LARGE DEVIATIONS FOR
DENOMINATORS OF CONTINUED FRACTIONS

HIROKI TAKAHASI

ABSTRACT. We give an exponential upper bound on the probability with which
the denominator of the nth convergent in the regular continued fraction expan-
sion stays away from the mean $n\pi^2/12\log 2$. The exponential rate is best possible,
given by an analytic function related to the dimension spectrum of Lyapunov
exponents for the Gauss transformation.

1. Introduction

Each irrational number $x \in (0, 1)$ has the continued fraction expansion

$$x = \frac{1}{a_1 + \frac{1}{a_2 + \cdots}}$$

where each a_i is a positive integer. Let p_n, q_n be relatively prime positive integers satisfying

$$\frac{p_n}{q_n} = \frac{1}{a_1 + \frac{1}{a_2 + \cdots + \frac{1}{a_n}}}$$

Then p_n/q_n converges to x as $n \to \infty$, and the rate of this convergence is deter-
mined by the growth rate of the denominator q_n:

$$\frac{1}{2q_{n+1}^2} \leq \left| x - \frac{p_n}{q_n} \right| \leq \frac{1}{q_n^2}.$$

One important problem in the metric theory of continued fractions is to investigate
the limit behavior of q_n for typical irrationals. It was Khinchin [9] who proved the
existence of an absolute constant γ such that $(1/n) \log q_n \to \gamma$ as $n \to \infty$ Lebesgue-
a.e. Lévy [10] showed $\gamma = \pi^2/12\log 2$. Hence, for any closed interval K not containing
γ, the Lebesgue measure of the event $\{\log q_n - \gamma n \in K\}$ converges to 0 as $n \to \infty$.

Of interest to know is the rate of this convergence. If it is exponential, namely
there is an upper bound of the form $Ce^{-\delta n}$ for some $C > 0$ and $\delta > 0$, then the
smallest such δ would have some intrinsic meaning.

\textit{Key words:} Diophantine approximation, continued fraction, large deviations.
Some rates in this convergence are available from central limit theorems. Denote by λ the Lebesgue measure restricted to $(0, 1)$. Misevičius [11] showed that
\[
\sup_{\alpha \in \mathbb{R}} \left| \lambda \left\{ \frac{\log q_n - \gamma n}{\sigma \sqrt{n}} \leq \alpha \right\} - \int_{-\infty}^{\alpha} e^{-\frac{x^2}{2}} dx \right| = O \left(\frac{\log n}{\sqrt{n}} \right),
\]
where $\sigma > 0$. The results of Morita [12] and Vallée [16] improve the order to $O(1/\sqrt{n})$. It follows that for every $\alpha < 2\gamma$,
\[
\lambda \left\{ \frac{2}{n} \log q_n \leq \alpha \right\} = O \left(\frac{1}{\sqrt{n}} \right),
\]
This estimate is far from optimal. From the result of Araújo and Bufetov [1, Theorem B],
\[
\limsup_{n \to \infty} \frac{1}{n} \log \lambda \left\{ \frac{2}{n} \log q_n \leq \alpha \right\} \leq I(\alpha),
\]
where the number $I(\alpha) > 0$ is defined below. Hence, the convergence takes place at an exponential rate, and the rate can be chosen arbitrarily close to $I(\alpha)$. The aim of this paper is to show that $I(\alpha)$ is the best exponential rate.

We now define $I(\alpha)$ and state our main result. For each $\alpha \in [0, \infty]$ define
\[
L(\alpha) = \left\{ x \in (0, 1) : \liminf_{n \to \infty} \frac{2}{n} \log q_n(x) = \limsup_{n \to \infty} \frac{2}{n} \log q_n(x) = \alpha \right\}.
\]
Put $b(\alpha) = \dim_H L(\alpha)$, where \dim_H denotes the Hausdorff dimension. Define
\[
I(\alpha) = \alpha(1 - b(\alpha)).
\]
Put $\alpha_{\min} = \log \frac{\sqrt{5} + 1}{2}$.

Main Theorem. The following holds:

- for every $n \geq 1$ and every $\alpha \in (2\gamma + \frac{16}{n}, \infty)$,
\[
\lambda \left\{ \frac{2}{n} \log q_n \geq \alpha \right\} \leq C_{\alpha} e^{-I(\alpha)n};
\]
- for every $n \geq 1$ with $\alpha_{\min} < 2\gamma - \frac{16}{n}$ and every $\alpha \in (\alpha_{\min}, 2\gamma - \frac{16}{n})$,
\[
\lambda \left\{ \frac{2}{n} \log q_n \leq \alpha \right\} \leq C_{\alpha} e^{-I(\alpha)n},
\]
where $C_\alpha := e^{16(|I'(\alpha)|+1)}$.

The Main Theorem follows from a combination of the multifractal analysis [8, 13] and the thermodynamic formalism [3, 15] associated with the Gauss transformation $T: (0, 1) \to (0, 1)$ given by $Tx = 1/x - \lfloor 1/x \rfloor$. It is well-known (see e.g., [7] or Lemmas 2.1 and 2.2) that there exists a constant $C > 1$ such that for any irrational $x \in (0, 1)$ and $n \geq 1$,
\[
C^{-1} q_n^2(x) \leq |DT^n(x)| \leq C q_n^2(x).
\]
These double inequalities permit to translate the analysis of $\log q_n$ to that of the Birkhoff sum of the function $\log |DT|$ under the iteration of T. The $L(\alpha)$ is the set of irrationals in $(0, 1)$ for which the Lyapunov exponent for T is equal to α.

Then \(L(\alpha) \neq \emptyset \) holds if and only if \(\alpha \in [\alpha_{\min}, \infty) \), see [8, 13]. The function \(\alpha \in [\alpha_{\min}, \infty) \mapsto b(\alpha) \) is known as the dimension spectrum of Lyapunov exponents. It is a non-convex function, analytic on \((\alpha_{\min}, \infty) \) [8, Theorem 1.3], and \(b(\alpha) = 1 \) holds if and only if \(\alpha = 2\gamma \). Hence, \(\alpha \in (\alpha_{\min}, \infty) \mapsto I(\alpha) \) is analytic and \(I(\alpha) = 0 \) holds if and only if \(\alpha = 2\gamma \).

The graph of the function \(\alpha \in [\alpha_{\min}, \infty) \mapsto I(\alpha) \) is shown in FIGURE 1. Since \(b(\alpha_{\min}) = 0 \) by [8, Theorem 1.3], \(I(\alpha_{\min}) = \alpha_{\min} \) holds. Since \(I \) is convex by Lemma 2.3, \(I'(\alpha) \) increases for \(\alpha > 2\gamma \). Since \(b(\alpha) \to 1/2 \) as \(\alpha \to \infty \) by [8, Theorem 1.3], the asymptote exists with slope \(1/2 \).

Since \(T \) has infinitely many branches and \(\log |DT| \) is unbounded, some finite approximations are necessary for a proof of the Main Theorem. We take finite subsystems, and estimate the exponent of the deviation probabilities in terms of entropy and Lyapunov exponents of invariant probability measures of \(T \) supported on the subsystems (Lemma 3.1). Then, using the variational formula for the dimension spectrum [13] we relate the exponent to the function \(I \). At the very end we use the convexity and the smoothness of \(I \) (in fact, \(C^2 \) is sufficient) to bound error terms arising from the nonlinearity of \(T \) and deduce the desired upper bounds.

From [1, Theorem B] the following asymptotic lower bounds hold:

- for every \(\alpha \in (2\gamma, \infty) \),
 \[
 \liminf_{n \to \infty} \frac{1}{n} \log \lambda \left\{ \frac{2}{n} \log q_n \geq \alpha \right\} \geq -I(\alpha);
 \]

- for every \(\alpha \in (\alpha_{\min}, 2\gamma) \),
 \[
 \liminf_{n \to \infty} \frac{1}{n} \log \lambda \left\{ \frac{2}{n} \log q_n \leq \alpha \right\} \geq -I(\alpha).
 \]

This means that the exponent \(I(\alpha) \) in the Main Theorem is the best possible one. However, the result below on sample means of independent and identically distributed (i.i.d.) random variables leaves the possibility that the upper bounds in the Main Theorem can be improved.

Theorem 1. [2, Theorem 1] Let \((X_n)_{n \geq 1}\) be a sequence of i.i.d. random variables with positive variance with mean 0. Assume the moment generating function \(c(t) = \)
\[\log E(e^{tX_1}) \text{ is finite on some interval } U. \] Let \(\alpha > 0 \) and \(t_\alpha \in U \) be such that \(J(\alpha) := \sup_{t \in U} e^{t_\alpha - t} = e^{t_0 - t}. \) Then for every \(\alpha > 0, \)
\[P(S_n \geq \alpha n) = \frac{b_n(1 + o(1))}{\sqrt{2\pi n}} e^{-J(\alpha)n}, \]
where \(S_n = X_1 + \cdots + X_n \), \((b_n)_{n \geq 1}\) is a sequence of constants and \(\inf_n b_n > 0, \sup_n b_n < \infty. \)

In [2] it was shown that \(\frac{b_n(1 + o(1))}{\sqrt{2\pi n}} \leq 1, \) and so \(P(S_n \geq \alpha n) \leq e^{-J(\alpha)n} \) holds. Such an exponential upper bound was obtained in [5], and follows from Cramér’s theorem on the LDP, see [4, pp.26-27]. In the non-i.i.d. case, results, for uniformly hyperbolic systems on compact metric spaces with Hölder continuous functions are available [4 Lemma A.1], [17 Theorem 1], which provide upper and lower bounds in agreement with the i.i.d. case in Theorem [1]. The bounds in [4 Lemma A.1] are valid only for those \(\alpha \) close to the mean.

2. Preliminary lemmas

Before entering the proof of the Main Theorem we need some preliminary lemmas. For each integer \(n \geq 1 \) denote by \(\mathcal{A}^n \) the collection of maximal open intervals on which \(T^n \) is well-defined and continuous. Notice that \(q_n \) is constant on each element \(A \in \mathcal{A}^n \). This constant value is denoted by \(q_n(A) \). For a finite set \(\mathcal{B} \) of \(\mathcal{A}^n \) denote by \([\mathcal{B}]\) the union of all its elements.

Lemma 2.1. For every integer \(n \geq 1 \) and every \(A \in \mathcal{A}^n \),
\[\frac{1}{2} \leq \frac{\lambda(A)}{q_n(A)^2} < 1. \]

Proof. Assume \(n = 1 \). Each \(A \in \mathcal{A}^1 \) has the form \(A = (1/(k + 1), 1/k) \) for some \(k \geq 1 \). Then \(q_1(A) = k \) and so the double inequalities hold. Assume \(n \geq 2 \) and let \(A \in \mathcal{A}^n \). For each \(i = 1, \ldots, n \), \(p_i \), \(q_i \) are constant on \(A \). Denote these constant values by \(p_i(A) \) and \(q_i(A) \). By [7 p.18], the endpoints of the interval \(A \) are \(p_n(A)/q_n(A) \) and \((p_n(A) + p_{n-1}(A))/(q_n(A) + q_{n-1}(A)) \). As a consequence,
\[\lambda(A) = \frac{1}{q_n(A)(q_n(A) + q_{n-1}(A))}. \]
Since \(q_n(A) > q_{n-1}(A) \) we obtain the desired double inequalities. \(\square \)

The next lemma used to control the nonlinearity of \(T \) can be proved by elementary calculations and hence omitted. See e.g., [6 p.253 Claim] for details.

Lemma 2.2. For every integer \(n \geq 1 \) and every \(A \in \mathcal{A}^n \),
\[\sup_{x,y \in A} \frac{DT^n(x)}{DT^n(y)} \leq e^{16}. \]

Write \(\phi = -\log |DT| \) and denote by \(\mathcal{M}_\phi(T) \) the set of \(T \)-invariant Borel probability measures on \((0,1)\) for which \(\phi \) is integrable. For each \(\mu \in \mathcal{M}_\phi(T) \) denote by \(h(\mu) \) the Kolmogorov-Sinaï entropy of \(\mu \) with respect to \(T \), and define \(\chi(\mu) = -\int \phi d\mu \). Put \(F(\mu) = h(\mu) - \chi(\mu) \). It is known [18] that \(\chi(\mu) \geq \alpha_{\min} \) and \(F(\mu) \leq 0. \)
Lemma 2.3. For every $\alpha \in [\alpha_{\min}, \infty)$,
\[
I(\alpha) = \inf\{-F(\mu) : \mu \in M_\phi(T), \chi(\mu) = \alpha\}.
\]
In particular, I is convex.

Proof. Denote the infimum by $\tilde{I}(\alpha)$. Choose a sequence $\{\nu_n\}$ in $M_\phi(T)$ with $\chi(\nu_n) = \alpha$ and $\lim h(\nu_n)/\chi(\nu_n) = b(\alpha)$. Then $\tilde{I}(\alpha) \leq -\lim F(\nu_n) = I(\alpha)$. To show the reverse inequality, choose a sequence $\{\mu_n\}$ in $M_\phi(T)$ with $\chi(\mu_n) = \alpha$ and $-F(\mu_n) \to \tilde{I}(\alpha)$ as $n \to \infty$. Fix a measure $\nu \in M_\phi(T)$ with $\chi(\nu) < \alpha$. For each n large enough fix $p_n \in (0, 1]$ with $\chi(p_n\mu_n + (1 - p_n)\nu) = \alpha$. Then $\lim p_n \to 1$ and hence $\lim h(p_n\mu_n + (1 - p_n)\nu) = \alpha - \tilde{I}(\alpha)$. The variational formula in [13] gives
\[
b(\alpha) = \sup \left\{ \frac{h(\mu)}{\chi(\mu)} : \mu \in M_\phi(T), \chi(\mu) = \alpha \right\},
\]
and therefore $\alpha^{-1}(\alpha - \tilde{I}(\alpha)) \leq b(\alpha)$, namely $I(\alpha) \leq \tilde{I}(\alpha)$ as required. The convexity of I is a consequence of the affinity of entropy and Lyapunov exponent on measures.

3. Upper bound with best exponential rate

We are in position to prove the Main Theorem.

Lemma 3.1. Let $n \geq 1$ be an integer and let $\alpha > 0$. Let $B^n(\alpha)$ be a non-empty finite subset of $\{A \in F^n : (2/n)\log q_a(A) \geq \alpha\}$. There exists a measure $\mu \in M_\phi(T)$ such that
\[
\chi[B^n(\alpha)] \leq e^{16e^{F(\mu)n}} \quad \text{and} \quad \chi(\mu) \geq \alpha - \frac{16}{n}.
\]

Proof. Put $\hat{T} = T^n$ and $\Lambda = \bigcap_{m=0}^\infty \hat{T}^{-m}[B^n(\alpha)]$. Then Λ is a compact set and $\hat{T}|_\Lambda : \Lambda \to \Lambda$ is continuous. Put $\hat{\phi} = -\log |D\hat{T}|$ and fix $y_0 \in \Lambda$. Lemma 2.2 implies $\sum_{i=0}^{m-1} (\hat{\phi}(\hat{T}^i(x)) - \hat{\phi}(\hat{T}^i(y))) \leq 16$ for every $m \geq 1$, every $x, y \in \Lambda$ such that $\hat{T}^i(x), \hat{T}^i(y)$ belong to the same element of $B^n(\alpha)$ for each $i = 0, \ldots, m - 1$. The variational principle [3, Lemma 1.20] gives
\[
\sup_{\nu \in M(\hat{T}|_\Lambda)} \left(h_{\hat{T}|_\Lambda}(\hat{\nu}) + \int \hat{\phi} d\hat{\nu} \right) = \lim_{m \to \infty} \frac{1}{m} \log \left(\sum_{x \in (\hat{T}|_\Lambda)^{-m}(y_0)} \exp \sum_{i=0}^{m-1} \hat{\phi}(\hat{T}^i(x)) \right),
\]
with $M(\hat{T}|_\Lambda)$ the space of $\hat{T}|_\Lambda$-invariant Borel probability measures endowed with the weak*-topology and $h_{\hat{T}|_\Lambda}(\hat{\nu})$ the entropy of $\hat{\nu} \in M(\hat{T}|_\Lambda)$ with respect to $\hat{T}|_\Lambda$.

By Lemma 2.2 $\inf_{\nu} e^{\hat{\phi}} \geq e^{-16} \chi[\nu]$ holds for every $\nu \in D^n$. Hence
\[
\sum_{x \in (\hat{T}|_\Lambda)^{-m}(y_0)} \exp \left(\sum_{i=0}^{m-1} \hat{\phi}(\hat{T}^i(x)) \right) \geq \left(\inf_{y' \in \Lambda} \sum_{x \in (\hat{T}|_\Lambda)^{-1}(y')} e^{\hat{\phi}(x)} \right)^m \geq \left(e^{-16} \chi[B^n(\alpha)] \right)^m.
\]
Taking logs of both sides, dividing by \(m \) and plugging the result into the previous inequality gives

\[
\lim_{m \to \infty} \frac{1}{m} \log \left(\sum_{x \in \mathcal{B}(\alpha)_{-m} \cap \mathcal{B}(\alpha)} \exp \left(\sum_{i=0}^{m-1} \phi (\mathcal{T}^i(x)) \right) \right) \geq \log \lambda [\mathcal{B}^n(\alpha)] - 16.
\]

Plugging this into the previous inequality yields

\[
\sup_{\tilde{\nu} \in \mathcal{M}(\mathcal{T}_\alpha)} \left(h_{\mathcal{T}_\alpha}(\tilde{\nu}) + \int \hat{\phi} d\tilde{\nu} \right) \geq \log \lambda [\mathcal{B}^n(\alpha)] - 16.
\]

Since \(\mathcal{M}(\mathcal{T}_\alpha) \) is compact and \(\mathcal{M}(\mathcal{T}_\alpha) \ni \tilde{\nu} \mapsto h_{\mathcal{T}_\alpha}(\tilde{\nu}) + \int \hat{\phi} d\tilde{\nu} \) is upper semi-continuous, there exists a measure \(\tilde{\mu} \in \mathcal{M}(\mathcal{T}_\alpha) \) which attains this supremum. The measure \(\mu = (1/n) \sum_{i=0}^{n-1} \tilde{\mu} \circ \mathcal{T}^{-i} \) is in \(\mathcal{M}_\phi(T) \). From the second inequality in Lemma 2.1 and Lemma 2.2, \(\inf \lambda [\mathcal{B}(\alpha, c)] \log |D \mathcal{T}| \geq an - 16 \) holds. Hence \(\chi(n) = (1/n) \int \log |D \mathcal{T}| d\tilde{\mu} \geq \alpha - 16/n \) as required. \(\square \)

Proof of the Main Theorem. Let \(n \geq 1 \) be an integer. We concentrate on the case \(\alpha \in (2\gamma + \frac{16}{n}, \infty) \) since the case \(\alpha \in (\alpha_{\min}, 2\gamma - \frac{16}{n}) \) is identical with the obvious modifications of statements. Denote by \(\lambda_n \) the distribution of \((2/n) \log q_n \).

For each \(c > 1 \) there is a finite subset \(\mathcal{B}(\alpha, c) \) of \(\mathcal{B}^n \) such that \(\lambda_n([\alpha, \infty)) \leq c\lambda [\mathcal{B}^n(\alpha, c)] \). By Lemma 3.1 there exists \(\mu \in \mathcal{M}_\phi(T) \) which satisfies \(\chi(\mu) \leq e^{16} \exp(F(\mu)n) \) and \(\chi(\mu) \geq \alpha - 16/n \). Therefore

\[
\lambda_n([\alpha, \infty)) \leq ce^{16} \exp(F(\mu)n)
\]

\[
\leq ce^{16} \exp \left(\sup \left\{ F(\mu) : \mu \in \mathcal{M}_\phi(T), \chi(\mu) \geq \alpha - \frac{16}{n} \right\} \right)
\]

\[
\leq ce^{16} e^{-\inf_{\beta \in [\alpha-16/n, \infty)} I(\beta)\} \}
\]

\[
= ce^{16} e^{-I(\alpha-16/n)n}
\]

\[
\leq ce^{16} e^{-I(\alpha)n+1} e^{-I(\alpha)n}.
\]

For the last inequality we have used the convexity and the smoothness of \(I \). Since \(c > 1 \) is arbitrary, we obtain \(\lambda_n([\alpha, \infty)) \leq C_\alpha e^{-I(\alpha)n} \) as required. \(\square \)

Acknowledgments. This research was partially supported by the Grant-in-Aid for Young Scientists (A) of the JSPS 15H05435 and the Grant-in-Aid for Scientific Research (B) of the JSPS 16KT0021.

References

[1] V. Araújo, A. I. Bufetov, A large deviations bound for the Teichmüller flow on the moduli space of abelian differentials, Ergodic Theory and Dynamical Systems 31 (2011) 1043–1071.

[2] R. R. Bahadur, R. Ranga Rao, On deviations of the sample mean, Ann. Math. Statist. 31 (1960) 1015–1027.

[3] R. Bowen, *Equilibrium states and the ergodic theory of Anosov diffeomorphisms*, Second revised edition. Lecture Notes in Mathematics, 470 (2008) Springer-Verlag, Berlin.

[4] J.-R. Chazottes, P. Collet, Almost-sure central limit theorems and the Erdös-Rényi law for expanding maps of the interval. Ergodic Theory and Dynamical Systems 25 (2005) 419–441.
[5] H. Chernoff, A measure of asymptotic efficiency for tests of hypothesis based on the sum of observations. Ann. Math. Statist. 23 (1952) 493–507.

[6] D. Fiebig, U.-R. Fiebig, M. Yuri, Pressure and equilibrium states for countable state Markov shifts. Israel J. Math. 131 (2002) 221–257.

[7] M. Iosifescu, M. C. Kraaikamp, Metric theory of continued fractions. Kluwer Academic, Dordrecht, 2002

[8] M. Kesseböhmer, B. O. Stratmann, A multifractal analysis for Stern-Brocot intervals, continued fractions and Diophantine growth rates. J. reine angew. Math. 605 (2007) 133–163.

[9] A. Y. Khinchin, Metrische Kettenbruchprobleme. Composito Math. 1 (1935) 361–382.

[10] P. Lévy, Théorie de l’addition des variables aléatoires. Paris, Gauthier-Villars (1937)

[11] G. Misevičius, Estimate of the reminder term in the limit theorem for the denominators of continued fractions. Lithuanian Math. J. 21 (1981) 245–253.

[12] T. Morita, Local limit theorem and distribution of periodic orbits of Lasota-Yorke transformations with infinite Markov partition. J. Math. Soc. Japan 46 (1994) 309–343.

[13] M. Pollicott, B. Weiss, Multifractal analysis of Lyapunov exponent for continued fraction and Manneville-Pomeau transformations and applications to Diophantine Approximation. Commun. Math. Phys. 207 (1999) 145–171.

[14] F. Rassoul-Agha and T. Seppäläinen, A course on large deviations with an introduction to Gibbs measures, Graduate Studies in Mathematics, 162. American Mathematical Society, Providence, RI, 2015.

[15] D. Ruelle, Thermodynamic formalism. The mathematical structures of classical equilibrium statistical mechanics. Second edition. Cambridge University Press (2004)

[16] B. Vallée, Opérateurs de Ruelle-Mayer généralisés et analyse des algorithmes d’Euclide et de Gauss. Acta Arith. 81 (1997) 101–144.

[17] S. Waddington, Large deviation asymptotics for Anosov flows. Ann. Inst. Henri Poincaré 13 (1996) 445–484.

[18] P. Walters, Invariant measures and equilibrium states for some mappings which expand distances. Trans. Amer. Math. Soc. 236 (1978) 121–153.

Keio Institute of Pure and Applied Sciences (KiPAS), Department of Mathematics, Keio University, Yokohama, 223-8522, JAPAN
E-mail address: hiroki@math.keio.ac.jp
URL: http://www.math.keio.ac.jp/~hiroki/