Scheibe, Benjamin; Ivlev, Sergei I.; Karttunen, Antti J.; Kraus, Florian

Synthesis and Characterization of the Tetrafluoridochlorates(III) A[ClF₄] (A = K, Rb, Cs)

Published in:
European Journal of Inorganic Chemistry

DOI:
10.1002/ejic.202000106

Published: 16/04/2020

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Scheibe, B., Ivlev, S. I., Karttunen, A. J., & Kraus, F. (2020). Synthesis and Characterization of the Tetrafluoridochlorates(III) A[ClF₄] (A = K, Rb, Cs). European Journal of Inorganic Chemistry, 2020(14), 1319-1324. https://doi.org/10.1002/ejic.202000106
Interhalogen Chemistry

Synthesis and Characterization of the Tetrafluoridochlorates(III) A[ClF₄] (A = K, Rb, Cs)

Benjamin Scheibe,[a] Sergei I. Ivlev,[a] Antti J. Karttunen,[b] and Florian Kraus*[a]

Abstract: Single-crystalline tetrafluoridochlorates(III) A[ClF₄] (A = K, Rb, Cs) were synthesized from solvolysis reactions of alkali metal fluorides in liquid chlorine trifluoride. The structures were examined by means of single-crystal X-ray diffraction. K[ClF₄] crystallizes in the K[BrF₄] structure type, whereas the Rb and Cs compounds crystallize in the Li[AuF₄] structure type.

Introduction

The first preparation of tetrafluoridochlorates(III) of the alkali metals, A[ClF₄] (A = K, Rb, Cs), was probably accomplished by direct fluorination of the respective chlorides.[1–3] The authors first discussed a possible formation of polyfluorides of the type “AF₂” (A = K, Rb) and “AF₃” (A = Rb, Cs).[1–3] These results were disputed at a meeting of the Gesellschaft Deutscher Chemiker in 1950 and later revised by the same authors, who showed that the products contained alkali metal fluoridochlorates(III) as well as the alkali metal fluorides.[2,4] Polyfluorides have so far only been obtained under cryogenic conditions with the matrix isolation technique.[5–7]

Others have also prepared tetrafluoridochlorate(III)-containing products by fluorination of alkali metal chlorides at high pressures and/or temperatures.[8–10] The syntheses of tetrafluoridochlorates(III) are also possible by solvolysis reactions of alkali metal fluorides, AF (A = K, Rb, Cs) in ClF₃.[11–13] This approach is also commonly used for the syntheses of tetrafluoridobromates(III), see Equation (1).[14,15] The [MF₄]⁻-compounds of iodine, gold and silver are also known.[15–17]

More complex anions with higher MF₃ content, such as [M₂F₇]⁻ and [M₃F₁₀]⁻, have been reported and are so far limited to the BrF₃ and AuF₃ systems.[18–22] The [M₂F₇]⁻ anions show a μ₂-bridging fluorine atom and have been obtained in the compounds A[Br₂F₇] (A = Rb, Cs, PbF) and Cs[Au₂F₇].[18–22] Thus far, the [Br₃F₁₀]⁻ anion has the highest MF₃ content, exhibiting a central μ₃-bridging F atom, and was obtained as the Rb and Cs salts.[20] The possibility of anions of the composition [M₄F₁₃]⁻ for Au and Br has been the subject of a theoretical study.[23]

Here, we report on the syntheses, structure determinations, vibrational spectroscopic characterizations and hybrid density functional theory calculations of the tetrafluoridochlorates(III), A[ClF₄] (A = K, Rb, Cs).

Results and Discussion

The tetrafluoridochlorates(III) of K, Rb and Cs were synthesized by a solvolysis reaction of the respective alkali metal fluoride in liquid ClF₃, see Equation (2).

AF + MF₃ → A[MF₄]

A = e.g. K, Rb, Cs
M = Cl, Br

The compounds were further characterized by Raman and IR spectroscopy. Solid-state quantum-chemical calculations with hybrid density functional methods reproduced the experimental structures and enabled the interpretation of the experimental Raman and IR spectra.

AF + ClF₃ → A[ClF₄]

A = K, Rb, Cs

Single crystals of K[ClF₄] and Rb[ClF₄] were obtained by carefully heating suspensions of the alkali metal fluorides in ClF₃ up to 50 °C in an air bath. In the case of Cs[ClF₄], single crystals were obtained by slowly removing excess ClF₃ from solutions in vacuo.

Single Crystal X-ray Diffraction

Potassium tetrafluoridochlorate(III) crystallizes in the tetragonal space group I4/mcm (No. 140) with four formula units per unit cell, Pearson symbol tI24 and Wyckoff sequence 140, lda. The compound is isotypic to K[BrF₄].[24,25] See Table 1 for selected...
Table 1. Selected crystallographic data and details of the structure determinations of the compounds A[ClF₄] (A = K, Rb, Cs).

	[K[ClF₄]]	[Rb[ClF₄]]	[Cs[ClF₄]]
Formula	KClF₄	RbClF₄	CsClF₄
Molar mass / g mol⁻¹	150.55	196.92	244.35
Space group (No.)	I4/mcm (140)	C2/c (15)	C2/c (15)
a/Å	6.0372(3)	10.4131(8)	10.908(2)
b/Å	4.8957(4)	5.4275(11)	108.98(3)
c/Å	10.7566(6)	8.4012(7)	8.4068(17)
β°	90	103.843(3)	108.98(3)
V/Å³	392.05(4)	415.85(6)	470.67(18)
Z	4	4	4
Pearson symbol	tI	mS	mS
ρcalc / g cm⁻³	2.55	4.55	3.45
μ / mm⁻¹	1.97	3.15	8.38
Color	colorless	colorless	colorless
Crystal morphology	block	block	block
Crystal size/mm³	0.104 × 0.152 × 0.168	0.050 × 0.051 × 0.074	0.007 × 0.037 × 0.075
T/K	100	100	100
λ/Å	0.71073	0.71073	0.71073
No. of reflections	4904	9473	1449
θ range/°	3.79–39.35	4.03–37.82	3.95–26.71
Range of Miller indices	–10 ≤ h ≤ 10	–17 ≤ h ≤ 17	–13 ≤ h ≤ 11
	–10 ≤ k ≤ 10	–8 ≤ k ≤ 6	–6 ≤ k ≤ 6
	–18 ≤ l ≤ 19	–14 ≤ l ≤ 14	–10 ≤ l ≤ 10
Absorption correction	multi-scan	multi-scan	integration
Tₘax, Tₘin	0.77, 0.67	0.54, 0.45	0.37, 0.31
Rₑ, Rₑ	0.030, 0.012	0.034, 0.020	0.071, 0.055
Completeness of the data set	1.000	1.000	0.998
No. of unique reflections	339	1122	502
No. of parameters	13	31	30
No. of restraints	0	0	0
No. of constraints	0	0	0
S (all data)	1.15	1.07	1.06
R(F) (I ≥ 2σ(I), all data)	0.017, 0.023	0.022, 0.029	0.035, 0.049
wR(F²) (I ≥ 2σ(I), all data)	0.035, 0.036	0.037, 0.038	0.061, 0.065
Extinction coefficient	0.0113(16)	0.0033(4)	–
Δρmax, Δρmin/e Å⁻³	0.39, –0.27	0.58, –0.61	0.88, –0.80

The chlorine atom occupies the Wyckoff position 4d (site symmetry m.m.m) and is surrounded by the fluorine atom F(1) and its three symmetry-equivalent F atoms, F(1)#1-F(1)#3, forming the almost square but planar [ClF₄]⁻ anion, see Figure 1. The Cl–F distance is 1.7982(6) Å and the F–Cl–F angles are 89.79(4) and 90.21(4)°. These values nicely agree with structure determinations on other [ClF₄]⁻ salts, which were measured at 130 K: NO[ClF₄] (1.727(1) and 1.874(1) Å; 89.36(5)-91.32(9)° and 179.33(7)°) and 1,1,3,3,5,5-hexamethylpiperidinium[ClF₄] (1.759(2)-1.814(1) Å; 88.90(7)-91.16(7)°, 178.42(7)° and 178.68(8)°).[17]

The potassium atom occupies the Wyckoff position 4a (site symmetry 422) and is surrounded by eight fluorine atoms in

Figure 1. Top: Left: Tetrafluorodichloride(III) anion observed in K[ClF₄]. Symmetry transformations for the generation of equivalent atoms: #1 1 – x, –y, z; #2 1/2 – y, 1/2 – x, 1 – z; #3 1/2 + y, –1/2 + x, 1 – z. Right: Coordination polyhedron of K(1) in K[ClF₄]. Bottom: Crystal structure of K[ClF₄] projected along the b axis. The displacement ellipsoids are shown at the 90 % probability level at 100 K.
the shape of a distorted square-antiprism. A projection of the crystal structure of K[ClF₄] is shown in Figure 1.

The [ClF₄]⁻ anions are isolated and are superimposed when viewed along the a axis. Along the c axis, the anions are oriented at 90° towards one another. The fluorine atoms of the [ClF₄]⁻ anion each coordinate to two potassium atoms. The Cl atoms are each surrounded by eight K atoms in the shape of a cube and vice versa, being similarly arranged like the Cs and Cl atoms in CsCl.[26]

The salts Rb[ClF₄] and Cs[ClF₄] are isotypic and crystallize in the monoclinic space group C2/c (No. 15) with four formula units per unit cell, Pearson code mS24 and Wyckoff sequence 15, P2. Therefore, the compounds are isotypic to Li[AlF₄].[16]

Table 1 for selected crystallographic data and details of the structure determinations. Atom coordinates and isotropic displacement parameters are given in Table 3 and Table 4. Anisotropic displacement parameters are reported in the Supporting Information. The chlorine atom occupies the Wyckoff position 4d (site symmetry 1) and is surrounded by the fluorine atoms F(1) and F(2) and its symmetry-equivalent atoms F(1)#1 and F(2)#1, see Figure 2. The Cl(1)–F(1) distance is 1.8034(9) Å in the Rb and 1.794(4) Å in the Cs compound, respectively. The Cl(1)–F(2) distance is 1.7930(9) Å in the Rb and 1.792(4) Å in the Cs salt, respectively. The Cl–F distances of the latter salt are equal within the tripled standard uncertainties. The Cl–F angles are 89.33(4) and 90.67(4)° in Rb[ClF₄] and 89.14(19) and 90.92(19)° in Cs[ClF₄]. The F–Cl–F angles of the two salts are equal within the tripled standard uncertainties and nicely agree with the above-mentioned data of other [ClF₄]⁻ salts.

The lattice parameters and atomic positions of the three compounds reported here were fully optimized with the DFT-PBE0 method using the CRYSTAL17 program package.[28,29] The lattice parameters and the x,y,z coordinates of the optimized structures are given in the Supporting Information. The cell volumes of the optimized structures are bigger than the experimentally obtained ones: 4% for K[ClF₄] and 6.5% for both Rb[ClF₄] and Cs[ClF₄]. Thus, the interaction between the alkali metal cations and the [ClF₄]⁻ anions is probably somewhat underestimated by the DFT-PBE0 method that was employed.

The calculated Cl–F distances are only slightly longer than the experimental ones: 1.82 Å in K[ClF₄]; 1.81 and 1.83 Å in Rb[ClF₄]; 1.82 Å in Cs[ClF₄].

Vibrational Spectroscopy

The experimental Raman and IR spectra of the tetrafluoridochlorates(III) are shown in Figure 3. Values and band assignments are given in Table 5 and Table 6. The Raman and IR spectra of the compounds were also calculated with the DFT-PBE0 method and the calculated band positions, assignments and figures are given in the Supporting Information. The [ClF₄]⁺ ion has D₄h (mmm) symmetry in K[ClF₄] and Cs(1) symmetry in Rb[ClF₄] and Cs[ClF₄], deviating from the ideal D₄h (4/mmm) symmetry.

In the Raman spectra, the symmetric in-phase Cl–F stretching modes, vs(ClF₄), are observed at slightly above 500 cm⁻¹ and the symmetric out-of-phase Cl–F stretching modes, vs(ClF₄), at approximately 415 cm⁻¹. The values shift towards lower energy with increasing cation size. The scissoring vibration of the [ClF₄]⁺ ion is observed in the range of 290–260 cm⁻¹, showing no dependency on the cation size. Below 150 cm⁻¹, further deformation vibrational modes – twisting, umbrella bending and rocking – of the [ClF₄]⁺ ion are observed,
Figure 3. Left: Low-resolution (300/mm grating) Raman spectra of $A[\text{ClF}_4]$ ($A = \text{K}, \text{Rb, Cs}$) measured at room temperature under perfluorinated oil (K) or in glass vials (Rb, Cs). Single crystal of K$[\text{ClF}_4]$ and powder samples of Rb$[\text{ClF}_4]$ and Cs$[\text{ClF}_4]$. Right: ATR-IR spectra of $A[\text{ClF}_4]$ ($A = \text{K}, \text{Rb, Cs}$) measured at room temperature. Asterisks denote bands that stem from hydrogen fluoride adduct impurities of the alkali metal fluorides, $[A\text{F}(\text{HF})_n]$.

Table 5. Comparison and assignment of Raman-active bands of tetrafluoridochlorates(III), $A[\text{ClF}_4]$ ($A = \text{K}, \text{Rb, Cs}$). All values in cm$^{-1}$.

Compound	$\nu_{\text{in}}(\text{ClF}_4)$ in-phase	$\nu_{\text{out}}(\text{ClF}_4)$ out-of-phase	$\delta(\text{ClF}_4)$ scissoring	Reference
K$[\text{ClF}_4]$	515	416	272, 265	this work
	530, 529	424	275, 263	DFT-PBE0
Rb$[\text{ClF}_4]$	503	415	288	this work
	505	417	288	[30]
	502	414	287	[10]
Cs$[\text{ClF}_4]$	518, 517	422	281, 280	DFT-PBE0
	501	411	284	this work
	507	418	290	[31]
	518, 517	422, 417	279, 278	DFT-PBE0

which are coupled with the respective cation. These values nicely agree with our calculated values and Raman spectra that have been reported thus far.[10,30,31]

Table 6. Comparison and assignment of IR-active bands of tetrafluoridochlorates(III), $A[\text{ClF}_4]$ ($A = \text{K}, \text{Rb, Cs}$). All values in cm$^{-1}$.

Compound	$\delta(\text{ClF}_4)$ umbrella bending	$\nu_{\text{as}}(\text{ClF}_4)$ stretching	Reference
K$[\text{ClF}_4]$	498	424	this work
	563, 540	429	DFT-PBE0
Rb$[\text{ClF}_4]$	559 (shoulder), 482	413	this work
	486	430	[32]
	627, 534, 522	422, 421	DFT-PBE0
Cs$[\text{ClF}_4]$	552 (shoulder), 491	414	this work
	590	425	[32]
	541	436	[30]
	478	425	[32]
	595, 556, 538, 523	424, 420	DFT-PBE0

As was previously mentioned, the reported IR data of the tetrafluoridochlorates(III) are not as consistent as the Raman data.[15] In most studies Pyrex glass Schlenk lines were used for the handling of ClF$_3$ or the products were not handled under inert conditions, leading to impure compounds.[8,13,30,32] We also observed impurity bands in the IR spectra, especially when the ClF$_3$ used was not free from traces of HF. These bands are observed above 1000 cm$^{-1}$ and are caused by HF-adducts of the alkali metal fluorides, $[A\text{F}(\text{HF})_n]$, ($A = \text{K}, \text{Rb, Cs}; n$ being usually 1–3).[33,34] This highlights the fact that HF is a stronger Lewis-base than ClF$_3$ and thus displaces it from the tetrafluoridochlorates(III).[35]

Nevertheless, in the IR spectra two broad bands are seen in the region of 600 to 400 cm$^{-1}$ which can be attributed to the $[\text{ClF}_4]^-$ ion. The first one, with a maximum at approximately 500 cm$^{-1}$, can be assigned to the asymmetric Cl–F stretching mode, $\nu_{\text{as}}(\text{ClF}_4)$, and the latter one at circa 420 cm$^{-1}$ to the umbrella bending vibration of the $[\text{ClF}_4]^-$ ion. The calculated frequencies for the stretching modes are somewhat overestimated by the DFT-PBE0 method that was employed. The calculated Raman and IR spectra otherwise nicely agree with our experimental results.

Conclusions

The tetrafluoridochlorates(III), $A[\text{ClF}_4]$ ($A = \text{K}, \text{Rb, Cs}$), were synthesized from solvolysis reactions of the alkali metal fluorides in liquid ClF$_3$ in single-crystalline form. Structure determination by single-crystal X-ray diffraction showed that K$[\text{ClF}_4]$ is isotypic to K$[\text{BrF}_4]$, whereas Rb$[\text{ClF}_4]$ and Cs$[\text{ClF}_4]$ are isotypic to Li$[\text{AuF}_4]$.

Eur. J. Inorg. Chem. 2020, 1319–1324 www.eurjic.org

© 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
The Raman and IR spectra could be interpreted on the basis of quantum-chemical solid-state calculations.

Experimental Section

General: All operations were performed on a Monel metal Schlenk line, which was passivated with 100 % fluorine and chlorine trifluoride at various pressures before use. Moisture-sensitive compounds were stored and handled in an Ar-filled glove box (MBraun) or passivated with fluorine before use. Preparations were carried out in an atmosphere of dry and purified argon (5.0, Praxair). Chlorine trifluoride was stored over NaF to remove traces of HF. Caution! Fluorine, chlorine trifluoride, and tetrafluoridochlorates(III) must be handled using appropriate protective gear with ready access to proper emergency treatment procedures in the event of contact. The aforementioned are potent oxidative fluorinators that are only stable under the rigorously anhydrous conditions employed in the experimental procedures outlined in the Experimental Section. They react vigorously to explosively upon hydrolysis or contact with organic materials. The utmost precautions must be taken when disposing of these materials and their derivatives.

Synthesis: $\text{K[Cl}_4\text{F]}$: A PFA reaction vessel was loaded with 12.3 mg KF (0.218 mmol) inside a glove box and attached to a stainless-steel valve. An excess of ClF$_3$ (approximately 0.35 g, 3.8 mmol) was then condensed onto the solid at 77 K. The resulting suspension was gently heated in an air bath to approximately 50 °C for two hours. The remaining ClF$_3$ was then slowly pumped off and the colorless product (21.2 mg isolated, calculated: 31.87 mg) was transferred into the glove box. Cs[ClF$_4$]: A PFA reaction vessel was loaded with 28.1 mg RbF (0.269 mmol) inside a glove box and attached to a stainless-steel valve. An excess of ClF$_3$ (approximately 0.40 g, 4.3 mmol) was then condensed onto the solid at 77 K. The resulting suspension was gently heated in an air bath to approximately 50 °C for one hour. The remaining ClF$_3$ was then slowly pumped off and the colorless product (43.2 mg isolated, calculated: 52.97 mg) was transferred into the glove box. Cs[ClF$_4$]: A PFA reaction vessel was loaded with 20.9 mg CsF (0.138 mmol) inside a glove box and attached to a stainless-steel valve. An excess of ClF$_3$ (approximately 0.25 g, 2.7 mmol) was then condensed onto the solid at 77 K. The resulting solution was kept at room temperature for several hours. The remaining ClF$_3$ was then slowly pumped off and the colorless product (28.3 mg isolated, calculated: 33.61 mg) was transferred into the glove box. The mass balances of the three reactions indicated that a full conversion of the alkali metal fluorides to the respective tetrafluoridochlorates(III) was not achieved under the chosen conditions. Also, not all of the solid product could be isolated from the reaction vessels.

Single-Crystal X-ray Diffraction: Crystals of the moisture-sensitive compounds were selected under dried perfluorinated oil (Fomblin YR1800, Solvay, stored over molecular sieves 3 Å) and mounted on a MiTeGen loop. Intensity data of suitable crystals were collected under dried perfluorinated oil (Fomblin, Solvay, stored over molecular sieves 3 Å) and mounted on a MiTeGen loop. Intensity data of suitable crystals were recorded on a Bruker alpha FT-IR spectrometer using an ATR Diamond module with a resolution of 4 cm$^{-1}$. The spectrometer was located inside a glovebox (MBraun) under argon atmosphere. The spectra were measured at room temperature with a Monovista CRS+ confocal Raman microscope (Spectroscopy & Imaging GmbH) using a 532 nm solid-state laser and either a 300 grooves/mm (low-resolution mode, FWHM: <4.62 cm$^{-1}$) or a 1800 grooves/mm (high-resolution mode, FWHM: <0.368 cm$^{-1}$) grating.

Density Functional Calculations: Periodic quantum-chemical calculations were carried out for the $\text{A[Cl}_4\text{F]}$ ($\text{A} = \text{K, Rb, Cs}$) salts using the PBE0 density functional method (DFT-PBE0). A triple-zeta-valence + polarization (TZVP) level basis set was applied for F and Cl and split-valence + polarization (SVP) level basis sets were applied for K, Rb, and Cs. The basis sets were derived from the Karlsruhe def2 basis sets and taken from previous studies (F, Cl, K, Cs) or listed in the Supporting Information (Rb). All calculations were carried out with the CRYSTAL17 program package. The reciprocal space for the salts was sampled using the following Monkhorst-Pack-type k-point grids: $\text{K[Cl}_4\text{F]}$: 4x4x4, $\text{Rb[Cl}_4\text{F]}$: 5x5x3, $\text{Cs[Cl}_4\text{F]}$: 5x5x3. For the evaluation of the Coulomb and exchange integrals (TOLINTEG), tight tolerance factors of 8, 8, 8, 8, 16 were used for all calculations. Both the atomic positions and lattice parameters were fully optimized within the constraints imposed by the space group symmetry. Default DFT integration grids and optimization convergence thresholds were applied in all calculations. The coordinates in the calculations of each salt are given in the Supporting information. The harmonic vibrational frequencies, IR intensities and Raman intensities were obtained through usage of the computational scheme implemented in CRYSTAL17. The Raman intensities were calculated for a polycrystalline powder sample (total isotropic intensity in arbitrary units). The Raman spectra were obtained by using a pseudo-Voigt band profile (50:50 Lorentzian:Gaussian) and an FWHM of 8 cm$^{-1}$. The Raman spectra were simulated taking into account the experimental band profile ($50:50$ Lorentzian:Gaussian and an FWHM of 0.36 cm$^{-1}$) grating.

Acknowledgments

We thank the Deutsche Forschungsgemeinschaft (DFG) for generous funding.

[1] YR1800, Solvay, stored over molecular sieves 3 Å and mounted on a MiTeGen loop. Intensity data of suitable crystals were recorded with the APEX3 software suite (D8 Quest) or the X-Area software suite (IPDS2T). The diffraction data was corrected for multiphase (D8 Quest) or listed in the Supporting Information (Rb). All calculations were carried out with the CRYSTAL17 program package. The reciprocal space for the salts was sampled using the following Monkhorst-Pack-type k-point grids: $\text{K[Cl}_4\text{F]}$: 4x4x4, $\text{Rb[Cl}_4\text{F]}$: 5x5x3, $\text{Cs[Cl}_4\text{F]}$: 5x5x3. For the evaluation of the Coulomb and exchange integrals (TOLINTEG), tight tolerance factors of 8, 8, 8, 8, 16 were used for all calculations. Both the atomic positions and lattice parameters were fully optimized within the constraints imposed by the space group symmetry. Default DFT integration grids and optimization convergence thresholds were applied in all calculations. The xyz coordinates used in the calculations of each salt are given in the Supporting information. The harmonic vibrational frequencies, IR intensities and Raman intensities were obtained through usage of the computational scheme implemented in CRYSTAL17. The Raman intensities were calculated for a polycrystalline powder sample (total isotropic intensity in arbitrary units). The Raman spectra were obtained by using a pseudo-Voigt band profile (50:50 Lorentzian:Gaussian) and an FWHM of 8 cm$^{-1}$. The Raman spectra were simulated taking into account the experimental setup ($\lambda = 298.15$ K, $\lambda = 532$ nm). For the IR spectra, a Lorentzian lineshape and an FWHM of 8 cm$^{-1}$ was used. The band assignments were carried out by visual inspection of the normalized modes using the J mol program package. We thank the Deutsche Forschungsgemeinschaft (DFG) for generous funding.

[2] E. J. Inorg. Chem. 2020, 1319–1324 www.eurjic.org © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Keywords: Density Functional Theory Calculations · Chlorine · Fluorine · Interhalogen Compounds

[1] H. Bode, Naturwissenschaften 1950, 37, 477–477.
[2] H. Bode, Angew. Chem. 1950, 62, 449.
[3] H. Bode, E. Klesper, Z. Anorg. Allg. Chem. 1952, 267, 97–112.
[4] H. Bode, E. Klesper, Z. Anorg. Allg. Chem. 1961, 313, 161–169.
[5] W. F. Howard, L. Andrews, J. Am. Chem. Soc. 1973, 95, 3045–3046.
[6] T. Vent-Schmidt, F. Brosi, J. Metzger, T. Schlöder, X. Wang, L. Andrews, C. Müller, H. Beckers, S. Riedel, Angew. Chem. Int. Ed. 2015, 54, 8279–8283; Angew. Chem. 2015, 127, 8397.
[7] S. Hasenstab-Riedel, K. Sonnenberg, L. Mann, F. A. Redeker, B. Schmidt, Z. Anorg. Allg. Chem. 1964, 284–291.
[8] K. M. Harmon, R. V. Chirakal, J. C. P. Sanders, G. J. Schrobilgen, Inorg. Chem. 1990, 29, 3506–3511.
[9] K. O. Christe, J. P. Guertin, Inorg. Chem. 1966, 5, 473–476.
[10] L. H. Jones, A. R. Penneman, J. Chem. Phys. 1954, 22, 781–782.
[11] K. M. Harmon, R. R. Lovelace, J. Phys. Chem. 1982, 86, 900–903.
[12] T. Surles, L. A. Quarterman, H. H. Hyman, J. Fluorine Chem. 1974, 3, 293–306.
[13] APEX3, Bruker AXS Inc., Madison, Wisconsin, USA, 2018.
[14] X-Area, STOE & Cie GmbH, Darmstadt, Germany, 2018.
[15] G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Adv. 2015, 71, 3–8.
[16] G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3–8.
[17] A. L. Spek, PLATON - A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, 2019.
[18] A. L. Spek, Acta Crystallogr., Sect. D: Biol. Crystallogr. 2009, 65, 148–155.
[19] K. Brandenburg, H. Putz, Diamond - Crystal and Molecular Structure Visualization, Crystal Impact GbR, Bonn, 2019.
[20] OPUS V7.2, Bruker Optik GmbH, Ettlingen, Germany, 2012.
[21] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.
[22] V. Sivchik, R. K. Sarker, Z.-Y. Liu, K.-Y. Chung, E. V. Grachova, A. J. Karttunen, P.-T. Chou, I. O. Koshevoy, Chem. Eur. J. 2018, 24, 11475–11484.
[23] R. E. Stene, B. Scheibe, A. J. Karttunen, W. Petry, F. Kraus, Eur. J. Inorg. Chem. 2019, 3672–3682.
[24] A. J. Karttunen, T. Tynell, M. Karppinen, J. Phys. Chem. C 2015, 119, 13105–13114.
[25] R. Dovesi, A. Erba, R. Orlando, C. M. Zicovich-Wilson, B. Civalleri, L. Maschio, F. Pascale, C. Roetti, V. R. Saunders, R. Orlando, R. Dovesi, J. Comput. Chem. 2004, 25, 1873–1881.
[26] F. Pascale, C. M. Zicovich-Wilson, F. López Gejo, B. Civalleri, R. Orlando, R. Dovesi, J. Comput. Chem. 2004, 25, 888–897.
[27] L. Maschio, B. Kirtman, M. Rérat, R. Orlando, R. Dovesi, J. Chem. Phys. 2013, 139, 164101.
[28] L. Maschio, B. Kirtman, M. Rérat, R. Orlando, R. Dovesi, J. Chem. Phys. 2013, 139, 164102.
[29] Jmol: An Open-Source Java Viewer for Chemical Structures in 3D. Jmol.org/Jmol Team, 2019.

Received: February 2, 2020