Abstract

The h-deformation of functions on the Grassmann matrix group $Gr(2)$ is presented via a contraction of $Gr_q(2)$. As an interesting point, we have seen that, in the case of the h-deformation, both R-matrices of $GL_h(2)$ and $Gr_h(2)$ are the same.
In recent years a new class of quantum deformations of Lie groups and algebras, the so-called h-deformation, has been intensively studied by many authors [1-9]. The h-deformation of matrix groups can be obtained using a contraction procedure. We start with a quantum plane and its dual and follow the contraction method of [9].

Consider the q-deformed algebra of functions on the quantum plane [10] generated by x', y' with the commutation rule

$$x'y' = qy'x'.$$ \hspace{1cm} (1)

Applying a change of basis in the coordinates of the (1) by use of the following matrix

$$g = \begin{pmatrix} 1 & f \\ 0 & 1 \end{pmatrix} \quad f = \frac{h}{q - 1}$$ \hspace{1cm} (2)

one arrives at [9], in the limit $q \to 1$,

$$xy = yx + hy^2.$$ \hspace{1cm} (3)

We denote the quantum h-plane by $R_h(2)$.

Similarly, one gets the dual quantum h-plane $R^*_h(2)$ as generated by η, ξ with the relations

$$\xi^2 = 0 \quad \eta^2 = h\eta\xi \quad \eta\xi + \xi\eta = 0.$$ \hspace{1cm} (4)

Let

$$\hat{A} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$

be a grassmann matrix in $Gr(2)$. All matrix elements of \hat{A} are grassmann. We consider linear transformations with the following properties:

$$\hat{A} : R_h(2) \longrightarrow R^*_h(2) \quad \hat{A} : R^*_h(2) \longrightarrow R_h(2).$$ \hspace{1cm} (5)

The action on points of $R_h(2)$ and $R^*_h(2)$ of \hat{A} is

$$\begin{pmatrix} \eta \\ \xi \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \quad \begin{pmatrix} \eta \\ \xi \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} \eta \\ \xi \end{pmatrix}.$$ \hspace{1cm} (6)

We assume that the entries of \hat{A} commute with the coordinates of $R_h(2)$ and anti-commute with the coordinates of $R^*_h(2)$. As a consequence of the linear
transformations in (5) the vectors $\left(\frac{\eta}{\xi} \right)$ and $\left(\frac{x}{y} \right)$ should belong to $R_h^*(2)$ and $R_h(2)$, respectively, which impose the following h-anti-commutation relations among the matrix elements of \hat{A}:

\begin{align*}
\alpha\beta + \beta\alpha &= h(\alpha\delta + \beta\gamma) \quad \alpha\gamma + \gamma\alpha = 0 \\
\beta\gamma + \gamma\beta &= h(\delta\gamma - \gamma\alpha) \quad \beta\delta + \delta\beta = -h(\alpha\delta + \gamma\beta) \\
\alpha\delta + \delta\alpha &= h(\gamma\alpha - \delta\gamma) \quad \gamma\delta + \delta\gamma = 0 \\
\alpha^2 &= -h\gamma\alpha \quad \beta^2 = h(\beta\delta - \alpha\beta + h\alpha\delta) \quad \gamma^2 = 0 \quad \delta^2 = h\delta\gamma.
\end{align*}

These relations define the h-deformation of functions on the grassmann matrix group $Gr(2)$, $Gr_h(2)$.

Alternatively, the relations (7) can be obtained by the following similarity transformation [9]:

$$\hat{A}' = g\hat{A}g^{-1}$$

which in our case gives

\begin{align*}
\alpha' &= \alpha + \frac{h}{q-1}\gamma \quad \beta' = \beta + \frac{h}{q-1}(\delta - \alpha - \frac{h}{q-1}\gamma) \\
\gamma' &= \gamma \quad \delta' = \delta - \frac{h}{q-1}\gamma.
\end{align*}

and then taking the $q \to 1$ limit. Here α', β', γ' and δ' are generators of $Gr_q(2)$, which satisfy the following commutation relations [11,12]:

\begin{align*}
\alpha'\beta' + q^{-1}\beta'\alpha' &= 0 \quad \alpha'\gamma' + q^{-1}\gamma'\alpha' = 0 \\
\gamma'\delta' + q^{-1}\delta'\gamma' &= 0 \quad \beta'\delta' + q^{-1}\delta'\beta' = 0 \\
\alpha'\delta' + \delta'\alpha' &= 0 \quad \alpha'^2 = \beta'^2 = \gamma'^2 = \delta'^2 = 0 \\
\beta'\gamma' + \gamma'\beta' &= (q - q^{-1})\delta'\alpha'.
\end{align*}

Substituting (9) into (10) one gets the set of relations (7) above.

The algebra (10) is associative under multiplication and the relations in (10) may be also expressed in a tensor product form [11,12]

$$R_q\hat{A}'_1\hat{A}'_2 = -\hat{A}'_2\hat{A}'_1R_q$$

(11)
where
\[
R_q = \begin{pmatrix}
q + q^{-1} & 0 & 0 & 0 \\
0 & 2 & q^{-1} - q & 0 \\
0 & q - q^{-1} & 2 & 0 \\
0 & 0 & 0 & q + q^{-1}
\end{pmatrix}.
\]
(12)

Here, since the matrix elements of \(\hat{A}' \) are all grassmann, for the conventional tensor products
\[
\hat{A}'_1 = \hat{A}' \otimes I \quad \text{and} \quad \hat{A}'_2 = I \otimes \hat{A}'
\]
(13)
one can write (no-grading)
\[
(\hat{A}_1)^{ij}_{kl} = \hat{A}^i_k \delta^j_l \quad (\hat{A}_2)^{ij}_{kl} = \delta^i_k \hat{A}'^j_l
\]
(14)
where \(\delta \) denotes the Kronecker delta. Note that in the limit \(q \rightarrow 1 \) the matrix \(R_q \) becomes twice the 4x4 unit matrix. Notice also that although the algebra (10) is an associative algebra of the matrix entries of \(\hat{A} \), \(R_q \) does not satisfy the quantum Yang-Baxter equation (QYBE)
\[
R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12}.
\]
Thus the Yang-Baxter equation is not a necessary condition for associativity [see the paragraph after (19) for other remarks]. It is obvious that a change of basis in the \(R_h(2) \) leads to the similarity transformation
\[
\hat{A} = g^{-1} \hat{A}' g
\]
(15)
for the quantum grassmann group and the following similarity transformation for the corresponding \(R \)-matrix
\[
R_{h,q} = (g \otimes g)^{-1} R_q (g \otimes g).
\]
(16)
If we define the \(R \)-matrix \(R_h \) as
\[
R_h = \lim_{q \rightarrow 1} R_{h,q}
\]
(17)
we get (after dividing by 2)
\[
R_h = \begin{pmatrix}
1 & -h & h & h^2 \\
0 & 1 & 0 & -h \\
0 & 0 & 1 & h \\
0 & 0 & 0 & 1
\end{pmatrix}.
\]
(18)
Substituting (9) and (16) into (11) we arrive at the $q \to 1$ limit

$$R_h \hat{A}_1 \hat{A}_2 = -\hat{A}_2 \hat{A}_1 R_h.$$ (19)

An other interesting point is that, although the R-matrices of $GL_q(2)$ and $Gr_q(2)$ are different, in the case of the h-deformation, the R-matrices of $GL_h(2)$ and $Gr_h(2)$ are the same [see Ref. 9, for the R-matrix R_h of $GL_h(2)$]. In the limit $q \to 1$ both the R-matrices of $GL_q(2)$ and $Gr_q(2)$ become the same 4x4 unit matrix. Although the R-matrix R_q of $Gr_q(2)$ does not satisfy the QYBE, the R-matrix R_h of $Gr_h(2)$ satisfies the QYBE.

Since the entries of \hat{A} are all grassmann, a proper inverse can not exist. However, the left and right inverses of \hat{A} can be constructed:

$$\hat{A}_L^{-1} = \begin{pmatrix} \delta + h \gamma & \beta + h \alpha \\ -\gamma & -\alpha \end{pmatrix},$$ (20)

$$\hat{A}_R^{-1} = \begin{pmatrix} -\delta & \beta + h \delta \\ -\gamma & \alpha + h \gamma \end{pmatrix}. $$ (21)

It is now easy to show that

$$\hat{A}_L^{-1} \hat{A} = \Delta_L$$ (22)

$$\hat{A} \hat{A}_R^{-1} = \Delta_R$$ (23)

where

$$\Delta_L = \beta \gamma + \delta \alpha \quad \Delta_R = \gamma \beta + \alpha \delta.$$ (24)

In this case at least formally, Δ_L and Δ_R may be considered as the left and right quantum (dual) determinants, respectively. Note that one can write

$$\Delta_L \hat{A}_R^{-1} = \hat{A}_L^{-1} \Delta_R.$$ (25)

Final Remarks. We known that all the matrix elements of \hat{A} are grassmann (odd or fermionic) if \hat{A} is a grassmann matrix, i.e., it belongs to $Gr(2)$. Now let \hat{A} and \hat{A}' be any two anti-commuting (i.e., any element of grassmann matrices whose elements \hat{A} anti-commutes with any element of \hat{A}') satisfy (10). Then, all the matrix elements of a product $A = \hat{A} \hat{A}'$ are bosonic (or even) since
the elements of the matrix product of two grassmann matrices are all bosonic. It can also be verified that the matrix elements of \(A \) satisfy \(q \)-commutation relations of \(GL_q(2) \), i.e., for

\[
A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} \alpha' & \beta' \\ \gamma' & \delta' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
\]

\[ab = qba\quad ac = qca\quad bc = cb\]

(26)

etc. That is, if

\[\hat{A}, \hat{A}' \in Gr_q(2) \implies A = \hat{A}\hat{A}' \in GL_q(2).\]

In view of these facts, we can say that, there may be no coproduct of the form \(\Delta(\hat{A}) = \hat{A} \otimes \hat{A} \). For, this coproduct is invariant under the \(q \)-commutation relations (26) of \(GL_q(2) \). These facts also prevent the existence of a coproduct of the form \(\Delta(\hat{A}) = \hat{A}^{t_2} \otimes \hat{A} \) where \(t_2 \) is an involution acting on the elements of \(\hat{A} \). Hence a construction of the coproduct along the lines of Ref. 13 is also not possible.

Acknowledgement

This work was supported in part by T. B. T. A. K. the Turkish Scientific and Technical Research Council.

References

[1] Demidov E E, Manin Yu I, Mukhin E E and Zhdanovich D V 1990 Prog. Theor. Phys. Suppl. 102 203.
[2] Ewen H, Ogievetsky O and Wess J 1991 Lett. Math. Phys. 22 297.
[3] Zakrzewski S 1991 Lett. Math. Phys. 22 287.
[4] Woronowicz S L 1991 Rep. Math. Phys. 30 259.
[5] Ohn C H 1992 Lett. Math. Phys. 25 85.
[6] Karimipour V 1994 Lett. Math. Phys. 30 87.
[7] Kupershmidt B A 1992 J. Phys. A: Math. Gen. 25 L1239.
[8] Aghamohammadi A 1993 Mod. Phys. Lett. A 8 2607.
[9] Aghamohammadi A, Khorrami M and Shariati A 1995 *J. Phys. A* **28** L225.

[10] Manin Yu I 1988 CRM-1561.

[11] Corrigan E, Fairlie B, Fletcher P and Sasaki R 1990 *J. Math. Phys.* **31** 776.

[12] Celik S 1996 *J. Math. Phys.* **37** 3568.

[13] Celik S 1996 *Hopf algebra structure of* $Gr_q(1|1)$ *related to* $GL_q(1|1)$, preprint MSUMB 96-02.