An effort to make sense of antisense transcription in bacteria

Iñigo Lasa,1,* Alejandro Toledo-Arana1 and Thomas R. Gingeras2
1Laboratory of Microbial Biofilms; Idab-CSIC-Universidad Pública de Navarra-Gobierno de Navarra; Pamplona, Spain; 2Laboratory of Functional Genomics; Cold Spring Harbor Laboratory; Cold Spring Harbor, NY USA

Analysis of bacterial transcriptomes has shown the existence of a genome-wide process of overlapping transcription due to the presence of antisense RNAs, as well as mRNAs that overlapped in their entire length or in some portion of the 5’- and 3’-UTR regions. The biological advantages of such overlapping transcription are unclear but may play important regulatory roles at the level of transcription, RNA stability and translation. In a recent report, the human pathogen Staphylococcus aureus is observed to generate genome-wide overlapping transcription in the same bacterial cells leading to a collection of short RNA fragments generated by the endoribonuclease III, RNase III. This processing appears most prominently in Gram-positive bacteria. The implications of both the use of pervasive overlapping transcription and the processing of these double stranded templates into short RNAs are explored and the consequences discussed.

Pervasive Overlapping Transcription in Bacteria

Implementation of high-throughput RNA analysis techniques to the identification of the entire collection of RNA molecules (transcriptome) produced by a bacterial population has directed our view of RNA landscapes away from a protein-centric genome annotation. As with studies involving eukaryotic cells, the first bacterial transcriptomic studies also revealed the existence of a genome-wide process of overlapping transcription.1-15 To be clear overlapping transcription is defined as a process that generates overlapping sense/antisense RNAs from a genomic region. The resulting RNA transcripts show perfect complementarity at least in some portion of the length of the overlapping RNAs. There are at least four different mechanisms to generate overlapping transcription in bacteria (Fig. 1): (1) bona fide antisense RNAs (asRNA), RNA molecules that do not encoded for proteins and show complementarity with part of a gene, a complete gene or a group of genes; (2) 5’ overlapping UTRs between mRNAs of contiguous genes (head-to-head) that are transcribed in divergent directions; (3) 3’ overlapping UTRs between mRNAs of contiguous genes transcribed in convergent directions (tail-to-tail). In this case, the overlapping process can be caused by read-through of transcriptional terminator, the presence of anti-terminator elements or the location of the transcriptional terminators inside the contiguous gene; and (4) overlapping operons, genes that being located in the middle of an operon are transcribed in opposite direction to the rest of the operon.12,16 In this definition of overlapping transcription, we exclude short transcripts that are encoded at genomic locations distant from the RNAs they regulate and sharing only limited complementarities with their targets, because they are not produced from complementary strands of the same DNA region.

The possibility that well understood technical artifacts had the potential to generate pseudo-antisense transcription data prompted initial criticism.17 While these early uncertainties were partially justified and the signals detected from the antisense strand of highly expressed genes in the earliest studies were in many cases...
that transcription process of sense and antisense transcripts is coordinated by unknown mechanisms.

Role of RNase III in Antisense Regulation

In a recent study devoted to analyzing the transcriptome of the human pathogen *Staphylococcus aureus* the total RNA sample was fractionated in long and short (< 50 nucleotides) RNA fractions. RNA sequencing of both fractions revealed a genome-wide process of overlapping sense/antisense RNA processing by the activity of double stranded endoribonuclease, RNase III. The end products of the process are a collection of short RNA fragments (average of 20 nucleotides) that accumulate in similar amounts in both strands of all genome regions where these types of overlapping transcription are taking place.

Due to the DNA-dependent DNA polymerase activity of the reverse transcriptase, these technical issues have been solved in more recent studies. Examples of technical improvements included (Fig. 2): (1) cDNA synthesis performed in the presence of actinomycin D, which specifically inhibits the DNA-dependent DNA polymerase activity of the reverse transcriptase enzyme; (2) enrichment of RNA samples for primary transcripts by use of terminator exonuclease treatment that degrades 5’P (processed transcript) but not 5’PPP (primary transcript) allowing for the identification of the transcript start and not the extent of the asRNA; (3) direct labeling of 3’ and 5’ ends of the RNA molecules with adapters before cDNA synthesis, preserving the strand orientation of each RNA molecule; and (4) synthesis of the cDNA second strand in the presence of dUTP, which allows the selective removal of the strand with UNG (Uracil-N-Glycosylase) after ligation of 5’ and 3’ adaptors. The introduction of these technical modifications in the cDNA synthesis and labeling methodologies far from contradicting initial observations have confirmed that overlapping transcription is a very common process. Thus, the percentage of genes that have been associated with at least one antisense transcript in recent studies ranged from 13% in *Bacillus subtilis*, 27% in *Synechocystis PCC6803*, 30% in *Anabaena*, 46% in *Helicobacter pylori*, to 49% in *Staphylococcus aureus*. The first impression of these data are that strong differences in the extent of overlapping transcription between bacteria exist. However, it is uncertain whether these differences reflect real biological differences or a combination of both biological and methodological bias. The answer to this question would require comparative transcriptomic studies using standardized protocols and computational tools.

What mechanisms regulate the transcription of overlapping transcripts? The origin of the mRNAs participating in overlapping transcription involves promoters recognized by sigma factors. The few studies that have been done on bona fide antisense transcripts reveal that they are transcribed from similar promoters as their sense counterparts. Therefore, it is conceivable that the sense and antisense transcripts are regulated via the same mechanisms. However, it is noteworthy that expression of antisense RNAs is for most genes lower than those of the corresponding sense transcript, suggesting that the promoters of antisense transcripts have evolved and modulated their strength to that of the sense transcript or that transcription process of sense and antisense transcripts is coordinated by unknown mechanisms.

![Figure 1. Processing of different types of overlapping transcripts by RNase III. Schematic representation of examples of different type of overlapping transcripts in bacteria. These include bona fide antisense RNAs (asRNAs), overlapping 5’ and 3’ untranslated regions (UTRs) of mRNA (mRNA) and overlapping operons. The sense/antisense RNA duplex are processed by RNase III to short RNA fragments (average of 20 nucleotides) that accumulate in similar amounts in both strands of all genome regions where these types of overlapping transcription are taking place.](image-url)
overlapping transcripts might be processed by a different mechanism or the resulting short RNA molecules might be unstable in Gram-negative bacteria. Indeed, although fundamental principles govern RNA degradation in bacteria, significant differences have been also identified in the degradosome composition of Gram-positive and Gram-negative bacteria. Analysis of the short RNA fraction of other Gram-negative bacteria as well as of short RNAs during the preparation of the RNA libraries. Different reasons can be envisioned to explain why the complement of short RNA fragments is not detected in *Salmonella*. It is possible that the size of the RNA fragments produced by RNase III enzyme of *Salmonella* are longer than 50 nucleotides, in which case the RNA fragments would be excluded from the RNA fraction used to prepare the short RNA libraries. Alternatively, of *S. aureus* and it also occurs in different Gram-positive bacteria such as *Bacillus subtilis*, *Listeria monocytogenes* and *Enterococcus faecalis*. In contrast, analysis of the transcriptome of the Gram-negative bacteria *Salmonella enterica* ser. Enteritidis using the same approach could not identify the collection of short RNA fragments. The absence of this process in *Salmonella* supports that a technical artifact does not generate the collection of short RNAs during the preparation of the RNA libraries. Different reasons can be envisioned to explain why the complement of short RNA fragments is not detected in *Salmonella*. It is possible that the size of the RNA fragments produced by RNase III enzyme of *Salmonella* are longer than 50 nucleotides, in which case the RNA fragments would be excluded from the RNA fraction used to prepare the short RNA libraries. Alternatively, overlapping transcripts might be processed by a different mechanism or the resulting short RNA molecules might be unstable in Gram-negative bacteria. Indeed, although fundamental principles govern RNA degradation in bacteria, significant differences have been also identified in the degradosome composition of Gram-positive and Gram-negative bacteria. Analysis of the short RNA fraction of other Gram-negative bacteria as well

![Figure 2](https://example.com/figure2.png)

Figure 2. Flowchart illustrating technical improvements used to preserve the polarity of RNA molecules for transcriptome analysis. (A) Hypothetical model proposed by Perocchi et al. showing how spurious second-strand synthesis can occur during reverse transcription and the mode of inhibition by Actinomycin D. During first-strand cDNA synthesis from RNA molecules by reverse transcription, unintended second-strand cDNA synthesis could occur using the first-strand cDNA as a template. (B) Methods to preserve the polarity of RNA molecules during preparation of libraries for RNA sequencing. Primary transcript enrichment: 5'-monophosphate dependent terminator exonuclease (TEX) specifically degrades RNAs with 5' monophosphates (5' P), while primary transcripts with a 5' triphosphate (5' PPP) or RNA with other termini are protected. Direct labeling of RNA molecules: RNA fraction is ligated to a linker in the 3' end. After removal of non-ligated oligonucleotide, the RNA is ligated to 5' RNA adaptor by using T4 RNA ligase. For the first strand synthesis of cDNA, an oligonucleotide complementary to the 3' linker is used. Removal of second strand cDNA: After the first strand cDNA synthesis non-incorporated nucleotides are removed and dTTP is substituted by dUTP during the synthesis of the second strand. After ligation with a Y-shaped adaptor, the dTTP-containing strand is selectively removed with UNG (Uracil-N-Glycosylase), leaving the first cDNA strand intact. (C) Summary flowchart suggesting an experimental design to define a complete and accurate transcriptional map.
as isogenic mutants in different RNases would aid to clarify whether the digestion of overlapping transcripts occurs through different mechanisms in both types of bacteria.

Irrespective of the length of the sense/antisense complementarity region, the formation of the RNA duplexes between overlapping transcripts have been shown to affect the final amount of the protein encoded by the sense RNA in different ways. Examples have been described in which sense-antisense duplex formation results in the sense RNA degradation by RNases such as RNase III and RNase E, an endoribonuclease that cleaves single strand RNA molecules, thus lowering the amount of translatable sense RNA.24,25 Other interactions between overlapping transcripts have been shown to increase the amount of sense RNA coding protein since the duplex formation process protects the sense transcript from degradation or increases the likelihood that sense transcripts will be made at levels exceeding the amount degraded due to the formation of a double stranded substrate of RNase III.26,27 Finally, the overlapping of sense and antisense transcripts can inhibit the binding of the sense transcript to the ribosome and translation process.28

What is the Role of the Genome-Wide Overlapping Transcription Process?

The presence of a stable collection of short RNA fragments derived from the digestion of overlapping transcripts by RNase III demonstrates that both overlapping transcripts are present at the same time in the same cell. The observation of co-expression in the same cell is informative because current transcriptomic studies are performed with RNA purified from at least few millions of bacteria and without the RNase III results it is impossible to determine whether the expression of overlapping transcripts occurs in the same bacteria or it is mutually exclusive.

The question then arises as to what is the role of overlapping transcription and RNase III mediated digestion for bacterial gene regulation? Two possible alternatives may be considered to answer this question: short RNA fragments are residual non-functional products of the overlapping RNA digestion or such fragments are functional molecules with a specific role in gene regulation. With respect to the first possibility, our results support the hypothesis that overlapping transcription provides a simple mechanism to remove all those transcripts that are produced in response to transitory stimuli or escape the regular transcription repression process. For this purpose, the antisense transcript would establish the threshold level that the sense RNA have to reach in order to be translated, removing all the residual RNA molecules whose level are not enough to produce the minimal amount of protein required to be functional. It has been speculated that stochastic variations on transcriptional levels might be beneficial to enhance the phenotypic heterogeneity of the cells within a genetically uniform microbial population.29 However, if the transcription initiation process is more leaky than expected and all mRNAs are indiscriminately translated into protein, then, the cytoplasm will accumulate hundreds of unintended proteins in insufficient amounts to achieve their function. The presence of these proteins would have adverse effects in a particular environmental condition. Alternatively, we cannot exclude the possibility that the RNA transcripts resulting from the RNase III-mediated digestion process could be more stable or translate more efficiently than the primary transcripts.

In the case of 5’ and 3’ overlapping UTRs, the consequences of the digestion could be different for the 5’ divergent overlapping UTRs or for the 3’ convergent overlapping UTRs. Regardless of the specific consequences, digestion of overlapping UTRs would allow coordination of the expression of neighboring genes. This finding is in line with the idea that distribution of bacterial genes within the genomes is not random.30 Thus, to the deeply rooted concept that genes encoding proteins of the same metabolic pathway are clustered together (operons) to facilitate the regulation of their expression, such a second regulatory level coordinating the expression of adjacent transcription units should be considered when investigating bacterial gene regulation. Needless to say that overlapping transcription between adjacent genes also has important consequences when phenotypes associated with insertion or deletion mutants are investigated. Additional thoughts related with the function of the overlapping RNA digestion process are the binding kinetics between overlapping transcripts and the digestion rate of the RNA duplex. Extensive experimental efforts would be necessary to uncover how these factors affect to the overlapping RNA digestion process.

Concerning the possibility that short RNA fragments may fulfill a function by themselves, the average size of the RNA fragments generated by overlapping RNA digestion is 20–22 nucleotides depending on the bacterial species in which they are generated. The size and double stranded structure of the fragments is similar to that of the eukaryotic micro RNAs (miRNAs). miRNAs are produced by the successive actions of two RNase III enzymes, Drosha and Dicer, in precursor RNA molecules. Following their processing, one strand of the miRNAs is loaded into a ribonucleoprotein complexes, which key component is the Argonaute (AGO) protein. Then, miRNA-AGO complex interact with their mRNA target by base pairing and direct the inactivation of target RNAs by mRNA degradation or translational arrest and heterochromatin formation.31-34 The existence of a miRNA-based regulatory mechanism in prokaryotic cells was not considered due to the absence of the required machinery to generate the miRNAs and more importantly to the absence of argonaute-like proteins. However, very recently a highly conserved protein (SMc01113/YbeY) sharing structural homology with the MID domain of the Argonaute protein has been described.35 YbeY protein is required for maturation of bacterial 5S, 16S and 23S rRNAs and it seems to facilitate the establishment of interactions between small RNA and the mRNA targets, in a similar way to Hfq protein.35,36 Furthermore, structural and docking analysis suggests that YbeY could contribute catalytically, like an RNase, to RNA cleavage after binding to a guide RNA. Thus, it is tempting to speculate that similarly to what happens in eukaryotes, binding of one strand of the short RNA to the MID domain of YbeY protein can facilitate the mRNA target
with a variety of RNA binding proteins, the affinity with which both RNA molecules will interact depending on the length of complementarity of the molecules, and the local and global folding predictions that may further decide the possible annealing fates of both RNAs.

The first insights into the enzymes involved in regulation of overlapping transcription and the function of this conserved biological process are emerging. Due to their simplicity and feasibility for genetic manipulation, investigations with bacteria can provide clues to understanding of the function of overlapping transcription in eukaryotic cells. However, in order to fulfill this mission at least two methodological difficulties associated with the particularity of overlapping transcription process needs to be solved. One difficulty inherent to the double stranded DNA structure is how to genetically manipulate one of the strands without perturbing the expression of the complementary overlapping strand. The second difficulty is the necessity of evaluating the results of the experiments at single cell level, which implies development of specific reporter tools.

Finally, with reference to many topics it is often said that “size matters.” An important lesson that emerges from these studies is that bacterial short RNA fraction deserves much more attention than studies is that bacterial short RNA fraction. The importance of evaluating the results of the experiments at single cell level, which implies development of specific reporter tools.

Acknowledgments

References

1. Guell M, van Noort V, Yus E, Chen W-H, Leigh-Bell J, Michalodimitrakis K, et al. Transcriptome complexity in a genome-reduced bacterium. Science 2009; 326:1268-71; PMID:19965477; http://dx.doi.org/10.1126/science.1176951.

2. Sharma CM, Hoffmann S, Darfeuille F, Reigner J, Findeis S, Stirka A, et al. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 2010; 464:250-5; PMID:20164839; http://dx.doi.org/10.1038/nature08756.

3. Wurtzel O, Sapra R, Chen F, Zhu Y, Simmons BA, Sorek R. A single-base resolution map of an archaeal transcriptome. Genome Res 2010; 20:133-41; PMID:19882461; http://dx.doi.org/10.1101/gtr.100396.109.

4. Nicolas P, Mader U, Dervyn E, Rochat T, Leduc A, Pigonnecq N, et al. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 2012; 335:1103-6; PMID:22838549; http://dx.doi.org/10.1126/science.1206488.

5. Mendonça-Vargas A, Olvera L, Olvera M, Grande R, Vega-Alvarado L, Taboada B, et al. Genome-wide identification of transcription start sites, promoters and transcription factor binding sites in E. coli. PLoS One 2009; 4:e7526; PMID:19838305; http://dx.doi.org/10.1371/journal.pone.0007526.

6. Dornenburg JE, Devita AM, Palumbo MJ, Wade JT. Widespread antisense transcription in Escherichia coli. MBio 2010; 1; PMID:20689751; http://dx.doi.org/10.1128/mBio.00024-10.

7. Filiaux ML, Stoddig IH, Høvik H, Bronstein PA, Moll S, Lindberg M, Grills G, et al. Transcriptome analysis of Pseudomonas syringae identifies new genes, non-coding RNAs, and antisense activity. J Bacteriol 2010; 192:2359-72; PMID:20190049; http://dx.doi.org/10.1128/JB.01445-09.

8. Vásquez C, Jain IH, O’Shea EK. A high resolution map of a cyanobacterial transcriptome. Genome Biol 2011; 12:R47; PMID:2162627; http://dx.doi.org/10.1186/gb-2011-12-5-47.

9. Schmidtke C, Findeis S, Sharma CM, Kuhfuss J, Hoffmann S, Vogel J, et al. Genome-wide transcriptome analysis of the plant pathogen Xanthomonas identifies sRNAs with putative virulence functions. Nucleic Acids Res 2012; 40:2020-31; PMID:22080557; http://dx.doi.org/10.1093/nar/gkr904.

10. Mitschke J, Georg J, Scholz I, Sharma CM, Dienst D, Bantscheff J, et al. An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC6803. Proc Natl Acad Sci U S A 2011; 108:2124-9; PMID:21245530; http://dx.doi.org/10.1073/pnas.1015154108.

11. Mitschke J, Vincke A, Haas F, Hess WR, Muro-Pastor AM. Dynamics of transcriptional start site selection during nitrogen stress-induced cell differentiation in Anabaena sp. PCC7120. Proc Natl Acad Sci U S A 2011; 108:2136-5; PMID:21245606; http://dx.doi.org/10.1073/pnas.1112724108.

12. Lasa I, Toledo-Azara A, Dobin A, Villanueva M, de los Mozos IR, Vergara-Irigaray M, et al. Genomewide antisense transcription drives mRNA processing in bacteria. Proc Nail Acad Sci U S A 2011; 108:20172-7; PMID:22123973; http://dx.doi.org/10.1073/pnas.11152108.

13. Wilms I, Overloper A, Nourowian M, Sharma CM, Narberhaus F. Deep sequencing uncovers numerous small RNAs on all four replicons of the plant pathogen Agrobacterium tumefaciens. RNA Biol 2012; 9; PMID:22336765; http://dx.doi.org/10.1080/15476286.17212.

14. Hovik H, Yu W-H, Olesen I, Chen T. Comprehensive transcriptome analysis of the periodontopathogenic bacterium Porphyromonas gingivalis W83. J Bacteriol 2012; 194:100-14; PMID:22837400; http://dx.doi.org/10.1128/JB.06385-11.

15. Georg J, Voss B, Scholz I, Mitschke J, Wilde A, Hess WR. Evidence for a major role of antisense RNAs in cyanobacterial gene regulation. Mol Syst Biol 2009; 5:305; PMID:19756044; http://dx.doi.org/10.1038/msb.2009.63.
16. Toledo-Araña A, Dussurget O, Nikitas G, Sexto N, Guet-Revillet H, Balestrieri D, et al. The Listeria transcriptional landscape from saprophytism to virulence. Nature 2009; 459:950-6; PMID:19448609; http://dx.doi.org/10.1038/nature08080.

17. Johnson JM, Edwards S, Shoemaker D, Schadt EE. Dark matter in the genome: evidence of widespread transcription detected by microarray tiling experiments. Trends Genet 2005; 21:93-102; PMID:15601355; http://dx.doi.org/10.1016/j.tig.2004.12.009.

18. Porocchi F, Xu Z, Clauder-Münster S, Steinmetz LM. Antisense artifacts in transcriptome microarray experiments are resolved by actinomycin D. Nucleic Acids Res 2007; 35:e128; PMID:17897965; http://dx.doi.org/10.1093/nar/gkm683.

19. Czech R, Malone CD, Zhou R, Stark A, Schlingheheyde C, Dus M, et al. An endogenous small interfering RNA pathway in Drosophila. Nature 2008; 453:798-802; PMID:18465631; http://dx.doi.org/10.1038/nature07007.

20. Parkhomchuk D, Borodina T, Amstislavskiy V, Banaru M, Hallen L, Krobitsch S, et al. Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res 2009; 37:e123; PMID:19620212; http://dx.doi.org/10.1038/nkar/gkp996.

21. Arrazeta CM, Andrade JM, Domingues S, Guinote IB, Malecki M, Matos RG, et al. The critical role of RNA processing and degradation in the control of gene expression. FEMS Microbiol Rev 2010; 34:883-923; PMID:20659169.

22. Carposis AJ. The RNA degradosome of Escherichia coli: an mRNA-degrading machine assembled on R圈子. Annu Rev Microbiol 2007; 61:71-87; PMID:17447862; http://dx.doi.org/10.1146/annurev.micro.51.080706.093440.

23. Condon C. Maturation and degradation of RNA in bacteria. Curr Opin Microbiol 2007; 10:271-8; PMID:17560162; http://dx.doi.org/10.1016/j.mib.2007.05.008.

24. Krinke L, Wulff DL. RNAIII-dependent hydrolysis of lambda CI/O gene mRNA mediated by lambda OOP antisense RNA. Genes Dev 1990; 4(12A):2223-33; PMID:2148537; http://dx.doi.org/10.1101/gad.4.12A.2223.

25. Lee E-J, Grossman EA. An antisense RNA that governs the expression kinetics of a multifunctional virulence gene. Mol Microbiol 2010; 76:1020-33; PMID:20398218; http://dx.doi.org/10.1111/j.1365-2958.2010.07616.x.

26. Storz G, Vogel J, Wissmann KM. Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 2011; 43:880-91; PMID:21925377; http://dx.doi.org/10.1016/j.molec.2011.08.022.

27. Stiazik D, Lindell D, Steglich C. Antisense RNA protects mRNA from RNAase E degradation during phage infection. Nucleic Acids Res 2011; 39:4890-9; PMID:21325266; http://dx.doi.org/10.1093/nar/gkr657.

28. Kawano M, Aravind L, Storz G. An antisense RNA controls synthesis of an SOS-induced toxin evolved from an antitoxin. Mol Microbiol 2007; 64:738-54; PMID:17462020; http://dx.doi.org/10.1111/j.1365-2958.2007.05688.x.

29. Dubnau D, Losick R. Bistability in bacteria. Mol Microbiol 2006; 57:419-40; PMID:16879639; http://dx.doi.org/10.1111/j.1365-2958.2006.05249.x.

30. Lawrence JG. Gene organization: selection, selfishness, and serendipity. Annu Rev Microbiol 2003; 57:419-40; PMID:14527286; http://dx.doi.org/10.1146/annurev.micro.57.030502.090816.

31. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008; 9:102-14; PMID:18197166; http://dx.doi.org/10.1038/nrg2290.

32. Moazed D. Small RNAs in transcriptional gene silencing and genome defence. Nature 2009; 457:413-20; PMID:19158787; http://dx.doi.org/10.1038/nature07756.

33. Cernilovag FM, Onoreci MC, Korhe GO, Burroughs AM, Parsi KM, Breiling A, et al. Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila. Nature 2011; 480:391-5; PMID:22056986; http://dx.doi.org/10.1038/nature10492.

34. Nakama M, Kawakami K, Kajitani T, Utano T, Murakami Y. DNA-RNA hybrid formation mediates RNA-directed heterochromatin formation. Genes Cells 2012; 17:218-33; PMID:22280861; http://dx.doi.org/10.1111/j.1365-2443.2012.01583.x.

35. Pandey SP, Minesinger BK, Kumar J, Walker GC. A highly conserved protein of unknown function in Sinoehizobium meliloti affects tRNA regulation similar to Hfq. Nucleic Acids Res 2011; 39:4691-708; PMID:21325267; http://dx.doi.org/10.1093/nar/gkr060.

36. Davies BW, Kohrer C, Jacob AI, Simmons LA, Zhu J, Aleman LM, et al. Role of Escherichia coli YbeY, a highly conserved protein, in tRNA processing. Mol Microbiol 2010; 78:506-18; PMID:20807199; http://dx.doi.org/10.1111/j.1365-2958.2010.07351.x.

37. Shearwin KE, Callen BP, Egan JB. Transcriptional interference—a crash course. Trends Genet 2005; 21:339-45; PMID:15922833; http://dx.doi.org/10.1016/j.tig.2005.04.009.

38. Thomason MK, Storz G. Bacterial antisense RNAs: how many are there, and what are they doing? Annu Rev Genet 2010; 44:167-88; PMID:20707673; http://dx.doi.org/10.1146/annurev.genet.102209-165325.

39. Geissing J, Hess WR. csi-antisense RNA, another level of gene regulation in bacteria. Microbiol Mol Biol Rev 2011; 75:286-300; PMID:21646430; http://dx.doi.org/10.1128/MMBR.00032-10.