Ubiquitous Lens α-, β-, and γ-Crystallins Accumulate in Anuran Cornea as Corneal Crystallins*

Kannan Krishnan1, Thandavarayan Kathiresan1, Rajeev Raman2, Bheemreddy Rajini, Vishnu M. Dhople, Ramesh K. Aggrawal, and Yogendra Sharma3

From the Centre for Cellular and Molecular Biology, Uppal Road, Hyderbad-500 007, India

Corneal epithelium is known to have high levels of some metabolic enzymes such as aldehyde dehydrogenase in mammals, gelsolin in zebrafish, and α-enolase in several species. Analogous to lens crystallins, these enzymes and proteins are referred to as corneal crystallins, although their precise function is not established in any species. Although it is known that after lentectomy, the outer cornea undergoes transdifferentiation to regenerate a lens only in anuran amphibians, major proteins expressed in an anuran cornea have not been identified. This study therefore aimed to identify the major corneal proteins in the Indian toad (Bufo melanostictus) and the Indian frog (Rana tigrina). Soluble proteins of toad and frog corneas were resolved on two-dimensional gels and identified by matrix-assisted laser desorption ionization time-of-flight/time-of-flight and electrospray ionization quadrupole time-of-flight. We report that anuran cornea is made up of the full complement of ubiquitous lens α-, β-, and γ-crystallins, mainly localized in the corneal epithelium. In addition, some taxon-specific lens crystallins and novel proteins, such as α- or β-enolase/τ-crystallin, were also identified. Our data present a unique case of the anuran cornea where the same crystallins are used in the lens and in the cornea, thus supporting the earlier idea that crystallins are essential for the visual functions of the cornea as they perform for the lens. High levels of lens α-, β-, and γ-crystallins have not been reported in the cornea of any species studied so far and may offer a possible explanation for their inability to regenerate a lens after lentectomy. Our data that anuran cornea has an abundant quantity of almost all the lens crystallins are consistent with its ability to form a lens, and this connection is worthy of further studies.

Some enzymes and proteins have been found in unusually high concentrations in the corneal epithelium of many species (6). For example, aldehyde dehydrogenases 1 and 3 (7–9), transketolase (10), and isocitrate dehydrogenase (11) are expressed in human and bovine cornea, cyclophilin in the chicken cornea (6), and gelsolin in the zebrafish cornea (12), whereas α-enolase is expressed in the corneas of many species (6, 13, 14). Because their expression in corneal epithelium is significantly high, these proteins have been termed corneal crystallins, analogous to the multifunctional lens crystallins (9, 15–17). However, whether these abundant corneal proteins can legitimately be considered as crystallins is a matter of discussion. Because many examples of unusually high levels of enzymes in the cornea are now known (6–14), the idea of corneal crystallins has gained considerable support (9, 15, and 17), although the exact function of the corneal crystallins is not established for any species. The recognition that, akin to lens crystallins, corneal crystallins exist is a novel concept that has implications that involve the process by which multifunctional gene products have evolved. It is not known whether the corneal crystallins contribute to the optical properties of a cornea. Thus, the structural and functional relationship between the lens and corneal crystallins remains ambiguous. In some cases, corneal crystallins perform several functions; aldehyde dehydrogenase is shown to play a protective role against oxidative stress and in the regulation of cell cycle (18, 19).

Interestingly, some members of the aldehyde dehydrogenase family are lens as well as corneal crystallins (20). Although not many examples of crystallins common to the lens and cornea are known, there are a few examples such as τ-crystallin, which is present in the lenses of several species and is also a corneal crystallin (6, 14). Some invertebrates (e.g. squid and scallop) accumulate lens crystallins in their corneas, suggesting that common lens and corneal crystallins exist (21, 22). However, the validity of this concept still requires more verification. Vertebrate ubiquitous lens α-, β-, and γ-crystallins have not been found to accumulate in the cornea of any species studied so far. If true, these crystallins are also corneal crystallins, it would be really important and possible to correlate the optical functions of corneal crystallins. As mentioned, corneas of only a few species have been analyzed for the presence of abundant proteins. It is, therefore, important to identify the abundant proteins in the cornea of a number of diverse species in order to understand the nature of corneal crystallins.

We have attempted to identify the major soluble proteins expressed in anuran cornea. After lentectomy, anuran such as Xenopus laevis exhibits a unique property of regenerating a
α-, β-, and γ-Crystallins in Anuran Cornea

The lens by transdifferentiation of the outer corneal epithelium (23–26). This transdifferentiation process is known to be triggered by several factors such as fibroblast growth factors and vitamin A (27–30). In fact, when implanted into the vitreous chamber of a host larva, fragments of outer cornea transdifferentiate into lens fibers (31–34). However, the molecular basis of this lens-forming competence of the corneal epithelium is not understood and has been a subject of intense investigations. The focus has been largely on the identification of factors that could induce lens formation. However, a major unanswered question is: Why does only an anuran cornea have lens-forming competence? Is the composition of an anuran cornea different from that of others? Do anuran corneas have abundant transcripts for the α-, β-, and γ-crystallins? To the best of our knowledge, no study has been directed toward the identification of the abundant proteins in anuran cornea or understanding its protein composition and its comparison with other species that could throw light on this unique property of anuran cornea.

With these objectives, we undertook detailed analysis of the major corneal proteins from an Indian toad (Bufo melanostictus) as a representative of anuran amphibian. To our utmost surprise, we found that cornea of the Indian toad contains almost the full complement of vertebrate ubiquitous lens α-, β-, and γ-crystallins. The major protein spots observed on a two-dimensional gel of the toad cornea and identified by MALDI-TOF/TOF and ESI-Q-TOF belong to these ubiquitous lens crystallins, namely αA-, αB-, βB2-, βA1/A3-, βA2-, and γ-crystallins. Immunofluorescence analysis using mouse polyclonal antibodies for αB-, βB2-, and γ-crystallins demonstrates that these crystallins are largely localized in the corneal epithelium, thus supporting the hypothesis of corneal crystallins (15, 17) and suggesting that they are essential for the visual functions of cornea.

MATERIALS AND METHODS

Indian Toad and Frog Corneas—The adult toads and frogs were caught from the field and identified as B. melanostictus and Rana tigrina. The animals were handled according to Association for Research in Vision and Ophthalmology guidelines and approved by the institutional ethics committee for handling animals. The corneas were surgically removed, carefully excised manually from gels and were subjected to in-gel digestion using sequencing grade bovine trypsin (Sigma) reconstituted in 25 mM ammonium bicarbonate at pH 8.0 at a molar ratio of the protein to trypsin between 10:1 and 30:1. After digestion, peptides from the gel were extracted twice using 100 μl of 50% acetonitrile containing 5% trifluoroacetic acid.

Mass Spectrometry—Peptide mass fingerprinting of the reconstituted peptides was obtained using MALDI-TOF/TOF Analyzer (MDS SCIEX, Applied Biosystems) mass spectrometer. For determination of internal sequence tags of the protein, MS/MS fragmentation spectra were obtained using API Q-STAR Pulsar from PE SCIEX, Applied Biosystems, with nanospray source at 1000 V spraying voltage. Protein identifications by peptide mass fingerprinting were examined for the number of peptides matched (at least 5) or the sequence coverage (15–20%) using MASCOT search on the NCBI data base. Protein identification was confirmed with MS/MS data that were analyzed by the program Bio-Analyist from PE SCIEX, Canada, and homology searches were carried out using sequence tags. We have included only those protein identifications that were confirmed by MS/MS analysis.

Preparation and Validation of Anti-βB2- and Anti-γ-Crystallin Antibodies—Recombinant purified γ- and βB2-crystallins (~150 μg) cloned from bovine lens were emulsified with Freund’s complete adjuvant (Sigma) and injected into Balb/c mouse subcutaneously. Serum was separated, and antibody titer and specificity were assessed by Western blot analysis using recombinant-specific proteins.

Western Immunoblot and RT-PCR—Corneas of common Indian toad and frog were removed surgically and homogenized in 50 mM Tris buffer, pH 7.5, containing 100 mM NaCl, 0.02% sodium azide, 1 mM EDTA. ~60 μg of protein was resolved on 12% SDS-PAGE and transferred onto a nitrocellulose (Hybond-P; Amersham Biosciences) membrane, probed with polyclonal mouse anti-βB2- or γ-crystallin antibodies (1:5000 dilution) and secondary antibody anti-mouse-horseradish peroxidase, and visualized using an ECL kit (Amersham Biosciences, Inc.). Polyclonal anti-αB-crystallin antibody raised against αB-crystallin-specific peptide (kindly provided by Dr. Mohan Rao, Centre for Cellular and Molecular Biology) was used to probe αB-crystallin. For RT-PCR, total RNA was extracted from the whole cornea using TRIzol reagent, and first-strand cDNA synthesis was performed using a kit from Invitrogen. The RT-PCR was performed using gene-specific primers designed from the crystallin sequences of frog for αB, βB2, and βA1-crystallins and γI1-crystallin from bovine.

Immunofluorescence Staining and Confocal Imaging—The frozen sections of cornea (10 μm) were prepared by a cryomicrotome (Leica Microsystems), fixed in 100% methanol for 1 min, and washed with 1× phosphate-buffered saline, pH 7.2. The sections were incubated with appropriate antibody (mouse polyclonal) at 1:100 dilution. After three washes with phosphate-buffered saline, sections were visualized with fluorescein isothiocyanate-labeled sheep anti-mouse antibody (Jackson Laboratories) at a 1:200 dilution. The nucleus was stained with propidium iodide. Dual immunofluorescence microscopy was also carried out on a confocal microscope (model LSM 510...
RESULTS AND DISCUSSION

Cornea is a transparent tissue, composed of an outer layer called the corneal epithelium, middle stroma, and inner endothelial layer. The morphology of a toad cornea is shown in Fig. 1. The stroma, which forms a major part of the cornea, is largely made up of type II collagen and keratan sulfate proteoglycans. Corneal epithelium is made up of three layers of cells, whereas endothelium is a single cell layer.

Abundant proteins in the corneal epithelium from a few species (such as mammal, birds, and zebrafish) have been identified. Corneal epithelium of these species is known to accumulate several metabolic enzymes, such as aldehyde dehydrogenase (7–9), α-enolase (6, 13, 14), or gelsolin (12). In this study, we have selected the Indian toad as a representative of anuran amphibian and identified major soluble proteins in the cornea. This would be important not only because anuran corneas are known to have lens-forming competence but also to understand the nature of corneal crystallins in these amphibians. To analyze the abundant proteins expressed in toad cornea, we have resolved corneal soluble proteins on a 12% two-dimensional gel and identified the major protein spots by mass spectrometry.

High Accumulation of Ubiquitous Lens Crystallins in the Cornea of Common Indian Toad and Frog—Fig. 2 shows two-dimensional gel electrophoresis of toad (Bufo) total corneal extract. Most of the spots in the two-dimensional SDS-PAGE accumulated in the range of 20 and 50 kDa (Fig. 2). The major spots seen on a two-dimensional gel pattern of toad corneal homogenate were quite similar to those of the spots on two-dimensional gel of the homogenate of a toad lens (Fig. 3).

We selected the major spots (38 spots) of molecular mass between 15 and 50 kDa from one two-dimensional gel and analyzed by MALDI-TOF/TOF and ESI-Q-TOF. The results of protein identification are summarized in Table 1.
TABLE 1
Protein identifications for spots from two-dimensional gel of water-soluble fractions of *Bufo* corneal epithelium shown in Fig. 2 by MS/MS sequencing

Spot number	Protein identification	Precursor ion MW	MS/MS sequence/tag
2	α/β-Enolase	1148.58	(244.1594)LPVGASSF(128.0220)
4	βB3	1334.62	(386.1279)GEQFVLE(128.0955)
5	α/β-Enolase	1148.62	(244.1062)L(773.3607),(768.3766)SF(128.0739)
6	Calzegazarin	1331.64	(294.1019)NTELVSTF(128.0956)
10	βB1 or βA4	1492.74	IIIFEQENFGGR
15	βA4	1492.73	(226.1294)IFEQENFGGQ(156.0672)
16	βB2	1393.68	(212.2126)LYENPNFTG(127.9907)
18	βA2	1411.64	(226.1973)IFEQENFGGQ(156.0534)
19	βB2	1393.69	(212.1364)LYENPNFTG(128.0214)
20	βA4	1492.73	(226.1973)IFEQENFGGQ(156.0534)
21	βB2	1393.68	(212.1915)LYENPNFTG(127.9965)
22	βB2	1393.69	(212.1201)LYENPNFTG(128.0932)
28	γf	1178.57	(163.0722)TEVGATP(156.0931)
29	αA	1033.52	(184.1320)GPFPYN(156.0758)
30	αA	1033.52	(184.1320)GPFPYN(156.0758)
31	αB	1503.72	(220.0900)MDGLSEV(156.1109)
32	αA	1033.53	(113.2031)PSWLEGMSEL(155.9630)

TABLE 2
Major proteins expressed in *R. tigrina* corneal epithelium

Spot number	Protein identification	MASCOT search	Number of peptides matched	Sequence coverage	Peptide mass fingerprint span	Theoretical mass	Observed mass
1	α-Enolase	103	10	28	9–250	47.3	40.3
2	Phytanol-CoA hydroxylase	72	10	25	81–276	39	38.6
3	Solute carrier family 25	76	7	26	35–136	29	33.9
4	βB1-Crystallin	136	9	51	25–253	29.0	28.0
5	βB3-Crystallin	85	7	39	25–195	29.0	24.3
6	βA3-2 Crystallin	141	9	66	11–211	24.0	25.1
7	βA3-1 Crystallin	118	8	49	17–211	24.0	25.1
8	B-lymphocyte stimulator	86	6	38	22–175	24.3	22.7
9	γ-Crystallin I	81	5	23	22–122	17.9	16.5
11	Glutathione S-transferase	99	8	32	1–135	20.3	25.7
12	βB2-Crystallin short isoform	181	13	45	1–212	20.1	21.0
13	Tripatite motif protein	119	9	38	14–136	20.9	23.9

MS/MS identification data are presented in Table 1. Two spots for αA and αB-crystallin each were identified. Expression of αB-crystallin is not surprising because it is known to be expressed in a large number of tissues. However, the expression of αA-crystallin in cornea is important because it is considered a lens-specific crystallin. There were five spots for βB2-crystallins, suggesting different forms of this crystallin with similar molecular mass but different pl (Fig. 2, Table 1). Alternatively, spliced forms of some β-crystallins have earlier been observed in the lens, where more than one protein spot was identified as βB2-crystallin (35, 36), suggesting a similar composition of lens and corneal crystallins. Due to high internal sequence homology, it was difficult to clearly distinguish some spots between various β-crystallins, such as MS/MS data of one spot (spot 15) matched to βA4-crystallin as well as to βB2-crystallin (Table 1). One spot was identified as γl-crystallin (Table 1). These crystallins form >60% of the total proteins from corneal epithelium as approximately estimated by densitometry scan. Because these results were unexpected and could possibly be due to contamination with lens crystallins, we took extreme care during surgical removal of a cornea to make sure that the iris and the lens were not damaged so that potential contamination from lens tissue was avoided. Additionally, before scraping the epithelium, corneas were washed thoroughly with phosphate-buffered saline. We obtained similar results analyzing the spots from several other two-dimensional gels by MALDI-TOF/TOF. Almost all the lens-specific crystallins mentioned above were also identified in these independent two-dimensional gels (data not shown).

To investigate whether these crystallins also accumulate in the frog cornea, the proteins expressed in the cornea of *R. tigrina* were analyzed. MALDI-TOF/TOF analysis of the major spots from a two-dimensional gel identified several lens crystallins in *R. tigrina* cornea, suggesting that the accumulation of α-, β-, and γ-crystallins is an inherent characteristic of anuran cornea (Fig. 4, Table 2).

Presence of Enzyme Crystallins (Taxon-specific Crystallins) in Anuran Cornea—As many taxa ranging from cephalopods to mammals have enzyme crystallins in their cornea, we expected the expression of some taxon-specific corneal crystallins in the
amphibian cornea too. Interestingly, we found several taxon-specific lens crystallins such as β-crystallin/α- or β-enolase in the toad cornea (Table 1). This taxon-specific lens crystallin is also corneal crystallin in several species (6, 19, 22, 37, 39), including Bufo lens (Fig. 3). Three spots of different pI were identified for β-crystallin/α-enolase, suggesting the presence of alternatively spliced or post-translationally modified forms (Fig. 2). Such isoforms of β-crystallin have also been seen in crocodile cornea (14) as well as in Bufo lens. Our data demonstrate that toad cornea not only expresses lens α-, β-, and γ-crystallins but some taxon-specific lens crystallins too. We have also identified some proteins in the toad cornea, such as albumin and calgizzarin. However, we have not verified their identification by another method. It is interesting to note that this protein has not been reported in the corneas of bovine, crocodile, fish, and chicken. The function of these proteins in anuran cornea is yet to be ascertained. At this stage, we do not propose to classify them as corneal crystallins.

Western Blot and RT-PCR Analysis—We further confirmed by Western blot and RT-PCR analyses that Bufo and Rana corneas express ubiquitous lens crystallins. The proteins of the total corneal homogenate were resolved on SDS-PAGE. Using properly validated antibodies the expression of αB-, βB2-, and γ-crystallins in anuran cornea was confirmed by Western blot (Fig. 5A). The observed comparable intensities in the Western blot seen in the case of βB2- and γII-crystallins (Fig. 5A, lanes 3–5) could be due to underestimation of corneal proteins, because many of these proteins have no or little aromatic amino acids. We also used the RT-PCR strategy for confirmation of the expression of a few selected crystallins. Gene-specific primers were designed from different exons to avoid any amplification from genomic DNA contamination. Using gene-specific primers for αA, βB2, βA1, and γII-crystallins, we have demonstrated that transcripts for all these crystallins are present in the cornea (Fig. 5B), thus confirming the results of our proteomics analysis.

α-, β-, and γ-Crystallins in Anuran Cornea

Western Blot and RT-PCR Analysis—We further confirmed by Western blot and RT-PCR analyses that Bufo and Rana corneas express ubiquitous lens crystallins. The proteins of the total corneal homogenate were resolved on SDS-PAGE. Using properly validated antibodies the expression of αB-, βB2-, and γ-crystallins in the toad cornea was confirmed by Western blot (Fig. 5A). Three spots of different pI were identified for αB-crystallin/α-enolase, suggesting the presence of alternatively spliced or post-translationally modified forms (Fig. 2). Such isoforms of αB-crystallin have also been seen in crocodile cornea (14) as well as in Bufo lens. Our data demonstrate that toad cornea not only expresses lens α-, β-, and γ-crystallins but some taxon-specific lens crystallins too. We have also identified some proteins in the toad cornea, such as albumin and calgizzarin. However, we have not verified their identification by another method. It is interesting to note that this protein has not been reported in the corneas of bovine, crocodile, fish, and chicken. The function of these proteins in anuran cornea is yet to be ascertained. At this stage, we do not propose to classify them as corneal crystallins.

Western Blot and RT-PCR Analysis—We further confirmed by Western blot and RT-PCR analyses that Bufo and Rana corneas express ubiquitous lens crystallins. The proteins of the total corneal homogenate were resolved on SDS-PAGE. Using properly validated antibodies the expression of αB-, βB2-, and γ-crystallins in anuran cornea was confirmed by Western blot (Fig. 5A). The observed comparable intensities in the Western blot seen in the case of βB2- and γII-crystallins (Fig. 5A, lanes 3–5) could be due to underestimation of corneal proteins, because many of these proteins have no or little aromatic amino acids. We also used the RT-PCR strategy for confirmation of the expression of a few selected crystallins. Gene-specific primers were designed from different exons to avoid any amplification from genomic DNA contamination. Using gene-specific primers for αA, βB2, βA1, and γII-crystallins, we have demonstrated that transcripts for all these crystallins are present in the cornea (Fig. 5B), thus confirming the results of our proteomics analysis.

αB-, βB2-, and γII-Crystallins in Anuran Cornea

Western Blot and RT-PCR Analysis—We further confirmed by Western blot and RT-PCR analyses that Bufo and Rana corneas express ubiquitous lens crystallins. The proteins of the total corneal homogenate were resolved on SDS-PAGE. Using properly validated antibodies the expression of αB-, βB2-, and γ-crystallins in anuran cornea was confirmed by Western blot (Fig. 5A). Three spots of different pI were identified for αB-crystallin/α-enolase, suggesting the presence of alternatively spliced or post-translationally modified forms (Fig. 2). Such isoforms of αB-crystallin have also been seen in crocodile cornea (14) as well as in Bufo lens. Our data demonstrate that toad cornea not only expresses lens α-, β-, and γ-crystallins but some taxon-specific lens crystallins too. We have also identified some proteins in the toad cornea, such as albumin and calgizzarin. However, we have not verified their identification by another method. It is interesting to note that this protein has not been reported in the corneas of bovine, crocodile, fish, and chicken. The function of these proteins in anuran cornea is yet to be ascertained. At this stage, we do not propose to classify them as corneal crystallins.

Western Blot and RT-PCR Analysis—We further confirmed by Western blot and RT-PCR analyses that Bufo and Rana corneas express ubiquitous lens crystallins. The proteins of the total corneal homogenate were resolved on SDS-PAGE. Using properly validated antibodies the expression of αB-, βB2-, and γ-crystallins in anuran cornea was confirmed by Western blot (Fig. 5A). The observed comparable intensities in the Western blot seen in the case of βB2- and γII-crystallins (Fig. 5A, lanes 3–5) could be due to underestimation of corneal proteins, because many of these proteins have no or little aromatic amino acids. We also used the RT-PCR strategy for confirmation of the expression of a few selected crystallins. Gene-specific primers were designed from different exons to avoid any amplification from genomic DNA contamination. Using gene-specific primers for αA, βB2, βA1, and γII-crystallins, we have demonstrated that transcripts for all these crystallins are present in the cornea (Fig. 5B), thus confirming the results of our proteomics analysis.
in an adult toad cornea. As seen in Fig. 6, all three crystallins are localized largely in the corneal epithelium (outer cornea). However, low levels of expression of these proteins are also seen in the corneal stroma. The tissue specimens were also stained with secondary antibody, leaving primary antibody to check the specificity. As expected, we did not observe any staining in these samples, indicating that there is no artifact due to nonspecific staining (data not shown). These results are consistent with earlier studies in which high accumulation of several proteins has been reported in the epithelial cell layers in cornea (12). It has been considered a characteristic for defining a corneal crystallin (9, 15, 17).

Ubiquitous Crystallins as Crystallins in Lens and Cornea of Anurans—Accumulation of enzymes and proteins in the corneas of several taxa such as cephalopods, fish, crocodiles, and mammals raises the question as to whether the abundant corneal proteins in these species can logically be considered as crystallins (15–17). Some invertebrates (e.g. squid and scallop) have high concentrations of glutathione S-transferase and aldehyde dehydrogenase in their corneas that are also lens crystallins (23, 25, 27–29, 45), although we have not been able to demonstrate for the first time that the cornea of a toad and frog contains anurans express ubiquitous lens crystallins in cornea. Our data thus support the earlier idea that diverse, evolutionarily distant species have recruited a different set of proteins in cornea; only anuran corneas are rich in lens crystallins, unlike the corneas of many other species studied so far. Interestingly, it is well known that the outer cornea of Xenopus transdifferentiates into lens fibers (23–25, 27–29, 45), although we have not been able to analyze the cornea of Xenopus. There have also been few reports on the occurrence of corneal transdifferentiation in Rana and Bufo (25, 38). The mechanism of corneal transdifferentiation to lens is not clearly understood. The prevalence of lens crystallins in anuran cornea is consistent with the lens-forming competence of their cornea, and further studies are necessary to establish the relationship between the presence of lens crystallins in the cornea and the mechanism of transdifferentiation from cornea to lens. It appears that anuran cornea could partly be a lens even before transdifferentiation, and therefore, the final conversion into lens is relatively easy to accomplish as the pathway for differentiation is already in motion. It is possible that the same crystallin transcripts are used during transdifferentiation of corneas into lens as are used in the development of cornea before transdifferentiation. We propose this as a possibility, and this connection is worthy of further studies in order to understand the mechanism of transdifferentiation, which would have significant clinical implications in regenerative biology.

Acknowledgments—We acknowledge G. Srinivas for help with microscopy, R. Nandini for confocal microscopy, Dr. Mohan Rao for providing α-B-crystallin antibody, Dr. M. J. Mahesh Kumar for arranging toads and frog, and M. K. Jobby for βB2- and γ-crystallins. We thank Dr. T. Ramakrishna for helpful discussions.

REFERENCES

1. Wistow, G. J., and Piatigorsky, J. (1988) Annu. Rev. Biochem. 57, 479–504
2. Bhat, S. P. (2004) Exp. Eye Res. 79, 809–816
3. Bloemendal, H., de Jong, W., Jaenicke, R., Lubsen, N. H., Slingsby, C., and Tardeiu, A. (2004) Prog. Biophys. Mol. Biol. 86, 407–485
4. Piatigorsky, J., and Wistow, G. (1991) Science 252, 1078–1079
5. Wistow, G., and Piatigorsky, J. (1987) Science 236, 1554–1556
6. Cuthbertson, R. A., Tomarev, S. I., and Piatigorsky, J. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 4004–4008
7. Abedinia, M., Pain, T., Algar, E. M., and Holmes, R. S. (1990) Exp. Eye Res. 51, 419–426
8. Cooper, D. L., Baptist, E. W., Enghild, J. J., Isola, N. R., and Klintworth, G. K. (1991) Gene 98, 201–207
9. Jester, J. V., Moller-Pedersen, T., Huang, J., Sax, C. M., Kays, W. T., Cavanagh, H. D., Petroll, W. M., and Piatigorsky, J. (1999) J. Cell Sci. 112, 613–622
10. Sax, C. M., Salamon, C., Kays, W. T., Guo, J., Yu, F. X., Cuthbertson, R. A., and Piatigorsky, J. (1996) J. Biol. Chem. 271, 33568–33574
11. Sun, L., Sun, T. T., and Lavker, R. M. (1999) J. Biol. Chem. 274, 17334–17341
12. Xu, Y. S., Kantorow, M., Davis, J., and Piatigorsky, I. (2000) J. Biol. Chem. 275, 24645–24652
13. Zieske, J. D., Bukusoglu, G., Yankaukas, M. A., Wasson, M. E., and Keuttman, H. T. (1992) Dev. Biol. 151, 18–26
14. Kathiresan, T., Krishnan, K., Krishnakumar, V., Agrawal, R., Anand, A., Muradilhah, D., Mishra, A. K., Dhole, V. M., Aggrawal, R. K., and Sharma, Y. (2006) FEBS J. 273, 3370–3380
15. Piatigorsky, J. (2000) J. Ocul. Pharmacol. Ther. 16, 173–180
16. Piatigorsky, J. (1998) Ann. N. Y. Acad. Sci. 842, 7–15
17. Piatigorsky, J. (2001) Cornea 20, 853–858
18. Urna, L., Harihar, J., Sharma, Y., and Balasubramanian, D. (1996) Exp. Eye Res. 63, 117–119
19. Estey, T., Piatigorsky, J., Lassen, N., and Vasiliiu, V. (2006) Exp. Eye Res. 84, 3–12
20. Cooper, D. L., Isola, N. R., Stevenson, K., and Baptist, E. W. (1993) Adv. Exp. Med. Biol. 328, 169–179
21. Piatigorsky, J., Kozmik, Z., Horwitz, J., Ding, L., Carosa, E., Robison, W. G., Jr., Steinbach, P. J., and Tamm, E. R. (2000) J. Biol. Chem. 275, 41064–41073
22. Tomarev, S. I., and Piatigorsky, J. (1996) Eur. J. Biochem. 235, 449–465
23. Freeman, G. (1963) J. Exp. Zool. 154, 39–66
24. Henry, J. J., and Elkins, M. B. (2001) Dev. Genes Evol. 211, 377–387
25. Keeler, R. W. (1954) J. Exp. Biol. 29, 1–46
26. Call, M. K., Grogg, M. W., and Tsonis, P. A. (2005) Anat. Rec. B New Anat.
287, 42–48
27. Filoni, S., Bosco, L., and Cioni, C. (1982) *Acta Embryol. Morphol. Exp.* 3, 15–28
28. Bosco, L., Valle, C., and Willems, D. (1993) *Dev. Growth Differ.* 35, 257–270
29. Bosco, L., Venturini, G., and Willems, D. (1997) *Development* 124, 421–428
30. Shekhawat, D. S., Jangir, O. P., Prakash, A., and Pawan, S. (2001) *J. Biosci.* (Bangalore) 26, 571–576
31. Reeve, J. G., and Wild, A. E. (1978) *J. Embryol. Exp. Morphol.* 48, 205–214
32. Filoni, S., Bosco, L., Paglioni, N., and Cioni, C. (1980) *J. Exp. Zool.* 211, 303–309
33. Filoni, S., and Bosco, L. (1992) *Dev. Growth Differ.* 34, 619–625
34. Mizuno, N., Mochii, M., Takahashi, T. C., Eguchi, G., and Okada, T. S. (1999) *Differentiation* 64, 143–149
35. Lampi, K. J., Shih, M., Ueda, Y., Shearer, T. R., and David, L. L. (2002) *Investig. Ophthalmol. Vis. Sci.* 43, 216–224
36. Wilmarth, P. A., Taube, J. R., Riviere, M. A., Duncan, M. K., and David, L. L. (2004) *Investig. Ophthalmol. Vis. Sci.* 45, 2705–2715
37. Singh, S.V., Hong, T. D., Srivastava, S. K., and Awasthi, Y. C. (1985) *Exp. Eye Res.* 40, 431–437
38. Simirskii, V. N. (1982) *Ontogenes* 13, 281–288
39. King, G., Hirst, L., and Holmes, R. (1999) *Adv. Exp. Med. Biol.* 463, 189–198
40. Mishra, A. K., Chandrashekhar, R., Aggarwal, R. K., and Sharma, Y. (2002) *Protein Expression Purif.* 25, 59–64
41. Agrawal, R., Chandrashekhar, R., Mishra, A. K., Ramadevi, J., Sharma, Y., and Aggarwal, R. K. (2002) *J. Biosci. (Bangalore)* 27, 251–259
42. Sinha, D., Esumi, N., Jaworski, C., Kozak, C. A., Pierce, E., and Wistow, G. (1998) *Mol. Vis.* 4, 8–12
43. Gopal-Srivastava, R., Kays, W. T., and Piatigorsky, J. (2000) *Mech. Dev.* 92, 125–134
44. Piatigorsky, J. (1998) *Prog. Retin. Eye Res.* 17, 145–174
45. Cannata, S. M., Arresta, E., Bernardini, S., Gargioli, C., and Filoni, S. (2003) *J. Exp. Zool. A Comp. Exp. Biol.* 299, 161–171