The CCAAT/enhancer-binding protein beta-2 isoform (CEBPβ-2) upregulates galectin-7 expression in human breast cancer cells.

Carole G Campion, Marilyne Labrie, Andrée-Anne Grosset, Yves St-Pierre

To cite this version:

Carole G Campion, Marilyne Labrie, Andrée-Anne Grosset, Yves St-Pierre. The CCAAT/enhancer-binding protein beta-2 isoform (CEBPβ-2) upregulates galectin-7 expression in human breast cancer cells. PLoS ONE, Public Library of Science, 2014, 9 (5), pp.e95087. 10.1371/journal.pone.0095087.

HAL Id: pasteur-01135458
https://hal-riip.archives-ouvertes.fr/pasteur-01135458

Submitted on 25 Mar 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The CCAAT/Enhancer-Binding Protein Beta-2 Isoform (CEBPβ-2) Upregulates Galectin-7 Expression in Human Breast Cancer Cells

Carole G. Campion, Marilyne Labrie, Andrée-Anne Grosset, Yves St-Pierre*
INRS-Institut Armand-Frappier, Laval, Quebec, Canada

Abstract

Galectin-7 is considered a gene under the control of p53. However, elevated expression of galectin-7 has been reported in several forms of cancer harboring an inactive p53 pathway. This is especially true for breast cancer where galectin-7 expression is readily expressed in a high proportion in basal-like breast cancer tissues, conferring cancer cells with increased resistance to cell death and metastatic properties. These observations suggest that other transcription factors are capable of inducing galectin-7 expression. In the present work, we have examined the role of CCAAT/enhancer-binding protein beta (C/EBPβ) in inducing expression of galectin-7. C/EBP proteins have been shown to contribute to breast cancer by upregulating pro-metastatic genes. We paid particular attention to C/EBPβ-2 (also known as LAP2), the most transcriptionally active of the C/EBPβ isoforms. Our results showed that ectopic expression of C/EBPβ-2 in human breast cancer cells was sufficient to induce expression of galectin-7 at both the mRNA and protein levels. In silico analysis further revealed the presence of an established CEBP element in the galectin-7 promoter. Mutation of this binding site abolished the transcriptional activity of the galectin-7 promoter. Chromatin immunoprecipitation analysis confirmed that C/EBPβ-2 binds to the endogenous galectin-7 promoter. Analysis of galectin-7 protein expression in normal epithelia and in breast carcinoma by immunohistochemistry further showed the expression pattern of C/EBPβ closely mimicked that of galectin-7, most notably in mammary myoepithelial cells and basal-like breast cancer where galectin-7 is preferentially expressed. Taken together, our findings suggest that C/EBPβ is an important mediator of galectin-7 gene activation in breast cancer cells and highlight the different transcriptional mechanisms controlling galectin-7 in cancer cells.

Introduction

Galectins constitute a family of lectins defined by shared consensus amino acid sequences and affinity for β-galactose-containing oligosaccharides [1]. In mammals, the distribution of galectins is tissue-specific and their expression is developmentally regulated [1,2]. They play an important role in several physiological processes, including embryonic development, wound healing, apoptosis, intercellular adhesion, cell migration, and immune response. They are also involved in a number of pathological conditions, including infectious diseases and cancer. Most of our knowledge on galectins has been obtained while studying galectin-1 and galectin-3. In contrast, galectin-7 remains an unfamiliar member of the galectin family. This galectin was initially described as a marker of differentiation of stratified epithelia by Magnaldo and colleagues [3]. Functionally, galectin-7 has been shown to be associated with UVB-induced apoptosis in epidermis since sunburn/apoptotic keratinocytes express abnormally high levels of galectin-7 [4]. In fact, galectin-7 has been considered an apoptosis regulator in many cell systems since its discovery by the group of Bert Vogelstein as one of the 14 transcripts out of 7,202 induced in colorectal cancer cells by the expression of p53, whose major function is to control apoptosis [5].

In sharp contrast to the intuitively expected negative roles played by galectin-7 in tumor development, a study by Lu et al. reported that galectin-7 was overexpressed in tumors induced in an experimental model of chemically induced mammary carcinomas [6]. This provided the first indication that galectin-7 expression could be modulated in breast cancer. We and others have since shown that galectin-7 is also expressed in breast cancer tissues in humans. For example, genomic profiling data reported by Perou et al., who provided a molecular portrait of human breast tumors from 42 individuals, has revealed that galectin-7 was highly expressed in estrogen receptor (ER)-negative tumors [7]. Subsequent microarray studies examining normal breast luminal and myoepithelial cells by Jones and his colleagues identified galectin-7 as a myoepithelial-specific gene [8]. We have since confirmed the specific expression pattern of galectin-7 in breast cancer tissues using tissue microarrays (TMAs) constructed from samples obtained from normal individuals and in patients with breast carcinomas [9]. Using preclinical mouse models, we have further shown that high levels of galectin-7 expression in breast cancer cells increase their ability to metastasize to lungs and bones [9].
While a clear picture of the function of galectin-7 in breast cancer is emerging, very little is known about the molecular mechanisms regulating galectin-7 expression in human breast cancer cells. Among the transcription factors that could possibly regulate galectin-7 is CCAAT/enhancer binding protein beta (C/EBPβ). Members of the C/EBPβ family have been shown to contribute to tumor progression by controlling the expression of genes involved in invasion, cellular proliferation, survival and apoptosis [10–13]. In mammary tissues, this factor has been shown to be critical for normal growth and differentiation of the mammary gland [14–16]. It also contributes to malignant conversion of the human breast [12]. Of the three C/EBPβ isoforms, a particular attention has been paid to C/EBPβ-2 because overexpression of this isoform induces epithelial-mesenchymal transition [17]. A significant increase in C/EBPβ is observed in estrogen and progesterone-receptor-negative breast cancer as compared to tumors positive for these receptors. Increased C/EBPβ levels also correlate with metastatic breast cancer and a high tumor grade [12]. In the present work, we have examined whether C/EBPβ regulates expression of galectin-7 in breast cancer cells.

Materials and Methods

Cell lines and reagents

Breast cancer cell lines were a generous gift from Dr. P. Siegel (the Goodman Cancer Centre, McGill University, Montreal, QC) [18]. Immortalized human keratinocytes (HaCaT) were provided by Dr. T. Magnaldo (Université de Nice) [4]. All cell lines were maintained in Dulbecco’s modified Eagle’s medium. Culture media were supplemented with 10% [v/v] fetal bovine serum, 2 mM L-glutamine, 10 mM HEPES buffer, 1 mM non-essential amino acids and 1 mM Sodium Pyruvate. All cell culture products were purchased from Life Technologies (Burlington, ON, Canada).

Transient transfection and luciferase assay

Vectors encoding human C/EBPβ or β (SC303472 and SC319561; Origene, Burlington, ON) and vectors encoding C/EBPβ-2 and C/EBPβ-3 (No. 15738 and No. 15737; Addgene, Cambridge, MA) were obtained commercially. The cDNA encoding the human galectin-7 (provided by Dr. T. Magnaldo) was cloned in the srz eukaryotic expression vector (kind gift of Dr. François Denis) using SpeI and BamHI restriction sites. Cells were transfected using the Lipofectamine 2000 reagent (Life Technologies, Santa Cruz, CA) and mouse anti-β-actin monoclonal antibody (1:1000; sc-150 (C-19) Santa-Cruz Biotechnology, Santa Cruz, CA) and mouse anti-β-actin monoclonal antibody (1:20000; Sigma, St.Louis, MO, USA). Secondary antibodies consisted of horseradish peroxidase conjugated anti-rabbit or anti-mouse (GE Healthcare, Mississauga, ON). The

Figure 1. C/EBPβ-2 induces galectin-7 mRNA levels in breast cancer cell lines. (A) RT-PCR analysis showing increased expression of galectin-7 in human breast cancer cells after transfection with an expression vector encoding C/EBPβ-2. The two lanes represent two different samples. No such increase was observed in cells transfected with an expression vector encoding C/EBPβ-3. Similar results were obtained with HaCaT cells, a keratinocyte cell line which constitutively expresses galectin-7. An empty pCMV5 vector was used as transfection control (CTRL) and GAPDH was used as loading control. (B) RT-PCR analyses showing expression of galectin-7 mRNA levels in MCF-7 cells after transfection with increasing doses of an expression vector encoding C/EBPβ-2. GAPDH was used as loading control. (C) RT-PCR analysis of MCF-7 cells co-transfected with vectors encoding C/EBPβ-2 and C/EBPβ-3. Below, control Western blot analysis showing expression of C/EBPβ-2 and C/EBPβ-3 after transfection. β-actin was used as loading control.

doi:10.1371/journal.pone.0095087.g001

and transferred onto nitrocellulose membranes (Bio-Rad Laboratories, Mississauga, ON). The membranes were first blocked with 5% (v/v) milk in PBS/0.05% Tween 20 for 1 h and subsequently blotted overnight at 4°C with primary antibodies: rabbit anti-C/EBPβ polyclonal antibody (1:1000; sc-150 (C-19) Santa-Cruz Biotechnology, Santa Cruz, CA) and mouse anti-β-actin monoclonal antibody (1:20000; Sigma, St.Louis, MO, USA). Secondary antibodies consisted of horseradish peroxidase conjugated anti-rabbit or anti-mouse (GE Healthcare, Mississauga, ON). The
immunoblots were developed using ECL detection reagent (GE Healthcare).

Confocal microscopy

Cells were cultured onto glass coverslips to semi-confluency. After 24 h of transfection with vector encoding C/EBPβ-2, cells were washed with cold PBS, fixed with 3% (v/v) paraformaldehyde in PBS and permeabilized with 0.1% Triton X-100 in PBS and blocked with 1% (v/v) BSA in PBS (PBA) for 30 min. Cells were first incubated overnight at 4°C with a goat anti-human galectin-7 polyclonal antibody (1:100; R&D Systems, Minneapolis, MN) with PBA. After several washes, cells were incubated with an Alexa Fluor 488-conjugated donkey anti-goat IgG (1:500; Life Technologies) according to the manufacturer’s protocol. After 24 h, a scratch with a pipet tip was made in the cell monolayer, followed by washing with PBS to remove cell debris. The plates were moved to an incubator and migration was visualized with a Carl Zeiss LSM780 confocal microscope (Carl Zeiss). Images were analyzed using the Image J plugins manual tracking and chemotaxis tool.

Statistical analysis

Statistical significance was carried out using an unpaired Student’s t-test. Results were considered statistically significant at P≤0.05.

Results

C/EBPβ-2 induces galectin-7 expression in breast cancer cell lines

We first set out to determine if the C/EBPβ-2 isoform could induce galectin-7 gene expression in human breast cancer cell lines. Using semi-quantitative RT-PCR, we found that galectin-7 mRNA increased in all cell lines tested following transfection of a vector encoding the C/EBPβ-2 isoform (Figure 1A). This expression by C/EBPβ-2 was independent of the p53 status of the cells. It was observed in cells expressing a wild-type form of p53, such as MCF-7, or in cells harboring an inactive p53 pathway, such as the p53null MDA-MB-453 or MDA-MB-231, which express the
p53R280K mutant protein. It was also found in HaCaT cells, which express the transcriptionally inactive TP53H179Y/R282W alleles. In all cases, de novo expression of galectin-7 was not induced following transfection of a vector encoding C/EBPβ-3 (also known as LIP). This increased expression of galectin-7 by C/EBPβ-2 was also dose-dependent (Figure 1B). C/EBPβ-3, which lacks the N-terminal transactivation domains but represses the transcription activity of other C/EBPs by competing for C/EBP consensus binding sites or by forming inactive heterodimers with other C/EBPs [12,19], did not repress the constitutive expression of galectin-7 in MDA-MB-468 or HaCaT cells, nor did it repress C/EBPβ-2-induced galectin-7 (Figure 1C). The ability of C/EBPβ-2 to induce galectin-7 was confirmed at the protein level by confocal microscopy in both MDA-MB-231 and MCF-7 cells (Figure 2). Taken together, these results indicate that increased expression of C/EBPβ-2 is sufficient to induce galectin-7 in breast cancer cell lines and possibly other types of cells.

A C/EBPβ consensus site in human galectin-7 promoter

In silico computational analysis of the human galectin-7 promoter region (using the TFSEARCH program) revealed eight potential C/EBP binding sites within the proximal 1.5 kb 5’ flanking region of the human galectin-7 gene. A series of 5’ deletion constructs of the 1500 bp galectin-7 promoter region was generated and cloned into the pGL3 Basic luciferase reporter vector. The resulting plasmids were transfected in MCF-7 and MDA-MB-468 cells. Locations of the putative C/EBP binding sites in the promoter, as determined using the TFsearch computational tool, are shown as empty boxes. (B) Sequence analysis of the C/EBP binding sites located at positions -105-98 and the -145-140. (C) Mutated constructs of the C/EBPβ binding sites on the 200 bp galectin-7 promoter region were generated and cloned into the pGL3 Basic luciferase reporter vector. The resulting plasmids were co-transfected in MCF-7 cells and were compared to the wild-type p200-galectin-7 promoter. Transfection efficiency was normalized by co-transfection with a β-galactosidase reporter vector.

doi:10.1371/journal.pone.0095087.g003
of the galectin-7 gene. Using progressive deletion reporter constructs of the 5' flanking region of the galectin-7 promoter, we found that deletion of the distal C/EBP binding sites did not modulate the transcriptional activity of the promoter as compared to the transcriptional activity of a reporter construct containing the two promoter-proximal C/EBP binding sites located at positions −105/−93 bp and −147/−132 bp (Figure 3A). Mutational analysis showed that mutation Δ-103-98 of the C/EBPβ binding site located at −105/−93 bp had minimal effect on the transcriptional activity of galectin-7 promoter compared to the wild-type promoter. On the other hand, disruption of C/EBPβ binding site located at position −147/−132 bp (Δ-145-140) resulted in a 2.5-fold decrease in the promoter activity (Figure 3B). A 3.5-fold decrease was observed when both C/EBPβ binding sites were disrupted (Δ-145-140/Δ-103-98). These findings provide additional evidence that C/EBPβ plays an important role in controlling galectin-7 promoter activity.

Expression of galectin-7 and C/EBPβ in epithelial tissues

To further examine whether we could find an association between C/EBPβ and galectin-7 expression profiles in epithelial tissues, we looked at the Human Protein Atlas database, which contains high-resolution images showing the spatial distribution of proteins in normal and cancer tissues. We paid a particular attention to epithelial tissues known to express galectin-7 constitutively, including skin, esophagus, oral mucosa and cervical tissues. As expected, immunohistochemistry staining of normal epithelial tissues showed a predominantly nuclear pattern of C/EBPβ protein expression while galectin-7 was mostly found in the cytosolic and nuclear compartments (Figure 4). In all cases, the distribution of galectin-7 expression co-located with that of C/EBPβ. Identical findings were observed in normal mammary tissues where galectin-7 and C/EBPβ were both specifically expressed in myoepithelial cells. Using the ONCOMINE public cancer microarray database, we also found that C/EBPβ was expressed at significantly higher levels in oestrogen receptor (ER)-negative and triple-negative (TN) breast cancer tissues (Figure 5), a pattern identical to that of galectin-7 in human breast cancer tissues [9].

Discussion

Galectin-7 has generally been considered a gene under the control of p53. There is an increasing number of reports, however, showing that galectin-7 is overly expressed in cancer cells, most notably in as esophageal, lung and buccal squamous cell carcinomas, thyroid carcinomas, bladder cancer, lymphoma, and breast cancer [7,20–25]. This is somewhat paradoxical since p53 is often inhibited by mutations within its DNA binding domain that lead to the expression of a transcriptionally inactive p53. Here, we have provided a possible explanation for this paradox. More specifically, we found that increased expression of C/EBPβ-2 is
mRNA has been observed in estrogen and progesterone-receptor-positive breast cancer cells. For example, a significant increase in galectin-7 expression was seen in breast cancer cells. This increase in expression was found to be associated with increased metastasis of breast cancer cells to the bone and the lung. In fact, our results may have implications in other types of cancer where galectin-7 is expressed, most notably in transformed keratinocytes. Both gal-7 and C/EBP-β2 have been shown to be involved in the differentiation of keratinocytes. Whether suppression of C/EBP-β2 will necessarily reduce gal-7 is currently unknown but likely since previous studies showing that retinoic acid, which suppresses the expression of C/EBP-β2 target genes in keratinocytes, also inhibits gal-7 expression. Interestingly, C/EBP-β2 has been shown to be expressed at high levels in most mammary tumors and is the most frequent isoform found in human breast cancer cell lines. Its expression in MCF10A cells has also been shown to induce in vitro epithelial to mesenchymal transition associated with increased invasive properties. However, while C/EBP-β2 is generally considered the most transcriptionally active of all three C/EBP isoforms, we cannot completely rule out the implication of other isoforms in regulating gal-7 expression. The C/EBP-β3 isoform, for instance, is expressed at high levels in some breast carcinoma, most notably in basal-like breast cancer. Future studies with isoform-specific antibodies will thus be needed to correlate the expression of gal-7 with specific C/EBP isoforms in breast cancer tissues. It is important to note, however, that other transcription factors can also upregulate gal-7 and may thus compensate for suppression of C/EBP-β2. This is particularly true for breast cancer cells which often express a mutant form of p53, which is capable of inducing gal-7. Future investigations will thus be needed to determine whether direct suppression of galectin-7 expression or via specific targeting C/EBP are valuable alternatives to inhibit breast cancer progression.

Our in silico analysis of the human galectin-7 promoter has revealed some other interesting features, most notably within the C/EBP binding site located at position −147/−132 bp. This site contains an overlapping consensus binding motif for NF-κB. Overlapping binding motifs for transcription factors are frequently found genome-wide in both eukaryotic and prokaryotic cis-regulatory regions of a gene promoter. Such overlap often results in competitive binding of transcription factors to the overlapping site. Our preliminary investigations on the relevance of the overlap in the consensus binding motifs for C/EBP and NF-κB at position −147/−132 bp have shown that a mutation (A−147−145) in the NF-κB recognition sequence of the galectin-7 reporter construct that leaves intact the C/EBP recognition site increased rather than reduced the activity of the promoter. This would suggest that endogenous NF-κB units, such as transcriptionally inactive p50 complexes bound to this site, hinder binding C/EBP for the same site. This possibility is supported by our results showing that caffeic acid phenethyl ester (CAPE), which prevents NF-κB binding to DNA, increased C/EBP-β2-induced galectin-7 expression. The ability of C/EBP-β2 to replace NF-κB on the galectin-7 promoter was confirmed by ChIP analysis which showed that while endogenous p50 is constitutively bound to the galectin-7 promoter, transfection of C/EBP-β2 displaced the p50 homodimers, leading to a strong activation of galectin-7 expression. However, in presence of transcriptionally active NF-κB complexes, containing c-Rel for example, NF-κB could possibly exert a positive influence of galectin-7 expression, as well as suppress tumor growth and metastasis in breast cancer cells.
we recently showed [38]. In other words, galectin-7 expression in cancer cells with an inactive p53 pathway possibly involves C/EBP and/or NF-κB. These observations also consistent with a model where expression of galectin-7 gene is repressed by transcriptionally inactive p300/p50 homodimers that bind to the overlapping C/ EBPβ/NF-κB site on galectin-7 promoter. During malignant transformation, increased expression of C/EBPβ-2 or a transcriptionally active NF-κB complex displaces the p50 homodimers, leading to a strong activation of galectin-7 expression. Future investigations will be needed to determine how specific signaling pathways can dictate an NF-κB or C/EBPβ response.

Supporting Information

Figure S1 Overexpression of C/EBPβ-2 enhanced migration of MCF-7 cells line. Migration in 6-well plates of MCF-7 cells line transfected with pCMV5 vector (CTRL), C/ EBPβ-2 or C/EBPβ-3 cDNA vectors. Plots of 30 cells/sample tracked by live cell imaging are represented. Quantifications of velocity, directionality, accumulated distance and euclidean distance represent mean values ± SEM from all plots. (TIFF)

Figure S2 Overexpression of galectin-7 enhanced migration of MCF-7 cells line. Migration in 6-well plates of MCF-7 cells line transfected with Srα or galectin-7 cDNA vectors. Plots of 60 cells/sample tracked by live cell imaging are represented. Quantifications of velocity, directionality, accumulated distance and euclidean distance represent mean values ± SEM from all plots. (TIFF)

Acknowledgments

The authors wish to thank Dr. T. Magnaldo, P. Siegel, and Dr. François Denis for providing reagents and cell lines. They also thank Dr. Louis Gelberty, Dr. Joelle St-Pierre, and M. Jene Tremblay for their expert technical advice.

Author Contributions

Conceived and designed the experiments: CGC YSP. Performed the experiments: CGC YSP. Analyzed the data: CGC YSP ML. Contributed reagents/materials/analysis tools: CGC AAG ML. Wrote the paper: CGC YSP. Helped to acquire funding: YSP.

References

1. Baroudes SH, Cooper DN, Gitt MA, Leffler H (1994) Galectins. Structure and function of a large family of animal lectins. J Biol Chem 269: 20807–20810.
2. Kasai K, Hirabayashi J (1996) Galectins: a family of animal lectins that decipher glycocodes. J Biochem 119: 1–8.
3. Magnaldo T, Fowls D, Darmon M (1998) Galectin-7, a marker of all types of stratified epithelia. Differentiation 63: 159–168.
4. Bernerd F, Sarasin A, Magnaldo T (1999) Galectin-7 overexpression is associated with the apoptotic process in UVB-induced sunburn keratinocytes. Proc Natl Acad Sci U S A 96: 11329–11334.
5. Polyak K, Xia Y, Zweier JL, Vogelstein B (1997) A model for p53- dependent apoptosis. Nature 389: 300–305.
6. Lu J, Pei H, Kaeck M, Thompson HJ (1997) Gene expression changes associated with chemically induced rat mammary carcinogenesis. Mol Carcinog 20: 204–215.
7. Persson CM, Sofie T, Essen MB, van de Rijin M, Jeffrey SS, et al. (2000) Molecular portraits of human breast tumours. Nature 406: 747–752.
8. Jones C, Mackay A, Grogisadis A, Cosu A, Reis-Filho JS, et al. (2004) Expression profiling of purified normal human luminal and myoepithelial breast cells: identification of novel prognostic markers for breast cancer. Cancer Res 64: 3037–3041.
9. Demers M, Rose AA, Grosset AA, Biron-Pain K, Gaboury L, et al. (2010) Molecular portraits of human breast tumours. Nature 406: 747–752.
10. Jones C, Mackay A, Grogisadis A, Cosu A, Reis-Filho JS, et al. (2004) Expression profiling of purified normal human luminal and myoepithelial breast cells: identification of novel prognostic markers for breast cancer. Cancer Res 64: 3037–3041.
11. Demers M, Rose AA, Grosset AA, Biron-Pain K, Gaboury L, et al. (2010) Overexpression of galectin-7, a myoepithelial cell marker, enhances spontaneous metastasis of breast cancer cells. Am J Pathol 176: 3023–3031.
12. Pal R, Janz M, Galson DL, Grès M, Li S, et al. (2009) C/EBPβ regulates transcription factors critical for proliferation and survival of multiple myeloma cells. Blood 114: 3890–3896.
13. Rami DP, Foka P (2002) CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J 365: 561–575.
14. Zahnlow CA (2009) CCAAT/enhancer-binding protein beta: its role in breast cancer and associations with receptor tyrosine kinases. Expert Rev Mol Med 11: e12.
15. Zhu S, Yoon K, Sterneck E, Johnson PF, Smart RC (2002) C/EBPβ/enhancer-binding protein-beta is a mediator of keratinocyte survival and skin tumorigenesis involving oncogenic Ras signaling. Proc Natl Acad Sci U S A 99: 207–212.
16. Robinson GW, Johnson PF, Herrnghausen L, Sterneck E (1990) The C/ EBPβ transactivation factor regulates epithelial cell proliferation and differen-
tiation in the mammary gland. Genesis Dev 12: 1907–1916.
17. Seagroves TN, Karcakin S, Rauht B, Gay J, Burgess-Beausse B, et al. (1990) C/ EBPβ transfection, but not C/EBPα, is essential for ductal morphogenesis, lobuloalveolar proliferation, and functional differentiation in the mouse mammary gland. Genesis Dev 12: 1917–1920.
18. Seagroves TN, Lydon JP, Hovey RC, Vonderhaar BK, Rosen JM (2000) C/ EBPβ (CCAAT/enhancer binding protein) controls cell fate determination during mammary gland development. Mol Endocrinol 14: 359–368.
19. Bundy LM, Sealy L (2003) CCAAT/enhancer binding protein beta (C/ EBPβ-2) transforms normal mammary epithelial cells and induces epithelial to mesenchymal transition in culture. Oncogene 22: 869–873.
20. Mourskaia AA, Dong Z, Ng S, Banville M, Zwaagstra JC, O’Connor-McCourt MD, Siegel PM (2009) Transcription growth factor-beta is the predominant isoform required for breast cancer cell outgrowth in bone. J Biol Chem 284: 1005–1015.
21. Zahnlow CA, Carrell KD, Laucirica R, Medina D, Rosen JM (2001) A role for CCAAT/enhancer binding protein beta/liver-enriched inhibitory protein in mammary epithelial cell proliferation. Cancer Res 61: 261–269.
22. Chen J, He QY, Yuen AP, Chiu FF (2004) Proteomics of buccal squamous cell carcinoma: the involvement of multiple pathways in tumorigenesis. Proteomics 4: 2463–2475.
23. Daniel VC, Marchioni I, Hie mann JS, Rhodes JT, Deveruel WL, et al. (2009) A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res 69: 3364–3373.
24. Demers M, Biron-Pain K, Hebert J, Lamarre A, Magnaldo T, et al. (2007) Galectin-7 in lymphoma: elevated expression in human lymphoid malignancies and decreased lymphoma dissemination by antisense strategies in experimental model. Cancer Res 67: 2824–2829.
25. Manui Y, Ueda S, Watanabe J, Kawahara I, Ogawa O, et al. (2007) Sensitizing effect of galectin-7 in urothelial cancer to cisplatin through the accumulation of intracellular reactive oxygen species. Cancer Res 67: 1212–1220.
26. Rorive S, Eddafali B, Fernandez S, Decaestecker C, Andre S, et al. (2002) Galectin-7 and NF-κB: a transcrip-
tional complex regulates NF-κB activity in urothelial cancer to cisplatin through the accumulation of intracellular reactive oxygen species. Cancer Res 67: 1212–1220.
27. Ma XJ, Daihyi S, Richardson E, Erlander M, Sgroi DC (2009) Expression profiling of the tumor microenvironment during breast cancer progression. PLoS ONE 4: e5087.
20. Richardson AL, Wang ZC, De Nicoló A, Lu X, Brown M, et al. (2006) X chromosome abnormalities in basal-like human breast cancer. Cancer Cell 9: 121–132.
21. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, et al. (2005) Genes that mediate breast cancer metastasis to lung. Nature 436: 518–524.
22. Schuetz CS, Bonin M, Clare SE, Nieselt K, Sotlar K, et al. (2006) Progression-specific genes identified by expression profiling of matched ductal carcinomas in situ and invasive breast tumors, combining laser capture microdissection and oligonucleotide microarray analysis. Cancer Res 66: 5278–5286.
23. Zhu S, Oh HS, Shim M, Sterneck E, Johnson PF, Smart RC (1999) C/EBPbeta modulates the early events of keratinocytes differentiation involving growth arrest and keratin 1 and keratin 10 expression. Mol Cell Biol 19: 7181–7190.
24. Schwartz EJ, Reginato MJ, Nisho D, Krakow SL, Lazar MA (1997) Retinoic acid blocks adipogenesis by inhibiting C/EBPbeta-mediated transcription. Mol Cell Biol 17: 1552–1561.
25. Wiper-Bergeron NC, St-Louis C, Lee JM (2007) CCAAT/Enhancer binding protein beta abrogates retinoic acid-induced osteoblast differentiation via repression of Runx2 transcription. Mol Endocrinol 21: 2124–2135.
26. Schuetz CS, Bonin M, Clare SE, Nieselt K, Sotlar K, et al. (2006) Progression-specific genes identified by expression profiling of matched ductal carcinomas in situ and invasive breast tumors, combining laser capture microdissection and oligonucleotide microarray analysis. Cancer Res 66: 5278–5286.
27. Zhu S, Oh HS, Shim M, Sterneck E, Johnson PF, Smart RC (1999) C/EBPbeta modulates the early events of keratinocytes differentiation involving growth arrest and keratin 1 and keratin 10 expression. Mol Cell Biol 19: 7181–7190.
28. Schwartz EJ, Reginato MJ, Nisho D, Krakow SL, Lazar MA (1997) Retinoic acid blocks adipogenesis by inhibiting C/EBPbeta-mediated transcription. Mol Cell Biol 17: 1552–1561.
29. Wiper-Bergeron NC, St-Louis C, Lee JM (2007) CCAAT/Enhancer binding protein beta abrogates retinoic acid-induced osteoblast differentiation via repression of Runx2 transcription. Mol Endocrinol 21: 2124–2135.
30. Magnusdo T, Bernerd F, Darron M (1995) Galectin-7, a human 14 kDa Slectin specifically expressed in keratinocytes and sensitive to retinoic acid. Dev Biol 168: 259–271.
31. Eaton EM, Hanlon M, Bundy L, Sealy L (2001) Characterization of C/EBPbeta isoforms in normal versus neoplastic mammary epithelial cells. J Cell Physiol 189: 91–105.
32. Zahnow CA, Younes P, Laucirica R, Rosen JM (1997) Overexpression of C/EBPbeta-LIP, a naturally occurring, dominant-negative transcription factor, in human breast cancer. J Natl Cancer Inst 89: 1087–91.
33. Mildt-Langosch KT, Loning T, Bamberger M. (2003) Loning, and A.M. Bamberger, Expression of the CCAAT/enhancer-binding proteins C/EBPalpha, C/EBPbeta and C/EBPdelta in breast cancer: correlations with clinicopathologic parameters and cell-cycle regulatory proteins. Breast Cancer Res Treat 79: 173–85.
34. Campion CG, Labrie M, Lavoie G, St-Pierre Y (2013) Expression of galectin-7 is induced in breast cancer cells by mutant p53. PLoS One 8: e72468.