Heart failure disease management: a systematic review of effectiveness in heart failure with preserved ejection fraction

Fotini Kalogirou¹, Faye Forsyth¹,², Martha Kyriakou³,⁴, Rhys Mantle⁵ and Christi Deaton¹,²*

¹Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; ²Department of Public Health and Primary Care, Forvie Site, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK; ³Cyprus University of Technology, Limassol, Cyprus; ⁴American Medical Center, Nicosia, Cyprus; ⁵University of Cambridge School of Clinical Medicine, Cambridge, UK

Abstract

Aims Heart failure with preserved ejection fraction (HFpEF) poses a substantial challenge for clinicians, but there is little guidance for effective management. The aim of this systematic review was to determine if there was evidence that disease management programmes (DMPs) improved outcomes for patients with HFpEF.

Methods and results A systematic review of controlled studies in English or Greek of DMPs including patients with HFpEF from 2008 to 2018 was conducted using CINAHL, Cochrane, MEDLINE, and Embase. Interventions were assessed using a DMP taxonomy and scored for complexity and intensity. Bias was assessed using the Cochrane Collaboration tool. Initial and updated searches found 6089 titles once duplicates were removed. The final analysis included 18 studies with 5435 HF patients: 1866 patients (34%, study ranges 18–100%) had potential HFpEF (limited by variable definitions). Significant heterogeneity in terms of the population, intervention, comparisons, and outcomes prohibited meta-analysis. Statistically significant or positive trends were found in mortality, hospitalization rates, self-care ability, quality of life, anxiety, depression, and sleep, but findings were not robust or consistent. Four studies reported results separately for study-defined HFpEF, with two finding less positive effect on outcomes.

Conclusions Varying definitions of HFpEF used in studies are a substantial limitation in interpretation of findings. The reduced efficacy noted in contemporary HF DMP studies may not only be due to improvements in usual care but may also reflect inclusion of heterogeneous patients with HFpEF or HF with mid-range EF who may not respond in the same way as HFrEF to individual components. Given that patients with HFpEF are older and multi-morbid, DMPs targeting HFpEF should not rely on a single-disease focus but provide care that addresses predisposing and presentation phenotypes and draws on the principles of comprehensive geriatric assessment. Other components could also be more targeted to HFpEF such as modification of lifestyle factors for which there is emerging evidence, rather than simply continuing the model of care used in HFrEF. Based on current evidence, HF DMPs may improve mortality, hospitalization rates, self-care, and quality of life in patients with HFpEF; however, further research specifically tailored to appropriately defined HFpEF is required.

Keywords Heart failure; Heart failure with preserved ejection fraction; Disease management; Systematic review

© 2020 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
with HFrEF (n = 53 065) found a 30 day and 1 year all-cause readmission rate of 22% and 67% respectively and a composite all-cause readmission and mortality rate of 74.5% at 1 year. Current recommendations for management of HFrEF are to control cardiovascular and non-cardiovascular co-morbidities and use diuretics to manage fluid status. Although multi-disciplinary team (MDT) disease management programmes to reduce the risk of hospitalization and mortality are recommended for patients with HF, there is little information about their effectiveness specifically in HFrEF.

Disease management programmes (DMP) are designed to ‘improve outcomes through structured follow-up with patient education, optimization of medical treatment, psychosocial support and improved access to care’. Most HF DMPs in the 1990s–early 2000s focused on patients with HFrEF usually after an HF hospitalization. Outcomes for patients with HFrEF were improved through multi-component DMPs that included the following: optimization of evidence-based treatment (emphasis on medications for HFrEF), education, behaviour change, supported self-management, and clinician monitoring. In previous systematic reviews, HF DMPs were found to significantly reduce HF hospitalizations, and those with continued specialized follow-up reduced all-cause mortality and all-cause hospitalization. However, some reviews have found limited or no benefit, especially in studies after 2008, in studies with <3 months of follow-up, or in patients without a recent hospitalization.

In HF DMPs, it can be challenging to ascertain if the sample included patients with HFrEF, given relatively recent use of the term and controversies over diagnostic criteria. HFrEF is a more tempting target because of robust evidence for specific pharmacological therapies in reducing mortality and morbidity. Thus, little is known about the use and effectiveness of HF DMPs in patients with HFrEF in improving outcomes. The aim of this analysis was to determine if there was evidence that HF DMPs improved outcomes specifically for patients with HFrEF.

The review questions were as follows:

- Do MDT or nurse-led DMPs for patients with HFrEF result in greater outcomes for patients compared with usual care or another intervention?
- What are the components and processes of successful MDT or nurse-led DMPs for patients with HFrEF?

Methods

The review protocol was registered on Prospero (http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42017067980). The systematic review was conducted and reported in accordance to the PRISMA guidelines (http://www.prisma-statement.org/). The years 2008 to 2018 were chosen to reflect contemporary management of HF, increasing attention to HFrEF, and recommendations for HF DMPs in guidelines for management of HF. Language was restricted to English or Greek. Studies of community-dwelling adults with HFrEF were included, as were studies with a mixed HF population if the proportion of patients with HFrEF was discernible, and represented approximately 20% or greater of the total sample. The intervention had to be an MDT or nurse-led outpatient DMP with a minimum of 3 months of follow-up and a control group for comparison. Single interventions composed only of pharmacotherapy, exercise, invasive monitoring, end-of-life care, or telemonitoring alone were excluded. Interventions were assessed using a taxonomy of DMPs and scored for intensity and complexity. Final consensus on findings, interpretation, and text were agreed by all authors.

Information sources, search strategy, and study selection

The following databases were searched from January 2017 to May 2018: CINAHL through EBSCO, Cochrane, MEDLINE, and Embase through Ovid. References in included articles were hand searched. The following terms along with synonyms and relevant terms were applied: HF, primary care, randomized controlled trials, disease management, nurse, and multi-disciplinary. Titles and abstracts were reviewed by two authors (F. K. and C. D.), and full-text papers were reviewed by at least two of the authors.

Data process

The Cochrane data extraction form was revised to align with the aims of the current review and pilot tested. Data were abstracted and cross-checked by at least two authors independently. Bias was assessed using the Cochrane Collaboration tool by at least two authors on the following fields: (i) random sequence generation, (ii) allocation concealment, (iii) blinding of participants and personnel, (iv) blinded outcome assessment, (v) selective outcome reporting, (vi) incomplete outcome data, and (vii) other bias.

Results

Initial and updated searches found 7617 titles, with 6089 titles once duplicates were removed. The majority (5791) were excluded following title review. Abstracts (192) were screened in detail for eligibility, and 95 full-text papers were reviewed. Reasons for exclusion of papers can be found in Figure 1. An additional 20 papers from references were reviewed. The final analysis included 18 studies in 18 papers.
with 5435 patients with HF, 1866 of whom were considered by the study to have HFrEF (34%).

Inclusion of patients with heart failure with preserved ejection fraction

Only one study focused exclusively on patients with HFrEF; 17 other studies included and documented numbers of patients characterized as HFrEF based on study criteria. When studies stated that they included patients with HFrEF without documenting percentage or number, authors were contacted for information. The proportion of patients with HFrEF varied from 18% to 100% and was variably defined in the studies (Table J). No studies defined HFrEF in line with the current European Society of Cardiology (ESC) guidelines, which include the following criteria: signs and symptoms of HF, a left ventricular EF ≥ 50%, elevated levels of natriuretic peptides and either relevant structural heart disease (left ventricular hypertrophy and/or left atrial enlargement), and/or diastolic dysfunction on echocardiogram. Four studies included some analysis specific to patients with HFrEF, with three of these in comparison with HFrEF. Five studies had samples that were predominantly patients with HFrEF (64–84%) as defined by the study, although only one included discussion of issues specific to HFrEF.

Heart failure with preserved ejection fraction definition

The EF cut-off point for defining HFrEF ranged between ≥40% and ≥50%. It is noticeable that the ESC recommended cut-off point of EF ≥ 50% was used only in seven studies. Three
Study	Country	Sample size	Identification of patients with HF	HFpEF definition/criteria	Proportion HFpEF (%)	Separate results given for HFpEF
Andryukhin et al. (2010)	Russia	N = 100	Patients included if had signs and symptoms of HF, EF ≥ 50%, and echo evidence of DD, LV stiffness, or abnormal LV relaxation	Signs and symptoms of HF, EF ≥ 50%, and echo evidence of DD, LV stiffness, or abnormal LV relaxation	100%	Yes
Bekelman et al. (2015)	USA	N = 392	Inpatient or outpatient diagnosis of HF, any type	EF ≥ 50%	47% (163 of 348 patients with EF measured)	No
Bekelman et al. (2018)	USA	N = 314	Symptomatic outpatients with HF, used dx + data on meds, EF, and BNP	EF ≥ 50%	40% (n = 121)	Intervention effect on KCCQ differed by EF, with less effect in HFpEF
Brotons et al. (2009)	Spain	N = 283	Hospitalized for suspected HF, with HF as primary or second discharge diagnosis	EF ≥ 50%	41% (n = 117)	No
Chang et al. (2016)	Taiwan	N = 84	Recruited from cardiology outpatient department, with cardiology confirmed dx of HF	EF ≥ 50%	55% (n = 46)	No
Dracup et al. (2014)	USA	N = 602	Recruited from clinics and hospitals, needed hospitalization for HF within last 6 months	EF ≥ 40%	49% (n = 295)	HF group (by EF < 40% or ≥40%) added as a covariate; no difference between HFpEF and HFrEF
Freedland et al. (2015)	USA	N = 158	Recruited from single medical centre, dx with HF within last 3 months	EF ≥ 45%	46% (n = 73)	No
Gonzalez-Guerrero et al.	Spain	N = 117	Hospitalized with acute HF (ESC criteria) in a single centre	Not specifically defined	67% (n = 77)	No
Jaarsma et al. (2008)	The Netherlands	N = 1023	Recruited during hospital admission for HF (signs and symptoms of HF, plus evidence of structural underlying heart disease on imaging)	Not specified in original paper, but secondary analysis used EF ≥ 40% for HFpEF	A secondary analysis of 661 patients found 33% with HFpEF (n = 218)	No
Kalter-Leibovici et al. (2017)	Israel	N = 1360	Recruited from public hospitals, primary care, and community cardiologists within 2 months after HF hospitalization; dx based on signs and symptoms, echo evidence	EF ≥ 50%	18% (n = 247)	Yes, less effect of DMP and very wide CI for HFpEF compared with HFrEF; no significant difference by composite outcome, HF hospitalization, or all-cause mortality
Kwok et al. (2008)	China	N = 105	Recruited during hospital admission for HF	Differentiated between those with and without EF ≥ 40%	77% (n = 81)	No
Leventhal et al. (2011)	Switzerland	N = 42	Recruited based on hospitalization for decompensated HF	EF ≥ 45%	49% (n = 20)	No
Masterson Creber et al. (2016)	USA	N = 100	Recruited during HF hospitalization at 1 urban hospital	Defined as ‘diastolic HF’ with no EF specified	25% (17 of the 67 who completed)	No
Shao et al. (2013)	Taiwan	N = 108		EF > 40%	22% (n = 24)	No

(Continues)
Table 1 (continued)

Study	Country	Sample size	Identification of patients with HF	HFpEF definition/criteria	Proportion HFpEF (%)	Separate results given for HFpEF
Srisuk et al. (2015)	Thailand	N = 100 dyads	Patients attending heart clinics with dx HF	Not specifically defined; MD with objective evidence by mean EF was 50–51% ± 13	27% (n = 76)	No
Stewart et al. (2014)	Australia	N = 280	Recruited from 3 cardiology hospitals	Cardiologist confirmed dx HF	EF > 45%	Yes, no difference in % with HFpEF by survived or died
Tsuchihashi-Makaya et al. (2013)	Japan	N = 168	Recruited from 3 cardiology hospitals	EF > 40%	64% (n = 107)	No
Young et al. (2016)	USA	N = 100	Patients hospitalized with HF (HF discharge diagnosis)	EF ≥ 50%	84% (n = 84)	No

CI, confidence interval; DD, diastolic dysfunction; DMP, disease management programme; EF, ejection fraction; ESC, European Society of Cardiology; HF, heart failure; HFpEF, heart failure with preserved ejection fraction; KCCQ, Kansas City Cardiomyopathy Questionnaire; LV, left ventricle.

All studies included patients labelled as HFpEF but without explicitly defining this population. The remaining nine studies used either >45% or 40% as EF criterion to differentiate patients with HFpEF. The percentage of patients with HFpEF defined by the studies ranged between 22% and 77%. By ESC criteria, these would be samples of patients with both HF with mid-range EF (HFmrEF, EF 40–49%) and HFpEF, which are considered two distinct clinical entities in the guidelines.

Interventions and study characteristics

Interventions varied by components, duration, methods of delivery, intensity, complexity, and outcomes (Tables 2 and 3). All of the interventions were directed to patients, with three including carers. Eleven of the study interventions were delivered primarily by nurses with relevant experience or additional training, delivered primarily by nurses with relevant experience or additional training, although advice or referral for increasing physical activity was frequently a component in other studies. Telemonitoring was included in the intervention in two studies, and five provided medication adjustment by nurses or via general practitioners. Patient assessment was included in all but two studies, although the extent, frequency, and type of assessment varied.

The duration of the interventions ranged from 3 months to over 2 years, and interventions in seven of the studies were ≥12 months. All studies included at least one face-to-face encounter with patients, but telephone contact was used in all to deliver some of the intervention. Home visits were used in 11 studies. Outpatient or clinical visits were included in all but two studies. The majority of studies were judged to be high in intensity and complexity based on delivery of multiple components using different methods of delivery and high frequency of contact, and five were judged to be moderate.

Comparison

Seventeen of the 18 studies compared an intervention with usual care, although two of these also included two intervention arms varying by intensity and complexity. Usual care was variably described across studies, and efforts to standardize usual care were made in only four studies. Controlling for patient contact as a confounding variable was only described in one study. Stewart et al. tested multi-disciplinary comprehensive care delivered by either outpatient clinic or home visits.
Study	Components	Mode of delivery	Complexity, duration, intensity											
	Education/ >behavioural/ >SM	Exercise	Telemonitoring	Clinician >review	Medication >adjustment	Education/ >assessment/ >DC plan	Home >visits	Telephone	Outpatient >or clinic >session	Multi- >resources	Complexity	Duration	Frequency of contact	
	Assessment													
Andryukhin et al. (2010)	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓										High	6 months	Weekly F2F education/ skills sessions × 4; weekly exercise × 4; weekly phone calls, Months 2–6	
Bekelman et al. (2015)	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓										High	12 months	Monthly × 12	
Bekelman et al. (2018)	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓										High	3 months	1–2 phone calls per month planned; mean calls by RN 13 (5.7), SW 10 (4)	
Brotons et al. (2009)	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓										High	12 months+	Home 1× per month × 12; phone 2× per month × 12	
Chang et al. (2016)	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓										Mod	12 weeks	x1 monthly face to face and x6 biweekly phone calls	
Dracup et al. (2014)	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓										Mod	1 month then PRN	LITE: 2 phone calls biweekly PLUS: biweekly 1 phone call	
Freedland et al. (2015)	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓										Not >specified			
Gonzalez-Guerrero et al. (2015)	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓										High	12 months	Comprehensive hospital DC planning and close follow-up at a geriatric day hospital (GDH), from a multidisciplinary team; phone contacts and face-to-face visits at the GDH	
Jaarsma et al. (2008)	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓										High	18 months	Basic support group received UC + 9 HFSN clinic visits. Intensive support was UC + 18 HFSN clinic visits, phone calls weekly first month, MDT support, 2 home visits	
Kalter-Lebovic et al. (2017)	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓										High	Mean = 2.7 years	Initial remote contact 1× per week, adjusted based on need. Clinic every 6 months or more if needed	

(Continues)
Study	Components	Mode of delivery	Complexity, duration, intensity										
	Assessment	Exercise	Telemonitoring	Clinician review	Medication adjustment	Education/assessment >DC plan	Home visits	Telephone	Outpatient >or clinic session	Multi-media >resources			
Kwok et al. (2008)	✓	✓		✓	✓	✓	✓	✓	✓	✓	✓		
Leventhal et al. (2011)	✓	✓					✓	✓	✓	High 6 months Weekly × 4 first month and then monthly for 6 months Initially home visit, followed by 17 structured telephone calls (weekly × 4, bi-monthly × 4, monthly × 6) plus additional calls when needed			
Masterson Creber et al. (2016)	✓	✓					✓	✓	✓	✓	✓		
Shao et al. (2013)	✓	✓					✓	✓	✓	Moderate 3 months 1 F2F contact and 3–4 phone calls over 90 days			
Srisuk et al. (2017)	✓	✓					✓	✓	✓	Moderate 6 months 1 F2F education/ counselling session. Phone calls 15 min/ week in first month, per fortnight in the second month and once a month in Months 3–6			
Stewart et al. (2014)	✓	✓				✓	✓	✓	✓	High 6 months MDT comprehensive care by clinic or home visits			
Tsuchihashi et al. (2013)	✓	✓					✓	✓	✓	High 6 months Home visits by nurse within 14 days post-DC, then q 2 weeks for 2 months. Then monthly telephone until 6 months			
Young et al. (2016)	✓	✓					✓	✓	✓	High 3 months Telephone contact twice a week, Weeks 1–2; once weekly, Weeks 3–6; every other week, Weeks 7–12			
STUDY	TPs	OM	MORT.	HOSP.	HF-QOL	GENERIC	ANKH/ DEPR.	SELF-CARE	ACTIV.	BIOCHEM	ECHO	OTHER	RESULTS (impact of intervention on outcome measure)
-------	-----	----	-------	-------	--------	---------	-------------	------------	--------	---------	------	-------	--
1. Brotons et al. 2009	Monthly for 12 months	USED YES-AC*	YES – Ac*	YES – HF*	YES	MLHFQ	NR	NR	YES	MMAS-8	NR	NR	Positive Neutral/ Negative
	DETAILS	Assessed by review of hospital discharge records	Assessed by review of hospital discharge records										The aggregate of all-cause mortality and HF hospital readmissions improved but not significantly in the intervention arm. There was a significant improvement in QoL between the control and intervention group at 1 year.
2. Chang et al. 2016	BL, 4wks, 8wks, 12wks	USED NR	NR	NR	NR	YES	HADS	NR	NR	NR	YES*	Sleep quality measured by: Pittsburgh Sleep Quality Index, Epworth Sleepiness Scale	
	DETAILS NR											Neutral/ Negative Anxiety and depression scores unchanged, when compared with controls, the intervention arm had a significantly greater improvement in both anxiety and depression.	
3. Dracup et al. 2014	BL, 3, 12, 24 months	USED YES-AC*	YES – CV*	YES – HF*	YES	NHFSCBQ	NR	NR	NR	YES	Heart Failure Knowledge Scale, Short Test of Functional Health Literacy in Adults		
	DETAILS	Assessed by medical record review, family/physician interview, death certificate and Social Security Death Index check	Assessed by questioning patients and physicians and medical record review									Neutral/ Negative Self-care improvement observed in the intervention groups were no longer significantly different from the control group.	

(Continues)
STUDY	TPs	OM	MORT.	HOSP.	HF-QOL	GENERIC QOL	ANX/DEPR	SELF-CARE	ACTIV.	BIOCHEM	ECHO	OTHER	RESULTS (impact of intervention on outcome measure)
4. Freedland et al. 2015	BL, 3, 6, 9, DETAILS Not defined	Not defined	KCCQ	SF-12	BDI-II, BAI, Depression Interview, Structured Hamilton Rating Scale	SCHFI	6MMTV, average daily activity level on Actigraphy (1wk wear)	NR	NR	NIH PROMIS Measures	Six-month depression scores were lower in the CBT than the usual care arm on the BDI-II. Six-month outcomes were superior in the CBT relative to the usual care arm on secondary measures of depression, anxiety, HF-related quality of life, mental health-related quality of life, fatigue and social functioning. The groups did not differ on any of the physical functioning measures. There was no statistically significant difference in the time to the first all-cause hospitalization or death between the usual care and CBT groups.		
5. Gonzalez-Guerrero et al. 2014	BL, 12 mts	YES-AC*	YES-AC*	MLHQ	YES EQ-SD	NR	NR	NR	YES Hb, urea, creatinine, uric acid, Na⁺, K⁺, albumin, TC, troponin T, CRP, NT-proBNP	NR	YES Global Deterioration Scale	Positive In the intervention group, the probability of having an event (either hospitalisation or mortality) between BL and 1 year was significantly lower. Those receiving the intervention had a significant reduction in mortality risk. Neutral/Negative Those receiving the intervention had a non-significant reduction in HF readmissions but an increase in non-HF related hospitalisations.	
9. Jaarsma et al. 2008	BL, 18 mts	YES – AC*	YES – HF*	NR	NR	NR	NR	NR	YES Number of days lost due to death or hospitalisation	NR	NR	NR	Neutral/Negative Neither the moderate nor intensive intervention reduced the combined end points of HF related death and hospitalization compared with standard follow-up.

(Continues)
STUDY	TPs	OM	MOR.T.	HOSP.	HF-QOL	GENERIC QOL	ANX / DEPR	SELF-CARE	ACTIV.	BIOCHEM	ECHO	OTHER	RESULTS (impact of intervention on outcome measure)								
10. Kalter-Leibovici et al. 2017	BL, 6, 12, 18, 24 mts	USED	YES – AC*	YES – HF*	ASSESSED by review of discharge summaries.	NR	YES	NR	YES	SF-36	YES	PHQ-9	YES	PURCHASE of recommended medications	NR	YES	NR	TOTAL number of hospital admissions and in-hospital days for heart failure and for all causes	POSITIVE	NEUTRAL/NEGATIVE	
	DETAILS	NR	ASSSESSED by review of discharge summaries.	NR	YES	SF-36	YES	PHQ-9	YES	SF-36	YES	PHQ-9	YES	PURCHASE of recommended medications	NR	YES	NR	TOTAL number of hospital admissions and in-hospital days for heart failure and for all causes	POSITIVE	NEUTRAL/NEGATIVE	
11. Kwok et al. 2007	BL, 6 mts	USED	NR	NR	YES – AC*	Electronic database review; readmission reason assessed by geriatrician or cardiologist and categorized	NR	NR	NR	YES	General Health Questionnaire	NR	NR	YES	6MWT	NR	NR	YES	LHS, Abbreviated Mental Test	POSITIVE	NEUTRAL/NEGATIVE
	DETAILS	NR	ELECTRONIC database review; readmission reason assessed by geriatrician or cardiologist and categorized	NR	NR	YES	General Health Questionnaire	NR	NR	YES	6MWT	NR	NR	YES	LHS, Abbreviated Mental Test	POSITIVE	NEUTRAL/NEGATIVE				
12. Leventhal et al. 2011	BL, 3, 6, 9, 12 mts	USED	YES AC*	YES HF & AC*	ASSESSED by review of medical records by blinded researcher	YES	MLHFQ	YES	EQ-SD	YES	Geriatric Depression Scale	NR	NR	NR	NR	NR	NR	YES	Specific Activity Scale	POSITIVE	NEUTRAL/NEGATIVE
	DETAILS	NR	ASSESSED by review of medical records by blinded researcher	YES	MLHFQ	YES	EQ-SD	YES	Geriatric Depression Scale	NR	NR	NR	NR	NR	NR	YES	Specific Activity Scale	POSITIVE	NEUTRAL/NEGATIVE		
13. Masterson-	BL, 90 days	USED	NR	NR	YES	KCCQ	NR	NR	NR	YES*	SCHFI	NR	NR	NR	YES	HF Symptoms via Heart Failure	POSITIVE	ALTHOUGH not statistically			
	DETAILS	NR	YES	KCCQ	NR	NR	NR	YES	SCHFI	NR	NR	NR	YES	HF Symptoms via Heart Failure	POSITIVE	ALTHOUGH not statistically					

(Continues)
STUDY	TPs	OM	MORT.	HOSP.	HF-QOL	GENERIC	QOL	ANX / DEPR	SELF-CARE	ACTIV.	BIOCHEM	ECHO	OTHER
Creber et al. 2015													

RESULTS (impact of intervention on outcome measure)
Somatic Perception Scale
significant, the improvement in self-care maintenance was numerically greater in the intervention group and a statistical and clinically significant 8.7-point increase in SCHFI was observed when adjusting for confounding factors.

14. Shao et al. 2013	BL, 4, 12 wks	USED NR	YES AC	YES	YES	NR	NR	YES*	NR	NR	NR	NR	YES
DETAILS NR		Assessed by review of medical records.						Self-Efficacy for Salt & Fluid Control & modified EHFS CBS					
participant's perception of the ability to control salt and fluid intake.													
Positive													
Neutral/Positive													
There was no reduction in health service use between the groups.													

15. Srisuk et al. 2014	BL, 3, 6 mth	USED NR	YES	NR	NR	YES	NR	NR	YES	NR	NR	NR	NR
DETAILS NR			Patients: MLHPQ										
Carers: SF12													
Positive													
Neutral/Negative													
Negative or neutral results not reported.													
STUDY	TPs	OM	MORT.	HOSP.	HF-QOL	GENERIC QOL	ANX / DEPR.	SELF-CARE	ACTIV.	BIOCHEM	ECHO	OTHER	RESULTS (impact of intervention on outcome measure)
-----------------------------	---------------------	-------	----------------------------	-------	--------	-------------	--------------	------------	--------	---------	------	-------	--
16. Stewart et al. 2014	BL, 12 - 18 mth, 3-4 yrs	USED AC*	YES AC* A blinded endpoint committee adjudicated on the type and cause of mortality	YES MLHFQ	YES EQ-5D	NR	YES SCHFI	NR	NR	NR	NR	NR	YES Length of hospital stay; uptake of gold-standard pharmacotherapy. Positive. Home-based intervention was associated with significantly fewer all-cause deaths and significantly fewer days of hospital stay. Favourable trends towards home-based intervention were strengthened in the long-term (16% fewer deaths and reduction in AC mortality.)
17. Tsuchihashi-Makaya et al. 2013	BL, 2, 6, 12 mths	USED AC	YES HF Not defined	NR	NR	YES SF-8	YES* HADS	NR	NR	NR	NR	NR	Neutral/ Negative There was no difference in AC mortality between the groups. The physical and mental health QOL score significantly increased from baseline at all follow-up time points in the intervention but not in the control. HF hospitalizations were reduced in the intervention group.
18. Young et al. 2016	BL, 3 and 6 mths	USED NR	YES - AC All-cause readmission and emergency department visits at 30, 90 and 180 days assessed by	NR	NR	NR	NR	NR	NR	YES Atlanta HF Knowledge Test	Neutral/ Negative No significant differences were observed between groups in the pattern of change across time on any of		
STUDY	TPs	OM	MORT.	HOSP.	HF-QOL	GENERIC	QOL	ANX. / DEPR.	SELF-CARE	ACTIV.	BIOCHEM	ECHO	OTHER
-------	-----	----	-------	-------	--------	---------	-----	-------------	-----------	--------	---------	------	-------
	both self-report and primary care provider record review												
	2 x Medication Adherence Scales	expended	energy,	estimated									
	SCHRI Energy expenditure												
	Actiwatch average activity												
	SF-6D intensity												
	EHFSCBS assessed by												

RESULTS (impact of intervention on outcome measure)

- Patient-reported SM adherence at 3 and 6 months after discharge.
- On average, the intervention group had a significantly greater increase in self-efficacy for heart failure self-management, self-management strategies and patient activation.
- The actigraphy variables collected. There was no significant difference in clinical biomarkers. The 30-day readmission rate was significantly higher in the intervention group than in the control group with no difference between groups at 90 and 180 days. No group differences were found for self-management knowledge.

Abbreviations: NR = Not reported, CV = Cardiovascular, AC = All cause, HF = heart Failure, MLHFQ = Minnesota Living with Heart Failure Questionnaire, KCCQ = Kansas City Cardiomyopathy Questionnaire, PHQ-9 = Patient Health Questionnaire 9-item, GAD-7 = Generalised Anxiety and Depression Scale 7-item, HDAS = Hospital Anxiety and Depression Scale, 6MWT = Six Minute Walk Test, TC = Total Cholesterol, LDL = Low Density Lipoprotein, HS-CRP = High Specificity CRP, NTproBNP = N-terminal pro b-type natriuretic peptide, LA = Left Atrium, LVEDV = Left ventricular end-diastolic volume, LV = Left ventricle, Hb = Haemoglobin, K+ = potassium, Na+ = Sodium, NYHA = New York Heart Association, BMI = Body Mass Index, WC = waist circumference, SF = Short Form, MMAS-8 Morisky Medication Adherence Scale, EHFSCBQ = European Heart Failure Self-Care Behaviour Questionnaire, BDI = Beck Depression Inventory, BAI = Brief Anxiety Index, LHS = London Handicap Scale, SCHFI = Self Care of Heart Failure Index.
Outcomes

The effect of disease management programmes on mortality
The most common primary outcome measure employed was a composite of mortality and hospitalization, either all-cause/all-cause (n = 4), all-cause/HF (n = 3), cardiovascular/cardiovascular (n = 1), or cardiovascular/HF (n = 1). All-cause mortality and/or all-cause hospitalizations were secondary outcome measures in four studies respectively, and one study employed an all-cause/HF composite as a secondary objective. In the studies measuring mortality, three reported a significant improvement. The proportion of HFpEF patients in these studies was 67%, 47%, and 27%, respectively. Of these studies, only Stewart et al. reported separate HFpEF statistics (HFpEF defined as those with EF > 45%) and found no difference in percentage with HFpEF by survived or died. Nine studies reported no significant difference of their respective interventions on mortality between either intervention groups or intervention and usual care. Kalter-Leibovici and colleagues dichotomized findings by HF group and found no significant difference by composite outcome (all-cause mortality/HF hospitalization), or all-cause mortality alone, and much wider confidence intervals in those with EF ≥ 50%. Four of these nine studies without statistical significance did report positive trends in mortality in favour of the intervention. Dracup et al. added HF group (by EF < 40% or >40%) as a covariate and found no difference in outcomes between groups.

The effect of disease management programmes on hospitalizations
Most studies (88%) employed hospitalization(s) as an outcome measure; the most common was all-cause hospitalizations (n = 8), HF-only hospitalizations (n = 5), HF and all-cause (n = 2), or cardiovascular (n = 1). Only three reported a statistically significant result. The remainder reported either no impact or prolonged time to hospitalization, and lower total numbers hospitalized; or trends towards higher hospitalizations in intervention groups.

The effect of disease management programmes on self-care
Nine studies evaluated the effect of the intervention on self-care. There was significant variability in the self-care outcome measures employed: the most frequently employed (n = 5) was the Self-Care of Heart Failure Index followed by the European Heart Failure Self-Care Behaviours Questionnaire (n = 3). Of the studies assessing effect on self-care (n = 9), four reported a statistically significant positive effect, two reported improvements that were not significant, and one reported no impact, and in two studies, the effect could not be ascertained from the publication.

The effect of disease management programmes on condition-specific quality of life
Heart failure quality of life was measured by either the Minnesota Living with Heart Failure Questionnaire (n = 5) or the Kansas City Cardiomyopathy Questionnaire (KCCQ) (n = 4). Three studies failed to demonstrate significant improvement, one study did not reach statistical significance but demonstrated a clinically meaningful improvement in quality of life as measured by KCCQ; and five studies reported a statistically significant improvement in the intervention arm.

The effect of disease management programmes on anxiety, depression, and sleep quality
Anxiety and depression were commonly measured and featured in nine of the 18 studies, and these were the primary outcome in two studies. Freedland et al. demonstrated that cognitive behavioural therapy plus an HF education programme was superior to usual care plus an HF education programme only, and this improvement was sustained over time. Tsuchiashi-Makaya et al. similarly found that their home-based DMP significantly improved psychological status compared with usual care and was also sustained over time. Of the seven studies examining anxiety or depression as a secondary outcome measure, impact of the intervention on either variable, anxiety or depression, was undeterminable in two publications and improved either significantly or clinically in the intervention arm in five studies. One study specifically focussed on improving sleep in HF patients and found both sleep quality and day-time sleepiness levels significantly improved in the intervention arm.

Outcomes by heart failure with preserved ejection fraction with ejection fraction ≥50%
If we use the ESC criterion that HFpEF includes an EF ≥ 50%, then seven studies are of interest. The outcomes of mortality and/or hospitalization were measured in six studies. Of these, only one had significantly fewer events in the intervention group, specifically in all-cause mortality. Kalter-Leibovici et al. did not find a significant difference in outcomes for DMP vs. control, and as noted previously, the confidence intervals around the hazard ratios for HF hospitalization and all-cause mortality were much wider for patients with HFpEF.

The single study that assessed self-care reported significant improvement favouring the intervention group. The intervention was efficacious in terms of health-related quality of life (HRQoL) in two studies. In two studies, there was no significant difference between intervention and control groups in 3 and 6 months of HRQoL measured by the KCCQ. Additionally, Bekelman et al. reported a lower effect size of the intervention on the KCCQ for HFpEF.
compared with HFrEF (−0.03 vs. 0.28). All five studies measuring the outcomes of anxiety and/or depression demonstrated significant improvement in favour of the intervention arm. 17–19,21,22

Outcomes by intervention provider

Six of the 11 studies with mainly nurse-led interventions had outcomes related to mortality and/or hospitalization; one of them demonstrated significant improvement in all-cause mortality 26 and another one in HF hospitalizations. 34 Half of the six nurse-led studies that assessed HRQoL reported improved HRQoL in the intervention group as compared with control. 17,26,29 The majority of the nurse-led studies evaluating self-care changes achieved a significantly positive result at least once during follow-up (including adjusted results) when comparing the intervention to the control group. 25,26,30,33 Among the nurse-led studies, the intervention group yielded superior results in relation to anxiety and/or depression in three out of five studies. 17,21,34 Five studies employed a multidisciplinary approach in their intervention: two reduced mortality and/or hospitalization 18,35 in the intervention group vs. control group, one improved HRQoL 25 in comparison with control group, and all three studies measuring depression and/or anxiety had better results in the intervention group in this regard. 18,19,22 None of the multidisciplinary studies assessed self-care. In the study of Freedland et al., 27 the intervention was delivered by behavioural therapists and was effective in improving HF quality of life, anxiety, and depression. One study did not specify the provider of the intervention. 23

Assessment of bias

Most studies were rated as low risk in terms of random sequence generation. However, bias varied considerably across other aspects with most studies being unable to conceal allocation to intervention or usual care arms after randomization from research team and patients. Almost all studies had blinded outcome assessment, and most reported complete outcome results (Table 4).

Discussion

In this systematic review, we found a limited number of contemporary studies of DMPs in HF that included or sufficiently described patients with HFrEF and only one that was specifically designed for this group. Across the studies, there was significant heterogeneity in terms of the population, intervention, comparisons, and outcomes that prohibited meta-analysis. Definitions for HFrEF were variable with only seven of the 18 studies employing an EF of ≥50%. This reflects the lack of a universal approach in defining HFrEF even among recent trials, 39 despite the guidance provided by the ESC. Interventions were similarly heterogeneous with extensive variability in the components included, mode of delivery, complexity, and duration. Comparison groups received scant attention; few studies sufficiently described attempts to standardize or account for potential confounding in ‘usual care’ control arms. In terms of outcomes, the most commonly measured were hospitalizations (83%) and mortality (66%),

Table 4 Bias
First author and year
Andryukhin (2010)
Bekelman (2015)
Bekelman (2018)
Brotons (2009)
Chang (2016)
Dracup (2014)
Freedland (2015)
González-Guerrero (2014)
Jaarsma (2008)
Kalter-Leibovici (2017)
Kwok (2008)
Leventhal (2011)
Masterson Creber (2016)
Shao (2013)
Srisuk (2015)
Stewart (2014)
Tsuchihashi-Makaya (2014)
Young (2016)

Source: Freedland et al. 27

aPositive change included no change from baseline.
bPositive change included improvement for 3 and 6 months.
cPositive change included improvement for primary outcome.
and a minority demonstrated that the DMP had a statistically significant impact on either outcome.

Four studies with both HFrEF and HFrEF reported results separately for patients identified as HFrEF in the study, but only two defined HFrEF using the recommended ESC criterion of EF > 50%.²⁻²² Bekelman et al.²⁹ (40% HFrEF, n = 121) found that the intervention had less effect on quality of life in those with HFrEF compared with HFrEF. Kater-Leibovici et al.³² (18% HFrEF, n = 247) also found less effect of the DMP and wide confidence intervals for HFrEF compared with HFrEF; however, overall, there was no significant difference by composite outcome, HF hospitalization, or all-cause mortality by HF group. In the study exclusively HFrEF (using EF ≥ 50%), fifteen the intervention group had improvement or no deterioration in several cardiovascular risk factors, quality of life, depression, and left ventricular end-diastolic volume index compared with control. There was no statistically significant difference between intervention and control on cardiovascular events or mortality at 6 and 18 months. This trial was innovative in including exercise sessions and measuring specific echocardiographic parameters but nonetheless included recommendations for HFrEF medications that have not been shown to improve event-free survival in patients with HFrEF. Bias was also assessed as high on some components (Table 4).

Programme components offer a useful framework to explore reasons for variable impact on outcomes assessed in included studies.

Clinical assessment

Sixteen studies included either MDT or nurse-led clinical assessment that then formed the basis of individualized HF specific treatment plans. None detailed exploration of co-morbidity, clinical phenotyping, or comprehensive geriatric assessment, although one DMP was delivered through a geriatric day-care hospital.³⁵ Data from clinical trials have clearly demonstrated the high incidence of co-morbidities in HFrEF and effects of this has on outcome. The CHARM trial found that demographic risk factors (age and sex) and non-cardiac risk factors contributed more to mortality and morbidity outcomes in patients with HFrEF (n = 1086 defined as EF > 40%), while cardiac disease burden contributed more to outcomes in those with HFrEF.⁴⁰ If co-morbidities drive the development of HFrEF through a systemic pro-inflammatory state as currently postulated,⁴¹ then the focus on appropriate control of cardiovascular and non-cardiovascular co-morbid conditions is essential.³,⁸,⁴²

The ARISE-HF investigators recently presented a pragmatic framework that includes profiling to determine concurrent co-morbidities, identifying individualized priorities and patient-centred goals, supporting multi-professional home-based case management, coordinating care, and emphasizing self-care.⁴³ Shah et al.³ devised an HFrEF treatment grid organized by predisposition phenotype (e.g. hypertension and metabolic syndromes) and clinical presentation phenotype (e.g. lung congestion and atrial fibrillation) to determine management based on the patient’s phenotypic features and co-morbid conditions. Upadhyya et al.⁴⁴ have called for HFrEF to be recognized as a true geriatric condition and suggested that geriatric principles should be used in the treatment of HFrEF.

Educational/behavioural/self-management interventions

Self-management interventions have previously been found to reduce risk of the composite endpoint of HF-related hospitalization and all-cause death, HF-related hospitalization alone, and result in a small improvement in HRQoL compared with usual care.⁴⁵ In this review, all studies incorporated educational, behavioural, or self-care components designed to improve self-management. Only three of nine studies measuring self-care as an outcome demonstrated a statistically significant improvement in self-care. Programme characteristics, mechanisms of effect, and evidence for efficacy may explain this finding. In an individual patient data meta-analysis of 20 trials of self-management support in patients with HF (n = 5624), no specific programme characteristics were identified that consistently had a positive effect on multiple outcomes. A 2016 systematic review and realist synthesis of the main mechanisms of HF DMPs found that to be effective, programmes should contain components that increase patient understanding of HF, self-care, self-efficacy, family/caregiver involvement, psychosocial well-being, health professional support, and technology use.⁴⁶ Although many studies encompassed components that harnessed one or more of these mechanisms, no single programme comprehensively covered all. Finally, our knowledge of optimal lifestyle behaviours and self-care in HFrEF is limited, and self-care interventions for patients with HFrEF lack evidence of effectiveness.

Exercise

Being physically active was advocated in most studies, but only one study delivered an exercise intervention.¹⁷ Other studies encouraged exercise as part of self-management education and support, referred to formal exercise programmes (although uptake not reported), and one measured activity as part of a primarily telephone-delivered self-management intervention. No significant difference between the groups was found in activity, which was low in both groups. Exercise is a promising but underutilized intervention in patients with HFrEF. While data are limited, a meta-analysis of six trials (n = 276 patients) showed that cardiorespiratory fitness
and quality of life were significantly improved with exercise compared with control. Clinical outcomes were not reported, and the studies were of short duration (12–24 weeks). A small study tested the effect of a calorie restricted diet, aerobic exercise training (primarily walking), a combination of diet and exercise, or an attention control on 100 obese patients with HFpEF. At 24 weeks, the diet, exercise, and diet + exercise groups had significant improvements in exercise capacity by peak VO₂ (greatest increase in diet + exercise) but no significant improvement on quality of life measured by the MLHFQ. Diet significantly improved KCCQ scores, and diet and exercise decreased body weight and improved New York Heart Association class.

Telemonitoring

Two studies in this review included telemonitoring as a component of a DMP. Multiple studies of non-invasive telemonitoring as the primary intervention in HF have been conducted with inconsistent results. The latest guidelines on management of HF have no recommendations for non-invasive telemonitoring in management. A recent paper tested a holistic and structured remote management intervention involving a multi-disciplinary team (nurses, primary care physicians, cardiologists, other providers, and the patient), telemonitoring, risk assessment, and tailored support and management available 24 h or 7 days/week. The intervention resulted in fewer days lost to unplanned cardiovascular hospitalizations and all-cause mortality compared with usual care over 1 year. However, the sub-group analysis of patients with EF > 45% (n = 537) showed no benefit between intervention and usual care.

Limitations

This systematic review has a number of limitations. Importantly, the varying and inconsistent definitions of HFpEF (some samples included HFmrEF), heterogeneity of studies with significant variation in the aims, interventions and outcomes measured, ascertainment of the condition, and proportion of patients with HFpEF limited our ability to compare the studies directly, employ a meta-analysis, and draw clear conclusions for this group of patients. In only six studies, the percentage of patients with HFpEF exceeded 50%, and just four studies reported separate results for patients with HFpEF (including patients not meeting ESC guideline criteria for HFpEF). The search strategy may have failed to retrieve relevant studies, as grey literature or reports in languages other than English and Greek were not included. Time restrictions were applied, and the search was not extended to all available databases. In DMPs, blinding of the research team and participants is not feasible, which may bias results in favour of the intervention group. Caution should be used in the interpretation of findings and the results of the current review especially given the lack of data for appropriately defined HFpEF.

Conclusions

Varying definitions of HFpEF (including patients with HFmrEF) used in studies are a substantial limitation in interpretation of findings, which may not reflect the effect of DMPs in HFpEF patients. Although statistically significant or positive trends in the primary outcomes were found in mortality, hospitalization rates, self-care ability, HF knowledge, quality of life, anxiety, depression, and sleep, the evidence is not sufficiently robust or consistent to draw substantive conclusions. We have used programme components as a way of exploring how impact may have been attenuated. Given that patients with HFpEF are older and multi-morbid, DMPs targeting HFpEF should not rely on a single-disease focus but provide care that addresses predisposing and presentation phenotypes of well-defined HFpEF and draws on the principles of comprehensive geriatric assessment. Other components could also be more targeted to HFpEF such as modification of lifestyle factors for which there is emerging evidence, rather than simply continuing the model of care used in HFrEF. The reduced efficacy noted in contemporary HF DMP studies may not only be due to improvements in usual care but may reflect inclusion of heterogeneous patients with HFmrEF and HFpEF who may not respond in the same way as HFrEF to individual components. Based on current evidence, HF DMPs may improve mortality, hospitalization rates, self-care, and quality of life in patients with HFpEF; however, further research specifically tailored to appropriately defined HFpEF is required.

Acknowledgements

This systematic review presents independent research funded by the National Institute for Health Research School for Primary Care Research (NIHR SPCR). The views expressed are those of the author(s) and not necessarily those of the NIHR, the NHS, or the Department of Health. The authors acknowledge funding received from the European Society of Cardiology in the form of European Society of Cardiology Nursing Training Grant 2017 NTG-010.

Conflict of interest

None declared.
Funding

They acknowledge funding from the National Institute of Health Research School for Primary Care Research and European Society of Cardiology Nursing Training Grant.

References

1. Borlaug BA. The pathophysiology of heart failure with preserved ejection fraction. Nat Rev Cardiol, Vol 2014; 11: p 507–515.
2. Oktay AA, Rich JD, Shah SJ. The emerging epidemic of heart failure with preserved ejection fraction. Curr Heart Fail Rep 2013; 10: 401–410.
3. Shah SJ, Kitzman DW, Borlaug BA, van Heerebeek L, Zile MR, Kass DA, Paulus WJ. Phenotype-specific treatment of heart failure with preserved ejection fraction: a multijorgan roadmap. Circulation 2016; 134: 73–90.
4. Redfield MM. Heart failure with preserved ejection fraction. N Engl J Med 2017; 376: 897.
5. Gallacher K, May CR, Montori VM, Mair FS. Understanding patients’ experiences of treatment burden in chronic heart failure using normalization process theory. Ann Fam Med 2011; 9: 235–243.
6. Hoekstra T, Lesman-Leegte I, van Heerebeek L, Zile MR, Kass DA, Paulus WJ. Quality of life is impaired similarly in heart failure patients with preserved and reduced ejection fraction. Eur J Heart Fail 2011; 13: 1013–1018.
7. Ziaean B, Heidenreich PA, Xu H, DeVore AD, Matsouaka RA, Hernandez AF, Bhatt DL, Yancy CW, Fonarow GC. Race/ethnic differences in outcomes among hospitalized Medicare patients with heart failure and preserved ejection fraction. JACC Heart Fail 2017; 5: 483–493.
8. Ponikowski P, Voors AA, Anker SD, Bueno H, Celaj ND, Coats AJ, Falk V, González-Juanteday JR, Harjola VP, Jankowska EA, Jessup M. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016; 18: 891–975.
9. Krumholz HM, Currie PM, Riegel B, Phillips CO, Peterson ED, Smith R, Yancy CW, Faxon DP, American Heart Association Disease Management Taxonomy Writing Group. A taxonomy for disease management: a scientific statement from the American Heart Association Disease Management Taxonomy Writing Group. Circulation 2006; 114: 1432–1445.
10. Phillips CO, Wright SM, Kern DE, Singa RM, Shepperd S, Rubin HR. Comprehensive discharge planning with postdischarge support for older patients with congestive heart failure: a meta-analysis. JAMA 2004; 291: 1358–1367.
11. McAlister FA, Stewart S, Ferrua S, McMurray JJ. Multidisciplinary strategies for the management of heart failure patients at high risk for admission: a systematic review of randomized trials. J Am Coll Cardiol 2004; 44: 810–819.
12. Clark AM, Savard LA, Thompson DR. What is the strength of evidence for heart failure disease-management programs? J Am Coll Cardiol 2009; 54: 397–401.
13. Gandhi S, Moslehi W, Sharma UC, Demers C, Farkouh ME, Schwalm JD. Multidisciplinary heart failure clinic associations with lower heart failure hospitalization and mortality: systematic review and meta-analysis. Can J Cardiol 2017; 33: 1237–1244.
14. Dickstein K, Authors/Task Force Members, Cohen-Solal A, Filipatos G, McMurray JJ, Ponikowski P, Poole-Wilson PA, Strömbäck J, Vahanian A, Veldhuisen DJ, Atar D, Hoes AW. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur J Heart Fail 2008; 10: 933–989.
15. Riegel B, Lee CS, Sochalski J. Developing an instrument to measure heart failure disease management program intensity and complexity. Circ Cardiovasc Qual Outcomes 2010; 3: 324–330.
16. Higgins JP, Altmann DG, Gentschev PC, Jüni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011; 343: d5928.
17. Andryukhin A, Frolova E, Vees B, Degryse J. The impact of a nurse-led care programme on events and physical and psychosocial parameters in patients with heart failure with preserved ejection fraction: a randomized clinical trial in primary care in Russia. Eur J Gen Pract 2010; 16: 205–214.
18. Bekelman DB, Plomondon ME, Carey EP, Sullivan MD, Nelson KM, Hattler B, McBryde CF, Lehmann KG, Gianola K, Heidenreich PA, Rumsfeld JS. Primary results of the patient-centered disease management (PCDM) for heart failure study: a randomized clinical trial. JAMA Intern Med 2015; 175: 725–732.
19. Bekelman DB, Allen LA, McBryde CF, Hattler B, Fairclough DL, Havranek EP, Turvey C, Meek PM. Effect of a collaborative care intervention vs usual care on health status of patients with chronic heart failure: the CASA randomized clinical trial. JAMA Intern Med 2018; 178: 511–519.
20. Brotons C, Falces C, Alegre J, Ballarín E, Casanovas J, Carrión AM, Martínez M, Moral I, Ortiz J, Pérez E, Rayó E, Recio J, Roig E, Vidal X. Randomized clinical trial of the effectiveness of a home-based intervention in patients with heart failure: the IC-DOM study. Rev Esp Cardiol 2009; 62: 400–408.
21. Chang YL, Chiou AF, Cheng SM, Lin KC. Tailored educational supportive care programme on sleep quality and psychological distress in patients with heart failure: a randomized controlled trial. Int J Nurs Stud 2016; 61: 219–229.
22. Kalter-Leibovici O, Freimark D, Freedman LS, Kaufman G, Ziv A, Murad H, Benderly M, Silverman BG, Friedman N, Cukierman-Yaffe T, Asher E. Disease management in the treatment of patients with chronic heart failure who have universal access to health care: a randomized controlled trial. BMC Med 2017; 15: 90.
23. Young I, Hertzog M, Barnason S. Effects of a home-based activation intervention on self-management adherence and readmission in rural heart failure patients: the PATCH randomized controlled trial. BMC Cardiovasc Disord 2016; 16: 176.
24. González-Guerrero JL, Alonso-Fernández T, García-Mayolín N, Gusi N, Ribera-Casado JM. Effect of a follow-up program in elderly adults with heart failure with cognitive impairment after hospital discharge. J Am Geriatr Soc 2015; 63: 1950–1951.
25. Masterson Creber R, Patey M, Lee CS, Kuan A, Jurgens C, Riegel B. Motivational interviewing to improve self-care for patients with chronic heart failure:
