Probing the Catalytic Mechanism of Copper Amine Oxidase from *Arthrobacter globiformis* with Halide Ions*

Takeshi Murakawa,† Akio Hamaguchi,‡ Shotia Nakanishi,§ Misumi Kataoka,‖ Tadashi Nakai,‡ Yoshiai Kawano,‖ Hiroshi Yamaguchi,‖ Hideyuki Hayashi,‖ Katsuyuki Tanizawa,‡ and Toshihide Okajima§

From †Department of Biochemistry, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan

‡Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan

§School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan

‖Advanced Photon Technology Division, RIKEN SPring-8 Center, Sayo-gun, Hyogo 679-5148, Japan

To whom correspondence should be addressed: Toshihide Okajima, The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan, Tel.: +81-6-6879-4292; Fax.: +81-6-6879-8464; E-Mail: tokajima@sanken.osaka-u.ac.jp

Keywords: copper amine oxidase; topa quinone (TPQ); catalytic mechanism; conformational change; catalytic intermediate

Background: Copper amine oxidases catalyze amine oxidation using copper and a quinone cofactor.

Results: Halides bind axially to the copper center, preventing the reduced cofactor from adopting an on-copper conformation.

Conclusion: The cofactor undergoes large conformational changes during the catalytic reaction that enable transitions between different types of chemistry.

Significance: Molecular details of cofactor movement have been unveiled based on structural and kinetic evidence.

ABSTRACT

The catalytic reaction of copper amine oxidase proceeds through a ping-pong mechanism comprising two half-reactions. In the initial half-reaction, the substrate amine reduces the Tyr-derived cofactor, topa quinone (TPQ), to an aminoresorcinol form (TPQ_{amr}) that is in equilibrium with a semiquinone radical (TPQ_{sq}) via an intramolecular electron transfer to the active-site copper. We have analyzed this reductive half-reaction in crystals of the copper amine oxidase from *Arthrobacter globiformis*. Anaerobic soaking of the crystals with an amine substrate shifted the equilibrium toward TPQ_{sq} in an ‘on-copper’ conformation, in which the 4-OH group ligated axially to the copper center, which was probably reduced to Cu(I). When the crystals were soaked with substrate in the presence of halide ions, which act as uncompetitive and noncompetitive inhibitors with respect to the amine substrate and dioxygen, respectively, the equilibrium in the crystals shifted toward the ‘off-copper’ conformation of TPQ_{amr}. The halide ion was bound to the axial position of the copper center, thereby preventing TPQ_{amr} from adopting the on-copper conformation. Furthermore, transient kinetic analyses in the presence of...
viscogen (glycerol) revealed that only the rate constant in the step of TPQ_{sq}/TPQ_{amr} interconversion is markedly affected by the viscogen, which probably perturbs the conformational change. These findings unequivocally demonstrate that TPQ undergoes large conformational changes during the reductive half-reaction.

Copper amine oxidases (CAOs, EC 1.4.3.6) catalyze the oxidative deamination of various primary amines to produce the corresponding aldehydes and ammonia, coupled with the reduction of molecular oxygen to hydrogen peroxide (1–3). CAOs play distinct physiological roles in prokaryotes and eukaryotes. Prokaryotic CAOs mainly function to assimilate primary amines as carbon and nitrogen sources for growth. Eukaryotic CAOs have versatile functions, being involved in the detoxification of bio-active amines such as histamine (4), cell adhesion (5), cell death (6), collagen crosslinking in animals (7), and germination, root growth, and healing of wounded cell walls in plants (8). It has been reported that human serum CAOs cause angiopathy in diabetes (9). Therefore, various CAO inhibitors have been developed as therapeutic drugs (10, 11).

The catalytic center common to the CAO family consists of a mononuclear copper ion and a redox-active organic cofactor, topaquinone (TPQ), which is generated through posttranslational and self-catalytic processes (12–15). As summarized in a recent review (3), X-ray crystal structures of CAOs have been determined for a number of enzymes from various sources, including bacteria [Escherichia coli (ECAO) (16) and Arthrobacter globiformis (AGAO) (17–19)], yeasts [Hansenula polymorpha (recently reclassified as Pichia angusta) (HPAO-1 and HPAO-2) (20, 21) and Pichia pastoris (lysyl oxidase) (22)], a fungus [Aspergillus nidulans (23)], a plant [Pisum sativum (PSAO) (24)], a mammal [Bos taurus (BSAO) (25), and Homo sapiens (diamine oxidase and vascular adhesion protein 1, which is identical to semicarbazide-sensitive amine oxidase) (26–28)]. The active site structures of these enzymes, including the positions of TPQ and Cu(II), are highly conserved, suggesting that they have a common mechanism for single-turnover TPQ biogenesis and catalytic amine oxidation. The latter process has been shown to proceed though a ping-pong mechanism consisting of two half-reactions (Scheme 1) (1–3).

In the initial reductive half-reaction, the C5 carbonyl group of the oxidized cofactor (TPQ_{amr}) undergoes nucleophilic attack by amine substrate to form the substrate Schiff-base (TPQ_{sub}). Stereospecific proton abstraction by a conserved base (Asp298 in AGAO) (29) converts TPQ_{sub} to the product Schiff-base (TPQ_{psb}). Concomitantly with the release of the corresponding aldehyde, TPQ_{psb} is hydrolyzed to the reduced cofactor (an aminoresorcinol form, TPQ_{amr}) that is in equilibrium with a semiquinone radical form (TPQ_{sq}) via the single electron transfer reduction of Cu(II) to Cu(I). In these steps of the reductive half-reaction, the cofactor ring is not directly ligated to the Cu atom (a configuration designated the ‘off-copper’ conformation), while in the $TPQ_{sq}/Cu(I)$ state the cofactor ring is assumed to be directed towards the metal in the so-called ‘on-copper’ conformation to facilitate electron transfer. This suggests that the equilibrium between $TPQ_{amr}/Cu(II)$ and $TPQ_{sq}/Cu(I)$ is accompanied by a substantial conformational reorganization of the TPQ ring. Indeed, the conformational flexibility of TPQ within the active site of CAOs has previously been suggested to be important in catalysis (24, 30, 31). In the subsequent oxidative half-reaction, the reduced cofactor is re-oxidized by dioxygen to produce hydrogen peroxide and an iminoquinone intermediate (TPQ_{imq}), which is further hydrolyzed to form the oxidized cofactor, releasing ammonia in the following step (1–3). In the presence of excess substrate, it is assumed that TPQ_{imq} reacts directly with the substrate amine to form TPQ_{sub} (via a trans-imination reaction) rather than regenerating TPQ_{amr} (Scheme 1).

Depending on the enzyme sources and reaction conditions such as pH and temperature, various amounts of $TPQ_{sq}/Cu(I)$ are known to be formed by adding an amine substrate under anaerobic conditions, which is assumed to induce the reductive half-reaction. However, the mechanistic role of the $TPQ_{sq}/Cu(I)$ form in the subsequent O_2 reduction remains unclear and controversial (32–39). Two reaction pathways for the O_2 reduction have been proposed depending on the enzyme sources. One is an inner-sphere mechanism in which O_2 is coordinated on Cu(I) and reduced by the transfer of two electrons from
TPQ\textsubscript{eq}/Cu(I) to ultimately produce a Cu(II)-bound peroxide species and TPQ\textsubscript{sq} (Scheme 1). The necessary singlet to triplet spin transition is allowed by the coordination of O\textsubscript{2} to Cu(I). AGAO and PSAO are CAOs that have been suggested to follow this mechanism (37, 38). The formation of the TPQ\textsubscript{eq}/Cu(I) state at the beginning of the oxidative half-reaction is believed to be essential in this process. The other mechanism that has been proposed is an outer-sphere process that is suggested to occur in BSAO (34) and HPAO-1 (36, 39). In both of these enzymes, O\textsubscript{2} binds to a hydrophobic pocket close to the cofactor and is initially reduced by TPQ\textsubscript{anrr} via a single electron transfer that does not change the oxidation state of the Cu(II) center. The resulting superoxide anion then coordinates to Cu(II), inducing the second electron transfer. The TPQ\textsubscript{eq}/Cu(I) complex is not formed in this catalytic cycle and is assumed to be an off-pathway product generated only by the anaerobic reduction of the CAO by the amine substrate.

We have previously determined X-ray crystal structures of the intermediates including TPQ\textsubscript{sb} and TPQ\textsubscript{pb} formed during the reductive half-reaction of AGAO with 2-phenylethylamine (2-PEA) (29), tyramine (40), and ethylamine (41). In each case, the TPQ cofactor in these structures had an off-copper conformation. Here, we present new high-resolution structures of TPQ\textsubscript{sq} formed in the reductive half-reaction of AGAO with 2-PEA and histamine. The TPQ\textsubscript{sq} formed with these substrates exists exclusively in the on-copper conformation with the 4-OH group ligating axially to the Cu center, which is probably in the Cu(I) oxidation state. Moreover, we found that the off-copper TPQ\textsubscript{anrr} is formed when the crystals are soaked with substrate in the presence of halide ions that act as uncompetitive inhibitors with respect to the amine substrate and noncompetitive inhibitors with respect to dioxygen. Halide ions bind axially to the Cu center, preventing TPQ\textsubscript{anrr} from coordinating to copper. Combined with the results of spectrophotometric, steady-state and transient kinetics analyses, the results presented herein provide unequivocal evidence for the occurrence of a large conformational change in the TPQ cofactor during the reductive half-reaction of AGAO.

EXPERIMENTAL PROCEDURES

Materials—Recombinant AGAO was purified as its inactive precursor and converted to the Cu/TPQ-containing active form as reported previously (12, 19). Protein and TPQ\textsubscript{eq} concentrations were determined spectrophotometrically using molar extinction coefficients of $\varepsilon_{280} = 93200$ M-1 cm-1 (12) and $\varepsilon_{468} = 4500$ M-1 cm-1, respectively (35). All amine substrates used for kinetic analyses and crystal soaking were neutralized with 1 M H\textsubscript{2}SO\textsubscript{4}.

Spectrophotometric Measurements—To achieve fully anaerobic conditions, the enzyme and substrate solutions were kept in a vacuum-type glove box (Iuchi, SGV-65V) filled with 99.999% (v/v) Ar gas for at least 2 h, as described previously (18). The enzyme (final concentration, 100 μM monomer) was anaerobically mixed with 1 mM 2-PEA in 50 mM HEPES, pH 6.8, in the presence or absence of various concentrations of sodium, potassium or ammonium salts of halide ions. For measurements of pH dependency, the enzyme (120 μM monomer) was reduced with substrate in 100 mM MES (pH 5.7, 5.8, 6.0, 6.3, 6.5, and 6.7), 100 mM HEPES (pH 7.0, 7.3, 7.5, 7.8, and 8.0), 100 mM TAPS (pH 8.5 and 9.0), or 100 mM CHES (pH 9.5 and 10.1) at a nearly constant ionic strength ($I = 0.35 \pm 0.03$) after adjustment with 100 mM Na\textsubscript{2}SO\textsubscript{4}. The enzyme was mixed with its substrate under anaerobic conditions in a quartz cuvette with a gas-tight screw-cap, and after 5 min the absorption spectrum was measured at 25 °C with an Agilent 8453 photodiode-array spectrophotometer. An apparent pK\textsubscript{a} value for the absorbance change at 468 nm was determined by fitting the data to equation 1:

$$y = C_1/(1 + [H^+]/K_{a1}) + C_2/(1 + [H^+]/K_{a2}) \quad (Eq. 1)$$

where y represents the absorbance at a particular pH, C_1 and C_2 are the pH-independent values of the absorbance, and K_{a1} and K_{a2} are the acid dissociation constants, associated with the pH profile. Data fitting was performed by nonlinear regression using Kaleidagraph version 4.1 (Abelbeck Software).

Steady-state Kinetic Analysis—Steady-state kinetic analyses were conducted at 30 °C with 2-PEA, histamine, or ethylamine (hydrochloride)
Conformational Change of Topa Quinone in Copper Amine Oxidase

stopped-flow measurements were done at 4 °C with an Applied Photophysics stopped-flow spectrophotometer (40, 41). Typically, equal volumes (about 30 μl each) of enzyme (200 μM monomer in 50 mM HEPES buffer, pH 6.8) and substrate (1 mM 2-PEA) solutions were mixed in a 20 μl mixing cell by triggering with an N2-gas piston; the mixing dead time was generally 2.3 ms at an N2-gas pressure of 500 kPa. To avoid spectral changes associated with the oxidative half-reaction, both enzyme and substrate solutions were maintained under fully anaerobic conditions as described above. The substrate solution was supplemented with 200 mM NaCl, 600 mM NaBr, or 600 mM Na2SO4 as appropriate. The effect of solvent viscosity on transient kinetics was also studied as described above by adding a viscogen (0–30% (w/v) glycerol or sucrose) to both the enzyme and substrate solutions. UV/vis absorption spectra were recorded every 2.5 ms at wavelengths of 250–800 nm. Spectral data were analyzed using Pro-Kineticist II (Applied Photophysics) to obtain the spectra of the reaction intermediates and to calculate the rate constants for each reaction step.

Single-crystal Microspectrophotometry—AGAO crystals prepared as described below were subjected to microspectrophotometry before X-ray diffraction as reported previously (29).

X-Ray Crystallographic Analysis—AGAO was crystallized by micro dialysis essentially according to the method described previously (29). Briefly, a 15 mg/ml protein solution was dialyzed in a 50-μl dialysis button at 16 °C against 1.05 M potassium-sodium tartrate in 25 mM HEPES buffer, pH 6.8. After 2 weeks of crystal growth, the dialysis buttons were transferred into a fresh reservoir solution supplemented with 45% (v/v) glycerol as a cryoprotectant and the crystals were soaked at 16 °C for 24 h, followed by further soaking in the fully anaerobic reservoir solution containing 45% (v/v) glycerol for 24 h. The crystals were then incubated in a solution (pH 6.8) containing 4 mM 2-PEA, 10 mM histamine, or 50 mM ethylamine (hydrochloride) with or without 100 mM NaCl or 300 mM NaBr for about 1 h until their color faded. They were then mounted on thin nylon loops (φ, 0.5–0.7 mm) and frozen by flash cooling in liquid CF4. All procedures were done in the anaerobic box and the frozen crystals

Stopped-flow Measurements—Transient kinetic analyses were done at 4 °C with an Applied Photophysics stopped-flow spectrophotometer (40, 41). Typically, equal volumes (about 30 μl each) of enzyme (200 μM monomer in 50 mM HEPES buffer, pH 6.8) and substrate (1 mM 2-PEA) solutions were mixed in a 20 μl mixing cell by triggering with an N2-gas piston; the mixing dead time was generally 2.3 ms at an N2-gas pressure of 500 kPa. To avoid spectral changes associated with the oxidative half-reaction, both enzyme and substrate solutions were maintained under fully anaerobic conditions as described above. The substrate solution was supplemented with 200 mM NaCl, 600 mM NaBr, or 600 mM Na2SO4 as appropriate. The effect of solvent viscosity on transient kinetics was also studied as described above by adding a viscogen (0–30% (w/v) glycerol or sucrose) to both the enzyme and substrate solutions. UV/vis absorption spectra were recorded every 2.5 ms at wavelengths of 250–800 nm. Spectral data were analyzed using Pro-Kineticist II (Applied Photophysics) to obtain the spectra of the reaction intermediates and to calculate the rate constants for each reaction step.

Single-crystal Microspectrophotometry—AGAO crystals prepared as described below were subjected to microspectrophotometry before X-ray diffraction as reported previously (29).

X-Ray Crystallographic Analysis—AGAO was crystallized by micro dialysis essentially according to the method described previously (29). Briefly, a 15 mg/ml protein solution was dialyzed in a 50-μl dialysis button at 16 °C against 1.05 M potassium-sodium tartrate in 25 mM HEPES buffer, pH 6.8. After 2 weeks of crystal growth, the dialysis buttons were transferred into a fresh reservoir solution supplemented with 45% (v/v) glycerol as a cryoprotectant and the crystals were soaked at 16 °C for 24 h, followed by further soaking in the fully anaerobic reservoir solution containing 45% (v/v) glycerol for 24 h. The crystals were then incubated in a solution (pH 6.8) containing 4 mM 2-PEA, 10 mM histamine, or 50 mM ethylamine (hydrochloride) with or without 100 mM NaCl or 300 mM NaBr for about 1 h until their color faded. They were then mounted on thin nylon loops (φ, 0.5–0.7 mm) and frozen by flash cooling in liquid CF4. All procedures were done in the anaerobic box and the frozen crystals

Stopped-flow Measurements—Transient kinetic analyses were done at 4 °C with an Applied Photophysics stopped-flow spectrophotometer (40, 41). Typically, equal volumes (about 30 μl each) of enzyme (200 μM monomer in 50 mM HEPES buffer, pH 6.8) and substrate (1 mM 2-PEA) solutions were mixed in a 20 μl mixing cell by triggering with an N2-gas piston; the mixing dead time was generally 2.3 ms at an N2-gas pressure of 500 kPa. To avoid spectral changes associated with the oxidative half-reaction, both enzyme and substrate solutions were maintained under fully anaerobic conditions as described above. The substrate solution was supplemented with 200 mM NaCl, 600 mM NaBr, or 600 mM Na2SO4 as appropriate. The effect of solvent viscosity on transient kinetics was also studied as described above by adding a viscogen (0–30% (w/v) glycerol or sucrose) to both the enzyme and substrate solutions. UV/vis absorption spectra were recorded every 2.5 ms at wavelengths of 250–800 nm. Spectral data were analyzed using Pro-Kineticist II (Applied Photophysics) to obtain the spectra of the reaction intermediates and to calculate the rate constants for each reaction step.

Single-crystal Microspectrophotometry—AGAO crystals prepared as described below were subjected to microspectrophotometry before X-ray diffraction as reported previously (29).

X-Ray Crystallographic Analysis—AGAO was crystallized by micro dialysis essentially according to the method described previously (29). Briefly, a 15 mg/ml protein solution was dialyzed in a 50-μl dialysis button at 16 °C against 1.05 M potassium-sodium tartrate in 25 mM HEPES buffer, pH 6.8. After 2 weeks of crystal growth, the dialysis buttons were transferred into a fresh reservoir solution supplemented with 45% (v/v) glycerol as a cryoprotectant and the crystals were soaked at 16 °C for 24 h, followed by further soaking in the fully anaerobic reservoir solution containing 45% (v/v) glycerol for 24 h. The crystals were then incubated in a solution (pH 6.8) containing 4 mM 2-PEA, 10 mM histamine, or 50 mM ethylamine (hydrochloride) with or without 100 mM NaCl or 300 mM NaBr for about 1 h until their color faded. They were then mounted on thin nylon loops (φ, 0.5–0.7 mm) and frozen by flash cooling in liquid CF4. All procedures were done in the anaerobic box and the frozen crystals

Stopped-flow Measurements—Transient kinetic analyses were done at 4 °C with an Applied Photophysics stopped-flow spectrophotometer (40, 41). Typically, equal volumes (about 30 μl each) of enzyme (200 μM monomer in 50 mM HEPES buffer, pH 6.8) and substrate (1 mM 2-PEA) solutions were mixed in a 20 μl mixing cell by triggering with an N2-gas piston; the mixing dead time was generally 2.3 ms at an N2-gas pressure of 500 kPa. To avoid spectral changes associated with the oxidative half-reaction, both enzyme and substrate solutions were maintained under fully anaerobic conditions as described above. The substrate solution was supplemented with 200 mM NaCl, 600 mM NaBr, or 600 mM Na2SO4 as appropriate. The effect of solvent viscosity on transient kinetics was also studied as described above by adding a viscogen (0–30% (w/v) glycerol or sucrose) to both the enzyme and substrate solutions. UV/vis absorption spectra were recorded every 2.5 ms at wavelengths of 250–800 nm. Spectral data were analyzed using Pro-Kineticist II (Applied Photophysics) to obtain the spectra of the reaction intermediates and to calculate the rate constants for each reaction step.
were kept in liquid N\textsubscript{2} until X-ray diffraction analysis.

Diffraction data sets were collected at 100 K with synchrotron X-radiation using a DIP6040 imaging plate (Bruker AXS, Wisconsin, USA) in the BL44XU station or using a Quantum 210 CCD detector (ADSC) in the BL38B1 station at SPring-8 (Hyogo, Japan). X-rays with a wavelength of 0.919 Å were used to detect anomalous peaks derived from Br; a wavelength of 0.9 Å was used otherwise. The collected data sets were processed and scaled using HKL2000 (43) or MOSFLM (44) and SCALA (45), respectively. The starting model was obtained by molecular replacement with Phaser (46). The search model was based on the coordinates of the AGAO monomer (PDB code, 1IU7) after removing all water molecules and a metal ion. Refinements, electron-density map calculations, and assignment of solvent molecules were initially done using Refmac 5 (47) and later with Phenix (48). Manual rebuilding was performed using Coot (49), and water molecules and other ligands such as metal ions were added step by step to the model during the refinement process. The models of the catalytic intermediates of TPQ and phenylacetaldehyde were built using the Monomer library sketcher from the CCP4 package (50) and then the dictionary files used with Refmac 5, Phenix, and Coot were generated using the PRODRG server (http://davapc1.bioch.dundee.ac.uk/prodrg/) (51). PyMOL version 1.5 (Schrödinger, LLC) was used for figure drawings. Anomalous maps for Br atoms were generated using ft (52) from the CCP4 package (50) based on anomalous difference and phase data for the final model. Details and statistics pertaining to the data collection and refinement are summarized in Table 1.

RESULTS

Effect of Halide Ions on the Absorption Spectrum of TPQ\textsubscript{sq}.—It is well established that the absorption spectrum of the bound cofactor TPQ changes rapidly during the reductive half-reaction of CAOs (1–3), as demonstrated by stopped-flow spectrophotometry of the reaction with AGAO (29, 40, 53). The final form of TPQ in the reductive half-reaction without turnover (measured under anaerobic conditions) is TPQ\textsubscript{sq}, which exhibits characteristic absorption maxima at about 440 and 470 nm with a shoulder at about 350 nm. We incidentally noted that the TPQ\textsubscript{sq} spectrum of AGAO was markedly depressed in the presence of NaCl, which was added to the reaction mixture to maintain a constant ionic strength. For example, in the presence of 10 mM NaCl the intensities of the absorption bands at 352, 438, and 468 nm decreased to about 32% of those without NaCl (Fig. 1). When calculated using the molar extinction coefficient at 468 nm ($\varepsilon_{468} = 4500$ M$^{-1}$ cm$^{-1}$) reported for TPQ\textsubscript{sq} (35), the presence of NaCl reduced the calculated TPQ content relative to total AGAO from 38% to 9.8%. This was attributed to a shift of the equilibrium between TPQ\textsubscript{smr} and TPQ\textsubscript{sq} (see Scheme 1) toward the former, which has no absorption bands above 300 nm (54). To identify the chemical species that caused this equilibrium shift, we investigated the effects of adding 10 mM NH$_4$Cl, KCl, Na$_2$SO$_4$, or NaH$_2$PO$_4$ in the reductive half-reaction and found that comparable shifts were induced by NH$_4$Cl and KCl but not Na$_2$SO$_4$ or NaH$_2$PO$_4$ (Fig. 1), clearly indicating that the Cl$^-$ ion was preventing the formation of TPQ\textsubscript{sq}. Other halide ions (F$^-$, Br$^-$, and I$^-$) behaved similarly (Fig. 2) and their effects were roughly concentration-dependent, with an order of effectiveness of Cl$^-$ $>$ Br$^-$ $>$ F$^-$ $>$ I$^-$. A similar effect (bleaching of TPQ\textsubscript{sq} absorption) by a high concentration of Cl$^-$ (0.45 M KCl) was reported in an early study on methylamine oxidase from Arthrobacter P1 (55), but the mechanism of bleaching was not further pursued.

Effect of Halide Ions on Catalytic Activity—We have briefly reported the inhibition of AGAO activity by Cl$^-$ ion (56) in the past. In this work, more precise steady-state kinetic analyses were conducted by systematically varying the concentrations of the substrate amine (2-PEA) or dissolved oxygen in the presence of 0–50 mM solutions of different halide ions. Double reciprocal plots (1/v vs 1/s) revealed that the Cl$^-$ ion was an uncompetitive inhibitor with respect to the substrate amine and a noncompetitive inhibitor with respect to dissolved oxygen (Fig. 3); other halide ions (F$^-$, Br$^-$, and I$^-$) exhibited similar inhibition patterns (data not shown). These results show that halide ions bind to a substrate-enzyme complex, but not to the free enzyme, and that they
bind equally to the O$_2$-bound and O$_2$-unbound enzyme forms at a site distinct from the O$_2$-binding site (41). The K_i values calculated for uncompetitive inhibition were 97.2 (± 6.5) mM for F$^-$, 26.2 (± 1.4) mM for Cl$^-$, 58.2 (± 2.8) mM for Br$^-$, and 69.6 (± 9.4) mM for I$^-$. While that for noncompetitive inhibition by Cl$^-$ was 32.8 (± 1.7) mM. The inhibition of catalytic activity by halide ions may be unique to AGAO; the Cl$^-$ ion reportedly has no inhibitory effect on the activities of human kidney diamine oxidase, Pichia pastoris amine oxidase, or PSAO (57).

Effects of Halide Ions on Transient Kinetics—To identify the substrate-enzyme complex to which the halides bind, we performed transient kinetic analyses of the reductive half-reaction in the presence of 100 mM NaCl, 300 mM NaBr, or 300 mM Na$_2$SO$_4$ (as a control for the ionic strength). As reported previously (29, 40, 53), rapid spectral changes associated with changes in the redox and chemical state of TPQ (TPQ$_{ox}$ → TPQ$_{ssb}$ → TPQ$_{sq}$ → TPQ$_{amr}$ → TPQ$_{sq}$) were observed (Fig. 4). We noted that in the presence of 100 mM NaCl or 300 mM NaBr, the TPQ$_{sq}$ absorption band appeared transiently within ~117 ms and then gradually declined in intensity to about 30–40% of the value achieved in the absence of halide ions or in the presence of 300 mM Na$_2$SO$_4$ (Fig. 4A, B). The final spectra (at 1023 ms) acquired in the presence of NaCl or NaBr (Fig. 4C, D) mostly lacked the TPQ$_{sq}$-characteristic peaks, suggesting a shift of the equilibrium towards TPQ$_{amr}$ as discussed above (Fig. 2B, C).

Initially, the multi-wavelength data of all spectral changes were fitted to the four-step mechanism connecting TPQ$_{ox}$, TPQ$_{ssb}$, TPQ$_{psb}$, TPQ$_{amr}$, and TPQ$_{sq}$ (Scheme 1) by global analysis as reported previously (29). The spectral changes in the presence of 300 mM Na$_2$SO$_4$ (Fig. 4B) were solved to provide rate constants that were essentially identical to those obtained without the salt (Fig. 4A) (Table 2) and the deduced UV/visible absorption spectra (Fig. 4E, F) of TPQ$_{ox}$, TPQ$_{ssb}$, TPQ$_{psb}$, TPQ$_{amr}$ and TPQ$_{sq}$ were similar to those reported previously (29). However, the spectral changes observed in the presence of 100 mM NaCl or 300 mM NaBr could not be fitted to the four-step model. On the basis of the spectral changes and inhibition mechanism described above, it appeared that halide ions (X$^-$) bound to the TPQ$_{amr}$ state. We therefore proposed a branched model (with the branch connecting TPQ$_{ox}$ to TPQ$_{amr}$/X$^-$; Scheme 1), in which the TPQ$_{amr}$/X$^-$ complex accumulates. The new model provided a reasonable solution to the data fitting of the spectral changes in the presence of NaCl or NaBr. As shown in Table 2, the rate constants of the steps between TPQ$_{ox}$ and TPQ$_{sq}$ (k_{-1}, k_{-2}, k_{-3}, and k_{-4}) were comparable to those observed without halide ions, although the k_{-3} value was approximately halved. The rate constant of the branching step from TPQ$_{amr}$ to TPQ$_{amr}$/X$^-$ (k_{+5}) (Scheme 1) was estimated to be half that for TPQ$_{sq}$ formation (k_{+4}). The magnitude of these parameters well explains the slow accumulation of TPQ$_{amr}$/X$^-$: TPQ$_{sq}$ is formed initially but gradually converted to TPQ$_{amr}$/X$^-$ via TPQ$_{amr}$. The deduced absorption spectra of TPQ$_{ox}$, TPQ$_{ssb}$, TPQ$_{psb}$, TPQ$_{amr}$, and TPQ$_{sq}$ in the presence of NaCl (Fig. 4G) and NaBr (Fig. 4H) were essentially identical to those observed without halide ions (Fig. 4E) and in the presence of 300 mM Na$_2$SO$_4$ (Fig. 4F). Altogether, these results show that halide ions bind to the TPQ$_{amr}$ form in the reductive half-reaction, thereby inhibiting the formation of TPQ$_{sq}$ from TPQ$_{amr}$.

Effect of Solvent Viscosity on AGAO Activity—To further probe the equilibrium shift between TPQ$_{amr}$ and TPQ$_{sq}$, we examined the dependency of catalytic activity on solvent viscosity, which can perturb diffusion-controlled steps including substrate binding, product release, and conformational changes of the enzyme (58, 59). Glycerol (M, 92.1) and sucrose (M, 342.3) were used as visco gens. Steady-state kinetic analyses in viscogenic solutions, in which the relative solvent viscosity (η/ηr; η and ηr denote viscosities in the presence and absence of the viscogen, respectively) was increased by adding glycerol or sucrose, yielded values of k_{cat}/K_m for 2-PEA that were basically identical to that observed in non-viscogenic solution, while the k_{cat} values decreased. The ratio of the viscogen-free k_{cat} value to that in the presence of viscogen (k_{cat}^0/k_{cat}; k_{cat}^0 and k_{cat} denote the rate constants in the absence and presence of the viscogen, respectively) was roughly proportional to the relative solvent
viscosity (Fig. 5). This suggests that a diffusion-controlled step(s) is included in the overall reaction consisting of TPQ_{imq}, TPQ_{abs}, TPQ_{psb}, TPQ_{amr}, TPQ_{sq}, and TPQ_{imq} under steady-state conditions (Scheme 1).

To evaluate the effect of solvent viscosity on each step of the reductive half-reaction, transient kinetic analyses were conducted (Fig. 6). Stopped-flow measurements in the absence and presence of 30% (w/v) glycerol generally produced similar spectral changes but the formation of TPQ_{sq} was clearly slower in the viscogen’s presence (Fig. 6A, B, insets). Slow TPQ_{sq} formation was evident from the evident from the traces of absorbance changes at 468 nm specific to TPQ_{sq} (Fig. 6C). Further, the rate constants of each step (k_{1}, k_{2}, k_{3}, k_{4}, k_{1}, k_{2}, and k_{-3}) in the reductive half-reaction were determined by global analysis according to the four-step model starting from TPQ_{ox} and ending at TPQ_{sq} (Scheme 1). Of these rate constants, k_{1}, k_{2}, k_{3}, k_{-1}, k_{-2}, and k_{-3} were independent of the glycerol concentration but the values of k_{-4} and k_{4} (which relate to the interconversion of TPQ_{amr} and TPQ_{sq}) decreased in proportion to the glycerol concentration (Table 2), showing that this step is diffusion-controlled. For detailed analysis, the ratios of k_{0}/k were plotted against the relative solvent viscosity, η/η^0 (Fig. 6D), where k_{0} and k are the rate constants (k_{-2}, k_{-2}, k_{-4}, and k_{-4}) in the absence and presence of viscogen (glycerol), respectively. The ratios of k_{-4}/k_{4} and k_{-4}/k_{4} increased significantly in proportion to the relative solvent viscosity, although the slope of the fitted line (0.50) indicated a partial effect; an entirely diffusion-controlled reaction would give a slope of 1.0 (60) (Fig. 6D). The ratios of the other rate constants were almost independent of the relative solvent viscosity (e.g., slope = 0.003 for k_{-2}/k_{2}) (Fig. 6D). The reaction step connecting TPQ_{amr} and TPQ_{sq} involves neither substrate binding nor product release. Thus, these findings show that the interconversion of TPQ_{amr} and TPQ_{sq} is accompanied by a conformational change(s) of the enzyme. Reducing the viscogen’s access to the region undergoing the conformational change could reduce its effective concentration, explaining the partial effect indicated by the k_{0}/k slope of ~0.5. It is therefore likely that the conformational change(s) occurs somewhere in the protein interior, such as the buried active site (most likely in the TPQ cofactor itself). Supporting this, we were unable to observe any effect of solvent viscosity on the rate constants k_{-4} and k_{4} when using 30% (w/v) sucrose as the viscogen; sucrose’s molecular size is 3.7-fold greater than that of glycerol, so it probably cannot penetrate into the active site cavity (Fig. 6D).

Reductive Half-reaction in Crystals—To obtain structural insights into the interconversion between TPQ_{amr} and TPQ_{sq}, the AGAO crystals were reacted anaerobically with substrates in the presence or absence of halide ions under six different conditions (Table 3), and the intermediates formed were freeze-trapped for structural determination. Before X-ray analysis, these crystals were subjected to single-crystal microspectrophotometry to identify the reaction intermediates present within them (29, 40, 41). The absorption spectra of the frozen crystals anaerobically soaked with 4 mM 2-PEA or 10 mM histamine (these crystals were designated AGAO_{PEA} and AGAO_{HITIA}, respectively) (Fig. 7A, B) were very similar to that of TPQ_{sq} for the enzyme in solution, showing specific absorption peaks around 365, 438 and 465 nm (Fig. 1). In contrast, the crystals anaerobically soaked with 50 mM ethylamine (hydrochloride) (AGAO_{ETA/HCl}) gave a rather peak-less spectrum resembling that of TPQ_{amr} (Fig. 7C), although small TPQ_{sq}-like peaks remained. Furthermore, in the presence of 100 mM NaCl or 300 mM NaBr, the crystals prepared by anaerobic soaking with 4 mM 2-PEA (designated AGAO_{PEA/NaCl} and AGAO_{PEA/NaBr}, respectively) exhibited absorption spectra (Fig. 8A, B) that were distinct from those of TPQ_{sq} and TPQ_{amr} but comparable to that of TPQ_{psb} for the enzyme in solution (Fig. 4E). To identify the halide ion-binding site(s) in the unreacted enzyme, the crystal was aerobically soaked with 300 mM NaBr alone (AGAO_{NaBr}). This yielded a spectrum identical to that of TPQ_{ox} because the reaction could not proceed (Fig. 8C). These crystal absorption spectra revealed that the reductive half-reaction occurred in all of the crystals except for AGAO_{NaBr} and that the accumulation of the TPQ_{psb}, TPQ_{amr}, or TPQ_{sq} intermediates could be induced by soaking the crystals with appropriate amine substrates in the presence or absence of halides (Table 3).
The overall structures determined for AGAO_PEA, AGAO_HTA, AGAO_ETA/HCl, AGAO_PEA/NaCl, AGAO_PEA/NaBr, and AGAO_NaBr were comparable to that of resting AGAO (PDB code, 1IU7), with root-mean-square deviations for the main-chain atoms within ~0.4–0.5 Å. In these crystal structures, we assigned the chemical structures of TPQ based on its absorption spectra (Table 3) and constructed the active-site structures using the assigned models of TPQ in different conformations, which were built to coincide with the F_{o}–F_{c} omit maps (Figs. 7 and 8). The two monomers (chains A and B) of the homodimer in the asymmetric unit of the crystals showed essentially identical active-site structures except for those in the AGAO_ETA/HCl crystal, in which active-site residues including TPQ and water molecules had slightly different conformations and electron densities between the two monomers.

The most notable finding from the crystal structures was that the TPQ_{sq} moieties in AGAO_PEA and AGAO_HTA had an on-copper conformation with ~100% occupancy, with the 4-OH group of TPQ_{sq} projecting towards the Cu center at a distance of 2.7–2.9 Å (Fig. 7D, E) and the 5-NH$_2$ group positioned opposite to the catalytic base (Asp298) in close proximity to Met602. This is the first X-ray structure of CAO with TPQ$_{sq}$ being exclusively copper-ligating, although an on-copper TPQ$_{sq}$ structure with ~65–70% occupancy was recently reported for HPAO-I crystals reduced with methyamine in a low oxygen environment at pH 8.5 (39). The Cu center in AGAO_PEA and AGAO_HTA was tetrahedrally coordinated with the 4-OH group of TPQ at the ‘axial’ position and the imidazole groups of three histidines (His431, His433, and His592) at the ‘equatorial’ positions. No water molecules were coordinated to the copper center. On the other hand, TPQ$_{m}$ in AGAO_ETA/HCl had an off-copper conformation with ~100% occupancy, in which the 5-NH$_2$ group of TPQ$_{m}$ was positioned close to Asp298 and the 4-OH group was hydrogen-bonded to the Tyr284 side chain rather than coordinating to the Cu center (Fig. 7F). The off-copper conformation was the sole conformer in chain A. However, both the off-copper and on-copper conformers were present (at a relative abundance of about 6:4) in chain B. Probably, the minor on-copper conformation in chain B was partly responsible for the crystals’ small TPQ$_{m}$-like absorption peaks (Fig. 7C). The spectrophotometrically assigned TPQ$_{m}$ moiety of AGAO_PEA/NaCl and AGAO_PEA/NaBr also had an off-copper conformation, in which the C5 position of TPQ was connected to additional electron density corresponding to the phenylethyl moiety of the product phenylacetaldehyde (PAA) via a covalent linkage in the form of an imine bond (Fig. 8D, E).

The binding of several halide ions was detected in the AGAO_ETA/HCl, AGAO_PEA/NaCl, AGAO_PEA/NaBr, and AGAO_NaBr crystals (2 and 5 Cl$^-$ ions per dimer in AGAO_ETA/HCl and AGAO_PEA/NaCl, respectively, and 8 Br$^-$ ions per dimer in AGAO_PEA/NaBr and AGAO_NaBr), as judged by the anomalous peaks (over 7σ) generated by the Br$^-$ ion and the electron densities (over 8σ) of the Cl$^-$ ion, which were clearly greater than those of water molecules (less than 5σ). The Cl$^-$ ions identified in AGAO_ETA/HCl derived from the substrate (ethyamine hydrochloride), which was present at a high concentration (50 mM). In the halide-bound complexes, a Br$^-$ or Cl$^-$ ion was found to occupy the axial coordination site of the active-site Cu center in the AGAO_ETA/HCl, AGAO_PEA/NaCl, and AGAO_PEA/NaBr structures (Figs. 7F and 8D, E; Table 3). These are the first X-ray crystal structures of CAO with an anionic inhibitor (57, 61, 62) bound to the active site copper center. In contrast, the axial position in AGAO_NaBr was occupied by a water molecule rather than Br$^-$ (Fig. 8F, Table 3); Br$^-$ ions instead bound to the protein surface in a seemingly nonspecific fashion. Similar behavior was observed in AGAO_PEA/NaBr. Specific binding of a halide ion at the axial position of the active-site Cu center only occurred in crystals that had been anaerobically soaked with substrate, strongly suggesting that the uncompetitive inhibition of the steady-state reaction by halide ions with respect to 2-PEA is due to their ability to bind to the Cu center in the reaction intermediates, in which TPQ is reduced with substrates, rather than to the Cu center in the free enzyme. It also suggests that the axial ligand-binding position of the Cu center exhibits a stronger preference for halide ions in the substrate-reduced form of AGAO than in the resting form.

Comparison of the on-copper TPQ$_{sq}$ structures of AGAO_PEA and AGAO_HTA with the
Conformational Change of Topa Quinone in Copper Amine Oxidase

off-copper TPQ\textsubscript{ox} structure in resting AGAO (PDB code, 1U7) revealed that most active-site residues (except for Tyr296 and Met602), water molecules, and the Cu center are retained in almost the same positions and conformations (Fig. 9). In the TPQ\textsubscript{sq} structures, the side-chain phenol ring of Tyr296 rotates \(\sim 80^\circ\) around the Ca-C\(^2\) bond to participate in a hydrogen-bonding network involving 2 water molecules (W1 and W2), the 2-OH, 4-OH and 5-NH\(_2\) groups of TPQ\textsubscript{sq}, the 4-OH group of Tyr284, and the S\(\delta\) atom of Met602 (Fig. 9A). The on-copper conformation is likely stabilized by this hydrogen-bonding network, allowing the direct coordination of the 4-OH group of TPQ to the Cu center, which would facilitate rapid, ligand-to-metal charge transfer-like electron transfer from TPQ\textsubscript{amr} to Cu(II) to form the TPQ\textsubscript{sq}/Cu(I) state.

In keeping with the single-crystal microspectrophotometric observations, a TPQ\textsubscript{psb}-like intermediate was identified in the AGAO\textsubscript{PEA/NaBr} and AGAO\textsubscript{PEA/NaCl} structures, which was probably formed by a condensation reaction between the amino group of TPQ\textsubscript{amr} (in the off-copper form) and the aldehyde group of the reaction product PAA, which remains in the substrate-binding hydrophobic pocket (Fig. 8D, E); PAA was indeed found to remain bound in the AGAO\textsubscript{PEA} structure (Fig. 7D), as reported previously for the 2-PEA-reduced ECAO crystals (63). This assumption is also supported by the finding that the TPQ\textsubscript{psb} observed in AGAO\textsubscript{PEA/NaBr} and AGAO\textsubscript{PEA/NaCl} had a \textit{cis}-configuration, whereas the TPQ\textsubscript{psb} formed during the reductive half-reaction of the D298A mutant of AGAO had a \textit{trans}-configuration (29). The absence of the product aldehydes (imidazole-4-acetaldehyde and acetaldehyde) in the AGAO\textsubscript{HFA} and AGAO\textsubscript{ETA/HCl} structures is probably due to their low affinities for the substrate-binding pocket of AGAO; for comparative purposes, the \(K_m\) values for histamine (1.2 mM) and ethylamine (170 mM) are 220-fold and 30,000-fold higher, respectively, than that for 2-PEA (5.4 \(\mu\)M) (41). Overall, these findings indicate that in the AGAO\textsubscript{PEA/NaBr} and AGAO\textsubscript{PEA/NaCl} crystals, the binding of halide ions (\(\text{Br}^-\) and \(\text{Cl}^-\)) to the axial position of the Cu center prevented TPQ\textsubscript{amr} from adopting the on-copper conformation, causing it to back-react with PAA to form a TPQ\textsubscript{psb} configuration distinct from that formed during the reductive half-reaction.

Effect of pH on the Equilibrium between TPQ\textsubscript{amr} and TPQ\textsubscript{sq}—The equilibrium between TPQ\textsubscript{amr} and TPQ\textsubscript{sq} in AGAO has been reported to shift toward TPQ\textsubscript{sq} under alkaline conditions (35), which suggests that an ionizable group(s) plays a role in triggering the conformational change of the cofactor. We therefore used spectrophotometry to investigate the effect of pH on the equilibrium between TPQ\textsubscript{amr} and TPQ\textsubscript{sq}. The reductive half-reaction was performed with 2-PEA as the substrate at pH values ranging from 5.7 to 10.1 with a constant ionic strength (Fig. 10A); AGAO is stable in this pH range. The TPQ\textsubscript{sq}-specific absorption peaks at about 440 and 470 nm and the shoulder at about 350 nm increased in intensity as the pH rose from 5.7 to 8.5 but did not change further above pH 8.5, indicating that the equilibrium shifted toward TPQ\textsubscript{sq} above pH 8.5. By plotting the absorbance at 468 nm, to which TPQ\textsubscript{amr} makes no contribution, against the pH (Fig. 10B) and fitting the data to Eq. 1, two ionizable groups with apparent \(pK_a\) values of 5.96 \(\pm\) 0.05 (\(pK_{a1}\)) and 7.74 \(\pm\) 0.19 (\(pK_{a2}\)) were found to be involved in the equilibrium shift from TPQ\textsubscript{amr} to TPQ\textsubscript{sq}. Judging from the magnitude of pH-independent absorbance values (\(C_1 = 0.164\), \(C_2 = 0.053\)), deprotonation of the ionizable group with \(pK_a = 5.96\) contributes predominantly to the equilibrium shift.

DISCUSSION

The results presented above demonstrate that the off-copper and on-copper conformations of TPQ are readily interconvertible during the reductive half-reaction with various amine substrates and in the presence of halide ions. In the steps prior to the formation of TPQ\textsubscript{amr} (Scheme 1), the catalytic reaction proceeds with TPQ gains the conformational flexibility that enables facile interconversion between the off-copper and on-copper conformations.
In the on-copper conformation of TPQ$_{sq}$ as observed in the AGAO$_{PEA}$ and AGAO$_{HTA}$ structures (Fig. 9A, B), the active-site Cu center is equatorially coordinated by three imidazole groups from His residues without the equatorial water ligand seen in the resting TPQ$_{eq}$/Cu(II) state (17) and other intermediates formed in the reductive half-reaction (Figs. 7 and 8). A similar decrease in the number of equatorial ligands at the Cu center was observed in extended X-ray absorption fine-structure (EXAFS) studies on various dithionite-treated CAOs, in which Cu(II) is reduced to Cu(I) (64). It is therefore suggested that the tetrahedrally coordinated Cu centers observed in the AGAO$_{PEA}$ and AGAO$_{HTA}$ crystals are probably in the Cu(I) oxidation state, as was proposed in a recent paper on the structure of methylamine-reduced HPAO-1 (39). Based on the full occupancy of the modeled TPQ$_{sq}$ in the electron density map, essentially all of their TPQ is assumed to be in the TPQ$_{sq}$ state. Taken together, these results show that the on-copper conformation is a consequence of 1e$^-$ transfer from TPQ$_{eq}$/Cu(II) to form the TPQ$_{sq}$/Cu(I) state. In contrast, a water molecule (W$_{eq}$) was identified as an equatorial ligand of the Cu atom in the AGAO$_{HTA}$/HCl crystal, with observed electron densities of 3.7 and 2.3 σ in crystallographically distinguishable chains A and B, respectively. In addition, a Cl$^-$ ion was found to occupy an axial position in the Cu complex (Fig 7C), whose five-coordinate square pyramidal structure suggests that the copper is in the Cu(II) oxidation state, especially in chain A for which TPQ is mostly in the off-copper TPQ$_{eq}$ state based on its absorption spectrum and X-ray structure. We have so far observed neither the off-copper TPQ$_{sq}$/Cu(I) form nor the on-copper TPQ$_{eq}$/Cu(II) form, strongly suggesting that the 1e$^-$ transfer occurs exclusively in the on-copper conformation of TPQ$_{eq}$. This also leads to the suggestion that before the formation of the TPQ$_{sq}$/Cu(I) state, the TPQ quinone ring moves from the off-copper to the on-copper conformation.

The spectroscopic data from the transient kinetics experiments showed that the formation of TPQ$_{sq}$ is dependent on solvent viscosity (Fig. 6D), further supporting the occurrence of a conformational change in TPQ during the last step of the reductive half-reaction. Because the rate constants of this step (k_{cat}) were determined from the absorbance changes associated with TPQ$_{sq}$, they represent the rates of both the conformational change of TPQ and the subsequent electron transfer from TPQ$_{eq}$ to Cu(II). The same presumption holds for the rate constants of the electron transfer (k_{ET}) determined previously by temperature-jump relaxation studies (33, 35, 65), which varied from 60–75 s$^{-1}$ (Arthrobacter P1 methylamine oxidase) (65) to 20,000 s$^{-1}$ (PSAO) (33). The latter extremely large rate constant was attributed to the intrinsic k_{ET} and interpreted to mean that the TPQ cofactor is in close proximity (~3 Å) to the Cu center (33) (cf. the distance of 2.6 Å between the TPQ 4-O atom and the Cu center; Fig. 9). It is thus likely that the smaller rate constants determined previously (k_{ET}) and in this study (k_{cat}) mainly reflect the rate constants for the conformational change of the TPQ cofactor, in agreement with the suggestion that conformationally “gated” or controlled electron transfer is plausible (33). An EXAFS study (64) also raised the possibility that variations in the redox potentials or the effective electron-transfer distance between TPQ$_{eq}$ and Cu(II) may control k_{ET}. The difference between the rate constants for AGAO determined here (Table 2; $k_{cat} = 39$ s$^{-1}$ at 4 °C, pH 6.8) and previously ($k_{ET} = 73$ s$^{-1}$ at 5 °C, pH 7.2) (37) is likely due to subtle differences in temperature and pH, both of which strongly affect the equilibrium between TPQ$_{eq}$/Cu(II) and TPQ$_{sq}$/Cu(I) (33, 35, 37, 39, 65) (Fig. 10). At higher pHs and temperatures, the equilibrium shifts toward TPQ$_{sq}$/Cu(I), which suggests a ΔH value of >0 for the conformational change of TPQ. Finally, it should be noted that the rate constants of the conformational change are appreciably larger than the k_{cat} value (17 s$^{-1}$) determined by steady-state kinetics under the same conditions (at 4 °C and pH 6.8), supporting the hypothesis that the conformational change of the cofactor can occur within the overall turnover reaction.

Based on the pH dependency of the equilibrium between TPQ$_{eq}$ and TPQ$_{sq}$, it is suggested that deprotonation of two ionizable groups with pK$_a$ values of 5.96 (± 0.05) and 7.74 (± 0.19) (Fig. 10B) facilitates the equilibrium shift toward TPQ$_{sq}$. Among several ionizable groups in the active site [5-NH$_2$ (estimated pK$_a$, 5.88), 4-OH
(9.59), and 2-OH (11.62) groups of TPQ$_{amr}$ (54); the carboxyl group of Asp298 (7.5 ± 0.20) (29); and the water axially coordinated to the Cu atom (~7.5) (66), the 5-NH$_2$ group of TPQ$_{amr}$ is most likely assigned to the group with the lower p$_K_a$ value (5.96) and mainly contributes to the equilibrium shift toward TPQ$_{sq}$, with the neutral form of TPQ$_{amr}$ that is the major form at pH >7 being the direct precursor to TPQ$_{sq}$ (Scheme 1). Furthermore, the neutral form of TPQ$_{amr}$ is only weakly tethered in the active site, forming neither electrostatic interactions nor charge-assisted hydrogen bonds (67) with surrounding residues. It should thus be amenable to facile conformational change. The ionizable group with the higher p$_K_a$ value (7.74), though contributing insignificantly to the equilibrium shift toward TPQ$_{sq}$, may be ascribed to the 4-OH group of TPQ$_{sq}$ with a p$_K_a$ value of 6.39 determined with a model compound (68), rather than the same group in TPQ$_{amr}$ (p$_K_a$ 9.59) (54); deprotonation of the 4-OH group of TPQ$_{sq}$ is expected to stabilize the TPQ$_{sq}$ form (see Scheme 1). If this is the case, deprotonation of the 4-OH group would occur after the conformational change of the TPQ ring and the electron transfer from TPQ$_{amr}$ to Cu(II). Notable increase of the p$_K_a$ value (from 6.39 to 7.74) may be conceivable to occur in the hydrophobic active site of CAOs, as observed for the carboxyl group of the catalytic base Asp298 with a significantly high p$_K_a$ value (7.5 ± 0.20) (29).

The TPQ$_{amr}$ structures have been determined previously with the substrate-reduced forms of ECAO and HPAO-1 (PDB codes, 1D6U and 4EV2, respectively), in which the axial positions of the Cu atom are occupied by water and a dioxygen species, respectively. Comparison of these structures with the TPQ$_{amr}$ of AGAO bound with a chloride ion (AGAO$_{ETA/HCl}$) has revealed that the TPQ$_{amr}$ ring is tilted anticlockwise by about 20° (rigid-body rotation around the Cβ-Cγ bond) in AGAO (Fig. 11A). This ~20°-tilting of the TPQ ring appears to result from the minuscule movement (by 0.4 Å) of the position of the 2-OH group of TPQ$_{amr}$, probably due to the repulsion from the axially coordinated chloride ion that has a larger van der Waals radius than water and a dioxygen species. Consequently, the 5-NH$_2$ group approaches within hydrogen-bond distance (2.8 Å) to the carboxy group of Asp298 (Fig. 11A), which is predominantly protonated at crystallization pH of 6.8, thereby lowering the nucleophilicity of the 5-NH$_2$ group. The hydrogen-bond may also stabilize the tilted conformation of TPQ$_{amr}$ even after the halide ion is released (in the step of k$_{-5}$ in Scheme 1). In addition, the aldehyde group of the product PAA that remains bound in AGAO$_{PEA}$ is located rather distantly (3.2 Å) from the 5-NH$_2$ group of TPQ$_{amr}$ in the AGAO$_{ETA/HCl}$ structure to undergo the nucleophilic attack (Fig. 11B). These structural consequences well explain the significantly decreased rate constant (k$_{-3}$) for the back-formation of TPQ$_{psb}$ in the presence of halide ions (Table 2). Moreover, the geometry of the 5-NH$_2$ group of TPQ$_{amr}$ relative to the aldehyde carbon atom of PAA strongly suggests that the nucleophilic attack occurs from the Si-face of the carbonyl carbon, leading to the formation of TPQ$_{psb}$ in cis-configuration (cis-TPQ$_{psb}$) (Fig. 11D), unlike the formation of TPQ$_{psb}$ in trans-configuration (trans-TPQ$_{psb}$) from TPQ$_{sq}$ in the forward reductive half-reaction of D298A mutant (Fig. 11C) (29).

Monovalent anions such as cyanide and azide were reported to be inhibitors of various CAOs, showing competitive, noncompetitive, uncompetitive, or mixed-type inhibition with respect to the amine substrate and dioxygen (57, 61, 62). For AGAO, cyanide is an uncompetitive inhibitor with respect to the amine substrate and azide is a noncompetitive inhibitor with respect to both amine and dioxygen (57, 61). Although the inhibition patterns of halide ions (uncompetitive and noncompetitive with respect to amine substrate and dioxygen, respectively) (Fig. 3) for AGAO are similar to those of azide and cyanide, their effects on the equilibrium between TPQ$_{amr}$ and TPQ$_{sq}$ are very different. Halide ions inhibit TPQ$_{sq}$ formation (Fig. 2) by axially coordinating to the Cu center (Fig. 7F, 8D, E), whereas azide converts TPQ$_{sq}$ into a ligand-to-metal charge transfer complex (57) and cyanide facilitates TPQ$_{sq}$ formation (61), both of which were suggested to bind at an equatorial position of the Cu center (69, 70). It is assumed that azide is likely too large to bind axially to the Cu atom, and probably cyanide too. Although we cannot currently explain why halide ions, but not azide/cyanide, bind at the axial position of the Cu center in the reduced form of TPQ and inhibit
Conformational Change of Topa Quinone in Copper Amine Oxidase

12

formation, it is reasonable to assume that halide ion binding at the axial position of the Cu atom would block the coordination of the 4-OH group of TPQ_{amr} to the Cu center and prevent the subsequent electron transfer to Cu(II). The inability of halide ions to bind to the axial position of the Cu center in the resting TPQ_{ox} state (Fig. 8F) may be due to electrostatic repulsion from the delocalized negative charge through the 4-\text{-}O\text{-} group of TPQ_{ox}; in the TPQ_{amr} state, both the 2-OH and 4-OH groups (whose estimated pK_{a} values are 11.62 and 9.59, respectively) (54) are neutral and therefore would not electrostatically repel halide ions. The uncompetitive inhibition of halide ions with respect to the amine substrate is consistent with their binding only to the reaction intermediate, whereas noncompetitive inhibition with respect to dioxygen indicates halide binding at a site distinct from the O_{2}-binding site. The exclusive binding of halide ions to Cu(II) with TPQ_{amr} in the off-copper conformation (which does not bind dioxygen) is challenging to reconcile with their activity as inhibitors of the oxidative half-reaction that are noncompetitive with respect to dioxygen. This issue can be resolved by supposing that dioxygen binds directly to Cu(I) with TPQ_{eq} in the on-copper conformation during the oxidative half-reaction, and undergoes 1 e\text{-} reduction by Cu(I) through the inner-sphere mechanism proposed for AGAO (37, 38). Alternatively, halide ions may inhibit the oxidative half-reaction by binding to the O_{2}-bound enzyme.

The off-copper to on-copper conformational change of TPQ_{amr} involves three motions of the TPQ ring: sliding (~53°-rotation around the Cα-Cβ bond), tilting-up (~20°-rigid-body rotation centered at the Cα carbon), and revolution (180°-rotation around the Cβ-Cγ bond) (Fig. 12). In the off-copper conformation, the TPQ ring is sandwiched between the side chains of Asn381 and Tyr384/Val282 in a narrow wedge-shaped space (29, 53). The initial step of the conformational change is a simultaneous combination of sliding and tilting-up in order to avoid a steric clash between the TPQ ring and the side chain of His433, which would come within ~1 Å of the ring if it only slid. This combined sliding/tilting-up motion leads to the axial coordination of the 4-OH group of TPQ_{amr} to the Cu atom, where there is sufficient space for the TPQ ring to rotate by 180° around the Cβ-Cγ bond. The final 180°-rotation of the TPQ ring can only occur in the clockwise direction since anticlockwise rotation would lead to a clash between the 5-NH_{2} group and the His433 side chain, while permitting a minor movement of the Tyr384 side chain (Fig. 12). It is unclear whether the electron transfer from TPQ_{amr} to Cu(II) occurs immediately upon formation of the on-copper conformation of the TPQ ring or after the 180°-rotation to the final conformation stabilized by the hydrogen-bonding network (Fig. 9).

Finally, it is noteworthy that the on-copper TPQ_{eq} structure stabilizes the conformation of the side chain of Met602 by hydrogen-bond formation between the 5-NH_{2} group of TPQ_{eq} and the Sδ atom of Met602 (Fig. 9). Met602 is located at the end of the predicted O_{2}-pathway from the O_{2}-pre-binding site to the Cu center and has conformational flexibility with dual extreme conformers (19). Thus, it is tempting to speculate that the tethering of the Met602 side chain could act as a gate to allow O_{2} to enter into the Cu center in the initial phase of the oxidative half-reaction.

In conclusion, the results presented herein show that TPQ undergoes a large conformational change during the reductive half-reaction of AGAO, which efficiently mediates between the acid/base chemistry conducted in the off-copper conformation of TPQ by the conserved catalytic base (Asp298 in AGAO) and the redox chemistry conducted in the on-copper conformation of TPQ at the metal center.

Conflict of interest – The authors declare that they have no conflicts of interest with the contents of this article.

Author contributions – T.M., A.H., S.N., T.N., H.Y., K.T., and T.O. participated in research design. T.M., A.H., S.N., M.K., Y.K., and T.O. conducted experiments. All authors performed data analysis, and wrote or contributed to the writing of the manuscript.
REFERENCES

1. MacIntire, W. S., and Hartmann, C. (1993) Copper-containing amine oxidases in *Principles and Applications of Quinoproteins* (Davidson, V. L., ed.) pp 97–171, Marcel Dekker, New York, NY
2. Floris, G., and Mondovi, B., eds. (2009) *Copper Amine Oxidases: Structures, Catalytic Mechanisms and Role in Pathophysiology*, CRC Press, Taylor & Francis Group, Boca Raton, FL
3. Klena, V. J., and Wilmot, C. M. (2012) The role of protein crystallography in defining the mechanisms of biogenesis and catalysis in copper amine oxidase. *Int. J. Mol. Sci.* 13, 5375–5405
4. Maintz, L., and Novak, N. (2007) Histamine and histamine intolerance. *Am. J. Clin. Nutr.* 85, 1185–1196
5. Jalkanen, S., Karikoski, M., Mercier, N., Koskinen, K., Henttinen, T., Elima, K., Salmivirta, K., and Salmi, M. (2007) The oxidase activity of vascular adhesion protein-1 (VAP-1) induces endothelial E- and P-selectins and leukocyte binding. *Blood* 110, 1864–1870
6. Hernandez, M., Solé, M., Boada, M., and Unzeta, M. (2006) Soluble semicarbazide sensitive amine oxidase (SSAO) catalysis induces apoptosis in vascular smooth muscle cells. *Biochim. Biophys. Acta* 1763, 164–173
7. Lucero, H. A., and Kagan, H. M. (2006) Lysyl oxidase: an oxidative enzyme and effector of cell function. *Cell. Mol. Life Sci.* 63, 2304–2316
8. Cona, A., Rea, G., Angelini, R., Federico, R., and Tavladoraki, P. (2006) Functions of amine oxidases in plant development and defense. *Trends Plant Sci.* 11, 80–88
9. Mészáros, Z., Karádi, I., Csányi, A., Szombathy, T., Romics, L., and Magyar, K. (1999) Determination of human serum semicarbazide-sensitive amine oxidase activity: a possible clinical marker of atherosclerosis. *Eur. J. Drug Metab. Pharmacokinet.* 24, 299–302
10. Yu, P. H., Davis, B. A., and Deng, Y. (2001) 2-Bromoethylamine as a potent selective suicide inhibitor for semicarbazide-sensitive amine oxidase. *Biochem. Pharmacol.* 61, 741–748
11. Inoue, T., Morita, M., Tojo, T., Nagashima, A., Moritomo, A., and Miyake, H. (2013) Novel 1H-imidazol-2-amine derivatives as potent and orally active vascular adhesion protein-1 (VAP-1) inhibitors for diabetic macular edema treatment. *Bioorg. Med. Chem.* 21, 3873–3881
12. Matsuzaki, R., Fukui, T., Sato, H., Ozaki, Y., and Tanizawa, K. (1994) Generation of the topa quinone cofactor in bacterial monoamine oxidase by cupric ion-dependent autooxidation of a specific tyrosyl residue. *FEBS Lett.* 351, 360–364
13. Klinman, J. P., and Mu, D. (1994) Quinoenzymes in biology. *Annu. Rev. Biochem.* 63, 299–344
14. Choi, Y. H., Matsuzaki, R., Fukui, T., Shimizu, E., Yorifuji, T., Sato, H., Ozaki, Y., and Tanizawa, K. (1995) Copper/topa quinone-containing histidine oxidase from *Arthrobacter globiformis*. Molecular cloning and sequencing, overproduction of precursor enzyme, and generation of topa quinone cofactor. *J. Biol. Chem.* 270, 4712–4720
15. Okajima, T., and Tanizawa, K. (2009) Mechanism of TPQ biogenesis in prokaryotic copper amine oxidase in *Copper Amine Oxidases: Structures, Catalytic Mechanisms and Role in Pathophysiology* (Floris, G. and Mondovi, B., eds.) pp 103–118, CRC Press, Boca Raton, FL
16. Parsons, M. R., Convery, M. A., Wilmot, C. M., Yadav, K. D., Blakeley, V., Corner, A. S., Phillips, S. E., McPherson, M. J., and Knowles, P. F. (1995) Crystal structure of a quinoenzyme: copper amine oxidase of *Escherichia coli* at 2 Å resolution. *Structure* 3, 1171–1184
17. Wilce, M. C. J., Dooley, D. M., Freeman, H. C., Guss, J. M., Matsunami, H., McIntire, W. S., Ruggiero, C. E., Tanizawa, K., and Yamaguchi H. (1997) Crystal structures of the copper-containing amine oxidase from *Arthrobacter globiformis* in the holo and apo forms: implications for the biogenesis of topaquinone. *Biochemistry* 36, 16116–16133
18. Kishishita, S., Okajima, T., Kim, M., Yamaguchi, H., Hirota, S., Suzuki, S., Kuroda, S., Tanizawa, K., and Mure, M. (2003) Role of copper ion in bacterial copper amine oxidase: spectroscopic and crystallographic studies of metal-substituted enzymes. *J. Am. Chem. Soc.* 125, 1041–1055
19. Murakawa, T., Hayashi, H., Sunami, T., Kurihara, K., Tamada, T., Kuroki, R., Suzuki, M., Tanizawa, K., and Okajima, T. (2013) High-resolution crystal structure of copper amine oxidase
from *Arthrobacter globiformis*: assignment of bound diatomic molecules as O$_2$. *Acta Crystallogr. Sect. D Biol. Crystallogr.* **69**, 2483–2494

20. Li, R., Klinman, J. P., and Mathews, F. S. (1998) Copper amine oxidase from *Hansenula polymorpha*: the crystal structure determined at 2.4 Å resolution reveals the active conformation. *Structure* **6**, 293–307

21. Chang, C. M., Klema, V. J., Johnson, B. J., Mure, M., Klinman, J. P., and Wilmot, C. M. (2010) Kinetic and structural analysis of substrate specificity in two copper amine oxidases from *Hansenula polymorpha*. *Biochemistry* **49**, 2540–2550

22. Duff, A. P., Cohen, A. E., Ellis, P. J., Kuchar, J. A., Langley, D. B., Shepard, E. M., Dooley, D. M., Freeman, H. C., and Guss, J. M. (2003) The crystal structure of *Pichia pastoris* lysyl oxidase. *Biochemistry* **42**, 15148–15157

23. McGrath, A. P., Mithieux, S. M., Collyer, C. A., Bakhuis, J. G., van den Berg, M., Sein, A., Heinz, A., Schmelzer, C., Weiss, A. S., and Guss, J. M. (2011) Structure and activity of *Aspergillus nidulans* copper amine oxidase. *Biochemistry* **50**, 5718–5730

24. Kumar, V., Dooley, D. M., Freeman, H. C., Guss, J. M., Harvey, I., McGuirl, M. A., Wilce, M. C., and Zubak, V. M. (1996) Crystal structure of a eukaryotic (pea seedling) copper-containing amine oxidase at 2.2 Å resolution. *Structure* **4**, 943–955

25. Lunelli, M., Paolo, M. L. D., Biadene, M., Calderone, V., Battistutta, R., Scarpa, M., Rigo, A., and Zanotti, G. (2005) Crystal structure of amine oxidase from bovine serum. *J. Mol. Biol.* **346**, 991–1004

26. McGrath, A. P., Hilmer, K. M., Collyer, C. A., Shepard, E. M., Elmore, B. O., Brown, D. E., Dooley, D. M., and Guss, J. M. (2009) Structure and inhibition of human diamine oxidase. *Biochemistry* **48**, 9810–9822

27. Airenne, T. T., Nymalm, Y., Kidron, H., Smith, D. J., Pihlavisto, M., Salmi, M., Jalkanen, S., Johnson, M. S., and Salminen, T. A. (2005) Crystal structure of the human vascular adhesion protein-1: unique structural features with functional implications. *Protein Sci.* **14**, 1964–1974

28. Jakobsson, E., Nilsson, J., Ogg, D., and Kleywegt, G. J. (2005) Structure of human semicarbazide-sensitive amine oxidase/vascular adhesion protein-1. *Acta Crystallogr. Sect. D Biol. Crystallogr.* **61**, 1550–1562

29. Chiu, Y. C., Okajima, T., Murakawa, T., Uchida, M., Taki, M., Hirotu, S., Kim, M., Yamaguchi, H., Kawano, Y., Kamiya, N., Kuroda, S., Hayashi, H., Yamamoto, Y., and Tanizawa, K. (2006) Kinetic and structural studies on the catalytic role of the aspartic acid residue conserved in copper amine oxidase. *Biochemistry* **45**, 4105–4120

30. Plastino, J., Green, E. L., Sanders-Loehr, J., and Klinman, J. P. (1999) An unexpected role for the active site base in cofactor orientation and flexibility in the copper amine oxidase from *Hansenula polymorpha*. *Biochemistry* **38**, 8204–8216

31. Murray, J. M., Saysell, C. G, Wilmot, C. M., Tambryjagh, W. S., Jaeger, J., Knowles, P. F., Phillips, S. E., and McPherson, M. J. (1999) The active site base controls cofactor reactivity in *Escherichia coli* amine oxidase: X-ray crystallographic studies with mutational variants. *Biochemistry* **38**, 8217–8227

32. Dooley, D. M., McGuirl, M. A., Brown, D. E., Turowski, P. N., McIntire, W. S., and Knowles, P. F. (1991) A Cu(I)-semiquinone state in substrate-reduced amine oxidases. *Nature* **349**, 262–264

33. Turowski, P. N., McGuirl, M. A., and Dooley, D. M. (1993) Intramolecular electron transfer rate between active-site copper and topa quinone in pea seedling amine oxidase. *J. Biol. Chem.* **268**, 17680–17682

34. Su, Q., and Klinman, J. P. (1998) Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase. *Biochemistry* **37**, 12513–12525

35. Shepard, E. M., and Dooley, D. M. (2006) Intramolecular electron transfer rate between active-site copper and TPQ in *Arthrobacter globiformis* amine oxidase. *J. Biol. Inorg. Chem.* **11**, 1039–1048
36. Welford, R. W., Lam, A., Mirica, L. M., and Klinman, J. P. (2007) Partial conversion of Hansenula polymorpha amine oxidase into a "plant" amine oxidase: implications for copper chemistry and mechanism. Biochemistry 46, 10817–10827
37. Shepard, E. M., Okonski, K. M., and Dooley, D. M. (2008) Kinetics and spectroscopic evidence that the Cu(I)-semiquinone intermediate reduces molecular oxygen in the oxidative half-reaction of Arthrobacter globiformis amine oxidase. Biochemistry 47, 13907–13920
38. Mukherjee, A, Smirnov, V. V., Lanci, M. P., Brown, D. E., Shepard, E. M., Dooley, D. M., and Roth, J. P. (2008) Inner-sphere mechanism for molecular oxygen reduction catalyzed by copper amine oxidases. J. Am. Chem. Soc. 130, 9459–9473
39. Johnson, B. J., Yukl, E. T., Klema, V. J., Klinman, J. P., and Wilmot, C. M. (2013) Structural snapshots from the oxidative half-reaction of a copper amine oxidase: implications for O₂ activation. J. Biol. Chem. 288, 28409–28417
40. Murakawa, T., Okajima, T., Kuroda, S., Nakamoto, T., Taki, M., Yamamoto, Y., Hayashi, H., and Tanizawa, K. (2006) Quantum mechanical hydrogen tunneling in bacterial copper amine oxidase reaction. Biochem. Biophys. Res. Commun. 342, 414–423
41. Taki, M., Murakawa, T., Nakamoto, T., Uchida, M., Hayashi, H., Tanizawa, K., Yamamoto, Y., and Okajima, T. (2008) Further insight into the mechanism of stereoselective proton abstraction by bacterial copper amine oxidase. Biochemistry 47, 7726–7733
42. Fersht, A. (1998) ‘The Basic Equations of Enzyme Kinetics’ in Structure and Mechanism in Protein Science, W. H. Freeman and Company, pp 103–131, New York, NY
43. Otwinowski, Z., and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326
44. Leslie, A. G. W. (1992) Joint CCP4 and EESF-EACMB Newsletter on Protein Crystallography, SERC Daresbury Laboratory, Warrington, U.K.
45. Collaborative Computational Project Number 4 (1994) The CCP 4 suite: programs for protein crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 50, 760–763
46. McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R. J. (2007) Phaser crystallographic software. J. Appl. Cryst. 40, 658–674
47. Murshudov, G. N., Vagin, A. A., and Dodson, E. J. (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. Sect. D Biol. Crystallogr. 53, 240–255
48. Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L.-W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., and Zwart, P. H. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 213–221
49. Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. (2010) Features and development of Coot. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 486–501
50. Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G. W., McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S., Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A., and Wilson, K. S. (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr. Sect. D Biol. Crystallogr. 67, 235–242
51. Schuettelkopf, A. W., and van Aalten, D. M. F. (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. Sect. D Biol. Crystallogr. 60, 1355–1363
52. Ten Eyck, L. F. (1973) Crystallographic fast Fourier transforms. Acta Crystallogr. Sect. A Found. Adv. 29, 183–191
53. Murakawa, T., Hayashi, H., Taki, M., Yamamoto, Y., Kawano, Y., Tanizawa, K., and Okajima, T. (2012) Structural insights into the substrate specificity of bacterial copper amine oxidase obtained by using irreversible inhibitors. J. Biochem. 151, 167–178
54. Mure, M., and Klinman, J. P. (1993) Synthesis and spectroscopic characterization of model
55. Dooley, D. M., McIntire, W. S., McGuirl, M. A., Cote, C. E., and Bates, J. L. (1990) Characterization of the active site of Arthrobacter P1 methyamine oxidase: Evidence for copper-quinone interactions. J. Am. Chem. Soc. 112, 2782–2789

56. Shimizu, E., Ohta, K., Takayama, S., Kitagaki, Y., Tanizawa, K., and Yorifuji, T. (1997) Purification and properties of phenylethylamine oxidase of Arthrobacter globiformis. Biosci. Biotechnol. Biochem. 61, 501–505

57. Juda, G. A., Shepard, E. M., Elmore, B. O., and Dooley, D. M. (2006) A comparative study of the binding and inhibition of four copper-containing amine oxidases by azide: implications for the role of copper during the oxidative half-reaction. Biochemistry 45, 8788–8800

58. Nakatani, H., and Dunford, H. B. (1979) Meaning of diffusion-controlled association rate constants in enzymology. J. Phys. Chem. 83, 2662–2665

59. Masson, P., Lushchekina, S., Schopfer, L. M., and Lockridge, O. (2013) Effects of viscosity and osmotic stress on the reaction of human butyrylcholinesterase with cresyl saligenin phosphate, a toxicant related to aerotoxic syndrome: kinetic and molecular dynamics studies. Biochem. J. 454, 387–399

60. Hardy, L. W., and Kirsch, J. F. (1984) Diffusion-limited component of reactions catalyzed by Bacillus cereus beta-lactamase I. Biochemistry 23, 1275–1282

61. Shepard, E. M., Juda, G. A., Ling, K. Q., Sayre, L. M., and Dooley, D. M. (2004) Cyanide as a copper and quinone-directed inhibitor of amine oxidases from pea seedlings (Pisum sativum) and Arthrobacter globiformis: evidence for both copper coordination and cyanohydrin derivatization of the quinone cofactor. J. Biol. Inorg. Chem. 9, 256–268

62. Schwartz, B., Olgin, A. K., and Klinman, J. P. (2001) The role of copper in topa quinone biogenesis and catalysis, as probed by azide inhibition of a copper amine oxidase from yeast. Biochemistry 40, 2954–2963

63. Wilmot, C. M., Hajdu, J., McPherson, M. J., Knowles, P. F., and Phillips, S. E. (1999) Visualization of dioxygen bound to copper during enzyme catalysis. Science 286, 1724–1728

64. Dooley, D. M., Scott, R. A., Knowles, P. F., Colangelo, C. M., McGuirl, M. A., and Brown, D. E. (1998) Structures of the Cu(I) and Cu(II) forms of amine oxidases from X-ray absorption spectroscopy. J. Am. Chem. Soc. 120, 2599–2605

65. Dooley, D. M., and Brown, D. E. (1996) Intramolecular electron transfer in the oxidation of amines by methyamine oxidase from Arthrobacter P1. J. Biol. Inorg. Chem. 1, 205–209

66. Kyte, J. (1995) Mechanism in Protein Chemistry, Garland Publishing, Inc., New York, NY

67. Lopes Jesus, A. J., and Redinha, J. S. (2011) Charge-assisted intramolecular hydrogen bonds in disubstituted cyclohexane derivatives. J. Phys. Chem. A. 115, 14069–14077

68. Bisby, R. H., Johnson, S. A., Parker, A. W., and Tavender, S. M. (1999) Time-resolved resonance Raman studies of radicals from 4-aminoresorcinol as models for the active site radical intermediate in copper amine oxidases. Laser Chemistry 19, 201–208

69. Dooley, D. M., and Cote, C. E. (1985) Copper(II) coordination chemistry in bovine plasma amine oxidase: azide and thiocyanate binding. Inorg. Chem. 24, 3996–4000

70. McGuirl, M. A., Brown, D. E., and Dooley, D. M. (1997) Cyanide as a copper-directed inhibitor of amine oxidases: implications for the mechanism of amine oxidation J. Biol. Inorg. Chem. 2, 336–342
FOOTNOTES

*This work was performed using synchrotron beamline stations BL44XU and BL38B1 at SPring-8 under the Cooperative Research Program of the Institute for Protein Research, Osaka University (Proposal No.: 2007A6904, 2007B6904, 2008A6808, 2008B6808, 2009A6911, 2009B6911, 2013A6810, 2013B6810, 2014A6912, 2014B6912), and with approval from the Japan Synchrotron Radiation Institute (Proposal No.: 2009A1148, 2009B1106, 2010A1203, 2014A1144), respectively. The MX225HE CCD detector (Rayonix) at BL44XU was supported financially by Academia Sinica and the National Synchrotron Radiation Research Center (Taiwan). This research was supported by Grants-in-Aid for Scientific Research [Japan Society for the Promotion of Science] (#23770127 and #26440037 to T.M., #18350085 and 15K07391 to T.O.) and the Operational Program Education for Competitiveness – European Social Fund (project CZ.1.07 / 2.3.00 / 20.0165) (to K.T.), and by funding from the Network Joint Research Center for Materials and Devices.

The atomic coordinates and structure factors (3X3X, 3X3Y, 3X3Z, 3X40, 3X41, and 3X42) have been deposited in the Protein Data Bank (http://wwpdb.org/).

1To whom correspondence should be addressed: Toshihide Okajima, The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan, Tel.: +81-6-6879-4292; Fax.: +81-6-6879-8464; E-Mail: tokajima@sanken.osaka-u.ac.jp

2The abbreviations used are: CAO, copper amine oxidase; AGAO, BSAO, ECAO, and HPAO, CAO from Arthrobacter globiformis, bovine serum, Escherichia coli, and Hansenula polymorpha, respectively; 2-PEA, 2-phenylethylamine; TPQ, topa quinone; TPQ_{imq}, iminoquinone form of TPQ; TPQ_{psb}, product Schiff-base of TPQ; TPQ_{nbs}, substrate Schiff-base of TPQ; TPQ_{ox}, oxidized form of TPQ; TPQ_{amr}, reduced (aminoresorcinol) form of TPQ; TPQ_{sq}, semiquinone radical form of TPQ; {cis}-TPQ_{psb}, TPQ_{psb} in {cis}-configuration; {trans}-TPQ_{psb}, TPQ_{psb} in {trans}-configuration; EXAFS, extended X-ray absorption fine-structure

FIGURE LEGENDS

SCHEME 1. Presumed catalytic mechanism of AGAO.

FIGURE 1. Effects of salts on TPQ_{sq} formation. UV-vis absorption spectra of TPQ_{sq} generated by anaerobic reaction with 2-PEA (1 mM) as the substrate were measured with 100 μM AGAO monomer in 100 mM HEPES, pH 6.8, in the absence (black solid line) and presence of various salts at a final concentration of 10 mM: NaCl (green solid line), NH_{4}Cl (blue solid line), KCl (blue broken line), Na_{2}SO_{4} (red broken line), or NaH_{2}PO_{4} (red solid line).

FIGURE 2. Effects of halide ion concentration on TPQ_{sq} formation. UV-vis absorption spectra of TPQ_{sq} (generated from 100 μM AGAO monomer and 1 mM 2-PEA) were measured in 100 mM HEPES, pH 6.8, containing 0 (black), 5 (blue), 10 (green), 30 (orange), and 50 mM (red) NaF (A), NaCl (B), NaBr (C), or NaI (D).

FIGURE 3. Steady-state kinetics analysis in the presence of NaCl. A, AGAO activity was measured at 30 °C in 50 mM HEPES (pH6.8) in the presence of 0 (○), 10 (□), 30 (△), or 50 (▲) mM NaCl with systematically varied 2-PEA concentrations. B, AGAO activity was measured in solutions containing 40 μM 2-PEA and 0 (○), 12.5 (□), 25 (△), or 50 (▲) mM NaCl with systematically varied solvent O_{2} concentrations. Each point represents the mean ± S.E. (error bar) from two independent experiments.

FIGURE 4. Spectral changes during the reductive half-reaction with 2-PEA. UV/visible absorption spectra were recorded after mixing AGAO (100 μM monomer) with (A) 2 mM 2-PEA, (B) 2 mM 2-PEA plus 300 mM Na_{2}SO_{4}, (C) 2 mM 2-PEA plus 100 mM NaCl, or (D) 2 mM 2-PEA plus 300 mM NaCl.
NaBr in 50 mM HEPES buffer, pH 6.8, at 4 °C under anaerobic conditions. The spectra obtained at 0 (red), 2.30, 3.84, 6.4, 8.96, 14.1, 24.3, 44.8, 117, 209, 332, 600, and 1023 ms are shown using darker colors to represent later times. Arrows indicate the direction of the spectral changes. Deduced absorption spectra are shown for TPQ_{ox} (red), TPQ_{sub} (yellow), TPQ_{phb} (green), TPQ_{amr} (black) and TPQ_{eq} (blue) in the panels E, F, G, and H, calculated from the measurements of A (no salt), B (300 mM Na_{2}SO_{4}), C (100 mM NaCl), and D (300 mM NaBr), respectively. The absorption spectra for TPQ_{amr/X} (cyan) generated during the experiments using 100 mM NaCl (C), and 300 mM NaBr (D) are shown in panels G and H, although they are defined to be identical to that of TPQ_{amr} (black). The inset of panel A shows the time course of the absorbance at 468 nm in the spectral changes of A (no salt, red), B (300 mM Na_{2}SO_{4}, black), C (100 mM NaCl, blue), and D (300 mM NaBr, green).

FIGURE 5. Dependency of steady-state kinetic parameters on solvent viscosity. The ratios of (A) k_{cat}/K_m and (B) k_{cat} in the presence and absence of viscogen at 4 °C were plotted against the relative solvent viscosity, η/η_0, where “0” denotes the value in the absence of viscogen. Black circles and squares represent data points for glycerol and sucrose, respectively. A thin black line denotes the theoretical result for a completely diffusion-controlled process with a slope of 1.0. *Error bars;* S.D. $(n = 2)$.

FIGURE 6. Effects of viscosity on the reductive half-reaction. UV/visible absorption spectra were recorded in 50 mM HEPES buffer, pH 6.8, at 4 °C under anaerobic conditions upon mixing AGAO (100 μM monomer) with (A) 2 mM 2-PEA or (B) 2 mM 2-PEA in the presence of 30% (w/v) glycerol. The spectra obtained at 0 (broken line), 2.30, 3.84, 6.4, 8.96, 14.1, 24.3, 44.8, 117, 209, 332, 600, and 1023 ms are shown with darker colors representing later times. Arrows indicate the direction of the spectral changes. The insets expand the 440–500 nm region for easier inspection of the spectral changes. C, Absorbance at 468 nm was monitored during the spectral change of (A) 2 mM 2-PEA (broken line) or (B) 2 mM 2-PEA in the presence of 30% (w/v) glycerol (solid line) at 0 – 0.6 s. D, The ratios of the rate constants [k_{+2}/k_{-2} (red open circle), k_{-2}/k_{+2} (red open triangle), k_{+4}/k_{-4} (red triangle), and k_{-4}/k_{+4} (red rhombus) determined in solutions of up to 30% (w/v) glycerol; and k_{+2}/k_{-2} (black open circle), k_{-2}/k_{+2} (black open square), k_{+4}/k_{-4} (black open triangle), and k_{-4}/k_{+4} (black open rhombus) determined in solutions of up to 30% (w/v) sucrose] were plotted against the relative viscosity. S.D. values were less than 0.03% in all points $(n = 2–4)$, therefore not shown with error bars. Thick lines (black and red lines) denote fitted linear lines for the k_{+4}/k_{+4} values for sucrose and glycerol, respectively. The gray solid line denotes the theoretical result for a completely diffusion-controlled process with a slope of 1.0.

FIGURE 7. Catalytic intermediate structures and UV/vis absorption spectra of AGAO after reaction with 2-PEA, histamine, and ethylamine hydrochloride. AGAO crystals were anaerobically soaked with excess 2-PEA, histamine, or ethylamine hydrochloride and the X-ray structures of the resulting crystals were determined. UV/vis absorption spectra for single crystals of (A) AGAO_{PEA}, (B) AGAO_{HIT}, and (C) AGAO_{ETA/HC1} were measured before X-ray exposure. The active-site structures of (D) AGAO_{PEA}, (E) AGAO_{HIT}, and (F) AGAO_{ETA/HC1} are shown superimposed on the $F_o - F_c$ omit map (blue mesh) for residue 382 contoured at 3.5 σ. Active-site residues are represented by green stick models. Water molecules and Cu centers are represented by brown and cyan spheres, respectively. All molecular drawings were generated using PyMOL.

FIGURE 8. Active-site structures and UV/vis absorption spectra of AGAO soaked with halide salts and/or substrates. AGAO crystals were anaerobically soaked with excess 2-PEA in the presence of NaBr (A, D) or NaCl (B, E). Panels C and F show results for AGAO crystals soaked only with NaBr under aerobic conditions. UV/vis absorption spectra for the single crystals of (A) AGAO_{PEA/NaBr}, (B) AGAO_{PEA/NaCl}, and (C) AGAO_{NaBr} were measured before X-ray exposure. The refined model of the active site structures of (D) AGAO_{PEA/NaBr}, (E) AGAO_{PEA/NaCl}, and (F) AGAO_{NaBr} are shown superimposed on the $F_o - F_c$ omit map (blue mesh) for residue 382 contoured at 3.5 σ. Br-anomalous maps contoured at 8 σ are
represented by red meshes in the active sites of (D) AGAO_{PEA/NaBr} and (F) AGAO_{NaBr}. The anomalous dispersion of Cu atom is pronounced even though the wavelength of the used X-ray (0.919 Å) deviated from the peak wavelength of Cu atom (1.3808 Å), and an anomalous peak (about 18 σ) was detected on the Cu site of the active center as well as for the Br atom. Active-site residues are represented by green stick models. Water molecules and Cu atoms are represented by brown and cyan spheres, respectively. All molecular drawings were generated using PyMOL.

FIGURE 9. Interactions in the on-copper and off-copper conformations. The active sites of (A) AGAO_{PEA} and (B) the substrate-free and oxidative form of AGAO (PDB code, 1IU7), in which the TPQ ring has on-copper and off-copper conformations, respectively, are drawn showing hydrogen bonds (dotted lines) and ligation to the Cu centers (red lines). Estimated hydrogen bond lengths are shown in Å. The superposition of A and B is shown in C, in which the on-copper (A) and off-copper (B) structures are colored in purple and gray, respectively. All molecular drawings were generated using PyMOL.

FIGURE 10. pH-dependency of TPQ\textsubscript{sq} formation. A, 120 μM AGAO monomer was anaerobically reduced with 1 mM 2-PEA at various pH values in the presence of 100 mM Na\textsubscript{2}SO\textsubscript{4}, and UV-vis absorption spectra of AGAO were measured at 25 °C after 5-min pre-incubation. B, Absorbance at 468 nm specific to TPQ\textsubscript{sq} was plotted against pH. A solid line indicates the theoretical line obtained by data fitting. The spectra at pH 5.67, 6.02, 6.99, 7.52, 8.03, 8.54, 9.04, 9.55, and 10.12 are shown with darker colors corresponding to higher pH values. Each point represents the mean ± S.E. (error bar) from 2–4 independent experiments.

FIGURE 11. Effect of binding of chloride ion at the axial position of the Cu center on the conformation of TPQ\textsubscript{amr}. A, Conformation of the TPQ\textsubscript{amr} ring in the AGAO\textsubscript{ETA/HCl} structure (green) is compared with those of the substrate-reduced ECAO (purple) and HPAO-1 (magenta). Cyan spheres represent copper atoms. Residue numbers are referred to those of AGAO. van der Waals surfaces of the chloride ion and the oxygen atom of the 2-OH group of TPQ\textsubscript{amr} are represented with gray dots. B, Comparison of cis-TPQ\textsubscript{psb} formed in AGAO\textsubscript{PEA/NaCl} (orange), cis-TPQ\textsubscript{psb} formed in the D298A mutant of AGAO (29) (gray), TPQ\textsubscript{amr} formed in AGAO\textsubscript{ETA/HCl} (green), and PAA formed in AGAO\textsubscript{PEA} (green). C, Schematic drawing of the presumed mechanism of the formation of cis-TPQ\textsubscript{psb} in AGAO\textsubscript{PEA/NaCl}.

FIGURE 12. Possible route for the conformational change of TPQ in the active site of AGAO. Stick models of the active-site residues in AGAO\textsubscript{ETA/HCl} (TPQ\textsubscript{amr}, cyan) and AGAO\textsubscript{PEA} (TPQ\textsubscript{sq}, yellow) are shown within the cavity with its surface drawn in half-transparent gray. The on-copper TPQ\textsubscript{amr} conformer predicted after the first combined sliding/tilting-up motion is colored green. The following 180°-rotation of the TPQ ring provides the conformation identical with that of the on-copper TPQ\textsubscript{sq}. The rotation direction and movement of the TPQ ring are shown with blue arrows. The figure was generated with PyMOL.
Table 1: Data Collection and Crystallographic Refinement Statistics

Soaking Conditions (PDB Code)	AGAOPEA	AGAOPEB	AGAOPEH	AGAOPENa	AGAOPENaNa	AGAOPENaNaNa
4 mM 2-PEA, anaerobic (3X3X)	100	100	100	100	100	100
10 mM Histamine, anaerobic (3X3Y)	0.9	0.9	0.9	0.919	0.9	0.919
50 mM Ethylamine HCl, anaerobic (3X3Z)	1170730	1802064	503626	520004	935217	267101
4 mM 2-PEA, 300 mM NaBr, anaerobic (3X41)	228324	264870	137175	142096	993 (98.7)	6.6 (1.7)
4 mM 2-PEA, 100 mM NaCl, anaerobic (3X42)	228324	264870	137175	142096	993 (98.7)	6.6 (1.7)
300 mM NaBr, aerobic (3X42)	228324	264870	137175	142096	993 (98.7)	6.6 (1.7)

Data Collection

Temperature (K)	100	100	100	100	100	100
Wavelength (Å)	0.9	0.9	0.9	0.919	0.9	0.919
Space group	C2	C2	C2	C2	C2	C2

Unit-cell dimensions

| α, β, γ (Å) | 191.66, 62.89, 158.01 | 193.47, 63.25, 157.91 | 192.55, 62.73, 157.65 | 191.62, 63.29, 157.85 | 191.81, 63.02, 158.11 | 192.68, 63.51, 158.10 |
| β (deg) | 117.48 | 117.73 | 117.62 | 117.21 | 117.29 | 117.55 |

Resolution limit (Å)

| Resolution limit (Å) | 38.5 – 1.57 (1.65 – 1.57) | 50.0 – 1.50 (1.53 – 1.50) | 38.5 – 1.51 (1.59 – 1.51) | 47.3 – 1.87 (1.97 – 1.87) | 26.5 – 1.85 (1.95 – 1.85) | 100 – 1.89 (1.96 – 1.89) |

No. of unique reflections

| No. of unique reflections | 1511400 | 1700730 | 1802064 | 503626 | 520004 | 935217 |
| I(σ(I)) | 3.1 (1.9) | 1.9 (2.1) | 1.7 (3.0) | 3.7 (3.5) | 3.7 (3.5) | 3.5 (3.2) |

Refinement Statistics

Resolution limit (Å)	20.4 – 1.57 (1.59 – 1.57)	36.5 – 1.50 (1.52 – 1.50)	22.3 – 1.51 (1.53 – 1.51)	37.1 – 1.87 (1.89 – 1.87)	26.2 – 1.80 (1.87 – 1.85)	24.7 – 1.89 (1.90 – 1.88)
Residues in the core θφ region (%)	96.6	96.5	96.5	96.4	96.2	96.5
No. of atoms per asymmetric unit	11032	11413	11677	11201	11118	11191
No. of solvent atoms	1170	1236	1527	1134	1239	1198
Average temperature factors	18.5	17.5	17.5	21.5	24.0	23.2
Protein	29.1	35.0	33.2	38.9	37.3	48.2
Ligand/ion	29.2	29.2	31.8	34.7	33.3	34.5
Solvent	0.011	0.012	0.011	0.014	0.013	0.009
Bond lengths (Å)	1.049	1.078	1.153	1.112	1.077	1.083
Bond angles (deg)	96.4	96.4	96.4	96.4	96.2	96.5
Rmerge (%)	21.5 (26.2)	16.2 (22.4)	16.1 (20.3)	15.2 (20.5)	21.2 (28.1)	15.8 (22.6)
Rfree (%)	24.3 (30.5)	17.7 (25.7)	17.8 (21.9)	18.0 (23.7)	26.4 (34.1)	19.0 (27.9)

Ramachandran plot statistics (%)

Residues in favored regions (%)	96.4	96.7	96.8	96.4	96.4	96.4
Residues in allowed regions (%)	3.6	3.3	3.5	3.7	3.7	3.4
Outliers (%)	0.0	0.2	0.2	0.2	0.2	0.2

^a Values in parentheses refer to data for the highest resolution shells.

^b $R_{merge} = \frac{\sum_i \sum_j |I_{h,i} - \langle I_h \rangle|}{\sum_i \sum_j I_{h,i}}$, where $I_{h,i}$ is the intensity value of the i^{th} measurement of h and $\langle I_h \rangle$ is the corresponding mean value of I_h for all i measurements.

^c $R_{work} = \frac{\sum |I - F_o|}{\sum |I_o|}$, where I is the observed structure factor amplitudes.

^d R_{free} is an R factor of the refinement evaluated for 5% of reflections that were excluded from the refinement.
Table 2. Kinetic constants for each step of the reductive half-reaction in the absence and presence of various salts and a viscogen at 4 °C.

Step	No addition	+300 mM Na₂SO₄	+100 mM NaCl	+300 mM NaBr	+30% (w/v) glycerol
k_{+1} (s^{–1})^a	887 ± 0.2	880 ± 0.3	887 ± 0.6	880 ± 0.08	871 ± 0.03
k_{-1} (s^{–1})	531 ± 0.8	529 ± 0.05	530 ± 0.2	528 ± 2	560 ± 0.02
k_{+2} (s^{–1})	206 ± 0.04	207 ± 0.1	206 ± 0.1	207 ± 0.3	201 ± 0.006
k_{-2} (s^{–1})	34 ± 0.008	34 ± 0.02	34 ± 0.02	34 ± 0.07	34 ± 0.001
k_{+3} (s^{–1})	102 ± 0.06	102 ± 0.05	102 ± 0.06	103 ± 0.2	100 ± 0.003
k_{-3} (s^{–1})	127 ± 8	127 ± 5	63 ± 3	76 ± 7	134 ± 0.007
k_{+4} (s^{–1})	39 ± 9	39 ± 6	32 ± 6	23 ± 11	15 ± 0.001
k_{-4} (s^{–1})	17 ± 3	12 ± 2	15 ± 4	21 ± 6	6 ± 0.001
k_{+5} (s^{–1})^a	15 ± 7	21 ± 12			
k_{-5} (s^{–1})	5 ± 2	9 ± 3			

^aDetermined as a first-order rate constant at constant and excess concentrations of amine substrate (2-PEA) and halide ions.
Table 3. Summary of crystal soaking conditions and active-site features determined by X-ray crystallographic analysis.

Soaking conditions	AGAO_{PEA}	AGAO_{HTA}	AGAO_{ETA/HCl}	AGAO_{PEA/NaCl}	AGAO_{PEA/NaBr}	AGAO_{NaBr}
Assigned TPQ species	2-PEA, Anaerobic	Histamine, Anaerobic	Ethylamine, Anaerobic	2-PEA, NaCl, Anaerobic	2-PEA, NaBr, Anaerobic	NaBr, Aerobic
Conformation of TPQ	TPQ_{sq}	TPQ_{sq}	TPQ_{amr}	TPQ_{psb}	TPQ_{psb}	TPQ_{ox}
Cu coordination geometry	Tetrahedral	Tetrahedral	Square pyramidal	Square pyramidal	Square pyramidal	Square pyramidal
Presumed Cu valence	Cu(I)	Cu(I)	Cu(II)	Cu(II)	Cu(II)	Cu(II)
Axial ligand of Cu atom (distance, Å)	TPQ_{sq} C4-OH (2.8)	TPQ_{sq} C4-OH (2.7)	Cl⁻ (2.5)	Cl⁻ (2.3)	Br⁻ (2.5)	Water (2.6)

^aData for chain A.
SCHEME 1

Reductive half-reaction

Oxidative half-reaction
FIGURE 1
FIGURE 2

Conformational Change of Topa Quinone in Copper Amine Oxidase
FIGURE 4

Conformational Change of Topa Quinone in Copper Amine Oxidase
FIGURE 5

A

B

\(\frac{k_{cat}}{K_m} \) vs. \(\eta/\eta^0 \)

\(k_{cat}^0/k_{cat} \) vs. \(\eta/\eta^0 \)
FIGURE 7

Panel A: Absorbance spectrum with wavelength (nm) ranging from 300 to 700.

Panel B: Absorbance spectrum with wavelength (nm) ranging from 300 to 700.

Panel C: Absorbance spectrum with wavelength (nm) ranging from 300 to 700.

Panel D: Structural diagram showing the position of PAA, Asp298, Tyr296, W2, TPQ382, Met602, His433, and His592.

Panel E: Structural diagram showing the position of Asp298, Tyr296, W2, W3, TPQ382, Met602, His433, and His592.

Panel F: Structural diagram showing the position of Asp298, His433, W4, TPQ382, Met602, Cl, W51, Tyr296, and His592.
Conformational Change of Topa Quinone in Copper Amine Oxidase

FIGURE 8
FIGURE 9

Conformational Change of Topa Quinone in Copper Amine Oxidase
FIGURE 11.
Probing the Catalytic Mechanism of Copper Amine Oxidase from Arthrobacter globiformis with Halide Ions
Takeshi Murakawa, Akio Hamaguchi, Shota Nakanishi, Misumi Kataoka, Tadashi Nakai, Yoshiaki Kawano, Hiroshi Yamaguchi, Hideyuki Hayashi, Katsuyuki Tanizawa and Toshihide Okajima

J. Biol. Chem. published online August 11, 2015

Access the most updated version of this article at doi: 10.1074/jbc.M115.662726

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts