Calculation of the energy levels of Ge, Sn, Pb and their ions in the V^{N-4} approximation

V. A. Dzuba
School of Physics, University of New South Wales, Sydney 2052, Australia
(Dated: December 17, 2021)

Energy levels of germanium, tin and lead together with their single, double and triple ionized positive ions have been calculated using the V^{N-M} approximation suggested in the previous work (Dzuba, physics/0501032) ($M = 4$ - number of valence electrons). Initial Hartree-Fock calculations are done for the quadruply ionized ions with all valence electrons removed. The core-valence correlations are included beyond the second-order of the many-body perturbation theory. Interaction between valence electrons is treated by means of the configuration interaction technique. It is demonstrated that accurate treatment of the core-valence correlations lead to systematic improvement of the accuracy of calculations for all ions and neutral atoms.

PACS numbers: 31.25.Eb,31.25.Jf

I. INTRODUCTION

This work further develops the V^{N-M} approximation suggested in Ref. [1]. It also presents the details of the calculations of the energy levels of Ge II, Sn II and Pb II which were needed to study their dependence on the fine structure constant α ($\alpha = e^2/\hbar c$). Some lines of Ge II, Sn II and Pb II have been observed in quasar absorption spectra and the information on the dependence of corresponding frequencies on α is needed to study possible variation of the fine structure constant at early epoch.

In the vicinity of the physical value of α the frequency of an atomic transition can be presented in a form

$$\omega = \omega_0 + qx,$$

where $x = (\alpha/\alpha_0)^2 - 1$ and α_0 and ω_0 are the present-day laboratory values of the fine structure constant and transition frequency.

The values of the q-coefficients can only be found from atomic calculations by, e.g., varying the value of α in computer codes based on relativistic equations. In many cases calculated values of the q-coefficients are more stable than the energies. This is because they are not sensitive to incompleteness of the basis set with respect to the principal quantum number n. Indeed, relativistic corrections are proportional to $1/\nu^3$ (ν is the effective principal quantum number) while energies are proportional to $1/\nu^2$. If we include more states of high ν this would have greater effect on the energies than on relativistic corrections presented by q-coefficients.

However, in the case of strong configuration mixing and level pseudo-crossing calculation of q-coefficients may become very unstable. In the vicinity of level pseudo-crossing the values of q-coefficients change very rapidly with α and small error in determining the position of the level crossing may lead to large error in the values of q.

Level pseudo-crossing always means strong configuration mixing between the states. However, strong configuration mixing may also take place without level pseudo-crossing. This can also cause instability in calculated values of q-coefficients. Indeed, relativistic correction to the energy of a single electron state $|njlm\rangle$ strongly depends on the total momentum j of this state (see, e.g., formula (7) in Ref. [2]). Therefore configurations composed from states of different j may have very different values of q and small error in the the configuration mixing coefficients would lead to large error in the resulting q value for the mixed state.

Strong configuration mixing and level pseudo-crossing take place for Ge II, Sn II and Pb II ions as well as for many other atoms and ions. This means that calculations need to be done to very high accuracy to ensure stable values of the q-coefficients. The criterion is that deviation of the calculated energies from the experimental values must be much smaller than the experimental energy interval between mixed states.

There are many other areas of research where accurate atomic calculations are needed. These include parity and time invariance violation in atoms (see, e.g. [3]), interaction of positrons with atoms [4], etc.

A way to do accurate calculations for atoms with several s and/or p valence electrons has been suggested in Ref. [1]. It is called “the V^{N-M} approximation”, where V is the Hartree-Fock potential created by $N - M$ electrons of the closed shell ion, N is total number of electrons in neutral atom and M is the number of valence electrons. Initial Hartree-Fock calculations are done for a closed-shell positive ion with all valence electrons removed. It has been demonstrated in Ref. [1] that the Hartree-Fock potential of the closed-shell positive ion is often a good starting approximation for a neutral atom. This is the case when valence electrons are localized on distances larger than the size of the core. Then they can affect only energies of core states but not their wave functions. Since the potential created by core electrons depends on the electron charge density and does not depend on electron energies it doesn’t matter which core
The effective Hamiltonian for valence electrons is constructed using the configuration interaction (CI) technique. Core-valence correlations are included by adding the electron correlation operator \(\Sigma \) to the CI Hamiltonian. Many-body perturbation theory (MBPT) is used to calculate \(\Sigma \). The main advantage of the \(V^{N-M} \) approximation is that MBPT is relatively simple (no subtraction diagrams) and the \(\Sigma \) operator can be calculated beyond the second-order of the MBPT. It has been demonstrated in Ref. [1] that inclusion of the higher-order core valence correlations lead to further significant improvement of the accuracy of calculations. In the present work we study twelve complicated many-electron systems including germanium, tin, lead and their positive ions. We demonstrate that using the \(V^{N-M} \) approximation (\(M = 4 \) for the case of Ge, Sn and Pb) and accurate treatment of the core-valence correlations lead to high accuracy of calculations for all twelve systems. This indicates that the \(V^{N-M} \) approximation is a good approximation for a wide range of atoms and ions.

II. CALCULATIONS

The effective Hamiltonian for valence electrons in the \(V^{N-M} \) approximation has the form

\[
\hat{H}^{\text{eff}} = \sum_{i=1}^{M} \hat{h}_{1i} + \sum_{i \neq j}^{M} \hat{h}_{2ij},
\]

\(\hat{h}_{1i}(r_i) \) is the one-electron part of the Hamiltonian

\[
\hat{h}_1 = c\alpha \cdot \mathbf{p} + (\beta - 1)mc^2 - \frac{Ze^2}{r} + V^{N-M} + \Sigma_1.
\]

\(\Sigma_1 \) is the correlation potential operator which is exactly the same in the \(V^{N-M} \) approximation as for the single-valence electron atoms (see, e.g. [2]). It can be calculated in the second-order of the MBPT. Selected chains of the higher-order diagrams can be included into \(\Sigma_1 \) in all orders using technique developed for single-valence electron atoms (see, e.g. [10]).

\(\hat{h}_2 \) is the two-electron part of the Hamiltonian

\[
\hat{h}_2 = \frac{e^2}{|\mathbf{r}_1 - \mathbf{r}_2|} + \hat{\Sigma}_2(r_1, r_2),
\]

\(\hat{\Sigma}_2 \) is the two-electron part of core-valence correlations. It represents screening of Coulomb interaction between valence electrons by core electrons. We calculate \(\hat{\Sigma}_2 \) in the second order of MBPT. Inclusion of the higher-order correlations into \(\hat{\Sigma}_2 \) will be a subject of further study.

However, the calculations show that in most cases accurate treatment of \(\Sigma_1 \) is more important than for \(\Sigma_2 \). The details of the calculation of \(\Sigma_1 \) and \(\Sigma_2 \) can be found elsewhere [11, 12]. Note however that in contrast to the previous works [11, 12] we have no so called subtraction diagrams.

Number of electrons \(M \) is the only parameter in the effective Hamiltonian [2] which changes when we move between different ions of the same atom. The terms \(V^{N-M} \), \(\Sigma_1 \) and \(\Sigma_2 \) remain exactly the same.

The form of the effective Hamiltonian is also the same for all ions if some other potential \(V \) is used to generate the core states. However, the \(\Sigma \) operator would have terms proportional to \(V^{N-M} - V \) (subtraction diagrams [11]). In the \(V^{N-M} \) approximation \(V \equiv V^{n-4} \) and subtraction diagrams disappear. The MBPT becomes relatively simple which makes it easier to include higher-order core-valence correlations.

A. Electron shell structure of lead.

To understand how the \(V^{N-M} \) approximation works it is very instructive to look at electron shells of a many-electron atom. We chose lead because it is the heaviest of the considered atoms. It probably has the richest possible electron shell structure. Neutral lead has eighty two electrons occupying six shells. Angular momentum \(l \) ranges from 0 (s-electrons) to 3 (f-electrons). Figs. [4] and [2] present electron densities of Pb I (solid line) and Pb V (dotted line) separately for s, p, d and f electrons. The density is the sum over principal quantum number \(n \), total momentum \(j \) and its projection \(m \) while angular
momentum \(l \) is fixed:
\[
\rho(r)_l = \sum_{njm} |\psi(r)_{njml}|^2 r^2.
\]

The values of \(\rho(r)_l \) in the maximum are very different for different \(l \). Therefore, we present normalized functions \(\rho(r)/\rho_{\text{max}} \) to be able to fit all graphs into one diagram.

Electron shell structure can be clearly seen on Fig. 1. Each density has a local peak at \(n - l = 1, 2, \text{etc.} \) The position of the peak depends mostly on \(n \) and is about the same for all \(l \). This means that all electrons with the same \(n \) are localized at about the same distances regardless of their angular momentum \(l \), thus making a shell.

The difference between Pb I and Pb V cannot be seen on Fig. 1. Fig. 2 presents details of the right bottom corner of the Fig. 1. Dotted lines which correspond to electron densities of the Pb V ion show no peak at \(n = 6 \) because of absence of the 6s and 6p electrons. The removal of four valence electrons has some effect on the density of d-electrons at about the same distances where the 6s and 6p electrons are localized and practically no effect on the densities of all electrons on shorter distances. This is because valence electrons are localized on large distances and they can only create constant potential in the core which can change the energies of the core states but cannot change their wave functions.

One can see from Fig. 2 that there is an overlap between the wave functions of valence electrons of Pb I (6s and 6p electrons) and the wave function of the core outermost state 5d. We have presented for comparison on Fig. 3 the electron densities of Ba I and Ba III on large distances. It is easy to see that the overlap between core and valence electrons in barium is much smaller than the overlap between core and valence electrons in lead. As a consequence, outermost core state of barium (5p) is much less affected by removal of two 6s electrons than compared to the effect of removal of two 6s and two 6p electrons on the 5d state of lead. This means that the \(V^{N-2} \) approximation for Ba should work much better than the \(V^{N-4} \) approximation for Pb. The situation is exactly the same as for the \(V^{N-1} \) approximation for atoms with one external electron. It is very well known that the \(V^{N-1} \) approximation works extremely well for alkali atoms and not so well for atoms like Ga, In, Tl, etc. The reason is the same in both cases. Valence electrons must not overlap with the core for the \(V^{N-M} \) to be good starting approximation regardless of whether \(M = 1 \) or \(M > 1 \).

Similar to the fact that the \(V^{N-1} \) approximation is a good approximation for thallium, although not as good as for alkali atoms, the \(V^{N-M} \) approximation is a good approximation for Pb, Sn and Ge, although not as good as for Ba.

Below we present specifics of calculations for germanium, tin and lead.

B. Calculations for germanium

Germanium is the lightest of three atoms \((Z=32)\) and the easiest from computational point of view. Its ground state configuration is 1s\(^2\)2s\(^2\)2p\(^6\)3s\(^2\)3p\(^6\)3d\(^10\)4s\(^2\)4p\(^2\). The core-valence correlations are relatively small due to small number of electrons in the core.

We calculate \(\Sigma_1 \) and \(\Sigma_2 \) for the effective Hamiltonian in the second order of the MBPT. Inclusion of \(\Sigma_1 \) brings single-electron energies of Ge IV to agreement with the experiment on the level of 0.1%. No higher-order
core-valence correlations need to be included.

In fact, inclusion of the higher-order correlations using technique developed in Ref. [10] doesn’t lead to better results for germanium. This is because the technique was developed for heavy atoms in which higher order correlations are dominated by screening of the Coulomb interaction between core and valence electrons by other core electrons. In light atoms like germanium this effect does not dominate due to small number of electrons in the core. Therefore, inclusion of screening, while other higher-order effects are not included, does not improve the accuracy.

The results of calculations are presented in Table I. The ground-state energies are given as energies to remove all valence electrons from an atom or ion (in atomic units). Corresponding experimental energies are sums of the ionization potentials of all relevant ions. For the convenience of comparison with Moore’s tables [14] we present energies of excited states relative to the ground state in cm$^{-1}$. Column marked CI presents the results of the standard configuration interaction method without Σ. Column $\Sigma^{(2)}$ presents the results of calculations with the effective Hamiltonian $\hat{\Sigma}$ in which Σ is calculated in the second order of MBPT.

The results presented in Table II show that inclusion of the core-valence correlations leads to systematic significant improvement of the accuracy of calculations for all states of all ions and for neutral germanium.

C. Calculations for tin.

Tin atom ($Z = 50$) is very similar to the germanium atom. Its ground state configuration is \ldots $5s^25p^2$. However, correlations and relativistic corrections are larger. It has some implication on the calculation scheme. It turns out that inclusion of the higher-order core-valence correlations does lead to significant improvement of the results for all tin ions and for the neutral atom. We include screening of Coulomb interaction and hole-particle interaction in all orders of the MBPT in the calculation of Σ_1. It is done exactly the same way as in our calculations for single-valence-electron atoms (see, e.g. [10]). The Σ_2 operator is still calculated in the second order of the MBPT.

The results are presented in Table III. There is one more column in the table compared to Table I. It is marked $\Sigma^{(\infty)}$ and presents the results of calculations with all-order Σ_1. Again, it easy to see that moving from less sophisticated to more sophisticated approximations (with no Σ; with $\Sigma^{(2)}$; with $\Sigma^{(\infty)}$) leads to systematic significant improvement of the accuracy of the results.

D. Calculations for lead

The case of lead ($Z = 82$) is the most difficult of the calculations. Correlations are strong and relativistic effects are large too. Strong $L - S$ interaction leads to intersection of the fine-structure multiplets. Also, states of the same total momentum J are strongly mixed regardless of the values of L and S assigned to them. The breaking of the $L - S$ scheme can be easily seen e.g. by comparing experimental values of the Landé g-factors with the non-relativistic values.

We have done one more step for lead to further improve the accuracy of calculations as compared to the scheme used for tin. We have introduced the scaling fac-

TABLE I: Ground state removal energies (RE, a.u.) and excitation energies (cm$^{-1}$) of low states of Ge IV to Ge I.

State	CI	$\Sigma^{(2)}$	Exp. [13]	
$4s_{1/2}$	RE	-1.63631	-1.68047	-1.67993
$4p_{1/2}$	78746	81623	81315	
$4p_{3/2}$	81372	84470	84103	
$4d_{1/2}$	183779	191142	190607	
$4d_{5/2}$	184049	191424	190861	
$4s^2$	$1S_0$	-2.85213	-2.93114	-2.93765
$4s4p^2$	$3P_0^{(3)}$	57762	61812	61734
	$3P_1^{(3)}$	58490	62595	62500
	$3P_2^{(3)}$	60030	64273	64144
$4s4p^2$	$1P_1^{(3)}$	90820	92230	91873
$4s4d$	$1D_2$	137686	145305	144975
$4p^2$	$3P_0$	142850	148023	147685
	$3P_1^2$	143712	148997	148640
	$3P_2$	145276	150765	150372
$4s5s$	$3S_1$	152184	158630	158565
$4s^24p^2$	$2P_{1/2}^{(3)}$	-3.42590	-3.51488	-3.53222
	$2P_{3/2}^{(3)}$	1623	1797	1767
$4s^25p^2$	$2P_{1/2}^{(3)}$	47667	51512	51576
	$2P_{3/2}^{(3)}$	48326	52241	52291
	$2P_{5/2}^{(3)}$	49333	53342	53367
$4s^25s^2$	$2S_1^{(3)}$	61124	62870	62402
$4s^24p^2$	$2D_{3/2}$	61750	65313	65015
	$2D_{5/2}$	61930	65494	65184
$4s^24d$	$2D_{3/2}^{(3)}$	77370	79386	79006
	$2D_{5/2}^{(3)}$	77710	79750	79366
$4s^24p^2$	$3P_0$	79270	81444	80836
	$3P_1$	79439	81625	81012
$4s^24p^2$	$1P_1$	42010	41648	40020
$4s^24p^5s$	$1S_0$	45489	45503	45985
$4s^24p5p$	$1P_1$	57762	61812	61734
	$3D_3$	46426	46199	46765
	$3D_2$	46332	46275	46834
	$3D_1$	47469	47620	48104
TABLE II: Ground state removal energies (RE, a.u.) and excitation energies (cm⁻¹) of low states of Sn IV to Sn I.

State	CI	\(\Sigma^{(2)}\)	\(\Sigma^{(\infty)}\)	Exp.	[14]
4d\(^{10}\)5s	\(2S_{1/2}\) RE	-1.43894	-1.51228	-1.49776	-1.49699
4d\(^{10}\)5p	\(2P_{1/2}\)	66323	70709	69727	69564
4d\(^{10}\)5d	\(2D_{3/2}\)	72291	77409	76264	76072
4d\(^{10}\)5d	\(2D_{1/2}\)	156481	168074	165406	165305
4d\(^{10}\)5s	\(2D_{3/2}\)	157180	168847	166183	165411
Sn III					
5s\(^{2}\)	\(1S_{0}\) RE	-2.51142	-2.64097	-2.61447	-2.61794
5s5p	\(3P_{1}^{o}\)	47961	54914	54001	53548
5s5p	\(3P_{0}\)	49548	56582	55631	55196
5s5p	\(3P_{2}\)	53207	60734	59670	59299
5s5p	\(1P_{0}\)	78801	80163	79019	79011
5p\(^{2}\)	\(3P_{0}\)	121290	128814	126873	127309
5p\(^{2}\)	\(3P_{2}\)	123690	131743	129709	130120
5p\(^{2}\)	\(3P_{2}\)	118412	136470	134275	134567
5p\(^{2}\)	\(1D_{3}\)	127379	130638	128478	128205
5s5s	\(3S_{1}\)	130986	141420	139341	139638
5s5d	\(3D_{1}\)	123760	142898	140463	141322
5s5d	\(3D_{2}\)	123946	143107	140671	141526
5s5d	\(3D_{3}\)	133222	143423	140987	141838
5s5s	\(1S_{0}\)	135453	145105	143043	143591
5s5d	\(1D_{2}\)	148378	155394	153063	154116
Sn I					
5s\(^{2}\)5p	\(2P_{1/2}^{o}\) RE	-3.03218	-3.17791	-3.14624	-3.15567
5s\(^{2}\)5p	\(2P_{3/2}^{o}\)	3776	4352	4222	4251
5s5p\(^{2}\)	\(4P_{1/2}\)	40839	47579	46661	46464
5s5p\(^{2}\)	\(4P_{3/2}\)	42512	49537	48556	48368
5s5p\(^{2}\)	\(4P_{1/2}\)	44720	51958	50915	50730
5s\(^{2}\)6s	\(2S_{1/2}\)	54896	57545	56707	56886
5s5p\(^{2}\)	\(2D_{2}\)	54142	59969	58806	58844
5s5p\(^{2}\)	\(2D_{0}\)	54731	60590	59419	59463
5s\(^{2}\)5d	\(2D_{2}\)	69220	72247	71140	71406
5s\(^{2}\)5d	\(2D_{0}\)	69776	72929	71804	72048
5s\(^{2}\)6p	\(2P_{1/2}^{o}\)	69006	72131	71182	71494
5s\(^{2}\)6p	\(2P_{3/2}^{o}\)	69825	73025	72061	72377
Sn I					
5s\(^{2}\)5p\(^{2}\)	\(3P_{0}\) RE	-3.28899	-3.44213	-3.407850	-3.425548
5s\(^{2}\)5p\(^{2}\)	\(3P_{1}\)	1411	1681	1623	1692
5s\(^{2}\)5p\(^{2}\)	\(3P_{2}\)	3049	3539	3428	3428
5s\(^{2}\)5p\(^{2}\)	\(1D_{2}\)	8359	9079	8891	8613
5s\(^{2}\)5p\(^{2}\)	\(1S_{0}\)	17328	18217	17977	17163
5s\(^{2}\)5p\(^{6}\)	\(3P_{0}\)	35381	35722	35251	34641
5s\(^{2}\)5p\(^{6}\)	\(3P_{1}\)	35764	36050	35577	34914
5s\(^{2}\)5p\(^{6}\)	\(3P_{2}\)	38988	39848	39252	38629
5s\(^{2}\)5p\(^{6}\)	\(3P_{1}\)	40080	40655	40063	39257
5s\(^{2}\)5p\(^{3}\)	\(5S_{2}\)	34742	40529	39725	39626
5s\(^{2}\)5p\(^{6}\)	\(3P_{0}\)	42805	44164	43578	43430
5s\(^{2}\)5p\(^{6}\)	\(3P_{1}\)	41361	42785	42200	42342
5s\(^{2}\)5p\(^{6}\)	\(3P_{2}\)	45804	47712	47008	47235
5s\(^{2}\)5p\(^{6}\)	\(3D_{1}\)	42356	43768	43178	43369
5s\(^{2}\)5p\(^{6}\)	\(3D_{2}\)	42447	43861	43267	43239
5s\(^{2}\)5p\(^{6}\)	\(3D_{3}\)	45543	47511	46796	47007

It is instructive to compare our results with recent calculations by Safronova et al. [15] (see Table III). Energy levels of Pb II were calculated by Safronova et al with the use of the coupled-cluster (CC)
approach and the third-order MBPT. The Pb II ion was treated as an ion with one external electron above closed shells. Therefore only energies of states in which the 6s subshell remained closed were calculated. The agreement with experiment for these states is slightly better than for our results with $\Sigma^{(\infty)}$. The reason for this is better treatment of the interaction between core and valence electrons. The 6s electrons were included in the initial Hartree-Fock procedure. Also, interaction between the 6p electron and the core is included in the CC approach in all-orders of the MBPT.

This doesn’t mean that the V^{N-4} approximation is not good for lead. First, as can be seen from Table III inclusion of core-valence correlation does lead to systematic significant improvement of the accuracy and final results are very close to the experiment. Second, the fact that inclusion of the higher order core-valence correlations doesn’t always lead to improvement of energy intervals doesn’t mean that the V^{N-3} approximation is not good. It rather means that not all dominating higher-order diagrams are included into $\Sigma^{(\infty)}$. The situation is very similar to what takes place for single-valence-electron atoms. The technique developed by us for alkali atoms [10] doesn’t work very well for atoms like thallium where interaction between valence electron and the core is important. Here CC+MBPT approach gives better results [12] which may mean that the combination of the CC approach with the CI method is a better option for atoms like lead. This approach was recently considered by Kozlov [16] and Johnson [17]. However, no calculations for real atoms have been done so far.

III. CONCLUSION

It has been demonstrated that the V^{N-4} approximation works very well for the four-valence-electrons atoms like germanium, tin and lead as well as for their single, double and triple ionized ions. The use of the V^{N-4} approximation makes it easy to include core-valence correlations beyond the second order of the MBPT. Inclusion of the core-valence correlations leads to significant improvement of the results in all cases. In general, the V^{N-M} approximation (M is the number of valence electrons) is a good approximation if the overlap between core and valence states is small. The best case is the alkaline-earth atoms where the V^{N-2} approximation must produce excellent results. In contrast, the V^{N-M} approximation is not applicable at all to atoms with open d or/and f shells unless uppermost core s and p states are also treated as valence states. It should work more or less well for most of the atoms/ions with s and/or p valence electrons. In cases of relatively large overlap between core and valence states good results can still be achieved if accurate treatment of the interaction between core and valence electron is included perturbatively into the calculation of the core-valence correlations.

IV. ACKNOWLEDGMENTS

The author is grateful to J. S. M. Ginges and V. V. Flambaum for useful discussions.

[1] V. A. Dzuba, physics/0501032 submitted to Phys. Rev. A.
[2] V. A. Dzuba and V. V. Flambaum, physics/0501454 submitted to Phys. Rev. A.
[3] V. A. Dzuba, V. V. Flambaum, and J. K. Webb, Phys. Rev. A, 59, 230 (1999).
[4] V. A. Dzuba, V. V. Flambaum, M. G. Kozlov, and M. Marchenko, Phys. Rev. A, 66, 022501 (2002).
[5] Strictly speaking, different values of q for different configurations would unavoidably lead to level crossing because q is a slope of the $E(\alpha^2)$ graph. When we say “there is no level crossing” we mean that level crossing takes place far away from $\alpha = \alpha_0$.
[6] J. S. M. Ginges and V. V. Flambaum, Physics Reports, 397, 63 (2004).
[7] E. J. Angstmann, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. A, 70, 014102 (2004).
[8] G. F. Gribakin and J. Ludlow, physics/0403114.
[9] V. A. Dzuba, V. V. Flambaum, P. G. Silvestrov, and O. P. Sushkov, J. Phys. B, 20, 3297 (1987).
[10] V. A. Dzuba, V. V. Flambaum, and O. P. Sushkov, Phys. Lett. A, 140, 493 (1989).
[11] V. A. Dzuba, V. V. Flambaum, and M. G. Kozlov, Phys. Rev. A, 54, 3948 (1996).
[12] V. A. Dzuba, and W. R. Johnson, Phys. Rev. A, 57, 2459 (1998).
[13] NIST Atomic Spectra Database on Internet, http://physics.nist.gov/cgi-bin/AtData/main ASD.
[14] C. E. Moore, Atomic Energy Levels, Natl. Bur. Stand. (U.S.), Circ. No. 467 (U.S. GPO, Washington, D. C., 1958), Vols. 1-3.
[15] U. I. Safronova, M. S. Safronova, and W. R. Johnson, physics/0410079.
[16] M. G. Kozlov, Opt. and Spectroscopy, 95, 6 (2003); Int. J. of Quantum Chem., 100, 336 (2004).
[17] W. R. Johnson, unpublished.
State	CI	$\Sigma^{(2)}$	$\Sigma^{(\infty)}$	$f\Sigma^{(\infty)}$	Ref. [15]	Exp. [14]	
	Pb IV						
$5d^{10}6s$	$^2S_{1/2}$	RE -1.48374	-1.57689	-1.56035	-1.55529	-1.55531	
$5d^{10}6p$	$^2P_{1/2}$	72857	78055	78239	76144	76158	
	$^2P_{3/2}$	92031	99817	99388	97276	97219	
$5d^{10}6d$	$^2D_{3/2}$	173446	188501	185992	184570	184559	
	$^2D_{5/2}$	175485	190789	188254	186848	186817	
	Pb III						
$6s^2$	1S_0	RE -2.58923	-2.76503	-2.73356	-2.72421	-2.72853	
$6s6p$	3P_0	52866	62881	62947	61045	60397	
	3P_1	57184	66767	66751	64851	64391	
	3P_2	70223	82032	81477	79577	78985	
	1P_1	91945	96556	95876	94071	95340	
$6p^2$	3P_0	135286	145385	145400	141555	142551	
$6s7s$	1S_1	137664	153445	150863	150038	150084	
$6s6d$	1D_2	138279	156137	154498	152079	151885	
$6s7s$	1S_0	142139	156815	154219	153407	153783	
$6s^26p$	$^2P_{1/2}^{o}$	RE -3.11363	-3.31759	-3.27430	-3.26897	-3.28141	
$6s^26d$	$^2P_{3/2}^{o}$	12300	14447	13858	13896	14137	14081
$6s6p^2$	$^4P_{1/2}$	50298	59934	59934	58052	57911	
	$^4P_{3/2}$	57290	68501	67633	66221	66124	
	$^4P_{5/2}$	61484	75957	74856	73479	73905	
$6s^27s$	$^2S_{1/2}$	55451	60525	58170	59203	58967	59448
$6s^26d$	$^2D_{5/2}$	66823	71130	69314	69256	70229	68964
	$^2D_{3/2}$	63732	70711	68916	69001	69688	69740
$6s^27p$	$^2P_{3/2}^{o}$	69961	75342	73140	73878	74256	74549
	$^2P_{1/2}^{o}$	72572	78180	75935	76666	77069	77272
$6s6p^2$	$^2D_{3/2}$	77272	85538	84523	83196	83083	83072
	$^2D_{5/2}$	81630	91291	89614	88800	88972	
Pb II							
$6s^26p^2$	3P_0	RE -3.36433	-3.58255	-3.53174	-3.52974	-3.55398	7819
3P_1	6388	7736	7395	7335	7559		
3P_2	9199	10795	10277	10423	10650		
3D_2	18578	21793	20780	20979	21458		
1S_0	26998	30355	29185	29412	29467		
$6s^26p7p$	3P_0	33413	35239	33679	34517	34960	
3P_1	33871	35610	34056	34887	35287		
3P_2	40029	42987	41405	42061	42919		
3P_0	41612	44441	42882	43525	44401		
$6s^26p7p$	2D_1	41740	44714	43129	43773	44675	
2D_2	41886	44868	43281	43958	44809		