CASE REPORT

Mycobacterium wolinskyi Peritonitis after Peritoneal Catheter Embedment Surgery

Hiroyuki Fujikura\(^1\), Kei Kasahara\(^1\), Yoshihiko Ogawa\(^1\), Nobuyasu Hirai\(^1\), Seiya Yoshii\(^2\), Shingo Yoshihara\(^1\), Taku Ogawa\(^1\), Shinsuke Yonekawa\(^1\), Natsuko Imakita\(^1\), Yuichi Nishioka\(^1\), Tatsuo Yoneda\(^3\), Katsunori Yoshiida\(^2\), Ken-ichi Samejima\(^3\), Kaori Tanabe\(^3\), Yoshihiko Saito\(^3\), Hisakazu Yano\(^4\) and Keiichi Mikasa\(^1\)

Abstract:

Mycobacterium wolinskyi belongs to the *Mycobacterium smegmatis* group, which comprises rapidly growing non-tuberculous mycobacteria. The number of case reports on *M. wolinskyi* infections associated with postoperative wounds has increased in recent years. We herein report a case of peritonitis due to *M. wolinskyi* after peritoneal catheter embedment surgery. Identification was achieved based on 16S ribosomal RNA and *rpoB* gene sequencing of the isolate. The patient recovered following catheter removal and treatment with levofloxacin and minocycline for one month.

Key words: 16S rRNA sequence, *Mycobacterium wolinskyi*, non-tuberculous mycobacteria, peritoneal dialysis, rapidly growing mycobacteria, *rpoB* sequence

(Intern Med 56: 3097-3101, 2017)
(DOI: 10.2169/internalmedicine.8871-17)

Introduction

Peritoneal dialysis (PD) is an important modality for the management of end-stage renal disease (ESRD). Infection is a serious complication that may result in cessation of PD and catheter loss (1-3). Various efforts have been undertaken to decrease the incidence of infectious complications of PD and peritoneal catheter embedment; the Moncrief and Popovich technique represents one successful procedure (4).

The most common PD-related infectious complication is catheter-associated peritonitis, of which the causative organisms are usually aerobic skin inhabitants such as *Staphylococcus* species (5). Recently, reports of PD-related peritonitis caused by non-tuberculous mycobacteria (NTM) have increased (6-9). We herein report a case of peritonitis due to *Mycobacterium wolinskyi*, a rare, rapidly growing NTM, after peritoneal catheter embedment surgery via the Moncrief and Popovich technique.

Case Report

A 66-year-old Japanese man with ESRD secondary to diabetic nephropathy was admitted to our hospital with a fever, generalized fatigue, and weight loss of 6 kg over 2 months. Two months prior to admission, he underwent PD catheter insertion by stepwise initiation using the Moncrief and Popovich technique (4). One month prior to admission, he noticed discharge from the surgical site and visited a nearby clinic, where he received wound care with gentamicin ointment. No microbiological evaluation was performed during the visit, and the discharge persisted. Upon admission to our hospital, he complained of tingling pain around the abdominal surgical site with a small amount of discharge. His vital signs were as follows: blood pressure, 136/80 mmHg; pulse, 84 beats per minute; temperature, 36.8°C; and respiratory rate, 12 breaths per minute. On a physical examination, a small amount of serous discharge was noted at the surgical site. His abdomen was not distended. No re-

\(^1\)Center for Infectious Diseases, Nara Medical University, Japan,
\(^2\)Department of Urology, Nara Medical University, Japan,
\(^3\)First Department of Internal Medicine, Nara Medical University, Japan and
\(^4\)Department of Microbiology and Infectious Diseases, Nara Medical University, Japan

Received: January 15, 2017; Accepted: March 15, 2017; Advance Publication by J-STAGE: September 25, 2017
Correspondence to Dr. Kei Kasahara, kassan@naramed-u.ac.jp
bound tenderness or muscle guarding was observed.

Laboratory findings on admission were as follows: total white blood cell (WBC) count of 12,000 cells/mm³ with 85% neutrophils, 6% lymphocytes, 1% basophils, and 8% monocytes; serum potassium, 6.6 mEq/L; blood urea nitrogen, 167 mg/dL; creatinine, 12.54 mg/dL; C-reactive protein, 17.8 mg/dL; and procalcitonin, 3.29 ng/mL. Both abdominal computed tomography and abdominal echography demonstrated a small amount of ascites without other notable abnormal findings. An intravascular catheter was inserted via the right femoral vein, and emergency hemodialysis was performed. The PD catheter was exteriorized, and cloudy ascites obtained through the catheter showed a WBC count of 2,000 per mm³ nucleated cells (37% neutrophils, 48% lymphocytes, and 14% monocytes).

The discharge and two paired blood cultures were obtained for a microbiological evaluation on admission. Ascitic fluid was inoculated into blood culture bottles (BacT/Alert SA and SN bottles; Sysmex bioMérieux, Tokyo, Japan). No bacteria were observed on the Gram stain of the discharge. The PD catheter was exteriorized, and cloudy ascites obtained through the catheter showed a WBC count of 2,000 per mm³ nucleated cells (37% neutrophils, 48% lymphocytes, and 14% monocytes).

Treatment with intravenous ceftriaxone (2 g/day) was commenced and later switched to cefazolin (1 g/day) and ceftazidime (1 g/day), owing to a persistent fever. On the fifth day of hospitalization, small white colonies grew on a sheep blood agar plate (Kyokuto, Tokyo, Japan) from the culture of the discharge; Gram staining demonstrated Gram-positive rods. Thirty-nine days later, antibiotics were discontinued due to development of thrombocytopenia. Thereafter, the platelet counts improved. There was no recurrence of a fever or abdominal symptoms at the six-month follow-up.

Peritonitis is a major cause of morbidity and mortality in patients receiving PD that may lead to cessation of PD (1-3). The usual causative pathogens of PD-related peri-

Figure. A: Gram staining of colonies revealing Gram-positive bacilli of moderate length (×1,000). B: Ziehl-Neelsen staining of colonies revealing red bacilli (×1,000).
Table 1. Antimicrobial Susceptibility Testing for the Isolated Mycobacterium wolinskyi.

Antibiotics	MIC (μg/mL)	MIC (μg/mL) for category		
		Susceptible	Intermediate	Resistant
Amikacin	4	≤16	32	≥64
Tobramycin	≥16	≤2	4	≥8
Cefmetazolea	8	≤16	32-64	≥128
Imipenem	8	≤4	8-16	≥32
Clarithromycine	≥32	≤2	2-4	≥8
Minocyclineb	≤0.25	≤1	2	≥4
Ciprofloxacin	0.5	≤1	2	≥4
Moxifloxacin	≤0.5	≤1	2	≥4
Trimethoprim-sulfamethoxazole	≤2/38	≤2/38	4/76	
Linezolid	3	≤8	16	≥32

The data of breakpoints are derived from ref (10).
a. The breakpoints are derived from those for cefoxitin.
b. The breakpoints are derived from those for doxycycline.

MIC: minimum inhibitory concentration

tonitis are aerobic bacteria such as coagulase negative staphylococci, Staphylococcus aureus, and Pseudomonas aeruginosa; however, up to 30% of cases are so-called “culture-negative” (2, 5, 6, 11). It is speculated that most culture-negative cases are a result of empirical antibiotic administration prior to the procurement of microbiological specimens; however, pathogens that are difficult to identify, such as fungi and mycobacteria, also cause PD-related peritonitis.

M. wolinskyi belongs to the Runyon classification type IV NTM, also known as rapidly growing mycobacteria (RGM); this means that it has the ability to grow within seven days on artificial media (12). NTM, including RGM, are important emerging pathogens in PD-associated peritonitis. In 2012, Song et al. performed a literature review of 41 articles on PD-associated NTM peritonitis; more than half of the reported cases were due to RGM (M. fortuitum: 38.6%; M. chelonae: 14%) (7).

RGM are ubiquitous in soil, dust, and water, as well as much of the natural environment. Most reported cases of PD-associated RGM peritonitis developed while patients were on PD, suggesting that the patients may have acquired RGM during PD manipulation. Our patient developed infection soon after catheter embedment surgery via the Moncrief and Popovich technique, and the catheter was not used for dialysis; therefore, our case may well be a surgical site infection. Recently, outbreaks of RGM infection after cardiac surgery have been reported, and the contamination of the water in the heater-cooler unit has been reported (13). Such units are not usually used in urological surgery, and the exact route of infection in our case remains unclear. To date, we have detected only one case of M. wolinskyi infection in our hospital.

Due to its rarity and variability in antimicrobial susceptibility, recommendations for specific antibiotic treatment or duration of therapy are lacking. The combination of at least two antibiotics guided by susceptibility testing is generally recommended (14). The typical M. wolinskyi susceptibility profile has been reported as follows: susceptibility towards amikacin, cefoxitin, imipenem, doxycycline, and ciprofloxacin, with resistance towards sulfamethoxazole, clarithromycin, and tobramycin (8, 15). Gentamicin ointment is reportedly effective in the prophylaxis of catheter exit site infections (16). However, cross resistance to gentamicin in tobramycin-resistant organisms is common, and the gentamicin ointment/cream used in our case may have selected M. wolinskyi (17). Although a macrolide is often described as a key treatment component for NTM infection, M. wolinskyi possesses the erm gene, inducing inherent macrolide resistance (18). The length of treatment is determined mainly by the clinical response (3). In a review of NTM peritonitis, the treatment duration ranged between 2 days and 24 months and lasted >1 month in 93.3% of cases (7). We performed a literature review of case reports of M. wolinskyi infection (Table 2); however, the study by Brown et al. was excluded because their data for susceptibility testing and treatment were lacking (8, 12, 15, 19-26). Most cases are uniformly resistant towards clarithromycin and tobramycin, and a combination of amikacin, minocycline, doxycycline, ciprofloxacin, levofloxacin, moxifloxacin, and linezolid was used. The total treatment duration was typically 6 months.

We used a combination of levofloxacin and minocycline in this patient, guided by antibiotic susceptibility testing. When we initiated the therapy, the patient was in a stable condition; therefore, amikacin was not included in the regime. Although we planned to continue the antibiotics for six months, the patient only managed to receive treatment for one month due to the development of thrombocytopenia. Fortunately, the patient exhibited no signs of relapse at the six-month follow up. Surgical debridement or removal of foreign material is often necessary in cases of PD-associated peritonitis. Catheter removal was performed in the majority...
of reported cases of NTM peritonitis, as in our case (7). Conventional identification methods such as DDH may not identify rare *Mycobacterium* species. Therefore, stepwise identification using 16S rRNA sequence and *rpoB* gene analyses is recommended (27). Our patient is the second reported case of PD-related peritonitis due to *M. wolinskyi*; however, there may have been other potential cases in previous reports of *M. fortuitum* or other rare Mycobacterial species that were identified by conventional methods (8, 9). As mentioned, *M. wolinskyi* is typically resistant to clarithromycin and tobramycin, both of which can be used for the treatment of RGM infections. Furthermore, as RGMs can grow in usual blood culture plates and are stained by Gram staining, clinical microbiology laboratories sometimes confuse RGMs for unidentified Gram-positive rods, as in our case. It is therefore crucial to communicate with doctors and clinical microbiologists to facilitate the precise and timely identification with susceptibility testing. The correct identification of

Table 2. Literature Review of Infection Type, Susceptibility, and Treatment of *Mycobacterium wolinskyi* infection.

Reference	Infection type	Susceptibility of *M. wolinskyi*	Antibiotics and treatment duration	Surgical procedure
(19)	Hip prosthetic infection	S: AMK, CPFX, IPM, LZD, MFX, MINO, OPLX I: CXT	AMK+MFLX+MINO for 1 month, then MFLX+MINO for 5 months	Debridement
(20)	Bacteremia in a patient with chronic myelogenous leukemia	S: AMK, CPFX, CXT, DOXY, IPM, LVFX, MINO, ST R: CAM, TOB	AMK+MINO+LVFX for 1 month, then MINO+LVFX for 5 months	None
(15)	Bacteremia and multiple joint infection in a patient with non-Hodgkin lymphoma	S: AMK, CPFX, CXT, DOXY, IPM R: CAM, ST, TOB	AMK+MFLX+MINO for 1 month, then MINO+MFLX+MINO for 6 months	Debridement
(21)	Surgical site infection after knee replacement arthroplasty for primary osteoarthritis	R: CAM, CXT, IPM, RF, ST, TOB	AMK+CPFX+DOXY, duration N/A	Debridement
(23)	Facial skin abscess after cosmetic procedures	S: AMK, CPFX, MFLX I: CXT, IPM I or R: CAM R: ST	DOXY+CPFX for 5 months	Drainage and debridement
(22)	Multiple breast abscesses after mammoplasty	S: AMK, CPFX S or I: MFLX (≤2) I: CXT, DOXY R: CAM, ST, TOB	AMK+CPFX+DOXY for 10 weeks, then CPFX+DOXY 14 weeks	Drainage and debridement
(8)	Peritonitis in a chronic peritoneal dialysis patient	S: AMK, CPFX, DOXY, LZD, ST	DOXY+LZD+MFLX for 4 weeks	Peritoneal dialysis catheter removal
(24)	Case 1: Sternal wound infection after aortic valve replacement	NA	Case 1: IPM+MFLX+ST for 1 month, then MFLX+ST for 5 months	Case 1: debridement
	Case 2: Incisional infection after bilateral lung transplant		Case 2: DOXY+MFLX for 3 months	Case 2: debridement
	Case 3: Prosthetic graft infection after aortic root replacement		Case 3: AMK+DOXY+MFLX for 1 month, then DOXY+MFLX+ST for 6 months, then ST lifelong	Case 3: graft replacement
	Case 4: Pacemaker pocket infection after CABG, aortic valve replacement, and pacemaker placement		Case 4: CPFX+MINO for 6 months	Case 4: pacemaker removal
	Case 5: Sternal osteomyelitis after CABG		Case 5: DOXY+MINO for 6 months	Case 5: debridement with sternectomy
	Case 6: Sternal wound infection after aortic valve replacement		Case 6: NA, debridement	Case 6: debridement
(26)	Prosthetic infection after aortic valve replacement for aneurysm of the ascending aorta	NA	AMK+DOXY+LZD+MFLX for 6 months	Replacement of a bioprosthesis aortic valve and an aortic prosthesis with a vascular homograft.
(25)	Recurrent subcutaneous abdominal wall abscesses and ulcer after insulin injection	S: CPFX, LVFX, LZD, MINO, FLX I: IPM R: CAM, DOXY, TOB	AMK+MFLX+MINO for 1 month, then MFLX+MINO for 5 months	Debridement

AMK: amikacin, CABG: coronary artery bypass grafting, CAM: clarithromycin, CPFX: ciprofloxacin, CXT: cefotaxim, I: intermediate, IPM: imipenem/cilastatin, LVFX: levofloxacin, LZD: linezolid, MFLX: moxifloxacin, MINO: minocycline, NA: not available, OPLX: ofloxacin, R: resistant, S: susceptible, ST: sulfamethoxazole, TOB: tobramycin
microorganisms is critical, since various NTM species display different antibiotic susceptibility patterns; *M. wolinskyi* is one example that exhibits resistance towards clarithromycin, an antibiotic generally used for the treatment of NTM infections.

In conclusion, we herein reported a case of *M. wolinskyi*-induced peritonitis after peritoneal catheter embedment surgery. Correct identification and appropriate antibiotic susceptibility testing are critical in patient management. Given the increasing trend in numbers of RGM infections, the elucidation of risk factors and preventive measures is warranted.

The authors state that they have no Conflict of Interest (COI).

References

1. Akoh JA. Peritoneal dialysis associated infections: an update on diagnosis and management. World J Nephrol 1: 106-122, 2012.
2. Davenport A. Peritonitis remains the major clinical complication of peritoneal dialysis: the London, UK, peritonitis audit 2002-2003. Perit Dial Int 29: 297-302, 2009.
3. Wilkie M. The 2016 ISPD update on prevention and treatment of peritonitis-grading the evidence. Perit Dial Int 36: 469-470, 2016.
4. Moncrief JW, Popovich RP, Broadrick LJ, He ZZ, Simmons EE, Tate RA. The Moncrief-Popovich catheter. A new peritoneal access technique for patients on peritoneal dialysis. ASAIO J 39: 62-65, 1993.
5. Port FK, Held PJ, Nolph KD, Turenne MN, Wolfe RA. Risk of peritonitis and technique failure by CAPD connection technique: a national study. Kidney Int 42: 967-974, 1992.
6. Szeto CC, Leung CB, Chow KM, et al. Change in bacterial aetiology of peritoneal dialysis-related peritonitis over 10 years: experience from a centre in south-east Asia. Clin Microbiol Infect 11: 837-839, 2005.
7. Song Y, Wu J, Yan H, Chen J. Peritoneal dialysis-associated non-tuberculous mycobacterium peritonitis: a systematic review of reported cases. Nephrol Dial Transplant 27: 1639-1644, 2012.
8. Karakala N, Steed LL, Ullian ME. Peritonitis from *Mycobacterium wolinskyi* in a chronic peritoneal dialysis patient. Int Urol Nephrol 45: 289-291, 2013.
9. Hamade A, Pozdziek A, Denis O, et al. *Mycobacterium fortuitum* and polymicrobial peritoneal dialysis-related peritonitis: a case report and review of the literature. Case Rep Nephrol 2014: 323757, 2014.
10. Woods GL; Clinical and Laboratory Standards Institute. Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes; Approved Standard. 2nd ed. Clinical and Laboratory Standards Institute, Wayne, PA, 2011.
11. Kavanagh D, Prescott GJ, Mactier RA. Peritoneal dialysis-associated peritonitis in Scotland (1999-2002). Nephrol Dial Transplant 19: 2584-2591, 2004.
12. Brown BA, Springer B, Steingrube VA, et al. *Mycobacterium wolinskyi* sp. Nov. and *Mycobacterium goodii* sp. Nov., two new rapidly growing species related to *Mycobacterium smegmatis* and associated with human wound infections; a cooperative study from the International Working Group on Mycobacterial Taxonomy. Int J Syst Bacteriol 49 Pt 4: 1493-1511, 1999.
13. Sax H, Bloemberg G, Hasse B, et al. Prolonged outbreak of *Mycobacterium chimaera* infection after open-chest heart surgery. Clin Infect Dis 61: 67-75, 2015.
14. Griffith DE, Aksamit T, Brown-Elliott BA, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 175: 367-416, 2007.
15. Chen YC, Jou R, Huang WL, et al. Bacteremia caused by *Mycobacterium wolinskyi*. Emerg Infect Dis 14: 1818-1819, 2008.
16. Chu KH, Choy WY, Cheung CC, et al. A prospective study of the efficacy of local application of gentamicin versus mupirocin in the prevention of peritoneal dialysis catheter-related infections. Perit Dial Int 28: 565-508, 2008.
17. Grayson ML, Kucers A. Kucers’ The Use of Antibiotics: A Clinical Review of Antibacterial, Antifungal, Antiparasitic, and Antiviral Drugs. 6th ed. Hodder Arnold, London, 2010.
18. Nash KA, Andini N, Zhan Y, Brown-Elliott BA, Wallace RJ Jr. Intrinsic macrolide resistance in rapidly growing mycobacteria. Antimicrob Agents Chemother 50: 3476-3478, 2006.
19. Pulcini C, Vandenbussche E, Podglajen I, et al. Hip prosthesis infection due to *Mycobacterium wolinskyi*. J Clin Microbiol 44: 3463-3464, 2006.
20. Ohno T, Kishimoto W, Chihara D, et al. First case report of sepsis caused by *Mycobacterium wolinskyi* in chronic myeloogenous leukaemia. Diagn Microbiol Infect Dis 62: 433-436, 2008.
21. Jeong JH, Seo YH, Kim KH, Ahn JY, Park PH, Park YK. *Mycobacterium wolinskyi* infection confirmed by rpoB gene sequencing. J Clin Lab Anal 26: 325-327, 2012.
22. Santos Lima A, Carneiro Neves MM, Machado Gomes K, et al. First case report of infection by *Mycobacterium wolinskyi* after mammoplasty in Brazil. Infect Dis Rep 5: e12, 2013.
23. Yoo SJ, Lee KH, Jung SN, Heo ST. Facial skin and soft tissue infection caused by *Mycobacterium wolinskyi* associated with cosmetic procedures. BMC Infect Dis 13: 479, 2013.
24. Nagpal A, Wentink JE, Berbari EF, et al. A cluster of *Mycobacterium wolinskyi* surgical site infections at an academic medical center. Infect Control Hosp Epidemiol 35: 1169-1175, 2014.
25. Bossart S, Schnell B, Kerl K, Urosevic-Maiwald M. Ulcers as a sign of skin infection with *Mycobacterium wolinskyi*: report of a case and review of the literature. Case Rep Dermatol 8: 151-155, 2016.
26. Dupont C, Terru D, Aguilhon S, et al. Source-case investigation of *Mycobacterium wolinskyi* cardiac surgical site infection. J Hosp Infect 93: 235-239, 2016.
27. Kazumi Y, Mitarai S. The evaluation of an identification algorithm for *Mycobacterium* species using the 16s rRNA coding gene and rpoB. Int J Mycobacteriol 1: 21-28, 2012.