Sequential double hydrofunctionalization of alkynes is a powerful method to construct useful vicinal compounds. Herein, we report a cobalt-catalyzed sequential hydrosilylation/hydrohydrazidation of alkynes to afford 1,2-\(\text{N},\text{Si}\) compounds via ligand relay catalysis. A phenomenon of ligand relay is found that the tridentate anionic \(\text{N}\)-ligand (OPAQ) could capture the cobalt ion from bidentate neutral \(\text{P}\)-ligand (Xantphos) cobalt complex. This protocol uses three abundant chemical feedstocks, alkynes, silanes, and diazo compounds, and also features operationally simple, mild conditions, low catalyst loading (1 mol%), and excellent functional group tolerance. The 1,2-\(\text{N},\text{Si}\) compounds can be easily further derivatized to afford various substituted silane derivatives via \(\text{Si-H}\) functionalization, alcohols via Fleming-Tamao oxidation, free amines and amides via \(\text{N-N}\) bond cleavage and protection. The asymmetric reaction could also be carried out to afford chiral products with up to 86% ee. The ligand relay has been supported by control experiments and absorption spectra.
Organosilicon compounds have been widely used in materials science as well as agrochemistry and organic synthesis, also playing a role in medicinal chemistry as silasubstitution or bioisosteres of carbon or other moieties due to slight physical and electronic alterations. Vicinal amino and silyl (1,2-N,Si) compounds as an important subclass of organosilicon compounds simultaneously bearing amino and silyl groups have presented in various biologically active compounds such as si-la-haloperidol and si-la-venlafaxine.

Sequential double hydrofunctionalization of readily available alkynes could atom- and pot-economically install two functional groups. For two transformations with same catalytic species, one metal catalyst could achieve the sequential reactions. For two mechanistically distinctive transformations, a strategy of bimetallic catalysis in which two different metal catalysts respectively play an individual role has been usually employed, however, compatibility issues of two metal catalysts used to limit their utility. Ligand exchange is a well-known fundamental elementary reaction in organometallic chemistry. To avoid compatibility issues and also achieve metal economy, a strategy of ligand exchange by using mono metal and two ligands could be proposed in which the former ligand metal complex for catalyzing the first-step reaction would undergo ligand exchange after adding the latter ligand to catalyze the second-step reaction. Two reactions would not or slightly interrupt with each other. This one-way ligand exchange for catalyzing two mechanistically distinctive transformations could be called as ligand relay catalysis. However, to the best of our knowledge, this ligand relay catalysis has not been used in sequential double hydrofunctionalization of alkynes.

Sequential double hydrofunctionalization of alkynes could be potentially used to access 1,2-N,Si compounds. Nevertheless, sequential hydrosoylation/hydrohydrazidation of alkynes to deliver 1-amino-2-silylalkanes has not yet been reported. There are several challenges: (1) inhibiting the side-reactions in sequential transformations, including dihydrosoylation and hydrogenation; (2) controlling the compatibility of two reactions in one pot as well as one product bearing both N-H bond and Si-H bond; (3) achieving high regioselectivity to reduce the possibility of gen-substituted undesired products and improving the efficiency of reactions to make the transformation synthetically useful.

Our group is quite interested in earth-abundant transition-metal-catalyzed reactions of alkenes and alkynes, here, we report a cobalt-catalyzed chemo- and regioselective sequential hydrosoylation/hydrohydrazidation of terminal alkynes via ligand relay catalysis with hydrosilanes and diazo compounds to afford vicinal amino and silyl products bearing both N-H bond and Si-H bond which could be further derivatized.

Results

Reaction optimization. We began our investigation on sequential hydrosoylation/hydrohydrazidation of alkynes with selected initial reaction conditions, using ethynyl benzene as a model substrate, diphenyl silane as a silicon source, ethyl 2-diazo-2-phenylacetate as a nitrogen source. Based on our previous studies on the cobalt-catalyzed sequential reaction of alkynes, various cobalt complexes for alkyne hydrosoylation have been tested as a solo catalyst for the sequential reaction, however, reactions were messy and fewer desired products have been obtained. To achieve two reactions in one pot, a combined catalytic system using two different catalysts has been tested. One catalytic system is using Xantphos-CoBr2 and activator NaBHEt3 for the first hydrosoylation step. The other catalytic system is using N-(2-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)phenyl)-6-methylpicolinamide (OPPA) L1 and Co(OAc)2 for the second hydrohydrazidation step. The combined catalytic system using PhSiH3 as a hydrogen donor in a solution of Et2O could promote the sequential hydrosoylation/hydrohydrazidation of alkynes to access 1-amino-2-silylalkane 4a in 12% yield (entry 1, Fig. 3). The use of different quinoline amine scaffolds improved the reactivity of reaction drastically (entries 2-6). The optimized ligand was N-oxazolinylphenyl 8-aminoquinoline (OPAQ) L5, delivering 4a in 81% yield. Altering several N-containing classical ligands such as OIP, PDI, PI, and Pybox, only trace amounts of 4a could be observed (entries 7-10). It is worth noting that this transformation in the absence of Co(OAc)2 could smoothly occur, delivering 4a in 84% yield, which presented a unique phenomenon of ligand relay (entry 11). With 3 equiv. of H2O as promoter, the reaction smoothly afforded 4a in 86% isolated yield (entry 12). The standard conditions are as shown in entry 12.

Substrate scope. With the optimized conditions in hand, substrate scope was explored as shown in Fig. 4. Substituents at ortho- and meta-positions on aryl rings can be well accommodated. Various functional groups, such as halo, ether, thiol, ether, free amine, Bpin, amide, acetal, and ester, could be tolerated. Substrates bearing fused rings and heterocycles, such as naphthyl, fluorenyl, indolyl, thiophene, benzothiophene, and pyridine, were also compatible in this system delivering corresponding products in 46-86% yields. The allyl substituted 1-amino-2-silylalkanes could hardly be observed in the process of aminosilylation of alkenes or ring-opening C(sp2)-Si cross-coupling of aziridines, and it was challenging to obtain these compounds. Preliminary study found that hex-1-

Fig. 1 Representative 1,2-N,Si compounds in Pharmaceuticals. Cyclic and acyclic 1,2-N,Si compounds in pharmaceuticals.

O

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28285-w | www.nature.com/naturecommunications
yne could be converted into 4ae in 32% yield (7/1 rr) under modified conditions. Aryl alkynes containing bioactive skeletons like estrone and geraniol could undergo the reaction to afford 4af and 4ag in 57-73% yields, which exhibited the underlying feasibility in late-stage modification of complicated molecules. Various hydrosilane, para-chloride and tert-butyl substituents diphenyl silanes and phenylsilane, could participate in this transformation smoothly to deliver 4ah and 4ai in 69-80% yields and 4aj bearing two silicon-hydrogen bonds in 55% yield. The diazo compounds with benzyl ester and dimethyl phosphate were also suitable for the system under standard conditions, delivering 4ak in 72% yield and 4al bearing three hetero atoms P, N, and Si in 61% yield.

To the best of our knowledge, the sequential hydrosilylation/hydrohydrazidation of alkynes for the synthesis of chiral vicinal N,Si compounds in an enantioselective manner has scarcely been reported. Thus, we preliminarily conducted asymmetric transformation of alkynes to afford chiral 1,2-N,Si compounds in moderate yields with good ee (Fig. 5). Under the optimized conditions, the standard substrates could be transformed to the chiral product in 52% yield with 86% ee. Both electron-withdrawing and electron-donating groups could be tolerated in the catalytic system, delivering the end-product in moderate yields with good ee. Alkynes bearing 2-naphthyl and benzothiophenyl underwent the reaction smoothly in 51% and 53% yields with 84% and 82% ee, respectively.

Mechanistic studies. To gain insight into the mechanism, two control experiments were conducted to illuminate possible mechanism (Fig. 7). With the existence of TEMPO, no desired product can be observed. The benzyl radical generated from MHAT process was trapped by TEMPO delivering the product in 9% yield, indicating that the reaction may go through radical process. The deuterium-labeling experiment was also conducted using PhSiD3 as a D source to afford 11 in 81% yield with 90% D in the adjacent methylene of silyl group (d.r = 1/1), indicating that radical process may exist in this reaction. To further understand the ligand relay process, the absorption measurement was conducted (Fig. 8). Initially, we added NaBHEt3 to the solution of Xantphos-CoBr2 and it did not change the shape of absorption peaks. When adding OPAQ to the mixture, in the first 5 mins, there was no change in absorption peaks. A broad peak was observed at 468 nm in 30 mins (red line) which is cater to the absorption peak of OPAQ-CoBr2 activated by NaBHEt3 at 467 nm (blue line) indicating that it takes a period of time for

Gram-Scale reaction and synthetic applications. The gram-scale reaction could be smoothly conducted to access 4a in 82% yield (Fig. 6). The 1,2-N,Si compounds could be further derivatized via C-Si cleavage, Si-H transformation, and N-N cleavage. Firstly, these compounds could be easily transferred to alcohol 6 in excellent yield via Fleming-Tamao oxidation. Then, 1,2-N,Si compounds could be smoothly transformed to silanol 7, fluorosilane 8, and siloxane 9 via Si-H transformation in 67-84% yields. The product can also be converted into amide silane 10 via mild N-N bond cleavage and benzoyl group protection. These compounds containing both N-H bond and Si-H bond might be interesting and potentially useful, due to that, generally, N-H bond could provide a proton and Si-H bond could afford a hydride as a polar opposite reagent.

**Fig. 2 Sequential strategies for double hydrofunctionalization of alkynes to construct 1,2-N,Si Compounds. a Strategies for 1,2-double hydrofunctionalization of alkynes. b Cobalt-catalyzed sequential hydrosilylation/hydrohydrazidation of terminal alkynes via ligand relay catalysis.
OPAQ to coordinate with cobalt, the catalytic active species would emerge and keep active via ligand exchange process under N₂ atmosphere while no peaks will emerge at 468 nm conducting the reaction under air (see Supplementary Information, Supplementary Figs. 14–15). Substrates will not influence the ligand exchange process (see Supplementary Information, Supplementary Figs. 14–17).

Several control experiments were also conducted. Firstly, the anti-Markovnikov hydrosilylation of alkynes could not successfully occur, delivering the α-adduct as the main product instead. Herein, Xantphos was essential for the first hydrosilylation step (Fig. 9a). Next, hydrohydradization of alkenyl silane failed in the absence of OPAQ, indicating that the relay process between Xantphos and OPAQ would promote the second step (Fig. 9b). From Fig. 9c we could know that OPAQ would slightly influence the anti-Markovnikov hydrosilylation step and 2% NMR yield of α-adduct was observed. In the end, Xantphos barely affected the hydrohydradization step, affording the 1-amino-2-silylalkanes in good yield (Fig. 9d).

Based on the control experiments and previous studies, we envisioned a possible mechanism shown in Fig. 10. Initially, Xantphos-CoBr₂ was activated by NaBHEt₃ to generate the cobalt hydride intermediate A which would coordinate with the alkyne. Then a following anti-Markovnikov type alkyne insertion into the cobalt hydride species gave the β-vinyl cobalt intermediate which could undergo α-bond metathesis with diphenyl silane to deliver the vinyl silane. The regenerated intermediate A would undergo a ligand exchange process to deliver OPAQ cobalt hydride species C. Selecting the appropriately exchangeable ligand to replace the former ligand is the key point in the ligand relay process. Here, the

Entry	Deviation from initial conditions	Yield of 4a (%)⁶
1	none	12
2	L₂ instead of L₁	75
3	L₃ instead of L₁	60
4	L₄ instead of L₁	15
5	L₅ instead of L₁	81
6	L₆ instead of L₁	79
7	L₇ instead of L₁	trace
8	L₈ instead of L₁	trace
9	L₉ instead of L₁	trace
10	L₁₀ instead of L₁	2
11	L₅ instead of L₁, without Co(OAc)₂	84
12	L₅ instead of L₁, without Co(OAc)₂, 3.0 equiv. of H₂O was added	91(86)

Fig. 3 Optimization of Sequential Hydrosilylation/Hydrohydradization of Terminal Alkynes via Ligand Relay Catalysis. ^aReaction conditions: 1a (0.3 mmol), 2a (1.0 equiv.), 3a (1.0 equiv.), Xantphos-CoBr₂ (1 mol%), NaBHEt₃ (3 mol%), Co(OAc)₂ (1 mol%), L₁ (2 mol%) and PhSiH₃ (1.2 equiv.) in Et₂O (1.2 mL) at room temperature under nitrogen for 12 h. ^bYield was determined by ¹H NMR using TMSPh as an internal standard. ⁶Isolated yield was in parentheses. TMSPh = (Trimethylsilyl)benzene.
Reaction conditions: 1 (0.3 mmol), 2 (1.0 equiv.), 3 (1.0 equiv.), Xantphos-CoBr₂ (1 mol%), NaBHEt₃ (3 mol%), L₅ (2 mol%), PhSiH₃ (1.2 equiv.), H₂O (3.0 equiv.) in Et₂O (0.25 M), r.t., 12 h, isolated yield of 4 with complete regioselectivity without additional indications.

Stirred in THF, without H₂O.

L₁₁ (see Supplementary Information) was instead of L₅, PhMeSiH₂ was instead of PhSiH₃, without H₂O and stirred for 24 h (7/1 r). DPEphos-CoBr₂ was instead of Xantphos-CoBr₂, PhSH₃ was instead of Ph₂SH₂.

Fig. 4 Substrate Scope of Sequential Hydrosilylation/Hydrohydrazidation of Terminal Alkynes via Ligand Relay Catalysis. Reaction conditions: 1 (0.3 mmol), 2 (1.0 equiv.), 3 (1.0 equiv.), Xantphos-CoBr₂ (1 mol%), NaBHEt₃ (3 mol%), L₅ (2 mol%), PhSiH₃ (1.2 equiv.), H₂O (3.0 equiv.) in Et₂O (0.25 M), r.t., 12h, isolated yield of 4 with complete regioselectivity without additional indications. Stirred in THF, without H₂O. L₁₁ (see Supplementary Information) was instead of L₅, PhMeSiH₂ was instead of PhSiH₃, without H₂O and stirred for 24 h (7/1 r). DPEphos-CoBr₂ was instead of Xantphos-CoBr₂, PhSH₃ was instead of Ph₂SH₂.
tridentate anionic N-ligand (OPAQ) presented a better coordination effect with cobalt ion than bidentate neutral P-ligand (Xantphos), ensuring the fluency of hydrohydrazidation of alkenyl silanes. The posterior reaction will not be influenced by the former metal catalyst which already loses the central metal ion. The newly emerging intermediate could perform through metal hydride hydrogen atom transfer (MHAT) to afford a radical intermediate and cobalt intermediate which could react with each other in the presence of diazo compound to form the intermediate. The cobalt species could then undergo alkyl group migration to deliver the azo enolate cobalt intermediate, followed by σ-bond metathesis with PhSiH₃ to give the silyl enol ester intermediate and regenerate cobalt hydride intermediate. In the presence of H₂O, intermediate G would go through sequential hydrolysis and isomerization to deliver final product.

Discussion

In summary, we reported a cobalt-catalyzed sequential hydrosilylation/hydrohydrazidation of readily available terminal alkynes with hydrosilanes and diazo compounds to deliver 1,2-N,Si compounds with good functional group tolerance. These products bearing both N-H bond and Si-H bond can be easily transformed to hydrazino...
alcohol, diversified silicon-substituted hydrazino silanes, and amide silane. Two mechanistically distinctive transformations including cobalt-catalyzed alkyne insertion for alkyne hydrosilylation and the HAT process for hydrohydrazidation of alkenyl silane could be conducted using 1 mol% of cobalt as a solo metal in one pot. The asymmetric reaction could also be carried out to afford chiral products with up to 86% ee. A phenomenon of ligand relay is found to deliver cobalt from diphosphine ligand to NNN-tridentate ligand which is also illustrated by absorption measurement. Ligand relay could offer an opportunity as a potentially powerful strategy for metal-catalyzed sequential reactions using a solo metal. Further studies on ligand relay guided sequential reactions and the synthesis of organosilicon compounds will be continuously explored in our laboratory.

Methods

Materials. For NMR spectra of compounds in this manuscript, see Supplementary Information. For gram-scale reaction, see Supplementary Figure 1. For synthesis of amide silane, see Supplementary Fig. 2. For radical trapping experiment, isotopic labeling experiment, time course study, control experiment and absorption measurement, see Supplementary Figs. 3–17 and Table 1.

Standard conditions A for the synthesis of 1,2-N,Si compounds. To a 25 mL Schlenk flask equipped with a magnetic stirrer and a flanging rubber plug was dried with flame under vacuum. When cooled to ambient temperature (10–25 °C), it was vacuumed and flushed with N₂. This degassed procedure was repeated for three times. To the flame-dried Schlenk flask Xantphos-CoBr₂ complex (0.0030 mmol, 1 mol%), 1.2 mL (0.25 M) of Et₂O and diphenylsilane (0.30 mmol, 1.0 equiv.) (or other silanes) were added by dropwise sequentially. After that, NaBHEt₃ (9 μL, 1.0 M in THF, 0.0090 mmol) and alkyne (0.30 mmol, 1.0 equiv.) were added to the mixture sequentially and stirred for 5 s, and then L⁵ (0.0060 mmol, 2 mol%), phenylsilane (0.36 mmol, 1.2 equiv.), phenyldiazooacetate (0.30 mmol, 1.0 equiv.) (or other aryldiazooacetates), H₂O (0.90 mmol, 3.0 equiv.) were added by dropwise sequentially. Pinholes were sealed with silicone grease and the flanging rubber plug was wrapped with sealing film tightly. The mixture was stirred at ambient temperature for 12 h, and then quenched by 5 mL of petroleum ether (PE) and stirred for 5 min until catalyst precipitated. The resulting solution was filtered through a pad of silica gel and the Schlenk flask and silica gel were washed by PE/EtOAc (5/1) (15 mL× 3) (or other suitable solvent). The combined filtrates were concentrated in vacuo. NMR yield was monitored by ¹H NMR analysis using TMSPh as internal standard. The crude mixture was purified by short flash column chromatography to give the corresponding product.

Data availability

The authors declare that the data Supplementary the findings of this study are available within the paper and its Supplementary Information file. The experimental procedures
and characterization of all new compounds are provided in the Supplementary Information. Source data are provided with this paper.

Received: 22 September 2021; Accepted: 4 January 2022; Published online: 03 February 2022

References
1. Ciriminna, R. et al. The sol-gel route to advanced silica-based materials and recent applications. *Chem. Rev.* **113**, 6592–6620 (2013).
2. Ojima, I. In *The Chemistry of Organic Silicon Compounds*; (eds. Patai, S., Rapporto, Z.) (Wiley: Chichester, 1989).
3. Denmark, S. E. & Sweis, R. F. Design and implementation of new, silicon-based, cross-coupling reactions: importance of silicon-oxygen bonds. *Acc. Chem. Res.* **35**, 835–846 (2002).
4. Min, G. K., Hernández, D. & Skrydstrup, T. Efficient routes to carbon-silicon bond formation for the synthesis of silicon-containing peptides and azasilaheterocycles. *Acc. Chem. Res.* **46**, 457–470 (2013).
5. Franz, A. K. & Wilson, S. O. Organosilicon molecules with medicinal applications. *J. Med. Chem.* **56**, 388–405 (2013).
6. Meanwell, N. A. Synopsis of some recent tactical application of bioisosteres in drug design. *J. Med. Chem.* **54**, 2529–2591 (2011).
7. Barraza, S. J. & Denmark, S. E. Synthesis, reactivity, functionalization, and ADME properties of silicon-containing nitrogen heterocycles. *J. Am. Chem. Soc.* **140**, 6688–6684 (2018).
8. Ramesh, R. & Reddy, D. S. Quest for novel chemical entities through incorporation of silicon in drug scaffolds. *J. Med. Chem.* **61**, 3779–3798 (2018).
9. Zeng, X. Recent advances in catalytic sequential reactions involving hydroelement addition to carbon-carbon multiple bonds. *Chem. Rev.* **113**, 6864–6990 (2013).
10. Cheng, Z., Guo, J. & Lu, Z. Recent advances in metal-catalysed asymmetric sequential double hydrofunctionalization of alkenes. *Chem. Commun.* **56**, 2229–2239 (2020).
11. Guo, J., Wang, H., Xing, S., Hong, X. & Lu, Z. Cobalt-catalyzed asymmetric synthesis of gem-Bis(silyl)alkanes by double hydroisolation of aliphatic terminal alkynes. Chem. Sci. 5, 881–897 (2019).
12. Cheng, Z. et al. Highly regioselective sequential 1,1-dihydroisolation of terminal alkynes with primary silanes. Chin. J. Chem. 37, 457–461 (2019).
13. Hu, M.-Y., Lian, J., Sun, W., Qiao, T.-Z. & Zhu, S.-F. Iron-catalyzed sequential hydroisolation of alkynes: efficient access to geminal bis(silanes). J. Am. Chem. Soc. 141, 4579–4583 (2019).
14. Guo, J., Shen, X. & Lu, Z. Regio- and enantioselective cobalt-catalyzed sequential hydroisolation/hydrogenation of terminal alkynes. Angew. Chem. Int. Ed. 56, 615–618 (2017).
15. Chen, J., Shen, X. & Lu, Z. Cobalt-catalyzed Markovnikov selective sequential hydroisolation/hydrogenation of aliphatic terminal alkynes. J. Am. Chem. Soc. 142, 14455–14460 (2020).
16. Niljianskul, N., Zhu, S. & Buchwald, S. L. Enantioselective synthesis of alpha-aminonitriles by copper-catalyzed hydroamination of vinylsilanes. Angew. Chem., Int. Ed. 54, 1638–1641 (2015).
17. Nishino, S., Hirano, K. & Miura, M. Cu-catalyzed reductive C–N bond formation using the monodentate ligand combination approach. Org. Lett. 5, 3111–3113 (2003).
18. Jin, S., Liu, K., Wang, S. & Song, Q. Enantioselective cobalt-catalyzed cascade hydroamination/hydrosilylation of alkenes to access enantioenriched 1,1-dilithiated alkynes. J. Am. Chem. Soc. 143, 13124–13134 (2021).
19. Hou, Y. & Ge, S. Cobalt-catalyzed one-pot asymmetric difunctionalization of alkynes to access chiral (Boryl)alkylsilanes. Angew. Chem. Int. Ed. 60, 1–6 (2021).
20. Organotransition Metal Chemistry: From Bonding to Catalysis (ed. Hartwig, J.) (University Science Books: Sausalito, CA, 2010).
21. The Organometallic Chemistry of the Transition Metals, Sixth Edition (ed. Crabtree, R. H.) (John Wiley: Hoboken, NJ. 2014).
22. Teichert, J. F. & Feringa, B. L. Phosphoramidites: privileged ligands in asymmetric catalysis. Angew. Chem., Int. Ed. 49, 2486–2528 (2010).
23. Weland, J. & Bret, B. A combinatorial approach to the identification of self-assembled ligands for rhodium-catalysed asymmetric hydrogenation. Nat. Chem. 2, 832–837 (2010).
24. Fors, B. P. & Buchwald, S. L. A multiligand based Pd catalyst for C–N cross-coupling reactions. J. Am. Chem. Soc. 132, 15914–15917 (2010).
25. Gao, S., Liu, Y. & Ma, S. CuCo-catalyzed aerobic oxidation of 2,3-alkenols to 1,2-alkanones with 1:1 combination of phenantranilide and bipyridine as ligands. Beilstein J. Org. Chem. 7, 396–403 (2011).
26. Cheng, J., Ni, H. Q., Liu, G., Li, Y. & Wang, X. Combinatorial nickel-catalyzed monofluoroalkylation of aryl boronic acids with unactivated fluoroalkyl iodides. Org. Lett. 19, 4480–4483 (2017).
27. Liu, W. et al. Iron-catalyzed intramolecular annihilation of aliphatic alkyne–H bonds of sulfamyl esters with high reactivity and chemoselectivity. Org. Lett. 21, 2673–2678 (2019).
28. Li, W. et al. Design of Ru(II)-NHC-diamine precatalysts directed by ligand cooperation: applications and mechanistic investigations for asymmetric hydroisolation. J. Am. Chem. Soc. 142, 7100–7107 (2020).
29. Chen, J., Guo, J. & Lu, Z. Recent advances in hydrometallation of alkynes and alkynes via the first step transition metal catalysis. Chin. J. Chem. 36, 1075–1109 (2018).
30. Cheng, J., Shen, X. & Lu, Z. Cobalt-catalyzed Markovnikov-type selective hydrometallation of terminal alkynes. Angew. Chem. Int. Ed. 60, 690–694 (2021).
31. Shen, X. et al. Ligand-promoted cobalt-catalyzed radical hydrosilylation of alkynes. Nat. Commun. 11, 783 (2020).
32. Cheng, Z. et al. Regio-controllable cobalt-catalyzed sequential hydrosilylation/ hydroborylation of 1,1-allenic ketones with 1:1 combination of phenantranilide and bipyridine. J. Am. Chem. Soc. 139, 9439–9442 (2017).
33. Li, W. et al. Design of Ru(II)-NHC-diamine precatalysts directed by ligand cooperation: applications and mechanistic investigations for asymmetric hydroisolation. J. Am. Chem. Soc. 142, 7100–7107 (2020).
34. Chen, J., Guo, J. & Lu, Z. Recent advances in hydrometallation of alkynes and alkynes via the first step transition metal catalysis. Chin. J. Chem. 36, 1075–1109 (2018).
35. Cheng, Z. et al. Regio-controllable cobalt-catalyzed sequential hydrosilylation/hydroborylation of arylacetylenes. Angew. Chem. Int. Ed. 60, 22454–22460 (2021).
36. Cheng, B., Lu, P., Zhang, H., Cheng, X. & Lu, Z. Highly enantioselective cobalt-catalyzed hydrosilylation of alkynes. J. Am. Chem. Soc. 139, 9439–9442 (2017).
37. Wu, C., Teo, W. J. & Ge, S. Cobalt-catalyzed (E)-selective anti-Markovnikov hydroisolation of terminal alkynes. ACS Catal. 8, 5896–5900 (2018).
38. Yang, Y. et al. Iron-catalyzed intermolecular 1,2-difunctionalization of styrenes and conjugated alkynes with silanes and nucelophiles. Angew. Chem. Int. Ed. 56, 7916–7919 (2017).
39. Fleming, L., Frackenpohl, J. & Ilia, H. Cleavage of sulfonamides with phenylmethylsilylethyllium. J. Chem. Soc., Perkin Trans. 1, 1229–1236 (1998).
40. Takeda, Y., Shibuta, K., Aoki, S., Tohmai, N. & Minakata, S. Catalyst-controlled regiodivergent ring-opening [4+3]-Si bond-forming reactions of 2-arylarazinides with silylborane enabled by synergistic palladium/copper dual catalysis. Chem. Sci. 10, 8642–8647 (2019).
41. Yi, H. & Oestreich, M. Regiodivergent and stereospecific aziridine opening by copper-catalyzed addition of silicon Grignard reagents. Chem. Eur. J. 25, 5005–5007 (2019).
42. Li, W. et al. New electrophilic addition of α-diazooesters with ketones for enantioselective C–N bond formation. J. Am. Chem. Soc. 133, 15268–15271 (2011).
43. Zheng, J., Qi, J. & Cui, S. Fe-catalyzed olefin hydrometallation with diazo compounds for hydrazone synthesis. Org. Lett. 18, 128–131 (2016).
44. Waizer, J., Gaspar, B., Nambu, H. & Carreira, E. M. Hydrazines and azides via the metal-catalyzed hydrosilylation and hydroazidation of olefins. J. Am. Chem. Soc. 128, 11693–11712 (2006).
45. Gui, J. et al. Practical olefin hydrometallation with nitroarenes. Science 348, 886–891 (2015).
46. Greco, P. et al. The high chemoselectivity of metal-catalyzed hydrazon atom transfer. Acc. Chem. Res. 51, 2628–2640 (2018).
47. Gu, Q.-S., Li, Z.-L. & Liu, X.-Y. Copper(I)-catalyzed asymmetric reactions involving radicals. Acc. Chem. Res. 53, 170–181 (2020).

Acknowledgements
Financial supports were provided by National Key R&D Program of China (2021YFF0701603 and 2021YFA1500200), NSFC (21922107 and 21727121), and Zhejiang Provincial Natural Science Foundation of China (LR19B020001), Center of Chemistry for Frontier Technologies.

Author contributions
Z.L. proposed this project. Y.S. and X.S. provided initial results. Y.S. performed the experiments. Z.L. and Y.S. prepared the manuscript. Y.S. prepared the Supplementary Information.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-28285-w.

Correspondence and requests for materials should be addressed to Zhan Lu.

Peer review information Nature Communications thanks Liqun Jin and the other anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permissions information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2022