1. INTRODUCTION

In this paper we solve the Knights and Spies Problem:

In a room there are \(n \) people, each labelled with a unique number between 1 and \(n \). A person may either be a knight or a spy. Knights always tell the truth, while spies may either lie or tell the truth, as they see fit. Each person in the room knows the identity of everyone else. Apart from this, all that is known is that strictly more knights than spies are present. Asking only questions of the form:

‘Person \(i \), what is the identity of person \(j \)?’,

what is the least number of questions that will guarantee to find the true identities of all \(n \) people?

Despite its apparently recreational character, the Knights and Spies Problem is surprisingly deep; it is unusual to find such an easily stated problem that can challenge and be enjoyed by professionals and amateurs alike. The following remarks introduce some basic ideas and should clarify its statement.

1.1. Preliminary remarks. There is a simple, if inefficient, questioning strategy that will find everyone’s identity. Assume for the moment that \(n = 2m \) is even. Given a person \(i \), if we ask the remaining \(2m - 1 \) people to state person \(i \)’s identity, then the majority opinion will be correct. For otherwise, the majority consists of \(m \) or more people who have lied, and since only spies can lie, they must be spies. With a small extension to deal with ties in the case when \(n \) is odd, this gives us a strategy that finds everyone’s identity in \(n(n - 1) \) questions.

We may refine this strategy by noting that anyone who ever holds a minority view is a liar. Such people can be immediately identified as spies, and then ignored as a potential source of information. Moreover, once we have found a knight, we may bombard him with questions to find all the remaining identities. However, even with these improvements, the number of questions required in the worst case is still quadratic in \(n \).

When this strategy is followed, the spies are at their most obstructive when they always tell the truth. This phenomenon will be seen in other contexts below. We may assume, however, that a spy will lie if asked about...
his own identity, and so while it is permitted by the rules, there can be no benefit in asking a person about themselves. Similarly, there can be no benefit in asking the same question to any person more than once.

Before reading any further, the reader is invited to find a questioning strategy that will use at most \(Cn \) questions for some constant \(C \). A hint leading to a strategy for which \(C = 2 \) is given in this footnote\(^2\). The optimal \(C \) is revealed in the outline below.

1.2. Outline. We shall solve the more general problem, where it is given that at most \(\ell \) spies are present for some \(\ell \) with \(1 \leq \ell < n/2 \). We begin in §2 by describing the Spider Interrogation Strategy, which guarantees to find everyone’s identity using at most
\[
n + \ell - 1
\]
questions. If, as in the original problem, all we know is that knights are strictly in the majority, then \(\ell = \lfloor (n - 1)/2 \rfloor \), and so the maximum number of questions asked is \(f(n) \), where \(f \) is defined by
\[
f(2m - 1) = 3m - 3 \quad f(2m) = 3m - 2.
\]

No matter which numbers they hold, the spies can force a questioner following the Spider Interrogation Strategy to ask the full \(n + \ell - 1 \) questions. If however the spies are constrained to always lie, or to always answer ‘spy’, then usually fewer questions are required. We determine the probability distribution of the number of questions asked; remarkably it is the same in either case. The proof is bijective, using two lemmas related to the well-known ballot counting problem (see [2, III.1]).

In §3 we prove that any questioning strategy will, in the worst case, require at least \(n + \ell - 1 \) questions. Hence the answer to our original problem is that, provided \(n \geq 3 \), the smallest number of questions that can guarantee success is \(f(n) \). Since
\[
0 \leq 3n/2 - f(n) \leq 2
\]
for all natural numbers \(n \), it follows that the optimal constant \(C \) is \(3/2 \). The proof in §3 is presented in terms of an optimal strategy for the second player in the two-player game in which the first player poses questions (in the standard form), and the second supplies the answers (‘knight’ or ‘spy’), with the aim of forcing her opponent to ask at least \(n + \ell - 1 \) questions before she can be sure of everyone’s identity. This game provides a setting for all the problems considered in this paper.

It is natural to ask whether there is a questioning strategy which never uses more than \(n + \ell - 1 \) questions, and will with reasonable probability use fewer, no matter how cleverly the spies answer. In §4 we modify the Spider Interrogation Strategy to show that such a strategy exists in the case when \(\ell \) is at most \(\sqrt{n} \). (Of course, given the result of §3, there is always be a non-zero probability that the full number of questions will be required.) We then present some evidence for the conjecture that such a strategy exists.

\(^2\)There is an inductive strategy that starts by putting people into pairs, leaving one person out if \(n \) is odd, and then asking each member of each pair about the other
for all admissible values of ℓ. We end in \S5 by briefly discussing two further open problems.

2. The Spider Interrogation Strategy

2.1. Description. The Spider Interrogation Strategy has four steps: the first step, in which we hunt for someone who we can guarantee is a knight, is the key to its workings. We suppose that at most $1 \leq \ell < n/2$ of the n people in the room are spies.

Step 1. Choose any person as a candidate. Repeatedly ask new people about the candidate until either

(a) strictly more people have said that the candidate is a spy than have said that he is a knight, or

(b) ℓ people have said that the candidate is a knight.

If we end in case (a), with the candidate accused by a different people, then he must have been supported by $a - 1$ different people. Whatever his true identity, it is easily checked that at least a of the $2a$ people involved are spies. Hence if we reject the candidate, ignore all $2a$ of the people involved so far, and replace ℓ with $\ell - a$, we may repeat Step 1 with a smaller problem. Eventually, since spies are in a strict minority, we must finish in case (b). The successful candidate is supported by ℓ people, so must be a knight.

Step 2. Let person k be the knight found at the end of Step 1. All future questions will be addressed to him. In this step, use him to identify each person who has not yet been involved in proceedings, and also each of the rejected candidates from Step 1.

Step 3. Let persons m_1, \ldots, m_t be the rejected candidates whose identities were determined in Step 2. Suppose that person m_i was accused by a_i people.

(a) If person m_i is a knight, then the a_i people who accused him are spies. Identify the $a_i - 1$ people who supported him.

(b) If person m_i is a spy, then the $a_i - 1$ people who supported him are spies. Identify the a_i people who accused him.

Step 4. Finally, identify each person who supported person k's candidacy. Since the people who accused person k must be spies, everyone’s identity is now known.

It will be useful to represent the progress of the Spider Interrogation Strategy by a labelled digraph on the set $\{1, 2, \ldots, n\}$ in which we draw an edge from vertex i to vertex j if person i has been asked about person j, and label it with person i’s answer. We shall refer to such a graph as a question graph. Figure 1 overleaf shows a typical question graph after Step 1 of the Spider Interrogation Strategy. Its characteristic structure gives the Spider Interrogation Strategy its name.

An interesting feature of the Spider Interrogation Strategy, already visible in Figure 1, is that it guarantees that each spy in the room will be asked at most one question.
2.2. **On the number of questions asked.** It is not hard to show that the Spider Interrogation Strategy uses at most \(n + \ell - 1 \) questions. In fact we can easily prove something more precise.

Proposition 1. The total number of questions asked by a questioner following the Spider Interrogation Strategy is

\[
 n + \ell - 1 - r
\]

where \(r \) is the number of knights rejected as candidates in its first step.

Proof. After Step 2 is complete, the underlying graph of the question graph is a tree. Therefore \(n - 1 \) questions have been asked by this point. The number of questions asked in Step 3 is \(a_1 + \cdots + a_t - r \). The knight \(k \) was accepted after \(\ell - (a_1 + \cdots + a_t) \) people supported him, hence the total number of questions asked in Steps 3 and 4 is \(\ell - r \). The result follows. \(\square \)

Thus a questioner following the Spider Interrogation Strategy saves one question from the maximum of \(n + \ell - 1 \) every time a knight is rejected as a candidate. The spies can easily make sure this never happens, most simply by always answering truthfully. If however the spies always lie, or always answer ‘spy’, then is is probable that fewer questions will be required. We shall refer to these behaviours as *knaveish* and *spyish*, respectively.
Theorem 2. Suppose that there are \(k \) knights and \(s \) spies randomly arranged in the room, and that the spies are constrained to act either knavishly or spyishly. The probability that a questioner following the Spider Interrogation Strategy asks exactly \(q \) questions is independent of the constraint on the spies. In either case, the expected number of questions saved is

\[
\frac{1}{\binom{k+s}{s}} \sum_{r=0}^{s-1} \binom{k+s}{r}.
\]

In particular, if \(k = s + 1 \) then the sum of binomial coefficients is \(2^{2s} - \binom{2s+1}{s} \), and it follows from Stirling’s formula that the number of questions saved is \(\frac{1}{2} \sqrt{\pi s} - 1 + o(s) \). Hence, in a large room in which knights are only just in the majority, a questioner following the Spider Interrogation Strategy can expect to ask about

\[
\frac{3n}{2} - \sqrt{\frac{\pi}{8}} \sqrt{n}
\]

questions. Another asymptotic result worth noting is that when \(k = 2s \), the sum of binomial coefficients agrees in the limit with \(\binom{3s}{s} \), and so the expected number of questions saved tends to 1 as \(s \) tends to infinity.

Our proof of Theorem 2 is bijective, and does not give an explicit formula for the probabilities involved. (Indeed, it seems unlikely that any simple such formula exists.) Some idea of how these probabilities vary is given by Figure 10 at the end of §4, which shows the results from a computer simulation of rooms with 51 knights and 49 spies.

2.3. Paths. We shall represent the sequence of questions asked in Step 1 of the Spider Interrogation Strategy by a path in which we step up every time a knight is supported or a spy is accused, and down every time a knight is accused or a spy is supported. An initial step, which could be thought of as the candidate implicitly voting for himself, is taken whenever a new candidate is chosen.

Rather than end the path when a candidate is accepted, we instead imagine that we continue to question people about our accepted candidate until

![Figure 2: The path corresponding to Step 1 of the Spider Interrogation Strategy in the 21-person room shown in Figure 1. The final two steps correspond to extra questions asked to the knight \(K_{20} \) and the spy \(S_{21} \) about the successful candidate \(K_{15} \). (We have supposed that \(S_{21} \) lies.](image)
everyone in the room has either been a candidate, or has been asked a question. Thus our paths will always have exactly n steps. We give each path with a given number of upsteps and downsteps the same probability; our extension of paths therefore mimics Fermat’s solution of the famous *Problème des Points* (see [1] page 300 for an accessible account). Figure 2 shows the path corresponding to the 21-person room in Figure 1.

We say that a path *visits* m from above at time r if its height after r steps is m, and its r-th step is downwards. Thus the path shown in Figure 2 visits 1 from above exactly twice, at times 7 and 11.

Lemma 3. Let P be a path representing the questions asked in Step 1 of the Spider Interrogation Strategy. There is a bijective correspondence between visits of P to 0 from above and rejected knights in this step.

Proof. It suffices to prove that, once a candidate has been accepted, the path never returns to 0. This is left to the reader as a straightforward exercise. □

We need two further probabilistic lemmas on paths, each of some independent interest.

Lemma 4. Let $k \geq s$ and let $p \geq 0$. The probability that a path with k upsteps and s downsteps visits m from above exactly p times is constant for $-1 \leq m \leq k-s$.

Proof. Let $0 \leq m \leq k-s$. We shall show that the probabilities agree for $m-1$ and m. Let P be a path with k upsteps and s downsteps. Suppose that the first time P visits m is after step b, and that the last time P visits m is after step c. (Since $m \geq k-s$, b and c are well-defined.) Reflecting the part of P between b and c in the line $y = m$ gives a new path, P'. Figure 3 shows this reflection when $m = 1$ for the path in Figure 2.

![Figure 3: The path P' is the reflection of P in the line $y = 1$ between $b = 5$ and $c = 15$.](image)

One easily sees that P visits m from above exactly as many times as P' visits $m-1$ from above. Similarly P visits $m-1$ from above exactly as many times as P' visits m from above. The result follows. □
Lemma 5. Let \(k \geq s \). The expected number of visits to \(-1\) from above for a path with \(k \) upsteps and \(s \) downsteps is

\[
\frac{1}{(k+s)} \sum_{r=0}^{s-1} \binom{k+s}{r}.
\]

Proof. Let \(c(k,s) \) be the total number of times all paths with \(k \) upsteps and \(s \) downsteps visit \(-1\) from above. We must prove that

\[
c(k,s) = \sum_{r=0}^{s-1} \binom{k+s}{r}.
\]

We work by induction on \(s \). If \(s = 0 \) then it is impossible for any path to visit \(-1\), so the result obviously holds in this case.

For the inductive step we use reflection in a slightly different way, which is, in fact, the standard way it is used.\(^3\) Let \(P \) be a path with \(k \) upsteps and \(s \) downsteps which visits \(-1\) from above at least once. If \(P \) visits \(-1\) for the first time after step \(d \), then reflect the part of \(P \) between 0 and \(d \) in the line \(y = -1 \). This gives a new path \(P^* \) from \((0,-2)\) to \((k+s,k-s)\), as shown in Figure 4 below.

![Figure 4: The path \(P \), which visits \(-1\) for the first time after step \(d = 7 \), is reflected to the path \(P^* \) starting at \((0,-2)\).](image)

If \(P \) visits \(-1\) from above exactly \(m \) times then \(P^* \) visits \(-1\) from above exactly \(m - 1 \) times. Since there are \(\binom{k+s}{s-1} \) possible paths \(P^* \) from \((0,-2)\) to \((k+s,k-s)\), each with \(k + 1 \) upsteps and \(s - 1 \) downsteps, we have

\[
c(k,s) = \binom{k+s}{s-1} + t
\]

where \(t \) is the total number of times all paths from \((0,-2)\) to \((k+s,k-s)\) visit \(-1\) from above. Each such path has \(k + 1 \) upsteps and \(s - 1 \) downsteps. Shifting to \((0,0)\) and applying Lemma 4 we see that \(t = c(k+1,s-1) \). The lemma now follows by induction. \(\square\)

\(^3\)Feller [2, Chapter 3], gives a good introduction to this reflection argument and its possible applications.
2.4. Proof of Theorem 2. The first part of this theorem asserts that if there are \(k \) knights and \(s \) spies in the room, then the probability that exactly \(q \) questions are saved is independent of whether spies act knavishly or spyishly. As in Lemma 3 we shall work by induction on \(s \).

The two behaviours for the spies differ only when a spy is asked about another spy, so when \(s = 0 \) or \(s = 1 \), the probabilities agree. When \(s \geq 2 \) we may use induction to reduce to the case where the first candidate is a spy, and the first question is asked to another spy.

Suppose first of all that spies behave knavishly. Then, in a path corresponding to Step 1 of the Spider Interrogation Strategy, questions asked to knights correspond to upsteps, and questions asked to spies correspond to downsteps, and the first two steps are downwards. By Lemma 4 the probability that exactly \(p \) knights are rejected is equal to the probability that a path with \(k \) upsteps and \(s - 2 \) downsteps visits \(2 \) from above exactly \(p \) times.

Now suppose that spies behave spyishly. In this case our initial candidate is rejected at question 2, and we choose a fresh candidate. By induction, we may assume that all the remaining spies in the room behave knavishly. The remaining questions in Step 1 are represented by a path with \(k \) upsteps and \(s - 2 \) downsteps. Hence, the probability that exactly \(p \) knights are rejected is the probability that a path with \(k \) upsteps and \(s - 2 \) downsteps visits \(0 \) from above exactly \(q \) times.

By Lemma 4 these two probabilities are equal. Moreover, by Lemma 5, the expected number of visits to \(0 \) from above of a path with \(k \) upsteps and \(s \) downsteps is
\[
\frac{1}{(k+s)^s} \sum_{r=0}^{s-1} \binom{k+s}{r}.
\]
When spies act knavishly, this is the expected number of questions saved. We have just seen that the behaviour of the spies does not affect the distribution of this quantity, so this is also its expected value when spies act spyishly. This completes the proof of Theorem 2.

3. A lower bound

In this section we shall prove that any questioning strategy, will, in the worst case, require at least \(n + \ell - 1 \) questions to find everyone’s true identity.

The difficult we face in proving this result is that we must somehow take into account every possible questioning strategy that may be employed, irrespective of how bizarre it might seem. This is much the same problem that confronts a player of a game such as chess or go, and so it is perhaps not surprising that it is very helpful to think of our problem in this context.

3.1. A mathematical game. The game of ‘Knights and Spies’ is played between two players: an Interrogator and a Secret-Keeper. At the start of the game the players agree on values for the usual parameters \(n \) and \(\ell \), with as usual \(1 \leq \ell < n/2 \).

In a typical turn the Interrogator poses a question (in the standard form) to the Secret-Keeper. The Secret-Keeper considers the various ways in which
knights and spies can be arranged in the room and then supplies the answer: ‘knight’ or ‘spy’. The Interrogator’s aim is, of course, to determine everyone’s identity. The Secret-Keeper acts as the agent of malign fate and aims to answer in a way that will inconvenience the Interrogator as much as possible.

If, at the beginning of a turn, the Interrogator believes that she is certain of everyone’s identity, she may claim by giving the full set of people who she believes are spies. The Secret-Keeper must then either refute her claim, by exhibiting a different set that is also consistent with her answers so far, or agree that the secret is out. The Interrogator wins if she makes a successful claim before turn $n + \ell$, and draws if she makes a successful claim at the start of turn $n + \ell$ (after asking $n + \ell - 1$ questions). In any other event victory goes to the Secret-Keeper.

Note that the Secret-Keeper is not committed, even privately, to any particular arrangement of knights and spies. All that matters is that, at every point in the game, there is a way to assign identities to the people in the room that is consistent with her answers so far, and with the requirement that at most ℓ spies are present. The small-scale game shown in Figure 5 should clarify this point.

Figure 5: The question graph part way through a novice game in a 5 person room with $\ell = 2$. Green arrows show supportive statements, red arrows show accusations. For instance, in the first turn the Interrogator asked person 1 about person 2, and the Secret-Keeper accused by replying ‘spy’.

The Secret-Keeper’s third reply in this game was a blunder, for after it, the Interrogator, reasoning that at most two spies are present, can be sure that person 5 is a spy, and also that either person 1 or person 2 is a spy. She

4Practical experience suggests that it is all too easy for the Secret-Keeper to inadvertently answer in such a way that all consistent interpretations of her answers require strictly more than ℓ spies to be present. Such errors may be avoided by using the author’s program Gamechecker, which makes an exhaustive search for an assignment of identities consistent with the Secret-Keeper’s responses. It reports if there is a unique such assignment, so it can also be used to adjudicate claims by the Interrogator. The Haskell source code for Gamechecker is available from the author’s website: http://www.maths.bris.ac.uk/~mazmjw. It would be interesting to know if there is a polynomial time algorithm for deciding whether an incomplete game is in a consistent state; the back-tracking algorithm used by Gamechecker works well in practice, but in the worst case requires exponential time and space.
will therefore be able to claim after just one more question. If the Secret-Keeper had instead supported by replying ‘knight’ on her third turn, then the Interrogator can be held to the target of six questions; the reader may check that it is the Secret-Keeper’s choice whether one or two spies appear in the Interrogator’s eventual claim.

Our required result, that any questioning strategy will, in the worse case, require at least \(n + \ell - 1 \) questions, is equivalent to the following theorem.

Theorem 6. The Secret-Keeper has a strategy that ensures the Interrogator cannot claim before she has asked \(n + \ell - 1 \) questions.

We refer the reader to [4, §10.1] for a formal axiomatisation of two-player games which is more than capable of expressing Theorem 6.

3.2. The Mole Hiding Strategy

We prove Theorem 6 by showing that the following two-phase strategy for the Secret-Keeper (referred to as the Mole Hiding Strategy) will hold the Interrogator to \(n + \ell - 1 \) questions. For simplicity, we shall assume that the Interrogator never repeats a question verbatim or asks someone to state his own identity; the discussion in §1.1 tells the Secret-Keeper how to reply to such questions, and shows that this is not a significant restriction.

Phase 1. Answer the first \(\ell - 1 \) questions posed by the Interrogator with blanket accusations. Let \(G \) be the subgraph of the question graph whose vertices correspond to people who have already been involved in one of the first \(\ell - 1 \) questions. Suppose that the underlying graph of \(G \) is the union of the connected components \(G_1, \ldots, G_c \). Let \(G' \) be the set of people who have not yet been involved in proceedings.

Phase 2. Now answer the Interrogator’s questions according to the following rule. Suppose that the Interrogator’s question asks for the identity of person \(j \). If \(j \) belongs to \(G' \) then support, and if \(j \) belongs to the component \(G_i \) then accuse, unless in Phase 2 of the game the Interrogator has already asked about everyone else in \(G_i \); in this case, support.

An example game in which \(n = 12 \) and \(\ell = 5 \) is shown in Figure 6 overleaf. The subgraph \(G = \{1, 2, 3\} \cup \{4, 5\} \) has two connected components. The Interrogator can be sure after 16 questions that the only spies present are persons 2, 3 and 5, but is unable to claim any earlier; the game therefore ends in a draw.

The name of this strategy comes from the Interrogator’s time-consuming search through \(G' \) for hidden spies, and through \(G \) for hidden knights. The proof of the following proposition shows that this search is unavoidable.

Proposition 7. If the Secret-Keeper follows the Mole Hiding Strategy then, at every point in the game, there is a subset of people that can consistently be the set of spies in the room. Moreover, at the beginning of each turn \(t \) with \(t \leq n + \ell - 1 \), there are two different such subsets.

Proof. Suppose we are at the start of turn \(t \). Since extra questions can only increase the requirements a consistent assignment of identities to the people in the room must satisfy, we may assume without loss of generality that \(t \geq \ell - 1 \). Hence the subgraph \(G \) is defined.
For each component G_i of G, if the Secret-Keeper has already asked about everyone in G_i, then let person k_i be the unique person who has been supported in Phase 2 of the game. Otherwise, choose for k_i any person in G_i who has not yet been asked about. Let

$$S = G \setminus \{k_1, \ldots, k_c\},$$

and let K be the complement,

$$K = G' \cup \{k_1, \ldots, k_c\}.$$

Let $k \in K$ and let $y \in \{1, 2, \ldots, n\}$. If the Secret-Keeper has told the Interrogator that person k supports person y, then this question must have occurred in Phase 2 of the game, and either $y \in \{k_1, \ldots, k_c\}$ or $y \in G'$. Hence $y \in K$. Similarly, if the Secret-Keeper has told the Interrogator that person k accuses person y, then $y \in S$. Hence, provided that S is not too large, the Secret-Keeper’s answers are consistent with S being the full set of spies.

Suppose that the connected component G_i contains v_i people and has e_i edges. The number of questions asked in Phase 1 of the game is $e_1 + \cdots + e_c = \ell - 1$. By a standard result, $e_i \geq v_i - 1$, and hence

$$|S| = (v_1 - 1) + (v_2 - 1) + \cdots + (v_c - 1) \leq e_1 + \cdots + e_c = \ell - 1.$$

Therefore we even have one spy left to play with.

Now suppose that $t \leq n + \ell - 1$. At most $n - 1$ questions have been asked in Phase 2 of the game, so there is some person, say person x, who has not been asked about in this phase. We may assume that if x belongs to G, say

Figure 6: A game in a 12 person room with $\ell = 5$. The Secret-Keeper adopts the Mole Hiding Strategy, and holds the Interrogator to a draw. Questions are numbered in bold. The connected component of the subgraph G are marked.
with \(x \in G_i \), then we chose \(k_i = x \). We shall use person \(x \) to construct a set \(S^* \), different from \(S \), that can also be taken as the set of spies. There are two cases to consider.

If \(x \notin S \) then let \(S^* = S \cup \{ x \} \). By our choice of \(x \), person \(x \) has never been supported by anyone in the room, so it is consistent that he is a spy. Since \(|S^*| = |S| + 1 \leq \ell \), it is consistent that \(S^* \) is the set of spies.

If \(x \in S \) then let \(S^* = S \setminus \{ x \} \). Person \(x \) has only been accused by people in \(S^* \). Moreover, one easily checks that person \(x \) has accused only people in \(S^* \), and supported only people not in \(S^* \). Hence it is consistent that person \(x \) is a knight, and that \(S^* \) is the set of spies. \(\square \)

It follows from the first part of Proposition 7 that the Secret-Keeper can adopt the Mole Hiding Strategy without breaking the rules of the game. The second part shows that the Interrogator will be unable to claim before she has asked \(n + \ell - 1 \) questions. Theorem 2 is an immediate corollary.

3.3. Final remarks on the game. We end this section with two remarks on the game we have introduced, each with a hint of the paradoxical.

Firstly, the author’s experience is that most players expect to find it easier to play as the Secret-Keeper than the Interrogator, but, to their surprise, find that after the first few games, the reverse is true. Since it is far from obvious that \(n + \ell - 1 \) questions suffice, this seems somewhat remarkable.

Secondly we note that the Mole Hiding Strategy is optimal (in the game-theoretic sense) since it guarantees to hold the Interrogator to \(n + \ell - 1 \) questions, which, given the existence of the Spider Interrogation Strategy, is the best the Secret-Keeper can hope for. This is not to say however, that the Mole Hiding Strategy cannot be improved. Its defect is that it does not punish bad play on the part of the Interrogator as harshly as is possible.

For example, in the game shown in Figure 6, the Interrogator’s third question was in fact a blunder, after which the Secret-Keeper can, by extending Phase 1 of the game for an extra question, force the Interrogator to ask 17 questions. This changes the outcome of the game from a draw into victory for the Secret-Keeper. More generally, if the Secret-Keeper is willing to depart from the strict letter of the Mole Hiding Strategy, she can win any game in which the Interrogator’s questions during Phase 1 form an undirected cycle. It would be interesting to know what other early plays by the Interrogator can be punished.

4. Cycles and chains

In §2 we noted that, no matter how the spies are arranged in the room, they can ensure that a questioner following the Spider Interrogation Strategy asks \(n + \ell - 1 \) questions. It is natural to ask whether there is a questioning strategy which never uses more than \(n + \ell - 1 \) questions, and also has a reasonable probability of using fewer, no matter how cleverly the spies answer.

4.1. A partial result. When \(\ell \) is small compared to \(n \) this question—in one interpretation at least—has an affirmative answer. This can be shown by modifying the Spider Interrogation Strategy; we give the required changes in outline.
Step 1. Ask person 1 about person 2, then person 2 about person 3, and continue in this manner, until either we meet an accusation, or we have asked ℓ questions. In the latter case, person $\ell + 1$ must be a knight. If we simply ask him about everyone else in the room, then we find everyone’s identity in $n + \ell - 1$ questions. Moreover, if we begin by asking about person 1 then, in the event that he transpires to be a knight, the resulting cycle in the question graph tells us that the first $\ell + 1$ people are all knights. A further $n - (\ell + 1)$ questions find all the remaining identities, giving a total of just n questions.

In the former case, suppose that person t accused person $t + 1$. If $t = 1$, then we have not yet departed from the normal Spider Interrogation Strategy. If $t > 1$ then treat person t as a candidate who has been supported by $t - 2$ people, and continue to question new people about him. If eventually he is rejected, after having been accused by a different people, then the resulting spider contains $2(a + 1)$ people, of whom at least $a + 1$ are spies. The threshold for acceptance of the next candidate is therefore $\ell - (a + 1)$. Now follow Step 1 of the unmodified strategy.

Steps 2, 3 and 4. These are analogous to the unmodified strategy. The reader may check that, once the identity of person t has been determined, $a + 1$ questions suffice to find all the identities of the people in the first spider. It therefore follows, along similar lines to Proposition 1, that it is possible to determine everyone’s identities in $n + \ell - 1$ questions. Figure 7 below shows an illustrative example.

![Figure 7: The end of Step 1 in the modified Spider Interrogation Strategy in an 11 person room with $\ell = 5$, in which spies act knavishly. The first candidate S_3 is rejected, and the second K_9 is accepted. In Step 2, the knight K_9 will be asked about S_3 and K_{11}, and in the modified version of Step 3, he will be asked about his fellow knights, K_4, K_5, K_7, K_8 and K_{10}. The full 15 questions are required.](image)

The event that none of the first $\ell + 1$ people in the room is a spy has probability at least

$$g_\ell(n) = \left(1 - \frac{\ell}{n-\ell}\right)^{\ell+1}.$$
For fixed ℓ, the lower bound $g_{\ell}(n)$ is an increasing function of n. Moreover,

$$h(\ell) = g_{\ell}(\ell^2) = \left(1 - \frac{1}{\ell-1}\right)^{\ell+1}$$

is an increasing function of ℓ for $\ell \geq 2$, tending to $1/e$ as $\ell \to \infty$. Calculation shows that $h(9) \geq 1/4$, and hence $g_{\ell}(n) \geq 1/4$ whenever $9 \leq \ell \leq \sqrt{n}$. We can therefore use the modified Spider Interrogation Strategy to prove the following conjecture, subject to the extra hypothesis that $\ell \leq \sqrt{n}$.

Conjecture 8. Let $s \leq \ell < n/2$. There is a questioning strategy which, provided ℓ is sufficiently large, guarantees to use at most $n + \ell - 1$ questions to find all identities in an n-person room containing s spies, and will on average use at most $n + 3\ell/4$ questions.

The numerical results presented in the following section suggest that Conjecture 8 also holds when ℓ takes its largest possible value of $\lfloor (n-1)/2 \rfloor$.

4.2. The Chain Building Strategy

A chain of people, each of its members supporting the next person along, is almost as valuable a configuration as the cycle potentially created by the previous strategy. Any such chain consists of a number (possibly zero) of spies, followed by a number (again possibly zero) of knights. There are $k + 1$ possible configurations for a chain of length k. Provided we have a knight to hand, its members can be identified using repeated bisection in a mere $\lfloor \log_2 k \rfloor + 1$ questions; this meets the theoretical minimum for binary questions. An example is shown in Figure 8 below.

We now give a rough outline of the **Chain Building Strategy**, in which these chains play a fundamental role. In the first step of the Chain Building Strategy we hunt for someone who we can guarantee is a knight by first building chains, starting a new chain as soon as we meet an accusation. We then recursively link these chains by asking further questions (targeting people with the most persuasive support so far) and stopping as soon as we reach someone who must be a knight. In the second step we use our
Figure 9: The question graph after the first step of the Chain Building Strategy in a room with 10 knights and 9 spies. Spies act knavishly, with the exception of S_8, who we suppose answers truthfully when asked about K_9. As in Step 1 of the Spider Interrogation Strategy, the members of the components containing S_1 and S_{17} are disregarded once it becomes clear (after questions 14 and 12 respectively) that they contain at least as many spies as knights. The first step ends after question 15, after which we can be sure that person K_{15} is a knight. In Step 2, he will first be asked about S_3, bisecting the longest chain.

guaranteed knight to find everyone else’s identity, exploiting the existing chains as much as possible. An example of the critical first step is shown in Figure 9 above.

Simulation—both by hand, and by computer—of the Chain Building Strategy strongly suggests that, provided the behaviour of the spies is constrained in some way, or randomised entirely, it never requires more than $n + \ell - 1$ questions to find everyone’s identity. The numerical evidence also suggests that Chain Building Strategy requires on average about $4n/3$ questions to deal with a room in which knights are only just in the minority, more than meeting the requirements of Conjecture 8. Sadly, it appears that when ℓ is a smaller fraction of n, for example, $\ell = n/4$, the strategy is less effective. Some of the relevant data is presented in Figures 10 and 11 overleaf.

At the time of writing, these intermediate values for ℓ seem to present the largest obstacle in the path to a proof of Conjecture 8.

5. Open problems and variant games

We end by presenting two further open problems, which seem worthy of attention, and may well be more tractable than Conjecture 8.

Problem 9. In a $4k$ person room known to contain exactly k knights, what is the smallest number of questions that will give a probability $\geq 1/5$ of correctly identifying every person?

5Objective-C source code for a program capable of simulating all the questioning strategies discussed in this paper is available from http://www.maths.bris.ac.uk/~mazmjw.
Figure 10: Numbers of questions asked in 25000 runs of the Chain Building Strategy in random generated rooms with 51 knights and 49 spies. Results for spyish spies, and spies which answer randomly are shown. One might expect the Chain Building Strategy to fare significantly worse when faced with spyish spies, since this behaviour certainly makes it harder to form long chains. However, the difference is surprisingly unpronounced, perhaps because the spies are prone to give themselves away by their excessive accusations. For comparison, the corresponding results obtained from simulation of the Spider Interrogation Strategy with spyish spies are also shown.

Figure 11: Mean number of questions asked in 1000 runs of the Chain Building Strategy in randomly generated rooms with n people when $\ell = \lfloor (n - 1)/2 \rfloor$ and $\lfloor n/4 \rfloor$ respectively. In each case ℓ spies were present. The gradients of the interpolating lines are 1.316 and 1.217 respectively. Spies answered spyishly; other constraints on their behaviour gave the same linear behaviour, with similar gradients.
Now that we have dropped our long-standing assumption that spies are in the minority, we can no longer guarantee to find everyone’s identity. However, there is still a chance of success. Indeed, if we ask all \(n(n-1) \) useful questions, then the spies must be careful not to give themselves away by forming a block of \(> k \) people, all of its members supporting one another. Instead, in the worst case we are left with four camps each of \(k \) people, each camp behaving as if they are the knights, and the opposing camps are the spies. Choosing a camp at random gives a \(1/4 \) chance of success. Problem 9 asks whether, if we accept a smaller chance of success, we might be able to manage with significantly fewer questions.

Problem 10. Let \(\ell < n/2 \). In an \(n \) person room with at most \(\ell \) spies, what is the smallest number of questions that will guarantee to find at least one person’s identity? What is the smallest number of questions that will guarantee to find a knight?

For example, given the sequence of questions shown in Figure 1, we can be sure after question 15 that person 15 is a knight (and also that person 18 is a spy), but before this question we cannot be certain of any single identity.

The Spider Interrogation Strategy shows that \(2\ell - 1 \) questions suffice to find a knight. This gives an upper bound for both parts of Problem 10. For a lower bound, it is natural to pose the problem in the game-playing framework of §3. The Mole Hiding Strategy shows that \(\ell \) questions are necessary, but cannot otherwise be recommended, for if the Interrogator follows the Spider Interrogation Strategy, then after she has asked these \(\ell \) questions, she will be able to claim.

The author conjectures that the answer to the first part—and hence to both parts—of Problem 10 is \(2\ell - 1 \). If so, we face the remarkable situation that, while we can find the identity of a particular person, nominated in advance, with \(2\ell \) questions, we can only save one question if the person is entirely of our choosing, to be nominated later.

In his famous ‘A Mathematician’s Apology’ [3, §15–17], G. H. Hardy argued that serious mathematics could be distinguished by virtue of its depth and generality, and also by a certain ‘unexpectedness, combined with inevitability and economy’ (his emphasis). The reader who has read this far will, it is hoped, agree that the Knights and Spies Problem deserves to qualify under all of his criteria.

References

[1] Rouse Ball, W. W. *A short account of the history of mathematics*. Dover Publications Inc., New York, 1960.

[2] Feller, W. *An introduction to probability theory and its applications. Vol. I*. Third edition. John Wiley & Sons Inc., New York, 1968.

[3] Hardy, G. H. *A mathematician’s apology*. Canto. Cambridge University Press, Cambridge, 1992. With a foreword by C. P. Snow, Reprint of the 1967 edition.

[4] von Neumann, J., and Morgenstern, O. *Theory of games and economic behavior*. Princeton University Press, Princeton, NJ, 2004.

E-mail address: mark.wildon@bristol.ac.uk