Effect of neutrino rest mass on ionization equilibrium freeze-out

E. Grohs,1 G. M. Fuller,1 C. T. Kishimoto,1,2 and M. W. Paris3

1Department of Physics, University of California, San Diego, La Jolla, California 92093, USA
2Department of Physics, University of San Diego, San Diego, California 92110, USA
3Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

(Received 31 December 2014; published 23 December 2015)

We show how small neutrino rest masses can increase the expansion rate near the photon decoupling epoch in the early Universe, causing an earlier, higher temperature freeze-out for ionization equilibrium compared to the massless neutrino case. This yields a larger free-electron fraction, thereby affecting the photon diffusion length differently than the sound horizon at photon decoupling. This neutrino-mass and recombination effect depends strongly on the neutrino rest masses. Though below current sensitivity, this effect could be probed by next-generation cosmic microwave background experiments, giving another observational handle on neutrino rest mass.

DOI: 10.1103/PhysRevD.92.125027 PACS numbers: 98.80.Cq, 14.60.Lm, 26.35.+c, 98.70.Vc

The history of the early Universe is a history of freeze-outs, where reaction rates fall below the Hubble expansion rate. We point out here that the energy density associated with neutrino rest mass results in a subtle increase in the expansion rate at photon decoupling. This causes an earlier, higher temperature epoch for the freeze-out of ionization equilibrium. The physics of this freeze-out and its relation to observations of the cosmic microwave background (CMB) is a well-studied issue [1–8]. The effect we consider, easily derivable with existing CMB analysis tools [9], has been mentioned [10] but not computed quantitatively. We find that these neutrino rest-mass-induced changes in CMB observables are below the sensitivity of current methods used to observe and analyze the CMB data. The effects, however, may be within the reach of the next generation of precision CMB observations coupled with a self-consistent computational approach.

Here we focus on the influence of the recombination history on CMB observables, in particular the sound horizon \(r_s \) and the photon diffusion length \(r_d \). The earlier ionization freeze-out caused by neutrino rest mass affects the deduced radiation energy density in a perhaps unexpected way. The quantities \(r_s \) and \(r_d \) are given in terms of integrals over the scale factor \(a \) [11],

\[
s = \int_0^{a_{rd}} \frac{da}{a^2 H} \frac{1}{\sqrt{3(1 + R)}}, \tag{1}
\]

\[
rs^2 = \pi^2 \int_0^{a_{rd}} \frac{da}{a^2 H n_e(a) \sigma_T} \frac{R^2 + 6(1 + R)}{6(1 + R)^2}, \tag{2}
\]

where \(H = H(a) \) is the Hubble expansion rate, \(\sigma_T \) is the Thomson cross section, \(n_e(a) \) is the free-electron number density, and \(R(a) \equiv 3 \rho_b/(4 \rho_r) \) is a ratio involving the baryon rest mass and photon energy densities, \(\rho_b \) and \(\rho_r \), respectively. The integrals span the early history of the Universe, ending at \(a_{rd} \), the epoch of photon decoupling at a redshift \(z = 1090.43 \) [11]. In the analysis to follow, we ignore the small dependence of the value of \(a_{rd} \) on \(\sum m_\nu \).

We should note that Eq. (2) is approximate, and a more complete analysis would include effects beyond the tight-coupling approximation [12].

The photon diffusion length \(r_d \) depends on the number density of free electrons \(n_e^{\text{(free)}} \). The free-electron fraction, \(X_e \equiv n_e^{\text{(free)}}/n_e^{\text{(total)}} \), parametrizes the free-electron number density. To evolve \(X_e \), our recombination network uses the Saha equation to treat recombination onto He III and coupled Boltzmann equations [13,14] to treat other recombination and ionization processes associated with H II, He II, and He III. We employ a recombination reaction network which is similar to, but independent of, the code recfast [15]. Figure 1 shows a calculation of the free-electron fraction as a function of scale factor ratio \(a/a_0 \) (=1 at current epoch), where we have taken \(\sum m_\nu = 0 \). Effects due to reionization processes at low redshift, \(z \sim O(1) \) are neglected. The free-electron fraction of Fig. 1, evolved through the photon decoupling epoch, shows the freeze-out from ionization equilibrium. The first drop from the initial value of \(X_e = 1 \) near \(a/a_0 = 2 \times 10^{-4} \) is a consequence of the recombination onto He III.

In Fig. 2 we plot the change in \(X_e \) for nonzero values of \(\sum m_\nu \) relative to the case with \(\sum m_\nu = 0 \). Nonzero \(\sum m_\nu \) has a discernible effect on the freeze-out of \(X_e \). A larger \(\sum m_\nu \) implies a larger Hubble rate giving an earlier epoch for \(X_e \) freeze-out. In a study of the expansion rate during recombination, Ref. [16] observed that scaling the Hubble rate affects the recombination history. Here we build on this

\[1\] This is not entirely self-consistent but we will demonstrate that a consistent treatment changes the decoupling redshift from \(z = 1090 \) to \(z = 1091 \). The associated change in \(a_{rd} \) has negligible effect on \(r_s \) and \(r_d \); this is similar to the finding in Ref. [6].
argument to explicitly consider the role of neutrino rest mass on recombination. The curve describing the largest change corresponds to $\sum m_\nu = 1.0$ eV, whereas the smallest change corresponds to $\sum m_\nu = 0.2$ eV; consecutive curves are spaced by $\Delta \Sigma m_\nu = 0.2$ eV.

Considering Eqs. (1) and (2) we note that both quantities, r_s and r_d, depend on the expansion history $H(a)$. Only the diffusion length, however, depends explicitly on the recombination history $n_e(a)$, which is itself dependent on the expansion history. This recombination effect changes r_d and this change is opposite to the effect of the change of that due directly to the Hubble expansion.

A scaling analysis, similar to that of Ref. [6], demonstrates the approximate relation between the sound horizon, the diffusion length, and the Hubble rate. Consider a scale transformation to the Hubble rate, $H \rightarrow \lambda H$, and the corresponding alteration to r_s and r_d. If we neglect the dependence of $R(a)$ and $n_e(a)$ on λ we have

$$r_s \propto \frac{1}{\lambda} \quad \text{and} \quad r_d \propto \frac{1}{\sqrt{\lambda}} \Rightarrow \frac{r_s}{r_d} \propto \frac{1}{\sqrt{\lambda}}. \quad (3)$$

These relations suggest that a larger Hubble rate ($\lambda > 1$) results in a smaller value of the ratio r_s/r_d. However, we show below that when the dependence of the recombination history $n_e(a)$ on the expansion $H(a)$ is taken into account r_s/r_d increases.

The radiation energy density is not directly measured by observation of the CMB. References [6] and [8], however, have shown that the ratio of the sound horizon to the photon diffusion length at the photon decoupling epoch is sensitive to the radiation energy density. Consequently, we distinguish between $N_{\text{eff}}^{\text{th}}$, the input parameter that determines the radiation energy density in Eq. (4), and a measure of radiation energy density inferred from observations of the CMB, which we shall term \bar{N}_{eff}. The theoretical definition of N_{eff} arises from the familiar parametrization of radiation energy density ρ_{rad} in terms of the photon temperature $T(a)$ at decoupling $T_\gamma = T(a_{\text{rd}})$ given by

$$\rho_{\text{rad}} = \left(1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\text{eff}}^{\text{th}}\right) \frac{\pi^2}{15} T_\gamma^4. \quad (4)$$

We adorn N_{eff} with a superscript (th) to distinguish the theoretical version of N_{eff}, an input parameter in public Boltzmann codes [9], from the CMB inferred value of N_{eff}, \bar{N}_{eff} described below. Calculations which include non-equilibrium processes in the early Universe suggest $N_{\text{eff}}^{\text{th}} = 3.046$ (1,3,4,17). We determine \bar{N}_{eff} by computing the sound horizon, r_s, and the photon diffusion length, r_d, at the photon decoupling epoch, as follows.

Active neutrinos decouple from the plasma with ultrarelativistic kinematics. As their occupation probabilities are comoving invariants thereafter, the energy density of non-degenerate neutrinos with rest masses m_{ν_i} and neutrino temperature T_ν is

$$\rho_{\nu}(m_{\nu_i}, T_\nu) = \sum_i \int \frac{d^3 p}{(2\pi)^3} E_i f_{\nu_i}(p, T_\nu) \quad (5)$$

$$= \frac{1}{2 \pi^2} \sum_i \int_0^\infty dp \frac{p^2 + m_{\nu_i}^2}{e^{p/T_\nu} + 1}, \quad (6)$$

where the sum is over active neutrino mass eigenstates ν_i, and the second expression follows from an assumption of
decoupled neutrinos, ignoring the small distortion due to irreversible neutrino transport effects. With this assumption, the neutrino energy density for a given mass eigenstate is given by the product of the ultrarelativistic Fermi-Dirac occupation probabilities, $f_e = (\exp(p/T_e) + 1)^{-1}$, with the energy dispersion relation of a massive particle, $E_i = \sqrt{p^2 + m^2_i}$. Therefore, the energy density in the presence of a massive-neutrino species is larger than in the massless case and becomes increasingly significant at later times; it does not scale as $T^4 \sim a^{-3}$ as in Eq. (4).

Using Eq. (6) with neutrino masses taken as described above for a given value of $\sum m_\nu$ and the known relations for ρ_γ and ρ_h we compute the quantities r_s and r_d from Eqs. (1) and (2), respectively. We determine the inferred measure of N_{eff}, \bar{N}_{eff}, by choosing $N_{\text{eff}}^{(\text{th})}$ in Eq. (4) to reproduce this ratio of r_s/r_d, which is a monotonically decreasing, invertible function of $N_{\text{eff}}^{(\text{th})}$; see Fig. 3. The quantity \bar{N}_{eff} reduces to $N_{\text{eff}}^{(\text{th})}$ for massless, decoupled neutrinos. There is clearly no requirement that \bar{N}_{eff} be independent of scale factor a. It has been motivated here by the need to characterize massive neutrinos but it is also applicable to nonstandard cosmologies with constituents that may be far from equilibrium. Using the ratio r_s/r_d in the determination of \bar{N}_{eff} avoids any reference to the angular diameter distance to last scattering and, therefore, dependence on the dark energy equation of state [6]. In contrast to Ref. [6] we do not change the value of the primordial helium abundance, Y_p, to keep θ_d fixed. This fact and $\Delta(r_s/r_d) \sim -\Delta \bar{N}_{\text{eff}}$ (since r_s/r_d is monotonically decreasing with \bar{N}_{eff}) means that a larger Hubble rate would imply a larger value of \bar{N}_{eff}. In fact, as suggested in Fig. 2, the dependence of $n_\nu(a)$ on the increased energy density from the neutrino rest mass dominates the explicit dependence on $H(a)$ in Eq. (2). This has the consequence that a larger Hubble rate results in a larger ratio of r_s/r_d; see Figs. 4–6 and discussion below.

In order to investigate physics beyond the standard models of particle physics and cosmology, we have formulated a self-consistent approach that is not constrained to minimal extensions to the standard model. To do so, we simulate the early Universe from weak decoupling through Big Bang Nucleosynthesis (BBN) to photon decoupling using the BURST code [18]. This treatment self-consistently incorporates binned, general, momentum occupation probabilities for each of six neutrino species (ν_e, $\bar{\nu}_e$, ν_μ, $\bar{\nu}_\mu$, ν_τ, and $\bar{\nu}_\tau$) and a Boltzmann treatment of neutrino scattering, absorption and emission processes to evolve the early Universe.

In this treatment, neutrinos decouple from the γ, e^\pm plasma at high temperatures, $1 \lesssim T \lesssim 3$ MeV, with ultrarelativistic kinematics [19,20] as expected. The computation of the helium abundance Y_p in this treatment however is more nuanced than in the standard cosmology. Here Y_p is not simply a function of $N_{\text{eff}}^{(\text{th})}$ and ω_h. Assuming zero lepton numbers and an adopted world-average neutron lifetime of 886 s, our calculations give a 4He primordial mass fraction $Y_p = 0.242$ taking the baryon number $\Omega_b h^2 \equiv \omega_b = 0.022068$ from the Ref. [11] best fit. This is consistent with the observationally inferred primordial helium abundance [21,22]. Although we take the neutrinos to decouple in weak eigenstates, i.e. flavor states, we write their occupation probabilities in the mass eigenbasis. Since we are assuming the neutrinos have identical thermal spectra with zero-chemical potential in the weak eigenstates, we can use the same occupation probabilities for the mass eigenstates at a given momentum p [19,23].

Before considering the effect of the neutrino mass on \bar{N}_{eff}, the deduced radiation energy density, we estimate its effect on $N_{\text{eff}}^{(\text{th})}$. The cosmological constraint (at the level of...
For values of an evolution curve for P_0 determined at any epoch, although from the neutrino rest masses produces a larger expectation of increased ~cmeasurable effect on pure matter or pure radiation. An individual neutrino has an average momentum of ~0.5 eV at photon decoupling. As a consequence, we expect fractional corrections to the relativistic neutrino energy density stemming from neutrino rest mass to be $\sim m^2/2p^2 \sim 0.01$, with a concomitant change to $N^{(th)}\rho$ of $\sim 3 \times 0.01 \sim +0.03$. If we were to nonphysically classify the entire neutrino energy density into ρ_{rad} the corresponding change to $N^{(th)}\rho$ would be $\Delta N^{(th)}\rho = N^{(th)}\rho - 3 \sim \frac{5}{2\pi^2} \frac{(1/4)^{2/3}}{\sum_{i=1}^{3} (m_i^2)^{2/3}}$. We arrive then at $\Delta N^{(th)}\rho = 0.04$ for $\sum m_i = 0.23$ eV, a change consistent with the simple kinematic estimate above, and not to be confused with $\Delta N^{(th)}\rho = 0.046$ stemming from nonequilibrium neutrino scattering and quantum-electrodynamics effects inherent in Refs. [1–3].

Figure 4 shows $\tilde{N}_{\text{eff}} \rho$ versus $\sum m_i$. Contrary to the expectation of increased $\tilde{N}_{\text{eff}} \rho$ in our previous scaling and estimate arguments, we observe a monotonic decrease in $\tilde{N}_{\text{eff}} \rho$ with increasing $\sum m_i$. We denote this phenomenon the neutrino mass/recombination (νMR) effect for illustrative purposes in Fig. 5, we treat $\Delta \tilde{N}_{\text{eff}} \rho$ as a quantity to be determined at any epoch, although $N_{\text{eff}} \rho$ is only observed at photon decoupling. The neutrino rest mass has no discernible effect on $\tilde{N}_{\text{eff}} \rho$ at early epochs, at small a/a_0. At larger values of $a/a_0 (\sim 5 \times 10^{-4})$, the extra energy density from the neutrino rest mass produces a larger $\tilde{N}_{\text{eff}} \rho$ in accordance with Eq. (3). If we were to extrapolate this evolution trend to the epoch of photon decoupling, we would find a value of $\Delta \tilde{N}_{\text{eff}} > 0$. The νMR effect intervenes to modify this extrapolation and results in $\Delta \tilde{N}_{\text{eff}} < 0$ at a_rd. Each evolution curve for $\Delta \tilde{N}_{\text{eff}}$ in Fig. 5 corresponds to an evolution curve for $X_\gamma (a)$ in Fig. 2 for various values of $\sum m_i$. The smallest value of $\sum \tilde{m}_i$ produces the smallest change in X_γ, which subsequently changes $\Delta \tilde{N}_{\text{eff}}$ the least. Conversely, the largest value of $\sum \tilde{m}_i$ produces the largest change in X_γ, which changes $\Delta \tilde{N}_{\text{eff}}$ the most. From the curves in Fig. 5, it is clear that the effect of neutrino rest mass in producing a higher X_γ at freeze-out overwhelms the effect of the extra energy density, thereby decreasing $\tilde{N}_{\text{eff}} \rho$ at photon decoupling, i.e. at $a = a_\text{rd}$, the vertical bar in Figs. 2 and 5.

There are several interesting features to note in Fig. 5. Each curve in Fig. 5 goes through $\tilde{N}_{\text{eff}} = 0$ near the value $a/a_0 \sim (7.65 \pm 0.10) \times 10^{-4}$. The larger the value of $\sum \tilde{m}_i$, the higher the curvature of the function $\Delta \tilde{N}_{\text{eff}}(a)$. For values of a/a_0 above which $\Delta \tilde{N}_{\text{eff}} = 0$, the slope of $\Delta \tilde{N}_{\text{eff}}(a)$ is a rapidly decreasing function of $\sum m_i$. We note that for $\sum m_i = 0.23$ eV, the preferred upper limit from Ref. [11], we find $\Delta \tilde{N}_{\text{eff}} = -0.005$. This effect is certainly below present sensitivities of CMB observations. Next-generation CMB measurements, however, aspire to percent level accuracy in determinations of the relativistic energy density [24]. The exquisite sensitivity of the νMR effect on $\Delta \tilde{N}_{\text{eff}}(a_\text{rd})$ suggests that it may be an important component in future precision determinations of cosmological parameters.

As mentioned earlier, we do not constrain a_rd to maintain a uniform optical depth $\tau(a_\text{rd})$,

$$\tau(a_\text{rd}) = \int_{a_\text{rd}}^{a_0} \frac{da}{a^2 H} \sigma_T(a) \tilde{N}_{\text{eff}} = 1,$$ (7)

when comparing different values for $\sum \tilde{m}_i$. Note that this definition of $\tau(a_\text{rd})$ does not include reionization effects on $n_e(a)$. We should emphasize that each curve in Figs. 2 and 5 is calculated using the same value for the scale factor of last scattering $a_\text{rd} = 9.162 \times 10^{-4}$ (corresponding to $z = 1090.43$). This is not self-consistent, strictly speaking, but we have verified that the effect on \tilde{N}_{eff}, due to the differences in n_e and H, is negligible. If we impose the constraint in Eq. (7), we find a_rd decreases by a few parts in 10^4 for $\sum \tilde{m}_i = 0.23$ eV, which has an insignificant effect on \tilde{N}_{eff}.

Up to this point in the present analysis, we have not considered variation of the primordial helium mass fraction Y_p since BBN occurs at high-enough temperatures that the neutrinos are effectively massless. If we consider, however, cosmological parameters that affect Y_p, we can examine the dependence of ionization freeze-out (and subsequent alteration of \tilde{N}_{eff}) on both $\sum \tilde{m}_i$ and Y_p simultaneously. A
direct way to vary \(Y_P \) is to consider changes to the baryon number \(\omega_b \). In the range of values of \(\omega_b \) that we’re interested in, \(Y_P \) is a monotonically increasing function of \(\omega_b \).

Figure 6 shows a contour plot of \(\Delta \tilde{N}_{\text{eff}} \) in the \(\sum m_\nu \) versus \(\omega_b \) parameter space; contours correspond to constant values of \(-\Delta \tilde{N}_{\text{eff}} \). Varying \(\omega_b \) requires new computations of \(Y_P \) from BBN and \(X_e(\bar{u}) \) from recombination. Changing \(\sum m_\nu \) requires a new computation of \(X_e \) but no new computation of \(Y_P \). As a consequence, we compute BBN with the \textsc{burst} code only once for a given \(\omega_b \), and compute the recombination history for each pair \((\omega_b, \sum m_\nu)\). Holding \(\sum m_\nu \) fixed, the change in \(|\Delta \tilde{N}_{\text{eff}}| \) increases with increasing \(\omega_b \) due to the different recombination histories effecting a change in \(r_{d} \). Note that the change in \(r_{d} \) does not completely compensate for the change in \(r_{d} \). The shaded vertical region in Fig. 6 is the 1\(\sigma \) range of \(\omega_b \) given by Ref. [11], but we explore a larger range in the \(\omega_b \) parameter space to illustrate the dependence of \(\tilde{N}_{\text{eff}} \) on \(\sum m_\nu \) and \(\omega_b \). An interesting feature of these curves is their increasing curvature with decreasing \(\omega_b \) and increasing \(\sum m_\nu \). This is a consequence of an enhancement of the \(\nu \)MR effect with increasing \(\omega_b \); as \(\sum m_\nu \) increases, the change in \(\tilde{N}_{\text{eff}} \) is faster for higher values of \(\omega_b \).

We have discussed two ways in which neutrino rest mass affects measurable quantities at photon decoupling. First, neutrino rest mass drives an earlier recombination freeze-out resulting in a higher free-electron fraction. Second, this effect is enhanced with increasing \(\omega_b \) stemming from a self-consistently calculated recombination history. As radiation energy density is not a directly measurable quantity, we use observable quantities to indirectly arrive at the radiation energy density. For this purpose, we choose the ratio of the sound horizon to the photon diffusion length. Photon diffusion is sensitive to the recombination history, which requires a Boltzmann-equation treatment. We find a non-trivial evolution of \(\Delta \tilde{N}_{\text{eff}} \) with scale factor, as shown in Fig. 5. Note that the evolution of \(\tilde{N}_{\text{eff}} \) shown in this figure does not reflect a \textit{kinematical} evolution of the radiation energy density with a massive component. The trends evidenced in this figure are a consequence of the \(\nu \)MR effect.

Self-consistency is a primary motivation for defining the radiation energy density parameter \(\tilde{N}_{\text{eff}} \) in terms of the ratio \(r_{s}/r_{d} \); it generalizes the \(\tilde{N}_{\text{eff}}^{(\text{th})} \) parameter to the massive neutrino case. Further, \(\tilde{N}_{\text{eff}} \) is defined for general energy densities and nonequilibrium distribution functions where the neutrino temperature is undefined. Moreover, \(\tilde{N}_{\text{eff}} \) makes no assumption regarding the underlying cosmological model. We use \(\tilde{N}_{\text{eff}} \) to relate the sound horizon and photon diffusion length to predictions made by the standard cosmological model via the parameter \(\tilde{N}_{\text{eff}}^{(\text{th})} \).

The \(\nu \)MR effect is an example of a recurring phenomenon in cosmology: an increase in the expansion rate leads to an earlier epoch of freeze-out. This effect was revealed in the present context by using \(\tilde{N}_{\text{eff}} \) to infer the cosmic radiation energy content from observable CMB data, rather than treating \(\tilde{N}_{\text{eff}}^{(\text{th})} \) as an input. The procedure we describe here differs from that adopted by the public Boltzmann codes, \textsc{camb} [9], for example, includes options to evolve massive neutrino energy density through the epoch of recombination and requires \(\tilde{N}_{\text{eff}}^{(\text{th})} \) to be provided as an input.

Depending on \(\sum m_\nu \), the concomitant changes in ionization equilibrium and \(\tilde{N}_{\text{eff}} \) discussed here may be within the sensitivity of the next generation CMB experiments when polarization effects are taken into account [11, 24–26]. CMB precision is planned to be increased to the \(\tilde{N}_{\text{eff}} \sim 1\% \) level which would probe both massive active neutrinos and other possible components of dark radiation. Scenarios with sterile neutrinos and other very weakly coupled light massive species with masses larger than those associated with the active neutrinos could enhance the effects discussed here. However, depending on their masses and their flavor mixing with active species, sterile neutrinos could have number densities and energy spectra which differ from those of active neutrinos [27–32], complicating the analysis given here.

ACKNOWLEDGMENTS

We would like to acknowledge the Institutional Computing Program at Los Alamos National Laboratory for use of their HPC cluster resources. This work was supported in part by National Science Foundation Grant No. PHY-1307372 at UC San Diego, by the Los Alamos National Laboratory Institute for Geophysics, Space Sciences and Signatures Subcontract No. 257842, and the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. We thank J. J. Cherry, Amit Yadav, and Lloyd Knox for helpful discussions. We would also like to thank the anonymous referees for their useful comments.
[1] A. D. Dolgov, S. H. Hansen, and D. V. Semikoz, Nucl. Phys. B543, 269 (1999).
[2] J.-L. Cambier, J. R. Primack, and M. Sher, Nucl. Phys. B209, 372 (1982).
[3] R. E. Lopez and M. S. Turner, Phys. Rev. D 59, 103502 (1999).
[4] G. Mangano, G. Miele, S. Pastor, and M. Peloso, Phys. Lett. B 534, 8 (2002).
[5] M. Shimon, N. J. Miller, C. T. Kishimoto, C. J. Smith, G. M. Fuller, and B. G. Keating, J. Cosmol. Astropart. Phys. 5 (2010) 037.
[6] Z. Hou, R. Keisler, L. Knox, M. Millea, and C. Reichardt, Phys. Rev. D 87, 083008 (2013).
[7] J. Birrell, C.-T. Yang, P. Chen, and J. Rafelski, Phys. Rev. D 89, 023008 (2014).
[8] Z. Hou, C. L. Reichardt, K. T. Story, B. Follin, R. Keisler, K. A. Aird, B. A. Benson, L. E. Bleem, J. E. Carlstrom, C. L. Chang et al., Astrophys. J. 782, 74 (2014).
[9] C. Howlett, A. Lewis, A. Hall, and A. Challinor, J. Cosmol. Astropart. Phys. 04 (2012) 027.
[10] J. Lesgourgues and S. Pastor, Adv. High Energy. Phys. 2012, 608515 (2012).
[11] Planck Collaboration, Astron. Astrophys. 571, A16 (2014).
[12] W. Hu and N. Sugiyama, Astrophys. J. 471, 542 (1996).
[13] P. J. E. Peebles, Astrophys. J. 153, 1 (1968).
[14] Y. B. Zeldovich, V. G. Kurt, and R. A. Syunyaev, Zh. Eksp. Teor. Fiz. 55, 278 (1968).
[15] S. Seager, D. D. Sasselov, and D. Scott, Astrophys. J. 523, L1 (1999).
[16] O. Zahn and M. Zaldarriaga, Phys. Rev. D 67, 063002 (2003).
[17] G. Mangano, G. Miele, S. Pastor, T. Pinto, O. Pisanti, and P. D. Serpico, Nucl. Phys. B729, 221 (2005).
[18] E. Grohs, G. M. Fuller, C. T. Kishimoto, and M. W. Paris, J. Cosmol. Astropart. Phys. 05 (2015) 017.
[19] G. M. Fuller and C. T. Kishimoto, Phys. Rev. Lett. 102, 201303 (2009).
[20] A. D. Dolgov, M. V. Sazhin, and Y. B. Zeldovich, Basics of Modern Cosmology (Editions Frontieres, Gif-Sur-Yvette, 1990).
[21] Y. I. Izotov and T. X. Thuan, Astrophys. J. Lett. 710, L67 (2010).
[22] E. Aver, K. A. Olive, R. L. Porter, and E. D. Skillman, J. Cosmol. Astropart. Phys. 11 (2013) 017.
[23] A. D. Dolgov S. H. Hansen, S. Pastor, S. T. Petcov, G. G. Raffelt, and D. V. Semikoz, Nucl. Phys. B632, 363 (2002).
[24] K. Abazajian et al., Astrophys. J. 63, 66 (2015).
[25] P. A. R. Ade et al. The Polarbear Collaboration, Astrophys. J. 794, 171 (2014).
[26] J. E. Carlstrom and Spt Collaboration, IAU Special Session 2, 34 (2003).
[27] K. Abazajian, N. F. Bell, G. M. Fuller, and Y. Y. Y. Wong, Phys. Rev. D 72, 063004 (2005).
[28] C. T. Kishimoto, G. M. Fuller, and C. J. Smith, Phys. Rev. Lett. 97, 141301 (2006).
[29] J. Hamann, S. Hannestad, G. G. Raffelt, I. Tamborra, and Y. Y. Y. Wong, Phys. Rev. Lett. 105, 181301 (2010).
[30] J. Hamann, S. Hannestad, G. G. Raffelt, and Y. Y. Y. Wong, J. Cosmol. Astropart. Phys. 9, (2011) 034.
[31] C. Dvorkin, M. Wyman, D. H. Rudd, and W. Hu, Phys. Rev. D 90, 083503 (2014).
[32] M. Cirelli, G. Marandella, A. Strumia, and F. Vissani, Nucl. Phys. B708, 215 (2005).