The ribosomal S6 kinase \(p90^{\text{rsk}} \) was studied in mature and proliferating hematopoietic cells in response to the human cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF). In neutrophils, GM-CSF induced time-dependent electrophoretic mobility shifts in immunoreactive \(p90^{\text{rsk}} \). Although these shifts suggested changes in the phosphorylation status of the molecule, a kinase assay with whole cell lysates detected minimal (1.5-fold) increments in enzymatic activity. Only immunoprecipitation followed by immune complex kinase assay or in-gel kinase assay performed against the RSK substrate RRLSSLA evidenced an increase in \(p90^{\text{rsk}} \) activity (3.4-fold). \(p90^{\text{rsk}} \) was also detected in the GM-CSF-dependent erythroblasts cell line TF-1. Normally cultured, cytokine-supplemented cells did not respond to further GM-CSF stimulation. However, the activity of \(p90^{\text{rsk}} \) in cytokine-starved cells increased dramatically in response to short term GM-CSF challenge. This effect was readily observable in total cell lysates (6.6-fold increase over controls) and was paralleled by changes in mitogen-activated protein kinase activity (a substrate of \(p90^{\text{rsk}} \)). Thus, \(p90^{\text{rsk}} \) is present in mature hematopoietic cells, but the extent of the enzymatic response to GM-CSF is significantly lower than that seen in proliferative cells.

The granulocyte-macrophage colony-stimulating factor (GM-CSF), like other related cytokines, has multiple functions in cells of the immune system, namely, proliferation, differentiation, end-cell activity, and regulation of apoptosis. GM-CSF, as a growth factor for immature hematopoietic cells, plays a crucial role in the commitment of bone marrow stem cells, directing the proliferation and differentiation into specific lineage precursors and enhancing their survival (1–3). Additionally, GM-CSF, as an stimulatory agent of terminally differentiated hematopoietic cells, is able to potentiate the activation of mature phagocytes, neutrophils, eosinophils, and macrophages, playing an important role in host defense (4). In the neutrophil, GM-CSF is able to enhance cell chemotaxis, antibody-dependent cell-mediated cytotoxicity, expression of membrane antigens, phagocytosis, degranulation of lytic enzymes, and release of superoxide anions directed toward invading microbes (5).

In spite of lacking a tyrosine catalytic domain (6), the GM-CSF receptor is still able to induce rapid phosphorylation of multiple cell proteins on tyrosine residues in various cell types of the myeloid lineage, including the neutrophil (7–11). A few of these phosphoproteins have been identified so far, like p33/53, p62(5), and p92(12, 13). In addition, Ser/Thr kinases like Cdc42 (14, 15), the ε isoform of protein kinase C (16), PtdInsP2-specific phosphoinositide 3OH kinase (17), J AK kinases (STAT), and mitogen-activated protein (MAP) kinases (18–22) have been involved in the signaling mechanisms of GM-CSF action. In fact, p42MAPK (ERK-2) is one of the proteins that undergoes the largest change in its tyrosyl phosphate content upon GM-CSF or fMet-Leu-Phe (chemotactic factor) treatment in the neutrophil.

As it has been previously shown, MAP kinases p42, p44, and p54, become active by dual Thr/Tyr phosphorylation in response to mitogenic stimuli (23, 24) and are able to phosphorylate other kinases downstream on Ser/Thr residues. Sturgill et al. (25) demonstrated that p42MAPK isolated from Xenopus oocytes was able to in vitro phosphorylate the ribosomal S6 kinase p90\(^{\text{rsk}}\) in 3T3-L1 adipocytes. p90\(^{\text{rsk}}\), first named S6K1, was initially described in PC12 pheochromocytoma cells (26) and was purified from Xenopus eggs (27) as well as murine and avian cell lines (28, 29). It has been extensively studied in mitosis (30). p90\(^{\text{rsk}}\) is itself a mitogen-activated Ser/Thr kinase. In vitro it can phosphorylate synthetic peptides like RRLSSLA, which was modeled after the phosphorylation site of S6 kinase of the mammalian small (40 S) ribosomal subunit (31, 32). Protein S6 has been long known to become the major phosphoprotein found in mammalian ribosomes of cells stimulated with growth factors (33). Phosphorylation of this protein, which occurs during mitogen and growth factor activation of cells, could facilitate protein synthesis (34, 35).

We undertook this study firstly to ascertain whether \(p90^{\text{rsk}} \) was present in mature hematopoietic cells. Because we were able to detect a significant amount of \(p90^{\text{rsk}} \) in neutrophils, we further studied whether the kinase enzymatic activity was regulated upon cell stimulation with GM-CSF and how this effect compared with the situation in proliferating hematopoietic cells.

EXPERIMENTAL PROCEDURES

Materials, Antibodies, and Cell Lines

rhGM-CSF and rhTNF-α were purchased from R&D Systems (Minneapolis, MN); lipopolysaccharide was from Difco (Detroit, MI); fMet-Leu-Phe, PKA inhibitor (rabbit sequence) TTYADFIASGRTGRRNAXHD, goat anti-rabbit and anti-mouse IgG (whole mouse agarose beads), and myelin basic protein were from Sigma; diisopropyl fluorophosphate was from Aldrich; Immobilon polyvinylidene difluoride membranes were from Millipore Corporation (Bedford, MA); electrophoresis chemicals were from Bio-Rad; [\(^{32} \)P]ATP (3000 Ci/mmol) was from Amersham Life Sciences, Inc.; ion exchange chromatography cellulose

\[\text{Received for publication, February 13, 1996, and in revised form, March 21, 1996} \]
phosphate paper was purchased from Whatman (Hillsboro, OR); anti-MAP kinase (p42, erk2), anti-p90\(^{rbk}\), anti-GTPase-activating protein antibodies (directed against a peptide containing amino acid residues 171-448 of human GTPase-activating protein), RSK peptide (RRRLSS-LRA), and myelin basic protein (MBP) peptide (APRTGGRR) were from Upstate Biotechnology Inc. (Lake Placid, NY); the cervix epithelial cell line HeLa cell lines were purchased from The American Type Culture Collection (Rockville, MD); the cytokine-dependent erythroleukemia cell line TF-1 was a generous gift of Dr. T. Kitamura, University of Tokyo, Japan; tissue culture material was from Becton Dickinson (Oxand, CA) and Costar (Cambridge, MA).

Isolation of Human Neutrophils, Cell Culture, and Thymidine Incorporation

Human neutrophils were isolated from blood of healthy donors and separated on a Ficoll/Hyphaque gradient according to the method of English and Anderson (36). TF-1 erythroleukemia cells were cultured as described previously (37). Briefly, cells were maintained in RPMI 1640 medium containing 10% FCS, 2 mM \(\text{L}\)-glutamine, and gentamicin (50 \(\mu\)g/ml) in the presence of GM-CSF (150 \(\text{pm}\)) at 37°C, 5% CO\(_2\) in a humidified atmosphere. Prior to some studies, the TF-1 cells were starved from cytokine maintenance by washing twice in RPMI 1640 supplemented with 2% FCS without GM-CSF. The cells were resuspended at 5 \(\times\) 10\(^8\) cells/ml in RPMI 1640 with 10% FCS and incubated for 48 h at 37°C, 5% CO\(_2\) in a humidified atmosphere. At the time of the experiment both cytokine-starved and control cytokine-supplemented populations were washed three times in RPMI 1640. The proliferative ability of the TF-1 in response to cytokines was determined in [\(^3\)H]thymidine incorporation studies. Briefly, starved TF-1 cells were washed once in RPMI 1640 containing 2% FCS and plated in 96-well plates at 2 \(\times\) 10\(^4\) cells/well in complete medium with or without cytokine, incubated for 48 h before a 6-h pulse with [\(^3\)H]thymidine (0.5 \(\mu\)Ci/well). The cells were then harvested, and the relative levels of the DNA-incorporated radioactivity was determined by liquid scintillation counting.

Preparation of Cell Extracts

At the time of the experiment, both TF-1 cells and peripheral circulating neutrophils were challenged with 270 \(\mu\)M GM-CSF. Cell suspensions were incubated with GM-CSF for various times at 37°C and lysed by the addition of 10 volumes of the cell suspension to one volume of lysis buffer (0.1 M HEPES, pH 7.3, 7 Mm sodium orthovancadate, 10 \(\mu\)M p-nitro-phenyl-phosphate, 10 \(\mu\)M EGT A, 5.5% Triton X-100, 0.5 M \(\beta\)-glycerophosphate, 10 \(\mu\)M phenylmethylsulfonyl fluoride, 0.1 M ammonium molybdate, 12 mM diisopropyl fluorophosphate, 5 \(\mu\)g/ml leupeptin, 2 \(\mu\)g/ml aprotinin, and 7 \(\mu\)g/ml pepstatin A). Cell lysates (0.4-0.9 mg/ml protein) were incubated on ice for 20 min and then centrifuged for 5 min at 7,000 \(\times\) g.

Kinase Enzymatic Assays

\(^{32}\)P Incorporation into Substrates from Whole Cell Lysates—The enzymatic activities of p90\(^{rbk}\) and p42MAPK were measured in whole cell lysates essentially as initially described (38) and later optimized for polymorphonuclear neutrophil cells (39). The RSK peptide (RRRLSS-LRA) was the phosphoacceptor substrate used for measuring p90\(^{rbk}\) and the MBP peptide (APRTGGRR) was used for measuring p42MAPK. Either 100 \(\mu\)M RSK peptide, or 1 \(\mu\)M MBP peptide, was diluted in freshly prepared kinase buffer (13.4 M HEPES, pH 7.3, 25 Mm MgCl\(_2\), 30 Mm Na\(_2\)VO\(_4\), 5 \(\mu\)M nitrro-phenyl phosphate, 2 \(\mu\)M EGT A, 2 \(\mu\)M cAMP-dependent kinase inhibitor TTYADFIASGRTGRRNAIHD, 21 \(\mu\)Ci of \(^{32}\)P JATP (7 Mm), and 88 \(\mu\)M unlabeled ATP). 1 \(\mu\)g of cAMP-dependent kinase inhibitor inhibits 2,000-6,000 phosphorylating units (PKA) equivalent to the transference of 2-6 nmol of phosphate from ATP). This concentration is high enough, thus ensuring that protein kinase A is not utilizing RRRLSSLRA as a substrate and will not mask the measurement of the p90\(^{rbk}\) activity. To initiate the phosphorylase reaction, aliquots (20 \(\mu\)l) of kinase buffer were mixed 1:1 (v/v) with the cell lysates. The reaction was carried out at room temperature for 40 min and terminated by blotting 20 \(\mu\)l of the reaction mixture onto P81 ion exchange chromatography cellulose phosphate papers. Filter squares were washed, dried, and counted for radioactivity.

Immunoprecipitation and Immunocomplex Kinase Assay—Immunoprecipitation was carried out as reported previously (40) with some minor modifications that are described in detail as follows. The protocol entailed a first step of an overnight incubation of the primary antibody (anti-p90\(^{rbk}\)) at a final concentration of 10 \(\mu\)g/ml with anti-rabbit (IgG, whole molecule) antibody conjugated to agarse beads in lysis buffer (see above for composition). The beads were thoroughly washed and then mixed with crude cell lysates prepared as indicated above at a ratio agarose beads/cell lysates 1:2 (v/v). After a 4-h incubation period at 4°C, immune complexes were recovered by centrifugation. Pellets were washed two times with lysis buffer, two times with buffer A (100 mM Tris-HCl, pH 7.4, 400 mM LiCl) and two times with buffer B (10 mM Tris-HCl, pH 7.4, 100 mM NaCl, 1 mM EDTA). The immunoprecipitation efficiency of both antibodies was monitored by Western blotting of the immunoprecipitates probed with the same kind of antibody used in the immunoprecipitation step. Immune complexes were resuspended in a final volume of 30 \(\mu\)l with lysis buffer and mixed with the kinase buffer. The reaction was carried out as indicated above.

In-gel Renatured Kinase Assay—We followed the in situ or in-gel kinase assay as described previously (41). Briefly, either 50 \(\mu\)g/ml RRRLSS-LRA or 250 \(\mu\)g/ml MBP, to measure p90\(^{rbk}\) or p42MAPK, respectively, was mixed with SDS-polyacylamid gel electrophoresis gel solution before gel polymerization. After electrophorisation, gels were washed of SDS by incubation with 20% isopropanol in buffer A (100 mM Tris-HCl, pH 8, 5 mM 2-mercaptoethanol), gels were then incubated with buffer A containing 6 \(\mu\)g guanidino-\(\text{HCl}\), and proteins were renatured by incubation at 4°C for 6 h in buffer A containing 0.04% Tween 40. Renatured gels were overlaid with kinase buffer (20 mM Tris-HCl, pH 8, 10 mM Mg\(_2\)Cl\(_2\), 25 mCi of \(^{32}\)P JATP) and incubated at room temperature for 30 min. Gels were extensively washed with 1% pyrophosphate in 5% trichloroacetic acid, dried, and exposed to x-ray films.

Western Blotting

Western blotting was performed as described previously (42). Cells were incubated with the appropriate stimulus and total cell lysates were prepared as indicated above. Proteins were electrophoresed and transferred to polyvinylidene difluoride. Blots were blocked in Tris-buffered saline-Tween-20 (TBS-T) (20 mM Tris-base, pH 7.6, 137 mM NaCl, 0.1% Tween 20) supplemented with 5% bovine serum albumin, followed by incubation with the required primary antibody (1:1,000 dilution) in TBS-T and finally with horseradish peroxidase-conjugated anti-mouse IgG (for anti-MAP kinase antibody) or anti-rabbit (for anti-p90\(^{rbk}\) antibody) at a 1:7,000 dilution for 1 h at room temperature. Blots were autoradiographed for variable lengths of time (ranging from 15 s to 1 min) with Kodak X-Omat film. When needed, protein bands were quantified by laser scanning densitometry at 833 nm in a LKB Ultrascan (Pharmacia Biotech Inc.).

RESULTS

Detection of p90\(^{rbk}\) in the Human Neutrophil—The presence of p90\(^{rbk}\) could be readily detected in human neutrophils in Western blots developed with anti-p90\(^{rbk}\) antibody (Fig. 1). This antibody recognizes a single band of 88 kDa, which corresponds
closely to the reported molecular mass of p90rsk. One of the in vitro substrates of p90rsk, the MAP kinase isofrom termed erk2 or p42MAPK, could also be detected in neutrophils (Fig. 1). Treatment of polymorphonuclear neutrophils with GM-CSF resulted in an upward shift in relative electrophoretic mobility of p90rsk (Fig. 2A). The observed electrophoretic mobility shifts were equivalent to an increment of approximately 4 kDa (gross quantitation based on the molecular weight standards’ relative mobility) and could be observed after 5 min of incubation with GM-CSF. A slow migrating form was the predominant protein species in all the time points tested.

Less noticeable and more diffuse changes in electrophoretic mobility of p90rsk could be detected with TNF-α and lipopolysaccharide in the presence of 1% human serum (Fig. 2B). In contrast, the chemotactic factor fMet-Leu-Phe (FMLP) induced a mobility shift similar in magnitude to that exerted by GM-CSF. Moreover, when both stimuli are combined (GM-CSF priming of cells followed by FMLP challenge), the mobility shifts reached their maximum extension. An augmentation of an agonist-induced physiological response due to a cytokine activity shifts reached their maximum extension. An augmentation of an agonist-induced physiological response due to a cytokine.

The time course of activation by GM-CSF is shown in Fig. 5B. Immunoprecipitates from GM-CSF-treated cells contained an elevated p90rsk activity. Recovery of this elevated activity is dependent on the time of incubation with GM-CSF, peaking at 5–10 min. According to the anti-p90rsk immunoprecipitation results shown in Fig. 5 (A and B), activation due to GM-CSF is approximately 3.4-fold.

In-gel Kinase Assay of Renatured p90rsk—We next chose the in-gel kinase assay as a second approach to further analyze the behavior of p90rsk against GM-CSF cell stimulation. Under the conditions described for this assay (see “Experimental Procedures”), electrophoresed and subsequently renatured p90rsk (or p42MAPK in parallel experiments) from cell lysates was overlaid with [γ-32P]ATP. Because the phosphotransferase is locked at its corresponding relative mobility (M,) in the gel, it will produce a signal (evidenced by autoradiography) in that zone when incorporating radioactive ATP into the embedded substrate. As shown in Fig. 6A, 270 pM GM-CSF causes a rapid (5 min) increase in p90rsk and MAP phosphotransferase activities. When gels are analyzed by densitometry and [optical density × band area] are plotted against time, an increase in p90rsk activation could be observed. This increment is still relatively low in comparison with MAP kinase activation (Fig. 6B).

Role of p90rsk in GM-CSF Changes in Proliferating Cells—An increase in p90rsk activation in response to GM-CSF was observed in mature cells. To investigate how this increase compares with a proliferating hematopoietic cell, we used a well established GM-CSF responsive cell, the erythroleukemia cell line TF-1. This cell line is dependent on the presence of cytokines (i.e. GM-CSF, interleukin-3, or erythropoietin) for its survival (37). As seen in Fig. 7A, GM-CSF increased thymidine incorporation in a dose-dependent manner. When p90rsk was analyzed in those cells (Fig. 7, B and C) we observed that: 1) When exponentially growing TF-1 cells were maintained in culture in the continuous presence of GM-CSF (cytokine-supplemented), they had a certain basal level of p90rsk phosphorylation and activity. 2) This basal level could not be significantly changed by an additional (0–15 min) exposure to GM-CSF after cell washing. 3) GM-CSF-starved cells (24 or 48 h) had no evidence of such basal level of phosphorylation and enzymatic activity. 4) When those GM-CSF-starved cells were challenged with GM-CSF in vitro for short (3 or 5 min) periods of time, the p90rsk activity rapidly raised to a level higher than
that observed in cytokine-supplemented cells, being increased 6.6-fold over controls. 5) Finally, these changes in p90
rsk
activ-
ty were paralleled, although at a slightly smaller quantitative
level, by changes in MAP kinase, suggesting that starved TF-1
cells responded to GM-CSF by engaging in selected signal
transduction in a fashion similar to that seen in mature
neutrophils.

To further compare the response to GM-CSF in proliferative
versus mature cells, we performed immunoprecipitation with
specific anti-p90
rsk
antibodies. The cell substrates used were
derived from neutrophils (as described above) and from two

proliferating cell lines: the TF-1 line and the nonhematopoietic
cell line, HeLa (stimulated with 100 nM epidermal growth
factor). When normalized to the same protein concentration,
DISCUSSION

We demonstrate here that p90rsk is present in the human neutrophil. Based on immunological and biochemical characteristics, the neutrophil p90rsk corresponds closely to the RSK kinase reported previously in various mammalian cell lineages (29). Specific phosphorylation of ribosomal S6 protein by S6Ks is a highly conserved response to the stimulation of quiescent cells by mitogens. The presence of these kinases in neutrophils was not totally expected, because these cells neither divide nor differentiate.

We further studied the presence of p90rsk and the response to GM-CSF in a type of hematopoietic proliferative cell, the erythroleukemia cell line TF-1. TF-1 cells are dependent on the presence of cytokines (i.e. GM-CSF, interleukin-3, or erythropoietin) for their survival. We found p90rsk was present in those cells. Further, exponentially growing TF-1 cells have a relatively high level of p90rsk (and MAP kinase) activation. However, this level nearly disappears when cells are deprived of the cytokine only to rapidly increase again when they are further exposed to GM-CSF. Because TF-1 cells that are cytokine-deprived do not proliferate (37), short challenge by GM-CSF might force them back from G\textsubscript{o} to the cell cycle. As shown here, this exit/re-entry and concomitant cell proliferation might require the participation of p90rsk and/or MAP kinase. Because there seems to be less difference in GM-CSF-induced MAP kinase activity than there is with p90rsk (Fig. 7), RSK could be more definitely involved in cell cycling.

The GM-CSF-induced p90rsk increment in enzymatic activity in neutrophils was quantitatively smaller than that observed in starved TF-1 cells challenged with GM-CSF or in HeLa cells activated with epidermal growth factor. Thus, p90rsk, although
present in mature hemopoietic cells, is activated at an extent lower than in the proliferative counterpart. Whether this is an effect or a contributing cause of transcriptional paucity in cells that have reached maturity remains to be clearly elucidated. Different sets of substrates might be targeted in proliferative and mature cells. For instance, MAP kinase in proliferative cells translocates to the nucleus and targets transcription factors, whereas the activation is more in line with the functionality of phagocytes (e.g., release of lipid mediators of inflammation).

What substrates are used by p90rsk to transduce signals downstream is a subject of intense study in different labs. To date, only two kinds of substrates have been found for p90rsk: transcription factors and the G subunit of phosphatase 1 that regulates the activation of glycogen synthase (44). As for mature neutrophils, we can only theorize that p90rsk might regulate the expression of c-fos. c-fos-specific transcripts are constitutively expressed in high levels in neutrophils (45) that are further increased in presence of GM-CSF (46).

Acknowledgments—We thank Dr. Victor Calvo for helpful advice and comments regarding this study and Edward R. Sampt.

REFERENCES

1. Metcalf, D. (1985) Science 229, 16–22
2. Golde, D. W., and Gasson, J. C. (1988) In Inflammation: Basic Principles and Clinical Correlates (Gallin, J. I., Brandt, J. M., and Snyderman, R., eds) pp. 253–261, Raven Press, Ltd., New York
3. Clark, S. C., and Kamen, R. M. (1987) Science 236, 1229–1239
4. Cannistra, S. A., and Griffin, J. D. (1988) Semin. Hematol. 25, 173–188
5. Gomez-Cambroner, J., and Shaafi, R. I. (1991) Adv. Exp. Med. Biol. 314, 35–71
6. Gearing, D. P., King, J. A., Gough, N. M., and Nicola, N. A. (1989) EMBO J. 8, 3667–3676
7. Berkow, R. L., Dodson, R. W., and Kraf, A. S. (1989) Biochim. Biophys. Acta 997, 292–301
8. Gomez-Cambroner, J., Wang, E. J., Johnson, G., Huang, C.-K., and Shaafi, R. I. (1991) J. Biol. Chem. 266, 6240–6245
9. Huang, C.-K., Bonak, V., Laramee, G. R., and Casnellie, J. E. (1990) Biochem. J. 269, 431–436
10. Naccache, P. H., Gilbert, C., Caon, A. C., Gaudry, M., Huang, C.-K., Bonak, V. A., Umehawa, K., and McColl, S. R. (1990) Blood 76, 2098–2104
11. Nasmith, P. E., Mills, G. B., and Grinstein, S. (1989) Biochem. J. 257, 893–897
12. Corey, S., Eguinoa, A., Puyana-Theall, K., Bolen, J. B., Cantley, L., Molinino, F. J., Jackson, T. R., Hawkins, P. T., and Stephens, L. R. (1993) EMBO J. 12, 2681–2690
13. Hanazano, Y., Chiba, S., Sasaki, K., Mano, H., Miyajima, A., Araik, K., Yazaki, Y., and Hirai, H. (1993) EMBO J. 12, 1641–1646
14. Carroll, M. P., Clark-Lewis, I., Rapp, U. R., and May, W. S. (1990) J. Biol. Chem. 265, 19812–19817
15. Kanakura, Y., Druker, B., Wood, K. W., Mamoun, H. J., Okuda, K., Roberts, T. W., and Griffin, J. D. (1991) Blood 77, 243–248
16. Baxer, G. T., Miller, L. L., Kuo, R. C., Wada, G., and Owicki, J. C. (1992) Biochemistry 31, 10950–10954
17. Okuda, K., Sanghera, J. S., Pelech, S. L., Kanakura, Y., Hallek, M., Griffin, J. D., and Druker, B. F. (1992) Blood 79, 2880–2887
18. Raine, M. A., Golde, D. W., Dejou, M., and Nal, A. E. (1992) Blood 79, 3350–3354
19. Gomez-Cambroner, J., Huang, C. K., Gomez-Cambroner, T. M., Waterman, W. H., Becker, E. L., and Shaafi, R. I. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 7551–7555
20. Grinstein, S., and Furuya, W. (1992) J. Biol. Chem. 267, 18122–18125
21. Torres, M., Hall, F. L., and O’Brien, K. (1993) J. Immunol. 150, 1563–1578
22. Thompson, H. L., Shirio, M., and Saklatwa, J. (1993) Biochem. J. 290, 483–488
23. Ray, L. B., and Sturgill, T. W. (1988) J. Biol. Chem. 263, 12721–12727
24. Kyriakis, J. M., and Avruch, J. (1990) J. Biol. Chem. 265, 17355–17363
25. Sturgill, T. W., Ray, L. B., Erikson, E. R., and Maller, J. L. (1988) Nature 334, 715–718
26. Blenis, J., and Erikson, R. L. (1986) EMBO J. 5, 3441–3447
27. Erikson, R. L., and Maller, J. L. (1986) J. Biol. Chem. 261, 350–355
28. Alcorta, D. A., Crews, C. M., Sweet, L. J., Bakston, L. J. Jones, S. W., and Erikson, R. L. (1989) Mol. Cell. Biol. 9, 3150–3159
29. Sweet, L. J., Alcorta, D. A., Jones, S. W., Erikson, E., and Erikson, R. L. (1990) Mol. Cell. Biol. 10, 2413–2417
30. Thomas, G. R. (1992) Cell 68, 3–6
31. Ahn, N. G., Weil, E. J., Chen, C. P., and Krebs, E. G. (1990) J. Biol. Chem. 265, 11487–11494
32. Ahn, N. G., and Krebs, E. G. (1990) J. Biol. Chem. 265, 11495–11501
33. Wool, I. G. (1979) Annu. Rev. Biochem. 48, 719–754
34. Erikson, R. L. (1991) J. Biol. Chem. 266, 6007–6010
35. Sturgill, T. W., and Wu, T. (1991) Biochem. Biophys. Acta 1092, 350–357
36. Ernst, D., and Anderson, B. R. (1974) J. Immunol. Methods 5, 249–252
37. Kitamura, T., Tange, T., Terasawa, T., Chiba, S., Kusuki, T., Miyagawa, K., Piao, Y. F., Miyazono, K., Urabe, A., and Takaku, F. (1989) J. Cell. Physiol. 140, 323–334
38. Pelech, S., Olinw, B. B., and Krebs, E. G. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 5966–5972
39. Huang, C.-K., Coleman, H., Stevens, T., and Liang, L. (1994) J. Leukocyte Biol. 55, 430–436
40. Gomez-Cambroner, J. (1995) J. Interferon Cytokine Res. 15, 877–885
41. Kameshita, I., and Fujisawa, H. (1989) Anal. Biochem. 183, 139–143
42. Johnson, G. M., and Gomez-Cambroner, J. (1995) J. Leukocyte Biol. 57, 692–698
43. Jung, V., Bierer, B. E., and Vi, T. A. (1992) Eur. J. Immunol. 22, 457–462
44. Dent, P., Lavoinne, A., Nakayama, S., Caudwell, F. B., Wahl, P., and Cohen, P. (1990) Nature 348, 302–308
45. Cortese, F., Wang, J. M., Polentarutti, N., and Mantovani, A. (1987) J. Exp. Med. 165, 1224–1229
46. McColl, S. R., Kreis, C., DiPersio, J. F., Borget, P., and Naccache, P. H. (1989) Blood 73, 588–591
S6 Kinase p90rsk in Granulocyte-Macrophage Colony-stimulating Factor-stimulated Proliferative and Mature Hematopoietic Cells
Douglas E. Joseph, Cassandra C. Paul, Michael A. Baumann and Julian Gomez-Cambronero

J. Biol. Chem. 1996, 271:13088-13093.
doi: 10.1074/jbc.271.22.13088

Access the most updated version of this article at http://www.jbc.org/content/271/22/13088

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 45 references, 24 of which can be accessed free at http://www.jbc.org/content/271/22/13088.full.html#ref-list-1