Auditory experience drives neural circuit refinement during windows of heightened brain plasticity, but little is known about the genetic regulation of this developmental process. The primary auditory cortex (A1) of mice exhibits a critical period for thalamo-cortical connectivity between postnatal days P12 and P15, during which tone exposure alters the tonotopic topography of A1. We hypothesized that a coordinated, multicellular transcriptional program governs this window for patterning of the auditory cortex. To generate a robust multicellular map of gene expression, we performed droplet-based, single-nucleus RNA sequencing (snRNA-seq) of A1 across three developmental time points (P10, P15, and P20) spanning the tonotopic critical period. We also tone-reared mice (7 kHz pips) during the 3-d critical period and collected A1 at P15 and P20. We identified and profiled both neuronal (glutamatergic and GABAergic) and nonneuronal (oligodendrocytes, microglia, astrocytes, and endothelial) cell types. By comparing normal- and tone-reared mice, we found hundreds of genes across cell types showing altered expression as a result of sensory manipulation during the critical period. Functional voltage-sensitive dye imaging confirmed GABA circuit function determines critical period onset, while Nogo receptor signaling is required for its closure. We further uncovered previously unknown effects of developmental tone exposure on trajectories of gene expression in interneurons, as well as candidate genes that might execute tonotopic plasticity. Our single-nucleus transcriptomic resource of developing auditory cortex is thus a powerful discovery platform with which to identify mediators of tonotopic plasticity.

Significance

Early life acoustic experience shapes the organization and function of the primary auditory cortex (A1), but molecular mechanisms underlying these critical periods for auditory plasticity are poorly understood. In this study, we use single-nucleus transcriptomics to characterize the multicellular gene expression program in developing A1 and its regulation by tone exposure. We then functionally validated candidate plasticity triggers and brakes to reveal that strengthening of inhibition initiates tonotopic plasticity, while the downstream maturation of myelin-related signaling is associated with critical period closure. These results both confirm conserved mechanisms and identify targets for the regulation of cortical plasticity.

Author contributions: B.T.K., E.E.D., M.E.G., and T.K.H. designed research; B.T.K., T.R.B., E.E.D., and E.J.Z. analyzed data; and B.T.K., T.R.B., E.E.D., and T.K.H. wrote the paper.

Reviewers: D.F.C., Queen Mary University of London; and Ed.V.-S., McGill University.

The authors declare no competing interest.

This open access article is distributed under Creative Commons Attribution NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

Data deposition: All sequencing data are available in the Gene Expression Omnibus (GEO) (accession no. GSE140883).

1B.T.K., T.R.B., and E.E.D. contributed equally to this work.

2Present address: Department of Biomedicine, Basel University, 4056 Basel, Switzerland.

3To whom correspondence may be addressed. Email: michael.greenberg@hms.harvard.edu or hensch@mcb.harvard.edu.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902433117/-/DCSupplemental.

First published May 13, 2020.
cell type (21, 22). Therefore, we utilized single-nucleus RNA-seq data from A1 samples to generate a multicellular map of gene expression in A1 at P10, P15, and P20 (Fig. 1A). Our strategy was developed recently with single-nucleus RNA-seq data (22). We used canonical marker genes to classify nuclei into eight major cell types: excitatory neurons (Sle17a7+), inhibitory neurons (Gad1+), oligodendrocytes (Olig1−), astrocytes (Aqp4+), endothelial cells (Cdh5−), and microglia (Cx3cr1−) (Fig. 1C). We performed differential gene expression analysis within cell types to explore developmental patterns of transcription across the tonotopic critical period. Genes with a false discovery rate (FDR) <5% were considered statistically significant. In total, we identified hundreds of genes that were dynamically regulated across the auditory developmentally extensive neural networks. Among the genes identified, 97% were expressed in all major cortical cell types (Fig. 1D). We used gene ontology analysis to broadly classify functional modules of genes that are significantly regulated across this developmental window (Fig. 1E). In excitatory neurons, we found that genes associated with vocal learning were enriched for dynamic gene expression across the tonotopic critical period, while genes associated with dendritic transport and GABAergic synaptic transmission were enriched for dynamic gene expression in inhibitory neurons across the same time frame.

To uncover molecular diversity within major cell types, we performed a subclustering analysis, whereby cells classified within one of the major cell types were subject to principal component analysis to delineate cellular subpopulations. Developmental stage strongly influenced clustering, as excitatory neurons at P10 (precritical period) clustered distinctly from excitatory neurons at P15 and P20 (postcritical period) (SI Appendix, Fig. S1D). We also found distinct cortical layer-specific clusters, including those belonging to cortical layer V (Bcl6 and Kcnn2+) and layer VI (Foxp2 and Ctgf+) (SI Appendix, Fig. S1E). We detected a small excitatory neuron cluster that was selectively positive for Synpr and Nr4a2−genes known to mark the claustrum (SI Appendix, Fig. S1F) (24). Strikingly, we found that there was a marked increase in immediate early genes, including c-fos and nr4a1, in the P15/P20 clusters compared to P10 (Fig. 1F). This suggests that sensory exposure between P10 and P15/P20 may drive activity-dependent gene expression in the auditory cortex.

Similarly, analysis of interneurons across the P10 to P20 time course revealed clustering predominantly by developmental stage (SI Appendix, Fig. S2A). Distinct cell populations corresponding to interneuron subtypes were identified, including Str+, Psdbl+, Vip+, and Npy+ cells. We identified a small population of interneurons expressing the serotonin receptor gene Htr3a. Our recent work suggests that 5-HT3AR+ interneurons in cortical layer 1 mediate descending thalamocortical disinhibition and that silencing of these interneurons impairs tonotopic plasticity (25). Differential expression analysis performed for inhibitory cell clusters identified genes enriched within specific interneuron subsets. For example, the neuropeptide gene Crh (corticotropin releasing hormone), shown to regulate activity-dependent network plasticity via the integration of new neurons, was expressed predominantly in Vip+ interneurons (26).

We performed gene expression analysis within interneurons across early auditory development and found that expression of Parvalbumin (Pvalb) in interneurons dramatically increased from P10 to P20 (Fig. 1G). The maturation of PV-positive, fast-spiking interneurons tightly controls the initiation and termination of critical periods in V1 (27–32). Additionally, we found that genes encoding the Kv3 family of potassium channels that mediate delayed-rectifier currents subserving the high spike rate of fast-spiking interneurons (Kcncl and Kcnc2) increased over the same developmental window (SI Appendix, Fig. S2B) (33–38). The mature GABAA receptor α1 subunit essential for critical period plasticity in V1 was increased in A1 interneurons from P10 to P15/20 (27). This subunit is enriched at reciprocal, PV-PV, short-range synapses (39). The rise in α1 was matched by a decrease in α5 and α3, a previously characterized developmental subunit switch (39–41). These changes in GABAA receptor expression mirror those observed in V1 across the critical period for ocular dominance plasticity (42).
their expression pattern in tone-reared animals (Fig. 2E). Abundant gene expression changes exhibited by oligodendrocytes suggest they could be key mediators of transiently enhanced map plasticity and delayed critical period closure (19, 20).

One strength of single-nuclear sequencing is the ability to gain novel insight into nonneuronal populations that may have been previously underappreciated. This is particularly important given the growing recognition of the role of nonneuronal cells in circuit development, synapse refinement, and plasticity. However, the role of astrocytes and microglia in the regulation of A1 critical period remains unexplored. In V1, dark-rearing impairs the maturation of astrocytes (46), and the microglial P2Y12 purinergic receptor is required for ocular dominance plasticity (47). Here we found that glia exhibited a distinct transcriptional response to tone-rearing during the tonotopic critical period. Compared to controls, astrocytes from tone-reared animals demonstrated significantly higher expression of immediate-early genes, including Fos, Junb, and Nr4a1, as well as up-regulation of the...
Fig. 2. Cell type-specific effects of tone rearing during the tonotopic critical period. (A) t-SNE plots of cells from normally reared and tone reared mice at P15 and P20. (B) Volcano plots depicting differentially expressed genes normally reared and tone reared conditions at P15 in excitatory neurons, inhibitory neurons, and oligodendrocytes. Blue indicates statistically significant genes (FDR < 5%). (C) Gene ontology (GO) categories enriched in cell type-specific differentially expressed genes at P15 between normally reared and tone reared conditions. (D) Boxplot of the trajectory of average gene expression for Mbp from P10 to P20 under conditions of normal development and tone rearing from P12 to P15. Box ranges represent the 25th and 75th percentiles, while the box whiskers indicate the 95% confidence interval. Mean normalized gene expression is indicated. Pairwise gene expression change significance is indicated by asterisks (**FDR < 0.01, ***FDR < 0.001). (E) Boxplot of the trajectory of average gene expression for Mme and Bcan from P10 to P20 under conditions of normal development and tone rearing from P12 to P15. Box ranges represent the 25th and 75th percentiles, while the box whiskers indicate the 95% confidence interval. Mean normalized gene expression is indicated. Pairwise gene expression change significance is indicated by asterisks (*FDR < 0.05, ***FDR < 0.001).
Notch1 target Hes5. Notch signaling is thought to be important for neural activity-driven astrocyte maturation and morphological response to stimuli (48, 49).

The excitatory amino acid transporter Stic3, as well as the Kcnq2 small conductance calcium-activated channel, were both down-regulated in tone-reared astrocytes, perhaps as a result of an activity-dependent compensatory mechanism. Analysis of gene expression in microglia was limited by small cell numbers, but those from tone-reared mice demonstrated a nearly fourfold reduction in complement gene C1qB and Fc-receptor–like molecule Fcrls, both of which are typically down-regulated upon microglial activation (50, 51). Additional studies are needed to define the functional significance of specific glial populations to auditory development and plasticity.

Functional Implications of Inhibitory Maturation. Extensive work in V1 has shown the functional maturation of GABAergic innervation is an important driver of critical period progression (52). In the absence of GAD65, a key GABA biosynthetic enzyme, a permanent precritical period state persists in V1 (53). Plasticity can be rescued by administration of Diazepam, a benzodiazepine agonist which enhances particular GABA_A receptor currents such that residual GABA levels in the absence of GAD65 drive sufficient inhibitory transmission. For example, while GAD65 knockout mice do not exhibit a shift in ocular dominance following brief monocular deprivation, these mice can exhibit plasticity at any age when treated with Diazepam (54).

Our data showed that expression of Gad1 and Gad2, encoding the two GABA synthetic enzymes GAD67 and GAD65, respectively, increased over development in A1 interneurons (Fig. 1G). One further theme that emerged from our A1 snRNA-seq data was the dynamic nature of inhibitory receptors across the tonotopic critical period. This suggests that the maturation of inhibitory tone may also be important for critical period timing in the developing auditory cortex. We, therefore, examined how broad manipulation of inhibitory transmission might affect A1 topography and plasticity using voltage-sensitive dye imaging (9).

Functional thalamocortical connectivity can be measured in an acute slice preparation, where focal stimulation to single sites in auditory thalamus (ventral medial geniculate body [MGBv]) elicits topographic responses in A1 (Fig. 3A). Our previous work revealed that prior to the critical period at P10, focal electrical stimulation of medial MGBv sites (which receive high auditory frequency input in vivo) is more effective at driving A1 responses than lateral, low-auditory frequency sites (9). This bias is gradually lost over critical period development, with stimulation at all sites in MGBv eliciting similar maximal responses at topographic locations across A1. In GAD65 knockout animals, this maturation failed to occur, and rostral sites continued to show greater activation beyond the normal developmental window (Fig. 3B). Furthermore, in wild-type (WT) mice over early development, stimulation to single sites in MGBv typically yielded progressively shorter latency responses, translocating from layer VI to layer IV (Fig. 3C and D). In GAD65 knockout mice, the site of shortest latency remained in deeper layer VI despite an overall shortening of response latencies comparable to WT animals (Fig. 3D).

To test whether GAD65 is essential for the onset of the tonotopic critical period, knockout mice were reared under repeated 7-kHz tones between P12 and P15, which typically yields a shift in the tonotopic map and thalamocortical functional connectivity in control mice (Fig. 4A and B) (9). The relationship between the stimulus site in MGBv and the site of maximal response in A1 is defined as the topographic slope and is equal to 1 in control animals but drops in animals tone-reared during the critical period (Fig. 4B and C) (9). Mice lacking GAD65 failed to shift their topographic functional connectivity (Fig. 4B and C) unless pretreated with Diazepam (Fig. 4D), consistent with the hypothesis that their critical period onset is delayed (Fig. 3D).

Tone exposure during a more extended time frame—from P8 to P20—also did not alter the tonotopic map in GAD65 null mice (Fig. 4C). In WT animals, administration of Diazepam given prior to the natural critical period was also effective at driving plasticity (Fig. 4E), shifting plasticity earlier and preventing it during the expected window (Fig. 4F). These results collectively demonstrate that the development of inhibitory tone is necessary for the onset of critical period plasticity in A1, as it is in V1.

Molecular Brakes on Auditory Plasticity. In order to solidify changes made to sensory maps during the critical period, molecular brakes turn on to actively close the window and prevent further circuit refinements (55). Brakes are endogenous factors that halt or restrict plasticity, such as the maturation of the extracellular matrix as a structural barrier to circuit rewiring. We found that the expression of PNN-related genes, including proteoglycans and proteases, were dynamically regulated across A1 development and in response to tone exposure (Fig. 2E). Notably, chondroitin sulfate proteoglycans (CSPGs) tightly enwrap PV basket cells in the form of PNNs (19, 56). PNN intensity, as revealed by Wisteria floribunda Agglutinin (WFA) labeling, increased in A1 from P10 to P20 (Fig. 5A and D, Left).

Another example of a molecular brake is the increased myelination of axons in cortex, which limits axon regrowth potential and synaptic plasticity (57). Myelin-related gene expression and intracortical myelin basic protein (MBP) staining in WT mice increased dramatically across this 10-d window (Fig. 5A and C, Left). The GAD65 knockout animals displayed lower gray matter staining intensity for both WFA and myelin (Fig. 5C and D, Right), consistent with the shortest latency thalamocortical responses remaining in layer VI (Fig. 3D). Diazepam treatment, which enabled normal tonotopic plasticity (Fig. 4F), did not fully rescue PNN intensity by P20 (Fig. 5D) but returned myelin signals to WT levels (Fig. 5C). Thus, myelination may serve as an earlier signal for map consolidation.

Much of the myelin-related brakes on plasticity have been attributed to signaling through the Nogo receptor, NgR (58). The neurite outgrowth inhibitor Nogo-A (Rtn4), which signals through NgR, was up-regulated by oligodendrocytes at P20 (SI Appendix; Fig. S2C) but down-regulated in Tubb3+ neurons (59) after the critical period, which was prevented by tone-rearing (Fig. 5E and F). This suggests a dynamic interplay between neuronal and glial populations to regulate both the level and timing of plasticity within cortical circuits.

Conveniently, the NgR is a key mediator of the downstream response to several brake-like factors, including CSPGs, myelin factors, and Nogo-A (Fig. 5G) (60). We thus examined whether the degree or timing of map plasticity in A1 might be altered by loss of this receptor. We found that NgR knockout animals were plastic during both the normal critical period and beyond (Fig. 5H). Thus, myelin/CSPG-mediated signaling via the NgR is necessary to restrict plasticity at the end of the tonotopic critical period in A1. A permissive environment for structural changes in the absence of NgR would allow a prolonged window for anatomical consolidation of functional refinements.

Discussion

Early postnatal acoustic experience shapes the structural and functional organization of the auditory system (7). Neuronal activity during narrowly defined critical periods drives frequency selectivity and tonotopic organization. Our study sought to characterize the cell type-specific transcriitional underpinnings of this carefully orchestrated multicellular collaboration. We observed gene expression changes in all major cell types across early A1 development, during which these sensory-driven circuit refinements occur. In addition to the vast transcriptomic resource created in this study, we also extend findings from the
visual system to the auditory cortex. Specifically, we demonstrate that GAD65, a key synthetic enzyme for GABA, and the Nogo receptor, a mediator of myelin/CSPG signaling, are both necessary for proper critical period onset and offset, respectively (20, 53). These results underscore conserved mechanisms for the regulation of cortical plasticity.

Our study further reveals an activity-dependent mobilization of molecular machinery enabling plasticity. Thus, tone-rearing

Fig. 3. Delayed thalamocortical maturation in GAD65-deficient mice. (A) Schematic of the six MGBv stimulus sites (colored arrows) and 18 L4 locations analyzed. Sample voltage-sensitive dye imaging (VSDI) traces of maximum change in fluorescence (ΔF/F) at two different L4 locations (locations 8 and 13) as a function of time following a single, 1-ms stimulus pulse to MGBv site 1 (blue) or 5 (yellow) in a P12 WT mouse. LGB, lateral geniculate body. (Scale bars, 100 ms and 0.1% ΔF/F.) (B) Normalized peak ΔF/F as a function of stimulus site for WT (black) and GAD65−/− (red), respectively, for three age groups (P8 to P12, n = 13, 7; P13 to P15, n = 16, 9; and P16 to P20, n = 16, 13). (C) Nissl stain of a P20 thalamocortical slice for columnar analysis (red square). Black arrows denote approximate borders between layers LIII, LIV, and LV/VI white matter. Normalized ΔF/F with distance from pia for WT and GAD65−/− mice at three age groups (red, P8 to P12, n = 13; gray, P13 to P15, n = 15; and black, P16 to P20, n = 11, 13). (Scale bar, 125 μm.) (D) Normalized ΔF/F with latency from pia for the same groups. Red and black arrows denote location of shortest latency in P8 to P12 and P16 to P20 mice, respectively. Note the shift of shortest latency from LVI to LIV in WT mice across this age range. *P < 0.05; **P < 0.01, two-way ANOVA with post hoc Bonferroni correction; mean ± SEM.

Fig. 4. Critical period onset reflects excitatory–inhibitory balance in A1. (A) Schedule for tone exposure window and recording (arrows). (B) Location of L4 peak ΔF/F in response to different MGBv stimulus sites for mice nonexposed (n = 9 for WT, 12 for GAD65−/−) or exposed to 7 kHz between P12 and P15 (n = 8 for WT, 12 for GAD65−/−) or P8 and P20 (n = 6 for GAD65−/−). (C) Corresponding topographic slopes (slopes of the curves in B). (D–F) Topographic slopes for (D) GAD65−/− mice exposed to 7 kHz between P16 and P19 with (DZ P16 to 19, n = 8) or without (no DZ, n = 9) DZ injection between P16 and P19. (E) WT mice exposed to 7 kHz between P8 and P11 with (DZ P8 and P11, n = 8) or without (no DZ, n = 9) DZ injection between P8 and P11. *P < 0.05; **P < 0.01; t test; mean ± SEM. **
Fig. 5. Critical period closure in A1 signaled by myelin/PNN formation and NgR. (A) Schedule for staining (arrows) with reference to typical A1 critical period in WT mice. (B) Schedule for staining (arrows) with reference to Diazepam or vehicle treatment in GAD65−/− mice. (C and D) (Left) Quantification of relative MBP (C) and WFA (D) staining intensity in P10 (n = 5, 4), P13 (n = 5, 4), P16 (n = 4, 4), and P20 (n = 4, 4) WT mice. **P < 0.01 ***P < 0.001, two-way ANOVA with post hoc Bonferroni correction; mean ± SEM. (Right) Quantification of MBP (C) and PNN (D) staining in P20 WT nonexposed (black, n = 4, 4), GAD65−/− (red, n = 5, 3) and GAD65−/− injected with DZ between P12-P15 (blue dashed, n = 5, 4). *P < 0.05; **P < 0.01, two-way ANOVA with post hoc Bonferroni correction; mean ± SEM. (E) Fluorescent in situ hybridization (FISH) in A1 labeling cellular nuclei (DAPI), Nogo-A (Rtn4), neuronal marker (Tubb3), and their merged images across ages and tone-rearing. Representative images are from Layer V/VI. Red outlines are QuPath (67) segmented nuclei and an expanded estimated cell border. (Scale bar, 10 µm.) (F) Quantification of mean FISH signal intensity in Tubb3+ nuclei (Materials and Methods) at P10, P20, and P20 after tone-rearing during the critical period (P12 to P15). Quantification was averaged across all layers. ***P < 0.001, Kruskal–Wallis rank sum test with post hoc Dunn test; horizontal lines in violin plot indicate quantiles 0.25, 0.50, and 0.75. (G) Schematic of putative NgR ligands in myelin membrane (Nogo-66, OMgp, and MAG) and the extracellular matrix (CSPG). (H) Schedule for sound exposure and VSDI recordings (arrows). Topographic slopes for NgR−/− mice exposed to 7 kHz between P8 and P11 (P11, white, n = 5), between P12 and P15 (P15, white, n = 8) or between P16 and P19 (P19, red, n = 4). **P < 0.01, t test; mean ± SEM.
per se altered normal developmental trajectories of both GABAergic circuits and structural barriers to plasticity such as myelination and PNNs. The idea that abnormal acoustic experience during the critical period alters maturation trajectories has been suggested by other studies. For example, GABA-mediated inhibitory long-term depression (iLTD) is triggered by prepotent pair of action potentials at PV-to-principal cell synapses during the A1 critical period, which is thought to underlie a disinhibitory mechanism permissive for plasticity (61). This iLTD switches to potentiation (iLTP) as development proceeds.

After tone-rearing, the number of cells responsive to the rearing frequency increases in a topographic zone of A1, and they exhibit a premature switch to iLTP (61). Instead, our data rearing frequency increases in a topographic zone of A1, and aspases during the A1 critical period, which is thought to underlie mediated inhibitory long-term depression (iLTD) is triggered by presynaptic GABA receptors have been shown to regulate the experience-dependent switch from depression to facilitation in inhibitory plasticity (62).

The auditory system is a tractable model of experience-dependent plasticity due, in part, to its topographic organization. The use of snRNA-seq allows for the dissection of layer-specific excitatory cell types and classes of inhibitory neurons, as well as nonneuronal cells. However, this approach homogenizes the tonotopic organization of cells in A1. It is not clear whether distortion of inhibitory maturation or molecular brake onset occurs within the tone-responsive areas of cortex in response to overstimulation or if the neighboring part of the tonotopic map is silenced in a competitive manner. Future studies could use multiplexed fluorescence in situ hybridization to visualize spatially restricted cell type-specific transcriptional changes to address these questions.

Our data represent a significant advance over existing resources as this study profiles transcription with cell type specificity across time and with critical period perturbation. However, the use of snRNA-seq also has several limitations. First, this approach has low capture efficiency, such that a small proportion of a cell’s total transcriptome is represented in the final sequencing data. Other potential sources of bias include the tissue expression, gene dropout (where gene expression is zero in a cell and thus not captured, barcoded, and sequenced according to the inDrops technique as previously described (21)). All sequencing data are available in the Gene Expression Omnibus (GSE140883). Voltage-sensitive dye imaging of C57BL/6J, GAD65^{−/−} or Ngr^{−/−} mice was performed on acutely prepared auditory thalamocortical slices, as described previously (14). Additional details are contained in SI Appendix, Extended Experimental Procedures.

ACKNOWLEDGMENTS. We thank members of the M.E.G. and T.K.H. laboratories for discussions and critical reading of the manuscript. We thank Mari Nakamura, MSc, for expert mouse colony maintenance and MaryKate O’Malley, MSc, BSN, RN, for technical assistance with figures. We thank the Neurobiology Department and Neurobiology Imaging Facility for consultation and instrument availability supported in part by the Neural Imaging Center as part of an National Institute of Neurological Disorders and Stroke P30 Core Center grant N0572030. We further thank the Single Cell Core at Harvard Medical School, Boston, MA, for performing the single-cell RNA-Seq sample preparation. This work was funded by NIH grant R01 NS028829 to M.E.G., a Pediatric Scientist Development Award and March of Dimes funding to B.T.K., the Harvard Society of Fellows to T.R.B., Thomas T. Hoopes Prize to E.L.Z., and a National Institute of Mental Health Silvio Conte Center (P50MH094271) and World Premier International Research Center for Neurointelligence (Japan Society for the Promotion of Science) grant to T.K.H.

1. T. K. Hensch, Critical period regulation. Annu. Rev. Neurosci. 27, 549–579 (2004).
2. L. C. Katz, C. J. Shatz, Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).
3. T. K. Hensch, Critical period mechanisms in developing visual cortex. Curr. Top. Dev. Biol. 69, 215–237 (2005).
4. A. E. Takesian, T. K. Hensch, Balancing plasticity/stability across brain development. Prog. Brain Res. 207, 3–34 (2013).
5. T. A. Hackett, T. R. Barkatt, B. M. J. O’Brien, T. K. Hensch, D. B. Polley, Linking topography to tonotopy in the mouse auditory thalamocortical circuit. J. Neurosci. 31, 2983–2995 (2011).
6. C. E. Schreiner, D. B. Polley, Auditory map plasticity: Diversity in causes and consequences. Curr. Opin. Neurobiol. 24, 143–156 (2014).
7. J. F. Werker, T. K. Hensch, Critical periods in speech perception: New directions. Annu. Rev. Psychol. 66, 173–196 (2015).
8. T. K. Hensch, E. M. Quinlan, Critical periods in amblyopia. Vis. Neurosci. 35, E014 (2018).
9. T. R. Barkatt, D. B. Polley, T. K. Hensch, A critical period for auditory thalamocortical connectivity. Nat. Neurosci. 14, 1189–1194 (2011).
10. E. de Villers-Sidani, E. F. Chang, S. Bao, M. M. Merzenich, Critical period window for spectral tuning defined in the primary auditory cortex (A1) in the rat. J. Neurosci. 27, 180–189 (2007).

Kalish et al. PNAS | May 26, 2020 | vol. 117 | no. 21 | 11751

11. H. Morishita, T. K. Hensch, Critical period revisited: Impact on vision. Curr. Opin. Neurobiol. 18, 101–107 (2008).
12. N. Mataga, Y. Mizuguchi, T. K. Hensch, Experience-dependent pruning of dendritic spines in visual cortex by tissue plasminogen activator. Neuron 44, 1031–1041 (2004).
13. J. A. del Rio, L. de Lecea, I. Ferrer, E. Soriano, The development of parvalbumin-immunoreactivity in the neocortex of the mouse. Brain Res. Dev. Brain Res. 81, 247–259 (1994).
14. M. Fagioli, T. Pizzorusso, N. Berardi, L. Domenci, L. Maffei, Functional postnatal development of the rat primary visual cortex and the role of visual experience: Dark rearing and molecular degeneration. Vision Res. 34, 709–720 (1994).
15. D. Tropea et al., Gene expression changes and molecular pathways mediating activity-dependent plasticity in visual cortex. Nat. Neurosci. 9, 660–668 (2006).
16. X. Zhou, R. Panizzutti, E. de Villers-Sidani, C. Madeira, M. M. Merzenich, Natural restoration of critical period plasticity in the juvenile and adult primary auditory cortex. J. Neurosci. 31, 5625–5634 (2011).
17. E. de Villers-Sidani, K. L. Simpson, Y.-F. Lu, R. C. S. Lin, M. M. Merzenich, Manipulating critical period closure across different sectors of the primary auditory cortex. Nat. Neurosci. 11, 957–965 (2008).
