Diagnostic accuracy of ultrasound superb microvascular imaging for breast tumor: a meta-analysis

Lin Zhong, Cong Wang

The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, China

Introduction

Breast cancer is a very common malignant disease in women worldwide [1]. It is predicted that more than one million women are diagnosed with breast cancer, and more than 400,000 will die from the disease every year [2]. Despite being the most common cancer, the 5-year relative survival rate of breast carcinoma remains more than 80% when the disease is detected early [3]. To improve the survival, a number of screening methods to detect breast cancer have been studied, including magnetic resonance imaging (MRI), Doppler ultrasonography (US) and computed tomography (CT) [4]. The most practical screening method in clinical diagnosis and treatment is US. The shape and distribution of neovascularization in tumors are related to the aggressive growth pattern of cancer cells, which is helpful to distinguish the nature of the tumor [5]. Color Doppler flow imaging (CDFI) is often used to show the blood flow inside the tumor, but CDFI can provide limited data in some low-velocity microvessels [6]. As a novel US technique, Superb Microvascular Imaging (SMI) can quickly, simply and noninvasively study the microvascular distribution in the tumor and evaluate the microvascular perfusion [7]. The SMI adopts a multidimensional filter to eliminate only the clutter and to preserve low-velocity flow signals, whereas conventional Doppler systems use a single-dimension filter and, accordingly, can exhibit a loss of low-velocity flow signals that overlap with clutter [8]. Previous studies have shown that SMI can detect the blood flow signals of neovascularization in tumors and is helpful for the differentiation between benign and ma-
lignant breast tumors [9]. However, the results of these studies have been contradictory. Therefore, the present meta-analysis aimed at determining the accuracy of SMI in the differential diagnosis between benign and malignant breast tumors.

Material and methods

Literature search

We searched PubMed, Web of Science, Google Scholar, Cochrane Library, EBSCO and CBM databases from January 1st, 2013 until February 1st, 2020 without language restrictions. The following keywords and MeSH terms were used: [“breast cancer” or “breast neoplasms” or “breast tumor” or “mammary gland cancer” or “mammary gland neoplasms” or “mammary gland tumor”] and [“superb microvascular imaging”]. We also performed a manual search to find other potential articles.

Selection criteria

The following 4 criteria were required for each study: 1) the study design must be a clinical cohort study or diagnostic test; 2) the study must relate to the accuracy of SMI for the differential diagnosis of benign and malignant breast tumors; 3) all breast lesions were histologically confirmed after SMI; and 4) published data in the fourfold (2x2) tables must be sufficient. If the study did not meet all of these inclusion criteria, it was excluded. The most recent publication or the publication with the largest sample size was included when the authors published several studies using the same subjects.

Data extraction

Relevant data were systematically extracted from all included studies by two researchers using a standardized form. The researchers collected the following data: the first author’s surname, publication year, language of publication, study design, sample size, number of lesions, source of the subjects, “gold standard,” and diagnostic accuracy. The true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) in the fourfold (2 x 2) tables were also collected.

Quality assessment

Methodological quality was independently assessed by two researchers based on the quality assessment of studies of diagnostic accuracy studies (QUADAS) tool [10]. The QUADAS criteria included 14 assessment items. Each of these items was scored as “yes” (2), “no” (0), or “unclear”(1). The QUADAS score ranged from 0 to 28, and a score ≥22 indicated good quality.

Statistical analysis

The STATA version 14.0 (Stata Corp, College Station, TX, USA) and Meta-Disc version 1.4 (Universidad Complutense, Madrid, Spain) softwares were used for meta-analysis. We calculated the pooled summary statistics for sensitivity (Sen), specificity (Spe), positive and negative likelihood ratio (LR+/LR−), and diagnostic odds ratio (DOR) with their 95% confidence intervals (CIs). The summary receiver operating characteristic (SROC) curve and corresponding area under the curve (AUC) were obtained. The threshold effect was assessed using Spearman correlation coefficients. The Cochran’s Q-statistic and I² test were used to evaluate potential heterogeneity between studies. If significant heterogeneity was detected (Q test p<0.05 or I² test >50%), a random effects model or fixed effects model was used. We also performed subgroup and meta-regression analyses to investigate potential sources of heterogeneity. To evaluate the influence of single studies on the overall estimate, a sensitivity analysis was performed.

We conducted Begger’s funnel plots and Egger’s linear regression tests to investigate publication bias.

Results

Characteristics of included studies

Initially, the searched keywords identified 47 articles. We reviewed the titles and abstracts of all articles and excluded 21 articles; full texts and data integrity were also reviewed and 11 were further excluded. Finally, 15 studies that met all inclusion criteria were included in this meta-analysis [11-25]. Figure 1 showed the selection process of eligible articles. A total of 955 malignant breast lesions and 1116 benign breast tumors were assessed. We summarized the study characteristics and methodological quality in Table I. The QUADAS scores of all included studies were ≥22.
Quantitative data synthesis

Meta-analysis findings on the accuracy of SMI for differential diagnosis between benign and malignant breast tumors were showed in Table II. The random effects model was used due to obvious heterogeneity among the studies. Diagnostic accuracy of SMI was measured as pooled Sen, Spe, LR$^+$, LR$^-$ and DOR (fig 2). Our meta-analysis revealed that the pooled Sen was 0.81 (95%CI=0.78-0.83); the pooled Spe was 0.71 (95%CI=0.68-0.73). There was no significant correlation ($r=243$, $p=0.610$) between sensitivity and specificity, which indicated that there is no threshold effect. In addition, we observed that the pooled LR$^+$ and LR$^-$ were 3.24 (95%CI=2.27-4.64) and 0.25 (95%CI=0.18-0.34), respectively. The pooled DOR of SMI in the diagnosis of breast tumor was 15.16 (95% CI=8.24-27.87) (fig 3). The results were plotted as a symmetrical SROC curve (fig 4) and the corresponding AUC was 0.87 (95%CI=0.84-0.90). Subgroup and meta-regression analyses were conducted based on language, instrument type, and diagnostic basis to investigate potential sources of heterogeneity. In the subgroup analyses, the results revealed that SMI exhibited a high diagnostic performance in different subgroups (Table II). Meta-regression analysis results confirmed that no factor could explain the potential sources of heterogeneity (Table III). We found no evidence of obvious asymmetry in the Begger’s funnel plots (fig 5). Egger’s test also did not display strong statistical evidence for publication bias ($t=-0.84$, $p=0.42$).
Diagnostic accuracy of ultrasound superb microvascular imaging for breast tumor: a meta-analysis

Discussion

With the wide use of high-resolution ultrasound diagnostic instruments, the detection rate of breast nodules has increased significantly [7]. The growth of tumor depends on the complex blood vessels inside the tumor.

Table II. Meta-analysis of the accuracy of SMI for the diagnosis of breast tumors

Subgroup	Studies (n)	Sen (95%CI)	Spe (95%CI)	LR+ (95%CI)	LR- (95%CI)	DOR (95%CI)
Overall	15	0.81 [0.78-0.83]	0.71 [0.68-0.73]	3.24 [2.27-4.64]	0.25 [0.18-0.34]	15.16 [8.24-27.87]
Language						
Chinese	6	0.81 [0.77-0.84]	0.80 [0.75-0.84]	4.24 [2.02-8.90]	0.23 [0.13-0.42]	20.48 [6.49-64.57]
English	9	0.81 [0.77-0.84]	0.66 [0.62-0.69]	2.72 [1.87-3.94]	0.26 [0.17-0.39]	12.24 [6.20-24.18]
Ultrasound machine						
Toshiba Aplio 500	11	0.83 [0.80-0.85]	0.73 [0.70-0.76]	3.60 [2.23-5.81]	0.22 [0.15-0.33]	18.54 [9.06-37.93]
Toshiba Aplio 400	4	0.76 [0.70-0.81]	0.66 [0.61-0.71]	2.47 [1.40-4.35]	0.34 [0.20-0.58]	8.94 [3.00-26.65]
Diagnostic basis						
Vascularity index	1	0.60 [0.48-0.72]	0.66 [0.57-0.75]	1.78 [1.30-2.44]	0.60 [0.44-0.82]	2.96 [1.61-5.43]
Synthesis index	2	0.79 [0.70-0.86]	0.69 [0.61-0.76]	2.62 [1.69-4.07]	0.30 [0.18-0.53]	8.84 [3.31-23.58]
Vascular grading	2	0.90 [0.83-0.95]	0.82 [0.74-0.88]	4.87 [3.36-7.05]	0.11 [0.03-0.37]	48.42 [10.30-227.71]
Morphology type	2	0.70 [0.61-0.78]	0.81 [0.75-0.87]	11.58 [7.17-18.69]	0.21 [0.07-0.65]	57.02 [18.07-179.94]
Adler classification	8	0.82 [0.79-0.86]	0.58 [0.54-0.63]	2.41 [1.66-3.49]	0.25 [0.17-0.39]	11.52 [6.05-21.93]

95%CI, 95% confidence interval; LR, likelihood ratio; DOR, diagnostic odds ratio; Sen, Sensitivity; Spe, Specificity

Table III. Meta-regression analyses of potential source of heterogeneity

Heterogeneity factors	Coefficient	SE	p value	RDOR	95% CI
				UL	LL
Publication year	-0.002	0.3136	0.9962	1.00	0.49 [2.03]
Language	0.179	1.0684	0.8704	0.84	0.07 [9.37]
Instrument	0.715	0.9390	0.4641	0.49	0.06 [4.09]
Diagnostic basis	0.084	0.4321	0.8503	0.92	0.35 [2.44]

SE, standard error; RDOR, relative diagnostic odds ratio; 95%CI, 95% confidence interval; UL, upper limit; LL, lower limit
After the proangiogenic and angiogenic stages, the tumor gradually infiltrates and expands to the peripheral tissue. When the tumor is in the proangiogenesis (diameter <2 mm), the invasion range is limited, but when the tumor enters the angiogenic stage (diameter >2 mm), the blood vessels will extend more branches, form a large number of capillaries, infiltrate to the surrounding area and absorb a large amount of nutrients for the survival of the tumor, and at the same time, tumor invasion and metastasis will occur. The vascular morphology and distribution of breast masses are closely related to the nature of the tumor, which can be used as an important supplementary sign in their differential diagnosis.

SMI can clearly and completely show the shape and distribution of the vascular network of breast mass without injection of a contrast agent. By observing the number and distribution of blood vessels of breast cancer, SMI can help to judge the nature of the tumor. According to Adler’s method, the vascularity was subjectively determined to be absent (grade 0), minimal (grade 1), moderate (grade 2) or marked (grade 3). The blood flow classification of benign tumors is mostly 0-1, while that of malignant tumors is mostly 2-3. Compared with benign tumors, the blood supply of malignant tumors is more abundant and the detection rate of blood flow is higher. SMI can display microvascular architecture patterns of breast tumors. Of that benign masses tend to display the non-vascular pattern, a linear or curvilinear pattern and a treelike pattern, while malignant masses tend to display the root hair-like pattern and the crab claw-like pattern. Smart 3-D SMI can quantitatively assess tumor vascularity via measuring vascularity index (VI) on 2-D SMI images obtained with qualitative guidance of 3-D SMI images, which is significantly higher in malignant lesions than that in benign ones and may potentially serve as a noninvasive tool to accurately characterize benign versus malignant breast lesions.

In the present meta-analysis, we systematically evaluated the technical performance and accuracy of SMI for differential diagnosis of benign and malignant breast tumors. The 15 independent studies included assessed 955 malignant breast lesions and 1116 benign breast tumors. The pooled Sen, Spe and DOR of SMI in the diagnosis of breast cancer were 0.81, 0.71 and 46.97, respectively. These results were consistent with the potentially high diagnostic accuracy of SMI for breast cancer, suggesting that SMI may be a good tool for the differential diagnosis of benign and malignant breast tumors and could predict the prognosis of breast cancer patients. The threshold effect is usually interpreted as a sudden and radical change in a phenomenon that often occurs after surpassing a quantitative limit. Our findings showed no significant relationship between Sen and Spe within the studies, providing no evidence of a threshold effect. Because heterogeneity existed in the individual studies, subgroup analyses were conducted. SMI exhibited a high diagnostic performance in different subgroups for the diagnosis of breast cancer, suggesting that differences in language, diagnostic basis and instrument type did not directly influence the diagnostic accuracy of SMI. Furthermore, our results found no direct evidence of publication bias. Collectively, our findings strongly suggest that SMI is a highly accurate and non-invasive tool for the qualitative diagnosis of breast cancer, consistent with previous studies.

Despite the demonstrated diagnostic accuracy of SMI for breast cancer, our study has certain limitations. First, owing to the relatively small sample sizes and low level of quality of the included studies, there were insufficient data to assess the accuracy of SMI. Moreover, the retrospective nature of a meta-analysis can lead to subject selection bias. Importantly, the majority of included studies originated from China, which may adversely affect the reliability and validity of our results.

In conclusion, our meta-analysis suggests that SMI may have high diagnostic accuracy in the differential diagnosis of benign and malignant breast tumors. Thus, SMI may be a good tool to diagnose breast cancer. However, due to the limitations, further detailed studies are required to confirm our present findings.

Acknowledgments: we would like to thank all our colleagues working in the Ultrasound Department of the First Affiliated Hospital to Dalian Medical University.

Conflicts of interest: none

References

1. Akram M, Iqbal M, Daniyal M, Khan AU. Awareness and current knowledge of breast cancer. Biol Res 2017;50:33.
Diagnostic accuracy of ultrasound superb microvascular imaging for breast tumor: a meta-analysis

3. Brenner H, Gundos A, Arndt U. Recent major progress in long-term cancer patient survival disclosed by modeled period analysis. J Clin Oncol 2007;25:3274-3280.

4. Takkar N, Kochhar S, Garg P, Pandey AK, Dalal UR, Handa U. Screening methods (clinical breast examination and mammography) to detect breast cancer in women aged 40-49 years. J Midlife Health 2017;8:2-10.

5. Maniotis AJ, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 1999;155:739-752.

6. Wang XN, Zhao Q, Li DJ, et al. Quantitative evaluation of primary retinitis pigmentosa patients using colour Doppler flow imaging and optical coherence tomography angiography. Acta Ophthalmol 2019;97:e993-e997.

7. Hata T, Koyanagi A, Yamanishi T, Bouno S, Takayoshi R, Miyake T. Superb microvascular imaging with Doppler luminance using an 18-MHz probe to visualize fetal intra-abdominal blood vessels and organ microvasculature. J Perinat Med 2020;48:184-188.

8. Jiang ZZ, Huang YH, Shen HL, Liu XT. Clinical Applications of Superb Microvascular Imaging in the Liver, Breast, Thyroid, Skeletal Muscle, and Carotid Plaques. J Ultrasound Med 2019;38:2811-2820.

9. Park AY, Seo BK. Up-to-date Doppler techniques for breast tumor vascularity: superb microvascular imaging and contrast-enhanced ultrasound. Ultrasonography 2018;37:98-106.

10. Whiting PF, Weswood ME, Rutjes AW, Reitsma JB, Bossuyt PN, Kleijnen J. Evaluation of QUADAS, a tool for the quality assessment of diagnostic accuracy studies. BMC Med Res Methodol 2006;6:9.

11. Wang L, Deng KX, Sui XF, et al. Screening and diagnosis value of acoustic radiation force impulse imaging quantification in combination with superb microvascular imaging in early breast cancer. Chinese General Practice 2020. [Epub ahead of print].

12. Yanting Z, Li M, Xinhu M, Fuxia W, Wen W. Value Study of Superb Microvascular Imaging on BI-RADS Category 3 and 4 Breast Masses, Chinese Journal of Ultrasound in Medicine 2019;35:975-978.

13. Ni Jing Yuan. Application value of shear wave elastography combined with microvascular imaging in differential diagnosis of benign and malignant breast masses. 2019[D]: Jilin University.

14. Xiao Lu. The preliminary analysis and diagnostic value of microvasculature of breast tumor by ultra micro angiography. 2019[D]: Henan University of science and technology.