Spectral Properties of Higher Order Anharmonic Oscillators

Bernard Helffer
Mikael Persson

Vienna, Preprint ESI 2197 (2009) November 30, 2009

Supported by the Austrian Federal Ministry of Education, Science and Culture
Available online at http://www.esi.ac.at
SPECTRAL PROPERTIES OF HIGHER ORDER ANHARMONIC OSCILLATORS

BERNARD HELFFER AND MIKAEL PERSSON

ABSTRACT. We discuss spectral properties of the self-adjoint operator

$$-\frac{d^2}{dt^2} + \left(\frac{t^{k+1}}{k+1} - \alpha \right)^2$$

in $L^2(\mathbb{R})$ for odd integers k. We prove that the minimum over α of the ground state energy of this operator is attained at a unique point which tends to zero as k tends to infinity. Moreover, we show that the minimum is non-degenerate. These questions arise naturally in the spectral analysis of Schrödinger operators with magnetic field. This extends or clarifies previous results by Pan-Kwek [11], Helffer-Morame [8], Aramaki [1], Helffer-Kordyukov [4, 6, 7] and Helffer [3].

1. Introduction

1.1. Definition of $\Omega^{(k)}(\alpha)$ and main result. For any $\alpha \in \mathbb{R}$ we denote by $\lambda_1,\Omega^{(k)}(\alpha)$ the lowest eigenvalue of the self-adjoint second order differential operator

$$\Omega^{(k)}(\alpha) = -\frac{d^2}{dt^2} + \left(\frac{t^{k+1}}{k+1} - \alpha \right)^2.$$

We also denote by $q^{(k)}(\alpha)$ the quadratic form corresponding to $\Omega^{(k)}(\alpha)$,

$$q^{(k)}(\alpha)[u] = \int_{\mathbb{R}} |u'(t)|^2 + \left(\frac{t^{k+1}}{k+1} - \alpha \right)^2 |u(t)|^2 dt.$$

The main result of the present paper is the following theorem.

Theorem 1.1. Assume that $k \geq 1$ is an odd integer. There exists a unique $\alpha_{\text{min}}^{(k)}$ such that

$$\inf_{\alpha \in \mathbb{R}} \lambda_1,\Omega^{(k)}(\alpha) = \lambda_1,\Omega^{(k)}(\alpha_{\text{min}}^{(k)}).$$

Moreover, $\alpha_{\text{min}}^{(k)} > 0$ and the minimum is non-degenerate,

$$\partial_{\alpha\alpha}^2 \left(\lambda_1,\Omega^{(k)}(\alpha) \right) |_{\alpha = \alpha_{\text{min}}^{(k)}} > 0.$$

Theorem 1.2. Assume that k is even. Then $\alpha = 0$ is a non-degenerate local minimum of $\lambda_1,\Omega^{(k)}(\alpha)$.

Theorem 1.3. If k is odd,

$$\lim_{k \to +\infty} \alpha_{\text{min}}^{(k)} = 0.$$
1.2. **Historical context.** The operator $\Omega^{(k)}(\alpha)$ was first introduced in the context of magnetic Schrödinger operators in [10], and was further studied in [8, 11, 4].

The uniqueness of $\alpha^{(k)}_{\min}$ was first observed numerically in [10] for $k = 1$. A proof for $k = 1$ was given in [11], which was completed in [3]. The uniqueness for $k > 1$ (odd) was announced in [1] but the given proof seems incomplete. The non-degeneracy was obtained for $k = 1$ in [3] and conjectured in the general case in [6] and [7]. This conjecture was supported by numerical computations performed by V. Bonnaillie-Noël, see Table 1. The results for large k were announced in [6] and a proof was sketched in [5].

Table 1. Numerical values calculated by V. Bonnaillie-Noël with an accuracy of 10^{-2}.

k	1	2	3	4	5	6	7	8	9	10
$\alpha^{(k)}_{\min}$	0.35	0	0.16	0	0.10	0	0.07	0	0.05	0
$\lambda_{1,\Omega^{(k)}(\alpha^{(k)}_{\min})}$	0.57	0.66	0.68	0.76	0.81	0.87	0.92	0.98	1.02	1.07
$\lambda_{2,\Omega^{(k)}(\alpha^{(k)}_{\min})}$	1.98	2.50	2.61	2.98	3.18	3.47	3.66	3.90	4.07	4.27
$\lambda_{3,\Omega^{(k)}(\alpha^{(k)}_{\min})}$	4.11	5.24	5.68	6.52	7.03	7.69	8.16	8.70	9.12	9.57

The outline of the paper is the following: In Section 2 we collect some facts about the operator $\Omega^{(k)}(\alpha)$, which we use in Section 3 to prove Theorem 1.1. We prove Theorem 1.2 in Section 4. We consider large values of k in Section 5 and prove Theorem 1.3.

2. **Auxiliary results**

We recall some results about $\Omega^{(k)}(\alpha)$ obtained in [10, 6, 7, 5].

Lemma 2.1. It holds that $\lambda_{1,\Omega^{(k)}(\alpha)} \to \infty$ as $|\alpha| \to \infty$.

Proof. We first note that if k is odd and $\alpha < 0$, then $q^{(k)}(\alpha)[u] \geq \alpha^2 \|u\|^2$, so $\lambda_{1,\Omega^{(k)}(\alpha)} \geq \alpha^2$. On the other hand, for any integer $k > 0$ one can use semi-classical analysis [13, 9] to show that

$$\lambda_{1,\Omega^{(k)}(\alpha)} \sim (k + 1)^{2k/(k + 1)} \alpha^{k/(k + 1)}, \quad \alpha \to \infty.$$

For even k it holds that $\lambda_{1,\Omega^{(k)}(\alpha)} = \lambda_{1,\Omega^{(k)}(-\alpha)}$. \hfill \Box

So, it is clear that the smooth function $\lambda_{1,\Omega^{(k)}(\alpha)}$ is lower semi-bounded, and

$$\lambda^{(k)} := \inf_{\alpha \in \mathbb{R}} \lambda_{1,\Omega^{(k)}(\alpha)} > 0$$

and there exists (at least one) $\alpha^{(k)}_{\min} \in \mathbb{R}$ such that $\lambda_{1,\Omega^{(k)}(\alpha^{(k)}_{\min})}$ is minimal,

$$\lambda_{1,\Omega^{(k)}(\alpha^{(k)}_{\min})} = \lambda^{(k)}.$$

Let $u_{1,\alpha} \in L^2(\mathbb{R})$ be the L^2 normalized strictly positive eigenfunction of the operator $\Omega^{(k)}(\alpha)$ corresponding to the eigenvalue $\lambda_{1,\Omega^{(k)}(\alpha)}$,

$$\Omega^{(k)}(\alpha)u_{1,\alpha} = \lambda_{1,\Omega^{(k)}(\alpha)}u_{1,\alpha}, \quad \|u_{1,\alpha}\| = 1.$$ (2.1)

The function $u_{1,\alpha}$ can be chosen to depend smoothly on α.

Lemma 2.2. Assume that k is odd. Then it holds that $\alpha^{(k)}_{c} > 0$ for all critical points $\alpha^{(k)}_{c}$ of $\lambda_{1,\Omega^{(k)}(\alpha)}$. In particular, $\alpha^{(k)}_{\min} > 0$.
Proof. Differentiating (2.1) with respect to α and taking the inner product with $u_{1,\alpha}$ we find
\[\partial_\alpha \lambda_{1,\Omega^{(k)}(\alpha)} = -2 \int_{-\infty}^{\infty} \left(\frac{t}{k+1} - \alpha \right) (u_{1,\alpha})^2 \, dt. \] (2.2)
So, when the derivative is zero, we get
\[\alpha_c^{(k)} = \int_{-\infty}^{\infty} \frac{t}{k+1} (u_{1,\alpha^{(k)}})^2 \, dt > 0. \] (2.3)

Lemma 2.3. Assume that $\alpha_c^{(k)}$ is a critical point of $\lambda_{1,\Omega^{(k)}(\alpha)}$. If either

(A) $(k+2)\lambda_{1,\Omega^{(k)}(\alpha^{(k)})} > (k+6)\lambda_{1,\Omega^{(k)}(\alpha^{(k)})}$ or

(B) k is odd or $\alpha_c^{(k)} = 0$, and $(k+2)\lambda_{1,\Omega^{(k)}(\alpha^{(k)})} > (k+6)\lambda_{1,\Omega^{(k)}(\alpha^{(k)})}$,

then $\partial_\alpha^2 \lambda_{1,\Omega^{(k)}(\alpha^{(k)})} > 0$. Especially this implies that $\lambda_{1,\Omega^{(k)}(\alpha)}$ has a local minimum at $\alpha_c^{(k)}$ which is non-degenerate.

Proof. We start by assuming that the condition in (A) is fulfilled. The differentiation in the proof of Lemma 2.2 also provides us with a formula for $\partial_\alpha u_{1,\alpha}$,
\[\partial_\alpha u_{1,\alpha} = -2(\Omega^{(k)}(\alpha) - \lambda_{1,\Omega^{(k)}(\alpha)})^{-1} \left[\frac{t}{k+1} - \alpha \right] u_{1,\alpha}, \]
where the inverse is the regularized resolvent. Differentiating (2.1) twice, we find
\[\partial_{\alpha \alpha}^2 \lambda_{1,\Omega^{(k)}(\alpha)} = 2 - 4 \int_{-\infty}^{\infty} \left(\frac{t}{k+1} - \alpha \right) u_{1,\alpha} \partial_\alpha u_{1,\alpha} \, dt \]
By an application of the Cauchy-Schwarz inequality and the bound
\[\| (\Omega^{(k)}(\alpha) - \lambda_{1,\Omega^{(k)}(\alpha)})^{-1} \| \leq \frac{1}{\lambda_{2,\Omega^{(k)}(\alpha)} - \lambda_{1,\Omega^{(k)}(\alpha)}} \] (2.4)
we find that
\[\partial_{\alpha \alpha}^2 \lambda_{1,\Omega^{(k)}(\alpha)} \geq 2 - \frac{8}{\lambda_{2,\Omega^{(k)}(\alpha)} - \lambda_{1,\Omega^{(k)}(\alpha)}} \left\| \left(\frac{t}{k+1} - \alpha \right) u_{1,\alpha} \right\|^2. \] (2.5)
To calculate the norm on the right-hand side, we note that the ground state energy of the operator
\[\Omega^{(k)}(\alpha, \rho) = -\frac{1}{\rho^2} \frac{d^2}{dt^2} + \left(\rho^{k+1} \frac{t}{k+1} - \alpha \right)^2 \]
is independent of ρ, i.e.,
\[-\frac{1}{\rho^2} \frac{d^2}{dt^2} u_{1,\alpha,\rho} + \left(\rho^{k+1} \frac{t}{k+1} - \alpha \right)^2 u_{1,\alpha,\rho} = \lambda_{1,\Omega^{(k)}(\alpha)} u_{1,\alpha,\rho}. \]

Differentiating this identity with respect to ρ and then letting $\rho = 1$ and $\alpha = \alpha_c^{(k)}$, and then taking the inner product with $u_{1,\alpha_c^{(k)}}$, we get
\[(k+1) \left\| \left(\frac{t}{k+1} - \alpha_c^{(k)} \right) u_{1,\alpha_c^{(k)}} \right\|^2 = \left\| \frac{d}{dt} u_{1,\alpha_c^{(k)}} \right\|^2, \]
and consequently
\[\left\| \left(\frac{t}{k+1} - \alpha_c^{(k)} \right) u_{1,\alpha_c^{(k)}} \right\|^2 = \frac{1}{k+2} \lambda_{1,\Omega^{(k)}(\alpha_c^{(k)})}. \] (2.6)
If \(u\) is odd, it holds that

\[
\int_0^\infty \frac{d}{dt} \left(\frac{t^{k+1}}{k+1} - \alpha \right)^2 (u_{0,\alpha})^2 \, dt = (\lambda_{1,\alpha}(\alpha) - \alpha^2) u_{1,\alpha}(0)^2.
\]

For a critical point \(\alpha = \alpha_c^{(k)}\), we get

\[
\int_0^\infty \left(\frac{t^{k+1}}{k+1} - \alpha \right)(u_{1,\alpha_c^{(k)})}^2 \, dt = 0.
\]

Combining these two formulas, we obtain

\[
\left(\lambda_{1,\alpha}(\alpha_c^{(k)}) - (\alpha_c^{(k)})^2 \right) u_{1,\alpha_c^{(k)}(0)^2
\]

\[
= 2 \int_0^\infty \left(\frac{t^{k+1}}{k+1} - (\alpha_c^{(k)})^2 \right) (u_{1,\alpha_c^{(k)})^2 \, dt > 0.
\]

If \(u_{1,\alpha_c^{(k)}(0) = 0, then u_{1,\alpha_c^{(k)}} \equiv 0 since \(u'_{1,\alpha_c^{(k)}}(0) = 0, and so (2.7) holds. \]

Lemma 2.4. Assume that \(k\) is odd and that \(\alpha_c^{(k)}\) is a critical point of \(\lambda_{1,\alpha}(\alpha)\). Then

\[
(\alpha_c^{(k)})^2 < \lambda_{1,\alpha}(\alpha_c^{(k)}).
\]

Proof. Using the fact that \(u_{1,\alpha}\) is even we get, using integration by parts,

\[
\int_0^\infty \frac{d}{dt} \left(\frac{t^{k+1}}{k+1} - \alpha \right)^2 (u_{1,\alpha})^2 \, dt = (\lambda_{1,\alpha}(\alpha) - \alpha^2) u_{1,\alpha}(0)^2.
\]

For a critical point \(\alpha = \alpha_c^{(k)}\), we get

\[
\int_0^\infty \left(\frac{t^{k+1}}{k+1} - \alpha \right)(u_{1,\alpha_c^{(k)}})^2 \, dt = 0.
\]

Combining these two formulas, we obtain

\[
\left(\lambda_{1,\alpha}(\alpha_c^{(k)}) - (\alpha_c^{(k)})^2 \right) u_{1,\alpha_c^{(k)}(0)^2
\]

\[
= 2 \int_0^\infty \left(\frac{t^{k+1}}{k+1} - (\alpha_c^{(k)})^2 \right) (u_{1,\alpha_c^{(k)})^2 \, dt > 0.
\]

If \(u_{1,\alpha_c^{(k)}(0) = 0, then u_{1,\alpha_c^{(k)}} \equiv 0 since \(u'_{1,\alpha_c^{(k)}}(0) = 0, and so (2.7) holds. \]

3. **Proof of Theorem 1.1**

We will use the lemmas in the previous section to complete the proof. For that, we need an upper bound on \(\lambda_{1,\alpha}(\alpha)\) and a lower bound on \(\lambda_{2,\alpha}(\alpha)\).

3.1. **Upper bound.** In this section we are looking for a good upper bound of \(\lambda_{1,\alpha}(\alpha)\).

Lemma 3.1. For all \(k \geq 1\) and \(\alpha > 0\) it holds that

\[
\lambda_{1,\alpha}(\alpha) \leq \alpha^2 + \frac{\pi^2}{4} \frac{k+2}{k+1} \left(\frac{1}{4} (k+1)(2k+3)(2k+4)(2k+5) \right)^{-1/(k+2)}.
\]

In particular, if \(k\) is odd, it holds that \(\alpha_c^{(k)} \leq \alpha_\ast^{(k)}\) where

\[
\alpha_\ast^{(k)} = \frac{\pi}{2} \left(\frac{k+2}{k+1} \right)^{1/2} \left(\frac{1}{4} (k+1)(2k+3)(2k+4)(2k+5) \right)^{-1/(2k+4)}.
\]
Proof. We will motivate our choice of trial function, inspired by [5]. For large \(k \), the potential \(\left(\frac{k+1}{k+4} - \alpha \right)^2 \) will look more and more as potential \(p_{\alpha, \infty} \).

\[
p_{\alpha, \infty}(t) = \begin{cases} \alpha^2 & |t| \leq 1 \\ \infty & |t| > 1. \end{cases}
\]

Among the potentials \(p_{\alpha, \infty}, p_{0, \infty} \) is the one that will give the lowest energy, corresponding to the Dirichlet problem of \(-\frac{d^2}{dt^2} \) on \(L^2((-1,1)) \), with eigenvalues

\[
\left\{ \left(\frac{\pi j}{2} \right)^2 \right\}_{j \in \mathbb{N} \setminus \{0\}},
\]

and with first eigenfunction \(\cos(\pi t/2) \). Motivated by this, we introduce a parameter \(\rho > 0 \) and use as a trial function

\[
u(t) = \begin{cases} \cos\left(\frac{\pi t}{2\rho}\right) & |t| \leq \rho, \\ 0 & |t| > \rho. \end{cases}
\]

This function does not belong to the domain of \(\Omega^{(k)}(\alpha) \), but to the form domain of \(q^{(k)}(\alpha) \), which is enough to use the min-max principle. A simple calculation shows that if \(k \) is odd then

\[
\lambda_{1,\Omega^{(k)}(\alpha)} \leq \frac{q^{(k)}(\alpha)[u]}{\|u\|^2} = \alpha^2 - 2\alpha^2 \rho^k + 2 \left(\frac{1}{k+2} + I\left(\frac{k+1}{2}\right) \right) + \frac{\rho^2}{(k+1)^2} \left(\frac{1}{2k+3} + I(k+1) \right) + \frac{\pi^2}{4\rho^2},
\]

where \(I(m) = \int_0^1 s^{2m} \cos(\pi s) \, ds \leq 0 \). By integration by parts we see that

\[
-\frac{1}{2m+1} \leq I(m) \leq -\frac{1}{2m+1} + \frac{\pi^2}{(2m+1)(2m+2)(2m+3)}.
\]

If \(k \) is even the coefficient in front of \(\alpha \) is zero. In any case we get

\[
\lambda_{1,\Omega^{(k)}(\alpha)} \leq \alpha^2 + \frac{\pi^2 \rho^{2k+2}}{(k+1)^2(2k+3)(2k+4)(2k+5)} + \frac{\pi^2}{4\rho^2},
\]

(3.3)

The right-hand side above is clearly minimal for \(\alpha = 0 \). A differentiation in \(\rho \) also shows that it is minimal for

\[
\rho = \rho^{(k)} := \left[\frac{1}{4} (k+1)(2k+3)(2k+4)(2k+5) \right]^{1/(2k+4)},
\]

and if we put \(\rho^{(k)} \) into (3.3) and simplify we obtain (3.1).

The second statement is an immediate consequence of Lemma 2.4. \(\square \)

Remark. It holds that \(\lim_{\rho \to +\infty} \rho^{(k)} = 1 \), which is coherent with the fact that for the limiting case the first eigenfunction corresponds to \(\rho = 1 \).

3.2. Lower bound on \(\lambda_{3,\Omega^{(k)}(\alpha)} \).

Lemma 3.2. Assume that \(k \geq 3 \) is odd and that \(0 \leq \alpha \leq \alpha^{(k)}_* \), where \(\alpha^{(k)}_* \) is the constant from (3.2). Then

\[
k + 2 \frac{\lambda_{3,\Omega^{(k)}(\alpha)}}{k+6} \geq \lambda_{1,\Omega^{(k)}(\alpha)}
\]

(3.4)

Proof. We introduce the operator \(\Omega^{(k)}_N(\alpha) \) as the self-adjoint operator in \(L^2(\mathbb{R}^+) \) acting as

\[
\Omega^{(k)}_N(\alpha) = -\frac{d^2}{dt^2} + \left(\frac{k+1}{k+4} - \alpha \right)^2.
\]
and with a Neumann condition at \(t = 0 \). Since it holds that \(\lambda_{2,\Omega_N}^{(k)}(\alpha) = \lambda_{1,\Omega}^{(k)}(\alpha) \) we will work on the half-line with \(\Omega_N^{(k)}(\alpha) \) instead of \(\Omega^{(k)}(\alpha) \), and show the inequality
\[
\frac{k+2}{k+6} \lambda_{2,\Omega_N}^{(k)}(\alpha) \geq \lambda_{1,\Omega}^{(k)}(\alpha).
\]

We introduce constants \(0 < \varepsilon^{(k)} < 1 \) and \(\hat{\alpha}^{(k)} > 0 \), to be determined in (3.9) and (3.6) below. We also set
\[
\hat{p}^{(k)} = \left((k+1)\hat{\alpha}^{(k)}\right)^{1/(k+1)}.
\]

We claim that if \(0 < \alpha < \varepsilon^{(k)} \hat{\alpha}^{(k)} < \hat{\alpha}^{(k)} \), then
\[
\left(\frac{k+1}{k+\alpha} - \alpha\right)^2 \geq p(t) := \begin{cases} 2k(1-\varepsilon^{(k)}) (\hat{p}^{(k)})^{2k} (t-\hat{p}^{(k)})^2 & t > \hat{p}^{(k)} \\ 0 & 0 < t < \hat{p}^{(k)}. \end{cases}
\]

This is clear for \(0 < t \leq \hat{p}^{(k)} \). For \(t > \hat{p}^{(k)} \), we note that the the function \(\hat{p}(t) = \left(\frac{k+1}{k+\alpha} - \alpha\right)^2 - p(t) \) is positive at \(t = \hat{p}^{(k)} \), has a positive derivative at \(t = \hat{p}^{(k)} \),
\[
\hat{p}'(\hat{p}^{(k)}) = 2\left(\frac{(\hat{p}^{(k)})^{k+1}}{k+1} - \alpha\right)(\hat{p}^{(k)})^k > 2\hat{\alpha}^{(k)}(1-\varepsilon^{(k)})(\hat{p}^{(k)})^k > 0
\]

and that \(\hat{p} \) is convex for \(t > \hat{p}^{(k)} \),
\[
\hat{p}''(t) = 2t_{k} + 2\left(\frac{k+1}{k+\alpha} - \alpha\right)kt_{k-1} - \frac{4k(1-\varepsilon^{(k)})}{k+1} (\hat{p}^{(k)})^{2k}
\]
\[
> 2(1-\varepsilon^{(k)})(\hat{p}^{(k)})^{2k} + 2k(\hat{\alpha}^{(k)} - \alpha)(\hat{p}^{(k)})^{k-1} - \frac{4k(1-\varepsilon^{(k)})}{k+1} (\hat{p}^{(k)})^{2k}
\]
\[
> 2k(1-\varepsilon^{(k)})(\hat{p}^{(k)})^{2k} + 2k(1-\varepsilon^{(k)})(\hat{p}^{(k)})^{k-1} - \frac{4k(1-\varepsilon^{(k)})}{k+1} (\hat{p}^{(k)})^{2k}
\]
\[
= 0.
\]

Let us denote by \(b^{(k)} \) the self-adjoint operator in \(L^2(\mathbb{R}^+) \), acting as
\[
b^{(k)} = -\frac{d^2}{dt^2} + p(t),
\]

and with a Neumann condition at \(t = 0 \). Next, we decompose our Hilbert space \(L^2(\mathbb{R}^+) \) as \(L^2((0,\hat{p}^{(k)})) \oplus L^2(\{\hat{p}^{(k)},\infty\}) \) and introduce two new operators \(b_1^{(k)} \) and \(b_2^{(k)} \).

The first one, \(b_1^{(k)} \), is the self-adjoint operator in \(L^2(\{(0,\hat{p}^{(k)})\}) \) acting as
\[
b_1^{(k)} = -\frac{d^2}{dt^2} \quad 0 < t < \hat{p}^{(k)}
\]

with Neumann boundary conditions at \(t = 0 \) and \(t = \hat{p}^{(k)} \). This operator has eigenvalues
\[
\text{Spec}(b_1^{(k)}) = \left\{ \left(\frac{(j-1)\pi}{\hat{p}^{(k)}}\right)^2 \right\}_{j=1}^{\infty}.
\]

The second operator, \(b_2^{(k)} \), is the self-adjoint operator in \(L^2(\{\hat{p}^{(k)},\infty\}) \), acting as
\[
b_2^{(k)} = -\frac{d^2}{ds^2} + \frac{2k(1-\varepsilon^{(k)})}{k+1} (\hat{p}^{(k)})^{2k} (s-\hat{p}^{(k)})^2, \quad t > \hat{p}^{(k)}
\]

with Neumann condition at \(t = \hat{p}^{(k)} \). After translation \(s = t - \hat{p}^{(k)} \) we get
\[
-\frac{d^2}{ds^2} + \frac{2k(1-\varepsilon^{(k)})}{k+1} (\hat{p}^{(k)})^{2k} s^2, \quad s > 0
\]
with Neumann condition at \(s = 0 \). We use a scaling argument and compare with
the harmonic oscillator on the half-line. The result is that the eigenvalues of \(h^{(k)}_2 \)
are
\[
\text{Spec}(h^{(k)}_2) = \left\{ \left[\frac{2k(1 - \varepsilon^{(k)})}{k + 1} \right]^{1/2} \left(\hat{t}^{(k)} \right)^k (4j - 3) \right\}_{j \in \mathbb{N} \setminus \{0\}}
\]

We clearly have
\[
\lambda_{j,\Omega_N^{(k)}(a)} \geq \lambda_{j,h^{(k)} \oplus h^{(k)}_2}, \quad j \in \mathbb{N} \setminus \{0\},
\]
and \(\text{Spec}(h^{(k)}_1 \oplus h^{(k)}_2) = \text{Spec}(h^{(k)}_1) \cup \text{Spec}(h^{(k)}_2) \).

Next, we choose \(a^{(k)} \) so that the second eigenvalue of \(h^{(k)}_1 \) agrees with the first
one of \(h^{(k)}_2 \), i.e.,
\[
\left(\frac{\pi}{\hat{t}^{(k)}} \right)^2 \left[\frac{2k(1 - \varepsilon^{(k)})}{k + 1} \right]^{1/2} \left(\hat{t}^{(k)} \right)^k,
\]
This gives
\[
\hat{t}^{(k)} = \left[\frac{\pi^4(k + 1)}{2k(1 - \varepsilon^{(k)})} \right]^{1/(k + 2)}, \quad \hat{a}^{(k)} = \frac{1}{k + 1} \left[\frac{\pi^4(k + 1)}{2k(1 - \varepsilon^{(k)})} \right]^{1/(k + 2)}, \quad (3.6)
\]
and the lower bound of \(\lambda_{2,\Omega_N^{(k)}(a)} \) becomes
\[
\lambda_{2,\Omega_N^{(k)}(a)} \geq \pi^2 \left[\frac{2k(1 - \varepsilon^{(k)})}{\pi^4(k + 1)} \right]^{1/(k + 2)}.
\]
Next we want to choose \(\varepsilon^{(k)} \) in such a way that both
\[
\varepsilon^{(k)} \hat{a}^{(k)} \geq a^{(k)}_\ast,
\]
and
\[
\frac{k + 2}{k + 6} \pi^2 \left[\frac{2k(1 - \varepsilon^{(k)})}{\pi^4(k + 1)} \right]^{1/(k + 2)} \geq a^2 + (a^{(k)}_\ast)^2, \quad 0 < \alpha \leq a^{(k)}_\ast \quad (3.8)
\]
are satisfied. It is clearly enough to prove the last inequality for \(\alpha = a^{(k)}_\ast \). We let \(\varepsilon^{(k)} \) be given by
\[
\varepsilon^{(k)} = 1 - \frac{2}{k(k + 1)}.
\]
With this choice, \(\hat{t}^{(k)} \) and \(\hat{a}^{(k)} \) reads
\[
\hat{t}^{(k)} = \left[\frac{\pi^2(k + 1)}{2} \right]^{1/(k + 2)}, \quad \hat{a}^{(k)} = \pi^2 \left[\frac{2}{\pi^2(k + 1)} \right]^{1/(k + 2)}, \quad (3.10)
\]
and the lower bound of \(\lambda_{2,\Omega_N^{(k)}(a)} \) becomes
\[
\lambda_{2,\Omega_N^{(k)}(a)} \geq \pi^2 \left[\frac{2}{\pi^2(k + 1)} \right]^{1/(k + 2)}.
\]
We start with (3.7). We claim that \(\varepsilon^{(k)} \hat{a}^{(k)} \) is monotonically increasing for \(k \geq 3 \).
Indeed, both factors are positive, and \(\varepsilon^{(k)} \) is obviously increasing. We differentiate
the expression for \(\hat{a}^{(k)} \) and use the fact that for \(k \geq 3 \)
\[
\log(\pi^2(k + 1)/2) > 2,
\]
to conclude that
\[
\frac{d}{dk} \hat{a}^{(k)} = \hat{a}^{(k)} \left[\frac{(k + 1) \log(\pi^2(k + 1)/2) - (k + 2)}{(k + 2)^2(k + 1)} \right] > 0.
\]
Moreover, $\varepsilon_{(k)}$ is equal to $2^{-11/5} \times 3^{-1} \times 5\pi^{8/5}$ for $k = 3$. We bound the constants $\alpha_+^{(k)}$ from above as

$$\alpha_+^{(k)} \leq \frac{\pi}{2} \sqrt{\frac{5}{4}} \quad (3.11)$$

for $k \geq 3$. Hence, (3.7) is a consequence of

$$2.26 \approx 2^{-11/5} \times 3^{-1} \times 5\pi^{8/5} > \frac{\pi}{2} \sqrt{\frac{5}{4}} \approx 1.76.$$

For inequality (3.8), we note that both sides are positive, so we will show that $A_1(k) \geq 1$ for all $k \geq 3$ with

$$A_1(k) := \frac{k+2}{k+6} \pi^2 \left[\frac{8(k+1)^2}{\pi^2 (k+1)} \right]^{1/2} = \frac{2(k+1)}{k+6} \left[\frac{(2k+3)(2k+4)(2k+5)}{\pi^4 (k+1)} \right]^{1/2}. \quad (3.12)$$

A plot of $A_1(k)$ is given in Figure 1. Next, we use the estimate

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{plot.png}
\caption{A plot of $A_1(k)$ for $3 \leq k \leq 50$}
\end{figure}

$$(2k + 3)(2k + 4)(2k + 5) > 8(k + 1)^3,$$

which implies that

$$A_1(k) > \frac{2(k+1)}{k+6} \left(\frac{8(k+1)^2}{\pi^4} \right)^{1/(k+2)}.$$

The first factor is greater than 1 if $k \geq 5$ and the second one is greater than 1 if $k \geq 3$. For $k = 3$ get

$$A_1(3) = 2^{14/5} 3^{-8/5} 5^{4/5} 11^{1/5} \pi^{-4/5} \approx 1.07.$$

This finishes the proof of (3.8) and completes the proof.

3.3. End of proof of Theorem 1.1. By Lemmas 2.2 and 2.4 it follows that

$$0 < \alpha^{(k)}_{\min} < \alpha_+^{(k)}.$$

However, by Lemmas 2.3 and 3.2, we find that all critical points in this interval must be non-degenerate minima. This clearly implies the uniqueness, and finishes the proof.
4. The case of even k

In this section we prove Theorem 1.2.

Proof (of Theorem 1.2). The lower bound of $\lambda_{2,n}(\alpha)$ from Lemma 5.1 is no good for small values of α. Instead, we use the lower bound

$$\left(\frac{t^{k+1}}{k+1} - \alpha\right) \geq \left(\frac{t^{k+1}}{k+1} - \alpha\right)^2,$$

and then we use that the second eigenvalue corresponding to the potential on the right-hand side on \mathbb{R} is equal to the first eigenvalue of the operator

$$\mathcal{L}_D^{(k)}(\alpha) = -\frac{d^2}{dt^2} + \left(\frac{t^{k+1}}{k+1} - \alpha\right)^2$$

in $L^2(\mathbb{R}^+)$ with a Dirichlet condition at $t = 0$. We use the same type of splitting as in Lemma 3.2,

$$\mathcal{L}_D^{(k)}(\alpha) \geq h_1^{(k)} + h_2^{(k)},$$

and write

$$0 \leq \alpha < \varepsilon(k) \tilde{\alpha}(k) < \tilde{\alpha}(k)^2, \quad \tilde{\alpha}(k) = (\tilde{\alpha}(k)(k+1))^{1/(k+1)},$$

where the constants $\varepsilon(k)$, $\tilde{\alpha}(k)$ and $\tilde{\alpha}(k)$ play the same roles as in the proof of Lemma 3.2 (but, as we will see, they are not the same!). This time the operator $h_1^{(k)}$ is given by

$$h_1^{(k)} = -\frac{d^2}{dt^2}$$

in $L^2((0, \tilde{t}(k)))$ with Dirichlet condition at $t = 0$ and Neumann condition at $t = \tilde{t}(k)$. This operator has eigenvalues

$$\text{Spec}(h_1^{(k)}) = \left\{ \left(\frac{(2j-1)\pi}{2\tilde{t}(k)}\right)^2 \right\}_{j \in \mathbb{N}\setminus\{0\}}.$$

The operator $h_2^{(k)}$ is the same as in the proof of Lemma 3.2, with eigenvalues

$$\text{Spec}(h_2^{(k)}) = \left\{ \left(\frac{2k(1-\varepsilon(k))}{k+1} (\tilde{\alpha}(k))^{2k} \right)^{1/(4j+3)} \right\}_{j \in \mathbb{N}\setminus\{0\}}.$$

As in Lemma 3.2, the best lower bound we can get on $\lambda_{1,n}(\alpha^{(k)}_D)$ is the one we get when the first eigenvalues of $h_1^{(k)}$ and $h_2^{(k)}$ are equal. This determines $\tilde{\alpha}(k)$ as

$$\tilde{\alpha}(k) = \frac{1}{k+1} \left[\frac{\pi^4(k+1)}{32k(1-\varepsilon(k))} \right]^{\frac{1}{4k+1}}, \quad \tilde{\alpha}(k) = (\tilde{\alpha}(k)(k+1))^{1/(k+1)}.$$

We let $\varepsilon(k) = \frac{1}{2\pi}$. Then the lower bound becomes

$$\lambda_{2,n}(\alpha) \geq \frac{\pi^2}{4} \left[\frac{32(k-1/2)}{\pi^4(k+1)} \right]^{\frac{1}{2k+2}}.$$

To get the existence of an $\alpha^{(k)}_{\text{max}} > 0$ such that condition (A) in Lemma 2.3 is fulfilled for $\alpha \in (-\alpha^{(k)}_{\text{max}}, \alpha^{(k)}_{\text{max}})$ it is by Lemma 3.1 enough to show that $A_2(k) > 1$ with

$$A_2(k) := k + \frac{\pi^2}{4} \left\{ \frac{32(k-1/2)k+1}{k+6} \right\}^{\frac{1}{2k+2}} = k + \frac{1}{k+6} \left(\frac{8}{\pi^4} (k-1/2)(2k+3)(2k+4)(2k+5) \right)^{1/(k+2)}.$$

See Figure 2 for a plot of $A_2(k)$ for $2 \leq k \leq 50$. We note that $\lim_{k \to \infty} A_2(k) = 1$. By using the estimate

$$(k-1/2)(2k+3)(2k+4)(2k+5) > 16(k+1)^3$$
which is valid for all $k \geq 2$) we find that $A_2(k) > B(k)$ with

$$B(k) := \frac{k+1}{k+6} \left(\frac{128}{\pi^4} (k+1)^3 \right)^{1/(k+2)}.$$

The derivative of $B(k)$ is given by

$$B'(k) = B(k) \frac{8k^2 + 44k + 56 - (k+1)(k+6) \log \left(\frac{128}{\pi^4} (k+1)^3 \right)}{(k+1)(k+2)^2(k+6)}.$$

For $k \geq 14$ it holds that $\log \left(\frac{128}{\pi^4} (k+1)^3 \right) > 8$ and so

$$8k^2 + 44k + 56 - (k+1)(k+6) \log \left(\frac{128}{\pi^4} (k+1)^3 \right) < 8 - 12k \leq -160,$$

which implies that $B'(k) < 0$. Moreover, since $B(14) \approx 1.27$ and $\lim_{k \to \infty} B(k) = 1$$

it follows that $B(k) \geq 1$, and thus $A_2(k) > 1$, for all $k \geq 14$.

For even $2 \leq k \leq 12$, we calculate $A_2(k)$ numerically,

k	2	4	6	8	10	12
$A_2(k)$	1.05	1.41	1.49	1.50	1.49	1.47

which establishes $A_2(k) > 1$ for all even $k \geq 2$.

The proof of the theorem is completed by an application of Lemma 2.3, noting that $\alpha = 0$ is a critical point of $\lambda_{1, \Omega^{(k)}(\alpha)}$ since $\lambda_{1, \Omega^{(k)}(\alpha)}$ is even. \hfill \square

5. The case of large k

The goal of this section is to prove Theorem 1.3. It will be done using the ideas from [5].

For even $k \geq 2$ we introduce

$$m_k = \inf_{t \in \mathbb{R}} \frac{t^{k+1} - 1}{t - 1}. \tag{5.1}$$

The constants m_k decrease from $3/4$ for $k = 2$ to $1/2$ as $k \to \infty$.

Lemma 5.1. Let $k \geq 2$ be an even integer. With m_k as in (5.1) it holds that

$$\lambda_{j, \Omega^{(k)}(\alpha)} \geq m_k \alpha^{k/(k+1)}(k+1)^{-1/(k+1)} (2j-1), \quad j \in \mathbb{N} \setminus \{0\}. \tag{5.2}$$
Proof. We use a lower bound of the potential
\[
\left(\frac{\eta^{k+1}}{k+1} - \alpha\right)^2 = \alpha^2 \left(\frac{t}{\alpha(k+1)^{(k+1)/2}}\right)^{k+1} - 1 \right)^2 \\
\geq \left(m_k \alpha^{k/(k+1)}(k+1)^{-k/(k+1)}\right)^2 \left(t - (\alpha(k+1)^{1/(k+1)}\right)^2,
\]
and then estimate with the eigenvalues of the harmonic oscillator on the whole line.

Lemma 5.2. Assume that \(k \geq 2\) is an even integer and that \(m_k\) is the constant from Lemma 5.1. Then \(\alpha_{\text{min}}^{(k)} \leq \alpha_{\text{min}}^{(k)}\) where
\[
\alpha_{\text{min}}^{(k)} \leq \left[\frac{(k+1)^{1/(k+1)}}{m_k} \left(\frac{\pi^2 k + 2}{4} k + \frac{1}{4} (k+1)(2k+3)(2k+4)(2k+5)\right)^{-1/(k+2)}\right]^{(k+1)/k}.
\]
In particular, if \(\eta > \frac{\pi^2}{4}\) then there exists \(k_0\) such that, for \(k \geq k_0\), \(k\) even, \(\lambda_{1,\Omega^{(\epsilon)}(\alpha)}\) attains its minimum in \((-\eta, \eta)\).

Proof. Inequality (5.3) follows by combining Lemma 3.1 (with \(\alpha = 0\)) with Lemma 5.1. The second statement is immediate, by letting \(k \to \infty\), and using the fact that \(m_k \geq \frac{1}{k}\) for all \(k\).

Lemma 5.3. Let \(\alpha > 0\). For any \(j \in \mathbb{N} \setminus \{0\}\) it holds that
\[
\lim_{k \to \infty} \lambda_{j,\Omega^{(\epsilon)}(\alpha)} = \alpha^2 + \left(\frac{j\pi}{2}\right)^2
\]
with a uniform control with respect to \(\alpha\) in any compact interval.

This result might be a consequence of \(\Gamma\)-convergence of the Pisa school, except possibly for the uniform control of \(\alpha\). See also [12], in particular Example 4.2. For the sake of completeness, we give a proof inspired by the methods in [2].

Proof. We start with the upper bound, which we prove for \(j \leq 2\) only. The general proof uses the same argument.

For \(j = 1\) the upper bound follows from Lemma 3.1. For \(j = 2\), let us consider the functions
\[
\varphi_1(t) = \begin{cases} \cos\left(\frac{\pi t}{2}\right) & \text{if } |t| \leq 1 \\
0 & \text{if } |t| > 1 \end{cases}, \quad \text{and} \quad \varphi_2(t) = \begin{cases} \sin\left(\frac{\pi t}{2}\right) & \text{if } |t| \leq 1 \\
0 & \text{if } |t| > 1 \end{cases},
\]
They are eigenfunctions of the two lowest eigenvalues of the limiting model \(k \to \infty\), \(-\frac{d^2}{dt^2} + \alpha^2\) in \(L^2((-1, 1))\) with Dirichlet boundary conditions.

Computing the energy of the function \(\mu_1 \varphi_1 + \mu_2 \varphi_2\), \(|\mu_1|^2 + |\mu_2|^2 = 1\), we find a sphere in a two-dimensional space on which the energy is less than \(\mu(k)\), with
\[
\mu(k) = \alpha^2 + \pi^2 + C \frac{1 + |\alpha|}{k+1}.
\]
The upper bound in (5.4) for \(j = 2\) is a consequence of the min-max principle. We continue with the lower bound.

Let \(\varepsilon > 0\) be given. Then, for bounded \(\alpha > 0\), we can choose \(k\) so large that
\[
\left(\frac{t_{k+1}}{k+1} - \alpha\right)^2 \geq p(t) := \begin{cases} \left(\frac{(1+\varepsilon)^{k+1}}{k+1} + \alpha\right)^2, & -\infty < t \leq -1 - \varepsilon, \\
\alpha^2(1-\varepsilon), & -1 - \varepsilon < t \leq 1 - \varepsilon, \\
0, & 1 - \varepsilon < t \leq 1 + \varepsilon, \\
\left(\frac{(1+\varepsilon)^{k+1}}{k+1} - \alpha\right)^2, & 1 + \varepsilon < t < \infty.
\end{cases}
\]
We want to solve the eigenvalue equation

$$-\frac{d^2}{dt^2} u + p(t) u = \lambda u,$$

(5.6)

by solving it for each interval and glue the solutions together as is done in several examples in [2]. We first note that the operator is positive, so we only have to consider $\lambda \geq 0$. Let us introduce the notation

$$A = \left(\frac{(1 + \varepsilon)^{k+1}}{k+1} + \alpha \right)^2, \quad B = \left(\frac{(1 + \varepsilon)^{k+1}}{k+1} - \alpha \right)^2, \quad C = \sqrt{\lambda - \alpha^2(1 - \varepsilon)},$$

$$t_0 = -1 - \varepsilon, \quad t_1 = 1 - \varepsilon, \quad t_2 = 1 + \varepsilon.$$

We may choose k so large that $A > \lambda$ and $B > \lambda$.

If $\lambda > \alpha^2(1 - \varepsilon)$, the square integrable solution to (5.6) is given by

$$u(t) = \begin{cases}
 a_0 \exp(\sqrt{A - \lambda} t) & -\infty < t \leq t_0, \\
 b_0 \cos(C t) + b_1 \sin(C t) & t_0 < t \leq t_1, \\
 c_0 \cos(\sqrt{A} t) + c_1 \sin(\sqrt{A} t), & t_1 < t \leq t_2, \\
 d_0 \exp(-\sqrt{B - \lambda} t), & t_2 < t < \infty.
\end{cases}$$

(5.7)

Here a_0, b_0, b_1, c_0, c_1 and d_0 are constants that are determined by gluing the solution together. The conditions that both u and u' should coincide at the points t_0, t_1 and t_2 read

$$a_0 \exp(\sqrt{A - \lambda} t_0) = b_0 \cos(C t_0) + b_1 \sin(C t_0),$$

$$a_0 \sqrt{A - \lambda} \exp(\sqrt{A - \lambda} t_0) = -b_0 C \sin(C t_0) + b_1 C \cos(C t_0),$$

$$b_0 \cos(C t_1) + b_1 \sin(C t_1) = c_0 \cos(\sqrt{A} t_1) + c_1 \sin(\sqrt{A} t_1),$$

$$-b_0 \sin(\sqrt{A} t_1) = -c_0 \sqrt{A} \sin(C t_1) + c_1 \sqrt{A} \cos(C t_1),$$

$$c_0 \cos(\sqrt{A} t_2) + c_1 \sin(\sqrt{A} t_2) = d_0 \exp(-\sqrt{B - \lambda} t_2),$$

$$-c_0 \sqrt{A} \sin(\sqrt{A} t_2) + c_1 \sqrt{A} \cos(\sqrt{A} t_2) = -d_0 \sqrt{B - \lambda} \exp(-\sqrt{B - \lambda} t_2).$$

This is a linear system of equations in a_0, b_0, b_1, c_0, c_1 and d_0 which has nontrivial solutions if and only if

$$\frac{1}{\sqrt{C \sqrt{A - \lambda} - C}} \tan(C(t_1 - t_0)) + C = -\frac{1}{\sqrt{\lambda - \alpha^2(1 - \varepsilon)}} \tan(\sqrt{A - \lambda} (t_2 - t_1)) + \frac{\sqrt{C}}{\sqrt{\lambda - \alpha^2(1 - \varepsilon)}} \tan(\sqrt{C} (t_2 - t_1))$$

(5.8)

This is the equation that determines the eigenvalues λ. For large k, the terms $\sqrt{A - \lambda}$ and $\sqrt{B - \lambda}$ are dominating, and we can write (5.8) as

$$\frac{1}{\sqrt{\lambda - \alpha^2(1 - \varepsilon)}} \tan(2 \sqrt{\lambda - \alpha^2(1 - \varepsilon)}) = -\frac{1}{\sqrt{\lambda}} \tan(2 \sqrt{\lambda}) + \mathcal{O}((k+1)(1+\varepsilon)^{-k+1})$$

(5.9)

as $k \to \infty$, where the estimate is uniform for bounded α and λ. Inserting the values for t_0, t_1, t_2 and C, we find that

$$\frac{1}{\sqrt{\lambda - \alpha^2(1 - \varepsilon)}} \tan(2 \sqrt{\lambda - \alpha^2(1 - \varepsilon)}) = -\frac{1}{\sqrt{\lambda}} \tan(2 \sqrt{\lambda}) + \mathcal{O}((k+1)(1+\varepsilon)^{-k+1}),$$

(5.10)

If $0 < \lambda < \alpha^2(1 - \varepsilon)$ then hyperbolic functions appear in the solution of (5.6), and the same type of calculations that resulted in (5.10) this time yield

$$\frac{1}{\sqrt{\alpha^2(1 - \varepsilon) - \lambda}} \tanh(2 \sqrt{\alpha^2(1 - \varepsilon) - \lambda}) = -\frac{1}{\sqrt{\alpha^2(1 - \varepsilon)}} \tan(2 \sqrt{\alpha^2(1 - \varepsilon)}) + \mathcal{O}((k+1)(1+\varepsilon)^{-k+1}).$$
The function
\[
f_1(\lambda) = \begin{cases}
\frac{1}{\sqrt{\alpha^2(1-\varepsilon) - \lambda}} \tanh(2\sqrt{\alpha^2(1-\varepsilon) - \lambda}), & 0 < \lambda < \alpha^2(1-\varepsilon), \\
\frac{1}{\sqrt{\lambda - \alpha^2(1-\varepsilon)}} \tan(2\sqrt{\lambda - \alpha^2(1-\varepsilon)}), & \alpha^2(1-\varepsilon) < \lambda < \infty,
\end{cases}
\]
is positive for all \(0 \leq \lambda < \alpha^2(1-\varepsilon) + \frac{2}{\pi^2}\), and \(\lim_{\lambda \to \alpha^2(1-\varepsilon) + \frac{2}{\pi^2}} f_1(\lambda) = +\infty\). For larger \(\lambda\) it holds that \(f_1(\lambda)\) is monotonically increasing from \(-\infty\) to \(\infty\) in every interval
\[
\left(\frac{(j-1/2)\pi}{2}\right)^2 + \alpha^2(1-\varepsilon), \left(\frac{(j+1/2)\pi}{2}\right)^2 + \alpha^2(1-\varepsilon). \tag{5.11}
\]
The function
\[
f_2(\lambda) = -\frac{1}{\sqrt{\lambda}} \tan(2\varepsilon\sqrt{\lambda})
\]
is negative for all \(0 \leq \lambda < (\frac{\pi}{4})^2\), and \(\lim_{\lambda \to (\frac{\pi}{4})^2} f_2(\lambda) = -\infty\).

We find that if \(\varepsilon\) satisfies
\[
\left(\frac{\pi}{4}\right)^2 > \left[\frac{(j+1/2)\pi}{2}\right]^2 + \alpha^2(1-\varepsilon)
\]
then there exists a \(k_j(\varepsilon)\) and \(C_j\) such that if \(k \geq k(\varepsilon)\), \(k\) even, it holds that the \(j\)th solution of (5.10) lies in the interval (5.11) and we conclude that
\[
\lambda_{j, \Omega^{(k)}(\alpha)} \geq \left(\frac{(j-1/2)\pi}{2}\right)^2 + \alpha^2(1-\varepsilon) - C_j \varepsilon.
\]
This is not the upper bound we wanted. However, we can do better. There exists a constant \(K_j > 0\) (uniform in \(\alpha, \varepsilon\)) such that
\[
0 < \lambda < \left[\frac{(j+1/2)\pi}{2}\right]^2 + \alpha^2(1-\varepsilon) \implies -K_j \varepsilon < f_2(\lambda) < 0.
\]
This implies that the first \(j\) solutions to (5.10), up to an error of order \(\varepsilon\) coincides with the first \(j\) zeros of the function \(f_1(\lambda)\), i.e., for all \(\varepsilon > 0\) there exist \(\hat{k}_j(\varepsilon)\) and \(\hat{C}_j\) such that for \(k \geq \hat{k}_j(\varepsilon)\), \(k\) even, it holds that
\[
\lambda_{j, \Omega^{(k)}(\alpha)} \geq \left(\frac{j\pi}{2}\right)^2 + \alpha^2(1-\varepsilon) - \hat{C}_j \varepsilon.
\]
This completes the proof of (5.4). \(\square\)

We are now ready to prove Theorem 1.3.

Proof (of Theorem 1.3). First, we show (1.3), where we consider odd \(k\) only. We recall the bound (3.11) on \(\alpha^{(k)}_{\min}\), \(0 < \alpha^{(k)}_{\min} < \sqrt{\frac{5}{4} \pi}\), and the formula (2.3) which is valid for \(\alpha^{(k)}_{\min}\), i.e.,
\[
\alpha^{(k)}_{\min} = \int_0^\infty \frac{t^{k+1}}{k+1} (u_{1, \alpha^{(k)}_{\min}})^2 \, dt.
\]
It is enough to show that
\[
\lim_{k \to \infty} \int_1^\infty \frac{t^{k+1}}{k+1} (u_{1, \alpha^{(k)}_{\min}})^2 \, dt = 0.
\]
We first show that, for any \(\varepsilon > 0\) it holds that
\[
\lim_{k \to \infty} \int_{1+\varepsilon}^\infty \frac{t^{k+1}}{k+1} (u_{1, \alpha^{(k)}_{\min}})^2 \, dt = 0. \tag{5.12}
\]
For any $k \geq 3$ and $0 < \alpha < \sqrt{\frac{5}{16}}$ we use Lemma 3.1 to find

$$\int_{1+\varepsilon}^{\infty} \frac{t^{2(k+1)}}{(k+1)^2} (u_{1,\alpha})^2 \, dt \leq 2 \int_{1+\varepsilon}^{\infty} \left(\frac{t^{k+1}}{k+1} - \alpha \right)^2 (u_{1,\alpha})^2 \, dt + 2\alpha^2 \leq 2\lambda_{1,\Omega^{(k)}(\alpha)} + 2\alpha^2 < \frac{15}{8} \pi^2. \quad (5.13)$$

In particular, we get

$$\int_{1+\varepsilon}^{\infty} \frac{t^{k+1}}{k+1} (u_{1,\alpha})^2 \, dt \leq (1+\varepsilon)^{-(k+1)}(k+1)\frac{15}{8} \pi^2,$$

which establishes (5.12). We write the remaining integral as

$$\int_{1}^{1+\varepsilon} \frac{t^{k+1}}{k+1} (u_{1,\alpha})^2 \, dt = \int_{1}^{1+\varepsilon} \left(\frac{t^{k+1}}{k+1} - \alpha \right) (u_{1,\alpha})^2 \, dt + \alpha (u_{1,\alpha})^2 \int_{1}^{1+\varepsilon} (u_{1,\alpha})^2 \, dt,$$

and apply the Cauchy-Schwarz inequality and use (2.6) to conclude that the first integral tends to zero as $k \to \infty$. For the second integral we use the general inequality

$$\int_{a}^{b} u(t)^2 \, dt \leq 4 \int_{a}^{b+\varepsilon} u(t)^2 \, dt + 2(b-a)^2 \int_{a}^{b} u'(t)^2 \, dt$$

with $a = 1$ and $b = 1 + \varepsilon$. We use (5.13) to find that

$$\int_{1+\varepsilon}^{\infty} (u_{1,\alpha})^2 \, dt \leq \left(1 + \frac{\varepsilon}{2} \right)^{-(k+1)}(k+1)^2 \int_{1+\varepsilon}^{\infty} \frac{t^{2(k+1)}}{(k+1)^2} (u_{1,\alpha})^2 \, dt \leq \frac{15}{8} \pi^2 \left(1 + \frac{\varepsilon}{2} \right)^{-(k+1)}(k+1)^2.$$

Moreover we use the inequality

$$\int_{1}^{1+\varepsilon} (u_{1,\alpha})^2 \, dt \leq \lambda_{1,\Omega^{(k)}(\alpha)} \leq \frac{5}{16} \pi^2,$$

to get, finally,

$$\int_{1}^{1+\varepsilon} (u_{1,\alpha})^2 \, dt \leq \frac{15}{2} \pi^2 \left(1 + \frac{\varepsilon}{2} \right)^{-(k+1)}(k+1)^2 + \frac{5}{8} \pi^2 \varepsilon^2.$$

This achieves the proof of (1.3).

We continue with the proof of the second statement. We know that $\alpha = 0$ is a non-degenerate local minima. By Lemma 5.2 it is enough to show that there exists a k_0 such that condition (A) in Lemma 2.3 holds for all $k \geq k_0$, k even, and all $0 < \alpha \leq \eta$, where $\eta > \frac{\pi^2}{2}$ is arbitrary. However, it is clear by Lemma 5.3 that this can be done. \hfill \Box

Acknowledgements

The authors thank Yuri Kordyukov for many discussions and for allowing us to reproduce some proofs of [5]. We also thank Søren Fournais and Xingbin Pan for fruitful discussions. This work was started when the authors were at the Erwin Schrödinger Institute (ESI) in Vienna which is gratefully acknowledged. MP is supported by the Lundbeck foundation and by European Research Council under the European Community’s Seventh Framework Program (FP7/2007-2013)/ERC grant agreement 202859.
REFERENCES

[1] J. Aramaki. Asymptotics of eigenvalue for the Ginzburg-Landau operator in an applied magnetic field vanishing of higher order. *Int. J. Pure Appl. Math. Sci.*, 2(2):257–281, 2005.

[2] S. Flügge. *Practical Quantum Mechanics*. Classics in Mathematics. Springer-Verlag, Berlin, English edition, 1999. Translated from the 1947 German original.

[3] B. Helffer. The Montgomery model revisited. *To appear in Colloquium Mathematicum, volume in honor of A. Hulanicki*, 2009.

[4] B. Helffer and Y. A. Kordyukov. Spectral gaps for periodic Schrödinger operators with hypersurface magnetic wells. In *Mathematical results in quantum mechanics*, pages 137–154. World Sci. Publ., Hackensack, NJ, 2008.

[5] B. Helffer and Y. A. Kordyukov. Complements on Montgomery like model : $k > 1$. *Unpublished notes*, 2009.

[6] B. Helffer and Y. A. Kordyukov. Semi-classical analysis of Schrödinger operators with magnetic wells. *To appear in Contemporary Mathematics*, 2009.

[7] B. Helffer and Y. A. Kordyukov. Spectral gaps for periodic Schrödinger operators with hypersurface magnetic wells: Analysis near the bottom. *J. Funct. Anal.*, 257:3043–3081, 2009.

[8] B. Helffer and A. Morame. Magnetic bottles in connection with superconductivity. *J. Funct. Anal.*, 185(2):604–680, 2001.

[9] B. Helffer and J. Sjöstrand. Multiple wells in the semiclassical limit. I. *Comm. Partial Differential Equations*, 9(4):337–408, 1984.

[10] R. Montgomery. Hearing the zero locus of a magnetic field. *Comm. Math. Phys.*, 168(3):651–675, 1995.

[11] X.-B. Pan and K.-H. Kwek. Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains. *Trans. Amer. Math. Soc.*, 354(10):4201–4227 (electronic), 2002.

[12] B. Simon. A canonical decomposition for quadratic forms with applications to monotone convergence theorems. *J. Funct. Anal.*, 28(3):377–385, 1978.

[13] B. Simon. Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions. *Ann. Inst. H. Poincaré Sect. A (N.S.),* 38(3):295–308, 1983.

(Bernard Helffer) DÉPARTEMENT DE MATHÉMATIQUES, BÂTIMENT 425, UNIV PARIS-SUD ET CNRS, F-91405 ORSAY CÉDEX, FRANCE

E-mail address: Bernard.Helffer@math.u-psud.fr

(Mikael Persson) AARHUS UNIVERSITY, DEPARTMENT OF MATHEMATICAL SCIENCES, 1530 NY MUNKEGADE, 8000 AARHUS C, DENMARK

E-mail address: mickep@imf.au.dk