Validation of the Drug Chain Flowchart as a preventive technology for medication errors

An important strategy for the prevention of errors is knowing of the medication process in the drug chain as well as the technologies that can prevent medication errors. This study aimed to map, describe, and validate the medication process, relating the technologies available for the prevention of medication errors in a teaching hospital. The study is documentary and observational; data triangulation was used by combining three sources of information. Flowcharts were elaborated to map the processes studied and the content was submitted for validation by 26 health professionals in five areas of care. Four Flowcharts were elaborated, totaling an average of 50 activities and the insertion of 18 preventive technologies, with a predominance of solid technologies (50%), were identified. The Hospital Information System (12.6%) was identified as the main technology that prevents medication errors; the type of error that was the most preventable with these technologies was the dose error (21%). Knowing where preventive technology operates in the drug chain is an innovation that can provide healthcare professionals with the knowledge to prevent medication errors. Also, this management favors the rationalization of activities, the definition of the role of these professionals, the time spent for executing each sub-process, the redesigning of the work process and optimization of productivity. It was concluded that the mapping of the drug chain together with the identification of technologies and their points of use provided greater visibility and authenticity of the health professionals’ actions.

Keywords: Hospital Medication System; Medication Errors; Workflow; Technology; Patient safety.

INTRODUCTION

Currently, patient safety and medication errors have been a frequent concern in health institutions and of health researchers, as it is one of the most frequent types of medical errors. Regarding medication safety, studies have addressed the definition of medication error, which is any event that can be avoided and that occurs in any phase of drug therapy causing or not harm to the patient. Its cause, which can be related to the professional or the work process, and the consequences for professionals, can be a learning process based on the culture of patient safety or even extend to punitive measures. Some research also addresses prevention, which involves to the use of many technologies and equipment. Finally, expenses are also an object of study, and have a wide range of values reaching up

DOI: 10.15343/0104-7809.202044325337

*Faculdade de Medicina Faceres. São José do Rio Preto/SP, Brasil.
**Faculdade de Medicina de São José do Rio Preto (FAMERP). São José do Rio Preto/SP, Brasil.
E-mail: renata_bereta@hotmail.com
to US$ 5,095,640,000.00.

Aiming at expanding and promoting patient safety in Brazil, the National Patient Safety Program (PNSP) instituted by Ordinance 529, of April 1, 2013, brings as one of its priorities, the development of protocols for safe medication assistance. In 2017, the World Health Organization (WHO) launched the third global challenge for patient safety, entitled “Medication Without Harm”, which envisions “reducing by more than 50% the severe and preventable damage related to medication within the next five years”.

To achieve the goal launched by the third WHO challenge, several technological resources were inserted in the health area in order to facilitate or assist in daily activities (8), promoting patient safety and preventing medication errors. The concept of technology in the health area is broad, comprising of human relationships (light technology), structured knowledge (light-solid technology) and equipment (solid technology).

The medication process, also known as the drug chain, is multi-professional and composed of several sub-processes. It can be divided into prescription drugs, performed by the doctor; medication dispensing performed by the pharmacy team and the preparation and administration of medications usually performed by the Nursing team. Medication errors can happen in any sub-process of the drug chain and are more frequent during prescription and administration. As it is a complex and error-prone process, it is necessary to implement preventive strategies which can increase the safety of the patient and the professional during care.

Knowledge of the medication process supports the verification of activities, in which a risk of failure may occur, contributing to the simplification and/or implementation of technologies that act as barriers to events of medication errors.

Therefore, we considered relevant and to advance the area of patient safety in scientific terms, to disclose to health teams the Flowchart of the medication process in the drug chain. Additionally, we disclose where the implemented preventive technologies act which can help the team learn about the available resources and how to use them effectively; thus, promoting patient safety, organization, and evaluation of the health services. With this purpose, the objective of this study was to map, describe and validate the medication process, relating the available technologies to the prevention of medication errors in a teaching hospital.

METHODOLOGY

This was an observational, analytical, retrospective study, developed in a teaching hospital, of a special size (720 beds) with a quaternary scope, located in southeastern Brazil. This institution serves patients from the Unified Health System (SUS), health plans and individuals, totaling more than two million inhabitants/year, with an average of 46,000 visits/month, 31,388 medical prescriptions/month, and 2,106,113 dispensations/month.

Data collection took place, after approval by the Research Ethics Committee (Opinion No. 325.938). The invited professionals agreed to participate in the study, receiving prior guidance and signing the Informed Consent Form (ICF).

The study was developed in five stages. Initially, with the objective of mapping the medication process, a documentary and observational study was carried out, through analyzing the institution’s Standard Operating Procedures (SOP) related to dispensation, preparation, and administration of medication. Then, the texts of the document were transformed into Flowcharts completing the second stage. Next, the third stage began with an interview with the nurses of risk management and of the institution’s Integrated Center for Education and Research in Health (CIEPS), which was the field of study, for a survey of preventive technologies for medication error, implanted in the institution in 2010. These
nurses were chosen for this interview because they have knowledge about this theme and participate in the implementation of these technologies in the institution.

With the design of the Flowcharts of the entire drug chain process and the list of technologies that could prevent medication errors, direct observation was carried out in relation to the activities of prescription, dispensing, preparation and administration of medication, performed by doctors, pharmacists, pharmacy technicians, nurses and nursing assistants and technicians from the institution. The researcher followed the execution of each subprocess without interfering, together with the professional performing their daily practice of activities as a nurse at the institution. During the direct observation, it was possible to verify the flow of activities of each subprocess, as well as to verify the moment when each technology was used, thus, completing the fourth step and the construction of the Flowcharts.

Finally, the fifth step was carried out, which consisted of validating the Flowcharts through individual interviews with professionals: doctors, pharmacists, pharmacy technicians, nurses, nursing assistants and technicians who participated in the hospital’s medication process.

Seven Flowcharts covering the stages of the drug chain were validated following the content analysis methodology: one Flowchart for prescription, two for dispensing (standard and non-standard dispensing) and four for medication administration (separated by administration routes, one for oral and sublingual, aerosol, nasogastric enteral tube and parenteral route). For its validation, an individual semi-structured interview was conducted with each participant. Upon accepting the invitation to participate in the study, the health professional was informed about the objectives of the study and how it would be carried out. The Informed Consent Form (ICF) was signed and then the interview started with an instrument that the researcher had developed. Initially the instrument contained data identifying the participant such as age, education, time since graduated, position at the institution, time working at the institution. Flowcharts for each area of activity were presented to each professional group, that is, doctors received the prescription subprocess, the pharmacy team received the dispensing subprocess, and the Nursing team received the medication preparation and administration subprocess. For validation, the professional was asked to look at each activity, if it was performed and if it was in the exact order. They were also asked to observe whether they used preventive technologies for medication errors and whether they were used between those activities. When the participant did not agree with some information in the Flowchart, they were instructed to make the adjustment on the sheet on which the drawing was. The suggestions were accepted and the subprocesses were modeled to more accurately represent how they are carried out in healthcare practice. The validation agreement with the pre-assessment flowchart was 70%, where 60% (n=3) was for medical prescriptions, 80% (n=8) for dispensing and 73% (n=8) for medication administration. Finally, each participant was asked to relate the preventive technology to the type of error it can prevent; it is worth mentioning that the definition of the classification of each type of error was presented.

The sample size of the participants was determined without statistical calculation, which would be one professional performing each subprocess in each of the health areas (medical clinic, surgical clinic, emergency care, critical care, and pediatrics). However, since dispensing, preparing, and administration could be carried out by a professional of technical level or higher, it was decided to include a professional of each level in each area. The nurse responsible for risk management and the coordinator of the hospital’s pharmacies were also included due to their knowledge of subprocesses and the prevention of medication errors. Thus, 26 professionals randomly selected
were interviewed. As a selection criterion, professionals must be working in the medication process for at least one year at this institution.

The “prescription” sub-process was validated by five doctors hired at the institution, either on-call or residents. The “dispensation” sub-process was validated by a pharmacist and a pharmacy technician from each of the five areas, with one of the pharmacists responsible for two areas (surgical inpatient unit and intensive care unit), and also by the institution’s responsible technician pharmacist, totaling ten professionals. The sub-process of “administration” was performed by a nurse and a nursing technician or assistant in each area. The risk management nurse was also invited, since they could add value to this subprocess; thus, 11 nursing professionals participated.

In order to relate the technologies to the type of error that could be prevented with their use, it was chosen for each professional category to report within the subprocess of their specific area, due to their greater familiarity with the technology and the subprocess.

For the participants to classify the type of medication errors that were prevented with the technologies, the National Reference15 and the Regional Nursing Council (COREN) of São Paulo (16) were used: 1. Error of route: administration in route other than the that prescribed; 2. Dose error: administration of a dose greater or less than the prescribed; 3. Time error: administration outside the pre-defined interval (at the institution, it is considered as being one hour before or after the prescribed time); 4. Wrong patient: administration to a different patient than prescribed; 5. Omission error: No administration of prescribed medication and; 6. Unauthorized medication: refers to the administration that was not prescribed or authorized by the doctor.

RESULTS

The drug chain process totaled an average of 50 activities and 17 preventive technologies for medication errors.

In the subprocess of medical prescription, 11 activities were mapped (Figure 1) which started with the visit or medical consultation and ended with the patient's evaluation. Four preventive technologies were identified (patient identification bracelet, Hospital Information System (HIS), risk management, and patient safety group): 1- Patient identification bracelet, which in this subprocess is used in the anamnesis and physical examination; and 2- HIS, which is accessed in the third activity of this subprocess, ensuring user identification through login and password. Within the HIS there are some tools that promote patient safety, such as electronic prescription that guarantees legibility and the drugs are “tied” with the correct dose, routes, and diluents. There are still warning notices for Potentially Hazardous Drugs (PHD). There is an option for the doctor to use the standard prescription of his/her specialty, which guarantees the prescription of the most frequent medications, avoiding forgetfulness; however, the standard prescription can be adapted or modified if necessary, according to the patient's particularities. Finally, 3- Risk management and 4- Patient safety group are present throughout the drug chain process, as these departments promote a safety culture in the institution, as well as monitor critical incidents that may happen.

For the analysis of the “dispensing” subprocess, it is important to remember that the individualized medication dispensing system is the system that is adopted in this research field institution. For this purpose, two different forms were described: the standard (Figure 2) and the non-standard (“pharmacy window in urgent cases”) existing in the researched institution. The standard dispensation consists of 17 activities, and eight preventive technologies have been identified (SIH, Palm top, individual shift distribution, barcode reader, unified packaging, PHD identification, risk management and patient safety group). These technologies are described as follows: 1- SIH, when the doctor provides the prescription, it is automatically sent via SIH to the pharmacy. 2- The Palm top, after switching it on and selecting the employee, the sector,
the shift, it already provides requests for the later hours to be met. 3- Individual distribution in shifts, of which the medications are distributed in three shifts (morning, afternoon, and night), which decreases the amount of medications available at the Nursing post. Each patient has his medication "tape" (plastic packaging arranged according to the schedule of administration in the medical prescription, individualized and identified for each patient) in the respective shift. 4- Barcode reader that is present in the palm top, ensures that the correct medication is dispensed, within the expiration date for the correct patient. 5- Unitarized packaging makes all medications have bar codes (even unitarized tablets), improves the visibility and legibility of
the packages, in addition to allowing a colored alert stripe (red for PHD) and alert notifications. 6- Identification of PHD (label or colored plastic bag) occurs using red labels, moreover, after dispensing the medication through the palm top, the medications are placed in transparent plastic bags with the identification of the patients. When there is PHD, these plastic bags are red in order to alert the Nursing team that will administer the medication. 7- Risk management and 8- Patient safety group. For non-standard dispensing, 14 activities were described, and four technologies were identified, namely HIS, PHD identification, barcode reader, unitarized packaging, risk

Figure 2 – Flowchart of the medical prescription subprocess and its preventive technologies for medication errors, São José do Rio Preto, SP, Brazil, 2016.
management and patient safety group.

For the subprocess “medication administration” two Flowcharts (Figures 3 and 4) were elaborated, divided by administration routes (oral/sublingual and parenteral), and the routes by nasogastric enteral tubes and aerosol were described, totaling an average of 23 activities (19 oral, 25 nasogastric enteral tubes, 24 aerosol and 25 parenteral application). Fifteen preventive technologies were identified: no stock of drugs, HIS, double-checking of drugs, identification for PHD, unitarized packaging, checking of the “five rights” of medication, patient identification plate and bracelet, infusion pump, colorized identification routes, training and integration of nursing professionals, Nursing Care Systematization (NCS), safety group and risk management. They are described as follows: 1- the absence of a stock of drugs in the unit eliminates the probability of administering non-prescribed medications; 2- HIS guarantees the legibility of the prescription and individual distribution in shifts; 3- double-checking is performed by two Nursing professionals in the cases of PHD; 4- identification of PHD; 5- unitarized packaging; 6- conference of the “five rights” of medication (right patient, right medicine, right way, right dose, right time); 7- patient bed identification plate and 8- patient identification bracelet; both patient identifications guarantee at least two patient identifiers. Moreover, 9- infusion pump (precise infusion flow); 10- colorized identification of route in the intensive care unit, differentiating between venous (blue), arterial (red) and gastric routes (yellow) through colored durex attached to the track ends; 11- Training and 12- integration to promote updating nursing professionals. 13- NCS acts as a preventive technology in the medication administration

Figure 3 – Flowchart of the subprocess administration of oral medications and their preventive technologies for medication errors, São José do Rio Preto, SP, Brazil, 2016.
sub-process since through this tool the nurse can alert their team concerning the main risks of patients. There are also 14- the patient safety group and 15- risk management.

Study participants were asked to relate preventive technologies to the type of error (Table 1) that could be prevented with their use. It was observed that HIS is the technology that most prevents all types of medication errors according to the view of the professionals who validated the Flowcharts (12.6%).
DISCUSSION

Understanding the subprocesses that make up the drug chain is fundamental for preventing medication errors. Based on this statement, a national multicenter study carried out in university hospitals showed that the medication process consisted of an average of 69 activities, ranging from 58 to 80 activities. Only one of the hospitals had an electronic prescription, as in the present study, whose medication process consisted of 66 activities; quantitatively higher than the activities of this study, which presented 50 activities, on average. Another document infers that reducing the number of steps in the medication process is a strategy that can reduce errors in the administration of intravenous drugs. Thus, it is emphasized that the greater the number of activities in the drug chain, the greater the risk of medication errors; it may also increase the demand for technological barriers capable of avoiding them.

Table 1 – List of professionals who validated Flowcharts between technologies with the types of medication errors that can be prevented at each stage of the drug chain, São José do Rio Preto, SP, Brazil, 2016

Error/Technology	Technology Classification	Route n (%)	Dose n (%)	Time n (%)	Patient n (%)	Omission n (%)	AUAM n (%)	Total n (%)
AUAM	Light	9 (8.1)	9 (6.7)	8 (7.3)	9 (7.3)	8 (10.7)	8 (8.7)	51 (7.9)
Five (5) rights	Light-hard	2 (1.8)	2 (1.5)	2 (1.8)	2 (1.6)	1 (1.4)	1 (1.1)	10 (1.6)
No stock	Light-hard	0 (0.0)	1 (0.7)	2 (1.8)	0 (0.0)	2 (2.7)	5 (5.4)	10 (1.6)
ID	Light-hard	3 (2.7)	9 (6.7)	12 (11.0)	14 (11.4)	5 (6.7)	6 (6.5)	49 (7.6)
DS	Light-hard	2 (1.8)	6 (4.4)	17 (15.6)	6 (4.9)	4 (5.4)	3 (3.3)	38 (5.9)
Double-checking	Light-hard	6 (5.4)	8 (5.9)	5 (4.6)	8 (6.5)	4 (5.4)	5 (5.4)	36 (5.6)
RM	Light-hard	14 (12.6)	13 (9.6)	11 (10.1)	11 (8.9)	13 (17.5)	14 (15.2)	76 (11.8)
SG	Light-hard	15 (13.6)	12 (8.9)	10 (9.2)	14 (11.4)	12 (16.2)	14 (15.2)	77 (12.0)
NCS	Light-hard	2 (1.8)	2 (1.5)	1 (0.9)	4 (3.3)	2 (2.7)	2 (2.2)	13 (1.9)
IP	Hard	2 (1.8)	9 (6.7)	3 (2.8)	2 (1.6)	1 (1.4)	0 (0.0)	17 (2.6)
UP	Hard	7 (6.3)	11 (8.1)	3 (2.8)	5 (4.1)	4 (5.4)	5 (5.4)	35 (5.4)
PHD	Hard	10 (9.0)	15 (11.1)	5 (4.6)	6 (4.9)	4 (5.4)	3 (3.3)	43 (6.7)
Route Identification	Hard	9 (8.1)	1 (0.7)	1 (0.9)	1 (0.8)	0 (0.0)	0 (0.0)	12 (1.9)
BCR	Hard	3 (2.7)	6 (4.4)	2 (1.8)	2 (1.6)	1 (1.4)	4 (4.3)	12 (1.9)
Palm top	Hard	5 (4.5)	7 (5.2)	5 (4.6)	5 (4.1)	4 (5.4)	8 (8.7)	34 (5.3)
Plate	Hard	3 (2.7)	2 (1.5)	3 (2.8)	10 (8.1)	1 (1.4)	1 (1.1)	20 (3.1)
Bracelet	Hard	3 (2.7)	2 (1.5)	3 (2.8)	13 (10.6)	1 (1.4)	2 (2.2)	24 (3.7)
HIS	Hard	16 (14.4)	20 (14.9)	16 (14.7)	11 (8.9)	7 (9.5)	11 (12.0)	81 (12.6)
Total		111	135	109	123	74	92	644

AUAM: Administration of unauthorized medication; T/I: Training and Integration; ID: Individual dispensation; DS: Dispensing by shifts; RM: Risk Management; SG: Patient safety group; NCS: Nursing Care Systematization; IP: Infusion pump; UP: Unitarized Packaging; PHD: Identification for Potentially Dangerous Medication; BCR: Barcode reader; HIS: Hospital Information System.
It is worth remembering the Lean method as a “lean mindset”, in which the lower the number of steps assigned to an activity will have an impact on the increase in the quality of the service provided and the safety of the patient and health professionals. Thus, the objective of this method is to reduce the number of activities to promote safer processes, increasing productivity with less waste; in addition to being a viable, useful, and easy to use.

A quasi-experimental study, which verified the influence of redesigning nursing activities to reduce medication errors in a pediatric unit in a university hospital, indicated an overall reduction of 3.6% in errors. However, the reduction in omission errors (when the prescribed medication is not administered) was 52%. A study carried out in the United Kingdom that evaluated nurses’ knowledge, perceptions and opinions about double-checking medication administration in a children's hospital pointed out that the lack of knowledge about the process and clear guidelines contributed to medication errors. Therefore, we can affirm that the impact of knowing about the design of the medication process, with the purpose of improving it, simplifying it and implementing preventive technologies, can reduce the occurrence of medication errors.

Meta-analysis studies that assessed the rate of medication errors in pediatric patients when prescribing, dispensing, and administering indicated that the medication process is significantly prone to errors, especially in the prescription and administration subprocesses. Nevertheless, even considering that a large part of dispensing errors does not cause harm to patients, it demonstrates fragility, inefficiency and insecurity in the work process and contributes directly to increase the risks within the pediatric population, specifically; which is more susceptible to adverse events to medicines. Thus, it is evident that the adoption of preventive technologies is essential to avoid medication errors.

Currently, there are several technologies that can help prevent medication errors. An integrative review characterized scientific productions on patient safety and their contributions, pointing to light and light-hard technologies for continuing education and patient safety commissions. These data are in line with the findings of the present study, since training/integration and the existence of the patient safety group were technologies validated by the professionals. A study that questioned nursing professionals about behaviors in the face of error and proposed actions to minimize them in a general hospital, also highlighted training as an important part of preventing medication errors, in addition to computerized prescriptions, a system for dispensing medications per unit dose, individualized drug labeling and fewer prescriptions at the same time. A study that aimed to characterize the training related to the prevention of medication error and to verify the participation of the Nursing team in a teaching hospital pointed out that several training opportunities related to patient safety were offered. In the end, the team demonstrated some difficulties in distancing themselves from the field of work to participate in these trainings, thus requiring greater organization.

Other technologies are being used by nursing professionals to prevent medication errors, such as electronic medication administration records, standardization of medications and high alert drugs, computerized prescriptions, barcodes, medication dispensing systems by unit dose,
double-checking and patient participation in therapy27, in addition to the process of continuing education and integration of newly hired professionals25. A current form that can be used for learning programs among professionals is simulation, as it allows the health team to learn without directly involving the patient. Simulation, when properly regulated, has shown important results for the prevention of medication errors28. Again, the technologies contemplated in this study show an agreement between what is recommended in the literature and the validation performed by the professionals.

A Swiss study evaluated the patient safety culture in the emergency department of a University Hospital and pointed out that after training there was an improvement in the patient safety culture in the department related to organizational learning29. We can conclude that professionals often do not have sufficient knowledge about aspects related to patient safety. This aspect is observed in the present study, when professionals needed to relate the technologies to the type of error they prevented, that is, they demonstrated (n=26) insecurity and uncertainty. This fact can be proven by relating the patient's identification bracelet to the error of route, dose, or time and, in fact, the identification bracelet only guarantees the verification of the patient's identification. These data may be related to the lack of an educational culture in the face of errors (3). Failure to recognize the types of errors can lead to the inefficient use of preventive technology.

As for the classification of the technology, one is of the light type, eight of the light-hard type and nine of the hard type. The Flowchart (light-hard technology) represented in this research was valued in order to enable an understanding of how the drug chain operates in terms of structure, process, policies and technology as a tool in decision making. The HIS (hard technology) was identified in this study as the technology that most prevents the different types of medication errors. Currently, the appreciation of hard technologies is visible due to multiple factors such as the volume and flow of information, which are increasingly larger and require high speed and storage capacity. They directly contribute to the increase in efficiency, productivity of employees and better performance and cost reduction of health institutions. However, it is believed that in order to meet a set of risks and intercept them in the drug chain, there is a certain need to insert different combinations of effective and appropriate technologies for each situation without the supremacy of one or another type of technology. Thus, it is clear that despite the economic crisis, there is a high technological investment and a growing convergence in the Brazilian health scenario in creating a culture of safety in organizational environments, as they depend on the physical structure, working conditions and qualification of the professionals who work in the drug chain to make it safe.

This research presents limitations on the impossibility of generalizing the results achieved, as it is the reality of an institution selected by convenience criteria; it may be necessary to adapt the results to the different realities found in other scenarios. However, as implications for professional practice, the results showed the mapping of the activities of the entire drug chain process, identification of the allocation points for preventive technologies and, therefore, can contribute to the organization of the work process, creating spaces for continual improvement to reduce the occurrence of medication errors.
CONCLUSION

The medication process was mapped and validated in three subprocesses and the technologies that can prevent medication errors were allocated in their place of operation. It was observed that professionals still have difficulty understanding issues related to medication errors, which can be a factor that interferes with the correct use of preventive technologies. The use of the Flowchart as one of the quality management tools applied to the practice of health professionals is an important step in ensuring safe care.

Thus, it is believed that mapping the drug chain, as well as the combination of multiple preventive technologies, can create a vision of a complete medication system and co-responsibility for both the patient and the health team and institution, aiming to meet a specific objective which is patient safety.

REFERENCES

1. Koumpagioti D, Varounis C, Kletsiou E, Nteli C, Matziou V. Evaluation of the medication process in pediatricpatients: a meta-analysis. J Pediatr (Rio J). 2014;90(4):344-355. Disponível em: https://reader.elsevier.com/reader/sd/pii/
2. Wittich CM, Burkle CM, Lanier WL. Medication Errors: An Overview for Clinicians. Mayo Clin Proc. 2014; 89(8):1116-25. Disponível em: https://www.mayoclinicalproceedings.org/action/showPdf?pii=S0025-6196%2814%2900439-X Acesso em jun 2020.
3. Vilela RPB, Jericó MC. Erro de medicacão: gestão do indicador para uma prática mais segura. Rev enferm UFPE on line. 2016; 10(1):119-27 Disponível em: https://periodicos.ufpe.br/revista/revistaenfermagem/article/view/10929/12220 Acesso em jul 2016.
4. Riaz MK, Riaz M, Latif A. Review - Medication errors and strategies for their prevention. Pak J Pharm Sci. 2017; 30(3):921-928. PMID:28653940
5. Vilela RPB, Pompeio DA, Jericó MC, Weneck AL. Custo do erro de medicação e eventos adversos à medicação na cadeia medicamentosa: uma revisão integrativa. J Bras Econ Saúde. 2018;10(2):179-189. Disponível em: http://docs.bvsvalud.org/bibliore search/2018/09/915114/bib102-art-11.pdf Acesso em jul 2020.
6. Brasil. Portaria 529, de 01 de abril de 2013. Institui o Programa Nacional de Segurança do Paciente. Diário Oficial da União, 01 de abril de 2013. Disponível em: https://bvsms.saude.gov.br/bvs/saudelegis/gm/2013/prt0529_01_04_2013.html Acesso em jul 2016.
7. World Health Organization. Medication Without Harm- Global Patient Safety Challenge on Medication Safety. 2017. Disponível em: http://apps.who.int/iris/bitstream/handle/10665/255263/WHO-HIS-SDS-2017.6-eng.pdf?sequence=1 Acesso em nov 2018.
8. Lopes EM, Pinheiro AKB, Pinheiro PNC, Vieira NFC. Tecnologia e práticas de enfermagem - um estudo bibliográfico. Online Brazilian Journal of Nursing. 2009; 8(1). Disponível em: http://www.objnursing.uff.br/index.php/nursing/article/view/1883/446 Acesso em jul 2016.
9. Barra DCC, Nascimento ERP, Martins JJ, Albuquerque GL, Erdmann AL. Evolução histórica e impacto da tecnologia na área saúde e da enfermagem. Revista Eletrônica de Enfermagem. 2006; 8(3):422-30. Disponível em: https://revistas.ufg.br/fen/article/view/7081/5012 Acesso em 2018.
10. Brasil. Avaliação de tecnologias em saúde: ferramentas para a gestão do SUS. Editora do Ministério da Saúde. 2009. Disponível em: http://bvsms.saude.gov.br/bvs/publicacoes/avaliacao_tecnologias_saude_ferramentas_gestao.pdf Acesso em dez 2017.
11. Reis HPLC, Vasconcelos HCA, Fonteles MMF. Documentação das não conformidades do ciclo farmacotapêutico no âmbito hospitalar: método HENPA (uma proposta). Revista de Ciências Farmacêuticas Básica e Aplicada. 2012; 33(4):607-615. Disponível em: https://rclinica.ucr.edu.co/index.php/ojs/article/view/266/264 Acesso em jul 2016.
12. Pazin A Filho, Frezza G, Matsuno AK, Alcântara ST, Cassiolato S, Bitar JPS, et al. In-Hospital prescription guidelines for undergraduate medical students. Medicina (Ribeirão Preto). 2013; 46(2):183-94. Disponível em: http://revista.fmrp.usp.br/2013/vol46n2/TEM_Prin%EDpios%20de%20Prescri%E7%E3o%20M%E9dica%20Hospitalar%20para%20Estudantes%20de%20Medicina.pdf Acesso em jul 2016.
13. Cassiani SHB, Miasso AI, Silva AEBG, Fakin FT, Oliveira RC. Aspectos gerais e número de etapas do sistema de medicação de quatro hospitais brasileiros. Rev Latino-Am Enfermagem. 2004; 12(5):781-789. Disponível em: https://www.scielo.br/pdf/rlae/v12n5/ v12n5a12.pdf Acesso em jul 2016.
14. Vilela RPB, Jericó MC. Implantação de tecnologias para a prevenção de erros de medicação em hospital de alta complexidade: análise de custos e resultados. Einstein (São Paulo). 2019; 17(4):1-7. Disponível em: https://www.scielo.br/pdf/eins/v17n4/pt_2317-6385- eins-17-04-eG4621.pdf Acesso em jun 2020.
15. Cassiani SHB. A segurança do paciente e o paradoxo no uso de medicamentos. Rev Bras Enferm. 2005; 58(1):95-99. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0034-71672005000100019 Acesso em mai 2015
16. Conselho Regional de Enfermagem de São Paulo. Uso seguro de medicamentos: guia para preparo, administração e monitoramento. COREN-SP. 2017. Disponível em: http://www.coren-sp.gov.br/sites/default/files/uso-seguro-medicamentos.pdf Acesso em dez 2017.
17. Gimenes FRE. Administração: não basta usar, é preciso conhecer a maneira correta. OPAS. Uso Racional de Medicamentos: fundamentação em condutas terapêuticas e nos macroprocessos da Assistência Farmacêutica. 2016; 1(18):1-7. Disponível em: https://www.researchgate.net/profile/Fernanda_Gimenes3/publication/327719753_Administracao_nao_basta_usar_e_preciso_conhecer_a_maneira_correta/links/5ba095a8299bf13e6038c1c1/Administracao-nao-basta-usar-e-preciso-conhecer-a-maneira-correta.pdf Acesso em jul 2020.

18. Magalhães ALP, Erdmann AL, Silva EL, Santos JLG. Lean thinking in health and nursing: an integrative literature review. Rev Latino Am Enfermagem. 2016; 24:e2734. Disponível em: http://www.scielo.br/pdf/rlae/v24n104-1169-rlae-24-02734.pdf Acesso em jan 2017.

19. Sanders JH, Karr T. Improving ED specimen TAT using Lean Six Sigma. Int J Health Care Qual Assur. 2015; 28(5):428-440. doi:10.1108/IJHCQA-10-2013-0117

20. Régis TKO, Santos LC, Gohr CF. A case-based methodology for lean implementation in hospital operations. J Health Organ Manag. 2019; 33(6):656-676. doi:10.1108/JHOM-09-2018-0267

21. Yamanaka TI, Pereira DG, Pedreira MLG, Peterlini MAS. Redesenho de atividades de enfermagem para redução de erros de medicação em pediatria. Rev Bras Enferm. 2007; 60(2):190-6. Disponível em: https://www.scielo.br/pdf/reben/v60n2/a11v60n2.pdf Acesso em jul 2016.

22. Alsulami Z, Choonara I, Conroy S. Nurses’ knowledge about the double-checking process for medicines administration. Nurs Child Young People. 2014; 26(9):21-26. doi:10.7748/ncyp.26.9.21.e378

23. Nunes FDO, Barros LAA, Azevedo RM, Paiva SS. Segurança do paciente: como a enfermagem vem contribuindo para a questão?. J Res Fundam Care Online. 2014; 6(2):841-7. Disponível em: http://www.seer.unirio.br/index.php/cuidadofundamental/article/view/3007/pdf_1297 Acesso jul 2016.

24. Silva BK, Silva JS, Gobbo AFF, Miasso AI. Erros de medicação: condutas e propostas de prevenção na perspectiva da equipe de enfermagem. Revista Eletrônica de Enfermagem. 2007; 9(3):712-23. Disponível em: https://www.len.ufg.br/len_revista/v9n3/pdf/v9n3a11.pdf Acesso em jun 2016.

25. Vilela RPB, Castillo V, Jericó MC, Faria JIL. Educação permanente: tecnologia para a prevenção do erro de medicação. Cuidarte Enfermagem. 2017; 11(2): 203-208. Disponível em: http://www.weblipa.net/facp/lin/sumarios/cuidarte/2017v2/203.pdf Acesso em mar 2020.

26. Alanazi A, Alomar M, Aldosari H, Shahrani A, Aldosari B. The Effect of Electronic Medication Administration Records on the Culture of Patient Safety: A Literature Review. Stud Health Technol Inform. 2018; 251:223-226. doi:10.3233/978-1-61499-880-8-223

27. Jordão MM, Silva MF, Santos SV, Salum NC, Barbosa SFF. Tecnologias utilizadas pela enfermagem na prevenção de erros de medicação em pediatria. Enfermagem em Foco. 2012; 3(3):147-150. Disponível em: https://www.researchgate.net/profile/Simone_Santos16/publication/262915512_Tecnologias UTILIZADAS_PELA_ENFERMAGEM NA_PREVENCAO_DE_ERROS_DE_MEDICACAO_EM_PEDIATRIA/links/59506d6a2724bae430950/Tecnologias-utilizadas-pela-enfermagem-na-prevencao-de-erros-de-medicaaem-pediatria.pdf Acesso em jul 2016.

28. Sarfati L, Ranchon F, Vantard N, et al. Human-simulation-based learning to prevent medication error: A systematic review. J Eval Clin Pract. 2019; 25(1):11-20. doi:10.1111/jep.12883

29. Ricklin ME, Hess F, Hautz WE. Patient safety culture in a university hospital emergency department in Switzerland - a survey study. GMS J Med Educ. 2019; 36(2):Doc14. doi:10.3205/zma001222

Received in march 2020.
Accepted in august 2020.
Validação de Fluxograma da cadeia medicamentosa como tecnologia preventiva do erro de medicação

Renata Prado Bereta Vilela*
Marli de Carvalho Jerico**

Resumo

Uma importante estratégia para a prevenção de erros é o conhecimento do processo de medicação na cadeia medicamentosa e, também das tecnologias que podem prevenir o erro de medicação. Este estudo objetivou mapear, descrever e validar o processo de medicação relacionando as tecnologias disponíveis para a prevenção dos erros de medicação em um hospital de ensino. O estudo é documental e observacional; utilizou-se a triangulação de dados através da combinação de três fontes de informações. Foram elaborados Fluxogramas para o mapeamento dos processos objeto de estudo e submetidos à validação de conteúdo de 26 profissionais da saúde em cinco áreas de cuidados. Foram elaborados quatro Fluxogramas, totalizando média de 50 atividades e identificada a inserção de 18 tecnologias preventivas, com predomínio de tecnologias duras (50%). O Sistema de Informação Hospitalar (12,6%) foi identificado como a principal tecnologia que previne os erros de medicação; o tipo de erro que mais poderia ser prevenido com estas tecnologias foi o erro de dose (21%). Conhecer onde a tecnologia preventiva atua na cadeia medicamentosa é uma inovação que pode proporcionar ao profissional da assistência o conhecimento para prevenir erros de medicação; na gestão favorecer a racionalização das atividades, a definição do papel destes profissionais, o tempo despendido na execução de cada sub-processos, redesenho do processo de trabalho e otimização da produtividade. Concluiu-se que o mapeamento da cadeia medicamentosa junto da identificação das tecnologias e de seus pontos de utilização propiciaram maior visibilidade e autenticidade das ações dos profissionais da saúde.

Palavras-chave: Sistema de Medicação no Hospital. Erros de Medicação. Fluxo de Trabalho. Tecnologia. Segurança do Paciente.

INTRODUÇÃO

Atualmente a segurança do paciente e os erros de medicação têm sido uma preocupação frequente nas instituições de saúde e dos pesquisadores da área de saúde, por ser um dos mais frequentes tipos de erros médicos¹. Em relação à segurança da medicação, pesquisas têm abordado desde a definição do erro de medicação que é qualquer evento que possa ser evitado e que ocorra em qualquer fase da terapia medicamentosa causando ou não danos ao paciente². Sua causa, que pode estar relacionada ao profissional ou ao processo de trabalho³, as consequências para os profissionais, podem ser um processo de aprendizado baseado na cultura de segurança do paciente ou até mesmo medidas punitivas⁴. Algumas pesquisas abordam ainda a prevenção, que podem ser utilizadas muitas tecnologias e equipamentos⁵. Por fim, os custos também são objetos de estudo, e apresentam uma grande variabilidade de valores podendo custar até US$ 5.095.640.000,00⁶.

Visando a ampliação e promoção da segurança do paciente no Brasil, o Programa Nacional de Segurança do Paciente (PNSP) instituído pela Portaria 529, de 01 de abril, 2013, traz como uma de suas prioridades, o desenvolvimento de protocolos para uma assistência medicamentosa...
segura. Em 2017, a Organização Mundial de Saúde (OMS) lançou o terceiro desafio global para a segurança do paciente, intitulado “Medicação sem Danos”, que prevê “reduzir em mais de 50% os danos severos e evitáveis relacionados a medicamentos nos próximos cinco anos”.

Para atingir a meta lançada no terceiro desafio da OMS, vários recursos tecnológicos foram inseridos na área da saúde com a finalidade de facilitar ou auxiliar nas atividades diárias, promovendo a segurança do paciente e a prevenção de erro de medicação. O conceito de tecnologia na área da saúde é amplo, compreendendo relações humanas (tecnologia leve), saberes estruturados (tecnologia leve-dura) e equipamentos (tecnologia dura).

O processo de medicação, também conhecido como cadeia medicamentosa é multiprofissional e composto por vários subprocessos. Pode ser dividido em prescrição de medicamentos, realizada pelo médico; dispensação de medicamento realizada pela equipe da farmácia e o preparo e administração de medicamentos realizados geralmente pela equipe de Enfermagem. Os erros de medicação podem acontecer em qualquer subprocesso da cadeia medicamentosa, sendo mais frequentes na prescrição e administração. Por ser um processo complexo e propenso a erros, faz-se necessária a implementação de estratégias preventivas, que possam aumentar a segurança do paciente e do profissional durante a assistência.

O conhecimento do processo de medicação subsidia a verificação de atividades, nas quais há risco de ocorrência de falhas, contribuindo para a simplificação e/ou implantação de tecnologias que atuem como barreiras para a ocorrência de erros de medicação.

Desta forma, considera-se relevante e avança em termos científicos na área de segurança do paciente, divulgar para a equipe de saúde o Fluxograma do processo de medicação na cadeia medicamentosa. Adicionalmente, onde as tecnologias preventivas implantadas atuam para que a equipe possa conhecer os recursos disponíveis e possam utilizá-las de maneira eficaz; promovendo, assim, a segurança do paciente, a organização e avaliação do serviço de saúde. Com este propósito, objetivou-se mapear, descrever e validar o processo de medicação relacionando-se as tecnologias disponíveis para a prevenção de erros de medicação em um hospital de ensino.

MÉTODO

Pesquisa observacional, analítica, retrospectiva, desenvolvida em um hospital de ensino, de porte especial (720 leitos) com abrangência quaternária, localizado no sudeste do Brasil. Esta instituição atende a pacientes do Sistema Único de Saúde (SUS), convênios e particulares, totalizando mais de dois milhões de habitantes/ano, com média de 46.000 atendimentos/mês, 31.388 prescrições médicas/mês e 2.106.113 dispensações/mês.

A coleta de dados ocorreu, após aprovação pelo Comitê de Ética em Pesquisa (parecer nº 325.938). Os profissionais convidados aceitaram participar da pesquisa, recebendo orientação prévia e assinado o Termo de Consentimento Livre e Esclarecido.

A pesquisa foi desenvolvida em cinco etapas. Inicialmente, com o objetivo de mapear o processo de medicação, realizou-se um estudo documental e observacional, através da análise documental dos Procedimentos Operacionais Padrão (POP) da instituição relacionados à dispensação, preparo e administração de medicação, transformando os textos do documento em Fluxogramas concluiu-se a segunda etapa. A seguir, iniciou-se a terceira etapa com uma entrevista com os enfermeiros da gerência de risco e do Centro Integrado de Educação e Pesquisa em Saúde (CIEPS) da instituição, campo de estudo, para o levantamento das tecnologias preventivas para o erro de medicação, implantadas na instituição a partir de 2010. Estes enfermeiros foram escolhidos para essa entrevista por possuírem...
conhecimentos sobre esta temática e participarem da implantação dessas tecnologias na instituição.

Com o desenho dos Fluxogramas de todo o processo da cadeia medicamentosa e a lista das tecnologias que podiam prevenir o erro de medicação, foi realizada a observação direta em relação às atividades de prescrição, dispensação, preparo e administração de medicação, realizadas por médicos, farmacêuticos, técnicos de farmácia, enfermeiros e auxiliares e técnicos de Enfermagem da instituição. A pesquisadora acompanhava a execução de cada subprocesso sem interferir, junto com o profissional executante durante a sua prática diária de atividades como enfermeira da instituição campo de estudo. Durante a observação direta foi possível constatar o fluxo das atividades de cada subprocesso, bem como, verificar o momento em que cada tecnologia era utilizada finalizando dessa forma a quarta etapa e a construção dos Fluxogramas.

Por fim, realizou-se a quinta etapa que consistiu na validação dos Fluxogramas através de entrevista individual com os profissionais: médicos, farmacêuticos, técnicos de farmácia, enfermeiros, auxiliares e técnicos de Enfermagem que participavam do processo de medicação hospitalar.

Foram validados seguindo a metodologia da análise de conteúdo sete Fluxogramas abrangendo as etapas da cadeia medicamentosa; um para prescrição, dois para dispensação (dispensação padrão e dispensação não padrão) e quatro para a administração de medicamentos (separados por vias de administração, sendo, um para via oral e sublingual, aerossol, sonda nasogastroenteral e via parenteral). Para a sua validação, foi realizada entrevista semi-estruturada individual com cada participante. Ao aceitar o convite para participar do estudo, o profissional da saúde era informado sobre os objetivos do estudo e como este seria realizado. Assinava-se o termo de consentimento livre e esclarecido (TCLE) e, então, iniciava a entrevista com o instrumento que a pesquisadora havia desenvolvido. Inicialmente continha dados de identificação do participante como; idade, formação, tempo de formação, cargo na instituição, tempo de atuação na instituição. Eram apresentados os Fluxogramas referentes à cada área de atuação, isto é, aos médicos o subprocesso da prescrição, à equipe da farmácia o subprocesso da dispensação e à equipe de Enfermagem o subprocesso do preparo e administração de medicação. Para a validação era solicitado que o profissional olhasse cada atividade, se essa era realizada e se estava na ordem exata. Também era solicitado que o mesmo observasse se utilizava as tecnologias preventivas para o erro de medicação e se elas eram usadas entre aquelas atividades. Quando o participante não concordava com alguma informação no Fluxograma, era orientado a fazer a adequação na própria folha na qual estava o desenho. As sugestões foram acatadas e os subprocessos modelados para representarem de forma mais acurada como se realizam na prática assistencial. A concordância da validação com o Fluxograma pré-valiação foi de 70%, sendo 60% (n=3) para a prescrição médica, 80% (n=8) para dispensação e 73% (n=8) para a administração de medicação. Por fim, foi pedido para cada participante relacionar a tecnologia preventiva com o tipo de erro que pode prevenir; vale ressaltar que foi apresentada a definição da classificação de cada tipo de erro.

O tamanho amostral dos participantes foi determinado sem cálculo estatístico, que seria um profissional executante de cada subprocesso em cada uma das áreas da saúde (clínica médica, clínica cirúrgica, emergência, cuidados críticos e pediatria), sendo que, como a dispensação, preparo e administração podiam ser realizadas por um profissional de nível técnico ou superior, optou-se por incluir um profissional de cada nível em cada área. Também foram incluídos o enfermeiro responsável pela gerência de risco e a coordenadora das farmácias do hospital devido aos seus conhecimentos sobre os subprocessos e prevenção do erro de medicação. Desta forma, foram entrevistados 26 profissionais selecionados aleatoriamente. Como critério de seleção, os
profissionais deveriam estar atuando na prática do processo de medicação no mínimo por um ano nesta instituição.

O subprocesso de “prescrição” foi validado por cinco médicos contratados na instituição, plantonistas ou residentes. O subprocesso “dispensação” foi validado por um farmacêutico e um técnico de farmácia de cada uma das cinco áreas, sendo que um dos farmacêuticos era responsável por duas áreas (unidade de internação cirúrgica e unidade de terapia intensiva), e também pela farmacêutica responsável técnica da instituição, totalizando dez profissionais. O subprocesso de “administração” por um enfermeiro e um técnico ou auxiliar de Enfermagem de cada área. O enfermeiro da gerência de risco foi também convidado, uma vez que poderia agregar valor a este subprocesso; desta forma participaram 11 profissionais da Enfermagem.

Para relacionar as tecnologias com o tipo de erro que poderia ser prevenido com a sua utilização, optou-se por cada categoria profissional relacionar no subprocesso de sua atuação, em virtude de possuírem maior familiaridade com a tecnologia e o subprocesso.

Para os participantes classificarem o tipo de erro de medicação que eram prevenidos com as tecnologias, utilizou-se a Referência Nacional e o Conselho Regional de Enfermagem (COREN) de São Paulo: 1. Erro de via: administração em via diferente da prescrita; 2. Erro de dose: administração de dose maior ou menor que a prescrita; 3. Erro de horário: administração fora do intervalo pré- definido (na instituição considera- se uma hora antes ou após a prescrita); 4. Paciente errado: administração em paciente diferente do prescrito; 5. Erro de omissão: Não administração de medicação prescrita e; 6. Medicamento não autorizado: refere-se à administração que não estava prescrita ou autorizada pelo médico.

RESULTADOS

O processo da cadeia medicamentosa totalizou uma média de 50 atividades e 17 tecnologias preventivas para o erro de medicação.

No subprocesso da prescrição médica, foram mapeadas 11 atividades (Figura 1) que se iniciavam com a visita ou consulta médica e finalizavam com a avaliação do paciente. Foram identificadas quatro tecnologias preventivas (pulseira de identificação do paciente, Sistema Informatizado Hospitalar (SIH), gerência de risco e grupo de segurança do paciente): 1- Pulseira de identificação do paciente, que neste subprocesso é utilizada na anamnese e exame físico. 2- SIH que é acessado na terceira atividade deste subprocesso, garantindo a identificação do usuário através de login e senha. Dentro do SIH existem algumas ferramentas que promovem a segurança do paciente como, por exemplo, a prescrição eletrônica que garante legibilidade, os medicamentos estão “amarrados” com dose, vias e diluentes corretos. Ainda há avisos de alerta para Medicamentos Potencialmente Perigosos (MPP). Há opção para o médico utilizar a prescrição padrão da sua especialidade, que garante prescrição das medicações mais frequentes, evitando esquecimentos. No entanto, a prescrição padrão pode ser adequada ou modificada se for necessário, de acordo com as particularidades dos pacientes. 3- A gerência de risco e 4- Grupo de segurança do paciente estão presentes em todo o processo da cadeia medicamentosa, pois, estes departamentos promovem a cultura de segurança na instituição, bem como, monitoram os incidentes críticos que possam vir a acontecer.

Para a análise do subprocesso de “dispensação” é importante lembrar que o sistema de dispensação individualizado de medicamentos é o adotado nesta instituição campo de pesquisa. Para tanto, foram descritas duas formas diferentes: a padrão (Figura 2) e a não padrão (“guichê da farmácia em casos de urgência”) existentes na instituição pesquisada. A dispensação padrão é composta por 17 atividades e foram identificadas oito tecnologias preventivas (SIH, Palm top, distribuição individual por turnos, leitor de código de barras, embalagem unitarizada, identificação de MPP, gerencia de risco e grupo de segurança do paciente). São assim descritas: 1- SIH, automaticamente quando o
Figura 1 – Fluxograma do subprocesso da prescrição médica e suas tecnologias preventivas para o erro de medicação, São José do Rio Preto, SP, Brasil, 2016.

O médico realiza a prescrição; ela já é encaminhada via SIH para a farmácia. 2- O Palm top após ligado e selecionado o funcionário, o setor, o turno já disponibiliza as solicitações do horário posterior a serem atendidas. 3- Distribuição individual por turnos e, as medicações são distribuídas em três turnos (manhã, tarde e noite) o que diminui a quantidade de medicações disponíveis no posto de Enfermagem. Cada paciente possui a sua “fita” de medicações (embalagem plástica disposta por horário de administração constante na prescrição médica, individualizado e identificado para cada paciente) no respectivo turno. 4- Leitor de código de barras que está presente no palm top, garante que seja dispensada a medicação correta, dentro do prazo de validade para o paciente correto. 5- Embalagem unitarizada faz com que todas as medicações tenham códigos de barras (mesmo os comprimidos unitarizados), melhora a visibilidade e legibilidade das embalagens, além de permitir
tarja colorida de alerta (vermelha para MPP) e notificações de alerta. 6- Identificação de MPP (etiqueta ou saco plástico colorido), todos os MPP são identificados com etiquetas vermelhas, além disso, após dispensar a medicação através do palm top, as medicações são colocadas em sacos plásticos transparentes com a identificação dos pacientes, quando há MPP esses sacos plásticos são vermelhos, com a finalidade de alertar a equipe de Enfermagem que irá administrar a medicação. 7- Gerência de risco e 8- Grupo de segurança do paciente. Para a dispensação não padrão, foram descritas 14 atividades e identificadas quatro tecnologias, sendo SIH, identificação de MPP, leitor de código de barras, embalagem unitarizada, gerência de risco e grupo de segurança do paciente.

Figura 2 – Fluxograma do subprocesso dispensação padrão e suas tecnologias preventivas para o erro de medicação, São José do Rio Preto, SP, Brasil, 2016.
Para o subprocesso “administração de medicamentos” foram elaborados dois Fluxogramas (Figuras 3 e 4) divididos por vias de administração (oral/sublingual e parenteral), e descritas as vias por sonda nasogastroenteral e aerosol, totalizando uma média de 23 atividades (19 para via oral, 25 por sonda nasogastroenteral, 24 aerosol e 25 parenteral). Foram identificadas 15 tecnologias preventivas: ausência de estoque de medicamentos, SIH, dupla checagem de medicamentos, identificação para MPP, embalagem unitarizada, conferência dos cinco certos da medicação, placa e pulseira de identificação do paciente, bomba de infusão, identificação de vias por cores, treinamento e integração dos profissionais de Enfermagem, Sistematização da Assistência de Enfermagem(SAE), grupo de segurança e gerencia de risco. São assim descritas: 1- ausência de estoque de medicamentos na unidade, elimina a probabilidade da administração de medicações não prescritas. 2- SIH garante a legibilidade da prescrição, distribuição individual por turnos, 3- dupla checagem que é realizada por dois profissionais de Enfermagem nos casos de MPP, 4- identificação para MPP, 5- embalagem unitarizada, 6- conferência dos cinco certos da medicação (paciente certo, medicamento certo, via certa, dose certa, hora certa), 7- placa de identificação do leito do paciente, 8- pulseira de identificação do paciente. Ambas as identificações do paciente garantem pelo menos dois identificadores do paciente, 9- bomba de infusão (fluxo de infusão preciso), 10- identificação de vias por cores na unidade de terapia intensiva diferenciando via venosa (azul), arterial (vermelha) e gástrica (amarela) através de durex coloridos fixados nas pontas das vias. 11- Treinamentos e 12- integração promovem a atualização dos profissionais de Enfermagem. 13- A SAE atua como tecnologia preventiva ao subprocesso de administração de medicação; uma vez que através dessa ferramenta o enfermeiro pode alertar a sua equipe sobre os principais riscos dos pacientes, 14- grupo de segurança do paciente e 15- gerência de risco.

Figura 3 – Fluxograma do subprocesso administração de medicações via oral e suas tecnologias preventivas para o erro de medicação, São José do Rio Preto, SP, Brasil, 2016.
Figura 4 – Fluxograma do subprocesso administração de medicações via parenteral e suas tecnologias preventivas para o erro de medicação, São José do Rio Preto, SP, Brasil, 2016.

Foi solicitado aos participantes do estudo que relacionassem as tecnologias preventivas com o tipo de erro (Tabela 1) que poderia ser prevenido com a sua utilização. Foi observado que o SIH é a tecnologia que mais previne todos os tipos de erros de medicação sob a visão dos profissionais que validaram os Fluxogramas (12,6%).
Compreender os subprocessos integrantes da cadeia medicamentosa é fundamental para a prevenção de erros de medicação. Com base nessa afirmativa, estudo multicêntrico nacional realizado em hospitais universitários evidenciou que o processo de medicação era composto por uma média de 69 atividades, variando entre 58 e 80 atividades. Em apenas um dos hospitais havia prescrição eletrônica, como na presente pesquisa, cujo processo de medicação foi composto por 66 atividades; quantitativamente superior ao de atividades desta pesquisa que apresentou, em média, 50 atividades. Outro documento infere que reduzir o número de etapas existentes no processo de medicação é uma estratégia que pode reduzir os erros de administração de medicamentos intravenosos. Desta forma, ressalta-se que quanto maior o número de atividades na cadeia medicamentosa, maior o risco da ocorrência de erros de medicação; poderá aumentar, também, a demanda por barreiras tecnológicas capazes de evitá-los.

Vale lembrar a metodologia Lean como...
uma “mentalidade enxuta”, na qual quanto menor o número de etapas atribuído a uma atividade haverá impacto sobre o aumento da qualidade no serviço prestado e na segurança do paciente e nos profissionais de saúde\(^{18}\). Desta forma, o objetivo dessa metodologia é reduzir o número de atividades para promover processos mais seguros, aumentando a produtividade com menos desperdícios\(^{19}\). Além de ser uma metodologia viável, útil e fácil de se usar\(^{20}\).

Estudo quase-experimental, que verificou a influência do redesenho de atividades de Enfermagem para a redução de erros de medicação em unidade pediátrica de um hospital universitário, indicou uma redução global de 3,6% dos erros. No entanto, a redução dos erros de omissão (quando a medicação prescrita não é administrada) foi de 52%\(^{21}\). Um estudo realizado no Reino Unido que avaliou o conhecimento, as percepções e as opiniões dos enfermeiros sobre a dupla verificação da administração de medicamentos em um hospital infantil apontou que a falta de conhecimento sobre o processo e diretrizes claras contribui para erros de medicação\(^{22}\). Portanto, podemos afirmar que o impacto do conhecimento do desenho do processo de medicação, com a finalidade de melhorá-lo, simplificando-o e implantando tecnologias preventivas podem diminuir a ocorrência de erros de medicação.

Estudos de meta-análise que avaliaram o índice de erros de medicação em pacientes pediátricos na prescrição, dispensação e administração apontaram que o processo de medicação é significativamente propenso a erros, principalmente, nos subprocessos de prescrição e administração\(^{1}\). Não obstante, mesmo considerando que grande parte dos erros de dispensação não cause danos aos pacientes, demonstra fragilidade, ineficiência e insegurança no processo de trabalho e contribue diretamente para aumentar os riscos, especificamente, da população pediátrica, que é mais susceptível aos eventos adversos a medicamentos. Assim, evidencia-se que é imprescindível a adoção de tecnologias preventivas para evitar o erro de medicação.

Atualmente, existem várias tecnologias que podem auxiliar na prevenção do erro de medicação. Uma revisão integrativa caracterizou as produções científicas sobre segurança do paciente e suas contribuições, apontando como tecnologias leves e leve-duradura a educação continuada e comissões de segurança do paciente\(^{23}\). Estes dados vêm ao encontro dos achados desta pesquisa, uma vez que os treinamentos/integração e a existência do grupo de segurança do paciente foram tecnologias validadas pelos profissionais. Estudo que questionou profissionais de Enfermagem sobre condutas diante do erro e ações propostas para minimizá-los em um hospital geral, também destacou os treinamentos como parte importante da prevenção do erro de medicação, além da prescrição informatizada, sistema de dispensação de medicamentos por dose unitária, etiquetação de medicamento individualizado e menor número de prescrições em mesmo horário\(^{24}\). Estudo que objetivou caracterizar os treinamentos relacionados à prevenção do erro de medicação e verificar a participação da equipe de Enfermagem em um hospital de ensino apontou que foram oferecidas várias oportunidades de treinamento relacionadas à segurança do paciente. Ao final, a equipe apresentou algumas dificuldades em se distanciar do campo de trabalho para participar destes treinamentos, havendo necessidade de uma maior organização\(^{25}\).

Outras tecnologias estão sendo utilizadas por profissionais de Enfermagem para prevenir erros de medicação, tais como, registros eletrônicos de administração de medicamentos\(^{26}\), padronização de medicamentos e drogas de alerta máximo, prescrições informatizadas, código de barras, sistema de dispensação de medicamentos por dose unitária, dupla checagem e participação do paciente na terapia\(^{27}\), além do processo
de educação permanente e integração dos profissionais recém admitidos. Uma forma atual que pode ser utilizada para programas de aprendizado entre profissionais é a simulação, pois, permite o aprendizado da equipe de saúde sem envolver diretamente o paciente. A simulação quando adequadamente regulamentada, tem mostrado resultados importantes para a prevenção de erros de medicação. Novamente as tecnologias contempladas nesta pesquisa mostram concordância entre o preconizado na Literatura e a validação realizada pelos profissionais.

Estudo Suíço, avaliou a cultura de segurança do paciente no departamento de emergência de um Hospital Universitário; apontou que após um treinamento houve melhora da cultura de segurança do paciente no departamento relacionada ao aprendizado organizacional. Podemos concluir que os profissionais muitas vezes não têm o conhecimento suficiente sobre os aspectos relacionados à segurança do paciente. Observa-se este aspecto no presente estudo, quando os profissionais precisaram relacionar as tecnologias com o tipo de erro que preveniam, isto é, apresentaram insegurança e incerteza. Pode-se comprovar tal fato ao relacionar a pulseira de identificação do paciente ao erro de via, dose ou horário e erro de horário, sendo que, na verdade a pulseira de identificação só garante a conferência da identificação do paciente. Estes dados podem estar relacionados à falta de uma cultura educativa diante dos erros. Não reconhecer os tipos de erros, pode remeter à utilização inefficiente da tecnologia preventiva.

Quanto à classificação da tecnologia uma é do tipo leve, oito do tipo leve-dura e nove do tipo dura. O Fluxograma (tecnologia leve-dura) representado nesta pesquisa foi valorizado de forma a possibilitar uma compreensão de como a cadeia medicamentosa opera em termos de estrutura, processo, políticas e tecnologias como ferramenta na tomada de decisões. Assim como o SIH (tecnologia dura) foi identificado nesta pesquisa, como o que mais previne os tipos de erros de medicação. É visível a valorização das tecnologias duras na atualidade por múltiplos fatores como o volume e o fluxo de informações que são cada vez maiores e exigem alta velocidade e capacidade de armazenamento. Contribuem diretamente para o aumento da eficiência, produtividade dos colaboradores e melhor desempenho e redução de custos das instituições de saúde. Contudo, acredita-se que para atender a um conjunto de riscos e interceptá-los na cadeia medicamentosa há certa necessidade de inserção de diferentes combinações de tecnologias efetivas e adequadas a cada situação sem uma supremacia de um ou outro tipo de tecnologia. Assim, percebe-se que apesar da crise econômica, há um alto investimento tecnológico e uma crescente convergência no cenário brasileiro de saúde em criar uma cultura de segurança nos ambientes organizacionais, pois dependem de estrutura física, condições de trabalho e qualificação dos profissionais que atuam na cadeia medicamentosa para torná-la segura. Esta pesquisa apresenta limitações da impossibilidade de generalização dos resultados alcançados, por ser a realidade de uma instituição selecionada por critério de conveniência; podendo ser necessária uma adaptação para as diferentes realidades encontradas em outros cenários. No entanto, como implicações para a prática profissional, os resultados evidenciaram o mapeamento das atividades de todo processo da cadeia medicamentosa, identificação dos pontos de alocação das tecnologias preventivas e, portanto, pode contribuir para a organização do processo de trabalho, gerando espaços para melhoria contínua na redução da ocorrência de erros de medicação.
CONCLUSÃO

O processo de medicação foi mapeado e validado em três subprocessos e as tecnologias que podem prevenir o erro de medicação foram alocadas em seu local de atuação. Observou-se que os profissionais ainda têm dificuldade em compreender questões relacionadas ao erro de medicação, o que pode ser um fator que interfira na utilização correta das tecnologias preventivas. A utilização do Fluxograma como uma das ferramentas de gestão da qualidade aplicada à prática dos profissionais de saúde é um passo importante na garantia de uma assistência segura.

Assim, acredita-se que o mapeamento da cadeia medicamentosa, bem como, a combinação de múltiplas tecnologias preventivas, possam criar uma visão de sistema de medicação completo e corresponsabilização tanto do paciente quanto da equipe e instituição de saúde, visando atender a um objetivo específico que é a segurança do paciente.

REFERÊNCIAS

1. Koumpagioti D, Varounis C, Kletsiou E, Neteli C, Matziou V. Evaluation of the medication process in pediatric patients: a meta-analysis. J Pediatr (Rio J). 2014;90(4):344-355. Disponível em: https://reader.elsevier.com/reader/sd/pii/S0025-6196(14)00043-X Acesso em jul 2020.
2. Wittich CM, Burkle CM, Lanier WL. Medication Errors: An Overview for Clinicians. Mayo Clin Proc. 2014; 89(8):1116-25. Disponível em: https://www.mayoclinicproceedings.org/action/showPdf?pii=S0025-6196%2814%2900043-X Acesso em jul 2020.
3. Vilela RP, Jericó MC. Erro de medicação: gestão do indicador para uma prática mais segura. Rev enferm UFRJ. 2016; 10(1):19-27. Disponível em: https://periodicos.ufpe.br/revistas/revistaenfermagem/article/view/10929/12220 Acesso em jul 2016.
4. Riaz MK, Riaz M, Latif A. Review - Medication errors and strategies for their prevention. Pak J Pharm Sci. 2017; 30(3):921-928. PMID:28653940
5. Vilela RP, Pompeo DA, Jericó MC, Werneck AL. Custo do erro de medicação e eventos adversos à medicação na cadeia medicamentosa: uma revisão integrativa. J Bras Enferm. 2018;10(2):179-189. Disponível em: http://docs.bvsalud.org/biblioretr/2018/09/915114/jbes102-art-11.pdf Acesso em jul 2020.
6. Brasil. Portaria 529, de 01 de abril de 2013. Institui o Programa Nacional de Segurança do Paciente. Diário Oficial da União, 01 de abril de 2013. Disponível em: https://bvsms.saude.gov.br/bvs/saudelegis/gm/2013/prt0529_01_04_2013.html Acesso em jul 2016.
7. World Health Organization. Medication Without Harm- Global Patient Safety Challenge on Medication Safety. 2017. Disponível em: http://apps.who.int/iris/bitstream/handle/10665/255263/WHO-HIS-SDS-2017.6-eng.pdf?sequence=1. Acesso em nov 2018.
8. Lopes EM, Pinheiro AKB, Pinheiro PNC, Vieira NFC. Tecnologia e práticas de enfermagem - um estudo bibliográfico. Online Brazilian Journal of Nursing. 2009; 8(1). Disponível em: http://www.objnursing.ufu.br/index.php/nursing/article/view/1813/446 Acesso em jul 2016.
9. Barra DCC, Nascimento ERP, Martins JJ, Albuquerque GL, Erdmann AL. Evolução histórica e impacto da tecnologia na área saúde e da enfermagem. Revista Eletrônica de Enfermagem. 2006; 8(3):422-30. Disponível em: https://revistas.ufmg.br/fe/2016/08/view/7081/5012 Acesso em fev 2018.
10. Brasil. Avaliação de tecnologias em saúde: ferramentas para a gestão do SUS. Editora do Ministério da Saúde. 2009. Disponível em: http://bvsms.saude.gov.br/bvs/publicacoes/avaliacao_tecnologias_saudes_ferramentas_gestao.pdf Acesso em dez 2017.
11. Reis HPLC, Vasconcelos HCA, Fontes MMF. Documentação nas não conformidades do ciclo farmacotépico no âmbito hospitalar: método HENPA (uma proposta). Revista de Ciências Farmacêuticas Básica e Aplicada. 2012; 33(4):607-615. Disponível em: https://ctiba.ccfr.unesp.br/index.php/ojs/article/view/266/264 Acesso em jul 2016.
12. Pazin A Filho, Frezza G, Matsumo AK, Alcântara ST, Cassiolato S, Bitar JPS, et al. In-Hospital prescription guidelines for undergraduate medical students. Medicina (Ribeirão Preto). 2013; 46(2):183-94. Disponível em: https://revista.fmrp.usp.br/2013/vol46n2/TEM_Princ%EDpios%20d%20Prescri%7E%20M%9Clica%20Hospitalar%20para%20Estudantes%20Medicina.pdf Acesso em jul 2016.
13. Cassiani SHB, Miasso AI, Silva AEB, Fakin FT, Oliveira RC. Aspectos gerais e número de etapas do sistema de medicação de quatro hospitais brasileiros. Rev Latino-Am Enfermagem. 2004; 12(5):781-789. Disponível em: https://www.scielo.br/pdf/rlae/v12n5/v12n5a12.pdf Acesso em jul 2016.
14. Vilela RP, Jericó MC. Implantação de tecnologias para a prevenção de erros de medicação em hospital de alta complexidade: análise de custos e resultados. Einstein (São Paulo). 2019; 17(4):1-7. Disponível em: https://www.scielo.br/pdf/eins/v17n4/p2317-6385-eins-17-04-eG54621.pdf Acesso em jun 2020.
15. Cassiani SHB. A segurança do paciente e o paradoxo no uso de medicamentos. Rev Bras Enferm. 2005; 58(1):95-99. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0034-71672005000100019 Acesso em nov 2015.
16. Conselho Regional de Enfermagem de São Paulo. Uso seguro de medicamentos: guia para preparo, administração e monitoramento. COREN-SP. 2017. Disponível em: http://www.coren-sp.gov.br/sites/default/files/uso-seguro-medicamentos.pdf Acesso em dez 2017.
17. Gimenes FRE. Administração: não basta usar, é preciso conhecer a maneira correta. OPAS. Uso Racional de Medicamentos: fundamentação em condutas terapêuticas e nos macroprocessos da Assistência Farmacêutica. 2016; 1(1):1-7. Disponível em: https://www.researchgate.net/profile/Fernanda_Gimenes3/publication/327719753_Administracao nao_basta_usar_e_preciso_conhecer_a_maneira_correta links/5ba095a8299bf13e6038c1cf/Administracao-nao-basta-usar-e-preciso-conhecer-a-maneira-correta.pdf Acesso em jul 2020.
18. Magalhães ALP, Erdmann AL, Silva EL, Santos JLG. Lean thinking in health and nursing: an integrative literature review. Rev Latino Am Enfermagem. 2016; 24:e2734. Disponível em: http://www.scielo.br/pdf/rlae/v24/0104-1169-rlae-24-02734.pdf Acesso em jan 2017.
19. Sanders JH, Karr T. Improving ED specimen TAT using Lean Six Sigma. Int J Health Care Qual Assur. 2015; 28(5):428-440. doi:10.1108/IJHCQA-10-2013-0117
20. Régis TKO, Santos LC, Goehr CF. A case-based methodology for lean implementation in hospital operations. J Health Organ Manag. 2019; 33(6):656-676. doi:10.1108/JHOM-09-2018-0267
21. Yamanaka TJ, Pereira DG, Pedreira MLG, Peterlini MAS. Redesenhando atividades de enfermagem para redução de erros de medicação em pediatria. Rev Bras Enferm. 2007; 60(2):190-6. Disponível em: https://www.scielo.br/pdf/reben/v60n2/a11v60n2.pdf Acesso em jul 2016.
22. Alsulami Z, Choonaara I, Conroy S. Nurses’ knowledge about the double-checking process for medicines administration. Nurs Child Young People. 2014; 26(9):21-26. doi:10.7748/ncyp.26.9.21.e378
23. Nunes FDO, Barros LAA, Azevedo RM, Paiva SS. Segurança do paciente: como a enfermagem vem contribuindo para a questão?. J Res Fundam Care Online. 2014; 6(2):841-7. Disponível em: http://www.seer.unirio.br/index.php/cuidadofundamental/article/view/3007/pdf_1297 Acesso jul 2016.
24. Silva BK, Silva JS, Gobbo AFF, Miasso AI. Erros de medicação: condutas e propostas de prevenção na perspectiva da equipe de enfermagem. Revista Eletrônica de Enfermagem. 2007; 9(3):712-23. Disponível em: https://www.fen.ufg.br/fen_revista/v9n3/pdf/v9n3a11.pdf Acesso em jul 2016.
25. Vilela RPB, Castilho V, Jericó MC, Faria JLL. Educação permanente: tecnologia para a prevenção do erro de medicação. Cuidarte Enfermagem. 2017; 11(2): 203-208. Disponível em: http://www.webfipa.net/facfipa/ner/sumarios/cuidarte/2017v2/203.pdf Acesso em mar 2020.
26. Alanazi A, Alomar M, Aldosari H, Shahrani A, Aldosari B. The Effect of Electronic Medication Administration Records on the Culture of Patient Safety: A Literature Review. Stud Health Technol Inform. 2018; 251:223-226. doi:10.3233/978-1-61499-880-8-223
27. Jordão MM, Silva MF, Santos SV, Salum NC, Barbosa SFF. Tecnologias utilizadas pela enfermagem na prevenção de erros de medicação na pediatria. Enfermagem em Foco. 2012; 3(3):147-150. Disponível em: http://www.researchgate.net/profile/Simone_Santos16/publication/262915512_Tecnologias_utilizadas_pela_enfermagem_na_prevencao_de_erros_de_medicaacao_em_pediatria links/595008d6ca2a2724ae438950/Tecnologias-utilizadas-pela-enfermagem-na-prevencao-de-erros-de-medicaacao-em-pediatria.pdf Acesso em jul 2016.
28. Sarafati L, Ranchon F, Vantard N, et al. Human-simulation-based learning to prevent medication error: A systematic review. J Eval Clin Pract. 2019; 25(1):11-20. doi:10.1111/jep.12883
29. Ricklin ME, Hess F, Hautz WE. Patient safety culture in a university hospital emergency department in Switzerland - a survey study. GMS J Med Educ. 2019; 36(2):Doc14. doi:10.3205/zma001222

Recebido em março de 2020.
Aceito em agosto de 2020.