Decoding cell lineage from acquired mutations using arbitrary deep sequencing

Cheryl A Carlson, Arnold Kas, Robert Kirkwood, Laura E Hays, Bradley D Preston, Stephen J Salipante & Marshall S Horwitz

Supplementary Figure 1	Arbitrary PCR of samples, showing consistency of amplification
Supplementary Figure 2	Arbitrary PCR under limiting template dilution
Supplementary Figure 3	Genome Browser view, whole chromosome level
Supplementary Figure 4	Neighbor-joining phylogenetic reconstructions
Supplementary Figure 5	Distribution of mutations consistent with known tree
Supplementary Figure 6	Receiver operating characteristic analysis of mutational detection analysis parameters
Supplementary Table 1	Pearson correlation coefficients (pairwise comparison between each sample)
Supplementary Table 3	Luria-Delbrück fluctuation analysis
Supplementary Table 4	Generational resolution as a function of mutation rate and target size

Note: Supplementary Table 2 and Supplementary Software are available on the Nature Methods website.
Supplementary Figure 1

Consistency of arbitrary PCR across samples. Samples 1-15 are separated on 1.5% agarose TBE gel with ethidium bromide staining following arbitrary PCR. Flanked by molecular weight markers (M).
Supplementary Figure 2

Arbitrary PCR under limiting template dilution. 50 ng of DNA (lane 2) was serially diluted by two-fold. The amount of DNA was calculated to correspond to the equivalent quantity expected to be present in the indicated number of cells and then used as template for arbitrary PCR. Products are resolved under the same conditions reported for Supplementary Figure 1.
Supplementary Figure 3

Genome browser view, whole chromosome level. Figure is equivalent to Fig. 3, except that tracks for all 15 samples are shown.
Supplementary Figure 4

Neighbor-joining phylogenetic reconstructions. (a) Reconstruction of 15-node tree. (b) Reconstruction of terminal-node only tree. Contrast trees with Bayesian phylogenetic reconstructions shown in Fig. 1b and 1d, respectively.
Distribution of mutations consistent with known tree. At each bifurcation, we report the number of mutations supporting the known phylogenetic relationship.
Supplementary Figure 6

quality	consistent	not-consistent	total	false positive	true positive
5	1036	859	1895	0.829150579	1
10	827	605	1432	0.583976834	0.798262548
15	695	449	1144	0.433397683	0.670849421
20	626	375	1001	0.361969112	0.604247104
25	556	313	869	0.302123552	0.536679537
30	491	262	753	0.252895753	0.473938224
35	443	224	667	0.216216216	0.427606178
40	400	197	597	0.19015444	0.386100386
45	367	175	542	0.168918919	0.354247104
50	333	152	485	0.146718147	0.321428571

ROC analysis

ROC analysis performed on 15-node dataset, with read depth cutoff ≥15×. Since the true positive rate is actually unknown, we assumed that it was equal to the value of consistent mutations (1036) identified at the lowest evaluated Phred quality score (5).

Receiver operating characteristic (ROC) analysis of mutational detection parameters. ROC analysis performed on 15-node dataset, with read depth cutoff ≥15×. Since the true positive rate is actually unknown, we assumed that it was equal to the value of consistent mutations (1036) identified at the lowest evaluated Phred quality score (5).
Supplementary Table 1 – Pearson Correlation Coefficients (pairwise comparison between each sample)

Sample	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1.00	0.98	0.98	0.98	0.99	0.98	0.96	0.98	0.97	0.95	0.98	0.95	0.98	0.95	0.98
2	0.98	1.00	0.99	0.98	0.98	0.96	0.98	0.99	0.97	0.96	0.97	0.95	0.97	0.95	0.97
3	0.99	0.98	1.00	0.98	0.99	0.98	0.99	0.99	0.98	0.97	0.98	0.96	0.98	0.95	0.98
4	0.98	0.99	0.98	1.00	0.98	0.98	0.99	0.96	0.98	0.99	0.98	0.97	0.97	0.97	0.97
5	0.98	0.98	0.99	0.97	1.00	0.98	0.99	0.99	0.99	0.97	0.93	0.96	0.93	0.96	0.96
6	0.99	0.98	0.99	0.98	0.98	1.00	0.98	0.99	0.98	0.97	0.96	0.98	0.94	0.98	0.98
7	0.99	0.98	1.00	0.98	0.99	0.99	1.00	0.97	0.99	0.99	0.95	0.96	0.96	0.96	0.97
8	0.98	0.99	0.99	0.99	0.99	0.98	0.96	1.00	0.99	0.99	0.95	0.96	0.94	0.96	0.97
9	0.96	0.96	0.97	0.96	0.99	0.95	0.97	0.97	1.00	0.98	0.92	0.93	0.92	0.94	0.97
10	0.98	0.99	0.99	0.98	0.99	0.97	0.99	0.99	0.98	1.00	0.99	0.95	0.96	0.95	0.97
11	0.97	0.99	0.98	0.99	0.97	0.97	0.98	0.99	0.96	0.99	1.00	0.97	0.97	0.96	0.98
12	0.95	0.96	0.95	0.98	0.93	0.96	0.95	0.95	0.92	0.95	0.97	1.00	0.98	0.98	0.98
13	0.98	0.97	0.98	0.98	0.96	0.98	0.96	0.98	0.93	0.96	0.97	0.98	1.00	0.97	0.99
14	0.95	0.95	0.95	0.97	0.93	0.94	0.95	0.94	0.92	0.95	0.96	0.98	0.97	1.00	0.96
15	0.98	0.97	0.98	0.99	0.96	0.98	0.97	0.94	0.97	0.98	0.98	0.99	0.96	1.00	0.96
Supplementary Table 3 – Mutation Rate of Mlh1Δ/Δ Pold1Δ/+ Mouse Embryo Fibroblasts Determined by Fluctuation Analyses

	Experiment 1	Experiment 2	Combined
Replicas	12	12	24
Replicas with mutants	12	12	24
Mutants per replica			
Mean ± SD	692 ± 807	144 ± 234	418 ± 645
Range	13 – 2076	12 – 706	12 – 2076
Maximum likelihood analysis			
Plating efficiency	10%	40%	25%
Mutations (m)	66 (46 – 88)	19 (13 – 25)	29 (23 – 36)
Cells per replica (N_t)	6.4 × 10^5	7.5 × 10^5	7.0 × 10^5
Mutation rate			
per cell division (× 10^{-5})	10.3 (7.2 – 13.7)	2.5 (1.8 – 3.3)	**4.2 (3.3 – 5.1)**
per base pair / cell division (× 10^{-6})	3.4 (2.4 – 4.6)	0.8 (0.6 – 1.1)	**1.4 (1.1 – 1.7)**
Supplementary Table 4 – Generational Resolution as a Function of Mutation Rate and Target Size

target_size	Num_generations										
16000000	22.3	16000000	11.2	16000000	5.6	16000000	3.7	16000000	2.8	16000000	2.2
15000000	23.8	15000000	11.9	15000000	6.0	15000000	4.0	15000000	3.0	15000000	2.4
14000000	25.5	14000000	12.8	14000000	6.4	14000000	4.3	14000000	3.2	14000000	2.6
13000000	27.5	13000000	13.7	13000000	6.9	13000000	4.6	13000000	3.4	13000000	2.7
12000000	29.8	12000000	14.9	12000000	7.4	12000000	5.0	12000000	3.7	12000000	3.0
11000000	32.5	11000000	16.2	11000000	8.1	11000000	5.4	11000000	4.1	11000000	3.2
10000000	35.7	10000000	17.9	10000000	8.9	10000000	6.0	10000000	4.5	10000000	3.6
9000000	39.7	9000000	19.8	9000000	9.9	9000000	6.6	9000000	5.0	9000000	4.0
8000000	44.6	8000000	22.3	8000000	11.2	8000000	7.4	8000000	5.6	8000000	4.5
7000000	51.0	7000000	25.5	7000000	12.8	7000000	8.5	7000000	6.4	7000000	5.1
6000000	59.5	6000000	29.8	6000000	14.9	6000000	9.9	6000000	7.4	6000000	6.0
5000000	71.4	5000000	35.7	5000000	17.9	5000000	11.9	5000000	8.9	5000000	7.1
4000000	89.3	4000000	44.6	4000000	22.3	4000000	14.9	4000000	11.2	4000000	8.9
3000000	119.0	3000000	59.5	3000000	29.8	3000000	19.8	3000000	14.9	3000000	11.9
2000000	178.6	2000000	89.3	2000000	44.6	2000000	29.8	2000000	22.3	2000000	17.9