1-12-2018

Selection of Housekeeping Genes and Demonstration of RNAi in Cotton Leafhopper, *Amrasca biguttula biguttula* (Ishida)

Satnam Singh
Punjab Agricultural University, India

Mridula Gupta
Punjab Agricultural University, India

Suneet Pandher
Punjab Agricultural University, India

Gurmeet Kaur
Punjab Agricultural University, India

Pankaj Rathore
Punjab Agricultural University, India

See next page for additional authors

Right click to open a feedback form in a new tab to let us know how this document benefits you.
Follow this and additional works at: https://uknowledge.uky.edu/entomology_facpub

Part of the Entomology Commons, and the Genetics and Genomics Commons

Repository Citation

Singh, Satnam; Gupta, Mridula; Pandher, Suneet; Kaur, Gurmeet; Rathore, Pankaj; and Palli, Subba Reddy, "Selection of Housekeeping Genes and Demonstration of RNAi in Cotton Leafhopper, *Amrasca biguttula biguttula* (Ishida)" (2018). Entomology Faculty Publications. 155.
https://uknowledge.uky.edu/entomology_facpub/155

This Article is brought to you for free and open access by the Entomology at UKnowledge. It has been accepted for inclusion in Entomology Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Authors
Satnam Singh, Mridula Gupta, Suneet Pandher, Gurmeet Kaur, Pankaj Rathore, and Subba Reddy Palli

Selection of Housekeeping Genes and Demonstration of RNAi in Cotton Leafhopper, *Amrasca biguttula biguttula* (Ishida)

Notes/Citation Information
Published in *PLOS ONE*, v. 13, no. 1, e0191116, p. 1-21.

This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Digital Object Identifier (DOI)
https://doi.org/10.1371/journal.pone.0191116
Selection of housekeeping genes and demonstration of RNAi in cotton leafhopper, *Amrasca biguttula biguttula* (Ishida)

Satnam Singh¹*, Mridula Gupta¹, Suneet Pandher¹, Gurmeet Kaur¹, Pankaj Rathore¹, Subba Reddy Palli²

1 Punjab Agricultural University, Regional Station, Faridkot, Punjab, India, 2 Department of Entomology, University of Kentucky, Lexington, KY, United States of America

* satnam@pau.edu

Abstract

Amrasca biguttula biguttula (Ishida) commonly known as cotton leafhopper is a severe pest of cotton and okra. Not much is known on this insect at molecular level due to lack of genomic and transcriptomic data. To prepare for functional genomic studies in this insect, we evaluated 15 common housekeeping genes (*Tub, B-Tub, EF alpha, GADPH, UbiCF, RP13, Ubq, G3PD, VATPase, Actin, 18s, 28s, TATA, ETF, SOD and Cytolytic actin*) during different developmental stages and under starvation stress. We selected early (1st and 2nd), late (3rd and 4th) stage nymphs and adults for identification of stable housekeeping genes using geNorm, NormFinder, BestKeeper and RefFinder software. Based on the different algorithms, *RP13* and *VATPase* are identified as the most suitable reference genes for quantification of gene expression by reverse transcriptase quantitative PCR (RT-qPCR). Based on RefFinder which comprehended the results of three algorithms, *RP13* in adults, *Tubulin* (*Tub*) in late nymphs, *28S* in early nymph and *UbiCF* under starvation stress were identified as the most stable genes. We also developed methods for feeding double-stranded RNA (dsRNA) incorporated in the diet. Feeding dsRNA targeting Snf7, IAP, AQP1, and VATPase caused 56.17–77.12% knockdown of targeted genes compared to control and 16 to 48% mortality of treated insects when compared to control.

Introduction

Gene expression studies are indispensable for molecular biology research. The knowledge on gene expression helps to better understand its regulation and functions. The availability of huge sequence data in the form of transcriptomes and genomes of several organisms can be utilized to understand the transcription of the gene(s) [1]. However, these studies have become more accurate and robust after the development of gene expression quantitation method, reverse transcriptase quantitative PCR (RT-qPCR). This method is highly sensitive, reproducible and accurate to a level that it can identify even minute variations, which are frequently undetected. The RT-qPCR data are influenced by many factors, which include quality and
quantity of the starting material, RNA extraction, cDNA synthesis, and other laboratory proce-
dures. Even pipetting errors and reverse transcription efficiency can influence the Ct values
significantly[2,3]. Thus normalization is a prerequisite in gene expression studies as it limits
variability by comparing target gene expression with housekeeping genes (HKGs). Normalization
is based on the assumption that the expression of the HKGs is stable across various biotic
and abiotic stresses and treatments. Recent research indicates that a condition-specific refer-
ence gene needs to be identified for accurate measurements of gene expression[4]. Likewise, it
is also evident that a single reference gene is not desirable for the wider experimental regime
[5,6]. The use of a single reference gene can generate up to a 20-fold error in the expression
data [7]. In most of the expression studies, actin is taken as a universal HKG [8] or the HKGs
validated for certain systems are being directly applied to other without an appropriate valida-
tion of their stability in that particular system. To address this, different software programs
have been developed to choose HKGs that are most suited for normalization[7–10]. Thus, it is
necessary to choose the most suitable genes for normalization from a panel of candidate genes
in a dedicated set of biological samples from a particular organism. Although RT-qPCR has
been widely used for detecting gene expression in insects but there is yet no suitable HKG and
stable gene quantification system for the cotton leafhopper. In addition, there is no report of
RNAi (RNA interference) in this insect. We demonstrated feeding RNAi in this insect for few
genes such as Aquaporins (AQPs), inhibitor-of-apoptosis (IAP), VATPases and Snf7. Aquap-
orins (AQPs) belong to the family of the major intrinsic proteins (MIP), which are integral
membrane channel proteins in most living organisms and facilitate mass transfer of water and
sometimes other substrates across cell membranes [11–14]. In insects, the inhibitor-of-apopto-
sis (IAP) proteins are a family of conserved survival factors that determine cell fate during
development, stress, tumorigenesis, and infection by regulating the phenomenon of apoptosis
[15–19]. VATPases are highly conserved and ubiquitous proton pumps which acidify specific
organelles such as lysosomes, endosomes or secretory vesicles in every eukaryotic cell. These
are present in the plasma membrane of different animal cell types where they are involved
either in membrane energization or pH homeostasis [20–22]. Snf7 functions as a component
of the ESCRT (Endosomal Sorting Complex Required for Transport) pathway which plays an
essential part in cellular housekeeping by internalization, transport, sorting and lysosomal de-
radation of transmembrane proteins [23]. It has been shown to be involved in sorting of trans-
membrane proteins either through recycling to plasma membrane or routed to lysosomal
degradation through the endosomal-autophagic pathway in many organisms [24–28].

Amrasca biguttula biguttula (Ishida) (Hemiptera: Cicadellidae), commonly known as cotton
leafhopper/jassid, is among the most economically important sucking pests of cotton. Leafhop-
per infested tender leaves become small, crinkled, yellow and the margin of the leaves starts
curling downwards. In the case of severe infestation, leaves get a bronze or brick red color
which is typical “hopperburn” symptom. The leaves dry up and are shed, and the growth of the
plant is retarded. Apart from drying of leaves, the punctures of leafhoppers induce the shorten-
ing of the internodes, which contribute to reduced plant vigor and yield [29]. The pest has the
potential of causing 25–45% loss in seed cotton yield [30,31]. Besides cotton, it also infests
many crops in malvaceous and solanaceous families. The mainstay of leafhopper control
shifted to neonicotinoids after the development of resistance against most of the pyrethroids
and organophosphates [32]. Bt-cotton seeds treated with neonicotinoids protect against cotton
leafhopper till 40–50 days after sowing. However, there have been reports of the leafhoppers
showing a high level of resistance up to 5,000-fold to imidacloprid and other neonicotinoid
insecticides introduced barely decade ago in central India [33]. Besides, the usage of synthetic
insecticides is also associated with a number of environmental issues such as insecticide resi-
dues in soil and water, and effects on non-targets, etc. The ill effects of pesticides can only be
addressed through eco-friendly methods of pest control, but on contrary Bt-toxins (sole candidates of insect-resistant transgenics) are either not available or less effective against sap-sucking pests such as aphids, leafhoppers and whitefly. The present—day RNAi technology has the potential of developing novel insect control strategies. The method relies on feeding/injecting sequence-specific double-stranded RNA (dsRNA) targeted towards downregulation or knockdown of essential genes for causing mortality. The dsRNA targeting such essential genes can help in developing new generation insect resistant transgenic plants. Ironically, in spite of attaining serious pest status on cotton, the molecular genetics of this insect has remained unexplored with information available only on a single gene (mtCOI-taxonomic importance) in the NCBI database. To initiate molecular studies related to gene expression, RNAi, and other future functional genomics studies, selection of right HKGs is a prerequisite. Hence, the studies first time report the suitable HKGs for different developmental stages and under starvation stress in cotton leafhopper. In addition downregulation of targeted genes associated with different physiological functions through dsRNA feeding has been successfully demonstrated in this insect.

Materials and methods

Selection of genes and primer design

The selection of genes for identifying stable reference genes in *Amrasca biguttula biguttula* (Cotton leafhopper) was based on previous studies in other insects [34–36]. As per information available, we chose 15 commonly used reference genes such as *Tub* (Tubulin), β-*Tub* (Beta Tubulin), *EF alpha* (elongation factor alpha), *GADPH* (Glyceraldehyde 3-phosphate dehydrogenase), *UbicF* (ubiquitin-conjugating factor), *RP13* (ribosomal protein 13), *Ubiq* (ubiquitin), *VATPase* (V-type adenosine triphosphatase), *Actin*, *18s* (ribosomal protein 18), *28s* (ribosomal protein 28), *TATA* (TATA-binding protein), *ETF* (electron transfer flavoprotein), *SOD* (superoxide dismutase) and *Cytolytic actin* as shown in Table 1. The sequences of these genes were retrieved from our transcriptome sequence data (unpublished) followed by a BLASTX search of each sequence in NCBI database for re-confirmation of their annotation. The primers were designed using Primer3 [37] software to amplify 100–150 bp region of the respective gene (Table 1). The sequences of all the selected genes have been submitted to NCBI database and are available with Accessions MF101761-MF101776.

Rearing of insect

A. biguttula insects were reared on *Gossypium hirsutum* variety Ganganagar ageti in the walk-in environmental chamber at 65–70% RH, 14:10 h light and dark photoperiod and 27± 2°C. The plants of the variety were changed from time to time for continuous fresh food supply to the insect and availability of its culture throughout the study period.

dsRNA synthesis and feeding

To test RNAi in *A. biguttula biguttula*, we chose AQP (aquaporin), IAP, (inhibitor of apoptosis) VATPase and Snf7 (vacuolar sorting protein) genes shown in Table 2. Gene specific primers were designed from the transcriptome sequences using Primer3 open source software using RNA sequences [37]. The dsRNA primers were also designed using Primer3. However, an additional T7 promoter sequence was added to 5’ end of both reverse and forward primers as given in Table 2. These primers were used to amplify the template for dsRNA using cDNA which was synthesized using PrimeScript™ 1st strand cDNA Synthesis Kit (Clontech Takara) as per manufacturer’s protocol. Amplified fragments of genes were purified using nucleospin
PCR cleanup (Macherey-Nagel Nucleospin Gel and PCR Cleanup) and used for the synthesis of dsRNA with T7 RiboMAX™ Express RNAi System (Promega) following manufacturer’s protocol. The dsRNA was quantified using BioSpectrometer 1. The 500ng/μl of dsAQP, dsIAP, dsVATpase, dsSnf7, and dsGFP was mixed with diet [38] as described in Table 3. Three biological replicates of five insects each were released in a 1.5 ml tube (1/4th cut from the bottom side and covered with muslin cloth) with diet incorporated dsRNA between two layers of stretched parafilm. The insects were observed 48 h post release and the mortality

Table 1. Annotation of different target genes of cotton leafhopper from RNA sequence data using BlastGo software and primers used for expression analysis of housekeeping genes.

Gene Symbol	Accession number	Locus description	Homolog locus	Primer Sequence (5' to 3')	Identity (%)	E value
Tub	MF101761	tubulin alpha chain	XP_011616108	5'TAGCGAGTTGACGATGCGATGAGC-3'	81	1.80E-99
B-Tub	MF101762	beta-tubulin 4	ALP82110	5'CTTATGAGCATGCGATGCGATGAGC-3'	98	0
EF	MF101763	elongation factor-1 alpha	AAF29896	5'TAGCGAGTTGACGATGCGATGAGC-3'	75	2.61E-55
UbCF	MF101764	ubiquitin conjugation factor E4	XP_01424621	5'TAGCGAGTTGACGATGCGATGAGC-3'	67	0
RP13	MF101765	39S ribosomal protein L13	XP_008475259	5'TAGCGAGTTGACGATGCGATGAGC-3'	84	2.15E-55
G3PD	MF101766	glycerol-3-phosphate dehydrogenase	XP_011881595	5'TAGCGAGTTGACGATGCGATGAGC-3'	88	0
CyAct	MF101767	putative cytoplasmic actin A3a1	AAT01072	5'TAGCGAGTTGACGATGCGATGAGC-3'	100	1.46E-57
UbIQ	MF101768	Ubiquitin C	CAX71215	5'TAGCGAGTTGACGATGCGATGAGC-3'	60	3.30E-88
VATPase	MF101769	V-type proton ATPase	AIY24627	5'TAGCGAGTTGACGATGCGATGAGC-3'	0	90
Actin	MF101771	actin-like protein 6B	XP_014270187	5'TAGCGAGTTGACGATGCGATGAGC-3'	0	91
18s	MF101772	18S rRNA (guanine-N(7))-methyltransferase	XP_015126904	5'TAGCGAGTTGACGATGCGATGAGC-3'	87	3.46E-142
28s	MF101773	28S ribosomal protein S15, mitochondrial	KDR19003	5'TAGCGAGTTGACGATGCGATGAGC-3'	65	1.14E-50
TATA	MF101774	TATA box-binding protein-like protein 1 isomorf X1	XP_012136986	5'TAGCGAGTTGACGATGCGATGAGC-3'	73	2.74E-111
ETF	MF101775	Eukaryotic translation initiation factor 3 subunit B	KDR10090	5'TAGCGAGTTGACGATGCGATGAGC-3'	85	0
SOD	MF101776	superoxide dismutase [Cu-Zn]-like isomorf X2	XP_014255311	5'TAGCGAGTTGACGATGCGATGAGC-3'	75	3.93E-61

Table 2. Description of all candidate gene primers used for RNAi and target gene expression in cotton leafhopper.

Genes	dsRNA Primer sequence (5' to 3')	qRT-PCR primers (5' to 3')
Snf7	5'TAGCGAGTTGACGATGCGATGAGC-3'	5'TAGCGAGTTGACGATGCGATGAGC-3'
AQP	5'TAGCGAGTTGACGATGCGATGAGC-3'	5'TAGCGAGTTGACGATGCGATGAGC-3'
VATPase	5'TAGCGAGTTGACGATGCGATGAGC-3'	5'TAGCGAGTTGACGATGCGATGAGC-3'
IAP	5'TAGCGAGTTGACGATGCGATGAGC-3'	5'TAGCGAGTTGACGATGCGATGAGC-3'

https://doi.org/10.1371/journal.pone.0191116.t001

https://doi.org/10.1371/journal.pone.0191116.t002
was compared to dsGFP treated insects. Live insects were collected in Tri-Reagent® (Sigma-Aldrich), frozen in liquid nitrogen and processed for RNA extraction.

RNA extraction and cDNA synthesis
For validation of housekeeping genes, insects were categorized into different developmental stages, i.e., early nymph (I and II), late nymph (III and IV) and adult. Three biological replicates of each developmental stage were separated and pooled, i.e., early nymphs 25–30 individuals per pool, late nymphs 15–20 per pool and adult hopper five insects per pool. For expression under starvation stress, late stage nymphs (III and IV) were starved for four h in empty ventilated boxes, and four individuals each were pooled in three different tubes. The total RNA was isolated from each developmental stage, starved leafhopper and dsRNA fed insects using Tri Reagent® (Sigma-Aldrich) as per manufacturer’s protocol. Isolated RNA was given DNase treatment to remove DNA contamination. The RNA was quantified and checked for its quality and quantity on Eppendorf BioSpectrometer™ basic. The total RNA (2μg) was used for first-strand cDNA preparation using PrimeScript™ 1st strand cDNA Synthesis Kit (Clontech Takara) as per manufacturer’s protocol.

RT-qPCR analysis
qPCR analysis used SYBR® Premix Ex Taq™ II (TliRNase H Plus) (Clontech) with the LightCycler® 96 (Roche Molecular Systems, Inc.). PCR reactions were performed in triplicates in 10μl volumes using 1μl of 1:10 diluted cDNA, 0.2 ul of 10mM of gene-specific primers per reaction. For absolute quantification, three 10-fold serial dilutions were performed to ensure that the cDNA synthesis reagents did not impair PCR efficiency. Thermal cycling conditions constituted initial denaturation of 95°C for the 30s followed by 40 cycles of 95°C of 5s and 60°C for 10s. Melting curve analysis was done to ensure the specificity and consistency of the amplified product. RT-qPCR efficiency was measured for each gene with the slope of linear regression model and standard curves. Amplification efficiency and correlation coefficients for each primer pair were calculated as described in LightCycler® 96 users guide. In RNAi studies, the relative expression of genes in biological samples was estimated using the ΔΔCt method [39] normalized with RP13 as HKG and compared with dsGFP.

Stability and statistical analysis for reference genes
We chose four algorithms to determine the stability of genes, i.e., geNorm [7], NormFinder [9], Bestkeeper [10] and RefFinder [40]. The qPCR obtained Ct values from the Lightcycler

Table 3. Synthetic diet composition for delivery of dsRNA in cotton leafhopper through membrane feeding.

Components	Concentration (mg/10 ml)
L-Cysteine	5.0
Glycine	2.0
Nicotinic Acid	1.0
Sucrose	500.0
K₂HPO₄	50.0
ZnCl₂	0.04
Thiamine HCl	0.25
Vitamin B6	0.25
Becosules capsule powder(Pfizer Limited, USA)	2.0
Green food dye (GanpatiSyn Food Colour, India)	2.0

https://doi.org/10.1371/journal.pone.0191116.t003
software (Roche) were transferred to MS-excel for the calculation of linear relative values by comparative Ct method (keeping lowest relative quantity for each gene as 1). These linear relative quantities were used as input data for further analysis of gene stability with geNorm and NormFinder. geNorm calculates the expression stability score (M) by averaging the mean pairwise variation of each HKG. Lower ‘M’ value indicates the stability of the gene, so the HKGs showing M value > 0.5 were not considered for further normalization studies. NormFinder calculates expression stability of the genes within a group and between the groups. It also determines standard deviation (SD) through advanced analysis. BestKeeper is also a freely available algorithm that directly utilizes the Ct value obtained from the software. It evaluates standard deviation, p-values, index and correlation coefficient of each gene to elucidate the most stable gene. The gene with a lower SD value could serve as a better reference gene. The final assessment was made on the basis of geometric mean calculated for each gene using RefFinder (http://leonxie.esy.es/RefFinder/?type=reference), a web-based tool which uses all three algorithms along with ΔΔCt method for stability analysis of genes. This web-based tool is user-friendly and allows to evaluate and screen the candidate reference genes directly on the basis of Ct values across the samples efficiently. It makes a comprehensive analysis of data obtained from all the algorithms and ranks the candidate genes in decreasing order of their stability. On the grounds of rankings from each program, an appropriate weight is assigned to each candidate gene, and the geometric mean of their weights is calculated for the net final ranking.

Results

Verification of expression of selected genes

Fifteen candidate genes based on their significance in the biological processes were tested for their expression. These included the structure-related genes, Tub, B-Tub, Cytolytic Actin and Actin; ribosomal and protein function genes, EF alpha, 18s, 28s, RP13, TATA, ETF; metabolism-related genes, UbiCF, Ubiq, GAPDH, VATPase and SOD. The initial screening of all targeted genes was done by PCR and the amplified products were checked by agarose gel electrophoresis. These analyses verified that all the targeted genes were expressed in A. biguttula biguttula (data not shown). In order to calculate the amplification efficiency for all fifteen candidate genes, the three-point standard curve was obtained using the Lightcycler software following the PCR amplification with the known concentration of cDNA template. All genes except Ubiq and CytoActin (78.04% and 62.32% respectively) showed significant amplification efficiency (Table 4). So these two genes were eliminated and not taken into account for further analysis. The correlation coefficient (R²) for all genes ranged between 0.92~1.00 (Table 4). Melt-curve analysis was also performed for amplification specificity, and all genes displayed a single peak. Purified qPCR products were sequenced, and the sequences matched 100% with the target sequences.

Expression profiles of genes

Relative expression levels were determined using RT-qPCR. The Ct values of the candidate reference genes ranged from 22.3 (B-Tub) to 32.24 (Ubiq). The expression of Ubiq gene was low (29.13~32.50) in all developmental stages tested. In starved individuals, the expression of CytoActin and Ubiq was considerably low, showing higher Ct values as compared to the normal samples. The genes RP13, VATPase and β-Tub, showed Ct values ranging between 22~25 indicating higher expression levels. There was not much difference in Ct values across various stages for each gene except for GADPH, which ranged between 22.69~31.06 (Fig 1).
BestKeeper analysis
BestKeeper reveals the best genes on the basis of SD value for each candidate reference gene from raw Ct values. An SD > 1 manifests that the diversification in the expression of a gene within a sample of the same origin is high, thus indicating instability in the expression of that gene. Our data signified that expression was not so stable for many genes, i.e., UbiCF, GAPDH, 28s, and SOD in adult samples as it has shown variations across the samples along with high SD values. Similarly, in late nymph, instability was observed in the genes such as UbiCF, GAPDH, RP13, VATPase and EF based on high SD value (Table 5). In adult hopper, 18s was the most stable gene with lowest SD value of 0.34. Similarly, in late nymph 28s (SD = 0.1), early nymph Tub (SD = 0.08) and under starvation stress TATA (SD = 0.06) were the most stable genes. Ranking of all genes in decreasing order of their stability across all the stages is presented in S1 Table and Fig 2.

gNorm analysis
Two parameters such as M (expression stability value) and V (pairwise variation) are determined by this program. The gene with the highest M value is considered least stable and vice versa. In early nymphal stage, RP13 and 28s were the most stable genes with M value of 0.005. Similarly, in late nymphs, Tub and TATA appeared as most stable genes with M value 0.05, while in adult hopper M value of 0.2 revealed RP13 and VATPase as the most stable genes. Under starvation stress GAPDH and EF were the most stable genes with M value is 0.04 (Fig 3).

NormFinder analysis
Based on this program 18S was identified as best gene among all the samples showing stability value ~ 0.102. NormFinder also determines the best combination of two HKGs which can be used simultaneously in a single expression studies. Based on results, the combination of 18s and TATA was highly stable (stability value ~ 0.079). Under starvation stress, UbiCF appeared to be the most stable gene with a stability value of 0.034. The rankings of genes on the basis of their stability values are presented in Table 5 and graphically in Fig 4.

Table 4. Primer sequence and amplicon characteristics of the candidate reference genes.

Gene Symbol	Amplicon Length	Product Tm (˚C)	Amplification efficiency E (%)	Correlation Coefficient
Tub	122	83	112.14	0.99
UbiCF	143	84	129.14	0.99
EF	131	86	102	1.00
RP13	133	81	90.42	0.99
Ubiq	106	79	78.04	0.92
VATPase	123	85	121.20	1.00
Actin	123	83	99.59	0.99
18s	129	81	81.81	0.96
28s	142	80	91.52	0.99
TATA	119	86	97.96	0.96
ETF	123	82	99.87	1.00
SOD	134	86.6	116	0.98

https://doi.org/10.1371/journal.pone.0191116.t004
Fig 1. Ct values ± S.D. obtained for fifteen candidate reference genes of cotton leafhopper across developmental stages. Each data point represents the Mean ± S.D. of Ct values for three biological replications in each treatment.

https://doi.org/10.1371/journal.pone.0191116.g001

Table 5. Stability values of all candidate reference genes estimated by Normfinder across all developmental stages and starvation stress.

Genes	Adults	Late Instars	Early Instars	Starvation Stress
UbiCF	0.806	3.191	0.217	0.002
G3PD	2.260	2.420	0.377	0.017
RP13	0.009	0.380	0.078	0.087
VATpase	0.009	0.495	0.143	0.066
TUB	1.032	0.000	0.037	0.209
B-Tub	0.576	0.274	0.328	0.002
EF	0.096	4.257	0.062	0.022
Actin	0.276	0.003	0.048	0.123
18s	0.102	0.002	0.026	0.063
28s	4.900	0.173	0.213	0.112
TATA	0.195	0.000	0.025	0.115
ETF	0.347	0.055	0.148	0.049
SOD	0.568	0.048	0.096	0.040

https://doi.org/10.1371/journal.pone.0191116.t005
Fig 2. Standard deviation for the Ct values of all genes to determine the stability of the candidate genes using Bestkeeper analysis.

https://doi.org/10.1371/journal.pone.0191116.g002

Fig 3. Average expression stability (M) of various in different developmental stages and starvation stress in A. biguttula analysis by geNorm.

https://doi.org/10.1371/journal.pone.0191116.g003
RefFinder analysis

RefFinder assembles the output of all three algorithms described earlier along with ΔΔCt to assign final rankings for all the genes. It interprets the stability of genes by ranking of their geometric mean (Table 6), as well as allocates overall values to the genes across different stages (Table 7). These analyses showed that RP13, TUB, 28s and UbiCF were the most stable genes in the adult, late stage, early stage nymph and starvation stress, respectively. However, RefFinder also revealed RP13, VATPase, 18s in the adult; 28s, RP13, TUB in early nymph; TUB, TATA, Actin in late nymph and UbiCF, B-Tub, G3PD in starvation stress as the most stable genes. Based on overall analysis of all developmental stages, RP13 was identified as the best

Table 6. Ranking of housekeeping genes in cotton leafhopper based on geometric mean using RefFinder software.

Genes	Adult Geomean of ranking values	Late Nymph Genes	Geomean of ranking values	Early Nymph Genes	Geomean of ranking values	Starvation stress Genes	Geomean of ranking values
RP13	1.68	TUB 1.93	28s 1.86	UbiCF 2.06			
VATPase	1.86	TATA 2.45	RP13 2.34	B-Tub 2.99			
18s	2.91	Actin 2.63	TUB 2.91	G3PD 3.00			
TATA	3.31	18s 3.87	UbiCF 3.76	EF 3.56			
EF	5.1	SOD 4.47	EF 4.09	SOD 6.16			
Actin	5.83	ETF 4.56	VATpase 5.42	TATA 6.31			
B-Tub	6.45	28s 5.01	18s 6.19	ETF 6.65			
ETF	7.00	B-Tub 7.48	TATA 7.28	18s 6.88			
TUB	8.59	RP13 8.71	ETF 7.35	VATpase 8.10			
SOD	9.21	VATpase 9.49	G3PD 10.04	Actin 8.12			
UbiCF	10.49	G3PD 11.47	Actin 10.47	TUB 8.14			
G3PD	12.00	UbiCF 11.74	B-Tub 10.93	RP13 8.45			
28s	13.00	EF 12.74	SOD 13.00	28s 9.90			

https://doi.org/10.1371/journal.pone.0191116.t006
stable gene across all stages (Table 7). Thus, this gene was used as HKG for relative expression analysis in dsRNA feeding assays.

Bioassay with gene-specific dsRNA:

The target gene knockdown was confirmed by feeding the late stage nymphs with different dsRNAs using membrane feeding assay (Fig 5). Initial experiments using different doses of

Table 7. The overall ranking of housekeeping genes in cotton leafhopper across different stages as well as starvation stress by Delta CT, BestKeeper, Normfinder and genorm algorithms.

Method	1	2	3	4	5	6	7	8	9	10	11	12	13
Delta CT	RP13	VATpase	18s	TATA	EF	Actin	ETF	B-Tub	SOD	UbiCF	TUB	G3PD	28s
BestKeeper	18s	TATA	B-Tub	RP13	VATpase	ETF	Actin	EF	SOD	UbiCF	G3PD	28s	
Normfinder	VATpase	RP13	EF	18s	TATA	Actin	ETF	SOD	B-Tub	UbiCF	TUB	G3PD	28s
Genorm	RP13	VATpase	TATA	Actin	EF	18s	ETF	B-Tub	SOD	UbiCF	G3PD	28s	
Recomended comprehensive ranking	RP13	VATpase	18s	TATA	EF	Actin	B-Tub	ETF	TUB	SOD	UbiCF	G3PD	28s

Late Instar

Method	1	2	3	4	5	6	7	8	9	10	11	12	13
Delta CT	Actin	TUB	TATA	SOD	18s	ETF	B-Tub	RP13	28s	VATpase	G3PD	UbiCF	EF
BestKeeper	28s	ETF	18s	Actin	SOD	TATA	TUB	B-Tub	VATpase	RP13	UbiCF	EF	G3PD
Normfinder	TUB	TATA	18s	Actin	SOD	ETF	28s	B-Tub	RP13	VATpase	G3PD	UbiCF	EF
Genorm	TUB	TATA	Actin	SOD	18s	ETF	B-Tub	RP13	VATpase	28s	G3PD	UbiCF	EF
Recomended comprehensive ranking	TUB	TATA	Actin	18s	SOD	ETF	28s	B-Tub	RP13	VATpase	G3PD	UbiCF	EF

Early Instar

Method	1	2	3	4	5	6	7	8	9	10	11	12	13
Delta CT	28s	RP13	TUB	EF	UbiCF	VATpase	18s	TATA	ETF	Actin	G3PD	B-Tub	SOD
BestKeeper	TUB	EF	VATpase	ETF	RP13	28s	G3PD	UbiCF	B-Tub	18s	TATA	Actin	SOD
Normfinder	UbiCF	28s	RP13	TUB	EF	VATpase	18s	TATA	ETF	Actin	G3PD	B-Tub	SOD
Genorm	RP13	28s	18s	TATA	UbiCF	TUB	EF	VATpase	ETF	Actin	B-Tub	G3PD	SOD
Recomended comprehensive ranking	28s	RP13	TUB	UbiCF	EF	VATpase	18s	TATA	ETF	G3PD	Actin	B-Tub	SOD

Starvation Stress

Method	1	2	3	4	5	6	7	8	9	10	11	12	13
Delta CT	UbiCF	B-Tub	G3PD	EF	ETF	SOD	VATpase	18s	RP13	28s	Actin	TATA	TUB
BestKeeper	TATA	TUB	Actin	18s	B-Tub	UbiCF	RP13	SOD	G3PD	EF	VATpase	28s	ETF
Normfinder	UbiCF	B-Tub	G3PD	EF	SOD	ETF	18s	B-Tub	VATpase	RP13	28s	TATA	Actin
Genorm	G3PD	EF	UbiCF	B-Tub	ETF	SOD	VATpase	28s	RP13	18s	Actin	TATA	TUB
Recomended comprehensive ranking	UbiCF	B-Tub	G3PD	EF	SOD	TATA	ETF	18s	VATpase	Actin	TUB	RP13	28s

Overal gene analysis

Method	1	2	3	4	5	6	7	8	9	10	11	12	13
Delta CT	RP13	VATpase	TUB	ETF	TATA	18s	B-Tub	Actin	UbiCF	G3PD	EF	28s	SOD
BestKeeper	TUB	RP13	VATpase	ETF	B-Tub	18s	TATA	EF	UbiCF	Actin	G3PD	SOD	28s
Normfinder	RP13	VATpase	TUB	ETF	B-Tub	TATA	18s	Actin	UbiCF	G3PD	EF	28s	SOD
Genorm	RP13	VATpase	TUB	B-Tub	ETF	TATA	18s	Actin	G3PD	UbiCF	EF	28s	SOD
Recomended comprehensive ranking	RP13	VATpase	TUB	ETF	B-Tub	TATA	18s	Actin	UbiCF	G3PD	EF	28s	SOD

https://doi.org/10.1371/journal.pone.0191116.t007
dsRNA showed that 500 ng/μl of dsRNA in diet caused knockdown of respective genes when compared to that in dsGFP fed control insects at 48 h post feeding. All the targeted genes showed a significant reduction (p ≤ 0.05) in their mRNA levels compared to that in dsGFP fed

![Image](https://doi.org/10.1371/journal.pone.0191116.g005)

Fig 5. Visualization of different dsRNA on 1% agarose gel. The dsRNA was synthesized for RNAi studies in cotton leafhopper using diet bioassay.

![Image](https://doi.org/10.1371/journal.pone.0191116.g006)

Fig 6. Expression of candidate genes in *A. biguttula biguttula* fed with dsRNA containing liquid diet by membrane feeding assay (A) Abb IAP (Inhibitor of Apoptosis) knockdown, (B) Abb AQP (Aquaporin) knockdown, (C) VATPase knockdown, (D) Snf7 (Multivesicular protein) knockdown. The mRNA levels of each gene have been normalized with ribosomal protein (RP13) as a reference gene. The error bars represent the standard deviation (n = 3) and * represents significant differences in mRNA levels compared to that in control—fed on dsGFP (P ≤ 0.05, Student’s t-test).
control insects. The dsRNA feeding caused 4.37, 2.99, 2.49 and 2.28 fold reduction in the levels of Snf7, IAP, AQP and VATPase mRNA, respectively compared to that in control insects (Fig 6). The percent corrected mortality calculated using Abbott’s formula [41] varied between 16–48%; highest in dsSnf7 (48%) fed insects followed by dsAQP (27%), dsVATPase (20%) and dsIAP (16.7%) (Table 8); (S2 Table).

Discussion

In recent years, it has become clear that selection of an appropriate reference gene or genes is the basic requirement for the success of RT-qPCR [42]. However, in the most of the previously reported expression studies with insects, actin has been used as a universal HKG across species as well as across stages of insects [8,43]. Simultaneously, its use as an internal control has been contradictory in many cases [44,45]. Various studies have already been accomplished by identifying HKGs in different species and tissues. Recently, numerous reference genes have been testified under different conditions in stinkbug (Bansal et al, 2016), western flower thrips [46], honey bee [47], fly [48], silkworm [49], moths [50] and beetles [51]. The analysis of reference genes in cotton leafhopper across different developmental stages showed variation in expression as reported in several other insects [52]. These genes have significant involvement in ubiquitous cellular and biological processes, therefore cannot be used as single normalizer in expression studies. In order to improve the efficiency and accuracy of qRT-PCR, we need to validate various internal genes for their expression. RT-qPCR studies revealed variability in the expression of reference genes across samples inferring that a universal reference gene cannot be used for all species or all experimental conditions [53]. Thus validation of reference HKGs is obligatory to gene expression studies wherein a candidate reference gene should have amplification efficiency similar to the target gene.

In the current study, we evaluated fifteen candidate HKGs of cotton leafhopper using multiple statistical models (Bestkeeper, geNorm, NormFinder, and RefFinder) across different developmental stages and starvation stress for identification of reference genes as suggested by [54]. Interestingly, results obtained from different algorithms were highly variable. As each program is using the unique algorithm, incongruities are to be anticipated. For instance, the BestKeeper takes into account the InVar (intrinsic variance), SD (standard deviation) and P-values, all of which contribute to the BestKeeper vs. Pearson correlation coefficient value. These compounding factors result in the obvious differences in outcomes. To integrate the results of all three algorithms, we further used RefFinder for comprehensive ranking of the genes. RefFinder abdicated the ambiguity in the results and helped in the compilation of three algorithms as shown in Table 7.

Our results suggested that the RP13 gene was the most stable gene across all the developmental stages tested. The RP13 gene encodes a ribosomal protein that is a component of the 60S subunit, which is involved in the translation initiation [55]. Various ribosomal proteins genes have been evaluated as reference genes for RT-qPCR in many insects, and these genes have been reported to show the most stable expression in *Tetranychus cinnabarinus* (RPS18:

dsRNA Fed	Total no of test insects	% Corrected mortality after 48 h
Snf7	42	48.0
AQP	18	27.3
VATPase	42	20.0
IAP	18	16.7

https://doi.org/10.1371/journal.pone.0191116.t008
Apis mellifera (RPS18: [47]), Rhodnius prolixus (RPS18: [57]), Cimex lectularius (RPL18: [58]), and Schistocerca gregaria (RP49: [59]). In late and early stage nymphs, Tub and 28s were the most stable genes, respectively. Previous studies also demonstrated 28s rRNA to be the stable and suitable gene for internal control in various organisms ([47, 60–63]. Tubulin has also been most commonly used as a reference gene in various expression studies [64–66]. These belong to the family of eukaryotic structural genes that form microtubules, fundamental components of the cytoskeleton that mediate cell division, shape, motility, and intracellular trafficking [67]. Nevertheless, tubulin is reported to be the most variable gene in plant hoppers [68]. Under starvation stress, UbiCF has come out to be the most stable gene in a comprehensive analysis. Ubiquitin is the founding member of a family of structurally conserved proteins that regulate a host of processes (protein degradation, DNA repair, signal transduction and transcription regulation by endocytosis) in insect cells [69–71]. Various genes coding for ubiquitin proteins such as ubiquitin conjugation factor (Bansal et al, 2016), polyubiquitin [68] and ubiquitin [64] evaluated in different insect species have shown stable expression as HKGs. Earlier reports concluded that it was difficult to identify most stable reference gene across various developmental stages in an organism [72–73]. We set our parameters under three algorithms (i.e. Bestkeeper, geNorm, Normfinder) to find the stable HKGs across developmental stages and starvation stress. However, the results obtained from individual algorithm were variable. Thus, we used RefFinder to comprehend the results of three algorithms and assign a ranking to the genes based on their stability under each and across (overall ranking) developmental stages and starvation stress. The overall ranking concludes RP13, VATPase and TUB as the most stable genes which could be helpful in the expression studies involving starvation stress and mixture of individuals from different life stages of leafhopper. Finally it may be concluded that top two-three genes could be selected and validated to elucidate the appropriate reference gene(s) under a particular set of experimental conditions for future gene expression studies in this insect.

Feeding of dsRNA for causing RNAi has been demonstrated in a few hemipteran insects including Halyomorpha halys [36]; Bemisia tabaci [74]; Acrithosiphon pisum [75]; Bactericera cockerelli [76]; Nilaparvata lugens [77]; Sogatella furcifera [78]; Laodelphax striatellus [79]. Many insects in this order have also shown good RNAi response through injection of dsRNA [80–81]. In planta expressed dsRNA too has been successful in harnessing RNAi response in few of the hemipteran insects [82–87]. Gene silencing has been successfully demonstrated for many hemipteran insects through the oral delivery of synthetic dsRNAs dissolved in sucrose via artificial membrane [84,76,88]. The slightly similar and modified procedure has been used for delivering dsRNA in cotton leafhopper in the current study. Robust RNAi efficiency has been demonstrated in cotton leafhopper through the feeding of dsSnf7. Snf7 belongs to the ESCRT (Endosomal Sorting Complex Required for Transport)–III complex, the ESCRT pathway is a key regulator of biological processes important for eukaryotic cell growth and survival [89]. Feeding of dsRNA targeting western corn rootworm, Snf7 homolog in larvae caused severe stunting after five days of exposure followed by the death of the larvae [23]. The highest mortality was observed with the feeding of dsSnf7 to nymphs of cotton leafhopper. This may be correlated to 77.12% (4.3 fold) decline in the expression of the targeted gene compared to the GFP control. Aquaporin water channels have been implicated in mediating the mass transfer of water in a various physiological processes. Hemipteran water-specific aquaporins have been reported in the gut of phloem-feeding leafhopper Cicadella viridis [90] and B. tabaci [91]. The expression of the Aquaporin 1 gene was reduced to 70% at six days post-feeding and caused 84% mortality in B. tabaci adults fed on 20 μg/ml AQPI dsRNA in 20% sucrose (Vyas et al, 2017). The reports showed no mortality in A. pisum fed on one μg/μl dsApAQP in the diet [92]. However, there was a two-fold reduction in the ApAQP expression compared to that
Thus, it is evident that the concentration of dsRNA might be a key factor for causing significant RNAi effect. In our experiments, dsRNA at 500 ng/μl diet caused 66.59% (2.99-fold) reduction in AbbAQP mRNA levels compared to that in dsGFP-fed control insects. However, the percent corrected mortality caused by dsAbbAQP feeding was low compared with dsAbbSnf7 feeding. The mortality observed with the feeding of dsAbbIAP and dsAbb-VATPase was also low. Nevertheless, there was a significant reduction of 59.87% and 56.17% in the mRNA levels of both the genes in the dsRNA-fed insects. In some of the hemipteran insects, the downregulation of VATPase has resulted in significant mortality as compared to the control [76, 74, 86, 93]. RNAi mediated screening of 290 genes of western corn rootworm (D. virgifera virgifera) revealed that only 125 genes were able to cause larval mortality [94]. In lepidopteran insects, out of 130 genes, only 49 genes (38%) were silenced more than 50% whereas 18 genes (14%) showed lesser silencing while 62 (48%) genes did not show silencing at all [95]. In insects, Hyalophora cecropia, Antheraea pernyi and Manduca sexta even ten ng dsRNA per mg of insect biomass was sufficient to elicit high levels of target gene silencing [96–98]. Similarly, silencing of target genes in coleopteran beetles could be achieved with small quantities of dsRNA [99]. Contrastingly, very high concentration (100 μg) of dsRNA per mg of insect biomass was required to silence target gene of Antheraea mylitta [100]. The length of dsRNA is also one of the critical parameters that determine dsRNA uptake and RNAi efficiency [101–102]. To conclude, the RNAi efficiency in cotton leafhopper with different genes showed a differential response. Thus exhaustive studies in future may be helpful to better understand the RNAi and its core machinery in this insect. Overall, the current study has identified stable reference genes across various developmental stages and starvation stress in A. biguttula biguttula. Considered in concert, using different software algorithms and comprehensive analysis results, we suggest that RP13 and VATPase are the most suitable HKGs for gene expression studies across developmental stages. RefFinder concluded RP13, VATPase, 18s in adult, 28s, RP13, TUB in early stage nymph, TUB, TATA, Actin in late-stage nymph and UbiCF, B-Tub, G3PD in starvation stress as the top three stable genes. However, considering the individual developmental stage RP13, TUB and 28S are best suited for adult, late, and early nymphal stages, respectively. In addition, UBiCF is most stable HKG under starvation stress. This study also reports for the first time successful gene silencing through RNAi in A. biguttula biguttula.

Supporting information

S1 Table. Descriptive analysis of all candidate reference genes by calculating standard deviation and p-values by Bestkeeper.
(DOC)

S2 Table. Mortality calculated in bioassays with dsRNA of different genes in comparison to dsGFP.
(DOCX)

Author Contributions

Conceptualization: Satnam Singh, Suneet Pandher, Pankaj Rathore, Subba Reddy Palli.

Data curation: Satnam Singh.

Formal analysis: Satnam Singh.

Funding acquisition: Pankaj Rathore.
Selection of housekeeping genes and RNAi in the cotton leafhopper

Investigation: Mridula Gupta, Gurmeet Kaur.

Methodology: Satnam Singh, Mridula Gupta, Suneet Pandher, Gurmeet Kaur.

Project administration: Pankaj Rathore.

Software: Satnam Singh.

Supervision: Pankaj Rathore, Subba Reddy Palli.

Writing – original draft: Satnam Singh, Mridula Gupta.

Writing – review & editing: Suneet Pandher, Subba Reddy Palli.

References

1. Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res. 1996; 6: 986–994 PMID: 8908518

2. Bustin SA, Benes V, Nolan T, Pfaffl MW. Quantitative real-time RT-PCR—a perspective. J Mol Endocrinol. 2005; 34: 597–601. https://doi.org/10.1677/jme.1.01755 PMID: 15956331

3. Yeung AT, Holloway BP, Adams PS, Shipley GL. Evaluation of dual-labeled fluorescent DNA probe purity versus performance in real-time PCR. BioTechniques. 2004; 36: 266–270, 272, 274–265 PMID: 14989091

4. Ponton F, Chapuis MP, Pernice M, Sword GA, Simpson SJ. Evaluation of potential reference genes for reverse transcription-qPCR studies of physiological responses in Drosophila melanogaster. J Insect Physiol. 2011; 57: 840–850. https://doi.org/10.1016/j.jinsphys.2011.03.014 PMID: 21435341

5. Chandna R, Augustine R, Bhisht NC. Evaluation of candidate reference genes for gene expression normalization in Brassica juncea using real time quantitative RT-PCR. PLoS One. 2012; 7(5): e36918. https://doi.org/10.1371/journal.pone.0036918 PMID: 22606308

6. Vandesompele J, De PK, Pattyn F, Poppe B, Van RN, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002; 3: RESEARCH0034. PMID: 12184808

7. Li Z, Yang L, Wang J, Shi W, Pawar RA, Liu Y, et al. beta-Actin is a useful internal control for tissue-specific gene expression studies using quantitative real-time PCR in the half-smooth tongue sole Cynoglossus semilaevis challenged with LPS or Vibrio anguillarum. FishShellfish Immunol. 2010; 29: 89–93. https://doi.org/10.1016/j.fsi.2010.02.021 PMID: 20227507

8. Andersen CL, Jensen JL, Orntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004; 64: 5245–5250. https://doi.org/10.1158/0008-5472.CAN-04-0496 PMID: 15289330

9. Benga G. Water channel proteins (later called aquaporins) and relatives: past, present, and future. IUBMB Life. 2009; 61: 112–133. https://doi.org/10.1002/iub.156 PMID: 19165894

10. Campbell EM, Ball A, Hoppler S, Bowman AS. Invertebrate aquaporins: a review. J Comp Physiol. 2008; 178: 935–955.

11. Heymann JB, Engel A. Aquaporins: phylogeny, structure, and physiology of water channels. News Physiol. Sci. 1999; 14: 187–193. PMID: 11390649

12. Yool AJ. Functional domains of aquaporin-1: keys to physiology, and targets for drug discovery. Curr Pharm Des. 2007; 13: 3212–3221. PMID: 18045170

13. Orme M, Meier P. Inhibitor of apoptosis proteins in Drosophila: gatekeepers of death. Apoptosis. 2009; 14: 950–960. https://doi.org/10.1007/s10495-009-0358-2 PMID: 19495985

14. Srinivasula SM, Ashwell JD. IAPs: what’s in a name? Mol Cell. 2008; 30: 123–135. https://doi.org/10.1016/j.molcel.2008.03.008 PMID: 18439892

15. Rumble JM, Duckett CS. Diverse functions within the IAP family. J Cell Sci. 2008; 121: 3505–3507. https://doi.org/10.1242/jcs.040933 PMID: 18946021
40. (http://leonxie.esy.es/RefFinder/?type=reference).
41. Abbott WS. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925; 18: 265–267.
42. Bas A, Forsberg G, Hammarström S, Hammarström ML. Utility of the housekeeping genes 18S rRNA, beta-actin and glyceraldehyde-3-phosphate-dehydrogenase for normalization in real-time quantitative reverse transcriptase-polymerase chain reaction analysis of gene expression in human T lymphocytes. Scand J Immunol. 2004; 59: 566–73 https://doi.org/10.1111/j.0300-9475.2004.01440.x PMID: 15182252
43. Kreuzer KA, Lass U, Landt O, Nitsche A, Laser J, Ellerbrok H, et al. Highly sensitive and specific fluorescence reverse transcription-PCR assay for the pseudogene-free detection of beta-actin transcripts as quantitative reference. Clin Chem. 1999; 45: 297–300.
44. Foss DL, Baarsch MJ, Murtaugh MP. Regulation of hypoxanthine phosphoribosyltransferase, glyceraldehyde-3-phosphate dehydrogenase and beta-actin mRNA expression in porcine immune cells and tissues. Anim Biotechnol. 1998; 9: 67–78. https://doi.org/10.1080/10495399809525893 PMID: 9676236
45. Spanakakis E. Problems related to the interpretation of autoradiographic data on gene expression using common constitutive transcripts as controls. Nucleic Acids Res. 1993; 21: 3809–3819. PMID: 8367299
46. Zheng YT, Li HB, Lu MX, Du YZ. Evaluation and validation of reference genes for qRT-PCR normalization in Frankiniella occidentalis (Thysanoptera:Thripidae). PLoS One. 2014; 9: e111369. https://doi.org/10.1371/journal.pone.0111369 PMID: 25356721
47. Scharlaken B, de Graaf DC, Goossens K, Brunain M, Peelman LJ, et al. Reference gene selection for insect expression studies using quantitative real-time PCR: the head of the honeybee, Apis mellifera, after a bacterial challenge. J Insect Sci. 2008; 8: 33.
48. Shen GM, Jiang HB, Wang X and Wang JJ. Evaluation of endogenous references for gene expression profiling in different tissues of the oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae). BMC Mol Biol. 2010; 11:76 https://doi.org/10.1186/1471-2199-11-76 PMID: 20923571
49. Peng R, Zhai Y, Ding H, Di T, Zhang T, Li B, et al. Analysis of reference gene expression for real-time PCR based on relative quantitation and dual spike-in strategy in the silkworm Bombyx mori Acta Biochim Biophys Sin. 2012; 44: 614–622 https://doi.org/10.1093/abbs/gms040 PMID: 22623504
50. Liu G, Qiu X, Cao L, Zhang Y, Zhan Z, Han R. Evaluation of reference genes for reverse transcription quantitative PCR studies of physiological responses in the ghost moth, Thitarodes amricanus (Lepidoptera, Hepialidae). PLoS One. 2016; 11: e0159060 https://doi.org/10.1371/journal.pone.0159060 PMID: 27392023
51. Pan H, Yang X, Siegfried BD, & Zhou XA. Comprehensive selection of reference genes for RT-qPCR analysis in a predatory lady beetle, Hippodamia convergens (Coleoptera: Coccinellidae). PLoS ONE. 2015; 10: e0125868. https://doi.org/10.1371/journal.pone.0125868 PMID: 25915640
52. Lu Y, Yuan M, Gao X, Kang T, Zhan S, Wan H, et al. Identification and validation of reference genes for gene expression analysis using quantitative PCR in Spodoptera litura (lepidoptera: Noctuidae). PLoS One. 2013; 8: e68059. https://doi.org/10.1371/journal.pone.0068059 PMID: 23874494
53. Bustin SA, Benes V, Garson JA, Heltlman J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009; 55: 611–22. https://doi.org/10.1373/clinchem.2008.112797 PMID: 19246619
54. Araujo R, Santos A, Pinto F, Gontijo N, Lehane M, Pereira MH. RNA interference of the salivary gland nitrophorin 2 in the triatomine bug Rhodnius prolixus (hemiptera: Reduviidae) by dsRNA ingestion or injection. Insect Biochem Mol Biol. 2006; 36: 683–693.
55. Li B, Nierias C R, Warner J R. Transcriptional elements involved in the repression of ribosomal protein synthesis. Mol Cell Biol. 1999; 19: 5393–5404. PMID: 10409730
56. Sun W, Jin Y, He L, Lu WC, Li M. Suitable reference gene selection for the different strains and developmental stages of the carmine spider mite, Tetranychus cinnabarinus, using quantitative real-time PCR. J Insect Sci. 2010; 10: 208 https://doi.org/10.1673/031.010.20801 PMID: 21265169
57. Majorowicz D, Alves-Bezerra M, Logullo R, Fonseca-de-Souza AL, Meyer- Fernandes JR, Braz GR, et al. Looking for reference genes for real-time quantitative PCR experiments in Rhodnius prolixus (Hemiptera: Reduviidae) Insect Mol Biol. 2011; 20: 713–722. https://doi.org/10.1111/j.1365-2583.2011.01101.x PMID: 21929722
58. Mamidala P, Rajarapu SP, Jones SC, Mittapalli O. Identification and validation of reference genes for quantitative real-time polymerase chain reaction in Cimex lectularius. J Med Entomol. 2011; 48: 947–951 PMID: 21845980
59. Van HMB, Van WP, Tennerman L, Van SS, Vuerinckx K, Huybrechts R, et al. Identification and validation of housekeeping genes in brains of the desert locust Schistocerca gregaria under different conditions.
developmental conditions. BMC Mol Biol. 2009; 10: 56–65. https://doi.org/10.1186/1471-2199-10-56 PMID: 19508726

60. Bagnall NH, Kotze AC. Evaluation of reference genes for real-time PCR quantification of gene expression in the Australian sheep blowfly, *Lucilia cuprina*. Med Vet Entomol. 2010; 24: 176–181. https://doi.org/10.1111/j.1365-2915.2010.00866.x PMID: 20604863

61. Zhang S, An S, Li Z, Wua F, Yang G, Liu Y, et al. Identification and validation of reference genes for normalization of gene expression analysis using qRT-PCR in *Helicoverpa armigera* (Lepidoptera: Noc-tuidae). Gene. 2015; 555: 393–402. https://doi.org/10.1016/j.gene.2014.11.038 PMID: 25447918

62. Wu Y, Zhai Y, Huang M. The expression stability analysis of commonly used reference genes and research on the expression regulation of silk protein related genes in *Bombyx mori*. Chinese J Cell Biol. 2013; 35: 423–431

63. Xue JL, Tamer ZS, Colin MT, Cheng XW. Strategy of the use of 28S rRNA as a housekeeping gene in real-time quantitative PCR analysis of gene transcription in insect cells infected by viruses. J Virol Met. 2010; 163: 210–215.

64. Huis R, Hawkins S and Neutelings G. Selection of reference genes for quantitative gene expression normalization in flax (*Linum usitatissimum L*). BMC Plant Biol. 2010; 10: 71 https://doi.org/10.1186/1471-2229-10-71 PMID: 20403198

65. Kozera B, Rapacz M. Reference genes in real-time PCR. J App Gen. 2013; 54: 391–406.

66. Wang L. The transcriptome sequencing and diapause related gene-cloning research of *Bactrocera minax*. Henan Institute of Science and Technology. 2013; 53–59

67. Nielsen MG, Gadagkar SR and Gutzwiller L. Tubulin evolution in insects: gene duplication and sub-functionalization provide specialized isoforms in a functionally constrained gene family. BMC Evol Biol. 2010; 10: 113 https://doi.org/10.1186/1471-2148-10-113 PMID: 20423510

68. Christensen AH, Sharrok RA, Quail PH. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol. 1992; 18: 675–689. PMID: 1313711

69. Chan YL, Suzuki K, Wool IG. The carboxyl extensions of two rat ubiquitin fusion proteins are ribosomal proteins S27a and L40. Biochem Bioph Res Co. 1995; 215: 682–690.

70. Thellin O, Zorzi W, Lakaye B, De BB, Coumans B, Hennen G, et al. Housekeeping genes as internal standards: use and limits. J Biotechnol. 1999; 75: 291–295 PMID: 10617337

71. Haberhausen G, Pinsl J, Kuhn CC, Markert-Hahn C. Comparative study of different standardization concepts in quantitative competitive reverse transcription-PCR assays. J Clin Microbiol 1998; 36: 628–633. PMID: 9508285

72. Upadhyay SK, Chandrashekar K, Thakur N, Verma PC, Borgio JF, Singh PK, et al. RNA interference for the control of whiteflies (*Bemisia tabaci*) by oral route. J Biosci. 2011; 36: 153–161. PMID: 21451256

73. Whyard S, Singh AD, Wong S. Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem Mol Biol. 2009; 39: 824–832. https://doi.org/10.1016/j.ibmb.2009.09.007 PMID: 19815067

74. Ge LQ, Huang LJ, Yang GQ, Song QS, Stanley D, Gurr GM, et al. RNAi-mediated knockdown of the ryanodine receptor gene decreases chlorantraniliprole susceptibility in *Sogatella furcifera*. Pest Biochem Physiol. 2014; 108: 58–65.

75. Yang Y, Wan PJ, Hu XX, Li GQ. RNAi mediated knockdown of the ryanodine receptor gene decreases chlorantraniliprole susceptibility in *Sogatella furcifera*. Pest Biochem Physiol. 2014; 108: 58–65. PMID: 24489765

76. Christiaensen O and Smagghe G. The challenge of RNAi-mediated control of hemipterans. Curr Opin Insect Sci. 2014; 6: 15–21
81. Wang K, Peng Y, Pu J, Fu W, Wang J, Han Z. Variation in RNAi efficacy among insect species is attributable to dsRNA degradation in vivo. Insect Biochem Mol Biol. 2016; 77: 1–9. https://doi.org/10.1016/j.ibmb.2016.07.007 PMID: 27449967

82. Zha W, Peng X, Chen R, Du B, Zhu L, He G. Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. PLoS One PLoS One. 2011; 6: e20504. https://doi.org/10.1371/journal.pone.0020504 PMID: 21655219

83. Pitino M, Coleman AD, Maftei ME, Ridout CJ, Hogenhout SA. Silencing of aphid genes by dsRNA feeding from plants. PLoS ONE. 2011; 6: e25709. https://doi.org/10.1371/journal.pone.0025709 PMID: 21998682

84. Mao J, Zeng F. Plant-mediated RNAi of a gap gene enhanced tobacco tolerance against the Myzus persicae. Transgenic Res. 2014; 23: 145–152. https://doi.org/10.1007/s11248-013-9739-y PMID: 23949691

85. Hajeri S, Upadhyay SK, Verma PC, Chandrashekar K, Tuli R, Singh PK. Enhanced whitefly resistance in transgenic tobacco plants expressing double stranded RNA of v-ATPase A gene. PLoS One. 2014; 9: e87235. https://doi.org/10.1371/journal.pone.0087235 PMID: 24959215

86. Slagsvold T, Pattini K, Malerod L, Stenmark H. Endosomal and non-endosomal functions of ESCRT proteins. Trends Cell Biol. 2006; 16: 317–326. https://doi.org/10.1016/j.tcb.2006.04.004 PMID: 16716591

87. Lu ZC, Wan FH. Using double-stranded RNA to explore the role of heat shock protein genes in heat tolerance in Bemisia tabaci (Gennadius). J Exp Biol. 2011; 214: 764–9. https://doi.org/10.1242/jeb.047415 PMID: 21307062

88. Mathew LG, Campbell EM, Yool AJ, Fabrick JA. Identification and characterization of functional aquaporin water channel protein from alimentary tract of whitefly, Bemisia tabaci. Insect Biochem Mol Biol. 2011; 41: 178–190 https://doi.org/10.1016/j.ibmb.2010.12.002 PMID: 21146609

89. Shakesby AJ, Wallace IS, Isaacs HV, Pritchard J, Roberts DM, Douglas AE, et al. A water-specific aquaporin involved in aphid osmoregulation. Insect Biochem Mol Biol. 2009; 39: 1–10 https://doi.org/10.1016/j.ibmb.2008.08.006 PMID: 19983920

90. Ghanim M, Kontsedalov S, Czosnek H. Tissue-specific gene silencing by RNA interference in the lepidopteran insect Hyalophoria cecropia, a phloem-sap sucking insect vector of citrus greening disease (Huanglongbing). J Biotechnol. 2014; 176: 42–49. https://doi.org/10.1016/j.jbiotec.2014.02.010 PMID: 24572372

91. LeCaherec F, Deschamps S, Delamarque C, Pellerin I, Bonnec G, Guillam MT, et al. Molecular cloning and characterization of an insect aquaporin—Functional comparison with aquaporin 1. Eur J Biochem. 1996; 241: 707–715 PMID: 8944756

92. Terenius O, Bettencourt R, Faye I. Hemo lin gene silencing by ds-RNA injected into Cecropia pupae is lethal to next generation embryos. Insect Biochem Mol Biol. 2002; 11: 267–271. PMID: 12000646

93. Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H, Sriramana K, et al. RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design. J Insect Phys. 2011; 57: 231–245.

94. Bettencourt R, Terenius O, Faye I. Hemolin gene silencing by ds-RNA injected into Cecropia pupae is lethal to next generation embryos. Insect Biochem Mol Biol. 2002; 11: 267–271. PMID: 12000646

95. Hirai M, Terenius O, Faye I. Baculovirus and dsRNA induce hemolin, but no antibacterial activity, in Antheraea pernyi. Insect Biochem Mol Biol. 2004; 241: 707–715 PMID: 8944756

96. Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H, Sriramana K, et al. RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design. J Insect Phys. 2011; 57: 231–245.

97. Baum JA, Bogaert T, Clinton W, Heck GR., Feldmann P, Ilagan O, et al, Control of coleopteran insect pests through RNA interference. Nature Biotechnol. 2007; 25: 1322–1326

98. Tenerius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huyvenne H, Srirama K, et al. RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design. J Insect Phys. 2011; 57: 231–245.

99. Bettencourt R, Terenius O, Faye I. Hemolin gene silencing by ds-RNA injected into Cecropia pupae is lethal to next generation embryos. Insect Biochem Mol Biol. 2002; 11: 267–271. PMID: 12000646

100. Wiradja AS, John SH, Nagaraju J. Nodulizer, a novel immune up-regulated protein mediates nodulation response in insects. J Immunol. 2007; 179: 6943–6951. PMID: 17982085

101. Huvenne H, Smaghe G. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J Insect Physiol. 2010; 56: 227–35 https://doi.org/10.1016/j.jinsphys.2009.10.004 PMID: 19837076
102. Garbutt JS, Reynolds SE. Induction of RNA interference genes by double-stranded RNA; implications for susceptibility to RNA interference. Insect Biochem Mol Biol. 2012; 42: 621–8. https://doi.org/10.1016/j.ibmb.2012.05.001 PMID: 22634162