Energy barriers between metastable states in first order quantum phase transitions

arXiv:1712.07180; PRA 97, 023608 (2018)

S Wald, A Timpanaro, C Cormick and GT Landi

Queens, Feb. 15, 2018
Bose Hubbard Model (BHM)

\[H_{\text{BH}} = \mathcal{T} + \sum_{i=1}^{K} \frac{U_s}{2} n_i (n_i - 1) - \mu \sum_{i=1}^{K} n_i \]

\[\mathcal{T} = -J \sum_{\langle i,j \rangle} (b_i^\dagger b_j + b_j^\dagger b_i) \]

- nearest neighbor hopping
- on site repulsion
- chemical potential

Gersch, Knollman 1963
Bose Hubbard Model (BHM)

\[H_{BH} = \mathcal{T} + \sum_{i=1}^{K} \frac{U_s}{2} n_i(n_i - 1) - \mu \sum_{i=1}^{K} n_i \]

\[\mathcal{T} = -J \sum_{\langle i,j \rangle} (b_i^\dagger b_j + b_j^\dagger b_i) \]

- nearest neighbor hopping
- on site repulsion
- chemical potential

mean-field phase diagram

- solvable in MF (↔ Fermi-HM)
- captures MI - SF transition
- ultra-cold atoms in optical lattices
- next step after BEC towards macroscopic quantum phenomena
- connect to many-body quantum properties
Long range BHM

experimental setup

- **BEC**: \(4.2(4) \cdot 10^4\) \(^{87}\)Ru atoms
- **2D** optical lattice:
- **ultrahigh-finesse optical cavity**
- \(\sim 2.8\) atoms per lattice site
Long range BHM

Experimental Setup

- **BEC**: $4.2(4) \cdot 10^4$ 87Ru atoms
- **2D optical lattice**:
- **ultrahigh-finesse optical cavity**
- ~ 2.8 atoms per lattice site

Theoretical Description (canonical)

$$H = H_{BH} - \frac{U_{\ell}}{K} \left(\sum_{i \in e} n_i - \sum_{i \in o} n_i \right)^2$$

Experimental Results

[Graph showing phase transitions and other data points]
Long range BHM

Experimental setup

- **BEC**: $4.2(4) \cdot 10^4 \ ^{87}\text{Ru}$ atoms
- 2D optical lattice:
- Ultrahigh-finesse optical cavity
- ~ 2.8 atoms per lattice site

Theoretical description (canonical)

\[
H = H_{BH} - \frac{U_\ell}{K} \left(\sum_{i \in e} n_i - \sum_{i \in o} n_i \right)^2
\]

Experimental results

\[
\begin{array}{c}
\text{CDW} \\
\text{SS} \\
\text{SF} \\
\text{MI}
\end{array}
\]

\[
\begin{array}{c}
u/t \\
35 \\
30 \\
25 \\
20 \\
15 \\
10 \\
5 \\
0
\end{array}
\]

\[
\begin{array}{c}
u_\ell/t \\
35 \\
30 \\
25 \\
20 \\
15 \\
10 \\
5 \\
0
\end{array}
\]
Long range BHM

Experimental Setup

- **BEC:** $4.2(4) \cdot 10^4$ 87Ru atoms
- **2D optical lattice:**
- **ultrahigh-finesse optical cavity**
- ~ 2.8 atoms per lattice site

Theoretical Description (canonical)

$$H = H_{BH} - \frac{U_L}{K} \left(\sum_{i \in e} n_i - \sum_{i \in o} n_i \right)^2$$

Experimental Results

Landig et al, Nature'16
Hysteresis

Phase Diagram

Hysteresis curves

Landig et al '16
Overview

1. Exact Landau theory in the zero hopping limit
 - Energy landscape and hysteresis loops for $\rho = 1$
 - Different fillings: $\rho \neq 1$

2. Variational Ansatz: $J \neq 0$
 - Physical requirements for reduced Hilbert space
 - Construction of variational states

3. Numerical Analysis
 - Physical observables and phase diagram

4. Discrete WKB method
 - Energy barriers between meta-stable quantum phases

5. Conclusion

6. Outlook
The Zero Hopping Limit

Landau free energy

- **CDW & MI:** $J/U_s \ll 1$

$$H_{J\to 0} = \sum_{i=1}^{K} \frac{U_s}{2} \hat{n}_i(\hat{n}_i - 1) - \frac{U_\ell}{K} \Theta^2$$

- **Fock basis:** H diagonal
- **free energy:**

$$f(\theta) = -U_\ell \theta^2 + \frac{\phi(\rho + \theta) + \phi(\rho - \theta)}{2}$$

$$\phi(\rho_x) = \frac{U_s}{K} \min_{N_x} \left\{ \sum_i n_i(n_i - 1) \right\}$$

- $\rho = 1 \Rightarrow f(\theta) = -U_\ell \theta^2 + \frac{U_s}{2} |\theta|$$
The Zero Hopping Limit

Landau free energy

- CDW & MI: \(J/U_s \ll 1 \)

\[
H_{J \to 0} = \sum_{i=1}^{K} \frac{U_s}{2} \hat{n}_i(\hat{n}_i - 1) - \frac{U_\ell}{K} \Theta^2
\]

- Fock basis: \(H \) diagonal

- free energy:

\[
f(\theta) = -U_\ell \theta^2 + \frac{\phi(\rho + \theta) + \phi(\rho - \theta)}{2}
\]

\[
\phi(\rho_x) = \frac{U_s}{K} \min_{N_x} \left\{ \sum_i n_i(n_i - 1) \right\}
\]

- \(\rho = 1 \Rightarrow f(\theta) = -U_\ell \theta^2 + \frac{U_s}{2} |\theta| \)
The Zero Hopping Limit

\[H_{J \to 0} = \sum_{i=1}^{K} \frac{U_s}{2} \hat{n}_i(\hat{n}_i - 1) - \frac{U_\ell}{K} \Theta^2 \]

- CDW & MI: \(J/U_s \ll 1 \)

- Fock basis: \(H \) diagonal

- Free energy:

\[f(\theta) = -U_\ell \theta^2 + \phi(\rho + \theta) + \phi(\rho - \theta) \]

\[\phi(\rho_x) = \frac{U_s}{K} \min_{N_x} \{ \sum_i n_i(n_i - 1) \} \]

\[\rho = 1 \Rightarrow f(\theta) = -U_\ell \theta^2 + \frac{U_s}{2} |\theta| \]
Different fillings: $\rho \neq 1$

Dogra et al '17
Different fillings: $\rho \neq 1$

- Several meta-stable minima appear
- Qualitative explanation for plateaus in experiments

Core message

Energy landscape explains many experimentally relevant findings
Energy barriers and landscapes

Goal

- describe idea of an energy barrier between the MI & CDW
- how to overcome barrier?
- Arrhenius theory, Ginzburg-Landau theory: thermally assisted
- $T = 0$? quantum fluctuations?
Energy barriers and landscapes

Goal

- describe idea of an energy barrier between the MI & CDW
- how to overcome barrier?
- Arrhenius theory, Ginzburg-Landau theory: thermally assisted
- $T = 0$? quantum fluctuations?
Variational Ansatz: $J \neq 0$

Requests

- **CDW & MI**: $J/U_s \ll 1$
- **Focus on** $\rho = 1$
- $|\text{MI}\rangle = |1\ldots1;1\ldots1\rangle$
 $|\text{CDW}\rangle = |2\ldots2;0\ldots0\rangle$
- **Choose intermediate states:**
 - Restrict to $n_i = 0, 1, 2 \ \forall i$
 - $\Theta|Q,\nu\rangle = Q|Q,\nu\rangle$ with
 $\Theta = (\sum_{i\in e} n_i - \sum_{i\in o} n_i)^2$
- $|1,2,1,2;0,1,0,1\rangle; |1,2,1,2;0,0,0,2\rangle$
 - **Additional** U_s **without** U_ℓ **gain**
 - Distribute atoms in sublattices
Variational Ansatz: $J \neq 0$

Requests
CDW & MI: $J/U_s \ll 1$
Focus on $\rho = 1$
$
$
Choose intermediate states:
• Restrict to $n_i = 0, 1, 2 \ \forall i$
• $\Theta
$
• Additional U_s without U_ℓ gain
• Distribute atoms in sublattices

Choice of variational states
$\mathcal{T} = -\sqrt{2}J(\mathcal{T}_e + \mathcal{T}_o)$, with
(i) $\mathcal{T}_o = \mathcal{T}_e^\dagger$
(ii) $[\Theta, \mathcal{T}_e] = 2\mathcal{T}_e$
(iii) $[\Theta, \mathcal{T}_o] = -2\mathcal{T}_o$
$\mathcal{T}_{e/o}$: Creation/annihilation operator of imbalance
Tight-binding:
$\langle \psi
Nucleation of CDW $0 - 2$ pairs
$
Variational Ansatz - Mean Field

Normalisation constants

- $\gamma_Q^+ := \langle Q + 2 | T | Q \rangle \propto \sqrt{\frac{A(Q+2)}{A(Q)}}$
- normalisation constants?
- maps to matching problem

- no analytical solution
- $\# P$-hard $\leftrightarrow Z_{3D-Icing}$
Variational Ansatz - Mean Field

Normalisation constants

- $\gamma_Q^+ := \langle Q + 2 | T | Q \rangle \propto \sqrt{\frac{A(Q+2)}{A(Q)}}$
- normalisation constants?
- maps to matching problem

\begin{align*}
A(Q) &= \left(\frac{K}{Q/2}\right)^2 \\
\gamma_Q^+ &= -\frac{\alpha}{4K} \begin{cases}
(K - Q)(Q + 2) & Q \geq 0 \\
(K - |Q| + 2)|Q| & Q < 0
\end{cases}
\end{align*}

- no analytical solution
- $\# P$-hard $\iff Z_{3D-Ising}$

Lattice deformation

- deform CDW generator
- eliminate lattice structure
- ∞-range hopping $e \leftrightarrow o$
- emergence of non-local CDW
- for Q-states only!

\begin{align*}
A(Q) &= \left(\frac{K}{Q/2}\right)^2 \\
\gamma_Q^+ &= -\frac{\alpha}{4K} \begin{cases}
(K - Q)(Q + 2) & Q \geq 0 \\
(K - |Q| + 2)|Q| & Q < 0
\end{cases}
\end{align*}

- no predictions for lattice dependent properties (e.g. CDW-SF)
Numerical Analysis

Numerical details

- analyse GS properties
- $K = 2000$ lattice sites
- different hopping: $\alpha = 8\sqrt{2}J$

Physical quantities

a) $\langle \Theta \rangle / K = \pm 1$: CDW or MI ?
b) $\Delta E_{k \to 0}$: compressible phase ?
c) $S_{vN} = - \text{tr} \rho_e \ln \rho_e$
d) $\chi = - \partial^2_\delta \ln |\langle \psi(U_1) | \psi(U_1 + \delta) \rangle|_{\delta = 0}$

pinpoints all transitions for $K = 10$!
Numerical Analysis

Numerical details

- Analyse GS properties
- $K = 2000$ lattice sites
- Different hopping: $\alpha = 8\sqrt{2}J$

Physical quantities

a) $\langle \Theta \rangle / K = \pm 1$: CDW or MI?

b) $\Delta E_{k \to 0}$: compressible phase?

c) $S_{vN} = -\text{tr} \rho_e \ln \rho_e$

d) $\chi = -\partial^2 \ln |\langle \psi(U_{\ell})\psi(U_{\ell} + \delta) \rangle|_{\delta=0}$

[Graph showing phase diagram]

- \exists compressible phase
- No distinction: SS & SF
- MI - SF: off by factor 2
- MI - CDW: accurate

similar to Gutzwiller and QMC

Batrouni et al '17
Discrete WKB method

Procedure

- **effective Hamiltonian**

\[
\langle \psi | H | \psi \rangle = \sum_Q \epsilon_Q \psi_Q^* \psi_Q + \gamma_Q^+ \psi_{Q+2}^* \psi_Q + \gamma_Q^- \psi_{Q-2}^* \psi_Q
\]

- define momenta:

\[
\cos p(Q) = \frac{E - \epsilon_Q}{2 \gamma_Q}
\]

- with \(\gamma_Q := \frac{\gamma_Q^+ + \gamma_Q^-}{2} \)

- effective tight-binding model

- **classically allowed regions**:

\[
p(Q) \in \mathbb{R} \Rightarrow \epsilon_Q + 2 \gamma_Q \leq E \leq \epsilon_Q - 2 \gamma_Q
\]
Discrete WKB method

Procedure

- **effective Hamiltonian**

\[
\langle \psi | H | \psi \rangle = \sum_Q \epsilon_Q \psi_Q^{\ast} \psi_Q + \gamma^+_Q \psi_{Q+2}^{\ast} \psi_Q + \gamma^-_Q \psi_{Q-2}^{\ast} \psi_Q
\]

- **define momenta:**

\[
\cos p(Q) = \frac{E - \epsilon_Q}{2\gamma_Q}
\]

- **with** \(\gamma_Q := \frac{\gamma^+_Q + \gamma^-_Q}{2} \)

- **effective tight-binding model**

- **classically allowed regions:**

\[
p(Q) \in \mathbb{R} \\
\Rightarrow \epsilon_Q + 2\gamma_Q \leq E \leq \epsilon_Q - 2\gamma_Q
\]

- **hopping: simplifies transition**

\[
\Delta \mathcal{E} = \frac{K/8}{2U_l - \alpha} \begin{cases} (U_s - \alpha)^2, & \text{CDW} \\ (\alpha + U_s - 4U_l)^2, & \text{MI} \end{cases}
\]
Augmented phase diagram

U_i/U_s vs U_s/α

- CDW
- Compressible
- MI
Augmented phase diagram

- CDW
- CDW
- MI
- MI-noB
- Compressible

- U_e/U_s
- U_s/α
- Q/K
Conclusion

- **role of quantum fluctuations** in phase reconfig. of 1st order transition
- long-range Bose-Hubbard model: **MI - CDW transition**
 - ultra-cold Ru atoms in optical lattice + cavity
 - full control on many-body properties
- **exact** Landau theory at zero hopping: hysteresis experiments
 - MI phase: meta stable + protected by barrier
 - explain: asymmetric hysteresis + plateaus
- **variational description**: render problem tractable
 - truncated Hilbert space
 - neglect lattice structure (mean-field like)
 - generate states $|Q\rangle$ by ∞ range hopping
 - numerical study: Θ, ΔE, S_{VN}, $\chi \Rightarrow$ phase diagram
- **discrete WKB**
 - construct phase diagram analytically
 - augment phase diagram by energy barrier
 - observe: tunneling lowers energy barrier
Outlook

- study dynamics in reduced Hilbert space: $\mathcal{L} = \langle \psi | (i\partial_t - H) | \psi \rangle$
 - different quench protocols
 - hysteresis loops

- construct a mean-field Hamiltonian
 - exact descriptions possible?
 - ∞ range interaction \Rightarrow mean-field reliable guide? CDW - MI

- extend or modify variational $|Q\rangle$ states
 - \exists extension that covers more details of the phase diagram?
 - distinguish between SS and SF

- describe model as open quantum system: Lindblad, Q-Langevin?
 - cavity loss
 - incoherent scattering for long-range interaction