FRACTIONAL \mathcal{Q}-EDGE-COLORING OF GRAPHS

JÚLIUS CZAP

Department of Applied Mathematics and Business Informatics,
Faculty of Economics, Technical University of Košice,
Němcovej 32, SK-040 01 Košice, Slovakia

e-mail: julius.czap@tuke.sk

AND

PETER MIHÓK†

Department of Applied Mathematics and Business Informatics,
Faculty of Economics, Technical University of Košice,
Němcovej 32, SK-040 01 Košice, Slovakia

and

Mathematical Institute of the Slovak Academy of Sciences,
Grešíkova 6, SK-040 01 Košice, Slovakia

Abstract

An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphism. Let \mathcal{Q} be an additive hereditary property of graphs. A \mathcal{Q}-edge-coloring of a simple graph is an edge coloring in which the edges colored with the same color induce a subgraph of property \mathcal{Q}. In this paper we present some results on fractional \mathcal{Q}-edge-colorings. We determine the fractional \mathcal{Q}-edge chromatic number for matroidal properties of graphs.

Keywords: fractional coloring, graph property.

2010 Mathematics Subject Classification: 05C15, 05C70, 05C72.

1. Introduction

Our terminology and notation will be standard. The reader is referred to [1, 11] for undefined terms. All graphs considered in this paper are simple, i.e. they have no loops or multiple edges.

† Peter Mihók passed away on March 27, 2012.
We denote the class of all finite simple graphs by \mathcal{I}. A graph property Q is a non-empty isomorphism-closed subclass of \mathcal{I}. We also say that a graph G has property Q whenever $G \in Q$. The fact that H is a subgraph of G is denoted by $H \subseteq G$ and the disjoint union of two graphs G and H is denoted by $G \cup H$. A property Q is called additive if $G \cup H \in Q$ whenever $G \in Q$ and $H \in Q$. A property Q is called hereditary if $G \in Q$ and $H \subseteq G$ implies $H \in Q$. The set of all additive hereditary properties will be denoted by \mathcal{L}.

We list several well-known additive hereditary properties

$$
\mathcal{D}_k = \{ G \in \mathcal{I} : \text{each subgraph of } G \text{ contains a vertex of degree at most } k \},
$$

$$
\mathcal{I}_k = \{ G \in \mathcal{I} : G \text{ does not contain } K_{k+2} \},
$$

$$
\mathcal{J}_k = \{ G \in \mathcal{I} : \chi'(G) \leq k \},
$$

$$
\mathcal{O}_k = \{ G \in \mathcal{I} : \text{each component of } G \text{ has at most } k + 1 \text{ vertices} \},
$$

$$
\mathcal{S}_k = \{ G \in \mathcal{I} : \Delta(G) \leq k \},
$$

$$
\mathcal{B} = \{ G \in \mathcal{I} : G \text{ is a bipartite graph} \},
$$

where K_{k+2} denotes the complete graph on $k + 2$ vertices, $\chi'(G)$ is the edge chromatic number (chromatic index) and $\Delta(G)$ is the maximum degree of the graph G.

Generalized colorings of edges or/and vertices of graphs under restrictions given by graph properties have recently attracted much attention, see e.g. [2, 3, 4, 6, 7, 8, 10] and references therein.

By using the class of additive hereditary properties, there is the following generalization of edge coloring. Let $Q \in \mathcal{L}$ and let t be a positive integer. A t-fold Q-edge-coloring of a graph is an assignment of t distinct colors to each edge such that each color class induces a subgraph of property Q. The smallest number k such that G admits a t-fold Q-edge-coloring with k colors is the (t, Q)-chromatic index of G, denoted by $\chi'_{t,Q}(G)$. Clearly, a 1-fold O_1-edge-coloring is a usual proper edge coloring and hence $\chi'_{1,O_1}(G) = \chi'(G)$.

Another generalization of edge coloring is fractional edge coloring. The fractional chromatic index of a graph G is defined in the following way: $\chi'_{f}(G) = \lim_{t \to \infty} \frac{\chi'_{t,O_1}(G)}{t}$. If we replace the property O_1 by any other additive hereditary graph property Q in the definition of the fractional chromatic index, then we obtain the fractional Q-chromatic index of a graph G and we denote it $\chi'_{f,Q}(G)$.

A hypergraph \mathcal{H} is a pair (S, X), where S is a finite set and X is a family of subsets of S. The elements of X are called hyperedges. A t-fold covering of a hypergraph \mathcal{H} is a collection (multiset) of hyperedges which includes every element of S at least t times. The smallest cardinality of such a multiset is called the t-fold covering number of \mathcal{H} and is denoted $k_t(\mathcal{H})$. The fractional covering number of \mathcal{H} is defined as $k_{f}(\mathcal{H}) = \lim_{t \to \infty} \frac{k_t(\mathcal{H})}{t}$.
For given simple graph \(G = (V, E) \) and additive hereditary property \(Q \), let \(\mathcal{H}_G = (E_G, Q_G) \) denote the hypergraph whose vertex set is the edge set of \(G \) and the hyperedges are those subsets of \(E(G) = E_G \) which induce a graph of property \(Q \). Since \(Q \) is hereditary, we can formulate the \((t, Q)\)-chromatic index of the graph \(G \) as the \(t \)-fold covering number of the hypergraph \(\mathcal{H}_G \). There is a natural one-to-one correspondence between the color classes of \(G \) and the hyperedges of \(\mathcal{H}_G \). Therefore the following assertion holds.

Claim 1. The fractional \(Q \)-chromatic index of the graph \(G \) is equal to the fractional covering number of the hypergraph \(\mathcal{H}_G = (E_G, Q_G) \).

A matroid \(M = (S, I) \) is a hypergraph which satisfies the following three conditions:
1. \(\emptyset \in I \),
2. if \(X \in I \) and \(Y \subseteq X \), then \(Y \in I \),
3. if \(X, Y \in I \) and \(|X| > |Y|\), then there is an \(x \in X \setminus Y \) such that \(Y \cup \{x\} \in I \).

In [12] the fractional covering number of matroids is determined. Let \(X \) be a subset of the ground set \(S \) of a matroid \(M \). The rank of \(X \), denoted \(\rho(X) \), is defined as the maximum cardinality of an independent subset of \(X \) (a subset of \(X \) which belongs to \(I \)).

Theorem 2 [12]. If \(M = (S, I) \) is a matroid, then

\[
k_f(M) = \max_{X \subseteq S, X \neq \emptyset} \frac{|X|}{\rho(X)}.
\]

In this paper, by combining Claim 1 and Theorem 2, we give a general formula for the fractional \(Q \)-chromatic index. Afterwards, by this formula and with other results from the literature, we determine the exact values of \(\chi'_f, Q(G) \) for so-called \(Q \)-matroidal graphs.

2. Results

Let \(G = (V, E) \) be a graph and let \(Q \) be an additive hereditary property. If the hypergraph \((E_G, Q_G) \) is a matroid, then \(G \) is called \(Q \)-matroidal. Let \(Q^M \) denote the set of all \(Q \)-matroidal graphs. A property \(Q \) is called \textit{matroidal} if every graph \(G \) is \(Q \)-matroidal. Schmidt [13] proved the existence of uncountably many matroidal properties.

A subset of the edge set of a graph is called \(Q \)-independent if it induces a graph of property \(Q \). For a graph \(H \) let \(Q(H) \) denote the maximum cardinality of a \(Q \)-independent subset of \(E(H) \).
Lemma 3. Let \(a_i, b_i > 0 \) for \(i = 1, \ldots, n \). Then \(\frac{a_1 + \cdots + a_n}{b_1 + \cdots + b_n} \leq \max_i \left\{ \frac{a_i}{b_i} \right\} \).

Proof. By induction on \(n \). \(\square \)

Theorem 4. Let \(Q \in \mathbb{L} \) and let \(G \in Q^M \). Then

\[
\chi'_{f,Q}(G) = \max \frac{|E(H)|}{Q(H)},
\]

where the maximum is taken over all connected nontrivial subgraphs \(H \) of \(G \).

Proof. Since \(G \) is \(Q \)-matroidal, the hypergraph \(\mathcal{H}_G = (E_G, Q_G) \) is a matroid.

Claim 1 with Theorem 2 imply that

\[
\chi'_{f,Q}(G) = \max_{X \subseteq E_G: X \neq \emptyset} \frac{|X|}{\rho(X)} = \max \frac{|E(H)|}{Q(H)},
\]

where the maximum is taken over all nontrivial subgraphs \(H \) of \(G \).

Now we show that we may restrict our attention to connected \(H \). Suppose that the maximum on the right-hand side of (1) is achieved for a graph \(H \) with more than one component. Let \(H = H_1 \cup \cdots \cup H_n \), where \(H_i \) are the components of \(H \). If one of these components, say \(H_j \), is an empty graph (set of isolated vertices), then

\[
\frac{|E(H)|}{Q(H)} = \frac{|E(H - H_j)|}{Q(H - H_j)}. \]

Thus we can assume that each component has at least one edge. Then

\[
\frac{|E(H)|}{Q(H)} = \frac{|E(H_1)| + \cdots + |E(H_n)|}{Q(H_1) + \cdots + Q(H_n)} \leq \max_i \left\{ \frac{|E(H_i)|}{Q(H_i)} \right\}. \quad \square
\]

We can now determine the fractional \(Q \)-chromatic index for \(Q \)-matroidal graphs. The following question arises: Which graphs are \(Q \)-matroidal for given properties \(Q \)?

Each hereditary property \(Q \) can be determined by the set of minimal forbidden subgraphs \(F(Q) = \{ G \in \mathbb{L}: G \not\in Q \text{ but } G \setminus \{ e \} \in Q \text{ for each } e \in E(G) \} \). For example: \(F(O_k) = \{ H; H \text{ is a tree on } k+2 \text{ vertices } \} \); \(F(I_k) = \{ K_{k+2} \} \). Simões-Pereira [14] proved that if \(F(Q) \) is finite, then \(Q \) is not matroidal.

In [9] there is the following characterization of \(Q \)-matroidal graphs.

Theorem 5 [9]. A graph \(G = (V, E) \) is \(Q \)-matroidal if and only if for each \(Q \)-independent set \(I \subseteq E \) and for each edge \(e \in E \setminus I \) the graph \(G[I \cup \{ e \}] \) induced by \(I \cup \{ e \} \) contains at most one minimal forbidden subgraph of \(Q \).

By Theorem 5 each graph \(G \) which contains either at most one minimal forbidden subgraph of \(Q \) or only edge-disjoint minimal forbidden subgraphs of \(Q \) is \(Q \)-matroidal.

Lemma 6 [9]. The property \(Q^M \) belongs to \(\mathbb{L} \) for every \(Q \in \mathbb{L} \).
By Lemma 6 we can characterize the structure of Q-matroidal graphs by describing the set of minimal forbidden subgraphs $F(Q^M)$.

For any two given graphs G_1 and G_2 with a common induced subgraph H we construct the graph $G = (G_1; H; G_2)$ by amalgamation of G_1 and G_2 with respect to H so that $V(G) = V(G_1) \cup V(G_2)$, $E(G) = E(G_1) \cup E(G_2)$ and $H = (V(G_1) \cap V(G_2), E(G_1) \cap E(G_2))$.

In the following P_n and C_n will denote the path and the cycle on n vertices, respectively. D_n will denote the complement of K_n.

Theorem 7 [9]. Let G be a graph and let $k \geq 1$. Then

- $G \in F(O_k^M)$ if and only if $G \in T \setminus \{K_{1,k+2}; C_{k+2}\}$, where T is the set of all trees on $k + 3$ vertices and all unicyclic graphs on $k + 2$ vertices,
- $G \in F(S_k^M)$ if and only if $G = (K_{1,k+1}; K_2 \cup D_p; K_{1,k+1})$ for some $0 \leq p \leq k$ and $k \geq 2$, where K_2 joins the central vertices of the stars,
- $G \in F(T_k^M)$ if and only if $G = (K_{k+2}; K_r; K_{k+2})$ for some $2 \leq r \leq k + 1$,
- $G \in F(B^M)$ if and only if $G = (C_{2p+1}; P_q; C_r)$ for some $p \geq 1$, $q \geq 2$ and $r \geq 3$.

The seminal result on fractional edge colorings is due to Edmonds [5]. For a graph G we define $\Gamma(G) = \max \frac{2|E(H)|}{|V(H)| - 1}$, where the maximization is over every induced subgraph H of G with $|V(H)| \geq 3$ and $|V(H)|$ odd.

Theorem 8 [5]. Let G be a graph. Then

$$\chi'_{f,J_1}(G) = \chi'_{f,S_1}(G) = \chi'_{f,C_1}(G) = \chi'_{f}(G) = \max \{\Delta(G), \Gamma(G)\}.$$

Lemma 9. Every graph is D_1-matroidal.

Proof. Clearly, $F(D_1)$ is a set of cycles. Moreover, if we add an edge to a tree (forest) we obtain exactly (at most) one cycle. So the claim follows from Theorem 5.

Although all graphs are D_1-matroidal, for $k \geq 2$ the characterization of D_k-matroidal graphs seems to be difficult.

Theorem 10. Let G be a graph. Then

$$\chi'_{f,D_1}(G) = \max \frac{|E(H)|}{|V(H)| - 1},$$

where the maximum is taken over all connected nontrivial subgraphs H of G.

Proof. From Lemma 9 it follows that G is D_1-matroidal. Any spanning tree of a connected graph H on n vertices has $n-1$ edges, therefore $D_1(H) = |V(H)| - 1$. Theorem 4 implies
\[
\chi'_{f, D_1}(G) = \max_{H \subseteq G} \frac{|E(H)|}{D_1(H)} = \max_{H \subseteq G} \frac{|E(H)|}{|V(H)| - 1}.
\]

Corollary 11. Let G be a graph and let $Q \in \mathcal{L}$ such that $D_1 \subseteq Q$. Then
\[
\chi'_{f, Q}(G) \leq \max_{H \subseteq G} \left| E(H) \right| - H_{k+2},
\]
where the maximization is over all connected nontrivial subgraphs H of G.

Lemma 12. Let $k \geq 1$. The graph G is I_k-matroidal if and only if any two complete graphs on $k + 2$ vertices are edge-disjoint in G.

Proof. Assume that G contains two complete graphs on $k + 2$ vertices which have $r \geq 2$ vertices in common. These r vertices induce K_r, hence G contains $(K_{k+2}; K_r; K_{k+2})$ as a subgraph. So $G \notin I_k^M$ since $(K_{k+2}; K_r; K_{k+2}) \in F(I_k^M)$ (see Theorem 7).

If $G \notin I_k^M$, then G contains a forbidden subgraph $(K_{k+2}; K_r; K_{k+2})$ for some $2 \leq r \leq k + 1$, thus it contains two complete graphs on $k + 2$ vertices which share an edge.

Let H_{k+2} denote the number of complete graphs on $k + 2$ vertices in the graph H.

Theorem 13. Let G be an I_k-matroidal graph, $k \geq 1$. Then
\[
\chi'_{f, I_k}(G) = \max_{H \subseteq G} \frac{|E(H)|}{|E(H)| - H_{k+2}},
\]
where the maximum is taken over all connected nontrivial subgraphs H of G.

Proof. From Theorem 4 it follows that $\chi'_{f, I_k}(G) = \max_{H \subseteq G} \frac{|E(H)|}{I_k(H)}$. So it is sufficient to show that $I_k(H) = |E(H)| - H_{k+2}$.

Lemma 12 implies that any two complete graphs on $k + 2$ vertices are edge-disjoint in every subgraph H of G. Hence, if we remove less than H_{k+2} edges from H, then the obtained graph still contains at least one K_{k+2}. Therefore $I_k(H) \leq |E(H)| - H_{k+2}$.

On the other hand, if we remove one edge from each K_{k+2}, then the remaining edges form an I_k-independent set, hence $I_k(H) \geq |E(H)| - H_{k+2}$.

Lemma 14. Let $k \geq 2$. The graph G is S_k-matroidal if and only if no two vertices of degree at least $k + 1$ are incident in G.
Proof. Let uv be an edge of G such that its endvertices have degree at least $k+1$. Let G_1 be a subgraph of G which contains only the edges incident with u or v. Clearly, G_1 contains a subgraph G_2 in which the vertices u and v are joined by an edge and they have degree $k+1$. Let p denote the number of common neighbors of u and v in G_2. Observe that $G_2 = (K_{1,k+1}; K_2 \cup D_p; K_{1,k+1})$, consequently $G_2 \in F(S^M_k)$. So G cannot be S^k-matroidal.

If $G \notin S^M_k$, then it contains a minimal forbidden subgraph $(K_{1,k+1}; K_2 \cup D_p; K_{1,k+1})$ for some $0 \leq p \leq k$. The central vertices of these stars are joined by an edge and they have degree $k+1$.

Theorem 15. Let G be an S^k-matroidal graph, $k \geq 2$. Then

$$\chi'_{S^k}(G) = \max \frac{|E(H)|}{|E(H)| - \sum_{v \in V(H)} (\deg_H(v) - k)},$$

where the maximum is taken over all connected nontrivial subgraphs H of G.

Proof. Let H be a subgraph of G. If for every vertex v of H of degree at least $k+1$ we remove $\deg_H(v) - k$ edges incident with it, then we obtain a graph whose maximum degree is at most k. Therefore

$$S^k_k(H) \geq |E(H)| - \sum_{v \in V(H)} (\deg_H(v) - k).$$

The opposite inequality follows from the fact that no two vertices of degree at least $k+1$ are incident in G, thus neither in $H \subseteq G$ (see Lemma 14). Therefore the claim follows from Theorem 4.

Lemma 16. The graph G is B-matroidal if and only if no odd cycle of G shares an edge with any other cycle of G.

Proof. $G \notin B^M$ if and only if G contains a minimal forbidden subgraph $(C_{2p+1}; P_q; C_r)$ for some $p \geq 1$, $q \geq 2$ and $r \geq 3$. Equivalently, G contains an odd cycle which shares an edge with an other cycle.

Corollary 17. If $G \in B^M$, then the odd cycles of G are edge-disjoint.

Let $oc(G)$ denote the number of odd cycles in the graph G.

Theorem 18. Let G be a B-matroidal graph. Then

$$\chi'_{B}(G) = \max \frac{|E(H)|}{|E(H)| - oc(H)},$$

where the maximum is taken over all connected nontrivial subgraphs H of G.

Proof. Let \(H \) be a subgraph of \(G \). If we remove one edge from every odd cycle of \(H \), then the remaining edges induce a bipartite graph, hence \(\mathcal{B}(H) \geq |E(H)| - oc(H) \).

The odd cycles in \(H \) are edge-disjoint (see Corollary 17), thus we must remove at least \(oc(H) \) edges from \(E(H) \) to obtain a \(\mathcal{B} \)-independent set. Therefore \(\mathcal{B}(H) \leq |E(H)| - oc(H) \).

Consequently, \(\mathcal{B}(H) = |E(H)| - oc(H) \) and hence the assertion follows from Theorem 4.

Lemma 19. Let \(k \geq 1 \). The graph \(G \) is \(\mathcal{O}_k \)-matroidal if and only if \(G \) either belongs to \(\mathcal{O}_k \) or it is isomorphic to \(K_{1,p} \), \(p \geq k + 1 \), to \(C_{k+2} \) or to a tree on \(k + 2 \) vertices.

Proof. \(G \) is \(\mathcal{O}_k \)-matroidal if and only if it does not contain any subgraph from \(F(\mathcal{O}_k^M) \). So the claim follows from Theorem 7.

Clearly, if \(G \in \mathcal{O}_k \), then its fractional \(\mathcal{O}_k \)-edge chromatic number equals one. If \(G \in \mathcal{O}_k^M \setminus \mathcal{O}_k \), then it has \(k + 2 \) vertices or it is a star on at least \(k + 3 \) vertices.

Theorem 20. Let \(G \in \mathcal{O}_k^M \setminus \mathcal{O}_k \) and let \(|V(G)| = k + 2, k \geq 2\). Then

\[
\chi'_{\mathcal{O}_k}(G) = \frac{|E(G)|}{|E(G)| - \lambda(G)},
\]

where \(\lambda(G) \) is the edge-connectivity of \(G \).

Proof. Let \(H \) be a connected subgraph of \(G \). If \(E(H) \) is not \(\mathcal{O}_k \)-independent, then either \(|E(H)| = k + 2\) or \(|E(H)| = k + 1\). In the first case \(H = C_{k+2} \), hence \(\mathcal{O}_k(H) = |E(H)| - 2 \). In the second case \(H \) is a tree, therefore \(\mathcal{O}_k(H) = |E(H)| - 1 \). Thus the claim follows from Theorem 4.

Theorem 21. Let \(G \in \mathcal{O}_k^M \setminus \mathcal{O}_k \) and let \(|V(G)| = k + i, k \geq 2, i \geq 3\). Then

\[
\chi'_{\mathcal{O}_k}(G) = \frac{|E(G)|}{|E(G)| - i + 1} = \frac{k + i - 1}{k}.
\]

Proof. It follows from Theorem 4 and from the fact that \(G \) is a star.

3. Examples

Example 22. Let \(K_{2,3} \) denote the complete bipartite graph on \(2 + 3 \) vertices. We will show that \(\chi'_{\mathcal{O}_k}(K_{2,3}) = \frac{3}{2} \).
Solution 1.
From Lemma 14 it follows that $K_{2,3} \in S_M^2$. From Theorem 15 we have $\chi'_{f,S_2}(K_{2,3})$

\[= \max \left\{ \frac{|E(H)|}{|E(H)| - \sum_{v \in V(H)} \deg_H(v) = 3} \right\}, \]

where the maximum is taken over all connected nontrivial subgraphs H of G.

If H is a connected subgraph of G, then either $H \in S_2$ or it is a graph from Figure 1. So $\chi'_{f,S_2}(K_{2,3}) = \max \{1, \frac{3}{2}, \frac{3}{2}, \frac{5}{4}, \frac{3}{2} \} = \frac{3}{2}$.

Figure 1. Connected subgraphs of $K_{2,3}$ which are not in S_2.

Solution 2.
Fractional Q-edge-colorings may be viewed in several ways. We present an equivalent definition. Let r, s be positive integers with $r \geq s$. An (r, s)-fractional Q-edge-coloring of G is an assignment of s-element subsets of $\{1, \ldots, r\}$ to the edges of G such that each color class induces a graph of property Q. Then the fractional Q-edge chromatic number of G is defined as

\[\chi'_{f,Q}(G) = \inf \left\{ \frac{r}{s} : G \text{ has an } (r, s)\text{-fractional } Q\text{-edge-coloring} \right\}. \]

Note that in this definition we can replace the infimum by the minimum.

For each (r, s)-fractional S_2-edge-coloring of $K_{2,3}$ and for each color $i \in \{1, \ldots, r\}$ the following holds: at most four edges are colored with sets containing the color i. On the other hand, every edge is assigned with an s-element color set. This implies that $4r \geq 6s$, hence $\chi'_{f,S_2}(K_{2,3}) \geq \frac{3}{2}$.

To prove the inequality $\chi'_{f,S_2}(K_{2,3}) \leq \frac{3}{2}$ we construct a $(3, 2)$-fractional S_2-edge-coloring of $K_{2,3}$, see Figure 2.

Figure 2. A $(3, 2)$-fractional S_2-edge-coloring of the graph $K_{2,3}$.

The following results immediately follows from Theorems 13, 15 and 18.
Example 23. If $k \geq 1$, then
\[
\chi'_{f,I}(K_{k+2}) = \left(\frac{k+2}{2}\right)^2 - 1, \quad \chi'_{f,S}(K_{1,k+1}) = \frac{k+1}{k}
\]
and
\[
\chi'_{f,B}(C_{2k+1}) = \frac{2k+1}{2k}.
\]

Acknowledgment
The authors would like to thank anonymous referees for many helpful comments and constructive suggestions.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008). doi:10.1007/978-1-84628-970-5

[2] M. Borowiecki, A. Kemnitz, M. Marangio and P. Mihók, Generalized total colorings of graphs, Discuss. Math. Graph Theory 31 (2011) 209–222. doi:10.7151/dmgt.1540

[3] I. Broere, S. Dorfling and E. Jonck, Generalized chromatic numbers and additive hereditary properties of graphs, Discuss. Math. Graph Theory 22 (2002) 259–270. doi:10.7151/dmgt.1174

[4] M.J. Dorfling and S. Dorfling, Generalized edge-chromatic numbers and additive hereditary properties of graphs, Discuss. Math. Graph Theory 22 (2002) 349–359. doi:10.7151/dmgt.1180

[5] J. Edmonds, Maximum matching and a polyhedron with 0, 1-vertices, J. Res. Nat. Bur. Standards 69B (1965) 125–130.

[6] G. Karafová, Generalized fractional total coloring of complete graphs, Discuss. Math. Graph Theory, accepted.

[7] A. Kemnitz, M. Marangio, P. Mihók, J. Oravcová and R. Soták, Generalized fractional and circular total coloring of graphs, preprint.

[8] K. Kilakos and B. Reed, Fractionally colouring total graphs, Combinatorica 13 (1993) 435–440. doi:10.1007/BF01303515

[9] P. Mihók, On graphs matroidal with respect to additive hereditary properties, Graphs, Hypergraphs and Matroids II, Zielona Góra (1987) 53–64.

[10] P. Mihók, Zs. Tuza and M. Voigt, Fractional \mathcal{P}-colourings and \mathcal{P}-choice-ratio, Tatra Mt. Math. Publ. 18 (1999) 69–77.

[11] J.G. Oxley, Matroid Theory (Oxford University Press, Oxford, 1992).

[12] E.R. Scheinerman and D.H. Ullman, Fractional Graph Theory (John Wiley & Sons, 1997).
[13] R. Schmidt, *On the existence of uncountably many matroidal families*, Discrete Math. 27 (1979) 93–97. doi:10.1016/0012-365X(79)90072-4

[14] J.M.S. Simões-Pereira, *On matroids on edge sets of graphs with connected subgraphs as circuits*, Proc. Amer. Math. Soc. 38 (1973) 503–506. doi:10.2307/2038939

Received 3 November 2011
Revised 29 May 2012
Accepted 29 May 2012