مقاله پژوهشی

کمی سازی جوانه‌زنی بذر گوآر (Cyanopsis tetragonoloba) نسبت به دما

سید حمیدرضا رمضانی، فریبا آزمون، محمد علی بهدادی

چکیده

مقدمه: گوآر (Cyanopsis tetragonoloba) یکی از گیاهانی است که در بیشتر بخش‌های ایران کشت می‌شود. این گیاه به خصوص در مناطق کوهستانی و نیمه‌تندبادی محبوب است. گوآر در حال حاضر به عنوان یکی از منابع سالم و محیط‌پس‌گذاری‌پذیر آب و تربیت بیشتر نیاز دارد.

در این مطالعه، تأثیر دما بر کمی سازی جوانه‌زنی بذر گوآر بررسی شد. برای این کار، بذر گوآر به مقدار گزارش شده در درجه دماهای مورد نظر درفکنندگی قرار گرفتند. سپس، هر گروه بذر با آب شستن در دمای مورد نظر به مدت 4 ساعت در نیم‌میلی‌متریک ظرف قرار گرفت. سپس، بذران را در میکروویو در دمای مورد نظر گرم کردند. سپس، با استفاده از تکنیک‌های محقق شده، تعداد جوانه‌زنی بذرها به هر برگ، سطح و تعداد جوانه‌زنی در هر قسمت جوانه‌زنی حساب شد.

نتیجه‌گیری: نتایج نشان داد که تأثیر سطح مختلف دما بر جوانه‌زنی بذر گوآر به سه مولفه درد دارد. سرعت و درجه جوانه‌زنی در دمای 10 و 15 درجه سلسیوس باعث کاهش تعداد جوانه‌زنی و بهبود نسبت به دماهای 0 و 5 درجه سلسیوس می‌شود. به علاوه، سطح مختلف دما می‌تواند تعداد جوانه‌زنی در هر قسمت جوانه‌زنی را تغییر دهد.

پژوهشگران: محمد علی بهدادی، در دانشگاه برخوردی با اثر رشد و جودیت بذر گوآر در شرایط مختلف دما و سطح ارداکاری.

DOI: 10.29252/yujs.7.2.121

http://dorl.net/dor/20.1001.1.23831251.1399.7.2.13.2

CrossMark

Hrramazani@birjand.ac.ir

رایانه‌نویسی: مسکول (تأثیرگذاری، اصلاح نباتات و گروه رژه‌زایی)

1) استاد دانشگاه برخوردی

2) رایانه‌نویسی مسکول
مضات و همکاران: کمی سازی جوانزی بذر گوآر (Cyamopsis tetragonoloba)

(نتیجه به دما مقدمه)

گوآر یا نام علمی Cyamopsis tetragonoloba گیاهی از خانواده گیاهان میوه‌دار است. این گیاه دوویلایی و یک ساله است. در گستره وسیعی از خاک‌ها و در آب و هوای مختلف، گیاه با نیاز به همکاری قرار می‌گیرد. کلیه گیاه‌ها در پایه‌های تختی دارای زمستان، در کوچک و افزودنی با خاک باعث پودن حاملگیخزی خاک می‌شود (میلادی و همکاران، 2010). روند گوار دارای سایر گیاهان کامل‌دار بیانیات دارد.

با توجه به اهمیت دما در سرعت و درصد جوانزی بذرها، تعیین بهترین دمای برای جوانزی بذرها مختلف، از اهمیت ویژه‌ای برخوردار است. به‌طور کلی از دمای جوانزی برحس دماهای کاری دامی شده، دماهایی کاری دامی شده سرعت دمایی اسکلت که در آن با حرکت اجرا می‌شود (رود گوآر باترکردن). در شرایط آب و هوای گرم بیانیات ۲۰۰۲ و ۲۰۰۳ کوچک‌وی (۱۰۰ و همکاران، ۲۰۰۴، رامین)، دمای کاری‌گیری پایه‌ای اسکلت که در نهایت مواد بدارند، پیشینه مراحل رشدی گیاه و تعیین‌وایدهای حرارتی مورد نیاز در هر مرحله رشدی می‌باشد. برای جوانزی بذرها در دماهای زراعی برای تعیین تاریخ کشت مناسب و در نتیجه استقرار مطلوب بهتر سیار مهم است (غانی-تیلی، ۱۹۹۳) و همکاران، ۲۰۱۱). در واقع با تعیین دماهای کاری‌گیری برای گونه‌های مختلف تخمین محدودیت‌های افزایشی بود (محمودی، ۲۰۰۸، همکاران). سرعت جوانزی با افزایش دما نهایت مطلوب جوانزی افزایشی، نیاز به توسعه است و می‌تواند با کاهش می‌یابد (کریپ و موردو، ۲۰۰۰). به‌طور کلی، مطالعات گزارش داده‌اند که به‌طور سایر عوامل نژادی نشان داده‌اند.
پژوهش‌های بذر ایران/سال هفتم/شماره دوم/۱۳۹۹

پاپورهفرم (Papaver somniferum) استفاده و مدل کلی، در گیاهان، سوقت نمی‌رسد و در دمای پایه‌ای و با افزایش دما تا دمای بهینه افزایش می‌یابد. ولی در دماهای بالای از آن افت شدیدی نشان می‌دهد (اویل و همکاران، 2006).

محاسبه دماهای کاردنیال بر اساس رابطه سرعت جوانی‌نگه‌داشتن در دمای متوسط تعداد کمی، از دماهای کاردنیال جوانی‌نگه‌داشتن است (کوپلیج، 1998 و همکاران، 2000 و 2002). در برخی از محققان این استفاده از مدل‌های ریاضی را برای بیش از آبودن دماهای کاردنیال جوانی‌نگه‌داشتن برخورداری جامی آل-احمدی و کلی، 2002، هورادگرو و وینسنتال، 2006 (گزارش‌های تازه‌ای در زمینه استفاده از مدل‌های رگرسیون غیرخطی برای تعیین دماهای کاردنیال وجود دارد. در تحقیقات‌های مرکز سردسیر و گرم‌سیری مدل دودکنی یا دودکنی قادیر به برآورد دماهای کاردنیال جوانی‌نگه‌داشتن (خیال، 2015 و جلیلیان، 2015) کمک کرده و همکاران (2006) دماهای کاردنیال سه گونه ارزش را با استفاده از مدل رگرسیون غیرخطی خطوی متغیر تعیین نمودند. صبوری‌رود و همکاران (2011) نیز نشان دادند که دقت مدل‌های بینا، ترکه‌ای دوم، دومین، دماند و دو تکه‌ای در تعیین دماهای کاردنیال زنوب‌پریده‌های پرنج متفاوت است. سلطنتی و همکاران (2006) در ارزیابی پاسخ جوانی‌نگه‌داشتن نخود به سطوح مختلف دما و غرب کاشت و توانایی بنا و دندان مانند استفاده کرده‌اند. بلاکشو و فریاری 2001) مدل لجستیک را برای گندم و کامکار و همکاران همکاران و لجستیک را برای تعیین دماهای کاردنیال جوانی‌نگه‌داشتن سه گونه ارزش و یکی از گونه مدل (تجن) استفاده کرده‌اند. کامکار و همکاران (2012) سه مدل بنا دودکنی و دندان مانند برای تعیین دماهای کاردنیال گیاه دارویی

10 Oyedele
11 Colbach
12 Jacobsen and Bach
13 Jami Al-Ahmad
14 Hardegree and Winstral
15 Khalili Aqdam and Jalilian
16 Sabour-Rad
17 Soltani
18 Blackshow
19 Kamkar
20 Kamkar

\[\text{ مشخصات دمای} \]
روشی مورد نیاز نبوده و حتی فتوپورونیوید (12 ساعت) نیز تأثیراتی نداشت.

(13)

در این رابطه، FGP درصد ژوانژی نهایی (قهوه نامه) و d تعداد روز را ترسیم کننده حداکثر می‌باشد (کلسون و اندروروم، 1981).

سرعت ژوانژی روزانه:

اين شاخص، عکس متوسط ژوانژی روزانه و با رابطه 3 می‌باشد (ماجر و همکاران، 2002):

$$\text{DGS} = \frac{1}{\text{MDG}}$$

دماهای کاربنیل جوانژی با استفاده از تجزیه و تحلیل رگرسیون با کمک مدل‌های ایجاد شده و با استفاده از سرعت جوانژی محاسبه شد. محاسبه دماهای کاربنیل با رابطه سرعت جوانژی و دما، روش مرسم در مطالعات مربوط به تعیین دماهای کاربنیل جوانژی با حساب می‌آید. (برادور و هیک، 1994، 2002). برای پیش‌بینی دماهای کاربنیل جوانژی، یک گروه از مدل‌های رگرسیون غیرخطی نگاشته شد. درجه دوم و درجه سوم استفاده شد (جدول 1).

SAS version 9.1.3

تجزیه آماری سرعت و مقایسه میانگین‌ها با آزمون دانک در سطح احتمال 5 درصد صورت گرفت. برای رسیم نمودار‌های سرعت جوانژی در برادر دما (برازش (Slash)، مدلهای مختلف) از نرم‌افزار سیگماپلاتا (SigmaPlot) استفاده شد.

نتایج و بحث

تأثیر دما بر ژوانژی

تأثیر سطوح مختلف دما بر ژوانژی بذر گوآر بر سه مؤلفه سرعت، سرعت و متوسط جوانژی بذر معنی‌دار (P < 0.05) بود (جدول 2). با توجه به نتایج بدست آمده کمترین مقادیر معروف به دارد، سرعت و متوسط جوانژی در دماهای 5 و 6 درجه سلسیوس به دست آمد و بیشترین سرعت جوانژی در می‌باشد (ماجر و همکاران، 1982).

حاکمیت بر

(14) روز و رشد مطلوب گیاهچه‌ها، درصد ژوانژی (FGP)، سرعت جوانژی روزانه (PL)، طول ساقه‌چه (MDG)، طول گیاهچه (RL) و طول گیاهچه اندوزه‌گیری و محاسبه شد.

درصد ژوانژی (GP):

$$\text{GP} = \frac{n}{N} \times 100$$

$$\text{رابطه 1.}$$

در این رابطه، n درصد ژوانژی و N تعداد بذرهای جوانژی و n تعداد کل بذرها می‌باشد (ماجر و همکاران، 1982). (جایزه‌ی نیکولاو و هیدکر، 1986).

متوسط ژوانژی روزانه (MDG):

متوسط ژوانژی روزانه که شاخصی از سرعت ژوانژی روزانه می‌باشد از رابطه 2 تعیین گردید:

$$\text{MDG} = \frac{\text{FGP}}{d}$$

منابع:

1. Adam
2. Germination Percentage
3. Daily Germination Speed
4. Medium Daily Germination
5. Plumule Length
6. Radicle Length
7. Seedling Length
8. Maguire
9. Nichols and Heydecker

10. Final Germination Percentage
11. Lexmond and Vandervorm
12. Major
13. Bradford and Haigh
Table 1. Fitted models for determining the cardinal temperatures of guar seeds

Model	Equation
Logistic	$f(T) = \frac{1}{1 + \exp\left(-\frac{T-T_c}{T_{50}}\right)}$
Segmented	$f(T) = \begin{cases} 0 & \text{if } T < T_b \\ \frac{T - T_b}{T_o - T_b} & \text{if } T_b \leq T < T_o \\ 1 & \text{if } T \geq T_o \end{cases}$
Quadratic	$f(T) = \left(\frac{1}{2} (T - T_b) + T_c - T_b \right) \left(\frac{1}{2} (T - T_b) - T_c + T_b \right)$
Cubic	$f(T) = a + bT + cT^2 +dT^3$

۱ Kamaha and Magure
۲ Copeland and McDonald
۳ Bannayan
۴ Mwale
۵ Latifi

دما ۱۵ درجه سلسیوس و همچنین بیشترین درصد جوانزی و متوسط جوانزی در دمای ۲۵ درجه سلسیوس مشاهده شد، در دمای ۱۰ و ۱۰ درجه سلسیوس مقادیر مولفه‌های جوانزی صفر بود و با افزایش دما بر این مقادیر افزوده شد تا در دمای ۲۵ درجه سلسیوس حداکثر درصد جوانزی و حداکثر متوسط جوانزی اتفاق افتاد و بعد از آن با افزایش دما مقادیر مربوطه کاهش یافت و در دمای ۴۰ درجه سلسیوس به صفر رسید (جدول ۳).

دلیل کاهش درصد و سرعت جوانزی در دمایهای نامطلوب را می‌توان کاهش یا ممانعت از عملکرد آنزیم‌ها و در نتیجه کاهش سرعت فرآیندهای بیوشیمیایی از مبرای جوانزی در این دماها دانست (کاموک و ماگور، ۱۹۹۲). فرآیندهای بیوشیمیایی مربوط به جوانزی شامل فعالیت هورمون‌های (پروپاژ جیرولین) فعالیت آنزیم‌ها (میکرونا، ایمنوتراکسیون و لیپاز) و در نتیجه هضم تجزیه ذخیره بذر و انتقال آن به محور جنین که وابسته به جریان حرارت و رطوبت می‌باشد، باعث علاوه بر جدید فعالیت آنزیم‌های منطوق‌میگر و در محیط کشاورزی که در دمایهای ۵۰ درجه سلسیوس گزارش شده است (کاموک و ماگور، ۱۹۹۲) بیشترین درصد جوانزی به دارویی‌های بیشتر دمایهای ۱۵ تا ۲۰ درجه سلسیوس سلسله حرارتی در دمایهای ۴۵ تا ۷۰ درجه سلسیوس انجام شد (طیفی و همکاران، ۲۰۰۴). همچنین بیشترین مقادیر جوانزی گندم در دمایهای ۱۵ تا ۲۰ درجه سلسیوس سلسله حرارتی در دمایهای ۱۵ تا ۲۰ درجه سلسیوس انجام شد (طیفی و همکاران، ۲۰۰۴).

۱ Kamaha and Magure
۲ Copeland and McDonald
۳ Bannayan
۴ Mwale
۵ Latifi
رنمانتی و همکاران: کمی سازی چوژانتی یک گوار (Cyanopsis tetragonoloba) نسبت به دما

۳۰ درجه سلسیوس گزارش شد و با افزایش و کاهش دما از این مقدار حساسیت درصد چوژانتی یک گوار کاهش یافت (۲۰۰۵). تأثیر منفی دمایی بالا بر چوژانتی یک گواره ان توسط دیگر محققین نیز گزارش شده است (علی و همکاران. ۱۹۹۸).

تأثیر دما بر رشد گیاهی

نتایج تأثیر سطح مختلف دما بر رشد گیاهی گوار نشان داد که تأثیر دما بر سه مؤلفه طول گیاهی، ساقه‌چه و خاک‌شیر دمای (P< 0.01) شد (جدول ۲). در طول سال ساقه‌چه و رشد گیاهی در دماهای ۱۰، ۱۶ و ۲۰ درجه سلسیوس مشاهده گردید. بیشترین طول گیاهی و ساقه‌چه در دمای ۳۰ درجه سلسیوس و قبلاً در دمای ۲۵ درجه سلسیوس بدست آمد. در گزارش‌های دیگر نیز طول گیاهی رشد گیاهی در دمای ۲۵ درجه سلسیوس از نظر تحقیق به‌عنوان دارای واقع مقدار مربوط به مولفه‌های رشد گیاهی در دمای ۲۵ درجه سلسیوس صفر بود که با افزایش دما بر این مقادیر افزوده شد. به‌طور کلی جدول این مقادیر آمده است. در دمای ۱۰ درجه سلسیوس صفر بود که با افزایش دما بر این مقادیر افزوده شد. به‌طور کلی جدول این مقادیر آمده است.

۰ درجه سلسیوس صفر حذف از داده‌های موجود شد. در جدول ۲ (پویا و محمودی، ۲۰۱۶) گزارش گردید که طول رشد چوژانتی و ساقه‌چه عمد ملکی با افزایش دما افزایش یافته و در دمای ۲۰ درجه سلسیوس به حداکثر مقدار خود رسید و با افزایش دما از این مقدار تا حدود درجه رشد چوژانتی و ساقه‌چه کاهش یافته. طول رشد چوژانتی افزایش نیز با افزایش دما از ۱۰ درجه سلسیوس ۲۵ درجه سلسیوس یافته و با افزایش دما از ۲۵ درجه سلسیوس به‌طور کلی رشد چوژانتی و ساقه‌چه روند کاهشی پیدا کرد.

۲۵ درجه سلسیوس درجه رشد چوژانتی و ساقه‌چه به‌طور کلی افزایش یافتک و رشد گیاهی در تمام دمای‌های ۲۵ درجه سلسیوس به‌طور کلی افزایش یافته و درجه سلسیوس ۲۵ درجه سلسیوس به‌طور کلی افزایش ی
جدول ۲. تجزیه واریانس صفات مورد بررسی

منابع تغییرات (S.O.V)	دمای سلسبیلی (درجی)	طول گیاهچه (مم)	طول ساقه چهار روزه (مم)	طول ریشه چهار روزه (مم)	سرعت چاپ چهار روزه (بعد در روز)	متوسط چاپ چهار روزه (بعد در روز)	جوانی نهایی (Final germination)
گیاهچه	7	160.14**	63.85**	26.45**	0.000217	0.854*	103.36*
خطای خطا	32	6.7437	3.8144	2.5913	0.000065	0.2830	34.240
ضریب تغییرات (C.V. (%))	23.6	23.65	22.89	6.47	6.61	6.61	
احراز معیار (Standard Deviation)	12.25	7.12	4.54	2.68	0.26	1.04	

* and ** indicate significant differences in the probability level of 5%, respectively.

جدول ۳. مقایسه میانگین تیمارهای مختلف در صفات مورد بررسی

دمای سلسبیلی (درجی)	طول گیاهچه (مم)	طول ساقه چهار روزه (مم)	طول ریشه چهار روزه (مم)	سرعت چاپ چهار روزه (بعد در روز)	متوسط چاپ چهار روزه (بعد در روز)	جوانی نهایی (Final germination)
۵°C	۰.۰۰۰	۰.۰۰۰	۰.۰۰۰	۰.۰۰۰	۰.۰۰۰	۰.۰۰۰
۱۰°C	۰.۰۰۰	۰.۰۰۰	۰.۰۰۰	۰.۰۰۰	۰.۰۰۰	۰.۰۰۰
۱۵°C	۲.۵۲۴	۲.۵۲۴	۰.۰۰۰	۰.۵۳۰۴	۱.۸۹۰۸	۲۰.۸
۲۰°C	۷.۹۲۸	۴.۱۳۲	۳.۷۹۶	۰.۵۲۶	۱.۹۰۹	۲۱
۲۵°C	۱۳.۶۰۲	۸.۰۷۴	-	۰.۴۷۸۴	۲.۰۹۱	۲۳
۳۰°C	۱۵.۷۰۰	۱۰.۴۲۰	۵.۲۸۰	۰.۴۸۸	۲.۰۵۴	۲۲.۶
۳۵°C	۱۵.۲۴۰	۱۰.۱۶۰	۵.۰۸۰	۰.۴۷۶	۲.۱۰۹	۲۳.۲
۴۰°C	۰.۰۰۰	۰.۰۰۰	۰.۰۰۰	۰.۰۰۰	۰.۰۰۰	۰.۰۰۰

عدد مشابه در هر ستون در سطح ۵ درصد اختلاف معنی‌داری در آزمون چندداشتی دانک ندارد.

جدول ۴. مقادیر دمایی کاربردی بذر گوار براساس مدل‌های برازش داده شده

(Model)	(مدل) Tb (°C)	To (°C)	Tc (°C)	(ضریب تبیین) R²
لجستیک	۱۰.۶۰	۱۲.۱۰	-	۰.۳۷
دوتهای	۶.۳۶	۲۲.۰۸	۴۴	۰.۵۳
مرکز	۶.۵۰	۲۳.۸۶	۴۱	۰.۷۰
Cubic	۶.۰۹	۲۶.۰۵	۴۰	۰.۶۸
شکل ۱. پاسخ سرعت گرانه‌زی به سطوح مختلف دمایی براساس مدل‌های پرازش داده شده

Fig. 1. The response of the germination rate to different temperature levels based on the fitted models.

dlis10.png

شرکت نامه: (Cyamopsis tetragonoloba)

Basketw گرایش به ترتیب در دامنه‌های ۳۰/۰۰ - ۲۵/۷۸ - ۱/۴ - ۴/۰ دامنه سلسیوس به دست آمده و همچنین بین نمودن که مدل‌های چندجمله‌ای درجه دو و چندجمله‌ای درجه سه، مناسب تر هستند. همچنین خرچک (۲۹) و همکاران (۲۰) از سه مدل خطوط منفی، ۵ پارامتری بنا و چندجمله‌ای برای برآورد دمای کاربردی کاکتوس چندساله استفاده نموده و گزارش دادند که دمای پایه بین ۵/۵ تا ۸/۵ بهینه بین

۱ Kheirkhah
در گروه‌سنجی چندجمله‌ای درجه دو بر اساس ضریب تبیین R^2 و میزان انحراف، بر اساس مناسب و معنی‌داری با داده‌های مربوط به سرعت جوانگزی در مقابل متغیر مستقل دما داشت. بر اساس پارامترهای مدل مذکور

منابع

Adam, N.R., Dierig, D.A., Coffelt, T.A. and Wintemeyer, M.J. 2007. Cardinal temperatures for germination and early growth of two Lesquerella species. Industrial Crops and Products, 25: 24-33. https://doi.org/10.1016/j.indcrop.2006.06.001

Ahmadi, M. Kamkar, B., Soltani A. and Zeinali, E. 2010. Evaluation of non-linear regression models to predict stem elongation rate of wheat (Tajan cultivar) in response to temperature and photoperiod. Electronic Journal of Crop Production, 2(4): 39-54. [In Persian with English Summary].

Ali, A.A., Mohamed, M.H., Kamel, M.S., Fouad, M.A. and Spring, O. 1998. Studies on Securiger securidacea L. Deg. et Dorfl. (Fabaceae) seeds, and antidiabetic Egyptian folk medicine. Die Pharmazie, 53(10): 510-715.

Alipoor, Z. and Mahmoodi, S. 2016. Determination of cardinal temperatures and response of Securigera securidaca L. to different temperatures of germination. Iranian Journal of Seed Research, 2(2): 137-147. [In Persian with English Summary].

Alvarado, V. and K. Bradford, 2002. A hydrothermal time model explains the cardinal temperatures for seed germination. Plant, Cell and Environment, 25(8): 1061-1069. https://doi.org/10.1046/j.1365-3040.2002.00894.x

Balandari, A., Rezvani-Moqaddam, P. and Nasiri-Mahallati, M. 2011. Determination of cardinal temperatures of seed germination of Cichorium pumilum Jacq. Second National Conference of Seed Science and Technology, Islamic Azad University, Mashhad, 4-5 November, 1818-1822.

Bannayan, M., Nadjafi, F., Rastgoo M. and L. Tabrizi, 2006. Germination properties of some wild medicinal plants from Iran. Seed Technology, 28: 80-86. [In Persian with English Summary].

Blackshow, R.E. 1991. Soil temperature and moisture effects on downy brome Vs. winter canola, wheat and ray emergence. Crop Science, 31: 1034-1040. https://doi.org/10.2135/cropsci1991.0011183X003100040038x

Bradford, K.J. and A.M. Haigh, 1994. Relationship between accumulated hydrothermal time during seed priming and subsequent seed germination rates. Seed Science Research, 4(02): 63-69. https://doi.org/10.1017/S0960258500002038

Colbach, N., Chauvel, B., Durr, C. and Richard, G. 2002. Effect of environmental conditions on Alopecurus myosuroides germination. I. Effect of temperature and light. Weed Research, 42(3): 210-221. https://doi.org/10.1046/j.0043-1737.2002.00279.x ; https://doi.org/10.1046/j.0043-1737.2002.00280.x

Condon, A.G., Richards R.A. and Farquhar, G.D. 2002. Relationships between carbon isotope discrimination, water use efficiency and transpiration efficiency for dryland wheat. Australian Journal of Agriculture Research, 44: 1693-1711. https://doi.org/10.1071/AR9931693

Copeland, L.O. and Mc-Donald, M.B. 1995. Principles of Seed Science and Technology. 4th (ed.). Publication Chapman and Hall, USA. 409P.

Ghaderi-Far, F., Soltani A. and Sadeghipour, H.R. 2008. Cardinal temperatures of germination medicinal pumokin, borago and black cumin. Asian Journal of Plant Science, 7: 574-578. [In Persian with English Summary]. https://doi.org/10.3923/ajps.2008.574.578
Ghanbari, A., Rahimian-Mashhadi, H., Nasiri-Mahallati, M., Kaffi, M. and Rastgu, M. 2005. The ecophysiological aspects of *Glycyrrhiza glabra* L. in response to temperature. Iranian Journal of Agricultural Researches, 3(2): 263-275. [In Persian with English Summary].

Gholami Tilebeni, H., Kurd-Firozjaeii, Gh. and Zeinal, E. 2011. The determination of germination cardinal temperatures of rice cultivars. Seed Science and Technology, 1(1): 41-52. [In Persian with English Summary].

Gulzar, S., Khan M.A. and Ungar, L.A. 2008. Effect of salinity and temperature on the germination of *Urochondra setulosa* (Trin). Seed Science and Technology, 29(1): 21-29.

Hardegree, S. 2006. Predicting germination response to temperature. I. Cardinal temperature models and subpopulation-specific regression. Annals of Botany, 97(6): 1115-1125.
https://doi.org/10.1093/aob/mcl071

Hardegree, S.P. and A.H. Winstral, 2006. Predicting germination response to temperature. II. Three dimensional regression, statistical gridding and iterative-probit optimization using measured and interpolated-subpopulation data, Annals of Botany, 98: 403-410.
https://doi.org/10.1093/aob/mcl112

Hashemi, A., Barooti, Sh. and Tavakkol-Afshari, R. 2017. Determine the cardinal temperatures of germination of *Chrysanthemum maximum* Ramond. Iranian Journal of Seed Science and Technology, (2): 77-84. [In Persian with English Summary].

Huang, B.R., Taylor, H.M. and McMichael, B.L. 1991. Growth and development of seminal and crown roots of wheat seedlings as affected by temperature. Journal of Experimental Botany, 31(4): 471-477.
https://doi.org/10.1016/0098-8472(91)90046-Q

Jacobsen, S.E. and A.P. Bach. 1998. The influence of temperature on seed germination rate in quinoa (*Chenopodium quinoa* Wild). Seed Science and Technology, 26: 515-523.

Jalilian, J. and Khaliliaqdam, N. 2014. Effects of alternative temperatures on germination rate of Rocket seed. Iranian Journal of Seed Research, 2(1): 127-133. [In Persian with English Summary].

Jami Al-Ahmadi, M. and M. Kafi. 2007. Cardinal temperatures for germination of *Kochia scoparia* (L.). Journal of Arid Environment, 68: 308-314. [In Persian with English Summary].
https://doi.org/10.1016/j.jaridenv.2006.05.006

Jordan, G.L. and Haferkamp, M.R. 1989. Temperature responses and calculated heat units for germination of several range grasses and shrubs. Journal of Range Management, 42(1): 41-45.
https://doi.org/10.2307/3899656

Kamaha, C. and Magure, Y. 1992. Effect of temperature on germination of six winter wheat cultivars. Seed Science and Technology, 20(1): 181-185.

Kamkar, B., Ahmadi, M., Soltani, A. and Zeinali, E. 2008. Evaluation non-linear regression models to describe a response of wheat emergence rate to temperature. Seed Science and Biotechnology, 2(2): 53-57. [In Persian with English Summary].

Kamkar, B., Jami Al-Ahmadi, M., Mahdavi-Damghani, A. and F.J. Villalobos. 2012. Quantification of the cardinal temperatures and thermal time requirement of Opium poppy (*Papaver somniferum* L.) seeds to germinate using non-linear regression models. Industrial Crops and Products, 35(1): 192-198. [In Persian with English Summary].
https://doi.org/10.1016/j.indcrops.2011.06.033

Kamkar, B., Koocheki, A., Nassiri Mahallati M. and Rezvani Moghadam, P. 2006. Cardinal temperatures for germination in three millet species (*Panicum miliaceum*, *Pennisetum glaucum* and *Setaria italica*). Asian Journal of Plant Science, 5: 316-319. [In Persian with English Summary].
https://doi.org/10.3923/ajps.2006.316.319
Kebreab E. and Murdoch A.J. 2000. The effect of water stress on the temperature range for germination of *Orobanches aegyptiaca* seeds. Seed Science Research, 10: 127-133. https://doi.org/10.1017/S0960258500000131

Khalili Aqdam, N. and Jalilian, J. 2015. Estimation of germination cardinal temperatures in cold and tropical Vetch. Iranian Journal of Seed Science and Research, 2(1): 37-43. [In Persian with English Summary].

Khalili Aqdam, N., Mirmahmoodi, T. and Bakhshi khaniki, Gh. 2016. Estimation of cardinal temperatures of *Calendula officinalis* L. usage non-linear regression. Journal of Seed Science and Technology, 4: 12-25. [In Persian with English Summary].

Khalili Aqdam, N., Mirmohammadi, T. and Sa'idian, Ch. 2017. Determination of critical temperature of linseed seed (*Linum usitatissimum* L.) by nonlinear regression. Iranian Journal of Seed Research, (2): 41-49. [In Persian with English Summary].

Kheirkhah, M., Koocheki, A., Rezwan-Moqaddam, P. and Nasiri-Mahallati, M. 2011. The determination of germination cardinal temperature of *Zizipora clinopodioides* Lam. Iranian Journal of Field Crop Research, 11(4): 543-550. [In Persian with English Summary].

Koocheki, A., Rashed -Mohassel, M.H., Nasiri-Mahallati, M. and Sadr-Abadi, R. 1988. Physiological foundations of crop growth and development (translation), Astan Qods Publications, 54-80. [In Persian].

Koocheki, A., Nassiri Mahallati., M. and Rezvani Moghaddam, P. 2006. Cardinal temperatures for germination in three millet species (*Panicum miliaceum*, *Pennisetum glaucum* and *Setaria italica*). Asian Journal of Plant Science, 5. [In Persian with English Summary].

Lexmond, T.M. and Vandervorm, P.D.J. 1981. The effect of pH on copper toxicity to hydroponically grown maize. NJAS Wageningen Journal of Life Sciences, 29(3): 217-238. https://doi.org/10.18174/njas.v29i3.17008

Maguire, J.D. 1962. Speed of germination- aid in selection and evaluation for seedling emergence and vigour. Journal of Crop Science, 2(2): 176-177. https://doi.org/10.2135/cropsci1962.0011183x000200020033x

Mahla, H.R., Kumar, D., Henry, A, Acharya, S. and Pahuja, S.K., 2010. Guar: Present status and future prospects in arid zone. Journal of Arid Legumes, 7(2): 1-5.

Mahmoodi, A., Soltani, E. and Barani, H. 2008. Germination response to temperature in snail medic (*Medicago sativa* L.). Electronic Journal of Crop Production, 1: 54-63. [In Persian with English Summary].

Majer, B.J., Tscherko, D. and Paschke, A. 2002. Effects of heavy metal contamination of soils on micronucleus induction in *Tradescantia* and on microbial enzyme activities: a comparative investigation. Mutation Research, 515: 111-124. https://doi.org/10.1016/S1383-5718(02)00004-9

Mwale, S.S., Azam-Ali, S.N., Clark, J.A., Bradley, R.G. and Chatha, M.R. 1994. Effect of temperature on the germination of sunflower (*Helianthus annuus* L.). Seed Science and Technology, 22(3): 565-571.

Narigol, 2017. Guar, Juan12, 2017. from https://narigol.com/blog/getting-to-know-goa.

Nichols, M.A. and Heydecker, W. 1986. Two approaches to the study of germination date. Proc. International Journal of Seed Test, 33: 531-540.
Oyedele, D., Asonugho, C. and Awotoye, O. 2006. Heavy metals in soil and accumulation by edible vegetables after phosphate fertilizer application. Agriculture Food Chemistry, 5(4): 1446-1453.

Poortoosi, N., Rashed Mohassel M.H. and Izadi Darbandi, I. 2009. Determination of cardinal temperature of (Chenopodium album), (Portulaca oleracea), (Digitaria sangiunalis). Iranian Journal of Agriculture Research, 6(2): 255-261. [In Persian with English Summary].

Pourreza, J. and Bahrani, A. 2012. Estimating cardinal temperatures of Milk thistle seed germination. American-Eurasian Journal of Agricultural Environmental Science, 12(8): 1030-1034. [In Persian with English Summary].

Rahimi, Z. and Kaffi, M. 2010. Evaluation of cardinal temperatures and the effect of different temperature levels on germination indices of Portulaca oleracea L. Journal of Plant Protection (Science and Technology of Agriculture), 24(1): 80-86. [In Persian with English Summary].

Ramin, A.A. 1997. The influence of temperature on germination of Taree Irani (Allium ampeloprasum L. spp. Iranicum W.). Seed Science and Technology, 25(3): 419-426.

Sabouri-Rad, S., Kafi, M., Nezami A. and Banayan-Avval, M. 2011. Estimation of minimum, optimum and maximum temperatures of Kochia scoparia using of beta five parametric model. Agricultural Ecology, 3(2): 191-197. [In Persian with English Summary].

Seiler, G.J. 1998. Influence of temperature on primary and lateral root growth of sunflower seedlings. Environmental and Experimental Botany, 40(2): 135-146. https://doi.org/10.1016/S0098-8472(98)00027-6

Soltani, A., Robertson, M.J., Torabi, B., Yousefi-Daz M. and Sarparast, R. 2006. Modeling seedling emergence in chickpea as affected by temperature and sowing depth. Agriculture and Forestry Meteorology, 138: 156-167. [In Persian with English Summary]. https://doi.org/10.1016/j.agrformet.2006.04.004

Zainali, A., Soltani, A., Goleshi, S. and Sadati, S.J. 2010. Cardinal temperatures, reaction to temperature and range of temperature tolerance of seed germination in wheat cultivars (Triticum aestivum L.). Journal of Crop Production, 3(3): 23-42. [In Persian with English Summary].
Research Article

Quantifying Guar (Cyamopsis tetragonoloba) Seed Germination Relative to Temperature

Seyyed Hamidreza Ramazani 1, *, Fariba Armoon 2, Mohammad Ali Behdani 3

Extended Abstract

Introduction: Guar (Cyamopsis tetragonoloba L.) is a plant from the legumes family. Guar gum is obtained from endosperm in guar seeds. Guar gum is used in many industries such as pharmaceutical and food industries, paper, mining, oil and drilling, textiles, and explosives industries. Modeling is a method that is widely used in predicting plant growth stages and determining the required thermal units in each growing stage, especially germination.

Considering the important therapeutic and industrial uses of guar and the lack of sufficient information and reports to determine the cardinal temperatures of this plant, this study aimed to investigate the effect of temperature on germination traits and early seedling growth and predict the cardinal temperatures (minimum, optimal and maximum) of germination for this plant.

Materials and Methods: This research was carried out at the Seed Sciences and Technology Laboratory of Agricultural College of Sarayan, the University of Birjand in 2017. Experiments were carried out in a completely randomized design with 8 levels of temperature treatments (5, 10, 15, 20, 25, 30, 35, and 40°C), with 5 replications. Germination percentage, daily germination speed, mean daily germination, plumule length, root length, and seedling length were calculated. Cardinal temperatures of germination were calculated using regression analysis with the aid of the proposed models (logistic, two-way, quadratic, and third-order polynomials) using germination speed. The data were analyzed using SAS software and the comparison means were done by Duncan's test at a probability level of 5%. Sigma Plot software was used to plot the germination rate against temperature graphs (for fitting different models).

Results: The results showed that the effect of different temperature levels on the percentage, speed and mean seed germination was significant (P <0.05). According to the results, the lowest values for percentage, speed, and average germination were obtained at 5, 10, and 40°C, and the highest germination speed was observed at 15 °C and also the highest percentage of germination and average germination was observed at 35°C. The results of the effect of different temperature levels on seedling growth showed that the effect of temperature on the seedling length, stem, and root length was significant (P <0.01), so that the lowest values related to seedling length, plumule and radicle was found at 5, 10 and 40°C, and the maximum seedling and plumule length were 30°C.

Conclusion: Quantification of the gauge seed germination reaction to different temperature levels was carried out using four dual-functions, logistic, quadratic and triple polynomials. The second-order multitasking regression model, based on the coefficient of explanation (R^2) and the amount of deviation, had a suitable and significant fit with the data related to germination rate against the independent temperature variable. Based on the parameters of the model, the optimum temperature was obtained at 26.05°C and the minimum and maximum temperature of guar germination were calculated to be 6.09 and 40°C.

Keywords: Cardinal temperature, Cubic model, Germination rate, Gouar

Highlights:

1. Cardinal temperatures of guar seed germination were predicted.
2. Based on cardinal germination temperatures, the planting date of guar became predictable.

* Corresponding author, E-mail: Hrramazani@birjand.ac.ir

(Received: 22.01.2020; Accepted: 04.01.2021)