C-CONFORMAL METRIC TRANSFORMATIONS ON FINSLERIAN HYPERSURFACE

S.K. Narasimhamurthy¹, Pradeep Kumar² and C.S. Bagewadi³

¹Department of Mathematics, Kuvempu University, Shankaraghatta-577451, Shimoga, Karnataka, India, nmurthysk@gmail.com
²Department of Mathematics, Kuvempu University, Shankaraghatta-577451, Shimoga, Karnataka, India
³Department of Mathematics, Kuvempu University, Shankaraghatta-577451, Shimoga, Karnataka, India

Abstract. The purpose of the paper is to give some relation between the original Finslerian hypersurface and other C-conformal Finslerian hypersurfaces. In this paper we define three types of hypersurfaces, which were called a hyperplane of the 1st kind, hyperplane of the 2nd kind and hyperplane of the 3rd kind under consideration of C-conformal metric transformation.

Key words: Finsler spaces, Finsler hypersurface, Conformal, C-conformal, Hyperplane of 1st kind, 2nd kind and 3rd kind.

Abstrak. Tujuan dari paper ini adalah untuk memberikan beberapa kaitan antara hypersurface Finsler asal dengan hypersurfaces C-konformal Finsler yang lain. Dalam tulisan ini kami mendefinisikan tiga jenis hypersurfaces, yang disebut hyperplane jenis pertama, hyperplane jenis kedua dan hyperplane jenis ketiga berdasarkan transformasi metrik C-konformal.

Kata kunci: Ruang Finsler, hypersurface Finsler, konformal, C-konformal, hyperplane jenis pertama, jenis kedua dan jenis ketiga.

1. Introduction

The conformal theory and its related concepts of Finsler spaces was initiated by Knebelman in 1929. M. Hashiguchi [1] introduced a special change called C-conformal change which satisfies C-condition. The theory of Special Finsler spaces and their properties were studied by M. Matsumoto [8], C. Shibata [13] et al and authors like H. Izumi [2], S. Kikuchi [4] et al have given the condition for Finsler space to be conformally flat. C. Shibata and H. Azuma [13] have studied C-conformal transformazioni.
invariant tensor of Finsler metric. The author M. Kitayama ([5], [6], [7]) have studied Finsler spaces admitting a parallel vector field and also studied Finslerian hypersurface and metric transformations. The authors H.G. Nagaraja, C.S. Bagewadi and H. Izumi [9] have published a paper on infinitesimal h-conformal motions of Finsler metric.

The authors S.K. Narasimhamurthy and C.S. Bagewadi ([10], [11]) have published a paper on C-conformal Special Finsler spaces admitting a parallel vector field and the same authors have also studied on Infinitesimal C-conformal motions of special Finsler spaces.

Throughout the paper, terminology and notations are referred to [1], [8] and [12].

2. Preliminaries

A Finsler space, we mean a triple $F^n = (M, D, L)$, where M denotes n-dimensional differentiable manifold, D is an open subset of a tangent vector bundle TM and $L: D \rightarrow R$ is a differentiable mapping having the properties

i) $L(x, y) > 0$, for $(x, y) \in D$,

ii) $L(x, \lambda y) = |\lambda|L(x, y)$, for any $(x, y) \in D$ and $\lambda \in R$ such that $(x, \lambda y) \in D$,

iii) $g_{ij}(x, y) = \frac{1}{2} \partial_i \partial_j L^2$, $(x, y) \in D$, is positive definite, where $\partial_i = \frac{\partial}{\partial y^i}$.

The metric tensor $g_{ij}(x, y)$ and Cartan’s C-tensor C_{ijk} are given by [12]:

$$g_{ij}(x, y) = \frac{1}{2} \partial_i \partial_j L^2, \quad g^{ij} = (g_{ij})^{-1},$$

$$C_{ijk} = \frac{1}{2} \partial_k g_{ij}, \quad C_i^j = \frac{1}{2} g^{im}(\partial_k g_{mj}),$$

where $\partial_j = \frac{\partial}{\partial y^j}$ and $\partial_i = \frac{\partial}{\partial x^i}$. We use the following [12]:

a) $l_i = \partial_i L, \quad l^i = y^i/L, \quad h_{ij} = g_{ij} - l_il_j$,

b) $\gamma^i_{jk} = \frac{1}{2} g^{ir}(\partial_j g_{rk} + \partial_k g_{rj} - \delta_r g_{jk})$,

c) $G^i = \frac{1}{2} \gamma^i_{jk} y^j y^k, \quad G^i_j = \partial_j G^i, \quad G^i_{jk} = \partial_k G^i_j, \quad G^i_{jkl} = \partial_l G^i_{jk}, \quad (1)$

d) $F^i_{jk} = \frac{1}{2} g^{ir}(\partial_j g_{rk} + \delta_k g_{rj} - \delta_r g_{jk})$,

e) $N^i_j = N^i_j - y_j \sigma^i + \sigma_0 \delta^i_j + \sigma_j y^i$,

where $\delta_j = \partial_j - G^r_j \partial_r$.

The Berwald connection and the Cartan connection of F^n are given by $B^\Gamma = (G^i_{jk}, N^i_j, 0)$ and $C^\Gamma = (F^i_{jk}, N^i_j, C^i_{jk})$ respectively.
A hypersurface M^{n-1} of the underlying smooth manifold M^n may be parametrically represented by the equation

$$x^i = x^i(u^\alpha),$$

where u^α are Gaussian coordinates on M^{n-1} and Greek indices take values 1 to $n-1$. Here we shall assume that the matrix consisting of the projection factors $B^i_\alpha = \partial x^i / \partial u^\alpha$ is of rank $(n-1)$. The following notations are also employed [6]:

$$B^i_\alpha\beta = \partial x^i / \partial u^\alpha \partial u^\beta, \quad B^i_\alpha\beta\ldots = B^i_\alpha B^j_\beta \ldots.$$

If the supporting element y^i at a point (u^α) of M^{n-1} is assumed to be tangential to M^{n-1}, we may then write

$$y^i = B^i_\alpha(u^\alpha),$$

i.e., v^α is thought of as the supporting element of M^{n-1} at a point (u^α). Since the function $L(u, v) = L(x(u), y(u, v))$ gives rise to a Finsler matrix of M^{n-1}, we get a $(n-1)$-dimensional Finsler space $F^{n-1} = (M^{n-1}, L(u, v))$.

At each point (u^α) of F^{n-1}, the unit normal vector $N^i(u, v)$ is defined by

$$g_{ij} B^i_\alpha N^j = 0, \quad g_{ij} N^i N^j = 1.$$

(2)

If (B^α_i, N_i) is the inverse matrix of (B^α_i, N^i), we have

$$B^i_\alpha B^i_\beta = \delta^i_\alpha, \quad B^i_\alpha N_i = 0, \quad N^i B^i_\alpha = 0, \quad N^i N_i = 1,$$

and further

$$B^i_\alpha B^\alpha_j + N^i N_j = \delta^i_j.$$

Making use of the inverse $(g^{\alpha\beta})$ of $(g_{\alpha\beta})$, we get

$$B^i_\alpha = g^{\alpha\beta} g_{ij} B^j_\beta, \quad N_i = g_{ij} N^j.$$

For the induced Cartan connections $IC\Gamma = (F^\alpha_{\beta\gamma}, N^\alpha_i, C^\alpha_{\beta\gamma})$ on F^{n-1}, the second fundamental h-tensor $H_{\alpha\beta}$ and the normal curvature tensor H_α are given by

i) \quad $H_{\alpha\beta} = N_i (B^i_\alpha B^i_\beta + F^i_{jk} B^{jk}_\alpha) + M_\alpha H_\beta,$

ii) \quad $H_\alpha = N_i (B^i_0_\alpha + N^i B^i_\alpha),$

respectively, where $M_\alpha = C_{ijk} B^i_\alpha N^j N^k$ and $B^i_0_\alpha = B^i_\alpha v^\beta$. Transvecting $H_{\alpha\beta}$ by v^β, we get $H_{0\alpha} = H_{\beta\alpha} v^\beta = H_\alpha$.

Further more we have to put

$$M_{\alpha\beta} = C_{ijk} B^{ij}_\alpha N^k.$$

(4)
3. C-Conformal Finsler Space

We shall consider conformal change of a Finsler metric formed by
\[L \rightarrow L = e^\sigma(x) L, \]
where \(\sigma \) is conformal factor depends on the point \(x \) only and under this change we have another Finsler space \(F^n = (M^n, L) \) on the same underlying manifold \(M^n \).

M. Hashiguchi [1] introduced the special change named C-conformal change which is by definition, a non-homothetic conformal change satisfying
\[C_{ijk} \sigma_i = 0, \tag{5} \]
where \(C_{ijk} = g^{im} (\partial_j g_{km}) / 2, \quad \sigma_i = g^{im} \sigma_m, \quad \sigma_m = \partial \sigma / \partial x^m, \quad \sigma^j = g^{ij} \sigma_j. \) From (1) and by symmetry of lower indices of \(C_{ijk} \), we have
\[C_{ijk} \sigma_i = C_{jik} \sigma_i = C_{jki} \sigma_i = 0, \]
also we have
\[C_{ij} \sigma^i = C_{ij} \sigma^j = C_{ik} \sigma^k = 0. \]

In the following the quantity with bar will be defined in C-conformal Finsler space \(F^n \), and the quantity without bar will be defined in Finsler space \(F^n \).

Under the C-conformal change, we have the following [2], [13]:
\begin{align*}
a) \quad \bar{g}_{ij} &= (L/L)^2 g_{ij}, \quad \bar{g}^{ij} = (L/L)^2 g^{ij}, \\
b) \quad \bar{y}_i &= \bar{g}^{ij} y_j, \\
c) \quad \bar{C}_{ijk} &= C_{ijk}, \quad \bar{C}^{ij} = e^{2a} C^{ij}, \quad \bar{C}_i = e^{-2a} C_i, \\
d) \quad \bar{\gamma}^{ij}_k &= \gamma^{ij}_k + (\sigma_j \delta^i_k + \sigma_k \delta^i_j - g_{jk} \sigma^i), \\
e) \quad \bar{\gamma}^i &= G^i - \frac{1}{2} L^2 \sigma^i + \sigma_0 y^i, \tag{6} \\
f) \quad \bar{C}^{ij}_k &= C^{ij}_k - g_{jk} \sigma^i + \sigma_k \delta^i_j + \sigma_j \delta^i_k, \\
g) \quad \bar{N}^i_j &= N^i_j - y_j \sigma^i + \sigma_0 \delta^i_j + \sigma_j y^i, \\
h) \quad \bar{F}^{ij}_k &= F^{ij}_k - g_{jk} \sigma^i + \sigma_k \delta^i_j + \sigma_j \delta^i_k + \sigma_0 C^{ij}_k.
\end{align*}

4. Hypersurface Given by a C-Conformal Change

We now consider a Finsler hypersurface \(F^{n-1} = (M^{n-1}, L(u, v)) \) of the Finsler space \(F^n \) and another Finsler hypersurface \(\bar{F}^{n-1} = (M^{n-1}, \bar{L}(u, v)) \) of the Finsler space \(F^n \) given by the C-conformal change.

Let \(N^i(u, v) \) be a unit normal vector at each point of the \(F^{n-1} \), and as component of \(n-1 \) linearly independent tangent vectors of \(F^{n-1} \) and they are invariant under the C-conformal change. Thus we shall show that a unit normal vector \(\bar{N}^i(u, v) \) of \(\bar{F}^{n-1} \) is uniquely determined by
\[g_{ij} \bar{B}^i_\alpha \bar{N}^j = 0, \quad g_{ij} \bar{N}^i \bar{N}^j = 1. \tag{7} \]
By means of (2) and (6), we get

\[g_{ij}(\pm e^{-\sigma} N^i)(\pm e^{-\sigma} N^j) = 1. \]

Therefore we can put

\[N^i = e^{-\sigma} N^i, \]

where we have chosen the sign ‘+’ in order to fix an orientation. It is obvious that \(N_i(u, v) \) satisfies (2), hence we obtain:

Lemma 4.1. For a field of linear frame \((B^i_1, B^i_2, ..., B^i_{n-1}, N^i)\) of \(F^n \), there exists a field of linear frame \((B^i_1, B^i_2, ..., B^i_{n-1}, \overline{N}^i = e^{-\sigma} N^i)\) of the \(F^n \) given by the \(C\)-conformal change such that (7) satisfied along \(F^{n-1} \).

The quantities \(B^i_\alpha \) are uniquely defined along \(F^{n-1} \) by

\[B^i_\alpha = \overline{g}^{\alpha\beta} g_{ij} B^j_\beta, \]

where \((\overline{g}^{\alpha\beta})\) is the inverse metric of \((g_{\alpha\beta})\). If \((B^i_\alpha, N^i)\) is the inverse vector of \((B^i_\alpha, N^i)\), then we have

\[B^i_\alpha N^i = 0, \quad \overline{N}^i B^j_\alpha = 0, \quad \overline{N}^i \overline{N}^j = 1, \]

and also

\[B^i_\alpha B^j_\alpha + \overline{N}^i \overline{N}^j = \delta^i_j. \]

Also we get \(\overline{N}^i = \overline{g}_{ij} \overline{N}^j \), that is

\[\overline{N}^i = e^{\sigma} N^i. \] \hspace{1cm} (8)

We have from (6(e)),

\[D^i = \overline{G}^i - G^i = \sigma_0 y^i - \frac{L^2}{2} \sigma^i, \quad \text{where} \quad \sigma_0 = \sigma_0 y^r. \] \hspace{1cm} (9)

Differentiating (9) by \(y^j \) and from (6(f)), we obtain

\[D^i_j = \overline{D}^i_{(j)}, \]

\[= \overline{G}^i_j - G^i_j, \]

\[= \overline{N}^i_j - N^i_j, \]

\[= -y_j \sigma^i + \sigma_0 \delta^i_j + \sigma_j y^i, \]

where \(D^i_{(j)} = \partial_j D^i \). From (9), we have

\[N_i D^i = \sigma_0 N_i y^i - \frac{L^2}{2} N_i \sigma^i. \]

We assume that \(N_i \sigma^i = 0 \). i.e., \(\sigma^i(x) \) is tangential to \(F^{n-1} \) and using the condition \(N_i y^i = 0 \), then we have

\[N_i D^i = 0. \] \hspace{1cm} (10)
Differentiating (10) by y^j, we have
\[N_i D^i_{(j)} + D^i (N^i)_{(j)} = 0, \]
\[N_i D^i_j + D^i_j (\hat{\partial}_j N_i) = 0. \]
Transvecting above equation by B^j_α, we get
\[N_i D^i_j B^j_\alpha + D^i_j (\hat{\partial}_j N_i) B^\alpha_\beta = 0, \]
\[N_i D^i_j B^\alpha_\beta = 0, \quad (11) \]
where we used
\[B^j_\alpha (\hat{\partial}_j N_i) = M_\alpha N_i = C_{ij\alpha} B^i_j N^i N^k N_i = 0. \]

Definition 4.1. If each path of the hypersurface F^{n-1} with respect to the induced connection is also a path of the ambient space F^n, then F^{n-1} is called a ‘hyperplane of the 1st kind’.

A hyperplane of the 1st kind is characterized by $H_\alpha = 0$.

From (3(ii)) and using (8), we have
\[H_\alpha = N_i (B^i_\alpha + \bar{N}^i_j B^j_\alpha). \]
Thus
\[H_\alpha - e^\sigma H_\alpha = N_i (B^i_\alpha + \bar{N}^i_j B^j_\alpha) - e^\sigma N_i (B^i_\alpha + \bar{N}^i_j B^j_\alpha), \]
\[= e^\sigma (N_i B^i_\alpha + N_i \bar{N}^i_j B^j_\alpha) - e^\sigma (N_i B^i_\alpha + N_i N^i_j B^j_\alpha), \]
\[= e^\sigma N_i (\bar{N}^i_j - N^i_j) B^j_\alpha, \]
\[= e^\sigma N_i D^i_j B^j_\alpha. \]
Thus we have
\[H_\alpha = e^\sigma (H_\alpha + N_i D^i_j B^j_\alpha). \]

Hence we state the following:

Theorem 4.1. A Finsler hypersurface F^{n-1} is a hyperplane of 1st kind if and only if C-conformal Finsler hypersurface F^{n-1} is a hyperplane of 1st kind, provided $N_i \sigma^i = 0$, i.e., $\sigma^i(x)$ is tangential to F^{n-1}.

Now from (6(h)), the so called difference tensor D^i_{jk} has the following form
\[D^i_{jk} = F^i_{jk} - F^i_{jk}, \]
\[= -g_{ij} \sigma^i + \sigma_k \delta^i_j + \sigma_j \delta^i_k + \sigma_0 C^i_{jk}. \]
Contracting above equation by N_i and B^i_α, we get
\[N_i D^i_{jk} B^j_\alpha = -N_i g_{ij} \sigma^i B^j_\alpha + \sigma_k N_i \delta^i_j B^j_\alpha + \sigma_j N_i \delta^i_k B^j_\alpha + \sigma_0 C^i_{jk} N_i B^j_\alpha, \]
\[= 0. \]
Where we use $\sigma_0 = \sigma_i y^i$ and equation (5). Thus we state the following:
Lemma 4.2. Assuming that $\sigma_i(x)$ is tangential to F^{n-1}, then the tensor $N_i D_{jk}^i B_{\alpha}^j$ is vanishes if and only if it satisfies (5).

Definition 4.2. If each h-path of a hypersurface F^{n-1} with respect to the induced connection is also h-path of the ambient space F^n, then F^{n-1} is called a ‘hyperplane of the 2nd kind’.

A hyperplane of the 2nd kind is characterized by $H_{\alpha \beta} = 0$.

From (3(i)), we have

$$H_{\alpha \beta} = N_i (B_{\alpha \beta}^i + F_{jk}^i B_{\alpha \beta}^{jk}) + M_{\alpha} H_{\beta}.$$

(12)

Under the C-conformal change, (12) can be written as

$$\overline{H}_{\alpha \beta} = N_i (B_{\alpha \beta}^i + \overline{F}_{jk}^i B_{\alpha \beta}^{jk}) + \overline{M}_{\alpha} \overline{H}_{\beta}.$$

(13)

Using equations (12) and (13), we get

$$\overline{H}_{\alpha \beta} - e^\sigma H_{\alpha \beta} = [N_i (B_{\alpha \beta}^i + \overline{F}_{jk}^i B_{\alpha \beta}^{jk}) + \overline{M}_{\alpha} \overline{H}_{\beta}] - e^\sigma N_i (B_{\alpha \beta}^i + F_{jk}^i B_{\alpha \beta}^{jk}) - e^\sigma M_{\alpha} H_{\beta},$$

(14)

that implies

$$\overline{H}_{\alpha \beta} - e^\sigma H_{\alpha \beta} = e^\sigma N_i (\overline{F}_{jk}^i - F_{jk}^i) B_{\alpha \beta}^{jk},$$

(15)

Thus by virtue of lemma (4.1), therefore we state the following:

Theorem 4.2. A Finsler hypersurface F^{n-1} is a hyperplane of the 2nd kind if and only if the C-conformal Finsler hypersurface F^{n-1} is a hyperplane of the 2nd kind, provided $\sigma_i(x)$ is tangential to F^{n-1}.

Definition 4.3. If the unit normal vector of F^{n-1} is parallel along each curve of F^{n-1}, then F^{n-1} is called a ‘hyperplane of the 3rd kind’.

A hyperplane of the 3rd kind is characterized by $H_{\alpha \beta} = M_{\alpha \beta} = 0$.

From (4), under C-conformal change the tensor $M_{\alpha \beta}$ can be written as

$$M_{\alpha \beta} = C_{ijk} B_{\alpha \beta}^{ij} N_k,$$

(16)

$$= e^{-\sigma} C_{ijk} B_{\alpha \beta}^{ij} N_k,$$

$$= e^{-\sigma} M_{\alpha \beta}.$$

By characterization of hyperplane of the 3rd kind and (15), we have $\overline{H}_{\alpha \beta} = \overline{M}_{\alpha \beta} = 0$.

Thus by virtue of lemma (4.1), we state the following:

Theorem 4.3. A Finsler hypersurface F^{n-1} is a hyperplane of the 3rd kind if and only if C-conformal Finsler hypersurface F^{n-1} is a hyperplane of the 3rd kind, provided $\sigma_i(x)$ is tangential to F^{n-1}.
Acknowledgement. The authors are thankful to the referees for their valuable suggestions.

References

[1] Hashiguchi, M., "On conformal transformations of Finsler metric", J. Math. Kyoto Univ., 16 (1976), 25-50.
[2] Izumi, H., "Conformal transformations of Finsler spaces", Tensor, N.S., 34 (1980), 337-359.
[3] Zilasi, J., and Vincze, C., "A new look at Finsler connections and special Finsler manifolds", Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis, 16 (2000), 33–63.
[4] Kikuchi, S., "On condition that a Finsler space be conformally flat", Tensor, N.S., 55 (1994), 97–100.
[5] Kitayama, M., "Finsler spaces admitting a parallel vector field", Balkan J. of Geometry and its Applications, 3 (1998), 29–36.
[6] Kitayama, M., "Finslerian hypersurfaces and metric transformations", Tensor, N.S., 60 (1998), 171–177.
[7] Kitayama, M., "On Finslerian hypersurfaces given by β change", Balkan J. of Geometry and its Applications, 7 (2002), 49–55.
[8] Matsumoto, M., Foundations of Finsler geometry and special Finsler spaces, Kaiseisha press, Otsu, Saiakawa, 1986.
[9] Nagaraja, H.G., and Bagewadi, C.S., "Finsler spaces admitting semi-symmetric Finsler connections", Advances in modelling and Analysis, A (2003), 57–68.
[10] Narasimhamurthy, S.K., Bagewadi, C.S., and Nagaraja, H.G., "Infinitesimal C-conformal motions of special Finsler spaces", Tensor, N.S., 64 (2003), 241–247.
[11] Narasimhamurthy, S.K., and Bagewadi, C.S., "C-conformal Finsler spaces admitting a parallel vector field", Tensor, N.S., 65 (2004), 162–169.
[12] Rund, H., The differential geometry of Finsler spaces, Springer-Verlag, Berlin, 1959.
[13] Shibata, C., and Azuma, M., "C-conformal invariant tensors of Finsler metrics", Tensor, N.S., 52 (1993), 76–81.