Compact gradient ρ-Einstein soliton is isometric to the Euclidean sphere

Absos Ali Shaikh · Chandan Kumar Mondal · Prosenjit Mandal

Received: 22 August 2019 / Accepted: 5 December 2019 / Published online: 5 July 2021 © The Indian National Science Academy 2021

Abstract In this paper, we have investigated some aspects of gradient ρ-Einstein Ricci soliton in a complete Riemannian manifold. First, we have proved that the compact gradient ρ-Einstein soliton satisfying some curvature conditions is isometric to the Euclidean sphere by showing that the scalar curvature becomes constant. Second, we have shown that in a non-compact gradient ρ-Einstein soliton satisfying an integral condition, the scalar curvature vanishes.

Keywords Gradient ρ-Einstein Ricci soliton · Scalar curvature · Riemannian manifold

Mathematics Subject Classification 53C20 · 53C21 · 53C44

1 Introduction and preliminaries

A 1-parameter family of metrics $\{g(t)\}$ on a Riemannian manifold M, defined on some time interval $I \subset \mathbb{R}$ is said to satisfy Ricci flow if it satisfies

$$\frac{\partial}{\partial t} g_{ij} = -2R_{ij},$$

where R_{ij} is the Ricci curvature with respect to the metric g_{ij}. Hamilton [8] proved that for any smooth initial metric $g(0) = g_0$ on a closed manifold, there exists a unique solution $g(t)$, $t \in [0, \epsilon)$, to the Ricci flow equation for some $\epsilon > 0$. A solution $g(t)$ of the Ricci flow of the form
\[g(t) = \sigma(t) \varphi(t)^* g(0), \]

where \(\sigma : \mathbb{R} \to \mathbb{R} \) is a positive function and \(\varphi(t) : M \to M \) is a 1-parameter family of diffeomorphisms, is called a Ricci soliton. It is known that if the initial metric \(g_0 \) satisfies the equation

\[
\text{Ric}(g_0) + \frac{1}{2} L_X g_0 = \lambda g_0,
\]

(1)

where \(\lambda \) is a constant and \(X \) is a smooth vector field on \(M \), then the manifold \(M \) admits Ricci soliton. Therefore, the equation (1), in general, is known as the Ricci soliton. If \(X \) is the gradient of some smooth function, then it is called gradient Ricci soliton. For more results of Ricci soliton, see [2, 6, 7]. In 1979, Bourguignon [1] introduced the notion of Ricci-Bourguignon flow, where the metrics \(g(t) \) is evolving according to the flow equation:

\[
\frac{\partial}{\partial t} g_{ij} = -2R_{ij} + 2\rho R g_{ij},
\]

where \(\rho \) is a non-zero scalar constant and \(R \) is the scalar curvature of the metric \(g(t) \). Following the Ricci soliton, Catino and Mazzier [3] gave the definition of gradient \(\rho \)-Einstein soliton, which is the self-similar solution of Ricci-Bourguignon flow. This soliton is also called gradient Ricci-Bourguignon soliton by some authors.

Definition 1.1 [3] Let \((M, g) \) be a Riemannian manifold of dimension \(n \), \(n \geq 3 \), and let \(\rho \in \mathbb{R} \), \(\rho \neq 0 \). Then \((M, g) \) is called gradient \(\rho \)-Einstein soliton, denoted by \((M, g, f, \rho) \), if there is a smooth function \(f : M \to \mathbb{R} \) such that

\[
\text{Ric} + \nabla^2 f = \lambda g + \rho R g,
\]

(2)

for some constant \(\lambda \).

The soliton is trivial if \(\nabla f \) is a parallel vector field. The function \(f \) is known as \(\rho \)-Einstein potential function. If \(\lambda > 0 \) (resp. \(\lambda < 0 \)), then the gradient \(\rho \)-Einstein soliton \((M, g, f, \rho) \) is said to be shrinking (resp. steady or expanding) . On the other hand, the \(\rho \)-Einstein soliton is called gradient Einstein soliton, gradient traceless Ricci soliton, or gradient Schouten soliton if \(\rho = 1/2 \), \(1/n \) or \(1/2(n-1) \) respectively. Later, this notion has been generalized in various directions such as \(m \)-quasi Einstein manifold [9], \((m, \rho) \)-quasi Einstein manifold [11], Ricci-Bourguignon almost soliton [12].

Catino and Mazzier [3] showed that compact gradient Einstein, Schouten, and traceless Ricci soliton are trivial. They classified three-dimensional gradient shrinking Schouten soliton and proved that it is isometric to a finite quotient of either \(\mathbb{S}^3 \) or \(\mathbb{R}^3 \) or \(\mathbb{R} \times \mathbb{S}^2 \). Huang [10] deduced a sufficient condition for the compact gradient shrinking \(\rho \)-Einstein soliton to be isometric to a quotient of the round sphere \(\mathbb{S}^n \).

Theorem 1.1 [10] Let \((M, g, f, \rho) \) be an \(n \)-dimensional \((4 \leq n \leq 5) \) compact gradient shrinking \(\rho \)-Einstein soliton with \(\rho < 0 \). If the following condition holds

\[
\left(\int_M \left| W + \frac{\sqrt{2}}{\sqrt{n} (n-2)} Z \otimes g \right|^2 \right)^{\frac{2}{n}} + \sqrt{\frac{(n-4)(n-1)}{8(n-2)}} \lambda \text{vol}(M)^{\frac{2}{n}} \leq \sqrt{\frac{n-2}{32(n-1)}} Y(M, [g]),
\]

where \(Z = \text{Ric} - \frac{\rho}{n} g \) is the trace-less Ricci tensor, \(W \) is the Weyl tensor and \(Y(M, [g]) \) is the Yamabe invariant associated to \((M, g) \), then \(M \) is isometric to a quotient of the round sphere \(\mathbb{S}^n \).

In 2019, Mondal and Shaikh [13] proved the isometry theorem for gradient \(\rho \)-Einstein soliton in case of conformal vector field. In particular, they proved the following result:

Theorem 1.2 [13] Let \((M, g, f, \rho) \) be a compact gradient \(\rho \)-Einstein soliton. If \(\nabla f \) is a non-trivial conformal vector field, then \(M \) is isometric to the Euclidean sphere \(\mathbb{S}^n \).
Dwivedi [12] proved an isometry theorem for gradient Ricci-Bourguignon soliton.

Theorem 1.3 [12] A non-trivial compact gradient Ricci-Bourguignon soliton is isometric to an Euclidean sphere if any one of the following holds

1. \(M \) has constant scalar curvature.
2. \(\int_M g(\nabla R, \nabla f) \leq 0 \).
3. \(M \) is a homogeneous manifold.

We note that Catino et al. [4] proved many results for gradient \(q \)-Einstein soliton in non-compact manifold.

Theorem 1.4 [4] Let \((M, g, f, \rho) \) be a complete non-compact gradient shrinking \(q \)-Einstein soliton with \(0 < \rho < 1/2(n-1) \) bounded curvature, non-negative radial sectional curvature, and non-negative Ricci curvature. Then the scalar curvature is constant.

In this paper, we have shown that a non-trivial compact gradient \(q \)-Einstein soliton with a curvature condition is isometric to the Euclidean sphere. The main results of this paper are as follows:

Theorem 1.5 A nontrivial compact gradient \(q \)-Einstein soliton \((M, g, f, \rho) \) of dimension \(n \neq 2 \) with \(|Ric|^2 = \frac{K_n}{n} \) has constant scalar curvature and therefore \(M \) is isometric to an Euclidean sphere.

We have also showed that in a non-compact gradient \(q \)-Einstein soliton satisfying some conditions the scalar curvature vanishes.

Theorem 1.6 Suppose \((M, g, f, \rho) \) is a non-compact gradient non-expanding \(q \)-Einstein soliton with non-negative scalar curvature. If \(\rho > 1/n \) and the \(q \)-Einstein potential function satisfies

\[
\int_{M-B(p,r)} d(x,p)^{-q} f < \infty,
\]

then the scalar curvature vanishes in \(M \).

2 **Proof of the results**

Proof of the Theorem 1.5 Since the gradient \(q \)-Einstein soliton is non-trivial, it follows that \(\rho \neq 1/n \), see [3]. Taking the trace of (2) we get

\[
R + \Delta f = \lambda n + \rho R n.
\]

From the commutative equation, we obtain

\[
\Delta \nabla f = \nabla_i \Delta f + R_{ij} \nabla f.
\]

By using contracted second Bianchi identity, we have

\[
\Delta \nabla f = \nabla_j \nabla_i f = \nabla_j (\lambda g_{ij} + \rho R g_{ij} - R_{ij})
\]

\[
= \nabla_i \left(\rho R - \frac{1}{2} R \right)
\]

and

\[
\nabla_i \Delta f = \nabla_i (\lambda n + \rho R n - R) = \nabla_i (\rho R n - R).
\]

Therefore, (5) yields

\[
(n-1) \rho \nabla_i R - \frac{1}{2} \nabla_i R + R_{ij} \nabla f = 0,
\]

Taking covariant derivative \(\nabla_i \), we get

\[
(n-1) \rho \nabla_i \nabla R - \frac{1}{2} \nabla_i R + \nabla_i R_{ij} \nabla f + R_{ij} \nabla_i \nabla f = 0.
\]

Taking trace in both sides, we obtain
\[
\left(\frac{n-1}{2} + \frac{1}{2} \right) \Delta R + \frac{1}{2} g(\nabla R, \nabla f) + \frac{R}{n} (\lambda n + \rho Rn - R) = 0. \tag{7}
\]

Now integrating using divergence theorem we get
\[
\int_M (\lambda n + \rho Rn - R) = - \int_M ((n-1) \rho + \frac{1}{2}) \Delta R - \frac{n}{2} \int_M g(\nabla R, \nabla f) = \frac{n}{2} \int_M R \nabla f = \frac{n}{2} \int_M (\lambda n + \rho Rn - R).
\]

The above equation is true only if
\[
\int_M (\lambda n + \rho Rn - R) = 0, \tag{8}
\]
which implies
\[
\int_M R \left(R + \frac{\lambda n}{\rho - 1} \right) = 0. \tag{9}
\]

Again integrating (4), we obtain
\[
\int_M \left(R + \frac{\lambda n}{\rho - 1} \right) = 0. \tag{10}
\]

Therefore, (9) and (10) together imply that
\[
\int_M \left(R + \frac{\lambda n}{\rho - 1} \right)^2 = 0.
\]

Hence, \(R = \lambda n/(1 - \rho n) \). Then from Theorem 1.3 we can conclude our result.

\textit{Proof of the Theorem 1.6} \quad From (4) we get
\[
(n \rho - 1) R = \Delta f - \lambda n.
\]

Since \(\lambda \geq 0 \), the above equation implies that
\[
(n \rho - 1) R \leq \Delta f. \tag{11}
\]

Now, we consider the cut-off function, introduced in [5], \(\varphi_r \in C^2_0(B(p, 2r)) \) for \(r > 0 \) such that
\[
\begin{aligned}
0 &\leq \varphi_r \leq 1 & \text{in } B(p, 2r) \\
\varphi_r &= 1 & \text{in } B(p, r) \\
|\nabla \varphi_r|^2 &\leq \frac{C}{r^2} & \text{in } B(p, 2r) \\
\Delta \varphi_r &\leq \frac{C}{r^2} & \text{in } B(p, 2r),
\end{aligned}
\]

where \(C > 0 \) is a constant. Then for \(r \to \infty \), we have \(\Delta \varphi_r^2 \to 0 \) as \(\Delta \varphi_r^2 \leq \frac{C}{r^2} \). Then we calculate
\[
(n \rho - 1) \int_M R \varphi_r^2 \leq \int_M \varphi_r^2 \Delta f = \int_{B(p, 2r) \setminus B(p, r)} f \Delta \varphi_r^2 \tag{12}
\]
\[
\leq \int_{B(p, 2r) \setminus B(p, r)} \frac{C}{r^2} \to 0, \tag{13}
\]
as \(r \to \infty \). Hence, we obtain
\[
(n \rho - 1) \lim_{r \to \infty} \int_{B(p, r)} R \leq 0. \tag{14}
\]

Since \(\rho > 1/n \), it follows that...
\[
\lim_{r \to \infty} \int_{B(r)} R \leq 0.
\]

But \(R \) is non-negative everywhere in \(M \). Therefore, \(R \equiv 0 \) in \(M \). \(\square \)

Acknowledgements The third author gratefully acknowledges to the CSIR(File No.: 09/025(0282)/2019-EMR-I), Govt. of India for financial assistance.

References

1. J. P. Bourguignon, *Ricci curvature and Einstein metrics*. Global differential geometry and global analysis, Berlin, 1979, 42–63, Lecture Notes in Math. **838**, Springer, Berlin, 1981.
2. H. D. Cao, *Recent progress on Ricci solitons*, in: Recent Advances in Geometric Analysis, Adv. Lectures Math., **11** (2010), 1–38.
3. G. Catino and L. Mazzieri, *Gradient Einstein solitons*, Nonlinear Anal., **132** (2016), 66–94.
4. G. Catino and L. Mazzieri and S. Mongodi, *Rigidity of gradient Einstein shrinkers*, Commun. Contemp. Math., **17**(6) (2015), 1–18.
5. J. Cheeger and T. H. Colding, *Lower bounds on Ricci curvature and the almost rigidity of warped products*, Ann. Math., **144**(1) (1996), 189–237.
6. B. Chow and D. Knopf, *The Ricci flow: An introduction, mathematical surveys and monographs*, Amer. Math. Soc., **110**, 2004.
7. F. Q. Fang, J. W. Man and Z. L. Zhang, *Complete gradient shrinking Ricci solitons have finite topological type*, C. R. Acad. Sci. Paris, Ser. I, **346**(1971), 653–656.
8. R. S. Hamilton, *Three-manifolds with positive Ricci curvature*, J. Differ. Geom., **17** (1982), 255–306.
9. Z. Hu, D. Li and J. Xu, *On generalized m-quasi-Ricci curvature*, J. Math. Ann. Appl. **432**(2) (2015), 733–743.
10. G. Huang, *Integral pinched gradient shrinking \(\rho \)-Einstein solitons*, J. Math. Ann. Appl., **451**(2) (2017), 1045–1055.
11. G. Huang and Y. Wei, *The classification of \((m, \rho) \)-quasi-Einstein manifolds*, Ann. Glob. Anal. Geom., **44** (2013), 269–282.
12. S. Dwivedi, *Some results on Ricci-Bourguignon and Ricci-Bourguignon almost solitons*, arXiv:1809.11103.
13. C. K. Mondal and A. A. Shaikh, *Some results on \(\eta \)-Ricci Soliton and gradient \(\rho \)-Einstein soliton in a complete Riemannian manifold*, Comm. Korean Math. Soc., **34**(4) (2019), 1279–1287.