CURVATURES ON THE ABBENA-THURSTON MANIFOLD

Ju-Wan Han, Hyun Woong Kim and Yong-Soo Pyo*

Abstract. Let H be the 3-dimensional Heisenberg group, $(G = H \times S^1, g)$ a product Riemannian manifold of Riemannian manifolds H and S^1 with arbitrarily given left invariant Riemannian metrics respectively, and Γ the discrete subgroup of G with integer entries. Then, on the Riemannian manifold $(M := G/\Gamma, \Pi^*g = \bar{g})$, $\Pi : G \to G/\Gamma$, we evaluate the scalar curvature and the Ricci curvature.

1. Introduction

Recently, Park (cf. [7, 8]) investigated various differential geometric properties on the three dimensional Heisenberg group with an arbitrarily given left invariant Riemannian metric. And, the geometric properties on the Abbena-Thurston manifold have been also studied by many geometrician (cf. [1, 4, 5, 6]).

In this paper, we evaluate the scalar curvature and the Ricci curvature on the Abbena-Thurston manifold $(G/\Gamma, \bar{g})$ with an arbitrarily given G-invariant Riemannian metric \bar{g}.

Let H be the 3-dimensional Heisenberg group, $(G = H \times S^1, g)$ a product Riemannian manifold of Riemannian manifolds H and S^1 with arbitrarily given left invariant Riemannian metrics respectively, Γ the discrete subgroup of G with integer entries, and $\Pi : G \to G/\Gamma = M$ the natural projection. First of all, we completely classify G-invariant Riemannian metrics on the Abbena-Thurston manifold $G/\Gamma = M$. And then, on the Riemannian manifold $(M := G/\Gamma, \Pi^*g = \bar{g})$ with an arbitrarily given G-invariant Riemannian metric \bar{g}, we obtain the scalar curvature, homogeneous Riemannian manifold, Ricci curvature.

Received January 3, 2016. Accepted February 3, 2016.
2010 Mathematics Subject Classification. 53A10, 53C23, 53C42, 53C43.
Key words and phrases. Heisenberg group, Abbena-Thurston manifold, scalar curvature, homogeneous Riemannian manifold, Ricci curvature.

This work was supported by a Research Grant of Pukyong National University(2016 year).

*Corresponding author.
curvature (cf. Theorem 3.1) and evaluate the Ricci curvature (cf. Theorem 3.2).

2. The Abbena-Thurston manifold \((G/\Gamma, \bar{g})\) with a \(G\)-invariant metric \(\bar{g}\)

Let \(G\) be the closed connected subgroup of \(GL(4, \mathbb{C})\) defined by

\[
\begin{pmatrix}
1 & a_{12} & a_{13} & 0 \\
0 & 1 & a_{23} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & e^{2\pi ia}
\end{pmatrix}
| a_{12}, a_{23}, a_{13}, a \in \mathbb{R}
\]

\((i = \sqrt{-1})\).

i.e., \(G = H \times S^1\) is the product of the Heisenberg group \(H\) and \(S^1\). Let \(\Gamma\) be the discrete subgroup of \(G\) with integer entries and \(M = G/\Gamma\).

Denote by \(x, y, z, t\) coordinates on \(G\), say for \(A \in G\),

\(x(A) = a_{12}, y(A) = a_{23}, z(A) = a_{13}, t(A) = a\).

If \(L_B\) is the left translation by an element \(B \in G\), we have

\[
L_B^* dx = dx, \quad L_B^* dy = dy, \\
L_B^* (dz - xdy) = dz - xdy, \quad L_B^* dt = dt.
\]

In particular, these forms are invariant under the action of \(\Gamma\); let \(\Pi : G \rightarrow M\), then there exist 1-forms \(\alpha_1, \alpha_2, \alpha_3\) and \(\alpha_4\) on \(M\) such that

\[
dx = \Pi^* \alpha_1, \quad dy = \Pi^* \alpha_2, \quad dz - xdy = \Pi^* \alpha_3\quad \text{and}\quad dt = \Pi^* \alpha_4.
\]

The manifold \(M = G/\Gamma\) is referred to as the Abbena-Thurston manifold. On \(G\), the vector fields

\[
(2.1) \quad \nu_1 := \frac{\partial}{\partial x}, \quad \nu_2 := \frac{\partial}{\partial y} + x \frac{\partial}{\partial z}, \quad \nu_3 := \frac{\partial}{\partial z}, \quad \nu_4 := \frac{\partial}{\partial t}
\]

are dual to \(dx, dy, dz - xdy, dt\), and are left invariant. We denote by \(g\) the Lie algebra of all left invariant vector fields on \(G\). Let \(< , >\) be an inner product on the Lie algebra \(g\) such that

\[
(2.2) \quad < \nu_a, \nu_a > = k_a^2 \quad (a = 1, 2, 3, 4), \quad < \nu_1, \nu_2 > = k_1 k_2 \cos \varphi_1, \\
< \nu_2, \nu_3 > = k_2 k_3 \cos \varphi_2, \quad < \nu_3, \nu_1 > = k_3 k_1 \cos \varphi_3, \\
< \nu_4, \nu_a > = 0 \quad (a = 1, 2, 3), \quad (1 - \cos^2 \varphi_1 - \cos^2 \varphi_2 - \cos^2 \varphi_3 + 2 \cos \varphi_1 \cos \varphi_2 \cos \varphi_3) > 0,
\]

where each \(k_a\) is positive constant and \(0 < \varphi_1, \varphi_2, \varphi_3 < \pi\). Let \(g\) be the left invariant Riemannian metric on \(G(= H \times S^1)\) which corresponds to
the above inner product on \(g \). For simplicity, here and from now on in this paper, we use the following notations:

\[
 g_{ab} := \langle v_a, v_b \rangle, \\
 \lambda := (1 - \cos^2 \varphi_1 - \cos^2 \varphi_2 - \cos^2 \varphi_3 + 2 \cos \varphi_1 \cos \varphi_2 \cos \varphi_3)^{\frac{1}{2}}.
\]

Then

\[
 |(g_{ab})_{a,b}|^{\frac{1}{2}} = k_1 k_2 k_3 k_4 \lambda.
\]

So, the space of all Riemannian metrics on the product Riemannian manifold \(G = H \times S^1 \) of Riemannian manifolds \(H, S^1 \) with left invariant Riemannian metrics respectively is given by

\[
 \{ (k_1, k_2, k_3, k_4, \varphi_1, \varphi_2, \varphi_3) \mid \text{all } k_a > 0, 0 < \varphi_1, \varphi_2, \varphi_3 < \pi, (1 - \cos^2 \varphi_1 - \cos^2 \varphi_2 - \cos^2 \varphi_3 + 2 \cos \varphi_1 \cos \varphi_2 \cos \varphi_3) > 0 \}.
\]

Now we normalize left invariant Riemannian metrics by putting \(k_1 = 1 \), and put

\[
 \mathcal{M} := \{ (1, k_2, k_3, k_4, \varphi_1, \varphi_2, \varphi_3) \mid k_2, k_3, k_4 > 0, 0 < \varphi_1, \varphi_2, \varphi_3 < \pi, (1 - \cos^2 \varphi_1 - \cos^2 \varphi_2 - \cos^2 \varphi_3 + 2 \cos \varphi_1 \cos \varphi_2 \cos \varphi_3) > 0 \}.
\]

And we have from (2.1)

\[
 [v_1, v_2] = v_3, \quad [v_1, v_3] = [v_2, v_3] = 0, \quad [v_a, v_4] = 0 \quad (a = 1, 2, 3, 4).
\]

In general, the Riemannian connection \(\nabla \) on a Riemannian manifold \((M, g)\) is given by (cf. [2, 3])

\[
 2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(X, Z) - Zg(X, Y) + g([X, Y], Z) + g([Z, X], Y) - g([Y, Z], X) \quad (X, Y, Z \in \mathfrak{X}(M)).
\]

On the other hand, for each Riemannian metric \(g \) on \(G \) which corresponds to \((k_1, k_2, k_3, k_4, \varphi_1, \varphi_2, \varphi_3) \in \mathcal{M}\), there exists a \(G \)-invariant Riemannian metric \(\bar{g} \) on \(M = G/\Gamma \) such that \(\Pi^* g = \bar{g} \).

3. Curvatures on the Abbena-Thurston manifold \((G/\Gamma, \bar{g})\)

We retain the notations as in Section 2.
From now on, all the calculations on \((M := H / \Gamma, \bar{g})\) will be done on \(G(= H \times S^1)\) and its Lie algebra \(g\). In fact, because \(M\) is a homogeneous space, the curvature is the same in all its points, and \(M\) is locally isomorphic to \(G\) (cf. \([1, 5, 9]\)).

Let \(\langle , \rangle\) be an inner product on the Lie algebra \(g\) of \(G(= H \times S^1)\) which corresponds to \((1, k_2, k_3, \varphi_1, \varphi_2, \varphi_3)(\in \mathfrak{M})\). Let \(g\) be the left invariant Riemannian metric on \(G\) which is induced by the inner product \(\langle , \rangle\).

Putting

\[
\begin{align*}
 d_1 &:= v_1, \quad d'_2 := v_2 - \langle v_1, v_2 \rangle v_1, \\
 d_2 &:= < d'_2, d'_2 >^{-1/2} d'_2, \\
 d'_3 &:= v_3 - < d_1, v_3 > d_1 - < d_2, v_3 > d_2, \\
 d_3 &:= < d'_3, d'_3 >^{-1/2} d'_3, \quad d_4 := < v_4, v_4 >^{-1/2} v_4, \\
\end{align*}
\]

we have an orthonormal frame

\[
\{d_1, d_2, d_3, d_4\}
\]

on \((G, g)\). We have from (2.2) and (3.1)

\[
\|d'_2\|_h = k_2 \sin \varphi_1, \quad \|d'_3\|_h = k_3 \lambda (\sin \varphi_1)^{-1}.
\]

By the help of (2.2), (3.1) and (3.2), we obtain

\[
\begin{align*}
 v_1 &= d_1, \quad v_2 = k_2 \cos \varphi_1 d_1 + k_2 \sin \varphi_1 d_2, \\
 v_3 &= k_3 \cos \varphi_3 d_1 + k_3 (\cos \varphi_2 - \cos \varphi_3 \cos \varphi_1)(\sin \varphi_1)^{-1} d_2 \\
 &\quad + k_3 \lambda (\sin \varphi_1)^{-1} d_3, \\
 v_4 &= k_4 d_4.
\end{align*}
\]
By virtue of (2.1), (2.2), (3.1), (3.2) and (3.3), we get
\[
[d_1, d_2] = k_2^{-1}k_3\{(\sin \varphi_1)^{-1}\cos \varphi_3 d_1
+ (\cos \varphi_2 - \cos \varphi_3 \cos \varphi_1)(\sin \varphi_1)^{-2}d_2
+ \lambda(\sin \varphi_1)^{-2}d_3\},
\]
\[
[d_2, d_3] = k_2^{-1}k_3 \cos \varphi_3\{\lambda^{-1}\cos \varphi_3 d_1
+ (\lambda \sin \varphi_1)^{-1}(\cos \varphi_2 - \cos \varphi_3 \cos \varphi_1)d_2
+ (\sin \varphi_1)^{-1}d_3\},
\]
\[
[d_3, d_1] = k_3(k_2 \lambda \sin \varphi_1)^{-1}(\cos \varphi_2 - \cos \varphi_3 \cos \varphi_1)
\{\cos \varphi_3 d_1 + (\sin \varphi_1)^{-1}(\cos \varphi_2 - \cos \varphi_3 \cos \varphi_1)d_2
+ \lambda(\sin \varphi_1)^{-1}d_3\},
\]
\[
[d_a, d_4] = 0 \quad (a = 1, 2, 3, 4).
\]

Let ∇ be the Riemannian connection on (G, g). And, let R be the curvature tensor field on (G, g), that is,
\[
R(X, Y)Z = ([\nabla_X, \nabla_Y] - \nabla_{[X,Y]})(Z) \quad (X, Y, Z \in \mathfrak{X}(G)).
\]

From (2.3) and (3.4), we get
\[
\nabla_{d_1}d_1 = k_3 \cos \varphi_3\ (k_2 \sin \varphi_1)^{-1}
\{-d_2 + \lambda^{-1}(\cos \varphi_2 - \cos \varphi_3 \cos \varphi_1)d_3\},
\]
\[
\nabla_{d_1}d_2 = k_2^{-1}k_3\{(\sin \varphi_1)^{-1}\cos \varphi_3 d_1
+ (2\lambda)^{-1}(\sin^2 \varphi_3 - \cos^2 \varphi_3)d_3\},
\]
\[
\nabla_{d_1}d_3 = (2k_2 \lambda)^{-1}\{2k_3(\sin \varphi_1)^{-1}\cos \varphi_3(\cos \varphi_3 \cos \varphi_1
- \cos \varphi_2)d_1 + k_3(\cos^2 \varphi_3 - \sin^2 \varphi_3)d_2\},
\]
\[
\nabla_{d_2}d_2 = k_3(k_2 \sin \varphi_1)^{-1}(\cos \varphi_2 - \cos \varphi_3 \cos \varphi_1)
\{\sin \varphi_1)^{-1}d_1 - \lambda^{-1}\cos \varphi_3 d_3\},
\]
\[
\nabla_{d_2}d_3 = k_3(k_2 \lambda \sin \varphi_1)^{-1}\{(2 \sin \varphi_1)^{-1}
(2\lambda^2 + \sin^2 \varphi_1 \cos^2 \varphi_3 - \sin^2 \varphi_1 \sin^2 \varphi_3)d_1
+ \cos \varphi_3(\cos \varphi_2 - \cos \varphi_3 \cos \varphi_1)d_2\},
\]
\[
\nabla_{d_3}d_3 = k_3(k_2 \sin \varphi_1)^{-1}
\{(\cos \varphi_3 \cos \varphi_1 - \cos \varphi_2)\ d_1 + \cos \varphi_3 d_2\},
\]
\[
\nabla_{d_a}d_4 = 0 \quad (a = 1, 2, 3, 4).
\]
Putting $g(R(d_a, d_b) d_c, d_e) =: R^c_{abc}$, we have from (3.5)

\[
R_{212}^1 = k_3^2 (4 k_2^2 \lambda^2 \sin^2 \varphi_1)^{-1} (-3 + 3 \cos^2 \varphi_1 + 4 \cos^2 \varphi_2 + 4 \cos^2 \varphi_3 - 8 \cos \varphi_1 \cos \varphi_2 \cos \varphi_3),
\]

\[
R_{313}^1 = k_3^2 (4 k_2^2 \lambda^2 \sin^2 \varphi_1)^{-1} \{\sin^2 \varphi_1 - 4 (\cos \varphi_2 - \cos \varphi_3 \cos \varphi_1)^2\},
\]

\[
R_{323}^2 = k_3^2 (4 k_2^2 \lambda^2 \sin^2 \varphi_1)^{-1} (4 \cos^2 \varphi_3 \cos^2 \varphi_1 - 4 \cos^2 \varphi_3 - \cos^2 \varphi_1 + 1),
\]

\[
R_{223}^1 = -k_3^2 \cos \varphi_3 (k_2^2 \lambda \sin \varphi_1)^{-1},
\]

\[
R_{231}^1 = k_3^2 (\cos \varphi_3 \cos \varphi_1 - \cos \varphi_2)(k_2^2 \lambda \sin^2 \varphi_1)^{-1},
\]

\[
R_{123}^3 = k_3^2 \cos \varphi_3 (\cos \varphi_3 \cos \varphi_1 - \cos \varphi_2)(k_2^2 \lambda \sin^2 \varphi_1)^{-1},
\]

\[
R_{4ab}^c = R_{4ab}^c = 0.
\]

Let $\rho(= \rho_g)$ be the Ricci operator on (G, g), that is,

\[
(3.7) \quad \rho(X, Y) = \sum_{a=1}^4 g(R(X, d_a) d_a, Y) \ (X, Y \in \mathfrak{X}(G)).
\]

Putting $\rho(d_a, d_b) =: \rho_{ab}$ $(a, b = 1, 2, 3, 4)$, we obtain from (3.6) and (3.7)

\[
\rho_{11} = k_3^2 (\cos^2 \varphi_3 - \sin^2 \varphi_3)(2 k_2^2 \lambda^2)^{-1},
\]

\[
\rho_{22} = k_3^2 \{\sin^2 \varphi_1 (2 \sin^2 \varphi_3 - 1) - 2 \lambda^2\}(2 k_2^2 \lambda^2 \sin^2 \varphi_1)^{-1},
\]

\[
\rho_{33} = k_3^2 (2 \lambda^2 - \sin^2 \varphi_1)(2 k_2^2 \lambda^2 \sin^2 \varphi_1)^{-1},
\]

\[
\rho_{12} = k_3^2 \cos \varphi_3 (\cos \varphi_2 - \cos \varphi_3 \cos \varphi_1)(k_2^2 \lambda^2 \sin^2 \varphi_1)^{-1},
\]

\[
\rho_{23} = k_3^2 (\cos \varphi_2 - \cos \varphi_3 \cos \varphi_1)(k_2^2 \lambda \sin \varphi_1)^{-1},
\]

\[
\rho_{31} = k_3^2 \cos \varphi_3 (k_2^2 \lambda \sin \varphi_1)^{-1},
\]

\[
\rho_{4a} = 0 \ (a = 1, 2, 3, 4).
\]

Generally for the Ricci operator ρ on a Riemannian manifold (M, g), the trace of ρ is referred to as the scalar curvature on (M, g).

In our situation, from (3.8) we get the following:

Theorem 3.1. Let g be a left invariant Riemannian metric on $G(= H \times S^1)$ which corresponds to $(1, k_2, k_3, k_4, \varphi_1, \varphi_2, \varphi_3)(\in \mathfrak{M})$, and \tilde{g} the G-invariant Riemannian metric on $M(= G/\Gamma)$ such that $\Pi^* \tilde{g} = g$. Then
the scalar curvature on \((M, \bar{g})\) is
\[
-\frac{k_3^2}{2\lambda^2 k_2^2}.
\]

In general, for the Ricci curvature tensor field \(\text{Ric}\) of (0,2)-type in a Riemannian manifold \((M, g)\) and a nonzero vector \(x_p \in T_p(M)\),
\[
r(x_p) := \frac{\text{Ric}(x_p, x_p)}{\|x_p\|_g^2}.
\]
is said to be the Ricci curvature of \((M, g)\) with respect to \(x_p\). Moreover if \((M, g)\) has a constant Ricci curvature, then \((M, g)\) is said to be an Einstein manifold.

In our situation, we put \(S := (\rho_{ab})_{a,b} (\rho_{ab} = \rho(d_a, d_b))\). By a straightforward but lengthy computation, we get the characteristic equation of \(S\) from (3.8) as follows:
\[
(3.9) \quad |tI_4 - S| = t \left(t - \frac{k_3^2}{2k_2^2\lambda^2} \right) \left(t + \frac{k_3^2}{2k_2^2\lambda^2} \right)^2 = 0.
\]
Since \(S\) is real symmetric, by virtue of (3.9) we obtain the following

Theorem 3.2. Let \(g\) be a left invariant Riemannian metric on \(G(=H \times S^1)\) which corresponds to \((1, k_2, k_3, k_4, \varphi_1, \varphi_2, \varphi_3)\) \((\in \mathfrak{W})\), and \(\bar{g}\) the \(G\)-invariant Riemannian metric on \(M(= G/\Gamma)\) such that \(\Pi^* \bar{g} = g\). Then the Ricci curvature \(r\) on \((M, \bar{g})\) is estimated as follows;
\[
-\frac{k_3^2}{2k_2^2\lambda^2} \leq r \leq \frac{k_3^2}{2k_2^2\lambda^2}.
\]

Remark 3.3. By the help of (3.8), we obtain the following:

(* the product Riemannian manifold of the three dimensional Heisenberg group \(H\) and \(S^1\) with an arbitrarily given left invariant metric is not an Einstein manifold.

On the other hand, it is well known that three dimensional Einstein manifold is a space of constant curvature (cf. [3], p.293). Wolf (cf. [9]) showed the fact that three dimensional nilpotent Lie group is not a constant curvature space.

The above statement (*) follows from these facts.

More generally, the following theorem (cf. [4], Theorem 2.4) is well known;

Let \(G\) be a nilpotent Lie group. Then, there does not exist any left invariant Einstein metric on \(G\).

The above statement (*) also follows from this theorem.
References

[1] E. Abbena, *An example of an almost Kaehler manifold which is not Kaehlerian*, Bollettino U.M.I. 3-A (1984), 383-392.
[2] S. Helgason, *Differential Geometry, Lie Groups and Symmetric Spaces*, Academic Press, New York, 1978.
[3] S. Kobayashi and K. Nomizu, *Foundations of Differential Geometry, Vol. I*, Wiley-Interscience, New York, 1963.
[4] J. Milnor, *Curvatures of left invariant metric on Lie groups*, Advances in Math. 21 (1976), 293-329.
[5] J.-S. Park and W.-T. Oh, *The Abbena-Thurston manifold as a critical point*, Canad. Math. Bull. 39 (1996), 352-359.
[6] J.-S. Park, *Critical homogeneous metrics on the Heisenberg manifold*, Interdiscip. Inform. Sci. 11 (2005), 31-34.
[7] J.-S. Park, *Differential geometric properties on the Heisenberg group*, to appear in J. Korean Math. Soc.
[8] J.-S. Park, *Surfaces embedded isometrically in the Heisenberg group*, to appear.
[9] J.A. Wolf, *Curvatures in nilpotent Lie groups*, Proc. Amer. Math. Soc. 15 (1964), 271-274.

Ju-Wan Han
Department of Applied Mathematics,
Pukyong National University,
Pusan 48513, Korea
E-mail: wndhks2236@naver.com

Hyun Woong Kim
Department of Applied Mathematics,
Pukyong National University,
Pusan 48513, Korea
E-mail: 0127woong@hanamil.net

Yong-Soo Pyo
Department of Applied Mathematics,
Pukyong National University,
Pusan 48513, Korea
E-mail: yspyo@pknu.ac.kr