Abstract. We show that if a PD_3-group G splits as an HNN extension $A \ast_C \varphi$ where C is a PD_2-group then the Poincaré dual in $H^1(G; \mathbb{Z}) = Hom(G, \mathbb{Z})$ of the homology class $[C]$ is the epimorphism $f : G \to \mathbb{Z}$ with kernel the normal closure of A. We also make several other observations about PD_3-groups which split over PD_2-groups.

In this note we shall give algebraic analogues of some properties of Haken 3-manifolds. We are interested in the question “when does a PD_3-group split over a PD_2-group?”. In §2 we show that such splittings are minimal in a natural partial order on splittings over more general subgroups. In the next two sections we consider PD_3-groups G which split as an HNN extension $A \ast_C \varphi$ with A and C finitely generated. In §3 we show that A and C have the same number of indecomposable factors. Our main result is in §4, where we show that if C is a PD_2-group then the Poincaré dual in $H^1(G; \mathbb{Z}) = Hom(G, \mathbb{Z})$ of the homology class $[C]$ is the epimorphism $f : G \to \mathbb{Z}$ with kernel the normal closure of A. In §5 we extend an argument from [7] to show that no FP_2 subgroup of a PD_3-group is a properly ascending HNN extension, and in §6 we show that if G is residually finite and splits over a PD_2-group then G has a subgroup of finite index with infinite abelianization. Our arguments extend readily to PD_n-groups with PD_{n-1}-subgroups, but as our primary interest is in the case $n = 3$, we shall formulate our results in such terms.

1. terminology

We mention here three properties of 3-manifold groups that are not yet known for all PD_3-groups: coherence, residual finiteness and having subgroups of finite index with infinite abelianization. Coherence may often be sidestepped by requiring the subgroups in play to be FP_2 rather than finitely generated. If every finitely generated subgroup of a group G is FP_2 we say that G is almost coherent.

We shall say that a group G is split over a subgroup C if it is either a generalized free product with amalgamation (GFPA) $G = A \ast_C B$, where $C < A$ and $C < B$, or an HNN extension $G = HNN(A; \alpha, \gamma : C \to A)$, where α and γ are monomorphisms. (We may also write $G = A \ast_C \varphi$, where $\varphi = \gamma \circ \alpha^{-1}$.) An HNN extension is ascending if one of the associated subgroups is the base. In that case we may assume that $\alpha = id_A$, and $\varphi = \gamma$ is an injective endomorphism of A.

The virtual first Betti number $\nu \beta(G)$ of a finitely generated group is the least upper bound of the first Betti numbers $\beta_1(N)$ of normal subgroups N of finite index in G. Thus $\nu \beta(G) > 0$ if some subgroup of finite index maps onto \mathbb{Z}.

A group G is large if it has a subgroup of finite index which maps onto a non-abelian free group. It is clear that if G is large then $\nu \beta(G) = \infty$.

1991 Mathematics Subject Classification. 57N13.

Key words and phrases. fundamental class, HNN extension, PD_3-group, surface group.
2. COMPARISON OF SPLITTINGS

Let G be a group which is a GFPA $A \ast_C B$ or an HNN extension $A \ast_C \varphi$. If we identify the groups A and B with subgroups of G then inclusion defines a partial order on such splittings: $A \ast_C B \leq A' \ast_C B'$ if $A \leq A'$, $B \leq B'$ and $C \leq C'$, and $A \ast_C \varphi \leq A' \ast_C \varphi'$ if $A \leq A'$, $C \leq C'$ and $\varphi'|_C = \varphi$, and the stable letters coincide. (In the HNN case we are really comparing splittings compatible with a given epimorphism $G \to Z \cong G/\langle \langle A \rangle \rangle$.)

Lemma 1. Let $G = A' \ast_C \varphi$ be an HNN extension, with stable letter t, and let $A \leq A'$ be a subgroup such that $C \cup \varphi(C) \leq A$. If $G = \langle A, t \rangle$ then $A = A'$.

Proof. Let $\alpha \in A'$. Then we may write $\alpha = a_0 t^{\varepsilon_1} a_1 \ldots t^{\varepsilon_n} a_n$ where $a_i \in A$ and $\varepsilon_i = \pm 1$, for all i, since $G = \langle A, t \rangle$. We may clearly assume that n is minimal. Hence there are no substrings of the form tct^{-1} or $t^{-1} \varphi(c)t$, with $c \in C$, in this expression for α (since any such may be replaced by $\varphi(c)$ or c, respectively). But it then follows from Britton’s Lemma for the HNN extension $A' \ast_C \varphi$ that $n = 0$, and so $\alpha = a_0$ is in A. \square

If G is a PD_3-group then we would like to know when C can be chosen to be a PD_2-group.

Lemma 2. Let G be a PD_3-group which is a generalized free product with amalgamation $A \ast_C B$ or an HNN extension $A \ast_C \varphi$, with C a PD_2-group. Then the splitting is minimal in the partial order determined by inclusions.

Proof. Suppose that $A' \ast_C B' \leq A \ast_C B$ or $A' \ast_C \varphi' \leq A \ast_C \varphi$ (respectively), is another splitting for G. Then C' is either a free group or has finite index in C. The inclusions induce a commuting diagram relating the Mayer-Vietoris sequences associated to the splittings. In each case, the left hand end of the diagram is

$$
\begin{array}{ccc}
0 \to H_3(G; \mathbb{Z}) & \overset{\delta'}{\longrightarrow} & H_2(C'; \mathbb{Z}) \\
\downarrow & & \downarrow \\
0 \to H_3(G; \mathbb{Z}) & \overset{\delta}{\longrightarrow} & H_2(C; \mathbb{Z}).
\end{array}
$$

Since the connecting homomorphisms δ' is injective, $H_2(C'; \mathbb{Z}) \neq 0$, and so C' cannot be a free group. Hence it is a PD_2-group, and so δ and δ' are isomorphisms [3]. Since the inclusion of C' into C has degree 1, we see that $C' = C$. If $G = A' \ast_C \varphi$ it then follows from Lemma 1 that $A' = A$. If $G = A \ast_C B$ and $G = A' \ast_C B'$ then a similar argument based on normal forms shows that $A' = A$ and $B' = B$. \square

If $f : G \to Z$ is an epimorphism then $G \cong A \ast_C \varphi$ with $\text{Ker}(f) = \langle \langle A \rangle \rangle$ and stable letter represented by $t \in G$ with $f(t) = 1$. For instance, we may take $C = A = \text{Ker}(f)$ and φ to be conjugation by t. If $\text{Ker}(f)$ is finitely generated, this is the only possibility (up to the choice of t with $f(t) = \pm 1$), but in general there are other ways to do this. If G is FP_2 then we may choose A and C finitely generated [4], and if G is almost coherent then A and C are also FP_2. The construction of [4] gives a pair (A, C) with A generated by $C \cup \varphi(C)$, which is usually far from minimal in this partial order. (See below for an example.) If G is FP then A is FP_k if and only if C is FP_k, for any $k \geq 1$ [2, Proposition 2.13].

If G is FP_2 and $\text{Ker}(f)$ is not finitely generated then any HNN structure for G with finitely generated base and associated subgroups is the initial term of an
has a doubly infinite chain of HNN structures, obtained by applying the construction of [4]. If \(G = A * A \) \(\phi \) is a properly ascending HNN extension, so that \(\phi(A) < A \), then \(G \) has a doubly infinite chain of HNN structures, with bases the subgroups \(n \in \mathbb{Z} \). However \(PD_3 \)-groups are never properly ascending HNN extensions. (See Theorem 5 below.) Does every descending chain of HNN structures for a \(PD_3 \)-group terminate? Do any \(PD_3 \)-groups which are HNN extensions have minimal splittings over \(FP_2 \)-groups which are not \(PD_2 \)-groups?

Let \(T_2 \) be the orientable surface of genus 2. The \(PD_2 \)-group \(H = \pi_1(T_2) \) has a standard presentation

\[
\langle a, b, c, d \mid [a, b][c, d] = 1 \rangle.
\]

We may rewrite this presentation as

\[
\langle a, b, c, t \mid tct^{-1} = aba^{-1}b^{-1}c \rangle,
\]

which displays \(H \) as an HNN extension \(F(a, b, c) *_{\langle c \rangle} \phi \), split over the \(PD_1 \)-group \(\langle c \rangle \cong \mathbb{Z} \). The associated epimorphism \(f : H \to \mathbb{Z} \) is determined by \(f(a) = f(b) = f(c) = 0 \) and \(f(d) = 1 \). In this case the algorithm from [4] would suggest taking \(C = \langle a, b, c \rangle \) and \(A = \langle a, b, c, t \rangle \), giving an HNN extension with base \(A \cong F(5) \) and split over \(C \cong F(3) \). Taking products, we see then that the \(PD_3 \)-group \(G = \pi_1(T_2 \times S^1) = H \times \mathbb{Z} \) splits over the \(PD_2 \)-group \(\mathbb{Z}^2 \), and is also an HNN extension with base \(F(5) \times \mathbb{Z} \) and associated subgroups \(F(3) \times \mathbb{Z} \). The latter groups have one end, but are not \(PD_2 \)-groups.

Splittings over \(PD_2 \)-groups need not be unique. Let \(W \) be an aspherical orientable 3-manifold with incompressible boundary and two boundary components \(U, V \). Let \(M = DW \) be the double of \(W \) along its boundary. Then \(M \) splits over copies of \(U \) and \(V \), and \([U] = [V] \) in \(H_2(M; \mathbb{Z}) \). If \(U \) and \(V \) are not homeomorphic the corresponding (minimal) splittings of \(G = \pi_1(M) \) are evidently distinct. For instance, we may start with the hyperbolic 3-manifold of [11, Example 3.3.12], which is the exterior of a knotted \(\theta \)-curve \(\Theta \subset S^3 \). Let \(W \) be obtained by deleting an open regular neighbourhood of a meridian of one of the arcs of \(\Theta \). Then \(W \) is aspherical, \(\partial W = T \cup T_2 \) and each component of \(\partial W \) is incompressible in \(W \).

3. INDECOMPOSABLE FACTORS

If \(G \) is a \(PD_3 \)-group then \(c.d.A = c.d.C = 2 \), since these subgroups have infinite index in \(G \), and \(H_2(C; \mathbb{Z}) \neq 0 \), as observed in Lemma 2. A simple Mayer-Vietoris argument shows that \(H^1(A; \mathbb{Z}[G]) \cong H^1(C; \mathbb{Z}[G]) \) as right \(\mathbb{Z}[G] \)-modules, since \(H^i(G; \mathbb{Z}[G]) = 0 \) for \(i \geq 2 \). (Note that the latter condition fails for \(PD_2 \)-groups.) The isomorphism is given by the difference \(\alpha \phi - \gamma \phi \) of the homomorphisms induced by \(\alpha \) and \(\gamma \).

We shall assume henceforth that \(A \) and \(C \) are finitely generated. Then these modules may be obtained by extension of coefficients from the “end modules” \(H^1(A; \mathbb{Z}[A]) \) and \(H^1(C; \mathbb{Z}[C]) \). If one is 0 so is the other, and so \(A \) has one end if and only if \(C \) has one end. If \(A \) and \(C \) are \(FP_2 \) and have one end then they are 2-dimensional duality groups, and we may hope to apply the ideas of [9].

Can \(G \) have splittings with base and associated subgroups having more than one end? The next lemma implies that the subgroups \(A \) and \(C \) must have the same numbers of indecomposable factors. (The analogous statement for \(PD_2 \)-groups is false, as may be seen from the example in §2 above!)

Lemma 3. Let $K = (*_{i=1}^m K_i) * F(n)$ be the free product of $m \geq 1$ finitely generated groups K_i with one end and $n \geq 0$ copies of \mathbb{Z}. Then $H^1(K; \mathbb{Z}[K]) \cong \mathbb{Z}[K]^{m-1}$, where $r = m + n$ is the number of indecomposable factors of K.

Proof. If $n = 0$ the result follows from the Mayer-Vietoris sequence for the free product, with coefficients $\mathbb{Z}[K]$.

In general, let $J = (*_{i=1}^m K_i)$ and let $C_*(J)$ be a resolution of the augmentation module \mathbb{Z} by free $\mathbb{Z}[J]$-modules, with $C_0(J) = \mathbb{Z}[J]$. Then there is a corresponding resolution $C_*(K)$ of \mathbb{Z} with $C_q(K) \cong \mathbb{Z}[K] \otimes_{\mathbb{Z}[J]} C_q(J)$ if $q \neq 1$ and $C_1(K) \cong \mathbb{Z}[K] \otimes_{\mathbb{Z}[J]} C_q(J) \oplus \mathbb{Z}[K]$. Hence there is a short exact sequence of chain complexes (of left $\mathbb{Z}[K]$-modules)

$$0 \to \mathbb{Z}[K] \otimes_{\mathbb{Z}[J]} C_*(J) \to C_*(K) \to \mathbb{Z}[K]^n \to 0,$$

where the third term is concentrated in degree 1. The exact sequence of cohomology with coefficients $\mathbb{Z}[K]$ gives a short exact sequence of right $\mathbb{Z}[K]$-modules

$$0 \to \mathbb{Z}[K]^n \to H^1(K; \mathbb{Z}[K]) \to H^1(\text{Hom}_{\mathbb{Z}[K]}(\mathbb{Z}[K] \otimes_{\mathbb{Z}[J]} C_*(J), \mathbb{Z}[K])) \to 0.$$

We may identify the right-hand term with $H^1(J; \mathbb{Z}[J]) \otimes_{\mathbb{Z}[J]} \mathbb{Z}[K] \cong \mathbb{Z}[K]^{m-1}$, since J is finitely generated. The lemma follows easily. \square

The lemma applies to A and C, since they are finitely generated and torsion-free. The indecomposable factors of C are either conjugate to subgroups of indecomposable factors of A or are infinite cyclic, by the Kurosh subgroup theorem. If A and C have no free factors and the factors of C are conjugate into distinct factors of A then, after modifying φ appropriately, we may assume that $\alpha(C_i) \leq A_i$, for all i. However, we cannot expect to also normalize γ in a similar fashion.

4. THE DUAL CLASS

If M is a closed 3-manifold with $\beta_1(M) > 0$ then there is an essential map $f : M \to S^3$. Transversality and the Loop Theorem together imply that there is a closed incompressible surface $S \subset M$ such that $M \setminus S$ is connected. Hence $\pi_1(M)$ is an HNN extension with base $\pi_1(M \setminus S)$ and associated subgroups copies of $\pi_1(S)$. Moreover, the stable letter of the extension is represented by a simple closed curve in M which intersects S transversely in one point. Let $w = w_1(M)$. Then $w_1(S) = w|_S$ and the image of the fundamental class $[S]$ in $H_2(M; \mathbb{Z}^w)$ is Poincaré dual to the image of f in $H^1(M; \mathbb{Z}) = [M, S^1]$.

There is no obvious analogue of transversality in group theory. Nevertheless a similar result holds for PD_3-groups. (We consider only the orientable case, for simplicity.)

Theorem 4. Let $G = \text{HNN}(A; \alpha, \gamma : C \to A)$ be an orientable PD_3-group which is an HNN extension split over a PD_2-group C. Let $f \in H^1(G; \mathbb{Z})$ be the epimorphism with kernel $\langle \langle A \rangle \rangle$. Then $f \sim [G]$ is the image of $[C]$ in $H_2(G; \mathbb{Z})$, up to sign.

Proof. The subgroup C is orientable and the pair $(A; \alpha, \gamma)$ is a PD_3^e-pair [3, Theorem 8.1], and so there is an exact sequence

$$H_3(A; \partial; \mathbb{Z}) \xrightarrow{(1, 1)} H_2(C; \mathbb{Z}) \oplus H_2(C; \mathbb{Z}) \xrightarrow{\alpha \gamma_2 \cdots \gamma_1} H_2(A; \partial; \mathbb{Z}) \to H_2(A; \partial; \mathbb{Z}).$$

Hence $\alpha \gamma[C] = \gamma_1[C]$, and the subgroup they generate is an infinite cyclic direct summand of $H_2(A; \mathbb{Z})$, since $H_2(A; \partial; \mathbb{Z}) \cong H^1(A; \mathbb{Z})$ is free abelian.
Let \(t \in G \) correspond to the stable letter for the HNN extension, and let \(A_j = t^j At^{-j} \), \(\alpha_j(c) = t^j \alpha(c)t^{-j} \) and \(\gamma_j(c) = t^j \gamma(c)t^{-j} \), for all \(c \in C \) and \(j \in \mathbb{Z} \). Let \(K_p \) be the subgroup generated by \(\bigcup_{j \in \mathbb{Z}} A_j \), for \(p \geq 0 \). Then \(K_0 = A \) and

\[
K_{p+1} = A_{-p-1} \ast_{\alpha_{-p-1}=\gamma_{-p-1}} K_p \ast_{\alpha_{p+1}=\gamma_{p+1}} A_{p+1}, \quad \text{for all } p \geq 0,
\]
and \(K = \langle \langle A \rangle \rangle_G = \text{Ker}(f) \) is the increasing union \(K = \bigcup K_p \) of iterated amalgamations with copies of \(A \) over copies of \(C \). Each pair \((K_p; \alpha_{-p}, \gamma_{-p}) \) is again a \(PD_3^+ \)-pair, and so the images of \([C] \) in \(H_2(K; \mathbb{Z}) \) under the homomorphisms induced by the \(\alpha_n \)'s all agree.

Let \(\Lambda = \mathbb{Z}[G/K] = \mathbb{Z}[t, t^{-1}] \), and let \(\varepsilon : \Lambda \to \mathbb{Z} \) be the augmentation. Then \(H_i(K; \mathbb{Z}) = H_2(G; \Lambda) \) is a finitely generated \(\Lambda \)-module, with action deriving from the action of \(G \) on \(K \) by conjugation. Then \(H_2(G; \Lambda) = H_2(K; \mathbb{Z}) \). Since \(t.\alpha_n[C] = \alpha_{n+1}[C] = \alpha_n[C] \), for all \(n \), the image of \([C] \) in \(H_2(K; \mathbb{Z}) \) generates an infinite cyclic direct summand.

Poincaré duality gives an isomorphism \(H_2(G; \Lambda) \cong \overline{H^1(G; \Lambda)} \), and this is in turn an extension of \(\overline{\text{Hom}}(K/K', \Lambda) \) by \(\text{Ext}^1_\Lambda(\mathbb{Z}, \Lambda) \), by the Universal Coefficient spectral sequence. Note that \(\overline{\text{Hom}}(K/K', \Lambda) \) has no non-trivial \(\Lambda \)-torsion, while \(\text{Ext}^1_\Lambda(\mathbb{Z}, \Lambda) \) is \(\Lambda/(t-1)\Lambda = \mathbb{Z} \).

We have a commutative diagram

\[
\begin{array}{ccc}
H^1(\mathbb{Z}; \Lambda) & \xrightarrow{H^1(f)} & H^1(G; \Lambda) \\
\downarrow \varepsilon \# & & \downarrow \varepsilon \# \\
H^1(\mathbb{Z}; \mathbb{Z}) & \xrightarrow{id_\mathbb{Z} \cdot f} & H^1(G; \mathbb{Z}) \\
\end{array}
\]

\[
\sim_{[G]} \quad \sim_{[G]} \quad \sim_{[G]}
\]

in which the vertical homomorphisms are induced by the change of coefficients \(\varepsilon \) and the two right hand horizontal homomorphisms are Poincaré duality isomorphisms. Since \(H^1(f) \) carries \(H^1(\mathbb{Z}; \Lambda) = \text{Ext}^1_\Lambda(\mathbb{Z}, \Lambda) \cong \mathbb{Z} \) onto the \(\Lambda \)-torsion submodule of \(H^1(G; \Lambda) \), a diagram chase shows that \(f \sim [G] \) is the image of \([C] \) in \(H_2(G; \mathbb{Z}) \), up to sign.

In [10] it is shown that if a \(PD_3 \)-group \(G \) has a subgroup \(S \) which is a \(PD_2 \)-group then \(G \) splits over a subgroup commensurate with \(S \) if and only if an invariant \(\text{sing}(S) \in \mathbb{Z}/2\mathbb{Z} \) is 0, and then \(S \) is maximal among compatibly oriented commensurate subgroups. Theorem 4 suggests a slight refinement of this splitting criterion.

Theorem (Kropholler-Roller [10]). *Let \(G \) be an orientable \(PD_3 \)-group and \(S \subset G \) a subgroup which is an orientable \(PD_2 \)-group. Then*

1. \(G \cong A \ast_T B \) for some \(T \) commensurate with \(S \) if and only if \(\text{sing}(S) = 0 \) and \([S] = 0 \) in \(H_2(G; \mathbb{Z}) \);
2. \(G \cong A \ast_T \varphi \) for some \(T \) commensurate with \(S \) if and only if \(\text{sing}(S) = 0 \) and \([S] \) has infinite order in \(H_2(G; \mathbb{Z}) \);
3. \(G \cong A \ast_S \varphi \) if and only if \(\text{sing}(S) = 0 \) and \([S] \) generates an infinite direct summand of \(H_2(G; \mathbb{Z}) \).

Proof. The group \(G \) splits over a subgroup \(T \) commensurate with \(S \) if and only if \(\text{sing}(S) = 0 \) [10], and \([S] \) and \([T]\) are then proportional. If \(G = A \ast_T B \) is a generalized free product with amalgamation over a \(PD_2 \)-group \(T \) then the pairs \((A, T)\) and \((B, T)\) are again \(PD_3^+ \) pairs [3]. The image of \([T]\) in \(H_2(G; \mathbb{Z}) \) is trivial, since \(T \) bounds each of \((A, T)\) and \((B, T)\), and so \([S] = 0 \) also.
If $G \cong A *_{T} \varphi$ is an HNN extension then the Poincaré dual of $[T]$ is an epimorphism $f : G \to \mathbb{Z}$, by the theorem, and so $[T]$ generates an infinite cyclic direct summand of $H_2(G; \mathbb{Z})$. Hence $[S]$ also has infinite order. □

If $[C] = [S]$ and $\text{sing}(S) = 0$ is $\text{sing}(C) = 0$ also?

5. NO PROPERLY ASCENDING HNN EXTENSIONS

Cohomological arguments imply that no PD_3-group is a properly ascending HNN extension [7, Theorem 3]. A stronger result holds for 3-manifold groups: no finitely generated subgroup can be conjugate to a proper subgroup of itself [6]. We shall adapt the argument of [7] to prove the corresponding result for FP_2 subgroups of PD_3-groups.

Theorem 5. Let H be an FP_2 subgroup of a PD_3-group G. If $gHg^{-1} \leq H$ for some $g \in G$ then $gHg^{-1} = H$.

Proof. Suppose that $gHg^{-1} < H$. Then $g \not\in H$. Let $\theta(h) = ghg^{-1}$, for all $h \in H$, and let $K = H \ast_{T} \theta$ be the associated HNN extension, with stable letter t. The normal closure of H in K is the union $\bigcup_{x \in \mathbb{Z}} t^{x}Ht^{-x}$, and so every element of K has a normal form $k = t^{m}ht^{-n}$, where m is uniquely determined by k, and h is determined by k, m and r. Let $f : K \to G$ be the homomorphism defined by $f(h) = h$ for all $h \in H$ and $f(t) = g$. If $f(t^{m}ht^{-n}) = f(t^{n}ht^{-s})$ for some m, n, r, s then $g^{n-m} = g^{r}h^{s}g^{-1}h^{-1}g^{-t}$. After conjugating by a power of g if necessary, we may assume that $s, t \geq 0$, and so $g^{n-m} \in H$. But then $H = g^{n-m}Hg^{-[n-m]}$. Since gHg^{-1} is a proper subgroup of H, we must have $n = m$. It follows easily that f is an isomorphism from K to the subgroup of G generated by g and H.

Since K is an ascending HNN extension with FP_2-base, $H^1(K; \mathbb{Z}[K])$ is a quotient of $H^0(H; \mathbb{Z}[K]) = 0$ [5, Theorem 0.1]. Hence it has one end. Since no PD_3-group is an ascending HNN extension [7, Theorem 3], K is a 2-dimensional duality group. Hence it is the ambient group of a PD_3-pair (K, S) [9]. Doubling this pair along its boundary gives a PD_3-group. But this is again a properly ascending HNN extension, and so cannot happen. Therefore the original supposition was false, and so $gHg^{-1} = H$. □

6. RESIDUAL FINITENESS, SPLITTING AND LARGENESS

The fundamental group of an aspherical closed 3-manifold is either solvable or large [1, Flowcharts 1 and 4]. This is also so for residually finite PD_3-groups containing \mathbb{Z}^2 [8, Theorem 11.19]. Here we shall give a weaker result for PD_3-groups which split over other PD_2-groups.

Theorem 6. Let G be a residually finite orientable PD_3-group which splits over an orientable PD_2-group C. Then either $\beta_1(G) > 0$, or G maps onto D_∞, or G is large. Hence $v_3(G) > 0$. If G is LERF and $\chi(C) < 0$ then G is large.

Proof. For the first assertion, we may assume that $\beta_1(G) = 0$, and that $G \cong A *_C B$. Then (A, C) and (B, C) are PD_3-pairs, and so $\beta_1(C) \leq 2\beta_1(A)$ and $\beta_1(C) \leq 2\beta_1(B)$. Since $\beta_1(C) > 0$, we must have $\beta_1(A) > 0$ and $\beta_1(B) > 0$ also. Moreover $\beta_1(C) = \beta_1(A) + \beta_1(B)$, since $H_1(G)$ is finite and $H_2(G) = 0$. Hence $\beta_1(C) > \beta_1(A)$ and $\beta_1(C) > \beta_1(B)$.

Let $\{\Delta_n | n \geq 1\}$ be a descending filtration of G by normal subgroups of finite index. Then $A_n = A/A \cap \Delta_n$, $B_n = B/B \cap \Delta_n$ and $C_n = C/C \cap \Delta_n$ are finite, and
\textit{PD}_3\textit{-groups and HNN Extensions}

G maps onto $A_n \ast_{C_n} B_n$, for all n. If $A_n \ast_{C_n} B_n$ is finite then $C_n = A_n$ or B_n. Thus if all these quotients of G are finite we may assume that $C_n = A_n$ for all n. But then the inclusion of C into A induces an isomorphism on profinite completions, and so $\beta_1(C) = \beta_1(A)$, contrary to what was shown in the paragraph above.

If C_n is a proper subgroup of both A_n and B_n then either $[A_n : C_n] = [B_n : C_n] = 2$, in which case G maps onto D_∞, or one of these indices is greater than 2, in which case $A_n \ast_{C_n} B_n$ is virtually free of rank > 1, and so G is large. In each case, it is clear that $v\beta(G) \geq 1$.

Suppose now that G is LERF. If $[A_n : C_n] \leq 2$ then C_n is normal in A_n, and so $C(A \cap \Delta_n)$ is normal in A. Hence if $[A_n : C_n] \leq 2$ for all n then $\cap_n C(A \cap \Delta_n)$ is normal in A. Since G is LERF, this intersection is C. Hence if both $[A_n : C_n] \leq 2$ and $[B_n : C_n] \leq 2$ for all n then C is normal in G, so G is virtually a semidirect product $C \rtimes \mathbb{Z}$, and is a 3-manifold group. If $\chi(C) < 0$ then G is large [1, Flowcharts 1 and 4].

Remark. The lower central series of $D_\infty = \mathbb{Z}/2\mathbb{Z} \ast \mathbb{Z}/2\mathbb{Z}$ gives a descending filtration by normal subgroups of finite index which meets each of the free factors trivially.

Is every PD_3-group either solvable or large?

\textbf{References}

[1] Aschenbrenner, M., Friedl, S. and Wilton, H. \textit{3-Manifold Groups}, EMS Series of Lectures in Mathematics, European Mathematical Society, Zürich (2015).

[2] Bieri, R. \textit{Homological Dimensions of Discrete Groups}, Queen Mary College Mathematical Notes, London (1976).

[3] Bieri, R. and Eckmann, B. Relative homology and Poincaré duality for group pairs, J. Pure Appl. Alg. 13 (1978), 277–319.

[4] Bieri, R. and Strebel, R. Almost finitely presentable soluble groups, Comment. Math. Helvetici 53 (1978), 258–278.

[5] Brown, K. S. and Geoghegan, R. Cohomology with free coefficients of the fundamental group of a graph of groups, Comment. Math. Helvetici 60 (1985), 31–45.

[6] Button, J. O. Mapping tori with first Betti number at least two, J. Math. Soc. Japan 59 (2007), 351–370.

[7] Hillman, J. A. Tits alternatives and low dimensional topology, J. Math. Soc. Japan 55 (2003), 365–383.

[8] Hillman, J. A. \textit{Poincaré Duality in Dimension 3}, The Open Book Series, MSP, Berkeley (2020), to appear.

[9] Kapovich, M. and Kleiner, B. Coarse Alexander duality and duality groups, J. Diff. Geom. 69 (2005), 279–352.

[10] Kropholler, P. H. and Roller, M. A. Splittings of Poincaré duality groups, Math. Zeit. 197 (1988), 421–438.

[11] Thurston, W. P. \textit{Three-Dimensional Geometry and Topology}, (edited by S. Levy), Princeton University Press, Princeton, N.J. (1997).

School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
Email address: jonathan.hillman@sydney.edu.au