Pointwise approximation of functions by matrix operators of their Fourier series with r-differences of the entries

Włodzimierz Łenski and Bogdan Szal

Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, 65-516 Zielona Góra, ul. Szafrana 4a, Poland
(e-mail: w.lenski@wmie.uz.zgora.pl; b.szal@wmie.uz.zgora.pl)

Received August 27, 2018; revised July 16, 2020

Abstract. We extend the results of Xh.Z. Krasniqi [Acta Comment. Univ. Tartu. Math., 17:89–101, 2013] and the authors [Acta Comment. Univ. Tartu. Math., 13:11–24, 2019] to the case where in the measures of estimations r-differences of the entries are used.

MSC: 42A24
Keywords: rate of approximation, summability of Fourier series

1 Introduction

Let L^p ($1 \leq p < \infty$) be the class of all 2π-periodic real-valued functions integrable in the Lebesgue sense with pth power over $Q = [-\pi, \pi]$ with the norm

$$\|f\| = \|f(\cdot)\|_{L^p} = \left(\int_Q |f(t)|^p \, dt \right)^{1/p}.$$

Consider the trigonometric Fourier series

$$S f(x) := a_0(f) + \sum_{\nu=1}^{\infty} (a_{\nu}(f) \cos \nu x + b_{\nu}(f) \sin \nu x)$$

with partial sums $S_k f$ and the conjugate one

$$\tilde{S} f(x) := \sum_{\nu=1}^{\infty} (a_{\nu}(f) \sin \nu x - b_{\nu}(f) \cos \nu x)$$
with partial sums $\widetilde{S}_k f$. We know that if $f \in L^1$, then

$$\widetilde{f}(x) := -\frac{1}{\pi} \int_0^\pi \psi_x(t) \frac{1}{2} \cot \frac{t}{2} \, dt = \lim_{\epsilon \rightarrow 0^+} \widetilde{f}(x, \epsilon),$$

where

$$\widetilde{f}(x, \epsilon) := -\frac{1}{\pi} \int_0^\pi \psi_x(t) \frac{1}{2} \cot \frac{t}{2} \, dt \quad \text{with} \quad \psi_x(t) := f(x + t) - f(x - t),$$

exists for almost all x [10, Chap. 4, Thm. (3-1)].

Let $A := (a_{n,k})$ be an infinite matrix of real numbers such that

$$a_{n,k} \geq 0 \quad \text{when} \quad k, n = 0, 1, 2, \ldots, \quad \lim_{n \to \infty} a_{n,k} = 0, \quad \text{and} \quad \sum_{k=0}^\infty a_{n,k} = 1,$$

but $A^0 := (a_{n,k})$, where

$$a_{n,k} = 0 \quad \text{when} \quad k > n = 0, 1, 2, \ldots, \quad \text{and} \quad \sum_{k=0}^n a_{n,k} = 1.$$

We will use the notations

$$A_{n,r} = \sum_{k=0}^{\infty} |a_{n,k} - a_{n,k+r}|, \quad A^0_{n,r} = \sum_{k=0}^n |a_{n,k} - a_{n,k+r}|$$

for $r \in \mathbb{N}$, and

$$\left(\frac{T_{n,A} f(x)}{\widetilde{T}_{n,A} f(x)} \right) := \sum_{k=0}^\infty a_{n,k} \left(\frac{S_k f(x)}{\widetilde{S}_k f(x)} \right) \quad (n = 0, 1, 2, \ldots)$$

for the A-transformation of $S_k f$ or $\widetilde{S} f$, respectively.

In this paper, we study the upper bounds of $|T_{n,A} f(x) - f(x)|$, $|\widetilde{T}_{n,A} f(x) - \widetilde{f}(x)|$, and $|\widetilde{T}_{n,A} f(x) - \widetilde{f}(x, \epsilon)|$ by functions of modulus of continuity type, that is, nondecreasing continuous functions such that $\omega(0) = 0$ and $\omega(\delta_1 + \delta_2) \leq \omega(\delta_1) + \omega(\delta_2)$ for all $0 \leq \delta_1 \leq \delta_2 \leq \delta_1 + \delta_2 \leq 2\pi$. We also consider functions from the following subclasses of L^p:

$$L^p(\omega)_\beta = \{ f \in L^p : \omega_\beta f(\delta)_{L^p} = O(\omega(\delta)) \quad \text{when} \quad \delta \in [0, 2\pi] \text{ and } \beta \geq 0 \},$$

$$L^p(\bar{\omega})_\beta = \{ f \in L^p : \bar{\omega}_\beta f(\delta)_{L^p} = O(\bar{\omega}(\delta)) \quad \text{when} \quad \delta \in [0, 2\pi] \text{ and } \beta \geq 0 \},$$

where ω and $\bar{\omega}$ are the functions of modulus of continuity type, and

$$\omega_\beta f(\delta)_{L^p} := \sup_{0 \leq |t| \leq \delta} \left\{ \left| \sin \frac{rt}{2} \right|^{\beta} \left\| \varphi(t) \right\|_{L^p} \right\} \quad \text{with} \quad \varphi(t) := f(x + t) + f(x - t) - 2f(x),$$

$$\bar{\omega}_\beta f(\delta)_{L^p} := \sup_{0 \leq |t| \leq \delta} \left\{ \left| \sin \frac{rt}{2} \right|^{\beta} \left\| \psi(t) \right\|_{L^p} \right\},$$

Lith. Math. J., 60(4):494–512, 2020.
where $r \in \mathbb{N}$. It is clear that for $\beta > \alpha \geq 0$,
\[
\tilde{\omega}_\beta f(\delta)_{L^p} \leq \tilde{\omega}_\alpha f(\delta)_{L^p} \quad \text{and} \quad \omega_\beta f(\delta)_{L^p} \leq \omega_\alpha f(\delta)_{L^p},
\]
and we easily see that $\tilde{\omega}_0 f(\cdot)_{L^p} = \omega f(\cdot)_{L^p}$ and $\omega_0 f(\cdot)_{L^p} = \omega f(\cdot)_{L^p}$ are the classical moduli of continuity.

The above deviations were estimated in [1] and generalized in [2] as follows.

Theorem A. (See [2, p. 97, Thm. 10].) Let $f \in L^p(\omega_\beta)$ ($p > 1$) with $\beta < 1 - 1/p$, and let ω satisfy
\[
\left\{ \int_{\pi/(n+1)}^{\pi} \left(\frac{t^{-\gamma}|\varphi_x(t)|}{\omega(t)} \right)^p \sin^{\beta_p} t \, dt \right\}^{1/p} = O_x((n+1)^\gamma), \tag{1.1}
\]
and
\[
\left\{ \int_0^{\pi/(n+1)} \left(\frac{\varphi_x(t)}{\omega(t)} \right)^p \sin^{\beta_p} t \, dt \right\}^{1/p} = O_x((n+1)^{-1}), \tag{1.2}
\]
with $0 < \gamma < \beta + 1/p$, where $q = p(p-1)^{-1}$. Then
\[
|T_{n,A^p} f(x) - f(x)| = O_x \left((n+1)^{\beta+1/p+1} A_{n,1}^p \omega \left(\frac{\pi}{n+1} \right) \right).
\]

Theorem B. (See [2, p. 95, Thm. 8].) If $f \in L^p(\tilde{\omega}_\beta)$ ($p > 1$) with $\beta < 1 - 1/p$, where $\tilde{\omega}$ satisfies the conditions
\[
\left\{ \int_{\pi/(n+1)}^{\pi} \left(\frac{t^{-\gamma}|\varphi_x(t)|}{\tilde{\omega}(t)} \right)^p \sin^{\beta_p} t \, dt \right\}^{1/p} = O_x((n+1)^\gamma), \tag{1.4}
\]
and
\[
\left\{ \int_0^{\pi/(n+1)} \left(\frac{t|\varphi_x(t)|}{\tilde{\omega}(t)} \right)^p \sin^{\beta_p} t \, dt \right\}^{1/p} = O_x((n+1)^{-1}), \tag{1.5}
\]
with $0 < \gamma < \beta + 1/p$, then
\[
|\tilde{T}_{n,A^p} f(x) - \tilde{f}(x, \frac{\pi}{n+1})| = O_x \left((n+1)^{\beta+1/p+1} A_{n,1}^p \tilde{\omega} \left(\frac{\pi}{n+1} \right) \right).
\]

Theorem C. (See [2, p. 97, Thm. 9].) If $f \in L^p(\tilde{\omega}_\beta)$ ($p > 1$) with $\beta < 1 - 1/p$, where $\tilde{\omega}$ satisfies condition (1.4),
\[
\left\{ \int_0^{\pi/(n+1)} \left(\frac{|\varphi_x(t)|}{\tilde{\omega}(t)} \right)^p \sin^{\beta_p} t \, dt \right\}^{1/p} = O_x((n+1)^{-1/p}),
\]
with $0 < \gamma < \beta + 1/p$. Then
\[
|\tilde{T}_{n,A^p} f(x) - \tilde{f}(x, \frac{\pi}{n+1})| = O_x \left((n+1)^{\beta+1/p+1} A_{n,1}^p \tilde{\omega} \left(\frac{\pi}{n+1} \right) \right).
\]
and
\[\left\{ \frac{\pi}{r(n+1)} \right\}^{\frac{q}{r}} \int_0^{\pi} \left(\frac{\bar{\omega}(t)}{t \sin^{\beta+1/2} \frac{\pi}{2}} \right)^q dt \right\}^{1/q} = O((n+1)^{\beta+1/p} \bar{\omega} \left(\frac{\pi}{n+1} \right)) \]

with \(0 < \gamma < \beta + 1/p \), where \(q = p(p-1)^{-1} \), then
\[|\widetilde{A}_{n,r} f(x) - \widetilde{f}(x)| = O_{x} \left((n+1)^{\beta+1/p} \right) A_{n,1}^p \left(\frac{\pi}{n+1} \right). \]

In our theorems, we generalize Theorems A–C using \(A_{n,r} \) with \(r \in \mathbb{N} \) instead of \(A_{n,1} \).

In the paper, \(\sum_{k=a}^{b} = 0 \) when \(a > b \).

2 Statement of the results

At the beginning, we present an estimate of the quantity \(|\widetilde{T}_{n,A} f(x) - f(x)| \). Next, we will estimate the quantities \(|\widetilde{T}_{n,A} f(x) - f(x)| \) and \(|\widetilde{T}_{n,A} f(x) - f(x, \epsilon)| \). Finally, we will formulate some remarks and corollaries.

Theorem 1. Suppose that \(f \in L^p \ (p \geq 1) \) and a function \(\omega \) of modulus of continuity type satisfy, for \(r \in \mathbb{N} \), the conditions
\[
\left\{ \frac{\pi}{r(n+1)} \right\}^{\frac{q}{r}} \int_0^{\pi} \left(\frac{\omega(t)}{t \sin^{\beta+1/2} \frac{\pi}{2}} \right)^q dt \right\}^{1/q} = O((n+1)^{\beta+1/p} \omega \left(\frac{\pi}{n+1} \right)) \quad (p > 1),
\]
\[
\text{ess sup}_{0 < t < \frac{\pi}{r(n+1)}} \left\{ \frac{\omega(t)}{t \sin^{\beta+1/2} \frac{\pi}{2}} \right\} = O((n+1)^{\beta+1} \omega \left(\frac{\pi}{n+1} \right)) \quad (p = 1, \beta = 0),
\]

where \(q = p(p-1)^{-1} \),
\[
\left\{ \frac{2m\pi}{r(n+1)} \right\}^{\frac{q}{r(n+1)}} \int_{2m\pi/r}^{2m\pi} \left(\frac{\omega(t)}{t \sin^{\beta+1/2} \frac{\pi}{2}} \right)^q dt \right\}^{1/q} = O((n+1)^{-1/p}),
\]
\[
\left\{ \frac{2m\pi + \pi}{r(n+1)} \right\}^{\frac{q}{r(n+1)}} \int_{2m\pi + \pi/r}^{2m\pi + \pi} \left(\frac{\omega(t)}{t \sin^{\beta+1/2} \frac{\pi}{2}} \right)^q dt \right\}^{1/q} = O((n+1)^{\gamma} \quad (0 < \gamma < \beta + \frac{1}{p}),
\]

where \(m \in \{0, \ldots, \lfloor r/2 \rfloor \} \) when \(r \) is odd or \(m \in \{0, \ldots, \lfloor r/2 \rfloor - 1 \} \) when \(r \) is even. Moreover, let \(\omega \) satisfy, for natural \(r \geq 2 \), the conditions
\[
\left\{ \frac{2(m+1)\pi}{r(n+1)} \right\}^{\frac{q}{r(n+1)}} \int_{2(m+1)\pi/r - \pi}^{2(m+1)\pi/r} \left(\frac{\omega(t)}{t \sin^{\beta+1/2} \frac{\pi}{2}} \right)^q dt \right\}^{1/q} = O((n+1)^{-1/p}),
\]
\[
\left\{ \frac{2(m+1)\pi - \pi}{r(n+1)} \right\}^{\frac{q}{r(n+1)}} \int_{2(m+1)\pi - \pi}^{2(m+1)\pi} \left(\frac{\omega(t)}{t \sin^{\beta+1/2} \frac{\pi}{2}} \right)^q dt \right\}^{1/q} = O((n+1)^{\gamma} \quad (0 < \gamma < \beta + \frac{1}{p}),
\]

Lith. Math. J., 60(4):494–512, 2020.
where \(m \in \{0, \ldots, \lfloor r/2 \rfloor - 1\} \). If a matrix \(A \) is such that

\[
\left[\sum_{l=0}^{n} \sum_{k=l}^{r+l-1} a_{n,k} \right]^{-1} = O(1)
\]

(2.7)

for \(r \in \mathbb{N} \), then

\[
|T_{n,A}f(x) - f(x)| = O_{\omega}((n+1)^{\beta+1/p+1} A_{n,r} \omega \left(\frac{\pi}{n+1} \right)).
\]

Theorem 2. Let \(f \in L^p \) (\(p \geq 1 \)), \(\beta < 1 - 1/p \) when \(p > 1 \) or \(\beta = 0 \) when \(p = 1 \), and let a function \(\tilde{\omega} \) of modulus of continuity type satisfy: for \(r \in \mathbb{N} \), the conditions

\[
\left\{ \int_0^{\pi/(r(n+1))} \left(\frac{|\psi_x(t)|}{\tilde{\omega}(t)} \right)^p \sin^{\beta_p} \frac{t}{2} \, dt \right\}^{1/p} = O_{\omega}((n+1)^{-1}), \quad (p > 1),
\]

(2.8)

and for natural \(r \geq 2 \), the conditions

\[
\left\{ \int_{2m\pi/r}^{2m\pi/r+\pi/(r(n+1))} \left(\frac{|\psi_x(t)|}{\tilde{\omega}(t)} \right)^p \sin^{\beta_p} \frac{rt}{2} \, dt \right\}^{1/p} = O_{\omega}((n+1)^{\gamma}) \quad (0 < \gamma < \beta + \frac{1}{p}),
\]

(2.9)

where \(q = p(p-1)^{-1} \),

\[
\left\{ \int_{2m\pi/r}^{2m\pi/r+\pi/(r(n+1))} \left(\frac{|\psi_x(t)|}{\tilde{\omega}(t)} \right)^p \sin^{\beta_p} \frac{rt}{2} \, dt \right\}^{1/p} = O_{\omega}((n+1)^{-1/p}),
\]

(2.10)

where \(m \in \{0, \ldots, \lfloor r/2 \rfloor \} \) when \(r \) is odd or \(m \in \{0, \ldots, \lfloor r/2 \rfloor - 1 \} \) when \(r \) is even. Moreover, let \(\tilde{\omega} \) satisfy, for natural \(r \geq 2 \), the conditions

\[
\left\{ \int_{2(m+1)\pi/r}^{2(m+1)\pi/r-\pi/(r(n+1))} \left(\frac{|\psi_x(t)|}{\tilde{\omega}(t)} \right)^p \sin^{\beta_p} \frac{rt}{2} \, dt \right\}^{1/p} = O_{\omega}((n+1)^{-1/p}),
\]

(2.11)

\[
\left\{ \int_{2(m+1)\pi/r-\pi/(r(n+1))}^{2(m+1)\pi/r} \left(\frac{|\psi_x(t)|}{\tilde{\omega}(t)} \right)^p \sin^{\beta_p} \frac{rt}{2} \, dt \right\}^{1/p} = O_{\omega}((n+1)^{\gamma}) \quad (0 < \gamma < \beta + \frac{1}{p}),
\]

(2.12)

where

\[
\tilde{\omega}(t) = \omega(t) \left(\frac{t}{r} \right)^{m\pi/r - 1} \left(1 + \beta \frac{t}{r} \right)^{\beta \gamma},
\]

(2.13)
where \(m \in \{0, \ldots, [r/2] - 1\} \). If a matrix \(A \) is such that (2.7) is satisfied and

\[
\sum_{k=0}^{\infty} (k+1)^2 a_{n,k} = O((n+1)^2)
\]

for \(r \in \mathbb{N} \), then

\[
\left| \tilde{T}_{n,A} f(x) - \tilde{f} \left(x, \frac{\pi}{n+1} \right) \right| = O_x \left((n+1)^{\beta+1/p+1} A_{n,r} \tilde{\omega} \left(\frac{\pi}{n+1} \right) \right).
\]

Theorem 3. Suppose that \(f \in L^p \) (\(p \geq 1 \)) and a function \(\tilde{\omega} \) of modulus of continuity type satisfy, for \(r \in \mathbb{N} \), conditions (2.9), (2.10) or (2.11), and (2.12), where \(m \in \{0, \ldots, [r/2] \} \) when \(r \) is odd or \(m \in \{0, \ldots, [r/2] - 1 \} \) when \(r \) is even. Moreover, let \(\tilde{\omega} \) satisfy, for natural \(r \geq 2 \), conditions (2.13) and (2.14), where \(m \in \{0, \ldots, [r/2] - 1 \} \). If a matrix \(A \) is such that (2.7) is true for \(r \in \mathbb{N} \), then

\[
\left| \tilde{T}_{n,A} f(x) - \tilde{f}(x) \right| = O_x \left((n+1)^{\beta+1/p+1} A_{n,r} \tilde{\omega} \left(\frac{\pi}{n+1} \right) \right).
\]

In the proofs of our results, we will consider the case \(p > 1 \) only. The case \(p = 1 \) can be examined analogously under terminology from conditions (2.1) or (2.2), respectively.

Remark 1. If, instead of (2.4) and (2.6), we consider, respectively, the more natural conditions

\[
\left\{ \begin{array}{l}
\left(\frac{|\varphi_x(t)|}{\omega(t)(t - 2m\pi r)} \right)^p \left| \sin \frac{rt}{2} \right|^{\beta p} dt^{1/p} = O_x ((n+1)^{\gamma-1/p}), \\
\left(\frac{|\varphi_x(t)|}{\omega(t)(2(m+1)\pi r - t)} \right)^p \left| \sin \frac{rt}{2} \right|^{\beta p} dt^{1/p} = O_x ((n+1)^{\gamma-1/p})
\end{array} \right.
\]

for \(\gamma \in (1/p, 1/p + \beta) \), where \(\beta > 0 \), and analogously for \(\tilde{\omega} \) and \(\psi \), then our estimates take the forms

\[
\left| T_{n,A} f(x) - f(x) \right| = O_x \left((n+1)^{\beta+1} A_{n,r} \omega \left(\frac{\pi}{n+1} \right) \right),
\]

\[
\left| \tilde{T}_{n,A} f(x) - \tilde{f} \left(x, \frac{\pi}{n+1} \right) \right| = O_x \left((n+1)^{\beta+1} A_{n,r} \tilde{\omega} \left(\frac{\pi}{n+1} \right) \right),
\]

\[
\left| \tilde{T}_{n,A} f(x) - \tilde{f}(x) \right| = O_x \left((n+1)^{\beta+1} A_{n,r} \tilde{\omega} \left(\frac{\pi}{n+1} \right) \right).
\]

These considerations are natural because in the case of norm approximation the new and old conditions always hold with \(\| \varphi_x(t) \|_{L^p} \) instead of \(|\varphi_x(t)| \) and with \(\| \psi_x(t) \|_{L^p} \) instead of \(|\psi_x(t)| \), for \(f \in L^p(\omega)_{\beta} \) and \(f \in L^p(\tilde{\omega})_{\beta} \), respectively.

Remark 2. Note that in the case \(r = 1 \), conditions (2.1)–(2.6) in Theorem 1 reduce to (1.1)–(1.3) and conditions (2.8)–(2.14) in Theorem 2 reduce to (1.4)–(1.5). We have a similar situation in the case of Theorem 3.

Remark 3. Note that for \(r = 1 \), if in the proof of Theorem 1 we use the estimate \(|D_{k,1}^\alpha(t)| \leq k + 1/2 \) from Lemma 2, then we additionally need the condition

\[
\sum_{k=0}^{\infty} (k+1)^2 a_{n,k} = O(n+1).
\]
In this case, we can apply the weaker conditions

\[
\left\{ \int_0^{\pi/(n+1)} \left(\frac{t|\varphi_x(t)|}{\omega(t)} \right)^p \sin \frac{t}{2} \frac{\beta_p}{\omega(t)} \right\}^{1/p} = O_x((n+1)^{-1-1/p})
\]

instead of condition (2.3).

Remark 4. Note that our extra conditions (2.7), (2.15), and (2.16) for a lower triangular infinite matrix \(A \) always hold.

Corollary 1. Under Remark 2 and the obvious inequality

\[
A_{n,r} \leq rA_{n,1} \quad \text{for } r \in \mathbb{N},
\]

our results improve and generalize the mentioned Theorems A and C without the assumption \(\beta < 1 - 1/p \) and Theorem B of Krasniqi [2].

Remark 5. In the case \(r = 1 \) the deviation \(T_{n,A^*} f - f \) was examined by many authors. Mishra, Khatri, Mishra, and Deepmala [4, 7], Mishra [5], and Mishra and Mishra [3] considered the mentioned deviation with some conditions on the quantity \(A_{n,1} \) and on the entries of the matrix \(A^* \). In a particular case the Nörlund and Riesz means were considered. Iterations of some methods of summability in such investigations were used in [4, 6] and [3, 5]. The earlier estimates were very often obtained for functions from \(L^p(\omega)^\beta \) where \(\omega(\delta) = O(\delta^{\alpha}) \) with \(\alpha \in (0, 1] \), and in the conjugate case.

Example 1. Let a matrix \(A^* \) is such that

\[
A_{n,1}^* = O(a_{n,0}) \quad \text{and} \quad (n+1)a_{n,0} = O(1).
\]

If \(f \in L^p(\omega)^\beta[L^p(\tilde{\omega})^\beta] \) with \(\beta \geq 0 \) and \(p \geq 1 \) in the particular case \(r = 1 \) and \(\omega(\delta)|\tilde{\omega}(\delta)| = O(\delta^{\alpha}) \) with \(\alpha \in (0, 1] \), then our Theorems 1 and 3 with Remarks 2 and 4 give the norm estimates

\[
\|T_{n,A^*} f(\cdot) - f(\cdot)\|_{L^p} = O(n^{-\alpha+1/p+\beta}),
\]

\[
\|\tilde{T}_{n,A^*} f(\cdot) - f(\cdot)\|_{L^p} = O(n^{-\alpha+1/p+\beta})
\]

and Remark 1, the following slightly better ones with \(\beta > 0 \):

\[
\|T_{n,A^*} f(\cdot) - f(\cdot)\|_{L^p} = O(n^{-\alpha+\beta}),
\]

\[
\|\tilde{T}_{n,A^*} f(\cdot) - f(\cdot)\|_{L^p} = O(n^{-\alpha+\beta}).
\]

The reader can find the presented estimates in, for example, [3, 5] and [7].

Remark 6. Note that instead of \(L^p(\omega)^\beta \) and \(L^p(\tilde{\omega})^\beta \), we can consider other subclasses of \(L^p \) generated by any function of the continuity modulus type, for example, by a function \(\omega_x \) such that

\[
\omega_x(f,\delta) = \sup_{|t| \leq \delta} |\varphi_x(t)| \leq \omega_x(\delta) \quad \text{or} \quad \omega_x(f,\delta) = \frac{1}{\delta} \int_0^\delta |\varphi_x(t)| \, dt \leq \omega_x(\delta),
\]

and in the conjugate case as well.
3 Auxiliary results

We begin this section by some notations from [9] and [10, Chap. II, Sect. 5]. Let for \(r = \pm 1, \pm 2, \ldots, \)

\[
D_{k,r}^0(t) = \frac{\sin \left(\frac{(2k+r)t}{2}\right)}{2 \sin \frac{rt}{2}}, \quad \bar{D}_{k,r}^0(t) = \frac{\cos \left(\frac{(2k+r)t}{2}\right)}{2 \sin \frac{rt}{2}}, \quad \text{and} \quad \bar{D}_{k,r}(t) = \frac{\cos \frac{rt}{2} - \cos \frac{(2k+r)t}{2}}{2 \sin \frac{rt}{2}}.
\]

By [10] it is clear that

\[
S_k f(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x + t) D_{k,1}^0(t) \, dt, \quad \bar{S}_k f(x) = -\frac{1}{\pi} \int_{-\pi}^{\pi} f(x + t) \bar{D}_{k,1}^0(t) \, dt,
\]

and

\[
T_{n,A} f(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x + t) \sum_{k=0}^{\infty} a_{n,k} D_{k,1}^0(t) \, dt,
\]

\[
\bar{T}_{n,A} f(x) = -\frac{1}{\pi} \int_{-\pi}^{\pi} f(x + t) \sum_{k=0}^{\infty} a_{n,k} \bar{D}_{k,1}^0(t) \, dt.
\]

Hence

\[
T_{n,A} f(x) - f(x) = \frac{1}{\pi} \int_{0}^{\pi} \varphi_x(t) \sum_{k=0}^{\infty} a_{n,k} D_{k,1}^0(t) \, dt,
\]

\[
\bar{T}_{n,A} f(x) - \bar{f}(x) = \frac{1}{\pi} \int_{0}^{\pi} \psi_x(t) \sum_{k=0}^{\infty} a_{n,k} \bar{D}_{k,1}^0(t) \, dt,
\]

and

\[
\bar{T}_{n,A} f(x) - \bar{f} \left(x, \frac{\pi}{r(n+1)} \right) = -\frac{1}{\pi} \int_{0}^{\pi/\left(r(n+1) \right)} \psi_x(t) \sum_{k=0}^{\infty} a_{n,k} \bar{D}_{k,1}^0(t) \, dt
\]

\[
+ \frac{1}{\pi} \int_{\pi/\left(r(n+1) \right)}^{\pi} \psi_x(t) \sum_{k=0}^{\infty} a_{n,k} \bar{D}_{k,1}^0(t) \, dt.
\]

At the beginning, we present a very useful property of functions of the continuity modulus type.

Lemma 1. (See [10].) A function \(\omega \) of modulus of continuity type on the interval \([0, 2\pi]\) satisfies the following condition:

\[
\delta_2^{-1} \omega(\delta_2) \leq 2 \delta_1^{-1} \omega(\delta_1) \quad \text{for} \quad \delta_2 > \delta_1 > 0.
\]

Next, we present some known estimates.

Lemma 2. (See [10].) If \(0 < |t| \leq \pi \), then for \(k \in \mathbb{N} \), \(|D_{k,1}^0(t)| \leq \pi/(2|t|) \), \(|\bar{D}_{k,1}^0(t)| \leq \pi/(2|t|) \), and \(|\bar{D}_{k,1}(t)| \leq \pi/|t| \), and, for real \(t \), we have

\[
|D_{k,1}^0(t)| \leq k + \frac{1}{2}, \quad |\bar{D}_{k,1}(t)| \leq \frac{1}{2} k(k + 1)|t|, \quad |\bar{D}_{k,1}(t)| \leq k + 1.
\]
Lemma 3. (See [8, 9].) Let \(m, n, r \in \mathbb{N}, l \in \mathbb{Z}, \) and \((a_n) \subset \mathbb{C}. \) If \(t \neq 2l\pi/r, \) then for all \(m \geq n, \)

\[
\begin{align*}
\sum_{k=n}^m a_k \sin kt &= - \sum_{k=n}^m (a_k - a_{k+r}) \tilde{D}_{k,r}^o(t) + \sum_{k=m+1}^{m+r} a_k \tilde{D}_{k,-r}^o(t) - \sum_{k=n}^{n+r-1} a_k \tilde{D}_{k,-r}^o(t), \\
\sum_{k=n}^m a_k \cos kt &= \sum_{k=n}^m (a_k - a_{k+r}) \tilde{D}_{k,r}^o(t) - \sum_{k=m+1}^{m+r} a_k \tilde{D}_{k,-r}^o(t) + \sum_{k=n}^{n+r-1} a_k \tilde{D}_{k,-r}^o(t).
\end{align*}
\]

We additionally need two estimates as a consequence of Lemma 3.

Lemma 4. Let \(r \in \mathbb{N}, l \in \mathbb{Z}, \) and \((a_{n,k}) \subset \mathbb{C}. \) If \(t \neq 2l\pi/r, \) then

\[
\left| \sum_{k=0}^\infty a_{n,k} D_{k,1}^o(t) \right| \leq \frac{1}{2|\sin \frac{t}{2} \sin \frac{r}{2}|} \left(A_{n,r} + \sum_{k=0}^{r-1} a_{n,k} \right) \leq \frac{1}{|\sin \frac{t}{2} \sin \frac{r}{2}|} A_{n,r}.
\]

Proof. By Lemma 3

\[
\begin{align*}
\sum_{k=0}^\infty a_{n,k} D_{k,1}^o(t) &= \sum_{k=0}^\infty a_{n,k} \frac{\sin (2k+1)t}{2 \sin \frac{t}{2}} = \frac{1}{2 \sin \frac{t}{2}} \left(\sum_{k=0}^\infty a_{n,k} \sin kt \cos \frac{t}{2} + \sum_{k=0}^\infty a_{n,k} \cos kt \sin \frac{t}{2} \right) \\
&= \frac{\cos \frac{t}{2}}{2 \sin \frac{t}{2}} \left(- \sum_{k=0}^\infty (a_{n,k} - a_{n,k+r}) \tilde{D}_{k,r}^o(t) - \sum_{k=0}^{r-1} a_{n,k} \tilde{D}_{k,-r}^o(t) \right) \\
&\quad + \frac{1}{2} \left(\sum_{k=0}^\infty (a_{n,k} - a_{n,k+r}) \tilde{D}_{k,r}^o(t) + \sum_{k=0}^{r-1} a_{n,k} \tilde{D}_{k,-r}^o(t) \right),
\end{align*}
\]

and our lemma is proved. \(\square \)

Lemma 5. Let \(r \in \mathbb{N}, l \in \mathbb{Z}, \) and \((a_{n,k}) \subset \mathbb{C}. \) If \(t \neq 2l\pi/r, \) then

\[
\left| \sum_{k=0}^\infty a_{n,k} \tilde{D}_{k,1}^o(t) \right| \leq \frac{1}{2|\sin \frac{t}{2} \sin \frac{r}{2}|} \left(A_{n,r} + \sum_{k=0}^{r-1} a_{n,k} \right) \leq \frac{1}{|\sin \frac{t}{2} \sin \frac{r}{2}|} A_{n,r}.
\]

Proof. By Lemma 3

\[
\begin{align*}
\sum_{k=0}^\infty a_{n,k} \tilde{D}_{k,1}^o(t) &= \sum_{k=0}^\infty a_{n,k} \frac{\cos (2k+1)t}{2 \sin \frac{t}{2}} = \frac{1}{2 \sin \frac{t}{2}} \left(\sum_{k=0}^\infty a_{n,k} \cos kt \cos \frac{t}{2} - \sum_{k=0}^\infty a_{n,k} \sin kt \sin \frac{t}{2} \right) \\
&= \frac{\cos \frac{t}{2}}{2 \sin \frac{t}{2}} \left(\sum_{k=0}^\infty (a_{n,k} - a_{n,k+r}) D_{k,r}^o(t) + \sum_{k=0}^{r-1} a_{n,k} D_{k,-r}^o(t) \right) \\
&\quad - \frac{1}{2} \left(\sum_{k=0}^\infty (a_{n,k} - a_{n,k+r}) \tilde{D}_{k,r}^o(t) - \sum_{k=0}^{r-1} a_{n,k} \tilde{D}_{k,-r}^o(t) \right),
\end{align*}
\]

and thus our proof is complete. \(\square \)

We also need some special conditions, which follow from those mentioned earlier.
Lemma 6. If condition (2.1) holds with \(q = p(p - 1)^{-1} \) and natural \(r \geq 2 \), then for any function \(\omega \) of modulus of continuity type, we have

\[
\left\{ \int_{2(m+1)\pi/r}^{2(m+1)\pi/(r(n+1))} \left(\frac{\omega(t)}{t \sin \frac{rt}{2} \beta} \right)^q \, dt \right\}^{1/q} = O_n \left((n + 1)^{\beta+1/p} \omega \left(\frac{\pi}{n + 1} \right) \right),
\]

where \(m \in \{0, \ldots, [r/2] - 1\} \).

Proof. By substitution \(t = 2(m + 1)\pi/r - u \) we obtain

\[
\left\{ \int_{2(m+1)\pi/r - \pi/(r(n+1))}^{\pi/(r(n+1))} \left(\frac{\omega(t)}{t \sin \frac{rt}{2} \beta} \right)^q \, dt \right\}^{1/q} = \left\{ \int_{0}^{\pi/(r(n+1))} \left(\frac{\omega(2(m+1)\pi/r - u)}{\sin \frac{2(m+1)\pi}{r} - u} \right)^q \, du \right\}^{1/q} \leq \left\{ \int_{0}^{\pi/(r(n+1))} \left(\frac{\omega(u)}{u \sin \frac{\pi u}{2} \beta} \right)^q \, du \right\}^{1/q}.
\]

Hence our estimate follows by (2.1).

Lemma 7. If condition (2.1) holds with \(q = p(p - 1)^{-1} \) and natural \(r \), then for any function \(\omega \) of modulus of continuity type, we have

\[
\left\{ \int_{2m\pi/r}^{2m\pi/(r(n+1))} \left(\frac{\omega(t)}{t \sin \frac{rt}{2} \beta} \right)^q \, dt \right\}^{1/q} = O_n \left((n + 1)^{\beta+1/p} \omega \left(\frac{\pi}{n + 1} \right) \right),
\]

where \(m \in \{0, \ldots, [r/2]\} \).

Proof. By substitution \(t = 2m\pi/r + u \), analogously to the previous proof, we obtain

\[
\left\{ \int_{2m\pi/r + \pi/(r(n+1))}^{2m\pi/(r(n+1))} \left(\frac{\omega(t)}{t \sin \frac{rt}{2} \beta} \right)^q \, dt \right\}^{1/q} = \left\{ \int_{0}^{\pi/(r(n+1))} \left(\frac{\omega(2m\pi/r + u)}{2m\pi/r + u} \sin \frac{2m\pi}{r} + u \right)^q \, du \right\}^{1/q}.
\]

Lith. Math. J., 60(4):494–512, 2020.
and we have the desired estimate. □

4 Proofs of the results

4.1 Proof of Theorem 1

It is clear that for an odd \(r \),

\[
T_{n,A} f(x) - f(x) = I_1(x) + I_2(x)
\]

and for an even \(r \),

\[
T_{n,A} f(x) - f(x) = I_1'(x) + I_2(x).
\]

Then

\[
|T_{n,A} f(x) - f(x)| \leq |I_1(x)| + |I_1'(x)| + |I_2(x)|.
\]

and by Lemmas 2 and 4

\[
|I_1(x)| \leq \frac{1}{\pi} \sum_{m=0}^{[r/2]} \int_{2m\pi/r}^{2m\pi/r+\pi/r} |\varphi_x(t)| \left| \sum_{k=0}^{\infty} a_{n,k} D_{k,1}^0(t) \right| dt
\]

\[
= \frac{1}{\pi} \sum_{m=0}^{[r/2]} \left(\int_{2m\pi/r}^{2m\pi/r+\pi/(r+1)} + \int_{2m\pi/r+\pi/r}^{2m\pi/r+\pi/(r+1)} \right) |\varphi_x(t)| \left| \sum_{k=0}^{\infty} a_{n,k} D_{k,1}^0(t) \right| dt
\]

\[
\leq \frac{1}{2} \sum_{m=0}^{[r/2]} \int_{2m\pi/r}^{2m\pi/r+\pi/(r+1)} \left| \frac{\varphi_x(t)}{t} \right| dt + \frac{1}{\pi} A_{n,r} \sum_{m=0}^{[r/2]} \int_{2m\pi/r+\pi/(r+1)}^{2m\pi/r+\pi/r} \left| \frac{\varphi_x(t)}{\sin \frac{t}{2} \sin \frac{\pi t}{2}} \right| dt.
\]
Using the estimates \(|\sin(t/2)| \geq |t|/\pi\) for \(t \in [0, \pi]\) and \(|\sin(rt/2)| \geq rt/\pi - 2m\) for \(t \in [2m\pi/r, 2m\pi/r + \pi/r]\), where \(m \in \{0, \ldots, [r/2]\}\), we obtain

\[
|I_1(x)| \leq \frac{1}{2} \sum_{m=0}^{[r/2]} \int_{2m\pi/r}^{2m\pi/r+\pi/(r(n+1))} \frac{|\varphi_r(t)|}{t} \, dt + A_{n,r} \sum_{m=0}^{[r/2]} \int_{2m\pi/r+\pi/(r(n+1))}^{2m\pi/r+\pi/r} \frac{|\varphi_r(t)|}{t^{(\frac{r}{2\pi} - 2m)}} \, dt \leq \frac{1}{2} \sum_{m=0}^{[r/2]} \int_{2m\pi/r}^{2m\pi/r+\pi/(r(n+1))} \left(\frac{|\varphi_r(t)|}{\omega(t)} \right) ^\beta \left(\sin \frac{rt}{2} \right) ^p \, dt \left[\int_{2m\pi/r}^{2m\pi/r+\pi/(r(n+1))} \left(\frac{\omega(t)}{t^{(\frac{r}{2\pi} - 2m)}} \frac{t}{t^{(\frac{r}{2\pi} - 2m)}} \right) ^q \, dt \right]^{1/q} + \frac{\pi}{r} A_{n,r} \sum_{m=0}^{[r/2]} \int_{2m\pi/r+\pi/(r(n+1))}^{2m\pi/r+\pi/r} \left(\frac{\omega(t)(t - \frac{2m\pi}{r})^\gamma}{t(t - \frac{2m\pi}{r})^{\frac{t}{2\pi} - \frac{r}{2}}} \right) ^q \, dt \left[\int_{2m\pi/r+\pi/(r(n+1))}^{2m\pi/r+\pi/r} \left(\frac{\omega(t)(t - \frac{2m\pi}{r})^\gamma}{t(t - \frac{2m\pi}{r})^{\frac{t}{2\pi} - \frac{r}{2}}} \right) ^q \, dt \right]^{1/q},
\]

and by (2.3) and (2.1) with Lemma 7 and (2.4) we have

\[
|I_1| = O_x(1) \sum_{m=0}^{[r/2]} (n + 1)^{-1/p} (n + 1)^{\beta + 1/p} \omega \left(\frac{\pi}{n + 1} \right) + O_x(1) A_{n,r} \sum_{m=0}^{[r/2]} (n + 1)^{\gamma} \left[\int_{2m\pi/r+\pi/(r(n+1))}^{2m\pi/r+\pi/r} \left(\frac{\omega(t)(t - \frac{2m\pi}{r})^\gamma}{t(t - \frac{2m\pi}{r})^{\frac{t}{2\pi} - \frac{r}{2}}} \right) ^q \, dt \right]^{1/q}.
\]

Since

\[
\left[\int_{2m\pi/r+\pi/(r(n+1))}^{2m\pi/r+\pi/r} \left(\frac{\omega(t)(t - \frac{2m\pi}{r})^\gamma}{t(t - \frac{2m\pi}{r})^{\frac{t}{2\pi} - \frac{r}{2}}} \right) ^q \, dt \right]^{1/q} \leq \left[\int_{\pi/(r(n+1))}^{\pi/r} \left(\omega \left(\frac{\pi}{r(n+1)} \right) \right) ^q \right]^{1/q} \leq \left[\int_{\pi/(r(n+1))}^{\pi/r} \left(\omega \left(\frac{\pi}{r(n+1)} \right) \right) ^q \, dt \right]^{1/q},
\]

we obtain

\[
O \left((n + 1)^{\omega \left(\frac{\pi}{n + 1} \right)} \left(\frac{\pi}{r(n + 1)} \right)^{(\gamma - 1 - \beta + 1/q)} = O \left((n + 1)^{1 - \gamma - \beta + 1/p} \omega \left(\frac{\pi}{n + 1} \right) \right).
\]
for $0 < \gamma < \beta + 1/p$, we have

$$|I_1(x)| = O_x(1) \sum_{m=0}^{\lfloor r/2 \rfloor} (n+1)^{-1/p} (n+1)^{\beta+1/p} \omega \left(\frac{\pi}{n+1} \right)$$

$$+ O_x(1) A_{n,r} \sum_{m=0}^{\lfloor r/2 \rfloor} (n+1)^{\gamma} (n+1)^{1-\gamma+\beta+1/p} \omega \left(\frac{\pi}{n+1} \right)$$

$$= O_x \left((n+1)^{\beta \omega} \left(\frac{\pi}{n+1} \right) \right) + O_x \left((n+1)^{1+\beta+1/p} A_{n,r} \omega \left(\frac{\pi}{n+1} \right) \right).$$

Analogously,

$$|I'_1(x)| = O_x(1) \sum_{m=0}^{\lfloor r/2 \rfloor-1} (n+1)^{-1/p} (n+1)^{\beta+1/p} \omega \left(\frac{\pi}{n+1} \right)$$

$$+ O_x(1) A_{n,r} \sum_{m=0}^{\lfloor r/2 \rfloor-1} (n+1)^{\gamma} (n+1)^{1-\gamma+\beta+1/p} \omega \left(\frac{\pi}{n+1} \right)$$

$$= O_x \left((n+1)^{\beta \omega} \left(\frac{\pi}{n+1} \right) \right) + O_x \left((n+1)^{1+\beta+1/p} A_{n,r} \omega \left(\frac{\pi}{n+1} \right) \right).$$

Similarly,

$$|I_2(x)| \leq \frac{1}{\pi} \sum_{m=0}^{\lfloor r/2 \rfloor-1} \int_{2m\pi/r - \pi/r}^{2(m+1)\pi/r} |\varphi_\omega(t)| \sum_{k=0}^{\infty} a_{n,k} D^2_{k,1}(t) \, dt$$

$$= \frac{1}{\pi} \sum_{m=0}^{\lfloor r/2 \rfloor-1} \left(\int_{2(m+1)\pi/r - \pi/\pi(r(n+1))}^{2(m+1)\pi/r} + \int_{2(m+1)\pi/r - \pi/(n+1))}^{2(m+1)\pi/r} \right) |\varphi_\omega(t)| \sum_{k=0}^{\infty} a_{n,k} D^2_{k,1}(t) \, dt$$

$$\leq \frac{1}{\pi} \sum_{m=0}^{\lfloor r/2 \rfloor-1} \int_{2(m+1)\pi/r - \pi/r}^{2(m+1)\pi/r} \frac{\left| \varphi_\omega(t) \right|}{\sin \frac{t}{2} \sin \frac{\pi}{2}} A_{n,r} \, dt + \frac{1}{\pi} \sum_{m=0}^{\lfloor r/2 \rfloor-1} \int_{2(m+1)\pi/r - \pi/(r(n+1))}^{2(m+1)\pi/r} \frac{\varphi_\omega(t)}{t} \, dt,$$

and by the estimates $|\sin(t/2)| \geq |t|/\pi$ for $t \in [0, \pi]$ and $|\sin(rt/2)| \geq 2(m+1)-rt/\pi$ for $t \in [2(m+1)\pi/r - \pi/r, 2(m+1)\pi/r - \pi/(r(n+1))]$, we get

$$|I_2(x)| \leq A_{n,r} \sum_{m=0}^{\lfloor r/2 \rfloor-1} \int_{2(m+1)\pi/r - \pi/r}^{2(m+1)\pi/r} \left| \frac{\varphi_\omega(t)}{t} \right| \, dt + \frac{1}{\pi} \sum_{m=0}^{\lfloor r/2 \rfloor-1} \int_{2(m+1)\pi/r - \pi/(r(n+1))}^{2(m+1)\pi/r} \left| \frac{\varphi_\omega(t)}{t} \right| \, dt$$

$$\leq \frac{\pi}{r} A_{n,r} \sum_{m=0}^{\lfloor r/2 \rfloor-1} \left[\int_{2(m+1)\pi/r - \pi/r}^{2(m+1)\pi/r} \left(\frac{\left| \varphi_\omega(t) \right|}{\omega(t)(2(m+1)\pi/r - t)^\gamma} \right)^p \sin \frac{rt}{2} \right]^{1/p}.$$
\[
\left| I_2(x) \right| \leq \frac{\pi}{r} A_{n,r} \sum_{m=0}^{\lfloor r/2 \rfloor - 1} O_x \left((n+1)^{\gamma} \right) \left[\int_{2(m+1)\pi/r - \pi/((n+1))}^{2(m+1)\pi/r} \left(\frac{\omega(t)\left(\frac{2(m+1)\pi}{r} - t\right)^\gamma}{t\left(\frac{2(m+1)\pi}{r} - t\right)\sin \frac{rt}{2}} \right)^q dt \right]^{1/q} \\
+ \frac{1}{\pi} \sum_{m=0}^{\lfloor r/2 \rfloor - 1} O_x \left((n+1)^{-1/p} \right) O_x \left((n+1)^{\beta+1/p} \omega \left(\frac{\pi}{n+1} \right) \right).
\]

Since
\[
\left[\int_{2(m+1)\pi/r - \pi/((n+1))}^{2(m+1)\pi/r} \left(\frac{\omega(t)\left(\frac{2(m+1)\pi}{r} - t\right)^\gamma}{t\left(\frac{2(m+1)\pi}{r} - t\right)\sin \frac{rt}{2}} \right)^q dt \right]^{1/q} \\
= \left[\int_{\pi/((n+1))}^{\pi/r} \left(\frac{\omega(t)\left(\frac{2(m+1)\pi}{r} - t\right)^\gamma}{t\left(\frac{2(m+1)\pi}{r} - t\right)\sin \frac{rt}{2}} \right)^q dt \right]^{1/q} \\
\leq \left[\int_{\pi/((n+1))}^{\pi/r} \left(\frac{2\omega(t)\gamma}{t^2\sin \frac{rt}{2}} \right)^q dt \right]^{1/q} = O \left((n+1)^{\omega \left(\frac{\pi}{n+1} \right)} \left(\frac{\pi}{r(n+1)} \right)^{(\gamma-1)-1/q} \right) = O \left((n+1)^{1-\gamma+\beta+1/p} \omega \left(\frac{\pi}{n+1} \right) \right)
\]

for \(0 < \gamma < \beta + 1/p\), we have
\[
\left| I_2 \right| = O_x(1) A_{n,r} \sum_{m=0}^{\lfloor r/2 \rfloor - 1} \left(n+1 \right)^{\gamma} \left(n+1 \right)^{1-\gamma+\beta+1/p} \omega \left(\frac{\pi}{n+1} \right) \\
+ O_x(1) \sum_{m=0}^{\lfloor r/2 \rfloor - 1} \left(n+1 \right)^{-1/p} \left(n+1 \right)^{\beta+1/p} \omega \left(\frac{\pi}{n+1} \right)
\]

\[
= O_x \left((n+1)^{1+\beta+1/p} A_{n,r} \omega \left(\frac{\pi}{n+1} \right) \right) + O_x \left((n+1)^{\beta} \omega \left(\frac{\pi}{n+1} \right) \right).
\]
Finally, note that applying condition (2.7), we have
\[
\left[(n + 1)A_{n,r}\right]^{-1} = \left[\sum_{l=0}^{n} A_{n,r}\right]^{-1} \leq \left[\sum_{l=0}^{n} \sum_{k=l}^{\infty} \left|a_{n,k} - a_{n,k+r}\right|\right]^{-1} = \left[\sum_{l=0}^{n} \sum_{k=l}^{r+l-1} a_{n,k}\right]^{-1} = O(1),
\]
and our proof is complete.

4.2 Proof of Theorem 2

It is clear that for an odd r,
\[
\tilde{T}_{n,A} f(x) - f\left(x, \frac{\pi}{r(n+1)}\right) = \frac{1}{\pi} \int_{0}^{\pi/(r(n+1))} \psi_x(t) \sum_{k=0}^{\infty} a_{n,k} \tilde{D}_{k,1}(t) \, dt + \frac{1}{\pi/r} \int_{0}^{\pi/(r(n+1))} \psi_x(t) \sum_{k=0}^{\infty} a_{n,k} \tilde{D}_{k,1}^0(t) \, dt
\]
\[
+ \frac{1}{\pi} \sum_{m=1}^{[r/2]} \int_{2m\pi/r}^{2m\pi/r+r/2} \psi_x(t) \sum_{k=0}^{\infty} a_{n,k} \tilde{D}_{k,1}^0(t) \, dt + \frac{1}{\pi} \sum_{m=0}^{[r/2]-1} \int_{2m\pi/r}^{2(m+1)\pi/r} \psi_x(t) \sum_{k=0}^{\infty} a_{n,k} \tilde{D}_{k,1}^0(t) \, dt
\]
\[
= J_1(x) + J_2(x) + J_3(x) + J_4(x)
\]
and for an even r,
\[
\tilde{T}_{n,A} f(x) - f\left(x, \frac{\pi}{r(n+1)}\right) = -\frac{1}{\pi} \int_{0}^{\pi/(r(n+1))} \psi_x(t) \sum_{k=0}^{\infty} a_{n,k} \tilde{D}_{k,1}(t) \, dt + \frac{1}{\pi/r} \int_{0}^{\pi/(r(n+1))} \psi_x(t) \sum_{k=0}^{\infty} a_{n,k} \tilde{D}_{k,1}^0(t) \, dt
\]
\[
+ \frac{1}{\pi} \sum_{m=1}^{[r/2]-1} \int_{2m\pi/r}^{2m\pi/r+r/2} \psi_x(t) \sum_{k=0}^{\infty} a_{n,k} \tilde{D}_{k,1}^0(t) \, dt + \frac{1}{\pi} \sum_{m=0}^{[r/2]-1} \int_{2m\pi/r}^{2(m+1)\pi/r} \psi_x(t) \sum_{k=0}^{\infty} a_{n,k} \tilde{D}_{k,1}^0(t) \, dt
\]
\[
= J_1(x) + J_2(x) + J_3(x) + J_4(x).
\]

Then
\[
\left|\tilde{T}_{n,A} f(x) - f\left(x, \frac{\pi}{r(n+1)}\right)\right| \leq |J_1(x)| + |J_2(x)| + |J_3(x)| + |J_3'(x)| + |J_4(x)|,
\]
and by Lemma 2
\[
|J_1(x)| \leq \frac{1}{\pi} \int_{0}^{\pi/(r(n+1))} \left|\psi_x(t)\right| \left|\sum_{k=0}^{\infty} a_{n,k} \tilde{D}_{k,1}(t)\right| \, dt \leq \frac{1}{2\pi} \int_{0}^{\pi/(r(n+1))} \left|\psi_x(t)\right| \sum_{k=0}^{\infty} a_{n,k} \frac{1}{2} k(k+1) |t| \, dt.
\]
whence by (2.15) and (2.8)
\[|J_1(x)| \leq O((n + 1)^2) \int_0^{\pi/(r(n+1))} \left| \psi_x(t) \right| |t| \, dt \]
\[\leq O((n + 1)^2) \left\{ \int_0^{\pi/(r(n+1))} \left(\frac{t |\psi_x(t)|}{\overline{\omega}(t)} \right)^p \sin^{\beta p} \frac{rt}{2} \, dt \right\}^{1/p} \left\{ \int_0^{\pi/(r(n+1))} \left(\frac{\overline{\omega}(t)}{\sin^{\beta} \frac{rt}{2}} \right)^q \, dt \right\}^{1/q} \]
\[\leq O((n + 1)^2) O_x((n + 1)^{-1}) \overline{\omega}\left(\frac{\pi}{r(n+1)} \right) \left\{ \int_0^{\pi/(r(n+1))} \left(\frac{\pi}{rt} \right)^{\beta q} \, dt \right\}^{1/q} \]
\[= O_x(n + 1) \overline{\omega}\left(\frac{\pi}{r(n+1)} \right) \left(\frac{\pi}{r(n+1)} \right)^{1/q - \beta} = O_x((n + 1)^{\beta + 1/p}) \overline{\omega}\left(\frac{\pi}{n + 1} \right) \]
for $\beta < 1 - 1/p$. Next, by Lemmas 2 and 5
\[|J_2(x)| + |J_3(x)| + |J'_3(x)| \]
\[\leq \frac{1}{\pi} \left(\sum_{m=1}^{[r/2]} \int_{2m\pi/r}^{2m\pi/r + \pi/(r(n+1))} |\psi_x(t)| \left| \sum_{k=0}^{\infty} a_{n,k} \overline{D}_{k,1}(t) \right| \, dt \right) + \frac{1}{\pi} \int_{2m\pi/r}^{2m\pi/r + \pi/(r(n+1))} |\psi_x(t)| \left| \sum_{m=0}^{[r/2]} \int_{2m\pi/r + \pi/(r(n+1))}^{2m\pi/r + \pi/r} \frac{\psi_x(t)}{t} \, dt \right| \, dt \]
\[\leq \frac{1}{2} \sum_{m=1}^{[r/2]} \int_{2m\pi/r}^{2m\pi/r + \pi/(r(n+1))} \frac{|\psi_x(t)|}{t} \, dt + \frac{1}{\pi} \sum_{m=0}^{[r/2]} \int_{2m\pi/r + \pi/(r(n+1))}^{2m\pi/r + \pi/r} \frac{|\psi_x(t)|}{t} \, dt \]
Using the estimates $|\sin t/2| \geq |t|/\pi$ for $t \in [0, \pi]$ and $|\sin rt/2| \geq rt/\pi - 2m$ for $t \in [2m\pi/r, 2m\pi/r + \pi/r]$, where $m \in \{0, \ldots, [r/2]\}$, we obtain
\[|J_2(x)| + |J_3(x)| + |J'_3(x)| \]
\[\leq \frac{1}{2} \sum_{m=1}^{[r/2]} \int_{2m\pi/r}^{2m\pi/r + \pi/(r(n+1))} \frac{|\psi_x(t)|}{t} \, dt + A_{n,r} \sum_{m=0}^{[r/2]} \int_{2m\pi/r + \pi/(r(n+1))}^{2m\pi/r + \pi/r} \frac{|\psi_x(t)|}{t} \, dt \]
\[= \frac{1}{2} \sum_{m=1}^{[r/2]} \int_{2m\pi/r}^{2m\pi/r + \pi/(r(n+1))} \frac{|\psi_x(t)|}{t} \, dt + A_{n,r} \sum_{m=0}^{[r/2]} \int_{2m\pi/r + \pi/(r(n+1))}^{2m\pi/r + \pi/r} \frac{|\psi_x(t)|}{t} \, dt \]
\[= \frac{1}{2} \sum_{m=1}^{[r/2]} \int_{2m\pi/r}^{2m\pi/r + \pi/(r(n+1))} \left(\frac{|\psi_x(t)|}{\overline{\omega}(t)} \right)^p \sin^{\beta p} \frac{rt}{2} \, dt \left\{ \int_{2m\pi/r}^{2m\pi/r + \pi/(r(n+1))} \left(\frac{\overline{\omega}(t)}{t \sin^{\beta} \frac{rt}{2}} \right)^q \, dt \right\}^{1/q} \]
Lith. Math. J., 60(4):494–512, 2020.
Further, analogously as in the previous proof, by Lemma 1, (2.12), (2.9), and (2.10) with Lemma 7 we have

\[|J_2(x)| + |J_3(x)| + |J_3'(x)| \]

\[= O_x(1) \sum_{m=1}^{[r/2]} (n+1)^{-1/p} (n+1)^{\beta + 1/p} \phi \left(\frac{\pi}{n+1} \right) \]

\[+ O_x(1)A_{n,r} \sum_{m=0}^{[r/2]} (n+1)^\gamma \left[\int_{2m\pi/r + \pi/(r(n+1))}^{2m\pi/r + \pi/r} \left(\frac{\tilde{\omega}(t)(t - \frac{2m\pi}{r})}{t(\frac{rt}{\pi} - 2m)\sin \frac{rt}{2}} \right)^q dt \right]^{1/q} \]

\[= O_x(1)(n+1)^{\beta} \phi \left(\frac{\pi}{n+1} \right) + O_x(1)A_{n,r} \sum_{m=0}^{[r/2]} (n+1)^\gamma (n+1)^{1-\gamma + \beta + 1/p} \phi \left(\frac{\pi}{n+1} \right) \]

\[= O_x(n+1)^{\beta} \phi \left(\frac{\pi}{n+1} \right) + O_x(n+1)^{1+\beta + 1/p} A_{n,r} \phi \left(\frac{\pi}{n+1} \right). \]

Similarly, by Lemmas 2, 5 and the estimates \(|\sin(t/2)| > |t|/\pi\) for \(t \in [0, \pi]\) and \(|\sin(rt/2)| \geq 2(m+1) - rt/\pi\) for \(t \in [2(m+1)\pi/r - \pi/r, 2(m+1)\pi/r - \pi/(r(n+1))]\), where \(m \in \{0, \ldots, [r/2] - 1\}\), we get

\[|J_4(x)| \leq \frac{1}{\pi} \sum_{m=0}^{[r/2]-1} \left| \int_{2m\pi/r + \pi/r}^{2(m+1)\pi/r} \left| \psi_x(t) \right| \sum_{k=0}^{\infty} a_{n,k} \tilde{D}_{k,1}^2(t) \right| dt \]

\[= \frac{1}{\pi} \sum_{m=0}^{[r/2]-1} \left(\int_{2m\pi/r + \pi/r}^{2(m+1)\pi/r} + \int_{2(m+1)\pi/r - \pi/(r(n+1))}^{2(m+1)\pi/r} \right) \left| \psi_x(t) \right| \sum_{k=0}^{\infty} a_{n,k} \tilde{D}_{k,1}^2(t) \left| dt \right| \]

\[\leq \frac{1}{2} \sum_{m=0}^{[r/2]-1} \int_{2m\pi/r + \pi/r}^{2(m+1)\pi/r} \left| \psi_x(t) \right| \left| \frac{t}{\pi} \right| \left| \sin \frac{rt}{2} \right| dt + \frac{1}{\pi} A_{n,r} \sum_{m=0}^{[r/2]-1} \left(\int_{2m\pi/r + \pi/r}^{2(m+1)\pi/r - \pi/(r(n+1))} \left| \psi_x(t) \right| \left| \frac{t}{\pi} \right| \left| \sin \frac{rt}{2} \right| dt \right) \]

\[\leq \frac{1}{2} \sum_{m=0}^{[r/2]-1} \int_{2(m+1)\pi/r - \pi/(r(n+1))}^{2(m+1)\pi/r} \left| \psi_x(t) \right| \left| \frac{t}{\pi} \right| \left| \sin \frac{rt}{2} \right| dt + A_{n,r} \sum_{m=0}^{[r/2]-1} \left(\int_{2(m+1)\pi/r - \pi/(r(n+1))}^{2(m+1)\pi/r - \pi/r} \left| \psi_x(t) \right| \left| \frac{t}{\pi} \right| \left| \sin \frac{rt}{2} \right| dt \right) \]

\[\leq \frac{1}{2} \sum_{m=0}^{[r/2]-1} \left[\int_{2(m+1)\pi/r - \pi/(r(n+1))}^{2(m+1)\pi/r} \left(\left| \psi_x(t) \right| \left| \frac{t}{\pi} \right| \left| \sin \frac{rt}{2} \right| \right)^p \right]^{1/p} \]
Analogously, as in the proofs of Theorems 1 and 2, we consider an odd
4.3 Proof of Theorem 3
and for an even

\[
T_{n,Af}(x) - \bar{f}(x)
= \frac{1}{\pi} \sum_{m=0}^{[r/2]-1} \int_{2m\pi/r}^{2m\pi/r+\pi/r} \psi_x(t) \sum_{k=0}^{\infty} a_{n,k} \tilde{D}_{k,1}^o(t) \, dt
+ \frac{1}{\pi} \sum_{m=0}^{[r/2]-1} \int_{2m\pi/r+\pi/r}^{2(m+1)\pi/r} \psi_x(t) \sum_{k=0}^{\infty} a_{n,k} \tilde{D}_{k,1}^o(t) \, dt
= J_3''(x) + J_4(x).
\]
Hence

\[| \tilde{T}_{n,A} f(x) - \tilde{f}(x) | \leq | J''_3(x) | + | J'''_3(x) | + | J_4(x) |. \]

From the previous proof we have

\[| J_4(x) | = O_x \left((n + 1)^{\frac{\beta}{n+1}} \left(\frac{\pi}{n+1} \right) \right) + O_x \left((n + 1)^{1+\frac{\beta+1/p}{n+1}} A_{n,r} \left(\frac{\pi}{n+1} \right) \right) \]

for \(0 < \gamma < \beta + 1/p\). Further, we can observe that the quantities \(J''_3(x) \) and \(J'''_3(x) \) are similar to the quantities \(| J'_3(x) | \) and \(| J_3'(x) | \) from the previous proof; the differences are in the ranges of \(m \) only. Therefore we immediately obtain the same estimates of these terms. Thus our proof is complete.

Conclusion. In our theorems, we considered a very general class of matrices defining the means \(T_{n,A} f \) in particular cases that appear in the papers cited. We constructed the measures of such approximations by quantities based on \(r \)-differences of the entries of \(A \). The degrees of approximations obtained in some cases (see Remark 1) are better than those obtained in the earlier results.

References

1. W. Łenski and B. Szal, Approximation of functions belonging to the class \(L^p(\omega) \) by linear operators, Acta Comment. Univ. Tartu. Math., 13:11–24, 2009.

2. Xh.Z. Krasniqi, Slight extensions of some theorems on the rate of pointwise approximation of functions from some subclasses of \(L^p \), Acta Comment. Univ. Tartu. Math., 17:89–101, 2013.

3. L.N. Mishra, On Existence and Behavior of Solutions to Some Nonlinear Integral Equations with Applications, PhD thesis, National Institute of Technology Silchar, India, 2017.

4. L.N. Mishra, V.N. Mishra, K. Khatri, and Deepmala, On the trigonometric approximation of signals belonging to generalized weighted Lipschitz \(W(L', \xi(t)) \) \((r \geq 1)\)-class by matrix \((C^1\cdot N_p)\) operator of conjugate series of its Fourier series, Appl. Math. Comput., 237:252–263, 2014.

5. V.N. Mishra, Some Problems on Approximations of Functions in Banach Spaces, PhD thesis, Indian Institute of Technology Roorkee, India, 2007.

6. V.N. Mishra, K. Khatri, L.N. Mishra, and Deepmala, Trigonometric approximation of periodic signals belonging to generalized weighted Lipschitz \(W(L', \xi(t)) \) \((r \geq 1)\)-class by Nörlund–Euler \((N,p_n)(E,q)\) operator of conjugate series of its Fourier series, J. Class. Anal., 5(2):91–105, 2014, available from: https://doi.org/10.7153/jca-05-08.

7. V.N. Mishra and L.N. Mishra, Trigonometric approximation of signals (functions) in \(L^p \) \((p \geq 1)\)-norm, Int. J. Contemp. Math. Sci., 7(19):909–918, 2012.

8. B. Szal, A new class of numerical sequences and its applications to uniform convergence of sine series, Math. Nachr., 284(14–15):1985–2002, 2011.

9. B. Szal, On \(L\)-convergence of trigonometric series, J. Math. Anal. Appl., 373:449–463, 2011.

10. A. Zygmund, Trigonometric Series, Cambridge Univ. Press, Cambridge, 2002.