Ecology and adaptation of legumes crops: A review

A R M Al-Tawaha1, A Al-Tawaha2, S N Sirajuddin3, D McNeil4, Y A Othman5, I M Al-Rawashdeh1, Amanullah6, Imran6, A M Qaisi7, N Jahan8, M A Shah9, S Khalid6, R Sami10, A Rauf11, D Thangadurai12, J Sangeetha13, S Fahad14, R A Youssif15, W A Al-Taisan16, D K A Al-Taey17

1Department of Biological Sciences, Al Hussein Bin Talal University, P.O. Box 20, Ma’an, Jordan
2Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
3Department of Socio-economic of Animal Science, Faculty of Animal Science, Hasanuddin University, Makassar, South Sulawesi, Indonesia
4University of Tasmania LPO, Sandy Bay, Tasmania, 7005, Australia.
5Department of Horticulture and Crop Science, The University of Jordan, Amman, Jordan.
6Agronomy Department, The University of Agriculture Peshawar, Pakistan
7Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman, Jordan.
8Department of Botany, Faculty of Life Sciences Aligarh Muslim University, Aligarh-202002, UP, India
9ICAR-Central Potato Research Station, Jalandhar, Punjab-144 003, India
10Department of Nutrition and Food Science, Taif University, Taif, Al-huwayah, 888, Kingdom of Saudi Arabia.
11Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
12Department of Botany, Karnataka University, Dharwad, 580003, Karnataka, INDIA
13Department of Environmental Science, Central University of Kerala, Kasaragod, 671316, Kerala, India
14Department of Agriculture, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
15Soils and Water Use Department, National Research Centre, Dokki, Giza, Egypt
16Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam Saudi Arabia
17Department of Horticulture, Faculty of Agriculture, Al-Qasim Green University, Babylon Province, Baghdad, Iraq

E-mail: abdel-al-tawaha@ahu.edu.jo

Abstract. In this review, we discuss the relationship between environmental crop management and adaptation to warming climates of legume plants and plant breeding, for drought tolerance. The benefits connected to the impact of the expansion of appropriate legumes-based agriculture for arid zones are analyzed. We need to two aims to develop
programs of breeding and management guided to drought tolerance. The first one is enhancing productivity. The second one is to improve the drought tolerance by mechanisms of water conservation.

1. Introduction
Hurtful ecological changes significantly affect natural systems, human health, and agricultural output [1]. With the high excess in the world’s population, this is increased in food need due to concerns about the stability of the global environment [2]. Legumes involve one of the largest plant families in the world, with near 18,000 species. Legumes are as source plant proteins for animal and human food. AS well as legumes plants fix atmospheric N\textsubscript{2} and provide cheap and green N fertilizers [3]. The high benefits from the breeding of legumes are the ability to increase inputs of fixed N, for improving the environmental stresses [4,5].

2. Plant Yield and Climate Change
Climate change affects crop production by causes of direct, indirect, and socio-economic effects as defined in Figure 1. Also, climate change events are increased dramatically as related to the Food and Agriculture Organization (FAO) and as described in figure 2. Boyer described that the climate changes had reduced the crop yield up to 70% since 1982 [6,7]. Whereas the outcomes of abiotic pressures on yield are hard to calculate accurately, it is given that abiotic stresses have a significant action on crop production depending upon the class of hurt to the total cultivation area. In the future, the productivity of the main crops is estimated to drop in due to global warming and water shortage [8,9].

![Figure 1. Direct, indirect and socio-economic effects of climate change on agricultural production.](image-url)
3. Crop adaptation to overall extreme climate stresses

With increasing of the Earth’s temperature, environmental changes are extraordinarily damaging and fret hard hazard to different crop species [12,13]. The plants need an optimum temperature for their high growth, and plant physiology is heavily affected by temperature change [14].

Overall, climate change and global warming both have several negative and positive influences on crops as well as on humans, as explained in figure 3. Adaptation of crop plants depends on several factors such as environmental, soil and biotic rather than to a single factor alone. In many situations, one factor (e.g., water availability) may dominate the overcoming conditions, and the nature of the plant’s response then mainly reveals its adaptation to the current level of that aspect. More typically, adaptation is expressed as a response to a mixture of factors and the nature of the response then reflects the plant’s adaptation to the elements in combination. The task of plant breeders is thus difficult and complicated, as they mostly have to develop genotypes with an optimum combination of adaptive characters, rather than noes with a single adaptive character [15]. Whatever the increasing conditions, the critical consideration is the nature of the adaptive plant response itself and, for business purposes, the outcomes of that response in terms of the economic output of the yield. For example, a plant that grows good under a specific set of conditions, but weakens to flower and set seed, is of little value as a grain crop in that condition. It may, however, be an excellent forage crop under those situations, as the commercial product is not needed on flowering and seed set [16].

The conception of adaptation can be challenging to identify, as it is applied in respect to both the evolutionary origins of a character and its influence to the fitness of the plant to survive in its present setting. Adaptation is also heritable, i.e., it is defined by the genotype of the plant. Hence the definition can be improved to ‘the heritable modifications to a plant which enable it to survive, reproduce, or both, in a given condition’ [17].
4. Plant adaptation to drought stress

Drought stress is the whole dominant environmental issue limiting crop production [18] and global climate change is enhancing the frequency of severe drought conditions [19,20]. Drought resistance is a wider idiom used to plant species with adaptive aspects that can help them to bolt or endure drought stress [21]. Drought escape is the capability of plant kinds to finish its life cycle before the starter of drought. Thereby, plants do not experience drought stress, as they are capable of amending their productive growth according to water availability [22,23].

Most of the attempts to improve grain yield under drought stress were concentrated on secondary traits such as root architecture, leaf water stress, osmotic adjustment, and relative water content at the vegetative stage, which are often not highly associated with grain yield [24]. Looking forward to crops, the effective drought development methodology should be chosen for yield and its component traits under reproductive-stage drought stress [10,25]. There occurs a large variety in drought adaptation within a crop species, as some genotypes are adept at coping with drought better than others. Genotypes that differ in drought adaptive mechanisms operate as an important supply to survey the difference in drought adaption in plants [11].

5. Actual and potential possibilities for legume crops breeding based on ecological traits

As respects to the research of options for the development of a selection or breeding program adapted to drought, according to Kelly [26] strategies utilized by dry bean breeders to improve yield involve early generation testing, ideotype breeding, choice for physiological efficiency, and selection based on genotypic performance and blending ability across gene pools of Pharsalus Vulgaris. Ideotype breeding has been successfully employed to enhance yield in navy, pinto and great northern seed types. The ideotype method is based on an ideal plant architecture to which breeders object their selection.

References

[1] Arunanondchai P, Fei C, Fisher A, McCarl B A, Wang W and Yang Y 2018 How does climate change affect agriculture The Routledge Handbook of Agricultural Economics (Abingdon: Routledge)

[2] Noya I, González-García S, Bacenetti J, Fiala M and Moreira M T 2018 Environmental impacts of the cultivation-phase associated with agricultural crops for feed production J. Clean. Prod. 172 3721–33
[3] Van Kessel C and Hartley C 2000 Agricultural management of grain legumes: Has it led to an increase in nitrogen fixation? F. Crop. Res. 65 165–81
[4] Giller K E and Cadisch G 1995 Future benefits from biological nitrogen fixation: an ecological approach to agriculture Plant Soil 174 255–77
[5] Duranti M and Gius C 1997 Legume seeds: Protein content and nutritional value F. Crop. Res. 53 31–45
[6] Thornton P K, Ericksen P J, Herrero M and Challinor A J 2014 Climate variability and vulnerability to climate change: a review Glob. Chang. Biol. 20 3313–28
[7] Boyer J S 1982 Plant productivity and environment Science (80-.). 218 443–8
[8] Van Velthuizen H 2007 Mapping biophysical factors that influence agricultural production and rural vulnerability (Rome: Food & Agriculture Org.)
[9] Tebaldi C and Lobell D 2018 Estimated impacts of emission reductions on wheat and maize crops Clim. Change 146 533–45
[10] Osakabe Y, Osakabe K, Shinozaki K and Tran L-S P 2014 Response of plants to water stress Front. Plant Sci. 5 86
[11] Reynolds M and Tuberosa R 2008 Translational research impacting on crop productivity in drought-prone environments Curr. Opin. Plant Biol. 11 171–9
[12] Espeland E K and Kettenring K M 2018 Strategic plant choices can alleviate climate change impacts: A review J. Environ. Manage. 222 316–24
[13] Pereira A 2016 Plant abiotic stress challenges from the changing environment Front. Plant Sci. 7 1123
[14] Hatfield J L and Prueger J H 2015 Temperature extremes: Effect on plant growth and development Weather Clim. Extrem. 10 4–10
[15] Evans L T 1996 Crop Evolution, Adaptation and Yield (Cambridge: Cambridge university press)
[16] Wilsie C P 1962 Crop adaptation and distribution. (San Francisco: Freeman and Company)
[17] Kramer P J 1980 Drought stress and the origin of adaptations Adaptation of Plants to Water and High Temperature Stress (Brisbane: Wiley Interscience)
[18] Bray E A 1997 Plant responses to water deficit Trends Plant Sci. 2 48–54
[19] Dai A 2012 Increasing drought under global warming in observations and models Nat. Clim. Chang. 3 52–8
[20] Bohnert H J, Nelson D E and Jensen R G 1995 Adaptations to environmental stresses. Plant Cell 7 199–111
[21] Levitt J 1980 Water, radiation, salt, and other stresses Responses of Plants to Environmental Stresses (New York: Academic Press.)
[22] Jones R G W and Storey R 1981 Mechanisms of drought resistance Physiol. Biochem. drought Resist. plants 1 15–37
[23] Morgan J M 1984 Osmoregulation and water stress in higher plants Annu. Rev. Plant Physiol. 35 299–319
[24] Pantuwan G, Fukai S, Cooper M, Rajatasereekul S and O’toole J C 2002 Yield response of rice (Oryza sativa L.) genotypes to drought under rainfed lowland: 3. Plant factors contributing to drought resistance F. Crop. Res. 73 181–200
[25] Venuprasad R, Lafitte H R and Atlin G N 2007 Response to direct selection for grain yield under drought stress in rice Crop Sci. 47 285–93
[26] Kelly J D, Kolkman J M and Schneider K 1998 Breeding for yield in dry bean (Phaseolus vulgaris L) Euphytica 102 343–56