A continuum string model for $D > 1$

M. Martellini

I.N.F.N., Sezione di Roma "La Sapienza", Roma, Italy

M. Spreafico

Dipartimento di Fisica, Università di Milano, Milano, Italy

K. Yoshida

Dipartimento di Fisica, Università di Roma "La Sapienza", Roma, Italy and I.N.F.N., Sezione di Roma, Italy

ABSTRACT

The non critical string (2D gravity coupled to the matter with central charge D) is quantized taking care of both diffeomorphism and Weyl symmetries. In incorporating the gauge fixing with respect to the Weyl symmetry, through the condition $R_g = \text{const}$, one modifies the classical result of Distler and Kawai. In particular one obtains the real string tension for an arbitrary value of central charge D.

* On leave of absence from Dipartimento di Fisica, Università di Milano, Milano, Italy and I.N.F.N., Sezione di Pavia, Italy
Conformal field theory coupled to 2D Euclidean quantum gravity was solved initially by Polyakov [1] who introduced the following path integral

$$Z = \int \frac{[Dg][Dg^{ab}]}{Vol(\text{Diff}) \cdot Vol(\text{Weyl})} e^{-S_M[g;X]} - \frac{\mu_0^2}{8\pi} \int d^2\xi \sqrt{g}$$

where the matter action is

$$S_M[g;X] = \frac{1}{8\pi} \int d^2\xi \sqrt{g} g^{ab} \nabla_a X^\mu \nabla_b X^\mu$$

and an explicit bare cosmological constant term has been included. The X^μ are D bosonic scalar fields taking values in \mathbb{R}^D.

As well known the presence of the volumes in the measure follows from the invariance of the matter action under diffeomorphisms and conformal mappings of the Riemann surface [2] [3]. Thus we are lead to analyse the symmetries of matter action. As is known $S_M[g;X]$ is invariant both under

- diffeomorphism of the word sheet

$$\xi^a \to \xi'^a = \xi^a + \epsilon^a(\xi)$$

$$\delta g_{ab} = \nabla_a \epsilon_b + \nabla_b \epsilon_a$$

- Weyl transformation, that is transformations of the metric field alone of the type

$$g'_{ab}(x) = e^{\sigma(x)} g_{ab}$$

Our purpose is to fix the gauge and define the correct determinant and Fadeev Popov ghosts for both the gauge symmetries. Furthermore we shall assume to have a string world-sheet surface of genus $h \geq 2$, i.e. an hyperbolic 2D-geometry.
To fix Weyl gauge we note that for every given hyperbolic Euclidean metric g_{ab}, there exists only one metric g'_{ab} conformal to g_{ab} having constant curvature $R_{g'} = -1$ [4] (see appendix A). So we can choose the gauge fixing condition

$$R_g = -1$$

To write the FP determinant we must calculate the formal derivative of the gauge function

$$f(g'_{ab}) = R_{g'} + 1$$

when g'_{ab} is given by the Weyl transformation with a scaling parameter k

$$g'_{ab}(x) = e^{k\sigma(x)}g_{ab}$$

so

$$f(g') = e^{-k\sigma}(R_g - kg^{ab}\nabla_a\nabla_b\sigma) + 1$$

If we consider an infinitesimal variation $\delta\sigma$, we have

$$\delta g_{ab} = kg_{ab}\delta\sigma$$

$$R_{g'} = (1 - k\delta\sigma)(R_g - kg^{ab}\nabla_a\nabla_b\delta\sigma) = R_g - kg^{ab}\nabla_a\nabla_b\delta\sigma - kR_g\delta\sigma + o(\delta\sigma^2)$$

$$\delta R_g = -k(R_g + g^{ab}\nabla_a\nabla_b)\delta\sigma$$

$$\frac{\delta f}{\delta\sigma} = -k(R_g + g^{ab}\nabla_a\nabla_b)$$

then following Fadeev-Popov we must calculate the determinant

$$N = Vol(Weyl) \ Det\{-k(R_g + g^{ab}\nabla_a\nabla_b)\}$$

To do that we introduce the grasmaniann ghosts ψ and $\bar{\psi}$ satisfying the rules

$$\{\psi, \bar{\psi}\} = 0, \ \ \psi^2 = \bar{\psi}^2 = 0$$
and we can write \(N \) in the form of path integral

\[
N = \text{Vol}(\text{Weyl}) \int [D_\psi][D\bar{\psi}] e^{\frac{1}{2k} \int d^2\xi \sqrt{\hat{g}}(\hat{\psi}^\dagger R_\psi + g^{ab}\nabla_a \nabla_b \psi)(\hat{\psi})} \equiv \text{Vol}(\text{Weyl}) \tilde{N}
\]

(2)

For what concerns the diffeomorphisms we follow the Distler-Kawai (DK) procedure [2] and introduce a set of background metrics parameterized by the moduli parameters, \(\hat{g}_{ab}(\tau) \). The gauge with respect to diffeomorphism’s invariance will be fixed parameterizing the metric by a Weyl scaling \(\phi \)

\[
g_{ab} = e^{\alpha \phi} \hat{g}_{ab}(\tau)
\]

and also the volume of diffeomorphism’s group disappears from the path integral (1) which now can be rewritten in the following way

\[
Z = \int [D_g X^\mu][D\phi][D\phi^\dagger][d\tau] \tilde{N} e^{-S_M[X;\tilde{g}] - S_{GH}[b,c;\tilde{g}] - S_L[\phi;\tilde{g}]} \]

Here

\[
S_L[\phi;\tilde{g}] = \frac{1}{8\pi} \int d^2\xi \sqrt{\hat{g}}(\hat{g}^{ab}\nabla_a \phi \nabla_b \phi - Q R\hat{g}\phi)
\]

is the Liouville action without the term \(\mu_1 \sqrt{\hat{g}} e^{\alpha \phi} \) already eliminated by setting the appropriated value to the cosmological constant \(\mu_0 \). Note also the scale parameter \(\alpha \) which has been included to have a standard kinetic term.

We can now match the two procedures paying attention to the fact that having parameterized the metric as above, we must effect the substitution

\[
g_{ab} = e^{\alpha \phi} \hat{g}_{ab}
\]

also into \(\tilde{N} \) (from now on we will omit the \(\tau \) parameter).
Our ansatz, following DK, is that the measure for Weyl ghosts transforms as the other measures, that is with a jacobian determinant given by a Liouville action

\[
[D_g \psi][D_g \bar\psi] = e^{S_L[\phi;\hat{g}]}[D_{\hat{g}} \psi][D_{\hat{g}} \bar\psi] \tag{4}
\]

under a Weyl scaling of the metric \(g_{ab} = e^{\alpha \phi} \hat{g}_{ab} \). We can now substitute (3) in the determinant (2).

The relation between curvatures and between laplacians are

\[
R_g = e^{-\alpha \phi} (R_{\hat{g}} - \alpha \hat{g}^{ab} \nabla_a \nabla_b \phi) \tag{5}
\]

\[
g^{ab} \nabla_a \nabla_b = e^{-\alpha \phi} \hat{g}^{ab} \nabla_a \nabla_b
\]

substituting these relations in the exponent in \(\tilde{N} \) we have (remember that \(\sqrt{g} = e^{\alpha \phi} \sqrt{\hat{g}} \))

\[
\frac{1}{2} k \int d^2 \xi \sqrt{\hat{g}} \hat{\psi}(\xi) (R_{\hat{g}} + g^{ab} \nabla_a \nabla_b) \psi(\xi)
\]

\[
= \frac{1}{2} k \int d^2 \xi \sqrt{\hat{g}} e^{\alpha \phi} \hat{\psi}(\xi) [e^{-\alpha \phi} (R_{\hat{g}} - \alpha \hat{g}^{ab} \nabla_a \nabla_b \phi) + e^{-\alpha \phi} \hat{g}^{ab} \nabla_a \nabla_b] \psi(\xi)
\]

\[
= \frac{1}{2} k \int d^2 \xi \sqrt{\hat{g}} \hat{\psi}(\xi) (R_{\hat{g}} - \alpha \hat{g}^{ab} \nabla_a \nabla_b \phi + \hat{g}^{ab} \nabla_a \nabla_b) \psi(\xi)
\]

so we can write \(\tilde{N} \) in the following way

\[
\tilde{N} = \int [D_g \psi][D_g \bar\psi] e^{\frac{1}{2} k \int d^2 \xi \sqrt{\hat{g}} \hat{\psi}(\xi) (R_{\hat{g}} - \alpha \hat{g}^{ab} \nabla_a \nabla_b \phi + \hat{g}^{ab} \nabla_a \nabla_b) \psi(\xi)} \tag{6}
\]

where the relation (4) is understood in eq. (6). As a consequence, we should now transform the measure in eq. (6) inserting a Liouville determinant. We shall have a unique Liouville action with undetermined parameters in the partition function.
Thus we obtain the final path integral expression for Z

$$Z = \int [D\hat{g}X^\mu][D\hat{g}\phi][D\hat{g}b][D\hat{g}\psi][D\hat{g}\bar{\psi}][d\tau]e^{-S_M[X;\hat{g}]-S_{GH}[b,c;\hat{g}]-S_L[\phi;\hat{g}]-S_W[\psi;\hat{g}]}$$

(7)

where we have defined the Weyl action as

$$S_W[\psi; \hat{g}] = \frac{1}{2} k \int d^2 \xi \sqrt{\hat{g}} \bar{\psi} \left\{ -(\hat{R} - \alpha \hat{g}^{ab} \nabla_a \nabla_b \phi + \hat{g}^{ab} \nabla_a \nabla_b) \psi \right\}$$

(8)

We are interested in the total action for Liouville and Weyl ghosts

$$S = S_L[\phi; \hat{g}] + S_W[\psi; \hat{g}]$$

$$= \frac{1}{8\pi} \int d^2 \xi \sqrt{\hat{g}} (\hat{g}^{ab} \nabla_a \phi \nabla_b \phi - QR_{\hat{g}} \phi) + \frac{k}{2} \int d^2 \xi \sqrt{\hat{g}} \bar{\psi} \left\{ -(\hat{R} - \alpha \hat{g}^{ab} \nabla_a \nabla_b \phi + \hat{g}^{ab} \nabla_a \nabla_b) \psi \right\}$$

$$= \frac{1}{8\pi} \int d^2 \xi \sqrt{g} (\phi \Delta_{\hat{g}} \phi - QR_{\hat{g}} \phi - q\bar{\psi} \Delta_{\hat{g}} \psi - q\bar{\psi} R_{\hat{g}} \psi + \alpha q\bar{\psi} \psi \Delta_{\hat{g}} \phi)$$

where we set

$$q = 4\pi k$$

$$\Delta_{\hat{g}} = \hat{g}^{ab} \nabla_a \nabla_b$$

that is

$$S = \frac{1}{8\pi} \int d^2 \xi \sqrt{g} [\phi \Delta_{\hat{g}} \phi - QR_{\hat{g}} \phi - q\bar{\psi} \Delta_{\hat{g}} \psi - q\bar{\psi} R_{\hat{g}} \psi + \alpha q\bar{\psi} \psi \Delta_{\hat{g}} \phi]$$

(9)

Now the term in (9) relative to the Weyl ghosts ($\bar{\psi}, \psi$) may be rewritten locally in the formal way (we adopt a complex coordinate system)

$$\frac{q}{8\pi} \sqrt{g} [(\partial \bar{\psi}) \partial \bar{\psi} - \frac{1}{\vartheta} (\partial \bar{\psi}) \psi R_{\hat{g}} + \alpha \frac{1}{\vartheta} (\partial \bar{\psi}) \psi \partial \bar{\psi}]$$

(10)

where $\partial \bar{\theta} = \Delta_{\hat{g}} |_{\text{loc}}$ and $\frac{1}{\vartheta}$ denotes the resolvent of the elliptic operator ∂, i.e. formally $\frac{1}{\vartheta} (\partial \text{FIELD}) \sim \text{FIELD}$.
Eq. (10) has the traditional form of a ghost bc-system after the identification

\[b \equiv \partial \tilde{\psi} \]
\[c \equiv \psi \]

Notice that the conformal dimension of \(\partial \tilde{\psi} \) and \(\psi \) are 1 and 0 respectively. We can then bosonize the action (10) following [5] by introducing a free scalar field \(\varphi \) and expressing the ghost fields \((\tilde{\psi}, \psi)\) as

\[b = \partial \exp(i\varphi) \]
\[c = \exp(-i\varphi) \]

In this way we found

\[\frac{q}{8\pi} \sqrt{g} [(\partial \varphi \partial \varphi - i\varphi R_g) - iA \frac{1}{g}(\partial \varphi)R_g + i\alpha A \frac{1}{g}(\partial \varphi)\partial \partial \phi] = \frac{q}{8\pi} \sqrt{g} [-\varphi \partial \partial \varphi - i(1 + A) \varphi R_g + 2i \frac{\alpha A}{2} \varphi \partial \partial \phi] \]

where we used

\[bc = iA(\partial \varphi) \]

Here \(A \) is a renormalization factor which shall play the role of a new bare parameter.

If now we define the free unrenormalized parameter

\[(1 + A) \equiv \tilde{Q} \]
\[\frac{\alpha A}{2} \equiv B \]
\[q \equiv 8\pi \]

where \(\alpha \) is understood as a gauge (bare) parameter not to be confused with the Liouville field’s moment, the equation (10) in a general frame becomes

\[\sqrt{g} [-\varphi \Delta_g \varphi + 2iB \varphi \Delta_g \phi - i\tilde{Q} \varphi R_g] \]

After the Wick rotation of field \(\varphi \), \(\varphi \to i\varphi \), in order to get a Liouville field, we
obtain

\[\sqrt{g}[\varphi \Delta g \varphi - 2B \varphi \Delta g \phi + \bar{Q} \varphi R_{\bar{g}}] \] \hspace{1cm} (15) \]

Putting eq. (15) in (9) we have the final form for the Liouville-Weyl action in matrix notation

\[S = \int d^2 \xi \sqrt{\bar{g}}[-M_{i,j} \Phi^i \Delta \bar{g} \Phi^j - Q_i \Phi^i R_{\bar{g}}] \]

\[\Phi^i \equiv (\Phi^1, \Phi^2) = (\phi, \varphi) \]
\[Q_i \equiv (Q_1, Q_2) = (Q, -\bar{Q}) \]
\[M_{i,j} \equiv \begin{pmatrix} 1 & B \\ B & -1 \end{pmatrix} \] \hspace{1cm} (16) \]

In the following we shall regard the three parameters \(Q_1, Q_2 \) and \(B \) as renormalized parameters to be fixed by conformal invariance and by the requirement to get the DK-regime in the limit \(B \to 0 \).

The holomorphic energy-momentum tensor associated with (16) reads locally as

\[T = -\frac{1}{2}[M_{i,j} \partial \Phi^i \partial \Phi^j + Q_i (\partial^2) \Phi^i] \] \hspace{1cm} (17) \]

The correspondent central charge is given by

\[c_{W+L} = 2 + 3M^{i,j}Q_iQ_j \] \hspace{1cm} (18) \]

where \(M^{i,j} \) is the inverse matrix of \(M_{i,j} \).

Our key idea is that the model (16) replaces the DK Liouville action when one consider the coupling 2D-QG to conformal matter fields with central charge \(c_m \), for any value of \(c_m \). To show that, we calculate string susceptibility of the theory and we verify that its value is real for all \(c_m \).
In particular let us consider the coupling of (16) with D free massless scalar matter fields, so that before the coupling their central charge is $c_m = D$. We start by noting that, as in DK, the gravitational coupling implies that the matter vertex operator $V(a)$ had a ”gravitational dressing” given by

$$V(a) \rightarrow V(a) e^{\alpha_1 \Phi_1} \equiv V(a) e^{\alpha \phi},$$

so that, if $V(a)$ is the identity operator, conformal invariance requires that $e^{\alpha \phi}$ is a $(1,1)$ conformal field and its conformal dimension as computed by (17)

$$\Delta[e^{\alpha_1 \Phi}] = -\frac{1}{2} \alpha_1 M^{1}j(\alpha_j + Q_j),$$

must be equal to 1. This fact will be used to compute parameter α_1.

To calculate string susceptibility we use the expression [2]

$$\Gamma = \chi(h) \frac{Q_1}{2\alpha_1} + 2$$

where $\chi(h) = 2(1-h)$ is the Euler characteristic of the surface, hence we must determinate the values of parameters Q_1 and α_1. We begin by noting that, as well known, Weyl invariance of the whole system requires that

$$c_{w+L} + D - 26 = 0$$

Using (18) in eq. (22) we find

$$Q_1^2 + 2BQ_1Q_2 - Q_2^2 + \frac{1 + B^2}{3}(D - 24) = 0$$

To solve this equation we adopt the following parametrization

$$Q_2 = \sqrt{\frac{1}{3} + \lambda(B, D)}$$

$$\lim_{B \rightarrow 0} \lambda(B, D) = 0$$
In this parametrization Q_1 is given by (see appendix B)

$$Q_1 = -\frac{1}{\sqrt{3}} \left[B \sqrt{1 + 3\lambda(B, D)} - \sqrt{(1 + B^2)(3\lambda(B, D) + 25 - D)} \right]$$

(25)

where the sign is chosen to have the standard semiclassical limit for $D \to -\infty$ (see appendix C).

We can calculate α_1 using (20) (remember that $\alpha_2 = 0$).

$$-\frac{1}{2} \alpha_1 M^{1,j}(\alpha_j + Q_j) = 1$$

(26)

and we get (see appendix B)

$$\alpha_1 = -\frac{1}{2\sqrt{3}} \left[\sqrt{(1 + B^2)(25 - D + 3\lambda(D, B))} - \sqrt{(1 + B^2)(1 - D + 3\lambda(D, B))} \right]$$

(27)

where the sign have been chosen again to have the semiclassical limit for $D \to -\infty$ (see appendix C).

String susceptibility Γ can now be calculated by using the expression (21) and known values for Q_1 and α_1 in λ parametrization. We find

$$\Gamma = \frac{1 - h}{12(1 + B^2)} \left\{ B \sqrt{1 + B^2} \left[\sqrt{(1 + 3\lambda)(25 - D + 3\lambda)} + \sqrt{(1 + 3\lambda)(1 - D + 3\lambda)} \right] +
\sqrt{(25 - D + 3\lambda)(1 - D + 3\lambda)} \right\}$$

(28)

We fix a particular parametrization choosing the following form for the function $\lambda(D, B)$

$$\lambda(D, B) = \frac{B}{3} D,$$

(29)

in fact we can see that in this parametrization the reality of Γ is ensured for all $D > 0$ simply requiring that $B > 1$, as shown in appendix D, and the DK-limit is reached for $B \to 0$.

9
Although we have no informations on B at this level, we see that assuming that DK regime is achieved from eq. (28) just requiring the condition $D \leq 1$, then B must be a step function of D as $B \sim \overline{B}\theta(D - 1)$, where $\theta(x) = 0$ for $x \leq 0$ and \overline{B} is a generic real constant greater than one.
APPENDIX A

We show that for every metric g_{ab} there exists just one metric \hat{g}_{ab} so that

$$g_{ab} = e^\sigma \hat{g}_{ab} \text{ and } R_{\hat{g}} = -1$$

To demonstrate existence we start by writing the relation between scalar curvatures of the metrics g_{ab} and \hat{g}_{ab}

$$R_g = e^{-\sigma}(R_{\hat{g}} - \hat{g}^{ab}\nabla_a \partial_b \sigma) \quad (A1)$$

and vice versa

$$R_{\hat{g}} = e^{\sigma}(R_g + g^{ab}\nabla_a \partial_b \sigma) \quad (A2)$$

Now by requiring that $R_{\hat{g}} = -1$ we get the equation [6]

$$R_g(x,y) + g^{ab}(x,y)\nabla_a \partial_b \sigma(x,y) = -e^{-\sigma(x,y)}$$

We can reduce complexity by considering that, at least locally, g_{ab} is conformally Euclidean, that is $g_{ab} = e^\rho \delta_{ab}$. From (A2) we obtain locally

$$-1 = R_{\hat{g}} = e^{\sigma'}(R_{\delta} + \delta^{ab}\partial_a \partial_b \sigma')$$

where $\sigma' = \rho \sigma$, so, at least locally, we must deal with the solvable equation

$$(\partial_x^2 + \partial_y^2)\sigma'(x,y) = -e^{-\sigma'(x,y)}.$$

To verify unicity we proceed via the reductio ab absurdo, allowing the existence of two metrics g'_{ab} and g''_{ab} both conformal equivalents to g_{ab} and having scalar
curvature equal to -1, that is
\[g_{ab} = e^{\sigma'} g'_{ab} \quad \text{and} \quad R_{g'} = -1 \]
\[g_{ab} = e^{\sigma''} g''_{ab} \quad \text{and} \quad R_{g''} = -1 \]
so we can write
\[g''_{ab} = e^{\sigma'-\sigma''} g'_{ab} \]
Now using (A1) we can write the following relations
\[g'_{ab} = e^{-\sigma'} g_{ab} \]
\[R_{g'} = e^{\sigma'} (R_g + g \nabla_a \partial_b \sigma') = -1 \quad (A3) \]
\[g''_{ab} = e^{-\sigma''} g_{ab} \]
\[R_{g''} = e^{\sigma''} (R_g + g \nabla_a \partial_b \sigma'') = -1 \quad (A4) \]
\[g''_{ab} = e^{\sigma'-\sigma''} g'_{ab} \]
\[R_{g''} = e^{-(\sigma'-\sigma'')} (R_g' - g'^{ab} \nabla_a \partial_b (\sigma' - \sigma'')) = -1 \quad (A5) \]
from the first two relations we obtain
\[R_g + \nabla_a \partial_b \sigma' = -e^{-\sigma'} \]
\[R_g + \nabla_a \partial_b \sigma'' = -e^{\sigma''} \]
so
\[\nabla_a \partial_b (\sigma' - \sigma'') = e^{-\sigma''} - e^{-\sigma'} \quad (A6) \]
To use the last relations we notice that
\[\nabla_a \partial_b \sigma = g'_{ab} \nabla'_a \partial'_b \sigma \]
If the dimension of the world sheet is 2 and σ is a conformal tensor of weight $s=0$, the latter should transform as
\[\sigma' = \Omega^s \sigma \]
under a coordinates transformation $z^a = z^a(z')$ for which $g_{ab}' = \Omega g_{ab}$ [7]. This conditions hold in present case because we are dealing with a transformation of
the metric alone, so that $z'^a = z^a$ and being σ a scalar field $\sigma'(z') = \sigma(z)$ so that $\sigma' = \sigma$.

From (A5) we can now write

$$\nabla_a \partial_b (\sigma' - \sigma'') = e^{(\sigma' - \sigma'')} - 1$$

which compared with (A6) gives

$$e^{-\sigma''} - e^{-\sigma'} = e^{(\sigma' - \sigma'')} - 1$$

we can solve this equation by setting

$$x = e^{-\sigma'}$$
$$y = e^{-\sigma''}$$

so we obtain

$$y - x = \frac{y - x}{x}$$

which solutions are $x=y$ or $x=1$, that is

$$\sigma' = \sigma''$$

or

$$\sigma' = 0$$

which both confirm absurdity of initial assumption and complete the demonstration of unicity.
APPENDIX B

To proceed to the determination of parameters Q_1, Q_2 and α_1 we must first determine the inverse matrix $M^{i,j}$ of $M_{i,j}$ defined in (16)

$$M^{i,j} = \frac{1}{1 + B^2} \begin{pmatrix} 1 & B \\ B & -1 \end{pmatrix}$$

(B1)

Then we can develop equations (23) and (26) obtaining

$$Q_1 = -BQ_2 \pm \frac{1}{\sqrt{3}} \sqrt{(1 + B^2)(3Q_2^2 + 24 - D)}$$

$$\alpha_1^2 + (Q_1 + BQ_2)\alpha_1 + 2(1 + B^2) = 0$$

$$\alpha_1 = -\frac{1}{2\sqrt{3}} \left[\pm \sqrt{(1 + B^2)(3Q_2^2 + 24 - D)} \mp \sqrt{(1 + B^2)(3Q_2^2 - D)} \right]$$

Now inserting the parametrization (24) we get equations (25) and (27).
APPENDIX C

We verify that the parametrization (24) is compatible with DK-regime. Specifically we get DK-regime in the limit for $B \to 0$.

For $B \to 0$ we have
\[
\begin{align*}
\lambda & \to 0 \\
Q_2 & = \frac{1}{3} \\
Q_1 & \to \sqrt{\frac{25 - D}{3}}
\end{align*}
\]
which is exactly DK values for the central charge. Moreover we get the following values for α_1 and Γ
\[
\begin{align*}
\alpha_1 & = -\frac{1}{2\sqrt{3}} \left[\sqrt{25 - D} - \sqrt{1 - D} \right] \\
\Gamma & = \frac{(1 - h)}{12} \left[D - 25 - \sqrt{(25 - D)(1 - D)} \right]
\end{align*}
\]
which are again DK values.
APPENDIX D

We want to verify the reality of Γ as given by (28), when λ is fixed by the parametrization (29). Reality of Γ is obtained by simultaneously satisfying

\[
(1 + DB)(25 - (1 - B)) \geq 0 \\
(1 + DB)(1 - (1 - B)) \geq 0 \\
(1 - (1 - B))(25 - (1 - B)) \geq 0
\]

requiring that $B > 1$ and introducing the parameter

\[
a = B \\
b = B - 1
\]

we can solve the system

\[
(1 + aD)(25 + bD) \geq 0 \\
(1 + aD)(1 + bD) \geq 0 \\
(1 + bD)(25 + bD) \geq 0
\]

where the following relations between the parameters hold

\[
a > b > 0 \\
\frac{-25}{b} < -\frac{1}{b} < -\frac{1}{a} < 0
\]

We can so write the solutions of the equations in system (D1)

\[
D \leq -\frac{25}{b} ; \quad D \geq -\frac{1}{a} \\
D \leq -\frac{1}{b} ; \quad D \geq -\frac{1}{a} \\
D \leq \frac{25}{b} ; \quad D \geq -\frac{1}{b}
\]
and the solution of the system is

\[D \leq -\frac{25}{b}; \ D \geq -\frac{1}{a} \]

we are interested in positive solutions, that is for \(D \geq -\frac{1}{a} \), which traduces in

\[D \geq -\frac{1}{B} \]

so being \(B > 1 \) we have verified that system \((D1)\) is satisfied for all \(D > 0 \).
ACKNOWLEDGEMENT

K. Yoshida would like to acknowledge illuminating discussions with K. Fujikawa and H. Kawai.

REFERENCES

[1] A. M. Polyakov, Phys. Lett. B103 (1981) 207
[2] J. Distler and H. Kawai, Nucl. Phys. B321 (1989) 509
[3] O. Alvarez, Lectures at the Workshop on Unified String Theory held in the Institute of Theoretical Physics at University of California, Santa Barbara, August 1985
[4] E. D’Hoker and D. H. Phong, Nucl. Phys. B269 (1986) 205
[5] T. Eguchi and H. Ooguri, Phys. Lett. B187 (1987) 127
[6] Itzykson and Drouffe, ”Theorie statistique des champs”, Cambridge Univ. Press (1990) 361
[7] R. M. Wald, ”General Relativity”, The University of Chicago Press (1984) 446