Fast Hamiltonian Sampling for large scale structure inference

Jens Jasche 1, Francisco S. Kitaura 2

1 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild Straße 1, D-85748 Garching, Germany
2 SISSA, Scuola Internazionale Superiore di Studi Avanzati, via Beirut 2-4, I-34014 Trieste, Italy

Submitted to MNRAS 21-Sept-2009

ABSTRACT
In this work we present a new and efficient Bayesian method for nonlinear three dimensional large scale structure inference. We employ a Hamiltonian Monte Carlo (HMC) sampler to obtain samples from a multivariate highly non-Gaussian lognormal Poissonian density posterior given a set of observations. The HMC allows us to take into account the nonlinear relations between the observations and the underlying density field which we seek to recover. As the HMC provides a sampled representation of the density posterior any desired statistical summary, such as the mean, mode or variance, can be calculated from the set of samples. Further, it permits us to seamlessly propagate non-Gaussian uncertainty information to any final quantity inferred from the set of samples. The developed method is extensively tested in a variety of test scenarios, taking into account a highly structured survey geometry and selection effects. Tests with a mock galaxy catalog based on the millennium run show that the method is able to recover the filamentary structure of the nonlinear density field. The results further demonstrate the feasibility of non-Gaussian sampling in high dimensional spaces, as required for precision nonlinear large scale structure inference. The HMC is a flexible and efficient method, which permits for simple extension and incorporation of additional observational constraints. Thus, the method presented here provides an efficient and flexible basis for future high precision large scale structure inference.

Key words: large scale – reconstruction – Bayesian inference – cosmology – observations – methods – numerical

1 INTRODUCTION
Modern large galaxy surveys allow us to probe cosmic large scale structure to very high accuracy if the enormous amount of data can be processed and analyzed efficiently. Especially, precision reconstruction of the three dimensional density field from observations poses complex numerical challenges. For this reason, several reconstruction methods and attempts to recover the underlying density field from galaxy observations have been presented in literature (see e.g. Bertschinger & Dekel 1989, 1991; Lahav et al. 1994; Hoffman 1994; Fisher et al. 1995; Bistolas & Hoffman 1998; Webster et al. 1997; Schmoldt et al. 1999; Zaroubi 2002; Erdoğdu et al. 2004; Kitaura et al. 2009; Jasche 2009). Recently, Kitaura et al. (2009) presented a high resolution Wiener reconstruction of the Sloan Digital Sky Survey (SDSS) matter density field, and demonstrated the feasibility of precision large scale structure analysis. The Wiener filtering approach is based on a linear data model, which takes into account several observational effects, such as survey geometry, selection effects and noise (Kitaura & Enßlin 2008, Kitaura et al. 2009, Jasche 2009). Although, the Wiener filter has proven to be extremely efficient for three dimensional matter field reconstruction, it still relies on a Gaussian approximation of the density posterior. While this is an adequate approximation for the largest scales, precision recovery of nonlinear density structures may require non-Gaussian posteriors. Especially, the detailed treatment of the non-Gaussian behavior and structure of the Poissonian shot noise contribution may allow for more precise recovery of poorly sampled objects. In addition, for a long time it has been suggested that the fully evolved nonlinear matter field can be well described by lognormal statistics (see e.g. Hubble 1934; Peebles 1980; Coles & Jones 1991; Gaztanaga & Yokoyama 1993; Kayo et al. 2001). These discussions seem to advocate the use of a lognormal Poissonian posterior for large scale structure inference. Several methods have been proposed to take into account non-Gaussian density posteriors (see e.g. Saunders & Ballinger 2000; Kitaura & Enßlin 2008; Enßlin et al. 2008; Kitaura et al. 2009).

However, if the recovered nonlinear density field is to be used for scientific purposes, the method not only has to provide a single estimate, such as a mean or maximum a posteriori reconstruction, but it should also provide uncertainty information, and the means to nonlinearly propagate this uncertainty to any final quantity inferred from the recovered density field.

For this reason, here we propose a new Bayesian method for nonlinear large scale structure inference. The developed computer program HADES (HAmiltonian Density Estimation and Sampling) explores the posterior distribution via an Hamiltonian Monte Carlo (HMC) sampling scheme. Unlike conventional Metropolis Hastings algorithms, which move through the parameter space by a
random walk, and therefore require prohibitive amounts of steps to explore high dimensional spaces, the HMC sampler suppresses the random walk behavior by introducing a persistent motion of the Markov chain through the parameter space (Duane et al. 1987; Neal 1993, 1996). In this fashion, the HMC sampler maintains a reasonable efficiency even for high dimensional problems (Hanson 2001). The HMC sampler has been widely used in Bayesian computation (see e.g. Neal 1993). In cosmology it has been employed for cosmological parameter estimation and CMB data analysis (Hajian 2007; Taylor et al. 2008).

In this work we demonstrate that the HMC can efficiently be used to sample the lognormal Poissonian posterior even in high dimensional spaces. In this fashion, the method is able to take into account the nonlinear relationship between the observation and the underlying density which we seek to recover. The scientific output of the HMC is a sampled representation of the density posterior. For this reason, any desired statistical summary such as mean, mode and variance can easily be calculated from the HMC samples. Further, the full non-Gaussian uncertainty information can seamlessly be propagated to any finally estimated quantity by simply applying the according estimation procedure to all samples. This allows us to estimate the accuracy of conclusions drawn from the analyzed data.

In this work, we begin, in section 2, by presenting a short justification for the use of the lognormal distribution as a prior for nonlinear density inference, followed by a discussion of the lognormal Poissonian posterior in section 3. Section 4 outlines the HMC method. In section 5, the Hamiltonian equations of motion for the lognormal Poissonian posterior are presented. Details of the numerical implementation are described in section 6. The method is extensively tested in section 7 by applying HADES to generated numerical data. Therefore, according to observations and theoretical considerations, we believe, that the statistical behavior of the nonlinear density field can be well described by a multivariate lognormal distribution, as given by:

$$P(N|Q) = \frac{1}{\sqrt{2\pi\det(Q)}} e^{-\frac{1}{2} \sum_{i,j} Q_{ij} (\ln (1 + x_i) - \mu_j)^2} \prod_k \frac{1}{1 + s_k},$$

where Q is the covariance matrix of the lognormal distribution and μ_i describes a constant mean field given by:

$$\mu_i = \frac{1}{2} \sum_{j} Q_{ij}.$$

This probability distribution, seems to be an adequate prior choice for reconstructing the present density field. However, using such a prior requires highly nonlinear reconstruction methods, as will be presented in the following.

3 Lognormal Poissonian posterior

Studying the actual matter distribution of the Universe requires to draw inference from some observable tracer particle. The most obvious tracer particles for the cosmic density field are galaxies, which tend to follow the gravitational potential of matter. As galaxies are discrete particles, the galaxy distribution can be described as a specific realization drawn from an inhomogeneous Poisson process (see e.g. Layzer 1956; Peebles 1980; Martínez & Saar 2002). The according probability distribution is given as:

$$P(N|l) = \prod_k \left\{ \frac{(l_k)^{N_k} e^{-l_k}}{N_k!} \right\},$$

where N_k is the observed galaxy number at position \bar{x}_k in the sky and l_k is the expected number of galaxies at this position. The mean galaxy number is related to the signal s_k via:

$$l_k = R_k \bar{N}(1 + B(s_k)),$$

where R_k is a linear response operator, incorporating survey geometries and selection effects. \bar{N} is the mean number of galaxies in the volume and $B(s_k)$ is a nonlinear, non local, bias operator at position \bar{x}_k. The lognormal prior given in equation (1) together with the Poissonian likelihood given in equation (3) yields the lognormal Poissonian posterior, for the density contrast s_k given some galaxy observations N^c_k:

$$P(s_k|N^c_k) = \frac{e^{-\frac{1}{2} \sum_{i,j} Q_{ij} (\ln (1 + x_i) - \mu_j)^2} \prod_k \frac{1}{1 + s_k}}{\sqrt{2\pi\det(Q)}} \prod_k \frac{1}{1 + s_k} \times \prod_k \frac{(R_k \bar{N}(1 + B(s_k))^q e^{-R_k \bar{N}(1 + B(s_k))}}{N^c_k!}.$$

However, this posterior greatly simplifies if we perform the change of variables by introducing $r_k = \ln (1 + s_k)$. Note, that this change of
variables is also numerically advantageous, as it prevents numerical instabilities at values $\epsilon \sim -1$. Hence, we yield the Posterior

$$\mathcal{P}((r_{ci})|N^\epsilon_i) = \frac{e^{-\frac{1}{2} \sum_i (r_{ci} + \mu_i) Q_i^{-1} (r_{ci} + \mu_i)}}{\sqrt{2 \pi \det(Q)}} \times \prod_i (R_i \tilde{N}(1 + B(\epsilon - 1)) \epsilon^{N_i \tilde{N}(1 + B(\epsilon - 1)) N^\epsilon_i \epsilon}).$$

(6)

It is important to note, that this is a highly non-Gaussian distribution, and nonlinear reconstruction methods are required in order to perform accurate matter field reconstructions in the nonlinear regime. In example, estimating the maximum a posteriori values from the lognormal Poissonian distribution involves the solution of implicit equations. However, we are not solely interested in a single estimate of the density distribution, we rather prefer to draw samples from the lognormal Poissonian posterior. In the following, we are therefore describing a numerically efficient method to sample from this highly non-Gaussian distribution.

4 HAMILTONIAN SAMPLING

As already described in the previous section the lognormal Poissonian posterior will involve highly nonlinear reconstruction methods and will therefore be numerically demanding. Nevertheless, since we propose a Bayesian method, we are not interested in only providing a single estimate of the density field, but would rather be able to sample from the full non-Gaussian posterior. Unlike, in the Gibbs sampling approach to density field sampling, as proposed in Jasche (2009), there unfortunately exists no known way to directly draw samples from the lognormal Poissonian distribution. For this reason, a Metropolis-Hastings sampling mechanism has to be employed.

However, the Metropolis-Hastings has the numerical disadvantage that not every sample will be accepted. A low acceptance rate can therefore result in a prohibitive numerical scaling for the method, especially since we are interested in estimating full three dimensional matter fields which usually have about 10^9 or more free parameters x_i. This high rejection rate is due to the fact, that conventional Markov Chain Monte Carlo (MCMC) methods move through the parameter space by a random walk and therefore require a prohibitive amount of samples to explore high-dimensional spaces. Given this situation, we propose to use a Hybrid Monte Carlo method, which in the absence of numerical errors, would yield an acceptance rate of unity.

The so called Hamiltonian Monte Carlo (HMC) method exploits techniques developed to follow classical dynamical particle motion in potentials (Duane et al. 1987; Neal 1993; 1996). In this fashion the Markov sampler follows a persistent motion through the parameter space, suppressing the random walk behavior. This enables us to sample with reasonable efficiency in high dimensional spaces (Hansen 2001).

The idea of the Hamiltonian sampling can be easily explained. Suppose, that we wish to draw samples from the probability distribution $\mathcal{P}(x)$, where $\{x_i\}$ is a set consisting of the N elements x_i. If we interpret the negative logarithm of this posterior distribution as a potential:

$$\psi(x) = -\ln(\mathcal{P}(x)),$$

(7)

and by introducing a ‘momentum’ variable p_i and a ‘mass matrix’ M, as nuisance parameters, we can formulate a Hamiltonian describing the dynamics in the multi dimensional phase space. Such a Hamiltonian is then given as:

$$H = \sum_i \frac{1}{2} p_i M_i^{-1} p_i + \psi(x),$$

(8)

As can be seen in equation (8), the form of the Hamiltonian is such, that this distribution is separable into a Gaussian distribution in the momenta $\{p_i\}$ and the target distribution $\mathcal{P}(x)$ as:

$$e^{-H} = \mathcal{P}(x) e^{-\frac{1}{2} \sum r_i M_i^{-1} r_i}.$$

It is therefore obvious that, marginalizing over all momenta will yield again our original target distribution $\mathcal{P}(x)$. Our task now is to draw samples from the joint distribution, which is proportional to e^{-H}. To find a new sample of the joint distribution we first draw a set of momenta from the distribution defined by the kinetic energy term, that is an N dimensional Gaussian with a covariance matrix M. We then allow our system to evolve deterministically, from our starting point $\{x_i\}$ in the phase space for some fixed pseudo time τ according to Hamilton’s equations:

$$\frac{dx_i}{dt} = \frac{\partial H}{\partial p_i},$$

(10)

$$\frac{dp_i}{dt} = -\frac{\partial H}{\partial x_i} = -\frac{\partial \psi(x)}{\partial x_i}.$$

(11)

The integration of these equations of motion yields the new position $\{x'_i\}$, $\{p'_i\}$ in phase space. This new point is accepted according to the usual acceptance rule:

$$\mathcal{P}_a = \min\{1, e^{-\frac{1}{2} \sum r_i M_i^{-1} r_i} \}.$$

(12)

Since the equations of motion provide a solution to a Hamiltonian system, energy or the Hamiltonian given in equation (8) is conserved, and therefore the solution to this system provides an acceptance rate of unity. In practice however, numerical errors can lead to a somewhat lower acceptance rate. Once a new sample has been accepted the momentum variable is discarded and the process restarts by randomly drawing a new set of momenta. The individual momenta $\{p_i\}$ will not be stored, and therefore discarding them amounts to marginalizing over this auxiliary quantity. Hence, the Hamiltonian sampling procedure basically consists of two steps. The first step is a Gibbs sampling step, which yields a new set of Gaussian distributed momenta. The second step, on the other hand amounts to solving a dynamical trajectory on the posterior surface.

5 EQUATIONS OF MOTION FOR A LOG-NORMAL POISSONIAN SYSTEM

In the framework of Hamiltonian sampling the task of sampling from the lognormal Poissonian posterior reduces to solving the corresponding Hamiltonian system. Given the posterior distribution defined in equation (6) we can write the potential $\psi(r_{ci})$ as:

$$\psi(r_{ci}) = \frac{1}{2} \ln(2 \pi \sigma) + \frac{1}{2} \sum_i (r_{ci} + \mu_i) Q_i^{-1} (r_{ci} + \mu_i) - \sum_i \ln \left(\frac{(R_i \tilde{N})^{N_i}}{N^\epsilon_i} \right) + N^\epsilon_i \ln(1 + B(\epsilon - 1)),$$

$$\psi(r_{ci}) = -\ln(\mathcal{P}(x)),$$

(7)

and by introducing a ‘momentum’ variable p_i and a ‘mass matrix’ M, as nuisance parameters, we can formulate a Hamiltonian describing the dynamics in the multi dimensional phase space. Such a Hamiltonian is then given as:

$$H = \sum_i \frac{1}{2} p_i M_i^{-1} p_i + \psi(x),$$

(8)

As can be seen in equation (8), the form of the Hamiltonian is such, that this distribution is separable into a Gaussian distribution in the momenta $\{p_i\}$ and the target distribution $\mathcal{P}(x)$ as:

$$e^{-H} = \mathcal{P}(x) e^{-\frac{1}{2} \sum r_i M_i^{-1} r_i}.$$

(9)

It is therefore obvious that, marginalizing over all momenta will yield again our original target distribution $\mathcal{P}(x)$. Our task now is to draw samples from the joint distribution, which is proportional to e^{-H}. To find a new sample of the joint distribution we first draw a set of momenta from the distribution defined by the kinetic energy term, that is an N dimensional Gaussian with a covariance matrix M. We then allow our system to evolve deterministically, from our starting point $\{x_i\}$ in the phase space for some fixed pseudo time τ according to Hamilton’s equations:

$$\frac{dx_i}{dt} = \frac{\partial H}{\partial p_i},$$

(10)

$$\frac{dp_i}{dt} = -\frac{\partial H}{\partial x_i} = -\frac{\partial \psi(x)}{\partial x_i}.$$

(11)

The integration of these equations of motion yields the new position $\{x'_i\}$, $\{p'_i\}$ in phase space. This new point is accepted according to the usual acceptance rule:

$$\mathcal{P}_a = \min\{1, e^{-\frac{1}{2} \sum r_i M_i^{-1} r_i} \}.$$

(12)

Since the equations of motion provide a solution to a Hamiltonian system, energy or the Hamiltonian given in equation (8) is conserved, and therefore the solution to this system provides an acceptance rate of unity. In practice however, numerical errors can lead to a somewhat lower acceptance rate. Once a new sample has been accepted the momentum variable is discarded and the process restarts by randomly drawing a new set of momenta. The individual momenta $\{p_i\}$ will not be stored, and therefore discarding them amounts to marginalizing over this auxiliary quantity. Hence, the Hamiltonian sampling procedure basically consists of two steps. The first step is a Gibbs sampling step, which yields a new set of Gaussian distributed momenta. The second step, on the other hand amounts to solving a dynamical trajectory on the posterior surface.
The gradient of this potential with respect to r_i then yields the forces, given as:

$$\frac{\partial \phi_i(r_1)}{\partial r_i} = \sum_j Q^{-1}_{ij} (r_j + \mu_i) - \frac{N^g_i}{(1 + B(e^\epsilon - 1)N)} \partial B(e^\epsilon - 1) r_i e^\epsilon.$$

(14)

Equation (14) obviously is a very general formulation of the reconstruction problem, and it demonstrates that the Hamiltonian sampler can in principle deal with all kinds of nonlinearities, especially in the case of the bias operator $B(x)$. However, for the sake of this paper, but without loss of generality, in the following we will assume a linear bias model:

$$B(x) = b x,$$

(15)

where b is a constant linear bias factor. We then obtain the potential:

$$\psi_i(r_1) = \frac{1}{2} \ln(2\pi b) + \frac{1}{2} \sum_j (r_j + \mu_i) Q^{-1}_{ij} (r_j + \mu_j) - \sum_j \left[\ln \left(\frac{1}{1 + N^g_i} \right) + N^g_i (1 + b(e^\epsilon - 1)) - R_i \bar{N}(1 + b(e^\epsilon - 1)) \right],$$

(16)

and the corresponding gradient reads:

$$\frac{\partial \psi_i(r_1)}{\partial r_i} = \sum_j Q^{-1}_{ij} (r_j + \mu_i) - \frac{N^g_i}{(1 + b(e^\epsilon - 1))} - R_i \bar{N} b e^\epsilon.$$

(17)

Inserting these results in equations (10) and (11) then yields the equations of motion:

$$\frac{dp_i}{dt} = - \sum_j Q^{-1}_{ij} (r_j + \mu_i) - \frac{N^g_i}{(1 + b(e^\epsilon - 1))} - R_i \bar{N} b e^\epsilon.$$

(19)

New points on the lognormal Poissonian posterior surface can then easily be obtained by solving for the trajectory governed by the dynamical equations (18) and (19).

6 NUMERICAL IMPLEMENTATION

Our numerical implementation of the lognormal Poissonian Sampler is named HADES (Hamiltonian Density Estimation and Sampling). It utilizes the FFTW3 library for Fast Fourier Transforms and the GNU scientific library (gsl) for random number generation (Frigo & Johnson 2005; Galassi et al. 2003). In particular, we use the Mersenne Twister MT19937, with 32-bit word length, as provided by the gsl_rng_mt19937 routine, which was designed for Monte Carlo simulations (Matsumoto & Nishimura 1998).

6.1 The leapfrog scheme

As described above, a new sample can be obtained by calculating a point on the trajectory governed by equations (18) and (19). This means that if we are able to integrate the Hamiltonian system exactly energy will be conserved along such a trajectory, yielding a high probability of acceptance. However, the method is more general due to the Metropolis acceptance criterion given in equation (12). In fact, it is allowed to follow any trajectory to generate a new sample. This would enable us to use approximate Hamiltonians, which may be evaluated computationally more efficiently. Note, however, that only trajectories that approximately conserve the Hamiltonian given in equation (3) will result in high acceptance rates.

In order to achieve an optimal acceptance rate, we seek to solve the equations of motion exactly. For this reason, we employ a leapfrog scheme for the numerical integration. Since the leapfrog is a sympletic integrator, it is exactly reversible, a property required to ensure the chain satisfies detailed balance (Duane et al. 1987). It is also numerically robust, and allows for simple propagation of errors. Here, we will implement the Kick-Drift-Kick scheme. The equations of motions are integrated by making n steps with a finite stepsize ϵ, such that $\tau = ne$:
Taylor expansion yields a Gaussian approximation of the lognormal measure of the width of the distribution (Taylor et al. 2008). However, for non-Gaussian distributions, such as Poissonian distributed, a good choice for HMC masses would be to set them inversely proportional to the variance of that specific r. Taylor et al. (2008) proposes to use the curvature at the peak.

We iterate these equations until \(t = \tau \). Also note, that it is important to vary the pseudo time interval \(\tau \), to avoid resonant trajectories. We do so by drawing \(n \) and \(\epsilon \) randomly from a uniform distribution. For the time being we will employ the simple leapfrog scheme. However, it is possible to use higher order integration schemes, provided that exact reversibility is maintained.

6.2 Hamiltonian mass

The Hamiltonian sampler has a large number of adjustable parameters, namely the Hamiltonian mass matrix, \(M \), which can greatly influence the sampling efficiency. If the individual \(r_i \) were Gaussian distributed, a good choice for HMC masses would be to set them inversely proportional to the variance of that specific \(r_i \) (Taylor et al. 2008). However, for non-Gaussian distributions, such as the lognormal Poissonian posterior, it is reasonable to use some measure of the width of the distribution (Taylor et al. 2008). Neal (1996) proposes to use the curvature at the peak.

In our case, we expanded the Hamiltonian given in equation (16) in a Taylor series up to quadratic order for \(|r_i| \ll 1 \). This Taylor expansion yields a Gaussian approximation of the lognormal Poissonian posterior. Given this approximation and according to the discussion in Appendix A, the Hamiltonian mass should be set as:

\[
M_{ij} = \frac{\partial^2 \phi(r_i)}{\partial r_i \partial r_j} |_{r_i(0)} .
\]

(20)

However, calculation of the leapfrog scheme requires inversions of \(M \). Considering the high dimensionality of the problem, inverting and storing \(M^{-1} \) is computationally impractical. For this reason we construct a diagonal mass matrix from equation (23). We found, that choosing the diagonal of \(M \), as given in equation (23), in its Fourier basis yields faster convergence for the sampler than a real space representation, since it accounts for the correlation structure of the underlying density field.

6.3 Parallelization

For any three dimensional sampling method, such as the lognormal Poisson sampler or the Gibbs sampler presented in Jasche (2009), CPU time is the main limiting factor. For this reason parallelization of the code is a crucial issue. Since our method is a true Monte Carlo method, there exist in principle two different approaches to parallelize our code.

The numerically most demanding step in the sampling chain is the leapfrog integration with the evaluation of the potential. One could therefore parallelize the leapfrog integration scheme, which requires parallelizing the fast Fourier transform. The FFTW3 library provides parallelized fast Fourier transform procedures, and implementation of those is straightforward (Frigo & Johnson 2005). However, optimal speed up cannot be achieved. The other approach relies on the fact that our method is a true Monte Carlo process, and each CPU can therefore calculate its own Markov chain. In this fashion, we gain optimal speed up and the possibility to initialize each chain with different initial guesses.

The major difference between these two parallelization approaches is, that with the first method one tries to calculate a rather long sampling chain, while the latter one produces many shorter chains.

7 TESTING HADES

In this section, we apply HADES to simulated mock observations, where the underlying matter signal is perfectly known. With these tests we will be able to demonstrate that the code produces results consistent with the theoretical expectation. Further more, we wish
to gain insight into how the code performs in real world applications, when CPU time is limited.

7.1 Setting up Mock observations

In this section we will describe a similar testing setup as described in Jasche (2009). For the purpose of this paper we generate lognormal random fields according to the probability distribution given in equation (1). These lognormal fields are generated based on cosmological power-spectra for the density contrast δ. We generate these power spectra, with baryonic wiggles, following the prescription described in Eisenstein & Hu (1998) and Eisenstein & Hu (1999) and assuming a standard ΛCDM cosmology with the set of cosmological parameters $(\Omega_m = 0.24, \Omega_\Lambda = 0.76, \Omega_b = 0.04, h = 0.73, \sigma_8 = 0.74, n_s = 1)$. Given these generated density fields we draw random Poissonian samples according to the Poissonian process described in equation (3).

The survey properties are described by the galaxy selection function F_i and the observation Mask M_i, where the product:

$$ R_i = F_i M_i $$

yields the linear response operator.

The selection function is given by:

$$ F_i = \left(\frac{r_i}{r_0} \right)^b \left(\frac{1}{\gamma} \right)^{\frac{1}{\gamma}} \left(\frac{\ln(r_i/r_0)}{\ln(1)} \right)^{\gamma}, $$

(25)

where r_i is the comoving distance from the observer to the center of the ith voxel. For our simulation we chose parameters $b = 0.6$, $r_0 = 500$ Mpc and $\gamma = 2$.

In figure 3 we show the selection function together with the sky mask, which defines the observed regions in the sky. The two dimensional sky mask is given in sky coordinates of right ascension and declination. We designed the observational mask to represent some of the prominent features of the Sloan Digital Sky Survey (SDSS) mask (see Abazajian et al. 2009, for a description of the SDSS data release 7). The projection of this mask into the three dimensional volume yields the three dimensional mask M_i.

Two different projections of this generated mock galaxy survey are presented in figure 4 to give a visual impression of the artificial galaxy observation.

7.2 Burn in behavior

The theory described above demonstrates that the Hamiltonian sampler will provide samples from the correct probability distribution function as long as the initial conditions for the leapfrog integration are part of the posterior surface. However, in practice the sampler is not initialized with a point on the posterior surface, and therefore an initial burn-in phase is required until a point on the correct posterior surface is identified. As there exists no theoretical criterion, which tells us when the initial burn-in period is completed, we have to test this initial sampling phase through experiments. These experiments are of practical relevance for realworld applications, as they allow us to estimate how many samples are required.
Figure 4. Successive power spectra measured from the Hamiltonian samples during burn-in. The right panels correspond to the fiducial calculation, while the left panels display the burn-in behavior of the complete observational problem. The upper panels show the convergence of the individual sample spectra towards the spectrum of the true underlying matter field realization (black curve). The lower panels display the deviation from the true underlying spectrum \(\xi^k \), demonstrating good convergence at the end of the burn-in period.

before the sampler starts sampling from the correct posterior distribution. To gain intuition we set up a simple experiment, in which we set the initial guess for the lognormal field constant to unity \(t_0^k = 1 \). Therefore, the initial samples in the chain will be required to recover structures contained in the observation. In order to gain intuition for the behavior of our nonlinear Hamiltonian sampler, we compare two cases. The first case consists of an artificial observation including selection effects and observational mask generated as described above. The second case is a comparison calculation, where we set the observation response operator \(R_i = 1 \). In this latter fiducial case, only shot noise remains as observational uncertainty. It is important to note, that the individual Markov samples are unbiased in the sense that they possess the correct power information. Unlike a filter, which suppresses power in the low signal to noise regions, the Hamiltonian sampler draws true samples from the lognormal Poissonian posterior, given in equation (5), once burn-in is completed. Therefore, a lognormal Poissonian sample has to be understood as consisting of a true signal part, which can be extracted from the observation and a fluctuating component, which restores power lost due to the observation. This interpretation is similar to the behavior of the Gibbs sampler, as discussed in Jasche (2009), with the exception that there is no obvious way to separate the true signal part from the variance contribution for the nonlinear Hamiltonian sampler. Hence, the lower the signal to noise ratio of the data, the higher will be the fluctuating component.

This effect can be observed in figure 3 where we compare three successive Markov samples to the true mock signal via a point to point statistics. It can be nicely seen, that the correlation with the true underlying mock signal improves as burn-in progresses. As expected, the fiducial calculation, shown in the right panels of figure 3, has a much better correlation with the underlying true mock signal than the full observation. This is clearly owing to the fact, that the full observation introduces much more variance than in the fiducial case. To visualize this fact further, we calculate the Euclidean distance between Markov samples and the true mock signal:

\[
d_k \left(\{ \delta_i^\text{true} \}, \{ \delta_i^k \} \right) = \sqrt{ \frac{1}{N} \sum_{i=1}^{N} \left(\delta_{i}^\text{true} - \delta_{i}^k \right)^2 },
\]

over the progression of the Markov chain. In the lower panels of figure 3, it can be observed that the Euclidean distance drops initially and then saturates at a constant minimal \(d_k \). This minimal \(d_k \) is related to the intrinsic variance contribution in the individual samples. While the variance is lower for the fiducial observation, it is higher for the full observation.

As HADES produces unbiased samples, we can gain more detailed insight into the initial burn-in phase of the Markov chain, by following the evolution of successive power-spectra measured from the samples. In addition, we measure the deviation \(\xi^k \) of the sample power spectra \(P^k \) to the power spectrum of the true mock matter field realization \(P^\text{true} \) via:
Figure 5. The upper panels show the point to point statistic of the ensemble mean field to the true underlying density field in the observed region for the fiducial calculation (right panel) and the full observational problem (left panel). The numbers in the upper left part of the plots correspond to the Euclidean distance d and the correlation factor c. In the lower panels we plotted the results of the Gelman&Rubin convergence diagnostic for the according tests. The PSRF indicate good convergence.

\[
\xi_k^l = \frac{P_{\ell}^k - P_{\ell_{true}}^k}{P_{\ell_{true}}^k}.
\]

Figure 4 demonstrates that HADES completes burn-in after ~ 20 samples in the case of the fiducial calculation (right panels). However, the burn-in history for the full observation (left panels) reveals a more interesting behavior.

Initially, the power spectra show huge excursions at large scales. This is due to the observational mask and the fact, that initially these regions are dominated by the constant initial guess ($r_{\ell_k} = 1$). It is interesting to note, that the first sample seems to be much closer to the true underlying power spectrum at the smaller scales, while the 20th samples is much further away. This clearly demonstrates the nonlinear behavior of the lognormal Poissonian sampler. We observe, that with iterative correction of the large scale power, the entire power spectrum progressively approaches the true mock power spectrum. This can be seen nicely in the lower left panel of figure 4. After one hundred samples have been calculated the true mock power spectrum is recovered for all following samples. Thus, the initial burn-in period for a realistic observational setting can be expected to be on the order of 100 samples. Such a burn-in period is numerically not very demanding, and can easily be achieved in even higher resolution calculations.

Further, we ran a full Markov analysis for both test cases, by calculating 20000 samples with a resolution of 64^3 voxels. We then estimate the ensemble mean and compared the recovered density field in the observed region via a point to point statistic to the true underlying mock signal. The results are presented in the upper panels of figure 5. It can be seen that both results are strongly correlated with the true underlying signal. To emphasize this fact, we also calculate the correlation factor given as:

\[
c = \frac{\sum_{i=0}^{N-1} \langle \delta_{true}^i \delta_{mean}^i \rangle}{\sqrt{\sum_{i=0}^{N-1} \langle \delta_{true}^i \rangle^2} \sqrt{\sum_{i=0}^{N-1} \langle \delta_{mean}^i \rangle^2}}.
\]

The correlation factors for the two test scenarios are also given in figure 5. They clearly demonstrate, that the Hamiltonian sampler was able to recover the underlying density field to high accuracy in both cases.

7.3 Convergence

Testing the convergence of Markov chains is subject of many discussions in literature (see e.g. Heidelberger & Welch 1981; Gelman & Rubin 1992; Geweke 1992; Raftery & Lewis 1995; Cowles & Carlin 1996; Hanson 2001; Dunkley et al. 2005). In principle, there exist two categories of possible diagnostics. The methods of the first category rely on comparing inter chain quantities between several chains while others try to estimate the convergence behavior from inter chain quantities within a single chain. In this paper we use the widely used Gelman&Rubin diagnostic, which is based on multiple simulated chains by comparing the variances within each
chain and the variance between chains (Gelman & Rubin 1992). In
particular, we calculate the potential scale reduction factor (PSRF)
(see Appendix B for details). A large PSRF indicates that the inter
chain variance is substantially greater than the intra chain variance
and longer chains are required. Once the PSRF approaches unity,
one can conclude that each chain has reached the target distribution.

We calculated the PSRF for each voxel of our test cases for
chains with length $N_{\text{samp}} = 20000$. The results for the two tests, as
discussed above, are presented in figure 5. They clearly indicate the
convergence of the Markov chains.

For the time being we use the Gelman & Rubin statistic to test
convergence because of technical simplicity, although for the ex-
pense of having to calculate at least two chains. In the future we
plan to explore other convergence diagnostics. In particular we are
aiming at including intra chain methods as proposed in Hanson
(2001) or Dunkley et al. (2005). This would allow us to detect con-
vergence behavior within the chain during burn-in. Such a conver-
gence criterion could then be used to adjust the Hamiltonian masses
for optimal sampling efficiency, as was proposed in Taylor et al.
(2008).

7.4 Testing with simulated galaxy surveys

In this section, we describe the application of HADES to a mock
galaxy survey based on the millennium run (Croton et al. 2006).
The intention of this exercise is to test HADES in a realistic ob-
servational scenario. In particular, we want to demonstrate that
HADES is able to reconstruct the fully evolved nonlinear density
field of the N-body simulation. The mock galaxy survey consists of
a set of comoving galaxy positions distributed in a 500 Mpc box.
To introduce survey geometry and selection effects, we virtually observe these galaxies through the sky mask and according to the
selection function described in section 7.1. The resulting galaxy
distribution is then sampled to a 128^3 grid. This mock observation is
then processed by HADES, which generates 200000 lognormal
Poissonian samples.

In figure 6 we present successive slices through density sam-
plings of the initial burn-in period. As can be seen, the first Hamil-
tonian sample (upper panels in figure 6) is largely corrupted by the
false density information in the masked regions. This is due to the
fact, that the Hamiltonian sampler cannot be initialized with a point
on the posterior surface. The initial samples are therefore required
to identify a point on the according posterior surface. As can be
seen, the power in the unobserved and observed regions equalizes
in the following samples. Also note, that the first density sample
depicts only very coarse structures. However, subsequent samples
resolve finer and finer details. With the hundredth sample burn-in
is completed. The lower panels of figure 6 demonstrate, that the
Hamiltonian sampler nicely recovers the filamentary structure of the
density field.

Being a fully Bayesian method, the Hamiltonian sampler does
not aim at calculating only a single estimate, such as a mean or
maximum a posteriori value, it rather produces samples from the full
lognormal Poissonian posterior. Given these samples we are able to
calculate any desired statistical summary. In particular, we are able
to calculate the mean and the according variance of the Hamiltonian
samples.

In figure 7 we show three different volume renderings of the
ensemble mean density and the according ensemble variance fields.
It can be seen that the variance projections nicely reflect the Pois-
sonian noise structure. Comparing high density regions in the en-
semble mean projections to the corresponding positions in the vari-
ance projections, reveals a higher variance contribution for these
regions, as expected for Poissonian noise. This demonstrates, that
our method allows us to provide uncertainty information for any
resulting final estimate.

8 SUMMARY AND CONCLUSION

In this work we introduced the Hamiltonian Monte Carlo sampler
for nonlinear large scale structure inference and demonstrated its
performance in a variety of tests. As already described above, ac-
cording to observational evidence and theoretical considerations,
the posterior for nonlinear density field inference is adequately rep-
resented by a lognormal Poissonian distribution, up to overdensities
of $\delta \sim 100$. Hence, any method aiming at precision estimation of
the fully evolved large scale structure in the Universe needs to han-
dle the nonlinear relation between observations and the signal we
seek to recover. The Hamiltonian Monte Carlo sampler, presented
in this work, is a fully Bayesian method, and as such tries to eval-
uate the lognormal Poissonian posterior, given in equation 5 via
sampling. In this fashion, the scientific output of the method is not
a single estimate, but a sampled representation of the multidimen-
sional posterior distribution. Given this representation of the pos-
terior any desired statistical summary, such as mean, mode or vari-
cances can easily be calculated. Further, any uncertainty can seam-
lessly be propagated to the finally estimated quantities, by sim-
ply applying the according estimation procedure to all Hamiltonian
samples.

Unlike conventional Metropolis Hastings algorithms, which
move through the parameter space by random walk, the Hamil-
tonian Monte Carlo sampler suppresses random walk behavior by
following a persistent motion. The HMC exploits techniques de-
veloped to follow classical dynamical particle motion in poten-
tials, which, in the absence of numerical errors, yield an acceptance
probability of unity. Although, in this work we focused on the use
of the lognormal Poissonian posterior, the method is more general.
The discussion of the Hamiltonian sampler in section 7.4 demon-
strates that the method can in principle take into account a broad
class of posterior distributions.

In section 7 we demonstrated applications of the method to
mock test cases, taking into account observational uncertainties
such as selection effects, survey geometries and noise. These tests
were designed to study the performance of the method in real world
applications.

In particular, it was of interest to establish intuition for the be-
havior of the Hamiltonian sampler during the initial burn-in phase.
Especially, the required amount of samples before the sampler
starts drawing samples from the correct posterior distribution was
of practical relevance. The tests demonstrated, that for a realistic
setup, the initial burn-in period is on the order of ~ 100 samples.

Further, the tests demonstrated that the Hamiltonian sampler
produces unbiased samples, in the sense that each sample possesses
correct power. Unlike a filter, which suppresses the signal in low
signal to noise regions, the Hamiltonian sampler nonlinearly aug-
ments the poorly or not observed regions with correct statistical in-
formation. In this fashion, each sample represents a complete mat-
ter field realization consistent with the observations.

The convergence of the Markov chain was tested via a Gel-
man & Rubin diagnostic. We compared the intra and inter chain vari-
cances of two Markov chains each of length 20000 samples. The
estimated PSRF indicated good convergence of the chain. This re-
Figure 6. Slices through density samples during the initial burn-in phase. The upper panels correspond to the first sample, middle panels show the tenth sample and the lower panels present the hundredth sample. Left and right panels show two different slices through the corresponding sample. It can be seen that during the initial burn-in phase power equalizes between the observed and unobserved regions. Successive samples recover finer and finer details.
Figure 7. Volume rendering of the ensemble variance (upper panels) and the ensemble mean (lower panels) obtained from the mock galaxy catalog analysis for three different perspectives. The mean shows filigree structures which have been recovered. It can also be seen that the ensemble variance reflects the Poissonian behavior of the noise. High density regions in the ensemble mean field correspond to regions with high variance as is expected for a Poissonian shot noise contribution.

result demonstrates, that it is possible to efficiently sample from non-Gaussian distributions in very high dimensional spaces.

In a final test the method was applied to a realistic galaxy mock observation based on the millennium run [Croton et al. 2006]. Here we introduced again survey geometry and selection effects and generated 20000 samples of the lognormal Poissonian posterior. The results nicely demonstrate that the Hamiltonian sampler recovers the filamentary structure of the underlying matter field realization. For this test we also calculated the ensemble mean and the corresponding ensemble variance of the Hamiltonian samples, demonstrating that the Hamiltonian sampler also provides error information for a final estimate.

To conclude, in this paper we present a new and numerically efficient Bayesian method for large scale structure inference, and its numerical implementation HADES. HADES provides a sampled representation of the very high dimensional non-Gaussian large scale structure posterior, conditional on galaxy observations. This permits us to easily calculate any desired statistical summary, such as mean, mode and variance. In this fashion HADES is able to provide uncertainty information to any final quantity estimated from the Hamiltonian samples. The method, as presented here, is very flexible and can easily be extended to take into account additional nonlinear observational constraints and joint uncertainties.

In summary, HADES, in its present form, provides the basis for future nonlinear high precision large scale structure analysis.

ACKNOWLEDGMENTS

We would like to thank Rainer Moll and Björn Malte Schäfer for useful discussions and support with many valuable numerical gadgets. Further, we thank R. Benton Metcalf, for useful remarks and commentaries, and Torsten A. Enßlin for encouraging us to pursue this project. Special thanks also to María Ángeles Bazarra-Castro for helpful assistance during the course of this project. We also thank the ”Transregional Collaborative Research Centre TRR 33 - The Dark Universe” for the support of this work.
REFERENCES

Abazajian K. N., et al., 2009, ApJS, 182, 543
Bertschinger E., Dekel A., 1989, ApJL, 336, L5
Bertschinger E., Dekel A., 1991, in Latham D. W., da Costa L. A. N., eds, ASP Conf. Ser. 15: Large-Scale Structures and Peculiar Motions in the Universe Mapping Large-Scale Flows in Three Dimensions: Method. pp 67–
Bistolas V., Hoffman Y., 1998, ApJ, 492, 439
Coles P., Jones B., 1991, MNRAS, 248, 1
Cowles M. K., Carlin B. P., 1996, Journal of the American Statistical Association, 91, 883
Croton D. J., Springel V., White S. D. M., De Lucia G., Frenk C. S., Gao L., Jenkins A., Kauffmann G., Navarro J. F., Yoshida N., 2006, MNRAS, 365, 11
Duane S., Kennedy A. D., Pendleton B. J., Roweth D., 1987, Physics Letters B, 195, 216
Dunkley J., Bucher M., Ferreira P. G., Moodley K., Skordis C., 2005, MNRAS, 356, 925
Eisenstein D. J., Hu W., 1998, ApJ, 496, 605
Eisenstein D. J., Hu W., 1999, ApJ, 511, 5
Ensslin T. A., Frommert M., Kitaura F. S., 2008, ArXiv e-prints
Erdogdu P., Lahav O., Zaroubi S., et al. 2004, MNRAS, 352, 939
Fisher K. B., Lahav O., Hoffman Y., Lynden-Bell D., Zaroubi S., 1995, MNRAS, 272, 885
Friso M., Johnson S. G., 2005, Proceedings of the IEEE, 93, 216
Galassi M., Davies J., Theiler J., Gough B., Jungman G., Booth M., Rossi F., 2003, Gnu Scientific Library: Reference Manual. Network Theory Ltd.
Gaztanaga E., Yokoyama J., 1993, ApJ, 403, 450
Gelman A., Rubin D., 1992, Statistical Science, 7, 457
Geweke J., 1992, Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments
Hajian A., 2007, Phys. Rev. D, 75, 083525
Hanson K. M., 2001, in Sonka M., Hanson K. M., eds, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 4322 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Markov chain Monte Carlo posterior sampling with the Hamiltonian method. pp 456–467
Heidelberger P., Welch P. D., 1981, Commun. ACM, 24, 233
Hoffman Y., 1994, in Balkowski C., Kraan-Korteweg R. C., eds, Unveiling Large-Scale Structures Behind the Milky Way Vol. 67 of Astronomical Society of the Pacific Conference Series, Wiener Reconstruction of the Large-Scale Structure in the Zone of Avoidance. pp 185–
Hubble E., 1934, ApJ, 79, 8
Jasche J., 2009, Bayesian power-spectrum inference for Large Scale Structure data
Kayo I., Taruya A., Suto Y., 2001, ApJ, 561, 22
Kitaura F. S., Enßlin T. A., 2008, MNRAS, 389, 497
Kitaura F. S., Jasche J., Li C., Enßlin T. A., Metcalf R. B., Wandel B. D., Lemson G., White S. D. M., 2009, ArXiv e-prints
Kitaura F. S., Jasche J., Metcalf R. B., 2009, ArXiv e-prints
Lahav O., Fisher K. B., Hoffman Y., Scharf C. A., Zaroubi S., 1994, ApJL, 423, L93+
Layzer D., 1956, AJ, 61, 383
Martínez V. J., Saar E., 2002, Statistics of the Galaxy Distribution. Chapman &
Matsumoto M., Nishimura T., 1998, ACM Trans. Model. Comput. Simul., 8, 3
Neal R. M., 1993, Technical Report CRG-TR-93-1, Probabilistic inference using Markov chain Monte Carlo methods. University of Toronto
Neal R. M., 1996, Bayesian Learning for Neural Networks (Lecture Notes in Statistics), 1 edn. Springer
Peebles P. J. E., 1980, The large-scale structure of the universe
Raftery A. E., Lewis S. M., 1995, in In Practical Markov Chain Monte Carlo (W.R. Gilks, D.J. Spiegelhalter and The number of iterations, convergence diagnostics and generic metropolis algorithms. Chapman and Hall, pp 115–130
Saunders W., Ballinger W. E., 2000, in Kraan-Korteweg R. C., Henning P. A., Andernach H., eds, Mapping the Hidden Universe: The Universe behind the Milky Way - The Universe in HI Vol. 218 of Astronomical Society of the Pacific Conference Series, Interpolation of Discretely-Sampled Density Fields. pp 181–
Schmoldt I. M., Saar V., Saha P., Branchini E., Efstathiou G. P., Frenk C. S., Keeble O., Maddox S., McMahon R., Oliver S., Rowan-Robinson M., Saunders W., Sutherland W. J., Tadros H., White S. D. M., 1999, ApJ, 118, 1146
Taylor J. F., Ashdown M. A. J., Hobson M. P., 2008, MNRAS, 389, 1284
Webster M., Lahav O., Fisher K., 1997, MNRAS, 287, 425
Zaroubi S., 2002, MNRAS, 331, 901
APPENDIX A: HAMILTONIAN MASSES

The Hamiltonian sampler can be extremely sensitive to the choice of masses. To estimate a good guess of Hamiltonian masses we follow a similar approach as suggested in Taylor et al. (2008). According to the leapfrog scheme, given in equations (20), (21) and (22), a single application of the leapfrog method can be written in the form:

$$p_i(t + \epsilon) = p_i(t) - \frac{\epsilon}{2} \left(\frac{\partial H}{\partial r_i} \right)_{r(t)} + \frac{\epsilon^2}{2} \sum_m \frac{\partial^2 H}{\partial r_i \partial p_m} \left(\frac{\partial p_m}{\partial r_i} \right)_{r(t)} + \epsilon \sum_j \lambda_j M_{ij} p_j(t)$$

(A1)

and

$$r_i(t + \epsilon) = r_i(t) + \frac{\epsilon}{2} \sum_j \frac{\partial H}{\partial p_j} \left(\frac{\partial p_j}{\partial r_i} \right)_{r(t)}$$

(A2)

We will then approximate the forces given in equation (17) for $$\epsilon << 1$$:

$$\frac{\partial \phi_i(r)}{\partial r_i} = \int \sum_j Q_{ij} \left(\frac{\partial \phi_j(r)}{\partial r_j} \right) + \frac{N^3}{2} \left(\frac{\partial \phi_j(r)}{\partial r_j} \right)^2$$

(A3)

By introducing:

$$A_{ij} = Q_{ij} - \left(\frac{N^3}{2} \right) \delta_{ij}$$

and

$$D_i = \sum_j Q_{ij} \delta_{ij}$$

equation (A3) simplifies to:

$$\frac{\partial \phi_i(r)}{\partial r_i} = \sum_j A_{ij} r_j + D_i$$

(A6)

Introducing this approximation into equations (A1) and (A2) yields:

$$p_i(t + \epsilon) = \sum_m \left[\delta_{im} - \frac{\epsilon^2}{2} \sum_j A_{jm} M_{jm}^{-1} \right] p_m(t)$$

$$- \epsilon \sum_j A_{ij} \left[\delta_{ij} - \frac{\epsilon^2}{2} \sum_m M_{jm}^{-1} A_{jm} \right] r_j(t)$$

$$- \frac{\epsilon}{2} \sum_m \left[\delta_{im} - \frac{\epsilon^2}{2} \sum_j A_{jm} M_{jm}^{-1} \right] D_m$$

(A7)

and

$$r_i(t + \epsilon) = \epsilon \sum_j M_{ij} p_j(t)$$

$$+ \sum_m \left[\delta_{im} - \frac{\epsilon^2}{2} \sum_j A_{jm} M_{jm}^{-1} \right] r_m(t)$$

$$- \frac{\epsilon}{2} \sum M_{ij} D_i$$

(A8)

This result can be rewritten in matrix notation as:

$$\begin{pmatrix} p_i(t + \epsilon) \\ r_i(t + \epsilon) \end{pmatrix} = T \begin{pmatrix} p_i(t) \\ r_i(t) \end{pmatrix} - \frac{\epsilon^2}{2} \begin{pmatrix} \epsilon \left[1 - \frac{\epsilon^2}{2} A M^{-1} \right] D_0 \end{pmatrix}$$

(A9)

where the matrix $$T$$ is given as:

$$T = \begin{pmatrix} I - \frac{\epsilon^2}{2} A M^{-1} & 0 \\ -e A & I - \frac{\epsilon^2}{2} A M^{-1} \end{pmatrix}$$

(A10)

This equation demonstrates, that there are two criteria to be fulfilled if the method is to be stable under repeated application of the leapfrog step. First we have to ensure, that the first term of equation (A11) does not diverge. This can be fulfilled if the eigenvalues of $$T$$ have unit modulus. The eigenvalues $$\lambda$$ are found by solving the characteristic equation:

$$\det \left[T^2 - 2 \lambda \left(1 - \frac{\epsilon^2}{2} A M^{-1} \right) + 1 \right] = 0$$

(A12)

Note, that this is a similar result to what was found in Taylor et al. (2008). Our aim is to explore the parameter space rapidly, and therefore we wish to choose the largest $$\epsilon$$ still compatible with the stability criterion. However, any dependence of equation (A12) also implies, that no single value of $$\epsilon$$ will meet the requirement for every eigenvalue to have unit modulus. For this reason we choose:

$$\lambda = M$$

(A13)

We then yield the characteristic equation:

$$\left[\lambda^2 - 2 \lambda \left(1 - \frac{\epsilon^2}{2} A M^{-1} \right) + 1 \right]^N = 0$$

(A14)

where $$N$$ is the number of voxels. This yields the eigenvalues:

$$\lambda = \pm i \sqrt{1 - \left[1 - \frac{\epsilon^2}{2} A M^{-1} \right] + 1}$$

(A15)

which have unit modulus for $$\epsilon \ll 2$$. The second term in equation (A11) involves evaluation of the geometric series $$\sum_{i=0}^\infty T^i$$. However, the geometric series for a matrix converges if and only if $$|\lambda_i| < 1$$ for each $$\lambda_i$$ eigenvalue of $$T$$. This clarifies, that the non-linearities in the Hamiltonian equations generally do not allow for arbitrary large pseudo time steps $$\epsilon$$. In addition, for practical purposes we usually restrict the mass matrix to the diagonal of equation (A4). For these two reasons, in practice, we choose the pseudo timestep $$\epsilon$$ as large as possible while still obtaining a reasonable rejection rate.

APPENDIX B: GELMAN&RUBIN DIAGNOSTIC

The GelmanRubin diagnostic is a multichain convergence test (Gelman & Rubin 1992). It is based on analyzing multiple Markov chains by comparing intra chain variances, within each chain, and inter chain variances. A large deviation between these two variances indicates nonconvergence of the Markov chain. Let $$\phi_i$$, where $$k = 1, \ldots, N$$, be the collection of a single Markov chain output. The parameter $$\phi$$ is the ith sample of the Markov chain. Here, for notational simplicity, we will assume $$\phi$$ to be single dimensional. To test convergence with the GelmanRubin statistic,
one has to calculate M parallel MCMC chains, which are initialized from different parts of the target distribution. After discarding the initial burn-in samples, each chain is of length n. We can then label the outputs of various chains as ϕ_{km}, with $k = 1, \ldots, n$ and $m = 1, \ldots, M$. The inter chain variance B can then be calculated as:

$$B = \frac{n}{M-1} \sum_{m=1}^{M} (\theta_m - \Omega)^2,$$

where θ_m is given as:

$$\theta_m = \frac{1}{n} \sum_{k=1}^{n} \phi_{km},$$

and Ω as:

$$\Omega = \frac{1}{M} \sum_{m=1}^{M} \theta_m.$$

Then the intra chain variance can be calculated as:

$$W = \frac{1}{M} \sum_{m=1}^{M} \Gamma^2_m,$$

with:

$$\Gamma^2_m = \frac{1}{n-1} \sum_{k=1}^{n} (\phi_{km} - \theta_m)^2.$$

With the above definition the marginal posterior variance can be estimated via:

$$V = \frac{n-1}{n} W + \frac{M+1}{nM} B.$$

If all M chains have reached the target distribution, this posterior variance estimate should be very close to the intra chain variance W. For this reason, one expects the ratio V/W to be close to 1. The square root of this ratio is referred to as the potential scale reduction factor (PSRF):

$$PSRF = \sqrt{\frac{V}{W}}.$$

If the PSRF is close to one, one can conclude that each chain has stabilized, and has reached the target distribution (Gelman & Rubin 1992).

This paper has been typeset from a \TeX/LaTeX\ file prepared by the author.