STANDARD MODEL PREDICTION OF THE MUON ANOMALOUS MAGNETIC MOMENT

JOAQUIM PRADES

CAFPE and Departamento de Física Teórica y del Cosmos
Universidad de Granada
Campus de Fuente Nueva, 18002 Granada, Spain

(Received February 9, 2010)

I review the present Standard Model prediction of the muon anomalous magnetic moment a_μ. The discrepancy with its experimental determination is $(25.5 \pm 8.0) \times 10^{-10}$, i.e., 3.2 standard deviations.

PACS numbers: 13.40.Em, 14.60.Cd, 14.60.Ef

1. Introduction

The general vertex Γ_μ between a fermion f and an external electromagnetic (EM) field $A^\mu(q = p - p')$ can be written as

$$\overline{u}(p') \Gamma_\mu u(p) = \overline{u}(p') \left[\gamma_\mu F_1(q^2) + i \frac{\sigma_\mu\nu q^\nu}{2m_f} F(q^2) + \cdots \right].$$

The magnetic dipole moment for a charged fermion ($f = e, \mu, \tau, \cdots$) is proportional to the spin \vec{s} through the gyromagnetic factor $g_f \equiv 2(F_1(0) + F_2(0))$:

$$\vec{\mu} = g_f \frac{e}{2m_f} \vec{s}. \hspace{1cm} (2)$$

The Dirac vertex predicts $F_1(0) = 1$ and $F_2(0) = 0$ at tree-level, quantum loops modify this prediction to $F_2(0) \equiv a_f \neq 0$ while $F_1(0)$ is a conserved charge. The quantity $a_f = (g_f - 2)/2$ is commonly called the fermion anomaly.

* Presented at the FLAVIAnet Topical Workshop “Low energy constraints on extensions of the Standard Model”, Kazimierz, Poland, July 23–27 2009.
The muon anomalous magnetic moment a_μ has been measured by the E821 experiment (Muon g-2 Collaboration) at BNL with an impressive accuracy of 0.72 ppm [1] yielding the present world average

$$a_\mu^{\text{exp}} = (11, 659, 208.9 \pm 6.3) \times 10^{-10},$$

with an accuracy of 0.54 ppm. New experiments [2, 3] are being designed to measure a_μ with an accuracy better than 0.14 ppm. Here, I am interested in what is the present status of the Standard Model (SM) prediction for this very precise measurement. Is there room for new physics in a_μ? Recent reviews can be found in [4–9].

First, I will shortly recall recent advances in the electron anomaly a_e which is a necessary ingredient to predict the muon anomaly a_μ. I will discuss then briefly the main contribution to a_e that is QED, and the much smaller hadronic and weak contributions. Secondly, I will discuss then briefly the main contribution to a_μ that is QED and the smaller weak contribution. Then I discuss the also smaller but dominant in the uncertainty hadronic contribution to a_μ. Finally, I will give the conclusions and prospects for improving a_μ both theoretically and experimentally.

2. The electron anomaly a_e

The Harvard group [10] has very recently made a very precise measurement of the electron anomaly

$$a_e^{\text{exp}} = (11, 596, 521, 807.3 \pm 2.8) \times 10^{-13},$$

improving the 1987 measurement of the University of Washington group [11]

$$a_e^{\text{exp}} = (11, 596, 521, 883 \pm 42) \times 10^{-13}$$

by more than a factor 15.

The new a_e measurement provides the most accurate value for the fine structure constant

$$\alpha^{-1} = 137.035 999 084(33)(39) = 137.035 999 084(51),$$

which is one order of magnitude more precise than the best previous determination\(^1\). The best non-a_e based determinations of α come from atomic

\(^1\) For a very recent discussion of the extraction of α from a_e and other methods, see [12].

\(^2\) Notice that due to the 2007 corrected value for the four-loop order QED coefficient [13], the value quoted in both PDG 2008 [14] and CODATA 2006 [15] $\alpha^{-1} = 137.035 999 679(94)$ is not correct.
physics, and in particular from the precise measurement of Cs [16] and Rb [17] atomic masses,

\[
\begin{align*}
\text{Cs atom (2002)} & : \alpha^{-1} = 137.036\,000\,000(1100), \\
\text{Rb atom (2008)} & : \alpha^{-1} = 137.035\,999\,450(620).
\end{align*}
\]

(7)

It is expected that the Rb atomic mass measurement can reach the level of accuracy of \(a_e\) determinations soon. At present, \(a_e\) together from \(\alpha\) from Cs and Rb atomic mass determinations checks QED at 3-loops! If both determinations were at the same level of accuracy, it would check QED at 4-loops and a possible substructure of the electron.

3. Standard Model contributions to \(a_e\)

The dominant SM contribution comes from QED

\[
a_e^{\text{QED}} = \sum_{n=1}^{\infty} C_{2n} \left(\frac{\alpha}{\pi} \right)^n ,
\]

(8)

with \(C_2 = 1/2\) calculated by Schwinger [18] 61 years ago; one can find the values of the rest of the coefficients in different reviews [4–9]. The coefficients \(C_4\) [19] and \(C_6\) [20] are known analytically including lepton mass corrections. \(C_8\) is only numerically known and being continuously improved since early 1980s [21]. Actually, it was corrected recently in 2007 [13]. For \(C_{10}\), one uses 0.0 ± 4.6 as an estimate where the error is based on the \(C_{2n}\) values growing. Its full numerical calculation is in progress, it involves 12,672 diagrams and some partial results are already available [22]. Recently, specific classes of the QED eighth and tenth orders have been calculated analytically using Mellin–Barnes transform techniques [23] and agree with the numerical results in [13,21,22].

There are other much smaller contributions to \(a_e\) but that at the level of present precision start to be needed. The largest is the leading order hadronic vacuum polarization contribution (see Fig. 1) [24]

\[
a_e^{\text{LO Hadronic}} = (18.75 \pm 0.18) \times 10^{-13} ,
\]

(9)

while higher order hadronic vacuum polarization contribution is given by [25]

\[
a_e^{\text{HO Hadronic}} = -(2.25 \pm 0.05) \times 10^{-13}
\]

(10)

and the hadronic light-by-light contribution (see Fig. 2) is equal to [26]

\[
a_e^{\text{Hadronic LbL}} = (0.35 \pm 0.10) \times 10^{-13} .
\]

(11)
The total hadronic contribution to a_e is

$$a_e^{\text{Hadronic}} = (16.85 \pm 0.21) \times 10^{-13}. \quad (12)$$

Notice that this is the first time that a_e^{\exp} is sensitive to the hadronic contribution. The electroweak contribution is much smaller [27, 28]

$$a_e^{\text{EW}} = (0.297 \pm 0.005) \times 10^{-13}. \quad (13)$$

4. Standard Model contributions to a_μ

4.1. QED

A precise value of the fine structure constant is very important to the determination of the muon anomaly since QED is again the dominant SM contribution. One can write the QED contribution as

$$a_\mu^{\text{QED}} = \sum_{n=1} C_{2n} \left(\frac{\alpha}{\pi} \right)^n \quad (14)$$

and the same comments and authors can be quoted for the C_{2n} coefficients, that can be found in the reviews [4–9]. For C_{10}, one uses 663 ± 20 as an estimate; its calculation is progress in parallel to C_{10} for a_e [22]. Using those coefficients and α from the latest a_e measurement in (6), one gets

$$a_\mu^{\text{QED}} = (11, 658, 471.810 \pm 0.015) \times 10^{-10}, \quad (15)$$

where the largest uncertainty comes from C_{10}. Given that precision, the difference between the experimental value (3) and its QED prediction

$$\Delta_{\exp}^{\text{Not QED}} = (736.2 \pm 6.3) \times 10^{-10} \quad (16)$$

can be considered as a “measurement”. In fact, a_μ has been sensitive to the hadronic contribution since 1975 and to the electroweak ones since 2001.

4.2. Electroweak

The one loop electroweak contribution is fully known since 1972 [29]

$$a_\mu^{\text{EW one-loop}} = \frac{5 G_\mu m^2}{24 \sqrt{2} \pi^2} \left[1 + \frac{1}{5} \left(1 - 4 \sin^2(\theta_W) \right)^2 + \mathcal{O}(m/M_{Z,W,H}) \right]$$

$$= (19.5 \pm 0.2) \times 10^{-10}. \quad (17)$$

The full two-loops electroweak contribution has been finished much more recently (in 2004) though its potential importance was already pointed out in 1992 [30]. The full result can be found in [31].
The final result for the two-loop electroweak contribution [28, 31] is
\[-(4.1 \pm 0.1) \times 10^{-10}\] and the total electroweak contribution
\[a_{\mu}^{\text{EW}} = [(19.5 \pm 0.2) - (4.1 \pm 0.1)] \times 10^{-10} = (15.4 \pm 0.2) \times 10^{-10}.\] (18)
Again, given the experimental precision, the difference between the precise experimental value in (3) and its QED plus EW prediction
\[\Delta_{\text{Not QED+EW}}^{\text{exp}} = (720.8 \pm 6.3) \times 10^{-10}\] (19)
can be considered as a “measurement”. This also tells us that we need to know the hadronic contribution to \(a_{\mu}\) with an accuracy below the 1 % level!

4.3. Hadronic contributions

4.3.1. Vacuum polarization contribution

This contribution is depicted in Fig. 1. Its leading-order (LO) contribution is of the order of \(\alpha^2\) and can be written in terms of the one-photon \(e^+ e^- \rightarrow \gamma^* \rightarrow \text{hadrons}\) cross-section, \(\sigma^{(0)}(s)\) [32]:

\[a_{\mu}^{\text{LO Hadronic}} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} ds \ K(s) \ \sigma^{(0)}(s),\] (20)

with

\[K(s) = \int_0^1 dx \frac{x^2(1-x)}{x^2 + \frac{2}{m^2}(1-x)}.\] (21)

The kernel \(K(s)\) behaves as \(m^2/s\) making the low-energy region (\(\rho\)-region) dominating in the integrand. In fact, the \(\pi^+ \pi^-\) channel below 1 GeV gives 72 % of the total of \(a_{\mu}^{\text{LO Hadronic}}\).

![Fig.1. Lowest order hadronic vacuum polarization contribution to muon \(g - 2\).](image-url)
The one-photon cross-section $\sigma^{(0)}(s)$ is (almost) experimentally obtained. One has to correct the experimental cross-section to include final state photons and exclude the running of $\alpha(s)$, not to double count higher order terms. It is also welcome to eliminate systematics by normalizing the cross-section $\sigma^{(0)}$ to the $e^+e^- \rightarrow \mu^+\mu^-$ cross-section measured by the same experiment. In the case of the initial state radiation (ISR) method, this is done by BaBar for $e^+e^- \rightarrow \pi^+\pi^-$ normalized to $e^+e^- \rightarrow \mu^+\mu^-\gamma(\gamma)$ cross-section measured by the same experiment, and is planed to be done in the forthcoming KLOE-2 measurement.

For the low energy contribution to $\sigma^{(0)}$, we have very precise e^+e^- data from several low-energy experiments, namely, from CMD-2 and SND detectors at VEPP-2M (Novosibirsk), KLOE at DAΦNE (Frascati) and BaBar at PEP-II (SLAC). The last results from CMD-2 [33,34] and SND [35] are in nice agreement. Final KLOE data [36] are at the same level of accuracy as CMD-2 and SND data and there is an overall agreement at energies between 0.630 and 0.958 GeV with CMD-2 and SND though KLOE data lies somewhat lower. Very recently, BaBar using the ISR method has also released e^+e^- results for the dominant $\pi^+\pi^-$ at energies between 0.3 GeV and 3 GeV [37]. Belle at KEK (Tsukuba) which has larger statistics, will do so soon.

At high energy, higher than 13 GeV, and in between $\bar{c}c$ and $\bar{b}b$ thresholds, perturbative QCD is used to calculate $\sigma^{(0)}(s)$.

Combining all precision e^+e^- data, including the latest BaBar data [37], the authors [38] quote

$$a_{\mu}^{\text{LO Hadronic}} = (695.5 \pm 4.0_{\text{exp}} \pm 0.7_{\text{QCD}}) \times 10^{-10} = (695.5 \pm 4.1) \times 10^{-10}.$$

A new analysis of isospin corrections to $\tau^+ \rightarrow \pi^+\pi^0\nu$ data when compared to the the CVC $e^+e^- \rightarrow \pi^+\pi^-$ data has been also recently released [39]. The discrepancy between τ data and the combined e^+e^- data of all precision measurements quoted above result for the reduction of the dominant $\pi^+\pi^-$ contribution to the cross section $\sigma^{(0)}$ to 1.5 σ from the previous 4.5 σ discrepancy [38,39].

There are also hadronic vacuum polarization contributions at higher order included in Fig. 1. The most recent evaluation including α^3 corrections, using also e^+e^- data, is given in [40]

$$a_{\mu}^{\text{HO Hadronic}} = -(9.79 \pm 0.08_{\text{exp}} \pm 0.03_{\text{rad}}) \times 10^{-10} = -(9.79 \pm 0.09) \times 10^{-10},$$

where the uncertainty also takes into account non-included radiative corrections.
4.3.2. Light-by-light contribution

One of the six possible momenta routing to the hadronic light-by-light (HLbL) contribution to \(a_\mu \) is presented in Fig. 2. Recent work on \(a^{\text{HLbL}}_\mu \) can be found in [26, 41–48]. For reviews on the status, prospects of \(a^{\text{HLbL}}_\mu \) and references see [4,5,49]. In particular, the discussion in [26] leads the authors to the following value

\[
a^{\text{Hadronic LbL}}_\mu = (10.5 \pm 2.6) \times 10^{-10}
\]

for their present best estimate.

5. Result for \(a^{\text{SM}}_\mu \)

Adding all pieces contributing to \(a_\mu \) discussed above, one gets

\[
10^{10} a^{\text{SM}}_\mu = \underbrace{(11, 658, 471.810 \pm 0.015)}_{\text{QED}} + \underbrace{(15.4 \pm 0.2)}_{\text{EW}} + \underbrace{(695.5 \pm 4.1)}_{\text{LO Had}} - \underbrace{(9.79 \pm 0.09)}_{\text{HO Had}} + \underbrace{(10.5 \pm 2.6)}_{\text{Had LbL}}
\]

\[
= \underbrace{(11, 658, 487.2 \pm 0.2)}_{\text{QED+EW}} + \underbrace{(696.2 \pm 4.9)}_{\text{Hadronic}}
\]

\[
= 11, 659, 183.4 \pm 4.9.
\]

Using this result and the experimental value of \(a_\mu \) in (3), one gets

\[
a_\mu^{\text{exp}} - a^{\text{SM}}_\mu = (25.5 \pm 8.0) \times 10^{-10}.
\]
6. Conclusions and prospects

Combining all recent precise e^+e^- data, obtained with different methods (energy scanning and ISR) in different experiments, to calculate $\sigma^{(0)}$ [38] and using the new evaluation of the hadronic light-by-light contribution [26, 49] one gets more than 3 σ of discrepancy between the SM value for a_μ (24) and its experimental determination (3). This discrepancy has been slowly growing due to impressive theory and experiment achievements. In fact, both theory and experiment uncertainties have been reduced by more than a factor two in the last eight years.

There are planned new e^+e^- experiments at Novosibirsk (VEPP-2000) and Frascati (DAΦNE-2) which will cross-check present results and reduce the present uncertainty in $a_\mu^{LO\text{Had}}$, which dominates the final SM uncertainty now. There are also new τ data at B-factories and a new τ-charm factory at Beijing which will cross-check the τ result. It will also help to understand better the isospin violation corrections in order to use the forthcoming precise τ data. In addition, a new full calculation of a_μ^{HLbL} is desirable and possible. The goal in this case is to reduce its present uncertainty to the level of $(1.5 \sim 2.0) \times 10^{-10}$. With all these eventual theory improvements, the uncertainty of the SM prediction can be further reduced soon enough.

As said before, new experiments are being designed to measure a_μ with an accuracy better than 0.14 ppm in parallel to the expected theory advances. The proposed experiment at Fermilab is designed to reduce the a_μ uncertainty to the level of 1.6×10^{-10} [2] and the one at J-PARC to somewhere between 1.2×10^{-10} and 0.6×10^{-10} [3].

With all the theory activity detailed above and the tantalizing more than 3 σ discrepancy in a_μ (25) between the SM prediction and its experimental determination, I believe that those new $g-2$ experiments are very timely, necessarily complementary to direct searches like LHC and ILC and should be done as soon as possible. Its very likely that they give the first new physics discovery!

This work is supported in part by the European Commission (EC) RTN network, Contract No. MRTN-CT-2006-035482 (FLAVIAnet), by the Spanish Consolider-Ingenio 2010 Programme CPAN Grant No. CSD2007-00042, MEC (Spain) and FEDER (EC) Grant No. FPA2006-05294, Junta de Andalucía Grant Nos. P05-FQM 437 and P07-FQM 03048.

3 In 2001, this discrepancy was $a_\mu^{\text{exp}} - a_\mu^{\text{SM}} = (23.1 \pm 16.9) \times 10^{-10}$ [50].
REFERENCES

[1] B.L. Roberts, arXiv:1001.2898; G.W. Bennett et al. [Muon g − 2 Collaboration], Phys. Rev. D73, 072003 (2006); Phys. Rev. Lett. 92 (2004) 161802.

[2] D.W. Hertzog, Nucl. Phys. B (Proc. Suppl.) 181–182, 5 (2008); D.W. Hertzog, et al. arXiv:0705.4617[hep-ph]; B.L. Roberts [E821 and E969 Collaborations], Nucl. Phys. B (Proc. Suppl.) 155, 372 (2006); arXiv:hep-ex/0501012.

[3] J. Imazato, Nucl. Phys. B (Proc. Suppl.) 129-130, 81 (2004); R.M. Carey et al., Letter of Intent: An Improved Muon (g − 2) Experiment at J-PARC, (2003).

[4] E. de Rafael, Nucl. Phys. B (Proc. Suppl.) 186, 211 (2009); PoS (EFT09) 050.

[5] F. Jegerlehner, A. Nyffeler, Phys. Rep. 477, 1 (2009).

[6] F. Jegerlehner, Lect. Notes Phys. 745, 9 (2008); Acta Phys. Pol. B 38, 3021 (2007).

[7] J.P. Miller, E. de Rafael, B.L. Roberts, Rep. Prog. Phys. 70, 795 (2007).

[8] M. Passera, J. Phys. G 31, R75 (2005).

[9] M. Knecht, Lect. Notes Phys. 629, 37 (2004).

[10] D. Hanneke, S. Fogwell, G. Gabrielse, Phys. Rev. Lett. 100, 120801 (2008); B. Odom, et al., Phys. Rev. Lett. 97, 030801 (2006).

[11] R.S. Van Dyck, Jr., P.B. Schwinberg, H.G. Dehmelt, Phys. Rev. Lett. 59, 26 (1987).

[12] G. Gabrielse, Lepton Dipole Moments, Advanced Series on Directions in High Energy Physics, Vol. 20, eds. B.L. Roberts, W.J. Marciano, World Scientific, Singapore 2009.

[13] T. Aoyama et al. Phys. Rev. D77, 053012 (2008).

[14] C. Amsler et al., Phys. Lett. B667, 1 (2008).

[15] P.J. Mohr, B.N. Taylor, D.B. Newell, Rev. Mod. Phys. 80, 633 (2008).

[16] A. Wicht et al., Phys. Scr. T102, 82 (2002).

[17] M. Cadoret et al., Phys. Rev. Lett. 101, 230801 (2008).

[18] J.S. Schwinger, Phys. Rev. 73, 416 (1948).

[19] C.M. Sommerfield, Phys. Rev. 107, 328 (1957); Ann. Phys. (N.Y.) 5, 677 (1958); A. Petermann, Hel. Phys. Acta 30, 407 (1957); Nucl. Phys. 5, 677 (1958); H. Suura, E. Wichmann, Phys. Rev. 105, 1930 (1957); A. Petermann, Phys. Rev. 105, 1931 (1957); H.H. Elend, Phys. Lett. 20, 682 (1966); [Erratum, Phys. Lett. 21, 720 (1966)].

[20] J.A. Mignaco, E. Remiddi, Nuovo Cim. A60, 519 (1969) R. Barbieri, E. Remiddi, Phys. Lett. B49, 468 (1974); Nucl. Phys. B90, 233 (1975); R. Barbieri, M. Caffo, E. Remiddi, Phys. Lett. B57, 460 (1975); M. Levine, E. Remiddi, R. Roskies, Phys. Rev. D20, 2068 (1979); S. Laporta, E. Remiddi, Phys. Lett. B265, 182 (1991); Phys. Lett. 301, 440 (1993); Phys. Lett. 356, 390 (1995); Phys. Lett. 379, 283 (1996); S. Laporta, Phys. Rev. D47, 4793 (1993); Phys. Lett. B343, 421 (1995); Nuovo Cim. A106, 675 (1996); T. Kinoshita, Nuovo Cim. B51, 140 (1967); B.E. Lautrup, E. de Rafael, Phys.
Rev. 174, 1835 (1968); B.E. Lautrup, M.A. Samuel, Phys. Lett. B72, 114 (1977); M.A. Samuel, G. Li, Phys. Rev. D44, 3935 (1991); [Erratum, Phys. Rev. 48, 1879 (1993)]; A. Czarnecki, M. Skrzypek, Phys. Lett. B449, 354 (1999).

[21] T. Kinoshita, W.B. Lindquist. Phys. Rev. Lett. 47, 1573 (1981); Phys. Rev. D271, 867 (1983); Phys. Rev. 27, 877 (1983); Phys. Rev. 27, 886 (1983); Phys. Rev. 39, 2407 (1989); Phys. Rev. 42, 636 (1990); T. Kinoshita, B. Nizic, Y. Okamoto, Phys. Rev. 41, 593 (1990); Phys. Rev. 52, 717 (1984).

[22] T. Aoyama et al., Phys. Rev. D78, 113006 (2008); Phys. Rev. 78, 053005 (2008).

[23] J.P. Aguilar, D. Greynat, E. de Rafael, Phys. Rev. D77, 093010 (2008).

[24] M. Davier, A. Höcker, Phys. Lett. B390, 392 (1997).

[25] B. Krause, Phys. Lett. B390, 392 (1997).

[26] J. Prades, E. de Rafael, A. Vainshtein, arXiv:0901.0306[hep-ph] Lepton Dipole Moments; Advanced Series on Directions in High Energy Physics, Vol. 20, eds. B.L. Roberts, W.J. Marciano, World Scientific, Singapore 2009.

[27] P.J. Mohr, B.N. Taylor, Rev. Mod. Phys. 72, 351 (2000).

[28] A. Czarnecki, B. Krause, W.J. Marciano, Phys. Rev. Lett. 76, 3267 (1996).

[29] R. Jackiw, S. Weinberg, Phys. Rev. D5, 2396 (1972); I. Bars, M. Yoshimura, Phys. Rev. 6, 374 (1972); K. Fujikawa, B.W. Lee, A.I. Sanda, Phys. Rev. 6, 2923 (1972); G. Altarelli, N. Cabibbo, L. Maiani, Phys. Lett. B40, 415 (1972); W.A. Bardeen, R. Gastmans, B. Lautrup, Nucl. Phys. B46, 319 (1972).

[30] T.V. Kukhto et al., Nucl. Phys. B371, 567 (1992).

[31] A. Czarnecki, B. Krause, W.J. Marciano, Phys. Rev. D52, 2619 (1995); T. Kaneko, N. Nakazawa, arXiv:hep-ph/9505278; S. Peris, M. Perrottet, E. de Rafael, Phys. Lett. B355, 523 (1995); G. Degrassi, G.F. Giudice, Phys. Rev. D58, 053007 (1998); M. Knecht et al., J. High Energy Phys. 11, 003 (2002); A. Czarnecki, W.J. Marciano, A. Vainshtein, Phys. Rev. D67, 073006 (2003); Acta. Phys. Pol. B 34, 5669 (2003); S. Heinemeyer, D. Stöckinger, G. Weiglein, Nucl. Phys. B699, 103 (2004).

[32] C. Bouchiat, L. Michel, J. Phys. Radium 22, 121 (1961); L. Durand, Phys. Rev. 128, (1962) 441; [Erratum, Phys. Rev. 129, 2835 (1963)]; S.J. Brodsky, E. de Rafael, Phys. Rev. 168, 1620 (1968); M. Gourdin, E. de Rafael, Nucl. Phys. B10, 667 (1969).

[33] R.R. Akhmetshin et al. [CMD2 Collaboration], Phys. Lett. B648, 28 (2007); Phys. Lett. B466, 392 (1999); V.M. Aulchenko et al. [CMD2 Collaboration], JETP Lett. 84, 413 (2006); JETP Lett. 82, 743 (2005).

[34] I.B. Logashenko, Nucl. Phys. B (Proc. Suppl.) 162, 13 (2006).

[35] M.N. Achasov et al., Nucl. Phys. B (Proc. Suppl.) 162, 11 (2006); JETP Lett. 103, 103 (2006).

[36] F. Ambrosino et al. [KLOE Collaboration], Phys. Lett. B670, 285 (2009).

[37] B. Aubert et al. [BaBar Collaboration], Phys. Rev. Lett. 103, 231801 (2009).

[38] M. Davier et al., arXiv:0908.4300[hep-ph]; M. Davier et al. [BaBar Collaboration], Nucl. Phys. B (Proc. Suppl.) 189, 222 (2009).
[39] M. Davier et al., arXiv:0906.5443[hep-ph].
[40] K. Hagiwara et al., Phys. Lett. B649, 173 (2007).
[41] M. Hayakawa, T. Kinoshita, Phys. Rev. D57, 465 (1998) [Erratum, Phys. Rev. D66, 019902 (2002)]; M. Hayakawa, T. Kinoshita, A.I. Sanda, Phys. Rev. Lett. 75, 790 (1995).
[42] J. Bijnens, E. Pallante, J. Prades, Nucl. Phys. B474, 379 (1996); Phys. Rev. Lett. 75, 1447 (1995) [Erratum, Phys. Rev. Lett. 75, 3781 (1995)]; Nucl. Phys. B626, 410 (2002).
[43] J. Bijnens, F. Persson, Lund University Master Thesis, hep-ph/0106130.
[44] M. Knecht, A. Nyffeler, Phys. Rev. D65, 073034 (2002); M. Knecht et al., Phys. Rev. Lett. 88, 071802 (2002).
[45] K. Melnikov, A. Vainshtein, Phys. Rev. D70, 113006 (2004).
[46] A.E. Dorokhov, W. Broniowski, Phys. Rev. D78, 073011 (2008).
[47] A. Nyffeler, Phys. Rev. D79, 073012 (2009).
[48] T. Blum, S. Chowdhury, Nucl. Phys. B (Proc. Suppl.) 189, 251 (2009); M. Hayakawa et al., PoS LAT2005, 353 (2006).
[49] J. Prades, PoS (CD09), 079; arXiv:0907.2938[hep-ph]; arXiv:0905.3164 (to be published in Eur. Phys. J C); Nucl. Phys. B (Proc. Suppl.) 181–182, 15 (2008); J. Bijnens, J. Prades, Mod. Phys. Lett. A22, 767 (2007); Acta Phys. Pol. B 38, 2819 (2007).
[50] J. Prades, arXiv:hep-ph/0108192.