Effect of green hybrid fillers loading on mechanical and thermal properties of vinyl ester composites

N. Nagaprasad | V. Vignesh | N. B. Karthik Babu | P. Manimaran | B. Stalin | Krishnaraj Ramaswamy

1Department of Mechanical Engineering, ULTRA College of Engineering and Technology, Madurai, Tamil Nadu, India
2Department of Mechanical Engineering, Sethu Institute of Technology, Virudhunagar, Tamil Nadu, India
3Department of Mechanical Engineering, A Centre of Rajiv Gandhi Institute of Petroleum Technology, Sivasagar, Assam, India
4Department of Mechanical Engineering, Karpagam Institute of Technology, Bodipalayam, Coimbatore, Tamil Nadu, India
5Department of Mechanical Engineering, Anna University, Regional Campus Madurai, Madurai, Tamil Nadu, India
6Department of Mechanical Engineering, DambiDollo University, DambiDollo, Ethiopia

Abstract
The need for eco-friendly materials has been attracted due to renewability, abundance availability, low cost, and so on. Therefore, the search for bio fillers for the fabrication of bio-based composite materials is gaining more and more attention in both academic and industry circles because it promotes sustainability. The present study represents the utilization of biomass solid waste in the hybrid form of Tamarind Seed and Date Seed Filler (TSF/DSF) into polymer reinforced composite which has been explored for the first time by a compression molding technique. These fillers are bio-waste that can be obtained at a minimal cost from renewable sources. An attempt has been made to use these hybrid fillers to reinforce the matrix ranging from 0 to 50 wt%, and their physical, mechanical, and thermal properties were investigated. In general, the inclusion of hybrid fillers increases mechanical properties, although the addition of hybrid fillers had only a minor impact on thermal properties. When compared to the pure vinyl ester resin, the hybrid fillers reinforced composites revealed a significant enhancement in tensile, flexural, impact, and hardness properties, with improvements of 1.51 times, 1.44 times, 1.87 times, and 1.46 times respectively, at 10 wt% filler loading. Filler matrix interaction of fractured mechanical testing samples was evaluated by scanning electron microscope. Based on the findings, hybrid filler reinforced composites may be suitable for applications where cost is a consideration and where minor compromises in thermal qualities are acceptable.

KEYWORDS
compression molding, date seed filler, mechanical properties, scanning electron microscope, tamarind seed filler, vinyl ester

1 | INTRODUCTION
Researchers all across the world are attempting to achieve an ambitious objective is to the production of high-performance engineered materials using renewable resources. Due to environmental restrictions as well as new recycling laws for composite materials, manufacturers have been forced into developing innovative new materials derived from renewable resources. Because of their abundant readiness and low cost of production,
agricultural bio-waste fillers serve a critical and significant role in reducing environmental restraints while also serving as a possible outstanding replacement for synthetic fiber polymer goods. There are more than 50 countries all over the world, including India, Bangladesh, Sri Lanka, Thailand, and Indonesia, as well as the Gulf countries, tamarind (Tamarindus indica L.) seeds and date seeds (Phoenix dactylifera L.) seeds are grown. The seeds are underutilized in the majority of regions, despite the fact that there is potential to make them more helpful. We are investigating the possibility of using them as fillers in polymer composites as part of our ongoing attempt to increase their monetary value. Among the benefits of employing these materials are their low density, sustainability (since they are natural renewable resources), biodegradability, and lack of toxicity, making them more environmentally sustainable in terms of recycling and less hazardous to users and consumers. In the early stages of filler reinforced composites research and development, inorganic fillers predominated in the majority of the studies and developments. However, while inorganic filler composite materials such as silicon carbide, talc, and calcium carbonate are high-performance materials, they are non-biodegradable. They are derived from non-renewable resources than natural fillers. As a result, the usage of natural fillers may provide environmental benefits, in addition to cost benefits in some cases. Acosta et al. explored the mechanical and thermal characteristics of the Pecan Nut-shell reinforced Poly(lactic acid) composites and found that in comparison to the clean resin, the biocomposites exhibited improved mechanical characteristics such as tensile and flexural modulus, as well as fracture toughness. In accordance with the results of the dynamic mechanical study, it has been established that the stiffness of the biocomposites is enhanced when Pecan Nut-shell is used. Mittal et al. studied the Mechanical, Thermal, and Degradation characteristics of the Date Seed fillers (DSF) reinforced poly-L-lactide composites. The findings reveal that the tensile modulus of the DSF-based composites was increased by more than 300% in the composite with 40% filler content as compared to the composite with neat resin. Rheological characteristics demonstrated that the polymer retained its viscosity behavior even when added a high quantity of filler. Hybrid composites were materials that comprise two or even more reinforcement components in a single matrix, which is referred to as a matrix composite. The reinforcement may be two separate fibers, two distinct filler particles, or fibers plus filler particles. These filler and particulate reinforcements with in polymer offer excellent mechanical qualities. Hybrid composites with bio waste and natural filler reinforcement provide two important benefits: first, bio waste may be reduced and utilized in a productive way; secondly, good mechanical qualities can be attained through the use of natural filler materials. Nagaraja et al. calculated the Physical, mechanical, and moisture absorption characteristics of the Limonia acidissima shell powder-loaded vinyl ester composites and observed the alkaline treated fillers with 15 wt% of filler loading produced better strength. In previous studies, researchers have used various natural fillers, that is, Rice Husk, walnut shell powders, Thymus moroderi, Walnut shell, Pinewood and Black rice husk, Peanut Shell Powder, Betel Nut Husk, Polyalthia longifolia seed to enhance the mechanical and thermal properties of the polymer composites. A detailed investigation of the impacts of multiple parameters on the mechanical characteristics of hybrid filler composites is clearly lacking in the literature, and the mechanical and thermal characteristics of hybrid filler (TSF & DSF) have not yet been explored. The knowledge gaps indicated above demonstrate that the mechanical properties of hybrid filler filled with vinyl ester resin, such as tensile, flexural, impact, as well as hardness, must be evaluated based on a wide range of underlying parameters in order for their practical application to be feasible. We predict that the findings will provide valuable design inputs for developing a newer generation of hybrid fillers (tamarind seed filler [TSF] and DSF) that will be suited for industrial and vehicle applications as well as structural loading applications in civil engineering. The physical, mechanical, and thermal properties of hybrid fillers (TSF and DSF) reinforced vinyl ester hybrid composites were explored in the present study. We demonstrated the fabrication of natural fillers reinforced hybrid composites and subsequently tested various properties of hardness, tensile, flexural, and impact properties of the composites. To establish the sustainability of the hybrid composites in various distinct aquatic environments, the moisture absorption characteristics of the composites were investigated as well. Vinyl ester resin was adopted as the matrix material as it is commonly utilized to build hybrid composites and provides high dispersion of reinforcement particles.

2 | MATERIALS AND METHODS

2.1 | Materials

In order to conduct this experimental investigation, a total of 3 kg of date seeds and tamarind seeds were obtained from Manidharma Biotech dealers in Chennai, Tamil Nadu, India. The seeds were washed with distilled water to eliminate any left-over fruit pulp that had
Reinforcements	Manufacturing process	Tensile strength (MPa)	Flexural strength (MPa)	Impact strength (kJ/m²)	Hardness	References
TSF/DSF/vinyl ester	Compression molding	36.9	112	22.12	38.34	Present work
Nanoclay/banana/jute/polyester	Compression molding	15–23.7	34–48.3	—	—	[17]
Date seed powder/vinyl ester	Compression molding	11–39	46–149	9.43–17	20.33–51	[2]
Boiled egg shell/coir/vinyl ester	Compression molding	24	26	39.5	—	[18]
Tamarind seed powder/vinyl ester	Compression molding	10–34	47–121	7–14	23–42	[3]
Nano oil palm shell powder/kenaf–coconut–kenaf fiber/polyester	Compression molding	30–37.56	60–69.45	10–13.42	—	[19]
Alumina/coir/vinyl ester	Compression molding	27	31	40.5	—	[18]
Shorea robusta filler/polyester	Hand lay-up method	12–15	25–26	—	—	[20]
Rice hull/polyethylene	Injection molding	19–26	19–30	11–16	—	[21]
Polalthia longifolia seed powder/vinyl ester	Compression molding	10–31	44–125	10–31	23–36	[22]
Rice husk/boiled egg shell/coir/polyester	Hand lay-up method	17–31.5	18–33	17–33	—	[23]
Roselle fiber/sugar palm fiber/vinyl ester	Hand lay up	15–24	58–110.5	—	—	[24]
Date palm wood flour/glass fiber/polypropylene	Compression molding	15–25	—	—	35–60	[25]
Sisal fiber mat/epoxy resin	Hand lay up	6–14	22–61	5–13	—	[26]
Sawdust/recycled plastics	Hand lay up	9–13	21–35	—	—	[27]
carbon fiber/cement dust/vinyl ester	Hand lay up	10–19	28–34	—	—	[28]
wood flour/pulp fiber/polyvinyl chloride	Hand lay up	6–17	18–42	—	—	[29]
Sawdust flour/polypropylene	Hand lay up	25–30	50–54	—	—	[30]
Chitosan powder/coir/vinyl ester	Compression molding	15–22	15–29	—	—	[31]
Bagasse fiber/coir fiber/vinyl ester	Compression molding	21–43	41–53	—	—	[32]
Bagasse fiber/vinyl ester	Compression molding	27–51	38–63	—	—	[33]
Groundnut powder/coir/vinyl ester	Compression molding	15–28	38–34	42	—	[18]
Termite mount powder soil/coir/vinyl ester	Compression molding	14–30	26–36	46	—	[18]
Rice husk/coir fiber/vinyl ester	Compression molding	13–32	29–39	53	—	[18]
Betel nut husk fiber/vinyl ester	Compression molding	37–101	59–81	2.5–6	—	[34]
become stuck to them throughout the cleaning process. Tissue paper was then used to wipe away any extra water that had collected on their surfaces. Lastly, they were dried for 24 h at 60°C in an oven. Following milling in a ball mill, a good morphology of 30–60 μm was achieved, making the fillers ready to be employed as reinforcement. GSRR Resins And Polymers, Madurai, Tamil Nadu, provided the industrial bisphenol-A-epoxy vinyl ester resin (styrene—45%), which had a density of 1.145 g/cm³, viscosity of 400 cps, and specific gravity of 1.09, as well as N-dimethylaniline (C₈H₁₁N—promoter), methyl ethyl ketone peroxide (C₈H₁₈O₆—catalyst) and cobalt 6% naphthenate (C₂₀H₃₄CoO₄—accelerator) was employed for curing purposes in accordance with the supplier’s recommended ratio. Table 1 shows the chemical composition of TSF and DSF with various fillers and fibers.

2.2 Fabrication of composites

The compounding of hybrid fillers and vinyl ester has been accomplished in this current study using a typical compression molding approach. For specimen manufacturing, different filler loadings ranging between 5 to 50 wt% were adopted with mold specifications of approximately 200 mm long, 200 mm wide, and 3 mm thickness. The phases of preparation of the date seed filler as well as tamarind seed filler are displayed in Figure 1. Initially, mold elimination wax (provided by Carbon black) was added to the inside surface of the mold as well as the covering plate to facilitate the removal of the cured composite plates once they had been cured. And then, a measured quantity of vinyl ester resin was placed in a container, and 1.5 wt% of the promoter (10%, N-dimethylaniline) was included in the beaker. The beaker was then agitated for another 2 min, and the mixture was degassed in a vacuum chamber to eliminate any air bubbles that had penetrated where stirring occurred. A mixture of equal amounts (1.5 wt%) of accelerator (3 wt% Cobalt naphthenate) and catalyst (50 wt% methyl ethyl ketone peroxide) was introduced one at a time and mixed for 2 min before being degassed in a vacuum chamber every after the introduction of accelerator and catalyst.

Afterwards, the produced mixture was started pouring into the mold, and the mold was covered with the help of a cover plate to complete the process. It was necessary to cure the composite specimen for 24 h at atmospheric temperature before removing it from the mold and post-curing it for approximately 2 h at 80°C in the oven. The cured TSF/DSF hybrid-VE composite plate was extracted from the chamber of the mold. The same process has been used to produce the hybrid-VE composite with various filler loadings. For the current research, the vinyl ester composites were reinforced with coarse TSF/DSF microparticles in higher concentrations. It is difficult to obtain uniform distribution; however, the composite plates were flipped every 4 h to avoid the settlement of the microparticles. This worked well when the filler concentration was below 20 wt%. The composite
specimens were cut by zigzag cutting according to ASTM standard is shown in Figure 2.

3 | EXPERIMENTAL DETAILS

3.1 | Mechanical testing

In order to cut the prefabricated composite plates into the various forms required for the various test specimens, a saw cutter was utilized. Experiments in tensile stress and flexural deformation were performed with the aid of a universal testing equipment at room temperature (Tinius Olsen H50K). The results that were obtained were tested on three separate specimens with regard to each weight percentage. This was done to ensure that the results could be replicated accurately. A tensile test was performed on specimens in accordance with the ASTM D638 (165 mm × 10 mm × 3 mm) test standard, with the crosshead speed being set at 1 mm/min. Flexural testing was carried out utilizing the three-point bending technique with a potential of 50 kN and crosshead rate of 2 mm/min for all samples with the following dimensions: 127 mm in length, 12.7 mm in width, and 3 mm thick in accordance with ASTM D790-10 standard. The impact strength was determined using the Charpy measurement technique in accordance with the ASTM D-256 (65 × 13 × 3 mm) standards, and the

FIGURE 2 (A) Tensile test specimens of TSF/DSF–VE composites; (B) flexural test specimens of TSF/DSF–VE composites; (C) Impact test specimens of TSF/DSF–VE composites
results were analyzed. The hardness of the material was also assessed using a Barcol Hardness analyzer (Model: VBH2) in accordance with the ASTM D2583 standard. The hardness for each sample was found as the mean of 7 measurements. With the use of a Zeiss EVO 18 scanning electron microscope performing at 25 kV, the morphology and failure mechanism of the samples were investigated.[29]

3.2 Heat deflection temperature tests

In order to perform the heat deflection temperature (HDT) measurement in accordance with the ASTM D648 standard (60 \times 12 \times 3 mm3) and HDT-TSP type analyzer (6012) was utilized for composites containing 0–50 wt% hybrid filler loading. In this experiment, the loading pressure and consistent temperature range were 455 kPa and 2°C/min, respectively. Once the testing bar deformed under flexural load, the HDT was recorded; this is a normal deflection under flexural load.[19]

3.3 Water absorption behavior

The testing samples are cut from the composite plates that had been produced in accordance with the ASTM D570-99 standard. Rectangular samples with dimensions of 39 \times 10 \times 3 mm3 were used in this study. The materials were dried for 24 h at 105°C in an oven. Following that, they were submerged in water that was at normal temperature. In each sample, three samples were immersed in four distinct watery environments, namely warm water, cold water, seawater, and normal water. The results were compared. Each of the specimens was immersed in water for 2 h, 24 h, 24 h, and 24 h at atmospheric temperature, respectively. Utilizing an electronic weighing balance with a precision of up to 10$^{-4}$ g, the weight of every specimen previously they were immersed in water was measured. Before every examination, a wiping cloth was utilized to wipe away the water droplets from the surfaces of all of the specimens once they were detached from the water.[19]

The absorbed water content of each of the specimens was determined using Equation (1).

$$M(t) = 100 \frac{(W_t - W_o)}{W_o}, \quad (1)$$

where W_t indicates the weight of the sample after a specific soaking period and W_o means the weight of the specimen after being oven-dried.

4 RESULTS AND DISCUSSIONS

4.1 Tensile properties

The tensile properties of a material are comprised of tensile strength, elongation at break, and tensile modulus. Figure 3 depicts the effect of hybrid filler concentration on tensile strength as well as tensile modulus of vinyl ester composites at a different level of filler reinforcement. The tensile strength and the tensile modulus of pure resin (vinyl ester) samples were 24.5 MPa and 1.17 GPa, respectively. At low hybrid filler concentration (up to 10 wt%), the tensile strength as well as tensile modulus showed an increase in trend due to the uniform dispersion of fillers in the matrix. In addition, adequate adhesion was developed between the hydrophilic natural fillers and hydrophobic vinyl ester.[35] This leads to an increase in the strength and stiffness of the hybrid composites. The tensile strength and tensile modulus had reached the maximum when the hybrid filler concentration was 10 wt%, and their values are 36.9 MPa and 1.56 GPa, respectively. Further addition of hybrid filler results in a reduction of both tensile strength and tensile modulus. The surface contact of fillers was started configured when the filler concentration within the composite was more than 10 wt%, and this formation of contacts was vigorous when the filler concentration within the composite was more than 25 wt%. The deterioration of strength and stiffness of the hybrid filler reinforced composites were more pronounced beyond the 25 wt% of filler concentration. Table 2 shows the Variation of break load, peak displacement, and deformation of hybrid composites at various filler proportions. This was majorly due to the agglomeration of hybrid fillers, which can be easily disrupted by the applied force and leads to material failure. In addition, the crack was started at the filler/matrix interface, and this is more efficient where the fillers formed dense colonies.[39] The SEM images confirmed the accumulation of fillers when the filler level reaches 25 wt% (as shown in Figure 4). Agglomeration tends to reduce the interfacial contact between matrix and fillers. This causes a lack of contribution of polymer chain when subjected to mechanical load and reduces the stiffening of material. However, the elongation during the break of the vinyl ester composite has reached a maximum of 25 wt% of hybrid filler concentration (as shown in Table 2). The reduced elongation of the hybrid composites is owing to the higher brittleness of the material when the hybrid filler concentration is below 25 wt%.[21]

4.2 Flexural properties

The flexural strength of the material indicates its ability to withstand against applied bending load. The higher
The flexural strength of the material enables its application in the structural field. The experimented results of vinyl ester hybrid composites are depicted in Figure 5. The flexural strength of hybrid composites was enhanced when the hybrid filler concentration was less than 10 wt%. Further addition of fillers leads to a strength deterioration. At low filler concentration, good interface bonding between the hybrid filler and the vinyl ester leads to an increase in flexural strength from 78 MPa to 112 MPa, which is 1.4 times higher than the pure vinyl ester. It was visualized that the void formation was under control when the hybrid filler concentration was lower than 10 wt%. Further addition of fillers leads to a strength deterioration. At low filler concentration, good interface bonding between the hybrid filler and the vinyl ester leads to an increase in flexural strength from 78 MPa to 112 MPa, which is 1.4 times higher than the pure vinyl ester. It was visualized that the void formation was under control when the hybrid filler concentration was lower than 10 wt%. Further addition of fillers leads to a strength deterioration.

At low filler concentration, good interface bonding between the hybrid filler and the vinyl ester leads to an increase in flexural strength from 78 MPa to 112 MPa, which is 1.4 times higher than the pure vinyl ester. It was visualized that the void formation was under control when the hybrid filler concentration was lower than 10 wt%, and this helped to obtain good load transfer capacity to the hybrid composites. In contrast, a relatively higher void formation was observed when the filler concentration raised from 10 wt% to 50 wt%. Apparently, higher filler reinforcement (more than 30 wt%) has produced a significant reduction in flexural strength and flexural modulus. At higher filler concentration, inevitable factors such as agglomeration of fillers and air trapped during fabrication are more cause a large reduction in flexural properties. This is confirmed through SEM analysis of fractured surfaces (Figure 6).

4.3 Hardness

The results obtained through the measurements of hardness are presented in Figure 7 for the neat vinyl ester resin and hybrid fillers reinforced vinyl ester composites. The reinforcement of hybrid fillers increased the hardness of the vinyl ester significantly. The hardness of the neat resin was 26.3, and it reached the maximum of 38.3
when the hybrid filler concentration was 15 wt%. An increase in hardness is evident as the concentration of the hybrid filler increases, especially in the low filler concentration level (20 wt%) filled composites. This was due to the fact that the lignocellulosic natural fillers have noticeably higher hardness compared to the soft polymeric matrix. When assessing the wear qualities of such systems, the hardness of the material should be taken into account. In fact, hardness ratings are a measure of wear resistance because hard materials resist friction and wear better. In contrast, the hardness of the sample started to decrease when the filler concentration crossed more than 20 wt%, and the reduction was noticeable beyond this level. The major reason for a reduction in hardness is an accumulation of fillers.\([36,37]\) This causes wide variation in hardness at a different location. It can be noticed that the hardness of the samples revealed similar increase and decrease behavior compared to tensile and flexural tests.

4.4 Impact strength

The impact test was carried out until the impact samples were broken. Figure 7 illustrates the impact strength results obtained from various filler weight percentages of TSF/DSF-VE composites. The impact strength achieved from the TSF/DSF-VE specimens increased between 10 kJ/m² to 22 kJ/m² as a result of a rise in the hybrid filler loads; from 5 to 50 wt%. The strength increases from 11 kJ/m² to 14 kJ/m² when the filler loading varies from 0 to 5 wt%. The impact of energy of 5 wt% hybrid filler vinyl ester composite increases 1.18 times when compared to the resin is pure resin. This could be due to the
low quantity of filler added to the composites. The impact strength is low.\cite{22,30} For 10 wt% filler content, the strength of TSF/DSF-VE composites is increased when compared to 5 wt%. Considerably, the ultimate impact strength of PLSF-VE composites demonstrated 22 kJ/m² at a higher TSF/DSF-VE weight content of 10 wt%, due to high load transferred between filler and vinyl ester matrix. The impact strength increases 1.87 times when the resin is pure to an increase of 10 wt% of TSF/DSF. Furthermore, when the filler content is raised after 10 to 20 wt%, the impact strength of a TSF/DSF-VE composite materials is moderately reduced from 22 kJ/m² to 19 kJ/m², indicating a slight reduction in performance. The impact strength of TSF/DSF-VE composites has been reduced by up to 10 kJ/m² once the filler volume fraction is raised from 20 to 50 wt%, as has been demonstrated previously. That might be due to an irregular dispersion of the filler between the matrix.\cite{38,39}

4.5 Heat deflection temperature tests

HDT is a critical parameter for a material’s ability to be able to resist extreme conditions and ambient temperatures without deflection. The heat deflection temperature of the TSF/DSF-VE composites at different weight percentages is illustrated in Figure 8; from the results of the graph, demonstrate that clear resin has an HDT value of 53°C. The result shows that in addition to the pure resin to TSF/DSF, the HDT values are improved. The value was then increased to 68°C, which is 1.28 times more than the performance of virgin vinyl ester resins while
adding filler content to 15 wt%. These results clearly show that TSF/DSF filler has good thermal characteristics among different natural fillers. Moreover, after 15 wt % to 50 wt% filler weight, the hardness value was decreased from 65°C to 40°C. The Heat deflection temperature of the TSF/DSF filler composite is superior to the Banana Ribbon Rope Straight Mat strengthened polyester, tamarind seed filler loaded vinyl ester and Date palm filler reinforced vinyl ester composites.

4.6 Water absorption behavior

Figure 9 depicts the percentage of moisture absorption curves for hybrid filler-loaded vinyl ester composites. Each data point reflects the mean value of three specimens with varying filler loadings after soaking in normal, cold, salt hot water. The observed result of increasing the hybrid filler loading resulted in an upturn in the water absorption percentage because of the hydrophilic character of the filler material, as shown in Figure 9. A similar trend was seen in tamarind seed powder/vinyl ester composite,[2] and date seed powder/ vinyl ester reinforced composites.[3] Because of the hydrophobic characteristic of the resin, there was 0% water absorption for the neat resin in the four dissimilar environments indicated above. The hot water atmosphere absorbed higher moisture than the other three conditions. The hot water enhanced the hybrid filler/vinyl ester composites diffusivity. As a result, microcracks formed in the filler-matrix interface area. For the above 35 wt% of filler loading, the water absorption rises at times, most likely due to the hydrophilic nature of the bio-based fillers. However, due to the existence of big salt (particularly sodium chloride) molecules in seawater, the saltwater environment had lower moisture
absorption relative to the other three environments. Because of the delayed penetration of big molecules into the composites, the moisture absorption percentage was the lowest.\[40\]

5 | CONCLUSION

In this research work, waste hybrid filler reinforced vinyl ester composites were fabricated and analyzed their mechanical properties. The following conclusions were drawn based on experimental outcomes.

From the test results, it was recognized that the optimum tensile strength, flexural strength, impact strength, Barcol hardness, and HDT properties were exhibited by 10 wt% and 15 wt% filler added composites. The highest tensile strength of 37 MPa was exhibited by the 10 wt% of the hybrid filler added composite, and this was marginally higher than TSF/VE composites. In addition, the flexural strength is about 112 MPa and impact strength of 22 kJ/m\(^2\) at 10 wt% of hybrid filler added. Similarly, 15 wt% of hybrid filler added composite has relatively good Barcol hardness and HDT values of 29.67 and 68, respectively. The test results imply that the proposed hybrid filler reinforced vinyl ester composites are appropriate for making final products due to their eco-friendly nature and high strength of composite material for various industrial applications and domestic applications like fan blades, cover cases, and panels, and so forth.

AUTHOR CONTRIBUTIONS
Conceptualization: N. Nagaprasad. Data curation: N. Nagaprasad and V. Vignesh. Formal analysis: B. Stalin. Investigation: N. Nagaprasad. Methodology: N. Nagaprasad, V. Vignesh, and N. B. Karthik Babu. Project administration: Krishnaraj Ramaswamy. Resources: Krishnaraj Ramaswamy, N. B. Karthik Babu, and N. Nagaprasad. Software: Krishnaraj Ramaswamy. Supervision: B. Stalin. Validation: B. Stalin. Visualization: B. Stalin and N. Nagaprasad. Writing—original draft: N. Nagaprasad, V. Vignesh, N. B. Karthik Babu. Data visualization, editing and rewriting: N. Nagaprasad.

CONFLICT OF INTEREST
The authors declare no potential conflict of interest.

DATA AVAILABILITY STATEMENT
Research data not shared.

ORCID
N. Nagaprasad © https://orcid.org/0000-0002-0607-5172
V. Vignesh © https://orcid.org/0000-0003-2407-9369

P. Manimaran © https://orcid.org/0000-0003-1871-9550
B. Stalin © https://orcid.org/0000-0001-8908-2468

REFERENCES
[1] H. Essabir, E. Hilali, A. Elgharad, H. el Minor, A. Imad, A. Elamraouli, O. al Gaoudi, Mater. Des. 2013, 49, 442.
[2] N. Nagaprasad, B. Stalin, V. Vignesh, M. Ravichandran, Int. J. Biol. Macromol. 2020, 147, 53.
[3] B. Stalin, N. Nagaprasad, V. Vignesh, M. Ravichandran, N. Rajini, S. O. Ismail, F. Mohammad, Carbohydr. Polym. 2020, 248, 116748.
[4] S. Abhishek, M. R. Sanjay, R. George, S. Siengchin, J. Parameswaranpillai, C. I. Pruncu, J. Chin. Adv. Mater. Soc. 2018, 6, 553.
[5] S. S. Kumar, V. M. Raja, Compos. Sci. Technol. 2021, 208, 10695.
[6] D. Sánchez-Acosta, A. Rodríguez-Urbe, C. R. Álvarez-Chávez, A. K. Mohanty, M. Misra, J. López-Cervantes, T. J. Madera-Santana, J. Polym. Environ. 2019, 27, 521.
[7] V. Mittal, A. U. Chaudhry, N. B. Matsko, J. Appl. Polym. Sci. 2014, 131, 1.
[8] S. Vigneshwaran, M. Uthayakumar, V. Arumugaprabu, J. Cleaner Prod. 2019, 230, 862.
[9] V. K. Shravanabelagola Nagaraja Setty, G. Govardhan, S. Mavinkere Ramappa, S. Siengchin, J. Vinyl Addit. Technol. 2021, 27, 97.
[10] M. H. M. Hamdan, J. P. Siregar, M. R. M. Rejab, D. Bachtiar, J. Jamliluddin, C. Tezara, Int. J. Precis. Eng. Manuf. – Green Technol. 2019, 6, 113.
[11] H. Zheng, Z. Sun, H. Zhang, J. Thermoplast. Compos. Mater. 2019, 33, 1383.
[12] N. Montanes, D. Garcia-Sanoguera, V. J. Segui, O. Fenollar, T. Boronat, J. Polym. Environ. 2018, 26, 1218.
[13] S. Erdogan, U. Huner, J. Wuhan Univ. Technol. Mater. Sci. Ed. 2018, 33, 1298.
[14] N. F. Zaaha, H. Ismail, J. Vinyl Addit. Technol. 2020, 26, 413.
[15] L. Yusriah, S. M. Sapuan. Properties of betel nut husk reinforced vinyl ester composites. Natural Fibre Reinforced Vinyl Ester and Vinyl Polymer Composites. Woodhead Publishing, 2018, 129. https://doi.org/10.1016/B978-0-08-102160-6.00006-8
[16] N. Nagaprasad, B. Stalin, V. Vignesh, M. Ravichandran, N. Rajini, S. O. Ismail, Polym. Compos. 2021, 42, 791.
[17] M. Rajesh, P. Jeyaraj, N. Rajini, Mechanical, Dynamic Mechanical and Vibration Behavior of Nanoclay Dispersed Natural Fiber Hybrid Intra-ply Woven Fabric Composite, Nanoclay reinforced polymer composites. Springer, Singapore, 2016, 281. https://doi.org/10.1007/978-981-10-0950-1_12
[18] S. Jayabal, R. Ramprasad, R. Prithivirajan, S. Sathiayamurthy, K. Christal, Int. J. ChemTech Res. 2016, 9, 65.
[19] E. Rosamah, M. S. Hossain, H. P. S. Abdul Khalil, W. O. Wan Nadirah, R. Dungani, A. S. Nur Amirulawaj, N. L. M. Suraya, H. M. Fizree, A. K. Mohd Omar, Adv. Compos. Mater 2017, 26, 259.
[20] O. Das, K. Babu, V. Shamugam, K. Sykam, M. Tebyetekerwa, R. E. Neisiany, M. Försth, G. Sas, J. Gonzalez-Libreros, A. J. Capezza, M. S. Hedenqvist, B. S. Capezza, M. S. Hedenqvist, B. S. Capezza, J. Cleaner Prod. 2022, 158, 112054.
[21] J. Ronald Aseer, K. Sankaranarayanasamy, M. V. A. Raju Bahubalendrundi, A. Karakoti, S. Renold Olsen, N. Karthik Babu, J. Nat. Fibers 2022, 1. https://doi.org/10.1080/15440478.2022.2064400
