1. Introduction

The transfer of information contained in the nucleic acids to proteins is considered to be a fundamental process in protein synthesis. The ancient origin of this system pertains to an era prior to the Last Universal Common Ancestor (LUCA) and it has evolved since then to modern organisms [1–3]. There is a panoply of molecules involved in this process, but the RNAs have a prominent role as the first informational molecules and later, part of this function was taken over by DNA [4–8]. Among the biological systems and, to present a functional relationship they must have had a common origin or one of them could have originated from the other. In this paper, we reconstructed ancestral sequences for tRNAs to test the model proposed by Tamura [3], who suggested that the catalytic portion of the 23S rRNA entities of the symmetrical region possesses the common stem–elbow–stem (SES) structural motif. This structure probably evolved by the dimerization of two SES motifs that stabilized and formed the ribozyme pocket, responsible for the peptidyl activity [3]. Davidovich et al. [10] showed that the dimerization process is a common phenomenon in RNA molecules that have the structural motifs proposed as proto-ribozymes. Zenkin [18] proposed that the ribosomal activity was derived from RNAs with helicase activity. In this model it was proposed that peptidyl transferase activity had its origins in generating a unidirectional movement that emerged by interactions between tRNAs and mRNAs. Tamura [3] proposed a model based on PTC topology, where this region had been originated by the fusion of proto-tRNA molecules that could occur from the other. In this paper, we reconstructed ancestral sequences for tRNAs to test the model proposed by Tamura [3], where proto-tRNAs gave origin directly to ribosomes, particularly the 23S ribosomal RNA.

2. Materials and methods

2.1. Ancestral sequence reconstruction

The sequences of tRNA molecules were downloaded from the database http://trnadb.bioinf.uni-leipzig.de, accounting for a total
of 9758 sequences that correspond to 361 organisms distributed in the three domains of life. The sequences of these molecules were separated according to the amino acid that transport and were aligned in ClustalW algorithm. Tests were performed for each group of tRNAs to choose the best evolutionary model, which pointed out to Kimura 2 parameters. Thirty five ancestral sequences were generated by Maximum Likelihood for 22 types of tRNA, 20 canonical tRNAs, an initiator tRNA, and a tRNA for selenocysteine. In the reconstruction of the phylogenetic trees, two ancestors were admitted if it was not possible to construct a single ancestor [19]. In the statistical analysis, the method of bootstrapping with 1000 replicates was carried out. These evaluations were done with MEGA5.05 program [20].

2.1. Analysis of sequences

The sequences obtained for each ancestral type of tRNA were aligned with the region V of the 23S rRNA from Thermus thermophilus. This organism was chosen because it is a model organism of hyperthermophiles and it could withstand similar conditions of Earth during the emergence of life. After the alignment of individual sequences of ancestral tRNAs, we built a single sequence with the tRNAs that aligned sequentially. The sequence derived from the tRNAs was aligned with the Peptidyl Transferase Center and the identity of the alignment was calculated. Analyses were performed with the support of the program MEGA5 [20]. In addition, we generated 1000 random sequences with a length of 190 nucleotides each to further test the statistical significance of the alignment of our proposed ancestral sequence with the Peptidyl Transferase Center. The length of the generated random sequences was the same to the sequence that corresponds to the structure of PTC of the Peptidyl Transferase Center. The length of the generated random sequences was the same to the sequence that corresponds to the structure of PTC of the 23S ribosomal RNA from T. thermophilus. We used the version of Blastn with matrix 2–3 allowing the existence of gaps 2 penalties and 2 extension e word size of 7. The frequencies of the 16 dinucleotides were calculated with the support of the program Seqool (http://www.biossc.de/seqool/download.html). We also calculated the correlation coefficient between the frequencies of use of dinucleotides of the ancestor tRNA sequence with the PTC region. This value ranges from –1 to 1 and it was used to determine whether there is a relationship between these sequences.

3. Results

The structure of the 23S ribosomal RNA from T. thermophilus was defined in 2005 [21], consisting of 2902 nucleotides divided into 6 regions. The region V is located between the positions 2016 to 2624, with a length of about 609 nucleotides. In this region, we find the Peptidyl Transferase Center, located between the positions 2440 to 2620, equivalent to a length of 180 nucleotides. In our approach, we searched similarities between the sequences of ancestral tRNAs with positions in region V of the 23S ribosome RNA. The first analysis was performed by aligning each sequence to ancestral tRNA individually against region V. The results can be seen in Table 1.

We can see that different types of ancestral tRNAs have different alignment positions in region V. This result enabled us to build a sequence of the tRNA ancestors that we could verify its similarity to the PTC region. The sequence generated based on the ancestral tRNAs was aligned against PTC from T. thermophilus. The positions that have identity are marked in yellow. The arrow indicates the conserved catalytic position.

Table 1

tRNA Type	Initial Position	Final Position	% Match
Gln 1	27	78	(20/50) 40%
Gln 2	27	78	(20/50) 40%
Asp	29	80	(22/52) 42.3%
Leu	54	92	(17/39) 43.5%
Ser	127	151	(14/25) 56%
His 1	164	220	(29/55) 52.7%
His 2	164	220	(29/55) 52.7%
Pro 1	187	244	(22/58) 37.9%
Pro 2	187	244	(22/58) 37.9%
Tyr	274	309	(16/36) 44%
Tyr	274	309	(16/36) 44%
lle 1	276	314	(16/39) 41%
lle 2	276	314	(16/39) 41%
Trp 1	276	320	(20/45) 44.4%
Trp 2	276	320	(20/45) 44.4%
Asn 1	293	343	(25/57) 43%
Asn 2	293	349	(25/57) 43%
Cys 1	304	355	(20/52) 38.4%
Cys 2	304	355	(20/52) 38.4%
Phe 1	308	356	(23/48) 47.9%
Phe 2	308	356	(23/48) 47.9%
Ala	319	357	(18/39) 46%
InMet 1	325	388	(33/61) 54%
InMet 2	325	388	(33/61) 54%
Arg	328	361	(18/34) 52%
Met 1	336	388	(24/50) 48%
Met 2	336	388	(24/50) 48%
Gln 1	357	403	(22/47) 46.8%
Gln 2	357	403	(22/47) 46.8%
Ser	358	402	(21/45) 46.6%
Thr	363	402	(17/40) 42.5%
Val 1	368	414	(19/47) 40.4%
Val 2	368	414	(19/47) 40.4%
Gly	474	521	(17/47) 36.1%
Lys	545	579	(14/35) 40%

![Fig. 1. Alignment of the sequence of ancestral tRNAs (tRNA_{PTC}ancestors) against Peptidyl Transferase Center from T. thermophilus (PTC). The positions that have identity are marked in yellow. The arrow indicates the conserved catalytic position.](image-url)
composed by the following tRNAs ancestors in sequence: Leu-tRNA, Ser-tRNA, His-tRNA, Pro-tRNA, Tyr-tRNA, Cys-tRNA, Gly-tRNA, Lys-tRNA, ensuring the alignment of each sequence with the PTC moiety. In Fig. 1, we can see the result of the alignments that showed an overall identity of 50.53%. As described in Section 2.1.1., the alignment of the ancestral sequence proposed here was compared against 10,000 nucleotide sequences randomly generated. We observed that the alignment of the ancestral tRNAs against 5 out of 1000 sequences, attained identities varying between 7.48% and 10.16%, thus showing the relevance of identity of 50% of ancestral sequence proposed with PTC. Furthermore, Torarinsson et al. [22] argued that in the genomes of mouse and human there are more than 100,000 regions that are unalignable in relation to the primary sequence, but they show structural conservation. In that work, every consensus structure in the Rfam database indicated an average of ~41% nucleotides involved in the base-pairing within the structures [22]. Finally, we evaluated the possibility that the observed identity value (50%) between the ancestral sequence and PTC could be achieved by any other random sequence. We analyzed the alignment again and the actual identity turned out to be 50.53%. To test the reliability of this result, we evaluated the possibility that the observed identity value (50%) between the ancestral sequence and PTC could be achieved by any other random sequence. Testing the hypothesis of finding at least 50% of 1000 random sequences with an identity value higher than 50%, when calculated with a Chi-square test and considering a degree of freedom = 2 and alpha = 0.05 was not significant. Indeed, the null hypothesis—that random tRNA sequences do align as our original proto-tRNA sequence—was rejected since the p-values were less than 0.00001. Therefore we were able to confirm that an ancestral sequence of proto-tRNAs has overall identity of 50.53% with the catalytic site of PTC. We also tested the same procedure in other thermophiles: Marinithermus hidrothermalis, Oceanithermus profundi and Thermus scotoductus. It has turned out that the matching between all these thermophiles organisms with the PTC ancestor is the same (50.53%) as the one obtained for T. thermophilus. This is not a surprising result given that these thermophiles organisms have 100% of identity among their PTC regions.

Fig. 2 shows the frequency of the 16 dinucleotides in the PTC from the proposed ancestor sequence and for the PTC from T. thermophilus, D. radiodurans, H. marismortui, E. coli, B. subtilis, C. jejuni and B. burgdorferi. Note that in all tested organisms the most frequent dinucleotide in PTC turned out to be the dinucleotide GG which is in agreement with the CCA universal motif of tRNA. When analyzing the PTC region (see Table 2) which performs the catalytic function of the 23S ribosomal RNA, and carries out the assembly of the amino acids, the correlation between the ancestor sequence of tRNA and all organisms analyzed here turned out to be positive, ranging from 0.51 as observed for E. coli to the high correlation of 0.87 in T. thermophilus.

4. Discussion

Tamura [3] proposed that the PTC originated as a consequence of dimerization of tRNA molecules based on the structural configuration of this portion of the rRNA that is the same as the one found in tRNA molecules. In our work, we reconstructed the ancestral sequence for all types of tRNA and compared them with the current PTC of 23S ribosomal RNA. Comparisons between individual ancestral tRNAs and PTC showed that different portions of the PTC had identity with different types of tRNA (Table 1). The latter may indicate a contribution of tRNA molecules in the appearance

Table 2

Organism	Correlation
Thermus thermophilus	0.8734
Halobacterium marismortui	0.5404
Escherichia coli	0.5149
Deinococcus radiodurans	0.8662
Campylobacter jejuni	0.7840
Bacillus subtilis	0.8371
Borrelia burgdorferi	0.5996
of the catalytic site of the 23S ribosomal RNA. From the points of the identity between tRNA ancestors and PTC, we built a sequence of the tRNAs that showed an outstanding overall identity of 50.53% with the PTC. Considering that the evolutionary process that resulted in 23S ribosomal RNA began about more than 3.5 billion years, and that in the early phases of this process, the error rates should be much greater than nowadays (the replication and repair systems were still in the process of optimization), we contend that the PTC maintains vestiges about its origins and that this process occurred by dimerization of molecules of proto-tRNAs. During peptide bond formation the CCA end of P-site tRNA and the PTC interact with conserved 23S bases A2451 and the P-loop, as it is shown in Fig. 1 [15]. Davidovich et al. [10] showed that molecules that have a structure like stem-elbow-stem tend to perform dimerization. This type of structure is typical of tRNA molecules, and is also found in the PTC, which may indicate that tRNA molecules gave rise to the ribosomal catalytic site. According to Tamura’s model [3] it seems likely that our proposed proto-tRNAs would conform to that of a minihelix region (acceptor stem plus T-stem). The PTC would be the first portion that appeared of the 23S ribosomal RNA [10,11]. Based on the evidence that the PTC was the initial portion of the 23S ribosomal RNA, it follows that the ribosome can be increased by duplications and fusions. In this model, the process that gave origin to ribosomal molecules as a whole, initially involved fusion of small molecules, the tRNAs, that gave origin to the PTC, which allowed the initiation of protein synthesis. The difference between our proposal and that of Fox [2] and Huang et al. [23] is that in our model the molecule that gave rise to the tRNA, gave origin to the PTC region as well. In the other proposals [2,23] the origin of the ribosome was due to a tRNA-like structure molecule. The data of the frequencies of dinucleotides showed that the information in modern sequences is the same information to that of our proposed ancestral sequence. Considering the evolutionary time of this molecule, the identity that they have with the molecules of tRNA ancestors and the correlations between dinucleotides frequencies, we conclude that the PTC of the 23S ribosomal RNA originated indeed from the union of tRNA molecules and subsequent events of the insertion, deletion and mutation, which were responsible for functional adaptation. However, a group of original information still remains in the current molecules, thus, natural selection has preserved these positions for more than 3.5 billion years in order to maintain its structure and fundamental functionality.

Acknowledgment

MJV was financially supported by PAPIIT-IN107112, UNAM, México.

References

[1] Woese, C.R. (2001) Translation: in retrospect and prospect. RNA 7 (8), 1055–1067.
[2] Fox, G.E. (2010) Origin and evolution of the ribosome. Cold Spring Harbor Perspect. Biol. 2 (9), a003483, http://dx.doi.org/10.1101/cshperspect.a003483.
[3] Tamura, K. (2011) Ribosome evolution: emergence of peptide synthesis machinery. J. Biosci. 36 (5), 921–928.
[4] Schwartz, A.W. (1995) The RNA world and its origins. Planet. Space Sci. 43 (1–2), 161–165.
[5] Lazzaro, A. and Miller, S.L. (1996) The origin and early evolution of life: prebiotic chemistry, the pre-RNA world, and time. Cell 85 (6), 793–798.
[6] Kua, J. and Bada, J.L. (2011) Primordial ocean chemistry and its compatibility with the RNA world. Origins Life Evol. Biosphere 41 (6), 533–558.
[7] Kawamura, K. (2012) Drawbacks of the ancient RNA-based life-like system under primitive earth conditions. Biochimie 94 (7), 1441–1450.
[8] Higgs, P.G. and Wu, M. (2012) The importance of stochastic transitions for the origin of life. Origins Life Evol. Biosphere 42 (5), 453–457.
[9] Nissen, P., Hansen, J. and Ban, N. (2000) Moore PB and Steitz TA The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930.
[10] Davidovich, C., Belousoff, M., Bashan, A. and Yanuth, A. (2009) The evolving ribosome: from non-coded peptide bond formation to sophisticated translation machinery. Res. Microbiol. 160 (7), 487–492, http://dx.doi.org/10.1016/j.resmic.2009.07.004.
[11] Hisao, C., Lenz, T.K., Peters, J.K., Fang, P.Y., Schneider, D.M., Anderson, E.J., Preeprem, T., Bowman, J.C., O’Neill, E.B., Lie, L., Athawale, S.S., Gossett, J.J., Tripple, C., Murray, J., Petrov, A.S., Wartell, R.M., Harvey, S.C., Hud, N.V. and Williams, L.D. (2013) Molecular paleontology: a biochemical model of the ancestral ribosome. Nucleic Acids Res. 41 (5), 3373–3385, http://dx.doi.org/10.1093/nar/gkt023.
[12] Ban, N., Nissen, P., Hansen, J., Moore, P.B. and Steitz, T.A. (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289 (5481), 905–920.
[13] Harms, J., Schüleinzen, F., Zarivach, R., Bashan, A., Gat, S., Agmon, I., Bartels, H., Franceschi, F. and Yonath, A. (2001) High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107 (5), 679–688.
[14] Schiwirth, B.S., Borovinskaya, M.A., Hau, C.W., Zhang, W., Vila-Sanju?o, A., Holton, J.M. and Cate, J.H. (2005) Structures of the bacterial ribosome at 3.5 A resolution. Science 310 (5749), 832–834.
[15] Selmer, M., Dunham, C.M., Murphy 4th, F.V., Weidhauser, A., Petry, S., Kelley, A.C., Weir, J.R. and Ramakrishnan, V. (2006) Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313 (5795), 1935–1942.
[16] Gabdulkhakov, A., Nikonov, S. and Garber, M. (2013) Revisiting the Haloculaca marismortui 50S ribosomal subunit model. Acta Crystallogr., Sect. D: Biol. Crystallogr. 69 (P6), 997–1004, http://dx.doi.org/10.1107/04719.
[17] Lehmann, J., Jossinet, F. and Gautheret, D. (2013) A universal RNA structural motif docking the elbow of tRNA in the ribosome, RNase P and T-box leaders. Nucleic Acids Res. 41 (10), 5494–5502, http://dx.doi.org/10.1093/nar/gkt219.
[18] Zenkin, N. (2012) Hypothesis: emergence of translation as a result of RNA helicase evolution. J. Mol. Evol. 74 (5–6), 249–256, http://dx.doi.org/10.1007/s00239-012-9503-6.
[19] S.T. Farias, Suggested phylogeny of tRNAs based on the construction of ancestral sequence, J. Theor. Biol. 335 (2013) pp. 245–248 http://dx.doi.org/10.1016/j.jtbi.2013.06.033.
[20] Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28 (10), 2731–2739.
[21] Yusupov, M.M., Yusupova, G.Z., Baucoum, A., Lieberman, K., Earnest, T.N., Cate, J.H. and Noller, H.F. (2001) Crystal structure of the ribosome at 5.5 A resolution. Science 292, 883–896.
[22] Torarinsson, E., Sawera, M., Havagaard, J.K., Fredholm, M. and Gorodkin, J. (2006) Thousands of corresponding human and mouse genomic regions unalignable in primary sequence contain common RNA structure. Genome Res. 16, 885–890.
[23] Huang, L., Krupkin, M., Bashan, A., Yanuth, A. and Massa, L. (2013) Protoribosome by quantum kernel energy method. Proc. Natl. Acad. Sci. U.S.A. 110 (37), 14890–14895, http://dx.doi.org/10.1073/pnas.1314112110.