The anti-bacterial iron-restriction defence mechanisms of egg white; the potential role of three lipocalin-like proteins in resistance against Salmonella

Louis Alex Julien • Florence Baron • Sylvie Bonnassie • Françoise Nau • Catherine Guérin • Sophie Jan • Simon Colin Andrews

Received: 19 January 2019 / Accepted: 25 January 2019 / Published online: 27 February 2019 © The Author(s) 2019

Abstract Salmonella enterica serovar Enteritidis (SE) is the most frequently-detected Salmonella in foodborne outbreaks in the European Union. Among such outbreaks, egg and egg products were identified as the most common vehicles of infection. Possibly, the major antibacterial property of egg white is iron restriction, which results from the presence of the iron-binding protein, ovotransferrin. To circumvent iron restriction, SE synthesise catecholate siderophores (i.e. enterobactin and salmochelin) that can chelate iron from host iron-binding proteins. Here, we highlight the role of lipocalin-like proteins found in egg white that could enhance egg-white iron restriction through sequestration of certain siderophores, including enterobactin. Indeed, it is now apparent that the egg-white lipocalin, Ex-FABP, can inhibit bacterial growth via its siderophore-binding capacity in vitro. However, it remains unclear whether Ex-FABP performs such a function in egg white or during bird infection. Regarding the two other lipocalins of egg white (Cal-γ and α-1-glycoprotein), there is currently no evidence to indicate that they sequester siderophores.

Keywords Salmonella Enteritidis • Salmochelin • Enterobactin • Ex-FABP • Cal-γ • Alpha-1-ovoglycoprotein

Survival of Salmonella within egg white and the role of iron restriction

The powerful antibacterial defence mechanisms of egg white

In the EU, Salmonella enterica is the bacterium most frequently (93%) detected in egg white, with S. enterica serovar Enteriditis (SE) being the major (67%) strain associated with outbreaks caused by eggs and egg products (EFSA 2014). Thus, SE appears to be very well suited to infection of, and survival within, eggs (Clavijo et al. 2006; Vylder et al. 2013; Gantois et al. 2008). Egg white is noted for its strong antimicrobial activity which indicates that SE has powerful egg-white resistance mechanisms. Indeed, the various antimicrobial activities exhibited by egg white can be considered to present a unique set of challenges for bacterial invaders. These include physico-chemical factors, in particular high pH...
(inhibiting growth; Sharp and Whitaker 1927) and high viscosity (limiting motility; Schneider and Doetsch 1974; Yadav and Vadehra 1977); in addition, high osmolarity (causing osmotic stress) has been suggested (Clavijo et al. 2006). The pH of egg white shifts from ~ 7.6 (upon oviposition) to 9.3 (a few days later) as a result of CO₂ release (Sharp and Powell 1931). The viscosity of egg white (with a shear rate of 400 s⁻¹; 5 mPa.s⁻¹ at 20 °C; Lang and Rha 1982) is mainly caused by the presence of ovomucin, a glycoprotein contributing 3.5% w/w of the total egg albumin protein (egg white has a total protein content of ~ 10% w/w; Kovacs-Nolan et al. 2005).

In addition to these physico-chemical factors, egg white possesses an array of proteins that provide further defence against pathogens [see review by Baron et al. (2016) for more detail], notably:

- ovotransferrin (oTf), involved in iron deprivation (Garibaldi 1970) and bacterial membrane damage (Aguilera et al. 2003);
- lysozyme (Derde et al. 2013) and defensins (Hervé-Grépinet et al. 2010; Gong et al. 2010), that would be expected to disrupt bacterial membrane integrity;
- ovalbumin X, a heparin-binding protein exhibiting antimicrobial activity (Réhault-Godbert et al. 2013);
- ovostatin (Nagase et al. 1983) and cystatin (We- sierska et al. 2005), presumed to inhibit exogenous proteases; and
- avidin (Banks et al. 1986), a biotin sequestration protein.

The major role of iron restriction and ovotransferrin in egg-white defence

It is generally accepted that the major factor limiting bacterial growth in egg white is iron restriction. This results from the presence of oTf, a powerful iron-binding protein (Garibaldi 1970; Lock and Board 1992; Baron et al. 1997). The iron restriction of egg white was first discovered by Schade and Caroline (1944) who found that exposure to egg white inhibits the growth of Shigella dysenteriae. Among 31 growth factors added to egg white, only iron overcame the observed egg white-imposed growth inhibition. Two years later, Alderton et al. (1946) identified the egg-white factor responsible as ‘conalbumin’, which is now known to be a member of the transferrin family and is more commonly referred as oTf. Since these early studies, subsequent work has confirmed the role of oTf as an egg-white iron-restriction agent preventing growth of a range of microbial species, including Salmonella (Schade and Caroline 1944; Valenti et al. 1983, 1985; Ibrahim 1997; Baron et al. 1997, 2000).

Indeed, iron-acquisition mutants of SE display decreased survival and/or growth in egg white (Kang et al. 2006). Such studies confirm the antibacterial role of iron restriction in egg white. A recent global transcriptomic study (Baron et al. 2017) revealed a major iron-starvation response of SE upon exposure to egg white which was caused by relief of Fur- (the global transcriptional regulator of iron-dependent gene expression; Rabsch et al. 2003) mediated repression. Likewise, a quantitative proteomic analysis (isobaric tags for relative and absolute quantitation; iTRAQ) showed that iron-acquisition-system-related proteins are induced by egg white (Qin et al. 2019). These findings confirm that SE suffers from iron limitation in egg white. The low iron availability in egg white exerts a strong bacteriostatic influence (Bullen et al. 1978; Baron et al. 1997) because iron is essential for growth of nearly all organisms, including bacteria (Andrews et al. 2003). In many ways, the antibacterial iron-restriction strategy of egg white is comparable to the iron-dependent ‘nutritional immunity’ defence mechanisms observed in mammals, where serum transferrin maintains concentrations of extracellular free iron at levels (10⁻¹⁸ M) well below those that support bacterial growth (Bullen et al. 2005).

OTf is believed to be the critical iron-restriction component in egg white. Like other members of the transferrin family, its structure consists of two ‘lobes’, each with a strong affinity for a single Fe³⁺ ion (apparent binding constant of around 10⁻³² M⁻¹, with of 1.5 × 10¹⁸ M⁻¹ and 1.5 × 10¹⁴ M⁻¹ for the C- and N-terminal lobes, respectively, at pH 7.5; Guha- Thakurta et al. 2003; Chart 1993; Schneider et al. 1984). The iron-restriction-based bacteriostatic activity of oTf is enhanced by bicarbonate (which is likely related to the apparent dependence of metal binding on the presence of a suitable anion; Valenti et al. 1983) and high pH (Valenti et al. 1981; Antonini et al. 1977; Lin et al. 1994). Interestingly, egg white contains levels of iron (~ 0.1 mg iron per 100 g which is equivalent to ~ 18 μM; USDA 2010; Nys and
Sauveur 2004) that would normally be sufficient for bacterial growth. However, oTF is present in such high abundance in egg white (170 \(\mu \text{M} \); 13% of total protein content, second most abundant egg white protein after ovalbumin; Sauveur 1988) that oTF iron-binding capacity exceeds iron availability by 17-fold. Since egg white is aerobic and has a high pH (after laying), iron in egg white would be expected to be largely in the ferric state (the form bound by oTF) so it can be assumed that virtually all iron in egg white is bound to oTF such that very little is freely available (Sauveur 1988). However, some bacteria are more susceptible to growth inhibition by oTF than others. Indeed, in vitro studies showed that the most sensitive species are \textit{Pseudomonas} and \textit{Escherichia coli}, and the most resistant are \textit{Staphylococcus aureus}, \textit{Proteus} and \textit{Klebsiella} (Valenti et al. 1983). Unsurprisingly, the effects of oTF can be relieved by iron-mobilising agents (e.g. citrate) (Valenti et al. 1983). OTf also appears to possess additional antibacterial activities since its effects are diminished when separated from direct contact with bacteria through location in a dialysis bag or immobilisation on beads (Valenti et al. 1985). Indeed, it has been shown that oTF can partially penetrate and permeabilise bacterial membranes, acting as an uncoupling agent (Aguilera et al. 2003). This activity is likely related to the presence of a Cys-rich antibacterial-peptide-like motif located on the surface of the oTF molecule which confers the ability to kill Gram-negative bacteria (Ibrahim et al. 1998, 2000).

Iron acquisition by \textit{Salmonella}

The role of the two siderophores of \textit{Salmonella} in iron uptake and pathogenicity

The most important mechanism used by bacteria to circumvent iron restriction involves the synthesis of siderophores that bind exogenous ferric iron with high affinity and specificity, and enable acquisition of iron from host sources (Andrews et al. 2003). The siderophores employed by \textit{Salmonella} are catecholates called enterobactin (or enterochelin) and salmochelin. Enterobactin was first identified in \textit{E. coli} (O’Brien and Gibson 1970) and \textit{Salmonella} Typhimurium (ST) (Pollack and Neilands 1970). Although enterobactin synthesis was shown to be required for survival of ST in low-iron in vitro environments (Pollack et al. 1970), its role in pathogenesis is limited for reasons that were, initially, unclear (Benjamin et al. 1985; Rabsch et al. 2003). Salmochelin (which is closely similar to enterobactin) was not identified until more than three decades after enterobactin when it was found to be a product of pathogenic enterobacteria, such as \textit{Salmonella} (Hantke et al. 2003). It was designated ‘salmochelin’ as it appeared at first to be a characteristic of \textit{Salmonella} strains. However, salmochelins have now been reported in avian pathogenic \textit{E. coli} (APEC), uropathogenic \textit{E. coli} (UPEC), \textit{ST} and \textit{Klebsiella pneumoniae} where they contribute to virulence (Caza et al. 2008; Gao et al. 2012; Crouch et al. 2008; Bachman et al. 2012). It should be noted that the ferrous-iron transport systems of \textit{Salmonella} (FeoABC and SitABCD) can also contribute to pathogenicity and/or gut colonisation (see review by Carpenter and Payne 2014).

Enterobactin: a powerful siderophore, but with limited effect in vivo

Enterobactin is a serine macrotrilactone (Fig. 1) that has a far higher affinity for iron than oTF (formation constants of \(10^{52} \) and \(10^{32} \) M\(^{-1} \), respectively), which allows siderophore-producing bacteria to use oTF as a source of iron (Chart 1993). Although the metabolism of enterobactin is best studied in \textit{E. coli}, \textit{Salmonella} possesses a highly similar set of enterobactin-related genes which are assumed to play similar roles. The enterobactin precursor, 2,3-dihydroxybenzoate (DHB), is synthesized from chorismate by enzymes encoded by the \textit{entC}, \textit{entB} and \textit{entA} genes. In a second step, DHB and serine are combined, polymerized and cyclized to form enterobactin by enzymes encoded by the \textit{entE}, \textit{entB} and \textit{entF} genes (Gehring et al. 1998). \textit{EntS} is required for enterobactin export through the cytosolic membrane (Furrer et al. 2002) whereas \textit{ToIC} is involved in enterobactin efflux across the outer membrane (Bleuel et al. 2005) (Fig. 2). Once complexed with ferric iron, uptake of ferric-enterobactin into the periplasm is mediated by the iron-regulated outer-membrane proteins, FepA and Cir (and \textit{IroN} in \textit{Salmonella}) (Rabsch et al. 1999, 2003); the energy-transducing TonB-ExbBD complex is also required for this step (Skare et al. 1993; Fig. 2). Ferric-enterobactin is then imported into the cytoplasm by the ATP-binding cassette transporter, FepBDGC.
Finally, the imported ferric-enterobactin complex is processed by the Fes esterase which cleaves the cyclic ring of the siderophore, lowering affinity for the bound iron which enables dissociation (O’Brien et al. 1971).

Despite its high affinity for iron, enterobactin is not as effective as other siderophores in vivo (Konopka et al. 1982; Montgomerie et al. 1984), and this poor performance appears to be related to its rapid clearance from the serum (Konopka and Neilands 1984). An unknown factor in serum was found to impede transfer of iron from transferrin to enterobactin, and from 55Fe-enterobactin to E. coli (Konopka and Neilands 1984). However, serum has little impact on iron chelation by the aerobactin siderophore (Konopka and Neilands 1984). Aerobactin was also shown to provide a significant selective advantage for E. coli growth in vitro (Williams and Carbonetti 1986), and in a cutaneous infection model (Demir and Kaleli 2004), even though its affinity for iron is weaker than that of enterobactin (formation constants of 10^{23} and 10^{52} M$^{-1}$, respectively; Neilands, 1981). Similar findings were found for S. enterica, as enterobactin is not a virulence factor for ST or SE in mouse and chicken infection models (Benjamin et al. 1985; Rabsch et al. 2003). Later, the serum factor responsible for limiting the action of enterobactin was identified as an acute-phase protein, called LCN2 (lipocalin 2 or neutrophil gelatinase-associated lipocalin) (Goetz et al. 2002), that previously had an unclear specific purpose. LCN2 was subsequently found to be induced and secreted in response to activation of Toll-like innate immune receptors (Flo et al. 2004), bind to enterobactin (Goetz et al. 2002) and inhibit enterobactin activity partly through rapid clearance from the serum (Devireddy et al. 2005), and thus shown to function as a ‘siderocalin’ (siderophore-binding lipocalin).

Salmochelin: a glucosylated siderophore, promoting Salmonella pathogenicity through LCN2 evasion

Salmochelin S4 is a diglucosyl-C enterobactin (Fig. 1). The affinity of salmochelin for Fe$^{3+}$ is not reported (Valdebenito et al. 2006; Watts et al. 2012), however, it is assumed that glucosylation does not significantly impact Fe$^{3+}$ ligation or affinity (Luo et al. 2006). The genetic locus responsible for this glucosylation of enterobactin in Salmonella is the iro-gene cluster (or ‘iroA locus’) (Hantke et al. 2003). This locus consists of two convergent transcription units: iroBCDE and iroN (Bäumler et al. 1998). Salmochelin synthesis involves the di-glucosylation of enterobactin.
into S4 in a step catalysed by the glucosyltransferase, IroB (Bister et al. 2004); the resulting salmochelin is then exported across the cytosolic membrane by IroC (Crouch et al. 2008; Fig. 2). Once complexed with ferric iron, ferri-salmochelin is taken up across the outer membrane via IroN and is then linearized to the S2 form by the periplasm IroE esterase, whereas ferri-enterobactin is taken up via CirA, or FepA. The Fe-S2 and Fe-Ent are then transported into the cytoplasm via the FepBCDG ATP-binding cassette transporter, and are then esterified by the IroD and Fes esterases, respectively, which is presumed to facilitate iron release. The resulting salmochelin degradation products, S1 and SX, are exported from the cytoplasm into the medium. It is important to note that the Iro transport components can also assist with enterobactin utilisation.

LNC2 was originally identified as a component of neutrophil granules but is also expressed in epithelial cells in response to inflammatory signals (Kjeldsen et al. 1993). Nielsen et al. (1996) revealed that LCN2 might bind lipophilic inflammatory mediators like platelet-activating factor, leukotriene B4 and lipopolysaccharide. This led to the initial suggestion that LCN2 acts as immune-modulatory factor through transport of lipophilic molecules to inflammation sites (Goetz et al. 2000). As eluded to above, a clearer

Fig. 2 Summary of synthesis, export, import and utilisation, of enterobactin and salmochelin. Enterobactin (synthesised by EntABCDEF) is mono or di-glucosylated by IroB. Enterobactin is exported from the cytoplasm by EntS whereas salmochelin is exported by IroC. TolC is then involved in enterobactin efflux across the outer membrane. Once complexed with ferric iron, ferri-enterobactin is taken up across the outer membrane via IroN and is then linearized to the S2 form by the periplasm IroE esterase, whereas ferri-enterobactin is taken up via CirA, or FepA. The Fe-S2 and Fe-Ent are then transported into the cytoplasm via the FepBCDG ATP-binding cassette transporter, and are then esterified by the IroD and Fes esterases, respectively, which is presumed to facilitate iron release. The resulting salmochelin degradation products, S1 and SX, are exported from the cytoplasm into the medium. It is important to note that the Iro transport components can also assist with enterobactin utilisation.
purpose for LCN2 became apparent when the protein was produced heterologously in E. coli and was isolated bound, surprisingly, to a red chromophore, which was subsequently identified as enterobactin (Goetz et al. 2002). This finding led to further studies demonstrating a role for LCN2 in host–pathogen interactions (Bachman et al. 2012; Fischbach et al. 2006; Flo et al. 2004). These further studies showed that the iro-gene cluster confers resistance to the growth inhibitory effects of LCN2 in vitro and that mice rapidly succumb to infection by E. coli H9049 harbouring the iro-gene cluster, but not its iro-free counterpart (Fischbach et al. 2006). Other studies showed that salmochelin contributes to virulence of both avian pathogenic and uropathogenic E. coli (APEC and UPEC) through its iron-binding activity (Gao et al. 2012). Indeed, salmochelin-defective mutants of APEC E058 and UPEC U17 showed significantly decreased pathogenicity compared to the wild-type strains in a chicken infection model (Gao et al. 2012). Likewise, the efficient glucosylation (IroB), transport (IroC and IroN) and processing (IroD and IroE) of salmochelins were shown to be required for APEC virulence (Caza et al. 2008). The role of glucosylation in S. enterica pathogenicity was further illustrated by the observation that the iro locus confers a competitive advantage to ST in colonizing the inflamed intestine of wild-type, but not of LCN2-deficient, mice (Raffatellu et al. 2009). It should be noted that the glucosylation and linearisation of enterobactin was suggested to enhance the activity of salmochelin through increasing its hydrophilic nature, which might be advantageous for iron scavenging in a membrane-rich microenvironment (Luo et al. 2006).

Egg-white ‘lipocalins’: role in enhancing iron restriction through sequestration of bacterial siderophores?

Evidence for the presence of lipocalin-like proteins in egg white

LCN2 belongs to the ‘lipocalin superfamily’ which includes a variety of proteins involved in transport of hydrophobic ligands, such as purpurin, retinol-binding protein, α-1-glycoprotein, apolipoprotein, probasin, α-1-microglobulin and prostaglandin D synthetase. Although the family members display low overall sequence identity (Greene et al. 2003), lipocalins share a common three-dimensional structure characterised by an eight-stranded β-barrel (with a small C-terminal helix) that forms a chalice, at the bottom of which the hydrophobic ligand is bound (Françoise 1994). Due to their diversity, lipocalin-like proteins have various functions e.g. in immune response, pheromone transport, biological prostaglandin synthesis, retinoid binding and cancer cell interactions (Flower 1996). Lipocalins can be divided into two major subfamilies (see the Pfam database; El-Gebali et al. 2019). One subfamily (PF00061) consists of ~4000 Pfam entries that are mostly (88%) from Metazoan species, and includes LCN2, whereas the other subfamily (PF08212) consists of ~3000 entries, mostly from (67%) Bacteria. Lipocalins are predominantly (92%) single domain proteins and multiple homologues are found in vertebrates (e.g. there are 37 lipocalins identified in the human genome; Du et al. 2015).

Since lipocalins are found throughout most of the living kingdom, it may not be surprising to find that they are present in egg white. Extracellular fatty-acid-binding protein (Ex-FABP) was the first lipocalin-like protein identified in egg white and was discovered by a proteomic analysis of hen egg white using 2-dimensional gel electrophoresis (2-DE) followed by liquid chromatography-mass spectroscopy (LC-MS/MS) (Desert et al. 2001). Further work by Guérin-Dubiard et al. (2006) using 2-DE, LC-MS/MS and MALDI-TOF identified a total of 16 proteins in hen egg white, including Ex-FABP as well as two other lipocalin-like proteins: chondrogenesis-associated lipocalin (Cal-γ or prostaglandin D synthase) and α-1-ovoglycoprotein. The presence of the three lipocalin-like proteins in egg white was later confirmed by further proteomic analyses involving 1-DE with LC–MS/MS, 2-DE combined with protein-enrichment (peptide ligand libraries) technology, and a dual-pressure linear-ion-trap Orbitrap instrument (LTQ Orbitrap Velos) (Mann 2007; D’Ambrosio et al. 2008; Mann and Mann 2011). Although the concentrations of the three lipocalin-like proteins have not been reported, in the Guérin-Dubiard et al. (2006) study the intensity of Cal-γ and Ex-FABP 2-DE spots were weak indicating a very low concentration. In other work (Mann 2007; Mann and Mann 2011), the exponentially-modified-protein abundance index (emPAI) was used to provide an estimate of the absolute abundance of each egg-white protein, which indicated that the lipocalin-like...
proteins belong to the ‘minor proteins’ set (such as avidin, cystatin, apolipoprotein D, HEP21, Defensin-11) rather than the ‘major proteins’ set (such as ovalbumin, ovotransferrin, lysozyme, ovomucoid and ovoinhibitor). However, as \(\alpha-1 \)-ovoglycoprotein is glycosylated its detection might be obscured (Mann 2007). In summary, although several studies have shown that three lipocalin-like are present in egg white, their exact concentrations remain unclear. Therefore, their biological significance in egg white remains to be established.

Sequestration of bacterial siderophores by the lipocalin-like Ex-FABP protein found in egg white

Ex-FABP was first discovered as a fatty-acid-binding protein with a role in hen-embryo development

Cancedda et al. (1988) were the first to report and identify Ex-FABP (Ch21) as a protein expressed and secreted by in vitro differentiating hen chondrocytes at a late stage of development. Ex-FABP was later shown to be a 21 kDa protein in cartilage (Cancedda et al. 1988), muscle tissue (Gentili et al. 1998) and granulocytes (Dozin et al. 1992) of chicken embryos. This protein was classified as a member of the superfamily of lipocalins and thus was considered to have a likely role in the transport of small hydrophobic molecules (Cancedda et al. 1990). The protein was renamed (from CH21) ‘extracellular fatty acid-binding protein’ because of its ability to selectively bind and transport fatty acids (i.e. oleic, linoleic, and arachidonic acid) in extracellular fluids and serum (Cancedda et al. 1996). It was shown to be expressed during muscle-fibre formation (Gentili et al. 1998) and later shown to have involvement in endochondral-bone formation (Cermelli et al. 2000; Gentili et al. 2005). Transfection of proliferating chondrocytes and myoblasts with an expression vector expressing antisense Ex-FABP cDNA led to a decreased cell viability. Therefore, Ex-FABP seems to play a part in cell differentiation and cell survival (Di Marco et al. 2003; Gentili et al. 2005). It was more recently shown that Ex-FABP binds the C16 and C18 isoforms of lysophosphatidic acid (LPA, 1- or 2-acyl-sn-glycero-3-phosphate) (Correnti et al. 2011). LPAs are phospholipids mediating differentiation, inflammation, immune function, oxidative stress, cell migration, smooth muscle contraction, apoptosis and development (Zhao and Natarajan 2014). It is likely that the functions of Ex-FABP reported above depend on its role in sensing or transporting phospholipids (Sia et al. 2013).

Ex-FABP also binds siderophores and inhibits bacterial growth

More recent reports indicate that Ex-FABP functions in pathogen defence through an ability to bind siderophores, in a manner analogous to that of LCN2 (Correnti et al. 2011; Garénaux et al. 2013). This suggests that Ex-FABP may have two distinct purposes, one in fatty acid/LPA binding and another as a siderophore-binding factor. Work of Correnti et al. (2011) shows that Ex-FABP sequesters ferric-enterobactin, as well as its mono-glucosylated (Fe-MGEnt) form with a \(K_d \) of 0.22 and 0.07 nM, respectively; but not its di-glucosylated form (Fe-DGEnt; \(K_d \geq 600 \) nM). Furthermore, Ex-FABP at 5 \(\mu \)M caused growth inhibition of both \(E. coli \) and \(Bacillus subtilis \) under iron-limited in vitro conditions. Growth was restored by supplementing the cultures with stoichiometric amounts of \(\text{FeCl}_3 \) (Correnti et al. 2011). Thus, Ex-FABP might act to reduce bacterial growth in egg white by enhancing iron restriction (Fig. 3). Ex-FABP did not inhibit \(Pseudomonas aeruginosa \) growth under iron limitation, which correlates with the observation that Ex-FABP does not bind the corresponding siderophores. Indeed, both enterobactin and bacillobactin produced by \(E. coli \) and \(B. subtilis \) (respectively) were found to be sequestrated by Ex-FABP (\(K_d \) of 0.5 and 30 nM, respectively), while pyochelin and pyoverdine produced by \(P. aeruginosa \) were not (Correnti et al. 2011). These findings are also in accordance with those from Garénaux et al. (2013) showing that \(E. coli \) K-12 is subject to a \(10^5 \)-fold growth reduction when exposed to 2.5 \(\mu \)M Ex-FABP or LCN2. However, when transformed with a plasmid harbouring the \(iroBCDEN \) cluster, no growth defect was observed by 2.5 \(\mu \)M Ex-FABP or LCN2. Exposure of six poultry APEC isolates to 2.5 \(\mu \)M Ex-FABP or LCN2 inhibited the growth of strains producing enterobactin as sole siderophore, but not those producing additional siderophores (salmochelin, aerobactin and/or yersinabactin) (Garénaux et al. 2013). Therefore, it can be concluded that Ex-FABP is an avian siderocalin-type lipocalin with a function similar to that of LCN2.
The pleiotropic function (i.e. siderophore and LPA binding) of Ex-FABP might be explained by the large binding site of the molecule (Sia et al. 2013). Ex-FABP has a three-dimensional fold common to that of lipocalin family proteins but has an extra α-helix (residues 22–30) and short helical element (residues 139–141). This results in an extended calyx that encompasses upper and lower cavities (Fig. 4). The upper cavity comprises a siderophore-binding site with three catechol-binding pockets involving basic residues (K82, R101 and R112) key to ligand binding (Correnti et al. 2011). K82 forms hydrogen bonds with the 3-OH of the catechol groups, while R101 and R112 provide significant electrostatic contributions to ligand-binding. The lower cavity acts as a hydrophobic binding site that can bind C16 and C18 LPA. Modelling of the complex shows that the side-chains Y50, K82, R112 and Y114 of Ex-FABP make hydrogen bonds with LPA (Correnti et al. 2011).

The other lipocalins of egg white

Phylogenic relationship

A multiple-sequence alignment and phylogenetic analysis of the three lipocalin-like proteins of egg white is presented in Figs. 5 and 6. The tree can be organised into three lobes, as described by Flower et al. (2000): proteins in the green lobe include prostaglandin D synthase (PTGDS), neutrophil lipocalin and α-1-microglobulin (α1 M); the blue lobe includes bilin-binding protein (BBP), retinol-binding protein (RBP) and apolipoprotein D (apoD); and the orange lobe is formed of major-urinary protein (MUP) and β-lactoglobulin (β-lg). This phylogenetic analysis indicates that both Cal-γ and α-1-ovoglycoprotein have a human orthologue. This is in accordance with a comparative analysis of the chicken genome that showed that 60% of chicken protein-coding genes have a single human orthologue (Consortium ICGS 2004). This tree also indicates that LCN2 from *H. sapiens* is more closely related to Cal-γ than to the other two lipocalin-like proteins found in chicken egg white, and that α-1-ovoglycoprotein could be considered as an outlier among the lipocalin family. Yet, despite their limited sequence identities (26%; NCBI 2019), hen Ex-FABP and human LCN2 have similar ligand-binding affinities (Correnti et al. 2011). According to Fig. 6, there is a close homologue of known function to Ex-FABP found in quail: the Q83 lipocalin (88% identity; NCBI 2019). Q83 was originally identified based on its overexpression in quail embryo fibroblasts transformed with the v-myc oncogene. Q83 sequesters enterobactin with a mode of binding equivalent to that of LCN2 (Coudevylle et al. 2010). This resembles Ex-FABP’s function, as described above, in siderophore inhibition, and is consistent with its presence in egg white. Surprisingly,
there is no close homologue of Ex-FABP in man, nor of LCN2 in chicken: the closest human homologue of Ex-FABP is lipocalin 15 and the closest chicken homologue of LCN2 is Cal-γ (28 and 30% amino-acid).

Fig. 4 a X-ray diffraction (1.8 Å resolution) of Ex-FABP; two ligands are represented, ferric-DHB in the upper cavity and LPA in the lower cavity. Structure extracted from Protein Data Bank (PMID: 22153502; Correnti et al. 2011). b Structure of a C18 lysophosphatidic acid (LPA)

Fig. 5 Multiple-sequence alignment (Genomic Workbench) of lipocalin-like proteins found in egg white with their closest homologues extracted from the Pfam database (El-Gebali et al. 2019) and NCBI (2019). The Uniprot accession number of each protein is in brackets. Three motifs are shown (*) centred on the conserved tryptophan, threonine and arginine residues. These residues are preserved in lipocalins and seal the bottom end of the barrel, along with the 310-helix (Bao et al. 2015). Two cysteine residues (#) playing a role in disulphide bridging are also conserved. Residues (putatively) involved in siderophore binding are circled in yellow for LCN2: R81, K125, K134 (Goetz et al. 2002) and blue for Q83: K83, R102, R113 (Coudevyille et al. 2010). For Ex-FABP, residues involved in siderophore (K82, R101, R112) and LPA (Y50, K82, R112, Y114) binding are circled in orange. The β-strands of the eight-stranded β-barrel of the LCN2, Q83 and Ex-FABP are underlined in yellow, orange and blue, respectively.
sequence identity, respectively; NCBI 2019). This suggests that the siderophore-binding activities of these two proteins have evolved independently, in related proteins, in order to fulfil similar functional requirements in innate immunity.

Fig. 6 Neighbour-joining tree of the lipocalin-like proteins found in egg white and their closest homologues. The alignment of lipocalin-like proteins (Fig. 5) extracted from the Pfam family PF00061 and NCBI (2019) was used to build the phylogeny tree with CLC Genomics Workbench (protein distance was estimated from the Jukes-Cantor model). Three lobes are identified with coloured half-circles (green for NGAL, PTGDS and α1M; orange for β-lg and MUP; blue for RBP, BBP and ApoD). Red stars show the lipocalin homologues found in hen egg white. The blue star indicates human lipocalin-2

Alpha-1-ovoglycoprotein and Cal-γ: their potential functions in egg white

Alpha-1-ovoglycoprotein (or ‘orosomucoid’) shares a closely-related common ancestor with other α1-acid glycoproteins found in various animals (Fig. 6). Despite its induction as an acute-phase protein, and
its role in cellular inflammation and transport of drugs in human serum, its biological purpose is unclear (Huang and Ung 2013). In man, this protein is found in the serum where it is heavily glycosylated and highly acidic due to the presence of sialic acid. Human α1-acid-glycoprotein (α1-AGP) is a highly glycosylated protein (approximately 45%) of 43 kDa with a pI of 2.7 (Schmid 1975). There are at least two genes encoding α1-AGP identified, thus it has been suggested that the protein found in plasma is a mixture of the products of these two distinct genes (Dente et al. 1985). The normal plasma concentration in man is between 0.7 and 1.0 g/L. However, as an acute-phase protein, its concentration can increase to 3 g/L under inflammatory conditions (Kremer et al. 1988). It is known to bind lipopolysaccharide and can stimulate the activation of inflammatory cell lines (Boutten et al. 1992). Interestingly, α1-AGP has a protective effect in a mouse meningococcal shock model, suggesting a potential antibacterial role (Moore et al. 1997). In egg white, the α1-ovoglycoprotein has an average molecular weight of 30 kDa, an isoelectric point of 4.37–4.51 and a sugar content of about 25% (Matsumaga et al. 2004). While little is known about its function, this ovoglycoprotein is often used for its chiral properties to separate drug enantiomers (Sada-kane et al. 2002; Haginaka and Takehira 1997). However, its biochemical, functional and biological properties in egg white remain unknown.

The phylogenetic analysis (Fig. 6) indicates that the closest homologue of Cal-γ is lipocalin-like prostaglandin synthase (PTGDS). In mammals, PTGDS is secreted into various body fluids. This protein catalyses the isomerization of prostaglandin H2 to prostaglandin D2, and was reported to bind a variety of lipophilic molecules such as biliverdin, bilirubin and retinoic acid. In humans, this protein is likely to be involved in both maturation and maintenance of the central-nervous system and male reproductive system (Saito et al. 2002; Urade and Hayaishi 2000). Two isoforms, of 22 kDa, can be separated by 2D-electrophoresis of egg white, thanks to their different isoelectric points (pI of 5.6 and 6.0) (Guérin-Dubiard et al. 2006). Pagano et al. (2003) have shown that Cal-γ expression correlates with endochondral bone formation and the inflammatory response. As for Ex-FABP, Cal-γ mRNA is increasingly synthesized during chondrocyte differentiation both in vivo and in vitro. Although Ex-FABP and Cal-γ may both play a part in bone formation and the inflammatory response, any possible role for Cal-γ in siderophore sequestration remains to be explored.

Conclusion

The antibacterial iron-restriction activity of egg white, as mediated by oTf, is well established and it is now apparent that the egg-white lipocalin, Ex-FABP, can inhibit bacterial growth via an enhanced iron-restriction effect that is mediated by its siderophore-binding capacity. However, the siderophore-sequestering activity of Ex-FABP has neither been studied in egg white, nor with appropriate SE or hen infection models. Furthermore, how and in what quantity this protein is incorporated into egg white remains unknown. As yet, it is unclear whether the other lipocalins of egg white (Cal-γ and α1-glycoprotein) might also sequester siderophores. Although many egg-white proteins have been shown to be components of the arsenal of defence factors within egg white, the contribution (if any) of the three lipocalins as new egg-white defence factors remains an open question, although this now appears highly likely for Ex-FABP. As matters stand, it is unclear whether the capacity of salmochelin to assists SE virulence in mammalian models can be extended to include support of SE survival in egg white. Thus, there remains much scope for further understanding of the role of lipocalin proteins in the defence of egg white against bacteria.

Acknowledgements

This work was supported by the Strategic Fund of the University of Reading (UK) and the Regional Council of Brittany (allocations de recherche doctorale, ARED; France).

Open Access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Aguilera O, Quiros LM, Fierro JF (2003) Transferrins selectively cause ion efflux through bacterial and artificial membranes. FEBS Lett 548:5–10
Dente L, Ciliberto G, Cortese R (1985) Structure of the human alpha 1-acid glycoprotein gene: sequence homology with other human acute phase protein genes. Nucleic Acids Res 13:3941–3952

Derde M, Lechevalier V, GuerinDubiard C, Cochet MF, Jan S, Baron F, Gautier M, Vié V, Nau F (2013) Hen egg white lysozyme permeabilizes the Escherichia coli outer and inner membranes. J Agric Food Chem 61:9922–9929

Desert C, Guerin-Dubiard C, Nau F, Jan G, Val F, Mallard J (2001) Comparison of different electrophoretic separations of hen egg white proteins. J Agric Food Chem 49:4553–4561

Devireddy LR, GAZIN C, Zhu X, Green MR (2005) A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell 123:1293–1305

Di Marco E, Sessarego N, Zerega B, Cancèdda R, Cancèdda FD (2003) Inhibition of cell proliferation and induction of apoptosis by Ex-FABP gene targeting. J Cell Physiol 196:464–473

Dozin B, Cancèdda FD, Briata L, Hayashi M, Gentili C, Hayashi K, Quarto R, Cancèdda R (1992) Expression, regulation, and tissue distribution of the Ch21 protein during chicken embryogenesis. J Biol Chem 267:2979–2985

Du ZP, Wu BL, Wu X, Lin XH, Qiu XY, Zhan XF, Wang SH, Shen JH, Zheng CP, Wu ZY, Xu LY, Wang D, Li EM (2015) A systematic analysis of human lipocalin family and its expression in esophageal carcinoma. Sci Rep 5:1–14

EFSA Panel on Biological Hazards (2014) Scientific Opinion on the public health risks of table eggs due to deterioration and development of pathogens. EFSA J 12:1–147

El-Gebali S, Mistry J, Bateman A, Eddy SR, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, Sonhammer ELL, Hirsh L, Paladin L, Piovesan D, Tosatto SCE, Finn RD (2019) The Pfam protein families database. Nucleic Acids Res. https://doi.org/10.1093/nar/gky995

Fischbach MA, Lin H, Zhou L, Yu Y, Abergel RJ, Liu DR, Raymond KN, Wanner BL, Strong RK, Walsh CT, Aderem A, Smith KD (2006) The pathogen-associated iraA gene cluster mediates bacterial evasion of lipocalin 2. Proc Natl Acad Sci USA 103:16502–16507

Flo TH, Smith KD, Sato S, Rodríguez DJ, Holmes MA, Strong RK, Akira S, Aderem A (2004) Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432:917–921

Flower DR (1996) The lipocalin protein family: structure and function. Biochem J 318:1–14

Flower DR, North ACT, Sansom CE (2000) The lipocalin protein family: structural and sequence overview. Biochim Biophys Acta-Protein Struct Mol Enzymol 1482:9–24

Françoise AM (1994) Lipocalines et transport de ligands hydrophobes. Med Sci 10:22–29

Furrer JL, Sanders DN, Hook-Barnard IG, McIntosh MA (2002) Export of the siderophore enterobactin in Escherichia coli: involvement of a 43 kDa membrane exporter. Mol Microbiol 44:1225–1234

Gantois I, Eckhaut V, Pasmins F, Haesebrouck F, Ducatelle R, Van Immerseel F (2008) A comparative study on the pathogenesis of egg contamination by different serotypes of Salmonella. Avian Pathol 37:399–406

Gao Q, Wang X, Xu H, Xu Y, Ling J, Zhang D, Gao S, Liu X (2012) Roles of iron acquisition systems in virulence of extraintestinal pathogenic Escherichia coli: salmochelin and aerobactin contribute more to virulence than heme in a chicken infection model. BMC Microbiol 12:143

Garèaux A, Houle S, Folch B, Dallaire G, Truesdell M, Lépine F, Doucet N, Dozois CM (2013) Avian lipocalin expression in chickens following Escherichia coli infection and inhibition of avian pathogenic Escherichia coli growth by Ex-FABP. Vet Immunol Immunopathol 152:156–167

Garibaldi JA (1970) Role of microbial iron transport compounds in bacterial spoilage of eggs. Appl Microbiol 20:558–560

Gehring AM, Mori I, Walsh CT (1998) Reconstitution and characterization of the Escherichia coli enterobactin synthetase from EntB, EntE, and EntF. Biochemistry 37:2648–26594

Gentili C, Cermelli S, Tacchetti C, Cosso G, Cancèdda R, Cancèdda FD (1998) Expression of the extracellular fatty acid binding protein (Ex-FABP) during muscle fiber formation in vivo and in vitro. Exp Cell Res 242:410–418

Gentili C, Tutolo G, Zerega B, Di Marco E, Cancèdda R, Cancèdda FD (2005) Acute phase lipocalin Ex-FABP is involved in heart development and cell survival. J Cell Physiol 202:683–689

Goetz DH, Willie ST, Armen RS, Bratt T, Borregaard N, Strong RK (2000) Ligand preference inferred from the structure of neutrophil gelatinase associated lipocalin. Biochemistry 39:1935–1941

Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK (2002) The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 10:1033–1043

Gong DQ, Wilson PW, Bain MM, McDade K, Kalina J, Herve-Grepinet V, Nys Y, Dunn IC (2010) Gallin; an antimicrobial peptide of the hen egg. Antimicrob Agents Chemother 54:3901–3910

Guha-Thakurta P, Choudhury D, Dasgupta R, Dattagupta JK (2013) Expression, regulation, and tissue distribution of the Ch21 protein during chicken embryogenesis. J Biol Chem 267:2979–2985

Hantke K, Nicholson G, Rabsch W, Winkelmann G (2003) Salmochelins, siderophores of Salmonella enterica and uropathogenic Escherichia coli strains, are recognized by the outer membrane receptor IroN. Proc Natl Acad Sci USA 100:3677–3682

Hervé-Grépinet V, Réhault-Godbert S, Labas V, Magallon T, Derache C, Lavergne M, Gautron J, Lalimanach AC, Nys Y (2010) Purification and characterization of avian β-defensin 11, an antimicrobial peptide of the hen egg. Antimicrob Agents Chemother 54:4401–4408
and 2, 3-dihydroxybenzoylserine in virulence of *Salmonella enterica*. Infect Immun 71:6953–6961

Raffatellu M, George MD, Akiyama Y et al (2009) Lipocalin-2 resistance confers an advantage to *Salmonella enterica* serotype typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe 5:476–486

Réhault-Godbert S, Labas V, Hel loin E, Hervé-Grippinet V, Slugocki C, Ber ges M, Bourin MC, Brionne A, Poirier JC, Gautron J, Coste F, Nys Y (2013) Ovalbumin-related protein X is a heparin-binding ov-serpin exhibiting antimicrobial activities. J Biol Chem 288:17285–17295

Sadakane Y, Matsunaga H, Nakagomi K, Hatanaka Y, Haginaka J (2002) Protein domain of chicken alpha(1)-acid glycoprotein is responsible for chiral recognition. Biochem Biophys Res Commun 295:587–590

Saito S, Tsuda H, Michimata T (2002) Prostaglandin D 2 and Reproduction. Am J Reprod Immunol 47:295–302

Sauveur B (1988) Structure, composition et valeur nutritionnelle de l’œuf. Reproduction des volailles et production d’œufs. INRA, Paris, pp 347–374

Schade A, Caroline L (1944) Raw hen egg white and the role of iron in growth inhibition of *Shigella dysenteriae*, *Staphylococcus aureus*, *Escherichia coli* and *Saccharomyces cerevisiae*. Science 100:14–15

Schmid K (1975) The plasma proteins (structure, function and genetic control). In: Putman FW (ed) Academic Press, New York, pp 184–228

Schneider WR, Doetsch RN (1974) Effect of viscosity on bacterial motility. J Bacteriol 117:696–701

Schneider DJ, Roe AL, Mayer RJ, Que L (1984) Evidence for synergistic anion binding to iron in ovotransferrin: comparison of native and recombinant iron-binding sites. J Biol Chem 259:9699–9703

Sharp PF, Powell CK (1931) Increase in the pH of the white and yolk of hens’ eggs. Ind Eng Chem 23:196–199

Sharp PF, Whitaker R (1927) The relation of the hydrogen ion concentration of egg white to its germicidal action. J Bacteriol 14:17–46

Sia AK, Allred BE, Raymond KN (2013) Siderocalins: siderophore binding proteins evolved for primary pathogen host defense. Curr Opin Chem Biol 17:150–157

Skare JT, Ahmer BMM, Seachord CL, Darveau RP, Postle K (1993) Energy transduction between membranes: tonB, a cytoplasmic membrane protein, can be chemically cross-linked in vivo to the outer membrane receptor FeoA. J Biol Chem 268:16302–16308

Urade Y, Hayashi O (2000) Biochemical, structural, genetic, physiological, and pathophysiological features of lipocalin-type prostaglandin D synthase. Biochim Biophys Acta-Protein Struct Mol Enzymol 1482:259–271

USDA National Nutrient Database for Standard Reference, Release 23 (2010)

Valdebenito M, Crumbliss AL, Winkelmann G, Hantke K (2006) Environmental factors influence the production of enterobactin, salmochelin, aerobactin, and yersiniabactin in *Escherichia coli* strain Nissle 1917. Int J Med Microbiol 296:513–520

Valdebenito M, Müller SI, Hantke K (2007) Special conditions allow binding of the siderophore salmochelin to siderocalin (NGAL-lipocalin). FEMS Microbiol Lett 277:182–187

Valenti P, De Stasio A, Mastromarino P, Seganti L, Sinibaldi L, Orsi N (1981) Influence of arginine and citrate on the bacteriostatic action of ovotransferrin towards *Staphylococcus aureus*. FEMS Microbiol Lett 10:77–79

Valenti P, Antonini GRH, Visca P, Orsi N, Antonini E (1983) Studies of the antimicrobial activity of ovotransferrin. Int J Tissue React 5:97–105

Valenti P, Visca P, Antonini G, Orsi N (1985) Antifungal activity of ovotransferrin towards genus Candida. Myco-pathologia 89:169–175

Vylde JDE, Raspoet R, Dewulf J, Haesebroeck F, Ducatte R, van Immerseel F (2013) *Salmonella* enteritidis is superior in egg white survival compared with other *Salmonella* serotypes. Poult Sci Assoc Inc 92:842–845

Watts RE, Totsika M, Challinor VL, Mabbett AN, Ulett GC, De Voss J, Schembri MA (2012) Contribution of siderophore systems to growth and urinary tract colonization of asymptomatic bacteriuria *Escherichia coli*. Infect Immun 80:333–344

Wesierska E, Saleh Y, Trzizka T, Kopec W, Siewinski M, Korzekwa L (2005) Antimicrobial activity of chicken egg white cystatin. World J Microbiol Biotechnol 21:59–64

Williams PH, Carbonetti NH (1986) Iron, siderophores, and the pursuit of virulence: independence of the aerobactin and enterochelin iron uptake systems in *Escherichia coli*. Infect Immun 51:942–947

Yadav NK, Vadehra DV (1977) Mechanism of egg white resistance to bacterial growth. J Food Sci 42:4–6

Zhao Y, Natarajan V (2014) Lysophosphatidic acid (LPA) and its receptors: role in airway inflammation and remodeling. Biochim Biophys Acta 1831:86–92

Zhu M, Valdebenito M, Winkelmann G, Hantke K (2005) Functions of the siderophore esterases IroD and IroE in iron-salmochelin utilization. Microbiol 151:2363–2372

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.