A concrete model for a typed linear algebraic lambda calculus*

Alejandro Díaz-Caro
CONICET-Universidad de Buenos Aires
Instituto de Ciencias de la Computación (ICC)
Buenos Aires, Argentina
Departamento de Ciencia y Tecnología
Universidad Nacional de Quilmes
Bernal, Buenos Aires, Argentina

Octavio Malherbe
IMERL, Facultad de Ingeniería
Universidad de la República
Montevideo, Uruguay

Abstract
We give an adequate, concrete, categorical-based model for Lambda-S, which is a typed version of a linear-algebraic lambda calculus, extended with measurements. Lambda-S is an extension to first-order lambda calculus unifying two approaches of non-cloning in quantum lambda-calculi: to forbid duplication of variables, and to consider all lambda-terms as algebraic linear functions. The type system of Lambda-S have a superposition constructor S such that a type A is considered as the base of a vector space while SA is its span. Our model considers S as the composition of two functors in an adjunction relation between the category of sets and the category of vector spaces over \mathbb{C}. The right adjoint is a forgetful functor U, which is hidden in the language, and plays a central role in the computational reasoning.

1 Introduction
The non-cloning property of quantum computing has been treated in different ways in quantum programming languages. One way is to forbid duplication of variables with linear types [Girard, 1987, Abramsky, 1993], and hence, a program taking a quantum argument will not duplicate it, e.g. [Altenkirch and Grattage, 2005, Green et al., 2013, Pagani et al., 2014, Zorzi, 2016, Selinger and Valiron, 2006]. Another way is to consider all lambda-terms as expressing linear functions, in what is known as linear-algebraic lambda-calculi, e.g. [Arrighi and Dowek, 2017, Arrighi et al., 2017, Díaz-Caro and Petit, 2012, Arrighi and Díaz-Caro, 2012]. The first approach forbids a term $\lambda x.(x \otimes x)$ (for some convenient definition of \otimes), while the second approach distributes $(\lambda x.\pi x)(|0\rangle + |1\rangle)$ to $\lambda x.(x \otimes x)|0\rangle + \lambda x.(x \otimes x)|1\rangle$, mimicking the way linear operations act on vectors in a vector space. However, adding a measurement operator to a calculus following the linear-algebraic approach needs to also add linear types: indeed, if π represents a measurement operator, $(\lambda x.\pi x)(|0\rangle + |1\rangle)$ should not reduce to $(\lambda x.\pi x)|0\rangle + (\lambda x.\pi x)|1\rangle$ but to $\pi(|0\rangle + |1\rangle)$. Therefore, there must be functions taking superpositions and functions distributing over them. However, the functions taking a superposition have to be marked in some way, so to ensure that they will not use their arguments more than once (i.e. to ensure linearity in the linear-logic sense).

Lineal, the first linear-algebraic lambda-calculus, is an untyped calculus introduced by Arrighi and Dowek [2017] to study the superposition of programs, with quantum computing as a goal. However, Lineal is not a quantum calculus in the sense that there is no construction allowing one to characterize which terms can be directly compiled into a quantum machine. Vectorial [Arrighi, Díaz-Caro, and Valiron, 2017] has been the conclusion of a long path to obtain a typed Lineal [Arrighi and Díaz-Caro, 2012, Díaz-Caro and Petit, 2012, Arrighi et al., 2017]. In Vectorial, the type system gives information on whether the final term can be considered or not as a quantum state (of norm 1). Nevertheless, it fails to establish whether typed programs can be considered quantum, in the sense of implementing unitary transformations and measurements—in any case, measurements are left out of the equation in these versions of typed Lineal.

The calculus Lambda-S is a start over, with a new type system not related to Vectorial. It is a first-order fragment of Lineal, extended with measurements. It has been introduced by Díaz-Caro and Dowek [2017] and

*This paper is the long journal version of [Díaz-Caro and Malherbe, 2019]. In the present paper, the main new result is to revisit some rewrite rules in order to prove a theorem of adequacy.
slightly modified later by Díaz-Caro, Dowek, and Rinaldi [2019a]. Following this line, Díaz-Caro et al. [2019b] presented a calculus defined through realizability techniques, which validates this long line of research on Lineal as a quantum calculus, by proving the terms which are typable with certain types coincide with implementations of unitary operators. In [Díaz-Caro and Malherbe, 2020] we gave a categorical model of Lambda-S without measurements. The object of the current paper is to set up the bases for a categorical model of Lambda-S in full (with measurements), by defining a concrete model with a categorical presentation, paving the way to an abstract construction in future research.

In linear logic, a type A without decoration represents a type of a term that cannot be duplicated, while $! A$ types duplicable terms. In Lambda-S instead, A are the types of the terms that cannot be superposed, while SA are the terms that can be superposed, and since superposition forbids duplication, A means that we can duplicate, while SA means that we cannot duplicate. So the S is not the same as the bang ‘!’”, but somehow the opposite, in the sense that we mark the fragile terms (those that cannot be duplicated). This can be explained by the fact that linear logic is focused on the possibility of duplication, while here we focus on the possibility of superposition, which implies the impossibility of duplication.

Díaz-Caro and Dowek [2017] gave a first denotational semantics for Lambda-S (in environment style) where the atomic type B is interpreted as $\{0, 1\}$ while SB is interpreted as $Span(\{0, 1\}) = \mathbb{C}^2$, and, in general, a type A is interpreted as a basis while SA is the vector space generated by such a basis. In this paper we go beyond and give a categorical interpretation of Lambda-S where S is a functor of an adjunction between the category Set and the category Vec. Explicitly, when we evaluate S, we obtain formal finite linear combinations of elements of a set with complex numbers as coefficients. The other functor of the adjunction, U, allows us to forget the vectorial structure.

The main structural feature of our model is that it is expressive enough to describe the bridge between the quantum and the classical universes explicitly by controlling its interaction. This is achieved by providing a monoidal adjunction. In the literature, intuitionistic linear (as in linear-logic) models are obtained by a comonad US that allows us to operate in a monoidal structure representing the quantum world and then to return to the Cartesian product.

This is different from linear logic, where the classical world lives inside the quantum world i.e. $(!B) \otimes (!B)$ is a product inside a monoidal category.

Another source of inspiration for our model has been the work of Selinger [2007] and Abramsky and Coecke [2004] where they formalized the concept of scalars and inner product in a more abstract categorical setting, i.e. a category in which there is an abstract notion of a dagger functor. It is envisaged that this approach will provide the basis for an abstract model in future work.

The paper is structured as follows. In Section 2 we recall the definition of Lambda-S and give some examples, stating its main properties. Section 3 is divided into three subsections: first we define the categorical constructions needed to interpret the calculus, then we give the interpretation, and finally we prove such an interpretation to be adequate. We conclude in Section 4. An appendix with the full proofs follows the article.

2 The calculus Lambda-S

We give a slightly modified presentation of Lambda-S [Díaz-Caro et al., 2019a]. In particular, instead of giving a probabilistic rewrite system, where $t \rightarrow p \rightarrow r_k$ means that t reduces with probability p_k to r_k, we introduce the notation $t \rightarrow \{ p_1 \}_{r_1} \{ p_2 \}_{r_2} \cdots \{ p_n \}_{r_n}$, where $\{ p_1 \}_{r_1} \{ p_2 \}_{r_2} \cdots \{ p_n \}_{r_n}$ denotes a finite distribution. This way, the rewrite system is deterministic and the probabilities are internalized.

The syntax of terms and types is given in Figure 1. We write B^n for $B \otimes \cdots \otimes B$ n-times, with the convention that $B^1 = B$, and may write $\| p_i \|_{r_i}$ for $\{ p_1 \}_{r_1} \{ p_2 \}_{r_2} \cdots \{ p_n \}_{r_n}$. We use capital Latin letters (A, B, C, \ldots) for
general types and the capital Greek letters \(\Psi, \Phi, \Xi, \) and \(\Gamma \) for qubit types. \(\mathcal{Q} \) is the set of qubit types, and \(\mathcal{T} \) is the set of all the types \((\mathcal{Q} \subseteq \mathcal{T}) \). We write \(\mathcal{B} = \{ \mathcal{B}^n | n \in \mathbb{N} \} \cup \{ \Psi \Rightarrow A | \Psi \in \mathcal{Q}, A \in \mathcal{T} \} \), that is, the set of non-superposed types. In addition, \(\text{Vars} \) is the set of variables, \(\mathcal{B} \) is the set of basis terms, \(\mathcal{V} \) the set of values, \(A \) the set of terms, and \(\mathcal{D} \) the set of distributions on terms. We have \(\text{Vars} \subseteq \mathcal{B} \subseteq \mathcal{V} \subseteq \mathcal{A} \subseteq \mathcal{D} \), where the last inclusion is considering the constant function that associates probability 1 to any term. As customary, we may write \(x \) instead of \(x^\Psi \) when the type is clear from the context. Notice that this language is in Church-style.

\[
\begin{align*}
\Psi & := \mathcal{B}^n | S \Psi | \Psi \times \Psi & \text{Qubit types (}\mathcal{Q}\text{)} \\
A & := \Psi | \Psi \Rightarrow A | \mathcal{SA} & \text{Types (}\mathcal{T}\text{)} \\
b & := x^\Psi | \lambda x : \Psi.t | \{0\} | \{1\} | \{?r.t | b \times b\} & \text{Basis terms (}\mathcal{B}\text{)} \\
v & := b | \{v + v\} | \emptyset_{\mathcal{SA}} | \alpha.v | v \times v & \text{Values (}\mathcal{V}\text{)} \\
t & := v | tt | (t + t) | \pi_j.t | t \times t | \text{head } t | \text{tail } t | \uparrow_i t | \downarrow_i t & \text{Terms (}\mathcal{A}\text{)} \\
p & := \{p_1\} t_1 \| \cdots \| \{p_n\} t_n & \text{Distributions (}\mathcal{D}\text{)}
\end{align*}
\]

where \(\alpha \in \mathbb{C} \) and \(p_i \in [0,1] \subseteq \mathbb{R} \).

Figure 1: Syntax of types and terms of Lambda-\(\mathcal{S} \).

The terms are considered modulo associativity and commutativity of the syntactic symbol \(+ \). On the other hand, the symbol \(\| \) is used to represent a true distribution over terms, not as a syntactic symbol, and so it is not only associative and commutative, we also have that \(\{p \| q\} t \) is the same as \(\{p + q\} t \), \(\{p\} t \| \{0\} = \{p\} t \), and \(\|_{i=1}^{r} t = \{1\} t = \{1\} r^2 \).

There is one atomic type \(\mathcal{B} \), for basis qubits \(\{0\} \) and \(\{1\} \), and three constructors: \(\times \), for pairs, \(\Rightarrow \), for first-order functions, and \(S \) for superpositions.

The syntax of terms contains:

- The three terms for first-order lambda-calculus, namely, variables, abstractions and applications.
- Two basic terms \(\{0\} \) and \(\{1\} \) to represent qubits, and one test \(\{?r.s\} \) on them. We usually write \(t\{?r.s\} \) for \(\{?rs\} t \), see Example 2.2 for a clarification of why to choose this presentation.
- A product \(\times \) to represent associative pairs (i.e. lists), with its destructors \(\text{head} \) and \(\text{tail} \). We usually use the notations \(|b_1 b_2 \cdots b_n| \) for \(|b_1 \times b_2 \times \cdots \times b_n| \), \(|b|^n \) for \(|b\times b\times \cdots b| \) and \(\prod_{i=1}^{n} t_i \) for \(t_1 \times \cdots \times t_n \).
- Constructors to write linear combinations of terms, namely \(+ \) (sum) and \(. \) (scalar multiplication), and its destructor \(\pi_j \) measuring the first \(j \) qubits written as linear combinations of lists of qubits. Also, one null vector \(\emptyset_{\mathcal{SA}} \) for each type \(\mathcal{SA} \). We may write \(-t \) for \(-1 \times t \). The symbol \(+ \) is taken to be associative and commutative (that is, our terms are expressed modulo AC [Arrighi and Dowek, 2017]), therefore, we may use the summation symbol \(\sum \) with the convention that \(\sum_{i=1}^{n} t = t \).
- Two casting functions \(\uparrow_i \) and \(\downarrow_i \) allowing to transform lists of superpositions into superpositions of lists (see Example 2.4).

The rewrite system depends on types. Indeed, \(\lambda x : \Psi.t \) follows a call-by-name strategy, while \(\lambda x : \mathcal{B}.t \), which can duplicate its argument, follows a call-by-base strategy [Assaf et al., 2014], that is, not only the argument must be reduced first, but also it will distribute over linear combinations. Therefore, we give first the type system, and then the rewrite system.

The typing relation is given in Figure 2. Recall that Lambda-\(\mathcal{S} \) is a first-order calculus, so only qubit types are allowed to the left of arrows, and in the contexts. We write \(\mathcal{S}^mA \) for \(\mathcal{SS} \cdots \mathcal{SA} \), with \(m \geq 1 \). Contexts, identified by the capital Greek letters \(\Gamma, \Delta, \) and \(\Theta \), are partial functions from \(\text{Vars} \) to \(\mathcal{Q} \). The contexts assigning only types of the form \(\mathcal{B}^n \) are identified with the super-index \(\mathcal{B} \), e.g. \(\Theta^\mathcal{B} \). Whenever more than one context appear in a typing rule, their domains are considered pair-wise disjoint. Observe that all types are linear (as in linear-logic) except on basis types \(\mathcal{B}^n \), which can be weakened and contracted (expressed by the common contexts \(\Theta^\mathcal{B} \)).

\footnote{As a remark, notice that \(\| \) can be seen as the + symbol of the algebraic lambda calculus [Vaux, 2009], where the equality is confluent since scalars are positive, while the + symbol in Lambda-\(\mathcal{S} \) coincides with the + from Lineal [Arrighi and Dowek, 2017] (see [Assaf et al., 2014] for a more detailed discussion on different presentations of algebraic lambda calculi).}
The term $\lambda x : \mathbb{B}. x \times x$ does not represent a cloning machine, but a CNOT with an ancillary qubit $|0\rangle$. Indeed,

$$
\frac{(\lambda x : \mathbb{B}. x \times x) I}{\sqrt{2}} (|0\rangle + |1\rangle)
$$

The type derivation is the following:

$$
\frac{x : \mathbb{B} \vdash x : \mathbb{B} \quad \mathbb{B} \vdash 0 : \mathbb{B}}{\frac{\mathbb{B} \vdash 0 : \mathbb{B} \quad \mathbb{B} \vdash 1 : \mathbb{B}}{\mathbb{B} \vdash 0 \parallel 1 : \mathbb{B}}}
$$

$$
\frac{\lambda x : \mathbb{B}. x \times x : \mathbb{B} \times \mathbb{B}}{\frac{\lambda x : \mathbb{B}. x \times x : \mathbb{B} \Rightarrow \mathbb{B} \times \mathbb{B}}{\frac{\lambda x : \mathbb{B}. x \times x : \mathbb{B} \Rightarrow \mathbb{B} \times \mathbb{B} \quad \mathbb{B} \vdash 0 \parallel 1 : \mathbb{B}}{\mathbb{B} \vdash 0 \parallel 1 : \mathbb{B}}}
$$

$$
\frac{\lambda x : \mathbb{B}. x \times x : \mathbb{B} \Rightarrow \mathbb{B} \times \mathbb{B} \quad \mathbb{B} \vdash 0 \parallel 1 : \mathbb{B}}{\frac{\lambda x : \mathbb{B}. x \times x : \mathbb{B} \Rightarrow \mathbb{B} \times \mathbb{B} \quad \mathbb{B} \vdash 0 \parallel 1 : \mathbb{B}}{\mathbb{B} \vdash 0 \parallel 1 : \mathbb{B}}}
$$

Figure 2: Typing relation
The rules from Figure 4 also say how superposed first-order functions reduce, which can be useful for example to describe an operator as the superposition of simpler operators, cf. [Arrighi and Dowek, 2017] for more interesting examples.

Figure 5 gives the two rules for the conditional construction. Together with the linear distribution rules (Figure 4), these rules implement the quantum-if [Allenkirch and Grattage, 2005], as shown in the following example.

Example 2.2. The term 0\(?r.s\) is meant to test whether the condition is 1 or 0. However, defining it as a function allows us to use the linear distribution rules from Figure 4, implementing the quantum-if:

\[
\begin{align*}
\langle \alpha \rangle (\alpha \cdot 1) + \beta \cdot |0\rangle \rightarrow \alpha \cdot (\alpha \cdot 1) + \beta \cdot (0 \cdot ?r.s) |0\rangle \\
&\rightarrow \alpha \cdot |0\rangle + \beta \cdot (?r.s) |0\rangle
\end{align*}
\]

This construction allows us to encode any quantum gate.

Figure 6 gives the rules for lists, (head) and (tail), which can only act in basis qubits, otherwise, we would be able, for example, to extract a qubit from an entangled pair of qubits.

Figure 7 deals with the vector space structure implementing a directed version of the vector space axioms. The direction is chosen in order to yield a canonical form [Arrighi and Dowek, 2017]. The rules are self-explanatory. There is a subtlety, however, on the rule (zero\(\alpha\)). A simpler rule, for example "If \(t : A\) then 0\(t \rightarrow \vec{0}_{SA}\), would lead to break confluence with the following critical pair: 0\(\vec{0}_S \rightarrow \vec{0}_S\) and 0\(\vec{0}_S \rightarrow \vec{0}_S\). To solve the critical pair, Díaz-Caro, Dowek, and Rinaldi [2019a] added a new definition “min\(A\)”, which leaves the type \(A\) with a minimum amount of \(S\) in head position (one, if there is at least one, or zero, in other case). This solution makes sense in such a presentation of Lambda-\(S\), since the interpretation of the type \(SA\) coincides with the interpretation of \(SA\) (both are the vector space generated by the span over \(A\)). However, in our categorical interpretation these two types are not interpreted in the same way, and so, our rule (zero\(\alpha\)) sends 0\(\vec{0}_S\) to \(\vec{0}_S\) directly. Similarly, all the rules ending in \(\vec{0}_S\) have been modified from its original presentation in the same way, namely: (zero\(\alpha\)), (zero), (lin\(0\)), and (lin\(0\)).

Example 2.3.

\[
2 \cdot \left(\frac{1}{2} |0\rangle + |1\rangle \right) \rightarrow 2 \cdot |1\rangle + 2 \cdot |0\rangle \rightarrow |1\rangle + 2 \cdot |0\rangle - 2 \cdot |1\rangle
\]

If \(h \neq u \times v\) and \(h \in B\), head \(h \times t \rightarrow h\) (head)

If \(h \neq u \times v\) and \(h \in B\), tail \(h \times t \rightarrow t\) (tail)

Figure 6: Rules for lists

Figure 5: Rules of the conditional construction

Figure 4: Linear distribution rules
If \(t : A, \) with \(A \in \mathcal{B}, \) or \(t : SA, \) and \(t / A \)
\[
\begin{align*}
\alpha \cdot 0_{SA} & \rightarrow 0_{SA} \\
1 \cdot t & \rightarrow t
\end{align*}
\]

\((0_{SA} + t) \rightarrow t\) (neutral)

\(1 \cdot t \rightarrow t\) (unit)

\((0_{SA} + t) \rightarrow 0_{SA}\) (zero)

\(\alpha \cdot 0_{SA} \rightarrow 0_{SA}\) (zero)

\(\alpha \cdot (\beta t) \rightarrow (\alpha \beta).t\) (prod)

\(\alpha \cdot (t + u) \rightarrow (\alpha \cdot t + \alpha \cdot u)\) (addist)

\((\alpha \cdot t + \beta t) \rightarrow (\alpha + \beta).t\) (fact)

\((\alpha \cdot t + t) \rightarrow (\alpha + 1).t\) (fact\(^3\))

\((t + t) \rightarrow 2.t\) (fact\(^2\))

Figure 7: Rules implementing the vector space axioms

\[
\begin{align*}
(\alpha & \cdot \beta) + |0 \rangle & \rightarrow 0 \\
|0 \rangle & \rightarrow 0.1, |1 \rangle & \rightarrow 1.1, |2 \rangle & \rightarrow 2.1
\end{align*}
\]

Remind that the symbol \(+\) is associative and commutative.

Figure 8 are the rules to implement the castings\(^3\). The idea is that \(\times\) does not distribute with respect to \(+\), unless a casting allows such a distribution. This way, the types \(SB \times B\) and \(S(B \times B)\) are different. Indeed, \(((0 + 1) \times 0)\) have the first type but not the second, while \((00 + 10)\) have the second type but not the first. The first type gives us the information that the state is separable, while the second type does not. We can choose to take the first state as a pair of qubits forgetting the separability information, by casting its type, in the same way as in certain programming languages an integer can be cast to a float (and so, forgetting the information that it was indeed an integer and not just any float).

Example 2.4. The term \(\frac{1}{\sqrt{2}} ((0 + 1) \times 0)\) is the encoding of the qubit \(\frac{1}{\sqrt{2}} ((0 + 1) \otimes 0)\). However, while the qubit \(\frac{1}{\sqrt{2}} ((00 + 10)\) is equal to \(\frac{1}{\sqrt{2}} ((00 + 10)\), the term will not rewrite to the encoding of it, unless it is preceded by a casting \(\uparrow r:\)

\[
\uparrow r \left(\frac{1}{\sqrt{2}} ((0 + 1))\right) \times |0 \rangle \overset{(\text{dist}_1^3)}{\rightarrow} \frac{1}{\sqrt{2}} (\uparrow r ((0 + 1)) \times |0 \rangle)
\]

\[
\overset{(\text{dist}_1^2)}{\rightarrow} \frac{1}{\sqrt{2}} (\uparrow r (00) + \uparrow r (10))
\]

\[
\overset{(\text{neutral}_2^3)}{\rightarrow} \frac{1}{\sqrt{2}} ((00) + (10))
\]

Notice that \(\frac{1}{\sqrt{2}} ((0 + 1))\) has type \(SB \times B\), highlighting the fact that the second qubit is a basis qubit, i.e. duplicable, while \(\frac{1}{\sqrt{2}} ((00) + (10))\) has type \(S(B \times B)\), showing that the full term is a superposition where no information can be extracted, and hence, non-duplicable.

Figure 9 gives the rule \(\{\text{proj}\}\) for the projective measurement with respect to the basis \(\{|0 \rangle, |1 \rangle\}\). It acts only on superpositions of terms in normal-form, however, these terms do not necessarily represent a norm-1 vector, so the measurement must perform a division by the norm of the vector prior to measure. In case the norm of the term is 0, then an error is raised. In the original version of Lambda-\(S\), such an error is left as a term that does not

\(^3\)The subtlety about \(0_{SA}\) explained for Figure 7 has led us to add some extra rules to Lambda-\(S\), with respect to its original presentation, in Figure 8. These are: \((\text{dist}_1^0), (\text{dist}_1^1), (\text{neutral}_1^0),\) and \((\text{neutral}_2^2)\).
reduce. In this paper, however, we added a new rule (if it is not present, \(\alpha = 1\))

\[
\alpha \{n\} \rightarrow \{k\} \times |\phi_k\rangle \quad \text{(proj)}
\]

If \(u \in \mathbb{B}\), \(\uparrow r u \rightarrow v \rightarrow u \times v \) (neut\(\downarrow\))

If \(v \in \mathbb{B}\), \(\uparrow \ell u \rightarrow v \rightarrow u \times v \) (neut\(\downarrow\))

\[
\pi_j \sum_{i=1}^{m} |\alpha_i| \prod_{b=1}^{n} |b_{h_i}| \rightarrow 2^{j-1} \prod_{k=0}^{n-1} \{p_k\} (|k\rangle \times |\phi_k\rangle) \quad \text{(proj)}
\]

\[
\pi_j \downarrow \mathbb{B}^n \rightarrow 0^{\times n} \quad \text{(proj\(\downarrow\))}
\]

Figure 8: Rules for castings \(\uparrow r\) and \(\uparrow \ell\)

Figure 9: Rules for the projection

This way, \(|k\rangle \times |\phi_k\rangle\) is the normalized \(k\)-th projection of the term.

Example 2.5. Let's measure the first two qubits of a three qubits superposition. So, in rule (proj) take \(j = 2\) and \(n = 3\). Say, the term to measure is \(|000\rangle + 2|110\rangle + 3|001\rangle + |111\rangle\). So, we have \(m = 4\), and

| \(i\) | \(\alpha_i\) | \(|b_1,b_2,b_3\rangle\) | \(k\) | \(|k\rangle\) | \(T_k\) | \(p_k\) | \(|\phi_k\rangle\) |
|---|---|---|---|---|---|---|---|
| 1 | 1 | \(|000\rangle\) | 0 | \(|00\rangle\) | \(\frac{1}{15} + \frac{7}{15} = \frac{8}{15}\) | \(\frac{1}{\sqrt{15}}\) | \(|\phi_0\rangle\) |
| 2 | 2 | \(|110\rangle\) | 1 | \(|01\rangle\) | \(\emptyset\) | 0 | \(|\phi_1\rangle\) |
| 3 | 3 | \(|001\rangle\) | 2 | \(|10\rangle\) | \(\emptyset\) | 0 | \(|\phi_2\rangle\) |
| 4 | 1 | \(|111\rangle\) | 3 | \(|11\rangle\) | \(\frac{4}{15} + \frac{1}{15} = \frac{1}{3}\) | \(\frac{2}{\sqrt{3}}\) | \(|\phi_3\rangle\) |
If $t \rightarrow u$, then

$$\begin{align*}
\alpha. t & \rightarrow \alpha.u \\
v \times t & \rightarrow v \times u \\
\text{head } t & \rightarrow \text{head } u \\
(\{p_1\} u \| \cdots \| \{p_k\} u \| \cdots \| \{p_n\} u) & \rightarrow (\{p_1\} u \| \cdots \| \{p_k\} u \| \cdots \| \{p_n\} u)
\end{align*}$$

Figure 10: Contextual rules (notice that, in particular, there is no reduction under lambda).

All in all, the reduction is as follows:

$$\pi_2((000) + 2 \cdot (110) + 3 \cdot (001) + (111)) \xrightarrow{\text{proj}} \left(\frac{3}{2}\right) \left((00) \times \left(\frac{1}{\sqrt{2}} \cdot [0] + \frac{1}{\sqrt{2}} \cdot [1]\right)\right) \parallel \left\{ \frac{1}{2} \right\} \left((11) \times \left(\frac{1}{\sqrt{5}} \cdot [0] + \frac{1}{\sqrt{5}} \cdot [1]\right)\right)$$

Notice that, since $\vdash (000) + 2 \cdot (110) + 3 \cdot (001) + (111) :\mathbb{B}^3$, we have

$$\vdash \pi_2((000) + 2 \cdot (110) + 3 \cdot (001) + (111)) : \mathbb{B}^2 \times \mathbb{B}$$

Finally, Figure 10 gives the contextual rules implementing the call-by-value and call-by-name weak strategies (weak in the sense that there is no reduction under lambda).

Example 2.6. A Hadamard gate can be implemented by $H = \lambda x : \mathbb{B}.x?(-)\cdot(+)$, where $|+\rangle = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$ and $|-\rangle = \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle$.

Therefore, $H : \mathbb{B} \Rightarrow \mathbb{B}$ and we have $H |0\rangle \rightarrow^* |+\rangle$ and $H |1\rangle \rightarrow^* |-\rangle$.

Correctness has been established in previous works for slightly different versions of Lambda-\(\mathcal{S}\), except for the case of confluence, which have only been proved for Lineal [Arrighi and Dowek, 2017]. Lineal can be seen as an untyped fragment of Lambda-\(\mathcal{S}\) without several constructions (in particular, without π_i). The proof of confluence for Lambda-\(\mathcal{S}\) is delayed to future work, using the development of probabilistic confluence by Díaz-Caro and Martínez [2018]. The proof of Subject Reduction and Strong Normalization are straightforward modifications from the proofs of the different presentations of Lambda-\(\mathcal{S}\).

Theorem 2.7 (Confluence of Lineal, [Arrighi and Dowek, 2017, Thm. 7.25]). Lineal, an untyped fragment of Lambda-\(\mathcal{S}\), is confluent.

Theorem 2.8 (Subject reduction on closed terms, [Díaz-Caro et al., 2019a, Thm. 5.12]). For any closed terms t and u and type A, if $t \rightarrow u$, then $\vdash \{p_1\} u : A$.

Theorem 2.9 (Strong normalization, [Díaz-Caro et al., 2019a, Thm. 6.10]). If $\vdash t : A$ then t is strongly normalizing, that is, there is no infinite rewrite sequence starting from t.

Theorem 2.10 (Progress). If $\vdash t : A$ and t does not reduce, then t is a value.

Proof. By induction on t.

- If t is a value, then we are done.
- Let $t = rs$, then $\vdash r : S(\Psi \Rightarrow C)$. So, by the induction hypothesis, r is a value. Therefore, by its type, r is either a lambda term, or a superposition of them, and so rs reduces, which is absurd.
- Let $t = r + s$, then by the induction hypothesis both r and s are values, and so $r + s$ is a value.
- Let $t = \pi_j r$, then, by the induction hypothesis, r is a value, and since t is typed, $\vdash r : S\mathbb{B}^n$. Therefore, the only possible r are superpositions of kets, and so, r reduces, which is absurd.
- Let $t = \alpha r$, then by the induction hypothesis r is a value, and so t is a value.
- Let $t = r \times s$, then by the induction hypothesis both r and s are values, and so t is a value.
• Let $t = \text{head} \ r$, then, by the induction hypothesis r is a value, and since t is typed, $\vdash r : \mathbb{B}^n$. Therefore, the only possible r are products of kets, and so t reduces, which is absurd.

• Let $t = \text{tail} \ r$. Analogous to previous case.

• Let $t = \upharpoonright \downharpoonleft \ r$. Then, by the induction hypothesis, r is a value. Since t is typed, $\vdash r : S(\mathcal{S} \psi \times \Phi)$. Therefore, the only possible cases for r are:

 – $r = x$. Absurd, since r is closed.
 – $r = \lambda x : \Theta \ r'$. Absurd since $\vdash r : S(\mathcal{S} \psi \times \Phi)$.
 – $r = |0\rangle$. Absurd since $\vdash r : S(\mathcal{S} \psi \times \Phi)$.
 – $r = |1\rangle$. Absurd since $\vdash r : S(\mathcal{S} \psi \times \Phi)$.
 – $r = v_1 + v_2$, then t reduces by rule dist_+^+, which is absurd.
 – $r = 0_S(\mathcal{S} \psi \times \Phi)$, then t reduces by rule $\text{dist}_0^0(\mathcal{S} \psi \times \Phi)$ or $\text{neut}_0^0 \ r$, which is absurd.
 – $r = \alpha \cdot v$, then t reduces by rule dist_α, which is absurd.
 – $r = s_1 \cdot s_2$, Absurd since $\vdash r : S(\mathcal{S} \psi \times \Phi)$.
 – $r = v_1 \times \cdots \times v_n$, with v_1 not a pair, then the possible v_1 are:

 * $v_1 \in \mathbb{B}$, then t reduces by rule neut_{h}^+, which is absurd.
 * $v_1 = v_1' \times v_2'$, then t reduces by rule dist_{+}^0, which is absurd.
 * $v_1 = 0_\mathcal{S}(\mathcal{S} \psi \times \Phi)$, then t reduces by rule dist_0^0, which is absurd.
 * $v_1 = \alpha \cdot v$, then t reduces by rule dist_α, which is absurd.

• Let $t = \upharpoonright \downharpoonleft \ r$. Analogous to previous case.

3 Denotational semantics

Even though the semantic of this article is about particular categories i.e. the category of sets and the category of vector spaces, from the start our approach uses theory and tools from category theory in an abstract way. The idea is that the concrete situation exposed in this article will pave the way to a more abstract formulation, and that is why we develop the constructions as abstract and general as possible. A more general treatment, using a monoidal adjunction between a Cartesian closed category and a monoidal category with some extra conditions, remains a topic for future work. A first result in such direction has been published recently [Díaz-Caro and Malherbe, 2020], however in a simplified version of Lambda-S without measurements.

3.1 Categorical constructions

The concrete categorical model for Lambda-S will be given using the following constructions:

• A monoidal adjunction

\[
\begin{array}{c}
\mathbf{Set} \times 1 \cong \mathbf{Vec} \\
\mathbf{U} \cong \mathbf{S}
\end{array}
\]

where

– \mathbf{Set} is the category of sets with 1 as a terminal object.
– \mathbf{Vec} is the category of vector spaces over \mathbb{C}, in which $1 = \mathbb{C}$.

\footnote{Although “concrete categorical” seems paradoxical, since a model can either be concrete, or categorical, we chose to use this terms to stress the fact that we use a categorical presentation of this concrete model.}
Remarks 3.1.

- S is the functor such that for each set A, SA is the vector space whose vectors are the formal finite linear combinations of the elements of A with coefficients in \mathbb{C}, and given a function $f : A \to B$ we define $Sf : SA \to SB$ by evaluating f in A.

- U is the forgetful functor such that for each vector space V, UV is the underlying set of vectors in V and for each linear map f, Uf is just f as function not taking into account its linear property.

- m is a natural isomorphism defined by
 \[m_{AB} : SA \otimes SB \to S(A \times B) \]
 \[(\sum_{a \in A} \alpha_a a) \otimes (\sum_{b \in B} \beta_b b) \mapsto \sum_{(a,b) \in A \times B} \alpha_a \beta_b (a,b) \]

- n is a natural transformation defined by
 \[n_{AB} : UV \times UW \to U(V \otimes W) \]
 \[(v,w) \mapsto v \otimes w \]

- Vec† is a subcategory of Vec, where every morphism $f : V \to W$ have associated a morphism $f^\dagger : W \to V$, called the dagger of f, such that for all $f : V \to W$ and $g : W \to U$ we have
 \[\text{Id}_{UV} = \text{Id}_V \quad (g \circ f)^\dagger = f^\dagger \circ g^\dagger \quad f'^\dagger = f \]

Notice that Vec† is a subcategory of FinVec, the category of finite vector spaces over \mathbb{C}.

- SetI is a Kleisli category over Set defined with the following monoidal monad, called the distribution construction (Definition 3.4).

\[D : \text{Set} \to \text{Set} \]
\[DA = \left\{ \sum_{i=1}^n p_i \chi_{a_i} : \sum_{i=1}^n p_i = 1, a_i \in A, n \in \mathbb{N} \right\} \]

where χ_a is the characteristic function of a, and $\tilde{\eta}, \tilde{\mu}, \tilde{m}_{AB}, \tilde{m}_1$ are defined as follows:

\[\tilde{\eta} : A \to DA \quad a \mapsto 1 \chi_a \]
\[\tilde{\mu} : DDA \to DA \quad \sum_{i=1}^m p_i \chi_{a_i} \mapsto \sum_{j=1}^n p_j q_{ij} \chi_{b_j} \]
\[\tilde{m}_{AB} : DA \times DB \to D(A \times B) \]
\[\tilde{m}_1 : 1 \to D1 \quad \ast \mapsto 1 \chi_\ast \]

Remarks 3.1.

- There exists an object \mathbb{B} and maps i_1, i_2 in Set such that for every $t : 1 \to A$ and $r : 1 \to A$, there exists a unique map $[t, r]$ making following diagram commute:

\[\begin{array}{ccc}
1 & \xrightarrow{i_1} & \mathbb{B} \\
\downarrow & \downarrow & \downarrow \\
r \cdot t & \xrightarrow{[t, r]} & 1
\end{array} \]

This object \mathbb{B} is the Boolean set, and such a map will allow us to interpret the if construction (Definition 3.4).

- For every $A \in |\text{Set}|$, Vec(I, SA) is an abelian group with the sum defined point-wise. Therefore, there exists a map $+ : USA \times USA \to USA$ in Set, given by $(a, b) \mapsto a + b$ using the underlying sum from SA.

- To have an adjunction means that each function $g : A \to UV$ extends to a unique linear transformation $f : SA \to V$, given explicitly by $f(\sum \alpha_i x_i) = \sum \alpha_i g(x_i)$, that is, formal linear combinations in SA to actual linear combinations in V (see [Mac Lane, 1998] for details).

- Set is a Cartesian closed category where η^A is the unit and e^A is the counit of $\ast \times A \dashv [A, \ast]$, from which we can define the currying (curry) and un-currying (uncurry) of any map.

- The defined adjunction between Set and Vec gives rise to a monad (T, η, μ) in the category Set, where $T = US$, $\eta : \text{Id} \to T$ is the unit of the adjunction, and using the counit ε, we obtain $\mu = U \varepsilon S : TT \to T$, satisfying unity and associativity laws (see [Mac Lane, 1998]).
3.2 Interpretation

Definition 3.2. Types are interpreted in the category Set_D, as follows:

\[
[\mathcal{B}] = \mathcal{B} \\
[\Psi \Rightarrow A] = [\Psi] \Rightarrow [A] \\
[SA] = US[A] \\
[\Psi \times \Phi] = [\Psi] \times [\Phi]
\]

Remark 3.3. To avoid cumbersome notation we omit the brackets \([\cdot]\) when there is no ambiguity. For example, we write directly \(USA\) for \([SA] = US\) \(A\) and \(A\) for \([A]\).

Before giving the interpretation of typing derivation trees in the model, we need to define certain maps that will serve to implement some of the constructions in the language.

To implement the \(if\) construction we define the following map.

Definition 3.4. Given \(t, r \in \Gamma, A\) there exists a map \(\mathcal{B} \xrightarrow{f_{t,r}} \Gamma, A\) in \(\text{Set}\) defined by \(f_{t,r} = (t, \rho)\) where \(t : 1 \to \Gamma, A\) and \(\rho: 1 \to \Gamma, A\) are given by the constant maps \(* \mapsto t\) and \(* \mapsto s\) respectively. Concretely this means that \(i_1(*) \mapsto t\) and \(i_2(*) \mapsto r\).

Example 3.5. Consider \(t = i_1\) and \(r = i_2\), with \(t, r \in [1, \mathcal{B}]\), where \(\mathcal{B} = \{i_1(*), i_2(*)\}\). To make the example more clear, let us consider \(i_1(*) = \{0\}\) and \(i_2(*) = \{1\}\), hence \(\mathcal{B} = \{\{0\}, \{1\}\}\). The map \(\mathcal{B} \xrightarrow{f_{t,r}} [1, \mathcal{B}]\) in \(\text{Set}\) is defined by \(f_{t,r} = [i_1, i_2]\), where \(i_k : 1 \to [1, \mathcal{B}]\), for \(k = 1, 2\). Therefore, we have the following commuting diagram:

\[
\begin{array}{ccc}
1 & \xrightarrow{i_1} & \mathcal{B} \\
\downarrow & & \downarrow f_{t,r} \\
1 & \xrightarrow{i_2} & [1, \mathcal{B}]
\end{array}
\]

Hence, we have:

\[
\begin{align*}
& f_{t,r}([0]) = f_{t,r}(i_1(*)) = (f_{t,r} \circ i_1)() = i_1(*) = i_1 = t \\
& f_{t,r}([1]) = f_{t,r}(i_2(*)) = (f_{t,r} \circ i_2)() = i_2(*) = i_2 = r
\end{align*}
\]

Therefore, \(f_{t,r}\) is the map \(0 \mapsto t\) and \(1 \mapsto r\).

In order to implement the projection, we define a map \(\pi_j\) (Definition 3.14), which is formed from the several maps that we describe below.

A projection \(\pi_{jk}\) acts in the following way: first it projects the first \(j\) components of its argument, an \(n\)-dimensional vector, to the basis vector \(|k\rangle\) in the vector space of dimension \(j\), then it renormalizes it, and finally it factorizes the first \(j\) components. Then, the projection \(\pi_j\) takes the probabilistic distribution between the \(2^j\) projectors \(\pi_{jk}\), each of these probabilities, calculated from the normalized vector to be projected.

Example 3.6. Let us analyse the Example 2.5:

\[
\pi_2((000) + 2 \cdot (110) + 3 \cdot (001) + (111)) \xrightarrow{(\text{proj})} \left(\frac{2}{3}\right) \left(\begin{array}{c}
(00) \\
(11)
\end{array}\right) \parallel \left(\frac{1}{3}\right) \left(\begin{array}{c}
(00) \\
(11)
\end{array}\right)
\]

We can divide this in four projectors (since \(j = 2\), we have \(2^2\) projectors), which are taken in parallel (with the symbol \(\parallel\)). The four projectors are: \(\pi_{2,00}, \pi_{2,01}, \pi_{2,10}\) and \(\pi_{2,11}\). In this case, the probability for the projectors \(\pi_{2,01}\) and \(\pi_{2,10}\) are 0, and hence these do not appear in the final term.

The projector \(\pi_{2,00}\) acts as described before: first it projects the first 2 components of \((000) + 2 \cdot (110) + 3 \cdot (001) + (111)\) to the basis vector \(|00\rangle\), obtaining \((000) + 3 \cdot [001]\). Then it renormalizes it by dividing it by its norm, obtaining \(\frac{1}{\sqrt{10}} \cdot (000) + \frac{3}{\sqrt{10}} \cdot [001]\). Finally, it factorizes the vector, obtaining \((00) \times (\frac{1}{\sqrt{10}}, 0) + \frac{3}{\sqrt{10}} \cdot (11)\). Similarly, the projector \(\pi_{2,11}\) gives \((11) \times (\frac{2}{\sqrt{3}}, 0) + \frac{1}{\sqrt{3}} \cdot (11)\). Finally, the probabilities to assemble the final term are calculated as \(p_0 = \frac{|1^2 + 3^2|}{|1^2 + 3^2 + |1|^2}} = \frac{2}{3}\) and \(p_1 = \frac{|2^2 + 1^2|}{|1^2 + 3^2 + |1|^2}} = \frac{1}{3}\).

Categorically, we can describe the operator \(\pi_{jk}\) (Definition 3.11) by the composition of three arrows: a projector arrow to the \(|k\rangle\) basis vector (Definition 3.7), a normalizing arrow Norm (Definition 3.8), and a factorizing arrow \(\varphi_j\) (Definition 3.9). Then, the projection \(\pi_j\) (Definition 3.14) maps a vector to the probabilistic distribution between the \(2^j\) basis vectors \(|k\rangle\), using a distribution map (Definition 3.12).

In the following definitions, if \(|\Psi\rangle\) is a vector of dimension \(n\), we write \(|\Psi\rangle : I \to S\mathcal{B}^n\) to the constant map \(1 \mapsto |\Psi\rangle\).

Definition 3.7. The projector arrow to the \(|k\rangle\) basis vector \(\text{Proj}_{jk}\) is defined as follows:

\[
P_k : (S\mathcal{B})^\otimes n \mapsto (S\mathcal{B})^\otimes n \\
P_k = (|k\rangle \circ |k\rangle^\dagger) \otimes I
\]
Definition 3.9. The factorizing arrow φ_j is defined as any arrow making the following diagram commute:

$$
\begin{array}{c}
\begin{array}{c}
\mathbb{B}^j \times \mathbb{USB}^{n-j} \\
\downarrow \varphi_j \\
\mathbb{USB}^n
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\mathbb{USB}^j \times \mathbb{USB}^{n-j} \\
\downarrow \text{Nat}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
U(\mathbb{SUSB}^j \otimes \mathbb{SUSB}^{n-j}) \\
\downarrow \tau/m
\end{array}
\end{array}
\end{array}
$$

Example 3.10. For example, take φ_j as the following map:

$$
\varphi_j : \mathbb{USB}^n \to \mathbb{B}^j \times \mathbb{USB}^{n-j}
$$

$$
a \mapsto \left\{ \begin{array}{ll}
\prod_{h=1}^{j} |b_h \rangle \times \sum_{i=1}^{n} \alpha_i \left(\prod_{h=j+1}^{n} |b_h \rangle \right) & \text{if } a = \sum_{i=1}^{n} \alpha_i \left(\prod_{h=1}^{j} |b_h \rangle \times \prod_{h=j+1}^{n} |b_h \rangle \right) \\
|0 \rangle^n & \text{otherwise}
\end{array} \right.
$$

Definition 3.11. For each $k = 0, \ldots, 2^j - 1$, the projection to the $|k\rangle$ basis vector, π_{jk}, is defined as any arrow making the following diagram commute:

$$
\begin{array}{c}
\begin{array}{c}
\mathbb{USB}^n \\
\downarrow \pi_{jk}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\mathbb{B}^j \times \mathbb{USB}^{n-j} \\
\downarrow \varphi_j
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\mathbb{USB}^n \\
\downarrow \text{Norm}
\end{array}
\end{array}
\end{array}
$$

where we are implicitly using the isomorphism $\mathbb{USB}^n \cong U(\mathbb{SUSB})^\otimes n$, obtained by composing $n - 1$ times the mediating arrow m and then applying the functor U.

The following distribution map is needed to assemble the final distribution of projections in Definition 3.14.

Definition 3.12. Let $\{p_i\}_{i=1}^n$ be a set with $p_i \in [0, 1]$ such that $\sum_{i=1}^n p_i = 1$. Then, we define $d_{\{p_i\}}$, as the arrow:

$$
d_{\{p_i\}} : A^n \to DA \quad (a_1, \ldots, a_n) \mapsto \sum_{i=1}^n p_i \chi_{a_i}
$$

Example 13. Consider $d_{\{\frac{1}{2}, \frac{1}{2}, \frac{1}{4}\}} : \mathbb{B}^3 \to \mathbb{D}^3$ defined by $d_{\{\frac{1}{2}, \frac{1}{2}, \frac{1}{4}\}}(b_1 \times b_2 \times b_3) = \sum_{j=0}^{2} \chi_{b_j}$, where, for example, $d_{\{\frac{1}{2}, \frac{1}{2}, \frac{1}{4}\}}(101) = \sum_{j=0}^{2} \chi_{j}$. Then, $d_{\{a_1, a_2, a_3\}} = \sum_{i=1}^n p_i \chi_{a_i}$.

Definition 3.14. The projective arrow is as follows, where $p_k = \text{Norm}(\langle \psi \rangle) \circ p_k \circ \text{Norm}(\langle \psi \rangle)$.

$$
\pi_j : \mathbb{USB}^n \to D(\mathbb{B}^j \times \mathbb{USB}^{n-j}) \quad |\psi\rangle \mapsto \sum_{k=0}^{2^j-1} p_k \chi_{\pi_k j} |\psi\rangle
$$

Example 3.15. Consider the set \mathbb{B}^2 and the vector space \mathbb{SUSB}^2. We can describe the projection π_1 as the map $\pi_1 : \mathbb{USB}^2 \to D(\mathbb{B} \times \mathbb{USB})$ such that $|\psi\rangle \mapsto \sum_{y=0}^1 \chi_y |x_1 y\rangle + \chi_{x_1 y} |x_1 y\rangle$, where, if $|\psi\rangle = a_1 |00\rangle + a_2 |01\rangle + a_3 |10\rangle + a_4 |11\rangle$, then $p_0 = \frac{|a_0|^2 + |a_2|^2}{\sqrt{\sum_{k=1}^4 |a_k|^2}}$ and $p_1 = \frac{|a_1|^2 + |a_3|^2}{\sqrt{\sum_{k=1}^4 |a_k|^2}}$.

The normalizing arrow is the arrow $\text{Norm} : \mathbb{USB}^2 \to \mathbb{USB}^2$ such that:

$$
\begin{align*}
\alpha_1 |00\rangle + \alpha_2 |01\rangle + \alpha_3 |10\rangle + \alpha_4 |11\rangle & \mapsto \frac{\alpha_1}{\sqrt{\sum_{k=1}^4 |a_k|^2}} |00\rangle + \frac{\alpha_2}{\sqrt{\sum_{k=1}^4 |a_k|^2}} |01\rangle + \frac{\alpha_3}{\sqrt{\sum_{k=1}^4 |a_k|^2}} |10\rangle + \frac{\alpha_4}{\sqrt{\sum_{k=1}^4 |a_k|^2}} |11\rangle
\end{align*}
$$
The factorisation arrow is the arrow \(\varphi_I : \mathbb{B}^2 \rightarrow \mathbb{B} \times \mathbb{B} \) such that:

\[
\begin{align*}
\alpha_1 \cdot (00) + \alpha_2 \cdot (01) + \alpha_3 \cdot (10) + \alpha_4 \cdot (11) & \mapsto \begin{cases}
(0) \times (\alpha_1 \cdot (0) + \alpha_2 \cdot (1)) & \text{if } \alpha_1 = \alpha_4 = 0 \\
(1) \times (\alpha_3 \cdot (0) + \alpha_4 \cdot (1)) & \text{if } \alpha_1 = \alpha_2 = 0 \\
(00) & \text{otherwise}
\end{cases}
\end{align*}
\]

Finally, \(\pi_{10} \) and \(\pi_{11} \) are defined as maps in \(\mathbb{B}^2 \rightarrow \mathbb{B} \times \mathbb{B} \) such that \(\pi_{10} = \varphi_I \circ \text{Norm} \circ U P_0 \) and \(\pi_{11} = \varphi_I \circ \text{Norm} \circ U P_1 \).

We write \((US)^m A\) for \(US \ldots US A \), where \(m > 0 \). The arrow sum on \((US)^m A\) with \(A \neq USB\) will use the underlying sum in the vector space \(SA \). To define such a sum, we need the following map.

Definition 3.16. The map \(g_k : ((US)^{k+1} A) \times ((US)^{k+1} A) \rightarrow (US)^k (USA \times USA) \) is defined by:

\[
g_k = (US)^{k-1} Um \circ (US)^{k-1} n \circ (US)^{k-2} Um \circ (US)^{k-2} n \circ \ldots \circ Um \circ n
\]

Example 3.17. We can define the sum on \((US)^3 A \times (US)^3 A\) by using the sum on \(SA \) as:

\[
(US)^3 A \times (US)^3 A \xrightarrow{g_2} (US)^2 (USA \times USA) \xrightarrow{(US)^2 +} (US)^3 A \text{ where } g_2 = USm \circ USn \circ Um \circ n.
\]

Using all the previous definitions, we can finally give the interpretation of a type derivation tree in our model. If \(\Gamma \vdash t : A \) with a derivation \(T \), we write generically \([T] \) as \(\Gamma \xrightarrow{T} A \). In the following definition, we write \(SA \) for \(S \ldots SA \), where \(m > 0 \) and \(A \neq SB \).

Definition 3.18. If \(T \) is a type derivation tree, we define inductively \([T] \) as an arrow in the category \(\text{Set}_D \), as follows. To avoid cumbersome notation, we omit to write the monad \(D \) in most cases (we only give it in the case of the measurement, which is the only interesting case).

\[
\begin{align*}
\left[\Theta^B, x : \Psi \vdash x : \Psi \right] & = \Theta^B \times \Psi \xrightarrow{\text{Id} \times \Psi} 1 \times \Psi \approx \Psi \quad \text{where } \text{Id} \text{ is the identity in } \text{Set} \\
\left[\Theta^B \vdash \theta, \alpha_0 : SA \right] & = \Theta^B \xrightarrow{0} USA \quad \text{where } 0 \text{ is the constant function } * \mapsto 0 \\
\left[\Theta^B \vdash 0 : B \right] & = \Theta^B \xrightarrow{0} 1 \xrightarrow{0} B \quad \text{where } 0 \text{ is the constant function } * \mapsto 0 \\
\left[\Theta^B \vdash |1| : B \right] & = \Theta^B \xrightarrow{1} 1 \xrightarrow{1} B \quad \text{where } 1 \text{ is the constant function } * \mapsto 1 \\
\left[\Gamma \vdash t : S^mA \right] & = \left[\Gamma \vdash \alpha \vdash S^mA \right] \\
\left[\Gamma \vdash t : S^mA \Delta \Theta^B + r : S^mA \right] & = \Gamma \xrightarrow{t} (US)^m A \xrightarrow{(US)^m-1 U \Delta} (US)^{m-1} U (SA \otimes I) \\

\left[\Gamma, \Theta^B \vdash t : S^mA \right] & = \Gamma \xrightarrow{t} (US)^m A \xrightarrow{(US)^m-1 U \Delta} (US)^{m-1} U (SA \otimes I) \\
\left[\Gamma, \Delta, \Theta^B + t + r : S^mA \right] & = \Gamma \xrightarrow{t} (US)^m A \xrightarrow{(US)^m-1 U \Delta} (US)^{m-1} U (SA \otimes I) \\
\left[\Gamma \vdash t : A \right] & = \Gamma \xrightarrow{t} A \xrightarrow{\eta} USA
\end{align*}
\]
Proof. Without taking into account rules $\Rightarrow E$, $\Rightarrow ES$, and S_I, the typing system is syntax directed. Hence, we give a rewrite system on trees such that each time a rule S_T can be applied before or after another rule, we choose a direction to rewrite the tree to one of these forms. Similarly, rules $\Rightarrow E$ and $\Rightarrow ES$, can be exchanged in few specific cases, so we also choose a direction for these.

Then, we prove that every rule preserves the semantics of the tree. This rewrite system is clearly confluent and normalizing, hence for each tree T we can take the semantics of its normal form, and so every sequent will have one way to calculate its semantics: as the semantics of the normal tree. The full proof is given in the appendix.

Remark 3.20. Proposition 3.19 allows us to write the semantics of a sequent, independently of its derivation tree. Hence, from now on, we will use $[[\Gamma \vdash t : A]]$, without ambiguity.

3.3 Soundness and Adequacy

We first prove the soundness of the interpretation with respect to the reduction relation (Theorem 3.22), then we prove the computational adequacy (Theorem 3.28). Finally, we prove adequacy (Theorem 3.29) as a consequence of both results.
3.3.1 Soundness

Soundness is proved only for closed terms, since the reduction is weak (cf. Figure 10). First, we need a substitution lemma.

Lemma 3.21 (Substitution). If $x : \Psi \vdash t : A$ and $\vdash r : \Psi$, the following diagram commutes:

\[
\begin{array}{c}
1 \\
\downarrow^r \\
\Psi \quad \downarrow^t \\
\downarrow \quad \downarrow \\
\frac{\Gamma}{A}
\end{array}
\]

That is, $\llbracket \frac{\Gamma}{x} \同仁 \llbracket \frac{\Gamma}{r} : \Psi \rrbracket = \llbracket \frac{\Gamma}{r} : \Psi \rrbracket \circ \llbracket \frac{\Gamma}{r} : \Psi \rrbracket$.

Proof. We prove, more generally, that if $\Gamma', x : \Psi, \Gamma \vdash t : A$ and $\vdash r : \Psi$, the following diagram commutes:

\[
\begin{array}{c}
\Gamma' \times \Gamma \\
\downarrow^\llbracket \frac{\Gamma}{r} \同仁 \llbracket \frac{\Gamma}{r} : \Psi \rrbracket \\
\downarrow^\llbracket \frac{\Gamma}{r} : \Psi \rrbracket \\
\Gamma' \times 1 \times \Gamma \\
\downarrow \llbracket \frac{\Gamma}{r} \同仁 \llbracket \frac{\Gamma}{r} : \Psi \rrbracket \times \Id \\
\Gamma' \times \Psi \times \Gamma
\end{array}
\]

That is, $\llbracket \frac{\Gamma', x : \Psi, \Gamma}{\frac{\Gamma}{r} : \Psi} : \frac{\Gamma}{r} : \Psi \rrbracket = \llbracket \frac{\Gamma', x : \Psi, \Gamma}{\frac{\Gamma}{r} : \Psi} \rrbracket \circ (\Id \times \llbracket \frac{\Gamma}{r} : \Psi \rrbracket \times \Id)$. Then, by taking $\Gamma = \Gamma' = \emptyset$, we get the result stated by the lemma.

We proceed by induction on the derivation of $\Gamma', x : \Psi, \Gamma \vdash t : A$. The full proof is given in the appendix.

Theorem 3.22 (Soundness). If $\vdash t : A$, and $t \longrightarrow r$, then $\llbracket \frac{\Gamma}{\frac{\Gamma}{r} : \Psi} : \frac{\Gamma}{r} : \Psi \rrbracket = \llbracket \frac{\Gamma}{r} : \Psi \rrbracket$.

Proof. By induction on the rewrite relation, using the first derived type for each term. The full proof is given in the appendix.

3.3.2 Computational adequacy

We adapt Tait’s proof for strong normalization to prove the computational adequacy of Lambda-S.

Definition 3.23. Let $\mathfrak{A}, \mathfrak{B}$ be sets of closed terms. We define the following operators on them:

- **Closure by antireduction**: $\mathfrak{A} = \{ t \mid t \longrightarrow^* r \text{ with } r \in \mathfrak{A} \text{ and } \text{FV}(t) = \emptyset \}$.
- **Closure by distribution**: $\mathfrak{A}^\llbracket \{ \Pi x t_i \mid t_i \in \mathfrak{A} \text{ and } t_i = \sum t_i = 1 \} \rrbracket$.
- **Product**: $\mathfrak{A} \times \mathfrak{B} = \{ t \times u \mid t \in \mathfrak{A} \text{ and } u \in \mathfrak{B} \}$.
- **Arrow**: $\mathfrak{A} \Rightarrow \mathfrak{B} = \{ t \mid \forall u \in \mathfrak{A}, tu \in \mathfrak{B} \}$.
- **Span**: $\mathfrak{SA} = \{ \sum \{ \alpha x r_i \mid r_i \in \mathfrak{A} \} \}$.

The set of computational closed terms of type A (denoted \mathfrak{C}_A), is defined by:

\[
\mathfrak{C}_B = \{ [0], [1] \} \quad \mathfrak{C}_{A \times B} = \mathfrak{C}_A \times \mathfrak{C}_B
\]

A substitution σ is valid in a context Γ (notation $\sigma \vdash \Gamma$) if for each $x : A \in \Gamma$, $\sigma x \in \mathfrak{C}_A$.

Lemma 3.24. If $\vdash t : A$ then $t \in \mathfrak{C}_A$.

Proof. We prove, more generally, that if $\Gamma \vdash t : A$ and $\vdash \sigma t : \Gamma$, then $\sigma t \in \mathfrak{C}_A$. We proceed by induction on the derivation of $\Gamma \vdash t : A$. The full proof is given in the appendix.

Definition 3.25 (Elimination context). An elimination context is a term of type B produced by the following grammar, where exactly one subterm has been replaced with a hole $[\cdot]$.

\[
C ::= [\cdot] \mid Ct \mid \pi x C \mid \text{head } C \mid \text{tail } C \mid \uparrow t C \mid \uparrow \ell C
\]

We write $C[t]$ for the term of type B obtained from replacing the hole of C by t. 15
Definition 3.26 (Operational equivalence). We write \(t \approx_r r \) if, for every elimination context \(C \), there exists \(s \) such that \(C[t] \longrightarrow^* s \) and \(C[r] \longrightarrow^* s \).

We define the operational equivalence \(\approx_{op} \) inductively by

- \(1 \)
- \(t \approx_r r \) then \(t \approx_{op} r \).
- \(t' \approx_{op} r \) then \(\alpha.t \approx_{op} \alpha.r \).
- \(t_1 \approx_{op} r_1 \) and \(t_2 \approx_{op} r_2 \), then \(t_1 + t_2 \approx_{op} r_2 + r_2 \).
- \(t_1 \approx_{op} r_1 \) and \(t_2 \approx_{op} r_2 \), then \(t_1 \times t_2 \approx_{op} r_1 \times r_2 \).

Remark that operational equivalence differs from the standard notion of observational equivalence since \(t \approx_{op} r \) does not imply \(\lambda x : \Psi.t \approx_{op} \lambda x : \Psi.r \), as a consequence of not having reductions under lambda.

Lemma 3.27. If \(C[t] \approx_{op} C[r] \), then \(t \approx_{op} r \).

Proof. By the shape of \(C \), the only possibility for \(C[t] \approx_{op} C[r] \) is \(C[t] \approx \top C[r] \). Then, by definition, there exists a term \(s \) and a context \(D \) such that \(D[C[t]] \longrightarrow^* s \) and \(D[C[r]] \longrightarrow^* s \). Consider the context \(E = D[C] \), we have \(E[t] = D[C[t]] \longrightarrow^* s \) and \(E[r] = D[C[r]] \longrightarrow^* t' \). Therefore, \(t \approx_{op} r \), and so \(t \approx_{op} r \).

Theorem 3.28 (Computational adequacy). If \(\llbracket t : A \rrbracket = \llbracket v : A \rrbracket \), then \(t \approx_{op} v \).

Proof. We proceed by induction on \(A \).

- \(A = \mathbb{B} \). By Lemma 3.24, we have \(t \in \mathcal{C}_A \), thus, \(\longrightarrow^* \{ q_1 \} [0] \parallel \{ q_2 \} [1] \). Hence, by Theorem 3.22, we have \(\llbracket v : A \rrbracket = \llbracket t : A \rrbracket = \llbracket t : \{ q_1 \} [0] \parallel \{ q_2 \} [1] : A \rrbracket \).

- \(A = C_1 \times C_2 \). By Lemma 3.24, we have \(t \in \mathcal{C}_A \), thus, \(\longrightarrow^* \{ q_1 \} (w_{i_1} \times w_{i_2}) \). Hence, by Theorem 3.22, we have \(\llbracket v : A \rrbracket = \llbracket t : A \rrbracket = \llbracket t : \{ q_1 \} (w_{i_1} \times w_{i_2}) : A \rrbracket \).

- \(A = \Psi \Rightarrow C \). The only possibility for \(v \), a value of type \(\Psi \Rightarrow C \), is \(v = \{ q_1 \} \lambda x : \Psi.r_i \).

Therefore, by the induction hypothesis, \(w_i \approx_{op} w_{j} \). Since \(\llbracket v : A \rrbracket = \llbracket w : A \rrbracket = 1 \Rightarrow \Psi \Rightarrow C \).

Let \(w \in \mathcal{C}_\Psi \) be a value, and \(g = \llbracket w : \Psi \rrbracket = 1 \Rightarrow \Psi \Rightarrow D \Psi \).

Thus, \(\llbracket w : C \rrbracket = \llbracket w : \Psi \Rightarrow C \rrbracket = \llbracket t : \Psi \Rightarrow C \rrbracket \). By Theorem 2.9, and Theorem 2.10, there exists \(u \) value, such that \(\llbracket w : A \rrbracket \rightarrow^* u \), and by Theorem 2.8, \(\llbracket u : C \rrbracket \). Therefore, by the induction hypothesis, \(tw \approx_{op} u \). Since \(\llbracket v : A \rrbracket \rightarrow^* u \), we have \(u \approx_{op} \Psi \Rightarrow C \).

Therefore, by the induction hypothesis, \(tw \approx_{op} u \). Since \(\llbracket v : A \rrbracket \rightarrow^* u \), we have \(u \approx_{op} \Psi \Rightarrow C \).

- \(A = SC \). By Lemma 3.24, we have \(t \in \mathcal{C}_A \), thus, \(\longrightarrow^* \{ q_1 \} \Sigma \alpha w_{i_1} \), with \(w_{j} \in \mathcal{C}_C \), and, by the same lemma, \(v = \{ q_1 \} \Sigma \alpha w_{i_2} \), with \(w_{k} \in \mathcal{C}_C \).

Therefore, by the induction hypothesis, \(w_{i} \approx_{op} w_{j} \) and \(\llbracket w : C \rrbracket = \llbracket v : C \rrbracket \). Therefore, by the induction hypothesis, \(w_{i} \approx_{op} w_{j} \).

\(\square \)
3.3.3 Adequacy

Adequacy is a consequence of Theorems 2.8 (subject reduction), 2.9 (strong normalization), 2.10 (progress), 3.22 (soundness), and 3.28 (computational adequacy).

Theorem 3.29 (Adequacy). If $\models t : A$, then $t \approx_{op} r$.

Proof. By Theorem 2.9, t is strongly normalizing, and by Theorem 2.10, it normalizes to a value. Hence, there exists v such that $t \xrightarrow{\ast} v$, and, by Theorem 2.8, we have $\vdash v : A$. By Theorem 3.22, $\models v : A = \models t : A = \models r : A$.

Then, by Theorem 3.28, $v \approx_{op} t$ and $v \approx_{op} r$. Hence, $t \approx_{op} r$.

4 Conclusion

We have revisited the concrete categorical semantics for Lambda-S presented in our LSFA’18 paper [Díaz-Caro and Malherbe, 2019] by slightly modifying the operational semantics of the calculus, obtaining an adequate model (Theorem 3.29).

Our semantics highlights the dynamics of the calculus: the algebraic rewriting (linear distribution, vector space axioms, and typing casts rules) emphasize the standard behaviour of vector spaces. The natural transformation n takes these arrows from the Cartesian category Set to the tensorial category Vec, where such a behaviour occurs naturally, and then are taken back to the Cartesian realm with the natural transformation m. This way, rules such as $(\lim^+_\nu) : t(u+v) \longrightarrow tu+tv$, are simply considered as $Um \circ n$ producing $(u+v,t) \rightarrow (u,t) + (v,t)$ in two steps: $(u+v,t) \rightarrow (u,v) \otimes t = u \otimes t + v \otimes t \rightarrow (u,t) + (v,t)$, using the fact that, in Vect, $(u+v) \otimes t = u \otimes t + v \otimes t$.

We have constructed a concrete mathematical semantic model of Lambda-S based on a monoidal adjunction with some extra conditions. The construction depends crucially on inherent properties of the categories of set and vector spaces. In a future work we will study the semantics from a more abstract point of view. Our approach will be based on recasting the concrete model at a more abstract categorical level of monoidal categories with some axiomatic properties that are now veiled in the concrete model. Some of these properties, such as to consider an abstract dagger instead of an inner product, were introduced in the concrete model from the very beginning, but others are described in Remark 3.1 and Definitions 3.4, 3.8, 3.9, 3.11, 3.12, and 3.14. Another question we hope to address in future work is the exact categorical relationship between the notion of amplitude and probability in the context of the abstract semantics. While some research has been done in this topic (e.g., [Selinger, 2007, Abramsky and Coecke, 2004]) it differs from our point of view in some important aspects: for example to consider a notion of abstract normalization as primitive.

References

S. Abramsky. Computational interpretations of linear logic. Theoretical Computer Science, 111(1):3–57, 1993.

S. Abramsky and B. Coecke. A categorical semantics of quantum protocols. In Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS), pages 415–425. IEEE, 2004.

T. Altenkirch and J. Grattage. A functional quantum programming language. In Proceedings of the 20th Annual IEEE Symposium on Logic in Computer Science (LICS), pages 249–258. IEEE, 2005.

P. Arrighi and A. Díaz-Caro. A System F accounting for scalars. Logical Methods in Computer Science, 8(1:11), 2012.

P. Arrighi and G. Dowek. Lineal: a linear-algebraic lambda-calculus. Logical Methods in Computer Science, 13(1:8), 2017.

P. Arrighi, A. Díaz-Caro, and B. Valiron. The vectorial lambda-calculus. Information and Computation, 254(1):105–139, 2017.

A. Assaf, A. Díaz-Caro, S. Perdrix, C. Tasson, and B. Valiron. Call-by-value, call-by-name and the vectorial behaviour of the algebraic λ-calculus. Logical Methods in Computer Science, 10(4:8), 2014.

N. Benton. A mixed linear and non-linear logic: Proofs, terms and models. In L. Pacholski and J. Tiuryn, editors, Computer Science Logic (CSL 1994), volume 933 of Lecture Notes in Computer Science, pages 121–135. Springer, Berlin, Heidelberg, 1994.
A. Díaz-Caro and G. Dowek. Typing quantum superpositions and measurement. In Theory and Practice of Natural Computing (TPNC 2017), volume 10687 of Lecture Notes in Computer Science, pages 281–293. Springer, Cham, 2017.

A. Díaz-Caro and O. Malherbe. A concrete categorical semantics for Lambda-S. In B. Accattoli and C. Olarte, editors, Proceedings of the 13th Workshop on Logical and Semantic Frameworks with Applications (LSFA’18), volume 344 of Electronic Notes in Theoretical Computer Science, pages 83–100. Elsevier, 2019.

A. Díaz-Caro and O. Malherbe. A categorical construction for the computational definition of vector spaces. Applied Categorical Structures, 28(5):807–844, 2020.

A. Díaz-Caro and G. Martínez. Confluence in probabilistic rewriting. In S. Alves and R. Wassermann, editors, Proceedings of the 12th International Workshop on Logical and Semantic Frameworks with Applications (LSFA 2017), volume 338 of Electronic Notes in Theoretical Computer Science, pages 115–131. Elsevier, 2018.

A. Díaz-Caro and B. Petit. Linearity in the non-deterministic call-by-value setting. In L. Ong and R. de Queiroz, editors, Logic, Language, Information and Computation, volume 7456 of Lecture Notes in Computer Science, pages 216–231. Springer, Berlin, Heidelberg, 2012.

A. Díaz-Caro, G. Dowek, and J. Rinaldi. Two linearities for quantum computing in the lambda calculus. BioSystems, 186:104012, 2019a. ISSN 0303-2647. Postproceedings of TPNC 2017.

A. Díaz-Caro, M. Guillermo, A. Miquel, and B. Valiron. Realizability in the unitary sphere. In Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2019), pages 1–13, 2019b.

J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

M. Giry. A categorical approach to probability theory. In Categorical Aspects of Topology and Analysis, volume 915 of Lecture Notes in Mathematics, pages 68–85. Springer, 1982.

A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron. Quipper: a scalable quantum programming language. ACM SIGPLAN Notices (PLDI’13), 48(6):333–342, 2013.

S. Mac Lane. Categories for the Working Mathematician. Springer, 2 edition, 1998.

E. Moggi. Computational lambda-calculus and monads. Technical Report ECS-LFCS-88-66, Lab. for Foundations of Computer Science, University of Edinburgh, 1988.

M. Pagani, P. Selinger, and B. Valiron. Applying quantitative semantics to higher-order quantum computing. ACM SIGPLAN Notices (POPL’14), 49(1):647–658, 2014.

P. Selinger. Dagger compact closed categories and completely positive maps. In 3rd International Workshop on Quantum Programming Languages (QPL 2005), volume 170 of Electronic Notes in Theoretical Computer Science, pages 139–163, 2007.

P. Selinger and B. Valiron. A lambda calculus for quantum computation with classical control. Mathematical Structures in Computer Science, 16(3):527–552, 2006.

L. Vaux. The algebraic lambda calculus. Mathematical Structures in Computer Science, 19:1029–1059, 2009.

M. Zorzi. On quantum lambda calculi: a foundational perspective. Mathematical Structures in Computer Science, 26(7):1107–1195, 2016.

A. Detailed proofs

Proposition 3.19 (Independence of derivation). If $\Gamma \vdash t : A$ can be derived with two different derivations T and T', then $[T] = [T']$.
Proof. Without taking into account rules \(\Rightarrow_E, \Rightarrow_{ES}, \) and \(S_I \), the typing system is syntax directed. Hence, we give a rewrite system on trees such that each time a rule \(S_I \) can be applied before or after another rule, we choose a direction to rewrite the tree to one of these forms. Similarly, rules \(\Rightarrow_E \) and \(\Rightarrow_{ES} \), can be exchanged in few specific cases, so we also choose a direction for these.

Then, we prove that every rule preserves the semantics of the tree. This rewrite system is clearly confluent and normalizing, hence for each tree \(T \) we can take the semantics of its normal form, and so every sequent will have one way to calculate its semantics: as the semantics of the normal tree.

In order to define the rewrite system, we first analyse the typing rules containing only one premise, and check whether these rules allow for a previous and posterior rule \(S_I \). If both are allowed, we choose a direction for the rewrite rule. Then we continue with rules with more than one premise and check under which conditions a commutation of rules is possible, choosing also a direction.

Rules with one premise:

• Rule \(\alpha_l \):

\[
\begin{align*}
\Gamma \vdash t : SA & \quad s_j \\
\Gamma \vdash \alpha_l.t : SSA & \quad a_l \\
\hline
\Gamma \vdash t : SA & \quad a_l \\
\end{align*}
\]

(1)

• Rules \(S_E, \Rightarrow_I, \times_E, \times_I, \uparrow_I, \) and \(\uparrow_I \): These rules end with a specific types not admitting two \(S \) in the head position (i.e. \(B / \times S \mathbb{B}^{-1}, \Psi \Rightarrow A, \mathbb{B}, \mathbb{B}^{-1}, \) and \(S(\Psi \times \Phi) \)) hence removing an \(S \) or adding an \(S \) would not allow the rule to be applied, and hence, these rules followed or preceded by \(S_I \) cannot commute.

Rules with more than one premise:

• Rule \(+_I \):

\[
\begin{align*}
\Gamma, \Sigma & \vdash t : SA & \quad s_j & \quad \Delta, \Sigma \vdash r : SA & \quad s_f \\
\Gamma, \Sigma & \vdash t : SSA & \quad s_f & \quad \Delta, \Sigma \vdash u : SSA \\
\hline
\Gamma, \Delta, \Sigma & \vdash (t + u) : SSA & \quad +_I \\
\end{align*}
\]

(2)

• Rules \(\Rightarrow_E \) and \(\Rightarrow_{ES} \):

\[
\begin{align*}
\Delta, \Sigma & \vdash u : \Psi & \quad s_j & \quad \Gamma, \Sigma \vdash t : \Psi \Rightarrow A & \quad s_f \\
\Delta, \Sigma & \vdash u : S\Psi & \quad s_f & \quad \Gamma, \Sigma \vdash (t + u) : S(\Psi \Rightarrow A) & \quad \Rightarrow_{ES} \\
\hline
\Delta, \Gamma, \Sigma & \vdash tu : SA & \quad \Rightarrow_{ES} \\
\end{align*}
\]

(3)

• Rule \(\| \):

\[
\begin{align*}
\Gamma & \vdash t_i : A & \quad s_j & \quad \Sigma_i p_i = 1 \\
\Gamma & \vdash \{ t_i \} : SA & \quad \| \quad \Sigma_i p_i = 1 & \quad \| \\
\hline
\Gamma & \vdash \{ t_i \} : SA & \quad \| \quad \{ p_i \} : A & \quad s_f \\
\end{align*}
\]

(4)

• Rules \(\text{If and } \times_I \): these rules end with specific types not admitting two \(S \) in the head position (i.e. \(\mathbb{B} \Rightarrow A \) and \(\Psi \times \Phi \)), hence removing an \(S \) or adding an \(S \) would not allow the rule to be applied, and hence, these rules followed or preceded by \(S_I \) cannot commute.

The confluence of this rewrite system is easily inferred from the fact that there are no critical pairs. The normalization follows from the fact that the trees are finite and all the rewrite rules push the \(S_I \) to the root of the trees.

It only remains to check that each rule preserves the semantics.

• Rule (1): The following diagram gives the semantics of both trees (we only treat, without loss of generality, the case where \(A \neq S(A') \)). This diagram commutes by the naturality of \(\eta \).

\[
\begin{align*}
\Gamma & \Rightarrow t & \Rightarrow USA & \underleftarrow{USU\lambda} & \Rightarrow USU(SA \otimes I) & \underleftarrow{USU(\lambda \otimes \alpha)} & \Rightarrow USU(SA \otimes I) \\
\hline
U \lambda & \Rightarrow t & \Rightarrow USA & \underleftarrow{USU(\lambda \otimes \alpha)} & \Rightarrow USU(SA \otimes I) & \underleftarrow{USU(\lambda \otimes \alpha)} & \Rightarrow USU(SA \otimes I) \\
\end{align*}
\]
• Rule (2): The following diagram gives the semantics of both trees (we only treat, without lost of generality, the case where \(A \neq \Sigma A \)).

\[
\begin{array}{c}
\Gamma \times \Xi = \Delta \times \Xi \xrightarrow{t \times r} \text{USA} \times \text{USA} \quad \eta \xrightarrow{\Delta} \text{USA} \times \text{USA} \\
\quad \downarrow g_0 = \text{Id} \quad \downarrow g_1 \\
\Gamma \times \Delta \times \Xi \xrightarrow{t \times \eta} \text{USA} \times \text{USA} \quad \text{US} \eta \xrightarrow{\Delta} \text{USA} \times \text{USA} \\
\quad \downarrow + \end{array}
\]

This diagram commutes since the maps are as follows:

\((t, r) \xrightarrow{\eta \times \eta} (t, r) \xrightarrow{\delta} (t, r) \xrightarrow{(t, r) \eta} t + r \quad \text{and} \quad (t, r) \xrightarrow{\eta} t + r \eta + r\)

• Rule (3): The following diagram gives the semantics of both trees. The lower diagram with the dotted arrow commutes by the naturality of \(\eta \), and the upper diagram commutes because \(\eta \) is a monoidal natural transformation.

\[
\begin{array}{c}
\Delta \times \Xi \times \Gamma \times \Xi \xleftarrow{(\text{Id} \times \sigma \times \text{Id}) = (\text{Id} \times \delta)} \Delta \times \Gamma \times \Xi \\
\Psi \times \left[\left[\Psi, A \right] \right] \xrightarrow{\eta^2} \text{US} \Psi \times \text{US}(\left[\Psi, A \right]) \xrightarrow{n} U(\text{US} \Psi \otimes S(\left[\Psi, A \right])) \\
\quad \downarrow \eta^U \\
A \xrightarrow{\eta} \text{USA} \xleftarrow{\text{US} \eta^U} U\left(\left[\Psi, A \right] \right)
\end{array}
\]

• Rule (4): The following diagram gives the semantics of both trees.

\[
\begin{array}{c}
\Gamma \xrightarrow{\delta} \Gamma^n \xrightarrow{t_1 \times \ldots \times t_n} \left[\left[a_1, \ldots, a_n \right] \right] \xrightarrow{d(\pi_i)} \sum P_1 X_i \quad \text{and} \quad \left[\left[a_1, \ldots, a_n \right] \right] \xrightarrow{d(\pi_i)} \sum P_1 X_i \xrightarrow{\eta} \sum P_1 X_i \\
\quad \downarrow \text{DA} \quad \downarrow \text{DA} \\
\eta \xrightarrow{U(\text{US} \eta^U)} \text{USA} \quad \text{USA} = \text{DUSA}
\end{array}
\]

The mappings are as follows:

\[
(a_1, \ldots, a_n) \xrightarrow{\eta} (a_1, \ldots, a_n) \xrightarrow{d(\pi_i)} \sum P_1 X_i \quad \text{and} \quad (a_1, \ldots, a_n) \xrightarrow{d(\pi_i)} \sum P_1 X_i \xrightarrow{\eta} \sum P_1 X_i
\]

Lemma A.1. If \(\Gamma \vdash t : A \), then \(\Gamma, \Delta^B \vdash t : A \). Moreover, \(\left[\Gamma, \Delta^B \vdash t : A \right] = \left[\Gamma \vdash t : A \right] \circ (\text{Id} \times !) \).

Proof. A derivation of \(\Gamma \vdash t : A \) can be turned into a derivation \(\Gamma, \Delta^B \vdash t : A \) just by adding \(\Delta^B \) in its axioms’ contexts. Since \(FV(t) \cap \Delta^B = \emptyset \), we have \(\left[\Gamma, \Delta^B \vdash t : A \right] = \left[\Gamma \vdash t : A \right] \circ (\text{Id} \times !) \).

Lemma 3.21 (Substitution). If \(x : \Psi \vdash t : A \) and \(r : \Psi \), the following diagram commutes:

\[
\begin{array}{c}
1 \xrightarrow{(r/x)t} A \\
\quad \xrightarrow{r} \\
\Psi \xrightarrow{t} A
\end{array}
\]

That is, \(\left[\vdash (r/x)t : A \right] = \left[x : \Psi \vdash t : A \right] \circ \left[\vdash r : \Psi \right] \).

Proof. We prove, more generally, that if \(\Gamma', x : \Psi, \Gamma \vdash t : A \) and \(r : \Psi \), the following diagram commutes:

\[
\begin{array}{c}
\Gamma' \times \Gamma \xrightarrow{(r/x)t} A \\
\quad \downarrow \text{Id} \quad \downarrow \text{Id} \\
\Gamma' \times 1 \times \Gamma \xrightarrow{(r/x)t} \Gamma' \times \Psi \times \Gamma
\end{array}
\]

That is, \(\left[\Gamma', \Gamma \vdash (r/x)t : A \right] = \left[\Gamma', x : \Psi, \Gamma \vdash t : A \right] \circ (\text{Id} \times \left[\vdash r : \Psi \right] \times \text{Id}) \). Then, by taking \(\Gamma = \Gamma' = \emptyset \), we get the result stated by the lemma.

We proceed by induction on the derivation of \(\Gamma', x : \Psi, \Gamma \vdash t : A \). In this proof, we write \(d = (\text{Id} \times \sigma \times \text{Id}) \circ (\text{Id} \times \delta) \). Also, we take the rules \(\alpha \) and \(+I \) with \(m = 1 \), the generalization is straightforward.
\footnotesize
By Lemma A.1, $\boxplus_1 = \boxplus_A \circ \cdot$. Hence,

\[\Delta^B, x : \Psi \vdash x : \Psi \]

\[\begin{array}{c}
\Delta^B \xrightarrow{t} 1 \xrightarrow{r} \Psi \\
\downarrow \quad \downarrow \\
\Delta^B \times 1 \xrightarrow{\text{Id} \times r} \Delta^B \times \Psi
\end{array} \]

This diagram commutes by the naturality of the projection.

\[\Delta^B, x : B_n \vdash \vec{0} : \text{SA} \]

\[\begin{array}{c}
\Delta^B \xrightarrow{\text{Id} \times r} \Delta^B \times B_n \\
\downarrow \quad \downarrow \\
\Delta^B \times 1 \xrightarrow{\text{Id} \times r} \Delta^B \times B_n
\end{array} \]

This diagram commutes by the naturality of the projection.

• The cases $\Delta^B, x : B_n \vdash 0 : B$ and $\Delta^B, x : B_n \vdash 1 : B$ are analogous to the previous case.

\[\Gamma', x : \Psi, \Gamma \vdash t : A \]

\[\begin{array}{c}
\Gamma' \times \Gamma \xrightarrow{(r/s)t} \text{SA} \xrightarrow{U(\lambda)} U(\text{SA} \otimes I) \xrightarrow{U(\text{Id} \otimes u)} U(\text{SA} \otimes I) \xrightarrow{U(\lambda^{-1})} \text{SA} \\
\downarrow \quad \downarrow \quad \downarrow \\
\Gamma' \times 1 \times \Gamma \xrightarrow{\text{Id} \times r \times \text{Id}} \Gamma' \times \Psi \times \Gamma
\end{array} \]

This diagram commutes by the induction hypothesis.

\[\Gamma', x : \Psi, \Gamma, \Delta, \Xi^B \vdash t : A \quad \Delta, \Xi^B \vdash u : \text{SA} \]

\[\begin{array}{c}
\Gamma' \times \Delta \times \Xi^B \xrightarrow{\delta \times r \times u} \Gamma' \times \Psi \times \Delta \times \Xi^B \\
\downarrow \quad \downarrow \\
\Gamma' \times 1 \times \Delta \times \Xi^B \xrightarrow{\text{Id} \times r \times \text{Id}} \Gamma' \times \Psi \times \Delta \times \Xi^B \xrightarrow{\lambda} \Gamma' \times \Psi \times \Gamma \times \Xi^B \times \Delta \times \Xi^B
\end{array} \]

This diagram commutes by the induction hypothesis.

If $x \in \text{FV}(u)$ or $x \in \text{FV}(u) \cap \text{FV}(t)$ the cases are analogous.

\[\Gamma', x : \Psi, \Gamma \vdash t : A \]

\[\begin{array}{c}
\Gamma' \times \Gamma \xrightarrow{(r/s)t} A \xrightarrow{\eta} \text{SA} \\
\downarrow \quad \downarrow \\
\Gamma' \times 1 \times \Gamma \xrightarrow{\text{Id} \times r \times \text{Id}} \Gamma' \times \Psi \times \Gamma
\end{array} \]

This diagram commutes by the induction hypothesis.
\[
\Gamma', x : \Psi, \Gamma \vdash \pi : B \times S^B
\]

\[
\Gamma', x : \Psi, \Gamma \vdash \pi : B \times S^B \quad \Rightarrow \quad \Delta, \Xi^B : \Phi \vdash u : \Phi
\]

This diagram commutes by the induction hypothesis.

\[
\Gamma', x : \Psi, \Gamma \vdash : A
\]

\[
\Gamma', x : \Psi, \Gamma \vdash \gamma : B \Rightarrow A
\]

\[
\Gamma' \times \Gamma \xrightarrow{(r/s)} [B, A] \quad \Gamma' \times \Psi \times \Gamma \xrightarrow{\eta^\Phi} [\Phi, \Gamma' \times \Psi \times \Gamma \times \Phi]
\]

where \((r/s)G = \text{curry}((\text{uncurry}(f_{r/s}) \circ \text{swap})) \circ \text{swap})\) and \(G = \text{curry}(\text{uncurry}(f_{r/s}) \circ \text{swap})\).

By the induction hypothesis, \((r \times \text{id}) \circ t = (r/s)\) and \((r \times \text{id}) \circ s = (r/s)s\), hence \((r \times \text{id}) \circ f_{r,s} = f_{r/x} \circ (r/s)s\) and so \((r/x)G = (r \times \text{id}) \circ G\), which makes the diagram commute.

\[
\Delta, \Xi^B : \Phi \vdash u : \Phi
\]

\[
\Delta, \Delta', x : \Psi, \Delta \vdash t : \Phi \Rightarrow A
\]

This diagram commutes by the induction hypothesis and the functoriality of \([\Phi, -]\), while the lower part commutes by the naturality of \(\eta^\Phi\).

\[
\Delta', x : \Psi, \Delta \vdash : A
\]

\[
\Delta', x : \Psi, \Delta \vdash : A
\]

Analogous to previous case.
\[\Delta, \Xi^B \vdash u : S \Phi\]
\[\Delta', x : \Psi, \Gamma, \Xi^B \vdash t : S(\Phi \Rightarrow A)\]
\[\Delta, \Gamma', x : \Psi, \Gamma, \Xi^B \vdash tu : SA\]
\[\Delta \times \Gamma' \times \Gamma \times \Xi^B \quad \xrightarrow{\Delta \times 1 \times \Gamma \times \Xi^B} \quad \Delta \times \Gamma' \times \Psi \times \Gamma \times \Xi^B\]
\[\Delta \times 1 \times \Gamma \times \Xi^B \quad \xrightarrow{u \times (r/s)t} \quad US\Phi \times US[\Phi, A] \quad \xrightarrow{\text{functoriality of the product}} \quad \Delta \times \Xi^B \times \Gamma' \times \Psi \times \Gamma \times \Xi^B\]
\[U(S\Phi \otimes S[\Phi, A]) \quad \xrightarrow{n \times \text{functoriality}} \quad US(\Phi \times [\Phi, A]) \quad \xrightarrow{t\text{/functoriality}} \quad USA\]

This diagram commutes by the induction hypothesis and the functoriality of the product.

\[\Delta', x : \Psi, \Delta, \Xi^B \vdash u : S \Phi\]
\[\Delta' \vdash x : \Phi\]
\[\Delta' \vdash x : \Psi, \Delta, \Xi^B \mid tu : SA\]

Analogous to previous case.

\[\Gamma', x : \Psi, \Gamma, \Xi^B \vdash t : \Phi\]
\[\Delta, \Xi^B \vdash u : \Psi\]
\[\Gamma' \times \Gamma \times \Xi^B \quad \xrightarrow{d} \quad \Gamma' \times \Xi^B \times \Delta \times \Xi^B \quad \xrightarrow{(r/s)\times u} \Phi \times \Gamma\]
\[\Gamma \times 1 \times \Gamma \times \Xi^B \quad \xrightarrow{\text{functoriality}} \quad \Gamma' \times \Psi \times \Gamma \times \Xi^B \quad \xrightarrow{d} \quad \Gamma' \times \Psi \times \Gamma \times \Xi^B \times \Delta \times \Xi^B\]

This diagram commutes by the induction hypothesis and coherence results.

\[\Gamma, \Xi^B \vdash t : \Phi\]
\[\Delta' \vdash x : \Psi, \Delta, \Xi^B \mid tu : \Phi \times \Gamma\]

Analogous to previous case.

\[\Gamma' \times \Gamma \mid r : \Xi^B\]
\[\Gamma' \vdash r : \Phi\]
\[\Gamma' \vdash r : \Psi, \Gamma, \Xi^B\]
\[\Gamma' \times \Gamma \times \Xi^B \quad \xrightarrow{(r/s)t} \quad \Xi^B \quad \text{head} \quad \Xi^B\]
\[\Gamma' \times 1 \times \Gamma \quad \xrightarrow{\text{functoriality}} \quad \Gamma' \times \Psi \times \Gamma\]

This diagram commutes by the induction hypothesis.

\[\Gamma' \vdash r : \Xi^B\]
\[\Gamma' \vdash r : \Phi\]
\[\Gamma' \vdash r : \Psi, \Gamma, \Xi^B\]
\[\Gamma' \times \Gamma \times \Xi^B \quad \xrightarrow{(r/s)t} \quad \Xi^B \quad \text{tail} \quad \Xi^B\]
\[\Gamma' \times 1 \times \Gamma \quad \xrightarrow{\text{functoriality}} \quad \Gamma' \times \Psi \times \Gamma\]

This diagram commutes by the induction hypothesis.

\[\Gamma' \vdash r : \Xi^B\]
\[\Gamma' \vdash r : \Phi\]
\[\Gamma' \vdash r : \Psi, \Gamma, \Xi^B\]
\[\Gamma' \times \Gamma \times \Xi^B \quad \xrightarrow{(r/s)t} \quad \Xi^B \quad \text{tail} \quad \Xi^B\]
\[\Gamma' \times 1 \times \Gamma \quad \xrightarrow{\text{functoriality}} \quad \Gamma' \times \Psi \times \Gamma\]

This diagram commutes by the induction hypothesis.
This diagram commutes by the induction hypothesis.

- \(\Gamma', x : \Psi, \Gamma \vdash t : S(\Phi \times S(\Upsilon)) \)
- \(\Gamma' \times x : \Psi, \Gamma \vdash \Gamma' : S(\Phi \times S(\Upsilon)) \)

This diagram commutes by the induction hypothesis.

Theorem 3.22 (Soundness). If \(\vdash t : A \), and \(t \rightarrow r \), then \(\vdash t : A \) = \(\vdash r : A \).

Proof. By induction on the rewrite relation, using the first derivable type for each term. We take the rules \(c_0 \) and \(+_t \) with \(m = 1 \), the generalization is straightforward.

- (comm) \((t + r) = (r + t)\). We have

\[
\begin{align*}
\vdash t : SA &\quad \vdash r : SA \\
\vdash (t + r) : SA &\quad \vdash (r + t) : SA
\end{align*}
\]

Then

\[
1 \xrightarrow{r \times t} I^2 \xrightarrow{\text{Id}} SA^2 \xrightarrow{\text{Id}} SA \times SA \xrightarrow{+} SA
\]

This diagram commutes by the commutativity of sum in SA as vector space.

- (assoc) \((t + r) + s = (t + (r + s))\). We have

\[
\begin{align*}
\vdash t : SA &\quad \vdash r : SA \\
\vdash (t + r) : SA &\quad \vdash s : SA \\
\vdash (t + (r + s)) : SA
\end{align*}
\]

Then

\[
1 \xrightarrow{r \times s} I^3 \xrightarrow{\text{Id} \times s} SA^3 \xrightarrow{\text{Id} \times g_0} SA^3 \xrightarrow{\text{Id} \times +} SA^2 \xrightarrow{+} SA
\]

This diagram commutes by the associativity of sum in SA as vector space.
• \((\beta_b)\) If \(b\) has type \(B^n\) and \(b \in B\), then \((\lambda x:B^n \cdot t)\beta \rightarrow (b/x)t\). We have

\[
\frac{x:B^n \vdash t:A}{\vdash (\lambda x:B^n \cdot t)\beta:B^n \Rightarrow A} \quad \text{and} \quad \vdash (b/x)t:A
\]

Then

\[
\begin{array}{c}
1^2 \xrightarrow{b \times \eta^n} B^n \times [B^n, 1 \times B^n] \approx B^n \times [B^n, B^n] \xrightarrow{\text{id} \times [\text{id}, t]} B^n \times [B^n, A] \\
\end{array}
\]

This diagram commutes using Lemma 3.21.

• \((\beta_u)\) If \(u\) has type \(S\Psi\), then \((\lambda x:S\Psi \cdot t)u \rightarrow (u/x)t\). We have

\[
\frac{x:S\Psi \vdash t:A}{\vdash (\lambda x:S\Psi \cdot t)\beta:S\Psi \Rightarrow A} \quad \text{and} \quad \vdash (b/x)t:A
\]

Then

\[
\begin{array}{c}
1^2 \xrightarrow{u \times \eta^{S\Psi}} U\Psi \times [U\Psi, 1 \times U\Psi] \approx U\Psi \times [U\Psi, U\Psi]\xrightarrow{[\text{id}, \text{id}, t]} U\Psi \times [\Psi, A] \\
\end{array}
\]

This diagram commutes using Lemma 3.21.

• \((\text{lin}_n^u)\) If \(t\) has type \(B^n \Rightarrow A\), then \(t(u + v) \rightarrow tu + tv\). We have

\[
\frac{\vdash t:B^n \Rightarrow A}{\vdash t(S(B^n) \Rightarrow A)} \quad \frac{\vdash u:S\bar{B}^n}{\vdash u + v:S\bar{B}^n} \quad \vdash t(u + v):SA
\]

and

\[
\frac{\vdash t:B^n \Rightarrow A}{\vdash t(S(B^n) \Rightarrow A)} \quad \frac{\vdash u:S\bar{B}^n}{\vdash u + v:S\bar{B}^n} \quad \vdash t(v + v):SA
\]

\[
\frac{USB^n \times US([B^n, A]) \xrightarrow{n} U(SB^n \otimes S([B^n, A]))}{+\times 1d} \quad \frac{U(S\bar{B}^n) \times US([B^n, A])}{U(m)} \xrightarrow{US(e^n)} USA \quad \xrightarrow{n}
\]

\[
\begin{array}{c}
1^3 \xrightarrow{u \times \Psi^n} (USB^n \times [B^n, A]) \xrightarrow{n^0 \times \eta^0} (US\bar{B}^n \times [B^n, A]) \xrightarrow{U(m)^2} USA^2 \xrightarrow{n^0^2}
\end{array}
\]

\[
\begin{array}{c}
1^4 \xrightarrow{u \times \Psi^n \times \Psi^n} (US\bar{B}^n \times [B^n, A]) \xrightarrow{n} (US\bar{B}^n \times US([B^n, A]))^2 \xrightarrow{[\text{id}, \eta]^2} (US\bar{B}^n \times US([B^n, A]))^2
\end{array}
\]
The mappings are as follows:

\(\ast \mapsto (\ast, \ast) \mapsto (u, v, t) \mapsto (u, v, t) \mapsto (u + v, t) \mapsto (u + v) \otimes t = u \otimes t + v \otimes t \mapsto (u, t) + (v, t) \mapsto (u, t) + (v, t) \)

\(\ast \mapsto (\ast, \ast) \mapsto (u, v, t) \mapsto (u, v, t) \mapsto (u \otimes v, t) \mapsto (u, t, v, t) \mapsto (t(u), t(v)) \mapsto t(u) + t(v) \)

- \((\text{lin}_n^0)\) If \(t \) has type \(\mathbb{B}^n \Rightarrow A \), then \(t(\alpha, u) \mapsto \alpha(tu) \).

We have:

\[
\begin{array}{c}
\vdash t : \mathbb{B}^n \Rightarrow A \\
\vdash u : \mathbb{S} \mathbb{B}^n \\
\vdash t(\alpha, u) : \mathbb{S} \\
\end{array} \quad \text{and} \quad \begin{array}{c}
\vdash t : \mathbb{B}^n \Rightarrow A \\
\vdash u : \mathbb{S} \mathbb{B}^n \\
\vdash tu : \mathbb{S} \\
\vdash \alpha(tu) : \mathbb{S} \\
\end{array}
\]

Then

\[
U(\mathbb{S} \mathbb{B}^n \otimes I) \times U(\mathbb{S} \mathbb{B}^n, A) \xrightarrow{U(\text{id} \otimes \alpha) \times \text{id}} U(\mathbb{S} \mathbb{B}^n \otimes I) \times U(\mathbb{S} \mathbb{B}^n, A) \xrightarrow{U \lambda^{-1} \times \text{id}} U \mathbb{S} \mathbb{B}^n \times U \mathbb{S} \mathbb{B}^n, A]
\]

\[
U(\mathbb{S} \mathbb{B}^n \otimes I) \xrightarrow{U \lambda^{-1}} U \mathbb{S} \mathbb{B}^n
\]

The mappings are as follows:

\((\ast, \ast) \mapsto (u, t) \mapsto (u \otimes 1, t) \mapsto (u \otimes \alpha, t) \mapsto (\alpha, u, t) \mapsto \alpha(u, t) \mapsto \alpha \otimes t = \alpha \otimes t \mapsto \alpha \otimes \alpha \mapsto \alpha \otimes \alpha \)

\((\ast, \ast) \mapsto (u, t) \mapsto (u, t) \mapsto u \otimes t \mapsto (u, t) \mapsto t(u) \mapsto t(u) \otimes 1 \mapsto t(u) \otimes \alpha \mapsto \alpha(t(u)) \)

- \((\text{lin}_n^0)\) If \(t \) has type \(\mathbb{B}^n \Rightarrow A \), then \(t \bar{\alpha} \mathbb{S} \mathbb{B}^n \mapsto \bar{\alpha} \mathbb{S} A \). We have:

\[
\begin{array}{c}
\vdash t : \mathbb{B}^n \Rightarrow A \\
\vdash t : \mathbb{S} \mathbb{B}^n \Rightarrow A \\
\vdash \bar{t} : \mathbb{S} \mathbb{B}^n \\
\vdash \bar{t} : \mathbb{S} \\
\end{array} \quad \text{and} \quad \begin{array}{c}
\vdash \bar{t} : \mathbb{S} \mathbb{B}^n \\
\vdash \bar{t} : \mathbb{S} \\
\vdash \bar{t} : \mathbb{S} \\
\end{array}
\]

Then

\[
U \mathbb{B}^n \times \mathbb{B}^n, A \xrightarrow{\text{id} \times \eta} U \mathbb{B}^n \times U \mathbb{B}^n, A \xrightarrow{\eta} U \mathbb{B}^n, A \\
U \mathbb{B}^n \times \mathbb{B}^n, A \xrightarrow{U(\text{id} \otimes \alpha)} U \mathbb{B}^n \times \mathbb{B}^n, A \xrightarrow{U \lambda} U \mathbb{B}^n
\]

The mappings are as follows:

\((\ast, \ast) \mapsto (0, t) \mapsto (0, t) \mapsto 0 \otimes t = 0 \mapsto 0 \mapsto \bar{0} \mapsto \bar{0} \mapsto \bar{0} \)

\(\ast \mapsto \bar{0} \)

26
• \((\text{lin}_7)^* (t + u)v \rightarrow (tv + uv)\). We have

\[
\begin{align*}
\vdash t : S(\Psi \Rightarrow A) & \vdash u : S(\Psi \Rightarrow A) \\
\vdash (t + u) : S(\Psi \Rightarrow A) & \vdash v : S\Psi \\
\vdash (t + u)v : S\Psi
\end{align*}
\]

and

\[
\begin{align*}
\vdash t : S(\Psi \Rightarrow A) & \vdash v : S\Psi \\
\vdash u : S(\Psi \Rightarrow A) & \vdash v : S\Psi \\
\vdash tv : S\Psi & \vdash uv : S\Psi
\end{align*}
\]

Then

\[
\begin{align*}
US\Psi \times US([\Psi, A])^2 & \xrightarrow{\text{Id} \times [\text{m}]} US\Psi \times US([\Psi, A])^2 & \xrightarrow{\text{Id} \times \varepsilon} US\Psi \times US([\Psi, A]) \\
\xrightarrow{\text{v} \times \text{t} \times \text{u}} & n & \downarrow U(m)
\end{align*}
\]

The mappings are as follows:

\[
* \mapsto (*, *, *) \mapsto (v, t, u) \mapsto (v, t, u) \mapsto (v \otimes t + u) = v \otimes (t + u) \mapsto v + u \rightarrow (tv) + u(v)
\]

\[
* \mapsto (*, *, *) \mapsto (v, t, u) \mapsto (v \otimes t, v \otimes u) \mapsto (v, t, u) \mapsto (tv, u(v)) \mapsto t(v) + u(v)
\]

• \((\text{lin}_7)^* (\alpha.t)u \rightarrow \alpha.(tu)\). We have

\[
\begin{align*}
\vdash t : S(\Psi \Rightarrow A) & \vdash u : S\Psi \\
\vdash (\alpha.t)u : S\Psi & \vdash u : S\Psi \\
\vdash (\alpha.t)u : S\Psi
\end{align*}
\]

Then

\[
\begin{align*}
US\Psi \times U(S([\Psi, A] \otimes I)) & \xrightarrow{\text{Id} \times U(\lambda^{-1})} US\Psi \times US([\Psi, A]) & n & \downarrow U(m) \\
\xrightarrow{\text{Id} \times \text{Id} \otimes \alpha} & \downarrow U(\lambda) \\
US\Psi \times U(S([\Psi, A] \otimes I)) & US\Psi \times [\Psi, A] & \downarrow U(\lambda) & \text{SA} \\
\xrightarrow{\text{Id} \times U(\lambda)} & \downarrow \varepsilon \Psi \\
US\Psi \times US([\Psi, A]) & US(\Psi \otimes I) & \downarrow \varepsilon \Psi & \text{SA} \\
\xrightarrow{u \times I} & \downarrow \alpha \\
1^2 & 1^2 & \downarrow \alpha \\
\xrightarrow{u \times I} & \downarrow \varepsilon \Psi
\end{align*}
\]

\]
The mappings are as follows:

\[(\ast, \ast) \mapsto (u, t) \mapsto (u, t \otimes 1) \mapsto (u, \alpha t) \mapsto \alpha_t \mapsto u, \alpha_t(u) \mapsto \alpha_t(u) \]

- \((\ast, \ast) \mapsto (u, t) \mapsto u \otimes t \mapsto (u, t) \mapsto t(u) \otimes 1 \mapsto t(u) \otimes \alpha \mapsto \alpha_t(u) \)

\[(\ast, \ast) \mapsto (u, t) \mapsto u \otimes t = 0 \mapsto 0 \mapsto 0 \]

- \((\ast, \ast) \mapsto (t, \vec{0}) \mapsto t \otimes \vec{0} = \vec{0} \mapsto \vec{0} \mapsto \vec{0} \)

\[(\Head) \mid 1 \parallel ? \cdot r \mapsto t. \text{ We have} \]

\[
\frac{\vdash t : A \quad \vdash r : A}{\vdash \parallel ? \cdot r : A} \quad \text{and} \quad \frac{\vdash t : A}{\vdash : A}
\]

Then

\[
\begin{array}{ccc}
US\mathbb{B}^n \times US([\mathbb{B}^n, A]) & \overset{n}{\longrightarrow} & U(S\mathbb{B}^n \otimes S([\mathbb{B}^n, A])) \\
\downarrow \scriptstyle{\lambda x \cdot \vec{0}} & & \downarrow \scriptstyle{U(m)} \\
\approx & & \\
\equiv & & \\
1 & \mapsto \hat{0} & \longrightarrow USA
\end{array}
\]

The mappings are as follows:

\[(\ast, \ast) \mapsto (t, \vec{0}) \mapsto t \otimes 0 = 0 \mapsto 0 \mapsto 0 \]

\[(\ast) \mapsto \vec{0} \]

- \((\Head) \mid 1 \parallel ? \cdot r \mapsto t. \text{ We have} \]

\[
\frac{\vdash t : A \quad \vdash r : A}{\vdash \parallel ? \cdot r : A} \quad \text{and} \quad \frac{\vdash t : A}{\vdash : A}
\]

Then

\[
\begin{array}{ccc}
\mid 1 \parallel ? \cdot r & \mapsto 1 \times \parallel \Curry(\Uncurry(f, r) \cdot \text{swap}) & \mapsto \mathbb{B} \times [\mathbb{B}, A] \\
\downarrow \scriptstyle{\lambda x \cdot [1]} & & \downarrow \scriptstyle{e} \\
1 & \mapsto t & \longrightarrow A
\end{array}
\]

Notice that \(\Curry(\Uncurry(f, r) \cdot \text{swap})\) transforms the arrow \(\mathbb{B} \overset{f, r}{\longrightarrow} [1, A]\) (which is the arrow \(\mid 0 \parallel r, \mid 1 \parallel t\)) into an arrow \(1 \rightarrow [\mathbb{B}, A]\), and hence, \([1] \times \Curry(\Uncurry(f, r) \cdot \text{swap}) \circ e = t\).

- \((\Head)\) Analogous to \((\Head)\).

- \((\Head)\) If \(h \neq u \times v, \text{ and } h \in \mathbb{B}, \text{ head } h \times t \longrightarrow h. \text{ We have} \]

\[
\frac{\vdash h : \mathbb{B} \quad \vdash t : \mathbb{B}^{-1}}{\vdash h \times t : \mathbb{B}^{\mathbb{B}} \quad \text{and} \quad \vdash : \mathbb{B}}
\]

Then

\[
\begin{array}{ccc}
h \times t & \mapsto \mathbb{B}^{\mathbb{B}} \\
\downarrow \scriptstyle{\parallel} & & \\
1 & \mapsto \Head h & \longrightarrow \mathbb{B}
\end{array}
\]

This diagram commutes since \(\Head\) is just the projection \(\pi_\mathbb{B}\).
• (tail) If \(h \neq u \times v \), and \(h \in B \), \(\text{tail} \ h \times t \rightarrow t \). We have

\[
\frac{\vdash h : B \quad \vdash t : B^{n-1}}{\vdash h \times t : B^n} \quad \text{and} \quad \vdash t : B^{n-1}
\]

Then

\[
\begin{array}{ccc}
I^2 & \overset{h \times t}{\longrightarrow} & B^n \\
\downarrow & & \downarrow \text{tail} \\
1 & \overset{t}{\longrightarrow} & B^{n-1}
\end{array}
\]

This diagram commutes since \(\text{tail} \) is just the projection \(\pi_{B^{n-1}} \).

• (neutral) \((\vec{0}_A + t) \rightarrow t \). We have

\[
\frac{\vdash \vec{0}_A : SA \quad \vdash t : SA}{\vdash \vec{0}_A + t : SA} \quad \text{and} \quad \vdash t : SA
\]

Then

\[
\begin{array}{ccc}
1^2 & \overset{\vec{0}_A + t}{\longrightarrow} & US A^2 \\
\downarrow & \overset{\eta}{\longrightarrow} & \downarrow U(\lambda) \\
1 & \overset{t}{\longrightarrow} & US A
\end{array}
\]

The mappings are as follows:

\(* \mapsto (\ast, \ast) \rightarrow (\vec{0}, t) \rightarrow (\vec{0}, t) \rightarrow t \)
\(* \mapsto t \)

• (unit) \(1.t \rightarrow t \). We have

\[
\frac{\vdash t : SA}{\vdash 1.t : SA} \quad \text{and} \quad \vdash t : SA
\]

Then

\[
\begin{array}{ccc}
US A & \overset{U(\lambda)}{\longrightarrow} & U(SA \otimes I) \\
\downarrow & & \downarrow U(Id \otimes 1) \\
1 & \overset{t}{\longrightarrow} & US A
\end{array}
\]

The mappings are as follows:

\(* \mapsto t \mapsto t \otimes 1 \mapsto t \otimes 1 \mapsto 1.t = t \)
\(* \mapsto t \)

• (zero) Cases:

- If \(t : A \) with \(A \in \mathcal{B} \), \(0.t \rightarrow \vec{0}_A \). We have

\[
\frac{\vdash t : A}{\vdash t : SA} \quad \text{and} \quad \vdash \vec{0}_A : SA
\]

Then

\[
\begin{array}{ccc}
A & \overset{\eta}{\longrightarrow} & US A \\
\downarrow & \overset{U(\lambda)}{\longrightarrow} & U(SA \otimes I) \\
1 & \overset{\hat{\delta}}{\longrightarrow} & US A
\end{array}
\]

29
The mappings are as follows:

\[
\begin{align*}
\ast & \mapsto t \\
\ast & \mapsto 0
\end{align*}
\]

- If \(t : SA \) and \(t \not\in A \), \(t = 0 \mapsto \vec{0}_{SA} \). We have

\[
\begin{align*}
\vdash t : SA \\
\vdash 0 : SA \\
\vdash \vec{0}_{SA} : SA
\end{align*}
\]

Then

\[
\begin{array}{c}
\text{USA} \\
\downarrow U(\lambda) \\
\vec{0}
\end{array} \quad \begin{array}{c}
U(\lambda) \\
\downarrow U((\text{Id} \otimes 0)) \\
\vec{0}\end{array} \quad \begin{array}{c}
U(\lambda^{-1}) \\
\downarrow U((\text{Id} \otimes \alpha)) \\
\text{USA}
\end{array}
\]

The mappings are as follows:

\[
\begin{align*}
\ast & \mapsto t \otimes 1 \\
\ast & \mapsto \vec{0}
\end{align*}
\]

• (zero) \(\alpha \vec{0}_{SA} \mapsto \vec{0}_{SA} \). We have

\[
\begin{align*}
\vdash \vec{0}_{SA} : SA \\
\vdash \alpha \vec{0}_{SA} : SA \\
\vdash \vec{0}_{SA} : SA
\end{align*}
\]

Then

\[
\begin{array}{c}
\text{USA} \\
\downarrow U(\lambda) \\
\vec{0}
\end{array} \quad \begin{array}{c}
U(\lambda) \\
\downarrow U((\text{Id} \otimes \alpha)) \\
\vec{0}
\end{array} \quad \begin{array}{c}
U(\lambda^{-1}) \\
\downarrow U((\text{Id} \otimes \beta)) \\
\text{USA}
\end{array}
\]

The mappings are as follows:

\[
\begin{align*}
\ast & \mapsto 0 \otimes 1 \\
\ast & \mapsto 0
\end{align*}
\]

• (prod) \(\alpha(\beta, t) \mapsto (\alpha\beta, t) \). We have

\[
\begin{align*}
\vdash \vec{0}_{SA} : SA \\
\vdash \alpha \vec{0}_{SA} : SA \\
\vdash \vec{0}_{SA} : SA
\end{align*}
\]

Then

\[
\begin{array}{c}
\text{USA} \\
\downarrow U(\lambda) \\
\vec{0}
\end{array} \quad \begin{array}{c}
U(\lambda) \\
\downarrow U((\text{Id} \otimes \alpha)) \\
\vec{0}
\end{array} \quad \begin{array}{c}
U(\lambda^{-1}) \\
\downarrow U((\text{Id} \otimes \beta)) \\
\text{USA}
\end{array}
\]

The mappings are as follows:

\[
\begin{align*}
\ast & \mapsto t \otimes 1 \\
\ast & \mapsto (\alpha, \beta) \\
\ast & \mapsto (\alpha, \beta)
\end{align*}
\]
• (αdist) \(α.(t+u) \rightarrow α.t + α.u \). We have

\[
\frac{\vdash t : SA}{\vdash t : SA} \quad \frac{\vdash u : SA}{\vdash u : SA} \quad \frac{\vdash t + u : SA}{\vdash t + u : SA} \quad \frac{\vdash α.t : SA}{\vdash α.t : SA} \quad \frac{\vdash α.u : SA}{\vdash α.u : SA}
\]

Then

\[
\begin{array}{cccc}
\text{USA}^2 & \rightarrow & \text{USA} & \rightarrow \text{USA} \\
\uparrow & \quad \uparrow & \quad \uparrow & \quad \uparrow \\
\text{USA}^2 & \rightarrow & \text{USA} & \rightarrow \text{USA} \\
\uparrow & \quad \uparrow & \quad \uparrow & \quad \uparrow \\
1^2 & \rightarrow & 1 & \rightarrow 1 \\
\Rightarrow & \quad \Rightarrow & \quad \Rightarrow & \quad \Rightarrow \\
U(\text{SA} \otimes I) & \rightarrow & U(\text{SA} \otimes I) & \rightarrow U(\text{SA} \otimes I)
\end{array}
\]

The mappings are as follows:

\((t,u) \mapsto t + u \mapsto (t + u) \otimes 1 \mapsto (t + u) \otimes α \mapsto α.t + α.u\)

\((t,u) \mapsto t \otimes 1 \otimes 1 \mapsto (t \otimes α, u \otimes α) \mapsto (α.t, α.u) \mapsto α.t + α.u\)

• (fact) \((α.t + β.t) \rightarrow (α + β).t\). We have

\[
\frac{\vdash t : SA}{\vdash t : SA} \quad \frac{\vdash t : SA}{\vdash t : SA} \quad \frac{\vdash t : SA}{\vdash t : SA} \quad \frac{\vdash t : SA}{\vdash t : SA}
\]

Then

\[
\begin{array}{cccc}
\text{USA}^2 & \rightarrow & \text{USA} & \rightarrow \text{USA} \\
\uparrow & \quad \uparrow & \quad \uparrow & \quad \uparrow \\
\text{USA}^2 & \rightarrow & \text{USA} & \rightarrow \text{USA} \\
\uparrow & \quad \uparrow & \quad \uparrow & \quad \uparrow \\
1^2 & \rightarrow & 1 & \rightarrow 1 \\
\Rightarrow & \quad \Rightarrow & \quad \Rightarrow & \quad \Rightarrow \\
U(\text{SA} \otimes I) & \rightarrow & U(\text{SA} \otimes I) & \rightarrow U(\text{SA} \otimes I)
\end{array}
\]

The mappings are as follows:

\(* \mapsto (*,*) \mapsto (t,t) \mapsto (t \otimes 1, t \otimes 1) \mapsto (t \otimes α, t \otimes β) \mapsto (α.t, β.t) \mapsto (α.t, β.t) \mapsto (α + β).t\)

\(* \mapsto t \mapsto t \otimes 1 \mapsto t \otimes (α + β) \mapsto (α + β).t\)

• (fact\(^1\)) \((α.t + t) \rightarrow (α + 1).t\). We have

\[
\frac{\vdash t : SA}{\vdash t : SA} \quad \frac{\vdash t : SA}{\vdash t : SA} \quad \frac{\vdash t : SA}{\vdash t : SA}
\]

Then

31
The mappings are as follows:

\[(*, *) \mapsto (t, t) \mapsto (t \otimes 1, t) \mapsto (t \otimes \alpha, t) \mapsto (\alpha, t) \mapsto (\alpha + 1, t) \]

\[* \mapsto t \mapsto g_0 \]

* (fact\(^2\)) \((t + t) \mapsto 2.t \). We have

\[\vdash t : S \Psi \quad \vdash (t + t) : S \Psi \quad \text{and} \quad \vdash t : S \Psi \quad \vdash 2.t : S \Psi \]

Then

\[1^2 \xrightarrow{t \times t} U(S \Psi \otimes I) \xrightarrow{g_0} U(S \Psi \otimes I) \]

The mappings are as follows:

\[* \mapsto (\alpha, \alpha) \mapsto (t, t) \mapsto (t \otimes 1, t) \mapsto (t \otimes \alpha, t) \mapsto (\alpha, t) \mapsto (\alpha + 1, t) \]

\[* \mapsto t \mapsto t \otimes 1 \mapsto t \otimes (\alpha + 1) \mapsto (\alpha + 1, t) \]

* (dist\(^+\)) \((r + s) \times u \mapsto \Gamma_r (r \times u) + \Gamma_r (s \times u) \).

We have

\[\vdash r : S \Psi \quad \vdash s : S \Psi \quad \vdash u : \Phi \quad \vdash (r + s) \times u : S \Psi \times \Phi \quad \vdash (r + s) \times u : S \Psi \times \Phi \]

\[\vdash r \times u : S \Psi \times \Phi \quad \vdash s \times u : S \Psi \times \Phi \quad \vdash (r \times u) : S \Psi \times \Phi \]

\[\vdash (r \times u) : S \Psi \times \Phi \quad \vdash s \times u : S \Psi \times \Phi \]

Then

\[\vdash \Gamma_r (r \times u) : S \Psi \times \Phi \quad \vdash \Gamma_r (s \times u) : S \Psi \times \Phi \]

\[\vdash \Gamma_r (r \times u) + \Gamma_r (s \times u) : S \Psi \times \Phi \]
\[
\begin{align*}
US\Psi \times \Phi & \xrightarrow{n} US(u) \times US\Phi \\
& \xrightarrow{\mu} US(u) \times US\Phi,
\end{align*}
\]

The mappings are as follows:

\[
\begin{align*}
* \mapsto (*,*,*) & \mapsto (r,s,u) \mapsto (r,s,u) \mapsto (r+s,u) \mapsto (r+s,u) \\
& \mapsto (r+s) \otimes u = (r \otimes u) + (s \otimes u) \mapsto (r,u) + (s,u) \mapsto (r,u) + (s,u) \\
& \rightarrow (r \otimes u, s \otimes u) \mapsto (r,u,s,u) \mapsto (r,u,s,u) \mapsto (r,u) + (s,u)
\end{align*}
\]

*

\[
\begin{align*}
& \mapsto (\alpha, r) \times u \mapsto \alpha, \mapsto r \times u.
\end{align*}
\]

Then
The mappings are as follows:

\[
\begin{array}{ccc}
US\Psi \times \Phi & \xrightarrow{\eta} & US(U\Psi \times \Phi) \\
U(\lambda^{-1}) \times \text{Id} & & U(\text{Id} \times \eta) \\
U(S\Psi \otimes I) \times \Phi & \xrightarrow{\Phi} & US(U\Psi \times US\Phi) \\
U(\text{Id} \otimes \alpha) \times \text{Id} & & US(\Psi) \\
U(S\Psi \otimes I) \times \Phi & \xrightarrow{\Psi} & US(U(S\Psi \otimes S\Phi)) \\
U(\lambda) \times \text{Id} & & US(\Psi) \\
US\Psi \times \Phi & \xrightarrow{\mu} & USUS(\Psi \times \Phi) \\
r \times u & & US(\Psi \times \Phi) \\
1^2 & \xrightarrow{\Psi} & US(\Psi \times \Phi) \\
r \times u & & US(\lambda^{-1}) \\
US(US\Psi \times \Phi) & \xrightarrow{\mu} & USUS(\Psi \times \Phi) \\
USUS(\Psi \times \Phi) & \xrightarrow{\mu} & USUS(\Psi \times \Phi) \\
US(US(\Psi \otimes S\Phi)) & \xrightarrow{USU(m)} & USUS(\Psi \times \Phi)
\end{array}
\]

The mappings are as follows:

\[
\begin{align*}
(*,*) & \mapsto (r,u) \mapsto (r \otimes 1, u) \mapsto (r \otimes \alpha, u) \mapsto (\alpha, r, u) \mapsto (\alpha, r, u) \mapsto \alpha, \alpha \mapsto \alpha, r, u \\
(*,*) & \mapsto (r,u) \mapsto (r, u) \mapsto (\alpha r, u) \mapsto (\alpha r, u) \mapsto (\alpha, r, u) \mapsto (\alpha, r, u) \otimes 1 \mapsto (r, u) \otimes \alpha \mapsto \alpha, (r,u)
\end{align*}
\]

- (dist$^\Phi$) $\Vdash _ u \times (\alpha.r) \mapsto \alpha. \Vdash _ u \times r$. Analogous to case (dist$^\Phi$).

- (dist$^\Phi$) If u has type Φ, $\Vdash _ \overline{0}_{\Psi} \times u \mapsto \overline{0}_{\Psi[\Psi \times \Phi]}$. We have

\[
\begin{align*}
\vdash \overline{0}_{\Psi} : \Psi & \vdash u : \Phi \\
\vdash \overline{0}_{\Psi} \times u : \Psi \times \Phi & \vdash \overline{0}_{\Psi} \times u : \Psi \times \Phi \\
\vdash \overline{1}_{\Psi} \times u : \Sigma(\Psi \times \Phi) & \vdash \overline{0}_{\Psi} \times u : \Sigma(\Psi \times \Phi)
\end{align*}
\]

Then

\[
\begin{array}{ccc}
US(\Psi \times \Phi) & \xrightarrow{\eta} & US(U\Psi \times \Phi) \\
\overline{0} & \xrightarrow{\Phi} & USUS(\Psi \times \Phi) \\
U(\text{Id} \times \eta) & & USUS(\Psi \times \Phi) \\
USU(m) & & USUS(\Psi \times \Phi)
\end{array}
\]

The mappings are as follows:

\[
\begin{align*}
* & \mapsto (*,*) \mapsto (\overline{0}, u) \mapsto (\overline{0}, u) \mapsto \overline{0} \otimes u = \overline{0} \otimes \overline{0} \mapsto \overline{0} \\
* & \mapsto \overline{0}
\end{align*}
\]

- (dist$^\Phi$) If u has type Ψ, $\Vdash _ u \times \overline{0}_{\Phi} \mapsto \overline{0}_{\Psi[\Psi \times \Phi]}$. Analogous to case (dist$^\Phi$).
• \((\text{dist}_{\parallel}) \uparrow (t + u) \rightarrow (\uparrow t + \uparrow u)\). We only give the details for \(\uparrow r\), the case \(\uparrow t\) is analogous.

\[
\begin{align*}
\vdash t : S(\Psi \times \Phi) & \quad \vdash u : S(\Psi \times \Phi) \\
\vdash t + u : S(\Psi \times \Phi) \quad \text{and} \quad \vdash t : S(\Psi \times \Phi) & \quad \vdash u : S(\Psi \times \Phi) \\
\vdash \uparrow r (t + u) : S(\Psi \times \Phi) \\
\vdash \uparrow r, t : S(\Psi \times \Phi) & \quad \vdash \uparrow r, u : S(\Psi \times \Phi)
\end{align*}
\]

Then

\[
(US(US\Psi \times \Phi))^2 \xrightarrow{R_0} US(US\Psi \times \Phi) \xrightarrow{U(Id \times \eta)} US(US\Psi \times US\Phi)
\]

\[
(US(US\Psi \times \Phi))^2 \xrightarrow{(US(US\Psi \times US\Phi))^2} USU(US\Psi \times \Phi)
\]

\[
1 \times 1 \xrightarrow{t \times u} \xrightarrow{(US(\Psi \times \Phi))^2} US(\Psi \times \Phi)
\]

The mappings are as follows. For \(i = 1, \ldots, m\), let \(a_i = \sum_k \gamma_k, a_k, t = \sum_{i=1}^n \beta_i(a_i, b_i)\) and \(u = \sum_{i=n+1}^m \beta_i(a_i, b_i)\).

To avoid a more cumbersome notation, we only consider the case where \(\Psi\) and \(\Phi\) do not have an \(S\) in head position, and we omit the steps not modifying the argument.

\[
(t, u) \mapsto t + u \mapsto \sum_{i=1}^m \beta_i(a_i \otimes b_i) = \sum_{k=1}^m \beta_k(a_k \otimes b_k)
\]

\[
\mapsto \sum_{i=1}^m \beta_i \sum_{k=1}^n \gamma_k(a_k \otimes b_k) \mapsto \sum_{k=1}^m \beta_k \sum_{i=1}^n \gamma_i(a_k \otimes b_i)
\]

\[
(t, u) \mapsto \left(\sum_{i=1}^n \beta_i.a_i \otimes b_i, \sum_{i=n+1}^m \beta_i.a_i \otimes b_i \right)
\]

\[
\mapsto \left(\sum_{i=1}^n \beta_i \sum_{k=1}^n \gamma_k(a_k \otimes b_k), \sum_{i=n+1}^m \beta_i \sum_{k=1}^n \gamma_k(a_k \otimes b_k) \right)
\]

\[
\mapsto \left(\sum_{i=1}^n \beta_i \sum_{k=1}^n \gamma_k(a_k \otimes b_k), \sum_{i=n+1}^m \beta_i \sum_{k=1}^n \gamma_k(a_k \otimes b_k) \right)
\]

\[
\mapsto \sum_{i=1}^m \beta_i \sum_{k=1}^n \gamma_k(a_k \otimes b_k)
\]

• \((\text{dist}_{\parallel}) \uparrow (\alpha.t) \rightarrow \alpha. \uparrow t\). We only give the details for \(\uparrow r\), the case \(\uparrow t\) is similar.

\[
\begin{align*}
\vdash t : S(\Psi \times \Phi) & \quad \vdash \alpha.t : S(\Psi \times \Phi) \\
\vdash \alpha.t : S(\Psi \times \Phi) \quad \text{and} \quad \vdash \alpha.t : S(\Psi \times \Phi) & \quad \vdash \alpha. \uparrow r, t : S(\Psi \times \Phi) \\
\vdash \uparrow r, (\alpha.t) : S(\Psi \times \Phi) \\
\vdash \uparrow r, t : S(\Psi \times \Phi) & \quad \vdash \alpha. \uparrow r, t : S(\Psi \times \Phi)
\end{align*}
\]

Then
The mappings are as follows. For $i = 1, \ldots, m$, let $a_i = \sum_b \gamma_{b_i}a_{b_i}$ and $t = \sum_i (a_i, b_i)$. To avoid a more cumbersome notation, we only consider the case where Ψ and Φ do not have an S in head position, and we omit the steps not modifying the argument.

$t \mapsto t \otimes 1 \mapsto t \otimes \alpha = (\sum_i \beta_i(a_i, b_i)) \otimes \alpha = \sum_i \alpha \beta_i(a_i, b_i) \mapsto \sum_i \alpha \beta_i(a_i \otimes b_i)$

$t \mapsto \sum_i \beta_i(a_i, b_i) = \sum_i \beta_i \cdot \sum_i \gamma_k(a_{b_i} \otimes b_i) \mapsto \sum_i \beta_i \cdot \sum_i \gamma_k(a_{b_i}, b_i)$

$\mapsto \sum_i \sum_k \beta_i \gamma_k(a_{b_i}, b_i) \mapsto (\sum_i \sum_k \beta_i \gamma_k(a_{b_i}, b_i)) \otimes 1 \mapsto (\sum_i \sum_k \beta_i \gamma_k(a_{b_i}, b_i)) \otimes \alpha$

$= \alpha \cdot \sum_i \sum_k \beta_i \gamma_k(a_{b_i}, b_i) \mapsto \sum_i \sum_k \alpha \beta_i \gamma_k(a_{b_i}, b_i)$

• $(\text{dist}^0, \text{dist}^0) \mapsto 0 \mapsto \text{dist}^{(\text{dist}^0 \times \text{dist}^0)}$. We have

\[
\begin{align*}
0_{(S(\Psi \times \Phi))} : S(\Psi \times \Phi) \\
\text{and} \\
0_{(S(\Psi \times \Phi))} : S(\Psi \times \Phi)
\end{align*}
\]

Then

\[
\begin{array}{c}
1 \xrightarrow{\delta} US(U(S\Psi \times \Phi)) \xrightarrow{U(\text{id} \times \eta)} US(U(S\Psi \times \Phi)) \\
US(U(S\Psi \times \Phi)) \xrightarrow{\mu} USUS(U(S\Psi \times \Phi)) \xrightarrow{US(n)} USUS(U(S\Psi \times \Phi))
\end{array}
\]

Both mappings start with $* \mapsto 0$, and then continue mapping, by linearity, to 0.

• $(\text{dist}^0, \text{dist}^0) \mapsto 0_{(\Phi \times S\Psi)} \mapsto 0_{(\Phi \times S\Psi)}$. Analogous to case $(\text{dist}^0, \text{dist}^0)$.

36
\(\bullet\) (\text{neut}_{\psi}^\dagger) \vdash \bar{\psi} : S(\mathbb{B}^n \times \Phi) \rightarrow \bar{\psi} : S(\mathbb{B}^n \times \Phi).\) We have

\[
\vdash \bar{\psi} : S(\mathbb{B}^n \times \Phi) \quad \text{and} \quad \vdash \bar{\psi} : S(\mathbb{B}^n \times \Phi)
\]

Then

\[
1 \xrightarrow{\lambda, \theta} U S(\mathbb{B}^n \times \Phi) \xrightarrow{U(\text{Id} \times \eta)} U S(\mathbb{B}^n \times U S \Phi) \\
\mu \xrightarrow{\mu} U S U S(\mathbb{B}^n \times \Phi) \xrightarrow{U S U S(U S(\mathbb{B}^n \times \Phi))}
\]

Both mappings start with \(\ast \mapsto \bar{\psi}\), and then continue mapping, by linearity, to \(\bar{\psi}\).

\(\bullet\) (\text{neut}_{\psi}^\dagger) \vdash \bar{\psi} : S(\mathbb{F} \times \mathbb{B}^n).\) Analogous to case (\text{neut}_{\psi}^\dagger).

\(\bullet\) (\text{neut}_{\psi}^\dagger) If \(u \in \mathbb{B}, \vdash u \times v \rightarrow u \times v\). We have

\[
\vdash u : \Psi \\
\vdash u : S \Psi \\
\vdash v : \Phi \\
\vdash u \times v : S \Psi \times \Phi \\
\vdash u \times v : S(\Psi \times \Phi) \\
\vdash u \times v : S(\Psi \times \Phi)
\]

Then

\[
1 \approx 1^2 \xrightarrow{u \times v} \Psi \times \Phi \xrightarrow{\eta \times \text{Id}} U S \Psi \times \Phi \xrightarrow{\eta} U S(U S \Psi \times \Phi) \\
\mu \xrightarrow{\mu} U S U S(\Psi \times \Phi) \xrightarrow{U S U S(U S(\mathbb{B}^n \times \Phi))} U S(U S \Psi \times U S \Phi)
\]

Both mappings are the identity, so we do not give the mappings. Notice that even if \(v\) is a linear combination, the \(\eta\) on \(\Phi\) will freeze its linearity by considering it as a basis vector in a new vector space \(U S \Phi\) having \(\Phi\) as base.

\(\bullet\) (\text{neut}_{\psi}^\dagger) If \(v \in \mathbb{B}, \vdash \bar{\psi} : u \times v \rightarrow u \times v\). Analogous to case (\text{neut}_{\psi}^\dagger).

\(\bullet\) (\text{proj}) \pi_j(|\psi\rangle) \rightarrow \prod_{k=0}^{2^j-1} \{ p_k \} (|k\rangle \times |\phi_k\rangle),\)

where

\[
|\psi\rangle = \sum_{i=1}^n [\alpha_i] \prod_{k=1}^m |b_{i_k}\rangle \\
|k\rangle = |b_1\rangle \times \cdots \times |b_j\rangle \text{ where } b_1 \cdots b_j \text{ is the binary representation of } k \\
|\phi_k\rangle = \sum_{i \in T_k} \beta_{i_k} \prod_{h=j+1}^m |b_{i_h}\rangle \\
\beta_{i_k} = \left(\frac{\alpha_i}{\sqrt{\sum_{i \in T_k} |\alpha_i|^2}} \right) \quad \text{and} \quad p_k = \sum_{i \in T_k} \left(\frac{|\alpha_i|^2}{\sum_{i=1}^n |\alpha_i|^2} \right) \\
\text{with } T_k = \{ i \leq n \mid |b_{i_1}\rangle \times \cdots \times |b_{i_j}\rangle = |k\rangle \}\]
We have

\[\vdash |b_{11}| : \mathbb{B} \quad \ldots \quad \vdash |b_{m1}| : \mathbb{B} \]

\[\vdash \prod_{h=1}^{m} |b_{h1}| : \mathbb{B}^m \]

\[\vdash \prod_{h=1}^{m} |b_{h1}| : \mathbb{S} \mathbb{B}^m \]

\[\vdash |\alpha_{11}| \prod_{h=1}^{m} |b_{h1}| : \mathbb{S} \mathbb{B}^m \]

\[\vdash |\psi_{11}| : \mathbb{S} \mathbb{B}^m \]

\[\vdash \pi_j |\psi_{11}| : \mathbb{B}^j \times \mathbb{S} \mathbb{B}^{m-j} \]

and

\[\vdash |b_{1j+1}| : \mathbb{B} \quad \ldots \quad \vdash |b_{mj1}| : \mathbb{B} \]

\[\vdash \prod_{h=j+1}^{m} |b_{h1}| : \mathbb{B}^m \]

\[\vdash \prod_{h=j+1}^{m} |b_{h1}| : \mathbb{S} \mathbb{B}^m \]

\[\vdash \beta_{1j+1} \prod_{h=j+1}^{m} |b_{h1}| : \mathbb{S} \mathbb{B}^{m-j} \]

\[\vdash |k| : \mathbb{B}^j \]

\[\vdash |\phi_k| : \mathbb{S} \mathbb{B}^{m-j} \]

\[\vdash 2^{j-i} \prod_{k=1}^{2^{j-i}} (\{p_k\} |k| \times |\phi_k|) : \mathbb{B}^j \times \mathbb{S} \mathbb{B}^{m-j} \]

The following diagram, where

\[\Psi = [\vdash |\psi| : \mathbb{S} \mathbb{B}^m] \quad \text{and} \quad P_k = [\vdash |k| \times |\phi_k| : \mathbb{B}^j \times \mathbb{S} \mathbb{B}^{m-j}] \]

commutes.

\[\begin{array}{ccc}
1 & \\ 1 \approx 1^{2j} & \overset{\text{\footnotesize $P_k \times \ldots \times P_{j-1}$}}{=} & (\mathbb{B}^j \times \mathbb{S} \mathbb{B}^{m-j})^{2^j} \\
\downarrow \psi & \quad \downarrow \pi_j & \quad \downarrow \pi_j \\
\mathbb{U} \mathbb{S} \mathbb{B}^m & \overset{\pi_j}{\rightarrow} & D(\mathbb{B}^j \times \mathbb{S} \mathbb{B}^{m-j})
\end{array} \]

Indeed

\[\pi_j \circ \Psi = \sum_{k=0}^{2^{j-i}} p_k \mathcal{X}_{\pi_k} |\psi| = d_{\{p_k\} \times k} \circ \left(\prod_{k=0}^{2^{j-i}} P_k \right) \]

\[\quad \text{(proj)} \quad \pi_j \circ \hat{\delta}_{\mathbb{B}^n} \rightarrow |0|^{\times n} \]. We have

\[\vdash \hat{\delta}_{\mathbb{B}^n} : \mathbb{S} \mathbb{B}^n \]

\[\vdash \pi_j \hat{\delta}_{\mathbb{B}^n} : \mathbb{B}^j \times \mathbb{S} \mathbb{B}^{n-j} \]

\[\vdash |0| : \mathbb{B} \quad \ldots \quad \vdash |0| : \mathbb{B} \]

\[\vdash |0| : \mathbb{B}^j \quad \vdash |0|^{n-j} : \mathbb{B}^{n-j} \]

\[\vdash |0| : \mathbb{B}^j \times \mathbb{S} \mathbb{B}^{n-j} \]

Then

\[\begin{array}{ccc}
1^n & \approx 1 & \overset{\hat{\delta}}{\rightarrow} \mathbb{U} \mathbb{S} \mathbb{B}^n \\
\downarrow \hat{\delta} & \quad \downarrow \pi_j & \quad \downarrow \pi_j \\
\mathbb{B}^n & \overset{\text{\footnotesize $\text{Id} \times \eta^{n-j}$}}{\rightarrow} & \mathbb{B}^j \times \mathbb{U} \mathbb{S} \mathbb{B}^{n-j}
\end{array} \]

38
The mappings are as follows:

\[
\begin{align*}
\ast & \mapsto 0 \mapsto |0|^n \\
\ast & \approx \ast^\prime \mapsto |0|^n \mapsto |0|^n
\end{align*}
\]

- **Contextual rules** Trivial by composition law.

Lemma 3.24. If \(\Gamma \vdash t : A \) then \(t \in \mathcal{C}_A \).

Proof. We prove, more generally, that if \(\Gamma \vdash t : A \) and \(\sigma \vdash \Gamma \), then \(\sigma t \in \mathcal{C}_A \). We proceed by structural induction on the derivation of \(\Gamma \vdash t : A \). In order to avoid cumbersome notation, we do not take the closure by parallelism into account, except when needed. The extension of this proof to such a closure is straightforward.

- Let \(\Gamma, x : \Psi \vdash x : \Psi \) as a consequence of rule \(Ax \). Since \(\sigma \vdash \Gamma, x : \Psi \), we have \(\sigma x \in \mathcal{C}_\Psi \).
- \(Ax_0, Ax_{\ast(0)} \) and \(Ax_{\ast(1)} \) are trivial since, by definition \(\bar{0}_{\Psi A} \in \mathcal{C}_{\Psi A}, |0| \in \mathcal{C}_B \) and \(|1| \in \mathcal{C}_B \).
- Let \(\Gamma \vdash \alpha, t : SA \) as a consequence of \(\Gamma \vdash t : SA \) and rule \(\alpha t \). By the IH, \(\sigma t \in \mathcal{C}_{SA} \), hence, by definition \(\alpha \cdot \sigma t = \sigma \alpha t \in \mathcal{C}_{SA} \).
- Let \(\Gamma, \Delta, \Xi \vdash t + u : SA \) as a consequence of \(\Gamma, \Xi \vdash t : SA \), \(\Delta, \Xi \vdash u : SA \), and rule \(+t \). By the IH, \(\sigma t \in \mathcal{C}_{SA} \), hence, by definition \(\sigma t + \sigma u = \sigma t + \sigma u \in \mathcal{C}_{SA} \).
- Let \(\Gamma \vdash \pi_{ij} : B^j \times S^B \) as a consequence of \(\Gamma \vdash t : S^B \) and rule \(\pi_{ij} \). By the IH, \(\sigma t \in \mathcal{C}_{\Psi A} = S^B \cup \{0_{\Psi A}\} \). Then, \(\sigma t \in S^\{(0|1)|\} \), so \(\sigma t \mapsto \sum \sigma \alpha \{b_{11} \times \cdots \times b_{in}\}, \) with \(b_{ij} = 0 \) or \(b_{ij} = 1 \). Therefore, \(\pi_{ij} \sigma t \mapsto \sum \pi \alpha \{\sum b_{ij} \times \cdots \times b_{in}\} \in \{0|1\}^j \times \{0|1\}^n-1 \in \mathcal{C}_{B^j \times S^B} \).

- Let \(\Gamma \vdash \tau r : B \vdash A \) as a consequence of \(\Gamma \vdash t : A \) and rule \(\tau t \). By the IH, \(\sigma t \in \mathcal{C}_A \) and \(\sigma r \in \mathcal{C}_A \). Hence, for every \(s \in \mathcal{C}_B \), \(s \sigma t \cdot \sigma r \) reduces either to \(\sigma t \) or to \(\sigma r \), hence it is in \(\mathcal{C}_A \), therefore, \(?t \cdot sr \in \mathcal{C}_{B \times A} \).

- Let \(\Gamma \vdash \lambda x : \Psi, t : \Psi \Rightarrow A \) as a consequence of \(\Gamma, x : \Psi \vdash t : A \) and rule \(\Rightarrow t \). Let \(r \in \mathcal{C}_B \). Then, \(\sigma (\lambda x : \Psi, t)r \Rightarrow \langle \lambda x : \Psi \rangle r \Rightarrow (r/x) \sigma t \). Since \((r/x) \sigma t \in \mathcal{C}_A \), we have, by the IH, \((r/x) \sigma t \in \mathcal{C}_A \). Therefore, \(\lambda x : \Psi, t \in \mathcal{C}_{\Psi, A} \).

- Let \(\Delta, \Xi \vdash t u : A \) as a consequence of \(\Delta, \Xi \vdash u : \Psi \), \(\Xi, \Xi \vdash t : \Psi \Rightarrow A \) and rule \(\Rightarrow E \). By the IH, \(\sigma t \in \mathcal{C}_\Psi \) and \(\sigma u \in \mathcal{C}_A \). Then, by definition, \(\sigma t \sigma u \in \mathcal{C}_{\Psi > A} \).

- Let \(\Delta, \Xi \vdash t u : SA \) as a consequence of \(\Delta, \Xi \vdash u : \Psi \), \(\Xi, \Xi \vdash t : S^\Psi \Rightarrow A \) and rule \(\Rightarrow ES \). By the IH, \(\sigma t \in \mathcal{C}_\Psi \) and \(\sigma u \in \mathcal{C}_A \). Then, by definition, \(\sigma t \sigma u \in \mathcal{C}_{\Psi > A} \). Cases:

\[
\begin{align*}
\ast \sigma t \mapsto \ast 0_{\Psi > A} \text{ and } \sigma u \in \mathcal{C}_\Psi \Rightarrow \bar{0}_{\Psi > A} \in \mathcal{C}_{\Psi > A}.
\end{align*}
\]

- Let \(\Gamma \vdash t : SA \) as a consequence of \(\Gamma \vdash t : A \) and rule \(\Rightarrow \). By the IH, \(\sigma t \in \mathcal{C}_A \subseteq \mathcal{C}_{\Psi A} \subseteq \mathcal{C}_{\Psi A} \).

- Let \(\Gamma, \Delta, \Xi \vdash t \ast u : \Psi \times \Phi \) as a consequence of \(\Gamma, \Xi \vdash t : \Psi \), \(\Delta, \Xi \vdash u : \Phi \) and rule \(\ast u \). By the IH, \(\sigma t \in \mathcal{C}_\Psi \) and \(\sigma u \in \mathcal{C}_\Phi \), hence, \(\sigma t \ast \sigma u = \sigma t \ast \sigma u \in \mathcal{C}_\Psi \times \mathcal{C}_\Phi \subseteq \mathcal{C}_{\Psi \times \Phi} \).

- Let \(\Gamma \vdash \text{head} t : B^\ast \) as a consequence of \(\Gamma \vdash t : B^\ast \) and rule \(\times \). By the IH, \(\sigma t \in \mathcal{C}_{B^\ast} \subseteq \mathcal{C}_{B^\ast} \Rightarrow \{u \mapsto u \vert u \mapsto \ast u \ast u \} \). Hence, \(\sigma \text{head} t \mapsto \text{head}(u \ast u) \mapsto u \ast u \in \mathcal{C}_B \).

- Let \(\Gamma \vdash \text{tail} t : B^\ast \) as a consequence of \(\Gamma \vdash t : B^\ast \) and rule \(\times \). By the IH, \(\sigma t \in \mathcal{C}_{B^\ast} \subseteq \mathcal{C}_{B^\ast} \Rightarrow \{u \mapsto u \ast u \ast u \} \). Hence, \(\sigma \text{tail} t \mapsto \text{tail}(u \ast u) \mapsto u \ast u \in \mathcal{C}_{B^\ast} \).
• Let \(\Gamma \vdash t : S(\Psi \times \Phi) \) as a consequence of \(\Gamma \vdash t : S(\Psi \times \Phi) \) and rule \(\uparrow_t \). By the IH, we have that
\[\sigma t \in \mathcal{C}_{S(\Psi \times \Phi)}. \]
Therefore, \(\sigma t \in S(S(\mathcal{C}_\Phi \cup \{0_{\mathcal{C}_\Phi}\}) \times \mathcal{C}_\Psi) \cup \{0_{S(\Psi \times \Phi)}\} \). Cases:

1. * \(\sigma t \vdash \sum \alpha_i \rightarrow \sum \alpha_i \in \mathcal{C}_{S(\Psi \times \Phi)} \)

 * Otherwise, \(\sigma t \in S(S(\mathcal{C}_\Phi \cup \{0_{\mathcal{C}_\Phi}\}) \times \mathcal{C}_\Psi) \), so \(\sigma t \rightarrow \sum \alpha_i \rightarrow \sum \alpha_i \in \mathcal{C}_\Phi \) and \(r \equiv S(\mathcal{C}_\Psi \cup \{0_{\mathcal{C}_\Psi}\}) \).

 Cases: If \(r \rightarrow \sum \alpha_i \rightarrow \sum \alpha_i \rightarrow \sum \alpha_i \in \mathcal{C}_\Phi \) and \(r \rightarrow \sum \alpha_i \rightarrow \sum \alpha_i \rightarrow \sum \alpha_i \in \mathcal{C}_\Phi \). Hence, if all the \(r_i \) reduce to \(\sum \alpha_i \), \(\sigma t \vdash \sum \alpha_i \rightarrow \sum \alpha_i \in \mathcal{C}_{S(\Psi \times \Phi)} \).

 Otherwise, let \(l \) be the set of index of \(r_i \) not reducing to \(\sum \alpha_i \), therefore, \(\sigma t \vdash \sum \alpha_i \rightarrow \sum \alpha_i \rightarrow \sum \alpha_i \in \mathcal{C}_{S(\Psi \times \Phi)} \).

• Let \(\Gamma \vdash \uparrow_t t : S(\Psi \times \Phi) \) as a consequence of \(\Gamma \vdash t : S(\Psi \times \Phi) \) and rule \(\uparrow_t \). Analogous to previous case.

• Let \(\Gamma \vdash \{p_1\} t_1 \parallel \cdots \parallel \{p_n\} t_n : A \) as a consequence of \(\Gamma \vdash t : A \) and rule \(\parallel \). By the IH each \(\sigma t \in \mathcal{C}_A \), hence, by definition \(\sigma(\{p_1\} t_1 \parallel \cdots \parallel \{p_n\} t_n) = \{p_1\} \sigma t_1 \parallel \cdots \parallel \{p_n\} \sigma t_n \in \mathcal{C}_A \). \(\square \)