REDUCING MOD p COMPLEX REPRESENTATIONS
OF FINITE REDUCTIVE GROUPS

G. LUSZTIG

Dedicated to the memory of Jim Humphreys

ABSTRACT. We state a conjecture on the reduction modulo the defining characteristic of a unipotent representation of a finite reductive group.

INTRODUCTION

0.1. Let k be an algebraic closure of the finite field with p elements (p is a prime number). Let μ be the group of roots of 1 in C. We fix a surjective homomorphism $\phi: \mu \rightarrow k^*$ whose kernel is the set of roots of 1 of order a power of p. Let Γ be a finite group. Let $R\Gamma$ (resp. $R_p\Gamma$) be the Grothendieck group of virtual (finite dimensional) representations of Γ over C (resp. over k) and let $R^+\Gamma$ (resp. $R^+_p\Gamma$) be the subset of $R\Gamma$ (resp. $R_p\Gamma$) given by actual representations of Γ over C (resp. over k). Following Brauer and Nesbitt [BN] there is a well defined map $\rho \mapsto \underline{\rho}$ from $R^+\Gamma$ to $R^+_p\Gamma$ characterized by the following property: for any $g \in \Gamma$ the eigenvalues of g on ρ are obtained by applying ϕ to the eigenvalues of g on ρ. We say that ρ is the reduction modulo p of ρ. In the remainder of this paper we assume that $\Gamma = G(F_p)$ is the group of F_p-rational points of an almost simple simply connected linear algebraic group G over k with a given split F_p-structure with p sufficiently large. Our goal is to present some remarks on the map $\rho \mapsto \underline{\rho}$ in this case.

0.2. Assume that $G = SL_2(k)$. Assume that $\rho \in R^+\Gamma$ is irreducible. If ρ has dimension 1, p, $(p+1)/2$ or $(p-1)/2$, then $\underline{\rho}$ is irreducible. If dim $\rho = p + 1$, then $\underline{\rho}$ has two composition factors, of dimension $c, p+1-c$ with $2 \leq c \leq (p-1)/2$ (and any such c occurs). If dim $\rho = p - 1$, then either $\underline{\rho}$ has two composition factors, of dimension $c, p-1-c$ with $2 \leq c \leq (p-3)/2$ (and any such c occurs) or ρ is irreducible. These results can be found in the paper [BN] of Brauer and Nesbitt (they actually consider the group $PSL_2(F_p)$ instead of $SL_2(F_p)$ but their method applies also to $SL_2(F_p)$).

0.3. Assume that $G = SL_3(k)$. In the case where ρ is an irreducible representation in $R^+\Gamma$ which has a line stable under the upper triangular subgroup, the complete description of the composition factors of ρ was given in [CL] (written in 1973). For one of the cuspidal irreducible representations ρ of Γ, $\underline{\rho}$ has exactly two composition factors (except when $p = 2$ when ρ is irreducible), as stated in [L1] (where the case $p = 2$ was overlooked); one has dimension $p(p-1)(2p-1)/2$ and the other (when $p > 2$) has dimension $(p-1)(p-2)/2$. This is analogous to the cuspidal irreducible...
representation of $SL_2(F_p)$ for which ρ is irreducible. In the case where ρ is in one of the three main series of irreducible representations of Γ, a description of ρ was given by Humphreys in [11], [12].

0.4. For general G let \mathfrak{U} be the set of unipotent representations of Γ (up to isomorphism). A study of the map $\rho \mapsto \rho$ in the case where ρ is one of the irreducible representations of Γ attached in [12] 1.9 to a generic character of a “maximal torus” of Γ appears in Jantzen’s paper [11]; a study of the map $\rho \mapsto \rho$ in the case where $\rho \in \mathfrak{U}$ appears in Jantzen’s paper [12]. (The notion of unipotent representation of Γ is defined in [12] 7.8.)

0.5. In unpublished notes written in 1978, the author gave a conjectural description (on the level of dimensions only) of ρ as an explicit linear combination of Weyl modules (see 1.1) in the case where $\rho \in \mathfrak{U}$ and G has type B_2, G_2, A_3, A_4; for types A_1, A_2 this was known earlier, see 0.2, 0.3. Later the author found that this description has been proved to be correct when G has type B_2 by Jantzen [13] or type G_2 by Mertens [11]. (A copy of [11] was provided to the author by J. Humphreys.) Recently the author understood that the conjectural description in 1978 can be partly explained by a surprising (conjectural) general pattern which will be described in this paper. Namely, there should exist a family of objects $M_w \in R^+_p \Gamma$ indexed by the “near involutions” (see 1.2) w in W such that for any $\rho \in \mathfrak{U}$, ρ is an explicit linear combination of M_w with w near involutions in the two-sided cell determined by ρ; the coefficients are natural numbers whose definition involves among other things the character table of the J-ring associated to the Weyl group.

1. RECOLLECTIONS

1.1. Let B be a Borel subgroup of G defined over F_p; let T be a maximal torus of B defined and split over F_p. Let X be the group of characters $T \to k^*$ with group operation written as addition. For any $\lambda \in X$ there is (up to isomorphism) at most one irreducible rational G-module $L(\lambda)$ (over k) such that T acts on some B-stable line in $L(\lambda)$ through the character λ; this is uniquely defined up to isomorphism. Let X^+ be the set of all $\lambda \in X$ for which $L(\lambda)$ is defined. There is a unique \mathbb{Z}-basis $\{\varpi_i; i \in I\}$ of X such that $X^+ = \sum_{i \in I} N \varpi_i$. For $I' \subset I$ we set $\lambda_{I'} = \sum_{i \in I'} \varpi_i \in X^+$.

For $\lambda \in X^+$ let $V(\lambda)$ be a rational G-module (over k) whose character (an element of the group ring $\mathbb{Z}[X]$) is the same as that of the characteristic 0 analogue of $L(\lambda)$; it is given by the Weyl character formula. Note that $V(\lambda)$ is well defined up to rearrangement of its composition factors. Let X^+_p be the set of all $\lambda \in X^+$ of the form $\sum_{i \in I} n_i \varpi_i$ with $0 \leq n_i \leq p - 1$ for all i. For $\lambda \in X^+_p$ we denote by $V(\lambda) \in R^+_p \Gamma$ and $L(\lambda) \in R^+_p \Gamma$ the restriction of $V(\lambda)$ and $L(\lambda)$ to $\Gamma = G(F_p)$.

1.2. Let $W \subset Aut(X)$ be the Weyl group of G. For any $i \in I$ there is a unique element $s_i \in W$ such that $s_i \neq 1$ and $s_i(\varpi_j) = \varpi_j$ for any $j \in I - \{i\}$. Recall that W is a Coxeter group on the generators $\{s_i; i \in I\}$. Let $w \mapsto l(w)$ be the length function of this Coxeter group. Let w_0 be the longest element of W; let ν be its length. For any $w \in W$ let $\mathcal{L}(w) = \{i \in I; l(s_iw) < l(w)\}$.

Let $u^{1/2}$ be an indeterminate and let H be the free $Q[u^{1/2}, u^{-1/2}]$-module with basis $\{T_w; w \in W\}$ and with an algebra structure as in [13] 3.3. Let \hat{W} be the set
of all irreducible W-module E over \mathbb{Q} (up to isomorphism). For $E \in \hat{W}$ let $E(u)$ be an H-module (free as a $\mathbb{Q}[u^{1/2}, u^{-1/2}]$-module) associated to E as in [L2, 1.1]. There is a well defined integer $a_E \geq 0$ such that for $w \in W$ we have
\[
\text{tr}(u^{-l(w)/2}T_w, E(u)) = (-1)^{l(w)}c_w,E u^{-a_E/2} \mod u^{(-a_E+1)/2}\mathbb{Z}[u^{1/2}]
\]
where $c_w,E \in \mathbb{Z}$ for all w and $c_w,E \neq 0$ for some $w \in W$. (One can interpret c_w,E in terms of the character of the irreducible representation associated to E of the J-ring of W at the basis element of the J-ring corresponding to w, see [L4, 3.5(b)].) For $w \in W$ we set $\alpha_w = \sum_{E \in W} c_w,E E$, a virtual representation of W. Let \mathcal{J} be the set of “near involutions” of W that is the set of all $w \in W$ such that w, w^{-1} are in the same left cell of W. (If W is of classical type, \mathcal{J} is exactly the set of involutions in W.) According to [L4, 3.5] for $w \in W$ we have
\[
w \in \mathcal{J} \text{ if and only if } \alpha_w \neq 0.
\]
For $w \in W$ let $R_w \in \mathbb{R}\Gamma$ be as in [L2, 1.5]. By [L3, 6.17], for $w \in W$ there is a well defined object $R_{\alpha_w} \in \mathbb{R}^+\Gamma$ such that
\[
\sharp(W) R_{\alpha_w} = \sum_{E \in W, y \in W} \text{tr}(y, E)c_w,E R_y
\]
in $\mathbb{R}\Gamma$. Note that R_{α_w} is zero unless $w \in \mathcal{J}$.

An irreducible representation ρ of Γ (over \mathbb{C}) is in \mathfrak{U} if and only if the multiplicity $(\rho : R_{\alpha_w})$ is nonzero for some $w \in \mathcal{J}$.

1.3. In the examples below (types A_1, A_2, B_2, G_2, A_3) we write $I = \{1, 2, \ldots \}$ where the notation is such that

(type A_1) if $\lambda = (a-1)\varpi_1$ with $a \geq 1$ then $\dim V(\lambda) = a$;
(type A_2) if $\lambda = (a-1)\varpi_1 + (b-1)\varpi_2$ with $a \geq 1, b \geq 1$ then $\dim V(\lambda) = ab(a+b)/2$;
(type B_2) if $\lambda = (a-1)\varpi_1 + (b-1)\varpi_2$ with $a \geq 1, b \geq 1$ then $\dim V(\lambda) = ab(a+b)/(a+2b)/6$;
(type G_2) if $\lambda = (a-1)\varpi_1 + (b-1)\varpi_2$ with $a \geq 1, b \geq 1$ then $\dim V(\lambda) = ab(a+b)(a+2b)/(a+3b)(2a+3b)/120$;
(type A_3) if $\lambda = (a-1)\varpi_1 + (b-1)\varpi_2 + (c-1)\varpi_3$ with $a \geq 1, b \geq 1, c \geq 1$ then $\dim V(\lambda) = abc(a+b)(b+c)(a+b+c)/12$.

For a sequence i_1, i_2, \ldots in I we often write $w = i_1 i_2 \ldots$ instead of $w = s_{i_1} s_{i_2} \ldots$; we write \emptyset instead of w where w is the unit element of W. We now describe the elements R_{α_w} in several examples. For $\rho \in \mathfrak{U}$ we write $d(\rho) = \dim \rho$.

Type A_1, $I = \{1\}$. We have $\mathcal{J} = \emptyset, 1$, $\mathfrak{U} = \{1, S\}$ where $d(1) = 1, d(S) = p$ and
\[
R_{\alpha_0} = 1, R_{\alpha_1} = S.
\]

Type A_2, $I = \{1, 2\}$. We have $\mathcal{J} = \emptyset, 1, 2, 121$, $\mathfrak{U} = \{1, r, S\}$ where $d(1) = 1, d(r) = p^2 + p, d(S) = p^3$ and
\[
R_{\alpha_0} = 1, R_{\alpha_1} = R_{\alpha_2} = r, R_{\alpha_{121}} = S.
\]

Type B_2, $I = \{1, 2\}$. We have $\mathcal{J} = \emptyset, 1, 2, 121, 212, 1212$, $\mathfrak{U} = \{1, r, e_1, e_2, \theta, S\}$ where
\[
d(1) = 1, d(r) = p(p+1)^2/2, d(e_1) = d(e_2) = p(p^2+1)/2, d(\theta) = p(p-1)^2/2, \\
d(S) = p^4
\]
\[
R_{\alpha_0} = 1, R_{\alpha_1} = r + e_1, R_{\alpha_2} = r + e_2, R_{\alpha_{121}} = \theta + e_2, R_{\alpha_{212}} = \theta + e_1, R_{\alpha_{1212}} = S.
\]
Type G_2, $I = \{1, 2\}$. We have $J = \{\emptyset, 1, 2, 121, 212, 12121, 21212, 121212\}$, $\mathcal{M} = \{1, r, r', e_1, e_2, e', f, g, h, S\}$ where
\[
\begin{align*}
d(1) &= 1,
d(r) = p(p + 1)^2(p^2 + p + 1)/6,
d(r') = p(p + 1)^2(p^2 - p + 1)/2,
d(e_1) = d(e_2) = p^4 + p^2 + 1)/3,
d(e') = p(p - 1)^2(p^2 - p + 1)/6,
d(f) = p(p - 1)^2(p^2 + p + 1)/2,
d(g) = d(h) = p(p^2 - 1)^2/3,
d(S) = p^6,
\end{align*}
\]
$R_{\alpha_0} = 1, R_{\alpha_1} = r + r' + e_1, R_{\alpha_2} = r + r' + e_2,$
\[
\begin{align*}
R_{\alpha_{121}} &= r' + e_2 + f + g + h,
R_{\alpha_{212}} = r' + e_1 + f + g + h,
R_{\alpha_{1212}} = e_1 + e' + f,
R_{\alpha_{21212}} = e_2 + e' + f,
R_{\alpha_{121212}} = S.
\end{align*}
\]
Type A_3, $I = \{1, 2, 3\}$. We have $J = \{\emptyset, 1, 2, 3, 121, 212, 232, 2132, 13231, 121321\}$, $\mathcal{M} = \{1, r, r', r'', S\}$ where
\[
\begin{align*}
d(1) &= 1,
d(r) : p^3 + p^2 + p,
d(r') : p^4 + p^2,
d(r'') : p^5 + p^4 + p^3,
d(S) : p^6,
\end{align*}
\]
$R_{\alpha_0} = 1, R_{\alpha_1} = R_{\alpha_2} = R_{\alpha_3} = r, R_{\alpha_{13}} = R_{\alpha_{212}} = r',
R_{\alpha_{121}} = R_{\alpha_{1321}} = R_{\alpha_{22}} = r'', R_{\alpha_{121212}} = S.$

2. The elements $M_w \in \mathcal{R}_p^+ \Gamma$ for $w \in J$

2.1. In each of the examples in $[13]$ and for any $w \in J$ we define a virtual representation $M_w \in \mathcal{R}_p \Gamma$ as a certain integer combination of objects $V(\lambda)$. If $I = \{1, 2, \ldots, s\}$ we write $V_{n_1, n_2, \ldots, n_s}$ instead of $V(\lambda)$ where $\lambda = n_1 \varpi_1 + n_2 \varpi_2 + \cdots + n_s \varpi_s$. We set $\delta(w) = \dim(M_w)$.

Type A_1: $M_\emptyset = V_0$, $M_1 = V_{p-1}$; $\delta(\emptyset) = 1, \delta(1) = p$.

Type A_2: $M_\emptyset = V_{0,0}$, $M_1 = V_{p-1,0}$, $M_2 = V_{0,p-1}$, $M_{121} = V_{p-1,p-1}$; $\delta(\emptyset) = 1, \delta(1) = \delta(2) = p(p + 1)/2, d(121) = p^3$.

Type B_2: $M_\emptyset = V_{0,0}$, $M_1 = V_{p-1,0}$, $M_2 = V_{0,p-1}$, $M_{121} = V_{p-3,0}$, $M_{212} = V_{0,p-2}$, $M_{1212} = V_{p-1,p-1}$; $\delta(\emptyset) = 1$.

Type G_2: $M_\emptyset = V_{0,0}$, $M_1 = V_{p-1,0}$, $M_2 = V_{0,p-1}$, $M_{121} = V_{p-4,1}$, $M_{212} = V_{1,p-2}$, $M_{1212} = V_{p-4,0}$, $M_{21212} = V_{0,p-2}$, $M_{121212} = V_{p-1,p-1}$; $\delta(\emptyset) = 1$.

Type A_3: $M_\emptyset = V_{0,0,0}$,
$M_1 = V_{p-1,0,0}$,
$M_2 = V_{0,p-1,0} - V_{0,p-3,0}$.

$M_3 = V_{0,0,p-1}$,
$M_{13} = V_{p-1,0,p-1} - V_{p-2,0,p-2}$,
$M_{2132} = V_{0,p-1,0} + V_{0,p-3,0}$,
$M_{121} = V_{p-1,p-1,0}$,
$M_{13231} = V_{p-1,0,p-1} + V_{p-2,0,p-2}$,
$M_{232} = V_{0,p-1,p-1}$,
$M_{21321} = V_{p-1,p-1,p-1}$;
$\delta(\emptyset) = 1$,
$\delta(1) = \delta(3) = p(p+1)(p+2)/6$,
$\delta(2) = p(p+1)^2(p+2)/12 - p(p-1)^2(p-2)/12 = p(2p^2+1)/3$,
$\delta(13) = p^2(p+1)(2p+1)/12 - p^2(p-1)(2p-1)/12 = p^2(3p^2+1)/6$,
$\delta(2132) = p(p+1)^2(p+2)/12 + p(p-1)^2(p-2)/12 = p^2(p+2)/3$,
$\delta(121) = \delta(232) = p^3(p+1)(2p+1)/6$,
$\delta(13231) = p^2(p+1)(2p+1)/12 + p^2(p-1)(2p-1)/12 = p^2(3p^2+1)/3$.

Note that in each of the cases above we have $M_w \in \mathcal{R}_p \Gamma$. (This is obvious except for type A_3 and $w = 2$ or $w = 13$ where it can be verified directly.)

2.2. For any $\rho \in \mathcal{U}$ we write ρ (with $\rho \in \mathcal{U}$) as an \mathbf{N}-linear combination of M_w (in $\mathcal{R}_p \Gamma$) in each case in 1.3.

Type A_1: $\frac{1}{2} = M_0, S = M_1$.

Type A_2: $\frac{1}{2} = M_0, r = M_1 + M_2, S = M_{121}$.

Type B_2: $\frac{1}{2} = M_0, r = M_1 + M_2, e_1 = M_1 + M_{212}, e_2 = M_{121} + M_2, g = M_{121} + M_{212}, \bar{S} = M_{1212}$.

Type G_2: $\frac{1}{2} = M_0, r = M_1 + M_2, r' = M_1 + M_{121} + M_2 + M_{212}, e_1 = M_1 + M_{1212} + M_{212}, e_2 = M_{121} + M_2 + M_{212}, \bar{r}' = M_{1212} + M_{212}, \bar{e}' = M_{1212} + M_{212}, \bar{g} = \bar{h} = M_{121} + M_{212}, \bar{S} = M_{1212}$.

Type A_3: $\frac{1}{2} = M_0, r = M_1 + M_2 + M_3, r' = M_{13} + M_{13231} + M_{332}, \bar{S} = M_{12321}$.

We return to a general G. We state the following

Conjecture 2.3. There exist nonzero objects $M_w \in \mathcal{R}_p \Gamma$, ($w \in \mathcal{J}$) such that for any $\rho \in \mathcal{U}$ we have

(a) $\rho = \sum_{w \in \mathcal{J}} (\rho : R_{\alpha_w}) M_w$.

Moreover, we can assume that the following properties hold.

(i) For any $w \in \mathcal{J}$, M_w is a \mathbf{Z}-linear combination of V_λ with λ very close to $(p-1)\lambda_{\mathcal{L}(w)}$ (see [1,1]).

(ii) We have $\dim(M_w) = \pi_w(p)$ where $\pi_w(t) \in \mathbb{Q}[t]$ (t an indeterminate) is independent of p. There exists an involution $w \leftrightarrow \tilde{w}$ of \mathcal{J} such that $t^w \pi_w(1/t) = \pm \pi_{\tilde{w}}(t)$ and $\mathcal{L}(\tilde{w}) = I - \mathcal{L}(w)$ for all $w \in \mathcal{J}$.

(iii) For $w \in \mathcal{J}$ we write $\pi_w(t) \in t^{c(w)} \mathbb{Q}[t], \pi_w(t) \notin t^{c(w)-1} \mathbb{Q}[t]$ where $c(w) \in \mathbb{N}$ is well defined. Then $c(w)$ depends only on the two-sided cell of W containing w; it is the value of the a-function (see [14, 3.1]) of W on that two-sided cell.

A similar statement can be made when F_p is replaced by the finite field F_{p^n} with p^n elements for some $n \geq 2$.

The conjecture does not say what the M_w are explicitly.

2.4. By the results in 2.1, 2.2 the conjecture holds for types A_1, A_2, B_2, G_2, A_3. For these types, the involution $w \leftrightarrow \tilde{w}$ in 2.3 ii) is given as follows:
Type A_1: $\emptyset \leftrightarrow 1$;
Type A_2: $\emptyset \leftrightarrow 121$, $1 \leftrightarrow 2$;
Type B_2: $\emptyset \leftrightarrow 1212$, $1 \leftrightarrow 2$, $12 \leftrightarrow 212$;
Type G_2: $\emptyset \leftrightarrow 121212$, $1 \leftrightarrow 212$, $121 \leftrightarrow 212$;
Type A_3: $\emptyset \leftrightarrow 121321$, $1 \leftrightarrow 232$, $2 \leftrightarrow 13231$, $3 \leftrightarrow 121$, $13 \leftrightarrow 2132$;

Similar evidence exists for type A_4.

2.5. Here is the simplest nontrivial example of objects M_w in 2.3. Assume that V is a three dimensional F_p-vector space and $\Gamma = SL(V)$. Let Z_1 be the set of lines in V. Let Z_2 be the set of planes in V. Let F_1 be the vector space of functions $Z_1 \to k$ with sum of values equal to 0. Let F_2 be the vector space of functions $Z_2 \to k$ with sum of values equal to 0. Note that F_1, F_2 are naturally Γ-modules; they both represent ρ where $\rho \in \mathfrak{t}$ has dimension $p^2 + p$. Define $\tau : F_1 \to F_2$ by $(\tau(f))(P) = \sum_{L \subseteq Z_1 : L \subseteq P} f(L)$ where $f \in F_1, P \in Z_2$. Define $\tau' : F_2 \to F_1$ by $(\tau'(f'))(L) = \sum_{P \subseteq Z_2 : P \subseteq L} f'(P)$ where $f' \in F_2, L \in Z_1$. Note that τ, τ' are well defined Γ-linear maps. Let M be the kernel of τ (it is also the image of τ'). Let M' be the kernel of τ' (it is also the image of τ). Then M, M' are the objects M_w attached to ρ in 2.3.

2.6. If in the sum 2.3(a) we replace each M_w by the basis element t_w of the J-ring of W (see [L4, 3.5]), the resulting element of the J-ring is contained in the centre of that ring.

2.7. A statement similar to 2.3(a) can be made for any, not necessarily unipotent, irreducible representation ρ of Γ. (We replace the J-ring of W and the left cells considered in [L5, 1.9] in terms of an extended Weyl group.) We illustrate this in an example.

Let O be an orbit for the obvious W-action on $X/(p - 1)X$ such that the stabilizer of any element of O is trivial. For any $\zeta \in O$ there is a unique element $\tilde{\zeta} \in X_p^+$ whose image under $X \to X/(p - 1)X$ equals ζ. Let $\zeta_0 \in O$. Let $\tilde{\zeta}_0'$ be the composition $T : k^* \to k^*$ where ϕ' is the homomorphism such that $\phi'(x) = x$ for any $x \in k^*$ (as in [B1]). We can restrict $\tilde{\zeta}_0'$ to $T(F_p)$ and we regard this restriction as a homomorphism $B(F_p) \to k^*$ trivial on the Sylow p-subgroup of $B(F_p)$. This last homomorphism can be induced to a representation ρ of Γ over C which is in fact irreducible and depends only on \mathfrak{t}, not on ζ_0'. From the results of [CL], ρ has each of $L(\zeta)$ ($\zeta \in O$) as a composition factor (but it may also have other composition factors). We expect that

(a) $\rho = \sum_{\zeta \in O} M_\zeta$

where $M_\zeta \in R_p^+ \Gamma$ is a Z-linear combination of various $V(\lambda)$ with $\lambda \in X_p^+$ very close to ζ.

In the case where $G = SL_3(k)$ such a statement can be deduced from [CL] (in this case we have $M_\zeta = V(\zeta)$ for each $\zeta \in O$); in the case where $G = Sp_4(k)$, a statement like (a) can be deduced from [J3].

REFERENCES

[BN] R. Brauer and C. Nesbitt, On the modular characters of groups, Ann. of Math. (2) 42 (1941), 556–590, DOI 10.2307/1968918. MR10412

[CL] R. W. Carter and G. Lusztig, Modular representations of finite groups of Lie type, Proc. London Math. Soc. (3) 32 (1976), no. 2, 347–384, DOI 10.1112/plms/s3-32.2.347. MR396731
[DL] P. Deligne and G. Lusztig, *Representations of reductive groups over finite fields*, Ann. of Math. (2) 103 (1976), no. 1, 103–161, DOI 10.2307/1971021. MR393266

[H1] James E. Humphreys, *Ordinary and modular representations of Chevalley groups*, Lecture Notes in Mathematics, Vol. 528, Springer-Verlag, Berlin-New York, 1976. MR0453884

[H2] J. E. Humphreys, *Ordinary and modular characters of SL(3, p)*, J. Algebra 72 (1981), no. 1, 8–16, DOI 10.1016/0021-8693(81)90309-4. MR634614

[J1] Jens Carsten Jantzen, *Zur Reduktion modulo p der Charaktere von Deligne und Lusztig* (German), J. Algebra 70 (1981), no. 2, 452–474, DOI 10.1016/0021-8693(81)90229-5. MR623819

[J2] Jens Carsten Jantzen, *Zur Reduktion modulo p unipotenter Charaktere endlicher Chevalley-Gruppen* (German), Math. Z. 181 (1982), no. 1, 97–128, DOI 10.1007/BF01214985. MR671718

[J3] J. C. Jantzen, *Representations of Chevalley groups in their own characteristic*, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 127–146, DOI 10.1016/s0022-4049(99)00142-5. MR933356

[L1] G. Lusztig, *On the discrete representations of the general linear groups over a finite field*, Bull. Amer. Math. Soc. 79 (1973), 550–554, DOI 10.1090/S0002-9904-1973-13198-2. MR315010

[L2] George Lusztig, *Unipotent characters of the symplectic and odd orthogonal groups over a finite field*, Invent. Math. 64 (1981), no. 2, 263–296, DOI 10.1007/BF01389170. MR629472

[L3] George Lusztig, *Characters of reductive groups over a finite field*, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR742472

[L4] G. Lusztig, *Leading coefficients of character values of Hecke algebras*, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 235–262, DOI 10.1007/bf01389157. MR933415

[L5] G. Lusztig, *Conjugacy classes in reductive groups and two-sided cells*, Bull. Inst. Math. Acad. Sin. (N.S.) 14 (2019), no. 3, 265–293, DOI 10.21915/bimas.2019301. MR4033057

[M] D. Mertens, *Zur Darstellungstheorie der endlicher Chevalley-Gruppen von typ G2*, Diplomarbeit (1985), Universität Bonn.

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Email address: gyuri@mit.edu