Live Attenuated *Francisella novicida* Vaccine Protects against *Francisella tularensis* Pulmonary Challenge in Rats and Non-human Primates

Ping Chu1, Aimee L. Cunningham1, Jieh-Juen Yu1, Jesse Q. Nguyen1, Jeffrey R. Barker1, C. Rick Lyons2, Julie Wilder3, Michelle Valderas3, Robert L. Sherwood3, Bernard P. Arulanandam1, Karl E. Klose1*

1South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas San Antonio, San Antonio, Texas, United States of America, 2Infectious Disease Research Center, Colorado State University, Fort Collins, Colorado, United States of America, 3Applied Life Sciences & Toxicology, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States of America

Abstract

Francisella tularensis causes the disease tularemia. Human pulmonary exposure to the most virulent form, *F. tularensis* subsp. *tularensis* (Ftt), leads to high morbidity and mortality, resulting in this bacterium being classified as a potential bioterrorism agent. However, a closely-related species, *F. novicida*, is avirulent in healthy humans. No tularemia vaccine is currently approved for human use. We demonstrate that a single dose vaccine of a live attenuated *F. novicida* strain (Fn iglD) protects against subsequent pulmonary challenge with Ftt using two different animal models, Fischer 344 rats and cynomolgus macaques (NHP). The Fn iglD vaccine showed protective efficacy in rats, as did a Ftt iglD vaccine, suggesting no disadvantage to utilizing the low human virulent *Francisella* species to induce protective immunity. Comparison of specific antibody profiles in vaccinated rat and NHP sera by proteome array identified a core set of immunodominant antigens in vaccinated animals. This is the first report of a defined live attenuated vaccine that demonstrates efficacy against pulmonary tularemia in a NHP, and indicates that the low human virulence *F. novicida* functions as an effective tularemia vaccine platform.

Introduction

F. tularensis is a highly infectious bacterium that causes tularemia in humans, a disease that has a high mortality rate when acquired through the pulmonary route. *F. tularensis* is able to survive and replicate within host macrophages, and this ability is essential for its virulence. Within macrophages, *F. tularensis* escapes from the phagosomal compartment and replicates within the cytosol [1]. Phagosomal escape is mediated by a cluster of virulence genes in the Francisella Pathogenicity Island (FPI) that encode a Type VI-like secretion system [2]. *F. tularensis* acquired through the pulmonary route disseminate to tissues outside the lung, where they replicate to high levels within internal organs such as the liver. Early in infection, *F. tularensis* appears to induce broad immunosuppression within the host [3], as proinflammatory cytokine expression is notably repressed [4] and infected cells are unable to respond to TLR-dependent secondary stimuli [5]. *F. tularensis* subsp. *tularensis* (Ftt) exhibits the highest level of virulence in all mammalian hosts, including humans, and because of the morbidity and mortality associated with disease as well as the potential for aerosol dissemination, it has been designated a category A bioterrorism agent. A closely-related species, *F. novicida* (Fn), is considered essentially avirulent for healthy humans and for this reason is exempt from select agent status.

There is currently no tularemia vaccine approved for human use. A live attenuated vaccine strain (LVS) was derived in Russia by repeated passage of *F. tularensis* subsp. *holarctica* (Fth). LVS vaccination can protect against pulmonary challenge with Ftt in rats [6], rhesus macaques and humans [7]. The LVS genome contains a large number of mutations that distinguish it from other Ftt strains, but the primary attenuating mutations appear to be the deletion of a lipoprotein (FTT0918) and a pilus subunit (*pilA*) [8]. Questions of stability, reversion frequency, and levels of protection may prevent LVS from becoming licensed for human use. However extensive studies with LVS have illuminated attributes of protective immunity against tularemia in mice. T-cell mediated immunity has been shown to be critical, but antibodies also appear to play a role; despite this, no specific correlate of protection has been established [for review of this extensive field, please see [9]]. The efficacy of LVS suggests that a
Author Summary

Francisella tularensis is a bacterium that causes the infectious disease tularemia. *F. tularensis* has been developed as a biothreat agent, because it causes high morbidity and mortality when spread by aerosol. There is currently no approved vaccine for human use, making mankind vulnerable to the illicit use of this organism. *F. tularensis* contains a cluster of genes in the Francisella Pathogenicity Island (FPI) that are required for replication inside host macrophages and virulence. In the current study we created a live vaccine strain by inactivating an FPI gene, *iglD*, in a closely-related species that does not cause disease in humans, *F. novicida* (Fn *iglD*). We demonstrate that vaccination with Fn *iglD* protects against exposure to airborne *F. tularensis*. Fn *iglD* vaccination induces antibody and cellular immune responses and protects two different animals, rats and non-human primates, against lethal pulmonary tularemia challenges. These two animal models reflect human sensitivity to *F. tularensis*. Our results suggest that a vaccine made from the low virulence *F. novicida* will protect humans against aerosol exposure to this dangerous pathogen.

In preliminary studies, the Fn *iglD* strain inoculated intranasally into mice was able to fully protect against subsequent pulmonary challenge with a relatively high dose of the wildtype *F. novicida* strain (10^8 CFU), but was unable to provide any protection against pulmonary challenge with a similar dose of *Ft* (10^6 CFU; Table 1). However, the *Ft* *iglD* strain inoculated intranasally into mice was also unable to provide protection against pulmonary challenge with a similar dose of *Ft* (10^7 CFU). This suggests that the failure of Fn *iglD* vaccination to protect against *Ft* pulmonary challenge in mice is due to some inherent deficiency in Fn, but rather may be due to the mouse being an inappropriate animal model for tularemia vaccine studies because of the extreme sensitivity of mice to all *Francisella* subspecies.

The Fischer 344 rat has been promoted as a relevant animal model for tularemia vaccine studies, due to the relative sensitivities of the rat to the various *Francisella* subspecies, which mirror human sensitivities [6,11]. Moreover, LVS vaccination of Fischer 344 rats protects against pulmonary exposure to *Ft* [6,22]. We have previously shown that oral vaccination of Fischer 344 rats with attenuated Fn strains induces comparable levels of protection against pulmonary *Ft* challenge as intratracheal vaccination [23], so the oral route was used in the following experiments. To determine the relative efficacies of Fn and *Ft* live vaccine platforms in the rat, we vaccinated Fischer 344 rats (*n* = 6) orally with either Fn *iglD* or *Ft* *iglD* (both at 10^7 CFU) and then challenged the vaccinated rats 30 days later with *Ft* (10^4 CFU) delivered intratracheally (Fig. 1A). 5 of 6 Fn *iglD* vaccinated rats (83%) survived pulmonary *Ft* challenge. 3 of 6 *Ft* *iglD*-vaccinated rats (50%) survived pulmonary *Ft* challenge. These results demonstrate that there is no disadvantage to utilizing Fn instead of *Ft* as the platform for live attenuated vaccines against pulmonary *Ft*. Only one mock-vaccinated rat (*n* = 6) survived pulmonary challenge with *Ft*.

Measurement of serum antibody levels in vaccinated rats revealed similar levels of Fn- or *Ft*-specific antibodies in both groups, constituted by high levels of IgG2a and low levels of IgG1 (Fig. 1B); this polarized Th1-type response has been reported previously in immunized rats [11].

Pulmonary Fn *iglD* vaccination induces protective immunity against *Ft* pulmonary challenge in rats

Since oral vaccination of rats with the Fn *iglD* live vaccine strain was shown to induce protective immunity against pulmonary *Ft* challenge, we determined whether pulmonary vaccination of rats with Fn *iglD* also induced protective immunity against pulmonary *Ft* challenge. Fischer 344 rats were vaccinated intratracheally with Fn *iglD* at 10^3 (n = 4) or 10^7 (n = 6) CFU, and challenged 30 days later with *Ft* (10^4 CFU) delivered intratracheally (Fig. 2A). All rats vaccinated with Fn *iglD* at 10^7 CFU (100% protection) and 5/6 (83%) of rats vaccinated with Fn *iglD* at 10^3 CFU survived pulmonary *Ft* challenge, whereas only one of four mock-vaccinated rats survived this challenge, demonstrating the efficacy of pulmonary vaccination with Fn *iglD* to protect against pulmonary challenge with *Ft*.

Measurement of serum antibody levels in Fn *iglD*-vaccinated rats (via pulmonary route) again revealed a polarized response similar to oral vaccination, with high levels of Fn-specific IgG2a and low levels of IgG1 (Fig. 2B; [11]). It is known that a major target of the humoral response to *Francisella* infection is the O antigen (OAg) of the LPS, and that Fn and *Ft* express distinct OAgS [24]. LVS expresses an OAg that is indistinguishable from the OAg of *Ft* [23]. To determine if a humoral response to OAg was induced in vaccinated rats, we performed Western immunoblot analyses of serum from one of the rats immunized...
intratracheally with Fn\textit{iglD} (10^7 CFU) and compared that to the reactivity of serum from a rat immunized in a previous study by the same route with the same inoculum of LVS [11], (Fig. S2). Serum from the rat vaccinated with Fn\textit{iglD} reacted strongly with purified LPS from Fn, but also with LPS from LVS. In contrast, the serum from an LVS-vaccinated rat reacted strongly with LVS LPS and did not react at all with Fn LPS. Interestingly, the reactivity of both rat sera was predominantly to high molecular

Table 1. Vaccination of mice with Fn\textit{iglD} or Ftt\textit{iglD} does not protect against Ftt challenge.

Intranasal Vaccination (strain)	Vaccine dose (CFU)	Survival (30 days)	Intranasal Challenge (strain, CFU)	Survival (30 days)
Fn\textit{iglD}	9.7×10^8	5/5	Fn 10^3	5/5
Mock (PBS)	-	-	Fn 10^3	0/5
Fn\textit{iglD}	9.7×10^8	5/5	Ftt 10^3	0/5
Ftt\textit{iglD}	4.8×10^8	5/5	Ftt 10^3	0/5

doi:10.1371/journal.ppat.1004439.t001

Figure 1. Fn\textit{iglD} vaccination is protective against pulmonary Ftt challenge in Fischer 344 rats. A. Groups of Fischer 344 rats (6 rats/group) were inoculated orally with 10^7 CFU Fn\textit{iglD} (open circles) or Ftt\textit{iglD} (open squares), or mock vaccinated (filled triangles). Rats were challenged 30 days post vaccination with 10^4 CFU Ftt delivered intratracheally, and monitored for survival. Difference in survival was significant for Fn\textit{iglD}-vaccinated rats compared to mock vaccinated ($P = 0.0439$; Kaplan-Meier). Difference in survival of Ftt\textit{iglD}-vaccinated rats compared to mock vaccinated was not significant. B. Sera from vaccinated rats were analyzed 30 days post-vaccination for Fn- or Ftt-specific antibodies (total Ab, IgG1, and IgG2a).
doi:10.1371/journal.ppat.1004439.g001

Figure 2. Fn\textit{iglD} pulmonary vaccination protects Fischer 344 rats against pulmonary Ftt challenge. A. Groups of Fischer 344 rats were inoculated intratracheally with 10^3 (filled circles; $n = 4$) or 10^7 CFU (open circles; $n = 6$) Fn\textit{iglD} or mock-vaccinated (filled triangles; $n = 4$). 30 days post vaccination rats were challenged with 10^3 CFU Ftt delivered intratracheally, and monitored for survival. Difference in survival of Fn\textit{iglD}-vaccinated rats compared to mock vaccinated was significant ($P = 0.0455$ for 10^3 CFU and $p = 0.0330$ for 10^7 CFU; Kaplan-Meier). Due to shortage of rats, two group sizes were smaller than optimal $n = 6$ [6]. B. Sera from vaccinated rats were analyzed 30 days post-vaccination for Fn-specific antibodies (total Ab, IgG1, and IgG2a).
doi:10.1371/journal.ppat.1004439.g002
weight material, likely the OAg capsule [26]. These results confirm that the OAg of Fn and LVS/Ftt are distinct and demonstrate that in rats, just as in mice [24], humoral responses directed towards LVS/Ftt OAg do not crossreact with Fn OAg. However there was some recognition of the LVS/Ftt OAg in Fn iglD-vaccinated rats.

In order to measure the cellular responses of rats vaccinated with Fn iglD, we vaccinated 3 rats by the intratracheal route at 10^7 CFU, collected spleens at 28 days post vaccination, and measured IFNγ production upon stimulation with increasing dose of UV-inactivated Fn iglD (10^5 and 10^6 CFU) or the (irrelevant) antigen HEL (Fig. S3). The Fn iglD-vaccinated rats exhibited a dose-dependent increase (p<0.05) in cellular responses to Fn iglD, whereas mock vaccinated rats showed no cellular responses to Fn iglD.

Pulmonary Fn iglD vaccination induces protective immunity against Ftt pulmonary challenge in cynomolgus macaques

The cynomolgus macaque is sensitive to pulmonary infection with Ftt [15], with an LD_{50} of approximately 1 CFU via the aerosol route. Clinical symptoms of infection in this model include high respiration rates and serum C-reactive protein (CRP) levels, with corresponding high bacterial burdens in the lungs and tracheobronchial lymph nodes (see below). The cynomolgus macaque has been proposed as a relevant non-human primate (NHP) model for tularemia vaccine development. We determined whether pulmonary vaccination of cynomolgus macaques with Fn iglD induced protective immunity against pulmonary Ftt challenge. 6 cynomolgus macaques were vaccinated via bronchoscopy with Fn iglD at 10^8 CFU, and an additional 4 control animals were mock vaccinated with PBS. 4 additional NHPs received LVS vaccination. Because LVS vaccination is known to induce protective immunity against Ftt in humans when administered through the skin, these animals were vaccinated by the subcutaneous route to serve as a vaccination standard against which the Fn iglD vaccine could be compared. The Fn iglD strain was well-tolerated in vaccinated NHPs, similar to the LVS vaccine, based on the lack of increase in respiration rate, and low serum CRP levels.

Vaccinated and control NHP were challenged 30 days later with Ftt delivered in a head-only aerosol chamber with presented doses of 2500–5000 CFU (Fig. 3A; presented doses for each NHP given in Table S1). Challenged NHP were monitored for a number of different parameters, including respiration rate, serum CRP levels, and disease symptoms. Mock vaccinated animals eventually exhibited severe disease symptoms that necessitated euthanasia of all 4 animals when moribund, at days 7 (2 X), 8, and 15 post Ftt challenge. In contrast, only one Fn iglD vaccinated animal required euthanasia when it became moribund at day 9 post challenge, and all other Fn iglD vaccinated NHPs survived to the end of the study at 30 days post challenge (83% protection). This demonstrates the efficacy of pulmonary vaccination with Fn iglD to protect against pulmonary challenge with Ftt in a NHP model of tularemia. All 4 LVS vaccinated NHPs also survived to the end of the study at 30 days post challenge (100% protection).

Mock vaccinated NHPs exhibited significantly increased respiration rates and serum CRP levels compared to the Fn iglD- and LVS-vaccinated NHPs beginning 3 days post-challenge with Ftt (Fig. 3B and 3C). Mock vaccinated NHPs also exhibited a trend in increased serum alanine transaminase (ALT), blood urea nitrogen (BUN), lactate dehydrogenase (LDH), and aspartate aminotransferase (AST) levels, indicating liver, kidney, and other tissue damage, although these levels did not reach statistical significance over those of the vaccinated NHPs, perhaps due to small sample
size (Fig. S4). 2 of 4 mock-vaccinated animals had detectable bacteremia at days 5 and 6 post challenge, whereas none of the vaccinated animals had detectable bacteremia at any time post Fit challenge. Bacterial organ burdens determined at autopsy revealed higher bacterial burdens in the spleen, lung, mesenteric lymph nodes, liver, and tracheo-bronchial lymph nodes of mock-vaccinated NHPs than in those of Fn iglD- and LVS-vaccinated NHP (Fig. 3D). In fact, 2/4 LVS-vaccinated and 3/6 Fn iglD vaccinated NHPs had no detectable bacterial burdens in any of the tissues sampled (limit of detection ~70 CFU/g; Fig. S5).

When organ burdens of the individual Fn iglD-vaccinated NHPs were compared at autopsy, the single animal (AO8070) that succumbed to Fit challenge (day 9) exhibited a high bacterial burden in the lung compared to the 5 NHPs that survived Fit challenge (day 30) (Fig. S5). At the termination of the study, 2 LVS-vaccinated NHPs exhibited elevated bacterial burdens in the lung, elevated serum CRP levels, and elevated respiration rates (day 30) (Fig. S5), suggesting they may have progressed to terminal disease in an extended study.

T cell responses from vaccinated NHPs were evaluated by measuring IFN-γ responses of peripheral blood mononuclear cells (PBMC) upon stimulation with either Fn iglD or LVS via ELISPOT (Fig. 4A and 4B). PBMCs were collected from all Fn iglD- and LVS-vaccinated NHPs prior to vaccination (naive) and at day 14 post vaccination. Group responses are shown in Fig. 4A & 4B; responses of individual NHPs are shown in Fig. S6. Neither the Fn iglD- nor the LVS-vaccinated NHP groups had significant increases (p>0.05 t test) in cellular responses to either LVS or Fn iglD at day 14 post vaccination.

PBMCs were also collected from Fn iglD- and LVS-vaccinated NHPs that survived pulmonary challenge with Fit, 30 days post-challenge. PBMCs were collected from all LVS-vaccinated NHPs, but only successfully collected from three of the five surviving Fn iglD-vaccinated NHPs (AO8036, AO8245, and AO9393). Group responses are shown in Fig. 4A; individual responses are shown in Fig. S6. The Fn iglD-vaccinated NHP group that survived Fit challenge showed a significant increase in cellular responses to both LVS and Fn iglD stimulation. In contrast, the LVS-vaccinated NHP group that survived Fit challenge showed a similar cellular response upon LVS stimulation to that seen prior to Fit challenge, and no response to Fn iglD stimulation. Individually, all three Fn iglD vaccinated NHPs tested (AO8036, AO8245, AO9393) exhibited enhanced cellular responses post-Fit challenge to both Fn iglD and LVS (Fig. S6), whereas only one of four LVS-vaccinated NHPs (AO7746) mounted an enhanced cellular response post-Fit challenge to LVS and Fn iglD. These results suggest that Fn iglD vaccination of NHPs primes T cells that provide a robust response upon challenge with Fit.

Identification of immunodominant humoral antigens in Fn iglD-vaccinated rats and NHPs

The humoral response in vaccinated NHPs was evaluated by ELISA against whole killed bacteria. Total IgG responses to whole cell Fn iglD, LVS, and Fit were determined for both Fn iglD- and LVS-vaccinated NHPs (Fig. 4B). While the strongest initial response (Day 14) was toward Fn in Fn iglD-vaccinated animals and toward LVS in LVS-vaccinated animals, cross-reactive antibodies to LVS or Fn and Fit were induced in vaccinated NHPs at day 30. Increases in serum antibody titers were seen against all three subspecies in Fn iglD-vaccinated NHP after challenge with Fit. Interestingly, a comparison of the individual serum antibody titers in the Fn iglD vaccinated NHPs (Fig. S7) revealed lower levels of Fn-specific serum IgG 30 days post vaccination in the animal that succumbed to disease (AO8070) than

in the 5 other animals that survived challenge. This suggests that anti-Fn antibodies may represent a correlate of protection in this model with this vaccine, although further studies with increased sample size are needed to determine this.

To determine if a humoral response to LPS OAg was induced in vaccinated NHPs, we performed Western immunoblot analyses of sera from Fn iglD- and LVS-vaccinated NHPs against purified

Figure 4. Cellular and humoral responses to Francisella spp. in vaccinated NHP. PBMCs were prepared from (A) Fn iglD- and (B) LVS-vaccinated NHPs either prior to vaccination (naive), on day 14 post-vaccination, or 30 days post Fit pulmonary challenge. 200,000 cells/well were stimulated ex vivo with UV-inactivated Fn-iglD (2×10⁵ CFU/ml equivalent) or formalin-fixed LVS (1×10⁵ CFU/ml equivalent) or left unstimulated (medium). IFNγ production was measured by ELISPOT. Assays were performed in triplicate. * indicate significantly (p<0.05; Student t test) more cells produced IFN-γ at the time point indicated as compared to levels measured from naive NHP (Day 0) using the same stimuli. Sera from Fn iglD- (C) and LVS-vaccinated (D) NHPs were analyzed pre-vaccination (naive), on days 14 and 30 post-vaccination, and 30 days post-Fit pulmonary challenge by ELISA for total Ab against whole cell killed Fn iglD, LVS, and Fit antigen. Responses of individual Fn iglD-vaccinated NHPs are shown in Fig. S7 * indicate significantly (p<0.05; Student t test) higher Ab at the time point indicated as compared to levels measured from naive NHP (Day 0) using the same stimuli. Sera from a Fn iglD- (left) and LVS-vaccinated NHP (right) were analyzed on day 30 post-vaccination for reactivity to Fn LPS and LVS LPS by Western immunoblot. Sera were from AO8245 (Fn iglD-vaccinated) and AO8090 (LVS-vaccinated), and equivalent amounts of LPS were loaded in each well.
doi:10.1371/journal.ppat.100439.g004
LPS from Fn and LVS (Fig. 4E). The serum from a Fn iglD-vaccinated NHP (AO8243; Fig. 4E) reacted strongly with Fn LPS and not at all with LVS LPS, whereas a LVS-vaccinated NHP (AO0909) reacted with LVS LPS and not at all with Fn LPS. These results again confirm that the OAg of Fn and LVS/Ftt are distinct and demonstrate that in NHP, humoral responses directed towards Fn OAg do not crossreact with Ftt (LVS) OAg, and vice versa. Moreover, the NHP humoral response in both vaccinated groups appears primarily directed to OAg associated with LPS, and not the OAg capsule, as was seen in vaccinated rats (Fig. S2).

To identify immunodominant humoral protein antigens associated with Fn iglD vaccination in rats and NHP, sera from vaccinated animals was subjected to a *Francisella* proteome microarray [27]. The 10 most reactive antigens with NHP sera at day 28 post pulmonary vaccination with Fn iglD (compared to naive NHP sera) are listed in Table 2; antigens are listed by the corresponding homologous ORF in Ftt. Comparisons are made to the immunodominant antigens with NHP sera at day 28 post subcutaneous vaccination with LVS, as well as to the immunodominant antigens with rat sera at day 28 post pulmonary vaccination with Fn iglD (compared to naive rat sera) (from Fig. 2). The immunodominant antigens identified with Fn iglD-vaccinated NHP sera that are also one of the 20 most reactive antigens with the other sera are noted with a “+” (Table 2). A comparison is also made to immunodominant antigens identified with sera from mice vaccinated with killed LVS delivered with adjuvant intramuscularly from a previous study [27]; this vaccination regimen partially protected mice (40% protection) against challenge with 6 CFU Ftt delivered subcutaneously.

It is notable that the top five immunodominant humoral protein antigens recognized by NHP vaccinated with Fn iglD via the pulmonary route are also immunodominant antigens following vaccination with Fn iglD in rats via the pulmonary route, or following vaccination with LVS (live) in NHP via the intradermal route or LVS (killed) in mice via the intramuscular route. In fact, nine of the top ten immunodominant protein antigens are shared between NHP vaccinated with either Fn iglD or LVS, and mice vaccinated with LVS (Table 2). Four of these antigens were identified as being secreted or shed during *Ft* infection of mice [28]. The immunodominant antigens reactive with either NHPs or rats vaccinated via the pulmonary route with Fn iglD shared the top five antigens in common.

All of the vaccinated NHPs and rats in these groups survived pulmonary challenge with >1000 CFU Ftt, with the exception of one NHP (AO0870). While anti-whole cell Fn humoral reactivity was lower in AO0870 (Fig. S7), humoral reactivity to these ten specific immunodominant antigens was not obviously deficient. Further studies with larger sample sizes are needed to determine if specific humoral response(s) represent correlate(s) of protection against pulmonary Ftt challenge. These results demonstrate that a core set of immunodominant antigens stimulate the humoral response during vaccination, regardless of route, animal host, or *Francisella* subspecies.

Discussion

Ftt acquired through the pulmonary route leads to serious disease with a high mortality rate in humans. Although pneumonic tularemia caused by natural Ftt infection is relatively rare, this bacterium was investigated as a bioweapon by several government programs, and the potential exists for its illicit use against human populations. Because of this, Ftt has been classified as a select biothreat agent, and efforts are underway to develop an effective vaccine against pulmonary exposure to Ftt. *Francisella* subspecies are facultative intracellular bacteria that primarily reside within cells in infected animals, and thus T cell-mediated immunity is an important component of protection against tularemia. However, humoral immunity has also been shown to contribute to protection against *Francisella* infection [29,30].

In limited studies, LVS vaccination via scarification of humans provided protection against pulmonary Ftt challenge, but the vaccine strain needed to be live rather than killed [7]. Due to questions regarding phase variation, genetic cause of attenuation, and levels of protection afforded, it is questionable whether LVS will be approved for human usage. LVS still serves as a useful model for the stimulation of protective immunity in various animal

Table 2. Immunodominant antigens reactive with Fn iglD vaccinated NHP sera.

vaccine	Fn iglD (D28)	LVS (live) (D28)	Fn iglD (D28)	LVS (killed) (D55)	Circulating antigen
route	pulmonary	intradermal	pulmonary	intramuscular	mouse
animal	NHP	NHP	rat	mouse	mouse
FT1	gene name	+	+	+	+
FT0901	*lpnA*	+	+	+	+
FT11484	*aceF*	+	+	+	+
FT1103	-	+	+	+	+
FT1139	-	+	+	+	+
FT0472	*accB*	+	+	+	+
FT1696	*groL*	+	+	+	+
FT1747	-	+	+	+	+
FT0863	-	+	+	+	+
FT0975	-	+	+	+	+
FT1636	*lolA*	+			

1Identified as an antigen that is secreted or shed into serum during *Ft* infection of BALB/c mice. doi:10.1371/journal.ppat.1004439.t002

1Identified as an antigen that is secreted or shed into serum during *Ft* infection of BALB/c mice. doi:10.1371/journal.ppat.1004439.t002
models of tularemia, and we have shown here that it stimulates protective immunity against pulmonary exposure to Ftt in cynomolgus macaques. The ability of a live attenuated Francisella strain such as LVS to protect against pulmonary Ftt exposure indicates that a genetically defined live attenuated Francisella strain may constitute the optimal tularemia vaccine, especially since no protective subunit antigens have yet been identified.

F. novicida (Fn) is closely related to _F. tularensis_[31]; although it is officially classified as a separate species, it is frequently referred to as a subspecies of _F. tularensis_ because of this close genetic relationship. Fn has generally been discounted as a potential vaccine against Ftt because although vaccination of mice with live attenuated Fn strains can induce good protection against homologous pulmonary challenge with wildlife Fn, it provides no protection against pulmonary challenge with Ftt. However, vaccination of mice with live attenuated Ftt strains also provides little protection against pulmonary challenge with Ftt, as we have shown here, suggesting that the mouse model may not be appropriate for the assessment of vaccine potential due to its extreme sensitivity to _Francisella_ infections. Indeed, mice are highly susceptible to both Fn and LVS infections, despite the low virulence of these strains in humans. We would argue that tularemia vaccine development for humans requires animal models that reflect human sensitivities to the various _Francisella_ species/subspecies.

The Fischer 344 rat reflects the relative sensitivities of humans to _Francisella_ infections, in that it is sensitive to Ftt pulmonary infections, but resistant to pulmonary Fn infections (approximately 10^4-fold difference in LD_50_ [11]). Importantly, rats that survive Fn infection are protected against subsequent pulmonary challenge with Ftt, demonstrating the efficacy of Fn as a tularemia vaccine platform in this model [11]. In the current study, utilizing the same attenuating mutation (iglD) in either the Fn or Ftt background, we showed that vaccination of rats with either Ftt _iglD_ or Fn _iglD_ strain provided protection against Ftt pulmonary challenge. This demonstrates that, at least in this model, there is no disadvantage to utilizing Fn instead of Ftt as the vaccine platform. With a single oral vaccination of Fn _iglD_ high levels of protection (83%) were achieved against pulmonary Ftt challenge. Even higher levels of protection (100%) were achieved against Ftt pulmonary challenge by a single pulmonary (intratracheal) vaccination with Fn _iglD_. We have previously shown that a Fn strain containing a different attenuating mutation (iglB) that prevents intramacrophage replication can also protect Fischer 344 rats against pulmonary Ftt challenge when administered by either pulmonary or oral vaccination [23]. The Fn _iglD_ strain used in the current study appears to induce higher levels of protection in rats, although further direct comparative studies would be needed to establish the relative protective capacities of these two potential vaccine candidates. Regardless, the successes of attenuated Fn strains to protect rats against Ftt pulmonary challenge indicate the promise of this platform in tularemia vaccine development.

Given their close genetic relatedness with humans, non-human primates are considered to be valuable models of disease, especially for vaccine development. The cynomolgus macaque is susceptible to pulmonary Ftt infection, which results in a fatal systemic disease similar to that seen in humans ([15]; manuscript in preparation). Additionally, we show here that LVS vaccination via the subcutaneous route protects these NHPs against pulmonary Ftt challenge, similar to humans. Importantly, pulmonary vaccination of cynomolgus macaques with a single dose of Fn _iglD_ also provided high levels of protection (83%) against aerosol challenge with Ftt (>1000 CFU). This is the first demonstration of efficacy of a defined live attenuated vaccine strain against aerosol Ftt exposure in a NHP. In this model, indicators of disease progression include increased respiration rate, elevated serum CRP levels, and high bacterial organ burdens. Vaccination of the NHPs with Fn _iglD_ resulted in reduction in all these indicators following pulmonary Ftt challenge, similar to vaccination with LVS.

Analyses of the sera from vaccinated animals indicated that the immunodominant protein antigens recognized by NHPs vaccinated with Fn _iglD_ were largely the same (9 of 10) as those in NHPs vaccinated with LVS, suggesting that humoral immunodominant protein antigens are conserved between Fn and Ftt/Ftt. Four of these antigens (FTT0472, FTT0975, FTT1484, FTT1656) were also identified as within the top 25 immunoreactive antigens using the same proteome microarray with convalescent sera from human patients with Ftt infections [32]. Four additional of these antigens (FTT0991, FTT1103, FTT1539, FTT0863) were identified by 2-D immunoblotting as immunoreactive with convalescent sera from human patients with Ftt infections [33]. These immunodominant antigens may provide a guide to tularemia subunit vaccine development in the future. Notably, Fn _iglD_ vaccination of NHPs induced strong reactivity to Fn LPS but no cross-reactivity to LVS/Ftt LPS, suggesting that protection against Ftt infection by this vaccine does not include antibodies against the LPS OAg.

For the near term, the Fn _iglD_ strain has several characteristics that make it an attractive tularemia vaccine candidate. First, Fn exhibits low virulence in healthy humans, making it an inherently safer vaccine platform than the high virulence Ftt and Fth strains. Second, because of the inherent low virulence, Fn is exempt from select agent status, unlike Ftt and Fth, which allows for ease of use, transport, genetic manipulation, etc, without need for high level biocontainment facilities. Third, the defined _iglD_ mutation prevents intracellular replication in permissive host cells and virulence in permissive animal models, resulting in a highly attenuated and inherently safer strain. Finally, Fn is more amenable to genetic manipulations than Ftt or Fth [34], which facilitates the further development of this vaccine platform to enhance efficacy and provide protection against heterologous antigens.

Materials and Methods

Ethics statement

This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Animal protocols involving rodents were approved by the University of Texas at San Antonio Institutional Animal Care and Use Committee (IACUC) under protocol MU009(RA). The animal protocol for NHPs was approved by the Lovelace Respiratory Research Institute IACUC under protocol FY09-126. LRRI has attending veterinarians and animal care staff that are available 24 hrs a day, 7 days a week to assist in any animal care issues. All study animals were housed individually in primate cages, and food and water were supplied _ad libitum_ except when animals were removed from their cages for study procedures. Harlan Teklad Certified 20% Monkey Diet (W) 2050C was fed to the animals daily, and for daily food enrichment, each animal received 1/4 cup of fruit or vegetable prepared by enrichment technicians. The Study Director and the Attending Veterinarian discussed the study protocol and agreed upon scientifically appropriate analgesic, anesthetics and tranquillizing drugs prior to submission of the protocol to the LRRI IACUC. All necessary efforts were made to minimize discomfort, distress, pain, or injury to study animals.
ameliorate suffering, NHPs were conditioned to a restraint collar and restraint chair for sampling, and an implanted transponder allowed for non-invasive measurement of body temperature and respiration rate by a hand-held device. NHPs were anesthetized under the guidance of a veterinarian or a registered veterinary technician (RVT) to perform the following procedures: general physical examination, collar placement, aerosol challenge and euthanasia. NHPs were kept warm while under anesthesia with delta phase heating pads. All anesthetic doses were determined from the most recent weight, and NHPs were constantly monitored for respiration and recovery by a veterinarian or RVT. Aerosol challenge doses of *F. tularensis* were delivered to anesthetized NHPs, in a head-only exposure chamber, during which they were breathing freely. The method of euthanasia selected for these studies was administration of barbiturate overdose via intravenous or intramuscular injection following notification of and authorization from the Study Director or the Attending Veterinarian. Euthanasia is always administered to overdose via intravenous or intramuscular injection following notification of and authorization from the Study Director or the Attending Veterinarian. Euthanasia is always administered to

Strains and media

The *F* *iglD* strain KKF37 [19] is isogenic with wildtype *F* strain U112 and the *F* *iglD* strain KKT8 is isogenic with wildtype *F* strain Schu S4. The *F* *iglD* strain had both copies of *iglD* (*iglD1* and *iglD2* inactivated by a Group II intron targeted to *iglD*, as described in [35]. *Francella* strains were grown in tryptic soy broth (TSB) (BD Biosciences) supplemented with 0.1% (w/v) L-cysteine (Fisher Scientific) and sodium metabisulfite (Sigma), iron broth (TSB) (BD Biosciences) was added. Sera were also evaluated by *Francella proteome microarray (Antigen Discovery Inc., [27]). Sera were analyzed for reactivity against purified *F* or LVS LPS (kind gift of J. Gunn) by Western immunoblot, utilizing either anti- rat (GE Healthcare) or anti-monkey (KPL) HRP conjugate. Each well contained either 50 μg (NHP) or 75 μg (rat) purified LPS.

Supporting Information

Figure S1 A. *F* *iglD* and *F* *iglD* strains are defective for intramacrophage replication. *F. novicida* strains U112 (wildtype) and KKF37 (*F* *iglD*), and *F. tularensis* subsp. *tularensis* strains Schu S4 (wildtype) and KKT8 (*F* *iglD*); because *F* has two copies of *iglD*, this strain is actually *iglD1* and *iglD2* were inoculated at an MOI of ~10:1 into J774 cells, and intracellular bacteria were enumerated at 3 and 24 h. The assay was performed in triplicate. *P*-value = 0.0008, **P*-value = 0.0011. B. *F* *iglD* and *F* *iglD* strains are attenuated for virulence in mice. *F. novicida* strains U112 (wildtype) or KKF37 (*F* *iglD*), and *F. tularensis* subsp. *tularensis* strains Schu S4 (wildtype) and KKT8 (*F* *iglD* were inoculated intranasally into groups of 5 female BALB/C mice and approximate LD₅₀ calculated based on survival at 30 days. All mice survived inoculation with the highest doses of *F* *iglD* (9.7×10⁶ CFU) and *F* *iglD* (4.8×10⁶ CFU).

Figure S2 Reactivity of *F* *iglD* and LVS-vaccinated rats to *F* and LVS LPS. Sera from rats vaccinated intranasally with either 10⁷ CFU *F* *iglD* (A) or 10⁷ CFU LVS (B) were collected 28 days post vaccination, and evaluated for reactivity against purified LPS. A *F* strain U112 (Fn) or Fth strain LVS by Western immunoblot.

Figure S3 Intratracheal vaccination with *F* *iglD* induces cellular immunity in rats. Fischer 344 rats (n = 5 per group) were vaccinated i.t. with 10⁷ CFU *F* *iglD* or mock-vaccinated with PBS and rested for 28 days. Rats were sacrificed and spleens collected to prepare single-cell suspensions. Splenocytes (10⁶ cells/well) were cultured in triplicate for 72 hrs with either 1 μg of unrelated antigen hen egg lysozyme (HEL), or two different doses (10⁵ or 10⁶ CFU) of UV-inactivated *F* *iglD*. Supernatants were collected and assayed by ELISA for IFN-γ production. Assays were performed in triplicate. *p* < 0.05 Student's t test. (PDF)
Figure S4 Serum markers in vaccinated NHP challenged with pulmonary Ftt. Groups of cynomolgus macaques were vaccinated with 10^9 CFU Fn iglD delivered via bronchoscopy (n = 9, open circles), or 10^8 CFU LVS delivered subcutaneously (n = 4, filled squares), or mock vaccinated (n = 4, filled triangles). 35 days post vaccination NHP were challenged with ~1000 CFU Ftt via head-only aerosol inhalation; actual presented doses were determined (Table S1). NHP were monitored at intervals shown for 30 days post-challenge for (A) blood urea nitrogen (BUN), (B) lactate dehydrogenase (LDH), (C) serum alanine transaminase (ALT), and (D) aspartate aminotransferase (AST) levels. The single Fn iglD vaccinated NHP that succumbed to pulmonary Ftt challenge was not included in A, B, C, and D. (TIFF)

Figure S5 Organ burdens of individual vaccinated NHPs at autopsy. Bacterial burdens (Ftt) were determined in spleen, lung, mesenteric lymph nodes (MesLN), liver, and tracheobronchial lymph nodes (TBLN) at the time of euthanasia for A. Ftt iglD-vaccinated and B. LVS-vaccinated NHPs. Euthanasia was at day 30 post-Ftt challenge, with the exception of animal A08070, which was euthanized on day 9 post Ftt challenge. The limit of detection ("Lo.D.") was 70 CFU/g, shown by line. (TIFF)

Figure S6 Cellular responses of individual vaccinated NHPs. PBMCs were prepared from (A) Fn iglD- and (B) LVS-vaccinated NHPs either prior to vaccination (naïve), on day 14 post-vaccination ("Fn iglD/LVS vaccinated day 14"), or 30 days post Ftt pulmonary challenge ("Fn iglD/LVS vaccinated Ftt challenge"). 200,000 cells/well were stimulated ex vivo with UV-inactivated Fn-iglD (2 x 10^6 CFU/ml equivalent) or formalin-fixed LVS (1 x 10^7 CFU/ml equivalent) or left unstimulated (medium). IFNγ production was measured by ELISPOT. Assays were performed in triplicate. Results are indicated by NHP subject number followed by stimulant. In A, insufficient PBMC collection prevented assay of A08077 and A08532 after challenge with Ftt, and A08070 did not survive Ftt challenge, thus the "Fn iglD vaccinated/Ftt challenge" values are missing from these NHPs. Dotted line indicates limit of detection (1 spot) in individual well. (TIFF)

Figure S7 Humoral responses to Francisella spp. in individual vaccinated NHPs. Sera from individual Fn iglD-vaccinated NHPs were analyzed pre-vaccination (naïve), on days 14 and 30 post-vaccination, and 30 days post-Ftt pulmonary challenge by ELISA for total Ab against whole cell killed Fn iglD, LVS, and Ftt antigen. (TIFF)

Table S1 Ftt aerosol challenge doses in NHPs. (DOCX)

Acknowledgments

We thank John Gunn for the kind gift of Fn and LVS LPS.

Author Contributions

Conceived and designed the experiments: PC ALC JJY JRB CRL JW MV. Performed the experiments: PC ALC JJY JQN JRB JW MV. Analyzed the data: PC ALC JJY JQN JRB CRL JW MV. Contributed reagents/materials/analysis tools: JRB JW BPA KEK. Wrote the paper: KEK.

References

1. Golovlev I, Baranov V, Krocova Z, Kolarova H, Spodest A (2005) An attenuated strain of the facultative intracellular bacterium Francisella tularensis can escape the phagosome of monocyte cells. Infect Immun 71: 3940–3950.
2. Barker JR, Chong A, Wohly TD, Yu JJ, Rodriguez SA, et al. (2009) The Francisella tularensis pathogenicity island encodes a secretion system that is required for phagosome escape and virulence. Mol Microbiol 74: 1459–1470.
3. Esposito CM, Bielefeldt-Ohmann H, Belisle JT (2007) Active suppression of the pulmonary immune response by Francisella tularensis Schu S4. J Immunol 178: 4538–4547.
4. Telegenov M, Golovlev I, Spodest A (2005) Francisella tularensis LVS initially activates but subsequently down-regulates intracellular signaling and cytokine secretion in mouse monocyte and human peripheral blood mononuclear cells. Microb Pathog 38: 239–247.
5. Hajjar AM, Harvey MD, Shaffer SA, Goodlett DR, Sjostedt A, et al. (2006) Lack of in vitro and in vivo recognition of Francisella tularensis subspecies lipopolysaccharide by Toll-like receptors. Infect Immun 74: 6730–6738.
6. Wu TH, Zemlye JI, Statom GL, Hutt JA, Schrader RM, et al. (2009) Vaccination of Fischer 344 rats against pulmonary infections by Francisella tularensis type A strains. Vaccine 27: 4604–4609.
7. Horneck RB, Engelsbach HT (1986) Aerogenic Immunization of Man with Live Tularemia Vaccine. Bacteriol Rev 50: 332–530.
8. Salomonsson E, Kiuoppa K, Fordun AL, Zingmark C, Golovlev I, et al. (2009) Reinroduction of two deleted virulence loci restores full virulence to the live vaccine strain of Francisella tularensis. Infect Immun 77: 3424–3431.
9. Cowlar SC, Elkins KL (2011) Immunity to Francisella. Front Microbiol 2: 26.
10. Lyons CR, Wu TH (2007) Animal models of Francisella tularensis infection. Ann N Y Acad Sci 1105: 238–265.
11. Ray HJ, Cha P, Wu TH, Lyons CR, Murphy AK, et al. (2010) The Fischer 344 rat reflects human susceptibility to Francisella tularensis pulmonary challenge and provides a new platform for virulence and protection studies. PLoS One 5: e9592.
12. Twenhafel NA, Alves DA, Purcell BK (2009) Pathology of Inhalational Francisella tularensis spp. tularensis SCHU S4 in African Green Monkeys (Chlorocebus aethiops). Vet Pathol 46: 698–706.
13. Nelson M, Laver ME, Dean RE, Savage VL, Salguero FJ, et al. (2010) Characterization of lethal inhalational infection with Francisella tularensis in the common marmoset (Callithrix jacchus). J Med Microbiol 59: 1107–1113.
14. Schircker RL, Engelsbach HT, Mitten JQ, Hall WC (1972) Pathogenesis of tularemia in monkeys aerogenically exposed to Francisella tularensis 425. Infect Immun 5: 734–744.
15. Valderras MW, Zinter E, Brasil T, Barr E, Hunt J, et al. (2009) Characterization of aerosol infection with F. tularensis Schu S4 in cynomolgus macaques and LD50 determination. 6th International Conference on Tularemia, Berlin Germany Abstract P2-29.
16. Nano FE, Zhang N, Cowley SC, Klose KE, Cheng KK, et al. (2004) A Francisella tularensis Pathogenicity Island Required for Intramacrophage Growth. J Bacteriol 186: 6430–6436.
17. Bouquier L, Lautgen H, Golovlev I, Guina T, Spodest A (2008) MdAg and IgA proteins contribute to the modulation of Francisella tularensis live vaccine strain-containing phagosomes in murine macrophages. Infect Immun 76: 3502–3510.
18. Absid MK, Ryden P, Spodest A, Stewart S (2010) Directed screen of Francisella novicida virulencia determinants using Deossophila melanogaster. Infect Immun 78: 3118–3128.
19. Santic M, Mølner M, Barker JR, Klose KE, Dekanic A, et al. (2007) A Francisella tularensis pathogenicity island protein essential for bacterial proliferation within the host cell cytosol. Cell Microbiol 9: 2391–2403.
20. Kaezm PE, Mitchell A, Polletter MR, Gallagher LA, Wasnick M, et al. (2009) Genome-wide Screen in Francisella novicida for Genes required for pulmnary and systemic infection in mice. Infect Immun 77: 232–244.
21. Weiss DS, Brotcke A, Henry T, Margols J, Chen J, et al. (2007) In vivo negative selection screen identifies genes required for Francisella virulence. Proc Natl Acad Sci U S A 104: 6037–6042.
22. Golovlev I, Twine SM, Shen H, Spodest A, Conlon W (2015) A flpB Mutant of Francisella tularensis subspecies holarctica strain FSC200 is a more effective Live Vaccine than F. tularensis LVS in a mouse respiratory challenge model of tularemia. PLoS One 6: e74671.
23. Siguraovitz AL, Ray HJ, Yu JJ, Guentzel MN, Chambers JP, et al. (2012) Murusional immunization with live attenuated Francisella novicida U112DgB protects against pulmonary F. tularensis SCHU S4 in the Fischer 344 rat model. PLoS One 7: e47639.
24. Thomas RM, Tubbh R, Oyston PC, Griffin K, Waters E, et al. (2007) The Immunologically Distinct O Antigens from Francisella tularensis subspecies holarctica and Francisella novicida are both Virulence Determinants and Protective Antigens. Infect Immun 75: 371–378.
25. Wang Q, Shi X, Leimarie N, Madico G, Sharon J, et al. (2011) A typical preparation of Francisella tularensis O-antigen yields a mixture of three types of saccharides. Biochemistry 50: 10941–10950.
26. Apicella MA, Post DM, Fowler AC, Apicella MA, Post DM, Fowler AC, et al. (2010) Identification, characterization and immunogenicity of an O antigen polysaccharide of Francisella tularensis. PLoS One 5: e11060.
27. Eyles JE, Unal B, Hartley MG, Newstead SL, Flick-Smith H, et al. (2007) Immunodominant Francisella tularensis antigens identified using proteome microarray. Proteomics 7: 2172–2183.
28. Nuti DE, Crump RB, Handayani FD, Chantratita N, Peacock SJ, et al. (2011) Identification of Circulating Bacterial Antigens by In Vivo Microbial Antigen Discovery. MBio 2: e00136-e00111.
29. Mara-Koosham G, Hutt JA, Lyons CR, Wu TH (2011) Antibodies contribute to effective vaccination against respiratory infection by type A Francisella tularensis strains. Infect Immun 79: 1770–1778.
30. Ray HJ, Cong Y, Murthy AK, Selby DM, Klose KE, et al. (2009) Oral live vaccine strain-induced protective immunity against pulmonary Francisella tularensis challenge is mediated by CD4+ T cells and antibodies, including immunoglobulin A. Clin Vaccine Immunol 16: 444–452.
31. Rohmer L, Fong C, Almmay S, Wasnick M, Larson Freeman TJ, et al. (2007) Comparison of Francisella tularensis genomes reveals evolutionary events associated with the emergence of human pathogenic strains. Genome Biol 8: R102.
32. Sundaresh S, Randall A, Unal B, Petersen JM, Belisle JT, et al. (2007) From protein microarrays to diagnostic antigen discovery: a study of the pathogen Francisella tularensis. Bioinformatics 23: i508–518.
33. Havlasova J, Hrnychova L, Halada P, Pellantova V, Krejci J, et al. (2002) Mapping of immunoreactive antigens of Francisella tularensis live vaccine strain. Proteomics 2: 857–867.
34. Zogaj X, Klose KE (2010) Genetic manipulation of Francisella tularensis. Front Microbiol 1: 142.
35. Rodriguez SA, Yu JJ, Davis G, Arulanandam BP, Klose KE (2008) Targeted inactivation of Francisella tularensis genes by group II introns. Appl Environ Microbiol 74: 2619–2626.
36. Chamberlain RE (1965) Evaluation of Live Tularemia Vaccine Prepared in a Chemically Defined Medium. Appl Microbiol 13: 232–235.
37. Zogaj X, Wyan GC, Klose KE (2012) Cyclic di-GMP Stimulates Biofilm Formation and Inhibits Virulence of Francisella novicida. Infect Immun 80: 4239–4247.