Effect of RGO-Y$_2$O$_3$ and RGO-Y$_2$O$_3$:Cr$^{3+}$ Nano Composite Sensor for Dopamine

J Shashikumar
Kuvempu University

Bheenama Patil
Tumkur University

B E KUMARA SWAMY (✉ kumaraswamy21@gmail.com)
Kuvempu University

H Nagabhushana
Tumkur University

S Sharma
Jain University

P Lalitha
Avinashilingam University

Research Article

Keywords: NC, XRD, MCPE, SEM, Sensor, Dopamine

Posted Date: January 27th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-150720/v1

License: Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

The RGO-Y$_2$O$_3$ and RGO-Y$_2$O$_3$:Cr$^{3+}$ (5 mol %) nanocomposite (NC) synthesized a simple hydrothermal technique. The structure and morphology of the synthesized NCs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Y$_2$O$_3$:Cr$^{3+}$ display spherical shaped particles. Conversely, the surface of the RGO displays a wrinkly texture connecting with the existence of flexible and ultrathin graphene sheets. The photoluminescence (PL) emission spectra showed series of sharp peaks at 490, 591, and 687 nm which corresponding to $^4F_{9/2} \rightarrow ^6H_{15/2}$, $^4F_{9/2} \rightarrow ^6H_{13/2}$, and $^4F_{9/2} \rightarrow ^6H_{11/2}$ transitions and lies in the blue, orange, and red region. The prepared NCs were used for the preparation of modified carbon paste electrodes (MCPE) in the electrochemical detection of dopamine (DA) at pH 7.4. Both modified electrodes provide a good electrocatalytic activity for the voltammetric detection of DA. Doping is an effective method to improve the conductivity of Y$_2$O$_3$:Cr$^{3+}$ and developed a method for the sensor used in analytical applications.

1. Introduction

Now–a-days, one of the most important areas in science is nanotechnology. The nanoparticles (NPs) exhibit unique properties like chemical, physical, and electronic that are different from those of bulk materials. Electrochemical detection plays very important role and attractive for the monitoring of biomolecules [1-4].

Green chemistry controlled and bio-compatible way offers savvy, eco-friendly and scaled up for large quantity and do not need extreme conditions such as high temperature, pressure, and hazardous chemicals to fabricate NPs of metal, metal oxide as well as carbon comprising graphene [5].

As of late, Graphene is one of the developing materials with a single layer of carbon in a closed pressed honeycomb two-dimensional lattice materials having one of kind properties such as large surface area, improved electrical conductivity, unrivaled electrochemical property, and chemically stability make the graphene as profoundly encouraging for a wide range of applications, namely, energy storage, sensor, drug delivery, and optoelectronic devices, etc [6-10].

Nonetheless, a vital task in the fabrication and treating of graphene is that irreversible agglomerates and or restack to frame graphite as a result of van der-waals force interaction. Graphene oxide (GO) is a major by-product of graphene. The exterior of the GO sheets has a huge quantity of oxygen functional groups namely hydroxyl, carboxyl and epoxy groups situated at the edge of the sheets makes the GO sheet powerfully hydrophilic, permitting them to freely scatter in water [11].

Furthermore, the GO sheet is considered to be an electrical shielding material owing to its disordered sp2 bonding network and can be reestablished by attainment the reduction of GO. In recent advances, reduced graphene oxide (RGO) is used as the auxiliary for pristine graphene since of its large surface area and superior conductivity, which has been in favor of the precise revealing of the biological analytes.
Additionally, RGO also comprises various types of oxygen vacancies, which make it possible to be altered with other NMIs to additional progress its chemical as well as physical properties for the future generation point-of-care biosensors (POC) as well as energy storage devices. Reduction of GO results in the partial restoration of graphitic network conventionally attained using chemical, thermal, and electrochemical pathways [12].

Generally for chemical reduction of GO, reducing agents (RA) such as hydrazine (N₂H₄), hydrazine hydrate, and sodium borohydride (NaBH₄) were used. Conversely, these RA are unsafe to human health and the environment. Further, topological defects and vacancies were created upon thermal reduction of the GO sheet. The presence of these defects which affects the electronic properties of the RGO, resulting in the decrease of ballistic transport path length and introduce scattering sites. Therefore, the execution of a greener reduction route can offer a viable substitute methodology for large production of RGO [13]. Other than the utilization of GO and RGO, these days a lot of consideration for the integration of inorganic phosphor with GO to manufacture composites or hybrids has become a hotly debated issue of exploration because of their upgraded functionalities that can't be accomplished by either part alone. It is well known that the attachment of inorganic NPs onto GO may inhibit the aggregation and improve the significant persuasive effect on electrochemical properties through attaching them onto GO sheets. Amongst the metal oxide NPs decorating RGO, much attention has been given to doped and undoped NPs especially the stable Y₂O₃ host [14, 15].

Till date, many approaches have been utilized for the fabrication of MO/RGO composites namely microwave, hydrothermal, pyrolysis method, etc., [16-20] when the addition of MO NPs to the GO matrix, an upsurge in porosity happens and the GO-MO attains the properties that are dissimilar from those exhibited by each distinct component. On the other hand, Y₂O₃ NPs are chemically steady and have a narrow bandgap that enables electron transfer and offers excellent electrochemical sensitivity.

The present work describes the electrochemical study of DA by using hydrothermal synthesized RGO-Y₂O₃ and RGO-Y₂O₃:Cr³⁺ NCs. The prepared NCs were well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). NCs were used as the electrochemical sensor for voltammetric determination of DA by using a modified carbon paste electrode.

2. Experimental Section

2.1. Reagents & Investigation techniques

The sodium hydroxide, Dopamine hydrochloride, Uric acid, Na₂HPO₄ & NaH₂PO₄ was from nice chemicals. The graphite powder (Loba Chemie), silicon oil (Himedia) & all other required solutions were prepared from distilled water. The electrochemical experiments were performed on a voltammetric instrument of model CHI-660c (CH Instrument-660 electrochemical workstation). The Shimadzu made diffractometer provided with CuKα radiation was utilized for structural characterization. Surface morphology and particle size were studied with the help of a field emission scanning electron microscope.
(FESEM, TESCON) and transmission electron microscope (TEM, H-600, Hitachi, Japan) respectively. The Horiba made spectrofluorimeter (Jobin Yvon) was used for Photoluminescence (PL) with a 450 W Xenon lamp as an excitation source.

2.2. Preparation of RGO-Y_{2}O_{3} composite hydrothermal synthesis

The chemicals procured in the present work are analytical grade and used without further purification. The modified Hummers method has been used for the synthesis of GO [21]. The obtained GO solution was sonicated for about 25-30 min, centrifuged to wipe off the unreacted GO.

A single step hydrothermal route was utilized for the fabrication of pure Y_{2}O_{3} and Cr doped Y_{2}O_{3} in RGO. In a typical synthesis, stoichiometric quantities of yttrium chloride (YCl_{3}·6H_{2}O) and chromium chloride (CrCl_{3}·6H_{2}O) were dissolved to 120 mL of mixed liquid, encompassing 60 mL of C_{2}H_{5}OH and 60 mL of GO aqueous dispersion before stirred for 25-30 min to get a clear solution. Then the resulting solution was shifted to a 180 mL Teflon-lined stainless-steel autoclave and treated thermally at 175 °C for 12 h. Afterward, the autoclave was natural cooling down to room temperature. The final yield was washed away several times with distilled water and then ethanol, separately, and then centrifugation. The as-obtained products were dried at 80 °C for 12 h in air, and annealed at 500 °C for 2 h in Ar and subsequently 200 °C for 12 h in the air to form the RGO/Y_{2}O_{3}:Cr^{3+} NCs. Pure Y_{2}O_{3} and a series of RGO-Y_{2}O_{3}:Cr^{3+} NCs with the GO contents of 2, 4, 6, 8, and 10 mg were synthesized by changing the concentration of GO aqueous dispersion.

2.3. Modification of RGO-Y_{2}O_{3} and RGO-Y_{2}O_{3}Cr^{3+} NCs

The BCPE was prepared according to the literature [22, 23]. The CPE was modified by taking different weights of NCs (2, 4, 6, 8, and 10mg) in silicon oil and graphite powder. Then this mixture was thoroughly mixed in an agate mortar for about 30 min and packed into a homemade Teflon cavity current collector and polished using soft paper(scheme-1)[24].

3. Results And Discussion

3.1 Characterizationof RGO-Y_{2}O_{3} and RGO-Y_{2}O_{3}Cr^{3+} NCs

Fig. 1 shows the PXRD patterns of GO, RGO, and Y_{2}O_{3}:Cr^{3+}/RGO respectively. As obtained GO exhibits a distinctive (001) peak at 10.8° (JCPDS No. 89-8490). Further, GO was exposed to the HT route, a well-defined (002) peak was acquired at ~25° (JCPDS No. 89-7213) which indicates that the reduction of GO sheets. Further, Y_{2}O_{3}:Cr^{3+}/RGO NCs (Fig.1b) were dominated by the Y_{2}O_{3}:Cr^{3+} reflections (JCPDS file no. 83-0134). A feeble and expansive diffraction peak obtained at 24.31°, conforming to the interlayer spacing (d) of 0.37 nm, and the peak located at ~ 12.11° vanishes, signifying that the reduction and the exfoliating of GO into thinner RGO with lesser size. No obvious reflections, including the (001) GO are perceived specifying the creation of highly pure Y_{2}O_{3}:Cr^{3+} NPs. Most of the XRD peaks of the
\(\text{Y}_2\text{O}_3:\text{Cr}^{3+}/\text{RGO}\) hybrids were similar to those of the \(\text{Y}_2\text{O}_3:\text{Cr}^{3+}\) NPs with minor variations in the peak positions (broadening, change in the intensity of the diffraction profiles, which showed that \(\text{Y}_2\text{O}_3:\text{Cr}^{3+}\) is effectively anchored onto RGO which was auxiliary proved by the absence of a sharp (002) diffraction peak in the \(\text{Y}_2\text{O}_3:\text{Cr}^{3+}/\text{RGO}\) hybrid. Hence, the restacks of RGO are inhibited by the control of \(\text{Y}_2\text{O}_3:\text{Cr}^{3+}\) NPs.

The FE-SEM results of \(\text{Y}_2\text{O}_3:\text{Cr}^{3+}\), RGO, and RGO/ \(\text{Y}_2\text{O}_3:\text{Cr}^{3+}\) NCs are shown in Fig. 2a. The as can be evident from the figure, \(\text{Y}_2\text{O}_3:\text{Cr}^{3+}\) NPs exhibit spherical shaped particles. However, the surface of the RGO exhibits wrinkled texture connecting with the occurrence of flexible and ultra-thin GO sheets (Fig. 2b). The SEM image of RGO/ \(\text{Y}_2\text{O}_3:\text{Cr}^{3+}\) indicated a uniform distribution of \(\text{Y}_2\text{O}_3:\text{Cr}^{3+}\) NPs on the wrinkled RGO (Fig. 2c). The TEM image of the \(\text{Y}_2\text{O}_3:\text{Cr}^{3+}/\text{RGO}\) show the distribution of \(\text{Y}_2\text{O}_3:\text{Cr}^{3+}\) NPs on the GO sheet (Fig. 3)

3.2 Photoluminescence analysis

Fig. 4a shows the excitation spectrum of \(\text{Y}_2\text{O}_3:\text{Cr}^{3+}\) (5 mol %) NPs monitored at 689 nm emission wavelength. The excitation spectrum consists of peaks at 361nm 419nm corresponding to the transitions 6\(^{15/2}\)H \(\rightarrow\) 4\(^{7/2}\)P and 6\(^{15/2}\)H \(\rightarrow\) 4\(^{21/2}\)M respectively. Typical PL emission spectra of \(\text{Y}_2\text{O}_3:\text{Cr}^{3+}\) (5 mol %) NPs under 361nm excitation wavelength are shown in Fig. 4b The emission spectra displays sharp peaks at ~ 490, 591, and 689 nm corresponding to 4\(^{9/2}\)F \(\rightarrow\) 6\(^{15/2}\)H, 4\(^{9/2}\)F \(\rightarrow\) 6\(^{13/2}\)H, and 4\(^{9/2}\)F \(\rightarrow\) 6\(^{11/2}\)H transitions which lie in the blue, orange and red region. As can be seen from the figure, it is apparent that the red emission was dominating when compared to blue and orange emissions. The transition corresponding to orange emission is magnetically allowed and hardly differs with the crystal field strength around the \(\text{Cr}^{3+}\) ion. Whereas, the transition corresponding to blue emission belongs to the hypersensitive electric field (forced electric dipole) transition with the selection rule \(\Delta J = 2\), which is strongly influenced by the outside surrounding environment. When \(\text{Cr}^{3+}\) is located at a low – symmetry local site (without inversion center), red emission is often dominant. In the present study, since the red emission is dominant, the \(\text{Cr}^{3+}\) ions occupy lower symmetry local site in the \(\text{Y}_2\text{O}_3\) host matrix.

3.3 Characterization and Optimization of RGO-\(\text{Y}_2\text{O}_3\) and RGO-\(\text{Y}_2\text{O}_3:\text{Cr}^{3+}\) MCPE

Fig. 5a establishes the CVs response of 1 mM \(\text{K}_3[\text{Fe (CN)}_6]\) in the KCl at the modified electrodes. The NCs MCPE displayed increment in the redox peak current (I\(\text{pa}\)) with the decrease \(\Delta\text{Ep}\) compared to BCPE and RGO-\(\text{Y}_2\text{O}_3:\text{Cr}^{3+}\) MCPE exhibit highest I\(\text{pa}\). The total active surface area of electrodes calculated by Randles-Sevick's equation (1) [25]. The area calculated that of greater value for NCs MCPE (0.0412 cm\(^2\) and 0.0456 cm\(^2\)) compared to BCPE (0.031 cm\(^2\)).

\[
I_p = (2.69 \times 10^5) n^{3/2} A D_0^{1/2} C_0 v^{1/2}\]

\[
I_p = (2.69 \times 10^5) n^{3/2} A D_0^{1/2} C_0 v^{1/2}\]

Page 5/23
To optimize the quantity of amount of RGO-Y$_2$O$_3$ and RGO-Y$_2$O$_3$Cr$^{3+}$ were used as a modifier, CPEs modified with different quantities of the RGO-Y$_2$O$_3$ and RGO-Y$_2$O$_3$ composites were used to determine 10 µM of DA (PBS at pH 7.4). Fig. 5b depicts the plot of Ipa versus the different quantities of RGO-Y$_2$O$_3$ and RGO-Y$_2$O$_3$Cr$^{3+}$ NPs respectively. As a result, the MCPEs modified with 6 mg were used as optimized electrodes for further electrochemical investigations.

3.4. The electrochemical response of DA at RGO-Y$_2$O$_3$ and RGO-Y$_2$O$_3$: Cr$^{3+}$ MCPE

Fig. 6 shows the current response of 10 µM DA at the BCPE and RGO-Y$_2$O$_3$ and RGO-Y$_2$O$_3$: Cr$^{3+}$ MCPEs (0.2 M PBS at pH 7.4) at SR of 50 mVs$^{-1}$. In BCPE, the CVs of DA showed a minimum current response, and a peak potential was noted at 142mV and 86 mV, respectively and their corresponding redox peak potential differences (ΔEp) were computed to be 56 mV. Similarly, RGO-Y$_2$O$_3$ and RGO-Y$_2$O$_3$:Cr$^{3+}$ MCPE showed good Ipa with decreased ΔEp value 54 mV and 52 mV respectively as compared to the BCPE. It exhibits clear proof of the catalytic effect of the expected sensor towards DA investigation.

3.5. Response of speed rate at RGO-Y$_2$O$_3$ and RGO-Y$_2$O$_3$:Cr$^{3+}$ MCPE

The speed rate (v) was inspected by CV using 10 µM DA in 0.2 M PBS at RGO-Y$_2$O$_3$ and RGO-Y$_2$O$_3$: Cr$^{3+}$ MCPE. Fig. 7a &b show the Ip increment with a slight positive shift in the peak potential when the v was a hike in the range from 50-500 mVs$^{-1}$. The kinetics of the electrode was evaluated by plotting of v v/s Ipa present marvelous linearity (Fig.7c). The $v^{1/2}$ v/s Ipa (Fig.7d) also shows good linearity. This suggests the adsorption- controlled phenomena on electrode [26]. The heterogeneous rate constant (k^0) (Table-1) of RGO-Y$_2$O$_3$ and RGO-Y$_2$O$_3$:Cr$^{3+}$ MCPEs was calculated by using Eq. (2). [26]

$$\Delta \text{Ep}=201.39 \log \left(v / k^0 \right)-301.78$$ \hspace{1cm} (2)

3.6. Success of concentration

Fig. 8 a&b depicted the CVs of DA at RGO-Y$_2$O$_3$ and RGO-Y$_2$O$_3$:Cr$^{3+}$ MCPEs. The concentration of these biomolecules varied 10 to 60 µM (a- j) in 0.2 M PBS at pH 7.4. The Ip of DA hikes with a hike the concentration. The plot of Ipa v/s DA concentration exhibits the correlation coefficient value was found to be 0.9954 and 0.9986 respectively (Inset of Fig. a&b). The limit of detection (LOD) and limit of quantification (LOQ) was a determination by using the equations [27]:

$$\text{LOD} = 3 \text{ S/M} \hspace{1cm} (3)$$

$$\text{LOQ} = 10 \text{ S/M} \hspace{1cm} (4)$$

To determine, the LOD for DA was 6.01 and 3 µM. & LOQ was 20.04 and 10.88 µM for DA at the RGO-Y$_2$O$_3$ and RGO-Y$_2$O$_3$:Cr$^{3+}$ MCPEs respectively. The comparative analytical performance electrode for DA is designed in Table 2. [28-37].
3.7. Influence of pH

The effect of pH on the electrochemical response of the overoxidized dopamine film towards DA at the RGO-Y$_2$O$_3$ and RGO-Y$_2$O$_3$Cr$^{3+}$ MCPEs was carefully examined in the pH series of 6.2–7.8 show Fig. 9 a& b respectively. The peak potential shifts to a negative side with hike pH in the MCPEs. The anodic peak potential (Epa) versus pH graph (Inset of Fig. 9 a& b) clearly illustrates. The getting slopes of 57 mV/pH and 60 mV/pH are very close to the Nernstian value of 59 mV for an equal number of electron and proton transfer reactions.

3.8. Selectivity & Stability

Selectivity & stability are also key indicators for practical use. The CVs were recorded for the mixture of 10 µM DA with 10 µM UA, in 0.2 M PBS of pH 7.4 at BCPE, RGO-Y$_2$O$_3$, and RGO-Y$_2$O$_3$Cr$^{3+}$ MCPEs (Fig. 10). The CVs responses for analytes with low current intensities were seriously overlapped, demonstrating the poor selectivity & sensitivity of the BCPE. However, in identical conditions, the MCPE can separate the oxidation potential of all analytes in the mixture. This result was identifying selectivity MCPE. The stability of RGO-Y$_2$O$_3$ and RGO-Y$_2$O$_3$Cr$^{3+}$ was also investigated after being stored in a dry state for seven days at room temperature. It was found that the current signals retained 95.6 % and 96.18% of the initial current response & the peak potentials were unchanged.

3.9. Interference study

Lastly, to evaluate the feasibility of the proposed method, the interference of possible chemicals in the determination of DA was conducted, the interference study was performed in the mixture of samples of DA & UA at the RGO-Y$_2$O$_3$, and RGO-Y$_2$O$_3$Cr$^{3+}$ MCPEs by differential pulse voltammetry (DPV). The RGO-Y$_2$O$_3$MCPE (Fig. 11a) shows the Ip of UA was increased with increased concentration from 5 to 30 µM by keeping the constant concentration of 5 µM DA, Similarly, DA concentration was varied and its Ip is increased with the concentration (Inset Fig. 11a). The same procedure also adopted for RGO-Y$_2$O$_3$Cr$^{3+}$ MCPE and varying the concentration UA and DA shows in Fig. 11b&Inset Fig. 11b respectively. This result shows higher current sensitivity and absence of background current and this result helps in the accurate and precise determination of DA and UA at RGO-Y$_2$O$_3$ and RGO-Y$_2$O$_3$Cr$^{3+}$ MCPEs.

3.10. The analytical application of the proposed sensor

To verify the success of the proposed sensor in the dopamine hydrochloride injection. The injection was procured from VHB Medi Sciences Ltd with a specified content of DA 40.0 mg/mL (suitable dilution in 0.2 M PBS). The samples were analyzed by the standard addition method. The results have been shown in Table 3. Therefore, the proposed modified electrode could be applied for the real sample analysis with satisfactory results.

4. Conclusion
In the present work, the RGO-Y$_2$O$_3$ and RGO-Y$_2$O$_3$: Cr$^{3+}$ NCs were synthesized and used as sensors for DA. The prepared RGO-Y$_2$O$_3$ and RGO-Y$_2$O$_3$: Cr$^{3+}$ MCPEs marvelous current response towards DA. We successfully studied the selectivity and stability of RGO-Y$_2$O$_3$ and RGO-Y$_2$O$_3$: Cr$^{3+}$ MCPEs with the influence of pH. The RGO-Y$_2$O$_3$: Cr$^{3+}$ MCPE show good linearity with the lower LOD compares to other electrodes. Thus, the facile green synthesized RGO-Y$_2$O$_3$: Cr$^{3+}$ NCs is a promising electrode material for sensor applications.

References

1. Wojciech Maziarz, TiO$_2$/SnO$_2$ and TiO$_2$/CuO thin-film nano-heterostructures as gas sensors, *Applied Surface Science*. **480** 361-370. (2019)

2. Bochenkov V. E, Sergeev G. B., Sensitivity, Selectivity, and Stability of Gas-Sensitive Metal-Oxide Nanostructures. In Metal Oxide Nanostructures and their applications; A. Umar, Y.-B. H., Ed.; *American Scientific Publishers*, **3** 31–52 ISBN 1588831760 (2010).

3. Miller D. R., Akbar S. A., Morris P. A, Nanoscale metal oxide-based heterojunctions for gas sensing: A review. *Sensors Actuators, B Chem*. **204** 250–272, doi:10.1016/j.snb.2014.07.074. (2014)

4. Kim H.-J., Lee J.-H, Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. *Sensors Actuators B Chem*. **192** 607–627 (2014).

5. Singh C., Md. Ali A. Sumana G, Green synthesis of graphene-based biomaterials using fenugreek seed for lipid detection, *ACS Sustain. Chem. Eng*. **4** 871–880(2016).

6. Ionita M. Vlasceanu G.M, Watzlawek A.A., Voicu S.I., Burns J.S., Iovu H., Graphene and functionalized graphene: extraordinary prospects for nanobiocomposite. *Materials, Compos. Part B* **121** (2017)

7. Zhu Y. Murali S., Cai W., Li X., Suk J.W., Potts J.R., Ruoff R.S., Graphene, and Graphene Oxide: Synthesis, Properties, and Applications, *Mater*. **22** 3906–3924, https://doi.org/10.1002/adma.201001068. (2010)

8. Rao C.N.R., Sood A.K, Subrahmanyan K.S., Govindaraj A., Graphene: The new two-dimensional nanomaterial, *Chemie - Int. Ed.*, https://doi.org/10.1002/anie.200901678. (2009),

9. Geim A.K., Novoselov K.S, The rise of graphene, *Mater*. **6** 183–191 (2007).

10. Allen M.J., Tung V.C., Kaner R.B., Honeycomb carbon: A review of graphene, *Rev. https://doi.org/10.1021/cr900070d*. (2010)

11. Balandin A.A., Ghosh S., Bao W., Calizo I., Teweldebrhan D., Miao F., Lau C.N., Superior thermal conductivity of single-layer graphene, *Nano Lett*. **8** 902–907, https://doi.org/10.1021/nl0731872. (2008)

12. Guodong Li, Yanbai Shen, Pengfei Zhou, Fulai Hao, Ping Fang, Dezhou Wei, Dan Meng, Xiaoguang San. Design and application of highly responsive and selective rGO-SnO2, nanocomposites for NO2 monitoring, *Materials Characterization* **163** 110284 (2020)
13. Rajesh Madhuvilakku, Srinivasan Alagar, Ramalakshmi Mariappan, Shakkhivel Piraman, Green one-pot synthesis of flowers-like Fe$_3$O$_4$/rGO hybrid nanocomposites for effective electrochemical detection of riboflavin and low-cost supercapacitor applications. *Sensors and Actuators B* **253** 879–892 (2017)

14. Carolina Martínez-Sánchez, Facundo Montiel-González, Vicente Rodríguez-González, Electrochemical sensing of acetaminophen using a practical carbon paste electrode modified with a graphene oxide-Y$_2$O$_3$ nanocomposite, *Taiwan Institute of Chemical Engineers** **96** 382–389 (2019)

15. Zhu S. Chen M., Ren W. Yang J. Qu S. Li Z. G. Diao, Microwave-assisted synthesis of α-Fe$_2$O$_3$/reduced graphene oxide as anode material for high-performance lithium-ion batteries, *New J. Chem.* **39** 7923–7931 (2015)

16. Zhang L. Bao Z. Yu X. Dai P. Zhu J. Wu M. Li G. Liu X. Sun Z. C. Chen, Rational design of α-Fe$_2$O$_3$/reduced graphene oxide composite: rapid detection and effective removal of organic pollutants, *ACS Appl. Mater. Interfaces* **8** 6431–6438 (2016).

17. Zhou Q. Zhao Z. Wang Z. Dong Y. Wang X. Gogotsi Y. Qiu J. Low-temperature plasma synthesis of mesoporous Fe3O4 nanorods grafted on reduced graphene oxide for high-performance lithium storage, *Nanoscale* **6** 2286–2291 (2014).

18. Hu L. Percheron A. Chaumont D. Brachais C.H. Microwave-assisted one-step hydrothermal synthesis of pure iron oxide nanoparticles: magnetite, maghemite and hematite, *J. Sol-Gel Sci Technol.* **60** 198–205 (2011).

19. Ahmad S. Riaz U. Kaushik A Alam. J. Soft template synthesis of superparamagnetic Fe3O4nanoparticles a novel technique, *Inorg. Organomet. Polym.* **19** 355–360 (2009).

20. Liang J. Xu Y. Sui D. Zhang L. Huang Y. Ma Y. Li F. Chen Y. Flexible, magnetic, and electrically conductive Graphene/Fe3O4paper and its application for magnetic-controlled switches, *Phys. Chem. C* **114** 17465–17471 (2010).

21. Hummers R. W. S. Offeman E. Preparation of Graphitic Oxide, *Am. Chem. Soc.* **208** 1937 (1957).

22. Manasa G. Ronald J Mascarenhas, Ashis K Satpati, Ozma J D'Souza, A. Dhason, Facile preparation of poly(methylene blue) modified carbon paste electrode for the detection and quantification of catechin, *Materials Science and Engineering C* **73** 552–561 (2017).

23. Reddy S. Swamy B.E.K. Jayadevappa H. CuO nanoparticle sensor for the electrochemical determination of dopamine, *Acta* **61** 78–86(2012).

24. Ashoka N. B. Swamy B.E.K and Jayadevappa H. Nanorod TiO$_2$ sensor for dopamine: a voltammetric study *New J.Chem., 41* 11817 (2017)

25. Nayak D.S. Shetti N.P. A novel sensor for a food dye erythrosine at glucose modified electrode, *Sensors Actuators B Chem.* **230** 140–148 (2016)

26. Shashikumara J.K. Kumara Swamy B.E. Madhuchandra H.D. Poly (amido black) modified carbon paste electrode sensor for dopamine in the presence of uric acid, *Sci. Energy Technol.* **3** 390–39 (2020)
27. Nizam Diab, Dulce M. Morales, Corina Andronescu, Muayad Masoud, Wolfgang Schuhmann, A sensitive and selective graphene/cobalt tetrathionatephthalocyanine sensor for detection of dopamine, *Sensor and Actuators B: Chemical*, **285**, 17-23 (2019),

28. Pruneanu S. Biris A. R. Pogacean F. Socaci C. Coros M., Rosu M. C. Watanabe F. Biris A. S. The influence of uric and ascorbic acid on the electrochemical detection of dopamine using graphene-modified electrodes, *Electrochimica Acta* **154** 197 (2015).

29. Thiagarajan S. Chen S.M. Preparation and characterization of Pt Au hybrid film modified electrodes and their use in the simultaneous determination of dopamine, ascorbic acid and uric acid, *Talanta* **74** (2) 212–222(2007).

30. Corona-Avendano S. Ramirez-Silva M. T. Palomar-Pardave M. Hernandez-Martinez L. Romero-Romo M. Alarcon-Angeles G. Influence of CTAB on the electrochemical behavior of dopamine and its analytic determination in the presence of ascorbic acid, *Journal of Applied Electrochemistry*. **40** 463 (2010)

31. Ali Kamyabi M, Aghajanloo F, Electrocatalytic Response of dopamine at a CPE Modified with Ferrocene. *Rot Che Act* **82**: 599-606 (2009)

32. Sunil Kumar Naik T.S. Muthu Martin Mwaurah, Kumara Swamy B.E. Fabrication of poly (Sudan III) modified carbon paste electrode sensor for dopamine: A voltammetric study. *Jeac 834* 71- 78 (2018)

33. Goyal R.N, Singh S.P, Simultaneous voltammetric determination of dopamine and adenosine using a single-walled carbon nanotube – MCPE. *Carbon* **46** 1556-1562 (2008).

34. Wang Q. Li N. Wang W. Electrocatalytic Response of Dopamine at a Metallothionein Self-Assembled Gold Electrode. *Sci. 18* 635 (2002)

35. Zhihong Zhu, Lining Qu, Yaqing Guo, Yan Zeng, Wei Sun, Xintang Huang Electrochemical detection of dopamine on a Ni/Al layered double hydroxide modified carbon ionic liquid electrode. *Sensors and Actuators B* **151** 146–152(2010)

36. Balwinder Kaur, Thangarasu Pandiyanb, Biswarup Satpati, Rajendra Srivastava, Simultaneous and sensitive determination of ascorbic acid, dopamine, uric acid, and tryptophan with silver nanoparticles-decorated reduced graphene oxide modified electrode *Colloids and Surfaces B: Biointerfaces* **111** 97–106 (2013)

37. Silva L.V.D., Silva F.A.S., Kubota L.T. Lopes C.B. Lima P.R. Costa E.O. Junior W.P. Goulart M.O.F. Amperometric sensor based on carbon nanotubes and electropolymerized vanillic acid for simultaneous determination of ascorbic acid, dopamine, and uric acid, *Solid State Electrochem*. **20** 2389-2393 (2016).

Tables

Table.1. Rate constant values for DA at different speed rates.
Sl. No	Electrode	Detection limit (µM)	Method	References
01	Au/Gr-Au	30	SW	[28]
01	Pt–Au hybrid	24	CV	[29]
02	CTAB/CPE	11.0	DPV	[30]
03	Fc-MCPE	9.4	CV	[31]
04	poly (sudan III)/MCPE	9.3	CV	[32]
05	SWCNT/GCE	7.0	DPV	[33]
06	RGO-Y₂O₃ MCPE	6.01	CV	Present work
07	Metallothioneins self-assembled gold electrode	6.0	CV	[34]
08	LDH/CILE	5.0	DPV	[35]
09	Ag-reduced GO/GCE	5.4	LSV	[36]
10	Ag/Ag₂S-CNT-Nafion	4.7	DPV	[37]
11	RGO-Y₂O₃Cr³⁺ MCPE	3.26	CV	Present work

Table 2: Comparative analytical performance electrode for DA

Sl. No	Electrode	Method	References
	Au/Gr-Au	SW	[28]
	Pt–Au hybrid	CV	[29]
	CTAB/CPE	DPV	[30]
	Fc-MCPE	CV	[31]
	poly (sudan III)/MCPE	CV	[32]
	SWCNT/GCE	DPV	[33]
	RGO-Y₂O₃ MCPE	CV	Present work
	Metallothioneins self-assembled gold electrode	CV	[34]
	LDH/CILE	DPV	[35]
	Ag-reduced GO/GCE	LSV	[36]
	Ag/Ag₂S-CNT-Nafion	DPV	[37]
	RGO-Y₂O₃Cr³⁺ MCPE	CV	Present work

Sl. No	Electrode	Method	References
	Au/Gr-Au	SW	[28]
	Pt–Au hybrid	CV	[29]
	CTAB/CPE	DPV	[30]
	Fc-MCPE	CV	[31]
	poly (sudan III)/MCPE	CV	[32]
	SWCNT/GCE	DPV	[33]
	RGO-Y₂O₃ MCPE	CV	Present work
	Metallothioneins self-assembled gold electrode	CV	[34]
	LDH/CILE	DPV	[35]
	Ag-reduced GO/GCE	LSV	[36]
	Ag/Ag₂S-CNT-Nafion	DPV	[37]
	RGO-Y₂O₃Cr³⁺ MCPE	CV	Present work
Table 3. Detection of DA in the real sample (n=2)

Electrodes	Sample added (µM)	Found (µM)	Recovery (%)
RGO-Y$_2$O$_3$ MCPE	20	19.48	97.4
	30	29.92	99.6
RGO-Y$2O_3$Cr$^{3+}$ MCPE	20	19.5	97.8
	30	29.96	99.8
Figure 1

PXRD patterns of (a) rGO (b) rGO/ Y2O3:Cr3+ NCs (c) Y2O3:Cr3+ NPs
Figure 2

Schematic representation of the stepwise fabrication of electrode.
Figure 3

SEM images of a) Y2O3:Cr3+ NPs b) rGO c) rGO/ Y2O3:Cr3+ NCs
Figure 4

TEM images of a) rGO b) rGO/ Y2O3:Cr3+ NCs c) HRTEM Image
Figure 5

a) PL excitation spectrum b) Emission spectrum of rGO/Y2O3:Cr3+
Figure 6

a) CVs of 1 mM potassium ferrocyanide in 1 M KCl solution at speed rate 50 mVs⁻¹. b) Plot of Ipa v/s weight of NCs.
Figure 7

CVs of 10 μM DA in 0.2 M PBS solution of pH 7.4 at speed rate 50 mVs⁻¹.
Figure 8

a) CVs of 10 μM DA (0.2M PBS of pH 7.4) at RGO-Y2O3 MCPE at various speed rate b) CVs of 10 μM DA (0.2M PBS of pH 7.4) at RGO-Y2O3; Cr3+ MCPE at speed various rate. c) Plot of Ipa v/s \(v \). d) Plot of Ipa v/s \(v^{1/2} \).
Figure 9
CVs of DA (0.2M PBS of pH 7.4) at RGO-Y2O3 MCPE with various concentrations. b) CVs of 10 μM DA (0.2M PBS of pH 7.4) at RGO-Y2O3; Cr3+ MCPE with various concentrations. The inset Fig a& b shows the graph of Ipa versus concentration of DA.

Figure 10
CVs for different pH of 10 μM DA in 0.2 M PBS at RGO-Y2O3 MCPE b) CVs for different pH of 10 μM DA in 0.2 M PBS RGO-Y2O3; Cr3+ MCPE. The inset Fig a& b shows the graph of Epa v/s pH.
Figure 11

CVs for selectivity analysis for 10 µM DA & 10 µM UA at BCPE & MCPE at a speed rate of 50 mVs⁻¹
Figure 12

DPVs got for different concentration 10-60 µM DA in PBS (pH 7.4) with 10 µM UA at RGO-Y2O3 MCPE (a) & RGO-Y2O3; Cr3+ MCPE (b). The inset figure DPVs got for different of concentration 10-60 µM UA in PBS (pH 7.4) with 10 µM DA at RGO-Y2O3 MCPE (Inset a) & RGO-Y2O3; Cr3+ MCPE (Inset b).