The geometrical structure and electronic properties of trivalent Ho\(^{3+}\) doped Y\(_{2}\)O\(_{3}\) crystals: a first-principles study

Meng Ju, \(^{a,b}\) Lu Pan, \(^{a}\) Chuanzhao Zhang, \(^{a}^{*}\) Yuanyuan Jin, \(^{b}\) Mingmin Zhong, \(^{a}\) Song Li, \(^{c}\) Shichang Li, \(^{d}\) Tie Yang \(^{d}\) and Xiaotian Wang \(^{d}\) \(^{,*}\)

Trivalent rare-earth holmium ion (Ho\(^{3+}\)) doped yttrium oxide (Y\(_{2}\)O\(_{3}\)) has attracted great research interest owing to its unique optoelectronic properties and excellent performances in many new-type laser devices. But the crystal structures of the Ho\(^{3+}\)-doped Y\(_{2}\)O\(_{3}\) system (Y\(_{2}\)O\(_{3}\) : Ho) are still unclear. Here, we have carried out a first-principle study on the structural evolution of the trivalent Ho\(^{3+}\) doped Y\(_{2}\)O\(_{3}\) by using the CALYPSO structure search method. The results indicate that the lowest-energy structure of Ho\(^{3+}\)-doped Y\(_{2}\)O\(_{3}\) possesses a standardized monoclinic P2\(_{1}\) phase. It is found that the doped Ho\(^{3+}\) ion are likely to occupy the sites of Y\(^{3+}\) in the host crystal lattice, forming the [HoO\(_{6}\)]\(^{9-}\) local structure with \(C_{2}\) site symmetry. Electronic structure calculations reveal that the band gap value of Ho\(^{3+}\)-doped Y\(_{2}\)O\(_{3}\) is approximately 4.27 eV, suggesting the insulating character of Y\(_{2}\)O\(_{3}\) : Ho system. These findings could provide fundamental insights to understand the atomic interactions in crystals as well as the information of electronic properties for other rare-earth-doped materials.

1. Introduction

Rare-earth (RE) doped laser materials have attracted enormous interests because of their abundant transition channels and sharp luminescence bands.\(^{1-15}\) The potential applications have been widely investigated in a diversity of fields, such as optical imaging, quantum cascade lasers, high-density optical data storage and biophotonic areas.\(^{16-18}\) A recent study reveals that the directly pumped Ho\(^{3+}\)-doped silica microsphere may be an excellent candidate for fabricating 2 \(\mu\)m laser, which can serve as laser-emitting source for near-infrared telecommunications.\(^{19}\)

Trivalent holmium ion (4f\(^{10}\) configuration) is a greatly promising laser ion due to the substantial transition channels at various wavelengths in the UV, visible and infrared regions.\(^{11,12}\) A well-known emission transition \(5I_{7} \rightarrow 5I_{0}\) with wavelength near 2 \(\mu\)m of Ho\(^{3+}\) can serve as the so called “eye safe” solid-state laser system.\(^{13}\) Yttrium oxide (Y\(_{2}\)O\(_{3}\)) is a typical cubic phase crystal structure with \(Ia\bar{3}\) space group, which possesses low phonon energy and desirable physical properties including low thermal expansion, high melting point and photochemical stability.\(^{14-16}\) The Y\(^{3+}\) ions of yttrium oxide crystal are six-fold coordinated to nearest O\(^{2-}\) ligands, forming a [YO\(_{6}\)]\(^{9-}\) local unit with \(C_{2}\) site symmetry.\(^{17}\) After being doped with appropriate rare-earth ions, Y\(_{2}\)O\(_{3}\) crystals can serve as excellent laser host materials because of their high thermal conductivity and low phonon energy.\(^{18}\) In recent years, Ho\(^{3+}\)-doped Y\(_{2}\)O\(_{3}\) (Y\(_{2}\)O\(_{3}\) : Ho) crystal has been the subject of intensive investigations as a great promising laser material.\(^{19}\) Laversenne et al. first demonstrated the growth of Ho\(^{3+}\)-doped Y\(_{2}\)O\(_{3}\) single crystal by using the Laser Heated Pedestal Growth (LHPG) technique.\(^{20}\) In addition, they especially analyzed the dynamical laser resonant characteristics of Y\(_{2}\)O\(_{3}\) : Ho. Qin et al. studied the luminescence spectra of Ho\(^{3+}\)-doped Y\(_{2}\)O\(_{3}\) under the excitation of a 532 nm continuous-wave laser.\(^{21}\) The results indicate that Ho\(^{3+}\) ion possesses several fluorescence transitions in the ultraviolet and violet region (306, 390 and 428 nm) which are assigned to the transitions of \(3D_{1} \rightarrow 5I_{8}\), \(5G_{4} \rightarrow 5I_{8}\) and \(5G_{5} \rightarrow 5I_{8}\), respectively. Wang et al. reported a high output laser operation at around 2.1 \(\mu\)m of Y\(_{2}\)O\(_{3}\) : Ho with low scattering loss and excellent optical quality.\(^{22}\) Their results revealed that Ho\(^{3+}\)-doped Y\(_{2}\)O\(_{3}\) system shows attractive prospect in high-power and efficient laser applications as a laser gain medium. Although numerous investigations have been widely reported on Y\(_{2}\)O\(_{3}\) : Ho, there is no systematic study to elucidate its microstructure and electronic properties.

In this paper, we perform extensive structure searches to obtain the ground-state structure of Y\(_{2}\)O\(_{3}\) : Ho based on the CALYPSO (Crystal structure Analysis by Particle Swarm Optimization)\(^{23-27}\) method coupled with the DFT (density functional theory). Furthermore, we calculate and analyze the band structure, density of states and the ELF (electron localized
The concentration of the impurity Ho\(^{3+}\) is equal to 3.125%, which is by using the unbiased CALYPSO\(^{23–27}\) method. The CALYPSO is a reliable structure prediction method which has been validated by a large variety of crystal structures.\(^{28–32}\) We perform an evolutionary variable-cell structure prediction with 80 atoms per simulation cell at ambient pressure. To determine the most stable structure of Y\(_2\)O\(_3\) : Ho system, we optimized the all stable structure of Y\(_2\)O\(_3\) : Ho system, we optimized the all lowest-lying candidate structures by using the density functional theory in VASP (Vienna Ab Initio Simulation Package) code.\(^{33–36}\) The frozen-core all electron projector-augmented wave (PAW) method has been adopted, with 4f\(^{11}\)5s\(^2\)5p\(^6\)6s\(^2\), 4d\(^1\)5s\(^2\) and 2s\(^2\)2p\(^4\) treated as valence electrons for Ho, Y and O, respectively. For describing the influence of the correlation effect introduced by 4f electrons of Ho atoms, we employ the local density approximation (LDA) with an onsite Coulomb repulsion parameter \(U\) to determine the electronic band structure of Y\(_2\)O\(_3\) : Ho. The \(U\) value of Ho has been determined to be 6.8 eV by Min et al.\(^{37}\) Phonon dispersion curve have been calculated by the PHONOPY code.\(^{38}\)

2. Computational methods

We have explored the structural evolution of Y\(_2\)O\(_3\) : Ho crystal by using the unbiased CALYPSO\(^{23–27}\) method. The CALYPSO is a reliable structure prediction method which has been validated by a large variety of crystal structures.\(^{28–32}\) We perform an evolutionary variable-cell structure prediction with 80 atoms per simulation cell at ambient pressure. To determine the most stable structure of Y\(_2\)O\(_3\) : Ho system, we optimized the all lowest-lying candidate structures by using the density functional theory in VASP (Vienna Ab Initio Simulation Package) code.\(^{33–36}\) The frozen-core all electron projector-augmented wave (PAW) method has been adopted, with 4f\(^{11}\)5s\(^2\)5p\(^6\)6s\(^2\), 4d\(^1\)5s\(^2\) and 2s\(^2\)2p\(^4\) treated as valence electrons for Ho, Y and O, respectively. For describing the influence of the correlation effect introduced by 4f electrons of Ho atoms, we employ the local density approximation (LDA) with an onsite Coulomb repulsion parameter \(U\) to determine the electronic band structure of Y\(_2\)O\(_3\) : Ho. The \(U\) value of Ho has been determined to be 6.8 eV by Min et al.\(^{37}\) Phonon dispersion curve have been calculated by the PHONOPY code.\(^{38}\)

3. Results and discussion

We carefully examine the ground-state crystal structure of Ho\(^{3+}\)-doped Y\(_2\)O\(_3\) by using the unbiased CALYPSO structure search method with the stoichiometric ratio of Ho : Y : O = 1 : 31 : 48 under ambient conditions. The lowest-energy structure of Y\(_2\)O\(_3\) : Ho crystal possesses the monoclinic configuration with the Ho\(^{3+}\) ion (0.901 Å) substitute for Y\(^{3+}\) ion (0.900 Å) in the Y\(_2\)O\(_3\) host. The concentration of the impurity Ho\(^{3+}\) is equal to 3.125%, which is in excellent agreement with the result measured by Atabaev et al.\(^{13}\) The site symmetry of [HoO\(_6\)]\(^{9–}\) local structure are calculated to be \(C_2\) and Ho\(^{3+}\) position are six-coordinated by oxygen atoms. The three different bond lengths between Ho–O bonds are calculated to be 2.214, 2.232, and 2.318 Å, respectively. The Ho\(^{3+}\) doped Y\(_2\)O\(_3\) crystal structure belongs to the standardzed \(P_2\)\(_1\) symmetry and the calculated lattice constants are \(a = b = c = 10.524\) Å, \(\beta = 90^\circ\). The coordinates of all atoms for the ground state Y\(_2\)O\(_3\) : Ho are summarized in Table 1 for further investigations. Moreover, our structure searches also predict many metastable structures of Ho\(^{3+}\)-doped Y\(_2\)O\(_3\) which can play important roles to explore the structural evolutions. The first four optimized low-lying structures (a), (b), (c) and (d)

![Fig. 1](image-url)
Fig. 1 Crystal structure and [HoO\(_6\)]\(^{9–}\) local unit of the ground-state Ho\(^{3+}\)-doped Y\(_2\)O\(_3\). The bond lengths are in the unit of Å.
from low to high energy are exhibited in Fig. 2. It is found that the Y$^{3+}$ ions of these isomers are replaced by Ho$^{3+}$ ions at different sites in the host crystals. Interestingly, the isomer (a) possesses the same $P2_1$ monoclinic configuration with the ground-state structure while the isomers (b), (c) and (d) exhibit the $P1$ space group. In these metastable structures, we find that the impurity Ho$^{3+}$ ions tend to occupy the crystal face site positions of the Y$^{3+}$.

To clarify the true structure of the ground-state Y$_2$O$_3$: Ho, as shown in Fig. 3, we calculate the X-ray diffraction (XRD) patterns of the ground state structure. We can clearly see from Fig. 3 that the simulated spectrum of Y$_2$O$_3$: Ho are in good accordance with the observations in experiment. In addition, the XRD patterns of the four metastable structures are calculated and the results are also plotted in Fig. 3. It can be seen from Fig. 3 that the overall distribution of the peaks is similar, suggesting that the structural parameters of the four metastable structures are close to each other. To further validate the dynamical stability of Ho$^{3+}$-doped Y$_2$O$_3$ system, we have calculated the phonon dispersion curves in Fig. 4 and no imaginary phonon frequencies can be seen over the entire Brillouin zones. The result indicates that the determined ground-state structure of Ho$^{3+}$-doped Y$_2$O$_3$ crystal is dynamically stable. These theoretical results provide great support for the reliability of our structural prediction methodology.
We have calculated the electronic band structure and the total as well as partial DOS for Y₂O₃ : Ho. As illustrated in Fig. 5(a), the direct band gap value for Ho³⁺-doped Y₂O₃ is about 4.27 eV at the Γ point, which is approximately 2/3 of the experimental value ($E_g = 6.2$ eV) determined by Wallace and Wilk. This result can be ascribed to the general underestimation of band gap value by the first-principle calculations. The result indicates that the Ho³⁺ impurity ion remains the insulating character of Ho³⁺-doped Y₂O₃ crystal. From Fig. 5(b), we can clearly see that the low valence band region is mainly composed of p states with the smaller contributors of d states ranging from −1 eV to 0 eV, and the dominant contributions of the high conduction band between 4.3 eV to 9 eV are mainly occupied by p, d and f states. It should be noted that the s states is very weak from −1 eV to 9 eV. In addition, we have calculated the electron localized function (ELF) to visualize the chemical bonding character in Y₂O₃ : Ho crystal. The ELF in crystal structure and the ELF of the (100) plane are presented in Fig. 6. It is shown that the ELF near the Y and Ho atoms value is close to 0.9, which suggests that the electrons are extremely localized around the Y and Ho atoms.

4. Conclusions

In summary, we have explored the ground-state crystal structure of Ho³⁺-doped Y₂O₃ by means of the unbiased CALYPSO method combined with first-principle calculations. It is shown that the ground-state Y₂O₃ : Ho structure possesses a novel $P2$
phase with the monoclinic symmetry. We carry out a system-
atical investigation to the microstructure evolutions for the
ground-state $\text{Y}_2\text{O}_3 : \text{Ho}$ crystal. The results indicate that the
impurity Ho^{3+} ion substitutes the positions of Y^{3+} ions in the
host crystal lattice, forming the $[\text{HoO}_6]^{9-}$ local structure. We
find that the impurity Ho^{3+} ions tend to occupy the crystal face
positions of the Y^{3+} ions from the structural features of the
ground-state and metastable structures. We further calculate
the band structure and density of states by LDA + U method for
$\text{Y}_2\text{O}_3 : \text{Ho}$. Our result reveals that the electronic band gap of
Ho^{3+}-doped Y_2O_3 is 4.27 eV. We hope that these
findings can provide valuable guidance for future experiment research of
$\text{Y}_2\text{O}_3 : \text{Ho}$.

Conflicts of interest

The authors declare no competing interests.

Acknowledgements

This work is supported by the National Natural Science
Foundation of China (No. 11904297, 11747139 and 11804031) and
the Fundamental Research Funds for the Central Universities
(SWU118055), the Scientific Research Project of Education
Department of Hubei Province (No. Q20191301), the Youth
Fund of Yangtze University (No. 2016cqy, Y. Y. J.).

References

1 P. S. J. Bharadwaj, S. Kundu, V. S. Kollipara and
K. B. R. Varma, Synergistic effect of trivalent ($\text{Gd}^{3+}, \text{Sm}^{3+}$)
and high-valent (Tl^{4+}) co-doping on antiferromagnetic
YFeO_3, **RSC Adv.**, 2020, 10, 22183–22195.

2 J. Bai, P. Duan, X. Wang, G. Han, M. Wang and G. Diao,
Upconversion luminescence enhancement by Fe^{3+} doping in
$\text{CeO}_2 : \text{Yb}/\text{Er}$ nanomaterials and their application in dye-
sensitized solar cells, **RSC Adv.**, 2020, 10, 18868–18874.

3 Monika, R. S. Yadav, A. Bahadur and S. B. Rai, Concentration
and pump-mediated color tunability, optical heating and
temperature sensing via TCLs of red emission in an $\text{Er}^{3+}/$
$\text{Yb}^{3+}/\text{Li}^{+}$ co-doped ZnGa_2O_4 phosphor, **RSC Adv.**, 2019, 9,
40092–40108.

4 N. Choudhary, M. K. Verma, N. D. Sharma, S. Sharma and
D. Singh, Correlation between magnetic and transport
properties of rare earth doped perovskite manganites
$\text{La}_{0.6}\text{R}_{0.4}\text{Ca}_{0.3}\text{MnO}_3$ (R = $\text{La}, \text{Nd}, \text{Sm}, \text{Gd}$, and Dy)
synthesized by Pechini process, **Mater. Chem. Phys.**, 2020,
242, 122482.

5 M. P. Ghosh, S. Sharma, H. K. Satyapal, K. Tanbir, R. K. Singh
and S. Mukherjee, Tuning the microstructural, optical and
superexchange interactions with rare earth Eu doping in
nickel ferrite nanoparticles, **Mater. Chem. Phys.**, 2020,
241, 122383.

6 S. D. Jackson, Towards high-power mid-infrared emission
from a fibre laser, **Nat. Photonics**, 2012, 6, 423–431.

7 I. Cieslik, T. Bolek, M. J. Wozniak, A. Majchrowski, S. Hirano
and A. Budzianowski, Potassium gadolinium tungstate
nanocrystals doped with holmium ions as candidates for
optical imaging, **Appl. Surf. Sci.**, 2018, 446, 139–144.

8 Y. R. Fang and M. T. Sun, Nanoplasmonic waveguides:
towards applications in integrated nanophotonic circuits,
Light: Sci. Appl., 2015, 4, e294.

9 X. Y. Wang, Y. L. Wang, S. Wang, B. Li, X. W. Zhang, L. Dai
and R. M. Ma, Lasing Enhanced Surface Plasmon
Resonance Sensing, **Nanophotonics**, 2017, 6, 472–478.

10 A. Z. Li, M. Zhang, X. Wang, S. B. Wang, B. G. Guo, E. Lewis
and P. F. Wang, Directly pumped Ho^{3+}-doped microspheres
lasing at 2.0 μm, **IEEE Photonics Technol. Lett.**, 2019, 31,
1366–1368.

11 S. Balaji, G. Gupta, K. Biswas, D. Ghosh and K. Annapurna,
Role of Yb^{3+} ions on enhanced ~2.9 μm emission from
Ho^{3+} ions in low phonon oxide glass system, **Sci. Rep.**, 2016, 6, 29203.

12 M. Eichhorn, Quasi-three-level solid-state lasers in the near
and mid infrared based on trivalent rare earth ions, **Appl.
Phys. B**, 2008, 93, 269–316.

13 M. C. Pujol, J. Massons, M. Aguiló, F. Díaz, M. Rico and
C. Zaldo, Emission Cross Sections and Spectroscopy of
Ho^{3+} Laser Channels in $\text{KGD(WO}_4)_2$ Single Crystal, **IEEE J.
Quantum Electron.**, 2002, 38, 93–100.

14 A. Ciric and S. Stojadinovic, Structural and
photoluminescence properties of Y_2O_3 and $\text{Y}_2\text{O}_3 : \text{Ln}^{3+}$ ($\text{Ln} =$ $\text{Eu}, \text{Er}, \text{Ho}$) films synthesized by plasma electrolytic
oxidation of yttrium substrate, **J. Lumin.**, 2020, 217, 116762.

15 T. S. Atabaev, H. H. T. Vu, Y. D. Kim, J. H. Lee, H. K. Kim and
Y. H. Hwang, Synthesis and luminescence properties of Ho^{3+}-
doped Y_2O_3 submicron particles, **J. Phys. Chem. Solids**, 2012,
73, 176–181.

16 B. M. Walsh, J. M. McMahon, W. C. Edwards, N. P. Barnes,
R. W. Equall and R. L. Hutcheson, Spectroscopic
characterization of $\text{Nd} : \text{Y}_2\text{O}_3$: application toward
a differential absorption lidar system for remote sensing of
ozone, **J. Opt. Soc. Am. B**, 2002, 19, 2893–2903.

17 M. Ju, Y. Xiao, W. G. Sun, C. Lu and Y. Y. Yeung, In-depth
determination of the microstructure and energy transition
mechanism for Nd^{3+}-doped yttrium oxide laser crystals, **J.
Phys. Chem. C**, 2020, 124, 2113–2119.

18 V. Singh, V. K. Rai, B. Voss, M. Haase, R. P. S. Chakradr, D.
T. Naidu and S. H. Kim, Photoluminescence study of
nanocrystalline $\text{Y}_2\text{O}_3 : \text{Ho}^{3+}$ phosphor, **Spectrochim. Acta,
Part A**, 2013, 109, 206–212.

19 G. A. Newburgh, A. W. Daniels, A. Michael, L. D. Merkle,
A. Ikesue and M. Dubinskii, Resonantly diode-pumped
Ho^{3+}: Y_2O_3 ceramic, **Opt. Express**, 2011, 19, 3604–3611.

20 L. Laversenne, C. Goutaudier, Y. Guyot, M. T. Cohen-Adad
and G. Boulon, Growth of rare earth (RE) doped
concentration gradient crystal fibers and analysis of
dynamical processes of laser resonant transitions in RE-
doped Y_2O_3 (RE = $\text{Yb}^{3+}, \text{Er}^{3+}, \text{Ho}^{3+}$), **J. Alloys Compd.**, 2002,
341, 214–219.

21 F. Qin, Y. D. Zheng, Y. Yu, Z. M. Chen, P. S. Tayebi,
W. W. Cao and Z. G. Zhang, Ultraviolet and violet
upconversion luminescence in Ho^{3+}-doped Y_2O_3 ceramic
...
induced by 532-nm CW laser, J. Alloys Compd., 2011, 509, 1115–1118.

22 F. Wang, J. W. Tang, E. H. Li, C. F. Shen, J. Wang, D. Y. Tang and D. Y. Shen, Ho3+ :Y2O3 ceramic laser generated over 113 W of output power at 2117 nm, Opt. Lett., 2019, 44, 5933–5936.

23 Y. C. Wang, J. Lv, L. Zhu and Y. M. Ma, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B: Condens. Matter Mater. Phys., 2010, 82, 094116.

24 Y. C. Wang, J. Lv, L. Zhu and Y. M. Ma, CALYPSO: a method for crystal structure prediction, Comput. Phys. Commun., 2012, 183, 2063–2070.

25 Y. C. Wang, M. S. Miao, J. Lv, L. Zhu, K. T. Yin, H. Y. Liu and Y. M. Ma, An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm, J. Chem. Phys., 2012, 137, 224108.

26 S. H. Lu, Y. C. Wang, H. Y. Liu, M. S. Miao and Y. M. Ma, Self-assembled ultrathin nanotubes on diamond (100) surface, Nat. Commun., 2014, 5, 3666.

27 L. Zhu, H. Y. Liu, C. J. Pickard, G. T. Zou and Y. M. Ma, Reactions of xenon with iron and nickel are predicted in the Earth’s inner core, Nat. Chem., 2014, 6, 644–648.

28 J. Lv, Y. C. Wang, L. Zhu and Y. M. Ma, Particle-swarm structure prediction on clusters, J. Chem. Phys., 2012, 137, 084104.

29 Y. Xiao, M. Ju, X. Y. Kuang and Y. Y. Yeung, A systematic study of the microstructure and laser characteristics of Pr3+-doped lithium lutetium fluoride, J. Alloys Compd., 2018, 749, 391–398.

30 G. Bo, P. Gao, S. Lu, J. Lv, Y. Wang and Y. Ma, Interface structure prediction via CALYPSO method, Sci. Bull., 2019, 64, 301.

31 C. Lu and C. Chen, Indentation-strain stiffening in tungsten nitrides: mechanisms and implications, Phys. Rev. Mater., 2020, 4, 043402.

32 C. Lu and C. Chen, Structure-strength relations of distinct MoN phases from first-principles calculations, Phys. Rev. Mater., 2020, 4, 044002.

33 G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B: Condens. Matter Mater. Phys., 1996, 54, 11169–11186.

34 G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B: Condens. Matter Mater. Phys., 1993, 47, 558–561.

35 J. P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, 77, 3865–3868.

36 V. I. Anisimov, F. Aryasetiawan and A. I. Lichtenstein, First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U Method, J. Phys.: Condens. Matter, 1997, 9, 767–808.

37 B. I. Min, H. J. F. Jansen, T. Oguchi and A. J. Freeman, Local density total energy description of ground and excited state properties of the rare earth metals, J. Magn. Magn. Mater., 1986, 61, 139–150.

38 A. Togo, F. Oba and I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B: Condens. Matter Mater. Phys., 2008, 78, 134106.

39 R. M. Wallace and G. Wilk, Alternative gate dielectrics for microelectronics, Bulletin, 2002, 27, 186.