A NOTE ON THE HARNACK INEQUALITY FOR ELLIPTIC EQUATIONS IN DIVERGENCE FORM

DONGSHENG LI AND KAI ZHANG

Abstract. In 1957, De Giorgi [3] proved the Hölder continuity for elliptic equations in divergence form and Moser [7] gave a new proof in 1960. Next year, Moser [8] obtained the Harnack inequality. In this note, we point out that the Harnack inequality was hidden in [3].

1. The Harnack Inequality

Consider the following elliptic equation:

\[(a^{ij}u_i)_j = 0\quad \text{in}\quad Q_6,
\]

where \((a^{ij})_{n \times n}\) is uniformly elliptic with ellipticity constants \(\lambda\) and \(\Lambda\). In this note, \(Q_r(x_0)\) denotes the cube with center \(x_0\) and side-length \(r\), and \(Q_r := Q_r(0)\).

In 1961, Moser [8] obtained the following Harnack inequality:

Theorem 1.1. Let \(u \geq 0\) be a weak solution of (1.1). Then

\[
\sup_{Q_1} u \leq C \inf_{Q_1} u,
\]

where \(C\) depends only on \(n\), \(\lambda\) and \(\Lambda\).

The method used in [8] is that first to estimate the upper and lower bound of \(u\) in terms of \(||u||_{L^{p_0}}\) and \(||u^{-1}||_{L^{p_0}}\) respectively by an iteration for some \(p_0 > 0\) and then to join these two estimates together to obtain (1.2) by the John-Nirenberg inequality.

In 1957, De Giorgi [3] proved the Hölder continuity for weak solutions of (1.1) and Moser [7] gave a new proof later. The following are two of the main results in [3] and [7] (see also [1]):

Theorem 1.2. Let \(u \geq 0\) be a weak subsolution of (1.1). Then

\[
\|u\|_{L^\infty(Q_1)} \leq C\|u\|_{L^2(Q_3)},
\]

where \(C\) depends only on \(n\), \(\lambda\) and \(\Lambda\).

Theorem 1.3. Let \(u \geq 0\) be a weak supersolution of (1.1). Then for any \(c_0 > 0\), there exists a constant \(c\) depending only on \(n\), \(\lambda\), \(\Lambda\) and \(c_0\) such that

\[
m\{x \in Q_1 : u(x) > c\} > c_0 \Rightarrow u > 1 \quad \text{in}\quad Q_3,
\]

where \(m\) denotes the Lebesgue measure.

Date: December 14, 2015.

2010 Mathematics Subject Classification. Primary 35J15, 35B65; Secondary 35D30.

Key words and phrases. Elliptic equations, Harnack inequality.

This research is supported by NSFC 11171266.
In this note, we will prove Theorem 1.1 by the above two theorems directly. That is, De Giorgi’s proof implies Harnack inequality. This was first noticed by DiBenedetto [4]. Some other new approaches to Harnack inequality can be founded in [5] and [6], where U. Gianazza and V. Vespri [6] requires only a qualitative boundedness of solutions, which is different from here.

2. Proof of Theorem 1.1

In the following, we present the key points for obtaining Theorem 1.1 by Theorem 1.2 and 1.3. First, we show that Theorem 1.2 implies the following local maximum principle:

Lemma 2.1. Let \(u \geq 0 \) be a weak subsolution of (1.1) and \(p_0 > 0 \). Then

\[
\|u\|_{L^\infty(Q_1)} \leq C\|u\|_{L^{p_0}(Q_3)},
\]

where \(C \) depends only on \(n, \lambda, \Lambda \), and \(p_0 \).

Proof. By the interpolation for \(\|u\|_{L^\infty(Q_1)} \leq \varepsilon \|u\|_{L^\infty(Q_2)} + C(\varepsilon)\|u\|_{L^{p_0}(Q_3)} \)
whose scaling version is

\[
r^{-n/2p_0}\|u\|_{L^\infty(Q_r(x_0))} \leq \varepsilon r^{-n/2p_0}\|u\|_{L^\infty(Q_{3r}(x_0))} + C(\varepsilon)\|u\|_{L^{p_0}(Q_{3r}(x_0))}
\]

for any \(Q_{3r}(x_0) \subset Q_6 \).

Given \(x_0 \in Q_3 \), denotes by \(d_{x_0} \) the distance between \(x_0 \) and \(\partial Q_3 \). Then the cube \(Q_{6r}(x_0) \subset Q_3 \) where \(r = d_{x_0}/3\sqrt{n} \), and we have

\[
d_{x_0}^2 |u(x_0)| \leq C(n)r^{-n/2p_0}\|u\|_{L^\infty(Q_r(x_0))} \leq \varepsilon C(n)r^{-n/2p_0}\|u\|_{L^\infty(Q_{3r}(x_0))} + C(\varepsilon)\|u\|_{L^{p_0}(Q_{3r}(x_0))} \leq \varepsilon C(n) \sup_{x \in Q_3} d_{x_0}^2 |u(x)| + C(\varepsilon)\|u\|_{L^{p_0}(Q_3)}.
\]

Take the supremum over \(Q_3 \) and \(\varepsilon \) small such that \(\varepsilon C(n) < 1/2 \). Then,

\[
\sup_{x \in Q_3} d_{x_0}^2 |u(x)| \leq C\|u\|_{L^{p_0}(Q_3)},
\]

which implies (2.1). \(\square \)

Next, we show that Theorem 1.3 implies the weak Harnack inequality:

Lemma 2.2. Let \(u \geq 0 \) be a weak supersolution of (1.1). Then

\[
\|u\|_{L^p(Q_1)} \leq C \inf_{Q_3} u,
\]

where \(p > 0 \) and \(C \) depend only on \(n, \lambda \), and \(\Lambda \).

Proof. Without loss of generality, we assume that \(\inf_{Q_3} u = 1 \) and we only need to prove that there exists a constant \(c \) depending only on \(n, \lambda \), and \(\Lambda \) such that

\[
m\{x \in Q_1 : u(x) > e^k\} \leq \frac{1}{2^k},
\]

for \(k = 1, 2, \ldots \).

We prove (2.4) by induction. Take \(q_0 = 1/2 \) in Theorem 1.3. Then there exists a constant \(c \) depending only on \(n, \lambda \), and \(\Lambda \) such that (1.4) holds. Hence, (2.4) holds.
for \(k = 1 \) since we assume that \(\inf_{Q_3} u = 1 \). Suppose that (2.3) holds for \(k \leq k_0 - 1 \).

Let
\[
A := \{ x \in Q_1 : u(x) > c^{k_0} \} \quad \text{and} \quad B := \{ x \in Q_1 : u(x) > c^{k_0 - 1} \}.
\]

We need to prove \(m(A) \leq m(B)/2 \). By the Calderón-Zygmund cube decomposition (see [2, Lemma 4.2]), we only need to prove that for any \(Q_r(x_0) \subset Q_1 \),
\[
m(A \cap Q_r(x_0)) > \frac{1}{2} m(Q_r(x_0)) \Rightarrow Q_{3r}(x_0) \cap Q_1 \subset B,
\]
which is exactly the scaling version of (1.4) for \(v = u/c^{k_0-1} \).

Now, Theorem 1.1 follows clearly by combining (2.1) and (2.3).

Remark 2.3. “\(u \geq 0 \)” can be removed in Lemma 2.1 and a corresponding estimate for \(u^+ \) holds. As for elliptic equations in non-divergence form, we also have the local maximum principle (Lemma 2.1) and the weak Harnack inequality (Lemma 2.2) respectively (see [2, Theorem 4.8]). In fact, this note is inspired by [2].

References

1. L. Ambrosio, G. Dal Maso, M. Forti, M. Miranda and S. Spagnolo. Ennio De Giorgi Selected Papers, Springer-Verlag, Berlin, 2006, pp. 149–174.
2. L. A. Caffarelli and X. Cabré, Fully nonlinear elliptic equations, Amer. Math. Soc., Providence, RI, 1995.
3. E. De Giorgi, Sulla differenziabilità e l'analicità delle estremali degli integrali multipli regolari (Italian), Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 3 (1957) 25–43.
4. E. DiBenedetto, Harnack Estimates in Certain Function Classes, Atti Sem. Mat. Fis. Univ. Modena 37 (1989), 173-182.
5. E. DiBenedetto, U. Gianazza and V. Vespri, Harnacks inequality for degenerate and singular parabolic equations, Springer Monographs in Mathematics, Springer 2011.
6. U. Gianazza and V. Vespri, Parabolic De Giorgi classes of order \(p \) and the Harnack inequality, Calc. Var. Partial Differential Equations 26 (2006), 379-399.
7. J. Moser, A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math. 13 (1960) 457–468.
8. J. Moser, On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577–591.

Current address: School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China

E-mail address: lidsh@mail.xjtu.edu.cn

School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China

E-mail address: zkzkkz@stu.xjtu.edu.cn