Alternating Euler T-sums and Euler \tilde{S}-sums

Weiping Wanga,* Ce Xub†

a. School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China
b. School of Mathematics and Statistics, Anhui Normal University, Wuhu 241000, P.R. China

Abstract In this paper, we study the alternating Euler T-sums and related sums by using the method of contour integration. We establish the explicit formulas for all linear and quadratic Euler T-sums and related sums. Some interesting new consequences and illustrative examples are considered.

Keywords: Multiple zeta values, multiple t-values, multiple T-values, odd harmonic numbers, Euler T-sums.

AMS Subject Classifications (2020): 11M99; 11M06; 11M32.

1 Introduction and Notations

In our previous paper [7], we introduced and studied the following two variants of the classical Euler sums,

\[T_{p_1,p_2,\ldots,p_k,q} := \sum_{n=1}^{\infty} \frac{h_{n-1}^{(p_1)} h_{n-1}^{(p_2)} \cdots h_{n-1}^{(p_k)}}{(n-1/2)^q}, \]

\[\tilde{S}_{p_1,p_2,\ldots,p_k,q} := \sum_{n=1}^{\infty} \frac{h_n^{(p_1)} h_n^{(p_2)} \cdots h_n^{(p_k)}}{n^q}, \]

where $q > 1, p_1 \leq p_2 \leq \cdots \leq p_k$ are positive integers, and the quantity $w := p_1 + \cdots + p_r + q$ is called the weight and the quantity r is called the degree (or order). We often refer these sums as the the Euler T-sums and Euler \tilde{S}-sums, respectively. Here $h_n^{(p)}$ stands for odd harmonic number of order p defined by

\[h_n^{(p)} := \sum_{k=1}^{n} \frac{1}{(k-1/2)^p}, \quad h_n \equiv h_n^{(1)} \quad \text{and} \quad h_0^{(p)} := 0. \]

The Euler T-sums and Euler \tilde{S}-sums can be seen as variants of classical Euler sums [1]

\[S_{p_1,p_2,\ldots,p_k,q} := \sum_{n=1}^{\infty} \frac{H_n^{(p_1)} H_n^{(p_2)} \cdots H_n^{(p_k)}}{n^q}, \]

where $H_n^{(p)}$ stands for the p-th generalized harmonic number, which is defined by

\[H_n^{(p)} := \sum_{k=1}^{n} \frac{1}{k^p}, \quad H_n \equiv H_n^{(1)} \quad \text{and} \quad H_0^{(p)} := 0. \]

*Email: wpingwang@yahoo.com, wpingwang@zstu.edu.cn
†Email: 19020170155420@stu.xmu.edu.cn
Like classical Euler sums, the Euler T-sums and Euler \tilde{S}-sums can be evaluated by using the method of contour integration developed by Flajolet and Salvy [1]. In [7], we establish many explicit evaluations of Euler T-sums and Euler \tilde{S}-sums via $\log(2)$, multiple zeta and t-values. Here, for positive integers p_1, \ldots, p_k with $p_1 > 1$, the multiple zeta value (MZV for short) [2, 8] and multiple t-values (MtVs for short) [3] are defined by

$$\zeta(p_1, p_2, \ldots, p_k) := \sum_{n_1 > \cdots > n_k \geq 1} \frac{1}{n_1^{p_1} n_2^{p_2} \cdots n_k^{p_k}}$$

and

$$t(p_1, p_2, \ldots, p_k) := \sum_{n_1 > \cdots > n_k \geq 1} \frac{1}{n_1^{p_1} n_2^{p_2} \cdots n_k^{p_k}}$$

$$= \sum_{n_1 > \cdots > n_k \geq 1} \frac{1}{(2n_1 - 1)^{p_1}(2n_2 - 1)^{p_2} \cdots (2n_k - 1)^{p_k}}.$$

As it normalized version,

$$\tilde{t}(p_1, p_2, \ldots, p_k) := 2^{p_1 + p_2 + \cdots + p_k} t(p_1, p_2, \ldots, p_k).$$

In above definitions of MZVs and MtVs, we put a bar on top of p_j if there is a sign $(-1)^{n_j}$ appearing in the denominator on the right. Which (one of more the p_j barred) are called the alternating MZVs, alternating multiple t-values. For example,

$$\zeta(p_1, \bar{p}_2, p_3, \bar{p}_4) = \sum_{n_1 > n_2 > n_3 > n_4 > 0} \frac{(-1)^{n_2 + n_4}}{n_1^{\bar{p}_2} n_2^{p_3} n_3^{\bar{p}_4} n_4^{p_4}},$$

$$t(\bar{p}_1, \bar{p}_2, p_3, \bar{p}_4) = \sum_{n_1 > n_2 > n_3 > n_4 > 0} \frac{(-1)^{n_1 + n_2}}{(2n_1 - 1)^{p_1}(2n_2 - 1)^{p_2}(2n_3 - 1)^{p_3}(2n_4 - 1)^{p_4}}.$$

In particular, we let

$$\tilde{\zeta}(p) := \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{kp}, \quad \tilde{t}(p) := \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(k-1/2)^p}, \quad (p \geq 1).$$

It is clear that the multiple t-values can be regard as a level 2 multiple zeta value because of the congruence condition in the summation and of the fact that this value can be written as a linear combination of alternating multiple zeta values. Recently, Kaneko and Tsumura [4, 5] also introduced and studied a new kind of multiple zeta values of level two

$$T(p_1, p_2, \ldots, p_k) := 2^k \sum_{m_1 > m_2 > \cdots > m_k > 0} \frac{1}{m_1^{p_1} m_2^{p_2} \cdots m_k^{p_k}}$$

$$= 2^k \sum_{n_1 > n_2 > \cdots > n_k > 0} \frac{1}{(2n_1 - k)^{p_1}(2n_2 - k + 1)^{p_2} \cdots (2n_k - 1)^{p_k}},$$

which was called multiple T-values (MTVs).

The subject of this paper are alternating Euler T-sums and alternating Euler \tilde{S}-sums. First, we give the definitions of alternating harmonic number and odd harmonic number. Let p and n
be positive integers, the alternating harmonic number $H_n^{(p)}$ and odd harmonic number $\bar{h}_n^{(p)}$ are defined by

$$H_n^{(p)} := \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k^p}, \quad H_0^{(p)} := 0, \quad H_n := H_n^{(1)},$$

$$\bar{h}_n^{(p)} := \sum_{k=1}^{n} \frac{(-1)^{k-1}}{(k-1/2)^p}, \quad \bar{h}_0^{(p)} := 0, \quad \bar{h}_n := \bar{h}_n^{(1)}.$$

In the definitions of Euler T-sums and Euler \bar{S}-sums, if replace $\bar{h}_n^{(p)}$ by $\bar{h}_n^{(p)}$ in the numerator of the summand, we put a “bar” on the top of p_j. In particular, we put a bar on the top of q if there is a sign $(-1)^{n-1}$ appearing in the denominator on the right. For example,

$$T_{p_1p_2p_3,q} = \sum_{n=1}^{\infty} \frac{h_{n-1}^{(p_1)} h_{n-1}^{(p_2)} h_{n-1}^{(p_3)}}{(n-1/2)^q} (-1)^{n-1}, \quad T_{p_1p_2p_3,q} = \sum_{n=1}^{\infty} \frac{h_{n-1}^{(p_1)} h_{n-1}^{(p_2)} h_{n-1}^{(p_3)}}{(n-1/2)^q} (-1)^{n-1},$$

$$\bar{S}_{p_1p_2p_3,q} = \sum_{n=1}^{\infty} \frac{\bar{h}_{n-1}^{(p_1)} \bar{h}_{n-1}^{(p_2)} \bar{h}_{n-1}^{(p_3)}}{n^q} (-1)^{n-1}, \quad \bar{S}_{p_1p_2p_3,q} = \sum_{n=1}^{\infty} \frac{\bar{h}_{n-1}^{(p_1)} \bar{h}_{n-1}^{(p_2)} \bar{h}_{n-1}^{(p_3)}}{(n-1/2)^q} (-1)^{n-1}.$$

The sums of types above (one of more the p_j or q barred) are called the alternating Euler T-sums and alternating Euler \bar{S}-sums, respectively. In [6], we systematic studied all classical (alternating) Euler sums. In this paper, we study these two above alternating variants of Euler T-sums or Euler \bar{S}-sums by using the methods of contour integration and residue theorem.

Next, we introduce some basic notations. Let $A := \{a_k\}$, $-\infty < k < \infty$ be a sequence of complex numbers with $a_k = o(k^\alpha)$ ($\alpha < 1$) if $k \to \pm\infty$. For convenience, we let A_1 and A_2 to denote the constant sequence $\{1^k\}$ and alternating sequence $\{(-1)^k\}$, respectively.

Definition 1.1 With A defined above, we define the parametric digamma function $\Psi(-s; A)$ by

$$\Psi(-s; A) := \frac{a_0}{s} + \sum_{k=1}^{\infty} \left(\frac{a_k}{k} - \frac{a_k}{k - s} \right). \tag{1.1}$$

Obviously, if $A = A_1$, then the parametric digamma function $\Psi(-s; A)$ becomes the classical digamma function $\psi(-s) + \gamma$.

Definition 1.2 Define the cotangent function with sequence A by

$$\pi \cot(\pi s; A) = -\frac{a_0}{s} + \Psi(-s; A) - \Psi(s; A) = \frac{a_0}{s} - 2s \sum_{k=1}^{\infty} \frac{a_k}{k^2 - s^2}. \tag{1.2}$$

It is clear that if letting $A = A_1$ or A_2 in (1.2), respectively, then it become

$$\cot(\pi s; A_1) = \cot(\pi s), \quad \cot(\pi s; A_2) = \csc(\pi s).$$

The Definitions 1.1 and 1.2 are also introduced in a previous paper [6] of the second named author.
Definition 1.3 For nonnegative integers \(j \geq 1 \) and \(n \), we define

\[
D^{(A)}(j) := \sum_{k=1}^{\infty} \frac{a_k}{k^j}, \quad D^{(A)}(1) := 0, \quad E^{(A)}_n(j) := \sum_{k=1}^{n} \frac{a_{n-k}}{k^j}, \quad E^{(A)}_0(j) := 0, \\
\hat{E}^{(A)}_n(j) := \sum_{k=1}^{n} \frac{a_{n-k}}{(k-1/2)^j}, \quad \hat{E}^{(A)}_0(j) := 0, \quad \hat{E}^{(A)}_n(j) := \sum_{k=1}^{n} \frac{a_{k-n-1}}{(k-1/2)^j}, \quad \hat{E}^{(A)}_0(j) := 0, \\
\tilde{l}^{(A)}(j) := \left\{ \begin{array}{ll}
\sum_{k=1}^{\infty} \left(\frac{a_{k-1}}{k-1/2} - \frac{a_k}{k} \right), & j = 1, \\
\sum_{k=1}^{\infty} \frac{a_{k-1}}{(k-1/2)^j}, & j > 1,
\end{array} \right. \quad \tilde{l}^{(A)}(j) := \left\{ \begin{array}{ll}
\sum_{k=1}^{\infty} \left(\frac{a_k}{k-1/2} - \frac{a_k}{k} \right), & j = 1, \\
\sum_{k=1}^{\infty} \frac{a_k}{(k-1/2)^j}, & j > 1,
\end{array} \right.
\]

\[
F^{(A)}_n(j) = \sum_{k=1}^{\infty} \frac{a_{k+n} - a_k}{k}, \quad F^{(A)}_n(j) = \sum_{k=1}^{\infty} \frac{a_{k+n} - a_k}{k-1/2}, \quad j = 1, \\
\hat{F}^{(A)}_n(j) = \sum_{k=1}^{\infty} \frac{a_{k+n} - a_k}{(k-1/2)^j}, \quad j > 1,
\]

\[
\bar{F}^{(A)}_n(j) = \left\{ \begin{array}{ll}
\sum_{k=1}^{\infty} \left(\frac{a_{k-n}}{k} - \frac{a_k}{k-1/2} \right), & j = 1, \\
\sum_{k=1}^{\infty} \frac{a_{k-n}}{(k-1/2)^j}, & j > 1,
\end{array} \right. \\
M^{(A)}_n(j) := E^{(A)}_n(j) + (-1)^j F^{(A)}_n(j), \quad N^{(A)}_n(j) := \hat{E}^{(A)}_n(j) + (-1)^j \hat{F}^{(A)}_{n-1}(j), \\
\bar{N}^{(A)}_n(j) := \bar{F}^{(A)}_n(j) - \bar{E}^{(A)}_n(j), \quad S^{(A)}_n(j) := N^{(A)}_n(j) - \bar{N}^{(A)}_n(j) - \frac{a_0}{(n-1/2)^j}.
\]

Setting \(A = A_1 \) or \(A_2 \) yield

\[
M^{(A_1)}_n(j) = H^{(j)}_n + (-1)^j \zeta(j), \\
M^{(A_2)}_n(j) = (-1)^{n-1} \bar{H}^{(j)}_n + (-1)^j \left\{ \begin{array}{ll}
(1 - (-1)^n) \log(2), & j = 1, \\
(-1)^{n-1} \bar{\zeta}(j), & j > 1,
\end{array} \right. \\
N^{(A_1)}_n(j) = h^{(j)}_n + (-1)^j \bar{\zeta}(j), \quad \bar{\zeta}(1) := 2 \log(2), \\
N^{(A_2)}_n(j) = (-1)^{n-1} h^{(j)}_n + (-1)^j \left\{ \begin{array}{ll}
(-1)^n \bar{\zeta}(1) + \log(2), & j = 1, \\
(-1)^n \bar{\zeta}(j), & j > 1,
\end{array} \right. \\
\bar{N}^{(A_1)}_n(j) = \bar{\zeta}(j) - h^{(j)}_{n-1}, \quad \bar{\zeta}(1) := 2 \log(2), \\
\bar{N}^{(A_2)}_n(j) = (-1)^{n-1} \bar{h}^{(j)}_{n-1} + \left\{ \begin{array}{ll}
(-1)^{n-1} \bar{\zeta}(1) + \log(2), & j = 1, \\
(-1)^{n-1} \bar{\zeta}(j), & j > 1,
\end{array} \right. \\
S^{(A_1)}_n(j) = (1 + (-1)^j) \bar{\zeta}(j), \quad S^{(A_2)}_n(j) = (-1)^{n-1} (1 - (-1)^j) \bar{\zeta}(j).
\]

2 Lemmas

In this section, we give some power series expansions for parametric digamma function \(\Psi(-s; A) \) and \(\cot(\pi s; A) \).
Lemma 2.1 Let \(p > 0 \) and \(n \) be a non-negative integer, if \(s \in (n - 1, n + 1) \) then
\[
\frac{\Psi(p-1)(1/2 - s; A)}{(p-1)!} = \sum_{j=1}^{\infty} (-1)^{j-1} \binom{j + p - 2}{p - 1} N_n^{(A)}(j + p - 1)(s - n)^{j-1}, \tag{2.1}
\]
and if \(s \in (-n - 1, -n + 1) \) then
\[
\frac{\Psi(p-1)(1/2 - s; A)}{(p-1)!} = \sum_{j=1}^{\infty} (-1)^{j-1} \binom{j + p - 2}{p - 1} N_{n+1}^{(A)}(j + p - 1)(s + n)^{j-1}. \tag{2.2}
\]

Proof. The proofs of this lemma follows the definition of function \(\Psi(-s; A) \).

Letting \(n = 0 \) in (2.1) and (2.2) gives
\[
\frac{\Psi(p-1)(1/2 - s; A)}{(p-1)!} = (-1)^p \sum_{j=1}^{\infty} \binom{j + p - 2}{p - 1} \tilde{t}^{(A)}(j + p - 1)s^{j-1}, \quad (-1 < s < 1). \tag{2.3}
\]

Lemma 2.2 Let \(m > 0 \) and \(n > 1 \) be non-negative integer, if \(s \in (n - 3/2, n + 1/2) \) then
\[
\frac{d^m}{ds^m}(\pi \cot(\pi s; A)) = (-1)^m m! \sum_{j=1}^{\infty} (-1)^{j-1} \binom{j + m - 1}{m} S_n^{(A)}(j + m)(s - n + 1/2)^{j-1}. \tag{2.4}
\]

Proof. Lemma 2.2 follows immediately from Definition 1.2 and Lemma 2.1.

From Lemma 2.2, we have
\[
\lim_{s \to 1/2} \frac{d^m}{ds^m}(\pi \cot(\pi s; A)) = m!((-1)^m \tilde{t}^{(A)}(m + 1) - \tilde{t}^{(A)}(m + 1)), \tag{2.5}
\]
\[
\pi \cot(\pi s; A) = \frac{a_0}{s} - 2 \sum_{j=1}^{\infty} D^{(A)}(2j)s^{2j-1}, \quad (-1 < s < 1). \tag{2.6}
\]

Lemma 2.3 ([6]) Let \(p \) and \(n \) be positive integers, if \(s \in (n - 3/2, n + 1/2) \setminus \{n - 1/2\} \), then
\[
\frac{\Psi(p-1)(1/2 - s; A)}{(p-1)!} = \frac{1}{(s - n + 1/2)^p} \left\{ a_{n-1} - \sum_{j=1}^{\infty} (-1)^j \binom{j + p - 2}{p - 1} M_{n-1}^{(A)}(j + p - 1)(s - n + 1/2)^{j+p-1} \right\}. \tag{2.7}
\]

Proof. This lemma can be immediately obtained from [6, Theorem 2.1].

If \(n = 1 \) then
\[
\frac{\Psi(p-1)(1/2 - s; A)}{(p-1)!} = \frac{a_0}{(s - 1/2)^p} + (-1)^p \sum_{j=1}^{\infty} \binom{j + p - 2}{p - 1} D^{(A)}(j + p - 1)(s - 1/2)^{j-1}. \tag{2.8}
\]

Finally, we give a residue theorem which was given by Flajolet and Salvy.
Lemma 2.4 ([1]) Let $\xi(s)$ be a kernel function and let $r(s)$ be a rational function which is $O(s^{-2})$ at infinity. Then

$$\sum_{\alpha \in O} \text{Res}[r(s)\xi(s), s = \alpha] + \sum_{\beta \in S} \text{Res}[r(s)\xi(s), s = \beta] = 0. \quad (2.9)$$

where S is the set of poles of $r(s)$ and O is the set of poles of $\xi(s)$ that are not poles of $r(s)$. Here $\text{Res}[r(s), s = \alpha]$ denotes the residue of $r(s)$ at $s = \alpha$. The kernel function $\xi(s)$ is defined by the two requirements: 1. $\xi(s)$ is meromorphic in the whole complex plane. 2. $\xi(s)$ satisfies $\xi(s) = o(s)$ over an infinite collection of circles $|s| = \rho_k$ with $\rho_k \to \infty$.

3 Evaluations of Euler T-sums and Euler \tilde{S}-sums

Let $B := \{b_k\}$, $-\infty < k < \infty$ be a sequence of complex numbers with $b_k = o(k^\beta)$ ($\beta < 1$) if $k \to \pm \infty$. Flajolet and Salvy [1] applied the kernel function

$$\frac{1}{2} \pi \cot(\pi s) \frac{\psi(p-1)(-s)}{(p-1)!}$$

to the base function $r(s) = s^{-q}$ to prove every linear sum $S_{p,q}$ whose weight $p+q$ is odd is expressible as a polynomial in zeta values. Next, we replace $\cot(\pi s)\psi(p-1)(-s)$ by $\cot(\pi s; A)\psi(p-1)(-s; B)$, and use contour integration to evaluate linear (alternating) Euler T-sums and Euler \tilde{S}-sums.

Theorem 3.1 Let $p > 0$ and $q > 1$ be positive integers. We have

$$(-1)^{p+q} \sum_{n=1}^{\infty} \frac{\tilde{N}_n^{(B)}(p)}{(n-1/2)^q} \frac{a_{n-1}}{n} + \sum_{n=1}^{\infty} \frac{N_n^{(B)}(p)}{(n-1/2)^q} \frac{a_n}{n}$$

$$- (-1)^p \sum_{k=0}^{p-1} \left(\frac{p+q-k-2}{q-1} \right) \sum_{n=1}^{\infty} \frac{b_{n+1}^{(A)}(k+1)}{n^{p+q-k-1}}$$

$$- b_0 \left((-1)^{p+q} \tilde{t}^{(A)}(p+q) + \tilde{t}^{(A)}(p+q) \right)$$

$$+ (-1)^p \sum_{k=1}^{q} \left(\frac{k+p-2}{p-1} \right) D^{(B)}(k+p-1) \left((-1)^{q-k} \tilde{t}^{(A)}(q-k+1) - \tilde{t}^{(A)}(q-k+1) \right)$$

$$= 0. \quad (3.1)$$

Proof. We consider the kernel function

$$\pi \cot(\pi s; A) \frac{\psi(p-1)(1/2-s; B)}{(p-1)!}$$

and base function $r(s) = (s - 1/2)^{-q}$. Clearly, the function $F(s) := \xi(s)r(s)$ only have poles at all integer and $n - 1/2$ (n is a positive integer). The only singularities are poles at the integers. At a negative integer $-n$ and positive integer n these two poles are simple and these residues are

$$\text{Res}[F(s), s = -n] = (-1)^{p+q} \frac{n^{(B)}(p)}{(n+1/2)^q} \frac{a_n}{n} \quad (n \geq 0),$$
\[\text{Res}[F(s), s = n] = \frac{N_n^{(B)}(p)}{(n - 1/2)^q} a_n \quad (n \geq 1). \]

From (2.7), the pole \(n - 1/2 \) \((n \geq 2)\) has order \(p \) and the residue is
\[
\text{Res}[F(s), s = n - 1/2] = (-1)^p \sum_{k=0}^{p-1} \frac{(p + q - k - 2)}{q - 1} \frac{b_{n-1} S_n^{(A)}(k + 1)}{(n - 1/p + q - k - 1)}.
\]

From (2.8), the pole 1/2 has order \(p + q \) and the residue is
\[
\text{Res}[F(s), s = 1/2] = -b_0 \left((-1)^{p+q} \tilde{t}^{(A)}(p + q) + \tilde{t}^{(A)}(p + q) \right)
+ (-1)^p \sum_{k=1}^{q} \frac{\left(k + p - 2 \right)}{p - 1} D^{(B)}(k + p - 1) \left((-1)^{q-k} \tilde{t}^{(A)}(q - k + 1) - \tilde{t}^{(A)}(q - k + 1) \right).
\]

Summing these four contributions yields the statement of the theorem. \(\square\)

Theorem 3.2 Let \(p > 0 \) and \(q > 1 \) be positive integers. We have
\[
(-1)^{p+q} \sum_{n=1}^{\infty} \frac{N_{n+1}^{(B)}(p)}{n^q} a_n + \sum_{n=1}^{\infty} \frac{N_n^{(B)}(p)}{n^q} a_n
- (-1)^p \sum_{k=0}^{p-1} \frac{(p + q - k - 2)}{q - 1} \sum_{n=1}^{\infty} \frac{b_{n-1} S_n^{(A)}(k + 1)}{(n - 1/2)^p + q - k - 1}
+ a_0 (-1)^p \frac{(p + q - 1)}{q} \tilde{t}^{(B)}(p + q)
- 2(-1)^p \sum_{j=1}^{\left\lfloor q/2 \right\rfloor} \frac{(p + q - 2j - 1)}{p - 1} D^{(A)}(2j) \tilde{t}^{(B)}(p + q - 2j)
= 0. \quad (3.2)
\]

Proof. The proof is similar to the previous proof. We consider the kernel function
\[
\frac{1}{2\pi \cot(\pi s; A)} \frac{\Psi(p-1)(1/2 - s; B)}{(p - 1)!}
\]
and base function \(r(s) = s^{-q} \). Then, by a similar argument as in the proof of above, we may easily deduce the desired result. \(\square\)

In Theorem 3.1 and 3.2, setting \(A, B \in \{A_1, A_2\} \), by straightforward calculations, we can get the following corollaries.
Corollary 3.3 For positive integers p and $q > 1$,

\[
(1 - (-1)^{p+q}) \sum_{n=1}^{\infty} \frac{h_{n-1}^{(p)}}{(n - 1/2)^q} = (-1)^{p+q} \tilde{t}(p + q) - (-1)^p (1 + (-1)^q) \tilde{t}(p) \tilde{t}(q)
- (-1)^p \sum_{k=0}^{p-1} ((-1)^k - 1) \binom{p + q - k - 2}{q - 1} \tilde{t}(k + 1) \zeta(p + q - k - 1)
+ (-1)^p \sum_{k=1}^{q} (1 - (-1)^{q-k}) \binom{k + p - 2}{p - 1} \tilde{t}(q - k + 1) \zeta(k + p - 1),
\]

where $\zeta(1) := 0$ and $\tilde{t}(1) := 2 \log(2)$.

\[
(1 + (-1)^{p+q}) \sum_{n=1}^{\infty} \frac{\tilde{h}_{n-1}^{(p)}}{(n - 1/2)^q} = (-1)^{p+q} \tilde{t}(p + q) + (-1)^p (1 + (-1)^q) \tilde{t}(p) \tilde{t}(q)
- (-1)^p \sum_{k=0}^{p-1} ((-1)^k + 1) \binom{p + q - k - 2}{q - 1} \tilde{t}(k + 1) \zeta(p + q - k - 1)
- (-1)^p \sum_{k=1}^{q} (1 + (-1)^{q-k}) \binom{k + p - 2}{p - 1} \tilde{t}(q - k + 1) \zeta(k + p - 1),
\]

\[
(1 - (-1)^{p+q}) \sum_{n=1}^{\infty} \frac{\tilde{h}_{n-1}^{(p)}}{(n - 1/2)^q} = (-1)^{p+q} \tilde{t}(p + q) - (-1)^p (1 - (-1)^q) \tilde{t}(p) \tilde{t}(q)
+ (-1)^p \sum_{k=0}^{p-1} ((-1)^k + 1) \binom{p + q - k - 2}{q - 1} \tilde{t}(k + 1) \zeta(p + q - k - 1)
+ (-1)^p \sum_{k=1}^{q} (1 - (-1)^{q-k}) \binom{k + p - 2}{p - 1} \tilde{t}(q - k + 1) \zeta(p - k - 1),
\]
Corollary 3.4 For positive integers \(p \) and \(q > 1 \),

\[
(1 - (-1)^{p+q}) \sum_{n=1}^{\infty} \frac{h_n^{(p)}}{n^q} = -(-1)^p(1 + (-1)^{q})\tilde{t}(p)\zeta(q) - (-1)^p \left(\frac{p + q - 1}{p - 1} \right)\tilde{t}(p + q) \\
- (-1)^p \sum_{k=0}^{p-1} ((-1)^k - 1) \left(\frac{p + q - k - 2}{q - 1} \right)\tilde{t}(k + 1)\tilde{t}(p + q - k - 1) \\
+ 2(-1)^p \sum_{j=1}^{[q/2]} \left(\frac{p + q - 2j - 1}{p - 1} \right)\zeta(2j)\tilde{t}(p + q - 2j),
\]

\((1 + (-1)^{p+q}) \sum_{n=1}^{\infty} \frac{\eta_n^{(p)}}{n^q} (-1)^{n-1} \)

\[
= -(-1)^p(1 + (-1)^{q})\tilde{t}(p)\zeta(q) - (-1)^p \left(\frac{p + q - 1}{p - 1} \right)\tilde{t}(p + q) \\
- (-1)^p \sum_{k=0}^{p-1} ((-1)^k - 1) \left(\frac{p + q - k - 2}{q - 1} \right)\tilde{t}(k + 1)\tilde{t}(p + q - k - 1) \\
+ 2(-1)^p \sum_{j=1}^{[q/2]} \left(\frac{p + q - 2j - 1}{p - 1} \right)\zeta(2j)\tilde{t}(p + q - 2j),
\]

\((1 - (-1)^{p+q}) \sum_{n=1}^{\infty} \frac{h_n^{(p)}}{n^q} (-1)^{n-1} \)

\[
= -(-1)^p(1 + (-1)^{q})\tilde{t}(p)\zeta(q) + (-1)^p \left(\frac{p + q - 1}{p - 1} \right)\tilde{t}(p + q) \\
- (-1)^p \sum_{k=0}^{p-1} ((-1)^k + 1) \left(\frac{p + q - k - 2}{q - 1} \right)\tilde{t}(k + 1)\tilde{t}(p + q - k - 1) \\
+ 2(-1)^p \sum_{j=1}^{[q/2]} \left(\frac{p + q - 2j - 1}{p - 1} \right)\zeta(2j)\tilde{t}(p + q - 2j),
\]

where \(\zeta(1) := 0 \) and \(\tilde{t}(1) := 2 \log(2) \).
Next, we evaluate the quadratic (alternating) Euler T-sums and Euler \tilde{S}-sums.

Theorem 3.5 For positive integers p, m and $q > 1$, then

\[
(-1)^{p+q+m} \sum_{n=1}^{\infty} \frac{N_n^{(B)}(m)N_n^{(C)}(p)}{(n-1/2)^q} a_{n-1} + \sum_{n=1}^{\infty} \frac{N_n^{(B)}(m)N_n^{(C)}(p)}{(n-1/2)^q} a_n \\
- (-1)^{p+m} \sum_{k=0}^{p+m} \left(\frac{p+q+m-k-2}{q-1}\right) \sum_{n=1}^{\infty} b_n c_n S_{n+1}(k+1) \frac{n^{p+q+m-k-1}}{n^{m+q-j-1}} \\
- (-1)^m \sum_{j=1}^{m-j} \sum_{k=0}^{j+p-2} \left(\frac{j+p-2}{j-1}\right) \sum_{n=1}^{\infty} \frac{M_n^{(C)}(j+p-1)S_{n+1}(k+1)b_n}{n^{m+q-j-1}} \\
- (-1)^p \sum_{j=1}^{p-j} \sum_{k=0}^{j+m-2} \left(\frac{j+m-2}{j-1}\right) \sum_{n=1}^{\infty} \frac{M_n^{(B)}(j+m-1)S_{n+1}(k+1)c_n}{n^{m+q-j-1}}
\]

+ Res$[F(s), s = 1/2] = 0$, \hspace{1cm}(3.11)

where \[
Res[F(s), s = 1/2] = -b_0 c_0 \left((-1)^{p+q+m}\tilde{A}(p+q+m) + \tilde{A}(p+q+m)\right) \\
+ b_0(-1)^p \sum_{j=1}^{m+q} \left(\frac{j+p-2}{j-1}\right) D^{(C)}(j+p-1) \\
\times \left((-1)^{m+q-j}\tilde{A}(m+q-j+1) - \tilde{A}(m+q-j+1)\right) \\
+ c_0(-1)^m \sum_{j=1}^{p+q} \left(\frac{j+m-2}{j-1}\right) \tilde{A}(j+m-1) \\
\times \left((-1)^{p+q-j}\tilde{A}(p+q-j+1) - \tilde{A}(p+q-j+1)\right) \\
+ (-1)^{p+m} \sum_{j_1+j_2 \leq q+1, j_1, j_2 \geq 1} \left(\frac{j_1+m-2}{j_1-1}\right) \left(\frac{j_2+p-2}{j_2-1}\right) \tilde{A}(j_1+m-1)D^{(B)}(j_2+p-1) \\
\times \left((-1)^{q+1-j_1-j_2}\tilde{A}(q+2-j_1-j_2) - \tilde{A}(q+2-j_1-j_2)\right) \hspace{1cm}(3.12)
\]

Proof. We consider the kernel function

\[
cot(\pi s; A) \frac{\Psi^{(m-1)}(1/2-s; B)\Psi^{(p-1)}(1/2-s; C)}{(m-1)!(p-1)!}
\]

and base function $r(s) = (s-1/2)^{-q}$. It is obvious that the function

\[
F(s) := \cot(\pi s; A) \frac{\Psi^{(m-1)}(1/2-s; B)\Psi^{(p-1)}(1/2-s; C)}{(m-1)!(p-1)!} (s-1/2)^q
\]

has simple poles at $s = -n$ ($n \geq 0$) with residues

\[
Res[F(s), s = -n] = (-1)^{p+q+m} \frac{N_{n+1}^{(B)}(m)N_{n+1}^{(C)}(p)}{(n+1/2)^q} a_n,
\]

\]

10
and simple poles at \(s = n \) (\(n \geq 1 \)), with residues

\[
\text{Res}[F(s), s = n] = \frac{N_n^{(B)}(m)N_n^{(C)}(p)}{(n - 1/2)^q} a_n,
\]

where we used the identities (2.1) and (2.2). Clearly \(F(s) \) has poles of order \(p + m \) at \(s = n - 1/2 \) (\(n \geq 2 \)). Using (2.4) and (2.7) we find that the residues

\[
\text{Res}[F(s), s = n - 1/2]
\]

\[
= -(-1)^{p+m} \sum_{k=0}^{p+m-1} \frac{(p + q + m - k - 2)}{q - 1} b_{n-1} c_{n-1} S_n^{(A)}(k+1)
\]

\[
- (-1)^m \sum_{j=1}^{m-j} \sum_{k=0}^{m-j} \frac{(j + p - 2)}{p - 1} \frac{(m + q - k - j - 1)}{q - 1} \frac{M_{n-1}^{(C)}(j + p - 1) S_{n}^{(A)}(k+1) b_{n-1}}{(n - 1/2)^{p+q+m-k-1}}
\]

Moreover, \(F(s) \) also has a pole of order \(p + q + m \) at \(s = 1/2 \). Using (2.8) we deduce the (3.12) by a direct calculation. Hence, combining these four residue results, we can obtain the desired evaluation.

Theorem 3.6 For positive integers \(p, m \) and \(q > 1 \), then

\[
(-1)^{p+q+m} \sum_{n=1}^{\infty} \frac{N_{n+1}^{(B)}(m) N_{n+1}^{(C)}(p)}{n^q} a_n + \sum_{n=1}^{\infty} \frac{N_n^{(B)}(m) N_n^{(C)}(p)}{n^q} a_n
\]

\[
- (-1)^{p+m} \sum_{k=0}^{p+m-1} \frac{(p + q + m - k - 2)}{q - 1} \sum_{n=1}^{\infty} \frac{b_{n-1} c_{n-1} S_n^{(A)}(k+1)}{(n - 1/2)^{p+q+m-k-1}}
\]

\[
- (-1)^m \sum_{j=1}^{m-j} \sum_{k=0}^{m-j} \frac{(j + p - 2)}{p - 1} \frac{(m + q - k - j - 1)}{q - 1} \sum_{n=1}^{\infty} \frac{M_{n-1}^{(C)}(j + p - 1) S_{n}^{(A)}(k+1) b_{n-1}}{(n - 1/2)^{m+q-j-k}}
\]

\[
- (-1)^p \sum_{j=1}^{p-j} \sum_{k=0}^{p-j} \frac{(j + m - 2)}{m - 1} \frac{(p + q - k - j - 1)}{q - 1} \sum_{n=1}^{\infty} \frac{M_{n-1}^{(B)}(j + m - 1) S_{n}^{(A)}(k+1) c_{n-1}}{(n - 1/2)^{p+q-j-k}}
\]

\[+ \text{Res}[F(s), s = 1/2] = 0, \tag{3.13}\]

where

\[
\text{Res}[G(s), s = 0]
\]

\[
= a_0 (-1)^{p+m} \sum_{k_1 + k_2 = q, k_1, k_2 \geq 0} \frac{(m + k_1 - 1)}{k_1} \frac{(p + k_2 - 1)}{k_2} \tilde{t}^{(B)}(m + k_1) \tilde{t}^{(C)}(p + k_2)
\]

\[
- 2(-1)^{m+p} \sum_{j=1}^{[q/2]} \sum_{k_1 + k_2 = q - 2j, k_1, k_2 \geq 0} \frac{(m + k_1 - 1)}{k_1} \frac{(p + k_2 - 1)}{k_2} D^{(A)}(2j) \tilde{t}^{(B)}(m + k_1) \tilde{t}^{(C)}(p + k_2). \tag{3.14}\]
Proof. We consider the kernel function
\[
\pi \cot(\pi s; A) \frac{\Psi^{(m-1)}(1/2-s; B)\Psi^{(p-1)}(1/2-s; C)}{(m-1)!(p-1)!}
\]
and base function \(r(s) = s^{-q}\). By the same calculation as in the proof of Theorem 3.5, we thus immediately deduce (3.13) and (3.14) to complete the proof. \(\square\)

Theorem 3.7 For positive integers \(p, m\) and \(q > 1\), then
\[
(-1)^{p+q+m} \sum_{n=1}^{\infty} M_n^{(B)}(m) N_n^{(C)}(p) a_n + \sum_{n=1}^{\infty} M_n^{(B)}(m) N_n^{(C)}(p) b_n
\]
\[
+ (-1)^m \sum_{k=0}^{m} \binom{m+q-k-1}{q-1} \binom{p+k-1}{p-1} \sum_{n=1}^{\infty} \frac{N_n^{(C)}(p+k)}{n^{m+q-k}} a_n b_n
\]
\[
- (-1)^m \sum_{k+j \leq m+1, k,j \geq 1} \binom{m-q-k-j}{q-1} \binom{p+k-2}{p-1} \sum_{n=1}^{\infty} \frac{R_n^{(A)}(j) N_n^{(C)}(p+k-1)}{n^{m+q+1-k-j}} b_n
\]
\[
- (-1)^p \sum_{k_1+k_2+k_3=p+1, k_1,k_2,k_3 \geq 0} \binom{m+k_2-1}{m-1} \binom{q+k_3-1}{q-1} \sum_{n=1}^{\infty} \frac{S_n^{(A)}(k_1+1) N_n^{(B)}(m+k_2)}{(n-1/2)^{k_3+q}} c_n
\]
\[
+ \text{Res}[H(s), s = 0] = 0,
\]
where
\[
\text{Res}[H(s), s = 0] = a_0 b_0 (-1)^p \binom{p+q+m-1}{p-1} \hat{r}^{(C)}(p+q+m)
\]
\[
+ a_0 (-1)^{p+m} \sum_{j=1}^{q+1} \binom{j+m-2}{m-1} \binom{p+q-j}{p-1} D^{(B)}(j+m-1) \hat{r}^{(C)}(p+q+1-j)
\]
\[
- 2b_0 (-1)^p \sum_{j=1}^{(m+q)/2} \binom{p+q+m-2j-1}{p-1} D^{(A)}(2j) \hat{r}^{(C)}(p+q+m-2j)
\]
\[
- 2(-1)^{p+m} \sum_{2j_1+j_2 \leq q+1, j_1,j_2 \geq 1} \binom{j_2+m-2}{m-1} \binom{p+q-2j_1-j_2}{p-1}
\]
\[
\times D^{(A)}(2j_1) D^{(B)}(j_2+m-1) \hat{r}^{(C)}(p+q+1-2j_1-j_2).
\]

Proof. We consider the kernel function
\[
\pi \cot(\pi s; A) \frac{\Psi^{(m-1)}(-s; B)\Psi^{(p-1)}(1/2-s; C)}{(m-1)!(p-1)!}
\]
and base function \(r(s) = s^{-q}\). By direct residue computations, we can obtain the desired evaluation. \(\square\)

It is clear that the main results in our pervious paper [7] are immediate corollaries of this paper. Moreover, it is possible that of some other relations involving alternating Euler T-sums
and related sums can be proved by using the techniques of the present paper. For example, let
\(A^{(l)} := \{a^{(l)}_k\}, -\infty < k < \infty \) \((l \text{ is any positive integer})\) be any sequences of complex numbers
with \(a^{(l)}_k = o(k^\alpha) \) \((\alpha < 1)\) if \(k \to \pm\infty\), consider these two function

\[
\cot(\pi s; A) \frac{\Psi(p_{l-1})(1/2 - s; A^{(1)}) \Psi(p_{l-1})(1/2 - s; A^{(2)}) \cdots \Psi(p_{l-1})(1/2 - s; A^{(r)})}{(m-1)!(p-1!)^q(s-1/2)^q}
\]

and

\[
\cot(\pi s; A) \frac{\Psi(p_{l-1})(1/2 - s; A^{(1)}) \Psi(p_{l-1})(1/2 - s; A^{(2)}) \cdots \Psi(p_{l-1})(1/2 - s; A^{(r)})}{(m-1)!(p-1)s^q}
\]

we can deduce the following results

\[
(-1)^{p_1 + \cdots + p_r + q} \sum_{n=1}^{\infty} \frac{N^{(A^{(1)})}_{n}(p_1)N^{(A^{(2)})}_{n}(p_2) \cdots N^{(A^{(r)})}_{n}(p_r)}{(n-1/2)^q} a_{n-1}
\]

\[+ \sum_{n=1}^{\infty} \frac{N^{(A^{(1)})}_{n}(p_1)N^{(A^{(2)})}_{n}(p_2) \cdots N^{(A^{(r)})}_{n}(p_r)}{(n-1/2)^q} a_n
\]

\[+ \sum (\text{sums of degree } \leq r - 1) = 0
\]

and

\[
(-1)^{p_1 + \cdots + p_r + q} \sum_{n=1}^{\infty} \frac{N^{(A^{(1)})}_{n}(p_1)N^{(A^{(2)})}_{n}(p_2) \cdots N^{(A^{(r)})}_{n}(p_r)}{n^q} a_{n-1}
\]

\[+ \sum_{n=1}^{\infty} \frac{N^{(A^{(1)})}_{n}(p_1)N^{(A^{(2)})}_{n}(p_2) \cdots N^{(A^{(r)})}_{n}(p_r)}{n^q} a_n
\]

\[+ \sum (\text{sums of degree } \leq r - 1) = 0,
\]

but we can’t give explicit formulas.

Acknowledgments. The author expresses his deep gratitude to Professor Masanobu Kaneko
for valuable discussions and comments.

References

[1] P. Flajolet and B. Salvy, Euler sums and contour integral representations, Exp. Math., 1998, 7(1): 15–35.

[2] M.E. Hoffman, Multiple harmonic series, Pacific J. Math., 1992, 152: 275-290.

[3] M.E. Hoffman, An odd variant of multiple zeta values, Comm. Number Theory Phys., 2019, 13, 529-567.

[4] M. Kaneko, H. Tsumura, Zeta functions connecting multiple zeta values and poly-Bernoulli numbers, arXiv: 1811.07736v1.

[5] M. Kaneko, H. Tsumura, On a variant of multiple zeta values of level two, arXiv: 1903.03747v2.

[6] C. Xu, Explicit Formulas for general Euler type sums. arXiv:2002.12107v3.

[7] C. Xu, W. Wang, Two variants of Euler sums, arXiv:1906.07654v3.

[8] D. Zagier, Values of zeta functions and their applications, First European Congress of Mathematics, Volume II, Birkhauser, Boston, 120(1994) 497-512.