Skeletal muscle weakness is an important determinant of age-related declines in independence and quality of life but its causes remain unclear. Accelerated ageing syndromes such as Hutchinson–Gilford Progerin Syndrome, caused by mutations in genes encoding nuclear envelope proteins, have been extensively studied to aid our understanding of the normal biological ageing process. Like several other pathologies associated with genetic defects to nuclear envelope proteins including Emery–Dreifuss muscular dystrophy, Limb–Girdle muscular dystrophy and congenital muscular dystrophy, these disorders can lead to severe muscle dysfunction. Here, we first describe the structure and function of nuclear envelope proteins, and then review the mechanisms by which mutations in genes encoding nuclear envelope proteins induce premature ageing diseases and muscle pathologies. In doing so, we highlight the potential importance of such genes in processes leading to skeletal muscle weakness in old age.

Introduction
The human lifespan has increased substantially over the past half-century and this trend is projected to continue well into the 21st century [1]. This extension of the lifespan, however, has not been accompanied by an equivalent extension of the healthspan in old age; instead, morbidity has been extended, and independence and quality of life attenuated [2]. This increasing dependence on healthcare services has associated economic costs. Thus, a ‘managed compression of morbidity’ is necessary to address social and economic issues associated with an extending lifespan [3].

One important aspect of deteriorated healthspan and morbidity is skeletal muscle weakness, which is detrimental for independence and quality of life [4,5]. The causes of such progressive age-related generalised muscle dysfunction remain poorly understood, limiting development of potential therapeutic interventions to improve healthspan (pharmacologically or physically via personalised exercise regimens).

Interestingly, in recent years, premature ageing syndromes caused by genetic defects to nuclear envelope proteins (estimated prevalence of 1:4,000,000 to 1:10,000,000) have been increasingly studied as models to reveal the causes of the normal biological ageing process [6–8]. Among these is the Hutchinson–Gilford Progerin Syndrome (HGPS), which results in severe pathologies including heart disease, arteriosclerosis and an average life expectancy of ~13 years [9,10]. HGPS and other related disorders such as Emery–Dreifuss muscular dystrophy, Limb–Girdle muscular dystrophy and congenital muscular dystrophy can also lead to severe muscle pathologies resembling muscle weakness in old age, suggesting how modifications in the nuclear envelope may alter skeletal muscle development and function. Such deterioration in skeletal muscle behaviour is often not discussed in the clinical literature, partly because of the severity of the phenotype and the early age of death of patients, which makes the study of skeletal muscle function challenging; hence, its extent remains unclear.
In this review, we start by briefly summarising what is known about nuclear membrane proteins. We then describe the mechanisms by which mutations in genes encoding these nuclear envelope proteins induce premature ageing diseases and muscle pathologies. Finally, we suggest how this knowledge could be used to unveil the key determinants of skeletal muscle weakness in old age.

The nuclear envelope and mechanotransduction

As the site of DNA transcription, the nucleus is responsible for orchestrating cell structure, function and adaptive responses [11]. Each nucleus is surrounded by an envelope, termed the nuclear envelope (NE), which sets a barrier between the cytoplasm and nuclear contents and consists of outer and inner nuclear membranes (ONM and INM, respectively). The inner nuclear membrane (INM) is a complex structure that contains a variety of proteins, including the LINC complex, which links the nucleus to the cytoskeleton. The LINC complex consists of Nups, SUN proteins, and Kinesins, which mediate the interactions between the nucleus and cytoskeleton. The outer nuclear membrane (ONM) is a lipid bilayer that surrounds the INM and contains a variety of membrane proteins.

Chromatin (grey) is organised into exposed, transcriptionally active sections (euchromatin) and tightly packed, transcriptionally repressed sections located at nucleoli and the nuclear periphery (heterochromatin). Heterochromatin associates with DNA interaction proteins BAF and HDAC3, which associate with inner nuclear membrane (INM) proteins such as Emerin, and the nuclear lamina, which interacts with SUN 1/2. SUN 1/2 bind to Nesprins to form the LINC complex, which links the nucleus to actin, as well as microtubules and Desmin via Kinesin and Plectin, respectively. Desmin binds to the Z-disk of sarcomeres, completing the connection between nuclei and myofibrils. Through this network of proteins, transcriptional activity is responsive to cytoskeletal changes; INM, inner nuclear membrane; ONM, outer nuclear membrane.
Figure 2. Production of Lamin A, Progerin and Prelamin A from the LMNA gene

In normal cells, a series of post-translational modifications occurs to form Prelamin A, before cleavage by ZMPSTE24 to produce mature Lamin A. In ZMPSTE24-deficient cells, Prelamin A cannot be cleaved, leading to accumulation of this premature form of Lamin A. In Hutchinson–Gilford progeria syndrome (HGPS) cells, a 50 amino acid deletion removes the site where cleavage by ZMPSTE24 occurs, leading to accumulation of mutant farnesylated Prelamin A, named Progerin. Modified, with permission, from [52]. Enzymes required for the modification steps are in light blue.

Normal Lamin A production	ZMPSTE24 Deficiency/ageing (Prelamin A accumulation)	HGPS (Progerin accumulation)
Farnesylation	**Farnesylation**	**Farnesylation**
RSYLLG	CaaX	RSYLLG
Ftase	50 aa deletion	Ftase
C-terminal cleavage	**C-terminal cleavage**	**C-terminal cleavage**
RSYLLG	CaaX	RSYLLG
ZMPSTE24 and RCE1	RCE1	ZMPSTE24 and RCE1
Methylation	**Methylation**	**Methylation**
RSYLLG	ICMT	RSYLLG
		C-OCH₃
Prelamin A (74 kDa)	Prelamin A (74 kDa)	Prelamin A (67 kDa)
Upstream cleavage (ZMPSTE24)	Upstream cleavage (ZMPSTE24)	Progerin (67 kDa)
Mature Lamin A (72 kDa)		

INM, respectively) [12]. Some NE and associated proteins physically link the nucleus to the cytoskeleton, providing an interconnected cellular network allowing transduction of physical forces to regulate biochemical signalling and gene expression, a process termed mechanotransduction [13–16]. One group of such proteins is the LInker of Nucleoskeleton and Cytoskeleton (LINC) complex, made up of Nuclear Envelope SPectRIN repeat proteins (Nesprins) and Sad1 and UNC-84 domain containing (SUN) proteins [17]. Nesprins reside in the ONM, extend into the cytoplasm and associate with cytoskeletal proteins such as actin, microtubules and desmin; Nesprins are therefore sensitive to changes in cytoskeletal forces [17–20] (Figure 1). The Nesprin-related link to the nucleus is continued by SUN proteins, in which the SUN domain localises to the perinuclear space between the ONM and INM and binds to the KASH (Klarsicht, ANC-1, Syne Homology) domain of Nesprins; and the nucleoplasmic facing N-terminus binds to the nuclear lamina [19,21–23]. The lamina is a meshwork of intermediate filaments that line the INM and tether chromatin to the nuclear periphery, interact with transcription factors to regulate DNA transcription and regulate several signalling pathways [24–28].

The nuclear lamina also associates with several other INM proteins which interact with proteins that bind to chromatin [29–31]. For example, Emerin, a member of the Lamina-associated polypeptide 2, Emerin, MAN1 (LEM) domain-containing family interacts with DNA through the chromatin-associated Barrier to Autointegration Factor (BAF) [32–35]. Emerin also interacts with Histone Deacetylase 3 (HDAC3), a part of the nuclear co-repressor complex which is responsible for the deacetylation of histones to repress gene expression [36,37]. The interaction between Emerin and HDAC3 may thereby control the expression of muscle differentiation-promoting factors MyoD, Myf5 and Pax7 [36,38] (Figure 1). In addition, LEM domain proteins regulate signalling pathways and transcription factor activity independently of chromatin reorganisation [39–41]. In this way, gene expression is tightly controlled by cytoskeletal forces that are transmitted through the LINC complex, nuclear lamina and associated NE proteins to alter chromatin organisation, transcription factor activity and signalling pathways [42–47].
Figure 3. Hypothetical age-related defects in mechanotransduction in skeletal muscle fibres

(Left panel) In young, healthy skeletal muscle fibres, the LINC complex and its associated nuclear envelope proteins effectively transduce cytoskeletal forces to the nucleus to regulate signalling pathways, normal chromatin organisation and gene expression.

(Right panel) In aged skeletal muscle, the content or distribution of the LINC complex and its associated proteins may be altered, leading to defective mechanotransduction and a gene transcription that may affect expression of contractile proteins.
Mutations in nuclear envelope proteins and related genetic diseases

Hutchinson–Gilford Progerin Syndrome (HGPS) is the most common premature ageing disorder [9,10]. HGPS is notably associated with mutations in the LMNA gene, which encodes the nuclear lamina components Lamin A/C, and the ZMPSTE24 gene, which encodes the zinc metalloprotease 24 enzyme essential for Lamin A/C maturation [8,48]. These mutations disrupt Lamin A expression and function in nuclei of all cell types and can lead to altered forms known as Progerin or Prelamin A [8,49–52]. Mouse models of premature ageing where Lamin A/C and Prelamin A contents are modulated and are able to recapitulate patient phenotypes (i.e. cardiac and arteriosclerosis problems) as well as causing striking generalised skeletal muscle weakness [6,10,53–55]. Indeed, muscle-specific overexpression of human Progerin in mice significantly decreased muscle mass and myofibre size and halved grip strength [55]. Similarly, absence of the ZMPSTE24 gene, resulting in the inability to form mature Lamin A from Prelamin A, leads to weaker and atrophic lower limb muscles and a reduction in the intrinsic force-generating capacity of myofibres and myofilaments [6,53].

Mutations in the LMNA gene also cause diseases not related to HGPS, collectively referred to as laminopathies, such as Emery–Dreifuss muscular dystrophy (EDMD), Limb–Girdle muscular dystrophy and LMNA-congenital muscular dystrophy. These are relatively well characterised clinically by skeletal muscular dystrophies and cardiomyopathies [56–61]. Other missense and nonsense mutations in genes encoding LINC complex and associated NE proteins have been identified in humans and have similar cardiac and skeletal muscle phenotypes. For instance, mutations have been found in EMD, encoding Emerin; TMEM43 encoding Luna; and SYNE1 and SYNE2, encoding Nesprin-1 and Nesprin-2, respectively [62–71].

Mechanisms underlying skeletal muscle weakness associated with mutations in genes encoding LINC complex and associated proteins

Lamin A-related disruption in nuclear architecture and mechanotransduction

The mechanisms of skeletal muscle dysfunction associated with mutations in genes for NE proteins are complex and in-depth mechanistic studies are currently lacking. The absence of Lamin A/C is usually characterised by aberrant nuclear morphology, nuclear mechanics and mechanotransduction [42,48,61,72]. Lamin A/C-deficient fibroblasts display increased nuclear deformation and altered expression of mechanosensitive genes egfr-1 and iex-1 in response to mechanical strain and altered NF-κB signalling [42]. When myoblasts from Lamin A-deficient mice are cultured to form in vitro muscle fibres, nuclear deformations, elongation, and rupture are evident and accompanied by DNA damage [73]. Additionally, cultured myoblasts from a human patient with a muscular dystrophy-causing mutation in the LMNA gene exhibit altered nuclear morphology, gene expression and increased cellular senescence [74].

Recently, it was shown that LMNA-related congenital muscular dystrophy patient fibroblasts and mouse myoblasts displayed altered Lamin A/C localisation, associated with altered expression and localisation of nuclear envelope proteins [61]. In contrast with control and EDMD cells, Lamin A/C was predominantly localised in the nucleoplasm, rather than forming the nuclear lamina at the nuclear periphery. Absence of peripheral Lamin A/C and its accumulation in the nucleoplasm was associated with attenuated expression and mislocalisation of several nuclear envelope transmembrane proteins, and mislocalisation of Nesprin-1α. The authors postulated that the Lamin A/C mislocalisation and associated misregulation of nuclear envelope proteins may explain the greater severity of LMNA-related congenital muscular dystrophy compared with EDMD [61] (Figure 3).

Cells expressing Progerin, a truncated, permanently farnesylated form of Lamin A, which lacks the cleavage site for the enzyme ZMPSTE24 to generate mature Lamin A, show evidence of impaired mechanotransduction, although the specific effects on skeletal muscle cells remain to be determined (Figure 2). Nuclei from Progerin-expressing fibroblasts display aberrant morphology, increased mechanical sensitivity and stiffness leading to senescence and cell death, indicating altered mechanotransduction [48,75]. Interestingly, it has been shown that replacement of mature Lamin A/C by Progerin in fibroblasts and iPSC-derived smooth muscle cells directly triggers premature senescence upon cell differentiation [76,77]. Progerin overexpression has been achieved in human myogenic cells, but whether they displayed a phenotype was not investigated [78].
Cells accumulating Prelamin A, a permanently farnesylated premature form of Lamin A, also exhibit aberrant nuclear morphology in fibroblasts and cardiomyocytes [54,79,80] (Figure 2). It is worth noting altered nuclear morphology has not directly been shown in skeletal muscle and this is an area for further research. However, aberrant nuclear morphology is associated with muscle degeneration, altered transcriptional activity, impaired contractility and muscle weakness, suggesting the accelerated ageing phenotype observed in HGPS fibroblasts could also occur in skeletal muscle cells [6,53,54,81]. A potential mechanism for this muscle weakness is reduced myonuclear number, resulting in a volume of cytoplasm too large for the transcriptional capability of each nucleus (termed the myonuclear domain theory, see [77–79,82–84]). Indeed, reduced myonuclear number was associated with reduced transcriptional activity and myosin content in mice muscle fibres with Prelamin A accumulation [53]. To compound the reduction in myonuclear number, altered nuclear integrity may contribute to defective mechanotransduction, further impairing the transcription of contractile proteins.

Lamin A-related alteration in Ca\(^{2+}\) metabolism

Recently, it was reported that Lamin A and Progerin interact with endoplasmic reticulum based proteins involved in Ca\(^{2+}\) transport and alter Ca\(^{2+}\) metabolism [55]. Immunoprecipitation in HGPS fibroblasts has shown that both Lamin A and Progerin interact with Sarcolipin, a protein involved in thermogenesis and Ca\(^{2+}\) homeostasis; however, Progerin binding is more potent [55,85,86]. Overexpression of Progerin in C2C12 myoblasts resulted in elevated cytosolic Ca\(^{2+}\) concentration and altered control of store operated Ca\(^{2+}\) entry [55]. Strikingly, mice lacking Lamin A/C upregulate Sarcolipin and skeletal muscle in mice expressing human Progerin have markedly altered Sarcolipin function and Ca\(^{2+}\) metabolism, together with ruffled nuclear morphology [55]. Since Ca\(^{2+}\) is essential component of muscle contraction, these studies implicate a role of Ca\(^{2+}\) metabolism in striated muscle tissue defects caused by mutations in the LMNA gene, an area which requires further research [87].

LINC complex protein-related changes in nuclear behaviour and mechanotransduction

As mentioned earlier, the LINC complex and its associated NE proteins are involved in muscle pathologies and may contribute to skeletal muscle defects with age. For example, fibroblasts expressing muscular dystrophy-associated variants of SUN1 and SUN2 have significant nuclear mispositioning, and this has also been shown in C2C12 myotubes expressing SUN1 variants [88]. In myotubes generated from a human patient with heterozygous SUN1 mutations, myonuclear organisation was similarly defective [88]. In fibroblasts from EDMD patients with Nesprin-1 and -2 mutations, nuclei exhibit aberrant morphologies [66]. Additionally, Nesprin-1 mutant C2C12 cells have defects in myoblast differentiation, specifically reduced fusion index, and down-regulated expression of myogenic transcription factors MyoD and Myogenin, and Myosin Heavy Chain [67]. Ablation of both Nesprin-1 and the muscle-specific isoform, Nesprin-1x2, affects expression of muscle differentiation genes, nuclear number and their positioning, increasing the myonuclear domain and impairing contractile protein expression [53,89–93].

Similarly, Emerin-deficient fibroblasts exhibit abnormal nuclear shape, stability and defective mechanotransduction [72]. In C2C12 cells, Emerin has been shown to interact with A- and B-type lamins, influencing nuclear architecture and stability and ultimately compromising mechanotransduction [94]. Furthermore, loss of Emerin in mice results in nuclear fragility, MAPK signalling activation and delayed induction of MyoD-related genes during muscle regeneration, although overall muscle function and regeneration were minimally affected [27,38,95,96]. The lack of effect on muscle function in Emerin-null mice is unlike the human EDMD phenotype, and may be explained by Lamin-associated polypeptide 1 (LAP1) compensation; LAP1 is highly expressed in mouse compared with human skeletal muscle, and reducing LAP1 expression in Emerin-null mice induced muscle abnormalities [97].

Thus, alterations to Emerin, Nesprin-1/2 and SUN1 in striated muscle tissue can result in nuclear mislocalisation, altered nuclear morphology and mechanotransduction, and impaired development and function. These findings emphasise the role of the LINC complex and associated NE proteins in muscle structure and function, and may therefore have implications for normal physiological ageing, discussed next.

Implications for normal muscle ageing

The above evidence suggests that alterations in the cytoskeletal-nuclear network could result in structural changes to the nucleus and impact gene expression in skeletal muscle. With age, compromised nuclear integrity, through alterations to LINC complex and associated proteins, may impair mechanotransduction. This may in turn lead to reduced expression of contractile proteins, resulting in a loss of muscle mass and function with age (Figure 3). To date, the only study which has investigated LINC complex proteins in human ageing showed SUN1 levels were increased in...
fibroblasts from older (84–91 years old) compared with pre-pubescent (3–10 years old) individuals [98]. In line with these data, SUN1 accumulation in LMNA mutant mouse fibroblasts and human HGPS patient fibroblasts was associated with nuclear defects and cellular senescence, which were corrected upon reduction of the accumulated SUN1 [99]. Accumulation of SUN1 in human skeletal muscle may strengthen the association between the nucleus and the cytoskeleton, resulting in oversensitivity to cytoskeletal forces thereby causing aberrant mechanotransduction and negatively impacting cell function [98]. Alternatively, SUN1 mislocalisation, as shown in LMNA/−/− fibroblasts, could impair force transmission from the cytoskeleton to the nucleus [99]. Thus, altered SUN1 expression or distribution in skeletal muscle could impair mechanotransduction, elevating atrophic gene expression and suppressing the expression of genes encoding contractile proteins.

Future research

Current studies mainly focus on alterations to LINC complex components in fibroblasts. Future work using human skeletal muscle biopsies from young and old individuals will be pertinent to investigate mechanisms relating to both skeletal muscle function and dysfunction. Specifically:

1. Establishing whether protein levels and localisation of LINC complex and NE proteins are altered in skeletal muscle from young and old adults, to reveal potential associations between NE function and skeletal muscle ageing.

2. Understanding the effects of exercise on nuclear shape and LINC complex function.

3. Elucidating functional changes to nuclear mechanics in human skeletal muscle to provide insight into the role of NE proteins in aged skeletal muscle.

Furthermore, approaches to model muscular dystrophy in culture using cells from patients to create induced pluripotent stem cell-derived artificial 3D skeletal muscle may shed new light on pathophysiological mechanisms underlying nuclear envelopathies [100–102].

Concluding remarks

In this review, we have discussed the mechanisms by which mutations in genes encoding NE proteins induce premature ageing diseases and muscle pathologies, and suggested how this information may be used to unveil the key determinants of muscle weakness in old age. In these diseases, mutations in the LINC complex and its associated proteins cause aberrant nuclear morphology, defective mechanotransduction and muscle weakness. This has been extensively demonstrated in mouse and human fibroblasts, but to a limited degree in muscle cells. Whether changes to NE proteins contribute to defective mechanotransduction and muscle weakness in normal but aged muscle is understudied and is an exciting avenue for future research (Figure 3).

Competing Interests

The authors declare that there are no competing interests associated with the manuscript.

Funding

J.O. and E.B. are funded by the Medical Research Council of the UK (grant number MR/S023593/1). M.J.S. is supported by British Heart Foundation Intermediate Fellowship (FS/17/57/32934) and King’s BHF Centre for Award Excellence (RE/18/2/34213).

Open Access

Open access for this article was enabled by the participation of King’s College London in an all-inclusive Read & Publish pilot with Portland Press and the Biochemical Society under a transformative agreement with JISC.

Acknowledgements

We thank the Medical Research Council (MR/S023593/1) and British Heart Foundation (FS/17/57/32934 and RE/18/2/34213) for support.

Abbreviations

BAF, barrier to autointegration factor; EDMD, Emery–Dreifuss muscular dystrophy; HDAC3, histone deacetylase 3; HGPS, Hutchinson–Gilford progerin syndrome; INM, inner nuclear membrane; KASH, Klarsicht, ANC-1, Syne Homology; LAP1,
lamina-associated polypeptide 1; LEM, lamina-associated polypeptide 2, Emerin, MAN1; LINC, linker of nucleoskeleton and cytoskeleton; NE, nuclear envelope; Nesprin, nuclear envelope spectrin repeat proteins; ONM, outer nuclear membrane; SUN, Sad1 and UNC-84 domain containing.

References
1 United Nations (2019) World population prospects.
2 Roser, M. (2019) Life Expectancy — Our World in Data.
3 Brown, G.C. (2015) Living too long. *EMBO Rep.*, 16, 137–141, https://doi.org/10.15252/embr.201439518
4 Trombetti, A., Reid, K.F., Hars, M., Herrmann, F.R., Pasha, E., Phillips, E.M. et al. (2016) Age-associated declines in muscle mass, strength, power, and physical performance: impact on fear of falling and quality of life. *Osteoporos. Int.*, 27, 463–471, https://doi.org/10.1007/s00198-015-3236-5
5 McGregor, R.A., Cameron-Smith, D. and Poppitt, S.D. (2014) It is not just muscle mass: A review of muscle quality, composition and metabolism during ageing as determinants of muscle function and mobility in later life. *Longev. Heal. Cell. Biol.*, 3, 9, https://doi.org/10.1186/2046-2395-3-9
6 Greising, S.M., Call, J.A., Lund, T.C., Blazar, B.R., Tolar, J. and Owens, D.A. (2012) Skeletal muscle contractile function and neuromuscular performance in Zmpste24-/-/mice, a murine model of human progeria. *Human Genet.* 34, 805–819, https://doi.org/10.1007/s11357-011-9281-x
7 Maggi, L., Carboni, N. and Bernasconi, P. (2016) Skeletal Muscle Laminopathies: A Review of Clinical and Molecular Features. *Cells* 5, 33, https://doi.org/10.3390/cells5030033
8 Eriksson, M., Brown, W.T., Gordon, L.B., Glynn, M.W., Singer, J., Scott, L. et al. (2003) Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. *Nature*, 423, 293–298, https://doi.org/10.1038/nature01629
9 Hennekam, R.C.M. (2006) Hutchinson-Gilford progeria syndrome: Review of the phenotype. *Am. J. Med. Genet. Part A* 140, 2603–2624, https://doi.org/10.1002/ajmg.a.31346
10 Merideth, M.A., Gordon, L.B., Claus, S., Sachdev, V., Smith, A.C.M., Perry, M.B. et al. (2008) Phenotype and Course of Hutchinson-Gilford Progeria Syndrome. *N. Engl. J. Med.* 358, 592–604, https://doi.org/10.1056/NEJMoa0706389
11 Wansink, D.G., Schul, W., Van der Kraan, I., Van Steensel, B., Van Driel, R. and De Jong, L. (1993) Fluorescent labeling of nascent RNA reveals transcripts by RNA polymerase II in domains scattered throughout the nucleus. *J. Cell Biol.* 122, 283–293, https://doi.org/10.1083/jcb.122.2.283
12 Gerace, L. and Burke, B. (1988) Functional organization of the nuclear envelope. *Annu. Rev. Cell Biol.* 4, 335–374, https://doi.org/10.1146/annurev.cb.04.110188.002003
13 Wang, N., Tytell, J.D. and Ingber, D.E. (2009) Mechanotransduction at a distance: Mechanically coupling the extracellular matrix with the nucleus. *Nat. Rev. Mol. Cell Biol.* 10, 75–82, https://doi.org/10.1038/nrm2594
14 Chambliss, A.B., Khatou, S.B., Edengen, N., Robinson, D.K., Hodzic, D., Longmore, G.D. et al. (2013) The LINC-anchored actin cap connects the extracellular milieu to the nucleus for ultrafast mechanotransduction. *Sci. Rep.*, 3, 1–9, https://doi.org/10.1038/srep01087
15 Fletcher, D.A. and Mullins, R.D. (2010) Cell mechanics and the cytoskeleton. *Nature* 463, 485–492, https://doi.org/10.1038/nature08908
16 Maniotis, A., Chen, C. and Ingber, D. (1997) Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nuclear lamina that stabilize nuclear structure. *Nature*, 349, 849–853
17 Crisp, M., Liu, Q., Roux, K., Rattner, J.B., Shanahan, C., Burke, B. et al. (2006) Coupling of the nucleus and cytoplasm: Role of the LINC complex. *J. Cell Biol.* 172, 41–53, https://doi.org/10.1083/jcb.200509124
18 Rajgor, D. and Shanahan, C.M. (2013) Nesprins: from the nuclear envelope and beyond. *Expert Reviews in Molecular Med.* 15, 1–17
19 Lombardi, M.L., Jaalouk, D.E., Shanahan, C.M., Burke, B., Roux, K.J. and Lammerding, J. (2011) The interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton. *J. Biol. Chem.* 286, 26743–26753, https://doi.org/10.1074/jbc.M111.233700
20 Banerjee, T., Zhang, J., Moore-Morris, T., Pfeffer, E., Buchholz, K.S., Liu, A. et al. (2014) Targeted Ablation of Nesprin 1 and Nesprin 2 from Murine Myocardium Results in Cardiomyopathy, Altered Nuclear Morphology, and Inhibition of the Biomechanical Gene Response. *PLoS Genet.* 10, e1004114, https://doi.org/10.1371/journal.pgen.1004114
21 Padmakumar, V.C., Libotte, T., Lu, W., Zaim, H., Abraham, S., Noegel, A.A. et al. (2005) The inner nuclear membrane protein Sun1 mediates the anchorage of Nesprin-2 to the nuclear envelope. *J. Cell Sci.* 118, 3419–3430, https://doi.org/10.1242/jcs.02471
22 Haque, F., Smallwood, D.T., Trembath, R.C., Dent, C.L., Shanahan, C.M., Shackleton, S. et al. (2006) SUN1 Interacts with Nuclear Lamin A and Cytoplasmic Nesprins To Provide a Physical Connection between the Nuclear Lamina and the Cytoskeleton. *Mol. Cell. Biol.* 26, 3738–3751, https://doi.org/10.1128/MCB.26.10.3738-3751.2006
23 Starr, D.A. (2011) KASH and SUN proteins. *Curr. Biol.* 21, R414–R415, https://doi.org/10.1016/j.cub.2011.04.022
24 Ivorra, C., Kubicık, M., González, J.M., Sanz-González, S.M., Álvarez-Barrientos, A., O’Connor, J.E. et al. (2006) A mechanism of AP-1 suppression through interaction of c-Fos with lamin A/C. *Genes Dev.* 20, 307–320, https://doi.org/10.1101/gad.349506
25 Ho, C.Y., Jaalouk, D.E., Vartianen, M.K. and Lammerding, J. (2013) Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics. *Nature* 497, 507–511, https://doi.org/10.1038/nature12105
26 Dechat, T., Pfleghaar, K., Sengupta, K., Shimi, T., Shumaker, D.K., Solimando, L. et al. (2008) Nuclear lamins: Major factors in the structural organization and function of the nucleus and the chromatin. *Genes Dev.* 22, 832–853, https://doi.org/10.1101/gad.1652708
27 Muchir, A., Pavlidis, P., Bonne, G., Hayashi, Y.K. and Worman, H.J. (2007) Activation of MAPK in hearts of MDM null mice: Similarities between mouse models of X-linked and autosomal dominant Emery - Dreifuss muscular dystrophy. *Hum. Mol. Genet.* 16, 1884–1895, https://doi.org/10.1093/hmg/ddm137
28 Muchir, A., Wu, W., Choi, J.C., Iwata, S., Morrow, J., Homma, S. et al. (2012) Abnormal p38α mitogen-activated protein kinase signaling in dilated cardiomyopathy caused by lamin A/C gene mutation. *Hum. Mol. Genet.* 21, 4325–4333, https://doi.org/10.1093/hmg/ddz265
29 Senior, A. and Gerace, L. (1988) Integral membrane proteins specific to the inner nuclear membrane and associated with the nuclear lamina. J. Cell Biol. 107, 2029–2036, https://doi.org/10.1083/jcb.107.6.2029

30 Foisner, R. (2001) Inner nuclear membrane proteins and the nuclear lamina. J. Cell Sci. 114, 3791–3792

31 Goldberg, M., Harel, A. and Gruenbaum, Y. (1999) The nuclear lamina: Molecular organization and interaction with chromatin. Crit. Rev. Eukaryot. Gene Expr. 9, 285–293, https://doi.org/10.1615/CritRevEukarGeneExpr.v9i3.1.130

32 Berk, J.M., Tiff, K.E. and Wilson, K.L. (2013) The nuclear envelope LEM-domain protein emerin. Nucleus 4, 298–314, https://doi.org/10.4161/nuc.25751

33 Wagner, N. and Krohne, G. (2007) LEM-Domain Proteins: New Insights into Lamin-Interacting Proteins. Int. Rev. Cytol. 251, 1–46, https://doi.org/10.1016/S0074-7696(07)60011-8

34 Herrada, I., Bourgeois, B., Samson, C., Buendia, B., Worman, H.J. and Zinn-Justin, S. (2016) Purification and Structural Analysis of Lamin-Domain Proteins. Methods Enzymol., vol. 569, pp. 43–61, Academic Press Inc

35 Montes de Oca, R., Shoemaker, C.J., Guczek, M., Cole, R.N. and Wilson, K.L. (2009) Barrier-to-Autointegration Factor Proteome Reveals Chromatin-Regulatory Partners. PLoS ONE 4, e7050, https://doi.org/10.1371/journal.pone.0007050

36 Demmerle, J., Koch, A.J. and Holaska, J.M. (2012) The nuclear envelope protein emerin binds directly to histone deacetylase 3 (HDAC3) and activates HDAC3 activity. J. Biol. Chem. 287, 22080–22088, https://doi.org/10.1074/jbc.M111.325308

37 Holaska, J.M. and Wilson, K.L. (2007) An emerin “Proteome”: Purification of distinct emerin-containing complexes from HeLa cells suggests molecular basis for diverse roles including gene regulation, mRNA splicing, signaling, mechanosensing, and nuclear architecture. Biochemistry 46, 8897–8908, https://doi.org/10.1021/bi060236m

38 Muchir, A., Pavlidis, P., Decostre, V., Herron, A.J., Arimura, T., Bonne, G. et al. (2007) Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy. J. Clin. Investig. 117, 1282–1293, https://doi.org/10.1172/JCI29042

39 Tapia, O., Fong, L.G., Huber, M.D., Young, S.G. and Gerace, L. (2015) Nuclear envelope protein Lm2 is required for mouse development and regulates MAP and AKT kinases. PLoS ONE 10, 1–20, https://doi.org/10.1371/journal.pone.0116196

40 Markiewicz, E., Tilgner, K., Barker, N., Van De Wetering, M., Cau, P., Navarro, C. et al. (2003) Lamin A truncation in Hutchinson-Gilford progeria. Nature Genet. 33, 457–469, https://doi.org/10.1038/ng1091

41 Markiewicz, E., Tilgner, K., Barker, N., Van De Wetering, M., Cau, P., Navarro, C. et al. (2003) Lamin A truncation in Hutchinson-Gilford progeria. Nature Genet. 33, 457–469, https://doi.org/10.1038/ng1091

42 Lammerding, J., Schulze, P., Takahashi, T., Kozlov, S., Sullivan, T., Kamm, R. et al. (2004) Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Investig. 113, 370–387, https://doi.org/10.1172/JCI200419670

43 Markiewicz, E., Tilgner, K., Barker, N., Van De Wetering, M., Cau, P., Navarro, C. et al. (2003) Lamin A truncation in Hutchinson-Gilford progeria. Nature Genet. 33, 457–469, https://doi.org/10.1038/ng1091

44 Markiewicz, E., Tilgner, K., Barker, N., Van De Wetering, M., Cau, P., Navarro, C. et al. (2003) Lamin A truncation in Hutchinson-Gilford progeria. Nature Genet. 33, 457–469, https://doi.org/10.1038/ng1091

45 Markiewicz, E., Tilgner, K., Barker, N., Van De Wetering, M., Cau, P., Navarro, C. et al. (2003) Lamin A truncation in Hutchinson-Gilford progeria. Nature Genet. 33, 457–469, https://doi.org/10.1038/ng1091

46 Demmerle, J., Koch, A.J. and Holaska, J.M. (2013) Emerin and histone deacetylase 3 (HDAC3) cooperatively regulate expression and nuclear positions of MyoD, Myf5, and Pax7 genes during myogenesis. J. Biol. Chem. 288, 20290–20298, https://doi.org/10.1074/jbc.M113.487393

47 Ramage, L., Nuki, G. and Salter, D.M. (2009) Signalling cascades in mechanotransduction: Cell-matrix interactions and mechanical loading. Scand. J. Med. Sci. Sport 19, 457–469, https://doi.org/10.1111/j.1600-0838.2009.00912.x

48 Goldman, R.D., Shumaker, D.K., Erdos, M.R., Eriksson, M., Goldman, A.E., Gordon, L.B. et al. (2004) Accumulation of mutant lamin A causes impaired calcium homeostasis. J. Biol. Chem. 279, 39741–39745, https://doi.org/10.1074/jbc.M409431200

49 Young, S.G., Meta, M., Yang, S.H. and Fong, L.G. (2006) Lamin A farnesylation and progeroid syndromes. J. Biol. Chem. 281, 39741–39745, https://doi.org/10.1074/jbc.M409431200

50 De Scandre-Giovannoli, A., Bernard, R., Ciau, P., Navarro, C., Amiel, J., Boccaccio, I. et al. (2003) Lamin A truncation in Hutchinson-Gilford progeria. Science (80-) 300, 2055, https://doi.org/10.1126/science.1074125

51 Markiewicz, E., Tilgner, K., Barker, N., Van De Wetering, M., Cau, P., Navarro, C. et al. (2003) Lamin A truncation in Hutchinson-Gilford progeria. Nature Genet. 33, 457–469, https://doi.org/10.1038/ng1091

52 Davies, B.S.J., Fong, L.G., Yang, S.H., Coffinier, C. and Young, S.G. (2009) The Posttranslational Processing of Prelamin A and Disease. Annu. Rev. Genomics Hum. Genet. 10, 153–174, https://doi.org/10.1146/annurev-genom-082908-150150

53 Levy, Y., Ross, J.A., Niglas, M., Smektov, V.A., Lynham, S., Liao, C.-Y. et al. (2018) Prelamin A causes aberrant myoneural arrangement and results in muscle fibre weakness. JCI Insight 3, 1–18, https://doi.org/10.1172/jci.insight.120920

54 Pendás, A.M., Zhou, Z., Cadiñas, J., Freije, J.M.P., Wang, J., Hultenby, K. et al. (2002) Defective prelamin A processing and muscle and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nat. Genet. 31, 94–99, https://doi.org/10.1038/ng871

55 Wang, W.P., Wang, J.Y., Lin, W.H., Kao, C.H., Hung, M.C., Teng, Y.C. et al. (2020) Progerin in muscle leads to thermogenic and metabolic defects via impaired calcium homeostasis. Aging Cell 19, e13090, https://doi.org/10.1111/ace.13090

56 Di Barletta, M.R., Ricci, E., Galluzzi, G., Tonali, P., Mora, M., Morandi, L. et al. (2000) Different mutations in the LMNA gene cause autosomal dominant autosomal recessive Emery-Dreifuss muscular dystrophy. Am. J. Hum. Genet. 66, 1407–1412, https://doi.org/10.1086/320869

57 Emery, A.E.H. (1989) Emery-Dreifuss syndrome. J. Med. Genet. 26, 637–641, https://doi.org/10.1136/jmg.26.10.637

58 Rahman, W.H., Enarson, P., Sullivan, T., Stewart, C.L. and Burke, B. (2001) Nuclear envelope defects associated with LMNA mutations cause dilated cardiomyopathy and Emery-Dreifuss muscular dystrophy. J. Clin. Investig. 114, 4447–4457
Muchir, A. (2000) Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LMD1B). *Hum. Mol. Genet.* **9**, 1453–1459, https://doi.org/10.1093/hmg/9.9.1453

Maggi, L., D’Amico, A., Pini, A., Sivo, S., Pane, M., Ricci, G. et al. (2014) LMNA-associated myopathies: The Italian experience in a large cohort of patients. *Neurology* **83**, 1634–1644, https://doi.org/10.1212/WNL.0000000000000934

Bertrand, A.T., Brull, A., Azizani, F., Beinarroch, L., Chikhaoui, K., Stewart, C.L. et al. (2020) Lamin A/C Assembly Defects in LMNA-Congenital Muscular Dystrophy Is Responsible for the Increased Severity of the Disease Compared with Emery-Dreifuss Muscular Dystrophy. *Cells* **9**, 844, https://doi.org/10.3390/cells9040844

Manilal, S., Nguyen, T.M., Sewry, C.A. and Morris, G.E. (1996) The Emery-Dreifuss muscular dystrophy protein, emerin, is a nuclear membrane protein. *Hum. Mol. Genet.* **5**, 801–808, https://doi.org/10.1093/hmg/5.6.801

Nagano, A., Koga, R., Ogawa, M., Kurano, Y., Kawada, J., Okada, R. et al. (1996) Emerin deficiency at the nuclear membrane in patients with Emery-Dreifuss muscular dystrophy. *Nat. Genet.* **12**, 254–259, https://doi.org/10.1038/ng0396-254

Beaudin, M., Gamache, P.-L., Gros-Louis, F. and Dupré, N. (1993) SYNE1 Deficiency. *University of Washington, Seattle*

Chen, Z., Ren, Z., Mei, W., Ma, Q., Shi, Y., Zhang, Y. et al. (2017) A novel SYNE1 gene mutation in a Chinese family of Emery-Dreifuss muscular dystrophy-like. *BMC Med. Genet.* **18**, 63, https://doi.org/10.1186/s12881-017-0424-5

Zhang, Q., Bethmann, C., Worth, N.F., Davies, J.D., Wasner, C., Feuer, A. et al. (2007) Nesprin-1 and -2 are involved in the pathogenesis of Emery-Dreifuss muscular dystrophy and are critical for nuclear envelope integrity. *Hum. Mol. Genet.* **16**, 2256–2277, https://doi.org/10.1093/hmg/ddx116

Stroud, M.J., Banerjee, I., Veevers, J. and Chen, J. (2014) Linker of Nucleoskeleton and Cytoskeleton Complex Proteins in Cardiac Structure, Function, and Disease. *Circ. Res.* **114**, 539–548, https://doi.org/10.1161/CIRCRESAHA.114.310326

Stroh, M.J., Fang, X., Zhang, J., Guimarães-Gamboa, N., Veevers, J., Dalton, N.D. et al. (2018) Luma is not essential for murine cardiac development and function. *Cardiovasc. Res.* **114**, 378–388, https://doi.org/10.1093/cvr/cvx205

Christensen, A., Andersen, C., Tybjerg-Hansen, A., Hausno, S. and Svendsen, J. (2011) Mutation analysis and evaluation of the cardiac localization of TMEM43 in arrhythmogenic right ventricular cardiomyopathy. *Clin. Genet.* **80**, 256–264, https://doi.org/10.1111/j.1399-0004.2011.01623.x

Merner, N.D., Hodgkinson, K.A., Haywood, A.F.M., Connors, S., French, V.M., Drenckhahn, J.D. et al. (2008) Arrhythmogenic Right Ventricular Cardiomyopathy Type 5 Is a Fully Penetrant, Lethal Arrhythmic Disorder Caused by a Missense Mutation in the TMEM43 Gene. *Am. J. Hum. Genet.* **82**, 809–821, https://doi.org/10.1016/j.ajhg.2008.01.010

Lammerding, J., Hsiao, J., Schulze, P.C., Kozlov, S., Stewart, C.L. and Lee, R.T. (2005) Abnormal nuclear shape and impaired mechanotransduction in emerin-deficient cells. *J. Cell Biol.* **170**, 781–791, https://doi.org/10.1083/jcb.200502148

Earle, A.J., Kirby, T.J., Fedorchak, G.R., Isermann, P., Patel, J., Iruvanti, S. et al. (2018) Mutant lamins cause mechanically-induced nuclear envelope rupture, DNA damage, and DNA-PK activation in muscle. *Biorxiv*, 36778

Kandert, S., Weinert, M., Müller, C.R., Buendia, B. and Dabavalle, M.C. (2009) Impaired nuclear functions lead to increased senescence and inefficient differentiation in human myoblasts with a dominant p.R545C mutation in the LMNA gene. *Eur. J. Cell Biol.* **88**, 593–608, https://doi.org/10.1016/j.ejcb.2009.03.002

Verstraeten, V.L.R.M., Jit, Y.J., Cummings, K.S., Lee, R.T. and Lammerding, J. (2008) Increased mechano-sensitivity and nuclear stiffness in Hutchinson-Gilford progeria cells: Effects of farnesyltransferase inhibitors. *Aging Cell* **7**, 383–393, https://doi.org/10.1111/j.1474-9726.2008.00382.x

Cao, K., Blair, C.D., Faddah, D.A., Kieckhaefer, J.E., Olive, M., Erdos, M.R. et al. (2011) Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts. *J. Clin. Invest.* **121**, 2833–2844, https://doi.org/10.1172/JCI43578

Liu, G.H., Barkho, B.Z., Ruiz, S., Diep, D., Qu, J., Yang, S.L. et al. (2011) Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. *Nature* **472**, 221–227, https://doi.org/10.1038/nature09879

Luo, Y.B., Mitropan, C., Adams, A.M., Johnsen, R.D., Fletcher, S., Mastaglia, F.L. et al. (2014) Antisense oligonucleotide induction of progerin in human myogenic cells. *PLoS ONE* **9**, 98306, https://doi.org/10.1371/journal.pone.0098306

Brayson, D., Frustaci, A., Verardo, R., Chimenti, C., Russo, M.A., Hayward, R. et al. (2019) Prelamin A mediates myocardial inflammation in dilated and HIV-Associated cardiomyopathies. *JCI Insight* **4**, e126315, https://doi.org/10.1172/jci.insight.126315

Young, S.G., Fong, L.G. and Michaelis, S. (2005) Prelamin A, Zmpste24, Misshapen Cell Nuclei, and Progeria—New Evidence Suggesting that Protein Farnesylation Could Be Important for Disease Pathogenesis. *J. Lipid Res.* **46**, 2531–2558, https://doi.org/10.1194/jlr.R500011-JLR200

Bergo, M.O., Gavin, B., Ross, J., Schmidt, W.K., Hong, C., Kendall, L.V. et al. (2002) Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect. *Proc. Natl. Acad. Sci. U.S.A.* **99**, 13049–13054, https://doi.org/10.1073/pnas.192460799

Allen, D.L., Roy, R.R. and Reggie Edgerton, V. (1999) Myonuclear domains in muscle adaptation and disease. *Muscle Nerve* **22**, 1350–1360, https://doi.org/10.1002/(SICI)1097-4598(199910)22:2<1350::AID-MUS3>3.0.CO;2-8

Hall, Z.W. and Ralston, E. (1989) Nuclear domains in muscle cells. *Cell* **59**, 771–772, https://doi.org/10.1016/0092-8674(89)90597-7

Pavlath, G.K., Rich, K., Webster, S.G. and Blau, H.M. (1989) Localization of muscle gene products in nuclear domains. *Nature* **337**, 570–573, https://doi.org/10.1038/337570a0

Bal, N., Maurya, S. and Soparivala, D. (2012) Medicine SS-N, 2012 underfied. Sarcolinpin is a newly identified regulator of muscle-based thermogenesis in mammals. *Nat Med.* **18**, 2631–2635, https://doi.org/10.1038/nm.2897

Pant, M., Bal, N.C. and Periasamy, M. (2016) Sarcolinpin: A Key Thermogenic and Metabolic Regulator in Skeletal Muscle. *Trends Endocrinol. Metab.* **27**, 881–892, https://doi.org/10.1016/j.tem.2016.08.006

Rivera-Torres, J., Calvo, C.J., Llach, A., Guzmán-Martínez, G., Caballero, R., González-Gómez, C. et al. (2016) Cardiac electrical defects in progeroid mice and Hutchinson-Gilford progeria syndrome patients with nuclear lamina alterations. *Proc. Natl. Acad. Sci. U.S.A.* **113**, E7250–E7259, https://doi.org/10.1073/pnas.1603754113
88 Meinke, P., Mattioli, E., Haque, F., Antoku, S., Columbaro, M., Straatman, K.R. et al. (2014) Muscular Dystrophy-Associated SUN1 and SUN2 Variants Disrupt Nuclear-Cytoskeletal Connections and Myonuclear Organization. PLoS Genet. 10, e1004605, https://doi.org/10.1371/journal.pgen.1004605

89 Stroud, M.J., Feng, W., Zhang, J., Veevers, J., Fang, X., Gerae, L. et al. (2017) Nesprin 1α:z is essential for mouse postnatal viability and nuclear positioning in skeletal muscle. J. Cell Biol. 216, 1915–1924, https://doi.org/10.1083/jcb.201612128

90 Gimpel, P., Lee, Y.L., Sobota, R.M., Calvi, A., Koullourou, V., Patell, R. et al. (2017) Nesprin-1α-Dependent Microtubule Nucleation from the Nuclear Envelope via Akap450 Is Necessary for Nuclear Positioning in Muscle Cells. Curr. Biol. 27, 2999.e9–3009.e9, https://doi.org/10.1016/j.cub.2017.08.031

91 Zhang, J., Felder, A., Liu, Y., Guo, L.T., Lange, S., Dalton, N.D. et al. (2009) Nesprin 1 is critical for nuclear positioning and anchorage. Hum. Mol. Genet. 19, 329–341, https://doi.org/10.1093/hmg/ddp499

92 Zhang, X., Xu, R., Zhu, B., Yang, X., Ding, X., Duan, S. et al. (2007) Syne-1 and Syne-2 play crucial roles in myonuclear anchorage and motor neuron innervation. Development 134, 901–908, https://doi.org/10.1242/dev.02783

93 Puckelwartz, M.J., Kessler, E., Zhang, Y., Hodzic, D., Randles, K.N., Morris, G. et al. (2009) Disruption of nesprin-1 produces an Emery Dreifuss muscular dystrophy-like phenotype in mice. Hum. Mol. Genet. 18, 607–620, https://doi.org/10.1093/hmg/ddn386

94 Fairley, E.A.L., Kendrick-Jones, J. and Ellis, J.A. (1999) The Emery-Dreifuss muscular dystrophy phenotype arises from aberrant targeting and binding of emerin at the inner nuclear membrane. J. Cell Sci. 112, 4801

95 Melcon, G., Koslov, S., Cutler, D.A., Sullivan, T., Hernandez, L., Zhao, P. et al. (2006) Loss of emerin at the nuclear envelope disrupts the Rb1/E2F and MyoD pathways during muscle regeneration. Hum. Mol. Genet. 15, 637–651, https://doi.org/10.1093/hmg/ddi479

96 Ozawa, R., Hayashi, Y.K., Ogawa, M., Kurokawa, R., Matsumoto, H., Noguchi, S. et al. (2006) Emerin-lacking mice show minimal motor and cardiac dysfunctions with nuclear-associated vacuoles. Am. J. Pathol. 168, 907–917, https://doi.org/10.2353/ajpath.2006.050564

97 Shin, J.Y., Méndez-López, I., Wang, Y., Hays, A.P., Tanji, K., Lefkowitch, J.H. et al. (2013) Lamina-associated polypeptide-1 interacts with the muscular dystrophy protein emerin and is essential for skeletal muscle maintenance. Dev. Cell 26, 591–603, https://doi.org/10.1016/j.devcel.2013.08.012

98 Chang, W., Wang, Y., Gant Luxton, G.W., Öttlund, C., Worman, H.J. and Gundersen, G.G. (2019) Imbalanced nucleocytoskeletal connections create common polarity defects in progeria and physiological aging. Proc. Natl. Acad. Sci. U.S.A. 116, 3578–3583, https://doi.org/10.1073/pnas.1809631116

99 Chen, C.Y., Chi, Y.H., Mutalif, R.A., Starost, M.F., Myers, T.G., Anderson, S.A. et al. (2012) Accumulation of the inner nuclear envelope protein Sun1 is pathogenic in progeric and dystrophic laminopathies. Cell 149, 565–577, https://doi.org/10.1016/j.cell.2012.01.059

100 Moffitlett, S.M., Sarcar, S., Henderson, A.B.H., Mannhardt, J., Pinton, L., Moyle, L.A. et al. (2018) Three-Dimensional Human iPSC-Derived Artificial Skeletal Muscles Model Muscular Dystrophies and Enable Multilineage Tissue Engineering. Cell Rep. 23, 899–908, https://doi.org/10.1016/j.celrep.2018.03.091

101 van der Wal, E., Herrero-Hernandez, P., Wan, R., Broeders, M., in ’t Groen, S.L.M., van Gestel, T.J.M. et al. (2018) Large-Scale Expansion of Human iPSC-Derived Skeletal Muscle Cells for Disease Modeling and Cell-Based Therapeutic Strategies. Stem Cell Rep. 10, 1975–1990, https://doi.org/10.1016/j.stemcr.2018.04.002

102 Zhou, T., Benda, C., Ouzinger, S., Huang, Y., Li, X., Li, Y. et al. (2011) Generation of induced pluripotent stem cells from urine. J. Am. Soc. Nephrol. 22, 1221–1228, https://doi.org/10.1681/ASN.2010101016