Exposure to chemicals formed from natural processes is ubiquitous

Carr Joseph Smith and Thomas A Perfetti

Abstract
Exposure to chemicals produced by natural processes is ubiquitous. First, in addition to the products of normal metabolism produced in humans of normal body weight, adipose tissue produces a large number of chemicals, including estrogen, testosterone from the produced estrogen, thyroid-stimulating hormone, leptin and approximately 500 other molecules termed adipokines, and a large number of inflammatory mediators. Second, the gut biome contains approximately the same number of bacteria as cells found in the entire body and produces a large number of small molecules. Third, the overwhelming majority (99.9%) of pesticide exposure occurs during ingestion of natural plant pesticides from eating vegetables. Fourth, consumption of cooked muscles meats leads to significant exposure to mutagenic and carcinogenic heterocyclic amines, polycyclic aromatic amines, and nitropyrenes. Fifth, many common beverages, for example, beer, coffee, and tea contain organic chemicals that display mutagenic activity. As compared with man-made production levels, from 1945 to 2015, an estimated 5000-fold more organic compounds were produced by a variety of natural processes, including common wood-degrading and forest litter-degrading fungi, microorganisms in temperate and boreal forest soils, bacteria in marine sponges, marine macro-algae, volcanoes, and forest fires. Exposure to these naturally produced organic compounds occurs via inhalation of ambient air, ingestion of food and water, and contact with soil, freshwater, and seawater. Contact with several thousand different endogenous or exogenous chemicals per day is unavoidable. This understanding might assist in better allocating resources toward controlling exposures to agents of highest concern as determined by current concepts of chronic disease causation.

Keywords
Natural chemicals, adipose tissue, gut bacteria, dietary mutagens, bacteria, fungi, volcanoes

Date received: 10 February 2020; accepted: 30 March 2020

Introduction
The National Library of Medicine (NLM) issues collection development guidelines for each of the various fields of study related to biomedicine. The NLM describes the focus of the field of toxicology as follows: “Toxicology is traditionally associated with chemical exposures, such as the effects of drugs, industrial chemicals, pesticides, food additives, household products, and personal care items.” The Swiss physician Paracelsus (1493–1541) is credited with the first expression of the opinion that the dose was the most important factor related to the toxicity of a substance. Since the first exposition of the dose–response concept by Paracelsus, the dose–response relationship has become a central concept in toxicology.

Meeting the technical challenges inherent in designing and executing experiments on a particular chemical agent and in interpreting the results of the successfully completed experiment requires significant focus that generally occupies the attention of the investigators. In the 1970s, Bruce N Ames and his colleagues began a line of investigation that ultimately resulted in broadening the understanding of the
effects of exposure to chemicals capable of producing mutations in in vitro assays and tumors in chronic rodent bioassays. A major and quite unexpected finding reported by Ames et al. in 1990 was that 99.99% (by weight) of the pesticides ingested in the American diet are chemicals produced by plants to prevent being eaten by insects or higher animals. Also in 1990, Duke at the US Department of Agriculture Research Service in Oxford, Mississippi, provided strong support for the contention made by Ames et al. Duke reported that tens of thousands of chemicals have been identified in plants and that experts estimate the existence of hundreds of thousands of natural plant products. In addition, most of the tens of thousands of plant pesticides identified to date are natural plant pesticides.

The realization that humans were ingesting about 1.5 g per day of a huge variety of natural plant pesticides raised the question as to whether these chemicals were toxic in standard toxicology tests. Up to 1990, 52 natural plant pesticides had been tested in chronic rodent bioassays with 27/52 (52%) displaying carcinogenicity. This carcinogenic percentage is comparable to that seen for synthetic chemicals.

As research on chemical products produced by the gut biome and adipose tissue accumulated, it became apparent that the natural pesticide case was not unique and that humans are exposed daily to small concentrations of an extremely large number of chemicals produced by natural processes. The background of natural chemical exposures has several possible implications for hazard and risk assessment. First, human exposure to a toxic synthetic chemical does not occur in vacuo. Factors like inflammatory cytokines released by excess adipose tissue (see “Exposure to chemicals produced by adipose tissue” section) or imbalances in the gut biome (see “Exposure to chemicals produced by gut bacteria” section) can increase risks as compared with normal-weight individuals or those with properly balanced gut bacterial colonization. Alternatively, in some cases, the contribution to hazard from the synthetic chemical might be less than that made by structurally similar chemicals of natural origin. In relation to a particular human health endpoint, the combined exposure from both synthetic and natural sources should be considered. The purpose of this review is to demonstrate that contact with a large number of different molecules secreted by adipose tissue is enormous. Molecules secreted by adipose tissue include the following: (a) cytokine and cytokine-like proteins, including tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), monocyte chemotactic factor 1, resistin, and progranulin; (b) proteins of the fibrinolytic system, including plasminogen activator inhibitor (PAI-1) and tissue factor; (c) complement and complement-related proteins, including adipin, complement factor B, acylating simulation protein, and C1q/TNF-related proteins; (d) enzymes including dipeptidyl peptidase-4; (e) lipid transport molecules, including apolipoprotein E, cholesterol ester transfer protein, and lipoprotein lipase; (f) endocannabinoids and other lipids, including anandamide, 2-arachidonoylglycerol (2-AG), and free fatty acids; and (g) proteins of the renin-angiotensin system including angiotensin.

The class of molecules secreted by fat cells, termed adipokines, is sufficiently complex and important that it merits separate discussion. Approximately 500 adipokines have been discovered to date with the following examples demonstrating the extremely wide range of biochemical and physiological reactions reported in the literature: leptin, discovered in 1994, regulates appetite; adiponectin, discovered in 1995, enhances insulin sensitivity and lessens inflammation; ADAMTS1, discovered in 1997, affects fat metabolism in the liver; medias fat cell differentiation, blood vessel formation, and ovulation; chemerin, discovered in 1997, increases inflammation and blood pressure; resistin, discovered in 2001, mediatess insulin resistance; retino-binding protein 4, discovered in 2005, affects insulin resistance; lipocalin-2, discovered in 2007, increases insulin resistance and inflammation; isthmin-1, discovered in 2014, improves fat metabolism in the liver; mediates immune function, and influences embryonic developmental patterning; asprosin, discovered in 2016, modulates glucose release from the liver; Slit2-C, discovered in 2016, stimulates glucose metabolism; and lipocalin-5, discovered in 2018, improves skeletal muscle respiration.

Adipose tissue is very hormonally active as demonstrated by possessing a large number of different receptors for traditional endocrine hormones including the following: insulin receptor, glucagon receptor, growth hormone receptor, thyroid-stimulating hormone (TSH) receptor, gastrin/cholecystokinin B receptor (CCK-B), glucagon-like peptide-1 receptor, and angiotensin II receptors type 1 and 2. Adipose tissue possesses enzymes capable of activating, interconverting, and inactivating steroid hormones. A

Exposure to chemicals produced by adipose tissue

Obesity has risen rapidly both worldwide and in the United States (US) over the last several decades. In 2014, it was estimated that more than 1.9 billion adults were overweight with over 600 million classifiable as obese. Approximately two-thirds of US adults over 20 years of age are currently classified as overweight with about 35% classified as obese. The obesity rate in the US is predicted to reach 42% by 2030 in people over 18 years of age.
number of different enzymes that produce steroids are expressed in adipose tissue, including cytochrome P450-dependent aromatase, 3-hydroxysteroid dehydrogenase (3HSD), 11HSD1, 17HSD, 7-hydroxylase, 17-hydroxylase, 5-reductase, and UDP-glucuronosyltransferase 2B15, 14, 15

The large mass of adipose tissue leads to significant hormonal release with adipose tissue contributing up to 100% of circulating estrogen in postmenopausal women and 50% of circulating testosterone in premenopausal women. 14, 15 Stromal cells and pre-adipocytes in adipose tissue highly express cytochrome P450-dependent aromatase and 17HSD. The aforementioned aromatase influences the conversion of androgens to estrogens, for example, androstenedione to estrone and testosterone to estradiol. The adipose tissue enzyme 17HSD regulates the conversion of the weak androgen androstenedione to estrone and testosterone to estradiol. In subcutaneous adipose tissue, the expression of 17HSD is increased relative to the cytochrome P450-dependent aromatase and 17HSD. The aforementioned aromatase influences the conversion of androgens to estrogens, for example, androstenedione to estrone and testosterone to estradiol. The adipose tissue enzyme 17HSD regulates the conversion of the weak androgen androstenedione to estrone and concomitantly the conversion of the weak estrogen estrone to the strong estradiol. In subcutaneous adipose tissue, the expression of 17HSD is decreased relative to the cytochrome P450-dependent aromatase. In contrast, in visceral adipose tissue, the expression of 17HSD is increased relative to the cytochrome P450-dependent aromatase. 14, 15 Deposition of body fat to the abdominal region in the pattern typically observed in males and postmenopausal females is associated with this increase in 17HSD expression relative to aromatase expression thereby implicating increased local androgen production in visceral adipose tissue. 14, 15 These human data and supportive mechanistic data in mice demonstrate that adipose tissue is an important site for both metabolism and secretion of sex steroids. 16–19

Estradiol is of particular importance due to its role in increasing risk for development of breast, endometrial, and ovarian cancers. 20 Estradiol is the most potent of the naturally occurring estrogens. 21 In postmenopausal women, estradiol is mainly produced in the mesenchymal cells of adipose tissue but also by osteoblasts and chondrocytes of bone, vascular endothelium and aortic smooth muscle cells, and several sites in the brain. 22 This locally produced estradiol is the main driver of estrogenic action in postmenopausal women, as opposed to circulating estrogen levels. Therefore, locally produced rather than circulating estrogens play an important role in breast cancer development, bone mineral maintenance, and preservation of cognition. 22

The relationship between thyroid hormones and body weight is complex. 23 Basal metabolic rate (BMR) is decreased in patients suffering from hypothyroidism, and an underactive thyroid is usually associated with an average weight gain of 5–10 pounds. Most of this weight gain is due to excess accumulation of salt and water. Very large increases in body weight are usually not due to hypothyroidism. In contrast to a modest decrease in BMR seen in hypothyroidism, hyperthyroidism causes a larger increase in BMR with an associated loss of body weight. 23

In contrast to the observation that thyroid dysfunction can affect body weight, 23 several studies have demonstrated that obesity can conversely alter thyroid hormones. Karavani et al. 24 examined a large pediatric and adolescent database in Israel. The study subjects had either normal or slightly higher than normal TSH levels. 24 TSH is released by the anterior pituitary gland. Following TSH stimulation, thyroid follicular cells release thyroxine (T4) and to a lesser extent triiodothyronine (T3). 25 Karavani et al. 24 demonstrated that across normal weight, overweight, and obese groups T3 but not T4 increased in proportion with the TSH increase, supporting the hypothesis that TSH preferentially stimulates T3 rather than T4. As compared with the normal weight group, TSH and T3 levels were slightly higher in the overweight and obese groups. 24

Al-Musa correlated levels of serum thyroid hormones with body mass index (BMI) in 278 Saudi Arabian adults. 26 Slightly more than three-fourths of the study subjects were either overweight (31.3%) or obese (44.6%). Mean TSH serum levels showed a significant increase with increasing BMI, although T3 and T4 were not significantly related to BMI. In a Greek study on 736 euthyroid healthy subjects, Milionis and Milionis reported that TSH increased with BMI in women but not in men. 27 Bandurska-Stankiewicz has hypothesized that obesity-associated increases in TSH and peripheral hormone levels might be an adaption to increase energy expenditure thereby reducing further weight gain. 28

C-reactive protein (CRP) is a ring-shaped (annular) protein synthesized in the liver and composed of five subunits (pentameric). CRP plasma concentration increases in response to inflammation. 29 CRP production is stimulated by IL-6. 30 A large number of studies have reported elevations in CRP, 31–34 IL-6, 35–38 or both biomarkers of inflammation in association with obesity. 39–42 Similar elevations in CRP levels are seen in active cigarette smokers. 33–48

TNF-α is another important inflammatory mediator that is frequently elevated in association with obesity. 49 In obesity, macrophages invade the adipose tissue and secrete TNF-α. 50 The degree of adiposity and insulin resistance correlates with the TNF-α level. 49, 51, 52 Anti-TNF-α anti-body therapy is administered for a number of clinical conditions, including rheumatoid arthritis and Crohn’s disease. These therapies are associated with an increase in body fat suggesting that inflammation is caused by obesity in contrast to inflammation-inducing obesity. 53

In addition to systemic inflammation, obesity is associated with inflammatory changes in the brain. 54 The hypothalamus lies between the thalamus and the midbrain. Via regulation of the autonomic nervous system, the hypothalamus influences sleep cycles, body temperature, and appetite. 55 The original brain region where obesity-associated inflammation was observed was the hypothalamus. 56, 57 Miller and Spencer 58 have reported that circulating cytokines, free fatty acids, and immune cells cross the blood brain barrier at the level of the hypothalamus. Once
in the hypothalamus, these systemic factors induce local inflammation, including the proliferation of microglia. These authors hypothesize that the localized inflammation remodels synapses and causes neurodegeneration within the hypothalamus thereby disrupting cognition in the hippocampus and amygdala. Recent research has demonstrated that obesity-related inflammation not only affects the hippocampus but also affects the brainstem, amygdala, and cortical structures. Neuro-inflammation observed in these brain regions is associated with symptoms of depression and impaired cognition.

In conclusion, a majority of the adult population in the US is exposed to a biologically significant level of hormonal disruption and inflammation contributed by excess adipose tissue. Clinical epidemiology studies on the potential adverse effects of exposure to endocrine-disrupting chemicals should account for the large hormonal and inflammatory contribution made by excess adipose tissue.

Exposure to chemicals produced by gut bacteria

The healthy human gut usually contains between 300 and 1000 different species of bacteria, with 30 to 40 species accounting for 99% of the total bacterial count. The mass of bacteria residing in the gut of an average-sized (70 kg) man is estimated to weigh about 0.2 kg. Sender et al. estimate that the number of cells in an average man’s body and the number of bacteria in his gut are similar, that is, 3.0 × 1013 human cells and 3.8 × 1013 bacteria.

The huge number of bacteria in the human gut produces a large number of different chemicals. Clostridial clusters IV and XIVa of firmicutes, including species of *Eubacterium*, *Roseburia*, *Faecalibacterium*, and *Coprooccus* produce short-chain fatty acids, including acetate, propionate, butyrate, isobutyrate, 2-methylpropionate, valerate, isovalerate, and hexanoate. *Lactobacillus*, *Bifidobacteria*, *Enterobacter*, *Bacteroides*, and *Clostridium* make bile acids, including cholate, hyocholate, deoxycholate, chenodeoxycholate, a-muricholate, b-muricholate, w-muricholate, taurocholate, glycocholate, taurochenoxycholate, glycochenodeoxycholate, taurocholate, tauro-a-muricholate, tauro-b-muricholate, lithocholate, ursodeoxycholate, hyodeoxycholate, glycodeoxycholate, taurooxycholate, and taurodeoxycholate. *Faecalibacterium prausnitzii* and *Bifido-bacterium* produce choline metabolites, including methanamine, dimethamine, trimethylamine, trimethylamine-N-oxide, dimethylglycine, and betaine. *Clostridium difficile*, *F. prausnitzii*, *Bifido-bacterium*, *Subdoligranulum*, and *Lactobacillus* synthesize phenolic, benzoyl, and phenyl derivatives and also make benzoic acid, hippuric acid, 2-hydroxyhippuric acid, 2-hydroxybenzoic acid, 3-hydroxyhippuric acid, 3-hydroxybenzoic acid, 3-hydroxyphenylpropionate, 4-hydroxyphenylpropionate, 3-hydroxycinnamate, 4-methylphenol, tyrosine, phenylalanine, 4-cresol, 4-cresylic acid, 4-cresylic acid, 3-cresylic acid, and 5-hydroxyindole.

Exposure to chemicals made by plants as natural pesticides

In 1990, Ames et al. reported that 99.9% of pesticide exposure experienced by humans comes from natural pesticides produced by plants in contrast to trace residues of synthetic pesticides. This contention by Ames et al. is supported by a comprehensive review by Duke. Duke noted that tens of thousands of secondary products of plants have been identified. Plant-produced compounds and derivatives with herbicidal activity include the following: 1,8-cineole, cinmethylin, hypericin, and delta-aminolevulinic acid. Plant-produced compounds with insecticidal activity include the following: camphene, nicotine, anabasine, and rotenone. Plant-produced compounds with fungicidal nematicidal and rodenticidal activity include the following: pisatin, juglone, alpha-terthienyl, and strychnine. It has been estimated that hundreds of thousands of these secondary plant products exist. The majority of this huge number of chemicals produced by plants “are involved in the interaction of plants with other species—primarily the defense of the plant from plant pests.” Anyone who
eats vegetables is exposed to a subset of these natural plant pesticides.

Exposure to potentially toxic chemicals in common foods and drinks

A very large number of chemicals of diverse structures reported as mutagens, rodent carcinogens, and endocrine disruptors are found in common foods and drinks. A number of different polycyclic aromatic hydrocarbons have been found in cooked fish, broiled hamburger, barley malt, puffed cereal, and other common foods. For example, pyrrolidine, N-nitrosopyrrolidine, and N-nitrosopiperidine. Acetic acid, N-nitrosodialkylamines, N-nitrosodiethylamine, N-nitrosodiethanolamine, and N-nitrosopiperidine have been found in fish, 96–98 cheese, 94, 95 powdered milk, 99 beer (and malt), 91, 92, 180, 181 grind meats, 107, 108 bacon, 94, 95, 110 fish, 94, 95 squid, 102, 117 and other common foods, 87–89 for example, benz[a]pyrene and benz[a]anthracene are found in common foodstuffs, including fresh vegetables, vegetable oils, coconut oil, margarine, mayonnaise, coffee, tea, grain, oysters and mussels, smoked ham, smoked fish, smoked bonito, cooked sausage, singed meat, broiled meat, charcoal-broiled steak, broiled mackerel, barbecue beef, and barbecued ribs. 89

Several N-nitrosamines have been found in foods and beverages and reported on a ng nitrosamine/g food or beverage basis. The N-nitrosamines detected include N-nitrosodimethylamine, N-nitrosodiethyamine, and N-nitrosopiperidine. Acetic acid, 2-methyl-N-nitrosatable[N-Nitrososarcosine] was reported in meat, 90 and beer (and malt), 91, 92 1-butamine, N-butyl-N-nitroso-[N-nitrosodibutylamine] in fish, 93, ethanamine, N-ethyl-N-nitroso-[N-nitrosodiethyamine] in bacon, 94, 95 fish, 95–98 cheese, 94, 95 powdered milk, 99 beer (and malt), 100, 101 gastric juices and nitrates, 102, 103; methanamine, N-methyl-N-nitroso-[N-nitrosodiethyamine] in meat and cured meat, 95, 104–109; bacon, 94, 95, 110, 111 fish, 93–98, 112–121 squid, 14, 17 cheese, 94, 95, 107, 108, 122–127 powdered milk, 99, 128–131 wheat flour, 132 beer (and malt), 100–102, 107, 108, 133–152 Scotch whiskey, 134 French brandy, 135 other alcoholic beverages, 133, 153, 154 and water, 155–159; morpholine, 4-nitroso-[N-nitrosomorpholine] in fish, 97, 98; piperidine, 1-nitroso-[N-nitrosopiperidine] in meat and cured meat, 107, 108 bacon, 94, 95, 110 fish, 94, 95 squid, 102, 117 and cheese, 94, 95; 1-propanamine, N-nitros-N-propyl-[N-nitrosodipropylamine] in fish, 93, 96; pyrrolidine, N-nitroso-[N-nitrosopropylamine] in meat and cured meat, 107, 108, 160–162 bacon, 89, 110, 162–176 fish, 94, 95, 102, 117 cheese, 94, 95 and beer (and malt), 100–102, 152; 2-pyrrolidinecarboxylic acid, 1-nitroso-[N-nitrosopropylamine] in meat, 107, 146, 160, 177–179 bacon, 146, 163, 180, 181 chicken, ham, toast, biscuits, cornflakes, 180 and beer (and malt), 91, 92, 180; diethanolamine, N-nitroso-[N-nitrosodiethanolamine] in meat and cured meat. 182

Mutagenicity has been measured in heated, grilled, and broiled foods, 183–190 including beef extract, 191–196; broiled, fried, and/or charred beef, 191, 192, 197–205; broiled cuttlefish, 206; eggs, fish, and meat, 184; flour and rice, 184; soy beans, 184; broiled fish, 200, 201, 207–209 including herring, mackerel, pike, and sardine, 200; broiled sardine, 196, 197; protein pyrolysates of albumin, 210–213; and soybean globulin, 214, 215; calf thymus, egg white, and serum albumin, 216; casein, collagen, gluten, histone, insulin, lysozyme, ovalbumin, and zein, 217; peptide pyrolysates from polypeptides, 218; carnosine, glycyl glycine, glycyl glutamic acid, glycyl proline, glycyl tryptophan, leucyl glycyl phenylalanine, tryptophan alanine, tryptophan glycine, tryptophan tyrosinate, and tryptophan tyrosine, 219; amino acid pyrolysates, 212, 220–223 from phenylalanine, 223 and lysine, 224; tryptophan, 225, 226–231; glutamic acid, 186, 190, 216, 222–231; histidine, 234 and 3-methylhistidine; alanine, arginine, asparagine, citrulline, cysteine, cysteine, glutamic acid, glutamine; histidine, lysine, methionine, ornithine, phenylalanine, serine, threonine, tryptophan, tyrosine, and valine, 218; and beverages including roasted coffee, 235–239 instant coffee, 238 tea, 236 and brandy and sake. 240

Exposure to chemicals made by bacteria, fungi, algae, and volcanoes

A number of natural processes produce comparatively large amounts of persistent organic compounds (POP-like chemicals) (Table 1). Common wood-degrading and forest litter-degrading fungi produce 9,900,000 metric tons yearly of chlorinated anisyl metabolites, including tetrachloro-4-methoxyphenol and tetrachloro-1,4-dimethoxybenzene. 241, 242 Microorganisms in temperate and boreal forest soils produce 11,600,000 metric tons yearly of chlorinated organic substances (OCI), including the following: chloroaetic acids; chloroform; chlorinated phenols; polychlorinated dibenzofurans (PCDFs) and dibenzofurans; methyl chloride; 1,1'-dimethyl-3,3',4,4'-tetrabromo-5,5'-dichloro-2,2'-bipyrole (DB-PBr5Cl3) and heptachloro-1'-methyl-1,2'-bipyrole. 243 Bacteria in marine sponges produce 1,750,000,000 metric tons yearly of polybrominated diphenyl ethers (PBDEs); PBDEs and polybrominated bipyrroles and their hydroxylated (OH-BDE) and methoxylated (MeO-BDE) forms; 3,3',5'-tetrabromo-2,2'-biphenyldiiod; hexabromo-2,2'-bipyrrole; and the hybrid bromophenol-bromopyrrole (pentabromopseudisulin). 244–245 Marine macroalgae produce 13.3 tons yearly of the volatile halogenated chemicals CHBr3, CHBr2Cl, and CH2Br2. 246, 247 Each year, volcanoes release 3,000,000 tons of volatile halogenated chemicals, including HCl, and 11,000,000 tons of HF. 248–250 Volcanoes, forest fires, and burning municipal solid waste produce 13.1 tons per year of dioxins, PCDFs, and polychlorinated dibenzop-dioxins. 251 The yearly quantity of organic compounds produced in nature that are either themselves relatively stable or can react (e.g. HCl, HF) with other naturally occurring compounds and form relatively stable compounds is astronomical at an estimated release into the environment of 1.79 billion metric tons yearly. Assuming that yearly worldwide releases of organic compounds into the environment by natural sources have remained approximately stable during the postwar period, the total tons of organic compounds released into the environment over the 70-year period from
1945 to 2015 is an astronomical 125 billion metric tons. Therefore, natural releases of organic compounds into the environment exceed synthetic production of chemicals over the same time period by 5000-fold. Human exposure to natural chemicals released into the environment will vary significantly from person to person based upon geography, occupation, and activity levels.

Conclusions

Recently, Bruce Ames (developer of the Ames test for mutagenicity) addressed the widespread confusion regarding exposure to natural versus manmade chemicals.\(^{252}\) Ames explained the following:

In 1962, Rachel Carson published her book, Silent Spring. In this book, Rachel Carson said: ‘For the first time in the history of the world, every human being is now subject to contact with dangerous chemicals from the moment of conception until death.’ But Rachel Carson was made of chemicals. Everything is made of chemicals. In that book, Carson would only quote the results of experiments that showed that a chemical did something bad because that would fit her theory, and she would ignore experiments where it was found that that chemical had not done anything bad. She unscientifically assumed that everything ‘natural’ was beneficial. But she ignored a lot of available information. What about arsenic? or aflatoxin and other fungal toxins? or poisonous mushrooms? or many other “natural” toxic and carcinogenic compounds, and the relevant large literature on natural toxins in plants? Thus, Silent Spring was not a scholarly piece of work. Unfortunately, it got people on the wrong track.

As noted by Ames\(^ {253}\) and described in this review, contact with several thousand different endogenous or exogenous chemicals per day not related to normal metabolic pathways is unavoidable. A wider understanding of this reality might assist in better allocating resources toward controlling exposures to chemicals and agents of highest concern as determined by our current understanding of chronic disease causation.\(^ {254}\) Currently employed genotoxicity testing protocols emphasize testing for the initiating (mutational) potential of the test agent. While 2-year chronic rodent cancer bioassays test for the entire spectrum of carcinogenic transformation and development, the high doses used in these assays induce cytotoxicity leading to...
increased cellular proliferation rates and high false-positive rates of tumor induction in non-genotoxic chemicals.255,256 The low cancer induction from high radiation exposures experienced by atomic bomb survivors in Hiroshima and Nagasaki, Japan,257–263 and the epidemiological evidence showing that cigarette smoking duration and not intensity is associated with lung cancer risk,264,265 both support a more important role for tumor promotion (clonal expansion) rather than initiation in the clinical presentation of human carcinomas. Cancer hazard assessment testing protocols and weight-of-the-evidence analysis of agent-specific cancer risk should be better aligned with the pathogenesis of human carcinoma.254 The US Food and Drug Administration is currently studying this problem as potentially useful drug candidates that test positive in the Ames \textit{Salmonella} bacterial mutagenicity assay but do not possess promotion potential might be triaged unnecessarily at an early stage of the drug development process (personal communication, January 10, 2020, Dr. Douglas Brash, Department of Therapeutic Radiology and Dermatology, Yale University). The evaluation of the potential effects resulting from exposure to a particular chemical should consider possible concomitant effects from exposures from natural sources.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD
Carr Joseph Smith \[https://orcid.org/0000-0002-8708-5208\]

References
1. National Library of Medicine (NLM). Collection Development Guidelines of the National Library of Medicine, \[https://www.ncbi.nlm.nih.gov/books/NBK518837/\] (2019, accessed 24 November 2019).
2. Tsatsakis AM, Vassilopoulou L, Kovatsi L, et al. The dose response principle from philosophy to modern toxicology: the impact of ancient philosophy and medicine in modern toxicology science. \textit{Toxicol Rep} 2018; 5:1107–1113.
3. McCann J and Ames BN. Detection of carcinogens as mutagens in the \textit{Salmonella}/microsome test: assay of 300 chemicals: discussion. \textit{Proc Natl Acad Sci USA} 1976; 73(3): 950–954.
4. Ames BN. Identifying environmental chemicals causing mutations and cancer. \textit{Science} 1979; 204(4393): 587–593.
5. Ames BN and Gold LS. Too many rodent carcinogens: mutagenesis increases mutagenesis. \textit{Science} 1990; 249(4972): 970–971.
6. Ames BN, Profet M and Gold LS. Dietary pesticides (99.99% all natural). \textit{Proc Natl Acad Sci USA} 1990; 87(19): 7777–7781.
7. Duke SO. Natural pesticides from plants. In: Janick J and Simon JE (eds), \textit{Advances in new crops}. Portland, OR: Timber Press, 1990, pp. 511–517.
8. Picon-Ruiz M, Morata-Tarifa C, Valle-Goffin JJ, et al. Obesity and adverse breast cancer risk and outcome: mechanistic insights and strategies for intervention. \textit{CA: Cancer J Clin} 2017; 67(5): 378–397.
9. Ogden CL, Carroll MD, Kit BK, et al. Prevalence of childhood and adult obesity in the United States, 2011-2012. \textit{JAMA} 2014; 311(8): 806–814.
10. Finkelstein EA, Khajvou OA, Thompson H, et al. Obesity and severe obesity forecasts through 2030. \textit{Am J Prev Med} 2012; 42(6): 563–570.
11. Fasshauer M and Bluher M. Adipokines in health and disease. \textit{Trends Pharmacol Sci} 2015; 36(7): 461–470.
12. Madhusoodanan J. Hormones reveal the secret life of fat cells. Understanding the slew of compounds produced by fat might one day lead to therapeutics for obesity-related conditions. \textit{Chem Eng New} 96(40), \[https://cen.acs.org/biological-chemistry/biochemistry/Hormones-reveal-secret-life-fat/96/i40\] (2018, accessed 26 November 2019).
13. Kershaw EE and Flier JS. Adipose tissue as an endocrine organ. \textit{J Clin Endocrinol Metab} 2004; 89(6): 2548–2556.
14. Belanger C, Luu-The V, Dupont P, et al. Adipose tissue intracrinology: potential importance of local androgen/estrogen metabolism in the regulation of adiposity. \textit{Horm Metab Res} 2002; 34: 737–745.
15. Meseguer A, Puche C and Cabero A. Sex steroid biosynthesis in white adipose tissue. \textit{Horm Metab Res} 2002; 34(11/12): 731–736.
16. Jones ME, Thorburn AW, Britt KL, et al. Aromatase-deficient (ArKO) mice accumulate excess adipose tissue. \textit{J Steroid Biochem Mol Biol} 2001; 79: 3–9.
17. Jones MEE, Thorburn AW, Britt KL, et al. Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity. \textit{Proc Natl Acad Sci USA} 2000; 97: 12735–12740.
18. Misso ML, Murata Y, Boon WC, et al. Cellular and molecular characterization of the adipose phenotype of the aromatase-deficient mouse. \textit{Endocrinology} 2003; 144: 1474–1480.
19. Takeda K, Toda K, Saibara T, et al. Progressive development of insulin resistance phenotype in male mice with complete aromatase (CYP19) deficiency. \textit{J Endocrinol} 2003; 176: 237–246.
20. National Institute of Health (NIH), National Cancer Institute (NCI). Obesity and cancer, \[https://www.cancer.gov/about-cancer/causes-prevention/risk/obesity/obesity-fact-sheet\] (2017, accessed 23 November 2019).
21. Merriam-Webster. Estradiol | definition of estradiol by Merriam-Webster, \[https://www.merriam-webster.com/dictionary/estradiol\] (2019, accessed 12 November 2019).
22. Simpson ER. Sources of estrogen and their importance. \textit{J Steroid Biochem Mol Biol} 2003; 86(3-5): 225–230.
23. American Thyroid Association (ATA). Thyroid and weight, \[https://www.thyroid.org/thyroid-and-weight/\] (2019, accessed 10 November 2019).
24. Karvani G, Strich D, Edri S, et al. Increases in thyrotropin within the near-normal range are associated with increased triiodothyronine but not increased thyroxine in the pediatric age group. *J Clin Endocrinol Metab* 2014; 99(8): E1471–E1475.

25. Pirahanchi Y and Jialal I. Physiology, thyroid stimulating hormone (TSH). https://www.ncbi.nlm.nih.gov/books/NBK499850/#_NBK499850_pubdet_, StatPearls Publishing, Treasure Island, FL (2019, accessed 26 November 2019).

26. Al-Musa HM. Impact of obesity on serum levels of thyroid hormones among euthyroid Saudi adults. *J Thyir Res* 2017; 2017: 5.

27. Milionis A and Milionis C. Correlation between body mass index and thyroid function in euthyroid individuals in Greece. *ISRN Biomarkers* 2013; 7.

28. Bandurska-Stankiewicz E. Thyroid hormones – obesity and metabolic syndrome. *Thyroid Res* 2013; 6: A5.

29. Thompson D, Pepys MB and Wood SP. The physiological structure of human C-reactive protein and its complex with phosphocholine. *Structure* 1999; 7(2): 169–177.

30. Del Giudice M and Gangestad SW. Rethinking IL-6 and CRP: why they are more than inflammatory biomarkers, and why it matters. *Brain Behav Immun* 2018; 70: 61–75.

31. Asztalos BF, Horan MS, Horvath KV, et al. Obesity associated molecular forms of C-reactive protein in human. *PLoS One* 2014; 9(10): e109238.

32. Paepgaard AC, Genser L, Bouillot JL, et al. High levels of CRP in morbid obesity: the central role of adipose tissue and lessons for clinical practice before and after bariatric surgery. *Surg Obes Relat Dis* 2015; 11(1): 148–154.

33. Nishide R, Ando M, Funabashi H, et al. Obesity indices are predictive of elevated C-reactive protein in long-haul truck drivers. *Am J Ind Med* 2016; 59(8): 665–675.

34. Wideman L, Oberlin DJ, Sönnmez S, et al. Obesity indices are predictive of elevated C-reactive protein in long-haul truck drivers. *Am J Ind Med* 2016; 59(8): 665–675.

35. El-Kadre LJ and Tinoco AC. Interleukin-6 and obesity: the crosstalk between intestine, pancreas and liver. *Curr Opin Clin Nutr Metab Care* 2013; 16(5): 564–568.

36. Timper K, Denson JL, Steculorum SM, et al. IL-6 improves energy and glucose homeostasis in obesity via enhanced central IL-6 trans-signaling. *Cell Rep* 2017; 19(2): 267–280.

37. Braune J, Weyer U, Hobusch C, et al. IL-6 regulates M2 polarization and local proliferation of adipose tissue macrophages in obesity. *J Immunol* 2017; 198(7): 2927–2934.

38. Xu E, Pereira MMA, Karakasilioti I, et al. Temporal and tissue-specific requirements for T-lymphocyte IL-6 signaling in obesity-associated inflammation and insulin resistance. *Nat Commun* 2017; 8: 14803.

39. Pang J, Nguyen VT, Rhodes DH, et al. Relationship of galectin-3 with obesity, IL-6, and CRP in women. *J Endocrinol Invest* 2016; 39(12): 1435–1443.

40. Roś D, Adamczyk P, Boinska J, et al. CRP, but not TNF-α or IL-6, decreases after weight loss in patients with morbid obesity exposed to intensive weight reduction and bariatrological treatment. *J Zhejiang Univ Sci B* 2015; 16(5): 404–411.

41. Todendi PF, Klinger EI, Ferreira MB, et al. Association of IL-6 and CRP gene polymorphisms with obesity and metabolic disorders in children and adolescents. *An Acad Bras Cienc* 2015; 87(2): 915–924.

42. Beavers KM, Beavers DP, Newman JJ, et al. Effects of total and regional fat loss on plasma CRP and IL-6 in overweight and obese, older adults with knee osteoarthritis. *Osteoarthritis Cartil* 2015; 23(2): 249–256.

43. Rohde LE, Hennekens CH and Ridker PM. Survey of C-reactive protein and cardiovascular risk factors in apparently healthy men. *Am J Cardiol* 1999; 84: 1018–1022.

44. Kiechl S, Werner P, Egger G, et al. Active and passive smoking, chronic infections, and the risk of carotid atherosclerosis: prospective results from the Bruneck Study. *Stroke* 2002; 33: 2170–2176.

45. Bazzano LA, He J, Muntner P, et al. Relationship between cigarette smoking and novel risk factors for cardiovascular disease in the United States. *Ann Intern Med* 2003; 138: 891–897.

46. Frohlich M, Sund M, Lowell H, et al. Independent association of various smoking characteristics with markers of systemic inflammation in men: results from a representative sample of the general population (MONICA Augsburg Survey 1994/95). *Eur Heart J* 2003; 24: 1365–1372.

47. Ford ES, Giles WH, Mokdad AH, et al. Distribution and correlates of C-reactive protein concentrations among adult US women. *Clin Chem* 2004; 50: 574–581.

48. Bermudez EA, Rifai N, Buring J, et al. Interrelationships among circulating interleukin-6, C-reactive protein, and traditional cardiovascular risk factors in women. *Arterioscler Thromb Vasc Biol* 2002; 22: 1668–1673.

49. Tzanavari T, Giannogonas P and Karalis KP. TNF-alpha and obesity. *Curr Dir Autoimmun* 2010; 11: 145–156.

50. Duque GA and Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. *Front Immunol* 2014; 5: 491.

51. Hotamisligil GS, Shargill NS and Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. *Science* 1993; 259(5091): 87–91.

52. Nieto-Vazquez I, Fernández-Veledo S, Krämer DK, et al. Insulin resistance associated to obesity: the link TNF-alpha. *Arch Physiol Biochem* 2008; 114(3): 183–194.

53. Peluso I and Palmery M. The relationship between body weight and inflammation: lesson from anti-TNF-α antibody therapy. *Hum Immunol* 2016; 77(1): 47–53.

54. Uranga RM and Keller JN. The complex interactions between obesity, metabolism and the brain. *Front Neurosci* 2019; 13: 513.

55. Merriam-Webster. Hypothalamus | Definition of hypothalamus by Merriam-Webster, https://www.merriam-webster.com/dictionary/hypothalamus (2019, accessed 12 November 2019).
72. Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of.
71. Swann JR, Want EJ, Geier FM, et al. Systemic gut microbial.
70. Groh H, Schade K and Hörhold-Schubert C. Steroid metabo-
68. Scheppach W. Effects of short chain fatty acids on gut mor-
67. Wong JM, de Souza R, Kendall CW, et al. Colonic health:
66. Wong JM, de Souza R, Kendall CW, et al. Colonic health:
65. Samuel BS, Shaito A, Motoike T, et al. Effects of the gut
63. Sender R, Fuchs S and Milo R. Revised estimates for the
62. Beaugerie L and Petit JC. Antibiotic-associated diarrhoea.
61. Sears CL. A dynamic partnership: celebrating our gut flora.
60. Guarner F and Malagelada J. Gut flora in health and disease.
59. Guillemot-Legris O and Muccioli GG. Obesity-Induced neu-
58. Miller AA and Spencer SJ. Obesity and neuroinflammation: a
57. De Git KC and Adan RA. Leptin resistance in diet-induced
56. Williams LM. Hypothalamic dysfunction in obesity. Proc
55. Williams LM. Hypothalamic dysfunction in obesity. Proc
54. Williams LM. Hypothalamic dysfunction in obesity. Proc
53. Williams LM. Hypothalamic dysfunction in obesity. Proc
52. Williams LM. Hypothalamic dysfunction in obesity. Proc
51. Williams LM. Hypothalamic dysfunction in obesity. Proc
50. Williams LM. Hypothalamic dysfunction in obesity. Proc
49. Williams LM. Hypothalamic dysfunction in obesity. Proc
48. Williams LM. Hypothalamic dysfunction in obesity. Proc
47. Williams LM. Hypothalamic dysfunction in obesity. Proc
46. Williams LM. Hypothalamic dysfunction in obesity. Proc
45. Williams LM. Hypothalamic dysfunction in obesity. Proc
44. Williams LM. Hypothalamic dysfunction in obesity. Proc
43. Williams LM. Hypothalamic dysfunction in obesity. Proc
42. Williams LM. Hypothalamic dysfunction in obesity. Proc
41. Williams LM. Hypothalamic dysfunction in obesity. Proc
40. Williams LM. Hypothalamic dysfunction in obesity. Proc
39. Williams LM. Hypothalamic dysfunction in obesity. Proc
38. Williams LM. Hypothalamic dysfunction in obesity. Proc
37. Williams LM. Hypothalamic dysfunction in obesity. Proc
36. Williams LM. Hypothalamic dysfunction in obesity. Proc
35. Williams LM. Hypothalamic dysfunction in obesity. Proc
34. Williams LM. Hypothalamic dysfunction in obesity. Proc
33. Williams LM. Hypothalamic dysfunction in obesity. Proc
32. Williams LM. Hypothalamic dysfunction in obesity. Proc
31. Williams LM. Hypothalamic dysfunction in obesity. Proc
30. Williams LM. Hypothalamic dysfunction in obesity. Proc
29. Williams LM. Hypothalamic dysfunction in obesity. Proc
28. Williams LM. Hypothalamic dysfunction in obesity. Proc
27. Williams LM. Hypothalamic dysfunction in obesity. Proc
26. Williams LM. Hypothalamic dysfunction in obesity. Proc
25. Williams LM. Hypothalamic dysfunction in obesity. Proc
24. Williams LM. Hypothalamic dysfunction in obesity. Proc
23. Williams LM. Hypothalamic dysfunction in obesity. Proc
22. Williams LM. Hypothalamic dysfunction in obesity. Proc
21. Williams LM. Hypothalamic dysfunction in obesity. Proc
20. Williams LM. Hypothalamic dysfunction in obesity. Proc
19. Williams LM. Hypothalamic dysfunction in obesity. Proc
18. Williams LM. Hypothalamic dysfunction in obesity. Proc
17. Williams LM. Hypothalamic dysfunction in obesity. Proc
16. Williams LM. Hypothalamic dysfunction in obesity. Proc
15. Williams LM. Hypothalamic dysfunction in obesity. Proc
14. Williams LM. Hypothalamic dysfunction in obesity. Proc
13. Williams LM. Hypothalamic dysfunction in obesity. Proc
12. Williams LM. Hypothalamic dysfunction in obesity. Proc
11. Williams LM. Hypothalamic dysfunction in obesity. Proc
10. Williams LM. Hypothalamic dysfunction in obesity. Proc
9. Williams LM. Hypothalamic dysfunction in obesity. Proc
8. Williams LM. Hypothalamic dysfunction in obesity. Proc
7. Williams LM. Hypothalamic dysfunction in obesity. Proc
6. Williams LM. Hypothalamic dysfunction in obesity. Proc
5. Williams LM. Hypothalamic dysfunction in obesity. Proc
4. Williams LM. Hypothalamic dysfunction in obesity. Proc
3. Williams LM. Hypothalamic dysfunction in obesity. Proc
2. Williams LM. Hypothalamic dysfunction in obesity. Proc
1. Williams LM. Hypothalamic dysfunction in obesity. Proc
93. Huang DP, Ho JHC, Webb KS, et al. Volatile nitrosamines in salt-preserved fish before and after cooking. *Food Cosmet Toxicol* 1981; 19: 167–172.
94. Crosby NT, Foreman JK, Palframan JF, et al. Estimation of steam-volatile N-nitrosamines in foods at the 1 μg/kg level. *Nature* 1972; 238: 342–343.
95. Wasserman AE, Fiddler W, Doerr RC, et al. Dimethylnitrosamine in frankfurters. *Food Cosmet Toxicol* 1972; 10: 681–684.
96. Sen NP, Smith DC, Schwingheimer L, et al. Formation of nitrosamines in nitrite-treated fish. *Canadian Inst Food Technol* 1970; 3: 66–69.
97. Fong YV and Chan WC. Dimethylamine in Chinese marine salt fish. *Food Cosmet Toxicol* 1973; 11: 841–845.
98. Fong YV and Chan WC. Methods for limiting the content of dimethyl nitrosamine in Chinese marine salt fish. *Food Cosmet Toxicol* 1976; 14: 95–98.
99. Maduagwu EN and Bassir O. Detection of dimethyl- and diethyl nitrosamine in a Nigerian fermented milk product (nono). *Toxicol Lett* 1979; 4: 169–173.
100. Spiegelhalder B, Eisenbrand G and Preussmann R. Contamination of beer with trace quantities of N-nitrosodimethylamine. *Food Cosmet Toxicol* 1979; 17: 29–31.
101. Scanlan RA, Barbour JF, Hotchkiss JW, et al. N-nitrosodimethylamine in beer. *Food Cosmet Toxicol* 1980; 18: 27–29.
102. Kawabata T, Uibu J, Ohshima H, et al. Occurrence, formation and precursors of N-nitroso compounds in the Japanese diet. *IARC Scientific Publications* 1980; 31: 481–492.
103. Sen NP, Smith DC and Schwinghamer L. Formation of N-nitrosamines from secondary amines and nitrite in human and animal gastric juice. *Food Cosmet Toxicol* 1969; 3: 66–69.
104. Panalaks T, Iyengar JR, Donaldson BA, et al. Further survey of cured meat products for volatile N-nitrosamines. *J Assoc Off Anal Chem* 1974; 57: 806–812.
105. Panalaks T, Iyengar JR and Sen NP. Nitrate, nitrite, and dimethyl nitrosamine in cured meat products. *J Assoc Off Anal Chem* 1973; 56: 621–625.
106. Sen NP. The evidence for the presence of dimethyl nitrosamine in meat products. *Food Cosmet Toxicol* 1972; 10: 219–223.
107. Spiegelhalder B, Eisenbrand G and Preussmann R. Volatile nitrosamines in food. *Oncology* 1980; 37: 211–216.
108. Eisenbrand G. *N-Nitrosoverbindungen in Nahrung und Umwelt* [N-Nitroso compounds in food and the environment]. Stuttgart, Germany: Wiss Verlagsgesellschaft, 1981.
109. Helgason T, Ewen S, Jaffray B, et al. Nitrosamines in smoked meats and their relation to diabetes. In: O’Neill IK, von Borstel RC, Miller CT, et al. (eds), *N-nitroso compounds: Occurrence, biological effects and relationship to human cancer*. IARC, Lyon, France: IARC Scientific Publications. No. 57, 1984, pp. 911–920.
110. Vecchio AJ and Hotchkiss JH. N-Nitrosamine ingestion from consumer-cooked bacon. *J Food Sci* 1986; 51: 754.
111. Sen NP, Seaman S and McPherson M. Further studies on the occurrence of volatile and nonvolatile nitrosamines in foods. In: Walker EA, Griciute L, Castegnaro M, et al. (eds), *N-Nitroso compounds: Analysis, formation and occurrence*. IARC, Lyon, France, IARC: Scientific Publications. No. 31, 1980, pp. 457–465.
112. Iyengar JR, Panalaks T, Miles WF, et al. A survey of fish products for volatile N-nitrosamines. *J Sci Food* 1976; 27: 527–530.
113. Havery DC and Fazio T. Survey of finfish and shellfish for volatile N-nitrosamines; *J Assoc Off Anal Chem* 1977; 60: 517–519.
114. Kawabata T, Ohshima H, Uibu J, et al. Naturally occurring carcinogens/mutagens and modulators of carcinogenesis. Tokyo: Japan Scientific Societies Press and Baltimore, MD: University Park Press, 1979, pp. 195–209.
115. Maki T, Tamura Y, Shimamura Y, et al. Occurrence of dimethyl nitrosamine in commercial beers and its formation in the brewing process. *Tokyo-Toritsu Eisei Kenyusho Kenkyo* 1979; 30: 145–148.
116. Josefsson E and Nygren S. Volatile N-nitroso compounds in foods in Sweden. *Var Föded* 1981; 33(2): 147–165.
117. Matsui T, Ohshima H and Kawabata T. Increase in the nitrosamine content of several fish products upon broiling. *Nippon Suisan Gakka* 1980; 46: 587–590.
118. Pedersen E and Meyland I. Nitrate, nitrite, and volatile nitrosamines in pickled fish prepared with addition of nitrate. *Z Lebensm Unterrforsch* 1981; 173: 359–361.
119. Nieper L and Etzel V. Nitrate content in muscle tissue of smoked fish. *Arch. faser Lab* 1983; 34: 149.
120. Röper H. Chemie und Bildung von N-Nitrosoverbindungen [Chemistry and formation of N-nitroso compounds]. In: Preussmann R (ed.), *Das Nitrosamin-Problem [The nitrosamine problem]*. Weinheim: Verlag Chemie, 1983, pp. 189–211.
121. Röper H, Heyns K and Guenther W. Nitrosamin-Spurenanalysen von Anchosen und Raucherfischen [Nitrosamine - Trace analyses of anchovies and smoked fish]. Mikrobiol. Technol. *Lebensmitt* 1981; 7: 13–17.
122. Kröller E. Untersuchungen zum Nachweis von Nitrosaminen in Tabakrauch und Lebensmitteln [Study of the determination of nitrosamines in tobacco smoke and food]. *Deut Leben Rundsch* 1967; 63: 303–305.
123. Goodhead K, Gough TA, Webb KS, et al. The use of nitrate in the manufacture of Gouda cheese. Lack of evidence of nitrosamine formation. *Neth Milk Dairy* 1976; 30: 207–221.
124. Havery DC, Kline DA, Miletta EM, et al. Survey of food products for volatile nitrosamines. *J Assoc Off Anal Chem* 1976; 59: 540–546.
125. Gough TA, McPhail MG, Webb KS, et al. An examination of some foodstuffs for the presence of volatile nitrosamines. *J Sci Food Agr* 1977; 28: 345–351.
126. Elgersma RHC, Sen RP, Stephany RW, et al. A collaborative examination of some Dutch cheeses for the presence of volatile nitrosamines. *Neth Milk Dairy J* 1978; 32: 125–142.
127. Pedersen E, Thomsen J and Werner H. Investigations on formation and occurrence of volatile nitrosamines in Danish cheese. *IARC Sci Publ* 1980; 31: 493–501.

128. Libbey LM, Scanlan RA and Barbour JF. N-nitrosodimethylamine in dried dairy products. *Food Cosmet Toxicol* 1980; 18: 459–461.

129. Lakritz L and Pensabene JW. Survey of fluid and nonfat dry milks for N-nitrosamines. *J Dairy Sci* 1981; 64: 371–374.

130. Havery DC and Fazio T. Estimation of volatile N-nitrosamines in rubber nipples for babies' bottles. *Food Chem Toxicol* 1982; 20: 934–939.

131. Sen NP and Seaman S. Occurrence of diethylnitrosamine in some samples of food. *Food Cosmet Toxicol* 1968; 6: 341–348.

132. Sen NP and Dalpe C. A simple thin-layer chromatographic technique for the semi-quantitative determination of volatile nitrosamines in alcoholic beverages. *Analyst* 1972; 97: 216–220.

133. Goff EV and Fine DH. Analysis of volatile N-nitrosamines in alcoholic beverages. *Food Cosmet Toxicol* 1979; 17: 569–573.

134. Walker EA, Castegnaro M, Garren L, et al. Intake of volatile nitrosamines from consumption of alcohols. *J Natl Cancer Inst* 1979; 63: 947–951.

135. United States Food and Drug Administration (US FDA). Dimethylnitrosamines in malt beverages. *Available guide Fed Reg* 1980; 45: 39341–39342.

136. Maki T, Tamura Y, Shimamura Y, et al. Occurrence of dimethylnitrosamine in commercial beers and its formation in the brewing process. *Shokakuhin Eiseigaku Zasshi* 1980; 21: 184–188.

137. Maki T, Tamura Y, Shimamura Y, et al. Estimated volatile nitrosamines in Japanese food. *Bull Environ Contam Toxicol* 1980; 25: 257–261.

138. Preussmann R, Spiegelhalder B and Eisenbrand G. Reduction of human exposure to environmental N-Nitroso carcinogens. Examples of possibilities for cancer prevention. In: Pullman B, Ts'o POP and Gelboin H (eds) *Carcinogenesis: Fundamental Mechanisms and Environmental Effects*. The Netherlands: Reidel Publishing Co., 1980, pp. 273–285.

139. Preussmann R, Spiegelhalder B and Eisenbrand G. Reduction of human exposure to environmental N-nitroso compounds. In: *American Chemical Society Symposium Series No. 174* (eds Scanlan RA and Tannenbaum SR), Atlanta, Georgia, 31 March–1 April 1981, pp. 229–245. Washington, DC: American Chemical Society.

140. Sen NP, Seaman S and McPherson M. Nitrosamines in alcoholic beverages. *J Food Safety* 1980; 2: 13–18.

141. Libbey LM, Scanlan RA and Barbour JF. N-Nitrosodimethylamine content of U.S. and Canadian beers. In: O'Neill IK, Chen J and Bartsch H (eds), *Relevance to human cancer of N-nitroso compounds, tobacco smoke, and mycotoxins*. IARC, Lyon, France: IARC Scientific Publication. No. 105, 1991, pp. 242–243.

142. Sen NP, Seaman S and McPherson M. Nitrosamines in alcoholic beverages. *J Food Safety* 1980; 2: 13–18.

143. Stephany RW and Schüller PL. Daily dietary intakes of nitrate, nitrite, and volatile N-nitrosamines in the Netherlands using the duplicate sampling technique. *Oncology* 1980; 37: 203–210.

144. Havery DC, Hotchkiss JH and Fazio T. Nitrosamines in malt and malt beverages. *J Food Sci* 1981; 46: 501–505.

145. Hotchkiss JH, Havery DC and Fazio T. Rapid method for estimation of N-nitrosodimethylamine in malt beverages. *J Assoc Off Anal Chem* 1981; 64: 929–932.

146. Sen NP and Seaman S. Gas-liquid chromatographic-thermal energy analyzer determination of N-nitrosodimethylamine in beer at low parts per billion level. *J Assoc Off Anal Chem* 1981; 64: 933–938.

147. Sen NP and Seaman S. On-line combination of high-performance liquid chromatography and total N-nitroso determination apparatus for the determination of N-nitrosamides and other N-nitroso compounds, and some recent data on the levels of N-nitrosoprine in foods and beverages. In: O'Neill IK, von Borstel RC, Miller CT, et al. (eds), *N-Nitroso compounds: Occurrence, biological effects and relevance to human cancer*. IARC, Lyon, France: IARC Scientific Publications. No. 57, 1984, pp. 137–143.

148. Slack PT and Wainwright T. Hordenine as the precursor of NDMA in malt. *J Inst Brew* 1981; 87: 259–263.

149. Kann J, Touts O, Kalve R, et al. Potential formation of N-nitrosamines in the course of technological processing of some foodstuffs. In: Walker EA, Griciute L, Castegnaro M and Borzsonyi M (eds) *N-Nitroso Compounds: Occurrence and Biological Effects*. IARC, Lyon, France: IARC Scientific Publications. No. 31, 1980, pp. 319–327.

150. Mangino MM, Scanlan RA and O'Brien T. *N-Nitroso compounds*. In: *American Chemical Society Symposium Series No. 174* (eds Scanlan RA and Tannenbaum SR), Atlanta, Georgia, 31 March–1 April 1981, pp. 229–245. Washington, DC: American Chemical Society.

151. Spiegelhalder B. Analysis of malt and malt-based beverages: general aspects. In: Egan H, Preussmann R, O'Neill IK, et al. (eds) *Environmental carcinogenesis: Selected methods of analysis, Vol. 6: N-Nitroso compounds*. IARC, Lyon, France: IARC Scientific Publications. No. 45, 1983, pp. 103–113.

152. Jasinski JS. Liquid chromatographic determination of nitrosamines in malt and beer with a photoconductivity detector. *Anal Chem* 1984; 56: 2214–2218.

153. Gough TA. A search for nitrosamines in East African spirit. *Gut* 1977; 18: 301–302.

154. Bassir O and Maduagwu EN. Occurrence of nitrate, nitrite, dimethylnitrosamine, and dimethylaminoazobenzene in some fermented Nigerian beverages. *J Agric Food Chem* 1978; 26: 200–203.

155. Fine DH, Rounbehler DP, Sawicki E, et al. Determination of dimethylnitrosamine in air and water by thermal energy analysis: validation of analytical procedures. *Environ Sci Technol* 1977; 11: 577–580.

156. Fine DH, Rounbehler DP, Rounbehler A, et al. Determination of dimethylnitrosamine in air, water, and soil by...
thermal energy analysis. *Environ Sci Technol* 1977; 11: 581–584.

157. Kimoto WI, Dooley CJ, Carre J, et al. Role of strong ion exchange resins in nitrosamine formation in water. *Water Res* 1980; 14: 869–876.

158. Mitch WA, Sharp JO, Trussell RR, et al. N-Nitrosodimethylamines (NDMA) as a drinking water contaminant: a review. *Environ Eng Sci* 2003; 20: 389–404.

159. Kimoto WI, Dooley CJ, Carre J, et al. Nitrosamines in tap water after concentration by a carbonaceous absorbent. *Water Res* 1981; 15: 1099–1106.

160. Pensabene JW, Feinberg JJ, Piotrowski EG, et al. Rapid dry column method for determination of N-nitrosopyrrolidine in fried bacon. *J Assoc Off Anal Chem* 1982; 65: 151–156.

161.汉堡 A and Hamburg A. Formation of N-nitrosopropoline in some meat products during technological treatment. *Tr Tullin Politekh Inst* 1982; 537: 57–63.

162. Dennis M, Cripps G, Tricker AR, et al. N-nitroso compounds and polycyclic aromatic hydrocarbons in Icelandic smoke-cured mutton. *Food Chem Toxicol* 1984; 22: 305–306.

163. Dunn BP and Stich HF. Determination of free and protein-bound N-nitroso compounds in nitrite-cured meat products. *Food Chem Toxicol* 1984; 22: 609–614.

164. Brunnemann KD, Scott JC, Haley NJ, et al. Endogenous formation of N-nitrosopropoline upon cigarette smoke inhalation. In: O’Neill IK, von Borstel RC, Miller CT, et al. (eds), *N-Nitroso compounds: Occurrence, biological effects and relationship to human cancer*. IARC, Lyon, France: IARC Scientific Publications. No. 57, 1984, pp. 819–828.

165. Massey RC, Key PE, Jones RA, et al. Volatile, non-volatile and total N-nitroso compounds in bacon. *Food Add Contam* 1991; 8: 585–598.

166. Coker HA, Thomas AE and Akintonwa A. Determination of the total level of nitrosamines in select consumer products in the Lagos area of Nigeria. *Bull Environ Contam Toxicol* 1991; 47: 706–710.

167. Sugimura T, Nago M, Kawachi T, et al. Mutagenic pyrolytic products in broiled foods. In: Hiatt HH, Watson JD and Winsten JA (eds), *Origins of human cancer*. Cold Spring Harbor NY: Cold Spring Harbor Laboratory, 1977, pp. 1561–1577.

168. Sugimura T and Nago M. Mutagenic factors in cooked foods. *Crit Rev Toxicol* 1979; 6: 189–209.

169. Matsuzato T, Yoshida D and Tomita H. Determination of mutagenic, amino-α-carbolines in grilled foods and cigarette smoke condensate. *Cancer Let* 1981; 12:105–110.

170. Sugimura T. Isolation and structure determination of mutagenic substances in L-glutamic acid pyrolysis. *Proc Jpn Acad* 1978; 54: 248–250.

171. Sugimura T. Past, present, and future of mutagens in cooked foods. *Env Health Perspect* 1986; 67: 5–10.

172. Sugimura T. Carcinogenicity of mutagenic heterocyclic amines formed during the cooking process. *Mutation Res* 1985; 150: 33–41.

173. Nagao M, Fujita Y, Wakabayashi K, et al. Ultimate forms of mutagenic and carcinogenic heterocyclic amines produced in...
by pyrolysis. Biochim Biophys Acta 1983; 114: 626–631.

190. Tanaka T, Barnes WS, Williams GM, et al. Multipotential carcinogenicity of the fried food mutagen 2-amino-3-methylimidazo [4,5-f] quinoline (IQ) in rats. Jpn J Cancer Res GANN 1985; 76: 570–576.

191. Felton KS and Knize MG. Heterocyclic amine mutagens in foods. In: Cooper CS and Grover PL (eds), Chemical mutagenesis and carcinogenesis. Berlin/Heidelberg: Springer-Verlag, pp. 471–502.

192. Commoner B, Vilayathil AJ, Dolara P, et al. Formation of mutagens in beef and beef extract during cooking. Science 1978; 201: 913–916.

193. Hargraves WA and Pariza MW. Purification and mass spectral characterization of bacterial mutagens from commercial beef extract. Cancer Res 1983; 43: 1467–1472.

194. Hayatsu H, Matsui Y, Ohara Y, et al. Characterization of mutagenic fractions in beef extract and in cooked ground beef. Use of blue-cotton for efficient extraction. Jpn J Cancer Res GANN 1983; 74: 472–482.

195. Turesky RJ, Wishnok JS, Tannenbaum SR, et al. Qualitative and quantitative characterization of mutagens in commercial beef extract. Carcinogenesis 1983; 4: 863–866.

196. Ohgaki H, Kusama K, Matsukura N, et al. Carcinogenicity in mice of a mutagenic compound, 2-amino-3-methylimidazo [4, 5-f] quinoline, from broiled sardine, cooked beef and beef extract. Carcinogenesis 1984; 5: 921–924.

197. Takayama S, Nakatsuru Y, Masuda M, et al. Demonstration of carcinogenicity in F344 rats of 2-amino-3-methylimidazo [4, 5-f] quinoline from broiled sardine, cooked beef and beef extract. Jpn J Cancer Res GANN 1984; 75: 467–470.

198. Lijinisky W and Shubik P. Benzo[a]pyrene and other polynuclear hydrocarbons in charcoal-broiled meat. Science 1964; 145: 53–54.

199. Lijinsky W and Shubik P. Polynuclear hydrocarbon carcinogens in cooked meat and smoked food. Int Med Surg 1965; 34: 152.

200. Nagao M, Honda M, Seino Y, et al. Mutagenicities of smoke condensates and the charred surface of fish and meat. Cancer Lett 1977; 2: 221–226.

201. Yasuda T, Yamaizumi Z, Nishimura S, et al. Detection of comutagenic compounds, harman and norharman in pyrolysis product of proteins and food by gas chromatography-mass spectrometry. Nippon Gan Gakkai Sokai Kiju 1978; 37: 6. (Abstract 41.).

202. Hayatsu H, Inoue K, Ohta H, et al. Inhibition of the mutagenicity of cooked-beef basic fraction by its acidic fraction. Mutat Res Lett 1981; 91: 437–442.

203. Kasai H, Yamaizumi Z, Shiomi T, et al. Structure of a potent mutagen isolated from fried beef. Chem Lett 1981; 10: 485–488.

204. Jägerstad M, Reuterswärd AL, Oste R, et al. Creatinine and Maillard reaction products as precursors of mutagenic compounds formed in fried beef. In: Waller GR and Feather MS (eds), The Maillard reaction in foods and nutrition.
221. Kato S, Kurata T, Ishitsuka R, et al. Pyrolysis of β-hydroxy amino acids, especially L-serine. J Agr Biol Chem Japan 1970; 34: 1826–1832.

222. Kato S, Kurata T, Ishiguro S, et al. Additional volatile compounds produced by pyrolysis of sulfur-containing amino acids. Agr Biol Chem Japan 1973; 37: 1759–1761.

223. Kosuge T, Tsugi K, Wakabayashi K, et al. Isolation and structure studies of mutagenic principles in amino acid pyrolysates. Chem Pharm Bull 1978; 26: 611–619.

224. Takayama S, Masuda M, Mogami M, et al. Induction of carcinogenicity in mice of mutagenic compounds from a tryptophan pyrolysate. Jpn J Cancer Res 1981; 53(1): 58–61.

225. Wakabayashi K, Tsuji K, Kosuge T, et al. Isolation and structure determination of a mutagenic substance in L-lysine pyrolysate. Proc Jpn Acad 1978; 54(2): 569–571.

226. Yoshida D and Matsumoto T. Isolation of 2-amino-9H-pyrido [2, 3-b] indole and 2-amino-3-methyl-9H-pyrido [2, 3-b] indole as mutagens from pyrolysis product of tryptophan. Agric Biol Chem 1979; 43: 1155–1156.

227. Negishi T and Hayatsu H. The enhancing effect of cysteine and its derivatives on the mutagenic activities of the tryptophan-pyrolysate products, Trp-P-1 and Trp-P-2. Biochem Biophys Res Comm 1979; 88: 97–102.

228. Yamazoe Y, Ishii K, Kamataki T, et al. Isolation and characterization of active metabolites of tryptophan-pyrolysate mutagen, Trp-P-2, formed by rat liver microsomes. Chem Biol Interact 1980; 30: 125–138.

229. Hosaka S, Matsushima T, Hirono I, et al. Carcinogenic activity of 3-amino-1-methyl-5H-pyrido [2, 3-b] indole as mutagens from pyrolysate of tryptophan. Cancer Lett 1981; 13: 23–28.

230. Matsukura N, Kawachi T, Morino K, et al. Carcinogenicity in mice of mutagenic compounds from a tryptophan pyrolysate. Science 1981; 213: 346–347.

231. Nakatsuru SY, Ohgaki H, Sato S, et al. Carcinogenicity in rats of a mutagenic compound, 3-amino-1,4-dimethyl-5H-pyrido [4, 3-b] indole, from tryptophan pyrolysate. Jpn J Cancer Res GANN 1985; 76: 815–817.

232. Yamamoto T, Tsuji K, Kosuge T, et al. Isolation and structure determination of mutagenic substances in L-glutamic acid pyrolysates. Proc Japan Acad 1978; 54(5): 248–250.

233. Takayama S, Masuda M, Mogami M, et al. Induction of cancers in the intestine, liver and various other organs of rats by feeding mutagens from glutamic acid pyrolysate. GANN Jpn J Cancer Res 1984; 75: 207–213.

234. Smith RM, Solaki GA, Hayes WP, et al. Pyrolysis—gas chromatography of histidine and 3-methylhistidine. J Anal Appl Pyrolysis 1980; 1: 197–201.

235. Nagao M, Suwa Y, Yoshizumi H, et al. Mutagens in coffee. In: MacMahon B and Sugimura T (eds), Coffee and health, Banbury Report 17, Cold Spring Harbor, NY: Cold Spring Harbor Lab, 1985, pp. 69–77.

236. Nagao M, Takahashi Y, Yamanaka H, et al. Mutagens in coffee and tea. Mutation Res 1979; 68: 101–106.

237. Sugimura T. Mutagenic factors in cooked foods. CRC Crit Rev Toxicol 1979; 6: 182–209.

238. Aeschbacher HU and Würzner HP. An evaluation of instant and regular coffee in the Ames mutagenicity test. Toxicol Lett 1980; 5: 139–145.

239. Kosugi A, Nagao M, Suwa Y, et al. Roasting coffee beans produces compounds that induce prophase λ in E. coli and are mutagens in E. coli and S. typhimurium. Mutation Res 1983; 116: 179–184.

240. Takase S and Murakami H. Studies on the fluorescence of sake. I. Fluorescent spectrum of sake and identification of harman. Agric Biol Chem 1966; 30: 869–876.

241. De Jong E, Field JA, Spinnenler HE, et al. Significant biogenesis of chlorinated aromatics by fungi in natural environments. Appl Env Microbiol 1994; 60(1): 264–270.

242. Wotitas R. Naturally occurring persistent organic pollutant. Coll DuPage Anthol Acad Writ Acr Curricu (ESSAI) 2014; 12: 156–158.

243. Clarke N, Fuksová K, Gryndler M, et al. The formation and fate of chlorinated organic substances in temperate and boreal forest soils. Envi Sci Poll Res 2009; 16(2): 127–143.

244. Agarwal V, Blanton JM, Podell S, et al. Metagenomic discovery of polybrominated diphenyl ether biosynthesis by marine sponges. Nat Chem Biol 2017; 13(5): 537–543.

245. Stone RP, Lehnert H and Reiswig H. A guide to the deepwater sponges of the Aleutian Island Archipelago. NOAA Prof Pap 2011; 12: 1–216.

246. World Bank Group. Seaweed aquaculture for food security, income generation and environmental health in tropical developing countries. World Bank Group, Environment and Natural Resources, pp. 1–16, http://documents.worldbank.org/curated/en/947831469090666344/pdf/107147-WP-REVISED-Seaweed-Aquaculture-Web.pdf (2015, accessed 4 February 2019).

247. Suzuki M and Vairappan CS. Halogenated secondary metabolites from the Japanese species of red algal genus Laurencia (Rhodomelaceae, Ceramiales). Curr Top Phytochem 2005; 5: 1–38.

248. Chemistry Explained. Organic halogen compounds, http://www.chemistryexplained.com/Ny-Pt/Organic-Halogen-Compounds.html#xxz5enlg7VS (2018, accessed 5 February 2019).

249. Gribble GW. Naturally occurring organohalogen compounds—a survey. J Nat Prod 1992; 55(10): 1353–1395.

250. Gribble GW. The diversity of naturally occurring organohalogen compounds. Chemosphere 2003; 52: 289–297.

251. Brzuzy LP and Hites RA. Global mass balance for polychlorinated dibenzo-p-dioxins and dibenzofurans. Environ Sci Technol 1996; 30(6): 1797–1804.

252. Venkataraman K. Coastal and marine wetlands in India. https://www.researchgate.net/profile/Krishnamoorthy_Venkataraman/publication/303757779_Coastal_and_Marine_Wetlands_in_India/links/57510b5208ae1f765f946684.pdf (accessed 2 February 2019).

253. Smith CJ and Perfetti TA. Reconsidering the utility of the National Toxicology Program 2-year rodent cancer...
bioassay. An introduction to Dr. Bruce Ames preface. Toxicol Res Appl 2019; 3: 1–3.

254. Smith CJ, Perfetti TA and King JA. Rodent 2-year cancer bioassays and in vitro and in vivo genotoxicity tests insufficiently predict risk or model development of human carcinomas. Toxicol Res Appl 2019; 3: 1–19.

255. Cohen SM, Boobis AR, Dellarco VL, et al. Chemical carcinogenicity revisited 3: risk assessment of carcinogenic potential based on the current state of knowledge of carcinogenesis in humans. Regul Toxicol Pharmacol 2019; 103: 100–105.

256. Cohen SM and Ellwein LB. Cell proliferation in carcinogenesis. Science 1990; 249: 1007–1011.

257. Ozasa K, Grant EJ and Kodama K. Japanese legacy cohorts: the life span study atomic bomb survivor cohort and survivors’ offspring. J Epidemiol 2018; 28(4): 162–169.

258. Hiroshima City Office. Genbaku-hibakusha-taisaku-jigyogaiyo (Summary of relief measures for atomic bomb survivors) [in Japanese]. Hiroshima: Hiroshima City Office, 2017.

259. Nagasaki City Office. Genbaku-hibakusha-taisaku-jigyogaiyo (Summary of Relief Measures for Atomic Bomb Survivors) [in Japanese]. Nagasaki: Nagasaki City Office, 2017.

260. Preston DL, Ron E, Tokuoka S, et al. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res 2007; 168(1): 1–64.

261. Preston DL, Pierce DA, Shimizu Y, et al. Effect of recent changes in atomic bomb survivor dosimetry on cancer mortality risk estimates. Radiat Res 2004; 162(4): 377–389.

262. Jordan BR. The Hiroshima/Nagasaki survivor studies: discrepancies between results and general perception. Genetics 2016; 203(4): 1505–1512.

263. Bennett BG and Waldren CA. Editorial: 60 years since atomic bombings of Hiroshima and Nagasaki: radiation effects research at RERF. Radiat Res 2005; 164(3): 235–236.

264. Flanders WD, Lally CA, Zhu BP, et al. Lung cancer mortality in relation to age, duration of smoking, and daily cigarette consumption. Cancer Res 2003; 63(19): 6556–6562.

265. Hazelton WD, Clements MS and Moolgavkar SH. Multistage carcinogenesis and lung cancer mortality in three cohorts. Cancer Epid Bio Prev 2005; 14(5): 1171–1181.