OPOM: Customized Invisible Cloak Towards Face Privacy Protection

Yaoyao Zhong, Student Member, IEEE and Weihong Deng, Member, IEEE

Abstract—While convenient in daily life, face recognition technologies also raise privacy concerns for regular users on the social media since they could be used to analyze face images and videos, efficiently and surreptitiously without any security restrictions. In this paper, we investigate the face privacy protection from a technology standpoint based on a new type of customized cloak, which can be applied to all the images of a regular user, to prevent malicious face recognition systems from uncovering their identity. Specifically, we propose a new method, named one person one mask (OPOM), to generate person-specific (class-wise) universal masks by optimizing each training sample in the direction away from the feature subspace of the source identity. To make full use of the limited training images, we investigate several modeling methods, including affine hulls, class centers and convex hulls, to obtain a better description of the feature subspace of source identities. The effectiveness of the proposed method is evaluated on both common and celebrity datasets against black-box face recognition models with different loss functions and network architectures. In addition, we discuss the advantages and potential problems of the proposed method. In particular, we conduct an application study on the privacy protection of a video dataset, Sherlock, to demonstrate the potential practical usage of the proposed method.

Index Terms—Privacy protection, adversarial example, class-universal attack

1 INTRODUCTION

Deep learning has achieved considerable success in computer vision [1], [2], [3], [4], significantly improving the state-of-art of face recognition [5], [6], [7], [8], [9], [10], [11], [12], [13]. This ubiquitous technology is now used to create innovative applications for entertainment and commercial services.

However, face recognition can be used for good as well as ill. Due to privacy concerns and fears of an Orwellian surveillance society [14], exploiting and analyzing face images without restriction has promoted considerable controversy. Unfortunately, such concerns and fears are not without merit. Human behavioral and psychological traits on social media and video surveillance, including photographs and videos, are at risk of unauthorized access or can be used inappropriately or with unintended disclosure. Privacy laws can be used to regulate the misuse of face recognition systems [15], [16] to avoid the potential risk of inappropriate usage of private information. However, simply prohibiting face recognition technique due to privacy concerns is not the best way. It may be better to develop deep learning technologies to solve the problems that the technology itself brings [17].

To protect privacy while maintaining practically usage, some studies [17], [18], [19], [20], [21] aim to de-identify face images such that many facial characteristics remain, but the identities of people in the images cannot be reliably recognized. Considering that the generated images may have different visual appearances compared with the original images [17], [18], or behave unnaturally and exhibit undesirable artifacts [19], [20], [21], some recent methods [22], [23], [24], [25], [26], [27] can both hide the identification information and maintain the visual quality of face images, by generating imperceptible adversarial examples [28] as privacy protection masks. Despite the naturalness and effectiveness, it is incredibly unfriendly for regular users to generate different privacy masks for each photograph or each frame of videos.

Further study is necessary to provide more effective and simple face privacy protections for the general public. In contrast to existing methods, which generate different adversarial masks for the different face images of a person, we aim to generate a type of person-specific (class-wise) universal mask. In this way, a regular user can generate one privacy mask only once, then apply it to all his or her photographs and videos.

Compared with image-specific privacy masks, the benefits of person-specific universal masks are twofold. First, the person-specific mask is generated once, therefore it can dispense with the mask generation time for new images, which may benefit average users and some real-time privacy protection applications in terms of efficiency. Second, compared with image-specific privacy masks which require multiple transmissions of new images between the user and the server, person-specific masks need only one transmission, which can reduce the risk of privacy leakage.

There are two challenges in generating person-specific privacy masks. (1) Individual Universality. Compared with image-specific privacy masks [22], [23], [24], [25], [26], [27], person-specific privacy masks are generated with only a
small number of images of an identity, and they can be applied to different unknown images. While face images of the same identity can vary from poses, illuminations, expressions and occlusions [29]. This diversity will undoubtedly increase the difficulty of generating privacy masks for different face images. Therefore, it is crucial to increase the individual universality of adversarial masks for person-specific privacy protection. (2) Model Transferability. The privacy masks should be transferable towards different models [30], [31], [32], [33], which means that they are generated from the local surrogate models and applied to different unknown recognition systems. For unknown face recognition models, there are a wide range of options for training databases, training loss functions and network architectures [34]. This variety will undoubtedly increase the difficulty of generating transferable adversarial masks.

In this paper, we propose a method, named one person one mask (OPOM), to provide one privacy mask, for all the face images of one person, similar to a customized invisible cloak, as shown in Fig. 1. Specifically, to increase the individual universality, OPOM generates a privacy mask by solving an optimization problem, which maximizes the distance between diverse deep features of the training images and the feature subspace of the identity. We investigate different modeling methods, including affine hulls, class centers and convex hulls, to model the feature subspace of each identity for better description with limited images. As shown in Fig. 2, we empirically find that, with better description of the feature subspace in the mask generation process, both individual universality and model transferability can be improved. Furthermore, to increase model transferability, OPOM is also designed to be combined with a variety of model transferability methods, such as the momentum boosting method [32] and DFANet [34].

The main contributions of our paper are as follows:

- We reveal the existence of a new type of person-specific (class-wise) universal adversarial privacy mask, which is generated to protect different face images of the same identity, and therefore can be easier-to-use for regular users.

- We investigate this new type of person-specific privacy mask, and propose an efficient method, OPOM, to generate this type of adversarial mask, which can jointly improve the Image Universality and Model Transferability, therefore attaining more effective privacy protection.

- The effectiveness of the proposed OPOM method is empirically demonstrated in protecting unconstrained face images towards different black-box deep face recognition models compared with previous universal adversarial perturbations.

The remainder of the paper is organized as follows. Section 2 briefly reviews the literature related to privacy protection and adversarial attacks. In Section 3, we first introduce the proposed OPOM for generating privacy masks; and then describe the potential comparable methods. In Section 4, we first evaluate the effectiveness of the proposed method; and then discuss the proposed method for a deeper understanding. Finally, Section 5 summarizes this paper and provides suggestions for future works.

2 RELATED WORKS

In this section, we briefly review the literature related to face privacy protection and adversarial attacks.
2.1 Face Privacy Protection

Privacy protection has been studied for a long time in the literature [35], and has attracted more attention in the current deep learning era, since multimedia data can be analyzed accurately and efficiently with high-performance deep models [36]. The face image, as an important type of biometric data, can reveal a large amount of identity information.

With the help of deep learning technologies, face recognition has developed with unprecedented success [5], [6], [7], [8], [9], [10], [11], [12], [13]. Face recognition models are trained on large-scale training databases [29], [37], [38], and used as feature extractors to test identities that are usually disjoint from the training set [8]. With these open-set face recognition models [39], images and short videos posted casually on the social media can be collected and analyzed by unauthorized commercial services.

To protect privacy, studies [17], [18], [19], [20], [21] on face de-identification aim to remove identity information from the images. Newton et al. [17] replaced the original images with the average of k face images, and Gross et al. [18] reconstructed a de-identified face using a generative multi-factor model, which were early attempts to face de-identification to replace masking, blurring, or pixelation techniques. In recent years, motivated by generative neural networks, face de-identification works [19], [20], [21] have developed the synthesis images to replace the original images for privacy protection. Despite their effectiveness, considering the lack of naturalness of replaced faces in previous methods [17], [18], [19], [20], [21], some researchers [22], [23], [24], [25], [26], [27] are inspired by adversarial examples [28] and made some successful attempts at face adversarial privacy protection.

2.2 Adversarial Attacks

Szegedy et al. [28] first found that, with elaborate strategies, deep neural networks can be easily fooled by test images with imperceptible noise [28], named adversarial examples. These images could be further classified as image-dependent adversarial examples and image-agnostic adversarial examples (universal adversarial examples).

2.2.1 Image-Dependent Adversarial Examples

Compared with the initial adversarial examples generated by a box-constrained LBFGS method [28], Goodfellow et al. [40] proposed a more time-saving method, FGSM, which builds an adversarial example by performing one-step gradient updating along the direction of the sign of the gradient at each pixel. Kurakin et al. [41] further developed FGSM to generate iterative attacks, and achieved a higher attack success rate than FGSM in a white-box setting. Similarly, another efficient iterative attack method proposed by Moosavi-Dezfooli et al. [42], called DeepFool, generated the minimal perturbation in each step by moving towards the linearized decision boundary [42]. In addition to white-box attacks, transferable black-box attacks [30], [31], [32], [33], [43], [44] are more practical in real-world situations, since this type of attack can be applied in a fully black-box manner without any queries on the target system.

2.2.2 Universal Adversarial Examples

Moosavi-Dezfooli et al. [45] proved the existence of image-agnostic adversarial attacks, which can create a universal adversarial perturbation (UAP) for all the images of the database. Haynes et al. [46] investigated the capacity for generative models to craft UAPs and demonstrate that their attack method improves previous methods [45] in terms of crafting more transferable UAPs. Mopuri et al. [47] proposed a generative method aiming to model the distribution of adversarial perturbations by generating a wide variety of UAPs. In concurrent work, Pourasaeed et al. [48] proposed a unifying framework based on generative models for creating universal and image-dependent perturbations and improve the state-of-the-art performance of UAPs. Mopuri et al. [49], [50] first proposed a data-free objective, named GD-UAP, to learn perturbations that can adulterate the deep features extracted by multiple layers. GD-UAP, especially GD-UAP with data priors; it demonstrated impressive fooling rates and surprising transferability across various deep models with different architectures, regularizers and underlying tasks.

At present, the most relevant works to ours are the class-wise/discriminative methods [51], [52]. Gupta et al. [51] proposed a type of class-wise UAP, using the linearity of the decision boundaries of deep neural networks. Using the absolute accuracy drop as an evaluation metric, Zhang et al. [52] proposed a class-discriminative universal attack to generate a perturbation that can fool a target network to misclassify only the target classes, while having limited influence on the remaining classes. Note that a class-discriminative universal attack is not suitable for the privacy protection task since it actually sacrifices some protection effects on the target classes in exchange for inhibition effects on the remaining classes. Previous class-wise/discriminative methods [51], [52] are inspiring; however, due to a heavy reliance on class information, they cannot be applied to the open-set face recognition task directly. Even if face recognition models suffer from a lack of class information, the proposed OPOM method models the feature subspace of an identity with a data prior and therefore can generate class-wise universal adversarial perturbations by optimizing the deep features in the direction away from the feature subspace of the source identity, which is exactly the advantage of OPOM.

2.3 Adversarial Privacy Protection

Inspired by the adversarial examples, which can mislead deep models to generate incorrect outputs while maintaining the visual quality of images, some works consider generating adversarial perturbations of face images for privacy protection [22], [23], [24], [25], [26], [27].

Oh et al. [22] made an initial attempt to use adversarial perturbations for privacy protection from a game theory perspective. For better visualizaion effects, Chatzikyriakidis et al. [23] proposed P-FGVM to generate white-box privacy masks by considering minimal facial image distortion based on iterative attacks [41]. Fawkes [24] incorporated adversarial perturbations in the training process by poisoning some target training samples; and therefore misled the model on the poisoned targets in the inference period. Fawkes reported good performance on commercial APIs,
TABLE 1
Comparison of Methods to Generate Privacy Masks With Adversarial Examples to Protect Images Against Malicious Face Recognition Systems

Methods	Inference	Open-set	Blackbox	Person-specific (Class-wise)
Oh et al. [22]	Yes	No	No	No
P-FGVM [23]	Yes	No	No	No
Fawkes [24]	No	No	Yes	No
TIP-IM [25]	Yes	Yes	Yes	No
APF [26]	Yes	Yes	Yes	No
LowKey [27]	Yes	Yes	Yes	No
This paper	Yes	Yes	Yes	Yes

which drew much attention in the research community. However, compared with the poisoning in the training process method, it is more applicable to design privacy masks that can be directly used [25], [26], [27] in terms of privacy protection for regular users. For a higher privacy protection success rate, Yang et al. [25] designed adversarial privacy masks that were directly used on the probe images, with a targeted optimization objective, named TIP-IM, under the assumption of unknown gallery images. To prevent privacy leakage when generating privacy masks, Zhang et al. [26] proposed an end-cloud collaborated adversarial attack solution, named APF, where the original face images were only available at the user end. In addition, Valeria et al. [27] applied adversarial privacy masks on the gallery faces so that the probe images could not be recognized correctly.

A comparison of the aforementioned methods [22], [23], [24], [25], [26], [27] and our methods is listed in Table 1, in terms of whether the method can be directly used in the inference process, whether the method is applied in an open-set face recognition setting, whether the privacy mask can confront black-box models, and whether the privacy mask is person-specific (class-wise) universal for convenient usage. Despite the clear motivation and good performance [22], [23], [24], [25], [26], [27], to the best of our knowledge, no works before have considered the person-specific privacy protection for high-efficiency, which we believe could revolutionize the future for face privacy protection.

3 PERSON-SPECIFIC PRIVACY MASKS

3.1 Problem Formulation

The objective of a person-specific adversarial mask is to craft a perturbation ΔX that can fool a variety of deep face recognition models f(·) for all the face images $X^k = \{X^k_1, X^k_2, \ldots, X^k_{r_k}\}$ of identity k, so that any face image X^k_i can conceal the identity X^k from deep face recognition models $f(\cdot)$ with this privacy mask ΔX. That is, we find a ΔX so that $X^k_i \in X^k$ holds

$$D(f(X^k_i + ΔX), f_{X^k}) > t, \quad \|ΔX\|_\infty < \varepsilon, \quad (1)$$

where $f(X^k_i) \in \mathbb{R}^d$ is the normalized feature of image X^k_i, f_{X^k} denotes the feature subspace of identity k, and t is the distance threshold to decide whether a pair of face images belongs to the same identity. $D(x_1, x_2)$ denotes the distance between x_1 and x_2, that is, the shortest distance between point x_1 and subspace x_2. When x_2 denotes a point, we use $D(x_1, x_2)$ to represent the normalized euclidean distance or cosine distance commonly used in face recognition. ε limits the maximum deviation of the privacy mask.

3.2 One Person One Mask (OPOM)

In the above problem formulation as Equation (1), the key point is the formulation of f_{X^k}. Note that for open-set face recognition models that are more like feature extractors, it is likely that the persons to be protected do not belong to the training databases. That is, we cannot obtain identity information from the face recognition models directly as previous works [51], [52] did in some close-set tasks where the class information of the model can be used to generate class-wise universal perturbations.

Therefore, the only choice is to describe an identity f_{X^k} from the provided face image set X^k. For a specific identity, when more face images are provided, the image set X^k will be more complete, and the feature subspace f_{X^k} will be more precise. However, incorporating more images for generating adversarial masks is completely at odds with our expectations, since we aim to use as few face images as we can to generate a person-specific adversarial mask for privacy protection. Considering the above function, we explore some approximation methods for f_{X^k}, with a limited number n_b of face images $X^k = \{X^k_1, X^k_2, \ldots, X^k_{n_b}\}$ in practice.

The basic intuition is as follows. With more precise approximation of the identity subspace, the individual universality can be enhanced to some extent. In addition, with more diverse gradient information (i.e., gradients of cross-comparisons, images X^k_i and X^k_j) incorporated into the approximation equations, the model transferability can be increased to some degree.

To confirm this intuition, we conduct an analytical experiment as shown in Fig. 2. Specifically, we describe individual universality using the protection success rate of the unfamiliar images on the local surrogate model, that is, evaluate the masks with the same model and different images. Model transferability can be described as the average protection success rate of the provided training dataset on different black-box models, that is, evaluating the privacy masks with the same images and different models.

We empirically find that, compared with single points representing the identity (“FI-UAP”, represented with the blue marker), with more precise approximation (represented with the red markers), both individual universality and model transferability can be improved. The empirical experimental results are consistent with the intuition, that is, a better approximation method will lead to more effective privacy protection. Next, we introduce the approximation methods in details.

3.2.1 Approximation Methods of the Feature Subspace

Affine Hulls. The affine hull implicitly augments existing face images, by treating any affine combination of normalized deep features as a valid feature for the identity, so that limited face images can realize their full potential. The affine hull of deep features for a specific identity can be expressed as

$$H(f_{X^k}) = \left\{ x = \sum_{i=1}^{n_b} \alpha^k_i f(X^k_i) \middle| \sum_{i=1}^{n_b} \alpha^k_i = 1 \right\}, \quad (2)$$
where \(f(X_k^i) \) and \(\alpha^k_i \) (\(i = 1, \ldots, n_k \)) are the features and coefficients to describe the identity \(k \).

In this way, we can generate the privacy mask \(\Delta X \) with limited face images for identity \(k \) by optimizing the following objective

\[
\Delta X = \arg\max_{\Delta X} \sum_{i=1}^{n_k} D(f(X_k^i + \Delta X), H(f_{X_k}^i)), \quad \|\Delta X\|_{\infty} < \epsilon, \tag{3}
\]

where \(n_k \) denotes the number of face images, \(H(f_{X_k}^i) \) is the affine hull of the normalized features as Equation (2).

To calculate the distance \(D(f(X_k^i + \Delta X), H(f_{X_k}^i)) \) in Equation (3), we can rewrite \(H(f_{X_k}^i) \) as follows to parametrize the affine hull

\[
H(f_{X_k}^i) = \left\{ x = U^k V^k + \mu^k \mid V^k \in \mathbb{R}^{n_k} \right\}, \tag{4}
\]

where \(\mu^k = \frac{1}{n_k} \sum_{i=1}^{n_k} f(X_k^i) \), \(U^k \in \mathbb{R}^{d \times n_k} \) is the orthonormal basis for the directions spanned by the affine hull, obtained by using singular value decomposition (SVD) to \([f(X_1^i) - \mu^k, \ldots, f(X_{n_k}^i) - \mu^k] \), and \(V^k \in \mathbb{R}^{n_k} \) is a vector of free parameters that provides coordinates for the orthonormal basis. With Equation (4), we can calculate the distance \(D(f(X_k^i + \Delta X), H(f_{X_k}^i)) \) in Equation (3) as

\[
\min_{V^k} \|U^k V^k + \mu^k - f(X_k^i + \Delta X)\|, \tag{5}
\]

which can be written as a standard least squares problem

\[
\min_{V^k} \|U^k V^k - (f(X_k^i + \Delta X) - \mu^k)\|, \tag{6}
\]

and the solution is

\[
V^k = (U^k U^k)^{-1} U^k (f(X_k^i + \Delta X) - \mu^k). \tag{7}
\]

Finally, we can generate the privacy mask \(\Delta X \) by transforming Equation (3) as

\[
\Delta X = \arg\max_{\Delta X} J_{aff}
= \arg\max_{\Delta X} \sum_{i=1}^{n_k} \|U^k V^k - (f(X_k^i + \Delta X) - \mu^k)\|, \quad \|\Delta X\|_{\infty} < \epsilon, \tag{8}
\]

where \(U^k \) and \(\mu^k \) can be calculated as mentioned above, and \(V^k \) is the solution of Equation (6), with the value shown in Equation (7).

Class Centers and Convex Hulls. Although affine hulls can provide an implicit augmentation for provided face images, this approximation may be too loose since some points in the hull may not be valid and may cause opposite effects when generating the mask. Therefore, we introduce lower and upper bounds \(L \) and \(U \) on the allowable \(\alpha^k_i \) coefficients in Equation (1) to control the looseness

\[
H(f_{X_k}^i) = \left\{ x = \sum_{i=1}^{n_k} \alpha^k_i f(X_k^i) \mid \sum_{i=1}^{n_k} \alpha^k_i = 1, L \leq \alpha^k_i \leq U \right\}. \tag{9}
\]

where \(f(X_k^i) \) and \(\alpha^k_i \) (\(i = 1, \ldots, n_k \)) are the features and coefficients to describe the identity \(k \).

The approximation will be the affine hull if \(L = -\infty \) and \(U = \infty \). Otherwise, the incorporation of \(L \) and \(U \) can reduce the over-large region. Another interesting point is \(L = U = 1/n_k \). In this case, the identity is exactly described as the mean feature

\[
H(f_{X_k}^i) = \frac{1}{n_k} \sum_{i=1}^{n_k} f(X_k^i), \tag{10}
\]

which is a popular method [7] to approximate class centers. In this way, the privacy mask \(\Delta X \) can be generated by

\[
\Delta X = \arg\max_{\Delta X} J_{conf}
= \arg\max_{\Delta X} \sum_{i=1}^{n_k} \|\frac{1}{n_k} \sum_{i=1}^{n_k} f(X_k^i) - f(X_k^i + \Delta X)\|, \quad \|\Delta X\|_{\infty} < \epsilon. \tag{11}
\]

Note that if \(L = 0 \) and \(U = 1 \), then \(H(f_{X_k}^i) \) actually approximates the identity with the convex hull (the smallest convex set of features \(f(X_k^i) \)), which is also the most effective approximation method we will empirically demonstrate. For the convex hull, i.e., with Equation (9) and \(L = 0 \), \(U = 1 \), we can calculate \(D(f(X_k^i + \Delta X), H(f_{X_k}^i)) \) in Equation (3) as a least squares problem with box constraints,

\[
\min_{\alpha^k} \|F^k A^k - f(X_k^i + \Delta X)\|, \quad \text{s.t.} \quad A^k \geq 0, 1^T A^k = 1, \tag{12}
\]

where \(F^k \in \mathbb{R}^{d \times n_k} \) is a matrix with columns \(f(X_k^i) \), and \(A^k \in \mathbb{R}^{n_k} \) is a vector containing the corresponding coefficients \(\alpha^k \) of Equation (9). Then, the privacy mask \(\Delta X \) can be generated by

\[
\Delta X = \arg\max_{\Delta X} J_{conf}
= \arg\max_{\Delta X} \sum_{i=1}^{n_k} \|F^k A^k - f(X_k^i + \Delta X)\|, \quad \|\Delta X\|_{\infty} < \epsilon, \tag{13}
\]

where \(A^k \) can be solved by Equation (12).

Algorithm 1. OPOM-AffineHull

Input: Face images \(X^k = \{X_k^1, X_k^2, \ldots, X_k^{n_k}\} \) of identity \(k \), deep face model \(f(\cdot) \), maximum deviation of perturbations \(\epsilon \), maximum iterative steps \(N_{\text{max}} \).

1: Initialize: \(\Delta X_0 \sim U(-\epsilon, \epsilon), N = 0, g_{N} = 0;
2: \text{while step } N < N_{\text{max}} \text{ do }
3: \quad \text{Parametrize the affine hull with } U^k \text{ and } \mu^k;
4: \quad \text{Calculate } V^k \text{ by Equation (7)};
5: \quad J_{aff} = \sum_{i=1}^{n_k} \|U^k V^k - (f(X_k^i + \Delta X) - \mu^k)\|\text{(Equation (8))};
6: \quad g_{N+1} = \nabla_{\Delta X} J_{aff} \text{ at } \Delta X_N;
7: \quad \Delta X_{N+1} = \Delta X_N + \text{sign}(g_{N+1}), N = N + 1;
8: \text{end}

Output: Privacy mask \(\Delta X_{N_{\text{max}}} \) for identity \(k \).

3.2.2 Generation of Privacy Masks

With the approximation methods for modeling the feature subspace of an identity using affine hulls, class centers and
In Algorithm 1 and Algorithm 2, where $C_r(X) = \min(\varepsilon, \max(-\varepsilon, X))$. For brevity, we omit OPOM-ClassCenter. To calculate the distance between the protected features and the original feature subspace in each iterative step, the coordinates V^k_l or coefficients A^k_l should be calculated at the beginning of each iterative step. We provide a closed-form solution for V^k_l in Equation (7). For A^k_l, although there is no closed-form solution, it can be efficiently solved with the convex optimization toolbox CVX [54, 55].

3.2.3 Combination With Model Transferability Methods

To generate more transferable person-specific privacy masks from a single source model to protect face images against black-box models, model transferability methods, such as the momentum boosting method [32] and DFA-Net [34], can be incorporated into OPOM method.

The momentum boosting method [32] integrates the momentum term into the attack process to stabilize the update directions and escape from poor local maxima. Specifically, g_{N+1} in Algorithm 1 and Algorithm 2 gathers gradients of the first N iterations with a decay factor μ.

$$g_{N+1} = \mu \cdot g_N + \nabla \frac{\nabla^{-1} f(X^k_l) + \Delta X}{\nabla^{-1} f(X^k_l) + \Delta X} J,$$

where μ is usually set to 1 following the original paper.

DFANet [34] converts the surrogate model $f(\cdot)$ in the Nth step of the adversarial example generation to different models $f^N(x)$ of the Nth step by incorporating dropout layers. Specifically, for a face recognition model $f(\cdot)$ composed of convolutional layers, given the output $o_i \in \mathbb{R}^n$ from the ith convolutional layer, a mask $M_i \in \mathbb{R}^n$ is generated with each element m_i independently sampled from a Bernoulli distribution with probability p_d.

$$m_i \sim \text{Bernoulli}(p_d), \quad m_i \in M_i.$$ Then, this mask is applied to modify the output as $o_i = M_i \times o_i$, where \times denotes the Hadamard product.

3.3 Comparison Methods

In addition to OPOM, in this paper we explore other methods that can generate universal adversarial perturbations or class-universal adversarial perturbations, for the potential capabilities in the person-specific privacy protection task.

3.3.1 GD-UAP

To generate universal perturbations, GD-UAP seeks ΔX to produce maximal spurious activations at each layer of a model. Although GD-UAP is a data-free optimization for crafting image-agnostic perturbations, according to the original paper [50], for the best performance of GD-UAP, it can be utilized with simple data priors, such as target data samples. Therefore, for a fair comparison with OPOM, $X^k = \{X^k_1, X^k_2, \ldots, X^k_{n_k}\}$ is used as the data priors to generate a privacy mask for identity k.

$$\Delta X = \arg \min_{\Delta X} J_{\Delta X},$$

$$= \arg \min_{\Delta X} - \sum_{i=1}^{n_k} \log \left(\prod_{i=1}^{K} \left[l_i(X^k_i + \Delta X) \right] \right), \|\Delta X\|_{\infty} < \varepsilon,$$

where $l_i(X^k_i + \Delta X)$ is the activation in the output tensor (after the non-linearity) at layer j when $X^k_i + \Delta X$ is fed to the network $f(\cdot)$, and K is the number of layers.

3.3.2 FI-UAP, FI-UAP+ and FI-UAP-All

One straightforward idea to generate class-wise universal adversarial perturbations towards open-set face recognition models is actually a similar way in the spirit of UAP [43], which leverages a set of images to seek the minimal perturbation iteratively by DeepFool [42] and aggregates them to the universal perturbations. The feature iterative attack method (FIM) [34], [56], which has been demonstrated to be an applicable method for face recognition models, can also be used in this way. Specifically, we aggregate gradients of $X^k = \{X^k_1, X^k_2, \ldots, X^k_{n_k}\}$ to generate person-specific masks

$$\Delta X = \arg \max_{\Delta X} J_{\Delta X},$$

$$= \arg \max_{\Delta X} \sum_{i=1}^{n_k} \| f(X^k_i) - f(X^k_i + \Delta X) \|, \|\Delta X\|_{\infty} < \varepsilon,$$

and name this method FI-UAP, which can be considered one approach for using the single point to model the identity information.

FI-UAP can be enhanced by incorporating intra-class interactions, which we refer to as FI-UAP+

$$\Delta X = \arg \max_{\Delta X} J_{\Delta X+},$$

$$= \arg \max_{\Delta X} \sum_{i=1}^{n_k} \sum_{j=1}^{n_k} \| f(X^k_i) - f(X^k_j + \Delta X) \|, \|\Delta X\|_{\infty} < \varepsilon.$$ Furthermore, FI-UAP can be extended to generate a universal mask if all the training images are used, which we refer to as FI-UAP-all.
3.3.3 GAP

Generative adversarial perturbations (GAP) [48] pass a fixed pattern sampled from a uniform distribution through the generator to generate universal adversarial perturbations, which can be added to a set of images to mislead models. We strictly follow the original paper using the ResNet Generator but replace the label-level adversarial losses as feature-level adversarial losses, as Equation (17), to make it more suitable for face recognition models [34].

4 Experiments

In this section, we first introduce the experimental settings. Next, we report the protection performance of the comparison methods and the proposed OPOM method, explore the performance of OPOM combined with the transferability methods, and show the protection effects against commercial APIs. Finally, we discuss the proposed method in the following aspects: analyses of the failure cases, the strengths and weaknesses of the person-specific (class-wise) universal masks compared with image-specific masks and universal masks, the practicality of OPOM in the privacy protection of a video dataset, and the diversity of privacy masks for the potential leakage of the used privacy masks.

4.1 Experimental Settings

4.1.1 Datasets and Evaluation Metrics

In this paper, we simulate a real-world scenario where regular users would like to provide a few images to generate person-specific privacy protection masks. Person-specific masks are generated on the source model with the provided training images. Then, the generated privacy masks can be applied to other test images to protect them against different black-box face recognition models.

To test our method, we choose the Celeb-1M [38] and LFW database [58]. For each person, there are at least 20 clean images (without label noise). We use at most 10 images as training images to generate the adversarial privacy mask; while another 5 images are used as the testing images to evaluate the protection performance. For the 1:N identification, the selected 500 persons with 5 test images are used as the probe set. Correspondingly, we conduct $500 \times 5 \times 4 = 10,000$ tests. 10,000 distractors, i.e., individuals who are not in the probe set, serve as other persons in the gallery set. Note that distractors belong to different persons from the training databases (therefore, different from the 500 persons in the probe set).

4.1.2 Face Recognition Models

To simulate potential scenarios, we increase the difference between the source (training) and target (testing) models by attacking deep face recognition models with different training loss functions and network architectures.

Three source (training) models to generate privacy masks are the modified version [11] of ResNet-50 [3] trained on the CAISA-WebFace database [37], supervised by Softmax loss, CosFace [10], and ArcFace [11]. The aim of privacy protection masks is to protect the original face images from being recognized by black-box models. Here, we use six target (testing) models different from the source models. Three of the black-box models differ in loss functions, i.e., CosFace [10], ArcFace [11] and SFace [13]. The other three of the black-box models differ in network architectures, i.e., the modified version [11] of the squeeze-and-excitation network (SENet) [59], MobileNet [60], and Inception-ResNet [61]. The recognition performance of the source and black-box models can be found in the Appendix, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TPAMI.2022.3175602.

4.2 Protection Performance Towards Black-Box Face Recognition Models

4.2.1 Effectiveness of OPOM

We evaluate the proposed OPOM method, including OPOM-AffineHull, OPOM-ClassCenter, and OPOM-ConvexHull, on the Privacy-Commons dataset and Privacy-Celebrities.
dataset. In addition, we also implement the comparison methods, i.e., GD-UAP [50], FI-UAP, FI-UAP+, FI-UAP-all, and GAP [48] as described in Section 3.3, to explore their potential capabilities in this person-specific privacy protection task.

Some details are as follows. The maximum deviation of perturbations ε is set to 8 under the L_∞ constraint. For GD-UAP, we optimize all the residual blocks at the last layers and the independent convolutional layers following the feature subspace, while it may lead to too loose description; OPOM-ClassCenter (similar to FI-UAP+) indeed relies even on all the points of this identity, while it may neglect the differences of the training points $f(X_i^k + \Delta X)$; OPOM-ConvexHull increases the source space to an appropriate degree, which will rely on support points differently for a specific training point $f(X_i^k + \Delta X)$, and therefore can effectively adapt to different face images better.

4.2.2 Combination With Transferability Methods

As privacy protection masks should protect face images from different kinds of unknown models, it is vital to generate transferable masks. We investigate the performance of the proposed OPOM combined with transferability enhancement methods including the momentum boosting method [32] and DFANet [34], as mentioned in Section 3.2.2. Experimental results on the Privacy-Commons dataset and Privacy-Celebrities dataset are listed in Tables 4 and 5 respectively. With the enhancement of the momentum boosting method and DFANet, the privacy protection success rate of OPOM can increase further, while there still exists some scope for improvement.

4.2.3 Protection Against APIs

In Fig. 4, we conduct protection experiments against Commercial APIs (Amazon [62], Microsoft [63], Baidu [64] and Face++ [65]). Fifty identities in the Privacy-Commons dataset are randomly chosen for the face verification test, each with 5 test images. Since commercial APIs are based on extremely large datasets, a single model trained on CASIA-WebFace cannot obtain a better performance. With privacy masks generated with appropriate source models trained

Source	Method	Top-1	Top-5								
ArcFace	GD-UAP	5.4	2.7	1.5	0.6	4.1	1.5	3.0	1.3	3.0	1.3
CosFace	GD-UAP	5.4	2.7	1.5	0.6	4.1	1.5	3.0	1.3	3.0	1.3
SFace	GD-UAP	5.4	2.7	1.5	0.6	4.1	1.5	3.0	1.3	3.0	1.3
MobileNet	GD-UAP	5.4	2.7	1.5	0.6	4.1	1.5	3.0	1.3	3.0	1.3
SENet	GD-UAP	5.4	2.7	1.5	0.6	4.1	1.5	3.0	1.3	3.0	1.3
Inception-ResNet	GD-UAP	5.4	2.7	1.5	0.6	4.1	1.5	3.0	1.3	3.0	1.3

We report Top-1 and Top-5 protection success rate (%) under 1:N identification setting of the Privacy-Commons dataset. The higher protection success rate is better.
on CASIA-WebFace, VGGFace2 [29], and MS-Celeb-1M [38], the average similarity score of the same person decreases significantly, which indicates better privacy protection.

4.3 Discussion

4.3.1 Failure Case Analysis

Considering the existing performance of the person-specific universal privacy masks, it is pertinent to discuss the current challenges for privacy protection. We select some representative failure cases for analysis, as well as the corresponding training samples and successful easily protected samples, as shown in Fig. 5, where each row represents an identity. We can see that, the generated privacy masks can generalize to different testing images to some degree. However, if there are obvious differences between the testing images and the training samples, such as large poses, different illuminations and occlusions, the mask protection tends to break down.

4.3.2 Why Person-Specific? Effectiveness and Efficiency

One might naturally wonder what are the strengths and weaknesses of person-specific (class-wise) universal masks compared with image-specific and universal masks. Here, we give an analysis in terms of effectiveness and efficiency. Specifically, universal masks (GD-UAP, GAP [48] and FI-UAP-all), person-specific universal masks (FI-UAP, OPOM-AffineHull and OPOM-ConvexHull), and image-specific masks (FIM [34], LowKey [27] and M-DI2-APF [26, 32, 33]) are compared in Fig. 6. For brevity, we use the average protection success rate of six black-box models to represent the effectiveness, and use the average generation time of 100 images based on the ResNet-50 model to represent the efficiency.

The experimental results show that the protection success rate of image-specific masks (FIM, LowKey and M-DI2-APF) is the best, and the effectiveness of person-specific universal masks (FI-UAP, OPOM-AffineHull and OPOM-ConvexHull) is better than that of universal masks (GD-UAP, GAP and FI-UAP-all). While considering the efficiency, it takes 1.65s, 2.35s or 3.50s to generate a mask of a new image.

TABLE 3

Source Method	ArcFace Top-1	ArcFace Top-5	CosFace Top-1	CosFace Top-5	SFace Top-1	SFace Top-5	MobileNet Top-1	MobileNet Top-5	SENet Top-1	SENet Top-5	Inception-ResNet Top-1	Inception-ResNet Top-5
GD-UAP	6.5	2.4	3.4	1.2	3.6	1.3	10.7	3.8	5.7	2.1	3.1	0.9
GAP	41.5	31.3	31.7	22.2	35.0	25.2	53.2	40.7	44.5	33.5	20.2	12.1
FI-UAP	56.5	45.5	45.2	34.9	52.9	42.4	60.2	46.9	61.6	49.8	37.4	26.5
FI-UAP+	62.4	51.6	51.8	42.3	59.8	49.7	66.2	54.7	67.8	57.5	42.5	31.4
FI-UAP-all	47.6	37.9	38.4	28.9	42.5	33.3	59.0	47.8	53.9	43.3	24.4	16.2
OPOM-AffineHull	58.8	47.9	47.0	37.2	54.8	44.9	62.4	49.3	63.5	52.1	39.0	27.8
OPOM-ClassCenter	62.3	51.5	51.8	42.5	59.8	49.8	66.2	54.8	67.7	57.7	42.4	31.4
OPOM-ConvexHull	63.8	53.5	53.6	44.0	61.3	51.7	67.0	55.7	68.9	58.9	44.2	33.2
FIM	6.5	2.4	3.4	1.2	4.0	1.3	10.0	3.8	6.4	2.5	3.8	1.3
LowKey	52.4	41.5	40.1	30.2	45.4	36.1	55.9	43.0	50.8	39.5	36.5	26.3
M-DI2-APF	62.5	51.5	47.9	37.8	55.6	45.8	50.0	35.6	54.3	41.0	37.7	26.3
FI-UAP	68.7	59.3	55.2	46.1	63.0	54.2	56.4	45.2	60.9	49.0	43.6	31.8
FI-UAP-all	57.2	46.6	43.4	33.4	50.6	40.9	58.8	45.7	57.3	46.0	35.1	25.1
OPOM-AffineHull	65.8	55.2	51.3	41.3	59.1	49.6	53.1	39.0	57.7	45.1	40.5	28.4
OPOM-ClassCenter	68.9	59.3	55.2	46.1	63.0	54.3	56.6	42.6	61.1	49.0	43.8	32.0
OPOM-ConvexHull	69.9	60.4	56.2	47.3	64.1	55.1	57.5	43.1	62.3	50.0	44.9	33.2
ArcFace	7.4	3.0	3.7	1.3	4.2	1.4	10.2	4.2	6.3	2.4	3.8	1.3
CosFace	53.3	42.7	40.4	30.5	41.6	31.7	48.9	35.9	48.1	36.9	24.8	15.0
FI-UAP	63.7	52.1	51.5	41.3	57.6	47.2	46.6	31.7	50.8	37.1	33.0	21.9
FI-UAP-all	68.6	58.6	58.4	48.9	63.8	54.7	51.2	36.4	57.2	43.9	38.6	26.5
OPOM-AffineHull	66.5	55.6	55.4	45.3	61.1	51.4	49.5	34.7	54.7	40.7	35.7	23.9
OPOM-ClassCenter	68.3	58.4	58.5	48.9	63.8	54.5	51.2	36.3	57.0	43.9	38.5	26.5
OPOM-ConvexHull	69.9	60.6	59.8	50.5	65.6	56.2	53.0	38.1	58.6	45.5	40.2	28.0

We report Top-1 and Top-5 protection success rate under 1:N identification setting of the Privacy-Celebrities dataset. The higher protection success rate is better.
Comparison of Different Methods Combined With the Momentum Boosting Method [32] and DFANet [34] to Generate More Transferable Person-Specific Privacy Masks ($\varepsilon = 8$) From a Single Source Model to Protect Face Images Against Black-Box Models

Source Method	Target Model	Top-1	Top-5
FI-UAP	ArcFace	80.2	71.2
OPOM-AffineHull	CosFace	80.2	71.2
Opmax	CosFace	72.0	63.9
Source Method	SFace	77.9	70.9
ArcFace	MobileNet	82.7	72.9
OPOM-ConvexHull	SENet	84.5	77.2
Softmax	Inception-ResNet	61.5	50.9

Table 4	Source Method	Target Model	Top-1	Top-5
FI-UAP	ArcFace	89.8	84.9	
OPOM-AffineHull	CosFace	89.8	84.9	
Opmax	CosFace	81.1	75.3	
Source Method	SFace	86.2	81.0	
ArcFace	MobileNet	79.3	68.5	
OPOM-ConvexHull	SENet	85.6	78.8	
Softmax	Inception-ResNet	70.6	60.9	

We report Top-1 and Top-5 protection success rate (%) under 1:N identification setting of the Privacy-Commons dataset. The increment compared with Table 2 is indicated by symbol \dagger.

Comparison of Different Methods Combined With the Momentum Boosting Method [32] and DFANet [34] to Generate More Transferable Person-Specific Privacy Masks ($\varepsilon = 8$) From a Single Source Model to Protect Face Images Against Black-Box Models

Source Method	Target Model	Top-1	Top-5
FI-UAP	ArcFace	88.6	82.8
OPOM-AffineHull	CosFace	88.6	82.8
Opmax	CosFace	82.5	76.4
Source Method	SFace	85.5	79.7
ArcFace	MobileNet	69.7	56.0
OPOM-ConvexHull	SENet	79.2	69.6
Softmax	Inception-ResNet	62.0	51.3

Table 5	Source Method	Target Model	Top-1	Top-5
FI-UAP	ArcFace	62.7	52.2	
OPOM-AffineHull	CosFace	62.7	52.2	
Opmax	CosFace	52.9	43.2	
Source Method	SFace	60.3	50.8	
ArcFace	MobileNet	67.8	56.2	
OPOM-ConvexHull	SENet	68.6	58.6	
Softmax	Inception-ResNet	43.6	32.1	

We report Top-1 and Top-5 protection success rate (%) under 1:N identification setting of the Privacy-Celebrities dataset. The increment compared with Table 3 is indicated by symbol \dagger.
for image-specific privacy protection, even with a GPU (6.69s, 10.88s, and 41.20s with CPU). In contrast, person-specific universal masks and universal masks can dispense with the mask generation time for new images, that is, the generation time of new images is 0s. Compared with universal masks and image-specific masks, person-specific (classwise) universal masks show a tradeoff between effectiveness and efficiency, which may benefit average users and some real-time video applications.

4.3.3 Privacy Protection in Videos

The proposed OPOM method can be applied to the privacy protection of photographs to be posted on the social media platform. The still image, of course, is not the only application. We demonstrate that OPOM is also applicable to the privacy protection in videos.

Specifically, we use the series Sherlock database [66] for experiments. Following the original work [66], we also collected images of actors that were the main characters by searching the names Benedict Cumberbatch and Martin Freeman. We manually found 10 high quality web-collected images of the two characters and use the mean value of their deep features to represent their feature subspace. Then, some other web-collected images, which can differ from the target images (from the TV material) in hairstyle, makeup, lighting, and viewpoint, are used as the training samples. Finally, we apply the generated privacy masks to target images of the videos. Some frames are shown in Fig. 7, where the first row shows the original frames of the video, and the second row shows the modified frames with the privacy masks of Sherlock generated from other face images of actors (Benedict Cumberbatch).

The effectiveness of the privacy protection is evaluated using the cosine similarity between the deep features of images from videos and the feature prototype. As shown in Fig. 8, the average value and the standard deviation of cosine similarity between the face features of characters (Sherlock Holmes and Doctor John Watson), tested on six black-box models, are used to demonstrate the effectiveness of OPOM. With no privacy masks (no training images) provided, it is easy to recognize the character. With privacy masks, privacy can be protected against black-box deep face recognition models. We gradually increase the number of web images for training and found that 15 training images can obtain good protection performance.

4.3.4 Diversity of Privacy Masks

In this paper, we apply privacy masks to the probe images, not the gallery images, since we assume that some unauthorized face recognition services may have already obtained the original images of regular users. Despite the effectiveness of person-specific (class-wise) universal masks in one-shot usage, we have to consider a more difficult situation since new images on the internet are being continuously collected. If masked face images have been labeled and recorded in the gallery set, then new images with the same mask (probe) may no longer be safe. Therefore, we explore whether a diversity of person-specific masks can be generated for an identity to advance the possibility of potential solutions for this problem.
That is, the objective is to generate a set of diverse person-specific (class-wise) universal masks to fool a variety of deep face recognition models $f(\cdot)$ for all the face images $X^k = \{X^k_1, X^k_2, \ldots, X^k_N\}$ of identity k, so that any face image X^k_i can conceal the identity with any mask of $\{\Delta X_1, \Delta X_2, \ldots, \Delta X_j, \ldots\}$

\[
D(f(X^k_i + \Delta X_j), f(X^k_i)) > t, \\
D(f(X^k_j + \Delta X_j), f(X^k_i)) > t, \\
D(f(X^k_i + \Delta X_j), f(X^k_i + \Delta X_j)) > t, \\
\|\Delta X_j\| _{\infty} < \varepsilon, \|\Delta X_j\| _{\infty} < \varepsilon.
\]

(19)

In the above, $f(X^k_i) \in \mathbb{R}^d$ is the normalized feature of image X^k_i, $f(X^k_i)$ denotes the feature subspace of identity k. ΔX_j and ΔX_j are any two generated privacy masks of the set. t is the distance threshold to decide whether a pair of face images belongs to the same identity. $D(x_1, x_2)$ denotes the distance between x_1 and x_2, that is, the shortest distance between point x_1 and subspace x_2. When x_2 denotes a point, we use $D(x_1, x_2)$ to represent the normalized euclidean distance or cosine distance commonly used in face recognition. ε limits the maximum deviation of the privacy mask.

The objective not only optimizes each masked sample in the direction away from the feature subspace of the source identity, but also optimizes samples with different masks away from each other.

Considering the above function, we still use the proposed approximation methods for $f(\cdot)$ with a limited number n_u of face images $X^k = \{X^k_1, X^k_2, \ldots, X^k_N\}$ and generate n_M masks $\{\Delta X_1, \Delta X_2, \ldots, \Delta X_M\}$ with previous source models. For experimental settings, in addition to the original image as gallery set, we also consider that different masked images are used in the gallery set.

Experimental results in Table 6 indicate that person-specific privacy masks can be diverse and varied. In this way, the average user can apply different masks for privacy protection each time to cope with the situation that some masks have been ineffective. However, it seems that the protection rate will be lessened as the number of privacy masks increases. Note that we are only presenting a preliminary exploration; it will be for future work to study more elaborate solutions for this purpose.

5 CONCLUSION AND FUTURE WORKS

In this paper, we have presented a type of class-wise universal adversarial perturbation for a new customized privacy protection task, by generating a person-specific masks that can be applied universally for all the images of an identity. Experimental results on two test benchmarks have demonstrated the effectiveness and superiority of the proposed method on this customized privacy protection task. We have demonstrated that the proposed method can be used in the privacy protection of videos.

Great progress has been made, yet much still remains to be done. As we stated before, it is challenging to offer protection if there are obvious differences between the testing images and the training samples. Therefore, it is imperative to further improve the image universality to cover the potential diverse variances of face images, such as large poses, different illuminations, and occlusions. As analyzed before, we considered a diverse of masks to address the potential problems of privacy mask leakage. However, the proposed method has challenges in terms of the diversity and effects of the privacy masks, and therefore remains a preliminary exploration. In addition, we are currently at the implementation stage of generating digital privacy cloaks that can only be used for digital images and videos on social media. They will have more impact if they can be applied in practical-world video surveillance.
TABLE 6

Source	nM	ArcFace	CosFace	SFace	MobileNet	SENet	Inception-ResNet						
		M-O	M-M										
Softmax	5	65.8±1.9	82.8±4.2	56.2±3.4	72.8±6.5	63.0±3.1	79.4±5.9	66.6±2.4	77.7±4.0	71.0±2.3	85.9±3.3	43.6±2.8	66.6±4.1
	10	54.7±8.3	81.4±3.8	43.8±9.5	71.5±5.5	50.4±9.7	77.7±5.0	55.4±8.7	76.6±7.7	59.3±9.0	83.8±3.3	37.2±7.5	64.3±4.2
ArcFace	5	78.2±2.3	89.9±3.2	65.0±3.1	76.6±2.3	71.6±2.9	82.4±4.6	58.4±3.1	70.3±4.0	68.4±3.4	84.0±3.2	49.4±3.4	71.1±3.9
	10	69.0±7.6	88.3±2.4	53.5±9.3	72.6±4.5	60.6±9.2	82.8±3.5	47.4±8.3	69.6±6.3	57.4±9.2	82.8±2.8	38.4±8.1	68.8±3.5
CosFace	5	76.3±2.9	90.2±3.0	66.9±3.5	82.1±5.3	71.0±3.6	85.7±4.8	50.2±3.6	63.6±3.9	62.0±4.0	79.6±3.5	42.3±3.9	64.6±4.0
	10	66.3±8.2	88.4±2.5	54.6±10.0	80.3±3.9	58.9±9.8	83.8±3.7	39.9±8.0	62.7±3.5	49.9±9.2	77.8±3.3	31.7±7.8	61.9±3.7

Here, “M-O” denotes that the masked image is used as the probe, while the original image is recorded in the gallery set. “M-M” represents masked image has been collected and applied in the gallery set, and new masked image is used as the probe. (The same mask is used for $n_{M}=1$.) We report the Top-1 protection success rate (%) under 1:N identification setting of Privacy-Commons dataset. The higher protection success rate is better.

ACKNOWLEDGMENTS

We would like to thank Jinglin Zhang and Xuannan Liu for useful feedback, and anonymous referees for their valuable comments.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Proc. Adv. Neural Inform. Process. Syst., 2012, pp. 1097–1105.
[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in Proc. Int. Conf. Learn. Representation, 2015.
[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 770–778.
[4] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 7132–7141.
[5] Y. Sun, Y. Chen, X. Wang, and X. Tang, “Deep learning face representation by joint identification-verification,” in Proc. Adv. Neural Inform. Process. Syst., 2014, pp. 1988–1996.
[6] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embedding for face recognition and clustering,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 815–823.
[7] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, “A discriminative feature learning approach for deep face recognition,” in Proc. Eur. Conf. Comput. Vis., 2016, pp. 499–515.
[8] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “Spherenet: Deep hypersphere embedding for face recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 6738–6746.
[9] B. Chen, W. Deng, and J. Du, “Noisy softmax: Improving the generalization ability of DCNN via postponing the early softmax saturation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 4021–4030.
[10] H. Wang et al., “CosFace: Large margin cosine loss for deep face recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 5265–5274.
[11] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “ArcFace: Additive angular margin loss for deep face recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019, pp. 4685-4694.
[12] Y. Huang et al., “CurricularFace: Adaptive curriculum learning loss for deep face recognition,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 5900–5909.
[13] J. Zhang, J. Sang, X. Zhao, Y. Sun, and Y. Hu, “Adversarial privacy-preserving filter,” in Proc. 28th ACM Int. Conf. Multimedia, 2020, pp. 1423–1431.
[14] V. Cherепанова et al., “Lowkey: Leveraging adversarial attacks to protect social media users from facial recognition,” in Proc. Int. Conf. Learn. Representations, 2021.
[15] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, and I. Goodfellow, “Intriguing properties of neural networks,” in Proc. Int. Conf. Learn. Representations, 2014.
[16] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami, “Practical black-box attacks against machine learning,” in Proc. ACM Asia Conf. Comput. Commun. Secur., 2017, pp. 506–519.
[17] Y. Dong et al., “Boosting adversarial attacks with momentum,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 9185–9193.
[18] C. Xie et al., “Improving transferability of adversarial examples with input diversity,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019, pp. 2725–2734.
[34] Y. Zhong and W. Deng, “Towards transferable adversarial attack against deep face recognition,” IEEE Trans. Inf. Forensics Security, vol. 16, pp. 1452–1466, 2021.

[35] H. Cho and R. LaRose, “Privacy issues in internet surveys,” Soc. Sci. Comput. Rev., vol. 17, no. 4, pp. 421–434, 1999.

[36] L. Liu, M. Ding, S. Shaham, W. Rahayu, F. Farokhi, and Z. Lin, “When machine learning meets privacy: A survey and outlook,” ACM Comput. Surv., vol. 54, no. 2, pp. 1–36, 2021.

[37] D. Yi, Z. Lei, S. Liao, and S. Z. Li, “Learning face representation from scratch,” 2014, arXiv:1411.7923.

[38] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao, “Ms-celeb-1m: A dataset and benchmark for large-scale face recognition,” in Proc. Eur. Conf. Comput. Vis., 2016, pp. 87–102.

[39] M. Wang and W. Deng, “Deep face recognition: A survey,” Neuro-computing, vol. 429, pp. 215–244, 2021.

[40] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” in Proc. Int. Conf. on Learn. Representation, 2015.

[41] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in the physical world,” in Proc. Int. Conf. Learn. Represent. Workshop, 2017.

[42] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: A simple and accurate method to fool deep neural networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 2574–2582.

[43] Y. Dong, T. Pang, H. Su, and J. Zhu, “Evading defenses to transferable adversarial examples by translation-invariant attacks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019, pp. 4307–4316.

[44] D. Zhang, Y.-W. Wang, S.-T. Xia, J. Bailey, and X. Ma, “Skip connections matter: On the transferability of adversarial examples generated with resnets,” in Proc. Int. Conf. Learn. Representation, 2020.

[45] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal adversarial perturbations,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 86–94.

[46] J. Hayes and G. Danezis, “Learning universal adversarial perturbations with generative models,” in Proc. IEEE Secur. Privacy, 2018, pp. 43–49.

[47] K. Reddy Mopuri, U. Ojha, U. Garg, and R. Venkatesh Babu, “NAG: Network for adversary generation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 742–751.

[48] O. Poursaeed, I. Katsman, B. Gao, and A. Belongie, “Generative adversarial perturbations,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 4422–4431.

[49] K. R. Mopuri, U. Garg, and R. V. Babu, “Fast feature fool: A data independent approach to universal adversarial perturbations,” 2017, arXiv:1707.05572.

[50] K. R. Mopuri, A. Ganeshan, and R. V. Babu, “Generalizable data-free objective for crafting universal adversarial perturbations,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 10, pp. 2452–2465, Oct. 2019.

[51] T. Gupta, A. Sinha, N. Kumari, M. Singh, and B. Krishnamurthy, “A method for computing class-wise universal adversarial perturbations,” 2019, arXiv:1912.00466.

[52] C. Zhang, P. Benz, T. Intiazi, and I.-S. Kweon, ‘CD-UP: Class discriminative universal adversarial perturbation,” in Proc. AAAI Conf. Artif. Intell., 2020, pp. 6754–6761.

[53] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models resistant to adversarial attacks,” 2017, arXiv:1706.06083.

[54] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling language for convex optimization,” J. Mach. Learn. Res., vol. 17, no. 83, pp. 1–5, 2016.

[55] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd, “A rewriting system for convex optimization problems,” J. Control Decis., vol. 5, no. 1, pp. 42–60, 2018.

[56] Y. Zhong and W. Deng, “Adversarial learning with margin-based triplet embedding regularization,” in Proc. IEEE Int. Conf. Comput. Vis., 2019, pp. 6548–6557.

[57] A. Nech and I. Kemelmacher-Shlizerman, “Level playing field for million scale face recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 3406–3415.

[58] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled faces in the wild: A database for studying face recognition in unconstrained environments,” University of Massachusetts, Boston, MA, USA, Tech. Rep. 07–49, Oct. 2007.

[59] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 7132–7141.

[60] A. G. Howard et al., “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” 2017, arXiv:1704.04861.

[61] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-resnet and the impact of residual connections on learning,” in Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 4278–4284.

[62] Amazon’s Rekognition Tool. Accessed: Apr. 2022. [Online]. Available: https://aws.amazon.com/rekognition/

[63] Microsoft Azure. Accessed: Apr. 2022. [Online]. Available: https://www.azure.cn

[64] Baidu Cloud Vision Api. Accessed: Apr. 2022. [Online]. Available: http://ai.baidu.com

[65] Face++ Research Toolkit. Accessed: Apr. 2022. [Online]. Available: https://www.faceplusplus.com.cn/

[66] A. Nagrani and A. Zisserman, “From benedict cumberbatch to sherlock holmes: Character identification in tv series without a script,” in Proc. Brit. Mach. Vis. Conf., 2017.

Yaoyao Zhong (Student Member, IEEE) received the bachelor’s degree in telecommunication engineering from the Beijing University of Posts and Telecommunications, Beijing, China, in 2017, where she is currently working toward the PhD degree. Her research interests include computer vision, adversarial learning and face recognition.

Weihong Deng (Member, IEEE) is currently a professor with the School of Artificial Intelligence, Beijing University of Posts and Telecommunications. He has published more than 150 technical papers in international journals and conferences, such as IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE Transactions on Image Processing, IJCV, CVPR, and ICCV. His research interests include computer vision and affective computing, with a particular emphasis in face recognition and expression analysis. His dissertation titled “Highly accurate face recognition algorithms” was awarded the Outstanding Doctoral Dissertation Award by the Beijing Municipal Commission of Education, in 2011. He has been supported by the program of New Century Excellent Talents, in 2014, Beijing Nova, in 2016, Young Chang Jiang Scholar, and Elsevier Highly Cited Chinese researcher, in 2020. He serves as the area chair for major international conferences, such as IJCAI, ACMMM, IJCB, FG, and ICME; a guest editor for IEEE Transactions on Biometrics, Behavior, and Identity Science and Image and Vision Computing journal; and a reviewer for dozens of international journals, such as IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE Transactions on Image Processing, IEEE Transactions on Information Forensics and Security, IEEE Transactions on Neural Networks and Learning Systems, IEEE Transactions on Affective Computing, IEEE Transactions on Multimedia, IJCV, and PR.

For more information on this or any other computing topic, please visit our Digital Library at www.computer.org/csdl.