Musculoskeletal multibody simulations for the optimal tribological design of human protheses: the case of the ankle joint

A Ruggiero1, R D’Amato2 and N Ungureanu3

1 University of Salerno, Department of Industrial Engineering, Salerno, Italy
2 University of Madrid (UPM), Departamento de Ingeniería Mecánica, Química y Diseño Industrial, Technical, Madrid, Spain
3 Technical University of Cluj-Napoca, Faculty of Engineering, Department of Engineering and Technology Management, Baia Mare, Romania

E-mail: aruggiero@unisa.it

Abstract. A thorough determination of the loading of the ankle joint is useful both for the optimal design of prostheses and for the preclinical testing in terms of tribological performances. In vivo measurements of joint forces are usually not easy in the in-vivo settings, then non-invasive in-silico methods should be considered. Nowadays resultant joint loads can be reliably estimated by using musculoskeletal modelling in an inverse dynamic approach, starting by motion data obtained in gait analysis laboratories for several human activities. The main goal of this study was to provide a set of dynamical loading curves obtained by the AnyBody Modelling SystemTM (AMS) computer software starting from ground reaction forces and kinematic data obtained by Vaughan et al. in the case of human normal gait. The model accounts for 70 Hill modelled muscles and the muscular recruitment strategy was choose as polynomial criteria. The results are presented in terms of Antero Posterior, Proximo Distal, Medio Lateral Forces and Ankle Eversion, Plantar Flexion, Axial moments, discussing their role on the synovial lubrication phenomena effect in the Total Ankle Arthroplasty (TAR) for the optimal prostheses structural and tribological design.

1. Introduction
In the last year’s total joint arthroplasty (TJA) has become a common and a well-established surgical procedure in the case of severe arthritis especially regarding lower limb synovial joints [1]. Total Hip Replacements (THR) [2], Total Knee Replacement (TKR) [3] and Total Ankle Replacement (TAR) [4] are devoted to a substitution respectively of the hip, knee and ankle joint by using prostheses which unfortunately requires, in some cases, revisions and/or substitutions [5-8]. This problem is particularly felt in the case of THA since higher revision rate (about three times more for 100 patients) [9].

Among many others implants failure causes, nowadays particular interest is devoted to a correct tribological design of the implants [10, 11] in order to achieve more performant prostheses and to decrease, in this way, the rate of THA revision.

An optimized prostheses tribological design requires the choice of more and more performants materials in terms of stress, strain but also in wear resistance characteristics [12]; also the optimized
geometrical design is necessary to favour the synovial lubrication phenomena especially in terms of full film and/or elasto-hydrodynamic lubrication inside the bio-bearing gap [13,14].

For achieving this, a detailed description of the acting loads on the prostheses and of the kinematical behaviour during the common human daily activities is required. [15]. This is not always simple to obtain in-vivo, since direct force/displacements measurements on joints is in most cases not feasible due to economical and ethical problems [16] and it could be referred only to the body characteristics of the patients under experimental activity. For this purpose the possibility to obtain predicted loads from in-silico simulation is a challenge [17] toward an optimized wear assessment tool necessary for the optimized tribological design of the joint.

This paper aims to give a contribute toward this direction focusing on the theoretical background in which the musculoskeletal multibody algorithms operate, and discussing the obtained results with the use of a musculoskeletal multibody model with a Vaughan gait type.

2. Methods

2.1. The musculoskeletal model

In this study, we used a musculoskeletal modelling software, AnyBody Modelling System™ AMS, to estimate force and moment components acting on the ankle joint during a level walking. The AnyBody Modelling System™ is software based on the human musculoskeletal modelling able to simulate the dynamics of human motion. This environment adopts the inverse dynamics approach and different algorithms allow selecting the appropriate recruitment strategies allowing a complete analysis of the load components acting on the different joints of the human body during a known human body movement. Following the inverse dynamic approach, for achieving the joint forces the kinematic data and ground reaction force must be furnish as input for the simulations. These data are usually obtained in the Gait Analysis laboratories by using special Motion Capture apparatus, which allow to measure by cameras the subject’s gait kinematics, monitoring markers fixed in particular points of the body on the person’s skin (Figure 1).

![Figure 1. Four frames of gait model driven by kinematic data (The AnyBody System™)](image)

In particular this setup is able to measure an individual gait pattern by collecting the kinematic data of the lower limbs and the pelvis through a walking cycle (gait). Figure 1 shows three frames of the gait model driven by kinematic data. The dark spheres are the skin markers, the black lines representing ground reaction forces. The positions with their first and second derivatives in time, together with knowledge of the ground reaction forces, after a data filtering, represent the software input to predict the net forces in the leg. In fact, the inverse dynamics is based on the knowledge of the motion and the external loads data to determine the unknown internal forces. Following this approach, then the calculation of the behaviour of each muscle force is made possible by solving a redundancy muscular problem. In fact the muscular system is a quite complex system and for each motion many different sets of muscle forces could be involved; chose of the appropriate set is made by the central
nervous system (CNS) which instantly chooses one of them in order to produce the assigned kinematics. At moment the selection strategy is still not fully understand, however, the approach used by AnyBody Modelling System is well described in [18]; the software uses an algorithm to determine the activation of each muscle in order to replicate the function of the central nervous system. The list of the considered muscles in the model is reported in table 1.

Muscle	Group	Attachment	
Soleus	Quadriceps	Shank	Foot
Gastrocnemius	Quadriceps	Thigh	Foot
Flexor Digitorum Longus	Quadriceps	Shank	Foot
Flexor Hallucis Longus	Quadriceps	Shank	Foot
Tibialis Posterior	Quadriceps	Shank	Foot
Peroneus Brevis	Quadriceps	Shank	Foot
Tibialis Anterior	Quadriceps	Shank	Foot
Extensor Digitorum Longus	Quadriceps	Shank	Foot
Extensor Hallucis Longus	Quadriceps	Shank	Foot
Vastus Lateralis	Quadriceps	Thigh	Shank
Vastus Medialis	Quadriceps	Thigh	Shank
Vastus Intermedius	Quadriceps	Thigh	Shank
Semitendinosus	Hamstrings	Pelvis	Shank
Semimembranosus	Hamstrings	Pelvis	Shank
Rectus Femoris	Hamstrings	Pelvis	Shank
Biceps Femoris Caput Breve	Hamstrings	Thigh	Shank
Sartorius	Hamstrings	Pelvis	Shank
Gracilis	Hamstrings	Pelvis	Shank
Iliopsoas	Hip muscles	Pelvis	Thigh
Gluteus Minimus 1	Hip muscles	Pelvis	Thigh
Gluteus Minimus 2	Hip muscles	Pelvis	Thigh
Gluteus Minimus 3	Hip muscles	Pelvis	Thigh
Gluteus Medius 1	Hip muscles	Pelvis	Thigh
Gluteus Medius 2	Hip muscles	Pelvis	Thigh
Gluteus Medius 3	Hip muscles	Pelvis	Thigh
Gluteus Maximus 1	Hip muscles	Pelvis	Shank
Gluteus Maximus 2	Hip muscles	Pelvis	Shank
Gluteus Maximus 3	Hip muscles	Pelvis	Thigh
Tensor Fasciae Latae	Hip muscles	Pelvis	Shank
Piriformis	Hip muscles	Pelvis	Thigh
Adductor Longus	Hip muscles	Pelvis	Thigh
Adductor Magnus 1	Hip muscles	Pelvis	Thigh
Adductor Magnus 2	Hip muscles	Pelvis	Thigh
Adductor Magnus 3	Hip muscles	Pelvis	Thigh
Quadratus Femoris	Hip muscles	Pelvis	Thigh
Abductor Brevis	Hip muscles	Pelvis	Thigh
Obturatorius Internus	Hip muscles	Pelvis	Thigh
Obturatorius Externus	Hip muscles	Pelvis	Thigh
Pictineus	Hip muscles	Pelvis	Thigh
Gemmuelus Inferior	Hip muscles	Pelvis	Thigh
Gemmuelus Superior	Hip muscles	Pelvis	Thigh

Table 1. List of muscles included in the lower limb model
The used approach for solving the inverse dynamic problem accounting for the muscle recruitment strategy is based on an optimization problem.

Defining an objective function in the form:

\[
\min G(f^{(M)})
\]

In which \(f^{(M)}\) are the muscular forces for which

\[
0 \leq f_i^{(M)} \leq N_i, i \in \{1, \ldots, n^{(M)}\}
\]

The (2) states the non-negativity constraints on the muscle forces and that muscle can only pull (not push). The upper limit of the i-muscle strength capability is then assumed to \(N_i\).

Once defined the vector of the muscle forces and joint reactions in the form:

\[
f = [f^{(M)T} f^{(R)T}]^T
\]

The dynamic equilibrium equations can be obtained in the form:

\[
Cf = d
\]

where \(C\) is a coefficient matrix for the unknown forces/moments, while \(d\) is a vector of the known applied loads and inertia actions.

The most adopted objective function \(G\) forms, normalised for each muscle, are the polynomial criteria and the soft saturation criteria [19]:

\[
G(f^{(M)}) = \sum_{i=1}^{n^{(M)}} \left(\frac{f_i^{(M)}}{N_i} \right)^p
\]

\[
G(f^{(M)}) = -\sum_{i=1}^{n^{(M)}} \sqrt{1 - \left(\frac{f_i^{(M)}}{N_i} \right)^p}
\]

Both (5) and (6) contain a power variable \(p\) and a normalizing function for each muscle. In this study we used the approach (4) in which was settled \(p = 2\).

Ankle joint forces were simulated by using a 18 degrees of freedom lower limb made of 7 rigid members, the pelvis and the thigh, the shank and the foot (for each leg). From a kinematical point of view, the hip joint was assumed in the form of a spherical joint while the knee as a revolute joint and the ankle trochlear joint. In this study we used a set of kinematical input data from Vaughan et al. [20]. Human main parameters here adopted were a weight of 64.9 Kg and a height of 1.75.

3. Results

The output of the model will be presented in the in terms of load components acting on the ankle joint during the gait. With reference to the figure 2, the calculated loads are: the anterior-posterior force (Fx), the proximo-distal force (Fy), the medial-lateral force (Fz), the ankle eversion moment (Mx), the axial moment (My) and the plantar flexion (Mz).

![Figure 2. Reference system for ankle joint](image-url)
In figures 3, 4, 5 and 6 will be reported the results of the simulations in terms of forces and moment components.

Figure 3. Antero Posterior and Medio Lateral ankle joint components during the gait

Figure 4. Proximo distal ankle joint force component during the gait.

Figure 5. Ankle eversion and axial ankle moment components during the gait

Figure 6. Plantar flexion ankle moment component during the gait

About the muscle recruitment, the simulations allowed to calculate all the forces exerted by all the muscles considered in the lower limb model (Table 2) during the gait. Figure 4 shows a schematic image of the model which highlights the predominance during the toe-off the four muscles just listed. In figure 8 is reported a complete activation during the gait of the muscles involved. From an analysis of the obtained results is possible to observe that, despite the muscles involved during the movement of walking are numerous, more than 60% of the total force exerted during the 50% of gait cycle (toe-off) is provided by four major muscles, which are the Soleus (in the back part of the lower leg), the Gastrocnemius (in the back part of the lower leg), Rectus Femoris (one of the four quadriceps muscles of the human body), and the Iliopsoas (combination of the psoas major and the iliacus at their inferior ends). These muscles are distinct in the abdomen, but usually indistinguishable in the thigh.

Figure 7. Main active muscles during the gait
4. Discussion

It is well known that loading of the lower limb joints primarily depends on the physical activity (kinematical data) but they are also influenced by body weight (BW) but, in general, they individually differs greatly, even between subjects with the same BW. The simulations show maximum values of the ankle force and moment components in correspondence of about the 50% of gait cycle (toe-off phase) with a prevalence of the proximo distal force F_y with a value in modulus of 2750 N and of the plantar flexion moment M_z with a value of 82 Nm. The obtained behaviour of the loads, however, show good agreement with the others found in literature for example in [21]. The existing discrepancies however should be attributable to the fact that the considered model assume limited degree of freedom for the joint with the foot considered a single segment. Decreasing the degrees of freedom in the model allow a reduction in the computational time by reducing the complexity of the calculations to predict the muscle and joint contact forces, but on the other hand, this causes approximations in the force calculation which could accumulate on the whole kinematical chain furnishing more consistent discrepancies in the simulation.

Of course, another cause of alterations of the calculated forces is introduced by the anthropometric differences between the human bodies even if the scaling procedure aims to reduce it. Regarding the muscles activation Figure 8 shows the force exerted by each of the 42 muscles implemented in the model. As can be observed despite the muscles involved during the movement of walking are numerous, more than 60% of the total force exerted during the toe-off (50% of gait cycle) is provided by the four major muscles.

From a TKA design point of view, the obtained results allow the optimized design of the prostheses both from a structural point of view both from a tribological one [22, 23]. In fact the detailed knowledge of the load acting on the joint permits the accurate finite element modelling of the joint [24] to analyse the stability of the implant contributing to improve its stability and structural performances. Moreover the knowledge of the variation of the loads and of the kinematical quantities during the gait is necessary to the geometrical design of the synovial lubricated gap in order to achieve, according to Medley et al. [25] particular lubrication mechanisms (mixed or full-film) [22, 23]. This could be achieved by reaching an optimal value h_{min} (minimum synovial meatus height).
divided by the root mean square of roughness values of the prostheses contact surfaces in order to optimize the prostheses performances in terms of wear resistance.

5. Conclusion
With the purpose of the optimization of the TKA design, a thorough determination of the loading of the ankle joint is necessary both for its stability and structural resistance design and for its tribological performances improvement, in terms especially of wear resistance. Unfortunately, in-vivo measurements of joint internal forces are not a simple and allowed task, and then non-invasive in-silico approach should furnish a meaning full perspective.

In this paper are presented ankle joint dynamical loading components during the gait, obtained by using the AnyBody Modelling SystemTM (AMS) computer software, adopting kinematical data obtained by Vaughan et al. [20] The obtained results, in terms of Antero Posterior, Proximo Distal, Medio Lateral Forces and Ankle Eversion, Plantar Flexion, Axial moments, shows a satisfying agreement allowing to be used both for detailed prostheses FEM analysis both for the optimized tribological design in terms of synovial lubricating mechanisms. Of course this investigation has limitations regarding the necessary full validation of the proposed model to be executed running several simulations, by varying key parameters of the model and by comparing the results with the ones (few) found in literature from in-vivo testing.

Acknowledgements
The authors wish to thank Jonathan De Mattia for his help with the simulations.

References
[1] Kurtz M et al. 2009 Future young patient demand for primary and revision joint replacement: national projections from 2010 to 2030 Clinical Orthopaedics and Related Research® 467.10 pp.2606-2612
[2] Saverio A, Ruggiero A, and Merola M 2015 Advanced biomaterials in hip joint arthroplasty. A review on polymer and ceramics composites as alternative bearings Composites Part B: Engineering 83 pp.276-283
[3] Ruggiero A, Merola M, and Saverio A 2017 On the biotribology of total knee replacement: A new roughness measurements protocol on in vivo condyles considering the dynamic loading from musculoskeletal multibody model Measurement 112 pp.22-28
[4] Vickerstaff J A., Miles A W, and Cunningham J L 2007 A brief history of total ankle replacement and a review of the current status. Medical engineering&physics 29.10 pp.1056-1064
[5] Saverio A et al. 2016 Does metal transfer affect the tribological behaviour of femoral heads? Roughness and phase transformation analyses on retrieved zirconia and Biolox® Delta composites Composites Part B Engineering 92 pp.290-298
[6] Merola M et al. 2016 On the tribological behavior of retrieved hip femoral heads affected by metallic debris. A comparative investigation by stylus and optical profilometer for a new roughness measurement protocol Measurement 90 pp.365-371
[7] Kunutsor S K et al. 2017 Re-infection outcomes following one-and two-stage surgical revision of infected hip prosthesis: a systematic review and meta-analysis PloS one 10.9 e0139166
[8] Saverio A, et al. 2017 Does metal transfer differ on retrieved Biolox® Delta composites femoral heads? Surface investigation on three Biolox® generations from a biotribological point of view. Composites Part B: Engineering 113 pp.164-173
[9] Terrier A et al. 2017 Fixed and mobile-bearing total ankle prostheses: Effect on tibial bone strain Clinical Biomechanics 48 pp.57-62
[10] Ruggiero A, Merola M and Saverio A 2018 Finite element simulations of hard-on-soft hip joint prosthesis accounting for dynamic loads calculated from a musculoskeletal model during walking Materials 11.4 pp.574
[11] Saverio A, Merola M, and Ruggiero A 2019 Tribological performances of total knee prostheses: Roughness measurements on medial and lateral compartments of retrieved femoral components Measurement 135 pp.341-347

[12] Saverio A, Merola M, and Ruggiero A 2018 Development of a Novel in Silico Model to Investigate the Influence of Radial Clearance on the Acetabular Cup Contact Pressure in Hip Implants Materials 11.8 pp.1282

[13] Ruggiero A, Emilio G, and D’Amato R 2011 Approximate analytical model for the squeeze-film lubrication of the human ankle joint with synovial fluid filtrated by articular cartilage Tribology letters 41.2 pp.337-343

[14] Ruggiero A, Gómez E and Roberto D 2013 Approximate closed-form solution of the synovial fluid film force in the human ankle joint with non-Newtonian lubricant Tribology International 57 pp.156-161

[15] Jaber S A et al. 2015 In vitro effects on mobile polyethylene insert under highly demanding daily activities: stair climbing. International orthopaedics 39.7 pp.1433-1440

[16] Saverio A and Ruggiero A 2019 A Critical Analysis of TKR In Vitro Wear Tests Considering Predicted Knee Joint Loads Materials 12.10 pp.1597

[17] Ruggiero A et al. 2017 FEM analysis of metal on UHMWPE total hip prosthesis during normal walking cycle Proceedings of the XXIII conference of the Italian Association of Theoretical and Applied Mechanics AIMETA

[18] Damsgaard M R, Rasmussen J, Tørholm S et al., 2006 Analysis of musculoskeletal systems in the AnyBody Modeling System Simulation Modelling Practice and Theory 14 pp.1100–1111

[19] Rasmussen J, Damsgaard M, and Voigt M 2001 Muscle recruitment by the min/max criterion-a comparative numerical study Journal of biomechanics 34.3 pp.409-415

[20] Vaughan C L, Davis B L, O’Connor J C 1992 Dynamics of gait 1st ed. Human Kinetics Publishers The Man data set provided at the website of the International Society of Biomechanics http://isbweb.org

[21] Hlaváček M 2005 Squeeze-film lubrication of the human ankle joint subjected to the cyclic loading encountered in walking. Journal of tribology 127.1 pp.141-148

[22] Ruggiero, A, D’Amato R, and Gómez E 2015 Experimental analysis of tribological behavior of UHMWPE against AISI420C and against TiAl6V4 alloy under dry and lubricated conditions Tribology International 92 pp.154-161

[23] Ruggiero A, Gómez E and Merola M 2016 Experimental comparison on tribological pairs UHMWPE/TiAl6V4 alloy, UHMWPE/AISI316L austenitic stainless and UHMWPE/AL2O3 ceramic, under dry and lubricated conditions. Tribology International 96 pp.349-360

[24] Ruggiero A, Merola M and Saverio A 2018 Finite element simulations of hard-on-soft hip joint prosthesis accounting for dynamic loads calculated from a musculoskeletal model during walking. Materials 11.4 pp.574

[25] Medley J B, Dowson D, Wright V 1984 Transient elastohydrodynamic lubrication models for the human ankle joint Eng. Med. 13 (1984) 137–151 (accessed November 15 2018)