Some new inequalities of Hermite-Hadamard type for \(s \)-convex functions with applications

Abstract: In this paper, we present several new and generalized Hermite-Hadamard type inequalities for \(s \)-convex as well as \(s \)-concave functions via classical and Riemann-Liouville fractional integrals. As applications, we provide new error estimations for the trapezoidal formula.

Keywords: \(s \)-convex function, Hermite-Hadamard inequality, Hölder inequality, Trapezoidal formula

MSC: 26D15, 26A51, 26D20

1 Introduction

Let \(I \subseteq \mathbb{R} \) be an interval. Then a real-valued function \(f : I \to \mathbb{R} \) is said to be convex (concave) on \(I \) if the inequality

\[
 f[\lambda x + (1 - \lambda)y] \leq (\geq) \lambda f(x) + (1 - \lambda)f(y)
\]

holds for all \(x, y \in I \) and \(\lambda \in [0, 1] \).

A large number of important properties and inequalities have been established for the class of convex (concave) functions since the convexity (concavity) was introduced more than a hundred years ago [1-21]. But one of the most important inequalities for the convex (concave) function is the Hermite-Hadamard inequality [22], which can be stated as follows:

Theorem 1.1. Let \(I \subseteq \mathbb{R} \) be an interval and \(f : I \to \mathbb{R} \) be a convex function on \(I \). Then the inequality

\[
 f\left(\frac{a + b}{2}\right) \leq \frac{1}{b - a} \int_{a}^{b} f(x)dx \leq \frac{f(a) + f(b)}{2}
\]

holds for all \(a, b \in I \) with \(a < b \). Both inequalities given in (1) hold in the reversed direction if \(f \) is concave on the interval \(I \).

Recently, the improvements, generalizations, refinements and applications for the Hermite-Hadamard inequality have attracted the attention of many researchers [23-41].

Hudzik and Maligranda [42] generalized the convex (concave) function to \(s \)-convex (concave) function.
Let $s \in (0, 1]$. Then the function $f : [0, \infty) \to \mathbb{R}$ is said to be s-convex on the interval $[0, \infty)$ if the inequality
\[f[\lambda x + (1 - \lambda)y] \leq \lambda^s f(x) + (1 - \lambda)^s f(y) \] (2)
takes place for all $x, y \in [0, \infty)$ and $\lambda \in [0, 1]$. f is said to be s-concave if inequality (2) is reversed.

We clearly see that the s-convexity (concavity) defined on $[0, \infty)$ reduces to ordinary convexity (concavity) if $s = 1$.

In [43], the authors established the Hermite-Hadamard type inequality for the s-convex (concave) functions as follows.

Theorem 1.2 ([43]). Let $s \in (0, 1]$ and $f : I \subseteq [0, \infty) \to \mathbb{R}$ be an s-convex function on I. Then the double inequality
\[2^{s-1} f \left(\frac{a + b}{2} \right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) dx \leq \frac{f(a) + f(b)}{s+1} \] (3)
holds for all $a, b \in I$ with $a < b$. Both inequalities given in (3) hold in the reversed direction if f is s-concave on the interval I.

Both of the upper and lower bounds given in (3) for the s-convex (concave) functions were improved by Jagers in [44].

Hussian et al. [45] provided the Hermite-Hadamard type inequalities for the twice differentiable functions by using the following Lemma 1.3.

Lemma 1.3 ([45]). Let $f : I^0 \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on I^0, and $a, b \in I^0$ with $a < b$. Then the identity
\[\frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_{a}^{b} f(x) dx = \frac{(b-a)^2}{2} \int_{0}^{1} t(1-t)f''[ta + (1-t)b] dt \]
is valid if $f'' \in L[a, b]$, where and in what follows I^0 denotes the interior of the interval I.

Theorem 1.4 ([45]). Let $s \in (0, 1]$, $q > 1$, $f : I \subseteq [0, \infty) \to \mathbb{R}$ be a twice differentiable mapping on I^0, and $a, b \in I^0$ with $a < b$. Then the inequality
\[\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_{a}^{b} f(x) dx \right| \leq \frac{(a-b)^2}{2 \times 6^{(q-1)/q}} \left[\frac{|f''(a)|^q + |f''(b)|^q}{(s+2)(s+3)} \right]^{1/q} \]
holds if $f'' \in L[a, b]$ and $|f''|^q$ is s-convex on $[a, b]$.

Theorem 1.5 ([45]). Let $s \in (0, 1]$, $p, q > 1$ with $1/p + 1/q = 1$, $f : I \subseteq [0, \infty) \to \mathbb{R}$ be a twice differentiable mapping on I^0, and $a, b \in I^0$ with $a < b$. Then the inequality
\[\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_{a}^{b} f(x) dx \right| \leq 2^q(a-b)^2 \left[\frac{|f''(a)|^q + |f''(b)|^q}{(s+2)(s+3)} \right]^{p} \]
holds if $f'' \in L[a, b]$ and $|f''|^q$ is s-convex on $[a, b]$, where $\Gamma(x) = \int_{0}^{\infty} t^{x-1} e^{-t} dt$ [46-50] is the classical gamma function.

In [51], Chu et al. discovered a new identity for the twice differentiable function.

Lemma 1.6 ([51]). Let $f : I \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on I^0, and $a, b \in I^0$ with $a < b$. Then the identity
\[\frac{(x-a)^2 - (b-x)^2}{2(b-a)} f'(x) + 2(b-x) f(b) + 2(x-a) f(a) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \] (4)
Theorem 1.7. Liouville fractional integrals as follows. Sarikaya et al. [67] and Özdemir et al. [68] established the Hermite-Hadamard type inequalities for the Riemann-Liouville fractional integral if

\[\int_a^b (x-t)^{\eta} f(t) \, dt \]

is valid for all \(x \in [a, b] \) if \(f'' \in L[a, b] \).

Next, we recall the definition of the fractional integrals [52].

Let \(0 \leq a < b, \eta > 0 \) and \(f \in L[a, b] \). Then the left-sided and right-sided Riemann-Liouville fractional integrals \(J_a^\eta f \) and \(J_b^\eta f \) of order \(\eta \) are defined by

\[J_a^\eta f(x) = \frac{1}{\Gamma(\eta)} \int_a^x (x-t)^{\eta-1} f(t) \, dt, \]

\[J_b^\eta f(x) = \frac{1}{\Gamma(\eta)} \int_x^b (t-x)^{\eta-1} f(t) \, dt, \]

respectively.

We clearly see that \(J_a^0 f(x) = J_b^0 f(x) = f(x) \). In particular, the fractional integral reduces to the classical integral if \(\eta = 1 \).

In [53], Set dealt with the fractional Ostrowski inequalities involving the Riemann-Liouville fractional integrals. More results and applications for the fractional derivatives and integrals can be found in the literature [54-66]. Sarıkaya et al. [67] and Özdemir et al. [68] established the Hermite-Hadamard type inequalities for the Riemann-Liouville fractional integrals as follows.

Theorem 1.8 ([67]). Let \(\eta > 0, 0 \leq a < b, f : [a, b] \to (0, \infty) \) be a positive real-valued function with \(f \in L[a, b] \). Then the double inequality

\[f \left(\frac{a+b}{2} \right) \leq \frac{\Gamma(\eta+1)}{2(b-a)^\eta} \left[J_a^\eta f(b) + J_b^\eta f(a) \right] \leq \frac{f(a) + f(b)}{2} \tag{5} \]

holds if \(f \) is convex on \([a, b]\).

Theorem 1.9 ([68]). Let \(\eta > 0, f : I \subseteq [0, \infty) \to \mathbb{R} \) be a differentiable mapping on \(I^0 \), and \(a, b \in I^0 \) with \(a < b \). Then the inequality

\[\left(\frac{(x-a)^\eta f(a) + (b-x)^\eta f(b)}{b-a} - \frac{\Gamma(\eta+1)}{b-a} \left(J_{a+}^\eta f(a) + J_{b-}^\eta f(b) \right) \right) \]

\[\leq \frac{\eta ((x-a)^{\eta+1} + (b-x)^{\eta+1}) |f'(x)|}{(s+1)(\eta+s+1)(b-a)} \]

\[+ \left(\frac{1}{s+1} - \frac{\Gamma(\eta+1)\Gamma(s+1)}{\Gamma(\eta+s+3)} \right) \frac{(x-a)^{\eta+1} |f'(x)| + (b-x)^{\eta+1} |f'(b)|}{b-a} \]

is valid for all \(x \in [a, b] \) if \(f' \in L(a, b) \) and \(|f'| \) is \(s \)-convex on \([a, b]\).

Remark 1.9. We clearly see that inequality (5) reduces to inequality (1) if \(\eta = 1 \).

The following identity for the twice differentiable function, which was discovered by Chu et al. [51], will be used in the next section.

Lemma 1.10 ([51]). Let \(\eta > 0, f : I \subseteq \mathbb{R} \to \mathbb{R} \) be a twice differentiable mapping on \(I^0 \), and \(a, b \in I^0 \) with \(a < b \). Then the identity

\[\frac{(x-a)^{\eta+1} - (b-x)^{\eta+1}}{b-a} f'(x) + (\eta+1) f(b)(b-x) + (\eta+1) f(a)(x-a) \]

\[= \frac{1}{2(b-a)} \int_0^1 (1-t^2) f''[a + (1-t)x] \, dt + \frac{(b-x)^3}{2(b-a)} \int_0^1 (1-t^2) f''[tb + (1-t)x] \, dt \]

holds for all \(x \in [a, b] \) if \(f'' \in L[a, b] \).
holds for all \(x \in [a, b] \) if \(f'' \in L(a, b) \).

The main purpose of this paper is to establish several new Hermite-Hadamard type inequalities for \(s \)-convex (concave) functions via the classical and Riemann-Liouville fractional integrals, and provide the error estimations for the trapezoidal formula.

2 Hermite-Hadamard type inequalities for \(s \)-convex functions via classical integrals

Theorem 2.1. Let \(s \in (0, 1] \), \(f : I \subseteq [0, \infty) \to \mathbb{R} \) be a twice differentiable function on \(I^o \), and \(a, b \in I^o \) with \(a < b \). Then the inequality

\[
\left| \frac{(x-a)^2 - (b-x)^2}{2(b-a)} f''(x) + 2 f(b)(b-x) + 2 f(a)(a-x) \right| - \frac{1}{b-a} \int_a^b f(t) dt
\leq \frac{(x-a)^3}{2(b-a)} \left[\frac{2}{s+1(s+3)} f''(a) + \frac{(s+2)(s+3) - 2}{(s+1)(s+2)(s+3)} f''(x) \right] + \frac{(b-a)^3}{2(b-a)} \left[\frac{2}{s+1(s+3)} f''(b) + \frac{(s+2)(s+3) - 2}{(s+1)(s+2)(s+3)} f''(x) \right]
\]

holds for all \(x \in [a, b] \) if \(f'' \) is \(s \)-convex on \([a, b] \) and \(f'' \in L[a, b] \).

Proof. It follows from (4) and the triangular inequality together with the \(s \)-convexity of \(|f''| \) that

\[
\left| \frac{(x-a)^2 - (b-x)^2}{2(b-a)} f''(x) + 2 f(b)(b-x) + 2 f(a)(a-x) \right| - \frac{1}{b-a} \int_a^b f(t) dt
\leq \frac{(x-a)^3}{2(b-a)} \int_0^1 (1-t^2) \left| f''(ta + (1-t)x) \right| dt + \frac{(b-a)^3}{2(b-a)} \int_0^1 (1-t^2) \left| f''(tb + (1-t)x) \right| dt
\]

\[
\leq \frac{(x-a)^3}{2(b-a)} \int_0^1 (1-t^2) \left[t^s |f''(a)| + (1-t)^s |f''(x)| \right] dt + \frac{(b-a)^3}{2(b-a)} \int_0^1 (1-t^2) \left[t^s |f''(b)| + (1-t)^s |f''(x)| \right] dt
\]

\[
= \frac{(x-a)^3}{2(b-a)} \left[\frac{2}{s+1(s+3)} f''(a) + \frac{(s+2)(s+3) - 2}{(s+1)(s+2)(s+3)} f''(x) \right]
\]

\[
+ \frac{(b-a)^3}{2(b-a)} \left[\frac{2}{s+1(s+3)} f''(b) + \frac{(s+2)(s+3) - 2}{(s+1)(s+2)(s+3)} f''(x) \right].
\]

\[\square\]
Corollary 2.2. Under the assumptions of Theorem 2.1, one has
\[
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(t) dt \right| \leq \frac{(b-a)^2}{8} \left[\frac{1}{(s+1)(s+3)} (|f''(a)| + |f''(b)|) + \frac{(s+2)(s+3) - 2}{(s+1)(s+2)(s+3)} \left| \frac{f''(a+b)}{2} \right| \right]
\]
\[
\leq \frac{(b-a)^2}{8} \left[\frac{1}{(s+1)(s+3)} + \frac{(s+2)(s+3) - 2}{2(s+1)(s+2)(s+3)} \right] (|f''(a)| + |f''(b)|).
\]

Proof. Let \(x = (a+b)/2 \), then the first inequality of (8) follows easily from (7). While the second inequality of (8) can be derived from the \(s \)-convexity of \(|f''|\).

Remark 2.3. Let \(s = 1 \), then the second inequality of (8) becomes
\[
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(t) dt \right| \leq \frac{(b-a)^2}{24} (|f''(a)| + |f''(b)|).
\]

Theorem 2.4. Let \(s \in (0, 1], p, q > 1 \) with \(1/p + 1/q = 1 \), \(f : I \subseteq [0, \infty) \rightarrow \mathbb{R} \) be a twice differentiable mapping on \(I^0 \), and \(a, b \in I^0 \) with \(a < b \). Then the inequality
\[
\left| \frac{(x-a)^2 - (b-x)^2}{2(b-a)} f''(x) + 2 f(b)(b-x) + 2 f(a)(x-a) - \frac{1}{b-a} \int_a^b f(t) dt \right| \leq \left(\frac{\Gamma(1/2) \Gamma(p+1)}{2 \Gamma(p+3/2)} \right)^{1/p} \left(\frac{2(s+1)^{1/q} (b-a)}{2(b-a)} \right)^{1/q}
\]
holds for each \(x \in [a, b] \) if \(f'' \in L[a, b] \) and \(|f''|^q\) is \(s \)-convex on \([a, b]\).

Proof. From (4) together with the triangular and Hölder inequalities we clearly see that
\[
\left| \frac{(x-a)^2 - (b-x)^2}{2(b-a)} f''(x) + 2 f(b)(b-x) + 2 f(a)(x-a) - \frac{1}{b-a} \int_a^b f(t) dt \right| \leq \frac{(x-a)^3}{2(b-a)} \left(\int_0^1 (1-t)^2 t^p dt \right)^{1/p} \left(\frac{1}{b-a} \int_0^1 f''(x) dt \right)^{1/q}
\]
plus \(\frac{(b-x)^3}{2(b-a)} \left(\int_0^1 (1-t)^2 t^p dt \right)^{1/p} \left(\frac{1}{b-a} \int_0^1 f''(x) dt \right)^{1/q} \).

Making use of the \(s \)-convexity of \(|f''|^q\), we get
\[
\int_0^1 |f''(x)|^q dx \leq \frac{\Gamma(1/2) \Gamma(p+1)}{2 \Gamma(p+3/2)} \left(\int_0^1 (1-t)^2 t^p dt \right)^{1/p} \left(\frac{1}{s+1} \int_0^1 |f''|^q dx \right)^{1/q}.
\]

Therefore, inequality (9) follows easily from the (10)-(13).
Corollary 2.5. Under the assumptions of Theorem 2.4, we have

\[
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(t) dt \right| \leq \frac{(b-a)^2}{16(s+1)^{1/q}} \left[\Gamma(1/2) \Gamma(p + 1) \right]^{1/p} \frac{1}{2 \Gamma(p + 3/2)} \times \left[\left| f''(a) \right|^q + \left| f'' \left(\frac{a+b}{2} \right) \right|^q \right]^{1/q} + \left| f''(b) \right|^q \left(\frac{a+b}{2} \right)^q \right]^{1/q} \right].
\]

Proof. Let \(x = (a+b)/2 \), then inequality (9) leads to the first inequality of (14) immediately. While the second inequality of (14) can be derived easily from the \(s \)-convexity of \(|f''|^q \) and the elementary inequality

\[
\sum_{k=1}^{n} (\alpha_k + \beta_k)^\sigma \leq \sum_{k=1}^{n} \alpha_k^\sigma + \sum_{k=1}^{n} \beta_k^\sigma
\]

for \(\alpha_1, \beta_1, \alpha_2, \beta_2, \ldots, \alpha_n, \beta_n \geq 0 \) and \(0 \leq \sigma \leq 1 \). \(\square \)

Remark 2.6. If \(s = 1 \), then the second inequality of (14) becomes

\[
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(t) dt \right| \leq \frac{(b-a)^2}{32} \left(\Gamma(1/2) \Gamma(p + 1) \right) \frac{1}{2 \Gamma(p + 3/2)} \left[\left(\frac{1}{2} \right)^{1/q} + \left(\frac{3}{2} \right)^{1/q} \right] \left(|f''(a)| + |f''(b)| \right).
\]

Theorem 2.7. Let \(s \in (0, 1] \), \(p, q > 1 \) with \(1/p + 1/q = 1 \), \(f : I \subseteq [0, \infty) \rightarrow \mathbb{R} \) be a twice differentiable mapping on \(I^0 \), and \(a, b \in I^0 \) with \(a < b \). Then the inequality

\[
\left| \frac{(x-a)^2 - (b-x)^2}{2(b-a)} f'(x) + 2f(b)(b-x) + 2f(a)(x-a) - \frac{1}{b-a} \int_a^b f(t) dt \right| \leq \frac{\Gamma(1/2) \Gamma(p + 1)}{2 \Gamma(p + 3/2)} \left(x-a \right)^3 \left| f'' \left(\frac{x+a}{2} \right) \right| + \left(b-x \right)^3 \left| f'' \left(\frac{x+b}{2} \right) \right| \times 2^{1-(s/2)/q} (b-a)
\]

holds for any \(x \in [a, b] \) if \(f'' \in L[a, b] \) and \(|f''|^q \) is \(s \)-concave on \([a, b] \).

Proof. It follows from the \(s \)-concavity of \(|f''|^q \) and (3) that

\[
\int_0^1 \left| f''(ta + (1-t)x) \right|^q \leq 2^{s-1} \left| f'' \left(\frac{x+a}{2} \right) \right|^q,
\]

\[
\int_0^1 \left| f''(tb + (1-t)x) \right|^q \leq 2^{s-1} \left| f'' \left(\frac{x+b}{2} \right) \right|^q.
\]

Therefore, inequality (15) follows from (4), (13), (16) and (17) together with the Hölder inequalities

\[
\int_0^1 (1-t^2) f''(ta + (1-t)x) dt \leq \left(\int_0^1 (1-t^2)^p dt \right)^{1/p} \left(\int_0^1 \left| f''(ta + (1-t)x) \right|^q dt \right)^{1/q},
\]
\[
\int_0^1 (1 - t^2) f''(tb + (1 - t)x) dt \leq \left(\int_0^1 (1 - t^2)^p dt \right)^{1/p} \left(\int_0^1 \left| f''(tb + (1 - t)x) \right|^q dt \right)^{1/q} \]

Corollary 2.8. Under the assumptions of Theorem 2.7, one has

\[
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(t) dt \right| \leq \frac{2^{1/q} (b-a)^2}{32} \left(\frac{\Gamma(1/2) \Gamma(p + 1)}{\Gamma(p + 3/2)} \right)^{1/p} \left| f'' \left(\frac{a + b}{2} \right) \right|.
\]

Proof. Let \(x = (a+b)/2 \), then inequality (15) leads to the first inequality of (18) immediately. While the second inequality of (18) can be obtained by the \(s \)-concavity of \(|f''| \) due to the fact that \(|f''|^q \) is \(s \)-concave, indeed, the \(s \)-concavity of \(|f''|^q \) leads to the conclusion that

\[
(t^s |f''(a)| + (1-t)^s |f''(b)|)^q \leq t^s |f''(a)|^q + (1-t)^s |f''(b)|^q \leq |f''(ta + (1-t)b)|^q.
\]

Remark 2.9. Let \(s = 1 \), then from the second inequality of (18), we get

\[
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(t) dt \right| \leq \frac{2^{1/q} (b-a)^2}{16} \left(\frac{\Gamma(1/2) \Gamma(p + 1)}{\Gamma(p + 3/2)} \right)^{1/p} \left| f'' \left(\frac{a + b}{2} \right) \right|.
\]

Theorem 2.10. Let \(s \in (0, 1] \), \(q > 1 \), \(f : I \subseteq [0, \infty) \rightarrow \mathbb{R} \) be a twice differentiable mapping on \(I^o \), and \(a, b \in I^o \) with \(a < b \). Then the inequality

\[
\left| \frac{(x-a)^2 - (b-x)^2}{2(b-a)} f''(x) + 2 f(b)(b-x) + 2 f(a)(a-x) - \frac{1}{b-a} \int_a^b f(t) dt \right| \leq \frac{3^{1/q} (b-a)^3}{2} \left(\frac{2(s+2)(s+3)}{(s+2)(s+3)} |f''(a)|^q + \frac{2(s+2)(s+3)}{(s+2)(s+3)} |f''(b)|^q \right)^{1/q}
\]

holds for any \(x \in [a, b] \) if \(f'' \in L[a, b] \) and \(|f''|^q \) is \(s \)-convex on \([a, b] \).

Proof. It follows from (4) and the power-mean inequality that

\[
\left| \frac{(x-a)^2 - (b-x)^2}{2(b-a)} f''(x) + 2 f(b)(b-x) + 2 f(a)(a-x) - \frac{1}{b-a} \int_a^b f(t) dt \right| \leq \frac{(x-a)^3}{2(b-a)} \int_0^1 (1 - t^2)|f''(ta + (1-t)x)| dt
\]

\[
+ \frac{(b-x)^3}{2(b-a)} \int_0^1 (1 - t^2)|f''(tb + (1-t)x)| dt
\]
From the \(s \)-convexity of \(|f''|^q \) on \([a, b]\) we get

\[
\int_0^1 (1-t^2) |f''(ta + (1-t)x)|^q dt \leq \int_0^1 (1-t^2) \left[t^s |f''(a)|^q + (1-t)^s |f''(x)|^q \right] dt
\]

\[= \frac{2}{(s+1)(s+2)} |f''(a)|^q + \frac{(s+2)(s+3) - 2}{(s+1)(s+2)(s+3)} |f''(x)|^q \]

and

\[
\int_0^1 (1-t^2) |f''(tb + (1-t)x)|^q dt \leq \int_0^1 (1-t^2) \left[t^s |f''(b)|^q + (1-t)^s |f''(x)|^q \right] dt
\]

\[= \frac{2}{(s+1)(s+2)} |f''(b)|^q + \frac{(s+2)(s+3) - 2}{(s+1)(s+2)(s+3)} |f''(x)|^q. \]

Note that

\[
\int_0^1 (1-t^2) dt = \frac{2}{3}
\]

Therefore, inequality (19) follows from (20)-(23).

\[\square\]

Corollary 2.11. Under the assumptions of Theorem 2.10, one has

\[
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(t) dt \right| \leq \left(\frac{\alpha}{2} \right)^{1/q} \frac{(b-a)^2}{24} \left[\frac{2}{(s+1)(s+3)} |f''(a)|^q + \frac{(s+2)(s+3) - 2}{(s+1)(s+2)(s+3)} \left| f'' \left(\frac{a+b}{2} \right) \right|^q \right]^{1/q} + \left(\frac{\beta}{2} \right)^{1/q} \frac{(b-a)^2}{24} \left[\frac{2}{(s+1)(s+3)} |f''(b)|^q + \frac{(s+2)(s+3) - 2}{(s+1)(s+2)(s+3)} \left| f'' \left(\frac{a+b}{2} \right) \right|^q \right]^{1/q}
\]

\[+ \left(\frac{\gamma}{2} \right)^{1/q} \frac{(b-a)^2}{24} \left[\frac{2}{(s+1)(s+3)} + \frac{(s+2)(s+3) - 2}{2^s(s+1)(s+2)(s+3)} \right]^{1/q} \left(|f''(a)| + |f''(b)| \right) \]

\[+ \left(\frac{\delta}{2} \right)^{1/q} \frac{(b-a)^2}{24} \left[\frac{(s+2)(s+3) - 2}{2^s(s+1)(s+2)(s+3)} \right]^{1/q} \left(|f''(a)| + |f''(b)| \right). \]
Proof. Let \(x = (a + b)/2 \), then the first inequality of (24) can be obtained from inequality (19) immediately. While the second inequality of (24) follows from the \(s \)-convexity of \(|f'''|q \) and the inequality
\[
\sum_{k=1}^{n} (\alpha_k + \beta_k)^{\sigma} \leq \sum_{k=1}^{n} \alpha_k^{\sigma} + \sum_{k=1}^{n} \beta_k^{\sigma}
\]
for \(\alpha_1, \beta_1, \alpha_2, \beta_2, \ldots, \alpha_n, \beta_n \geq 0 \) and \(0 \leq \sigma \leq 1 \).

Remark 2.12. If \(s = 1 \), the inequality (24) leads to
\[
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_{a}^{b} f(t) \, dt \right| \leq \left(\frac{2}{3} \right)^{1/3} \left(\frac{24}{11} \right)^{1/3} \left(\frac{5}{24} \right)^{1/3} \left(|f''(a)| + |f''(b)| \right).
\]

3 Hermite-Hadamard type inequalities for fractional integrals

Theorem 3.1. Let \(s \in (0, 1] \), \(\eta > 0 \), \(f : I \subseteq [0, \infty) \rightarrow \mathbb{R} \) be a twice differentiable mapping on \(I^0 \), and \(a, b \in I^0 \) with \(a < b \). Then the inequality
\[
\left| \frac{(x-a)^{\eta+1} - (b-x)^{\eta+1}}{(\eta + 1)(b-a)} f'(x) + (\eta + 1) f(b)(b-x) + (\eta + 1) f(a)(x-a) - \frac{1}{b-a} \int_{a}^{b} f(t) \, dt \right|
\]
\[
\leq \frac{(x-a)^{\eta+1} + (b-x)^{\eta+1}}{(\eta + 1)(b-a)} \left[\frac{\eta + 1}{(s+1)(s+\eta+2)} |f''(a)| + \left(\frac{1}{s+1} - \frac{\Gamma(\eta + 2)\Gamma(s + 1)}{\Gamma(\eta + s + 3)} \right) |f''(x)| \right]
\]
\[
+ \frac{(b-x)^{\eta+1} + (b-x)^{\eta+1}}{(\eta + 1)(b-a)} \left[\frac{\eta + 1}{(s+1)(s+\eta+2)} |f''(b)| + \left(\frac{1}{s+1} - \frac{\Gamma(\eta + 2)\Gamma(s + 1)}{\Gamma(\eta + s + 3)} \right) |f''(x)| \right].
\]
holds for all \(x \in [a, b] \) if \(f'' \in L[a, b] \) and \(|f'''| \) is \(s \)-convex on \([a, b]\).

Proof. It follows from (6) and the triangle inequality together with the \(s \)-convexity of \(|f'''| \) that
\[
\left| \frac{(x-a)^{\eta+1} - (b-x)^{\eta+1}}{(\eta + 1)(b-a)} f'(x) + (\eta + 1) f(b)(b-x) + (\eta + 1) f(a)(x-a) - \frac{1}{b-a} \int_{a}^{b} f(t) \, dt \right|
\]
\[
\leq \frac{(x-a)^{\eta+1} + (b-x)^{\eta+1}}{(\eta + 1)(b-a)} \int_{0}^{1} (1-t^{\eta+1}) |f''(ta + (1-t)x)| \, dt
\]
\[
+ \frac{(b-x)^{\eta+1} + (b-x)^{\eta+1}}{(\eta + 1)(b-a)} \int_{0}^{1} (1-t^{\eta+1}) |f''(tb + (1-t)x)| \, dt
\]
\[
\leq \frac{(x-a)^{\eta+2}}{(\eta + 1)(b-a)} \int_{0}^{1} (1-t^{\eta+1}) \left[t^{s} |f''(a)| + (1-t)^{s} |f''(x)| \right] \, dt
\]
\[
+ \frac{(b-x)^{\eta+2}}{(\eta + 1)(b-a)} \int_{0}^{1} (1-t^{\eta+1}) \left[t^{s} |f''(b)| + (1-t)^{s} |f''(x)| \right] \, dt
\]
\[
= \frac{(x-a)^{\eta+2}}{(\eta + 1)(b-a)} \left[\frac{\eta + 1}{(s+1)(s+\eta+2)} |f''(a)| + \left(\frac{1}{s+1} - \frac{\Gamma(\eta + 2)\Gamma(s + 1)}{\Gamma(\eta + s + 3)} \right) |f''(x)| \right]
\]
\[
+ \frac{(b-x)^{\eta+2}}{(\eta + 1)(b-a)} \left[\frac{\eta + 1}{(s+1)(s+\eta+2)} |f''(b)| + \left(\frac{1}{s+1} - \frac{\Gamma(\eta + 2)\Gamma(s + 1)}{\Gamma(\eta + s + 3)} \right) |f''(x)| \right].
\]
Remark 3.2. Let $\eta = 1$ in Theorem 3.1, then we get inequality (7) given in Theorem 2.1.

Corollary 3.3. Under the assumptions of Theorem 3.1, we have

\[
\left(\frac{b-a}{2}\right)^{\eta-1} \frac{f(a) + f(b)}{2} - \frac{\Gamma(\eta+1)}{b-a} \left[J_{a+}^{\eta} f \left(\frac{a+b}{2} \right) + J_{b-}^{\eta} f \left(\frac{a+b}{2} \right) \right] \leq \left(\frac{b-a}{2}\right)^{\eta+1} \left(\frac{1}{\Gamma(\eta+1)} \left[(s+1) \frac{1}{s+1} - \frac{\Gamma(\eta+1)}{\Gamma(\eta+3)} \right] \right) \leq \frac{(b-a)^{\eta+1}}{2^{\eta+1}(q+1)} \left[(s+1) \frac{1}{s+1} - \frac{\Gamma(\eta+1)}{\Gamma(\eta+3)} \right].
\]

Proof. Let $x = (a+b)/2$, then inequality (25) leads to the first inequality of (26). While the second inequality of (26) can be derived from the s-convexity of $|f''|$. \hfill \square

Remark 3.4. Let $s = 1$, then the second inequality of (26) leads to

\[
\left(\frac{b-a}{2}\right)^{\eta-1} \frac{f(a) + f(b)}{2} - \frac{\Gamma(\eta+1)}{b-a} \left[J_{a+}^{\eta} f \left(\frac{a+b}{2} \right) + J_{b-}^{\eta} f \left(\frac{a+b}{2} \right) \right] \leq \frac{(b-a)^{\eta+1}}{2^{\eta+3}(q+1)} \left[\frac{\eta+1}{\eta+2} - \frac{2\Gamma(\eta+1)}{\Gamma(\eta+4)} \right].
\]

Theorem 3.5. Let $\eta > 0$, $s \in (0,1]$, $p, q > 1$ with $1/p + 1/q = 1$, $M = \Gamma(1+p)/\Gamma(1/(\eta+1))\Gamma(1+(\eta+1))$, $f : I \subseteq [0, \infty) \rightarrow \mathbb{R}$ be a twice differentiable mapping on I°, and $a, b \in I^\circ$ with $a < b$. Then the inequality

\[
\left[\frac{(x-a)^{\eta+1} - (b-x)^{\eta+1}}{(x-a)^{\eta+1} + (b-x)^{\eta+1}} \right] f'(x) + \frac{\Gamma(\eta+2)}{\eta+2} \left[\frac{\eta+1}{\eta+2} - \frac{2\Gamma(\eta+1)}{\Gamma(\eta+4)} \right] M^{1/p}
\]

holds for all $x \in [a, b]$ if $f'' \in L[a, b]$ and $|f''|^{q}$ is s-convex on $[a, b]$.

Proof. It follows from (6) and the Hölder inequality together with the s-convexity of $|f''|^{q}$ that

\[
\left[\frac{(x-a)^{\eta+1} - (b-x)^{\eta+1}}{(x-a)^{\eta+1} + (b-x)^{\eta+1}} \right] f'(x) + \frac{\Gamma(\eta+2)}{\eta+2} \left[\frac{\eta+1}{\eta+2} - \frac{2\Gamma(\eta+1)}{\Gamma(\eta+4)} \right] M^{1/p}
\]

and inequalities (11) and (12) hold.

Note that

\[
\int_{0}^{1} (1-t)^{n+1} dt = \frac{1}{\eta+1} \int_{0}^{1} u^{1/(\eta+1)-1}(1-u)^{p} du = M.
\]

Therefore, inequality (27) follows from (11), (12), (28) and (29). \hfill \square
Remark 3.6. Let \(\eta = 1 \), then Theorem 3.5 leads to Theorem 2.4.

Let \(x = (a + b)/2 \), then the following Corollary 3.7 can be obtained from (27) and the \(s \)-convexity of \(|f''|^{q} \) together with the inequality

\[
\sum_{k=1}^{n} (\alpha_{k} + \beta_{k})^{\sigma} \leq \sum_{k=1}^{n} \alpha_{k}^{\sigma} + \sum_{k=1}^{n} \beta_{k}^{\sigma}
\]

for \(\alpha_1, \beta_1, \alpha_2, \beta_2, \ldots, \alpha_n, \beta_n \geq 0 \) and \(0 \leq \sigma \leq 1 \).

Corollary 3.7. Under the assumptions of Theorem 3.5, we have the inequality as follows:

\[
\begin{align*}
&\left(\frac{b}{2}\right)^{n-1} \frac{f(a) + f(b)}{b-a} - \frac{\Gamma(\eta + 1)}{b-a} \left[J_{a+}^{\eta} f \left(\frac{a+b}{2} \right) + J_{b-}^{\eta} f \left(\frac{a+b}{2} \right) \right] \\
\leq &\frac{(b-a)^{q+1} \Gamma(\eta + 1)}{2^{q+1}(\eta + 1)^{1/q}} \left[\left(f''(a) \right)^{q} + \left(f''(b) \right)^{q} \right]^{1/q} \\
&\left[\left(\frac{1}{2} \right)^{1/q} + \left(\frac{1}{2} \right)^{1/q} \right].
\end{align*}
\]

Remark 3.8. Let \(s = 1 \), then the second inequality of (30) leads to

\[
\begin{align*}
&\left(\frac{b}{2}\right)^{n-1} \frac{f(a) + f(b)}{b-a} - \frac{\Gamma(\eta + 1)}{b-a} \left[J_{a+}^{\eta} f \left(\frac{a+b}{2} \right) + J_{b-}^{\eta} f \left(\frac{a+b}{2} \right) \right] \\
\leq &\frac{(b-a)^{q+1} \left(f''(a) \right)^{q} + \left(f''(b) \right)^{q} \right]}{2^{q+1+1/q}(\eta + 1)} \left[\left(\frac{1}{2} \right)^{1/q} + \left(\frac{1}{2} \right)^{1/q} \right].
\end{align*}
\]

Theorem 3.9. Let \(\eta > 0, s \in (0, 1), p, q > 1 \) with \(1/p + 1/q = 1 \), \(M = \Gamma(1 + p)\Gamma(1/(\eta + 1))/[(\eta + 1)\Gamma(1 + p + 1/(\eta + 1))] \), \(f : I \subseteq [0, \infty) \to \mathbb{R} \) be a twice differentiable mapping on \(I^{s} \), and \(a, b \in I^{s} \) with \(a < b \). Then the inequality

\[
\begin{align*}
&\left(b-a \right)^{q+1} f''(x) + (\eta + 1) f(b)(b-x) + (\eta + 1) f(a)(x-a) \\
\leq &\frac{1}{b-a} \int_{a}^{b} f(t) dt
\end{align*}
\]

holds for all \(x \in [a, b] \) if \(f'' \in L[a, b] \) and \(|f''|^{q} \) is \(s \)-concave on \([a, b] \).

Proof. Theorem 3.9 follows easily from (16), (17), (28) and (29).

Remark 3.10. Let \(\eta = 1 \), then Theorem 3.9 becomes Theorem 2.7.

Letting \(x = (a + b)/2 \) and making use of the \(s \)-convexity of \(|f''| \), then inequality (31) leads to Corollary 3.11 immediately.

Corollary 3.11. Under the assumptions of Theorem 3.9, one has

\[
\begin{align*}
&\left(\frac{b}{2}\right)^{n-1} \frac{f(a) + f(b)}{b-a} - \frac{\Gamma(\eta + 1)}{b-a} \left[J_{a+}^{\eta} f \left(\frac{a+b}{2} \right) + J_{b-}^{\eta} f \left(\frac{a+b}{2} \right) \right] \\
\leq &\frac{2^{(q-1)/q} (b-a)^{q+1} \Gamma(\eta + 1)}{2^{q+2}(\eta + 1)} \left[\left(\frac{3a+b}{4} \right)^{q} + \left(\frac{a+3b}{4} \right)^{q} \right] \\
&\left[\left(\frac{3a+b}{4} \right)^{q} + \left(\frac{a+3b}{4} \right)^{q} \right].
\end{align*}
\]
Remark 3.12. Let \(s = 1 \) in the second inequality of (32), then we get
\[
\left| \left(\frac{b-a}{2} \right)^{n-1} \frac{f(a) + f(b)}{2} - \frac{\Gamma(n+1)}{b-a} \left[J_{a+}^n f\left(\frac{a+b}{2} \right) + J_{b-}^n f\left(\frac{a+b}{2} \right) \right] \right|
\leq \left(\frac{b-a}{2} \right)^{n+1} \frac{M^{1/p}}{2^{n+1}(\eta + 1)} \left| f'' \left(\frac{a+b}{2} \right) \right|.
\]

Theorem 3.13. Let \(\eta > 0, s \in (0, 1], q > 1, f : I \subseteq [0, \infty) \to \mathbb{R} \) be a twice differentiable mapping on \(I^\circ \), and \(a, b \in I^\circ \) with \(a < b \). Then the inequality
\[
\left| \left(x-a \right)^{\eta+1} - \left(b-x \right)^{\eta+1} \right| f'(x) + (\eta + 1) f(b)(b-x) + (\eta + 1) f(a)(x-a)
\leq \frac{1}{b-a} \int_a^b f(t)dt
\]
holds for all \(x \in [a, b] \) if \(f'' \in L[a, b] \) and \(|f''|^q \) is \(s \)-convex on \([a, b] \).

Proof. By use of (6) and the power-mean inequality, we have
\[
\left| \left(x-a \right)^{\eta+1} - \left(b-x \right)^{\eta+1} \right| f'(x) + (\eta + 1) f(b)(b-x) + (\eta + 1) f(a)(x-a)
\leq \frac{1}{b-a} \int_a^b f(t)dt
\]
\[
\leq \left(\frac{x-a}{\eta + 1}(b-a) \right)^{\eta+2} \int_0^1 \left(1-t^{\eta+1} \right) |f''(ta + (1-t)x)|dt
\]
\[
+ \left(\frac{b-x}{\eta + 1}(b-a) \right)^{\eta+2} \int_0^1 \left(1-t^{\eta+1} \right) |f''(tb + (1-t)x)|dt
\]
\[
\leq \left(\frac{x-a}{\eta + 1}(b-a) \right)^{\eta+2} \left(\int_0^1 \left(1-t^{\eta+1} \right) dt \right)^{1-1/q} \left(\int_0^1 \left(1-t^{\eta+1} \right) |f''(ta + (1-t)x)|^q dt \right)^{1/q}
\]
\[
+ \left(\frac{b-x}{\eta + 1}(b-a) \right)^{\eta+2} \left(\int_0^1 \left(1-t^{n+1} \right) dt \right)^{1-1/q} \left(\int_0^1 \left(1-t^{\eta+1} \right) |f''(tb + (1-t)x)|^q dt \right)^{1/q}.
\]
It follows from the \(s \)-convexity of \(|f''|^q \) on \([a, b] \) that
\[
\int_0^1 \left(1-t^{\eta+1} \right) |f''(ta + (1-t)x)|^q dt \leq \frac{(\eta + 1)|f''(a)|^q}{(s+1)(s+\eta+2)} + \frac{1}{s+1} - \frac{\Gamma(s+1)\Gamma(\eta+2)}{\Gamma(s+\eta+3)} |f''(x)|^q.
\]
(35)
\[
\int_0^1 \left(1-t^{\eta+1} \right) |f''(tb + (1-t)x)|^q dt \leq \frac{(\eta + 1)|f''(b)|^q}{(s+1)(s+\eta+2)} + \frac{1}{s+1} - \frac{\Gamma(s+1)\Gamma(\eta+2)}{\Gamma(s+\eta+3)} |f''(x)|^q.
\]
(36)

Note that
\[
\int_0^1 \left(1-t^{\eta+1} \right) dt = \frac{\eta + 1}{\eta + 2}.
\]
(37)

Therefore, Theorem 3.13 follows from (34)-(37).
Remark 3.14. Let $\eta = 1$, then Theorem 3.13 becomes Theorem 2.10.

Let $x = (a + b)/2$, then from (33) and the s-convexity of $|f'''|^q$ we get Corollary 3.15 immediately.

Corollary 3.15. Under the assumptions of Theorem 3.13, one has

\[
\left| \left(\frac{b-a}{2} \right)^{n-1} \frac{f(a) + f(b)}{b-a} - \frac{\Gamma(\eta + 1)}{b-a} \left[J_0^{\eta} a f \left(\frac{a+b}{2} \right) + J_0^{\eta} b f \left(\frac{a+b}{2} \right) \right] \right|^{\eta} \leq \frac{(b-a)^{n+1}}{2^{n+2}(q+2)} \left(\frac{\eta + 2}{\eta + 1} \right)^{1/q} \left[M_1 |f''(a)|^q + M_2 |f''(a)|^q \right]^{1/q} + \frac{M_1 |f''(b)|^q + M_2 |f''(b)|^q}{2} \left(\frac{2^{n+2}}{q} \right)^{1/q} \left(|f''(a)| + |f''(b)| \right).
\]

where $M_1 = (\eta + 1)/[(s+1)(s+\eta+2)]$ and $M_2 = 1/(s+1) - \Gamma(s+1)\Gamma(\eta+2)/\Gamma(s+\eta+3)$.

Remark 3.16. Let $s = 1$, then inequality (38) leads to

\[
\left| \left(\frac{b-a}{2} \right)^{n-1} \frac{f(a) + f(b)}{b-a} - \frac{\Gamma(\eta + 1)}{b-a} \left[J_0^{\eta} a f \left(\frac{a+b}{2} \right) + J_0^{\eta} b f \left(\frac{a+b}{2} \right) \right] \right|^{\eta} \leq \frac{(b-a)^{n+1}}{2^{n+2}(q+2)} \left(\frac{\eta + 2}{\eta + 1} \right)^{1/q} \left[\left(\frac{\eta + 1}{2\eta + 6} \right)^{1/q} + \frac{1}{4} \right]^{1/q} \left(\frac{\Gamma(\eta + 2)}{2\Gamma(\eta + 4)} \right)^{1/q} \left(|f''(a)| + |f''(b)| \right).
\]

4 Applications to trapezoidal formula

Let d be a division $a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b$ of the interval $[a, b]$ and consider the quadrature formula

\[
\int_a^b f(x) dx = T(f,d) + E(f,d),
\]

where

\[
T(f,d) = \frac{1}{2} \sum_{i=0}^{n-1} \frac{f(x_i) + f(x_{i+1})}{x_{i+1} - x_i} (x_{i+1} - x_i)
\]

is the trapezoidal version and $E(f,d)$ denotes the associated approximation error.

Theorem 4.1. Let $s \in (0,1]$, $f : I \subseteq [0, \infty) \to \mathbb{R}$ be a twice differentiable mapping on I^0, $a, b \in I^0$ with $a < b$ and d be a division $a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b$ of the interval $[a, b]$. Then the inequality

\[
|E(f,d)| \leq \frac{1}{(s+1)(s+3)} + \frac{(s+2)(s+3) - 2}{2^s(s+1)(s+2)(s+3)} \sum_{i=0}^{n-1} \left(x_{i+1} - x_i \right)^3 \frac{|f''(x_i)| + |f''(x_{i+1})|}{8}
\]

holds if $f'' \in L[a,b]$ and $|f''|$ is s-convex on $[a,b]$.

Proof. Let $i \in \{0,1,2,\cdots,n-1\}$, then applying Corollary 2.2 on the interval $[x_i, x_{i+1}]$ we get

\[
\left| \frac{f(x_i) + f(x_{i+1})}{2} - \frac{1}{x_{i+1} - x_i} \int_{x_i}^{x_{i+1}} f(x) dx \right|
\]
Therefore,

$$\left| E(f, d) \right| = \left| \int_a^b f(x)dx - T(f, d) \right|$$

$$= \left| \sum_{i=0}^{n-1} \left[\int_{x_i}^{x_{i+1}} f(x)dx - \frac{f(x_i) + f(x_{i+1})}{2} (x_{i+1} - x_i) \right] \right|$$

$$\leq \sum_{i=0}^{n-1} \left[\frac{1}{(s+1)(s+3)} + \frac{(s+2)(s+3) - 2}{2s(s+1)(s+2)(s+3)} \right] \frac{(x_{i+1} - x_i)^3}{8}$$

Theorem 4.2. Let \(s \in (0, 1], \ p, q > 1 \) with \(1/p + 1/q = 1 \). \(f : I \subseteq [0, \infty) \rightarrow \mathbb{R} \) be a twice differentiable mapping on \(I^o \), \(a, b \in I^o \) with \(a < b \) and \(d \) be a division \(a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b \) of the interval \([a, b] \). Then the inequality

$$\left| E(f, d) \right| \leq \frac{\Gamma(1/2) \Gamma(p+1)}{2^{p+3/2}} \left[\frac{1}{2^q} + \left(1 + \frac{1}{2^q} \right)^{1/q} \right] \sum_{i=0}^{n-1} \frac{(x_{i+1} - x_i)^3}{16(s+1)^{1/q}}$$

holds if \(f'' \in L[a, b] \) and \(\left| f'' \right|^q \) is s-convex on \([a, b] \).

Theorem 4.3. Let \(s \in (0, 1], \ p, q > 1 \) with \(1/p + 1/q = 1 \). \(f : I \subseteq [0, \infty) \rightarrow \mathbb{R} \) be a twice differentiable mapping on \(I^o \), \(a, b \in I^o \) with \(a < b \) and \(d \) be a division \(a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b \) of the interval \([a, b] \). Then the inequality

$$\left| E(f, d) \right| \leq \frac{2^{q+1} s^q}{32} \left[\frac{\Gamma(1/2) \Gamma(p+1)}{\Gamma(p+3/2)} \right] \left[\frac{2}{(s+1)(s+3)} + \Delta(s) \right]^{1/q} \sum_{i=0}^{n-1} \frac{(x_{i+1} - x_i)^3}{24}$$

holds if \(f'' \in L[a, b] \) and \(\left| f'' \right|^q \) is s-concave on \([a, b] \).

Theorem 4.4. Let \(s \in (0, 1], \ q > 1 \). \(f : I \subseteq [0, \infty) \rightarrow \mathbb{R} \) be a twice differentiable mapping on \(I^o \), \(a, b \in I^o \) with \(a < b \) and \(d \) be a division \(a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b \) of the interval \([a, b] \). Then the inequality

$$\left| E(f, d) \right| \leq \left(\frac{3}{2} \right)^{1/q} \left[\frac{2}{(s+1)(s+3)} + \Delta(s) \right]^{1/q} \sum_{i=0}^{n-1} \frac{(x_{i+1} - x_i)^3}{24}$$

holds if \(f'' \in L[a, b] \) and \(\left| f'' \right|^q \) is s-convex on \([a, b] \), where

$$\Delta(s) = \frac{(s+2)(s+3) - 2}{2s(s+1)(s+2)(s+3)}.$$
5 Conclusion

In the article, we present several new Hermite-Hadamard type inequalities and error estimations for the trapezoidal formula involving the s-convex and s-concave functions for the classical and Riemann-Liouville fractional integrals.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the manuscript, and they read and approved the final manuscript.

Acknowledgement: The authors express their gratitude to the referees for very helpful and detailed comments and suggestions, which have significantly improved the presentation of this paper. The research was supported by the Natural Science Foundation of China under Grants 61673169, 61374086, 11371125, 11401191, 11701176, the Tianyuan Special Funds of the National Natural Science Foundation of China under Grant 11626101 and the Natural Science Foundation of the Department of Education of Zhejiang Province under GrantY201635325.

References

[1] Borwein J. M., Vanderwerff J. D., Convex Functions: Constructions, Characterizations and Counterexamples, Cambridge University Press, Cambridge, 2010
[2] Zhang X. M., Chu Y. M., Convexity of the integral arithmetic mean of a convex function, Rocky Mountain J. Math., 2010, 40(3), 1061–1068
[3] Wang M. K., Qiu S. L., Chu Y. M., Jiang Y. P., Generalized Hersch-Pfluger distortion function and complete elliptic integrals, J. Math. Anal. Appl., 2012, 385(1), 221–229
[4] Chu Y. M., Xia W. F., Zhang X. H., The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications, J. Multivariate Anal., 2012, 105, 412–421
[5] Chu Y. M., Wang M. K., Qiu S. L., Optimal combinations bounds of root-square and arithmetic means for Toader mean, Proc. Indian Acad. Sci. Math. Sci., 2012, 122(1), 41–51
[6] Qiu S. L., Qiu Y. F., Wang M. K., Chu Y. M., Hölder mean inequalities for the generalized Grötzsch ring and Hersch-Pfluger distortion functions, Math. Inequal. Appl., 2012, 15(1), 237–245
[7] Wang M. K., Chu Y. M., Qiu S. L., Jiang Y. P., Bounds for the perimeter of an ellipse, J. Approx. Theory, 2012, 164(7), 928–937
[8] Chu Y. M., Wang M. K., Optimal Lehmer mean bounds for the Toader mean, Results Math., 2012, 61(3-4), 223–229
[9] Chu Y. M., Wang M. K., Jiang Y. P., Qiu S. L., Concavity of the complete elliptic integrals of the second kind with respect to Hölder means, J. Math. Anal. Appl., 2012, 395(2), 637–642
[10] Chu Y. M., Qiu Y. F., Wang M. K., Hölder mean inequalities for the complete elliptic integrals, Integral Transforms Spec. Funct., 2012, 23(7), 521–527
[11] Xia W. F., Zhang X. H., Wang G. D., Chu Y. M., Some properties for a class of symmetric functions with applications, Indian J. Pure Appl. Math., 2012, 43(3), 227–249
[12] Chu Y. M., Wang M. K., Wang Z. K., Best possible inequalities among harmonic, geometric, logarithmic and Seiffert means, Math. Inequal. Appl., 2012, 15(2), 415–422
[13] Ma X. Y., Wang M. K., Zhong G. H., Qiu S. L., Chu Y. M., Some inequalities for the generalized distortion functions, Math. Inequal. Appl., 2012, 15(4), 941–954
[14] Wang M. K., Chu Y. M., Asymptotical bounds for complete elliptic integrals of the second kind, J. Math. Anal. Appl., 2013, 402(1), 119–126
[15] Wang M. K., Chu Y. M., Song Y. Q., Asymptotical formulas for Gaussian and generalized hypergeometric functions, Appl. Math. Comput., 2016, 276, 44–60
[16] Wang M. K., Chu Y. M., Refinements of transformation inequalities for zero-balanced hypergeometric functions, Acta Math. Sci., 2017, 37B(3), 602–622
[17] Yang Z. H., Chu Y. M., A monotonicity property involving the generalized elliptic integral of the first kind, Math. Inequal. Appl., 2017, 20(3), 729–735
[18] Yang Z. H., Qian W. M., Chu Y. M., Zhang W., Monotonicity rule for the quotient of two functions and its applications, J. Inequal. Appl., 2017, Article 106, 13 pages
[19] Yang Z. H., Qian W. M., Chu Y. M., On rational bounds for the gamma function, J. Inequal. Appl., 2017, Article 210, 17 pages
[20] Wang M. K., Li Y. M., Chu Y. M., Inequalities and infinite product formula for Ramanujan generalized modular equation function, Ramanujan J., DOI: 10.1007/s11139-017-9888-3
[21] Yang Z. H., Qian W. M., Chu Y. M., Zhang W., On approximating the error function, Math. Inequal. Appl. (in press)
[22] Hadamard J., Étude sur les propriétés des fonctions entières en particulier d’une fonction considérée par Riemann, J. Math. Pures Appl., 1893, 58, 171–215
[23] Wu S. H., On the weighted generalization of the Hermite-Hadamard inequality and its applications, Rocky Mountain J. Math., 2009, 39(5), 1741–1749
[24] Zhang X. M., Chu Y. M., Zhang X. H., The Hermite-Hadamard type inequality of GA-convex functions and its applications, J. Inequal. Appl., 2010, 2010, Article ID 507560, 11 pages
[25] Wang M. K., Chu Y. M., Qiu S. L., Jiang Y. P., Convexity of the complete elliptic integrals of the first kind with respect to Hölder mean, J. Math. Anal. Appl., 2012, 388(2), 1141–1146
[26] Chu Y. M., Wang M. K., Qiu S. L., Jiang Y. P., Bounds for complete elliptic integrals of the second kind with applications, Comput. Math. Appl., 2012, 63(7), 1177–1184
[27] Wang M. K., Wang Z. K., Chu Y. M., An optimal double inequality between geometric and identric means, Appl. Math. Lett., 2012, 25(3), 471–475
[28] Chu Y. M., Wang M. K., Inequalities between arithmetic-geometric, Gini, and Toader means, Abstr. Appl. Anal., 2012, 2012, Article ID 830585, 11 pages
[29] Chu Y. M., Hou S. W., Sharp bounds for Seiffert mean in terms of contraharmonic mean, Abstr. Appl. Anal., 2012, Article ID 684834, 7 pages
[30] Li Y. M., Long B. Y., Chu Y. M., Sharp bounds by the power mean for the generalized Heronian mean, J. Math. Inequal., 2012, 6(4), 567–577
[31] Xı̧scanı̧, Wu S. H., Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput., 2014, 238, 237–244
[32] Chen F. X., Wu S. H., Fejér and Hermite-Hadamard type inequalities for harmonically convex functions, J. Appl. Math., 2014, 2014, Article ID 386806, 6 pages
[33] Yang Z. H., Chu Y. M., Wang M. K., Monotonicity criterion for quotient of power series with applications, J. Math. Anal. Appl., 2015, 428(1), 586–604
[34] Chen F. X., Wu S. H., Several complementarity inequalities to inequalities of Hermite-Hadamard type for s-convex functions, J. Nonlinear Sci. Appl., 2016, 9(2), 705–716
[35] Yang Z. H., Chu Y. M., Zhang W., Monotonicity of the ratio for the complete elliptic integral and Stolarsky mean, J. Inequal. Appl., 2016, Article 176, 10 pages
[36] Yang Z. H., Chu Y. M., Zhang W., Accurate approximations for the complete elliptic integral of the second kind, J. Math. Anal. Appl., 2016, 438(1), 875–888
[37] Chu Y. M., Adli Khan M., Ali T., Dragomir S. S., Inequalities for α-fractional differentiable functions, J. Inequal. Appl., 2017, 2017, Article 93, 12 pages
[38] Yang Z. H., Chu Y. M., Zhang X. H., Sharp Stolarsky mean bounds for the complete elliptic integral of the second kind, J. Nonlinear Sci. Appl., 2017, 10(3), 939–936
[39] Hudzik H., Maligranda L., Some remarks on s-convex functions, Aequationes Math., 1994, 48(1), 100–111
[40] Dragomir S. S., Fitzpatrick S., The Hadamard inequalities for s-convex functions in the second sense, Demonstratio Math., 1999, 32(4), 687–696
[41] Jagers B., On Hadamard-type inequality for s-convex functions, available online at http://www3.cs.utwente.nl/~jagersaa/alphaframes/Alpha.pdf
[42] Hussain S., Bhatti M. I., Iqbal M., Hadamard-type inequalities for s-convex function I, Punjab Univ. J. Math., 2009, 41, 51–60
[43] Zhao T. H., Chu Y. M., Monotonicity and logarithmically convex properties of a function involving gamma functions, J. Inequal. Appl., 2009, 2009, Article ID 728612, 13 pages
[44] Zhao T. H., Chu Y. M., A double inequalities for gamma function, J. Inequal. Appl., 2009, 2009, Article ID 503782, 7 pages
[45] Zhao T. H., Chu Y. M., A class of logarithmically completely monotonic functions associated with a gamma function, J. Inequal. Appl., 2010, 2010, Article ID 392431, 11 pages
[49] Zhao T. H., Chu Y. M., Wang H., Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal., 2011, 2011, Article ID 896483, 13 pages

[50] Yang Z. H., Chu Y. M., Zhang X. H., Sharp bounds for psi function, Appl. Math. Comput., 2015, 268, 1055-1063

[51] Chu Y. M., Adil Khan M., Khan T. U., Ali T., Generalizations of Hermite-Hadamard type inequalities for MT-convex functions, J. Nonlinear Sci. Appl., 2016, 9(6), 4305–4316

[52] Podlubny I., Fractional Differential Equations, Academic Press, San Diego, 1999

[53] Set E., New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals, Comput. Math. Appl., 2012, 63(7), 1147–1154

[54] Cheng J. F., Chu Y. M., Solution to the linear fractional differential equation using Adomian decomposition method, Math. Probl. Eng., 2011, 2011, Article ID 587086, 14 pages

[55] Cheng J. F., Chu Y. M., On the fractional difference equations of order \((2, q) \), Abstr. Appl. Anal., 2011, 2011, Article ID 497259, 16 pages

[56] Cheng J. F., Chu Y. M., Fractional difference equations with real variable, Abstr. Appl. Anal., 2012, 2012, Article ID 918529, 24 pages

[57] Zhu C., Fečkan M., Wang J. R., Fractional integral inequalities for differentiable convex mappings and applications to special means and a midpoint formula, J. Appl. Math. Stat. Inform., 2012, 8(2), 21–28

[58] İşcan I., New general integral inequalities for quasi-geometrically convex functions via fractional integrals, J. Inequal. Appl., 2013, 2013, Article 491, 15 pages

[59] Srivastava H. M., Agarwal P., Certain fractional integral operators and the generalized incomplete hypergeometric functions, Appl. Math., 2013, 8(2), 333–345

[60] Wang J. R., Deng J. H., Fečkan M., Hermite-Hadamard-type inequalities for \(r \)-convex functions based on the use of Riemann-Liouville fractional integrals, Ukrainian Math. J., 2013, 65(2), 193–211

[61] Wang J. R., Li X. Z., Fečkan M., Zhou Y., Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity, Appl. Anal., 2013, 92(11), 2241–2253

[62] Yang X. J., Baleanu D., Srivastava H. M., Tenreiro Machado J. A., On local fractional continuous wavelet transform, Abstr. Appl. Anal., 2013, 2013, Article ID 725416, 5 pages

[63] Yang A. M., Chen Z. S., Srivastava H. M., Yang X. J., Application of the local fractional series expansion method and the variational iteration method to the Helmholtz equation involving local fractional derivative operators, Abstr. Appl. Anal., 2013, 2013, Article ID 259125, 6 pages

[64] Yang X. J., Srivastava H. M., He J. H., Baleanu D., Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives, Phys. Lett. A, 2013, 377(28-30), 1696–1700

[65] Wang J. R., Li X. Z., Zhu C., Refinements of Hermite-Hadamard type inequalities involving fractional integrals, Bull. Belg. Math. Soc. Simon. Stevin, 2013, 20(4), 655–666

[66] Adil Khan M., Khurshid Y., Ali T., Hermite-Hadamard inequality for fractional integrals via \(\eta \)-convex functions, Acta Math. Univ. Comenian, 2017, 86(1), 153–164

[67] Sarikaya M. Z., Set E., Yaldiz H., Başak N., Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Modelling, 2013, 57(9), 2403–2407

[68] Özdemir M. E., Avci M., Kavurmaci H., Hermite-Hadamard type inequalities for \(s \)-concave functions via fractional integrals, arXiv: 1202.0380v1 [math.FA]