PERIODIC GIBBS MEASURES FOR THE POTTS–SOS MODEL ON A CAYLEY TREE

M. A. Rasulova*

We describe periodic Gibbs measures for the Potts–SOS model on a Cayley tree of order $k \geq 1$, i.e. a characterization of such measures with respect to any normal subgroup of finite index of the group representation of the Cayley tree.

Keywords: Cayley tree, configuration, Potts–SOS model, periodic Gibbs measure

DOI: 10.1134/S0040577919040081

1. Introduction

A central problem in the theory of Gibbs measures (GMs) is to describe infinite-volume (or limiting) GMs corresponding to a given Hamiltonian. The existence of such measures for a wide class of Hamiltonians was established in the groundbreaking work of Dobrushin (see, e.g., [1]), but a complete analysis of the set of limiting GMs for a specific Hamiltonian is often a difficult problem.

Here, we consider models with a nearest-neighbor interaction on a Cayley tree (CT). Models on a CT were discussed in [2]–[5]. A classical example of such a model is the Ising model with two spin values [1]. It was considered in [4]–[8] and became a focus of active research in the first half of the 1990s and afterwards (see [8]–[14]). In [15], all translation-invariant GMs for the Potts model on the CT were described. Periodic and weakly periodic GMs for the Potts model were respectively studied in [16], [17] and in [18]. Translation-invariant and periodic GMs for the SOS model on the CT were studied in [19], [20].

Here, we consider the Potts–SOS model, a generalization of the Potts and SOS (solid-on-solid) models. Translation-invariant GMs for the Potts–SOS model on the CT were studied in [21], but periodic GMs have not yet been studied. We therefore study periodic GMs for this model.

2. Preliminaries and main facts

The Cayley tree. The CT Γ^k of order $k \geq 1$ (see [8]) is an infinite tree, i.e., a graph without cycles and with exactly $k+1$ edges issuing from each vertex. Let $\Gamma^k = (V, L, i)$, where V is the set of vertices of the tree, L is the set of edges of the tree, and i is the incidence function associating each edge $l \in L$ with its endpoints $x, y \in V$. If $i(l) = \{x, y\}$, then x and y are called nearest-neighbor vertices, and we write $l = \langle x, y \rangle$.

The distance $d(x, y)$ for $x, y \in V$ on the CT is defined as the minimum value d for which there exist vertices $x = x_0, x_1, \ldots, x_{d-1}, x_d = y$ such that $\langle x_0, x_1 \rangle, \ldots, \langle x_{d-1}, x_d \rangle$ (in other words, the vertices are consecutive nearest neighbors).

*Namangan State University, Uzbekistan, e-mail: m_rasulova_a@rambler.ru.

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 199, No. 1, pp. 134–141, April, 2019. Received May 5, 2018. Revised May 5, 2018. Accepted October 22, 2018.
For a fixed \(x^0 \in V \),

\[
W_n = \{ x \in V \mid d(x, x^0) = n \}, \quad V_n = \{ x \in V \mid d(x, x^0) \leq n \},
\]

\[
L_n = \{ l = \langle x, y \rangle \in L \mid x, y \in V_n \}. \tag{1}
\]

It is known [8] that there is a one-to-one correspondence between the set \(V \) of vertices of the CT of order \(k \geq 1 \) and the group \(G_k \) that is a free product of \(k+1 \) cyclic groups \(\{e, a_i \}, i = 1, \ldots, k+1 \), of order two \((a_i^2 = e, a_i^{-1} = a_i) \) with the generators \(a_1, \ldots, a_{k+1} \).

Let \(S(x) \) denote the set of “direct successors” of \(x \in G_k \). Let \(S_1(x) \) denote the set of all nearest-neighbor vertices of \(x \in G_k \), i.e., \(S_1(x) = \{ y \in G_k : \text{exists } \langle x, y \rangle \} \).

The model and a system vector-valued functional equations. Here, we give the main definitions and facts about the model. We consider models where the spin takes values in the set \(\Phi = \{0,1,\ldots,m\} \), \(m \geq 1 \). For \(A \subseteq V \), a spin configuration \(\sigma_A \) on \(A \) is defined as a function \(A \ni x \rightarrow \sigma_A(x) \in \Phi \). The set of all configurations coincides with \(\Omega_A = \Phi^A \). Let \(\Omega_V = \Omega \) and \(\sigma_V = \sigma \).

We define a periodic configuration as a configuration \(\sigma \in \Omega \) that is invariant under a subgroup of shifts \(K \subseteq G_k \) of finite index. More precisely, a configuration \(\sigma \in \Omega \) is said to be \(K \)-periodic if \(\sigma(yx) = \sigma(x) \) for any \(x \in G_k \) and \(y \in K \). For a given periodic configuration, the index of the subgroup is called the period of the configuration. A configuration that is invariant under all shifts is said to be translation-invariant.

The Hamiltonian of the Potts–SOS model with nearest-neighbor interaction has the form

\[
H(\sigma) = -J \sum_{\langle x, y \rangle \in L} |\sigma(x) - \sigma(y)| - J_p \sum_{\langle x, y \rangle \in L} \delta_{\sigma(x)\sigma(y)}, \tag{2}
\]

where \(J, J_p \in \mathbb{R} \) are nonzero coupling constants.

Let \(h: x \mapsto h_x = (h_{0,x}, h_{1,x}, \ldots, h_{m,x}) \in \mathbb{R}^{m+1} \) be a real vector-valued function of \(x \in V \setminus \{ x^0 \} \). We introduce probability distributions \(\mu^{(n)} \) on \(\Phi^V_n \) for a given \(n = 1, 2, \ldots \) defined by (here and hereafter, \(\beta = 1/T \) is the inverse temperature)

\[
\mu^{(n)}(\sigma_n) = Z_n^{-1} \exp \left(-\beta H_n(\sigma_n) + \sum_{x \in W_n} h_{\sigma(x),x} \right), \quad \sigma_n \in \Phi^V_n, \tag{3}
\]

where the related partition function \(Z_n \) can be expressed as

\[
Z_n = \sum_{\sigma_n \in \Phi^V_n} \exp \left(-\beta H_n(\sigma_n) + \sum_{x \in W_n} h_{\sigma(x),x} \right). \tag{4}
\]

We say that a sequence of probability distributions \(\mu^{(n)} \) is consistent if for all \(n \geq 1 \) and \(\sigma_{n-1} \in \Phi^{V_{n-1}} \), we have

\[
\sum_{\omega_n \in \Phi^{V_n}} \mu^{(n)}(\sigma_{n-1} \lor \omega_n) = \mu^{(n-1)}(\sigma_{n-1}), \tag{5}
\]

where \((\sigma_{n-1} \lor \omega_n) \in \Phi^{V_n} \) is a union of configurations \(\sigma_{n-1} \) and \(\omega_n \). If a probability distribution \(\mu^{(n)} \) on \(\Phi^{V_n} \) satisfies equality (5), then there exists a unique measure \(\mu \) on \(\Phi^V \) such that \(\mu(\sigma|V_n = \sigma_n) = \mu^{(n)}(\sigma_n) \) for all \(n \) and \(\sigma_n \in \Phi^V_n \).

Definition 1. A measure \(\mu \) satisfying the condition formulated above is called a splitting GM (SGM) corresponding to the Hamiltonian \(H \) and function \(h: x \mapsto h_x, x \neq x^0. \)
The following theorem [21] describes the condition on h ensuring that a measure $\mu^{(n)}(\sigma_n)$ is consistent.

Theorem 1. Probability distributions $\mu^{(n)}(\sigma_n)$, $n = 1, 2, \ldots$, given by (3) are consistent if and only if for any $x \in V \setminus \{x^0\}$, the equality

$$
\begin{align*}
\sum_{y \in S(x)} F(h^*_y, m, \theta, r)
\end{align*}
$$

holds, where $\theta = e^{J_\beta}$, $r = e^{J_\beta}$, $h^*_x = (h_{0,x} - h_{m,x}, h_{1,x} - h_{m,x}, \ldots, h_{m-1,x} - h_{m,x})$, and the function $F(\cdot, m, \theta, r): \mathbb{R}^m \to \mathbb{R}^m$ is given by

$$
\begin{align*}
F(h, m, \theta, r) &= (F_0(h, m, \theta, r), F_1(h, m, \theta, r), \ldots, F_{m-1}(h, m, \theta, r)),
\end{align*}
$$

where

$$
\begin{align*}
F_i &= \log \frac{\sum_{j=0}^{m-1} \theta^{i-j} \rho^{\delta_{ij}} e^{h_j} + \theta^{m-i} \rho^{\delta_{mi}}}{\sum_{j=0}^{m-1} \theta^{m-j} \rho^{\delta_{mj}} e^{h_j} + r}, \quad i = 0, 1, \ldots, m-1,
\end{align*}
$$

and $h = (h_0, h_1, \ldots, h_m)$.

Hence, for any collection of functions satisfying functional equation (6), there exists a unique SGM because the correspondence is one-to-one.

Let K be a subgroup of G_k.

Definition 2. A collection of vectors $h = \{h_x \in \mathbb{R}^m : x \in G_k\}$ is said to be K-periodic if $h_{y,x} = h_x$ for all $x \in G_k$ and $y \in K$. A G_k-periodic collection is said to be translation-invariant.

Definition 3. A GM is said to be K-periodic (translation-invariant) if it corresponds to a K-periodic (translation-invariant) collection h.

Proposition 1. An SGM μ is translation-invariant if and only if $h_{j,x}$ is independent of x: $h_{j,x} \equiv h_j$, $x \in V$, $j \in \Phi$.

Proof. The proof is straightforward.

Proposition 2. Any extreme GM is an SGM.

Proof. See Theorem 12.6 in [2] for the proof and the definition of “extreme.”

Translation-invariant SGMs were investigated in [22].

Periodic SGMs. Here, we study periodic solutions of functional equation (6), i.e., periodic SGMs. We describe periodic SGMs, i.e., characterize such measures with respect to any finite-index normal subgroup of G_k.

For the reader’s convenience, we recall some necessary notation. Let K be a subgroup of index r' in G_k, and let $G_k/K = \{K_0, K_1, \ldots, K_{r'-1}\}$ be the quotient group with the coset $K_0 = K$. For $x \in G_k$, let

$$
q_i(x) = |S_1(x) \cap K_i|, \quad i = 0, 1, \ldots, r'-1, \quad N(x) = |\{j : q_j(x) \neq 0\}|,
$$

where $|\cdot|$ is cardinality of the set. We set

$$
Q(x) = (q_0(x), q_1(x), \ldots, q_{r'-1}(x)).
$$
We note (also see [22]) that for every \(x \in G_k \), there is a permutation \(\pi_x \) of the coordinates of the vector \(Q(e) \) (where \(e \) is the identity of \(G_k \)) such that

\[
\pi_x Q(e) = Q(x).
\]

(9)

Each \(K \)-periodic collection is given by

\[
\{ h_x = h_i, \ x \in K_i, \ i = 0, 1, \ldots, r' - 1 \}.
\]

By Theorem 1 (for \(m = 2 \)) and (9), the vector \(h_n, n = 0, 1, \ldots, r' - 1 \), satisfies the system

\[
h_n = \sum_{j=1}^{n(e)} q_{i_j}(e) F(h_{\pi_n(i_j)}; \theta, r) - F(h_{\pi_n(i_j_0)}; \theta, r), \quad j_0 = 1, \ldots, N(e),
\]

where the function \(h \mapsto F(h, m, \theta, r) \) defined in Theorem 1 now becomes

\[
h \mapsto F(h) = (F_0(h, \theta, r), F_1(h, \theta, r)),
\]

where

\[
F_0(h, \theta, r) = \log \frac{re^{\theta h_0} + \theta e^{h_1} + \theta^2}{\theta^2 e^{\theta h_0} + \theta e^{h_1} + r}, \quad F_1(h, \theta, r) = \log \frac{\theta e^{\theta h_0} + re^{h_1} + \theta}{\theta^2 e^{\theta h_0} + \theta e^{h_1} + r}.
\]

(11)

Proposition 3. If \(\theta \neq 1 \), then \(F(h) = F(l) \) if and only if \(h = l \).

Proof. Necessity. From \(F(h) = F(l) \), we obtain the system of equations

\[
\frac{re^{\theta h_0} + \theta e^{h_1} + \theta^2}{\theta^2 e^{\theta h_0} + \theta e^{h_1} + r} = \frac{re^{\theta l_0} + \theta e^{l_1} + \theta^2}{\theta^2 e^{\theta l_0} + \theta e^{l_1} + r}, \quad \frac{\theta e^{\theta h_0} + re^{h_1} + \theta}{\theta^2 e^{\theta h_0} + \theta e^{h_1} + r} = \frac{\theta e^{\theta l_0} + re^{l_1} + \theta}{\theta^2 e^{\theta l_0} + \theta e^{l_1} + r},
\]

where \(h = (h_0, h_1) \) and \(l = (l_0, l_1) \). We obtain

\[
(r - \theta^2)(\theta(e^{h_0 + l_1} - e^{h_1 + l_0}) + \theta(e^{h_1} - e^{l_1} + r + \theta^2)(e^{h_0} - e^{l_0})) = 0,
\]

\[
\theta^2(r - 1)(e^{h_1 + l_0} - e^{h_0 + l_1}) + \theta(r - \theta^2)(e^{h_0} - e^{l_0}) + (r^2 - \theta^2)(e^{h_1} - e^{l_1}) = 0.
\]

(13)

Using the fact that \(e^{h_0 + l_1} - e^{h_1 + l_0} = e^{l_1}(e^{h_0} - e^{l_0}) - e^{l_0}(e^{h_1} - e^{l_1}) \), we obtain the system of equations

\[
(r - \theta^2)(\theta e^{l_1} + \theta^2 + r)(e^{h_0} - e^{l_0}) + \theta(1 - e^{l_0})(e^{h_1} - e^{l_1}) = 0,
\]

\[
\theta(r - \theta^2 - \theta e^{l_1} + \theta)(e^{h_0} - e^{l_0}) + (r^2 - \theta^2 + e^{l_0}e^{h_1} - e^{l_1} - e^{l_1})(e^{h_1} - e^{l_1}) = 0.
\]

(14)

It follows that \(h_0 = l_0 \) and \(h_1 = l_1 \) in the case \(\theta \neq 1 \).

Sufficiency. The proof of sufficiency is straightforward.

Let \(G_k^{(2)} \) be the subgroup in \(G_k \) consisting of all words of even length. Clearly, \(G_k^{(2)} \) is a subgroup of index 2.

Theorem 2. Let \(K \) be a finite-index normal subgroup in \(G_k \). Then each \(K \)-periodic GM for the Potts-SOS model is either translation-invariant or \(G_k^{(2)} \)-periodic.
Proof. From (10), we see that

\[F(h_{\pi_n(i_1)}) = \cdots = F(h_{\pi_n(i_N)}) \]

By Proposition 1, we hence have \(h_{\pi_n(i_1)} = \cdots = h_{\pi_n(i_N)} \). Therefore,

\[h_x = \begin{cases} \hbar, & \text{if } x, y \in S_1(z), \ z \in K, \\ \lambda, & \text{if } x, y \in S_1(z), \ z \in G_{k} \setminus K. \end{cases} \]

Therefore, the measures are translation-invariant (if \(h = l \)) or \(G_k^{(2)} \)-periodic (if \(h \neq l \)). The proof is complete.

Let \(K \) be a finite-index normal subgroup in \(G_k \). What condition on \(K \) guarantees that each \(K \)-periodic GM is translation-invariant? We set \(I(K) = K \cap \{ a_1, \ldots, a_{k+1} \} \), where \(a_i, \ i = 1, \ldots, k + 1 \), are generators of \(G_k \).

Theorem 3. If \(I(K) \neq \emptyset \), then each \(K \)-periodic GM for the Potts-SOS model is translation-invariant.

Proof. We take \(x \in K \). We note that the inclusion \(xa_i \in K \) holds if and only if \(a_i \in K \). Because \(I(K) \neq \emptyset \), there is an element \(a_i \in K \). Therefore, \(K \) contains the subset \(Ka_i = \{ xa_i : x \in K \} \). By Theorem 2, we have \(h_x = h \) and \(h_{xa_i} = l \). Because \(x \) and \(xa_i \) belong to \(K \), it follows that \(h_x = h_{xa_i} = h = l \). Therefore, each \(K \)-periodic GM is translation-invariant. The theorem is proved.

Theorems 2 and 3 reduce the problem of describing a \(K \)-periodic GM with \(I(K) \neq \emptyset \) to describing the fixed points of \(kF(h, \theta, r) \), which describes a translation-invariant GM. If \(I(K) = \emptyset \), then this problem reduces to describing the solutions of the system:

\[h = kF(l, \theta, r), \quad l = kF(h, \theta, r). \] (15)

We introduce the notation \(z_i = e^{h_i} \) and \(t_i = e^{t_i}, \ i = 0, 1 \). From (15), we then obtain

\[z_0 = \left(\frac{rt_0 + \theta t_1 + \theta^2}{\theta^2 t_0 + \theta t_1 + r} \right)^k, \quad z_1 = \left(\frac{\theta t_0 + rt_1 + \theta}{\theta^2 t_0 + \theta t_1 + r} \right)^k, \]

\[t_0 = \left(\frac{rz_0 + \theta z_1 + \theta^2}{\theta^2 z_0 + \theta z_1 + r} \right)^k, \quad t_1 = \left(\frac{\theta z_0 + rz_1 + \theta}{\theta^2 z_0 + \theta z_1 + r} \right)^k. \] (16)

From the first and third equations in (16), we obtain

\[z_0^{1/k} - 1 = \left(\frac{z_0 - 1}{\theta^2 t_0 + \theta t_1 + r} \right), \quad t_0^{1/k} - 1 = \left(\frac{t_0 - 1}{\theta^2 z_0 + \theta z_1 + r} \right). \] (17)

We hence see that \((z_0; t_0) = (1; 1) \) is a solution of system of equations (17) for every \(\theta, r, z_1, \) and \(t_1 \). In this case, from the second and fourth equations in (16), we obtain the system of equations

\[z_1 = \left(\frac{2\theta + rt_1}{\theta^2 + \theta t_1 + r} \right)^k, \quad t_1 = \left(\frac{2\theta + rz_1}{\theta^2 + \theta z_1 + r} \right)^k. \] (18)

Let

\[f(z_1) = \left(\frac{2\theta + rz_1}{\theta^2 + \theta z_1 + r} \right)^k. \]
Then system of equations (18) becomes

\[f(f(z_1)) - z_1 = 0. \]

(19)

Obviously, values \(z_1 \) satisfying \(f(z_1) = z_1 \) satisfy (19), and we therefore do not consider solutions of (19) for which \(f(z_1) = z_1 \). The remaining solutions correspond to \(G^{(2)}_k \)-periodic measure Gibbs that are not translation-invariant. In the case \(k = 2 \), from (19) after simplification, we obtain the quadratic equation

\[
(\theta^6 + 20^4 r + \theta^2 r^2 + r^4 + 2\theta r^3 + 2\theta^3 r^2)z_1^2 + \\
+ (2\theta^7 + 6\theta^5 r + 6\theta^3 r^2 + 6\theta r^3 - 4\theta^4 r^2 + 8\theta^2 r^2 + 2\theta^2 r^3 + 8\theta r^2 + r^4)z_1 + \\
+ 4\theta^2 r^2 + 4\theta^5 r + r^4 + 6\theta^4 r^2 + 8\theta^3 r^3 + \theta^8 + 4\theta^5 r + 8\theta^3 r^2 + 4\theta r^3 = 0.
\]

For this equation to have two positive real roots, the conditions \(D > 0 \) and \(b < 0 \), where

\[
D = (2\theta^7 + 6\theta^5 r + 6\theta^3 r^2 + 6\theta r^3 - 4\theta^4 r^2 + 8\theta^2 r^2 + 2\theta^2 r^3 + 8\theta r^2 + r^4)^2 - \\
- (\theta^6 + 2\theta^4 r + \theta^2 r^2 + r^4 + 2\theta r^3 + 2\theta^3 r^2) \\
\times (4\theta^2 r^2 + 4\theta^5 r + r^4 + 6\theta^4 r^2 + 8\theta^3 r^3 + \theta^8 + 4\theta^5 r + 8\theta^3 r^2 + 4\theta r^3),
\]

\[
b = 2\theta^7 + 6\theta^5 r + 6\theta^3 r^2 + 6\theta r^3 - 4\theta^4 r^2 + \theta^8 + 4\theta^5 r + 8\theta^3 r^2 + 8\theta^2 r^2 + 2\theta^2 r^3 + 8\theta r^2 + r^4
\]

must be satisfied. As a result, we obtain the following theorem.

Theorem 4. Let \(k = 2 \). If \(D > 0 \) and \(b < 0 \), then there exist at least two \(G^{(2)}_k \)-periodic (not translation-invariant) GMs for the Potts–SOS model. If \(D = 0 \) and \(b < 0 \), then there exists at least one \(G^{(2)}_k \)-periodic (not translation-invariant) GM for Potts–SOS model.

We show that the set \(\{(r, \theta) \in \mathbb{R}^2 : D \geq 0, b < 0\} \) is not empty. Indeed, let \(r = \theta^2 \). Then we have

\[
D = -16\theta^8(\theta^2 - 1)^2(3\theta^4 + 10\theta^3 + 6\theta^2 - 1), \quad b = 4\theta^4(\theta^4 + 5\theta^3 + 4\theta^2 - 1).
\]

If \(\theta < \theta_D \) (where \(\theta_D \approx 0.32359 \)), then we have \(D > 0 \) and \(b < 0 \), i.e., there exist at least two \(G^{(2)}_k \)-periodic (not translation-invariant) GMs. In that case, if \(\theta = \theta_D \), then it is obvious that \(D = 0 \) and \(b < 0 \), which means that there exists at least one \(G^{(2)}_k \)-periodic (not translation-invariant) GM for Potts–SOS model.

Remark. If \(k = 2 \) for the Potts model, then there is no periodic GM (see [16]), but for the Potts–SOS model, as shown in Theorem 4, such measures exist under certain conditions.

Acknowledgments. The author is grateful to Professors U. A. Rozikov and M. M. Rahmatullaev for the useful discussions and valuable comments.

REFERENCES

1. Ya. G. Sinai, *Theory of Phase Transitions: Rigorous Results* [in Russian], Nauka, Moscow (1980); English transl. (Intl. Ser. Nat. Philos., Vol. 108), Pergamon, Oxford (1982).
2. H.-O. Georgii, *Gibbs Measures and Phase Transitions* (De Gruyter Stud. Math., Vol. 9), Walter de Gruyter, Berlin (1988).
3. S. Zachary, “Countable state space Markov random fields and Markov chains on trees,” Ann. Probab., **11**, 894–903 (1983).
4. C. J. Preston, *Gibbs States on Countable Sets* (Cambridge Tracts Math., Vol. 68), Cambridge Univ. Press, Cambridge (1974).
5. S. Zachary, “Bounded, attractive, and repulsive Markov specifications on trees and on the one-dimensional lattice,” *Stochastic Process. Appl.*, **20**, 247–256 (1985).
6. M. M. Rahmatullaev, “New weakly periodic Gibbs measures of Ising model on Cayley tree,” *Russian Mathematics*, **59**, 45–53 (2015).
7. M. M. Rahmatullaev, “New Gibbs measures of the Ising model on a Cayley tree [in Russian],” *Uzb. Matem. Zhurn.*, **2**, 144–152 (2009).
8. U. A. Rozikov, *Gibbs Measures on Cayley Trees*, World Scientific, Singapore (2013).
9. P. M. Bleher and N. N. Ganikhodzhaev, “On pure phases of the Ising model on the Bethe lattices,” *Theory Probab. Appl.*, **35**, 216–227 (1990).
10. P. M. Bleher, “Extremity of the disordered phase in the Ising model on the Bethe lattice,” *Commun. Math. Phys.*, **128**, 411–419 (1990).
11. P. M. Bleher, J. Ruiz, and V. A. Zagrebnov, “On the purity of the limiting Gibbs state for the Ising model on the Bethe lattice,” *J. Stat. Phys.*, **79**, 473–482 (1995); “On the phase diagram of the random field Ising model on the Bethe lattice,” *J. Stat. Phys.*, **93**, 33–78 (1998).
12. D. Ioffe, “On the extremality of the disordered state for the Ising model on general trees,” in: *Trees* (Progr. Probab., Vol. 40, B. Chauvin, S. Cohen, and A. Rouault, eds.), Birkhäuser, Basel (1996), pp. 3–14.
13. P. M. Bleher, J. Ruiz, R. H. Schonmann, S. B. Shlosman, and V. A. Zagrebnov, “Rigidity of the critical phases on a Cayley tree,” *Mosc. Math. J.*, **1**, 345–363 (2001).
14. C. Külske, U. A. Rozikov, and R. M. Khakimov, “Description of all translation-invariant splitting Gibbs measures for the Potts model on a Cayley tree,” *J. Stat. Phys.*, **156**, 189–200 (2014); arXiv:1310.6220v2 [math-ph] (2013).
15. U. A. Rozikov and R. M. Khakimov, “Periodic Gibbs measures for the Potts model on the Cayley tree,” *Theor. Math. Phys.*, **175**, 699–709 (2013).
16. R. M. Khakimov, “On the existence of periodic Gibbs measures for the Potts model on a Cayley tree [in Russian],” *Uzb. Matem. Zhurn.*, **3**, 134–142 (2014).
17. M. M. Rahmatullaev, “The existence of weakly periodic Gibbs measures for the Potts model on a Cayley tree,” *Theor. Math. Phys.*, **180**, 1019–1029 (2014).
18. U. A. Rozikov and Y. M. Suhov, “Gibbs measures of SOS models on a Cayley tree,” *Infin. Dimen. Anal. Quant. Probab. Relat. Top.*, **9**, 471–488 (2006).
19. C. Külske and U. A. Rozikov, “Extremality of translation-invariant phases for a three-state SOS-model on the binary tree,” *J. Stat. Phys.*, **160**, 659–680 (2015).
20. H. Saygili, “Gibbs measures for the Potts–SOS model with three states of spin values,” *Asian J. Current Res.*, **1**, 114–121 (2017).
21. U. A. Rozikov, “Partition structures of the Cayley tree and applications for describing periodic Gibbs distributions,” *Theor. Math. Phys.*, **112**, 929–933 (1997).