The defect variance of random spherical harmonics

Domenico Marinucci\(^1\) and Igor Wigman\(^2\)

\(^1\) Department of Mathematics, University of Rome ‘Tor Vergata’, Rome, Italy
\(^2\) Department of Mathematics, Cardiff University, Cardiff, UK

E-mail: marinucc@mat.uniroma2.it and wigmani@cardiff.ac.uk

Received 6 May 2011, in final form 14 July 2011
Published 10 August 2011
Online at stacks.iop.org/JPhysA/44/355206

Abstract

The defect of a function \(f : M \rightarrow \mathbb{R}\) is defined as the difference between the measure of the positive and negative regions. In this paper, we begin the analysis of the distribution of defect of random Gaussian spherical harmonics. By an easy argument, the defect is non-trivial only for even degree and the expected value always vanishes. Our principal result is evaluating the defect variance, asymptotically in the high-frequency limit. As other geometric functionals of random eigenfunctions, the defect may be used as a tool to probe the statistical properties of spherical random fields, a topic of great interest for modern cosmological data analysis.

PACS numbers: 02.50.Ey, 02.30.Nw, 02.30.Px
Mathematics Subject Classification: 60G60, 60G15, 42C10, 60D05

1. Introduction

In recent years, a lot of interest has been drawn by the analysis of the geometric features of random eigenfunctions for the spherical Laplacian. More precisely, let us denote as usual by \(\{Y_{lm}(\cdot)\}_{m=-l,\ldots,l}\), for \(l = 1, 2, \ldots\), the set of (real-valued) spherical harmonics, i.e. the array of real-valued functions satisfying

\[
\Delta_S Y_{lm} = -l(l+1)Y_{lm},
\]

where \(\Delta_S\) denotes the spherical Laplacian (see for instance [16, 18]). The random model we shall focus on is

\[
f_l(x) = \frac{1}{\sqrt{2l+1}} \sum_{m=-l}^{l} a_{lm} Y_{lm}(x),
\]

where the coefficients \(a_{lm}\) are independent standard Gaussian with zero-mean and unit variance.

The random field \(f_l\) is isotropic, meaning that for any \(k \in \mathbb{N}\) and \(x_1, \ldots, x_k \in S^2\), the distribution of the random vector \(\{f_l(x_1), \ldots, f_l(x_k)\}\) is invariant under rotations, i.e. equal to...
the distribution of \(\{ f_i(g \cdot x_1), \ldots, f_i(g \cdot x_l) \} \) for any rotation \(g \in SO(3) \) on the sphere. Also, \(f_i \) is centred Gaussian, with the covariance function

\[
 r_i(x, y) := \mathbb{E}[f_i(x) \cdot f_i(y)] = P_l(\cos(d(x, y))),(2)
\]

where \(P_l \) are the usual Legendre polynomials defined by Rodrigues’ formula

\[
P_l(t) := \frac{1}{2^l l!} \frac{d^l}{dt^l} (t^2 - 1)^l
\]

and \(d(x, y) \) is the (spherical) geodesic distance between \(x \) and \(y \). As is well known, Legendre polynomials are orthogonal w.r.t. the constant weight \(\omega(t) \equiv 1 \) on \([-1, 1] \), see section 5 for more discussion and details.

1.1. Background

Random eigenfunctions for the spherical Laplacian naturally emerge in a number of different physical contexts. A particularly active area is related to the analysis of isotropic spherical random fields on the sphere, as motivated for instance by the analysis of cosmic microwave background radiation (CMB), see for instance [4, 5] and the references therein. Under these circumstances, eigenfunctions like \(f_i \) represent the (normalized) Fourier components of the field, i.e. the following orthogonal expansion holds, in the \(L^2 \) sense:

\[
f(x) = \sum_{l=1}^{\infty} c_l f_l(x),
\]

where \(c_l \geq 0 \) is a deterministic sequence (depending on the angular power spectrum) which encodes the full correlation structure of \(f \).

In the CMB literature, \(f(x) \), and hence the components \(f_i \), are actually observed by highly sophisticated satellite experiments such as WMAP by NASA and Planck by ESA. It is then common practice to analyse geometric functionals of the observed CMB radiation to constraint the statistical properties of the underlying fields, e.g. to test for isotropy and/or Gaussianity. For instance, the three Minkowski functionals, providing the area, the boundary length and the topological genus of excursion sets over a given level \(A_z := \{ x \in S^2 : f(x) \geq z \} \) have been applied on CMB data by a huge number of authors, including [7, 8, 12]. Much effort has been spent in analysing unexpected features, for instance, the so-called cold spot (see [2, 3] and the references therein), whose statistical significance can also be evaluated by means of local curvature properties of isotropic Gaussian fields [6].

In this work, we shall focus on one of the most important geometric functionals, namely the defect. The defect (or ‘signed area’, see [1]) of a function \(\psi : S^2 \to \mathbb{R} \) is defined as

\[
\mathcal{D}(\psi) := \text{meas}(\psi^{-1}(0, \infty)) - \text{meas}(\psi^{-1}(-\infty, 0)) = \int_{S^2} \mathcal{H}(\psi(x)) \, dx.
\]

Here \(\mathcal{H}(t) \) is the Heaviside function,

\[
\mathcal{H}(t) = \mathbb{I}_{[0, \infty)}(t) - \mathbb{I}_{(-\infty, 0)}(t) = \begin{cases} 1 & t > 0 \\ -1 & t < 0 \\ 0 & t = 0 \end{cases}, (4)
\]

where \(\mathbb{I}_A(t) \) is the usual indicator function of the set \(A \) and \(dx \) is the Lebesgue measure. The defect is hence the difference between the areas of positive and negative inverse image of \(\psi \), respectively.

The primary focus of this paper is the distribution of the defect \(\mathcal{D}_l = \mathcal{D}(f_l) \) of the random Gaussian fields \(f_i \). Note that for odd \(l \), \(f_i \) is always odd, so that in this case the defect vanishes identically \((\mathcal{D}_l \equiv 0)\), and therefore \(\mathcal{D}_l \) has the non-trivial distribution for even \(l \) only. A possible
alternative to avoid trivialities is to restrict ourselves to a subset of the sphere, the most natural choice being a hemisphere, i.e. we may choose any hemisphere \(E \subseteq S^2 \) and define

\[
D^E_l := \int_E H(f_l(x)) \, dx;
\]

in this paper we study \(D_l \) for even \(l \) only.

1.2. Statement of the main result

Evaluating the expectation of \(D_l \) is trivial. Indeed, note that integration over \(S^2 \) is exchangeable with expectation, so that

\[
\mathbb{E}[D_l] = \int_{S^2} \mathbb{E}[H(f_l(x))] \, dx,
\]

and \(\mathbb{E}[H(f_l(x))] = 0 \) vanishes for every \(x \in S^2 \), by the symmetry of the Gaussian distribution. We just established the following lemma.

Lemma 1.1. For every \(l = 1, 2, \ldots \), we have

\[
\mathbb{E}[D_l] = 0.
\]

The main result of this paper concerns the asymptotic behaviour of the defect variance:

Theorem 1.2. As \(l \to \infty \) along even integers, the defect variance is asymptotic to

\[
\text{Var}(D_l) \approx \frac{C}{l^2} (1 + o(1)),
\]

where \(C > 0 \) is a positive constant.

The constant \(C \) in (5) may be expressed in terms of the infinite (conditionally convergent) integral

\[
C = 32\pi \int_0^\infty \psi(\arcsin(J_0(\psi)) - J_0(\psi)) \, d\psi.
\]

(6)

See section 2 for some details on the integral on the RHS of (6). We do not know whether one can evaluate \(C \) explicitly; however, we shall be able to show that

\[
C > \frac{32}{\sqrt{27}}
\]

(see lemma 5.5).

One should compare the statement of theorem 1.2 to empirical results of the study conducted by Blum, Gnutzmann and Smilansky [1]. The authors of that work studied the defect (or, as they refer to it, the ‘signed area’) of random monochromatic waves on various planar domains. For the particular case of a unit circle, they found that the order of magnitude of defect variance is consistent to (5) per unit area, with leading constant evaluated numerically as \(\approx 0.0386 \). The corresponding defect variance per unit area in our situation is

\[
\text{Var}\left(\frac{D_l}{4\pi}\right) \approx \frac{C}{l^2} (1 + o(1))
\]

with the leading constant

\[
\tilde{C} > \frac{2}{\pi^2 \times \sqrt{27}} = 0.0389 \ldots
\]

3 Numerical computation of the constant (6) reveals that it is consistent with Blum–Gnutzmann–Smilansky, taking into account the normalization and natural symmetry of the sphere.
1.3. Previous work

To put our results in a proper perspective and explain the technical difficulties to be handled, we need to briefly recall some results from [11]. In that work we studied the asymptotic behaviour of excursion sets

\[A_z = f_l^{-1}([z, \infty)) \]

of \(f_l \), as \(l \to \infty \). As we will recall below, a rather peculiar phenomenon can be shown to hold for \(z \neq 0 \); namely, the asymptotic distribution of the area of these excursion sets is fully degenerate over \(z \), i.e. it corresponds to a Gaussian random variable times a deterministic function of \(z \). This result is intuitively due to an asymptotic degeneracy in the excursion set functionals, which turns out to be dominated by a single polynomial (quadratic) term. This degeneracy, however, does not hold for the special case \(z = 0 \).

More precisely, in [11] we focused on the asymptotic behaviour of the empirical measure of random spherical harmonics, defined as

\[\Phi_l(z) := \int_{S^2} \mathbb{1}_{(-\infty, z]}(f_l(x)) \, dx = \text{meas}\{ x : f_l(x) \leq z \}, \]

\(z \in \mathbb{R} \). A key step in that paper is the asymptotic expansion

\[\Phi_l(z) = 4\pi \times \Phi(z) + \sum_{q=1}^{\infty} \frac{V_q(z)}{q!} h_{l;q}, h_{l;q} := \int_{S^2} H_q(f_l(x)) \, dx, \]

(7)

where \(H_q(\cdot) \) are standard Hermite polynomials, \(\Phi(z) = \Pr\{ Z \leq z \} \) is the cumulative distribution function of a standard Gaussian variable and the deterministic functions \(V_q(z) \) can be explicitly provided in terms of higher order derivatives of \(\Phi(z) \), \(V_q(z) = (-1)^q \Phi^{(q)}(z) \) (see [11] for more discussion and details).

It turns out that, as \(l \to \infty \),

\[\sqrt{l} h_{l;2} \to_d N(0, 1) \]

converges by distribution to the standard Gaussian, whereas for \(q \geq 3 \),

\[\sqrt{l} h_{l;q} \to_d 0; \]

moreover, \(V_2(z) = -z\phi(z) \), where \(\phi(z) \) is the standard Gaussian probability density, clearly does not vanish for all \(z \neq 0 \), whence the asymptotic behaviour of

\[\sqrt{l} [\Phi_l(z) - 4\pi \times \Phi(z)] \]

is easily seen to be Gaussian, uniformly over \(z \). Furthermore, the limiting process is completely degenerate with respect to \(z \), a feature to which we shall come back later.

For \(z \neq 0 \), the asymptotic behaviour of the area functional for the excursion sets is hence fully understood. The previous argument, however, fails for \(z = 0 \), as in this case the leading term is null and each summand in the asymptotic expansion (7) becomes relevant. Up to a linear transformation, this is clearly equivalent to the defect functional, indeed

\[D_l = 4\pi - 2\Phi_l(0). \]

Thus, the case \(z = 0 \) is the most challenging from the mathematical point of view, and, at the same time, the most interesting from the point of view of geometric interpretation.
1.4. Overview of the paper

The plan of the paper is as follows. In section 2, we provide the main ideas behind our principal arguments, to help the reader understand the material to follow; in section 3, we discuss the relation of our results to recent works on the distribution of nodal lengths and level curves for random eigenfunctions and related conjectures; section 4 provides the proof of the main results; section 5 contains auxiliary lemmas, we believe of independent interest, on the asymptotic behaviour of moments of Legendre polynomials.

2. On the proof of theorem 1.2

To establish our results, we shall need a detailed analysis of the odd moments of Legendre polynomials

\[\int_0^1 P_l(t)^{2k+1} \, dt = \int_0^{\pi/2} P_l(\cos \theta)^{2k+1} \sin \theta \, d\theta. \]

The rationale for this can be explained as follows. It is relatively easy to express (up to a constant) the defect variance as

\[I_l = \int_0^{\pi/2} \arcsin(P_l(\cos \theta)) \sin \theta \, d\theta, \tag{8} \]

where \(\sin \theta d\theta \) is (up to a constant) the uniform measure on the sphere in the spherical coordinates (see lemma 4.1). It then remains to understand the asymptotic behaviour of \(I_l \), a task which is put forward in proposition 4.2; here we provide the main ideas underlying its proof. We know from Hilb’s asymptotics (lemma 5.1) that

\[P_l(\cos(\psi/l + 1/2)) \approx J_0(\psi). \tag{9} \]

In fact, the latter estimate holds uniformly for \(\psi = o(l) \), and it may be shown that, as a tail of a conditionally convergent integral, the contribution of the other regime \(\psi \gtrsim l \) is negligible (see the proof of proposition 4.2).

In the following, we neglect the difference between \(l \) and \(l + \frac{1}{2} \). It is then natural to try to replace \(P_l(\cos \theta) \) in (8) with its scaling limit; a formal substitution yields heuristically

\[I_l \approx \frac{1}{l^2} \int_0^{\pi/2} \arcsin(J_0(\psi)) \sin(\psi/l) \, d\psi \approx \frac{1}{l^2} \int_0^{\pi/2} \arcsin(J_0(\psi)) \sin(\psi/l) \, d\psi \]

\[\approx \frac{1}{l^2} \int_0^{\pi/2} \arcsin(J_0(\psi)) \, d\psi, \tag{10} \]

where we replaced \(\sin \left(\frac{\psi}{l} \right) \) with \(\frac{\psi}{l} \), which is justified for \(\psi = o(l) \). This is inconsistent with the statement of theorem 1.2; the integral

\[\int_0^\infty \arcsin(J_0(\psi)) \, d\psi, \tag{11} \]

diverges, so some more care is needed to transform (10). Moreover, the last integrand in (10) is somewhat different from the integrand in integral (6) defining \(C \) (neglecting the constant in front of the integral in (6)) in that we subtract \(J_0(\psi) \) from the arcsine. Note that the factor \(\psi \) in both (10) and (6) is reminiscent of the uniform measure \(\sin \theta d\theta \) on the sphere.
There is a subtlety that explains the latter discrepancy between the integrand in definition (6) of C and the integrand in (10). One way to justify the substitution of the scaling limit of $P_l(\cos \theta)$ (i.e. the second step of (10)) is expanding the arcsine in the integral of (8) into the Taylor series around the origin

$$\arcsin(t) = \sum_{k=0}^\infty a_k t^{2k+1},$$

for some explicitly given coefficients a_k (see (18) and the formula immediately after). We then need to evaluate all the odd moments of $P_l(\cos \theta)$ w.r.t. the measure $\sin \theta \, d\theta$ on $[0, \frac{\pi}{2}]$. It turns out that the moments (appropriately scaled) are asymptotically equivalent to the corresponding moments of the Bessel function on \mathbb{R}^+ w.r.t. the measure $\psi \, d\psi$, with the exception for the first moment (lemma 5.2). Indeed, $P_l(\cos \theta)$ integrates to zero, whereas $\int_0^\infty J_0(\psi) \psi \, d\psi$ diverges; this phenomenon also accounts for the divergence of (11). To account for this difference, we need to subtract $J_0(\psi)$ from the arcsine in integrand (10), thus obtaining a conditionally convergent integral. This is indeed the heuristic explanation for the discrepancy between (10) and (6).

3. Discussion

As reported in section 1.3, the asymptotics for the variance of the excursion sets is given for $z \neq 0$ by

$$\text{Var}(\Phi_I(z)) \sim z^2 \phi(z)^2 \cdot \frac{4\pi^2}{l}$$

(here ϕ is the Gaussian probability density); for the defect ($z = 0$), this gives only an upper bound $o \left(\frac{1}{l} \right)$. The principal result of this paper (theorem 1.2) states that the defect variance (5) is of the order of magnitude l^{-2}. Our explanation for this discrepancy is the disappearance, for $z = 0$, of the quadratic term in the Hermite expansion of the function $1 \leq f_i \leq z$, see [11].

We should compare this situation to the length distribution of the level curves. For $t \in \mathbb{R}$, let

$$L'_t = L'_t(f_i) = \text{length} \left(f_i^{-1}(t) \right)$$

be the (random) length of the level curve $f_i^{-1}(t)$, the most important case being that of $t = 0$; the corresponding level curve is called the nodal line. It is known [19] that for $t \in \mathbb{R}$, the expected length is

$$\mathbb{E} \left[L'_t \right] \sim c_1 e^{-t^2/2} \cdot l.$$

The variance is asymptotic to

$$\text{Var} \left(L'_t \right) \sim c_2 e^{-t^4} \cdot l$$

for $t \neq 0$, whereas for the nodal length,

$$\text{Var} \left(L'_0 \right) \sim c_3 \log l.$$
It is therefore natural to conjecture that the discrepancy of the defect and the empirical measure is somehow related to the discrepancy in the variance of the nodal length. However, no simple explanation, as in the case of the defect, is known to explain the discrepancy between the nodal length and the non-vanishing level curve length.

Recall that for the two random variables X, Y, the correlation is defined as

$$\text{Corr}(X, Y) = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)} \sqrt{\text{Var}(Y)}}.$$

It is known [19] that for every $t_1, t_2 \in \mathbb{R}$, L_t^l become asymptotically fully dependent for large l, in the sense that\footnote{The asymptotic full dependence (12) was proven under the technical assumption $t_1, t_2 \neq 0$; it is natural to conjecture, though, that a slight modification of the same argument will work if either of t_i vanishes.}

$$\text{Corr}(L_{t_1}^l, L_{t_2}^l) = 1 - o_{l \to \infty}(1).$$ (12)

In fact, a much stronger statement regarding the rate of convergence was proven. It then seems that the asymptotic degeneracy of $\Phi_1(z)$ is related to the asymptotic full dependence of the level lengths (12).

A possible explanation for phenomenon (12) is the following conjecture due to Mikhail Sodin. Let $x \in S^2$ and for $t \in \mathbb{R}$, let $L_{t,x}^l = L_t^l(f_t)$ (the ‘local length’) be the (random) length of the unique component of $f_t^{-1}(t)$ that contains x inside (or 0, if f_t does not cross the level t).

Conjecture 3.1 (Mikhail Sodin). The local lengths are asymptotically fully dependent in the sense that for every $x \in S^2$ and $t_1, t_2 \in \mathbb{R}$,

$$\text{Corr}(L_{t_1,x}^l, L_{t_2,x}^l) = 1 - o_{l \to \infty}(1).$$

Heuristically, conjecture 3.1 is stronger than (12), since L_t^l can be viewed as a summation of $L_{t,x}^l$ over a set of points $x \in S^2$. More rigorously, we should assume that $f_t(x) \neq t$; it is immediate to see that this is satisfied almost surely.

4. Proof of theorem 1.2

The first lemma is probably already known, but we failed to locate a direct reference and thus we report it for completeness. The proof is based on standard properties of Gaussian random variables.

Lemma 4.1. For even l, we have

$$\text{Var}(D_l) = 32\pi \int_0^{\pi/2} \arcsin(P_l(\cos \theta)) \sin \theta \, d\theta.$$ (13)

We postpone the proof of lemma 4.1 until the end of this section. Let us denote the integral in (13)

$$I_l = \int_0^{\pi/2} \arcsin(P_l(\cos \theta)) \sin \theta \, d\theta,$$ (14)

so that evaluating the defect variance is equivalent to evaluating I_l, which is done in the following proposition (for even l).

Proposition 4.2. As $l \to \infty$ along even numbers, we have

$$I_l = \frac{C_l}{l^2} + o_{l \to \infty}\left(\frac{1}{l^2}\right).$$ (15)
where
\[C_1 = \int_0^\infty \psi \left(\arcsin(J_0(\psi)) - J_0(\psi) \right) \, d\psi. \] (16)

Moreover, the constant \(C_1 \) is strictly positive.

Proof of theorem 1.2 (assuming proposition 4.2). Formula (13) together with proposition 4.2 yields
\[\text{Var}(D_l) = \frac{C_l}{l^2} (1 + o_{l \to \infty}(1)). \]
The positivity of the constant \(C = 32\pi C_1 \) follows directly from the positivity of \(C_1 \), which is claimed in proposition 4.2. \(\square \)

Proof of proposition 4.2. As was explained in section 2, to extract the asymptotics of \(I_l \), we will expand the arcsine on the RHS of (14) into the Taylor series around the origin; we will encounter only the odd moments of \(P_l(\cos \theta) \), due to the arcsine being an odd function. As was pointed out in section 2, the function \(P_l(\cos \theta) \) differs from its scaling limit in that the integral of the former vanishes, whereas the integral of the latter diverges; all the other odd moments of \(P_l(\cos \theta) \) are asymptotic to the (properly scaled) corresponding moments of the Bessel function (see lemma 5.2). To account for this discrepancy, we subtract \(P_l(\cos \theta) \) from the integrand and add it back separately. To this end, we write
\[\arcsin(P_l(\cos \theta)) = (\arcsin(P_l(\cos \theta)) - P_l(\cos \theta)) + P_l(\cos \theta), \]
so that the vanishing of the integral of the latter
\[\int_0^{\pi/2} P_l(\cos \theta) \sin \theta \, d\theta = 0, \]
for even \(l \), implies
\[I_l = \int_0^{\pi/2} (\arcsin(P_l(\cos \theta)) - P_l(\cos \theta)) \sin \theta \, d\theta. \] (17)
The advantage of the latter representation (17) over (14) is that the only powers that will appear in the Taylor expansion of the arcsine on the right-hand side of (17) are of order \(\geq 3 \), so that the moments of \(P_l(\cos \theta) \) are all identical to the corresponding moments of the scaling limit. Intuitively, this means that we may replace the appearances of \(P_l(\cos \theta) \) in (17) by its scaling limit. The rest of the present proof is a rigorous argument that will establish the latter statement.

Let
\[\arcsin(t) - t = \sum_{k=1}^{\infty} a_k t^{2k+1}, \] (18)
where
\[a_k = \frac{(2k)!}{4^k (k!)^2 (2k + 1)} \] (19)
are the Taylor coefficients of the arcsine. Note that all the terms in expansion (18) are positive, and by the Stirling formula, the coefficients are asymptotic to
\[a_k \sim \frac{c}{k^{3/2}} \] (20)
for some \(c > 0 \), so that, in particular, the Taylor series (18) is uniformly absolutely convergent. Therefore, we may write

\[
I_l = \sum_{k=1}^{\infty} a_k \int_{0}^{\pi/2} P_l(\cos \theta)^{2k+1} \sin \theta \, d\theta. \tag{21}
\]

We know from lemma 5.2, that for every \(k \geq 1 \),

\[
\int_{0}^{\pi/2} P_l(\cos \theta)^{2k+1} \sin \theta \, d\theta \sim c_{2k+1}^2 \frac{l^2}{l^2}, \tag{22}
\]

with \(c_{2k+1} \) given by (32); comparing this result to (21), it is natural to expect that

\[
I_l = C_2 \frac{l^2}{l^2} + o\left(\frac{1}{l^2}\right), \tag{23}
\]

where

\[
C_2 = \sum_{k=1}^{\infty} a_k c_{2k+1}. \tag{24}
\]

We are going to formally prove (23) immediately; however, first we evaluate the constant \(C_2 \) by summing up the series in (24) and validate that indeed \(C_2 = C_1 \) in (16), as claimed. We plug (32) into (24) to formally compute

\[
C_2 = \sum_{k=1}^{\infty} a_k \int_{0}^{\psi} J_0(\psi)^{2k+1} d\psi = \int_{0}^{\infty} \psi \left(\sum_{k=1}^{\infty} a_k J_0(\psi)^{2k+1} \right) d\psi
\]

\[
= \int_{0}^{\infty} \psi \cdot (\arcsin(J_0(\psi)) - J_0(\psi)) d\psi = C_1,
\]

where to obtain the third equality we used (18) again. To justify the exchange of the summation and integration order, we consider the finite summation

\[
\sum_{k=1}^{m} a_k \int_{0}^{\psi} J_0(\psi)^{2k+1} d\psi,
\]

using (20) and (30) to bound the contribution of tails, and take the limit \(m \to \infty \).

We now turn to proving (23). To this end we expand (18) into a finite-degree Taylor polynomial while controlling the tail using lemma 5.7. Indeed, using (20) and (45), we easily obtain

\[
\sum_{k=m+1}^{\infty} a_k \int_{0}^{\pi/2} |P_l(\cos \theta)|^{2k+1} \sin \theta \, d\theta \leq \sum_{k=m+1}^{\infty} a_k \int_{0}^{\pi/2} |P_l(\cos \theta)|^5 \sin \theta \, d\theta
\]

\[
\lesssim \frac{1}{l^2} \cdot \sum_{k=m+1}^{\infty} \frac{1}{k^{3/2}} \lesssim \frac{1}{\sqrt{ml^2}},
\]

since \(|P_l(t)| \lesssim 1 \) for every \(l \) and \(t \in [-1, 1] \), so that \(|P_l(t)|^5 \) is monotone decreasing with \(k \); the notation \(A \lesssim B \) here and everywhere in this paper means that there exists a constant \(C > 0 \) (which may vary) so that \(A \leq C \cdot B \).

We then have for every \(m \) (\(m = m(l) \) to be chosen)

\[
I_l = \sum_{k=1}^{m} a_k \int_{0}^{\pi/2} P_l(\cos \theta)^{2k+1} \sin \theta \, d\theta + O\left(\frac{1}{\sqrt{ml^2}}\right), \tag{25}
\]

and plugging (22) (a direct consequence of lemma 5.2) into (25) finally yields

\[
I_l = C_{2,m} \frac{1}{l^2} + o_m\left(\frac{1}{l^2}\right) + \frac{1}{\sqrt{ml^2}}, \tag{26}
\]

9
with
\[C_{2,m} = \sum_{k=1}^{m} a_k c_{2k+1}. \]

It is clear that (26) implies (23) (recall definition (24) of \(C_2 \) and note that as \(m \to \infty \), \(C_{2,m} \to C_2 \)), which concludes the proof of statement (15) of the present proposition.

It then remains to prove the positivity of the constant \(C_1 \). While its nonnegativity \(C_1 \geq 0 \) is clear since it is the leading constant for the integral \(I_1 \), which, up to an explicit positive constant, equals the variance of a random variable via (13), the strict positivity is less obvious. To this end, we recall that \(C_1 = C_2 \), the latter being given by (24). Note that all the Taylor coefficients \(a_k \) of arcsine are positive (see (19)). Hence, the positivity of \(C_2 \) (and thus also of \(C_1 \)) follows from the second statement of lemma 5.2, which claims that \(c_k \geq 0 \) are nonnegative, and \(c_3 > 0 \) is explicitly given. □

Proof of lemma 4.1. The result of the present lemma is an artefact of the following general fact (see e.g. [13, 14]). Let \((X_1, X_2)\) be a two-variate centred Gaussian random variable with the covariance matrix
\[
\begin{pmatrix}
1 & r \\
r & 1
\end{pmatrix},
\]
\(|r| \leq 1\), and for \(i = 1, 2 \), define the random variables
\[B_i = \mathcal{H}(X_i) = \begin{cases} 1 & X_i > 0 \\ -1 & X_i < 0 \end{cases}, \]
where \(\mathcal{H}(r) \) is the Heaviside function (4). Then \(B_i \) are both mean zero with the covariance given by
\[\text{Cov}(B_1, B_2) = \frac{2}{\pi} \arcsin(r). \]

To justify the latter statement, one may identify the explicit expression for \(\text{Cov}(B_1, B_2) \) as a special integral whose value is known. As an alternative, one may expand \(\text{Cov}(B_1, B_2) \) into a Taylor series as a function of \(r \) around \(r = 0 \) via the Hermite expansion for \(\mathcal{H} \) as in [11], and note that the coefficients in the expansion are identical to the Taylor coefficients of the arcsine.

Using definition (3) of the defect, we may exchange the order of taking the expectation and integrating to write
\[\text{Var}(D_1) = \mathbb{E}[D_1^2] = \mathbb{E} \int_{S^2} \int_{S^2} \mathcal{H}(f_1(x))\mathcal{H}(f_1(y)) \, dx \, dy \]
\[= \int_{S^2} \int_{S^2} \mathbb{E}[\mathcal{H}(f_1(x))\mathcal{H}(f_1(y))] \, dx \, dy = 4\pi \int_{S^2} \mathbb{E}[\mathcal{H}(f_1(N))\mathcal{H}(f_1(x))] \, dx, \]
by the isotropic property of the random field \(f_1 \), where \(N \) is the northern pole. Note that for every \(x \in S^2 \), \(f_1(N) \) and \(f_1(x) \) are jointly Gaussian, centred, with unit variance and covariance equal to
\[\mathbb{E}[f_1(N) \cdot f_1(x)] = r_1(N, x) = P_l(\cos \theta), \]
where \((\theta, \phi)\) are the spherical coordinates of \(x \); the latter follows from definition (2) of the covariance function. Therefore, as was explained earlier, for every \(x, y \in S^2 \),
\[\mathbb{E}[\mathcal{H}(f_1(x))\mathcal{H}(f_1(y))] = \frac{2}{\pi} \arcsin(P_l(\cos \theta)). \]
We then evaluate the latter integral in (27) in the spherical coordinates as
\[\text{Var}(D_l) = 8\pi^2 \int_0^\pi \frac{2}{\pi} \arcsin(P_l(\cos \theta)) \sin \theta \, d\theta = 16\pi \int_0^\pi \arcsin(P_l(\cos \theta)) \sin \theta \, d\theta, \]
which, taking into account \(l \) being even (and thus \(P_l(t) \) is also even), is statement (13) of the present lemma. \(\Box \)

5. Moments of Legendre polynomials

We start by recalling a basic fact on the asymptotic behaviour of Legendre polynomials (see for instance [15]); as usual, we shall denote by \(J_\nu \) the Bessel function of the first kind.

Lemma 5.1 (Hilb’s asymptotics). For any \(\epsilon > 0, C > 0 \), we have
\[P_l(\cos \theta) = \left(\frac{\theta}{\sin(\theta)} \right)^{1/2} J_0((l + 1/2)\theta) + \delta(\theta), \quad (28) \]
where
\[\delta(\theta) \lesssim \begin{cases} \theta^{1/2}l^{-3/2} & \theta > \frac{C}{l} \\ \theta^2 & 0 < \theta < \frac{C}{l} \end{cases}, \quad (29) \]
uniformly w.r.t. \(l \geq 1, \theta \in [0, \pi - \epsilon] \).

Note that we will use lemma 5.1 only for the range \(\theta \in [0, \pi/2] \), so that we may forget about the \(\epsilon \) altogether. We also recall that (see again [15])
\[|J_0(\psi)| = O \left(\frac{1}{\sqrt{\psi}} \right). \quad (30) \]

Lemma 5.2. Let \(j \geq 5 \) or \(j = 3 \). Then
\[\int_0^{\pi/2} P_l(\cos \theta)^j \sin \theta \, d\theta = c_j \frac{1}{l^j}(1 + o_j(1)), \quad (31) \]
where the constants \(c_j \) are given by
\[c_j = \int_0^\infty \psi J_0(\psi)^j \, d\psi, \quad (32) \]
the RHS of (32) being absolutely convergent for \(j \geq 5 \) and conditionally convergent for \(j = 3 \). Moreover, for every \(j \) as above, the constants \(c_j \) are nonnegative, and \(c_3 > 0 \) is positive, given explicitly by
\[c_3 = \frac{2}{\pi \sqrt{3}}. \quad (33) \]

Proof. By Hilb’s asymptotics, we have
\[\int_0^{\pi/2} P_l(\cos \theta)^j \sin \theta \, d\theta = \int_0^{\pi/2} \left(\left(\frac{\theta}{\sin(\theta)} \right)^{1/2} J_0((l + 1/2)\theta) + \delta(\theta) \right)^j \sin \theta \, d\theta. \quad (34) \]
The contribution of the error term to (34) is (exploiting \(\frac{\theta}{\sin \theta} \) being bounded)
\[\lesssim \int_0^{\pi/2} |J_0((l + 1/2)\theta)|^{j-1} \delta(\theta) \theta \, d\theta = \int_0^{1/l} + \int_{1/l}^{\pi/2}. \quad (35) \]
Now
\[\int_0^{1/l} |J_0((l + 1/2)\theta)|r^{-1} \delta(\theta) \theta \, d\theta \lesssim \int_0^{1/l} \theta^3 \, d\theta \lesssim \frac{1}{l^4}, \]
and using (30), we may bound the second integral in (35) as
\[\int_{1/l}^{\pi/2} |J_0((l + 1/2)\theta)|r^{-1} \delta(\theta) \theta \, d\theta \lesssim \frac{1}{(l^4 + 2)/2} \int_{1/l}^{\pi/2} \theta^{3/2} \, d\theta \lesssim \frac{1}{(l^4 + 2)/2}. \]
Plugging the last couple of estimates into (35), and finally into (34), we obtain for \(j \geq 3 \)
\[\int_{1/l}^{\pi/2} P_j(\cos \theta)^j \sin \theta \, d\theta = \int_{1/l}^{\pi/2} \left(\frac{\theta}{\sin(\theta)} \right)^j \frac{1}{2} J_0((l + 1/2)\theta)^j \theta \, d\theta + O \left(\frac{1}{l^{5/2}} \right). \] (36)
Therefore, we are to evaluate
\[\int_{1/l}^{\pi/2} \left(\frac{\psi}{\sin(\psi/L)} \right)^j \frac{1}{2} J_0(\psi)^j \psi \, d\psi, \]
where we denote \(L := l + \frac{1}{2} \) for brevity. The statement of the present lemma is then equivalent to
\[\int_0^{L\pi/2} \left(\frac{\psi}{\sin(\psi/L)} \right)^j \frac{1}{2} J_0(\psi)^j \psi \, d\psi \to c_j, \] (37)
where \(c_j \) is defined by (32).

The main idea is that the main contribution comes from the intermediate range \(1 \lesssim \psi \leq \epsilon L \) for any \(\epsilon > 0 \); here we may replace the factor
\[\left(\frac{\psi}{\sin(\psi/L)} \right)^j \frac{1}{2} \approx 1 \]
with 1. To make this argument precise, we write for \(\psi \in \left[0, \frac{\pi}{2} \cdot L \right] \)
\[\frac{\psi}{\sin(\psi/L)} = 1 + O \left(\frac{\psi^2}{L^2} \right), \]
so that also
\[\left(\frac{\psi}{\sin(\psi/L)} \right)^j \frac{1}{2} \approx 1 + O \left(\frac{\psi^2}{L^2} \right). \] (38)
Therefore, the integral in (37) is
\[\int_0^{L\pi/2} \left(\frac{\psi}{\sin(\psi/L)} \right)^j \frac{1}{2} J_0(\psi)^j \psi \, d\psi = \int_0^{L\pi/2} J_0(\psi)^j \psi \, d\psi + O \left(\frac{1}{L^2} \int_0^{L\pi/2} \psi^3 |J_0(\psi)|^j \, d\psi \right). \] (39)
Note that as \(l \to \infty \) (equivalently \(L \to \infty \)), the main term on the RHS of converges to \(c_j \); indeed
\[\int_0^{L\pi/2} J_0(\psi)^j \psi \, d\psi \to c_j, \] (40)
so that it remains to bound the error term. Now
\[\int_0^{L\pi/2} \psi^3 |J_0(\psi)|^j \, d\psi = \int_1^{1} + \int_1^{L\pi/2} = O(1) + \int_1^{L\pi/2}, \] (41)
and we use (30) to bound the latter as
\[\int_1^{L \pi/2} \psi^3 |J_0(\psi)|^2 \, d\psi \leq \int_1^{L \pi/2} \psi^{3-j/2} \, d\psi = O(1 + l^{4-j/2}), \]
so that upon plugging the latter into (41) yields
\[\int_0^{L \pi/2} \psi^3 |J_0(\psi)|^2 \, d\psi = O(1 + l^{4-j/2}); \]
plugging the latter into (39) yields
\[\int_0^{L \pi/2} \left(\frac{\psi/L}{\sin(\psi/L)} \right)^{j/2-1} J_0(\psi)^4 \, d\psi = \int_0^{L \pi/2} J_0(\psi)^4 \, d\psi + O(l^{-2} + l^{2-j/2}), \]
so that (40) implies (37) for \(j \geq 5 \), which was equivalent to the statement of the present lemma in this case.

It then remains to prove the result for \(j = 3 \), for which we have to work a little harder due to the conditional convergence of integral (32); to treat this technicality we will have to exploit the oscillatory behaviour of the Bessel function, and not only its decay (30). It is well known that
\[J_0(\psi) = \sqrt{2} \cos(\psi - \pi/4) / \sqrt{\psi} + O \left(\frac{1}{\psi^{3/2}} \right), \]
so that
\[J_0(\psi)^3 = \left(\frac{2}{\pi} \right)^{3/2} \cos(\psi - \pi/4)^3 / \psi^{3/2} + O \left(\frac{1}{\psi^{5/2}} \right), \]
and hence the integral on the RHS of (32) is indeed convergent, by integration by parts.

Now we choose a (large) parameter \(K \gg 1 \) and divide the integration range into \([0, K]\) and \([K, L \pi/2]\); the main contribution comes from the first term, whence we need to prove that the latter vanishes. Indeed, we use (42) to bound
\[\int_K^{L \pi/2} \left(\frac{\psi/L}{\sin(\psi/L)} \right)^{1/2} J_0(\psi)^3 \, d\psi \leq \frac{1}{\sqrt{K}}, \]
where we use integration by parts with the bounded function
\[I(T) = \int_0^T \cos(t)^3 \, dt \]
to bound the contribution leading term in (42); it is easy to bound the contribution of the error term in (42) using the crude estimate (30).

On \([0, K]\), we use (38) to write
\[\int_0^K \left(\frac{\psi/L}{\sin(\psi/L)} \right)^{1/2} J_0(\psi)^3 \, d\psi = \int_0^K J_0(\psi)^3 \, d\psi + O \left(\frac{K^{3/2}}{l^2} \right), \]
the former clearly being convergent to \(c_3 \). Combining (43) with (44), we obtain
\[\int_K^{L \pi/2} \left(\frac{\psi/L}{\sin(\psi/L)} \right)^{1/2} J_0(\psi)^3 \, d\psi = \int_0^K J_0(\psi)^3 \, d\psi + O \left(\frac{1}{\sqrt{K}} + \frac{K^{3/2}}{l^2} \right); \]
this implies (37) for \(j = 3 \) (which is equivalent to the statement of the present lemma for \(j = 3 \)) upon choosing the parameter \(K \) growing to infinity sufficiently slowly (e.g. \(K = \sqrt{l} \)). Since \(j = 3 \) was the only case that was not covered earlier, this concludes the proof of the moment part of lemma 5.2.

It then remains to prove the nonnegativity statement of \(c_j \), and the explicit expression (33) for \(c_3 \). In fact, both of those statements follow from the computation we performed in our previous paper [11], p 18. We report the relevant results in lemma 5.3 below.
We recall an alternative characterization for moments of Legendre polynomials from [11]. For given positive integers l_1, l_2, l_3, we introduce the so-called Clebsch–Gordan coefficients $\{C_{l_10l_20l_30}\}$, which are different from zero if and only if l_1, l_2, l_3 are such that $\sum l_i$ is even and $l_i + l_j \leq l_k$ for all permutations $i, j, k = 1, 2, 3$. The Clebsch–Gordan coefficients are well known in group representation theory (they intertwine alternative representations for $SO(3)$) and in the quantum theory of angular momentum; we do not provide more details here, but refer instead to [11] or to standard references such as [16, 17] (see also [9]). The results provided in [11] are as follows.

Lemma 5.3 ([12], appendix A). For all even l, we have
\[
\int_0^1 P_l(t)^3 \, dt = \frac{1}{2l+1} \left\{ C_{l000}^0 \right\}^2,
\]
and
\[
\lim_{l \to \infty} \frac{1}{2l+1} \left\{ C_{l000}^0 \right\}^2 = \frac{2}{\pi \sqrt{3}}.
\]
Also, for $j \geq 5$,
\[
\int_0^1 P_l(t)^j \, dt = \frac{1}{2l+1} \sum_{L_1, L_2, L_3} \left\{ C_{l000}^{L_10} C_{l00}^{L_20} \ldots C_{l000}^{L_30} \right\}^2 > 0.
\]

Remark 5.4. The previous discussion yields the following interesting corollary: as $l \to \infty$,
\[
\lim_{l \to \infty} \frac{1}{2l+1} \left\{ C_{l000}^0 \right\}^2 = \int_0^\infty \psi J_0(\psi) \, d\psi,
\]
and for $j \geq 5$,
\[
\lim_{l \to \infty} \left[\frac{1}{2l+1} \sum_{L_1, L_2, L_3} \left\{ C_{l000}^{L_10} C_{l00}^{L_20} \ldots C_{l000}^{L_30} \right\}^2 \right] = \int_0^\infty \psi J_0(\psi)^j \, d\psi.
\]

The following lemma establishes the lower bound for the constant C in theorem 1.2 claimed in section 1.2. Its proof is straightforward.

Lemma 5.5. For C as in (5), we have
\[
C > \frac{32}{\sqrt{27}}.
\]

Proof. Recall that $C = \frac{2}{\pi} C_1$, where $C_1 = C_2$ is given by (24). Since all the a_j and c_k are nonnegative, lemma 5.5 follows from bounding the first term in the series
\[
C \geq 32\pi \times a_1 c_3 = \frac{32}{\sqrt{27}}
\]
where we used $a_1 = 1/6$ and (33). \qed

Remark 5.6. As a final remark, we note that the moments of $P_l(\cos \theta)$ are themselves of some physical interest. In particular, while analysing the relationship between asymptotic Gaussianity and ergodicity of isotropic spherical random fields, reference [10] considered the random field
\[
T(x) := \sum_{l=1}^\infty T_l(x) = \sum_{l=1}^\infty c_l Y_{l0}(g \cdot x),
\]
14
where \(Y_{l_0}(\theta, \phi) = \sqrt{\frac{2l_0 + 1}{4\pi}} P_l(\cos \theta) \) denotes standard spherical harmonics (for \(m = 0 \)) and \(g \in SO(3) \) is a uniformly distributed random rotation in \(\mathbb{R}^3 \). It is readily seen that the resulting field is isotropic, and each of its Fourier components at frequency \(l \) is marginally distributed as (for any \(x \in S^2 \))

\[
Y_l = c_l \sqrt{\frac{2l + 1}{4\pi}} P_l(t), \quad t \sim U[0, 1].
\]

Up to normalization constants, the moments of the marginal law are exactly those of the Legendre polynomials we established earlier in the paper. More precisely, if we focus (as in [10]) on \(\tilde{T}_l := T_l(x)/\sqrt{\text{Var}(T_l)} \), we obtain immediately, for any \(x \in S^2 \)

\[
E[\tilde{T}_l(x)] = E[\sqrt{(2l + 1)}P_l(t)] = 0, \quad E[\tilde{T}_l(x)]^2 = 1,
\]

and

\[
E[\tilde{T}_l(x)]^3 = E[\sqrt{(2l + 1)}P_l(t)]^3 = O\left(\frac{1}{\sqrt{l}} \right),
\]

whereas [18]

\[
E[\sqrt{(2l + 1)}P_l(t)]^4 \simeq \log l,
\]

and hence all moments of order \(q \geq 4 \) diverge.

Note that in lemma 5.2, we worked relatively hard to establish the precise asymptotics for the moments of Legendre polynomials. A much cruder version of the same argument gives a uniform upper bound for the fifth moment of the absolute value of the Legendre polynomials.

Lemma 5.7. We have the following uniform upper bound for the fifth moment of the absolute value of Legendre polynomials

\[
\int_0^{\pi/2} |P_l(\cos \theta)|^5 \sin \theta d\theta = O\left(\frac{1}{l^2} \right), \tag{45}
\]

where the constant involved in the ‘\(O \)’-notation is universal.

Proof. The proof follows along the same lines as the beginning of the proof of lemma 5.2 for \(k \geq 5 \), except that we use the crude upper bound (30) whenever we reach (36), and the boundedness of \(\frac{d}{d\sin \theta} \) on \([0, \frac{\pi}{2}]\). \(\square \)

Acknowledgments

We wish to thank Zeév Rudnick for suggesting the problem, many stimulating and fruitful discussions and useful comments on an earlier version of this paper, and Mikhail Sodin for many stimulating and fruitful discussions. We are grateful to the anonymous referees for many useful comments on how to improve the presentation of the present work. A substantial part of this research was done during the second author’s visit to the University of Rome ‘Tor Vergata’, and he would like to acknowledge the extremely friendly and stimulating environment in the institution and the generous financial support. He was supported by the Knut and Alice Wallenberg Foundation, grant KAW.2005.0098.
References

[1] Blum G, Gnutzmann S and Smilansky U 2002 Nodal domains statistics: a criterion for quantum chaos *Phys. Rev. Lett.* **88** 114101

[2] Cruz M, Cayon L, Martinez-Gonzalez E, Vielva P and Jin J 2007 The non-Gaussian cold spot in the 3-year Wilkinson Microwave Anisotropy Probe data *Astrophys. J.* **655** 11–20

[3] Cruz M, Cayon L, Martinez-Gonzalez E and Vielva P 2006 The non-Gaussian cold spot in Wilkinson Microwave Anisotropy Probe: significance, morphology and foreground contribution *Mon. Not. R. Astron. Soc.* **369** 57–67

[4] Dodelson S 2003 *Modern Cosmology* (New York: Academic)

[5] Durrer R 2008 *The Cosmic Microwave Background* (Cambridge: Cambridge University Press)

[6] Hansen F K, Cabella P, Marinucci D and Vittorio N 2004 Asymmetries in the local curvature of the Wilkinson Microwave Anisotropy Probe data *Astrophys. J. Lett.* **L67**–70

[7] Hikage C, Matsubara T, Coles P, Liguori M, Hansen F K and Matarrese S 2008 Limits on primordial non-Gaussianity from Minkowski functionals of the WMAP temperature anisotropies *Mon. Not. R. Astron. Soc.* **389** 1439–46

[8] Hikage C, Komatsu E and Matsubara T 2006 Primordial non-Gaussianity and analytical formula for Minkowski functionals of the cosmic microwave background and large-scale structure *Astrophys. J.* **653** 11–26

[9] Marinucci D and Peccati G 2011 Random Fields on the Sphere: Representations, Limit Theorems and Cosmological Applications (London Mathematical Society Lecture Notes) (Cambridge: Cambridge University Press)

[10] Marinucci D and Peccati G 2010 Ergodicity and Gaussianity for spherical random fields *J. Math. Phys.* **51** 043301

[11] Marinucci D and Wigman I 2011 On the excursion sets of spherical Gaussian eigenfunctions *J. Math. Phys.* arXiv:1009.4367

[12] Matsubara T 2010 Analytic Minkowski functionals of the cosmic microwave background: second-order non-Gaussianity with bispectrum and trispectrum *Phys. Rev. D* **81** 083505

[13] Rice S O 1944 Mathematical analysis of random noise *Bell Syst. Tech. J.* **23** 282

[14] Rice S O 1945 Mathematical analysis of random noise—conclusion *Bell Syst. Tech. J.* **24** 46

[15] Szego G 1975 *Orthogonal Polynomials* (Colloquium Publications of the American Mathematical Society) 4th edn (Providence, RI: American Mathematical Society)

[16] Varshalovich D A, Moskalev A N and Khersonskii V K 1988 *Quantum Theory of Angular Momentum* (Singapore: World Scientific)

[17] Vilenkin N J and Klimyk A U 1991 *Representation of Lie Groups and Special Functions* (Dordrecht: Kluwer)

[18] Wigman I 2010 Fluctuations of the nodal length of random spherical harmonics *Commun. Math. Phys.* **298** 787–831

[19] Wigman I Volume fluctuations of the nodal sets of random Gaussian subordinated spherical harmonics (unpublished)