THE ENERGY DENSITY IN THE PLANAR ISING MODEL

CLÉMENT HONGLER AND STANISLAV SMIRNOV

Abstract. We study the critical Ising model on the square lattice in bounded simply connected domains with + and free boundary conditions. We relate the energy density of the model to a discrete fermionic spinor and compute its scaling limit by discrete complex analysis methods. As a consequence, we obtain a simple exact formula for the scaling limit of the energy field one-point function in terms of the hyperbolic metric. This confirms the predictions originating in physics, but also provides a higher precision.

Contents

1. Introduction 1
 1.1. The model 1
 1.2. The energy density 2
 1.3. Graph notation 6
 1.4. The energy density 6
 1.5. Contour statistics and discrete fermionic spinor 6
 1.6. Convergence results and proof of Theorem 1 10
 1.7. Proof of convergence 11
2. Analysis of the Discrete Fermionic Spinors 12
 2.1. Discrete holomorphicity 12
 2.2. Singularity 16
 2.3. Boundary values 17
 2.4. Discrete integration 17
3. Convergence of the Discrete Fermionic Spinors 19
 3.1. Precompactness 19
 3.2. Identification of the limit 21
Appendix A 25
Appendix B 26
References 29

1. Introduction

1.1. The model. The Lenz-Ising model in two dimensions is probably one of the most studied models for an order-disorder phase transition, exhibiting a very rich and interesting behavior, yet well understood both from the mathematical and physical viewpoints [Bax89, McWu73, Pal07].

Date: June 22nd, 2010.

Key words and phrases. Ising model, energy density, discrete analytic function, fermion, spinor, conformal invariance, hyperbolic geometry, conformal field theory.
After Kramers and Wannier \cite{KrWa41} derived the value of the critical temperature and Onsager \cite{Ons44} analyzed the behavior of the partition function for the Ising model on the two-dimensional square lattice, a number of exact derivations were obtained by a variety of methods. Thus it is often said that the 2D Ising model is \textit{exactly solvable} or \textit{integrable}. Moreover, it has a conformally invariant scaling limit at criticality, which allows to use Conformal Field Theory (CFT) or Schramm’s SLE techniques. CFT provides predictions for quantities like the correlation functions of the spin or the energy fields, which in principle can then be related to SLE.

In this paper, we obtain a rigorous, exact derivation of the one-point function of the energy density, matching the CFT predictions \cite{DMS97, Car84, BuGu93}. We exploit the integrable structure of the 2D Ising model, but in a different way from the one employed in the classical literature. Our approach is rather similar to Kenyon’s approach to the dimer model \cite{Ken00}.

We write the energy density in terms of discrete fermionic spinors introduced in \cite{Smi06}. These spinors solve a discrete version of a Riemann boundary value problem, which identifies them uniquely. In principle, this could be used to give an exact, albeit very complicated, formula, that one could try to simplify – a strategy similar to most of the earlier approaches. Instead we pass to the scaling limit, showing that the solution to the discrete boundary value problem approximates well its continuous counterpart, which can be easily written using conformal maps. Thus we obtain a short expression, approximating the energy density to the first order. Moreover, our method works in any simply connected planar domain, and the answer is, as expected, conformally covariant.

Similar spinors appeared in Kadanoff and Ceva \cite{KaCe71} and in Mercat \cite{Mer01}, but their scaling limits with boundary conditions were not discussed before \cite{Smi06}.

Recall that the Ising model on a graph \mathcal{G} is defined by a Gibbs probability measure on configurations of ± 1 (or \textit{up}/\textit{down}) spins located at the vertices: it is a random assignment $(\sigma_x)_{x \in V}$ of ± 1 spins to the vertices V of \mathcal{G} and the probability of a state is proportional to its Boltzmann weight $e^{-\beta H}$, where $\beta > 0$ is the inverse temperature of the model and H is the Hamiltonian, or energy, of the state σ. In the Ising model with no external magnetic field, we have $H := -\sum_{i \sim j} \sigma_i \sigma_j$, where the sum is over all the pairs of adjacent vertices of \mathcal{G}.

1.2. The energy density. Let Ω be a Jordan domain and let Ω_δ be a discretization of it by a subgraph of the square grid of mesh size $\delta > 0$. We consider the Ising model on the graph Ω_δ at the critical inverse temperature $\beta_c = \frac{1}{2} \ln (\sqrt{2} + 1)$; on the boundary of Ω_δ, we may impose the value $+1$ to the spins or let them free (we call these $+$ and \textit{free} boundary conditions respectively). Our main result about the energy density is the following:

\textbf{Theorem.} Let $a \in \Omega$ and for each $\delta > 0$, let (x_δ, y_δ) be the closest edge to a in Ω_δ. Then, as $\delta \to 0$, we have

\begin{align*}
\mathbb{E}_+ \left[\sigma_{x_\delta} \sigma_{y_\delta} - \frac{\sqrt{2}}{2} \right] &= \frac{l_{\Omega} (a)}{2\pi} \cdot \delta + o (\delta), \\
\mathbb{E}_- \left[\sigma_{x_\delta} \sigma_{y_\delta} - \frac{\sqrt{2}}{2} \right] &= -\frac{l_{\Omega} (a)}{2\pi} \cdot \delta + o (\delta),
\end{align*}
where the subscripts \(+\) and \(-\) denote the boundary conditions and \(l_\Omega\) is the element of the hyperbolic metric of \(\Omega\).

A precise version of this theorem in terms of the energy density field is given in Section 1.4. This result has been predicted for a long time by CFT methods (see [DMS97, BuGu93] for instance), notably using Cardy’s celebrated mirror image technique [Car84]. However, CFT does not allow to determine the lattice-specific constant \(\frac{1}{2\pi}\) appearing in front of the hyperbolic metric element.

This is one of the first results where full conformal invariance (i.e. not only Möbius invariance) of a correlation function for the Ising model is actually shown. The proof does not appeal to the SLE machinery, although the fermionic spinor that we use is very similar to the one employed to prove convergence of Ising interfaces to SLE(3) [ChSm09]. A generalization of our result with mixed boundary conditions could also be used to deduce convergence to SLE.

In the case of the full plane, the energy density correlations have been studied by Boutillier and De Tilière, using dimer model techniques [BoDT08, BoDT09]. However, their approach works in the infinite-volume limit or in periodic domains and does not directly apply to arbitrary bounded domains.

In the case of the half-plane, the energy density one-point function has been recently obtained by Assis and McCoy [AsMc11], using transfer matrix techniques.

The strategy for the proof of our theorem relies mainly on:

• The introduction of a discrete fermionic spinor, which is a complex deformation of a certain partition function, and of an infinite-volume version of this spinor.

• The expression of the energy density in terms of discrete fermionic spinors.

• The proof of the convergence of the discrete spinors to continuous fermionic spinors, which are holomorphic functions.

1.3. Graph notation. Let us first give some general graph notation. Let \(\mathcal{G}\) be a graph embedded in the complex plane \(\mathbb{C}\).

• We denote by \(\mathcal{V}_G\) the set of the vertices of \(\mathcal{G}\), by \(\mathcal{E}_G\) the set of its (unoriented) edges, by \(\mathcal{E}_G^\circ\) the set of its oriented edges.

• We identify the vertices \(\mathcal{V}_G\) with the corresponding points in the complex plane (since \(\mathcal{G}\) is embedded). An oriented edge is identified with the difference of the final vertex minus the initial one.

• Two vertices \(v_1, v_2 \in \mathcal{V}_G\) are said to be adjacent if they are the endpoints of an edge, denoted \(\langle v_1, v_2 \rangle\), and two distinct edges \(e_1, e_2 \in \mathcal{E}_G\) are said to be incident if they share an endvertex.

1.3.1. Discrete domains.

• We denote by \(\mathbb{C}_\delta\) the square grid of mesh size \(\delta > 0\). Its vertices and edges are defined by

\[
\mathcal{V}_{\mathbb{C}_\delta} := \{\delta(j + ik) : j, k \in \mathbb{Z}\},
\]

\[
\mathcal{E}_{\mathbb{C}_\delta} := \{\langle v_1, v_2 \rangle : v_1, v_2 \in \mathcal{V}_{\mathbb{C}_\delta}, |v_1 - v_2| = \delta\}.
\]

• In order to keep the notation as simple as possible, we will only look at finite induced subgraphs \(\Omega_\delta\) of \(\mathbb{C}_\delta\) (two vertices of \(\Omega_\delta\) are linked by an edge in \(\Omega_\delta\) whenever they are linked in \(\mathbb{C}_\delta\)), that we will also call discrete domains.
For a discrete domain Ω_β, we denote by Ω_β^* the dual graph of Ω_β: its vertices $V_{\Omega_\beta^*}$ are the centers of the bounded faces of Ω_β and two vertices of $V_{\Omega_\beta^*}$ are linked by an edge of $E_{\Omega_\beta^*}$ if the corresponding faces of Ω_β share an edge.

We denote by $\partial V_{\Omega_\beta}$ the set of vertices of $V_{\Omega_\beta} \setminus V_{\Omega_\beta^*}$ that are at distance δ from a vertex of $V_{\Omega_\beta^*}$ (i.e. that are adjacent in C_δ to a vertex of V_{Ω_β}) and by $\partial E_{\Omega_\beta} \subset \partial E_{\Omega_\beta^*}$ the set of edges between a vertex of V_{Ω_β} and a vertex of $\partial V_{\Omega_\beta}$. The vertices in $\partial V_{\Omega_\beta}$ appear with multiplicity: if a vertex of $V_{\Omega_\beta^*} \setminus V_{\Omega_\beta}$ is at distance δ to several vertices of V_{Ω_β}, then it appears as as many distinct elements of $\partial V_{\Omega_\beta}$. In other words, there is a one-to-one correspondence between $\partial V_{\Omega_\beta}$ and $\partial E_{\Omega_\beta}$.

We denote by $\partial V_{\Omega_\beta^*}$ the centers of the faces of C_δ that are adjacent to a face of Ω_β. We denote by $\partial E_{\Omega_\beta^*} \subset \partial E_{\Omega_\beta^*}$ the set of dual edges between a vertex of $V_{\Omega_\beta^*}$ and a vertex of $\partial V_{\Omega_\beta^*}$. For an edge $e \in E_{\Omega_\beta}$ we denote by $e^* \in E_{\Omega_\beta^*}$ its dual (e and e^* intersect at their midpoint).

We write $\Omega_{\beta,\Omega_{\delta}^*}$ for $\Omega_{\delta} \cup \partial V_{\Omega_\beta}$ and $\Omega_{\beta,\partial V_{\Omega_\beta}}$ for $\Omega_{\delta} \cup \partial V_{\Omega_\beta}$.

We denote by $E_{\Omega_{\delta}^*}^h \subset E_{\Omega_{\beta}}$ the set of horizontal (i.e. parallel to the real axis) edges of Ω_{β} and by $E_{\Omega_{\beta}}^v := E_{\Omega_{\beta}} \setminus E_{\Omega_{\beta}}^h$ the set of the vertical ones.

We denote by Ω_{δ}^M and the medial graph of Ω_{β}: its vertices $V_{\Omega_{\delta}^M}$ are the midpoints of the edges of Ω_{β} and $\partial E_{\Omega_{\beta}}$ and the medial edges $E_{\Omega_{\delta}^M}$ link midpoints of incident edges of $\Omega_{\beta} \cup \partial E_{\Omega_{\beta}}$.

We say that a family $(\Omega_\delta)_{\delta>0}$ of discrete domains (with $\Omega_\beta \subset C_\delta$ for each $\delta>0$) approximates or discretizes a continuous domain Ω if for each $\delta>0$, Ω_δ is the largest connected induced subgraph of C_δ contained in Ω.

1.3.2. Ising model with boundary conditions. The Ising model (with free boundary condition) on a finite graph G (in this paper, G will be a discrete domain Ω_β or its dual Ω_β^*) at inverse temperature $\beta > 0$ is a model whose state space Ξ_G is given by $\Xi_G := \{(\sigma_x)_{x \in V_G} : \sigma_x \in \{\pm 1\}\}$: a state assigns to every vertex x of G a spin $\sigma_x \in \{\pm 1\}$. The probability of a configuration $\sigma \in \Xi_G$ is

$$p_{\beta,\text{free}}^\beta(\sigma) := \frac{1}{Z_{G,\beta,\text{free}}} e^{-\beta H_{G,\beta,\text{free}}(\sigma)},$$

with the energy (or Hamiltonian) $H_{G,\beta,\text{free}}$ of a configuration σ given by

$$H_{G,\beta,\text{free}}(\sigma) := - \sum_{\langle x,y \rangle \in E_G} \sigma_x \sigma_y,$$

and the partition function $Z_{G,\beta,\text{free}}$ by

$$Z_{G,\beta,\text{free}} := \sum_{\sigma \in \Xi_G} e^{-\beta H(\sigma)}.$$

Given a graph G with boundary vertices ∂V_G (like Ω_β^* with $\partial V_{\Omega_\beta^*}$) the Ising model on G with + boundary condition is defined as the Ising model on G, with extra spins located at the vertices of ∂V_G that are set to +1 and with energy

$$H_{G,\beta,+}(\sigma) := - \sum_{\langle x,y \rangle \in E_G} \sigma_x \sigma_y,$$

where E_G is the set of edges linking vertices of $V_G \cup \partial V_G$.

In this paper, we will be interested in the Ising model with free and + boundary conditions on discrete square grid domains Ω_δ at the critical inverse temperature $\beta_c := \frac{1}{2} \ln \left(\sqrt{2} + 1 \right)$, when the mesh size δ is small.

We will from now on omit the inverse temperature parameter β in the notation and will denote by $\mathcal{P}_{\delta}^{\text{free}}$ and \mathcal{P}_δ^+ the probability measures of the Ising model on \mathcal{G} at $\beta = \beta_c$ with free and + boundary conditions and by $\mathcal{E}_\delta^{\text{free}}$ and \mathcal{E}_δ^+ the corresponding expectations.

1.4. The energy density. Let Ω_δ be a discrete domain and let $a_\delta \in \mathcal{V}_{\Omega_\delta}^{\text{free}}$ be the midpoint of a horizontal edge of Ω_δ. We introduce the two quantities $\langle \epsilon_\delta (a_\delta) \rangle_{\Omega_\delta}^{\text{free}}$ and $\langle \epsilon_\delta (a_\delta) \rangle_{\Omega_\delta}^+$, called average energy density (with free and + boundary conditions), defined by

\[
\langle \epsilon_\delta (a_\delta) \rangle_{\Omega_\delta}^{\text{free}} := \mathcal{E}_{\Omega_\delta}^{\text{free}} \left[\sigma_{s_\delta} \sigma_{w_\delta} - \frac{\sqrt{2}}{2} \right],
\]

\[
\langle \epsilon_\delta (a_\delta) \rangle_{\Omega_\delta}^+ := \mathcal{E}_{\Omega_\delta}^+ \left[\sigma_{n_\delta} \sigma_{s_\delta} - \frac{\sqrt{2}}{2} \right],
\]

where $\langle \epsilon_\delta, w_\delta \rangle \in \mathcal{E}_{\Omega_\delta}$ and $\langle n_\delta, s_\delta \rangle \in \mathcal{E}_{\Omega_\delta}$ are respectively the (horizontal) edge and the dual (vertical) edge, the midpoint of both of which is a_δ (see Figures 1.1 and 1.2). The quantity $\frac{\sqrt{2}}{2}$ is the infinite-volume limit of the product of two adjacent spins (it can be found in [McWu73], Chapter VIII, Formula 4.12, for instance). The energy density field is the fluctuation of the product of adjacent spins around this limit: it measures the distribution of the energy H among the edges, as a function of their locations. We are considering horizontal edges on Ω_δ and vertical edges on Ω_δ^* for concreteness and for making the notation simpler, but our results are rotationally invariant.

We can now state the main result of this paper, which is the conformal covariance of the average energy density:

Theorem 1. Let Ω be a C^1 simply connected domain and let $a \in \Omega$. Consider a family $(\Omega_\delta)_{\delta > 0}$ of discrete domains approximating Ω and for each $\delta > 0$, let $a_\delta \in \mathcal{V}_{\Omega_\delta}^{\text{free}}$ be the midpoint of horizontal edge that is the closest to a. Then as $\delta \to 0$, uniformly on the compact subsets of Ω, we have

\[
\frac{1}{\delta} \langle \epsilon_\delta (a_\delta) \rangle_{\Omega_\delta}^+ \to \frac{1}{2\pi} \ell_\Omega (a),
\]

\[
\frac{1}{\delta} \langle \epsilon_\delta (a_\delta) \rangle_{\Omega_\delta}^{\text{free}} \to \frac{1}{2\pi} \ell_\Omega (a),
\]

$\ell_\Omega (a)$ being the hyperbolic metric element of Ω at a. Namely, $\ell_\Omega (a) := 2\nu' (a)$, where ψ_a is the conformal mapping from Ω to the unit disk $\mathbb{D} := \{ z \in \mathbb{C} : |z| < 1 \}$ such that $\psi_a (a) = 0$ and $\psi'_a (a) > 0$.

The proof will be given in Section 1.6

Corollary 2. The conclusions of Theorem 1 hold under the assumption that Ω is a Jordan domain.

Proof. We have that $\langle \epsilon_\delta (a_\delta) \rangle_{\Omega_\delta}^+$ and $\langle \epsilon_\delta (a_\delta) \rangle_{\Omega_\delta}^{\text{free}}$ are monotone respectively non-increasing and non-decreasing with respect to the discrete domain Ω_δ, as follows
easily from the FKG inequality applied to the FK representation of the model (see [Gri06] Chapters 1 and 2, for instance): if $\Omega_3 \subset \Omega_3^+$, we have

$$\langle \epsilon \delta (a_3) \rangle_{\Omega_3^+}^+ \geq \langle \epsilon \delta (a_3) \rangle_{\Omega_3^+}^-,$$

$$\langle \epsilon \delta (a_3) \rangle_{\Omega_3^+}^\text{free} \leq \langle \epsilon \delta (a_3) \rangle_{\Omega_3^+}^\text{free}.$$

If Ω is a Jordan domain, we can approximate Ω by monotone increasing and decreasing sequences of smooth domains, for which Theorem 1 applies, and deduce the result for Ω. \hfill \Box

The central idea for proving Theorem 1 is to introduce a discrete fermionic spinor which is a two-point function $f_{\Omega_3} (a, z)$; it is defined in the next subsection. We then relate f_{Ω_3} to the average energy density and prove its convergence to a holomorphic function f_{Ω_3}.

1.5. Contour statistics and discrete fermionic spinor.

1.5.1. Contour statistics. Let Ω_3 be a discrete domain. We denote by C_{Ω_3} the set of edge collections $\omega \subset E_{\Omega_3}$ such that every vertex $v \in V_{\Omega_3}$ belongs to an even number of edges of ω: in other words, by Euler’s theorem for walks, the edge collections $\omega \in C_{\Omega_3}$ are the ones that consist of edges forming (not necessarily simple) closed contours. For an edge $e \in E_{\Omega_3}$, we denote by $C_{\Omega_3}^{(+)}$ the set of configurations $\omega \in C_{\Omega_3}$ that do not contain e and by $C_{\Omega_3}^{(-)}$ the set of configurations that do contain e.

Set $\alpha := \sqrt{2} - 1$. For a collection of edges $\omega \subset E_{\Omega_3}$, we denote by $|\omega|$ its cardinality. For $e \in E_{\Omega_3}$ we define

$$Z_{\Omega_3} := \sum_{\omega \in C_{\Omega_3}} \alpha^{|\omega|},$$

$$Z_{\Omega_3}^{(+)} := \sum_{\omega \in C_{\Omega_3}^{(+)}} \alpha^{|\omega|},$$

$$Z_{\Omega_3}^{(-)} := \sum_{\omega \in C_{\Omega_3}^{(-)}} \alpha^{|\omega|}.$$

We now have the following representation of the energy density in terms of contour statistics.

Proposition 3. Let $e \in E_{\Omega_3}^h$ be a horizontal edge and let its midpoint be $a \in V_{\Omega_3}^M$. Then we have

$$\langle \epsilon \delta (a) \rangle_{\Omega_3^+}^+ = \frac{Z_{\Omega_3}^{(+)} - Z_{\Omega_3}^{(-)}}{2},$$

$$\langle \epsilon \delta (a) \rangle_{\Omega_3^+}^\text{free} = -\langle \epsilon \delta (a) \rangle_{\Omega_3^+}^+.$$

Proof. From the low-temperature expansion of the Ising model (see [Pal07], Chapter 1, for instance), there is a natural bijection between the configurations of spins σ on V_{Ω_3} with $+$ boundary condition on $V_{\Omega_3}^+$ and the edge collections $\omega \in C_{\Omega_3}$: one puts an edge $e \in E_{\Omega_3}$ in the edge collection ω if the spins of σ at the endpoints of the dual edge $e^* \in E_{\Omega_3}^*$ are different. It is easy to see that the probability measure on C_{Ω_3} induced by this bijection gives to each edge collection $\omega \in C_{\Omega_3}$ a weight proportional to $\langle e^{-2\beta} \rangle^{|\omega|}$, hence to $e^{|\omega|}$, where $\alpha = \sqrt{2} - 1$ as above.
(since $\beta = \beta_c = \frac{1}{2} \ln (\sqrt{2} + 1)$). The event that the spins at two adjacent dual vertices $x, y \in \mathcal{V}_{\Omega^*}$ are the same (respectively are different) corresponds through the natural bijection to $C_{\Omega^*}^{\{e^+\}}$ (respectively $C_{\Omega^*}^{\{e^-\}}$), where $e \in \mathcal{E}_{\Omega^*}$ is such that $e^* = \langle x, y \rangle$. Using that $Z_{\Omega^*}^{\{e^+\}} + Z_{\Omega^*}^{\{e^-\}} = Z_{\Omega^*}$, we deduce the first identity.

From the so-called high-temperature expansion (see [Pal07], Chapter 1) we have that for the Ising model on Ω^*_d with free boundary condition, the correlation of two spins $z_1, z_2 \in \mathcal{V}_{\Omega^*_d}$ is equal to

$$\frac{\sum_{\omega \in C_{\Omega^*_d}(z_1, z_2)} (\tanh (\beta))^{||\omega||}}{\sum_{\omega \in C_{\Omega^*_d}} (\tanh (\beta))^{||\omega||}},$$
Using the relation C

For a configuration γ

1.5.2.

Discrete fermionic spinor in bounded domain. It is easy to see that, for any e a horizontal edge n where a admissible walk makes from E such that $\beta \in \Omega$ and $e \notin \delta w$ respectively. From each $\hat{w} \in C_{\Omega}^\beta (z_1, z_2)$, we can remove e and obtain an edge collection in $C^\beta_{\Omega} (z_1, z_2)$ (this map $C_{\Omega}^\beta (z_1, z_2) \rightarrow C^\beta_{\Omega} (z_1, z_2)$ is bijective) and to each $\hat{w} \in C_{\Omega}^- (z_1, z_2)$, we can add e and obtain an edge collection in $C^-_{\Omega} (z_1, z_2)$. Hence we have

$$\langle \epsilon_\delta (a) \rangle_{\Omega}^{\text{free}} = \frac{\sum_{\hat{w} \in C^\beta_{\Omega} (z_1, z_2)} \alpha^{|\hat{w}|} Z_{\Omega}}{Z_{\Omega}} - \frac{\sqrt{2}}{2}$$

$$= \frac{\alpha \sum_{\hat{w} \in C^\beta_{\Omega} (z_1, z_2)} \alpha^{|\hat{w}|} Z_{\Omega}}{Z_{\Omega}} + \frac{\alpha^{-1} \sum_{\hat{w} \in C^-_{\Omega} (z_1, z_2)} \alpha^{|\hat{w}|} Z_{\Omega}}{Z_{\Omega}} - \frac{\sqrt{2}}{2}$$

$$= \alpha Z_{\Omega}^{\beta} + \alpha^{-1} Z_{\Omega}^{-\beta} - \frac{\sqrt{2}}{2}.$$

Using the relation $Z_{\Omega}^{\beta} + Z_{\Omega}^{-\beta} = Z_{\Omega}$, we obtain the second identity. \hfill \Box

1.5.2. Discrete fermionic spinor in bounded domain. If $a \in \mathcal{V}_{\Omega}^M$ is the midpoint of a horizontal edge $e_1 \in \mathcal{E}_{\Omega}^h$ and $z \in \mathcal{V}_{\Omega}^M$ is the midpoint of an arbitrary edge $e_2 \in \mathcal{E}_{\Omega} \cup \partial \mathcal{E}_{\Omega}$, we denote by $C_{\Omega} (a, z)$ the set of γ consisting of edges of $\mathcal{E}_{\Omega} \setminus \{e_1, e_2\}$ and of two half-edges (half of an edge between its midpoint and one of its ends) such that

- one of the half-edges has endpoints $a, a + \frac{\delta}{2}$;
- the other half-edge is incident to z;
- every vertex $v \in \mathcal{V}_{\Omega}$ belongs to an even number of edges or half-edges of γ.

For a configuration $\gamma \in C_{\Omega} (a, z)$, we call admissible walk along γ, a sequence e_0, e_1, \ldots, e_n, such that

- e_0 is the half-edge incident to a;
- e_n is the half-edge incident to z;
- $e_1, \ldots, e_{n-1} \in \mathcal{E}_{\Omega}$ are edges;
- e_j and e_{j+1} are incident for each $j \in \{0, \ldots, n-1\}$;
- each edge appears at most once in the walk;
- when one follows the walk and arrives at a vertex that belongs to four edges or half-edges of γ (we call this an ambiguity), one either turns left or right (going straight in that case is forbidden).

It is easy to see that, for any $\gamma \in C_{\Omega} (a, z)$, such a walk always exists, though in general it is not unique (see Figure [1.3]).

Given a configuration $\gamma \in C_{\Omega} (a, z)$ and an admissible walk along γ, we define the winding number W of γ, denoted $W (\gamma) \in \mathbb{R} / 4\pi \mathbb{Z}$, by

$$W (\gamma) := \frac{\pi}{2} (n_l - n_r),$$

where n_l and n_r are respectively the numbers of left turns and right turns that the admissible walk makes from a to z: it is the total rotation of the walk between a
and \(z \), measured in radians. More generally, we define the winding number of a rectifiable curve as its total rotation from its initial point to its final point, measured in radians. The following lemma shows that the winding number (modulo \(4\pi \)) of a configuration \(\gamma \in \mathcal{C}_{\Omega}(a, z) \) is actually independent of the choice of the walk on \(\gamma \).

Lemma 4. For any \(\gamma \in \mathcal{C}_{\Omega}(a, z) \), the winding number \(W(\gamma) \in \mathbb{R}/4\pi\mathbb{Z} \) is independent of the choice of an admissible walk along \(\gamma \).

The proof is given in Appendix A.

Thanks to Lemma 4, we can now define the discrete fermionic spinor \(f_{\Omega} \) that will be instrumental in our studies of the energy density.

Definition 5. For any midpoint of a horizontal edge \(a \in \mathcal{V}_M \), we define the discrete fermionic spinor \(f_{\Omega}(a, \cdot) : \mathcal{V}_M \to \mathbb{C} \) by

\[
\begin{align*}
 f_{\Omega}(a, z) & := \frac{1}{Z_{\Omega}} \sum_{\gamma \in \mathcal{C}_{\Omega}(a, z)} a^{|\gamma|} e^{-\frac{i}{2} W(\gamma)}, \\
 f_{\Omega}(a, a) & := \frac{Z_{\Omega}^{(e+)}}{Z_{\Omega}},
\end{align*}
\]

where \(|\gamma| \) denotes the number of edges and half-edges of \(\gamma \), with the half-edges contributing \(\frac{1}{2} \) each.

In this way, \(z \mapsto f_{\Omega}(a, z) \) is a function, whose value at \(z = a \) gives (up to an additive constant) the average energy density at \(a \). As we will see, moving the
point \(z \) across the domain will allow to gain information about the effect of the geometry of the domain on the energy density.

1.5.3. Discrete fermionic spinor in the full plane. As mentioned above, the \(\frac{\sqrt{2}}{2} \) appearing in the definition of the average energy density (Section 1.4) is the infinite volume limit (or full-plane) average product of two adjacent spins, which one has to subtract in order for the effect of the shape of the domain to be studied. We now introduce a full-plane version of the discrete fermionic spinor, whose definition a priori seems quite different from the bounded domain version. It will allow to represent the energy density (with the correct additive constant) in terms of the difference of two discrete fermionic spinors.

Definition 6. For \(a, z \in V_{\Omega^M} \) with \(a \neq z \) and \(a \) being the midpoint of an horizontal edge, define \(f_{C_d} \) by

\[
f_{C_d}(a,z) := 2 \cos \left(\frac{\pi}{8} \right) e^{\frac{\pi}{2}} \left(C_0 \left(\frac{2(a + \frac{i}{2})}{\delta}, \frac{2z}{\delta} \right) + C_0 \left(\frac{2(a - \frac{i}{2})}{\delta}, \frac{2z}{\delta} \right) \right) + 2 \sin \left(\frac{\pi}{8} \right) e^{-\frac{3\pi}{8}} \left(C_0 \left(\frac{2(a - \frac{i}{2})}{\delta}, \frac{2z}{\delta} \right) + C_0 \left(\frac{2(a + \frac{i}{2})}{\delta}, \frac{2z}{\delta} \right) \right),
\]

where \(C_0(z_1, z_2) := C_0(0, z_2 - z_1) \) is the dimer coupling function of Kenyon (see [Ken00]), defined by

\[
C(0, x + iy) := \frac{1}{4\pi^2} \int_0^{2\pi} \int_0^{2\pi} e^{i(x\theta - y\phi)} d\theta d\phi.
\]

We set \(f_{C_d}(a, a) := \frac{2+\sqrt{2}}{4} \).

From our definitions up to now and from Proposition 3, we deduce the following:

Lemma 7. Let \(\Omega \) be a discrete domain and \(a \in V_{\Omega^M} \) be the midpoint of a horizontal edge of \(\Omega \). Then the average energy density can be represented as

\[
\langle \epsilon_\delta (a) \rangle_{\Omega^M} = 2 (f_{\Omega^M} - f_{C_d}) (a, a),
\]

\[
\langle \epsilon_\delta (a) \rangle_{\Omega^M}^{\text{free}} = -2 (f_{\Omega^M} - f_{C_d}) (a, a).
\]

1.6. Convergence results and proof of Theorem 1. The core of this paper is the convergence of the discrete fermionic spinors to continuous ones, which are holomorphic functions. Let us define these functions first: for \(a, z \in \Omega \) with \(a \neq z \), we define

\[
f_{\Omega}(a, z) := \frac{1}{2\pi} \sqrt{\psi'_a(a)} \sqrt{\psi'_a(z)} \frac{\psi_z(z) - \psi_a(z)}{\psi_a(z)} + 1,
\]

\[
f_C(a, z) := \frac{1}{2\pi} \frac{1}{z - a},
\]

where \(\psi_a \) is the unique conformal mapping from \(\Omega \) to the unit disk \(\mathbb{D} \) with \(\psi_a(a) = 0 \) and \(\psi'_a(a) > 0 \) (this mapping exists by the Riemann mapping theorem). Note that \(z \mapsto f_{\Omega}(a, z) \) and \(z \mapsto f_C(a, z) \) both have a simple pole of residue \(\frac{1}{2\pi} \) at \(z = a \) and that \((f_{\Omega} - f_C)(a, z) \) hence extends holomorphically to \(z = a \).

We can now state the key theorem of this paper:
Theorem 8. For each \(\delta > 0 \), identify \(a \in \mathbb{C} \) with the closest midpoint of a horizontal edge of \(\mathbb{C}_\delta \) and \(z \in \mathbb{C} \) with the closest midpoint of an edge of \(\mathbb{C}_\delta \). Then we have the following convergence results
\[
\frac{1}{\delta} f_{\Omega_\delta} (a, z) \xrightarrow{\delta \to 0} f_\Omega (a, z) \quad \forall a, z \in \Omega : a \neq z,
\]
\[
\frac{1}{\delta} f_{C_\delta} (a, z) \xrightarrow{\delta \to 0} f_C (a, z) \quad \forall a, z \in C : a \neq z,
\]
\[
\frac{1}{\delta} (f_{\Omega_\delta} - f_{C_\delta}) (a, z) \xrightarrow{\delta \to 0} (f_\Omega - f_C) (a, z) \quad \forall a, z \in \Omega.
\]

where the convergence of \(\frac{1}{\delta} f_{\Omega_\delta} \) is uniform on the compact subsets of \(\Omega \times \Omega \) away from the diagonal \(\{(w, w) : w \in \Omega \} \), the convergence of \(\frac{1}{\delta} f_{C_\delta} \) is uniform on \(\mathbb{C} \times \mathbb{C} \) away from the diagonal \(\{(w, w) : w \in \mathbb{C} \} \) and the convergence of \(\frac{1}{\delta} (f_{\Omega_\delta} - f_{C_\delta}) \) is uniform on the compact subsets of \(\Omega \times \Omega \).

From this result, the proof of the main theorem follows readily: since we have (Lemma 7)
\[
\left< \epsilon_\delta (a) \right>_{\Omega_\delta}^+ = 2 (f_{\Omega_\delta} - f_{C_\delta}) (a, a),
\]
\[
\left< \epsilon_\delta (a) \right>_{\Omega_\delta}^{\text{free}} = -2 (f_{\Omega_\delta} - f_{C_\delta}) (a, a),
\]
and since \(\frac{1}{\delta} (f_{\Omega_\delta} - f_{C_\delta}) \) converges to \((f_\Omega - f_C) (a, a)\), it suffices to check that
\[
\left(\sqrt{\psi'_a (a) / \psi_a (a)} \psi_a (z) + \frac{1}{z - a} \right) \xrightarrow{z \to a} \psi'_a (a),
\]
which follows readily by verifying that
\[
\sqrt{\psi'_a (a) / \psi_a (a)} \xrightarrow{z \to a} \frac{1}{z - a} = 0.
\]

To prove this, notice that since
\[
\frac{\sqrt{\psi'_a (a) / \psi_a (z)}}{\psi_a (z)} = \frac{1}{z - a} + A + O(z - a) \quad z \to a,
\]
by squaring this expression, it suffices to check that the residue of \(\psi'_a (z) / \psi^2_a (z) \) at \(z = a \) vanishes. By contour integrating on a small circle \(C \) around \(a \) and using change of variable formula (since \(\psi_a \) is conformal), we have
\[
\frac{4\pi i \cdot A}{\psi'_a (a)} = \oint_C \frac{\psi'_a (z) dz}{\psi_a (z)^2} = \oint_{\psi(z) (C)} \frac{dw}{w^2} = 0.
\]

1.7. Proof of convergence. The rest of this paper is devoted to the proof of the key theorem (Theorem 8). This proof consists mainly of two parts:

- The analysis of the discrete fermionic spinors \(f_{\Omega_\delta} \) and \(f_{C_\delta} \) as functions of their second variable (Section 2):
 - We prove that \(f_{\Omega_\delta} (a, \cdot) \) and \(f_{C_\delta} (a, \cdot) \) are discrete holomorphic (in a specific sense) on \(\mathcal{V}_{\Omega_\delta} \setminus \{a\} \) and \(\mathcal{V}_{C_\delta} \setminus \{a\} \) respectively (Propositions 13 and 14).
 - We show that \(f_{\Omega_\delta} (a, \cdot) \) and \(f_{C_\delta} (a, \cdot) \) have the same discrete singularity at \(a \): their difference \((f_{\Omega_\delta} - f_{C_\delta}) (a, \cdot)\) is hence discrete holomorphic on \(\mathcal{V}_{\Omega_\delta} \) (Propositions 15, 16 and 17).
– We observe that $f_{\Omega_\delta}(a, \cdot)$ has some specific boundary values on $\partial_\delta \mathcal{V}_{\Omega_\delta}$ (Proposition 18).

• The proof of convergence of functions $\frac{1}{2} f_{\Omega_\delta}$, $\frac{1}{2} f_{C_\delta}$, $\frac{1}{2} (f_{\Omega_\delta} - f_{C_\delta})$ (Section 3):

 – The convergence of $\frac{1}{2} f_{C_\delta}$ follows directly from the convergence result of Kenyon for the dimer coupling function (Theorem 25).

 – We show that the family of functions $\left(\frac{1}{2} (f_{\Omega_\delta} - f_{C_\delta})\right)_\delta$ is precompact on the compact subsets of $\Omega \times \Omega$: it admits convergent subsequential limits as $\delta \to 0$ (Proposition 26). Hence $\left(\frac{1}{2} f_{\Omega_\delta}\right)_\delta$ is also precompact on the compact subsets of $\Omega \times \Omega$ away from the diagonal.

 – We identify the $\delta \to 0$ subsequential limits of $\frac{1}{2} f_{\Omega_\delta}$ with the function f_Ω (Proposition 30). This allows to conclude the proof of Theorem 8.

Acknowledgements. This research was supported by the Swiss N.S.F., the European Research Council AG CONFRA, by EU RTN CODY, by the Chebyshev Laboratory (Department of Mathematics and Mechanics, St.-Petersburg State University) under RF governement grant 11.G34.31.0026 and by the National Science Foundation under grant DMS-1106588.

The authors would like to thank D. Chelkak for advice and useful remarks, as well as V. Beffara, Y. Velenik, K. Kytölä, K. Izyurov, C. Boutillier, B. de Tilière, for useful discussions. The first author would like to thank W. Werner for his invitation to Ecole normale supérieure, during which part of this work was completed.

2. Analysis of the Discrete Fermionic Spinors

In this section, we study the properties of the discrete fermionic spinors f_{Ω_δ} and f_{C_δ} that follow from their constructions. In the next section, we will use these properties to prove Theorem 8.

We study both spinors as functions $f_{\Omega_\delta}(a, \cdot)$ and $f_{C_\delta}(a, \cdot)$ of their second variable, keeping fixed the medial vertex $a \in \mathcal{V}_{\Omega_\delta}$ (which is the midpoint of a horizontal edge of Ω_δ).

Let us first introduce the discrete versions of the differential operators ∂_{δ} and Δ_{δ} that will be useful in this paper: for a \mathbb{C}-valued function f, we define, wherever it makes sense (i.e. for vertices of $\mathcal{V}_{\Omega_\delta} \cup \mathcal{V}_{\Omega_\delta}$),

$$\partial_{\delta} f(x) := f\left(x + \frac{\delta}{2}\right) - f\left(x - \frac{\delta}{2}\right) + i \left(f\left(x + i\delta\right) - f\left(x - i\delta\right)\right),$$

$$\Delta_{\delta} f(x) := f(x + \delta) + f(x + i\delta) + f(x - \delta) + f(x - i\delta) - 4f(x).$$

In the case where one has that a vertex $y \in \{x \pm \delta, x \pm i\delta\}$ belongs to $\partial \mathcal{V}_{\Omega_\delta}$ in the definition of Δ_{δ}, the boundary vertex is the one identified with the edge $\langle x, y \rangle \in \partial \mathcal{E}_{\Omega_\delta}$.

If $e = \vec{x}y \in \mathcal{E}_{\Omega_\delta}$ is an oriented edge with $x, y \in \mathcal{V}_{\Omega_\delta}$ and f is a function $\mathcal{V}_{\Omega_\delta} \to \mathbb{C}$ we denote by $\partial_e f$ the discrete partial derivative defined by $\partial_e f := f(y) - f(x)$.

2.1. Discrete holomorphickity. It turns out that the functions $f_{\Omega_\delta}(a, \cdot)$ and $f_{C_\delta}(a, \cdot)$ are discrete holomorphic in a specific sense, which we call s-holomorphy or spin-holomorphy.
Let us first define this notion. With any medial edge $e \in E_{\mathcal{C}_\delta}$, we associate a line $\ell(e) \subset \mathbb{C}$ of the complex plane defined by
\[\ell(e) := (d - v)^{-\frac{1}{2}} R = \left\{ (d - v)^{-\frac{1}{2}} t : t \in \mathbb{R} \right\}, \]
where $v \in V_{\mathcal{C}_\delta}$ is the closest vertex to e and $d \in V_{\mathcal{C}_\delta}^*$ is the closest dual vertex to e.

On the square lattice, the four possible lines that we obtain are $e^{\pm \frac{\pi i}{8}} R$ and $e^{\pm \frac{3\pi i}{8}} R$.

When $\ell := e^{i\theta} R$ is a line in the complex plane passing through the origin, let us denote by P_ℓ the orthogonal projection on ℓ, defined by
\[P_\ell[z] := \frac{1}{2} \left(z + e^{2i\theta} z \right) \quad \forall z \in \mathbb{C}. \]

Definition 9. Let $M_\delta \subseteq V_{\mathcal{C}_\delta}$ be a collection of medial vertices. We say that $f : M_\delta \to \mathbb{C}$ is s-holomorphic on M_δ if for any two medial vertices $x, y \in M_\delta$ that are adjacent in \mathcal{C}_δ^M,
\[P_{\ell(e)}[f(x)] = P_{\ell(e)}[f(y)], \]
where $e = \langle x, y \rangle \in E_{\mathcal{C}_\delta}$.

Remark 10. Our definition is the same as the one introduced in [Smi10], except that the lines that we consider are rotated by a phase of $e^{\frac{\pi i}{8}}$, and that our lattice is rotated by an angle of $\frac{\pi}{4}$, compared to the definitions there. In [ChSm09] this definition is also used, in the more general context of isoradial graphs.

Remark 11. The definition of s-holomorphicity implies that a discrete version of the Cauchy-Riemann equations is satisfied: if $f : M_\delta \subseteq V_{\mathcal{C}_\delta^M} \to \mathbb{C}$ is s-holomorphic and $v \in V_{\mathcal{C}_\delta} \cup V_{\mathcal{C}_\delta^*}$ is such that the four medial vertices $v \pm \frac{\delta}{2}, v \pm i\frac{\delta}{2}$ are in M_δ, then we have:
\[\partial_\delta f(v) = 0. \]
This can be found in [Smi10] (it follows by taking a linear combination of the four s-holomorphicity relations between the values $f(v \pm \frac{\delta}{2}), f(v \pm i\frac{\delta}{2})$), as well as the fact that satisfying this difference equation is strictly weaker than being s-holomorphic.

Remark 12. If $\lambda_\delta = \left\{ \overrightarrow{uv}_i \in E_{\mathcal{C}_\delta^M} : i \in \mathbb{Z}/n\mathbb{Z} \right\}$ is a simple counterclockwise-oriented closed discrete contour of medial edges and Λ_δ is the collection of points in $V_{\mathcal{C}_\delta} \cup V_{\mathcal{C}_\delta^*}$,
surrounded by λ_{A}, then it is easy to check that for any function $f : V_{\Omega_{d}} \to \mathbb{C}$, we have

$$\sum_{v_{i} \in \Lambda_{d}} \frac{f(v_{i}) + f(v_{i+1})}{2} (v_{i+1} - v_{i}) = i\delta \sum_{z \in \Lambda_{d}} \partial_{\delta} f(v).$$

In particular this sum vanishes if f is discrete holomorphic.

Proposition 13. The function $f_{\Omega_{d}} (a, \cdot)$ is s-holomorphic on $V_{\Omega_{d}} \setminus \{a\}$.

Proof. Let $z, w \in V_{\Omega_{d}} \setminus \{a\}$ be two adjacent medial vertices and let $e \in E_{\Omega_{d}}$ be the medial edge linking them. Suppose that z is the midpoint of a horizontal edge and that w is the midpoint of a vertical edge. We prove the result in the case where $w = z + \frac{1}{2} \delta$ (the other ones are symmetric). Denote by h the half-edge between z and $z + \frac{1}{2} \delta \in V_{\Omega_{d}}$ and by \tilde{h} the half-edge between $z + \frac{1}{2} \delta$ and w. For any $\gamma \in C_{\Omega_{d}} (a, z)$, define $\varphi(\tilde{h}) := \gamma \oplus h \oplus \chi$ as the symmetric difference of γ with $\{h, \tilde{h}\}$: if h is not in γ, add it, otherwise remove it, and similarly for \tilde{h}. Clearly, φ is an involution mapping $C_{\Omega_{d}} (a, z)$ to $C_{\Omega_{d}} (a, w)$ and vice versa. Moreover, for $\gamma \in C_{\Omega_{d}} (a, z)$, we have

$$P_{e^{-\frac{2\pi i}{\delta}} [\alpha(\gamma)e^{-\frac{i}{\delta} W(\gamma)}} = P_{e^{-\frac{2\pi i}{\delta}} [\alpha(\varphi(\gamma))e^{-\frac{i}{\delta} W(\varphi(\gamma))}].$$

This identity follows from considering the four possible cases, as shown in Figure 2.2.

1. If $h \notin \gamma$ and $\tilde{h} \notin \gamma$, then we have $e^{-\frac{i}{\delta} W(\gamma)} \in \mathbb{R}$, $|\varphi(\gamma)| = |\gamma| + 1$ and $e^{-\frac{i}{\delta} W(\varphi(\gamma))} = e^{-\frac{i}{\delta} W(\gamma)}$.

2. If $h \notin \gamma$ and $\tilde{h} \in \gamma$, we have $e^{-\frac{i}{\delta} W(\gamma)} \in \mathbb{R}$, $|\varphi(\gamma)| = |\gamma| + 1$ and $e^{-\frac{i}{\delta} W(\varphi(\gamma))} = e^{-\frac{i}{\delta} W(\gamma)}$; there are a number of subcases, as shown in Figure 2.2 for which these relations are satisfied.

3. If $h \in \gamma$ and $\tilde{h} \notin \gamma$, we have $e^{-\frac{i}{\delta} W(\gamma)} \in \mathbb{R}$, $|\varphi(\gamma)| = |\gamma| - 1$ and $e^{-\frac{i}{\delta} W(\varphi(\gamma))} = e^{-\frac{i}{\delta} W(\gamma)}$; in this case, we can always choose an admissible walk on γ that is like in Figure 2.2.

4. If $h \in \gamma$ and $\tilde{h} \notin \gamma$, we have $e^{-\frac{i}{\delta} W(\gamma)} \in \mathbb{R}$, $|\varphi(\gamma)| = |\gamma| - 1$ and $e^{-\frac{i}{\delta} W(\varphi(\gamma))} = e^{-\frac{i}{\delta} W(\gamma)}$.

In all the four cases, it is then straightforward to check that equation 2.1 is satisfied. By definition of $f_{\Omega_{d}}$ (Section 5), we finally deduce

$$P_{e^{-\frac{2\pi i}{\delta}} [f_{\Omega_{d}} (a, z)]} = \sum_{\gamma \in C_{\Omega_{d}} (a, z)} P_{e^{-\frac{2\pi i}{\delta}} [\alpha(\gamma)e^{-\frac{i}{\delta} W(\gamma)}]} = \frac{1}{Z_{\Omega_{d}}} \sum_{\gamma \in C_{\Omega_{d}} (a, w)} P_{e^{-\frac{2\pi i}{\delta}} [\alpha(\varphi(\gamma))e^{-\frac{i}{\delta} W(\varphi(\gamma))}]} = P_{e^{-\frac{2\pi i}{\delta}} [f_{\Omega_{d}} (a, w)]},$$

which is the s-holomorphicity equation.

The full-plane discrete spinor is also s-holomorphic:

Proposition 14. The function $f_{C_{d}} (a, \cdot)$ is s-holomorphic on $V_{C_{d}} \setminus \{a\}$.

Proof. This follows directly from the definition of $f_{C_{d}}$ (Definition 6 and of Lemma 32 in Appendix B.)
Figure 2.2. The four possible cases in the proof of Proposition 13: how a configuration is changed after two half-edges between z and w are removed or added.
2.2. Singularity. Near the medial vertex \(a \), the functions \(f_{\Omega_4} (a, \cdot) \) and \(f_{C_4} (a, \cdot) \) are not s-holomorphic: they both have a discrete singularity, but of the same nature, and consequently the difference \((f_{\Omega_4} - f_{C_4}) (a, \cdot) \) is s-holomorphic on \(V_{\Omega_4}^M \), including the point \(a \). Rather than defining the notion of discrete singularity, let us simply describe the relations that these functions satisfy near \(a \). For \(x \in \{ \pm 1 \pm i \} \), let us denote by \(a_x := a + e^{i \frac{2 \pi x}{2}} \in V_{\Omega_4}^M \) the medial vertex adjacent to \(a \), by \(e_x \in E_{\Omega_4}^M \) the medial edge between \(a \) and \(a_x \) and by \(\ell_x \) the line \(\ell(e_x) \) (as in Definition 9). Let \(e \in E_{\Omega_4}^M \) be the horizontal edge with midpoint \(a \). Recall that \(f_{\Omega_4} (a, a) \) is defined as \(Z_{\Omega_4}^{(e)} / Z_{\Omega_4} \) (see Definition 5).

Proposition 15. Near \(a \), the function \(f_{\Omega_4} (a, \cdot) \) satisfies the relations

\[
\begin{align*}
p_{\ell_{1+i}} [f_{\Omega_4} (a, a)] &= p_{\ell_{1+i}} [f_{\Omega_4} (a, a_{1+i})], \\
p_{\ell_{1-i}} [f_{\Omega_4} (a, a)] &= p_{\ell_{1-i}} [f_{\Omega_4} (a, a_{1-i})], \\
p_{\ell_{-1+i}} [f_{\Omega_4} (a, a) - 1] &= p_{\ell_{-1+i}} [f_{\Omega_4} (a, a_{-1+i})], \\
p_{\ell_{-1-i}} [f_{\Omega_4} (a, a) - 1] &= p_{\ell_{-1-i}} [f_{\Omega_4} (a, a_{-1-i})].
\end{align*}
\]

Proof. The first two relations are the s-holomorphicity relations and they are obtained in exactly the same way as the s-holomorphicity relations away from \(a \). Indeed, let us take the same notation as in the proof of Proposition 13 and consider the involutions \(\varphi_{1+i} : C_{\Omega_4}^{(e)} \to C_{\Omega_4} (a, a_{1+i}) \), and \(\varphi_{-1-i} : C_{\Omega_4}^{(e)} \to C_{\Omega_4} (a, a_{-1-i}) \) defined by \(\varphi_{1+i} (\gamma) := \gamma + \langle a, a_1 \rangle \oplus \langle a_1, a_{1+i} \rangle \) and \(\varphi_{-1-i} (\gamma) := \gamma + \langle a, a_{-1} \rangle \oplus \langle a_{-1}, a_{-1-i} \rangle \) respectively: as in the proof of Proposition 15 we have that these involutions preserve the projections on \(\ell_{1+i} \) and \(\ell_{-1-i} \) respectively (a configuration \(\gamma \in C_{\Omega_4}^{(e)} \) is interpreted as a configuration of winding \(0 \)).

For the last two relations, we have that the involutions \(\varphi_{-1+i} : C_{\Omega_4}^{(e)} \to C_{\Omega_4} (a, a_{-1+i}) \) and \(\varphi_{-1-i} : C_{\Omega_4}^{(e)} \to C_{\Omega_4} (a, a_{-1-i}) \), respectively defined by \(\varphi_{-1+i} (\gamma) := \gamma + \langle a, a_{-1} \rangle \oplus \langle a_{-1}, a_{-1+i} \rangle \) and \(\varphi_{-1-i} (\gamma) := \gamma + \langle a, a_{-1} \rangle \oplus \langle a_{-1}, a_{-1-i} \rangle \), are such that for any \(\gamma \in C_{\Omega_4}^{(e)} \), we have

\[
\begin{align*}
-p_{\ell_{-1+i}} [\alpha^{\gamma}] &= p_{\ell_{-1+i}} [\alpha^{\gamma} e^{-i \frac{4 \pi}{2}}] = p_{\ell_{-1+i}} [\alpha^{\gamma} e^{-i \frac{4 \pi}{2} \varphi_{-1+i} (\gamma)}], \\
-p_{\ell_{-1-i}} [\alpha^{\gamma}] &= p_{\ell_{-1-i}} [\alpha^{\gamma} e^{-i \frac{4 \pi}{2}}] = p_{\ell_{-1-i}} [\alpha^{\gamma} e^{-i \frac{4 \pi}{2} \varphi_{-1-i} (\gamma)}],
\end{align*}
\]

where \(\gamma \) is interpreted as a configuration with a path from \(a \) to \(a \) that makes a loop, of winding number \(\pm 2 \pi \). This follows from the same considerations as in the proof of Proposition 13. Hence, since \(Z_{\Omega_4}^{(e)} / Z_{\Omega_4} = 1 - f_{\Omega_4} (a, a) \), we obtain, by summing the above equations over all \(\gamma \in C_{\Omega_4}^{(e)} \), the last two identities of Proposition 15.

The function \(f_{C_4} (a, \cdot) \) has the same type of discrete singularity as \(f_{\Omega_4} (a, \cdot) \):

Proposition 16. Near \(a \), the function \(f_{C_4} (a, \cdot) \) satisfies exactly the same projection relations as the ones satisfied by the function \(f_{\Omega_4} (a, \cdot) \), given by Proposition 13.

Proof. See Appendix B, Proposition 33.

From Propositions 13, 14, 15 and 16 we readily deduce the following:

Proposition 17. The function \((f_{\Omega_4} - f_{C_4}) (a, \cdot) : V_{\Omega_4}^M \to \mathbb{C} \) is s-holomorphic on \(V_{\Omega_4}^M \).
2.3. Boundary values. A crucial piece of information to understand the effect of the geometry of the discrete domain Ω_δ on the average energy density at $a \in V_{\Omega_\delta^M}$ is the boundary behavior of $f_{\Omega_\delta}(a, \cdot)$. On the set of boundary medial vertices $\partial V_{\Omega_\delta^M}$, which link a vertex of Ω_δ and a vertex of $\partial \Omega_\delta$, the argument of $f_{\Omega_\delta}(a, \cdot)$ is determined modulo π. For each $z \in \partial V_{\Omega_\delta^M}$, with z being the midpoint of an edge $e \in \partial E_{\Omega_\delta}$ between a vertex $x \in V_{\Omega_\delta^M}$ and a vertex $y \in \partial \Omega_\delta$, denote by $\nu_{\text{out}}(z) \in \partial E_{\Omega_\delta}$ the oriented outward-pointing edge at z, identified with the number $y - x$: it is a discrete analogue of the outward-pointing normal to the domain.

Proposition 18. On $\partial V_{\Omega_\delta^M}$, the argument of the value of $f_{\Omega_\delta}(a, \cdot)$ is determined (modulo π): for each $z \in \partial V_{\Omega_\delta^M}$, we have
\[
\text{Im} \left(f_{\Omega_\delta}(a, z) \nu_{\text{out}}^\frac{1}{2}(z) \right) = 0.
\]

Proof. From topological considerations, we have that if $z \in \partial V_{\Omega_\delta^M}$ and $\gamma \in C_{\Omega_\delta}(a, z)$, then $\text{Im} \left(e^{-\frac{1}{2}W(\gamma)} \nu_{\text{out}}^\frac{1}{2}(z) \right) = 0$: the winding number of any admissible walk from a to z is determined modulo 2π (see Figure 2.3) and it is easy to check that $e^{-\frac{1}{2}W(\gamma)}$ is a real multiple of $(\nu_{\text{out}}(z))^{-\frac{1}{2}}$. Hence, the result follows from the definition of f_{Ω_δ}. \qed

Remark 19. This is the same kind of Riemann-type boundary conditions as in [Smi10, ChSm09]. Notice that in these papers, the argument of the function on the boundary is fully determined (not only modulo π).

2.4. Discrete integration. An essential tool that we will use for deriving the convergence of $f_{\Omega_\delta}(a, \cdot)$ is the possibility to define a discrete version of the antiderivative of the square of an s-holomorphic function, cf. [Smi10].

Proposition 20. Let $f : V_{\mathcal{D}_8^M} \to \mathbb{C}$ be an s-holomorphic function on a discrete domain \mathcal{D}_8 and let $x \in \overline{V}_{\mathcal{D}_8} \cup \overline{V}_{\mathcal{D}_8^*}$ (where $\overline{V}_{\mathcal{D}_8} = V_{\mathcal{D}_8} \cup \partial V_{\mathcal{D}_8}$ and $\overline{V}_{\mathcal{D}_8^*} = V_{\mathcal{D}_8^*} \cup \partial V_{\mathcal{D}_8^*}$).
Then there exists a (possibly multivalued) discrete analogue $I_{x,\delta} [f] : \overline{V_{D_\delta}} \cup \overline{V_{D_\delta}^*} \to \mathbb{R}$ of the antiderivative
\[
-\Re \left(\int_x^y f^2 \right),
\]
uniquely defined by $I_{x,\delta} [f] (x) := 0$ and
\[
I_{x,\delta} [f] (b) - I_{x,\delta} [f] (w) = \sqrt{2\delta} |P_{f(e*)} [f (y)]|^2 = \sqrt{2\delta} |P_{f(e*')} [f (z)]|^2
\]
\[
\forall b \in \mathcal{V}_{\Omega_*}, w \in \mathcal{V}_{\Omega_*} : |b - w| = \frac{\delta}{\sqrt{2}},
\]
where $e^* = \langle y, z \rangle \in E_{D_\delta}$ is the medial edge which is between b and w. If D_δ is simply connected, then the function $I_{x,\delta} [f]$ is globally well-defined (single-valued). When the choice of the point x is irrelevant, we will omit it and simply write $I_{\delta} [f]$.

Remark 21. It follows from the definition of $I_{\delta} [f]$ that for any pair of adjacent vertices $x, y \in \overline{V_{D_\delta}}$, we have
\[
I_{\delta} [f] (x) - I_{\delta} [f] (y) = -\Re \left(f \left(\frac{x + y}{2} \right) \right) \left(y - x \right),
\]
and similarly if $x, y \in \overline{V_{D_\delta}^*}$ are adjacent dual vertices. From there it is easy to see that if the mesh size is small, $I_{\delta} [f]$ is a good approximation of $-\Re \left(f f^2 \right)$.

We denote by $I_{x,\delta}^* [f]$ and $I_{x,\delta}^0 [f]$ the restrictions of $I_{x,\delta} [f]$ to V_{D_δ} and $V_{D_\delta}^*$ respectively. We have the following:

Proposition 22. The function $I_{x,\delta}^* [f] : \overline{V_{D_\delta}} \to \mathbb{R}$ is discrete subharmonic and the function $I_{x,\delta}^0 [f] : \overline{V_{D_\delta}^*} \to \mathbb{R}$ is discrete superharmonic: we have
\[
\Delta_{\delta} I_{x,\delta}^* [f] (v) \geq 0 \quad \forall v \in \mathcal{V}_{D_\delta},
\]
\[
\Delta_{\delta} I_{x,\delta}^0 [f] (v) \leq 0 \quad \forall v \in \mathcal{V}_{D_\delta}^*.
\]
If $m \in \partial \mathcal{V}_{D_\delta}^*$, then we have
\[
\partial_{\nu_{\text{out}} (m)} I_{x,\delta}^* [f] = \Im \left(f (m) \nu_{\text{out}}^\perp (m) \right)^2 - \Re \left(f (m) \nu_{\text{out}}^\perp (m) \right)^2,
\]
where $\nu_{\text{out}} (m) \in \partial \mathcal{E}_{D_\delta}$ is the oriented edge from $a \in D_\delta$ to $b \in \partial D_\delta$, the midpoint of which is m.

Proof. For the subharmonicity/superharmonicity deduced from the s-holomorphicity of f, see Lemma 3.8 in [Smi10] (the fact that the phases are different does not affect the result). The normal derivative statement follows directly from the definition of $I_{\delta} [f]$. □

In the case of the discrete fermionic spinor $f_{\Omega_*} (\cdot, \cdot)$, the boundary condition for $I_{\delta} [f_{\Omega_*} (a, \cdot)] (\cdot)$ becomes particularly simple.

Proposition 23. The function $I_{\delta}^* [f_{\Omega_*} (a, \cdot)] : \mathcal{V}_{\Omega_*} \to \mathbb{R}$ is constant on $\partial \mathcal{V}_{\Omega_*}$ and for each $m \in \partial \mathcal{V}_{\Omega_*}$,
\[
\partial_{\nu_{\text{out}} (m)} I_{\delta}^* [f_{\Omega_*} (a, \cdot)] = - |f_{\Omega_*} (a, m)|^2.
\]
Proof. The first statement follows from the construction of $\mathbb{I}^\circ [f_{\Omega \delta} (a, \cdot)]$ and from the boundary condition for $f_{\Omega \delta}$ (Proposition 18).

The statement for $\mathbb{I}^\bullet [f_{\Omega \delta} (a, \cdot)]$ follows directly from Proposition 22 and the boundary condition for $f_{\Omega \delta}$ (Proposition 18 again).

□

Remark 24. Note that $\mathbb{I}^\circ [f_{\Omega \delta} (a, \cdot)]$ is single-valued (as follows from Proposition 23) and well-defined on $\overline{\Omega_\delta} \cup \overline{\Omega_{\delta}^*}$ but that the presence of a singularity near a implies that and $\mathbb{I}^\bullet [f_{\Omega \delta} (a, \cdot)]$ and $\mathbb{I}^\circ [f_{\Omega \delta} (a, \cdot)]$ are (at least a priori) not subharmonic or superharmonic near a (more precisely at $a \pm \frac{\delta}{2}, a \pm \frac{i\delta}{2}$).

3. CONVERGENCE OF THE DISCRETE FERMIONIC SPINORS

We now turn to the convergence of the three functions $\frac{1}{\delta} f_{\Omega \delta}, \frac{1}{\delta} f_{C \delta}, \frac{1}{\delta} (f_{\Omega \delta} - f_{C \delta})$ as $\delta \to 0$ (Theorem 8). For this, we use the discrete results derived in the previous section: the s-holomorphicity, the discrete singularity and the boundary values. As we will discuss convergence questions, we will always, when necessary, identify the points of the complex plane with the closest vertices on the graphs considered. In this way, we will extend functions defined on the vertices of the graphs $\Omega_\delta, \Omega_\delta^*, \Omega_{\delta}^m$ to functions defined on Ω. In particular, for the discrete holomorphic spinors, when we write $f_{\Omega \delta} (a, z)$ or $f_{C \delta} (a, z)$ for $a, z \in \Omega$, we identify a with the closest midpoint of a horizontal edge of $\mathcal{E}_{\Omega \delta}$ and z with the closest midpoint of an arbitrary edge of $\mathcal{E}_{\Omega \delta}$.

The convergence of $f_{C \delta}$ almost immediately follows from the work of Kenyon [Ken00]:

Theorem 25. For any $\epsilon > 0$, we have

$$\frac{1}{\delta} f_{C \delta} (a, z) \to f_C (a, z) \text{ uniformly on } \{(a, z) \in \mathbb{C}^2 : |a - z| \geq \epsilon\},$$

where

$$f_C (a, z) = \frac{1}{2\pi} (z - a).$$

Proof. See the last paragraph of Appendix B. □

For the convergence of $\frac{1}{\delta} f_{\Omega \delta}$ and $\frac{1}{\delta} (f_{\Omega \delta} - f_{C \delta})$, we proceed in two steps: we first show that the family of functions $\frac{1}{\delta} (f_{\Omega \delta} - f_{C \delta})$ is compact. Precompactness for $\left(\frac{1}{\delta} f_{\Omega \delta}\right)_{\delta > 0}$ will then readily follow from Theorem 25. We then identify uniquely the subsequential limits of $\left(\frac{1}{\delta} f_{\Omega \delta}\right)_{\delta > 0}$; this also identifies the ones of $\left(\frac{1}{\delta} (f_{\Omega \delta} - f_{C \delta})\right)_{\delta > 0}$.

3.1. Precompactness. We now state our main precompactness result:

Proposition 26. The family of functions

$$\left((a, z) \mapsto \frac{1}{\delta} (f_{\Omega \delta} - f_{C \delta}) (a, z) \right)_{\delta > 0}$$

is precompact in the topology of uniform convergence on the compact subsets of $\Omega \times \Omega$, and hence the family of functions

$$\left((a, z) \mapsto \frac{1}{\delta} f_{\Omega \delta} (a, z) \right)_{\delta > 0}$$
is precompact in the topology of uniform convergence on the compact subsets of \(\Omega \times \Omega \) that are away from the diagonal.

Proof. Set \(f^C_{\Omega_\delta} := f_{\Omega_\delta} - f_{\mathbb{C}} \). By Proposition 18 we have that for any \(x \in \partial V_{\Omega_\delta'} \),

\[
\Im \left(f^C_{\Omega_\delta}(a, x) \cdot \nu^\perp_{\text{out}}(x) \right) = -\Im \left(f_{\mathbb{C}}(a, x) \cdot \nu^\perp_{\text{out}}(x) \right).
\]

By Theorem 25 and the fact that \(\partial \Omega \) is smooth (and hence the number of medial vertices in \(\partial V_{\Omega_\delta'} \) is \(O(\delta^{-1}) \)) we deduce that the family of functions

\[
a \mapsto \sum_{x \in \partial V_{\Omega_\delta'}} \Im \left(\frac{1}{\delta} f^C_{\Omega_\delta}(a, x) \cdot \nu^\perp_{\text{out}}(x) \right)^2 \cdot \delta
\]

is uniformly bounded and equicontinuous on the compact subsets of \(\Omega \) (since \(\frac{1}{\delta} f_{\mathbb{C}} \) is uniformly convergent by Theorem 25). By Proposition 27 below, we obtain that for any \(v \in V_{\Omega_\delta'} \setminus \partial V_{\Omega_\delta'} \),

\[
\left| u_\delta(v) \right| \leq C \sqrt{\frac{\sum_{x \in \partial V_{\Omega_\delta'}} \Im \left(u_\delta(x) \cdot \nu^\perp_{\text{out}}(x) \right)^2 \cdot \delta}{\text{dist}(v, \partial V_{\Omega_\delta'})}},
\]

\[
\frac{1}{\delta} \left\| \nabla u_\delta(v) \right\|^2 \leq C \sqrt{\frac{\sum_{x \in \partial V_{\Omega_\delta'}} \Im \left(u_\delta(x) \cdot \nu^\perp_{\text{out}}(x) \right)^2 \cdot \delta}{\text{dist}(v, \partial V_{\Omega_\delta'})^3}},
\]

where \(\nabla u_\delta(v) = (u_\delta(v + \delta) - u_\delta(v), u_\delta(v + i\delta) - u_\delta(v)) \).

Proposition 27. There exists a universal constant \(C > 0 \) such that for each \(\delta > 0 \) and any s-holomorphic function \(u_\delta : V_{\Omega_\delta'} \to \mathbb{C} \), we have, for any \(v \in V_{\Omega_\delta'} \setminus \partial V_{\Omega_\delta'} \),

\[
\left| u_\delta(v) \right| \leq C \sqrt{\frac{\sum_{x \in \partial V_{\Omega_\delta'}} \Im \left(u_\delta(x) \cdot \nu^\perp_{\text{out}}(x) \right)^2 \cdot \delta}{\text{dist}(v, \partial V_{\Omega_\delta'})}},
\]

\[
\frac{1}{\delta} \left\| \nabla u_\delta(v) \right\|^2 \leq C \sqrt{\frac{\sum_{x \in \partial V_{\Omega_\delta'}} \Im \left(u_\delta(x) \cdot \nu^\perp_{\text{out}}(x) \right)^2 \cdot \delta}{\text{dist}(v, \partial V_{\Omega_\delta'})^3}},
\]

where \(\nabla u_\delta(v) = (u_\delta(v + \delta) - u_\delta(v), u_\delta(v + i\delta) - u_\delta(v)) \).

Proof. Consider the function \(\mathbb{I}_\delta[u_\delta] \), normalized to be 0 at an arbitrary point. By subharmonicity (Proposition 22), a discrete integration by parts, and again by Proposition 22 we obtain

\[
0 \leq \sum_{b \in V_{\Omega_\delta'}} \Delta_b^* \mathbb{I}_\delta[u_\delta] = \sum_{x \in \partial V_{\Omega_\delta'}} \partial_{\nu_{\text{out}}(x)}^* \mathbb{I}_\delta[u_\delta]
\]

\[
= \sum_{x \in \partial V_{\Omega_\delta'}} \left(\Im \left(u_\delta(x) \cdot \nu^\perp_{\text{out}}(x) \right) \right)^2 - \left(\Re \left(u_\delta(x) \cdot \nu^\perp_{\text{out}}(x) \right) \right)^2
\]

and from the last identity we also deduce that

\[
\sum_{x \in \partial V_{\Omega_\delta'}} |u_\delta(x)|^2 \leq 2 \sum_{x \in \partial V_{\Omega_\delta'}} \left(\Im \left(u_\delta(x) \cdot \nu^\perp_{\text{out}}(x) \right) \right)^2.
\]
On the other hand, from the construction of \(I_\delta [u] \), it is easy to see that

\[
\max_{z \in \partial V_{a,z} \cup \partial V_{a,z}^*} |I_\delta [u_\delta] (z)| \leq \sqrt{2} \left(\sum_{x \in \partial_0 V_{\Omega_{\delta}^*}} |u_\delta (x)|^2 \cdot \delta \right).
\]

By subharmonicity of \(I_\delta [u_\delta] \), superharmonicity of \(I_\delta [u_\delta] \) and the construction of \(I_\delta [u_\delta] \) (Proposition 20), we have

\[
\max_{w \in V_{a,z} \cup V_{a,z}^*} |I_\delta [u_\delta] (w)| = \max_{z \in \partial V_{a,z} \cup \partial V_{a,z}^*} |I_\delta [u_\delta] (z)|.
\]

By Theorem 3.12 in [ChSm09] (the construction there is the same as the one of our paper, up to a multiplication by an overall complex factor, which does not affect the result), there exists then a universal constant \(C > 0 \) such that for any \(v \in V_{\Omega_{\delta}^*} \setminus \partial_0 V_{\Omega_{\delta}} \)

\[
|u_\delta (v)|^2 \leq \frac{C \max_{w \in V_{a,z} \cup V_{a,z}^*} |I_\delta [u_\delta] (w)|}{\text{dist} (v, \partial_0 V_{\Omega_{\delta}^*})},
\]

\[
\| \nabla u_\delta (v) \|^2 \leq \frac{C \max_{w \in V_{a,z} \cup V_{a,z}^*} |I_\delta [u_\delta] (w)|}{\text{dist} (v, \partial_0 V_{\Omega_{\delta}^*})^2}.
\]

We therefore deduce the desired inequalities. \(\square \)

3.2. Identification of the limit

We can now uniquely identify the subsequential limits of \(\frac{1}{\delta} f_\Omega \) as \(\delta \to 0 \) (we will often make a slight of abuse of notation and simply denote the family of functions by \(\frac{1}{\delta} f_\Omega \)). Let us start with a characterization of the continuous fermionic spinor \(f_\Omega (a, \cdot) \) (defined in Section 1.6).

Lemma 28. The function \(f_\Omega (a, \cdot) \) is the unique holomorphic function such that

\[
\mathfrak{R} \left(f_\Omega (a, z) \right) = 0 \quad \forall z \in \partial \Omega,
\]

where \(\nu_{\text{out}} \) denotes the outward-pointing normal to \(\partial \Omega \).

The boundary condition \(\text{3.1} \) is equivalent to the condition that the antiderivative \(F (z) = -\mathfrak{R} \left(\int^z f_\Omega^2 (a, w) \, dw \right) \) is single-valued on \(\Omega \setminus \{a\} \), constant on \(\partial \Omega \) and satisfies

\[
\partial_{\nu_{\text{out}} (z)} F \leq 0 \quad \forall z \in \partial \Omega,
\]

where \(\partial_{\nu_{\text{out}} (z)} F \) denotes the normal derivative of \(F \) in the outward-pointing direction.

Proof. It is straightforward to check from the definition (Section 1.6) that \(f_\Omega (a, \cdot) \) has a simple pole of order 1 and residue \(\frac{1}{2\pi} \) at \(z = a \) and satisfies the boundary condition \(\text{3.1} \).

Let \(f \) be another function with the same pole and boundary condition. Then the function \(g \) defined by \(g (z) := f_\Omega (a, z) - f (z) \) extends holomorphically to \(\Omega \) and satisfies

\[
\mathfrak{R} \left(g (z) \nu_{\text{out}}^2 (z) \right) = 0 \quad \forall z \in \partial \Omega.
\]
The function \(G : \Omega \to \mathbb{C} \) defined by \(G(w) := \int_{w}^{\infty} g^2(z) \, dz \) has constant real part on \(\partial \Omega \) and hence is constant on \(\Omega \), by the maximum principle and the Cauchy-Riemann equations. Hence \(f_{\Omega}(a, \cdot) = \tilde{f}(\cdot) \).

For the second part of the statement, notice that the boundary condition \(3.1 \) implies that \(f_{\Omega}^2(a, \cdot) \nu_{\text{out}}(\cdot) \) is purely real on \(\partial \Omega \), and hence \(F \) must be constant on \(\partial \Omega \) (when going along the boundary, one integrates \(f_{\Omega}^2(a, \cdot) \partial \tau \), where \(\tau \) is the tangent to the boundary, which is orthogonal to the normal \(\nu_{\text{out}} \)); this implies that \(F \) is single-valued on \(\Omega \setminus \{a\} \) (since \(\Omega \) is simply connected) and that
\[
\partial_{\nu_{\text{out}}(z)} F = -|f_{\Omega}(a, z)|^2 \quad \forall z \in \partial \Omega.
\]

Conversely, it is easy to check that if \(F \) is constant on \(\partial \Omega \), then for any \(z \in \partial \Omega \), we have \(f_{\Omega}^2(a, z) \nu_{\text{out}}(z) \in \mathbb{R} \). Moreover, for any \(z \in \partial \Omega \), we have that \(\partial_{\nu_{\text{out}}(z)} F \leq 0 \) implies \(f_{\Omega}^2(a, z) \nu_{\text{out}}(z) \geq 0 \), which is equivalent to \(3 \text{m}(f_{\Omega}(a, z) \nu_{\text{out}}^2(z)) = 0 \). □

Let us also give a lemma which will be useful to connect the discrete spinors to the continuous ones:

Lemma 29. We have the uniform bound
\[
\sup_{\delta > 0} \left(\sum_{z \in \partial_{\delta} \nu_{\Omega}^n} |f_{\Omega}(z)|^2 \cdot \delta \right) < \infty.
\]

Proof. This follows directly from the the proof of precompactness of \(\left\{ \frac{1}{\delta} \{ f_{\Omega} - f_{C, \delta} \} \right\}_\delta \) (Proposition 26), the convergence of \(\frac{1}{\delta} f_{C, \delta} \) (Theorem 27) and the fact that \(\partial \Omega \) is smooth (the number of medial vertices in \(\partial_{\delta} \nu_{\Omega}^n \) is \(O(\delta^{-1}) \)). □

We now pass to the identification of the subsequential limits of \(\frac{1}{\delta} f_{\Omega}(a, \cdot) \) as \(\delta \to 0 \):

Proposition 30. Let \(\delta_n \) be a sequence with \(\delta_n \to 0 \) such that \(\frac{1}{\delta_n} f_{\Omega}(a, \cdot) \to f(\cdot) \), uniformly on the compact subsets of \(\Omega \setminus \{a\} \). Then \(f(\cdot) = f_{\Omega}(a, \cdot) \), where \(f_{\Omega}(a, \cdot) \) is defined in Section 1.6.

Proof. For each \(\delta > 0 \), set \(f_\delta(\cdot) := \frac{1}{\delta} f_{\Omega}(a, \cdot) \).

Let us first remark that \(f(\cdot) \) is holomorphic on \(\Omega \setminus \{a\} \), as it satisfies Morera’s condition: the integral of \(f(\cdot) \) on any contractible contour vanishes, since it can be approximated by a Riemann sum involving \(f_{\delta_n}(\cdot) \) (for \(\delta_n \) small), which vanishes identically as explained in Remark 12. Fix a point \(p \in \Omega \setminus \{a\} \). By Lemma 28 to identify \(f \) with \(f_\delta(a, \cdot) \), it suffices to check that \(F \), defined by \(F(z) := -\Re \left(\int_{p}^{z} f^2(w) \, dw \right) \), satisfies the conditions of the second part of that lemma.

Let \(F_3 : \overline{\nu}_{T_{\delta}} \cup \overline{\nu}_{T_{\delta}}^* \to \mathbb{R} \) be the discrete antiderivative \(\mathbb{I}_{p, \delta} [f_\delta] \), as defined in Proposition 20, and let \(F^*_3 \) and \(F^*_3 \) denote the restrictions of \(F_3 \) to \(\overline{\nu}_{T_{\delta}} \) and \(\overline{\nu}_{T_{\delta}}^* \), which are discrete subharmonic and superharmonic respectively (away from \(a \)), by Proposition 22. By Proposition 23 the function \(F^*_3 \) is constant on \(\partial \nu_{T_{\delta}}^* \); denote by \(F_3(\partial \Omega) \) this value. Fix a smooth doubly connected domain \(T \subset \Omega \setminus \{a\} \) such that \(\partial \Omega \subset \partial T \) and \(\text{dist}(a, \partial T) > 0 \) (one of the component of \(\partial T \) is \(\partial \Omega \) and the other is a simple loop surrounding \(a \)). Let us write \(F^*_3 =: H^*_3 + S^*_3 \) and \(F^*_3 =: H^*_3 + S^*_3 \),

- \(H^*_3 : \overline{\nu}_{T_{\delta}} \to \mathbb{R} \) is discrete harmonic, with \(H^*_3 := F^*_3 \) on \(\partial \nu_{T_{\delta}} \).
\[S^\bullet_0 : \nabla \rightarrow \mathbb{R} \text{ is discrete subharmonic, with } S^\bullet_0 := 0 \text{ on } \partial V_T, \]
\[H^\bullet_3 : \nabla_{T_3} \rightarrow \mathbb{R} \text{ is discrete harmonic, with } H^\bullet_3 := F^\bullet_3 \text{ on } \partial V_{T_3}, \]
\[S^\bullet_3 : \nabla_{T_3} \rightarrow \mathbb{R} \text{ is discrete superharmonic, with } S^\bullet_3 := 0 \text{ on } \partial V_{T_3}. \]

Let us further decompose \(H^\bullet_3 \) as \(A^\bullet_3 + B^\bullet_3 \), where

- \(A^\bullet_3 \) is discrete harmonic with \(A^\bullet_3 := F^\bullet_3 (\partial \Omega) \) on \(\partial V_{\Omega} \) and \(A^\bullet_3 := H^\bullet_3 \) on \(\partial V_{\Omega} \).
- \(B^\bullet_3 \) is discrete harmonic with \(B^\bullet_3 := H^\bullet_3 - F^\bullet_3 (\partial \Omega) \) on \(\partial V_{\Omega} \) and \(B^\bullet_3 := 0 \) on \(\partial V_{\Omega} \).

The situation is hence the following: for any \(z \in V_{\Omega} \) and \(w \in V_{\Omega} \) such that \(|z - w| = \delta/\sqrt{2} \), from the construction of \(F^\bullet_3 \), the superharmonicity of \(F^\bullet_3 \) and the subharmonicity of \(F^\bullet_3 \), we have

\[
3.2 \quad H^\bullet_3 (w) \leq F^\bullet_3 (w) \leq F^\bullet_3 (z) \leq H^\bullet_3 (z) = A^\bullet_3 (z) + B^\bullet_3 (z).
\]

It follows easily from Remark 31 that as \(n \rightarrow \infty \), we have that \(F^\delta_n \rightarrow F \), uniformly on the compact subsets of \(\Omega \setminus \{a\} \) (since \(f^\delta_n \rightarrow f \)).

Let us now check that \(F \) satisfies the conditions of Lemma 28: \(H^\delta_3 \) and \(H^\delta_3 \) are uniformly close to each other on \(\partial \Omega \setminus \partial \Omega \) (they are equal to \(F^\delta_3 \) and \(F^\delta_3 \) there, and these functions are uniformly close to each other near \(\partial \Omega \setminus \partial \Omega \), as follows easily from the convergence of \(f^\delta_n \)). To control \(B^\delta_n \), we use the following lemma, which is proven at the end of the section.

Lemma 31. As \(n \rightarrow \infty \), \(B^\delta_n \rightarrow 0 \) uniformly on the compact subsets of \(\Omega \).

Observe that \(F^\delta_n (\partial \Omega) \) is uniformly bounded. Suppose indeed that it would not be the case and (by extracting a subsequence) that \(F^\delta_n (\partial \Omega) \rightarrow \infty \) (say). We would have \(H^\delta_3 \rightarrow \infty \), since \(H^\delta_3 \) is harmonic and bounded on \(\partial \Omega \setminus \partial \Omega \) (since it is equal to \(F^\delta_3 \) there). We also would have \(A^\delta_n \rightarrow \infty \), for the same reasons. By Equation 3.2 and Lemma 31, it would imply that \(F^\delta_n \) would blow up on \(\Omega \), which would contradict the fact that it converges uniformly to \(F \) on the compact subsets of \(\Omega \).

We deduce that \(H^\delta_3 \) and \(A^\delta_n \) are uniformly bounded on \(\Omega \).

We have that \(H^\delta_3 \rightarrow F \) and \(A^\delta_n \rightarrow F \) as \(n \rightarrow \infty \), uniformly on the compact subsets of \(\Omega \). From the discrete Beurling estimate (see [Kess77]) and the uniform boundedness of \(H^\delta_3 \) and \(A^\delta_n \) near \(\partial \Omega \), we readily obtain

\[
\limsup_{n \rightarrow \infty} \left| A^\delta_n (z) - F^\delta_n (\partial \Omega) \right| \rightarrow 0, \quad z \rightarrow \partial \Omega,
\]
\[
\limsup_{n \rightarrow \infty} \left| H^\delta_3 (z) - F^\delta_n (\partial \Omega) \right| \rightarrow 0, \quad z \rightarrow \partial \Omega,
\]
and we deduce that \(F \) continuously extends to \(\partial \Omega \) and is constant there.

To show that \(\partial_\nu (z) F \leq 0 \) for all \(z \in \partial \Omega \), we consider the harmonic conjugate \(C \): it is the unique function \(C \) (defined on the universal cover of \(\Omega \setminus \{a\} \) and normalized to be 0 at an arbitrary interior point \(x \)) such that \(F + iC \) is holomorphic. By the Cauchy-Riemann equations, we have

\[
\partial_\nu (z) F = \partial_\nu (z) C \quad \forall z \in \partial \Omega,
\]
where \(\partial_\nu (z) \) is the tangential derivative on \(\partial \Omega \) in counterclockwise direction and the condition \(\partial_\nu (z) F \leq 0 \) becomes \(\partial_\nu (C) C \leq 0 \). This latter condition is equivalent to the one that \(C \) is non-increasing when going counterclockwise along (the universal cover of) \(\partial \Omega \).
Let us now check that this condition is satisfied. Take \(\Upsilon \) as before and denote by \(\tilde{\Upsilon} \) its universal cover.

For each \(\delta > 0 \), let \(C^\circ_\delta : \mathbb{V}_{\tilde{\Upsilon}_\delta} \to \mathbb{R} \) be the discrete harmonic conjugate of \(H^\bullet_\delta \) (lifted to \(\mathbb{V}_{\tilde{\Upsilon}_\delta} \)), defined by integrating the discrete Cauchy-Riemann equations

\[
\partial_\delta (H^\bullet_\delta + iC^\circ_\delta) (z) = 0 \quad \forall z \in \mathbb{V}_{\tilde{\Upsilon}^M_\delta},
\]

and with the normalization \(C^\circ_\delta (x) = 0 \). By subharmonicity of \(F^\bullet_\delta \), we have \(F^\bullet_\delta \leq H^\bullet_\delta \) on \(\mathbb{V}_{\tilde{\Upsilon}_\delta} \), and hence, since \(F^\bullet_\delta = H^\bullet_\delta \) on \(\partial \mathbb{V}_{\Omega^M_\delta} \),

\[
\partial_{\nu_{\text{out}}} (z) H^\bullet_\delta \leq \partial_{\nu_{\text{out}}} (z) F^\bullet_\delta \leq 0 \quad \forall z \in \partial \mathbb{V}_{\Omega^M_\delta},
\]

and we deduce by the discrete Cauchy-Riemann equations that \(C^\circ_\delta \) is non-increasing when going along the universal cover of \(\partial \mathbb{V}_{\Omega^M_\delta} \) in counterclockwise direction.

On the compact subsets of \(\tilde{\Upsilon} \), since the (normalized) discrete derivatives of \(H^\bullet_\delta \) converge uniformly (see Remark 3.2 in \([\text{ChSm08}]\)) to the derivatives of \(F \), it is easy to check that \(C^\circ_\delta \) also converges uniformly to \(C \). Since \(C^\circ_\delta \) is non-increasing (when going along the universal cover of \(\partial \Omega \)), we have that \(C^\circ_\delta \) is locally uniformly bounded (uniformly with respect to \(n \)) on the universal cover of \(\partial \Omega \) (if it would blow up there as \(n \to \infty \), it would also blow up on \(\tilde{\Upsilon} \)), and hence it is bounded everywhere on the closure of \(\tilde{\Upsilon} \).

From there, we deduce that \(C \) is non-increasing on the (counterclockwise-oriented) universal cover of \(\partial \Omega \): if it would not be the case, using again the discrete Beurling estimate \([\text{Kes87}]\), we would obtain a contradiction (in the \(n \to \infty \) limit) with the fact that \(C^\circ_\delta \) is non-decreasing.

\[\Box\]

Proof of Lemma 31. For \(z \in \partial \mathbb{V}_{\tilde{\Upsilon}_\delta} \), let us write \(P_\delta (z, \cdot) : \mathbb{V}_{\tilde{\Upsilon}_\delta} \to \mathbb{R} \) for the discrete harmonic function such that \(P_\delta (z, \cdot) = 1 \{ z \} (\cdot) \) on \(\partial \mathbb{V}_{\tilde{\Upsilon}_\delta} \) (this is the discrete harmonic measure of \(\{ z \} \)). By uniqueness of the solution to the discrete Dirichlet problem, we can write

\[
B_\delta (y) = \sum_{z \in \partial \mathbb{V}_{\Omega^M_\delta}} B_\delta (z) P_\delta (z, y) \quad \forall y \in \mathbb{V}_{\tilde{\Upsilon}_\delta}.
\]

As \(\delta \to 0 \), we have that \(P_\delta (x, \cdot) \to 0 \) on the compact subsets of \(\Upsilon \), uniformly with respect to \(x \) (this follows directly from Proposition 2.11 in \([\text{ChSm08}]\)). By the construction of \(F_\delta \) and the boundary conditions (Propositions 18 and 23), we have

\[
B_\delta (z) = F_\delta (z) - F_\delta (\partial \Omega) = \sqrt{2} \cos \left(\frac{3\pi}{8} \right) |f_\delta (m)|^2 \delta
\]

for any \(z \in \partial \mathbb{V}_{\Omega^M_\delta} \), where \(m \in \partial_0 \mathbb{V}_{\Omega^M_\delta} \) is the midpoint of the edge between \(z \) and its neighbor in \(\mathbb{V}_{\Omega^M_\delta} \). Since

\[
\sum_{m \in \partial_0 \mathbb{V}_{\Omega^M_\delta}} |f_\delta (m)|^2 \delta_n.
\]

is uniformly bounded by Lemma 29, we readily deduce that \(B_\delta \to 0 \) uniformly on the compact subsets of \(\Upsilon \).
Appendix A

We give here the proof of Lemma 4: for a configuration $\gamma \in \mathcal{C}_{\Omega_k}(a,z)$, the winding (modulo 4π) of an admissible walk on γ (see Figure 1.3) is independent of the choice of that walk.

Proof of Lemma 4. Without loss of generality, half-edges of γ emanate from z and a in the same direction, so the winding is a multiple of 2π.

Add a curve μ from z to a, which emanates in opposite direction from γ and run slightly off the lattice, so that μ is transversal to γ when an intersection occurs (see Figure 3.1). Let N_1 be the number of intersections of μ with γ.

Take any admissible walk λ along γ. The rest of γ can be split into disjoint cycles. So, if N_2 is the number of intersections of λ with γ, then $N_2 = N_1 \pmod{2}$.

Indeed, their difference comes from cycles, which are disjoint from λ and so intersect μ an even number of times (see Figure 3.1).

The concatenation of λ and μ (when oriented) forms a loop L, which has several intersections (when λ and μ run transversally). At each of those, change the connection so that there is no intersection, but instead two turns – one left and one right. Each of N_2 rearrangements either adds or removes one loop, so after the procedure, L splits into N_3 simple loops with $N_3 = N_2 \pmod{2}$ (see Figure 3.2).

Each of the N_3 simple loops has winding 2π or -2π, so $W(L) = 2\pi N_3 = 2\pi N_1 \pmod{4\pi}$.

We conclude that, mod 4π, $W(\lambda) = W(L) - W(\mu) = N_1 - W(\mu)$ and so $W(\lambda) \pmod{4\pi}$ is independent of its particular choice. \square
Figure 3.2. The five simple loops obtained from \mathcal{L} after four rearrangements (and discarding the loops that were not part of λ).

Appendix B

We prove here some technical results concerning the discrete full-plane spinor, introduced in Section 1.5.3. Let us denote by $C_\delta(\cdot, \cdot) := C_0\left(\frac{2}{\pi}, \frac{2}{\delta}\right)$ the rescaled version of Kenyon’s coupling function (defined in [Ken00]).

Lemma 32. With the notation and assumptions of Proposition [13], the functions

\[
G_1 : V_{C_\delta} \setminus \{a\} \rightarrow \mathbb{C}
\]

\[
z \mapsto e^{\pi i/8} \left(C_\delta\left(a + \frac{i\delta}{2}, z\right) + C_\delta\left(a - \frac{i\delta}{2}, z\right) \right),
\]

\[
G_2 : V_{C_\delta} \setminus \{a\} \rightarrow \mathbb{C}
\]

\[
z \mapsto i e^{5\pi i/8} \left(C_\delta\left(a - \frac{\delta}{2}, z\right) + C_\delta\left(a + \frac{i\delta}{2}, z\right) \right)
\]

are s-holomorphic.

Proof. Set $\eta := e^{\pi i/8}$ and for any vertex z and any $\mu \in \{\pm 1, \pm i\}$, set $z_\mu := z + \frac{\mu \delta}{2}$. By translation invariance, we have

\[
G_1(z) = \eta \left(C_\delta(a, z-1) + C_\delta(a, z_1) \right),
\]

\[
G_2(z) = i\eta \left(C_\delta(a, z_1) + C_\delta(a, z_{-1}) \right),
\]

where, on the right hand sides, the two values of $C_\delta(a, \cdot)$ are orthogonal: one is purely real and the other purely imaginary. Let $x, y \in V_{C_\delta} \setminus \{a\}$ be two adjacent
medial vertices, with x being the midpoint of a horizontal edge of E_{Ω}, and y the midpoint of a vertical one, and let $e := \langle x, y \rangle \in E_{\mathcal{C}_s}$. Then, there are four possibilities for the line $\ell := \ell(e)$:

- If $\ell = \eta \mathbb{R}$, we have that $x = y + \frac{1+i}{2} \delta$ and
 \[
 P_{\ell} [G_1 (x)] = \eta C_\delta (a, x_{-1}) = \eta C_\delta (a, y_1) = P_{\ell} [G_2 (y)].
 \]

- If $\ell = \eta \mathbb{R}$, we have that $x = y - \frac{1+i}{2} \delta$ and
 \[
 P_{\ell} [G_1 (x)] = -\eta C_\delta (a, x_{-1}) = -\eta C_\delta (a, y_1) = P_{\ell} [G_2 (y)].
 \]

- If $\ell = \eta \mathbb{R}$, we have $x = y + \frac{1-i}{2} \delta$ and
 \[
 P_{\ell} [G_1 (x) - G_1 (y)] = \eta \sqrt{2} (C_\delta (a_1, x_{-1}) + iC_\delta (a_1, x_1)) - iC_\delta (a_1, y_1)) = -\eta \sqrt{2} (\overline{C_\delta} (a_1, \cdot)) (y) = 0,
 \]
 and similarly
 \[
 P_{\ell} [G_2 (x) - G_2 (y)] = \eta \sqrt{2} (-C_\delta (a_1, x_1) + C_\delta (a_1, x_{-1})) + iC_\delta (a_1, y_1)) = 0.
 \]

- If $\ell = \eta \mathbb{R}$, we have $x = y + \frac{1-i}{2} \delta$ and
 \[
 P_{\ell} [G_1 (x) - G_1 (y)] = \frac{1}{\sqrt{2}} (C_\delta (a_1, x_{-1}) - iC_\delta (a_1, x_1)) + iC_\delta (a_1, y_1)) = -\eta \sqrt{2} (\overline{C_\delta} (a_1, \cdot)) (x) = 0.
 \]
 and similarly
 \[
 P_{\ell} [G_2 (x) - G_2 (y)] = \frac{1}{\sqrt{2}} (-C_\delta (a_1, x_1) - iC_\delta (a_1, x_{-1})) + C_\delta (a_1, y_1)) = 0.
 \]

This concludes the proof of the lemma. \hfill \Box

We now turn to the singularity of $f_{\mathcal{C}_s}$ (Proposition 16).

Proposition 33. Near the midpoint of a horizontal edge $a \in \mathcal{V}_{\mathcal{C}_s}$, for $x \in \{\pm 1, \pm i\}$, set $a_x := a + \frac{ix}{2} \in \mathcal{V}_{\mathcal{C}_s}$ and by $e_x := \langle a, a_x \rangle \in E_{\mathcal{C}_s}$. Then the function $f_{\mathcal{C}_s} (a, \cdot)$ satisfies the relations

\[
\begin{align*}
P_{\ell(e_{1+i})} [f_{\mathcal{C}_s} (a, a)] &= P_{\ell(e_{1+i})} [f_{\mathcal{C}_s} (a, a_{1+i})], \\
P_{\ell(e_{1-i})} [f_{\mathcal{C}_s} (a, a)] &= P_{\ell(e_{1-i})} [f_{\mathcal{C}_s} (a, a_{1-i})], \\
P_{\ell(e_{1+i})} [f_{\mathcal{C}_s} (a, a) - 1] &= P_{\ell(e_{1+i})} [f_{\mathcal{C}_s} (a, a_{1+i})], \\
P_{\ell(e_{1-i})} [f_{\mathcal{C}_s} (a, a) - 1] &= P_{\ell(e_{1-i})} [f_{\mathcal{C}_s} (a, a_{1-i})].
\end{align*}
\]
Proof. Set \(c := \cos \left(\frac{\pi}{8} \right) \) and \(s := \sin \left(\frac{\pi}{8} \right) \) and \(\eta := e^{i\frac{\pi}{8}} \). Exact values of the coupling function \(C_0 \) that can be found in [Ken00] (see Figure 6 there)

\[
C_0 (0, 1) = -C_0 (0, -1) = \frac{1}{4},
C_0 (0, i) = -C_0 (0, -i) = \frac{i}{4},
C_0 (0, 2 + i) = C_0 (0, -2 + i) = -i \left(\frac{1}{\pi} - \frac{1}{4} \right),
C_0 (0, 1 + 2i) = C_0 (1 - 2i) = \frac{1}{\pi} - \frac{1}{4},
C_0 (0, 2 - i) = C_0 (0, -2 - 2i) = i \left(\frac{1}{\pi} - \frac{1}{4} \right),
C_0 (0, -1 - 2i) = C_0 (0, -1 + 2i) = \frac{1}{4} - \frac{1}{\pi}.
\]

Using these values and the definition of \(f_{C_\delta} \), a straightforward computation gives

\[
f_{C_\delta} (a, a_{1+i}) = \eta \left(c \left(\frac{2}{\pi} - \frac{1 + i}{2} \right) - is \left(\frac{2i}{\pi} + \frac{1 + i}{2} \right) \right),
\]

\[
f_{C_\delta} (a, a_{1-i}) = \eta \left(c \left(\frac{1 + i}{2} \right) - is \left(\frac{2i}{\pi} - \frac{1 + i}{2} \right) \right),
\]

\[
f_{C_\delta} (a, a_{-1+i}) = \eta \left(c \left(\frac{2 + 2i}{\pi} + \frac{1 + i}{2} \right) + is \left(\frac{2}{\pi} - \frac{1 + i}{2} \right) \right),
\]

\[
f_{C_\delta} (a, a_{-1-i}) = \eta \left(c \left(\frac{2}{\pi} - \frac{1 + i}{2} \right) + is \left(\frac{2}{\pi} - \frac{1 + i}{2} \right) \right).
\]

If we compute the projections of these values on the lines associated with the medial edges \(e_x \), a straightforward computation gives

\[
P_{\eta^{\mathbb{R}}} \left[f_{C_{\delta}} (a, a_{1+i}) \right] = \frac{\eta^3 c}{\sqrt{2}} = P_{\eta^{\mathbb{R}}} \left[\frac{2 + \sqrt{2}}{4} \right],
\]

\[
P_{\eta^{\mathbb{R}}} \left[f_{C_{\delta}} (a, a_{1-i}) \right] = \frac{\eta^3 c}{\sqrt{2}} = P_{\eta^{\mathbb{R}}} \left[\frac{2 + \sqrt{2}}{4} \right],
\]

\[
P_{\eta^{\mathbb{R}}} \left[f_{C_{\delta}} (a, a_{-1+i}) \right] = -\frac{\eta s}{\sqrt{2}} = P_{\eta^{\mathbb{R}}} \left[\frac{2 + \sqrt{2}}{4} - 1 \right],
\]

\[
P_{\eta^{\mathbb{R}}} \left[f_{C_{\delta}} (a, a_{-1-i}) \right] = -\frac{\eta s}{\sqrt{2}} = P_{\eta^{\mathbb{R}}} \left[\frac{2 + \sqrt{2}}{4} - 1 \right],
\]

which is the desired result. \(\square \)

Let us now recall the result of Kenyon concerning the convergence of the function \(C_0 \):

Theorem 34 (Theorem 11 in [Ken00]). As \(|z| \to \infty \), we have

\[
C_0 (0, z) = \begin{cases} \Re \left(\frac{1}{\pi z} \right) + O \left(\frac{1}{|z|} \right) & z = 2m + (2n + 1) i : m, n \in \mathbb{Z}, \\ \Im \left(\frac{1}{\pi z} \right) + O \left(\frac{1}{|z|^2} \right) & z = (2m + 1) + 2ni : m, n \in \mathbb{Z} \end{cases}
\]
From there, we can prove Theorem 25:

Proof of Theorem 25. By rescaling the lattice of the theorem above, one readily deduces that

$$C_0 \left(\frac{2}{\delta} \left(a + \frac{\delta}{2} \cdot \frac{2}{\delta} z \right) \right) + C_0 \left(\frac{2}{\delta} \left(a - \frac{i \delta}{2} \cdot \frac{2}{\delta} z \right) \right) \rightarrow \frac{1}{2\pi (z-a)} \delta \rightarrow 0,$$

uniformly on the sets \(\{(a, z) : |a - z| \geq \epsilon\} \). The proof of the theorem follows then from the definition of \(f_{C_0} \).

\[\square\]

References

[AsMc11] M. Assis, B. M. McCoy, The energy density of an Ising half-plane lattice, *J. Phys. A: Math. Theor.* 44:095003, 2011.
[Bax89] R. Baxter, *Exactly solved models in statistical mechanics*. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1989.
[BoDT09] C. Boutillier, B. de Tilière, The critical \(Z \)-invariant Ising model via dimers: locality property. *Comm. Math. Phys.* to appear. [arXiv:0902.1882v1], 2009.
[BoDT08] C. Boutillier, B. de Tilière, The critical \(Z \)-invariant Ising model via dimers: the periodic case. *PTRF* 147:379-413, 2010. [arXiv:0812.3848v1].
[BuGu93] T. Burkhardt, I. Guim, Conformal theory of the two-dimensional Ising model with homogeneous boundary conditions and with disordered boundary fields, *Phys. Rev. B* (1), 47:14306-14311, 1993.
[Car84] J. Cardy, Conformal invariance and Surface Critical Behavior, *Nucl. Phys. B* 240:514-532, 1984.
[ChSm08] D. Chelkak, S. Smirnov, Discrete complex analysis on isoradial graphs. *Adv. in Math.*, to appear. [arXiv:0810.2188v1].
[ChSm09] D. Chelkak, S. Smirnov, Universality in the 2D Ising model and conformal invariance of fermionic observables. *Inv. Math., to appear.* [arXiv:0910.2045v2], 2009.
[CFL28] R. Courant, K. Friedrichs, H. Lewy. Über die partiellen Differenzengleichungen der mathematischen Physik. *Math. Ann.*, 100:32-74, 1928.
[DMS97] P. Di Francesco, P. Mathieu, D. Sénéchal, *Conformal Field Theory*. Volume 333 of Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin, 1997.
[Gri06] G. Grimmett, *The Random-Cluster Model*. Volume 333 of Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin, 2006.
[Isi25] E. Ising, Beitrag zur Theorie des Ferromagnetismus. *Zeitschrift für Physik*, 31:253-258, 1925.
[KaCe71] L. Kadanoﬀ, H. Ceva, Determination of an operator algebra for the two-dimensional Ising model. *Phys. Rev. B* (3), 3:3918-3939, 1971.
[Kau49] B. Kaufman, Crystal statistics. II. Partition function evaluated by spinor analysis. *Phys. Rev., II. Ser.*, 76:1232-1243, 1949.
[KaOn49] B. Kaufman, L. Onsager, Crystal statistics. III. Short-range order in a binary Ising lattice. *Phys. Rev., II. Ser.*, 76:1244-1252, 1949.
[Ken00] R. Kenyon, Conformal invariance of domino tiling. *Ann. Probab.*, 28:759-795, 2000.
[Kes87] H. Kesten, Hitting probabilities of random walks on \(\mathbb{Z}^d \), *Stochastic Process. Appl.* 25:164-187, 1987.
[KrWa41] H. A. Kramers and G. H. Wannmier. Statistics of the two-dimensional ferromagnet. I. *Phys. Rev.* (2), 60:252-262, 1941.
[Len20] W. Lenz, Beitrag zum Verständnis der magnetischen Eigenschaften in festen Körpem. *Phys. Zeitschr.*., 21:613-615, 1920.
[Mer01] C. Mercat, Discrete Riemann surfaces and the Ising model. *Comm. Math. Phys.*, 218:177-216, 2001.
[McWu73] B. M. McCoy, and T. T. Wu, *The two-dimensional Ising model*. Harvard University Press, Cambridge, Massachusetts, 1973.
[Ons44] L. Onsager, Crystal statistics. I. A two-dimensional model with an order-disorder transition, *Phys. Rev. (2)*, 65:117-149, 1944.
[Pal07] J. Palmer, *Planar Ising correlations*. Birkhäuser, 2007.
[Smi06] S. Smirnov, Towards conformal invariance of 2D lattice models. Sanz-Solé, Marta (ed.) et al., Proceedings of the international congress of mathematicians (ICM), Madrid, Spain, August 22–30, 2006. Volume II: Invited lectures, 1421-1451. Zürich: European Mathematical Society (EMS), 2006.

[Smi10] S. Smirnov, Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. Math. 172(2), 2010.

[Yan52] C. N. Yang, The spontaneous magnetization of a two-dimensional Ising model. Phys. Rev. (2), 85:808-816, 1952.

Department of Mathematics, Columbia University. 2990 Broadway, New York, NY 10027, USA.
E-mail address: hongler@math.columbia.edu

Section de Mathématiques, Université de Genève. 2–4 rue du Lièvre, Case postale 64, 1211 Genève 4, Suisse.
E-mail address: stanislav.smirnov@unige.ch