Observations

Improvement in Insulin Sensitivity During Mifepristone Treatment of Cushing Syndrome: Early and Late Effects

Increased adiposity and direct effects of glucocorticoid excess on muscle, liver, and \(\beta \)-cells are responsible for the high prevalence of impaired glucose tolerance (IGT) and type 2 diabetes in patients with Cushing syndrome (CS) (1,2). In the SEISMIC study, the glucocorticoid receptor antagonist mifepristone improved glucose tolerance and produced weight loss over 24 weeks in CS patients (3). Using oral glucose tolerance test data from SEISMIC, our goal was to assess whole-body insulin sensitivity (Matsuda index), \(\beta \)-cell function (insulinogenic index), homeostasis model assessment-\(\beta \) (HOMA-\(\beta \)), disposition index (4,5), weight (WT), and waist circumference (WC) over time. Complete data in patients not receiving insulin were available in 19 patients, 8 with diabetes and/or IGT (C-DM) and 11 with hypertension only (C-HT).

Within-group comparisons for change over time were analyzed with a mixed-effects repeated measures two-way ANOVA with cohort (C-DM and C-HT), time, and cohort by time interaction as fixed effects; unpaired Student t tests were used to assess differences between groups (Table 1). Matsuda index improved in the total population, with the greatest improvement occurring between baseline and week 6 and lesser changes occurring from week 6 to 24. Further analysis (piecewise linear mixed-model regression) showed that a two-phase model (0–6 weeks and 6–24 weeks) for Matsuda index change over time was better than the linear model (\(P = 0.007 \); Akaike information criteria). In contrast, WT and WC declined linearly over the 24 weeks, with the largest declines occurring during the final 18 weeks of treatment (baseline to week 6: WT, \(-1.19 \pm 3.17\%\), \(P = 0.1 \); WC, \(-1.31 \pm 3.38\%\), \(P = 0.07 \); week 6 to 24: WT, \(-6.66 \pm 6.52\%\), \(P = 0.003 \); WC, \(-6.36 \pm 5.83\%\), \(P = 0.002 \), ANOVA). At baseline, C-DM patients had compromised insulin secretory responses, as evidenced by lower insulinogenic index\(_{0-30} \), insulinogenic index\(_{0-120} \), and HOMA-\(\beta \). C-HT patients experienced declines in insulinogenic index\(_{0-30} \), insulinogenic index\(_{0-120} \), and HOMA-\(\beta \) by week 24, whereas these parameters trended nonsignificantly up in C-DM patients. The disposition index was lower at baseline in C-DM patients than C-HT patients. Individual C-DM patients tended more often to have increases in disposition index than C-HT patients (3.079 ± 4.387 vs. \(-1.739 \pm 5.444\), \(P = 0.063 \), respectively). Adiponectin levels increased from baseline to week 24 in C-HT subjects only in a temporal pattern that closely followed changes in WT and WC.

These findings suggest that rapid improvements in insulin sensitivity occurred due to direct effects of glucocorticoid blockade and longer-term improvements resulted from weight loss. Our data suggest that CS patients without underlying IGT or diabetes experience appropriate reductions in \(\beta \)-cell secretory response in

Table 1—Insulin sensitivity and secretory parameters in CS patients (C-DM and C-HT) treated with mifepristone

Parameter	Baseline	Week 6	Week 10	Week 16	Week 24
Weight (kg)	98.2 (23.2)	97.0 (23.0)	95.3 (22.4)	93.4 (22.9)	90.5 (22.2)
Waist circumference (cm)	117.5 (19.0)	115.9 (18.4)	113.2 (18.4)	110.8 (19.1)	108.5 (18.8)
Matsuda index insulin sensitivity	2.64 (1.96)	3.46 (2.17)	3.58 (1.96)	4.00 (2.14)	4.20 (1.95)
Insulinogenic index\(_{0-30} \)	1.117 (1.164)	1.001 (0.930)	1.027 (0.856)	1.042 (1.740)	1.022 (0.777)
Insulinogenic index\(_{0-120} \)	1.294 (1.221)	1.402 (1.040)	0.995 (0.796)	0.956 (0.506)	0.990 (0.506)
HOMA-\(\beta \)	253.5 (162.2)	199.3 (157.6)	206.4 (144.4)	185.8 (73.7)	195.9 (78.8)
Disposition index	9.090 (5.753)	4.733 (3.624)	3.390 (3.300)	3.410 (2.915)	4.199 (3.220)
Total adiponectin (\mu g/mL)	11.3 (5.7)	12.5 (5.6)	13.9 (7.3)	14.1 (5.4)	16.9 (7.3)

C-DM cohort, \(n = 8 \)

Parameter	Baseline	Week 6	Week 10	Week 16	Week 24
Matsuda index insulin sensitivity	1.63 (1.04)	2.26 (0.90)	2.70 (1.05)	2.72 (1.17)	3.48 (1.91)
Insulinogenic index\(_{0-30} \)	0.348 (0.261)	0.669 (0.537)	0.920 (0.737)	1.236 (1.522)	1.055 (0.928)
Insulinogenic index\(_{0-120} \)	0.429 (0.278)	1.071 (0.872)	0.788 (0.504)	0.935 (0.861)	0.952 (0.664)
HOMA-\(\beta \)	164.2 (115.4)	158.0 (98.0)	172.5 (80.9)	193.3 (62.6)	204.0 (71.9)
Disposition index	0.655 (0.570)	2.729 (3.134)	3.206 (2.043)	3.811 (3.423)	4.115 (3.423)
Total adiponectin (\mu g/mL)	12.4 (8.4)	11.1 (5.7)	10.9 (4.9)	11.5 (4.5)	11.4 (4.5)

C-HT cohort, \(n = 11 \)

Parameter	Baseline	Week 6	Week 10	Week 16	Week 24
Matsuda index insulin sensitivity	3.38 (2.18)	4.34 (2.43)	4.23 (2.25)	4.92 (2.25)	4.72 (1.90)
Insulinogenic index\(_{0-30} \)	1.677 (1.254)	1.242 (1.097)	1.106 (0.960)	1.764 (1.924)	0.979 (0.694)
Insulinogenic index\(_{0-120} \)	1.923 (1.263)	1.643 (1.123)	1.147 (1.114)	0.972 (0.787)	1.018 (0.387)
HOMA-\(\beta \)	318.5 (164.3)	229.2 (188.8)	231.0 (177.1)	180.4 (86.5)	189.9 (86.4)
Disposition index	6.276 (6.686)	6.189 (3.349)	4.179 (3.880)	3.846 (2.566)	4.537 (2.037)
Total adiponectin (\mu g/mL)	10.5 (2.9)	13.5 (5.5)	16.1 (8.2)	15.7 (5.6)	18.9 (8.3)

Results are mean (SD). \(P \) vs. baseline (ANOVA within group): \(<0.05\). \(\dagger \)P vs. baseline (ANOVA within group): \(<0.02\). \(\ddagger \)P vs. baseline (ANOVA within group): \(<0.001\). \(\# \)P for C-DM vs. C-HT at baseline (unpaired Student t test): \(<0.05\). \(* \)P for C-DM vs. C-HT at baseline (unpaired Student t test): \(<0.01\).
proportion to their improved insulin sen-
sitivity with insulin secretion decreasing
in parallel (minimal change in disposition
index). However, CS patients with IGT
or diabetes manifest a baseline defect in
β-cell secretory responsiveness that is
partially retrievable along with improve-
ment in insulin sensitivity (increase trend
in disposition index) with mifepristone
treatment. Adiponectin levels significantly
increased with mifepristone throughout
the course of treatment, particularly in
patients without diabetes/IGT.

Acknowledgments—This study was sup-
ported by Corcept Therapeutics. M.E.M. and
J.Q.P. have been consultants to Corcept Ther-
apeutics. A.W., K.C., and M.E.M. have served
as investigators on research grants to their
institutions from Corcept Therapeutics. C.G.
is an employee of Corcept Therapeutics. No
other potential conflicts of interest relevant
to this article were reported.

A.W. was the primary author of the manu-
script and a study investigator, collected study
data, interpreted data, provided input on sta-
tistical analysis, and contributed to the design
of the post hoc study analysis. K.C. was a
study investigator, reviewed and edited the
manuscript, and collected and interpreted
study data. J.Q.P. reviewed and edited the
manuscript, interpreted data, provided statis-
tical analysis, and contributed to the design
of the post hoc study analysis. C.G. cowrote
the manuscript, interpreted data, provided sta-
tistical analysis, and contributed to the design
of the SEISMIC study and the post hoc study
analysis. M.E.M. was a study investigator, re-
viewed and edited the manuscript, collected
and interpreted study data, provided input on
statistical analysis, and contributed to the design
of the SEISMIC study and the post hoc study
analysis. A.W. was the guarantor of this work
and, as such, had full access to all the
data in the study and takes responsibility
for the integrity of the data and the accuracy
of the data analysis.

A portion of this work was presented in
abstract form at the 94th Annual Meeting of
The Endocrine Society, Houston, Texas, 23–
26 June 2012.

The authors thank Dawn Marquez, Corcept Therapeutics, Menlo Park, California, for data
management assistance.

References
1. Pivonello R, De Leo M, Vitale P, et al. Patho-
physiology of diabetes mellitus in Cushing’s
syndrome. Neuroendocrinology 2010;92
(Suppl. 1):77–81
2. Clayton RN, Raskauskiene D, Reulen RC,
Jones PW. Mortality and morbidity in Cush-
ing’s disease over 50 years in Stoke-on-Trent,
UK: audit and meta-analysis of literature.
J Clin Endocrinol Metab 2011;96:632–642
3. Fleseriu M, Biller BM, Findling JW, Molitch
ME, Schteingart DE, Gross C; SEISMIC
Study Investigators. Mifepristone, a gluco-
corticoid receptor antagonist, produces clin-
ical and metabolic benefits in patients with
Cushing’s syndrome. J Clin Endocrinol
Metab 2012;97:2039–2049
4. Albareda M, Rodríguez-Espinosa J, Murugo M,
de Leiva A, Coroyo R. Assessment of insulin
sensitivity and beta-cell function from
measurements in the fasting state and dur-
ing an oral glucose tolerance test. Diabeto-
logia 2000;43:1507–1511
5. Kanat M, Winnier D, Norton L, et al. The re-
lationship between β-cell function and gly-
cated hemoglobin: results from the veterans
administration genetic epidemiology study.
Diabetes Care 2011;34:1006–1010