The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease

Xuexian Fang1,2,3, Hossein Ardehali4, Junxia Min2✉ and Fudi Wang2,3✉

Abstract | The maintenance of iron homeostasis is essential for proper cardiac function. A growing body of evidence suggests that iron imbalance is the common denominator in many subtypes of cardiovascular disease. In the past 10 years, ferroptosis, an iron-dependent form of regulated cell death, has become increasingly recognized as an important process that mediates the pathogenesis and progression of numerous cardiovascular diseases, including atherosclerosis, drug-induced heart failure, myocardial ischaemia–reperfusion injury, sepsis-induced cardiomyopathy, arrhythmia and diabetic cardiomyopathy. Therefore, a thorough understanding of the mechanisms involved in the regulation of iron metabolism and ferroptosis in cardiomyocytes might lead to improvements in disease management. In this Review, we summarize the relationship between the metabolic and molecular pathways of iron signalling and ferroptosis in the context of cardiovascular disease. We also discuss the potential targets of ferroptosis in the treatment of cardiovascular disease and describe the current limitations and future directions of these novel treatment targets.

Various forms of regulated cell death, such as apoptosis, necroptosis, pyroptosis and autophagy, have been implicated in the pathogenesis of cardiovascular diseases1. In the past 10 years, a growing number of studies support the notion that ferroptosis — an iron-dependent form of non-apoptotic cell death that involves the accumulation of lipid hydroperoxides — has a pathophysiological role in the development of cardiovascular diseases, including doxorubicin-induced cardiomyopathy, myocardial ischaemia–reperfusion injury, myocardial infarction and heart failure1–2.

As an essential trace element that is present in nearly all forms of life, iron is involved in many biological processes, including energy metabolism and nucleotide synthesis and repair3. In humans, iron deficiency is the most prevalent malnutrition-related condition and affects up to 75% of patients with heart failure4. Conversely, both primary and secondary forms of iron overload can cause heart disease via oxidative damage, but the exact mechanisms underlying this process are not clear4. Excess iron in cardiomyocytes has been shown to directly induce ferroptosis via the accumulation of phospholipid hydroperoxides in the cell membrane5.

In addition to altered iron homeostasis, excessive production of reactive oxygen species (ROS) or reactive nitrogen species can also directly induce ferroptosis in cardiomyocytes by catalysing the oxidation of phospholipids in the cell membrane. Indeed, oxidative stress has been linked to the development of cardiovascular disease, and targeting the molecular and metabolic pathways that regulate cellular defence against oxidative stress — particularly the glutathione-dependent antioxidant system — has been shown to prevent cardiomyopathy in animal models6,7.

The evidence to date suggests that the development of many forms of cardiovascular disease is driven by ferroptosis. For example, high levels of ferroptosis mediated by distinct signalling and metabolic pathways can contribute to ischaemic heart disease, cardiac injury, heart failure and cardiomyopathy. In this Review, we summarize the mechanisms involved in the regulation of iron homeostasis, glutathione synthesis and lipid metabolism in cardiomyocytes; we discuss newly identified putative targets of ferroptosis in heart disease; and we provide critical perspectives on the potential of new clinical therapies that target ferroptosis in the heart.

Discovery of ferroptosis

Although ferroptosis was first reported in 2012 as a novel form of cell death that could be inhibited by the iron-chelating agent deferoxamine8, various forms of cell death involving iron and oxidative stress had already been known for decades9. The concept of ferroptosis might have been derived from our knowledge...
• The death of terminally differentiated cardiomyocytes is an important pathogenic contributor to the development of several forms of cardiovascular disease.
• Ferroptosis is a newly characterized form of regulated cell death driven by iron-dependent lipid peroxidation and linked to cardiovascular disease.
• Ferroptosis involves various metabolic processes, including iron, lipid and glutathione metabolism.
• Both in vitro and in vivo evidence supports the pathophysiological role of ferroptosis in myocardial ischaemia–reperfusion injury, anthracycline-mediated cardiotoxicity, sepsis-induced heart injury, hypertrophic cardiomyopathy and diabetic cardiomyopathy.
• Targeting ferroptosis with specific inhibitors might provide new therapeutic opportunities for previously untreatable cardiovascular conditions.

Molecular and metabolic drivers of ferroptosis
Cells that undergo ferroptosis have genetic, biochemical, morphological and metabolic features that are distinct from those of other known forms of cell death, including apoptosis, necroptosis and pyroptosis. Interestingly, unlike other forms of cell death identified to date, ferroptosis can propagate rapidly through cell populations in a wave-like manner. In terms of morphological changes, cells undergoing ferroptosis have mitochondrial abnormalities that can be visualized using electron microscopy, including swelling, changes in density and rupture of the outer membrane. Finally, the pathways involved in iron, glutathione and lipid metabolism converge to control the initiation and execution of ferroptosis, particularly in cardiomyocytes.

Iron metabolism and ferroptosis in the heart
Regulation of iron homeostasis in the cardiovascular system. The cellular uptake of iron is mediated by the binding of iron-bound transferrin (which contains two ferric iron molecules) to its receptor (transferrin receptor protein 1 [TFR1]), which triggers clathrin-dependent endocytosis of the entire holocomplex. The endosome is then acidified by vacuolar ATPase, leading to the reduction of ferric iron to ferrous iron by the STEAP (six-transmembrane epithelial antigen of prostate) family of metalloredoxases. Ferrous iron is then released from the endosome into the cytoplasm via natural resistance-associated macrophage protein 2 (NRAMP2; also known as DMT1), and apo-transferrin and TFR1 are shuttled back to the cell surface to be reused by the cell. Mice lacking Tfr1 in the heart have severe cardiomyopathy with cardiac iron deficiency and die in the second week of life. Non-transferrin-bound iron was thought to be transported into cardiomyocytes by voltage-dependent calcium channels, but a study published in 2021 raised doubts about the role of calcium channels in mediating the cardiac uptake of non-transferrin-bound iron.

In the cytoplasm, ferrous iron is oxidized to its ferric state by cytoplasmic ferritin, and the resulting ferritin-bound iron can be either degraded for use in enzymatic reactions or stored for later use. Iron-saturated ferritin is degraded by nuclear receptor coactivator 4 (NCOA4)-mediated autophagy — a process known as ferritinophagy — which leads to the degradation of lysosomal ferritin, with subsequent release of its iron content and its export to the cytosol via lysosomal NRAMP2 (REF.). Cardiac-specific deletion of Fth1 (encoding ferritin heavy chain) leads to iron dysregulation and increased oxidative stress in the heart, resulting in increased susceptibility to iron overload-induced tissue injury. Conversely, deletion of Ncoa4 in mouse hearts improved cardiac function and attenuated ferritinophagy-mediated ferritin degradation that was induced by pressure overload.

Ferroportin is the only known iron exporter in vertebrate cells, and cardiac iron overload, impaired heart function and a shortened lifespan have been observed in mice with early cardiomyocyte-specific deletion of the gene encoding ferroportin (Fpn). Hepcidin, a peptide hormone primarily synthesized in the liver, inhibits ferroportin via E3 ubiquitin protein ligase RNF217-mediated ubiquitination in the gut and spleen, which regulates iron absorption and iron recycling, respectively. Genetic hepcidin deficiency causes the most severe form of systemic iron overload in both mice and humans. However, loss of hepcidin specifically in cardiomyocytes results in a fatal cardiomyopathy as a consequence of cardiac iron deficiency, highlighting a cell-autonomous role of the hepcidin–ferroportin axis in cardiac iron homeostasis.

Cellular iron levels are regulated at the post-transcriptional level by iron regulatory protein 1 (IRP1) and IRP2 (REFS.). These cytoplasmic proteins bind to the 3′-untranslated region (UTR) of target transcripts such as TFR1 mRNA, stabilizing the transcripts and increasing translation. By contrast, binding of IRP1 or IRP2 to the 5′-UTR of target mRNAs such as FPN and FTH1 blocks ribosomal entry and prevents their translation. Holo-IRP1 attached to iron–sulfur (Fe–S) clusters functions as a cytosolic aconitase and cannot bind to mRNA molecules. However, when cellular iron levels decrease, the Fe–S clusters dissociate from IRP1, which can then bind to the ribosome entry sites. IRP2 is constitutively active; however, when cellular iron levels are sufficient, IRP2 is ubiquitinated and degraded via a process that requires F-box/LRR-repeat protein 5 (REFS.). Therefore, when iron levels are sufficient, IRP1 contains an Fe–S cluster and IRP2 is degraded, thereby inhibiting the IRP system.

When the IRP system fails to maintain adequate cellular iron levels during severe iron deficiency, another iron regulatory pathway can be activated. This pathway is known as the ‘iron conservation pathway’ and is
under low iron conditions. In the heart, tristetraprolin binds to and causes the degradation of mRNA transcripts that encode proteins involved in several processes, including Fe–S cluster-containing proteins in the mitochondrial electron transport chain. Consequently, under iron-deficient conditions, excess numbers of apo-proteins that would otherwise bind to iron are not synthesized, allowing the limited amount of iron to be used by essential proteins.

Iron metabolism in ferroptosis. Iron availability is a crucial factor in driving ferroptosis. Mice fed a high-iron diet, as well as haemoglovin-deficient mice and SMAD family member 4-deficient mice, have severe iron overload and increased hepatic ferroptosis. By contrast, mice lacking Hfe (encoding hereditary haemochromatosis protein homologue) have only moderate iron overload without hepatic ferroptosis. Of note, the accumulated cellular iron — particularly labile ferrous iron — can react directly with cellular oxidants to produce cytotoxic hydroxyl radicals via the Fenton reaction, which in turn promotes ferroptosis. By contrast, the binding of free iron to proteins such as transferrin or ferritin can have a protective effect against the Fenton reaction and ferroptosis. In addition, peroxidation of polyunsaturated fatty acids (PUFAs) by lipoxygenases via the phospholipase kinase G2-dependent iron pool is required for initiating ferroptosis. Therefore, numerous proteins involved in regulating cellular iron homeostasis can affect the sensitivity of the cell to ferroptosis (Table 1).

Iron uptake via TFR1, solute carrier family 39 member 14 (SLC39A14; also known as metal cation symporter ZIP14) and/or NRAMP2 can dictate cellular sensitivity to ferroptosis. Cytosolic ferritin confers resistance to ferroptosis by controlling iron availability; therefore, selective autophagy of ferritin via NCOA4 can increase the susceptibility of the cell to ferroptosis. The iron chaperone poly(rC)-binding protein 1 (PCBP1) binds and delivers Fe2+ to ferritin. Moreover, *Pcbp1*-knockout mouse hepatocytes have increased levels of labile iron and lipid peroxidation, suggesting that PCBP1 might have a key role in preventing ferroptosis-related disease. By contrast, knocking down the expression of iron and ferritin importers such as ferroportin and prominin 2 has been shown to promote ferroptosis. Caeruloplasmin helps ferroportin to leave cells via its ferroxidase activity, and loss of ceruloplasmin promotes both erastin-induced and transcription factor RSL3-induced ferroptosis, whereas overexpression of caeruloplasmin suppresses ferroptosis in tumour cells.

The maintenance of mitochondrial iron homeostasis also has an important role in preventing ferroptosis. Mitoferrin 1 (also known as SLC25A37) and mitoferrin 2 (also known as SLC25A28) are key mitochondrial iron importers involved in haem and Fe–S biogenesis. Deletion of mitoferrin 2 reduces erastin-induced cell death, whereas overexpression of mitoferrin 2 increases ferroptosis. Activation of haem oxygenase 1 (HO1), a mitochondrial enzyme that catalyses the degradation of haem to produce ferrous iron, causes mitochondrial iron overload and increases ferroptosis both in vitro and in vivo. However, mild upregulation of HO1 might
actually be cytoprotective. Like cytosolic ferritin, mitochondrial ferritin has a protective role against ferroptosis. For example, Drosophila and cells overexpressing mitochondrial ferritin are resistant to erastin-induced ferroptosis.

Several Fe–S proteins have a role in lipid peroxidation during ferroptosis. For example, suppressing NFS1 (cysteine desulfurase, mitochondrial), which uses sulfur from cysteine to synthesize Fe–S clusters, sensitizes cancer cells to ferroptosis. In addition, the Fe–S-binding proteins mitoNEET (also known as CISD1) and NAF1 (also known as CISD2) have been shown to participate in mitochondrial iron transportation, increasing the tolerance of cancer cells to ROS-induced cell death. Increased expression of mitoNEET prevented erastin-induced ferroptosis in human hepatocarcinoma cells, and NAF1 overexpression similarly conferred resistance to sulfasalazine-induced ferroptosis in a mouse tumour xenograft model.

Iron overload-associated cardiac disorders. Iron overload occurs when the body stores excess iron. The heart is particularly susceptible to damage induced by accumulation of iron. Two general types of iron overload have been described. Primary iron overload is caused by genetic disorders that cause dysregulated absorption of dietary iron, whereas secondary iron overload develops as a result of repeated blood transfusions, drug-induced toxicity or excess consumption of iron. However, given the lack of robust biomarkers for measuring ferroptosis in patients, the link between ferroptosis and these diseases remains poorly understood.

Hereditary haemochromatosis is one of the most common inherited diseases among white populations. A wide range of mutations affecting either the production or function of the iron-regulating peptide hepcidin can cause various degrees of iron overload in a number of organs, including the heart. Therefore, heart failure is a common complication among patients with hereditary haemochromatosis and is more prevalent in those with juvenile forms of the disease. Carriers of the C282Y mutation in HFE (encoding hereditary haemochromatosis protein) have a higher risk of acute myocardial infarction and cardiovascular death than non-carriers.

Similarly, impaired endothelial function and increased intima–media thickness have been associated with altered iron status in patients with hereditary haemochromatosis; iron depletion therapy can therefore reduce the risk of cardiovascular events in these patients.

Friedreich ataxia is an autosomal recessive neurodegenerative disease that affects both the nervous system and non-neural tissues, including the heart and pancreas. Friedreich ataxia is caused by a homozygous expansion of the GAA triplet repeat in the first intron of the FXN gene, which encodes the protein frataxin (also known as mitochondrial frataxin). Frataxin is essential for mitochondrial function owing to its role in the biogenesis of Fe–S clusters and antioxidant defence.

Frataxon deficiency causes mitochondrial iron accumulation, excess production of ROS and increased lipid peroxidation, leading to the development of Friedreich ataxia. In addition to the typical neurological symptoms, the clinical manifestations of Friedreich ataxia include severe cardiomyopathy, which is the most common cause of death among these patients. Furthermore, mice with a cardiomyocyte-specific Fnx deletion have increased mitochondrial iron in the heart owing to...
pronounced changes in Tfr1 expression and alterations in iron transport from the cytosol to the mitochondria\(^7\). Co-treating patients with Friedreich ataxia with both the iron chelator deferiprone and the coenzyme Q\(_10\) analogue idebenone results in the attenuation of cardiac hypertrophy\(^8\). Other studies have also indicated that treatment with deferiprone can improve heart function, but not the neurological symptoms\(^8\). Nevertheless, the clinical benefits of iron chelation are currently unclear and long-term, large-scale trials are warranted.

Ineffective erythropoiesis and transfusion-induced iron overload. Iron overload is a common complication among patients with thalassaemia, a group of hereditary disorders caused by impaired haemoglobin synthesis\(^8\). Ineffective erythropoiesis, in which an increase in the production of erythroid cells is not matched by a corresponding increase in mature red blood cells, is a major cause of iron overload in organs\(^8\). In addition, repeated blood transfusions, a common treatment for thalassaemia, is another source of excess iron that can lead to iron overload\(^8\). Iron overload can also lead to cardiomyopathy, the primary cause of morbidity and mortality in patients with thalassaemia\(^8\). Although the clinical presentation of thalassaemia-associated cardiomyopathy

Table 1 | Principal modulators of iron metabolism that are involved in ferroptosis

Gene	Protein	Function	Effects of genetic deletion or overexpression	Refs.
ACO1	Cytoplasmic aconitate hydratase	Iron–sulfur protein that converts citrate to isocitrate	Deletion suppresses cystine starvation-induced ferroptosis	51
CISD1	CDGSH iron–sulfur domain-containing protein 1 (also known as mitoNEET)	Regulates mitochondrial iron uptake	Deletion promotes erastin-induced ferroptosis	64
CISD2	CDGSH iron–sulfur domain-containing protein 2 (also known as NAF1)	Regulates mitochondrial iron uptake	Deletion promotes sulfasalazine-induced ferroptosis	65
CP	Ceruloplasmin	Converts Fe\(^{2+}\) to Fe\(^{3+}\)	Infusion prevents ferroptotic damage after ischaemic stroke and deletion promotes erastin-induced or transcription factor RSL3-induced ferroptosis	55,56
SLC11A2	Natural resistance-associated macrophage protein 2	Iron importer	Deletion suppresses hypoxia–reoxygenation-induced ferroptosis	47
FTH1	Ferritin heavy chain	Iron storage	Deletion promotes iron-induced cardiac ferroptosis, increases ferroptosis in Drosophila and promotes erastin-induced ferroptosis	27,45,49
FTMT	Mitochondrial ferritin	Mitochondrial iron storage	Overexpression suppresses erastin-induced ferroptosis	62
HMOX1	Haem oxygenase 1	Degrades haem into biliverdin, carbon monoxide and Fe\(^{2+}\)	Inhibition suppresses doxorubicin-induced cardiac ferroptosis and erastin-induced ferroptosis, whereas deletion suppresses ferroptosis induced by BAY 11-7085 (an inhibitor of nuclear factor-κB) or erastin	6,56–58
IREB2	Iron-responsive element-binding protein 2	Regulates the translation and stability of iron-related microRNAs	Deletion suppresses erastin-induced ferroptosis and cystine starvation-induced ferroptosis	2,49
NCOA4	Nuclear receptor coactivator 4	Regulates ferritinophagy	Deletion suppresses erastin-induced ferroptosis and cystine starvation-induced ferroptosis	45,50
NFS1	Cysteine desulfurase, mitochondrial	Iron–sulfur cluster biosynthetic enzyme	Deletion promotes ferroptosis	63
PCBP1	Poly(rC)-binding protein 1	Iron chaperone	Deletion increases hepatic ferroptosis	52
PHKG2	Phosphorylase b kinase γ-catalytic chain, liver/testis isoform	Regulates iron availability to lipoxigenases	Deletion suppresses erastin-induced ferroptosis	43
PROM2	Prominin 2	Regulates ferritin export	Deletion promotes ferroptosis	53
SFXN1	Sideroflexin 1	Regulates mitochondrial iron uptake	Deletion suppresses lipopolysaccharide-induced ferroptosis	208
SLC25A28	Mitoferrin 2	Regulates mitochondrial iron uptake	Deletion suppresses erastin-induced ferroptosis	58
SLC39A14	Solute carrier family 39 member 14 (also known as metal cation symporter ZIP14)	Iron importer	Deletion suppresses iron-induced hepatic ferroptosis	42
SLC40A1	Solute carrier family 40 member 1	Iron exporter	Deletion promotes erastin-induced ferroptosis	54
TF	Serotransferrin	Iron carrier	Deletion promotes hepatic ferroptosis	42
TFR1	Transferrin receptor protein 1	Iron importer	Deletion suppresses erastin-induced ferroptosis and amino acid deprivation-induced ferroptosis	46
is both variable and complex, the majority of patients present with left-sided heart failure and reduced ejection fraction\(^9\). Another major symptom is cardiac arrhythmia, which can directly lead to sudden cardiac death\(^{90,9}\). To manage the deleterious effects of iron overload, chelation therapy was first used to treat patients with iron overload–related, thalassaemia–associated cardiomyopathy in the 1970s; today, iron chelation is globally accepted as the most effective treatment for this condition\(^{91,92}\).

Ineffective erythropoiesis and transfusion–induced iron overload can also be caused by other inherited blood disorders such as sickle cell disease (discussed below), myelodysplastic syndromes, pure red cell aplasia and leukaemia. The management of iron overload–induced cardiac conditions can be improved by monitoring tissue iron levels more precisely, developing new iron chelators and modulating hepcidin levels to reduce iron loading and cardiotoxicity\(^{93,94}\).

Anthracycline–induced cardiotoxicity. Since the late 1960s, anthracyclines — a class of drugs that includes doxorubicin, daunorubicin, epirubicin and idarubicin — have been widely used to treat breast cancer, leukaemia and many other types of malignancies\(^9\). Despite their powerful anticancer effects, the clinical use of anthracyclines is severely limited owing to the risk of cardiotoxicity\(^{96}\). Indeed, >25% of patients who received a cumulative dose of 550 mg/m\(^2\) of doxorubicin developed congestive heart failure\(^9\). Although the mechanism underlying doxorubicin–induced cardiomyopathy is unclear, a growing body of evidence suggests that several risk factors are involved, including iron overload. Systemic iron accumulation in mice mediated by a high iron diet or genetic modification significantly increased susceptibility to doxorubicin–induced cardiotoxicity\(^95,96\).

Conversely, mice fed an iron–deficient diet had a lower risk of doxorubicin–induced cardiotoxicity and increased survival compared with control mice, indicating that the targeting of metabolic pathways that regulate cardiac iron levels might be a clinically effective strategy for the treatment of chemotherapy–related cardiomyopathy\(^9\).

In terms of how doxorubicin affects iron metabolism in the heart, one study found that iron accumulates specifically in the mitochondria of doxorubicin–treated cardiomyocytes owing to suppression of the mitochondrial iron exporter ABCB8 (also known as mitochondrial potassium channel ATP–binding subunit)\(^97\). Overexpression of ABCB8 or direct chelation of mitochondrial iron using dextrazoxane protects against doxorubicin–induced cardiotoxicity. In addition, doxorubicin treatment in mice has been shown to induce cardiac mitochondrial ferritin expression, and genetic deletion of mitochondrial ferritin increased the sensitivity of cardiomyocytes to doxorubicin–induced iron toxicity\(^98\).

Using RNA sequencing (RNA–seq) analysis, we showed that HO1 is upregulated via nuclear factor–erythroid 2–related factor 2 (NRF2) activation during doxorubicin–induced cardiomyopathy in mice, causing haem degradation and the release of free iron in mitochondria\(^9\). In addition, we found that treating mice with the competitive HO1 inhibitor zinc protoporphyrin IX protects against doxorubicin–induced cardiomyopathy\(^9\). A study published in 2021 found that the E3 ubiquitin protein ligase TRIM21 negatively regulates the NRF2–mediated antioxidant pathway and that Trim21 knockout mice are protected against doxorubicin–induced cardiotoxicity and death\(^99\). Additional studies examining the clinical applicability of these compounds and their molecular targets should lead to improved therapeutic strategies that are designed to reduce anthracycline–induced heart injury.

Dietary iron overload. In a typical human diet, the two forms of iron (haem iron and non–haem iron) are derived from distinct dietary sources and have different absorption mechanisms and metabolic pathways\(^{103}\). Haem iron, which constitutes approximately 15% of the total iron intake of a typical diet, is present exclusively in the haemoglobin and myoglobin in red meat, fish and poultry, whereas non–haem iron is present in cereals, fruits and vegetables. Given that haem iron is buried and protected within the porphyrin complex, its absorption rate is fivefold to tenfold higher than that of non–haem iron\(^{104}\).

To date, the population–based studies that have examined the putative association between dietary iron intake and the risk of heart disease have found inconsistent findings\(^{105–108}\) (Table 2). Nonetheless, meta–analyses of these prospective cohort studies suggest that a high intake of dietary haem iron, irrespective of non–haem iron intake, is significantly correlated with an increased risk of heart disease and cardiovascular death in the general population\(^{109,110}\). Therefore, a reduction in the consumption of foods that are high in haem iron might help to prevent heart disease.

Glutathione metabolism and ferroptosis in the heart

In addition to iron metabolism, cysteine or cysteine deficiency, glutathione depletion and inactivation of the enzyme phospholipid hydroperoxide glutathione peroxidase 4 (GPX4) have also been shown to promote ferroptosis\(^{111}\). Produced primarily in the liver, the master antioxidant glutathione is a tripeptide composed of the amino acids cysteine, glutamic acid and glycine. Among these three amino acids, cysteine is the rate–limiting precursor in glutathione synthesis. Although intracellular cysteine can be produced by either de novo biosynthesis or protein catabolism, most cells obtain cysteine primarily from the cysteine–glutamate antiporter system \(\chi^-\) (also known as xCT), which consists of the solute carrier family 7A member 11 subunit (SLC7A11; also known as cysteine–glutamate transporter) and the SLC3A2 subunit (also known as 4F2HC)\(^{112}\). The SLC7A11 subunit contains 12 transmembrane domains and primarily mediates the transporter activity of the protein complex, whereas SLC3A2 is a chaperone protein that helps to stabilize SLC7A11 and ensures the appropriate membrane localization of the complex. System \(\chi^-\) exports intracellular glutamate and imports extracellular cysteine at a 1:1 ratio; the newly imported cysteine is then converted to cysteine in the cytosol via an NADPH–consuming reduction reaction\(^{113}\). The structure of human system \(\chi^-\), which was resolved in 2020, clearly demonstrates
the interaction between the two subunits at the extracellular interface and in the transmembrane region121–123. In addition, a well-resolved non-protein density was found in the intracellular vestibule of SCL7A11, to which an erastin molecule can bind123. Therefore, inhibiting system x\textsubscript{c}− with erastin or its analogues can lead to the depletion of intracellular glutathione and trigger ferroptosis, suggesting a potentially viable strategy for antitumour therapies124.

The expression of SLC7A11 is positively regulated by the transcription factor NRF2 under conditions of cellular stress125. Moreover, both the genetic deletion of NRF2 and overexpression of KEAP1 (Kelch-like ECH-associated protein 1, which binds to and facilitates the ubiquitination and proteasomal degradation of NRF2) have been shown to promote ferroptosis in cancer cells126. Of note, the KEAP1–NRF2 axis regulates a wide range of genes involved in glutathione biosynthesis and iron metabolism, which can also affect the susceptibility of cells to ferroptosis. Conversely, the tumour suppressor protein p53 represses SLC7A11 transcription, thereby promoting ferroptosis127. The cAMP-dependent transcription factor ATF3 has also been shown to promote ferroptosis by binding to the SLC7A11 promoter and repressing its expression in a p53-independent manner128. Moreover, our research group has shown that overexpressing Slc7a11 selectively in cardiomyocytes increases cellular glutathione levels and prevents ferritin H deficiency-mediated cardiac ferroptosis, providing the first evidence that SLC7A11 has an anti-ferroptotic role in the heart122. In addition, knocking out Slc7a11 aggravates cardiac hypertrophy and dysfunction in mice, both of which can be reversed by inhibiting ferroptosis129.

The enzyme GPX4, together with glutathione as an essential cofactor, scavenges the harmful by-products of iron-dependent lipid peroxidation, thereby protecting the cell membrane from damage. Using a chemoproteomics assay, investigators have determined that overexpression of GPX4 in cancer cells can inhibit ferroptosis that is mediated by transcription factor RSL3, whereas deletion of GPX4 increases sensitivity to ferroptosis130. The synthesis and activity of GPX4, which is a selenoprotein, are affected by the concentration of the essential trace mineral selenium124,125. Selenium is required for GPX4 function, and its supplementation can increase the expression of GPX4 and protect cells against ferroptosis131,132. Interestingly, selenium deficiency in humans is thought to cause Keshan disease, an endemic cardiomyopathy present in children and pregnant women residing in the Keshan region of China where selenium levels in food are low133. Patients with Keshan disease develop dilated cardiomyopathy

Table 2	Prospective cohort studies of dietary iron intake in cardiovascular disease							
Study	Year	Location	Number of patients	Age (years)	Sex	Follow-up (years)	Disease setting	Findings
HPFS	1994	USA	44,933	40–75	Male	4	MI	Increased risk of MI with higher intake of haem iron, but not total iron
NHANES-I	1994	USA	4,237	40–74	Both	13	CHD	No link between dietary total iron intake and risk of CHD
Rotterdam Study	1999	Netherlands	4,802	>55	Both	4	MI	Increased risk of MI with higher intake of haem iron, but not total iron
NSNS	2002	Canada	2,198	18–74	Both	8	MI	No link between dietary intake of either total or haem iron and risk of MI
IWHS	2005	USA	34,492	55–69	Female	15	CVD	Increased cardiovascular risk with higher intake of haem iron in patients with alcoholic use disorder
Prospect-EPIC	2005	Netherlands	16,136	49–70	Female	4.3	CHD	Increased risk of CHD with higher intake of haem iron, but not total or non-haem iron
NHS	2007	USA	6,161	30–55	Female	8.8	CHD	Increased risk of CHD with higher intake of haem iron, but not total iron
LEOGRA	2011	Italy	906	61.1 ± 17.1	Female	10	CVD	No link between dietary total, non-haem or haem iron and cardiovascular risk
MESA	2012	USA	5,285	45–84	Both	6.2	CVD	No link between dietary non-haem or haem iron and cardiovascular risk
JACC	2013	Japan	58,615	40–79	Both	14.7	CVD	Increased cardiovascular risk with higher intake of total iron, but not haem or non-haem iron
COSM	2014	Sweden	36,882	45–79	Male	11.7	MI	Increased risk of MI-related death with higher intake of haem iron, but not non-haem iron
NHANES	2020	USA	14,826	>18	Both	9.3	CVD	Increased cardiovascular risk with higher intake of haem iron, but not total or non-haem iron

CHD, coronary heart disease; CVD, cardiovascular disease; MI, myocardial infarction.
and heart failure. High serum levels of selenium have also been independently associated with both reduced mortality and fewer cases of new-onset heart failure in a population-based cohort study134. Therefore, well-powered interventional studies designed to further evaluate the potential benefits of high selenium levels in humans are warranted.

Given the wide range of physiological functions of glutathione, its role in the pathogenesis and development of heart disease is not surprising. In a Japanese population-based study, plasma glutathione levels were found to be significantly lower in all patients with heart disease than in healthy controls135. In a subsequent study, circulating glutathione levels were reduced by 21% and 40% in patients with asymptomatic and symptomatic heart disease, respectively36. Importantly, the investigators also measured glutathione concentrations in atrial tissue and found direct evidence that cardiac glutathione deficiency is closely associated with heart disease36. Glutathione deficiency has also been observed in patients with hypertension137.

Mice deficient in the glycoprotein apolipoprotein E (apoE), a component of all lipoproteins except LDL, are the most commonly used preclinical model of atherosclerosis138. Glutathione levels are significantly reduced in the atheroma-prone aortic arch of male apoE-deficient mice compared with age-matched, wild-type controls139. The study investigators proposed that glutathione deficiency is central to the suppression of intracellular antioxidant defences in these animals and therefore has a causal role in the pathogenesis of atherosclerosis139, an intriguing hypothesis that is supported by subsequent studies. For example, liposomal-coated glutathione was shown to significantly reduce oxidative stress and correlate with decreased levels of either lipid peroxides or oxidized LDL140. Furthermore, other studies have shown that increased glutathione levels significantly reduced liver and plasma cholesterol levels in mice fed a diet rich in saturated fats141,142.

Given that the heart has a very high energy demand and is particularly susceptible to oxidative damage, cardiomyocytes are thought to require a specialized and enhanced antioxidant system to avoid ferroptosis. Despite the lack of direct evidence that ferroptosis is involved in heart disease in humans, cardiomyocyte-specific animal disease models with genetically modified ferroptosis-related genes (such as SLC7A11 and GPX4) and studies on ferroptosis inducers or inhibitors in animal models have provided compelling preclinical evidence that the glutathione pathway has a protective role against cardiac ferroptosis.

Lipid metabolism and ferroptosis in the heart

In mammalian cells, the peroxidation of PUFA-containing phospholipids in cell membranes is an essential step in ferroptosis143. The enzyme long-chain fatty acyl-CoA ligase 4 (LACS4) converts PUFAs to the acylated form and is considered to be a specific driver of ferroptosis, as its upregulation increases PUFA content in phospholipids and renders the cell more susceptible to ferroptosis144,145. Although an in-depth study into the role of LACS4 in cardiac muscle has not yet been conducted, this enzyme has been shown to be a novel therapeutic target for limiting skeletal muscle cell death and preventing rhabdomyolysis146.

By contrast, LACS3 catalyses the conversion of exogenous monounsaturated fatty acids to fatty acyl-CoAs, thereby displacing PUFAs and inhibiting ferroptosis147. Conversely, the enzyme lysophosphatidylcholine acyltransferase 3 catalyses the insertion of these acylated PUFAs into membrane phospholipids; therefore, deleting this enzyme increases cellular resistance to ferroptosis148.

Lipoxygenases are a family of iron-containing enzymes that directly oxygenate PUFAs and PUFAs-containing lipids in cellular membranes. Lipoxygenases are thought to have an important role in lipid peroxidation and ferroptosis149. In addition, the scaffold protein phosphatidylethanolamine-binding protein 1, which inhibits protein kinase cascades, has been shown to bind to and direct 15-lipoxygenase to PUFAs in the membrane, thereby promoting ferroptosis150.

The heart is highly susceptible to oxidative damage, and lipid peroxidation is an important contributor to ROS-induced heart injury. Cardiac tissue has several potential sources of endogenous ROS, including the mitochondrial electron transport chain, NADPH oxidase, xanthine oxidoreductase, nitric oxide synthases and cytochrome P450 (REF.151). In addition, several exogenous factors and chemicals can cause oxidative damage. An accumulation of lipid peroxides that originate from the oxidation of PUFA-containing membrane phospholipids suggests that ROS production cannot always be effectively balanced by the antioxidant system; as such, lipid peroxidation is one of the most pronounced manifestations of oxidative stress in the heart. Electrophilic reactive aldehydes, such as malondialdehyde, 4-hydroxynonenal and 4-hydroxyhexenal, are major end-products of PUFA oxidation, and are commonly used as markers of lipid peroxidation152. In patients with chronic heart failure, high serum levels of malondialdehyde were found to be an independent predictor of death and a combined clinical end point in a 1-year follow-up study153. These results were consistent with those of previous studies154,155, and support the hypothesis that lipid peroxidation has a role in both the development and severity of heart disease. Of note, lipid peroxidation is a driver of ferroptosis through its effects on damaging cellular membranes156. The scavenging of lipid peroxides protects against lipid peroxidation-induced damage to membranous structures in cardiomyocytes and results in inhibition of ferroptosis27,157,158.

Mitochondria and cardiac ferroptosis

As the energy powerhouse in eukaryotic cells, mitochondria coordinate essential metabolic processes such as oxidative phosphorylation. Given that the production of haem and Fe–S clusters occurs primarily in the mitochondria, this organelle contains large amounts of iron159 (FIG. 2b). Iron is taken up by mitochondria via the proteins mitoferrin 1, which is expressed in the erythroid lineage, and mitoferrin 2, which is ubiquitously expressed160. Mitochondrial iron binds to mitochondrial ferritin
(a ferroxidase enzyme encoded by FTMT) to prevent ROS production, and mutations in mitochondrial ferritin can cause mitochondrial iron overload and cytoplastic iron deficiency161. The mechanism by which iron is exported from the mitochondria is currently unknown; whether exported mitochondrial iron is conjugated to glutathione or is incorporated into Fe–S clusters or haem molecules is unclear159. Deletion of the mitochondrial protein ABCB8 selectively in the heart has been shown to cause mitochondrial iron overload, increased ROS production, defects in the cytosolic maturation of Fe–S clusters and cardiomyopathy166. Furthermore, iron–sulfur clusters transporter ABCB7, mitochondrial (ABCB7) has a role in mitochondrial iron homeostasis167, and ATP-binding cassette subfamily B member 10, mitochondrial (ABCB10) has been shown to regulate the early steps of haem synthesis in mitochondria168 and can also export biliverdin from mitochondria169.

In the mitochondria, iron is also used to synthesize haem, which functions as a cofactor in mediating catalysis and electron transfer166. The production of haem is a multistep process that requires eight different enzymes, with aminolevulinic acid synthase (ALAS; also known as ALAS-H) involved in the rate-limiting first step166. Excess haem is either exported to the cytoplasm via a plasma membrane exporter FLVCR1A170. Conversely, FLVCR2 has been identified as a plasma membrane haem importer171. Other haem transporters such as haem transporter HRG1 and ATP-binding cassette subfamily C member 5 (ABCC5; also known as MRP5) are thought to deliver haem from various organelles, but their functions are poorly understood151.

Given that the mitochondrial respiratory chain is a major source of ROS in most mammalian cells172, mitochondria have been hypothesized to have a central role in the regulation of erastin-induced cell death since the discovery of ferroptosis in 2012. Substantial morphological changes in the mitochondria of ferroptotic cells have been observed using transmission electron microscopy, including reduced mitochondrial volume and increased mitochondrial membrane density173. In addition, certain nitro oxide-based lipid peroxidation mitigators have been designed to specifically target mitochondria and are protective against erastin-induced and RSL3-induced ferroptosis174.

By contrast, evidence also exists against the link between mitochondria and ferroptosis. For example, an early report suggested that a mitochondrial DNA-depleted cancer cell line is just as sensitive to ferroptosis as its parental cell line175. A subsequent study showed that mitochondria-deficient cells can still undergo ferroptosis and can be rescued by treatment with ferrostatins and iron chelators176. Nevertheless, these findings are highly debatable. In a separate study, cysteine depletion was shown to mediate hyperpolarization of mitochondrial membranes and promote lipid peroxide accumulation, whereas inhibition of the tricarboxylic acid cycle or the electron transfer chain suppressed mitochondrial ferroptosis177. However, the investigators in this study also concluded that mitochondrial function is not required for ferroptosis induced by GPX4 inhibition, suggesting that the role of mitochondria in ferroptosis is context-dependent, consistent with observations in GPX4−/− primary cells167.

Of note, GPX4 knockout in mice is embryonically lethal, whereas conditional GPx4 deletion promotes disorders in the brain, liver, endothelium, haematopoietic system and immune system177. In mammalian cells, several isoforms of GPX4, including cytosolic and mitochondrial isoforms, are encoded by a single gene. The mitochondrial isoform of GPX4 is believed to localize in mitochondria owing to the presence of a mitochondrial targeting signal at its amino terminus178,179. However, this isoform might not be expressed endogenously in the majority of cell types, with the exception of sperm cells. The cytosolic GPX4 isoform can cross the mitochondrial outer membrane and accumulate in the intermembrane space, where it helps to suppress mitochondrial lipid peroxidation180. Interestingly, overexpressing cytosolic GPX4, but not the mitochondrial isoform, prevented the death of Gpx4−/− knockout mouse embryonic fibroblasts180. Taken together, these findings indicate that the expression of cytosolic GPX4 is sufficient to prevent ferroptosis.

In vivo evidence also supports the notion that mitochondria have an essential role in ferroptosis. The mitochondria-targeted antioxidant MitoTEMPO has been shown to protect against ferroptosis-induced cardiac injury181. In addition, mice lacking mitochondrial ferritin develop more severe brain damage and neurological deficits after cerebral injury, as well as more typical features of ferroptosis, such as increased lipid peroxidation and disturbed glutathione antioxidative defence, whereas overexpression of mitochondrial ferritin inhibits ferroptosis and prevents these pathological changes182.

A study published in 2021 described a novel mitochondrial defence mechanism against ferroptosis182. By analysing global metabolomics data, the researchers linked the enzyme dihydroorotate dehydrogenase (quinone), mitochondrial (DHOH) to ferroptosis in vitro. DHOH is localized to the inner mitochondrial membrane, where it catalyses the rate-limiting fourth step in the de novo pyrimidine synthesis pathway, converting dihydroorotate to orotate183. Interestingly, deleting DHOH in cancer cells with low expression of GPX4 has been shown to markedly increase mitochondrial lipid peroxidation and ferroptosis184. In addition, delivering GPX4 to mitochondria rescues RSL3-induced ferroptosis in DHODH-deficient cells185. SLC25A39 has been identified as a mitochondrial glutathione importer, highlighting its potential functional role in regulating mitochondrial lipid peroxidation and ferroptotic cell death186. Nevertheless, additional studies are needed to determine the in vivo function of DHODH and identify other ferroptosis-regulating mitochondrial enzymes, particularly in the context of cardioprotection (Fig. 3).
Other pathways that regulate ferroptosis

Ferroptosis suppressor protein 1 (FSP1) has been identified by two separate studies as a glutathione-independent, anti-ferroptosis factor. Upon myristoylation, FSP1 is recruited to the plasma membrane, where it functions as an oxidoreductase to catalyse the production of coenzyme Q10 using NADPH. Coenzyme Q10 functions as an endogenous inhibitor of ferroptosis through its antioxidant properties in the cell membrane, and depletion of coenzyme Q10 via the squalene synthase- mevalonate pathway explains, at least in part, the mechanism by which the type 3 ferroptosis inducer Fin56 promotes ferroptosis. Although a previous study in mice indicated that doxorubicin can activate FSP1 translocation via lipid peroxidation products in the heart, the precise function of FSP1 in the heart remains poorly understood. Therefore, mice with a conditional Fsp1 knockout might be a potential tool to provide further mechanistic insight.

Ferroptosis in cardiovascular disease

Before the discovery in 2014 that GPX4 is a key regulator of ferroptosis, numerous studies provided preliminary evidence on the role of altered GPX4 in a non-apoptotic form of cell death. For example, global Gpx4 knockout in mice is lethal by embryonic day 7.5 (REFS 189,190), whereas an inducible knockout of Gpx4 in adult mice causes a rapid reduction in body weight and death within 2 weeks (REFS 191,192). Moreover, mice with a conditional Gpx4 knockout in endothelial cells generally die within 3 weeks, owing to thromboembolic events when deprived of dietary vitamin E (REFS 191,192). This phenotype resulting from the combination of GPX4 and vitamin E deficiency indicates an important role of GPX4 in cardiovascular physiology. However, there remains a lack of evidence to support the existence of ferroptosis in the Gpx4-knockout animal models.

Myocardial ischaemia–reperfusion injury

Ischaemia–reperfusion injury is a fairly common, life-threatening clinical complication that can occur in nearly any organ, including the heart, liver, kidneys and brain. Mitochondria-specific overexpression of GPX4 was reported to be cardioprotective after ischaemia–reperfusion injury long before the concept of ferroptosis was first established (REFS 193,194). In 2014, two studies found that ferroptosis is a primary driver of renal and hepatic ischaemia–reperfusion injury (REFS 195,196). A subsequent study demonstrated that suppressing ferroptosis by inhibiting glutaminolysis reduced ischaemia–reperfusion injury in an ex vivo heart model (REFS 197,198). Further in vivo data provided additional evidence indicating that either inhibiting ferroptosis or chelating iron during both acute and chronic myocardial ischaemia–reperfusion injury can provide cardioprotective benefits, highlighting the potential of targeting ferroptosis as a promising novel therapeutic strategy for ischaemia–reperfusion injury (REFS 199,200).

Ischaemia–reperfusion injury after heart transplantation can lead to serious complications such as primary graft dysfunction and increased risk of death (REFS 201,202). In addition to the direct loss of cardiomyocytes, the release of endogenous substances during ischaemia–reperfusion induced by ferroptosis can trigger a harmful inflammatory response in the donor heart by promoting the adhesion of neutrophils to coronary vascular endothelial cells via a Toll-like receptor 4-dependent signalling pathway (REFS 203,204). Importantly, oxidized phosphatidylethanolamine was also identified as a specific product of ferroptosis by analysing oxidative lipidomics, providing direct evidence of ferroptosis in the heart (REFS 205,206). An accumulation of ferroptotic oxidized phosphatidylethanolamine species was also found in mitochondria isolated from hearts with ischaemia–reperfusion injury, further highlighting the role of cardiac mitochondria in the production of lipid peroxides and in ferroptotic signalling (REFS 207,208). In addition, a new imaging protocol was developed in 2021 that can directly detect the presence and distribution of oxidized phosphatidylethanolamine in specific cells and tissues (REFS 209,210). Application of this protocol in preclinical studies will facilitate the detection of peroxidized lipids in disease conditions, including cardiovascular disease.

Anthracycline cardiotoxicity

As discussed above, the use of doxorubicin for the treatment of malignancies is limited by its cardiotoxic effects. Our research group has examined the relative contributions of various forms of regulated cell death
in doxorubicin-induced cardiotoxicity by measuring the effect of the respective inhibitors of cell death on survival in doxorubicin-treated mice and shown that inhibition of ferroptosis is cardioprotective. In addition to inducing heart injury, doxorubicin treatment causes a robust increase in cardiac levels of iron, lipid-derived ROS and ferroptosis biomarkers. Together, these findings suggest that ferroptosis has a major role in doxorubicin-induced cardiomyopathy and death. Furthermore, at the subcellular level, we found that mitochondria are the target of HO1-mediated release of free iron, which causes lipid peroxidation in the mitochondrial membrane.

A subsequent study published in 2020 confirmed that mitochondria-dependent ferroptosis has a major pathogenic role in doxorubicin-induced cardiotoxicity. Specifically, the study showed that doxorubicin treatment can downregulate GPX4 expression in the heart, leading to excessive lipid peroxidation. Moreover, overexpression of GPX4 in mice prevented doxorubicin-induced cardiomyopathy, whereas knocking down Gpx4 exacerbated doxorubicin-induced cardiomyopathy. However, the mechanism by which doxorubicin treatment can downregulate GPX4 requires further elucidation.

Finally, it is important to note that caspase-dependent apoptosis, but not ferroptosis, drives doxorubicin-induced cardiotoxicity in cultured cardiomyocytes. This apparent discrepancy between in vivo and in vitro findings reflects the complexity of the mechanism of action of doxorubicin in vivo. For example, the HO1 pathway is differentially regulated in cultured cells compared with the in vivo setting, thereby affecting both iron accumulation and lipid peroxidation.

Diabetic cardiomyopathy

Diabetes mellitus is a common comorbidity in patients with cardiovascular disease and can increase the susceptibility of the heart to ischaemia–reperfusion injury. Consequently, patients with diabetes have a poorer prognosis after acute myocardial infarction than patients without diabetes. Diabetes can aggravate myocardial ischaemia–reperfusion injury by activating the NADPH oxidase pathway in an AMPK-dependent manner, subsequently inducing various forms of programmed cell death, including ferroptosis. Ferroptosis has been shown to have a pathogenic role in mediating myocardial ischaemia–reperfusion injury in a streptozotocin mouse model of type 1 diabetes. Moreover, hyperglycaemia-induced endoplasmic reticulum stress seems to be involved in cardiomyocyte damage mediated by ferroptosis.

Patients with diabetes are also at increased risk of developing myocardial dysfunction that is independent of coronary artery disease and hypertension — a phenomenon known as diabetic cardiomyopathy. Indeed, several pathogenic factors, including oxidative stress, have been shown to contribute to the structural and functional changes that characterize the diabetic heart. Ferroptosis was reported for the first time in the heart of diabetic mice in a study published in 2022, in which NRF2 activation was shown to prevent ferroptosis by upregulating ferritin and SLC7A11 levels.

Sepsis-induced cardiac injury

In patients, sepsis-induced cardiac injury and dysfunction correlate with increased mortality. Caecal ligation and puncture is currently the most commonly used animal model for studying sepsis and involves the perforation of the caecum to allow the release of faecal material into the peritoneal cavity, which triggers an immune response mediated by polymicrobial infection. Caecal ligation and puncture has been shown to increase cardiac iron content and lipid peroxidation levels, as well as to reduce cardiac glutathione content and GPX4 expression, suggesting that the development of sepsis-induced heart injury might involve ferroptosis. In addition, ferroptosis has been shown to have a role in a lipopolysaccharide-induced model of septic cardiomyopathy. A lipopolysaccharide-induced increase in sideroflexin 1 expression in the cardiac mitochondrial membrane can increase the production of mitochondrial ROS, leading to ferroptosis.

Hypertrophic cardiomyopathy

In the heart, pressure overload (owing to pulmonary hypertension and/or systemic hypertension) can lead to cardiac hypertrophy, cardiac fibrosis and eventual heart failure. Increased cardiac NADPH oxidase 4 expression and decreased cardiac GPX4 activity in animal models after either aortic banding or isoprenaline administration suggest that ROS production and ferroptosis might participate in the progression from compensated hypertrophy to heart failure. Genetic deletion of the key ferroptosis regulator SLC7A11 was found to exacerbate angiotensin II-mediated cardiac fibrosis, hypertrophy and dysfunction, providing genetic evidence of the involvement of ferroptosis in hypertrophic cardiomyopathy.

Interestingly, genetic deletion of Ncoa4 specifically in cardiomyocytes has been shown to attenuate transverse aortic constriction (TAC)-induced heart failure by suppressing ferritinophagy. Moreover, ferroptosis inhibitors attenuated cardiac remodelling in wild-type mice that had undergone TAC, but did not provide additional protection in Ncoa4 knockout mice, implicating cardiac ferroptosis as the downstream consequence of NCOA4-mediated ferritinophagy. In addition, in a TAC mouse model, the enzyme mixed lineage kinase 3 (also known as MAP3K11) has been shown to induce pyroposis and ferroptosis, which are essential for the development of TAC-mediated myocardial fibrosis. Nevertheless, the mechanisms underlying the involvement of various forms of cell death in the pathogenesis of hypertrophic cardiomyopathy remain to be determined.

Putative link between ferroptosis and arrhythmia

Cardiac arrhythmia is common among patients with heart failure. Findings from a preclinical study suggest a possible link between ferroptosis and arrhythmia. In mice, frequent excessive alcohol consumption triggered ferroptosis and increased the inducibility of atrial fibrillation. Ferroptosis inhibitors could partially or completely reverse most of the adverse change induced by excessive alcohol intake.
As mentioned above, ferroptosis can propagate to adjacent cells in a wave-like manner, a phenomenon that has not been reported to occur with other forms of regulated cell death5,294. However, the mechanism underlying this seemingly directed pattern of propagation remains unknown. Cardiac tissue is a functional syncytium for coordinated muscle contraction, mediated via cell-to-cell electrical and chemical coupling through gap junction channels that determine the rhythm of the heart and might contribute to the wave-like propagation of ferroptosis. Therefore, cardiac muscle might be an ideal model for studying the propagation of cell death. Interestingly, myocardial damage such as ischaemia–reperfusion injury often results in arrhythmia as well as the formation of a necrotic zone, which has been suggested to account for the cell-to-cell propagation of ferroptosis214. Further investigation of this unique feature of ferroptosis is warranted.

Other cardiovascular-related diseases
Sickle cell disease is a group of inherited red blood cell disorders characterized by the presence of haemolysis that lead to organ ischaemia and cardiovascular complications215. Increased haem levels in mice with sickle cell disease resulted in an upregulation of cardiac HO1 levels, which then promoted iron overload, lipid peroxidation and ferroptosis in the heart. Furthermore, inhibiting and inducing ferroptosis attenuated and exacerbated, respectively, the cardiomyopathy that was associated with sickle cell disease287.

Currently, the global population is in the midst of the coronavirus disease 2019 (COVID-19) pandemic, a respiratory tract infection caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)217. The cardiovascular complications associated with COVID-19 are well recognized218. Iron might also have an important role in the pathogenesis of COVID-19, given that an estimated 90% of patients admitted to hospital present with abnormal serum iron levels, and these levels correlate with disease severity219. On the basis of these observations, ferroptosis has been suggested as a potential target for the treatment of COVID-19 (REF.220). Primary pacemaker cells in the heart have been shown to develop ferroptosis-associated cardiac dysfunction after infection with SARS-CoV-2 (REF.221). Moreover, a high-throughput chemical screen showed that the tyrosine kinase inhibitor imatinib and the iron-chelating agent deferoxamine can block SARS-CoV-2 infection and associated ferroptosis221.

Ferroptosis as a promising treatment target
Given its role in the pathogenesis of heart disease, ferroptosis is a highly promising therapeutic target for the treatment and prevention of cardiovascular disease. In this section, we summarize the various small molecules that inhibit the ferroptosis pathway and discuss the use of these molecules in various models of heart disease (TABLE 3).

Ferrostatin 1, liproxstatin 1 and antioxidants. Ferrostatin 1 is a first-generation inhibitor of ferroptosis5. Since the anti-ferroptotic effects of this small-molecule compound were first reported, ferrostatin 1 has been tested in a wide range of diseases, including cardiovascular disease. Our group pioneered the use of ferrostatin 1 in mice with experimental cardiomyopathy and found that it can protect against doxorubicin-induced cardiac damage without affecting iron levels5. A subsequent study showed that ferrostatin 1 can also prevent doxorubicin-induced cell death in cultured cardiomyocytes220. In addition, ferrostatin 1 has been shown to improve cardiac function in animal models of acute or chronic myocardial ischaemia–reperfusion injury5,219, as well as in diabetic mice221. In a mouse model of heart transplantation, ferrostatin 1 treatment blocked the recruitment of neutrophils after cardiomyocyte cell death, suggesting a potential strategy for improving clinical outcomes in patients receiving a heart transplantation222. Moreover, ferrostatin 1 treatment has also been reported to attenuate sepsis-induced cardiomyopathy and atherosclerosis in mice222,223. Of note, some researchers have indicated that the in vivo function of ferrostatin 1 is weaker than its function in vitro, given its low stability in plasma223.

To address this issue, a soluble ferrostatin analogue called UAMC-3203 was developed as a more stable and potent inhibitor of ferroptosis than ferrostatin 1. In animals, UAMC-3203 outperformed ferrostatin 1 in preventing ferroptosis-driven multiorgan dysfunction and might therefore be a suitable candidate for clinical testing224.

Liproxstatin 1, a spiroquinoxalinamine derivative, was first identified as a specific inhibitor of ferroptosis from high-throughput screening of Gpx4−/− cells5. Liproxstatin 1 is not as well studied as ferrostatin 1 in the context of cardiovascular pathophysiology, but a study in mice has shown that liproxstatin 1 can protect the myocardium against ischaemia–reperfusion injury by reducing mitochondrial ROS production and maintaining GPX4 activity225. A subsequent study found that liproxstatin 1 significantly reduces palmitic acid-induced cardiac injury, with similar protective effects exerted by ferrostatin 1 (REF.226).

Other commonly studied antioxidants in the context of cardiovascular disease are 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) and MitoTEMPO, a mitochondria-targeted version of TEMPO that was developed to scavenge mitochondrial superoxides227. We have previously demonstrated that MitoTEMPO can potently prevent doxorubicin-induced lipid peroxidation, cardiac ferroptosis and cardiac dysfunction in mice, whereas TEMPO only mildly reduces these doxorubicin-induced effects5. These findings strongly support the notion that mitochondrial lipid peroxidation and cardiac ferroptosis work in a coordinated fashion to mediate doxorubicin-induced cardiomyopathy.

Given that ferroptosis is only one pathway that contributes to the death of cardiomyocytes228, a combination strategy targeting both ferroptosis and necroptosis might be more effective at managing heart disease. Nec-1-f, a dual inhibitor that targets both receptor-interacting serine/threonine protein kinase 1 and ferroptosis primarily in kidney cells and kidney tubules, significantly increased survival in a mouse model of heart transplantation and a mouse model of renal ischaemia–reperfusion injury229.
Iron chelators and iron chelation therapy. Given that ferroptosis is an iron-dependent form of programmed cell death, it is no surprise that ferroptosis can be inhibited by iron chelation. The iron chelator dexrazoxane is currently the only FDA-approved drug for preventing doxorubicin-induced cardiotoxicity in patients with cancer. Dexrazoxane is a cyclic derivative of ethylenediaminetetraacetic acid that readily crosses cell membranes and chelates intracellular free iron. A study showed that inhibition of ferroptosis is the predominant mechanism by which dexrazoxane exerts its cardioprotective effect. However, this finding raises the question of why other iron chelators do not seem to be effective against doxorubicin-induced heart injury, and researchers have suggested that dexrazoxane can directly enter mitochondria in cardiomyocytes and reduce iron accumulation, whereas other iron chelators cannot enter the mitochondria. This notion is further supported by the finding that MitoferroGreen, a novel mitochondria-specific iron chelator, provides cardioprotection in mice treated with doxorubicin. In addition, other iron chelators such as deferiprone and deferoxamine have been shown to alleviate both myocardial ischemia–reperfusion injury and sepsis-related cardiac damage by blocking ferroptosis. Of note, however, the finding that an iron chelator can protect tissue from damage does not necessarily indicate that it does so by inhibiting ferroptosis.

GSH precursors. Cysteine, the reduced form of cystine imported via system xc⁻, is the rate-limiting precursor in glutathione biosynthesis, and the addition of cystine or cysteine to cell culture media in vitro has been shown to inhibit ferroptosis. The antioxidant N-acetyl cysteine (NAC) was developed to improve the bioavailability of cysteine and has been shown to have beneficial effects on cardiovascular function. NAC treatment has also been shown to reduce myocardial ischemia–reperfusion injury in diabetic rats, suggesting that this compound might have clinical applications in heart disease.
Other compounds that can affect cardiac ferroptosis. In addition to the aforementioned drugs, other compounds can also inhibit cardiac ferroptosis by acting on other targets. For example, zinc protoporphyrin IX, a competitive inhibitor of HO1, reduces doxorubicin-induced cardiac iron accumulation and ferroptosis in mice by blocking haem degradation and the resulting release of free iron. Glutaminolysis is required for cysteine deprivation-induced ferroptosis, and compound 96B, a cell-permeable, small-molecule inhibitor of glutaminolysis, has been shown to attenuate myocardial ischaemia–reperfusion injury ex vivo by limiting glutamine levels. Moreover, P22077, an inhibitor of ubiquitin-specific protease 7, has been shown to suppress ferroptosis by activating p53 and reducing TFR1 levels, providing protection against myocardial ischaemia–reperfusion injury. Interestingly, dezmedetomidine, an α₂-adrenergic receptor agonist used clinically to sedate patients, has been shown to alleviate sepsis-induced myocardial injury via the ferroptosis suppressor GPX4 [REF 19]. In addition, puerarin, an isoflavone extracted from the kudzu root, has been shown to protect against erastin-induced and isoprenaline-mediated ferroptosis in cultured cardiomyocytes and can mitigate heart failure induced by pressure overload in rats. Furthermore, atorvastatin has also been shown to ameliorate isoprenaline-induced cardiac dysfunction and remodelling in mice by inhibiting ferritinophagy-mediated ferroptosis, thereby providing another potential therapeutic strategy for the prevention of hypertrophic cardiomyopathy.

Finally, commonly prescribed heart medications might have previously unidentified anti-ferroptotic activity. For example, carvedilol, which is widely used to treat hypertension and heart failure, has been shown to block ferroptosis independent of its effect on β-adrenergic receptors [20,21], and the underlying mechanism might contribute to its capacity to scavenge lipid peroxides and chelate iron [22].

Limitations

A growing body of evidence supports the role of ferroptosis in the initiation and progression of various cardiovascular diseases. However, a number of questions need to be addressed before the therapeutic potential of ferroptosis-targeted agents can be clinically evaluated. First, what are the crucial safeguarding mechanisms against cardiac ferroptosis? Second, can we identify reliable biomarkers for predicting ferroptosis in cardiovascular disease? The ferroptosis biomarkers currently used in preclinical studies are non-specific and present in other types of cell death and certain pathological conditions. In this fast-growing field, the lack of ferroptosis-specific biomarkers has been a long-standing bottleneck limiting the development of ferroptosis-targeted clinical applications. Third, is it possible to design effective ferroptosis-targeted strategies for preventing and treating ferroptosis-related cardiovascular disease? Finally, when and how do other forms of cell death occur together with ferroptosis in the development of cardiovascular disease? Although selective inhibition of ferroptosis has been shown to substantially improve cardiac function in a variety of animal models, no clinical trials have so far been performed using ferroptosis-specific inhibitors to treat cardiovascular disease. Additional population-based data are urgently needed to determine whether selectively blocking ferroptosis can improve cardiovascular outcomes in the clinical setting.

Conclusions

The link between iron and cardiovascular disease was first proposed nearly three decades ago, but the mechanistic pathways underlying this relationship remained elusive until the discovery of ferroptosis, an iron–dependent form of regulated cell death, just 10 years ago. Ferroptosis is induced by the activation of iron–dependent lipid peroxidation, but the key effector molecules involved in this process are unclear. Excess levels of free reactive iron can cause tissue damage, and iron chelation therapy has been widely recommended for the treatment of patients with iron overload–related cardiomyopathy. Preclinical studies are paving the way to the development of effective ferroptosis–specific antagonists for clinical testing.

Published online 4 July 2022

1. Del Re, D. P., Amgalan, D., Linkermann, A., Liu, Q. & Kitsos, R. N. Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol. Rev. 99, 1765–1817 (2019).
2. Dixon, S. J. et al. Ferroptosis: an iron–dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012). This study introduces the term ferroptosis to describe a novel form of non-apoptotic cell death and identifies the small molecule ferrostatin 1 as the first specific inhibitor of ferroptosis.
3. Ganz, T. Systemic iron homeostasis. Physiol. Rev. 93, 1721–1761 (2015).
4. Jankowska, E. A. et al. Iron deficiency defined as depleted iron stores accompanied by unmet cellular iron requirements identifies patients at the highest risk of death after an episode of acute heart failure. Eur. Heart J. 35, 2468–2476 (2014).
5. Berdoukas, V., Coates, T. D. & Cabantchik, Z. I. Iron and oxidative stress in cardiomyopathy in thalassemia. Free Radic. Biol. Med. 88, 3–9 (2015).
6. Fang, X. et al. Ferroptosis as a target for protection against cardiomyopathy. Proc. Natl Acad. Sci. USA 116, 2672–2680 (2019). This study draws, for the first time, a link between cardiac cell death and ferroptosis in murine models of doxorubicin cardiotoxicity or myocardial ischaemia–reperfusion.
7. Chen, Y. R. & Zweier, J. L. Cardiac mitochondria and reactive oxygen species generation. Circ. Res. 114, 524–537 (2014).
8. Bajic, V. P. et al. Glutathione “redox homeostasis” and its relation to cardiovascular disease. Oxid. Med. Cell. Longev. 2019, 5028181 (2019).
9. Eaton, J. W. & Qian, M. Molecular bases of cellular iron toxicity. Free Radic. Biol. Med. 83, 833–840 (2002).
10. Eagle, H. Nutrition needs of mammalian cells in tissue culture. Science 122, 501–514 (1955).
11. Murphy, T. H., Miyamoto, M., Sastre, A., Schnaar, R. L. & Coyle, J. T. Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2, 1547–1558 (1989).
12. Tan, S., Schubert, D. & Maher, P. Oxytosis: a novel form of programmed cell death. Curr. Top. Med. Chem. 1, 497–506 (2001).
13. Stockwell, B. R. et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 275–285 (2017).
14. Green, D. R. The coming decade of cell death research: five riddles. Cell 177, 1094–1107 (2019).
15. Kim, S. E. et al. Ultrasound nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat. Nanotechnol. 11, 977–985 (2016).
16. Roeckel, M. et al. Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture. Nat. Cell Biol. 22, 1042–1048 (2020).
17. Yadav, N. N. et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447, 864–868 (2007).
18. Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014). This study provides direct evidence that deletion of Gpx4 causes in vivo cell death in a pathologically relevant form of ferroptosis, and identifies liproxatin 1 as an inhibitor of ferroptosis.
19. Kolesn, N., Shapira, J. S., Geer, J. & Antinaki, H. Ironing out mechanisms of iron homeostasis and disorders of iron deficiency. J. Clin. Invest. 131, e146321 (2021).
20. Luck, A. N. & Mason, A. B. Transferin-mediated cellular iron delivery. Curr. Top. Membr. 69, 3–35 (2012).
21. Xu, W. et al. Lethal cardiomyopathy in mice lacking transferrin receptor in the heart. Cell Rep. 13, 533–545 (2015).
Lakhal-Littleton, S. et al. Cardiac ferroportin regulates
Lesbordes-Brion, J. C. et al. Targeted disruption of the
Roetto, A. et al. Mutant antimicrobial peptide hepcidin
Sandler, H., Kreth, J., Timmers, H. T. & Stoecklin, G.
Rouault, T. A. The role of iron regulatory proteins in
Yang, W. S. et al. Peroxidation of polyunsaturated fatty
Wang, H. et al. Characterization of ferroptosis in
This study demonstrates that ferritin has a major role in protecting against cardiac ferroptosis and suggests SLC7A11 as a potential new therapeutic target for cardiomyopathy and heart failure.
Ito, J. et al. Iron derived from autophagy-mediated ferritin degradation induces cardiac cytochrome c and heart failure in mice. Cell 159, 1627–1641 (2014).
Lakhal-Littleton, S. et al. SLC7A11 as the cargo receptor mediating ferritinophagy. Front. Neurosci. 12, 508 (2018).
Kang, X. et al. Knockdown of ferroportin accelerates erasin-induced ferroptosis in neuroblastoma cells. Eur. Rev. Med. Pharmacol. Sci. 22, 5826–5836 (2018).
Tao, T. et al. Iron-overload in thalassemia different organs at different rates. Hematol. Am. Soc. Hematol. Educ. Program. 2017, 265–271 (2017).
Dutta, A. & Talbot, A. Iron overload in transfusion-dependent thalassemia. Hematol. 20, 311–316 (2015).
Lehkytjoki, S. & Chattipakorn, N. Iron overload thalassemic cardiomyopathy: iron status assessment and mechanisms of mechanical and electrical disturbance due to iron toxicity. Cardiovasc. Disease Rev. 15, 213–218 (2009).
Zurlino, G. et al. Survival and causes of death in thalassemia major. Lancet 2, 27–30 (1989).
Borgna-Pignatti, C. et al. Survival and complications in thalassemia. N. Engl. J. Med. 340, 41–47 (2004).
Kremastinos, D. T. et al. Heart failure in beta thalassemia: 6-year follow-up study. Am. J. Med. 111, 349–354 (2001).
Russo, V., Rago, A., Papa, A. A. & Nigro, G. Electrocardiographic presentation, cardiac arrhythmias, and their management in j-thalassemia major patients. Ann. Noninvasive Electrocardiol. 21, 517–522 (2016).
Piga, A., Gagliotti, C., Fogliacco, E. & Tricca, F. Comparative effects of deferiprone and deferasirox on survival and cardiac function in patients with thalassemia major: a retrospective analysis. Hematologica 88, 489–496 (2003).
Pennell, D. J. et al. Randomized controlled trial of deferiprone or deferasirox for iron overload in patients with thalassemia major with asymptomatic myocardial siderosis. Blood 107, 3738–3744 (2006).
Shen, M. et al. Strategies for deferring iron overload in patients with iron overload: conventional treatments and novel strategies. Curr. Opin. Hematol. 26, 139–144 (2019).
Cao, C., Nemeth, E. & Rivella, S. Ferritin and mitochondrion in autophagy as therapeutic tools. Blood 131, 1790–1794 (2018).
Young, R. C., Oozu, R. F. & Myers, C. E. The anti-oxidant and anti-inflammatory effects of ferritin. N. Engl. J. Med. 350, 139–153 (2018).
Singal, P. K. & Iliskovic, N. Doperoxib-induced cardiomyopathy. N. Engl. J. Med. 339, 900–905 (1998).
Swain, S. M., Whaley, F. S. & Ewer, M. S. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 97, 2869–2879 (2001).
Panjrath, G. et al. Potentiation of doxorubicin cardiotoxicity by iron overload: insights from iron overload cardiomyopathy. J. Am. Coll. Cardiol. 64, 2457–2464 (2012).
Miranda, C. J. et al. Hfe deficiency increases susceptibility to cardiotoxicity and exacerbates changes in iron metabolism induced by doxorubicin. Blood 102, 2574–2590 (2003).
Ichikawa, Y. et al. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J. Clin. Invest. 124, 617–630 (2014).
This study showed that cardiotoxicity develops via mitochondrial iron accumulation in doxorubicin treated and can be prevented by reducing mitochondrial iron levels.
Maccaruccini, F. et al. Lack of mitochondrial ferritin are more sensitive to doxorubicin-mediated cardiotoxicity. J. Mol. Med. 92, 859–869 (2014).
Hou, K. et al. Cardiac toxicity by suppressing ferroptosis by the chemotherapeutic agent doxorubicin. EBioMedicine 69, 1035463 (2021).
Bannai, S. Exchange of cystine and glutamate across the cell membrane. J. Biol. Chem. 266, 6235–6239 (1991).

Fan, Z. et al. Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogene 36, 1106–1117 (2017).

Jiang, L. et al. Dietary iron intake and coronary heart disease: negative findings from the NHANES I epidemiologic follow-up study. Am. J. Epidemiol. 139, 704–712 (1994).

Klipstein-De Meester, L. Dietary iron and risk of myocardial infarction in the Rotterdam Study. Am. J. Epidemiol. 149, 421–426 (1999).

Malavasi, D. J., Neri, P. J., Yip, A. M. & MacLean, D. R. Dietary iron as a risk factor for myocardial infarction. Public health considerations for Nova Scotia. Can. J. Public Health 95, 267–270 (2004).

van der A, D. L., Peeters, P. H., Grobbee, D. E., Marx, J. J. & van der Schouw, Y. T. Dietary haem iron and coronary heart disease in women. Eur. Heart J. 26, 257–262 (2005).

Lee, D. H., Folsom, A. R. & Jacobs, D. R. Jr, iron, and endothelial cell function and mortality from cardiovascular diseases: the Iowa Women’s Health Study. Am. J. Clin. Nutr. 81, 787–791 (2005).

Qi, L., van der Schouw, Y. T., Kromhout, D. & H. F. B. Haem iron from diet as a risk factor for coronary heart disease in women with type 2 diabetes. Diabetes Care 30, 901–905 (2007).

d de Oliveira Otto, M. C. et al. Dietary intakes of zinc and iron and risk of mortality from cardiovascular disease in a defined population: the Hysayasame study. Stroke 35, 2072–2077 (2004).

Damy, T. et al. Glutathione deficiency in cardiac patients is related to the functional status and structural cardiac abnormalities. PLoS ONE 4, e4871 (2009).

Reden, J. et al. Antioxidant activities and oxidative stress byproducts in patients with ferroptosis. Hypertension 410, 1096–1110 (2015).

Lo Sasso, G. et al. The Apo(“) model: a suitable model for cellular and vascular disease in the context of cigarette smoke exposure and harm reduction. J. Transl. Med. 14, 146 (2016).

Bixova, S. K., Nechtagli, I. & Depard, P. J. Depression glutathione synthesis precedes oxidative stress and atherosclerosis in Apo-E(“) mice. Biochem. Biophys. Res. Commun. 358, 1536–1537 (2005).

Rosenblat, M., Venuva, N., Coleman, R. & Aviram, M. Anti-oxidant and anti-atherogenic properties of liposomal glutathione: studies in vitro, and in the atherosclerotic prone diet-resistant mouse. Atherosclerosis 195, e61–e68 (2007).

Lin, C. C., Yin, M. C., Hsu, C. C. & Lin, P. M. Effect of five fatty acid metabolites E and long-chain polyunsaturated fatty acids in Balb/c mice consuming a saturated fat diet. Lipids 39, 845–848 (2004).

Chaves, F. J. et al. Inadequate cytoplastic antioxidant enzymes response contributes to the oxidative stress in human hypertension. Am. J. Hypertens. 20, 62–69 (2007).

Hassannia, B., Van Collie, S. & Vanden Berge, T. Ferroptosis: biological role of lipid membranes. Antioxid. Redox Signal. 35, 487–509 (2021).

Doll, S. et al. Ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13, 91–98 (2017).

Kagan, V. E. Oxidized arachidonic and arachidonic PE navicate cells to ferroptosis. Nat. Chem. Biol. 13, 81–90 (2017).

H. S. N. et al. ALA contributes to ferroptosis-mediated rhodamine9 survival in oxidative stress rat. J. Cachexia Sarcompenia Muscle 13, 1717–1730 (2022).

Maglione, L. et al. Exogenous munsaturated fatty acids promote a ferroptosis-resistant cell state. Cell Biol. Cell. Biol. 26, 420–432 e9 (2019).

Dixon, S. J. et al. Human haploid cell genetics reveals enzyme delivered. Mol. Cell Biol. 35, 24–35 (2015).

Koppula, P., Zhang, L. & Gan, B. Cystine transporter SLC7A11 regulates ferroptosis, nutrient uptake dependency, and cancer therapy. Protein Cell 12, 599–620 (2021).

Bannai, S. Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J. Biol. Chem. 261, 2256–2263 (1986).

Oda, K. et al. Consensus mutagenesis approach improves the thermal stability of system x, transporter, xCT, and enables cryo-EM analyses. Protein Sci. 29, 2398–2407 (2020).

Parker, J. L. Molecular basis for redox control by the human cystine/glutamate antiporter system xc. Nat. Commun. 12, 7147 (2021).

Yan, R. et al. The structure of erasin-bound xct-f2he complex reveals molecular mechanisms underlying erasin-induced ferroptosis. Cell Res. https://doi.org/10.1093/cellres/crac022 (2022).

Zhang, Y. et al. Idazoxane keto erasin induces ferroptosis and slow tumor growth in a mouse lymphoma model. Cell Chem. Biol. 26, 623–639 e9 (2019).

Rojo de la Vega, M., Chapman, E. & Zhang, D. D. NRF2 and the hallmarks of cancer. Cancer Cell 34, 21–43 (2018).

Fan, Z. et al. Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogene 36, 1106–1117 (2017).

Jiang, L. et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520, 57–62 (2015).
200 Sparvero, L. J. et al. Direct mapping of phospholipid.

201 Kobashigawa, J. et al. Report from a consensus.

202 Wortmann, M. et al. Combined deficiency in.

203 Yant, L. J. et al. The selenoprotein GPX4 is essential.

204 Conrad, M. & Proneth, B. Broken hearts: iron.

205 Hampton, T. New target to protect against.

206 Miriyala, S. et al. Novel role of 4-hydroxy-2-nonenal in.

207 Shimada, K. et al. Global survey of cell death.

208 Wang, Y. et al. SLC25A39 is necessary for mitochondrial.

211 Bernuzzi, F., Recalcati, S., Alberghini, A. & Cairo, G. JCI Insight plays a pivotal role in doxorubicin cardiotoxicity. 11784–11788 (2021).

212 Lejay, A. et al. Ischemia reperfusion injury, ischemic.

213 Lejay, A. et al. Ischemia reperfusion injury in the heart.

214 Tonnus, W. et al. Dysfunction of the key ferroptosis.

215 Gammella, E., Maccarini, F., Buratti, P., Recalcati, S. & Cairo, G. The role of iron in anthracyclic.

216 Simonek, T. et al. Anthracyclic-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol. Res. 61, 154–171 (2009).

217 Tang, L. J. et al. Ferroptosis occurs in phase of.

218 Duidda, P. V. et al. A systematic review on the protective effect of N-acetyl cysteine against diabetes-associated cardiovascular complications. Am. J. Cardiol. 182, 285–298 (2018).

219 Bartekova, M., Barancik, M., Ferenczyova, K. & Dhalla, N. S. Beneficial effects of N-acetylcystein and N-methylmorpholine/acetaminophen on ferroptosis induced injury in the heart. J. Card. Med. 25, 555–566 (2018).

220 Badeghi, M. A. et al. Cystine depletion induces.

221 Song, L. J. et al. Ubiquitin-specific protease 7.

222 Duidda, P. V. et al. A systematic review on the protective effect of N-acetyl cysteine against diabetes-associated cardiovascular complications. Am. J. Cardiol. 182, 285–298 (2018).

223 Acknowledgements

224 The authors receive support from the National Natural.

225 The authors thank L. Luo (Guangdong University of.

226 Springer Nature remains neutral with regard to jurisdictional.

227 Author contributions

228 All the authors contributed substantially to all aspects of the article.

229 Competing interests

230 The authors declare no competing interests.

231 Peer review information

232 Nature Reviews Cardiology thanks Sabzali Javadov, Andreas Linkermann and Eikan Mishima for their contribution to the peer review of this work.

233 Publisher’s note

234 Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

235 Springer Nature Limited 2022