Synthesis of Functional Hyperbranched Poly(methyltriazolylcarboxylate)s by Catalyst-free Click Polymerization of Butynoates and Azides

Mu-Ning Langa, Wei-Wen Chib, Ting Hanc, Qing-Zhen Zhaob, Hong-Kun Lia,b,*, Ben Zhong Tangb,c, and Yong-Fang Lia

a State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China

b State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China

c Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowlon, Hong Kong, China

Abstract Azide-alkyne click polymerization has become a powerful tool for polymer synthesis. However, the click polymerization between internal alkynes and azides is rarely utilized to prepare functional polymers. In this work, the polymerization reactions of activated internal alkyne monomers of tris(2-butynoate) (1) with tetraphenylethene-containing diazides (2) were performed in dimethylformamide (DMF) under simple heating, affording four hyperbranched poly(methyltriazolylcarboxylate)s (hb-PMTCs) with high molecular weights (M_w up to 2.4×10^5) and regioregularities (up to 83.9\%) in good yields. The hb-PMTCs are soluble in common organic solvents, and thermally stable with 5\% weight loss temperatures up to 400 °C. They are non-emissive in dilute solution, but become highly emissive in aggregated state, exhibiting aggregation-induced emission characteristics. The polymers can generate fluorescent photopatterns with high resolution, and can work as fluorescent sensors to detect nitroaromatic explosive with high sensitivity.

Keywords Click polymerization; Hyperbranched polymer; Aggregation-induced emission; Explosive detection; Photopattern

INTRODUCTION

Facile synthesis of polymers with new structures and functional properties is of great academic and industrial interest. Over the past decades, hyperbranched polymers have gained extensive attention because of their special physical and chemical properties, and great potential applications in coatings, catalysis, nanotechnology, supramolecular assembly, biomedical research, optoelectronic devices, and so on.[1,2] With the sustained efforts by polymer chemists, a large number of hyperbranched polymers including polyethylenes,[3] polyesters,[4] polyglycerols,[5] polyamides,[6] polyphenylenes,[7] and polyphosphates,[8] have been prepared by various polymerization strategies.[8–12] Among them, alkyne-based polymerization reactions, such as polycyclotrimerization, azide-alkyne and thiol-ynye click polymerizations, have emerged as versatile synthetic tools for the construction of hyperbranched polymers.[13–15]

In recent years, the Cu(I)-catalyzed and metal-free azide-alkyne click polymerizations, derived from azide-alkyne cycloaddition reaction, have drawn much consideration owing to their advantageous characteristics, such as high efficiency, atom economy, regioselectivity, as well as mild reaction conditions.[15–18,20–22] Actually, Voit et al.[19] first attempted to prepare hyperbranched polytriazoles by polymerization of AB\textsubscript{2}-type monomers carrying one azide group and two terminal alkyne groups using CuSO\textsubscript{4} and sodium ascorbate as catalysts in 2004, and only obtained insoluble products.[19] After optimizing the reaction conditions, such as the solvents and catalyst system, a wide variety of soluble 1,4-regioregular hyperbranched polytriazoles with advanced functionalities were synthesized by the Cu(I)-catalyzed azide-alkyne click polymerization.[15–18,20–22] Considering that copper catalysts may cause cytotoxicity and deteriorate the photoluminescence properties of the resulting polymers, our research group has developed metal-free click polymerizations of azide and activated terminal alkynes, and prepared a number of functional hyperbranched polytriazoles with high molecular weights and high 1,4-regioregularities.[23,24] However, the azide monomers used in these click polymerizations are mainly terminal alkynes. The polymerization reactions between internal
alkynes and azides are rarely utilized to prepare soluble hyperbranched polymers.[25,26] In our previous work, we developed catalyst-free polycycloaddition reactions of azides and activated internal alkynes (phenylisopropionates and butynoates), and prepared a group of functional 1,4,5-trisubstituted polytriazoles.[27–29] For instance, the polycycloadditions of dibutynoate with diazides proceeded smoothly at 100 °C under solvent- and catalyst-free conditions to give soluble poly(methyltriazolo[3,4-b]carboxylates) (PMTCs) with high molecular weights (M_n up to 1.67 × 10^6) and satisfactory regioregularities in good yields.[30] The simplicity and efficiency of this polymerization reaction encouraged us to explore its application in preparing functional hyperbranched polymers.

In this work, we prepared four hyperbranched PMTCs (hb-PMTCs) with high molecular weights and regioregularities in high yields by the catalyst-free butynoate-azole click polymerization. The hb-PMTCs enjoy good solubility and high thermal stability. Moreover, the polymers show aggregation-induced emission (AIE) features, which enable them to be utilized for detecting explosive and fabricating fluorescent patterns.

EXPERIMENTAL

Materials

Dichloromethane (DCM) was distilled under nitrogen in the presence of calcium hydride. DMF was of extra-dry quality and stored over molecular sieves from Aladdin Reagent Co., Ltd. (Shanghai, China). Tetrahydrofuran (THF) used in photoluminescence (PL) spectra measurement was spectral purity grade, and purchased from Shanghai Chemical Reagent Co., Ltd. (China). Thin solid films for photopattern fabrication were coated with copper photomasks on silicon wafers and dried at room temperature overnight. The polymer films coated with copper photomasks were then irradiated using the 365 nm UV light with an intensity of 18.5 mW·cm^{-2} as light source for 20 min in air at room temperature. The photographs of the fluorescent photopatterns were taken on an Olympus BX 41 fluorescence optical microscope with a 330–385 wideband UV excitation.

Synthesis of Monomers

1,2-Bis(4-(4-azidobutoxy)phenyl)-1,2-diphenylethyene (2a) and 1,2-bis(4-(4-azidoxyloxy)phenyl)-1,2-diphenylethyene (2b) were prepared according to our previous work.[30] The tris(2-butyneato) monomers of methanetriyltris(benzene-4,1-diy1)tris(2-butyneato) (1a) and propane-1,2,3-tryl tris(2-butyneato) (1b) were synthesized by a simple esterification reaction of 2-butyric acid with 4,4′,4″-trihydroxytriphenylmethane and glycerol, respectively. A detailed synthetic procedure for 1a is shown below.

Into a 250 mL two-necked round-bottom flask was dissolved 2.28 g (7.8 mmol) of 4,4′,4″-trihydroxytriphenylmethane, 7.24 g (35.1 mmol) of 1,3-dicyclohexylcarbodiimide (DCC), 0.57 g (4.7 mmol) of 4-dimethylaminopyridine (DMAP), and 0.89 g (4.7 mmol) of p-toluene sulfonic acid (p-TsOH) in 100 mL of distilled DCM under nitrogen. The solution was cooled to 0 °C with an ice-water bath, and 2.30 g (27.3 mmol) of 2-butyric acid dissolved in 20 mL of DCM was added under stirring through a dropping funnel. The reaction mixture was stirred at room temperature overnight. After filtration and solvent evaporation, the crude product was purified by a silica gel column using petroleum ether/ethyl acetate (10/1, v/v) as eluent. Methanetriyltris(benzene-4,1-diy1)tris(2-butyneato) (1a) was obtained in 48.0% yield (1.82 g) as a pale yellow solid. FTIR (thin film, v, cm^{-1}): 3034, 2969, 2919, 2278, 2231 (C=C stretching), 1726 (C=O stretching), 1502, 1421, 1239, 1197, 1035. 1H-NMR (400 MHz, CDCl_3, δ, TMS, ppm): 7.07 (s, 12H), 5.53 (s, 1H), 2.06 (s, 9H). 13C-NMR (150 MHz, CDCl_3, δ, TMS, ppm): 151.8, 148.6, 141.2, 130.4, 121.3, 88.1, 72.1, 55.0, 3.9. Elemental Anal. Calcd. for C_{62}H_31O_6: C, 75.91%; H, 4.52%; Found: C, 75.81%; H, 4.96%.

Propane-1,2,3-triylyl tris(2-butyneato) (1b) was prepared by the reaction of glycerol and 2-butyric acid. White solid; yield 48.3% (1.40 g). FTIR (thin film, v, cm^{-1}): 2972, 2923, 2317, 2246 (C=C stretching), 1719 (C=O stretching), 1492, 1456, 1373, 1324, 1246, 1073. 1H-NMR (400 MHz, CDCl_3, δ, TMS, ppm): 5.33 (s, 1H), 4.35 (d, 4H), 2.01 (s, 9H). 13C-NMR (150 MHz, CDCl_3, δ, TMS, ppm): 152.9, 152.4, 87.5, 87.1, 71.7, 69.7, 62.8, 3.9. Elemental Anal. Calcd. for C_{13}H_{14}O_5: C, 62.07%; H, 4.86%; Found: C, 62.26%; H, 5.32%.

Synthesis of Polymers

All the polymerization reactions were conducted under nitrogen using a standard Schlenk technique. A typical experimental procedure for polymerization of 1a and 2a for hb-PMTC is shown below as an example.

Into a 10 mL Schlenk tube equipped with a magnetic stir bar were placed 1a (49.0 mg, 0.10 mmol) and 2a (83.7 mg, 0.15 mmol). The tube was evacuated and refilled with nitrogen (three times) for 0.5 h, and DMF (0.25 mL) was injected to dissolve the solids. The reaction mixture was then stirred at 100 °C for 11 h. After being cooled down to room temperature, the solution was diluted with 5 mL of chloroform and added dropwise into 200 mL of petroleum ether through a cotton filter under strong stirring. The precipitates were allowed to stand overnight and collected by filtration. The polymer was washed with petroleum ether and dried to a constant weight at ambient conditions.

https://doi.org/10.1007/s10118-020-2421-y
Characterization data of \(\text{hb-P1} \). White powder; 80.6% yield. \(M_w \) 2.4 × 10^4; \(M_w/M_n \) 3.69 (GPC, PS calibration). FTIR (thin film, \(\nu \), cm\(^{-1}\)): 3044, 2935, 2862, 2240 (C=O stretching), 2094 (N\(_2\) stretching), 1722 (C=O stretching), 1604, 1507, 1358, 1204, 1209, 1173. \(^1\)H-NMR (400 MHz, CDCl\(_3\), \(\delta \), TMS, ppm): 7.16, 7.03, 6.92, 6.64, 5.59, 4.77, 4.40, 3.92, 3.34, 2.58, 2.08, 1.86, 1.74, 1.67. \(^1\)C-NMR (150 MHz, CDCl\(_3\), \(\delta \), TMS, ppm): 161.1, 157.2, 145.7, 144.1, 136.5, 136.3, 131.7, 130.2, 127.6, 126.1, 113.5, 67.4, 55.1, 51.0, 48.0, 29.4, 26.0, 9.1, 4.0.

\(\text{hb-P2} \). The polymer was prepared by the polymerization of methanetriyltris(benzene-4,1-diy)tris(2-butynoate) (\(1a \)) and 1,2-bis(4-(6-azidohexyloxy)phenyl)-1,2-diphenylethene (\(2b \)) at 100 °C for 11 h. White powder; 78.0% yield. \(M_w \) 1.41 × 10^4; \(M_w/M_n \) 2.61 (GPC, PS calibration). FTIR (thin film, \(\nu \), cm\(^{-1}\)): 3044, 2938, 2864, 2276, 2232 (C=O stretching), 1995 (N\(_2\) stretching), 1732 (C=O stretching), 1604, 1505, 1357, 1240, 1203, 1173. \(^1\)H-NMR (400 MHz, CDCl\(_3\), \(\delta \), TMS, ppm): 7.16, 7.06, 6.91, 6.59, 5.59, 4.72, 4.33, 3.87, 4.27, 2.61, 2.06, 1.86, 1.74, 1.62, 1.48. \(^1\)C-NMR (150 MHz, CDCl\(_3\), \(\delta \), TMS, ppm): 160.3, 157.4, 151.9, 148.8, 144.2, 141.1, 139.6, 138.9, 136.3, 135.7, 132.5, 131.3, 130.4, 127.6, 126.1, 113.5, 67.4, 55.1, 51.4, 48.0, 29.4, 26.0, 9.1, 4.0.

\(\text{hb-P3} \). The polymer was synthesized by the polymerization of propane-1,2,3-triyl tris(2-butynoate) (\(1b \)) and 1,2-bis(4-(4-azidobutoxy)phenyl)-1,2-diphenylethene (\(2a \)) at 100 °C for 16 h. White powder; 79.5% yield. \(M_w \) 1.03 × 10^4; \(M_w/M_n \) 2.44 (GPC, PS calibration). FTIR (thin film, \(\nu \), cm\(^{-1}\)): 3047, 2950, 2873, 2241 (C=O stretching), 2097 (N\(_2\) stretching), 1726 (C=O stretching), 1604, 1506, 1366, 1242, 1177. \(^1\)H-NMR (400 MHz, CDCl\(_3\), \(\delta \), TMS, ppm): 7.03, 6.91, 6.60, 5.57, 4.63, 4.48, 4.38, 3.91, 3.34, 2.51, 2.05, 1.74, 1.67. \(^1\)C-NMR (150 MHz, CDCl\(_3\), \(\delta \), TMS, ppm): 161.1, 157.2, 144.1, 139.6, 136.5, 136.3, 135.8, 132.5, 131.3, 127.6, 126.2, 113.5, 66.8, 51.2, 47.7, 26.4, 9.1, 3.8.

\(\text{hb-P4} \). The polymer was prepared by the polymerization of propane-1,2,3-triyl tris(2-butynoate) (\(1b \)) and 1,2-bis(4-(6-azidohexyloxy)phenyl)-1,2-diphenylethene (\(2b \)) at 100 °C for 16 h. White powder; 86.8% yield. \(M_w \) 8500; \(M_w/M_n \) 2.07 (GPC, PS calibration). FTIR (thin film, \(\nu \), cm\(^{-1}\)): 3044, 2935, 2862, 2240 (C=O stretching), 2094 (N\(_2\) stretching), 1722 (C=O stretching), 1604, 1507, 1385, 1242, 1173. \(^1\)H-NMR (400 MHz, CDCl\(_3\), \(\delta \), TMS, ppm): 7.04, 1.97, 1.88, 1.71, 1.62, 1.44. \(^1\)C-NMR (150 MHz, CDCl\(_3\), \(\delta \), TMS, ppm): 161.1, 157.4, 145.7, 144.2, 139.6, 136.1, 132.5, 131.4, 127.6, 126.1, 113.5, 67.4, 51.1, 47.9, 31.6, 29.3, 26.0, 14.1, 9.1, 3.8.

RESULTS AND DISCUSSION

The tributynoate monomers \(1a \) and \(1b \) were synthesized by a one-pot and one-step DCC-mediated esterification of commercially available 2-butoxy acid and triols (Scheme S1, in the electronic supplementary information, ESI). The tetrphenylethene (TPE)-containing diazide monomers, \(2a \) and \(2b \), were prepared following our previous reported procedures.\(^{30}\) All the monomers were characterized by FTIR, NMR spectroscopy, and elemental analysis, and satisfactory analysis data were obtained (see Experimental section for details).

In our previous work, the polycycloadditions of dibuty-noate and TPE-containing diazides were performed at 100 °C for 12 h under solvent- and catalyst-free conditions to give linear PMTCs with high molecular weights in high yields.\(^{30}\) Herein, we first explored the solvent- and catalyst-free polycycloaddition to prepare \(\text{hb-PMTCs} \). Unfortunately, only insoluble gels were obtained in a short reaction time. We then adopted the reaction conditions of metal-free polycycloaddition of triphenylpropiolates and azides.\(^{28}\) The polymerizations of \(1a \) and \(1b \) with \(2a \) were carried out in DMF at 100 °C for 12 and 17 h, respectively, yielding insoluble gels. We thus shortened the reaction time. The polycycloaddition reactions of \(1a \) and \(1b \) with \(2a \) and \(2b \) proceeded smoothly at 100 °C in DMF for 11 and 16 h, respectively, producing the corresponding \(\text{hb-PMTCs} \), \(\text{hb-P1-4} \), with high molecular weights in good yields (Scheme 1, Table 1). It should be noted that the \(M_n \) and \(M_w \) values of hyperbranched polymers determined by GPC on the basis of linear polymer calibration are usually underestimated because of their globular architectures.\(^{31}\)

![Scheme 1](https://doi.org/10.1007/s10118-020-2421-y)
The obtained hb-PMTCs are soluble in commonly used organic solvents such as chloroform, DCM, THF, DMF, and DMSO. Moreover, they can be readily fabricated into thin solid film through a spin-coating technique, showing good solution processability. hb-P1–4 also possess high thermal stability with 5% weight loss temperatures at 395, 400, 320, and 327 °C, respectively (Fig. 1).

The hb-PMTCs have been characterized by FTIR, 1H-NMR, and 13C-NMR spectroscopic techniques, from which satisfactory results were obtained. The FTIR as well as 1H- and 13C-NMR spectra of hb-P1 and its corresponding monomers 1a and 2a were provided as examples. As given in Fig. 2, monomers 1a and 2a show the stretching vibration bands of C=O and N=O at 2321 and 2096 cm⁻¹, respectively, which become much weaker in the spectrum of hb-P1. This indicates that most of the ethynyl and azido groups in the monomers have been consumed by the polymerization. The spectral profiles of hb-P2–4 are similar to that of hb-P1 (Figs. S1–S3 in ESI).

1H-NMR spectroscopy can provide more detailed structural information about the polymers. Fig. 3 shows the 1H-NMR spectra of hb-P1 and its monomers 1a and 2a. The resonance of methylene protons adjacent to the azido groups of 2a at δ 3.34 becomes weaker in the spectrum of hb-P1. Meanwhile, two new signals resonating at δ 4.40 (a) and 4.77 (b) are observed. The signal at δ 4.40 (a) is assigned to the proton resonance of methylene group adjacent to triazole rings in structure a, while the signal at δ 4.77 (b) is attributed to that in structure b (Fig. 3C).[28,29] The results demonstrate that most of carbon-carbon triple bonds and azido groups of the monomers have been transformed into the triazole rings of the hb-PMTC by the polymerization. Moreover, the integrals of the signals at δ 4.40 and 4.77 enable us to calculate the fraction of the structure a (Fα) in hb-P1, which is 82.6%. Similar results were drawn from the analysis of the 1H-NMR spectra of hb-P2–4 and their monomers as presented in Figs. S4–S6 (in ESI). The fractions of the structure a in hb-P2–4 are calculated to be 83.9%, 81.1%, and 78.4%, respectively (Table 1). It is worth noting that the Fα values of hb-PMTCs are higher than those of the linear analogues (71.4% and 70.8%).[29] This may be caused by the stronger steric hindrance due to the branched structures of hb-PMTCs. These advantages of high regioselectivities and atom efficiency as well as mild reaction conditions make the catalyst-free butynoate-azido polycycloaddition a click polymerization reaction.

The 13C-NMR spectra of hb-P1 and its monomers are given in Fig. S7 (in ESI). The ethynyl carbon atoms of monomer 1a show resonance signals at δ 88.1 and 72.1, which become much weaker in the spectrum of hb-P1. Meanwhile, new signals resonating at δ 139.7, 136.5, 47.8, and 9.0 are observed. The signals at δ 139.7 and 136.5 are associated with the resonances of carbon atoms of triazole rings, and the signals at δ 47.8 and 9.0 are stemmed from the carbon resonances of methylene and methyl groups adjacent to triazole rings in the polymer. These results further prove that the ethynyl and azido groups have been transformed to triazole rings by the polymerization. Similar phenomena are observed in the 13C-NMR spectra of hb-P2–4 (Figs. S8–S10, in ESI). In addition, degrees of branching of hb-P1–4, as one of the most important intrinsic parameters of hyperbranched polymer, are hardly evaluated due to the poor resolution of related resonances in their NMR spectra.

Aggregation-induced emission (AIE) is an unusual photophysical phenomenon: a series of n-conjugated molecules with propeller-shaped structures, such as TPE, hexaphenylsilole, distyrylanthracene, tetraphenylpyrazine, and their derivatives, are weakly or non-emissive in dilute solutions, but emit intensively in aggregate and solid states.[32] During the past decade, luminescent materials with AIE characteristics have been a hot research topic for their wide applications in optoelectronics, chemosensing, and biomedical field.[33–36] However, AIE-active hyperbranched polymers have been less reported so far.[37–39]

Since TPE is a typical AIE molecule, TPE-containing hb-P1–4 with flexible linkers are anticipated to possess AIE activities. We thus explore their luminescence behaviors in solution and

Table 1	Click polymerizations of tributynoates 1 and diazides 2.a					
hb-P1	1a+2a	11	2.4 × 10⁴	3.69	80.6	82.6
hb-P2	1a+2b	11	1.41 × 10⁴	2.61	78.0	83.9
hb-P3	1b+2a	16	1.03 × 10⁴	2.44	79.5	81.1
hb-P4	1b+2b	16	8.5 × 10³	2.07	86.8	78.4

a Carried out in DMF under N₂ at 100 °C, [1]/[2] = 2/3, [1] = 0.4 mol·L⁻¹. b Estimated by GPC in THF using PS as calibration. c Fraction of α-isomer determined by 1H-NMR.

The obtained hb-PMTCs have been characterized by FTIR, 1H-NMR, and 13C-NMR spectroscopic techniques, from which satisfactory results were obtained. The FTIR as well as 1H- and 13C-NMR spectra of hb-P1 and its corresponding monomers 1a and 2a were provided as examples. As given in Fig. 2, monomers 1a and 2a show the stretching vibration bands of C=O and N=O at 2321 and 2096 cm⁻¹, respectively, which become much weaker in the spectrum of hb-P1. This indicates that most of the ethynyl and azido groups in the monomers have been consumed by the polymerization. The spectral profiles of hb-P2–4 are similar to that of hb-P1 (Figs. S1–S3 in ESI).

Fig. 1 TGA thermograms of hb-P1–4 recorded under nitrogen at a heating rate of 10 °C·min⁻¹.

Fig. 2 FTIR spectra of monomer 1a (a), 2a (b), and their polymer hb-P1 (c).

https://doi.org/10.1007/s10118-020-2421-y
aggregated states. As shown in Fig. 4(a), the PL curves of hb-P1 in THF and THF-water mixtures with water fraction (f_w) lower than 20% runs nearly parallel to the abscissa. This suggests that it is non-emissive when molecularly dissolved in good solvents. Upon progressive addition of water as the poor solvent into its THF solution, the luminescence intensity of hb-P1 increases gradually and reaches the maximum value at f_w of 90%. Other hb-PMTCs have similar fluorescence behaviors. The maximum luminescence intensities of hb-P1–4 are 247-fold, 319-fold, 214-fold, and 251-fold, respectively, higher than those in THF solution (Fig. 4b). Obviously, the hb-PMTCs are AIE active. It is worth noting that the degrees of enhancement in fluorescence intensities of hb-P2 and hb-P4 with long alkyl spacers are higher than those of hb-P1 and hb-P3 with short alkyl spacers.

In dilute solutions, the polymer chains of hb-PMTCs are fully stretched due to the twisted TPE moieties and flexible spacers contained. The phenyl rings of TPE units in the hb-PMTCs can rotate and vibrate actively, which consumes the excited energy and thus makes the polymers non-emissive in the THF solution. With a large amount of nonsolvent of water added into their THF solutions, the hb-PMTCs form nanoaggregates. The intramolecular motions of TPE moieties are greatly suppressed, making the polymers highly emissive. Furthermore, the polymers bearing long flexible spacers are more soluble in solutions, resulting in a greater enhancement in emission intensity from solution to aggregate state.

Sensitive detection of explosives is of great importance for civilian and national security. In recent years, AIE-active polymers have been widely used as fluorescent sensors for explosive detection due to their good processability and super-amplification quenching effect. The AIE properties of hb-PMTCs enable us to explore their application in detecting explosives. We employed picric acid (PA) as a model compound of nitroaromatic explosive owing to its commercial availability, and the aggregates of hb-PMTCs in THF/water mixtures with f_w of 90% due to their maximum luminescence intensities.

As can be seen in Fig. 5(a), the PL intensity of hb-P1 aggregates decreases progressively with gradual addition of PA, and the luminescence quenching could be identified at a PA concentration of 0.2 μg·mL$^{-1}$. Similar PL behaviors are observed in the aggregates of hb-P2–4. The Stern-Volmer plots of hb-P1–4 are almost linearly correlated with PA concentration below 20 μg·mL$^{-1}$ (Fig. 5b), giving the quenching constants of 14290, 14300, 24670, and 11900 L·mol$^{-1}$, respectively, which are comparable to those of TPE-containing hyperbranched polymers synthesized by the phenylpropiolate-azide polycycloaddition. At PA concentration above 20 μg·mL$^{-1}$, the curves bend upward, manifesting a superamplified fluorescence quenching effect. This may be ascribed to the triazole rings and branched structures of the hb-PMTCs, which interact with more PA molecules and provide more channels for exciton diffusion.
Plots of μmol·L−1 different amounts of PA. Concentration: 10−4 M.

The efficient solid-state emission and good film-forming ability of the hb-PMTCs make them promising for the fabrication of fluorescent photopatterns[39]. This is the case. Thin solid films of hb-P1–4 were easily prepared by spin-coating on silicon wafers, and then irradiated under a UV light through a copper photomask. The fluorescence of the exposed area is quenched by a UV-induced oxidation process, while the unexposed area remains emissive. Two-dimensional fluorescent patterns with sharp line edges are readily generated without going through further development process (Fig. 6 and Figs. S11–S13 in ESI). These properties make the hb-PMTCs good candidate materials for high-tech applications.

REFERENCES

1. Yan, D.; Gao, C.; Frey, H. Hyperbranched polymers, John Wiley & Sons, Inc., Hoboken, NJ, 2011.

2. Voit, B. I.; Lederer, A. Hyperbranched and highly branched polymer architectures—synthetic strategies and major characterization aspects. Chem. Rev. 2009, 109, 5924–5973.

3. Dong, Z.; Ye, Z. Hyperbranched polyethylenes by chain walking polymerization: synthesis, properties, functionalization, and applications. Polym. Chem. 2012, 3, 286–30.

4. Žagar, E.; Žigon, M. Aliphatic hyperbranched polyesters based on 2,2-bis(methylol)propionic acid—determination of structure, solution and bulk properties. Prog. Polym. Sci. 2011, 36, 53–88.
from levulinic acid and furfurylamine. Monomer for preparing hyperbranched polyamides derived from levulinic acid and furfurylamine. J. Mater. Chem. B, 9, 2103−2140.

5 Liu, J.; Huang, W.; Pang, Y.; Yan, D. Hyperbranched polyphosphates: synthesis, functionalization and biomedical applications. Chem. Soc. Rev. 2015, 44, 3942−3953.

6 Bej, R. Hyperbranched polyolsulfides. Polym. Chem. 2020, 11, 990−1000.

7 Chen, H.; Kong, J. Hyperbranched polymers from A₂ + B₃ strategy: recent advances in description and control of fine topology. Polym. Chem. 2016, 7, 3643−3663.

8 Zheng, Y.; Li, S.; Weng, Z.; Gao, C. Hyperbranched polymers: advances in synthesis to applications. Chem. Soc. Rev. 2015, 44, 4001−4130.

9 Wu, W.; Tang, R.; Li, Q.; Li, Z. Functional hyperbranched polymers with advanced optical, electrical and magnetic properties. Chem. Soc. Rev. 2015, 44, 3997−4022.

10 Liu, J.; Lam, J. W. Y.; Tang, B. Z. Acetylenic polymers: syntheses, structures, and functions. Macromolecules 2009, 109, 5799−5807.

11 Liu, Y.; Qin, A.; Tang, B. Z. Polarization dynamics based on triple-bond building blocks. Prog. Polym. Sci. 2018, 78, 92−138.

12 Huang, D.; Qin, A.; Tang, B. Z. Hyperbranched polymers prepared by alkyne-based click polymerization. Acta Polym. Sinica (in Chinese) 2017, 178−199.

13 Huang, D.; Liu, Y.; Qin, A.; Tang, B. Z. Recent advances in alkyne-based click polymerizations. Polym. Chem. 2018, 9, 2853−2867.

14 Shi, Y.; Cao, X.; Zou, L.; Gan, W.; Gao, H. Preparation of water-soluble hyperbranched polymers with tunable thermosensitivity using chain-growth CuAAC copolymerization. Polym. Chem. 2016, 7, 7500−7505.

15 Qin, A.; Lam, J. W. Y.; Tang, B. Z. Click polymerization. Chem. Soc. Rev. 2011, 39, 2522−2544.

16 Scheel, A. J.; Kombor, H.; Voit, B. Novel hyperbranched poly[1,2,3-triazole]s derived from AB₃ Monomers by a 1,3-dipolar cycloaddition. Macromol. Macromol. Rapid Commun. 2004, 25, 1175−1180.

17 Li, B.; Huang, D.; Qin, A.; Tang, B. Z. Progress on catalytic systems used in click polymerization. Macromol. Rapid Commun. 2018, 39, 1800098.

18 Wu, J.; Chen, J.; Wang, J.; Liao, X.; Xie, M.; Sun, R. Synthesis and conductivity of hyperbranched poly(triazolium)s with various end-capping groups. Polym. Chem. 2016, 7, 633−642.

19 Tang, R.; Chen, H.; Zhou, S.; Xiang, W.; Tang, X.; Liu, B.; Dong, Y.; Zeng, H.; Li, Z. Dendrimerized hyperbranched polymers containing isolation chromophores: design, synthesis and further enhancement of the comprehensive NLO performance. Polym. Chem. 2015, 6, 5580−5589.

20 Wang, X.; Hu, R.; Zhao, Z.; Qin, A.; Tang, B. Z. Self-healing hyperbranched polytriazolines prepared by metal-free click polymerization of propionate and azide monomers. Sci. China: Chem. 2016, 59, 1554−1560.

21 Qin, A.; Liu, Y.; Tang, B. Z. Regioselective metal-free click polymerization of azides and alkynes. Macromol. Chem. Phys. 2015, 216, 818−828.

22 Sandmann, B.; Happ, B.; Vitz, J.; Paulus, R. M.; Hager, M. D.; Burtscher, P.; Moschner, N.; Schubert, U. S. Metal-free cyclodextrins of internal alkynes and multifunctional azides under solvent-free conditions. Macromol. Chem. Phys. 2014, 215, 1603−1608.

23 Pretzel, D.; Sandmann, B.; Hartlieb, M.; Vitz, J.; Holzer, S.; Fritz, N.; Moschner, N.; Schubert, U. S. Biological evaluation of 1,2,3-triazole-based polymers for potential applications as hard tissue material. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 1843−1847.

24 Yuan, W.; Chi, W.; Han, T.; Du, J.; Li, H.; Li, Y.; Tang, B. Z. Metal-free phenylpropionate-azide polycycloduction: efficient synthesis of functional poly[phenyltriazolylcarboxylate]s. Polym. Chem. 2018, 9, 5215−5223.

25 Chi, W.; Yuan, W.; Du, J.; Han, T.; Li, H.; Li, Y.; Tang, B. Z. Construction of functional hyperbranched poly[phenyltriazolylcarboxylate]s by metal-free phenylpropionate-azide polycycloduction. Macromol. Rapid Commun. 2018, 39, 1800604.

26 Du, J.; Yuan, W.; Zhang, H.; Li, H.; Li, Y.; Tang, B. Z. Ferrocene-based hyperbranched poly[phenyltriazolylcarboxylate]s: synthesis by phenylpropionate-azide polycycloduction and use as precursors to nanostructured magnetoceramics. Polym. Chem. 2019, 10, 5931−5938.

27 Chi, W.; Zhang, R. Y.; Han, T.; Du, J.; Li, H. K.; Zhang, W. J.; Li, Y. F.; Tang, B. Z. Facile synthesis of functional poly[diethylcarboxylate]s by solvent- and catalyst-free butynoate-azide polycycloduction. Chinese J. Polym. Sci. 2020, 38, 17−23.

28 Muchtar, Z.; Schappacher, M.; Deffieux, A. Hyperbranched nanomolecules: regular polystyrene dendrigrafts. Macromolecules 2001, 34, 7595−7600.

29 Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: together we shine, united we soar! Chem. Rev. 2015, 115, 11718−11940.

30 Zhou, S. Y.; Wan, H. B.; Zhou, F.; Gu, P. Y.; Xu, Q. F.; Lu, J. M. AIEGens-lightened functional polymers: synthesis, properties and applications. Chinese J. Polym. Sci. 2019, 37, 302−326.

31 Feng, G.; Liu, B. Aggregation-induced emission (AIE) dots: emerging theranostic nanolights. Acc. Chem. Res. 2018, 51, 1404−1414.

32 Yang, Z.; Chi, Z.; Mao, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Aldred, M. P.; Chi, Z. Recent advances in mecano-responsive luminescence of tetraphenylethylene derivatives with aggregation-induced emission properties. Mater. Chem. Front. 2018, 2, 861−890.

33 Ma, S.; Ma, L.; Han, W.; Jiang, S.; Xu, B.; Tian, W. Progress in 9,10-distyrylanthracene derivatives with aggregation-induced emission. Sci. Sin. Chim. 2018, 48, 683−697.

34 Hu, Y. B.; Lam, J. W. Y.; Tang, B. Z. Recent progress in AIE-active polymers. Chinese J. Polym. Sci. 2019, 37, 289−301.

35 Xie, Y.; Gong, Y.; Han, M. J.; Zhang, F.; Peng, Q.; Xie, G.; Li, Z. Tetraphenylethylene-based hyperbranched polymers: convenient syntheses from one pot “A₃ + B₃” polymerization and high external quantum yields up to 9.74% in OLED devices. Macromolecules 2019, 52, 896.

36 Huang, Y.; Chen, P.; Wei, B.; Hu, R.; Tang, B. Z. Aggregation-induced emission-active hyperbranched poly(tetrahydropropyramidine) synthesized from multicomponent tandem polymerization. Chinese J. Polym. Sci. 2019, 37, 428−436.

37 Wang, J.; Mei, J.; Yuan, W.; Lu, P.; Qin, A.; Sun, J.; Ma, Y.; Tang, B. Z. Hyperbranched polytriazolines with high molecular compresibility: aggregation-induced emission and superamplified explosive detection. J. Mater. Chem. 2011, 21, 4056−4059.

38 Zhou, H.; Chua, M. H.; Tang, B. Z.; Xu, J. Aggregation-induced emission (AIE)-active polymers for explosive detection. Polym. Chem. 2019, 10, 3822−3840.

39 Wu, X.; Tong, H.; Wang, L. Fluorescent polymer materials for detection of explosives. Prog. Chem. 2019, 31, 1509−1527.

40 Huang, W.; Bender, M.; Seehafer, K.; Wacker, I.; Schroder, R. R.; Bunz, U. H. F. A tetraphenylethylene-based polymer array discriminates nitroarenes. Macromolecules 2018, 51, 1345−1350.

41 Wu, Y.; Qin, A.; Tang, B. Z. AIE-active polymers for explosive detection. Chinese J. Polym. Sci. 2017, 35, 141−154.

42 Han, T.; Zhao, Z.; Lam, J. W. Y.; Tang, B. Z. Monomer stoichiometry imbalance-promoted formation of multisubstituted polynaphthalenes by palladium-catalyzed polycouplings of aryl iodides and internal diynes. Polym. Chem. 2018, 9, 885−893.