Chromatin structure is dynamically organized by chromatin remodelers, motor protein complexes which move and remove nucleosomes. The regulation of remodeler action has recently been proposed to underlie a kinetic proofreading scheme which combines the recognition of histone-tail states and the ATP-dependent loosening of DNA around nucleosomes. Members of the ISWI-family of remodelers additionally recognize linker length between nucleosomes. Here, we show that the additional proofreading step involving linker length alone is sufficient to promote the formation of regular arrays of nucleosomes. ATP-dependent remodeling by bidirectional motors is shown to reinforce positioning as compared to statistical positioning.

DOI: 10.1103/PhysRevLett.109.118103

PACS numbers: 87.14.gk, 87.15.A—, 87.16.Nn

Eukaryotic DNA is organized in the cell nucleus in the form of nucleosomes in which 147 base pairs (bp) of DNA are wrapped around a protein complex formed from, in general, eight histone proteins. Nucleosomes and the extranucleosomal (or linker) DNA form linear chromatin fibers that can undergo further packing into higher-order structures [1]. Apart from their role in chromatin condensation, the presence of nucleosomes directly affects transcription since they block the access to DNA. The molecular basis of nucleosome positioning is currently under intense scrutiny, combining efforts from structural biology, high-throughput genome and proteome experiments, single-molecule biophysics and modeling. Current attempts at an understanding of the underlying mechanisms have uncovered three major levels: (i) sequence-dependence of nucleosomes via the associated elastic effects on DNA wrapping [2–4]; (ii) statistical positioning along DNA, for which nucleosomes are effectively considered as a one-dimensional fluid [5,6], and (iii), most recently, ATP-dependent chromatin remodeling [7–11]. Chromatin remodelers are multicomponent complexes performing multiple tasks on nucleosomes and DNA: recognition of histone tails and their modifications, is crucial. The second step is the ATP-dependent action of the molecular motor which disrupts contacts between the wrapped DNA and the histone octamer. We write the remodeling reaction in the following scheme [19], where \(R \) represents the remodeler, \(N \) the nucleosome, \(I \) the remodeler-nucleosome complex, while \(I^* \) is the “activated” and \(I^T \) the translocated complex.

\[
R + N \xrightarrow{k_+} I \xrightarrow{m} I^* \xrightarrow{p} I^T
\]

The reactions with rate \(m \) and \(p \) are irreversible since they involve ATP consumption. The reaction scheme is completed by the dissociation reactions from the activated intermediate state \(I^* \) and the translocated state \(I^T \) with rates \(m^* \) and \(p^* \), respectively. It is straightforward to write down the rate equations for this reaction scheme [19]. Looking at the stationary states, one finds for the ratios of

\[
\frac{m^*}{m} = \frac{p^*}{p}
\]
products and educts the expression $[R^*]/([R][N]) = m_k^+ / [(k_- + m)(m^+ + p)]$. Considering two reactions involving an incorrect (1) and a correct (2) substrate, following Hopfield [20] we can define the error fraction

$$F = \frac{[I^*]_L}{[I^*]_R} = \frac{m_2 k_{+2} (k_{-1} + m_1) (m_1^* + p_1)}{m_1 k_{+1} (k_{-2} + m_2) (m_2^* + p_2)}.$$

(1)

This scheme has recently been applied to a member of the ISWI family of remodelers, ACF [18,19]. ACF recognizes a basic patch on the N-terminal tail of histone H4. Based on recent experimental data [14–16,18], favored and disfavored reactions were shown to differ by a factor of $F = 300$ [19]. The capacity of ACF to recognize DNA linker-length is described in our model by a linker-length dependent translocation rate $p = p(\ell)$, hence, it is useful to consider the ratio $[I^*]/[I^*] = p(\ell)/p^*$ and one can introduce an additional error fraction for left- or right-directed motion via

$$F_T = \frac{[I^*]_L}{[I^*]_R} = \frac{p(\ell)_L}{p(\ell)_R}.$$

(2)

According to the experiments by Narlikar et al., neither the activation of the nucleosome nor the dissociation process depend on the translocation direction. One then has $(p^*_L/p^*_R)([I^*]_L/[I^*]_R) = 1$ and the error ratio becomes $F_T = p(\ell)_L/p(\ell)_R$, for the directional proofreading step.

In order to study remodeling of nucleosomes by ACF, we simulate nucleosome positioning by kinetic Monte Carlo simulations by considering activated nucleosome-remodeler complexes that move along one a-dimensional lattice in the presence of ATP. Simulation details are described in the Supplemental Material [21].

Single nucleosome positioning.—To calibrate our model we start with a single nucleosome to capture the nucleosome positioning experiments by Narlikar et al. which use a FRET analysis of nucleosomes on positioning sequences [14–16]; a similar modeling strategy for nucleosome remodelling has recently been employed by Forties et al. [22]. The displacement of the complex is, as is standard for motor complexes [23], assumed to occur with a Michaelis-Menten rate $p(\ell) = p_m(\ell)[\text{ATP}]/[\text{ATP}] + K_M$, here with a K_M value of 11 μM p_m is the maximum rate at saturation and is taken as dependent on linker-length ℓ according to

$$p_m(\ell) = \begin{cases} 0, & \text{if } \ell < \ell_{\min} \\ k_0 e^{\ell}, & \text{if } \ell_{\min} < \ell < \ell_{\max} \\ k_0 e^{\ell_{\max}}, & \text{if } \ell > \ell_{\max} \end{cases}$$

(3)

with the parameters $k_0 = 0.0059$ min$^{-1}$ (2 mM ATP), $a = 0.0911$ bp$^{-1}$ (2 mM ATP), $\ell_{\min} = 20$ bp, and $\ell_{\max} = 60$ bp. The values of ℓ_{\min} and ℓ_{\max} are taken from experiment; they refer to the DNA linker-sensitivity range of the ACF remodeler which is limited below due to steric reasons and limited above by remodeler size. Fitting the model to the data we need to determine the last free parameter which is the step size of the motor. We obtain the best agreement with a value of 13 bp, in accordance with [14], see Figure 1; a further data set is discussed in [21].

Nucleosome arrays.—We next use our calibrated model to study nucleosome arrays on a one-dimensional lattice of length L and show that the length dependence of p is crucial in generating a collective positioning effect. Based on our mononucleosome result yielding a step-size of 13 base pairs, we normalize our lattice by this length. A nucleosome thus occupies $S = 147$ bp/13 bp = 11 lattice sites. Fixed boundary conditions are imposed which are commonly used to model a strongly positioned nucleosome [5,6], as well as a minimal distance of two nucleosomes as given by one lattice site.

In order to limit the parameter space of all kinetic parameters in our proofreading scheme, we consider the set of three rates which we denote by (k_{ads}, k_{des}, p). Here, the translocation rate p is either given as above, or we use a length-independent (constant) rate for comparison, with the value chosen as the maximal value of $p(\ell)$. The two rates k_{ads} and k_{des} collect all on- and off-rates of our proofreading scheme into effective adsorption and desorption rates, a notation inspired by [8]. In our case, we have $k_{des} = m^+ - p^*$, and $k_{ads} = m_{k^+} / (m + k_-)$ (see the Supplement for the derivation and the determination of parameter values). Further, we do not include explicit thermal sliding effects in our simulations, in contrast to, e.g., [8]. This is justified under the experimentally based assumption that the positioning of nucleosomes by ACF overrides DNA sequence dependence and hence sequence-dependent local free energy barriers are absent in our system. Only in the presence of such local barriers, thermal fluctuations can...
nucleosomes was developed with the purpose of simulating nuclease digestion experiments. The nucleosomes are considered to be noninteracting, nonpenetrating and with fixed positions on DNA. The probability of a DNA site being free is computed by evaluating all possible configurations given by a fixed number of nucleosomes on a DNA sequence and weighing them. The resulting probability of nucleosome occupancy depends on the length of the DNA sequence, the number of sites each nucleosome occupies, and the mean total linker-length of DNA, which for our set up is \(l = (L - SN)/N = 5 \) lattice units (65 bp). It is apparent that the statistical positioning signal is the weakest of the three considered.

To further quantify the effect due to the length-dependent rate, we have computed the distribution of linker lengths \(P_l \) over the array, where \(l \) is taken as the difference between the end positions of the nucleosomes. The result is shown in Figure 2 (bottom). The distribution peaks at \(l = 4 \) corresponding to a value of 52 bp. This value, which is close to the experimentally observed values [14], comes about by the fact that \(4 \times 13 \) bp is the largest integer \(<60 \) bp which we used for the sensitivity range of the remodeler: it is thus directly related to the properties of the remodeler itself, and may hence vary between different (remodeler) species. Data are shown, for comparison, for two densities and for both length and length-independent (maximal) rates. For smaller densities, the linker length distribution becomes more spread out but retains an exponential tail, while for a constant rate it is a pure exponential.

We now turn to the variably processive motor for which we allow the lattice to fill with given adsorption and desorption rates. Figure 3 (top) shows that for both constant maximal translocation rate and the length-dependent rate the obtainable maximal filling densities are essentially identical for both types of rates, except near \(k_{\text{des}}/k_{\text{ads}} = 0 \). For a constant translocation rate the maximal filling density for \(k_{\text{des}} \rightarrow 0 \) exceeds the value of the jamming density of a one-dimensional lattice, \(\varphi_{\text{jamming}} = 0.75 \) [24], and turns singular near \(k_{\text{des}} = 0 \). By contrast, even for \(k_{\text{des}} = 0 \), the length-dependent rate avoids jamming effects. With the knowledge of the attainable maximal densities for all rate ratios \(k_{\text{des}}/k_{\text{ads}} = 0 \), it suffices again to take density \(\varphi \) as our basic variable. This is demonstrated in Figure 3 (middle) which compares the two-point correlation function for a perfectly processive and a nonperfectly processive motor at about equal densities, with consistent results. The resulting difference in nucleosome positioning between the length-dependent and length-independent rates emerges clearly from the picture. A comparison to statistical positioning as obtainable from the Tonks gas leads to the same trend as found before from the Kornberg-Stryer result in the site occupancy [6]. While Fig. 3 (middle) refers to stationary profiles, we can also ask how the remodeler-nucleosome complexes behave in the initial transient before reaching stationarity. Considering the
Conclusions.—We have studied chromatin remodeling of nucleosome arrays with birecational remodelers like ISWI/ACF, based on experimental data available for single nucleosomes. The selection of remodeling direction is performed under conditions of ATP-dependent kinetic proofreading which, aside from targeting the proper nucleosome to be remodeled, also selects the proper DNA substrate for remodeler action. We find that positioning favors a distinct linker-length scale whose value is directly related to the molecular sensitivity range of the remodeler, the selection of which in vivo may also be related to the formation of higher-order structures. ATP-dependent remodeling favors positioning over a longer length scale than purely statistical positioning. ATP-dependent remodeling by ISWI/ACF can not be understood as a mere increase of temperature, in the sense that ATP-dependent processes facilitating positioning by helping the nucleosomes overcome energetic barriers of the underlying DNA sequence. Remodeling has been interpreted in the sense that the ATP-dependent processes help to position in a long-range (global) manner, while nucleosomes positioning themselves locally [25]. Our results show that the feature of directionality coupled to the proofreading scheme shows the appearance of an intrinsic long-range scale for the linker length. We conclude that details of the remodeler sensitivity range are relevant for large-scale nucleosome repositioning. We expect that the issue of local vs. global positioning effects due to remodelers will enable further advances also on still more global questions like the structure of the chromatin fibre. This will require an inclusion of sequence effects, neglected here on the basis of in vitro experiments on positioning sequences [14]. Given that the remodeler-based effect we describe here alone is enough to enhance positioning in the vicinity of a strong boundary, it is also immediately clear that multiple strongly positioned or “pinned” nucleosomes because of sequence-preferences will contribute to the creation of long-range ordered one-dimensional arrays. In this sense, active remodeling and sequence-based positioning are effects that can be viewed as acting in the same direction. Our model has been developed to describe, to a first approximation, the repression of a homogeneous chromatin state by ISWI/ACF remodelers. We have checked the robustness of this result against random variations of the translocation rate by up to 10% of its value. Such random variation of the translocation rate can be understood as arising from a heterogeneous chromatin environment. Our model is not meant to apply to highly heterogeneous chromatin states, as they may arise in many instances of transcriptional activation due to the presence of several activators and coactivators on the DNA fiber.

We thank G. J. Narlikar for allowing us to use her experimental data on the single nucleosome positioning. G. J. Narlikar, P. Korber, F. Pugh, J.-M. Victor, and the late J. Widom are thanked for discussion. A. M. F. thanks the MPG for support by a postdoctoral grant through the MPG-CNRS GDRE “Systems Biology.”

FIG. 3 (color online). Top: Maximal filling density of the array as a function of desorption (adsorption) rate ratio $k_{\text{des}}/k_{\text{ads}}$ for the two different translation-law models. Middle: Two-point correlation function for different rates, both for approximately similar densities in the presence of nucleosome adsorption (desorption), observed after 60 min of simulation. A comparison to the Tonks gas is also shown. Bottom: Effective diffusion coefficient of the first nucleosome in the array. Short-time and long-time behavior (see inset) for both translocation laws and for low and high filling densities.

motion of the first complex next to the boundary, we can determine the effective diffusion coefficient $D = \langle (\Delta l)^2 \rangle / 2t$, where $\langle (\Delta l)^2 \rangle$ is the mean-squared deviation of the complex position on the lattice. We find that the initial regimes are characterized by a significant maximum of D at early times in the case of $p(\ell)$; the behavior is more pronounced at low densities. For long times, both constant and length-dependent rates display identical decay over time ultimately as $1/t$, with a density-dependent crossover-region (see inset).
[1] H. Schiessel, J. Phys. Condens. Matter 15, R699 (2003).
[2] E. Segal et al., Nature (London) 442, 772 (2006).
[3] V. Miele, C. Vaillant, Y. d’Aubenton-Carafa, C. Thermes and T. Grange, Nucleic Acids Res. 36, 3746 (2008).
[4] G. Chevereau, L. Palmeira, C. Thermes, A. Arneodo, and C. Vaillant, Phys. Rev. Lett. 103, 188103 (2009).
[5] R. D. Kornberg and L. Stryer, Nucleic Acids Res. 16, 6677 (1988).
[6] W. Möbius and U. Gerland, PLoS Comput. Biol. 6, e1000891 (2010).
[7] V. B. Teif and K. Rippe, Nucleic Acids Res. 37, 5641 (2009).
[8] R. Padinhateeri and J. F. Marko, Proc. Natl. Acad. Sci. U.S.A. 108, 7799 (2011).
[9] Z. Zhang, C. J. Wippo, M. Wal, E. Ward, P. Korber, and B. F. Pugh, Science 332, 977 (2011).
[10] T. Gkikopoulos et al., Science 333, 1758 (2011).
[11] A. Arnéodo et al., Phys. Rep. 498, 45 (2011).
[12] C. R. Clapier and B. R. Cairns, Annu. Rev. Biochem. 78, 273 (2009).
[13] A. E. Leschziner, Curr. Opin. Struct. Biol. 21, 709 (2011).
[14] J. G. Yang, T. S. Madrid, S. Sevastopoulos, and G. J. Narlikar, Nat. Struct. Mol. Biol. 13, 1078 (2006).
[15] L. R. Racki, J. G. Yang, N. Naber, P. D. Partensky, A. Acevedo, T. J. Purcell, R. Cooke, Y. Cheng, and G. J. Narlikar, Nature (London) 462, 1016 (2009).
[16] T. R. Blosser, J. G. Yang, M. D. Stone, G. J. Narlikar, and X. Zhuang, Nature (London) 462, 1022 (2009).
[17] R. Blossey and H. Schiessel, HFSP J. 2, 167 (2008).
[18] G. J. Narlikar, Curr. Opin. Chem. Biol. 14, 660 (2010).
[19] R. Blossey and H. Schiessel, Biophys. J. 101, L30 (2011).
[20] J. J. Hopfield, Proc. Natl. Acad. Sci. U.S.A. 71, 4135 (1974).
[21] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.109.118103 for details.
[22] R. A. Forties et al., Nucleic Acids Res. 39, 8306 (2011).
[23] M. E. Fisher and A. B. Kolomeisky, Physica (Amsterdam) 274A, 241 (1999).
[24] J. W. Evans, Rev. Mod. Phys. 65, 1281 (1993).
[25] P. D. Partensky and G. J. Narlikar, J. Mol. Biol. 391, 12 (2009).