Magnetism and Superconductivity in Ce$_2$RhIn$_8$

M. Nicklas, V. A. Sidorov, H. A. Borges, P. G. Pagliuso, C. Petrovic, Z. Fisk, J. L. Sarrao, and J. D. Thompson
Los Alamos National Laboratory, Los Alamos, NM 87545
(Dated: March 22, 2022)

We report the discovery of pressure-induced superconductivity, with $T_c = 2$ K, in the heavy-fermion antiferromagnet Ce$_2$RhIn$_8$, where superconductivity and magnetic order coexist over an extended pressure interval. A T-linear resistivity in the normal state, accessed by an applied magnetic field, does not appear to derive from the existence of a 2D quantum-critical spin-density wave.

PACS numbers: 74.70.Tx, 74.62.Fj, 75.30.Mb, 75.40.-s

Discoveries of pressure-induced superconductivity in several cerium-based heavy-fermion antiferromagnets have provided a qualitative perspective on the complex relationship between magnetism and superconductivity in these highly correlated systems. CeIn$_3$ is a typical example. Application of pressure suppresses its Néel temperature from $T_N \sim 10$ K at atmospheric pressure to zero temperature at a critical pressure $P_c \sim 2.5$ GPa. Neutron-diffraction studies show that the ordered 4f-moment decreases with $T_N(P)$, behavior also reflected in a monotonically depressed specific heat anomaly at T_N that disappears as P approaches P_c. This evolution in magnetic properties arises from a pressure-induced increase in hybridization between Ce's f-electron and conduction-band electrons. Near P_c, the electrical resistivity assumes a quasilinear temperature dependence, in contrast to $\rho \propto T^2$ expected of a Landau Fermi liquid, and is consistent with quasiparticle scattering from a quantum-critical spin-density wave. Damped spin fluctuations in this critical region mediate Cooper pairing in the unconventional superconducting state that emerges in a narrow pressure range centered around P_c. Like CeIn$_3$, which has a maximum $T_c \approx 0.25$ K, other examples in this class have T_c's well below 1 K and superconductivity appears only in the 'cleanest' samples with a long electronic mean-free path.

A counter-example to this view is UPd$_2$Al$_3$ in which local-moment antiferromagnetism and unconventional superconductivity coexist from atmospheric to high pressures. In this case, the three 5f-electrons in U assume dual characters: two localized f's are responsible for antiferromagnetism at $T_N=14.5$ K and the other hybridizes with conduction states to form a liquid of heavy quasiparticles that becomes unstable below 2 K with respect to a pairing interaction derived from dispersive excitations of the ordered moments.

In both examples, unconventional superconductivity is mediated by a magnetic interaction, but the bosonic excitations are distinctly different. In the Ce superconductors there is only a single f electron participating in both magnetism and superconductivity through its hybridization with itinerant electrons; whereas, there is a functional separation of f electrons in UPd$_2$Al$_3$. In the following, we present pressure-dependent measurements of the heavy-fermion antiferromagnet Ce$_2$RhIn$_8$ in which magnetic order and superconductivity appear to coexist over a rather broad pressure range and are accompanied by an unexpected T-linear variation in electrical resistivity. These results suggest that Ce$_2$RhIn$_8$ and perhaps the structurally-related compound CeRhIn$_5$ present a different example of the interplay between magnetism and superconductivity in strongly correlated matter.

Ce$_2$RhIn$_8$ is a member of the family of heavy-fermion antiferromagnets Ce$_n$RhIn$_{3n+2}$ composed of n layers of CeIn$_3$ separated by a single layer of RhIn$_2$, a sequence repeated along the tetragonal c-axis. The n = 1 member, CeRhIn$_5$, becomes superconducting at pressures above 1.6 GPa with a T_c exceeding 2 K, nearly an order of magnitude higher than the infinite layer member CeIn$_3$. Inserting a second layer of CeIn$_3$ into CeRhIn$_5$ gives Ce$_2$RhIn$_8$, which orders in a commensurate antiferromagnetic structure at 2.8 K with an ordered moment of $0.55 \mu_B$ slightly reduced by Kondo-spin compensation from the moment expected in the ground-state crystal-field doublet. It undergoes a second transition to an incommensurate magnetic structure at $T_{IN}=1.65$ K which, as will be shown, is irrelevant to the superconductivity that appears with applied pressure.

Ce$_2$RhIn$_8$ single crystals were grown out of excess In flux. X-ray diffraction on powdered crystals revealed single-phase material in the primitive tetragonal Ho$_2$CoGa$_8$ structure with lattice parameters $a = 0.44665$ nm and $c = 1.2244$ nm at room temperature. There was no evidence for intergrowth of CeRhIn$_5$. Four-probe ac-resistance measurements were made with current flow in the (a,b)-plane. Clamp-type cells generated hydrostatic pressures to 0.6 GPa for dc magnetization and 2.3 GPa for resistivity measurements. Flourinert-75 served as the pressure medium. Hydrostatic pressures to 5.0 GPa were produced in a toroidal anvil cell using a glycerol-water mixture. In both cases, the superconducting transition of Pb (Sn), which served as a pressure gauge, remained sharp at all pressures, indicating a pressure gradient of less than 1-2% of the applied pressure.

The overall behavior of the resistivity is shown in fig. The high temperature resistivity increases with increasing pressure over the temperature range between about 25 K and room-temperature. There is well-defined maximum in the resistivity at $T_{max} = 5$ K that initially decreases with P before increasing at a rate of ~ 20 K/GPa for $P \gtrsim 2.0$ GPa. This initial negative $\partial T_{max}/\partial P$ is unexpected for a Ce-based compound but is found in
In that case, $T_{\text{max}}(P)$ followed the pressure dependence of a maximum in the static susceptibility that is produced by the development of antiferromagnetic correlations above T_N. Presumably, the initial decrease in $T_{\text{max}}(P)$ in Ce$_2$RhIn$_8$ has the same origin as in CeRhIn$_5$. The increase in $T_{\text{max}}(P)$ at higher pressures is due to a shift of the characteristic spin-fluctuation temperature to progressively higher energies.

The inset of Fig. 1 shows the low-temperature resistivity and its derivative at atmospheric pressure. Compared to the typically small residual resistivity $\rho_0 \approx 1 \mu\Omega\text{cm}$ of CeIn$_3$ and CeRhIn$_5$, ρ_0 for Ce$_2$RhIn$_8$ is one to two orders of magnitude higher. A low residual resistivity ratio and high ρ_0 are reproduced in all of many high-quality crystals of Ce$_2$RhIn$_8$ we have studied, and, therefore, appears to be an intrinsic property of this compound. In spite of the high resistivity, $\rho(T)$ and $\partial \rho / \partial T$ clearly reveal the commensurate and incommensurate antiferromagnetic transitions at $T_N = 2.8$ K and $T_{\text{LN}} = 1.65$ K, respectively. Using the data in Fig. 1 and the maxima in $\partial \rho / \partial T$ to track the pressure evolution of these phase transitions, we find that $T_N(P)$ decreases linearly at a rate $\partial T_N / \partial P \approx -0.76$ K/GPa. This slope is confirmed by dc-susceptibility measurements to 0.5 GPa.

Figure 2 gives a detailed view of the low-temperature resistivity at intermediate pressures. We see that the incommensurate transition is very sensitive to pressure. T_{LN} shifts from 1.65 K at ambient pressure to 0.95 K at 0.02 GPa. This gives an estimate of a critical pressure $P_{\text{c,LN}} \approx (0.04 \pm 0.01)$ GPa for suppressing T_{LN} and a corresponding slope of $\partial T_{\text{LN}} / \partial P \approx -(43 \pm 15)$ K/GPa that is consistent with $\partial T_{\text{LN}} / \partial P$ derived from Ehrenfest’s relation and measurements of the low-temperature specific heat and volume thermal expansion. Therefore, only the commensurate phase survives for $P \gtrsim 0.04$ GPa. At 0.55 GPa a weak decrease in the resistivity appears at $T_2 = 420$ mK. Nearly the same temperature dependence of the resistivity and same T_2 are found for 0.69 and 0.89 GPa (not shown). We do not know the origin of this feature. At 1.10 GPa the data develop a steeper slope below ~1 K followed by a kink near $T_c = 380$ mK. The kink shifts continuously to higher temperatures with increasing pressure and evolves smoothly into a zero-resistance state below 600 mK at 1.63 GPa. Measurements of the ac susceptibility, plotted in the inset of Fig. 2, show the onset of a diamagnetic response at the same temperature where the resistance goes to zero. Although perfect diamagnetism could not be observed in the experimentally accessible temperature range, it is clear from the size of the signal change that the diamagnetic response is due to bulk superconductivity. Reproducibility of a zero-resistance state for $P \gtrsim 1.6$ GPa was confirmed on...
an initial slope \(\xi \) Ginzburg-Landau coherence length in the

the data reasonably well with

H the magnetization (open circles). The lines are guides to the eyes.

sustive onset defines

at 1.63 GPa using data plotted in Fig. 3. The re-

sistance onset defines at 1.63 GPa using data plotted in Fig. 3. The re-

sistance onset defines at 1.63 GPa using data plotted in Fig. 3. The re-

sistance onset defines at 1.63 GPa using data plotted in Fig. 3. The re-

as it does in CeRhIn\(_5\) and is an order of magnitude higher than in CeIn\(_3\), where \(T_c/T_N \approx 0.025 \). Interest-

ingly, the ‘dome’ of superconductivity exists over a rather broad pressure range, at least 2.5 GPa, in Ce\(_2\)RhIn\(_8\) but is

very narrow, \(\sim 0.4 \) GPa, in CeIn\(_3\); the pressure range over which superconductivity exists scales roughly with \(T_c \).

To interpret these observations, we first consider the perspective developed from other examples of \(P \)-induced superconductivity in Ce-based systems. For magneti-

cally mediated superconductivity, \(T_c \propto T_{sf} \), where \(T_{sf} \) is the characteristic spin-fluctuation temperature that is

inversely proportional to the specific heat Sommerfeld co-

efficient \(\gamma \). For CeRhIn\(_5\), Ce\(_2\)RhIn\(_8\) and CeIn\(_3\), \(\gamma \sim 0.4, 0.2 \) and 0.37 J/mol CeK\(_2\), respectively, at \(P \lesssim P_c \).

With all other factors equal, \(T_c \)'s, then, should be approximate-

ly (±50%) the same within this family of materials; instead, \(T_c \)'s of the layered compounds are much higher than in CeIn\(_3\). Though \(T_{sf} \) sets the overall scale for the magnitude of \(T_c \), \(T_c \) also depends on the effective dimen-

sionality of the spin fluctuations and the electronic structure: reduced dimensionality favors a higher \(T_c \).

Support for this scenario comes from conventional models of antiferromagnetic quantum criticality. These models predict that, near \(P_c \), \(T_N \propto (P - P_c)^z \) and \(\rho(T) \propto T^z \), where the dynamical exponent \(z=2 \) and \(d \) is the effective dimensionality of the spin-fluctuation spectrum. Experimental observations on CeIn\(_3\) are consistent

with theoretical predictions for \(d=3 \) and with \(d=2 \) in Ce\(_2\)RhIn\(_8\) and provide a plausible explanation for the unexpectedly high \(T_c \) of Ce\(_2\)RhIn\(_8\). In this picture, the d-wave superconductivity and even somewhat higher \(T_c \) of CeRhIn\(_5\) would be attributable to more nearly optimal matching of the momentum dependence of the dynamic spin susceptibility \(\chi(q, \omega) \) to its quasi-2D electronic structure. Further, this interpretation supports superconductivity existing over a much wider range of pressures in Ce\(_2\)RhIn\(_8\) than in CeIn\(_3\) because the effective pairing interaction is expected to be stronger in quasi-2D than in 3D.

Though providing a qualitative account of our observations, the interpretation outlined above relies on a model in which the non-Fermi-liquid temperature dependence of \(\rho(T) \) arises from Bragg diffraction of heavy quasiparticles off a quantum-critical spin-density wave (SDW). In this case, the scattering is critical only on ‘hot’ portions of the Fermi surface spanned by the antiferromagnetic ordering wave-vector \(Q \); whereas, other parts of the Fermi surface are unaffected. Unless all of the Fermi surface is hot, the resistivity should vary as \(T^{1+\epsilon} \), where \(0 < \epsilon < 1 \), in contradiction to our observations and those on CeIn\(_3\). Neutron-diffraction studies of CeRhIn\(_5\) show that \(Q \) and the local moment remain well defined and weakly changing as \(P \to P_c \), supporting speculation of similar behavior in Ce\(_2\)RhIn\(_8\). We cannot rule out the possibility that most of the Fermi surface is exactly spanned by \(Q \) in both compounds, but this seems very unlikely.

FIG. 4: The temperature-pressure phase diagram for Ce\(_2\)RhIn\(_8\) determined by \(\rho(T) \) (solid symbols) and de-

magnetization (open circles). The lines are guides to the eyes.

another crystal.

To provide additional confirmation of bulk superconduc-

tivity, we determined the upper critical field \(H_c(2) \) at 1.63 GPa using data plotted in Fig. 3. The re-

sistive onset defines \(H_c(2) \) which is shown in the in-

set. A fit of \(H_c \propto (H_c(2) = 0) - H_c(2)(T) \) describes the data reasonably well with \(H_c(0) = 53.6 \) kOe and

an initial slope \(-dH_c/dT \big|_{T=T_c} = 91.8 \) kOe/K. The Ginzburg-Landau coherence length in the \(c \)-axis direction

\(\xi_{GL} = \left(\frac{\rho_s}{2\pi T} \right)^{1.5} \approx 7.7 \) nm, which is comparable to the volume-averaged electronic mean-free path, \(l \approx 6.5 \) nm. The dirty-limit relationship \(-dH_c/dT \big|_{T=T_c} \propto \rho_0\gamma \) gives \(\gamma \approx 0.20 \) J/mol CeK\(_2\) at 1.63 GPa, which is one-half the value measured directly at atmospheric pressure just above \(T_N \). Halving of the Sommerfeld coefficient at 1.63 GPa is expected from the relationship \(\gamma(P) \propto 1/T_{\text{max}}(P) \) obeyed by several heavy-fermion sys-

tems and our observation that \(T_{\text{max}}(1.63)T_{\text{max}}(0) = 2.5 \) in Ce\(_2\)RhIn\(_8\). Furthermore, bulk superconductivity evolves out of a distinctly non-Fermi-liquid-like state. A fit to \(\rho(T) \) at 1.63 GPa and 69 kOe, solid squares in Fig. 3, gives \(\rho = \rho_0 + A'T^n \), with \(n = 0.95 \pm 0.05 \) for

0.3 K \(\leq T \leq 1.8 \) K. An approximately \(T \)-linear resistivity is also found above \(T_c \) in CeRhIn\(_5\) and is qualita-

tively different from the \(T^{1.5} \) dependence observed in CeIn\(_3\) near its critical pressure.

Measurements to 5.0 GPa, but for \(T \geq 1 \) K, show the onset of superconductivity reaching a maximum of 2.0 K near

2.3 GPa before decreasing below 1 K above 3.5 GPa. See Fig. 3. \(T_c \) reaches a maximum close to the pressure at which \(T_N \) extrapolates to zero. Unless \(T_N \) drops precipitously above \(\sim 1.5 \) GPa, superconductivity and local-

moment, commensurate antiferromagnetism coexist over a substantial range of pressures. A critical pressure of

\(\sim 2.5 \) GPa and a ‘dome’ of superconductivity with a maximum \(T_c \) centered near the extrapolated critical pressure

also are found in CeIn\(_3\); however, the maximum \(T_c \) of Ce\(_2\)RhIn\(_8\) reaches a value comparable to \(T_N(P = 0) \),

\(\)
Alternatively, we speculate that the entire Fermi surface is hot and \(\rho(T) \) takes a non-Fermi-liquid form because the quantum criticality is local. At a local quantum-critical point, \(\chi(q, \omega) \) has an anomalous frequency dependence throughout the entire Brillouin zone and not just at \(Q \). Unlike the weak-coupling SDW limit, local criticality, which is facilitated by 2-dimensionality, requires the physics of a Kondo lattice, i.e., a local moment coupled antiferromagnetically to a bath of itinerant spins and a fluctuating field produced by surrounding local moments. The nature of superconductivity that might develop near a local quantum-critical point remains to be investigated, but, because the basic interactions are antiferromagnetic, as in the SDW limit, superconductivity of d-wave symmetry would be expected. Unconventional superconductivity near a quantum-critical SDW is favored when \(\xi_{GL} \ll \frac{\Gamma}{|T_c|} \) which is satisfied in \(\text{CeIn}_3 \); however, \(\frac{1}{\xi_{GL}} \sim 1 \) in \(\text{Ce}_2\text{RhIn}_5 \) and \(\sim 3 \) in \(\text{CeRhIn}_5 \). This, the much higher \(T_c \)'s, quasi 2-dimensionality and unexpected \(\rho \propto T \) suggest that unconventional superconductivity in the latter two compounds may be mediated by qualitatively different spin fluctuations than in \(\text{CeIn}_3 \). Finally, we note that a theory unifying the order parameters of antiferromagnetism and d-wave superconductivity predicts a \(T \sim P \) phase diagram like that shown in Fig. 4 and allows \(T_c/T_N \sim 1 \) as found in \(\text{Ce}_2\text{RhIn}_8 \).

We thank Q. Si for helpful discussions and M. Hundley for screening several \(\text{Ce}_2\text{RhIn}_8 \) samples. Work at Los Alamos was performed under the auspices of the US DOE.

13 W. Bao, G. Aeppli, J. W. Lynn, P. G. Pagliuso, J. L. Sarrao, M. F. Hundley, J. D. Thompson, and Z. Fisk, Phys. Rev. B 65, 100505 (2002).
14 Similar measurements at 15.4 kbar give \(H_{c2}(0) = 44.8 \) kOe and \(-dH_{c2}/dT \mid _{T-T_c} = 93.4 \) kOe/K.
15 The mean free path was estimated by assuming \(\xi_{GL} \approx \xi_{BCS} \) and by following relationships given in T. P. Orlando, E. J. McNiff, S. Foner, and M. R. Beasley Phys. Rev. B 19, 4545 (1979).
16 See, for example, S. Nakamura, T. Moriya and K. Ueda, J. Phys. Soc. Jpn. 65, 4026 (1996).
17 R. A. Fisher, F. Bouquet, N. E. Phillips, M. F. Hundley, P. G. Pagliuso, J. L. Sarrao, Z. Fisk, and J. D. Thompson, Phys. Rev. B 65, 224509 (2002).
18 P. Monthoux and G. G. Lonzarich, Phys. Rev. B 63, 054529 (2001); Phys. Rev. B 59, 14598 (1999); cond-mat/0207556.
19 J. A. Hertz, Phys. Rev. B 14, 1165 (1976); A. J. Millis Phys. Rev. B 48, 7183 (1993); U. Zülicke and A. J. Millis Phys. Rev. B 51, 8996 (1995).
20 D. Hall, E. C. Palm, T. P. Tozer, C. Petrovic, E. Miller-Ricci, L. Peabody, C. Q. H. Li, U. Alver, R. G. Goodrich, J. L. Sarrao, P. G. Pagliuso, J. M. Wills, and Z. Fisk, Phys. Rev. B 64, 064506 (2001).
21See, for example, P. Coleman, C Pépin, Q. Si, and R. Ramazashvili, J. Phys. Condens. Matter 13, R723 (2001); P. Coleman and C. Pépin, Physica B 312, 397 (2002).
22 A. Llobet et al., unpublished; S. Majumdar, G. Balakrishnan, M. R. Lees, D. McK Paul, and G. J. McIntyre, cond-mat/0205607.
23 Q. Si, S. Rabello, K. Ingersent, and J. L. Smith, Nature 413, 804 (2001). Conditions for local quantum criticality appear to be satisfied in \(\text{CeRhIn}_5 \) as \(P \rightarrow P_c \) but remain to be established for \(\text{Ce}_2\text{RhIn}_8 \) under pressure.
24 Q. Si, unpublished.
25 S. C. Zhang, Science 275, 1089 (1997); A. Dorneich, E. Arrigoni, M. Jöstingmeier, W. Hanke, and S.-C. Zhang, cond-mat/0207528.