Data Article

Polychaete dataset of the southwestern Gulf of Mexico including: taxonomic checklist, abundance, bathymetric distribution, functional diversity, geographic location, and sampling sites depth

Octavio Quintanar-Retama a,b, Ana Rosa Vázquez-Bader a, Adolfo Gracia a,∗

aUniversidad Nacional Autónoma de México (UNAM), Instituto de Ciencias del Mar y Limnología, Unidad Académica Ecología y Biodiversidad Acuática, A.P. 70-305 Ciudad Universitaria 04510 México, CDMX, México
bPosgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Alcaldía Coyoacán, C.P. 04510, Cd. Mx., México

A R T I C L E I N F O

Article history:
Received 4 March 2022
Accepted 6 June 2022
Available online 13 June 2022

Dataset link: Polychaete dataset of the southwestern Gulf of Mexico including: taxonomic checklist, abundance, bathymetric distribution, functional diversity, geographic location, and sampling sites depth (Original data)

Keywords:
Polychaeta
Deep-sea
Gulf of Mexico
taxonomic checklist
abundance
functional diversity

A B S T R A C T

A taxonomic list of 69 genera belonging to 33 families of the Polychaeta class (Annelida) collected in 54 deepwater sites of the southwestern Gulf of Mexico is presented. Abundance data of these 69 genera is also included. A dataset of geographical location and depth of sampling sites is given. Graphs of depth related community functional diversity variation are shown. The biological material was obtained from sediment samples collected aboard the Justo Sierra Oceanographic Vessel of the National Autonomous University of Mexico using a Reineck-type box corer with an effective area of 0.16 m². In each core a subsample of 0.08 m² and 13 cm deep was taken and washed through a 500-micron sieve with filtered seawater. Abundances were standardized to individuals per square meter. The average abundance contribution percentage graphs were done calculating the average standardized abundance of each guild and the contribution

* Corresponding author's email address and Twitter handle
E-mail address: gracia@unam.mx (A. Gracia).

https://doi.org/10.1016/j.dib.2022.108370
2352-3409/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
percentage of each one to the four depth categories established: Upper bathyal zone (UBZ); middle bathyal zone (MBZ); lower bathyal zone (LBZ) and abyssal zone (ABYZ). These data could be useful for comparative purposes with new data of polychaete communities in the same area or another region.

© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Specifications Table

Subject	Biological Sciences (Biodiversity)
Specific subject area	This dataset provides information about the polychaete biodiversity and ecology of the southwestern deep sea of the Gulf of Mexico.
Type of data	Table
Figure	The biological material was obtained in two cruises carried out on board the Oceanographic Vessel Justo Sierra of the National Autonomous University of Mexico. The samples were collected using a Reineck-type box corer with an effective area of 0.16 m². Once the corer was on deck, subsamples of 0.08 m² were taken, which were washed on board through a 500-micrometer mesh sieve with previously filtered seawater. The sieved material was fixed with a mixture of seawater and 8% formalin. In the laboratory, specimens were separated from the sediment using an AVEN Mighty Vue Pro 5D ESD magnifying lamp (2.25X magnification) and fine-tipped tweezers. The specimens were kept in vials with 70% alcohol. Subsequently, the polychaetes, whose preservation status allowed it, were identified at the genus level and individuals number were included in the abundance matrix. Taxonomic identification at the genus level was performed using a Zeiss Stemi 508 stereoscopic microscope (maximum magnification 50X) and a Zeiss Primo Star microscope in addition to specialized literature. The assignment to a trophic guild was after the taxonomic identification and was carried out using specialized literature. The sampling sites geographical location, and depth was registered with ship GPS, and multibeam echosounder, respectively.
Data format	Analyzed
Description of data collection	Two oceanographic cruises based on a systematic sampling design with 63 locations were conducted in the southwestern Gulf of Mexico. The first cruise was carried out on June 3–27, 2015. Due to logistical reasons, sediment samples were only collected at 60 sites. Biological material of seventeen samples (not included in this data set) was lost before the genus-level identification of the polychaetes was achieved. Polychaetes were not obtained in two locations, besides three samples with organisms not identified at the genus level were not included in the abundance matrix, resulting in 38 sites in the first cruise. The second cruise was carried out on August 31–September 20, 2016. Sediment samples were successful at 60 sites. Polychaetes could not be identified at the genus level in nine locations and were not collected in five sites, so they were not included in the analysis. This resulted in 46 sites with polychaetes identified at the genus level in the second cruise. A common abundance matrix for both cruises was elaborated. In those sites where it was possible to register and identify polychaetes at genus level in both cruises, the organism numbers were summed and standardized to individuals per square meter. In those locations with a single record of any of the cruises, the data was just added to the abundance matrix. In this way a total of 54 sites with polychaetes identified at the genus level were recorded for both cruises. The sites were renamed from one to 54 consecutively. The geographical location and depth were registered with ship GPS and multibeam echosounder EM302, respectively, at the time the corer reached bottom.

(continued on next page)
Site	Longitude W	Latitude N
1	93.4971	18.9898
2	94.0183	19.0093
3	94.5077	18.7427
4	94.9991	18.8284
5	95.5017	19.0283
6	94.9799	19.1478
7	93.516	19.5089
8	94.0166	19.5116
9	94.5069	19.5128
10	94.9963	19.4969
11	95.5051	19.4992
12	96.0114	19.5083
13	96.0051	20.0064
14	95.5155	20.0012
15	94.5154	19.9996
16	94.0306	20.0211
17	93.0128	20.0034
18	92.5696	20.5033
19	93.5075	20.4969
20	94.5185	20.4991
21	95.0113	20.4901
22	95.5111	20.4937
23	96.0123	20.5099
24	96.5006	20.403
25	96.5102	20.5161
26	96.0053	21.0042
27	95.0197	20.985
28	94.4945	20.9801
29	93.9818	21.0018
30	93.0018	21.0129
31	92.6268	21.5039
32	93.5061	21.5138
33	94.5227	21.4989
34	95.0251	21.4773
35	96.0152	21.5038
36	96.512	21.5155
37	96.512	22.0091
38	96.0245	22.018
39	95.0248	21.9997
40	94.5235	22.0033
41	94.0463	21.9861
42	93.5309	22.4993
43	94.0283	22.5098
44	94.4936	22.5017
45	94.983	22.4916
46	95.5217	22.4997
47	96.01	22.5054
48	96.5036	22.5009
49	96.0146	23.0109
50	95.5151	22.9864
51	95.0153	22.992
52	94.5171	23.0055
53	94.0106	23.0215
54	93.0106	22.9984
Value of the Data

• These data are new, unique and may serve as a basis for further studies in the Gulf of Mexico. Diversity and ecological studies on a poorly studied area like this is of outmost importance and usefulness for future deep-sea research in the region. Data of great importance since polychaetes, functional traits, and macrofauna in general, in this deep sea area is scarce and knowledge is necessary for understanding the deep sea ecosystem.

• Researchers, students, and stakeholders interested in the ecology, biodiversity, and resilience of deep-sea benthic communities of the Gulf of Mexico will have the opportunity to use this data as baseline for planning further studies and assessing potential impacts due to human actions. Even more, this data can be useful to enhance knowledge and function of deep-sea communities in other parts of the world.

• These data can complement larger data sets on the same taxon (Polychaeta) or on other taxa of the deep sea macrofauna in the Gulf of Mexico or elsewhere. It can be used on studies to relate with other fauna categories like meiofauna or megafauna of the region. It could be useful to make comparisons with scientific research in other areas and integrate a global knowledge of the deep sea.

1. Data Description

Figure 1 shows the contribution percentage of the three general feeding guilds (macrophages in red, microphages in blue, and omnivores in green) recorded in the study area for each of the established depth categories (upper bathyal, middle bathyal, lower bathyal and abyssal). The four bars represent one hundred percent of the abundance recorded in its corresponding depth category and the length of the segment of each color determines the percentage contribution of each trophic guild.

Figure 2 shows the percentage contribution of the eight specific feeding guilds (carnivores/scavengers in red; subsurface deposit feeders in aqua green; suspension feeders in black; surface deposit feeders / subsurface deposit feeders in grey; surface deposit feeders / suspension feeders in pink, surface deposit feeders in green, detritivores in yellow, and omnivores in blue) recorded in the southwestern Gulf of Mexico for each of the established depth categories (upper bathyal, middle bathyal, lower bathyal and abyssal). The four bars represents one hundred percent of the abundance recorded in its corresponding depth category and the length of the segment of each color determines the percentage contribution of each trophic guild.

This graph shows the contribution percentage of the three motility traits (discretely motile in blue, motile in red and sessile in yellow) recorded in the study area in each of the four established depth categories (upper bathyal, middle bathyal, lower bathyal, and abyssal). The four bars represent one hundred percent of the recorded abundance in its corresponding depth category and the length of the segment of each color determines the contribution percentage of each motility trait.

This file presents a taxonomic checklist of the 33 families and 69 genera of polychaetes identified at 54 deep-water sites in the southwestern Gulf of Mexico. This list also contains the name of the taxonomic authority and the year of description for each taxon.
Dataset 1. Polychaeta standardized abundance.
This dataset includes standardized abundance data of 69 polychaetes genera recorded at 54 deep-water sites in the southwestern Gulf of Mexico. Abundance values were standardized to individuals per square meter.

Dataset 2. Sampling sites geographic location and depth data
Geographic and bathymetric data set of the sampling sites. The list includes the name, geographic coordinates and depth recorded at each of the 54 sampling sites.

2. Experimental Design, Materials and Methods

2.1. Sampling and sample processing
The biological material was obtained along two cruises carried out on board the Oceanographic Vessel Justo Sierra of the National Autonomous University of Mexico. The samples were collected using a Reineck-type box corer with an effective area of 0.16 m2. Once the corer was on deck at each sampling site, a 0.08 m2 subsample was taken and washed on board through a 500-micrometer mesh sieve with previously filtered seawater. The result of this sieving was fixed with a mixture of seawater and 8% formalin. In the laboratory, the samples were washed with tap water through a 500-micrometer mesh sieve to remove the residue of the used fixative. The extraction of the polychaetes specimens was carried out placing the sediment of each sample in Petri dishes of 15 cm in diameter in small volumes until the sample was finished. To visualize the specimens, an AVEN Mighty Vue Pro 5D ESD magnifying lamp (2.25X magnification) was used. The specimens were separated using fine-tipped tweezers and placed in vials with 70% alcohol.

2.2. Taxonomic checklist
The taxonomic identification was done observing the specimens in Petri dishes of 5 cm in diameter with water under a Zeiss Stemi 508 stereoscopic microscope (maximum magnification 50x). When it was necessary, the specimens (or a dissected portion) were mounted on a slide with a drop of a 70% alcohol-glycerol mixture and a coverslip and were observed with a Zeiss Primo Star optic microscope. Some specimens were temporary stained with Methylene Blue or Shirlastain-A to highlight structures of taxonomic importance. General [2–4] and specialized literature [5–8] was used. The validation of the names of families, genera, and taxonomic authorities, as well as the year of description of each taxon, was carried out using the WoRMS match taxa tool [9].

2.3. Abundance Matrix
In the original study design, 63 sampling sites were considered, however, for logistical reasons, sediment samples were only collected at 60 sites during each of the two oceanographic cruises that constitute this data set. Polychaetes identified at the genus level were collected at 38 sampling sites in SOGOM 1 and 46 in SOGOM 2. The abundance matrix was constructed adding the numbers recorded in both cruises. Thirty common sites in both cruises registered polychaetes identified at genus level. Twenty-four locations only presented polychaetes identified at genus level in one of the two cruises (8 in SOGOM 1 and 16 in SOGOM 2). This made a total of 54 sites with polychaetes identified at genus level. The sites were renamed in a scale order from one to 54 consecutively. The standardization of abundance (individuals per square meter) was done based on the number of each polychaete genus in each site. Genus number of a single cruise location was divided by 0.08, whereas data of the two cruises were added and the result was divided by 0.16.
O. Quintanar-Retama, A.R. Vázquez-Bader and A. Gracia / Data in Brief 43 (2022) 108370

Fig. 1. General feeding guilds contribution percentage to average abundance in each depth category. The letters meaning in the acronym are I = microphages; A = macrophages, and O = omnivores. Upper bathyal zone (UBZ); middle bathyal zone (MBZ); lower bathyal zone (LBZ) and abyssal zone (ABYZ).

2.4. Depth Categories

Four depth categories were determined according to the literature [10,11], and bathymetry of the Gulf of Mexico. These categories were: upper bathyal zone (185 -1000 m); middle bathyal zone (1001 -2000 m); lower bathyal zone (2001 -3000 m), and abyssal zone (3000 – 3760 m). The depth of each sampling site was recorded using the ship multibeam echosounder EM302, and the geographical location with the ship GPS at the time the corer got to the bottom. The depth of the sites with a single fauna record in one of the two cruises was the recorded in the data sampling sites set. An average depth was calculated for sites with data of the two cruises. Each of the 54 sites was assigned to one of the four established depth categories. Thus, 9 sites were classified into the upper bathyal zone, 11 sites in the middle bathyal zone, 16 sites in the lower bathyal zone and 18 sites in the abyssal one, Table 1.

2.5. Stacked bar graphs

The assignment of Polychaeta genera to the feeding guilds was carried out following the proposal of Jumars et al. (2015) [12]. The elaboration of the 100% stacked bar graphs, was done based on the feeding guilds, and motility traits average and subsequently the percentage contribution of each biological trait to the depth categories. Based on this relative abundance matrix, the 100% stacked bar graphs were generated using the STATISTICA 7 software, (Figs. 1, 2, 3).
Table 1
Taxonomic list of genera and families identified in the deep sea from the southwestern Gulf of México.

Phylum	Annelida Lamarck, 1802
Class	Polychaeta Grube, 1850
Subclass	Errantia Audouin & H Milne Edwards, 1832
Order	Amphinomida
Family	Amphinomidae Lamarck, 1818
Genus	Paramphinome M. Sars in G. Sars, 1872
Subclass	Eunicida
Order	Eunicida
Family	Lumbrineridae Schmarda, 1861
Genus	Abyssinoine Orensanz, 1990
Genus	Augeneria Monro, 1930
Genus	Lumbrinerides Orensanz, 1973
Genus	Lumbrineris Blainville, 1828
Family	Onuphidae Kimberg, 1865
Genus	Paradiopatra Ehlers, 1887
Subclass	Sedentaria
Infraclass	Canalipalpata Rouse & Fauchald, 1997
Order	Sabellida Levinsen, 1883
Family	Sabellidae Latreille, 1825
Genus	Euchone Malmgren, 1866
Order	Spionidae Rouse & Fauchald, 1997
Family	Spionidae Grube, 1850
Genus	Aonides Claparède, 1864
Genus	Dispio Hartman, 1951
Genus	Lannice Malmgren, 1867
Genus	Malacoceros Quatrefages, 1843
Order	Longosomatidae Hartman, 1944
Genus	Paraprionospio Caullery, 1914
Genus	Prionospio Malmgren, 1867
Genus	Spiophanes Grube, 1860
Family	Poecilochaetidae Hannerz, 1956
Genus	Poecilochaetus Claparède in Ehlers, 1875
Family	Trochochaetidae Pettibone, 1963

(continued on next page)
Genus	Year	Author
Trochochaeta	1884	Levinsen
Ampharetidae	1866	Malmgren
Amphicarete	1866	Malmgren
Auchenoplas	1887	Ehlers
Eclysipe	1955	Eliason
Aphelocheata	1991	Blake
Chaetozone	1867	Malmgren
Kirkegaardia	2016	Blake
Fauveliopsisidae	1971	Hartman
Laubieriopsis	2000	Petersen
Flabelligeridae de	1894	Saint-Joseph
Bradabysssa	1967	Hartman
Diploricrus	1915	Haase
Sternaspidae	1863	Carus
Caulleryaspis	2013	Sendall & Salazar-Vallejo
Sternaspis	1820	Otto
Trichobranchiidae	1866	Malmgren
Terebellides	1835	Sars
Mediomastus	1944	Hartman
Neoheteromastus	1960	Hartman
Neomediomastus	1969	Hartman
Notomastus	1851	M. Sars
Paraleiocapitella	1851	M. Sars
Cossuridae	1863	Day
Magelona	1858	F. Müller
Maldanidae	1867	Malmgren
Sabaco	1866	Kinberg
Opheliididae	1867	Malmgren
Ammotrypanella	1878	McIntosh
Ophelia	1822	Savigny
Ophelina	1843	Ørsted
Tachytrypane McIntosh	1876	<i>-in</i> Jeffreys
Orbiniidae	1942	Hartman
Califia	1957	Hartman
Scoloplos	1828	Blainville
Paraonidae	1909	Cerruti
Aricidea	1879	Webster
Cirrophorus	1908	Ehlers
Levinsenia	1987	Mesnil
Paradoneis	1965	Hartman
Paraonides	1909	Cerruti
Scalibregmatidae	1867	Malmgren
Asclerocheilus	1901	Ashworth
Pseudoscalibregma	1901	Ashworth
Travisiiidae	1971	Hartmann-Schröder
Travisia	1840	Johnston
Fig. 2. Specific feeding guilds contribution percentage to average abundance in each depth category. The letters meaning in the acronym are B = subsurface deposit feeders; S = surface deposit feeders; F = suspension feeders; O = omnivores, D = detritivores, and C = carnivores/scavengers. Upper bathyal zone (UBZ); middle bathyal zone (MBZ); lower bathyal zone (LBZ) and abyssal zone (ABYZ).

Fig. 3. Motility traits percentage contribution to average abundance in each depth category. The letters meaning in the acronym are M = motile; D = discretely motile, and S = sessile. Upper bathyal zone (UBZ); middle bathyal zone (MBZ); lower bathyal zone (LBZ) and abyssal zone (ABYZ).
Ethics Statements

The authors declare that the manuscript adheres to Ethics publishing standards.

CRediT Author Statement

Octavio Quintanar-Retama: Conceptualization, Methodology, Formal analysis, Investigation, Data curation, Writing – original draft, and visualization. Ana Rosa Vázquez-Bader: conceptualization, methodology, and writing – Review & editing. Adolfo Gracia: Conceptualization, Methodology, Investigation, Resources, Writing – Review & editing. Supervision, Project Administration, and Founding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability

Polychaete dataset of the southwestern Gulf of Mexico including: taxonomic checklist, abundance, bathymetric distribution, functional diversity, geographic location, and sampling sites depth (Original data) (Mendeley Data).

Acknowledgments

Officers and crew of the R/V Justo Sierra are greatly appreciated for their support during research cruises. We thank graduate and undergraduate students that participated along the research cruises. We are also grateful to the support of Araceli Jaqueline Mercado Santiago and Francisco Fabián Velasco López in processing biological samples. We especially thank Drs. Sergio I. Salazar-Vallejo and Luis F. Carrera-Parra for their valuable advisory to the fauna identification. We thank CONACYT for the graduate scholarship granted to OQR (CVU: 517836) during the development of this study which constitutes a requirement to obtain the Doctor of Science degree in the Posgrado en Ciencias Biológicas UNAM. We are also grateful to the Posgrado en Ciencias Biológicas, UNAM for all the support received. This study was funded by the Mexican National Council for Science and Technology - Mexican Ministry of Energy - Hydrocarbon Fund, project 201441 as part of the Gulf of Mexico Research Consortium (CIGoM) due to PEMEX’s specific request to the Hydrocarbon Fund to address the environmental effects of oil spills in the Gulf of Mexico.

References

[1] O. Quintanar-Retama, M. Armenteros, A. Gracia, Diversity and distribution patterns of macrofauna polychaetes (Annelida) in deep waters of the Southwestern Gulf of Mexico, Deep Sea Res. Part I Oceanogr. Res. Pap. 181 (2022) 103699, doi:10.1016/j.dsr.2022.103699.
[2] J.A. De León-González, J.R. Bastida-Zavala, L.F. Carrera-Parra, M.E. García-Garza, A. Peña-Rivera, S.I. Salazar-Vallejo, V. Solís-Weiss, Poliquetos (Annelida: Polychaeta) de México y América Tropical, Universidad Autónoma de Nuevo León, Monterrey, México, 2009.
[3] K. Fauchald, The Polychaete Worms. Definitions and keys to the Orders, Families and Genera, Sci. Ser. 28 (1977) 188 http://www.vliz.be/imis/imis.php?refid=11096.
[4] J.M. Ubelacker, P.G. Johnson, Taxonomic guide to the polychaetes of the Northern Gulf of Mexico, Service, Gulf of Mexico Regional Office, 1984.
