Targeting interleukin-1 for reversing fat browning and muscle wasting in infantile nephropathic cystinosis

Wai W. Cheung1†, Sheng Hao2†, Ronghao Zheng3, Zhen Wang4, Alex Gonzalez1, Ping Zhou5, Hal M. Hoffman6 & Robert H. Mak*∗

1Division of Pediatric Nephrology, Department of Pediatrics, Rady Children’s Hospital San Diego, University of California, San Diego, La Jolla, CA, USA; 2Department of Pediatrics, Rady Children’s Hospital San Diego, University of California, San Diego, La Jolla, CA, USA; 3Department of Pediatrics, Rady Children’s Hospital San Diego, University of California, San Diego, La Jolla, CA, USA; 4Department of Pediatrics, Rady Children’s Hospital San Diego, University of California, San Diego, La Jolla, CA, USA; 5Department of Pediatrics, Rady Children’s Hospital San Diego, University of California, San Diego, La Jolla, CA, USA; 6Department of Pediatrics, Rady Children’s Hospital San Diego, University of California, San Diego, La Jolla, CA, USA

Abstract

Background Ctns−/− mice, a mouse model of infantile nephropathic cystinosis, exhibit hypermetabolism with adipose tissue browning and profound muscle wasting. Inflammatory cytokines such as interleukin (IL)-1 trigger inflammatory cascades and may be an important cause for cachexia. We employed genetic and pharmacological approaches to investigate the effects of IL-1 blockade in Ctns−/− mice.

Methods We generated Ctns−/− Il1β−/− mice, and we treated Ctns−/− and wild-type control mice with IL-1 receptor antagonist, anakinra (2.5 mg/kg/day, IP) or saline as vehicle for 6 weeks. In each of these mouse lines, we characterized the cachexia phenotype consisting of anorexia, loss of weight, fat mass and lean mass, elevation of metabolic rate, and reduced in vivo muscle function (rotarod activity and grip strength). We quantitated energy homeostasis by measuring the protein content of uncoupling proteins (UCPs) and adenosine triphosphate in adipose tissue and skeletal muscle. We measured skeletal muscle fiber area and intramuscular fatty infiltration. We also studied expression of molecules regulating adipose tissue browning and muscle mass metabolism. Finally, we evaluated the impact of anakinra on the muscle transcriptome in Ctns−/− mice.

Results Skeletal muscle expression of IL-1β was significantly elevated in Ctns−/− mice relative to wild-type control mice. Cachexia was completely normalized in Ctns−/− Il1β−/− mice relative to Ctns−/− mice. We showed that anakinra attenuated the cachexia phenotype in Ctns−/− mice. Anakinra normalized UCPs and adenosine triphosphate content of adipose tissue and muscle in Ctns−/− mice. Anakinra attenuated aberrant expression of beige adipose cell biomarkers (UCP-1, CD137, Tmem26, and Tbx1) and molecules implicated in adipocyte tissue browning (Cox2/Pgf2α, Tlr2, Myd88, and Traf6) in inguinal white adipose tissue in Ctns−/− mice. Moreover, anakinra normalized gastrocnemius weight and fiber size and attenuated muscle fat infiltration in Ctns−/− mice. This was accompanied by correction of the increased muscle wasting signalling pathways (increased protein content of ERK1/2, JNK, p38 MAPK, and nuclear factor-κB p65) and mRNA expression of Atrogin-1 and Myostatin and the decreased myogenesis process (decreased mRNA expression of MyoD and Myogenin) in the gastrocnemius muscle of Ctns−/− mice. Previously, we identified the top 20 differentially expressed skeletal muscle genes in Ctns−/− mice by RNAseq. Aberrant expression of these 20 genes have been implicated in muscle wasting, increased energy expenditure, and lipolysis. We showed that anakinra attenuated 12 of those top 20 differentially expressed muscle genes in Ctns−/− mice.

Conclusions Anakinra may provide a targeted novel therapy for patients with infantile nephropathic cystinosis.

Keywords Infantile nephropathic cystinosis; IL-1; Cachexia; Adipose tissue browning; Muscle wasting
Introduction

Cystinosis is a genetic disorder characterized by the accumulation of cystine in different tissues and organs. Infantile nephropathic cystinosis (INc) is the most common and severe form of cystinosis.\(^1\) INC patients exhibit signs and symptoms of the renal Fanconi syndrome and chronic kidney disease (CKD) in early childhood.\(^2\) Metabolic abnormalities such as cachexia are common complications in patients with INC, which are associated with poor quality of life and mortality, and for which there is no current therapy increased expression of inflammatory cytokines, including interleukin (IL)-1\(^\beta\), has been implicated in the aetiology of cachexia and muscle wasting associated with different disease processes. Consistent with this finding, patients with cystinosis had higher concentrations of circulating IL-1\(^\beta\) compared with controls.\(^3\) Peripheral blood mononuclear cells from patients with cystinosis revealed a significant increase in IL-1\(^\beta\) transcript levels compared with controls.\(^3\) Recent evidence in preclinical models suggested that blockade of IL-1 signalling may be a logical therapeutic target for chronic disease-associated muscle wasting because IL-1\(^\beta\) activates nuclear factor-\(\kappa\)B (NF-\(\kappa\)B) signalling and induces expression of muscle catabolic gene IL-6 and atrogin-1 in C2C12 myocytes.\(^4,5\) Anakinra is an IL-1 receptor antagonist that blocks both IL-1\(^\alpha\) and IL-1\(^\beta\).\(^6\) Duchenne muscular dystrophy is an X-linked muscle disease characterized by muscle inflammation that is associated with increased circulating serum levels of IL-1\(^\beta\). Subcutaneous administration of anakinra normalized muscle function in a mouse model of Duchenne muscular dystrophy.\(^7\) Similarly, serum IL-1\(^\beta\) is elevated in haemodialysis patients, and a 4 week treatment with anakinra was shown to be safe in these patients while significantly reducing markers of systemic inflammation such as C-reactive protein (CRP) and IL-6.\(^8\) In this study, we utilized Ctns\(^{−/−}\) mice as an established model of INC in which we have previously shown hypermetabolism with adipose tissue browning and profound muscle wasting by 12 months of age.\(^9\) We explored the role of inflammatory cytokines in Ctns\(^{−/−}\) mice and evaluated the efficacy of IL-1 targeted therapy on adipose tissue browning and muscle wasting. Anakinra was FDA approved for the treatment of rheumatoid arthritis in 2001 and is safe and an effective therapeutic option in a variety of diseases including diseases involving muscle. It may be repurposed as novel therapy for cachexia in INC.

Methods

Study design

All animal work was conducted in compliance and approved by the Institutional Animal Care and Use Committee at the University of California, San Diego. Wild-type (WT), Il6\(^{−/−}\) and Il1\(^\beta\)\(^{−/−}\), Ctns\(^{−/−}\), Ctns\(^{−/−}\) Il6\(^{−/−}\), and Ctns\(^{−/−}\) Il1\(^\beta\)\(^{−/−}\) mice were on the same c57BL/6 genetic background. Ctns\(^{−/−}\) mice were kindly provided by Professor Corinne Antignac, and Ctns\(^{−/−}\) Il6\(^{−/−}\) and Ctns\(^{−/−}\) Il1\(^\beta\)\(^{−/−}\) mice were generated by crossing Ctns\(^{−/−}\) mice with Il6\(^{−/−}\) and Il1\(^\beta\)\(^{−/−}\) mice, respectively. Twelve-month-old male mice were used for all of the following five studies. Study 1: We evaluated the gastrocnemius muscle IL-1\(^\beta\) and IL-6 mRNA and protein content in Ctns\(^{−/−}\) mice and WT mice. Results were presented in Figure 1A–1D. Study 2: We evaluated the effects of genetic deletion of Il1\(^\beta\) and Il6 in Ctns\(^{−/−}\) mice. We compared ad libitum food intake and weight change in WT, Ctns\(^{−/−}\), Ctns\(^{−/−}\) Il6\(^{−/−}\), and Ctns\(^{−/−}\) Il1\(^\beta\)\(^{−/−}\) mice. The study period was 6 weeks. Results were shown in Figure 1E and 1F. Study 3: We evaluated the beneficial effects of genetic deletion of Il1\(^\beta\) and Il6 in Ctns\(^{−/−}\) mice beyond nutritional effects by employing a pair-feeding strategy. The study period was 6 weeks. Ctns\(^{−/−}\) mice were fed ad libitum, and then WT, Ctns\(^{−/−}\) Il6\(^{−/−}\), and Ctns\(^{−/−}\) Il1\(^\beta\)\(^{−/−}\) mice were fed the same amount of rodent diet based on the recorded food intake of Ctns\(^{−/−}\) mice. Results were shown in Figure 1G–1N. Study 4: We evaluated the effects of anakinra in Ctns\(^{−/−}\) mice. WT and Ctns\(^{−/−}\) mice were given anakinra (2.5 mg/kg/day, IP) or vehicle (normal saline), respectively. The study period was 6 weeks. All mice were fed ad libitum. We compared food intake and weight change in all groups of mice. Results were shown in Figure 2A and 2B. Study 5: We evaluated the metabolic effects of anakinra in Ctns\(^{−/−}\) mice beyond nutritional stimulation by employing a pair-feeding strategy. WT and Ctns\(^{−/−}\) mice were given anakinra (2.5 mg/kg/day, IP) or vehicle (normal saline), respectively. The study period was 6 weeks. Vehicle-treated Ctns\(^{−/−}\) mice were fed ad libitum while all other groups of mice were fed the same amount of rodent diet based on the recorded food intake of vehicle-treated Ctns\(^{−/−}\) mice. Results were shown in Figures 2E–2G and 3–6 as well as Supporting Information, Figures S1 and S2.

Serum and blood chemistry

Blood urea nitrogen and serum concentration of bicarbonate was measured (Table S1). Serum creatinine was analysed by liquid chromatography-tandem mass spectrometry method.\(^10\)

Body composition, metabolic rate, and in vivo muscle function

Body composition (for lean and fat content) of mice was measured by quantitative magnetic resonance analysis.
Increased muscle mRNA and protein content of IL-6 and IL-1β expression in Ctns−/− mice and genetic depletion of IL-1β provides a better rescue of cachexia in Ctns−/− mice compared with IL-6 deficiency. Results of three different experiments were shown. For the first study, we compared gene expression and protein content of IL-6 and IL-1β in gastrocnemius muscle in 12-month-old Ctns−/− and WT mice. Data were expressed as mean ± SEM. Results of Ctns−/− mice were compared with WT mice (A–D). For the second study, we compared the metabolic effects of genetic deletion of IL-6 and IL-1β in Ctns−/− mice. Four groups of mice were included, that is, Ctns−/−, Ctns−/− Il6−/−, Ctns−/− Il1b−/−, and WT mice. All mice were 12 months old and were fed ad libitum. The study period was 6 weeks. Food intake and weight gain in mice were compared (E and F). For the third study, we investigated the metabolic effects of genetic deletion of IL-6 and IL-1β in Ctns−/− mice beyond nutritional stimulation by employing a pair-feeding approach. Specifically, Ctns−/− mice were fed ad libitum for 6 weeks while Ctns−/− Il6−/−, Ctns−/− Il1b−/−, and WT mice were pair-fed to that of Ctns−/− mice (G). Weight gain, fat and lean content, 24 h oxygen consumption, left gastrocnemius wet weight, and in vivo muscle function (rotarod and grip strength) were measured in mice (H–M). Results of second and third studies were expressed as mean ± SEM. Results of Ctns−/−, Ctns−/− Il6−/−, and Ctns−/− Il1b−/− were compared with WT mice significance represented by *. In addition, results of Ctns−/− Il6−/− and Ctns−/− Il1b−/− mice were also compared with Ctns−/− mice, respectively (E–M), and statistical significance (P value) is shown above bar.
Figure 2 Anakinra attenuates cachexia in Ctns⁻/⁻ mice. Twelve-month-old WT and Ctns⁻/⁻ mice were treated with anakinra (2.5 mg/kg/day, IP) or normal saline as a vehicle control for 6 weeks. All mice were fed ad libitum for 6 weeks, and food intake and weight were recorded (A and B). In another experiment, to assess the beneficial effects of anakinra beyond its nutritional effects, we employed a pair-feeding strategy. Vehicle-treated Ctns⁻/⁻ mice were given an ad libitum amount of food whereas other groups of mice were given an equivalent amount of food (C). Weight gain, fat and lean content, 24 h oxygen consumption, left gastrocnemius wet weight, and in vivo muscle function (rotarod and grip strength) were measured in the mice (D–J). Data are expressed as mean ± SEM. Results of vehicle-treated Ctns⁻/⁻ mice were compared with vehicle-treated WT mice while results of anakinra-treated Ctns⁻/⁻ mice were compared with that of anakinra-treated WT mice (#P < 0.05). In addition, results of anakinra-treated Ctns⁻/⁻ mice were compared with vehicle-treated Ctns⁻/⁻ mice, and specific P value is shown above bar.
Figure 3 Anakinra ameliorates energy homeostasis in adipose tissue and skeletal in Ctns⁻/⁻ mice. UCPs and ATP content in adipose tissue (inguinal white adipose tissue and brown adipose tissue) and gastrocnemius muscle were measured. Results are analysed and expressed as in Figure 2.
Figure 4 Anakinra attenuates adipose tissue browning in Ctns−/− mice. Gene expression of beige adipocyte markers (CD137, Tmem26, and Tbx-1) in inguinal white adipose tissue was measured. Gene expression of Cox2 signaling pathway (Cox2 and Pgf2α) and toll-like receptor pathway (Tlr2 and MyD88) in inguinal white adipose tissue was also measured. Gene expression was measured by qPCR. Final results were expressed in arbitrary units, with one unit being the mean level in vehicle-treated WT mice. Results are analysed and expressed as in Figure 2.
Figure 5. Anakinra normalizes muscle fiber size and attenuates muscle fat infiltration in Ctns⁻/⁻ mice. Representative photomicrographs of gastrocnemius with H&E staining (A–D). Average gastrocnemius cross-sectional area was measured (E). Visualization of quantification of fatty infiltration by Oil Red O analysis in gastrocnemius muscle (F–J). Final results were expressed in arbitrary units, with one unit being the mean staining intensity in vehicle-treated WT mice. Difference among various groups of mice was analysed as in Figure 2.
Figure 6 Anakinra attenuates signalling pathways implicated in muscle wasting in Ctns^{−/−} mice. Gastrocnemius muscle relative phospho-Akt (pS473)/total Akt ratio, relative phospho-ERK 1/2 (Thr202/Tyr204)/total ERK 1/2 ratio, relative phospho-JNK (Thr183/Tyr185)/total JNK ratio, relative phospho-p38 MAPK (Thr180/Tyr182)/total p38 MAPK ratio as well as relative phosphorylated NF-κB p65 (Ser536)/total p65 ratio in mice. In addition, gastrocnemius muscle expression of interested genes was measured by qPCR. Final results were expressed in arbitrary units, with one unit being the mean level in vehicle-treated WT mice. Results are analysed and expressed as in Figure 2.
We chose to study Ctns−/− mice at 12 months of age based on our previous data demonstrating a significant cachexia phenotype. As expected, all of the mice were uraemic and had elevated creatine, but normal bicarbonate levels serum (Table S3). In order to investigate the role of inflammatory
cytokines in cachexia and muscle wasting, we measured gastrocnemius muscle mRNA and protein content of IL-6 and IL-1β in 12-month-old Ctns/−/− mice and age-matched WT controls. Gastrocnemius mRNA and protein content of both IL-6 and IL-1β were significantly elevated in Ctns/−/− mice relative to WT mice (Figure 1A–1D).

Genetic deletion of IL1β normalizes cachexia in Ctns/−/− mice

We then employed a genetic approach to determine whether IL6 and IL1β deficiency would affect the cachexia phenotype in Ctns/−/− mice. Twelve-month-old Ctns/−/−, Ctns/−/− Il1β/−/−, and Ctns/−/− Il6/−/− mice were all uraemic and had elevated creatinine levels but normal bicarbonate levels (Table S4). All mice were fed *ad libitum* for 6 weeks, and average daily food intake and final weight gain of the mice were recorded. We showed that genetic deletion of IL1β completely corrected anorexia and normalized weight gain in Ctns/−/− mice whereas deletion of IL6 only partially rescued the phenotype in Ctns/−/− mice (Figure 1E and 1F). Furthermore, to investigate the potential metabolic effects of genetic deficiency of IL1β and IL6 beyond its nutritional effects, we employed a pair-feeding strategy. Ctns/−/− mice were fed *ad libitum*, and then all other groups of mice were fed the same amount of rodent diet based on the recorded food intake of the Ctns/−/− group (Figure 1G). Despite receiving the same amount of total calorie intake as other groups of mice, cardinal features of cachexia phenotype such as decreased weight gain, decreased fat mass content and hypermetabolism (manifested as elevated oxygen consumption), decreased lean mass content and gastrocnemius weight, and reduced muscle function (decreased rotarod and grip strength) were still prominent in Ctns/−/− mice (Figure 1H–1N). Importantly, parameters of cachexia phenotype were normalized relative to WT mice or significantly improved in Ctns/−/− Il1β/−/− mice compared with Ctns/−/− mice. However, Ctns/−/− Il6/−/− mice had only minimal non-significant improvement relative to Ctns/−/− mice.

Anakinra attenuates cachexia and muscle wasting in Ctns/−/− mice

In order to better model a real-world approach in patients, we used a pharmacological approach to test the effects of IL-1β blockade in pre-established INC-associated cachexia and muscle wasting. Anakinra, an IL-1 receptor antagonist that blocks both IL-1α and IL-1β function, was used to treat 12-month-old Ctns/−/− mice and WT controls for 6 weeks compared with vehicle. All mice were fed *ad libitum*. Food intake and weight gain were normalized in anakinra-treated Ctns/−/− mice (Figure 2A and 2B). We also investigated the beneficial effects of anakinra in Ctns/−/− mice beyond appetite stimulation and its consequent body weight gain through the utilization of a pair-feeding approach. Daily *ad libitum* food intake for Ctns/−/− mice treated with vehicle was recorded. Following that, anakinra-treated Ctns/−/− mice and WT mice treated with anakinra or vehicle were food restricted such that the mice ate an equivalent amount of food as vehicle-treated Ctns/−/− mice (Figure 2C). Serum and blood chemistry of mice were measured (Table S5). Anakinra normalized weight gain, and metabolic rate and significantly improved or normalized fat and lean mass content, gastrocnemius weight, and muscle function (grip strength and rotarod activity) in Ctns/−/− mice (Figure 2D–2I).

Anakinra normalizes energy homeostasis in adipose tissue and skeletal muscle in Ctns/−/− mice

Adipose tissue (inguinal WAT and intercapsular brown adipose tissue) and gastrocnemius protein content of UCPs was significantly increased in Ctns/−/− mice compared with WT mice (Figure 3A, 3C, and 3E). In contrast, ATP content in adipose tissue and skeletal muscle was significantly decreased in Ctns/−/− mice compared with WT mice (Figure 3B, 3D, and 3F). Anakinra normalized UCPs and ATP content of adipose tissue and muscle in Ctns/−/− mice.

Anakinra ameliorates browning of adipose tissue in Ctns/−/− mice

Beige adipose cell surface markers (CD137, Tmem26, and Tbx1) mRNA levels were elevated in inguinal WAT in Ctns/−/− mice relative to WT mice (Figure 4A–4C). This was accompanied by an increased UCP-1 protein content in inguinal WAT shown in Figure 3A, which is a biomarker for beige adipocytes, and usually undetectable in WAT. Anakinra normalized the elevated protein content of inguinal WAT UCP-1 as well as increased mRNA expression of CD137, Tmem, and Tbx1 in Ctns/−/− mice (Figures 3A and 4A–4C). Anakinra also ameliorated expression of important signature molecules implicated in WAT. Activation of the Cox2/Pgf2α signalling pathway and chronic inflammation stimulate biogenesis of WAT browning. Significantly increased inguinal WAT mRNA expression of Cox2 and Pgf2α was found in Ctns/−/− mice compared with WT mice (Figure 4D and 4E). Moreover, inguinal WAT levels of toll-like receptor 2 (Tlr2) as well as myeloid differentiation primary response 88 (MyD88) and tumour necrosis factor receptor-associated factor 6 (Traf6) were up-regulated in Ctns/−/− mice compared with WT mice (Figure 4F–4H), and anakinra significantly reduced inguinal WAT Gene expression of Cox2/Pgf2α as well as genes in the toll-like receptor pathway in Ctns/−/− mice.
Anakinra improves muscle fiber size and attenuates muscle fat infiltration in Ctns−/− mice

We evaluated the effect of anakinra on skeletal muscle morphology in Ctns−/− mice. Representative results of muscle sections are illustrated (Figure 5A–5D). Anakinra significantly improved average cross-sectional area of gastrocnemius fibers in Ctns−/− mice (Figure 5E). We also evaluated fat infiltration of the gastrocnemius muscle in Ctns−/− mice. Representative results of Oil Red O staining of muscle section are shown (Figure 5F–5I). We quantified intensity of muscle fat infiltration in mice and observed that anakinra attenuated muscle fat infiltration in Ctns−/− mice (Figure 5I).

Anakinra attenuates signalling pathways implicated in muscle wasting in Ctns−/− mice

Muscle relative phospho-ERK 1/2 (Thr202/Tyr204), phospho-JNK (Thr183/Tyr185), and phospho-p38 MAPK protein content (Thr180/Tyr182) were significantly increased in Ctns−/− mice compared with WT mice (Figure 6A–6C). In addition, the ratio of muscle phospho-NF-κB p65 (phosphorylated SS36) relative to total NF-κB p65 protein content was elevated in Ctns−/− mice relative to WT mice (Figure 6D). Importantly, anakinra attenuated or normalized phosphorylation of muscle ERK 1/2, JNK, p38 MAPK, and NF-κB p65 protein content in Ctns−/− mice. Administration of anakinra improved muscle regeneration and myogenesis by decreasing mRNA expression of negative regulators of skeletal muscle mass (Atrogin-1 and Myostatin) (Figure 6E and 6F) as well as increasing muscle mRNA expression of pro-myogenic factors (MyoD and Myogenin) in Ctns−/− mice (Figure 6G and 6H).

Molecular mechanism by RNAseq analysis

Recently, we profiled differential expression of gastrocnemius mRNA between 12-month-old Ctns−/− mice and WT mice using RNAseq analysis. Ingenuity Pathway Analysis enrichment tests identified the top 20 differentially expressed muscle genes in Ctns−/− mice versus WT mice. The top 15 up-regulated genes were Ankdr2, Csrp3, Cyfrp2, Fhl1, Ly6a, Mup1, Myl2, Myl3, Nlrc3, Sell, Sln, Spp1, Tnnc1, Tnni1, and Tpm3 whereas the top 5 down-regulated genes were Atf3, Cidea, Fos, Sncg, and Tbc1d1 in Ctns−/− mice relative to WT mice. We performed qPCR analysis for those top 20 differentially expressed muscle genes in the present study. Importantly, anakinra significantly reduced (Ankdr2, Csrp3, Cyfrp2, Fhl1, Ly6a, Nlrc3, Tnnc1, and Tpm3) and significantly increased (Atf3, Cidea, Sncg, and Tbc1d1) muscle gene expression in Ctns−/− mice relative to WT mice (Figures S1 and S2). Functional significance of each of these 12 genes is listed (Table 1). Non-significant changes were observed in Mup1, Myl2, Myl3, Sell, Sln, Spp1, Tnni1, and Fos.

Discussion

Previously, we described cachexia characterized by adipose tissue browning and muscle wasting in Ctns−/− mice, an established mouse model of INC, but the aetiology was

Table 1 Anakinra normalized or attenuated expression of important muscle genes that have been implicated in muscle wasting in Ctns−/− mice

Up-regulated DEG	Functional significance and reference
Ankdr2	Implicated in mechanical stretch of skeletal muscle14,15
Csrp3	Associated with skeletal muscle dystrophy16
Cyfrp2	Associated with muscle wasting17
Fhl1	Activates myostatin signalling and promotes atrophy in skeletal muscle18
Ly6a	Associated with remodelling of the extracellular matrix during skeletal muscle regeneration19
Nlrc3	Implicated in skeletal muscle wasting by inhibiting cell proliferation and promoting cell apoptosis20
Tnnc1	Regulates striated muscle contraction11
Tpm3	Implicated in cardiomyopathy pathogenesis and age-related skeletal muscle wasting21
	Promotes slow myofibre hypotrophy and associated with generalized muscle weakness22

Down-regulated DEG	Functional significance
Atf3	Impairs motor neuron survival and muscle innervation23
Cidea	Increases metabolic rates, lipolysis in brown adipose tissue, and higher core temperature24
Sncg	Increases energy expenditure, particularly in brown and white adipose tissues25
Tbc1d1	Associated with cancer cachexia through the TGF-β signalling pathway25
	Associated with follistatin-induced muscle hypertrophy26

Previously, we studied differential expression of gastrocnemius mRNA between Ctns−/− mice and WT mice using RNAseq analysis.1 We focus on pathways related to energy metabolism, skeletal and muscular system development and function, nervous system development and function, and organismal injury and abnormalities. In the present study, we performed qPCR analysis for top 20 differentially expressed muscle genes determined by our previous studies. Importantly, anakinra normalized (Ankdr2, Csrp3, Ly6a, Nlrc3, Tnnc1 and Tpm3, Atf3, Cidea, Sncg, and Tbc1d1) muscle gene expression in Ctns−/− mice relative to WT mice. Functional significance of each of these differentially expressed muscle genes is listed. DEG, differential expressed genes.
not clear. Increased expression of inflammatory cytokines such as IL-6 and IL-1 have been implicated in the aetiology of cachexia and muscle. Our studies using specific cytokine-deficient mice and IL-1 targeted therapy suggest that IL-1 is a critical cytokine in INC-associated cachexia. The novel findings of this study are (i) anakinra corrects anorexia, normalizes weight gain, and attenuates hypermetabolism. (ii) Anakinra attenuates the expression of markers of adipose tissue browning as well as perturbed energy expenditure and thermogenesis. (iii) Anakinra attenuates muscle wasting, improved muscle function, and corrected perturbations of aberrant expression of molecules implicated in muscle wasting. Together, our results suggest that anakinra may be an effective targeted treatment approach for cachexia in patients with INC.

Interleukin-1β suppresses food intake, activates energy metabolism, and reduces weight gain in experimental animals. IL-1β signals through appetite-regulating neuropeptides, such as leptin resulting in appetite suppression. We have demonstrated that elevated circulating level of leptin through the activation of melanocortin receptor 4 induces CKD-associated cachexia. IL-1 and IL-6 are produced not only by circulating immune cells but also by various cells in tissues such as muscle and adipose tissue. For this present study, we showed that skeletal muscle IL-1β and IL-6 mRNA and protein level was significantly increased in Ctns−/− mice, and Ctns−/− I1β−/− mice had normalized parameters of cachexia phenotype relative to control mice (Figure 1). Furthermore, we showed that anakinra improved anorexia and normalized weight gain in Ctns−/− mice relative to control mice (Figure 2). Our results further highlight the beneficial effects of anakinra beyond food stimulation and accompanied weight gain. In pair-fed studies in which anakinra-treated Ctns−/− mice and anakinra-treated WT mice were fed the same amount of food, cachexia was attenuated in anakinra-treated Ctns−/− mice relative to control mice (Figure 2).

The basal metabolic rate accounts for up to 80% of the daily calorie expenditure by individual. Skeletal muscle metabolism is a major determinant of resting energy expenditure. IL-1β increases basal metabolic rate (as represented by an increase in resting oxygen consumption) in a dose-dependent manner. In our study, anakinra normalized the increased 24 h metabolic rate in Ctns−/− mice (Figure 2F). Adipose tissue UCP-1 expression is essential for adaptive adrenergic non-shivering thermogenesis, and muscle UCP-3 level controls body metabolism. The energy generated when dissipating the proton gradient via up-regulation of UCPs is not used for cellular ATP production or other biochemical processes but instead to produce heat. We showed that anakinra normalized muscle and adipose tissue UCPs and ATP content in Ctns−/− mice (Figure 3). Blockade of IL-1 receptor signalling may also mitigate the metabolic dysfunction through leptin signalling. Infusion of leptin increased UCPs expression in skeletal muscle and adipose tissue.

Perhaps our most novel finding is that anakinra reduced adipose tissue browning in Ctns−/− mice. New evidence suggests a maladaptive role of adipose tissue browning in the context of cachexia. Activation of adipose tissue browning is associated with profound energy expenditure and weight loss in cachectic patients. Browning of adipose tissue increases energy expenditure and takes place before skeletal muscle atrophy in murine models of cancer and CKD-associated muscle wasting. We previously demonstrated adipose tissue browning in Ctns−/− mice (as evidenced by the detection of inguinal WAT UCP-1 protein and increased expression of beige adipose cell markers CD137, Tmem, and Tbx1). Cox2 is a downstream effector of β-adrenergic signalling and induces biogenesis of beige cells in WAT depots. We showed that anakinra normalized expression of inguinal WAT Cox2, Pgf2α, and important inflammatory molecules (Tlr2, MyD88, and Trap6) in Ctns−/− mice and normalized key inflammatory molecules (Tlr2 and MyD88) involved in adipose tissue browning in Ctns−/− mice (Figure 4). Recent data suggest that IL1β signalling mediates adipocyte browning via regulating mitochondrial oxidative responses in both cultured human and animal adipocytes.

We studied the impact of anakinra on muscle wasting in Ctns−/− mice. Anakinra normalized lean mass content, gastrocnemius wet weight, and muscle function in Ctns−/− mice relative to WT mice (Figure 2G–2J). Furthermore, anakinra normalized average gastrocnemius cross-sectional area as well as muscle fat infiltration of gastrocnemius muscle in Ctns−/− mice (Figure 5). Muscle fat infiltration is a significant predictor of both muscle function and mobility function across a wide variety of co-morbid conditions such as diabetes, spinal cord injury, and kidney disease. Muscle adipose tissue may release pro-inflammatory cytokines within the muscle and impair the local muscle environment, impair blood flow, or increase the rate of lipolysis within skeletal muscle resulting in an increased concentration of glucose within the skeletal muscle itself followed by insulin resistance.

We investigated the impact of anakinra on signalling molecules that modulate muscle mass regulation in Ctns−/− mice. Systemic inflammation decreases muscle regeneration and increases muscle catabolism that eventually leads to muscle wasting in CKD. Inhibition of IL-1 reduced systemic inflammation (decreased serum CRP and IL-6) in CKD patients. A recent study also showed that blockade of IL-1 signalling significantly improved inflammatory status (a decrease in plasma concentration of IL-6 and TNF) and antioxidative properties in CKD patients. Systemic inflammation, as assessed by serum concentration of CRP, is a strong and independent risk factor for skeletal muscle wasting in CKD patients. IL-1 has been shown to stimulate the expression of catabolic genes and MAPK are a family of protein
Results based on targeted investigation

↓ Cachexia in Ctns⁻⁻⁻⁻ mice
- ↑ Food intake
- ↑ Weight gain (fat and lean mass)

↓ Energy expenditure
- ↓ Energy expenditure
- ↑ Tissue ATP content
- ↓ Tissue UCPs content

↓ Adipose tissue browning
- ↓ Key molecules promoting WAT browning (Cox2, Pgf2α, Tlr2, Myd88, Traf6)

↓ Muscle wasting
- ↑ Muscle fiber size
- ↓ Muscle fat infiltration
- ↓ Muscle wasting signaling (ERK 1/2, JNK, p38 MAPK, NF-κB)
- ↓ Negative regulators of muscle mass (Atrogin-1, Myostatin)
- ↑ Pro-myogenic factors (MyoD, Myogenin)

↑ promote muscle regeneration and muscle function
- Normalization of Csrp3, Nlcr3, Tnncl1 and attenuation of Cysfip2, Fhl1, Tpm3 mRNA expression

↑ remodeling of extracellular matrix during muscle regeneration
- Normalization of Ly6a mRNA expression

↑ muscle mechanical property & muscle - neuron function
- Normalization of Ankrd2 and Atf3 mRNA expression

↓ energy expenditure and lipolysis
- Normalization of Cidea and Sncg mRNA expression

↑ glucose transport to muscle
- Normalization of Tbc1d1 mRNA expression

↓ muscle hypotrophy

Results based on muscle RNAseq data

Figure 7 Summary of the beneficial effects of anakinra on cachexia, energy homeostasis, adipose tissue browning, and muscle wasting in Ctns⁻⁻⁻⁻ mice.
phosphorylating enzymes that regulate a diverse aspect of cellular responses including skeletal muscle regeneration and differentiation. Activation of the NF-κB signalling pathway leads to severe muscle wasting in mice. IL-1α and IL-1β, both isoforms of IL-1, stimulated catabolism in C2C12 myotubes via activation of NF-κB signalling and atrogin-1 expression. Importantly, anakinra attenuated or normalized phosphorylation of muscle ERK 1/2, JNK, p38 MAPK, and NF-κB p65 protein content in Ctns−/− mice. In addition, anakinra improved muscle regeneration and myogenesis by decreasing mRNA expression of negative regulators of skeletal muscle mass (Atrogin-1 and Myostatin) as well as increasing muscle mRNA expression of pro-myogenic factors (MyoD and Myogenin) in Ctns−/− mice (Figure 6). Our findings were in agreement with a recent report demonstrating that IL-1β administration inhibiting muscle mRNA expression of atrogin-1.

Finally, we studied the impact of anakinra on muscle transcriptomics in Ctns−/− mice. We showed that anakinra normalized or attenuated muscle expression of 12 out of 20 top differentially expressed genes in Ctns−/− mice. Detailed functional significance of each of these 12 differentiated expressed muscle genes is listed in Table 1. Anakinra normalized (Csrp3, Ly6a, Nlrc3, Tnn1, and Tpm3, Atf3, Cidea, Sncg, and Tbc1d1) and attenuated (Cyfip2 and Fhl1) muscle gene expression in Ctns−/− mice relative to WT mice (Figures S1 and S2). Increased expression of Csrp3, Cyfip2, Fhl1, Nlrc3, Tnn1, and Tpm3 have been implicated in muscle atrophy and muscle weakness. Increased expression of Ly6a has been associated with aberrant remodelling of the extracellular matrix during skeletal muscle regeneration. In addition, increased expression of Ankrd2 as well as decreased expression of Atf3 impairs muscle function and impairs survival of motor neuron and muscle innervation. Recent data also suggest that decreased expression of Cidea and Sncg are associated with higher energy expenditure as well as accelerated lipolysis of adipose tissue. Furthermore, decreased expression of Tbc1d1 impairs glucose transport in skeletal muscle and has been implicated in follistatin-induced muscle hypertrophy.

Conclusion

We employed genetic and pharmacological approaches and demonstrated significant beneficial effects of IL-1 blockade on cachexia in Ctns−/− mice. We report that anakinra attenuates adipose tissue browning and muscle wasting in Ctns−/− via multiple cellular mechanisms (Figure 7). IL-1 receptor antagonist may represent a novel targeted treatment for cachexia in patients with INC by attenuating adipose tissue browning and muscle wasting.

Acknowledgements

All authors of this manuscript certify that they complied with the ethical guidelines for authorship and publishing in the *Journal of Cachexia, Sarcopenia and Muscle* update 2017.

Conflict of interest

None declared.

Funding

This investigation was supported by National Institutes of Health (RO1 DK12581). This investigation was also supported in whole or in part by a grant from the Cystinosis Research Foundation. R.M. is funded by grants from the NIH (RO1 DK125811, RO1 HD095547, U01 DK066143) and the California Institute of Regenerative Medicine (CLIN2-11478). H.H. is funded by NIH awards R01 DK113592, R01 HL140898, R01 AI134030 and a UC collaborative grant. P.Z. was supported by ‘Spring Sunlight Program’ cooperative research project of Ministry of Education (HJJ2019023) and Research Fund for Young & Middle-Aged Innovative Science of the Second Affiliated Hospital of Harbin Medical University (CX2016-03).

Online supplementary material

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Table S1: Immunoassay information for blood and serum chemistry, muscle adenosine triphosphate content as well as muscle and adipose tissue protein analysis.

Table S2: PCR primer information.

Table S3: Serum and blood chemistry of 12-month old Ctns−/− and wild type control mice. Data are expressed as mean ± SEM. Result of serum chemistry of Ctns−/− mice were compared to WT mice. *p < 0.05, significantly increased in Ctns−/− mice relative to WT mice.

Table S4: Serum and blood chemistry of 12-month old Ctns−/−, Ctns−/− Il6−/−, Ctns−/− Il1b−/− and wild type control mice. Experiment was 6 weeks. Data are expressed as mean ± SEM. Result of Ctns−/−, Ctns−/− Il6−/− and Ctns−/− Il1b−/− mice were compared to WT mice. *p < 0.05, significantly increased in Ctns−/−, Ctns−/− Il6−/− and Ctns−/− Il1b−/− mice relative to WT mice.
Table S5: Serum and blood chemistry of Ctns-/- and wild type control mice. Twelve-month old WT and Ctns-/- mice were treated with anakinra (2.5 mg/kg per day, IP) or vehicle (normal saline) for 6 weeks. Vehicle treated Ctns-/- mice were fed \textit{ad libitum} while other group of mice were pair-fed with the same amount of rodent diet as consumed by vehicle treated Ctns-/- mice. Result of serum chemistry of Ctns-/-+ Vehicle mice were compared to WT + Vehicle mice while results of Ctns-/- + Anakinra mice were compared to WT + Anakinra mice.

Figure S1: Anakinra attenuates upregulated signature molecules implicated in Ctns-/- associated muscle wasting and cachexia. Gastrocnemius muscle expression of interested genes in mice was measured by qPCR. Final results were expressed in arbitrary units, with one unit being the mean level in vehicle-treated WT mice. Data are expressed as mean ± SEM. Results of vehicle-treated Ctns-/- mice were compared to vehicle-treated WT mice while results of anakinra-treated Ctns-/- mice were compared to that of anakinra-treated WT mice. In addition, results of anakinra-treated Ctns-/- mice were compared to vehicle-treated Ctns-/- mice. #p < 0.05.

Figure S2: Anakinra attenuates downregulated signature molecules implicated in Ctns-/- associated muscle wasting and cachexia. Gastrocnemius muscle expression of interested genes in mice was measured by qPCR. Final results were expressed in arbitrary units, with one unit being the mean level in vehicle-treated WT mice. Data are expressed and analysed as supplemental figure 1.

References

1. Nesterova G, Gahl W. Nephropathic cystinosis: late complications of a multisystemic disease. \textit{Pediatr Nephrol} 2008;23:863–878.
2. Theodoropoulos DS, Krasnewich D, Kaiser-Kupfer MJ, Gahl WA. Classic nephropathic cystinosis as an adult disease. \textit{JAMA} 1993;270:2200–2204.
3. Principe G, Caiello I, Cherqui S, Whisenant T, Petrini S, Emma F, et al. Inflammassome activation by cystine crystals: implications for the pathogenesis of cystinosis. \textit{J Am Soc Nephrol} 2014;25:1163–1169.
4. Li W, Moylan JS, Chambers MA, Smith J, Reid MB. Interleukin-1 stimulates catabolism in C2C12 myotubes. \textit{Am J Physiol Cell Physiol} 2009;297:C706–C714.
5. Huang N, Kny M, Riediger F, Busch K, Schmidt S, Luft FC, et al. Deletion of Nlrp3 protects from inflammation-induced skeletal muscle atrophy. \textit{Intensive Care Med} 2017;5:3.
6. Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. \textit{Immunol Rev} 2018;281:8–27.
7. Klimek MEB, Sali A, Rayavarapu S, Van der Meulen JH, Nagaraj K. Effect of the IL-1 receptor antagonist Kineret on disease phenotype in mdx mice. \textit{Plos ONE} 2016;11:e0155944.
8. Hung AM, Ellis CD, Shintani A, Booker C, Ikizler TA. IL-1β receptor antagonist reduces inflammation in hemodialysis patients. \textit{J Am Soc Nephrol} 2011;22:437–442.
9. Cheung W, Cherqui S, Ding W, Espanar Z, Zhou P, Yau C, et al. Muscle wasting and adipose tissue browning in infantile nephropathic cystinosis. \textit{J Cachexia Sarcopenia Muscle} 2016;7:152–164.
10. Young S, Struyf E, Wood T. Quantification of creatinine and guanidinoacetate using GC-MS and LC-MS/MS for the detection of cerebral creatinine deficiency syndromes. \textit{Curr Protoc Hum Genet} 2007;17.3.1–17.3.18.
11. Cheung W, Hsu Z, Wang Z, Ding W, Zheng R, Gonzalez A, et al. Vitamin D repletion ameliorates adipose tissue browning and muscle wasting in infantile nephropathic cystinosis. \textit{J Cachexia Sarcopenia Muscle} 2020;11:120–134.
12. Dubowitz V. Histological and histochemical stains and reactions. In: Dubowitz V et al., eds. \textit{Muscle Biopsy. A Practical Approach}, 4th ed. Amsterdam: Elsevier; 2013.
13. Mihelcic A, Hageberg CE, Kuhl L, Eriksson U, Pihlaja K. Effect of the IL-1β receptor antagonist anakinra on muscle wasting in infantile nephropathic cystinosis. \textit{J Am Soc Nephrol} 2017;28:1481–1488.
14. Kemp TJ, Sadusky TJ, Saltisi F, Carey N, Muschler JG, et al. Atf3 expression improves motor function in the ALS mouse model by promoting motor neuron survival and retaining muscle innervation. \textit{Proc Natl Acad Sci U S A} 2014;111:1622–1627.
15. Shijffers R, Zhang J, Matthews JC, Chen A, Tamrazian E, Babaniyi O, et al. Nlrp3 expression improves motor function in the ALS mouse model by promoting motor neuron survival and retaining muscle innervation. \textit{Proc Natl Acad Sci U S A} 2014;111:1622–1627.
16. Abreu-Vieira G, Fischer AW, Mattsson C, de Jong JM, Shabalina IG, Ryden M, et al. Cidea improves the metabolic profile through expansion of adipose tissue. \textit{Nat Commun} 2015;6:7433.
17. Shao T, Song P, Hua H, Zhang H, Sun X, Kong X, et al. Gamma synuclein is a novel Twist1 target that promotes TGF-β-induced cancer cell migration and invasion. \textit{Cell Death Dis} 2018;9:625.
18. Han X, Moller LLV, Groote ED, Bojsen-Moller KN, Davey J, Henriquez-Olguin CH, et al. Mechanisms involved in follistatin-induced hypertrophy and increase insulin action in skeletal muscle. \textit{J Cachexia Sarcopenia Muscle} 2019;10:1241–1257.
19. Braun TP, Zhu X, Szumowski M, Scott GD, Grossberg AJ, Levasseur PR, et al. Central nervous system inflammation induces muscle atrophy via activation of the hypothalamic–pituitary–adrenal axis. \textit{J Exp Med} 2011;208:2449–2463.

Journal of Cachexia, Sarcopenia and Muscle 2021; 12: 1296–1311
DOI: 10.1002/jcsm.12744
28. Tocco-Bradley R, Georgieff M, Jones CT, Moldawer LL, Dinarello CA, Blackburn GL, et al. Changes in energy expenditure and fat metabolism in rats infused with interleukin-1. *Eur J Clin Invest* 1987;17:504–510.

29. Sachot C, Poole S, Luhehti GN. Circulating leptin mediates lipopolysaccharide-induced anorexia and fever in rats. *J Physiol* 2004;561:263–272.

30. Cheung W, Yu PX, Little BM, Cone RD, Marks DL, Mak RH. Role of leptin and melanocortin signaling in uremia-associated cachexia. *J Clin Invest* 2005;115:1659–1665.

31. Eckel-Mahan K, Sassone-Corsi P. Metabolism and the circadian clock converge. *Physiol Rev* 2013;93:107–135.

32. van den Berg SA, van Marken LW, Willems van Dijk K, Schrauwen P. Skeletal muscle mitochondrial uncoupling, adaptive thermogenesis and energy expenditure. *Curr Opin Clin Nutr Metab Care* 2011;14:243–249.

33. Zurlo F, Bogardus C, Ravussin E. Skeletal muscle metabolism is a major determinant of resting energy expenditure. *J Clin Invest* 1990;86:1423–1427.

34. Dascombe MJ, Rothwell NJ, Sagay BO, Stock MJ. Pyrogenic and thermogenic effect of interleukin 1 beta in the rat. *Am J Physiol* 1989;256:E7–E11.

35. Rouset S, Alves-Guerra MC, Mozo J, Miroux B, Cassard-Doucier AM, Bouillaud F, et al. The biology of mitochondrial uncoupling proteins. *Diabetes* 2004;53: S130–S135.

36. Argiles JM, Busquets S, Lopez-Soriano FJ. The role of uncoupling proteins in pathophysiological states. *Biochem Biophys Res Commun* 2002;293:1145–1152.

37. Sluse FE. Uncoupling proteins: molecular, functional, regulatory, physiological and pathological aspects. *Adv Exp Med Biol* 2012;942:137–156.

38. Rouru J, Cusin I, Zakrzewska KE, Jeanrenaud B, Rohner-Jeanrenaud F. Effects of intravenously infused leptin on insuline sensitivity and on the expression of uncoupling proteins in brown adipose tissue. *Endocrinology* 1999;140:3688–3692.

39. Tajima D, Masaki T, Hidaka S, Kakuma T, Sakata T, Yoshimatsu H. Acute central infusion of leptin modulates fatty acid mobilization by affecting lipolysis and mRNA expression for uncoupling proteins. *Exp Biol Med (Maywood)* 2005;230:200–206.

40. Kir S, White J, Kleiner S, Kazak L, Cohen P, Baracos VE, et al. Tumour-derived PTH related protein triggers adipose tissue browning and cancer cachexia. *Nature* 2014;513:100–104.

41. Petruzzelli M, Wagner EF. Mechanisms of metabolic dysfunction in cancer cachexia. *Genes Dev* 2016;30:489–501.

42. Kir S, Komaba H, Garcia AP, Economopoulos KP, Liu W, Lanske B, et al. PTH/PTHrP receptor mediates cachexia in models of kidney failure and cancer. *Cell Metab* 2016;23:315–323.

43. Végioopoulos A, Müller-Decker K, Strzoda D, Schmitt I, Chicheknitskiy E, Ostertag A, et al. The biology of mitochondrial uncoupling proteins. *Adv Exp Med Biol* 2012;711:454–463.

44. Beasley LE, Koster A, Newman AB, Javaid MK, Ferruzzi L, Kritchevsky SB, et al. Inflammatory responses and causes. *Int J Endocrinol* 2014;Article ID: 309570.

45. Addison O, Marcus RL, LaStyco PC, Yuan AS. Intermuscular fat: a review of the consequences and causes. *Int J Endocrinol* 2014;Article ID: 309570.

46. Goodpaster BH, Thaete FL, Kelley DE. Thigh adipose tissue distribution is associated with insulin resistance in obesity and in type 2 diabetes mellitus. *Am J Clin Nutr* 2000;71:885–892.

47. Cheema B, Abbas H, Smith B, O’Sullivan AJ, Chan M, Patwardhan A, et al. Investigation of skeletal muscle quality and quality in end-stage renal disease. *Nephrology (Carlton)* 2010;15:454–463.

48. Beasley LE, Koster A, Newman AB, Javaid MK, Ferruzzi L, Kritchevsky SB, et al. Inflammation and race and gender differences in computerized tomography-measured adipose deposits. *Oncology* 2009;71:1062–1069.

49. Sam S, Haffner S, Davidson MH, D’Agostino RB, Feinstein S, Kondos G, et al. Relation of abdominal fat depots to systemic markers of inflammation in type 2 diabetes. *Diabetes Care* 2009;32:932–937.

50. Nowak KL, Chonchol M, Ikizler TA, Farmer-Bailey H, Salas N, Chaudhry R, et al. IL-1 inhibition and vascular function in CKD. *J Am Soc Nephrol* 2017;28:971–980.

51. Hung AM, Tsuchida Y, Nowak KL, Sarkar S, Chonchol M, Whitfield V, et al. IL-1 inhibition and function of the HDL-containing fraction of plasma in patients with stages 3 to 5 CKD. *Clin J Am Soc Nephrol* 2019;14:702–711.

52. Deger SM, Hung AM, Gamboa JL, Siew ED, Ellis CD, Bookor C, et al. Systemic inflammation is associated with exaggerated skeletal muscle protein catabolism in maintenance hemodialysis patients. *JCI Insight* 2017;2:e95185.

53. Londhe P, Guttridge DC. Inflammation induced loss of skeletal muscle. *Bone* 2014;80:131–142.

54. Ballak DB, Stienstra R, Tack CJ, Dinarello CA, van Diepen JA. IL-1 family members in the pathogenesis and treatment of metabolic disease: focus on adipose tissue inflammation and insulin resistance. *Cytochem* 2015;75:280–290.

55. Geisler HWS, Shi H, Gerrard DE. MAPK pathway in skeletal muscle diseases. *J Vet Anim Hosp* 2013;1:e104.

56. Zetser A, Gredinger E, Bangle E. P38 mitogen-activated protein kinase pathway promotes skeletal muscle differentiation. Participation of the Mef2c transcription factor. *J Biol Chem* 1999;274:5193–5200.

57. Wu Z, Woodring PJ, Bhakta KS, Tamura K, Wen F, Feramisco JR, et al. p38 and extracellular signal-regulated kinases regulate the myogenic program at multiple steps. *Mol Cell Biol* 2000;20:3951–3964.

58. Cai D, Frantz JD, Tawa NE Jr, Melendez PA, Oh BC, Lidov HG, et al. Ikkbeta/NF-kappaB activation causes severe muscle wasting in mice. *Cell* 2004;119:285–298.

59. von Haehling S, Morley JE, Coats AJJ, Anker SD. Ethical guidelines for publishing in the Journal of Cachexia, Sarcopenia and Muscle: update 2019. *J Cachexia Sarcopenia Muscle* 2019;10:1143–1145.