Short title: *Aedes albopictus* distribution in the Democratic Republic of the Congo

Geographic distribution and future expansion of *Aedes albopictus* in the Democratic Republic of the Congo

Fabien Vulu1,2,3,*, Thierry Lengu Bobanga3, Toshihiko Sunahara2, Kyoko Futami2, Hu Jinping2, Noboru Minakawa2

1Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; 2Vector Ecology & Environment Department, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan; 3Services de Parasitologie et d’Entomologie, Département de Médecine Tropicale, Faculté de Médecine, Université de Kinshasa, Democratic Republic of the Congo

*Corresponding author: Fabien Vulu

E-mail: cedricvulu2014@gmail.com
Abstract

Aedes albopictus with an Asian origin has been reported from central African countries. The establishment of this mosquito species poses a serious threat as the vector of various infectious diseases. Since information about _Ae. albopictus_ in Democratic Republic of the Congo (DRC) is scarce, we investigated the current distribution of this mosquito species. Based on the factors affecting the distribution, we predicted future distribution. We conducted entomological surveys in Kinshasa and three neighboring cities from May 2017 to September 2019. The survey was extended to seven inland cities. A total of 19 environmental variables were examined using the maximum entropy method to identify areas suitable for _Ae. albopictus_ to establish a population. We found _Ae. albopictus_ at 21 of 23 sites in Kinshasa and three neighboring cities. For the first time _Ae. albopictus_ was also found from three of seven inland cities, while it was not found in four cities located in the eastern and southeastern parts of DRC. A maximum entropy model revealed that the occurrence of _Ae. albopictus_ was positively associated with maximum temperature of the warmest month, and negatively associated with wider mean diurnal temperature range and enhanced vegetation index. The model predicted that most parts of DRC are suitable for the establishment of the mosquito. The unsuitable areas were the eastern and southeastern highlands, which have low temperatures and long dry seasons. We confirmed that _Ae. albopictus_ is well established in Kinshasa and its neighboring cities. The expansion of _Ae. albopictus_ to the inland is ongoing, and in the future the mosquito may establish in most parts of DRC.

Key-words: _Aedes_ mosquito, maximum entropy model, MaxEnt, environmental variables.
Introduction

Aedes albopictus is an invasive mosquito and vector of human disease such as arboviruses such as dengue and chikungunya [1-5]. Originating from Asia [6, 7], Ae. albopictus has expanded its distribution globally [3]. In central Africa, this mosquito was first reported from Cameroon in 2000 [8], and subsequently was found in several other countries [9-13]. Following the mosquito invasion into central Africa, numerous dengue and chikungunya outbreaks have occurred [12, 14-21].

Aedes aegypti is considered to be the main vector of dengue and chikungunya (CHIKV) viruses; however, Ae. albopictus was largely responsible for the dengue and chikungunya outbreaks in Gabon in 2007 and 2010 [14, 17, 21]. Furthermore, Ae. albopictus is able to transmit the chikungunya virus variant possessing the E1-226V mutation more efficiently than Ae. aegypti [22, 23]. This mutation was first identified during the chikungunya outbreak in the African Indian Ocean islands in 2005 [24], and was later isolated in central Africa [18, 19, 25].

In DRC, 50,000 suspected cases were reported during the first chikungunya outbreaks in Kinshasa from 1999 to 2000 [16]. Chikungunya outbreaks also occurred in Kinshasa in 2012 and 2019 and in the adjacent Kongo Central Province in 2019 [25, 26]. In addition, the number of dengue virus infections has also increased in recent years [26-29]. Although an apparent outbreak did not occur, an entomological study caught several Aedes mosquitoes infected with CHIKV in Kinshasa in 2014 [30]. Moreover, a study confirmed involvement of Ae. albopictus for transmitting CHIKV with the E1-A226V mutation in two cities, Matadi and Kasangulu, of Kongo Central Province during the 2019 chikungunya outbreak [25].
Curative treatments and vaccines are not available for dengue and chikungunya [31, 32], and thus vector control is a valuable available tool for reducing infections [33]. As such, understanding the current distribution of *Ae. albopictus* in DRC is an essential step for the control. Global level distribution models based on environmental variables indicate that almost the entire area of DRC is suitable for *A. albopictus* establishment [3, 34, 35]. These models were constructed without entomological data from DRC, and thus the provided information was too coarse to apply to local vector control. In the present study, we described the current distribution of *Ae. albopictus* in DRC based on locally available data. In particular, we provided detailed information for Kinshasa and the neighboring areas where chikungunya outbreaks recently occurred. We also revealed important environmental variables related to the distribution, and attempted to determine if the present distribution is static.

Materials and methods

Study areas

DRC is the largest country in Sub-Saharan Africa with an area of roughly 2.4 million km², and possesses a diversity of landscapes and climates. The country is divided into six geographic regions (western, northern, far-northern, central, eastern, and southeastern) based on landscape and climate (Fig 1). The landscape of the western region is composed of the coastal plain, with hills and plateaus in the south. The vegetation type is mainly savannah, with a tropical humid climate and a three 3-month dry season. This region includes Kinshasa and Kongo Central province, where chikungunya and dengue outbreaks have occurred. The Congo Basin and equatorial forests largely occupy the northern region. This region has an equatorial climate without a dry season. The far-northern region is characterized with savannas, and has a tropical humid climate with a three month dry season. Equatorial forests
occupy the northern part of the central region, whereas the southern part is mainly plateau
with savannas and steppes. The central region has a dry tropical climate with a three month
dry season. High hills and mountains dominate the eastern region, and lush vegetation forms
the mountain forests. The region has a temperate mountain climate without a distinct dry
season. The southeastern region is dominated by high plateaus with savannas. The region
has a dry tropical climate with a six-month dry season.

Fig 1. Distribution of *Ae. albopictus* in DRC. Red dots depict the presence of *Ae.
albopictus*, and green dots depict absence at the city level. Mosquitoes were sampled at
several sites within Matadi, Kisantu, Kasangulu, Kinshasa, and Mbandaka, and *Ae. albopictus*
was found at one site at least. Each geographic region is made up of multiple provinces,
represented by boundaries.

We conducted entomological surveys at 32 sites within 11 cities across four different
geographic regions except the eastern and far-northern regions, from May 2017 to September
2019 (Table 1). First, we focused on the western region in which *Ae. albopictus* has been
recorded [13, 25]. The survey in the western region included 14 sites within Kinshasa and
nine sites in the three cities, Kasangulu, Kisantu, and Matadi, in Kongo Central Province.
Since human-mediated dispersal of *Ae. albopictus* was an immediate concern, the survey also
included nine sites along the major transportation routes (Congo River and national roads) in
the other three regions (Fig 1). These sites were three sites within Mbandaka in the western
part of the northern region; Tshikapa, Mbuji-Mayi, and Kalima in the central region and
Lubumbashi, Kilwa, and Kashobwe in the southeastern region.
Region, province / city	Site	Date	Latitude	Longitude	Method	Occurrence
Central region						
Kasai/Tshikapa	Tshikapa	2019/8	S 06.417°	E 20.802°	Asp	Present
Kasai Or / Mbuji-Mayi	Bupole	2019/6	S 06.134°	E 23.623°	BGS	Present
Maniema / Kalima	Kalima	2019/7	S 03.073°	E 26.041°	Asp	Absent
Northwestern region						
Equateur / Mbandaka	Mbandaka	2019/7	N 00.048°	E 18.260°	Asp	Absent
Equateur / Mbandaka	Mambenga	2017/5	N 00.061°	E 18.266°	BGS	Present
Equateur / Mbandaka	Bombwanza	2018/5	N 00.048°	E 18.284°	BGS	Present
Southeastern region						
Haut-Katanga / Kilwa	Kilwa	2017/8, 2018/10	S 09.277°	E 28.336°	BGS / Asp	Absent
Haut-Katanga / Kashobwe	Kashobwe	2017/8, 2018/10	S 09.676°	E 28.614°	BGS / Asp	Absent
Haut-Katanga / Lubumbashi	Bel air	2017/8, 2018/10	S 11.662°	E 27.502°	BGS / Asp	Absent
Western region						
Kinshasa / Kinshasa	Lingwala	2019/9	S 04.328°	E 15.302°	Asp	Present
Kinshasa / Kinshasa	Barumbu	2019/8	S 04.311°	E 15.326°	Asp	Absent
Kinshasa / Kinshasa	Tshangu	2019/7	S 04.419°	E 15.427°	Asp	Present
Kinshasa / Kinshasa	UPC	2019/4	S 04.332°	E 15.297°	Asp	Present
Kinshasa / Kinshasa	Echangeur	2019/4	S 04.375°	E 15.343°	Asp	Present
Kinshasa / Kinshasa	Uckin	2019/4	S 04.352°	E 15.241°	Asp	Present
Kinshasa / Kinshasa	Don bosco	2019/4	S 04.366°	E 15.207°	Asp	Present
Kinshasa / Kinshasa	Cu	2019/4	S 04.299°	E 15.924°	BGS	Present
Kinshasa / Kinshasa	Malweka	2019/2	S 04.376°	E 15.220°	Asp	Present
Kinshasa / Kinshasa	Mitendi	2019/2	S 04.468°	E 15.235°	BGS	Present
Kinshasa / Kinshasa	Mbenseke	2019/2	S 04.502°	E 15.226°	BGS	Present
Kinshasa / Kinshasa	Masanga Mbila	2018/12	S 04.443°	E 15.279°	BGS	Present
Kinshasa / Kinshasa	Lingwala II	2018/12	S 04.326°	E 15.305°	BGS	Absent
Kinshasa / Kinshasa	Ngamanzo	2018/9	S 04.173°	E 15.539°	BGS / Asp	Present
Kongo-Central / Kasangulu	Kasangulu	2019/9	S 04.587°	E 15.169°	Asp	Present
Kongo-Central / Kasangulu	Manoka	2019/4	S 04.588°	E 15.173°	Asp	Present
Kongo-Central / Kinsatu	Jardin botanique	2019/9	S 05.132°	E 15.077°	Asp	Present
Kongo-Central / Kinsatu	Kisantu	2019/8	S 05.126°	E 15.070°	Asp	Present
Kongo-Central / Matadi	Kalankala	2019/9	S 05.825°	E 13.460°	Asp	Present
Kongo-Central / Matadi	Soyo	2019/9	S 05.841°	E 13.456°	Asp	Present
Kongo-Central / Matadi	Toulouse	2019/9	S 05.842°	E 13.448°	Asp	Present
Kongo-Central / Matadi	Soyo II	2019/3	S 05.842°	E 13.457°	Asp	Present
Kongo-Central / Matadi	Mvuzi	2019/3	S 05.825°	E 13.460°	Asp	Present

a Asp: aspirator, BGS: BG sentinel trap.
Mosquito sampling

Within each site, sampling was focused on places around dwellings which are ecologically suitable for adults of *Ae. albopictus*, and places where residents reportedly experience frequent day-time mosquito bites. *Aedes* mosquitoes were collected with electric aspirators (Prokopack Aspirator, John W. Hock, Gainesville, USA) and/or BG sentinel traps (Biogents Inc, Regensburg, Germany) from 3:00 pm to 6:00 pm for three to seven consecutive days at each site. Sampled mosquitoes were identified morphologically to species according to Huang’s identification keys [36]. When at least one *Ae. albopictus* was collected, the site was considered as a positive site. A distribution map was constructed using the Quantum Geographic Information System software version 3.4.13 (QGIS Development Team, 2020) (Fig 1).

Environmental variables

We reviewed literature related to modelling *Ae. albopictus* distribution using the maximum entropy software, MaxEnt [37]. This software is often used for modeling species distribution, and effectively handles a small number of collection sites [38-42]. Based on the review, we selected 18 environmental variables which had a permutation importance (PI) of at least 5% (Table 2) [34, 43-55]. PI indicates the importance of each variable in a MaxEnt model [56]. Among the 18 variables, 15 climatic variables were obtained from the WorldClim database (http://www.worldclim.com/version2) [57]. This climate database provides average historical climate data from 1970 to 2000 with a spatial resolution of 1 km x 1 km. Digital elevation model (DEM) data was obtained from SRTM imagery/USGS with a resolution of 30.9 m (or 1-arc second) (https://www2.jpl.nasa.gov/srtm/). The datasets of two vegetation variables, Enhanced Vegetation Index (EVI) and Normalized Differentiation Vegetation Index (NDVI),
were downloaded from Modis Vegetation Index/USGS with a resolution of 1km x 1 km
(https://modis.gsfc.nasa.gov/data/dataprod/mod13.php). Dry season length was included in
addition to the variables obtained by the literature review [58].

Table 2. Important environmental variables for *Aedes albopictus* distribution.

Code	Variable	PI (%)	References
Bio1	Annual mean temperature		[34, 47, 54]
Bio2	Mean diurnal temperature range	55.6	[45, 49]
Bio4	Temperature seasonality		[43, 49]
Bio5	Maximum temperature of warmest month	30.8	[43, 45, 47]
Bio6	Minimum temperature of coldest month		[43, 47]
Bio7	Temperature annual range		[45]
Bio10	Mean temperature of warmest quarter		[48, 50, 52, 53]
Bio11	Mean temperature of coldest quarter		[46, 48, 50, 52, 53, 55]
Bio12	Annual precipitation		[47, 55]
Bio13	Precipitation of wettest month		[43, 45, 47, 51]
Bio14	Precipitation of driest month		[44, 47, 49]
Bio15	Precipitation seasonality		[43]
Bio16	Precipitation of wettest quarter		[46]
Bio17	Precipitation of driest quarter		[46, 50, 55]
Bio18	Precipitation of warmest quarter		[49, 54]
DEM	Digital elevation model		[54]
NVDI	Normalized Difference Vegetation Index		[34]
EVI	Enhanced vegetation index	13.6	[55]
	Dry season length		[58]

Permutation importance values are given for variables selected in the final model.
Modeling

We selected environmental variables that were significantly different between positive and negative sites. A relationship of mosquito occurrence with each variable was examined using the Wilcoxon-Mann-Whitney test (GraphPad Prism version 8.4.2, GraphPad Software, San Diego, California USA). When numbers of sample size were insufficient (n < 4) for the statistical test, we identified variables which had an extreme median value at negative sites versus positive sites. We first examined if a negative site median value was within the range of positive site values in the corresponding geographic region. When the median value was outside the range, we also compared it to the range of values from all positive sites including ones from the other regions. When the value was still outside the range, the variable was considered for modeling.

Between the selected variables, we examined the Pearson correlation coefficients [44]. When the coefficients were above 80%, we retained them based on their apparent importance in past studies (Table 2) [34, 43-55]. Dry season length was excluded from the analyses because of the absence of a raster file. Then, we ran a full model including all selected variables with the default settings of MaxEnt. Based on the results from the full model, we constructed a reduced model including variables that had a PI above 5%. Since our sample size was small, we modified the settings in MaxEnt using ten replications, linear feature, and cumulative output format. The PI from the latter model was used to identify the most important variables. Response curves were also used to determine how the model changes with a permutation of each variable. The area under the curve (AUC) was used to assess model accuracy. When an AUC value was above 0.75, the model was acceptable. With the outputs from the optimal model, we constructed a predicted geographical distribution map of *Ae. albopictus* in DRC using the QGIS software.
Results

We collected a total of 2,841 *Aedes* mosquitoes. Of which, 2,331 (82%) were *Ae. albopictus*, and 510 (18%) were *Ae. aegypti*. The former species was found at 25 of 32 sites within 7 of 11 cities (Table 1, Fig 1). Within Kinshasa, *Ae. albopictus* was collected at 12 of 14 sites (Table 1). In Kongo Central Province, *Ae. albopictus* was collected at all nine sites. This species was collected at two of the three sites within one city in the western part of the northern region. In the central region, we found *Ae. albopictus* in the two cities in the southern part, Tshikapa and Mbuji-Mayi, but we did not find it in the city in the northeastern part, Kalima. We did not find *Ae. albopictus* in the three cities, Kilwa, Kashobwe and Lubumbashi, in the southeastern region (Table 1).

A total of 19 environmental variables were selected based on a literature review (Table 2). Wilcoxon-Mann-Whitney tests revealed that the precipitation of the warmest quarter was significantly greater at the positive sites compared with the negative sites; however, the differences were not statistically significant for the other variables (Fig 2). The medians of all environmental variables at the two negative sites in the western region were within the ranges of values at the positive sites of the same region (Fig 3). In the northern region, the medians from the negative sites were within the range of values from the positive sites except for the NVDI (Fig 3R). However, the median of NDVI was within the range of the values from the positive sites when all regions were considered. The medians of nine variables at the negative site in the central region were out of the ranges of the two positive sites. When all regions were considered, the medians were within the range of the positive sites. However, the maximum temperature of the warmest month at the negative site in the central region was lower than the range of all positive site values including ones from the other regions. The
same negative site of the central region had higher EVI and NDIV than the ranges of all positive sites. The medians of ten variables at the three negative sites in the southeastern region were outside the ranges of values at the positive sites. The negative sites had lower annual mean temperatures, a wider mean diurnal temperature range, lower minimum temperatures of the coldest month, lower mean temperatures of the coldest quarter, a wider temperature annual range, greater precipitation seasonality, lower precipitation of the driest quarter, lower precipitation of the warmest quarter, higher elevation, and longer dry season length than any of the positive sites. Lubumbashi is located in the southernmost and at the highest elevation among the sites in the southeastern region, and these environmental variables of the city were more extreme than the other sites.

Fig 2. Comparisons of each environmental variable between the positive and negative *Ae. albopictus* collection sites. Each panel shows the first quartile, the median, the third quartile, the minimum and the maximum values in positive (*Ae. albopictus* was found) and negative (the species was not found) sites by box plots. A: Annual mean temperature (°C); B: mean diurnal temperature range (°C); C: temperature seasonality (%); D: maximum temperature of warmest month (°C); E: minimum temperature of the coldest month (°C); F: mean temperature of the coldest quarter (°C); G: temperature annual range (°C); H: mean temperature of the warmest quarter (°C); I: annual precipitation (mm); J: precipitation of the wettest month (mm); K: precipitation of the driest month (mm); L: precipitation seasonality (%); M: precipitation of the wettest quarter (mm); N: precipitation of the driest quarter (mm); O: precipitation of the warmest quarter (mm); P: digital elevation model (m); Q: enhanced vegetation index; R: normalized difference vegetation index; S: dry season length (month).
An asterisk indicates that the difference was statistically significant ($p < 0.05$) with Wilcoxon-Mann-Whitney tests.

Fig 3. Medians of each environmental variable at positive sites and negative sites of *Ae. albopictus* in the four regions. A value for each site is depicted as a dot. The black horizontal bars indicate the median and vertical bars indicate the range. A: annual mean temperature ($°C$); B: mean diurnal temperature range ($°C$); C: temperature seasonality (%); D: maximum temperature of warmest month ($°C$); E: minimum temperature of the coldest month ($°C$); F: mean temperature of the coldest quarter ($°C$); G: temperature annual range ($°C$); H: mean temperature of the warmest quarter ($°C$); I: annual precipitation (mm); J: precipitation of wettest month (mm); K: precipitation of the driest month (mm); L: precipitation seasonality (%); M: precipitation of the wettest quarter (mm); N: precipitation of the driest quarter (mm); O: precipitation of the warmest quarter (mm); P: digital elevation model (m); Q: enhanced vegetation index; R: normalized difference vegetation index; S: dry season length (month).

Of 12 selected variables, excluding dry season length, five pairs were highly correlated among eight variables (S1 File). We chose annual mean temperature, mean diurnal temperature range and the EVI over the others because the past studies showed that they were more important. As a result, seven variables were included in the full MaxEnt analysis (Table 2). After the model selection, the optimal model contained three variables, maximum temperature of the warmest month, mean diurnal temperature range, and EVI. Mean diurnal temperature range was the most important variable, followed by maximum temperature of warmest month, and EVI (Table 2). The AUC of the optimal model was 0.975. The response curves revealed that the highest suitable area was predicted with EVI below – 0.017,
maximum temperature of the warmest month above 34.3 °C, and mean diurnal temperature below 6.5°C (Fig 4).

Fig 4. Response curves for *Ae. albopictus* suitability in relation to mean diurnal temperature range (A), maximum temperature of warmest month (B), and enhanced vegetation index (C). The curves show how each environmental variable affects the MaxEnt prediction. The red line is the mean response of the ten MaxEnt replications.

The model predicted that most of DRC is suitable for *Ae. albopictus* establishment (Fig 5). The suitability was high in the most parts of the western region; however, it varied between 0 to 75% in the southern area of the region. The suitability was also high in the central region and the northern region although a noticeable area in the northeastern region had low suitability. The eastern part of the eastern region and the southern part of the southeastern region had low suitability. The model successfully predicted all positive sites within the highly suitable areas and all negative sites within the highly suitable areas in the western, the northwestern, and the central regions. However, the model predicted two negative sites, Kilwa and Kashobwe, in the southeastern region to be suitable whereas Lubumbashi was predicted as being unsuitable area.

Fig 5. Suitability map of *Ae. albopictus* in DRC generated by the optimal MaxEnt model. Dots depict the presence (black) or absence (green) of *Ae. albopictus*. Only 24 out of the 32 dots can be visualized because some sites are overlapped.

Discussion

The present study found *Aedes albopictus* in 25 sites in seven cities in DRC. This mosquito species was newly found in four cities in the western and central regions, but it was absent in the cities in the southeastern region where many environmental variables showed extreme values. The MaxEnt model revealed that the occurrence of *Ae. albopictus* was positively associated with maximum temperature of the warmest month, and negatively with wider mean diurnal temperature range and enhanced vegetation index. The model predicted that almost the entire area of DRC is suitable for the establishment of *Ae. albopictus*.

Within Kinshasa, *Ae. albopictus* was found at 12 of 14 collection sites. This mosquito species was recorded in Kinshasa for the first time in DRC in 2016 [13]. A recent study reported within this city a high level of larval infestation of *Ae. albopictus* in artificial containers together with *Ae. aegypti* [59]. In the adjacent province, *Ae. albopictus* was found at all 9 collection sites within three cities, Kasangulu, Kisantu, and Matadi. The present study recorded this mosquito species in Kisantu for the first time, while it was recorded in Matadi and Kasangulu during the 2019 chikungunya outbreak. During the outbreak, *Ae. albopictus* was more abundant than *Ae. aegypti* in these two cities [25]. The findings from the present study were sufficient to conclude that *Ae. albopictus* is well established in the western part of the western region.

We also confirmed that *Ae. albopictus* has extended its distribution to the inland cities. This mosquito species was recorded in Mbandaka in the northern region for the first time. We collected *Ae. albopictus* in the city in 2017 and in the two consecutive years, indicating that this mosquito quickly spread to the area after its recording in Kinshasa in 2016. This species
was likely introduced to Mbandaka from the western region by traffic along the Congo River, which is the main transportation route to the northern region. In the Philippines a molecular study showed evidence of _Ae. aegypti_ migrations with ships among the islands [60].

In contrast, we did not find _Ae. albopictus_ in Kalima in the upriver region of the Congo River in the eastern part of the central region. The result is likely due to the distance and the poor access from the other areas where this species has become established. However, air flight activity is intense between the area and Kinshasa, and _Ae. albopictus_ might be introduced by air in the future [61]. Either way, the result from one collection site is not enough to confirm the absence of this mosquito species in the region. On the other hand, _Ae. albopictus_ was found at two cities in the southern part of the central region. The results are likely due to a larger amount of traffic and a shorter distance between Kinshasa and this area compared with Kalima. The access is also better through the major roads, and there are frequent flights between Kinshasa and the area.

We did not find _Ae. albopictus_ at all three cities in the southeastern part of the southeastern region. The results may be partially due to the distances from the areas where this mosquito has been established. However, because Lubumbashi is the second largest city in DRC, the amount of road traffic from the central and western regions is not negligible, and the flight activities are intense between Kinshasa and Lubumbashi. The intense traffic may introduce this mosquito species to the area in the near future [62].

Climate may limit the distribution of _Ae. albopictus_ in the southeastern region. The medians of ten environmental variables at the negative sites in the southeastern region were outside the
ranges of the values from the positive sites of the other regions. The results indicate that the sites in the southeastern region are cooler, and the temperature fluctuates more because of the inland with high altitudes. Indeed, the MaxEnt model indicated that the climate variables (maximum temperature of the warmest month and mean diurnal temperature range) are important for establishment of this mosquito species. On the other hand, the model suggests that two negative sites, Kilwa and Kashobwe, in the southeastern region are suitable for *Ae. albopictus* establishment. The elevations of these sites are less than 1,000 m, the maximum temperature of warmest months is 31 to 32 °C and the mean annual temperatures are 23 to 24 °C. Since *Ae. albopictus* could establish in temperate areas with an annual mean temperature of 11°C and/or 1,350 accumulated degree-days above 11°C per year [63-65], the temperatures of the two cities are warm enough. These model results suggest that the distances and traffic from the western region are likely the limiting factors, but this mosquito species may establish in these two sites in the future.

The model suggests that Lubumbashi is not suitable for *Ae. albopictus* survival. This city is situated at an elevation of about 1,200 m, and the mean annual temperature is 21°C. While the maximum temperature of the warmest month is 31°C, the minimum temperature of the coldest month, July, drops to 9 °C. The coldest month occurs in the middle of the six-month dry season when the monthly rainfall often becomes less than 1 mm. While the lengths of the dry season are similar among the three cities in the region, the lower temperature and wider diurnal temperature range may make the climate condition of Lubumbashi less favorable for *Ae. albopictus*. Even though eggs of this mosquito are tolerant to desiccation [66], egg survivorship would become less with decreases of temperature and humidity during the dry season [60, 67]. Furthermore, a greater fluctuation of temperature may make the conditions
less favorable for survival [67, 68]. The conditions may become even tougher for *Ae. albopictus* strains originating from tropic regions, which are less tolerant to cooler climate compared with strains from temperate regions [69, 70].

A study in Madagascar reported that the distribution of *Ae. albopictus* is largely limited to the eastern part of the island, with high humidity, a temperature of the coldest months above 12 °C, and dry season shorter than six months in length [58]. The study, however, found *Ae. albopictus* breeding in used tires and captured adults in residential areas in the southwestern region with an annual precipitation less than 600 mm and an eight-month dry season. The findings in Madagascar suggest that this mosquito species is able to establish in an area where suitable man-made habitats are available as long as the temperature is warm enough.

Although *Ae. albopictus* distribution in Asia, from which it originated, occurs more in rural areas with greater vegetation, it also utilizes artificial habitats such as discarded containers in urban areas [1, 13]. Probably the entry point of a new region is likely an urban area with a larger amount of traffic. This partially explains the negative association of this species with the enhanced vegetation index indicated by the MaxEnt model.

Although our field survey did not cover the far-northern region and the eastern region, the model suggests that most of the far-northern region and the western part of the eastern region are also suitable for establishment of this mosquito species. *Ae. albopictus* might have already reached these regions, or it may reach there in the near future. In contrast, the model suggests that the eastern part of the eastern region is not suitable for this mosquito species. The area is
2,000 m above sea level, and includes mountains above 4,000 m. The harsh climate likely does not allow *Ae. albopictus* to establish in the area [63-65].

Limitation

The number of collection sites was small relative to the size of the country. Including the far-northern region and the eastern region, a larger number of collection sites could provide a better picture of the relationships of *Ae. albopictus* with the environmental variables. The Wilcoxon-Mann-Whitney tests revealed that precipitation of the warmest quarter was greater at the positive sites than the negative sites. Although this is the only variable statistically different between them, other variables might become significant with a larger number of collection sites.

We collected mosquitoes mainly within urban areas. Mosquitoes are more frequently introduced to urban areas with human activities, and thus sampling approach was practical to identify sites in which *Ae. albopictus* was established when considering the large size of the country. For instance, with fewer negative sites, the Max Ent model might be affected by the highest EVI value at the single negative site in the central region. As a result, EVI became one of the three important environmental variables, and it was negatively associated with the presence of *Ae. albopictus*. This result contradicts the past studies in the other areas [71]. A more precise picture would be produced with a finer spatial scale which can recognize small patches of vegetation within an urban area, though it is still challenging with free satellite data.
The environmental variables used in the present study were selected based on studies conducted mostly in temperate areas, because few studies were conducted in Africa. Appropriate variables for the African situation might be different.

Conclusion

Aedes albopictus has established populations in the major cities of the western region of DRC. This mosquito species is expanding its geographical distribution toward the inland. The migration is likely facilitated by the major transportation routes including the Congo River. The MaxEnt model based on environmental variables suggests that most of the country is suitable for the establishment of *Ae. albopictus*, except the areas in the eastern and the southeastern parts of the country. The results from our study suggest that low temperatures and a long dry season limit the distribution of *Ae. albopictus*. This is the first report to provide the current and future *Ae. albopictus* distributions in DRC using locally collected mosquito data.

Implication

Autochthonous cases of chikungunya and dengue have been reported from the western region and the southern part of the central region where we found *Ae. albopictus* [72]. Although *Ae. albopictus* was found in the southwestern part of the northern region, autochthonous cases of the viral diseases have not been reported. The diseases have not been reported from the northern part of the central region and the southeastern region where we did not find this mosquito species. Moreover, the diseases have not been reported from the far-northern area and the eastern region. Our model implies that, following the expansion of mosquito distribution, chikungunya and dengue may also spread to most parts of the country in the near future.
Country-wide entomological surveillance is needed to detect the signs of impending epidemics.

Acknowledgments

We would like to thank Pitshou Mampuya, Herve Michel Vulu and Kelvin Landu for their helpful contribution in the field activities. Fabien Vulu is grateful to the Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate school of Biomedical Sciences, Nagasaki University, and Japan International Cooperation Agency (JICA) for their support.

References

1. Bonizzoni M, Gasperi G, Chen X, James AA. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol. 2013 Sep 1;29(9):460-8. https://doi.org/10.1016/j.pt.2013.07.003 PMID: 23916878

2. Weetman D, Kamgang B, Badolo A, Moyes CL, Shearer FM, Coulibaly M, et al. Aedes mosquitoes and Aedes-borne arboviruses in Africa: current and future threats. Int J Environ Res Public Health. 2018 Feb;15(2):220. https://doi.org/10.3390/ijerph15020220 PMID: 29382107

3. Kraemer MU, Sinka ME, Duda KA, Mylne AQ, Shearer FM, Barker CM, et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife. 2015 Jun 30;4:e08347. https://doi.org/10.7554/eLife.08347 PMID: 26126267

4. Kamgang B, Vazeille M, Yougang AP, Tedjou AN, Wilson-Bahun TA, Mousson L, et al. Potential of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) to transmit
yellow fever virus in urban areas in Central Africa. Emerg Microbes Infect. 2019 Jan 1;8(1):1636-41. https://doi.org/10.1080/22221751.2019.1688097 PMID: 31711378

5. Lounibos LP, Kramer LD. Invasiveness of Aedes aegypti and Aedes albopictus and vectorial capacity for chikungunya virus. J Infect Dis. 2016 Dec 15;214(suppl_5):S453-8. https://doi.org/10.1093/infectdis/jiw285 PMID: 27920173

6. Maynard AJ, Ambrose L, Cooper RD, Chow WK, Davis JB, Muzari MO, et al. Tiger on the prowl: Invasion history and spatio-temporal genetic structure of the Asian tiger mosquito Aedes albopictus (Skuse 1894) in the Indo-Pacific. PLoS Negl Trop Dis. 2017 Apr 14;11(4): e0005546. https://doi.org/10.1371/journal.pntd.0005546 PMID: 28410388

7. Porretta D, Mastrantonio V, Bellini R, Somboon P, Urbanelli S. Glacial history of a modern invader: phylogeography and species distribution modelling of the Asian tiger mosquito Aedes albopictus. PLoS One. 2012;7(9):e44515. https://doi.org/10.1371/journal.pone.0044515. Epub 2012 Sep 6. PMID: 22970238

8. Fontenille D, Toto JC. Aedes (Stegomyia) albopictus (Skuse), a potential new Dengue vector in southern Cameroon. Emerg Infect Dis. 2001 Nov-Dec;7(6):1066-7. https://doi.org/10.3201/eid0706.010631 PMID: 11747746

9. Toto JC, Abaga S, Carnevale P, Simard F. First report of the oriental mosquito Aedes albopictus on the West African island of Bioko, Equatorial Guinea. Med Vet Entomol. 2003 Sep;17(3):343-6. https://doi.org/10.1046/j.1365-2915.2003.00447.x. PMID: 12941021
10. Coffinet T, Mourou JR, Pradines B, Toto JC, Jarjaval F, Amalvict R, et al. First record of Aedes albopictus in Gabon. J Am Mosq Control Assoc. 2007 Dec;23(4):471-2. https://doi.org/10.2987/5636.1 PMID: 18240521

11. Diallo M, Laganier R, Nangouma A. First record of Ae. albopictus (Skuse 1894), in Central African Republic. Trop Med Int Health. 2010 Oct;15(10):1185-9. https://doi.org/10.1111/j.1365-3156.2010.02594.x PMID: 20831673

12. Mombouli JV, Bitsindou P, Elion DO, Grolla A, Feldmann H, Niama FR, et al. Chikungunya virus infection, Brazzaville, Republic of Congo, 2011. Emerg Infect Dis. 2013;19(9):1542-3. https://doi.org/10.3201/eid1909.130451 PMID: 23968609

13. Bobanga T, Moyo M, Vulu F, Irish SR. First report of Aedes albopictus (Diptera: Culicidae) in the Democratic Republic of Congo. Afr Entomol. 2018 Mar 1;26(1):234-6. https://doi.org/10.4001/003.026.0234

14. Leroy EM, Nkoghe D, Ollomo B, Nze-Nkogue C, Becquart P, Grard G, Pourrut X, Charrel R, Moureau G, Ndjoyi-Mbiguino A, De-Lamballerie X. Concurrent chikungunya and dengue virus infections during simultaneous outbreaks, Gabon, 2007. Emerg Infect Dis. 2009 Apr;15(4):591-3. https://doi.org/10.3201/eid1504.080664 PMID: 19331740

15. Nkoghe D, Kassa RF, Bisvigou U, Caron M, Grard G, Leroy EM. No clinical or biological difference between Chikungunya and Dengue Fever during the 2010 Gabonese outbreak. Infect Dis Rep. 2012 Jan 3;4(1):e5. https://doi.org/10.4081/idr.2012.e5 PMID: 24470935
16. Muyembe-Tamfum JJ, Peyrefitte CN, Yogolelo R, Basisya EM, Koyange D, Pukuta E, et al. LETTRES-Epidemies a virus Chikungunya en 1999 et 2000 en Republique Democratique du Congo. Med Trop. 2003;63(6):637-8. PMID: 15077435

17. Pagès F, Peyrefitte CN, Mve MT, Jarjaval F, Brisse S, Iteman I, et al. Aedes albopictus mosquito: the main vector of the 2007 Chikungunya outbreak in Gabon. PLoS One. 2009;4(3):e4691. https://doi.org/10.1371/journal.pone.0004691 PMID: 19259263

18. Fritz M, Taty Taty R, Portella C, Guimbi C, Mankou M, Leroy EM, et al. Re-emergence of chikungunya in the Republic of the Congo in 2019 associated with a possible vector-host switch. Int J Infect Dis. 2019 Jul;84:99-101. https://doi.org/10.1016/j.ijid.2019.05.013 PMID: 31096054

19. Maurice D, Alain SM, Christophe V, Rene N, Irene KT, Marthe IN, et al. Molecular characterization of chikungunya virus from three regions of Cameroon. Virol Sin. 2015 Dec;30(6):470-3. https://doi.org/10.1007/s12250-015-3663-7 PMID: 26715303

20. Paupy C, Ollomo B, Kamgang B, Moutailler S, Rousset D, Demanou M, et al. Comparative role of Aedes albopictus and Aedes aegypti in the emergence of Dengue and Chikungunya in central Africa. Vector Borne Zoonotic Dis. 2010 Apr;10(3):259-66. https://doi.org/10.1089/vbz.2009.0005 PMID: 19725769

21. Paupy C, Kassa Kassa F, Caron M, Nkoghé D, Leroy EM. A chikungunya outbreak associated with the vector Aedes albopictus in remote villages of Gabon. Vector Borne Zoonotic Dis. 2012 Feb;12(2):167-9. https://doi.org/10.1089/vbz.2011.0736 PMID: 22141733
22. Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog. 2007 Dec;3(12):e201. https://doi.org/10.1371/journal.ppat.0030201 PMID: 18069894

23. Vazeille M, Moutailler S, Coudrier D, Rousseaux C, Khun H, Huerre M, et al. Two Chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus. PLoS One. 2007 Nov 14;2(11):e1168. https://doi.org/10.1371/journal.pone.0001168 PMID: 18000540

24. Schuffenecker I, Iteman I, Michault A, Murri S, Frangeul L, Vaney MC, et al. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med. 2006 Jul;3(7):e263. https://doi.org/10.1371/journal.pmed.0030263 PMID: 16700631

25. Selhorst P, Makiala-Mandanda S, De Smet B, Mariën J, Anthony C, Binene-Mbuka G, et al. Molecular characterization of chikungunya virus during the 2019 outbreak in the Democratic Republic of the Congo. Emerg Microbes Infect. 2020 Jan 1;9(1):1912-8. https://doi.org/10.1080/22221751.2020.1810135 PMID: 32787529 24

26. Malekani MJ, McCollum AM, Monroe B, Malekani V, Mulumba M, Nguete B, et al. Cas de dengue chez les patients suspects de chikungunya à Kinshasa. Ann Afr Med. 2014;7:2. 26

27. Makiala-Mandanda S, Ahuka-Mundeke S, Abbate JL, Pukuta-Simbu E, Nsio-Mbeta J, Berthet N, et al. Identification of Dengue and Chikungunya Cases Among Suspected Cases of Yellow Fever in the Democratic Republic of the Congo. Vector Borne Zoonotic Dis. 2018 Jul;18(7):364-370. https://doi.org/10.1089/vbz.2017.2176 PMID: 29768102
28. Proesmans S, Katshongo F, Milambu J, Fungula B, Mavoko HM, Ahuka-Mundeke S, et al. Dengue and Chikungunya among Febrile Outpatients in Kinshasa, Democratic Republic of Congo: a cross-sectional study. Plos Negl Trop Dis. 2019 Sept 5:e0007047. https://doi.org/10.1371/journal.pntd.0007047 PMID: 31487279

29. Willcox AC, Collins MH, Jadi R, Keeler C, Parr JB, Mumba D, et al. Seroepidemiology of Dengue, Zika, and Yellow Fever Viruses among Children in the Democratic Republic of the Congo. Am J Trop Med Hyg. 2018 Sep;99(3):756-763. https://doi.org/10.4269/ajtmh PMID: 29988000

30. Mbanzulu KM, Wumba R, Mukendi JP, Zanga JK, Shija F, Bobanga TL, et al. Mosquito-borne viruses circulating in Kinshasa, Democratic Republic of the Congo. Int J Infect Dis. 2017 Apr 1;57:32-7. https://doi.org/10.1016/j.ijid.2017.01.016 PMID: 28153792

31. Prompetchara E, Ketloy C, Thomas SJ, Ruxrungtham K. Dengue vaccine: Global development update. Asian Pac J Allergy Immunol. 2020 Sep;38(3):178-185. https://doi.org/10.12932/AP-100518-0309 PMID: 30660171

32. Bhat SM, Mudgal PP, N S, Arunkumar G. Spectrum of candidate molecules against Chikungunya virus - an insight into the antiviral screening platforms. Expert Rev Anti Infect Ther. 2019 Apr;17(4):243-264. https://doi.org/10.1080/14787210.2019.1595591 PMID: 30889372

33. Achee NL, Grieco JP, Vatandoost H, Seixas G, Pinto J, Ching-Ng L, Martins AJ, Juntarajumnong W, Corbel V, Gouagna C, David JP, Logan JG, Orsborne J, Marois E, Devine GJ, Vontas J. Alternative strategies for mosquito-borne arbovirus control. PLoS Negl Trop Dis. 2019 Mar 26;13(3):e0007275. https://doi.org/10.1371/journal.pntd.0007275 PMID: 30913223
34. Yañez-Arenas C, Rioja-Nieto R, Martín GA, Dzul-Manzanilla F, Chiappa-Carrara X, Buenfil-Ávila A, et al. Characterizing environmental suitability of Aedes albopictus (Diptera: Culicidae) in Mexico based on regional and global niche models. J Med Entomol. 2018 Jan 10;55(1):69-77. https://doi.org/10.1093/jme/tjx185 PMID: 29186544

35. Benedict MQ, Levine RS, Hawley WA, Lounibos LP. Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector Borne Zoonotic Dis. 2007 Spring;7(1):76-85. https://doi.org/10.1089/vbz.2006.0562 PMID: 17417960

36. Huang YM. The subgenus Stegomyia of Aedes in the Afrotropical Region with keys to the species (Diptera: Culicidae). Zootaxa. 2004 Oct 27;700(1):1-120. https://doi.org/10.11646/zootaxa.700.1.1

37. Phillips SJ, Dudík M, Schapire RE. [Internet]. Maxent Software for Modeling Species Niches and Distributions (Version 3.4.1). 2018. Available from url http://biodiversityinformatics.amnh.org/open_source/maxent/, Accessed 9th Jan 2018

38. Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Modell. 2006 Jan 25;190(3-4):231-59. https://doi.org/10.1016/j.ecolmodel.2005.03.026

39. Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal Biogeogr. 2007 Jan;34(1):102-17. https://doi.org/10.1111/j.1365-2699.2006.01594.x
40. Thibaud E, Petitpierre B, Broennimann O, Davison AC and Guisan A. Measuring the
relative effect of factors affecting species distribution model predictions. Methods
Ecol Evol. 2014;-5(9), 947-55. https://doi.org/10.1111/2041-210X.12203

41. Aguirre-Gutiérrez J, Carvalheiro LG, Polce C, van Loon EE, Raes N, Reemer M, et al.
Fit-for-purpose: species distribution model performance depends on evaluation criteria
- Dutch Hoverflies as a case study. PLoS One. 2013 May 14;8(5):e63708.
https://doi.org/10.1371/journal.pone.0063708 PMID: 23691089

42. Elith J, Graham HC, Anderson PR, Dudík M, Ferrier S, Guisan A, et al. Novel
methods improve prediction of species’ distributions from occurrence data.
Ecography. 2006 Apr;29(2):129-51. https://doi.org/10.1111/j.2006.0906-7590.04596.x

43. Lubinda J, Treviño C JA, Walsh MR, Moore AJ, Hanafi-Bojd AA, Akgun S, et al.
Environmental suitability for *Aedes aegypti* and *Aedes albopictus* and the spatial
distribution of major arboviral infections in Mexico. Parasite Epidemiol Control. 2019
Aug 12;6:e00116. https://doi.org/10.1016/j.parepi.2019.e00116 PMID: 31528740

44. Johnson TL, Haque U, Monaghan AJ, Eisen L, Hahn MB, Hayden MH, et al.
Modeling the Environmental Suitability for Aedes (Stegomyia) aegypti and Aedes
(Stegomyia) albopictus (Diptera: Culicidae) in the Contiguous United States. J Med
Entomol. 2017 Nov 7;54(6):1605-1614. https://doi.org/10.1093/jme/tjx163 PMID:
29029153

45. Tiffin HS, Peper ST, Wilson-Fallon AN, Haydett KM, Cao G, Presley SM. The
Influence of New Surveillance Data on Predictive Species Distribution Modeling
of *Aedes aegypti* and *Aedes albopictus* in the United States. Insects. 2019 Nov
12;10(11):400. https://doi.org/10.3390/insects10110400 PMID: 31718099
46. Shabani F, Shafapour Tehrany M, Solhjouy-Fard S, Kumar L. A comparative modeling study on non-climatic and climatic risk assessment on Asian Tiger Mosquito \textit{(Aedes albopictus)}. PeerJ. 2018 Mar 19;6:e4474. https://doi.org/10.7717/peerj.4474 PMID: 29576954

47. Medley KA. Niche shifts during the global invasion of the Asian tiger mosquito, \textit{Aedes albopictus} Skuse (Culicidae), revealed by reciprocal distribution models. Glob ecol Biogeogr. 2010 Jan;19(1):122-33. https://doi.org/10.1111/j.1466-8238.2009.00497.x

48. Cunze S, Koch LK, Kochmann J, Klimpel S. \textit{Aedes albopictus} and \textit{Aedes japonicus} - two invasive mosquito species with different temperature niches in Europe. Parasit Vectors. 2016 Dec 6;9(1):629. https://doi.org/10.1186/s13071-016-1893-7 PMID: 27919276

49. Liu B, Gao X, Ma J, Jiao Z, Xiao J, Hayat MA, et al. Modeling the present and future distribution of arbovirus vectors \textit{Aedes aegypti} and \textit{Aedes albopictus} under climate change scenarios in Mainland China. Sci Total Environ. 2019 May 10;664:203-14. https://doi.org/10.1016/j.scitotenv.2019.01.301 PMID: 30743113

50. Santos J, Meneses BM. An integrated approach for the assessment of the \textit{Aedes aegypti} and \textit{Aedes albopictus} global spatial distribution, and determination of the zones susceptible to the development of Zika virus. Acta Trop. 2017 Apr;168:80-90. https://doi.org/10.1016/j.actatropica.2017.01.015 PMID: 2811132

51. Hill MP, Axford JK, Hoffmann AA. Predicting the spread of \textit{Aedes albopictus} in Australia under current and future climates: Multiple approaches and datasets to
incorporate potential evolutionary divergence. Austral ecol. 2014 Jun;39(4):469-78.

https://doi.org/10.1111/aec.12105

52. Koch LK, Cunze S, Werblow A, Kochmann J, Dörge DD, Mehlhorn H, Klimpel S. Modeling the habitat suitability for the arbovirus vector Aedes albopictus (Diptera: Culicidae) in Germany. Parasitol Res. 2016 Mar;115(3):957-64.

https://doi.org/10.1007/s00436-015-4822-3 PMID: 26634351

53. Cunze S, Kochmann J, Koch LK, Klimpel S. Aedes albopictus and Its Environmental Limits in Europe. PLoS One. 2016 Sep 7;11(9):e0162116.

https://doi.org/10.1371/journal.pone.0162116 PMID: 27603669

54. Hira FS, Asad A, Farrah Z, Basit RS, Mehreen F, Muhammad K. Patterns of occurrence of dengue and chikungunya, and spatial distribution of mosquito vector Aedes albopictus in Swabi district, Pakistan. Trop Med Int Health. 2018 Sep;23(9):1002-1013. https://doi.org/10.1111/tmi.13125 PMID: 29956428

55. Wiese D, Escalante AA, Murphy H, Henry KA, Gutierrez-Velez VH. Integrating environmental and neighborhood factors in MaxEnt modeling to predict species distributions: A case study of Aedes albopictus in southeastern Pennsylvania. PLoS One. 2019 Oct 17;14(10):e0223821. https://doi.org/10.1371/journal.pone.0223821 PMID: 31622396

56. Magadzire N, De Klerk HM, Esler KJ, Slingsby JA. Fire and life history affect the distribution of plant species in a biodiversity hotspot. Divers Distrib. 2019 Jul;25(7):1012-23. https://doi.org/10.1111/ddi.12921
57. Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for
global land areas. Int J of climatol. 2017 Oct;37(12):4302-15.
https://doi.org/10.1002/joc.5086

58. Fontenille D, Rodhain F. Biology and distribution of Aedes albopictus and Aedes
aegypti in Madagascar. J Am Mosq Control Assoc. 1989 Jun;5(2):219-25. PMID:
2746207

59. Francis WT, Sylvie F, Zola ME, Carmen MMd, Guillaume BM, Gillon I et al.
Important Aedes Spp. Infestation Levels in Kinshasa, Democratic Republic of Congo.
Research Square. 2020. https://doi.org/10.21203/rs.3.rs-37427/v4

60. Fonzi E, Higa Y, Bertuso AG, Futami K, Minakawa N. Human-Mediated Marine
Dispersal Influences the Population Structure of Aedes aegypti in the Philippine
Archipelago. PLoS Negl Trop Dis. 2015 Jun 3;9(6):e0003829.
https://doi.org/10.1371/journal.pntd.0003829 PMID: 26039311

61. Gratz NG, Steffen R, Cocksedge W. Why aircraft disinsection? Bull World Health
Organ. 2000;78(8):995-1004. PMID: 10994283

62. Ibáñez-Justicia A, Alcaraz-Hernández JD, van Lammeren R, Koenraadt CJM,
Bergsma A, Delucchi L, Rizzoli A, Takken W. Habitat suitability modelling to assess
the introductions of Aedes albopictus (Diptera: Culicidae) in the Netherlands. Parasit
Vectors. 2020 Apr 26;13(1):217. https://doi.org/10.1186/s13071-020-04077-3 PMID:
32336286

63. Kobayashi M, Nihei N, Kurihara T. Analysis of northern distribution of Aedes
albopictus (Diptera: Culicidae) in Japan by geographical information system. J Med
64. Eritja R, Escosa R, Lucientes J, Marques E, Roiz D, Ruiz S. Worldwide invasion of vector mosquitoes: present European distribution and challenges for Spain. Biol invasions. 2005 Mar;7(1):87-97. https://doi.org/10.1007/s10530-004-9637-6

65. Wu F, Liu Q, Lu L, Wang J, Song X, Ren D. Distribution of Aedes albopictus (Diptera: Culicidae) in northwestern China. Vector Borne Zoonotic Dis. 2011 Aug;11(8):1181-6. https://doi.org/10.1089/vbz.2010.0032 PMID: 21254912

66. Mogi M, Miyagi I, Abadi K, Syafruddin. Inter- and intraspecific variation in resistance to desiccation by adult Aedes (Stegomyia) spp. (Diptera: Culicidae) from Indonesia. J Med Entomol. 1996 Jan;33(1):53-7. https://doi.org/10.1093/jmedent/33.1.53 PMID: 8906905

67. Juliano SA, O'Meara GF, Morrill JR, Cutwa MM. Desiccation and thermal tolerance of eggs and the coexistence of competing mosquitoes. Oecologia. 2002 Feb 1;130(3):458-469. https://doi.org/10.1007/s004420100811 PMID: 20871747

68. Carrington LB, Seifert SN, Willits NH, Lambrechts L, Scott TW. Large diurnal temperature fluctuations negatively influence Aedes aegypti (Diptera: Culicidae) life-history traits. J Med Entomol. 2013 Jan;50(1):43-51. https://doi.org/10.1603/me11242 PMID: 23427651

69. Thomas SM, Obermayr U, Fischer D, Kreyling J, Beierkuhnlein C. Low-temperature threshold for egg survival of a post-diapause and non-diapause European aedine strain,
Aedes albopictus (Diptera: Culicidae). Parasit Vectors. 2012 May 23;5:100. https://doi.org/10.1186/1756-3305-5-100 PMID: 22621367

70. Tippelt L, Werner D, Kampen H. Low temperature tolerance of three Aedes albopictus strains (Diptera: Culicidae) under constant and fluctuating temperature scenarios. Parasit Vectors. 2020 Nov 23;13(1):587. https://doi.org/10.1186/s13071-020-04386-7 PMID: 33225979

71. Soares APM, Rosário ING, Silva IM. Distribution and preference for oviposition sites of Aedes albopictus (Skuse) in the metropolitan area of Belém, in the Brazilian Amazon. J Vector Ecol. 2020 Dec;45(2):312-320. https://doi.org/10.1111/jvec.12402 PMID: 33207062

72. Mbanzulu KM, Mboera LEG, Luzolo FK, Wumba R, Misinzo G, Kimera SI. Mosquito-borne viral diseases in the Democratic Republic of the Congo: a review. Parasit Vectors. 2020 Feb 27;13(1):103. https://doi.org/10.1186/s13071-020-3985-7 PMID: 32103776
Supporting file captions

S1 File. Pearson correlations between environmental variables.

S1 Dataset. Environmental variable data from all collection sites.
Figure
Figure
A. Mean diurnal temp range (°C)

B. Max temp of warmest month (°C)

C. Enhanced Vegetation Index (EVI)

Figure