Complete genome sequence of *Vulcanisaeta distributa* type strain (IC-017)¹

Konstantinos Mavromatis¹, Johannes Sikorski², Elke Pabst³, Hazuki Teshima^{1,4}, Alla Lapidus¹, Susan Lucas¹, Matt Nolan¹, Tijana Glavina Del Rio¹, Jan-Fang Cheng¹, David Bruce^{1,4}, Lynne Goodwin^{1,4}, Sam Pitluck¹, Konstantinos Liolios¹, Natalia Ivanova¹, Natalia Mikhailova¹, Amrita Pati¹, Amy Chen¹, Krishna Palaniappan¹, Miriam Land^{1,6}, Loren Hauser^{1,6}, Yun-Juan Chang^{1,6}, Cynthia D. Jeffries^{1,6}, Manfred Rohde⁷, Stefan Spring², Markus Göker², Reinhard Wirth², Tanja Woyke¹, James Bristow¹, Jonathan A. Eisen^{1,8}, Victor Markowitz⁵, Philip Hugenholtz¹, Hans-Peter Klenk², and Nikos C. Kyrpides^{1*}

¹ DOE Joint Genome Institute, Walnut Creek, California, USA
² DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
³ University of Regensburg, Microbiology – Archaeenzentrum. Regensburg, Germany
⁴ Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
⁵ Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
⁶ Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
⁷ HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany
⁸ University of California Davis Genome Center, Davis, California, USA

*Corresponding author: Nikos C. Kyrpides

Keywords: hyperthermophilic, acidophilic, non-motile, microaerotolerant anaerobe, Thermoproteaceae, Crenarchaeota, GEBA

Vulcanisaeta distributa Itoh et al. 2002 belongs to the family Thermoproteaceae in the phylum Crenarchaeota. The genus *Vulcanisaeta* is characterized by a global distribution in hot and acidic springs. This is the first genome sequence from a member of the genus *Vulcanisaeta* and seventh genome sequence in the family Thermoproteaceae. The 2,374,137 bp long genome with its 2,544 protein-coding and 49 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

Introduction

Strain IC-017^T (= DSM 14429 = JCM 11212) is the type strain of the species *Vulcanisaeta distributa*, which is the type species of its genus *Vulcanisaeta* [1]. The only other species in the genus is *V. souniana* [1,2]. The genus name derives from the Latin words *‘vulcanicus’* meaning volcanic, and *‘saeta’* meaning stiff hair, to indicate a rigid rod inhabiting volcanic hot springs [1]. The species epithet derives from the Latin *‘distributa’*, referring to the wide distribution of strains belonging to this species [1]. The type strain IC-017^T was isolated from a hot spring in Ohwakudani, Kanagawa, Japan [1]. Fourteen additional strains [IC-019, IC-029 (= JCM 11213), IC-030, IC-032, IC-051, IC-052, IC-058, IC-064 (= JCM 11214), IC-065 (= JCM 11215), IC-124 (= JCM 11216), IC-135 (= JCM 11217), IC-136, IC-140 and IC-141 (= JCM 11218)] are included in this species [1]. At the time of the species description, the terminus ‘distributa’ referred simply to a wide distribution within Japan [1]. However, 16S rRNA sequences which probably belong to the genus *Vulcanisaeta* (≥95% sequence similarity to *V. distributa*) have been obtained from 117°C hot deep-sea hydrothermal fluid in the south Mariana area [3]. Clone sequences that are highly similar to the 16S rRNA gene sequence of strain IC-017^T were obtained from an acidic hot spring water at the Tatung Volcano area in Northern Taiwan (99%, FJ797325), the hot Sylvan Spring in Yellowstone National Park (=YNP, USA, 98%, DQ243774), at the Cistern Hot Spring at Norris Geyser Basin in YNP (98%, DQ924709) and also at other springs in YNP (98%, DQ833773). Metagenomic sequences from uncultured clones in YNP (94%, ADKH0100984) also support these observations. The 16S rRNA gene similarity values to non-hot-spring metage-
Vulcanisaeta distributa type strain (IC-017T)

nomes, e.g., from marine, soil, or human gut, were all below 83%, indicating that Vulcanisaeta is probably not found in these habitats (status July 2010).

Although it is not the case for the type strain IC-017T, V. distributa recently received further interest, as it was found that strain IC-065 contained a 691 bp large intron within its 16S rRNA sequence [4]. Novel 16S rRNA introns have been found in several members of the family Thermoproteaceae [4]. Here we present a summary classification and a set of features for V. distributa strain IC-017T, together with the description of the complete genomic sequencing and annotation.

Classification and features
The cells of strain IC-017T are rigid, straight to slightly curved rods (Figure 1 and Table 1)[4]. Occasionally, they bend, branch out, or bear spherical bodies at the terminae (not seen in Figure 1), which have been termed as 'golf clubs'. Most cells are 0.4-0.6 µm in width and 3-7 µm long [4]. Pili have been observed to rise terminally or laterally; motility has not been observed [4]. Usually, strain IC-017T grows anaerobically. However, when cultured in media in which sulfur is replaced by sodium thiosulfate (1.0 g/l), strain IC-017T showed weak growth in a low-oxygen atmosphere (1%), but not in air [4].

In contrast to Thermocladium or Caldivirga strains, V. distributa grows well even in the absence of a vitamin mixture or archaeal cell-extract solution in the medium [4]. All seven tested strains of V. distributa were shown to be resistant to chloramphenicol, kanamycin, oleandomycin, streptomycin and vancomycin, but sensitive to erythromycin, novobiocin and rifampicin (all at 100 µg per ml) [4]. V. distributa needs acidic conditions to grow (pH 3.5 to 5.6). Under optimal growth conditions, the doubling time is 5.5 to 6.5 hours [4]. Sulfur or thiosulfate is required as an electron acceptor. Sulfate is required as an electron acceptor. Strain doubling time is 5.5 to 6.5 hours [4]. Sulfur or thiosulfate is required as an electron acceptor. Under optimal growth conditions, the doubling time is 5.5 to 6.5 hours [4]. Sulfate is required as an electron acceptor.

Chemotaxonomy
Strain IC-017T possesses cyclic and acyclic tetraether core lipids [4]. The major cellular polyamines are norspermidine (1.25), spermidine (0.55), agmatine (0.15), norspermine (0.1) and cadaverine (0.1) (values are in µmol/g wet weight of the cell) [25]. Further chemotaxonomic data are not available.

Genome sequencing and annotation
Genome project history
This organism was selected for sequencing on the basis of its phylogenetic position [26], and is part of the Genomic Encyclopedia of Bacteria and Archaea project [27]. The genome project is deposited in the Genome OnLine Database [20] and the complete genome sequence is deposited in GenBank. Sequencing, finishing and annotation were performed by the DOE Joint Genome Institute (JGI). A summary of the project information is shown in Table 2.

Growth conditions and DNA isolation
V. distributa IC-017T, DSM 14429, was grown anaerobically in DSMZ medium 88 (Sulfolobus medium) [28] at 90°C. DNA was isolated from 0.5-1 g of cell paste using Qiagen Genomic 500 DNA Kit (Qiagen, Hilden, Germany) following the standard protocol as recommended by the manufacturer.

Genome sequencing and assembly
The genome was sequenced using a 454 sequencing platform. All general aspects of library construction and sequencing can be found at the JGI website. Pyrosequencing reads were assembled using the Newbler assembler version 2.0.0-PostRelease-09/05/2008 (Roche). The initial Newbler assembly consisted of 147 contigs in 13 scaffolds and was converted into a phrap assembly by making fake reads from the consensus, and collecting the read pairs in the 454 paired end library. Draft assemblies were based on 252.4 Mb 454 draft and all of the 454 paired end data. Newbler parameters are -consed -a 50 -l 350 -g -m -ml 20.

The Phred/Phrap/Consed software package was used for sequence assembly and quality assessment in the following finishing process. After the shotgun stage, reads were assembled with parallel phrap (High Performance Software, LLC). Possible mis-assemblies were corrected with gapResolution, Dupfinisher [29], or sequencing cloned bridging PCR fragments with subcloning or transposon bombing (Epicentre Biotechnologies, Madison, WI) [30].
Gaps between contigs were closed by editing in Condor, by PCR and by Bubble PCR primer walks (J.-F. Chang, unpublished). A total of 97 additional reactions were necessary to close gaps and to raise the quality of the finished sequence. The error rate of the completed genome sequence is less than 1 in 100,000. The final assembly contains 0.8 million pyrosequencing reads that provide 106.3× coverage of the genome.

Figure 2. Phylogenetic tree highlighting the position of *V. distributa* IC-017T relative to the other type strains within the genus *Vulcanisaeta* and the type strains of the other genera within *Thermoproteales*. The tree was inferred from 1,356 aligned characters [16,17] of the 16S rRNA gene sequence under the maximum likelihood criterion [18] and rooted with the type strains of the genera of *Desulfurococcales* and *Acidilobales*. The branches are scaled in terms of the expected number of substitutions per site. Numbers above branches are support values from 150 bootstrap replicates [19] if larger than 60%. Lineages with type strain genome sequencing projects registered in GOLD [20] are shown in blue, published genomes [21-24] and INSDC accessions CP000504 and CP00852 in bold.

Figure 1. Scanning electron micrograph of *V. distributa* IC-017T
Table 1. Classification and general features of V. distributa IC-017T according to the MIGS recommendations [5]

MIGS ID	Property	Term	Evidence code
	Current classification		
	Domain	Archaea	TAS [6]
	Phylum	Crenarchaeota	TAS [7,8]
	Class	Thermoprotei	TAS [8,9]
	Order	Thermoproteales	TAS [10-13]
	Family	Thermoproteaceae	TAS [10,12,13]
	Genus	Vulcanisaeta	TAS [1]
	Species	Vulcanisaeta distributa	TAS [1]
	Type strain	IC-017	TAS [1]
	Gram stain	not reported	TAS [1]
	Cell shape	rigid, straight to slightly curved rods	TAS [1]
	Motility	non-motile	TAS [1]
	Sporulation	not reported	TAS [1]
	Temperature range	70-92°C	TAS [1]
	Optimum temperature	90°C	TAS [1]
	Salinity	1% NaCl or below	TAS [1]
	MIGS-22 Oxygen requirement	microaerotolerant anaerobe	TAS [1]
	Carbon source	yeast extract, peptone, beef extract, casamino acids, gelatin, maltose, starch, malate, galactose, mannose	TAS [1]
	Energy source	heterotrophic	TAS [1]
MIGS-6	Habitat	acidic hot environments (water, soil, mud)	TAS [1]
MIGS-15	Biotic relationship	free living	TAS [1]
MIGS-14	Pathogenicity	not pathogenic	NAS
	Biosafety level	1	TAS [14]
	Isolation	acidic hot water	TAS [1]
MIGS-4	Geographic location	Ohwakudani, Japan	TAS [1]
MIGS-5	Sample collection time	September 1993	TAS [1]
MIGS-4.1	Latitude	35.447	NAS
MIGS-4.2	Longitude	139.642	
MIGS-4.3	Depth	unknown	
MIGS-4.4	Altitude	unknown	

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from of the Gene Ontology project [15]. If the evidence code is IDA, then the property was directly observed by one of the authors or an expert mentioned in the acknowledgements.

Genome annotation
Genes were identified using Prodigal [31] as part of the Oak Ridge National Laboratory genome annotation pipeline, followed by a round of manual curation using the JGI GenePRIMP pipeline [32]. The predicted CDSs were translated and used to search the National Center for Biotechnology Information (NCBI) nonredundant database, UniProt, TIGRfam, Pfam, PRIAM, KEGG, COG, and InterPro databases. Additional gene prediction analysis and functional annotation was performed within the Integrated Microbial Genomes - Expert Review (IMG-ER) platform [33].
Table 2. Genome sequencing project information

MiGS ID	Property	Term
MIGS-31	Finishing quality	Finished
MIGS-28	Libraries used	Two genomic libraries: one 454 pyrosequence standard library, one 454 PE library (22.9kb insert size)
MIGS-29	Sequencing platforms	454 GS FLX Titanium
MIGS-31.2	Sequencing coverage	106.3 × pyrosequence
MIGS-30	Assemblers	Newbler version 2.0.0-PostRelease-09/05/2008, phrap
MIGS-32	Gene calling method	Prodigal 1.4, GenePRIMP
INSDC ID		CP002100
Genbank Date of Release		September 23, 2010
GOLD ID		Gc01374
NCBI project ID		32589
Database: IMG-GEBA		2502790013
MIGS-13	Source material identifier	DSM 14429
Project relevance		Tree of Life, GEBA

Genome properties

The genome consists of a 2,374,137 bp long chromosome with a 45.4% GC content (Table 3 and Figure 3). Of the 2,593 genes predicted, 2,544 were protein-coding genes, and 49 RNAs; fifty one pseudogenes were also identified. The majority of the protein-coding genes (57.2%) were assigned a putative function while the remaining ones were annotated as hypothetical proteins. The distribution of genes into COGs functional categories is presented in Table 4.

Table 3. Genome Statistics

Attribute	Value	% of Total
Genome size (bp)	2,374,137	100.00%
DNA coding region (bp)	2,136,210	98.11%
DNA G+C content (bp)	1,078,516	45.43%
Number of replicons	1	
Extrachromosomal elements	0	
Total genes	2,593	100.00%
RNA genes	49	1.89%
rRNA operons	1	
Protein-coding genes	2,544	98.11%
Pseudo genes	51	1.97%
Genes with function prediction	1,483	57.19%
Genes in paralog clusters	327	12.61%
Genes assigned to COGs	1,548	59.70%
Genes assigned Pfam domains	1,665	64.21%
Genes with signal peptides	205	7.91%
Genes with transmembrane helices	591	22.79%
CRISPR repeats	18	
Figure 3. Graphical circular map of the genome. From outside to the center: Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew.
Table 4. Number of genes associated with the general COG functional categories

Code	Value	Percentage	Description
J	161	9.6	Translation, ribosomal structure and biogenesis
A	4	0.2	RNA processing and modification
K	65	3.9	Transcription
L	67	4.0	Replication, recombination and repair
B	4	0.2	Chromatin structure and dynamics
D	18	1.1	Cell cycle control, cell division, chromosome partitioning
Y	0	0.0	Nuclear structure
V	13	0.8	Defense mechanisms
T	25	1.5	Signal transduction mechanisms
M	61	3.6	Cell wall/membrane/envelope biogenesis
N	8	0.5	Cell motility
Z	1	0.1	Cytoskeleton
W	0	0.0	Extracellular structures
U	20	1.2	Intracellular trafficking and secretion, and vesicular transport
O	64	3.8	Post translational modification, protein turnover, chaperones
C	167	10.0	Energy production and conversion
G	96	5.7	Carbohydrate transport and metabolism
E	160	9.5	Amino acid transport and metabolism
F	55	3.3	Nucleotide transport and metabolism
H	64	3.8	Coenzyme transport and metabolism
I	69	4.1	Lipid transport and metabolism
P	59	3.5	Inorganic ion transport and metabolism
Q	29	1.7	Secondary metabolites biosynthesis, transport and catabolism
R	263	15.7	General function prediction only
S	160	9.5	Function unknown
-	1,045	40.3	Not in COGs

Acknowledgements

This work was performed under the auspices of the US Department of Energy Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396, UT-Battelle and Oak Ridge National Laboratory under contract DE-AC05-00OR22725, as well as German Research Foundation (DFG) INST 599/1-1 and SI 1352/1-2.

References

1. Itoh T, Suzuki K, Nakase T. *Vulcanisaeta distibuta* gen. nov., sp. nov., and *Vulcanisaeta souiniana* sp. nov., novel hyperthermophilic, rod-shaped crenarchaeotes isolated from hot springs in Japan. *Int J Syst Evol Microbiol* 2002; [52]:1097-1104. PubMed doi:10.1099/ijs.0.02152-0

2. Euzéby JP. List of bacterial names with standing in nomenclature: A folder available on the In-
11. Judicial Commission of the International Committee on Systematics of Prokaryotes. The nomenclatural types of the orders Acholeplasmatales, Halanaerobiales, Halobacteriales, Methanobacteriales, Methanococcales, Methanomicrobiales, Planctomycetales, Prochlorales, Sulfobaculales, Thermococcales, Thermoproteales and Verrucomicrobiales are the genera Acholeplasma, Halanaerobium, Halobacterium, Methanobacterium, Methanococcus, Methanomicrobiurn, Planctomycetes, Prochloron, Sulfolobus, Thermococcus, Thermoproteus and Verrucomicrobiurn, respectively. Opinion 79. Int J Syst Evol Microbiol 2005; 55:517-518. PubMed doi:10.1099/ijs.0.63548-0

12. Burggraf S, Huber H, Stetter KO. Reclassification of the crenarchaeal orders and families in accordance with 16S rRNA sequence data. Int J Syst Bacteriol 1997; 47:657-660. PubMed doi:10.1099/00207713-47-3-657

13. List editor. Validation of the publication of new names and new combinations previously effectively published outside the IJSEM: List No. 8. Int J Syst Bacteriol 1982; 32:266-268. doi:10.1099/00207713-32-2-266

14. Classification of bacteria and archaea in risk groups. TRBA 466.

15. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene Ontology: tool for the unification of biology. Nat Genet 2000; 25:25-29. PubMed doi:10.1038/75556

16. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540-552. PubMed

17. Lee C, Grasso C, Sharlow MF. Multiple sequence alignment using partial order graphs. Bioinformatics 2002; 18:452-464. PubMed doi:10.1093/bioinformatics/18.3.452

18. Stamatakis A, Hoover P, Rougemont J. A Rapid Bootstrap Algorithm for the RAXML Web Servers. Syst Biol 2008; 57:758-771. PubMed doi:10.1080/10635150802429642

19. Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A. How many bootstrap replicates are necessary? Lect Notes Comput Sci 2009; 5541:184-200. doi:10.1007/978-3-642-02008-7_13

20. Liolios K, Mavromatis K, Tavernarakis N, Kyrpides NC. The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 2008; 36:D475-D479. PubMed doi:10.1093/nar/gkm884

21. Kawarabayasi Y, Hino Y, Horikawa H, Yamazaki S, Haikawa Y, Jin-no K, Takahashi M, Sekine M, Baba S, Ankai A, et al. Complete genome sequence of an aerobic hyper-thermophilic cre-
archaeon, *Aeropyrum pernix* K1. DNA Res 1999; **6**:83-101, 145-152. PubMed doi:10.1093/dnares/6.2.83

22. Brügger K, Chen L, Stark M, Zibat A, Redder P, Ruepp A, Awayez M, She Q, Garrett RA, Klenk HP. The genome of *Hyperthermus butylicus*: a sulfur-reducing, peptide fermenting, neutrophilic Crenarchaeote growing up to 108 degrees C. Archaea 2006; **2**:127-135. PubMed doi:10.1155/2007/745987

23. Anderson IJ, Dharmarajan L, Rodriguez J, Hoo-per S, Porat I, Ulrich LE, Elkins JG, Mavromatis K, Sun H, Land M, et al. The complete genome sequence of *Staphylothermus marinus* reveals differences in sulfur metabolism among hetero-trophic Crenarchaeota. BMC Genomics 2009; **10**:145. PubMed doi:10.1186/1471-2164-10-145

24. Spring S, Rachel R, Lapidus A, Davenport K, Tice H, Copeland A, Cheng JF, Lucas S, Chen F, Nolan M, et al. Complete genome sequence of *Thermoplasma aggregans* type strain (M11TL4). Stand Genomic Sci 2010; **2**:245-259. doi:10.4056/sigs.821804

25. Hamana K, Tanaka T, Hosoya R, Niitsu M, Itoh T. Cellular polyamines of the acidophilic, ther-mophilic and thermoacidophilic archaeabacteria, *Acidilobus, Ferroplasma, Pyrobaculum, Pyrococcus, Staphylothermus, Thermococcus, Thermodesmus* and *Vulcanisaeta*. J Gen Appl Microbiol 2003; **49**:287-293. PubMed doi:10.2323/jgam.49.287

26. Klenk HP, Göker M. En route to a genome-based classification of *Archaea* and *Bacteria?* Syst Appl Microbiol 2010; **33**:175-182. PubMed doi:10.1016/j.syapm.2010.03.003

27. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, et al. A phylogeny-driven genomic encyclopaedia of *Bacteria* and *Archaea*. Nature 2009; **462**:1056-1060. PubMed doi:10.1038/nature08656

28. List of growth media used at DSMZ: http://www.dsmz.de/microorganisms/media_list.php

29. Cliff S, Han, Patrick Chain. 2006. Finishing repeat regions automatically with Dupfinisher. In: Proceeding of the 2006 international conference on bioinformatics & computational biology. Hamid R Arabnia & Homayoun Valafar (eds), CSREA Press. June 26-29, 2006: 141-146.

30. Sims D, Brettin T, Detter J, Han C, Lapidus A, Copeland A, Glavina Del Río T, Nolan M, Chen F, Lucas S, et al. Complete genome sequence of *Kytococcus sedentarius* type strain (541T). Stand Genomic Sci 2009; **1**:12-20. doi:10.4056/sigs.761

31. Hyatt D, Chen GL, Locascio PF, Land ML, Lari-mer FW, Hauser LJ. Prodigal Prokaryotic Dynamic Programming Genefinding Algorithm. BMC Bioinformatics 2010; **11**:119. PubMed doi:10.1186/1471-2105-11-119

32. Pati A, Ivanova N, Mikhailova N, Ovchinikova G, Hooper SD, Lykidis A, Kyrpides NC. Gene-PRIMP: A gene prediction improvement pipeline for microbial genomes. Nat Methods 2010; **7**:455-457. PubMed doi:10.1038/nmeth.1457

33. Markowitz VM, Ivanova NN, Chen IMA, Chu K, Kyrpides NC. IMG ER: A system for microbial genome annotation expert review and curation. Bioinformatics 2009; **25**:2271-2278. PubMed doi:10.1093/bioinformatics/btp393