MicroRNAs coordinately regulate protein complexes

Steffen Sass†, Sabine Dietmann†, Ulrike Burk‡, Simone Brabletz‡, Dominik Lutter†, Andreas Kowarsch†, Klaus F Mayer†, Thomas Brabletz‡, Andreas Ruepp†, Fabian Theis†* and Yu Wang†,*

Abstract

Background: In animals, microRNAs (miRNAs) regulate the protein synthesis of their target messenger RNAs (mRNAs) by either translational repression or deadenylation. miRNAs are frequently found to be co-expressed in different tissues and cell types, while some form polycistronic clusters on genomes. Interactions between targets of co-expressed miRNAs (including miRNA clusters) have not yet been systematically investigated.

Results: Here we integrated information from predicted and experimentally verified miRNA targets to characterize protein complex networks regulated by human miRNAs. We found striking evidence that individual miRNAs or co-expressed miRNAs frequently target several components of protein complexes. We experimentally verified that the miR-141-200c cluster targets different components of the CtBP/ZEB complex, suggesting a potential orchestrated regulation in epithelial to mesenchymal transition.

Conclusions: Our findings indicate a coordinate posttranscriptional regulation of protein complexes by miRNAs. These provide a sound basis for designing experiments to study miRNA function at a systems level.

Background

Hundreds of microRNA (miRNA) genes have been identified in mammalian genomes [1]. Each miRNA may repress the translation of, and/or destabilize numerous messenger RNAs (mRNAs). Moreover, miRNA genes are frequently organized into genomic clusters [2-4], which are transcribed from a common promoter as polycistronic primary transcripts, and whose coordinate functional roles remain to be investigated [5]. Recent large-scale, quantitative proteomics studies have demonstrated that some miRNAs probably participate in fine-tuning the production of their targets, both at the messenger RNA and the protein level [6,7]. However, the overall effect of miRNAs on their target proteins is often intriguingly modest. It remains unclear how these marginal effects can convey the necessary regulatory information for proper cellular activities [8].

We applied a network-based strategy to systematically map coordinate regulatory interactions of single and co-expressed (including clustered) miRNAs. Previous works [9-12] have demonstrated that the targets of single miRNAs are more connected in the protein-protein interaction network than expected by chance. The use of protein-protein interaction (PPI) data provides only a rough overall picture of miRNA target interactions. It is not easy to evaluate the regulatory effects of miRNAs on such large-scaled PPI networks. Instead, as the basic functional units of the cellular machinery, experimentally verified protein complexes are natural subsets of PPI networks for investigating miRNA target interactions. Several components of protein complexes may be regulated simultaneously by a single miRNA or by several co-expressed miRNAs. Thus, although the regulation of protein synthesis is marginal for some of the miRNA targets, a cumulative effect for substantial phenotypic consequence may be achieved for those targets, which are members of the same protein complexes.

To test this hypothesis, we developed a robust computational framework to select protein complexes, of which several distinct components are simultaneously regulated by either single miRNAs or co-expressed miRNAs.
We applied the framework to characterize the protein complex networks, which consist of 722 experimentally verified protein complexes and protein-protein interactions. These protein complex networks are regulated by 677 miRNAs and 154 known miRNA clusters in humans. We find that our framework has several advantages over previous analyses of miRNA targets and their interactions. First, high-confidence miRNA target predictions allowed us to characterize the overall functional spectrum of miRNA-regulated protein complexes. Second, we demonstrated that miRNAs, which target the same protein complexes, are frequently co-expressed. Finally, we experimentally verified that the miR141-200c cluster simultaneously targets several protein components of the CtBP/ZEB complex, implying an efficient regulation of a protein complex by a cluster of miRNAs.

Methods

miRNA targets and target interaction networks
Recent studies showed a high reliability of miRNA targets predicted by TargetScan [7]. Therefore we selected the targets for all human miRNAs listed in the TargetScan database. We obtained a set of 677 miRNAs and 18,880 unique target proteins. The resulting miRNA-protein network contained 224,316 interactions. To predict miRNA targets based on PAR-CLIP data, the cross-link-centered regions (CCRs) from combined AGO-PAR-CLIP libraries [13] were used. Target site prediction for all CCRs was done with the program RNAhybrid [14] with the default parameters. From the resulting list we filtered all predictions with a p-value below 0.02 and an energy score below the 25% quantile. This resulted in a final miRNA-mRNA list of 50,160 predicted interactions.

Association of protein complexes with miRNA target sets - test for statistical significance
We used the Fisher’s exact test for assigning the significance of the association with protein complexes for each miRNA target set. The hypergeometric P-value is given as the probability under which we could expect at least NT miRNA targets by chance in a protein complex, if we randomly select NT (total number of miRNA targets) proteins out of the total set of proteins N consisting of all miRNA targets NT and all proteins in complexes NC. P-values were corrected for multiple testing of 677 miRNAs using the Holm-Bonferroni correction method. We assigned the association of complexes and miRNA clusters by using the union of targets from all miRNAs within one cluster. Here, we tested for significant overlaps of these unified sets between the components of a complex in the same way as for single miRNA target sets.

Enrichment of biological processes
In order to test for significant enrichment of biological functions based on Gene Ontology (GO) [15] and KEGG [16] pathways within the set of targets in protein complexes, the R package GOstats [17] was used. A set of targeted components of 722 targeted protein complexes was extracted and compared to a set of proteins which consisted of all components of these complexes.

Comparison of fold change distributions
We used fold change measurements after over-expression of selected miRNAs from recent proteomics studies [6,7]. We selected for every of these miRNAs the protein complexes consisting of at least one of its targets. A set of components of these protein complexes was built. Within this set, we compared the fold changes of components that are targets of the specific miRNA with the fold changes of the non-target components. This was done by performing a one sided Kolmogorov-Smirnov test for each of the miRNAs that were investigated in the proteomics studies.

Cell culture
PANC-1 cells were purchased from ATCC (Manassas, VA, USA). PANC-1 stable clones for miR-141 or miR-200c were obtained with sequence verified pRetroSuper-miRNA plasmids. Cell lines were cultivated under standard conditions in DMEM + 10% fetal bovine serum + 2 μg/ml puromycin. For transient knock down PANC-1 were transfected with siRNA targeting ZEB1 (r(aga uga uga aug cga guc g)d(TT)), CtBP2 (1: r(cuuggaucagc-gucaua)d(TT), 2: r(cuuggauacugauugga)d(TT)) or GFP (r(gcu acc ugg aug ggc ad)g(TT)). All transfections and reporter assays were performed as described previously [18].

Specific assay for miRNA modulation
RNA from cultured cells was extracted using the mirVana™ miRNA Isolation Kit (Ambion, Austin, TX, USA). mRNA expression values were measured in triplicate using the Roche LightCycler 480 and normalized to b-actin expression as a housekeeping control. Expression values were calculated according to ref.[19].

Immunoblots
were performed using modified standard protocols. In brief, whole cell extracts were made of the cells in Triple Lysis Buffer [50 mM Tris-HCl pH8, 150 mM NaCl, 0,02% (w/v) NaN3, 0,5% (w/v) NaDeoxycholate, 0,1% SDS, 1% (v/v) NP40]. Extracts (10 μg/lane) were separated on a 10% SDS-polyacrylamide gel, blotted onto a PVDF membrane, and incubated with the indicated primary antibodies diluted in blocking buffer (5% nonfat dry milk) over night at 4°C. After washing and
incubation with peroxidase-coupled species-specific secondary antibodies, the signal was developed using SuperSignal West PICO Chemiluminescent Substrate (Perbio Science, Bonn, Germany) according to manufacturer’s protocol. CtBP2, CDYL, RCOR3, β-actin and ZEB1 were immunodetected with the following primary antibodies: anti-CtBP2 mouse monoclonal antibody (1:8.000, BD Transduction Laboratories™, Franklin Lakes, NJ, USA), anti-CDYL rabbit polyclonal antibody (1:500, Abcam, Cambridge, UK), anti-RCOR3 rabbit polyclonal antibody (1:1000Abcam, Cambridge, UK) anti-β-actin mouse monoclonal antibody (1:5.000, Sigma-Aldrich Chemie GmbH, Munich, Germany). The anti-ZEB1 rabbit polyclonal antibody (1:20.000) was a gift of D.S. Darling, University of Louisville, Louisville, KY, USA.

Results
In order to identify protein complexes of which several distinct components are coordinately regulated by miRNAs, we assembled a miRNA-protein target network for 677 human miRNAs and 18,880 targets which are listed in the TargetScan http://www.targetscan.org database. The targets were mapped to a non-redundant set of 2,177 experimentally verified protein complexes from the CORUM database [20]. We compiled the protein complexes, which are more significantly associated with the target sets of miRNAs than expected for random target lists based on Fisher's exact test (see Methods). The analysis resulted in 722 miRNA-regulated protein complexes (P-value < 0.05; Fisher's exact test with Bonferroni correction for multiple testing), which contained at least two targets of an individual miRNA. The entire list of miRNA-regulated protein complexes can be found in Additional file 1, Table S1 online. Furthermore, 140 protein complexes were significantly regulated by miRNA clusters (P-value < 0.05, Fisher’s exact test with Bonferroni correction for multiple testing). The list of protein complexes regulated by clusters of miRNA can be found in Additional file 2, Table S2. The highest ranked complexes are listed in Table 1 and Table 2.

Complex	Description	miRNA	P-value
corum_3028	TGF-beta receptor II-TGF-beta receptor I-TGF-beta3 complex	hsa-miR-665	2.00326E-05
corum_1810	ITGA4-PXN-GT1 complex	hsa-miR-199a-5p	3.26913E-05
corum_4	ACTR-p300-PCAF complex	hsa-miR-338-5p	3.65869E-05
corum_642	CtBP complex	hsa-miR-129-5p	4.60618E-05
corum_642	CtBP complex	hsa-miR-548f	5.10388E-05
corum_3754	CREBBP-SMAD3-SMAD4 pentameric complex	hsa-miR-1284	7.21639E-05
corum_3753	CREBBP-SMAD2-SMAD4 pentameric complex	hsa-miR-1264	8.24908E-05
corum_2377	ITGA2b-ITGB3-CD47-SRC complex	hsa-miR-149	8.78087E-05
corum_2760	SMAD3-SMAD4-FOXO3 complex	hsa-miR-1284	9.18449E-05

Functional spectrum of miRNA-regulated protein complexes
We next analyzed the spectrum of functions covered by our set of miRNA-regulated protein complexes. We identified the biological processes (Gene ontology categories [15]) and pathways representing the molecular interactions and reaction networks (KEGG [16]), which are enriched within the total set of 810 miRNA-targeted components of the protein complexes (Additional file 3, Table S3 and Additional file 4, Table S4 online). In all, as shown in Figure 1a, the miRNA-regulated protein complexes are mainly involved in regulation of RNA metabolic process, regulation of transcription and chromatin modification. Conversely, house-keeping functions, such as translational elongation and ATP synthesis coupled electron transport are underrepresented. The results confirm earlier investigations [21] showing that miRNAs less frequently target genes involved in essential cellular processes. Interestingly, there is an overrepresentation of genes involved in the G1 phase of mitotic cell cycle, while genes that are involved in the S phase and the M/G1 transition of mitotic cell cycle are underrepresented. Experimental evidence has already been reported for the regulation of signal transduction in several metazoan species [22-26] and the cell cycle [27,28] by miRNAs. The regulation of the cell cycle by miRNAs is further supported by strong correlations of miRNA over-expression with different types of cancer [29].

These observations correspond with the overrepresentation of targeted genes contained in pathways from KEGG (see Figure 1b). A high overrepresentation of genes could be observed in "Pathways in cancer". Also many signaling pathways are overrepresented, namely Wnt signaling, TGF-beta signaling, Insulin signaling, Notch signaling, ErbB signaling, MAPK signaling, T and B cell receptor signaling and Chemokine signaling. Genes involved in house-keeping functions were underrepresented also in KEGG pathways, namely RNA polymerase, RNA transport, Proteasome, Oxidative phosphorylation and Ribosome.
Validating predicted miRNA targets in protein complexes

Two recent proteomics studies measured the changes in synthesis of proteins in response to miRNA over-expression or knockdown on a genome-wide scale for selected miRNAs [6,7]. We incorporated the data of these studies in order to validate our predictions. To determine the impact of protein downregulation by miRNAs, which have targets in protein complexes, the level of downregulation of targeted components and non-targeted components was compared. We considered both significantly and insignificantly regulated complexes, since the amount of significantly regulated complexes for the examined miRNAs in the proteomics study is too low to provide statistical significance. The negative fold changes of the targeted components were significantly higher than the negative fold changes of the non-targeted components (see Table 3 and Figure 2) for every analyzed miRNA. For example, our data showed that the LARC (LCR-associated remodeling) complex [30] has two (out of 19) components, which are computationally predicted targets of let-7. These two components, namely DPF2 (Zinc finger protein ubi-d4) and SMARCC1 (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin

Complex	Description	Cluster	P-value
corum_3028	TGF-beta receptor II-TGF-beta receptor I-TGF-beta3 complex	hsa-miR-493-665	0.000079949
corum_3753	CREBBP-SMAD2-SMAD4 pentameric complex	hsa-miR-1912-1264	0.000095073
corum_3059	ITGA11-ITGB1-COL1A1 complex	hsa-miR-29a-29b	0.00101944
corum_3059	ITGA11-ITGB1-COL1A1 complex	hsa-miR-29c-29b	0.00101944
corum_1080	P-TEFb2 complex	hsa-miR-224-452	0.00168046
corum_3054	MAD1-mSin3A-HDAC2 complex	hsa-miR-1912-1264	0.00316828
corum_3054	MAD1-mSin3A-HDAC2 complex	hsa-miR-510-514	0.00316828
corum_422	Beta-dystroglycan-caveolin-3 complex	hsa-miR-3671-101	0.00330472
corum_2436	ITGAV-ITGB1 complex	hsa-miR-513c-513b	0.00333788

Figure 1 Functional analysis and validation of miRNA-regulated protein complexes. Functional analysis: Enrichment of Gene Ontology (GO) terms and KEGG pathways in the target subunits of protein complexes. The size of the bars for each term indicates the negative logarithm of the P-value. Only meaningful and non-redundant terms were selected for illustration. See Additional file 3 &4, Table S3&S4 for a complete and detailed list of significant terms.
subfamily C member 1) were modestly down-regulated (fold changes of -0.38, and -0.2, respectively), when let-7b was over-expressed in HeLa cells [7]. LARC binds to the DNase hypersensitive 2 site in the human β-globin locus control region (LCR) and transactivates β-like globin genes [30]. By simultaneously down-regulating two components of the LARC complex, let-7b might contribute to the overall transcriptional repression of the human β-globin locus.

PAR-CLIP (Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immuno-precipitation) is a powerful tool to detect segments of RNA bound by RNA-binding proteins (RBPs) and ribonucleoprotein complexes (RNPs). We corroborated the miRNA target sites identified by PAR-CLIP [13] with the proteomics data [6,7]. 55% of the proteins with miRNA targets sites predicted based on PAR-CLIP data were moderately down-regulated (log2-fold change < -0.1). 413 protein complexes contained miRNA target sites in at least two subunits (Additional file 5, Table S5 online). Interestingly, of the 5,185 unique proteins with miRNA target sites identified based on PAR-CLIP data, 607 (12%) are members of protein complexes (with at least two distinct targets of one miRNA in the same protein complex). For comparison, the manually curated collection of human protein complexes in the CORUM database covers 2,780 unique proteins (2% of UniProt proteins). This implies miRNA targets identified from PAR-CLIP data are more likely to be in a protein complex from the CORUM database (12%) as compared to proteins in general (2%). While miRNAs frequently target multiple genes with isolated functions, these independent data, though only by a simple estimate, suggest that there is also a significant proportion of miRNA targets, which are distinct members of protein complexes (hypergeometric P-value 1.23e-11).

Table 3 Significance of miRNA target downregulation

miRNA	P-value
hsa-let-7b	1.5E-05
hsa-miR-1	5.1E-12
hsa-miR-155	5.3E-04
hsa-miR-16	1.8E-08
hsa-miR-30b	1.6E-03

The P-value was calculated by a one-sided Kolmogorov-Smirnov test. It was used to compare the fold change distributions of complex components that are miRNA targets and non-target ones.

Figure 2 Validation of targeted complex components. Fold change distributions of targeted and non-targeted proteins in complexes for each investigated miRNA. The (*) indicates high significance in the Kolmogorov-Smirnov test.
Protein complexes and miRNA expression

We next tested whether miRNAs, which target different components of the same protein complex, are more likely to be co-expressed. The average expression correlation (Co-expression as calculated by Pearson correlation coefficients, hereafter termed PC values) of miRNAs was examined based on pairwise correlation calculations of miRNA expression profiles obtained for 26 different organ systems and cell types [31]. To test for statistical significance, we combined all pairwise PC values obtained from the sets of miRNAs which significantly target the same complex. These PC values were then compared to all other pairwise PC values that were present in the data set from [31]. We performed a one-sided Kolmogorov-Smirnov (KS) test for the two PC value distributions and obtained a significantly (P-value 6.106e-24) higher co-expression within the sets of miRNAs that target the same complex. Since we are interested in coexpression of miRNAs that are not in one transcription unit, we also tested for increased correlation only for miRNAs of different transcription units. Only a few (3.3%) of the correlated miRNAs were actually contained in one transcription unit. Therefore, the result remains highly significant (P-value 2.11e-18). Another bias of our results might occur due to fact that all miRNAs from one family must target the same complex since they target the same set of mRNA. We compared only miRNAs within one complex that belong to different families. The KS test resulted in a P-value of 0.0058. Taken together, our statistical test indicates that miRNAs targeting different components of a protein complex are significantly co-expressed. The average Pearson correlations of miRNAs that simultaneously target a specific complex can be found in Additional file 6, Table S6 online.1)

Protein complex networks co-ordinately regulated by clusters of miRNAs

We systematically characterized the protein complex networks, which are simultaneously regulated by clustered miRNAs in 154 transcription units gained from miRBase [1]. The interconnectivity of the target sets of the miRNA gene clusters was first assessed as follows: the number of protein-protein interactions between the target sets of each pair of miRNAs in the cluster was counted, and these values were compared to 1,000 randomly sampled sets of miRNAs. To avoid miRNA target prediction bias arising from redundant prediction of clustered miRNA family members, only targets of one family member were counted within each cluster. The statistical analysis revealed 35 clusters, whose targets are significantly interconnected in the protein-protein interaction network (P-value < 0.05, permutation test, 1,000 samples, Table 1). Comparing the observed number of interactions (Figure 3b) with the corresponding distributions of randomly sampled sets of miRNAs provides a strong indication that a significant fraction of miRNAs in clusters might co-ordinately regulate targets (P-Value < 0.02, Wilcoxon signed rank test, Additional file 7, Table S7 online). In order to support this finding, we also applied Fisher’s exact test to test if the global number of target interactions from miRNA clusters is higher than expected by chance. This test resulted in a P-value < 2e-16.

CtBP/ZEB complex regulated by the miR-141-200c cluster

The network perspective provides fascinating insights of gene regulation by miRNA gene clusters, whose target sets have not yet been analyzed at a systems-level. To explore this in detail we examined the protein complexes predicted to be co-ordinately regulated by the
miR-141-200c cluster. The miR-141 and miR-200c genes are located on chromosome 12p 13.31, separated by a 338bp spacer sequence; miR-141 and miR-200c belong to the miR-200 family. The seed region of miR-141 differs to that of miR-200c by one nucleotide at position 4 of the miRNA; therefore, miR-141 and miR-200c have, based on the “seed” rule, different computationally predicted targets. Nevertheless, we found that the targets of the miR-141-200c cluster are significantly interconnected (P-value < 0.02, Table 4).

Very recent reports have shown that the miR-200 family regulates epithelial to mesenchymal transition (EMT) by targeting the transcriptional repressor zinc-finger E-box binding homeobox 1 (ZEB1) and ZEB2 [4,32-35]. During EMT, the miR-141-200c cluster and the tumor invasion suppressor gene E-cadherin are downregulated by ZEB1/2 [35]. ZEB1 and ZEB2 repress transcription through interaction with corepressor CtBP (C-terminal binding protein) [36]. Interestingly, several essential components of the CtBP/ZEB complex, namely ZEB1/2, CtBP2, RCOR3 (REST corepressor 3) and CDYL (Chromodomain Y-like protein), are predicted targets of the miR-141-200c cluster. CtBP2 has one miR-141 target site and one miR-200c target site, while ZEB1 and CDYL have two miR-200c target sites. RCOR3 has one miR-141 target site. The CtBP/ZEB complex mediates the transcriptional repression of its target genes by binding to their promoters and altering the histone modification [37].

We showed that overexpression of miR-141 and miR-200c led to reduced expression of CtBP2 and ZEB1 in human pancreatic carcinoma (PANC-1) cells (Figure 4a). Luciferase reporter assay showed reduced activity of the miR-141-200c cluster in PANC-1 cells (Figure 4a), indicating that the repression activity of CtBP/ZEB complex is compromised. The interaction between the miR-141-200c cluster and multiple components of the CtBP/ZEB complex suggests a coordinated regulation of E-cadherin mRNA is greatly upregulated (Figure 4a), indicative of the repression activity of CtBP/ZEB complex is compromised. The interaction between the miR-141-200c cluster and multiple components of the CtBP/ZEB complex suggests a coordinated regulation of

| miRNA cluster15a | # targ | Ppis [|P-value| |Ppis [miR-miR]| # |P-value|
|-----------------|--------|----------------|----------------|----------------|----------------|
| hsa-miR-3671-101| 116 | 94 | 0.1294 | 94 | 0 |
| hsa-miR-1914-647| 38 | 20 | 0.3720 | 20 | 0 |
| hsa-miR-599-875 | 23 | 6 | 0.536 | 6 | 0 |
| hsa-miR-16-15a | 172 | 172 | 0.12172 | 172 | 0 |
| hsa-miR-15b-16 | 172 | 172 | 0.15172 | 172 | 0 |
| hsa-miR-181c-181d|160 |142 |0.21142 |142 |0 |
| hsa-miR-195-497 | 172 | 172 | 0.15172 | 172 | 0 |
| hsa-miR-181a-181b|160 |142 |0.19142 |142 |0 |
| hsa-miR-181b-181a|160 |142 |0.18142 |142 |0 |
| hsa-miR-30c-30c | 183 | 144 | 0.2144 | 144 | 0 |
| hsa-miR-363-106a| 341 | 550 | 0.29823 | 823 | 0 |
| hsa-miR-200c-141| 246 | 392 | 0.02112 | 112 | 0 |
| hsa-miR-30b-30d | 183 | 144 | 0.2144 | 144 | 0 |
| hsa-miR-519a-1283|298 |702 |0.02258 |258 |0 |
| hsa-miR-24-23a | 305 | 584 | 0.05234 | 234 | 0 |
| hsa-miR-522-1283| 323 | 864 | 0.02377 | 377 | 0.02 |
| hsa-miR-25-106b | 233 | 236 | 0.22224 | 224 | 0.02 |
| hsa-miR-301b-303b|123 |86 |0.3486 |86 |0.03 |
| hsa-miR-182-183 | 218 | 288 | 0.15196 | 196 | 0.03 |
| hsa-miR-17-92a | 341 | 550 | 0.28607 | 607 | 0.03 |
| hsa-miR-133a-1 | 189 | 262 | 0.0574 | 74 | 0.03 |
| hsa-miR-545-374a | 180 | 212 | 0.0862 | 62 | 0.04 |
| hsa-miR-206-133b | 189 | 262 | 0.0774 | 74 | 0.04 |
| hsa-miR-29a-29b | 126 | 64 | 0.3864 | 64 | 0.05 |
| hsa-miR-513a-508 | 242 | 256 | 0.0559 | 59 | 0.05 |
| hsa-miR-513a-507 | 242 | 256 | 0.0559 | 59 | 0.05 |

*miRNA cluster is termed in the following way: miR-first, miRNA-last, miRNA. For instance, miR-17-92a cluster is consisted of six miRNAs, miR-17 is the first miRNA in the cluster and miR-92a is the last miRNA in the cluster.

Interconnectivity of the target sets was evaluated as: (1) Number of interactions in the union target set and (2) Number of interactions between target sets of all distinct miRNA pairs in a cluster (Ppis [miR-miR]). The P-values were estimated by comparing the observed value with 1,000 randomly sampled target sets of equal size. The results for all clusters are shown in Additional file 7, Table S7 online.

4a), indicating that the repression activity of CtBP/ZEB complex is compromised. The interaction between the miR-141-200c cluster and multiple components of the CtBP/ZEB complex suggests a coordinated regulation of
the repression activity for the CtBP/ZEB complex. Intrigu-
ingly, the miR-141-200c cluster also targets β-catenin, which is a shared component of cell adhesion and Wnt signalling [38]. β-catenin is found in the plasma mem-
brane, where it promotes cell adhesion by binding to E-
cadherin, in the cytoplasm, where it is easily phosphory-
lated and degraded in the absence of a Wnt signal, and in
the nucleus, where it binds to TCF transcription factors
and induces the transcription of Wnt target genes. Most
protein-interacting motifs of β-catenin overlap in such a
way that its interactions with each of its protein partners
are mutually exclusive [38]. Since the miR-141-200c clus-
ter and E-cadherin are both downregulated during EMT,
it is tempting to speculate that more β-catenin would be
made available for participating in transactivating down-
stream genes, which may contribute to the progress of
cancer [4].

Discussion
MicroRNAs and their functions have been a fascinating
research topic in recent years [8,39,40]. In animals,
miRNA-guided regulations of gene expression are likely
to involve hundreds of miRNAs and their targets. Genetic studies have successfully elucidated some
miRNA activities, termed genetic switches, which have
intrinsic phenotypic consequences [8,40]. miRNA activ-
ities can be classified based on whether their major
effect is conveyed through one, a few or many targets
(from tens to hundreds). All genetic switches discovered
so far belong to the former class (a few targets). It is
unclear how the latter class, termed target battery [8],
which might be subtly regulated on the protein level
[6,7], contributes to proper phenotypes.

In this study, we completed a comprehensive analysis
of human protein complexes, which might be co-ordi-
nately regulated by miRNAs. When this paper was
under review, Tsang et al. [12] predicted human micro-
RNA functions by miRBridge to assess the statistical
enrichment of microRNA-targeting signatures in anno-
tated gene sets, including our CORUM protein com-
plexes [20]. These protein complexes can be considered
as examples of “target battery” [8]. Our statistical

Figure 4 Protein complexes regulated by the miR-141-200c cluster. a. Real-time reverse transcription-PCR of CtBP2 and ZEB1 after
transfection of the indicated miRNAs in undifferentiated cancer cells (PANC-1). The expression levels of E-cadherin (of which the transcription is
repressed by CtBP/ZEB complex) are included as positive controls. b. Confirmation of the regulation of CtBP2 and ZEB1 by miR-141 and miR-200c
on protein levels by immunobLOTS. c. ZEB1 and CtBP2 knock down by siRNAs, no change in protein levels of the respective complex partner is
observed. e, Downregulation of CDYL and RCOR3 on protein level when miR-141 or miR-200c was transiently transfected.
analysis suggests that, by simultaneously targeting several components of protein complexes, a single miRNA or co-expressed miRNAs may have cumulative effects. To demonstrate this, we experimentally verified that the miR141-200c cluster interacts with four different components of the CtBP/ZEB complex. Interestingly, although Tsang et al. used their own miRNA target prediction, their protein complex result also included the interaction of the miR200 family and CtBP complex [12] which includes miR-200c. This supports our finding that the miR141-200c cluster also interacts with the CtBP complex. The functional analysis of the miRNA-regulated RNA operons revealed a clear bias towards transcriptional regulation, signal transduction, cell cycle and chromatin regulation, for which confirmation has been reported only by individual experimental studies of selected miRNAs. Our approach provides improved candidate miRNA target lists to the experimentalist, as demonstrated by a benchmark against large-scale, quantitative proteomics data.

Some ancient miRNA genes are deeply conserved in the kingdom Animalia [37,38] or in the kingdom Plantae [41] while during the evolution, novel miRNA genes were constantly created, fixed or lost [42-45]. Interestingly, the genomic organization of some miRNA clusters were well preserved for millions of years, implying a functional incentive to keep such configurations [5,46]. The evolution of homologous miRNA clusters can be easily explained by the classical gene duplication theory [47]. The regulatory effect of such clusters might merely be an increase of dosage. The evolution of heterogeneous miRNA clusters is more complicated. Two different miRNAs can be located near each other by various genomic events, such as recombination, transposon insertion, etc. Or large number hairpin repeats might evolve into miRNAs of different families. For example, the largest human miRNA cluster miR-379-656 [46] consists of different miRNA families, which evolved by tandem duplication of an ancient hairpin sequence. Once a newly formed miRNA cluster proves to provide a functional advantage, which might be co-ordinate regulation of protein complexes, the genomic organization of such a cluster could be fixed by evolution [43].

In eukaryotic cells, RNA operons, mostly sequence-specific RNA binding proteins, may co-ordinately regulate functionally related mRNAs to aid the formation of macromolecular protein complexes [48]. In such a scenario, mRNAs of different components of a protein complex are brought together by associating with specific RNA operons. The localization of these mRNAs might also facilitate the simultaneous interaction of miRNAs and their corresponding target mRNAs. Interestingly, RNA operons bind to motifs, which are sometimes located in the 3’UTRs of mRNAs. Thus, the competition or cooperation between miRNA binding and RNA operon binding might be a research topic worth pursuing.

Conclusion
The results presented here can be used as a starting point for experimentalists to systematically evaluate miRNAs and targets interactions at a systems level. The concept that coexpressed small RNAs may synergistically target protein complexes for a more efficient regulation is of course not limited to animal miRNAs.

Additional material

Acknowledgements
SS, DL, AK and FT are supported by the Initiative and Networking Fund of the Helmholtz Association within the Helmholtz Alliance on Systems Biology (project CoReNe). The authors thank Peter Brodersen and Hans-Werner Mewes for their critical reading of the manuscript and Ivan Kondolofsky for his statistical support.

Author details
1MIPS, Institute for Bioinformatics and System Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, D-85764 Neuhberg, Germany. 2Wellcome Trust Center for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QH, UK. 3Department of Visceral Surgery, Universitätsklinikum Freiburg, Hugstetter Strasse 55, D-79106, Freiburg, Germany. 4Center for Life and Food Sciences Weihenstephan, Technical University Munich, Emil-Ramann-Str. 4, D-85354 Freising, Germany. 5Department of Zoology, Cambridge University, Downing Street, Cambridge, CB2 1RH, UK. 6Faculty of Biology, University of Cambridge, Downing Street, Cambridge, CB2 1EH, UK. 7Eberhard Karls University Tübingen, Pfaffenwaldring 55, D-72076 Freiburg, Germany.

Authors’ contributions
SS and SD designed the statistical analyses, interpreted the results. UB, SSB, YW and TB designed miR141-200c related experiments. UB and SSB performed experiments. UB, SSB, YW and TB interpreted the results. DL, AK, KFM, and AR contributed to data analysis. YW conceived the idea. YW and FT coordinated the study, interpreted the results. SS, SD and YW wrote the manuscript. All authors have read and approved the manuscript.
References

1. Griffiths-Jones S, Saini HK, Van Dongen S, Enright AJ. "miRBase: tools for microRNA genomics," Nature Reviews Genetics 2008, 36:D154-158.

2. Bonci D, Coppel V, Musumeci M, Addario A, Guiffreda R, Nemoi L, D'Urso L, Pagliuca A, Bifroni M, Labbaye C, Bartucci M, Muto G, Peschle C, De Maria R. "The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities," Nature Medicine 2008, 14:1271-1277.

3. Mendell JT. "miRrelated roles for the miR-17-92 cluster in development and disease," Cell 2008, 133:217-222.

4. Nakada C, Matsuka K, Tsukamato Y, Tanigawa M, Yoshimoto T, Nairnatsu T, Nguyen LT, Hijtia U, Tuchida T, Sato F, Mimita H, Seto M, Moriyama M. "Genome-wide microRNA expression profiling in renal cell carcinoma: significant down-regulation of miR-141 and miR-200c," The Journal of Pathology 2008, 216:618-627.

5. Ambros V. "The evolution of our thinking about microRNAs," Nature Medicine 2008, 14:1036-1040.

6. Seilbach M, Schwanhauser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. "Widespread changes in protein synthesis induced by microRNAs," Nature 2008, 453:58-63.

7. Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. "Identification of RNA-binding protein and microRNA target sites by PAR-CLIP," Cell 2010, 141:129-141.

8. Rehmeyer M, Steffen P, Hochmann M, Giegerich R. "Fast and effective microRNA target prediction," RNA (New York, NY) 2004, 10:15012-15017.

9. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarik A, Lewis S, Matern JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. "Gene ontology: tool for the unification of biology. The Gene Ontology Consortium," Nature Genetics 2000, 25:25-29.

10. Kan hesa M, Gotot S, Fumichii M, Tanabe M, Hirokawa M. "KEGG for representation and analysis of molecular networks involving diseases and drugs," Nucleic Acids Res 2010, 38:D355-360.

11. Falcon S, Gentileman R. "Using GOSTats to test gene lists for GO term association," Bioinformatics 2003, 20:237-258.

12. Brabetz T, Jung A, Hlubek F, Löh berg C, Meier J, Suchy U, Kischner T. "Negative regulation of CD4 expression in T cells by the transcriptional repressor ZEB1," Immuno logical Immunology 1999, 11:1701-1708.

13. Pfaffl MW. "A new mathematical model for relative quantification in real-time RT-PCR," Nu cleic Acids Research 2001, 29:65-4.

14. Ruepp A, Brauner B, Dunger-Kaltenbach I, Frishman G, Mont rone C, Stranks M, Waegle B, Schmidt T, Douei ou ON, Stumpflein V, Mewes HW. "CORUM: the comprehensive resource of mammalian protein complexes," Nucleic Acids Research 2008, 36:D466-650.

15. Cui Q, Yu Z, Purisma EO, Wang E. "Principles of microRNA regulation of a human cellular signaling network," Molecular Systems Biology 2008, 2:46.

16. Fraga G, lodgeon Meier C, Laver-nant-Stacconi L, Tirosh O. "Control of antagonistic components of the hedgehog signaling pathway by microRNAs in Drosophila," Genetics 2008, 179:429-439.

17. Silver SJ, Hagen JW, Okamura K, Perrimon N, Lai EC. "Functional screening identifies miR-315 as a potent activator of Wingless signaling," Proceedings of the National Academy of Sciences of the United States of America 2007, 104:18151-18156.

18. Martello G, Zacchigna L, Inui M, Montagner M, Adorno M, Mamidi A, Mosut I, Salso G, Tuan U, Dupont S, Condeiros M, Wessely O, Piccola S. "MicroRNA control of Nodal signalling," Nature 2007, 449:163-168.

19. Li X, Carthew RW. "A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye," Cell 2005, 123:1267-1277.

20. Flynt AS, Li N, Thatcher EJ, Solnica-Krezel L, Patton JG. "Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate," Nature Genetics 2007, 39:259-263.

21. Neumüller RA, Betschinger J, Fischer A, Bushati N, Poernbacher I, Mechtler K, Cohen SM, Knoblich JA. "MiP26 regulates microRNAs and cell growth in the Drosophila ovarian stem cell lineage," Nature 2008, 454:241-245.

22. Carleton M, Cleary MA, Linsley PS. "MicroRNAs and cell cycle regulation," Cell Cycle (Georgetown, Tex) 2007, 6:2127-2132.

23. Volinia S, Calin GA, Liu C-G, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Puerta RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negri M, Harris CC, Croce CM. "A microRNA expression signature of human solid tumors defines cancer gene targets," Proceedings of the National Academy of Sciences of the United States of America 2006, 103:2257-2262.

24. Mahajan MC, Nairklir GJ, Bayouyapt A, Kennedy RE, Weissman SM. "Heterogeneous nuclear ribonucleoprotein C1/C2, MeCP1, and SWI/SNF form a chromatin remodeling complex at the beta-globin locus control region," Proceedings of the National Academy of Sciences of the United States of America 2005, 102:15012-15017.

25. Li X, Carthew RW. "A microRNA expression atlas based on small RNA library sequencing," Cell 2007, 129:1401-1414.

26. Gregory PA, Bert AG, Paterson EL, Luke MP-S, Nakatani Y, Shi Y. "The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1," Nature Cell Biology 2008, 10:599-601.

27. Park S-M, Gaur AB, Leneyel E, Peter ME. "The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2," Genes & Development 2008, 22:894-907.

28. Korpal M, Lee ES, Liu C-G, Guo J. "The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2," The Journal of Biological Chemistry 2008, 283:14910-14914.

29. Burk U, Schubert J, Wellner U, Schmalhofer O, Vincen C, Spadema D, Brabetz T. "A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells," EBIO Reports 2008, 9:582-589.

30. Postiga AG, Dean DC. "ZEB represses transcription through interaction with the co-repressor HDAC3," Proceedings of the National Academy of Sciences of the United States of America 1999, 96:6683-6688.

31. Shi Y, Sawada J-I, Sui G, Affar EB, Whetstine JR, Lan F, Ogawa H, Luke MP-S, Nakatani Y, Shi Y. "Coordinated histone modifications mediated by a CtBP co-repressor complex," Nature 2003, 422:735-738.

32. Birze B, "beta-Catenin: a pivot between cell adhesion and Wnt signalling," Current Biology 2003, 15:R64-67.

33. Filippowicz W, Blattchannaya SN, Sonenberg N. "Mechanisms of posttranscriptional regulation by microRNAs: Are the answers in sight?", Nature Reviews Genetics 2006, 9:102-114.

34. Bushati N, Cohen SM. "microRNA functions," Annual Review of Cell and Developmental Biology 2007, 23:179-205.

35. Antell MJ, Snyder JA, Bartel DP. "Common functions for diverse small RNAs of land plants," The Plant Cell 2007, 19:1750-1769.

36. Fahlgrean N, Howell MD, Kasciau KD, Champani EA, Sullivan CM, Cumber CI, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC. "High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MiRNA genes," Plant and Cell 2007, 20:2191-2199.

37. Liu J, Fu Y, Kumar S, Shy Y, Zeng K, Xu A, Carthew RW, Wu C-I. "Adaptive evolution of newly emerged micro-RNA genes in Drosophila," Molecular Biology and Evolution 2008, 25:929-938.

38. Liu J, Shen Y, Wu Q, Kumar S, He B, Shi S, Carthew RW, Sm Wu SM, Wu C-I. "The birth and death of microRNA genes in Drosophila," Nature Genetics 2008, 40:351-355.
45. Rajagopalan R, Vaucheret H, Trejo J, Bartel DP: "A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana,". *Genes & Development* 2006, 20:3407-3425.

46. Glazov EA, McWilliam S, Barris WC, Dalrymple BP: "Origin, evolution, and biological role of miRNA cluster in DLK-DIO3 genomic region in placental mammals,". *Molecular Biology and Evolution* 2008, 25:939-948.

47. Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein MJ, Tuschl T, Margalit H: "Clustering and conservation patterns of human microRNAs,". *Nucleic Acids Research* 2005, 33:2697-2706.

48. Keene JD: "RNA regulons: coordination of post-transcriptional events,". *Nature Reviews Genetics* 2007, 8:533-543.

doi:10.1186/1752-0509-5-136

Cite this article as: Sass et al.: MicroRNAs coordinately regulate protein complexes. *BMC Systems Biology* 2011 5:136.