Maximizing Branch Power Flows as a Descriptive Structural Metric for Electrical Networks

Paul Cuffe, Member, IEEE

Abstract—This article describes an optimization-based procedure that identifies the maximum power flow that each branch in an electrical network could be exposed to. The procedure uses a linear optimal power flow formulation that determines the flow-maximizing generator dispatch and loading conditions for each branch in turn. This theoretical upper bound on the power flow that a branch could be exposed to is termed its loadability. This article proposes this loadability as a descriptive structural metric that helps reveal the fundamental origin of congestion in power system. For instance, it is insightful to compare a branch’s loadability with its as-built thermal capacity, to identify those branches that are most congestion-prone, or alternatively, those lines that can never exploit their full available capacity. In the six test systems studied, it is found that there is wide variation in the loadability of the various branches, where some would be loaded well beyond their thermal limits by particular generating schedules, whereas other branches can never operate beyond even a fraction of their thermal capabilities. Low branch reactance is found to be a key driver of high loadability in power systems, and this suggests new approaches to alleviating transmission system congestion.

Index Terms—power engineering computing, power system analysis computing, power system planning, power transmission.

I. INTRODUCTION

A. Motivation

This article proposes an optimization procedure to quantify the maximum possible power flow that each branch in an electrical network could be exposed to. Power lines are assets of national importance, which are constructed at considerable expense [1], [2]. A line’s thermal rating is an important parameter to consider when a branch is being added to a network [3], as this ampacity is often the binding constraint on how much power it can transmit (though longer lines, and those at very high voltages, may more typically be constrained by voltage stability limits [4], [5]).

If thermal limits are too low, the system may regularly experience congestion, whereby the desired generation schedules cannot be accommodated, and more expensive alternative generation sources have to be used instead [6]. On the other hand, specifying overly generous thermal limits may increase the capital cost of grid construction for little benefit [7]. The core motivation of this article is to explore how this trade-off [8] has been handled in some well-known test systems, and thereby to point toward the fundamental causes of transmission system congestion. The novel optimization-based screening procedure permits exploration of power system congestion in a general sense, by identifying the subset of branches that are at least theoretically capable of being loaded beyond their thermal limits. Identifying the congestion-prone branches within a system should offer actionable insights for identifying and validating remedial measures, such as strategically removing [9], [10] or increasing the reactance [11]–[13] of particular lines to better balance power flows, or selectively uprating [14]–[16] particular branches. Other potential applications for the procedure are prioritizing maintenance planning [17] and identifying anomalous lines (those with unusually high or low loadability) for further investigation.

B. Literature Review

While optimal power flow techniques have been applied to a broad range of problems over their long history [18], [19], the author is not aware of any works that have explicitly characterized the maximum active power flow each branch might be exposed to (notwithstanding Cuffe [20], a precursor to this article).

The proposed optimization procedure takes inspiration from Garver et al. [21], which used linear programming to calculate the absolute maximum load that could feasibly be met by a combined generation/transmission system. Other works applying optimization techniques to characterize the extremal operating envelopes of power system components include Chiodo et al. [22] and Cuffe et al. [23], which used capability charts to describe feasible complex power combinations for, respectively, grid operational configurations and wind energy harvesting networks.

Work in [24] proposed a maximum-flow-based approach to identify vulnerable lines in a power system. Their technique considered power exchanges between each source and sink pair in the network digraph, and defined a new centrality metric based on each branch’s participation in these notional transactions. This technique could be viewed as adapting the idea of betweenness centrality [25], [26] to the electrical context. Dwivedi and Yu [24] validated the applicability of their new centrality metric by showing that the failures of the lines they identified as vulnerable were more damaging to the network.
Work in [27] extended the maximum-flow approach of Dwivedi and Yu [24] by including a vertex weighting procedure. Again, the proposed use case of the metric in [27] is in ranking branches for vulnerability assessment. Other works proposing line centrality measures for vulnerability screening include the work in [28] and [29]. More generally, numerous algorithms exist that attempt to gauge the importance of a node or edge in a generic complex network [30], [31], and various authors have adapted these for electrical grids [32]–[35].

On the other hand, work in [36] simulated branch interdiction attacks on a number of power systems in many operational states, and this broad-based analysis did not find that the trialed topological vulnerability measures were a particularly effective way to choose branch attack targets. Such a finding is consistent with work in [37].

Beyond the vulnerability analysis application area, work in [38] proposed a line centrality measure to describe the role of each branch in facilitating circulating and load-serving current flows in an electrical network, under the paradigm of Abdelkader et al. [39]. Work in [40] examined maximum power flow that a particular line may be exposed to under certain contingency situations, and used this characterization within a transmission cost allocation scheme.

C. Contribution and Article Organization

The core contribution of this article is articulating a novel procedure that reveals the maximum line flows that each branch in a power system may be required to carry. Those branches with unusually high loadability may be seen as critical or central lines in the system, which may be especially important in terms of causing congestion, or may be prioritized for maintenance planning [17]. Conversely, branches with unusually low loadability may be identified as partially obsolete or marginalized assets.

By comparing loadability with available thermal capacity, the most congestion-prone branches within a power system can be directly identified, and these may be apt candidates for uprating [14]–[16] or for the addition of static or controllable reactance [11]–[13].

Finally, the novel loadability metric can offer scientific insights into the structure and function of power transmission networks [41]. While abstract topological metrics may only offer limited insights into transmission network operation (see [36], [37], [42], [43] for various skeptical perspectives), the proposed metric has a tangible interpretation rooted in the actual dynamics of physical power flow. Importantly, this allows the costly phenomenon of power system congestion [6], [8] to be analyzed in a general and fundamental way. This article emphasizes this aspect, and uses a data-driven approach to explore the determinants of branch loadability and congestion in several test power systems.

This article is organized as follows. Section II describes the optimal power flow procedure for calculating branch loadability. The test platform is described in Section III, and Section IV provides several perspectives on the calculated loadability dataset, to elucidate the structural origins of power system congestion, which then informs the conclusions in Section V.

II. METHODOLOGY

A. Calculating Maximum Branch Power Flows

A linear program is sequentially invoked for every branch in a network, to maximize the power flow f it carries. This optimization is calculated for both flow directions on the branch, one after the other. The first objective function for a branch b connecting buses i and j is

$$f_{bi→j}^* = \max(f_{bi→j}).$$

Then likewise for the direction $j → i$.

Decision variables in this optimization include the power output p for each generator, g. Each generator’s online status (s, binary) is incorporated alongside its minimum and maximum operating limit parameters, P_g^+ and $P_g^−$ as follows:

$$s_g P_g^− \leq p_g \leq s_g P_g^+.$$ (2)

Generator cost parameters are not relevant to this formulation, as a characterization of the worst-case power injection profile is being sought, without consideration of the cost or likelihood of the schedule that would cause this (see [23]). Leaving the generation scheduling free in this way also models the effects of generator contingencies. In other contexts, it may be desirable to model generator costs and correlations between renewable generator outputs: a simple formulation is chosen here to give the worst-case loadabilities and to maintain clarity in this first exposition of the procedure.

To find the system-wide demand conditions that permit a branch’s maximum loading, nodal spot demands are scaled uniformly relative to their parameterized maxima P_d^+

$$p_d = k \cdot P_d^+.$$ (3)

This scalar demand level k remains a free variable in the optimization, bound between some limits $K^- \leq k \leq K^+$ (this uniform load scaling approach has been assumed for simplicity, but it would also reasonable to control spot loads individually or zonally to identify the flow-maximizing conditions).

A power balance is enforced at every bus, where the vector $p_{d|n}$ describes the sum of power demands and $p_{g|n}$ describe the sum of generation at each node n. The nodal balance also includes the vector of branch power flow f_b and the system’s incidence matrix $A_{(k×n)}$

$$p_{g|n} + p_{d|n} = f_b^T A.$$ (4)

For a branch connecting bus i to bus j, with reactance X_b, the power flow is determined by the voltage angle ϕ difference that prevails. Logical constraints are included to allow the line removal decisions that model contingencies, using the vector of binary decision variables o_b

$$f_{bi→j} = \begin{cases} \frac{\phi_i - \phi_j}{X_b} & \forall o_b = 0 \\ 0 & \forall o_b = 1. \end{cases}$$ (5)

The number of branch outages contingencies to be considered is imposed by summing the vector of binary variables and
comparing with the cardinality of the branch set, \(\text{card}(B) \)
\[
\sum_{b} o_b \geq \text{card}(B) - C. \tag{6}
\]

So for instance, setting \(C = 2 \) would find maximum branch loadings under \((N - 2)\) conditions, i.e., permitting the optimization to remove two other branches when maximizing the flow in a particular branch.

Branch thermal limits are not enforced, as the maximum conceivable flows that a dispatch profile could invoke is the metric of interest, regardless of whether this would overload the line in question, or indeed may overload lines elsewhere in the network. This is modeling decision specific to this article: it may also be useful and insightful to impose thermal limits on every other branch except the branch whose flow is being maximized, as this will identify situations where other branches’ thermal capacities impede a particular branch’s theoretical maximum flow. Instead, the present decision to disregard thermal limits explores how a branch’s reactance, and its position with the network structure, affects its maximum flow levels.

The optimal power flow problem can be formulated at various levels of model accuracy, and the present exposition uses a simple linear dc formulation. This simplification means that voltage magnitude, reactive power flows, and the impact of sophisticated control schemes [44] are not modeled. This simple analysis was chosen to directly showcase the fundamental drivers of branch loadability and congestion: the grid’s connective structure and the reactance of different lines. The same branch flow maximization approach could readily be implementing using more realistic ac optimal power flow formulations [45], [46]. Notably, reactive power flows tend to increase the current loading of ac power lines, so a formulation including these would tend to identify higher line loadabilities.

B. Branch Structural Metrics

1) **Loadability Definition:** When the two optimization calculations have been performed for all branches in the power system, the \(f^* \) vectors will be fully populated. To extract useful information from these, we define the concept of branch loadability. This metric \(l_b \) has units of MW and records the absolute maximum power flow that could arise on each branch. It is calculated by taking the absolute values of \(|f_{b,i-j}| \) and \(|f_{b,j-i}| \) and selecting the greater

\[
l_b = \begin{cases}
|f_{b,i-j}| & \text{if } |f_{b,i-j}| > |f_{b,j-i}| \\
|f_{b,j-i}| & \text{if } |f_{b,j-i}| > |f_{b,i-j}|. \end{cases} \tag{7}
\]

By comparing against the rated thermal capacity parameter for a branch \(F^*_b \), we can also define the loadability ratio, which describes the proportional loading of the branch in the worst-case conditions

\[
r_b = \frac{l_b}{F^*_b}. \tag{8}
\]

2) **Branch Radiality Index:** Branch loadability may be related with how well meshed the particular line is within the network. That is, does a particular line have many other lines in parallel with it, or is it a standalone radial branch? To allow this to be explored rigorously, this section defines a static structural metric, branch radiality index, for each branch: \(R_b \).

This new metric is extracted from the power transfer distribution factors [47] for the system. A vector \(\Phi_{b|k-\bar{l}} \) can be constructed that records the incremental active power loading on all branches \(b \) in the system, considering a 1-MW power injection at an arbitrary bus \(k \) and withdrawal at bus \(l \). To determine the branch radiality index \(R_{b|i-j} \), the \(\Phi_{b|k-\bar{l}} \) vector is constructed for each branch in turn, setting \(k = i \) and \(l = j \), where \(i \) is the sending bus and \(j \) is the receiving bus for that particular branch. Therefore, for each branch, we calculate an incremental 1-MW power transaction injected at that branch’s sending bus and withdrawn at its receiving bus. Extracting \(R_{b|i-j} \) from the corresponding element of \(\Phi_{b|k-\bar{l}} \) identifies what portion of this transaction the branch itself carries. For a purely radial branch, with no redundant parallel paths, the full 1 MW would flow along the branch itself; conversely, where an abundance of lower reactance parallel paths are available, only a small fraction of the 1-MW transaction will flow on the branch itself. Therefore

\[
0 \leq R_b \leq 1. \tag{9}
\]

This notion of branch radiality index is reminiscent of the concept of shortcut edges [48] for graph geodesics.

III. Test Platform

Simulations are performed in MATLAB using MATPOWER [49], Yalmip [50], and Gurobi [51]. Six test systems are considered, taken from Coffrin et al. [52]. These systems were chosen as they are well-known and widely used, and span across small, medium, and large networks. To ensure that these could be compared fairly, their aggregate maximum demand levels were normalized so that operating at \(k = 1 \) leaves an available generation reserve margin equal to 15% of installed capacity, a limit consistent with Lin et al. [53]. \(K^+ \) was set = 1 and \(K^- = 0.25 \).

The system names are prepended with “ln” to denote this load normalization. Details of these normalized systems are provided in Table I. The raw data and calculation scripts underlying the results are available in a persistent online repository at Cuffe [54].

IV. Results

A. Intact System Conditions

Initially, \(C = 0 \) to model intact \((N - 0)\) conditions,
1) **Branch Loadability Trends:** Descriptive statistics describing the loadability l_b and loadability ratio r_b of the branches in each system are provided in Table II. One fact is immediately apparent: the median loadability ratio is below unity in every case. This means that the median branch in each system cannot be loaded beyond its thermal limits in even the most onerous dispatch and aggregate demand conditions. Furthermore, on five of the six test systems, the minimum loadability is zero or negligible. Median loadability is quite low, whereas max loadability is quite high, and all of these distributions exhibit a rightward skew. Histograms showing these distributions explicitly for loadability ratio are provided in Fig. 1. The diversity in system performance is quite notable, with loadability ratios above unity barely represented in “case1460wp_eir,” although relatively common on “case2224_edin.”

To explore these trends further, the relationship between branch loadability l_b and branch thermal rating F_b^+ is shown as a matrix of scatterplots in Fig. 2. Logarithmic scales are used for each axis. The points are colored based on binning each branch into one of five categories as follows:

Loadability < 2 MW	Negligible
Loadability ratio < 0.5	Light
0.5 < Loadability ratio < 1	Moderate
1 < Loadability ratio < 2	Overloadable
2 < Loadability ratio	Severe

These color encodings are used throughout this article to denote these branch categories. The preponderance of greens and greys in Fig. 2 indicates that most branches in these intact systems can never experience thermal congestion, and this is also shown explicitly in Fig. 3. For all six test systems, less than 20% of branches can ever be overloaded, even in worst-case demand and dispatch conditions.

Considering the marginal distributions to the right of the panes in Fig. 2, it is evident that for three of the systems (“case189_edin,” “case1460wp_eir,” and “case2224_edin”), there is a prominent and discontinuous peak at the bin representing 0 to 1 MW of loadability, implying that these systems contain many branches that can never carry significant power. This is a surprising result that invites questions about how these test systems were constructed (see [55]). These histograms otherwise appear to follow an approximate bell shape on their logarithmic scales, perhaps suggesting an underlying lognormal type distribution (the frequency distributions of loadability and loadability ratio are also shown, inter alia, in Figs. 9 and 10.)

Distribution fitting using three parametric distributions of this general type was applied to the loadability data (exclusive of the negligible branches), and the results are shown in Table III. While none of these parametric distributions describes all the test systems, overall Table III supports a conclusion that branch loadability should be thought of as a long-tailed type of phenomenon.

2) **Aggregate System Demand Levels:** It might be expected that maximizing a branch’s loading would require high demand levels across a system. This is not so, however, as shown in Fig. 4. These histograms show the distribution of aggregate system demand levels k that were found to optimally maximize loadability for each branch, i.e., $\arg\max(l_b)$. In many cases, low
or intermediate system demand levels were found to facilitate the most congesting dispatches. The distributions of k appear multimodal and discontinuous, and these histograms do not point toward any particular parametric distribution.

3) Loadability and Network Structure: To depict the relationship between system structure, branch location, and loadability category, network diagrams of the six test systems are provided in Fig. 5. These diagrams are drawn using the technique in [56], which positions nodes using a measure of electrical distance. For most of the systems, it appears that the high loadability branches are located in the meshed core of the system. Branches in the subtransmission and distribution networks cannot typically be loaded beyond their thermal limits.

To further explore the role of branch meshing, the relationship between branch radiality index \mathcal{R}_b and loadability l_b is explored in Fig. 6. It can be noted that there is a preponderance of points at the rightmost edge of each pane, corresponding to fully radial branches. In particular, “case189_edin” is composed mostly of these radial branches. However, the totality of Fig. 6 indicates that the full range of loadability values is possible for radial branches. Furthermore, there is no obvious relationship between the branch radiality index and loadability levels, as each category of branch loadability is represented across the full range of radiality index.

TABLE III
DISTRIBUTION FITTING AND GOODNESS-OF-FIT TESTING FOR LOADABILITY

	Lognormal	Gamma	Generalized Pareto								
	x^2 test	p	μ	σ	a	b	x^2 test	p	k	σ	θ
ln_nesta_case73_ieee_rts	0.101	5.334	0.665	0.300	2.534	122.289	*0.026	-0.285	393.952	0	
ln_nesta_case118_ieee	0.304	4.605	0.845	*0.002	1.465	99.664	0.302	0.051	138.480	0	
ln_nesta_case189_edin	*0.002	3.921	1.232	0.111	0.971	94.432	0.097	-0.005	92.115	0	
ln_nesta_case162_ieee_dtc	0.066	4.351	1.236	*0.003	0.851	182.073	0.098	0.302	109.935	0	
ln_nesta_case1460wp_eir	*$p < 0.001$	3.399	1.202	*$p < 0.001$	0.835	72.653	*$p < 0.001$	0.338	40.381	0	
ln_nesta_case2224_edin	*$p < 0.001$	5.008	1.642	*$p < 0.001$	0.540	885.041	*$p < 0.001$	0.842	164.017	0	
The relationship between branch reactance X_b and loadability l_b is explored in Fig. 7, which uses log–log scales. Intuitively, a branch with lower reactance would be anticipated to typically carry more power than a higher reactance branch. For all six systems, a similar envelope is formed, whereby the highest loadability arises for the lowest reactance lines. The linearity of the upper boundary of this envelope is striking and is most clearly shown for the three systems depicted in the bottom row. These envelopes in Fig. 7 may indicate that congestion arises in transmission systems where branches have overly low levels of reactance without appropriately high thermal ratings. This might suggest that artificially adding fixed reactances to congestion-prone lines may be a viable mitigation strategy, at least in some cases.

To further explore such structural determinants, Fig. 8 relates each branch’s loadability l_b to its operating voltage, defined as the average of the nominal voltage at its sending and receiving buses i and j (i.e., transformer branches will take on an intermediate value). The trends in Fig. 8 correspond with Fig. 5: branch loadabilities typically rise steeply when ascending through the voltage levels (again, note carefully the logarithmic vertical axis). This indicates that the most heavily loadable and congestion-prone lines are found in the high voltage core of a network.

Table IV

	(N - 3)	(N - 2)	(N - 1)	(N - 0)
ln_nesta_case73_iieee_rts	213.8	575.0	1232.0	
ln_nesta_case118_iieee	31.4	169.4	273.9	404.9
ln_nesta_case189_edin	38.4	46.0	51.9	51.9

Table V

	(N - 3)	(N - 2)	(N - 1)	(N - 0)
ln_nesta_case73_iieee_rts	0.73	1.18	1.79	2.79
ln_nesta_case118_iieee	0.56	1.09	1.63	2.36
ln_nesta_case189_edin	0.22	0.28	0.28	0.28

A similar effect is also shown in Fig. 10, which shows the loadability ratios on a linear horizontal axis. It can be seen that the portion of lines with a loadability ratio above unity grows as more outages are considered, with the majority of branches becoming over-loadable in $(N - 2)$ or $(N - 3)$ conditions. This is shown explicitly in Fig. 11, which shows a clear increase in the number of over-loadable and severe branches as contingency conditions deepen. On the other hand, the totality of Fig. 11 shows a notable diversity in branch loadability categorizations across the spectrum of contingency conditions, with severe branches present in intact networks, and light branches in networks enduring $(N - 3)$ conditions.

However, considering Table V shows that even under $(N - 1)$ degraded conditions, the median loadability ratio is near or below unity for these three test systems. It appears that “case118_edin” is somewhat more resilient against outage-induced overloading compared to “case73_iieee_rts.” Interestingly, the loadability ratio for “case189_edin” does not shift right as markedly as more line outages are considered: this is likely because of the preponderance of radial lines in this system. As these branches are not meshed, their power flow is entirely determined by the downstream demand or upstream generator they serve, and so cannot be affected by removing other lines.
V. DISCUSSION

Several key findings have emerged from the analysis of branch loadability in the following six test systems.

1) The loadability for many branches was found to be near-zero, which may suggest anomalies in how these test systems were constructed [55].

2) Branch loadability appeared to follow an approximately lognormal distribution, showing this to be a long-tailed type of phenomenon. Most branches cannot be heavily loaded, but a few can be loaded to extreme levels.

3) Branch reactance appeared to be a key driver of loadability, with the most heavily overloadable lines generally having the lowest reactance. A linear envelope was evident on the log–log plots of these quantities. This relationship highlights that a branch’s thermal rating should be commensurate with its reactance if congestion is to be avoided.
Fig. 6. Relationship between branch radiality index and loadability, shown on a log vertical scale.

Fig. 7. Relationship between branch reactance and loadability, shown on log–log scales.
Fig. 8. Relationship between branch operating voltage and loadability, shown on a log vertical scale.

Fig. 9. Empirical cumulative distribution of branch loadability, shown for various levels of branch removal contingency.

Fig. 10. Empirical cumulative distribution of branch loadability ratio, shown for various levels of branch removal contingency.
Devices are available to statically or dynamically modulate a branch’s impedance [57].

4) When degraded system conditions were considered by permitting branch removals, loadabilities increased markedly, although remaining quite widely distributed.

VI. CONCLUSION

This article deployed an optimization procedure to determine the maximum power flow that each branch in an electrical network could be exposed to. On the six test systems considered, it was found that under intact network conditions, most branches could never be loaded beyond their thermal limits, even under the most onerous generation and demand scenarios. Conversely, a small set of branches could generally be loaded to very high levels, consistent with the long-tailed nature of this phenomenon. An index of branch radiality was proposed to explore the effect of branch meshing, although results here were inconclusive. Future work may consider how a branch’s reactance should be aligned with its thermal capacity to better mitigate congestion.

ACKNOWLEDGMENT

The author acknowledges the contributions of Dr. P. G. Thakurta, Dr. A. Soroudi, and Prof. A. Keane at earlier stages of this article, and the assistance of Ms. C. Cuffe with the statistical distribution fitting. The opinions, findings, and conclusions or recommendations expressed in this article are those of the author and do not necessarily reflect the views of the SFI.

REFERENCES

[1] B. K. Sovacool, D. Nugent, and A. Gilbert, “Construction cost overruns and electricity infrastructure: An unavoidable risk?” *Electricity J.*, vol. 27, no. 4, pp. 112–120, 2014.

[2] B. K. Sovacool, A. Gilbert, and D. Nugent, “Risk, innovation, electricity infrastructure and construction cost overruns: Testing six hypotheses,” *Energy*, vol. 74, pp. 906–917, 2014.

[3] H. Wan, J. D. McCalley, and V. Vittal, “Increasing thermal rating by risk analysis,” *IEEE Trans. Power Syst.*, vol. 14, no. 3, pp. 815–828, Aug. 1999.

[4] M. H. Haque, “Determination of steady-state voltage stability limit using P-Q curve,” *IEEE Power Eng. Rev.*, vol. 22, no. 4, pp. 71–72, Apr. 2002.

[5] R. Prada and L. J. Souza, “Voltage stability and thermal limit: Constraints on the maximum loading of electrical energy distribution feeders,” *IET Gener. Transmiss. Distrib.*, vol. 145, no. 5, pp. 573–577, 1998.

[6] “Congestion management in competitive power market: A bibliographical survey,” *Electric Power Syst. Res.*, vol. 76, no. 1, pp. 153–164, 2005.

[7] F. Wu, F. Zheng, and F. Wen, “Transmission investment and expansion planning in a restructured electricity market,” *Energy*, vol. 31, no. 6, pp. 954–966, 2006.

[8] O. B. Tor, A. N. Guven, and M. Shahidehpour, “Congestion-driven transmission planning considering the impact of generator expansion,” *IEEE Trans. Power Syst.*, vol. 23, no. 2, pp. 781–789, May 2008.

[9] E. B. Fisher, R. P. O’Neill, and M. C. Ferris, “Optimal transmission switching,” *IEEE Trans. Power Syst.*, vol. 23, no. 3, pp. 1346–1355, Aug. 2008.

[10] M. Khanabadi, Y. Fu, and C. Liu, “Decentralized transmission line switching for congestion management of interconnected power systems,” *IEEE Trans. Power Syst.*, vol. 33, no. 6, pp. 5902–5912, Nov. 2018.

[11] T. Jibiki, E. Sakakibara, and S. Iwamoto, “Line flow sensitivities of line reactances for congestion management,” in *Proc. IEEE Power Eng. Soc. Gen. Meeting*, 2007, pp. 1–6.

[12] D. M. Divan et al., “A distributed static series compensator system for realizing active power flow control on existing power lines,” *IEEE Trans. Power Del.*, vol. 22, no. 1, pp. 642–649, Jan. 2007.

[13] X. Zhang et al., “Allocation of a variable series reactor considering ac constraints and contingencies,” *CSEE J. Power Energy Syst.*, vol. 5, no. 1, pp. 63–72, 2019.

[14] A. A. P. da Silva and J. M. de BarrosBezerz, “A model for uprating transmission lines by using HTLS conductors,” *IEEE Trans. Power Del.*, vol. 26, no. 4, pp. 2180–2188, Oct. 2011.

[15] P. Marannino, P. Bresesti, A. Garavaglia, F. Zanellini, and R. Vailati, “Assessing the transmission transfer capability sensitivity to power system parameters,” in *Proc. 14th Power Syst. Comput. Conf.*, 2002, pp. 1–7.

[16] J.-R. Riba, S. Bogarra, A. Gómez-Pau, and M. Moreno-Eguílaz, “Uprating of transmission lines by means of HTLS conductors for a sustainable growth: Challenges, opportunities, and research needs,” *Renewable Sustain. Energy Rev.*, vol. 134, 2020, Art. no. 110334.

[17] G. Cegnioni, P. Tournebise, M. Ruiz, and P. Panciatichi, “Grid operation-based outage maintenance planning,” *Electric Power Syst. Res.*, vol. 190, 2021, Art. no. 106682. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378779620304855.

[18] B. Stott, J. Jardim, and O. Alsac, “DC power flow revisited,” *IEEE Trans. Power Del.*, vol. 24, no. 3, pp. 1290–1300, Aug. 2009.

[19] A. P. da Silva and J. M. de BarrosBezerz, “A model for uprating transmission lines by using HTLS conductors,” *IEEE Trans. Power Del.*, vol. 26, no. 4, pp. 2180–2188, Oct. 2011.

[20] P. Cuffe, “Optimization and visualization tools for situational awareness in highly renewable power systems,” in *Proc. 6th IEEE Int. Energy Conf.*, 2020, pp. 930–933.

[21] L. L. Garver, P. R. V. Horne, and K. A. Wirgau, “Load supplying capability of generation-transmission networks,” *IEEE Trans. Power App. Syst.*, vol. PAS-98, no. 3, pp. 957–962, May 1979.

[22] E. Chiodo, A. Losi, R. Mongelluzzo, and F. Rossi, “Capability chart for electrical power systems,” *IET Gener. Transmiss. Distrib.*, vol. 139, no. 1, pp. 71–75, 1992.

[23] P. Cuffe, P. Smith, and A. Keane, “Capability chart for distributed reactive power resources,” *IEEE Trans. Power Syst.*, vol. 29, no. 1, pp. 15–22, Jan. 2014.

[24] S. Avvedidi and X. Yu, “A maximum-flow-based complex network approach for power system vulnerability analysis,” *IEEE Trans. Ind. Informat.*, vol. 9, no. 1, pp. 81–88, Feb. 2013.

[25] L. C. Freeman, “A set of measures of centrality based on betweenness,” *Sociometry*, vol. 40, no. 1, pp. 35–41, 1977.

[26] L. C. Freeman, S. P. Borgatti, and D. R. White, “Centrality in valued graphs: A measure of betweenness based on network flow,” *Social Netw.*, vol. 13, no. 2, pp. 141–154, 1991.
[27] J. Fang, C. Su, Z. Chen, H. Sun, and P. Lund, “Power system structural vulnerability assessment based on an improved maximum flow approach,” IEEE Trans. Smart Grid, vol. 9, no. 2, pp. 777–785, Mar. 2018.

[28] A. Albarakati and M. Biktash, “Vulnerabilities of power grid due to line failures based on power traffic centrality of the line graph,” in Proc. SoutheastCon, 2018, pp. 1–7.

[29] R. Espejo, S. Lumbreras, A. Ramos, T. Huang, and E. Bompad, “An extended metric for the analysis of power-network vulnerability: The line electrical centrality,” in Proc. IEEE Milan PowerTech, 2019, pp. 1–5.

[30] “A measure of betweenness centrality based on random walks,” Social Netw., vol. 27, no. 1, pp. 39–54, 2005.

[31] P. Crucitti, V. Latora, and S. Porta, “Centrality measures in spatial networks of urban streets,” Phys. Rev. E, vol. 73, 2006, Art. no. 036125.

[32] “Structural vulnerability of power systems: A topological approach,” Elect. Power Syst. Res., vol. 81, no. 7, pp. 1334–1340, 2011.

[33] P. Hines and S. Blumsack, “A centrality measure for electrical networks,” in Proc. 41st Annu. Hawaii Int. Conf. Syst. Sci., Jan. 2008, pp. 185–185.

[34] “Randomized flow model and centrality measure for electrical power transmission network analysis,” Rel. Eng. Syst. Saf., vol. 95, no. 4, pp. 379–385, 2010.

[35] K. Wang, B. Han Zhang, Z. Zhang, X. Gen Yin, and B. Wang, “An electrical betweenness approach for vulnerability assessment of power grids considering the capacity of generators and load,” Physica A: Stat. Mechanics Its Appl., vol. 390, no. 23, pp. 4692–4701, 2011.

[36] P. Cuffe, “A comparison of malicious interdiction strategies against electrical networks,” IEEE Trans. Emerg. Sel. Topics Circuits Syst., vol. 7, no. 2, pp. 205–217, Jun. 2017.

[37] T. Verma, W. Ellens, and R. E. Kooij, “Context-independent centrality measures underestimate the vulnerability of power grids,” Int. J. Crit. Infrastructures, vol. 7, no. 1, pp. 62–81, 2015.

[38] P. Cuffe and A. Keane, “Novel branch centrality measures for electrical power systems considering both load-serving and circulating currents,” in Proc. 6th IEEE Int. Energy Conf., 2020, pp. 707–712.

[39] S. M. Abdelkader, D. J. Morrow, and A. J. Conejo, “Network usage determination using a transformer analogy,” IET Gener. Transmiss. Distrib., vol. 8, no. 1, pp. 81–90, 2014.

[40] G. A. Orfanos, P. S. Georgilakis, and N. D. Hatziargyriou, “A more fair power flow based transmission cost allocation scheme considering maximum line loading for N-1 security,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 3344–3352, Aug. 2013.

[41] E. Cotilla-Sanchez, P. D. H. Hines, C. Barrows, and S. Blumsack, “Comparing the topological and electrical structure of the North American electric power infrastructure,” IEEE Syst. J., vol. 6, no. 4, pp. 616–626, Dec. 2012.

[42] P. Hines, E. Cotilla-Sanchez, and S. Blumsack, “Do topological models provide good information about electricity infrastructure vulnerability?” Chaos: Interdisciplinary J. Nonlinear Sci., vol. 20, no. 3, 2010, Art. no. 035122. [Online]. Available: https://doi.org/10.1063/1.3489887

[43] G. A. Pagani and M. Aiello, “The power grid as a complex network: A survey,” Physica A: Stat. Mechanics Its Appl., vol. 392, no. 11, pp. 2688–2700, 2013.

[44] H. R. Baghaee, M. Mirdamal, and G. B. Gharehpetian, “Power calculation using RBF neural networks to improve power sharing of hierarchical control scheme in multi-DER microgrids,” IEEE Trans. Emerg. Sel. Topics Power Elec., vol. 4, no. 4, pp. 1217–1225, Dec. 2016.

[45] F. Capitanescu, “Critical review of recent advances and further developments needed in ac optimal power flow,” Elect. Power Syst. Res., vol. 136, pp. 57–66, 2016.

[46] F. Capitanescu et al., “State-of-the-art, challenges, and future trends in security constrained optimal power flow,” Elect. Power Syst. Res., vol. 81, no. 8, pp. 1731–1741, 2011.

[47] R. D. Christie, B. F. Wollenberg, and I. Wagensteern, “Transmission management in the deregulated environment,” Proc. IEEE, vol. 88, no. 2, pp. 170–195, Feb. 2000.

[48] M. Papagelis, “Refining social graph connectivity via shortcut edge addition,” ACM Trans. Knowl. Discovery Data, vol. 10, no. 2, Oct. 2015, Art. no. 12.

[49] R. D. Zimmerman, C. M. Murillo-Sánchez, and R. J. Thomas, “MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education,” IEEE Trans. Power Syst., vol. 26, no. 1, pp. 12–19, Feb. 2011.

[50] J. Lofberg, “YALMIP: A toolbox for modeling and optimization in MATLAB,” in Proc. IEEE Int. Conf. Robot. Autom., Sep. 2004, pp. 284–289.

[51] L. Gurobi Optimization, “Gurobi Optimizer Reference Manual,” 2020. [Online]. Available: http://www.gurobi.com

[52] C. Coffrin, D. Gordon, and P. Scott, “NESTA, the NICTA energy system test case archive,” 2014. [Online]. Available: https://arxiv.org/abs/1411.0359.

[53] J. Lin, F. Kahrl, and X. Liu, “A regional analysis of excess capacity in China’s power systems,” Resour. Conservation, Recycling, vol. 129, pp. 93–101, Feb. 2018, doi: 10.1016/j.resconrec.2017.10.009.

[54] P. Cuffe, “Raw data and scripts from maximising branch power flows as a descriptive structural metric for electrical networks,” Figshare, 2021, doi: 10.6084/M9.FIGSHARE.12656738.V1.

[55] P. Cuffe, “Assortativity anomalies in a large test system,” in IEEE Trans. Power Syst., vol. 31, no. 5, pp. 4169–4170, Sep. 2016, doi: 10.1109/TPWRS.2015.2499700.

[56] P. Cuffe and A. Keane, “Visualizing the electrical structure of power systems,” IEEE Syst. J., vol. 11, no. 3, pp. 1810–1821, Sep. 2017.

[57] M. Sahraei-Ardakani and K. W. Hedman, “A fast LP approach for enhanced utilization of variable impedance based facts devices,” IEEE Trans. Power Syst., vol. 31, no. 3, pp. 2204–2213, May 2016.