Abstract

Data transmission over a communication channel is prone to a number of factors that can render the data unreliable or inconsistent by introducing noise, crosstalk or various other disturbances. A mechanism has to be in place that detects these anomalies in the received data and corrects it to get the data back as it was meant to be sent by the sender. Over the years a number of error detection and correction methodologies have been devised to send and receive the data in a consistent and correct form. The best of these methodologies ensure that the data is received correctly by the receiver in minimum number of retransmissions. In this paper performance of Reed Solomon Code (RS) and BCH Code is compared over Rayleigh fading channel.

References

- Hank Wallace, "Error detecting and correcting using BCH codes", Copyright (C) 2001 Hank Wallace.
Performance Comparison of Reed Solomon Code and BCH Code over Rayleigh Fading Channel

- Sanjeev Kumar, Ragini Gupta, "Performance Comparison of Different Forward Error Correction Coding Techniques for Wireless Communication Systems", at International Journal of Computer science and technology Vol. 2, issue3, September 2011.
- Claude E. Shannon (1948) "A Mathematical Theory of communication", at Bell System Journal, vol. 24, July and October 1948.
- I. S. Reed; G. Solomon, "Polynomial codes over certain finite fields", Journal of the society for industrial and applied Mathematics, Vol. 8, No. 2 (Jun., 1960), 300-304.
- Himanshu Saraswat, Govind Sharma, Sudhir Kumar Mishra and Vishwajeet, "Performance Evaluation and Comparative Analysis of Various Concatenated Error Correcting Codes Using BPSK Modulation for AWGN Channel", International Journal of Electronics and Communication Engineering. ISSN 0974-2166 Volume 5, Number 3 (2012), pp. 235-244.
- Saurabh Mahajan; Gurpadam Singh, "Reed-Solomon Code Performance for M-ary Modulation over AWGN Channel", International Journal of Engineering Science and Technology (IJEST), Vol. 3 No. 5 May 2011.
- Gurinder Kaur Sodhi; Kamal Kant Sharma, "SER performance of Reed – Solomon Codes With AWGN & Rayleigh Channel using 16 QAM", at International Journal of Information and Telecommunication Technology, Vol. 3, No. 2, 2011.
- R. C. Bose and D. K. Ray-Chaudhuri, "On A Class of Error Correcting Binary Group Codes", at Information and Control 3, 68-79 (1960).
- Lionel Biard, Dominique Noguet, "Reed-Solomon Codes for Low Power Communications", Journal of Communications, vol. 3, no. 2, April 2008.
- Arjun Puri, Sudesh Kumar, "Comparative Analysis of Reed Solomon Codes and BCH Codes in the Presence of AWGN Channel", International Journal of Information and Computing Technology, vol. 3 no. 3, 2013.
- Zhinian Luo, Wenjun Zhang, "The Simulation Models for Rayleigh Fading Channels", IEEE Transactions on Communications, Vol. 61, No. 2, February 2013.
- Shih-Ming Yang and Vinay Anant Vaishampayan, "Low-Delay Communication for Rayleigh Fading Channels: An Application of the Multiple Description Quantizer".
- J Grolleau, D. Labarre, E. Grivel and M. Najim, "The stochastic sinusoidal model for Rayleigh fading channel simulation".

Index Terms

Computer Science

Communications

Keywords

RS Code  BCH Code  Rayleigh Fading Channel  Modulation
