Supplemental Material

Pseudo-four-component synthesis of 5-(4-hydroxy-2-oxo-1,2-dihydropyridin-3-yl)-substituted 5H-chromeno[2,3-b]pyridines and estimation of its affinity to sirtuin 2

Yuliya E. Ryzhkova*, Fedor V. Ryzhkov, Michail N. Elinson, Anatoly N. Vereshchagin, and Mikhail P. Egorov

N. D. Zelinsky Institute of Organic Chemistry, Leninsky prospect 47, 119991 Moscow, Russia
Email: yu.a.91@ya.ru

Table of Contents

1. S1: PMR, CMR of compound 3b S2
2. S2: PMR, CMR of compound 3c S3
3. S3: PMR, CMR of compound 3e S4
4. S4: PMR, CMR of compound 3i S5
5. S5: PMR, CMR of compound 3j S6
6. Docking studies S7
7. References S9
1H and 13C NMR spectra of novel substituted 2,4-diamino-5-(4-hydroxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)-5H-chromeno[2,3-b]pyridine-3-carbonitriles (3b, c, e, i and j) with tetramethylsilane (TMS) as internal standard. Chemical shifts (δ) are reported in parts per million (ppm) downfield of TMS. Additional information for docking studies (Tables 3-7, references).

S1: 2,4-Diamino-9-ethoxy-5-(4-hydroxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)-5H-chromeno[2,3-b]pyridine-3-carbonitrile (3b)
S2: 2,4-Diamino-5-(4-hydroxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)-8-methoxy-5H-chromeno[2,3-b]pyridine-3-carbonitrile (3c)
S3: 2,4-Diamino-5-(4-hydroxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)-7,9-diodo-5H-chromeno[2,3-b]pyridine-3-carbonitrile (3e)
S4: 2,4-Diamino-5-(1-benzyl-4-hydroxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)-8-methoxy-5H-chromeno[2,3-b]pyridine-3-carbonitrile (3i)
S5: 2,4-Diamino-5-(1-benzyl-4-hydroxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)-7-chloro-5H-chromeno[2,3-b]pyridine-3-carbonitrile (3j)
S6: Docking studies

For the current docking procedure, Schrodinger Suite Software 2020 was used. Maestro 12.3.013 was employed as the graphical user interface. Structures for all compounds were treated with Lig-Prep (Schrodinger Suite) to obtain possible 3D-forms. The target proteins were retrieved from the RCSB\(^1\) protein databank, and prepared using the Schrodinger Suite protein preparation wizard. Missing chains and loops were filled with Prime (Schrodinger Suite), water, and organic solvents beyond 3A of heteroatoms (if any) were removed. Hydrogen atoms were added and a minimization was performed until the RMSD value of all heavy atoms was within 0.3 Å of the crystal structure. The OPLS3e force field was used. Docking was carried out using the Glide software from Schrodinger Suit in extra-precision (XP)\(^2\) mode using GScore for ligand ranking, Emodel Score for pose ranking, Evdw Score for Van der Waals ranking.

Table S3. Docking of 5H-chromeno[2,3-b]pyridines 3a-j to 5Y0Z

Compound	XP GScore, kcal/mol	Emodel Score, kcal/mol	Evdw Score, kcal/mol	Compound	XP GScore, kcal/mol	Emodel Score, kcal/mol	Evdw Score, kcal/mol
3a	-5,367	1,341	-24,791	3f	-4,770	6,012	-29,242
3b	-3,157	13,372	-12,755	3g	-6,146	189,477	-12,879
3c	-5,773	-22,06	-29,321	3h	-9,283	-41,234	-24,712
3d	-4,363	-1,176	-17,889	3i	n/a		
3e	-7,299	38,625	-23,453	3j	-7,235	26,796	-23,221

Presented data for the optimal binding mode.

Table S4. Docking of 5H-chromeno[2,3-b]pyridines 3a-j to 5YQL

Compound	XP GScore, kcal/mol	Emodel Score, kcal/mol	Evdw Score, kcal/mol	Compound	XP GScore, kcal/mol	Emodel Score, kcal/mol	Evdw Score, kcal/mol
3f	-2,594	-100,296	-26,799	3i	-7,437	-5,890	-37,648
3h	-8,657	-21,344	-33,523	3j	-7,973	3,082	-33,233

Presented data for the optimal binding mode.
Table S5. Docking of 5H-chromeno[2,3-b]pyridines 3a-j to 5DY5

Compound	XP GScore, kcal/mol	Emodel Score, kcal/mol	Evdw Score, kcal/mol	Compound	XP GScore, kcal/mol	Emodel Score, kcal/mol	Evdw Score, kcal/mol
3a	-1,364	-38,040	-25,249	3f	-1,489	-38,681	-25,525
3b	-3,771	-42,735	-32,391	3g	n/a		
3c	-1,527	-39,144	-25,312	3h	-4,450	-41,868	-26,662
3d	n/a			3i	-3,127	-45,280	-28,938
3e	-1,940	-31,434	-29,370	3j	-3,163	-49,836	-33,205

Presented data for optimal binding mode. n/a = not applicable, no bind mode for a protein-ligand combination.

Table S6. Docking of 5H-chromeno[2,3-b]pyridines 3a-j to 5G4C

Compound	XP GScore, kcal/mol	Emodel Score, kcal/mol	Evdw Score, kcal/mol	Compound	XP GScore, kcal/mol	Emodel Score, kcal/mol	Evdw Score, kcal/mol
3a	-8,772	-73,748	-47,471	3f	-8,342	-87,774	-55,328
3b	-9,720	-79,423	-51,666	3g	-11,730	-84,304	-42,318
3c	-8,125	-77,013	-48,496	3h	-10,772	-92,24	-51,879
3d	-7,871	-80,018	-41,265	3i	-6,588	-81,757	-57,053
3e	-9,292	-86,960	-56,528	3j	-9,732	-68,797	-58,936

Presented data for the optimal binding mode.
Table S7. Docking of 5H-chromeno[2,3-b]pyridines 3a-j to 4RMG

Compound	XP GScore, kcal/mol	Emodel Score, kcal/mol	Evdw Score, kcal/mol	Compound	XP GScore, kcal/mol	Emodel Score, kcal/mol	Evdw Score, kcal/mol
3a	-7,658	-58,514	-31,712	3f	-7,112	-69,018	-41,922
3b	-9,158	-54,615	-42,100	3g	-8,114	-65,561	-36,533
3c	-7,828	-57,059	-32,762	3h	-11,194	-73,371	-48,593
3d	-7,046	-60,265	-36,481	3i	-9,719	-74,01	-47,222
3e	-8,010	-68,023	-42,218	3j	-10,099	-76,533	-44,087

Presented data for best binding mode.

References

1. RCSB Protein Data Bank. Retrieved March 24, 2020, from https://www.rcsb.org/
2. Friesner, R. A.; Murphy, R. B.; Repasky, M. P.; Frye, L. L.; Greenwood, J. R.; Halgren, T. A.; Sanschagrin, P. C.; Mainz, D. T. *J. Med. Chem.* 2006, *49*, 6177–6196. https://doi.org/10.1021/jm051256o