Using avatars in weight management settings: A systematic review

M. Horne⁎, A. Hill, T. Murells, H. Ugail, R. Chinnadora, M. Hardy

Faculty of Medicine and Health, School of Healthcare, University of Leeds, Leeds LS1 9JT, UK
Faculty of Medicine and Health, School of Healthcare, University of Leeds, Leeds LS1 9JT, UK
Florence Nightingale Faculty of Nursing, Midwifery & Palliative Care, King’s College London, London WC2R 2LS, UK
Centre for Visual Computing, University of Bradford, Bradford BD7 1DP, UK
Faculty of Medicine and Health, Academic Unit of Health Economics, University of Leeds, Leeds LS19JT, UK
The Mid Yorkshire Hospitals NHS Trust, Pinderfields Hospital, Wakefield WF1 4DG, UK
Faculty of Health Studies, University of Bradford, Bradford BD7 1DP, UK

ARTICLE INFO

Keywords: Obesity Weight loss Avatars Virtual reality Second life Systematic review

ABSTRACT

Background: Obesity interventions rely predominantly on managing dietary intake and/or increasing physical activity but sustained adherence to behavioural regimens is often poor. Avatar technology is well established within the computer gaming industry and evidence suggests that virtual representations of self may impact real-world behaviour, acting as a catalyst for sustained weight loss behaviour modification. However, the effectiveness of avatar technology in promoting weight loss is unclear.

Aims: We aimed to assess the quantity and quality of empirical support for the use of avatar technologies in adult weight loss interventions.

Method: A systematic review of empirical studies was undertaken. The key objectives were to determine if: (i) the inclusion of avatar technology leads to greater weight loss achievement compared to routine intervention; and (ii) whether weight loss achievement is improved by avatar personalisation (avatar visually reflects self).

Results: We identified 6 papers that reported weight loss data. Avatar-based interventions for weight loss management were found to be effective in the short (4–6 weeks) and medium (3–6 months) term and improved weight loss maintenance in the long term (12 months). Only 2 papers included avatar personalisation, but results suggested there may be some added motivational benefit.

Conclusions: The current evidence supports that avatars may positively impact weight loss achievement and improve motivation. However, with only 6 papers identified the evidence base is limited and therefore findings need to be interpreted with caution.

1. Introduction

1.1. Background

Obesity remains a global public health concern (WHO, 2016). In 2016, over 650 million adults worldwide were classified as obese (BMI ≥ 30 kg/m²) (WHO, 2018) and in England, 26% of adults were considered obese (Health and Social Care Information Centre, 2017), a proportion similar to reported societal obesity levels across the developed world (OECD, 2017).

Obesity is associated with a range of increased health risks including diabetes (type II), heart disease, cancer (Lauby-Secretan et al., 2016), depression and mental health issues (Rajan and Menon, 2017; McPherson et al., 2007), all of which may impact upon societal engagement and quality of life (Wang et al., 2011). Obesity also increases demand for, and complexity of, healthcare services and is estimated to cost the National Health Service (NHS) £5bn annually (Scarborough et al., 2011; McPherson et al., 2007) with a projected increase of £1.9–£2bn per annum by 2030 without intervention (Yanovski and Yanovski, 2014). Consequently, in terms of individual, societal and economic well-being and sustainability, developing effective interventions to reduce population obesity is imperative.

Obesity interventions in adults rely predominantly on managing dietary intake and/or increasing physical activity (Shaw et al., 2005). More recently, bariatric surgery has been offered as a last resort weight loss intervention (NICE, 2014) as evidence suggests this is more effective than either pharmacological or lifestyle interventions for moderately to severely obese people (Picot et al., 2009). However, bariatric surgery is not a weight loss intervention in itself, but a surgical procedure that is undertaken alongside behaviour change interventions.
and requires the adoption of healthy lifestyle behaviours for long term maintenance of weight reduction (Faria et al., 2010). As with all interventions or treatments, the lack of sustained motivation, self-efficacy (a belief in one's ability to undertake the intervention) and poor adherence to behavioural regimens (Coons et al., 2012; Rosser et al., 2009) are acknowledged to be barriers to successful weight loss (Faria et al. 2010). To address this, weight management interventions are increasingly using digital technologies (Holmes et al., 2018; Raaijmakers et al., 2015; Bacigalupo et al., 2013; Khaylis et al., 2010) or mobile applications (Mateo et al., 2015) to support weight loss. Dedicated mobile phone applications have shown some promise with a systematic review and meta-analysis suggesting their use produces a small (1.04 kg), but statistically significant additional weight loss over and above that achieved by a control group (Mateo et al., 2015). However, despite their promotion, < 20% of the persons using aids to assist weight management in England reported using digital technologies (wearable trackers, mobile phone applications or websites). As a result, questions have been raised over population enthusiasm to engage with such technology along with suggestions that greater motivational digital technologies are required to support losing weight (Solbrig et al., 2017).

Virtual reality (VR) enables people to experience an alternate visual reality, often through an avatar (computerised representation of self). Avatar technology is well established within the computer gaming industry and third person perspective of self within a VR setting has been shown to promote emotional engagement (Schuurink and Toet, 2010; Solhye and Reeves, 2009). Research has also demonstrated a link between a virtual representation of self and real-world behaviours (Wrzesien et al., 2015; Seitz et al., 2014; Behm-Morawitz, 2013; Fox et al., 2013; Bordnick et al., 2011; Fox et al., 2009) as a result of individuals identifying with their avatar (Schultze and Leaby, 2009) and experiencing presence within the computer mediated environment (Parrish et al., 2015; Ganesh et al., 2012). Consequently, immersion in and engagement with, the VR environment may promote changes in health behaviour (Ahn, 2015) and it has been suggested as a potential behaviour modification tool for addressing obesity (Napolitano et al., 2013; Fox and Bailenson, 2009). Studies undertaken within an experimental environment have demonstrated that an individual’s behaviour conforms to their digital self-representation (Bordnick et al., 2011; Fox et al., 2013; Yee and Bailenson, 2007). Further, research suggests that observing a self-resembling avatar, as opposed to a generic avatar, modelling a particular behaviour/activity (e.g. exercise) within a VR environment differentially and positively influences real world behaviour and increases engagement with the modelled activity (Behm-Morawitz, 2013; Yee et al., 2009). Avatar personalisation, therefore, may have additional potential within digital weight loss interventions.

1.2. Research goal and aims

To our knowledge there is no systematic review considering the effectiveness of avatar based digital technologies on weight loss outcomes. Previous identified reviews have focussed on VR in rehabilitation (Rose et al., 2018; Howard, 2017; Laver et al., 2017); digital chronic pain management through personification of an e-coach or online therapist in the form of an avatar (Traynor et al., 2016) and gamification for health and wellbeing (Sardie et al., 2017; Johnson et al., 2016). The aim of this review was to assess the quantity and quality of empirical support for the use of avatar technologies in adult weight loss interventions and determine if: (i) the inclusion of avatar technology leads to greater weight loss achievement compared to routine interventions; and (ii) whether weight loss achievement is improved by avatar personalisation (self-resembling avatar).

2. Methods

The protocol for the review was developed and agreed by the authors prior to commencement. To ensure all relevant papers were identified, a health information specialist conducted a systematic search of the literature databases using established standards (Centre for Reviews and Dissemination (CRD), 2009; Higgins and Green, 2011) in August 2017, August 2018 and July 2019. The PRISMA guidance was used to inform both the conduct and reporting of the review (Moher et al., 2009).

2.1. Data collection

The databases searched included those considered relevant to weight loss, health interventions, population or public health and digital technologies. Full holdings of the following nine electronic databases were searched: AMED, CINAHL, Embase, IEEE, MEDLINE, PsycINFO, Cochrane Central Trials Register of Controlled Trials (CENTRAL), Science Direct and Scopus. Searches were limited to studies published from 2000 to July 2019 in English. Additional articles were identified by searching the references of included articles.

2.2. Search terms

Search terms were developed under the headings “Obesity”, “Avatar” and “Decision making”, with decision making including broader concepts, such as autonomy, choice and commitment. Truncation (*) was employed where variations of a search term existed. Additional broad search terms were used to ensure that all studies meeting the inclusion criteria were captured. Keywords included combinations of “weight loss”, “Body Mass Index”, “diet”, “compliance”, “adherence”, “self-efficacy”, “virtual world”, “virtual reality”, “second life” and “virtual environment”. A copy of the search terms used and modifications necessary across databases is available from the corresponding author upon request.

2.3. Inclusion/exclusion criteria

Papers were included where they reported the results of empirical research where participants were overweight or obese adults (aged 18 + years); the weight management intervention included an avatar technology; and weight (self-reported or measured) was reported as a numerical value pre and post intervention. Research papers were excluded where any of these criteria were unmet.

2.4. Quality assessment & data extraction

Quality of study design, including methods selection, identification of biases, appropriate use of statistical methods, and clarity of reporting was assessed using a validated checklist for evaluating studies of diverse designs developed by Sirriyeh et al. (2012). Study eligibility was confirmed by two authors with mitigation by a third where disagreements arose. Each paper was judged against 14 points on the checklist, where a single method was used, and 16 points on the checklist, where multi methods were used. A percentage score was calculated as a measure of quality. Studies achieving scores of < 50% were considered poor quality; those with scores between 50 and 70% were considered to be moderate quality; and those with scores of > 70% were considered high quality.

Extracted data included socio-demographic characteristics of participants; country of origin; sample size; intervention/control description; weight change; other relevant intervention outcomes such as self-efficacy, motivation, experience and/or engagement with weight-loss programme and avatar technology.

2.5. Synthesis

Due to the small number of studies that met the inclusion criteria and heterogeneity in study design, intervention and outcome measures,
meta-analysis was not possible and a narrative synthesis was performed (Petticrew and Roberts, 2006).

3. Results

The study selection process is illustrated in Fig. 1. Initial database searches returned 2419 hits (excluding duplicates), of which six papers (Behm-Morawitz et al., 2016; Cesa et al., 2013; Johnston et al., 2012; Manzoni et al., 2016; Napolitano et al., 2013; Ossolinski et al., 2017) met the criteria for inclusion. Key study key characteristics and quality ratings are also outlined in Table 1.

3.1. Quality of studies

All included papers were of moderate or high quality (Table 1) ranging in scores from 57% (Johnston et al., 2012) to 88% (Cesa et al.,
Significant interaction effect between condition & time, $F(1, 38) = 4.93$, $p = 0.03$, $g^2 = 0.11$ i.e. exercise Fitness Club to practice but not for the control groups. The SL intervention, however, did not increase nutrition efficacy - $F(1, 38) = 1.99$, $p = 0.17$. For social engagement, participants signed up to use the virtual world in groups of 3–4 participants.

Table 1
Characteristics of included studies.

Study	Design	Setting	Sample Characteristics
Behm-Morawitz et al. (2016)	3 arm RCT.	USA	4 week programme. Start interview participants completed surveys, body measurements taken & instructions provided. At week 4, same measures taken plus open ended questions about experiences in the study. Participants were randomly assigned to one of three conditions: (i) 3D social virtual world (avatar virtual interaction. Experimental condition) (ii) 2D social networking site (no avatar virtual interaction control condition). (iii) no intervention (no virtual interaction control condition). (i) Avatar virtual intervention participants were instructed to use SL for a minimum of two times/week (totaling 2 h/week) for the duration of the study. Participants visited a list of in world locations that promoted physical activities, such as yoga, weightlifting, snowboarding & surfing. In week 1: participants were taught to use SL & navigate to the Avatar Fitness Club to practice exercising with their avatar. For social engagement, participants signed up to use the virtual world in groups of 3–4 participants but 75% of time in SL spent on independent activity rather than social interaction.
Table 1 (continued)

Main findings	Quality rating
Immersive Virtual Environments (IVE)	

Three themes emerged: technology issues, time constraints & lack of enjoyment. Participants also spent most of their time independently exploring the site an average of two times/week. Random allocation to conditions: (i) Enhanced Cognitive Therapy (ECT) n = 27. (ii) CBT n = 27. (iii) no intervention control condition (C) n = 26. Criteria for participation: (i) Women aged 18–50 years before treatment commenced (n = 66). (ii) BMI > 40 female patients with binge eating disorder (BED). (iii) EDI symptom checklist was administered at each time-point to assess the critical situations related to the maintaining/relation of the body image. (iv) No concurrent pharmacotherapy. (v) No concurrent medical condition not related to the disorder.

The environments present critical situations related to the maintaining/relation of the body image, patients practiced both eating/emotional/relational management & general weight loss. Body image control was assessed at the beginning of the study, participants were asked to describe their eating, emotional/relational, and weight loss management in the last month.

End of 6 week IP period (n = 66). Weight significantly decreased in all conditions: ECT: −7.1 kg, CI −8.1 to −6.2, p < 0.001; CBT: −6.6 kg, CI −8.1 to −5.2, p < 0.001; IP: −6.17 kg, CI −7 to −5.3, p < 0.001. Body satisfaction, body image concerns (BIAQ-Total) significantly improved in all groups with no difference across them.

Body image control was assessed at the beginning of the study, participants were asked to describe their eating, emotional/relational, and weight loss management in the last month.

| Case et al. (2013) | |}

Random allocation to conditions: (i) Enhanced Cognitive Therapy (ECT) n = 27. (ii) CBT n = 27. (iii) no intervention control condition (C) n = 26. Criteria for participation: (i) Women aged 18–50 years before treatment commenced (n = 66). (ii) BMI > 40 female patients with binge eating disorder (BED). (iii) EDI symptom checklist was administered at each time-point to assess the critical situations related to the maintaining/relation of the body image. (iv) No concurrent pharmacotherapy. (v) No concurrent medical condition not related to the disorder.

The environments present critical situations related to the maintaining/relation of the body image, patients practiced both eating/emotional/relational, and weight loss management in the last month.
Both ECT & BCT maintaining or furthering were effective at decision-making & problem-solving skills. By directly comparing CBT & ECT, the Italian version of the Body Image Avoidance Questionnaire (BIAQ) compared to IP. No significant difference CBT & ECT. Specifically, all groups were helped in developing specific strategies for avoiding & coping with triggering situations. The first session was used to assess any stimuli that could elicit negative attitudes towards exercising at a real club in the 3D spaces (e.g. a restaurant, basketball, weight lifting, exercise balls, lap swim, basketball, weights lifting, yoga, sharing & food). Significant baseline differences were observed in physical activity (p = 0.02), vigorous physical activity (p < 0.001).
Prior to the start of the virtual-world program, participants received technical training & support (e.g., computer setup & navigating the island).

12-week program delivered to cohorts of 15–20 participants for a total of 48 instructor hours. Each week, four 1-h classes (Nutrition, Movement, Healthy Habits & Support Group) are led by certified fitness, nutrition, & support professionals. Each week addresses a common theme (e.g., emotion as related to eating) across all 4 classes.

Face-to-Face program:
Comparison face-to-face group had to attend a real facility. The program included instructor-led weekly educational sessions on nutrition, movement, & habit change, as well as a social support group meeting. Program participants were also able to use club equipment & facilities during normal business hours.

Enrollees were of a similar age & BMI (95% (20/21) female, mean age = 37.5 (SD 10.6) years; 90% (19/21) held college or advanced degrees & 71% (15/21) reported incomes over US $75,000.

Secondary Outcomes: Self-efficacy, with regard to both physical activity & weight management were measured using the Physical Activity Confidence Scale & the Weight Efficacy Lifestyle Questionnaire (WEL).

Attitudes towards exercising at a health club were captured with items adapted from Miller and Miller (2010) in pre-survey.

Virtual-world participants were asked about prior experience with SL (post-survey).

The weight loss program was designed to move participants from a diet & exercise cycle of weight loss & gain to a view that they are on a healthy life path that does not have a stop & end date, but is maintainable for the rest of their lives.

Participants choose how their avatar looks (actual or desired) & are able to make modifications over time, as wanted.

The Nutrition, Movement & Healthy Habits classes were all designed in such a way that participants were always moving.

Face-to-face

Comparison face-to-face group had to attend a real facility. The program included instructor-led weekly educational sessions on nutrition, movement, & habit change, as well as a social support group meeting. Program participants were also able to use club equipment & facilities during normal business hours.

Enrollees were of a similar age & BMI (95% (20/21) female, mean age = 37.5 (SD 10.6) years; 90% (19/21) held college or advanced degrees & 71% (15/21) reported incomes over US $75,000.

Secondary Outcomes: Self-efficacy, with regard to both physical activity & weight management were measured using the Physical Activity Confidence Scale & the Weight Efficacy Lifestyle Questionnaire (WEL).

Attitudes towards exercising at a health club were captured with items adapted from Miller and Miller (2010) in pre-survey.

Virtual-world participants were asked about prior experience with SL (post-survey).

The weight loss program was designed to move participants from a diet & exercise cycle of weight loss & gain to a view that they are on a healthy life path that does not have a stop & end date, but is maintainable for the rest of their lives.

Participants choose how their avatar looks (actual or desired) & are able to make modifications over time, as wanted.

The Nutrition, Movement & Healthy Habits classes were all designed in such a way that participants were always moving.

Face-to-face

Comparison face-to-face group had to attend a real facility. The program included instructor-led weekly educational sessions on nutrition, movement, & habit change, as well as a social support group meeting. Program participants were also able to use club equipment & facilities during normal business hours.

Enrollees were of a similar age & BMI (95% (20/21) female, mean age = 37.5 (SD 10.6) years; 90% (19/21) held college or advanced degrees & 71% (15/21) reported incomes over US $75,000.

Secondary Outcomes: Self-efficacy, with regard to both physical activity & weight management were measured using the Physical Activity Confidence Scale & the Weight Efficacy Lifestyle Questionnaire (WEL).

Attitudes towards exercising at a health club were captured with items adapted from Miller and Miller (2010) in pre-survey.

Virtual-world participants were asked about prior experience with SL (post-survey).

The weight loss program was designed to move participants from a diet & exercise cycle of weight loss & gain to a view that they are on a healthy life path that does not have a stop & end date, but is maintainable for the rest of their lives.

Participants choose how their avatar looks (actual or desired) & are able to make modifications over time, as wanted.

The Nutrition, Movement & Healthy Habits classes were all designed in such a way that participants were always moving.
Table 1 (continued)

Study	Design	Country	Sample	Intervention	Primary outcome measure	Description	
Manzoni et al. (2016)	RCT with one year follow up.	Italy	n = 163 women BMI > 40, 18-50 years of age; no other concurrent severe eating disorder.	Virtual reality (VR)-enhanced CBT	Weight-loss maintenance.	Out of 163 patients recruited, 113 responded to the follow-up call & provided their weight data. The majority of patients who did not respond were in the SBP group (n = 21), followed by CBT (n = 14) & VR (n = 10). The chi-square test showed a significant association between the dropout rates & the experimental conditions (p = 0.02) with fewer patients being lost from VR or CBT treatments.	37/42 88%
Immersive Virtual Environments (IVE)	Main findings						
-------------------------------------	---------------						
Quality rating							
effective than the inpatient program only as well as standard CBT in maintaining or further improving weight loss at 1 year follow-up.							
mechanisms (home, supermarket, pub, restaurant, swimming pool, beach, gymnasium) & two body-image comparison areas. Environments used by therapist during a 60 minute session with the patient.							
(ii) Cognitive Behavioural Therapy (CBT) \(n = 38 \): After week 1, patients entered \(5 \) weekly group sessions aimed at addressing weight & primary goals & \(10 \) biweekly individual sessions, aimed at establishing & maintaining weight loss, addressing barriers to weight loss, increasing activity, addressing body image concerns & supporting weight maintenance, during the standard inpatient program. Therapists followed a detailed manual based on the CBT approach (Cooper et al., 2003, 2010) & adapted to an inpatient setting. Patients were taught to self-monitor their food intake & eating patterns thoughts, as well as the circumstances & environment surrounding eating (e.g. whether eating alone or with others, speed of eating, & place of eating). Patients were also taught to identify problems in eating, mood & thinking patterns & to develop alternative patterns gradually.							
(iii) Standard behavioural program (SBP) \(n = 29 \): hospital-based living for 6 weeks. Inpatients receive medical, nutritional, physical & psychological care the goal of which is to provide practical guidelines (e.g. stressing gradual weight loss							
Questionnaire - BIAQ • The Contour Drawing Rating Scale - CDRS for avoiding &/or coping with triggering situations.							
difference was found between.							
One-way ANCOVA on the post IP period to follow-up weight changes showed a significant group effect. Post hoc analyses revealed a significant difference between the VR & the SBP conditions & also between the CBT & the SBP conditions, but not between VR & CBT.							
Odds ratios showed that patients in the VR condition had a greater probability of maintaining or improving weight loss at 1 year follow-up than SBP patients (48% vs. 11%, \(p = 0.004 \)) & to a lesser extent, than CBT patients had (48% vs. 29%, \(p = 0.08 \)).							
Only the VR-enhanced CBT was effective in improving weight loss at 1 year follow-up.							
Participants who received only the inpatient program regained back, on average, most of the weight they had lost.							
The CBT group showed a non-significant weight increase, while no change was found within the VR group.							
Findings support the hypothesis that a VR module addressing the locked negative memory of the body may enhance the long-term efficacy of standard CBT.							
Phase 1 findings

Dieting History:

More than two-thirds (71.9%) of participants had attempted to lose weight during the past year, with the average number of attempts lasting up to 3 days (SD = 8.60). Women reported most commonly using their own diet (46.1%) & exercise (37.5%) & also activity goal setting. Men reported height & weight (BMI) & physical training (30 minutes of walking twice a week as a minimum).

Table 1

Program	Location	Description	Number of Participants	Mean Age (SD)	Program Interest	Technology Use	Program Intention	Efficacy	Acceptability
IVE	USA	Mixed methods study: (i) technology development & usability testing; (ii) technology development & usability testing	n = 128 females						
		Phase 1: measures: non--self-reported height & weight (BMI) & waist circumference; (iii) technology development & usability testing							
		Phase 2: measures: (i) technology development & usability testing; (ii) technology development & usability testing							
		Phase 3: measures: (i) technology development & usability testing; (ii) technology development & usability testing							
		Phase 4: measures: (i) technology development & usability testing; (ii) technology development & usability testing							

Program Interest:

A majority of participants had never used VR (98.3%) or SL (98.4%). Program interest in an avatar-based program was highest: 88.3% of participants reported they would participate in a program that used an avatar to help practice weight loss skills. Qualitative responses included: "Seeing ‘myself’ exercising or eating correctly… will help me visualize myself following these examples," "I would use the avatar because it allows me to project my own thoughts," & also activity goal setting. Participants reported accessing the Internet/email at least daily & enjoyed using technology. None had previous experience of using virtual technology.

Phase 2 measures:

(i) Physical Activity Self-Report: (a) weighed on a calibrated scale; BMI calculated based on height & weight

Phase 3 measures:

(ii) Technology Use: (a) technology development & usability testing; (ii) technology development & usability testing

Phase 4 measures:

(iii) Technology Use: (a) technology development & usability testing; (ii) technology development & usability testing

(iv) Technology Use: (a) technology development & usability testing; (ii) technology development & usability testing

(v) Technology Use: (a) technology development & usability testing; (ii) technology development & usability testing

(vi) Technology Use: (a) technology development & usability testing; (ii) technology development & usability testing
Main findings	Quality rating
Immersive Virtual Environments (IVE)	
activity self-efficacy (Marcus et al., 1992) to assess confidence to exercise in challenging situations (e.g., “when I am tired”) using a five-point Likert scale (“not at all” to “extremely confident”) (internal consistency = 0.76 & 1-week test-retest reliability = 0.90).	
(iii) Weight Self-Efficacy: measured using Clark et al. (1991) self-efficacy in weight management scale to measure perceived control over food-related behaviours.	
(iv) Goal Setting & Planning: measured using goal setting & the exercise goal-setting scale & the exercise planning & scheduling scale (Rovniak et al., 2002). Same measure adapted to assess goal setting & planning for nutrition & weight loss. Measure has good internal consistency (exercise goal-setting scale = 0.89; exercise planning & scheduling scale = 0.87) (Rovniak et al., 2002).	
Consumer Satisfaction: Participants completed weekly exit interviews & a post-treatment survey that assessed the degree to which the program & its components (e.g. virtual avatar modelling, video content, handouts) were helpful.	
User satisfaction & preference components of usability: Participants completed weekly exit interviews & a post-treatment survey that assessed the degree of user satisfaction & preference components of usability e.g. “How interested would you be in having the avatar, or virtual model, look exactly like you?”	

Range = 0.91–13.61 kg) during the first month of a VR program & 7.92 kg (SD = 3.88 kg; range = 1.36–27.22 kg) after 3 months. Phase 2: Most women (87.5%) stated that the virtual models were helpful. Average weight loss after 4 weeks was 1.6 kg (SD = 1.7). Increased confidence on physical activity self-efficacy scale (p = 0.01). Usability: 100% reported they would recommend the program to others and felt it influenced their diet/exercise behaviour. 87.5% found avatar models helpful. User Preference: 25% did not want an avatar to reflect self but 75% were interest in an avatar that changed size & shape as they progressed through the program.

(continued on next page)
Table 1 (continued)

Study	Design	Australia	Main findings	Quality rating
Ossolinski et al. (2017)	RCT			
To evaluate the effect of (i) a personalized future self-image (photograph) on weight change over a 6-month period & (ii) to include both men & women of any age over 18 years.				
Participants randomized to receive a current & future self-image (photographic still based on personal choice) immediately (early intervention group) or after 8 weeks (delayed intervention).				
At recruitment, participants complete a questionnaire outlining demographic details & an assessment of motivational state using the Prochaska Transtheoretical Model of Behaviour Change.				
Baseline height, weight & waist circumference were measured for all participants.				
All participants received 15 mins general lifestyle advice for weight loss & resource pamphlet listing freely available online resources for weight management & accredited professional & weight loss programmes.				
Weight loss methods chosen by the individual. Participants asked to return every 4 weeks for 24 weeks to record weight on original calibrated scales. Researcher provided information on sources of advice at weigh-ins but not intervening periods. Participants randomized again at 16 week visit to receive either 2nd picture of choice of future self, based on new parameters or continue with original image.				

A sample size of 150 was determined to have the power to detect a 1-kg weight difference between groups (based on mean weight difference seen at 8 weeks in the pilot study (Jiwa et al., 2015)). A total of 145 participants were recruited over an 8 month period. Male & female; aged 18 years +; BMI > 25; wanting to lose weight. Study engagement assumed if participant returned for 1st weigh in 4 weeks after recruitment. Study completers were those who returned to be weighed at week 20 or 24. For missing data, linear interpolation was undertaken & straight line applied between missing values. No 4 week weigh in = non-starters. Stopped returning for weigh in before week 20 = drop out, but included in intention to treat analysis.

Primary outcome:
Weight loss over 16 weeks - using participants whose weights were measured at weeks 8 &16 (at least).

Secondary outcomes: Weight loss & change in waist circumference over 24 weeks - undertaken using only 'completers' who attended at weeks 8 &16.

A computerised application (app) prototype called 'Future Me' developed by the research team. The app portrays the effect of lifestyle on future personal appearance using input calorie & exercise information to predict future BMI.

At 24 weeks significant change in weight overall (p < 0.0001) & a difference in rate of change between groups (delayed-image group: −0.60%, early-image group: −0.42%, p = 0.01).

Men lost weight at a greater rate than women.

Participants in delayed image group lost more weight than immediate image group.

No significant difference in change in waist circumference or proportion that lost 5% body weight between early/late image groups although the latter was greatest in delayed image group (may reflect greater proportion of participants in 'contemplation' on state of change scale).
The lower quality percentage scores were generally attributable to poor reporting of research design and the findings being unclear, poorly described or inconsistently reported. Three studies were conducted in the USA (Behm-Morawitz et al., 2016; Napolitano et al., 2013; Johnston et al., 2012), two in Italy (Manzoni et al., 2016; Cesa et al., 2013) and one in Australia (Ossolinski et al., 2017).

3.2. Types of interventions

Four papers reported Randomized Controlled Trials (RCTs) (Ossolinski et al., 2017; Behm-Morawitz et al., 2016; Manzoni et al., 2016; Cesa et al., 2013), one study used a mixed methods approach (Napolitano et al., 2013) and one study used a before-after research design (Johnston et al., 2012). The target participant group varied across the studies with weight loss intervention aimed at: (a) obese women with binge eating disorders (Cesa et al., 2013); (b) women with morbid obesity (Manzoni et al., 2016); (c) overweight adults (Behm-Morawitz et al., 2016); (d) adults with a BMI of 25kg/m² or greater with access to an internet-connected computer (Johnston et al., 2012) and (e) adults with a BMI > 25kg/m² wanting to lose weight (Ossolinski et al., 2017).

3.3. Intervention delivery

Four papers used avatars within a 3D social virtual world environment (second life or similar) (Behm-Morawitz et al., 2016; Cesa et al., 2013; Johnston et al., 2012; Manzoni et al., 2016). One paper used a tailored avatar within a non-immersive VR environment (Napolitano et al., 2013).

Table 2

Weight loss.

Study	Clinical significant weight loss
Cesa et al. (2013)	• Both routine and avatar arm achieved clinical significant weight loss in 5/6 weeks (routine arm = 5.9%, avatar arm = 6.0%).
	• Only avatar arm participants maintained or increased this weight loss at 12 months follow up compared to baseline measures (routine 2.1%, avatar 6.8%).
	• Routine participants regained an average of 2.4kgs of weight from end of programme up to 12 months.
Manzoni et al. (2016)	• Both routine and avatar arm achieved clinical significant weight loss at 5/6 weeks (routine 6.2%, avatar 6.25%).
	• Only avatar arm participants maintained or increased 5% weight loss at 12 months (avatar = 5.98%).
	• The routine arm participants increased weight relative to initial weight value (increase weight of 4.7 kg or 4.27%). This difference is clinically and statistically significant.
Johnston et al. (2012)	• Neither routine nor avatar arm lost 5% weight in the 12 week programme. However, participants in the avatar arm lost a greater weight proportion (avatar 4.3%, routine 3.0%), but this was not statistically significant.

Weight loss

- **Significant decreases in weight in all three arms of their RCT at 6 weeks among women with binge eating disorder (BED):** (i) Enhanced Cognitive Therapy (ECT) - 6.17 kg, CI -7 to −5.3, p < 0.001; (ii) Behavioural Therapy (CBT) - 7.1 kg, CI -7.9 to −6.2, p < 0.001 and (iii) Standard care, inpatient multimodal treatment (IP) - 6.6 kg, CI -8.1 to −5.2, p < 0.001.
- **No significant differences reported between the groups at the end of the 6 week treatment**
- **Statistically significant increases in weight and BMI were observed in the IP treatment group (from 105 kg to 109.3 kg; P < 0.001) at one year follow-up;**
- **No statistically significant weight and BMI changes were found between the end of the inpatient treatment and 1-year follow-up in CBT and ECT groups. Only ECT was effective for further improving weight loss at 1 year follow-up (p < 0.031).**

Weight loss

- **Significant differences between the VR enhanced CBT and the standard behavioural program (SBP) conditions, and also between the CBT and the SBP conditions, but not between VR and CBT in their inpatient programme for women with morbid obesity.**
- **Odds ratios showed that patients in the VR enhanced CBT condition had a greater probability of maintaining or improving weight loss at 1 year follow-up than SBP patients (48% vs. 11%, p = 0.004) and CBT alone (48% vs. 29%, p = 0.08). Only the VR-enhanced CBT was effective in improving weight loss at 1 year follow-up.**
- **Participants who received only the inpatient program regained back, on average, most of the weight they had lost. The CBT group showed a nonsignificant weight increase, but no change was found within the VR-enhanced CBT group.**

Weight loss

- **Significant decreases in overall weight (p < 0.0001) at 24 week of the personalised self-image weight loss programme and a significant difference in the rate of change between groups: delayed-image group - 0.60 kg, early-image group - 0.42 kg, p = 0.01). Men lost more weight than women. Participants in the delayed image group lost more weight than immediate image group.**
et al., 2013) and another used a personalised computerised avatar application (app) (Ossolinski et al., 2017).

3.4. Weight loss

Of the six included papers, evaluation of weight loss between routine and routine plus avatar intervention was possible in three (Manzoni et al., 2016; Cesa et al., 2013; Johnston et al., 2012). A summary of these is provided in Table 2. The remaining 3 papers all identified weight loss in the intervention group, but diverse designs prevented direct comparison.

3.5. Avatar personalisation

Two papers reported using some form of avatar personalisation (Ossolinski et al., 2017; Napolitano et al., 2013). Napolitano et al. (2013) described a futures tailored avatar and while reported average weight loss after the 4-week programme was not clinically significant (< 5% weight loss), most women (87.5%) stated that the virtual model within the avatar programme was helpful. In contrast, Ossolinski et al. (2017) used a personalised app incorporating participant self-images in the creation of an avatar. Unfortunately, Ossolinski et al. (2017) did not use a routine arm for comparison, but instead adopted an immediate and delayed (8 weeks post weight loss programme commencement) avatar intervention approach with images of current and future selves. Findings suggested that delaying access to personalised avatar future images promoted greater weight loss, potentially due to increasing longevity of participant engagement and personal contemplation on stage of change (Prochaska et al., 1997).

3.6. Exercise and physical activity self-efficacy

Three papers reported exercise/physical activity self-efficacy and frequency as a process outcome (Behm-Morawitz et al., 2016; Napolitano et al., 2013; Johnston et al., 2012). Behm-Morawitz et al. (2016) found a significant interaction effect between condition and time \(F(1, 38) = 4.93, p = 0.03\) whereby exercise efficacy increased for the Second Life (avatar) group, but not for the control group. Similarly, Johnston et al. (2012) found a significant in group \(\times\) time interaction for pre-to-post intervention for moderate and vigorous physical activity and physical activity self-efficacy among the virtual world (avatar) group compared to the face-to-face intervention group. However, this difference is contradicted by the statistically significant \(\approx 0.03\) greater negative attitude (mean score 3.35, SD 1.13, on a scale of 1 to 7, where 1 = strongly disagree; higher scores represent more negative attitudes) towards exercising at a real club compared to their routine arm counterparts (2.69, SD 0.97). Napolitano et al. (2013) also reported increased confidence on the physical activity self-efficacy scale \(p = 0.01\) within their 4-week weight management programme using four virtual environments. However, no routine comparison arm was available.

3.7. Eating behaviour/nutrition efficacy

Two papers reported eating behaviour and nutrition efficacy as a process outcome (Behm-Morawitz et al., 2016; Johnston et al., 2012). Behm-Morawitz et al. (2016) reported no statistically significant interaction between condition and time \(F(1, 38) = 1.99, p = 0.17\) for nutrition efficacy in either the Second Life (avatar) intervention or control group. In contrast, Johnston et al. (2012) found significant in group \(\times\) time interaction for pre-to-post intervention fruit and vegetable consumption \(p = 0.007\) in the virtual-world group. They also found a statistically significant improvement in perceptions of general health \(p < 0.001\) and an increase in the number of days the virtual-world (avatar) group ate breakfast \(p = 0.003\) compared to the face-to-face routine intervention group.

3.8. Body image & body satisfaction

Two papers reported body image and body satisfaction as a process outcome measure. Cesa et al. (2013) found that body satisfaction significantly improved in all groups, but body image concerns only reduced significantly in the virtual reality-enhanced cognitive behaviour therapy group \(p = 0.031\). In contrast, Manzoni et al. (2016) found that all measures for body image and body satisfaction improved significantly at discharge from the intervention program with no significant difference was found between groups.

3.9. Weight management self-efficacy

Only one paper (Johnston et al., 2012) reported weight management self-efficacy as a process outcome. They found significant increases \(p < 0.001\) in group \(\times\) time interaction for pre-to-post intervention using the Weight Efficacy Lifestyle (WEL) Questionnaire (Clark et al., 1991).

3.10. Self-presence & avatar efficacy

Only one paper reported self-presence and avatar efficacy (Behm-Morawitz et al., 2016). In this study significant positive correlations between self-presence and avatar efficacy items \(p < 0.01\) were found.

3.11. Avatar acceptability and usage

Only one paper reported avatar acceptability and usage as a secondary outcome measure (Napolitano et al., 2013). Napolitano et al. (2013) found that interest in an avatar-based program for modelling weight loss skills in women was high with 88.3% of participants reporting that they would participate in such a program to help practice weight loss skills. 71.9% of participants also believed that an avatar-based program would be at least somewhat helpful as part of a weight loss programme and anticipated that the avatar-based program would yield strong effects in terms of weight loss. 87.5% of participants indicated that the virtual models were helpful and all reported the avatar-based programme influenced both their diet and exercise behaviour.

4. Discussion

The evidence presented in this systematic review suggests that the inclusion of avatar technology within weight loss interventions leads to greater weight loss and weight maintenance compared to routine interventions, although the differences were no consistent in terms of statistical or clinical significance (Ossolinski et al., 2017; Behm-Morawitz et al., 2016; Manzoni et al., 2016; Cesa et al., 2013). Avatar personalisation may provide some additional benefits by engaging and retaining interest and motivation to comply with a defined weight loss programme although the data to support this is less robust (Ossolinski et al., 2017; Napolitano et al., 2013).

While the quality of the included studies was moderate to high overall, the heterogeneous nature of the avatar interventions, content and delivery of weight loss programmes, study time frames and participant demographics meant that direct comparison of results was impossible. That said, the evidence suggests that participants who are able to access avatar representations do engage more with the weight loss programme (Manzoni et al., 2016; Napolitano et al., 2013; Johnston et al., 2012) are more likely to achieve weight loss outcomes (Behm-Morawitz et al., 2016; Johnston et al., 2012) and significantly more likely to maintain weight loss beyond the end point of the weight loss programme (Manzoni et al., 2016; Cesa et al., 2013). Of additional interest is the finding that participants creating their own avatars in Second Life created avatars that closely depicted themselves, or were interested in avatars that reflected self, suggesting that personalisation
of the virtual self is an important aspect of avatar engagement (Behm-Morawitz et al., 2016; Napolitano et al., 2013). However, this needs further exploration to understand the implications of self-identification in the virtual world and how this might be best utilised to achieve behaviour modification and ultimately improvements in weight loss and wider health outcomes.

It was interesting to note that while avatar experience increased exercise self-efficacy (i.e. the belief that one could undertake moderate to vigorous physical activity), this did not translate into an appetite for real world exercise activity and appeared to reduce the likelihood of attending a gym environment where such activity could be undertaken (Johnston et al., 2012) suggesting an apparent contradiction. The reasons behind this are uncertain and not discussed directly by the authors and are therefore worthy of further exploration to understand the potential negative consequences of avatar engagement. While exercise efficacy increased through engagement in the virtual world, this did not translate into an appetite for real world exercise activity, although the reasons behind this are uncertain. It is possible that this is related to increasing body self-consciousness as a consequence of avatar engagement although evidence from Manzoni et al. (2016) and Cesà et al. (2013) would contradict this perspective, therefore creating uncertainty over underlying causal factors.

Several evidence based weight loss strategies have traditionally been employed: diet-plus-exercise, diet-only (Wu et al., 2009); behaviour-based weight loss interventions and pharmacotherapy-based weight loss interventions (Curry et al., 2018). Diet and exercise programs have been found to be more effective than diet only programs or exercise only programs (Wu et al., 2009). Likewise, behaviour-based weight loss interventions, with or without weight loss medications, were associated with greater weight loss achievement (LeBlanc et al., 2018). However, motivation is still required to adhere to weight loss behaviours for both initial and long term weight loss to be realised (Teixeira et al., 2012).

Attrition and non-adherence is a common problem across all weight loss interventions with reported mean attrition rates ranging from 10% to over 80% (LeBlanc et al., 2018; Dombrowski et al., 2014; Moroshko et al., 2011; Franz et al., 2007). Within the studies included in this review, reasonable recruitment and attrition rates were achieved, particularly within the intervention arms. This suggests a general interest and acceptability of avatar technologies as a tool to weight loss. However, of importance is the lack of male participants across the reported intervention studies included in this review. This is consistent with another review that found fewer men joined mixed-sex weight loss interventions than women, but where they did, more completed the programmes and tended to show a greater percentage weight loss than women (Robertson et al., 2014). The lack of male participants may also reflect the greater societal pressure experienced by females to conform to expected body shapes and sizes as reiterated through advertisement and marketing materials or a lack of awareness among males of their weight condition as the societal ‘norm’ of what is obese has increased globally. While we have suggested possible reasons for this finding, the reasons behind the recruitment gender polarisation remains unclear and worthy of further exploration a tailoring of weight loss interventions for delivery to men could to promote greater engagement (Robertson et al., 2014).

While the evidence above has been reported faithfully and clearly supports the further development of avatar technologies within weight loss interventions, the limited volume of studies and their heterogeneous nature means that the findings should be interpreted with caution. Further work is required to understand the impact and implication of avatar technologies on weight loss and wider health care outcomes.

4.1. Limitations

The searches were limited to English language and included papers which were published in peer reviewed journals. No conference abstracts or grey literature pertinent to the review question were identified. In addition to the small number of included papers, the wide variability in the design and quality of the studies limits the conclusions that can be made. There is a need for more well-designed studies comparing avatar and personalised avatar interventions. Randomized controlled trials and double-blind experiments with adequately powered sample sizes, control groups and long-term follow-up assessments of outcomes are required to tease out the effects of personalisation on mediators like motivation, self-efficacy, health and wellbeing and user experience. The studies included in this review often involved small sample sizes and were largely based on women. Importantly one study did not feature a control group (Napolitano et al., 2013) limiting the ability to determine the impact of avatar technology. Only three studies explored the medium to long-term or sustained effects of using avatar-based interventions as an adjunct to a weight-loss management programme and findings may reflect the novelty and current interest in the use of avatar technology rather than the influence of the technology itself. A strength of this review is the clear focus and comprehensive and easily replicable search strategy. Additionally, we systematically selected studies through the application of well-defined inclusion/exclusion criteria.

5. Conclusions

The use of an avatar appears to be a useful adjunct to a weight loss management programme among individuals who are obese or overweight. Furthermore, personalisation of an avatar appears to demonstrate some additional benefits by engaging and retaining interest and motivation to comply with a weight loss programme. Future research should use more robust designs following the Medical Research Council’s framework for developing complex interventions (Campbell et al., 2007) to ensure a robust evidence base for avatar implementation is developed. The evidence presented in this review is not sufficiently strong to draw conclusions as to the clinical efficacy and acceptability of avatars in weight management due to the heterogeneity in study design and reporting. However, the evidence does not suggest that the use of avatar technology is ineffective and, therefore, is certainly worthy of further investigation as we move increasingly towards a digital reliant society.

Ethical approval

None sought.

Acknowledgements/funding

This study/project is funded by the National Institute for Health Research (NIHR) [RIPB programme (project reference PB-PG-1215-20016)]. The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care.

Declaration of competing interest

The authors declare that there is no conflict of interest.

References

Ahn, S.J., 2015. Chapter 12 Using Avatars and Agents to Promote Real World Health Behavior Changes. https://doi.org/10.1002/9781118952798.ch12.

Bacigalupo, R., Cudd, P., Littlewood, C., Binell, P., Hawley, M.S., Buckley Woods, H., 2013. Interventions employing mobile technology for overweight and obesity: an early systematic review of randomized controlled trials. Obes. Rev. 14 (4), 279–291. https://doi.org/10.1111/obr.12006.

Behm-Morawitz, E., 2013. Mirrored selves: the influence of self-presence in a virtual world on health, appearance and well-being. Comput. Hum. Behav. 29 (1), 119–128.
Scarborough, P., Bhatnagar, P., Wickramasinghe, K., Allender, S., Foster, C., Rayner, M., 2011. The economic burden to ill health due to diet, physical inactivity, smoking, alcohol and obesity in the UK: an update to 2006-07 NHS costs. J. Public Health 33 (4), 527–553. https://doi.org/10.1093/pubmed/fdr033.

Schultze, U., Leahy, M.M. 2009. The avatar-self relationship: enacting presence in second life. ICIS 2009 proceedings, paper 12. Available at: http://aisel.aisnet.org/ictc2009/12 . (Accessed 1st August 2019).

Schuurink, E.L., Toet, A., 2010. Effects of third person perspective on affective appraisal and engagement: findings from Second Life. Simul. Gaming 41 (5), 724–742. https://doi.org/10.1080/104687810365515.

Setz, C.A., Poyrazli, S., Harrison, M.A., Flickinger, T., Turkson, M., 2014. Virtual reality exposure therapy for military veterans with posttraumatic stress disorder: a systematic review. NEW SCHOOL PSYCHOLOGY BULLETIN. 11 (1), 14–29.

Shaw, K.A., O’Rourke, P., Del Mar, C., Kenardy, J., 2005. Psychological interventions for overweight or obesity. Cochrane Database Syst. Rev. 18 (2), CD003818. https://doi.org/10.1002/14651858.CD003818.pub2.

Sirriyeh, R., Lawton, R., Gardner, P., Armitage, G., 2012. Reviewing studies with diverse designs: the development and evaluation of a new tool. J. Eval. Clin. Pract. 18 (4), 746–752. https://doi.org/10.1111/j.1365-2753.2011.01662.x.

Sohye, L., Reeves, B., 2009. Being in the game: effects of avatar choice and point of view on psychophysiological responses during play. Media Psychol. 12 (4), 348–370. https://doi.org/10.1080/15213260903287422.

Solbrig, L., Jones, R., Kavanagh, D., Parkin, T., Andrade, J., 2017. People trying to lose weight dislike calorie counting apps and want motivational support to help them achieve their goals. Internet Interv. 7, 23–31. https://doi.org/10.1016/j.invent.2016.12.003.

Stunkard, A.J., Sørensen, T., Schulzing, F., 1983. Use of the Danish adoption register for the study of obesity and thinness. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 60, 115–120.

Teixeira, P.J., Silva, M.N., Mata, J., Palmeira, A.L., Markland, D., 2012. Motivation, self-determination, and long-term weight control. Int. J. Behav. Nutr. Phys. Act. 9, 22.

Thompson, M.A., Gray, J.J., 1995. Development and validation of a new body-image assessment scale. J. Pers. Assess. 64 (2), 258–269.

Traynor, A., Morrissey, E., Egan, J., McGuire, B., 2016. The effectiveness of information and communication technology-based psychological interventions for paediatric chronic pain: protocol for a systematic review, meta-analysis and intervention content analysis. Syst Rev 5, 175.

Wang, Y.C., McPherson, K., Marsh, T., Gottmaker, S.L., Brown, M., 2011. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet. 378 (9793), 815–825. https://doi.org/10.1016/S0140-6736(11)60814-3.

WHO. 2018. Obesity and overweight. Key facts. Available at: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight [accessed on 15th March 2019].

World Health Organisation. 2016. Obesity. Available at: http://www.who.int/topics/obesity/en/ . [Accessed 1st August 2019].

Wrzesien, M., Rodriquez, A., Rey, B., Alcaniz, M., Banos, R.M., Vara, M.D., 2015. How physical similarity of avatars can influence emotion regulation strategies in teenagers. Comput. Hum. Behav. 43, 101–111. https://doi.org/10.1016/j.chb.2014.09.024.

Wu, T., Gao, X., Chen, M., van Dam, R.M., 2009. Long-term effectiveness of diet-plus-exercise interventions vs diet-only interventions for weight loss: a meta-analysis. Obes. Rev. 10 (3), 313–323.

Yanovski, S.Z., Yanovski, J.A., 2014. Long-term drug treatment for obesity: a systematic and clinical review. JAMA. 311 (1), 74–86. https://doi.org/10.1001/jama.2013.281361.

Yee, N., Bailenson, J.N., 2007. The proteus effect: self transformations in virtual reality. Hum. Commun. Res. Human. 33 (3), 271–290. https://doi.org/10.1111/j.1468-2958.2007.00299.x.

Yee, N., Bailenson, J.N., Ducheneaut, N., 2009. The Proteus Effect: Implications Of Transformed Digital Self-Representation On Online And Offline Behaviour. Cr. 36(2), pp. 285–312. https://doi.org/10.1177/0993650208339254.