Effects of Ce over TiO$_2$ supported MnO$_x$-based Catalyst for NO$_x$ Reduction by Ammonia

Zhi Liu, and Yunqi Liu*

State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, China

Abstract. Ce modified MnO$_x$-based catalysts have attracted much attention due to its high activity for selective catalytic reduction of NO$_x$ by NH$_3$ (NH$_3$-SCR) at low-temperatures. However, the most important role of Ce on the NH$_3$-SCR performance of MnO$_x$-based catalysts has not been confirmed. Herein, the typical Ce-Mn/TiO$_2$ catalyst was synthesized through incipient-wetness impregnation method, the positive role of Ce on Ce-Mn/TiO$_2$ catalyst in the NH$_3$-SCR process was revealed by combining different activity tests (including NO oxidation and NH$_3$ oxidation) and characterizations (including XRD, XPS and He-TPD-MS experiments). It was found that the introduction of Ce can promote the dispersion of MnO$_x$ on TiO$_2$ support. Meanwhile, the doping of Ce in MnO$_x$ can also increase the content of Mn$^{4+}$ species. The Mn$^{4+}$ species plays a crucial role in NO oxidation reaction, which can trigger the "Fast SCR" reaction and promote the conversion of NO$_x$. This work provides insight into the catalyst design for NH$_3$-SCR process at low-temperature.

1 Introduction

Nitrogen oxide (NO$_x$), as one of the primary atmospheric pollutants, has attracted much attention for its harm on humans and the environment. Selective catalytic reduction of NO$_x$ by NH$_3$ (NH$_3$-SCR) has been considered to be one of the most effective deNO$_x$ technology, and the core of this process lies in the catalyst [1]. The traditional NH$_3$-SCR catalyst used in the power plant is composed of V$_2$O$_5$-WO$_3$/TiO$_2$, and its suitable working temperature is between 300 °C and 400 °C [2]. However, the applicable temperature of the traditional catalyst is much higher than the flue gas temperature in cement, iron and steel, and other industries [3]. Developing low-temperature NH$_3$-SCR catalyst (< 200 °C) is significance.

MnO$_x$-based catalysts have been widely investigated for their excellent NH$_3$-SCR activity at low-temperature, especially after the modification of Ce element [4-6]. There are many efforts on developing effective Ce-Mn based catalysts and finding the promotion of Ce on NH$_3$-SCR process [7-9]. However, the most important role of Ce on improving the NH$_3$-SCR performance of MnO$_x$-based catalysts has not been confirmed.

In this work, a series of Mn/TiO$_2$, Ce/TiO$_2$ and Ce-Mn/TiO$_2$ catalysts were synthesized by incipient-wetness impregnation method using anatase TiO$_2$ as support. Ce-Mn/TiO$_2$ exhibits much better NH$_3$-SCR activity than Mn/TiO$_2$ and Ce/TiO$_2$. Combined with different activity tests (including NO oxidation and NH$_3$ oxidation) and characterizations (including XRD, XPS and He-TPD-MS experiments) data, the positive role of Ce element on Ce-Mn/TiO$_2$ catalyst in the NH$_3$-SCR process was revealed.

2 Experimental

2.1 Catalysts preparation

The TiO$_2$ (5–10 nm, anatase), 50 wt.% Mn(NO$_3$)$_2$ solution and Ce(NO$_3$)$_3$·6H$_2$O were purchased from Aladdin, and used without further purification. The Mn/TiO$_2$, Ce/TiO$_2$ and Ce-Mn/TiO$_2$ catalysts were synthesized through incipient-wetness impregnation method. After impregnating 10 h at room temperature, the samples were dried at 120 °C for 10 h, followed by calcination at 500 °C for 4 h. The molar ratio of Mn/Ti in both Mn/TiO$_2$ and Ce-Mn/TiO$_2$ catalysts are 0.14, and molar ratio of Ce/Ti in both Ce/TiO$_2$ and Ce-Mn/TiO$_2$ catalysts are 0.02.

2.2 Catalytic performance test

The reactant gases of NH$_3$-SCR process are listed as below: 0.06 % NO, 0.06 % NH$_3$, 5% O$_2$, and balanced by N$_2$. The reactant gases of NO oxidation process are listed as below: 0.06 % NO, 5% O$_2$, and balanced by N$_2$. The gas hourly space velocity (GHSV) of all the tests were 30000 h$^{-1}$. The NO and NO$_2$ contents were detected by an MRU OPTIMA 7 analyzer. The NO$_x$ conversion, NO to NO$_2$ conversion and NO$_x$ content in exhaust can be calculated as follows:

$$\text{NO}_x \text{ conversion} = \frac{[\text{NO} + \text{NO}_2]_{\text{in}} - [\text{NO} + \text{NO}_2]_{\text{out}}}{[\text{NO} + \text{NO}_2]_{\text{in}}} \times 100\% \quad (1)$$

* Corresponding author: liuyq-group@upc.edu.cn

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
\[
\text{NO to NO}_2 \text{ conversion} = \left(\frac{[\text{NO}_2]_{\text{in}}}{[\text{NO}]_{\text{in}}} \right) \times 100\% \tag{2}
\]
\[
\text{NO}_x \text{ content in exhaust} = \left(\frac{[\text{NO}_x]_{\text{out}}}{[\text{NO} + \text{NO}_2]_{\text{in}}} \right) \times 100\% \tag{3}
\]

2.3 Catalyst characterization

X-ray diffraction (XRD) was conducted on a PANalytical X’Pert PRO MPD X-ray Diffractometer. X-ray photoelectron spectroscopy (XPS) was detected by a VG ESCALABMK II spectrometer using an Al K\(_\alpha\) (1486.6 eV) photon source. Temperature-programmed desorption under He flow (He-TPD) was conducted on a Micromeritics AutoChem 2950 HP instrument, and the desorbed or composed O\(_2\) was simultaneous detected by a mass spectrometer (MS, OMNIStar).

3 Results and discussion

3.1 Catalytic activity test

The results of the NH\(_3\)-SCR activity tests over TiO\(_2\) support, Mn/TiO\(_2\), Ce/TiO\(_2\), and Ce-Mn/TiO\(_2\) are presented in **Fig. 1**. Compared with Ce-TiO\(_2\), Mn-TiO\(_2\) catalyst showed good SCR deNO\(_x\) activity at low-temperatures, which can reach 95% NO\(_x\) conversion at 160 °C. The introduction of Ce can further significantly improve the deNO\(_x\) activity at low-temperatures, and its NO\(_x\) conversion can reach 95% at 100 °C.

Fig. 1. NH\(_3\)-SCR activity test curves.

As our previous reports [10-12], the NH\(_3\)-SCR reaction (4NH\(_3\) + 4NO + O\(_2\) → 4N\(_2\) + 6H\(_2\)O) at low-temperatures can be considered as the coupling of NO oxidation (2NO + O\(_2\) → 2NO\(_2\)) and “Fast SCR” reaction (2NH\(_3\) + NO + NO\(_2\) → 2N\(_2\) + 3H\(_2\)O), where the “Fast SCR” reaction can occur rapidly. Therefore, the NO oxidation activity of catalyst could determine its NH\(_3\)-SCR activity. To prove this point, NO oxidation activity tests were further tested. As shown in **Fig. 2**, the order of NO oxidation activities as follow: Ce-Mn/TiO\(_2\) > Mn/TiO\(_2\) > Ce/TiO\(_2\) > TiO\(_2\), in consistence with the order of their NH\(_3\)-SCR activities. These indicate that the introduction of Ce can increase the NO oxidation activity of Ce-Mn/TiO\(_2\), thus leading to its high NH\(_3\)-SCR activity at low-temperatures. Although the oxidizing ability of catalysts can promote the NO oxidation activity and NH\(_3\)-SCR activity at low-temperatures, it can also lead the NH\(_3\) oxidation at high-temperatures. The results of NH\(_3\) oxidation tests over the four samples are shown in **Fig. 3**. NH\(_3\) began to be oxidized to NO\(_x\) at 230 °C over Mn/TiO\(_2\) and Ce-Mn/TiO\(_2\) samples, which can explain the NH\(_3\)-SCR deNO\(_x\) activity start to decrease since 230 °C. Therefore, the oxidizing ability of low-temperature SCR catalyst is a double-edged sword, which can increase the NO\(_x\) conversion by promoting NO oxidation at low-temperatures and decrease the NO\(_x\) conversion by promoting the NH\(_3\) oxidation at high-temperatures.

Fig. 2. NO oxidation activity test curves.

Fig. 3. NH\(_3\) oxidation activity test curves.

3.2 Structure characteristic of catalysts

To reveal the structure of catalysts and to construct the structure-activity relationship, XRD and XPS characteristics were conducted. The XRD patterns of the four samples are illustrated in **Fig. 4**. TiO\(_2\) support is made up of anatase TiO\(_2\) (2θ = 25.3°, 37.0°, 37.8°, 38.6°, 48.1°, 53.9°, 55.0°, 62.7°, 68.9° and 70.3°) and traces of rutile TiO\(_2\) (2θ = 27.5°), and there is no obvious effect on the TiO\(_2\) crystal structure with MnO\(_x\) and CeO\(_x\) loading. For the CeO\(_x\) species, there are no characteristics peaks of CeO\(_2\) species in the XRD patterns of Ce/TiO\(_2\) and Ce-
3.3 Study on the structure-activity relationship

In the previous study [12], it has been found that a bidentate nitrate species of MnO$_2$NO$_2$ plays a crucial role over NO oxidation process, and the MnO$_2$NO$_2$ species can be decomposed to NO and O$_2$ in 250–400 °C. Therefore, in the temperature-programmed desorption (He-TPD) experiment of the reacted catalysts after the NO oxidation test, the amount of MnO$_2$NO$_2$ can be reflected by the amount of decomposed O$_2$ in 250–400 °C. For this reason, the He-TPD experiments of the reacted Mn/TiO$_2$ and Ce-Mn/TiO$_2$ after NO oxidation tests were conducted, and the corresponding O$_2$ MS signals are shown in Fig. 6. The peak area (250–400 °C) in the O$_2$ MS curve of reacted Ce-Mn/TiO$_2$ is about 5.6 times higher than that of reacted Mn/TiO$_2$. Meanwhile, according to the XPS results, the Mn$^{4+}$ content in Ce-Mn/TiO$_2$ is about 5.1 times higher than that in Mn/TiO$_2$. The comparability of these two values indicates that Mn$^{4+}$ plays a crucial role in MnO$_2$NO$_2$ formation, thus Mn$^{4+}$ is the active site for NO oxidation process.

![Fig. 5. Mn 2p XPS patterns of TiO$_2$, Mn/TiO$_2$, Ce/TiO$_2$ and Ce-Mn/TiO$_2$ catalysts.](image)

![Fig. 6. O$_2$ MS signals in He-TPD-MS of the reacted Mn/TiO$_2$ and Ce-Mn/TiO$_2$ after NO oxidation tests.](image)
4 Conclusion

In this work, a series of Mn/TiO$_2$, Ce/TiO$_2$ and Ce-Mn/TiO$_2$ catalysts were synthesized through incipient-wetness impregnation method, and Ce-Mn/TiO$_2$ exhibits robust NH$_3$-SCR activity in low-temperature. Combined with XRD and XPS results, the positive role of Ce on Ce-Mn/TiO$_2$ catalyst in the NH$_3$-SCR process was revealed. First, the introduction of Ce can promote the dispersion of MnO$_x$ on TiO$_2$ support; Second, the doping of Ce in MnO$_x$ can also increase the content of Mn$^{4+}$ species. It was found that Mn$^{4+}$ species plays a crucial role in NO oxidation process, which can trigger “Fast SCR” reaction and promote NH$_3$-SCR process at low-temperature. This work provides new insight into the catalyst design for NH$_3$-SCR process at low-temperature.

Acknowledgement

This work was financially supported by the Fundamental Research Funds for the Central Universities (No. 18CX06070A).

References

1. C. Paolucci, I. Khurana, A. A. Parekh, S. Li, A. J. Shih, H. Li, J. R. Di Torio, J. D. Albarracin-Caballero, A. Yezerets, J. T. Miller, W. N. Delgass, F. H. Ribeiro, W. F. Schneider, R. Gounder, Science 357, 898 (2017)
2. M. Zhu, J.-K. Lai, U. Tumuluri, Z. Wu, I. E. Wachs, J. Am. Chem. Soc. 139, 15624 (2017)
3. J. Yang, S. Ren, T. Zhang, Z. Su, H. Long, M. Kong, L. Yao, Chem. Eng. J. 379, 122398 (2020)
4. S. Deng, T. Meng, B. Xu, F. Gao, Y. Ding, L. Yu, Y. Fan, ACS Catal. 6, 5807 (2016)
5. F. Gao, X. Tang, H. Yi, J. Li, S. Zhao, J. Wang, C. Chu, C. Li, Chem. Eng. J. 317, 20 (2017)
6. L. Zhang, L. Li, Y. Cao, X. Yao, C. Ge, F. Gao, Y. Deng, C. Tang, L. Dong, Appl. Catal. B: Environ. 165, 589 (2015)
7. R. Jin, Y. Liu, Y. Wang, W. Cen, Z. Wu, H. Wang, X. Weng, Appl. Catal. B: Environ. 148–149, 582 (2014)
8. Z. Ma, L. Sheng, X. Wang, W. Yuan, S. Chen, W. Xue, G. Han, Z. Zhang, H. Yang, Y. Lu, Y. Wang Adv. Mater. 31, 1903719 (2019)
9. H. Chang, X. Chen, J. Li, L. Ma, C. Wang, C. Liu, J. W. Schwank, J. Hao, Environ. Sci. & Technol. 47, 5294 (2013)
10. Z. Liu, G. Sun, C. Chen, K. Sun, L. Zeng, L. Yang, Y. Chen, W. Wang, B. Liu, Y. Lu, Y. Pan, Y. Liu, C. Liu, ACS Catal. 10, 6803 (2013)
11. Z. Liu, M. Wang, S. Liu, Z. Chen, L. Yang, K. Sun, Y. Chen, L. Zeng, W. Wang, J. Zhao, G. Sun, B. Liu, Y. Pan, Y. Liu, C. Liu, Appl. Catal. B: Environ. 269, 118731 (2020)
12. Z. Liu, C. Chen, J. Zhao, L. Yang, K. Sun, L. Zeng, Y. Pan, Y. Liu, C. Liu, Chem. Eng. J. 379, 122288 (2020)
13. F. Kapteijn, L. Singoredjo, A. Andreini, Appl. Catal. B: Environ. 3, 173 (1994)
14. Meng D, Zhan W, Guo Y, Guo Y, Wang L, Lu G, ACS Catal. 5, 5973 (2015)
15. P. Sun, R. Guo, S. Liu, S. Wang, W. Pan, M. Li, Appl. Catal. A: Gen. 531, 129 (2017)