Isolation of avian influenza virus (H9N2) from emu in China

Wenhua Kang1, Wanyong Pang2, Junfeng Hao1 and Deming Zhao1

1 National Animal TSE Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100094, People’s Republic of China
2 UCD Veterinary Sciences Centre, University College Dublin, Dublin 4, Ireland

This is the first reported isolation of avian influenza virus (AIV) from emu in China. An outbreak of AIV infection occurred at an emu farm that housed 40 four-month-old birds. Various degrees of haemorrhage were discovered in the tissues of affected emus. Cell degeneration and necrosis were observed microscopically. Electron microscopy revealed round or oval virions with a diameter of 80nm to 120nm, surrounded by an envelope with spikes. The virus was classified as low pathogenic AIV (LPAIV), according to OIE standards. It was named A/Emu/HenN/1/2004(H9N2)(Emu/HN/2004). The HA gene (1683bp) was amplified by RT-PCR and it was compared with other animal H9N2 AIV sequences in GenBank, the US National Institutes of Health genetic sequence database. The results suggested that Emu/HN/2004 may have come from an avian influenza virus (H9N2) from Southern China.

Keywords: Emu, Avian influenza virus, H9N2

Abbreviations:
AIV: avian influenza virus
CPE: cell pathogenic effect
HA test: haemagglutination activity test
HI test: haemagglutination inhibition test
RT-PCR: reverse transcription-polymerase chain reaction
AIV isolation and characterisation

One aliquot of each of the brain and spleen tissue samples collected from the diseased emu was cultured for aerobic and anaerobic bacteria. The other aliquot was weighed and homogenized in PBS (pH 7.2, with 10000U/ml penicillin and 10000U/ml streptomycin sulfate) to make a 10%W/V suspension. Large pieces of tissue were centrifuged at 3000g at 4°C for 15 minutes and the supernatant was harvested. Ten-day-old specific pathogen free (SPF) Leghorn embryonated chicken eggs (Institute of Experimental Animals, China Agricultural University) were inoculated with 0.2ml of 10% tissue suspension via the allantoic cavity. Eggs were incubated in a stationary incubator at 37°C with 55% relative humidity and candled for embryo viability for 24 to 96 hours. Embryos that died within 24 hours were discarded. Allantoic fluid was collected aseptically from embryos that died more than 24 hours post-inoculation (PI). Up to two serial blind passages were made. All of the harvested allantoic fluids were tested for the presence of haemagglutination activity by the haemagglutination (HA) test. A haemagglutination inhibition (HI) test was performed if the HA test was positive. At the same time, these allantoic fluids were tested for bacterial contamination by routine procedures. The resultant virus isolate was incubated in Vero cell monolayer in modified Eagle medium supplemented with 10% foetal bovine serum, 10000U/ml penicillin and 10000U/ml streptomycin sulfate. Up to four serial passages were made. If a cell pathologic effect (CPE) was not found within 96 hours, 0.1ml 0.25% trypsin was then added into the culture medium of other cells with the same passage level, and culture was continued for 96 hours. If a cell pathologic effect (CPE) was not found within 96 hours, 0.1ml 0.25% trypsin was then added into the culture medium of other cells with the same passage level, and culture was continued for 96 hours (Rohm et al., 1996; Tang et al., 1998).

Serological tests

All of the allantoic fluids were tested by haemagglutination inhibition (HI) test, using Newcastle Disease (ND) virus and Egg Drop Syndrome 1976 (EDS-76) virus standard positive sera (China Institute of Veterinary Drug Control, Beijing, China), respectively. Haemagglutinin subtype of the virus was confirmed via β-microtitre method with H1-H15 standard positive sera (China Institute of Veterinary Drug Control) and the activity of NA was also determined. NA tests were carried out as previously described (Chen et al., 1994; Tang et al., 1998; Liu et al., 2002) using standard positive sera (H5N3, H7N1, H9N2) supplied by China Institute of Veterinary Drug Control.

Electron microscopy

Allantoic fluids were centrifuged at 10,000g for 30 minutes, at 4°C. The supernatant was ultracentrifuged at 35,000g for 30 minutes at 4°C. The resultant pellets were resuspended with PBS. Samples were applied to copper grids for five minutes, negatively dyed for two minutes with 2.5% phosphotungstic acid, and then observed under the electron microscope (Chen et al., 1994).

Pathogenicity tests

Forty-eight six-week-old SPF Leghorn chicks (Institute of Experimental Animals, China Agricultural University) were randomly divided into three groups. The first group was inoculated with 0.1ml 10% allantoic fluid in PBS by wing vein injection. The second group was injected with PBS as control, and the third group was injected with allantoic fluids of normal ten-day embryonated SPF chicken eggs (Institute of Experimental Animals, China Agricultural University). Feed and water intakes were recorded from day two to day ten. Cloacal swabs were collected and virus isolation from swabs was performed using the same procedure as already described for the tissue samples. Twenty-four seven-day-old emu (Institute of Experimental Animals, China Agricultural University) were divided into three groups of eight animals and were used to carry out a similar experimental test as described for the SPF chicks (Chen et al., 1994; Liu et al., 2002).

Viral RNA extraction and RT-PCR

RNA was extracted from all isolates, using an acid phenol/chloroform/ proteinase K/SDS method (Li et al., 2002). Synthesis of cDNA was carried out using moloney murine leukemia virus reverse transcriptase and random hexamers following the manufacturer’s instructions (Amresco,US). Primers for the HA gene flanking a 1683 bp DNA fragment were as follows:

Forward primer: 5’ AGGATATCCCATGGAAGCATTATCACTAATA 3’
Reverse primer: 5’ TTCTTGAGAAACTTATATACAAATGGTGGT 3’

The amplification was carried out in a total volume of 50μl. The reaction mixture contained 5μl of 10X PCR buffer (100mM Tris-HCl, pH 9.0; 500mM KCl; 1 mg/ml BSA), 5μl of 25mM MgCl2, 2μl of each dNTP (2mM, Pharmacia, Uppsala, Sweden), 10pmol each of forward and reverse primer, and 3μl of cDNA. Thermal cycling parameters were 94°C for 4 minutes, then 40 cycles of 94°C for 30 seconds, 55°C for 30 seconds, and 72°C for 1 minute, followed by a final extension at 72°C for 10 minutes.
primer and reverse primer, 2μl (1U) of Taq DNA polymerase (Perkin Elmer-Cetus, Norwalk, CO, USA), spacing 2μl of cDNA; the final volume was adjusted with sterile MilliQ water. In vitro amplification was performed in a DNA Thermal Cycler (Perkin Elmer-Cetus) using the following thermal profile: denaturation at 94°C, annealing at 54°C and extension at 72°C, for one minute each. After 30 cycles, the last step of extension was prolonged to 10 minutes. The RT-PCR products were checked by 0.8% agarose gel electrophoresis and examined under UV light.

Nucleotide sequencing of RT-PCR products

RT-PCR products were purified with a QIAquick PCR Purification Kit (QIAGEN, Germany), ligated into vector pMD18-T (TaKaRa, Dalian, China), and the resulting recombinants were used to transform competent Escherichia coli JM109 (TaKaRa). The bacterial clones which showed a resistance to ampicillin were collected and plasmids were extracted according to standard protocols. After BamHI and HindIII digestions, the plasmids were examined by electrophoresis, and then sequenced by Bioasia company (Beijing, China).

The nucleotide sequences of the HA genes were compared with those of the viruses listed in **Table 1**. Sequence comparisons were performed using DNA Star (version 4.0), and a phylogenetic tree was constructed using TreeView.

Results

Isolation of virus

The brain and spleen tissue samples cultured for aerobic and anaerobic pathogens did not yield bacterial pathogens. The tissue suspensions were inoculated into the allantoic sacs of embryonated SPF Leghorn chicken eggs. The allantoic fluid from the first passage had haemagglutination activity (HA). The embryos developed haemorrhages. The isolates caused death of the embryos at the fourth passage. The highest recorded HA titre of the allantoic fluid was nine log 2. Most of the embryos died at 44 hours to 48 hours PI. The isolated virus was inoculated into VERO cells, but CPE was not observed. However, after adding trypsin the cells became rounded, shrunken and died. Approximately 75% of the cell sheet displayed CPE at 72 hours.

Serology

The positive antisera to Newcastle Disease virus and to egg-drop syndrome virus did not inhibit the haemagglutination activity of the isolated viruses. The isolates were defined as H9N2 by testing all the haemagglutinin and neuraminidase subtypes.

Transmission electron microscopy

The virions were round or oval, with a diameter of 80nm to 120nm. The virion was enveloped and the spikes on the envelope were seen clearly (Figure 2 a and b). All of the birds in the second and the third groups remained healthy (100%)

Pathogenicity

Forty-eight six-week-old SPF chicks were observed for ten days PI. Each of the first group of 16 SPF chicks was inoculated intravenously with 0.1ml allantoic fluid in PBS. The mortality was 6.25% (1/16) at 10 days PI. Some birds were depressed, had ruffled feathers between days 3 and 5 PI, reduced feed and water intakes, and the positive virus isolation ratio of the cloacal swabs was 87.5% (14/16). Each of the second group of 16 chickens inoculated intravenously with 0.1ml PBS remained healthy, as did the third group of 16 chicks inoculated with normal allantoic fluid.

The first group of eight emu, inoculated intravenously with 0.1ml each of 10% allantoic fluid in PBS, had a mortality rate of 12.5% (1/8) during 10 days of observation. Feed and water intakes declined 50%, and the virus was isolated from seven out of eight cloacal swabs (87.5%). All of the birds in the second and the third groups remained healthy (100%)

Figure 2: Typical avian influenza virions were observed by electron microscopy.
survival). According to the criteria of the Office International Des Epizooties (OIE), the isolate was identified as a low pathogenic avian influenza virus (LPAIV). According to the denomination principles of the international influenza virus system the isolate was identified as: A/Emu/HeNen/14/2004(H9N2) (Emu/HN/2004)(World Health Organization, 1980; Clavijo et al., 2001).

RT-PCR
The RT-PCR products were checked by agarose gel electrophoresis. Only one clear band, which was 1683bp, was obtained. After BamHI and HindIII digestions of the recombinant plasmid of the HA gene cDNA and pMD18-T, two DNA bands appeared on electrophoresis. One band was -2650bp, which was the pMD18-T vector, and the other band was -1683bp, which was the target gene.

HA gene sequence and phylogenetic tree
The Emu/HN/2004 HA gene sequence showed high nucleotide homologies with other H9N2 AIV HA genes published (Table 2). The HA amino acid cleavage site of Emu/HN/2004 was apparently different from the cleavage site of other AIV. The HA amino acid cleavage site of Emu/HN/2004 was P-A-R-L-S-R-G-L-F, while in other H9N2 AIV it was R-S-S-R-G. This difference would suggest that there was already certain changes in the HA amino acid of Emu/HN/2004(H9N2) (Chen et al., 1994; Shu et al., 1994; Tang et al., 1998; Guo et al., 2000; Li et al., 2002; Liu et al., 2002). From the phylogenetic tree constructed, nucleotide sequence homology of Emu/HN/2004 was highest with Ck/GX/99, Ck/YN/2000 and Ck/SH/2001. This would indicate that Emu/HN/2004 evolved from AIV(H9N2) of chicken origin.

Discussion
According to the OIE standards for AIV, the virus isolated from Emu was pronounced as a low pathogenic avian influenza virus (LPAIV) with a designated name A/Emu/HeNen/14/2004(H9N2) (Emu/HN/2004)(World Health Organization, 1980; Clavijo et al., 2001).

Table 2: Homology of Emu/HN/2004 compared with other H9N2 AIV HA genes

AIV	Ck/GX/99	Ck/YN/2000	Ck/SH/2001	Sw/HK/97	Sw/HK/2106/98	Ck/BJ/97	Sw/HK/3297/98
Homology	97.2%	96.9%	95.7%	95.2%	95.1%	94.9%	94.8%

AIV	Ck/HK/97	Sw/HK/9/98	A/GZ/99	Turkey/Minnesota/95	Ck/Pakistan/99	Ck/Korea/96	Turkey/Wisconsin/66
Homology	95.2%	94.3%	91.9%	89.4%	89.4%	89.2%	80.4%

Figure 3: Phylogenetic tree of AIV
diagnosis of AIV infections. Rattles are susceptible to AIV infection. They can transmit the virus, in its virulent form, to other birds. The results obtained in the present study demonstrated a high degree of variation of influenza virus infections among different avian species. These findings represented an important issue for consideration in the migration of ostriches and in the establishment of regulatory guidelines for diagnosis of rattle avian infections.

The surface structural protein HA is the main determinant factor of AIV pathogenicity. The cleavage of HA into HA1 and HA2 is a prerequisite for generalised infections. The amino acid sequence around the cleavage site is the main determinant factor for AIV virulence. The difference between highly pathogenic AIV and low pathogenic AIV subtypes is characterised by the presence of many alkaline amino acids at the cleavage site of HA gene, while low pathogenic AIV isolates contain none, or only one alkaline amino acid. For Emu/HN/2004, the amino acid sequence around the cleavage site was -P-A-R-L-S-R-G-L-F-, which was indicative of a low pathogenic AIV. However, the cleavage site of Emu/HN/2004 was different from the cleavage site of other H9N2 AIV (R-S-S-R/G-). This suggests that there is already some changes in HA amino acid of Emu/HN/2004 (H9N2) compared to other chicken H9N2 AIV (Vey et al., 1991; Webster et al., 1992; Sene et al., 1996; Naeem et al., 1999; Lee et al., 2000). The Emu/HN/2004 may have acquired mutations in the HA gene during the transmission from chickens to emu.

Acknowledgements
This work was supported by the Natural Science Foundation of China (project no. 30371062) and the Doctoral Foundation of the Chinese Ministry of Education (project no. 20020019006).

References
Alexander, D.J. (1982). Avian influenza – recent developments. Veterinary Bulletin 52: 341–359.
Allwright, D.M., Burger, W.P., Geyer, A. and Terblanche, A.W. (1993). Isolation of an influenza A virus from ostriches (Struthio camelus). Avian Pathology 22: 59–65.
Capua, I., Mutinelli, F., Marangon, S. and Alexander, D.J. (2000a). H7N1 avian influenza in Italy (1999–2000) in intensively reared chickens and turkeys. Avian Pathology 29: 537–543.
Capua, I., Mutinelli, F., Bozza, M.A., Terrogino, C. and Cacitali, G. (2000b). Highly pathogenic avian influenza (H7N1) in ostriches (Struthio camelus). Avian Pathology 29: 643–646.
Chen, B.L., Zhang, Z.J. and Chen, W.B. (1994). Isolation and identification of avian influenza virus. Chinese Journal of Veterinary Medicine 10: 3-5 (in Chinese, with English summary).
Clavijo, A., Riva, J., Copps, J., Robinson, Y. and Zhou, E.M. (2001). Assessment of the pathogenicity of an emu-origin influenza A H5 virus in ostriches (Struthio camelus). Avian Pathology 30: 83–89.
Graves, L. (1992). Influenza viruses in birds of the Atlantic flyway. Avian Diseases 36: 1–10.
Guo, Y.J., Krauss, S., Sene, D.A., Mo, I.P., Lo, K.S., Xiong, X.P., Norwood, M., Shortridge, K.F., Webster, R.G. and Guan, Y. (2000). Characterization of the pathogenicity of members of the newly established H9N2 influenza virus lineages in Asia. Virology 267: 279-288.
Jørgensen, P.H., Nielsen, O.L., Hansen, H.C., Manvell, R.J., Banks, J. and Alexander, D.J. (1998). Isolation of influenza virus subtype H5N2, and avian paramyxovirus type 1 from a flock of ostriches in Europe. Avian Pathology 27: 15–20.
Lee, C.W., Song, C.S., Lee, Y.J., Mo, I.P., Garcia, M., Suarez, D.L. and Kim, S.J. (2000). Sequence analysis of the haemagglutinin gene of H9N2 Korean avian influenza viruses and assessment of the pathogenic potential of isolates MS96. Avian Disease 44: 527-535.
Lee, M.S., Chan, P.C. and Shien, J.H. (2001). Identification and subtyping of avian influenza virus by reverse transcription-PCR. Journal of Virological Methods 97: 13-22.
Li, X., Yu, K.Z., Tian, G.B., Tang, Y.X., Deng, G.H., Wang, X.R. and Meng, Q.W. (2002). Sequence analysis of the haemagglutinin gene of H9N2 Chinese avian influenza viruses. Chinese Journal of Preventive Veterinary Medicine 24: 249-251 (in Chinese, with English summary).
Liu, H.Q., Cheng, J., Peng, D.X., Jia, L.J., Zhang, R.K. and Liu, X.F. (2002). Comparison of sequence of the haemagglutinin gene and phylogenetical analysis of H9N2 subtype avian influenza viruses isolated from some regions in China. Acta Microbiologica Sinica 42: 442-447.
Manvell, R.J., English, C., Jørgensen, P.H. and Brown, L.H. (2003). Pathogenesis of H7 influenza A viruses isolated from ostriches in the homologous host infected experimentally. Avian Diseases 47: 1150-1153.
Manvell, R.J., Jørgensen, P.H., Nielsen, O.L. and Alexander, D.J. (1998). Experimental assessment of the pathogenicity of two avian influenza A H5 viruses in ostrich chicks (Struthio camelus) and chickens. Avian Pathology 27: 400–404.
Naeem, K., Ullah, A., Manvell, R. J. and Alexander, D. J. (1999). Avian influenza A subtype H9N2 in poultry in Pakistan. Veterinary Record 145: 560.
Rohm, C., Zhou, N., Suss, J., Mackenzie, J. and Webster, R. G. (1996). Characterization of a novel influenza haemagglutinin H15: criteria for determination of influenza A subtypes. Virology 217: 508-516.
Senne, D.A., Panigrahy, B., Kawaoka, Y., Pearson, J.E., Süss, J., Lipkind, M., Kida, H. and Webster, R.G. (1996). Survey of the haemagglutinin (HA) cleavage site sequence of H5 and H7 avian influenza viruses: amino acid sequence at the HA cleavage site as a marker of pathogenicity potential. Avian Diseases 40: 425–437.
Shu, L.L., Lin, Y.P., Wright, S.M., Shortridge, K.F. and Webster, R.G. (1994). Evidence for interspecies transmission and reassortment of influenza A viruses in pigs in southern China. Virology 202: 825-833.
Tang, X.Y., Tian, G.B., Zhao, C.S., Zhou, J.F. and Yu, K.Z. (1999). Isolation and characterization of prevalent strains of avian influenza viruses: amino acid sequence at the HA cleavage site and phylogenetical analysis of H9N2 subtype avian influenza viruses isolated from some regions in China. Avian Pathology 28: 400–404.
Vey, M., Orlich, M. and Adler, S. (1991). Haemagglutinin activation of pathogenic avian influenza virus of serotype H7 requires the recognition motif R-X/R/K-R. Virology 188: 408-413.