Effect of Temperature, Pressure and Humidity on Carbon Dioxide Concentration—Simulation Study

Om Prakash Singh and MB Malarvili
School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Johor, Malaysia

E-mail: malarvili@biomedical.utm.my

Abstract. The growing application of infrared carbon dioxide (CO2) sensor now needs an accurate and precise measurement of human respired CO2 concentrations. CO2 concentration measurement is influenced by a number of environmental parameters. The objective of this study is to perform a simulation study on the list of environmental parameters which have a major influence on the precision and accuracy of the infrared CO2 sensor. Here, we designed a CO2 concentration estimation circuit that comprises temperature, pressure and humidity sensor, Arduino Uno, and liquid crystal display. Besides, a program is written and uploaded to the Arduino board to compute the CO2 concentration. A simple mathematical equation is employed to calculate the instantaneous CO2 concentrations with respective temperature, pressure and relative humidity. We observed a change in CO2 concentration from 31.11% to 30.60% and 21.25% to 26.18% corresponding to changes in temperature from 25°C to 30°C and pressure 21.53kPa to 26.52kPa, respectively while keeping the temperature (25°C) and pressure (31.52kPa) constant with respect to each other. In addition, with a change in relative humidity from 28% to 30%, change in CO2 values (6.26% to 9.39%) were observed while temperature kept at 25°C. Results show that pressure, temperature, and relative humidity have a significant effect on the output of CO2 concentration. Hence, this should not be underestimated while developing a CO2 sensor and barometric pressure, temperature, and relative humidity sensor should be integrated with CO2 sensor for automatic adjustment in CO2 concentration based on the current pressure, temperature and humidity in contrast to manual.

1. Introduction
Accurate and precise measurement of human respired carbon dioxide (CO2) can reveal significant information about the cardiorespiratory conditions [1-9]. Conventional methods to measure human respired CO2 are optical based that employs the infrared spectroscopy, fluorescence and gas chromatography [10-18]. The infrared CO2 sensors seem to be cost-effective and highly sensitive. However, the use of the sensor is limited by environment factors (Temperature, Pressure and Humidity). As, the correction of environmental factors implemented in the firmware while developing the sensor, which can be altered by manufacturer. In the pipeline, real-time CO2 concentration measurement must take in-situ processing, “in-situ sampling and in-situ monitoring”, technology [10], the accuracy of measuring CO2 concentration influenced by current locations temperature, pressure, and humidity [11]. Hence our interest is to figure out the most influencing environmental parameter that has a significant effect on the CO2 concentrations.
1.1 Working principle of infrared carbon dioxide sensor

Infrared CO2 sensor detects each carbon dioxide gas molecule in a specific spectrum as presented in Figure 1. The gas molecule transition to a higher energy level after absorbing the spectral energy at a rate. This reflects attenuation of light after crossing through the gas. The process of the incidence and absorbance of CO2 molecules follows the Beer Lambert’s law that can be expressed as a mathematical function as follows:

\[L = L_0 e^{-\beta \mu t} \]

where \(L \) indicates the light intensity strike on the detector (\(L, \text{ W/cm}^2 \)), \(L_0 \) is known intensity of the empty chamber (\(L_0, \text{ W/cm}^2 \)), \(\beta \) is the absorption coefficient (\(\beta, \text{ cm}^2/\text{mol} \)), \(\mu \) represents the CO2 concentration (\(\mu, \text{ cm}^2/\text{mol} \)), and \(t \) denotes the absorption path length (\(t, \text{ cm} \)).

\[\text{Figure 1. Relevant spectral distribution of the MID-IR light source, the CO2 absorption bands and water vapour [5].} \]

The gas absorption rate of light energy can be written as:

\[P = \ln \left(\frac{L_0}{L} \right) = K_v C_t \]

The CO2 gas concentration can be calculated from the above mathematical function as follows:

\[C = \ln \left(\frac{L_0}{L} \right) / K_v t = K_v C_t \]

The working principle of non-dispersive infrared (NDIR) carbon dioxide detection is detecting the infrared light wave's intensity changes; prior and later light diffuse the specimen gas cell. Through this principle, maximum CO2 gas concentration can be achieved in a light path. The infrared absorption spectra of CO2 gas molecule are mainly distributed in 2.01µm and 4.25µm two characteristic regions [12]. The absorption peak intensity differs via three magnitude orders.

Thus, this study aims to design a CO2 estimation circuit using proteus by employing pressure, temperature and humidity sensor and a simplified mathematical equation. Besides, the mathematical equation is implemented into Arduino IDE to estimate the CO2 concentration based on the temperature, pressure, and humidity.
2. Methodology

Figure 2 elucidates a hypothesized CO₂ monitoring system based on an automatic compensation for the real CO₂ gas concentration by incorporating temperature, pressure and humidity chip. The CO₂ estimation may possibly employ an infrared light source and detector in integration with temperature, pressure and humidity sensor, Arduino Uno as a microcontroller (AtMega328) and liquid crystal display (LCD). An iteration numerical method may be possibly incorporated with the hypothesized CO₂ sensor in order to compensate the environmental factors for adjusting the CO₂ concentration as presented in Fig. 2. This study presents a simulation study performed for the computation of CO₂ concentration using Proteus by integrating the environmental factor sensors, and Arduino Uno as illustrated in the subsequent sections.

![Figure 2. Hypothesized carbon dioxide monitoring system, incorporated environmental sensors.](image)

2.1 Circuit design for CO₂ concentration estimation.

The circuit design for the estimation of CO₂ concentration is presented in Figure 3. The temperature, pressure and humidity sensor were attached to the analogue pin of an Arduino Uno. A program was written into Arduino IDE to compute the CO₂ concentration by modelling the mathematical equation based on temperature, pressure and humidity values. The mathematical equation was employed for the computation of CO₂ concentration is illustrated in the (4) that reflects the relationship among temperature, pressure and CO₂ concentration. The effect of the relative humidity (RH) on the CO₂ concentration is computed by estimating the water vapour pressure based on the RH and saturated vapour pressure (Pₛ) at the room temperature (25 °C) using (5) and (6).

\[
C(T,P) = \frac{C(25°C, 760\text{mmHg}) \times P}{760 \times \frac{298}{273+T}}
\]
(4)

where \(C, P, \) and \(T \) are the gas volume concentration in parts per million (PPM), ambient pressure and temperature.

\[
P(w) = Pₛ \times RH
\]
(5)

where \(P(w), Pₛ, \) and \(RH \) reflects the water vapour pressure, saturate pressure, and relative humidity.
where \(t \) and \(P \) are the actual temperatures and saturated pressure.

Further, the estimated water vapour pressure value was substituted in (4) from (5) to compute the \(CO_2 \) concentration with a change in RH.

![Figure 3](image.png)

Figure 3. Circuit design for the estimation of \(CO_2 \) concentration using temperature, pressure, and humidity sensor.

2.2 Procedure for \(CO_2 \) concentration estimation

An algorithm was developed for the computation of \(CO_2 \) concentration as presented in Figure 4. The Arduino library was included into Proteus library in order to call the Arduino Uno. Thereafter, open the designed schematic circuit using the Proteus software and double click on the Arduino Uno (Atmega 328). Display the edit component window, creates the source object code (test1.ino.hex) file and upload it into the microcontroller. The uploaded file is compiled as a sixteen hexadecimal HEX file. Then a suitable simulation method was chosen to analyze and debug the design circuit. Third, the simulation begins by pressing the "run" button. Fourth, change the temperature, pressure and RH parameters and watch simulation results, then examine the influence of these parameters on the \(CO_2 \) concentration [13, 14]. Fifth, Check the memory data changes and CPU registers. The CPU Internal Memory CPU Registers and CPU SFR Memory data changes when the program is running respectively.

The circuit design and simulation for \(CO_2 \) concentration estimation was performed using Proteus professional (Version 8) and a Notebook Intel (R) Core (TM) i3 CPU, 2 GHz, and OS Windows 10 (64 bit) environment. Besides, the mathematical modelling for the computation of \(CO_2 \) concentration was performed using Arduino IDE (Version 1.8.8).

3. Results and Discussions

We have performed testing of our designed \(CO_2 \) concentration estimation circuit via simulation using Proteus software (refer figure 3) and Arduino IDE. Figure 5A and 5B depict the effect of pressure on \(CO_2 \) concentration of a user prompted to enter reference temperature. It can be observed that the \(CO_2 \) concentrations changed from 21.25% to 26.18% with a change in pressure from 21.53kPa to 26.52kPa with respective to referenced temperature (25°C). We have also observed that with the increase of pressure, the \(CO_2 \) concentration value increases in agreement with an earlier study [18].
Further, **figure 6** illustrates the effect of temperature on CO₂ concentration while keeping pressure constant (31.52kPa). It was observed that the CO₂ concentration changed with a change in temperature in a reciprocal manner. From Fig. 6 (A and B), it can be noticed that when temperature raises from 25°C to 30°C, CO₂ concentration dropdown from 31.11 to 30.60%. Besides, the deviation in CO₂ values was found less comparatively pressure.
We observed that with a change in humidity from 28% to 30%, CO₂ value changed from 6.26% to 9.39%. It reveals a change in CO₂ concentration depends upon RH. The effect of RH was verified with respect to change in water vapour pressure using (4) and (5).

Figure 6(a). Result of CO₂ concentration user prompted to enter a temperature with reference pressure.

Figure 6(b). Deviation in CO₂ concentration user prompted to enter temperature.

Figure 7 reflects the behaviour of CO₂ values with a change in humidity. The temperature was set at 25°C while relative humidity (RH) was fixed at 28%. We observed that with a change in humidity from 28% to 30%, CO₂ value changed from 6.26% to 9.39%. It reveals a change in CO₂ concentration depends upon RH. The effect of RH was verified with respect to change in water vapour pressure using (4) and (5).

Figure 7(a). Result of CO₂ concentration user prompted to enter humidity with reference water vapour pressure.

Figure 7(b). Deviation in CO₂ concentration user prompted to enter humidity.

4. Conclusion
This study presents a simulation study to verify the effect of pressure, temperature, and humidity on the CO₂ concentrations. A CO₂ estimation circuit was designed using pressure, temperature, humidity sensor. Thereafter, a mathematical modelling circuit was performed into the Arduino IDE and to compute the CO₂ concentrations. We observed that CO₂ concentration changes drastically with the change in pressure, temperature and humidity. Hence, while developing the infrared CO₂ sensor, the pressure, temperature and humidity sensor should be integrated for the automatic adjustment of CO₂ concentration based on the current atmospheric parameters compared with manual in real time, which may possibly reduce the error in CO₂ reading causes by environmental factors.
Acknowledgement
This research is conducted as a part of the flagship grant of Fundamental Research Grant Scheme (FRGS), vote no. (R.J130000.7745.4F943), supported, by Ministry of Higher Education (MOHE) and also Universiti Teknologi Malaysia for providing the facilities and laboratory equipment for the completion of the research.

References
[1] Strite S and Morkoc H 1992 J. Vac. Sci. Technol. B 10 1237
[2] Jain S C, Willander M, Narayan J and van Overstraeten R 2000 J. Appl. Phys. 87 965
[3] Mieloszyk R J, Verghese G C, Deitch K, Cooney B, Khalid A and Mirre-Gonzalez M A et al 2014 Automated Quantitative Analysis of Capnogram Shape for COPD–Normal and COPD–CHF Classification IEEE Trans. Biomed. Eng. 61 2882-90
[4] Singh O P, Ramaswamy P and Balakrishnan M 2018 Automatic Quantitative Analysis of Human Respired Carbon Dioxide Waveform for Asthma and Non-Asthma Classification Using Support Vector Machine IEEE Access, Preprint
[5] Fabius T M, Eijsvogel M M, van der Lee I, Brusse-Keizer M G and de Jongh F H 2016 Volumetric capnography in the exclusion of pulmonary embolism at the emergency department: a pilot study J. Breath Res 10 046016
[6] Maestri R, Bruschi C, Olmetti F, La Rovere M T and Pinna G D 2013 Assessment of the peripheral ventilatory response to CO2 in heart failure patients: reliability of the single-breath test Physiol. Meas. 34 1123
[7] Singh O P and Balakrishnan M 2018 Assessment of newly developed real-time human respiration carbon dioxide measurement device for management of asthma outside of hospital Technol. Health Care Preprint, 1-10
[8] Yaron M, Padyk P, Hutsin miller M and Cairns C B 1996 Utility of the expiratory capnogram in the assessment of bronchospasm Ann. Emerg. Med. 28 403-407
[9] Singh O P, Howe T A and Balakrishnan M Real-time human respiration carbon dioxide measurement device for cardiorespiratory assessment 2018 J Breath Res. 12 026003
[10] Howe T A, Jaalam K, Ahmad R, Sheng C K and Ab Rahman N H N 2011 The use of end-tidal capnography to monitor non-intubated patients presenting with acute exacerbation of asthma in the emergency department J. Emerg. Med. 41 581-9
[11] Kean T T and Malarvili M B 2009 Analysis of Capnograph for Asthmatic Patient in Signal and Image Processing Applications (ICSIPA) IEEE Int. Conf. 464-7
[12] Singh O P and Balakrishnan M 2018 Review of Infrared Carbon-Dioxide Sensors and Capnogram Features for Developing Asthma-Monitoring Device J. Clin. Diagn. Res. 12 OE01-6
[13] Chen L, Chen H and Zheng Y 2011 J Adv. Mat. Res. 282-283 222
[14] DeLacy B G and Bandy A R 2008 J. Environ. Qual. ASA/CSSA/SSSA 37 1354
[15] Webster C R, Menzies R T and Hinkley E D 1994 Laser Remote Chemical Analysis 127 25
[16] Hodgkinson J, Smith R, Ho W O, Saffell J R, Tatam R P 2013 Sensors and Actuators B: Chemical 186 580
[17] Pfeiffer T J, Summerfelt S J, Watten B J 2011 Aquacultural Engineering 44 1
[18] Smith E 1992 Laboratory Practice 41 15
[19] James T, Daly, Edward A and Johnson 2002 Proceedings of SPIE 4576 55
[20] Miura N, Yao S, Shimizu Y 1992 Sensors and Actuators B 9 165