Prediction of potentially high PM$_{2.5}$ concentrations in Chengdu, China

Yingying Zeng1, Daniel A. Jaffe2,3, Xue Qiao4,5, Yucong Miao6, Ya Tang1,5*

1 Department of Environment, College of Architecture and Environment & Healthy Food Evaluation Research Center, Sichuan University, No. 24, South Section One, First Ring Road, Chengdu, Sichuan 610065, China

2 Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA

3 School of Science, Technology, Engineering, and Mathematics, University of Washington, Bothell, WA, USA

4 Institute of New Energy and Low-Carbon Technology, Sichuan University, No. 24, South Section One, First Ring Road, Chengdu, Sichuan 610065, China

5 State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, No. 24, South Section One, First Ring Road, Chengdu, Sichuan 610065, China

6 State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China

* Corresponding author at: Department of Environment, College of Architecture and Environment, Sichuan University, No. 24, South Section One, First Ring Road, Chengdu, Sichuan 610065, China.

E-mail address: tangya@scu.edu.cn

Table S1: Person correlation analysis of PM$_{2.5}$ concentration in the monitoring sites.

	USE	LJX	JQLH	CTS	SLD	SHP	SWY	RMGY
USE	1							
LJX		1						
JQLH			1					
CTS				1				
SLD					1			
SHP						1		
SWY							1	
RMGY								1

Note: ** P<0.01. USE: US Embassy and Consulate station; LJX: Liangjiaxiang station; JQLH: JinquanLianghe station; CTS: Caotangsi station; SLD: Shilidian station; SHP: Shahepu station; SWY: Sanwayao station; RMGY: People's Park station.

Table S2: List of meteorological parameters used in this study.
NO.	Data source	Variables	Description
1	1	Year	Year
2	1	Mon	Month
3	1	TEM	Average daily (24-hour) temperature (°C)
4	1	TMAX	Daily maximum air temperature (°C)
5	1	TMIN	Daily minimum air temperature (°C)
6	1	RH	Average daily (24-hour) relative humidity (%)
7	1	RHMAX	Daily maximum relative humidity (%)
8	1	RHMN	Daily minimum relative humidity (%)
9	1	WD	Average daily (24-hour) wind direction (degree)
10	1	WS	Average daily (24-hour) wind speed (m/s)
11	1	PRC	Daily total precipitation (mm)
12	1	SLP	Sea level pressure (hPa)
13	1	SLP_{sd}	Sea level pressure 5 days earlier (hPa)
14	2	WD_{8/20}	Vector wind direction (degrees) in lowest 1000 meters height at 8 am and 8 pm local time
15	2	WS_{8/20}	Wind speed in the lowest 1000 meters height at 8 am and 8 pm local time (m/s)
16	2	T_{1km8/20}	Air temperature (°C) in the lowest 1000 meters at 8 am and 8 pm local time
17	2	RH_{1km8/20}	Relative humidity in the lowest 1000 meters height at 8 am and 8 pm local time (%)
18	2	Mix_{1km8/20}	Water vapor mixing ratio in the lowest 1000 meters height at 8am and 8pm local time (g/kg)
19	2	CAPE_{8/20}	Convective available potential energy at 8am and 8pm local time
20	2	LCLP_{8/20}	Lifting condensation level pressure in hPa at 8 am and 8 pm local time
21	2	MLTheta_{8/20}	Mean mixed layer potential temperature in K at 8 am and 8 pm local time
22	2	MLMR_{8/20}	Mean mixed layer mixing ratio in g/kg at 8am and 8pm local time
23	2	Thick	1000 mb to 500 mb thickness in meters at 8am and 8pm local time
24	3	TrajDist	Endpoint distant (point to point) after 12 hours (a) / 24 (b) hours of transport for a back trajectory initialized at 10 am and 10 pm local time (Km)
25	3	TrajQ	Endpoint quadrant after 12 hours (a) / 24 (b) hours of transport for a back trajectory initialized at 10 am and 10 pm local time
26	3	TrajDegs	Endpoint degrees after 12 hours (a) / 24 (b) hours of transport for a back trajectory initialized at 10 am and 10 pm local time (degree)
Data source:
1. China Meteorological Administration
2. Radiosonde (balloon) data (http://weather.uwyo.edu/upperair/sounding.html)
3. HYSPLIT model (v4.9)
The effect of each meteorological factor on the PM$_{2.5}$ concentration. All the selected meteorological factors have a non-linear relationship with PM$_{2.5}$ concentration.

Fig. S1 Partial response plots for daily PM$_{2.5}$. The dashed line represents the point-by-point standard deviation of the fitting function (i.e., the upper and lower limits of the confidence interval); the solid line represents the smooth fitting of the explanatory variable to PM$_{2.5}$ concentration. The x-axis is the observed value of the explanatory variable, the y-axis is the smooth fitting value of the explanatory variable to PM$_{2.5}$ concentration.
Mean ΔSLP did not show a significant difference on randomly selected days.

Fig. S2 Mean ΔSLP (±95% CI) on randomly selected days in each year (2013-2017).