Tracing metal sources for the giant McArthur River Zn-Pb deposit (Australia) using lead isotopes
Joséphine Gigon, Etienne Deloule, Julien Mercadier, David Huston, Antonin Richard, Irvine Annesley, Andrew Wygralak, Roger Skirrow, Terrence Mernagh, Kristian Masterman

To cite this version:
Joséphine Gigon, Etienne Deloule, Julien Mercadier, David Huston, Antonin Richard, et al.. Tracing metal sources for the giant McArthur River Zn-Pb deposit (Australia) using lead isotopes. Geology, Geological Society of America, 2020, 48 (5), pp.478-482. 10.1130/G47001.1. hal-02966389

HAL Id: hal-02966389
https://hal.archives-ouvertes.fr/hal-02966389
Submitted on 14 Oct 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Tracing metal sources for the giant McArthur River Zn-Pb deposit (Australia) using lead isotopes

Joséphine Gigon*1, Etienne Deloule2, Julien Mercadier3, David L. Huston3, Antonin Richard1, Irvine R. Annesley1, Andrew S. Wygralak4, Roger G. Skirrow3, Terrence P. Mernagh5 and Kristian Masterman6
1Université de Lorraine, CNRS, GeoRessources, Campus Aiguillettes, rue Jacques Callot BP 70239, 54506 Vandoeuvre-lès-Nancy, France
2Centre de Recherches Pétrographiques et Géochimiques (CRPG), UMR 7358 CNRS-UL, 15 rue Notre Dame des Pauvres, F-54501 Vandoeuvre-lès-Nancy, France
3Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia
4Northern Territory Geological Survey, PO Box 2901, Darwin, NT 0801, Australia
5Research School of Earth Sciences, Australian National University, Acton, ACT2601, Australia
6Glencore Australia Holdings Pty Ltd, 1 Macquarie Place, Sydney, NSW2000, Australia

*E-mail: josephine.gigon@gmail.com

ABSTRACT
Giant hydrothermal ore deposits form where fluids carrying massive amounts of metals scavenged from source rocks or magmas encounter conditions favorable for their localized deposition. However, in most cases, the ultimate origin of metals remains highly disputed. Here, we show for the first time that two metal sources have provided, in comparable amounts, the 8 Mt of lead in the giant McArthur River zinc-lead deposit (McArthur Basin, Northern Territory, Australia). By using high-resolution secondary ion mass spectrometry (SIMS) analysis of lead isotopes in galena, we demonstrate that the two metal sources were repeatedly involved in the metal deposition in the different ore lenses ca. 1640 Ma. Modeling of lead isotope fractionation between mantle and crustal reservoirs implicates felsic rocks of the crystalline basement and the derived sedimentary rocks in the basin as the main lead sources that were leached by the ore-forming fluids. This sheds light on the crucial importance of metal tracing as a prerequisite to constrain large-scale ore-forming systems, and calls for a paradigm shift in the way hydrothermal systems form giant ore deposits: leaching of metals from several sources may be key in accounting for their huge metal tonnage.

INTRODUCTION

More than a thousand giant ore deposits worldwide are recognized as containing exceptional accumulations of metals in restricted volumes (i.e., they store the metals equivalent in 1011 tons of continental crust in mean crustal or “Clarke” concentration; Laznicka, 2014). Hydrothermal ore deposits are a specific class of metallic deposits that form by a combination of (1) metal extraction from a source rock or magma by a hydrothermal fluid, (2) metal transport by a hydrothermal fluid from the source to a focused discharge where metals precipitate and accumulate, and (3) metal precipitation and accumulation (e.g., McCuaig and Hronsky, 2014).

Giant hydrothermal ore deposits form only when all of these processes are adequately combined in space and time (e.g., Richards, 2013) and when the volume of metalliferous fluid is sufficient. While the conditions for metal transport and precipitation are relatively well understood, thanks to, among others, fluid inclusion studies and metal speciation and mineral solubility experiments (e.g., Richard et al., 2012), the conditions under which metals are extracted from their source, and more specifically the nature of the metal sources, are still the most disputed aspect of many ore-deposit models (e.g., Pettke et al., 2010). Several factors may underlie this controversy: (1) metal sources may occur at great distance from the ore deposit and may be hidden (e.g., Harlaux et al., 2018); (2) metal sources typically have large volumes but low concentrations of metal, meaning that the mass-balance studies required to demonstrate large-scale metal mobilization are highly challenging (e.g., Pitcairn et al., 2006); (3) a single ore deposit may form from several metal sources (e.g., Mercadier et al., 2013); and (4) fluid mixing may play a role in subsequent dilution of the geochemical signature of the primary metal source(s).

In order to address the number and the nature of metal source(s) involved with the formation of a true giant hydrothermal ore deposit, we have targeted the McArthur River zinc-lead deposit (Northern Territory, Australia) and carried out a detailed in situ Pb isotope study of galena. This widely used method is a powerful tool for tracing metal sources and ages based on model ages because it combines three radioactive decay systems (238U → 206Pb, 235U → 207Pb, and 232Th → 208Pb; e.g., Deloule et al., 1986).

GEOLOGICAL SETTING

The McArthur River Zn-Pb deposit is one of many giant hydrothermal ore deposits of the sediment-hosted massive sulfide (SHMS) category (e.g., Large et al., 1998; Leach et al., 2010). This deposit is situated in the Paleoproterozoic to Mesoproterozoic McArthur Basin, which unconformably overlies Paleoproterozoic crystalline basement units (Fig. 1; Fig. DR1 in the GSA Data Repository†). This is one of the many giant ore deposits of the so-called

†GSA Data Repository item 2020140, description of the parameters used for optical and scanning electron microscopy and secondary ion mass spectrometry; an extended discussion and an explanation of the different models presented in the main text; data tables; and supplemental figures, is available online at http://www.geosociety.org/datarepository/2020/ or on request from editing@geosociety.org.

CITATION: Gigon, J., et al., 2020, Tracing metal sources for the giant McArthur River Zn-Pb deposit (Australia) using lead isotopes: Geology, v. 48, p. 478–482, https://doi.org/10.1130/G47001.1
“Carpentaria zinc belt” in the Northern Territory and Queensland (Large et al., 1998; McGoldrick et al., 2010) and one of the most important Zn-Pb deposits in the world (as of June 2019: 172 Mt at 9.9% Zn, 4.6% Pb, 47 g/t Ag; NTGS, 2019). The McArthur River deposit is located 2 km west of the Emu fault, a major 10-km-deep crustal structure (Rawlings et al., 2004) that potentially acted as a fluid conduit for upward migration of 150–250 °C, oxidized, metal- and sulfate-rich basal fluids (Cooke et al., 2000) in a sinistral strike-slip regime (McGoldrick et al., 2010). The eight ore lenses of the McArthur River deposit occur within the Pyritic Shale Member of the Barney Creek Formation, dated at 1639 ± 2 Ma (Page and Sweet, 1998), which acted as a reduced geochemical trap for metal precipitation (Cooke et al., 2000) in a sinistral strike-slip regime (McGoldrick et al., 2010). Most authors consider the formation of the McArthur River deposit as syn-sedimentary or sub-contemporaneous to the deposition of the upper Barney Creek Formation, and therefore consider 1639 ± 2 Ma as a reasonable estimate of the age of metal deposition (Huston et al., 2006; Kunzmann et al., 2019).

RESULTS

The ranges of 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios are 16.10–16.22, 15.43–15.57, and 35.42–36.57 respectively (Fig. 3; Table DR1). In a 207Pb/204Pb versus 206Pb/204Pb diagram, the data are distributed along a line whose slope is 1.42 with a mean square weighted deviation (MSWD) of 4.1 (Fig. 3). Slopes are similar within the analytical error for the different lenses (Fig. DR2). Lenses 0, 3, 4, and 9 show a similar distribution of 206Pb/204Pb and 207Pb/204Pb ratios with modes around 16.2 and 15.55 respectively, whereas lens 2 shows modes around 16.16 and 15.49, respectively. The Pb isotope
ratiops exhibit similar variations at the grain and lens scales (e.g., $^{206}\text{Pb}/^{204}\text{Pb}$ values of 16.192 and 16.132 for analytical spots 100 µm apart in a single grain; Figs. DR3–DR8). Previous Pb isotope compositions measured on mixed sulfides by thermal ionization mass spectrometry (TIMS) are clustered in the lower range of the $^{206}\text{Pb}/^{204}\text{Pb}$, $^{207}\text{Pb}/^{204}\text{Pb}$, and $^{208}\text{Pb}/^{204}\text{Pb}$ values obtained in this study (Fig. DR9). Although they are compatible within error with the present data, they represent a mixed signature of several grains. The novelty here is that the in situ SIMS analyses have a high petrographic resolution and reveal the full range of Pb isotope compositions.

DISCUSSION

Repeated Mixing between Two Lead Sources

The line along which all of the lead isotope data are distributed is discordant to isochrons linking rocks and minerals with the same model age (Fig. 3; Stacey and Kramers, 1975; Sun et al., 1996). The most simple explanation is that the data lie along a mixing line between two distinct Pb sources corresponding to two end members of the data distribution that we name, respectively, lead source 1 ($^{206}\text{Pb}/^{204}\text{Pb} > 15.56$ and $^{208}\text{Pb}/^{204}\text{Pb} > 16.21$) and lead source 2 ($^{206}\text{Pb}/^{204}\text{Pb} < 15.46$ and $^{208}\text{Pb}/^{204}\text{Pb} < 16.14$; Fig. 3). Assuming that (1) the two lead sources have compositions similar to those of the extremes of the mixing line and (2) the data are representative of the Pb isotopic composition of the ore fluid at the time of sulfide deposition, the relative contributions from the two sources can be calculated. Considering the modes of $^{207}\text{Pb}/^{204}\text{Pb}$ and $^{208}\text{Pb}/^{204}\text{Pb}$ ratios in each lens, the relative proportion of Pb derived from each source in the different ore lenses is between 38% and 83% for lead source 1 and between 17% and 62% for lead source 2 (Fig. DR2). Thus, both Pb sources have been repeatedly involved in the formation of the different ore lenses, and their relative proportions are of the same order of magnitude.

Isotope Evolution Models for Lead Sources

Models of Pb lead isotope fractionation and evolution between the mantle and crustal reservoirs, together with existing chronostratigraphic constraints in the investigated area, are helpful in identifying the nature of lead sources 1 and 2. The usual local model for the North Australian craton is based on the global "continuous growth-of-µ" model (where µ represents the $^{238}\text{U}/^{204}\text{Pb}$ ratio of a given reservoir; Cumming and Richards, 1975), and uses Pb isotope ratios obtained by TIMS at the McArthur River deposit as a control point for the 1640 Ma isochron (Fig. DR9; Sun et al., 1996). However, because the new in situ SIMS data presented here show considerably more scattering compared to previously obtained bulk TIMS data, the local model should now be treated with caution. Alternative models are proposed and discussed below (see Fig. 4, and the Data Repository, for details).

The objective of the tested models is to account for distinct evolution of lead sources 1 and 2 which were both leached by the ore-forming fluids at ca. 1640 Ma, by adjusting the number and timing of crust formation and differentiation events, the age of crystallization of Pb-bearing minerals, as well as the µ values of the different Pb reservoirs. Because the composition of lead source 2 lies close to the 1640 Ma isochron of the usual global and local models (Fig. 3; Stacey and Kramers, 1975; Sun et al., 1996), we rely on the reasonable assumption that lead source 2 corresponds to a crustal reservoir that has evolved isotopically through ^{235}U, ^{238}U, and ^{232}Th decay until the time of the McArthur River deposit formation (ca. 1640 Ma). Model A assumes that the model age of both lead sources is 1640 Ma. Back-calculation indicates the extraction of a crustal reservoir from the mantle at 3.83 Ga that evolved toward the composition of lead source 1 ($\mu_1 = 10.21$), followed at 3.65 Ga by the extraction of another crustal reservoir from the mantle that evolved toward the composition of lead source 2 ($\mu_2 = 10.34$; Figs. 4A). Model B assumes a single episode of extraction of two crustal reservoirs from the mantle. These two reservoirs evolved toward the compositions of lead sources 1 and 2 respectively (Fig. 4B). Back-calculation indicates that this episode would have occurred at 3.65 Ga, which, in turn, imposes $\mu_1 = 11.12$ and $\mu_2 = 10.34$, and that Pb isotope evolution of lead source 1 would have ceased at 1764 Ma (i.e., was devoid of U and Th to avoid the production of radiogenic Pb). Model C assumes an initial extraction of a crustal reservoir from the mantle at 3.7 Ga, followed by an episode of differentiation into two crustal reservoirs that evolved toward the compositions of lead sources 1 and 2 respectively (Fig. 4C). Back-calculation indicates that crustal differentiation would have occurred between 3.65 and 3.0 Ga, which, in turn, imposes that Pb isotope evolution of lead source 1 would have ceased between 1895 and 1764 Ma, with μ_1 ranging between 11.12 and 12.92 and μ_2 ranging between 10.34 and 10.67.

Potential Candidates for Lead Sources

It is noteworthy that all scenarios require elevated μ values (between 10.2 and 12.92) for the crustal reservoirs in order to account for the compositions of lead sources 1 and 2, ruling out mafic volcanics from the McArthur Basin as a plausible Pb source for the McArthur River deposit (e.g., Stacey and Kramers, 1975; Cooke et al., 1998; Hofmann, 2007). Models B and C require that lead source 1 would have stopped evolving isotopically between ca. 1895 and 1764 Ma. This would be possible if lead source 1 consisted of galena or Pb-bearing feldspar crystallized within this age span. However, only small galena deposits of this age are known in the basin or basement in the area, and no felsic igneous rocks are recorded in the area between 1815 (oldest age in the basin) and 1730 Ma (Ahmad et al., 2013). Therefore, according to Model C, lead source 1 should belong to or be derived from the youngest basement felsic units by erosion and sedimentation. Lead sources 1 and 2 could actually belong to separate units, or to the same unit if, in the latter, Pb was alternatively
leached from feldspar only or from all Pb-bearing minerals including accessory uranium- and thorium-rich minerals. Several anorganic felsic intrusive and volcanic units in the crystalline basement are plausible candidates for lead sources 1 and 2 because they meet the age constraints from the above models and have vertical (>1 km) and lateral extents that could potentially account for the Pb budget of the McArthur River deposit (Table DR3). This includes the ca. 1850 Ma Cliffrade and Scrutton volcanics located in the Murphy and Scrutton inliers respectively (Fig. 1). Those anorganic felsic units were likely among the sources of felsic-derived sediments in the McArthur Basin such as the black shales of the Barney Creek Formation, clastic units within carbonate-evaporite successions, or the regionally extensive and permeable conglomerates and sandstones in the basal units of the McArthur Basin where framework alteration of detrital feldspar is documented (Davidson, 1998; Polito et al., 2011).

CONCLUSION

Altogether, our in situ SIMS Pb isotope data and isotope modeling provide, for the first time, a strong support for the previous assumption that the Pb-rich products of anorganic felsic magmatism contributed to the Pb sources for some giant Proterozoic Zn-Pb deposits worldwide (Sawkins, 1989). More generally, our work shows that if forming a giant hydrothermal ore deposit requires mobilizing metals from several sources, the current models for scales, geometries, and dynamics of ore-forming hydrothermal systems should be revised. In turn, this would have a major impact on the estimation of metal endowment and exploration strategies in world-class metallogenic provinces, because the volume of metal sources and their metal concentration define the total amount of metals available for ore deposits.

ACKNOWLEDGMENTS

The Northern Territory Geological Survey provided logistical support for sampling and Glenore Australia Holdings Pty Ltd and the McArthur River mine geologists team provided authorization and guidance for sampling. The Iron Probe Team Nancy (France; CRPG-CNRS) provided technical support during SIMS analyses. The Service Commun de Microscopie Electronique et de Microanalyses (Geological sources laboratory, University of Lorraine, France) provided technical support during SEM analyses. This research was funded by (1) a French Ministry of Higher Education and Research Ph.D. salary grant to Gigon; (2) a Région Lorraine–FEDER grant to Mercadier, "Rôle des phases fluides dans la distribution spatiale des ressources métalliques dans les bassins sédimentaires paléoproterozoïques australiens"; (3) Observatoire des Sciences de l’Univers (OSU) OTELo grants to Mercadier, “Conditions de transport des métaux dans un méga bassin protérozoïque”, and Richard, “Transferts de fluides et métaux dans le bassin de McArthur (Australie)”; and (4) CNRS-INSU-CESSUR grants to Mercadier "Transferts des fluides et métaux dans les méga-bassins paléoprotérozoïques" and Richard, “Traçage isotopique de migrations massives de métaux le long d’une faille d’échelle crustale (Emu Fault, bassin de McArthur, Australie)”. Reviews by Robert Scott and two anonymous reviewers greatly helped in improving the manuscript.

REFERENCES CITED

Ahmad, M., Dunster, J.N., and Munson, T.J., 2013, McArthur Basin, in Ahmad, M., and Munson, T.J., compilers, Geology and Mineral Resources of the Northern Territory: Northern Territory Geological Survey Special Publication 5, p. 15–1–15-72.

Cooke, D.R., Bull, S.W., Donovan, S., and Rogers, J.R., 1998, K-metasomatism and base metal depletion in volcanic rocks of the McArthur Basin, Northern Territory—Implications for base metal mineralization: Economic Geology and the Bulletin of the Society of Economic Geologists, v. 93, p. 1237–1263, https://doi.org/10.2113/gsecongeo.93.8.1237.

Cooke, D.R., Bull, S.W., Large, R.R., and McGoldrick, P.J., 2000, The importance of oxidized brines for the formation of Australian Proterozoic strataform sediment-hosted Pb-Zn (sedex) deposits: Economic Geology and the Bulletin of the Society of Economic Geologists, v. 95, p. 1–18, https://doi.org/10.2113/gsecongeo.95.1.1.

Cumming, G.L., and Richards, J.R., 1975, Ore lead isotope ratios and continental changing earth: Earth and Planetary Science Letters, v. 28, p. 155–171, https://doi.org/10.1016/0012-821X(75)90023-3.

Davidson, G.J., 1998, Alkali alteration styles and mechanisms, and their implications for a ‘brine factory’ source of base metals in the rift-related McArthur group, Australia: Australian Journal of Earth Sciences, v. 45, p. 33–49, https://doi.org/10.1080/0812821X.199808723865.

Deloule, E., Allegre, C.J., and Doe, B.R., 1986, Lead and sulfur isotope microstratigraphy in galena crystals from Mississippi Valley-type deposits: Economic Geology and the Bulletin of the Society of Economic Geologists, v. 81, p. 1307–1321, https://doi.org/10.2113/gsecongeo.81.6.1307.
Harlaux, M., Mercadier, J., Marignac, C., Peiffer, C., Cloquet, C., and Cuney, M., 2018. Tracing metal sources in peribatholithic hydrothermal W deposits based on the chemical composition of wolframatite: The example of the Variscan French Massif Central: Chemical Geology, v. 479, p. 58–85, https://doi.org/10.1016/j.chemgeo.2017.12.029.

Hofmann, A. W., 2007, Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements, in Carlson, R.W., ed., Treatise on Geochemistry, Volume 2: The Mantle and Core: Elsevier, 44 p., https://doi.org/10.1016/B0-08-043751-602123-X.

Huston, D.L., Stevens, B., Southgate, P.N., Muhling, P., and Wyborn, L., 2006, Australian Zn-Pb-Ag ore-forming systems: A review and analysis: Economic Geology and the Bulletin of the Society of Economic Geologists, v. 101, p. 1117–1157, https://doi.org/10.2113/gsecongeo.101.6.1117.

Kunzmann, M., Schmid, S., Blaikie, T.N., and Halver-son, G.P., 2019, Facies analysis, sequence stratigraphy, and carbon isotope chemostratigraphy of a classic Zn-Pb host succession: The Proterozoic middle McArthur Group, McArthur Basin, Australia: Ore Geology Reviews, v. 106, p. 150–175, https://doi.org/10.1016/j.oregeorev.2019.01.011.

Large, R.R., Bull, S.W., Cooke, D.R., and McGoldrick, P.J., 1998, A genetic model for the H.Y.C. Deposit, Australia: Based on regional sedimentology, geochemistry, and sulfide-sediment relationships: Economic Geology and the Bulletin of the Society of Economic Geologists, v. 93, p. 1345–1368, https://doi.org/10.1130/0891-7613(1998)093<1345:ABORSG>2.3.CO;2.

Laznicka, P., 2014, Giant metallic deposits—a century of progress: Ore Geology Reviews, v. 62, p. 259–314, https://doi.org/10.1016/j.oregeorev.2014.03.002.

Leach, D.L., Bradley, D.C., Huston, D., Pisarevsky, S.A., Taylor, R.D., and Gardoll, S.J., 2010, Sediment-hosted lead-zinc deposits in Earth history: Economic Geology and the Bulletin of the Society of Economic Geologists, v. 105, p. 593–625, https://doi.org/10.2113/gsecongeo.105.3.593.

McCuig, T.C., and Hronsky, J.M.A., 2014, The mineral system concept: The key to exploration targeting, in Kelley, K.D., and Golden, H.C., eds., Building Exploration Capability for the 21st Century: Society of Economic Geologists Special Publication 18, p. 153–175, https://doi.org/10.5382/SP18.08.

McGoldrick, P., Winefield, P., Bull, S., Selley, D., and Scott, R., 2010, Sequences, synsedimentary structures, and sub-basins: The where and when of SEDEX zinc systems in the southern McArthur Basin, Australia, in Goldfarb, R.J., et al., eds., The Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries: Society of Economic Geologists Special Publication 15, p. 367–390, https://doi.org/10.5382/SP15.2.02.

Mercadier, J., Annesley, I.R., McKechnie, C.L., Boggan, T.S., and Creighton, S., 2013, Magmatic and metamorphic uraninite mineralization in the western margin of the Trans-Hudson orogen (Saskatchewan, Canada): A uranium source for unconformity-related uranium deposits?: Economic Geology and the Bulletin of the Society of Economic Geologists, v. 108, p. 1037–1065, https://doi.org/10.2113/econgeo.108.5.1037.

NTGS (Northern Territory Geological Survey), 2019, The 2002 Southern McArthur Basin Seismic Reflection Survey: Geoscience Australia Record 2004/17, 87 p.

Richard, A., Rozsypal, C., Mercadier, J., Banks, D.A., Cuney, M., Boiron, M.-C., and Cathelineau, M., 2012, Giant uranium deposits formed from exceptionally uranium-rich acidic brines: Nature Geoscience, v. 5, p. 142–146, https://doi.org/10.1038/ngeo1338.

Richards, J.P., 2013, Giant ore deposits formed by optimal alignments and combinations of geological processes: Nature Geoscience, v. 6, p. 911–916, https://doi.org/10.1038/ngeo1920.

Sawkins, F.J., 1989, Anorogenic felsic magmatism, rift sedimentation, and giant Proterozoic Pb-Zn deposits: Geology, v. 17, p. 657–660, https://doi.org/10.1130/0091-7613(1989)017<0657:AFMRAA>2.3.CO;2.

Stacey, J.S., and Kramers, J.D., 1975, Approximation of terrestrial lead isotope evolution by a two-stage model: Earth and Planetary Science Letters, v. 26, p. 207–221, https://doi.org/10.1016/0012-821X(75)90088-6.

Sun, S.s., Carr, G.R., and Page, R.W., 1996, A continued effort to improve lead-isotope model ages: Australian Geological Survey Organization Research Newsletter, v. 24, p. 19–20.

Printed in USA