Antibiotic resistance of microorganisms in agricultural soils in Russia

N V Danilova, P Yu Galitskaya, S Yu Selivanovskaya

Institute of Environmental Sciences, Kazan Federal University, Kremlevskaya str., 18, 420008, Russia
e-mail: natasha-danilova91@mail.ru

Abstract. Antibiotics are medicines that are widely used in livestock production not only for the prevention and treatment of infectious diseases, but also for accelerating the growth of animals. The application of manure for fertilizing agricultural soils leads to the entry into the soil ecosystem not only of the antibiotics themselves, but also the resistance genes to them. In this study, 30 samples of arable soils were tested for the presence of the \textit{tet}(X) gene, which encodes bacterial resistance to antibiotics of the tetracycline group. Using real-time PCR, it was found that 27 out of 30 soil samples contained \textit{tet}(X). 52% of these samples were heavily contaminated, 34% had a medium level of contamination and 14% were slightly contaminated by the resistance gene \textit{tet}(X).

1. Introduction
Almost immediately after the active use of antibiotics for medical purposes in the treatment of human diseases they were also used on a large scale in agriculture [1–3]. The use of antibiotics in animal husbandry aims to achieve the following objectives: disease prevention and treatment and in addition, in sub-therapeutic doses they are used as growth stimulators for animals [4–6]. From the literature it is known that the use of antibiotics in agriculture is quantitatively superior to their use in medicine [1,7]. Antibiotics are substances that have weak adsorption in the body of the animal, so up to 90% of the used dose of the drug is excreted unchanged or as metabolites in the excrement and urine [8–10]. Antibiotics in large quantities therefore enter into the environment when fertilizing soils with manure from farm animals [4]. Antibiotics and their metabolites are able to remain bioactive in soils for several months [1,11]. The mobility and duration of antibiotic residues in the soil depends not only on the physico-chemical properties of the compounds themselves but also on the type of soil, its pH, climatic conditions [7,11]. Many studies indicate the adverse effects of antibiotics on soil microbial communities: the activity of microorganisms is inhibited, changes occur in the ratio of the bacteria and fungi counts, the natural cycle of the elements is disrupted [8,12,13]. All this can ultimately affect the quality and fertility of agricultural soils and harm agricultural production.

In addition to antibiotic themselves, manure contains intestinal microorganisms that are carriers of antibiotic-resistant genes[14]. Therefore, another danger of using manure from animals treated with antibiotics is the spread of resistance genes from the intestinal microflora of livestock to the microorganisms of soil ecosystems [15,16]. Often antibiotic resistance genes are stored in a bacterial cell in the so-called mobile genetic elements – plasmids, transposons, integrons [17]. In the process of
horizontal transfer antibiotic-resistant genes can be rapidly transferred from the donor bacteria to the recipient bacteria, thereby leading to an increase in antibiotic-resistant soil microbial communities [18]. Interestingly, antibiotic resistance genes persist in soils for many years, whereas antibacterial drugs themselves are destroyed within a few months [19].

Recently, the spread of antibiotics and resistance genes in agricultural soils has been of great scientific interest, since it concerns the issue of public health. Genes resistant to antibiotics are able to enter the human body through the food chain (unwashed root crops) and in future they could subsequently hamper the treatment of infectious diseases [20]. Data about agricultural soil pollution by antibiotic resistance genes in Russia is currently not available.

In the present study, 30 samples of agricultural soils selected around the city of Kazan (Republic of Tatarstan) were examined for contamination by the \(\text{tet}(X) \) resistance gene, which is responsible for the destruction of tetracyclines in the bacterial cell. Antibiotics of the tetracycline group are the most commonly used drugs in the animal husbandry of Russia. The Republic of Tatarstan occupies one of the leading places in the agriculture of the Russian Federation, therefore it is important to assess the extent of the spread of antibiotic resistant genes in the arable lands of this region.

2. Material and methods

30 soil samples were taken from cropland around the city of Kazan (N 55°47′, E 49°06′) (Russia). The sampling plots were situated in areas with high agricultural activity (table 1). Soil samples were taken from a depth of 0–20 cm, and cleaned of roots. Immediately after delivery to the laboratory the level of respiratory activity, microbial biomass, soluble organic carbon content and the particle size distribution were estimated as initial parameters of soil samples. To enable further DNA extraction, samples were stored at – 80°C.

The respiratory activity (RA) was assessed according to ISO 14240–1 [21]. The level of microbial biomass (MB) was determined using the method of substrate–induced respiration (ISO 14240–1) [21]. The dissolved organic carbon (DOC) content was determined according to ISO 14235:1998 [22] by a spectrometric method. The particle size distribution of the soil samples was measured on a Microtrack Blue Wave Sample Dell Delivery Controller laser particle analyzer using the Microtrack Blue Wave according to ISO 13320:2009 [23]. Prior to measurement, soil samples were dried and ground to a fine particle state. Extraction of DNA from soil samples was carried out using the FastDNA Spin Kit for Soil kit (MP Bio, Germany) according to the manufacturer’s instructions. DNA purification was carried out using the QIAquick PCR Purification Kit (Quiagen, Germany) according to the manufacturer’s instructions. Detection of the tetracycline \(\text{tet}(X) \) resistance gene was carried out on the real–time cycler using the following primers: \(\text{tet}(X) \)–F GAAAGAGACAACGACCGAGAG and \(\text{tet}(X) \)–R ACACCCATTTGGAAGGCTAAG [24]. The MasterMix reaction mixture contained the following components: DNA template – 1 µl, forward and reverse primers (10 µM) – 0.5 µl each, dNTPs (10 µM) – 2.5 µl, 10x Buffer with SYBR Green – 2.5 µl, MgCl\(_2\) (25 µM) – 2.5 µl, Syn Taq polymerase (5 U µl-1) – 0.2 µl and ddH\(_2\)O – 15.3 µl. Amplification was performed on a BioRadCFX–96 cycler (BioRad, Munich, Germany) using the following temperature program: primary denaturation at 94°C for 3 minutes, then 39 three–step cycles at 94°C for 45 seconds, at 55°C for 45 seconds, and at 72°C for 45 seconds. The level of contamination of soil samples was determined based on the number of cycles of \(C_T \) necessary for fluorescence to reach the threshold level.
Table 1. Soil samples investigated

Sample number	Coordinates of the soil selection site (N, E)	Information on manure treatment of the soil
1	55.880665, 48.630881	cow and chicken manure
2	55.885069, 48.595461	cow and chicken manure
3	55.867224, 48.620585	chicken manure
4	55.857325, 48.625194	chicken manure
5	55.863052, 48.626243	chicken manure
6	55.863786, 48.585559	–
7	55.869621, 48.697672	chicken manure
8	55.867390, 48.670235	chicken manure
9	55.886093, 48.665341	–
10	55.937169, 48.749259	chicken manure
11	55.941670, 48.776962	chicken manure
12	55.865529, 48.817045	–
13	55.900259, 48.932387	chicken and turkey manure
14	55.893049, 48.866680	chicken and turkey manure
15	55.966047, 49.163583	–
16	55.895389, 49.288864	cow manure
17	55.798431, 49.384178	goose manure
18	55.820842, 49.459933	chicken and cow manure
19	55.815556, 49.520443	chicken and cow manure
20	55.802975, 49.580727	chicken manure
21	55.774133, 49.655554	chicken manure
22	55.791594, 49.614571	chicken manure
23	55.792456, 49.586793	chicken manure
24	55.559365, 49.276804	chicken manure
25	55.618271, 49.130810	chicken manure
26	55.553450, 49.203348	chicken manure
27	55.627570, 49.996571	–
28	55.062182, 50.952912	cow manure
29	55.175664, 50.781207	cow manure
30	55.021046, 51.038493	cow manure

3. Results and discussion
The mobility and bioavailability of antibiotics in soil depends on conditions that prevail in the soil (soil type, pH, temperature) [1]. So these factors may influence the development of antibiotic resistance in soil microbial communities under the antibiotic pressure. Furthermore, the fate of antibiotics in the soil may depend on the level of activity of microorganisms, since high activity of microorganisms promotes faster biodegradation, and hence less risk of genes [17]. In addition, the length of time that introduced organisms carrying antibiotic resistance can persist in the soil varies with temperature, moisture, pH, and the indigenous community present [17].

Therefore on the first stage of the study, the agrochemical and microbiological parameters of the investigated soils were analyzed. The measurement results are shown in table 2.
Estimation of dissolved organic carbon (DOC) content in soils showed that 13 of the 30 samples were of low DOC level (samples 1, 2, 5, 12–14, 19, 20, 22–24, 26, 28), 9 samples were of medium DOC level (samples 3, 6, 10, 11, 16, 25, 27, 29, 30) and 8 – of high DOC level (4, 7–9, 15, 17, 18, 21).

The results of the granulometric composition determination of the soils tested showed that the particle size type distribution of 20% of the soil samples was estimated to be sandy loam and 80% of the soil samples – to be silty loam. It is known that in clay soils the antibiotic binds and is inaccessible to microorganisms [3,7]. Studies have shown that under a broad range of environmental conditions tetracyclines (tetracycline, chlortetracycline, and oxytetracycline) can adsorb strongly to clay particles [18]. So among the arable soils investigated soils that were closest to the «sandy loam» type (samples 8, 9, 14, 16, 25) were the most predisposed to dissemination of antibiotic resistance.

As can be seen from the table 2 the arable soils tested characterized by different levels of RA and MB. Thus, these parameters ranged between 0.80 and 5.28 CO₂-C mg g⁻¹ h⁻¹ and between 263.51 and 935.77 µg kg⁻¹, respectively. Since the high microbial activity affects the rate of antibiotic

Sample number	DOC, mg g⁻¹	Soil type	RA, CO₂-C mg g⁻¹ h⁻¹	MB, mg kg⁻¹
1	0.07	Silty loam	1.27	281.52
2	0.09	Silty loam	1.92	264.82
3	0.11	Silty loam	1.73	263.51
4	0.44	Silty loam	1.23	240.4
5	0.05	Silty loam	1.19	382.2
6	0.14	Silty loam	0.80	298.06
7	0.45	Silty loam	0.96	280.97
8	0.43	Sandy loam	2.48	442.16
9	0.30	Sandy loam	2.39	479.68
10	0.11	Silty loam	2.90	578.88
11	0.12	Silty loam	2.09	557.48
12	0.09	Silty loam	1.25	373.33
13	0.04	Sandy loam	2.29	323.67
14	0.06	Sandy loam	1.17	314.52
15	0.24	Silty loam	1.88	392.00
16	0.13	Sandy loam	2.32	334.96
17	0.27	Silty loam	2.51	450.09
18	0.25	Silty loam	2.07	368.70
19	0.02	Silty loam	2.02	466.97
20	0.09	Silty loam	1.70	476.78
21	0.21	Silty loam	1.77	361.86
22	0.04	Silty loam	2.57	367.99
23	0.08	Silty loam	1.96	402.28
24	0.04	Silty loam	2.43	642.09
25	0.11	Sandy loam	2.06	706.22
26	0.09	Silty loam	2.66	635.13
27	0.15	Silty loam	3.13	608.00
28	0.06	Silty loam	4.61	706.84
29	0.11	Silty loam	3.49	732.85
30	0.11	Silty loam	3.54	935.77
biodegradation, soils with a low level of microbial activity (samples 1–7, 12, 14, 20, 21) may be susceptible to the spread of resistant genes [18].

Many studies indicate a link between the application of manure contaminated by antibiotics and the presence of antibiotic resistance in treated arable soils [25–27]. So, in the next stage the contamination of the soils by the tet(X) gene was analyzed by real–time PCR. The results are shown in table 3. To assign a level of contamination to arable lands by the tet(X) resistance gene, the CT values obtained by real–time PCR reaction were ranked in three categories. Score 0 was assigned to the samples without contamination by tet(X) gene, scores 1, 2 and 3 were given to samples with low, middle and high contamination, respectively. As can be seen from the table 3, 27 of the 30 agricultural soils tested contained the tetracycline resistant gene tet(X). Out of 27 contaminated agricultural soils, 52% were heavily polluted, 34% showed medium level pollution and 14% were slightly polluted by tet(X) gene. According to the literature a high abundance of tet(X) gene has been found in manure and manure-treated soils by other authors [28–31].

Table 3. Contamination of soil samples by tet(X) gene

Sample number	C_r value	Contamination level by tet(X) gene	Sample number	C_r value	Contamination level by tet(X) gene
1	25.78	3^d	16	25.65	3
2	28.38	0^a	17	25.42	3
3	25.29	3	18	26.45	2
4	25.73	3	19	27.59	1
5	25.51	3	20	26.55	2
6	25.87	3	21	26.61	2
7	26.86	2^c	22	26.08	2
8	28.38	0	23	27.42	1
9	24.61	3	24	26.33	2
10	23.64	3	25	32.11	0
11	25.39	3	26	26.91	2
12	25.61	3	27	26.02	2
13	27.11	1^b	28	26.19	2
14	27.64	1	29	25.45	3
15	25.55	3	30	24.84	3

Contamination of soil samples by tet(X) gene:

- a – no contamination
- b – low contamination
- c – middle contamination
- d – high contamination

Despite the absence of any kind of manure treatments for soil samples 6, 9, 12, 15, 27 for at least the last 10 years, these soils had middle and high levels of pollution by resistance gene tet(X). Probably the presence of antibiotic resistance in these soils can be associated with the previous practice of fertilizing by manure from tetracycline medicated animals. Many studies also point to the fact that antibiotic resistant genes are persist in agricultural soil for a long time even when there is no continued application of manure [32–34].

In terms of the manure type that leads to the greatest antibiotic resistance gene contamination, chicken manure was the most problematic. Previously, we demonstrated that chicken manure is more polluted by the tet(X) resistance gene compared with cow, pig, goat and rabbit manures [35].
Conclusion
This study has effectively demonstrated that the agricultural soils sampled around Kazan are at potential risk of antibiotic resistance dissemination because of their agrochemical and biological properties. Among the soils investigated, more than 90% were contaminated by the tetracycline resistant gene tet(X). The results obtained confirm the data that antibiotic resistant genes spread in the soil through the introduction of manure and remain in the soil despite the termination of the practice of annual manure spreading.

Acknowledgement
The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University. This work was supported by a subsidy allocated to Kazan Federal University from Russian Foundation for Basic Research, project No 16–04–00443.

References
[1] Sarmah A, Meyer M and Boxall A 2006 A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment Chemosphere 65 725–759
[2] Kemper N. 2008 Veterinary antibiotics in the aquatic and terrestrial environment Ecol. Indic. 8 1–13
[3] Thiele-Bruhn S. 2003 Pharmaceutical antibiotic compounds in soils - A review J. Plant Nutr. Soil Sci. 166 145–167
[4] Du L and Liu W. 2012 Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review Agron. Sustain. Dev. 32 309–327
[5] Jechalke S, Heuer H, Siemens J, Amelung W and Smalla K 2014 Fate and effects of veterinary antibiotics in soil Trends Microbiol. 22 536–545
[6] Caniça M, Manageiro V, Jones-Dias D, Clemente L, Gomes-Neves E, Poeta P, Dias E and Ferreira E 2015 Current perspectives on the dynamics of antibiotic resistance in different reservoirs Res. Microbiol. 166 594–600
[7] Halling-Sørensen B, Nielsen SN, Lanzky PF, Ingerslev F, Holten Lutzhoft HC and Jorgensen SE 1998 Occurrence, fate and effects of pharmaceuticals substance in the environment - A review Chemosphere 36 357–393
[8] Thiele-Bruhn S and Beck IC 2005 Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass Chemosphere 59 457–465
[9] Song L, Li L, Yang S, Lan J, He H, McElmurry SP and Zhao Y 2016 Sulfamethoxazole, tetracycline and oxytetracycline and related antibiotic resistance genes in a large-scale landfill, China Sci. Total Environ. 551–552, 9–15
[10] Gao M, Song W, Zhou Q, Ma X and Chen X 2013 Interactive effect of oxytetracycline and lead on soil enzymatic activity and microbial biomass Environ. Toxicol. Pharmacol. 36 667–674
[11] Selvam A, Xu D, Zhao Z and Wong J 2012 Fate of tetracycline, sulfonamide and fluoroquinolone resistance genes and the changes in bacterial diversity during composting of swine manure Bioreasour. Technol. 126 383–390
[12] Kotzerke A, Sh arma S, Schauss K, Heuer H, Thiele-Bruhn S, Smalla K, Wilke BM and Schlöter M 2008 Alterations in soil microbial activity and N-transformation processes due to sulfadiazine loads in pig-manure Environ. Pollut. 153 315–322
[13] Böhme L, Langer U and Böhme F 2005 Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments Agric. Ecosyst. Environ. 109 141–152
[14] Aydin S, Ince B and Ince O 2015 Development of antibiotic resistance genes in microbial communities during long-term operation of anaerobic reactors in the treatment of pharmaceutical wastewater Water Res. 83 337–344
[15] Tang X et al 2015 Effects of long-term manure applications on the occurrence of antibiotics
and antibiotic resistance genes (ARGs) in paddy soils: Evidence from four field experiments in south of China. Soil Biol. Biochem. 90: 179–187.

[16] Alonso A, Sánchez P and Martínez JL 2001 Environmental selection of antibiotic resistance genes Environ. Microbiol. 3: 1–9

[17] Chee-Sanford JC, Mackie RI, Koike S, Krapac IG, Lin Y, Yannarell AC, Maxwell S and Aminov, RI 2009 Fate and Transport of Antibiotic Residues and Antibiotic Resistance Genes J. Environ. Qual. 38: 1086–1108

[18] Heuer H, Schmitt H and Smolla K 2011 Antibiotic resistance gene spread due to manure application on agricultural fields Curr. Opin. Microbiol. 14: 236–243

[19] Fang H, Han Y, Yuanming Y, Xiong P and Yunlong Y 2014 Variations in dissipation rate, microbial function and antibiotic resistance due to repeated introductions of manure containing sulfadiazine and chlortetracycline to soil Chemosphere 96: 51–56

[20] Wang F, Qiao M, Chen Z, Su J and Zhu Y 2015 Antibiotic resistance genes in manure-amended soil and vegetables at harvest J. Hazard. Mater. 299: 215–221

[21] ISO 14240–1:1997 1997 Soil quality–Determination of soil microbial biomass – Part 1: Substrate–induced respiration method

[22] ISO 14235:1998 1998 Soil quality–Determination of organic carbon by sulfochromic oxidation

[23] ISO 13320:2009 2009 Particle size analysis – Laser diffraction methods

[24] Zhang W, Huang M, Qi F, Sun P and Van Ginkel SW 2013 Effect of trace tetracycline concentrations on the structure of a microbial community and the development of tetracycline resistance genes in sequencing batch reactors Bioresour. Technol. 150: 9–14

[25] Sharma VK, Johnson N, Cizmas L, Mcdonald TJ and Ki H 2016 A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes Chemosphere 150: 702–714

[26] Yoon S and Kim C 2013 Quantification of residual antibiotics in cow manure being spread over agricultural land and assessment of their behavioral effects on antibiotic resistant bacteria Chemosphere 182: 771–780

[27] Tien Y, Li B, Zhan T, Scott A, Murray R, Sabourin L, Marti R and Topp E 2017 Impact of dairy manure pre-application treatment on manure composition, soil dynamics of antibiotic resistance genes and abundance of antibiotic-resistance genes on vegetables at harvest Sci. Total Environ. 581–582: 32–39

[28] Ageros Y and Jensen L 2002 The identification of a tetracycline resistance gene tet (M), on a Tn916-like transposon, in the Bacillus cereus group FEMS Microbiol. Lett 214: 251–256

[29] Asai T, Kojima A, Harada K and Ishihara K 2005 Correlation between the Usage Volume of Veterinary Therapeutic Antimicrobials and Resistance in Escherichia coli Isolated from the Feces of Food-Producing Animals in Japan Jpn. J. Infect. Dis. 58: 369–372

[30] Srinivasan V, Nam H and Oliver SP 2008 Distribution of Tetracycline and Streptomycin Resistance Genes and Class I Integrons in Enterobacteriaceae Isolated from Dairy and Nondairy Farm Soils Microb. Ecol. 55: 184–193

[31] Wu N, Qiao M, Zhang B, Cheng WD and Zhu YG 2010 Abundance and diversity of tetracycline resistance genes in soils adjacent to representative swine feedlots in China Environ. Sci. Technol. 44: 6933–6939

[32] Peng S, Feng Y, Wang Y, Guo X, Chu H and Lin X 2017 Prevalence of antibiotic resistance genes in soils after continually applied with different manure for 30 years J. Hazard. Mater. 340: 16–25

[33] Zhao X, Wang J, Zhu L, Ge W and Wang J 2017 Environmental analysis of typical antibiotic-resistant bacteria and ARGs in farmland soil chronically fertilized with chicken manure Sci. Total Environ. 593–594: 10–17

[34] Cheng W, Li J, Wu Y, Xu L, Su C, Qian Y, Zhu YG and Chen H 2016 Behavior of antibiotics and antibiotic resistance genes in eco-agricultural system: A case study J. Hazard. Mater. 304: 18–25
[35] Danilova N, Galitskaya P and Selianovskaya S 2016 Multiresistance of bacteria to veterinary antibiotics in dung and manure samples of farm animals. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauk. 158 507–516