Mass inequalities for baryons with heavy quarks

Marek Karliner\footnote{marek@proton.tau.ac.il} and Jonathan L. Rosner\footnote{rosner@hep.uchicago.edu}

\textit{a School of Physics and Astronomy}
\textit{Faculty of Exact Sciences}
\textit{Tel Aviv University, Tel Aviv 69978, Israel}

\textit{b Enrico Fermi Institute and Department of Physics}
\textit{University of Chicago, 5620 S. Ellis Avenue, Chicago, IL 60637, USA}

ABSTRACT

Baryons with one or more heavy quarks have been shown, in the context of a nonrelativistic description, to exhibit mass inequalities under permutations of their quarks, when spin averages are taken. These inequalities sometimes are invalidated when spin-dependent forces are taken into account. A notable instance is the inequality $2E(M_{mm}) > E(M_{MM}) + E(mm)$, where $m = m_u = m_d$, satisfied for $M = m_b$ or $M = m_c$ but not for $M = m_s$, unless care is taken to remove effects of spin-spin interactions. Thus in the quark-level analog of nuclear fusion, the reactions $\Lambda_b\Lambda_b \rightarrow \Xi_{bb}N$ and $\Lambda_c\Lambda_c \rightarrow \Xi_{cc}^+n$ are exothermic, releasing respectively 138 and 12 MeV, while $\Lambda\Lambda \rightarrow \Xi N$ is endothermic, requiring an input of between 23 and 29 MeV. Here we explore such mass inequalities in the context of an approach, previously shown to predict masses successfully, in which contributions consist of additive constituent-quark masses, spin-spin interactions, and additional binding terms for pairs each member of which is at least as heavy as a strange quark.

PACS codes: 14.20.Lq, 14.20.Mr, 12.40.Yx

I INTRODUCTION

Quantum chromodynamics (QCD) predicts the existence of baryons containing not only one, but two or three heavy quarks (c or b). The LHCb Collaboration at CERN has discovered the first doubly-heavy baryon, a $\Xi_{cc}^{++} = ccu$ state in the decay modes $\Lambda_cK^-\pi^+\pi^+$ \cite{1} and $\Xi_{cc}^{+}\pi^+$ \cite{2}, at a mass $M(\Xi_{cc}^{++}) = 3621.24 \pm 0.65 \pm 0.31$ MeV, very close to that predicted in Ref. \cite{3}. (Hints of a possible isospin partner Ξ_{cc}^{+} decaying to $\Lambda_cK^-\pi^+$ have also been found \cite{4,5}. In this approach, one adds up constituent-quark masses and spin-spin interactions \cite{6,8} and corrects for the additional binding in any quark pair both of whose members are at least as heavy as a strange quark \cite{9}.

\cite{m} \cite{1} \cite{2} \cite{3} \cite{4} \cite{5} \cite{6} \cite{8}
Under some circumstances hadrons satisfy mass inequalities associated with permutations of their quarks \[9–16\]. For example, under some conditions one expects
\[2E(Mmm) > E(MMm) + E(mmm),\]
where \(E\) denotes the mass, \(m = m_u = m_d\), and \(M\) is the mass of a heavy quark, to apply to spin-averaged states [cf. Eq. (3) in Ref. [15]]. This inequality may be invalidated when spin-dependent forces are taken into account; it holds for \(M = m_b\) or \(M = m_c\) but not for \(M = m_s\). Thus, in the quark-level analog of nuclear fusion [17], the reactions \(\Lambda_b \Lambda_b \rightarrow \Xi_{bb}N\) and \(\Lambda_c \Lambda_c \rightarrow \Xi_{cc}^+n\) are exothermic, releasing respectively 138 and 12 MeV, while \(\Lambda \Lambda \rightarrow \Xi N\) is endothermic, requiring energy input of between 23 and 29 MeV, depending on which members of the \(N\) and \(\Xi\) doublets one uses.

Here we give some examples of inequalities involving baryon masses in our constituent-quark approach. We outline in Sec. II some of the relations and their origin. In Section III we treat light-quark systems in which the strange quark plays the role of a heavy quark. Baryons with one and two heavy quarks (\(c, b\)) are described in Secs. IV and V, respectively, while Sec. VI concludes.

II Inequalities and their origin

A number of mass inequalities involving ground-state mesons and baryons were noted by Nussinov [11]: respectively,

\[m_{xy} > \frac{1}{2}(m_{xx} + m_{yy}), \quad m_{xyy} > \frac{1}{2}(m_{xy} + m_{yyy}).\]
(1)

We shall motivate these relations in a simple case where quark masses enter through their nonrelativistic kinetic energy, but they are much more general (see many of the references quoted above, in particular [15]). Consider systems governed by the Hamiltonians

\[H_{ij} = \frac{\mathbf{p}^2}{2\mu_{ij}} + V(x), \quad \mu_{ij} \equiv \frac{m_1 m_2}{m_1 + m_2}.\]
(2)

Then, since

\[\frac{1}{\mu_{12}} = \frac{1}{m_1} + \frac{1}{m_2},\]
(3)

we have \(H_{12} = \frac{1}{2}(H_{11} + H_{22})\). The ground-state energy in the 12 system is

\[E_{12} = \text{Min}_\psi \langle \psi_{12} | H_{12} | \psi_{12} \rangle = \langle \psi_{12} | \frac{1}{2}(H_{11} + H_{22}) | \psi_{12} \rangle.\]
(4)

Now

\[\langle \psi_{12} | H_{11} | \psi_{12} \rangle > E_1; \quad \langle \psi_{12} | H_{22} | \psi_{12} \rangle > E_2,\]
(5)

since \(\psi_{12}\) is not the ground state (assumed non-degenerate) of \(H_{11}\) or \(H_{22}\). Hence we have the result \(E_{12} > (E_1 + E_2)/2\), implying Eq. (II).

When spin-spin interactions are taken into account, the energy shift due to the interaction of quarks \(i\) and \(j\) may be written

\[\Delta E_{ij,\text{HFs}} = b(\sigma_i \cdot \sigma_j)/(m_i m_j).\]
(6)

Inclusion of such terms in the Hamiltonian in general spoils the relation \(H_{12} = (H_{11} + H_{22})/2\).
III Baryons with light quarks

If we adopt the semi-empirical model of hadron masses \(^{3}\) in which the constituent \(u,d,s\) quarks have constituent masses of several hundred MeV, the only corrections to the sum of quark masses are the sum of hyperfine terms \(^{1}\) and terms \(B(ss)\) expressing the stronger binding of one strange quark with another. Here the tilde stands for a mass without hyperfine interaction terms. The Gell-Mann–Okubo relation \(\frac{1}{2}[M(N)+M(\Xi)] = \frac{1}{4}[3M(\Lambda)+M(\Sigma)]\), derived under the assumption that SU(3) breaking is linear in hypercharge, then becomes an inequality

\[
\frac{1}{2}[\tilde{M}(N)+\tilde{M}(\Xi)] = 2m_q + m_s - B(ss)/2 < \frac{1}{4} \left[3\tilde{M}(\Lambda) + \tilde{M}(\Sigma)\right] = 2m_q + m_s ,
\]

and the second inequality in Eq. (11) is satisfied. (It turns out that the experimental values of octet baryon masses \(^{19}\) also satisfy this relation, with \([M(N)+M(\Xi)]/2 = 1128.6\) MeV and \([3M(\Lambda)+M(\Sigma)]/4 = 1135.0\) MeV.)

When spin-spin interactions [Eq. (10)] are taken into account as in Ref. \(^{3}\), one has

\[
\frac{1}{2} \left[\tilde{M}(N)+\tilde{M}(\Xi)\right] - \frac{1}{4} \left[3\tilde{M}(\Lambda)+\tilde{M}(\Sigma)\right] = -\frac{B(ss)}{2} + b(m_s - m_q)^2/2m_s^2m_q^2 ,
\]

where \(m_q\) stands for the isospin-averaged mass of \(u\) and \(d\) quarks. A fit to masses of light-quark baryons \(^{18}\) gives \(b/m_q^2 = 50.0\) MeV, \(m_q = 362.1\) MeV, \(m_s = 543.9\) MeV, \(B(ss) = 9.23\) MeV, so the right-hand side of Eq. (8) is \(-4.6\) MeV + 2.8 MeV, with the spin-spin term working against the predicted inequality but not enough to counteract it.

IV Baryons with one heavy quark

The masses of ground state baryons \(cqq, cqs,\) and \(css\) containing a single charmed quark satisfy the inequality

\[
[\tilde{M}(\Lambda_c) + \tilde{M}(\Omega_c)]/2 < \tilde{M}(\Xi_c) ,
\]

thanks to the binding correction \(B(ss) = 9.2\) MeV \(^{18}\)

\[
\frac{[M(\Lambda_c) + M(\Omega_c)]}{2} = m_q + m_s + m_c - B(cs) - B(ss)/2 < \tilde{M}(\Xi_c) = m_q + m_s + m_c - B(cs) .
\]

The experimental values \(^{19}\) do not satisfy the inequality:

\[
\frac{1}{2}[M(\Lambda_c) + M(\Omega_c)] = 2490.8\ MeV > M(\Xi_c) = 2468.9\ MeV ,
\]

indicating a significant contribution from spin-spin interactions. (Here we have used the isospin-averaged \(\Xi_c\) mass.)

The corresponding relation for states containing a \(b\) quark is

\[
\frac{[M(\Lambda_b) + M(\Omega_b)]}{2} = m_q + m_s + m_b - B(bs) - B(ss)/2 < \tilde{M}(\Xi_b) = m_q + m_s + m_b - B(bs) ,
\]

with \(B(bs) = 41.8\) MeV \(^{3}\) common to both sides. Again, the term \(B(ss)\) turns the equality into an inequality. The experimental values, again thanks to a significant spin-spin contribution, satisfy the opposite inequality:

\[
\frac{1}{2}[M(\Lambda_b) + M(\Omega_b)] = 5832.9\ MeV > M(\Xi_b) = 5791.3\ MeV .
\]

\(^{3}\)A term \(B(cs) = 35.0\) MeV \(^{3}\) is common to both sides.
V Baryons with two or more heavy quarks

In this section we discuss inequalities between binding energies. In our convention the binding energies are positive, but they contribute to the hadron mass with a minus sign, so the direction of the inequalities between binding energies is flipped vs. inequalities between hadron masses.

We have seen that the second of Eqs. (1) holds for baryons with zero or one heavy (c, b) quarks. Inequalities also hold in our semi-empirical approach when two quarks are heavy. For example [3, 18],

$$ B_{ss} = 9.2 \text{ MeV}, \quad B_{cs} = 35.0 \text{ MeV}, \quad B_{cc} = 129.0 \text{ MeV}, $$

so

$$ B_{cs} < \frac{B_{ss} + B_{cc}}{2} . \quad (14) $$

Similarly $B_{bs} = 41.8 \text{ MeV}, B_{bb} = 281.4 \text{ MeV},$ so

$$ B_{bs} < \frac{B_{ss} + B_{bb}}{2} . \quad (15) $$

It was also found [3] that $B_{bc} = 170.8 \text{ MeV},$ so

$$ B_{bc} = 170.8 \text{ MeV} < \frac{B_{cc} + B_{bb}}{2} = 205.2 \text{ MeV} . \quad (16) $$

A related inequality for the spin-weighted averages \bar{M} of heavy $c\bar{c}, b\bar{b},$ and $b\bar{c}$ ground-state mesons,

$$ \frac{\bar{M}(c\bar{c}) + \bar{M}(b\bar{b})}{2} < \bar{M}(b\bar{c}) , \quad (17) $$

is comfortably satisfied: The left-hand side is $[3068.7 + 9444.9]/2 = 6256.8 \text{ MeV},$ while the right-hand side is likely [20] to be tens of MeV above the mass $M(B_c) = 6274.9 \pm 0.8 \text{ MeV}$ [19] of the spin-zero pseudoscalar $b\bar{c}$ ground state.

VI Conclusions

A semi-empirical method [3] successfully determines hadron masses, including the mass of the first doubly charmed baryon. This method sums constituent-quark masses, quark-quark hyperfine interactions, and terms $B(qq')$ expressing the binding of quarks both of which are at least as heavy as the strange quark. These binding terms are seen to satisfy inequalities $B(qq') < [B(qq) + B(q'q')]/2,$ with the consequence that when hyperfine contributions are removed, baryons satisfy the inequality $m_{xxg} > \frac{1}{2}(m_{xxg} + m_{yyg})$ [9, 10]. This constitutes a useful consistency check of the semi-empirical method, and enables rough estimates, independent of potential models, of unseen hadron masses.

ACKNOWLEDGMENTS

The research of M.K. was supported in part by NSFC-ISF grant No. 0603219411. We thank J.-M. Richard for a helpful discussion.

References

[1] R. Aaij et al. (LHCb Collaboration), “Observation of the doubly charmed baryon Ξ^{++}_{cc}”, Phys. Rev. Lett. 119, 112001 (2017) [arXiv:1707.01621 [hep-ex]].
[2] R. Aaij et al. (LHCb Collaboration), “First Observation of the Doubly Charmed Baryon Decay $\Xi^{++}_{cc} \rightarrow \Xi^+ c \pi^+$”, Phys. Rev. Lett. 121, 162002 (2018) [arXiv:1807.01919 [hep-ex]].

[3] M. Karliner and J. L. Rosner, “Baryons with two heavy quarks: Masses, production, decays, and detection”, Phys. Rev. D 90, 094007 (2014) [arXiv:1408.5877 [hep-ph]].

[4] R. Aaij et al. (LHCb Collaboration), “Search for the doubly charmed baryon Ξ^{+}_{cc}”, Sci. China-Phys. Mech. Astron. 63, (2020) [arXiv:1909.12273 [hep-ex]].

[5] M. Karliner and J. L. Rosner, “LHCb gets closer to discovering the second doubly charmed baryon”, Sci. China-Phys. Mech. Astron. 63, 221064 (2020), [arXiv:1912.01963 [hep-ex]].

[6] A. De Rújula, H. Georgi and S. L. Glashow, “Hadron Masses in a Gauge Theory”, Phys. Rev. D 12, 147 (1975).

[7] H. J. Lipkin, “A Unified Description of Mesons, Baryons and Baryonium”, Phys. Lett. 74B, 399 (1978).

[8] S. Gasiorowicz and J. L. Rosner, “Hadron Spectra and Quarks”, Am. J. Phys. 49, 954 (1981).

[9] R. A. Bertlmann and A. Martin, “Inequalities On Heavy Quark - Anti-quark Systems”, Nucl. Phys. B 168, 111 (1980).

[10] J. M. Richard and P. Taxil, “Ground State Baryons in the Nonrelativistic Quark Model”, Annals Phys. 150, 267 (1983).

[11] S. Nussinov, “Mass Inequalities in QCD”, Phys. Rev. Lett. 52, 966 (1984).

[12] D. Weingarten, “Mass Inequalities for QCD”, Phys. Rev. Lett. 51, 1830 (1983).

[13] E. Witten, “Some Inequalities Among Hadron Masses”, Phys. Rev. Lett. 51, 2351 (1983).

[14] E. H. Lieb, “Baryon Mass Inequalities In Quark Models,” Phys. Rev. Lett. 54, 1987 (1985).

[15] A. Martin, J. M. Richard and P. Taxil, “About Convexity Properties of the Baryon Mass Spectrum”, Phys. Lett. B 176, 224 (1986).

[16] M. N. Anwar, J. Ferretti, F. K. Guo, E. Santopinto and B. S. Zou, “Spectroscopy and decays of the fully-heavy tetraquarks,” Eur. Phys. J. C 78, no. 8, 647 (2018) [arXiv:1710.02540 [hep-ph]].

[17] M. Karliner and J. L. Rosner, “Quark-level analogue of nuclear fusion with doubly-heavy baryons”, Nature 551, 89 (2017) [arXiv:1708.02547 [hep-ph]].

[18] M. Karliner and J. L. Rosner, “Status of isospin splittings in mesons and baryons”, Phys. Rev. D 100, 073006 (2019) [arXiv:1906.07799 [hep-ph]].

[19] M. Tanabashi et al. [Particle Data Group], “Review of Particle Physics”, Phys. Rev. D 98, no. 3, 030001 (2018).
[20] E. J. Eichten and C. Quigg, “Mesons with Beauty and Charm: New Horizons in Spectroscopy”, Phys. Rev. D 99, 054025 (2019) [arXiv:1902.09735 [hep-ph]].