Three body open flavor decays of higher charmonium and bottomonium

Xin-Zhen Weng 1, *, Li-Ye Xiao 1,2 †, Wei-Zhen Deng 1, Xiao-Lin Chen 1, and Shi-Lin Zhu 1,2,3 ‡
1) School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
2) Center of High Energy Physics, Peking University, Beijing 100871, China
3) Collaborative Innovation Center of Quantum Matter, Beijing 100871, China

In the present work, we study the OZI-allowed three body open flavor decay properties of higher vector charmonium and bottomonium states with an extended quark pair creation model. For the bottomonium system, we get that (i) the \(BB\pi \) and \(BB'\pi \) partial decay widths of the \(\Upsilon(1S) \) state are consistent with the experiment, and the \(BB'\pi \) partial decay width of the \(\Upsilon(5S) \) state is smaller but very close to the Belle’s experiment. Meanwhile, (ii) the \(BB'\pi \) and \(BB'\pi \) decay widths of \(\Upsilon(11020) \) can reach \(2 \) – \(3 \) MeV. In addition, (iii) for the most of higher vector charmonium states, the partial decay widths of the \(DD'\pi \) and \(DD'D'\pi \) modes can reach up to several MeV, which may be observed in future experiments.

PACS numbers:

I. INTRODUCTION

In 2003, the Belle Collaboration reported the first observation of the charmonium-like state \(X(3872) \) in exclusive \(B^+\to K^{(*)}\pi^+\pi^- J/\psi \) decays [1]. This state is later confirmed by the CDF [2], D0 [3], BaBar [4], LHCb [5], CMS [6] and BESIII [7] Collaborations. Its quantum number is determined to be \(I^G F^P = 0^+ 1^+ \) by the LHCb Collaboration [5]. Following the discovery of \(X(3872) \), a large number of charmonium-like states have been observed over the last decades, such as \(Y(3940), [8], Y(4140), [9], X(4160) [10], Y(4260), [11], Y(4360) [12], Y(4660) [13], \) and so on. These states have attracted lots of attention from the theorists. Various hadron configurations including molecular state [14, 15], tetraquark [16, 17], hybrid meson [16, 17], etc have been proposed to explain their nature. A detailed review can be found in Ref. [20] and references therein.

Since the charmonium-like states with normal quantum numbers have similar masses compared to the normal charmonium, in order to understand the nature of the exotic states, it is necessary to have a better understanding of the normal charmonium spectroscopy. In Ref. [21], Li et al. investigated the spectrum of higher charmonium with screened potential, and found that the vector states \(Y(4008), Y(4260), Y(4320/4360), Y(4660) \) might be assigned as the \(\psi(3S), \psi(4S), \psi(3D), \psi(6S) \) states respectively, while \(X(3940) \) and \(X(4160) \) might be the \(\eta_c(3S) \) and \(\chi_{c0}(3P) \) states. However, according to the constituent quark model description by Segovia et al. [22], the mass of \(\psi(4040), \psi(4160), X(4360), \psi(4415), X(4630) \) and \(X(4660) \) are compatible with the \(\psi(3S), \psi(2D), \psi(4S), \psi(3D), \psi(5S) \) and \(\psi(4D) \) states. Among the charmonium or charmonium-like states, the \(1^- \) states are of special interest because they can be easily produced in the \(e^+ e^- \) annihilation. In Table [8] we have listed the predicted masses of the vector charmonium states from various models.

In addition, the decay properties of charmonium play a pivotal role in revealing the nature of charmonium. From Table [8] we see that the masses of these states are well above the allowed two body open charm decay threshold, thus the decay widths mainly come from the strong decays. A widely used framework for the strong decay is the quark pair creation \((\bar c\bar c \gamma^\ast) \) model. In this model, the \(c\bar c \) pair in the initial charmonium regroups with a \(q\bar q \) pair created from the vacuum, which carries the vacuum quantum number \(J^{PC} = 0^+ \), and then decays into the outgoing open charm mesons. About forty years ago, Le Yaouanc et al. [23, 24] used this model to study the open charm strong decays of \(\psi(4040) \) and \(\psi(4415) \). In 2005, Barnes et al. performed a systematic study of the higher charmonium states just above \(4.4 \) GeV, with the charmonium masses calculated in the GI model and a nonrelativistic potential model [25]. In 2012, Segovia et al. [22] studied the strong decays of the vector charmonium states. For \(\psi(3770), \psi(4040), \psi(4160) \) and \(X(4360) \) with \(\psi(1D), \psi(3S), \psi(2D) \) and \(\psi(4S) \) assignments, the calculated widths are compatible with the experimental values. While for the \(\psi(4415), X(4640) \) and \(X(4660) \) states, the difference between theoretical and experimental values of the total widths is larger. Recently, Gui et al. [26] studied the open-charm strong decays of higher charmonium states up to the \(6P \) multiplet with their wave functions of charmonium states calculated in the linear potential and screened potential quark models. Moreover, the \(\psi(1D) \) model has also been used to study the strong decays of bottomonium states [27, 28].

Besides the two body decays, three body open flavor decay is also important access to dig into the properties of charmonium and bottomonium. In 2008, the Belle Collaboration [29] first measured the exclusive cross section for \(e^+ e^- \to D^0 D^- \pi^+ \) over the center-of-mass energy range \(4.0–5.0 \) GeV with ISR method and observed the decay \(\psi(4415) \to D^0 D^- \pi^+ \). A detailed study found that the decay is dominated by \(\psi(4415) \to D\bar D_{s2}(2460) \) and

\[
\frac{\mathcal{B}(\psi(4415)\to D^0 D^- \pi^+)}{\mathcal{B}(\psi(4415)\to D\bar D_{s2}(2460)\to D^0 D^- \pi^+)} < 0.22 \quad (1)
\]

at 90% C.L. In 2009, they further measured the cross-section of \(e^+ e^- \to D^0 D^- \pi^+ + \text{c.c.} \) process and found no evidence of

*E-mail: zhweng@pku.edu.cn
†E-mail: lyxiao@pku.edu.cn
‡E-mail: zhusl@pku.edu.cn
Y(4260), Y(4360), ψ(4415), Y(4630) or Y(4660) with limited statistics. Recently, the BESIII Collaboration found two resonances in the $e^+e^−→D\bar{D}^*\pi^*$ process [32,33]. The lower mass one is in good agreement with the Y(4220), and the other one might be ψ(4415). For the bottomonium state, the Belle Collaboration also measured Υ′(5S) decays into B mesons [34]. The measured fractions are

$$f\left(B\bar{B}\pi\right) = (0.0 ± 1.1 ± 0.3)\%,$$

$$f\left(B\bar{B}^\prime\pi + B'\bar{B}\pi\right) = (7.3_{-2.1}^{+2.3} ± 0.8)\%,$$

$$f\left(B'\bar{B}^\prime\pi\right) = (1.0_{-1.4}^{+1.3} ± 0.4)\%.$$

The measured three-body fractions are significantly larger than the older predictions [35].

In Ref. [36], we extended the 3P_0 model to study the $Y(4660)→\Lambda\bar{\Lambda}$ process with two $q\bar{q}$ pairs created from the vacuum. In this paper, we will follow the extended 3P_0 model to study the three body open flavor decays of higher charmonium and bottomonium states through a different rearrangement (see Fig. 1). In the framework of the extended 3P_0 model, we find that (i) the $B\bar{B}\pi$ and $B'\bar{B}'\pi$ partial decay widths of the $\Upsilon'(5S)$ state are consistent with the experiment (For simplicity, we abbreviate $B\bar{B}\pi$, $B'\bar{B}'\pi + B'\bar{B}\pi$ and $B'\bar{B}'\pi$ to $B\bar{B}\pi$, $B'\bar{B}'\pi$ and $B'\bar{B}'\pi$ respectively. A similar abbreviation is also used for the charmonium decays.). The $B'\bar{B}'\pi$ partial decay width of the $\Upsilon'(5S)$ state is smaller but very close to the Belle’s experiment. (ii) The partial decay widths of the $D\bar{D}^*\pi$ and $D'\bar{D}'\pi$ modes can reach up to several MeV for the higher vector charmonium states. The three body open charm decay channels may be observed in the near future.

This paper is organized as follows. In Sec. II the 3P_0 model and its extension are briefly introduced. The numerical results are presented and discussed in Sec. III. Finally, a quick summary is given in Sec. IV.

Table I: The predicted charmonium masses from various models (in units of MeV).

State	QM [37]	QM [38]	QM [22]	SSE/EA [39]	NR/GI [25]	SP [21]	LP/SP [40]
$\psi(3^3S_1)$	4225	4100	4097	4078/4096	4072/4100	4022	4078/4030
$\psi(4^3S_1)$	4625	4450	4389	4398/4426	4406/4450	4273	4412/4281
$\psi(5^3S_1)$	4614	4642/4672	...	4463	4711/4472
$\psi(6^3S_1)$	4804/4828	...	4608	...
$\psi(2^3D_1)$	4230	4190	4153	4156/4165	4142/4194	4089	4144/4095
$\psi(3^3D_1)$...	4520	4426	4464/4477	...	4317	4478/4336
$\psi(4^3D_1)$	4641	4690/4707
$\psi(5^3D_1)$	4840/4855

Since then, this model has been widely used in the study of baryon strong decays [25,28,45–50]. In the 3P_0 model, a light $q\bar{q}$ pair is created with the vacuum quantum number $j^{PC} = 0^{++}$ (hence “the 3P_0 model”), and then rearranged with the quarks within the initial meson to produce two final mesons. The decay matrix element can be described by the interaction Hamiltonian [25,47,48]

$$H_{q\bar{q}} = \gamma \sum f 2m_f \int d^3\bar{x}\bar{\psi}_f \psi_f,$$

where m_f is the constituent quark mass, and ψ_f is a Dirac field of quark. γ is a dimensionless constant standing for the $q\bar{q}$ pair creation strength, which can be extracted by fitting to data.

In Ref. [36], we extended the 3P_0 model to study the $Y(4660)→\Lambda\bar{\Lambda}$ decay process which requires two light $q\bar{q}$ pairs to be created. Here, we go a further step to study the higher heavy quarkonium decaying into two heavy mesons plus a light meson, as shown in Fig. 1. The corresponding helicity amplitude $M^{M_{f_A}M_{f_B}M_{f_C}M_{f_D}}$ is

$$\delta^3 (p_A - p_B - p_C - p_D) M^{M_{f_A}M_{f_B}M_{f_C}M_{f_D}} = \sum_k \langle BCD|H_{q\bar{q}}|k\rangle \langle k|H_{q\bar{q}}|A\rangle / E_k - E_A,$$

where p_i’s are the momenta of the hadrons; $|k\rangle$ stands for the intermediate state; E_A and E_k are energies of the initial and intermediate states, respectively. At the quark level, the intermediate state differs from the initial state by a created $q\bar{q}$ pair. Thus we simply assumed [36]

$$E_k - E_A \approx 2m_q,$$

![FIG. 1: The quarkonium (A) decays into three mesons (B + C + D).](image-url)
where \(m_q \) is the mass of the created quark. Then Eq. 6 can be rewritten as

\[
\delta^3 (p_A - p_B - p_C - p_D) M^{M_{I_A} M_{I_B} M_{I_C} M_{I_D}} = \frac{\langle BCD | H_{q\bar{q}} H_{q\bar{q}} | A \rangle}{2m_q},
\]

and \(M^{M_{I_A} M_{I_B} M_{I_C} M_{I_D}} \) is the momentum space integration and more detailed calculations are shown in the Appendix A. Finally, the decay width \(\Gamma \) reads

\[
\Gamma = \int_0^\infty dE_B dE_c \pi^3 \frac{1}{M_A 2J_A + 1}\sum_{M_{I_A} M_{I_B} M_{I_C} M_{I_D}} | M^{M_{I_A} M_{I_B} M_{I_C} M_{I_D}} |^2.
\]

The corresponding transition operator in the nonrelativistic limit reads

\[
T = \frac{9\gamma^2}{2m_q} \sum_{mm'} \langle 1m; 1 - m(00) | 1m'; 1 - m'(00) \rangle \times \int d^3 p d^3 p d^3 p d^3 p \delta^3 (p_5 + p_6) \times \delta^3 (p_5 + p_6)
\]

where \(p_i \) is the momentum of the \(i \)th quark created from vacuum. \(\phi_0 = (u\bar{d} + d\bar{u} + s\bar{s})/\sqrt{3} \) and \(\phi_1 \) stand for the flavor and color singlets, respectively. The solid harmonic polynomial \(J^{A B C D}_{I_{I_A} I_{I_B} I_{I_C} I_{I_D}}(p) \) corresponds to the \(P \)-wave \(q\bar{q} \) pair, and \(\chi_{1,-m,-m'} \) is the spin triplet state for the created \(q\bar{q} \) pair. \(\alpha^{i} b_{i}^{\dagger} \) is the creation operator denoting the \(q\bar{q} \) pair creation in the vacuum.

We use the mock state \([51]\) to define the meson (A)

\[
| A (N_A S_{I_A} J_{I_A} M_{I_A}) (p_A) \rangle = \sqrt{2E_A \phi_0^{12}} \omega_{A}^{12} \sum_{M_{I_A} M_{I_A}} \langle L_A M_{I_A} ; S A M S_A | J_{I_A} M_{I_A} \rangle \times \int d^3 p d^3 p \delta^3 (p_1 + p_2 - p_A) \times \psi_{N_A S_{I_A} J_{I_A} M_{I_A}} (p_1, p_2) | q_1(p_1) q_2(p_2) \rangle.
\]

Here the \(p_i \) (\(i = 1, 2 \)) is the momentum of quarks in meson \(A \). Then the helicity amplitude in the center of mass frame can be written as

\[
M^{M_{I_A} M_{I_B} M_{I_C} M_{I_D}} (A \rightarrow BCD) = \frac{\gamma^2}{2m_q} \sqrt{16E_A E_B E_C E_D} \times \sum_{mm'} \sum_{M_{I_A} M_{I_B} M_{I_C} M_{I_D}} | \langle 1m; 1 - m(00) | 1m'; 1 - m'(00) \rangle \times \langle L_A M_{I_A} S A M S_A | J_{I_A} M_{I_A} \rangle \times \langle L_C M_{I_C} S C M S_C | J_{I_C} M_{I_C} \rangle \times \langle L_D M_{I_D} S D M S_D | J_{I_D} M_{I_D} \rangle \rangle \times \times \langle \chi_{1,-m,-m'}^{13} \chi_{5,-m}^{26} \chi_{5,-m}^{26} \chi_{1,-m'}^{34} \rangle \times \langle \phi_{B}^{12} \phi_{C}^{34} \phi_{D}^{56} \rangle \times M^{M_{I_A} M_{I_B} M_{I_C} M_{I_D}} (p).
\]

where the factor \((-3)^2\) has been canceled by the color factor

\[
\langle \omega_{B}^{13} \omega_{C}^{26} \omega_{D}^{45} | \omega_{A}^{12} \omega_{D}^{34} \omega_{A}^{56} \rangle = \frac{1}{9}
\]

\(\) and \(M^{M_{I_A} M_{I_B} M_{I_C} M_{I_D}} (p) \) is the momentum space integration and more detailed calculations are shown in the Appendix A. Finally, the decay width \(\Gamma \) reads

\[
\Gamma = \int_0^\infty dE_B dE_c \pi^3 \frac{1}{M_A 2J_A + 1}\sum_{M_{I_A} M_{I_B} M_{I_C} M_{I_D}} | M^{M_{I_A} M_{I_B} M_{I_C} M_{I_D}} |^2.
\]

Following the literature in this field \([23, 28, 46, 50]\), we adopt the simple harmonic oscillator (SHO) wave function to describe the momentum-space wave function of the meson

\[
\psi_{\text{SHO}} (p) = \frac{(-1)^l \beta}{\sqrt{\pi} \beta^{3/2}} \sum_{n} \frac{n + l + 3/2}{\sqrt{2\pi l!}} \left(\frac{p^2}{\beta^2} \right)^l \psi_{\text{L}} (\Omega_p),
\]

where \(L^{l+1/2}_n (\beta^2 / \beta^2) \) is an associated Laguerre polynomial.

III. NUMERICAL RESULTS

A. Parameters

In the present work, we set \(m_u = m_d = 220 \text{ MeV}, m_s = 419 \text{ MeV}, m_c = 1628 \text{ MeV} \) and \(m_b = 4977 \text{ MeV} \) for the constituent quark masses \([38]\). The masses of final state mesons are listed in Table III. For simplicity, we ignore the isospin breaking and obtain the meson masses by taking their isospin averages.

Meson	State	Mass [MeV]	\(\beta \) [28, 50]
\(\pi \)	\(S_0 \)	138.0	400
\(\rho \)	\(S_1 \)	775.3	400
\(\omega \)	\(S_1 \)	782.6	400
\(\eta \)	\(S_1 \)	547.9	400
\(D \)	\(S_0 \)	1867.2	600
\(D^* \)	\(S_1 \)	2008.6	520
\(D_s \)	\(S_0 \)	1968.3	650
\(D_s^* \)	\(S_1 \)	2112.2	560
\(B \)	\(S_0 \)	5279.5	580
\(B^* \)	\(S_1 \)	5324.6	540
\(B_s \)	\(S_0 \)	5366.9	640
\(B_s^* \)	\(S_1 \)	5415.4	600

The harmonic oscillator strength \(\beta \) of light mesons takes the average value 400 MeV \([36, 50]\). The parameter \(\beta \)'s of heavy-light mesons are taken from Refs. \([28, 50]\), which are obtained by comparing the rms radius of the SHO wave function to that of the wave functions calculated using the Godfrey-Lassigur model (see Table II). We use \(\beta = 500 \text{ MeV} \) for charmonium \([25, 52]\). In Ref. \([28]\), Godfrey et al. showed that
the parameter b’s are 638 MeV, 600 MeV and 578 MeV for $\Upsilon(4S)$, $\Upsilon(5S)$ and $\Upsilon(6S)$ respectively, thus we adopt the average value as 600 MeV for bottomonium states in this work.

For the $q\bar{q}$ pair creation strength, we use $\gamma(c\bar{c}) = 6.95$ for charmonium decays, which is $\sqrt{96\pi}$ times of that in Refs. [25, 46] due to a different definition. However, in Ref. [28] it is found that this value underestimated the two-body strong decay widths of bottomonium, and the fitting of the open bottom decays of the Υ sector gives $\gamma(b\bar{b}) = 10.42$. Here we adopt the same value of γ for Υ sector as in Ref. [28]. The uncertainty of γ is about 30% [28, 48, 50, 54], which may lead to a factor-of-3 change to the predicted three body decay widths, either smaller or bigger. Thus the uncertainty of our results may be quite large.

B. Charmonium

There are seven charmonium-like states above the $D\bar{D}\pi$ threshold, $\psi(4040)$, $\psi(4160)$, $\psi(4260)$, $\psi(4360)$, $\psi(4415)$, and $\Upsilon(4660)$ with $J^{P_C} = 1^−−$. These states are of special interest since they can be easily produced from the $e^+e^−$ annihilation. We will discussed their three body decays in the following sections.

1. $\psi(4040)$

The $\psi(4040)$ state is commonly believed to be the $3^3S_1 c\bar{c}$ state [25]. Its average mass and width are $M = 4039 \pm 1$ MeV and $\Gamma_{\text{tot.}} = 80 \pm 10$ MeV [53], respectively. This is the first $1^−−$ charmonium above the $D\bar{D}\pi$ threshold.

The $DD'\pi$ mode is also available for $\psi(4040)$. Since $DD'\pi$ mode has little phase space, the partial width of $\psi(4040)$ decaying into $DD'\pi$ is about one magnitude smaller than the $D\bar{D}\pi$ partial width. The partial decay width ratio is

$$\frac{\Gamma[\psi(4040)\rightarrow DD'\pi]}{\Gamma[\psi(4040)\rightarrow D\bar{D}\pi]} \sim 0.2.$$ \hspace{1cm} (17)

2. $\psi(4160)$

The mass of $\psi(4160)$ is 4191 ± 5 MeV [53], which is about 150 MeV heavier than that of $\psi(4040)$. According to the mass predictions in the quark model [25], this state is suggested to be the $2^3D_1 c\bar{c}$ state. Its two body open charm decays have been studied by many authors, which also support this assignment [23, 25, 26].

We analyze the three body decay properties of $\psi(4160)$ as the $2^3D_1 c\bar{c}$ state, and collect its partial strong decay widths in Table III. We obtain the partial decay widths

$$\Gamma[\psi(4160)\rightarrow D\bar{D}\pi] \sim 119.8 \text{ keV},$$ \hspace{1cm} (18)

and

$$\Gamma[\psi(4160)\rightarrow DD'\pi] \sim 132.6 \text{ keV}. \hspace{1cm} (19)$$

The values are much bigger than the corresponding one of the $\psi(4040)$. These widths seem not large compared to its total width ($\Gamma_{\text{tot.}} = 70 \pm 10$ MeV), but it is enough to be observed in those decay channels in experiments. Moreover, the branching ratios are predicted to be

$$\mathcal{B}[\psi(4160)\rightarrow D\bar{D}\pi] \sim 1.7 \times 10^{-3}, \hspace{1cm} (20)$$

and

$$\mathcal{B}[\psi(4160)\rightarrow DD'\pi] \sim 1.9 \times 10^{-3}, \hspace{1cm} (21)$$

which are comparable to the upper limit of hidden charm decays of $\psi(4160)$. The partial decay width of $D^*D'^*\pi$ mode is

$$\Gamma[\psi(4160)\rightarrow D^*D'^*\pi] \sim 0.1 \text{ keV}. \hspace{1cm} (22)$$

This value is small and hard to be searched for at present.

3. $\Upsilon(4360)$

The state $\Upsilon(4360)$ was first observed by the BaBar Collaboration in the $e^+e^− \rightarrow \gamma\pi\pi\pi^+\pi^−\psi(2S)$ process [12]. Later, the Belle Collaboration confirmed this state in the same process with a statistical significance of more than 8σ [13]. The average values of mass and width listed in PDG are $M = 4368 \pm 13$ MeV and $\Gamma_{\text{tot.}} = 96 \pm 7$ MeV [53]. An interesting feature is that only the $\psi(2S)\pi^+\pi^−$ (and possibly $\psi_2(3823)\pi^+\pi^−$) decay mode(s) was observed, while the open charm decay modes are still missing [12, 13, 53].

$\Upsilon(4360)$ was interpreted to be 3^3D_1 state in the nonrela-
tivistic screened potential model \[21\]. Ding et al. also interpreted \(Y(4360)\) as a \(3^3D_1\) charmonium by evaluating its \(e^+e^-\) leptonici widths, E1 transitions, M1 transitions and the open flavor strong decays in the flux tube model. However, the possibility of the \(4^3S_1\) assignment cannot be rule out \[22\]. As the possible assignments of \(Y(4360)\), it is crucial to study the decay properties of the \(\psi (4^3S_1)\) and \(\psi (3^3D_1)\). The theoretical predictions are listed in Table IV.

State	\(\psi (4^3S_1)\)	\(\psi (3^3D_1)\)
\(\Gamma_{DD\pi}\)	0.27	0.14
\(\Gamma_{DD'\pi}\)	1.40	1.21
\(\Gamma_{D^*D'\pi}\)	0.60	0.25
\(\Gamma_{DD\eta}\)	6.0 keV	0.3 keV

From the Table IV the dominant three body decay mode for both \(\psi (4^3S_1)\) and \(\psi (3^3D_1)\) is \(DD'\pi\) with a mass of \(M=4368\) MeV, and the predicted partial decay widths are

\[
\Gamma[\psi (4^3S_1) \rightarrow DD'\pi] \sim 1.40 \text{ MeV,} \tag{23}
\]

and

\[
\Gamma[\psi (3^3D_1) \rightarrow DD'\pi] \sim 1.21 \text{ MeV}. \tag{24}
\]

Combing the measured width of \(Y(4360)\), we further get the branching ratios

\[
\mathcal{B}[\psi (4^3S_1) \rightarrow DD'\pi] \sim 1.5\%, \tag{25}
\]

\[
\mathcal{B}[\psi (3^3D_1) \rightarrow DD'\pi] \sim 1.3\%. \tag{26}
\]

The sizeable branching ratios indicates that this state has a good potential to be observed in the \(DD'\pi\) decay channel if it indeed turns out to be either the state \(\psi (4^3S_1)\) or \(\psi (3^3D_1)\).

Meanwhile, the partial decay widths of \(DD\pi\) and \(D^*D'\pi\) are sizable for the two assignments. If \(Y(4360)\) is the \(4^3S_1\) state, we predict

\[
\Gamma(DD\pi) : \Gamma(DD'\pi) : \Gamma(D^*D'\pi) \sim 1.0 : 5.1 : 2.2, \tag{27}
\]

while the \(3^3D_1\) assignment gives

\[
\Gamma(DD\pi) : \Gamma(DD'\pi) : \Gamma(D^*D'\pi) \sim 1.0 : 8.1 : 1.7. \tag{28}
\]

The \(DD\eta\) decay mode is also available kinetically. However, our calculation shows that its width \([\mathcal{O}(0.1 \text{ keV})]\) is too small to be observed because of its tiny phase space.

Unfortunately the three body decay properties of the two assignments \(\psi (4^3S_1)\) and \(\psi (3^3D_1)\) are very similar, which can’t be used to distinguish these two states in future experiments.

4. \(\psi(4415)\)

The \(\psi(4415)\) state was discovered by SLAC and LBL in \(e^+e^-\) annihilation \[56\]. Later, it was confirmed by DASP Collaboration \[57\]. Its mass and width are \((4421 \pm 4) \text{ MeV and (62} \pm 20) \text{ MeV}\) \[58\], respectively. This state is the unique vector charmonium with experimental data of three body decays. The present study of the state \(\psi(4415)\) can not only provide an important test of our model but also let us obtain more information about the nature of \(\psi(4415)\).

In Ref. \[24\], Le Yaouanc et al. used the \(3P_0\) model to calculate its open flavor decay and assigned it to be \(4^3S_1\) state. Later, Barnes et al. confirmed this assignment by comparing the mass spectrum from GI model calculation. They calculated all ten open-charmed decay widths of \(\psi(4415)\) using the \(3P_0\) model, and found that the total widths and the decay patterns were consistent with experiments \[25\]. Moreover, they predicted that \(DD_1\) and \(DD^*\) were the major decay modes of \(\psi(4415)\), and the latter prediction was confirmed by Belle Collaboration \[30\]. Thus it is essential to study the three body decay properties of \(\psi (4^3S_1)\).

State	\(\psi (4^3S_1)\)	\(\psi (5^3S_1)\)	\(\psi (3^3D_1)\)
\(\Gamma_{DD\pi}\)	0.38	0.11	0.21
\(\Gamma_{DD'\pi}\)	2.01	0.96	1.84
\(\Gamma_{D^*D'\pi}\)	1.07	0.59	0.52
\(\Gamma_{DD\eta}\)	5.4 keV	1.7 keV	2.9 keV

Fixing the mass of \(\psi (4^3S_1)\) at \(M = 4421\) MeV, we calculated its partial decay widths and listed them in Table V. According to our calculation, its three body strong decay is governed by the \(DD'\pi\) channel with the branching ratio

\[
\mathcal{B}[\psi (4^3S_1) \rightarrow DD'\pi] \sim 3.2\%, \tag{29}
\]

which is less than the upper limit (< 11%) listed in PDG \[53\].

The role of the \(D^*D'\pi\) channel is also important in the decays. The predicted partial width ratio between \(D^*D'\pi\) and \(DD'\pi\) is

\[
\frac{\Gamma[\psi (4^3S_1) \rightarrow D^*D'\pi]}{\Gamma[\psi (4^3S_1) \rightarrow DD'\pi]} \sim 0.5. \tag{30}
\]

Meanwhile, the partial decay width of the \(DD\pi\) mode is predicted to be

\[
\Gamma[\psi (4^3S_1) \rightarrow DD\pi] \sim 0.38 \text{ MeV} \tag{31}
\]

with the branching ratio

\[
\mathcal{B}[\psi (4^3S_1) \rightarrow DD\pi] \sim 0.6\%. \tag{32}
\]

This value is also less than the upper limit (2.2%) obtained by the Belle Collaboration \[30\]. To further confirm the nature of \(\psi(4415)\),
ψ(4415) and test our results, more precise experimental data are badly needed.

Besides the 4^3S_1 assignment, there are other interpretations of ψ(4415). In Ref. [21], Li et al. proposed that the mass of ψ(4415) was compatible with 5^3S_1 rather than 4^3S_1 in the nonrelativistic screened potential model. However, Segovia et al. suggested that ψ(4415) could be a 3^3D_1 state [22]. In the present work, we also calculate the partial decay widths of $\psi(5^3S_1)$ and $\psi(3^3D_1)$ with the mass of 4421 MeV. The predictions are collected in Table V.

Fixing the masses at $M = 4421$ MeV, the dominant three
The above decay widths are large enough to be observed in the body decay mode of $\psi (5^3S_1)$ and $\psi (3^3D_1)$ is $DD^*\pi$. The partial decay widths are

$$\Gamma[\psi (5^3S_1) \to DD^*\pi] \sim 0.96 \text{ MeV}$$

(33)

and

$$\Gamma[\psi (3^3D_1) \to DD^*\pi] \sim 1.84 \text{ MeV}.$$

(34)

The above decay widths are large enough to be observed in future experiments. Moreover,

$$\frac{\Gamma[\psi (3^3D_1) \to DD^*\pi]}{\Gamma[\psi (5^3S_1) \to DD^*\pi]} \sim 1.9.$$

(35)

which indicates the $DD^*\pi$ branching ratio of $\psi (3^3D_1)$ is larger than that of $\psi (5^3S_1)$.

In addition, considering the uncertainty of the predicted masses in various models, we plot the partial decay widths of the 4^3S_1, 5^3S_1 and 3^3D_1 $c\bar{c}$ states as the functions of the mass in the range of $M = (4300 - 4700)$ MeV in Figs. 2-3.

5. $Y(4660)$

In 2007, the Belle Collaboration reported an enhancement $Y(4660)$ when they measured the cross section of $e^+e^- \to \pi^+\pi^-\bar{\psi}(2S)$ process [13]. Later, the BaBar Collaboration confirmed the existence of the $Y(4660)$ state in the same process [58]. The mass and width of the $Y(4660)$ are (4643 ± 9) MeV and (72 ± 11) MeV, respectively. According to various quark model calculation, there are six excited vector charmonium states around 4.6 GeV (see Table II), namely $\psi(4S)$, $\psi(5S)$, $\psi(6S)$, $\psi(3D)$, $\psi(4D)$ and $\psi(5D)$. In Ref. [36], we have studied the $\Lambda_c\bar{\Lambda}_c$ partial decay widths of these states. Here we will discuss their three body decays.

According to the quark model calculation, the mass of $\psi (5^3S_1)$ is very close to $Y(4660)$. Ding et al. also suggested that the $Y(4660)$ is a 5^3S_1 charmonium after studying its e^+e^- leptonic widths, E1 transitions, M1 transitions and the open flavor strong decays in the flux-tube model [59]. As a possible assignment, we first study the decay property of the $\psi (5^3S_1)$ and list the corresponding results in Table VI.

From the table, we find that the partial decay widths of $DD^*\pi$ and $D^*D^*\pi$ modes are quite large, which read

$$\mathcal{B}[\psi (5^3S_1) \to DD^*\pi] \sim 3.9\%$$

(36)

and

$$\mathcal{B}[\psi (5^3S_1) \to D^*D^*\pi] \sim 3.7\%,$$

(37)

respectively. The values are large enough to be observed in experiment. Meanwhile, the partial decay width of $\Gamma[\psi (5^3S_1) \to DD\pi]$ is considerable. The partial decay width ratio is

$$\frac{\Gamma[\psi (5^3S_1) \to DD\pi]}{\Gamma[\psi (5^3S_1) \to DD^*\pi]} \sim 0.1.$$

(38)

Besides $\psi (5^3S_1)$, the possibility that $Y(4660)$ is a $\psi (4^3S_1)$.
or $\psi(6^3S_1)$ state cannot be excluded completely. Thus we also calculate the partial decay widths of the $\psi(4^3S_1)$ and $\psi(6^3S_1)$ states. Similarly, we fix the mass of $\psi(4^3S_1)$ and $\psi(6^3S_1)$ at $M = 4643$ MeV, and collect their partial decay widths in Table VI.

As listed in Table VI, we obtain that the partial decay widths of $DD'\pi$ and $D^*D'\pi$ for $\psi(4^3S_1)$ are the largest compared to those for $\psi(5^3S_1)$ and $\psi(6^3S_1)$. The predicted branching ratios are

$$B[\psi(4^3S_1) \rightarrow DD'\pi] \sim 9.2\%,$$
$$B[\psi(4^3S_1) \rightarrow D^*D'\pi] \sim 8.3\%.$$ \hspace{1cm} (39)

However, the $\psi(6^3S_1)$ state gives the smallest branching ratios, which are

$$B[\psi(6^3S_1) \rightarrow DD'\pi] \sim 1.5\%,$$
$$B[\psi(6^3S_1) \rightarrow D^*D'\pi] \sim 1.6\%.$$ \hspace{1cm} (40)

Furthermore, we study the decay properties of the $\psi(3^3D_1)$, $\psi(4^3D_1)$ and $\psi(5^3D_1)$ states, and list their decay properties in Table VI as well. Combined with the total width of $Y(4660)$, we obtain the branching ratios of the $\psi(3^3D_1)$, $\psi(4^3D_1)$ and $\psi(5^3D_1)$ states as follows:

$$B[\psi(3^3D_1) \rightarrow DD\pi] \sim 0.6\%,$$
$$B[\psi(3^3D_1) \rightarrow DD'\pi] \sim 9.7\%,$$ \hspace{1cm} (41)
$$B[\psi(3^3D_1) \rightarrow D^*D'\pi] \sim 5.7\%;$$ \hspace{1cm} (42)
$$B[\psi(4^3D_1) \rightarrow DD\pi] \sim 0.2\%,$$
$$B[\psi(4^3D_1) \rightarrow DD'\pi] \sim 4.2\%,$$ \hspace{1cm} (43)
$$B[\psi(4^3D_1) \rightarrow D^*D'\pi] \sim 2.9\%;$$ \hspace{1cm} (44)
$$B[\psi(5^3D_1) \rightarrow DD\pi] \sim 0.06\%,$$
$$B[\psi(5^3D_1) \rightarrow DD'\pi] \sim 1.6\%.$$ \hspace{1cm} (45)

These branching ratios are comparable to those of the S-wave states. If $Y(4660)$ is a D-wave state, it is possible to be observed in the $DD'\pi$ and $D^*D'\pi$ channels as well.

In addition to the $DD\pi$, $DD'\pi$ and $D^*D'\pi$ channels, $Y(4660)$ can also decay into $DD\omega$, $DD\eta$, $DD\eta'$, $DD\eta$, $DD\eta$, $DD\eta$, $DD\eta$, $DD\eta$ and $DD\eta$ channels. In the same way, we fix the mass of the states $\psi(4S)$, $\psi(5S)$, $\psi(6S)$, $\psi(3D)$, $\psi(4D)$ and $\psi(5D)$ at $M = 4643$ MeV, and calculate their widths of decaying into these channels. The results are collected in Table VI. The partial decay widths of these channels are relatively smaller. Among them, the partial decay widths of the $DD\pi$, $DD\omega$ and $DD\eta$ modes are around several tenths of MeV. If $Y(4660)$ is one of the above states, it is still possible to observe these channels.

The mass spectrum predicted by various quark models bears a large uncertainty, and may have effect on the partial decay widths. To investigate this effect, we vary the mass of the states $\psi(4S)$, $\psi(5S)$, $\psi(6S)$, $\psi(3D)$, $\psi(4D)$ and $\psi(5D)$ from 4300 MeV to 4700 MeV, and calculate their corresponding decay widths. Here, we just plot the results for the $DD\pi$, $DD'\pi$ and $D^*D'\pi$ channels in Figs. 5–7 and omit the theoretical predictions of other channels since their decay widths are relatively smaller.

C. Bottomonium

For the bottomonium system, there are three $b\bar{b}$ states above the open bottom threshold, namely $\Upsilon(4S)$, $\Upsilon(10860)$ and $\Upsilon(11120)$. A number of literatures are available on the study of their strong decays with the 3P_0 model \cite{27, 28, 61} and other models \cite{33, 61}. Most of them focus on the two body strong decays. However, the $\Upsilon(10860)$ and $\Upsilon(11120)$ states can also decay into two bottomed mesons plus a π meson. Furthermore, these channels for $\Upsilon(10860)$ state have recently been observed by the Belle Collaboration \cite{33}. We will investigate the three body decays of $\Upsilon(10860)$ and $\Upsilon(11120)$ with the extended 3P_0 model.

The $\Upsilon(10860)$ and $\Upsilon(11120)$ were discovered by the CLEO Collaboration in the e^+e^- annihilation \cite{62}. Their masses and
TABLE VII: The $B^+\bar{B}^0\pi$ partial decay widths of the vector bottomonium (in units of MeV). \mathcal{B}_{exp} represents the branching ratio for each corresponding channel.

Meson	State	Mode	$\beta = 550\text{MeV}$	$\beta = 600\text{MeV}$	$\beta = 650\text{MeV}$	\mathcal{B}_{exp} [53]
$\Upsilon(10860)$	5^1S_1	$BB\pi$	0.12 0.2%	0.20 0.4%	0.28 0.5%	(0.0 \pm 1.2)%
		BB^π	1.36 2.7%	1.22 2.4%	0.94 1.8%	(23\rightarrow30) keV (7.3 \pm 2.3)%
		B^*B^π	0.64 1.3%	0.61 1.2%	0.47 0.9%	(5\rightarrow6.6) keV (1.0 \pm 1.4)%
$\Upsilon(11020)$	6^1S_1	$BB\pi$	0.17 0.3%	0.34 0.7%	0.55 1.1%	
		BB^π	2.50 5.1%	3.17 6.5%	3.41 7.0%	
		B^*B^π	2.12 4.3%	2.69 5.5%	2.97 6.1%	

widths are [53]

$$m_{\Upsilon(10860)} = 10889.9^{+3.2}_{-2.6} \text{ MeV},$$

$$\Gamma_{\Upsilon(10860)} = 51^{+6}_{-7} \text{ MeV},$$

$$m_{\Upsilon(11020)} = 10992.9^{+10.0}_{-3.1} \text{ MeV},$$

$$\Gamma_{\Upsilon(11020)} = 49^{+9}_{-15} \text{ MeV}.$$ (53)

They are usually assigned to be the 5^1S_1 and 6^1S_1 $b\bar{b}$ states in the quark model. We will discuss the three body decays of the $\Upsilon(10860)$ and $\Upsilon(11020)$ states with this assignment.

The partial decay widths of the $\Upsilon(10860)$ state are listed in Table VII. According to our calculation, we obtain

$$\Gamma[\Upsilon(10860) \rightarrow BB\pi] \sim 0.20 \text{ MeV},$$ (54)

$$\Gamma[\Upsilon(10860) \rightarrow BB^\pi] \sim 1.22 \text{ MeV},$$ (55)

$$\Gamma[\Upsilon(10860) \rightarrow B^*B^\pi] \sim 0.61 \text{ MeV}.$$ (56)

The BB^π decay width is the largest one. Combining with the total width of $\Upsilon(10860)$, we obtain the branching ratios as follows:

$$\mathcal{B}[\Upsilon(10860) \rightarrow BB\pi] \sim 0.4\%,$$ (57)

$$\mathcal{B}[\Upsilon(10860) \rightarrow BB^\pi] \sim 2.4\%,$$ (58)

$$\mathcal{B}[\Upsilon(10860) \rightarrow B^*B^\pi] \sim 1.2\%.$$ (59)

The predicted branching ratios of the $BB\pi$ and B^*B^π decay modes are within the ranges of experimental values measured by the Belle Collaboration [53]. For the BB^π decay mode, our result is slightly smaller than the experiment data.

The partial decay widths of $\Upsilon(11020)$ state are also presented in Table VII. According to our calculations, we obtain the corresponding branching ratios

$$\mathcal{B}[\Upsilon(11020) \rightarrow BB\pi] \sim 0.7\%,$$ (60)

$$\mathcal{B}[\Upsilon(11020) \rightarrow BB^\pi] \sim 6.5\%,$$ (61)

$$\mathcal{B}[\Upsilon(11020) \rightarrow B^*B^\pi] \sim 5.5\%.$$ (62)

The branching ratios of the BB^π and B^*B^π channels are quite large. Thus these two channels may be observed by the BelleII Collaboration in the near future.

D. The effect of β

We have investigated the three body open flavor decays of five charmonium-like states with various assignments and two bottomonium states. In this work, we carried out the calculation by fixing the harmonic oscillator parameter β to be 500 MeV (600 MeV) for charmonium (bottomonium) states. However, the parameter β of the initial states is not determined precisely, which may bring in uncertainty to our results. To estimate this effect, we carry out the preceding calculation by varying the parameter β of the initial states by 50 MeV. We investigate the decay properties with two different β values, $\beta = 450$ MeV and $\beta = 550$ MeV for charmonium states and $\beta = 550$ MeV and $\beta = 650$ MeV for bottomonium states. The numerical results are presented in Table VIII. Figs. 3-5 for charmonium states and Table IX for bottomonium states. In most cases, a larger β value leads to a larger decay width. Within a reasonable range of the parameter β, our main predictions and conclusions hold.

IV. CONCLUSIONS

In the present work, we have investigated the OZI-allowed three body open flavor decays of excited vector charmonium-like states and bottomonium states in the framework of the extended 3P_0 model. It is the first attempt along this direction in literatures to study this type of decay modes by considering the creation of two light $q\bar{q}$ pairs from vacuum. Our main results are summarized as follows.

For the well-established states $\psi(4040)$ and $\psi(4160)$, we estimate their three body open flavor decay properties with the assignments $\psi(3^1S_1)$ and $\psi(3^1D_1)$, respectively. The partial decay widths of $\psi(4040)$ should be fairly small (about several tens keV), and those of $\psi(4160)$ are a little larger, which are about 0.1 MeV for the $DD\pi$ and $DD^*\pi$ modes.

We also discuss the decay properties of $Y(4360)$ as a candidate of $\psi(4^3S_1)$ or $\psi(4^3D_1)$. From our calculation, the partial decays width of $DD^*\pi$ mode can reach up to 1 MeV in both cases. Thus if $Y(4360)$ is one of these states, it may be observed in the $DD^*\pi$ channel.

With the $\psi(4^3S_1)$ assignment, the $DD^*\pi$ and $D^*D^*\pi$ decay widths of $\psi(4415)$ are larger than 1 MeV. Meanwhile, the $DD\pi$ decay mode is sizable with a width of ~ 0.38 MeV. Our predictions for the branching ratios of the $DD\pi$ and $DD^*\pi$...
channels are within the upper limits measured by the Belle Collaboration [30, 31]. However, assigning \(\psi(4415) \) to be \(\psi(5S_1) \) or \(\psi(5S_1) \) state, we obtain similar decay properties. Thus, to further determine the inner structure of \(\psi(4415) \), more precise experimental data are needed.

We calculated the three body open flavor decay widths of \(\Upsilon(4660) \) with various assignments, \(\psi(4S,5S,6S) \) and \(\psi(3D,4D,5D) \). In both cases, its three body decays are dominated by the \(DD\pi \) and \(DD\pi \) channels, and the partial decay widths can reach up to several MeV. Meanwhile, we notice that the \(DD\pi \) and \(DD\pi \) decay widths of the \(D^- \)-wave states are larger than those of the \(S \)-wave states. If \(\Upsilon(4660) \) turns out to be \(\psi(3D) \), its \(DD\pi \) decay width even reaches up to 1.86 MeV.

We have also investigated the three body open flavor decays of \(\Upsilon(10860) \) and \(\Upsilon(11020) \). The branching ratios of \(\Upsilon(10860) \) decaying into \(BB\pi \) and \(BB\pi \) are consistent with the experimental data, while the \(BB\pi \) branching ratio is smaller but very close to the Belle’s measurement. For \(\Upsilon(11020) \), the \(BB\pi \), \(BB\pi \) and \(BB\pi \) decay widths are 0.34 MeV, 3.17 MeV and 2.69 MeV, respectively. Hopefully the \(BB\pi \) and \(BB\pi \) decay modes of the \(\Upsilon(11020) \) state will be observed by BelleII Collaboration in the very near future.

Acknowledgments

This project is supported by the National Natural Science Foundation of China under Grants 11575008, 11621131001 and National Key Basic Research Program of China (2015CB856700). This project is also in part supported by China Postdoctoral Science Foundation under Grant no. 2017M620492.

Appendix A: The momentum space integration

The momentum space integration \(\mathcal{I}_{M_{L_{A}}, m, m'}(p) \) reads

\[
\mathcal{I}_{M_{L_{A}}, m, m'}(p) = \int d^3p_1 \mathcal{Y}_1^m(p_B - p_1) \mathcal{Y}_1^m(-p_C - p_1) \\
\times \psi_{m_{A_{L_{A}}} M_{L_{A}}} \left(p_1 - \frac{m_1}{m_1 + m_3} p_B \right) \\
\times \psi_{m_{C_{L_{C}}} M_{L_{C}}} \left(p_1 - \frac{m_2}{m_2 + m_6} p_C \right) \\
\times \psi_{m_{D_{L_{D}}} M_{L_{D}}} \left(p_1 - \frac{m_5}{m_4 + m_5} p_B + \frac{m_4}{m_4 + m_5} p_C \right) \\
\times \psi_{m_{A_{L_{A}}} M_{L_{A}}} (p_1). \quad (A1)
\]

In our calculation, only the \(S \)-wave states are considered for the final states. Thus we can rewrite the momentum space integration \(\mathcal{I}_{M_{L_{A}}, m, m'}(p) \) as \(\Pi(M_{L_{A}}, m, m') \).

For the decay of the \(1S \) state,

\[
\Pi(0, m, m')
\]

\[
= \frac{1}{\pi \beta^2} \left(\frac{1}{\pi \beta_B^2} \right)^{3/4} \left(\frac{1}{\pi \beta_C^2} \right)^{3/4} \left(\frac{1}{\pi \beta_D^2} \right)^{3/4} \\
\times \exp \left[f(P_B, P_C) \right] \times \frac{\pi}{|\lambda|^{3/2}} \\
\times \left[\frac{3(-1)^m}{8\pi \lambda_1} \delta_{m', m} + \mathcal{Y}_1^m (\eta - 1) P_B + \varpi P_C \right] \\
\times \mathcal{Y}_1^m (\eta P_B - \varpi P_C) \right]. \quad (A2)
\]

For the decay of the \(1D \) state

\[
\Pi(M_{L_{A}}, m, m')
\]

\[
= -\frac{16}{15 \sqrt{\pi}} \frac{1}{\beta^{3/2}} \left(\frac{1}{\pi \beta_B^2} \right)^{3/4} \left(\frac{1}{\pi \beta_C^2} \right)^{3/4} \left(\frac{1}{\pi \beta_D^2} \right)^{3/4} \\
\times \exp \left[f_5(P_B, P_C) \right] \frac{\pi}{|\lambda|^{3/2}} \\
\times \left[15 \frac{1}{16\pi \lambda_1} \cdot k_{m', m'}^{(112)} \delta_{m', m} - M_{L_{A}} \right. \\
+ \frac{3}{8\pi \lambda_1} \left. \cdot (-1)^m \mathcal{Y}_2^{M_{L_{A}}} (\eta P_B - \varpi P_C) \right] \\
\times \mathcal{Y}_1^m (\eta P_B + (\varpi - 1) P_C) \\
\times \mathcal{Y}_1^m (\eta P_B - \varpi P_C) \\
\times (1 - m'; 1 M_{L_{A}} + m 2 M_{L_{A}}) \\
\times (1 - m'; 1 M_{L_{A}} + m 2 M_{L_{A}}) \right] \right) \quad (A3)
\]

Here,

\[
\kappa_1 = \frac{m_1}{m_1 + m_3}, \quad (A4)
\kappa_2 = \frac{m_2}{m_2 + m_6}, \quad (A5)
\kappa_31 = \frac{m_4}{m_4 + m_5}, \quad (A6)
\kappa_32 = \frac{m_5}{m_4 + m_5}; \quad (A7)
\lambda_1 = \frac{1}{2\alpha^2} + \frac{1}{2\alpha_B^2} + \frac{1}{2\alpha_C^2} + \frac{1}{2\alpha_D^2}. \quad (A8)
\]
\[
A_2 = \frac{k_1}{\alpha_B^2} + \frac{k_{32}}{\alpha_C^2},
\]
\[
A_3 = \frac{k_2}{\alpha_C^2} + \frac{k_{31}}{\alpha_D^2};
\]
\[
f(P_B, P_C) = \left(\frac{\alpha_2 P_B - \alpha_3 P_C}{4\alpha_1} + \frac{k_2 P_B^2}{2\alpha_C^2} - \frac{k_3 P_B}{2\alpha_C^2} - \frac{(k_2 P_B - k_3 P_C)^2}{2\alpha_D^2}\right).
\]
\[
\eta = \frac{A_2}{2\alpha_1},
\]
\[
\sigma = \frac{A_3}{2\alpha_1}.
\]

Applying the above momentum space integrations to Eq. (11), we can calculate the 1S and 1D amplitudes. Amplitudes of the radially and orbitally excited states can be obtained by following recursion relations [8, 9]:

\[
M_{1S} = \frac{2}{\sqrt{15}} \left(\frac{2}{3} \frac{\alpha^2 \partial^2}{\partial \alpha^2} + \frac{3}{2} \frac{\alpha \partial}{\partial \alpha} + \frac{15}{2} \frac{\alpha \partial}{\partial \alpha} \right) M_{1S},
\]
\[
M_{1S} = \frac{2}{\sqrt{3} \sqrt{5}} \left(\frac{4}{3} \frac{\alpha^3 \partial^3}{\partial \alpha^3} + 6 \frac{\alpha^3 \partial^3}{\partial \alpha^3} + 24 \frac{\alpha^2 \partial^2}{\partial \alpha^2} \right) M_{1S} \tag{A15}.
\]

[1] S. K. Choi et al. [Belle Collaboration], Observation of a narrow charmonium-like state in exclusive \(B^+ \rightarrow K^+ \pi^+ \pi^- J/\psi \) decays, Phys. Rev. Lett. 91, 262001 (2003).
[2] D. Acosta et al. [CDF Collaboration], Observation of the narrow state \(X(3872) \rightarrow J/\psi \pi^+ \pi^- \) in \(pp \) collisions at \(\sqrt{s} = 1.96 \) TeV, Phys. Rev. Lett. 93, 072001 (2004).
[3] V. M. Abazov et al. [D0 Collaboration], Observation and properties of the \(X(3872) \) decaying to \(J/\psi \pi^+ \pi^- \) in \(pp \) collisions at \(\sqrt{s} = 1.96 \) TeV, Phys. Rev. Lett. 93, 162002 (2004).
[4] B. Aubert et al. [BaBar Collaboration], Study of the \(B \rightarrow J/\psi K^+ \pi^- \pi^- \) decay and measurement of the \(B \rightarrow X(3872)K^- \) branching fraction, Phys. Rev. D 71, 071103 (2005).
[5] R. Aaij et al. [LHCb Collaboration], Observation of \(X(3872) \) production in \(pp \) collisions at \(\sqrt{s} = 7 \) TeV, Eur. Phys. J. C 72, 1972 (2012).
[6] S. Chatrchyan et al. [CMS Collaboration], Measurement of the \(X(3872) \) production cross section via decays to \(J/\psi \pi \pi \) in \(pp \) collisions at \(\sqrt{s} = 7 \) TeV, JHEP 1304, 154 (2013).
[7] M. Ablikim et al. [BESIII Collaboration], Observation of \(e^+e^- \rightarrow \gamma X(3872) \) at BESIII, Phys. Rev. Lett. 112, 092001 (2014).
[8] K. Abe et al. [Belle Collaboration], Observation of a near-threshold \(\omega J/\psi \) mass enhancement in exclusive \(B \rightarrow K \omega J/\psi \) decays, Phys. Rev. Lett. 94, 182002 (2005).
[9] T. Aaltonen et al. [CDF Collaboration], Evidence for a Narrow Near-Threshold Structure in the \(J/\psi \) Mass Spectrum in \(B^+ \rightarrow J/\psi \phi K^- \) Decays, Phys. Rev. Lett. 102, 242002 (2009).
[10] F. Pakhlov et al. [Belle Collaboration], Production of New Charmoniumlike States in \(e^+e^- \rightarrow J/\psi D^{(*)+}D^{(*)-} \) at \(\sqrt{s} \approx 10.6 \) GeV, Phys. Rev. Lett. 100, 202001 (2008).
[11] B. Aubert et al. [BaBar Collaboration], Observation of a broad structure in the \(\pi^+ \pi^- J/\psi \) mass spectrum around 4.26-GeV/c\(^2\), Phys. Rev. Lett. 95, 142001 (2005).
[12] B. Aubert et al. [BaBar Collaboration], Evidence of a broad structure at an invariant mass of 4.32-GeV/c\(^2\) in the reaction \(e^+e^- \rightarrow \pi^+ \pi^- \psi(2S) \) measured at BaBar, Phys. Rev. Lett. 98, 212001 (2007).
[13] X. L. Wang et al. [Belle Collaboration], Observation of Two Resonant Structures in \(e^+e^- \rightarrow \pi^+ \pi^- \psi(2S) \) via Initial State Radiation at Belle, Phys. Rev. Lett. 99, 142002 (2007).
[14] E. S. Swanson, Short range structure in the \(X(3872) \), Phys. Lett. B 588, 189 (2004).
ogy, Int. J. Mod. Phys. E 22, 1330026 (2013).
[23] A. Le Yaouanc, L. Oliver, O. Pene and J.-C. Raynal, Strong Decays of psi-prime-prime (4.028) as a Radial Excitation of Charmonium, Phys. Lett. 71B, 397 (1977).
[24] A. Le Yaouanc, L. Oliver, O. Pene and J. C. Raynal, Why Is psi-prime-prime-prime (4.414) SO Narrow?, Phys. Lett. 72B, 57 (1977).
[25] T. Barnes, S. Godfrey and E. S. Swanson, Higher charmonia, Phys. Rev. D 72, 054026 (2005).
[26] L. C. Gui, L. S. Lu, Q. F. Liu, X. H. Zhong and Q. Zhao, Strong decays of higher charmonium states into open-charm meson pairs, Phys. Rev. D 98, 016010 (2018).
[27] J. Ferretti and E. Santopinto, Higher mass bottomonia, Phys. Rev. D 90, 094022 (2014).
[28] S. Godfrey and K. Moats, Bottomonium Mesons and Strategies for their Observation, Phys. Rev. D 92, 054034 (2015).
[29] J. Z. Wang, Z. F. Sun, X. Liu and T. Matsuki, Higher bottomonium zoo, arXiv:1802.04938 [hep-ph].
[30] C. Z. Yuan, The $\psi(4415)$, Nuovo Cim. A 104, 177 (1991).
[31] A. Drutskoy et al., Measurement of the $e^+e^-\rightarrow\psi(2S)$ cross section using initial-state radiation, Phys. Rev. Lett. 100, 062001 (2008).
[32] G. Pakhlova et al. [Belle Collaboration], Measurement of the $e^+e^-\rightarrow D_{sJ}(2460)$ decay using initial-state radiation, Phys. Rev. D 80, 091101 (2009).
[33] C. Z. Yuan, The XYZ states revisited, Int. J. Mod. Phys. A 33, 130018 (2018).
[34] B. Wang, Studies of XYZ states at BESIII, arXiv:1810.04911 [hep-ex].
[35] A. Drutskoy et al. [Belle Collaboration], Measurement of the $e^+e^-\rightarrow D_1^{*}(2420)$ decay, Phys. Rev. D 80, 091103 (2009).
[36] Y. A. Simonov and A. I. Veselov, Bottomonium $Y(5S)$ decays into BB and $B\bar{B}$, IETP Lett. 88, 5 (2008).
[37] L. Y. Xiao, X. Z. Weng, Q. F. Liu, X. H. Zhong and S. L. Zhu, A new decay mode of higher charmonium, Eur. Phys. J. C 78, 605 (2018).
[38] E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane and T. M. Yan, Charmonium: Comparison with Experiment, Phys. Rev. D 21, 203 (1980).
[39] S. Godfrey and N. Isgur, Mesons in a Relativized Quark Model with Chromodynamics, Phys. Rev. D 32, 189 (1985).
[40] A. M. Badalian, B. L. G. Bakker and I. V. Danilkin, The S–D mixing and di-electron widths of higher charmonium $1^-\bar{s}$ states, Phys. Atom. Nucl. 72, 638 (2009).
[41] W. J. Deng, H. Liu, L. C. Gui and X. H. Zhong, Charmonium spectrum and their electromagnetic transitions with higher multipole contributions, Phys. Rev. D 95, 034026 (2017).
[42] L. Micu, Decay rates of meson resonances in a quark model, Nucl. Phys. B 10, 521 (1969).
[43] A. Le Yaouanc, L. Oliver, O. Pene and J. C. Raynal, Naive quark pair creation model of strong interaction vertices, Phys. Rev. D 8, 2223 (1973).
[44] A. Le Yaouanc, L. Oliver, O. Pene and J.-C. Raynal, Naive quark pair creation model and baryon decays, Phys. Rev. D 9, 1415 (1974).
[45] C. S. Kalman and B. Tran, The Strong Decays of Baryons, Nuovo Cim. A 104, 177 (1991).
[46] E. S. Ackleh, T. Barnes and E. S. Swanson, On the mechanism of open flavor strong decays, Phys. Rev. D 54, 6811 (1996).
[47] F. E. Close and E. S. Swanson, Dynamics and decay of heavy-light hadrons, Phys. Rev. D 72, 094004 (2005).
[48] C. Chen, X. L. Chen, X. Liu, W. Z. Deng and S. L. Zhu, Strong decays of charmed baryons, Phys. Rev. D 75, 094017 (2007).
[49] S. Godfrey and K. Moats, Properties of Excited Charm and Charm-Strange Mesons, Phys. Rev. D 93, 034035 (2016).
[50] C. Hayne and N. Isgur, Beyond the Wave Function at the Origin: Some Momentum Dependent Effects in the Nonrelativistic Quark Model, Phys. Rev. D 25, 1944 (1982).
[51] T. Barnes and S. Godfrey, Charmonium options for the X(3872), Phys. Rev. D 69, 054008 (2004).
[52] M. Tanabashi et al. [Particle Data Group], Review of Particle Physics, Phys. Rev. D 98, 030001 (2018).
[53] H. G. Blundell, Meson properties in the quark model: A look at some outstanding problems, hep-ph/9909473.
[54] M. Ablikim et al. [BESIII Collaboration], Observation of the $\psi(3\sigma)$ state in $e^+e^-\rightarrow\pi^+\pi^-\chi_{c1}$ at BESIII, Phys. Rev. Lett. 115, 011803 (2015).
[55] J. Sigrist et al., Observation of a Resonance at 4.4-GeV and Additional Structure Near 4.1-GeV in e^+e^- Annihilation, Phys. Rev. Lett. 36, 700 (1976).
[56] R. Brandelik et al. [DASP Collaboration], Total Cross-section for Hadron Production by e^+e^- Annihilation at Center-of-mass Energies Between 3.6-GeV and 5.2-GeV, Phys. Lett. 76B, 361 (1978).
[57] J. P. Lees et al. [BaBar Collaboration], Study of the reaction $e^+e^-\rightarrow\psi(2S)\gamma\pi^-$ via initial-state radiation at BaBar, Phys. Rev. D 89, 111103 (2014).
[58] G. J. Ding, J. J. Zhu and M. L. Yan, Canonical Charmonium Interpretation for Y(4360) and Y(4660), Phys. Rev. D 77, 014033 (2008).
[59] U. Segovia, D. E. J. Ten and F. Fernández, Scaling of the P_0 Strength in Heavy Meson Strong Decays, Phys. Lett. B 715, 322 (2012).
[60] D. Ebert, R. N. Faustov and V. O. Galkin, Strong decays of vector mesons to pseudoscalar mesons in the relativistic quark model, Phys. Lett. B 744, 1 (2015).
[61] D. Besson et al. [CLEO Collaboration], Observation of New Structure in the e^+e^- Annihilation Cross-Section Above B anti-B Threshold, Phys. Rev. Lett. 54, 381 (1985).
[62] J. F. Liu and G. J. Ding, Bottomonium Spectrum with Coupled-Channel Effects, Eur. Phys. J. C 72, 1981 (2012).