HAUSDORFF DIMENSION OF UNIONS OF AFFINE SUBSPACES AND OF FURSTENBERG-TYPE SETS

K. HÉRA, T. KELETI, AND A. MÁTHÉ

Abstract. We prove that for any $1 \leq k < n$ and $s \leq 1$, the union of any nonempty s-Hausdorff dimensional family of k-dimensional affine subspaces of \mathbb{R}^n has Hausdorff dimension $k + s$. More generally, we show that for any $0 < \alpha \leq k$, if $B \subseteq \mathbb{R}^n$ and E is a nonempty collection of k-dimensional affine subspaces of \mathbb{R}^n such that every $P \in E$ intersects B in a set of Hausdorff dimension at least α, then $\dim B \geq 2\alpha - k + \min(\dim E, 1)$, where \dim denotes the Hausdorff dimension. As a consequence, we generalize the well-known Furstenberg-type estimate that every α-Furstenberg set has Hausdorff dimension at least 2α; we strengthen a theorem of Falconer and Mattila [5]; and we show that for any $0 \leq k < n$, if a set $A \subseteq \mathbb{R}^n$ contains the k-skeleton of a rotated unit cube around every point of \mathbb{R}^n, or if A contains a k-dimensional affine subspace at a fixed positive distance from every point of \mathbb{R}^n, then the Hausdorff dimension of A is at least $k + 1$.

1. Introduction

There are several problems gathering around the general principle that an s-dimensional collection of d-dimensional sets in \mathbb{R}^n must have positive measure if $s + d > n$ and Hausdorff dimension $s + d$ if $s + d \leq n$, unless the sets have large intersections. For example, Wolff [18, 19] proved that if a planar set B contains a circle around every point of a Borel set $S \subset \mathbb{R}^2$ of Hausdorff dimension s then B has positive Lebesgue measure provided $s > 1$, and the Hausdorff dimension of B is at least $s + 1$ when $s \leq 1$. Most of these problems are only partially solved. The most famous example is the Kakeya conjecture, which states that every Besicovitch set (a compact set that contains a unit line segment in every direction) in \mathbb{R}^n has Hausdorff dimension n, see e.g [12]. Note that the directions of lines of \mathbb{R}^n form a set of dimension $n - 1$, so the line segments of a Besicovitch set form a collection of Hausdorff dimension at least $n - 1$, so the above principle would indeed imply the Kakeya conjecture. On the other hand, the following trivial example shows that this principle cannot be applied for every s-dimensional collection of lines: for any collection of lines of a fixed plane of \mathbb{R}^3 the union clearly has Hausdorff dimension at most 2, which is less than $s + 1$ if $s > 1$. In this paper we show that the above principle holds for any s-dimensional collection of lines or even k-dimensional affine subspaces provided that $s \leq 1$.

Theorem 1.1. For any integers $1 \leq k < n$ and $s \in [0, 1]$ the union of any nonempty s-Hausdorff-dimensional family of k-dimensional affine subspaces of \mathbb{R}^n has Hausdorff dimension $s + k$.

For the special case $k = n - 1$ this was proved by Oberlin [14] for compact (or analytic) families of hyperplanes. He also proved [15] that for any integers $1 \leq k < n$ and any $s \geq 0$, the union of any nonempty compact (or analytic) s-Hausdorff-dimensional family of k-dimensional affine subspaces of \mathbb{R}^n has Hausdorff dimension

This research was supported by the Hungarian National Research, Development and Innovation Office – NKFIH, 104178, and the first author was also supported by the ÚNKP-16-3 New National Excellence Program of the Ministry of Human Capacities.
at least \(\min\{n, 2k - k(n - k) + s\} \). Moreover, he proved that \(s > (k + 1)(n - k) - k \) implies positive Lebesgue measure for such unions, and the bound for \(s \) is sharp. His results are in harmony with the above heuristic principle in the case of hyperplanes.

Falconer and Mattila \cite{FM} proved a stronger statement both in the \(s \leq 1 \) and \(s > 1 \) cases for hyperplanes: instead of full \(n - 1 \)-dimensional affine subspaces it is enough to take a positive measure subset of each of them.

We can go even further for any \(k < n \): it is enough to take a \(k \)-Hausdorff dimensional subset of each \(k \)-dimensional subspace:

Theorem 1.2. Let \(1 \leq k < n \) be integers and \(s \in [0,1] \). If \(E \) is a nonempty \(s \)-Hausdorff dimensional family of \(k \)-dimensional affine subspaces and \(B \) is a subset of \(\bigcup_{P \in E} P \) such that \(B \cap P \) has Hausdorff dimension \(k \) for every \(P \in E \) then

\[
(1) \quad \dim B = \dim \left(\bigcup_{P \in E} P \right) = s + k,
\]

where here and in the sequel \(\dim \) denotes Hausdorff dimension.

Note that this theorem does not assume any kind of measurability of \(E \) (or \(B \)), unlike the mentioned results of Oberlin and Falconer and Mattila.

As we explained above, the equality on the right hand side of (1) is not true without the restriction \(s \leq 1 \). But it is possible that the equality on the left hand side always holds. If it holds for \(k = 1 \) in \(\mathbb{R}^n \) for all \(n \geq 2 \), it would imply that Besicovitch sets in \(\mathbb{R}^n \) have Hausdorff dimension at least \(n - 1 \) and upper Minkowski dimension \(n \), see \cite{MolterRela}.

In Theorem 1.2 \(\dim B \leq \dim \left(\bigcup_{P \in E} P \right) \) is obvious, \(\dim \left(\bigcup_{P \in E} P \right) \leq s + k \) is easy (Lemma 2.4), the essence of the result is the estimate \(\dim B \geq s + k \).

It is natural to ask what happens if we go further and take the union of \(\alpha \)-Hausdorff dimensional subspaces of an \(s \)-dimensional family of \(k \)-dimensional affine subspaces of \(\mathbb{R}^n \) for some \(s \leq 1 \) and \(\alpha \in [0,k] \). Our most general result (Theorem 2.1) gives that in this case the union has Hausdorff dimension at least \(2\alpha - k + s \).

Note that this result implies a known Furstenberg-type estimate. Let \(0 < \alpha \leq 1 \) and suppose that \(F \subset \mathbb{R}^2 \) is a Furstenberg set: a compact set such that for every \(e \in S^1 \) there is a line \(L_e \) in direction \(e \) for which \(\dim L_e \cap F \geq \alpha \), see e.g. \cite{FK}. Since the sets \(L_e \) form an at least 1-dimensional collection of lines of \(\mathbb{R}^2 \) our above mentioned result gives \(\dim F \geq 2\alpha - 1 + 1 = 2\alpha \).

Molter and Rela \cite{MR} proved that if \(E \subset S^1 \) has Hausdorff dimension \(s \), \(F \subset \mathbb{R}^2 \) and for every \(e \in S^1 \) there is a line \(L_e \) in direction \(e \) for which \(\dim L_e \cap F \geq \alpha \) then \(\dim F \geq 2\alpha - 1 + s \) and \(\dim F \geq \alpha + \frac{1}{2} \). So our result is also a generalization of the first estimate of Molter and Rela.

Our original motivation comes from the following question: What is the minimal Hausdorff dimension of a set in \(\mathbb{R}^n \) that contains the \(k \)-skeleton of a rotated unit cube centered at every point of \(\mathbb{R}^n \)? In \cite{M} it is proved that for every \(0 \leq k < n \) there exist such sets of Hausdorff dimension at most \(k + 1 \). As a fairly quick application of the above results we show (Theorem 2.6) that for every \(0 \leq k < n \) such a set must have Hausdorff dimension at least \(k + 1 \), so \(k + 1 \) is the minimal Hausdorff dimension.

We remark that if we have \(k \)-skeletons of rotated and scaled cubes centered at every point then the minimal Hausdorff dimension is \(k \), see \cite{M}, and if we allow only scaled axis-parallel cubes then the minimal Hausdorff dimension is \(n - 1 \), see \cite{H2} for \(k = 1, n = 2 \) and \cite{H3} for the general case. We also show (Theorem 2.5) that if \(A \) contains a \(k \)-dimensional affine subspace at a fixed positive distance from every point of \(\mathbb{R}^n \), then the Hausdorff dimension of \(A \) is at least \(k + 1 \).

The paper is organized as follows: In Section 2 we state our most general result (Theorem 2.1), and prove its corollaries. In Section 3 we prove Theorem 2.1 subject
to a lemma (Lemma 2.7), which will be proved in Sections 4 and 5. In Section 4 we prove a purely geometrical lemma, which will be used during the L^2 estimation procedure in Section 5 to prove Lemma 2.7.

Notation 1.3. For any integers $1 \leq k < n$, let $A(n,k)$ denote the space of all k-dimensional affine subspaces of \mathbb{R}^n. For any $s \geq 0$, $\delta \in (0,\infty]$ and $A \subset \mathbb{R}^n$, the s-dimensional Hausdorff δ-premeasure of A will be denoted by $\mathcal{H}_s^\delta(A)$, the s-dimensional Hausdorff measure by $\mathcal{H}^s(A)$, and the Hausdorff dimension of A by $\dim A$. The open ball of center x and radius r will be denoted by $B(x,r)$ or $B_\rho(x,r)$ if we want to indicate the metric ρ. For a set $U \subset \mathbb{R}^n$, $U_\delta = \cup_{x \in U} B(x,\delta)$ denotes the open δ-neighborhood of U. We will use the notation $a \lesssim b$ if $a \leq Cb$ where C is a constant depending on α. If it is clear from the context what C should depend on, we may write only $a \lesssim b$.

2. The most general theorem and its corollaries

Our most general result is the following:

Theorem 2.1. Let $1 \leq k < n$ be integers, let $A(n,k)$ denote the space of all k-dimensional affine subspaces of \mathbb{R}^n and consider any natural metric on $A(n,k)$. Let $0 < \alpha \leq k$ be any real number. Suppose that $B \subset \mathbb{R}^n, \emptyset \neq E \subset A(n,k)$ and for every k-dimensional affine subspace $P \in E$, $\dim (P \cap B) \geq \alpha$. Then

$$\dim B \geq 2\alpha - k + \min(\dim E, 1).$$

Remark 2.2. An example for such a metric on $A(n,k)$ is defined in [11], p. 53. Let ρ denote the given metric on $A(n,k)$. We say that ρ is a natural metric if ρ and the metric d defined in [11] are strongly equivalent; that is, there exist positive constants K_1 and K_2 such that, for every $P, P' \in A(n,k)$, $K_1 \cdot d(P, P') \leq \rho(P, P') \leq K_2 \cdot d(P, P')$.

Remark 2.3. For $\alpha = k$ and $\dim E \leq k + 1$ the estimate (2) is sharp in the sense that for any $s \in [0, k + 1]$ there exist sets E and B with the above property and $\dim E = s$ such that we have equality in (2); it is easy to see using Theorem 1.2 that we obtain such an example by letting E to be any s-Hausdorff dimensional collection of k-dimensional affine subspaces of a fixed $k + 1$-dimensional subspace of \mathbb{R}^n and $B = \cup_{P \in E} P$.

Clearly, (2) can be a good estimate only when α is close to k: for $\alpha < k - 1$ the right-hand side of (2) is less than α but trivially, $\dim B \geq \alpha$. Since finding the best estimate for the $n = 2, k = 1, \dim E = 1, \alpha < 1$ case is essentially equivalent to finding the minimal Hausdorff dimension of a Furstenberg set, this cannot be easy and it is unlikely that our estimate is sharp for any $\alpha < k$.

By combining the $\alpha = k$ case of Theorem 2.1 and the following lemma, we obtain Theorem 1.2 and its special case Theorem 1.1.

Lemma 2.4. For any $1 \leq k < n$ integers and $\emptyset \neq E \subset A(n,k)$ we have

$$\dim \left(\bigcup_{P \in E} P \right) \leq k + \dim E.$$

Proof. By taking a finite decomposition of E if necessary, we can assume that there exists a $P_0 \in A(n,k)$ such that the orthogonal projection of P_0 onto any $P \in E$ is P. Fix such a P_0. For any $P \in E$ and $t \in P_0$ let $h(P,t)$ be the orthogonal projection of t onto P. Then $h((P \times P_0)) = P$ for any $P \in E$, so $h(E \times P_0) = \bigcup_{P \in E} P$. It is not hard to check that $h : E \times P_0 \to \mathbb{R}^n$ is locally Lipschitz, therefore we obtain

$$\dim \left(\bigcup_{P \in E} P \right) = \dim (h(E \times P_0)) \leq \dim (E \times P_0) = \dim E + k.$$
Now we show a simple direct application of Theorem 2.1.

Corollary 2.5. Let $0 \leq k < n$ be integers, $0 \leq \alpha \leq k$, $\emptyset \neq C \subset \mathbb{R}^n$, and $B \subset \mathbb{R}^n$ such that for every $x \in C$ there exists a k-dimensional affine subspace P containing x such that P intersects B in a nonempty set of Hausdorff dimension at least α. Then $\dim B \geq 2\alpha - k + \min(\dim C - k, 1)$.

Specially, if $1 \leq k$ and a set $A \subset \mathbb{R}^n$ contains a k-dimensional punctured affine subspace through every point of a set C with $\dim C \geq k + 1$, then $\dim A \geq k + 1$.

Proof. If $k = 0$, or $k \geq 1$ and $\alpha = 0$, then the statement clearly holds. Suppose now $k \geq 1, \alpha > 0$. Let $E \subset A(n,k)$ be the set of those k-dimensional affine subspaces that intersect B in a nonempty set of Hausdorff dimension at least α. Then $C \subset \bigcup_{P \in E} P$, thus $\dim C \leq \dim E + k - \alpha$ by Lemma 2.4, which means, $\dim E \geq \dim C - k$. Applying Theorem 2.1 for B and E, we obtain $\dim B \geq 2\alpha - k + \min(\dim C - k, 1)$. □

Our next goal is to show that if a set $B \subset \mathbb{R}^n$ contains the k-skeleton of a rotated unit cube around every point of \mathbb{R}^n then $\dim B \geq k + 1$, as it was already stated in the Introduction. Instead of the k-skeleton of the unit cube we will prove (Corollary 2.8) the analogous result for any k-Hausdorff dimensional set $S \subset \mathbb{R}^n$ that can be covered by countably many k-dimensional affine subspaces. This result will follow from the following theorem.

Theorem 2.6. Let $0 \leq k < n$ be integers, $0 \leq \alpha \leq k$ and $0 \leq r$ be real numbers, $\emptyset \neq C \subset \mathbb{R}^n$, and $B \subset \mathbb{R}^n$ be such that for every $x \in C$ there exists a k-dimensional affine subspace P at distance r from x such that P intersects B in a nonempty set of Hausdorff dimension at least α. Then $\dim B \geq 2\alpha - k + \dim C - (n - 1)$.

Specially, if B contains a k-dimensional affine subspace at a fixed positive distance from every point of \mathbb{R}^n, or if B contains the k-skeleton of a rotated unit cube around every point of \mathbb{R}^n, then $\dim B \geq k + 1$.

Proof. If $r = 0$, then we can apply Corollary 2.5 and thus we get $\dim B \geq 2\alpha - k + \min(\dim C - k, 1) \geq 2\alpha - k + \dim C - (n - 1)$.

Suppose now that $r > 0$. If $k = 0$, then the condition of Theorem 2.6 means that for every $x \in C$ there exists a point contained in B at distance r from x. Then $\bigcup_{p \in P} (p + rS^{n-1}) \supset C$, where S^{n-1} denotes the unit sphere of center 0 in \mathbb{R}^n. Let $g : \mathbb{R}^n \times S^{n-1} \to \mathbb{R}^n$, $(p,e) \mapsto p + re$. Clearly, g is Lipschitz and $g(B \times S^{n-1}) = \bigcup_{p \in B} (p + rS^{n-1})$. Thus we have

\[
\dim C \leq \dim \bigcup_{p \in B} (p + rS^{n-1}) \leq \dim (B \times rS^{n-1}) = \dim B + n - 1,
\]

thus $\dim B \geq \dim C - (n - 1)$.

If $k \geq 1$ and $\alpha = 0$, then the statement is trivially true, so suppose now that $k \geq 1, \alpha > 0$. We will use a similar argument as in the case $k = 0$, but we use Theorem 2.1. Let $E \subset A(n,k)$ be the set of those k-dimensional affine subspaces that intersect B in a set of Hausdorff dimension at least α. By Theorem 2.1 it is enough to prove that $\dim E \geq \dim C - (n - 1)$. For each $P \in E$ let $D(P) \subset \mathbb{R}^n$ be the union of those k-dimensional affine subspaces that are parallel to P and are at distance r from P (in the Euclidean distance of \mathbb{R}^n). Clearly, $D(P)$ is exactly the set of those points of \mathbb{R}^n that are at distance r from P, thus by assumption, $\bigcup_{P \in E} D(P) \supset C$. It is easy to see that $\dim D(P) = n - 1$ for any $P \in E$.

For any $P \in A(n,k)$, let V_P denote the translate of P containing 0 and let V_P^\perp denote the orthogonal complement of V_P. It is easy to see that there is a finite
decomposition $E = \bigcup_{i=1}^{N} E_i$ such that for all i there exists a $P_i \in A(n,k)$ with the following properties: the orthogonal projection of P_i onto any $P \in E_i$ is P, and the orthogonal projection of the $(n-k-1)$-sphere $V_P^\perp \cap S^{n-1}$ onto V_P^\perp is contained in the $\frac{\epsilon}{r}$-neighborhood of the $(n-k-1)$-sphere $V_P^\perp \cap S^{n-1}$, for any $P \in E_i$.

Using the above properties, one can easily define for all i a locally Lipschitz map $h_i : E_i \times D(P_i) \to \mathbb{R}^n$ such that $h_i(\{P\} \times D(P_i)) = D(P)$ for all $P \in E_i$. We obtain
\[
\dim C \leq \dim \bigcup_{P \in E} D(P) = \max_i \dim \bigcup_{P \in E_i} D(P) = \max_i \dim h_i(E_i \times D(P_i)) \leq \max_i \dim (E_i \times D(P_i)) = \max_i \dim E_i + n - 1 = \dim E + n - 1,
\]
and thus $\dim E \geq \dim C - (n - 1)$ and we are done. \hfill \qed

Remark 2.7. In the special cases mentioned in Theorem 2.6 the estimate is sharp. It is easy to see that $B = \mathbb{R}^{k+1} \times Q^{n-k-1}$ contains a k-dimensional affine subspace at every positive distance from every point of \mathbb{R}^n and clearly $\dim B = k + 1$. The construction given in [11] for a set B with $\dim B = k + 1$ containing the k-skeleton of a rotated unit cube centered at every positive distance from every point of \mathbb{R}^n is also based on this example.

Corollary 2.8. Let $0 \leq k < n$ be integers, $S \subset \mathbb{R}^n$ with $\dim S = k$ that can be covered by a countable union of k-dimensional affine subspaces. Let $0 \neq C \subset \mathbb{R}^n$, $A \subset \mathbb{R}^n$ such that for all $x \in C$ there exists a rotation $T \in SO(n)$ such that A contains $x + T(S)$. Then $\dim A \geq \max(k, k + \dim C - (n - 1))$.

Proof. Clearly, $\dim A \geq k$. Let $S_i \subset \mathbb{R}^n$, $i \geq 1$, be k-dimensional affine subspaces such that $S \subset \bigcup_{i \geq 1} S_i$. Let $r_i = d(0, S_i)$, and $\alpha_i = \dim (S_i \cap S)$. Then $\sup_{i \geq 1} \alpha_i = k$ by $\dim S = k$. The set A has the property that for all $x \in \mathbb{R}^n$, there exists an affine subspace $P = x + T(S)$ at distance r_i from x such that $\dim (A \cap P \cap S_i) \geq \alpha_i$, thus we can apply Theorem 2.6 for each i. We obtain that $\dim A \geq 2\alpha_i - k + \dim C - (n - 1)$ for all $i \geq 1$, and thus $\dim A \geq k + \dim C - (n - 1)$.$\hfill \qed$

Remark 2.9. The authors in [11] show that the estimate in Corollary 2.8 is sharp if $\dim C = n$ and S can be covered by a countable union of k-dimensional affine subspaces that do not contain the origin.

On the other hand, if the covering subspaces contain the origin, then the estimate is not always sharp. Indeed, if S is a punctured line through the origin and $C = \mathbb{R}^n$, then A is a Nikodym set, thus the conjecture is $\dim A = n$. The lower bounds obtained for the dimension of Besicovitch sets give lower bounds for the dimension of Nikodym sets, thus for $\dim A$ as well. A survey of the currently best lower bounds can be found in [12]. As an example, by [17], $\dim A \geq \frac{n+2}{2}$ which is better than the bound 2 given by Corollary 2.8 provided $n > 2$.

3. The proof of Theorem 2.1

In this section we prove Theorem 2.1 subject to a lemma (Lemma 3.7), which will be proved in Sections 4 and 5.

We start with addressing measurability issues. For the definition of analytic sets, see e.g. [9].

Lemma 3.1. For $X \subset \mathbb{R}^n$, $\alpha > 0$ and $c \geq 0$ let
\[E_{\alpha,c,X} = \{ P \in A(n,k) : \mathcal{H}_{\alpha,c}^n(P \cap X) > c \}. \]
If $X \subset \mathbb{R}^n$ is bounded G_δ, then $E_{\alpha,c,X}$ is analytic.

Lemma 3.1 is an unpublished result of M. Elekes and Z. Vidnyánszky. Similar statements were also proved in [4]. For completeness, we include a proof.
Remark 3.2. It is easy to see that if \(X \subset \mathbb{R}^n \) is compact, then \(E_{\alpha,c,X} \) is \(F_\sigma \), thus also analytic. Therefore, to prove Theorem 2.1 (or any of the above mentioned results) with the extra assumption that \(B \subset \mathbb{R}^n \) is compact, the following argument could be skipped.

Proof. Let
\[
T = \{(P,x) \in A(n,k) \times \mathbb{R}^n : x \in P\},
\]
this is the natural vector bundle of rank \(k \) over \(A(n,k) \). Let \(\varphi : T \to \mathbb{R}^n \) be defined by \(\varphi((P,x)) = x \), and let \(\pi : T \to A(n,k) \) be defined by \(\pi((P,x)) = P \). On \(T \) we can consider the metric inherited from a product metric on \(A(n,k) \times \mathbb{R}^n \) so that \(\varphi \) is isometry on all fibres.

Let \(\mathcal{K} \) be the space of those non-empty compact subsets of \(T \) which lie in one fibre, that is,
\[
\mathcal{K} = \{K \subset T : K \text{ is non-empty compact, and } \pi(K) \text{ is a singleton}\}.
\]
This is a complete metric space in the Hausdorff metric. Not to mix up singletons and their unique elements, let \(\pi' : \mathcal{K} \to A(n,k) \) be defined by \(\pi'(K) = \pi(K) \).

Since \(X \) is \(G_\delta \), \(\varphi^{-1}(X) \) is \(G_\delta \) in \(T \). It is easy to check that
\[
\mathcal{K}(\varphi^{-1}(X)) \overset{\text{def}}{=} \{K \in \mathcal{K} : K \subset \varphi^{-1}(X)\}
\]
is also \(G_\delta \) in \(\mathcal{K} \).

For \(\alpha > 0 \) and \(d > 0 \), let
\[
\mathcal{K}_d^\alpha = \{K \in \mathcal{K} : \mathcal{H}_\infty^\alpha(\varphi(K)) \geq d\}.
\]
It is easy to see that these are closed sets in \(\mathcal{K} \).

Let
\[
\mathcal{K}_{\alpha,c,X} = \mathcal{K}(\varphi^{-1}(X)) \cap \bigcup_n \mathcal{K}_c^{\alpha+1/n}.
\]
Clearly, this is a Borel set in \(\mathcal{K} \). We claim that
\[
(3) \quad E_{\alpha,c,X} = \pi'(\mathcal{K}_{\alpha,c,X}).
\]
Clearly, the right hand side consists of those \(P \in A(n,k) \) for which \(P \cap X \) contains a compact subset \(K \) with \(\mathcal{H}_\infty^\alpha(K) > c \). We will show that for any \(P \in A(n,k) \),
\[
(4) \quad \exists K \subset P \cap X \text{ compact with } \mathcal{H}_\infty^\alpha(K) > c \iff \mathcal{H}_\infty^\alpha(P \cap X) > c, \quad \text{which implies } (3).
\]
To prove (4), we use the concept of capacities (see e.g. [8], Section 30).

Definition. Let \(Y \) be a Hausdorff topological space. A capacity on \(Y \) is a map \(\gamma : \mathcal{P}(Y) \to [0,\infty] \) such that
\[
\begin{align*}
\text{(i)} & \quad A \subset B \implies \gamma(A) \leq \gamma(B), \\
\text{(ii)} & \quad A_0 \subset A_1 \subset \cdots \implies \gamma(A_n) \to \gamma(\bigcup_n A_n), \\
\text{(iii)} & \quad \text{for any compact } K \subset Y \text{ we have } \gamma(K) < \infty, \text{ and if } \gamma(K) < r, \text{ then for some open } U \supset K, \gamma(U) < r.
\end{align*}
\]
We claim that \(\gamma = \mathcal{H}_\infty^\alpha \) is a capacity on \(\overline{B(0,R)} \) for any \(R > 0 \). Indeed, it is clear that \(\mathcal{H}_\infty^\alpha \) satisfies properties (i) and (iii) in any metric space, and it follows from the results in [8] that (iii) holds for \(\mathcal{H}_\infty^\alpha \) in any compact metric space.

Since \(X \) is bounded \(G_\delta \) (thus also analytic), and \(\mathcal{H}_\infty^\alpha \) is a capacity on the compact metric space \(\overline{B(0,R)} \) with \(X \subset \overline{B(0,R)} \), the Choquet Capacitability Theorem ([8], (30.13)) can be applied, and it gives precisely (4).

Finally, (3) implies that \(E_{\alpha,c,X} \) is a continuous image of a Borel set, thus analytic, and we are done. \(\square \)
Lemma 3.4. We can make the following further assumptions in Theorem 2.1.

(i) B is a $G_δ$ set, that is, a countable intersection of open sets;
(ii) $\mathcal{H}^α(P \cap B) > 0$ for every $P \in E$;
(iii) B is bounded;
(iv) $E \subset A(n,k)$ is compact, and $\mathcal{H}^α(E) > 0$. Moreover, there is $ε > 0$ such that for every $P \in E$,
$$\mathcal{H}^α(P \cap B) \geq ε.$$

Statement (i) is clearly weaker than (iv); it is stated to guide the proof.

Proof. First we remark that if E is replaced by any subset $\bar{E} \subset E$, or B is replaced by any superset $\bar{B} \supset B$, then the condition $\dim(P \cap B) \geq \dim(P \cap B) \geq α$ in Theorem 2.1 is trivially satisfied for all $P \in \bar{E} \subset E$.

(i) Let $\bar{B} \supset B$ be a $G_δ$ set with $\dim B = \dim \bar{B}$; the existence of such set is proved for example in [3]. Clearly, it is enough to prove Theorem 2.1 for \bar{B} replacing B.

(ii) Clearly, replacing $α$ with a slightly smaller value, we may assume, without loss of generality, that $\mathcal{H}^α(P \cap B) > 0$ for every $P \in E$.

(iii) If B is not bounded then consider $B = \bigcup_n B_n$, where B_n is bounded $G_δ$ and define $E_n = \{P \in E : \mathcal{H}^α(P \cap B_n) > 0\}$. Clearly, $E = \bigcup_n E_n$ thus $\dim E = \sup\{\dim E_n : n \in \mathbb{N}\}$. If Theorem 2.1 holds for the bounded set B_n and $E_n \subset A(n,k)$ for every n then it holds for B and E as well. Thus we can assume that B is bounded.

(iv) By [1], we may assume that B is $G_δ$. By [3], for every $P \in E$, $\mathcal{H}^α(P \cap B) > 0$, and thus $\mathcal{H}^α(E \cap P) > 0$. Thus $E \subset \bigcup_{i=1}^∞ E_{α,i,B}$, where the sets $E_{α,i,B}$ are the analytic sets given by Lemma 3.4. For every $δ > 0$, $\mathcal{H}^{∞-δ}(E) = ∞$ and therefore there is $i = i(δ)$ with $\mathcal{H}^{∞-δ}(E_{α,i,B}) > 0$. By Howroyd’s theorem [7], there is a compact set $E^ δ \subset E_{α,i,B}$ with $\mathcal{H}^{∞-δ}(E^ δ) > 0$. If Theorem 2.1 holds for these compact sets $E^ δ$, then $\dim \bar{E} \geq 2α - k + s - δ$ for every $δ > 0$, which finishes the proof. □

Let $e_0 = (0,\ldots,0)$; let $e_i = (1,0,\ldots,0),\ldots,e_n = (0,\ldots,0,1)$ be the standard basis vectors of \mathbb{R}^n, and let V be the k-dimensional linear space generated by e_1,\ldots,e_k. Put $H_0 = V^⊥$, and $H_i = e_i + H_0$. Then H_i is an $n - k$-dimensional affine subspace for all $i = 1,\ldots,k$. We use the sets $H_i (i = 0,\ldots,k)$ to describe the structure of E by investigating the intersection of the elements of E with them.

Let C denote the convex hull of the vectors e_0,e_1,\ldots,e_k in V, $Q \subset H_0$ the $n - k$-dimensional closed unit cube of center e_0 in H_0, and $S = C × Q \subset \mathbb{R}^n$. Fix $δ_0 > 0$ and an open set S' such that

$$S'_{δ_0} \subset S,$$

where $S'_{δ_0}$ denotes the open $δ_0$-neighborhood of S'.

Lemma 3.4. We can make the following further assumptions in Theorem 2.1.

(i) For every $P \in E$, $P \cap H_i$ is a singleton and contained in S for all $i = 0,1,\ldots,k$;
(ii) $B \subset S'$.

Proof.
(I) We can cover E by finitely many compact subsets for which (I) holds after applying a suitable similarity transformation.

(II) Since we may assume that B is bounded, this can be obtained after applying a homothety. □

Let us now fix $B, E, \varepsilon, S', \delta_0$ (and s and α) with properties given by Lemma 3.3 and such that Lemma 3.4 is satisfied. That is, B is bounded and $G_{\delta_0} E$ is compact and $\mathcal{H}^s(E) > 0$, and

\[\mathcal{H}^s_\infty(P \cap B) \geq \varepsilon \]

for all $P \in E$ for a fixed $\varepsilon > 0$.

We apply Frostman’s lemma (see e.g. [11]) to obtain a probability measure μ on $A(n, k)$ (for which Borel and analytic sets are measurable) supported on E for which

\[\mu(B(P, r)) \lesssim r^s \]

for all $r > 0$ and all $P \in E$.

Now we turn to estimating the dimension of the set B. Our aim is to show that

\[\mathcal{H}^{2\alpha - k + s - \gamma}(B) > 0 \]

for any $\gamma > 0$. Fix $\gamma > 0$, and let

\[u = 2\alpha - k + s - \gamma. \]

Let M be a positive integer such that

\[\sum_{k=1}^{\infty} 1/k^2 < \varepsilon \quad \text{and} \quad 2^{-M+1} \leq \delta_0. \]

Let $B \subset \bigcup_{i=1}^{\infty} B(x_i, r_i)$ be any countable cover with $2r_i \leq 2^{-M}$ for all i. For any $l \geq M$, let

\[J_l = \{ i : 2^{-l} < r_i \leq 2^{-l+1} \}. \]

Let $R_l = \bigcup_{i \in J_l} B(x_i, r_i)$, and $B_l = R_l \cap B$. Then $B = \bigcup_{l=M}^{\infty} B_l$.

Our aim is to find a big enough subset of B that is covered by balls of approximately the same radii and such that many of the affine subspaces of E have big intersection with it.

Remark 3.5. In the subsequent proofs, applications of Lemma 3.1 imply that the sets we take μ-measure of are μ-measurable, since they are in the σ-algebra generated by analytic sets.

Lemma 3.6. There exists an integer $l \geq M$ such that

\[\mu \left(P \in E : \mathcal{H}^s_\infty(P \cap B_l) \geq \frac{1}{l^2} \right) \geq \frac{1}{l^2}. \]

Proof. Let

\[A_l = \left\{ P \in E : \mathcal{H}^s_\infty(P \cap B_l) \geq \frac{1}{l^2} \right\}, \]

and assume that $\mu(A_l) < 1/l^2$ for all $l \geq M$. Since $\sum_{l=M}^{\infty} 1/l^2 < 1$ (we may assume $\varepsilon \leq 1$), these sets A_l cannot cover E. Therefore, there exists $P \in E$ such that $\mathcal{H}^s_\infty(P \cap B_l) < 1/l^2$, and thus $\mathcal{H}^s_\infty(P \cap B) < \sum_{l=M}^{\infty} 1/l^2 < \varepsilon$, which contradicts (6). □
Fix the integer l obtained by Lemma 3.6 and let

$$\tilde{E} = A_l = \left\{ P \in E : \mathcal{H}^\infty_\alpha (P \cap B_l) \geq \frac{1}{l^2} \right\}.$$

We will use the notation $\tilde{P} = P \cap B_l$ for any $P \in \tilde{E}$. We have

$$\mu(\tilde{E}) \geq \frac{1}{l^2} \text{ and } \mathcal{H}^\infty_\alpha (\tilde{P}) \geq \frac{1}{l^2}$$

for every $P \in \tilde{E}$ by Lemma 3.6. Note also that

$$\tilde{P}_{\delta_0} \subset S$$

for every $P \in \tilde{E}$ by (11) of Lemma 3.4 and the definition of S' and δ_0.

Let

$$F = \bigcup_{P \in \tilde{E}} \tilde{P} \subset B_l \subset B.$$

Our aim is to find a lower estimate for $L^n(F_\delta)$. We will prove the following.

Lemma 3.7. There is a constant $c > 0$ depending on E, n, and k but independent of l, ϵ, γ and the covering of B such that, for every $0 < \delta \leq \delta_0$,

$$L^n(F_\delta) \geq \frac{\delta^{n-(2\alpha-k+s)}}{l^8 \log 2}.$$

Remark 3.8. Note that the integer l, the sets \tilde{E}, \tilde{P} for every $P \in \tilde{E}$, and F depend on the cover $B \subset \bigcup_{i=1}^\infty B(x_i, r_i)$. We prove Lemma 3.7 in Sections 4 and 5.

Remark 3.9. As it happens often, it would be easier to prove the lower bound for the box dimension of B. For that purpose, we would not need the previous steps, it would be enough to estimate $L^n(B_\delta)$ from below. To prove the lower bound for the Hausdorff dimension, we sorted out a big enough part of B that can be covered by balls of approximately the same radius.

Recall that $B \subset \bigcup_{i=1}^\infty B(x_i, r_i)$, $2r_i \leq 2^{-M} \leq \frac{\delta_0}{3}$ for all i. We will use that the balls with indices from J_l have approximately the same radius. We have that

$$\sum_{i=1}^{\infty} (2r_i)^u = \sum_{l=M}^{\infty} \sum_{i \in J_l} (2r_i)^u \geq \sum_{i \in J_l} (2r_i)^u \geq \sum_{i \in J_l} (2^{-l})^u.$$

Let $\delta = 2^{-l+1}$. Then $\delta \leq 2^{-M+1} \leq \delta_0$.

The set F was constructed to satisfy

$$F \subset B_l \subset \bigcup_{i \in J_l} B(x_i, r_i) \subset \bigcup_{i \in J_l} B(x_i, \delta),$$

and thus

$$F_\delta \subset \bigcup_{i \in J_l} B(x_i, 2\delta).$$

Using

$$\frac{\delta^u}{\delta^{n-(2\alpha-k+s-\gamma)}} \geq \frac{L^n(B(x_i, 2\delta))}{\delta^{n-(2\alpha-k+s-\gamma)}}$$
and Lemma 5.7 we get
\[\sum_{i \in J} (2^{-i})^u \geq \sum_{i \in J} \frac{L^n(B(x_i, 2\delta))}{\delta^{2(2a-k+s-\gamma)} n} \geq \frac{L^n(F_k)}{\delta^{-(2a-k+s)+\gamma}} \geq \frac{1}{\delta^{(2a-k+s)+\gamma} \log \frac{\delta}{\rho}} \geq \frac{1}{2^{-i} |\rho|^9}. \]
Thus we obtain
\[\inf_{B \subseteq \bigcup_{i \in J} B(x_i, r_i)} \sum_{i=1}^\infty (2r_i)^u \geq \inf_{i \geq 1} \frac{1}{2^{-i} |\rho|^9} \geq 1, \]
proving that \(H^u(B) > 0 \) and we are done.

4. Geometric arguments

Now we start proving Lemma 5.7. In this section we prove a purely geometric lemma using only the set \(\tilde{E} \subset A(n, k) \). This part is independent of the set \(B \) and the number \(\alpha \).

Lemma 4.1. For any \(P, P' \in \tilde{E} \),
\[L^n(P_0 \cap P'_0 \cap S) \lesssim \frac{\delta^{n-k+1}}{\rho(P, P')} + \delta \]
for all \(0 < \delta \leq \delta_0 \), where \(\rho \) denotes the metric on \(A(n, k) \), and \(\delta_0 \) is from \(\rho \).

To prove Lemma 4.1 we will define a new metric on \(\tilde{E} \) by making use of \(\rho \) of Lemma 5.3. We will assign a code to each \(k \)-dimensional affine subspace in \(\tilde{E} \). For a given \(P \in \tilde{E} \), let \((0, a^0) = (0, \ldots, 0, a^0_1, \ldots, a^0_{n-k}) \) denote the standard \(\mathbb{R}^n \)-coordinates of \(P \cap H_0 \). Similarly, let \((l^i, a^i) = (0, \ldots, 1, \ldots, 0, a^i_1, \ldots, a^i_{n-k}) \) denote the standard \(\mathbb{R}^n \)-coordinates of \(P \cap H_l \) for each \(l = 1, \ldots, k \). Let \(b^l = a^l - a^0 \in \mathbb{R}^{n-k} \) for each \(l = 1, \ldots, k \). We refer to \(a^l \) as the vertical intercept, and to \(\{b^l\}_{l=1}^k \) as the slopes of \(P \).

We say that the point \(x = x(P) = (a^0, b^1, \ldots, b^k) = (a, b) \in \mathbb{R}^{(k+1)(n-k)} \) is the code of the \(k \)-dimensional affine subspace \(P \in \tilde{E} \). By (1) of Lemma 3.4 one can see that \(P \to x(P) \) is well defined and injective on \(\tilde{E} \).

We will use the maximum metric on the code space \(\mathbb{R}^{(k+1)(n-k)} \). This means, \(\|x - x'\| = \max(\|a - a'\|, \|b - b'\|) \), where
\[\|a - a'\| = \max_{j=1, \ldots, n-k} |a_j^0 - a_j^0|, \]
\[\|b - b'\| = \max_{j=1, \ldots, n-k} \left(\max_{l=1, \ldots, k} |b_{j}^l - b_{j}^l| \right). \]

Remark 4.2. Put \(d(P, P') = \|x(P) - x(P')\| \), then \(d \) is a natural metric on \(\tilde{E} \). Thus the metrics \(d \) and \(\rho \) are strongly equivalent, this means, there exist positive constants \(K_1 \) and \(K_2 \) such that, for every \(P, P' \in \tilde{E}, K_1 \cdot d(P, P') \leq \rho(P, P') \leq K_2 \cdot d(P, P') \).

In order to prove Lemma 4.1 we show that if \(P \) and \(P' \) are translated along \(H_0 \) far enough from each other compared to their slopes, then the intersection of their \(\delta \)-tubes is empty in \(S \), and if the slopes of \(P \) and \(P' \) are far enough from each other, then the intersection of their \(\delta \)-tubes is small enough in \(S \).
Lemma 4.3. (a) There is a constant $D > 0$ (depending only on n and k) such that if
\[\|a - a'\| > \|b - b'\| + D\delta \]
then $P_\delta \cap P'_\delta \cap S = \emptyset$ for all $0 < \delta \leq \delta_0$.
(b) If $\|b - b'\| > 0$, then $L^n(P_\delta \cap P'_\delta \cap S) \leq \frac{\delta_{n-k+1}}{\|b - b'\|}$ for all $0 < \delta \leq \delta_0$.

Proof. Fix $P, P' \in \bar{E}$, and put $f, g : \mathbb{R}^k \to \mathbb{R}^{n-k}$.
\[t = (t_1, \ldots, t_k) \mapsto a^0 + t_1 b^1 + \cdots + t_k b^k = f(t), \]
\[t = (t_1, \ldots, t_k) \mapsto a'^0 + t_1 b'^1 + \cdots + t_k b'^k = g(t), \]
where a^0, b^1, \ldots, b^k and a'^0, b'^1, \ldots, b'^k are the code coordinates of P and P', respectively. Then
\[P \cap S = \{(t, f(t)) : t \in C\}, \quad P' \cap S = \{(t, g(t)) : t \in C\}. \]

One can easily prove using (1) of Lemma 3.4 and the compactness of S, that there is a constant $c > 0$ independent of δ such that for all $Q \in \bar{E}$,
\[Q_\delta \subset Q + \{(0) \times (-c\delta, c\delta)^{n-k}\}, \]
where for $A, B \subset \mathbb{R}^n$, $A + B = \{a + b : a \in A, b \in B\}$. Fix such a constant c.

Applying (15) for P and P', we have
\[P_\delta \subset \{(t, u) \in \mathbb{R}^n : |f(t) - u| < c\delta\}, \quad P'_\delta \subset \{(t, u) \in \mathbb{R}^n : |g(t) - u| < c\delta\}, \]
and
\[P_\delta \cap P'_\delta \cap S \subset \{(t, u) \in \mathbb{R}^n : u \in (B(f(t), c\delta) \cap B(g(t), c\delta)), t \in C\}. \]

Clearly, $|f(t) - g(t)| > 2c\delta$ implies $B(f(t), c\delta) \cap B(g(t), c\delta) = \emptyset$, thus $P_\delta \cap P'_\delta \cap S = \emptyset$. Put $D = 2c$, then $\|a - a'\| > \|b - b'\| + D\delta$ implies $|f(t) - g(t)| > 2c\delta$, thus we are done with the proof of (16) of Lemma 4.3.

By (16) and Fubini’s theorem we also have
\[L^n(P_\delta \cap P'_\delta \cap S) \leq \int_C L^{n-k}(B(f(t), c\delta) \cap B(g(t), c\delta))d\mathcal{L}^k(t). \]

If $B(f(t), c\delta) \cap B(g(t), c\delta) \neq \emptyset$, we will use the trivial estimate
\[L^{n-k}(B(f(t), c\delta) \cap B(g(t), c\delta)) \lesssim_{n,k} (c\delta)^{n-k} \lesssim \delta^{n-k}. \]

Put $N = \{t \in C : |f(t) - g(t)| \leq 2c\delta\}$, then
\[L^n(P_\delta \cap P'_\delta \cap S) \lesssim \int_N \delta^{n-k}d\mathcal{L}^k(t). \]

Clearly, we have
\[\bigcap_{j=1}^{n-k} \left\{ t \in C : \left| a_j^0 - a_j' \right| + \sum_{i=1}^{k} t_i \left| b_i^j - b_i'^j \right| \leq 2c\delta \right\}. \]

By the definition of $\|\cdot\|$, there are indices i, j such that $0 < \|b - b'\| = |b_j^i - b_j'^i|$. Fix such an i and j, we can assume that $i = k$ without loss of generality. Then we get using (17) that
\[N \subset \{t \in C : p_-(t) \leq t_k \leq p_+(t)\}, \]
where
\[p_-(t) = p_-(t_1, \ldots, t_{k-1}) = \frac{-2c\delta - (a^0 - a'^0) - \sum_{i=1}^{k-1} t_i (b_i^j - b_i'^j)}{b_k^j - b_k'^j}, \]
and
\[p_+(t) = p_+(t_1, \ldots, t_{k-1}) = \frac{2c\delta - (a^0 - a'^0) + \sum_{i=1}^{k-1} t_i (b_i^j - b_i'^j)}{b_k^j - b_k'^j}. \]
The set \(\{ t \in C : p_-(t) \leq t_k \leq p_+(t) \} \) is obtained as the intersection of the simplex \(C \) and the strip between the parallel hyperplanes \(\{ t_k = p_+(t) \}, \{ t_k = p_-(t) \} \). One can easily calculate the distance of these hyperplanes, using the normal vector \(n = (b_j^1 - b_j^2, \ldots , b_j^k - b_j^2) \). One gets

\[
d = d(\{ t_k = p_+(t) \}, \{ t_k = p_-(t) \}) = \frac{2c\delta - (a^0 - a^0') - \sum_{i=1}^{k-1} t_i(b_j^i - b_j^i)}{b_j^k - b_j^2}.
\]

Thus the set \(N \) is contained in a rectangular box, where the shortest side length is \(d \) and the others are \(\text{diam} (C) = \sqrt{2} \). Then

\[
\mathcal{L}^k(N) \leq \frac{\delta}{\sqrt{\sum_{i=1}^{k} (b_j^i - b_j^i)^2}} \leq \frac{\delta}{|b_j^k - b_j^2|} = \frac{\delta}{\|b - b'\|}.
\]

thus

\[
\mathcal{L}^n(P_k \cap P_0' \cap S) \lesssim \frac{\delta^{n-k+1}}{\|b - b'\|}
\]

and we are done with the proof of Lemma 4.3. \(\square \)

Now we prove Lemma 4.1.

Proof. Using (13) of Lemma 4.3 we obtain that \(P_k \cap P_0' \cap S = \emptyset \) for all \(0 < \delta \leq \delta_0 \) if \(\|a - a'\| > \|b - b'\| + D\delta \), so (13) is clearly satisfied.

Assume now that \(\|a - a'\| \leq \|b - b'\| + D\delta \), and \(\|b - b'\| \leq \delta \). By Remark 1.2

\[
\rho(P, P') \leq K_2 \|x - x'\| \leq K_2(D + 1)\delta \lesssim \delta,
\]

and then since \(S \) is bounded, we have

\[
\mathcal{L}^n(P_k \cap P_0' \cap S) \leq \mathcal{L}^n(P_k \cap S) \lesssim \delta^{n-k} = \frac{\delta^{n-k+1}}{\delta} \lesssim \frac{\delta^{n-k+1}}{\rho(P, P') + \delta}.
\]

Thus we are done in this case.

If \(\|a - a'\| \leq \|b - b'\| + D\delta \) and \(\|b - b'\| \geq \delta \), we have that

\[
\rho(P, P') + \delta \leq K_2 \|x - x'\| + \delta \leq K_2(\|b - b'\| + D\delta) + \delta \lesssim \|b - b'\|
\]

using Remark 1.2 again. Applying (13) of Lemma 4.3 we obtain that

\[
\mathcal{L}^n(P_k \cap P_0' \cap S) \lesssim \frac{\delta^{n-k+1}}{\|b - b'\|} \lesssim \frac{\delta^{n-k+1}}{\rho(P, P') + \delta},
\]

which is (13). \(\square \)

5. The proof of Lemma 5.7

L^2 argument

In this section we prove Lemma 5.7 with help on an \(L^2 \) estimation technique. It resembles the technique that Córdoba used in his proof for the Kakeya maximal inequality in the plane, see [2].
By Fubini’s theorem we have the following:
\[
\int_{\tilde{E}} \mathcal{L}^n(\tilde{P}_\delta) d\mu(P) = \int_{\tilde{E}} \int_{\mathbb{R}^n} \chi_{\tilde{P}_\delta}(y) dy d\mu(P)
\]
\[
= \int_{\mathbb{R}^n} \int_{\tilde{E}} \chi_{\tilde{P}_\delta}(y) d\mu(P) dy = \int_{\mathbb{R}^n} \chi_{\tilde{P}_\delta}(y) \cdot \int_{\tilde{E}} \chi_{\tilde{P}_\delta}(y) d\mu(P) dy,
\]
where \(F = \bigcup_{P \in \tilde{E}} \tilde{P} \) from (12). Now we apply the Cauchy-Schwarz inequality for the \(L^2 \) functions \(y \mapsto \chi_{F_\delta}(y) \) and \(y \mapsto \int_{\tilde{E}} \chi_{\tilde{P}_\delta}(y) d\mu(P) \). We get
\[
\int_{\mathbb{R}^n} \chi_{F_\delta}(y) \cdot \left(\int_{\tilde{E}} \chi_{\tilde{P}_\delta}(y) d\mu(P) \right) dy \leq \left(\int_{\mathbb{R}^n} \chi^2_{F_\delta}(y) dy \right)^{1/2} \cdot \left(\int_{\tilde{E}} \left(\int_{\mathbb{R}^n} \chi_{\tilde{P}_\delta}(y) d\mu(P) \right)^2 dy \right)^{1/2}
\]
\[
= (\mathcal{L}^n(F_\delta))^{1/2} \cdot \left(\int_{\mathbb{R}^n} \int_{\tilde{E}} \chi_{\tilde{P}_\delta}(y) \cdot \chi_{\tilde{P}_\delta}(y) d\mu(P) d\mu(P') dy \right)^{1/2}
\]
\[
= (\mathcal{L}^n(F_\delta))^{1/2} \cdot \left(\int_{\tilde{E} \times \tilde{E}} \mathcal{L}^n \left(\tilde{P}_\delta \cap \tilde{P}_{\delta}' \right) d\mu(P) d\mu(P') \right)^{1/2}.
\]
We proved that
\[
\int_{\tilde{E}} \mathcal{L}^n(\tilde{P}_\delta) d\mu(P) \leq (\mathcal{L}^n(F_\delta))^{1/2} \cdot \left(\int_{\tilde{E} \times \tilde{E}} \mathcal{L}^n \left(\tilde{P}_\delta \cap \tilde{P}_{\delta}' \right) d\mu(P) d\mu(P') \right)^{1/2}.
\]
On the other hand, there is a lower bound for the left hand side.

For any \(U \subset \mathbb{R}^n \) and \(\varepsilon > 0 \), let \(N(U, \varepsilon) \) denote the smallest number of \(\varepsilon \)-balls needed to cover \(U \). It is well known (see e.g. (11)) that \(\mathcal{L}^n(U_{\varepsilon}) \gtrsim_n N(U, 2\varepsilon)\varepsilon^n \) for every \(U \subset \mathbb{R}^n \) and \(\varepsilon > 0 \). Since \(H^\alpha_{\infty}(\tilde{P}) \geq \frac{1}{\varepsilon^2} \) by (10), we have \(N(\tilde{P}, \varepsilon) \cdot (2\varepsilon)^n \geq \frac{1}{\varepsilon^n} \) for every \(P \in \tilde{E} \) and \(\varepsilon > 0 \), thus
\[
(18) \quad \mathcal{L}^n(\tilde{P}_\delta) \gtrsim N(\tilde{P}, 2\varepsilon) \cdot \delta^n \gtrsim \delta^{n-\alpha} \cdot \frac{1}{l^2}.
\]
Then
\[
\int_{\tilde{E}} \mathcal{L}^n(\tilde{P}_\delta) d\mu(P) \gtrsim \delta^{n-\alpha} \cdot \frac{1}{l^2} \cdot \mu(\tilde{E}) \gtrsim \delta^{n-\alpha} \cdot \frac{1}{l^2}
\]
by (10). Thus we get
\[
(19) \quad \frac{\delta^{2n-2\alpha}}{l^8} \lesssim \mathcal{L}^n(F_\delta) \cdot \left(\int_{\tilde{E} \times \tilde{E}} \mathcal{L}^n \left(\tilde{P}_\delta \cap \tilde{P}_{\delta}' \right) d\mu(P) d\mu(P') \right).
\]
Thus we need to find an upper estimate for
\[
(20) \quad \int_{\tilde{E} \times \tilde{E}} \mathcal{L}^n(\tilde{P}_\delta \cap \tilde{P}_{\delta}') d\mu(P) d\mu(P').
\]
This means, we have to investigate, how the different \(\delta \)-tubes intersect each other.

We will estimate the integral (20) by dividing the set \(\tilde{E} \) into parts. One can easily check using Remark 3,5 that the elements of this partition will be measurable.
Fix a $P' \in \tilde{E}$. Put
\[E_0 = \{ P \in \tilde{E} : \rho(P, P') \leq \delta \} \]
and
\[E_j = \{ P \in \tilde{E} : 2^{j-1} \delta < \rho(P, P') \leq 2^j \delta \} \]
for $j = 1, \ldots, N$, where $N \lesssim \log \frac{1}{\delta}$. Clearly, we have $\tilde{E} = \bigcup_{j=0}^{N} E_j$, so

\[\int_{E_j} L^n(\tilde{P}_5 \cap \tilde{P'}_5) d\mu(P) \]

By (11) and Lemma 4.1, we obtain

\[\int_{E_j} L^n(\tilde{P}_5 \cap \tilde{P'}_5) d\mu(P) \lesssim \frac{\delta^{n-k+1}}{\delta} \mu(E_0) \lesssim \delta^{n-k} \cdot \delta^s \]

by (22) and (7). For $j \in \{1, \ldots, N\}$, we get

\[\int_{E_j} L^n(\tilde{P}_5 \cap \tilde{P'}_5) d\mu(P) \lesssim \frac{\delta^{n-k+1}}{2^{j-1} \delta + \delta} \mu(E_j) \lesssim \frac{\delta^{n-k}}{2^j (2^j \delta)^s} = \frac{\delta^{n-k+s} \cdot 2^j}{2^j} \]

by (22) and (7) again. Applying these estimates for (21) and using $s \leq 1$, we get

\[
\int_{E} L^n(\tilde{P}_5 \cap \tilde{P'}_5) d\mu(P) \lesssim \delta^{n-k+s} \left(1 + \sum_{j=1}^{N} \frac{2^j}{2^j} \right) \lesssim \delta^{n-k+s} N \lesssim \delta^{n-k+s} \log \frac{1}{\delta}.
\]

Finally we integrate with respect to P' and obtain by $\mu(\tilde{E}) \leq 1$ that

\[
\int \int_{E \times \tilde{E}} L^n(\tilde{P}_5 \cap \tilde{P'}_5) d\mu(P) d\mu(P') \lesssim \delta^{n-k+s} \log \frac{1}{\delta}.
\]

Recalling (19), we obtain that

\[
\frac{\delta^{2n-2s}}{18} \lesssim L^n(F_3) \cdot \delta^{n-k+s} \log \frac{1}{\delta},
\]

thus

\[
L^n(F_3) \gtrsim \frac{\delta^{n-2s+k-s}}{l^8 \log \frac{1}{\delta}}
\]

and we are done with the proof of Lemma 3.7 and so also with the proof of Theorem 2.4.

Acknowledgement

The first author is grateful to Izabella Laba for her notes on intersections of Cantor sets and differentiation for self-similar measures. It helped her choosing the formulation of the L^2 argument used in Section 5. The authors are grateful to the referees for their helpful suggestions.
References

[1] A. Chang, M. Csörnyei, K. Héra and T. Keleti, Small unions of affine subspaces and skeletons via Baire category, Adv. Math. 328 (2018), 801–821.
[2] A. Córdoba, Kakeya maximal function and spherical summation of multipliers, Amer. J. Math. 99 (1977), 1–22.
[3] R. O. Davies, Increasing Sequences of Sets and Hausdorff Measure, Proc. London Math. Soc. (3) 20 (1970), 222–236.
[4] C. Dellacherie, Ensembles Analytiques, Capacités, Mesures de Hausdorff, Lecture Notes in Mathematics 295, Springer-Verlag, 1972.
[5] K. Falconer and P. Mattila, Strong Marstrand theorems and dimensions of sets formed by subsets of hyperplanes, J. Fractal Geom. 3 (2016), 319–329.
[6] D. H. Fremlin, Measure Theory: Topological Measure Spaces (Vol. 4), Torres Fremlin, 2003.
[7] J. D. Howroyd, On dimension and on the existence of sets of finite positive Hausdorff measure, Proc. London Math. Soc. (3) 70 (1995), 581–604.
[8] A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics 156, Springer-Verlag, 1994.
[9] T. Keleti, Are lines much bigger than line segments?, Proc. Amer. Math. Soc. 144 (2016), 1535–1541.
[10] T. Keleti, D. T. Nagy and P. Shmerkin, Squares and their centers, to appear in J. Anal. Math.
[11] P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge University Press, 1995.
[12] P. Mattila, Fourier Analysis and Hausdorff Dimension, Cambridge University Press, 2015.
[13] U. Molter and E. Rela, Furstenberg sets for a fractal set of directions, Proc. Amer. Math. Soc. 140 (2012), 2753–2765.
[14] D. M. Oberlin, Unions of hyperplanes, unions of spheres, and some related estimates, Illinois J. Math. 51 (2007), no. 4, 1265–1274.
[15] D. M. Oberlin, Exceptional sets of projections, unions of k-planes, and associated transforms, Israel J. Math. 202 (2014), 331–342.
[16] R. Thornton, Cubes and Their Centers, Acta Math. Hungar. 152 (2017), 291–313.
[17] T. Wolff, An improved bound for Kakeya type maximal functions, Revista Math. Iberoamericana 11 (1995), 651–674.
[18] T. Wolff, A Kakeya-type problem for circles, Amer. J. Math. 119 (1997), 985–1026.
[19] T. Wolff, Local smoothing type estimates on L^p for large p, Geom. Funct. Anal. 10 (2000), 1237–1288.

Institute of Mathematics, Eötvös Loránd University, Pázmány Péter sétány 1/c, H-1117 Budapest, Hungary
E-mail address: herakornelia@gmail.com
E-mail address: tamas.keleti@gmail.com

Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
E-mail address: a.mathe@warwick.ac.uk