Efficient Separation of RLT Cuts for Implicit and Explicit Bilinear Products

Ksenia Bestuzheva ¹, Ambros Gleixner ¹,², Tobias Achterberg ³

¹Zuse Institute Berlin and ²HTW Berlin and ³Gurobi Optimization

The 24th Conference on Integer Programming and Combinatorial Optimization
June 22, 2023
Mixed-Integer Programs with Bilinear Products

\[
\begin{align*}
\min & \quad c^T x \\
\text{s.t.} & \quad Ax \leq b, \\
& \quad g(x, w) \leq 0, \\
& \quad x_i x_j \leq w_{ij} \quad \forall (i, j) \in \mathcal{I}^w, \\
& \quad x \leq x \leq \bar{x}, \quad w \leq w \leq \bar{w}, \\
& \quad x_j \in \mathbb{R} \text{ for all } j \in \mathcal{I}^c, \quad x_j \in \{0, 1\} \text{ for all } j \in \mathcal{I}^b,
\end{align*}
\]

where

- \(g \) - nonlinear function,
- \((*)\) - bilinear product relations.

- We aim to improve the performance of spatial branch and bound for MIPs with bilinear products
- We focus on efficiently constructing tight linear programming (LP) relaxations
We are interested in constraints

\[x_i x_j \leq w_{ij} \quad \forall (i, j) \in I^w. \]

These constraints are **nonlinear** and **nonconvex**.

Applications: pooling, packing, wastewater treatment, power systems optimisation, portfolio optimisation, etc.
Relaxations of Bilinear Products

The convex hull of $x_i x_j = w_{ij}$ is given by the well-known McCormick envelopes:

\[
\begin{align*}
 w_{ij} & \geq x_i x_j + x_i \bar{x}_j - x_i \bar{x}_j, \\
 w_{ij} & \geq \bar{x}_i x_j + x_i \bar{x}_j - \bar{x}_i \bar{x}_j, \\
 w_{ij} & \leq x_i x_j + x_i \bar{x}_j - x_i \bar{x}_j, \\
 w_{ij} & \leq \bar{x}_i x_j + x_i \bar{x}_j - \bar{x}_i \bar{x}_j.
\end{align*}
\]

This is often a weak relaxation! Use other constraints to strengthen it.

RLT (Reformulation Linearization Technique): derive cuts from product relation + combinations of linear constraints/bounds.
RLT Cuts for Bilinear Products

We focus on RLT cuts derived by multiplying a constraint with a variable bound.

For example, multiply constraints of the problem by the lower bound factor of \(x_j\) (reformulation step):

\[
\sum_{i=1}^{n} a_i x_i (x_j - x_j) \leq b(x_j - x_j).
\]

Apply linearizations to each term \(x_i x_j\) (linearization step):

- if relation \(x_i x_j \geq w_{ij}\) exists with the appropriate sign, replace \(x_i x_j\) with \(w_{ij}\)
 - if the relation is violated in the right direction, this will increase cut violation
- otherwise, use a suitable relaxation
Motivation and Contributions

- RLT cuts can provide strong dual bounds
- Can this bounding strength of bilinear RLT also be leveraged for MILP solving?
- However, a large number of cuts is generated
 - Difficult to select which cuts to apply
 - LP sizes may increase dramatically
 - Even separation itself can be prohibitively expensive

Contributions:

- We develop a method for detecting implicit bilinear products in MILPs
- This enables us to apply bilinear RLT also to MILPs
- We propose an efficient separation algorithm that drastically reduces separation times
Implicit Bilinear Products

A bilinear product \(w_{ij} = x_i x_j \), where \(x_i \) is binary, can be modeled by linear constraints:

Product \(w_{ij} \leq x_i x_j \)	Implied relation \(x_i = 0 \) ⇒ \(w_{ij} \leq 0 \)	Big-M constraint \(w_{ij} - x_j x_i \leq 0 \)
\(w_{ij} \geq x_i x_j \)	\(x_j = 1 \) ⇒ \(w_{ij} \geq x_j \)	\(-w_{ij} + x_j x_i \leq 0 \),
		\(-w_{ij} + x_j + \bar{x}_j x_i \leq \bar{x}_j \)

Product \(w_{ij} \leq x_i x_j \)	Implied relation \(x_i = 0 \) ⇒ \(w_{ij} \leq 0 \)	Big-M constraint \(w_{ij} - \bar{x}_j x_i \leq 0 \)
\(w_{ij} \geq x_i x_j \)	\(x_i = 1 \) ⇒ \(w_{ij} \geq x_i \)	\(w_{ij} - x_j x_i \leq 0 \),
		\(w_{ij} - x_j - x_j x_i \leq -x_j \).
Implicit Products - General Form

Two constraints:

\[a_1 w_{ij} + b_1 x_i + c_1 x_j \leq d_1, \]
\[a_2 w_{ij} + b_2 x_i + c_2 x_j \leq d_2, \]

where

\[x_i \in \{0, 1\}, \ a_1 c_2 - a_2 c_1 \neq 0, \ a_1 a_2 \neq 0, \]

imply the following product relation:

\[x_i x_j \geq / \leq \frac{a_1 a_2 w_{ij} + (a_2 b_1 - a_2 d_1 + a_1 d_2)x_i + a_1 c_2 x_j - a_1 d_2}{a_1 c_2 - a_2 c_1}. \]

(Derived by writing \(x_i x_j \geq / \leq A w_{ij} + B x_i + C x_j + D \) for unknown \(A, B, C, D \) and enforcing equivalence to the linear inequalities)
Implicit Products - Derivation

Write the general form with unknown A, B, C and D as implications:

\[
\begin{align*}
 x_i = 1 & \quad \Rightarrow \quad Bw_{ij} + (C - 1)x_j \leq -D - A, \\
 x_i = 0 & \quad \Rightarrow \quad Bw_{ij} + Cx_j \leq -D.
\end{align*}
\]

Require equivalence to linear relations written as scaled implications:

\[
\begin{align*}
 x_i = 1 & \quad \Rightarrow \quad \alpha b_1 w_{ij} + \alpha c_1 x_j \leq \alpha (d_1 - a_1), \\
 x_i = 0 & \quad \Rightarrow \quad \beta b_2 w_{ij} + \beta c_2 x_j \leq \beta d_2.
\end{align*}
\]

Setting $\gamma = c_2 b_1 - b_2 c_1$ and solving the resulting system yields:

\[
\begin{align*}
 b_1 b_2 > 0, & \quad A = (1/\gamma)(b_2 (a_1 - d_1) + b_1 d_2) \\
 B = b_1 b_2 / \gamma, & \quad C = b_1 c_2 / \gamma, \quad D = -b_1 d_2 / \gamma, \quad \gamma \neq 0,
\end{align*}
\]

where the inequality sign is ‘\leq’ if $b_1/\gamma \geq 0$, and ‘\geq’ if $b_1/\gamma \leq 0$.

Relation Types

Let \(x_i \in \{0, 1\} \) and let \(f \) be a binary constant.

Implied relation	Linear relation between 2 variables activated by \(x_i \): \(x_i = f \Rightarrow \bar{a}w_{ij} + \bar{c}x_j \leq \bar{d} \);	Hashtable with 3 sorted variables as keys
Implied bound	Variable bound activated by \(x_i \): \(x_i = f \Rightarrow \bar{a}w_{ij} \leq \bar{d} \);	Sorted array per variable

Clique

If binary variables \(x_k, k \in C \) and \(!x_k, k \in C'\) are in a clique, then:

\[
\sum_{k \in C} x_k + \sum_{k \in C'} (1 - x_k) \leq 1
\]

Clique table

Unconditional relation

Relation between \(x_j \) and \(w_{ij} \) (implied bound, clique, linear constraint with 2 nonzeroes)

Hashtable with 2 sorted variables as keys

Global bound

Global variable bound on \(w_{ij} \)

Accessed directly through the variable

Efficient data structures are crucial for performance.
Detecting Implicit Products

- **Find implied relations** \(x_i = f \Rightarrow a_{ij}w_j + c_1x_j \leq d_1 \) among constraints with 3 nonzeroes and at least one binary variable.

- For each implied relation, look for the **second relation**:
 - It must be implied by \(x_i = !f \) and contain \(w_{ij} \)

Product relations can also be described without a size 3 constraint:

- **For each implied bound** \(x_i = f \Rightarrow w_{ij} \leq \bar{d}_1 \), look for the **second relation**:
 - **Unconditional relation** of \(w_{ij} \) and \(x_j \).

Variable order matters: depending on the order, we get different products.

For implicit products, the linear expression of \((w_{ij}, x_i, x_j)\) is used in place of \(w_{ij} \).
Standard Separation Algorithm

Context - separation in spatial BB solvers:

- LP-based spatial BB builds LP relaxations of node subproblems
- \((x^*, w^*)\) - solution of an LP relaxation
- Suppose that \((x^*, w^*)\) violates the relation \(x_i x_j \lesssim w_{ij}\) for some \((i, j) \in I^w\)
- Need to generate cuts that separate \((x^*, w^*)\) from the feasible region

RLT cut separation we use as a baseline:

- Iterate over all linear constraints
- For each constraint, iterate over all \(x_j\) that participate in bilinear relations
- Generate RLT cuts using bound factors of \(x_j\)
Row Marking

Observation:
- Consider reformulated constraint $a_i x_i x_j + a^T_i x \backslash i x_j \leq b x_j$
- Replace with $a_i w_{ij} + L_{\text{under}}(a^T_i x \backslash i x_j) \leq b x_j$
- The cut can be violated only if $a_i x^*_i x^*_j < a_i w^*_{ij}$

Algorithm:
- Create data structures to enable efficient access to
 - all variables appearing in bilinear products together with a given variable
 - the bilinear product relation involving two given variables
- For each variable x_i, create a sparse array to store marked rows
- For each j such that $(i, j) \in I^w$, iterate over linear rows containing x_j
- Store the rows in the marked rows array with the following marks:
 - LE: the row contains a term $a_{ij} x_j$ such that $a_{ij} x^*_i x^*_j < a_{ij} w^*_{ij}$
 - GE: the row contains a term $a_{ij} x_j$ such that $a_{ij} x^*_i x^*_j > a_{ij} w^*_{ij}$
 - BOTH: the row contains terms fitting both cases above
The Use of Row Marks

Generate cuts only for the following combinations of rows and bound factors \((x_i - \lower)\) and \((\overbar{x}_i - x_i)\):

- **mark = LE:**
 - “\(\leq\)” constraints are multiplied with \((x_i - \lower)\)
 - “\(\geq\)” constraints are multiplied with \((\overbar{x}_i - x_i)\)

- **mark = GE:**
 - “\(\leq\)” constraints are multiplied with \((\overbar{x}_i - x_i)\)
 - “\(\geq\)” constraints are multiplied with \((x_i - \lower)\)

- **mark = BOTH:**
 - both “\(\leq\)” and “\(\geq\)” constraints are multiplied with both \((x_i - \lower)\) and \((\overbar{x}_i - x_i)\)
 - marked equality constraints are always multiplied with \(x_i\) itself
Efficient Separation of RLT Cuts

- For each variable x_i that appears in products:
 - For each violated product relation with $x_i x_j$, mark and store constraints with nonzero a_{rj}
 - Iterate over marked rows:
 - For each marked row, construct cuts with suitable sides and multipliers
 - If a cut is violated, add it to the cut pool

For example:

\[
x_1 \leq 0, \ x_1 x_2 = w, \ x_2 \in [1, 2]
\]

Reformulations are:
\[
x_1(x_2 - 1) \leq 0, \ x_1(2 - x_2) \leq 0
\]

If at LP solution $x_1^* x_2^* > w^*$, use only the second reformulation.

If several linearizations are available: use the most violated.
Term Linearization

- $x_i x_j \rightarrow \ell(w_{ij}, x_i, x_j)$ if relation $x_i x_j \leq \ell(w_{ij}, x_i, x_j)$ exists with the appropriate sign,
- if $i = j \in I^b$, then $x_i x_j = x_i$,
- if $i = j \notin I^b$, then $x_i x_j = x_j^2$ is outer approximated by a secant or tangent,
- if $i \neq j$, $i, j \in I^b$ and a clique constraint exists, then:
 \begin{align*}
 x_i + x_j & \leq 1 \Rightarrow x_i x_j = 0; \quad x_i - x_j \leq 0 \Rightarrow x_i x_j = x_i; \\
 -x_i + x_j & \leq 0 \Rightarrow x_i x_j = x_j; \quad -x_i - x_j \leq -1 \Rightarrow x_i x_j = x_j + x_j - 1,
 \end{align*}
- otherwise, use the McCormick relaxation.
Projection

McCormick is tight if at least one of the variables is at bound \Rightarrow replacing such a product does not add to the violation.

Construct a smaller system by fixing all variables that are at bound:

$$\sum_{i=1}^{n} a_i x_i \leq b \text{ becomes } \sum_{i \in !B} a_i x_i \leq b - \sum_{i \in B} a_i x_i^*,$$

!B - indices of variables not at bound,
B - indices of variables at bound.

Check violation for projected cuts first.

However...

if McCormick constraints are dynamically added as cuts, the above does not hold \Rightarrow some violated cuts might be ignored.
Computational Setup

- Using a development version of SCIP
- Linear solver SoPlex
- Time limit one hour
- Testsets: subsets where (either explicit or implicit) bilinear products exist chosen from
 - 1846 MINLPLib instances for MINLP
 - A testset comprised of 666 instances from MIPLIB3, MIPLIB 2003, 2010 and 2017, and Cor@l
- At most 20 unknown bilinear terms that a reformulated constraint can have in order to be used
- Frequency: every 10 nodes
- 1 separation round in tree nodes, 10 separation rounds in the root node
- Implicit product detection and projection filtering enabled until specified otherwise
Impact of RLT Cuts: MILP

Settings:
- **Off**: RLT cuts are disabled
- **IERLT**: RLT cuts are added for both explicit and implicit products

Subset	instances	Off	solved	time	nodes	IERLT	solved	time	nodes	IERLT/Off	time	nodes
All	971		905	45.2	1339	909	46.7	1310	1.03	0.98		
Affected	581		571	48.8	1936	575	51.2	1877	1.05	0.97		
[0,tilim]	915		905	34.4	1127	909	35.6	1104	1.04	0.98		
[1,tilim]	832		822	47.2	1451	826	49.0	1420	1.04	0.98		
[10,tilim]	590		580	126.8	3604	584	133.9	3495	1.06	0.97		
[100,tilim]	329		319	439.1	9121	323	430.7	8333	0.98	0.91		
[1000,tilim]	96		88	1436.7	43060	92	1140.9	31104	0.79	0.72		
All-optimal	899		899	31.9	1033	899	34.1	1053	1.07	1.02		
Impact of RLT Cuts Derived From Explicit Products: MINLP

Settings:
- **Off**: RLT cuts are disabled
- **ERLT**: RLT cuts are added only for products that exist explicitly in the problem
- **IERLT**: RLT cuts are added for both explicit and implicit products

Table of Performance:

Subset	instances	Off solved	Off time	Off nodes	ERLT solved	ERLT time	ERLT nodes	ERLT/Off time	ERLT/Off nodes
All	6622	4434	67.5	3375	4557	57.5	2719	0.85	0.81
Affected	2018	1884	18.5	1534	2007	10.6	784	0.57	0.51
[0,timelim]	4568	4434	10.5	778	4557	8.2	569	0.78	0.73
[1,timelim]	3124	2990	28.3	2081	3113	20.0	1383	0.71	0.67
[10,timelim]	1871	1737	108.3	6729	1860	63.6	3745	0.59	0.56
[100,tilim]	861	727	519.7	35991	850	196.1	12873	0.38	0.36
[1000,tilim]	284	150	2354.8	196466	273	297.6	23541	0.13	0.12
All-optimal	4423	4423	8.6	627	4423	7.5	518	0.87	0.83

B. Gleixner, Achterberg
Efficient Separation of RLT Cuts for Implicit and Explicit Bilinear Products
Impact of RLT Cuts Derived From Implicit Products: MINLP

Settings:
- **Off**: RLT cuts are disabled
- **IERLT**: RLT cuts are added for both explicit and implicit products

Subset	instances	ERLT solved	time	nodes	IERLT solved	time	nodes	ERLT/IERLT
All	6622	4565	57.0	2686	4568	57.4	2638	1.01
Affected	1738	1702	24.2	1567	1705	24.8	1494	1.02
[0,timelim]	4601	4565	8.5	587	4568	8.6	576	1.01
[1,timelim]	3141	3105	21.1	1436	3108	21.4	1398	1.01
[10,timelim]	1828	1792	74.1	4157	1795	75.4	4012	1.02
[100,tilim]	706	670	359.9	22875	673	390.4	24339	1.09
[1000,tilim]	192	156	1493.3	99996	159	1544.7	107006	1.03
All-optimal	4532	4532	7.7	540	4532	7.8	529	1.02

B., Gleixner, Achterberg

Efficient Separation of RLT Cuts for Implicit and Explicit Bilinear Products
Impact of the Separation Algorithm

Settings:
- RLT cuts for both explicit and implicit products are enabled
- Marking-off: a straightforward separation algorithm is used
- Marking-on: the new separation algorithm is used

Test set	subset	instances	solved	time	nodes	solved	time	nodes	time	nodes
MILP	All	949	780	124.0	952	890	45.2	1297	0.37	1.37
	Affected	728	612	156.6	1118	722	46.4	1467	0.30	1.31
	All-optimal	774	774	58.4	823	774	21.2	829	0.36	1.01
MINLP	All	6546	4491	64.5	2317	4530	56.4	2589	0.88	1.12
	Affected	3031	2949	18.5	1062	2988	14.3	1116	0.78	1.05
	All-optimal	4448	4448	9.1	494	4448	7.4	502	0.81	1.02
Impact of the Separation Algorithm on Separation Times

Settings:
- RLT cuts for both explicit and implicit products are enabled
- **Marking-off**: a straightforward separation algorithm is used
- **Marking-on**: the new separation algorithm is used

Test set	Setting	avg %	max %	N(<5%)	N(5-20%)	N(20-50%)	N(50-100%)	fail
MILP	Marking-off	54.2	99.6	121	117	169	552	16
	Marking-on	2.8	71.6	853	87	31	4	0
MINLP	Marking-off	15.1	100.0	3647	1265	1111	685	77
	Marking-on	2.4	100.0	6140	376	204	49	16
Impact of Projection: MILP

Settings:
- **No-proj:** the projected LP is not used
- **Proj:** the projected LP is used

Subset	instances	No-proj	Proj	relative					
		solved	time	nodes	solved	time	nodes	time	nodes
All	972	912	46.4	1329	911	46.1	1302		
Affected	530	523	75.7	3092	522	74.6	2964		
[0,timelim]	919	912	36.0	1155	911	35.7	1126		
[1,timelim]	832	825	50.3	1504	824	49.8	1462		
[10,timelim]	582	575	143.4	3886	574	141.7	3741		
[100,tilim]	323	316	485.0	9601	315	471.3	9065		
[1000,tilim]	96	89	1483.8	45276	88	1512.2	43061		
All-optimal	904	904	33.5	1054	904	33.4	1040	1.00	0.99

B., Gleixner, Achterberg

Efficient Separation of RLT Cuts for Implicit and Explicit Bilinear Products

23 / 26
Impact of Projection: MINLP

Settings:
- **No-proj**: the projected LP is not used
- **Proj**: the projected LP is used

Subset	instances	No-proj		Proj		relative			
No-proj									
	solved	time	nodes	solved	time	nodes	time	nodes	
All	6637	4582	57.9	2689	57.7	2674	1.00	0.99	
Affected	2476	2438	23.3	1681	23.1	1660	0.99	0.99	
[0,timelim]	4620	4582	8.8	595	8.7	590	0.99	0.99	
[1,timelim]	3137	3099	22.4	1483	22.3	1467	0.99	0.99	
[10,timelim]	1854	1816	77.7	4253	76.4	4210	0.98	0.99	
[100,timlim]	743	705	377.4	23389	364.4	22680	0.97	0.97	
[1000,timlim]	205	167	1434.5	98443	166	1480.7	105546	1.03	1.07
All-optimal	4543	4543	8.0	539	7.9	533	0.99	0.99	

B., Gleixner, Achterberg

Efficient Separation of RLT Cuts for Implicit and Explicit Bilinear Products
Results with Gurobi

- Ran with Gurobi 10.0 beta
- Same RLT algorithms, implementation details may differ
- Internal Gurobi test set
- Time limit 10000s

Subset	MILP instances	timeR	nodeR	MINLP instances	timeR	nodeR
All	5011	0.99	0.97	806	0.73	0.57
[0,timelim]	4830	0.99	0.96	505	0.57	0.44
[1,timelim]	3332	0.98	0.96	280	0.40	0.29
[10,timelim]	2410	0.97	0.93	188	0.29	0.20
[100,timelim]	1391	0.95	0.91	114	0.17	0.11
[1000,timelim]	512	0.89	0.83	79	0.12	0.08
Solved				RLT off: +41; RLT on: +37	RLT off: +2; RLT on: +35	

B. Gleixner, Achterberg
Efficient Separation of RLT Cuts for Implicit and Explicit Bilinear Products
Summary

- Implicit product relations are detected by analysing MILP constraints
- We use row marking to efficiently separate RLT cuts
- We use a projected LP to speed up separation and filter out less promising cuts

- RLT cuts improve performance for difficult MILP instances ([1000,timelim])
- RLT cuts for explicit products considerably improve MINLP performance
- RLT cuts derived from implicit products are slightly detrimental to MINLP performance
- The separation algorithm is crucial and enables the improvements yielded by RLT
- Projection slightly improves overall performance, but slightly worsens performance on difficult instances