Weyl-Underhill-Emmrich quantization and the Stratonovich-Weyl quantizer

Jerzy F. Plebański*, Maciej Przanowski***, Francisco J. Turrubiates***

*Department of Physics
Centro de Investigación y de Estudios Avanzados del IPN
Apartado Postal 14-740, México, D.F., 07000, México.

**Institute of Physics
Technical University of Łódź,
Wólczańska 219, 93-005, Łódź, Poland.

Abstract

Weyl-Underhill-Emmrich (WUE) quantization and its generalization are considered. It is shown that an axiomatic definition of the Stratonovich-Weyl (SW) quantizer leads to severe difficulties. Quantization on the cylinder within the WUE formalism is discussed.

PACS numbers: 03.65.Ca
Keywords: Quantization on Riemannian manifolds, Deformation quantization.
1 Introduction

Deformation quantization introduced in 1978 by Bayen, Flato, Fronsdal, Lichnerowicz and Sternheimer [1] seems now to be one of the most interesting part of the mathematical physics, especially after works of Fedosov [2, 3] and Kontsevich [4] have been published. From the physical point of view the important question is if the mathematical formalism of deformation quantization describes the physical reality. One way to deal with this problem is looking for the "natural" generalization of the Weyl-Wign-er-Moyal formalism to a Riemannian configuration space and then comparing this with the general theory of deformation quantization. Perhaps the most natural generalization of the Weyl quantization rule [1], [5-9] was given by Underhill [10] and Emmrich [11].

In section 2 of our paper we deal with Weyl-Underhill-Emmrich (WUE) approach and some its generalization. Then we consider how this approach leads to the definition of Stratonovich-Weyl (SW) quantizer. This quantizer is used by some authors [8,12-15] as the fundamental object defining the deformation quantization. In our paper it is argued that the axiomatic approach to the SW quantizer seems to lead to severe difficulties (see also [16]).

In section 3 some aspects of deformation quantization on the cylinder within the WUE formalism are considered. It is shown how in this formalism one can define the discrete SW quantizer given by Mukunda [17] and then also obtained in [16, 18, 19].

2 WUE quantization and its generalization

First assume that the configuration space of a dynamical system is the Euclidean manifold \mathbb{R}^n. Then the phase space is \mathbb{R}^{2n} with the natural symplectic form

$$\omega = dp_\alpha \wedge dx^\alpha, \quad \alpha = 1, \ldots, n$$

(2.1)

where x^1, \ldots, x^n are the Cartesian coordinates on \mathbb{R}^n and p_1, \ldots, p_n denote the respective momenta.

According to the Weyl quantization rule [1,5-9] if $f = f(p, x)$ is a function on \mathbb{R}^{2n} then the corresponding operator \hat{f} in the space of quantum states \mathcal{H} is given by

$$\hat{f} := \int_{\mathbb{R}^{2n}} \frac{dp dx}{(2\pi\hbar)^n} f(p, x) \hat{\Omega}(p, x)$$

(2.2)
where \(dpdx := dp_1...dp_n dx^1...dx^n \) and the operator valued function \(\hat{\Omega} = \hat{\Omega}(p, x) \) is defined by

\[
\hat{\Omega} = \hat{\Omega}(p, x) := 2^n \int_{\mathbb{R}^n} d\xi \exp \left(-\frac{2i p\xi}{\hbar} \right) |x - \xi\rangle\langle x + \xi|,
\]

\(p\xi := p_\alpha \xi^\alpha \) (2.3)

\(\hat{\Omega} \) is called the Stratonovich-Weyl (SW) quantizer [8,9,12-15]

One can quickly show that

\[
\{ \hat{\Omega}(p, x) \}^\dagger = \hat{\Omega}(p, x) \quad (2.4)
\]

and

\[
Tr \{ \hat{\Omega}(p, x) \} = 1 \quad (2.5)
\]

The last formula, (2.6), enables us to find the function \(f = f(p, x) \) from its Weyl image \(\hat{f}_W \). Indeed, (2.2) and (2.6) give

\[
f = f(p, x) = Tr \{ \hat{\Omega}(p, x) \hat{f}_W \} \quad (2.7)
\]

Given any kets \(|\varphi\rangle, |\psi\rangle \in \mathcal{H} \) one gets from (2.2) and (2.3)

\[
\langle \varphi|\hat{f}_W|\psi\rangle = \int_{\mathbb{R}^{2n}} dpdx \frac{f(p, x)}{(2\pi\hbar)^n} \langle \varphi|\hat{\Omega}(p, x)|\psi\rangle,
\]

\[
\langle \varphi|\hat{\Omega}(p, x)|\psi\rangle = 2^n \int_{\mathbb{R}^n} d\xi \exp \left(-\frac{2i p\xi}{\hbar} \right) \overline{\varphi(x - \xi)} \psi(x + \xi) \quad (2.8)
\]

where \(\varphi(x) = \langle x|\varphi\rangle \) and \(\psi(x) = \langle x|\psi\rangle \) denote the Schrödinger representation of \(|\varphi\rangle \), and \(|\psi\rangle \), respectively, and the overbar stands for the complex conjugation. Finally,

\[
\langle \varphi|\hat{f}_W|\psi\rangle = \frac{1}{(\pi\hbar)^n} \int_{\mathbb{R}^{2n} \times \mathbb{R}^n} dpdx d\xi f(p, x)
\]

\[
\exp \left(-\frac{2i p\xi}{\hbar} \right) \overline{\varphi(x - \xi)} \psi(x + \xi) \quad (2.9)
\]
In particular, let \(f \) be a monomial in momenta
\[
f = X^{\alpha_1 \ldots \alpha_m}(x)p_{\alpha_1} \ldots p_{\alpha_m}
\] (2.10)
where \(X^{\alpha_1 \ldots \alpha_m}(x) \) is a totally symmetric tensor field on the configuration space \(\mathbb{R}^n \). Substituting (2.10) into (2.9), integrating with respect to \(dp \) and then by parts with respect to \(d\xi \) we get
\[
\langle \varphi | \hat{f} W | \psi \rangle = \left(\frac{\pi \hbar}{2} \right)^n \int_{\mathbb{R}^n \times \mathbb{R}^n} dx d\xi X^{\alpha_1 \ldots \alpha_m}(x) \left(-\frac{\hbar}{2i} \right)^m \frac{\partial^m}{\partial \xi^{\alpha_1} \ldots \partial \xi^{\alpha_m}} \left\{ \varphi(x - \xi) \psi(x + \xi) \right\} \delta \left(\frac{2\xi}{\hbar} \right) \left(2\pi \right)^n \delta \left(\frac{2\xi}{\hbar} \right)
\]
(2.11)

Finally, the integration by parts brings (2.11) to the form
\[
\langle \varphi | \hat{f} W | \psi \rangle = \int_{\mathbb{R}^n} dx \varphi(x) \left\{ \left(\frac{\hbar}{i} \right)^m \sum_{k=0}^{m} \frac{1}{2^k} \binom{m}{k} \right\} (\partial_{\alpha_1} \ldots \partial_{\alpha_k} X^{\alpha_1 \ldots \alpha_k \alpha_{k+1} \ldots \alpha_m}(x)) \partial_{\alpha_{k+1}} \ldots \partial_{\alpha_m} \psi(x)
\]
(2.12)

Consequently, the Weyl image of the monomial (2.10) reads
\[
\hat{f} W = \left(\frac{\hbar}{i} \right)^m \sum_{k=0}^{m} \frac{1}{2^k} \binom{m}{k} (\partial_{\alpha_1} \ldots \partial_{\alpha_k} X^{\alpha_1 \ldots \alpha_k \alpha_{k+1} \ldots \alpha_m}(x)) \partial_{\alpha_{k+1}} \ldots \partial_{\alpha_m}
\]
(2.13)

By the linear extension of (2.13) one obtains the Weyl image for an arbitrary polynomial in momenta. As it has been shown in [9, 20, 21] every operator ordering satisfying some natural axioms can be obtained with the use of an operator of the form
\[
A = A \left(-\hbar \frac{\partial^2}{\partial p^2} \right) = 1 + \sum_{k=1}^{\infty} A_k \cdot \left(-\hbar \frac{\partial^2}{\partial p^2} \right)^k, \quad A_k \in \mathbb{C}
\]
(2.14)

Given operator \(A \) one defines
\[
\hat{f}^{(A)} := \int_{\mathbb{R}^{2n}} \frac{dp dx}{(2\pi \hbar)^n} (Af(p, x)) \hat{\Omega}(p, x)
\]
\[
= \int_{\mathbb{R}^{2n}} \frac{dp dx}{(2\pi \hbar)^n} f(p, x) \hat{\Omega}^{(A)}(p, x)
\]
(2.15)
where
\[\hat{\Omega}^{(A)}(p, x) := A\hat{\Omega}(p, x) \] (2.16)
is called the generalized Stratonovich-Weyl quantizer [9]. We have
\[Tr \{ \hat{\Omega}^{(A)}(p, x) \} = 1 \] (2.17)
\[Tr \{ \hat{\Omega}^{(A)}(p, x)\hat{\Omega}^{(A)}(p', x') \} = (2\pi\hbar)^n A^2 \left(-h\frac{\partial^2}{\partial p_\alpha \partial x^\alpha} \right) \delta(p - p')\delta(x - x') \] (2.18)
Hence one gets the generalization of the formula (2.7)
\[f = f(p, x) = A^{-2} \left(-h\frac{\partial^2}{\partial p_\alpha \partial x^\alpha} \right) Tr \{ \hat{\Omega}^{(A)}(p, x)\hat{f}^{(A)} \} \] (2.19)
For the Weyl ordering we have
\[A = 1 \] (2.20)
and for the so called standard ordering
\[A = \exp \left\{ \frac{i\hbar}{2} \frac{\partial^2}{\partial p_\alpha \partial x^\alpha} \right\} \] (2.21)
In what follows we denote by \(\hat{f}_W \) and \(\hat{f}_S \) the Weyl and the standard ordering, respectively. One can easily show that if \(f \) is the monomial (2.10) then
\[\hat{f}_S = \left(\frac{\hbar}{i} \right)^m X_{\alpha_1 \ldots \alpha_m}(x) \partial_{\alpha_1} \ldots \partial_{\alpha_m} \] (2.22)
It is evident that \(\hat{f}^{(A)} \) is hermitian for every real monomial of the form (2.10) if and only if
\[\overline{A} = A \] (2.23)
Our intent is to generalize the above considerations on the case when the configuration space is an n-dimensional Riemannian manifold \((M, g)\), where \(g \in \text{Symm}(T^*M \otimes T^*M) \) is the metric on \(M \).
The phase space is the cotangent bundle \(T^*M \) over \(M \) endowed with the natural symplectic form
\[\omega = dp_\alpha \wedge dq^\alpha \quad \alpha = 1, \ldots, n \] (2.24)
where \(q^1, ..., q^n \) are coordinates in \(M \) and \(p_1, ..., p_n, q^1, ..., q^n \) are the induced coordinates (the proper Darboux coordinates) in \(T^*M \).

Let \(f = f(p, q) \) be a function on \(T^*M \). The question is to find a natural generalization of the Weyl quantization rule for \(\mathbb{R}^{2n} \) to the case of \(T^*M \).

It seems that the best answer to this question has been done by Underhill [10] and then by Emmrich [11]. We follow them changing only the measure used in the integration over \(TM \). (About the Underhill-Emmrich approach see also distinguished papers by Bordemann, Neumaier and Waldmann [22, 23] and Pflaum [24, 25]).

The first glance at the formulas (2.2), (2.3) and (2.9) shows that the main problem lies in a definition of the term \(\exp \left(-\frac{2ip\xi}{\hbar} \right) \) when \(M \) is no longer the Euclidean space \(\mathbb{R}^n \). In the Underhill-Emmrich approach it is done by the use of normal coordinates.

Let \(\chi(q, \xi) = \begin{cases} 1 & \text{for } \xi \in V_q \\ 0 & \text{for } \xi \notin K_q \end{cases} \) (2.25)

Let \(\exp_q : V'_q \rightarrow U_q \subset M \) be the exponential map of \(V'_q \) onto \(U_q \). For any functions \(\varphi \) and \(\psi \) on \(M \) and for every point \(q \in M \) we define the functions \(\Phi^-_q \) and \(\Psi^+_q \) on \(T_q(M) \) by

\[
\Phi^-_q(\xi) = \begin{cases} \chi(q, -\xi)\varphi(\exp_q(-\xi)) & \text{for } \xi \in K_q \\ 0 & \text{for } \xi \notin K_q \end{cases} \\
\Psi^+_q(\xi) = \begin{cases} \chi(q, \xi)\psi(\exp_q \xi) & \text{for } \xi \in K_q \\ 0 & \text{for } \xi \notin K_q \end{cases}
\] (2.26)

Let \(f = f(p, q) \) be a function on \(T^*M \).

By the analogy to (2.9) one assigns to \(f \) the following operator \(\hat{f}_W \)

\[
\langle \varphi | \hat{f}_W | \psi \rangle := \frac{1}{(\pi\hbar)^n} \int_{T^*M} dp dq f(p, q) \int_{T_q(M)} \sqrt{g(\xi)} d\xi \exp \left(-\frac{2ip\xi}{\hbar} \right) \Phi^-_q(\xi)\Psi^+_q(\xi)
\] (2.27)
Then we have also
\[
\langle \varphi | \hat{f}_W | \psi \rangle = \int_{T^* M} \frac{dpdq}{(2\pi \hbar)^n} f(p,q) \langle \varphi | \hat{\Omega}(p,q) | \psi \rangle
\]
(2.28)
\[
\langle \varphi | \hat{\Omega}(p,q) | \psi \rangle = 2^n \int_{T_q(M)} \sqrt{g(\xi)} d\xi \exp \left(-\frac{2i p \xi}{\hbar} \right) \Phi_q^- (\xi) \Psi_q^+ (\xi)
\]
where \(g(\xi)\) stands for the determinant of the metric on \(M\) in the normal coordinates.

Note that Underhill [10] assumes the measure to be \(d\xi\) and, consequently \(\varphi\) and \(\psi\) are half-densities. On the other hand Emmrich [11] deals with the measure \(\sqrt{g(\xi)} d\xi\) and therefore \(\varphi\) and \(\psi\) are scalars. We assume that the wave functions \(\varphi\) and \(\psi\) are scalars but the measure on \(V_q' \subset T_q(M)\) is \(\sqrt{g(\xi)} d\xi\).

The operator \(\hat{\Omega}(p,q)\) defined by (2.28) plays now the role of the SW quantizer. The only problem is that both \(\hat{\Omega}\) and \(\hat{f}_W\) depend on the cutoff function \(\chi(q,\xi)\). Thus one should find the "optimal" form of \(\chi\). However, as it was shown by Underhill [10], if the function \(f\) is a polynomial with respect to mementa then \(\hat{f}_W\) doesn't depend on \(\chi\). Indeed, let
\[
f = f(p,q) = X^{\alpha_1 \ldots \alpha_m}(q)p_{\alpha_1} \ldots p_{\alpha_m}
\]
(2.29)
Substituting (2.29) into (2.27), integrating with respect to \(dp\) and then, by parts, with respect to \(d\xi\) one gets
\[
\langle \varphi | \hat{f}_W | \psi \rangle = \frac{1}{(\pi \hbar)^n} \int_{T^* M} dpdq X^{\alpha_1 \ldots \alpha_m}(q) \int_{T_q(M)} \sqrt{g(\xi)} d\xi \left(-\frac{\hbar}{2i} \right)^m \left\{ \frac{\partial^m}{\partial \xi^{\alpha_1} \ldots \partial \xi^{\alpha_m}} \exp \left(-\frac{2i p \xi}{\hbar} \right) \Phi_q^- (\xi) \Psi_q^+ (\xi) \right\}_{\xi=0}
\]
\[
= \left(\frac{\hbar}{2i} \right)^m \int_{M} \sqrt{g(q)} dq X^{\alpha_1 \ldots \alpha_m}(q) \left\{ \frac{\partial^m}{\partial \xi^{\alpha_1} \ldots \partial \xi^{\alpha_m}} \bar{D}(q,\xi) \right\}_{\xi=0}
\]
\[
\bar{D}(q,\xi) := \frac{\sqrt{g(\xi)}}{\sqrt{g(q)}} \Phi_q^- (\xi) \Psi_q^+ (\xi)
\]
(2.30)
However, it is an easy matter to show that (see Petrov [20])
\[
\left\{ \frac{\partial^k}{\partial \xi^{\alpha_1} \ldots \partial \xi^{\alpha_k}} \bar{\Phi}^- (\xi) \right\}_{\xi=0} = (-1)^k \nabla_{(\alpha_1 \ldots \alpha_k)} \varphi(q)
\]
\[
\left\{ \frac{\partial^k}{\partial \xi^{\alpha_1} \ldots \partial \xi^{\alpha_k}} \bar{\Psi}^+ (\xi) \right\}_{\xi=0} = \nabla_{(\alpha_1 \ldots \alpha_k)} \psi(q)
\]
(2.31)
where $\nabla_{\alpha_1} := \nabla_{\alpha_1\partial_{q^1}}...$ etc., and the bracket $(\alpha_1...\alpha_k)$ stands for the symmetrization.

Finally, inserting (2.31) into (2.30) and integrating by parts one arrives at the following result being a generalization of the one obtained by Bordemann et al [23].

$$\langle \varphi | \hat{f}_W | \psi \rangle = \int_M \sqrt{g(q)} dq \varphi(q) \hat{f}_W \psi(q)$$

$$\hat{f}_W = \left(\frac{\hbar}{i} \right)^m \sum_{k=0}^m \binom{m}{k} \sum_{j=0}^{m-k} \binom{m-k}{j} \frac{1}{2^{k+j}}$$

$$\left(\nabla_{\alpha_1}...\nabla_{\alpha_j} \tilde{X}^{\alpha_1...\alpha_j\alpha_{j+1}...\alpha_{m-k}}(q) \right) \nabla_{\alpha_{j+1}}...\nabla_{\alpha_{m-k}}$$

$$= \sum_{k=0}^m \left(\frac{\hbar}{2i} \right)^k \binom{m}{k} \left\{ \left(\frac{\hbar}{i} \right)^{m-k} \sum_{j=0}^{m-k} \frac{1}{2^j} \binom{m-k}{j} \right\}$$

$$\left(\nabla_{\alpha_1}...\nabla_{\alpha_j} \tilde{X}^{\alpha_1...\alpha_j\alpha_{j+1}...\alpha_{m-k}}(q) \right) \nabla_{\alpha_{j+1}}...\nabla_{\alpha_{m-k}} \right\}$$

$$\tilde{X}^{\alpha_1...\alpha_j\alpha_{j+1}...\alpha_{m-k}}(q) := X^{\beta_1...\beta_k\alpha_1...\alpha_j\alpha_{j+1}...\alpha_{m-k}}(q)$$

$$\left\{ \frac{\partial^k}{\partial \xi^{\beta_1}...\partial \xi^{\beta_k}} \sqrt{g(\xi)} \right\}_{\xi=0}$$

(2.32)

The term corresponding to $k = 0$ is exactly the operator given in [22, 23]. (Compare also with (2.13)). Thus one concludes that if $f = f(p,q)$ is a monomial of the form (2.29) then \hat{f}_W given by (2.32) is independent of the cutoff function χ. By linearity this is also true for any polynomial with respect to momenta.

Examples: (compare with [10, 11, 23])

(i) Assume

$$f = X^{\alpha}(q)p_\alpha$$

then

$$\hat{f}_W = \frac{\hbar}{i} \left[X^{\alpha}(q) \nabla_\alpha + \frac{1}{2} (\nabla_\alpha X^{\alpha}(q)) \right]$$

(2.34)
\(f = X^{\alpha\beta}(q) p_\alpha p_\beta \) \hspace{1cm} (2.35)

Here
\[
\hat{f}_W = \left(\frac{\hbar}{i} \right)^2 [X^{\alpha\beta}(q) \nabla_\alpha \nabla_\beta + \left(\nabla_\alpha X^{\alpha\beta}(q) \right) \nabla_\beta + \frac{1}{4} \left(\nabla_\alpha \nabla_\beta X^{\alpha\beta}(q) \right) + \frac{1}{12} X^{\alpha\beta}(q) R_{\alpha\beta}(q)]
\]
\hspace{1cm} (2.36)

where \(R_{\alpha\beta}(q) \) is the Ricci tensor on \(M \)
\[
R_{\alpha\beta} = R^{\gamma}_{\alpha\gamma\beta} = \partial_\gamma \Gamma^\gamma_{\alpha\beta} - \partial_\beta \Gamma^\gamma_{\alpha\gamma} + \Gamma^\gamma_{\gamma\delta} \Gamma^\delta_{\alpha\beta} - \Gamma^\gamma_{\beta\delta} \Gamma^\delta_{\alpha\gamma}
\]
\hspace{1cm} (2.37)

(iii) Let
\[
f = X^{\alpha\beta}(q) p_\alpha p_\beta + i\hbar \left(\nabla_\alpha X^{\alpha\beta}(q) \right) p_\beta - \frac{\hbar^2}{4} \left(\nabla_\alpha \nabla_\beta X^{\alpha\beta}(q) \right)
+ \frac{\hbar^2}{12} X^{\alpha\beta}(q) R_{\alpha\beta}(q)
\]
\hspace{1cm} (2.38)

Then
\[
\hat{f}_W = \left(\frac{\hbar}{i} \right)^2 X^{\alpha\beta}(q) \nabla_\alpha \nabla_\beta
\]
\hspace{1cm} (2.39)

Now we are in a position to consider an important problem. As it has
been mentioned the operator \(\hat{\Omega}(p,q) \) given by (2.28) is the SW quantizer within the WUE formalism. Of course \(\hat{\Omega}(p,q) \) depends on the cutoff function \(\chi(q,\xi) \). Therefore the question is if there exists \(\chi(q,\xi) \) such that the usual axioms of the SW quantizer \([8,13-15]\) i.e.
\[
\{ \hat{\Omega}(p,q) \}^\dagger = \hat{\Omega}(p,q) \hspace{1cm} (2.40)
\]
\[
Tr \{ \hat{\Omega}(p,q) \} = 1 \hspace{1cm} (2.41)
\]
\[
\int_{T^n M} \frac{dp'dq'}{(2\pi\hbar)^n} f(p',q') Tr \{ \hat{\Omega}(p,q) \hat{\Omega}(p',q') \} = f(p,q)
\]
\[\Leftrightarrow \text{Tr} \left\{ \hat{\Omega}(p, q) \hat{f}_W \right\} = f(p, q) \] (2.42)

are satisfied by the operator \(\hat{\Omega}(p, q) \) defined by (2.28) (see (2.4) to (2.7)).

It is evident that the condition (2.40) holds for any \(\chi(q, \xi) \). Now to check (2.41) we take a complete orthonormal system of functions \(\{ \varphi_j \} \) on \(M \)

\[\int_M \sqrt{g(q)} dq \varphi_k(q) \varphi_k(q) = \delta_{kk'} \]

\[\sum_k \varphi_k(q') \varphi_k(q) = \frac{\delta(q - q')}{\sqrt{g(q)}} \] (2.43)

It is an easy matter to observe that without any loss of generality one can use the exponential functions in the tangent space \(T_q(M) \)

\[\varphi_s(\xi) = \frac{1}{(\sqrt{2\pi})^n} \sqrt{g(\xi)} \exp(is\xi) \] (2.44)

\[s = (s_1, ..., s_n) \in \mathbb{Z} \times ... \times \mathbb{Z} \]

Consequently we get

\[\text{Tr} \left\{ \hat{\Omega}(p, q) \right\} = \sum_{s \in \mathbb{Z} \times ... \times \mathbb{Z}} \langle \varphi_s | \hat{\Omega}(p, q) | \varphi_s \rangle \]

\[= 2^n \int_{T_q(M)} \sqrt{g(\xi)} d\xi \frac{\chi(q, -\xi) \chi(q, \xi)}{(2\pi)^n} \sqrt{g(-\xi)} \frac{1}{\sqrt{g(\xi)}} (2\pi)^n \delta(2\xi) = 1 \] (2.45)

(\text{Remark: In (2.44) and (2.45) it is assumed that } K_q \subset [-\pi, \pi] \times ... \times [-\pi, \pi]. \text{ In other case we should change the period of the exponential functions but the final result of (2.45) holds true).}

Thus (2.41) is fulfilled for every cutoff function \(\chi(q, \xi) \). Consider now the condition (2.42). To this end we use the example (iii). Inserting the operator (2.39) into (2.42), using as before the exponential functions (2.44) and employing also some formulas from the theory of the normal coordinate systems \(\text{[26]} \) one arrives at the following result

\[f(p, q) - \text{Tr} \left\{ \hat{\Omega}(p, q) \hat{f}_W \right\} = \frac{\hbar^2}{3} X^{\alpha\beta}(q) R_{\alpha\beta}(q) \] (2.46)

where \(f = f(p, q) \) is defined by (2.38). As (2.46) holds true for an arbitrary \(\chi(q, \xi) \) the axiom (2.42) cannot be satisfied. One can quickly show that the
analogous result to (2.46) holds true when the Emmrich measure $\sqrt{g(q)}d\xi$ is considered. Thus we conclude that: *in general the axiom (2.42) is not satisfied within the WUE formalism for any choice of the cutoff function $\chi(q, \xi)$*. Therefore, from the WUE formalism point of view the axiomatic approach to the definition of the SW quantizer seems to be questionable. (See also [16, 19] and the next section of the present paper).

Finally let us consider the problem of different operator orderings.

One can quickly find that in the Euclidean case if we perform a point transformation

$$q^\alpha = q^\alpha (x^\beta), \quad p_\alpha = \frac{\partial x^\beta (q^\gamma)}{\partial q^\alpha} p_\beta$$

(2.47)

where $x^1, ..., x^n$ are the Cartesian coordinates and $p_1, ..., p_n$ corresponding momenta, then

$$-\hbar \frac{\partial^2}{\partial p_\alpha \partial x^{\alpha}} = -\hbar \left\{ \frac{\partial^2}{\partial p_\alpha \partial q^{\alpha}} + p_\gamma \Gamma^\gamma_{\alpha\beta}(q) \frac{\partial^2}{\partial p_\alpha \partial p_\beta} + \Gamma^\beta_{\alpha\beta}(q) \frac{\partial}{\partial p_\alpha} \right\}$$

(2.48)

where $\Gamma^\beta_{\alpha\beta}$ are Christoffel’s symbols with respect to the coordinates q^α. Hence, it is natural to generalize the object A defining the operator ordering in the Euclidean case (see (2.14)) to the following one

$$A = A(\Delta) = 1 + \sum_{k=1}^{\infty} A_k \Delta^k, \quad A_k \in \mathbb{C}$$

$$\Delta := -\hbar \left(\frac{\partial^2}{\partial p_\alpha \partial q^{\alpha}} + p_\gamma \Gamma^\gamma_{\alpha\beta}(q) \frac{\partial^2}{\partial p_\alpha \partial p_\beta} + \Gamma^\beta_{\alpha\beta}(q) \frac{\partial}{\partial p_\alpha} \right)$$

(2.49)

when the configuration space is an n-dimensional Riemannian manifold (M, ds^2). (Operator Δ was also found by Bordemann et al [22, 23]).

Consequently, we have now

$$\langle \varphi | \hat{f}^{(A)} | \psi \rangle = \int_{T^*M} \frac{dpdq}{(2\pi \hbar)^n} (Af(p, q)) \langle \varphi | \hat{\Omega}(p, q) | \psi \rangle$$

$$= \int_{T^*M} \frac{dpdq}{(2\pi \hbar)^n} f(p, q) \langle \varphi | \hat{\Omega}^{(A)}(p, q) | \psi \rangle$$

(2.50)

where the generalized SW quantizer $\hat{\Omega}^{(A)}(p, q)$ is defined by

$$\hat{\Omega}^{(A)}(p, q) := A\hat{\Omega}(p, q)$$

(2.51)
In particular for the generalized standard ordering one put

$$A = \exp \left\{ \frac{i\hbar}{2} \Delta \right\}$$

and for the monomial (2.29) we get

$$\hat{f}_S := \hat{f}(A) = \left(\frac{\hbar}{i} \right)^{m} \sum_{k=0}^{m} \frac{1}{2^k}{m \choose k} \tilde{X}^{\alpha_1...\alpha_{m-k}}(q) \nabla_{\alpha_1}...\nabla_{\alpha_{m-k}}$$

The term with $k = 0$ corresponds exactly to the operator in standard ordering in the case of the Emmrich measure [22].

3 Quantization on the cylinder

Consider a simple dynamical system consisting of one particle on the circle S^1. The phase space of this system is the cylinder $\mathbb{R} \times S^1$. The deformation quantization for this case might seem to be a simple modification of the Euclidean case. However, it is not because of the non-trivial topology of S^1. In particular one arrives at the conclusion that if the deformation quantization on the cylinder $\mathbb{R} \times S^1$ is to give "physical" results then the classical phase space should be quantized to be $\hbar \mathbb{Z} \times S^1$ [16-19]. Here we consider some aspects of the deformation quantization on the cylinder using the Weyl-Underhill-Emmrich quantization rule. In the present case the configuration space $M = S^1$, then $T^*M = \mathbb{R} \times S^1$ and $T_qM = \mathbb{R}$. For the coordinate q we use the angle θ, $-\pi \leq \theta < \pi$. The complete orthonormal system of $L^2(S^1)$ is given by

$$\varphi_k = \frac{1}{\sqrt{2\pi}} \exp(ik\theta), \quad k \in \mathbb{Z}$$

For simplicity we assume that the cutoff function $\chi(\theta, \xi)$ is symmetric with respect to ξ

$$\chi(\theta, \xi) = \chi(\theta, -\xi) \quad \forall \theta \in [-\pi, \pi]$$

The SW quantizer $\hat{\Omega}(p, \theta)$ defined by (2.28) reads now

$$\langle \varphi_k | \hat{\Omega}(p, \theta) | \varphi_{k'} \rangle = \frac{1}{\pi} \exp \left\{ i(k' - k)\theta \right\} \int_{-\infty}^{\infty} d\xi \chi^2(\theta, \xi) \exp \left\{ i \left(k + k' - \frac{2p}{\hbar} \right) \frac{\xi}{\pi} \right\}$$

12
One can quickly check that according to the general formula (2.45)

\[
\text{Tr} \left\{ \hat{\Omega}(p, \theta) \hat{\Omega}(p', \theta') \right\} = \sum_{k \in \mathbb{Z}} \langle \varphi_k | \hat{\Omega}(p, \theta) \hat{\Omega}(p', \theta') | \varphi_k \rangle = 1
\] (3.4)

for arbitrary \(\chi \). Let \(f = f(p, \theta) \) be a monomial

\[
f(p, \theta) = X(\theta)p^m
\] (3.5)

then

\[
\int_{\mathbb{R} \times S^1} \frac{dp' d\theta'}{2\pi \hbar} f(p', \theta') \text{Tr} \left\{ \hat{\Omega}(p, \theta) \hat{\Omega}(p', \theta') \right\} = \sum_{k \in \mathbb{Z}} \langle \varphi_k | \hat{\Omega}(p, \theta) \hat{f}_W | \varphi_k \rangle
\]

\[
= \int_{-\infty}^{\infty} d\xi X^2(\theta, \xi) \exp \left(-\frac{2i p\xi}{\hbar} \right) \left(\frac{\hbar}{2i} \right)^m \frac{\partial^m}{\partial \xi^m} (X(\theta + \xi) \delta(\xi)) = X(\theta)p^m
\] (3.6)

By the linearity of the integral (2.42) with respect to \(f \) one concludes that the axiom (2.42) is now satisfied for a function \(f = f(p, \theta) \) being an arbitrary polynomial in the momentum \(p \).

If we want the axiom (2.42) to hold for any function on the cylinder then \(\text{Tr} \left\{ \hat{\Omega}(p, \theta) \hat{\Omega}(p', \theta') \right\} \) should be equal to \(2\pi \hbar \delta(\theta - \theta') \delta(p - p') \).

Performing simple manipulations, remembering also that \(\chi(\theta, \xi) = 0 \) for \(\xi \neq] - \pi, \pi [\) (i.e. \(\mathcal{K}_\theta \subset] - \pi, \pi [\)) one finds

\[
\text{Tr} \left\{ \hat{\Omega}(p, \theta) \hat{\Omega}(p', \theta') \right\} = 2\delta(\theta - \theta') \int_{-\infty}^{\infty} d\xi X^2(\theta, \xi) \exp \left\{ \frac{2i}{\hbar} (p' - p) \xi \right\}
\]

\[
+ 4 \left(\delta(\theta - \theta' - \pi) + \delta(\theta - \theta' + \pi) \right) \int_{-\infty}^{\infty} d\xi X^2(\theta, \xi) X^2(\theta' + \pi, \xi + \pi)
\]

\[
\cos \left\{ \frac{2}{\hbar} (p' - p + \pi) \xi \right\}
\] (3.7)

Hence, as \(\chi(\theta, \xi) \) has a compact support with respect to \(\xi \) the formula (3.7) never gives \(2\pi \hbar \delta(\theta - \theta') \delta(p - p') \). Consequently, the axiom (2.42) cannot be satisfied for an arbitrary function on the cylinder. (Note that this is always the case if the configuration space \(M \) is such that for some point \(q \) of \(M \)
the normal coordinates at q cannot be extended to all the tangent space $T_q(M)$. We must mention here that in the important works [27] the SW quantizer on the cylinder satisfying the axioms (2.40), (2.41) and (2.42) has been found. However, this SW quantizer has a disadvantage (which also has our SW quantizer (3.3)), that is, it does not fulfill the condition: $f_W = f(\tilde{p})$ for arbitrary function $f = f(p)$, which could be expected for a particle on the circle. The same occurs in the interesting approach of Alcalde [28] where the notion of SW quantizer is not used. In fact, as it is known from Ref. [16] the violation of the above condition will always appear unless we consider a "quantization" of the classical cylindrical phase space.

This quantization in the WUE formalism can be obtained by some limiting process. Namely, let $\{\chi_j(\theta, \xi)\}_{j \in \mathbb{N}}$ be a series of cutoff functions such that for every $j \in \mathbb{N}$ and every $\theta \in [-\pi, \pi]$

$$0 \leq \chi_j(\theta, \xi) \leq 1, \quad \chi_j(\theta, \xi) = 0 \text{ for } \xi \notin \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \quad (3.8)$$

and

$$\lim_{j \to \infty} \int_{-\pi/2}^{\pi/2} d\xi \left(\chi_j(\theta, \xi)\right)^m f(\xi) = \int_{-\pi/2}^{\pi/2} d\xi f(\xi) \quad (3.9)$$

for every $m \in \mathbb{N}$ and every continuous function $f = f(\xi)$ (see Vladimirov [29], Section 2.2).

Assuming that the momentum $p = nh$, $n \in \mathbb{Z}$, using (3.8) and (3.9) one quickly finds that (3.3) leads to

$$\lim_{j \to \infty} \langle \varphi_k | \hat{\Omega}_j(kh, \theta) | \varphi_{k'} \rangle = \frac{1}{\pi} \exp \{i (k' - k) \theta\}$$

and

$$\lim_{j \to \infty} \int_{-\pi/2}^{\pi/2} d\xi \chi_j^2(\theta, \xi) \exp \{i (k + k' - 2n) \xi\} = \langle \varphi_k | \hat{\Omega}(n, \theta) | \varphi_{k'} \rangle \quad (3.10)$$

where $\hat{\Omega}(n, \theta)$ is the discrete Stratonovich-Weyl quantizer for the cylinder found by Mukunda [17] and also given in [16,18,19].

Then from (3.7) with (3.8) and (3.9) we have

$$\lim_{j \to \infty} Tr \left\{ \hat{\Omega}_j(n, \theta) \hat{\Omega}_j(n', \theta') \right\} = 2\pi \delta_{n,n'} \delta(\theta - \theta') \quad (3.11)$$
Finally, note that the discrete SW quantizer (3.10) gives: \(\hat{f}_W = f(\hat{p}) \) for every function \(f = f(p) \) as it is expected.

Acknowledgments

This paper was partially supported by CONACYT and CINVESTAV (México) and by KBN (Poland). One of us (M.P.) is grateful to the staff of Departamento de Física at CINVESTAV, (México, D.F.) for warm hospitality.
References

[1] Bayen F, Flato M, Fronsdal C, Lichnerowicz A and Sternheimer D 1978
Ann. Phys. NY **111** 61; *Ann. Phys. NY* **111** 111

[2] Fedosov B V 1994 *J. Diff. Geom.* **40** 213

[3] Fedosov B V 1996 *Deformation Quantization and Index Theory*,
(Berlin: Akademie Verlag)

[4] Kontsevich M 1997 Deformation quantization of Poisson manifolds, I,
alg/9709040

[5] Weyl H 1931 *The Theory of Groups and Quantum Mechanics* (New
York: Dover Publications)

[6] Agarwal G S and Wolf E 1970 *Phys. Rev. D* **2** 2161; *Phys. Rev. D* **2**
2206

[7] Hillery M, O’Connell R F, Scully M O and Wigner E P 1984 *Phys. Rep.*
106 121

[8] Gadella M, 1995 *Fortschr. Phys.* **43** 229

[9] Plebański J F, Przanowski M and Tosiek J 1996 *Acta Phys. Polon. B*
27 1961

[10] Underhill J 1978 *J. Math. Phys.* **19** 1932

[11] Emmrich C 1993 *Commun. Math. Phys.* **151** 515

[12] Stratonovich R L 1956 *Sov. Phys. JETP* **31** 1012

[13] Gadella M, Martin M A, Nieto L M and del Olmo M A 1991 *J. Math.
Phys.* **32** 1182

[14] Várilly J C 1992 *Teoría de Grupos en Cuantización*, (México: Publicaciones
de Departamento de Matemáticas, CINVESTAV)

[15] Cariñena J F, Gracia-Bondía J M and Várilly J C 1990 *J. Phys. A;
Math. Gen.* **23** 901

[16] Plebański J F, Przanowski M, Tosiek J and Turrubiates F J 2000 *Acta
Phys. Polon. B* **31** 561

[17] Mukunda N 1979 *Am. J. Phys.* **47** 182
[18] Kasperkovitz P and Peev M 1994 Ann. Phys. 230 21

[19] Del Olmo M A and González J 1998 Coherent states on the circle and quantization, Proceedings of the First International Workshop, Symmetries in Quantum Mechanics and Quantum Optics, Burgos (Spain), 21-24 September 1998, p.p. 207-221 (Universidad de Burgos, Eds. A. Ballesteros et al)

[20] Cohen L 1966 J. Math. Phys. 7 781

[21] Wolf K B 1975 The Heisenberg-Weyl ring in quantum mechanics Group Theory and Its Applications vol III p.p. 189-247 (New York: Academic Press, Ed. E. Loeb)

[22] Bordemann M, Neumaier N and Waldmann S 1998 Commun. Math. Phys. 198 363

[23] Bordemann M, Neumaier N and Waldmann S 1999 J. Geom. Phys. 29 199

[24] Pflaum M J 1998 Lett. Math. Phys. 45 277

[25] Pflaum M J 1999 Rep. Math. Phys. 43 291

[26] Petrov A Z 1969 Einstein Spaces (Pergamon Press Ltd.)

[27] Arratia O and Del Olmo M A 1997 Rep. Math. Phys. 40 149; Arratia O, Martín M A and Del Olmo M A 1996 Rend. Sem. Mat. Univ. Pol. Torino 54 191

[28] Alcalde C 1990 J. Math. Phys. 31 2672

[29] Vladimirov V S 1971 Equations of Mathematical Physics (New York: Marcel Dekker, INC., Ed. A. Jeffrey)