Univariate error function based neural network approximation

George A. Anastassiou
Department of Mathematical Sciences
University of Memphis
Memphis, TN 38152, U.S.A.
ganastss@memphis.edu

Abstract
Here we research the univariate quantitative approximation of real and complex valued continuous functions on a compact interval or all the real line by quasi-interpolation, Baskakov type and quadrature type neural network operators. We perform also the related fractional approximation. These approximations are derived by establishing Jackson type inequalities involving the modulus of continuity of the engaged function or its high order derivative or fractional derivatives. Our operators are defined by using a density function induced by the error function. The approximations are pointwise and with respect to the uniform norm. The related feed-forward neural networks are with one hidden layer.

2010 AMS Mathematics Subject Classification: 26A33, 41A17, 41A25, 41A30, 41A36.

Keywords and Phrases: error function, neural network approximation, quasi-interpolation operator, Baskakov operator, quadrature operator, modulus of continuity, complex approximation, Caputo fractional derivative, fractional approximation.

1 Introduction

The author in [2] and [3], see Chapters 2-5, was the first to establish neural network approximations to continuous functions with rates by very specifically defined neural network operators of Cardaliagnet-Euvrard and "Squashing" types, by employing the modulus of continuity of the engaged function or its high order derivative, and producing very tight Jackson type inequalities. He treats there both the univariate and multivariate cases. The defining these operators
"bell-shaped" and "squashing" functions are assumed to be of compact support. Also in [3] he gives the \(N \)th order asymptotic expansion for the error of weak approximation of these two operators to a special natural class of smooth functions, see Chapters 4-5 there.

The author inspired by [15], continued his studies on neural network approximation by introducing and using the proper quasi-interpolation operators of sigmoidal and hyperbolic tangent type which resulted into [7], [9], [10], [11], [12], by treating both the univariate and multivariate cases. He did also the corresponding fractional case [13].

The author here performs univariate error function based neural network approximations to continuous functions over compact intervals of the real line or over the whole \(\mathbb{R} \), he extends his results to complex valued functions. Finally he treats completely the related fractional approximation. All convergences here are with rates expressed via the modulus of continuity of the involved function or its high order derivative, or fractional derivatives and given by very tight Jackson type inequalities.

The author comes up with the "right" precisely defined quasi-interpolation, Baskakov type and quadrature neural networks operators, associated with the error function and related to a compact interval or real line. Our compact intervals are not necessarily symmetric to the origin. Some of our upper bounds to error quantity are very flexible and general. In preparation to prove our results we establish important properties of the basic density function defining our operators.

Feed-forward neural networks (FNNs) with one hidden layer, the only type of networks we deal with in this article, are mathematically expressed as

\[
N_n(x) = \sum_{j=0}^{n} c_j \sigma(\langle a_j \cdot x \rangle + b_j), \quad x \in \mathbb{R}^s, \quad s \in \mathbb{N},
\]

where for \(0 \leq j \leq n \), \(b_j \in \mathbb{R} \) are the thresholds, \(a_j \in \mathbb{R}^s \) are the connection weights, \(c_j \in \mathbb{R} \) are the coefficients, \(\langle a_j \cdot x \rangle \) is the inner product of \(a_j \) and \(x \), and \(\sigma \) is the activation function of the network. In many fundamental neural network models, the activation function is the error. About neural networks in general read [19], [20], [21].

2 Basics

We consider here the (Gauss) error special function ([1], [14])

\[
\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt, \quad x \in \mathbb{R},
\]

which is a sigmoidal type function and a strictly increasing function.
It has the basic properties

\[\text{erf} (0) = 0, \quad \text{erf} (-x) = -\text{erf} (x), \quad \text{erf} (+\infty) = 1, \quad \text{erf} (-\infty) = -1, \quad (2) \]

and

\[(\text{erf} (x))' = \frac{2}{\sqrt{\pi}} e^{-x^2}, \quad x \in \mathbb{R}, \quad (3) \]

\[\int \text{erf} (x) \, dx = x \text{erf} (x) + \frac{e^{-x^2}}{\sqrt{\pi}} + C, \quad (4) \]

where \(C \) is a constant.

The error function is related to the cumulative probability distribution function of the standard normal distribution

\[\Phi (x) = \frac{1}{2} + \frac{1}{2} \text{erf} \left(\frac{x}{\sqrt{2}} \right). \]

We consider the activation function

\[\chi (x) = \frac{1}{4} (\text{erf} (x + 1) - \text{erf} (x - 1)), \quad x \in \mathbb{R}, \quad (5) \]

and we notice that

\[\chi (-x) = \frac{1}{4} (\text{erf} (-x + 1) - \text{erf} (-x - 1)) = \]

\[\frac{1}{4} (\text{erf} (- (x - 1)) - \text{erf} (- (x + 1))) = \frac{1}{4} (- \text{erf} (x - 1) + \text{erf} (x + 1)) = \chi (x), \quad (6) \]

thus \(\chi \) is an even function.

Since \(x + 1 > x - 1 \), then \(\text{erf} (x + 1) > \text{erf} (x - 1) \), and \(\chi (x) > 0 \), all \(x \in \mathbb{R} \). We see that

\[\chi (0) = \frac{\text{erf} (1)}{2} \approx \frac{0.843}{2} = 0.4215. \quad (7) \]

Let \(x > 0 \), we have

\[\chi' (x) = \frac{1}{4} \left(\frac{2}{\sqrt{\pi}} e^{-(x+1)^2} - \frac{2}{\sqrt{\pi}} e^{-(x-1)^2} \right) = \]

\[\frac{1}{2\sqrt{\pi}} \left(\frac{1}{e^{(x+1)^2}} - \frac{1}{e^{(x-1)^2}} \right) = \frac{1}{2\sqrt{\pi}} \left(\frac{e^{(x-1)^2} - e^{(x+1)^2}}{e^{(x+1)^2}e^{(x-1)^2}} \right) < 0, \quad (8) \]

proving \(\chi' (x) < 0 \), for \(x > 0 \).

That is \(\chi \) is strictly decreasing on \([0, \infty)\) and is strictly increasing on \((-\infty, 0]\), and \(\chi' (0) = 0 \).

Clearly the \(x \)-axis is the horizontal asymptote on \(\chi \).

Conclusion, \(\chi \) is a bell symmetric function with maximum \(\chi (0) \approx 0.4215 \).

We further present
Theorem 1 We have that
\[\sum_{i=-\infty}^{\infty} \chi(x-i) = 1, \text{ all } x \in \mathbb{R}. \] (9)

Proof. We notice
\[\sum_{i=-\infty}^{\infty} \text{erf}(x-i) - \text{erf}(x-1-i) = \]
\[\sum_{i=0}^{\infty} (\text{erf}(x-i) - \text{erf}(x-1-i)) + \sum_{i=-\infty}^{-1} (\text{erf}(x-i) - \text{erf}(x-1-i)). \] (10)

Furthermore \((\lambda \in \mathbb{Z}^+)\) (telescoping sum)
\[\sum_{i=0}^{\infty} (\text{erf}(x-i) - \text{erf}(x-1-i)) = \]
\[\lim_{\lambda \to \infty} \sum_{i=0}^{\lambda} (\text{erf}(x-i) - \text{erf}(x-1-i)) = \]
\[\text{erf}(x) - \lim_{\lambda \to \infty} \text{erf}(x-1-\lambda) = 1 + \text{erf}(x). \] (11)

Similarly we get
\[\sum_{i=-\infty}^{-1} (\text{erf}(x-i) - \text{erf}(x-1-i)) = \]
\[\lim_{\lambda \to \infty} \sum_{i=-\lambda}^{-1} (\text{erf}(x-i) - \text{erf}(x-1-i)) = \]
\[\lim_{\lambda \to \infty} (\text{erf}(x+\lambda) - \text{erf}(x)) = 1 - \text{erf}(x). \] (12)

Adding (11) and (12), we get
\[\sum_{i=-\infty}^{\infty} (\text{erf}(x-i) - \text{erf}(x-1-i)) = 2, \text{ for any } x \in \mathbb{R}. \] (13)

Hence (13) is true for \((x+1)\), giving us
\[\sum_{i=-\infty}^{\infty} (\text{erf}(x+1-i) - \text{erf}(x-i)) = 2, \text{ for any } x \in \mathbb{R}. \] (14)

Adding (13) and (14) we obtain
\[\sum_{i=-\infty}^{\infty} (\text{erf}(x+1-i) - \text{erf}(x-1-i)) = 4, \text{ for any } x \in \mathbb{R}, \] (15)
proving (12).

Thus
\[\sum_{i = -\infty}^{\infty} \chi(nx - i) = 1, \quad \forall n \in \mathbb{N}, \forall x \in \mathbb{R}. \] (16)

Furthermore we get:

Since \(\chi \) is even it holds \(\sum_{i = -\infty}^{\infty} \chi(i - x) = 1 \), for any \(x \in \mathbb{R} \).

Hence \(\sum_{i = -\infty}^{\infty} \chi(i + x) = 1 \), \(\forall x \in \mathbb{R} \), and \(\sum_{i = -\infty}^{\infty} \chi(x + i) = 1 \), \(\forall x \in \mathbb{R} \).

Theorem 2 It holds
\[\int_{-\infty}^{\infty} \chi(x) \, dx = 1. \] (17)

Proof. We notice that
\[
\int_{-\infty}^{\infty} \chi(x) \, dx = \sum_{j = -\infty}^{\infty} \int_{j}^{j+1} \chi(x) \, dx = \sum_{j = -\infty}^{\infty} \int_{0}^{1} \chi(x+j) \, dx = \int_{0}^{1} \left(\sum_{j = -\infty}^{\infty} \chi(x+j) \right) \, dx = \int_{0}^{1} 1 \, dx = 1.
\]

So \(\chi(x) \) is a density function on \(\mathbb{R} \).

Theorem 3 Let \(0 < \alpha < 1 \), and \(n \in \mathbb{N} \) with \(n^{1-\alpha} \geq 3 \). It holds
\[
\sum_{k = -\infty}^{\infty} \chi(nx-k) < \frac{1}{2\sqrt{\pi}(n^{1-\alpha} - 2)e^{(n^{1-\alpha} - 2)^2/4}}.
\] (18)

Proof. Let \(x \geq 1 \). That is \(0 \leq x - 1 < x + 1 \). Applying the mean value theorem we get
\[
\chi(x) = \frac{1}{4} (\text{erf}(x+1) - \text{erf}(x-1)) = \frac{1}{\sqrt{\pi}} e^{-\xi^2},
\] (19)

where \(x - 1 < \xi < x + 1 \).

Hence
\[
\chi(x) < \frac{e^{-(x-1)^2}}{\sqrt{\pi}}, \quad x \geq 1.
\] (20)

Thus we have
\[
\sum_{k = -\infty}^{\infty} \chi(nx-k) = \sum_{k = -\infty}^{\infty} \chi(|nx-k|) < \sum_{k = -\infty}^{\infty} \chi(|nx-k|) < \sum_{k = -\infty}^{\infty} \chi(|nx-k|) <
\]
\[
\frac{1}{\sqrt{\pi}} \sum_{k = -\infty}^{\infty} e^{-|nx-k|^2} \leq \frac{1}{\sqrt{\pi}} \int_{(n^{1-\alpha}-1)}^{\infty} e^{-(x-1)^2} dx
\]
(21)

\[
\frac{1}{\sqrt{\pi}} \int_{n^{1-\alpha}-2}^{\infty} e^{-z^2} dz
\]

(see section 3.7.3 of [22])

\[
\frac{1}{2\sqrt{\pi}} \left(\min \left(\sqrt{\pi}, \frac{1}{(n^{1-\alpha}-2)} \right) \right) e^{-(n^{1-\alpha}-2)^2}
\]

(by \(n^{1-\alpha} - 2 \geq 1\), hence \(\frac{1}{n^{1-\alpha}-2} \leq 1 < \sqrt{\pi}\))

\[
< \frac{1}{2\sqrt{\pi} (n^{1-\alpha}-2) e^{(n^{1-\alpha}-2)^2}},
\]

(22)

proving the claim. \(\blacksquare\)

Denote by \(\lfloor \cdot \rfloor\) the integral part of the number and by \(\lceil \cdot \rceil\) the ceiling of the number.

Theorem 4 Let \(x \in [a, b] \subset \mathbb{R}\) and \(n \in \mathbb{N}\) so that \(\lfloor na \rfloor \leq \lfloor nb \rfloor\). It holds

\[
\frac{1}{\sum_{k=\lfloor na \rfloor}^{\lfloor nb \rfloor} \chi(nx-k)} < \frac{1}{\chi(1)} \approx 4.019, \quad \forall \ x \in [a, b].
\]
(23)

Proof. Let \(x \in [a, b]\). We see that

\[
1 = \sum_{k=-\infty}^{\infty} \chi(nx-k) > \sum_{k=\lfloor na \rfloor}^{\lfloor nb \rfloor} \chi(nx-k) =
\]

\[
\sum_{k=\lfloor na \rfloor}^{\lfloor nb \rfloor} \chi(|nx-k|) > \chi(|nx-k_0|),
\]

\(\forall k_0 \in [\lfloor na \rfloor, \lfloor nb \rfloor] \cap \mathbb{Z}\).

We can choose \(k_0 \in [\lfloor na \rfloor, \lfloor nb \rfloor] \cap \mathbb{Z}\) such that \(|nx-k_0| < 1\).

Therefore

\[
\chi(|nx-k_0|) > \chi(1) = \frac{1}{4} (\text{erf}(2) - \text{erf}(0)) =
\]

\[
\frac{\text{erf}(2)}{4} = 0.99533 = 0.2488325.
\]
(25)

Consequently we get

\[
\sum_{k=\lfloor na \rfloor}^{\lfloor nb \rfloor} \chi(|nx-k|) > \chi(1) \approx 0.2488325,
\]
(26)
and
\[
\sum_{k=[na]}^{[nb]} \frac{1}{\chi([nx-k])} < \frac{1}{\chi(1)} \approx 4.019,
\]
proving the claim.

Remark 5 We also notice that
\[
1 - \sum_{k=[na]}^{[nb]} \chi(nb-k) = \sum_{k=-\infty}^{[na]-1} \chi(nb-k) + \sum_{k=[nb]+1}^{\infty} \chi(nb-k) > \chi(nb-[nb]-1)
\]
(call \(\varepsilon := nb-[nb], 0 \leq \varepsilon < 1 \))
\[
= \chi(\varepsilon - 1) = \chi(1-\varepsilon) \geq \chi(1) > 0.
\]
Therefore
\[
\lim_{n \to \infty} \left(1 - \sum_{k=[na]}^{[nb]} \chi(nb-k) \right) > 0.
\]
Similarly,
\[
1 - \sum_{k=[na]}^{[nb]} \chi(na-k) = \sum_{k=-\infty}^{[na]-1} \chi(na-k) + \sum_{k=[nb]+1}^{\infty} \chi(na-k) > \chi(na-[na]+1)
\]
(call \(\eta := [na]-na, 0 \leq \eta < 1 \))
\[
= \chi(1-\eta) \geq \chi(1) > 0.
\]
Therefore again
\[
\lim_{n \to \infty} \left(1 - \sum_{k=[na]}^{[nb]} \chi(na-k) \right) > 0.
\]
Hence we derive that
\[
\lim_{n \to \infty} \sum_{k=[na]}^{[nb]} \chi(nx-k) \neq 1,
\]
for at least some \(x \in [a,b] \).

Note 6 For large enough \(n \) we always obtain \([na] \leq [nb]\). Also \(a \leq \frac{k}{n} \leq b \), iff \([na] \leq k \leq [nb]\). In general it holds (by (16)) that
\[
\sum_{k=[na]}^{[nb]} \chi(nx-k) \leq 1.
\]
We give

Definition 7 Let \(f \in C ([a, b]) \), \(n \in \mathbb{N} \). We set
\[
A_n (f, x) = \sum_{k=\lfloor na \rfloor}^{\lceil nb \rceil} f \left(\frac{k}{n} \right) \chi (nx-k), \quad \forall \ x \in [a, b],
\]
(32)
\(A_n \) is a neural network operator.

Definition 8 Let \(f \in C_B (\mathbb{R}) \), (continuous and bounded functions on \(\mathbb{R} \)), \(n \in \mathbb{N} \). We introduce the quasi-interpolation operator
\[
B_n (f, x) := \sum_{k=-\infty}^{\infty} f \left(\frac{k}{n} \right) \chi (nx-k), \quad \forall \ x \in \mathbb{R},
\]
(33)
and the Kantorovich type operator
\[
C_n (f, x) = \sum_{k=-\infty}^{\infty} \left(n \int_{k/n}^{k/n+1} f (t) \ dt \right) \chi (nx-k), \quad \forall \ x \in \mathbb{R}.
\]
(34)
\(B_n, C_n \) are neural network operators.

Also we give

Definition 9 Let \(f \in C_B (\mathbb{R}) \), \(n \in \mathbb{N} \). Let \(\theta \in \mathbb{N}, \ w_r \geq 0, \ \sum_{r=0}^{\theta} w_r = 1, \ k \in \mathbb{Z}, \) and
\[
\delta_{nk} (f) = \sum_{r=0}^{\theta} w_r f \left(\frac{k}{n} + \frac{r}{n\theta} \right).
\]
(35)
We put
\[
D_n (f, x) = \sum_{k=-\infty}^{\infty} \delta_{nk} (f) \chi (nx-k), \quad \forall \ x \in \mathbb{R}.
\]
(36)
\(D_n \) is a neural network operator of quadrature type.

We need

Definition 10 For \(f \in C ([a, b]) \), the first modulus of continuity is given by
\[
\omega_1 (f, \delta) := \sup_{x, y \in [a, b], \ |x-y| \leq \delta} |f (x) - f (y)|, \quad \delta > 0.
\]
(37)
We have that \(\lim_{\delta \to 0} \omega_1 (f, \delta) = 0. \)
Similarly \(\omega_1 (f, \delta) \) is defined for \(f \in C_B (\mathbb{R}) \).
We know that, f is uniformly continuous on \mathbb{R} iff $\lim_{\delta \to 0} \omega_1(f, \delta) = 0$.

We make

Remark 11 We notice the following, that

$$A_n(f,x) - f(x) = \sum_{k=[na]}^{nb} f\left(\frac{k}{n}\right) \chi(nx-k) - f(x) \sum_{k=[na]}^{nb} \chi(nx-k).$$

(38)

using (23) we get,

$$|A_n(f,x) - f(x)| \leq (4.019) \left| \sum_{k=[na]}^{nb} f\left(\frac{k}{n}\right) \chi(nx-k) - f(x) \sum_{k=[na]}^{nb} \chi(nx-k) \right|.$$

(39)

Again here $0 < \alpha < 1$ and $n \in \mathbb{N}$ with $n^{1-\alpha} \geq 3$. Let the fixed $K, L > 0$; for the linear combination $K n^\alpha + L (n^{1-\alpha} - 2) e(n^{1-\alpha} - 2)^2$, the dominant rate of convergence to zero, as $n \to \infty$, is $n^{-\alpha}$. The closer α is to 1, we get faster and better rate of convergence to zero.

In this article we study basic approximation properties of A_n, B_n, C_n, D_n neural network operators. That is, the quantitative pointwise and uniform convergence of these operators to the unit operator I.

3 Real Neural Network Approximations

Here we present a series of neural network approximations to a function given with rates.

We give

Theorem 12 Let $f \in C([a,b])$, $0 < \alpha < 1$, $x \in [a,b]$, $n \in \mathbb{N}$ with $n^{1-\alpha} \geq 3$, $\|\cdot\|_\infty$ is the supremum norm. Then

1) $|A_n(f,x) - f(x)| \leq (4.019) \left[\omega_1\left(f, \frac{1}{n^\alpha}\right) + \frac{\|f\|_\infty}{\sqrt{\pi}} \left(n^{1-\alpha} - 2\right) e(n^{1-\alpha} - 2)^2 \right] =: \mu_{1n}$,

(40)

2) $\|A_n(f) - f\|_\infty \leq \mu_{1n}$.

(41)

We notice that $\lim_{n \to \infty} A_n(f) = f$, pointwise and uniformly.

Proof. Using (39) we get

$$|A_n(f,x) - f(x)| \leq (4.019) \left[\sum_{k=[na]}^{nb} \left| f\left(\frac{k}{n}\right) - f(x) \right| \chi(nx-k) \right].$$
Theorem 13 Let $f \in C_B(\mathbb{R})$, $0 < \alpha < 1$, $x \in \mathbb{R}$, $n \in \mathbb{N}$ with $n^{1-\alpha} \geq 3$. Then

1) $|B_n(f, x) - f(x)| \leq \omega_1 \left(f, \frac{1}{n^\alpha} \right) + \frac{\|f\|_\infty}{\sqrt{\pi} \left(n^{1-\alpha} - 2\right)e^{(n^{1-\alpha}-2)^2}} =: \mu_{2n}$, (44)

2) $\|B_n(f) - f\|_\infty \leq \mu_{2n}$, (45)

For $f \in (C_B(\mathbb{R}) \cap C_u(\mathbb{R}))$ ($C_u(\mathbb{R})$ uniformly continuous functions on \mathbb{R}) we get $\lim_{n \to \infty} B_n(f) = f$, pointwise and uniformly.

Proof. We see that

$|B_n(f, x) - f(x)| \leq \omega_1 \left(f, \frac{1}{n^\alpha} \right) + \frac{\|f\|_\infty}{\sqrt{\pi} \left(n^{1-\alpha} - 2\right)e^{(n^{1-\alpha}-2)^2}}$,
\[
\sum_{k=-\infty}^{\infty} \left| f \left(\frac{k}{n} \right) - f(x) \right| \chi(nx-k) \leq \\
\sum_{k=-\infty}^{\infty} \left| f \left(\frac{k}{n} \right) - f(x) \right| \chi(nx-k) + \\
\sum_{k=-\infty}^{\infty} \left| f \left(\frac{k}{n} \right) - f(x) \right| \chi(nx-k) \leq (46)
\]

We continue with Theorem 14 Let \(f \in C_B(\mathbb{R}), \ 0 < \alpha < 1, \ x \in \mathbb{R}, \ n \in \mathbb{N} \) with \(n^{1-\alpha} \geq 3 \). Then

1) \[
|C_n(f, x) - f(x)| \leq \omega_1 \left(f, \frac{1}{n^\alpha} \right) + \frac{\|f\|_\infty}{\sqrt{\pi} (n^{1-\alpha} - 2) e^{(n^{1-\alpha} - 2)^2}} =: \mu_{3n}, \quad (48)
\]

2) \[
\|C_n(f) - f\|_\infty \leq \mu_{3n}. \quad (49)
\]

For \(f \in (C_B(\mathbb{R}) \cap C_u(\mathbb{R})) \) we get \(\lim_{n \to \infty} C_n(f) = f \), pointwise and uniformly.

Proof. We notice that

\[
\int_{\frac{k}{n}}^{\frac{k+1}{n}} f(t) \, dt = \int_{0}^{\frac{1}{n}} f \left(t + \frac{k}{n} \right) \, dt. \quad (50)
\]
Hence we can write

\[C_n(f, x) = \sum_{k=-\infty}^{\infty} \left(n \int_{0}^{1/n} f \left(\frac{t + k}{n} \right) dt \right) \chi(nx - k). \quad (51) \]

We observe that

\[|C_n(f, x) - f(x)| = \left| \sum_{k=-\infty}^{\infty} \left(n \int_{0}^{1/n} f \left(\frac{t + k}{n} \right) dt \right) \chi nx - k \right| = \]

\[\left| \sum_{k=-\infty}^{\infty} \left(n \int_{0}^{1/n} f \left(\frac{t + k}{n} - f(x) \right) dt \right) \chi nx - k \right| \leq \]

\[\sum_{k=-\infty}^{\infty} \left(n \int_{0}^{1/n} \left| f \left(\frac{t + k}{n} - f(x) \right) dt \right| \chi nx - k \right) \leq \]

\[\left\{ \begin{array}{l}
 k = -\infty \\
 |x - \frac{k}{n}| \leq \frac{1}{n^\alpha}
\end{array} \right. \]

\[\sum_{k=-\infty}^{\infty} \left(n \int_{0}^{1/n} \left| f \left(\frac{t + k}{n} - f(x) \right) \right| dt \right) \chi nx - k \leq \]

\[\left\{ \begin{array}{l}
 k = -\infty \\
 |x - \frac{k}{n}| \geq \frac{1}{n^\alpha}
\end{array} \right. \]

\[\sum_{k=-\infty}^{\infty} \left(n \int_{0}^{1/n} \omega_{1} \left| f \left(\frac{t + k}{n} - x \right) \right| dt \right) \chi nx - k + \]

\[\left\{ \begin{array}{l}
 k = -\infty \\
 |x - \frac{k}{n}| \leq \frac{1}{n^\alpha}
\end{array} \right. \]

\[\sum_{k=-\infty}^{\infty} \left(n \int_{0}^{1/n} \omega_{1} \left(f, |t| + \frac{1}{n^\alpha} \right) dt \right) \chi nx - k \leq \]

\[\left\{ \begin{array}{l}
 k = -\infty \\
 |nx - k| \geq n^{1-\alpha}
\end{array} \right. \]

\[\sum_{k=-\infty}^{\infty} \left(n \int_{0}^{1/n} \omega_{1} \left(f, |t| + \frac{1}{n^\alpha} \right) dt \right) \chi nx - k \leq \]

\[\left\{ \begin{array}{l}
 k = -\infty \\
 |nx - k| \leq n^{1-\alpha}
\end{array} \right. \]

\[\frac{\|f\|_{\infty}}{\sqrt{\pi} (n^{1-\alpha} - 2) e^{(n^{1-\alpha} - 2)^2}} \leq \]

\[12 \]
\[\omega_1 \left(f, \frac{1}{n} + \frac{1}{n^\alpha} \right) \left(\sum_{k = -\infty}^{\infty} \chi(nx - k) \right) \]

(55)

\[+ \frac{\|f\|_\infty}{\sqrt{\pi} \left(n^{1-\alpha} - 2 \right) e^{(n^{1-\alpha} - 2)^2}} \leq \omega_1 \left(f, \frac{1}{n} + \frac{1}{n^\alpha} \right) + \frac{\|f\|_\infty}{\sqrt{\pi} \left(n^{1-\alpha} - 2 \right) e^{(n^{1-\alpha} - 2)^2}}, \]

proving the claim. □

We give next

Theorem 15 Let \(f \in C_B(\mathbb{R}), \) \(0 < \alpha < 1, \) \(x \in \mathbb{R}, \) \(n \in \mathbb{N} \) with \(n^{1-\alpha} \geq 3. \) Then

1) \[|D_n(f, x) - f(x)| \leq \mu_{3n}, \]

(56)

and

2) \[\|D_n(f) - f\|_\infty \leq \mu_{3n}, \]

(57)

where \(\mu_{3n} \) as in (48).

For \(f \in (C_B(\mathbb{R}) \cap C_u(\mathbb{R})) \) we get \(\lim_{n \to \infty} D_n(f) = f, \) pointwise and uniformly.

Proof. We see that

\[|D_n(f, x) - f(x)| \leq \sum_{k = -\infty}^{\infty} \left(\sum_{r=0}^{\theta} w_r f \left(\frac{k}{n} + \frac{r}{n\theta} \right) \right) \chi(nx - k) \]

(58)

\[\leq \sum_{k = -\infty}^{\infty} \left(\sum_{r=0}^{\theta} w_r \left| f \left(\frac{k}{n} + \frac{r}{n\theta} \right) - f(x) \right| \right) \chi(nx - k) \]

(59)
\[2 \|f\|_\infty \sum_{k = -\infty}^{\infty} \chi(|nx - k|) \leq \]
\[\left\{ \begin{array}{l}
\sum_{k = -\infty}^{\infty} \omega_1 \left(\sum_{r=0}^{\theta} w_r \left(f, \frac{1}{n^\alpha} + \frac{1}{n} \right) \chi(n x - k) + \\
\frac{\|f\|_\infty}{\sqrt{\pi} (n^{1-\alpha} - 2) e^{(n^{1-\alpha} - 2)^2}} \leq (60) \\
\omega_1 \left(f, \frac{1}{n^\alpha} + \frac{1}{n} \right) + \frac{\|f\|_\infty}{\sqrt{\pi} (n^{1-\alpha} - 2) e^{(n^{1-\alpha} - 2)^2}} = \mu_{3n}, \\
\end{array} \right.
\]

proving the claim. ■

In the next we discuss high order of approximation by using the smoothness of \(f \).

Theorem 16 Let \(f \in C^N([a,b]), n, N \in \mathbb{N}, n^{1-\alpha} \geq 3, 0 < \alpha < 1, x \in [a,b] \). Then

\[|A_n (f, x) - f(x)| \leq (4.019). \] (61)

\[\left\{ \begin{array}{l}
\sum_{j=1}^{N} \left| f^{(j)}(x) \right| \left[\frac{1}{n^\alpha} + \frac{(b-a)^j}{2 \sqrt{\pi} (n^{1-\alpha} - 2) e^{(n^{1-\alpha} - 2)^2}} \right] + \\
\left[\omega_1 \left(f^{(N)}, \frac{1}{n^\alpha} \right) \frac{1}{n^{\alpha N} N!} + \frac{\|f^{(N)}\|_\infty (b-a)^N}{N! \sqrt{\pi} (n^{1-\alpha} - 2) e^{(n^{1-\alpha} - 2)^2}} \right], \\
\end{array} \right.
\]

ii) assume further \(f^{(j)}(x_0) = 0, j = 1, \ldots, N, \) for some \(x_0 \in [a,b] \), it holds

\[|A_n (f, x_0) - f(x_0)| \leq (4.019). \] (62)

\[\left[\omega_1 \left(f^{(N)}, \frac{1}{n^\alpha} \right) \frac{1}{n^{\alpha N} N!} + \frac{\|f^{(N)}\|_\infty (b-a)^N}{N! \sqrt{\pi} (n^{1-\alpha} - 2) e^{(n^{1-\alpha} - 2)^2}} \right],
\]

notice here the extremely high rate of convergence at \(n^{-(N+1)\alpha} \),

iii) \[\|A_n (f) - f\|_\infty \leq (4.019). \] (63)

\[\left\{ \begin{array}{l}
\sum_{j=1}^{N} \frac{\|f^{(j)}\|_\infty}{j!} \left[\frac{1}{n^\alpha} + \frac{(b-a)^j}{2 \sqrt{\pi} (n^{1-\alpha} - 2) e^{(n^{1-\alpha} - 2)^2}} \right] + \\
\end{array} \right.
\]
\[
\left\{ \omega_1 \left(f^{(N)}, \frac{1}{n^a} \right) \frac{1}{n^a N!} + \frac{\|f^{(N)}\|_{\infty} (b-a)^N}{N! \sqrt{\pi} (n^{1-a} - 2) e^{(n^{1-a} - 2)^2}} \right\}.
\]

Proof. We use (39).

Call

\[A_n^* (f, x) := \sum_{k=[na]}^{[nb]} f \left(\frac{k}{n} \right) \chi (nx - k), \]

that is

\[A_n (f, x) = \frac{A_n^* (f, x)}{\sum_{k=[na]}^{[nb]} \chi (nx - k)}. \]

Next we apply Taylor’s formula with integral remainder.

We have (here \(\frac{k}{n}, x \in [a,b] \))

\[
f \left(\frac{k}{n} \right) = \sum_{j=0}^{N} \frac{f^{(j)} (x)}{j!} \left(\frac{k}{n} - x \right)^j + \int_{x}^{\frac{k}{n}} \left(f^{(N)} (t) - f^{(N)} (x) \right) \frac{(\frac{k}{n} - t)^{N-1}}{(N-1)!} dt.
\]

Then

\[
f \left(\frac{k}{n} \right) \chi (nx - k) = \sum_{j=0}^{N} \frac{f^{(j)} (x)}{j!} \chi (nx - k) \left(\frac{k}{n} - x \right)^j + \chi (nx - k) \int_{x}^{\frac{k}{n}} \left(f^{(N)} (t) - f^{(N)} (x) \right) \frac{(\frac{k}{n} - t)^{N-1}}{(N-1)!} dt.
\]

Hence

\[
\sum_{k=[na]}^{[nb]} f \left(\frac{k}{n} \right) \chi (nx - k) = \sum_{k=[na]}^{[nb]} \chi (nx - k) = \sum_{j=1}^{N} \frac{f^{(j)} (x)}{j!} \sum_{k=[na]}^{[nb]} \chi (nx - k) \left(\frac{k}{n} - x \right)^j + \sum_{k=[na]}^{[nb]} \chi (nx - k) \int_{x}^{\frac{k}{n}} \left(f^{(N)} (t) - f^{(N)} (x) \right) \frac{(\frac{k}{n} - t)^{N-1}}{(N-1)!} dt.
\]

Thus

\[
A_n^* (f, x) - f (x) \left(\sum_{k=[na]}^{[nb]} \chi (nx - k) \right) = \sum_{j=1}^{N} \frac{f^{(j)} (x)}{j!} A_n^* \left((\cdot - x)^j \right) + A_n (x),
\]

where

\[
A_n (x) := \sum_{k=[na]}^{[nb]} \chi (nx - k) \int_{x}^{\frac{k}{n}} \left(f^{(N)} (t) - f^{(N)} (x) \right) \frac{(\frac{k}{n} - t)^{N-1}}{(N-1)!} dt.
\]

(64)
We assume that $b - a > \frac{1}{m^2}$, which is always the case for large enough $n \in \mathbb{N}$, that is when $n > \left(\frac{b - a}{m^2}\right)^{-\frac{1}{2}}$.

Thus $\frac{k}{n} - x \leq \frac{1}{n^2}$ or $\frac{k}{n} - x > \frac{1}{n^2}$.

As in [3], pp. 72-73 for

$$\gamma := \int_{x}^{k} (f^{(N)}(t) - f^{(N)}(x)) \frac{(k - t)^{N-1}}{(N-1)!} dt,$$ \hspace{1cm} (66)

in case of $\frac{k}{n} - x \leq \frac{1}{n^2}$, we find that

$$|\gamma| \leq \omega_1 \left(f^{(N)} \right) \frac{1}{n^{\alpha N N!}}$$

(for $x \leq \frac{k}{n}$ or $x \geq \frac{k}{n}$).

Notice also for $x \leq \frac{k}{n}$ that

$$\left| \int_{x}^{k} (f^{(N)}(t) - f^{(N)}(x)) \frac{(k - t)^{N-1}}{(N-1)!} dt \right| \leq$$

$$\int_{x}^{k} \left| f^{(N)}(t) - f^{(N)}(x) \right| \frac{(k - t)^{N-1}}{(N-1)!} dt \leq$$

$$2 \left\| f^{(N)} \right\|_{\infty} \int_{x}^{k} \frac{(k - t)^{N-1}}{(N-1)!} dt = 2 \left\| f^{(N)} \right\|_{\infty} \frac{(k - x)^{N}}{N!} \leq 2 \left\| f^{(N)} \right\|_{\infty} \frac{(b - a)^{N}}{N!}.$$

Next assume $\frac{k}{n} \leq x$, then

$$\left| \int_{x}^{k} (f^{(N)}(t) - f^{(N)}(x)) \frac{(k - t)^{N-1}}{(N-1)!} dt \right| =$$

$$\int_{x}^{k} \left| f^{(N)}(t) - f^{(N)}(x) \right| \frac{(k - t)^{N-1}}{(N-1)!} dt \leq$$

$$\int_{x}^{k} \left| f^{(N)}(t) - f^{(N)}(x) \right| \frac{(t - \frac{k}{n})^{N-1}}{(N-1)!} dt \leq$$

$$2 \left\| f^{(N)} \right\|_{\infty} \int_{x}^{k} \frac{(t - \frac{k}{n})^{N-1}}{(N-1)!} dt = 2 \left\| f^{(N)} \right\|_{\infty} \frac{(x - \frac{k}{n})^{N}}{N!} \leq 2 \left\| f^{(N)} \right\|_{\infty} \frac{(b - a)^{N}}{N!}.$$

Thus

$$|\gamma| \leq 2 \left\| f^{(N)} \right\|_{\infty} \frac{(b - a)^{N}}{N!},$$ \hspace{1cm} (67)

in all two cases.
Therefore

$$A_n(x) = \sum_{k=[na]}^{[nb]} \chi(nx-k) \gamma + \sum_{k=[na]}^{[nb]} \chi(nx-k) \gamma.$$

Hence

$$|A_n(x)| \leq \sum_{k=[na]}^{[nb]} \chi(nx-k) \left(\omega_1 \left(\frac{f^{(N)}}{n^\alpha} \frac{1}{N!n^N} \right) + \sum_{k=[na]}^{[nb]} \chi(nx-k) \right) \leq \omega_1 \left(\frac{f^{(N)}}{n^\alpha} \frac{1}{N!n^N} \right) \frac{1}{N!} \sum_{k=[na]}^{[nb]} \chi(nx-k) \left(\frac{b-a}{N} \right)^N.$$

Consequently we have

$$|A_n(x)| \leq \omega_1 \left(\frac{f^{(N)}}{n^\alpha} \frac{1}{N!n^N} \right) \frac{1}{N!} \sum_{k=[na]}^{[nb]} \chi(nx-k) \left(\frac{b-a}{N} \right)^N.$$

We further see that

$$A_n^*(\cdot - x)^j = \sum_{k=[na]}^{[nb]} \chi(nx-k) \left(\frac{k}{n} - x \right)^j.$$

Therefore

$$|A_n^*(\cdot - x)^j| \leq \sum_{k=[na]}^{[nb]} \chi(nx-k) \left|\frac{k}{n} - x \right|^j \leq \sum_{k=[na]}^{[nb]} \chi(nx-k) \left|\frac{k}{n} - x \right|^j + \sum_{k=[na]}^{[nb]} \chi(nx-k) \left|\frac{k}{n} - x \right|^j \leq \sum_{k=[na]}^{[nb]} \chi(nx-k) \left|\frac{k}{n} - x \right|^j \leq \sum_{k=[na]}^{[nb]} \chi(nx-k) \left(\frac{b-a}{N} \right)^N \cdot \sum_{k=[na]}^{[nb]} \chi(nx-k).$$

$$\leq \frac{1}{n^\alpha} \sum_{k=[na]}^{[nb]} \chi(nx-k) + (b-a)^2 \cdot \frac{1}{2\sqrt{\pi} (n^{1-\alpha} - 2) e^{(n^{1-\alpha} - 2)^2}}.$$

17
Hence
\[A_n^\alpha (\cdot - x)^j \leq \frac{1}{n^{\alpha j}} + \frac{(b-a)^j}{2\sqrt{\pi} (n^{1-\alpha} - 2) e(n^{1-\alpha}-2)^2}, \tag{69} \]
for \(j = 1, \ldots, N. \)

Putting things together we have proved
\[\left| A_n^\alpha (f, x) - f (x) \sum_{k=[n\alpha]}^{[n\nu]} \chi (nx-k) \right| \leq \]
\[\sum_{j=1}^{\nu} \frac{|f^{(j)}(x)|}{j!} \left[\frac{1}{n^{\alpha j}} + \frac{(b-a)^j}{2\sqrt{\pi} (n^{1-\alpha} - 2) e(n^{1-\alpha}-2)^2} \right] + \]
\[\left[\omega_1 \left(f^{(\nu)} \right), \frac{1}{n^{\alpha \nu N}} + \frac{\|f^{(\nu)}\|_\infty}{N! \sqrt{\pi} (n^{1-\alpha} - 2) e(n^{1-\alpha}-2)^2} \right], \tag{70} \]
that is establishing theorem. \(\blacksquare \)

4 Fractional Neural Network Approximation

We need

Definition 17 Let \(\nu \geq 0, n = \lceil \nu \rceil \) (\(\lceil \cdot \rceil \) is the ceiling of the number), \(f \in AC^n ([a, b]) \) (space of functions \(f \) with \(f^{(n-1)} \in AC ([a, b]) \), absolutely continuous functions). We call left Caputo fractional derivative (see [16], pp. 49-52, [13], [23]) the function

\[D_{a+}^\nu f(x) = \frac{1}{\Gamma (n-\nu)} \int_a^x (x-t)^{n-\nu-1} f^{(n)} (t) \, dt, \tag{71} \]

\(\forall x \in [a, b] \), where \(\Gamma \) is the gamma function
\(\Gamma (\nu) = \int_0^\infty e^{-t} t^{\nu-1} dt, \nu > 0. \)

Notice \(D_{a+}^\nu f \in L_1 ([a, b]) \) and \(D_{a+}^\nu f \) exists a.e. on \([a, b]\).

We set \(D_{a+}^\nu f (x) = f (x), \forall x \in [a, b]. \)

Lemma 18 ([2]) Let \(\nu > 0, \nu \notin \mathbb{N}, n = \lceil \nu \rceil, f \in C^{n-1} ([a, b]) \) and \(f^{(n)} \in L_\infty ([a, b]). \) Then \(D_{a+}^\nu f (a) = 0. \)

Definition 19 (see also [4], [17], [18]). Let \(f \in AC^m ([a, b]), m = \lceil \alpha \rceil, \alpha > 0. \)

The right Caputo fractional derivative of order \(\alpha > 0 \) is given by

\[D_{b-}^\alpha f(x) = \frac{(-1)^m}{\Gamma (m-\alpha)} \int_x^b (\zeta - x)^{m-\alpha-1} f^{(m)} (\zeta) \, d\zeta, \tag{72} \]

\(\forall x \in [a, b] \). We set \(D_{b-}^0 f (x) = f (x) \). Notice \(D_{b-}^\alpha f \in L_1 ([a, b]) \) and \(D_{b-}^\alpha f \) exists a.e. on \([a, b]. \)
Lemma 20 \([6]\) Let \(f \in C^{m-1} ([a,b]), f^{(m)} \in L_\infty ([a,b]), m = [\alpha], \alpha > 0. \) Then \(D^\alpha_{a-} f (b) = 0. \)

Convention 21 We assume that
\[
D^\alpha_{x_0} f (x) = 0, \quad \text{for} \quad x < x_0,
\]
and
\[
D^\alpha_{x_0} f (x) = 0, \quad \text{for} \quad x > x_0,
\]
for all \(x, x_0 \in (a,b). \)

We mention

Proposition 22 \([6]\) Let \(f \in C^m ([a,b]), n = [\nu], \nu > 0. \) Then \(D^\nu_{a-} f (x) \) is continuous in \(x \in [a,b]. \)

Also we have

Proposition 23 \([6]\) Let \(f \in C^m ([a,b]), m = [\alpha], \alpha > 0. \) Then \(D^\alpha_{b-} f (x) \) is continuous in \(x \in [a,b]. \)

We further mention

Proposition 24 \([6]\) Let \(f \in C^{m-1} ([a,b]), f^{(m)} \in L_\infty ([a,b]), m = [\alpha], \alpha > 0 \) and
\[
D^\alpha_{x_0} f (x) = \frac{1}{\Gamma (m - \alpha)} \int_{x_0}^x (x - t)^{m-\alpha-1} f^{(m)} (t) \, dt,
\]
for all \(x, x_0 \in [a,b]: x \geq x_0. \)
Then \(D^\alpha_{x_0} f (x) \) is continuous in \(x_0. \)

Proposition 25 \([6]\) Let \(f \in C^{m-1} ([a,b]), f^{(m)} \in L_\infty ([a,b]), m = [\alpha], \alpha > 0 \) and
\[
D^\alpha_{x_0} f (x) = \frac{(-1)^m}{\Gamma (m - \alpha)} \int_{x}^{x_0} (\zeta - x)^{m-\alpha-1} f^{(m)} (\zeta) \, d\zeta,
\]
for all \(x, x_0 \in [a,b]: x \leq x_0. \)
Then \(D^\alpha_{x_0} f (x) \) is continuous in \(x_0. \)

Proposition 26 \([6]\) Let \(f \in C^m ([a,b]), m = [\alpha], \alpha > 0, x, x_0 \in [a,b]. \) Then \(D^\alpha_{x_0} f (x), D^\alpha_{x_0} f (x) \) are jointly continuous functions in \((x, x_0)\) from \([a, b]^2\) into \(\mathbb{R}. \)

We recall
Theorem 27 (6) Let \(f : [a, b]^2 \to \mathbb{R} \) be jointly continuous. Consider
\[
G(x) = \omega_1(f(\cdot, x), \delta, [x, b]),
\]
(77)
\(\delta > 0, x \in [a, b]. \)
Then \(G \) is continuous in \(x \in [a, b] \).

Also it holds

Theorem 28 (6) Let \(f : [a, b]^2 \to \mathbb{R} \) be jointly continuous. Then
\[
H(x) = \omega_1(f(\cdot, x), \delta, [a, x]),
\]
(78)
x \(\in [a, b], \) is continuous in \(x \in [a, b], \delta > 0. \)

We need

Remark 29 (6) Let \(f \in C^{n-1}([a, b]), f^{(n)} \in L_{\infty}([a, b]), n = \lceil \nu \rceil, \nu > 0, \nu \notin \mathbb{N}. \) Then we have
\[
|D_{x_0}^\nu f(x)| \leq \frac{\|f^{(n)}\|_{\infty}}{\Gamma(n-\nu+1)} (x-a)^{n-\nu}, \forall x \in [a, b].
\]
(79)
Thus we observe
\[
\omega_1(D_{x_0}^\nu f, \delta) = \sup_{x,y \in [a, b], |x-y| \leq \delta} |D_{x_0}^\nu f(x) - D_{x_0}^\nu f(y)| \\
\leq \sup_{x,y \in [a, b], |x-y| \leq \delta} \left(\frac{\|f^{(n)}\|_{\infty}}{\Gamma(n-\nu+1)} (x-a)^{n-\nu} + \frac{\|f^{(n)}\|_{\infty}}{\Gamma(n-\nu+1)} (y-a)^{n-\nu} \right) \\
\leq \frac{2\|f^{(n)}\|_{\infty}}{\Gamma(n-\nu+1)} (b-a)^{n-\nu}.
\]
Consequently
\[
\omega_1(D_{x_0}^\nu f, \delta) \leq \frac{2\|f^{(n)}\|_{\infty}}{\Gamma(n-\nu+1)} (b-a)^{n-\nu}. \quad (80)
\]
Similarly, let \(f \in C^{m-1}([a, b]), f^{(m)} \in L_{\infty}([a, b]), m = \lceil \alpha \rceil, \alpha > 0, \alpha \notin \mathbb{N}, \) then
\[
\omega_1(D_{x_0}^\alpha f, \delta) \leq \frac{2\|f^{(m)}\|_{\infty}}{\Gamma(m-\alpha+1)} (b-a)^{m-\alpha}. \quad (81)
\]
So for \(f \in C^{m-1}([a, b]), f^{(m)} \in L_{\infty}([a, b]), m = \lceil \alpha \rceil, \alpha > 0, \alpha \notin \mathbb{N}, \) we find
\[
\sup_{x_0 \in [a, b]} \omega_1(D_{x_0}^\alpha f, \delta)_{[x_0, b]} \leq \frac{2\|f^{(m)}\|_{\infty}}{\Gamma(m-\alpha+1)} (b-a)^{m-\alpha}, \quad (82)
\]
and
\[
\sup_{x_0 \in [a,b]} \omega_1 \left(D_{x_0}^\alpha f, \delta \right)_{[a,x_0]} \leq \frac{2 \left\| f^{(m)} \right\|_\infty}{\Gamma (m - \alpha + 1)} (b - a)^{m - \alpha}. \tag{83}
\]

By Proposition 15.114, p. 388 of [5], we get here that \(D_{x_0}^\alpha f \in C ([x_0, b]), \) and by [8] we obtain that \(D_{x_0}^\alpha f \in C ([a, x_0]) \).

Here comes our main fractional result.

Theorem 30 Let \(\alpha > 0, N = [\alpha], \alpha \notin \mathbb{N}, f \in AC^N ([a, b]), \) with \(f^{(N)} \) \in \(L_\infty ([a, b]), 0 < \beta < 1, x \in [a, b], n \in \mathbb{N}, n^{1 - \beta} \geq 3. \) Then

\[
\left| A_n (f, x) - \sum_{j=1}^{N-1} \frac{f^{(j)} (x)}{j!} A_n \left(\cdot - x \right)^j (x) - f (x) \right| \leq \frac{(4.019)}{\Gamma (\alpha + 1)} \cdot \frac{1}{2 \sqrt{\pi} (n^{1 - \beta} - 2) e^{(n^{1 - \beta} - 2)^2}} \cdot \left\{ \omega_1 \left(D_{x_0}^\alpha f, \frac{1}{n^\beta} \right)_{[a,x]} + \omega_1 \left(D_{x_0}^\alpha f, \frac{1}{n^\beta} \right)_{[x,b]} \right\} + \frac{1}{2 \sqrt{\pi} (n^{1 - \beta} - 2) e^{(n^{1 - \beta} - 2)^2}} \cdot \left(\left\| D_{x_0}^\alpha f \right\|_{\infty, [a,x]} (x - a)^{\alpha} + \left\| D_{x_0}^\alpha f \right\|_{\infty, [x,b]} (b - x)^{\alpha} \right) \tag{84}
\]

\(i) \) if \(f^{(j)} (x) = 0, \) for \(j = 1, ..., N - 1, \) we have

\[
\left| A_n (f, x) - f (x) \right| \leq \frac{(4.019)}{\Gamma (\alpha + 1)} \cdot \frac{1}{2 \sqrt{\pi} (n^{1 - \beta} - 2) e^{(n^{1 - \beta} - 2)^2}} \cdot \left(\left\| D_{x_0}^\alpha f \right\|_{\infty, [a,x]} (x - a)^{\alpha} + \left\| D_{x_0}^\alpha f \right\|_{\infty, [x,b]} (b - x)^{\alpha} \right) \tag{85}
\]

\(ii) \) notice here the extremely high rate of convergence at \(n^{-(\alpha + 1)\beta}, \)

\(iii) \)

\[
\left| A_n (f, x) - f (x) \right| \leq \frac{(4.019)}{\Gamma (\alpha + 1)} \cdot \frac{1}{2 \sqrt{\pi} (n^{1 - \beta} - 2) e^{(n^{1 - \beta} - 2)^2}} \cdot \left(\left\| D_{x_0}^\alpha f \right\|_{\infty, [a,x]} (x - a)^{\alpha} + \left\| D_{x_0}^\alpha f \right\|_{\infty, [x,b]} (b - x)^{\alpha} \right). \tag{86}
\]

\(\sum_{j=1}^{N-1} \frac{|f^{(j)} (x)|}{j!} \left\{ \frac{1}{n^{\beta j}} + (b - a)^j \right\} \frac{1}{2 \sqrt{\pi} (n^{1 - \beta} - 2) e^{(n^{1 - \beta} - 2)^2}}$, $\left\{ N^{-1} \sum_{j=1}^{N-1} \frac{|f^{(j)} (x)|}{j!} \left\{ \frac{1}{n^{\beta j}} + (b - a)^j \right\} \frac{1}{2 \sqrt{\pi} (n^{1 - \beta} - 2) e^{(n^{1 - \beta} - 2)^2}}
ight.$
Above, when \(N = 1 \) the sum \(\sum_{j=1}^{N-1} \cdot = 0 \).

As we see here we obtain fractionally type pointwise and uniform convergence with rates of \(A_n \to I \) the unit operator, as \(n \to \infty \).

Proof. Let \(x \in [a,b] \). We have that \(D_{x^{-}}^\alpha f (x) = D_{x}^\alpha f (x) = 0 \).

From [10], p. 54, we get by the left Caputo fractional Taylor formula that

\[
f \left(\frac{k}{n} \right) = \sum_{j=0}^{N-1} \frac{f^{(j)}(x)}{j!} \left(\frac{k}{n} - x \right)^j + \]

\[
\frac{1}{\Gamma (\alpha)} \int_x^{\frac{k}{n}} \left(\frac{k}{n} - J \right)^{\alpha-1} \left(D_{x}^\alpha f (J) - D_{x}^\alpha f (x) \right) dJ,
\]

for all \(x \leq \frac{k}{n} \leq b \).
Also from [4], using the right Caputo fractional Taylor formula we get

\[f\left(\frac{k}{n}\right) = \sum_{j=0}^{N-1} \frac{f^{(j)}(x)}{j!} \left(\frac{k}{n} - x\right)^j + \]

\[\frac{1}{\Gamma(\alpha)} \int_{\frac{k}{n}}^{x} \left(J - \frac{k}{n} \right)^{\alpha-1} (D_{x-}^\alpha f(J) - D_{x-}^\alpha f(x)) \, dJ, \]

for all \(\frac{k}{n} \leq x\).

Hence we have

\[f\left(\frac{k}{n}\right) \chi(nx - k) = \sum_{j=0}^{N-1} \frac{f^{(j)}(x)}{j!} \chi(nx - k) \left(\frac{k}{n} - x\right)^j + \]

\[\frac{\chi(nx - k)}{\Gamma(\alpha)} \int_{\frac{k}{n}}^{x} \left(J - \frac{k}{n} \right)^{\alpha-1} (D_{x-}^\alpha f(J) - D_{x-}^\alpha f(x)) \, dJ, \]

for all \(x \leq \frac{k}{n} \leq b\), iff \(\lceil nx \rceil \leq k \leq \lfloor nb \rfloor\), and

\[f\left(\frac{k}{n}\right) \chi(nx - k) = \sum_{j=0}^{N-1} \frac{f^{(j)}(x)}{j!} \chi(nx - k) \left(\frac{k}{n} - x\right)^j + \]

\[\frac{\chi(nx - k)}{\Gamma(\alpha)} \int_{\frac{k}{n}}^{x} \left(J - \frac{k}{n} \right)^{\alpha-1} (D_{x-}^\alpha f(J) - D_{x-}^\alpha f(x)) \, dJ, \]

for all \(a \leq \frac{k}{n} \leq x\), iff \(\lceil na \rceil \leq k \leq \lfloor nx \rfloor\).

We have that \(\lceil nx \rceil \leq \lfloor nx \rfloor + 1\).

Therefore it holds

\[\sum_{k=\lceil nx \rceil + 1}^{\lfloor nb \rfloor} f\left(\frac{k}{n}\right) \chi(nx - k) = \sum_{j=0}^{N-1} \frac{f^{(j)}(x)}{j!} \sum_{k=\lceil nx \rceil + 1}^{\lfloor nb \rfloor} \chi(nx - k) \left(\frac{k}{n} - x\right)^j + \]

\[\frac{1}{\Gamma(\alpha)} \sum_{k=\lceil nx \rceil + 1}^{\lfloor nb \rfloor} \chi(nx - k) \int_{\frac{k}{n}}^{x} \left(J - \frac{k}{n} \right)^{\alpha-1} (D_{x-}^\alpha f(J) - D_{x-}^\alpha f(x)) \, dJ, \]

and

\[\sum_{k=\lfloor na \rfloor}^{\lfloor nx \rfloor} f\left(\frac{k}{n}\right) \chi(nx - k) = \sum_{j=0}^{N-1} \frac{f^{(j)}(x)}{j!} \sum_{k=\lfloor na \rfloor}^{\lfloor nx \rfloor} \chi(nx - k) \left(\frac{k}{n} - x\right)^j + \]

\[\frac{1}{\Gamma(\alpha)} \sum_{k=\lfloor na \rfloor}^{\lfloor nx \rfloor} \chi(nx - k) \int_{\frac{k}{n}}^{x} \left(J - \frac{k}{n} \right)^{\alpha-1} (D_{x-}^\alpha f(J) - D_{x-}^\alpha f(x)) \, dJ. \]
Adding the last two equalities (92) and (93) we obtain

\[A_n^* (f, x) = \sum_{k = \lfloor \frac{n^b}{n} \rfloor}^{\lfloor \frac{n^b}{n} \rfloor} f\left(\frac{k}{n} \right) \chi (nx - k) = \] (94)

\[\sum_{j=0}^{N-1} \frac{f(j) (x)}{j!} \sum_{k = \lfloor \frac{na}{n} \rfloor}^{\lceil \frac{na}{n} \rceil} \chi (nx - k) \left(\frac{k}{n} - x \right) + \]

\[\frac{1}{\Gamma(\alpha)} \left\{ \sum_{k = \lfloor \frac{nx}{n} \rfloor}^{\lceil \frac{nx}{n} \rceil} \chi (nx - k) \int_{\frac{k}{n}}^{x} (J - \frac{k}{n})^{\alpha-1} (D_x^{-\alpha} f(J) - D_x^{\alpha} f(x)) dJ + \right. \]

\[\left. \sum_{k = \lfloor \frac{nx}{n} \rfloor + 1}^{\lfloor \frac{nb}{n} \rfloor} \chi (nx - k) \int_{\frac{k}{n}}^{x} (\frac{k}{n} - J)^{\alpha-1} (D_x^{\alpha} f(J) - D_x^{\alpha} f(x)) dJ \right\}. \]

So we have derived

\[A_n^* (f, x) - f(x) \left(\sum_{k = \lfloor \frac{na}{n} \rfloor}^{\lfloor \frac{nb}{n} \rfloor} \chi (nx - k) \right) = \] (95)

\[\sum_{j=1}^{N-1} \frac{f(j) (x)}{j!} A_n^* (\cdot - x)^j (x) + \theta_n (x), \]

where

\[\theta_n (x) := \frac{1}{\Gamma(\alpha)} \left\{ \sum_{k = \lfloor \frac{nx}{n} \rfloor}^{\lfloor \frac{nb}{n} \rfloor} \chi (nx - k) \int_{\frac{k}{n}}^{x} (J - \frac{k}{n})^{\alpha-1} (D_x^{-\alpha} f(J) - D_x^{\alpha} f(x)) dJ + \right. \]

\[\left. \sum_{k = \lfloor \frac{nx}{n} \rfloor + 1}^{\lfloor \frac{nb}{n} \rfloor} \chi (nx - k) \int_{\frac{k}{n}}^{x} (\frac{k}{n} - J)^{\alpha-1} (D_x^{\alpha} f(J) - D_x^{\alpha} f(x)) dJ \right\}. \] (96)

We set

\[\theta_{1n} (x) := \frac{1}{\Gamma(\alpha)} \sum_{k = \lfloor \frac{nx}{n} \rfloor}^{\lfloor \frac{nb}{n} \rfloor} \chi (nx - k) \int_{\frac{k}{n}}^{x} (J - \frac{k}{n})^{\alpha-1} (D_x^{-\alpha} f(J) - D_x^{\alpha} f(x)) dJ, \] (97)

and

\[\theta_{2n} := \frac{1}{\Gamma(\alpha)} \sum_{k = \lfloor \frac{nx}{n} \rfloor + 1}^{\lfloor \frac{nb}{n} \rfloor} \chi (nx - k) \int_{\frac{k}{n}}^{x} (\frac{k}{n} - J)^{\alpha-1} (D_x^{\alpha} f(J) - D_x^{\alpha} f(x)) dJ, \] (98)

i.e.

\[\theta_n (x) = \theta_{1n} (x) + \theta_{2n} (x). \] (99)
We assume $b-a > \frac{1}{n^\gamma}$, $0 < \beta < 1$, which is always the case for large enough $n \in \mathbb{N}$, that is when $n > \left\lceil (b-a)^{-\frac{1}{\gamma}} \right\rceil$. It is always true that either $\left| \frac{k}{n} - x \right| \leq \frac{1}{n^\gamma}$ or $\left| \frac{k}{n} - x \right| > \frac{1}{n^\gamma}$. For $k = \lfloor na \rfloor, \ldots, \lfloor nx \rfloor$, we consider

$$
\gamma_{1k} := \left| \int_{\frac{k}{n}}^{x} (J - \frac{k}{n})^{\alpha-1} (D_{x}^\alpha f (J) - D_{x}^\alpha f (x)) dJ \right| (100)
$$

$$
= \left| \int_{\frac{k}{n}}^{x} (J - \frac{k}{n})^{\alpha-1} D_{x}^\alpha f (J) dJ \right| \leq \int_{\frac{k}{n}}^{x} (J - \frac{k}{n})^{\alpha-1} |D_{x}^\alpha f (J)| dJ
$$

$$
\leq \|D_{x}^\alpha f\|_{\infty,[a,x]} \frac{(x - \frac{k}{n})^\alpha}{\alpha} \leq \|D_{x}^\alpha f\|_{\infty,[a,x]} \frac{(x - a)^\alpha}{\alpha}. (101)
$$

That is

$$
\gamma_{1k} \leq \|D_{x}^\alpha f\|_{\infty,[a,x]} \frac{(x - a)^\alpha}{\alpha}, (102)
$$

for $k = \lfloor na \rfloor, \ldots, \lfloor nx \rfloor$.

Also we have in case of $\left| \frac{k}{n} - x \right| \leq \frac{1}{n^\gamma}$ that

$$
\gamma_{1k} \leq \int_{\frac{k}{n}}^{x} (J - \frac{k}{n})^{\alpha-1} |D_{x}^\alpha f (J) - D_{x}^\alpha f (x)| dJ (103)
$$

$$
\leq \int_{\frac{k}{n}}^{x} (J - \frac{k}{n})^{\alpha-1} \omega_1 (D_{x}^\alpha f, |J - x|)_{[a,x]} dJ
$$

$$
\leq \omega_1 \left(D_{x}^\alpha f, \frac{1}{n^\gamma} \right)_{[a,x]} \int_{\frac{k}{n}}^{x} (J - \frac{k}{n})^{\alpha-1} dJ
$$

$$
\leq \omega_1 \left(D_{x}^\alpha f, \frac{1}{n^\gamma} \right)_{[a,x]} ^\frac{(x - \frac{k}{n})^\alpha}{\alpha} \leq \omega_1 \left(D_{x}^\alpha f, \frac{1}{n^\beta} \right)_{[a,x]} \frac{1}{\alpha n^\beta}. (104)
$$

That is when $\left| \frac{k}{n} - x \right| \leq \frac{1}{n^\gamma}$, then

$$
\gamma_{1k} \leq \omega_1 \left(D_{x}^\alpha f, \frac{1}{n^\beta} \right)_{[a,x]} \frac{1}{\alpha n^\beta}. (105)
$$

Consequently we obtain

$$
|\theta_{1n} (x)| \leq \frac{1}{\Gamma (\alpha)} \sum_{k=\lfloor na \rfloor}^{\lfloor nx \rfloor} \chi (nx - k) \gamma_{1k} =
$$

$$
\frac{1}{\Gamma (\alpha)} \left\{ \sum_{k=\lfloor na \rfloor}^{\lfloor nx \rfloor} \chi (nx - k) \gamma_{1k} + \sum_{k=\lfloor na \rfloor}^{\lfloor nx \rfloor} \chi (nx - k) \gamma_{1k} \right\} \leq
$$

25
\[
\frac{1}{\Gamma (\alpha)} \left\{ \sum_{k = \left[n\alpha \right]}^{\lfloor n x \rfloor} \chi (n x - k) \omega_1 \left(D_x^\alpha f, \frac{1}{n^\alpha} \right)_{[a,x]} \right\} + \frac{1}{\Gamma (\alpha + 1)} \left\{ \frac{\omega_1 \left(D_x^\alpha f, \frac{1}{n^\alpha} \right)_{[a,x]}}{n^{\alpha \beta}} \right\} \leq (106) \\
\sum_{k = -\infty}^{\infty} \chi (n x - k) \left\| D_x^\alpha f \right\|_{\infty, [a,x]} (x - a)^\alpha \leq (107) \\
\frac{1}{\Gamma (\alpha + 1)} \left\{ \frac{\omega_1 \left(D_x^\alpha f, \frac{1}{n^\alpha} \right)_{[a,x]}}{n^{\alpha \beta}} \right\} + \frac{1}{2 \sqrt{\pi} (n^{1 - \beta} - 2)e^{(n^{1 - \beta} - 2)^2}} \left\| D_x^\alpha f \right\|_{\infty, [a,x]} (x - a)^\alpha \right\}. \\
\]

So we have proved that
\[
|\theta_{1n} (x)| \leq \frac{1}{\Gamma (\alpha + 1)} \left\{ \frac{\omega_1 \left(D_x^\alpha f, \frac{1}{n^\alpha} \right)_{[a,x]}}{n^{\alpha \beta}} \right\} + (108) \\
\frac{1}{2 \sqrt{\pi} (n^{1 - \beta} - 2)e^{(n^{1 - \beta} - 2)^2}} \left\| D_x^\alpha f \right\|_{\infty, [a,x]} (x - a)^\alpha \right\}. \\
\]

Next when \(k = \left[nx \right] + 1, ..., \left[nb \right] \) we consider
\[
\gamma_{2k} := \left| \int_{x}^{x + \frac{\beta}{n}} \left(\frac{k}{n} - J \right)^{\alpha - 1} (D_x^\alpha f (J) - D_x^\alpha f (x)) dJ \right| \leq \int_{x}^{x + \frac{\beta}{n}} \left(\frac{k}{n} - J \right)^{\alpha - 1} |D_x^\alpha f (J) - D_x^\alpha f (x)| dJ \leq \int_{x}^{x + \frac{\beta}{n}} \left| D_x^\alpha f (J) \right| dJ \leq \left\| D_x^\alpha f \right\|_{\infty, [x,b]} \frac{(\frac{k}{n} - x)^\alpha}{\alpha} \leq (109) \\
\]
\[
\|D_{x|x}^\alpha f\|_{\infty, [x, b]} \frac{(b - x)^\alpha}{\alpha}.
\]

Therefore when \(k = [nx] + 1, \ldots, [nb] \) we get that

\[
\gamma_{2k} \leq \|D_{x|x}^\alpha f\|_{\infty, [x, b]} \frac{(b - x)^\alpha}{\alpha}.
\]

(111)

In case of \(|\frac{k}{n} - x| \leq \frac{1}{n^\eta}\), we get

\[
\gamma_{2k} \leq \int_{x}^{\frac{k}{n}} \left(\frac{k}{n} - J \right)^{\alpha-1} \omega_1 \left(D_{x|x}^\alpha f, |J - x| \right)_{[x, b]} dJ \leq \omega_1 \left(D_{x|x}^\alpha f, \frac{k}{n} - x \right)_{[x, b]} \left(\frac{k}{n} - J \right)^{\alpha-1} dJ \leq \omega_1 \left(D_{x|x}^\alpha f, \frac{1}{n^\beta} \right)_{[x, b]} \frac{1}{\alpha n^\alpha^\beta}.
\]

(113)

So when \(|\frac{k}{n} - x| \leq \frac{1}{n^\eta}\) we derived that

\[
\gamma_{2k} \leq \frac{\omega_1 \left(D_{x|x}^\alpha f, \frac{1}{n^\beta} \right)_{[x, b]}}{\alpha n^\alpha^\beta}.
\]

(114)

Similarly we have that

\[
|\theta_{2n}(x)| \leq \frac{1}{\Gamma(\alpha)} \left(\sum_{k=[nx]+1}^{[nb]} \chi(nx - k) \gamma_{2k} \right) = \frac{1}{\Gamma(\alpha)} \left\{ \sum_{k=[nx]+1}^{[nb]} \chi(nx - k) \frac{\gamma_{2k}}{\alpha n^\alpha^\beta} \right\} \leq \frac{1}{\Gamma(\alpha)} \left(\sum_{k=[nx]+1}^{[nb]} \chi(nx - k) \right) \frac{\omega_1 \left(D_{x|x}^\alpha f, \frac{1}{n^\beta} \right)_{[x, b]}}{\alpha n^\alpha^\beta} + \left\{ \sum_{k=[nx]+1}^{[nb]} \chi(nx - k) \|D_{x|x}^\alpha f\|_{\infty, [x, b]} \frac{(b - x)^\alpha}{\alpha} \right\} \leq \frac{1}{\Gamma(\alpha)} \left(\sum_{k=[nx]+1}^{[nb]} \chi(nx - k) \right) \frac{\omega_1 \left(D_{x|x}^\alpha f, \frac{1}{n^\beta} \right)_{[x, b]}}{\alpha n^\alpha^\beta} + \left\{ \sum_{k=[nx]+1}^{[nb]} \chi(nx - k) \|D_{x|x}^\alpha f\|_{\infty, [x, b]} \frac{(b - x)^\alpha}{\alpha} \right\} \leq \frac{1}{\Gamma(\alpha)} \left(\sum_{k=[nx]+1}^{[nb]} \chi(nx - k) \right) \frac{\omega_1 \left(D_{x|x}^\alpha f, \frac{1}{n^\beta} \right)_{[x, b]}}{\alpha n^\alpha^\beta} + \left\{ \sum_{k=[nx]+1}^{[nb]} \chi(nx - k) \|D_{x|x}^\alpha f\|_{\infty, [x, b]} \frac{(b - x)^\alpha}{\alpha} \right\} \leq (116)
\]
Therefore

\[
\frac{1}{\Gamma(\alpha + 1)} \left\{ \frac{\omega_1 \left(D_{x}^{\alpha} f \right)_{[x,b]} |x|^{\alpha}}{n^{\alpha^2}} + \frac{1}{\Gamma(\alpha + 1)} \left\{ \sum_{k = -\infty}^{\infty} \chi(nx - k) \right\} \| D_{x}^{\alpha} f \|_{\infty,[x,b]} (b - x)^{\alpha} \right\} \leq (117)
\]

Putting things together, we have established

\[
\frac{1}{2\sqrt{\pi} (n^{1-\beta} - 2) e^{(n^{1-\beta} - 2)^2}} \| D_{x}^{\alpha} f \|_{\infty,[x,b]} (b - x)^{\alpha} \}.
\]

So we have proved that

\[
|\theta_{2n}(x)| \leq \frac{1}{\Gamma(\alpha + 1)} \left\{ \frac{\omega_1 \left(D_{x}^{\alpha} f \right)_{[x,b]} |x|^{\alpha}}{n^{\alpha^2}} + \frac{1}{\Gamma(\alpha + 1)} \left\{ \sum_{k = -\infty}^{\infty} \chi(nx - k) \right\} \| D_{x}^{\alpha} f \|_{\infty,[x,b]} (b - x)^{\alpha} \right\} \leq (118)
\]

Therefore

\[
|\theta_{n}(x)| \leq |\theta_{1n}(x)| + |\theta_{2n}(x)| \leq (119)
\]

\[
\frac{1}{\Gamma(\alpha + 1)} \left\{ \frac{\omega_1 \left(D_{x}^{\alpha} f \right)_{[x,b]} |x|^{\alpha}}{n^{\alpha^2}} + \frac{1}{\Gamma(\alpha + 1)} \left\{ \sum_{k = -\infty}^{\infty} \chi(nx - k) \right\} \| D_{x}^{\alpha} f \|_{\infty,[x,b]} (b - x)^{\alpha} \right\} \leq (120)
\]

\[
\frac{1}{2\sqrt{\pi} (n^{1-\beta} - 2) e^{(n^{1-\beta} - 2)^2}} \left(\| D_{x}^{\alpha} f \|_{\infty,[x,a]} (x - a)^{\alpha} + \| D_{x}^{\alpha} f \|_{\infty,[x,b]} (b - x)^{\alpha} \right) \}
\]

As in (69) we get that

\[
|A_n^* ((x - x)^j)(x)| \leq \frac{1}{n^{3j}} + (b - a)^{j} \frac{1}{2\sqrt{\pi} (n^{1-\beta} - 2) e^{(n^{1-\beta} - 2)^2}}, (121)
\]

for \(j = 1, \ldots, N - 1 \), \(\forall x \in [a, b] \).

Putting things together, we have established

\[
\left| A_n^* (f, x) - f(x) \right| \left(\sum_{k = |na|}^{\left[nb \right]} \chi(nx - k) \right) \leq (122)
\]

\[
\sum_{j=1}^{N-1} \left| f^{(j)}(x) \right| \left(\frac{1}{n^{3j}} + (b - a)^{j} \frac{1}{2\sqrt{\pi} (n^{1-\beta} - 2) e^{(n^{1-\beta} - 2)^2}} \right) +
\]

28
As a result, see (39), we derive

\[
\forall x \in [a, b], \quad f(x) = \frac{1}{\Gamma(\alpha + 1)} \left\{ \omega_1(D_x^{\alpha}f, \frac{1}{n})_{[a, x]} + \omega_1\left(D_x^{\alpha}f, \frac{1}{n}\right)_{[x, b]} \right\} + \frac{1}{2\sqrt{\pi} (n^{1-\beta} - 2) e^{(n^{1-\beta} - 2)^2}} \left(\|D_x^{\alpha}f\|_{\infty, [a, x]} (x-a)^\alpha + \|D_x^{\alpha}f\|_{\infty, [x, b]} (b-x)^\alpha \right) \}
\]

As a result, see (39), we derive

\[
\forall x \in [a, b], \quad |A_n(f, x) - f(x)| \leq (4.019) T_n(x),
\]

We further have that

\[
\|T_n\|_{\infty} \leq \sum_{j=1}^{N-1} \frac{\|f^{(j)}\|_{\infty}}{j!} \left[\frac{1}{n^{3j}} + (b-a)^j \frac{1}{2\sqrt{\pi} (n^{1-\beta} - 2) e^{(n^{1-\beta} - 2)^2}} \right] + (125)
\]

\[
\frac{1}{\Gamma(\alpha + 1)} \left\{ \sup_{x \in [a, b]} \left(\omega_1\left(D_x^{\alpha}f, \frac{1}{n}\right)_{[a, x]} + \sup_{x \in [a, b]} \left(\omega_1\left(D_x^{\alpha}f, \frac{1}{n}\right)_{[x, b]} \right) \right) \right\} + \frac{1}{2\sqrt{\pi} (n^{1-\beta} - 2) e^{(n^{1-\beta} - 2)^2}} (b-a)^\alpha.
\]

\[
\left\{ \sup_{x \in [a, b]} \left(\|D_x^{\alpha}f\|_{\infty, [a, x]} \right) + \sup_{x \in [a, b]} \left(\|D_x^{\alpha}f\|_{\infty, [x, b]} \right) \right\} =: E_n.
\]

Hence it holds

\[
\|A_n f - f\|_{\infty} \leq (4.019) E_n.
\]

Since \(f \in AC^N ([a, b]), N = \lceil \alpha \rceil, \alpha > 0, \alpha \notin \mathbb{N}, f^{(N)} \in L_\infty ([a, b]), x \in [a, b], \) then we get that \(f \in AC^N ([a, x]), f^{(N)} \in L_\infty ([a, x]) \) and \(f \in AC^N ([x, b]), f^{(N)} \in L_\infty ([x, b]) \).

We have

\[
(D_x^{\alpha}f)(y) = \frac{(-1)^N}{\Gamma(N - \alpha)} \int_y^x (J-y)^{N-\alpha-1} f^{(N)}(J) dJ,
\]

\forall y \in [a, x] and

\[
\left| (D_x^{\alpha}f)(y) \right| \leq \frac{1}{\Gamma(N - \alpha)} \left(\int_y^x (J-y)^{N-\alpha-1} dJ \right) \left\| f^{(N)} \right\|_{\infty}.
\]

\[
= \frac{1}{\Gamma(N - \alpha)} \frac{(x-y)^{N-\alpha}}{(N-\alpha)} \left\| f^{(N)} \right\|_{\infty} =
\]

29
\[
\frac{(x - y)^{N - \alpha}}{\Gamma (N - \alpha + 1)} \| f^{(N)} \|_\infty \leq \frac{(b - a)^{N - \alpha}}{\Gamma (N - \alpha + 1)} \| f^{(N)} \|_\infty.
\]

That is
\[
\| D_x^\alpha f \|_{\infty, [a, x]} \leq \frac{(b - a)^{N - \alpha}}{\Gamma (N - \alpha + 1)} \| f^{(N)} \|_\infty, \tag{129}
\]

and
\[
\sup_{x \in [a, b]} \| D_x^\alpha f \|_{\infty, [a, x]} \leq \frac{(b - a)^{N - \alpha}}{\Gamma (N - \alpha + 1)} \| f^{(N)} \|_\infty. \tag{130}
\]

Similarly we have
\[
(D_{x, f}^\alpha) (y) = \frac{1}{\Gamma (N - \alpha)} \int_x^y (y - t)^{N - \alpha - 1} f^{(N)} (t) \, dt,
\]
\[\forall \ y \in [x, b].\]

Thus we get
\[
\| (D_{x, f}^\alpha) (y) \| \leq \frac{1}{\Gamma (N - \alpha)} \left(\int_x^y (y - t)^{N - \alpha - 1} dt \right) \| f^{(N)} \|_\infty \leq \frac{1}{\Gamma (N - \alpha)} \frac{(y - x)^{N - \alpha}}{(N - \alpha)} \| f^{(N)} \|_\infty \leq \frac{(b - a)^{N - \alpha}}{\Gamma (N - \alpha + 1)} \| f^{(N)} \|_\infty.
\]

Hence
\[
\| D_{x, f}^\alpha \|_{\infty, [x, b]} \leq \frac{(b - a)^{N - \alpha}}{\Gamma (N - \alpha + 1)} \| f^{(N)} \|_\infty, \tag{132}
\]

and
\[
\sup_{x \in [a, b]} \| D_{x, f}^\alpha \|_{\infty, [x, b]} \leq \frac{(b - a)^{N - \alpha}}{\Gamma (N - \alpha + 1)} \| f^{(N)} \|_\infty. \tag{133}
\]

From (129) and (130) we get
\[
\sup_{x \in [a, b]} \omega_1 \left(D_{x, f}^\alpha, \frac{1}{n^\beta} \right)_{[a, x]} \leq \frac{2 \| f^{(N)} \|_\infty}{\Gamma (N - \alpha + 1)} (b - a)^{N - \alpha}, \tag{134}
\]

and
\[
\sup_{x \in [a, b]} \omega_1 \left(D_{x, f}^\alpha, \frac{1}{n^\beta} \right)_{[x, b]} \leq \frac{2 \| f^{(N)} \|_\infty}{\Gamma (N - \alpha + 1)} (b - a)^{N - \alpha}. \tag{135}
\]

So that \(E_n < \infty. \)

We finally notice that
\[
A_n (f, x) - \sum_{j=1}^{N-1} \frac{f^{(j)} (x)}{j!} A_n (-x)^j (x) - f (x) = \frac{A_n^* (f, x)}{\left(\sum_{k=\lceil na \rceil}^{|nb|} \chi (nx - k) \right)} - \frac{1}{\left(\sum_{k=\lceil na \rceil}^{|nb|} \chi (nx - k) \right)} \left(\sum_{j=1}^{N-1} \frac{f^{(j)} (x)}{j!} A_n^* (-x)^j (x) \right) - f (x)
\]

30
Therefore we get
\[
\left| A_n (f, x) - \sum_{j=1}^{N-1} \frac{f(j) (x)}{j!} A_n \left((-x)^j \right) (x) - f (x) \right| \leq (4.019).
\]
\[
\left| A_n^* (f, x) - \sum_{j=1}^{N-1} \frac{f(j) (x)}{j!} A_n^* \left((-x)^j \right) (x) - f (x) \right|,
\]
\forall x \in [a, b].

The proof of the theorem is now complete. ■

Next we apply Theorem 30 for \(N = 1 \).

Corollary 31 Let \(0 < \alpha, \beta < 1, \ n^{1-\beta} \geq 3, \ f \in AC ([a, b]), \ f' \in L_\infty ([a, b]), \ n \in \mathbb{N} \). Then
\[
\| A_n f - f \|_\infty \leq \frac{(4.019)}{\Gamma (\alpha + 1)}.
\]
\[
\left\{ \left(\sup_{x \in [a, b]} \omega_1 \left(D_\alpha^{\alpha} f, \frac{1}{n\alpha} \right)_{[a, x]} + \sup_{x \in [a, b]} \omega_1 \left(D_\alpha^{\alpha} f, \frac{1}{n\beta} \right)_{[x, b]} \right) \right\} + \frac{1}{2 \sqrt{n} (n^{1-\beta} - 2) e (n^{1-\beta} - 2)^\alpha} (b - a)^\alpha.
\]
\[
\left(\sup_{x \in [a, b]} \| D_\alpha^{\alpha} f \|_{\infty, [a, x]} + \sup_{x \in [a, b]} \| D_\alpha^{\alpha} f \|_{\infty, [x, b]} \right).
\]

Remark 32 Let \(0 < \alpha < 1, \) then by (130), we get
\[
\sup_{x \in [a, b]} \| D_\alpha^{\alpha} f \|_{\infty, [a, x]} \leq \frac{(b - a)^{1-\alpha}}{\Gamma (2 - \alpha)} \| f' \|_\infty,
\]
and by (133), we obtain
\[
\sup_{x \in [a, b]} \| D_\alpha^{\alpha} f \|_{\infty, [x, b]} \leq \frac{(b - a)^{1-\alpha}}{\Gamma (2 - \alpha)} \| f' \|_\infty,
\]
given that \(f \in AC ([a, b]) \) and \(f' \in L_\infty ([a, b]) \).
Next we specialize to $\alpha = \frac{1}{2}$.

Corollary 33 Let $0 < \beta < 1$, $n^{1-\beta} \geq 3$, $f \in AC([a,b])$, $f' \in L_\infty([a,b])$, $n \in \mathbb{N}$. Then

$$\|A_n f - f\|_\infty \leq \frac{(8.038)}{\sqrt{\pi}} \cdot \left(\sup_{x \in [a,b]} \frac{\omega_1 (D_{x-}^\frac{1}{2} f, \frac{1}{n^{\beta}})}{|x|} \right) + \frac{1}{2\sqrt{\pi} (n^{1-\beta} - 2) e^{(n^{1-\beta} - 2)^2}} \cdot b - a \cdot \left(\sup_{x \in [a,b]} \left\| D_{x-}^\frac{1}{2} f \right\|_\infty, [a,x] \right) + \sup_{x \in [a,b]} \left\| D_{x-}^\frac{1}{2} f \right\|_\infty, [x,b] \right) \right), \tag{141}$$

Remark 34 (to Corollary 33) Assume that

$$\omega_1 \left(D_{x-}^\frac{1}{2} f, \frac{1}{n^{\beta}} \right)_{[a,x]} \leq \frac{K_1}{n^{\beta}}, \tag{142}$$

and

$$\omega_1 \left(D_{x-}^\frac{1}{2} f, \frac{1}{n^{\beta}} \right)_{[x,b]} \leq \frac{K_2}{n^{\beta}}, \tag{143}$$

$\forall x \in [a,b], \forall n \in \mathbb{N}$, where $K_1, K_2 > 0$.

Then for large enough $n \in \mathbb{N}$, by (141), we obtain

$$\|A_n f - f\|_\infty \leq \frac{M}{n^{2\beta}}, \tag{144}$$

for some $M > 0$.

The speed of convergence in (144) is much higher than the corresponding speeds achieved in (40), which were there $\frac{1}{n^{\beta}}$.

5 Complex Neural Network Approximations

We make

Remark 35 Let $X := [a,b], \mathbb{R}$ and $f : X \to \mathbb{C}$ with real and imaginary parts $f_1, f_2 : f = f_1 + if_2, i = \sqrt{-1}$. Clearly f is continuous iff f_1 and f_2 are continuous.

Also it holds

$$f^{(j)} (x) = f_1^{(j)} (x) + if_2^{(j)} (x), \tag{145}$$
for all \(j = 1, \ldots, N \), given that \(f_1, f_2 \in C^N(X) \), \(N \in \mathbb{N} \).

We denote by \(C_B(\mathbb{R}, \mathbb{C}) \) the space of continuous and bounded functions \(f : \mathbb{R} \to \mathbb{C} \). Clearly \(f \) is bounded, iff both \(f_1, f_2 \) are bounded from \(\mathbb{R} \) into \(\mathbb{R} \), where \(f = f_1 + if_2 \).

Here we define

\[
A_n(f, x) := A_n(f_1, x) + iA_n(f_2, x),
\]

and

\[
B_n(f, x) := B_n(f_1, x) + iB_n(f_2, x).
\]

We observe here that

\[
|A_n(f, x) - f(x)| \leq |A_n(f_1, x) - f_1(x)| + |A_n(f_2, x) - f_2(x)|,
\]

and

\[
\|A_n(f) - f\|_\infty \leq \|A_n(f_1) - f_1\|_\infty + \|A_n(f_2) - f_2\|_\infty.
\]

Similarly we get

\[
|B_n(f, x) - f(x)| \leq |B_n(f_1, x) - f_1(x)| + |B_n(f_2, x) - f_2(x)|,
\]

and

\[
\|B_n(f) - f\|_\infty \leq \|B_n(f_1) - f_1\|_\infty + \|B_n(f_2) - f_2\|_\infty.
\]

We present

Theorem 36 Let \(f \in C([a, b], \mathbb{C}) \), \(f = f_1 + if_2 \), \(0 < \alpha < 1 \), \(n \in \mathbb{N} \), \(n^{1-\alpha} \geq 3 \), \(x \in [a, b] \). Then

i) \(|A_n(f, x) - f(x)| \leq (4.019) \cdot \left(\omega_1 \left(f_1, \frac{1}{n^\alpha} \right) + \omega_1 \left(f_2, \frac{1}{n^\alpha} \right) + \left(\|f_1\|_\infty + \|f_2\|_\infty \right) \frac{1}{\sqrt{\pi} (n^{1-\alpha} - 2) e^{(n^{1-\alpha} - 2)^2}} \right) =: \psi_1. \)

and

ii) \(\|A_n(f) - f\|_\infty \leq \psi_1. \)

Proof. Based on Remark 35 and Theorem 12. ■

We give

Theorem 37 Let \(f \in C_B(\mathbb{R}, \mathbb{C}) \), \(f = f_1 + if_2 \), \(0 < \alpha < 1 \), \(n \in \mathbb{N} \), \(n^{1-\alpha} \geq 3 \), \(x \in \mathbb{R} \). Then
\(|B_n(f,x) - f(x)| \leq \left(\omega_1 \left(f_1, \frac{1}{n^\alpha} \right) + \omega_1 \left(f_2, \frac{1}{n^\alpha} \right) \right) + \frac{1}{\sqrt{\pi} (n^{1-\alpha}-2) e^{(n^{1-\alpha}-2)^2}} =: \psi_2, \tag{154} \)

\(||f_1||_\infty + ||f_2||_\infty\) \frac{1}{\sqrt{\pi} (n^{1-\alpha}-2) e^{(n^{1-\alpha}-2)^2}} =: \psi_2. \tag{155} \)

Proof. Based on Remark 35 and Theorem 13.

Next we present a result of high order complex neural network approximation.

Theorem 38 Let \(f : [a,b] \rightarrow \mathbb{C}, \ [a,b] \subset \mathbb{R} \), such that \(f = f_1 + if_2 \). Assume \(f_1, f_2 \in C_N ([a,b]), n, N \in \mathbb{N}, n^{1-\alpha} \geq 3, 0 < \alpha < 1, x \in [a,b] \). Then

i) \(|A_n(f,x) - f(x)| \leq (4.019). \tag{156} \)

\[\left\{ \sum_{j=1}^{N} \left[\frac{f_1^{(j)}(x)}{j!} + \frac{f_2^{(j)}(x)}{j!} \right] \frac{1}{\sqrt{\pi} (n^{1-\alpha}-2) e^{(n^{1-\alpha}-2)^2}} \right\}, \]

\[\left[\omega_1 \left(f_1^{(N)}, \frac{1}{n^\alpha} \right) + \omega_1 \left(f_2^{(N)}, \frac{1}{n^\alpha} \right) \right], \]

\[\left(\left[\frac{\left\{ f_1^{(N)} \right\} ||_\infty + \left\{ f_2^{(N)} \right\} ||_\infty \right] (b-a)^N \right) N! \sqrt{\pi} (n^{1-\alpha}-2) e^{(n^{1-\alpha}-2)^2} \right\}, \]

ii) assume further \(f_1^{(j)}(x_0) = f_2^{(j)}(x_0) = 0, j = 1, ..., N, \) for some \(x_0 \in [a,b] \), it holds

\(|A_n(f,x_0) - f(x_0)| \leq (4.019). \tag{157} \)

\[\left[\omega_1 \left(f_1^{(N)}, \frac{1}{n^\alpha} \right) + \omega_1 \left(f_2^{(N)}, \frac{1}{n^\alpha} \right) \right], \]

\[\left(\left[\frac{\left\{ f_1^{(N)} \right\} ||_\infty + \left\{ f_2^{(N)} \right\} ||_\infty \right] (b-a)^N \right) N! \sqrt{\pi} (n^{1-\alpha}-2) e^{(n^{1-\alpha}-2)^2} \right\}, \]

notice here the extremely high rate of convergence at \(n^{-(N+1)\alpha}, \)

iii) \(||A_n(f_0) - f||_\infty \leq (4.019). \tag{158} \)

\[\left\{ \sum_{j=1}^{N} \left[\frac{\left\{ f_1^{(j)} \right\} ||_\infty + \left\{ f_2^{(j)} \right\} ||_\infty \right] \frac{1}{\sqrt{\pi} (n^{1-\alpha}-2) e^{(n^{1-\alpha}-2)^2}} \right\}, \]

\[\left[\omega_1 \left(f_1^{(N)}, \frac{1}{n^\alpha} \right) + \omega_1 \left(f_2^{(N)}, \frac{1}{n^\alpha} \right) \right], \]

\[\left(\left[\frac{\left\{ f_1^{(N)} \right\} ||_\infty + \left\{ f_2^{(N)} \right\} ||_\infty \right] (b-a)^N \right) N! \sqrt{\pi} (n^{1-\alpha}-2) e^{(n^{1-\alpha}-2)^2} \right\}. \]
\[
\left[\frac{\left(\omega_1 \left(f_1^{(N)}, \frac{1}{n^\alpha} \right) + \omega_1 \left(f_2^{(N)}, \frac{1}{n^\alpha} \right) \right)}{n^{\alpha N} N!} + \frac{\left(\| f_1^{(N)} \|_\infty + \| f_2^{(N)} \|_\infty \right) (b - a)^N}{N! \sqrt{\pi} (n^{1-\alpha} - 2) e^{(n^{1-\alpha} - 2)^2} \right].
\]

Proof. Based on Remark 39 and Theorem 10.

We continue with high order complex fractional neural network approximation.

Theorem 39 Let \(f : [a, b] \to \mathbb{C}, [a, b] \subset \mathbb{R} \), such that \(f = f_1 + if_2; \alpha > 0 \), \(N = \lceil \alpha \rceil, \alpha \notin \mathbb{N}, 0 < \beta < 1, x \in [a, b], n \in \mathbb{N}, n^{1-\beta} \geq 3 \). Assume \(f_1, f_2 \in AC^N ([a, b]), \) with \(f_1^{(N)}, f_2^{(N)} \in L_\infty ([a, b]). \) Then

i) assume further \(f_1^{(j)} (x) = f_2^{(j)} (x) = 0, j = 1, \ldots, N - 1, \) we have

\[
|A_n (f, x) - f (x)| \leq \frac{(4.019)}{\Gamma (\alpha + 1)} \cdot \left\{ \frac{1}{n^{\alpha \beta}} \left[\left(\omega_1 \left(D_{x}^{\alpha} f_1, \frac{1}{n^\beta} \right) \right)_{[a, x]} + \omega_1 \left(D_{x}^{\alpha} f_1, \frac{1}{n^\beta} \right)_{[x, b]} \right] + \left(\omega_1 \left(D_{x}^{\alpha} f_2, \frac{1}{n^\beta} \right)_{[a, x]} + \omega_1 \left(D_{x}^{\alpha} f_2, \frac{1}{n^\beta} \right)_{[x, b]} \right) \right\} + \frac{1}{2 \sqrt{\pi} (n^{1-\beta} - 2) e^{(n^{1-\beta} - 2)^2}} \cdot \left\{ \left(\| D_{x}^{\alpha} f_1 \|_{\infty, [a, x]} (x - a)^\alpha + \| D_{x}^{\alpha} f_1 \|_{\infty, [x, b]} (b - x)^\alpha \right) + \left(\| D_{x}^{\alpha} f_2 \|_{\infty, [a, x]} (x - a)^\alpha + \| D_{x}^{\alpha} f_2 \|_{\infty, [x, b]} (b - x)^\alpha \right) \right\},
\]

when \(\alpha > 1 \) notice here the extremely high rate of convergence at \(n^{-(\alpha + 1)\beta}, \)

ii) \[
|A_n (f, x) - f (x)| \leq (4.019) \cdot \left\{ \sum_{j=1}^{N-1} \left(\left| f_1^{(j)} (x) \right| + \left| f_2^{(j)} (x) \right| \right) \right\} + \frac{1}{n^{\alpha \beta}} \left[\left(\omega_1 \left(D_{x}^{\alpha} f_1, \frac{1}{n^\beta} \right) \right)_{[a, x]} + \omega_1 \left(D_{x}^{\alpha} f_1, \frac{1}{n^\beta} \right)_{[x, b]} \right] + \frac{1}{\Gamma (\alpha + 1)} \left\{ \frac{1}{n^{\alpha \beta}} \left[\left(\omega_1 \left(D_{x}^{\alpha} f_1, \frac{1}{n^\beta} \right) \right)_{[a, x]} + \omega_1 \left(D_{x}^{\alpha} f_1, \frac{1}{n^\beta} \right)_{[x, b]} \right] + \frac{1}{2 \sqrt{\pi} (n^{1-\beta} - 2) e^{(n^{1-\beta} - 2)^2}} \cdot \left\{ \left(\| D_{x}^{\alpha} f_1 \|_{\infty, [a, x]} (x - a)^\alpha + \| D_{x}^{\alpha} f_1 \|_{\infty, [x, b]} (b - x)^\alpha \right) + \left(\| D_{x}^{\alpha} f_2 \|_{\infty, [a, x]} (x - a)^\alpha + \| D_{x}^{\alpha} f_2 \|_{\infty, [x, b]} (b - x)^\alpha \right) \right\},
\]

35
\[
\left(\omega_1 \left(D^\alpha_{x-f_2} \frac{1}{n^\beta} \right)_{[a,x]} + \omega_1 \left(D^\alpha_{x-f_2} \frac{1}{n^\beta} \right)_{[x,b]} \right) + \frac{1}{2\sqrt{\pi} (n^{1-\beta} - 2) e^{(n^1-\beta-2)^2}} \left[\left(\|D^\alpha_{x-f_1}\|_{\infty,[a,x]} (x-a)^\alpha + \|D^\alpha_{x-f_2}\|_{\infty,[x,b]} (b-x)^\alpha \right) + \left(\|D^\alpha_{x-f_2}\|_{\infty,[a,x]} (x-a)^\alpha + \|D^\alpha_{x-f_2}\|_{\infty,[x,b]} (b-x)^\alpha \right) \right],
\]

and

\[\|A_n(f) - f\|_\infty \leq (4.019). \]

\[
\left\{ \sum_{j=1}^{N-1} \left(\|f_1^{(j)}\|_\infty + \|f_2^{(j)}\|_\infty \right) \frac{1}{n^\beta} + \frac{(b-a)^j}{2\sqrt{\pi} (n^{1-\beta} - 2) e^{(n^1-\beta-2)^2}} \right\} + \frac{1}{\Gamma(\alpha + 1)} \left\{ \sum_{j=1}^{N-1} \left(\|f_1^{(j)}\|_\infty + \|f_2^{(j)}\|_\infty \right) \frac{1}{n^\beta} + \frac{(b-a)^j}{2\sqrt{\pi} (n^{1-\beta} - 2) e^{(n^1-\beta-2)^2}} \right\} + \frac{1}{\Gamma(\alpha + 1)} \left\{ \sum_{j=1}^{N-1} \left(\|f_1^{(j)}\|_\infty + \|f_2^{(j)}\|_\infty \right) \frac{1}{n^\beta} + \frac{(b-a)^j}{2\sqrt{\pi} (n^{1-\beta} - 2) e^{(n^1-\beta-2)^2}} \right\}
\]

Above, when \(N = 1 \) the sum \(\sum_{j=1}^{N-1} \cdot = 0. \)

As we see here we obtain fractionally type pointwise and uniform convergence
with rates of complex \(A_n \to I \) the unit operator, as \(n \to \infty. \)

Proof. Using Theorem \ref{theo:36} and Remark \ref{rem:35}.

We need

Definition 40 Let \(f \in C_B(\mathbb{R}, C) \), with \(f = f_1 + if_2 \). We define

\[
C_n(f, x) = C_n(f_1, x) + iC_n(f_2, x),
\]

\[
D_n(f, x) = D_n(f_1, x) + iD_n(f_2, x), \quad \forall \ x \in \mathbb{R}, \ n \in \mathbb{N}. \]

We finish with 36
Theorem 41 Let $f \in C_B(\mathbb{R}, \mathbb{C})$, $f = f_1 + if_2$, $0 < \alpha < 1$, $n \in \mathbb{N}$, $n^{1-\alpha} \geq 3$, $x \in \mathbb{R}$. Then

i) \[
\left\{ \begin{array}{l}
|C_n(f, x) - f(x)| \\
|D_n(f, x) - f(x)|
\end{array} \right\} \leq \left(\omega_1 \left(f_1, \frac{1}{n} + \frac{1}{n^\alpha} \right) + \omega_1 \left(f_2, \frac{1}{n} + \frac{1}{n^\alpha} \right) \right)
+ \frac{\left(\|f_1\|_{\infty} + \|f_2\|_{\infty} \right)}{\sqrt{n} \left(n^{1-\alpha} - 2 \right) e^{(n^{1-\alpha}-2)^2}} =: \mu_3(n, f_1, f_2),
\]

(163)

and

ii) \[
\left\{ \begin{array}{l}
\|C_n(f) - f\|_{\infty} \\
\|D_n(f) - f\|_{\infty}
\end{array} \right\} \leq \mu_3(n, f_1, f_2).
\]

(164)

Proof. By Theorems 14, 15 also see (162). □

References

[1] M. Abramowitz, I.A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York, Dover Publications, 1972.

[2] G.A. Anastassiou, Rate of convergence of some neural network operators to the unit-univariate case, J. Math. Anal. Appl. 212 (1997), 237-262.

[3] G.A. Anastassiou, Quantitative Approximations, Chapman&Hall/CRC, Boca Raton, New York, 2001.

[4] G.A. Anastassiou, On Right Fractional Calculus, Chaos, solitons and fractals, 42 (2009), 365-376.

[5] G.A. Anastassiou, Fractional Differentiation Inequalities, Springer, New York, 2009.

[6] G.A. Anastassiou, Fractional Korovkin theory, Chaos, Solitons & Fractals, Vol. 42, No. 4 (2009), 2080-2094.

[7] G.A. Anastassiou, Intelligent Systems: Approximation by Artificial Neural Networks, Intelligent Systems Reference Library, Vol. 19, Springer, Heidelberg, 2011.

[8] G.A. Anastassiou, Fractional representation formulae and right fractional inequalities, Mathematical and Computer Modelling, Vol. 54, no. 11-12 (2011), 3098-3115.
[9] G.A. Anastassiou, *Univariate hyperbolic tangent neural network approximation*, Mathematics and Computer Modelling, 53(2011), 1111-1132.

[10] G.A. Anastassiou, *Multivariate hyperbolic tangent neural network approximation*, Computers and Mathematics 61(2011), 809-821.

[11] G.A. Anastassiou, *Multivariate sigmoidal neural network approximation*, Neural Networks 24(2011), 378-386.

[12] G.A. Anastassiou, *Univariate sigmoidal neural network approximation*, J. of Computational Analysis and Applications, Vol. 14, No. 4, 2012, 659-690.

[13] G.A. Anastassiou, *Fractional neural network approximation*, Computers and Mathematics with Applications, 64 (2012), 1655-1676.

[14] L.C. Andrews, *Special Functions of Mathematics for Engineers*, Second edition, Mc Graw-Hill, New York, 1992.

[15] Z. Chen and F. Cao, *The approximation operators with sigmoidal functions*, Computers and Mathematics with Applications, 58 (2009), 758-765.

[16] K. Diethelm, *The Analysis of Fractional Differential Equations*, Lecture Notes in Mathematics 2004, Springer-Verlag, Berlin, Heidelberg, 2010.

[17] A.M.A. El-Sayed and M. Gaber, *On the finite Caputo and finite Riesz derivatives*, Electronic Journal of Theoretical Physics, Vol. 3, No. 12 (2006), 81-95.

[18] G.S. Frederico and D.F.M. Torres, *Fractional Optimal Control in the sense of Caputo and the fractional Noether’s theorem*, International Mathematical Forum, Vol. 3, No. 10 (2008), 479-493.

[19] S. Haykin, *Neural Networks: A Comprehensive Foundation* (2 ed.), Prentice Hall, New York, 1998.

[20] W. McCulloch and W. Pitts, *A logical calculus of the ideas immanent in nervous activity*, Bulletin of Mathematical Biophysics, 7 (1943), 115-133.

[21] T.M. Mitchell, *Machine Learning*, WCB-McGraw-Hill, New York, 1997.

[22] D.S. Mitrinovic, *Analytical Inequalities*, Springer-Verlag, New York, Heidelberg, 1970.

[23] S.G. Samko, A.A. Kilbas and O.I. Marichev, *Fractional Integrals and Derivatives, Theory and Applications*, (Gordon and Breach, Amsterdam, 1993) [English translation from the Russian, Integrals and Derivatives of Fractional Order and Some of Their Applications (Nauka i Tekhnika, Minsk, 1987)].