The bHLH-PAS protein Spineless is necessary for the diversification of dendrite morphology of *Drosophila* dendritic arborization neurons

Michael D. Kim, Lily Yeh Jan, and Yuh Nung Jan

Howard Hughes Medical Institute, Department of Physiology and Department of Biochemistry, University of California at San Francisco, San Francisco, California 94143, USA

Dendrites exhibit a wide range of morphological diversity, and their arborization patterns are critical determinants of proper neural connectivity. How different neurons acquire their distinct dendritic branching patterns during development is not well understood. Here we report that Spineless (Ss), the *Drosophila* homolog of the mammalian aryl hydrocarbon (dioxin) receptor (Ahr), regulates dendrite diversity in the dendritic arborization (da) sensory neurons. In loss-of-function ss mutants, class I and II da neurons, which are normally characterized by their simple dendrite morphologies, elaborate more complex arbors, whereas the normally complex class III and IV da neurons develop simpler dendritic arbors. Consequently, different classes of da neurons elaborate dendrites with similar morphologies. In its control of dendritic diversity among da neurons, ss likely acts independently of its known cofactor *tango* and through a regulatory program distinct from those involving *cut* and *abrupt*. These findings suggest that one evolutionarily conserved role for Ahr in neuronal development concerns the diversification of dendrite morphology.

Keywords: Drosophila; neuron; dendrite; axon; aryl hydrocarbon receptor; dioxin

Supplemental material is available at http://www.genesdev.org.

Received June 15, 2006; revised version accepted August 25, 2006.

Each neuronal cell type is endowed with a unique dendritic architecture, from the relatively simple arbors of a bipolar neuron to the elaborate and expansive dendritic tree of a cerebellar Purkinje cell. Critical for proper neural connectivity, how a neuron elaborates its dendritic arbor in large part determines the way it integrates and processes synaptic or sensory inputs (Hausser et al. 2000; Jan and Jan 2001; Scott and Luo 2001; Wong and Ghosh 2002). Furthermore, the morphological properties of dendrites can influence the activity, and hence the function, of a neuron (Hauser et al. 2000; Wong and Ghosh 2002). Developmental programs that regulate dendrite morphogenesis, by controlling such distinct modes as dendrite outgrowth, branching, stabilization, and maintenance, require the concerted actions of various extrinsic and intrinsic factors (Scott and Luo 2001; Whitford et al. 2002; Jan and Jan 2003). However, relatively little is known about how different types of neurons acquire their distinct dendrite arborization patterns.

The *Drosophila* peripheral nervous system (PNS) provides an ideal in vivo model system to investigate the molecular mechanisms that regulate dendrite patterning. The *Drosophila* PNS is comprised of many different cell types including the dendritic arborization (da) sensory neurons (Bodmer and Jan 1987). The da neurons are further subdivided into four classes (I-IV) based on their increasing dendritic branching complexity, which is defined by branch number and branch order as assessed by Strahler analysis (Grueber et al. 2002). The da neurons are born during mid-embryogenesis, and each neuron elaborates a stereotypical dendritic arbor that innervates the epidermis (Bodmer and Jan 1987). Different classes of da neurons are thought to function in different sensory modalities such as nociception, thermosensation, and locomotion (Ainsley et al. 2003; Liu et al. 2003; Tracey et al. 2003; Xu et al. 2004), suggesting that their distinct dendrite arborization patterns are important for specific behaviors. This classification of the da neurons, initially based primarily on their dendrite morphologies, is corroborated by more recent evidence demonstrating molecular differences among these four classes of neurons (Grueber et al. 2003a; Li et al. 2004; Sugimura et al. 2004). Each of the 15 da neurons in an abdominal hemisegment exhibits stereotypical dendritic arbors,
thereby allowing systematic analysis of dendritic morphogenesis tailored for individual cell types.

Previous studies in *Drosophila* have shown that transcriptional regulation plays an integral role in the proper development of da neuron dendrites [Brenman et al. 2001; Grueber et al. 2003a; Li et al. 2004; Sugimura et al. 2004; Parrish et al. 2006]. These studies have provided insight into the mechanisms that different neurons use to establish their distinct dendrite morphologies. Neurons may act through transcriptional programs that directly promote dendrite outgrowth and branching. For example, the homeodomain protein Cut promotes the formation of complex dendritic arbors, and increasing levels of Cut expression correlate with greater dendritic complexity of da neurons [Grueber et al. 2003a]. Neurons may also use cell-type-specific transcriptional programs to regulate dendritic branching. Thus, class I da neurons express the BTB-zinc finger protein Arupt, but not Cut, to limit dendrite complexity [Li et al. 2004; Sugimura et al. 2004]. Whether there are genetic programs that specifically govern the dendritic complexity unique to each of the four classes of da neurons, however, is not known.

Through a mutagenesis screen, we found the spineless (ss) gene to be critical for the diversification of dendrite complexity. Since the discovery of the first ss mutant ~80 yr ago by Bridges and Morgan [1923], three classes of phenotypes have been associated with ss mutants: (1) transformation of the distal part of the antenna to the distal part of the second leg [mutants with this phenotype are known as spineless-aristapedia mutants], (2) deletion of most of the tarsal regions of the legs, and (3) reduction of bristle size. In addition, a recent study reports that stochastic ss expression enables R7 photoreceptors to express a particular form of rhodopsin for color vision [Wernet et al. 2006]. Although ss has been previously shown to be expressed in the PNS [Duncan et al. 1998], no PNS phenotype has been reported with then available markers such as the widely used monoclonal 22C10 antibody that labels the cell body and axons of sensory neurons [Zipursky et al. 1984]. Here we report that ss mutants exhibit a striking dendrite phenotype that only becomes apparent with suitable dendrite markers.

Spineless (Ss) was previously identified as a member of a family of transcription factors that contain the basic helix–loop–helix (bHLH)-PAS domain [Duncan et al. 1998]. The PAS domain mediates dimerization and is named after the founding members of the family: *Drosophila* Period, mammalian Ahr, and *Drosophila* Single-minded [Huang et al. 1993; Gu et al. 2000]. The Ss protein is most similar to the mammalian aryl hydrocarbon (dioxin) receptor [Ahr], as ss and Ahr share almost twice as much sequence identity as either shares with its next closest relative [Duncan et al. 1998]. Ss can heterodimerize with the bHLH-PAS protein Tango (Tgo), the *Drosophila* homolog of the aryl hydrocarbon receptor nuclear translocator [Arnt], to initiate transcription of downstream target genes [Emmons et al. 1999]. Mammalian Ahr binds the environmental toxin 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, or dioxin), which induces a broad range of toxic effects including teratogenesis, immunosuppression, and tumor promotion [Schmidt and Bradfield 1996; Puga et al. 2005]. Fetal exposure to dioxin can cause a range of cognitive and behavioral defects [ten Tusscher and Koppe 2004], possibly due to dioxin action via Ahr in the brain. Previous reports have shown that Ahr and Arnt are widely distributed throughout the rat brain including several hypothalamic and brainstem regions involved in the regulation of appetite and circadian rhythm, functions that are disrupted by dioxin exposure [Petersen et al. 2000]. Although invertebrate homologs of Ahr do not bind dioxin [Powell-Coffman et al. 1998; Butler et al. 2001], recent studies in *Caenorhabditis elegans* support an evolutionarily conserved role for Ahr in neuronal development [Huang et al. 2004, Qin and Powell-Coffman 2004].

In this study, we report that ss acts cell-autonomously to regulate the morphological diversity of dendrites in all classes of *Drosophila* da sensory neurons. Remarkably, ss exerts diametrically opposing functions in different classes of da neurons to limit branching complexity in neurons that normally possess simple dendrites but to promote the formation of higher-order branches in neurons that normally elaborate more complex dendritic arbors. Furthermore, we show that ss is essential for the formation of distinct morphological features of dendrites in different classes of da neurons. In the absence of ss function, different classes of da neurons elaborate dendrites with similar morphologies, although these da neurons still project their axons to the appropriate location within the ventral nerve cord [VNC]. We further show that ss likely functions independently of its known heterodimerization partner tango, via a novel regulatory program separate from the actions of cut and abrupt, to specify the branching patterns of sensory neuron dendrites. Our findings thus reveal a novel role for ss in generating dendriti diversity.

Results

spineless is required for proper dendrite morphogenesis in Drosophila da neurons

Drosophila class I da neurons elaborate their dendritic arbor in a simple and highly stereotypical pattern, projecting a primary branch then secondary branches that are typically straight and perpendicular to the primary branch [Fig. 1A, Sugimura et al. 2004]. To identify genes important for class I dendrite morphogenesis, we conducted an EMS mutagenesis screen using the *Gal4²²¹* enhancer trap line to drive GFP expression in all class I neurons [Fig. 1A,C; Grueber et al. 2003a]. We found a lethal mutant line [line 134] that showed primary branch overgrowth and increased terminal branching of class I dendrites in late-stage embryos [18–20 h after egg laying [AEL]] [Fig. 1B], a defect that persisted throughout the third instar larval stage [Fig. 1D]. When we introduced the mutant allele into the *Gal4^{1092198D*} reporter line, which labels all sensory neurons [Gao et al. 1999], we observed widespread dendrite defects in the da neurons,
but we did not observe any obvious defects in the development of neurons without dendritic arbors, including the bipolar dendrite (bd) neurons, the tracheal dendrite (td) neurons, external sensory (es) organs, and chordotonal organs [data not shown]. Immunostaining with 22C10 antibody revealed no obvious defects in cell migration or cell number in the PNS of embryos as well as third instar larvae (Supplementary Fig. S1), consistent with previous reports (Duncan et al. 1998). Furthermore, the mutant did not exhibit any axon guidance defects in the VNC as revealed by immunostaining with Fasciclin II [FasII] antibody (Supplementary Fig. S1; Lin et al. 1994).

Based on genetic mapping via recombination and complementation tests with available deficiency lines and ss mutants, we identified the mutant line 134 as a new allele of spineless (hereafter referred to as ss134). A trans-heteroallelic combination of ss134 with the ss$^{D115.7}$ loss-of-function allele [McMillan and McGuire 1992] recapitulated the ss adult phenotype including a reduction in the size of bristles and an antenna-to-leg transformation. By conducting complementation tests with a deficiency line that disrupts the ss gene [Df(3R)ssD114.4] and a lethal ss-null allele [ss$^{D115.7}$] (Duncan et al. 1998), we further showed that a mutation in the ss gene was responsible for both lethality and the dendrite phenotype [Fig. 1E,F]. Moreover, class I da neuron-specific expression of Ss in transgenic flies bearing the ss134/ss$^{D115.7}$ mutation fully suppressed the primary branch overgrowth and increased terminal branching phenotype [Fig. 1G], suggesting that ss functions in class I da neurons to limit their dendritic arborization.

Spineless is expressed in all sensory neurons

A prerequisite for a cell-autonomous action of Ss in class I neurons is the expression of Ss in these neurons. In-

Figure 1. spineless regulates the dendritic morphogenesis of class I da neurons. (A) Wild-type dorsal class I neurons ddaD and ddaE in a stage 17 (18–20 h AEL) embryo visualized by the Gal4221 reporter. (B) ddaE neuron in a homozygous ss134 mutant exhibits overgrowth of the primary branch and increased terminal branching. (C) Wild-type ddaE neuron in a third instar larva. (D–F) ddaE neurons in a homozygous ss134 mutant (D), ss$^{D115.7}$ mutant (E), and ss134/ss$^{D115.7}$ transheterozygous mutant (F) exhibit overgrowth of the primary branch and increased terminal branching. (G) Expressing UAS-ss with Gal4221 in ss mutants rescues the primary branch overgrowth and increased terminal branching phenotype. Red arrowheads indicate axons. (H) Expression of GFP in the dorsal class I neuron ddaD and ddaE in a second instar larva as visualized by the Gal4221 reporter. GFP is weakly expressed in the dorsal class IV neuron ddaC at this developmental stage. (I) Expression of GFP in a homozygous ss134 mutant as visualized by the Gal4221 reporter. GFP is highly expressed in ddaE and ddaC, while absent in ddaD (normal position is indicated by a white asterisk). The terminal branches of ddaC are clearly visible. Anterior is to the left, and dorsal is up in this and all subsequent figures. Bar, 25 µm.
deed, in our immunostaining analysis using a polyclonal antibody raised against a C-terminal fragment of Ss [see Materials and Methods], we found that Ss is expressed in all sensory neurons in the embryonic PNS [Fig. 2A], consistent with previous in situ hybridization data [Duncan et al. 1998]. Ss expression is largely restricted to the PNS in embryos, although Ss was also detected in four unidentified cells per segment within the VNC [data not shown]. Ss was detected in the PNS as early as stage 13 [9–10 h AEL], and expression persisted throughout late embryogenesis [20–22 h AEL]. Ss is expressed in the soma of all da neurons at similar levels [Fig. 2D–H], as well as the soma of bd and es neurons [Fig. 2D–G] and td neurons and chordotonal organs [data not shown]. Ss expression is absent in both ss134 and ss$^{D115.7}$ mutant lines, confirming that both are null alleles [Fig. 2B,C], and thus verifying the specificity of the antibody.

Simple dendritic arbors become more complex in spineless mutants

To further test whether ss functions cell-autonomously to regulate dendrite morphogenesis, we performed a mosaic analysis with a repressible cell marker (MARCM) experiments with both ss134 and ss$^{D115.7}$-null alleles to examine single cell mutant clones in third instar larvae [Lee and Luo 1999]. Consistent with the ss134 homozygous mutant phenotype [Fig. 1D], dorsal ss134 and ss$^{D115.7}$ MARCM clones of the class I neurons ddaE [Fig. 3B,C] and ddaD [Fig. 3F,G] showed a dramatic overbranching phenotype. ddaE normally elaborates very few branches and typically projects a single primary dendrite followed by secondary branches that project toward the posterior segment border [Fig. 3A]. In contrast, the overall number of branchpoints in ss ddaE mutant clones was 245% greater than that in wild-type clones [Fig. 3D]. Unlike the primary branch overgrowth phenotype in homozygous ss mutants [Fig. 1D], however, the outgrowth of primary dendrites was mostly unaffected in ss MARCM clones [Fig. 3B,C].

Similar to ss ddaE clones, ss ddaD clones showed a 285% increase in total dendritic branch number when compared with control clones [Fig. 3H]. However, unlike ss ddaE clones, the dendrite phenotypes were more variable as we also observed overall patterning defects in ss ddaD clones, likely due to misrouting of the dendritic branches [Fig. 3E,F,G]. Normally, secondary branches from ddaD and ddaE rarely occupy the space between the two neurons, suggesting that there is a mechanism to restrict the respective target fields of ddaD and ddaE [Parrish et al. 2006]. Compared with secondary branches in control ddaD clones, which typically project toward the anterior segment border and rarely ever invade the space posterior to the cell body (<0.5% of the total number of branches in all control clones) [Fig. 3E], many more branches in ss ddaD clones (29% of the branches in all ss ddaD clones) occupied territories posterior to the cell body [Fig. 3F,G]. Presumably, these branches are unresponsive to repulsive cues that normally prevent ddaD secondary branches from invading the receptive field of ddaE. Dendritic branches from ss ddaE clones occasionally terminated improperly; however, this occurred at a much lower frequency than in ss ddaD clones. Thus, in addition to regulating dendritic branching, ss may also play a role in dendrite routing.

The increase in terminal branching in class I ss MARCM clones suggested that ss normally functions cell-autonomously to limit higher-order branching in
Spineless regulates dendritic diversity

dendrites of class I neurons. Given that Ss is also expressed in class II neurons, which also elaborate simple dendritic arbors with branching complexity comparable with that of class I dendrites as assessed by Strahler analysis (Grueber et al. 2002), we wondered whether ss acts to limit dendritic branching in class II neurons as well. The dorsal class II neuron ddaB typically extends long primary and secondary dendrites, but has very few higher-order branches [Fig. 3I]. In contrast, ss ddaB clones showed a significant increase in overall branch number (183%) [Fig. 3J–L]. Taken together, these findings suggest that ss restricts the morphological complexity of the class I and class II neurons by limiting the overall number of their dendritic branches.

Complex dendritic arbors become simpler in spineless mutants

Class IV neurons differ from class I and II class II neurons in that they project very elaborate dendritic arbors that cover the entire body wall (Grueber et al. 2002, 2003b). To test the function of Ss expressed in these class IV neurons, we examined MARCM clones of the dorsal class IV neuron ddaC, which is very highly branched and extends its arbor to the dorsal midline and both the anterior and posterior segment borders [Fig. 4A]. In contrast to the significant increase in dendritic branching in class I and class II ss MARCM clones, ss ddaC clones exhibited a significant reduction (34%) in the total number of terminal branches when compared with wild-type clones [Fig. 4B,E]. Furthermore, there was a significant reduction (19%) in the total dendritic field size of ss ddaC clones [Fig. 4F]. Consequently, in most cases the primary dendrites failed to reach the dorsal midline [Fig. 4B]. Not surprisingly, there was no overlap of the dendrites between adjacent mutant clones or in the null mutant as revealed by the class IV-specific ppk::EGFP reporter [data not shown]. Thus, ss is required for terminal branching in class IV neurons. Without ss function, the complexity of class IV dendritic arbors is significantly reduced.

Whereas ss ddaC clones exhibited severe defects in dendrite morphology, there was no obvious abnormality in the axon projections of individual ss ddaC clones [Fig. 4C,D]. The ddaC axons normally terminate near the medial fascicle of the VNC, as revealed by FasII immunostaining, and the ddaC axon terminals typically extend an anterior- and posterior-directed branch, although their lengths are highly variable, and often, but not always, extend a protruding branch toward the ventral midline [Fig. 4C]. Similar to axons from control clones, axon terminals from ss ddaC clones exhibited variable morphology but invariably terminated near the medial fascicle [Fig. 4D]. It thus appears that ss may function preferentially in controlling the morphogenesis of the dendrites of da neurons.

The Ss protein is present at similar levels in neurons of class III as well as classes I, II, and IV [Fig. 2H]. However, class III neurons are unique among the da neurons in that they possess characteristic fine actin-based protrusions

Figure 3. spineless functions cell-autonomously to regulate dendritic branching in class I and II da neurons. (A) Normal morphology of class I neuron ddaE dendrites in a wild-type third instar larva MARCM clone. ddaE normally projects its secondary dendrites toward the posterior segment border and elaborates few terminal branches. (B,C) ddaE neurons exhibit increased terminal branching in ssD115.7 (B) and ssD115.7 (C) MARCM clones. (D) Quantification of the total number of branchpoints for ddaE in wild-type and ssD115.7 clones. Error bars represent standard deviation in this and all subsequent figures (asterisk, \(p < 0.001 \), two-tailed t-test). (E) Normal morphology of class I neuron ddaD dendrites in a wild-type MARCM clone. ddaD normally projects its secondary dendrites toward the anterior segment border. (F,G) ddaD neurons show increased branching and dendritic routing defects in ssD115.7 (F) and ssD115.7 (G) MARCM clones. Secondary dendrites are misoriented, and branches improperly terminate posterior to the cell body. (H) Quantification of total number of branchpoints for ddaD in wild-type and ssD115.7 clones (asterisk, \(p < 0.001 \), two-tailed t-test). Arrowheads indicate axons. Bar, 50 µm.
Kim et al.

Figure 4. Loss of spineless function reduces the complexity of class IV dendrites. (A) Normal morphology of class IV neuron ddaC dendrites in a wild-type MARCM clone. ddaC extends its dendrites to the dorsal midline and anterior and posterior segment borders. (B) A ddaC ssD115.7 MARCM clone shows reduced terminal branching and failure of dendrites to reach the dorsal midline. Arrowheads indicate axons. (C,D) Tracing of representative ddaC axon terminals in wild-type (C) and ssD115.7 (D) MARCM clones. The three bars represent the lateral, intermediate, and medial fascicles of the VNC as revealed by FasII immunostaining. ddaC axon terminals in wild-type (C) and ssD115.7 (D) MARCM clones invariably terminate near the medial fascicle. (E) Quantification of total number of branchpoints for ddaC in wild-type and ssD115.7 clones [asterisk; p < 0.001, two-tailed t-test]. (F) Quantification of total dendritic field area for ddaC in wild-type and ssD115.7 clones [asterisk; p < 0.02, two-tailed t-test]. Bar, 50 µm.

of 2–20 µm in length along their dendrites that are known as dendritic spikes (Grueber et al. 2002). In ss MARCM clones, these spiky protrusions were largely absent in all class III neurons. Compared with wild-type clones, where the lateral class III neuron ldaB showed a high density of dendritic spikes all along its primary and secondary branches [Fig. 5A], ssC54 and ssD115.7 ldaB clones showed a significant decrease in overall branch number, which reflected an obvious reduction in dendritic spikes along the primary and secondary dendrites [Fig. 5B,C,G]. The dorsal class III neuron ddaA also showed a significant reduction (55%) in the total number of branches and dendritic spikes in ss clones [Table 1]. The other dorsal class III neuron, ddaF, normally extends long primary and secondary dendrites that are decorated with dendritic spikes [Fig. 5D]. Although the dendrite phenotypes were variable from clone to clone, the most common defects were the absence of some primary and secondary branches and primary branch overgrowth [Fig. 5E,F]. In many cases, the primary branch extended beyond the dorsal midline. Although there was not a significant change in the total branch number due to the high variability of the phenotype [Fig. 5H], dendritic spikes were mostly eliminated from the primary dendrites and replaced by clusters of longer terminal branches [Fig. 5E,F]. Therefore, similar to loss of ss function in class IV dendrites, loss of ss function in class III neurons resulted in reduced dendritic complexity, and more specifically, in the loss of dendritic spikes.

Like ss ddaC clones, ss ldaB and ddaF clones exhibited apparently normal axon projections [Fig. 5I–L]. The ldaB axons normally terminate between the intermediate and medial fascicles, and their axon terminals project both anterior- and posterior-directed branches of varying lengths [Fig. 5I], whereas the ddaF axons project into the VNC and curve toward the posterior then terminate between the intermediate and medial fascicles [Fig. 5K]. Axon projections from both ss ldaB and ddaF clones invariably terminated between the intermediate and medial fascicles similarly to wild-type clones [Fig. 5J,L]. These observations reinforce the notion that ss function is likely restricted to the dendrites of the da neurons.

Loss of spineless function reduces dendritic diversity

From our MARCM analysis, we noticed that the dendritic patterns of different classes of da neurons in ss mutants became more homogeneous. For example, in the absence of ss function, the dendritic arbor of the class III neuron ddaA lost its characteristic dendritic spikes and resembled the dendrites with supernumerary branching of the class II neuron ddaB in ss MARCM clones [Supplementary Fig. S2]. The loss of ss function also caused ddaF dendrites to resemble dendrites from the class I neuron ddaD [Supplementary Fig. S2]. Indeed, with the exception of the class IV neurons, the overall branch number was comparable for dendrites of different classes of da neurons in ss mutants, in contrast to the very significant differences in wild-type controls [Table 1]. For example, the overall number of dendritic branches in the class III neuron ldaB was typically 10-fold higher than that of the class I neurons ddaD and ddaE in wild-type controls [Table 1]. In ss mutants, however, ldaB elaborated, on average, the same number of branches as ddaD and ddaE [Table 1]. Furthermore, different classes of da neurons exhibited similar degrees of complexity as assessed by Strahler analysis [Table 2]. Therefore, as a result of the opposite dendrite phenotypes in class I and II versus class III and IV da neurons, loss of ss function led to a dramatic reduction in the overall dendritic diversity of the da neurons and, as a consequence, different classes of da neurons [except for class IV] elaborated morphologically similar dendrites.

Overexpression of spineless results in opposite dendrite phenotypes in different types of sensory neurons

Our data showed that all sensory neurons express Ss at similar levels [Fig. 2H], yet loss of ss function resulted in
different phenotypes in different classes of sensory neurons. We therefore wanted to test whether altering the expression level of Ss in the sensory neurons would result in any dendrite phenotype. Using available Gal4 drivers, we first overexpressed Ss in the different classes of da neurons and found no noticeable phenotype in class I or class II dendrites (data not shown). Class III neurons that overexpressed Ss also did not exhibit any detectable defects (data not shown). However, overexpression of Ss in class IV neurons via the Gal4ppk driver (Kuo et al. 2005) resulted in a significant reduction in overall branch number (Fig. 6A-C), similar to the ss loss-of-function phenotype [Fig. 4B]. Having found that class IV, but not class I, II, and III da neurons are sensitive to the level of Ss expression, we went on to test whether overexpression of Ss could affect the morphology of sensory neurons that did not exhibit an ss loss-of-function phenotype. Overexpression of Ss did not generate dendritic phenotypes in bd neurons, es organs, and chordotonal.

Table 1. Quantification of total branch number in different classes of da neurons

Class	Wild type	spineless
class I		
ddaD	19.5 ± 3.8 [11]	75.0 ± 29.0 [5]
ddaE	23.0 ± 2.3 [10]	79.4 ± 18.0 [13]
class II		
ddaB	23.7 ± 7.4 [9]	67.0 ± 29.6 [7]
class III		
ddaA	228.0 ± 18.3 [3]	103.5 ± 18.7 [4]
ldaB	235.4 ± 42.5 [7]	77.3 ± 23.3 [9]
ddaF	188.9 ± 61.6 [7]	123.3 ± 51.6 [13]
class IV		
ddaC	647.1 ± 90.1 [10]	424.3 ± 95.2 [8]

The mean ± SD number of total branches for each neuron is shown. The total number of neurons observed is indicated in parentheses.
In contrast, expression of Ss in the td neuron via the Gal4477 driver (Grueber et al. 2003a) resulted in a very striking phenotype (Fig. 6F). The td neuron normally extends bipolar dendrites ventrally and dorsally with little or no branching (Fig. 6D), as did td neurons in ss mutants (Fig. 6E). However, with overexpression of Ss, the td neuron exhibited a significant increase in ectopic dendritic branching in 100% of the cases observed (Fig. 6G). Taken together, these observations suggest different sensory neurons are sensitive to different ranges of Ss expression. Like bd neurons, es organs, and chordotonal organs, the simple dendritic pattern of the td neuron persists even in the absence of ss function. However, unlike in these neurons, td neuron dendrites can be converted to complex dendritic patterns characteristic of da neurons by Ss overexpression. Similarly, while all classes of da neurons normally require ss function, class I–III da neurons apparently tolerate a wider range of Ss expression levels compared with the class IV da neuron. Thus, class IV dendrites are more sensitive to changes in Ss expression, and the more elaborate dendritic branching pattern of class IV neurons can only be achieved with the appropriate level of Ss expression.

Loss of spineless function does not alter Abrupt or Cut expression in the da neurons

Previous reports have established the role of the BTB-zinc finger protein Abrupt and the homeodomain protein Cut in specifying the distinct dendritic branching patterns of class I and class II–IV da neurons, respectively (Grueber et al. 2003a; Li et al. 2004; Sugimura et al. 2004). Thus, Ab is only expressed in class I of the da neurons (Fig. 7A–C) and regulates its dendritic development (Li et al. 2004; Sugimura et al. 2004). Loss of ab function in class I neurons leads to a significant increase in overall branch number (Li et al. 2004; Sugimura et al. 2004), similar to class I dendrites in ss loss-of-function mutants. To test whether ss regulates Ab expression in the class I neurons and whether the class I dendrite phenotype could be attributed to a reduction in the levels of Ab expression, we examined Ab expression in ss mutants and found that Ab was expressed in class I neurons at comparable levels to wild-type controls (Fig. 7D–G); the slight increase in Ab expression in ddaE neurons of ss mutants was not statistically significant (p = 0.08, two-tailed t-test). Furthermore, we did not observe Ab expression in any of the other da neurons. As Ab can also serve

Table 2. Reversed Strahler analysis of da neurons in ss mutant clones

Class	1st Order	2nd Order	3rd Order	4th Order	5th Order
Class I					
ddaD [5]	0.4 ± 0.5	1.6 ± 0.9	5.2 ± 2.3	19.4 ± 8.4	75.0 ± 29.0
ddaE [13]	0.4 ± 0.5	1.4 ± 0.5	5.0 ± 1.2	20.4 ± 4.4	79.4 ± 18.0
Class II					
ddaB [7]	0.0	1.0	3.7 ± 1.5	15.0 ± 6.4	67.0 ± 29.6
Class III					
ldaB [9]	0.1 ± 0.3	1.3 ± 0.5	4.1 ± 1.1	17.7 ± 7.1	77.3 ± 23.3
ddaF [13]	0.2 ± 0.4	1.2 ± 0.6	5.2 ± 1.5	24.0 ± 9.2	123.3 ± 51.6

The mean ± SD number of total branches in each order is shown. The total number of neurons observed is indicated in parentheses.
as a molecular marker for class I da neurons, it appears that class I neurons maintained their identity in ss mutants and the dendritic phenotypes of class II–IV da neurons could not be attributed to their transformation to class I neurons.

Different levels of Cut expression contribute to the branching diversity of class II–IV da neurons (Grueber et al. 2003a). Cut expression is highest in the class III neurons, at intermediate levels in the class IV neurons, at low levels in the class II neurons, and largely undetectable in the class I neurons [Fig. 7H–J; Grueber et al. 2003a]. Previous studies have shown that ectopic expression of ss can suppress Cut expression in antennal discs [Emerald et al. 2003]. We therefore examined the possibility that ss may regulate cut in the da neurons to control dendritic branching. However, there was no obvious alteration of Cut expression in any of the da neurons in ss mutants when compared with wild-type controls [Fig. 7K–M]. Cut expression was absent in the class I neurons and was always detected in the other classes. These ob-

Figure 7. spineless acts through a regulatory program distinct from cut and abrupt to control dendritic diversity. (A) Wild-type third instar larva stained with the pan-neuronal marker horseradish peroxidase (HRP) indicating positions of class I neurons in dorsal cluster (ddaD and ddaE). (B) Wild-type expression pattern of Ab in the dorsal cluster. (C) Merged image of A and B showing that Ab is only expressed in the class I neurons. (D) HRP stain of homozygous ssD115.7 mutant third instar larva indicating the positions of ddaD and ddaE. (E) Expression pattern of Ab in the dorsal cluster in a homozygous ssD115.7 mutant. (F) Merged image of D and E showing Ab expression in the dorsal class I neurons in the ssD115.7 mutant. (G) Quantification of Ab immunoreactivity in class I neurons ddaD and ddaE in wild type and ss mutants reveals similar levels of Ab expression. (H) Wild-type embryo (18–20 h AEL) stained with the pan-neuronal marker Elav. (I) Wild-type expression pattern of Cut in the dorsal cluster. Cut is not expressed in the class I neurons ddaD and ddaE (circles indicate positions). (J) Merged image of H and I showing different levels of Cut expression in the da neurons. (K) Homozygous ssD115.7 mutant embryo stained with Elav. (L) Expression pattern of Cut in the dorsal cluster in a homozygous ssD115.7 mutant. Cut is not expressed in ddaD and ddaE (circles). (M) Merged image of K and L showing that Cut expression is normal in the ssD115.7 mutant. (N) Wild-type expression pattern of Elav in the dorsal cluster. (O) Wild-type expression pattern of Ss. (P) Merged image of N and O showing Ss expression in all Elav-positive neurons. (Q) Expression pattern of Elav in abK02807 loss-of-function mutant. (R) Expression pattern of Ss in the abK02807 mutant. (S) Merged image of Q and R showing that Ss expression is not regulated by ab in the sensory neurons. (T) Expression pattern of Elav in cutc145 loss-of-function mutant. (U) Expression pattern of Ss in the cutc145 mutant. (V) Merged image of T and U showing that Ss expression is not regulated by cut in the sensory neurons. Bar, 10 µm.
servations thus rendered it unlikely that ss acts upstream of ab or cut. Furthermore, ectopic expression of Ss did not alter Cut expression levels in the da neurons, nor did it suppress the Cut overexpression phenotype in class I dendrites [data not shown]. The inability of ss to modulate Cut expression in any of the four classes of da neurons further suggests that these neurons maintain their identity in ss loss-of-function mutants.

Having found no evidence that ss acts upstream of cut or ab, we then asked whether the dendrite phenotypes associated with loss of ab or cut function are associated with changes in Ss expression. However, there was no detectable alteration of Ss expression in any of the da neurons or other sensory neurons in the PNS of ab^{ko2807} and cut¹⁻¹⁴⁵ loss-of-function mutants [Fig. 7N–V]. Thus, ss is neither upstream of nor downstream from ab and cut in its regulation of dendritic complexity. Most likely, ss acts in a pathway independent of cut and ab to regulate dendritic branching.

Figure 8. tgo does not act cell-autonomously to regulate the development of da neuron dendrites. [A] Wild-type MARCM clone of the class I neuron ddaD. [B] The ddaD tgo⁵ MARCM clone does not exhibit any dendrite branching or routing defects. [C] Wild-type MARCM clone of the class IV neuron ddaC. [D] The ddaC tgo⁵ MARCM clone does not show a reduction in terminal branching or dendritic field size. Arrowheads indicate axons. Bar, 50 µm. [E] Multidendritic (md) neurons in the dorsal cluster labeled by the E7.2-36 lacZ enhancer trap line as revealed by staining with β-gal. [F] Wild-type expression pattern of Tgo. Tgo is largely accumulated in tracheal cells. [G] Merged image of E and F showing that Tgo is not accumulated in the nuclei of da neurons. Bar, 10 µm.
neurons at any stage during embryonic development [Fig. 8E–G]. It remains possible that tgo may have non-cell-autonomous functions in dendrite development as RNA interference [RNAi] experiments with tgo dsRNA resulted in abnormal dendrites of class I da neurons [Par- rish et al. 2006; data not shown]. However, loss of tgo resulted in reduced arborization of class I dendrites [Par- rish et al. 2006], while class I dendrites are more highly branched in ss mutants. Although we cannot completely rule out the possible involvement of tgo, we favor a scenario in which ss acts independently of tgo to control dendrite morphogenesis in Drosophila da neurons. It re- mains possible that ss acts together with another cofac- tor to regulate transcription within the da neurons.

spineless differentially regulates gene expression in the da neurons

Although ss has been previously shown to activate the transcription of target genes in vitro [Emmons et al. 1999; Brown et al. 2005], little is known of how ss regulates gene expression in Drosophila. In the Gal4221 reporter line, Gal4 is expressed at high levels in all class I neurons, but is also expressed at lower levels in all class IV neurons, although expression is most evident in later developmental stages [Fig. 1H]. In addition to class I dendrite defects revealed by the Gal4221 reporter line in a ss134 or ssD115.7 mutant background, we saw an elevated level of GFP signal in all class IV neurons and the absence of GFP expression in ddaD and the ventral class I neuron veda (Fig. 1I; data not shown). Expression of GFP in the class IV neurons was seen as early as 15 h AEL and persisted throughout late larval stages. In contrast, GFP expression never reached such high levels in all class IV neurons in wild-type embryos or larvae [Fig. 1H]. Furthermore, in ss mutants, GFP expression was only visible in ddaE among the class I neurons in later stages when all class I neurons normally express GFP at high levels [Fig. 1I]. The ability of ss to modulate the expres- sion of the Gal4221 reporter in different da neurons is one indication that ss can differentially regulate gene expression in the da neurons.

Discussion

Most vertebrate and invertebrate nervous systems con- tain a variety of neurons with distinct dendritic mor- phologies that determine the manner in which these neurons receive and process information. How such di- versity develops is not well understood. In this study, we provide evidence that the Drosophila homolog of the di- oxin receptor ss serves a novel function for diversifica- tion of Drosophila da sensory neurons. By executing dia- metrically opposing regulation to maintain the simple dendritic arbor of class I and class II da neurons but to enable class III and class IV da neurons to elaborate com- plex dendrites, ss is essential for these neurons to acquire their distinct patterns of dendritic branching. Loss of ss function resulted in increased dendritic complexity of the class I and class II da neurons that normally elaborate simple arbors. In contrast, loss of ss function led to a reduction in the total number of dendritic spikes and terminal branches, respectively, of the class III and class IV neurons, which normally display complex dendritic patterns. Consequently, the dendrite patterns of differ- ent classes of da neurons resemble one another, and there is a dramatic reduction in the overall dendritic di- versity of the da neurons in loss-of-function ss mutants. Yet, despite the striking dendrite phenotype, the axon projections of da neurons are normal in ss mutants. Inter- estingly, ss likely acts independently of its cofactor tango and functions in a regulatory program that is dis- tinct from cut and ab to control dendrite morphogenesis. The Ss protein is present at nearly the same level in all da neurons and acts cell-autonomously to dictate their dendritic complexity, while different da neurons exhibit different sensitivity to the level of Ss, and even the bi- polar td neuron can respond to elevated Ss activity by increasing dendritic complexity.

Do mutations in spineless affect the cell fate of da neurons?

Previous studies in C. elegans have demonstrated essen- tial roles for invertebrate homologs of Ahr in neuronal cell fate determination. For example, ahr-1 regulates the differentiation program of a subclass of neurons that contact the pseudocoelomic fluid, and both ahr-1 and aha-1 specify GABAergic neuron cell fate in C. elegans [Huang et al. 2004; Qin and Powell-Coffman 2004]. The dramatic changes in the dendrite morphologies of the da neurons, however, are not due to an all-or-nothing change in cell fate because the da neurons in ss mutants displayed normal class-specific expression patterns of the molecular markers Ab and Cut [Fig. 7] and normal axon projection patterns characteristic of individual da neurons [Figs. 4, 5; data not shown]. However, this also does not assume that a partial cell fate change has not occurred. One re- flection of the ss function as a transcription factor is the altered expression levels of GFP in the class I Gal4221 reporter, with increased levels of expression in all class IV neurons and essentially no expression in the dorsal class I neuron ddaD and the ventral class I neuron veda in ss mutants [Fig. 1H,I]. It will be of interest to further characterize the genetic basis for this Gal4 reporter, to determine whether this regulation constitutes a partial cell fate alteration or transcriptional regulation of genes downstream from ss in the execution of adjustment of dendritic complexity.

Do da neuron dendrites in spineless mutants assume a primordial pattern?

There is an emerging theme that ss functions to diversify neuronal differentiation by expanding the photopigment repertoire of R7 photoreceptors in the Drosophila eye [Wernet et al. 2006] and by diversifying da neuron dendritic morphologies [this study].

Recent studies have demonstrated that the entire reti-
nal mosaic pattern required for color vision in *Drosophila* is regulated by ss [Wernet et al. 2006]. In the *Drosophila* retina, two types of ommatidia form the wild-type retinal mosaic: “pale” and “yellow.” In *ss*1213.7 mutants, the yellow ommatidial subtype is lost and normally yellow R7 cells are misspecified into the pale subtype [Wernet et al. 2006]. As a result, nearly all R7 cells adopt the pale subtype, leading to loss of the retinal mosaic pattern. Thus, the pale R7 subtype represents the R7 “default state” [Wernet et al. 2006].

The overall lack of dendritic diversity in the da neurons in *ss* mutants is suggestive of the hypothesis that *ss*, an ancient, evolutionarily conserved gene, may act to convert a primordial dendrite pattern (perhaps a default state) to different complexities for different neurons in the peripheral nervous system. The loss-of-function *ss* phenotype in the da neuron dendrites might reflect such a primordial pattern as the dendrites in the mutant are devoid of specific morphological features that define distinct neuronal subclasses. In support of this notion, dendrites of the different classes of da neurons share similar morphological characteristics and exhibit similar numbers of total branches in *ss* mutants.

The ability of *ss* to regulate the complexity and diversity of this dendrite pattern, by limiting dendritic branching to shape the simpler arbors of the class I and class II neurons and by promoting class-specific terminal branching to shape the more complex arbors of the class III and class IV neurons, is quite unique. Of the many mutants that affect multiple classes of da neurons, the great majority affect da neurons with simple or complex dendritic arbors the same way, that is, causing them to all become simpler or more complex. The *ss* phenotype of making simple dendritic arbors more complex and complex arbors simpler is very unusual among the many mutants affecting dendrite complexity [e.g., Gao et al. 1999]. It thus seems likely that the distinct dendritic patterns rely not only on a cohort of gene activities specifying the mechanics of dendrite outgrowth and branching, but also a genetic program that diverts the generic primordial mode of dendritic formation to a diverse range of dendritic patterns.

How might spineless exert its functions?

Unlike the homeodomain protein Cut, which promotes dendritic complexity in a specific direction [Grueber et al. 2003a], *ss* functions in an opposing manner in different cell types to regulate dendritic diversity. How might *ss* function differently in different neuronal cell types? One possibility is that *ss* is activated by different ligands in different neurons. *Ss* is incapable of binding dioxin and other related compounds [Powell-Coffman et al. 1998; Butler et al. 2001], suggesting that other, as yet unidentified ligands are required for its activation. Previous reports have suggested that *Ss* and other invertebrate homologs of Ahr are activated by an endogenous ligand or that no ligand is required at all [Powell-Coffman et al. 1998; Emmons et al. 1999; Butler et al. 2001; Brown et al. 2005]. Recent studies have shown that Ahr can accumulate in the nucleus upon activation by the second messenger cyclic AMP (cAMP) [Oesch-Bartlomowicz et al. 2005], although it is not yet known whether cAMP signaling can activate *Ss* in *Drosophila*. Thus, it is conceivable that *Ss* is activated by different upstream factors in different cell types. It will be of interest to test in future studies whether in different neuronal cell types *Ss* is activated by different ligands or upstream second messengers and whether *Ss* acts in concert with regulatory programs for cell fate specification to dictate dendritic complexity.

In the canonical Ahr signaling pathway, Ahr requires the appropriate cofactor for its proper function [Reyes et al. 1992; Probst et al. 1993; Hankinson 1995]. Members of the bHLH-PAS protein family are able to heterodimerize with other bHLH-PAS proteins [Huang et al. 1993]. Previous studies have shown that, upon ligand binding, Ahr is translocated to the nucleus, where it heterodimerizes with Arnt to form a transcriptionally active complex [Reyes et al. 1992; Probst et al. 1993; Hankinson 1995]. However, we found that *tango*, the *Drosophila* homolog of Arnt, is likely not required for the regulation of dendritic morphogenesis, indicating that *ss* is probably not acting through its canonical signaling pathway to specify dendritic complexity. In *S9* cells, *ss* can act independently of *tgo* to enhance expression of a reporter in the absence of a ligand [Brown et al. 2005]. Furthermore, Ahr is unable to interact with Arnt upon activation by cAMP [Oesch-Bartlomowicz et al. 2005]. Although Ahr, Arnt, and the Arnt homolog Arnt2 are widely distributed throughout the rat brain, Ahr does not preferentially co-localize with either Arnt or Arnt2 [Petersen et al. 2000]. Ahr is also expressed in specific regions of the rat brain where neither Arnt nor Arnt2 is expressed [Petersen et al. 2000]. These studies support the notion that *ss* can act independently of *tgo* in certain developmental contexts. *Tgo* can heterodimerize with other bHLH-PAS proteins in addition to *Ss* [Emmons et al. 1999]. It is conceivable that *ss* may act with different heterodimerization partners to mediate its different functions in different cell types.

* Might Ahr be involved in mammalian dendrite development?*

Although the roles of Ahr in mediating the toxic effects of dioxin have been studied extensively, relatively little is known about the role of Ahr in development. Ahr is conserved in both vertebrates and invertebrates with their common ancestors dating back for >500 million yr [Hahn 2002]. Invertebrate homologs of Ahr do not bind dioxin [Powell-Coffman et al. 1996; Butler et al. 2001], suggesting that the functional ability of mammalian Ahr to mediate the toxic response likely evolved after the divergence of vertebrates and invertebrates [Hahn 2002]. Reports that Ahr is highly expressed in the rat brain [Petersen et al. 2000] and that Ahr can mediate TCDD-induced alterations in spatial learning [Powers et al. 2005] suggest important roles for Ahr in the nervous system. Here we demonstrate its critical role in dendrite devel-
opment in the specification of morphological properties of distinct neuronal cell types in *Drosophila*. It will be of interest to determine whether this function of Ahr in governing dendritic diversity is conserved in other species and underlies neurological disorders caused by dioxin.

Materials and methods

Drosophila stocks

To visualize da neuron dendrites, we used the following reporter lines: *Gal4*

- **UAS-mCD8::GFP** and *Gal4*

- **UAS-mCD8::GFP** [Grueber et al. 2003a; *Ga

- **UAS-mCD8::GFP** (Gao et al. 1999), ppp::EGFP [Grueber et al. 2003b]; and *Gal4*

- **UAS-mCD8::GFP** [Kuo et al. 2005]. The following *spineless* lines were used in this study: *ss*D115.7, Df(3R)ssD114.4, and *ss* [McMillan and McGuire 1992]. The *ss* allele was uncovered in an EMS mutagenesis screen and newly described here. *tgo* [Emmons et al. 1999], cut and *ab* [Jacks 1985], and *ss* [Johannes and Preiss 2002] alleles are as described.

MARCM analysis

To generate mosaic mutant clones, FRT62B, ss*TM6B or FRT82B, ss*TM6B flies were crossed to w, elav::Gal4, UAS-

- **mCD8::GFP**, hsFLP; FRT62B, tub::Gal80 flies. In brief, embryos were collected for 2 h and allowed to develop for 3–5 h at 25 °C before heat shock. Embryos were heat-shocked for 30 min at 38 °C, allowed to recover at room temperature for 30 min, then heat-shocked for an additional 45 min at 38 °C. Heat-shocked embryos were allowed to develop at 25 °C to the third instar larval stage. Larvae with mutant clones were then dissected, fixed, and costained with rat anti-mCD8 antibody at 1:200 dilution [Caltag] and monoclonal 22C10 antibody at 1:500 dilution [Developmental Studies Hybridoma Bank, DSHB]. Fixed preps were mounted on poly-L-lysine-covered coverslips, dehydrated in an ethanol series, cleared in xylenes, then mounted in DPX medium. Confocal image stacks were obtained using a Leica TCS SP2 confocal microscope and reconstructed into single collapsed images using ImageJ software (NIH).

Immunocytochemistry

Anti-Ss antibody was generated by immunization of guinea pigs with a GST-Ss fusion protein containing the C-terminal 150 amino acids of Ss and used at 1:1000 dilution. For whole-mount embryo and third instar larvae immunolabeling, the following proteins interact to control antennal and tarsal development in *Drosophila. Roux's Arch. Dev. Biol.* 1996: 69–77.

- **Brezman, J.E., Gao, F.B., Jan, L.Y., and Jan, Y.N. 2001. Sequoia, a tramtrack-related zinc finger protein, functions as a pan-neuronal regulator for dendrite and axon morphogenesis in *Drosophila*. Dev. Cell 1: 667–677.

- **Bridges, C.B. and Morgan, T.H. 1923. The third-chromosome group of mutant characters of *Drosophila* melanogaster. Carnegie Institute of Washington, Washington, DC. Publ. No. 327.

- **Brown, R.F., McDonnell, C.M., Berenbaum, M.R., and Schuler, M.A. 2005. Regulation of an insect cytochrome P450 monooxygenase gene (CFY6B1) by aryl hydrocarbon and xanthotoxin response cascades. Gene 358: 39–52.

- **Butler, R.A., Kelley, M.L., Powell, W.H., Hahn, M.E., and Van Beneden, R.J. 2001. An aryl hydrocarbon receptor (AHOR) homologue from the soft-shell clam, *Mya arenaria*: Evidence that invertebrate AHOR homologues lack 2,3,7,8-tetrachlorodibenzo-p-dioxin and β-naphthoflavone binding. *Gene* 278: 223–234.

- **Duncan, D.M., Burgess, E.A., and Duncan, I. 1998. Control of distal antennal identity and tarsal development in *Drosophila* by spineless-aristapedia, a homolog of the mammalian dioxin receptor. *Genes & Dev.* 12: 1290–1303.

- **Emerald, B.S., Curttis, J., Mlodzik, M., and Cohen, S.M. 2003. Distal antenna and distal antenna related encode nuclear proteins containing pipsqueak motifs involved in antenna development in *Drosophila*. Development 130: 1171–1180.

- **Emmons, R.B., Duncan, D., Estes, P.A., Kie nel, P., Mosher, J.T., Sonnenfeld, M., Ward, M.P., Duncan, I., and Crews, S.T. 1999. The Spineless-Aristapedia and Tango bHLH-PAS proteins interact to control antennal and tarsal development in *Drosophila*. Development 126: 3937–3945.

- **Gao, F.B., Brezman, L.E., Jan, L.Y., and Jan, Y.N. 1999. Genes regulating dendritic outgrowth, branching, and routing in *Drosophila*. Genes Dev. 13: 2549–2561.

- **Grueber, W.B., Jan, L.Y., and Jan, Y.N. 2002. Tiling of the *Drosophila* epidermis by multidendritic sensory neurons. *Development* 129: 2867–2878.

- **Grueber, W.B., Ye, B., Moore, A.W., Jan, L.Y., and Jan, Y.N. 2003b. Dendrites of distinct classes of *Drosophila* sensory...
neurons show different capacities for homotypic repulsion. *Curr. Biol.* 13: 618–626.

Gu, Y.Z., Hogenesch, J.B., and Bradfield, C.A. 2000. The PAS superfamily: Sensors of environmental and developmental signals. *Annu. Rev. Pharmacol. Toxicol.* 40: 519–561.

Hahn, M.E. 2002. Aryl hydrocarbon receptors: Diversity and evolution. *Chem. Biol. Interact.* 141: 131–160.

Hankinson, O. 1995. The aryl hydrocarbon receptor complex. *Annu. Rev. Pharmacol. Toxicol.* 35: 307–340.

Hausser, M., Spruston, N., and Stuart, G.J. 2000. Diversity and dynamics of dendritic signaling. *Science* 290: 739–744.

Huang, Z.J., Edery, I., and Rosbash, M. 1993. PAS is a dimerization domain common to *Drosophila* Period and several transcription factors. *Nature* 364: 259–262.

Huang, X., Powell-Coffman, J.A., and Jin, Y. 2004. The AHR-1 aryl hydrocarbon receptor and its co-factor the AHA-1 aryl hydrocarbon receptor nuclear translocator specify GABAergic neuron cell fate in *C. elegans*. *Development* 131: 819–828.

Jack, J.W. 1985. Molecular organization of the cut locus of *Drosophila melanogaster*. *Cell* 42: 869–876.

Jan, Y.N. and Jan, L.Y. 2001. Dendrites. *Genes & Dev.* 15: 2627–2641.

———. 2003. The control of dendrite development. *Neuron* 40: 229–242.

Johannes, B. and Preiss, A. 2002. Wing vein formation in *Drosophila melanogaster*: Hairless is involved in the cross-talk between Notch and EGF signaling pathways. *Mech. Dev.* 115: 3–14.

Kuo, C.T., Jan, L.Y., and Jan, Y.N. 2005. Dendrite-specific remodeling of *Drosophila* sensory neurons requires matrix metalloproteases, ubiquitin–proteasome, and ecysyne signaling. *Proc. Natl. Acad. Sci.* 102: 15230–15235.

Lee, T. and Luo, L. 1999. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. *Neuron* 22: 451–461.

Li, W., Wang, F., Menut, L., and Gao, F.B. 2004. BTB/POZ-zinc finger protein Abrupt suppresses dendritic branching in a neuronal subtype-specific and dosage-dependent manner. *Neuron* 43: 823–834.

Lin, D.M., Fetter, R.D., Kopczynski, C., Greminglo, G., and Goodman, C.S. 1994. Genetic analysis of Fasciclin II in *Drosophila*: Defasciculation, refasciculation, and altered fasciculation. *Neuron* 13: 1055–1069.

Liu, L., Yermolaieva, O., Johnson, W.A., Abboud, F.M., and Walsh, M.J. 2003. Identification and function of thornsony neurons in *Drosophila* larvae. *Nat. Neurosci.* 6: 267–273.

McMillan, P.A. and McGuire, T.R. 1992. The homeotic gene *spineless-arthropedia* affects geotaxis in *Drosophila melanogaster*. *Behav. Genet.* 22: 557–573.

Oesch-Bartlomowicz, B., Huelster, A., Wiss, O., Antoniou-Lipfert, P., Dietrich, C., Arand, M., Weiss, C., Bockamp, E., and Oesch, F. 2005. Aryl hydrocarbon receptor activation by cAMP vs. dioxin: Divergent signaling pathways. *Proc. Natl. Acad. Sci.* 102: 9218–9223.

Parrish, J.Z., Kim, M.D., Jan, L.Y., and Jan, Y.N. 2006. Genome-wide analyses identify transcription factors required for proper morphogenesis of *Drosophila* sensory neuron dendrites. *Genes & Dev.* 20: 820–835.

Petersen, S.L., Curran, M.A., Marconi, S.A., Carpenter, C.D., Lubbers, L.S., and McBee, M.D. 2000. Distribution of mRNAs encoding the arylhydrocarbon receptor, arylhydrocarbon receptor nuclear translocator, and arylhydrocarbon receptor nuclear translocator-2 in the rat brain and brainstem. *J. Comp. Neurol.* 427: 428–439.

Powell-Coffman, J.A., Bradfield, C.A., and Wood, W.B. 1998. *Caenorhabditis elegans* orthologs of the aryl hydrocarbon receptor and its heterodimerization partner the aryl hydrocarbon receptor nuclear translocator. *Proc. Natl. Acad. Sci.* 95: 2844–2849.

Powers, B.E., Lin, T.M., Vanka, A., Peterson, R.E., Juraska, J.M., and Schantz, S.L. 2005. Tetrachlorodibenzo-p-dioxin exposure alters radial arm maze performance and hippocampal morphology in female AhR mice. *Genes Brain Behav.* 4: 51–59.

Probst, M.R., Reisz-Porszasz, S., Aghunag, R.V., Ong, M.S., and Hankinson, O. 1993. Role of the aryl hydrocarbon receptor nuclear translocator protein in aryl hydrocarbon [dioxin] receptor action. *Mol. Pharmacol.* 44: 511–518.

Puga, A., Tomlinson, C.R., and Xia, Y. 2005. Ah receptor signals cross-talk with multiple developmental pathways. *Biochem. Pharmacol.* 69: 199–207.

Qin, H. and Powell-Coffman, J.A. 2004. The *Caenorhabditis elegans* aryl hydrocarbon receptor, AHR-1, regulates neuronal development. *Dev. Biol.* 270: 64–75.

Reyes, H., Reisz-Porszasz, S., and Hankinson, O. 1992. Identification of the Ah receptor nuclear translocator protein (Arnt) as a component of the DNA binding form of the Ah receptor. *Science* 256: 1193–1195.

Schmidt, J.V. and Bradfield, C.A. 1996. Ah receptor signaling pathways. *Annu. Rev. Cell Dev. Biol.* 12: 55–89.

Scott, E.K. and Luo, L. 2001. How do dendrites take their shape? *Nat. Neurosci.* 4: 359–365.

Sugimura, K., Satoh, D., Estes, P., Crews, S., and Uemura, T. 2004. Development of morphological diversity of dendrites in *Drosophila* by the BTB-zinc finger protein Abrupt. *Neuron* 43: 809–822.

Tautz, D. and Pfeifle, C. 1989. A non-radioactive in situ hybridization method for the localization of specific RNAs in *Drosophila* embryos reveals translational control of the segmentation gene *hunchback*. *Chromosoma* 98: 81–85.

ten Tusscher, G.W. and Koppe, J.G. 2004. Perinatal dioxin exposure and later effects—A review. *Chemosphere* 54: 1329–1336.

Tracey Jr., W.D., Wilson, R.I., Laurent, G., and Benzer, S. 2003. *painless*, a *Drosophila* gene essential for nociception. *Cell* 113: 261–273.

Wernet, M.F., Mazzoni, E.O., Celik, A., Duncan, D.M., Duncan, I., and Desplan, C. 2006. Stochastic *spineless* expression creates the retinal mosaic for colour vision. *Nature* 440: 174–180.

Whitford, K.L., Marillat, V., Stein, E., Goodman, C.S., Tessier-Lavigne, M., Chedotal, A., and Ghosh, A. 2002. Regulation of cortical dendrite development by Slit–Robo interactions. *Neuron* 33: 47–61.

Wong, R.O. and Ghosh, A. 2002. Activity-dependent regulation of dendritic growth and patterning. *Nat. Rev. Neurosci.* 3: 803–812.

Xu, K., Bogert, B.A., Li, W., Su, K., Lee, A., and Gao, F.B. 2004. The *fragile X-related* gene affects the crawling behavior of *Drosophila* larvae by regulating the mRNA level of the DEG/ENaC protein Pickpocket1. *Curr. Biol.* 14: 1025–1034.

Zipursky, S.L., Venkatesh, T.R., Teplow, D.B., and Benzer, S. 1984. Neuronal development in the *Drosophila* retina: Monoclonal antibodies as molecular probes. *Cell* 36: 15–26.
The bHLH-PAS protein Spineless is necessary for the diversification of dendrite morphology of *Drosophila* dendritic arborization neurons

Michael D. Kim, Lily Yeh Jan and Yuh Nung Jan

Genes Dev. published online October 2, 2006
Access the most recent version at doi:10.1101/gad.1459706

Supplemental Material
http://genesdev.cshlp.org/content/suppl/2006/10/03/gad.1459706.DC1

Related Content
spineless provides a little backbone for dendritic morphogenesis
Stephen T. Crews and Jay E. Brenman
Genes Dev. October, 2006 20: 2773-2778

Published online October 2, 2006 in advance of the full issue.

License

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.