Platelet-to-lymphocyte ratio associated with the clinicopathological features and prognostic value of breast cancer: A meta-analysis

Zhixun Gong¹, Ruomei Xin², Long Li³, Liping Lv¹ and Xinni Wu⁴

Abstract
The association of platelet-to-lymphocyte ratio (PLR) with the clinicopathological features and prognosis in patients with breast cancer was evaluated. Related studies were searched from PubMed, Embase, Cochrane Library, and Web of Science up to July 1, 2021. Then, basic characteristic and prognostic data were extracted from the included studies. We synthesized and compared primary outcomes such as overall survival. Subgroups analyses in pathology, geographical area, follow-up time, and sample size were conducted. The pooled hazard ratio (HR), odds ratio (OR), and 95% confidence interval (CI) served as measures to assess the relationship of PLR with prognosis and clinicopathological features of breast cancer patients. After literature retrieval and selection, 20 studies with 7484 patients were included in this meta-analysis. High PLR was significantly related to poor overall survival (HR = 1.88; 95% CI 1.61, 2.19; \(P < 0.001 \)) in breast cancer patients. Also, high PLR was associated with lymph node metastasis (LNM) (OR = 1.82; 95% CI 1.32, 2.52; \(P < 0.001 \)), advanced tumor-node-metastasis (TNM) stage (OR = 1.89; 95% CI 1.25, 2.87; \(P = 0.003 \)), and distant metastasis (OR = 1.76; 95% CI 1.14, 2.72; \(P = 0.01 \)) in breast cancer. The stability and reliability of results in this meta-analysis were confirmed by sensitivity analysis. Elevated PLR is related to a poor prognosis and a higher risk of LNM, advanced TNM stage, and distant metastasis in breast cancer patients. Therefore, PLR can be identified as a biomarker with potential prognostic value in breast cancer.

Keywords
Platelet-to-lymphocyte ratio (PLR), breast cancer, prognosis, meta-analysis

Date received: 21 December 2021; revised: 24 March 2022; accepted: 20 July 2022

Introduction
Breast cancer is the second leading cause of cancer death among women.¹ Recent studies have confirmed that tumor-related inflammation is a critical component of the tumor microenvironment, and inflammatory cells may contribute to the occurrence, development, and prognosis of cancer.²,³ Systemic inflammatory response is associated with tumor progression and affects the human host immune response to malignant tumors.⁴ Platelets adhere to tumor cells to form clumps, protecting tumor cells from the high flow shear stress and immune attack.⁵ In addition, they can also release vascular endothelial growth factors and a variety of cytokines, promote tumor

¹Department of Radiotherapy, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
²Department of Nursing, Danzhou People’s Hospital, Danzhou, Hainan, China
³Union, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
⁴Department of Physical Examination, The Second Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China

Corresponding author:
Xinni Wu, Department of Physical Examination, The Second Affiliated Hospital of Hainan Medical College, No. 368 Coconut Sea Avenue, Haikou, Hainan 570311, China.
Email: hfl63672@126.com

Creative Commons Non-Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
progression and metastasis, and assist tumor cell immune escape.5,6 Lymphocytes play a crucial role in inducing cytotoxic death, tumor cell proliferation and migration, and producing the host anti-tumor immune response. A decrease in the number of lymphocytes will lead to the decline of lymphocyte-mediated anti-tumor immune response.7

Platelet-to-lymphocyte ratio (PLR) is an informative marker reflecting changes in platelet and lymphocyte counts and predicting worse prognosis in various tumors.8–10 However, current studies on the prognostic prediction of breast cancer by PLR are inconsistent, and the sample sizes are small.11–14 Considering the heterogeneity and potential value of PLR, existing literature on PLR and breast cancer was retrieved and further analyzed to explore the prognostic value of this parameter in patients with breast cancer.

Methods

Search strategy

The search was conducted in PubMed, Embase, Cochrane Library, and Web of Science from inception to July 1, 2021. The published studies in English on the relationship between PLR and prognosis of breast cancer were selected. Following keywords for the online search in these databases were included: ("platelet-to-lymphocyte ratio" OR "PLR" OR "platelet-to-lymphocyte") AND ("breast carcinoma" OR "breast cancer" OR "breast neoplasm") AND ("prognosis" OR "prognostic" OR "survival" OR "outcome" OR "recurrence"). Two researchers independently searched the literature and finally cross-checked to reach an agreement.

Inclusion and exclusion criteria

The inclusion criteria were as follows: (a) the subjects were breast cancer patients; (b) studies with participants divided into two groups of high and low PLR level; (c) articles that explored the association between PLR expression and overall survival (OS) of breast cancer; (d) each trial with sufficient data such as hazard ratio (HR) and corresponding 95% confidence interval (CI) were used for the computation of pooled HR and 95% CI.

Exclusion criteria were as follows: (a) reviews, letters, case reports, and non-human subject research; (b) articles with missing and ambiguous data; (c) Newcastle–Ottawa Scale (NOS) score <6; (d) follow-up <60 months.

Quality assessment

The quality of the included study was evaluated according to the NOS.15 The study was scored from object selection, comparability, outcome, and exposure with a maximum score of 9 points. A score of ≥6 points was regarded as high-quality literature. Two researchers discussed in case of disagreement, and a third researcher was invited to participate in the discussion and achieve a consistent result.

Data extraction

Studies were screened strictly according to inclusion and exclusion criteria. Two researchers then extracted data and evaluated study quality independently. The following information was extracted from the original literature: (a) basic characteristics: first author, country, publication year, sample size, pathology, follow-up time; (b) clinicopathologic parameters: case number in high and low PLR level groups after stratification by age, lymph node metastasis (LNM), tumor-node-metastasis (TNM) stage, and tumor size; (c) measures of prognosis: HR and its 95% CI of OS.

Statistical analysis

For the meta-analysis, pooled HR and OR was calculated by Review Manager 5.3 software (The Cochrane Collaboration, Copenhagen, Denmark) and STATA 12.0 (College Station, TX, USA). If the eligible study only provided Kaplan–Meier survival curve data, the Engauge Digitizer 4.1 was used to extract survival information such as HR and 95% CI from the graph.16,17 Heterogeneity among studies was assessed by according to the size of statistic I^2. If $I^2 \geq 50\%$, or $P \leq 0.05$, there was significant heterogeneity among the included studies, and then a random-effects model was used. If $I^2 < 50\%$, or $P > 0.05$, there was no significant heterogeneity that existed among the pooled data, and a fixed-effects models was selected.18 For determining the source of heterogeneity, subgroup analyses were conducted in terms of pathology (human epidermal growth factor receptor 2 (HER2)-positive vs. -negative groups), geographical region (Asian vs. non-Asian groups), follow-up time (>120 vs. <120 months) and sample size (n > 375 vs. <375). Pooled odds ratio (OR) and 95% CI were used to evaluate the relationship of PLR with LNM, TNM stage, and distant metastasis.

Publication bias was assessed by examining the funnel plot of each outcome. Then, Egger’s test was used to further examine the results in which the natural logarithmic relative risk was plotted with SE. To evaluate the impact of each study on the estimated HR, a sensitivity analysis was performed to re-evaluate the pooled HR by omitting each study. $P < 0.05$ was considered statistically significant.

Results

Characteristics of eligible studies

A flow diagram of the literature screen and selection is shown in Figure 1. A total of 3422 studies were retrieved initially according to the retrieval strategy, and then 2980 pieces (repeated publications, reviews, abstracts, case
Association between PLR and prognosis of breast cancer patients

The 20 studies had OS as the endpoint, and 7484 patients reported the correlation between PLR level and OS in breast cancer.19–38 Pooled HR and 95% CI of OS data were collected from the included studies. Using the a random-effects model ($I^2 = 36\%$, $P = 0.05$), the result indicated that a high level of PLR in breast cancer patients was related to poor OS (pooled HR = 1.88; 95% CI 1.61, 2.19; $P<0.001$) (Figure 2). In other words, high PLR was an adverse factor for the prognosis of breast cancer patients.

Subgroup analysis

The above results confirmed that high PLR in cancer tissues was a significant biomarker for the prognosis of breast cancer. As the moderate heterogeneity, we also analyzed the pathology, geographical region, follow-up time, and sample size by subgroup stratification (Table S2). In term of pathology, PLR was a prognostic factor in HER2-positive (HR = 1.87; 95% CI 1.42, 2.47; $P<0.001$) and HER2-positive and -negative groups (HR = 2.10; 95% CI 1.81, 2.43; $P<0.001$) with no heterogeneity ($I^2 = 0.0\%; P>0.1$). PLR also showed a predictive value in the non-Asian groups (HR = 1.88; 95% CI 1.56, 2.27; $P<0.001$) with no heterogeneity ($I^2 = 0.0\%; P>0.1$). Subsequently, we found that PLR could act as a prognostic factor in groups with a follow-up time of < 120 months (HR = 2.28; 95% CI 1.78, 2.91; $P<0.001$) and sample size > 375 cases (HR = 1.90; 95% CI 1.57, 2.29; $P<0.001$) with no heterogeneity ($I^2 = 0.0\%; P>0.1$).

Risk of bias and sensitivity analysis

The result of Egger’s test (Figure 3(a)) indicated no statistical significance in publication bias ($P = 0.302$). Further, after excluding any studies on the relationship between PLR and OS in breast cancer patients, no obvious changes of the pooled HR were found, suggesting that
Study	Year	Country	Sample	Pathology	High PLR	High PLR with LNM	Low PLR	Low PLR with LNM	Survival analysis	Multivariate analysis	HR statistic	HR (95% CI)	Follow-up (months)
Anwar et al.	2021	Indonesia	1083	HER2-positive & negative	403	280	680	497	OS	NR	1.75	(1.05, 2.91)	120
Asano et al.	2016	Japan	177	HER2-positive & negative	67	50	110	86	OS	Yes	2.84	(1.37, 5.89)	60
Azab et al.	2013	USA	437	HER2-positive & negative	115	65	322	101	OS	Yes	3.68	(1.74, 7.78)	80
Blanchette et al.	2018	Canada	154	HER2-positive	70	35	84	25	OS	Yes	1.75	(1.25, 2.46)	120
Cho et al.	2018	China	661	HER2-positive & negative	82	34	579	216	OS	Yes	1.65	(0.84, 3.22)	200
Gunduz et al.	2015	Turkey	62	HER2-positive	36	18	26	7	OS	Yes	2.35	(1.33, 4.16)	80
Hu et al.	2020	China	980	HER2-negative	490	206	490	214	OS	Yes	1.58	(1.04, 2.39)	80
Huszno et al.	2019	Poland	436	HER2-positive & negative	54	26	382	168	OS	Yes	1.55	(0.83, 2.88)	120
Jiang et al.	2020	China	147	HER2-positive & negative	98	51	49	30	OS	Yes	2.88	(0.25, 33.28)	80
Kim et al.	2020	Korea	533	HER2-positive & negative	74	35	459	89	OS	Yes	2.24	(1.23, 4.07)	200
Krenn-Pilko et al.	2014	Austria	747	HER2-positive & negative	48	25	699	105	OS	Yes	2.03	(1.03, 4.02)	120
Ligorio et al.	2021	Italy	57	HER2-positive	29	16	28	11	OS	Yes	1.66	(0.63, 4.35)	120
Liu et al.	2016	China	318	HER2-positive & negative	172	120	146	43	OS	Yes	2.07	(1.58, 2.70)	140
Liu et al.	2020	China	221	HER2-positive & negative	150	105	71	35	OS	Yes	2.75	(1.34, 5.63)	96
Nakamoto et al.	2021	Japan	114	HER2-negative	32	24	82	66	OS	Yes	1.54	(0.94, 2.50)	120
Ramos-Esquivel et al.	2017	Costa Rica	172	HER2-positive & negative	13	9	159	78	OS	Yes	3.86	(1.51, 9.89)	100
Takeuchi et al.	2017	Japan	296	HER2-positive & negative	84	33	212	54	OS	Yes	2.61	(1.07, 6.36)	120
Van Berckelaer et al.	2020	Belgium	125	HER2-negative	27	15	98	26	OS	Yes	1.75	(1.04, 2.94)	120
Vernieri et al.	2018	Italy	57	HER2-negative	23	NR	34	NR	OS	Yes	1.72	(1.19, 2.50)	120
Zheng et al.	2020	China	707	HER2-positive & negative	77	41	630	280	OS	Yes	2.01	(1.38, 2.92)	120

CI: confidence interval; HER2: Human Epidermal Growth Factor Receptor 2; HR: hazard ratio; LNM: lymph node metastasis; NR: no report; NR: not reported; OS: overall survival; PLR: platelet-to-lymphocyte ratio; SC: survival curve.
the findings were relatively stable and reliable in this meta-analysis (Figure 3(b)).

Association between PLR and clinicopathological features in breast cancer patients

To analyze the association between PLR and clinicopathological characteristics in breast cancer patients, we pooled the results in studies with stratification of age,19,20,25,27–32,35–37 LNM,19–37 TNM stage,19,20,22,24,25,29–32,34–37 tumor size,19,20,24,29,31,32,35,37 and distant metastasis19,20,24,29,31,32,35,37 (Table S3). The obtained results indicated no significant association of PLR with age (OR = 0.87; 95% CI 0.66, 1.16; \(P = 0.34 \)) (Figure 4(a)), and tumor size (OR = 1.41; 95% CI 0.98, 2.02; \(P = 0.06 \)) (Figure 4(c)). Remarkably, high PLR was significantly correlated with LNM (OR = 1.82; 95% CI 1.32, 2.52; \(P < 0.001 \); \(I^2 = 85\% \); \(P < 0.01 \)) (Figure 4(b)), advanced TNM stage (OR = 1.89; 95% CI 1.25, 2.87; \(P = 0.003 \); \(I^2 = 84\% \); \(P < 0.01 \)), and distant metastasis (OR = 1.76; 95% CI 1.14, 2.72; \(P = 0.01 \); \(I^2 = 69\% \); \(P < 0.01 \)) (Figure 4(c) and (d)) with significant heterogeneity.

For significant heterogeneity, we also conducted a subgroup analysis stratified for geographical region, follow-up time, and sample size (Figure S1). After stratification by geographical region, we observed that PLR was a prognostic factor in LNM in the non-Asian group (HR = 2.00; 95% CI 1.46, 2.75; \(P < 0.001 \)) with low heterogeneity (\(I^2 = 34.6\% \); \(P > 0.1 \)) (Figure S1(a)). However, heterogeneity did not change in the subgroups of follow-up time and sample size (Figure S1(b) and (c)). Taking the limited number of included studies into consideration, the subgroup analysis regarding distant metastasis was not performed.

Additionally, the funnel plot was used for testing publication bias between PLR level and clinicopathologic features in breast cancer, and presented in a roughly symmetrical manner, without obvious evidence of asymmetry (Figure S2).

Discussion

Inflammation plays a vital role in the occurrence and development of tumors.\(^{39}\) Neutrophils, monocytes, platelets, and lymphocytes in peripheral blood are closely related to tumor cell invasion, metastasis, and angiogenesis.\(^{40}\) During inflammation, the secretion of cytokines can stimulate the release of neutrophils, thus enhancing the invasion, proliferation, and metastasis of cancer cells.\(^{40,41}\) In addition, neutrophils are involved in tumor proliferation and metastasis by releasing inflammatory factors.\(^{42}\) Lymphocytes influence the growth of tumor cells and improve the prognosis of patients with malignant tumors by secreting interferon-gamma and tumor necrosis factor-\(\alpha\).\(^{43}\) Platelets protect the circulating tumor cells in the peripheral blood from flow shear stress, induce the epithelial-mesenchymal transition, and promote the tumor cells to extravasate to the metastatic site.\(^{44}\) Studies
have demonstrated that cancer cells overproduce proinflammatory mediators, such as IL-6 and IL-10, and increase the count of neutrophils and platelets in peripheral blood. Changes in these parameters are widely classified as signs of systemic inflammation and have been confirmed as prognostic indicators in many cancer types, such as absolute platelet count, neutrophil-lymphocyte ratio (LNR), lymphocyte-monocyte ratio (LMR), and PLR. As easy-to-measure, simple, and non-invasive markers of subclinical inflammation, the LNR and PLR have prognostic effects on many cancer types. However, other studies have shown that LNR cannot be regarded as an independent prognostic factor for breast cancer. Similarly, it has been reported that LMR is associated with the survival rate of several cancers, and higher LMR levels contribute to better disease-free survival rate.

Figure 3. Publication bias and sensitivity analysis of PLR expression and overall survival risk in breast cancer. (a) Egger’s test for publication bias; (b) sensitivity analysis for the robustness of the findings.

PLR: platelet-to-lymphocyte ratio.
among breast cancer patients receiving neoadjuvant chemotherapy. In a study to predict the long-term survival rate of triple negative breast cancer patients, LNR was superior to LMR, but this study did not compare the prediction effect of PLR and LNR. In other studies, the superiority of LNR was proved in predicting poor prognosis of metastatic colorectal cancer after hepatectomy; as an independent prognostic factor, the increase in preoperative PLR was also superior to LNR and LMR in predicting the clinical outcome in breast cancer patients. However, the relationship between PLR and the prognosis of patients with breast cancer is still controversial.

This meta-analysis included 20 articles on the association between PLR and OS of breast cancer patients. According to the results, breast cancer patients with high PLR had a higher proportion of TNM, distant metastasis, and LNM than those with low PLR ($P < 0.05$). The OS of breast cancer patients with high PLR was shorter than those with low PLR (pooled HR = 1.88; 95% CI 1.61, 2.19; $P < 0.001$), which is consistent with previous studies. Compared with previous meta-analyses, this study embraced more comprehensive literature retrieval and a larger sample size. Publication bias has a great influence on the reliability and authenticity of meta-analysis results, which often leads to over-estimation of the comprehensive effect of the analysis. The funnel plot is the most commonly used method to determine whether there is publication bias and the linear regression model (Egger’s test) is adopted to test the symmetry of the inverted funnel plot. If the P-value corresponding to the test statistic t is greater than 0.1, it can be inferred that the funnel plot is symmetrical, otherwise it is asymmetrical. The funnel plot in a symmetrical manner suggests no publication bias in the studies included in the meta-analysis, or at least the potential bias has no substantial influence on the final result. According to the funnel plot of this meta-analysis (Figure 3 and Figure S2), our obtained results were credible and reliable. Obviously, it is meaningful to determine the reasons for the inconsistency of research results; the quality heterogeneity between different studies may be an important reason for the heterogeneity.

However, the results of this study should be interpreted carefully, and there are still several limiting factors that need to be considered. First, the cut-off value of PLR in this study is inconsistent among the studies, which may be the introduction of selection bias in the meta-analysis. Second, the breast cancer patients involved in the study may receive different treatments, which may have an impact on survival rates. Third, patients included in the studies received follow-up at different time.

Figure 4. Forest plots of PLR expression and clinicopathological features in breast cancer. (a) Age (> 50 years old vs. < 50 years old); (b) LNM (Yes vs. No); (c) tumor size (>2cm vs.<2 cm); (d) TNM stage (III–IV vs. I–II); (e) distant metastasis. LNM: lymph node metastasis; PLR: platelet-to-lymphocyte ratio; TNM: tumor-node-metastasis.
periods, which may have some influence on survival data. Finally, an international multi-center study with a larger sample size is required for further confirmation in the future.

Conclusion
The increase of PLR is related to poor prognosis, higher risk of LNM, advanced TNM stage, and distant metastasis in breast cancer patients. Further subgroup analysis confirms the negative prognostic value of PLR for the HER2-negative breast cancer patients. Therefore, PLR, as a clinically accessible index, should be identified as a biomarker with potential prognostic value in breast cancer.

Author contributions
GZX, XRM, WXN: Critical revision of the manuscript; GZX, XRM, WXN: Substantial contribution to the conception and design of the work, manuscript drafting; GZX, XRM, LL, LLP: Acquisition, analysis, and interpretation of the data; GZX, XRM, LL, LLP, WXN: Revising the manuscript critically, final approval of the version to be published. All authors have read and approved the final manuscript. Zhixun Gong and Ruomei Xin: equal contribution.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Hainan Health and Family Planning industry scientific research project, (grant number 20A200399).

Availability of data and material
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

ORCID iD
Xinni Wu https://orcid.org/0000-0002-0864-0251

Supplemental material
Supplemental material for this article is available online.

References
1. Wu ZY, Kim HJ, Lee JW, et al. Long-term oncologic outcomes of immediate breast reconstruction vs conventional mastectomy alone for breast cancer in the setting of Neoadjuvant chemotherapy. JAMA Surg 2020; 155: 1142–1150.
2. Wang K, Shen T, Siegal GP, et al. The CD4/CD8 ratio of tumor-infiltrating lymphocytes at the tumor-host interface has prognostic value in triple-negative breast cancer. Hum Pathol 2017; 69: 110–117.
3. Liu C, Sun B, Xu B, et al. A panel containing PD-1, IL-2Rα, IL-10, and CA15-3 as a biomarker to discriminate breast cancer from benign breast disease. Cancer Manag Res 2018; 10: 1749–1761.
4. Yang R, Chang Q, Meng X, et al. Prognostic value of systemic immune-inflammation index in cancer: a meta-analysis. J Cancer 2018; 9: 3295–3302.
5. Menter DG, Tucker SC, Kopetz S, et al. Platelets and cancer: a casual or causal relationship: revisited. Cancer Metastasis Rev 2014; 33: 231–269.
6. Pinato DJ, Karamanakos G, Arizumi T, et al. Dynamic changes of the inflammation-based index predict mortality following chemoembolisation for hepatocellular carcinoma: a prospective study. Aliment Pharmacol Ther 2014; 40: 1270–1281.
7. Kobayashi N, Usui S, Kikuchi S, et al. Preoperative lymphocyte count is an independent prognostic factor in node-negative non-small cell lung cancer. Lung Cancer 2012; 75: 223–227.
8. Hirahara T, Arigami T, Yanagita S, et al. Combined neutrophil-lymphocyte ratio and platelet-lymphocyte ratio predicts chemotherapy response and prognosis in patients with advanced gastric cancer. BMC Cancer 2019; 19: 672.
9. Huang Z, Liu Y, Yang C, et al. Combined neutrophil/platelet/lymphocyte/differentiation score predicts chemosensitivity in advanced gastric cancer. BMC Cancer 2018; 18: 515.
10. Kuzucu İ, Güler İ, Kum RO, et al. Increased neutrophil lymphocyte ratio and platelet lymphocyte ratio in malignant parotid tumors. Braz J Otorhinolaryngol 2020; 86: 105–110.
11. Xu J, Ni C, Ma C, et al. Association of neutrophil/lymphocyte ratio and platelet/lymphocyte ratio with ER and PR in breast cancer patients and their changes after neoadjuvant chemotherapy. Clin Transl Oncol 2017; 19: 989–996.
12. Koh CH, Bhoo-Pathy N, Ng KL, et al. Utility of pre-treatment neutrophil/lymphocyte ratio and platelet/lymphocyte ratio as prognostic factors in breast cancer. Br J Cancer 2015; 113: 150–158.
13. Yang L, Wang H, Ma J, et al. Association between the platelet to lymphocyte ratio, neutrophil to lymphocyte ratio and axillary lymph node metastasis in cT1N0 breast cancer patients. Am J Transl Res 2021; 13: 1854–1861.
14. De Giorgi U, Mego M, Scarpi E, et al. Association between circulating tumor cells and peripheral blood monocytes in metastatic breast cancer. Ther Adv Med Oncol 2019; 11: 1758835919866065.
15. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 2010; 25: 603–605.
16. Tierney JF, Stewart LA, Ghersi D, et al. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 2007; 8: 16.
17. Parmar MK, Torri V and Stewart L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat Med 1998; 17: 2815–2834.
18. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. Br Med J 2003; 327: 557–560.
19. Anwar SL, Cahyono R, Avanti WS, et al. Pre-treatment neutrophil-lymphocyte and platelet-lymphocyte ratios as
additional markers for breast cancer progression: a retrospective cohort study. *Ann Med Surg (Lond)* 2021; 63: 102144.

20. Asano Y, Kashiwagi S, Onoda N, et al. Platelet-Lymphocyte ratio as a useful predictor of the therapeutic effect of neoadjuvant chemotherapy in breast cancer. *PLoS One* 2016; 11: e0153459.

21. Azab B, Shah N, Radbel J, et al. Pretreatment neutrophil/lymphocyte ratio is superior to platelet/lymphocyte ratio as a predictor of long-term mortality in breast cancer patients. *Med Oncol* 2013; 30: 432.

22. Blanchette PS, Desautels DN, Pond GR, et al. Factors influencing survival among patients with HER2-positive metastatic breast cancer treated with trastuzumab. *Breast Cancer Res Treat* 2018; 170: 169–177.

23. Cho U, Park HS, Im SY, et al. Prognostic value of systemic inflammatory markers and development of a nomogram in breast cancer. *PLoS One* 2018; 13: e0200936.

24. Gunduz S, Goksu SS, Arslan D, et al. Factors affecting disease-free survival in patients with human epidermal growth factor receptor 2-positive breast cancer who receive adjuvant trastuzumab. *Mol Clin Oncol* 2015; 3: 1109–1112.

25. Hu Y, Wang S, Ding N, et al. Platelet/lymphocyte ratio is superior to neutrophil/lymphocyte ratio as a predictor of chemotherapy response and disease-free survival in luminal B-like (HER2(-)) breast cancer. *Clin Breast Cancer* 2020; 20: e403–e409.

26. Huszno J and Kolosza Z. Prognostic value of the neutrophil-lymphocyte, platelet-lymphocyte and monocyte-lymphocyte ratio in breast cancer patients. *OncoLett* 2019; 18: 6275–6283.

27. Jiang L, Fang J and Ding J. High systemic immune-inflammation Index predicts poor survival in patients with human epidermal growth factor receptor-2 positive breast cancer receiving adjuvant Trastuzumab. *Cancer Manag Res* 2020; 12: 475–484.

28. Kim JY, Jung EJ, Kim JM, et al. Dynamic changes of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio predicts breast cancer prognosis. *BMC Cancer* 2020; 20: 1206.

29. Krenn-Pilko S, Langsenlehner U, Thurner EM, et al. The elevated preoperative platelet-to-lymphocyte ratio predicts poor prognosis in breast cancer patients. *Br J Cancer* 2014; 110: 2524–2530.

30. Ligorio F, Fuca G, Zattarin E, et al. The pan-immune-inflammation-value predicts the survival of patients with human epidermal growth factor receptor 2 (HER2)-positive advanced breast cancer treated with first-line taxane-Trastuzumab-Pertuzumab. *Cancers (Basel)* 2021; 13: 1964.

31. Liu C, Huang Z, Wang Q, et al. Usefulness of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in hormone-receptor-negative breast cancer. *Onco Targets Ther* 2016; 9: 4653–4660.

32. Liu J, Ma F, Sun B, et al. Predictive value of lymphocyte-related blood parameters at the time point of lymphocyte Nadir during radiotherapy in breast cancer. *Onco Targets Ther* 2020; 13: 151–161.

33. Nakamoto S, Ikeda M, Kubo S, et al. Systemic immunity markers associated with lymphocytes predict the survival benefit from paclitaxel plus bevacizumab in HER2 negative advanced breast cancer. *Sci Rep* 2021; 11: 6328.

34. Ramos-Esquível A, Rodríguez-Porras L and Porras J. Neutrophil-lymphocyte ratio and platelet-lymphocyte ratio as prognostic factors in non-metastatic breast cancer patients from a hispanic population. *Breast Dis* 2017; 37: 1–6.

35. Takeuchi H, Kawanaka H, Fukuyama S, et al. Comparison of the prognostic values of preoperative inflammation-based parameters in patients with breast cancer. *PLoS One* 2017; 12: e0177137.

36. Van Berckelaer C, Van Geyt M, Linders S, et al. A high neutrophil-lymphocyte ratio and platelet-lymphocyte ratio are associated with a worse outcome in inflammatory breast cancer. *The Breast* 2020; 53: 212–220.

37. Zheng Y, Wu C, Yan H, et al. Prognostic value of combined preoperative fibrinogen-albumin ratio and platelet-lymphocyte ratio score in patients with breast cancer: a prognostic nomogram study. *Clin Chim Acta* 2020; 506: 110–121.

38. Vernieri C, Mennitto A, Prisciandaro M, et al. The neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios predict efficacy of platinum-based chemotherapy in patients with metastatic triple negative breast cancer. *Sci Rep* 2018; 8: 8703.

39. An G, Wu F, Huang S, et al. Effects of CCL5 on the biological behavior of breast cancer and the mechanisms of its interaction with tumor-associated macrophages. *Oncol Rep* 2019; 42: 2499–2511.

40. Wellenstein MD, Coffelt SB, Duits DEM, et al. Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis. *Nature* 2019; 572: 538–542.

41. Schroth W, Büttner FA, Kandabara S, et al. Gene expression signatures of BRCA1 and tumor inflammation define subgroups of early-stage hormone receptor-positive breast cancer patients. *Clin Cancer Res* 2020; 26: 6523–6534.

42. Zhang Y, Chandra V, Riquelme Sanchez E, et al. Interleukin-17-induced neutrophil extracellular traps mediate resistance to checkpoint blockade in pancreatic cancer. *J Exp Med* 2020; 217: e20190354.

43. Mijic S and Dabrosin C. Platelet activation in situ in breasts at high risk of cancer: relationship with mammographic density and estradiol. *J Clin Endocrinol Metab* 2021; 106: 485–500.

44. Floris G, Richard F, Hamy AS, et al. Body mass Index and tumor-infiltrating lymphocytes in triple-negative breast cancer. *Mol Clin Oncol* 2015; 3: 484–496.

45. Lambert AW, Pattabiraman DR and Weinberg RA. Emerging biological principles of metastasis. *Cell* 2017; 168: 670–691.

46. Ohsugi Y. Recent advances in immunopathophysiology of interleukin-6: an innovative therapeutic drug, tocilizumab (recombinant humanized anti-human interleukin-6 receptor antibody), unveils the mysterious etiology of immune-mediated inflammatory diseases. *Biol Pharm Bull* 2007; 30: 2001–2006.

47. Szkandera J, Pichler M, Absenger G, et al. The elevated preoperative platelet to lymphocyte ratio predicts decreased time to recurrence in colon cancer patients. *Am J Surg* 2014; 208: 210–214.

48. Shimada H, Oohira G, Okazumi S, et al. Thrombocytosis associated with poor prognosis in patients with esophageal carcinoma. *J Am Coll Surg* 2004; 198: 737–741.
49. Dirican A, Kucukzeybek BB, Alacacioglu A, et al. Do the derived neutrophil to lymphocyte ratio and the neutrophil to lymphocyte ratio predict prognosis in breast cancer? *Int J Clin Oncol* 2015; 20: 70–81.

50. Ni XJ, Zhang XL, Ou-Yang QW, et al. An elevated peripheral blood lymphocyte-to-monocyte ratio predicts favorable response and prognosis in locally advanced breast cancer following neoadjuvant chemotherapy. *PLoS One* 2014; 9: e111886.

51. Jia W, Wu J, Jia H, et al. The peripheral blood neutrophil-to-lymphocyte ratio is superior to the lymphocyte-to-monocyte ratio for predicting the long-term survival of triple-negative breast cancer patients. *PLoS One* 2015; 10: e0143061.

52. Neofytou K, Smyth EC, Giakoustidis A, et al. Elevated platelet to lymphocyte ratio predicts poor prognosis after hepatectomy for liver-only colorectal metastases, and it is superior to neutrophil to lymphocyte ratio as an adverse prognostic factor. *Med Oncol* 2014; 31: 239.

53. Morkavuk Ş B, Kocaöz S and Korukhoğlu B. Diagnostic value of Platelet/lymphocyte Ratio (PLR) for predicting sentinel axillary lymph node positivity in early-stage breast cancer compared with ultrasonography. *Int J Clin Pract* 2021; 75: e14939.

54. Liu J, Shi Z, Bai Y, et al. Prognostic significance of systemic immune-inflammation index in triple-negative breast cancer. *Cancer Manag Res* 2019; 11: 4471–4480.

55. Zhong JH, Huang DH and Chen ZY. Prognostic role of systemic immune-inflammation index in solid tumors: a systematic review and meta-analysis. *Oncotarget* 2017; 8: 75381–75388.

56. Guo W, Lu X, Liu Q, et al. Prognostic value of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio for breast cancer patients: an updated meta-analysis of 17079 individuals. *Cancer Med* 2019; 8: 4135–4148.

57. Lin L and Chu H. Quantifying publication bias in meta-analysis. *Biometrics* 2018; 74: 785–794.

58. Sterne JA and Egger M. Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. *J Clin Epidemiol* 2001; 54: 1046–1055.

59. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med* 2009; 6: e1000097.