2)}(A_1 \wedge DA_1 \wedge bo_2)\)

\(n\)	\(i_1, \ldots, i_n\)	\(x\)	\(\varphi^g x\)	\(v h_1\)
1	1	12.19	36.19	33.83
1	1	12.18	36.18	33.82
1	1	12.17	36.17	33.79 + 33.83
1	1	12.16	36.16	33.79 + 33.81
1	1	12.15	36.15	33.80
1	1	12.14	36.14	33.78 + 33.79 + 33.81 + 33.83
1	1	12.13	36.13	33.77
1	1	12.12	36.12	33.76 + 33.83
1	1	11.46	0	0
1	1	11.45	0	0
1	1	11.44	0	0
1	1	11.43	35.33	32.97
1	1	11.42	35.32	32.96
1	1	11.41	0	0

Table C.1.3. \(\text{Ext}^{s-1,t-16}_{A(2)}(A_1 \wedge DA_1 \wedge bo_2)\)
ON THE PERIODIC ν_2-SELF-MAP OF A_1

Table C.1.4. $\text{Ext}^{s−2,t−16}_{A(2)}(A_1 \land DA_1 \land bo_1 \land bo_1)$

$t-s$	s	s_g										
70	15	71	15	190	39	191	39					
70	14	71	14	190	38	191	38					
70	13	71	13	190	37	191	37					
70	12	10_5	71	12	10_{11}	190	36	34_5	191	36	34_{11}	
70	12	10_4	71	12	10_{10}	190	36	34_4	191	36	34_{10}	
70	12	10_3	71	12	10_9	190	36	34_3	191	36	34_9	
70	12	10_2	71	12	10_8	190	36	34_2	191	36	34_8	
71	12	10_7	71	12	10_7	191	36	34_7	191	36	34_7	
71	12	10_6	71	12	10_6		191	36	34_6	191	36	34_6

n	i_1, \ldots, i_n	x	$v_2^{27}h_1x$
2	1, 1	10_{11}	31_{139}
2	1, 1	10_{10}	31_{138}
2	1, 1	10_9	31_{137}
2	1, 1	10_8	31_{136}
2	1, 1	10_7	31_{135}
2	1, 1	10_6	31_{134} + 31_{137} + 31_{138}

Table C.1.5. $\text{Ext}^{s,t}_{A(2)}(A_1 \land DA_1)$

$t-s$	s	s_g	$t-s$	s	s_g	$t-s$	s	s_g
95	20	20_2	143	28	28_{34}	191	36	30_{66}
95	20	20_1	143	28	28_{33}	191	36	30_{65}
			143	28	28_{32}	191	36	30_{64}

x	$b^t_{3,0} \cdot x$	$e_0 r \cdot x$	$b^s_{3,0} \cdot x$	$u_{gr} \cdot x$
28_{34}	30_{66}	0	N/A	N/A
28_{33}	30_{65}	0	N/A	N/A
28_{32}	30_{64}	38_{25}	N/A	N/A
20_2	28_{34}	N/A	36_{66}	39_2
20_1	28_{33}	N/A	36_{65}	39_1
C.2. The case $A_1 = A_1[01]$.

Table C.2.1. $\text{Ext}^{s,t}_{A_1(2)}(A_1 \wedge DA_1)$

$t - s$	s	s_g	$t - s$	s	s_g	$t - s$	s	s_g
70	15	15	70	15	15	190	39	191
70	14	1418	71	14	1420	190	39	191
70	14	1417	71	14	1419	190	39	191
70	14	1416	71	14	1415	190	39	191
70	13	1333	71	13	1340	190	37	191
70	13	1332	71	13	1339	190	37	191
70	13	1331	71	13	1338	190	37	191
70	13	1330	71	13	1337	190	37	191
70	13	1329	71	13	1336	190	37	191
70	12	12	71	12	12	190	36	191

x	g^px	$v_2^{21}h_1x$
150	390	3640
1420	0	0
1419	3819	3559
1418	3818	3558
1417	3817	3557 + 3558
1416	3816	3556
1415	3815	3555 + 3558
1340	0	0
1339	0	0
1338	3729	3469
1337	3728	3468
1336	3727	3467 + 3468
1335	3726	3466 + 3467 + 3469
1334	3725	3465 + 3466
Table C.2.2. $\text{Ext}^{s-1,t-8}_{A(2)}(A_1 \wedge DA_1 \wedge bo_1)$

$t-s$	s	s_g	$t-s$	s	s_g	$t-s$	s	s_g			
70	15	71	15	190	39	191	39				
70	14	71	14	190	38	191	38				
70	13	12_g	71	13	12_{17}	190	37	36_{9}	191	37	36_{17}
70	13	12_8	71	13	12_{16}	190	37	36_{8}	191	37	36_{16}
70	13	12_7	71	13	12_{15}	190	37	36_{7}	191	37	36_{15}
70	13	12_6	71	13	12_{14}	190	37	36_{6}	191	37	36_{14}
70	13	12_5	71	13	12_{13}	190	37	36_{5}	191	37	36_{13}
70	13	12_4	71	13	12_{12}	190	37	36_{4}	191	37	36_{12}
70	12	11_{36}	71	12	11_{42}	190	36		191	36	
70	12	11_{35}	71	12	11_{41}						
70	12	11_{34}	71	12	11_{40}						
70	12	11_{33}	71	12	11_{39}						
70	12	11_{32}	71	12	11_{38}						
70	12	11_{31}	71	12	11_{37}						
70	12	11_{30}									

$x \quad g^6x \quad v^{20}h_1x$

12_{17}	36_{17}	33_{73}
12_{16}	36_{16}	$33_{72} + 33_{73}$
12_{15}	36_{15}	33_{71}
12_{14}	36_{14}	$33_{70} + 33_{71}$
12_{13}	36_{13}	$33_{69} + 33_{71} + 33_{72} + 33_{73}$
12_{12}	36_{12}	$33_{68} + 33_{69} + 33_{71} + 33_{72} + 33_{73}$
12_{11}	36_{11}	$33_{67} + 33_{68} + 33_{69} + 33_{72}$
12_{10}	36_{10}	$33_{66} + 33_{72}$

Table C.2.3. $\text{Ext}^{s-1,t-16}_{A(2)}(A_1 \wedge DA_1 \wedge bo_2)$

$t-s$	s	s_g	$t-s$	s	s_g	$t-s$	s	s_g
70	15	71	15	190	39	191	39	
70	14	71	14	190	38	191	38	
70	13	71	13	190	37	191	37	
70	12	71	12	190	36	191	36	
Table C.2.4. $\text{Ext}_{\Lambda(2)}^{s-2,t-16}(A_1 \wedge DA_1 \wedge bo_1 \wedge bo_1)$

$t-s$	s	s_g	$t-s$	s	s_g	$t-s$	s	s_g
70	15	71	15	190	39	191	39	
70	14	71	14	190	38	191	38	
70	13	71	13	190	37	191	37	
70	12	71	12	101	36	191	36	

C.3. The case $A_1 = A_1[10]$.

Table C.3.1. $\text{Ext}_{\Lambda(2)}^{s,t}(A_1 \wedge DA_1)$

$t-s$	s	s_g	$t-s$	s	s_g	$t-s$	s	s_g
70	14	14_{18}	71	14	14_{20}	190	38	38_{18}
70	14	14_{17}	71	14	14_{19}	190	38	38_{17}
70	14	14_{16}	71	14	14_{15}	190	38	38_{16}
70	13	13_{34}	71	13	13_{41}	190	37	37_{24}
70	13	13_{33}	71	13	13_{40}	190	37	37_{23}
70	13	13_{32}	71	13	13_{39}	190	37	37_{22}
70	13	13_{31}	71	13	13_{38}	190	37	37_{21}
70	13	13_{30}	71	13	13_{37}	190	37	37_{20}

x	g^6x	$v_2^{20}h_1x$
15_{0}	39_{0}	36_{10}
14_{20}	0	0
14_{19}	38_{19}	35_{59}
13_{41}	0	0
13_{40}	0	0
13_{39}	37_{29}	34_{69}
13_{38}	37_{28}	34_{68}
13_{37}	37_{27}	34_{67}
13_{36}	37_{26}	34_{66}
13_{35}	37_{25}	34_{65}
Table C.3.2. $\operatorname{Ext}_{A(2)}^{s-1, t-8}(A_1 \wedge DA_1 \wedge bo_1)$

$t-s$	s	s_g	$t-s$	s	s_g	$t-s$	s	s_g			
70	15		71	15		190	39	191			
70	14		71	14		190	38	191			
70	13	12_9	71	13	12_17	190	37	36_9	191	37	36_17
70	13	12_8	71	13	12_16	190	37	36_8	191	37	36_16
70	13	12_7	71	13	12_15	190	37	36_7	191	37	36_15
70	13	12_6	71	13	12_14	190	37	36_6	191	37	36_14
70	13	12_5	71	13	12_13	190	37	36_5	191	37	36_13
70	13	12_4	71	13	12_12	190	37	36_4	191	37	36_12
70	13	12_1_11	71	13	12_10		191	37	36_11		
70	12	11_39	71	12	11_45	190	36		191	36	
70	12	11_38	71	12	11_44						
70	12	11_37	71	12	11_43						
70	12	11_36	71	12	11_42						
70	12	11_35	71	12	11_41						
70	12	11_34	71	12	11_40						
70	12	11_33									

x $g^n x$ $\nu^2_0 h_1 x$

12_17	36_17	33_73
12_16	36_16	33_72
12_15	36_15	33_71
12_14	36_14	33_70
12_13	36_13	33_69
12_12	36_12	33_68 + 33_73
12_11	36_11	33_67 + 33_73
12_10	36_10	33_66 + 33_71 + 33_72
Table C.3.3. $\text{Ext}_{A(2)}^{s-1,t-16}(A_1 \wedge DA_1 \wedge bo_2)$

$t-s$	s	s_g	$t-s$	s	s_g	$t-s$	s	s_g
70	15	71	15	190	39	191	39	
70	14	71	14	190	38	191	38	
70	13	71	13	190	37	191	37	
70	12	71	12	190	36	191	36	

Table C.3.4. $\text{Ext}_{A(2)}^{s-2,t-16}(A_1 \wedge DA_1 \wedge bo_1 \wedge bo_1)$

$t-s$	s	s_g	$t-s$	s	s_g	$t-s$	s	s_g
70	15	71	15	190	39	191	39	
70	14	71	14	190	38	191	38	
70	13	71	13	190	37	191	37	
70	12	71	12	190	36	191	36	

x $g^p x$ $v_2^{nh} h_1 x$

| 10_1 | 34_1 | 31_{s1} |
| 10_0 | 34_0 | 31_{s0} |
ON THE PERIODIC v_2-SELF-MAP OF A_1

REFERENCES

[Bau] Bauer, Tilman: Computation of the homotopy of the spectrum tmf; Geometry & Topology Monographs 13 (2008) 11-40.

[BMHHM] Behrens, Mark, Hill, Michael A., Hopkins, Michael J. and Mahowald, Mark E.: On the existence of a v_2^3-self-map on $M(1,4)$ at the prime 2; Homology, Homotopy and Applications, Vol.10, No. 3 (2008), 45-84.

[Bru] Bruner, Robert R.: Ext in the nineties; Algebraic topology (Oaxtepec, 1991), Contemp. Math. 146, Amer. Math. Soc., Providence, RI, 1993, pp. 71-90.

[DM] Davis, Donald M. and Mahowald, Mark E.: Ext over the subalgebra A_2 of the Steenrod algebra for stunted projective spaces. Current trends in algebraic topology, Part 1 (London, Ont., 1981), pp. 297-342.

[DM81] Davis, Donald M. and Mahowald, Mark E.: v_1 and v_2-periodicity; Amer. J. Math. 103, No. 4 (1981), 615-659. CMS Conf. Proc., 2, Amer. Math. Soc., Providence, RI, 1982.

[Hen] Henriques, Andre: The homotopy groups of tmf and its localizations; Proceedings of the 2007 Talbot Workshop, Chapter 13.

[NilpII] Hopkins, Michael J. and Smith, Jeffrey H.: Nilpotence and Stable Homotopy Theory II; Annals of Mathematics, 148 (1998), 1-49.

[May] May, J. Peter: The Cohomology of Restricted Lie Algebras; Ph.D. thesis, 1964.

[M1] Mahowald, Mark E.: bo-resolutions; Pacific J. Math. 92 (1981), 365-383.

[GJM] Goerss, Paul G., Jones, John D. S. and Mahowald, Mark E.: Some generalized Brown-Gitter spectra; Trans. Am. Math. Soc., Vol. 294, No. 1 (Mar., 1986), 113-132.

[Ko] Kochman, Stanley O.: Bordism, Stable Homotopy, and Adams Spectral Sequences; Fields Institute Monographs, 7. Math. Q. 5 (2009), no. 2, Special Issue: In honor of Friedrich Hirzebruch. Part 1, 853-872.

[May] May, J. Peter: The Cohomology of Restricted Lie Algebras; Ph.D. thesis, 1964.

[Nak] Nakamura, Osamu: On the squaring operations in the May spectral sequence; Mem. Fac. Sci. Kyushu Univ. Ser. A 26, No. 2 (1972), 293-308.

[Rav] Ravenel, Douglas C.: Complex Cobordism and Stable Homotopy Groups of Spheres; Bulletin (New Series) of the American Mathematical Society 18, 1988.

[Tan] Tangora, Martin C.: On the cohomology of the Steenrod algebra; Ph.D. thesis, 1966.