Effects of mesophyll conductance on vegetation responses to elevated CO₂ concentrations in a land surface model

Jürgen Knauer¹,² | Sönke Zaehle¹,³ | Martin G. De Kauwe⁴ | Nur H. A. Bahar⁵ | John R. Evans⁶ | Belinda E. Medlyn⁷ | Markus Reichstein¹,³ | Christiane Werner⁸

¹Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
²International Max Planck Research School for Global Biogeochemical Cycles (IMPRS gBGC), Jena, Germany
³Michael-Stifel Center Jena for Data-Driven and Simulation Science, Jena, Germany
⁴ARC Centre of Excellence for Climate Extremes and the Climate Change Research Centre, University of New South Wales, Sydney, NSW, Australia
⁵ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, Australia
⁶ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, Australia
⁷Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
⁸Department of Ecosystem Physiology, University of Freiburg, Freiburg, Germany

Correspondence
Jürgen Knauer, Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany.
Email: jknauer@bgc-jena.mpg.de

Funding information
H2020 European Research Council, Grant/Award Number: 647204; Australian Research Council, Grant/Award Number: CE170100023

Abstract
Mesophyll conductance (gₘ) is known to affect plant photosynthesis. However, gₘ is rarely explicitly considered in land surface models (LSMs), with the consequence that its role in ecosystem and large-scale carbon and water fluxes is poorly understood. In particular, the different magnitudes of gₘ across plant functional types (PFTs) are expected to cause spatially divergent vegetation responses to elevated CO₂ concentrations. Here, an extensive literature compilation of gₘ across major vegetation types is used to parameterize an empirical model of gₘ in the LSM JSBACH and to adjust photosynthetic parameters based on simulated Aₙ–Cᵣ curves. We demonstrate that an explicit representation of gₘ changes the response of photosynthesis to environmental factors, which cannot be entirely compensated by adjusting photosynthetic parameters. These altered responses lead to changes in the photosynthetic sensitivity to atmospheric CO₂ concentrations which depend both on the magnitude of gₘ and the climatic conditions, particularly temperature. We then conducted simulations under ambient and elevated (ambient + 200 μmol/mol) CO₂ concentrations for contrasting ecosystems and for historical and anticipated future climate conditions (representative concentration pathways; RCPs) globally. The gₘ-explicit simulations using the RCP8.5 scenario resulted in significantly higher increases in gross primary productivity (GPP) in high latitudes (+10% to + 25%), intermediate increases in temperate regions (+5% to 15%), and slightly lower to moderately higher responses in tropical regions (~2% to +5%), which summed up to moderate GPP increases globally. Similar patterns were found for transpiration, but with a lower magnitude. Our results suggest that the effect of an explicit representation of gₘ is most important for simulated carbon and water fluxes in the boreal zone, where a cold climate coincides with evergreen vegetation.

KEYWORDS
elevated CO₂ concentrations, land surface modeling, mesophyll conductance, photosynthetic CO₂ sensitivity, representative concentration pathways
1 | INTRODUCTION

The representation of photosynthesis in land surface models (LSMs) is critical for simulating the response of the terrestrial biosphere to global environmental change (Booth et al., 2012; Rogers et al., 2017), the land uptake of CO$_2$, as well as the coupling of the water and carbon cycles. The photosynthesis schemes embedded within state-of-the-art LSMS commonly assume that the CO$_2$ concentration available for carboxylation equals the CO$_2$ concentration in the sub-stomatal cavity, that is the intercellular CO$_2$ concentration (C$_i$). This corresponds to the assumption that the conductance to CO$_2$ transfer within the leaf (mesophyll conductance, g$_m$) is infinite, and that the CO$_2$ concentration at the actual place of carboxylation in the chloroplast stroma (chloroplastic CO$_2$ concentration, C$_c$) equals C$_i$. However, evidence has clearly shown that g$_m$ is finite (Flexas, Ribas-Carbó, Díaz-Espejo, Galmés, & Medrano, 2008; Warren, 2008) and that it causes a clear drawdown of the CO$_2$ concentration between the sub-stomatal cavity and the chloroplast stroma. The magnitude of this drawdown depends both on g$_m$ and the photosynthetic capacity of the leaf, which is reflected in the definition of g$_m$; g$_m$ = A$_n$/(C$_i$ - C$_c$), where A$_n$ is net assimilation. Replacing C$_i$ with C$_c$ as the available CO$_2$ concentration for photosynthesis has been shown to change the response of simulated photosynthesis to environmental drivers (Niinemets, Díaz-Espejo, Flexas, Galmés, & Warren, 2009), which has important implications for large-scale simulations of land carbon uptake (Sun, Gu, Dickinson, Norby et al., 2014).

g_m is a complex physiological property which integrates several leaf-internal sub-conductances in both the gaseous and liquid phase, including the intercellular airspace, cell walls, plasma membranes, cytoplasm, and the chloroplast envelopes and stroma (Evans, Kaldenhoff, Genty, & Terashima, 2009). g_m is known to change dynamically in response to several environmental stimuli at the time scale of minutes (Warren, 2008). At the same time, its absolute magnitude is constrained by leaf anatomical and structural traits (e.g. cell wall thickness, chloroplast surface area attached to the intercellular airspaces (Tomás et al., 2013)), with the consequence that the values of g_m differ considerably among vegetation types (Flexas et al., 2008).

Despite its important role in photosynthesis and the distinct differences across plant functional types (PFTs), g_m is at present not explicitly considered in the vast majority of LSMS for two main reasons: (1) the current process understanding of g_m is severely limited (Rogers et al., 2017) as its response to environmental drivers, foremost light and CO$_2$ concentration but also temperature, is largely unknown and currently an area of intensive research (von Caemmerer & Evans, 2015; Gu & Sun, 2014; Tazoe, Caemmerer, Badger, & Evans, 2009; Théroux-Rancourt & Gilbert, 2017; Xiong et al., 2015), and (2) the effects of g_m are implicitly included in current models since the overestimation of CO$_2$ available for photosynthesis is compensated for by an underestimated (apparent) photosynthetic capacity. This means that parameters representing photosynthetic capacity, which are currently estimated on a C$_i$-basis, would need to be re-estimated on a C$_c$-basis if g_m were to be explicitly considered in models (Sun, Gu, Dickinson, Pallardy et al., 2014).

It is likely for these two complications that so far only one study (Sun, Gu, Dickinson, Norby et al., 2014) focused on the effects of an explicit representation of g_m in a LSM (the Community Land Model 4.5). Sun, Gu, Dickinson, Norby et al. (2014) showed that the overestimation of the available CO$_2$ concentration for photosynthesis due to the assumption of an infinite g_m leads to an underestimation of the photosynthetic sensitivity to rising atmospheric CO$_2$ concentrations (C$_a$). As a consequence, replacing the implicit simulation of g_m with an explicit one significantly increased the responsiveness of GPP (+16% from 1901 to 2010) to rising C$_a$ as long as C$_a$ was not saturating.

The stronger response of photosynthesis to rising atmospheric CO$_2$ concentrations with an explicitly modeled g_m as shown in the study by Sun, Gu, Dickinson, Norby et al. (2014) implies that the physiological responses to rising atmospheric CO$_2$ concentrations will vary among plant groups that have intrinsically different values of g_m. Consequently, it might be hypothesized that photosynthesis of plants with a low g_m (e.g. evergreen species) are more responsive to rising atmospheric CO$_2$ concentrations than plants with a higher g_m (e.g. herbaceous plants), which potentially gives the former plant group a relative advantage over the latter in a high CO$_2$ world (Niinemets, Flexas, & Peñuelas, 2011). A stronger response of photosynthesis to C$_a$ is likely to also affect stomatal conductance (g$_s$) given that g$_s$ and A$_n$ are tightly coupled (Wong, Cowan, & Farquhar, 1979). As a consequence, the consideration of g_m is expected to have important implications for both terrestrial carbon and water fluxes, as well as their coupling (e.g. water-use efficiency, Flexas et al., 2016). Such plant type-specific physiological responses would thus not only have important implications for the future global distribution of vegetation types, but also for large-scale patterns of biogeochemical cycles and associated physical climate feedbacks (e.g. evaporative cooling).

In this paper, we explore whether g_m has implications for simulations of future global carbon and water fluxes, and to what extent the effects are expected to differ among vegetation types and climatic conditions. In the following, we (1) compile a global database of g_m measurements, (2) describe the g_m model and its incorporation into the LSM JSBACH (Knauer, Werner, & Zaehle, 2015; Reick, Raddatz, Bovklin, & Gayler, 2013), (3) outline the model parameterization and the necessary adjustment of photosynthetic parameters, (4) analyze the effects of an explicit g_m on the photosynthetic sensitivity to C$_a$ at the leaf- and ecosystem level, and (5) investigate its relevance for future carbon and water fluxes globally.

2 | METHODS

To investigate the effects of g_m on simulations of water and carbon fluxes, we tested two different approaches in the LSM JSBACH:

Implicit g_m: Effects of g_m are considered implicitly by employing apparent (C$_i$-based) photosynthetic parameters. This represents the current scenario in most LSMS.
Rubisco kinetic parameters were taken from Bernacchi et al. (2001). This model version is denoted as \textit{Imp}.

Explicit g_m: g_m is modeled explicitly as described in Section 2.1. Rubisco kinetic parameters were taken from Bernacchi et al. (2002), and were determined on a C$_4$-basis. Four sub-versions (denoted as \textit{Exp, ExpC, ExpL, ExpCL}) were implemented, which differ with respect to whether g_m is affected by C_i and/or light (Table 1). The effect of these two factors is contentious in the literature (Gu & Sun, 2014; Théroux-Rancourt & Gilbert, 2017), hence it is relevant to investigate their potential sensitivities to simulations of photosynthesis at the leaf to the global scale.

Table 1: Environmental responses considered in the g_m model versions implemented in this study

Model version	Temperature	Soil moisture	Canopy profile	Intercellular CO$_2$ concentration	Light
Exp	x	x	x	x	x
ExpC	x	x	x	x	x
ExpL	x	x	x	x	x
ExpCL	x	x	x	x	x

Note that the two approaches differ only in the consideration of g_m (included implicitly or explicitly) and the Rubisco kinetic parameters (Michaelis-Menten constants for CO$_2$ (K_c) and O$_2$ (K_o), photosynthetic CO$_2$ compensation point (Γ^*)) as well as their temperature responses (see Appendix S1 for model formulations and Table S1 for parameter values).

2.1 Mesophyll conductance model

The g_m model implemented here is a multiplicative formulation, in which a PFT-specific maximum (i.e. unstressed) value of g_m at the reference temperature of 25°C ($g_{m,max25}$) is modified by environmental factors:

$$g_m = g_{m,min} \cdot g_{m,max25} \cdot f_1(N) \cdot f_2(T_i) \cdot f_3(\theta) \cdot f_4(C_i) \cdot f_5(Q_a)$$

where N is leaf nitrogen content, T_i is leaf temperature, θ is soil moisture content, C_i is intercellular CO$_2$ concentration, Q_a is absorbed photosynthetic photon flux density, and f denotes “function of”. $g_{m,min}$ is defined as $g_{m,min} = f_{min} \cdot g_{m,max25}$, and accounts for the fact that g_m does not decrease to zero even under unfavorable conditions such as severe water stress (e.g. Galmés, Medrano, & Flexas, 2007). f_{min} was parameterized from data presented in Delfine, Loreto, Pinelli, Tognetti, and Alvino (2005), Galmés, Abadía, Medrano, and Flexas (2007), and Galmés, Medrano et al. (2007) as $f_{min} = 0.15$. In Equation (1), $g_{m,max25}$ and f_1 represent leaf structural determinants of g_m, whereas $f_2 - f_5$ describe instantaneous physiological responses. Note that the last two terms in Equation (1) (f_2 and f_3) are only considered in some model versions (Table 1). Acclimation of g_m to elevated CO$_2$ was not considered in the model as measured g_m of plants grown under ambient and elevated CO$_2$ concentrations did not show consistent differences (Kitao et al., 2015; Mizokami, Noguchi, Kojima, Sakakibara, & Terashima, 2018; Singsaas, Ort, & Delucia, 2003).

2.1.1 Canopy profile

g_m generally declines with depth through the canopy, and is usually higher in sun than in shade leaves (Hanba, Kogami, & Terashima, 2002; Piel, Frak, Roux, & Genty, 2002). It has been found that g_m varies in a similar manner to photosynthetic capacity (or N) across the canopy profile (Montpied, Granier, & Dreyer, 2009). This decline with canopy depth might be related to the relatively low mesophyll thickness and the lower chloroplast surface area exposed to the intercellular airspaces in shade-adapted leaves (Evans, Caemmerer, Setchell, & Hudson, 1994; Hanba et al., 2002). Here, we implemented the following canopy profile of g_m:

$$f_1(N) = e^{-k_n L}$$

where k_n is the canopy nitrogen extinction coefficient and L is the leaf area index (LAI). k_n was assumed to be 0.11 following Zaehle and Friend (2010). Thus, the canopy gradient of g_m equals the one of $V_{c,max}$ and J_{max} in the model. Such a behavior was confirmed by several studies (Han, Iio, Naramoto, & Kakubari, 2010; Montpied et al., 2009; Warren, Löw, Matyssek, & Tausz, 2007), but also higher (Zhang & Yin, 2012) and lower (Cano et al., 2011; Niinemets, Cescatti, Rodeghiero, & Tosens, 2006) gradients for g_m compared to $V_{c,max}$ have been found, suggesting that k_n is site- and probably PFT-specific (Warren et al., 2007).

2.1.2 Temperature response

The temperature response of g_m is the result of different physical and physiological processes in mesophyll cells (e.g. solubility and diffusivity of CO$_2$ in water), and the response is likely to differ across cell compartments, for example, membranes and cell walls (Evans & von Caemmerer, 2013). The overall response of g_m to leaf temperature can be described by a modified Arrhenius function (Johnson, Eyring, & Williams, 1942):

$$f_2(T_i) = \exp \left(\frac{H_a}{T_{ref}} \left(\frac{T_{ref}}{T_i} - 1 \right) \right) \cdot \frac{1 + \exp \left(\frac{T_{ref} \Delta S - H_a}{T_{ref} R} \right)}{1 + \exp \left(\frac{T \Delta S - H_a}{R} \right)}$$

where H_a is the activation energy (J/mol), H_d is the deactivation energy (J/mol), ΔS is the entropy term (J mol$^{-1}$ K$^{-1}$) (see Table S1 for parameter values), T_i is the leaf temperature (K), T_{ref} is the reference temperature (298.15 K), and R is the universal gas constant (8.314 J mol$^{-1}$ K$^{-1}$).
K). Equation (3) was parameterized according to Bernacchi, Portis, Nakano, Caemmerer, and Long (2002) and shows a temperature optimum close to 35.5°C. The use of the parameter values reported in Bernacchi et al. (2002) is consistent with the C₄-based Rubisco kinetic parameters used in this study (Kₒ₋₅, Kₑ₋₅, Γₑ₋₅, Appendix S1), which were derived assuming the same temperature response of gₘ (Equation (3)). Published temperature responses of gₘ differ with respect to the behavior at high temperatures, and both hump-shaped (Egea, González-Real, Baille, Nortes, & Díaz-Espejo, 2011), as well as monotonously increasing responses (Scafaro, Caemmerer, Evans, & Atwell, 2011) have been documented. Similarly, Hₑ is likely to be species-specific (Walker, Ariza, Kaines, Badger, & Cousins, 2013), though no clear patterns across species and growth conditions have been identified (von Caemmerer & Evans, 2015). Thus, parameters in Equation (3) were assumed to be identical for all vegetation types.

2.1.3 | Soil moisture response

The decline of gₘ with increasing soil water stress has been widely reported (e.g. Galmés, Medrano et al., 2007; Misson, Limousin, Rodriguez, & Letts, 2010; Varone et al., 2012), and has been attributed to the role of aquaporins in leaf-internal CO₂ transport (Miyazawa, Yoshimura, Shinzaki, Maeshima, & Miyake, 2008; Perez-Martín et al., 2014). Here, we implemented the following soil moisture dependence of gₘ:

$$f_3(\theta) = \begin{cases} 1 & \theta > \theta_{\text{crit}} \\ \left[\frac{g_m-\theta_{\text{crit}}}{\theta_{\text{wilt}}-\theta_{\text{crit}}} \right]^{q_m} & \theta = \theta_{\text{crit}} \\ 0 & \theta < \theta_{\text{wilt}} \end{cases}$$ \tag{4}

where θ is soil moisture (m), θ_{wilt} is the permanent wilting point (m), below which water stress is at its maximum, and θ_{crit} is the critical soil moisture content (m), which marks the onset of soil water stress. θ_{wilt} and θ_{crit} are constant fractions (0.32 and 0.7) for θ_{wilt} and θ_{crit}, respectively) of the field capacity, which is calculated depending on the grain size distribution of the soil. Equation (4) is applied to gₘ, gₑ, and leaf biochemistry (Vₚₘₐₓ and Jₚₘₐₓ) but with different sensitivities (i.e. different values of the exponent qₑ, i.e. qₑ₂, qₑ₃, and qₑ₄ for gₑ, gₚₑ, and leaf biochemistry, respectively). Using the same formulation, Egea, Verhoef, and Vidale (2011) found that imposing the highest sensitivity to gₑ₄, then to gₑ₃, and finally to Vₚₘₐₓ and Jₚₘₐₓ best captured the behavior of photosynthesis under water stressed conditions for a variety of species from different PFTs. The qₑ parameters were defined accordingly as qₑ₂ = 0.75, qₑ₃ = 0.50, and qₑ₄ = 0.25 for all PFTs.

2.2 | C4 plants

In C₄ plants, gₘ describes the conductance to CO₂ transfer from the intercellular airspace to the cytosol of the mesophyll cells, where the first binding of CO₂ occurs. Thus, the main difference to C₃ plants is that the chloroplast components are not part of the diffusion pathway (von Caemmerer & Furbank, 1999). This means that gₘ in C₄ plants causes a CO₂ concentration drawdown from Cₑ to Cₚₑ, the CO₂ concentration in the mesophyll cytosol (i.e. gₘ = \left[Aₑ/\left(Cₑ - Cₚₑ \right) \right]) . Recent methodological advances have enabled measurements of gₘ in C₄ plants (Barbour, Evans, Simonin, & Caemmerer, 2016; Ubierna, Gandin, Boyd, & Cousins, 2017). These measurements indicate that gₘ is higher in C₄ plants than in C₃ plants (see Figure 1). The response of gₘ to environmental factors was assumed to be identical to that in C₃ plants (Equations (2)-(6)). This assumption could not be confirmed due to the scarcity of gₘ measurements in C₄ plants, but recent studies indicate that the temperature as well as the Cₑ response are qualitatively similar to that in C₃ plants (Kolbe & Cousins, 2018; Ubierna et al., 2017). The relationship among C₄ photosynthetic parameters was kept as in von Caemmerer and Furbank (1999) (see Table S1).
2.3 Implementation into the LSM JSBACH

The developed \(\text{g}_m \) model was incorporated into the LSM JSBACH (Knauer et al., 2015; Reick et al., 2013), which is the land component of the MPI Earth system model (Giorgetta et al., 2013). Vegetation in JSBACH is classified into PFTs, which may co-occur in model grid cells as tiles, and which differ with respect to key physiological and biophysical properties. Fluxes and conductances are scaled to canopy-level with the LAI for each PFT, and the cover fraction-weighted mean of all tiles gives the respective grid cell value. Land-atmosphere water fluxes are calculated with a bulk transfer approach (Schulz, Dümenil, & Polcher, 2001). Canopy radiative transfer is modeled as described in Wang (2003) based on the model of Goudriaan (1977) and considers sun-lit and shaded canopy fractions in nine vertical layers. \(g_s \) is modeled according to Medlyn et al. (2011) with PFT-specific stomatal slope parameters \((g_s) \) taken from Lin et al. (2015) and a constant residual stomatal conductance \((g_r) \) of 0.005 mol m\(^{-2}\) s\(^{-1}\). \(A_n \) is simulated according to Farquhar, Caemmerer, and Berry (1980) and von Caemmerer and Furbank (1999) for C3 and C4 vegetation, respectively, and photosynthetic capacity is taken from Kattge, Knorr, Raddatz, and Wirth (2008) for different vegetation types. \(A_n \) was assumed to be light-dependent (model versions \(\text{ExpC} \) and \(\text{ExpCL} \)), measurements were converted to units of mol m\(^{-2}\) s\(^{-1}\) and standardized to 25°C using Equation (3). If \(g_{m,max}^{25} \) was assumed to be light-dependent (model versions \(\text{ExpC} \) and \(\text{ExpCL} \)), \(g_{m,max}^{25} \) was adjusted according to the \(C_i \), measured along with \(g_{m} \) (Equation 5). This adjustment accounts for the fact that different vegetation types operate at different \(C_i / C_s \) (depending on the stomatal behavior in the model \((g_s \) and \(g_1 \) parameters) and the vapor pressure deficit (VPD)). The \(g_m \) values were assigned to PFTs and the mean, median and standard error of the median were calculated (see Figure 1, Table 3).

2.4 Maximum mesophyll conductance values

\((g_{m,max}^{25}) \)

To parameterize the key parameter in the model, \(g_{m,max}^{25} \) (Equation 1), we compiled an extensive literature review of leaf-level \(g_m \)-measurements as described in Appendix S2. This dataset (Appendix S3) adds substantial new data to previous databases (e.g. Flexas et al., 2008) and comprises 609 individual \(g_m \) measurements of 319 species from 295 studies. Measurements were performed using all common methods used to estimate \(g_m \) (see e.g. Pons et al., 2009) and represent unstressed, fully expanded, and sun-exposed leaves. If necessary, measurements were converted to units of mol m\(^{-2}\) s\(^{-1}\) and standardized to 25°C using Equation (3). If \(g_{m,max}^{25} \) was assumed to be light-dependent (model versions \(\text{ExpC} \) and \(\text{ExpCL} \)), \(g_{m,max}^{25} \) was adjusted according to the \(C_i \) measured along with \(g_{m} \) (Equation 5). This adjustment accounts for the fact that different vegetation types operate at different \(C_i / C_s \) (depending on the stomatal behavior in the model \((g_s \) and \(g_1 \) parameters) and the vapor pressure deficit (VPD)). The \(g_m \) values were assigned to PFTs and the mean, median and standard error of the median were calculated (see Figure 1, Table 3).

2.5 Adjustment of \(C_i \)-based to \(C_c \)-based photosynthetic parameters

The explicit representation of \(g_m \) in photosynthesis models requires that photosynthetic parameters represent \(C_c \)-based...
rather than C_i-based values, as the latter implicitly include the effects of g_m (Ethier & Livingston, 2004). This typically requires that existing (i.e., C_i-based) parameters are adjusted to C_i-based parameters. Previous approaches for this parameter adjustment focused on the simultaneous derivation of g_m, V_{cmax}, and J_{max} from $A_n - C_i$ curves using curve fitting techniques (Gu, Pallardy, Tu, Law, & Wullschleger, 2010; Sun, Gu, Dickinson, Pallardy et al., 2014). An alternative approach as applied in this study makes use of independent g_m estimates which allow the conversion of $A_n - C_i$ curves to $A_n - C_c$ curves and the subsequent re-estimation of photosynthetic parameters on a C_c basis. This alternative approach consists of three main steps (illustrated in Figure S3; R code available at https://bitbucket.org/juergenknauer/mesophyll_conductance):

1. Simulation of a PFT-specific $A_n - C_i$ curve under unstressed conditions, saturating light, and 25°C using the current (implicit g_m) photosynthesis routine of the model with C_i-based Rubisco parameters from Bernacchi et al. (2001). Under these conditions, g_m is assumed to equal $g_{m,\text{max25}}$.
2. Calculation of C_i from Fick’s first law: $C_i = C_i - A_n / g_m$ and construction of the corresponding $A_n - C_c$ curve. Depending on whether g_m is assumed to be independent of C_i or not, g_m is either assumed to be constant or a function of C_i (Equation (5)).
3. Simultaneous fitting of V_{cmax25} and J_{max25} to the $A_n - C_c$ curve calculated in Step 2 using the same model as in step 1, but with C_i-based Rubisco parameters taken from Bernacchi et al. (2002). The fitting is done with a non-linear regression routine.

Compared to parameter adjustments based on measured $A_n - C_i$ curves, this approach has the advantage of being universally applicable across model types and model structures, and to both C3 and C4 photosynthesis models. This flexibility is achieved by an internally consistent parameter adjustment which is ensured by the employment of the exact same photosynthesis model and parameter values (e.g. leaf day respiration, Rubisco kinetic parameters) for both the parameter adjustment and the actual model simulations. In addition, this approach circumvents uncertainties associated with the determination of g_m from $A_n - C_i$ curves (e.g. assignment of limitation states) by taking independent g_m measurements. It follows that no raw data (i.e., $A_n - C_i$ curves) are required, but instead a sufficient number of g_m measurements, from which representative estimates of g_m can be inferred.

2.6 Site-level simulations

The JSBACH model was run for eight eddy covariance sites within the FLUXNET network. The sites were selected to cover different PFTs and contrasting hydro-climates (Table 2). Meteorological data for all sites was downloaded from the FLUXNET2015 webpage (http://fluxnet.fluxdata.org/data/fluxnet2015‐dataset/; accessed 2017-11-09).
TABLE 3: $g_{\text{m,max}25}$, $V_{\text{c,max}25}$, and $J_{\text{max}25}$ ratios for different plant functional types (PFTs) in the JSBACH model and for the Exp and ExpC model versions. Adjustments of C_i- to C_c-based parameters were performed as described in Section 2.5. $V_{\text{c,max}25,Cl}$ values were taken from Kattge et al. (2009), and if applicable re-calculated based on N_a (leaf nitrogen per area) data in Kattge et al. (2011). PFT abbreviations are as in Figure 1.

PFT	$g_{\text{m,max}25}$ ± SEM (mol m$^{-2}$ s$^{-1}$)	$V_{\text{c,max}25,G}$ (μmol m$^{-2}$ s$^{-1}$)	$J_{\text{max}25,G}$ (μmol m$^{-2}$ s$^{-1}$)	$J_{\text{max}25,G}/V_{\text{c,max}25,G}$	$V_{\text{c,max}25,Cc}$ (μmol m$^{-2}$ s$^{-1}$)	$J_{\text{max}25,Cc}$ (μmol m$^{-2}$ s$^{-1}$)	$J_{\text{max}25,Cc}/V_{\text{c,max}25,Cc}$	$g_{\text{m,max}25}^a$ (mol m$^{-2}$ s$^{-1}$)	$V_{\text{p,max}25,Cc}$ (μmol m$^{-2}$ s$^{-1}$)	$V_{\text{p,max}25,Cl}$ (μmol m$^{-2}$ s$^{-1}$)	$V_{\text{p,max}25,Cl}/V_{\text{p,max}25,Cc}$
DNF	0.057 ± 0.008	33.1	62.9	1.9	59.3	65.0	1.10	0.054	68.1	89.9	1.32
TDF	0.058 ± 0.020	31.0	58.9	1.9	49.8	60.4	1.21	0.056	50.4	76.9	1.41
ENF	0.078 ± 0.021	52.7	100.1	1.9	118.8	105.5	0.89	0.074	113.3	145.3	1.28
DSH	0.098 ± 0.025	49.8	94.7	1.9	75.7	96.9	1.28	0.100	78.1	112.1	1.44
EBF	0.101 ± 0.010	61.4	116.7	1.9	117.8	121.1	1.03	0.100	126.7	167.4	1.32
TRF	0.152 ± 0.026	39.0	74.1	1.9	42.1	74.1	1.76	0.151	43.7	76.9	1.76
DBF	0.175 ± 0.016	52.1	98.9	1.9	58.6	99.2	1.69	0.172	61.3	104.2	1.70
C3G	0.197 ± 0.015	50.1	95.2	1.9	54.0	95.1	1.76	0.198	55.8	98.7	1.77
RSH	0.224 ± 0.111	49.8	94.7	1.9	52.1	94.4	1.81	0.230	53.6	97.3	1.82
C3C	0.295 ± 0.017	80.2	152.4	1.9	87.9	152.5	1.73	0.305	90.3	158.5	1.76

	$V_{\text{p,max}25,Cc}$ (μmol m$^{-2}$ s$^{-1}$)	$V_{\text{p,max}25,Cl}$ (μmol m$^{-2}$ s$^{-1}$)	$V_{\text{p,max}25,Cl}/V_{\text{p,max}25,Cc}$
C4G	0.452 ± 0.151	40.0	118.9
C4C	0.739 ± 0.474	60.0	145.4

SEM: standard error of the median.

*aStandardized to a C_i of 260 μmol mol$^{-1}$ (Equation (5)).
All sites were run with meteorological forcing from the flux towers. Vegetation height, roughness length, and LAI were adjusted according to values reported in the literature, and C_4-based photosynthetic capacity ($V_{cmax25,Cc}$ and $J_{max25,Cc}$) was adjusted to match the flux measurements. For all sites, all model versions (Imp, Exp, ExpC, ExpL, ExpCL) were forced with (1) observed meteorological conditions and (2) elevated CO$_2$ concentrations (ambient + 200 μmol/mol), and the same meteorological forcing as in the ambient CO$_2$-runs.

2.7 Global simulations

To investigate the large-scale implications of an explicit representation of g_m in JSBACH, we conducted global runs for the Imp, Exp, and ExpCL model versions under historical (1970–2004) and projected future conditions (2070–2099). Bias-corrected daily meteorological forcing (0.5° spatial resolution) for both the historical and future runs was obtained from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) (Frieder et al., 2017; Hempel, Frieder, Warszawski, Schewe, & Piontek, 2013), using output from the HadGEM2-ES model (Martin et al., 2011). Future runs were conducted with RCP4.5 and RCP8.5 scenarios. Land cover was obtained from Pongratz, Reick, Raddatz, and Claussen (2007) and assumed to be unchanged in the historical and future runs. $g_{m,max25}$ as well as V_{cmax25} and J_{max25} values are listed in Table 3.

3 RESULTS

3.1 Unstressed g_m values across PFTs

Figure 1 shows the results of the literature review, revealing distinct patterns in unstressed g_m across PFTs. Lowest values were found in needle-leaf and evergreen broadleaf trees, followed by tropical evergreen trees and deciduous broadleaf trees. Generally, herbaceous species had higher g_m values than woody species. Within herbaceous PFTs, crops had higher g_m values than grasses and wild herbs, and C4 plants had higher values than C3 plants. The number of measurements was unequally distributed among the PFTs and 87% of all measurements were performed in only four PFTs (C3C, EBF, C3G, DBF). It follows that most PFTs are poorly sampled and the corresponding g_m measurements are less robust than in the well-sampled PFTs. However, the four highly sampled PFTs also showed a large spread, reflecting the wide range of g_m values among measurement methods or among different species within each PFT. Results in Figure 1 show g_m values that were not standardized to a given C_i or to high light. Accounting for a potential response of g_m to light or C_i led to only minor changes in the magnitude of g_m and its pattern across PFTs (Table 3 and Table S2).

3.2 Parameter adjustment

The required parameter adjustment procedure as described in Section 2.5 led to significant changes to the two key photosynthetic parameters in the model, V_{cmax25} and J_{max25} (Table 3). The C_c-based parameters ($V_{cmax25,Cc}$ and $J_{max25,Cc}$) account for the lower available CO$_2$ concentration due to the effects of g_m and are thus usually higher than their C_i-based counterparts. For all PFTs, V_{cmax25} was more strongly affected than J_{max25} which resulted in a decrease of the J_{max25}/V_{cmax25} ratio. The difference between the C_i-based and C_c-based parameters depends both on the magnitude of g_m and the magnitude of $V_{cmax25,Cc}$ and $J_{max25,Cc}$ and is highest when g_m is low and photosynthetic capacity is high (as e.g. in ENF). Thus, effects are strongest when the CO$_2$ drawdown from the intercellular airspaces to the chloroplasts ($C_i - C_c$) is high. The decrease of the $J_{max25,Cc}/V_{cmax25,Cc}$ ratio led to a shift of the inflection point (the C_i where photosynthetic limitation changes from Rubisco-limited to RuBP (ribulose-1,5-bisphosphate)-limited) to lower C_c, which is associated with a higher fraction of photosynthesis occurring in the electron transport-limited domain (see e.g. Figure S3).

In the model versions where g_m is affected by C_i (ExpC and ExpCL), g_m was assumed to change throughout the $A_i - C_i$ curve according to Equation (5), that means it increases sharply at low C_i and decreases continuously thereafter. When accounting for this potential response, the re-adjusted photosynthetic parameters in particular $J_{max25,Cc}$ were considerably higher compared to the default version (Exp). The higher $J_{max25,Cc}$ compensates for the low g_m simulated at higher C_i where RuBP-regeneration is limiting (Figure S1), and thus maintains the same A_i at high C_c as in the implicit case. ExpC and ExpCL were thus characterized by significantly higher $J_{max25,Cc}/V_{cmax25,Cc}$ ratios compared to the Exp model version (Table 3). The model versions accounting for a light response of g_m (ExpL and ExpCL) did generally not show strong deviations from the corresponding versions without a light response (Exp and ExpC, respectively), but tended to have lower $V_{cmax25,Cc}$ values and slightly higher $J_{max25,Cc}/V_{cmax25,Cc}$ ratios (Table S2).

In the C4 photosynthesis model described by von Caemmerer and Furbank (1999), the only parameter affected by the parameter adjustment is the maximum PEP-carboxylation rate (V_{cmax25}) (Figure S4). In case of a $g_{m,max25}$ of 0.739 mol m$^{-2}$ s$^{-1}$, the median value observed in C4 crops, V_{cmax25} increased strongly from 60 (C$_i$-based) to approximately 145 μmol m$^{-2}$ s$^{-1}$ (C$_c$-based; Table 3).

3.3 Effects on simulated leaf-level photosynthesis

Simulated photosynthesis in the implicit (Imp) and the explicit (Exp) model versions are compared in Figure 2. Shown are $A_i - C_i$ curves calculated from leaf-level simulations under contrasting temperature and light conditions. The adjustment of V_{cmax25} and J_{max25} was always performed under reference conditions (i.e. temperature of 25°C and saturating light) and aimed to minimize the difference between the implicit and explicit simulations under these reference conditions (Figure 2a, solid lines). The achieved goodness of fit depends on the magnitude of g_m with lower g_m resulting in a poorer fit to the implicit $A_i - C_i$ curve under otherwise equal conditions (Table S3).

Importantly, when temperature and light deviate from the reference conditions, the agreement between the implicit and explicit model deteriorates. This is especially relevant when temperature changes,
because g_m exhibits a strong temperature response (Equation (3)), leading to higher and lower A_n at temperatures higher and lower than 25°C, respectively (Figure 2a). The model comparison at lower light conditions (Figure 2b) did not necessarily lead to a poorer agreement between the model versions, but the comparison exemplifies that the mismatch between the model versions and thus the sensitivities to CO2 strongly depends on the prevailing conditions. The ExpC model led to similar curves as shown in Figure 2 (Figure S6). Assuming that g_m responds to light (ExpL) led to much lower simulations of A_n under low light, as well as to higher sensitivities to rising CO2 throughout the whole C_i range (Figure S7). The deviations between the implicit and explicit model versions caused changes in the relative sensitivity of A_n to changes in C_i compared to the reference conditions (Figure S7). In general, A_n showed a stronger relative response to C_i in the explicit compared to the implicit model at lower temperatures, but the opposite behavior at high temperatures. Note that Figure 2c depicts changes in the sensitivity of A_n to C_i in relative terms (see Figure caption), which was decreased at high temperatures despite similar slopes of $A_n - C_i$ in Figure 2a. These contrasts were more pronounced at lower light conditions. It has to be noted that the sensitivities and their relation between the implicit and explicit model version depend on the C_i range of interest (shaded areas in Figure 2a and S7), which explains the fact that the CO2 effect of g_m as shown in Figure 2c becomes negative already at temperatures lower than 25°C at high Q_a.

3.4 Site-level simulations

The integrated response of ecosystem-level A_n ($A_{n,canopy}$) and g_m (canopy conductance, G_j) to changes in atmospheric CO2 concentrations are analyzed in Figure 3 for an exemplary set of ecosystems from the FLUXNET2015 database. In the implicit model version (Imp), $A_{n,canopy}$ increases under eCO2 at all sites with C3 vegetation. The relative increases depend on temperature as described previously (Kirschbaum, 1994), and were more pronounced in warm (e.g. GF-Guy) than in cold climates (e.g. FI-Hyy). The explicit model version that does not consider a light and C_i response (Exp) showed higher sensitivities of $A_{n,canopy}$ to eCO2 for most sites, but a significantly lower sensitivity for GF-Guy, which can be explained by the lower photosynthetic sensitivity to CO2 at higher temperatures (Figure 2).
The model configuration that responds to C_{i}, but not to Q_{a} (ExpC) showed similar or slightly lower responses compared to the Exp model version, which is likely due to the fact that the lower simulated g_{m} was largely compensated by the higher C_{i}-based photosynthetic capacity (Table 3). In contrast, model configurations that simulate a response of g_{m} to light (ExpL and ExpCL) showed the highest responsiveness of $A_{h,canopy}$ to eCO_{2}, which is a consequence of the continuously higher sensitivity under low light in the ExpL and ExpCL versions due to the marked decrease of g_{m} at low light (Equation (6), Figure S7). This effect is amplified at the canopy level, as a considerable fraction of a closed canopy continues to operate at low light conditions.

The positive responses in $A_{h,canopy}$ were accompanied by negative responses in G_{c}, that is stomatal closure. A consistent pattern in Figure 3 is the opposite response of G_{c} compared to $A_{h,canopy}$ in the sense that a stronger response of $A_{h,canopy}$ was associated with a weaker response of G_{c}, with the result that the response of ecosystem-level intrinsic water-use efficiency (iWUE$_{canopy} = A_{h,canopy}/G_{c}$) to eCO_{2} did not vary among the model runs (i.e. it always increased by the same amount). This can be explained as an intrinsic property of the stomatal model employed here (Medlyn et al., 2011), in which C_{i}/C_{s} is assumed to stay constant with rising CO_{2} concentrations. This model behavior is unchanged in the explicit model version with the consequence that stronger positive responses of A_{h} to eCO_{2} are accompanied by weaker decreases in g_{s}, the combination of which keeps C_{i}/C_{s} constant. Hence, the changes in g_{s} are not direct effects of g_{m}, but indirect ones via A_{h} that are caused by the coupling between A_{h} and g_{s} in the model. This relationship holds regardless of whether g_{m} is assumed to stay constant or to decrease over time, as it is the case in the ExpC model runs.

For C4 plants, none of the explicit model versions led to any changes in simulations of $A_{h,canopy}$ and G_{c} compared to the implicit model. All model runs did not show a response of $A_{h,canopy}$ to eCO_{2}, and a constant decrease of c. 25% in G_{c}. The reason for this is that C_{i} did not fall in the range where photosynthesis is limited by V_{max} (e.g. low C_{i}). This behavior depends on the parameterization of the model, and g_{m} effects might be more important under conditions of water stress.

As shown in Figure 2, the fact that g_{m} responds to temperature leads to a significantly different temperature response of $A_{h,canopy}$. It follows that the photosynthetic sensitivity to CO_{2} shows a different response to temperature in the explicit compared to the implicit model versions (Figure 4). The sensitivity of $A_{h,canopy}$ to CO_{2} increased with temperature in all model versions, but with a different functional response (i.e. slope). In particular at low temperatures (<20°C), the explicit model versions simulated a higher photosynthetic sensitivity to CO_{2} compared to the implicit version. This behavior was reversed at approx. 20°C, above which Exp and ExpC simulated a lower photosynthetic sensitivity to CO_{2} compared to Imp. The ExpL version showed the highest sensitivity at low temperatures due to the above mentioned amplification of the light response at canopy level. At high temperatures (above c. 25°C), ExpL and Imp showed similar temperature sensitivities.

As demonstrated in Figures 2–4, the effects of g_{m} on the photosynthetic responses to eCO_{2} depend not only on the magnitude of g_{m} (and thus PFT) but also on the environmental conditions, foremost temperature and radiation. To investigate the isolated effects of g_{m} without any confounding meteorological factors, we conducted additional ecosystem-level simulations for the sites US-Ha1 and GF-Guy, in which $g_{m,max}$ was varied while keeping the climate forcing unchanged. For these simulations, $g_{m,max}$ was reduced.
At both sites, the proportion of Rubisco-limited A_{canopy} decreased when g_m decreased. Again, this is a consequence of the parameter adjustment (see Section 2.5), in which the stronger sensitivity to CO_2 caused by a reduced g_m, with the consequence that the ExpL model version showed a similar sensitivity for all g_m values.

At the global scale, the widespread substantial increases in mean annual GPP from the historical (1975–2004) to the future RCP8.5 (2070–2099) simulation illustrate the commonly observed CO_2-fertilization effect (Figure 6a). Exceptions from this upward trend were found in some semi-arid regions, as well as in parts of the Amazon basin, which experience a drying trend in the climate projections by HadGEM2-ES. Transpiration (Figure 6b), showed weaker absolute responses and a more diverse pattern throughout the globe. In contrast to GPP, transpiration tended to be reduced due to stomatal closure, but this reduction may be offset by increasing VPD in some regions of the earth (Kala et al., 2016). The more moderate RCP4.5 future scenario showed similar patterns, but smaller absolute differences (Figure S8). Figure 6 further reveals that g_m had spatially contrasting effects on the photosynthetic sensitivity to CO_2. The differences in the Δ values between the Exp and the Imp version largely reflect both the magnitude of g_m (and thus vegetation type), and the environmental conditions as described earlier. It follows that the largest changes could be found in high latitudes, in particular in boreal forests, which show a combination of vegetation with a low g_m (ENF and DNF) and a cool climate, both of which increased the photosynthetic sensitivity to CO_2 when g_m is modeled explicitly. Changes were moderately positive throughout large parts of the temperate (+5% to +15%) and semi-arid regions of the earth (+0% to +5%) and slightly

![FIGURE 4 Sensitivity of canopy-level net assimilation (A_{canopy}) to elevated CO_2 concentrations in the implicit (Imp) and explicit model versions (Exp, ExpC, ExpL) for the Mediterranean pine forest site FR-Lbr. CO_2 response of A_{canopy} is defined as $(A_{\text{canopy},eCO_2} - A_{\text{canopy},aCO_2})/A_{\text{canopy},aCO_2} \times 100$, where aCO_2 and eCO_2 denote ambient and elevated (ambient + 200 μmol/mol) atmospheric CO_2 concentrations, respectively. Data were filtered to represent periods in the growing season (four most productive months), at daytime ($Q > 200$ μmol m$^{-2}$ s$^{-1}$), and in the absence of soil water stress ($j > 0.95$; Equation (4)). Points are half-hourly simulation results, and lines indicate local polynomial regression fits (loess) to the points.
negative in large parts of the inner tropics (−2% to 0%). This decrease in the CO₂ sensitivity of photosynthesis is in accordance with the site-level results, and is mostly attributable to the high temperatures in these regions (Figure 2). The ExpCL model version (Figure 6e,f) showed similar spatial patterns as the Exp model, but consistently stronger positive responses. The reason for the stronger response is the light response function that amplifies at canopy level, as described earlier. The changes in transpiration in both the Exp and ExpCL model versions mirror those found for GPP, but are generally weaker. The weaker responses of transpiration compared to GPP are likely caused by aerodynamic decoupling, that cause a lower sensitivity of modeled transpiration to atmospheric CO₂ compared to G c (Knauer et al., 2017).

The differences among plant types are more clearly demonstrated in Figure 7 (for the RCP8.5 scenario; see Figure S9 for the RCP4.5 scenario). As stated earlier, the differences among the PFTs are not only caused by differences in g m, but also by differences in the prevailing climatic conditions. For example, the lower response of TDF compared to DNF, despite similar g m,max25 values, can be attributed to the higher temperatures the TDF are exposed to (Figure 4). Nonetheless, the comparison of co-occurring PFTs in the same model grid cells (i.e. PFTs experiencing identical climate forcing), showed significant differences in the simulated photosynthetic sensitivity, indicating that changes therein can primarily be attributed to differences in g m, and not to climate (Figure S10).

The widespread increases in plant carbon uptake in the explicit model versions relative to the implicit version of 5%–25% between 1975–2004 and 2070–2099 (Figures 6 and 7) are reflected in the clear increases in simulations of global GPP (Figures S11–S13). Differences in the simulated global GPP values in the RCP8.5 scenario between the Imp and the Exp and ExpCL model versions amounted to 3.6 and 6.6 Pg C yr⁻¹, respectively, for the 2070–2099 period. In both cases, about two-third of the increase was caused by regions north of 30°N (Figure S11), in particular in boreal forests (Figure 7).

4 | DISCUSSION

4.1 | Required adjustments to the Farquhar et al. (1980) photosynthesis model

The explicit consideration of g m in models of photosynthesis requires that photosynthetic parameters are adjusted from their apparent (C₃-based) to true (C₄-based) values, as the former implicitly account for the effects of g m. The Rubisco kinetic parameters (K c, K c* and r *) as well as their activation energies have been determined by for example Bernacchi et al. (2002) on a C₃ basis.
These parameters are commonly assumed to be conserved across C3 plants (but see e.g. Walker et al., 2013), which leaves the species-specific parameters V_{cmax_25} and J_{max_25} left to adjust. Here, we suggest a simple and flexible parameter adjustment scheme that is applicable across model representations of photosynthesis (Figures S3–S5) and that does not require measured $A_n - C_i$ curves, but instead independent g_m estimates. The approach ensures that V_{cmax_25} and J_{max_25} are converted in accordance with the individual structure and parameterization of the photosynthesis model. This consistency of $V_{\text{cmax25,Cc}}$ and $J_{\text{max25,Cc}}$ with the other parameters in the model (e.g. Rubisco kinetics) could not be assured if $V_{\text{cmax25,Cc}}$ and $J_{\text{max25,Cc}}$ were taken directly from leaf-level measurements, as these values are often derived assuming different photosynthetic parameters than the model (see Table S4 for a sensitivity analysis).

It should be noted that the original C_i-based estimates of V_{cmax} and J_{max} might not represent $A_n - C_i$ curves well due to the assumption of an infinite g_m (Ethier & Livingston, 2004). Any potential bias inherent in the C_i-based parameters will be propagated to their C_c-based values (Table 3). However, the degree of bias in the C_c-based parameters as well as the actual implications for the derived C_c-based parameters still needs to be investigated.

The adjustment from apparent to true values resulted in changes to the key parameters V_{cmax25} and J_{max25} that are qualitatively comparable to the results of previous adjustments (Sun, Gu, Dickinson, Pallardy et al., 2014), and that compare well with independently adjusted parameters by Bahar, Hayes, Scafaro, Atkin, and Evans (2018).
The adjustment again underlines the asymmetrical effects that g_m has on $V_{cmax,25}$ and $J_{max,25}$. The stronger change in $V_{cmax,25}$ compared to $J_{max,25}$ as a result of the re-adjustment decreases the $J_{max,25}/V_{cmax,25}$ ratio and shifts the inflection point towards lower C_i values. In general, these changes to the photosynthesis model result in an altered response of photosynthesis to key environmental factors like temperature and light. Further, it also changes the sensitivity of photosynthesis to eCO$_2$ in dependence on the environmental conditions. This can mostly be attributed to the fact that the parameter adjustment is performed under reference conditions of 25°C and saturating light. Under these conditions, the agreement between the explicit and implicit model versions is the best, but it deteriorates when conditions deviate from the reference conditions, an effect that was previously asserted by Sun, Gu, Dickinson, Norby et al. (2014). Most relevant in this context is the strong temperature response of g_m (Equation (3)), which leads to a significant deviation of simulated photosynthesis under higher and lower temperatures in the explicit model version. It may be noted that these introduced deviations could be avoided by additionally re-adjusting the activation energy of $V_{cmax,cc}$. This would, however, not be in accordance with the adjustment of the Rubisco kinetic parameters as performed in Bernacchi et al. (2002), where changes in the temperature response of A_n were entirely attributed to K_c and K_c, thereby assuming an unchanged activation energy of V_{cmax}. This approach is also justified theoretically since $V_{cmax,cc}$, the substrate-saturated photosynthesis rate, is by definition unaffected by g_m. We thus argue that the observed changes in the photosynthesis response to temperature are not an artifact.

In this study (as in many others), the assumption was made that Rubisco kinetic parameters as determined in tobacco (i.e. following Bernacchi et al., 2002) adequately represent all PFTs. Recent studies have found notable differences in Rubisco kinetic parameters across plant types and species (Galmés, Hermida-Carrera, Laanisto, & Niinemets, 2016; Walker et al., 2013), and differences in Rubisco properties across plant types and climate conditions, as outlined in Galmés et al. (2016), should be included in future LSMs to better represent the temperature response of photosynthesis across the globe. However, so far no studies have determined Rubisco kinetic parameters on a C_i-basis across PFTs, which could be used in LSMs where g_m is included explicitly. For use in models, it is essential that C_i-based Rubisco kinetic parameters, g_m, as well as their temperature responses, are measured on the same set of leaves (as in Bernacchi et al., 2002), in order to ensure consistency across photosynthetic parameters.

4.2 Implications for water and carbon fluxes at ecosystem level

The adjustments to the photosynthesis model cause modest changes to the CO$_2$ sensitivity of A_{canopy} and G_c. However, the responses depend on the type of g_m model that is implemented. In the Exp version (no light and C_i response), the sensitivity of A_{canopy} and G_c to CO$_2$ depends both on the magnitude of g_m and the climatic conditions, foremost temperature. Strongest effects were found in cold ecosystems with a low g_m (Fl-Hyy), but this response does not hold across all climate types, and the tropical site GF-Guy showed the reverse response and a decreasing responsiveness to eCO$_2$.

The ExpC version (C_i response) does not differ markedly from the Exp version described above for any of the ecosystems investigated here. This indicates that the parameter adjustment is capable of completely offsetting the g_m response to C_i by a concomitant increase in $J_{max,25,Cc}$. This is an important implication for models as our results indicate that a potential response of g_m to C_i is not expected.
to have an impact on the simulated response of carbon and water fluxes to eCO₂ in LSMs.

Contrarily, the Expl version (light response) leads to a stronger CO₂ responsiveness of A_{n,canopy} in all ecosystem types. This effect can best be demonstrated with leaf level simulations under low light conditions, where the CO₂ responsiveness of A_{n,canopy} is higher in the Expl compared to the Imp model, so long as C_i is not saturating (Figure S7). This effect is amplified at the ecosystem level, where a certain fraction of the canopy operates in sub-saturating light conditions regardless of the amount of incident radiation. This potential light response of g_m thus significantly increases the CO₂ sensitivity of all C3 ecosystems investigated here and amplifies the strong positive changes in photosynthetic responsiveness to CO₂ in cold climates, or compensates for the negative response in warmer climates.

The explicit representation of g_m did not change simulations of iWUE_{canopy} (A_{n,canopy}/G_i), which increased at the same rate as in the implicit model version regardless of the g_m model employed. This behavior is a consequence of the implemented stomatal conductance model (Medlyn et al., 2011), which is based on the strong coupling between A_{n} and g_s that causes the C_i/C_a ratio to stay constant regardless of the atmospheric CO₂ concentration. Since most LSMs employ similar g_s models as the one used here (see e.g. Sato, To, Takahashi, & Katul, 2015 for an overview), our results are in that respect likely representative for most LSMs.

Our results do not indicate changes to simulations of C4 photosynthesis when g_m is considered explicitly. This is because the explicit consideration of g_m was compensated by an increase in the PEP-carboxylation rate (V_{pmax25}) in the course of the parameter adjustment. While we acknowledge that we lack sufficient data to confidently parameterize the C4 photosynthesis model employed here (von Caemmerer & Furbank, 1999) at the global scale, we argue that, from a modeling point of view, results would be similar if the simpler and more widely used model by Collatz, Ribas-Carbo, and Berry (1992) (as described in e.g. Bonan et al., 2011) was used, in which case the consideration of g_m would affect the slope of the initial CO₂ response curve in a similar manner as it affected V_{pmax25} in the model of von Caemmerer and Furbank (1999) (see Figure S5).

4.3 | Global implications

Global simulations under anticipated future climate suggest clear and regionally contrasting effects of g_m on GPP and transpiration. The differences between the g_m-implicit and g_m-explicit simulations depend on the projected climate, and on the PFT distribution through vegetation-type differences in the magnitude of g_m. The fact that plant groups with a low g_m showed stronger responses to eCO₂ than those with a high g_m under the same climate generally supports an earlier hypothesis that evergreen species are more likely to have a competitive advantage over other plant types in a high CO₂ world (Niinemets et al., 2011). However, our analysis suggests that this hypothesis does not hold in the tropics, where a low g_m led to a decrease in the photosynthetic CO₂ responsiveness (Figures 5b and 6). However, the actual relevance of g_m in present and future vegetation dynamics must still be investigated using experimental and modeling approaches.

The replacement of the g_m-implicit with a g_m-explicit model caused significant changes to simulations of GPP, ranging from 2.3 Pg C yr⁻¹ in the Exp model and the RCP4.5 scenario to 6.6 Pg C yr⁻¹ in the ExpCL model and the RCP8.5 scenario (Figure S11). About two thirds of this increase were caused by regions north of >30°N, where it mostly occurred in regions covered by boreal forests. Changes of this magnitude are likely large enough to significantly affect the amplitude of atmospheric CO₂ in the high latitudes, hence g_m, which is so far neglected in this context (Forkel et al., 2016; Zeng et al., 2014), should be considered as an additional explanatory factor.

Although our results are broadly consistent with those of Sun, Gu, Dickinson, Norby et al. (2014), our estimates of the GPP response to CO₂ are more moderate. Compared to the 16% increase in the cumulative GPP found by Sun, Gu, Dickinson, Norby et al. (2014), our results (calculated from Figure S13 using Equation (2) in Sun, Gu, Dickinson, Norby et al., 2014) suggest smaller changes in the order of 6% in the Exp model version and the RCP8.5 scenario (but similar values of 15% in the ExpCL scenario). However, these numbers may not be directly comparable due to different simulation periods. With respect to the latitudinal patterns of the g_m effects, our results agree with those by Sun, Gu, Dickinson, Norby et al. (2014), as in both cases, the weakest and strongest effects were found in the tropics and the northern latitudes, respectively. Our simulations (Figure S12) further suggest clear differences in ET between the two model versions, which may have impacts on other physical land surface properties, such as land surface temperature, soil moisture, or sensible heat fluxes.

4.4 | Future model developments and research needs

Our results emphasize that the absolute value of g_m is important for the adjustment of photosynthetic parameters and the associated effects on simulations of photosynthesis. The magnitude of g_m is relatively robust for well-sampled PFTs, and similar to the results of earlier data compilations (Flexas et al., 2008), but more measurements are needed for tropical species, deciduous needle-leaf species, and C4 plants. The parameterization of these plant types is important for large-scale simulations, but their maximum g_m values can at the moment not be confidently parameterized due to a lack of data. In addition, other plant groups such as ferns should be investigated in future LSMs. These plant groups are characterized by a low g_m (Carriqui et al., 2015; Tosens et al., 2016), thus their consideration may have important effects on simulated water and carbon fluxes in models that explicitly simulate g_m.

It is clearly desirable to bring empirical formulations of g_m as used here and in previous studies (Suits et al., 2005; Sun, Gu, Dickinson, Norby et al., 2014) to a more process-based representation. While
existing leaf-level models of g_m (Tholen & Zhu, 2011; Tomás et al., 2013) are likely too complex to be parameterized at large scales, global models of g_m could be readily improved by relating key model parameters (e.g. $g_{m,max25}$) to both anatomical (e.g. cell wall thickness, mesophyll porosity) (Peguero-Pina et al., 2017; Tomás et al., 2013), and biochemical plant traits (e.g. leaf nitrogen content) (von Caemmerer & Evans, 1991; Xue, Ko, Werner, & Tenhunen, 2017; Yamori, Nagai, & Makino, 2011) within a parsimonious model framework that can be applied across plant types.

Currently, one factor hampering future model development is the poor process understanding of g_m, which is associated with the fact that measurements of g_m are challenging (Pons et al., 2009). It is particularly critical that the role of environmental factors such as C_i and light is unresolved. Here, we tested the potential effects of these two drivers on large-scale simulations of carbon and water fluxes. We found that a potential C_i response does not change model predictions, as its effects would be offset by the adjustment of V_{max25} and J_{max25} from their apparent to true values. A potential light response of g_m however, would be amplified at canopy level and lead to a significantly higher responsiveness of A_o to rising atmospheric CO_2 concentrations. Extrapolated to the global scale, such a leaf-level response would significantly increase global carbon uptake and water loss. It is thus highly relevant that potential measurement artifacts are ruled out (Gu & Sun, 2014), and that the recently put forward hypothesis of an apparent light response (Thêroux-Rancourt & Gilbert, 2017) is investigated further, as its existence would mean that the light response of g_m as observed at the leaf level should not be implemented in models.

ACKNOWLEDGEMENTS

We thank Dr. Carl Bernacchi for helpful discussions on the parameter adjustment. SZ was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 647204; QUINCY). MDK (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 647204; QUINCY). MDK (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 647204; QUINCY). MDK (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 647204; QUINCY). MDK (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 647204; QUINCY). MDK (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 647204; QUINCY). MDK (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 647204; QUINCY).

ORCID

Jürgen Knauer https://orcid.org/0000-0002-4947-7067

Martin G. De Kauwe https://orcid.org/0000-0002-3399-9098

Belinda E. Medlyn https://orcid.org/0000-0001-5728-9827

REFERENCES

Bahar, N. H., Hayes, L., Scafaro, A. P., Atkin, O. K., & Evans, J. R. (2018). Mesophyll conductance does not contribute to greater photosynthetic rate per unit nitrogen in temperate compared with tropical evergreen wet-forest tree leaves. *New Phytologist*, 218, 492–505. https://doi.org/10.1111/nph.15031

Barbour, M. M., Evans, J. R., Simonin, K. A., & Caemmerer, S. (2016). Online CO_2 and H_2O oxygen isotope fractionation allows estimation of mesophyll conductance in C4 plants, and reveals that mesophyll conductance decreases as leaves age in both C4 and C3 plants. *New Phytologist*, 210, 875–889.

Bellouin, N., Collins, W. J., Culverwell, I. D., Halloran, P. R., Hardiman, S. C., Hinton, T. J., ... Wiltshire, A. (2011). The HadGEM2 family of Met Office Unified Model climate configurations. *Geoscientific Model Development*, 4, 723–775. https://doi.org/10.5194/gmd-4-723-2011

Berbigier, P., Bonnefond, J.-M., & Meillmann, P. (2001). CO_2 and water vapour fluxes for 2 years above Euroflux forest site. *Agricultural and Forest Meteorology*, 108, 183–197. https://doi.org/10.1016/S0168-1923(01)00240-4

Bernacchi, C. J., Portis, A. R., Nakano, H., von Caemmerer, S., & Long, S. P. (2002). Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. *Plant Physiology*, 130, 1992–1998. https://doi.org/10.1104/pp.008250

Bernacchi, C., Singsaas, E., Pimentel, C., Portis, A. J., & Long, S. (2001). Improved temperature response functions for models of Rubisco-limited photosynthesis. *Plant, Cell & Environment*, 24, 253–259. https://doi.org/10.1111/j.1365-3040.2001.00668.x

Bonal, D., Bosc, A., Ponton, S., Goret, J.-Y., Burban, B., Gros, P., ... Granier, A. (2008). Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana. *Global Change Biology*, 14, 1917–1933. https://doi.org/10.1111/j.1365-2486.2008.01610.x

Bonan, G. B., Lawrence, P. J., Oleson, K. W., Levis, S., Jung, M., Reichstein, M., ... Swenson, S. C. (2011). Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. *Journal of Geophysical Research, Biogeosciences*, 116. https://doi.org/10.1029/2010JG001593

Booth, B. B. J., Jones, C. D., Collins, M., Terotdell, I. J. C., Cox, P. M., Sitch, S., ... Lloyd, J. (2012). High sensitivity of future global warming to land carbon cycle processes. *Environmental Research Letters*, 7, 024002. https://doi.org/10.1088/1748-9326/7/2/024002

Cai, Y.-F., Yang, Q.-Y., Li, S.-F., Wang, J.-H., & Huang, W. (2017). The water-water cycle is a major electron sink in Camellia species when CO_2 assimilation is restricted. *Journal of Photochemistry and Photobiology B: Biology*, 168, 59–66. https://doi.org/10.1016/j.jphotobiol.2017.01.024

Cano, F., Sánchez-Gómez, D., Gascó, A., Rodríguez-Calcerrada, J., Gil, L., Warren, C., & Aranda, I. (2011). Light acclimation at the end of the growing season in two broadleaved oak species. *Photosynthetic Research*, 49, 581–592. https://doi.org/10.1007/s11199-011-0066-3

Carriquí, M., Cabrera, H. M., Conesa, M. À., Coopman, R. E., Douthe, C., ... Granier, A. (2017). Diffusion limitations explain the lower photosynthetic capacity of ferns as compared with angiosperms in a common garden study. *Plant, Cell & Environment*, 38, 448–460. https://doi.org/10.1111/pce.12402

Collatz, G. J., Ribas-Carbo, M., & Berry, J. (1999). Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. *Functional Plant Biology*, 19, 519–538. https://doi.org/10.1071/PP9920519

Delfine, S., Loreto, F., Pinelli, P., Tognetti, R., & Alvino, A. (2005). Isoprenoids content and photosynthetic limitations in rosemary and spearmint plants under water stress. *Agriculture, Ecosystems & Environment*, 106, 243–252. https://doi.org/10.1016/j.agee.2004.10.012

Drouet, C., Dreyer, E., Brendel, O., & Warren, C. R. (2012). Is mesophyll conductance to CO_2 in leaves of three Eucalyptus species sensitive to short-term changes of irradiance under ambient as well as low O_2? *Functional Plant Biology*, 39, 435–448.

Egea, G., González-Real, M. M., Baille, A., Nortes, P. A., & Díaz-Espejo, A. (2011). Disentangling the contributions of ontogeny and water stress to photosynthetic limitations in almond trees. *Plant, Cell & Environment*, 34, 962–979.

Egea, G., Verhoeof, A., & Vidale, P. L. (2011). Towards an improved and more flexible representation of water stress in coupled
a single species. Plant, Cell & Environment, 40, 203–215. https://doi.org/10.1111/pce.12865

Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C., Barton, C. V. M., ... Wingate, L. (2011). Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global Change Biology, 17, 2134–2144. https://doi.org/10.1111/j.1365-2486.2010.02375.x

Misson, L., Limousin, J., Rodríguez, R., & Letts, M. G. (2010). Leaf physiological responses to extreme droughts in Mediterranean Quercus ilex forest. Plant, Cell & Environment, 33, 1898–1910. https://doi.org/10.1111/j.1365-3040.2010.02193.x

Miyazawa, S.-I., Yoshimura, S., Shinnzaki, Y., Maeshima, M., & Miyake, C. (2003). Deactivation of aquaporins decreases internal conductance to CO₂ diffusion in tobacco leaves grown under long-term drought. Functional Plant Biology, 30, 553–564. https://doi.org/10.1071/FP08117

Mizokami, Y., Noguchi, K., Kojima, M., Sakakibara, H., & Terashima, I. (2018). Effects of instantaneous and growth CO₂ levels and abscisic acid on stomatal and mesophyll conductances. Plant, Cell & Environment, 1–13. https://doi.org/10.1111.pce.13484

Montejo, P., Granier, A., & Dreyer, E. (2009). Seasonal time-course of gradients of photosynthetic capacity and mesophyll conductance to CO₂ across a beech (Fagus sylvatica L.) canopy. Journal of Experimental Botany, 60, 2407–2418. https://doi.org/10.1093/jxb/erp093

Niinemets, Ü., Diaz-Dezpeque, A., Flexas, J., Galmés, J., & Warren, C. R. (2009). Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field. Journal of Experimental Botany, 60, 2271–2282. https://doi.org/10.1093/jxb/erp063

Niinemets, Ü., Flexas, J., & Peñuelas, J. (2011). Evergreens favored by higher responsiveness to increased CO₂. Trends in Ecology & Evolution, 26, 136–142. https://doi.org/10.1016/j.tree.2010.12.012

Niinemets, Ü., Cesatti, A., Rodeghiero, M., & Tosens, T. (2006). Complex adjustments of photosynthetic potentials and internal diffusion conductance to current and previous light availabilities and leaf age in Mediterranean evergreen species Quercus ilex. Plant, Cell & Environment, 29, 1159–1178. https://doi.org/10.1111/j.1365-3040.2006.01499.x

Peguero-Pina, J. J., Sisó, S., Flexas, J., Galmés, J., García-Nogales, A., Niinemets, Ü., ... Gil-Pelegrín, E. (2017). Cell-level anatomical characteristics explain high mesophyll conductance and photosynthetic capacity in sclerophyllous Mediterranean oaks. New Phytologist, 214, 585–596. https://doi.org/10.1111/nph.14406

Perez-Martín, A., Michelazzo, C., Torres-Ruiz, J. M., Flexas, J., Fernández, J. E., Sebastián, L., & Díaz-Dezpeque, A. (2014). Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: Correlation with gene expression of carbonic anhydrase and aquaporins. Journal of Experimental Botany, 65, 3143–3156. https://doi.org/10.1093/jxb/eru160

Pień, C., Frak, E., Le Roux, X., & Genty, B. (2002). Effect of local irradiance on CO₂ transfer conductance of mesophyll in walnut. Journal of Experimental Botany, 53, 2423–2430. https://doi.org/10.1093/jxb/er095

Pongratz, J., Reich, C., Radatz, T., & Claussen, M. (2007). Reconstruction of global land use and land cover AD 800 to 1992. https://doi.org/10.1594/WDCC/RECON_LAND_COVER_800-1992

Pons, T. L., Flexas, J., Von Caemmerer, S., Evans, J. R., Genty, B., Ribas-Carbo, M., & Brugnoli, E. (2009). Estimating mesophyll conductance to CO₂: Methodology, potential errors, and recommendations. Journal of Experimental Botany, 60, 2217–2234. https://doi.org/10.1093/jxb/erp081

Rambal, S., Ourcival, J.-M., Joffre, R., Mouillot, F., Nouvellon, Y., Reichstein, M., & Rocheteau, A. (2003). Drought controls over conductance and assimilation of a Mediterranean evergreen ecosystem: Scaling from leaf to canopy. Global Change Biology, 9, 1813–1824. https://doi.org/10.1011/j.1365-2486.2003.00687.x

Reick, C., Radatz, T., Brovkin, V., & Gayler, V. (2013). Representation of natural and anthropogenic land cover change in MPI-ESM. Journal of Advances in Modeling Earth Systems, 5, 459–482. https://doi.org/10.1002/jame.20022

Rogers, A., Medlyn, B. E., Dukes, J. S., Bonan, G., von Caemmerer, S., Dietze, M. C., ... Zaehle, S. (2017). A roadmap for improving the representation of photosynthesis in Earth system models. New Phytologist, 213, 22–42. https://doi.org/10.1111/nph.14283

Sato, H., To, K., Takahashi, A., & Katul, G. G. (2015). Effects of different representations of stomatal conductance response to humidity across the African continent under warmer CO₂ enriched climate conditions. Journal of Geophysical Research: Biogeosciences, 120, 979–988

Scafaro, A. P., Von Caemmerer, S., Evans, J. R., & Atwell, B. J. (2011). Temperature response of mesophyll conductance in cultivated and wild Oryza species with contrasting mesophyll cell wall thickness. Plant, Cell & Environment, 34, 1999–2008. https://doi.org/10.1111/j.1365-3040.2011.02398.x

Schulz, J.-P., Dinemil, L., & Polcher, J. (2001). On the land surface-atmosphere coupling and its impact in a single-column atmospheric model. Journal of Applied Meteorology, 40, 642–663. https://doi.org/10.1175/1520-0450(2001)040<0642:OTLSAC>2.0.CO;2

Singlaas, E., Ort, D., & Delucia, E. (2003). Elevated CO₂ effects on mesophyll conductance and its consequences for interpreting photosynthetic physiology. Plant, Cell & Environment, 27, 41–50. https://doi.org/10.1046/j.0161-8025.2003.01123.x

Suits, N., S. Denning, A. S., Berry, J., Still, C., Kaduk, J., Miller, J., & Baker, I. (2005). Simulation of carbon isotope discrimination of the terrestrial biosphere. Global Biogeochemical Cycles, 19, https://doi.org/10.1029/2003GB002141

Sun, Y., Gu, L., Dickinson, R. E., Norby, R. J., Pallardy, S. G., & Hoffman, F. M. (2014). Impact of mesophyll diffusion on estimated global land CO₂ fertilization. Proceedings of the National Academy of Sciences. 201418075.

Sun, Y., Gu, L., Dickinson, R. E., Pallardy, S. G., Baker, J., Cao, Y., & Winter, K. (2014). Asymmetrical effects of mesophyll conductance on fundamental photosynthetic parameters and their relationships estimated from leaf gas exchange measurements. Plant, Cell & Environment, 37, 978–994.

Tazoe, Y., Von Caemmerer, S., Badger, M. R., & Evans, J. R. (2009). Light and CO₂ do not affect the mesophyll conductance to CO₂ diffusion in wheat leaves. Journal of Experimental Botany, 60, 2291–2301. https://doi.org/10.1093/jxb/erp035

Théroux-Rancourt, G., & Gilbert, M. E. (2017). The light response of mesophyll conductance is controlled by structure across leaf profiles. Plant, Cell & Environment, 40, 726–740. https://doi.org/10.1111/pce.12890

Tholen, D., & Zhu, X.-G. (2011). The mechanistic basis of internal conductance: A theoretical analysis of mesophyll cell photosynthesis and CO₂ diffusion. Plant Physiology, 156, 90–105. https://doi.org/10.1104/pp.111.172346

Tomás, M., Flexas, J., Copolovici, L., Galmés, J., Hallik, L., Medrano, H., ... Niinemets, Ü. (2013). Importance of leaf anatomy in determining mesophyll diffusion conductance to CO₂ across species: Quantitative limitations and scaling up by models. Journal of Experimental Botany, 64, 2269–2281. https://doi.org/10.1093/jxb/ert086

Tosens, T., Nishida, K., Gago, J., Coopman, R. E., Cabrera, H. M., Carriquí, M., ... Ubierna, N., Gandin, A., Boyd, R. A., & Cousins, A. B. (2017). Temperature response of mesophyll conductance in three C₄ species calculated with two methods: δ¹⁸O discrimination and in vitro Vₚ₅max. New Phytologist, 214, 66–80. https://doi.org/10.1111/nph.14359
Urbanski, S., Barford, C., Wofsy, S., Kucharik, C., Pyle, E., Budney, J., ... Munger, J. W. (2007). Factors controlling CO₂ exchange on timescales from hourly to decadal at Harvard Forest. *Journal of Geophysical Research: Biogeosciences*, 112, G02020.

Varone, L., Ribas-Carbo, M., Cardona, C., Gallé, A., Medrano, H., Gratani, L., & Flexas, J. (2012). Stomatal and non-stomatal limitations to photosynthesis in seedlings and saplings of Mediterranean species pre-conditioned and aged in nurseries: Different response to water stress. *Environmental and Experimental Botany*, 75, 235–247. https://doi.org/10.1016/j.envexpbot.2011.07.007

Verma, S. B., Dobermann, A., Cassman, K. G., Walters, D. T., Knops, J. M., Arkebauer, T. J., ... Walter-Shea, E. A. (2005). Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems. *Agricultural and Forest Meteorology*, 131, 77–96. https://doi.org/10.1016/j.agrformet.2005.05.003

Vesala, T., Suni, T., Rannik, Ü., Keronen, P., Markkanen, T., Sevanto, S., ... Hari, P. (2005). Effect of thinning on surface fluxes in a boreal forest. *Global Biogeochemical Cycles*, 19. https://doi.org/10.1029/2004GB002316

von Caemmerer, S., & Evans, J. R. (1991). Determination of the average partial pressure of CO₂ in chloroplasts from leaves of several C₃ plants. *Functional Plant Biology*, 18, 287–305. https://doi.org/10.1071/PP9910287

von Caemmerer, S., & Evans, J. R. (2015). Temperature responses of mesophyll conductance differ greatly between species. *Plant, Cell & Environment*, 38, 629–637. https://doi.org/10.1111/pce.12449

von Caemmerer, S., & Furbank, R. T. (1999). Modeling C₄ photosynthesis. In R. F. Sage, & R. K. Monson (Eds.), C₄ plant biology (pp. 173–211). Canada, ON: Academic Press Toronto.

Walker, B., Ariza, L. S., Kaines, S., Badger, M. R., & Cousins, A. B. (2013). Temperature response of in vivo Rubisco kinetics and mesophyll conductance in *Arabidopsis thaliana*: Comparisons to *Nicotiana tabacum*. *Plant, Cell & Environment*, 36, 2108–2119.

Wang, Y. P. (2003). A comparison of three different canopy radiation models commonly used in plant modelling. *Functional Plant Biology*, 30, 143–152. https://doi.org/10.1071/FP02117

Warren, C. R. (2008). Stand aside stomata, another actor deserves centre stage: The forgotten role of the internal conductance to CO₂ transfer. *Journal of Experimental Botany*, 59, 1475–1487. https://doi.org/10.1093/jxb/erm245

Warren, C., Löw, M., Matyssek, R., & Tausz, M. (2007). Internal conductance to CO₂ transfer of adult *Fagus sylvatica*: Variation between sun and shade leaves and due to free-air ozone fumigation. *Environmental and Experimental Botany*, 59, 130–138. https://doi.org/10.1016/j.envexpbot.2005.11.004

Wohlfahrt, G., Hammerle, A., Haslwanter, A., Bahn, M., Tappeiner, U., & Cernusca, A. (2008). Seasonal and inter-annual variability of the net ecosystem CO₂ exchange of a temperate mountain grassland: Effects of weather and management. *Journal of Geophysical Research: Atmospheres*, 113.

Wong, S., Cowan, I., & Farquhar, G. (1979). Stomatal conductance correlates with photosynthetic capacity. *Nature*, 282, 424–426. https://doi.org/10.1038/282424a0

Xiong, D., Liu, X., Liu, L., Douthe, C., Li, Y., Peng, S., & Huang, J. (2015). Rapid responses of mesophyll conductance to changes of CO₂ concentration, temperature and irradiance are affected by N supplements in rice. *Plant, Cell & Environment*, 38, 2541–2550.

Xue, W., Ko, J., Werner, C., & Tenhunen, J. (2017). A spatially hierarchical integration of close-range remote sensing, leaf structure and physiology assists in diagnosing spatiotemporal dimensions of field-scale ecosystem photosynthetic productivity. *Agricultural and Forest Meteorology*, 247, 503–519. https://doi.org/10.1016/j.agrformet.2017.08.038

Yamori, W., Evans, J. R., & Von Caemmerer, S. (2010). Effects of growth and measurement light intensities on temperature dependence of CO₂ assimilation rate in tobacco leaves. *Plant, Cell & Environment*, 33, 332–345.

Zaehle, S., & Friend, A. (2010). Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates. *Global Biogeochemical Cycles*, 24.

Zeng, N., Zhao, F., Collatz, G. J., Kalnay, E., Salawitch, R. J., West, T. O., Zaehle, S., & Friend, A. (2010). Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates. *Global Biogeochemical Cycles*, 24.

Zhang, S.-B., & Yin, L.-X. (2012). Plasticity in photosynthesis and functional leaf traits of *Mecanopsis horridula* var. *racemosa* in response to growth irradiance. *Botanical Studies*, 53, 335–343.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Knauser J, Zaehle S, De Kauwe MG, et al. Effects of mesophyll conductance on vegetation responses to elevated CO₂ concentrations in a land surface model. *Glob Change Biol*. 2019;25:1820–1838. https://doi.org/10.1111/gcb.14604