Introduction

The Comet assay provides a very sensitive method for detecting strand breaks. It is based on the alkaline lysis of labile DNA at the damaged sites. Cells are immobilized in thin agarose matrix and placed on the microscope underlying slides and subsequently lysed by alkaline buffer. When subjected to electrophoresis, the unwound, relaxed DNA migrates out of the cells. After staining by nucleic acid stain, we can distinguish between undamaged and damaged cells using inverted fluorescent microscopy in dependence of the dose of irradiation.

Photodynamic therapy is new and promising modality for selective irradiation of malignant neoplasms especially superficial skin cancer (1). It is based on cytotoxic action of sensitizers (10 µM ZnTPPS4 fixed into 1 mM cyclodextrin hpβCD) and light with a suitable wavelength. Single-cell gel electrophoresis (SCGE, comet assay) is a rapid and sensitive method for detecting DNA strand breaks at the level of single cells. Great amount of DNA damage was detected with the dose of irradiation of 0.1; 0.5 J and 2.5 J.cm−2. Only radiation dose of visible light in the presence of sensitizers can induce DNA breaks of tumour cells. Cells with DNA damage appear as fluorescent comets with tails of DNA fragmentation. In contrast, cells with undamage DNA appear as round spots, because their intact DNA does not migrate out of the cell.

Material and methods

About 2 million cells of human melanoma (cell line G361) were cultivated in DMEM with 10 µM ZnTPPS4 and 1 mM hpβCD for 48 hours at 37 °C. Then the growth medium was replaced by fresh medium without sensitizer and cells were irradiated by visible light at room temperature. The doses of irradiation were 0.1; 0.5; 2.5; 12.5 and 60 J.cm−2. Cells cultivated in medium alone, in medium with sensitizer and without sensitizer with the maximum dose of...
irradiation were used as the controls. Other cells were cultivated in medium with sensitizer and were irradiated by different light dose. After irradiation cells were cultivated for next 24 hours at 37 °C and after this period their damage was assessed by comet assay.

On the microscope slides precoated with 1% standard agarose in H_2O were applied 85 µl of 1% standard agarose in PBS and, while still liquid, covered with a cover slip. Slides were placed in fridge for at least 5 min to solidify agarose. Cells were trypsinated, collected by centrifugation and dispersed in 2ml PBS by vortexing. 20 µl of this solution (2.10^4 cells) was added to 85 µl of 1% LMP agarose in PBS at 37°C. Finally 85 µl of the mixture were transferred on each slide (Fig. 1) and placed to the fridge for next 5 minutes. Microscope slides were immersed in lysis buffer (2.5 M NaCl, 100 mM EDTA, 10 mM Tris and 1% Triton X-100; pH = 10) at 4°C for 1 hour. Slides were gently placed on platform in electrophoretic tank and immersed in cool electrophoresis solution (300 mM NaOH, 1 mM EDTA) for 40 minutes. Electrophoresis was run 30 minutes at 2.5 V.cm⁻¹. After electrophoresis the slips were washed 3x5 min with buffer (0.4 M Tris; pH = 7.5) at 4°C and stained by ethidium bromide (20 µg/ml) for the visualization of DNA comet.

It is possible to analyse comets representing different levels of DNA damage quantitatively without image analysis software according to standard method (5). This method classifies comets into classes from class 0 (undamaged, no

![Fig. 1: Diagram of a comet slide.](image1)

![Fig. 2: DNA breaks represented by comet.](image2)

![Fig. 3: Typical picture of the undamaged DNA in control samples (G361 cells).](image3)

![Fig. 4: DNA breaks represented by comets. (PDT of G361 cells; irradiation dose 0.5 J.cm⁻²).](image4)

![Fig. 5: Percentage occurrence of DNA damage in the dependence of the irradiation dose (K = control; S = sensitizer).](image5)

![Fig. 6: Percentage occurrence of different stages of DNA damage. (irradiation dose 0.5 J.cm⁻²).](image6)
discernible tail) to class 4 (almost all DNA in tail, insignificant head) (5). Each comet (Fig. 2) is given based on its pattern a value according to level of DNA damage. We worked with fluorescent microscope, CCD camera and Olympus Micro Image software.

Results

The control samples were used to detect undamaged DNA (Fig. 3). In Fig. 4 we can see DNA of cancer cells as comets visualised by ethidium bromide. Belong to great amount of DNA damage representing by comets from class 1 to 4 was detected at the irradiation dose of 0.5, followed by 0.1 and 2.5 J.cm−2 (Fig. 5). This low radiation dose induce DNA breaks, which correspond to comets belonging to class 3, less 2 and 4 (Fig. 6).

Discussion and conclusions

Assessment of cellular damage by comet assay is valuable method for detecting DNA breaks. Irradiation of cells can result in a few kinds of reaction. Very low dose of irradiation have no large damage effect on target cells. On the other hand high dose of irradiation cause cell death via necrosis. The major effort of PDT in the field of cancer diseases is to induce cell death mediated by apoptosis. The apoptotic mechanism accompanies DNA fragmentation. The comet assay seems to be good and mainly rapid method to detect DNA cleavage. Moreover our results shows that low radiation dose of visible light (0.1–0.5 J.cm−2) can be use for PDT of tumour cell line G361 using as the sensitizer molecular complex 10 µM ZnTPPS₄ with 1 mM cyclodextrin carrier hpβCD.

Acknowledgement

This work was supported by the grant project of the Grant agency of Czech Republic No. 203/02/1483 and Ministry of Education MSM No. 153100008.

References

1. Agarwal R, Korman NJ, Mohan RR et al. Apoptosis is an early event during phthalocyanine photodynamic therapy-induced ablation of chemically induced squamous papilomas in mouse skin. Photochem Photobiol 1996;63(4):547-52.
2. McNair FL, Marples B, West CML, Moore IV. A comet assay of DNA and repair in K562 cells after photodynamic therapy using haematoporphyrin derivate, methylene blue and meso-tetrahydroxyphenylchlorin. Br J Cancer 1997;75(12): 1721-9.
3. Kessel D, Luo Y. Initiation of apoptosis versus necrosis by photodynamic therapy with chloroaluminium phthalocyanine. Photochem Photobiol 1997;66(4): 479-83.
4. Mosinger J, Kliment V, Sejbal J et al. Host-guest complexes of anionic porphyrin sensitizers with cyclodextrins. J Porphyrins Phtalocyanines 2002;6:513–25.
5. Piperakis MP, Vissouridis EE, Tassou AM. Comet assay for nuclear DNA damage. Methods Enzymol 1999;269(20):184–94.

Mgr. Jaroslav Maceček,
Palacký University in Olomouc, Faculty of Medicine,
Department of Medical Biophysics,
Hněvotínská 3, 775 15 Olomouc,
Czech Republic.
e-mail: macecele@tunw.upol.cz