A peer-reviewed version of this preprint was published in PeerJ on 19 June 2018.

View the peer-reviewed version (peerj.com/articles/5051), which is the preferred citable publication unless you specifically need to cite this preprint.

Perez DE, Santelli MB. (2018) Allometric shell growth in infaunal burrowing bivalves: examples of the archiheterodonts *Claibornocardia paleopatagonica* (Ihering, 1903) and *Crassatella kokeni* Ihering, 1899. PeerJ 6:e5051
https://doi.org/10.7717/peerj.5051
Allometric shell growth in infaunal burrowing bivalves: examples of the archiheterodonts *Claibornicardia paleopatagonica* (Ihering, 1903) and *Crassatella kokeni* Ihering, 1899

Damián Eduardo Perez 1, María Belén Santelli 1

1 Paleoinvertebrados, Museo Argentino de Ciencias Naturales "Bernardo Rivadavia", Buenos Aires, Argentina

Corresponding Author: Damián Eduardo Perez
Email address: trophon@gmail.com

We present two cases of study of ontogenetic allometry in outlines of bivalves using longitudinal data, a rarity among fossils, based on the preserved post-larval record of shells. The examples are two infaunal burrowing bivalves of the southern South America, *Claibornicardia paleopatagonica* (Archiheterodonta: Carditidae) (early Paleocene) and *Crassatella kokeni* (Archiheterodonta: Crassatellidae) (late Oligocene–late Miocene). Outline analyses were conducted using a geometric morphometric approach (Elliptic Fourier Analysis), obtaining successive outlines from shells’ growth lines, which were used to reconstruct ontogenetic trajectories. In both taxa, ontogenetic changes are characterized by the presence of positive allometry in the extension of posterior end, resulting in elongated adult shells. This particular allometric growth is known in others infaunal burrowing bivalves (*Claibornicardia alticostata* and some *Spissatella* species) and the resulting adult morphology is present in representatives of several groups (e.g. Carditidae, Crassatellidae, Veneridae, Trigoniidae). Taxonomic, ecological and evolutionary implications of this allometric growth pattern are discussed.
ALLOMETRIC SHELL GROWTH IN INFAUNAL BURROWING BIVALVES:

EXAMPLES OF THE ARCHIHETERODONTS CLAIBORNICARDIA

PALEOPATAGONICA (IHERING, 1903) AND CRASSATELLA KOKENI IHERING, 1899

Damián Eduardo Pérez 1, María Belén Santelli 1

1 División Paleoinvertebrados, Museo de Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires, Argentina

Corresponding Author:

Damián Eduardo Pérez

Email address: trophon@gmail.com
Abstract

We present two cases of study of ontogenetic allometry in outlines of bivalves using longitudinal data, a rarity among fossils, based on the preserved post-larval record of shells. The examples are two infaunal burrowing bivalves of the southern South America, Claibornicardia paleopatagonica (Archiheterodonta: Carditidae) (early Paleocene) and Crassatella kokeni (Archiheterodonta: Crassatellidae) (late Oligocene–late Miocene). Outline analyses were conducted using a geometric morphometric approach (Elliptic Fourier Analysis), obtaining successive outlines from shells’ growth lines, which were used to reconstruct ontogenetic trajectories. In both taxa, ontogenetic changes are characterized by the presence of positive allometry in the extension of posterior end, resulting in elongated adult shells. This particular allometric growth is known in others infaunal burrowing bivalves (Claibornicardia alticostata and some Spissatella species) and the resulting adult morphology is present in representatives of several groups (e.g. Carditidae, Crassatellidae, Veneridae, Trigoniidae). Taxonomic, ecological and evolutionary implications of this allometric growth pattern are discussed.
Introduction

According to the Gould-Mosimann school (defined by Klingebberg, 1998), ‘allometry’ is the association between size and shape. The concept of allometry implies variation of a trait associated with variation of the overall size of an organism (Klingenberg, 1998). Size of an organism can be determined by its own biological growth (or ontogeny), and in these cases, allometry is the covariation between shape and growth through its life-span. This allometry is known as “ontogenetic allometry” (Klingenberg, 1996a; 1998). Studies on ontogenetic allometry mainly use “cross-sectional” data (each individual is measured at a single stage, and an average allometric trajectory is estimated from a composite sample from many individuals), but some ones use “longitudinal” data (e.g. Klingenberg, 1996b; Maunz & German, 1997) (each individual is measured multiple times during their growths, and individual variability in allometric trajectories is obtained). Cases of “cross-sectional” data (sensu Klingenberg, 1996b) are frequent in paleontological studies, for example in trilobites (see Hughes, Minelli & Fusco, 2006 and references herein), Cambrian arthropods (e.g. Haug et al., 2011), crinoids (e.g. Brower, 1988), gastropods (e.g. Gould, 1966a), diapsids (e.g. Ezcurra & Butler, 2015), dinosaurs (e.g. Horner & Goodwin, 2006, 2009), or mammals (e.g. Christiansen, 2012). “Longitudinal” studies (sensu Klingenberg, 1996b) are not possible for many fossil organisms, but are viable in organisms with accretionary growth. Some examples are shelled molluscs (Urdy et al., 2010), brachiopods (Rudwick 1968; Ackerly 1989; Tomášových, Carlson Sandra & Labarbera 2008), or ammonoids (Korn, 2012, 2017; De Baets, Klug & Monnet, 2013). Some researches often remain focused on adult stages, not taking into account the complete ontogeny (De Baets, Klug & Monnet, 2013).

Bivalves show accretionary growth in their shells where the mantle adds constantly new layers of calcium carbonate to the edge (Panella & MacClintock, 1968). Therefore, they
preserved in their shells a complete record of external traits of their post-larval life-spans

(Crampton & Maxwell, 2000), making them a source of “longitudinal” data (sensu Klingenberg, 1996b) for construction of ontogenetic trajectories. In a pioneer contribution, Crampton & Maxwell (2000) elaborate a methodology to explore this particular growth in bivalves. They reconstructed the ontogenetic trajectories of New Zealand species of Spissatella (Bivalvia: Crassatellidae) and related their allometric growth to macroevolutionary trends in the clade.

From the paleoecological point of view, fossil bivalves are one of the most valuable tools, as different morphologies of bivalve shell are strongly related to modes of life and environmental characteristics (Stanley, 1970). Infaunal burrowing habit of life is the most extended among the bivalves, consisting of the penetration of soft substrates by mean of a pedal locomotion while maintaining a life position of, at least, partial burial (Stanley, 1970).

Geometric morphometrics is a very useful tool for study of allometry and ontogeny (Zelditch, Bookstein & Lundrigan, 1992; Fink & Zelditch, 1995; Mitteroecker et al., 2004; Mitteroecker, Gunz & Bookstein, 2005; Monteiro et al., 2005; among others, see a revision on this topic in Adams, Rohlf & Slice, 2013). The use of morphometric methods is an objective, reliable and repeatable tool for quantify patterns of shape changes (Brown & Vavrek, 2015) and geometric morphometric allows strong graphical representations of allometry studies (Adams, Rohlf & Slice, 2013). In particular, the outline shape analyses allow to study the variation in this key character, the outline, which reflects autoecological features in bivalves according to Stanley (1970; 1975). The aim of this contribution is to study ontogenetic series in two examples of infaunal burrowing bivalves, Claibornicardia paleopatagonica (Ihering, 1903) (Archiheterodonta: Carditidae) and Crassatella kokeni Ihering, 1899 (Archiheterodonta: Crassatellidae). The changes in shape of these species are discussed and the presence of
allometric growth is tested. Variability in shape of these two bivalves led previous authors to
define new species based on possible juvenile specimens, *Venericardia camachoi* (Vigilante,
1977) and *Crassatellites patagonicus* Ihering, 1907 (nowadays considered as synonymies of *C.*
paleopatagonica and *C. kokeni*, respectively). Changes in shape in these species and changes
present in other infaunal bivalves, as well as their paleoecological implications, are discussed.

Also, this contribution is an attempt to apply and to expand the methodology developed by
Crampton & Maxwell (2000). As is already mentioned by Crampton & Maxwell (2000), Gould
(1989, p. 537) noted “Natural history is a science of relative frequencies”; and these authors
indicated “advance in many fields of palaeontological debate requires compilation of detailed
observations across diverse fossil groups and time spans” (Crampton & Maxwell, 2000, p. 400).

The present is a contribution for thickening the literature of cases studying allometry patterns,
and this is necessary since a debate addressing the relative frequencies of different phenomena
(such as the palaeontological debate) can only advance through the compilation of such cases.

Materials & Methods

Terminology and theoretical background

All terms regarding allometry follow the definitions provided by Klingenberg (1998).

Positive allometry refers to a trait that increases respect to another one (a positive deviation to
expected isometry), and negative allometry is the opposite. Geometric Morphometrics and
Elliptic Fourier Analysis (EFA) terminologies are explained in Kuhl & Giardina (1982), Lestrel
(1997), and Crampton (1995).
According to Crampton & Maxwell (2000), two outlines with identical shapes and differing only in size will occupy the same point in a morphospace as the distance in this space is a measure of shape difference, a statement that was followed to perform the analysis in this paper.

Bivalve species studied herein are considered as infaunal free burrowing bivalves because they live under the water/sediment interphase and they are not-attached by their byssus. This categorization was described by Stanley (1970) and its followed in this contribution. From this point, this mode of life will be called as “infaunal”.

Taxon sampling

Allometric growth was studied in two species from the Cenozoic of Argentina, *Claibornicardia paleopatagonica* (Ihering, 1903) (Archiheterodonta: Carditidae) (Fig. 1A) and *Crassatella kokeni* Ihering, 1899 (Archiheterodonta: Crassatellidae) (Fig. 1B). Archiheterodonts are non-siphonate bivalves, being mainly restricted to shallow infaunal free burrowing. All fossil shells used in this study are housed at Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” (MACN-Pi and CIRGEO-PI) and Paleontological Collection of Universidad de Buenos Aires (CPBA). Sampling details are summarized in Supplemental Data S1.

The carditid species represents the most ancient record for its genus, being recorded in the early Danian of Patagonia (Argentina), in the Roca, Jagüel and Salamanca formations (Río Negro, Neuquén and Chubut provinces) and was recently included by Pérez & del Río (2017) in the genus *Claibornicardia* Stenzel & Krause, 1957. This taxon is also recognised in the late Paleocene–early Oligocene of North America and Europe. In these analyses 15 shells of *C. paleopatagonica* from Puesto Ramírez (Salamanca Formation, Río Negro Province) (MACN-Pi
5197) were used. The specimen assigned to *Venericardia camachoii* by Vigilante (1977) is also included in MACN-Pi 5197.

Crassatella kokeni is the most abundant crassatellid from the Cenozoic of Patagonia (Argentina), being represented in the San Julián, Monte León, Camarones and Puerto Madryn formations (late Oligocene–late Miocene, Chubut and Santa Cruz provinces). The systematics of this species was reviewed by Santelli & del Río (2014), who regarded *Crassatellites patagonicus* Ihering, 1907 as a junior synonymous of *Crassatella kokeni*. For our analyses, 32 shells of *C. kokeni* were used (including those previously assigned to *Crassatellites patagonicus*). These specimens come from Cañadón de los Artilleros, Punta Casamayor, Cabo Tres Puntas (late Oligocene–early Miocene, San Julián Formation, Santa Cruz Province; mouth of Santa Cruz River, Estancia Los Manantiales, Cañadón de los Misioneros, Monte Entrada (early Miocene, Monte León Formation, Santa Cruz Province); Camarones (early Miocene, Camarones Formation, Chubut Province), and Lote 39 (late Miocene, Puerto Madryn Formation, Chubut Province) (MACN-Pi 325–327, 331–332, 3576, 3600, 3907, 4775, 5374–5376; CIRGEO-PI 1501–1502; and CPBA 9404).

Elliptic Fourier Analysis

Elliptic Fourier Analysis (Kuhl & Giardina, 1982) method was chosen to analyse the outlines of our examples because it allows to work with the variation presents in valves shape. The methodology employed to obtain different outlines is derived from Crampton & Maxwell (2000) criteria. Each valve was digitally photographed in an inclined position with their growth lines placed parallel to the surface (Fig. 2A). The outlines obtained in different angles, regarding
to the surface, were limited by coarse growth lines across the entire shell (Fig. 2B). Strict
chronological ages of each individual have not been established, but previous analyses have well
found a strong correlation between ages (based on the use of stable isotopes) and growth lines
(Jones, 1988; Brey & Mackensen, 1997; Jones & Gould, 1999; Lomovasky et al., 2002). As a
result, growth lines are a good proxy for the chronological age of specimens, and size is an
estimation for relative time. In *Claibornicardia paleopatagonica* annual growth lines are
noticeable but in *Crassatella kokeni* they are not so evident, being perceptible only in part of
specimens of specimens’ shells. For this species, outlines were taken in intervals of 10 mm along
the axial length, following the procedure undertaken by Crampton & Maxwell (2000) for
Spissatella. This methodology allows to design an age-structured analysis for our data.

From digitized procedure using a digital camera, 62 outlines were obtained from *C.
paleopatagonica*, and 74 outlines from *C. kokeni*. Noise generated by external sculpture was
removed from outlines with an image-edition software (following Crampton, 1995). Right valves
were mirrored on the horizontal axis taking advantage of the equivaleve character of shells, and
the analysis was performed only with left valves. The outlines were grouped into three growth
categories: “less than two”, “two to four”, and “more than four”, each one indicating the number
of precedent coarse growth lines. In the case of *C. kokeni*, due to different geographic and
stratigraphic provenance of the studied specimens, outlines were into four geological categories
were established to group outlines: ‘Monte León’, ‘Camarones’, ‘Puerto Madryn’, and ‘San
Julián’, each one representing the geological provenance of the material.

For each individual, chain codes were registered along the contour to calculate the
Elliptic Fourier Descriptors (EFDs). Total Fourier power was calculated to estimate the optimal
number of harmonics required for the analysis. The Fourier power of a harmonic is proportional
to its amplitude and provides a measure of the amount of shape described by that harmonic (Crampton, 1995). A series of harmonics can be truncated when the value of average cumulative Fourier power reaches the 99% of the average total power (sum of the total harmonics used). The optimal number for this case was established in ten harmonics for *C. paleopatagonica*, and seven harmonics for *C. kokeni*. Outlines were normalized to discard effects of rotation, translation and size, using the parameters of the ellipse defined by the first harmonic (First Harmonic Ellipse method). Therefore, three of the four EFDs describing the first harmonic ellipse are constant for all the outlines (Crampton, 1995). The software Shape 1.3v (Iwata & Ukai, 2002) was used for all the analysis.

Morphospace construction and regression analysis

A Principal Component Analysis (PCA) was performed from the variance-covariance matrix of normalized coefficients (Supplemental Data S2 y S3 shows Fourier coefficients for each outline and for each taxon, respectively). The shapes of the shell for mean and extreme morphologies (the latter are representations of specimens with score values corresponding to -two and +two standard deviations from centre for each component) were reconstructed from the normalized coefficient mean values of the EFDs using the inverse Fourier transformations (Iwata & Ukai, 2002) and plotted alongside the morphospace reconstruction. The growth and geological categories previously defined were both plotted on the PCA. Also, a Multivariate Regression Analysis (MRA) between sizes (obtained from the two-dimensional area of each outlines) and shapes (using the first three principal components in both study-cases). These three components were selected using a broken stick model (Jackson, 1993). The MRA includes an overall
MANOVA test of multivariate regression significance. These analyses were performed using PAST 3.19 (Hammer, Harper & Ryan, 2001).

Results

Claibornicardia paleopatagonica allometric growth

The first three components of PCA explain 74.02% of the total variance (Fig. 3A). The first component (PC1) explains 46.55% of variance and represents the transition between subcuadrate (negative extreme) to subrectangular/subelliptic (positive extreme) outlines, with a posterior-ventral expansion. The second component (PC2; 20.16% of variance) accounts for changes in convexity and width of umbones (more rounded umbos towards positive values and less rounded towards negative values). The third component (PC3; 7.3% of variance) captures variation in concavity of the lunular area (more concave lunule towards negative values and more convex lunule towards positive values). The MANOVA test of MRA is significant (p-value<0.001) (Fig. 4A). Results of PCA and MRA analyses are included in Supplemental Data S4.

Growth categories plotted in the obtained morphospace show a transition across PC1 from juvenile to adult outlines. Variation across life-span in C. paleopatagonica can be distinguished in the successive outlines of each individual. Juvenile outlines are strongly rounded and shows subcentrally placed umbones. Towards more aged shells, an increase in the projection of posterior end is recognisable. Adult shells of this species have subrectangular to subelliptic outlines with anteriorly placed umbones. A reconstructed ontogenetic trajectory can be observed in Figure 3A linking different stages of the same specimen in the morphospace (this ontogenetic
trajectory was obtained from a single actual specimen, from which the largest number of outlines were acquired). Different allometric variation can be detected when overlapping extreme outlines of PC1. Posterior end has positive allometry, while the dorsal and anterior-ventral margins have negative allometry (Fig. 5A).

Crassatella kokeni allometric growth

In this case, the first three components of PCA explain 90.72% of the total variance (Fig. 3B). The first component (PC1; 66.66% of variance) shows variation between more subtriangular and more subrectangular outlines. The second component (PC2; 19.27% of variance) reflects variation between outlines with subcentrally placed umbones and outlines with anteriorly placed umbones. The third component (PC3; 4.79% of variance) is associated to variation between less and more truncated posterior end of valves. The MRA shows more scattered points on the graphs than C. paleopatagonica, which could be related to the different geological procedence of shells. Nevertheless, the result of MANOVA test for the regression analysis is significant (p-value<0.001) (Fig. 4B). Results of PCA and MRA analyses are included in Supplemental Data S5.

Geological categories show a non-structured arrangement when they are plotted in the morphospace. The best sampled categories (‘Monte León’ and ‘Puerto Madryn’) occupy virtually the whole morphospace (Fig. 3C). Growth categories reflect a transition across the PC1 from juvenile to adult outlines. Juvenile outlines of C. kokeni are strongly subtriangular with pointed umbones, whereas adult outlines of it are markedly subrectangular having more rounded umbones. The reconstructed ontogenetic trajectory (Fig. 3B), obtained in the same way as the
previous case, and the overlapping of both extreme outlines of PC1 shows an allometric variation similar to those observable in *C. paleopatagonica* (Fig. 5B). Specimens originally assigned to *C. patagonicus* by previous authors fall into the juvenile sector of morphospace (Fig. 3B).

Discussion

Morphological change across life-span in *C. paleopatagonica* *and* *C. kokeni* *and related species*

An allometric growth pattern shared by both species, *C. paleopatagonica* and *C. kokeni* was found in the analyses. Both taxa have positive allometry detected in the extension of posterior end, resulting in elongated adult shells. The study of ontogeny in bivalves had evidenced that some species show allometric growth in certain characters (Stanley, 1975; Stanley, 1977; Tashiro & Matsuda, 1983; Savazzi & Yao, 1992) and the morphological change recorded herein is also documented in other phylogenetically related infaunal bivalves.

Subquadrate juvenile and elongated adult specimens of the carditid *Claibornicardia alticostata* (Conrad, 1833) have a similar allometric variation (Stenzel & Krause, 1957, and pers. obs. on syntypes ANSP 30562). Crampton & Maxwell (2000) described a similar variation in some representatives of the crassatellid genus *Spissatella*, especially in the species *S. subobesa* (Marshall & Murdoch, 1919) and *S. poroleda* Finlay, 1926.

Elongate adult morphology in other infaunal bivalves
Ontogenetic trajectories have not been described in other infaunal bivalves. However, the same elongate adult morphology described here is known. Among archiheterodonts, the morphology documented for adult shells of *C. paleopatagonica* and *C. kokeni* can be observed in species of the genera *Megacardita* Sacco, 1899 (La Perna, Mandic & Harzhauser, 2017); *Neovenericor* Rossi de García, Levy & Franchi, 1980 (Pérez, Alvarez & Santelli, 2017); *Venericor* Stewart, 1930 (Gardner & Bowles, 1939); and *Bathytormus* Stewart, 1930 (Wingard, 1993; Santelli & del Río, 2014). Among other bivalve groups, this adult morphology is also recorded in species of the Veneroidea and Palaeoheterodonta. Some species of Veneridae genera as *Anomalocardia* Schumacher, 1817, *Lirophora* Conrad, 1863, *Chionopsis* Olsson, 1932, *Lamelliconcha* Dall, 1902, *Macrocallista* Meek, 1876, and *Antigona* Schumacher, 1817, among others, have adult shells with a projected posterior end and elongate outlines. Some Trigoniidae taxa lead this morphology to extreme possibilities, with the development of wide and very projected posterior ends (e.g. Francis & Hallam, 2003). As an example, Echevarría (2014) found a strong allometric growth developing in two phases in the trigoniid *Myophorella garatei* Leanza, 1981 with a strong extension of the posterior margin.

Taxonomic implications of allometric growth

Differences between young and adult morphologies could have been be interpreted as taxonomic differences between species. In both studied cases, new species were proposed for specimens with young morphologies: *Venericardia camachoi* Vigilante, 1977 and *Crassatellites patagonicus* Ihering, 1907. These taxa fall into the variation representing young specimens of *Claibornicardia paleopatagonica* and *Crassatella kokeni*, respectively. The case of *C. kokeni*
and *C. patagonicus* was already mentioned by Santelli & del Río (2014), being corroborated the
synonymy in this study. Other examples are the carditids *Neovenericor paranensis* (Borchert,
1901) (late Miocene, Argentina), the adult morphology of which was described as *Venericor
crassicosta* Borchert, 1901 (Pérez, Álvarez & Santelli, 2017) and *Neovenericor ponderosa*
(Suter, 1913) (late Oligocene, New Zealand), the young morphology of which was named
Venericardia caelebs Marwick, 1929 (Beu & Maxwell, 1990). These results reflect that this
allometric change (including into the intraspecific variation) must be considered in taxonomic
revisions of similar infaunal bivalves. These examples show that a different outline is frequently
considered an important feature for taxonomic recognition but ontogenetic variation is not
always taken into account (Álvarez & Pérez, 2016).

Ecological implications of this adult morphology

According to Stanley’s experiments (1970), bivalve shells with streamlined outlines
(cylindrical, blade-like, or disc-like) are the fastest burrowers. Elongate outlines could be related
to a fast burrowing in soft substrates but not in all cases. Also, Stanley (1970) established that
moderately elongate burrowing species commonly use a large angle of rotation, having a strong
forward component in their burrowing movement because of their eccentric axis of rotation.
Elongate bivalves generally have a mode of life with the long axis in vertical position—for
example, this is appreciated in living species of *Anomalocardia*—. Posterior portion of shell is
directed to sediment surface, being achieved the elongate morphotype with a minimum of
increase in shell growth, displacing the centre of gravity and the visceral mass of organisms to a
deeper position (Stanley, 1970; Crampton & Maxwell, 2000). Other possibly related effects
could be increasing in stability against scour (Stanley, 1977; Stanley & Yang, 1987; Francis & Hallam, 2003) or reduction of exposure and predation (Crampton & Maxwell, 2000; Francis & Hallam, 2003). One possible approach to reach this morphology could be the positive allometry of posterior end.

Crampton & Maxwell (2000) suggested that ontogenetic variation in *Spissatella* is an adaptation for life in more energetic environments with coarser substrates but these parameters were not explored in our data. Nevertheless, these conditions (along with others such as predation) may have played a part as selective pressures in the evolutionary history of these infaunal bivalves. Further stratigraphic structured analyses, including taphonomic and sedimentologic data, are needed to study these hypotheses.

Evolutionary implications of allometric growth

Ontogenetic changes in the mentioned infaunal bivalves seem to be similar and perhaps, could be induced by similar conditions. Allometry plays a significant role in evolutionary trends of most lineages (Gould, 1966b; Gould, 1977; Klingenberg, 1998), in particular for recognition of some cases of heterochronies (e.g. Shea, 1983; McKinney, 1984; Mitteroecker, Gunz & Bookstein, 2005). Learning more about the ontogenetic trajectories and allometric changes present in different taxa is essential as the first step for heterochrony studies. These analyses require ontogenetic trajectories explored and phylogenetic relationships defined among species, being the cases here demonstrated fundamental and very important as a starting point.
Conclusions

Analyses of allometric growth allow to recognize similar ontogenetic changes in *Claibornicardia paleopatagonica* (Ihering, 1903) and *Crassatella kokeni* Ihering, 1899. In both species the ontogeny is characterized by the presence of positive allometry in the growth of posterior end, resulting in elongated adult shells. The species *Venericardia camachoi* Vigilante, 1977 and *Crassatellites patagonicus* Ihering, 1907, proposed as synonyms of both previously mentioned taxa, fall into portion of resulting morphospace that represents juvenile morphologies, so that the obtained results corroborate these synonymies.

This particular allometric growth, resulting in elongated adult shells, is presumed in other infaunal bivalve groups (e.g. Veneridae, Trigoniidae, Carditidae and Crassatellidae). The recognition of this character has taxonomic, ecologic and evolutionary implications, being important as the starting point for further allometric studies in bivalves. This study includes new observations and discussion about allometric growth in infaunal bivalves, and represented a contribution for thickening the literature of cases of allometric patterns.

Acknowledgements

The authors are in debt to curators M. Longobucco (MACN) and M. Tanuz (CPBA) who facilitated the access to collections. We thank to C. del Río (MACN) and F. Prevosti for their helpful comments in early stages of this work. We are in debt to the editor, W. De Baets (Friedrich-Alexander Universität Erlangen-Nürnberg), and the reviewers P. Milla Carmona (CPBA) and R. La Perna (Università di Bari), whose suggestions greatly improved this work. P. Milla Carmona suggested the lines at the end of introduction section.
List of references

Ackerly, S. 1989. Kinematics of accretionary shell growth, with examples from brachiopods and molluscs. *Paleobiology* 15, 147–164.

Adams, D., Rohlf, F.J. & Slice, D. 2013: A field comes of age: geometric morphometrics in the 21st century. *Hystrix, the Italian Journal of Mammalogy* 24, 7–14.

Alvarez, M. and Pérez, D. 2016: Gerontic intraspecific variation in the Antarctic bivalve *Retrotapes antarcticus* (Sharman and Newton, 1894). *Ameghiniana* 53, 485–494.

Beu, A.G. & Maxwell, P.A., 1990: Cenozoic Mollusca form New Zealand. *Paleontological Bulletin of the New Zealand Geological Survey* 58, 1–518.

Borchert, A., 1901: Die Molluskenfauna und das Alter der Parana-Stufe. Beiträge zur Geologie und Paläontologie von Südamerika. *Neues Jahrbuch für Mineralogie, Geologie Palaeontoogie Beilagenband* 14, 171–245.

Brey, T. & Mackensen, A. 1997: Stable isotopes prove shell growth bands in the Antarctic bivalve *Laternula elliptica* to be formed annually. *Polar Biology* 17, 465–468.

Brower, J. 1988: Ontogeny and phylogeny in primitive calceocrinid crinoids. *Journal of Paleontology* 62, 917–934.

Brown, C. & Vavrek, M. 2015: Small sample sizes in the study of ontogenetic allometry; implications for palaeobiology. *PeerJ* 3, e818.
Christiansen, P. 2012: The making of a monster: postnatal ontogenetic changes in craniomandibular shape in the sabercat *Smilodon*. *PLoS One* 7, e29699.

Conrad, T.A., 1833: On some new fossils and recent shell of the United States. *American Journal of Science and Arts* 23, 339–346.

Conrad, T.A. 1863: Descriptions of new Recent and Miocene shells. *Proceedings of the Academy of Natural Sciences at Philadelphia* 14, 583–586.

Crampton, J.S. 1995: Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. *Lethaia* 28, 179-186.

Crampton, J. & Maxwell, P. 2000: Size: all it’s shaped up to be? Evolution of shape through the lifespan of the Cenozoic bivalve *Spissatella* (Crassatellidae). In Harper, E., Taylor, J. & Crame, J. (eds): *The Evolutionary Biology of the Bivalvia*. Geological Society London, Special Publications 177, 399–423.

Dall, W.H. 1902: Synopsis of the family Veneridae and of the North American recent species. *Proceedings of the United States National Museum* 26, 335–412.

De Baets, K., Klug, C. & Monnet, C. 2013: Intraspecific variability through ontogeny in early ammonoids. *Paleobiology* 39, 75–94.

Echevarría, J. 2014: Ontogeny and autecology of an Early Cretaceous trigoniide bivalve from Neuquén Basin, Argentina. *Acta Palaeontologica Polonica* 59, 407–420.

Ezcurra, M. & Butler, R. 2015: Post-hatchling cranial ontogeny in the Early Triassic diapsid reptile *Proterosuchus fergusi*. *Journal of Anatomy* 226, 387–402.
Fink, W. L., & M. L. Zelditch. 1995: Phylogenetic analysis of ontogenetic shape transformations: a reassessment of the piranha genus Pygocentrus (Teleostei). Systematic Biology 44, 343–360.

Finlay, H.J. 1926: New shells from New Zealand Tertiary beds: Part 2. Transactions of the New Zealand Institute 56, 227–258.

Francis, A.O. & Hallam, A. 2003: Ecology and evolution of Jurassic trigoniid bi-valves in Europe. Lethaia 36, 287–304.

Gardner, J.A. & Bowles, E., 1939: The Venericardia planicosta group in the Gulf Province. United States Geological Survey, Professional Paper 189-F, 143–215.

Gould, S.J. 1966a: Allometry in Pleistocene land snails from Bermuda: the influence of size upon shape. Journal of Paleontology 40, 1131 –1141.

Gould, S.J. 1966b: Allometry and size in ontogeny and phylogeny. Biological Reviews 41, 587-640.

Gould, S.J. 1977: Ontogeny and Phylogeny, 501 pp. The Belknap Press of Harvard University Press. Cambridge, Massachusetts.

Gould, S.J. 1989: A developmental constraint in Cerion, with comments on the definition and interpretation of constraint in evolution. Evolution 43, 516-539.

Hammer, Ø., Harper, D.A.T. & Ryan, P.D., 2001: PAST. Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4, 1–9.

https://folk.uio.no/ohammer/past/
Haug, J., Waloszek, D., Maas, A., Liu, Y. & Haug, C. 2011: Functional morphology, ontogeny and evolution of mantis shrimp-like predators in the Cambrian. Palaeontology 55, 369–399.

Horner, J. & Goodwin, M. 2006: Major cranial changes during Triceratops ontogeny. Proceedings of the Royal Society B 273, 2757–2761.

Horner, J. & Goodwin, M. 2009: Extreme cranial ontogeny in the Upper Cretaceous dinosaur Pachycephalosaurus. PLoS One 4, e7626.

Hughes, N., Minelli, A., & Fusco, G. 2006: The ontogeny of trilobite segmentation: A comparative approach. Paleobiology 32, 602–627.

Ihering, H. von, 1899: Die Conchylien der Patagonischen Formation. Neues Jahrbuch für Mineralogie, Geologie und Palaeontologie 2, 1-41.

Iherring, H. von. 1903: Les Mollusques des Terrains Crétaciques Supérieurs del’Argentine Orientale. Anales del Museo Nacional de Buenos Aires terc. serie 2, 193–229.

Iherring, H. von. 1907: Les Mollusques fossiles du Tertiaire et du Cretacé Supérieur de l’ Argentine. Anales del Museo Nacional de Buenos Aires, terc. serie 14, 1–611.

Iwata, H. & Ukai, Y., 2002: SHAPE: a computer program package for quantitative evaluation of biological shapes based on elliptical fourier descriptors. Journal of Heredity 93, 384–385.

Jackson, D.A. 1993: Stopping rules in principal components analysis: a comparison of heuristic and statistical approaches. Ecology 74, 2204–2214.

Jones. D. S. 1988: Sclerochronology and the size versus age problem. In McKinney, M.L. (ed.): Heterochrony in Evolution: A Multidisciplinary Approach, 93–108. Plenum Press. New York.
Jones, D. & Gould, S.J. 1999: Direct measurement or age in fossil *Gryphaea*: the solution to a classic problem in heterochrony. *Paleobiology* 25, 58–187.

Klingenberg, C. P. 1996a: Multivariate allometry. In Marcus, L.F., Corti, M., Loy, A., Naylor, G.J.P. & Slice, D.E. (eds.): *Advances in Morphometrics*, 23–49. Plenum Press, New York.

Klingenberg, C. P. 1996b: Individual variation of ontogenies: a longitudinal study of growth and timing. *Evolution* 50, 2412–2428.

Klingenberg, C. 1998: Heterochrony and allometry: the analysis of evolutionary change in ontogeny. *Biological Reviews* 73, 79–123.

Klug, D. 2012: Quantification of ontogenetic allometry in ammonoids. *Evolution & Development* 14, 501–514.

Klug, D. 2017: *Goniatites sphaericus* (Sowerby, 1814), the archetype of Palaeozoic ammonoids: a case of decreasing phenotypic variation through ontogeny. *Paläontologische Zeitschrift* 91, 337–352.

Kuhl, F.P. & Giardina, C.R. 1982: Elliptic Fourier features of a closed contour. *Computer Graphics and Image Processing* 18, 236–258.

Lestrel, P.E. (Ed.). 1997: *Fourier Descriptors and their Applications in Biology*, 484 pp. Cambridge University Press, United Kingdom.

La Perna, R., Mandic, O. & Harzhauser, M. 2017: Systematics and Palaeobiogeography of *Megacardita* Sacco in the Neogene of Europe (Bivalvia, Carditidae). *Papers in Palaeontology* 3, 111–150.
Leanza, H.A. 1981: Una nueva especie de *Myophorella* (Trigoniidae-Bivalvia) del Cretácico Inferior de Neuquén, Argentina. *Ameghiniana* 18, 1–9.

Lomovasky, B.J., Brey, T., Morroni, E., & Calvo, J. 2002: Growth and production of the venerid bivalve *Eurhomalea exalbida* in the Beagle Channel, Tierra del Fuego. *Journal of Sea Research* 48, 209–216.

Marshall, P. & Murdoch, R. 1919: Some new fossil species of Mollusca. *Transactions of the New Zealand Institute* 51, 253–258.

Maunz, M. & German, R. Z. 1997: Ontogeny and limb bone scaling in two New World marsupials, *Monodelphis domestica* and *Didelphis virginiana*. *Journal of Morphology* 231, 117–130.

McKinney, M. 1984: Allometry and heterochrony in an Eocene echinoid lineage: morphological change as a by-product of size selection. *Paleobiology* 10, 407–419.

Meek, F.B. 1876: A report on the invertebrate Cretaceous and Tertiary fossils of the upper Missouri country. In Hayden, F.V. (ed.): *Report of the United States Geological Survey of the Territories. Invertebrate Paleontology* 9, 1–629.

Mitteroecker P., Gunz P., Bernhard M., Schaefer K. & Bookstein F.L., 2004: Comparison of cranial ontogenetic trajectories among great apes and humans. *Journal of Human Evolution* 46, 679–698.

Mitteroecker, P., Gunz, P. & Bookstein, F. L. 2005: Heterochrony and geometric morphometrics: a comparison of cranial growth in *Pan paniscus* versus *Pan troglodytes*. *Evolution & Development* 7, 244–258.
Monteiro, L.R., Beneditto, A.P., Guillermo, L.H. & Rivera, L.A. 2005: Allometric changes and shape differentiation of sagitta otoliths in sciaenid fishes. *Fisheries Research* 74, 288–299.

Olsson, A.A. 1932: Contribution to the Tertiary paleontology of northern Peru: Part 5, the Peruvian Miocene. *Bulletins of American Paleontology* 19, 1–272.

Pannella, G., & Maclintock, C. 1968: Biological and environmental rhythms reflected in molluscan shell growth. *Journal of Paleontology* 42, Supplement 2, 64–80.

Pérez, D.E., Alvarez, M.J. & Santelli, M.B., 2017: Reassessment of *Neovenericor* Rossi de García, Levy & Franchi, 1980 (Bivalvia: Carditidae) using a geometric morphometric approach, and revision of planicostate carditids from Argentina. *Alcheringa* 41, 112–123.

Rossi de García, E., Levy, R. & Franchi, M.R., 1980: *Neovenericor* n. gen. (Bivalvia) su presencia en el Miembro Monte León (Formación Patagonia). *Revista de la Asociación Geológica Argentina* 35, 59–71.

Rudwick, M.J.S. 1968. Some analytic methods in the study of ontogeny in fossils with accretionary skeletons. *Journal of Paleontology* 42, 35–49.

Sacco, F., 1899: *I Molluschi dei terreni terziarii del Piemonti e della Liguria. Part XXVII (Unionidae, Carditidae, Astartidae, Crassatellidae, Lasaeidae, Galeommatidae, Cardiidae, Limnociardiidae e Chamidae)*, 102 pp. Carlo Clausen, Turin.

Santelli, M.B. & del Río. C.J. 2014: Revisión de la subfamilia Crassatellinae (Bivalvia: Crassatellidae) del Paleógeno–Neógeno de Argentina. *Ameghiniana* 51, 311–332.

Savazzi, E. & Yao, P. 1992: Some morphological adaptations in freshwater bivalves. *Lethaia* 25, 195–209.
Schumacher C.F. 1817: *Essai d'un nouveau système des habitations des vers testacés*, 288 pp.

Schultz, Copenhagen.

Shea, B. 1983: Allometry and heterochrony in the African apes. *American Journal of Physical Anthropology* 62, 275–289.

Stanley, S.M. 1970: Relations of shell form to life habits in the Bivalvia (Mollusca). *Geological Society Memoir* 125, 1–296.

Stanley, S.M. 1975: Why clams have the shape they have: an experimental analysis of burrowing. *Paleobiology* 1, 48–58.

Stanley, S.M. 1977: Coadaptation in the Trigoniidae, a remarkable family of burrowing bivalves. *Palaeontology* 20, 869–899.

Stenzel, H. B. & Krause, E. K. 1957: In Stenzel, H.B., Krause, E.K. & Twining, S.T. (eds.): *Pelecypoda from the type locality of the Stone City beds (Middle Eocene) of Texas*. Texas University Publication 5704, 1–237.

Stewart, R.B. 1930: Gabb’s California Cretaceous and Tertiary type lamellibranchs. *Special Publications of the Academy of Natural Sciences of Philadelphia* 3, 1–314.

Suter, H., 1913: New species of Tertiary Mollusca. *Transactions of the New Zealand Institute* 45, 294–297.

Tashiro, M., & Matsuda, T. 1988: Mode of life in Cretaceous trigonoids. *Fossils* 45, 9–21.
Tomašových A, Carlson Sandra J, & Labarbera M. 2008. Ontogenetic nice shift in the brachiopod *Terebratalia transversia*: relationship between the loss of rotation ability and allometric growth. *Palaeontology 51*, 1471–1496.

Urdy, S., Goudemand, N., Bucher, H. & Chirat, R. 2010. Growth-dependent phenotypic variation of molluscan shells: Implications for allometric data interpretation. *Journal of Experimental Zoology 314B*, 303–326.

Wingard, G.L. 1993: A detailed taxonomy of Upper Cretaceous and Lower Tertiary Crassatellidae in the Eastern United States – an example of the nature of extinction at the boundary. *United States Geological Survey, Professional Paper 1535*, 1–131.

Zelditch, M.L., Bookstein, F.L. & Lundrigan, B.L. 1992: Ontogeny of integrated skull growth in the cotton rat *Sigmodon fulviventer*. *Evolution 46*, 1164–1180.

Explanations of figures

Figure 1. Case-studies of this work. A. MACN-Pi 5197, *Claibornicardia paleopatagonica* (Ihering, 1903) (Puesto Ramírez, Salamanca Formation, Early Danian) in lateral view. B. MACN-Pi 3576, *Crassatella kokeni* Ihering, 1899 (mouth of Santa Cruz River, Monte León Formation, Early Miocene) in lateral view. Scale bar = 10 mm. Photo credit: the authors.

Figure 2. Applied methodology to obtain successive outlines of a single valve. A. One valve oriented in different angles. Dotted lines indicate the parallel position of valves regarding to surface, arrows indicate position of digital camera. B. Example of successive outlines.
captured in one specimen (MACN-Pi 5197). First and last outline illustrated. Photo credit: the authors.

Figure 3. Results of Principal Component Analyses. A. *Claibornicardia paleopatagonica* arranged by ontogenetic stage. B. *Crassatella kokeni* arranged by ontogenetic stage. C. *Crassatella kokeni* arranged by stratigraphic procedence. Color legends and the extreme morphologies of each principal component are illustrated in the graph. Black lines in A and B show ontogenetic trajectories of a selected specimen. Triangles indicate specimen previously assigned to *Venericardia camachoi* and squares indicate specimen previously assigned to *Crassatellites patagonicus*.

Figure 4. Results of Multivariate Regression Analyses, between area (size) and three first principal components (shapes). A–C includes principal components obtained from *Claibornicardia paleopatagonica*, and D–F those obtained from *Crassatella kokeni*. Red line indicates trend line. Photo credit: the authors.

Figure 5. Overlapping of extreme outline configurations. A. *Claibornicardia paleopatagonica*. B. *Crassatella kokeni*. Red outline = juvenile specimens. Blue outline = adult specimens. Arrows indicate positive or negative allometry.
Figure 1

Case-studies of this work.

A. MACN-Pi 5197, *Claibornicardia paleopatagonica* (Ihering, 1903) (Puesto Ramírez, Salamanca Formation, Early Danian) in lateral view. B. MACN-Pi 3576, *Crassatella kokeni* Ihering, 1899 (mouth of Santa Cruz River, Monte León Formation, Early Miocene) in lateral view. Scale bar = 10 mm. Photo credit: the authors.
Figure 2

Applied methodology to obtain successive outlines of a single valve.

A. One valve oriented in different angles. Dotted lines indicate the parallel position of valves regarding to surface, arrows indicate position of digital camera. B. Example of successive outlines captured in one specimen (MACN-Pi 5197). First and last outline illustrated. Photo credit: the authors.
Figure 3

Results of Principal Component Analyses.

A. *Claibornicardia paleopatagonica* arranged by ontogenetic stage. B. *Crassatella kokeni* arranged by ontogenetic stage. C. *Crassatella kokeni* arranged by stratigraphic procedence. Color legends and the extreme morphologies of each principal component are illustrated in the graph. Black lines in A and B show ontogenetic trajectories of a selected specimen. Triangles indicate specimen previously assigned to *Venericardia camachoi* and squares indicate specimen previously assigned to *Crassatellites patagonicus*.
Figure 4

Results of Multivariate Regression Analyses, between area (size) and three first principal components (shapes).

A–C includes principal components obtained from *Claibornicardia paleopatagonica*, and D–F those obtained from *Crassatella kokeni*. Red line indicates trend line. Photo credit: the authors.
Figure 5

Overlapping of extreme outline configurations.

A. *Claibonocardia paleopatagonica*. B. *Crassatella kokeni*. Red outline = juvenile specimens. Blue outline = adult specimens. Arrows indicate positive or negative allometry.
