Thermal Behaviour of Sm$_{0.5}$R$_{0.5}$FeO$_3$ (R = Pr, Nd) Probed by High-Resolution X-ray Synchrotron Powder Diffraction

Olena Pavlovska, Leonid Vasylechko* and Oleh Buryy

Abstract

Mixed ferrites Sm$_{0.5}$Pr$_{0.5}$FeO$_3$ and Sm$_{0.5}$Nd$_{0.5}$FeO$_3$ with orthorhombic perovskite structure isotypic with GdFeO$_3$ were synthesized by solid-state reaction technique in air at 1473 K. Structural parameters obtained at room temperature prove a formation of continuous solid solutions in the SmFeO$_3$–PrFeO$_3$ and SmFeO$_3$–NdFeO$_3$ pseudo-binary systems. Sm$_{0.5}$Pr$_{0.5}$FeO$_3$ and Sm$_{0.5}$Nd$_{0.5}$FeO$_3$ show strongly anisotropic nonlinear thermal expansion: thermal expansion in the b direction is twice lower than in the a and c directions. The average linear thermal expansion coefficients of Sm$_{0.5}$Pr$_{0.5}$FeO$_3$ and Sm$_{0.5}$Nd$_{0.5}$FeO$_3$ in the temperature range of 298–1173 K are in the limits of (9.0–11.1) × 10$^{-6}$ K$^{-1}$, which is close to the values reported for the parent RFeO$_3$ compounds. Subtle anomalies in the lattice expansion of Sm$_{0.5}$Pr$_{0.5}$FeO$_3$ and Sm$_{0.5}$Nd$_{0.5}$FeO$_3$ detected at 650–750 K reflect magnetoelastic coupling at the magnetic ordering temperature T_N.

Keywords: Mixed rare earth ferrites, Perovskites, Crystal structure, Thermal expansion, Magnetoelastic coupling

PACS: 61, 61.05.cp, 65.40.De

Background

Complex oxides with perovskite structure RFeO$_3$, where R is the rare earth(RE), represent an important class of functional materials. The RFeO$_3$-based materials are used as electrodes in solid oxide fuel cells, as catalysts, gas sensory materials and semiconductor ceramics [1–6]. Complementary, the interest in the rare earth ferrites is stimulated by their interesting fundamental physical properties, such as spin-reorientation transitions at 80–480 K and the para- to antiferromagnetic transitions at 620–750 K [7–10]. Just recently, the interest to RE ferrite perovskites was renewed due to reported multiferroic properties of NdFeO$_3$, SmFeO$_3$ and other RFeO$_3$ compounds [11–13]. At room temperature (RT), all RE orthoferrites adopt orthorhombic perovskite structure isotypic with GdFeO$_3$ [14, 15]. No structural phase transitions were reported in the literature for RFeO$_3$ compounds, with an exception of LaFeO$_3$, which undergoes a high-temperature (HT) transition to rhombohedral structure at 1220–1280 K [16, 17]. Orthorhombic RFeO$_3$ perovskites show strongly anisotropic thermal expansion: the expansivity in the b direction in the Pbam setting is ca. two times lower than in the a and c directions. Subtle anomalies in the lattice expansion of PrFeO$_3$ and SmFeO$_3$ are observed in the b direction at 600–800 K, which is indicative for magnetoelastic coupling at the magnetic ordering temperature T_N [18, 19]. In ref. [9], it was shown that the spin-reorientation transition in NdFeO$_3$ between 100 and 200 K is associated with changes of the b-lattice parameter, which has a broad local minimum in the spin-reorientation region near 160 K. However, no lattice anomalies in NdFeO$_3$ were found around the Néel temperature of 687 K in [10].

The aim of the present work is the detail study of the thermal behaviour of Sm$_{0.5}$Pr$_{0.5}$FeO$_3$ and Sm$_{0.5}$Nd$_{0.5}$FeO$_3$ in order to reveal the possible magnetoelastic coupling in these mixed perovskite ferrites.

Methods

Polycrystalline samples with nominal compositions Sm$_{0.5}$Pr$_{0.5}$FeO$_3$ and Sm$_{0.5}$Nd$_{0.5}$FeO$_3$ have been prepared from stoichiometric amounts of constituent oxides Sm$_2$O$_3$, Pr$_6$O$_{11}$, Nd$_2$O$_3$ and Fe$_2$O$_3$ by solid-state...
reaction technique according to the following reaction schemes:

\[
\begin{align*}
3/2\text{Sm}_2\text{O}_3 + 1/2\text{Pr}_2\text{O}_3 + 3\text{Fe}_2\text{O}_3 & \rightarrow 6\text{Sm}_0.5\text{Pr}_0.5\text{Fe}_3\text{O}_5 + 1/2\text{O}_2 \uparrow \\
1/2\text{Sm}_2\text{O}_3 + 1/2\text{Nd}_2\text{O}_3 + \text{Fe}_2\text{O}_3 & \rightarrow 2\text{Sm}_0.5\text{Nd}_0.5\text{Fe}_3\text{O}_5.
\end{align*}
\]

Precursor oxides were ball-milled in ethanol for 5 h, dried, pressed into pellets and annealed in air at 1473 K for 20 h. The as-obtained product was repeatedly regrinded and annealed at 1473 K for 20 h and, after that, slowly cooled to RT for 20 h.

X-ray phase and structural characterization of the samples was performed at room temperature by using imaging plate Guinier camera G670 (Cu K\(_{\alpha 1}\) radiation, \(\lambda = 1.54056\ \text{Å}\)). Thermal behaviour of \(\text{Sm}_{0.5}\text{Pr}_{0.5}\text{Fe}_3\text{O}_5\) and \(\text{Sm}_{0.5}\text{Nd}_{0.5}\text{Fe}_3\text{O}_5\) structures has been studied in situ in the temperature range of 298–1173 K by means of high-resolution X-ray synchrotron powder diffraction technique. The corresponding experimental powder diffraction patterns were collected with the temperature steps of 30 K at beamline B2 of synchrotron laboratory HASYLAB/DESY (Hamburg, Germany). Structural parameters of the samples were derived from the experimental diffractograms by using full-profile Rietveld refinement technique applying WinCSD program package [20].

Results and Discussion

X-ray powder diffraction examination revealed that both samples synthesized possess orthorhombic perovskite structure isotypic with GdFeO\(_3\). No extra crystalline phases were found. The unit-cell dimensions of \(\text{Sm}_{0.5}\text{Pr}_{0.5}\text{Fe}_3\text{O}_5\) and \(\text{Sm}_{0.5}\text{Nd}_{0.5}\text{Fe}_3\text{O}_5\) at room temperature are in good agreement with the structural data of the parent \(\text{SmFeO}_3\), PrFeO\(_3\) and NdFeO\(_3\) [14, 15] compounds, (Fig. 1), thus proving possible formation of continuous solid solutions \(\text{Sm}_{1-x}\text{Pr}_x\text{FeO}_3\) and \(\text{Sm}_{1-x}\text{Nd}_x\text{FeO}_3\) in the \(\text{SmFeO}_3\)–PrFeO\(_3\) and \(\text{SmFeO}_3\)–NdFeO\(_3\) systems.

Precise high-resolution X-ray synchrotron powder diffraction examination confirms phase purity of the \(\text{Sm}_{0.5}\text{Pr}_{0.5}\text{Fe}_3\text{O}_5\) and \(\text{Sm}_{0.5}\text{Nd}_{0.5}\text{Fe}_3\text{O}_5\) samples (Fig. 2). The values of full width at half maximum (FWHM) of the mixed samarium-praseodymium and samarium-neodymium ferrites are in the limits of 0.043°–0.089°, which is comparable with those of the “pure” \(\text{SmFeO}_3\) ferrite (Fig. 2, inset). Angular dependence of FWHM of

![Fig. 1](image1.png)

Fig. 1 Concentration dependence of the unit-cell dimensions in the \(\text{SmFeO}_3\)–PrFeO\(_3\) and \(\text{SmFeO}_3\)–NdFeO\(_3\) systems. The orthorhombic lattice parameters are normalized to the perovskite cell as follows: \(a_p = a_o/\sqrt{2}\), \(b_p = b_o/\sqrt{2}\), and \(c_p = c_o/2\).

![Fig. 2](image2.png)

Fig. 2 X-ray synchrotron powder diffraction patterns of \(\text{Sm}_{0.5}\text{Pr}_{0.5}\text{Fe}_3\text{O}_5\) and \(\text{Sm}_{0.5}\text{Nd}_{0.5}\text{Fe}_3\text{O}_5\) (\(\lambda = 0.53833\ \text{Å}\)). For a comparison, the corresponding pattern of the “pure” \(\text{SmFeO}_3\) is given as well. Inset shows the angular dependence of FWHM for all three samples.
Fig. 3 Graphical results of Rietveld refinement of the Sm$_{0.5}$Pr$_{0.5}$FeO$_3$ structure at 1173 K. Experimental X-ray synchrotron powder diffraction pattern ($\lambda = 0.53833$ Å) collected at 1173 K (dots) is shown in comparison with the calculated pattern (lines). The difference between measured and calculated profiles is shown as a curve below the diagrams. Short vertical bars indicate the positions of diffraction maxima in the space group Pbnm. Inset shows the view of the structure as corner-shared FeO$_6$ octahedra with Sm/Pr species located between them.

Table 1 Lattice parameters, coordinates and displacement parameters of atoms in the Sm$_{0.5}$Pr$_{0.5}$FeO$_3$ and Sm$_{0.5}$Nd$_{0.5}$FeO$_3$ structures at RT, 753 and 1173 K

Atoms, sites	Parameters, residuals	Sm$_{0.5}$Pr$_{0.5}$FeO$_3$	Sm$_{0.5}$Nd$_{0.5}$FeO$_3$
	$T = 298$ K	$T = 753$ K	$T = 1173$ K
a, Å			
c, Å			
b, Å			
V, Å3			
Sm/Pr(Nd), 4c	x	$-0.0099(3)$	$-0.0086(4)$
	y	$0.0049(2)$	$0.0046(2)$
	z	$1/4$	$1/4$
β_{iso}, Å2		$0.98(1)$	$1.12(2)$
Fe, 4b	x	0	0
	y	$1/2$	$1/2$
	z	0	0
β_{iso}, Å2		$0.76(3)$	$0.75(4)$
O1, 4c	x	$0.092(2)$	$0.091(2)$
	y	$0.481(2)$	$0.484(2)$
	z	$1/4$	$1/4$
β_{iso}, Å2		$0.7(2)$	$0.9(3)$
O2, 8d	x	$-0.2934(13)$	$-0.2955(15)$
	y	$0.2939(13)$	$0.2960(14)$
	z	$0.0433(10)$	$0.0403(11)$
β_{iso}, Å2		$0.39(12)$	$0.4(2)$
\bar{R}_1		0.104	0.102
\bar{R}_p		0.168	0.170

$R_I = 0.104$ 0.102 0.109 0.102 0.104 0.104

$R_P = 0.168$ 0.170 0.185 0.166 0.187 0.196
Sm$_{0.5}$Pr$_{0.5}$FeO$_3$ substantially resembles the behaviour of the parent SmFeO$_3$ compound, whereas a rather scattered behaviour is observed for the Sm$_{0.5}$Nd$_{0.5}$FeO$_3$ sample (Fig. 2, inset). To some extent, hkl-dependent anisotropic broadening of Bragg peaks points on the possible compositional, thermal and elastic microstrains presented in the Sm$_{0.5}$Nd$_{0.5}$FeO$_3$ sample [21].

In situ high-temperature X-ray synchrotron powder diffraction investigations prove that Sm$_{0.5}$Pr$_{0.5}$FeO$_3$ and Sm$_{0.5}$Nd$_{0.5}$FeO$_3$ remain orthorhombic at least up to 1173 K. No structural phase transitions were detected in the whole temperature range investigated. Based on the experimental X-ray synchrotron powder diffraction data, the unit-cell dimensions and positional and displacement parameters of atoms in the Sm$_{0.5}$Pr$_{0.5}$FeO$_3$ and Sm$_{0.5}$Nd$_{0.5}$FeO$_3$ structures between RT and 1173 K were derived by full-profile Rietveld refinement technique. As an example, Fig. 3 represents the graphical results of Rietveld refinement of the Sm$_{0.5}$Pr$_{0.5}$FeO$_3$ structure at 1173 K. Reﬁned structural parameters of Sm$_{0.5}$Pr$_{0.5}$FeO$_3$ and Sm$_{0.5}$Nd$_{0.5}$FeO$_3$ at the selected temperatures are presented in Table 1.

Temperature dependencies of the unit-cell dimensions of Sm$_{0.5}$Pr$_{0.5}$FeO$_3$ and Sm$_{0.5}$Nd$_{0.5}$FeO$_3$ in comparison with the literature data for the “pure” ferrite perovskites SmFeO$_3$ [19], PrFeO$_3$ [18] and NdFeO$_3$ [10] are presented in Fig. 4.

Temperature evolution of the lattice parameters of mixed Sm-Pr and Sm-Nd ferrites resemble for the most part the thermal behaviour of the parent compounds. In both cases, clear deviations from the “normal” trend are observed in the b direction at 650–750 K, whereas much less visible anomalies in the lattice expansion are observed in the a and c directions (Fig. 4a–c). It is evident that similar to SmFeO$_3$ and PrFeO$_3$, a kink in the b-lattice expansion of Sm$_{0.5}$Pr$_{0.5}$FeO$_3$ and Sm$_{0.5}$Nd$_{0.5}$FeO$_3$ is associated with the para- to antiferromagnetic transitions that occurred in these specimens at the Néel temperatures. Earlier, nonlinear lattice expansion across the antiferromagnetic to paramagnetic transitions was also observed in LaFeO$_3$ at $T_N = 735$ K [17].

Similar to the “pure” RFeO$_3$ perovskites, thermal expansion of Sm$_{0.5}$Pr$_{0.5}$FeO$_3$ and Sm$_{0.5}$Nd$_{0.5}$FeO$_3$ shows a clear anisotropic behaviour. Calculated thermal expansion coefficients (TECs) in the b direction are in the limits of $(5.3–6.2) \times 10^{-6}$ K$^{-1}$ which is twice lower than the values of $(11.1–13.6) \times 10^{-6}$ K$^{-1}$ in the a and c directions (Fig. 5). Such anisotropic thermal expansion...
SmFeO$_3$ by thermogravimetric measurements [15]. As it was shown, detectable weight loss due to the fast oxygen desorption begins in these ferrites above 573 K. As a consequence, thermal expansion behaviour of SmFeO$_3$ shows a change of the slope at around 593 K close to the temperature of sharp weight loss detected by TGA [15].

Conclusions

Crystal structure parameters of the mixed samarium-praseodymium and samarium-neodymium ferrites Sm$_{0.5}$Pr$_{0.5}$FeO$_3$ and Sm$_{0.5}$Nd$_{0.5}$FeO$_3$ synthesized by solid-state reaction technique in air at 1473 K have been studied in a wide temperature range of 298–1173 K by means of high-resolution X-ray synchrotron powder diffraction technique. Close analysis of the temperature dependence of the unit-cell dimensions in comparison with the literature data for the parent RFeO$_3$ compounds revealed strongly anisotropic lattice expansion and subtle anomalies associated with the para- to antiferromagnetic transitions at 650–750 K. The average linear thermal expansion coefficients of Sm$_{0.5}$Pr$_{0.5}$FeO$_3$ and Sm$_{0.5}$Nd$_{0.5}$FeO$_3$ derived from the experimental values of the unit-cell dimensions in the temperature range of 298–1173 K are in the limits of (9.0–11.1) × 10$^{-6}$ K$^{-1}$, which is close to the corresponding values reported for the parent RFeO$_3$ compounds.

Competing Interests

The authors declare that they have no competing interests.

Authors’ Contributions

OP synthesized the samples, contributed to the data evaluation and wrote the manuscript. LV performed the laboratory X-ray and HT synchrotron powder diffraction measurements, made the structural characterization of the samples and contributed to the manuscript writing. OB contributed to the discussion of the results and manuscript writing. All authors read and approved the final manuscript.

Authors’ Information

OP is a 2nd year PhD student at the Semiconductor Electronics Department of Lviv Polytechnic National University. LV is a Doctor of Science (Dr. Hab.) and Associate Professor at the Semiconductor Electronics Department of Lviv Polytechnic National University. OB is a Doctor of Science (Dr. Hab.) and Associate Professor at the Semiconductor Electronics Department of Lviv Polytechnic National University.

Acknowledgements

The work was supported in part by the Ukrainian Ministry of Education and Sciences (Project “RZE”) and ICMP Grant-in-Aid programme. The authors express especial gratitude to A. Berghäuser for his kind assistance in the maintenance of the equipment during the measurements at HASYLAB beamline B2 under the project I-20110214.

Received: 2 December 2015 Accepted: 22 February 2016 Published online: 27 February 2016

References

1. Sun C, Hui R, Roller J (2010) Cathode materials for solid oxide fuel cells: a review. J Solid State Electrochem 14:1125–1144
2. Buhari S, Giorgi J (2012) Chemically stable and coke resistant $\text{Sm}_{x-0.5}\text{CeFeO}_3$ perovskites for low temperature solid oxide fuel cell anode applications. J Power Sources 198:51–58
3. Cambelli P, Cinino S, De Rossi S, Lisi L, Minelli G, Porta P, Russo G (2001) AFe_2O_4 (A = La, Nd, Sm) and $\text{LaFe}_2\text{Mg}_2\text{O}_7$ perovskites as methane combustion and CO oxidation catalysts: structural, redox and catalytic properties. Appl Catal B: Environmental 29:239–250
4. Ding J, Lu X, Shu H, Xie J, Zhang H (2010) Microwave-assisted synthesis of perovskite ReFeO$_4$ (Re = La, Sm, Eu, Gd) photocatalyst. Mater Sci Eng B 171:31–34
5. Itagaki Y, Mori M, Hosoya Y, Aono H, Sadakata Y (2007) O$_2$ and NO$_2$ sensing properties of $\text{SmFe}_2\text{Co}_2\text{O}_9$ perovskite oxides. Sens Actuators B 122:315–320
6. Prasad B, Rao G, Chen J, Babu D (2011) Abnormal high dielectric constant in SmFeO$_3$ semiconductor ceramics. Mater Res Bull 46:1670–1673
7. Gorodetsky S, Levinson L (1969) Spin reorientation in SmFeO$_3$. Solid State Commun 7:67–70
8. Pinto H, Shaked H (1972) Long wavelength neutron diffraction study of the magnetic structures of PrFeO$_3$ and NdFeO$_3$. Solid State Comm 10:663–665
9. Sławinski W, Przeniosło R, Rosowska I, Suard E (2005) Spin reorientation and structural changes in NdFeO$_3$. J Phys Condens Matter 17:4605–4614
10. Sławinski W, Przeniosło R, Rosowska I, Brunelli M, Bieringer M (2007) Anomalous thermal expansion in polycrystalline NdFeO$_3$ studied by SR and X-ray diffraction. Nucl Instrum Methods Phys Res, Sect B 254:149–152
11. Tokunaga Y, Furukawa N, Sakai H, Taguchi Y, Atma T, Tokura Y (2009) Composite domain walls in a multiferroic perovskite ferite. Nat Mater 8:558–562
12. Lee J-H, Jeong Y, Park J, Oak M-A, Jang H, Son J, Scott J (2011) Spin-canting-induced improper ferroelectricity and spontaneous magnetization reversal in SmFeO$_3$. Phys Rev Letters 107:117201
13. Hu G, Umehara I, Shuang X, Yuan S, Cao S (2012) Pressure effect in multiferroic phase transition of perovskite ferite crystals NdFeO$_3$ and ErFeO$_3$. JPCS 400:032023–032027
14. Marozio M, Remeika J, Demier P (1970) The crystal chemistry of the rare earth orthoferrites, Acta Cryst B 26:2008–2022
15. Berenov A, Angeles E, Rossiny J, Raj E, Kliner J, Atkinson A (2008) Structure and transport in rare-earth ferates, Solid State Ionics 179:1090–1093
16. Fossdal A, Menon M, Waernhus I, Wiik K, Einarsrud M-AN, Grande T (2004) Crystal structure and thermal expansion of La$_{1-x}$Sr$_x$FeO$_{3-δ}$ materials. J Am Ceram Soc 87:1952–1958
17. Selbach S, Tolcher J, Fosdahl A, Grande T (2012) Non-linear thermal evolution of the crystal structure and phase transitions of LaFeO$_3$ investigated by high temperature X-ray diffraction. J Solid State Chem 196:249–254
18. Kharko O, Vasylechko L (2013) Anomalous thermal expansion of new mixed praseodymium cobaltites-ferrites. Visnyk Lviv Polytechnic Natl University 57:56–66
19. Kuo C-Y, Drees Y, Fernández-Díaz M, Sheptyakov D, et al. (2014) $k = 0$ magnetic structure and absence of ferroelectricity in SmFeO$_3$. Phys Rev Lett 113:217203–217208
20. Aksefud L, Grin YU (2014) WinCSD: software package for crystallographic calculations (Version 4). J Appl Cryst 47:803–805
21. Leineweber A (2011) Understanding anisotropic microstrain broadening in Rietveld refinement. Z Kristallogr 226:905
22. Vasylechko L, Senyshyn A, Bismayer U (2009) Perovskite-type aluminates and gallates. In: Gschneidner KA Jr, Bünzli J-CG, Pecharsky VK (eds) Handbook on the physics and chemistry of rare earths, vol 39. North-Holland, Netherlands, pp 113–295
23. Senyshyn A, Vasylechko L, Knapp M, Bismayer U, Berkowski M, Matkovskii A (2004) Thermal expansion of the NdGaO$_3$ perovskite. J Alloys Comp 382:84–91
24. Senyshyn A, Oganov AR, Vasylechko L, Ehrenberg H, Bismayer U, Berkowski M, Matkovskii A (2004) The crystal structure and thermal expansion of the perovskite-type Nd$_{1-x}$Sm$_x$Ga$_2$O$_5$ powder diffraction and lattice dynamical studies. J Phys Condens Matter 16:253–265
25. Vasylechko L, Pivak Y, Senyshyn A, Savytskii D, Berkowski M, Borrmann H et al. (2005) Crystal structure and thermal expansion of PrGaO$_3$ in the temperature range 12–1253 K. J Solid State Chem 178:270–278
26. Hung M-H, Ruo M, Tai D-S (2007) Microstructures and electrical properties of calcium substituted LaFeO$_3$ as SOFC cathode. Mater Chem Phys 101:297–302
27. Köferstein R, Ebbinghaus S (2013) Synthesis and characterization of nano-LaFeO$_3$ powders by a soft-chemistry method and corresponding ceramics. Solid State Ionics 231:43–48

Submit your manuscript to a SpringerOpen journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at ➤ springeropen.com