Biomarkers Predicting Tissue Pharmacokinetics of Antimicrobials in Sepsis: A Review

Maria Sanz Codina1 · Markus Zeitlinger1

Accepted: 13 December 2021 / Published online: 25 February 2022
© The Author(s) 2022

Abstract
The pathophysiology of sepsis alters drug pharmacokinetics, resulting in inadequate drug exposure and target-site concentration. Suboptimal exposure leads to treatment failure and the development of antimicrobial resistance. Therefore, we seek to optimize antimicrobial therapy in sepsis by selecting the right drug and the correct dosage. A prerequisite for achieving this goal is characterization and understanding of the mechanisms of pharmacokinetic alterations. However, most infections take place not in blood but in different body compartments. Since tissue pharmacokinetic assessment is not feasible in daily practice, we need to tailor antibiotic treatment according to the specific patient’s pathophysiological processes. The complex pathophysiology of sepsis and the ineffectiveness of current targeted therapies suggest that treatments guided by biomarkers predicting target-site concentration could provide a new therapeutic strategy. Inflammation, endothelial and coagulation activation markers, and blood flow parameters might be indicators of impaired tissue distribution. Moreover, hepatic and renal dysfunction biomarkers can predict not only drug metabolism and clearance but also drug distribution. Identification of the right biomarkers can direct drug dosing and provide timely feedback on its effectiveness. Therefore, this might decrease antibiotic resistance and the mortality of critically ill patients. This article fills the literature gap by characterizing patient biomarkers that might be used to predict unbound plasma-to-tissue drug distribution in critically ill patients. Although all biomarkers must be clinically evaluated with the ultimate goal of combining them in a clinically feasible scoring system, we support the concept that the appropriate biomarkers could be used to direct targeted antibiotic dosing.
Graphical Abstract

TISSUE PHARMACOKINETIC BIOMARKERS IN SEPSIS

COAGULOPATHY
- ADAMTS-13
- Antithrombin
- Protein C
- Protein S
- Protein C3
- Protein S3

RENAL IMPAIRMENT
- Creatinine clearance
- GFR output

ENDOTHELIAL DAMAGE
- ADAMTS-13
- Angiopoietin-1/2
- Endostatin
- ICAM
- VCAM
- VEGF
- VWF

PERSONALIZED DRUG DOSE
- Pathophysiologic variability
- Serum concentration
- Target site concentration
- Biological effect

BIOMARKERS
- CRP
- Ferritin
- Haptoglobin
- LBP
- Procalcitonin
- Prothrombin

CELL MARKERS, RECEPTORS
- CD40, mHLA
- TLR 2 and 4, sTREM-1
- TNF receptor, soluble

CYTOKINES, COMPLEMENT
- IL-1β, IL-2, IL-6, IL-8, TNF-α
- C5a, C5b-9
- MCP-1 and 2
- MIP-1
- MIP-2

HEPATIC IMPAIRMENT
- Bilirubin
- ALAT/ASAT
- Albumin
- Acute phase protein
- PT

ACUTE PHASE REACTANTS
- SAA
- CRP
- Ferritin
- Hepatidin
- LBP
- Procalcitonin
- Prothrombin

EXTERNAL FACTORS
- Fluid resuscitation
- Inotropic drugs
- RRT
- Apheresis
- Immunoadsorption
- Biological response regulators

BLOOD FLOW
- CO2
- Blood pressure
- Cardiac output
- Heart rate
- PCO2
- pCO2

Adis

ADAMTS-13 a disintegrin-like and metalloprotease with thrombospondin type 1 motif no. 13, **ALAT** alanine amino transferase, **APACHE IV** Acute Physiology and Chronic Health Evaluation-IV, **aPPT** activated partial thromboplastin time, **ASAT** aspartate amino transferase, **AT** antithrombin, **Ca-V-O** oxygen content difference, arterial-venous, **CRP** C-reactive protein, **ELAM** endothelial leukocyte adhesion molecule, **ICAM** intercellular adhesion molecule, **IL** interleukin, **INR** international normalized ratio, **LBP** lipopolysaccharide-binding protein, **MCP** monocyte chemoattractant protein, **mHLA** monocytic human leukocyte antigen, **MIF** migration inhibitory factor, **MIP** macrophage inflammatory protein, **PAI** plasminogen activator inhibitor, **PCO2** partial pressure of carbon dioxide, **PT** prothrombin time, **RRT** renal replacement therapy, **SAPSS III** Simplified Acute Physiology Score-III, **sO2** oxygen saturation, **SOFA** Sequential [Sepsis-related] Organ Failure Assessment, **sTREM** soluble triggering receptor expressed on myeloid cells 1, **TLR** toll-like receptor, **TNF** tumor necrosis factor, **VCAM** vascular cell adhesion molecule, **VEGF** vascular endothelial growth factor, **vWF** von Willebrand factor
Key Points

Pathophysiologival changes in sepsis lead to pharmacokinetic variability and altered antibiotic infection site concentrations.

Biomarkers reflecting drug pharmacokinetics might help optimize antimicrobial dosing.

According to the pathophysiology of sepsis, the following host factors might be suitable to predict antibiotic target-site exposure in critically ill patients: inflammation, endotheliopathy, blood flow, coagulation, and hepatic and renal dysfunction. Prospective pharmacokinetic studies are needed.

1 Introduction

Sepsis is a life-threatening organ dysfunction resulting from a deregulated host response to infection (Fig. 1) [1]. The World Health Organization considers sepsis a global health emergency because 11 million sepsis-related deaths worldwide occur every year [2]. Thus, there is a call for global action to improve prevention, diagnostic, and treatment tools [3–5]. Part of this high mortality in critically ill patients has been linked to antibiotic treatment failure [6].

Several factors might lead to this treatment failure, including inadequate penetration of the antimicrobial to the target site [7–9], since site drug levels may substantially vary from the corresponding plasma drug concentrations [15]. Suboptimal antibiotic doses in the site of infection may also result in adverse reactions, toxicity, resistance, and higher costs [10]. Critically ill patient pathophysiology leads to highly variable systemic pharmacokinetics and altered tissue penetration of antibiotics [11]. Therefore, standardized doses might not fit patients in the intensive care unit (ICU), who have an increased risk of not receiving target-site therapeutic concentrations [10].

Various strategies have been proposed to improve antibiotic use, such as antibiotic stewardship [12, 13], therapeutic drug monitoring (TDM), and precision dosing [14–16]. Dose adjustments have recently shown promising evidence for improved outcomes and reduction of antimicrobial resistance [17]. In recent years, dosing nomograms and population-pharmacokinetic dosing software have appeared to optimize antibiotic use [18, 19]. However, these techniques have a significant limitation: they predict the drug concentration in plasma, and rarely in the site of infection [20].

Fig. 1 The Sepsis-3 criteria. “Sepsis should be defined as life-threatening organ dysfunction caused by a dysregulated host response to infection [suspected or confirmed]” [192]. The SOFA (Sequential [Sepsis-related] Organ Failure Assessment) score can be used to determine organ dysfunction. Organ dysfunction representing sepsis is defined as an increase in the SOFA score of ≥ 2 points. The SOFA score rates the functioning of six organ systems from 0 to 4. A subtype of sepsis is septic shock, which requires a vasopressor to preserve a mean blood pressure of ≥ 65 mmHg, and by a serum lactate level > 2 mmol/L (> 18 mg/dL) without hypovolemia. MAP mean arterial pressure, PaO2/FiO2 ratio of arterial oxygen partial pressure to fractional inspired oxygen.
Determining the concentration at the infection site for individual patients is challenging, so biomarkers that might predict target-site concentrations are needed. Sepsis biomarkers have already been used to prove infection and help confirm a sepsis suspicion [21, 22], and procalcitonin-guided antibiotic therapy is already a reality [23]. A retrospective study examined the accuracy of different markers and scoring systems for predicting tissue penetration of antimicrobials and found that oxygen saturation, serum lactate concentration, and the dose per unit time of norepinephrine administered were best correlated with tissue penetration [24]. Nevertheless, a gap remains in the literature linking such time-varying host biomarkers to target-site concentration and antibiotic exposure. Such knowledge would enable the stratification of patients with increased risk of treatment failure and individualize antibiotic treatment.

This review aims to characterize biomarkers that predict antibiotic pharmacokinetics in critically ill patients. Our objective is to summarize the effect of pathophysiological changes in critically ill patients on pharmacokinetics and how biomarkers might predict them. First, we give an overview of drug and host factors influencing pharmacokinetic changes. Then we propose and classify biomarkers that can predict this pharmacokinetic variability and thus the antibiotic concentration at the infection site.

Methods

We conducted a literature review in the MEDLINE, Google Scholar, and ISI Web of Science databases. We also identified references from relevant articles and from searches of the authors’ extensive files. Search terms used were sepsis, antibiotic pharmacokinetics, critically ill patients, biomarkers, drug and host factors, and pharmacokinetic variability.

Table 1 Physiological antibiotic properties and implications for pharmacokinetics in critical illness

Pharmacokinetics	Lipid solubility	
	Hydrophilic antibiotics	Lipophilic antibiotics
General	↓ V_d; ↑ C_max; ↓ intracellular penetration; renal clearance	↑ V_d; ↓ C_max; ↑ intracellular penetration; hepatic clearance
In critically ill	↑ V_d; ↓/↑ renal clearance; dependent on renal function and PB	Unchanged V_d; ↑/↓ hepatic clearance; dependent on hepatic function and PB
Examples	β-lactams, aminoglycosides, glycopeptides	Fluoroquinolones, macrolides, rifampicin, linezolid

C_max: maximum plasma drug concentration, PB: protein binding, V_d: volume of distribution, ↑ and ↓ indicate increase and decrease, respectively

Table 2 Protein binding of antibiotics

Pharmacokinetics	High	Low
General	↓ Diffusion, ↓ tissue penetration, ↓ antimicrobial activity	↑ Diffusion, ↑ tissue penetration, ↑ antimicrobial activity
In the critically ill	↑ Diffusion, ↑ tissue penetration, ↑ antimicrobial activity	Unchanged
Examples	Ceftriaxone, doxycycline, ertapenem	Fluoroquinolones, fosfomycin, meropenem

↑ and ↓ indicate increase and decrease, respectively

Table 3 PK/PD index predictors of efficacy in antibiotics

PK/PD index predictor	PK/PD	Objective	Antibiotics	References
C_max/MIC	Concentration dependent	Maximize the concentration	Aminoglycosides, fluoroquinolones, ketolides, metronidazole, polymyxin	[29]
T>MIC	Time dependent	Maximize duration of exposure	β-lactams, erythromycin, clarithromycin, linezolid, lincomamides	[30]
AUC_0–24/MIC	Concentration dependent with time dependence	Maximize the amount of drug exposure	Azithromycin, clindamycin, linezolid, tetracyclines, daptomycin, fluoroquinolones, aminoglycosides, tigecycline, vancomycin	[31, 32]

AUC_0–24: area under the plasma concentration–time curve from time zero to 24 h, C_max: maximum plasma drug concentration, MIC: minimum inhibitory concentration, PK/PD: pharmacokinetics/pharmacodynamics, T>MIC: time above MIC
Biomarkers Predicting Tissue Pharmacokinetics of Antimicrobials in Sepsis

3 Antibiotic Factors

Antibiotics can be classed according to their physicochemical properties and pharmacodynamic characteristics (Tables 1, 2 and 3).

3.1 Antibiotic Characteristics According to Physicochemistry

The physicochemical properties of antibiotics play a significant role in achieving target-site concentration by affecting the volume of distribution (V_d), unbound concentrations, and clearance [25].

3.2 Lipid Solubility

Compounds with higher lipid solubility penetrate more easily into lipid membranes and, therefore, can be distributed intracellularly and in adipose tissues. On the other hand, hydrophilic antibiotics have a lower V_d and are predominantly distributed in the intravascular and interstitial space. Lipophilic drugs tend to have higher protein binding than hydrophilic drugs and usually need to be metabolized before being excreted [26].

3.2.1 Protein Binding

Changes in protein binding (PB) might influence pharmacokinetic parameters. Since only the nonbonded drug can diffuse into the extracellular space, PB has a significant effect on the V_d, so a reduction of PB could lead to higher target exposure. On the other hand, only the unbound drug can be metabolized and excreted [27]. As such, reduced PB might lead to an increase of the unbound ratio (unbound/bound drug), increasing the amount of drug available for clearance. Since this complex interaction is difficult to predict and might differ between antibiotics, it is important to measure both total and free drug in pharmacological studies. Usually this is not feasible for clinical TDM.

3.3 Antibiotic Characteristics According to Pharmacokinetic/Pharmacodynamic Index

Antibiotics are also classified with the pharmacokinetic/pharmacodynamic (PK/PD) index using the minimum inhibitory concentration (MIC) to measure the potency of drug–microorganism interaction. Once the PK/PD ratio has been determined, it is possible to tailor the pharmacodynamic target linked to the highest bactericidal activity. PK/PD ratios have benefited clinical practice and have been included in the development and approval of new antibiotics [28]. Antibiotics are classified as follows.

3.3.1 Time-Dependent Antibiotics

Time-dependent antibiotics are most effective if their concentration is maintained for as long as possible above the MIC (the lowest concentration should be at least four times the MIC) [29].

3.3.2 Concentration-Dependent Antibiotics

Concentration-dependent antibiotics require high concentration peaks as bacterial clearance depends on concentration rather than duration of exposure [30].

3.3.3 Concentration- and Time-Dependent Antibiotics

The area under the plasma concentration–time curve for 24 h for the MIC is the PK/PD index used to characterize antimicrobial efficacy. Dose optimization of these drugs aims to maximize overall exposure [31, 32].

3.4 Antibiotic Use in the Intensive Care Unit

Inadequate antimicrobial therapy correlates with reduced survival in critically ill patients [33]. The most used antibiotics in European ICUs are β-lactams, glycopeptides, and quinolones, with other antibiotics reserved for severe bacterial infections with antibiotic resistance [34]. Table 4 provides the characteristics of the most commonly used antibiotics in the ICU. Most of these antibiotics are hydrophilic, renally cleared, and time dependent. Therefore, their limited tissue distribution and the fluctuations of renal function in the critically ill make these antibiotics very susceptible to pharmacokinetic variability and target attainment failure [35, 36].

4 Host Factors

4.1 Sepsis Pathophysiology

Sepsis is caused by a dysregulated immune response (Fig. 2). An increase in the production of proinflammatory cytokines by the innate immune system can result in a “cytokine storm.” This inflammatory state results in endothelial damage and coagulation alterations [37]. Blood flow is impaired, leading to heterogeneous organ perfusion, mitochondrial dysfunction, cellular hypoxia, and organ dysfunction and...
failure. Consequently, there is an increased capillary leak, resulting in hypotension associated with a hyperdynamic cardiovascular state. Moreover, body fluid increases, especially after resuscitation [38]. Following, there might be an immunosuppression phase that fails to control the infection [39]. Such inflammatory and immunosuppressive states are thought to be overlapping, which further complicates the monitoring of the disease [40]. Ultimately, inflammation and

Antibiotic	Gram+/−	Mechanism of action	PK/PD index	\(V_d \) (L/kg)	\(C_{\text{max}} \)	\(t_\text{1/2} \) (h)	Clearance	Solubility	References
β-lactam									
Meropenem	G+/G−	Bactericidal	T>MIC	0.25	2	1	Renal	Hydrophilic	[193, 194]
Cefuroxime	G+/G−	Bactericidal	T>MIC	6.4–9.1	33–50	1.1	Renal	Hydrophilic	[195]
Cefazolin	G+/G−	Bactericidal	T>MIC	0.14	80–90	1.8	Renal	Hydrophilic	[196, 197]
Piperacillin/tazobactam	G+/G−	Bactericidal	T>MIC	0.38/0.31	25/30	1.14/0.92	Renal	Hydrophilic	[198, 199]
Ampicillin/sulbactam	G+/G−	Bactericidal	T>MIC	0.16/0.1	28/38	1/1	Renal	Hydrophilic	[200–202]
Ceftolozane/tazobactam	G+/G−	Bactericidal	T>MIC	0.19/0.31	21/30	2.77/0.92	Renal	Hydrophilic	[203–205]
Glycopeptide									
Teicoplanin	G+	Bacteriostatic	AUC/MIC	0.7–1.4	90	7.5–9	Renal	Hydrophilic	[206]
Vancomycin	G+	Bactericidal	AUC/MIC	0.4–1	10–50	6	Renal	Hydrophilic	[207]
Lipopeptide									
Daptomycin	G+	Bactericidal	AUC/MIC	0.1	90	7.5–9	Renal	Hydrophilic core lipophilic tail	[208–210]
Fosfomycin	G+/G−	Bactericidal	AUC/MIC	1.4–2.4	10	2.9–8.5	Renal	Hydrophilic	[211–213]
Fluoroquinolone									
Ciprofloxacin	G+/G−	Bactericidal	AUC/MIC	1.74–5	20–30	3–4	Hepatic	Lipophilic	[216]
Moxifloxacin	G+/G−	Bactericidal	AUC/MIC	1.65	30–50	12	Hepatic	Lipophilic	[217]
Metronidazole									
Metronidazole	Anaerobic	Bactericidal	AUC/MIC	0.51–1.1	<20	6–10	Renal	Hydrophilic	[218]
Aminoglycosides									
Gentamicin	G+/G−	Bactericidal	\(C_{\text{max}}/MIC \)	0.22–0.27	0–30	1.25	Renal	Hydrophilic	[219]
Amikacin	G+/G−	Bactericidal	\(C_{\text{max}}/MIC \)	0.22–0.27	<10	2–3	Renal	Hydrophilic	[220]
Tobramycin	G+/G−	Bactericidal	\(C_{\text{max}}/MIC \)	0.25	–	2.2–2.4	Renal	Hydrophilic	[221]
Macrolides									
Azithromycin	G+/G−	Bacteriostatic	AUC/MIC	0.35–0.5	<50	11–14	Hepatic	Lipophilic	[222, 223]
Erythromycin	G+/G−	Bacteriostatic	AUC/MIC	0.6–1.1	80–90	1.4–2.8	Hepatic	Lipophilic	[224]
Polymyxins									
Colistin	G−	Bactericidal	AUC/MIC	0.2	>50	0.5	Renal (prod-rug)	Hydrophilic	[225]
Oxazolidinones									
Linezolid	G+	Bactericidal, bacteriostatic	AUC/MIC	0.7	31	4–6	Hepatic, renal	Lipophilic	[226]

\(AUC \) area under the plasma concentration–time curve, \(C_{\text{max}} \) maximum plasma drug concentration, \(G+/G− \) Gram positive/negative, \(MIC \) minimum inhibitory concentration, \(PB \) protein binding, \(PK/PD \) pharmacokinetics/pharmacodynamics, \(T>MIC \) time above MIC, \(t_\text{1/2} \) elimination half-life, \(V_d \) volume of distribution
coagulopathy cause the vascular and organ damage characteristic of severe sepsis and septic shock and, lastly, cause organ failure and death.

4.2 Pharmacokinetic Alterations in Septic Patients

The unique pathophysiology of sepsis alters the components of pharmacokinetics. Figure 2 provides an overview of how the sepsis pathogenesis drives pharmacokinetic alterations.

4.2.1 Absorption

Critically ill patients have unpredictable oral bioavailability because of their delayed and impaired absorption. Gut motility is reduced, so gastric emptying is delayed and splanchnic blood flow reduced. The delay in gastric emptying prolongs the time for the antibiotic to reach the maximum concentration. An impaired peripheral blood flow also compromises absorption from subcutaneous and intramuscular injection. Because of these alterations, antibiotics in the ICU are usually initially administered intravenously [41].

4.2.2 Distribution

The proinflammatory state of sepsis induces endothelial damage and increases capillary permeability [42]. This results in capillary leak syndrome, which causes fluid extravasation and increases the V_d of hydrophilic antibiotics [11]. Therapeutic interventions (e.g., fluid resuscitation, extracorporeal circuits, drainages) can also increase the
4.2.3 Metabolism

Decreased hepatic blood flow, hepatic dysfunction, and altered enzyme activity impair metabolism in critically ill patients [49]. Tissue metabolism is also impaired by the decreased tissue blood flow and hypothermia [50]. Lipophilic antimicrobials may require dose adjustment in patients with hepatic failure since they are usually highly metabolized [47].

4.2.4 Excretion

The elimination process can be disturbed during critical illness, as renal clearance can be either enhanced or impaired. Biliary excretion is usually less impaired but can be affected by biliary stasis and a decreased gut transit leading to recirculation. Some critically ill patients have vasodilatation followed by a hyperdynamic cardiovascular state and therefore develop an augmented glomerular filtration rate (GFR), enhanced by the use of resuscitation fluid and vasopressors. This augmented renal clearance leads to increased elimination of hydrophilic drugs [51, 52]. This may lead to underdosage, as demonstrated in a study with β-lactams [53]. On the other hand, some critically ill patients have acute kidney injury (AKI) and need renal replacement therapy (RRT) [54, 55]. This will result in decreased antimicrobial clearance of hydrophilic antibiotics, prolonged half-life, and potential toxicity [53]. Therefore, when AKI or RRT are present, dose adjustments should be considered.

4.3 Sepsis Biomarkers

Given the complexity of the host response in sepsis, some biomarkers may or may not predict these pharmacokinetic changes in the critically ill (Fig. 3). A biomarker is a quantifiable biological parameter that indicates a biological, pathogenic, or pharmacological response to exposure or therapeutic intervention. The ideal biomarker must be specific, sensitive, predictive, fast, cost effective, stable in vivo and in vitro, noninvasive, and sufficiently preclinically and clinically relevant [56]. Biomarkers are valuable because they generally occur earlier than clinical outcomes and are measured by objective methods [57]. Patient-specific response biomarkers to infections represent an opportunity to monitor treatment response and predict alterations in drug target-site exposure and clinical outcomes.

Sepsis biomarkers can predict the severity of sepsis and the development of organ failure, differentiate the type or prognosis of infection, and assess the response to treatment. However, the role of biomarkers in guiding antibiotic dosing has not yet been deeply evaluated [58]. Research on procalcitonin stewardship has been conducted, but other biomarkers may outperform it [59, 60]. We have classified the potential biomarker predictors of pharmacokinetics according to pathophysiology: inflammation, endotheliopathy, coagulation, blood flow, and hepatic and renal function (Table 5). The diagnostic, prognostic, or therapeutic value of some of these biomarkers has been demonstrated, whereas the impact on drug pharmacokinetics is insufficiently understood. Table 5 displays the important biomarker characteristics. Knowledge of the biomarker’s molecular weight (MW) is important to determine their reliability during extracorporeal therapies [61]. Comprehension of biomarker kinetics is essential because pathophysiological processes are continuously changing, and delayed dynamics may lead to delayed clinical decisions.

4.3.1 Inflammation Biomarkers

Sepsis is a “cytokine storm” syndrome. During infections, pathogen-associated molecular patterns such as lipopolysaccharide or peptidoglycan bind to pattern-recognizing receptors (PRRs) such as toll-like receptors, potentiated by the CD14 receptors. The immune system might respond to the pathogen with an exaggerated, uncontrolled, and massive release of proinflammatory cytokines such as interleukin (IL)-1β, IL-6, IL-18; interferon, and tumor necrosis factor-α [42]. This increase in cytokines results in the continuous activation and expansion of immune cells from circulation to the infection. Proinflammatory cytokines also mediate the production of acute-phase reactants (APRs) by the liver [62, 63]. Some crucial APRs, such as C-reactive protein or procalcitonin, are routinely available for the identification and monitoring of inflammatory states [64, 65]. Conversely, the negative APRs, such as albumin and transferrin, decrease in response to inflammation [66].

This overwhelming inflammatory response correlates with capillary leakage, tissue edema, organ failure, and shock that causes the pharmacokinetic variability and changed plasma-to-tissue equilibration in sepsis. For example, IL-6, presepsin (sCD14 subtype), proadrenomedullin, and soluble triggering expressed receptor on myeloid cells (sTREM) have proven to be helpful biomarkers for the early diagnosis and prognosis of sepsis [67–71]. Some of these innovative biomarkers seem to be superior to the routinely used procalcitonin or C-reactive protein [72–74], so combinations of biomarkers have been proposed to increase
Biomarkers Predicting Tissue Pharmacokinetics of Antimicrobials in Sepsis

Sensitivity and specificity [75, 76]. Immunological biomarkers have been found to be indicative of effective antimicrobial therapy [77]. They are also promoters of the pathophysiological changes leading to pharmacokinetic variability in critically ill patients [78]. Accordingly, the immunological cells, cytokines, cell markers, and APRs may be potential biomarkers for predicting the tissue penetration and pharmacokinetics of antibiotics. The extent to which these inflammation molecules alter the PK/PD of antibiotics is unclear [79], but some of these molecules have already been successfully used to guide antibiotic treatment [59].

4.3.2 Endothelial Biomarkers

Inflammation, complement activation, and coagulation in sepsis induce severe impairment of endothelial functions. Endothelial cells are essential for hemostasis regulation, vasomotor control, and immune functions and form the vascular barrier for solute transport and osmotic balance [80–82]. Sepsis is associated with glycocalyx degradation and severe endothelial cell dysfunction, leading to dysregulation of hemostasis and vascular reactivity, as well as tissue edema [83]. This endotheliopathy results in excessive...
Table 5 Selected biomarkers for predicting antibiotic pharmacokinetics

Biomarkers	Pathogenesis	Value	MW (kDa)	Peak (h)	\(t_{1/2} \)	Affected drug PK	References
Inflammation biomarkers							
Cytokines/chemokines							
IL-1β	Proinflammatory cytokine	Px	18–25	4	2	D	[227]
IL-6	Proinflammatory cytokine	Dx, Px	21	6	2–4	D	[228, 229]
IL-8	Neutrophil inflammation cytokine	Dx, Px	8.4	4–8	4	D	[230, 231]
IL-10	Regulatory cytokine	Dx, Px	18	12–24	2–4	D	[232]
TNFα	Proinflammatory cytokine, neutrophil activation	Px	17.3	6	1–2	D	[233]
IFNγ	T\(_h\) immune response	–	17	6	2	D	[234, 235]
MIP-1, -2	Neutrophil, leukocyte activation	Px	440	2	2.5	D	[236, 237]
MCP-1	Monocyte chemoattractant protein	Px					[238]
Cell markers/soluble receptors							
Presepsin	N-terminal fragment of sCD14 (LPS receptor)	Dx, Px, Tx	13	3	4–5	D	[239–241]
CD64	Binds Fc fraction of IgG, induces phagocytosis	Dx, Tx	43	4–6	5–17	D	[242–244]
mHLA-DR	Expressed on APC, activation of T-cells	Px	–	24	3–22	D	[245, 246]
TLR2, TLR4	Recognition of bacterial peptidoglycan (TLR2) or LPS (TLR4)	Dx	–	–	3	D	[247–249]
sTREM-1	TREM-1 secreted by phagocytes	Dx, Px	23.8	6	1.5	D	[250–252]
SuPAR	Recruitment of neutrophils and monocytes	Dx, Px	–	4 (d)	10 (d)	D	[253–255]
Acute-phase reactants							
CRP	Complement activation, proinflammatory effects	Px	20–25	24–48	19	D	[256, 257]
PCT	Prohormone stimulated by IL-1, IL-6, TNFα	Dx, Px, Tx	14.5	6–24	20–36	D	[258, 259]
LBP	Connects CD14 to bacteria LPS	Dx, Px	50	12	12–24	D	[260]
Pro-ADM	Precursor of adrenomedullin, induces vasodilatation	Px	4–5.5	4	2	D	[261–263]
Pentraxin 3	Pathogen recognition and removal	Dx, Px	35	–	4	D	[264–266]
CSa, C3a	Neutrophil migration, coagulopathy	Dx, Px	190	–	4	D	[267, 268]
Albumin	Increased vascular permeability	Px	66.5	NA	21 (d)	D, M	[269–271]
Endotheliopathy biomarkers							
Syndecans	Glycocalyx component indicates damage	Px	30	NA	0.06	D	[272]
Heparan sulfate	Polysaccharide	Px	30	NA	3–4	D	[273]
Endocan	Soluble endothelial peptidoglycan, increases microvascular permeability	Px	50	NA	–	D	[94, 274, 275]
Ang-2/Ang-1	Vascular integrity, Ang-2 is Ang-1 antagonist	Px	1	NA	30 (s)	D	[99, 254, 276, 277]
sVCAM-1	Adhesion protein expressed by endothelial cells, which binds to lymphocytes	Px	102	NA	4	D	[278, 279]
sICAM-1	Intercellular adhesion molecules	Dx, Px	76–114	NA	–	D	[278–281]
E-selectin	Glycoprotein expressed in activated endothelial cells	Px	115	NA	1.9	D	[279, 281, 282]
P-selectin	Adhesion receptor expressed in platelets and endothelial cell	Px	140	NA	2.3	D	[283]
VEGF	Endothelial cells proliferation factor	Px	23	NA	0.5–1	D	[284]
Blood flow biomarkers							
SO₂ %	Oxygen saturation	Px	NA	NA	NA	D	[285]
MAP	Main global perfusion index	Px	NA	NA	NA	D	[286, 287]
CO	Cardiac output	Px	NA	NA	NA	D	[288]
Table 5 (continued)

Biomarkers	Pathogenesis	Value	MW (kDa)	Peak (h)	Affected drug PK	References
HR	Heart rate	Px	NA	NA	NA	D [289]
ScvO₂	Central venous oxygen saturation	Px	NA	NA	NA	D [290]
StO₂	Tissue oxygen saturation	Px	NA	NA	NA	D [291]
Lactate	Anaerobic glycolysis end product	Px	0.08	–	20 (m)	D [286]
Coagulation biomarkers						
vWF Ag	Platelet adhesion and accumulation	Px	5000–10,000	NA	4–26	D, M [292]
ADAMTS-13 activity	vWF cleaving protease	Px	154	NA	48–72	D, M [293–295]
Fibrinogen	Low activation of secondary fibrinolysis	Px	340	NA	100	D, M [296, 297]
PT	Consumption, depletion of endogenous haemostasis factors	Px	NA	NA	–	D, M [298, 299]
aPPT	Indicative of CRP activity	Dx	NA	NA	–	D, M [300–303]
AT activity	Coagulation inhibition and anti-inflammation	Px	58	NA	72	D, M [296]
PF-4	Protein secreted by activated platelets	Px	29	NA	–	D [304–306]
D-Dimer	Fibrinogen, fibrin breakdown, excessive coagulation	Px	180	NA	8	D, M [304]
PAI-1	Fibrinolysis inhibition	Px	43	NA	2	D [304, 307]
Protein C	Antithrombotic action	Dx, Px	62	NA	8	D, M [308–310]
Thrombomodulin	Endothelial cells glycoprotein, protein C pathway	Px	74	NA	20	D, M [311–313]
Hepatic function biomarkers						
Bilirubin	Product of heme catabolism	Px	548.67	NA	2–4	M [314–316]
ALT	Transaminase enzyme, indicates liver function	–	110	NA	8	M [316, 317]
AST	Transaminase enzyme, indicates liver function	–	90	NA	16	M [316, 317]
Ceruloplasmin	Increases as part of acute-phase response	Px	115	-	15	M [318]
Hyaluronic acid	Indicates liver dysfunction	Px	1000–8000	NA	4 (m)	D, M [319]
Renal function biomarkers						
Creatinine	Estimate GFR	Px	0.113	NA	3.85	E [320]
Cystatin C	Estimate GFR	Px	13.3	NA	2	E [320]
BUN	Urea nitrogen in blood, indicative of renal function	Px	NA	NA	NA	M, E [321–323]
NGAL	Indicative of kidney injury	Px	25	6–12	15	E [320, 324]
KIM-1	Injured kidney epithelial cells	Px	60–90	12–24	6	E [320]

The proposed biomarkers are classified according to the pathophysiological processes. We provide some important characteristics: pathogenesis, proved value, MW, biology (peak concentration, half-life), and the proposed pharmacokinetic process affected.

ADAMTS-13 is a disintegrin-like and metalloprotease with thrombospondin type 1 motif no. 13, **ALT** alanine transaminase, **Ang** angiotensin, **APC** activated protein C, **aPPT** activated partial thromboplastin time, **AST** aspartate transaminase, **AT** antithrombin, **BUN** blood urea nitrogen, **CO** cardiac output, **CRP** C-reactive protein, **d** days, **D** distribution, **Dx** diagnostic, **E** excretion, **GFR** glomerular filtration rate, **HR** heart rate, **ICAM** intercellular adhesion molecule 1, **IFN** interferon, **IgG** immunoglobulin, **IL** interleukin, **KIM-1** kidney injury molecule-1, **LBP** lipopolysaccharide-binding protein, **LPS** lipopolysaccharide, **M** metabolism, **m** minutes, **MAP** mean arterial pressure, **MCP** monocyte chemoattractant protein, **mHLA** monocyte human leukocyte antigen, **MIP** macrophage inflammatory protein, **MW** molecular weight, **NA** not applicable, **NGAL** Neutrophil Gelatinase-Associated Lipocalin, **PAI-1** plasminogen activator inhibitor-1, **PCT** procalcitonin, **PF-4** platelet factor 4, **PK** pharmacokinetics, **Pro-ADM** proadrenomedullin, **PT** prothrombin time, **Px** prognostic, **s** seconds, **sCD14** soluble cluster of differentiation 14, **ScvO₂** central venous oxygen saturation, **sCAM** soluble ICAM, **SO₂**% oxygen saturation, **StO₂** tissue oxygen saturation, **sTREM** soluble triggering receptor expressed on myeloid cells 1, **suPAR** soluble urokinase-type plasminogen activator receptor, **sVCAM** soluble VCAM, **t½** elimination half-life, **Th1** T helper type 1, **TLR** toll-like receptor, **TNF** tumor necrosis factor, **Tx** therapeutic, **VCAM** vascular cell adhesion molecule, **VEGF** vascular endothelial growth factor, **vWF** von Willebrand factor.

*Presented in h unless otherwise indicated.

△ Adis
microvascular permeability to the extravascular space, leading to interstitial edema [84–86].

Glycocalyx degradation releases components such as syndecan-1 [87–89], heparan sulfate [90], and hyaluronan [91, 92] into the plasma. Endocan is expressed in human endothelial cells in response to proinflammatory cytokines and increases microvascular permeability [93–95]. These endothelial glycocalyx biomarkers have already been presented as predictors of death and/or organ dysfunction during sepsis. The angiopoietin protein family has been investigated as a critical mediator of glycocalyx degradation since angiopoietin-2/activated endothelial cells increase the expression of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 [96, 97]. As a result, endothelial cell–cell junctions alter, resulting in microvascular leak. The angiopoietin-2/1 ratio has been found to be a good predictor of 28-day mortality in patients with sepsis [98–100]. Serum vascular endothelial growth factor and its receptor stimulate endothelial growth, proliferation, and permeability. Higher levels can be found in sepsis and so can be used for prognosis [101]. Therefore, these endotheliopathy biomarkers are predictors of the capillary leakage that drives the pharmacokinetic variability in tissues of patients with sepsis, yet the extent of the relevance needs to be established for the individual markers.

4.3.3 Coagulation Biomarkers

Coagulopathy and disseminated intravascular coagulation (DIC) are common defense mechanisms in critically ill patients [102]. Coagulopathy consists of microvascular thrombosis and consumption of platelets and coagulation proteins, eventually causing bleeding [103]. DIC is a microvascular thrombosis leading to bleeding and organ dysfunction, leading to amplified coagulopathy. Although the formation of microthrombi might prevent microorganisms from accessing tissue, it also further enhances tissue ischemia and organ damage, contributing to decreased antibiotic distribution [103]. However, it can also lead to capillary leakage, promoting an increase in tissue permeability [104]. Coagulopathy is also the hallmark of liver failure, an organ with a central role in clotting [105]. Different coagulation phenotypes in sepsis have been described, with two sepsis subgroups showing severe disease and coagulopathy [106].

Various significant players drive the pathogenesis of coagulopathy in sepsis: platelets, the coagulation system, the endothelium, and the immune system [107]. In sepsis, procoagulant mechanisms are upregulated while natural anticoagulants are simultaneously downregulated. Tissue factor activates the coagulation cascade (including Factor VII, Factor X, thrombin, and fibrin) and is amplified by proinflammatory cytokines. Sepsis inflammation response also activates platelet activating factor and thrombin-induced exocytosis of P-selectin and von Willebrand factor (vWF). As a result, platelets adhere, activate, and aggregate, leading to microvascular obstruction. Cell receptors and adhesive proteins, such as vWF and fibrinogen, mediate this interaction between platelets and the vessel wall [108]. Thrombogenesis is accelerated when the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs)-13 protease is consumed and cannot cleave the excessive amount of large vWF polymers [109], and the microthrombosis leads to thrombocytopenia. The inflammatory response impairs the three central anticoagulant mechanisms: tissue factor pathway inhibitor, antithrombin, and activated protein C. Tissue factor pathway inhibitor is decreased in sepsis because of degradation by proteolytic enzymes produced by the host, such as plasmin [110]. Another essential anticoagulant protein is antithrombin. Most of these coagulation biomarkers have been related to a worse prognosis: thrombomodulin [111, 112], plasminogen activator inhibitor 1 [113], vWF [114–116], ADAMTS-13 [116–118], and thrombocytopenia [119, 120]. A prolonged coagulation time is frequent in critically ill patients, and prothrombin time and activated partial thromboplastin time have been found to be predictors of sepsis and mortality [107, 121]. Hemolysis (free hemoglobin) [122] and D-dimers (excessive coagulation activation) [107, 123] have also been demonstrated as survival predictors. Scoring systems such as sepsis-induced coagulopathy [124] and Overt-DIC scoring systems [125] have been described to predict coagulopathy in patients with associated disorders. A capillary leakage index using albumin and polymerase chain reaction has also been described as a prognosis marker [126]. Coagulation host factors indicative of tissue penetration may indicate changes in antibiotic tissue penetration. Therefore, both conventional and new molecular markers may be used to determine coagulopathy and optimize antibiotic dosing.

4.3.4 Blood Flow Biomarkers

Sepsis has variable effects on macro/microvascular blood flow, which might lead to simultaneous observation of vasoconstriction and vasodilatation [127]. Septic shock is characterized by derangement in global hemodynamic parameters, such as blood pressure (BP), cardiac output, and heart rate. Despite increased cardiac output, the tissues cannot utilize oxygen, as evidenced by high lactate levels, deranged acid-base balance, and increased CO₂ levels [128]. This indicates that macrovascular tissue perfusion in severe sepsis is often uncoupled from systemic circulation [129]. This discrepancy between macro- and microcirculation of internal organs impedes effective hemodynamic monitoring of patients with sepsis [130].

The determination of macro/microvascular dysfunction can be a prognostic parameter and can guide therapeutic

△ Adis
measures in patients with septic shock. We can use some objective markers of tissue perfusion to predict global tissue distribution. The main global perfusion index is mean arterial pressure, preferably systolic, as it better reflects organ perfusion. Oxygen saturation of mixed venous blood is another routinely used indicator of the balance between oxygen transport and consumption, since its decrease reflects a reduction in cardiac output [131]. Although tissue oxygen saturation, measured by tissue spectroscopy, is not routinely used, it has been found to correlate with central venous saturation [132] and cardiac index in patients with septic shock [133]. In addition, the need for vasopressors to maintain BP has indicated inadequate antibiotic penetration [24]. Hyperlactatemia is a common condition in patients with sepsis and may be indicative of changes in microvascular flow. Lactate is the anaerobic glycolysis product, and its blood levels increase significantly in hypoperfusion or hypoxia cases [134]. Lactate levels have been used to guide resuscitation, predict in-hospital mortality, and stratify patient risk [135, 136]. Moreover, lactate is one of the criteria for diagnosing septic shock, as indicated by Sepsis-3 criteria [137]. However, septic hyperlactatemia is not a straightforward indication of inadequate oxygen delivery [138]. Lactate overproduction is also a protective response to stress to allow cellular energy production to continue when tissue oxygen supply is inadequate for aerobic metabolism [139], and elevated levels of lactate can also be caused by a decreased clearance by the liver [139, 140]. It is suggested that initially elevated lactate can indicate an adaptive response to a hypermetabolic state during sepsis [139]. Therefore, when assessing tissue perfusion, lactate should be combined with other markers. Finally, regional perfusion can also be assessed using indices of organ function, such as the SOFA (Sequential [Sepsis-related] Organ Failure Assessment) score. Other nonobjective indicators of tissue hypoperfusion are oliguria, impaired sensorium, delayed capillary refill, and skin coldness. All these blood flow markers might predict the vasodilation or vasoconstriction that drives changes in drug and increased metabolism of lipids, but cholesterol synthesis and turnover are impaired.

Deficiencies in fibrinolytic proteins, anticoagulant proteins, procoagulation factors, and protein synthesis, such as albumin, are often present in liver failure, in part due to failure of the synthesis and consumption. Hypoalbuminemia leads to alterations in PB, which may increase the unbound drug fraction in high-PB drugs [146] as described in Sect. 4.1. However, ascites are typical of advanced liver disease and increase the V_d of hydrophilic antibiotics. Therefore, hepatic dysfunction may affect not only the metabolism of drugs but also their PB and V_d, modifying antibiotic concentrations in the site of infection. These pharmacokinetic changes have been found in critically ill patients receiving meropenem, which required dosing modifications to reach target attainment [147].

Various liver dysfunction markers may serve as biomarkers for predicting pharmacokinetic variability. Bilirubin is the standard parameter for assessing hepatic failure, has been confirmed as an independent predictor of sepsis mortality [148], and is routinely checked with the SOFA score. The antimicrobial proteins, inflammatory mediators, and coagulation factors produced by the liver during acute-phase response might also be considered as indicators of pharmacokinetic changes. Although these biomarkers lack the specificity for liver damage, they may be indicators of pathophysiological changes in drug metabolism, distribution, and clearance, which affects the penetration of antibiotics [149–152]. Recently, hyaluronic acid was proposed as an indicator of early liver impairment in critically ill patients and was identified as a particular risk for mortality in patients with infections [153]. The Child–Pugh score categorizes patients according to the severity of liver function impairment by incorporating five variables: serum bilirubin, serum albumin, prothrombin time, the presence of encephalopathy, and the presence of ascites. It is frequently used to assess the severity of liver function impairment but lacks the sensitivity to quantitate the specific ability of the liver to metabolize individual drugs [151]. Moreover, in patients in the ICU, the Child–Pugh score may be strongly influenced by hypoalbuminemia and thus not be optimal to identify hepatic impairment. However, it can be useful to identify pharmacokinetic changes, since hypoalbuminemia is relevant for altered pharmacokinetics (PB). The liver plays a central role in pharmacokinetic processes, so liver biomarker-guided dosing may be essential to identify at-risk patients and optimize treatment.

4.3.5 Hepatic Function Biomarkers

The liver has a significant role in sepsis response through clearance of pathogenic microorganisms, APRs, and release of liver-derived cytokines, inflammatory mediators, and coagulation cascade components. Of course, it also has a central role in all metabolic processes in the body [141, 142]. Remarkably, liver dysfunction is common in patients in the ICU and is found in at least one-third of patients with sepsis [143]. Hepatic malfunction results in impaired detoxification of drugs that are typically excreted in the bile because of phase I and II enzyme deficiency [144, 145]. It also contributes to stress hyperglycemia through increased hepatic output of glucose, decreased clearance of lactate, and increased metabolism of lipids, but cholesterol synthesis and turnover are impaired.

4.3.6 Renal Function Biomarkers

Renal injury is typical in the ICU and can be caused by ischemia, cellular hypoxia, inflammation, or toxic injury
5 Biomarker-Guided Dosing

Critically ill patients experience a range of these alterations in varying degrees of severity, which in turn, also varies over time. This results in intra- and interpatient variability in antibiotic concentration at the site of infection [7, 8]. A wide range of methods might be used to assess penetration at the target site in critically ill patients [178, 179], although they cannot be used routinely. Instead, we could strengthen antibiotic dosing strategies with biomarkers that correlate with pharmacokinetic alterations, since they might predict target-site concentrations (Fig. 4). With model-informed precision dosing, clinical and microbiological elements might be used in pharmacometric models to optimize dosing in critically ill patients [180–183]. The identified biomarkers can be added to model-informed precision dosing [58] as covariates.

5.1 Testing Methods

An ideal biomarker should have a fast, widely available, and reliable determination method. However, it is challenging to obtain pure reference standards for specific biomarkers and also complex to validate analytical methods because of their heterogeneity. Some of the biomarkers proposed are routinely available, whereas some of the promising new ones might be more difficult to perform and validate. Recently, some of these new biomarkers have been tested in multiplex tests [184]. These tests simultaneously measure various biomarkers from the same biological sample with low sample volumes. Obviously, we need to harmonize and standardize the immunoassays before incorporating these biomarkers into clinical practice [185, 186].

4.3.7 Other Factors

Other factors, including specific treatments, influence the underlying pathophysiological mechanisms and, therefore, pharmacokinetics.

Need for fluid resuscitation During sepsis, the body needs extra fluids to help keep the BP from dropping dangerously low and causing shock [166, 167]. However, it increases the V_d, therefore affecting pharmacokinetics. Moreover, fluid resuscitation may significantly affect glycocalyx integrity via atrial natriuretic peptide release, leading to capillary leakage and drug distribution changes [168, 169].

Need for vasopressive drugs Vasopressor agents are used to increase BP and improve tissue perfusion. However, they may also impair cardiac output and preferentially vasoconstrict some vascular beds, particularly the skin and splanchnic area [170, 171]. Therefore, drug distribution and clearance might be impaired.

RRT Extracorporeal support is often necessary for the critically ill population. However, this exchange of substances between the blood and other fluid via a semipermeable membrane alters V_d and PB and the excretion of the drug [172–175]. RRT leads to high pharmacokinetic variability [176], probably because of the residual organ function and the changes in dialysate flow rates. Therefore, dose adjustment may be indicated [175].

Obesity Lipophilicity is a significant determinant of a drug’s V_d. Patients with obesity have more lipophilic tissue than those included in standardized studies. Lipophilic drugs are associated with a higher V_d in patients with obesity, but the weight-related V_d of lipophilic drugs can be higher or lower in patients with obesity than in those without [177]. Therefore, adjustment of dose needs to be considered on a case-by-case basis for different drugs.
5.2 Kinetics of Biomarkers

In addition, sepsis is a rapidly changing condition. The precise time during which a biomarker is useful varies because of the substantial differences in their kinetics. An ideal biomarker should rapidly and specifically increase in sepsis, rapidly decrease after effective therapy, and have a short half life. None of the current biomarkers includes all of these specifications. Moreover, in most studies, biomarkers have not been measured repeatedly, and static threshold concentrations have been used to make clinical decisions [187]. This limits their use in antibiotic optimization as the variability must be assessed and controlled.

5.3 Molecular Weight

An increase in the use of extracorporeal therapies makes us consider whether RRT may remove these biomarkers. If so, we would need to consider the extent of this, depending on the biomarker MW and cut-off value of the membrane and RRT technique used [61].

5.4 Combination of Biomarkers

Sepsis is complex and heterogeneous, so no ideal single sepsis biomarker exists. The most effective way to optimize the treatment of sepsis is the combination of various sepsis biomarkers [188]. Over 258 biomarkers have been assessed for their use in sepsis [189], but none has shown sufficient specificity and sensitivity for routine use in clinical practice. Combining these biomarkers will reflect different aspects of the host response and help overcome the limitations of a single biomolecule for the prediction of the plasma and tissue pharmacokinetics of antibiotics [190].

5.5 Missing Evidence

Several biomarkers have been linked to diagnosis or prognosis, but few studies have evaluated their role in antibiotic stewardship. Therefore, prospective studies investigating the potential role of the expanding field of sepsis biomarkers for antimicrobial dose optimization are needed. Moreover, clinic-economic data to recommend its introduction into clinical practice effectively are lacking.

5.6 Therapeutic Drug Monitoring

TDM allows adjustment of the antibiotic dose based on the concentration measured in plasma. This tool can help with personalization and optimization of antibiotic doses [191]. However, it should be noted that no studies have yet demonstrated clinical improvements with TDM. Because the antibiotic concentration in the plasma is not always the same as that at the target site, the proposed biomarkers could be applied in TDM based on antibiotic concentrations at the site of infection, rather than in plasma.

6 Critical Discussion

Current evidence on biomarkers and pharmacokinetic optimization of antibiotics in the critically ill population is limited. There is evidence to demonstrate the failure of optimal PK/PD exposure in critically ill patients. However, robust data on how to predict a therapeutic effect based on antimicrobial exposure and how precision dosing improves patient outcomes are lacking. In recent years, many new sepsis biomarkers have emerged to improve and guide treatment. However, most of the biomarker studies have limited evidence, and their clinical significance has yet to be proven. The weak evidence of current studies may be due to the study design, sample size, risk of bias, and lack of validation. A biomarker must be able to guide treatment to be useful in clinical practice. Moreover, critically ill patients are a
very heterogeneous population. Based on current knowledge and evidence, it is difficult to design a personalized dosing regimen.

With this review, we proposed and discussed how pharmacokinetic biomarker-guided therapy can optimize antibiotic exposure in critically ill patients. The association between hepatic and renal biomarkers and pharmacokinetics is clear. We now also propose inflammation, endothelial, coagulation, and blood flow markers to characterize this pharmacokinetic variability in critically ill patients. We link biomarkers and pharmacokinetic changes based on extrapolation of patient physiological changes during sepsis that lead to this pharmacokinetic variability. However, their association with altered pharmacokinetics and their clinical relevance still needs to be characterized. We therefore propose potential biomarkers to define antibiotic pharmacokinetics in sepsis as a research perspective to improve antibiotic treatment in the ICU.

7 Conclusion

Adequate antimicrobial dosing to achieve PK/PD targets in patients with sepsis remains a challenge because of changes in V_D, clearance, and PB. On top of changes in systemic plasma, exposure to the tissue-to-plasma ratio might differ from that in a healthier population. This review aimed to characterize sepsis biomarkers and propose how they can predict the target-site concentrations of antibiotics. We categorized the main drivers of altered tissue pharmacokinetics into inflammation, coagulopathy, endotheliopathy, and organ failure. These sepsis biomarkers might predict pharmacokinetic changes and target-site concentrations. However, clinical evidence, standardization, and threshold definitions for these biomarkers are currently lacking. We propose biomarker-based drug monitoring for dose optimization and encourage new lines of research in this direction. Future research should focus on the determination of in vivo plasma/tissue distribution, the study of sepsis biomarkers, and their correlation and clinical application.

Acknowledgements MSC thanks Sonia Luque Pardos and Jordi Rello Condomines for their advice.

Declarations

Funding Open access funding provided by Medical University of Vienna. This project received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant agreement no. 861323.

Conflicts of interest Maria Sanz Codina is a member of TIPAT (Training towards Innovative personalized Antibiotic Therapy), an Innovative Training Network for early-stage researchers. Maria Sanz Codina and Markus Zeitlinger have no conflicts of interest that are directly relevant to the content of this article.

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Availability of data and material Not applicable.

Code availability Not applicable.

Author contributions Maria Sanz Codina and Markus Zeitlinger both made substantial contributions to the conception, drafting, and critical revision of the manuscript for important intellectual content and approved the final version of the manuscript.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc/4.0/.

References

1. Shankar-Hari M, Phillips GS, Levy ML, Seymour CW, Liu VX, Deutschman CS, et al. Developing a new definition and assessing new clinical criteria for septic shock: For the third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):775–87.

2. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kielvan DR, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet. 2020;395(10219):200–11.

3. Reinhart K, Daniels R, Kissnorn N, Machado FR, Schachter RD, Finfer S. Recognizing Sepsis as a Global Health Priority—a WHO Resolution Konrad. N Engl J Med. 2017;377(5):411–4.

4. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1044–62.

5. Rello J, Tejada S, Xu E, Solé-Lleonart C, Campogiani L, Koulenti D, et al. Quality of evidence supporting surviving sepsis campaign recommendations. Anaesth Crit Care Pain Med. 2020;39(4):497–502.

6. Micek ST, Heard KM, Gowman M, Kollef MH. Identifying critically ill patients at risk for inappropriate antibiotic therapy: A pilot study of a point-of-care decision support alert. Crit Care Med. 2014;42(8):1832–8.

7. Mouton JW, Theuretzbacher U, Craig WA, Tulkens PM, Derendorf H, Cars O. Tissue concentrations: do we ever learn? J Antimicrob Chemother. 2008;61(2):235–7.

8. Blot S, Koulenti D, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, et al. Does contemporary vancomycin dosing achieve...
therapeutic targets in a heterogeneous clinical cohort of critically ill patients? Data from the multinational DALI study. Crit Care. 2014;18(3):1–11.

9. Rello J, Valenzuela-Sánchez F, Ruiz-Rodriguez M, Moyano S. Sepsis: a review of advances in management. Adv Ther. 2017;34(11):2393–411.

10. Roberts JA, Abdul-Aziz MH, Lipman J, Mouton JW, Vinks AA, Felton TW, et al. Individualised antibiotic dosing for patients who are critically ill: Challenges and potential solutions. Lancet Infect Dis. 2014;14(6):498–509.

11. Blot SI, Pea F, Lipman J. The effect of pathophysiology on pharmacokinetics in the critically ill patient—concepts appraised by the example of antimicrobial agents. Adv Drug Deliv Rev. 2014;73:7–11.

12. Weier N, Nathwani D, Thursky K, Tängdén T, Vlahović-Pačevski V, Dyar O, et al. An international inventory of antimicrobial stewardship (AMS) training programmes for AMS teams. J Antimicrob Chemother. 2021;76(6):1633–40.

13. Maraolo AE, Ong DSY, Cimen C, Howard P, Kofteridis DP, Schouten JA, et al. The effect of pathophysiology on pharmacokinetics of antimicrobials in critically ill patients: A critical review. Ann Intensive Care. 2014;77:3–11.

15. Wallenburg E, ter Heine R, Schouten JA, Brüggemann RJM. Personalised antimicrobial dosing: standing on the shoulders of giants. Int J Antimicrob Agents. 2020;56(3).

16. Rello J, Perez A. Precision medicine for the treatment of severe sepsis in intensive care. Expert Rev Respir Med. 2016;10(3):297–316.

17. Chua HC, Tse A, Smith NM, Mergenhagen KA, Cha R, Tsiu BT. Combatting the rising tide of antimicrobial resistance: pharmacokinetic/pharmacodynamic dosing strategies for maximal precision. Int J Antimicrob Agents. 2021;57(3):106269.

18. Chai MG, Cotta MO, Abdul-Aziz MH, Roberts JA. What are the current approaches to optimising antimicrobial dosing in the intensive care unit? Pharmaceutics. 2020;12(7):1–22.

19. Minichmayr IK, Roberts JA, Frey OR, Roehr AC, Brinkmann A. Development of a dosing nomogram for continuous-infusion meropenem in critically ill patients based on a validated population pharmacokinetic model. J Antimicrob Chemother. 2018;73(5):1330–9.

20. Muller M, Pena A, Derendorf H. MINIREVIEW-issues in pharmacokinetics and pharmacodynamics of anti-infective agents: distribution in tissue. Agents. 2004;48(5):1441–53.

21. Ljungström L, Pernestig AK, Jacobsson G, Andersson R, Usener A, Tilevik D. Diagnostic accuracy of procalcitonin, neutrophil-lymphocyte count ratio, C-reactive protein, and lactate in patients with suspected bacterial sepsis. PLoS ONE. 2017; 12.

22. Yeh CF, Wu CC, Liu SH, Chen KF. Comparison of the accuracy of neutrophil CD64, procalcitonin, and C-reactive protein for sepsis identification: a systematic review and meta-analysis. Ann Intensive Care. 2019;9(1):5. https://doi.org/10.1186/s13613-018-0479-2.

23. Höpfel S, Salluh JIF. Biomarker-guided antibiotic therapy in adult critically ill patients: A critical review. Ann Intensive Care. 2012;2(1):32. https://doi.org/10.1186/2110-5820-2-32.

24. Zeitlinger BS, Zeitlinger M, Leitner I, Müller M, Joukhadar C. Clinical scoring system for the prediction of target site penetration of antimicrobials in patients with sepsis. Clin Pharmacokinet. 2007;46(1):75–83.

25. Pea F. Plasma pharmacokinetics of antimicrobial agents in critically ill patients. Curr Clin Pharmacol. 2013;8(1):5–12.

26. Roberts JA, Lipman J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med. 2009;37(3):840–51.

27. Zeitlinger MA, Sauermann R, Traunmüller F, Georgopoulos A, Müller M, Joukhadar C. Impact of plasma protein binding on antimicrobial activity using time-killing curves. J Antimicrob Chemother. 2004;54(5):876–80.

28. Jorda A, Zeitlinger M. Preclinical pharmacokinetic/pharmacodynamic studies and clinical trials in the drug development process of EMA-approved antibacterial agents: a review. Clin Pharmacokinet. 2020;59(9):1071–84.

29. Roberts JA, Abdul-Aziz MH, Davis JS, Dullhunty JM, Cotta MO, Myburgh J, et al. Continuous versus intermittent β-lactam infusion in severe sepsis: A meta-analysis of individual patient data from randomized trials. Am J Respir Crit Care Med. 2016;194(6):681–91.

30. Drusano GL, Ambrose PG, Bhavnani SM, Bertino JS, Nafziger AN, Louie A. Back to the future: using aminoglycosides again and how to dose them optimally. Clin Infect Dis Off Publ Infect Dis Soc Am. 2007;45(6):753–60.

31. Baptista PP, Roberts JA, Sousa E, Freitas R, Deveza N, Pimentel J. Decreasing the time to achieve therapeutic vancomycin concentrations in critically ill patients: Developing and testing of a dosing nomogram. Crit Care. 2014;18(1):1–9.

32. Nicolau DP. Optimizing outcomes with antimicrobial therapy through pharmacodynamic profiling. J Infect Chemother Off J Japan Soc Chemother. 2003;9(4):292–6.

33. Kumar A, Ellis P, Arabi Y, Roberts D, Light B, Parrillo JE, et al. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest. 2009;136(5):1237–48.

34. Hanberger H, Antonelli M, Holmbom M, Lipman J, Pickkers P, Leone M, et al. Infections, antibiotic treatment and mortality in patients admitted to ICUs in countries considered to have high levels of antibiotic resistance compared to those with low levels. BMC Infect Dis. 2014;14(1):1–9.

35. Gonçalves-Pereira J, Póvoa P. Antibiotics in critically ill patients: A systematic review of the pharmacokinetics of β-lactams. Crit Care. 2011;15(5):R206.

36. Abdulla A, Dijkstra A, Hunfeld NGM, Endeman H, Bahmany S, Ewoldt TMJ, et al. Failure of target attainment of beta-lactam antibiotics in critically ill patients and associated risk factors: A two-center prospective study (EXPAT). Crit Care. 2020;24(1):1–12.

37. Wiersinga WJ, Leopold SJ, Cranendonk DR, van der Poll T. Host innate immune responses to sepsis. Virulence. 2014;5(1):36–44.

38. Lambsdin S, Creagh-Brown BC, Hunt J, Summers C, Forni LG. Definitions and pathophysiology of vasoplegic shock. Crit Care. 2018;22:174. https://doi.org/10.1186/s13054-018-2102-1.

39. Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013;13(12):862–74.

40. Delano MJ, Ward PA. The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunol Rev. 2016;274(1):330–53.

41. Charlton M, Thompson JP. Pharmacokinetics in sepsis. BJU Educ. 2019;19(1):7–13.

42. Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol. 2017;39(5):517–28.

43. Jamal J-A, Economou CJP, Lipman J, Roberts JA. Improving antibiotic dosing in special situations in the ICU: burns, renal replacement therapy and extracorporeal membrane oxygenation. Curr Opin Crit Care. 2012;18(5):460–71.

44. Shekar K, Fraser JF, Taccone FS, Welch S, Wallis SC, Mulany DV, et al. The combined effects of extracorporeal membrane oxygenation and renal replacement therapy on
meropenem pharmacokinetics: a matched cohort study. Crit Care. 2014;18(6):565.
45. SAFE Study Investigators, Finfer S, Bellomo R, McEvoy S, Lo SK, Myburgh J, Neal B, Norton R. Effect of baseline serum albumin concentration on outcome of resuscitation with albumin or saline in patients in intensive care units: analysis of data from the saline versus albumin fluid evaluation (SAFE) study. BMJ. 2006; 18:333(7577):1044. https://doi.org/10.1136/bmj.38985.398704. 7C.
46. Roberts JA, Pea F, Lipman J. The clinical relevance of protein binding changes. Clinical pharmacokinetics. 2013;52(1):1–8. https://doi.org/10.1007/s40262-012-0018-5.
47. Zeitlinger MA, Derendorf H, Mouton JW, Cari D, Craig WA, Andes D, et al. Protein binding: do we ever learn? Antimicrob Agents Chemother. 2011;55(7):3067–74.
48. Pavez N, Kattan E, Vera M, Ferri G, Valenzuela ED, Alegría L, et al. Hypoxia-related parameters during septic shock resuscitation: Pathophysiological determinants and potential clinical implications. Ann Transl Med. 2020;8(12):784.
49. Morgan ET. Impact of infectious and inflammatory disease on cytochrome P450-mediated drug metabolism and pharmacokinetics. Clin Pharmacol Ther. 2009;85(4):434–8.
50. Carré JE, Singer M. Cellular energetic metabolism in sepsis: the need for a systems approach. Biochim Biophys Acta Bioenerg. 2008;1777(7–8):763–71.
51. Smith BS, Yogaratnam D, Levasseur-Franklin KE, Forni A, Wong J, Introduction to drug pharmacokinetics in the critically ill patient. Chest. 2012;141(5):1327–36.
52. Adnan S, Ratnam S, Kumar S, Paterson D, Lipman J, Roberts J, et al. Select critically ill patients at risk of augmented renal clearance: experience in a Malaysian intensive care unit. Anaesth Intensive Care. 2014;42(6):715–22.
53. Udy AA, Varghese JM, Altukroni M, Briscoe S, McWhinney BC, Smith BS, Yogaratnam D, Levasseur-Franklin KE, Forni A, Wong J, et al. Subtherapeutic initial β-lactam concentrations in select critically ill patients: association between augmented renal clearance and low trough drug concentrations. Chest. 2012;142(1):30–9.
54. Koeze J, Keus F, Dieperink W, Van der Horst ICC, Zijlstra JG, Van Meurs M. Incidence, timing and outcome of AKI in critically ill patients varies with the definition used and the addition of urine output criteria. BMC Nephrol. 2017;18(1):1–9.
55. van den Akker JPC, Egal M, Groeneveld JAB. Invasive mechanical ventilation as a risk factor for acute kidney injury in the critically ill: A systematic review and meta-analysis. Crit Care. 2013;17(3):R98. https://doi.org/10.1186/cc12743.
56. Updated L. BEST (Biomarkers, EndpointS, and other Tools) Resource. 2021;(Md).
57. Lippi G. Sepsis biomarkers: past, present and future. Clin Chem Lab Med. 2019;57(9):1281–3.
58. Aulin L, De Lange D, Saleh M, Graaf P, Völker S, Van Hasselt C. Biomarker-guided individualization of antibiotic therapy. Clin Pharmacol Ther. 2021;9:110.
59. Bréchot N, Hékimian G, Chastre J, Luyt CE. Procalcitonin to guide antibiotic therapy in the ICU. Int J Antimicrob Agents. 2015;45;S19–24.
60. Branche A, Neeser O, Mueller B, Schuetz P. Procalcitonin to guide antibiotic decision making.Curr Opin Infect Dis. 2019;32(2):130–5.
61. Honore PM, Redant S, De Bels D. Reliability of biomarkers of sepsis during extracorporeal therapies: the clinician needs to know what is eliminated and what is not. Crit Care. 2020;24(1):8–11.
62. Kushner I. The phenomenon of the acute phase response. Ann N Y Acad Sci. 1982:389:39–48.
63. Downton SB, Colten HR. Acute phase reactants in inflammation and infection. Semin Hematol. 1988;25(2):84–90.
64. Miller PR, Munn DD, Meredith JW, Chang MC. Systemic inflammatory response syndrome in the trauma intensive care unit: who is infected? J Trauma. 1999;47(6):1004–8.
65. Gilbert DN. Procalcitonin as a biomarker in respiratory tract infection. Clin Infect Dis an Off Publ Infect Dis Soc Am. 2011;52(Suppl 4):S346–50.
66. Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med. 1999;340(6):448–54.
67. Mikacenic C, Hahn WO, Price BL, Harju-Baker S, Katz R, Kain KC, et al. Biomarkers of endothelial activation are associated with poor outcome in critical illness. PLoS ONE. 2015;10(10):1–13.
68. Ríos-Toro JJ, Márquez-Coello M, García-Álvarez JM, Martín-Aspas A, Rivera-Fernández R, De Benito AS, et al. Soluble membrane receptors, interleukin 6, procalcitonin and C reactive protein as prognostic markers in patients with severe sepsis and septic shock. PLoS ONE. 2017;12(4):1–18.
69. Gibot S, Béné MC, Noel R, Massin F, Guy J, Cravoisy A, et al. Combination biomarkers to diagnose sepsis in the critically ill patient. Am J Respir Crit Care Med. 2012;186(1):65–71.
70. Grover V, Pantelidis P, Soni N, Takata M, Shah PL, Wells AU, et al. A biomarker panel (Bioscore) incorporating monocyte surface and soluble TREM-1 has high discriminative value for ventilator-associated pneumonia: A prospective observational study. PLoS ONE. 2014;9(10):1–8.
71. Dolin HH, Papadimos TJ, Stepkowski S, Chen X, Pan ZK. A novel combination of biomarkers to herald the onset of sepsis prior to the manifestation of symptoms. Shock. 2018;49(4):364–70.
72. Li Z, Wang H, Liu J, Chen B, Li G. Serum soluble triggering receptor expressed on myeloid cells-1 and procalcitonin can reflect sepsis severity and predict prognosis: a prospective cohort study. Mediators Inflamm. 2014;641039.
73. Liu B, Chen YX, Yin Q, Zhao YZ, Li CS. Diagnostic value and prognostic evaluation of Presepsin in sepsis in an emergency department. Crit Care. 2013;17(5):R244.
74. Jämsä J, Ala-Kokko T, Huotari V, Ohtonen P, Savolainen ER, Syrjälä H. Neutrophil CD64, C-reactive protein, and procalcitonin in the identification of sepsis in the ICU—Post-test probabilities. J Crit Care. 2018;14(3):139–42.
75. Döllner H, Vatten L, Austgulen R. Early diagnostic markers for neonatal sepsis: Comparing C-reactive protein, interleukin-6, soluble tumour necrosis factor receptors and soluble adhesion molecules. J Clin Epidemiol. 2001;54(12):1251–7.
76. Zeng M, Chang M, Zheng H, Li B, Chen Y, He W, et al. Clinical value of soluble urokinase-type plasminogen activator receptor in the diagnosis, prognosis, and therapeutic guidance of sepsis. Am J Emerg Med. 2016;34(3):375–80.
77. Fabre V, Karaba S, Amoah J, Robinson M, Jones G, Dzintars K, et al. The role of procalcitonin in antibiotic decision-making in Covid-19 infection. Infect Control Hosp Epidemiol. 2021. https://doi.org/10.1017/ice.2021.175.
78. Sims CR, Nguyen TC, Mayeux PR. Could biomarkers direct therapy for the septic patient? J Pharmacol Exp Ther. 2016;357(2):228–39.
79. Thorsted A, Nielsen EI, Friberg LE. Pharmacodynamics of immune response biomarkers of interest for evaluation of treatment effects in bacterial infections. Int J Antimicrob Agents. 2020;56(3):106059. https://doi.org/10.1016/j.ijantimicag.2020.106059.
80. Ince C, Mayeux PR, Nguyen T, Gomez H, Kellum JA, Ospina-Tascón GA, et al. The endothelium in sepsis. Shock. 2016;45(3):259–70.
81. Alphonsus CS, Rodseth RN. The endothelial glyocalyx: a review of the vascular barrier. Anaesthesia. 2014;69(7):777–84.
Biomarkers Predicting Tissue Pharmacokinetics of Antimicrobials in Sepsis

82. Woodcock TE, Woodcock TM. Revised Starling equation and the glyocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108(3):384–94.

83. Wiesinger A, Peters W, Chappell D, Kentrup D, Reuter S, Pavenstätt H, et al. Nanomechanics of the endothelial glyocalyx in experimental sepsis. PLoS ONE. 2013;8(11):e80905.

84. Chelazzi C, Villa G, Mancinelli P, De Gaudio AR, Adembri C. Glyocalyx and sepsis-induced alterations in vascular permeability. Crit Care. 2015;19(1):26.

85. Fleck A, Raines G, Hawker F, Trotter J, Wallace PI, Ledingham IM, et al. Increased vascular permeability: a major cause of hypoalbuminaemia in disease and injury. Lancet (London, England). 1985;1(4842):781–4.

86. Nieuwop M, Meuwese MC, Mooij HL, van Lieshout MHP, Hayden A, Levi M, et al. Tumor necrosis factor-alpha inhibition protects against endotoxin-induced endothelial glyocalyx perturbation. Atherosclerosis. 2009;202(1):296–303.

87. Nelson A, Berkestedi I, Schmidtchen A, Ljunggren L, Bodelsson M. Increased levels of glycosaminoglycans during septic shock: relation to mortality and the antibacterial actions of plasma. Shock. 2008;30(6):623–7.

88. Ostrowski SR, Gains S, Pedersen C, Johansson PI. Sympathoadrenal activation and endothelial damage in patients with varying degrees of acute infectious disease: an observational study. J Crit Care. 2015;30(1):90–6.

89. Puskarich MA, Cornelius DC, Tharp J, Nandi U, Jones AE. Plasma syndecan-1 levels identify a cohort of patients with severe sepsis at high risk for intubation after large-volume intravenous fluid resuscitation. J Crit Care. 2016;36:125–9.

90. Steppan J, Hofer S, Funke B, Brenner T, Henrich M, Martin E, et al. Sepsis and major abdominal surgery lead to flaking of the endothelial glycocalix. J Surg Res. 2011;165(1):136–41.

91. Dogné S, Flamion B. Endothelial glycocalyx impairment in focus: disease on hyaluronan shedding. Am J Pathol. 2020;190(4):768–80.

92. Schmidt EP, Overdier KH, Sun X, Liu X, Li C, Zhang Q, et al. Urinary glycosaminoglycans predict outcomes in septic shock and acute respiratory distress syndrome. Am J Respir Crit Care Med. 2016;194(4):439–49.

93. Pauly D, Hamed S, Behnes M, Lepiorz D, Lang S, Akin I, et al. Endocan, a new endothelial marker in human sepsis. Crit Care Med. 2006;34(2):532–7.

94. De Freitas CN, Gaudet A, Portier L, Tiscopulos A, Mathieu D, Lassalle P. Endocan, sepsis, pneumonia, and acute respiratory distress syndrome. Crit Care. 2018;22(1):280.

95. Fiedler U, Reiss Y, Scharpfenecker M, Gronow V, Koidl S, Thurston G, et al. Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med. 2006;12(2):235–9.

96. Scharpfenecker M, Fiedler U, Reiss Y, Augustin HG. The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J Cell Sci. 2005;118(Pt 4):771–80.

97. Fisher J, Douglas JJ, Linder A, Boyd JH, Walley KR, Russell JA. Elevated plasma angiopoietin-2 levels are associated with fluid overload, organ dysfunction, and mortality in human septic shock. Crit Care Med. 2016;44(11):2018–27.

98. Fang Y, Li C, Shao R, Yu H, Zhang Q, Zhao L. Prognostic significance of the angiopoietin-2/angiopoietin-1 and angiopoietin-1/Tie-2 ratios for early sepsis in an emergency department. Crit Care. 2015;19(1):1–11.
ADAMTS13 impact on the outcome of Staphylococcus aureus sepsis. J Thromb Haemost. 2020;18(3):722–31.
118. Paulus P, Jennewein C, Zacharowski K. Biomarkers of endothelial dysfunction: can they help us deciphering systemic inflammation and sepsis? Biomark Biochem Indic Expo Response Susceptibility Chem. 2011;16(Suppl 1):S11-21.
119. Vanderschueren S, De Weerdt A, Malbrain M, Vankersschever D, Frans E, Wilmer A, et al. Thrombocytopenia and prognosis in intensive care. Crit Care Med. 2000;28(6):1871–6.
120. Simmons J, Pittet JF. The coagulopathy of acute sepsis. Curr Opin Anaesthesiol. 2015;28(2):227–36.
121. MacLeod JBA, Lynn M, McKenney MG, Cohn SM, Murtha M. Early coagulopathy predicts mortality in trauma. J Trauma. 2003;55(1):39–44.
122. Adamzik M, Hamburger T, Petrat F, Peters J, de Groot H, Hartmann M. Free hemoglobin concentration in severe sepsis: methods of measurement and prediction of outcome. Crit Care. 2012;16(4):R125.
123. Rodelo JR, De La Rosa G, Valencia ML, Ospina S, Arango CM, Gómez Cl, et al. D-dimer is a significant prognostic factor in patients with suspected infection and sepsis. Am J Emerg Med. 2012;30(9):1991–9.
124. Iba T, Di NM, Levy JH, Kitamura N, Thachil J. New criteria for sepsis-induced coagulopathy (SIC) following the revised sepsis definition: a retrospective analysis of a nationwide survey. BMJ Open. 2017;7(9):e017046.
125. Taylor FBJ, Toh CH, Hoots WK, Wada H, Levi M. Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb Haemost. 2001;86(5):1327–30.
126. Cordemans C, De Laet I, Van Regenmortel N, Schoonheydt S, Schols JM, et al. Flow and microcirculatory alterations to dosage adjustments. Ther Adv Infect Dis. 2014;2(1):17–42. https://doi.org/10.1177/2049936113519089.
127. Post EH, Kellum JA, Bellomo R, Vincent JL. Renal perfusion in sepsis: from macro- to microcirculation. Kidney Int. 2017;91(1):45–60.
128. Dixon B. The role of microvascular thrombosis in sepsis. Anaesth Intensive Care. 2004;32(5):619–29.
129. De Backer D, Donadello K, Sakr Y, Ospina-Tascon G, Salgado D, Sciolletta S, et al. Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Crit Care Med. 2013;41(3):791–9.
130. Bateman RM, Sharpe MD, Ellis CG. Bench-to-bedside review: microvascular dysfunction in sepsis–hemodynamics, oxygen transport, and nitric oxide. Crit Care. 2003;7(5):359–73.
131. Zanotti Cavazzoni SL, Dellinger RP. Hemodynamic optimization of sepsis-induced tissue hypoperfusion. Crit Care. 2006;10(SUPPL 3):1–8.
132. Mesquida J, Masip J, Gili G, Artigas A, Baigorri F. Thenar oxygen saturation measured by near infrared spectroscopy as a noninvasive predictor of low central venous oxygen saturation in septic patients. Intensive Care Med. 2009;35(6):1106–9.
133. Perner A, Haase N, Wiis J, White JO, Delaney A. Central venous oxygen saturation for the diagnosis of low cardiac output in septic shock patients. Acta Anaesthesiol Scand. 2010;54(1):98–102.
134. Zhang Z, Xu X, Chen K. Lactate clearance as a useful biomarker for the prediction of all-cause mortality in critically ill patients: a systematic review study protocol. BMJ Open. 2014;4(5):e004752.
135. Casserly B, Phillips GS, Schorr C, Dellinger RP, Townsend SR, Osborn TM, et al. Lactate measurements in sepsis-induced tissue hypoperfusion: results from the Surviving Sepsis Campaign database. Crit Care Med. 2015;43(3):567–73.

△ Adis
kidney function in the critically ill patients. Crit Care Res Pract. 2013; p. 721810.

156. Bargnoux A-S, Kuster N, Cavalier E, Piéroni L, Souweine J-S, Delanaye P, et al. Serum creatinine: advantages and pitfalls. J Lab Precis Med. 2018;3:71–71.

157. Kees MG, Minichmayr IK, Moritz S, Beck S, Wicha SG, Kees F, et al. Population pharmacokinetics of meropenem during continuous infusion in surgical ICU patients. J Clin Pharmacol. 2016;56(3):307–15.

158. Isla A, Rodríguez-Gascón A, Trocóniz IF, Bueno L, Solinís MA, Maynar J, et al. Population pharmacokinetics of meropenem in critically ill patients undergoing continuous renal replacement therapy. Clin Pharmacokinet. 2008;47(3):173–80.

159. Pai MP, Cojutti P, Pea F. Pharmacokinetics and pharmacodynamics of continuous infusion meropenem in overweight, obese, and morbidly obese patients with stable and unstable kidney function: a step toward dose optimization for the treatment of severe gram-negative bacterial infecti. Clin Pharmacokinet. 2015;54(9):933–41.

160. Nei AM, Kashani KB, Dierkhising R, Barreto EF, Predictors of augmented renal clearance in a heterogeneous ICU population as defined by creatinine and cystatin C. Nephron. 2020;144(7):313–20. https://doi.org/10.1159/000507255.

161. Suzuki A, Imanishi Y, Nakano S, Niwa T, Ohmori T, Shirai K, et al. Usefulness of serum cystatin C to determine the dose vancomycin in critically ill patients. J Pharm Pharmacol. 2010;62(7):901–7.

162. Delanaye P, Cavalier E, Morel J, Mehdi M, Maillard N, Claissé G, et al. Detection of decreased glomerular filtration rate in intensive care units: serum cystatin C versus serum creatinine. BMC Nephrol. 2014;15:9.

163. Martensson J, Bell M, Oldner A, Xu S, Venge P, Martling CR, et al. Serum creatinine: advantages and pitfalls. J Clin Chem Lab Med. 2019;57(9):1414–21.

164. Tu Y, Wang H, Sun R, Ni Y, Ma L, Xv F, et al. Urinary netrin-1 and KIM-1 as early biomarkers for septic acute kidney injury. Intensive Care Med. 2010;36(8):1333–40.

165. Mishra J, Dent C, Tarabishi R, Mitsněfes MM, Ma Q,Kelly C, et al. Neutrophil gelatinase-associated lipocalin in adult septic patients with and without acute kidney injury. Intensive Care Med. 2010;36(10):1559–63.

166. Seymour CW, Liu VX, Iwashyna TJ, Brunrhorst FM, Rea TD, Schrag A, et al. Assessment of clinical criteria for sepsis for the third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):762–74.

167. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med. 2017;45:486–552.

168. Bruegger D, Schwartz L, Chappell D, Jacob M, Rehm M, Vogeser M, et al. Release of atrial natriuretic peptide precedes shedding of the endothelial glyocalyx equally in patients undergoing on- and off-pump coronary artery bypass surgery. Basic Res Cardiol. 2011;106(6):1111–21.

169. Hippensteel JA, Uchimido R, Tyler PD, Burke RC, Han X, Zhang F, et al. Intravenous fluid resuscitation is associated with septic endothelial glyocalyx degradation. Crit Care. 2019;23(1):1–10.

170. Jhanji S, Stirling S, Patel N, Hinds CJ, Pease RM, The effect of increasing doses of norepinephrine on tissue oxygenation and microvascular flow in patients with septic shock. Crit Care Med. 2009;37(6):1961–6.

171. Bangash MN, Kong M-L, Pearce RM. Use of inotropes and vasopressor agents in critically ill patients. Br J Pharmacol. 2012;165(7):2015–33.

172. Gatti M, Pea F. Antimicrobial dose reduction in continuous renal replacement therapy: myth or real need? A practical approach for guiding dose optimization of novel antibiotics. Clin Pharmacokinet. 2021;60(10):1271–89. https://doi.org/10.1007/s40262-021-01040-y.

173. Mulla H, Pooboni S. Population pharmacokinetics of vancomycin in patients receiving extracorporeal membrane oxygenation. Br J Clin Pharmacol. 2005;60(3):265–75.

174. Dager WE, King JH. Aminoglycosides in intermittent hemodialysis: pharmacokinetics with individual dosing. Ann Pharmacother. 2006;40(1):9–14.

175. Pea F, Viale P, Pavan F, Furlanut M. Pharmacokinetic considerations for antimicrobial therapy in patients receiving renal replacement therapy. Clin Pharmacokinet. 2007;46(12):997–1038.

176. Westermann I, Gastine S, Müller C, Rudolph W, Peters F, Bloos F, et al. Population pharmacokinetics and probability of target attainment in patients with sepsis under renal replacement therapy receiving continuous infusion of meropenem: sustained low-efficiency dialysis and continuous veno-venous haemodialysis. Br J Clin Pharmacol. 2021;87(11):4293–303. https://doi.org/10.1111/bcp.14846.

177. Jain R, Chung SM, Jain L, Khurana M, Lau SWJ, Lee JE, et al. Implications of obesity for drug therapy: Limitations and challenges. Clin Pharmacol Ther. 2011;90(1):77–89.

178. Schwameis R, Zeitlinger M. Methods to measure target site penetration of antibiotics in critically ill patients. Curr Clin Pharmacol. 2013;8(1):46–58.

179. Schroepf S, Burau D, Muench H-G, Derendorf H, Zeitlinger M, Genzel-Boroviczény O, et al. Microdialysis sampling to monitor target-site vancomycin concentrations in septic infants: a feasible way to close the knowledge gap. Int J Antimicrob Agents. 2021;58(4):106405.

180. Wicha SG, Märtson AG, Nielsen EI, Koch BCP, Friberg LE, Alffenaa JW, et al. From therapeutic drug monitoring to model-informed precision dosing for antibiotics. Clin Pharmacol Ther. 2021;109(4):928–41.

181. Schmitt L, Zoller M, Minichmayr I, Scharf C, Huisenga W, Zander J, et al. Development of a dosing algorithm for meropenem in critically ill patients based on a population pharmacokinetic/pharmacodynamic analysis. Int J Antimicrob Agents. 2019;1:54.

182. Rao GG, Landersdorfer CB. Antibiotic pharmacokinetic/pharmacodynamic modelling: MIC, pharmacodynamic indices and beyond. Int J Antimicrob Agents. 2021;58(2):106368.

183. Cunio CB, Uster DW, Carland JE, Buscher H, Liu Z, Brett J, et al. Towards precision dosing of vancomycin in critically ill patients: an evaluation of the predictive performance of pharmacometric models in ICU patients. Clin Microbiol Infect. 2021;27(5):783.e7-783.e14.

184. Kofod K, Andersen O, Kronborg G, Tvede M, Petersen J, Eugen-Olsen J, et al. Use of plasma C-reactive protein, procalcitonin, neutrophils, macophagae migration inhibitory factor, soluble urokinase-type plasminogen activator receptor, and soluble triggering receptor expressed on myeloid cells-1 in combination to diagnose infections. Crit Care. 2007;11(2):1–10.

185. Eidizadeh A, Asif AR, von Ahsen N, Binder L, Schnelle M, et al. Differences in procalcitonin measurements between three commercial immunodiagnostic procalcitonin immunoassay concordance near clinical decision points. Clin Chem Lab Med. 2019;57(9):1414–21.

186. Chambliss AB, Hayden J, Colby JM. Evaluation of procalcitonin immunoassay concordance near clinical decision points. Clin Chem Lab Med. 2019;57(9):1414–21.

187. Schuetz P, Wizr Y, Sager R, Christ-Crain M, Stolz D, Tamm M, et al. Effect of procalcitonin-guided antibiotic treatment on...
mortality in acute respiratory infections: a patient level meta-analysis. Lancet Infect Dis. 2018;18(1):95–107.

188. Piererkos C, Vincent JL. Sepsis biomarkers: a review. Crit Care. 2010;14(1):1–18.

189. Piererkos C, Velissaris D, Bisordff M, Marshall JC, Vincent JL. Biomarkers of sepsis: Time for a reappraisal. Crit Care. 2020;24(1):1–15.

190. Reinhardt K, Bauer M, Riedemann NC, Hartog CS. New approaches to sepsis: Molecular diagnostics and biomarkers. Clin Microbiol Rev. 2012;25(4):609–34.

191. Märtson AG, Sturkenboom MGG, Stojanova J, Cattaneo D, Hope W, Marriott D, et al. How to design a study to evaluate therapeutic drug monitoring in infectious diseases? Clin Microbiol Infect. 2020;26(8):1008–16.

192. Singer M, Deutschman CS, Seymour C, Shankar-Hari M, Annane D. Bauer M, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315:801–10.

193. Nicolau DP. Pharmacokinetic and pharmacodynamic properties of meropenem. Clin Infect Dis. 2008;47(Suppl 1):S32–40. https://doi.org/10.1086/590064.

194. Mouton JW, van den Anker JN. Meropenem Clinical Pharmacokinetics. Clin Pharmacokinet. 1995;28(4):275–86.

195. Gower PE, Dash CH. The pharmacokinetics of cefuroxime after intravenous injection. Eur J Clin Pharmacol. 1977;12(3):221–7.

196. Douglas A, Udy AA, Wallis SC, Jarrett P, Stuart J, Lassig-Smith D, et al. Plasma and tissue pharmacokinetics of cefazolin in patients undergoing elective and semielective abdominal aortic aneurysm open repair surgery. Antimicrob Agents Chemother. 2011;55(11):5238–42.

197. Kirby WM, Regamey C. Pharmacokinetics of cefazolin compared with four other cephalosporins. J Infect Dis. 1973;128(Suppl):S341–6.

198. Sörgel F, Kinzig M. Pharmacokinetic characteristics of piperacillin/tazobactam. Intensive Care Med. 1994;20(3 Supplement):14–20.

199. Sörgel F, Kinzig M. The chemistry, pharmacokinetics and tissue distribution of piperacillin/tazobactam. J Antimicrob Chemother. 1993;31(Suppl A):39–60.

200. Acred P, Brown DM, Turner DH, Wilson MJ. Pharmacology and chemotherapy of ampicillin—a new broad-spectrum penicillin. Br J Pharmacol Chemother. 1962;18(2):356–69.

201. Aronoff SC, Jacobs MR, Johenning S, Yamabe S. Comparative activities of the beta-lactamase inhibitors YTR 630, sodium clavulanate, and sulbactam combined with amoxicillin or ampicillin, Antimicrob Agents Chemother. 1984;26(4):580–2.

202. Brown RM, Wise R, Andrews JM, Hancos J. Comparative pharmacokinetics and tissue penetration of sulbactam and ampicillin after concurrent intravenous administration. Antimicrob Agents Chemother. 1982;21(4):565–7.

203. Nicolau DP, De Waele J, Kuti JL, Caro L, Larson KB, Yu B, et al. Pharmacokinetics and pharmacodynamics of ceftolozane/tazobactam in critically ill patients with augmented renal clearance. Int J Antimicrob Agents. 2021;57(4):106299. https://doi.org/10.1016/j.ijantimicag.2021.106299.

204. Miller B, Hershberger E, Benziger D, Trinh MM, Friedland I. Pharmacokinetics and safety of intravenous ceftolozane/tazobactam in healthy adult subjects following single and multiple ascending doses. Antimicrob Agents Chemother. 2012;56(6):3086–91.

205. Zhanel GG, Chung P, Adam H, Zelenitsky S, Denisuk A, Schweizer F, et al. Ceftolozane/tazobactam: A novel cephalosporin/β-lactamase inhibitor combination with activity against multidrug-resistant gram-negative bacilli. Drugs. 2014;74(1):31–51.

206. Wilson AP. Clinical pharmacokinetics of teicoplanin. Clin Pharmacokinet. 2000;39(3):167–83.
after a single 80-mg intravenous dose of CMS in young healthy volunteers. Clin Pharmacol Ther. 2011;89(6):875–9.

226. Dryden MS. Linezolid pharmacokinetics and pharmacodynamics in clinical treatment. J Antimicrob Chemother. 2011;66(SUPPL 4):7–15.

227. Calandra T, Baumgartner JD, Grau GE, Wu MM, Lambert PH, Schellekens J, et al. Prognostic values of tumor necrosis factor/ cachectin, interleukin-1, interferon-alpha, and interferon-gamma in the serum of patients with septic shock. Swiss-Dutch J5 Immunoglobulin Study Group. J Infect Dis. 1990 May;161(5):982–7.

228. Küster H, Weiss M, Willeitner AE, Detlefsen S, Jeremias I, Zhou J, et al. Interleukin-1 receptor antagonist and interleukin-6 for early diagnosis of neonatal sepsis 2 days before clinical manifestations. Lancet (London, England). 1998;352(9136):1271–7.

229. Ma L, Zhang H, Ling YY, Zhi GW, Qun MY, Bo WY, et al. Role of interleukin-6 to differentiate sepsis from non-infectious systemic inflammatory response syndrome. Cytokine. 2016;88:126–35.

230. Zhou M, Cheng S, Yu J, Lu Q. Interleukin-8 for diagnosis of neonatal sepsis: a meta-analysis. PLoS ONE. 2015;10(5):1–12.

231. Kraft R, Herndon DN, Finnerty CC, Cox RA, Song J, Jschke MG. Predictive value of IL-8 for sepsis and severe infections after burn injury: a clinical study. Shock. 2015;43(3):222–7.

232. Matera G, Puccio R, Giancotti A, Quirino A, Pulicari MC, Zicca VR, et al. Expression and regulation of macrophage inflammatory protein-1 Alpha (MIP-1 alpha)/CCL3: As a Biomarker. Preedy et al. Plasma level of soluble urokinase-type plasminogen activator receptor as a predictor of disease severity and case fatality in patients with bacteremia: a prospective cohort study. J Intern Med. 2011;270(1):32–40.

233. Shankar-Hari M, Datta D, Wilson J, Assi V, Stephen J, Weir CJ, et al. Early PREdiction of sepsis using leukocyte surface biomarkers: the ExPRES-sepsis cohort study. Intensive Care Med. 2018;44(11):1838–46.

234. Tang Z, Qin D, Tao M, Lv K, Chen S, Zhu X, et al. Examining the utility of the CD64 index compared with other conventional indices for early diagnosis of neonatal infection. Sci Rep. 2018;8(1):1–7.

235. Drewry AM, Ablordepepy EA, Murray ET, Beiter ER, Walton AH, Hall MW, et al. Comparison of monocyte human leukocyte antigen-DR expression and stimulated tumor necrosis factor alpha production as outcome predictors in severe sepsis: a prospective observational study. Crit Care. 2016;20(1):334.

236. Kraft R, Herndon DN, Finnerty CC, Cox RA, Song J, Jschke MG. Predictive value of interleukin-5 and monocyte chemoattractant protein-1 for bacteremia in children with febrile neutropenia. J Crit Care. 2018;43:21–8.

237. Reijers J, et al. Evidence of NI-0101 pharmacological activity, in a randomized phase I dose escalation model. Sci Rep. 2019;9(1):1–9.

238. Habr-Gama A, Canedo A, Ferrer M, Rivas J, Gil V, Justicia P, et al. Prognostic values of tumor necrosis factor/ cachectin, interleukin-1, interferon-alpha, and interferon-gamma in the serum of patients with septic shock. Swiss-Dutch J5 Immunoglobulin Study Group. J Infect Dis. 1990 May;161(5):982–7.
274. Seo K, Sungurtekin H, Gürses E, Sungurtekin U, Kaptanoğlu B. Usefulness of procalcitonin for diagnosis of sepsis in the intensive care unit. Crit Care. 2003;7:85–90.

275. Pavnik-Arnol M, Hojkser S, Derganc M. Lipo polysaccharide-binding protein in critically ill neonates and children with suspected infection: comparison with procalcitonin, interleukin-6, and C-reactive protein. Intensive Care Med. 2004;30(7):1454–60.

276. de Kruif MD, Lemaire LC, Giebeln IA, Struck J, Morgenhaler NG, Papassotiriou J, et al. The influence of corticosteroids on the release of novel biomarkers in human endotoxemia. Intensive Care Med. 2008;34(3):518–22.

277. Angeletti S, Battistoni F, Fioravanti M, Bernardini S, Dicuonzo G, Procalcitonin and mid-regional pro-adrenomedullin test combination in sepsis diagnosis. Clin Chem Lab Med. 2013;51(5):1059–67.

278. Cucuendeaz R, Nogales L, Bueno A, Gonzalez De Zarate S, Calvo D, Andres C, et al. Prognostic value of proadrenomedullin in severe sepsis and septic shock is independent of etiology and focus of infection. Intensive Care Med Exp. 2015;3(Suppl 1):A518.

279. Uusitalo-Seppälä R, Huttunen R, Aittoniemi J, Koskinen P, Leino A, Vahlberg T, et al. Pentraxin 3 (PTX3) is associated with severe sepsis and fatal disease in emergency room patients with suspected infection: a prospective cohort study. PLoS ONE. 2013;8(1):1–8.

280. Lee YT, Gong M, Chau A, Wong WT, Bazoukis G, Wong SH, et al. Pentraxin-3 as a marker of sepsis severity and predictor of mortality outcomes: a systematic review and meta-analysis. J Infect. 2018;76(1):1–10.

281. Hamed S, Behnes M, Pauly D, Lepiorz D, Barre M, Bechter T, et al. Diagnostic value of Pentraxin-3 in patients with sepsis and septic shock in accordance with latest sepsis-3 definitions. BMC Infect Dis. 2017;17(1):554.

282. Teisner B, Brandslund I, Grunnet N, Hansen LK, Thellesen J, Svehag SE. Acute complement activation during an anaphylactoid reaction to blood transfusion and the disappearance rate of C3c and C3d from the circulation. J Clin Lab Immunol. 1983;12(2):63–7.

283. Eichenberger EM, Dagher M, Ruffin F, Park L, Hersh L, Siva- ers of sepsis diagnosis or predictors of outcome: a prospective observational study. Antibiotics. 2021;10(5):557.

284. Teissier B, Brandslund I, Grunnet N, Hansen LK, Thellesen J, Svehag SE. Acute complement activation during an anaphylactoid reaction to blood transfusion and the disappearance rate of C3c and C3d from the circulation. J Clin Lab Immunol. 1983;12(2):63–7.

285. Poulin-Quirion B, Desbiens D, Bouchard C, Gosselin M, Parent B. The role of biomarkers of endothelial activation in predicting morbidity and mortality in patients with severe sepsis and septic shock in intensive care: a prospective observational study. JAMA. 2018;171(September):149–54.

286. Gijsen M, Dreesen E, Van Daele R, Naerta P, Debaveye Y, Wauters J, et al. Pharmacokinetic/pharmacodynamic target attainment based on measured versus predicted unbound ceftizoxime concentrations in critically ill patients with pneumonia: an observational cohort study. Antibiotics. 2021;10(5):557.

287. Kumpers P, van Meurs M, David S, Molema G, Bijzet J, Lukasz A, et al. Time course of angiopeptin-2 release during experimental human endotoxemia and sepsis. Crit Care. 2009;13(3):1–9.

288. Karlsson S, Pettilä V, Tenhunen J, Lund V, Hovileho S, Ruokonen E. Vascular endothelial growth factor in severe sepsis and septic shock. Anesthes Analg. 2008;106(6):1820–6.

289. Martin-Rodriguez F, Lopez-Izquierdo R, del Pozo VC, Delgado-Benito JF, Ortega GJ, Castro Villamor MA, et al. Association of prehospital oxygen saturation to inspired oxygen ratio with 1-, 2-, and 7-day mortality. JAMA Netw Open. 2021;4(4):e215700–e215700.

290. Houwink API, Rijkenberg S, Bosman RJ, van der Voort PHJ. The association between lactate, mean arterial pressure, central venous oxygen saturation and peripheral temperature and mortality in severe sepsis: a retrospective cohort analysis. Crit Care. 2016;20:56.

291. Maheshwari K, Nathanson BH, Munson SH, Khangulov V, Stevens M, Badani H, et al. The relationship between ICU hypotension and in-hospital mortality and morbidity in septic patients. Intensive Care Med. 2018;44(6):857–67.

292. Havaladar AA. Evaluation of sepsis induced cardiac dysfunction as a predictor of mortality. Cardiovasc Ultrasound. 2018;16(1):31.

293. de Castilho FM, Ribeiro ALP, da Silva JLP, Nobre V, Fiuza J, Hinojosa CA, et al. Endothelial adhesion molecules and C-reactive protein, albumin, and blood cultures as early markers of sepsis diagnosis or predictors of outcome: a prospective analysis. Crit Care. 2003;7:85–90.
307. Agirbasli M, Eren M, Yasar S, Delil K, Goktay F, Oner ET, et al. Wiedermann CJ. Clinical review: molecular mechanisms underlying the role of antithrombin in sepsis. Crit Care. 2015;19(5):566–75.

305. Pettilä V, Pentti J, Pettilä M, Takkunen O, Jousela I. Predictive factors of causative micro-organism [ISRCTN74215569]. Crit Care. 2004;8(2):R82-90.

302. Schneider CP, Angele MK, Hartl WH. Activated partial thromboplastin time waveform analysis as specific sepsis marker in surgical intensive care unit. Crit Care Med. 2004;32(2):520–4.

303. Iba T, Watanabe E, Umemura Y, Gando S, Ogura H, Hiraishi A, et al. Significance of plasma fibrinogen level and antithrombin activity in sepsis: a multicenter cohort study using a cubic spline model. Thromb Res. 2019;1(181):17–23.

304. Chopin N, Floccard B, Sobas B, Comp P, Russell JA, Cariou A, et al. Universal changes in biomarkers of coagulation and inflammation occur in patients with severe sepsis, regardless of causative micro-organism [ISRCTN74215569]. Crit Care. 2004;8(2):R82-90.

306. Martin K, Borgel D, Lerolle N, Feys HB, Piotrowski T, Goto Y, et al. Markers of acute kidney injury in patients with sepsis and septic shock. Clin Invest Med. 2018;24(2018):6937947.

308. Koyama K, Madoiwa S, Nunamiya S, Koimura T, Wada M, Sakata A, et al. Combination of thrombin-antithrombin complex, plasminogen activator inhibitor-1, and protein C activity for early identification of severe coagulopathy in initial phase of sepsis: a prospective observational study. Crit Care. 2014;18(1):R13–R13.

309. Madoiwa S, Nunamiya S, Ono T, Shintani Y, Ohmori T, Mimuro J, et al. Plasminogen activator inhibitor 1 promotes a poor prognosis in sepsis-induced disseminated intravascular coagulation. Int J Hematol. 2006;84(5):398–405.

310. Bouchard J, Malhotra R, Shah S, Kao Y-T, Vaida F, Gupta A, et al. Levels of protein C and soluble thrombomodulin in critically ill patients with acute kidney injury: a multicenter prospective observational study. PLoS ONE. 2015;10(3):e0120770.

311. Johansen ME, Johansson PI, O stools RS, Bestle MH, Hein L, Jensen ALG, et al. Profound endothelial damage predicts impending organ failure and death in sepsis. Semin Thromb Hemost. 2015;41(1):19–25.

312. Zhai R, Sheu CC, Su L, Gao MG, Tejera P, Chen F, et al. Serum bilirubin levels on ICU admission are associated with ARDS development and mortality in sepsis. Thorax. 2009;64(9):784–90.

313. Bhogal HK, Sanyal AJ. The molecular pathogenesis of cholestasis in sepsis. Front Biosci (Elite Ed). 2013;1(5):87–96.

314. Nessler N, Launey N, Annit C, Morel F, Mallédant Y, Seguin P. Clinical review: the liver in sepsis. Crit Care. 2012;16(5):235.

315. Yao Y, Wang D, Yin Y. Advances in sepsis-associated liver dysfunction. Burn Trauma. 2014;2(3):97.

316. Ayar G, Atmaca YM, Alıyık M, Ereıl O. Effects of paraoxonase, arylesterase, ceruloplasmin, catalase, and myeloperoxidase activities on prognosis in pediatric patients with sepsis. Clin Biochem. 2015;70(7–8):414–7.

317. Gudowska M, Gruszewska E, Panasiuk A, Cylwik B, Flisiak R, Świderska M, et al. Hyaluronic acid concentration in liver diseases. Clin Exp Med. 2016;16(4):523–8.

318. Wang K, Xie S, Xiao K, Yan F, He W, Xie L. Biomarkers of sepsis-induced acute kidney injury. Biomed Res Int. 2018;2018:24(2018):6937947.

319. Katayama S, Nunamiya S, Koyama K, Wada M, Koimura T, Goto Y, et al. Markers of acute kidney injury in patients with sepsis: the role of soluble thrombomodulin. Crit Care. 2017;21(1):229.

320. Beier K, Eppanapally S, Bazick HS, Chang D, Mahadevappa K, Gibbons FK, et al. Elevation of blood urea nitrogen is predictive of long-term mortality in critically ill patients independent of “normal” creatinine. Crit Care Med. 2011;39(2):305–13.

321. van der Slikke EC, Star BS, de Jager VD, Leferink MBM, Peters-Sengers H, et al. Consumptive coagulopathy is associated with a disturbed host response in patients with sepsis. J Thromb Haemost. 2021;19(4):1049–63.

322. van Vught LA, Uhel F, Ding C, van’t Veer C, Sicciuna BP, Peters-Sengers H, et al. Consumptive coagulopathy is associated with a disturbed host response in patients with sepsis. J Thromb Haemost. 2021;19(4):1049–63.

323. Kinasewitz GT, Yan SB, Basson B, Comp P, Russell JA, Cariou A, et al. Universal changes in biomarkers of coagulation and inflammation occur in patients with severe sepsis, regardless of causative micro-organism [ISRCTN74215569]. Crit Care. 2004;8(2):R82-90.

324. Törnblom S, Nisula S, Petäjä L, Vaara ST, Haapio M, Pesonen E, et al. Urine NGAL as a biomarker for septic AKI: a critical appraisal of clinical utility—data from the observational FINNAKI study. Ann Intensive Care. 2020;10(1):51.