Japanese Man with HCV Genotype 4 Infection and Cirrhosis Who Was Successfully Treated by the Combination of Glecaprevir and Pibrentasvir

Mai Totsuka¹, Masayuki Honda¹, Tatsuou Kanda¹, Tomotaka Ishii¹, Naoki Matsumoto¹, Yoichiro Yamana¹, Tomohiro Kaneko¹, Taku Mizutani¹, Hiroshi Takahashi¹, Mariko Kumagawa¹, Reina Sasaki¹, Ryota Masuzaki¹, Shini Kanezawa¹, Kazushige Nirei¹, Hiroaki Yamagami¹, Shunich Matsuoka¹, Hiroshi Ohnishi³, Hiroaki Okamoto² and Mitsuhiko Moriyama¹

Abstract:
A 74-year-old man with a history of transfusion at 35 years old in Egypt was referred to our hospital. He was infected with hepatitis C virus (HCV) genotype 4 (GT4), which is a rare HCV GT in Japan, and was also diagnosed with hepatic compensated cirrhosis. We safely treated the patient for 12 weeks with the combination of glecaprevir and pibrentasvir, and a sustained virologic response (SVR) was achieved. This is the first report of HCV GT4 infection in a treatment-naïve Japanese patient with cirrhosis in whom SVR was achieved with the combination treatment of glecaprevir and pibrentasvir.

Key words: cirrhosis, DAA, HCV genotype 4, Japan, transfusion

(Intern Med 60: 2061-2066, 2021)
(DOI: 10.2169/internalmedicine.6728-20)

Introduction
Hepatitis C virus (HCV) infection induces acute and chronic hepatitis, hepatic cirrhosis, hepatocellular carcinoma (HCC) and other extrahepatic manifestations. HCV infection is still a leading cause of HCC in Japan (1). Although effective direct-acting antivirals (DAAs) against HCV have been introduced, making it now easier to achieve a sustained virologic response (SVR) in daily clinical practice, several issues need to be addressed, such as the risk of hepatocarcinogenesis after the achievement of SVR and the long-term prognosis (2, 3).

At present, eight HCV genotypes (GTs) are known to exist (4-6). In Japan, HCV GT1b, GT2a and GT2b have a prevalence of 70%, 20% and 10%, respectively (7). HCV GT4, which is a major genotype in Egypt, is a rare HCV GT in Japan (8). A previous study demonstrated that 0.4% (4/899) of patients infected with HCV have HCV GT4 in Aichi Prefecture, Japan, and these 4 patients with HCV GT4 were hemophilic men who had received blood products from foreign countries (8).

In Japan, the HCV nonstructural protein (NS) 5B inhibitor sofosbuvir-based DAA combination, the combination of the HCV NS3/4A inhibitor glecaprevir and HCV NS5A inhibitor pibrentasvir, and the combination of the HCV NS3/4A inhibitor grazoprevir and HCV NS5A inhibitor elbasvir are available for the treatment of HCV-infected individuals (9-15). The Japanese National Health Insurance system has recommended the combination of sofosbuvir and ribavirin for 24 weeks or the combination of glecaprevir and pibrentasvir for 12 weeks as the treatment for patients infected with HCV GTs other than GT1 or GT2. However, there are no clinical trials analyzing the effects of the combination of glecaprevir and pibrentasvir on patients with HCV GT4 in Japan, so this combination’s efficacy in Japa-

¹Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Japan and ²Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Japan

Received: November 16, 2020; Accepted: December 10, 2020; Advance Publication by J-STAGE: February 1, 2021

Correspondence to Dr. Tatsuo Kanda, kanda.tatsuo@nihon-u.ac.jp
A 74-year-old man was referred to our hospital because of his positivity for HCV RNA and undetermined HCV genotype to receive treatment to eradicate the virus. In the outpatient clinic, he had shown no symptoms. He had a history of transfusion for typhoid fever at 35 years old in Egypt. He had been diagnosed with positivity for anti-HCV antibody 10 years ago at a clinic near his house in Japan, and he did not receive any antiviral treatment, including interferon or DAAs. He had been receiving irbesartan (100 mg daily) and amlodipine besilate (10 mg daily) for his hypertension and metformin hydrochloride (500 mg daily) for type 2 diabetes mellitus but had no history of surgery. He also had no history of tattooing, drug abuse, or drug allergy. He was a social drinker, and his family had no history of liver disease.

A physical examination showed no signs of ascites, lower leg edema, or disturbance of consciousness. The cirrhotic liver was slightly palpable at his right hypochondrium. Laboratory data before treatment are shown in Table 1. Reduced platelet counts and elevated transaminase levels were observed. His Child-Pugh classification was Grade A (score 5). Although the alpha-fetoprotein level was elevated, no space occupying lesions were detected in the cirrhotic liver by ultrasound or contrast-enhanced computed tomography (Fig. 1). Hepatic ultrasound elastography showed values of 34.3 kPa and 26.1 kPa on a FibroScan 502 with an M probe (Echosens, Paris, France) and shear wave measurement (AR-RIETTA 850; Hitachi Medical Systems, Tokyo Japan), respectively, and these values were compatible with hepatic cirrhosis. Upper gastrointestinal endoscopy demonstrated a solitary varix of the esophagus and no varices of the stomach (Fig. 2). We diagnosed him with compensated cirrhosis due to HCV infection without a liver biopsy.

HCV RNA was extracted from his sera before treatment, and nested reverse transcription polymerase chain reaction (RT-PCR) and direct sequencing were performed. Using the HCV-5′-untranslated region-core region (655 nt.) and HCV 3′ untranslated region (34 nt.) primer sets (17), we herein report the interferon-free, 12-week combination treatment with glecaprevir and pibrentasvir that successfully led to an SVR in a treatment-naïve Japanese patient with HCV GT4 infection and hepatic cirrhosis.

Case Report

Discussion

We herein report a treatment-naïve Japanese man with HCV GT4 is unclear (14). However, note, it was reported that SVR rates were more than 90-95% in HCV GT4-infected Egyptian patients treated with combinations of DAAs (16). We herein report the interferon-free, 12-week combination treatment with glecaprevir and pibrentasvir that successfully led to an SVR in a treatment-naïve Japanese patient with HCV GT4 infection and hepatic cirrhosis.

Table 1. Laboratory Data before Starting the Combination Treatment of Glecaprevir and Pibrentasvir in the Present Case.

Item	Values	Item	Values	Item	Values
Peripheral Blood		Biochemistry		Serology	
WBC 3,900 /μL		AST 160 IU/L		Serology	
RBC 497×10⁶ /μL		ALT 225 IU/L		Serology	
Hemoglobin 15.7 g/dL		LDH 275 IU/L		Serology	
Platelets 12.1×10⁴ /μL		ALP 238 IU/L		Serology	
Coagulation system		γ-GTP 81 IU/L			
PT 84 %		T. Bil 0.53 mg/dL			
INR 1.09		TP 7.0 g/dL			
Albumin 3.6 g/dL		Anti-HBc Negative			
BUN 20.2 mg/dL		Anti-HCV Positive			
Creatinine 0.70 mg/dL	HCV RNA 5.4 LIU/mL				
Glucose 214 mg/dL		HCV GT 4a			
HbA1c 7.3 %		Anti-HIV Negative			

WBC: white blood cells, RBC: red blood cells, PT: prothrombin time, INR: international normalized ratio, AST: aspartate aminotransferase, ALT: alanine aminotransferase, LDH: lactate dehydrogenase, ALP: alkaline phosphatase, γ-GTP: γ-glutamyl transpeptidase, T. Bil: total bilirubin, TP: total protein, BUN: blood urea nitrogen, HbA1c: hemoglobin A1c, NH₃: ammonia, CRP: C-reactive protein, AFP: alpha fetoprotein, PIVKA-II: protein induced by vitamin K antagonist-II, HBsAg: hepatitis B surface antigen, Anti-HBs: anti-hepatitis B surface antibody, Anti-HBc: anti-hepatitis B core antibody, Anti-HCV: anti-hepatitis C virus antibody, GT: genotype, Anti-HIV: anti-human immunodeficiency virus antibody

Intern Med 60: 2061-2066, 2021 DOI: 10.2169/internalmedicine.6728-20
HCV GT4a infection and hepatic cirrhosis who successfully achieved an SVR with the 12-week combination treatment of glecaprevir and pibrentasvir. The present report is likely to be the first report of the 12-week combination treatment of glecaprevir and pibrentasvir being effective for a Japanese patient with HCV GT4a infection and hepatic cirrhosis.

It was recently reported that eight HCV GTs exist (4-6). In Egypt, the prevalence of anti-HCV positive rates is relatively high (14.7% in a 2008 nationwide survey) (18), and anti-schistosomal parenteral therapy and blood transfusion are risk factors for HCV infection (7). In Egypt, HCV GT4a, GT4b, GT1, and GT3 have a prevalence of 63%, 30%, 6%, and 1%, respectively (7). The present patient had a history of transfusion in Egypt before 1989, when HCV was discovered by molecular biological methods (19, 20). As HCV GT4a infection is rare in Japan (8) and hemophilia does not run in his family, the route of infection for HCV GT4a in this patient was deemed likely to be the transfusion he had undergone in Egypt.

The combination of glecaprevir and pibrentasvir is a pan-genotypic DAA therapy for HCV infection. In Japanese clinical trials, 12-week combination treatment of glecaprevir and pibrentasvir for patients with HCV GT1b and GT2 with compensated cirrhosis showed an SVR at week 12 of 100% (38/38) and 100% (18/18), respectively (12, 13). Forns et al. reported an SVR at week 12 of 100% (16/16) in the phase 3 study of the 12-week combination treatment of glecaprevir and pibrentasvir for HCV GT4 patients with compensated cirrhosis (EXPEDITION-1) (21).

In general, the SVR rates in HCV GT4-infected patients treated with the combination of glecaprevir and pibrentasvir are reported to range from 95.5-100% (Table 2) (22-32). In Japan, clinical trials of this combination treatment for HCV GT4 have not been performed. The 8-week combination treatment of glecaprevir and pibrentasvir for HCV GT4 treatment-naïve patients with compensated cirrhosis led to 100% SVR rates (24, 25), although the 12-week combination treatment of glecaprevir and pibrentasvir for HCV GT4

Figure 1. Findings of abdominal ultrasound (US) (a) and computed tomography (CT) (b). (a) US showed a cirrhotic liver with coarse parenchymal pattern, irregular surface, and dull edge but no space-occupying lesions. (b) Contrast-enhanced CT in the portal-dominant phase showed an irregular surface of the liver and splenomegaly with mild dilatation of the paraumbilical vein but no ascites.

Figure 2. Findings of upper gastrointestinal endoscopy. (a) Solitary varix of the esophagus. (b) No varices of the stomach.
Figure 3. The phylogenetic trees constructed by the neighbor-joining method based on the hepatitis C virus (HCV)-5’-untranslated region (5’-UTR)-core region sequence (655 nt.) (a) and HCV-non-structural protein (NS)5B region sequence (502 nt.) (b) of the HCV isolated from the present case (HC19-1196) as well as HCV strains of genotypes (GTs) 1-8. In addition to the isolated strain (HC19-1196/black square), 36 representative HCV strains are shown, including the HCV GT, subgenotype, and accession number. Bootstrap values (≥70%) are indicated for the nodes as a percentage of the data obtained from 1,000 resamplings. The scale bar is in units of nucleotide substitutions per site. The nucleotide sequences of the 5’-UTR-core region and NS5B of HC19-1196 are deposited as LC594551 and LC594552, respectively, in the DDBJ/GenBank databases.

Figure 4. Clinical course of the present case. The combination of 300 mg daily of glecaprevir (GLE) and 120 mg daily of pibrentasvir (PIB) was given for 12 weeks. Solid line: ALT levels, Dotted line: Platelet counts.

in treatment-naïve patients with non-cirrhosis or cirrhosis led to 97.8% SVR rates (29) (Table 2). The ideal duration of this combination treatment should be further examined in the future.

Shiha et al. reported that the SVR rates after 12 and 24 weeks of 400 mg daily sofosbuvir plus 60 mg daily daclatasvir (HCV NS5A inhibitor), with or without 800-1,000 mg daily ribavirin, were 96% and 93%, respectively, in Egyptian patients with HCV GT4 (33). In combination treatment with 400 mg daily sofosbuvir and 90 mg daily le-
Table 2. Sustained Virological Response Rates in HCV Genotype 4-infected Patients Treated with the Combination of Glecsprevir and Pibrentasvir.

Reference	Country	Type of diseases	Treatment duration (weeks)	SVR12 rates (SVR/Total patients)
22	Italy	Non-LC, LC	8-16	100% (32/32)
23	Israel	Non-LC, CC	8	95.5% (63/66)
24	USA	CC	8	100% (2/2)
25	USA	CC	8	100% (13/13)
26	UK	Non-LC, CC	8-16	99.4% (161/162)
27	USA	Non-LC, LC (12-17 years)	8	100% (3/3)
28	Germany	Non-LC, LC	8-12	96.3% (26/27)
29	Australia	Non-LC, LC	12	97.8% (174/178)
30	UK	Non-LC, CC	8-16	97.8% (178/182)
31	Italy	Non-LC, LC	8	100% (71/71)
32	USA	Non-LC, CC	8-12	100% (175/175)
Our report	Japan	CC	12	100% (1/1)

HCV: hepatitis C virus, SVR: sustained virological response, LC: liver cirrhosis, CC: compensated cirrhosis.

In conclusion, we encountered a Japanese case of HCV GT4 infection and cirrhosis that was successfully treated with the 12-week combination of glecaprevir and pibrentasvir. To our knowledge, this is the first documentation of the 12-week combination of glecaprevir and pibrentasvir for an HCV GT4-infected Japanese patient.

Author’s disclosure of potential Conflicts of Interest (COI).
Mitsuhiro Moriyama: Research funding, Towa Pharmaceutical.

References
1. Tateishi R, Uchino K, Fujiwara N, et al. A nationwide survey on non-B, non-C hepatocellular carcinoma in Japan: 2011-2015 update. J Gastroenterol 54: 367-376, 2019.
2. Kanda T, Lau GKK, Wei L, et al. APASL HCV guidelines of virus-eradicated patients by DAA on how to monitor HCC occurrence and HBV reactivation. Hepatol Int 13: 649-661, 2019.
3. Reddy KR, Pol S, Thuluvath PJ, et al. Long-term follow-up of clinical trial patients treated for chronic HCV infection with daclatasvir-based regimens. Liver Int 38: 821-833, 2018.
4. Simmonds P, Bux J, Combet C, et al. Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatology 42: 962-973, 2005.
5. Murphy DG, Sablon E, Chamberland J, et al. Hepatitis C virus genotype 7, a new genotype originating from central Africa. J Clin Microbiol 53: 967-972, 2015.
6. Borgia SM, Hedskog C, Parhy B, et al. Identification of a novel hepatitis C Virus genotype from punjab, india: expanding classification of hepatitis C virus into 8 genotypes. J Infect Dis 218: 1722-1729, 2018.
7. Omata M, Kanda T, Yokosuka O, et al. Features of hepatitis C virus infection, current therapies and ongoing clinical trials in ten Asian Pacific countries. Hepatol Int 9: 486-507, 2015.
8. Hayashi K, Fukuda Y, Nakano I, et al. Prevalence and characterization of hepatitis C virus genotype 4 in Japanese hepatitis C carri ers. Hepatol Res 25: 409-414, 2003.
9. Omata M, Nishiguchi S, Ueno Y, et al. Sofosbuvir plus ribavirin in Japanese patients with chronic genotype 2 HCV infection: An open-label, phase 3 trial. J Viral Hepat 21: 762-768, 2014.
10. Mizokami M, Yokosuka O, Takehara T, et al. Ledipasvir and sofosbuvir fixed-dose combination with and without ribavirin for 12 weeks in treatment-naive and previously treated Japanese patients.
27. Jonas MM, Squires RH, Rhee SM, et al. Pharmacokinetics, safety, and efficacy of glecaprevir/pibrentasvir in adolescents with chronic hepatitis C virus: Part 1 of the DORA Study. Hepatology 71: 456-462, 2020.
28. Berg T, Naumann U, Steoehr A, et al. Real-world effectiveness and safety of glecaprevir/pibrentasvir for the treatment of chronic hepatitis C infection: data from the German Hepatitis C-Registry. Aliment Pharmacol Ther 49: 1052-1059, 2019.
29. Grebely J, Dore GJ, Alami NN, et al. Safety and efficacy of glecaprevir/pibrentasvir in patients with chronic hepatitis C genotypes 1-6 receiving opioid substitution therapy. Int J Drug Policy 66: 73-79, 2019.
30. Foucher GR, Asselah T, Kopecky-Bromberg S, et al. Safety and efficacy of glecaprevir/pibrentasvir for the treatment of chronic hepatitis C in patients aged 65 years or older. PLoS One 14: e0208506, 2019.
31. D’Ambrosio R, Pasulo L, Puoti M, et al. Real-world effectiveness and safety of glecaprevir/pibrentasvir in 723 patients with chronic hepatitis C. J Hepatol 70: 379-387, 2019.
32. Krishnan P, Pilot-Matias T, Schnell G, et al. Pooled resistance analysis in patients with hepatitis C virus genotype 1 to 6 infection treated with glecaprevir/pibrentasvir in phase 2 and 3 clinical trials. Antimicrob Agents Chemother 62: e01249-18, 2018.
33. Shiha G, Soliman R, ElBasiony M, et al. Sofosbuvir plus daclatasvir with or without ribavirin for treatment of chronic HCV genotype 4 patients: real-life experience. Hepatol Int 12: 339-347, 2018.
34. Abd-Elsalam S, Sharaf-Eldin M, Soliman S, et al. Efficacy and safety of sofosbuvir plus ribavirin for treatment of cirrhotic patients with genotype 4 hepatitis C virus in real-life clinical practice. Arch Virol 163: 51-56, 2018.
35. Ahmed H, Abushouk AI, Attia A, et al. Safety and efficacy of sofosbuvir plus velpatasvir with or without ribavirin for chronic hepatitis C virus infection: a systematic review and meta-analysis. J Infect Public Health 11: 156-164, 2018.
36. Flamm S, Mutimer D, Asratyan A, et al. Glecaprevir/pibrentasvir in patients with chronic HCV genotype 3 infection: an integrated phase 2/3 analysis. J Viral Hepat 26: 337-349, 2019.
37. Sugiuara A, Jotisha S, Umemura T, et al. Past history of hepatocellular carcinoma is an independent risk factor of treatment failure in patients with chronic hepatitis C virus infection receiving direct-acting antivirals. J Viral Hepat 25: 1462-1471, 2018.
38. Mawatari S, Oda K, Kumagai K, et al. Viral and host factors are discrepant cases and identification of a 2b/1b recombinant HCV. Kanjo 57: 447-456, 2016 (in Japanese, Abstract in English).
39. Aikawa T, Tsuda F, Ueno C, et al. Comparison of test results of serogrouping and core region PCR-based genotyping in patients with chronic hepatitis C virus infection: analysis of indeterminate or discrepant cases and identification of a 2b/1b recombinant HCV. Hepatol Res 8: 560-567, 2012.
40. Kanda T, Matsuoka S, Moriyama M. Hepatitis C virus genotype 4-infection and interferon-free treatment in Egypt. Hepatol Int 12: 291-293, 2018.
41. Kumada H, Watanabe T, Suzuki F, et al. Efficacy and safety of glecaprevir/pibrentasvir in HCV-infected Japanese patients with prior DAA experience, severe renal impairment, or genotype 3 infection. J Gastroenterol 53: 566-575, 2018.
42. Kumada H, Suzuki Y, Karino Y, et al. The combination of elbasvir and grazoprevir for the treatment of chronic HCV infection in Japanese patients: a randomized phase II/III study. J Gastroenterol 52: 520-533, 2017.
43. Kuro G, Kato K, Kato Y, et al. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244: 359-362, 1989.
44. Kuro G, Choo QL, Alter HJ, et al. An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science 244: 362-364, 1989.
45. Forns X, Lee SS, Valdes J, et al. Glecaprevir plus pibrentasvir for chronic hepatitis C virus genotype 1, 2, 4, 5, or 6 infection in adults with compensated cirrhosis (EXPEDITION-1): a single-arm, open-label, multicentre phase 3 trial. Lancet Infect Dis 17: 1062-1068, 2017.
46. Aghemo A, Alberti A, Andreone P, et al. Effectiveness and safety of pibrentasvir in chronic hepatitis C patients: Results of the Italian cohort of a post-marketing observational study. Dig Liver Dis 51:590-8658: 30401-1.
47. Zackerman E, Gutierrez JA, Dylla DE, et al. Eight weeks of treatment with glecaprevir/pibrentasvir is safe and efficacious in an integrated analysis of treatment-naive patients with hepatitis C virus infection. J Hepatol 70: 520-533, 2017.
48. Flamm SL, Kort J, Marx SE, et al. Effectiveness of 8-week glecaprevir/pibrentasvir for treatment-naïve, compensated cirrhotic patients with chronic hepatitis C infection. Adv Ther 37: 2267-2274, 2020.
49. Brown RS Jr, Buti M, Rodrigues L, et al. Glecaprevir/pibrentasvir for 8 weeks in treatment-naïve patients with chronic HCV genotypes 1-6 and compensated cirrhosis: The EXPEDITION-8 trial. J Hepatol 72: 441-449, 2020.
50. Brown A, Welzel TM, Conway B, et al. Adherence to pangenotypic glecaprevir/pibrentasvir and efficacy in HCV-infected patients: a pooled analysis of clinical trials. Liver Int 40: 778-786, 2020.
51. Jonas MM, Squires RH, Rhee SM, et al. Pharmacokinetics, safety, and efficacy of glecaprevir/pibrentasvir in adolescents with chronic hepatitis C: Part 1 of the DORA Study. Hepatology 71: 456-462, 2020.
52. Berg T, Naumann U, Steoehr A, et al. Real-world effectiveness and safety of glecaprevir/pibrentasvir for the treatment of chronic hepatitis C infection: data from the German Hepatitis C-Registry. Aliment Pharmacol Ther 49: 1052-1059, 2019.
53. Grebely J, Dore GJ, Alami NN, et al. Safety and efficacy of glecaprevir/pibrentasvir in patients with chronic hepatitis C genotypes 1-6 receiving opioid substitution therapy. Int J Drug Policy 66: 73-79, 2019.
54. Foucher GR, Asselah T, Kopecky-Bromberg S, et al. Safety and efficacy of glecaprevir/pibrentasvir for the treatment of chronic hepatitis C in patients aged 65 years or older. PLoS One 14: e0208506, 2019.