FIRST ORDER DIFFERENTIAL EQUATION
SUDORDINATION ASSOCIATED WITH CASSINI CURVE

Andy Liew Pik Hern¹, Rashidah Omar², Aini Janteng³ §
¹,³Faculty of Science and Natural Resources
Universiti Malaysia Sabah
88400 Kota Kinabalu, Sabah, MALAYSIA
² Faculty of Computer and Mathematical Sciences
Universiti Teknologi Mara Cawangan Sabah
88997 Kota Kinabalu, Sabah, MALAYSIA

Abstract: We denote \(p(z) \) as analytic functions defined on the open unit disk with \(p(0) = 1 \). In this paper, we determined the condition for \(\beta \) so that the results hold for the expressions \(1 + \beta z p'(z) \), \(1 + \beta z p'(z)/p(z) \) and \(1 + \beta z p'(z)/p^2(z) \) are subordinate to \(\sqrt{1 + cz} \).

AMS Subject Classification: 30C45
Key Words: analytic functions; univalent functions; first order differential equation; subordination; Cassini curve

1. Introduction

Let \(A \) be the class of all the analytic functions of the form
\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad (z \in D),
\]
in a unit disk \(D = \{z \in \mathbb{C} : |z| < 1\} \) and normalized by the condition \(f(0) = 0 = f'(0) - 1 \). We denote \(S \) as the subset of \(A \) of univalent functions. Also, we denoted \(C \) as the class of convex functions and \(S^* \) as the class of starlike functions. An analytic function \(f \) is subordinate to an analytic function \(g \), we
write \(f(z) \prec g(z) \) for \(z \in D \), if there exists an analytic function \(w \) in \(D \) such that \(w(0) = 0 \) and \(|w(z)| < 1 \) for \(|z| < 1 \) and \(f(z) = g(w(z)) \). In particular, if \(g \) is univalent in \(D \), we say that \(f(z) \prec g(z) \) is equivalent to \(f(0) = g(0) \) and \(f(D) \subset g(D) \).

Goluzin [1] found that if the first order differential subordination \(zp'(z) \prec zq'(z) \) holds and \(zq'(z) \) is convex, then \(p(z) \prec q(z) \) holds where \(q \) is the best dominant. Eventually, researchers continued to study about this and the general theory is discussed detailed by Miller and Mocanu in [2]. Nunokawa et al. [3] proved that if \(1 + zp'(z) \prec 1 + z \) hold, the subordination \(p(z) \prec 1 + z \) also hold.

There are more results obtained by many other researchers, see [4], [5], [6], [7], [8], [9] and [10].

Sokół and Stankiewicz [11] introduced a class called \(S^*_L \) which consists the function of \(f \in A \) such that \(w(z) := zf'(z)/f(z) \) lies in the region bounded by the right half of the lemniscate of Bernoulli given by \(|w^2 - 1| < 1 \). This class is associated with the function \(\sqrt{1+z} \).

Besides, Aouf et al. [12] defined the class \(S^*(q_c) \) for \(c \in (0,1] \) as:

\[
S^*(q_c) = \left\{ f \in A : \left| \left[\frac{zf'(z)}{f(z)} \right]^2 - 1 \right| < c, z \in D \right\}.
\]

It can be established that

\[
f \in S^*(q_c) \iff \frac{zf'(z)}{f(z)} < \sqrt{1+cz} \quad (z \in D).
\]

We also denoted \(\theta_c \) as the set of all points in the right half-plane such that the product of the distances from each point to the focuses -1 and 1 is less than \(c \):

\[
\theta_c := \{ w \in \mathbb{C} : Re \ w > 0, |w^2 - 1| < c \},
\]

thus the boundary \(\partial \theta_c \) is the right loop of the Cassinian ovals \((x^2 + y^2)^2 - 2(x^2 - y^2) = c^2 - 1 \) and for \(c = 1 \), \(S^*(q_1) \equiv S^*_L \).

For an analytic function \(p(z) = 1 + c_1 z + c_2 z^2 + \cdots \), we determine the condition of \(\beta \) so that \(p(z) \prec P(z) \) where \(P(z) \) is a function with positive real part like \(\sqrt{1+z} \) and \(\varphi_0(z) := 1 + \frac{k}{k} ((k + z)/(k - z)) \) \((k = \sqrt{2} + 1) \), whenever \(1 + \beta z p'(z)/p'(z) \prec \sqrt{1+cz} \), where \(j = 0, 1, 2 \) (please see [13] for more about \(\varphi_0(z) \)).
2. Preliminary results and definitions

Our results deal with classes of $S^*(q_c)$ associated with S_L^* and $\varphi_0(z)$ respectively. Some sufficient conditions with for functions belong to the above defined classes can be obtained by applying the application on starlike functions with positive real part. The first result gives a bound of β so that $1 + \beta z p'(z) \prec \sqrt{1 + cz}$ implies that the function p is subordinate to the $\sqrt{1+z}$ function.

Before to get our result, we need the following lemma to prove the theorems.

Lemma 1. ([14]) Let q be analytic in D and let ψ and v be analytic in domain U containing $q(D)$ with $\psi(w) \neq 0$ when $w \in q(D)$. Set $Q(z) := zq'(z)\psi(q(z))$ and $h(z) := v(q(z)) + Q(z)$. Suppose that:

i. either h is convex or Q is starlike univalent in D, and

ii. $\text{Re} \left(zh'(z)/Q(z) \right) > 0$ for $z \in D$.

If p is analytic in D, with $p(0) = q(0)$, $p(D) \subseteq U$ and

$$v(p(z)) + zp'(z)\psi(p(z)) \prec v(q(z)) + zq'(z)\psi(q(z)),$$

then $p(z) \prec q(z)$ and q is best dominant.

3. Main results

Theorem 1. Let the function p be analytic in D, $p(0) = 1$ and $1 + \beta z p'(z) \prec \sqrt{1 + cz}$, $c \in (0, 1]$. Then the following subordination results hold:

(a) If $\beta \geq \frac{2 \left(\sqrt{1 + c} - \ln(1 + \sqrt{1 + c}) + \ln 2 - 1 \right)}{\sqrt{2} - 1}$, then $p(z) \prec \sqrt{1 + z}$.

(b) If $\beta \geq \frac{2 \left(\sqrt{1 - c} - \ln(1 - \sqrt{1 - c}) + \ln 2 - 1 \right)}{\sqrt{2} - 3}$, then $p(z) \prec \varphi_0(z)$.

Proof. The function $q_B : \overline{D} \to \mathbb{C}$ defined by

$$q_B(z) = 1 + \frac{2}{\beta} \left[\sqrt{1 + cz} - \ln(1 + \sqrt{1 + cz}) + \ln 2 - 1 \right]$$
is analytic and it is the solution of $1 + \beta z p'(z) = \sqrt{1 + c z}$. Let $v(w) = 1$ and $\psi(w) = \beta$. So the function $Q : \mathbb{D} \to \mathbb{C}$ is defined by $Q(z) = z q_B'(z) \psi(q_B(z)) = \beta z q_B'(z)$. Since $\sqrt{1 + c z} - 1$ is starlike function in D, it follows that function Q is starlike. Besides, the function $h(z) = v(q_B(z)) + Q(z)$ satisfies $\text{Re}(zh'(z)/Q(z)) > 0$ for $z \in D$. Thus, by using Lemma 1, it shows $1 + \beta z p'(z) < 1 + \beta z q_B'(z)$ implies $p(z) < q_B(z)$. We can say that $p(z) < P(z)$ for appropriate P and this holds if the subordination $q_B(z) < P(z)$ holds. If $q_B(z) < P(z)$, then $P(-1) < q_B(-1) < q_B(1) < P(1)$. This gives a necessary condition for $p < P$ hold. This necessary condition is sufficient.

(a). By taking $P(z) = \sqrt{1 + z}$, the inequalities $q_B(-1) \geq P(-1)$ and $q_B(1) \leq P(1)$ reduce to $\beta \geq \beta_1$ and $\beta \geq \beta_2$, where

$$
\beta_1 = 2 \left[\ln(1 + \sqrt{1 - c}) + 1 - \ln 2 - \sqrt{1 - c} \right]
$$

and

$$
\beta_2 = 2 \left[\frac{\sqrt{1 + c} - \ln(1 + \sqrt{1 + c}) + \ln 2 - 1}{\sqrt{2} - 1} \right],
$$

respectively. The subordination $q_B(z) < \sqrt{1 + z}$ holds if $\beta \geq \max\{\beta_1, \beta_2\} = \beta_2$.

(b). Consider $P(z) = \varphi_0(z)$, then the inequalities $q_B(-1) \geq \varphi_0(-1)$ and $q_B(-1) \leq \varphi_0(1)$ reduce to $\beta \geq \beta_1$ and $\beta \geq \beta_2$, where

$$
\beta_1 = 2 \left[\frac{\sqrt{1 - c} - \ln(1 + \sqrt{1 - c}) + \ln 2 - 1}{2\sqrt{2} - 3} \right]
$$

and

$$
\beta_2 = 2 \left[\frac{\sqrt{1 + c} - \ln(1 + \sqrt{1 + c}) + \ln 2 - 1}{\sqrt{2} - 1} \right],
$$

respectively. Thus, the subordination $q_B(z) < \varphi_0(z)$ holds if $\beta \geq \max\{\beta_1, \beta_2\} = \beta_1$.

When $c = 1$, we may get Corollary 5. The next result gives bound on β so that $1 + \beta z p'(z)/p(z) < \sqrt{1 + c z}$ implies p is subordinate to $\varphi_0(z)$ function.

Theorem 2. Let the function p be analytic in D, $p(0) = 1$ and $1 + \beta z p'(z)/p(z) < \sqrt{1 + c z}$, $c \in (0, 1]$. Then the following subordination result holds:

If $\beta \geq \frac{2 \left[\sqrt{1 - c} - \ln(\sqrt{1 - c} + 1) + \ln 2 - 1 \right]}{\ln(2\sqrt{2} - 2)}$, then $p(z) < \varphi_0(z)$.
Proof. The function $q_B : \overline{D} \rightarrow \mathbb{C}$ defined by

$$q_B(z) = \exp \left\{ 1 + \frac{2}{\beta} \left[\sqrt{1 + cz} - \ln(1 + \sqrt{1 + cz}) + \ln 2 - 1 \right] \right\}$$

is analytic and is the solution of $1 + \beta z p'(z)/p(z) = \sqrt{1 + cz}$. Define $v(w) = 1$ and $\psi(w) = \beta/w$. The function $Q : \overline{D} \rightarrow \mathbb{C}$ defined by $Q(z) := zq_B'(z)\psi(q_B(z)) = \beta zq_B'(z)/q_B(z) = \sqrt{1 + cz} - 1$ is starlike in D. The function $h(z) := v(q_B(z)) + Q(z) = 1 + Q(z)$ satisfies $\text{Re}(zh'(z)/Q(z)) > 0$ for $z \in D$. Therefore, by using Lemma 1, we get that $1 + \beta z p'(z)/p(z) \prec \sqrt{1 + cz}$ implies p is subordinate to $\phi_0(z)$.

Next, we determine a bound on β so that $1 + \beta z p'(z)/p^2(z) \prec \sqrt{1 + cz}$ implies p is subordinate to $\phi_0(z)$.

Theorem 3. Let the function p be analytic in D, $p(0) = 1$ and $1 + \beta z p'(z)/p^2(z) \prec \sqrt{1 + cz}, c \in (0, 1]$. Then the following subordination results hold:

If $\beta \geq \frac{4 \left(\sqrt{2} - 1 \right) \left(\sqrt{1 - c} - \ln(\sqrt{1 - c} + 1) + \ln 2 - 1 \right)}{2\sqrt{2} - 3}$,

then $p(z) \prec \phi_0(z)$.

Proof. The function $q_B : \overline{D} \rightarrow \mathbb{C}$ defined by

$$q_B(z) = \left(1 + \frac{2}{\beta} \left[\sqrt{1 + cz} - \ln(1 + \sqrt{1 + cz}) + \ln 2 - 1 \right] \right)^{-1}$$

is analytic. It is the solution of $1 + \beta z p'(z)/p^2(z) = \sqrt{1 + cz}$. Define $v(w) = 1$ and $\psi(w) = \beta/w^2$. The function $Q : \overline{D} \rightarrow \mathbb{C}$ defined by

$$Q(z) := zq_B'(z)\psi(q_B(z)) = \beta zq_B'(z)/q_B^2(z) = \sqrt{1 + cz} - 1$$

is starlike in D, so Q is starlike function. The function $h(z) := v(q_B(z)) + Q(z) = 1 + Q(z)$ satisfies $\text{Re}(zh'(z)/Q(z)) > 0$ for $z \in D$. Therefore, by using Lemma 1, we get that

$$1 + \beta z p'(z)/p^2(z) \prec 1 + \beta \frac{zq_B'(z)}{q_B^2(z)}$$
implies \(p(z) \preceq q_B(z) \). As the similar lines of the proof of Theorem 2 the proof of the result is completed.

Also, let \(c = 1 \), we have the result in Corollary 7.

4. Corollaries

Corollary 4. ([10]) Let the function \(p \) be analytic in \(D \), \(p(0) = 1 \) and \(1 + \beta z p'(z) \prec \sqrt{1 + cz} \). Then the following subordination results hold:

(a) If \(\beta \geq \frac{2[\sqrt{2} - 1 + \ln 2 - \ln (1 + \sqrt{2})]}{\sqrt{2} - 1} \approx 1.09116 \), then \(p(z) \prec \sqrt{1 + z} \).

(b) If \(\beta \geq \frac{2(1 - \ln 2)}{3 - 2\sqrt{2}} \approx 3.57694 \), then \(p(z) \prec \varphi_0(z) \).

Corollary 5. ([10]) Let the function \(p \) be analytic in \(D \), \(p(0) = 1 \) and \(1 + \beta z p'(z)/p(z) \prec \sqrt{1 + cz} \). Then the following subordination results hold:

If \(\beta \geq \frac{2(\ln 2 - 1)}{\ln(2\sqrt{2} - 2)} \approx 3.26047 \), then \(p(z) \prec \varphi_0(z) \).

Corollary 6. ([10]) Let the function \(p \) be analytic in \(D \), \(p(0) = 1 \) and \(1 + \beta z p'(z)/p^2(z) \prec \sqrt{1 + cz} \). Then the following subordination results hold:

If \(\beta \geq 4(1 + \sqrt{2})(1 - \ln 2) \approx 2.96323 \), then \(p(z) \prec \varphi_0(z) \).

Acknowledgements

We thank to UMSGreat Grant, GUG0269-2/2018 for financial support and all the anonymous papers as references.

References

[1] G.M. Goluzin, On the majorization principle in function theory, *Dokl. Akad. Nauk. SSSR*, 42 (1935), 647-650.
[2] S.S. Miller, P.T. Mocanu, On some classes of first-order differential subordinations, *Michigan Math. J.*, **32**, No 2 (1985), 185-195.

[3] M. Nunokawa, M. Obradović, S. Owa, On criterion for univalency, *Proc. Amer. Math. Soc.*, **106**, No 4 (1989), 1035-1037.

[4] R.M. Ali, V. Ravichandran, N. Seenivasagan, Sufficient conditions for Janowski starlikeness, *Int. J. Math. Math. Sci.*, **2007** (2007), Art. ID 62927, 7 pp.

[5] R. Omar, S.A. Halim, Differential subordinations properties of Sokół-Stankiewicz starlike functions, *Kyungpook Math. J.* **53**, No 3 (2013), 459-465.

[6] R. Omar, S.A. Halim, R.W. Ibrahim, Differential subordination properties of certain analytic functions, *Int. J. of Math.*, **21**, No 6 (2013), 7 pp.

[7] N.E. Cho, H.J. Lee, J. H. Park, R. Srivastava, Some application of the first-order differential subordinations, *Filomat*, **30**, No 6 (2016), 1465-1474.

[8] V. Ravichandran, K. Sharma, Sufficient conditions for starlikeness, *J. Korean Math. Soc.*, **52**, No 4 (2015), 727-749.

[9] K. Sharma, V. Ravichandran, Applications of subordination theory to starlike functions, *Bull. Iranian Math. Soc.*, **42**, No 3 (2016), 761-777.

[10] P. Ahuja, S. Kumar, V. Ravichandran, Application of first order differential subordination for functions with positive real part, *Stud. Univ. Babeş-Bolyai Math.*, **63** (2018), 303-311.

[11] J. Sokół, J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, *Zeszyty Nauk. Politech. Rzeszowskiej Mat.*, No 19 (1996), 101-105.

[12] M.K. Aouf, J. Dziok, J. Sokół, On a subclass of strongly starlike functions, *Appl. Math. Lett.*, **24** (2011), 27-32.

[13] S. Kumar, V. Ravichandran, A subclass of starlike functions associated with a rational function, *Southeast Asian Bull. Math.*, **40**, No 2 (2016), 199-212.

[14] S.S. Miller, P.T. Mocanu, *Differential Subordination*, Dekker, New York (2000).
