Comparison of the Antibodies in Lymphocyte Supernatant and Antibody-Secreting Cell Assays for Measuring Intestinal Mucosal Immune Response to a Novel Oral Typhoid Vaccine (M01ZH09)

B. D. Kirkpatrick,1* Matthew D. Bentley,2 Anette M. Thern,2 Catherine J. Larsson,1 Cassandra Ventrone,1 Meera V. Sreenivasan,1 and Lou Bourgeois3

University of Vermont College of Medicine, Department of Medicine, Unit of Infectious Diseases, Burlington, Vermont1; Microscience Limited, Wokingham, Berkshire, United Kingdom2; and Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland3

Received 4 May 2005/Returned for modification 27 May 2005/Accepted 10 June 2005

Antibody-secreting cell (ASC) and antibodies in lymphocyte supernatant (ALS) assays are used to assess intestinal mucosal responses to enteric infections and vaccines. The ALS assay, performed on cell supernatants, may represent a convenient alternative to the more established ASC assay. The two methods, measuring immunoglobulin A to Salmonella enterica serovar Typhi lipopolysaccharide, were compared in volunteers vaccinated with a live-attenuated typhoid vaccine M01ZH09. The specificity of the ALS assay compared to the ASC assay was excellent (100%), as was sensitivity (82%). The ALS assay was less sensitive than the ASC assay at ≤42 spots/10⁶ peripheral blood lymphocytes.

After vaccination or infection, antigen-specific antibody (immunoglobulin [Ig])-secreting cells briefly circulate systemically before homing to mucosal effector sites, such as the intestine (7, 8, 12). Both the solid-phase antibody-secreting cell (ASC; or enzyme-linked immunospot [ELISPOT]) assay and the human lymphocyte supernatant (antibodies in lymphocyte supernatant [ALS]) assay are used semiquantitatively to assay mucosal immune responses (2–4, 6, 7, 11). The ASC assay enumerates “spots” formed by Ig-producing cells bound to a nitrocellulose plate after incubation of peripheral blood lymphocytes (PBL) with specific antigen, whereas the ALS assay measures, by enzyme-linked immunosorbent assay, antibody in the supernatant of incubated PBL (2, 6, 7). The ALS assay has greater flexibility than the ASC assay, since antibody measurements can be performed later on frozen lymphocyte supernatants (2–4, 11). Comparison of the ALS and ASC assays has been extensively reviewed for tuberculosis and cholera, but the assays have not been compared for a systemic enteric illness such as a typhoid vaccine model (11, 13, 14). We compared the sensitivity and specificity of ALS and ASC assays in 31 adult volunteers vaccinated with a candidate oral typhoid vaccine, M01ZH09 (Salmonella enterica serovar Typhi [Ty2 S. Typhi ssaV’aroC’]) (5, 9, 10).

An open-label, randomized trial was performed at the University of Vermont, approved by the institutional review board, and carried out under a Food and Drug Administration investigational new drug application. Thirty-one healthy adult volunteers aged 18 to 50 years old with no history of typhoid or other enteric infections were enrolled. Thirty-one healthy adult volunteers aged 18 to 50 years old with no history of typhoid or other enteric infections were enrolled. The study protocol was reviewed by the Advisory Committee on Human Vaccine Trials at the University of Vermont College of Medicine, Unit of Infectious Diseases, 110 Stafford Building, 95 Carrigan Lane, Burlington, VT 05405. Phone: (802) 656-5822. Fax: (802) 656-0881. E-mail: beth.kirkpatrick@uvm.edu.

* Corresponding author. Mailing address: University of Vermont College of Medicine, Unit of Infectious Diseases, 110 Stafford Building, 95 Carrigan Lane, Burlington, VT 05405. Phone: (802) 656-5822. Fax: (802) 656-0881. E-mail: beth.kirkpatrick@uvm.edu.

Copyright © 2005, American Society for Microbiology. All Rights Reserved.
night at 4°C with *S. enterica* serovar Typhi LPS (0.5 μg/ml) (Sigma, St. Louis, MO) in Reggiardo’s buffer. Plates were washed and blocked with 3% bovine serum albumin in PBS for 2 h at 37°C. A standard curve, linear at 5 to 70 U/ml, of *S. enterica* serovar Typhi LPS IgA-positive sera in plating medium was used. IgA-negative serum was used as a negative control, and IgA in the standard serum was set arbitrarily at 40,000 U/ml. Three sets of quality control (QC) samples were used (high QC, 48 U/ml; mid QC, 27 U/ml; and low QC, 12 U/ml) throughout the plate. Frozen cell supernatants were added in duplicate, after thawing at room temperature and dilution to 1:10, 1:50, and 1:100 in plating medium. Samples under 5 U/ml and all day 0 samples were rediluted at 1:5. No sample needed dilution to >1:100. Plates were incubated for 1 h at 37°C. After washing, 1° antibody (goat anti-human IgA-biotin conjugate at 1:2,000) and streptavidin-horseradish peroxidase were added sequentially, each followed by incubation for 1 h at 37°C and washing. Tetramethyl benzidine substrate was added in the dark, the mixture was incubated at room temperature, and then the reaction was stopped with H2SO4. Plates were read on a Biotek enzyme-linked immunosorbent assay reader (Colchester, VT) at 450 nm.

The optical density of standards, minus blanks, was plotted against concentration and described by a four-parameter logistic fit. Optical density was interpreted against the standard curve, and concentrations of anti-LPS IgA were determined. All plates met acceptance criteria (based on absorbance) of the expected concentration; and replicate coefficients of variation were arbitrary at 0.950; accuracy for the QC control samples within 25.0% of the expected concentration; and replicate coefficients of variation (based on absorbance) of <15.0%.

Both the ASC and ALS assays demonstrated responses that were 100% specific to vaccine exposure. All day 0 ASC assays were negative for spot-forming cells. Day 7 ASC assays demonstrated a range of ASC (Table 1). Three of 31 (9.7%) plates were negative for spot-forming cells. Day 7 ASC assays demonstrated responses that were 100% specific to vaccine exposure (100%), as demonstrated by the negative results of several (n = 5) samples that demonstrated a modest to moderate response (4 to 34/10^6 PBL), matched ASC results for ≥42 spots/10^6 PBL. Although the ALS assay appears less sensitive than the ASC assay for IgA to *S. enterica* serovar Typhi LPS, the >42 spots/10^6 PBL may

Table 1. Antigen-specific mucosal antibody responses in subjects vaccinated with M01ZH09 by ASC and ALS assays

Subject	ASC	ALS					
Day 0	Day 7	Day 0 (all times)	Day 7				
No. of spots/10^6 cells by assay:	0 h	24 h	72 h	96 h			
003	0	1,040	0	0	116	267	154
004	0	624	0	0	453	426	397
006	0	560	0	0	1,145	2,145	3,200
005	0	400	0	0	255	481	486
028	0	396	0	0	255	497	347
022	0	362	0	0	369	616	351
001	0	209	0	0	105	244	225
015	0	199	0	0	494	893	1,101
021	0	198	0	0	93	156	63
008	0	172	0	0	199	391	636
019	0	172	0	0	64	133	68
025	0	154	0	0	62	173	100
007	0	149	0	0	49	71	102
017	0	148	0	0	237	289	283
009	0	140	0	0	130	186	323
014	0	88	0	0	56	132	101
024	0	59	0	0	69	77	123
020	0	58	0	0	10	17	7
002	0	55	0	0	25	68	ND
031	0	42	0	0	32	0	0
018	0	34	0	0	0	0	0
029	0	25	0	0	0	0	0
027	0	19	0	0	31	22	32
023	0	16	0	0	0	0	0
030	0	12	0	0	0	0	0
012	0	7	0	0	0	0	0
026	0	5	0	0	0	0	0
032	0	3	0	0	0	0	0
016	0	1	0	0	0	0	0
013	0	0	0	0	0	0	0

* Results represent responses in 31 adult subjects vaccinated with M01ZH09 as measured by ASC and ALS assays performed at days 0 and 7 postvaccination. Note that plates for three subjects (032, 016, and 013) demonstrated 0 to 3 spots and were considered “negative.”

a All incubation times for day 0 (0, 24, 72, and 96 h).

b ND, not determined.
correlate with clinical efficacy. In addition, the ALS and ASC assays appear to diverge at very high counts (>400). However, when ASC counts are extremely high, ASC counts may be imprecise, since extensive sample dilution may not be possible with limited PBL.

Our data suggest that the ASC and ALS assays demonstrate excellent specificity and sensitivity in an oral typhoid vaccine model, particularly at ASC counts of ≥42 spots/10^6 cells. Future work will determine whether similar ASC levels correlate with vaccine efficacy or immunogenicity. The ALS assay is a flexible and robust alternative to the ASC assay and may be easier to validate as a model of vaccine immunogenicity used to support vaccine licensure.

Clinical trial funding was provided by Microscience Ltd.

REFERENCES
1. Baqar, S., A. A. M. Nour El Din, D. A. Scott et al. 1997. Standardization of measurement of immunoglobulin-secreting cells in human peripheral circulation. Clin. Diagn. Lab. Immunol. 4:375–379.
2. Chang, H. S., and D.A. Sack. 2001. Development of a novel in vitro assay (ALS assay) for evaluation of vaccine-induced antibody secretion from circulating mucosal lymphocytes. Clin. Diagn. Lab. Immunol. 8:482–488.
3. Forrest, B. D. 1986. Identification of an intestinal immune response using peripheral blood lymphocytes. Lancet 1881–83.
4. Forrest, B. D. 1992. Indirect measurement of intestinal immune responses to an orally administered attenuated bacterial vaccine. Infect. Immun. 60:2023–2029.
5. Hindle, Z., S. N. Chatfield, J. Phillimore, M. Bentley, J. Johnson, C. A. Cosgrove et al. 2002. Characterization of Salmonella enterica derivatives harboring defined aroC and Salmonella pathogenicity island 2 type III secretion system (salI') mutations by immunization of healthy volunteers. Infect. Immun. 70:3457–3467.
6. Kantele, A. 1990. Antibody-secreting cells in the evaluation of the immunogenicity of an oral vaccine. Vaccine 8:321–326.
7. Kantele, A., H. Arvilommi, and I. Jokinen. 1986. Specific immunoglobulin-secreting human blood cells after peroral vaccination with Salmonella typhi. J. Infect. Dis. 153:1126–1129.
8. Kantele, A., et al. 1997. Homing potentials of circulating lymphocytes in humans depends on the site of activation. J. Immunol. 158:574–579.
9. Khan, S. A., R. Stratford, T. Wu, N. McKelvie, T. Bellaby, Z. Hindle et al. 2003. Salmonella typhi and S. typhimurium derivatives harbouring deletions in aromatic biosynthesis and Salmonella pathogenicity island 2 (SPI-2) genes as vaccines and vectors. Vaccine 21:538–548.
10. Kirkpatrick, B. D., K. M. Tenney, C. J. Larsson, J. P. O’Neill, C. Ventrone, M. Bentley, et al. 2005. The novel oral typhoid vaccine M01ZH09 is well-tolerated and highly immunogenic in two vaccine presentations. J. Infect. Dis. 192:360–366.
11. Qadri, F., E. T. Ryan, A. S. G. Faruque, F. Ahmed, A. I. Khan, M. M. Islam, S. M. Akramuzzaman, D. A. Sack, and S. B. Calderwood. 2003. Antigen-specific immunoglobulin A antibodies secreted from circulating B cells are an effective marker for recent local immune responses in patients with cholera: comparison to antibody-secreting cell responses and other immunological markers. Infect. Immun. 71:4808–4814.
12. Quiding-Jarbrink, M. 1997. Differential expression of tissue-specific adhesion molecules on human circulating antibody-forming cells after systemic, enteric and nasal immunizations. J. Clin. Investig. 99:1281–1286.
13. Raqib, R., S. M. Mostafa Kamal, M. J. Rahman, Z. Rahim, S. Banu, P. K. Bardhan et al. 2004. Use of antibodies in lymphocyte secretions for detection of subclinical tuberculosis infection in asymptomatic contacts. Clin. Diagn. Lab. Immunol. 11:1022–1027.
14. Raqib, R., J. Rahman, A. K. M. Kamaluddin, S. M. Mostafa Kamal, F. A. Banu, S. Ahmed et al. 2003. Rapid diagnosis of active tuberculosis by detecting antibodies from lymphocyte secretions. J. Infect. Dis. 188:364–370.