Bakanae Disease - A Serious threat to Basmati Rice Production in India

Vikram Singh*, Promil Kapoor and Ashwani Kumar

Department of Plant Pathology, Chaudhary Charan Singh Haryana Agricultural University, Hisar- 125004, India

Abstract

Bakanae disease caused by *Fusarium fujikuroi* has been reported from nearly all rice-growing countries across the world, and it has become a serious threat issue in Asian countries. The disease incidence is especially high on the varieties Pusa Basmati 1121 and Pusa Basmati 1509, which are gaining popularity throughout the country, particularly in Punjab and Haryana due to its superior grain quality. It is responsible for high yield losses ranging from 3.0-95.4% and its prevalence varies depending on the region and cultivars used. The typical and distinguished symptoms of the disease are elongation and rotting of rice plants. This disease is seed borne and soil borne in nature and become more prevalent in rice-growing areas around the world in recent years. Seed treatment with fungicides is currently the most important disease management approach utilized worldwide. A systematic study of how the disease develops under the influence of variable climatic conditions is necessary to manage this emerging disease efficiently, and good management measures can help us conquer it in the future.

Keywords: Bakanae, *Fusarium fujikuroi*, management, rice, symptoms

1. History, geographical distribution and economic importance

Rice bakanae disease has been reported in Japan since 1828 (Ito and Kimura, 1931). Hori was the first to describe the disease Hori, 1898 and named the pathogen as *Fusarium heterosporum* Nees. Sawada (1917) identified the perfect stage of the pathogen and named it as *Lisea fujikuroi* Saw. The name of pathogen was changed later to *Gibberella fujikuroi* Sawada (Ito and Kimura, 1931) and the imperfect stage was changed to *Fusarium moniliforme* Sheld. *F. fujikuroi* is the pathogen’s current name (Nirenberg, 1976). Kurosawa (1926) noticed that pathogen produces a substance that may be responsible for infected plants’ elongation of stems and decrease in chlorophyll content. Gibberellins were found in the bakanae disease pathogen, *F. moniliforme* (Yabuta and Hayashi, 1939).

In many regions of the world, this disease is known as root rot or white head disease (Saremi *et al.*, 2008). *Fusarium* blight, elongation disease, fusariosis, white stalk in China, palay lalake (man rice) in British Guiana, foot rot in the Philippines, otoke nae (male seedling) in Japan, Australia and USA, foolish plants or foot rot in India and Bakanae in Africa, Ceylon, French Equatorial (Singh and Sunder, 2012). This disease has been reported in all rice-producing countries around the world, including Turkey, Pakistan, Thailand, Japan, European countries, America, Africa, California, the Philippines, Nepal, Bangladesh, Cameroon, Nigeria, Vietnam, Indonesia, Malaysia, Sri Lanka, Ivory Coast, Uganda, Brazil, Spain, China, Trinidad, Iran, Venezuela, Mexico, and so on (Cumagun *et al.*, 2011). Due to changes in cultivation practices, the disease is becoming a severe problem across South and Southeast Asia, including India, Nepal, Thailand, Indonesia, and Japan (Bashyal *et al.*, 2016a). Thomas (1931) was the first person to report the disease in India. This disease has been reported from the states like Uttar Pradesh (Pavgi and
Singh, 1964), Bihar, Andhra Pradesh (Vidyasekaran et al., 1967), Assam, Maharashtra (Parate and Lanjewar, 1987), Punjab (Bedi and Dhaliwal, 1970), West Bengal (Hajra et al., 1994), Tripura (Sarkar, 1986) and Odisha (Kauraw, 1981). In India, the bakanae symptoms are more common in Basmati-growing areas, with high disease incidence recorded in Haryana, Punjab, and Uttar Pradesh (Bashyal and Aggarwal, 2013; Bashyal et al., 2014).

It is one of the first rice disease to be reported, causing production losses ranging from 3.0 to 95.4 per cent, depending upon the location and cultivar (Singh and Sunder, 2012). In favourable environmental conditions, the disease has been recorded to cause yield reductions of up to 70% in various parts of the world (Hajra et al., 1994; Singh et al., 1996). Ito and Kimura (1931) reported up to 20-50% losses in Japan a Kanjanasoon (1965) found 3.7-14.7% loss in Thailand. Susceptible cultivars have been shown to lose up to 25% of their yield in Bangladesh (Hossain et al., 2011). Khokhar (1990) was the first to report the bakanae disease in Pakistan, and now it has become a serious disease, since last decade inflicting 10-50% yield losses (Bhalli et al., 2001; Ghazanfar et al., 2013). Bakanae disease has been found in India, mainly on basmati rice cultivars (Bashyal et al., 2014; Gupta et al., 2014). Uttar Pradesh, Assam, Andhra Pradesh, Tamil Nadu, Haryana, and Punjab states in India have recorded yield losses ranging from 15 to 25 % (Pannu et al., 2012; Sunder et al., 2014).

2. Symptoms

One or more *Fusarium* species are responsible for the disease and complex of disease symptoms includes seedling blight, root rot, crown rot, stunting, and the most prominent symptoms of etiolation, hypertrophy effect or excessive elongation of infected plants (Fig.1 a & b), foot rot, seedlings rot, grain sterility, grain discoloration, and the ultimate effect on yield and seed quality have all been documented in various parts of the world (Desjardins et al., 2000). The bakanae-infected seedlings grow higher, with chlorotic stems and leaves that turn yellowish-green to light in colour as the infection progresses. Both the nursery stage and the main field are susceptible to the disease. Seedlings that survive the infection in the nursery may succumb to the attack shortly after being transplanted. The formation of adventitious roots from lower nodes of the stem was reported in India and hence foot rot name was given to the disease (Thomas, 1931). Sasaki (1973) documented the production of lesions on rice leaves. At the plant’s base, a pinkish white cottony growth of fungal mycelium can be seen (Fig1.c). Gibberellins are growth-stimulating chemicals produced by the fungus which are responsible for excessive plant elongation (Malonek et al., 2005).

The fungus also releases a phytotoxin called fusaric acid, which is a nonspecific chemical that is poisonous to plants (Desjardins et al., 2000).

Fig.1 a & b: Yellowish-green and taller bakanae infected plants in field; c: Whitish fungal growth
3. Host Range

Fusarium fujikuroi can infect a wide range of hosts. It completes its sexual cycle in rice, maize, barley, sorghum, sugarcane, wheat, pine, and rye, which have been reported from Asia, Africa, Southeast Asia, and the United States (Petrovic *et al.*, 2013). Pathogen survive in its primary hosts under favorable conditions and spend the rest of their time in their alternate hosts. Cowpea, tomato, banana, proso millet, early water grass, and barnyard grass have been reported to be vulnerable to the rice disease Bakanae, suggesting that they could serve as an alternate host (Anderson and Webster, 2005; Carter *et al.*, 2008). During poor conditions, the pathogen can also be found in round gourd, cucumber, fig, pine, *Musa* (banana), cotton, sapodilla, and *Leucaena*.

4. The pathogen

F. fujikuroi Nirenberg causes the bakanae disease, however other *Fusarium* species, such as *F. proliferatum* (Mats.) Nirenberg and *Fusarium verticillioides* (Sacc.) Nirenberg, have also been associated with the disease (Desjardins *et al.*, 2000). *Gibberella fujikuroi* Sawada is sexual stage for species of genus *Fusarium* under the *Liseola* section (Leslie and Summerell, 2006). This is a filamentous fungus that belongs to the Phylum Ascomycota of the Fungi kingdom. The fungus is member of the Sordariomycetes class, the Hypocreales order, and the Nectriaceae family. Ascus and ascospores are known to be produced by the pathogen. White mycelium is known to be produced by the infection. In most cases, sporodochia do not appear, but if they do, they are pale orange in colour. Asci with an oval to spherical shape and a size of 250-330 × 220-280 μm are formed under perithecia or ascosporas. Asci are 4-8 spored piston shaped cylindrical with a size of 90-102 × 7-9 μm. Both macro and micro conidiophores carrying macro and micro conidia are known to exist in the pathogen. Three to five septate apically tapered and slightly slender macroconidia and 0-1 septate oval or club shaped with fattened base microconidia are produced by the pathogen. Polyphealides produces false heads which after proliferation forms monophealides, and chlamyldosporas are not formed (Leslie and Summerell, 2006).

Gibberella fujikuroi species complex, which is separated into ten totally fertile mating populations, is known to cause the disease (MP-A-J) (Bashyal *et al.*, 2012). The bakanae disease in rice is linked to three different mating populations (A, C, and D) of *Gibberella fujikuroi*. *F. verticillioides* is the conidial stage of MP-A, *F. fujikuroi* is the conidial stage of MP-C, and *F. proliferatum* is the conidial stage of MP-D (Desjardins *et al.*, 2000). Hsieh *et al.* (1977) were the first to discover mating population C (MP-C) in pathogen strains infecting rice in Taiwan. This mating population has also been found to be linked to the bakanae disease in Italy (Amatulli *et al.*, 2010). Two mating populations A and D, were recovered from bakanae-infected rice plants in Australia, United States, and Africa, respectively, whereas MP-D was identified from bakanae-infected rice in Asia (Desjardins *et al.*, 1997). Most researchers have identified *F. fujikuroi* to be the most prevalent and virulent of all the species related with rice’s bakanae disease (Amatulli *et al.*, 2010; Bashyal *et al.*, 2016a).

5. Survival and dissemination of the pathogen

Bakanae is a monocyclic disease where the pathogen is both seed and soil carried; nevertheless, seed borne inoculum is a more important source than soil borne inoculum since soil borne inoculum is rapidly depleted with time (Kanjanasoon, 1965; Ou, 1985). Infested seed is the most common source of inoculum, and it is also the most common way for the disease to spread from field to field (Anderson and Webster, 2005). Ascospores and conidia adhering to the seed germinate and infect seedlings via roots and crown (Sun, 1975). In the form of thick-walled hyphae or macroconidia, fungus lives for roughly four months in soil (Sun, 1975). Wind and water disperse the conidia, producing new infections in the rice field. Conidia formation on damaged or dead culms in the field corresponds to the crop’s flowering and maturity (Seto, 1937). Seed-borne inoculum, in general, serve as an initial site or focus for secondary infection. Infected plants have the ability to produce a large number of conidia, which then infect surrounding plants under ideal conditions.

6. Predisposition factors

Weather has an impact on all stages of the host and the pathogen’s life cycle, as well as disease progression. Relationships between weather and disease are routinely used for forecasting and managing epidemic diseases. In order to manage bakanae disease, it is important to understand the interaction between the host, pathogen, and the environment. Different weather variables have a major impact on the incidence and geographic distribution
of this emerging rice disease (Luo et al., 1988). All these weather parameters viz., temperature, relative humidity, rainfall, wind speed, evaporation and sun shine hours etc., play a vital role in disease incidence, survival, reproduction and further spread. Unfortunately, the investigation on the role of weather parameters on bakanae disease is scarce or not yet studied in depth. The best temperature for pathogen infection is 27-30°C, while the idea temperature for disease development is 35°C, which is also congenial for plant growth. When the temperature was lowered, the incidence of disease was reduced (Burgess et al., 1996; Saremi and Farrokhi, 2004). Bal and Biswas (2018) reported that, crop transplanted on 10th June showed maximum disease incidence (24.20%) indicating that maximum air temperature is positively correlated with bakanae disease incidence, however, rainfall activity was negatively correlated, thus lowest symptom development. Raghu et al. (2021) found that increasing maximum temperature, minimum temperature, wind speed and rain fall has depressing effect on bakanae incidence; whereas relative humidity favoured bakanae incidence and survival, like data on relationship of bakanae disease incidence with rainfall (-0.444) had significant negative correlation during 2018, while RH (0.525 and 0.606) had significant positive correlation during 2017 and 2018. Mandal and Chaudhuri (1988) found that when nitrogenous fertilizers were applied in large doses, the pathogen population in the soil decreased.

Table 1. Various whole genomes of *F. fujikuroi* sequenced from different countries

Strain	Originated country and host	Genome size (MB)	References
F 250	India, rice	42.4	Bashyal et al., 2017
IMI 58289	Taiwan, rice	43.9	Wiemann et al., 2013
FGSC 8932	Taiwan, rice	43.0	Chiara et al., 2015
KSU 3368	Thailand, rice (1990)	43.1	Chiara et al., 2015
KSU X-10626	Konza Prairie (USA), Schizachyrium scoparium (1997)	43.1	Chiara et al., 2015
B 14	South Korea, rice	44.0	Jeong et al., 2013
m 567	Japan, infected rice	44.0	Niehaus et al., 2017
MRC 2276	Philippines, infected rice	45.0	Niehaus et al., 2017
C 1995	Taiwan, infected rice	45.8	Niehaus et al., 2017
E 282	Italy, infected rice	46.1	Niehaus et al., 2017
FSU 48	Germany, maize	46.1	Niehaus et al., 2017
NCIM 1100	India, infected rice	45.3	Niehaus et al., 2017
B 20	South Korea, infected rice	44.3	Niehaus et al., 2017

The rice plants that were transplanted had more incidence than the plants that were developed by broadcasting the seeds (Saremi and Farrokhi, 2004). Summer crop, dry nurseries, and conditions of high temperature and relative humidity were found to have a higher disease incidence. Pre-soaked seeds had a lower disease incidence than dry seeds (Kanjanasoon, 1965).

7. Genomics of *Fusarium fujikuroi*

The numerous multiple whole genomes of a *Fusarium* spp. were collected, sequenced, and examined between 2010 and 2017, nearly a decade, which aided in the understanding of host-pathogen interaction and defensive mechanisms (King et al., 2015). Presently, thirteen *F. fujikuroi* genomes have been published from various countries (Bashyal et al., 2017; Niehaus et al., 2017; Chiara et al. 2015; Wiemann et al., 2013; Jeong et al. 2013) as described in Table 1. Out of these thirteen, eight genomes of *F. fujikuroi* are sequenced from different places of the world and studied the differences in their characteristics of producing asexual spores (microconidia and macroconidia), chromosome size, secondary metabolite gene cluster profile. The evolutionary development analysis depending on the whole genome of 5 isolates (IMI58289, B14, KSU 3368, FGSC 8932 and KSU X-10,626) collected from various geographical locations of the world shows Indian isolate (F250) is nearer to the genome isolated from Taiwan (IMI58289).
8. Disease management

8.1 Physical Methods

In organic farming, thermal treatment is the best substitute of chemical pesticides. While chemical fungicides are more selective and target focused in the management of one or few infections, it is effective against a wide range of fungal species (Ora et al., 2011). Seed disinfection with cold-hot water has long been a popular strategy for preventing seed-borne disease. The hot water treatment produced by omitting the cold water treatment, on the other hand, was shown to be similarly efficient in controlling the bakanae infection (Jaehwan et al., 2009). Miyasaka et al. (2000) and Yamashita et al. (2000) suggested the soaking of seeds into hot water at 60ºC for 10 minutes before sowing for minimising the seed infections and bakanae incidence in nursery and fields. Infected seeds can be sterilised with heated acidic electrolyzed water at 50ºC for 10-20 minutes, according to Kusakari et al. (2004).

8.2 Development of resistant varieties

The greatest approach for disease management is still to use resistant types. Breeding for bakanae disease resistance is a promising technique for managing this disease. Several screening approaches against bakanae disease have been tested and verified in various countries so far. Basmati/scented germplasm and cultivars have been shown to be more susceptible to bakanae disease than non-scented rice varieties (Gupta et al., 2014). In the Northern part of India, the disease has been found to be more severe on basmati rice cultivars such as Pusa Basmati 1121, Pusa Basmati 1176, and Pusa Basmati 1509. However, other basmati rice varieties such as Pusa Basmati 1401, Pusa 2511, CSR 30, Dehradun basmati, and Pakistani basmati have also been found to be infected by the disease with 2.0-22.8 percent in India (Bashyal et al., 2012; Gupta et al., 2014). Sunder and Singh (1998) used a seedling root dip inoculation method to evaluate 221 scented and non-scented rice genotypes. Only two scented rice genotypes, C 4-64 (green base) and Karjat x 13-21, were found to be resistant; however, four non-scented genotypes, BR 1067-84-1-3-2-1, BR 1257-31-1-1, BR 4363-8-11-4-9, and IR 58109-109-1-1-3, were shown to be highly resistant. Sunder et al. (2014) identified highly resistant genotypes such as HKR 96-561, HKR 96-565, HKR 07-40, HKR 07-53, HKR 08-13, HKR 08-21, HKR 08-22, MAUB 2009-1, PAU 3456-46-6-1-1, PNR 600 and RDN 01-2-10-9 by using seedling root dip inoculation technique. Ghazanfar et al. (2013) used the seedling dip inoculation method to screen various rice germplasms in Pakistan and found that IR-6 and KKS-133 are resistant with 18.80 and 19.82 percent plant infection, respectively, whereas the varieties Bas-385 and Bas-Super are susceptible with 61.99 and 61.04 percent plant infection. According to Saremi et al. (2008) cultivar Binam is highly resistant to the disease, whereas cultivars Kadous, Shafagh Fajr, Sahel, and Shafagh are moderately resistant.

8.3 Cultural control

The use of clean, non-infested seeds is an effective way to manage this disease. Because the pathogen is seed borne in nature, clean seeds should be utilised to reduce disease occurrence. Light weight seeds can be separated from seed lots using salt water, which may minimise seed borne inoculums (Cother and Lanoiselet, 2002). Crop residue destruction or burning in known pathogen-infected fields may give some benefits by decreasing the amount of inoculum that can be carried over to the next crop (Gupta et al., 2014). The use of organic matter, crop rotation, timing and method of planting, selection of resistant types, balanced fertilization, and irrigation management can all help to reduce disease (Burgess et al., 1996). Bagga et al. (2007) observed minimum disease incidence in late planted rice crop by the end of July which they believe is due to the low temperature during the infection period. Fungus survival and population are affected by higher nitrogen and potassium levels.

Sunder et al. (2014) investigated the management of bakanae disease and found that disease incidence decreased in plots where the nursery was uprooted in standing water. Because CSR30 was planted with nursery uprooted in standing water and Pusa Basmati 1121 was planted with nursery uprooted under vattar conditions, the incidence of bakanae disease was less in CSR 30 and more in Pusa Basmati 1121. After eight months of incubation, a combination of NPK, ZnSO₄, and FeSO₄ drastically reduced pathogen survival (Mandal and Chaudhuri, 1988). The pathogen was suppressed in soil treated with neem cake rather than groundnut cake, according to Panneerselvam and Saravanamuthu (1996). According to Sasaki (1987) the pathogen can be destroyed by placing diseased seeds under snow or in a cold room at 5ºC,
whereas (Kitamura, 1975) recommended selecting rice seeds with a specific gravity greater than 1.25 because the incidence of bakanae and the presence of pathogen was lower in such rice seeds.

8.4 Use of Plant Extracts

Plant extracts are becoming increasingly popular for the management of plant diseases. As bakanae disease is significantly caused due to seed-borne pathogen, the primary inoculum for the bakanae is infected seed, therefore to reduce the disease incidence, of botanical extract shows better results (Anderson and Webster, 2005). Yasin et al. (2003) observed that inhibition of mycelial growth of F. moniliforme (60.65%) by the leaf extract of Lawsonia inermis followed by root extract of Asparagus racemosus (50.59%). According to Mohana et al. (2011), a methanol extract of Decalepis hamiltonii inhibited Fusarium moniliforme mycelial growth to the greatest extent (89.90 per cent). The complete inhibition in the growth of F. moniliforme using oil of Hedychium spicatum and Acorus calamus was found by Mishra et al. (2003). Essential oils (EOS) from Cymbopogon citratus, Ocimum gratissimum, and Thymus vulgaris were found to be 95-100 per cent efficient in preventing F. moniliforme seed infection. Thymol, terpinene, p-cymene, carvacrol from O. gratissimum, linalool from T. vulgaris, and citral from C. citrates have all been shown to have antifungal activity (Nguefack et al., 2007).

8.5 Biological Control

Biological control of plant diseases using antagonistic fungi and bacteria is an environment friendly option that could be a viable alternative to agrochemicals. Trichoderma strictipilis, T. atroviride, and T. neokoningii, the most common biocontrol agents, reduce the vegetative growth of the bakanae pathogen (Bhramaramba and Nagamani, 2013). The mode of action of KNB-422, which was isolated from rice seedlings, perforates, parasitizes, and inhibits the growth of Gibberella fujikuroi hyphae (Miyake et al., 2012). T. viride and P. fluorescens, both alone and in combination, were found to be useful in the treatment of rice bakanae disease in India. Fields treated with FYM 10 t ha⁻¹ + Trichoderma + Pseudomonas had a lower disease incidence (Wyawahare et al., 2012). P. fluorescens isolate F15 was reported to be particularly efficient against F. fujikuroi by Kazempour and Elahinia (2007). Studies on seed coating, soil soaking, and seed coating + foliar spray using a mixture of fungicide Rovral TS and an F15 antagonistic bacterial isolate demonstrated substantial reductions in disease incidence of 6.5, 6.75, and 5.5 per cent, respectively (Luo et al., 2005).

According to Kumar et al. (2014) extracts of Pseudomonas fluorescens isolates PF9 and PF-13 and Bacillus thuringiensis isolates B-44 operate as antagonists and reported to produce lytic enzymes, siderophores, salicylic acid, and HCN, to inhibit pathogen growth and development. Bio control agents like Trichoderma asperellum SKT-1 (Watanabe et al., 2007), Talaromyces spp., (Kato et al., 2012), Bacillus subtilis and B. megaterium (Luo et al., 2005) are helpful in preventing fungal growth. Motomura et al. (1997) evaluated the efficacy of seed treatment with metabolites produced by soil-borne bacteria with Benomyl, Triflumizole, Pefurazoate, and Prochloraz and discovered that five microbial extracts effectively reduced bakanae development and were better than fungicides. Surfactin A purified from Bacillus NH 100 and NH 217 reduces disease incidence by 80% and recovers maximum antifungal efficacy, and can be employed as a biocontrol agent against bakanae disease (Farwar et al., 2018).

8.6 Chemical Control

Seed treatment with fungicides is the most prevalent and widely acknowledged method of bakanae disease management (Gupta et al., 2014; Bashyal et al., 2016c). Fungicidal seed treatment with Thiram, Benomyl, Thiram+Benomyl, Thiram+Carboxim, Thiram+Carbendazim, Thiophanate-Methyl, Mancozeb, Fludioxonil, Prochloraz, Iproudone + Triconazole, Ipconazole @ 1-2% of seed weight, was effective in Taiwan, Japan, Korea, Iran and Turkey (Bagga and Sharma, 2006; Ora et al., 2011). Seedling treatment with Carbendazim or Benlate (0.1 per cent) for 6 and 8 hours significantly reduced disease incidence and enhanced grain production (Bagga and Sharma, 2006). The disease was effectively controlled by seed/seedling treatment followed by soil drenching of the benzimidazole fungicide Derosol (0.2 per cent) (Bhali et al., 2001). Bal et al. (2018) reported that treatment of seeds with Bavistin 50 WP @ 0.2% followed by seedling dip treatment in Bavistin 50 WP @ 0.2% and pulling up the infected seedlings in the nursery can control the disease (92.2%) in the field. This whole process is considered as a most effective method to control foot rot of rice.
Seed/seedling treatment, followed by a 0.2 per cent benzimidazole fungicide Derosol drenching in the soil, was shown to be very efficient in controlling the disease (Pannu et al., 2009). Seed treatment and Carbendazim sand mixed application at 1 g m⁻² in nursery beds, as well as seedling dipping in 0.1 per cent Carbendazim for 3 hours, were all found to be effective against the disease. When Carbendazim was used as a foliar spray during the flowering stage, the incidence of bakanae disease was reduced by 73.9 to 35.0 per cent (Sunder et al., 2014). Li et al. (2018) reported that use of Phenamacril and Ipconazole individually and in mixture can reduce the disease incidence. Their study concluded that application of Phenamacril at the concentration of 0.1544 µg ml⁻¹ and ipconazole at the concentration of 0.0472 µg ml⁻¹, EC50 exhibit significant antifungal effectiveness against *Fusarium fujikuroi* mycelial development when they are treated separately. When Phenamacril and Ipconazole were mixed in a 2:1 ratio, the pathogen’s mycelial development was inhibited synergistically. *F. fujikuroi* sporulation was inhibited most effectively by Ipconazole alone, immediately by the 2:1 mixture, and least effectively by Phenamacril alone.

Hossain et al. (2015) investigated the impact of fungicides on diseased plants in-vitro, testing 15 different fungicides. All fungicides tested were found to be effective against the disease’s pathogen to varying degrees. The most successful follow-up was Carbendazim (50 % WP) followed by Folicur (25% Tebuconazole EC), Protaf (25% Propiconazole EC) and Celest extra (2.5% Fludioxonil and 2.5% Difenconazole EC). Kumar et al. (2016) found that spraying Tebuconazole 250 EC on the leaves reduced the incidence of bakanae disease and boosted grain production. Titone et al. (2003) investigated the efficacy of thermal and chemical treatments with Carbendazim, mancozeb, Iprodione + Propiconazole, and Carboxin + Thiram, and discovered that the thermal (72°C for 5 min) and Carbendazim treatments offered 98% disease control. Integrated management module against the bakanae disease of rice which is helpful to reduce 95% incidence of bakanae disease of rice was developed. Effect of nursery drenching with Carbendazim was evaluated against bakanae disease of rice. Eighteen days old seedlings of rice variety Pusa Basmati 1121 were drenched with different concentration of Carbendazim and transplanted after 5 days of treatment. Minimum disease incidence was observed in 0.2% Carbendazim. Seeds of each treatment were subjected to residue analysis. Results indicated that the use of 0.2% Carbendazim as nursery drenching is safe without any residual effect (Anonymous, 2018).

Author Contributions

All the authors contributed to the article and approved the submitted version.

Conflict of Interest

No commercial or financial relationships that could be construed as a potential conflict of interest.

Compliance with ethical standards

Yes

9. Conclusion

Bakanae disease is developing as a significant hazard to rice farming around the world, including India, where it has caused massive losses in basmati cultivars. Because the pathogen is seed borne in nature. Developing field-based, simple, and reliable diagnostics will aid in reducing the primary inoculum source. It is necessary to do research into the manipulation of various cultural practices to reduce pathogen populations. Seed treatments combined with seedling dip treatments and chemical/biological soil amendments can be a successful management strategy. Therefore, chemical and biological control approaches can be used with a variety of other effective strategies to effectively manage bakanae disease and maintain rice output. Furthermore, more study on host-pathogen interactions, racial profiling, variability, QTL mapping, virulence pattern, biochemical and molecular elements of pathogenesis is required and should be prioritized and still more epidemiological studies are required to strengthen the forecasting and prediction mechanism of the disease which will ultimately minimize the yield losses caused by the disease.

10. References

1. Amatulli MT, D Spadaroa, ML Gullinoa and A Garibaldia. 2010. Molecular identification of *Fusarium* spp. associated with bakanae disease of rice in Italy and assessment of their pathogenicity. *Plant Pathology* 59: 839-44.

2. Anderson L and R Webster. 2005. A comparison of assays for *Gibberella fujikuroi* and their ability to
predict resulting bakanae from rice seed sources in California. *Phytopathology* 95(S4):6

3. Anonymous. 2018. IARI. Annual report 2017–18, Indian Agricultural Research Institute, New Delhi-110012, India

4. Bagga PS and VK Sharma. 2006. Evaluation of fungicides as seedling treatment for controlling bakanae/foot rot (*Fusarium moniliforme*) disease in Basmati rice. *Indian Phytopathology* 59:305-308

5. Bagga PS, VK Sharma and PPS Pannu. 2007. Effect of transplanting dates and chemical seed treatments on foot rot disease of basmati rice caused by *Fusarium moniliforme*. *Plant Disease Research* 22: 60-62

6. Bal RS. and B Biswas. 2018. Epidemiology and management of foot rot in Basmati rice. *Journal of Krishi Vigyan* 6:87-94.

7. Bashyal BM, R Aggarwal, S Gupta and S Banerjee. 2012. Ecology and genetic diversity of *Fusarium* spp. associated with bakanae disease of rice. In: Modern Trends in Microbial Biodiversity of Natural Ecosystem, (Sinha, A., B.K. Sharma and M. Srivastava, Eds.), Biotech Books Publisher, New Delhi (India). 577

8. Bashyal BM and R Aggarwal. 2013. Molecular identification of *Fusarium* spp. associated with bakanae disease of rice in India. *Indian Journal of Agricultural Sciences*. 83(1):72-7

9. Bashyal BM, R Aggarwal, S Banerjee, S Gupta and S Sharma. 2014. Pathogenicity, ecology and genetic diversity of the *Fusarium* spp. associated with an emerging bakanae disease of rice (*Oryza sativa L.*) in India. In: Kharwar RN et al [eds] Microbial diversity and biotechnology in food security. Springer, New York, pp 307–314

10. Bashyal BM, R Aggarwal, S Sharma, S Gupta, K Rawat, D Singh and SG Krishnan. 2016a. Occurrence, identification and pathogenicity of *Fusarium* species associated with bakanae disease of basmati rice in India. *European Journal of Plant Pathology* 144(2):457–46

11. Bashyal BM, R Aggarwal and VK Singh. 2016c. Bakanae: an emerging problem in rice cultivation. *Indian Farming* 65(11):25–26

12. Bashyal BM, K Rawat, S Sharma, D Kulshrestha, AK Singh and H Dubey. 2017. Whole genome sequencing of *Fusarium fujikuroi* provides insight into the role of secretory proteins and cell wall degrading enzymes in causing bakanae disease of rice. *Frontiers in Plant Science* 8: 2013

13. Bedi PS and DS Dhalwal.1970. Spermatosporoph of rice variety Native I from different states of India. *Indian Phytopathology* 23(4):708–710

14. Bhalli JA, M Aurangzeb and MB Ilyyas. 2001. Chemical control of bakanae disease of rice caused by *Fusarium moniliforme*. *Online Journal Biological Sciences* 1(6): 483-84.

15. Bhamaramba S and A Nagamani. 2013. Antagonistic *Trichoderma* isolates to control bakanae pathogen of rice. *Agriculture Science Digest* 33: 104-108.

16. Burgess LW, D Backhouse, LJ Swan and RJ Esaide. 1996. Control of *Fusarium* crown rot of wheat by late stubble burning and rotation with sorghum. *Australasian Plant Pathology* 25: 229-233

17. Carter LLA., FJ Leslie and RK Webster. 2008. Population structure of *Fusarium fujikuroi* from California rice and water grass. *Phytopathology* 98: 992-998

18. Chiara M, F Fanelli, G Mule, AF Logrieco, G Pesole and JF Leslie.2015. Genome sequencing of multiple isolates highlights sub telomeric genomic diversity within *Fusarium fujikuroi*. *Genome Biology and Evolution* 7: 3062-3069

19. Cother E and V Lanoiselet. 2002. Crop nutrition. In: Production of Quality Rice in South-Eastern Australia. (In: Keaky, L.M. and W.S. Clampett, Eds.) (RIRDC: Kingston, ACT, Australia). Plant Health Australia, Rice Industry Biosecurity Plan, 2009. Contingency Plan: Bakanae. 10 p

20. Cumagun CJR., E Arcillas and E Gergon. 2011. UP-PCR analysis of the seedborne pathogen *Fusarium fujikuroi* causing bakanae disease in rice. *International Journal of Agriculture and Biology* 13: 1029-1032.

21. Desjardins AE, RD Plattner and PE Nelson. 1997. Production of fumonisin B1 and moniliformin by *Gibberella fujikuroi* from rice from various geographic areas. *Applied and Environmental Microbiology* 63: 1838-1842
22. Desjardins AE, HK Manandhar, RD Plattner, GG Manandhar, SM Poling and CM Maragos. 2000. Fusarium species from Nepalese rice and production of mycotoxins and gibberellic acid by selected species. Applied and Environmental Microbiology 66: 1020-1025.

23. Furukawa M. 1990. Relationship between seed disinfection and occurrence of ‘Bakanae’ disease in paddy fields. Bulletin of Fukui agricultural Experimental Station 27: 21-25

24. Ghazanfar MU, N Javed, W Wakil, and M Iqbal. 2013. Screening of some fine and coarse rice varieties against bakanae disease. Journal of Agriculture Research 51: 41-49

25. Gupta AK, Y Singh, AK Jain and D Singh. 2014. Prevalence and incidence of bakanae disease of rice in Northern India. Journal of Agri. Search 1(4):233–23

26. Hajra KK, LK Ganguly and DC Khatua. 1994. Bakanae disease of rice in West Bengal. Journal of Mycopathological Research 32:95–99

27. Hori S. 1898. Some observations on bakanae disease of the rice plant. Memorial Agriculture Research Station (Tokyo). 12: 110-119

28. Hossain KS, MAT Miah and MA Bashar. 2011. Preferred rice varieties, seed source, disease incidence and loss assessment in bakanae disease. Journal of Agroforestry and Environment 5: 125-128.

29. Hossain KS and MA Taher Mia. 2015. Management of bakanae disease of rice. Bangladesh Journal of Botany 44(2): 277-283.

30. Hseieh WH, SN Smith and WC Snyder. 1977. Mating groups in Fusarium moniliforme. Phytopathology 67:1041-1043

31. Ito S and J Kimura. 1931. Studies on the bakanae disease of the rice plant. Rep. Hokkaido Agricultural Experiment Station 27: 1-95

32. Jaehwan RG, D Kim, Y Shin, Y Cho, Kim and U Kang. 2009. Control of bakanae diseases by hot water treatment in rice. National Institute of Crop Science, RDA, Korea

33. Jeong H, S Lee, GJ Choi, T Lee and SH Yun. 2013. Draft genome sequence of Fusarium fujikuroi B14, the causal agent of the bakanae disease of rice. Genome Announcements. 1(1):e00035-13

34. Kanjanasoon P. 1965. Studies on bakanae disease of rice in Thailand. Doctoral Agriculture. Thesis, Tokyo Univ., Japan

35. Kato A, T Miyake, K Nishigata, H Tateishi, T Teraoka, T Arie. 2012. Use of fluorescent proteins to visualize interactions between the bakanae disease pathogen Gibberella fujikuroi and the biocontrol agent Talaromyces sp. KNB-422. Journal of General Plant Pathology 78:54–61

36. Kauraw LP. 1981. Effect of length of treatment and fungicide concentration on seed germination and incidence of foot rot disease of rice. International Rice Research Newsletter 6(6):15

37. Kazempour MN and SA Elahinia. 2007. Biological control of Fusarium fujikuroi, the causal agent of Bakanae disease by rice associated antagonistic bacteria. Bulgarian Journal of Agricultural Science 13: 393-408.

38. Khokhar LK. 1990. Bakanae and foot rot of rice in Punjab, Pakistan. National Agricultural Research Centre, Crop Diseases Research Institute, Islamabad (Pakistan). IRRN. 15: 30.

39. King R, M Urban, MCU Hammond, KH Pak, KE Hammond. 2015. The completed genome sequence of the pathogenic ascomycete fungus Fusarium graminearum. BMC Genomics 16:544.

40. Kitamura Y. 1975. Studies on the control of bakanae disease of rice plant Influence of the selection of rice seeds by specific gravity upon the control of bakanae disease. 17: 32- 37

41. Kumar P, R Singh and Sunder S. 2014. Variability and management of causing foot rot and bakanae disease of rice. Journal of Mycology and Plant Pathology 44(3): 227-236

42. Kumar PMK, DK Sidde Gowda, R Moudgal, NK Kumar, KT Pandurange Gowda and K Vishwanath. 2016. Impact of fungicides on rice production in India. In: Fungicides - Showcases of integrated plant disease management from around the world. 77-98 p. (www.creativecommons.org)
43. Kurosawa E. 1926. Experimental studies on the nature of the substance secreted by the bakanae fungus. *Natural History Society of Formosa* 16: 213-227

44. Kusakari S, N Achiwa and K Abe. 2004. Control of bakanae disease by soaking seed in heated electrolyzed acid water (EAW) under field conditions. *Nihon bokin bobai gakkai shi-Journal of Antibacterial and antifungal agents* 32: 581-585

45. Leslie JF and BA Summerell. 2006. The *Fusarium* Laboratory Manual. Blackwell Publishing Ltd, UK. pp: 388

46. Li Meixia, Tao Li, Yabing Duan, Ying Yang, Jian Wu, Donglei Zhao. 2018. Evaluation of phenamacril and ipconazole for control of rice bakanae disease caused by *Fusarium fujikuroi*. *The American Phytopathological Society* 102(7): 1234-1239

47. Luo Y, PS Teng, NG Fabellar and DOT Beest. 1988. Risk analysis of yield losses caused by rice leaf blast associated with temperature above and below for five Asian countries. *Agriculture Ecosystems and Environment* 68: 197-205.

48. Luo JX, L Guan-lin, Y Bin, Z Luo, L Bo and L Wen. 2005. Gram positive bacteria associated with rice in China and their antagonists against the pathogens of sheath blight and bakanae disease in rice. *Rice Science* 12: 213-218.

49. Malonek S, C Bomke, E Bornberg-Bauer, MC Rojas, P Hedden, P Hopkins and B Tudzynski. 2005. Distribution of gibberellin biosynthetic genes and gibberellin production in the *Gibberella fujikuroi* species complex. *Phytochemistry* 66 (11): 1296–1311.

50. Mandal DN and S Chaudhuri. 1988. Survival of *Fusarium moniliforme* Sheld. under different moisture regimes and soil conditions. *International Journal of Tropical Plant Disease*. 6: 201-206.

51. Mishra D, CO Samuel and SC Tripathi. 2003. Evaluation of some essential oils against seedborne pathogens of rice. *Indian Phytopathology* 56: 2

52. Miyake T, K Akihiro, T Hideaki and A Tsutomu. 2012. Mode of action of *Talaromyces* spp. KNB422, A biocontrol agent against rice seedling diseases. *Journal of Pesticide Science*. 37(1): 56-6

53. Miyasaka AS, Ryoichi, and I Masataka. 2000. Control of the bakanae disease of rice by soaking seeds in hot water for the hydroponically raised seedling method in the long-mat type rice cultivation. *Proceedigs of Kanto-Tosan Plant Protection Society* 47: 31-33

54. Mohana DC, P Parsad and V Vijaykumar. 2011. Plant extracts effect on seed-borne pathogenic fungi from seeds of paddy grown in South India. *Journal of Plant Protection Research* 51: 101-106

55. Motomura M, S Suwa and EY Hirooka. 1997. Biological control: microbial versus chemical fungicides on growth of rice infected with *Fusarium moniliforme*. *Revista de Microbiologia* (Brazil) 28: 11-16.

56. Nguefack J, SK Nguikwie, D Fotio, B Dongmo, V Leth, AE Nkengfack and PHA Zollo. 2007. Fungicidal potential of essential oils and fractions from *Cymbopogon citrates*, *Ocimum gratissimmum* and *Thymus vulgaris* to control *Alternaria padwickii* and *Bipolaris oryzae*, two seed-borne fungi of rice (*Oryza sativa L*). *Journal of Essential Oil Research* 19: 581-587.

57. Niehaus EM, HK Kim, M MuEnsterkoEtter, S Janevksa, B Arndt and SA Kalinina. 2017. Comparative genomics of geographically distant *Fusarium fujikuroi* isolates revealed two distinct pathotypes correlating with secondary metabolite profiles. *PLoS Pathogens* 13: e1006670

58. Nirenberg HI. 1976. Untersuchungen uber die morphologische und biologische differenzierung in *Fusarium*-Sektion *Liseola*. *Mitt. Biol. Bundesansi. Land-Forstwirtsch. Berlin - Dahlem*. 169: 1-1

59. Ora N, AN Faruq, MT Islam, N Akhtar, and MM Rahman. 2011. Detection and identification of seed borne pathogens from some cultivated hybrid rice varieties in Bangladesh. *Middle East Journal of Scientific Research* 10: 482–488

60. Ou SH. 1985. Bakanae disease and foot rot. Rice diseases survey. Commonwealth Mycological Institute, Kew, pp 262–27

61. Panneerselvam A and R Saravanamuthu. 1996. Studies on the saprophytic survival of *Fusarium moniliforme* Sheld. in soil under treatment of oil cakes. *Indian Journal of Agriculture Research* 30(1): 12-16.
62. Pannu, PPS, N Singh, HS Rewal, HS Sabhiki, and S Raheja. 2009. Integrated management of foot rot of Basmati rice (Abstr.). National Symposium of INSOPP on “Plant Pathology in the Challenging Global Scenario”, Feb 27-28, 2009, NBGPR, New Delhi, pp.13/32

63. Pannu PPS, J Kaur, G Singh and J Kaur. 2012. Survival of Fusarium moniliforme causing foot rot of rice and its virulence on different genotypes of rice and basmati rice. (Abstr.) Indian Phytopathology 65S: 149-209.

64. Parate DK and RD Lanjewar. 1987. Studies on seed mycoflora of two rice cultivars grown in rice tract of Vidarbha. Punjbaro Krishi Vidyapeeth Research journal 11(1): 47–50

65. Petrovic T, L Burgess, I Cowie, R Warren and P Harvey. 2013. Diversity and fertility of Fusarium sacchari from wild rice (Oryza australiensis) in Northern Australia, and pathogenicity tests with wild rice, rice, sorghum and maize. European Journal of Plant Pathology 136: 773-788

66. Pavgi MS and J Singh. 1964. Bakanae and foot rot of rice in Uttar Pradesh, India. Plant Disease Reporter 48:340–342

67. Raghu S, G Guru-Pirasanna-Pandi, MS Baite, MK. Yadav, SR Prabhukarhikeyan, U. Keerthana and PC Rath. 2021. Estimation of yield loss and relationship of weather parameters on incidence of bakanae disease in rice varieties under shallow low land ecologies of Eastern India. Journal of Environmental Biology 42: 995-1001

68. Saremi H and F. Farrokhi. 2004. Study on bakanae disease of rice and evaluation of cultivars in Gilan and Zanjan provinces, Iran. Proc. fourth Inter. Iran and Russia conf., pp. 358-36

69. Saremi H, A Ammarellou, A Marelaf and SM Okhovvat. 2008. Binam a rice cultivar, resistant for root rot disease on rice caused by Fusarium moniliforme in Northwest, Iran. International Journal of Botany 4:383–389

70. Sarkar BB. 1986. Controlling bakanae and foot rot diseases with seed treatments. International Rice Research Newsletter 11(3):18

71. Sarwar A, G Brader, E Corretto, G Aleti, MA Ullah. 2018. Correction: qualitative analysis of biosurfactants from Bacillus species exhibiting antifungal activity. PLoS One 13(7):e0201624. https://doi.org/10.1371/journal.pone.0201624

72. Sasaki T. 1973. Lesion formation on rice leaves by Fusarium moniliforme Sheldon. Ibid. 39: 435-437.

73. Sasaki T. 1987. Epidemiology and control of rice bakanae disease. 74 Bull Tohoku National Agriculture. Experiment Station 47 p.

74. Sawada K. 1917. Beitrage uber Formosas-Pilze no. 14. Transac. Natural Hist. Soc. Formosa. 3: 31-133

75. Seto F. 1937. Studies on the bakanae disease of the rice plant. On the mode of infection of rice by Gibberella fujikuroi (Saw.) Wr. during and after flowering period and its relation to the so called bakanae seedlings. Forschungen aus dem Gebit der Pflanzenkrankheiten 3: 43-57

76. Singh NI, RKT Devi and LNK Singh. 1996. Withering of growing shoot of rice caused by Fusarium moniliforme. Plant Disease Research 11:99-100

77. Singh R and S Sunder. 2012. Foot rot and bakanae of rice: an overview. Review of Plant. Pathology 5: 566–604.

78. Sunder S and A Singh. 1998. Screening of rice genotypes for resistance to bakanae disease. Indian Phytopathology 51:299–300

79. Sunder S, R Singh, and DS Dodan. 2014. Management of bakanae disease of rice caused by Fusarium moniliforme. Indian. Journal of Agricultural. Sciences 84(2): 224–228.

80. Thomas KM. 1931. A new paddy disease in Madras. Madras Agriculture Journal 19:34–3

81. Titone P, Tamborini L, Polenghi L and A Garibaldi. 2003. Efficacy of chemical and physical seed dressing against bakanae disease of rice: Comparison of fungicide treatment and heat treatment. Sementi Elette. 49(4):23-27.

82. Vidyasekaran P, G Muthaswamy and C Suuramanian. 1967. Role of seed borne microflora in paddy seed spoilage. Indian Phytopathology 19:333–341

83. Watanabe S, K Kumakura, N Izawa, K Nagayama, T Mitachi, M Kanamori, T Teraoka and T Arie. 2007.
Mode of action of *Trichoderma asperellum* SKT-1, a biocontrol agent against *Gibberella fujikuroi*. *Journal of Pesticide Science* **32**:222-228.

84. Wiemann P, CM Sieber, KW Von Bargen, L Studt, EM Niehaus and JJ Espino. 2013. Deciphering the cryptic genome: genome-wide analyses of the rice pathogen *Fusarium fujikuroi* reveal complex regulation of secondary metabolism and novel metabolites. *PLoS Pathogens* **9**(6):e1003475

85. Wyawahare KK, OP Sharma and Yaspal. 2012. Field evaluation of *Trichoderma* and *Pseudomonas* against bakanae disease of rice caused by *Fusarium fujikuroi*. (Abstr.) *Indian Phytopathology* **65**S: 56.

86. Yabuta T, T Hayashi. 1939. Biochemical studies on bakanae fungus of rice. Part III. Studies on physiological action of gibberellin on the plant. *Journal of Agricultural Chemical Society of Japan* **15**:103–414

87. Yamashita T, N Eguchi, R Akanuma and Y Saito. 2000. Control of seed borne diseases of rice plants by hot water treatment of rice seeds. *Annual Report of Kanto-Tosan Plant Protection Society* **47**: 7-11.

88. Yasin SI, TZ Khan, KM Akhtar, M Anwar and M Ahmad. 2003. Economic evaluation of bakanae disease of rice. *Mycopath.* **1**: 115-117.