Gray-coding through nested sets

Antonia W. Bluher, National Security Agency

February 9, 2015

Abstract

We consider the following combinatorial question. Let

\[S_0 \subset S_1 \subset S_2 \subset \ldots \subset S_m \]

be nested sets, where \(\#(S_i) = i \). A move consists of altering one of the sets \(S_i \), \(1 \leq i \leq m - 1 \), in a manner so that the nested condition still holds and \(\#(S_i) \) is still \(i \). Our goal is to find a sequence of moves that exhausts through all subsets of \(S_m \) (other than the initial sets \(S_i \)) with no repeats. We call this “Gray-coding through nested sets” because of the analogy with Frank Gray’s theory of exhausting through integers while altering only one bit at a time. Our main result is an efficient algorithm that solves this problem. As a byproduct, we produce new families of cyclic Gray codes through binary \(m \)-bit integers.

1 Introduction

The nested set problem can be stated as follows. Let

\[S_0 \subset S_1 \subset S_2 \subset \ldots \subset S_m \]

be nested sets, where \(\#(S_i) = i \). A move consists of altering one of the sets \(S_i \), for \(1 \leq i < m \), while maintaining the conditions that \(\#(S_i) = i \) and that the sets are nested. Our goal is to find a sequence of moves that exhausts through all subsets of \(S_m \) (other than the initial sets \(S_i \)) with no repeats. We call this “Gray-coding through nested sets” because of the analogy with Frank Gray’s theory on stepping through all \(m \)-bit integers by altering just one bit at a time. (For the theory of Gray codes see [4] or [5, Section 2.2.2].) The problem of Gray-coding through nested sets does not seem to have been considered before in the literature, but it fits naturally into the genre of “combinatorial Gray codes” that has been popularized by Hilbert S. Wilf, Carla Savage, F. Ruskey, and others. We quote from Savage’s survey article [6]: “The term combinatorial Gray code . . . is now used to refer to any method for generating combinatorial objects so that successive objects differ in some prespecified, usually small, way.” Examples of such combinatorial objects include \(k \)-element subsets of an \(n \)-element set [1 2 7], permutations, binary trees, or partitions.
Given nested sets S_i as above, define the difference sequence to be $\langle q_1, q_2, \ldots, q_m \rangle$, where q_i is the unique element of $S_i \setminus S_{i-1}$. The difference sequence gives enough information to determine all the sets S_i. The only valid way to alter S_i is to remove q_i and replace it with q_{i+1}, and this has the effect of transposing q_i and q_{i+1} in the difference sequence. Then S_i is replaced by the set $\{q_1, q_2, \ldots, q_{i-1}, q_{i+1}\}$.

Since a move is completely determined by i, we can record a sequence of moves by listing the indices. That is, the sequence $[i_1, i_2, i_3, \ldots, i_N]$ means to first alter S_{i_1}, then S_{i_2}, etc. We call this a stepping sequence if every subset of S_m (other than the initial sets) appears exactly once. In other words, a stepping sequence is a sequence of moves that solves the problem of Gray-coding through nested sets. Since there are 2^m subsets and $m + 1$ initial sets S_i, a stepping sequence for m has length $2^m - m - 1$. If S_i is altered twice in a row, the set returns to its original value. This is not allowed since we are not supposed to generate a set that has been seen before. Thus, any two consecutive terms in a stepping sequence must be distinct. Also notice that i occurs in the stepping sequence exactly $\binom{m}{i} - 1$ times.

We first consider small examples. For $m = 1$, we have $S_0 = \emptyset \subset S_1 = \{q_1\}$. There are no additional subsets of $\{q_1\}$ other than the initial sets S_0 and S_1, so the stepping sequence is empty. For $m = 2$, we begin with

$$S_0 = \emptyset \subset S_1 = \{q_1\} \subset S_2 = \{q_1, q_2\}.$$

The only subset of S_2 that has not been seen is $\{q_2\}$. We need a single move, which is to alter S_1, and the associated stepping sequence is $[1]$.

For $m = 3$ we begin with

$$S_0 = \emptyset \subset S_1 = \{q_1\} \subset S_2 = \{q_1, q_2\} \subset S_3 = \{q_1, q_2, q_3\}.$$

One solution is as follows: change S_2 to $\{q_1, q_3\}$, change S_1 to $\{q_3\}$, change S_2 to $\{q_2, q_3\}$, then change S_1 to $\{q_2\}$. This is codified by $[2, 1, 2, 1]$. The only other solution is to first change S_1 to $\{q_2\}$, then change S_2 to $\{q_2, q_3\}$, then change S_1 to $\{q_3\}$, then change S_2 to $\{q_1, q_3\}$. This solution is codified by $[1, 2, 1, 2]$.

Since the sets S_i are nested, the complements $S_m \setminus S_i$ are also nested, but with the inclusions going in the reverse direction. When we alter S_i, we also alter its complement. Further, if the S_i’s run through every possible subset, then so do the complements. The complement of S_i has order $m - i$. Thus, if $[i_1, \ldots, i_N]$ is a stepping sequence for m, then so is $[m - i_1, \ldots, m - i_N]$. We call this the complementary stepping sequence, or more simply, the complement. In particular, for the order-3 example above, the complement of $[2, 1, 2, 1]$ is $[1, 2, 1, 2]$.

In addition, the reverse of a stepping sequence is a stepping sequence. This can be seen by running a stepping sequence backwards (beginning with the final set values S_0') and noting that one finishes with the sets S_i, and in the intermediate steps one passes through all remaining subsets of S_m. The stepping sequence $[2, 1, 2, 1]$ has the property that its complement is equal to its reverse, but not all stepping sequences have that property. For $m = 4$, there are exactly 34 stepping sequences, and ten of these have the property that the complement is equal to the reverse.
In this article, we present four ways to create stepping sequences: by recursion, by greed, with a for-loop, and with a different for-loop. It turns out that all four methods are equivalent, i.e., they give rise to the same stepping sequence. In the final section, we show how the nested set problem is related to other combinatorial Gray codes, and we pose some open problems.

2 The recursive method

The following theorem enables us to build stepping sequences recursively.

Theorem 2.1. If \([i_1, \ldots, i_K]\) and \([i'_1, \ldots, i'_K]\) are stepping sequences for \(m - 1\) (so \(K = 2^{m-1} - m\)), then

\[
[i_1 + 1, i_2 + 1, \ldots, i_K + 1] \cup [1, 2, \ldots, m - 1] \cup [i'_1, i'_2, \ldots, i'_K]
\]

and

\[
[i_3, i_2, \ldots, i_K] \cup [m - 1, \ldots, 1] \cup [i'_1 + 1, i'_2 + 1, \ldots, i'_K + 1]
\]

are stepping sequences for \(m\).

Proof. We first prove that \([\[\]]\) is a stepping sequence for \(m\). Suppose initially \(S_1 = \{a\}\). Let \(S'_i = S_i \setminus \{a\}\) for \(i = 1, \ldots, m - 1\). If we applied \([i_1, \ldots, i_K]\) to \(S'_i\), we would obtain every subset of \(S'_m\), except for the initial sets \(S'_i\). By doing the same sequence of moves, but on the sets \(S_i = S'_i \cup \{a\}\) instead of the sets \(S'_i\), we run through every subset of \(S_m\) that contains \(a\), except for the initial sets \(S_1, \ldots, S_m\). Since \(|S_i| = |S'_i| + 1\), this sequence of moves is codified as \([i_1 + 1, \ldots, i_K + 1]\). At this point we have seen exactly once every subset of \(S_m\) that contains \(a\), and no other nonempty subset, and the difference sequence has the form \(\langle a, q_1, q_2, \ldots, q_{m-1}\rangle\). Note that \(\{q_1, q_2, \ldots, q_{m-1}\} = S_m \setminus \{a\}\).

Now we have nested sets

\[
S_0 = \emptyset, \quad S_1 = \{a\}, \quad S_2 = \{a, q_1\}, \quad S_3 = \{a, q_1, q_2\}, \ldots, \quad S_m = \{a, q_1, \ldots, q_{m-1}\}.
\]

The moves \([1, 2, \ldots, m - 1]\) change \(S_1\) to \(\{q_1\}\), then change \(S_2\) to \(\{q_1, q_2\}\), then change \(S_3\) to \(\{q_1, q_2, q_3\}\), and so on. All these subsets are new, because they do not contain \(a\). After these moves, we have \(S_i = \{q_1, q_2, \ldots, q_i\}\) for \(i < m\). In particular, \(S_{m-1} = \{q_1, \ldots, q_{m-1}\} = S_m \setminus \{a\}\).

Now applying the moves \([i'_1, i'_2, \ldots, i'_K]\) to the nested sets \(S_0, S_1, \ldots, S_{m-1}\) produces all remaining subsets of \(S_{m-1}\), i.e., all remaining subsets of \(S_m\) that do not contain \(a\).

In summary, after applying the moves \([i_1 + 1, \ldots, i_K + 1]\) we have seen all sets that contain \(a\) exactly once. The moves \([1, 2, \ldots, m - 1]\) produce new sets \(S_1 = \{q_1\}, S_2 = \{q_1, q_2\}, \ldots, S_{m-1} = \{q_1, \ldots, q_{m-1}\}\) that do not contain \(a\). Finally, the moves \([i_1, i_2, \ldots, i_K]\) produce all remaining subsets that do not contain \(a\), and each set is produced exactly once. Thus all subsets of \(S_m\) are produced exactly once, proving that \([\[\]]\) is indeed a stepping sequence for \(m\).
By applying (1) to the complements \([m - 1 - i_1, \ldots, m - 1 - i_K]\) and \([m - 1 - i'_1, \ldots, m - 1 - i'_K]\), we see that
\[
[m - i_1, m - i_2, \ldots, m - i_K] \cup [1, 2, \ldots, m - 1] \cup [m - 1 - i'_1, m - 1 - i'_2, \ldots, m - 1 - i'_K]
\]
is a stepping sequence for \(m\). Taking the complement, we find that (2) is also a stepping sequence for \(m\).

The stepping sequences for \(m\) that are produced in the theorem have length \(2K + m - 1 = 2(2^{m-1} - (m - 1) - 1) + m - 1 = 2^m - m - 1\), as expected.

The theorem enables one to build stepping sequences for \(m\) out of smaller stepping sequences. In particular, we define:
\[
R_2 = [1], \text{ and } R_m = (R_{m-1} + 1) \cup [1, 2, \ldots, m - 1] \cup R_{m-1} \quad \text{for } m = 3, 4, \ldots \tag{3}
\]
where \(R_{m-1} + 1\) is obtained by adding one to each element of \(R_{m-1}\). Then \(R_m\) is a stepping sequence for \(m\) by Theorem 2.1. The first few are given by:
\[
\begin{align*}
R_2 &= [1] \\
R_3 &= [2] \cup [1, 2] \cup [1] = [2, 1, 2, 1] \\
R_4 &= [3, 2, 3, 2] \cup [1, 2, 3] \cup [2, 1, 2, 1] = [3, 2, 3, 2, 1, 2, 3, 2, 1, 2, 1] \\
R_5 &= [4, 3, 4, 3, 2, 3, 4, 3, 2, 3, 2, 1, 2, 3, 4, 3, 2, 3, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1].
\end{align*}
\]

Figure 1 below illustrates nested-set generation for the stepping sequence \(R_4\) when \(S_i = \{1, 2, \ldots, i\}\). The stepping sequence is listed in the first column, the difference sequence in the second column, and the newly generated sets in the remaining columns. Notice that the sets containing 1 are generated first, then the sets not containing 1.

Lemma 2.2. The reverse of \(R_m\) is equal to its complement.

Proof. We must show that the sum of the \(i\)-th element of \(R_m\) and the \(i\)-th element of its reverse is always equal to \(m\). This is true for \(R_2\). Assume inductively that it is true for \(R_{m-1}\). Let \(K' = \#(R_{m-1})\). For \(i = 1, \ldots, K'\), the sum of the \(i\)-th element of \(R_m\) and the \(i\)-th element of its reverse is one more than the sum of the \(i\)-th element of \(R_{m-1}\) and the \(i\)-th element of its reverse. By induction, this sum is \(1 + (m - 1) = m\). The middle part of \(R_m\) is \([1, \ldots, m - 1]\), and this also has the property that the sum of the \(i\)-th element of \([1, \ldots, m - 1]\) and the \(i\)-th element of its reverse is \(m\). This completes the induction and the proof.

One might ask the question: Does the recursive method generate all stepping sequences? The answer is “no”. For \(m = 4\), we exhausted through all sequences in \(\{1, 2, 3\}\) and found that exactly 34 of these were stepping sequences. Theorem 2.1 produces
\[
[3, 2, 3, 2, 1, 2, 3, 2, 1, 2, 1], \quad [2, 3, 2, 3, 1, 2, 3, 1, 2, 1, 2],
\]

11: It seems there’s a typo in the original document with \(\{1, 2, 3\}\) repeated 11 times. It’s possible the expected output was intended to be a different sequence or set. If you have more context or the correct sequence, please provide it. Otherwise, I've left it as is for completion.
We show that the sequence \(\{1, 3, 4\}\) can be derived from these two using reverse, complement, and commutation. The remaining 16 stepping sequences do not seem to arise from Theorem 2.1. These are coming from Theorem 2.1, we can produce 10 others that are related by commutation. Beginning with the eight stepping sequences that can be derived from these two using reverse, complement, and commutation.

3 The greedy method

Consider again the nested set problem. A greedy person wants to alter the set of largest possible cardinality, subject to the condition that the altered set has not been seen before. We show that the sequence \([i_1, i_2, \ldots]\) that is produced in this manner is the stepping sequence \(R_m\) that is defined in (3). For example, for \(m = 4\) the reader can check that the greedy method produces the sequence \([3, 2, 3, 2, 1, 2, 3, 1, 2, 1, 2, 1]\), which is the same as \(R_4\).

If \(S_0, S_1, \ldots, S_m\) are nested sets with \(|S_i| = i\), then for \(i = 1, \ldots, m - 1\) let \(S_i^*\) denote the alteration of \(S_i\), i.e.,

\[
S_i^* = S_{i-1} \cup (S_{i+1} \setminus S_i).
\]

(Note that \(S_{i-1} \subset S_i^* \subset S_{i+1}\), so one can replace \(S_i\) by \(S_i^*\) while maintaining the nested set condition.) The greedy method can formally be stated as follows. In the pseudocode below,
S contains the sets that have been seen before, and J contains the indices i such that S^*_i has not been seen before.

\begin{verbatim}
G := []
S := \{S_1, \ldots, S_m\}
J := \{1, 2, \ldots, m - 1\}
while $J \neq \emptyset$ do {
 \begin{align*}
 j &:= \max J \\
 G &:= G \cup [j] \\
 S_j &:= S_j^* \\
 S &:= S \cup \{S_j\} \\
 J &:= \{i \in [1, \ldots, m - 1] : S^*_i \not\in S\}
 \end{align*}
}
return G
\end{verbatim}

Figure 2: Greedy method for nested sets

Theorem 3.1. The greedy method produces $G = R_m$.

Proof. The theorem is easily seen to hold for $m = 2$, because the greedy sequence is [1] and $R_2 = [1]$. Let $m \geq 3$. We will make an inductive hypothesis that the theorem is true for $m - 1$, and we will show it is true for m. Recall

$$R_m = (R_{m-1} + 1) \cup [1, \ldots, m - 1] \cup R_{m-1}.$$

Suppose initially $S_1 = \{a\}$. The greedy method avoids selecting $i = 1$ for as long as possible, since 1 is the smallest possible index. Thus, S_1 is unchanged for the first part of the greedy method, and at this stage all elements of S contain a. Thus effectively, the greedy algorithm is working with S_2, \ldots, S_m, always selecting the maximal index such that S^*_i has not been seen before. By the inductive hypothesis, R_{m-1}, when applied to the nested sets $S'_i = S_i - \{a\}$, is applying the exact same greedy strategy for determining its next index. By throwing a back into these sets, we find that $R_{m-1} + 1$ is selecting according to the greedy strategy. Thus the first K elements of G are $R_{m-1} + 1$, where $K = \#(R_{m-1})$.

At this point S contains all subsets of S_m that contain a. Let q_i be the unique element in $S_{i+1} \setminus S_i$. Then $S_i = \{a, q_1, \ldots, q_i\}$ for $i = 0, 1, \ldots, m - 1$. Since S^*_j contains S_j, we see that $a \in S^*_j$ for all $j > 1$, so $S^*_j \in S$. On the other hand, $S^*_1 = \{q_1\}$ is not in S, since $a \not\in S^*_1$. Thus the greedy method selects 1. Now S_2 contains a, so S^*_2 contains a for all $j > 1$. On the other hand, $S^*_2 = \{q_1, q_2\}$ is new. Thus, the greedy method selects 2 as the next index. Continuing in this way, we see that the greedy algorithm selects 3, 4, \ldots, $m - 1$. So the greedy method continues to agree with R_m.

At this stage, $S_1 = \{q_1\}$, $S_2 = \{q_1, q_2\}$, $S_3 = \{q_1, q_2, q_3\}$, \ldots, $S_{m-1} = \{q_1, \ldots, q_{m-1}\}$, and

$$S = \{S \subset S_m : a \in S\} \cup \{S_1, S_2, \ldots, S_{m-1}\}.$$
Note that $S_{m-1} = S_m \setminus \{a\}$. Consequently,

$$S \notin S \iff S \subset S_{m-1} \text{ and } S \neq S_i \text{ for } i = 1, \ldots, m - 1$$

The third part of R_m is R_{m-1}, applied to $S_0, S_1, \ldots, S_{m-1}$. By the inductive hypothesis, R_{m-1} follows the greedy route of selecting the largest index such that S_i^* has not been seen. This completes the induction and proves the result.

The greedy person has a humble cousin who always decides to alter the set of smallest possible cardinality, subject to the set never having been seen before.

Lemma 3.2. The reverse of the greedy sequence is the humble sequence.

Proof. The greedy strategy applied to the complements of S_i results in the humble strategy applied to S_i, because the complement of S_i is largest when S_i is smallest. Thus, the complement of the greedy sequence G is the humble sequence H. By Theorem 3.1, $G = R_m$. By Lemma 2.2, $H = \text{complement of } G = \text{reverse of } G$.

4 A for-loop method

We showed that R_m can be generated with a recursion or with a greedy algorithm. Now we present a third way to generate R_m. If c is an integer, define $v_2(c)$ to be the largest integer v such that 2^v divides c – this is called the valuation of c at 2. Consider the following program.

```plaintext
G := [ ]
for c = 1 to $2^{m-1} - 1$ do {
    Let $v = v_2(c)$ (i.e., $2^v | c$)
    Let $h$ be the Hamming weight of $c$
    $d := m - v - h$
    $G := G \cup [d, d + 1, \ldots, d + v]$
}
return $G$
```

Figure 3: For-c loop method to generate R_m

Theorem 4.1. The sequence G that is returned by the above program is equal to R_m.

Proof. We use induction on m. Recall the formula

$$R_m = (R_{m-1} + 1) \cup [1, 2, \ldots, m - 1] \cup R_{m-1}.$$

The induction hypothesis shows that $R_{m-1} + 1$ is generated with the code:
\[G := [] \]
\[\text{for } c = 1 \text{ to } 2^{m-2} - 1 \text{ do } \{ \]
\[\text{Let } v = v_2(c) \]
\[\text{Let } h \text{ be the Hamming weight of } c \]
\[d' := (m - 1) - v - h \]
\[G := G \cup [d' + 1, (d' + 1) + 1, \ldots, (d' + v) + 1] \]
\[\} \]

By substituting \(d = d' + 1 \), this is equivalent to
\[G := [] \]
\[\text{for } c = 1 \text{ to } 2^{m-2} - 1 \text{ do } \{ \]
\[\text{Let } v = v_2(c) \]
\[\text{Let } h \text{ be the Hamming weight of } c \]
\[d := m - v - h \]
\[G := G \cup [d, d + 1, \ldots, d + v] \]
\[\} \]

Thus, the for loop of the original program with \(c \) running from 1 to \(2^{m-2} - 1 \) yields \(R_{m-1} + 1 \).

Next, observe that the for-loop iteration with \(c = 2^{m-2} \) sets \(v = m - 2 \), \(h = 1 \), \(d = 1 \), and \(G := G \cup [1, 2, \ldots, m - 1] \). So the for-loop from \(c = 1 \) to \(2^{m-2} \) yields \((R_{m-1} + 1) \cup [1, 2, \ldots, m - 1] \).

Finally, the inductive hypothesis implies that the final sequence \(R_{m-1} \) can be generated with the code
\[\text{for } c' = 1 \text{ to } 2^{m-2} - 1 \text{ do } \{ \]
\[\text{Let } v = v_2(c') \]
\[\text{Let } h' \text{ be the Hamming weight of } c' \]
\[d := (m - 1) - v - h' \]
\[G := G \cup [d, d + 1, \ldots, d + v] \]
\[\} \]

return \(G \)

By setting \(c = 2^{m-2} + c' \) and \(h = h' + 1 \), this can be rewritten as
\[\text{for } c = 2^{m-2} + 1 \text{ to } 2^{m-1} - 1 \text{ do } \{ \]
\[\text{Let } v = v_2(c) \]
\[\text{Let } h \text{ be the Hamming weight of } c \]
\[d := m - v - h \]
\[G := G \cup [d, d + 1, \ldots, d + v] \]
\[\} \]

Putting these together, we conclude that \(R_m \) can be generated with the for-loop running from \(c = 1 \) to \(2^{m-1} - 1 \). This completes the induction and the proof. \(\square \)

As an example, when \(m = 4 \) the for-\(c \) loop generates the following:
\[[3] \cup [2 3] \cup [2] \cup [1 2 3] \cup [2] \cup [1 2] \cup [1] \].
This is exactly R_4.

The advantage of the for-loop method of generating R_m, as compared to the recursive formula (3), is that it requires less memory.

5 A fourth way to generate R_m

So far we have given three ways to generate R_m: by a recursion, by the greedy method, and with a for loop. Here we give a fourth method, also using a for loop. Consider the following code for $m \geq 2$.

\[
G := \left[m - 1 \right] \\
t := m - 2 \\
\text{for } j = 1 \text{ to } 2^{m-2} - 1 \text{ do} \\
 \text{let } v = v_2(j) \\
 G := G \cup [t, t + 1, t + 2, \ldots, t + v + 1] \cup [t + v] \\
 t + := v - 1 \\
\text{return } G
\]

Figure 4: For-j loop method to generate R_m

Theorem 5.1. The above for loop generates $G = R_m$. Also, at the end of the for loop, $t = 0$.

Proof. We use induction on m. The theorem is easily seen to be true for $m = 2$, because the for loop is empty in that case. Now let $m \geq 3$, and assume the theorem is true for $m - 1$. We will prove it is true for m also. The induction hypothesis implies that at the end of the following for loop we will have $G = R_{m-1}$ and $t = 0$:

\[
G := \left[m - 2 \right] \\
t := m - 3 \\
\text{for } j = 1 \text{ to } 2^{m-3} - 1 \text{ do} \\
 \text{let } v = v_2(j) \\
 G := G \cup [t, t + 1, t + 2, \ldots, t + v + 1] \cup [t + v] \\
 t + := v - 1 \\
\text{return } G
\]

Since $R_m = (R_{m-1} + 1) \cup [1, \ldots, m] \cup R_{m-1}$, the induction hypothesis implies that R_m can be generated as follows.
Moreover, at line 7 we know that \(t' = 0 \) and at line 14 we know \(t = 0 \). In lines 1–6, set \(t = t' + 1 \):

\[
\begin{align*}
1 & \quad G := [m - 1] \\
2 & \quad t' := m - 3 \\
3 & \quad \text{for } j = 1 \text{ to } 2^{m-3} - 1 \text{ do} \\
4 & \quad \quad \text{let } v = v_2(j) \\
5 & \quad \quad G := G \cup [t' + 1, t' + 2, \ldots, t' + v + 2] \cup [t' + v + 1] \\
6 & \quad t' := v - 1 \\
7 & \quad G := G \cup [1, 2, \ldots, m - 1] \\
8 & \quad G := G \cup [m - 2] \\
9 & \quad t := m - 3 \\
10 & \quad \text{for } j = 1 \text{ to } 2^{m-3} - 1 \text{ do} \\
11 & \quad \quad \text{let } v = v_2(j) \\
12 & \quad \quad G := G \cup [t, t + 1, t + 2, \ldots, t + v + 1] \cup [t + v] \\
13 & \quad t := v - 1 \\
14 & \quad \text{return } G
\end{align*}
\]

Then at line 7 we know \(t = 1 \). Lines 7, 8, and 9 are equivalent to

\[
\begin{align*}
1 & \quad G := [m - 1] \\
2 & \quad t := m - 2 \\
3 & \quad \text{for } j = 1 \text{ to } 2^{m-3} - 1 \text{ do} \\
4 & \quad \quad \text{let } v = v_2(j) \\
5 & \quad \quad G := G \cup [t, t + 1, \ldots, t + v + 1] \cup [t + v] \\
6 & \quad t := v - 1
\end{align*}
\]

We recognize this as the iteration of the for loop with \(j = 2^{m-3} \). Finally, in the last for loop we can change \(j \) to \(j + 2^{m-3} \) without affecting the value for \(v \). Equivalently, line 10 can be changed to “for \(j = 2^{m-3} + 1 \text{ to } 2^{m-2} - 1 \text{ do} \)”. This shows that \(R_m \) can be produced by the above for-loop with \(j \) running from 1 to \(2^{m-2} - 1 \). This completes the induction and the proof.

We remark that the two for-loop methods for generating \(R_m \) that are given in Figures 3 and 4 are closely related, as shown in the next lemma.

Lemma 5.2. The update for \(G \) in the for loop of Figure 4 is equivalent to the updates when \(c = 2j \) and \(c = 2j + 1 \) in the for loop of Figure 3.
For example, when \(m = 4 \) the for-\(c \) loop of Theorem 4.1 and the for-\(j \) loop of Theorem 5.1 generate \(R_4 \) as follows:

\[
\begin{align*}
[3] & \cup [2, 3] \cup [2] \cup [1, 2, 3] \cup [2] \cup [1, 2] \cup [1].
\end{align*}
\]

\(c=1 \quad c=2 \quad c=3 \quad j=1 \quad j=2 \quad j=3 \)

Proof. Let \(v_j \) denote the valuation of \(v \) at 2, \((i.e., 2^{v_j} \) maximally divides \(j \). Let \(t_j \) denote the value for \(t \) at the point in the for-\(j \) loop when \(G \) is being updated. Let \(d_c \) denote the value for \(d \) in the for-\(c \) loop, namely \(d_c = m - v_c - \text{HW}(c) \). The for-\(j \) loop does the update

\[
G := G \cup [t_j, t_j + 1, \ldots, t_j + v_j + 1] \cup [t_j + v_j]
\]

and the for-\(c \) loop does the update

\[
G := G \cup [d_c, d_c + 1, \ldots, d_c + v_c].
\]

We claim that when \(c = 2j \) then

\[
[d_c, \ldots, d_c + v_c] = [t_j, \ldots, t_j + v_j + 1]
\]

and when \(c = 2j + 1 \) then

\[
[d_c, \ldots, d_c + v_c] = [t_j + v_j].
\]

The claim will imply that the update (4) in the for-\(j \) loop is equivalent to the two updates with \(c = 2j \) and \(c = 2j + 1 \) in the for-\(c \) loop. To see the claim, it suffices to show that \(d_{2j} = t_j, \ v_{2j} = v_j + 1, \ d_{2j+1} = t_j + v_j, \) and \(v_{2j+1} = 0 \). The statements \(v_{2j} = v_j + 1 \) and \(v_{2j+1} = 0 \) are obvious, so we just need to prove

\[
d_{2j} = t_j \text{ and } d_{2j+1} - d_{2j} = v_j.
\]

Looking at the for-\(j \) loop program, we see that \(t \) starts at \(m - 2 \) and then \(v_j - 1 \) is added to \(t \) at the end of each for-loop iteration. Thus,

\[
t_j + v_j - 1 = m - 2 + \sum_{0<i\leq j} (v_i - 1).
\]

Lemma 5.3 below shows that the right-hand side is \(m - 2 - \text{HW}(j) \), and so

\[
t_j = m - 2 - \text{HW}(j) - v_j + 1 = m - 1 - \text{HW}(j) - v_j.
\]

On the other hand, \(d_{2j} = m - v_{2j} - \text{HW}(2j) = m - v_j - 1 - \text{HW}(j) \), and so we see that \(d_{2j} = t_j \) as claimed. Next,

\[
d_{2j+1} - d_{2j} = (m - v_{2j+1} - \text{HW}(2j + 1)) - (m - v_{2j} - \text{HW}(2j))
= v_{2j} + \text{HW}(2j) - \text{HW}(2j + 1) = v_{2j} - 1 = v_j.
\]

This proves the claim and establishes the lemma. \(\square \)
Lemma 5.3. If $i > 0$, let v_i denote the valuation of i at 2 (i.e., 2^v_i maximally divides i), and let $\text{HW}(i)$ denote the Hamming weight of i. Then

$$\sum_{i=1}^{j} (1 - v_i) = \text{HW}(j).$$

Proof. This is trivially true when $j = 1$. Now let $j \geq 1$. Assuming the lemma is true for j, we will show it is true for $j + 1$. By the inductive hypothesis,

$$\sum_{i=1}^{j+1} (1 - v_i) = \text{HW}(j) + 1 - v_{j+1}$$

and we must show that this is equal to $\text{HW}(j + 1)$. That is, we must show that

$$\text{HW}(j + 1) - \text{HW}(j) = 1 - v_{j+1}. \quad (5)$$

First, if j is even then $j + 1$ is obtained by changing the low bit of j from a 0 to a 1. Thus, both sides of the above equality are 1. Next, if j is odd, then let k be the number of consecutive 1’s in the low bits of j. Then $j + 1$ is obtained from j by complementing the lowest $k + 1$ bits. That is, the bits 011...1 in j become 100...0 in $j + 1$. This shows that $v_{j+1} = k$ and $\text{HW}(j) - \text{HW}(j + 1) = k - 1$, and (5) easily follows. This completes the induction and the proof.

Mark Jacobson observed that $\sum_{i=1}^{j} v_i$ is the valuation of $j!$ at 2. Thus, Lemma 5.3 is equivalent to the statement that the valuation of $j!$ at 2 is $j - \text{HW}(j)$. This latter fact is proved in [3, Section 4.4], using a different proof from the above.

6 Relationship with other combinatorial Gray codes

In this section we show that the stepping sequences R_m give rise to a new family of cyclic Gray codes through binary m-bit integers. Also they give rise to new Gray codes through k-element subsets of an m-element set.

We first explain the connection with Gray codes on binary m-bit integers. If $S_m = \{0, 1, \ldots, m - 1\}$, then subsets of S_m are in bijection with the integers in the range $0 \leq i < 2^m$ by the map $S \mapsto \sum_{i \in S} 2^i$. The cardinality of S is equal to the Hamming weight of its corresponding integer. When we Gray-code through nested subsets of S_m, we exhaust through all of its subsets, and consequently we exhaust through the m-bit integers. For example, the stepping sequence R_4 exhausts through subsets of $\{0, 1, 2, 3\}$ in the following order (see Figure 1):

$\emptyset, \{0\}, \{0, 1\}, \{0, 1, 2\}, \{0, 1, 2, 3\}, \{0, 1, 3\}, \{0, 3\}, \{0, 2, 3\}, \{0, 2\}, \{2\}, \{2, 3\}, \{1, 2, 3\}, \{1, 2\}, \{1\}, \{1, 3\}, \{3\}$.
This corresponds the sequence of integers (written in binary):

0000, 0001, 0011, 0111, 1011, 1001, 0101, 0100, 1100, 1110, 0010, 0110, 1010, 1000.

In particular, this is a Gray-code ordering of the 4-bit integers, because at each step, only one bit is altered. A Gray code is cyclic if the last integer in the sequence differs by only one bit from the first integer in the sequence. The above example is a cyclic Gray code, because the first element is 0000 and the last element has Hamming weight 1.

It is not true that all stepping sequences give rise to Gray-code orderings of integers. For example, the stepping sequence $G = [3, 2, 3, 2, 1, 2, 3, 1, 2, 1, 2]$ produces an integer of Hamming weight 3 next to an integer of Hamming weight 1.

We will say that a sequence of integers is contiguous if consecutive elements differ by ± 1.

We will say that a stepping sequence for m is strongly contiguous if it is contiguous, it begins with $m - 1$, and it ends with 1.

Lemma 6.1. A stepping sequence gives rise to a cyclic Gray code if and only if it is strongly contiguous.

Proof. Let $G = [g_0, \ldots, g_K]$ be a stepping sequence. The initial sets S_0, S_1, \ldots, S_m correspond to the integers

$$00\cdots000, 00\cdots001, 00\cdots011, \ldots, 01\cdots111, 11\cdots111.$$

The next integer produced by G has Hamming weight equal to g_0. This integer is one-off from $1\cdots1$ if and only if $g_0 = m - 1$. For $0 \leq i < K$, the integer produced by the i-th and $(i + 1)$-th elements of G have Hamming weights g_i and g_{i+1}. Because the nesting property of the sets is always maintained, we know that the one-bits of the integer with lower Hamming weight is a subset of the one-bits of the integer of higher Hamming weight. Thus, these two integers differ by a single bit if and only if their Hamming weights differ by one, i.e., $|g_i - g_{i+1}| = 1$. Finally, the cyclic condition mandates that the last element produced be adjacent to $0\cdots000$, i.e., the last element must have Hamming weight 1. This is equivalent to $g_K = 1$. \hfill \square

Theorem 6.2. The stepping sequence R_m is strongly contiguous for each $m \geq 2$, and so it gives rise to a cyclic Gray-code ordering on the m-bit integers. More generally, if A and B are strongly contiguous stepping sequences for $m - 1$, then $C = (A + 1) \cup [1, 2, \ldots, m - 1] \cup B$ is a strongly contiguous stepping sequence for m.

Proof. We first prove the second statement. Note that C is a stepping sequence for m by Theorem 2.1, and we just need to show that it is strongly contiguous. Since A and B are contiguous, so are the three pieces that make up C. Also, since A ends with a 1, we know $A + 1$ ends with a 2, which is one-off from the first term of $[1, 2, \ldots, m - 1]$. Likewise, B begins with $m - 2$, which is one-off from the last term of $[1, 2, \ldots, m - 1]$. This shows that C is contiguous. The first term of A is $m - 2$, so the first term of $A + 1$ is $m - 1$. Also, the last term of B is 1. Thus, the first term of C is $m - 1$ and the last term of C is 1. This shows that C is strongly contiguous.
Taking $A = B = R_{m-1}$, we see that if R_{m-1} is strongly contiguous then so is R_m. Since $R_2 = [1]$ is strongly contiguous for $m = 2$, it follows by induction that R_m is strongly contiguous for all $m \geq 2$.

For $m = 4$ and $m = 5$, an exhaustive search shows that R_m is the only strongly contiguous stepping sequence. However, for $m = 6$ there are exactly two strongly contiguous stepping sequences: R_6 and A_6, where

\[A_6 = [5, 4, 5, 4, 3, 2, 3, 4, 5, 4, 3, 2, 3, 4, 3, 2, 1, 2, 3, 4, 5, 4, 3, 4, 3, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 1, 2, 1]. \]

An interesting observation is that A_6 and R_6 have a long subsequence in common:

\[A_6 = [5, 4, 5, 4, 3, 2, 3, 4, 5, 4, 3, 2, 3, 4, 3, 2, 1, 2, 3, 4, 5, 4, 3, 4, 3, 2, 3, 4, 3, 2, 1, 2, 1, 2, 1, 2, 1]. \]

Notice that the reverse of A_6 is equal to its complement. However, it is not true that all strongly contiguous stepping sequences have that property. The first counterexamples occur when $m = 7$: $(A_6 + 1) \cup [1, \ldots, 6] \cup R_6$ and $(R_6 + 1) \cup [1, \ldots, 6] \cup A_6$.

Theorem 6.2 implies that if there are N strongly contiguous stepping sequences for $m-1$, then there are at least N^2 strongly contiguous stepping sequences for m, because when constructing $C = (A + 1) \cup [1, \ldots, m - 1] \cup B$ we have N choices for A and N choices for B. Thus, if c_m denotes the number of strongly contiguous stepping sequences for m, then $c_m \geq c_{m-1}^2$. By exhaustion we found $c_m = 1$ for $m \leq 5$, and $c_6 = 2$. Thus, $c_7 \geq 4$, $c_8 \geq 16$, and in general $c_m \geq 2^{2^{m-6}}$ for $m \geq 6$. For $m \geq 7$, it is an open question whether $c_m = 2^{2^{m-6}}$.

By Lemma 6.1, each strongly contiguous stepping sequence gives rise to a Gray code on m-bit integers. Thus, we have an explicit recipe for constructing c_m new Gray codes on m-bit integers. As shown above, the number of these is at least $2^{2^{m-6}}$.

One might wonder how many stepping sequences there are that are contiguous but not strongly contiguous. By exhaustive computer search we found that for $m \leq 6$, every contiguous stepping sequence has the property that either the sequence or its reverse is strongly contiguous. It is an open question whether this is true for larger m. The only partial result that we have in this direction is given in Lemma 6.4 below.

Lemma 6.3. If m is even, then a contiguous stepping sequence must begin and end with an odd integer.

Proof. Let m be even. Note that R_m begins with the odd integer $m - 1$ and ends with the odd integer 1. Since every other step produces a set of even cardinality and every other step produces a set of odd cardinality, and since the total number of steps is the odd number $2^m - m - 1$, we see that if one begins on a set of even cardinality, then more even-order sets are produced than odd-order sets. However, R_m is known to be a stepping sequence that begins on an odd integer. Then the odd-order sets (excluding the initial ones) must
outnumber the even-order sets. It follows that any contiguous stepping sequence must begin with an odd integer.

Lemma 6.4. Let S be a contiguous stepping sequence. Then S or its reverse has the property that its first element is congruent to $m - 1$ (mod 2) and the last element is congruent to 1 (mod 2).

Proof. When m is even, the result follows immediately from Lemma 6.3. When m is odd, then $2^m - m - 1$ is even, and since the parities of the elements of S alternate, we conclude that the first and last elements have opposite parities. By reversing the stepping sequence if necessary, we can assume that the first element is even and the last is odd. The result follows.

We showed that Gray codes through nested sets give rise to a Gray code through m-bit integers, provided the associated stepping sequence is contiguous. However, it is not true that a Gray code through the m-bit integers gives rise to a solution to the nested set problem. For example, consider the binary reflective Gray code sequence that is defined recursively by $G_1 = [0, 1]$ and $G_m = ([0] \times G_{m-1}) \cup ([1] \times G'_{m-1})$, where G'_{m-1} denotes the reverse of G_{m-1}. For $m = 1, 2, 3$ these are

$$
G_1 = [0, 1], \quad G_2 = [00, 01, 11, 10], \quad G_3 = [000, 001, 011, 010, 110, 111, 101, 100].
$$

The first few corresponding sets for G_3 are

- \emptyset
- $\{0\}$
- $\{0,1\}$
- $\{1\}$
- $\{1,2\}$
- $\{0,1,2\}$
- $\{0,2\}$

and at this point the sets $\emptyset, \{1\}, \{0, 2\}, \{0, 1, 2\}$ are not nested.

We close this section by pointing out a connection with the problem of Gray-coding through k-element subsets of an m-element set. A Gray code through k-element subsets is defined as an ordering of the k-element subsets such that two consecutive subsets differ by just one element, i.e., they have exactly $k - 1$ elements in common. This ordering is cyclic if the first and last k-element subsets also differ by just one element. A Gray code through nested sets results in an ordered sequence of all subsets of S_m, that contains each subset exactly once. We claim that by restricting to the k-element subsets, we obtain a Gray code through k-element subsets. To see this, recall that a new k-element set is produced when S_k is replaced by a new set S_k'. To obtain S_k' from S_k, the unique element of $S_k \setminus S_{k-1}$ is replaced by the unique element of $S_{k+1} \setminus S_k$. Thus, the two sets differ by a single element, and this demonstrates that a Gray code through nested sets induces a Gray code through k-element subsets.
For example, the stepping sequence R_6 induces the following order on 2-element subsets of $\{0, 1, 2, 3, 4, 5\}$:

$$\{0, 1\}, \{0, 5\}, \{0, 4\}, \{0, 3\}, \{0, 2\}, \{2, 3\}, \{2, 5\}, \{2, 4\},$$

$$\{1, 2\}, \{1, 4\}, \{1, 3\}, \{1, 5\}, \{3, 5\}, \{4, 5\}, \{3, 4\}.$$

Note however that the first and last sets are not close (they are disjoint), so this combinatorial Gray code through order-2 subsets is not cyclic. For methods of Gray-coding through k-element subsets of an order-m set see [2, 7, 1].

References

[1] Marshall Buck and Doug Wiedemann, *Gray codes with restricted density*, Discrete Mathematics 48, North-Holland, 163–171, 1984.

[2] Phillip J. Chase, Algorithm 382: Combinations of M out of N objects, Comm. ACM 13, p. 368, 1970.

[3] Graham, Knuth, and Patashnik, *Concrete Mathematics: A Foundation for Computer Science*, Second Edition, Addison-Wesley, 1994.

[4] Frank Gray, *Pulse Code Communication*, March 17, 1953, USA Patent 2,632,058

[5] Donald L. Kreher and Douglas R. Stinson, *Combinatorial Algorithms – Generation, Enumeration, and Search*, CRC Press, 1999.

[6] Carla Savage, *A survey of combinatorial Gray codes*, SIAM Rev. 39 (4), 605–629, 1997.

[7] Hilbert S. Wilf, *Combinatorial Algorithms: An Update*, SIAM, Philadelphia, 1989.