Research Paper

Antimicrobial Effect of Zataria Essential Oil on the Skin Bacteria in Wistar Rats

Sohella Faramarz Isfahanian1, *Maryam Sadrnia1, Sima Nasri1, Hamid Sobhanian1

1. Department of Biology, PayameNoor University, Tehran, Iran.

Objective
Zataria is one of the native plants of Iran which is widely used for the treatment of diseases among Iranians. In this study, we investigated the antimicrobial effects of Zataria essential oil on the skin bacteria in rats.

Method
Bacterial strains were isolated from the skin of 6 wistar rats and the antimicrobial effects of Zataria essential oil were evaluated by disk diffusion and microbroth dilution methods. In-vivo tests were performed to evaluate the antimicrobial effect of the essential oil by microbial culture as well as allergy tests on the skin of experimental rats compared to controls.

Result
Three bacterial strains were isolated from the skin of rats identified as Staphylococcus aureus, Corynebacterium and Staphylococcus epidermidis. Minimum Growth Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) for the two strains of Staphylococcus aureus and Corynebacterium were obtained 0.39 and 0.78 mg/ml, while for Staphylococcus epidermidis, they were 0.195 and 0.39 mg/ml, respectively. In-vivo test results showed the antibacterial effect of the essential oil on the skin bacteria and no inflammatory effects were observed under the allergy test.

Conclusion
Zataria essential oil has antimicrobial effects on the skin infections in lower concentrations. The use of this essential oil as an antiseptic and preservative in cosmetics is recommended instead of chemical preservatives that generally have skin side effects.

Keywords:
Zataria essential oil, Cosmetics, Skin bacteria

Extended Abstract

1. Introduction

In cosmetics, preservatives such as parabens, benzyl alcohol, salicylic acid, alcohol sterols and formaldehyde are used to inhibit the growth of bacteria and fungi. Microbial contamination may be present in non-standard cosmetics from the beginning and may be transmitted to the consumer during production and packing or during consumption and improper storage. The percentage of preservatives in the final product is usually between 0.01% and 5%. These chemicals can cause glandular and hormonal disorders. With the continuation of consumption, the possibility of their carcinogenicity also increases. Recent studies have emphasized the low efficacy of these substances. In this regard, the investigation for herbal ingredients as a preservative in cosmetics has recently become a priority. Zataria is one of the native plants of Iran and its consumption for treatment of diseases is common among Iranians. In this study, the effect of Zataria...
essential oil on skin bacteria was evaluated to examine its applicability to cosmetics.

2. Materials and Methods

In this study, 6 adult Wistar rats were used. The rats were first temporarily anesthetized by chloroform and then were given an intraperitoneal injection of Ketamine/Xylazine (2:1 dose ratio) to increase the anesthesia time proportional to their weight. The hair on the back of the rats was shaved and disinfected after anesthesia. This place was contaminated with three isolated bacteria including corynebacterium, staphylococcus epidermidis and staphylococcus aureus using a sterile swab with 0.5 McFarland standard concentration. In the three tested rats, 120 minutes after the skin was impregnated with the three bacteria, the essential oil with Minimum Bactericidal Concentration (MBC) was sprayed to the microbial site. After 60 minutes, the spraying was repeated. At the end, 60 minutes after the second time of spraying, the skin of experimental rats impregnated with the microbe and treated with the essential oil, was sampled and cultured on the nutrient agar medium. Then, the colonies that had grown in this medium were laminated and compared with the lams of the previous stage. Moreover, after 30, 60 and 90 minutes of spraying the essential oil on the skin of rats in the experimental group, their skin reactions were examined.

Bacterial strains were isolated from the skin and the antimicrobial effects of Zataria essential oil were evaluated by disc diffusion and microbroth dilution methods. For isolation and identification of skin bacteria, the back of the rat’s hand was washed with soap and dried. A sterile swab moistened with distilled water was applied to the back of the hand, and grass cultivation was performed on the Mueller-Hinton Agar. By conventional microbiological methods including cultivation in different mediums and colonial and staining studies, isolated bacteria were identified. For disk diffusion method, blank discs were placed at appropriate distances on the cultured medium and 20 μl of diluted Zataria essential oil was poured on each disc.

After 24 hours of incubation, the diameters of the zone of inhibitions were measured. Minimum Inhibitory Concentration (MIC) was determined in sterile 96-well microplates. First, 100 μl of culture media containing bacteria were poured into the all wells. Then, 100 μl of antimicrobial solution was added to the first well. From the second to the third well until the tenth well, 100 μl of solution was transferred each time. Next, 100 μl of pure microbial suspension was added to the 11th well and 100 μl of the antimicrobial solution to the 12th well. The turbidity which indicates the growth or non-growth of the bacterium, was measured by a microplate (Synergy HTX, BioTek Instruments, China) at a wavelength of 545 nm for all three bacteria. The concentration of the last non-growth well was recorded as MIC. The well concentrations were arranged in descending order, from 50 to 0.097 μl/ml. In-Vivo experiments were performed to evaluate the antimicrobial properties of microbial culture and its allergenicity on the skin of 6 rats compared with control mice.

3. Results

Three bacteria isolated from the skin were identified as staphylococcus aureus, corynebacterium, and staphylococcus epidermidis. The MIC and MBC for the two strains of Staphylococcus aureus and Corynebacterium were obtained 0.39 and 0.78 mg/ml, respectively and for Staphylococcus epidermidis, they were 0.195 and 0.39 mg/ml. The results of the MicroBroth dilution showed that Zataria essential oil in very low concentrations was able to inhibit the growth of all three bacteria. It should be noted that Staphylococcus aureus and Corynebacterium had higher MIC than Staphylococcus epidermidis. This means that the essential oil has inhibited the growth of Staphylococcus epidermidis with greater strength and speed. In-vivo test results showed the antibacterial effect of Zataria essential oil on the skin of rats, and no allergic effects were observed in the allergy assessment. In cultures of samples taken from the skin of control rats, all three bacteria grew during culture, but in the cultures of samples taken from the skin of experimental rats, none of them grew, which indicates that they were killed by Zataria essential oil. After 30, 60 and 90 minutes of treatment with Zataria essential oil, no allergic reaction caused by sensitivity to this essential oil was observed in the skin of experimental rats.

4. Conclusion

The Zataria essential oil in low concentrations has long-term antimicrobial effects on the infectious bacteria.

Ethical Considerations

Compliance with ethical guidelines

This study was conducted with the tracking code of: 2545562 and registered in the national committee of ethics in medical researchs: (Code: IR.PNU.REC.1396,6).

Funding

The present paper was extracted from the master thesis of the first author Department of Biology, Payame-Noor University.
Authors’ contributions

Conceptualization: Maryam Sadnia & Sima Nasri; Methodology: Maryam Sadnia, Sima Nasri, Hamid Sobhanian; Software: Maryam Sadnia; Validation: Maryam Sadnia, Sima Nasri, Hamid Sobhanian; Formal Analysis: Soheila Faramarz Isfahanian, Maryam Sadnia; Investigation: Soheila Faramarz Isfahanian, Maryam Sadnia; Resources: Sima Nasri, Hamid Sobhanian; Data Curation: All Authors; Writing – Original Draft Preparation: Soheila Faramarz Isfahanian & Maryam Sadnia; Writing – Review & Editing: All Authors; Visualization: Maryam Sadnia; Supervision: Maryam Sadnia; Project Administration: Maryam Sadnia, Sima Nasri, Hamid Sobhanian; Funding Acquisition: Maryam Sadnia, Sima Nasri, Hamid Sobhanian.

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

The authors would like to thank the Research Vice Chancellor of Payame Noor University for their cooperation in conducting this research.
ارزیابی خواص ضدمیکروبی اساس اویشن بر پایه‌های بودی پوست جهت استفاده در مواد آرایشی

سیده فرامرزی اصفهانیان*، حمید سبحانیان، سیما نصری، حمید سیاحان

1. گروه زیست‌شناسی، دانشگاه پیام نور، تهران، ایران.

بحث

آویشن یکی از گیاهان بومی ایران است که مصرف آن به‌منظور درمان گیاهی بیماری‌ها در بین ایرانیان رواج دارد. در این تحقیق اثرات ضدمیکروبی اساس اویشن بر روی باکتری‌های پوست بررسی شده است.

مواد و روش‌ها

میکروپلیت دایلوشن روی باکتری‌های پوستی از دستگاه‌هایی که می‌توانند شیمی‌افزایی یا فیزیکی بوده و به‌منظور بروز بیماری‌های پوستی کاربرد داشته می‌باشند. به‌منظور بررسی اثرات ضدمیکروبی اساس اویشن بر باکتری‌های پوستی، باکتری‌های پوستی از سویه‌های باکتری‌ای جدا شده و به عنوان استافیلکوكوس اورئوس، کورینه باکتریوم و استافیلکوكوس اپیدرمایدیس در خاک بوده و در تست آلرژی روی چهار موش رت که به همراه گروه کنترل بررسی شده و در زمان تکرار تاکرار با کشت باکتری‌های میکروپلیت دایلوشن، با استفاده از روش‌های انتشار دیسک و مواد‌پذیری ارزیابی شده است.

نتیجه‌گیری

نتایج این مطالعه حاکی از اثرات ضدبیماری اساس اویشن بر باکتری‌های پوستی و نیز داشتن روی پوست رت‌ها بوده و در تست آلرژی، هیچ گونه اثر التهابی مشاهده نشد.

کلیدواژه‌ها: اساس اویشن، مواد آرایشی، باکتری‌های پوست

مقدمه

با ظهور عوارض جانبی آنتی‌بیوتیک‌ها و بروز پدیده مقاومت دارویی در میکروارگانیسم‌ها، توجه دانشمندان و متخصصان به گیاه درمانی و مواد مؤثر در گیاهان دارویی معطوف شده است. اویشن شیرازی از گروه گیاهان گل‌دار و از خانواده لامیناسه است. این گیاه به‌عنوان یکی از گیاهان دارویی معروف و واقعی در ایران به نظر می‌رسد.

سلامتی گیاه آویشن بومی کشورهای جنوب غربی آسیا مانند ایران، افغانستان و پاکستان و از گیاه‌های عضو خانواده لامیناسه است. از خواص گیاه آویشن می‌توان به داشتن مواد ضد قارچی، ضد حساسیت، ضد التهاب، ضد کیست هیداتید و لیسما آوردگی و انرژی از نظر آنتی‌بیوتیک‌ها در برداشت درمانی و بهبود برخی بیماری‌ها اشاره نمود.

ارزیابی خواص ضدمیکروبی اساس اویشن بر پایه‌های بودی پوست جهت استفاده در مواد آرایشی

پوست ریزش ملکه، پیام‌پردازی

* نویسنده مسئول
شیمیایی می‌تواند باعث اختلالات غددی و هورمونی شوند. ضمن اینکه با آن‌که صرف لحظاتی، این امر موجب هر چیزی اندازه‌گیری نمی‌شود.

است. تحقیقات اخیر بر کارایی این مواد تأکید دارند. البته با تداوم مصرف این مواد سرطان زایی آن‌ها نیز مطرح است. تحقیقات اخیر بر کارایی این مواد تأکید دارند؛ بنابراین اخیراً جستجو جهت یافتن گیاهی به عنوان نگهدارنده در مواد آرایشی اولویت پیدا کرده است. در این تحقیق، اثر اسانس آویشن بر باکتری‌های پوستی به منظور استفاده در مواد آرایشی مورد بررسی قرار گرفته است.

مواد و روش‌ها

تهیه‌گیاه و اسانس‌گیری

گیاه آویشن شیرازی از مزرعه گیاهان دارویی تهیه شد. گیاه درجه سانتی‌گراد ۲-۰۳ با آب مقطر شست وشو شد و در دمای در سایه خشک شد. نام علمی گیاه، اسم جنس و گونه آن توسط هرباریوم گیاهان دارویی صورت تأیید شد. اسانس‌گیری در گرم در نیم لیتر، انجام شد. ۵۰ دستگاه کلونجر و به نسبت جداسازی و شناسایی باکتری‌های پوست پشت دست با صابون شسته و خشک شد. یک سوآب استریل که با آب مقطر مرطوب شده و روی محیط کشت مولر‌هینت گذاری شد. با هر میکرولیتر محیط کشت، دو میکرولیتر اسانس خالص درجه، قطر ۷۳ سانتی‌گراد گرم‌خانه‌گذاری شد. پس از هاله‌های اطراف دیسک از حجم و تعداد و رنگ‌آمیزی باکتری‌های جداشده در حد جنس و گونه شناسایی شدند.

روش‌انتشار دیسک

معادل رقت نیم ۱/۵۰ سوپانسیون باکتری تازه باغلظت مک‌فارلند تهیه و روی محیط کشت مولر‌هینت گذاری شد. دیسک‌های بلانک در فاصله‌های مناسب روی میکرو‌آگار قرار داده شدند. روش‌هایی معمول شناسی ماکرو‌سكوپی و میکرو‌سكوپی شامل کشت در محیط‌های مختلف، بررسی کلینی و رنگ‌آمیزی باکتری‌های جداشده در حد جنس و گونه شناسایی شدند.

تعیین حداقل گلظت مهارکننده

با کمک روش میکروپلیت دایلوشن، حداقل گلظت مهارکننده۱ با استفاده از میکروپلیت‌های ۴۸ خانه استریل کمیابشد. این امر معنا بود که با انجام این روش، هر چند گلظت مهارکننده‌ای وجود داشت اما با تداوم مصرف این مواد سرطان زایی آن‌ها نیز مطرح است.

۲، Minimum Bactericidal Concentration (MBC)

1، Minimum Inhibitory Concentration (MIC)

جامع‌سازی و شناسایی باکتری‌های پوست

یک دست با دویان شسته و خشک شد. یک سوآب استریل که با آب مقطر مرطوب شده و روی محیط کشت مولر‌هینت‌گاز فان هام به دمای ۳۷ درجه سانتی‌گراد در سایه خشک شد. نام علمی گیاه و اسم غلظت آن توسط HPLC/MS تأیید شد. در این تحقیق، گیاه آویشن شیرازی از مزرعه گیاهان دارویی به عنوان نگهدارنده در مواد آرایشی اولویت پیدا کرده است. در این تحقیق، اثر اسانس آویشن بر باکتری‌های پوستی به منظور استفاده در مواد آرایشی مورد بررسی قرار گرفته است.

زیست‌بستگی در محیط‌های مختلف، بررسی کلینی و رنگ‌آمیزی باکتری‌های جداشده در حد جنس و گونه شناسایی شدند.

تعیین حداقل گلظت مهارکننده

با کمک روش میکروپلیت دایلوشن، حداقل گلظت مهارکننده۱ با استفاده از میکروپلیت‌های ۴۸ خانه استریل کمیابشد. این امر معنا بود که با انجام این روش، هر چند گلظت مهارکننده‌ای وجود داشت اما با تداوم مصرف این مواد سرطان زایی آن‌ها نیز مطرح است.

۲، Minimum Bactericidal Concentration (MBC)

1، Minimum Inhibitory Concentration (MIC)
مشخص و آگر باکتری را در این غلظت از لاساس در محیط میکروآگر که تعداد نمونه‌شده‌های کنترل برای باکتری‌های استافیلوکوکوس اپیدرمایدیس، استافیلوکوکوس اورئوس و کورینه باکتریوم گم‌پریت با تعداد باکتری‌های استافیلوکوکوس اپیدرمایدیس و کورینه باکتریوم گم‌پریت ریز کردن.

در کشت‌های مورالزاون که باکتری‌های مورد استفاده در تحقیق مورد بررسی قرار گرفته و با کناری‌های استافیلوکوکوس اورئوس، استافیلوکوکوس اپیدرمایدیس و کورینه باکتریوم که پوست و موشاها از آنها استفاده شده‌اند که یافته‌کننده که شناسایی‌های جداشده از پوست تحت عنوان استافیلوکوکوس اپیدرمایدیس، استافیلوکوکوس اورئوس و کورینه باکتریوم شناسایی شدند.

نتایج آزمایشات امیزشی مستقل خود برای باکتری‌های جدیدتر از پوست تحت میکروب‌های استافیلوکوکوس اپیدرمایدیس، استافیلوکوکوس اورئوس و کورینه باکتریوم نشان دادند.

نتایج آزمایشات امیزشی مستقل خود بررسی و تخمین میزان میکروب‌های استافیلوکوکوس اپیدرمایدیس، استافیلوکوکوس اورئوس و کورینه باکتریوم نشان دادند. البته رشد باکتری‌های استافیلوکوکوس اورئوس و کورینه باکتریوم برابر با میلی‌گرم بر میلی‌لیتر بود.

جدول ۲. قطعات اساسی (میکروگرم بر میلی‌لیتر)

نوع باکتری	سرشار	نازک	نازک‌تر
Staphylococcus epidermidis	۷۵۰۰۰	۷۰۰۰۰	۶۵۰۰۰
Staphylococcus aureus	۷۵۰۰۰۰	۷۰۰۰۰۰	۶۵۰۰۰۰
Corynebacterium spp.	۷۵۰۰۰۰	۷۰۰۰۰۰	۶۵۰۰۰۰

صدای زیست الکتریکی نشان دهنده میکروب‌های استافیلوکوکوس اپیدرمایدیس با کمک احتمالی سیستم‌های شناسایی باکتری‌های جدیدتر از پوست تحت نمایش می‌گردد.

بررسی جریان‌های الکتریکی نشان دهنده میکروب‌های استافیلوکوکوس اپیدرمایدیس با کمک احتمالی سیستم‌های شناسایی باکتری‌های جدیدتر از پوست تحت نمایش می‌گردد.

نتایج آزمایشات امیزشی مستقل خود بررسی و تخمین میزان میکروب‌های استافیلوکوکوس اپیدرمایدیس، استافیلوکوکوس اورئوس و کورینه باکتریوم نشان دادند. البته رشد باکتری‌های استافیلوکوکوس اورئوس و کورینه باکتریوم برابر با میلی‌گرم بر میلی‌لیتر بود.

جدول ۲. قطعات اساسی (میکروگرم بر میلی‌لیتر)

نوع باکتری	سرشار	نازک	نازک‌تر
Staphylococcus epidermidis	۷۵۰۰۰	۷۰۰۰۰	۶۵۰۰۰
Staphylococcus aureus	۷۵۰۰۰	۷۰۰۰۰	۶۵۰۰۰
Corynebacterium spp.	۷۵۰۰۰	۷۰۰۰۰	۶۵۰۰۰

تصویر شماره ۱ و ۲ (جدول شماره ۱) نشان دهنده میکروب‌های استافیلوکوکوس اورئوس و کورینه باکتریوم برابر با میلی‌گرم بر میلی‌لیتر بود.

جدول ۲. قطعات اساسی (میکروگرم بر میلی‌لیتر)

نوع باکتری	سرشار	نازک	نازک‌تر
Staphylococcus epidermidis	۷۵۰۰۰	۷۰۰۰۰	۶۵۰۰۰
Staphylococcus aureus	۷۵۰۰۰	۷۰۰۰۰	۶۵۰۰۰
Corynebacterium spp.	۷۵۰۰۰	۷۰۰۰۰	۶۵۰۰۰

جدول ۲. قطعات اساسی (میکروگرم بر میلی‌لیتر)

نوع باکتری	سرشار	نازک	نازک‌تر
Staphylococcus epidermidis	۷۵۰۰۰	۷۰۰۰۰	۶۵۰۰۰
Staphylococcus aureus	۷۵۰۰۰	۷۰۰۰۰	۶۵۰۰۰
Corynebacterium spp.	۷۵۰۰۰	۷۰۰۰۰	۶۵۰۰۰

نتایج آزمایشات امیزشی مستقل خود بررسی و تخمین میزان میکروب‌های استافیلوکوکوس اپیدرمایدیس، استافیلوکوکوس اورئوس و کورینه باکتریوم نشان دادند. البته رشد باکتری‌های استافیلوکوکوس اورئوس و کورینه باکتریوم برابر با میلی‌گرم بر میلی‌لیتر بود.

جدول ۲. قطعات اساسی (میکروگرم بر میلی‌لیتر)

نوع باکتری	سرشار	نازک	نازک‌تر
Staphylococcus epidermidis	۷۵۰۰۰	۷۰۰۰۰	۶۵۰۰۰
Staphylococcus aureus	۷۵۰۰۰	۷۰۰۰۰	۶۵۰۰۰
Corynebacterium spp.	۷۵۰۰۰	۷۰۰۰۰	۶۵۰۰۰

نتایج آزمایشات امیزشی مستقل خود بررسی و تخمین میزان میکروب‌های استافیلوکوکوس اپیدرمایدیس، استافیلوکوکوس اورئوس و کورینه باکتریوم نشان دادند. البته رشد باکتری‌های استافیلوکوکوس اورئوس و کورینه باکتریوم برابر با میلی‌گرم بر میلی‌لیتر بود.

جدول ۲. قطعات اساسی (میکروگرم بر میلی‌لیتر)

نوع باکتری	سرشار	نازک	نازک‌تر
Staphylococcus epidermidis	۷۵۰۰۰	۷۰۰۰۰	۶۵۰۰۰
Staphylococcus aureus	۷۵۰۰۰	۷۰۰۰۰	۶۵۰۰۰
Corynebacterium spp.	۷۵۰۰۰	۷۰۰۰۰	۶۵۰۰۰
با توجه به مضرات نگهدارنده های شیمیایی در مواد آرایشی، در این تحقیق استفاده اسانس رقیق شده آویشن در کنترل باکتری های پوست، به خوبی نشان داده شد. باکتری های پوستی در صورت مناسبی با ویژگی های ساختاری، ارگنولوژی، بیولوژی و فیزیولوژی می‌توانند عفونت پوستی و زخم‌های پوستی را سبب شوند. استفاده اسانس‌های گیاهی بهترین گزینه است، چرا که همواره و در طول تاریخ بشریت، انسان‌ها بهترین منابع غذایی و علاوه به عنوان گیاه‌شناسان، توانایی این دسته از پایه‌های درمانی در بیماری‌ها را به صراحت نشان می‌دهند. تحقیقات گسترده در سراسر جهان روی ترکیبات گیاهی، با ویژگی‌های مختلفی، شامل فعالیت ضد میکروبی، اثرات ضد تهیبی، ضد سرطانی و کنترل درون‌بازی به صورت میکروسکوپی، اثرات ضد بالستیک و ترمیمی را نشان داده‌اند.

جدول ۱. مقایسه گلچیت ذوب باکتری‌ها در سه دسته باکتری

نوع باکتری	غلظت (میکروگرم بر میلی‌لیتر)	RQ	MIC (μg/ml)
Staphylococcus epidermidis	0/39	1/256	8
Staphylococcus aureus	0/781	1/128	7
Corynebacterium spp.	0/781	1/128	7

تصویر ۲. نقشه استفاده اسانس آویشن بر باکتری‌های پوستی جهت استفاده در مواد آرایشی

چهارم، ۱۹ خرداد ۱۳۹۹، دوره ۱۰، شماره ۱
عرفان، جیره، دوره 1399 خرداد

اما شناسایی گیاهان مؤثر در پیشگیری از بروز بیماری‌ها، خواص این گیاهان در ابتدا ناشناخته و به صورت شیوه جهانی گیاه شناسی، روش‌های تحقیقی و مطالعاتی رسیده‌اند. روند دیگری در زمینه علوم، صنعتی، اقتصادی، پزشکی به شکلی هوشمندانه و به سرعت پیش می‌رود و در عرصه گیاهان دارویی و از دیدگاه طب آلترناتیو، تغییرات فراوانی از جمع آوری و خشک کردن گیاهان طبیعی و عرضه این گیاهان در عطاری‌ها وجود دارد. ابزارهای افت قیمتی از سوی صنایع به عنوان گروه ای از گیاهان طبیعی و فراورده‌های آنها در جهت حفظ ویژگی‌های گیاهان، استخراج و فرمولاسیون و عرضه مناسب آنها گشایه‌گیری شده است.

در زمینه گیاهان دارویی و استفاده بهینه از آنها، بجز شرایط کاشت، داشت و برداشت و مدیریت صحیح در توسعه اقتصاد این اقلام، همواره در میان اوراق کتاب‌های گیاه‌شناسی، جایگاه اطلاعیات دقیق و کاربردی این گیاهان، خاص است. شناسایی دقیق ترکیبات موجود در گیاهان، دارویی و خواص مخلوط چند گیاهی از مهم‌ترین مسائل در مرحله نهایی درمان

3. Zataria multiflora

تصویر ۵. واکنش میکروب‌های گروه کنترل نسبت به نسخه آویشن پس از ۹۰، ۶۰ و ۳۰ دقیقه (به ترتیب از چپ به راست).

تصویر ۶. واکنش موثر نسبت به نسخه آویشن پس از ۹۰، ۶۰ و ۳۰ دقیقه (به ترتیب از چپ به راست).
استرس‌های گیلیکوم بومی ایرانی رو به یکنیه (Streptococcus iniae) و پنومونیه مربوط به آویشن شیرازی (Mycoplasma ovipneumoniae) به روش درستی‌سازی به آسانس آویشن و برای اسکای آسانس‌های مواد غذایی (اشریشیاکولی، سالمونیتایفی موریوم، و آویشن شیرازی به تنهایی و توامان روی برخی باکتری‌ها جبلی جوان، در پژوهشی به بررسی تأثیر اسانس‌های زنیان بر روی رشد این باکتری‌ها، تست دایلونشن استفاده یافت و اسانس توانست از رشد هرسه این باکتری‌ها ممانعت به باکتری استافیلولوکوس اپیدرمیس، استافیلولوکوس اورئوس و بایر (انتشار دیسک) بر باکتری‌های پوست نشان داد که هر سه غلظت بازدارنگی و حداقل غلظت باکتری کشی صورت گرفته برای باکتری مورد آزمایش، تست‌های دایلونشن صفری و حداقل مشخص شده و همچنین نتایج تولیدی باکتری‌ها که با توجه به کمترین غلظت اسانس نشان داد که برای رشد این باکتری‌ها، تست دایلونشن استفاده شد. در این پژوهش از اسانس‌های گیاهی با آب گریه و در دستگاه دایلونشن در مورد باکتری‌های استافیلولوکوس استفاده شد. در این پژوهش غلظت‌های تولیدی و حداقل به‌عنوان کیفیت ارزیابی دیسک دایلونشن استفاده شد. در این پژوهش به کمترین غلظت اسانس نشان داد که برای رشد این باکتری‌ها، تست دایلونشن صفری و حداقل مشخص شده و همچنین نتایج تولیدی باکتری‌ها که با توجه به کمترین غلظت اسانس نشان داد که برای رشد این باکتری‌ها، تست دایلونشن صفری و حداقل مشخص شده و همچنین نتایج تولیدی باکتری‌ها که با توجه به کمترین غلظت اسانس نشان داد که برای رشد این باکتری‌ها، تست دایلونشن صفری و حداقل مشخص شده و همچنین نتایج تولیدی باکتری‌ها که با توجه به کمترین غلظت اسانس نشان داد که برای رشد این باکتری‌ها، تست دایلونشن صفری و حداقل مشخص شده و همچنین نتایج تولیدی باکتری‌ها که با توجه به کمترین غلظت اسانس نشان داد که برای رشد این باکتری‌ها، تست دایلونشن صفری و حداقل مشخص شده و همچنین نتایج تولیدی باکتری‌ها که با توجه به کمترین غلظت اسانس نشان داد که برای رشد این باکتری‌ها، تست دایلونشن صفری و حداقل مشخص شده و همچنین نتایج تولیدی باکتری‌ها که با توجه به کمترین غلظت اسانس نشان داد که برای رشد این باکتری‌ها، تست دایلونشن صفری و حداقل مشخص شده و همچنین نتایج تولیدی باکتری‌ها که با توجه به کمترین غلظت اسانس نشان داد که برای رشد این باکتری‌ها، تست دایلونشن صفری و حداقل مشخص شده و همچنین نتایج تولیدی باکتری‌ها که با توجه به کمترین غلظت اسانس نشان داد که برای رشد این باکتری‌ها، تست دایلونشن صفری و حداقل مشخص شده و همچنین نتایج تولیدی باکتری‌ها که با توجه به کمترین غلظت اسانس نشان داد که برای رشد این باکتری‌ها، تست دایلونشن صفری و حداقل مشخص شده و همچنین نتایج تولیدی باکتری‌ها که با توجه به کمترین غلظت اسانس نشان داد که برای رشد این باکتری‌ها، تست دایلونشن صفری و حداقل مشخص شده و همچنین نتایج تولیدی باکتری‌ها که با توجه به کمترین غلظت اسانس نشان داد که برای رشد این باکتری‌ها، تست دایلونشن صفری و حداقل مشخص شده و همچنین نتایج تولیدی باکتری‌ها که با توجه به کمترین غلظت اسانس نشان داد که برای رشد این باکتری‌ها، تست دایлон
در پژوهش و همچنین بررسی اثر آلرژی زایی اسانس بر پوست، فعالیت بهره‌مند و فضای مناسب برای وضعیت بهینه پوستی چهار است. اسانس‌های بسیاری می‌توانند به‌عنوان بهترین روش برای درمان آلرژی پوست را به‌نظر بارده و به‌عنوان یک روش طب سنتی، در راه‌حل‌های طب سنتی مورد استفاده قرار گیرند. در ضمن، اسانس‌های طب سنتی مانند آویشن شیرازی، به‌عنوان یکی از اسانس‌های طب سنتی بوده‌اند که در جامعه مورد استفاده قرار گرفته‌اند و دارای اثرات ضد آلرژی و درمان آلرژی‌های مختلفی هستند.

در پژوهش‌های مختلف، اسانس‌های طب سنتی به‌عنوان یک روش طب سنتی در درمان آلرژی پوست به‌عنوان یکی از اسانس‌های طب سنتی بوده‌اند که در جامعه مورد استفاده قرار گرفته‌اند و دارای اثرات ضد آلرژی و درمان آلرژی‌های مختلفی هستند. در ضمن، اسانس‌های طب سنتی مانند آویشن شیرازی به‌عنوان یکی از اسانس‌های طب سنتی بوده‌اند که در جامعه مورد استفاده قرار گرفته‌اند و دارای اثرات ضد آلرژی و درمان آلرژی‌های مختلفی هستند.

در پژوهش‌های مختلف، اسانس‌های طب سنتی به‌عنوان یک روش طب سنتی در درمان آلرژی پوست به‌عنوان یکی از اسانس‌های طب سنتی بوده‌اند که در جامعه مورد استفاده قرار گرفته‌اند و دارای اثرات ضد آلرژی و درمان آلرژی‌های مختلفی هستند. در ضمن، اسانس‌های طب سنتی مانند آویشن شیرازی به‌عنوان یکی از اسانس‌های طب سنتی بوده‌اند که در جامعه مورد استفاده قرار گرفته‌اند و دارای اثرات ضد آلرژی و درمان آلرژی‌های مختلفی هستند.
فراساز اسپفیان: مسیر صدریه‌ی متابع، سیمای تصویری، حمید سباهی‌نژاد، سارا مانه‌نژاد، ثمام نویسندگان. آماده‌سازی متن لیبر سه‌بلا فراساز اسپفیان، مسیر صدریه‌ی متابع، مسیر صدریه‌ی متابع، ثمام نویسندگان، حمید سباهی‌نژاد، ثمام نویسندگان.

تشکر و پذیرش

بنابر اظهار نویسندگان، این مقاله مطالعه منفعه‌ی کمیک‌یک دارو می‌باشد. در این نماد، پژوهش‌فردای فشار بدنی فیبری در بازی‌های خاصی با حضور آویشن، نجات گرفته‌اند.

نتایج

نتایج تحقیق حاضر در خصوص عدم آلرژی زایی اسانس رقیق شده آویشن بسیار مطلوب بود و هیچ گونه تظاهرات آلرژیک روی پوست ها مشاهده نشد.

نتایج فوق‌العاده‌ی اسپفیان، سهیلا فرامرز اصفهانیان، مریم صدرنیا، سیما نصری و حمید سباهی‌نژاد را گزارش می‌کند. همچنین، غیر آلرژی‌زایی اسانس آویشن به عنوان یک مواد آرایشی مناسب برای جایگزینی مواد نگهدارنده در باکتری‌های جوشکار، احتمالاً می‌تواند در برخی از عادات مصرفی با جایگزینی، انتخاب و مراقبت از آن در صورت آلرژی‌زایی داشته باشد.

ملاحظات اخلاقی

پیروی از اصول اخلاق پژوهش

این مطالعه با کد رهگیری 2545562 IR.PNU.REC.1396,6 و در کمیته ملی اخلاق به شماره 1396,6 ثبت شده است.

حامی مالی

این مطالعه بر اساس اهداف مالی کارشناسی ارشد نویسنده لول سه‌بلا فراساز اسپفیان در پژوهش‌های بیوتکنولوژی میکروبی، در گروه بیوتکنولوژی میکروبی، پژوهش-دانشگاه، می‌باشد. مشارکت لول نویسندگان، مفهوم سازی مسیر صدریه‌ی سیمای تصویری و مسیر صدریه‌ی مسیر صدریه‌ی روش‌شناسی، مسیر صدریه‌ی سیمای تصویری، حمید سباهی‌نژاد، ثمام نویسندگان، ثمام نویسندگان، ثمام نویسندگان، ثمام نویسندگان.
References

[1] Nagoor Meeran MF, Javed H, Al Tae H, Azimuth Sh, Ojha SK. Pharmacological properties and molecular mechanisms of thymol: Prospects for its therapeutic potential and pharmaceutical development. Frontiers in Pharmacology. 2017; 8:380. [DOI:10.3389/fphar.2017.00380] [PMID] [PMCID]

[2] Martins IM, Rodrigues SN, Barreiro F, Rodrigues AE. Microencapsulation of thyme oil by coacervation. Journal of Microencapsulation. 2009; 26(8):667-75. [DOI:10.1080/02652040802646599] [PMID]

[3] Lambert RJW, Skandamis PN, Coote PJ, Nychas GJE. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiology. 2001; 91(3):453-62. [DOI:10.1046/j.1365-2672.2001.01428.x] [PMID]

[4] Ghazvini K, Saffari H. [Bacterial contamination of eye cosmetics before and after use in Iran (Persian)]. Research in Medicine. 2007; 31(2):159-62. http://pejouhesh.sbmu.ac.ir/article-1-394-en.html

[5] Morse LJ, Williams HL, Grenn FP, Eldridge EE, Rotta JR. Septicemia due to Klebsiella pneumoniae originating from a hand-cream dispenser. The New England Journal of Medicine. 1967; 277(9):472-3. [DOI:10.1056/NEJM196708312770906] [PMID]

[6] Campana R, Scesa C, Patrone V, Vittoria E, Baffone W. Microbiological study of cosmetic products during their use by consumers: Health risk and efficacy of preservative systems. Letters in Applied Microbiology. 2006; 43(3):301-6. [DOI:10.1111/j.1472-765X.2006.01952.x] [PMID]

[7] Güven N, Kaynak Onurdağ F. [Investigation of antimicrobial and antibiofilm effects of some preservatives used in drugs, cosmetics and food products (Turkish)]. Mikrobiyoloji Bulenti. 2014; 48(1):94-105. [PMID]

[8] Halla N, Fernandes IP, Helena SA, Costa P, Boucherit-Ottmani Z, Boucherit K, et al. Cosmetics preservation: A review on present strategies. Molecules. 2018; 23(7):1571. [DOI:10.3390/molecules23071571] [PMID] [PMCID]

[9] Kishedath A, Wilkinson S, Glassey J. Assessment of hepatotoxicity and dermal toxicity of butyl paraben and methyl paraben using HepG2 and HDFn in vitro models. Toxicology in Vitro. 2019; 55:108-15. [DOI:10.1016/j.tiv.2018.12.007] [PMID]

[10] Lundov MD, Johansen JD, Zachariae C, Moensby L. Low-level efficacy of cosmetic preservatives. International Journal of Cosmetic Science. 2011; 33(2):190-6. [DOI:10.1111/j.1468-2494.2010.00619.x] [PMID] [PMCID]

[11] Cogen AL, Nizet V, Gallo RL. Skin microbiota: A source of disease or defence? The British Journal of Dermatology. 2008; 158(3):442-55. [DOI:10.1111/j.1365-2133.2008.08437.x] [PMID] [PMCID]

[12] Ali B, Al-Wabel NA, Shams S, Ahamad A, Khan SA, Anwar A. Essential oils used in aromatherapy: A systematic review. Asian Pacific Journal of Tropical Biomedicine. 2015; 5(8):601-11. [DOI:10.1016/j.aptbj.2015.05.007]

[13] Ashtaral Nakhai L, Mohammadirad A, Yasa N, Minaie B, Nikfar Sh, Ghazanfari Gh, et al. Benefits of Zataria multiflora Boiss in experimental model of mouse inflammatory bowel disease. Evidence-Based Complementary and Alternative Medicine. 2007; 4(1):43-50. [DOI:10.1093/ecam/nel051] [PMID] [PMCID]

[14] Moshafi MH, Mansouri Sh, Sharififar F, Khoshnoodi M. [Antibacterial and antioxidant effects of the essential oil and extract of Zataria multiflora Boiss (Persian)]. Journal of Kerman University of Medical Sciences. 2007; 14(1):33-43. https://www.sid.ir/fa/journal/ViewPaper.aspx?id=57685

[15] Yazdi MH, Pourmand MR, Bayat M, Shahinjafari A. [In vitro antimicrobial effects of Zataria multiflora Boiss., Myrtus communis L. and Eucalyptus officinalis against Streplococcus pneumoniae, Moraxella catarrhalis and Haemophilus influenza (Persian)]. Iranian Journal of Medicinal and Aromatic Plants. 2008; 23(4):477-83. https://www.sid.ir/fa/journal/ViewPaper.aspx?id=73853

[16] Safari R, Adel M, Monji H, Riyahi Cholicheh H, Nematalahi A. [Evaluation of antibacterial effect some of the endemic herbal essential oils on Streplococcus iniae in invitro (Persian)]. Journal of Aquatic Ecology. 2015; 4(4):33-40. [DOI:10.1111/j.1468-2494.2010.00619.x] [PMID] [PMCID]

[17] Jebeli Javan A. [Combinational effects of Trachyspermum ammi and Zataria multiflora Boiss essential oils on some pathogenic food-borne bacteria (Persian)]. Koomesh. 2016; 17(2):374-83. http://koomeshjournal.semums.ac.ir/article-1-2779-en.html

[18] Motevasel M, Okhovat MA, Zomorodian K, Farshad Sh. [Antibacterial effect of Zataria multiflora extract on MRSA (Persian)]. Iranian South Medical Journal. 2014; 17(5):900-6. http://smj.bpums.ac.ir/article-1-604-en.html

[19] Ghafourian Boroujerdina M, Azemi ME, Hemmati AA, Taghian A, Azadmehr A. Immunomodulatory effects of Astragulus gypsiculus hydroalcoholic extract in ovalbumin-induced allergic mice model. Iranian Journal of Allergy, Asthma, and Immunology. 2011; 10(4):281-8. [PMID]

[20] Nikakhlagh S, Rahim F, Hossein Nejad Aryan F, Seyyepoush A, Ghafourian Boroujerdny M, Saki N. Herbal treatment of allergic rhinitis: The use of Nigella sativa. Saki. Medical Journal of Otolaryngology. 2011; 32(5):402-7. [DOI:10.1016/j.amjoto.2010.07.019] [PMID] [PMCID]