ON COMPACT HYPERBOLIC MANIFOLDS OF EULER CHARACTERISTIC TWO

VINCENT EMERY

Dedicated to the memory of Colin Maclachlan

ABSTRACT. We prove that for \(n > 4 \) there is no compact arithmetic hyperbolic \(n \)-manifold whose Euler characteristic has absolute value equal to 2. In particular, this shows the nonexistence of arithmetically defined hyperbolic rational homology \(n \)-sphere with \(n \) even different than 4.

1. MAIN RESULT AND DISCUSSION

1.1. Smallest hyperbolic manifolds. Let \(\mathbb{H}^n \) be the hyperbolic \(n \)-space. By a hyperbolic \(n \)-manifold we mean an orientable manifold \(M = \Gamma \backslash \mathbb{H}^n \), where \(\Gamma \) is a torsion-free discrete subgroup \(\Gamma \subset \text{Isom}^+ (\mathbb{H}^n) \). The set of volumes of hyperbolic \(n \)-manifolds being well ordered, it is natural to try to determine for each dimension \(n \) the hyperbolic manifolds of smallest volume. For \(n = 3 \) this problem has recently been solved in [15], the smallest volume being achieved by a unique compact manifold, the Weeks manifold. When \(n \) is even the volume is proportional to the Euler characteristic, and this allows to formulate the problem in terms of finding the hyperbolic manifolds \(M \) with smallest \(|\chi(M)|\). In particular this observation solves the problem in the case of surfaces. For \(n > 3 \), noncompact hyperbolic \(n \)-manifolds \(M \) with \(|\chi(M)| = 1 \) have been found for \(n = 4, 6 \) [14].

In the present paper we consider the case of compact manifolds of even dimension. In particular, such manifolds have even Euler characteristic (see [17, Theorem 1.2]). We restrict ourselves to the case of arithmetic manifolds, where Prasad’s formula [20] can be used to study volumes. We complete the proof of the following result.

Theorem 1. Let \(n > 5 \). There is no compact arithmetic manifold \(M = \Gamma \backslash \mathbb{H}^n \) with \(|\chi(M)| = 2 \).

The result for \(n > 10 \) already follows from the work of Belolipetsky [4, 5], also based on Prasad’s volume formula. More precisely, Belolipetsky determined the smallest Euler characteristic \(|\chi(\Gamma)|\) for arithmetic orbifold quotients \(\Gamma \backslash \mathbb{H}^n \) (\(n \) even). This smallest value grows fast with the dimension \(n \), and for compact quotients we have \(|\chi(\Gamma)| > 2 \) for \(n > 10 \). That the
result of nonexistence holds for \(n \) high enough is already a consequence of Borel-Prasad’s general finiteness result [9], which was the first application of Prasad’s formula. The proof of Theorem 1 for \(n = 6,8,10 \) requires a more precise analysis of the Euler characteristic of arithmetic subgroups \(\Gamma \subset \text{PO}(n,1) \), and in particular of the special values of Dedekind zeta functions that appear as factors of \(\chi(\Gamma) \).

For \(n = 4 \), the corresponding problem is not solved, but there is the following result [5].

Theorem 2 (Belolipetsky). If \(M = \Gamma \backslash \mathbb{H}^4 \) is a compact arithmetic manifold with \(\chi(M) \leq 16 \), then \(\Gamma \) arises as a (torsion-free) subgroup of the following hyperbolic Coxeter group:

\[
W_1 = \begin{array}{c}
\circ & \circ & \circ & \circ & \circ \\
\end{array} \]

An arithmetic (orientable) hyperbolic 4-manifold of Euler characteristic 16 has been first constructed by Conder and Maclachlan in [12], using the presentation of \(W_1 \) to obtain a torsion-free subgroup with the help of a computer. Further examples with \(\chi(M) = 16 \) have been obtained by Long in [18] by considering a homomorphism from \(W_1 \) onto the finite simple group \(\text{PSp}_4(4) \).

1.2. **Hyperbolic homology spheres.** Our original motivation for Theorem 1 was the problem of existence of hyperbolic homology spheres. A **homology n-sphere** (resp. **rational homology n-sphere**) is a \(n \)-manifold \(M \) that possesses the same integral (resp. rational) homology as the \(n \)-sphere \(S^n \). This forces \(M \) to be compact and orientable.

Rational homology \(n \)-spheres \(M \) have \(\chi(M) = 2 \) if \(n \) is even. On the other hand, for \(M = \Gamma \backslash \mathbb{H}^n \) with \(n = 4k + 2 \) we have \(\chi(M) < 0 \) (cf. [25, Proposition 23]), and this exclude the possibility of hyperbolic rational homology spheres for those dimensions. For \(n \) even, Wang’s finiteness theorem [28] implies that there is only a finite number of hyperbolic rational homology \(n \)-spheres. Theorem 1 shows the nonexistence of arithmetic rational homology spheres for \(n > 5 \) even.

For odd dimensions, \(\chi(M) = 0 \) and \textit{a priori} the volume is not a limitation for the existence of hyperbolic (rational) homology spheres. In fact, an infinite tower of covers by hyperbolic integral homology 3-spheres has been constructed by Baker, Boileau and Wang in [3]. In [10] Calegari and Dunfield constructed an infinite tower of hyperbolic rational homology 3-spheres that are arithmetic and obtained by congruence subgroups. Note that a recent conjecture of Bergeron and Venkatesh predicts a lot of torsion in the homology groups of such a “congruence tower” of arithmetic \(n \)-manifolds with \(n \) odd [7].

1.3. **Locally symmetric homology spheres.** Instead of considering hyperbolic homology spheres, one can more generally look for homology spheres
that are locally isometric to a given symmetric space of nonpositive nonflat sectional curvature. Such a symmetric space \(X \) is called of noncompact type, and it is classical that \(X \) can be written as \(G/K \), where \(G \) is a connected real semisimple Lie group with trivial center with \(K \subset G \) a maximal compact subgroup. Moreover, \(G \) identifies as a finite index subgroup in the group of isometries of \(X \) (of index two if \(G \) is simple).

Let us explain why the case \(X = H^n \) is the main source of locally symmetric rational homology spheres (among \(X \) of noncompact type). Let \(M \) be a compact orientable manifold locally isometric to \(X \). Then \(M \) can be written as \(\Gamma \backslash X \), where \(\Gamma \cong \pi_1(M) \) is a discrete subgroup of isometries of \(X \). We will suppose that \(\Gamma \subset G \), for \(G \) as above. Let \(X_u \) be the compact dual of \(X \). We have the following general result (see [8, Sections 3.2 and 10.2]).

Proposition 3. For each \(j \) there is an injective homomorphism \(H^j(X_u, \mathbb{C}) \to H^j(\Gamma \backslash X, \mathbb{C}) \).

In particular, if \(\Gamma \backslash X \) is a rational homology sphere, then so is \(X_u \). Note that the compact dual of \(X = H^n \) is the genuine sphere \(S^n \). By looking at the classification of compact symmetric spaces, Johnson showed the following in [16, Theorem 7].

Corollary 4. If \(M = \Gamma \backslash X \) is a rational homology \(n \)-sphere with \(\Gamma \subset G \), then \(X \) is either the hyperbolic \(n \)-space \(H^n \) (with \(n \neq 4k + 2 \)), or \(X = \text{PSL}_3(\mathbb{R})/\text{PSO}(3) \) (which has dimension 5).

Proposition 3 shows that the correct problem to look at – rather than homology spheres – is the existence of locally symmetric spaces \(\Gamma \backslash X \) with the same (rational) homology as the compact dual \(X_u \). When \(X \) is the complex hyperbolic plane \(H^2_C \), the compact dual is the projective plane \(P^2_C \), and the quotients \(\Gamma \backslash X \) are compact complex surfaces called fake projective planes. Their classification was recently obtained by the work of Prasad–Yeung [21], together with Cartwright–Steger [11] who performed the necessary computer search. Later, Prasad and Yeung also considered the problem of the existence of more general arithmetic fake Hermitian spaces [22, 23].

The present paper uses the same methodology as in Prasad and Yeung’s work, the main ingredient being the volume formula.

Acknowledgements. It is a pleasure to thank Gopal Prasad, who suggested this research project.

2. **Proof of Theorem 1**

Let \(G = \text{PO}(n,1)^{\circ} \cong \text{Isom}^+(H^n) \), and consider the universal covering \(\phi : \text{Spin}(n,1) \to G \). For our purpose it will be easier to work with lattices in \(\text{Spin}(n,1) \). A lattice \(\Gamma \subset G \) is arithmetic exactly when \(\Gamma = \phi^{-1}(\Gamma) \) is an arithmetic subgroup of \(\text{Spin}(n,1) \). Since the covering \(\phi \) is twofold, we have \(\chi(\Gamma) = \frac{1}{2} \chi(\Gamma) \), where \(\chi \) is the Euler characteristic in the sense of C.T.C. Wall. In particular, if \(M = \Gamma \backslash H^n \) is a manifold with \(|\chi(M)| = 2 \), then \(|\chi(\Gamma)| = 1 \).
Thus, Theorem 1 is an obvious consequence of the following proposition. The proof relies on the description of arithmetic subgroups with the help of Bruhat-Tits theory, as done for instance in [9] and [20]. An introduction can be found in [13]. We also refer to [27] for the needed facts from Bruhat-Tits theory.

Proposition 5. Let $n > 4$. There is no cocompact arithmetic lattice $\Gamma \subset \text{Spin}(n,1)$ such that $\chi(\Gamma)$ is a reciprocal integer, i.e., such that $\chi(\Gamma) = 1/q$ for some $q \in \mathbb{Z}$.

Proof. We can assume that n is even. Let $\Gamma \subset \text{Spin}(n,1)$ be a cocompact lattice. Clearly, it suffices to prove the proposition for Γ maximal. In this case, Γ can be written as the normalizer $\Gamma = N_{\text{Spin}(n,1)}(\Lambda)$ of some principal arithmetic subgroup Λ (see [9, Proposition 1.4]). By definition, there exists a number field $k \subset \mathbb{R}$ and a k-group G with $G(\mathbb{R}) \cong \text{Spin}(n,1)$ such that $\Lambda = G(k) \cap \prod_{v \in V_f} P_v$, for some coherent collection $(P_v)_{v \in V_f}$ of parahoric subgroups $P_v \subset G(k_v)$ (indexed by the set V_f of finite places of k). It follows from the classification of algebraic groups (cf. [26]) that G is of type B_r with $r = n/2$ (> 2), the field k is totally real, and (using Godement’s criterion) $k \neq \mathbb{Q}$. Let us denote by d the degree $[k : \mathbb{Q}]$.

Let $T \subset V_f$ be the set of places where P_v is not hyperspecial. By Prasad’s volume formula (see [20] and [9, Section 4.2]), we have:

$$|\chi(\Lambda)| = 2|D_k| r^2 + r/2 C(r)^d \prod_{j=1}^{r} \frac{\zeta_k(2j)}{\prod_{v \in T} \lambda_v},$$

with D_k (resp. ζ_k) the discriminant (resp. Dedekind zeta function) of k; the constant $C(r)$ is given by

$$C(r) = \prod_{j=1}^{r} \frac{(2j - 1)!}{(2\pi)^{2j}};$$

and each λ_v is given by the formula

$$\lambda_v = \frac{1}{(q_v)^{(\dim M_v - \dim M_v^0)/2}} \frac{|\mathcal{M}(f_v)|}{|\mathcal{M}_v(f_v)|},$$

where f_v is the residue field of k_v, of size q_v, and the reductive f_v-groups M_v and \mathcal{M}_v associated with P_v are those described in [20]. By definition M_v is semisimple of type B_r.

A necessary condition for $\Gamma = N_{G(\mathbb{R})}(\Lambda)$ to be maximal is that each P_v defining Λ has maximal type in the sense of [24]. We list in Table 1 the factors λ_v corresponding to parahoric subgroups P_v of maximal types (to improve the readability we set $q_v = q$ in the formulas). This list of maximal type and the formulas for λ_v are essentially the same as in [4, Table 1]: the only difference is a factor 2 in the denominator of some λ_v, which can be explained from the fact that Belolipetskii did not work with G simply connected.
ON COMPACT HYPERBOLIC MANIFOLDS OF EULER CHARACTERISTIC TWO

\[\begin{array}{lll}
 \mathbf{G}/k_v & \text{isogeny type of } \mathbf{M}_v & \lambda_v \\
 \text{split:} & B_{r-1} \times (\text{split } \text{GL}_1) & \frac{q^{2r-1}}{q-1} \\
 & D_i \times B_{r-i} \ (i = 2, \ldots, r-1) & \frac{(q+1)^i \prod_{k=1}^{i+1} (q^{2k}-1)}{\prod_{k=1}^{i-1} (q^{2k}-1)} \\
 & 1D_r & q^r + 1 \\
 \text{non-split:} & B_{r-1} \times (\text{nonsplit } \text{GL}_1) & \frac{q^{2r-1}}{q+1} \\
 & 2D_{i+1} \times B_{r-i-1} \ (i = 1, \ldots, r-2) & \frac{(q^{i+1}-1)^k \prod_{k=1}^{i+2} (q^{2k}-1)}{\prod_{k=1}^{i-1} (q^{2k}-1)} \\
 & 2D_r & q^r - 1 \\
\end{array} \]

Table 1. \(\lambda_v \) for \(P_v \) of maximal type

From [9, Section 5] (cf. also [13, Chapter 12]) we can deduce that the index \([\Gamma : \Lambda]\) of \(\Lambda \) in its normalizer has the following property:

\[[\Gamma : \Lambda] \text{ divides } h_k 2^d 4^{#T}. \] (5)

Moreover, a case by case analysis of the possible factor \(\lambda_v \) shows that \(\lambda_v > 4 \), so that \(4^{-#T} \prod_{v \in T} \lambda_v \geq 1 \) (with equality exactly when \(T \) is empty). We thus have the following lower bound for the Euler characteristic of any maximal arithmetic subgroup \(\Gamma \subset \text{Spin}(n,1) \):

\[|\chi(\Gamma)| \geq \frac{2}{h_k} \left(\frac{C(r)}{2} \right)^d |D_k|^{r^2 + r/2} \zeta_k(2) \cdots \zeta_k(2r) \] (6)

We make use of the following upper bound for the class number (see for instance [6, Section 7.2]):

\[h_k \leq 16 \left(\frac{\pi}{12} \right)^d |D_k|, \] (7)

which together with the basic inequality \(\zeta_k(2j) > 1 \) transforms (6) into

\[|\chi(\Gamma)| > \frac{1}{8} \left(\frac{6 \cdot C(r)}{\pi} \right)^d |D_k|^{r^2 + r/2 - 1}. \] (8)

Moreover, according to [19, Table 4], we have that for a degree \(d \geq 5 \) the discriminant of \(k \) is larger than \((6.5)^d \). With this estimates we can check that for \(r \geq 3 \) and \(d \geq 5 \) we have \(|\chi(\Gamma)| > 1 \). For the lower degrees, if we suppose that \(|\chi(\Gamma)| \leq 1 \), we obtain upper bounds for \(|D_k| \) from Equation (8). This upper bounds exclude the existence of such a \(\Gamma \) for \(r \geq 6 \) (which is already clear from the work of Belolipetsky [4]). For \(r = 3 \) (where the
The special values of ζ_k can be computed with the software Pari/GP (cf. Remark 6). We list in Table 2 the values we need. We check that for every field k under consideration a prime factor > 2 appear in the numerator of the product $\prod_{j=1}^{m} |\zeta_k(1 - 2j)|$. A direct computation for $r = 3, 4, 5$ shows that the formula in Table 1 is actually given by a polynomial in q (this seems to hold for any r). In particular, we always have $\lambda_v \in \mathbb{Z}$, and we conclude from (9) that $|\chi(\Gamma)|$ cannot be a reciprocal integer.

Remark 6. The function `zetak` in Pari/GP allows to obtain approximate values for $\zeta_k(1 - 2j)$. On the other hand the size of the denominator of the product $\prod_{j=1}^{m} |\zeta_k(1 - 2j)|$ can be bounded by the method described in [25, Section 3.7]. By recursion on m, this allows to ascertain that the values $\zeta_k(1 - 2j)$ correspond exactly to the fractions given in Table 2.

Remark 7. The fact that for $|D_k| = 5$ the value $\zeta_k(-1)\zeta_k(-3)$ has trivial numerator explains why the proof fails for $n = 4$ (i.e., $r = 2$). And indeed

| degree | $|D_k|$ | $\zeta_k(-1)$ | $\zeta_k(-3)$ | $\zeta_k(-5)$ | $\zeta_k(-7)$ | $\zeta_k(-9)$ |
|--------|--------|----------------|----------------|----------------|----------------|----------------|
| $d = 2$ | 5 | $1/30$ | $1/60$ | $67/630$ | $361/120$ | $412751/1650$ |
| | 8 | $1/12$ | $11/120$ | $361/252$ | $24611/240$ | |
| | 12 | $1/6$ | $23/60$ | $1681/126$ | | |
| | 13 | $1/6$ | $29/60$ | $33463/1638$ | | |
| | 17 | $1/3$ | $41/30$ | $5791/63$ | | |
| $d = 3$ | 49 | $-1/21$ | $79/210$ | $-7393/63$ | | |
| | 81 | $-1/9$ | $199/90$ | $-50353/27$ | | |

Table 2. Special values of ζ_k
there is a principal arithmetic subgroup $\Gamma \subset \text{Spin}(4,1)$ with $|\chi(\Gamma)| = 1/14400$ and whose image in $\text{Isom}^+(H^4)$ is contained as an index 2 subgroup of the Coxeter group W_1. On the other hand, for $|D_k| > 5$ the appearance of a non-trivial numerator in $\zeta_k(-3)$ shows – at least for the fields considered in Table 2 – the impossibility of a Γ defined over k with $\chi(\Gamma)$ a reciprocal integer. This is the first step in Belolipetsky’s proof of Theorem 2.

REFERENCES

1. The Bordeaux database, ftp://megrez.math.u-bordeaux.fr/pub/numberfields.
2. QaoS online database, http://qaos.math.tu-berlin.de.
3. Mark Baker, Michel Boileau, and Shicheng Wang, Towers of covers of hyperbolic 3-manifolds, Rend. Istit. Mat. Univ. Trieste 32 (2001), no. Suppl. 1, 35–43.
4. Mikhail Belolipetsky, On volumes of arithmetic quotients of $SO(1,n)$, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 3 (2004), no. 4, 749–770.
5. , Addendum to : On volumes of arithmetic quotients of $SO(1,n)$, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), no. 2, 263–268.
6. Mikhail Belolipetsky and Vincent Emery, On volumes of arithmetic quotients of $PO(n,1)^{n}$, n odd, Proc. Lond. Math. Soc. (3) 105 (2012), no. 3, 541–570.
7. Nicolas Bergeron and Akshay Venkatesh, The asymptotic growth of torsion homology for arithmetic groups, J. Inst. Math. Jussieu, to appear, preprint arXiv:1104.1083.
8. Armand Borel, Stable real cohomology of arithmetic groups, Ann. Sci. Éc. Norm. Supér. (4) 7 (1974), no. 2, 235–272.
9. Armand Borel and Gopal Prasad, Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 119–171.
10. Frank Calegari and Nathan M. Dunfield, Automorphic forms and rational homology 3-spheres, Geom. Topol. 10 (2006), 295–329.
11. Donald I. Cartwright and Tim Steger, Enumeration of 50 fake projective planes, C. R. Math. Acad. Sci. Paris 348 (2010), 11–13.
12. Marston Conder and Colin Maclachlan, Compact hyperbolic 4-manifolds of small volume, Proc. Amer. Math. Soc. 133 (2005), no. 8, 2469–2476.
13. Vincent Emery, Du volume des quotients arithmétiques de l’espace hyperbolique, Ph.D. thesis, University of Fribourg, 2009.
14. Brent Everitt, John G. Ratcliffe, and Steven T. Tschantz, Right-angled Coxeter polytopes, hyperbolic six-manifolds, and a problem of Siegel, Math. Ann. 354 (2012), no. 3, 871–905.
15. David Gabai, Robert Meyerhoff, and Peter Milley, Minimum volume cusped hyperbolic three-manifolds, J. Amer. Math. Soc. 22 (2009), no. 4, 1157–1215.
16. Francis E.A. Johnson, Locally symmetric homology spheres and an application of matsushima’s formula, Math. Proc. Cambridge Philos. Soc. 91 (1982), no. 3, 459–466.
17. Ruth Kellerhals and Thomas Zehrt, The Gauss-Bonnet formula for hyperbolic manifolds of finite volume, Geom. Dedicata 84 (2001), 49–62.
18. Cormac Long, Small volume closed hyperbolic 4-manifolds, Bull. London Math. Soc. 40 (2008), no. 5, 913–916.
19. A. M. Odlzyko, Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results, Séminaire de théorie des nombres de Bordeaux (série II) 2 (1990), no. 1, 119–141.
20. Gopal Prasad, Volumes of S-arithmetic quotients of semi-simple groups, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 91–117.
21. Gopal Prasad and Sai-Kee Yeung, Fake projective planes, Invent. Math. 168 (2007), 321–370.
22. ______, Arithmetic fake projective spaces and arithmetic fake Grassmanians, Amer. J. Math. 131 (2009), no. 2, 379–407.
23. ______, Nonexistence of arithmetic fake compact Hermitian symmetric spaces of type other than $A_n(n \leq 4)$, J. Math. Soc. Japan 64 (2012), no. 3, 683–731.
24. A. A. Ryzhkov and V.I. Chernousov, On the classification of maximal arithmetic subgroups of simply connected groups, Sbornik: mathematics 188 (1997), no. 9, 1385–1413.
25. Jean-Pierre Serre, Cohomologie des groupes discrets, Prospects in mathematics, Ann. of Math. Stud., vol. 70, Princeton University Press, 1971, pp. 77–169.
26. Jacques Tits, Classification of algebraic semisimple groups, Proc. Sympos. Pure Math., vol. 9, 1966, pp. 33–62.
27. ______, Reductive groups over local fields, Proc. Sympos. Pure Math., vol. 33, 1979, pp. 29–69.
28. Hsien-Chung Wang, Topics on totally discontinuous groups, Symmetric spaces (W. Boothby and G. Weiss, eds.), Pure Appl. Math., vol. 8, M. Dekker, 1972, pp. 459–487.

Department of Mathematics, Stanford University, California 94305, USA
E-mail address: vincent.emery@gmail.com