Supporting Information

Non-covalent Functionalization of Graphene to Tune Its Band Gap and Stabilize Metal Nanoparticles on Its Surface.

Paloma Arranz-Mascarós, Maria Luz Godino-Salido, Rafael López-Garzón, Celeste García-Gallarín, Ignacio Chamorro-Mena, F. Javier López-Garzón, Esperanza Fernández-García, María Dolores Gutiérrez-Valero.

a Department of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, Jaén University, 23071, Jaén, Spain.
b Department of Inorganic Chemistry, Faculty of Sciences, Granada University, 18071, Granada, Spain.

Contents

Figure S1. Adsorption and desorption isotherms of HIS on G at pH = 5.0. S2
Figure S2. Species distribution vs pH for compound HIS in aqueous solution at 298.1 K. S2
Table S1. Stability constants (log K) for the system HIS/H⁺. S3
Table S2. Stability constants for the HIS/Cu(II) system in aqueous solution. S3
Figure S3. Species distribution diagram as a function of pH of the HIS/Cu(II) system in aqueous solution. S4
Figure S4. Adsorption isotherm of Cu(II) on G-HIS(0.47), obtained in water solution at pH = 5.0. S4
Figure S5. Nitrogen adsorption-desorption isotherms of G and G-HIS(0.47) S5
Determination of the G and G-HIS(0.47) proton isotherms. S6
Figure S6. a) Proton isotherms of G and G-HIS(0.47); b) Distribution plots of acidic groups on G and G-HIS(0.47). S7
Figure S7. UV absorption spectrum of HIS. S8
Figure S8. Plots of (αE)½ (indirect transitions) against the photon energy (E) for G, G-HIS hybrids and G-HIS-Cu(0). S8
Figure S9. HRTEM image of Pristine Graphene. S9
References. S9
Figure S1. Adsorption and desorption isotherms of HIS on G at pH = 5.0

Figure S2. Species distribution vs pH for compound HIS in aqueous solution (0.1 M Me₄NCl) at 298.1 K. (HIS=H₃L)*
Table S1. Stability constants (log K) for the system HIS/H⁺ (0.1 M Me₄NCl, 298.1 K). (HIS=H₃L)*

Equilibrium	logK
L³⁻ + H⁺ ⇌ HL²⁻	11.74(4)
HL²⁻ + H⁺ ⇌ H₂L⁻	7.32(1)
H₂L⁻ + H⁺ ⇌ H₃L	6.83(1)
H₃L + H⁺ ⇌ H₄L⁺	3.160(9)
H₄L⁺ + H⁺ ⇌ H₅L²⁺	2.598(8)

Table S2. Stability constants for the HIS/Cu(II) system in aqueous solution ([Cu(II])=10⁻³ M, [HIS]=10⁻³ M, 0.1 M Me₄NCl, 298.1 K). (HIS=H₃L)*

Equilibrium	logK
Cu²⁺ + L³⁻ ⇌ [CuL]⁻	8.79(9)
Cu²⁺ + HL²⁻ ⇌ [Cu(HL)]	7.35(6)
Cu²⁺ + H₂L⁻ ⇌ [Cu(H₂L)]⁺	6.69(4)
Cu²⁺ + H₃L ⇌ [Cu(H₃L)]²⁺	4.14(2)
Figure S3. Species distribution diagram as a function of pH of the HIS/Cu(II) system in aqueous solution ([Cu(II)] = 10^{-3} M, [HIS] = 10^{-3} M, 0.1 M Me$_4$NCl, 298.1 K).

(HIS=H$_3$L)*

Figure S4. Adsorption isotherm of Cu(II) on G-HIS(0.47), obtained in water solution at pH = 5.0
Figure S5. Nitrogen adsorption-desorption isotherms of G and G-HIS(0.47)
Determination of G and G-HIS(0.47) proton isotherms

The proton isotherms of G and G-HIS were determined from a potentiometric titration of the solids in water suspension according to a previously reported procedure. The obtained surface charge profile of G (Figure S6a) shows positive charge surface at the lowest pH value (c.a. 2.5). This can be assigned to protonated water molecules, H$_3$O$^+$, as the carbon-oxygen functions on the G surface lack Brønsted basic character. It has been reported these water molecules interact with the basic arene centres, Cπ, of the sp2 domains of graphitized activated carbons and CNTs. Moreover, it is also known that graphene surface tends to interact strongly with water.

The positive charge on G surface decreases as the pH increases in the 2.5-5.5 range. This is due to the neutralization of carboxylic acid groups. This process takes place through two well-differentiated steps corresponding to the protonation of the isolated carboxyl groups and those coming from disgregation of anhydrides. Two overlapped deprotonation processes in the 7.0-10.5 pH range are assigned to deprotonation of H$_3$O$^+$ surface groups and to the C-OH functions respectively.

On the other hand, it is seen in the Q vs pH profile of G-HIS(0.47) (Figure S6a) that the positive value of the surface-charge density at pH = 2.5, is higher than this of the bare G. Moreover, this plot also shows a steady decrease of positive charge in the pH range 2.5-9.5, sharper in the 7.2-9.5 pH range. This suggests the overlap of successive deprotonation processes.

The numerical SAIEUS procedure was applied to the proton isotherm of G-HIS(0.47) to determine the theoretical pKa values of the acidic functions of the G-HIS(0.47) surface (Figure S6b). Assuming the attachment of HIS on G takes place by a strong Cπ pyrimidine interaction, the net positive surface-charge at the initial pH (2.5), comes from both the Cπ-H$_3$O$^+$ groups (see above) and the carboxyl functions of HIS which remain partially protonated. Thus the peak of Figure S6b, at pKa = 2.6, corresponds to both the single carboxyl groups of G and the partly protonated carboxylate groups of HIS. After deprotonation of these groups, in the 2.5-3.5 pH range, the deprotonation of carboxyl functions coming from anhydride groups of G in the 3.6-5.0 pH range (pKa = 4.2) occurs. A peak at pKa = 5.9 is assigned to the neutralization of the protonated N$_\text{cyclic-imidazole}$ atoms. The amount of such groups was calculated by the peak integration, and the result is consistent with the amount of HIS attached to G (0.47 mmol·g$^{-1}$). The pKa value obtained
for the protonated N\textsubscript{cyclic-imidazole} of the molecules of HIS adsorbed on G is somewhat smaller than this group in the pure HIS in water (c.a. pKa = 7.8, see Figure S6b). This effect, which is similar to that observed when an analogous molecule was adsorbed on MWCNTs,3 is probably due to an elongated arrangement of the imidazole residues, which hampers to some extent the protonation of such groups. This arrangement is required to optimize the molecule-graphene stacking interactions (although this is somewhat limited by the polar character of the imidazole residues). A slightly asymmetric peak with a maximum at pKa 8.7 is assigned to the deprotonation of few C\textsubscript{x}-H\textsubscript{3}O+ groups (pKa = 7.8, see above), weak phenol groups of G and might also include partial deprotonation of the C(4)\textsubscript{pyrim}-NH\textsubscript{2} atom group (Figure S6b).

\textbf{Figure S6.} a) Proton isotherms of G and G-HIS(0.47); b) Distribution plots of acidic groups on G and G-HIS(0.47)
Figure S7. UV absorption spectrum of HIS

Figure S8. Plots of $(\alpha E)^{1/2}$ (indirect transitions) against the photon energy (E) for G, G-HIS hybrids and G-HIS-Cu(0)
Figure S9. HRTEM image of Pristine Graphene.

References

(1) Arranz, P.; Bianchi, A.; Cuesta, R.; Giorgi, C.; Godino, M. L.; Gutiérrez, M. D.; López, R.; Santiago, A. Binding and Removal of Sulfate, Phosphate, Arsenate, Tetrachloromercurate, and Chromate in Aqueous Solution by Means of an Activated Carbon Functionalized with a Pyrimidine-Based Anion Receptor (HL). Crystal Structures of \([H_3L(HgCl_4)]=H_2O\) and \([H_3L(HgBr_4)]=H_2O\) Showing Anion-π Interactions. *Inorg. Chem.* **2010**, *49*, 9321-9332.

(2) Leon y Leon, C. A.; Solar, J. M.; Calemma, V.; and Radovic, L. R. Evidence for the protonation of basal plane sites on carbon. *Carbon* **1992**, *30*, 797-811.

(3) Savastano, M; Arranz-Mascarós, P.; Bazzicalupi, C.; Clares, M. P.; Godino-Salido, M. L.; Gutiérrez-Valero, M. D.; Inclán, M.; Bianchi, A.; García-España, E.; López-Garzón, R. Construction of green nanostructured heterogeneous catalysts via non-covalent surface decoration of multi-walled carbon nanotubes with Pd(II) complexes of azamacrocycles. *J. Catal.* **2017**, *353*, 239-249.
(4) Lerf, A.; He, H.; Forster, M.; Klinowski, J. Structure of graphite oxide revisited. *J. Phys. Chem. B* 1998, 102, 4477-4482.

(5) Carey, F. A.; Guiliano, R. M. Organic Chemsitry, 10th Ed., McGraw Hill Ed.; 2016.

(6) Jagiello, J; Thommes, M. Comparison of DFT characterization methods based on N₂, Ar, CO₂, and H₂ adsorption applied to carbons with various pore size distributions. *Carbon* 2004, 42, 1227-1229.

(7) Boehm, H. P. Chemical identification of surface groups. *Adv. Catal.* 1966, 16, 179-274.

(8) Boehm, H. P. Some aspects of the surface chemistry of carbon blacks and other carbons. *Carbon* 1994, 32, 759-769.

(9) El-Sayed, Y.; Bandosz, T. J. Adsorption of valeric acid from aqueous solution onto activated carbons: role of surface basic sites. *J. Colloid Interface Sci.* 2004, 27, 64-72.

(10) Putyera, K.; Jagiello, J.; Bandosz, T. J.; Schwarz, J. A. Surface chemical heterogeneity of pillared hydrotalcites. *J. Chem. Soc. Faraday Trans.* 1996, 92, 1243-1247.

(11) Bandosz, T. J.; Jagiello, J.; Contescu, C.; Schwarz, J. A. Characterization of the surfaces of activated carbons in terms of their acidity constant distribution. *Carbon* 1993, 3, 1193-1202.