Gut in diseases: Physiological elements and their clinical significance

Lian-An Ding, Jie-Shou Li

Lian-An Ding, Department of General Surgery, Affiliated Hospital of Medical School, Qingdao University, Qingdao 266003, Shandong Province, China
Jie-Shou Li, Institute of General Surgery, Clinical Medical College of Nanjing University, Nanjing 210002, Jiangsu Province, China

Correspondence to: Lian-An Ding, Male, Associate Professor of Medical School, Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong Province, China. dlahao1q@hotmail.com
Telephone: +86-532-5646006 Fax: +86-532-2911840
Received: 2003-03-05 Accepted: 2003-06-02

Abstract
The intestinal barrier function of GI tract is very important in the body except for the function of digestion and absorption. The functional status of gut barrier basically reflects the stress severity when body suffers from trauma and various stimulations. Many harmful factors such as drugs, illnesses, trauma and burns can damage the gut barrier, which can lead to the barrier dysfunction and bacterial/endotoxin translocation. The paper discusses and reviews the concepts, anatomy, pathophysiology of gut barrier and its clinical relations.

Ding LA, Li JS. Gut in diseases: Physiological elements and their clinical significance. World J Gastroenterol 2003; 9(11): 2385-2389
http://www.wjgnet.com/1007-9327/9/2385.asp

INTRODUCTION
The gut has long been thought to be quiescent or inactive during illnesses. It has not been paid much attention and not protected just like other organs such as the heart, lung, and kidney in ICU patients. It is generally considered that biochemical metabolism of the body takes place mainly in the liver. Developments in studying technology and advances in surgical skills have led to a better understanding of nutrients metabolism, anatomic architecture and physiological functions of the gut. Gastrointestinal (GI) tract has functions not only to digest and absorb nutrients, but also to modulate systemic immunity and to prevent enteric bacterial/endotoxin’s invasion, so-called gut barrier function. Functional status of the gut sometimes determines the patients’ prognosis and recovery from diseases. Some traditional managements are not beneficial or completely harmful to intestinal barrier capability, and aggravate the primary diseases the body suffers. There is a practical significance to further study the physiological functions of GI tract. An overall understanding of the mechanisms of pathophysiological changes of the gut in illness would make us take measurable treatments to patients clinically. This review deals with a series of new concepts and advances in research of intestinal barrier that might be helpful to clinicians.

INTESTINAL BARRIER AND RELATED CONCEPTS

Intestinal barrier function
The definition of intestinal barrier function means that the gut can prevent the harmful materials in intestinal lumen such as bacteria and endotoxin from entering other aseptic organs, tissues and blood circulation through intestinal mucous membrane. The gut barrier is chiefly composed of three components: mucous epithelia, intestinal flora, and secreting immunoglobulin and gut associated lymphatic tissues (GALT)\(^1\), namely the ecological barrier (normal inhabitant flora within intestine), mechanical barrier (mucous epithelia) and immune barrier (or secreting IgA, miscellaneous immune cells including intraepithelial lymphocytes and macrophages, neutrophils, natural killer cells underlying the mucous membrane, Payer’s nodes and mesenteric lymph node). Among them mucous epithelium is the most important one that establishes a mechanical barrier between the lumen and blood circulation. The gut barrier in general term means this structural epithelia\(^2,3\).

Architecture of intestinal barrier
There are two pathways for materials in the lumen when entering into the blood circulation through mucous membrane. One is the transcellular route, the other is the paracellular route, which occupies 5 % of the total intestinal surface area. These two configurations are the main constituents of epithelial barrier\(^4,5\). It is considered that there are dispersively nonpolarized holes which are full of water and have a radius of 0.3-0.8 nm on the top of villous cells and a tight-junction of 0.95 nm in radius between villous cells. Substances with different sizes of radius get across intestinal epithelia through transcellular or paracellular way when entering into the body. Molecules smaller than 0.3-0.8 nm in radius could enter into the mucous membrane through these holes. Molecules bigger than those such as disaccharides (lactulose and cellobiose etc) and \(^{51}\)Cr-EDTA seem to enter into epithelia through paracellular tight-junctions. Based on this mechanism the intestinal permeability is measured by combining the smaller (such as monosaccharide) and bigger molecules (such as disaccharide) clinically and experimentally\(^5,6,7\). The two accesses are influenced by alterations of absorbing intestinal area. Substances absorbed by the intestine would reduce after atrophy of villi or bowel resection\(^5,7\).

Bacterial translocation
Bacteria come into aseptic tissues from the bowel lumen through mucosal barrier and colonize in tissues such as mesenteric lymph node, liver, spleen and blood. This process is called bacterial translocation (BT). Studies in experimental rodents showed that translocated bacteria seen most oftenly within intact epithelial cells were Candida, E. coli, Proteus mirabilis, Enterococcus faecalis and so on, whereas E. coli was common and anaerobes and fungi were rare in human beings\(^1,8\). Endotoxin could pass through bowel wall into the body easier than bacteria in the lumen\(^9\).

Mechanisms of intestinal barrier damage
Hunger, malnutrition and longer parenteral nutrition could cause intestinal mucosa atrophy and impair the mechanical bowel barrier\(^1,2,3,10,11\). Shock, ischemia/reperfusion damage, endotoxin of bacteria are the factors that lead to deterioration of intestinal barrier\(^4,9\). It was found that changes in
prostaglandin and related enzymes—Ca++ and cAMP system
within cells affected significantly the structure of gut barrier.
Non-steroid anti-inflammatory drugs (NSAIDs) could destroy
the system and increase the intestinal permeability. Thus it
caused bacteria/endotoxin translocating from intestinal lumen
into blood circulation and other aseptic tissues, and sepsis
would ensue[22,6]. Because of the increments of intestinal
permeability, a series of alterations occurred, such as edema
of tissues underlaid mucous membrane, microvasculature
compression, stasis of blood circulation and thrombosis in
microvasculature system. These patho-physiological changes
impaired the microvasculature underlaid mucosa and
aggravated further the damage of mucosal barrier[22]. Animal
experiments showed that treatment with non-steroid anti-
inflammatory drugs in aseptic rats did not cause impairment
of intestinal mucous membrane. The clinical symptoms were
remitted evidently by treatment with metronidazol to human
bowel lesions caused by NSAIDs[11]. Managements with
antibiotics in rats (it decreased the bacteria load within the
intestine) also prevented NSAIDs from inducing intestine
inflammation. In addition, the method of fasting for reducing
bacterial antigen in alimentary tract could counteract inflammatory
intestinal lesions that caused by NSAIDs either[2,14]. Studies
showed that factors causing alterations in hormones secreted
by mucous enterocytes and changes of related enzymatic
system caused damage of intestinal barrier, and the enteric
bacteria and endotoxin reinforced the damage. Prabhu et al[15]
concluded from researches in rats that surgical stress in the
small intestine caused structural and functional alterations in
the brush border membrane (BBM) through oxidative stress
which could affect gut barrier integrity and the generation of
arachidonic acid, might mediate distal organ dysfunction.
Activation of phospholipase A2 during the process was
considered as a pivotal step. Other investigations discovered
that the increment of intestinal permeability was mainly
due to the relaxation of the tight-junction between intestinal
epithelial cells, indicating that there are close connections
between changes in tight-junction and cytoskeleton. Any drugs
or chemical materials that could impact on cytoskeleton such as
lipopolysaccharide, growth factors, cytokines, and hormones,
would affect the intestinal permeability[16].

Nitric oxide and intestinal barrier
Nadler et al[12] considered that various insults working on
human body could cause overexpression of inducible nitric
oxide synthase (iNOS) and hence a redundant production of
nitrite oxide (NO) occurred. This higher concentration of NO
could lead to deposition of protein salts of nitrite-peroxide (and
nitric-peroxide) on mitochondrial membrane, impair
mitochondrial membrane potential (or permeability) or
decrease ATP production. It would destroy the cellular
respiratory function and aggravate cellular apoptosis, thus
resulting in a breakage in mucous epithelium continuity and
“bare area”. Bacteria entering through the “bare area”, so-called
bacterial translocation takes place. A number of researches
have shown that endotoxin increases NO over-production with
intestinal barrier damages[17-20]. Our animal experiments
confirmed this finding (data not published).

Gut is a central organ for surgical stress
The gut has long been thought to be quiescent or inactive during
illnesses[29]. A large number of animal experiments and clinical
investigations have suggested that functional changes in
gastrointestinal mucous membrane occur during illness.
Bacteria and endotoxin within the lumen enter into the other
aseptic tissues and blood circulation through disordered
functional and/or disorganized structural mucous epithelia,
which influence greatly on occurrence, progress and
transformation of illnesses[1-4,10,12,20-30]. In recent decades based
on large amounts of animal experiments and clinical investigations,
a series of new functions concerning gut metabolism and
nutrition, intestinal barrier and immunity function, have been
recognized. Following the elucidation on mechanisms of
systemic inflammatory response syndrome (SIRS) and
multiple-organ dysfunction syndrome (MODS)[11,37], the
action of the gut as a central organ for surgical stress has also
been put forward[29,30,32,35]. It is now known that the
gastrointestinal tract contains about 50% of reticular endothelia
and other immune cells, and occupies about 80% of the total
humoral immunity of a human body. It is therefore the largest
immune organ of the body[22-35]. Various insults such as trauma,
burn, infection, shock, ischemia/reperfusion, irradiation
therapy, chemical therapeutic medicines, and SIRS, could
directly or indirectly cause an overgrowth of bacteria in bowel
and lead to deterioration of intestinal barrier. Hence
translocation of enteric bacteria and/or endotoxin, SIRS, sepsis
and even MODS ensue[18-20], suggesting that the function of
the gut in illness determines the patient’s prognosis[38, 41].
Based on this theory and clinical practice above, Wilmore et al put
forward that gut was a reservoir of pathogens in illness and a
central organ for surgical stress[29, 41]. This has been accepted
by most scholars[8,38].

EVALUATION OF GUT BARRIER
There are many ways for measuring intestinal barrier function,
but no one is perfect. Three regular approaches are often used
to measure the function of gut barrier. The first is to examine
the morphologies of mucous membrane such as thickness of
mucosa, depth of crypts, architecture of villi, proliferating
cellular nuclear antigen (PCNA) and intraepithelial
lymphocytes (IELs). The second is to test translocation of
bacteria/endotoxin, or bacteria growth and endotoxin
concentration in mesenteric lymph node (MLN), liver, spleen,
portal vein and/or systemic circulation. The third is to measure
intestinal permeability[5,6], which is often carried out by using
some labeling substances in experimental and clinical
researches. Such substances could be water-soluble, nontoxic,
and freely permeated through numerous small ‘ water pores’
in the cell membranes of mucosal enterocytes. There is few or
no such substances in body tissues that could not be
metabolized. They should be excreted rapidly in an easily
measured form. The substances matching with conditions
mentioned above are lactulose, mannitol, 51Cr-EDTA, PEG400
and inulin[25,62]. The approaches that are most frequently used
to examine intestinal permeability are the two-sugar test, or
lactulose/mannitol test. There are two pathways for the
substances to get across the bowel mucous membrane,
transcellular (through plasma membrane of enterocyte in the
tip) and paracellular (the tight-junction between cells) routes.
Smaller molecular substances (such as monosaccharide) pass
through enterocytes by transcellular route, whereas bigger
molecules (such as disaccharide) get across enterocytes by
paracellular pathway. Thus, the increase of small intestinal
permeability reflects the “leakage degree” of mucous
enterocytes[2,17].

DISEASES AND FACTORS CAUSING GUT BARRIER
DYSFUNCTION
Any insults that lead to an overgrowth of enteric bacteria, an
impairment of immune defence function and a damage to
mechanical barrier of the gut would result in disorders of the
intestinal barrier, and bacteria/endotoxin translocation would
ensue[1-4,6,10,11,27]. Followings are the causes that lead to an
increase of intestinal permeability.

...
Infection
This includes intestinal and intraperitoneal infections[38] and infections out of the intestinal tract (such as pneumonia)[43].

Parenteral nutrition
The issue has been confirmed by many animal experiments and clinical researches[10,11,21,25,44,45]. The reason is that 70 % of nutrients are absorbed directly from gut lumen, whereas only 30 % is provided by arterial blood supply[41]. Thus parenteral nutrition makes intestinal mucous membrane in a hunger state and leads to gut mucosa atrophy.

Malnutrition
Malnutrition could cause atrophy of intestinal mucosa, an insufficiency of protein synthesis and deficiency of body immunity. These would impair the gut barrier[13-27,28,32,34].

Overgrowth of enteric bacteria
Drugs or infection caused by some pathogens could lead to the overgrowth of intestinal bacteria and hence injures the gut barrier[3,27,39,65,46].

Endotoxin
Endotoxin could increase NO production in the body and lead to impairment of intestinal barrier function[27,46,47]. Our animal experiments were in accordance with this (not shown).

Surgical stress
Various injuries such as burn/scald[10], organ transplantation (reperfusion injury), surgery and trauma[46,50], haemorrhagic shock and many other insults that lead to SIRS, would bring about an increment of intestinal permeability and damage of gut barrier[4,21].

Drugs
Oral administration of castor oil would cause a physical damage of intestinal mucous membrane in mice. Diabetes mellitus induced by streptozotocin in mice caused an overgrowth of enteric bacteria and an immunity injury of the body. Cyclooxygenase inhibitors of prostaglandin such as meclofen acid block production of prostacyclin in bowel mucous membrane, which increases the permeability of mucous epithelium and bacterial translocation[4,11]. It can also bring about intestinal pathological changes[43,51]. Immunosuppressive agents such as chemotherapy drugs, anti-transplant rejection drugs[4,52], and antiacidics can destroy gut mucosal barrier[51].

Multiple illnesses
Various abdominal diseases could cause an increase of intestinal permeability. One of these is inflammatory bowel disease (IBD)[21,42]. Others are intestinal obstruction, biliary block[4,9], leukemia, endotoxemia, parenteral and enteral nutrition[1,4,10,11].

Physical injury
It includes radioactive intestinal damage[54].

AGENTS DECREASING INTESTINAL PERMEABILITY
Enteral nutrition could alleviate intestinal atrophy of mucous membrane during stress and could lower gut permeability, improve mucosal immunity. These have been confirmed by experiments and clinical practices[11,13,37]. Treatments with some special nutrients or immune-modulating drugs for patients with parenteral nutrition could also ameliorate intestinal barrier function[23,3,21].

Glutamine
Except for nutrient digestion and absorption, one of the functions of intestinal mucosa is to prevent enteric bacteria and endotoxin from entering into other parts and blood circulation of the body. It is now considered that gut barrier dysfunction is an important cause for infectious complications when patients suffer from hyper-metabolism after surgery and trauma[4,4,10,27,29,31]. It is still unclear what pathological mechanisms lead to gut barrier failure. It is taken for granted that two important factors causing intestinal barrier failure are the damage of intestinal blood supply and the lack of nutrient support[21]. It has been discovered from animal models and septic patients that the state is associated with insufficiency of perfusion (including disorders of microcirculation) and lack of essential nutrients (including glutamine) in their mucosa[2,21]. Except for antimicrobial therapy of selective decontamination aiming at getting rid of enteric pathogens, it has been carried out to protect gut barrier function from being injured or have been injured in patients threatened by enterogenous infection. A promising approach is to use glutamine parenterally, which is an essential nutrient for the gut in stress and decreases sharply in illness. A series of experiments and clinical researches showed that nutritional support supplemented with glutamine could improve gut barrier function and enhance the body immunity[8,10,21,32,34,42,44,55-58].

Glutamine exerts its effects on the body in many ways. It supplies fuels for mucous enterocytes and strengthens the barrier structure of the gut on the one hand, and increases secretion of IgA by regulating IL-4 and IL-10 on the other hand, thus preventing enteric bacteria from adhesion to intestinal mucosa and subsequent bacterial translocation[20].

Arginine
Arginine influences the body immune system extensively. First, it is the precursor of polyamines and nucleic acids, which are essential for cell hyperplasia and differentiation. Second, it can produce hydroxyproline through metabolism to promote collagenation. Third, it can stimulate different human cells to secrete hormones such as growth hormone, glyagon, insulin-like growth factor 1 and insulin etc., which have various effects on the immune reactions of the body. In addition, arginine is also a precursor of nitric oxide, an important immune molecule[12,44], and has functions to kill bacteria, protect or impair intestinal barrier[32,44,60,61]. Some scholars reported that arginine could alleviate the secondary damage of gut barrier[60,63], whereas others held a completely different opinion, which had also confirmative evidences[50,64]. Further investigations on the effects and mechanisms of arginine on the body are needed.

Recombinant human growth hormone (rhGH)
Growth hormone has many biological functions[22,44,64-66]. It could decrease intestinal permeability and improve gut barrier function in illness[19,58,69-71]. Possible mechanism of this may be that it promotes hyperplasia of intestinal epithelia[72], or enhances the mechanical barrier of mucous membrane.

Insulin-like growth factor-(IGF-I)
The main effects of IGF-I on the body are basically the same as rhGH[73,74]. It promotes hyperplasia of mucous membrane of the intestine, and increase the uptake and utilization of glutamine by the bowel when in sepsis[50].

Nucleic acid
Kishibuchi et al[75] observed the alterations of cellular ultrastructure under electronic microscope, variations of intestinal permeability and changes of protease in bowel...
mucous membrane, which showed that intestinal barrier function was significantly improved.

Others

Epidermal growth factors (EGF) have positive effects on the proliferation of mucous epithelium[16].

REFERENCES

1. MacFie J. Enteral versus parenteral nutrition: the significance of bacterial translocation and gut-barrier function. *Nutrition* 2000; 16: 606-611
2. Mohajer B, Ma TY. Eicosanoids and the small intestine. *Prostaglandins Other Lipid Mediat* 2000; 61: 125-143
3. Van Der Huist RR, Von Meyenfeldt MF, Van Kleel BK, Thunnissen FB, Brummer RJ, Arends JW, Soeters PB. Gut permeability, intestinal morphology, and nutritional depletion. *Nutrition* 1998; 14: 1-6
4. Berg RD. Bacterial translocation from the gastrointestinal tract. *Trends in Microbiol* 1995; 3: 149-154
5. Daugherty AL, Mnsry RJ. Regulation of the intestinal epithelial paracellular barrier. *Pharm Sci Technol Today* 1999; 2: 281-287
6. Travis S, Menges I. Intestinal permeability: functional assessment and significance. *Clin Sci* 1992; 82: 471-489
7. Bijlsma PB, Peeters RA, Groot JA, Dekker PR, Taminiau JA, Van Der Meer R. Differential in vivo and in vitro intestinal permeability to lactulose and mannitol in animals and humans: a hypothesis. *Gastroenterology* 1995: 108: 687-696
8. MacFie J, O’Boyle C, Mitchell CJ, Buckley PM, Johnstone D, Sudworth P. Gut origin of sepsis: a prospective study investigating associations between bacterial translocation, gastric microflora, and septic morbidity. *Gut* 1999; 45: 223-228
9. Van Deventer SJ, ten Cate JW, Tytgat GN. Intestinal endotoxemia. Clinical significance. *Gastroenterology* 1988; 94: 825-831
10. Sugita T, Tashiro Y, Yamamori H, Takagi K, Hayashi N, Itoishi T, Toyoda Y, Sano W, Nitta H, Hirano J, Nakajima N, Ito I. Effects of total parenteral nutrition on endotoxin translocation and extent of the stress response in burned rats. *Nutrition* 1999; 15: 570-575
11. Kompan L, Kremvkar B, Gadzijev E, Prosek M. Effects of early enteral nutrition on intestinal permeability and the development of multiple organ failure after multiple injury. *Intensive Care Med* 1999; 25: 157-161
12. Nadler EP, Ford HR. Regulation of bacterial translocation by nitric oxide. *Pediatr Surg Int* 2000; 16: 165-168
13. Bjarnason I, Hayllar J, Smarturst P, Price A, Gumpel MJ. Mesenteric ischemia reduces intestinal inflammation and blood loss in non-stereoidal anti-inflammatory drug induced enteropathy. *Gut* 1992; 33: 1204-1208
14. Robert A, Asano T. Resistance of germ free rats to indomethacin-induced intestinal lesions. *Prostaglandins* 1977; 14: 331-341
15. Prabhu R, Anup R, Balasubramanian K. Surgical stress induces phospholipid degradation in the intestinal brush border membrane. *J Surg Res* 2000; 94: 178-184
16. Gasbarrini G, Montalto M. Structure and function of tight junctions. Role in intestinal barrier function. *Ital Gastroenterol Hepatol* 1999; 31: 481-488
17. Dickinson E, Tuncer R, Nadler E, Boyle P, Alber S, Watkins S, Ford H. NOx, a novel nitric oxide scavenger, reduces bacterial translocation in rats after endotoxin challenge. *Am J Physiol* 1999; 277(6 Pt1): G1281-G1287
18. Unno N, Wada H, Imafumi M, Tytgat SH, Larkin V, Smith M, Morin MJ, Chavez A, Hodin RA, Fink MP. Inhibition of inducible nitric oxide synthase ameliorates endotoxin-induced gut mucosal dysfunction in rats. *Gastroenterology* 1997; 113: 1246-1257
19. Mishima S, Xu D, Deitch EA. Increase in endotoxin-induced mucosal permeability is related to increased nitric oxide synthase activity using the Ussing chamber. *Crit Care Med* 1999; 27: 880-886
20. Forsythe RM, Xu DZ, Lu D, Deitch EA. Lipopolysaccharide-induced enterocyte-derived nitric oxide induces intestinal monolayer permeability alterations. *Shock* 2002; 17: 180-184
21. Foitik T, Kruischewski M, Kreeton AJ, Hohzu HG, Eibl G, Buhr HJ. Does glutamine reduce bacterial translocation? A study in two animal models with impaired gut barrier. *Int J Colorectal Dis* 1999; 14: 143-149
22. Elizaguirre I, Aldazabal P, Barrena MJ, Garcia-Arenzana JM, Ariz C, Candelas S, Tovar JA. Effect of growth hormone on bacterial translocation in experimental short-bowel syndrome. *Pediatr Surg Int* 1999; 15: 160-163
23. O’Boyle CJ, MacFie J, Dave K, Sagar PS, Poon P, Mitchell CJ. Alterations in intestinal barrier function do not predispose to translocation of enteric bacteria in gastroenterologic patients. *Nutrition* 1998; 14: 358-362
24. Heys SD, Ashkanani F. Glutamine. *Br J Surg* 1999; 86: 289-290
25. Piiero A, van Saene HK, Donnell SC, Hughes J, Ewan C, Nunn AJ, Lloyd DA. Microbial translocation in neonates and infants receiving long-term parenteral nutrition. *Arch Surg* 1996; 131: 176-179
26. O’Dwyer ST, Michie HR, Ziegler TR, Revhaug A, Smith MJ, Wilmore DW. A single dose of endotoxin increases intestinal permeability in healthy humans. *Arch Surg* 1988; 123: 1459-1464
27. Deitl EA, Ma WJ, Ma L, Berg RD, Specian RD. Protein malnutrition predisposes to inflammatory-endotoxin-induced gut-origin septic states. *Ann Surg* 1990; 211: 560-567
28. Welsh FK, Farmery SM, McLennan K, Sheridan MB, Barclay GR, Guilou PJ, Reynolds JV. Gut barrier function in malnourished patients. *Gut* 1998; 42: 396-401
29. Wilmore DW, Smith R, O’Dwyer ST, Jacobs DO, Ziegler TR, Wang XD. The gut: a central organ after surgical stress. *Surgery* 1998; 104: 917-923
30. Marshall JC, Christou NV, Meakins JL. Immunomodulation by altered gastrointestinal tract flora. The effects of orally administered, killed Staphylococcus epidermidis, Candida, and pseudomona in systemic immune response. *Arch Surg* 1988; 123: 1465-1469
31. Bengmark S, Gianotti L. Nutritional support to prevent and treat multiple organ failure. *World J Surg* 1996; 20: 474-481
32. Hulswe KW, Vanacker BA, Von Meyenfeldt MF, Soeters PB. Nutritional depletion and dietary manipulation: effects on the immune response. *World J Surg* 1999; 23: 535-544
33. Goris RJ, te Boekhorst TP, Nuytten JC, Gimbrelre JS. Multiple organ failure. Generalized autodestructive inflammation? *Arch Surg* 1985; 120: 1109-1115
34. McCauley R, Kong SE, Heed K, Hall JC. The role of glutaminase in the small intestine. *Int J Biochem Cell Biol* 1999; 31: 405-413
35. Brandtzæg P, Halstensen TS, Kett K, Krajci P, Kvale D, Rognum TO, Scott H, Sollid LM. Immunobiology and immunopathology of human gut mucosa: humoral immunity and intraepithelial lymphocytes. *Gastroenterology* 1998; 97: 1562-1584
36. Alverdy J, Stern E, Poticha S, Baunoch D, Adrian T. Cholecystokinin modulates mucosal immunoglobulin A function. *Surgery* 1997; 122: 386-393
37. Keith Hanna M, Zarzaur BL Jr, Fukatsu K, Chance DeWitt R, Renegar KB, Sherrell C, Wu Y, Kudsk KA. Individual neuropeptides regulate gut-associated lymphoid tissue integrity, intestinal immunoglobulin A levels, and respiratory antibacterial immunity. *J Parenter Enteral Nutr* 2000; 24: 261-269
38. Marshall JC, Christou NV, Meakins JL. Small-bowel bacterial overgrowth and systemic immunosuppression in experimental peritonitis. *Surgery* 1988; 104: 404-411
39. Fukushima R, Saito H, Inoue T, Fukatsu K, Inaba T, Han I, Fukurakawa S, Lin MT, Muto T. Prophylactic treatment with growth hormone and insulin-like growth factor I improve systemic bacterial clearance and survival in a murine model of burn-induced sepsis. *Burns* 1999; 25: 425-430
40. Swank GM, Deitch EA. Role of the gut in multiple organ failure: bacterial translocation and permeability changes. *World J Surg* 1996; 20: 411-417
41. Carrico CJ, Meakins JL, Marshall JC, Fry D, Maier RV. Multiple-Organ-Failure Syndrome. *Arch Surg* 1986; 121: 196-208
42. Juby LD, Rothwell J, Axon AT. Lactulose mannitol test: an ideal screen for celiac disease. *Gastroenterology* 1989; 96: 79-85
43. Yu P, Martin CM. Increased gut permeability and bacterial translocation in pseudomonas pneumonia-induced sepsis. *Crit Care Med* 2001; 29: 2573-2577
44. Ziegler TR. Leader LM, Jonas CR, Griffith DP. Adjunctive therapies in nutritional support. *Nutrition* 1997; 13 (9 Suppl): 645-725
45. Pappo I, Polacheck I, Zmora O, Feigin E, Freund HR. Altered
gut barrier function to candida during parenteral nutrition. Nutrition 1994; 10: 151-154

46 Mishima S, Xu D, Lu Q, Deltch EA. Bacterial translocation is inhibited in indubible nitric oxide synthase knockout mice after endotoxin challenge but not in a model of bacterial overgrowth. Arch Surg 1997; 132: 1190-1195

47 Steinberg SJ, Flynn W, Kelly K, Bitzer L, Sharma P, Gutierrez C, Baxter J, Lakka D, Sands A, Van Liew J, Hassett J, Price R, Beam T, Flint L. Development of a bacteria-independent model of the multiple organ failure syndrome. Arch Surg 1989; 124: 1390-1395

48 Reynolds JF, Kanwar S, Welsh FK, Windsor AC, Murchan P, Barday GR, Guillou PJ. Does the route of feeding modify gut barrier function and clinical outcome in patients after major upper gastrointestinal surgery? J Parenter Enteral Nutr 1997; 21: 196-201

49 Anup R, Aprana V, Pullomidou A, Balasubramanian KA. Surgical stress and the small intestine: Role of oxygen free radicals. Surgery 1999; 125: 560-569

50 Baue AE. The role of the gut in the development of multiple organ dysfunction in cardiothoracic patients. Ann Thorac Surg 1993; 55: 822-829

51 Allison MC, Howatson AG, Torrance CJ, Lee FD, Russell RI. Gastrointestinal damage associated with the use of nonsteroidal anti-inflammatory drugs. N Engl J Med 1992; 327: 749-754

52 Nakamaru M, Masubuchi Y, Narimatsu S, Awasu S, Horie T. Evaluation of damaged small intestine of mouse following methotrexate administration. Cancer Chemother Pharmacol 1998; 41: 98-102

53 Basaran UN, Celayir S, Eray N, Oztuck R, Senyuz OF. The effect of an H2-receptor antagonist on small-bowel colonization and bacterial translocation in newborn rats. Pediatr Surg Int 1998; 13: 118-120

54 Vazquez I, Gonzalez-Segura IA, Grande AG, Escribano A, Gonzalez-Gancedo P, Gomez A, Diez R, De Miguel E. Protective effect of enriched diet plus growth hormone administration on radiation-induced intestinal injury and on its evolutionary pattern in the rat. Dig Dis Sci 1999; 44: 2350-2358

55 Van Deursten RR, Van Kreel BK, Von Meyenfeldt MF, Brummer RJ, Arends JW, Deutz NE, Soeters PB. Glutamine and the preservation of gut integrity. Lancet 1993; 341: 1363-1365

56 Burke DJ, Averdy JC, Aoyos E, Moss GS. Glutamine-supplemented total parenteral nutrition improves gut immune function. Arch Surg 1989; 124: 1396-1399

57 Li JY, Lu Y, Hu S, Sun D, Yao YM. Preventive effect of glutamine on intestinal barrier dysfunction induced by severe trauma. World J Gastroenterol 2002; 8: 168-171

58 Gu Y, Wu ZH. The anabolic effects of recombinant human growth hormone and glutamine on parenterally fed, short bowel rats. World J Gastroenterol 2002; 8: 752-757

59 Kudsk KA, Wu Y, Fukushima K, Zarzaur BL, Johnson CD, Wang R, Hanna MK. Glutamine-enriched total parenteral nutrition maintains intestinal interleukin-4 and mucosal immunoglobulin A levels. J Parenter Enteral Nutr 2000; 24: 270-275

60 Moncada S, Higgs EA. Endogenous nitric oxide: physiology, pathology and clinical relevance. Eur J Clin Invest 1993; 21: 363-374

61 Nadler EP, Ford HR. Regulation of bacterial translocation by nitric oxide. Pediatr Surg Int 2000; 16: 165-168

62 Hutcheson IR, Whittle BJ, Boughton-Smith NK. Role of nitric oxide in maintaining vascular integrity in endotoxin-induced acute intestinal damage in the rat. Br J Pharmacol 1990; 101: 815-820

63 Brooks EC, Mahr NN, Radisavljevic Z, Jacobson ED, Terada LS. Nitric oxide attenuates and xanthine oxidase exaggerates lung damage-induced gut injury. Am J Physiol 1997; 272(4Pt1): G845-852

64 Mishima S, Xu D, Deltch EA. Increase in endotoxin-induced mucosal permeability is related to increased nitric oxide synthesis activity using the Ussing chamber. Crit Care Med 1999; 27: 880-886

65 Tritos NA, Mantzoros CS. Recombinant human growth hormone: old and novel uses. Am J Med 1998; 105: 44-57

66 Inoue Y, Copeland EM, Souba WW. Growth hormone enhances amino acid uptake by the human small intestine. Ann Surg 1994; 219: 715-724

67 Byrne TA, Morrissey TB, Nattakom TV, Ziegler TR, Wilmore DW. Growth hormone, glutamine, and a modified diet enhance nutrient absorption in patients with severe short bowel syndrome. J Parenter Enteral Nutr 1995; 19: 296-302

68 Zhou X, Li YX, Li N, Li JS. Effect of bowel rehabilitative therapy on structural adaptation of remnant small intestine: animal experiment. World J Gastroenterol 2001; 7: 66-73

69 Scopa CD, Kourelas S, Tsamandas AC, Spirooulpoulos L, Alexandrides T, Filos KS, Vagianos CE. Beneficial effects of growth hormone and insulin-like growth factor I on intestinal bacterial translocation, endotoxemia, and apoptosis in experimentally jaundiced rats. J Am Coll Surg 2000; 190: 423-431

70 Baltskard L, Unneberg K, Mjaaland M, Jønsen TG, Rehauge A. Growth hormone and insulin-like growth factor 1 promote intestinal uptake and hepatic release of glutamine in sepsis. Ann Surg 1998; 228: 131-139

71 Chen K, Neezu R, Inoue M, Wasa M, Iiboshi Y, Fukuzawa M, Kamata S, Takagi Y, Okada A. Beneficial effects of growth hormone combined with parenteral nutrition in the management of inflammatory bowel disease: An experimental study. Surgery 1997; 14: 212-218

72 Zhou X, Li N, Li JS. Growth hormone stimulates remnant small bowel epithelial cell proliferation. World J Gastroenterol 2000; 6: 909-913

73 Huang KF, Chung HD, Herndon DN. Insulinlike growth factor 1 (IGF-1) reduces gut atrophy and bacterial translocation after severe burn injury. Arch Surg 1993; 128: 47-53

74 Chen K, Okuma T, Okamura K, Tabira Y, Kaneko H, Miyachi Y. Insulin-like growth factor-I prevents gut atrophy and maintains intestinal integrity in septic rats. J Parenter Enteral Nutr 1995; 19: 119-124

75 Kishibuchi M, Tsujinaka T, Yano M, Morimoto T, Iijima S, Ogawa A, Shiozaki H, Monden M. Effects of nucleosides and a nucleotide mixture on gut mucosal barrier function in parenteral nutrition in rats. J Parenter Enteral Nutr 1997; 21: 104-111

76 Chen DL, Wang WZ, Wang JY. Epidermal growth factor prevents gut atrophy and maintains intestinal integrity in rats with acute pancreatitis. World J Gastroenterol 2000; 6: 762-765

Edited by Zhang JZ and Wang XL