Optimal sequence of quantum measurements
in the sense of Stein’s lemma
in quantum hypothesis testing

Masahito Hayashi†
† Laboratory for Mathematical Neuroscience, Brain Science Institute, RIKEN
2-1, Hirosawa, Wako, Saitama 351-0198, Japan
e-mail masahito@brain.riken.go.jp

Abstract. We derive a necessary and sufficient condition for a sequence of quantum measurements to achieve the optimal performance in quantum hypothesis testing. We discuss what quantum measurement we should perform in order to attain the optimal exponent of the second error probability under the condition that the first error probability goes to 0. As an asymptotically optimal measurement, we propose a projection measurement characterized by the irreducible representation theory of the special linear group SL(H). Specially, in spin 1/2 system, it is realized by the simultaneous measurement of the total momentum and a momentum of a specified direction. As a byproduct, we obtain another proof of quantum Stein’s lemma. In addition, an asymptotically optimal measurement is constructed in the quantum Gaussian case, and it is physically meaningful.

Submitted to: J. Phys. A: Math. Gen.

PACS numbers: 03.67.-a,02.50.Tt
1. Introduction

Deciding the true quantum state based on the two hypotheses is called quantum hypothesis testing, which is one of the most fundamental problems among quantum information theory because of the following reasons. The difficulty derived from non-commutativity of matrices (operators) appears as a simple form in this problem. This problem can be applied to other related topics in quantum information, for example, quantum channel coding [1, 2, 3, 4], distillable entanglement [5], quantum estimation [6], quantum universal variable-length source coding [7], and quantum coin tossing [8].

When the null hypothesis is the tensor product of a certain quantum state ρ and the alternative hypothesis is that of another quantum state σ, we sometimes focus on the asymptotic behaviors of the first error probability (we reject the null hypothesis though it is correct) and the second error probability (we accept the null hypothesis though it is incorrect). Hiai and Petz [9], and Ogawa and Nagaoka [10] discussed the optimal second error exponent under the assumption that the first error probability is less than a certain constant $\epsilon > 0$. Combining their results, we obtain that the optimal second error exponent is independent of $\epsilon > 0$, and coincides with the quantum relative entropy. Hiai and Petz [9] proved the direct part, i.e., the attainability of the quantum relative entropy, and Ogawa and Nagaoka [10] proved the converse part i.e., the impossibility for surpassing the quantum relative entropy. The converse part was simplified by Nagaoka [2]. In addition, the quantum relative entropy coincides with the optimal second error exponent under the condition that the first error probability asymptotically goes to 0. Moreover, Ogawa and Hayashi [11] discussed the second error exponent under the constant constraint for the first error exponent.

We divide this testing process into two parts: One is the quantum part i.e., the quantum measurement process. When ρ and σ are non-commutative, the choice of this quantum measurement is difficult and essential. The other is the classical part i.e., the classical data processing. In this paper, we focus on the former process i.e., we study what kind of measurement is suitable in order to achieve the optimal second error exponent. As mentioned in section 4, it is sufficient for this kind hypothesis testing, to discuss our quantum measurement of a certain class. We derive a necessary and sufficient condition for a quantum measurement to attain the optimal second error exponent among this class. This condition depends on the alternative hypothesis σ, and is almost independent of the null one ρ. As a byproduct, we obtain another proof of quantum Stein’s lemma.

In our setting, the unknown state is a tensor product state, but our measurement is not necessarily tensor product. Therefore, in order to treat the classical part we need to discuss our data-processing after our measurement as a classical hypothesis testing with two general sources. In classical information theory, by using the information-spectrum method, Han [12, 13] studied hypothesis testing based on such a general setting. We apply it to our proof of the main result, and such an application to quantum hypothesis testing was initiated by Nagaoka [14, 15]. However, this paper is organized so that
the reader can understand the statement of the main result without any knowledge of
the information-spectrum method. A quantum version of this method was discussed
by Nagaoka and Hayashi [10], but it is not treated in this paper because it is not
directly related to this issue. This work was motivated by Nagaoka’s [14, 15] earlier
works. Unfortunately, these Nagaoka’s papers were written in Japanese, but Nagaoka
and Hayashi [16] contains a part of results by Nagaoka [14, 15].

This paper is organized as follows. In section 2, we formulate quantum hypothesis
testing with tensor product states as an asymptotic problem. In order to discuss
our quantum asymptotic setting, we prepare some non-asymptotic characterizations
in section 3. After these preparations, we state the main results i.e., we characterize a
quantum measurement to attain the optimal second error exponent in section 4. We
treat quantum Gaussian states as a special example of the infinite-dimensional case
in section 5, while we assume that the dimension of the Hilbert space of interest is
finite in section 4. In the quantum Gaussian case, we give an asymptotically optimal
measurement whose physical interpretation is clear. In order to prove our main theorem,
we have to discuss a general sequence of classical information sources. Thus, in section
4, by using the information-spectrum method, we prepare a lemma which is applicable
to such a general sequence, and then apply it to our issue. we prove the main theorem
in section 6 with a help of this lemma. We use some fundamental inequalities in section
4, and these inequalities are given in section 8. Moreover we assume a fundamental fact
in section 4, this fact is proven from a representation viewpoint in section 9.

2. Asymptotic formulation of quantum hypothesis testing

Let \mathcal{H} be the Hilbert space of interest, and $\mathcal{S}(\mathcal{H})$ be the set of density matrices on
\mathcal{H}. When we perform a measurement corresponding to POVM (Positive Operator
Valued Measure) $M = \{M_i\}$ to a system in the state ρ, the data obeys the probability
$P^M_{\rho} = \{P^M_{\rho}(i) = \text{Tr} M_i \rho\}$. In particular, the POVM $M = \{M_i\}$ is called a PVM
(Projection Valued Measure) if each M_i is a projection. In the hypothesis testing, the
testing is described by a 2-valued POVM $\{M_a, M_r\}$, where M_a corresponds to acceptance
and M_r corresponds to rejection. Similarly, an operator A satisfying $0 \leq A \leq I$ is called
a test, and is identified with the POVM $\{M_a, M_r\} = \{A, I - A\}$.

Now, we study the quantum hypothesis testing problem for the null hypothesis
$H_0 : \rho^{\otimes n} \in \mathcal{S}(\mathcal{H}^{\otimes n})$ versus the alternative hypothesis $H_1 : \sigma^{\otimes n} \in \mathcal{S}(\mathcal{H}^{\otimes n})$, where $\rho^{\otimes n}$ and $\sigma^{\otimes n}$ are the nth-tensor powers of arbitrarily given density operators ρ and σ in
$\mathcal{S}(\mathcal{H})$. In the sequel, an operator A^n on $\mathcal{H}^{\otimes n}$ satisfying $0 \leq A^n \leq I$ or a sequence $\{A^n\}$
of such operators, is called a test. For a test A^n the probabilities of the first and the
second are, respectively, defined by

$$
\alpha_n(A^n) = \text{Tr} \rho^{\otimes n} (I - A^n) \quad \text{and} \quad \beta_n(A^n) = \text{Tr} \sigma^{\otimes n} A^n.
$$

We can understand that $\alpha_n(A^n)$ is the probability of erroneously rejecting $\rho^{\otimes n}$ though
$\rho^{\otimes n}$ is true and $\beta_n(A^n)$ is the error probability of erroneously accepting $\rho^{\otimes n}$ although
\(\rho^{\otimes n} \) is not true. We discuss the trade-off of the two type error probabilities for two \(n \)-tensor product states

The following is known as quantum Stein’s lemma.

Theorem 1 For any \(1 > \epsilon > 0 \), the equation

\[
- \lim_{n \to \infty} \frac{1}{n} \log \beta_n^*(\epsilon) = D(\rho \| \sigma) := \text{Tr} \rho (\log \rho - \log \sigma)
\]

holds, where \(\beta_n^*(\epsilon) \) is the minimum second error probability under the constraint that the first error probability is less than \(\epsilon \) i.e.,

\[
\beta_n^*(\epsilon) := \min \{ \beta_n(A^n) | 0 \leq A^n \leq I, \alpha_n(A^n) \leq \epsilon \}.
\]

The part \(\geq \) was proven by Hiai and Petz \[9\]. Its infinite-dimensional case was proved by Petz \[17\]. The part \(\leq \) was proven by Ogawa and Nagaoka \[10\].

In order to discuss the above theorem, we define the two following quantities

\[
B(\rho \| \sigma) := \sup \left\{ \lambda \left| \exists \tilde{\lambda}, \lim_{n \to \infty} \alpha_n(A^n) = 0, \limsup_{n \to \infty} \frac{1}{n} \log \beta_n(A^n) \leq -\lambda \right. \right\},
\]

\[
B^\dagger(\rho \| \sigma) := \sup \left\{ \lambda \left| \exists \tilde{\lambda}, \limsup_{n \to \infty} \alpha_n(A^n) < 1, \limsup_{n \to \infty} \frac{1}{n} \log \beta_n(A^n) \leq -\lambda \right. \right\},
\]

i.e., the former is the optimal second error exponent under the constraint that the first error probability goes to 0 while the later is the optimal second error exponent under the other constraint that the first error probability does not go to 1. Thus, quantum Stein’s lemma (Theorem \[1\]) is equivalent to the following relations

\[
B(\rho \| \sigma) = B^\dagger(\rho \| \sigma) = D(\rho \| \sigma).
\]

In the following, we divide this testing process into the two parts i.e., the quantum part and the classical part. The quantum part corresponds to the choice of a sequence \(\tilde{M} := \{M^n\} \) of POVMs, and the classical part does to the decision process from the classical data. Now, we fix a sequence \(\tilde{M} := \{M^n\} \) of POVMs, and denote the data set of \(M^n \) by \(\Omega_n \). Then, this classical part is formulated as the classical hypothesis testing with the null hypothesis \(P_{\rho^{\otimes n}}^M \) and the alternative hypothesis \(P_{\sigma^{\otimes n}}^M \). In this setting, a test is described by a function \(T^n \) from \(\Omega_n \) to \([0, 1]\) instead of an operator \(A^n \) satisfying \(0 \leq A^n \leq I \). In particular, when a test \(T^n \) is a test function with the support \(S^n \), this test is equivalent to the test with the accept region \(S^n \). Similar to \(B(\rho \| \sigma) \) and \(B^\dagger(\rho \| \sigma) \), we define

\[
B^\tilde{M}(\rho \| \sigma) := \sup \left\{ \lambda \left| \exists \tilde{\lambda}, \lim_{n \to \infty} E_{\rho^{\otimes n}}^M(1 - T^n) = 0, \limsup_{n \to \infty} \frac{1}{n} \log E_{\sigma^{\otimes n}}^M(T^n) \leq -\lambda \right. \right\},
\]

\[
B^{\dagger,\tilde{M}}(\rho \| \sigma) := \sup \left\{ \lambda \left| \exists \tilde{\lambda}, \limsup_{n \to \infty} E_{\rho^{\otimes n}}^M(1 - T^n) < 1, \limsup_{n \to \infty} \frac{1}{n} \log E_{\sigma^{\otimes n}}^M(T^n) \leq -\lambda \right. \right\},
\]

where \(E_{\rho}^M \) denotes the expectation regarding the probability \(P_{\rho}^M \). We can easily check that

\[
B(\rho \| \sigma) = \sup_{\tilde{M}: \text{POVMs}} B^\tilde{M}(\rho \| \sigma) \leq B^{\dagger}(\rho \| \sigma) = \sup_{\tilde{M}: \text{POVMs}} B^{\dagger,\tilde{M}}(\rho \| \sigma).
\]
Therefore, Theorem 1 is equivalent to the following relations

\[
\sup_{\hat{M} : \text{POVMs}} B^{\hat{M}}(\rho || \sigma) = \sup_{\hat{M} : \text{POVMs}} B^{\dagger \hat{M}}(\rho || \sigma) = D(\rho || \sigma). \tag{1}
\]

In this paper, we focus on a sequence \(\hat{M} := \{M^n\}_{n=1}^\infty \) of POVMs that satisfies the condition

\[
B^{\hat{M}}(\rho || \sigma) = D(\rho || \sigma), \tag{2}
\]

and call such a sequence \(\hat{M} \) of POVMs an \textit{optimal sequence of POVMs} in the sense of Stein’s lemma. The main issue is a characterization of a sequence \(\hat{M} := \{M^n\}_{n=1}^\infty \) of POVMs that satisfies the condition \(\hat{M} \). As mentioned in section 4, our characterization of such an optimal sequence is independent of the null hypothesis \(\rho \), and depends only on the alternative hypothesis \(\sigma \). Of course, in section 4, we construct such an optimal sequence. Indeed, if a sequence \(\hat{M} \) of POVMs satisfies the condition \(\hat{M} \), there exists a sequence \(\hat{A} := \{A^n\} \) of tests satisfying

\[
\lim_{n \to \infty} \alpha_n(A^n) = 0, \quad - \lim_{n \to \infty} \frac{1}{n} \log \beta_n(A^n) = D(\rho || \sigma) - \epsilon, \tag{3}
\]

for any \(\epsilon > 0 \). In the following, we assume that the dimension of \(\mathcal{H} \) is finite \((k) \) and the inverse \(\sigma^{-1} \) of \(\sigma \) exists.

3. Non-asymptotic characterization of PVMs

In order to treat the condition \(\hat{M} \), we need some characterizations concerning PVMs in the non-asymptotic setting. One may think that these characterizations have no relation with the condition \(\hat{M} \), but they are essential for our issue.

A state \(\rho \) is called \textit{commutative} with a PVM \(E(= \{E_i\}) \) on \(\mathcal{H} \) if \(\rho E_i = E_i \rho \) for any index \(i \). The spectral decomposition of any operator \(X \) can be regarded as a PVM and it is denoted by \(E(X) \). In particular, we have \(E(\sigma) = E(\log \sigma) \). The map \(\mathcal{E}_E \) with respect to a PVM \(E \) is defined as:

\[
\mathcal{E}_E : \rho \mapsto \sum_i E_i \rho E_i,
\]

which is a linear map from the set of Hermite operators to itself. Note that the state \(\mathcal{E}_E(\rho) \) is commutative with a PVM \(E \). The number \(\sup_i \text{rank} E_i \) of a PVM \(E = \{E_i\} \) is an important quantity in the following, and is denoted by \(w(E) \). Next, we focus on two PVMs \(E(= \{E_i\}_{i \in I}), F(= \{F_j\}_{j \in J}) \). We write \(E \leq F \) if there exists a subset \((F/E) \), of the index set \(J \) such that \(E_i = \sum_{j \in (F/E)} F_j \) for any index \(i \in I \). If a PVM \(F = \{F_j\} \) is commutative with a PVM \(E = \{E_i\} \), then we can define the PVM \(F \times E = \{F_j E_i\} \), which satisfies \(F \times E \geq E \) and \(F \times E \geq F \), and can be regarded as the simultaneous measurement of \(E \) and \(F \).

\textbf{Lemma 2} \textit{If} \(\rho \) \textit{and} \(\sigma \) \textit{are commutative with a PVM} \(E \), \textit{then the equation}

\[
\inf \{\beta(A) \mid \alpha(A) \leq \epsilon\} = \inf \{\beta(A) \mid \exists M : \text{PVM}, \ M \geq E, M \geq E(A), \alpha(A) \leq \epsilon, w(M) = 1\}
\]

\textit{holds.}
Proof: For any A, the relations $\beta(\mathcal{E}_E(A)) = \beta(A)$ and $\alpha(\mathcal{E}_E(A)) = \alpha(A)$ hold. Since the PVM $E(\mathcal{E}_E(A))$ commutes the PVM E, there exists a PVM M such that $M \geq E, M \geq E(\mathcal{E}_E(A))$ and $w(M) = 1$. Indeed, if a test A and a PVM M satisfy $M \geq E(A)$, the test A is performed by combining the quantum measurement M and a suitable data processing. Therefore, when ρ and σ are commutative with a PVM E, we may discuss only PVMs M satisfying $M \geq E$ i.e., we can restrict our tests.

4. Main Result

In this section, we discuss the condition (2) under the assumption that there exist PVMs E^n such that each PVM E^n is commutative with states $\sigma^{\otimes n}$ and $\rho^{\otimes n}$ and $w(E^n) \leq (n+1)^{k-1}$. This existence is proven by the representation theory in section 4. Since, it follows from Lemma 3 that we may treat only a PVM satisfying $M^n \geq E^n$ and $w(M^n) = 1$, we obtain

$$B(\rho||\sigma) = \sup_{\tilde{M} : \text{POVMs}} B(\tilde{M}(\rho)||\sigma) = \sup_{\tilde{M} \in \{ M_n \} : \text{POVMs s.t. } M^n \geq E^n, w(M^n) = 1} B(\tilde{M}(\rho)||\sigma)$$

and

$$B^t(\rho||\sigma) = \sup_{\tilde{M} : \text{POVMs}} B^t(\tilde{M}(\rho)||\sigma) = \sup_{\tilde{M} \in \{ M_n \} : \text{POVMs s.t. } M^n \geq E^n, w(M^n) = 1} B^t(\tilde{M}(\rho)||\sigma),$$

i.e., we can discuss $B(\tilde{M}(\rho)||\sigma)$ and $B^t(\tilde{M}(\rho)||\sigma)$ only of a sequence \tilde{M} satisfying the condition $M^n \geq E^n$, $w(M^n) = 1$.

Therefore, our main issue is the asymptotic behavior of the variable $\frac{1}{n} \log \frac{P^{M^n}_{\rho^{\otimes n}}}{P^{M^n}_{\sigma^{\otimes n}}}$ for the probability distribution $P^{M^n}_{\rho^{\otimes n}}$ under the condition $M^n \geq E^n$, $w(M^n) = 1$.

Theorem 3 For any sequence $\tilde{M} = \{ M_n \}$ of PVMs satisfying $M^n \geq E^n$, $w(M^n) = 1$, the relation

$$B(\tilde{M}(\rho)||\sigma) = D(\rho||\sigma)$$

holds, if and only if the variable $-\frac{1}{n} \log P^{M^n}_{\rho^{\otimes n}}$ converges to $-\Tr \rho \log \sigma$ in the probability distribution $P^{M^n}_{\rho^{\otimes n}}$.

For example, if a PVM M^n is commutative with $\sigma^{\otimes n}$ and satisfies $M^n \geq E^n$, $w(M^n) = 1$, the equations

$$\sum_i P^{M^n}_{\rho^{\otimes n}}(i) \left(\frac{1}{n} \log P^{M^n}_{\sigma^{\otimes n}}(i) - \Tr \rho \log \sigma \right)^2 = \Tr \mathcal{E}_M(\rho^{\otimes n}) \left(\frac{1}{n} \log \mathcal{E}_M(\sigma^{\otimes n}) - \Tr \rho \log \sigma \right)^2$$

$$= \Tr \rho^{\otimes n} \left(\frac{1}{n} \log \sigma^{\otimes n} - \Tr \rho \log \sigma \right)^2 = \Tr \rho^{\otimes n} \left(\frac{1}{n} (\log \sigma)^{(n)} - \Tr \rho \log \sigma \right)^2$$

$$= \frac{1}{n} \Tr \rho (\log \sigma - \Tr \rho \log \sigma)^2$$

hold. The equation (3) implies that the variable $\frac{1}{n} \log P^{M^n}_{\sigma^{\otimes n}}$ converges to $\Tr \rho \log \sigma$ in probability. Therefore, it is optimal in the sense of Stein’s lemma. This PVM coincides with the PVM proposed by Hayashi [18]. In particular, as guaranteed in section 6, in
spin 1/2 system, $E^n \times E(\sigma^{\otimes n})$ can be regarded as a simultaneous measurement of the total momentum and a momentum of the specified direction. As a byproduct, we can prove the following theorem.

Theorem 4 Any sequence \tilde{M} of POVMs satisfies

$$D(\rho\|\sigma) \geq B^{\tilde{M}}(\rho\|\sigma).$$

Theorems 3 and 4 yield relation (4), which is equivalent to quantum Stein’s lemma.

5. Quantum Gaussian states

In this section, we discuss a quantum hypothesis testing whose hypotheses are quantum Gaussian states ρ_θ on an infinite dimensional space $L^2(\mathbb{R})$:

$$\rho_\theta := \frac{1}{\pi N} \int_\mathbb{C} |\alpha\rangle \langle \alpha| e^{-|\alpha|^2} d^n \alpha, \quad \forall \theta \in \mathbb{C},$$

where we define the boson coherent vector $|\alpha\rangle := e^{-|\alpha|^2} \sum_{k=0}^\infty \frac{\alpha^k}{\sqrt{k!}} |k\rangle$ and $|k\rangle$ is the number vector on $L^2(\mathbb{R})$. Now, we propose a suitable PVM. This PVM not only attains the optimal exponents of the second error probability, but also has an intuitive physical meaning. When the null hypothesis is the state $\rho_0^{\otimes n}$ and the alternative hypothesis is the state $\rho_1^{\otimes n}$, our PVM is constructed as follows. First, we perform the unitary evolution as

$$\rho_0^{\otimes n} \mapsto \rho_{\theta_0 - \theta_1}^{\otimes n}.$$

Second, we perform the unitary evolutions

$$\rho_{\theta_0 - \theta_1}^{\otimes n} \mapsto \rho_{\sqrt{n}(\theta_0 - \theta_1)} \otimes \rho_0^{\otimes (n-1)}.$$

The constructions of these unitary evolutions were mentioned in Appendix F of Hayashi [6]. Finally, we perform a number detection $\{ |k\rangle \langle k| \}_{k=0}^\infty$ to the system whose state is $\rho_{\sqrt{n}(\theta_0 - \theta_1)}$ and denote the final data (this PVM) by $k (M_0^a)$. Following to section 7.1 in Hayashi [6] and its appendixes, we obtain

$$P_{\rho_0^{\otimes n}}^{M_0^a} \left\{ \sqrt{\frac{k}{n}} - |\theta_0 - \theta_1| > \epsilon \right\} \rightarrow 0$$

$$-\frac{1}{n} \log P_{\rho_0^{\otimes n}}^{M_0^a} \left\{ \sqrt{\frac{k}{n}} \geq |\theta_0 - \theta_1| \right\} \rightarrow |\theta_0 - \theta_1|^2 \log \left(1 + \frac{1}{N} \right) = D(\rho_0^{\otimes n}\|\rho_1^{\otimes n})$$

for any $\epsilon > 0$, and any $\theta \in \mathbb{C}$. Therefore, when we choose the acceptance region as $\left\{ \sqrt{\frac{k}{n}} - |\theta_0 - \theta_1| > \epsilon \right\}$, the optimal exponent of the second error probability can be approximately attained. Note that this measurement depends on the alternative hypothesis $\rho_1^{\otimes n}$, and is almost independent of the null hypothesis $\rho_0^{\otimes n}$. This optimality is guaranteed because the converse part by Ogawa and Nagaoka [10] is valid in this case. Thus, it implies

$$B^{\tilde{M}_1}(\rho_0^{\otimes n}\|\rho_1^{\otimes n}) = D(\rho_0^{\otimes n}\|\rho_1^{\otimes n}),$$

where $\tilde{M}_1 := \{ M_0^a \}$.

6. Application of information-spectrum method

In order to prove Theorems 3 and 4, we have to treat general sequences of probabilities having no structure like a Markov chain because the sequence of two probabilities $P_{\rho \otimes \sigma}^{M_n}$ and $P_{\sigma \otimes \rho}^{M_n}$ generally have no structure. In the classical information theory, Han\[12,13\] introduced the information-spectrum method in order to treat a general sequence of information sources. In this section, we simply review the information-spectrum method in classical hypothesis testing, and by using this method, we characterize $B^\lambda M(\rho \| \sigma)$ and $B^\lambda \tilde{M}(\rho \| \sigma)$. Given two general sequences of probabilities $\bar{\rho} = \{ p_n \}$ and $\bar{q} = \{ q_n \}$ on the same probability sets $\{ \Omega_n \}$, we may define the general hypothesis testing problem with $\bar{\rho} = \{ p_n \}$ as the null hypothesis and $\bar{q} = \{ q_n \}$ as the alternative hypothesis. In this situation, Any classical test is described by a function $T^n : \Omega_n \to [0, 1]$. For any test T^n, the error probabilities of the first and the second are, respectively, defined by

$$\alpha_n(T^n) := \sum_{\omega_n \in \Omega_n} (1 - T^n(\omega_n)) p_n(\omega_n), \quad \beta_n(T^n) := \sum_{\omega_n \in \Omega_n} T^n(\omega_n) q_n(\omega_n).$$

We focus on the following quantities

$$B(\bar{\rho} \| \bar{q}) := \sup \left\{ \lambda \left| \exists \bar{A}, \lim_{n \to \infty} \alpha_n(T^n) = 0, \lim sup_{n \to \infty} \frac{1}{n} \log \beta_n(T^n) \leq -\lambda \right. \right\},$$

$$B^\dagger(\bar{\rho} \| \bar{q}) := \sup \left\{ \lambda \left| \exists \bar{A}, \lim inf_{n \to \infty} \alpha_n(T^n) < 1, \lim sup_{n \to \infty} \frac{1}{n} \log \beta_n(T^n) \leq -\lambda \right. \right\},$$

which can be regarded as generalizations of $B^\lambda M(\rho \| \sigma)$ and $B^\lambda \tilde{M}(\rho \| \sigma)$. In the independent identical distributed (i.i.d.) case of p and q, as is known as Stein’s lemma, these two values $B(\bar{p} \| \bar{q})$ and $B^\dagger(\bar{p} \| \bar{q})$ coincide with the relative entropy (Kullback-Leibler divergence) $D(\bar{p} \| \bar{q})$. Since the relative entropy $D(\bar{p} \| \bar{q})$ is the expectation of the variable $\frac{1}{n} \log \frac{p_n}{q_n}$ under the distribution p, these two values $B(\bar{p} \| \bar{q})$ and $B^\dagger(\bar{p} \| \bar{q})$ seem related to the variable $\frac{1}{n} \log \frac{p_n}{q_n}$ under the distribution p_n. In order to characterize the asymptotic behavior of the variable $\frac{1}{n} \log \frac{p_n}{q_n}$ under the distribution p_n, we define other two values by

$$\overline{D}(\bar{p} \| \bar{q}) := \sup \left\{ \lambda \left| \lim_{n \to \infty} p_n \left\{ \omega_n \left| \frac{1}{n} \log \frac{p_n(\omega_n)}{q_n(\omega_n)} < \lambda \right. \right\} = 0 \right. \right\},$$

$$\underline{D}(\bar{p} \| \bar{q}) := \inf \left\{ \lambda \left| \lim_{n \to \infty} p_n \left\{ \omega_n \left| \frac{1}{n} \log \frac{p_n(\omega_n)}{q_n(\omega_n)} > \lambda \right. \right\} = 0 \right. \right\}.$$

As guaranteed by the following lemma, two values $B(\bar{p} \| \bar{q})$ and $B(\bar{p} \| \bar{q})$ are characterized by the asymptotic behavior of the variable $\frac{1}{n} \log \frac{p_n}{q_n}$ under the distribution p_n.

Lemma 5 (Han [12], Verdú [19], Nagaoka [14,15]) We can show the relations

$$B(\bar{p} \| \bar{q}) = \overline{D}(\bar{p} \| \bar{q}),$$

$$B^\dagger(\bar{p} \| \bar{q}) = \underline{D}(\bar{p} \| \bar{q}).$$

Defining a test $T^n(\lambda)$ as the test with the acceptance region $S_n(\lambda)$:

$$S_n(\lambda) := \left\{ \omega_n \left| \frac{1}{n} \log \frac{p_n(\omega_n)}{q_n(\omega_n)} \geq \lambda \right. \right\},$$
we obtain
\begin{align}
\alpha_n(T^n(D(\bar{p}\|\bar{q}) - \epsilon)) & \to 0 \quad (9) \\
\beta_n(T^n(D(\bar{p}\|\bar{q}) - \epsilon)) & \leq e^{-n(D(\bar{p}\|\bar{q}) - \epsilon)} \quad (10) \\
\liminf_{n \to \infty} \alpha_n(T^n(D(\bar{p}\|\bar{q}) - \epsilon)) & < 1 \quad (11) \\
\beta_n(T^n(D(\bar{p}\|\bar{q}) - \epsilon)) & \leq e^{-n(D(\bar{p}\|\bar{q}) - \epsilon)} \quad (12)
\end{align}
for any \(\epsilon > 0 \). Thus, the tests \(T^n(D(\bar{p}\|\bar{q}) - \epsilon) \) and \(T^n(D(\bar{p}\|\bar{q}) - \epsilon) \) approximately attain the bounds \(D(\bar{p}\|\bar{q}) \) and \(D(\bar{p}\|\bar{q}) \), respectively.

The equation (9) was proven in Chapter 4 in Han [12]. He referred to Verdú [19]. The equation (8) was derived by Nagaoka [14, 15]. Nagaoka and Hayashi [16] contains Lemma 5 and a comprehensive review of the information-spectrum method. For reader's convenience, we give a proof in Appendix A.

Next, in order to apply Lemma 5 to the characterization of \(B_M(\rho\|\sigma) \) and \(B^{\dagger, M}(\rho\|\sigma) \), we define
\begin{align}
D_M^n(\rho\|\sigma) := D\left(\left\{ P^{M^n}_{\rho\otimes^n} \right\}, \left\{ P^{M^n}_{\sigma\otimes^n} \right\} \right), \quad \overline{D}_M^n(\rho\|\sigma) := \overline{D}\left(\left\{ P^{M^n}_{\rho\otimes^n} \right\}, \left\{ P^{M^n}_{\sigma\otimes^n} \right\} \right)
\end{align}
for any sequence \(M \) of POVMs. From Lemma 5, we have
\begin{align}
D_M^n(\rho\|\sigma) = B^n_M(\rho\|\sigma), \quad \overline{D}_M^n(\rho\|\sigma) = B^{\dagger, M^n}(\rho\|\sigma).
\end{align}
Therefore, a sequence \(M \) of POVMs is optimal in the sense of Stein’s lemma if and only if
\begin{align}
D_M^n(\rho\|\sigma) = D(\rho\|\sigma).
\end{align}
In the following, we discuss \(D_M^n(\rho\|\sigma) \) and \(\overline{D}_M^n(\rho\|\sigma) \) instead of \(B^n_M(\rho\|\sigma) \) and \(B^{\dagger, M^n}(\rho\|\sigma) \).

In this paper, we use only Lemma 3 among several results regarding the information-spectrum method, and this lemma is sufficient for our current issue. This paper treats only an application of the classical information-spectrum method to quantum hypothesis testing, while Nagaoka and Hayashi [10] discussed a quantum analogue of the information-spectrum method. The references, Han [12, 13] and Nagaoka and Hayashi [16] may be useful for the reader who is interested in other related topics concerning the information-spectrum method.

7. Proof of main result

In this section, by using Lemma 3, we prove Theorems 3 and 4. In our proofs, we use Lemma 3 and several fundamental inequalities given in section 8.

Proof of Theorem 3: As is guaranteed by Lemma 3, it is sufficient to show
\begin{align}
D_M^n(\rho\|\sigma) = D(\rho\|\sigma).
\end{align}
First, we prove that the variable \(\frac{1}{n} \log P^{M^n}_{\rho\otimes^n} \) converges to \(\text{Tr} \rho \log \rho \) in probability. We can calculate
\begin{align}
\sum_i P^{M^n}_{\rho\otimes^n}(i) \left(\frac{1}{n} \log P^{M^n}_{\rho\otimes^n}(i) - \text{Tr} \rho \log \rho \right)^2
\end{align}
Proof:

Under the same assumption as Theorem 3, we obtain

\[\text{Tr} \mathcal{E}_M(\rho^{\otimes n}) \left(\frac{1}{n} \log \mathcal{E}_M(\rho^{\otimes n}) - \text{Tr} \rho \log \rho \right)^2 = \text{Tr} \rho^{\otimes n} \left(\frac{1}{n} \log \mathcal{E}_M(\rho^{\otimes n}) - \frac{1}{n} \text{Tr} \rho \log \rho \right)^2 \]

\[\leq 2 \text{Tr} \rho^{\otimes n} \left(\frac{1}{n} \log \mathcal{E}_M(\rho^{\otimes n}) - \frac{1}{n} \log \rho^{\otimes n} \right)^2 + 2 \text{Tr} \rho^{\otimes n} \left(\frac{1}{n} \log \rho^{\otimes n} - \text{Tr} \rho \log \rho \right)^2 \]

\[\leq 8 \left(\frac{(k-1) \log(n+1)}{n} \right)^2 + 2 \text{Tr} \rho^{\otimes n} \left(\frac{1}{n} \log(\rho^{(n)}) - \text{Tr} \rho \log \rho \right)^2 \]

\[= 8 \left(\frac{(k-1) \log(n+1)}{n} \right)^2 + \frac{2}{n} \text{Tr} \rho (\log \rho - \text{Tr} \rho \log \rho)^2, \]

where the last inequality follows from Lemma 7 given in section 8. Thus, the variable \(\frac{1}{n} \log \rho^{\otimes n} \) converges to \(\text{Tr} \rho \log \rho \) in probability.

Since \(\frac{1}{n} \log \rho^{\otimes n} = \frac{1}{n} \log \rho^{M_n} - \frac{1}{n} \log \rho^{\otimes n} \) and \(D(\rho||\sigma) = \text{Tr} \rho \log \rho - \text{Tr} \rho \log \sigma \), the condition (13) is equivalent to

\[- \text{Tr} \rho \log \sigma = \sup \left\{ \lambda \left| \lim_{n \to \infty} \rho^{\otimes n} \left\{ -\frac{1}{n} \log \rho^{M_n} < \lambda \right\} = 0 \right. \} \right. \] (13)

Since

\[\sup \left\{ \lambda \left| \lim_{n \to \infty} \rho^{\otimes n} \left\{ -\frac{1}{n} \log \rho^{M_n} < \lambda \right\} = 0 \right. \} \leq \inf \left\{ \lambda \left| \lim_{n \to \infty} \rho^{\otimes n} \left\{ -\frac{1}{n} \log \rho^{M_n} > \lambda \right\} = 0 \right. \} \right. , \]

it follows from Lemma 7 that the condition (13) equivalent to

\[- \text{Tr} \rho \log \sigma = \sup \left\{ \lambda \left| \lim_{n \to \infty} \rho^{\otimes n} \left\{ -\frac{1}{n} \log \rho^{M_n} < \lambda \right\} = 0 \right. \} \]

\[= \inf \left\{ \lambda \left| \lim_{n \to \infty} \rho^{\otimes n} \left\{ -\frac{1}{n} \log \rho^{M_n} > \lambda \right\} = 0 \right. \} \right. . \]

Therefore, if and only if the variables \(-\frac{1}{n} \log \rho^{\otimes n} \) converges to \(- \text{Tr} \rho \log \sigma \) in probability, the relation (13) holds.

Next, we give Lemma 6 with a proof, which is used in our proof of Theorem 3.

Lemma 6 Under the same assumption as Theorem 3, we obtain

\[- \text{Tr} \rho \log \sigma \geq \inf \left\{ \lambda \left| \lim_{n \to \infty} \rho^{\otimes n} \left\{ -\frac{1}{n} \log P_{\sigma^{\otimes n}}^{M_n} > \lambda \right\} = 0 \right. \} \right. \] (14)

Proof: We discuss the asymptotic behavior of the variable \(\frac{1}{n} \log P_{\sigma^{\otimes n}}^{M_n} \). From Markov inequality, we have

\[p\{X \geq a\} \leq e^{-\Lambda(X,p,a)}, \quad \Lambda(X,p,a) := \sup_{0 \leq t \leq 1} \left(at - \log \int e^{tX(\omega)} p(d\omega) \right). \]

We can calculate

\[\Lambda \left(- \log P_{\sigma^{\otimes n}}^{M_n}, P_{\rho^{\otimes n}}, an \right) = \sup_{0 \leq t \leq 1} \text{ant} - \log \text{Tr} \left(\mathcal{E}_M(\rho^{\otimes n}) \left(\mathcal{E}_M(\sigma^{\otimes n}) \right)^{-t} \right) \]

\[= \sup_{0 \leq t \leq 1} \text{ant} - \log \text{Tr} \left(\rho^{\otimes n} \left(\mathcal{E}_M(\sigma^{\otimes n}) \right)^{-t} \right) \]

\[\geq \sup_{0 \leq t \leq 1} \text{ant} - \left(t \log w(E^n) + \log \text{Tr} \rho^{\otimes n} \left(\sigma^{\otimes n} \right)^{-t} \right) \]

\[= \sup_{0 \leq t \leq 1} n \left(at - t \frac{\log w(E^n)}{n} - \log \text{Tr} \rho \sigma^{-t} \right), \]
where the inequality \geq follows from Lemma 6 given in section 8. If $a > -\operatorname{Tr} \rho \log \sigma$, then there exists a real number t_0 such that $0 < t_0 < 1$ and $\frac{\log \operatorname{Tr} \rho \sigma^{-t}}{t_0} < a$ because $\lim_{t \to 0} \frac{\log \operatorname{Tr} \rho \sigma^{-t}}{t} = -\operatorname{Tr} \rho \log \sigma$. Therefore the inequalities

$$
\liminf_{n \to \infty} \frac{-1}{n} \log P_{\rho \otimes n}^M \left\{ - \frac{1}{n} \log P_{\sigma \otimes n}^M > a \right\}
\geq \liminf_{n \to \infty} \lambda \left(- \log P_{\sigma \otimes n}^M, P_{\rho \otimes n}^M, an \right) \geq \limsup_{n \to \infty} \sup_{0 \leq t \leq 1} \left(at - t \frac{(k + 1) \log(n + 1)}{n} - \log \operatorname{Tr} \rho \sigma^{-t} \right)
= \sup_{0 \leq t \leq 1} \left(at - \log \operatorname{Tr} \rho \sigma^{-t} \right) \geq t_0 \left(a - \frac{\log \operatorname{Tr} \rho \sigma^{-t_0}}{t_0} \right) > 0
$$

hold, i.e.,

$$
\lim P_{\rho \otimes n}^M \left\{ - \frac{1}{n} \log P_{\sigma \otimes n}^M > a \right\} = 0.
$$

Thus, inequality (14) holds.

Proof of Theorem 3: From equation (11) and Lemma 5, it is sufficient to prove the inequality

$$
D(\rho || \sigma) \geq D(\overline{M}(\rho || \sigma))
$$

for any sequence $\overline{M} = \{M^n\}$ such that $M^n \geq E^n$ and $w(M^n) = 1$. As shown in our proof of Theorem 3, the variable $\frac{1}{n} \log P_{\rho \otimes n}^M$ converges to $\operatorname{Tr} \rho \log \rho$ in probability. Therefore,

$$
\overline{D}(\rho || \sigma) = \operatorname{Tr} \rho \log \rho + \inf \left\{ \lambda \left| \lim_{n \to \infty} P_{\rho \otimes n}^M \left\{ - \frac{1}{n} \log P_{\rho \otimes n}^M > \lambda \right\} = 0 \right\}
\leq \operatorname{Tr} \rho \log \rho - \operatorname{Tr} \rho \log \sigma = D(\rho || \sigma),
$$

where the inequality follows from (14).

8. Fundamental inequalities

In this section, we give some fundamental inequalities used in our proofs of Theorem 3 and Lemma 3.

Lemma 7 If PVMs E, M satisfy $M \geq E$ and a state ρ is commutative with E nd $w(E) \geq 3$, then the inequality

$$
\operatorname{Tr} \rho (\log \rho - \log \mathcal{E}_M(\rho))^2 \leq 4(\log w(E))^2
$$

holds.

Proof: Define $a_i := \operatorname{Tr} E_i \rho E_i, \rho_i := \frac{1}{n} E_i \rho E_i$, then the equations $\rho = \sum_i a_i \rho_i, \mathcal{E}_M(\rho) = \sum_i a_i \mathcal{E}_M(\rho_i)$ hold. Using the operator inequality $(A + B)^2 \leq 2(A^2 + B^2)$, we have

$$
\operatorname{Tr} (\rho (\log \rho - \log \mathcal{E}_M(\rho))^2)
\leq \sum_i \operatorname{Tr} (\rho_i (\log \rho_i - \log \mathcal{E}_M(\rho_i))^2)
\leq \sup_i \operatorname{Tr} (\rho_i (\log \rho_i - \log \mathcal{E}_M(\rho_i))^2)
\leq \sup_i \operatorname{Tr} (2 ((\log \rho_i)^2 + (\log \mathcal{E}_M(\rho_i))^2))
= 2 \sup_i ((\log \rho_i)^2 + \mathcal{E}_M(\rho_i)(\log \mathcal{E}_M(\rho_i))^2)
\leq 4 \sup_i (\log \dim E_i)^2,
$$

Optimal sequence of quantum measurements

11
where the last inequality follows from Lemma 8. We obtain (15).

Lemma 8 (Nagaoka[20], Osawa[21]) The equation

\[
\max \left\{ \sum_{i=1}^{k} p_i (\log p_i)^2 \right\} \quad \text{subject to} \quad p_i \geq 0, \sum_{i=1}^{k} p_i = 1
\]

\[
= \begin{cases}
1 - \sqrt{1 - \frac{1}{k^2}} \left(\log \frac{1}{\sqrt{1 - \frac{1}{k^2}}} \right)^2 + 1 + \sqrt{1 - \frac{1}{k^2}} \left(\log \frac{1 + \sqrt{1 - \frac{1}{k^2}}}{2} \right)^2 & \text{if } k \geq 3 \\
1 - \sqrt{1 - \frac{1}{2^2}} \left(\log \frac{1}{\sqrt{1 - \frac{1}{2^2}}} \right)^2 + 1 + \sqrt{1 - \frac{1}{2^2}} \left(\log \frac{1 + \sqrt{1 - \frac{1}{2^2}}}{2} \right)^2 & \text{if } k = 2
\end{cases}
\]

(16)

holds.

Its proof is given in Appendix B.

Lemma 9 Let \(k \) be the dimension of \(\mathcal{H} \). For any state \(\rho \in \mathcal{S}(\mathcal{H}) \) and any PVM \(M \), the inequality \(\rho \leq k \mathcal{E}_M(\rho) \) holds.

Proof: The relations

\[
\langle \psi | (\mathcal{E}_M(\phi) k - \phi) \langle \phi | \psi \rangle | \psi \rangle = k \sum_{i=1}^{k} \langle \psi | M_i | \phi \rangle \langle \phi | M_i | \psi \rangle - \sum_{i=1}^{k} \langle \psi | M_i | \phi \rangle \geq 0
\]

hold for \(\forall \phi, \forall \psi \in \mathcal{H} \), where the inequality follows from Schwartz' inequality about vectors \(\{ \langle \psi | M_i | \phi \rangle \}_{i=1}^{k}, \{1\}_{i=1}^{k} \). Thus, we obtain \(|\phi \rangle \langle \phi | \leq k \mathcal{E}_M(|\phi \rangle \langle \phi |) \). Any state \(\rho \) can be decomposed as \(\rho = \sum_i s_i |\phi_i \rangle \langle \phi_i | \). Thus,

\[
\rho = \sum_i s_i |\phi_i \rangle \langle \phi_i | \leq \sum_i s_i k \mathcal{E}_M(|\phi_i \rangle \langle \phi_i |) = k \mathcal{E}_M(\rho).
\]

The proof is completed.

Lemma 10 Let \(\rho \) be a state commuting the PVM \(E \). If the PVM \(M \) satisfies \(M \geq E \), the operator inequality

\[
w(E)^t \rho^{-t} \geq (\mathcal{E}_M(\rho))^{-t}
\]

(17)

holds for \(0 < t \leq 1 \) when \(\rho^{-1} \) is bounded.

Proof: Based on the same notation as in our proof of Lemma 7, it follows from Lemma 3 that

\[
\rho = \sum_i a_i \rho_i \leq \sum_i a_i \text{rank} \mathcal{E}_M(\rho_i) \leq \sum_i a_i w(E) \mathcal{E}_M(\rho_i) = w(E) \mathcal{E}_M(\rho).
\]

Since the map \(u \rightarrow -u^t \) (\(0 < t \leq 1 \)) is an operator monotone function in \((0, \infty)\)[22], the operator inequality (17) holds.

9. Relation between \(\rho^\otimes n, \sigma^\otimes n \) and group representation

In this section, by using the representation theory, we prove the existence of a PVM \(E^n \) such that the PVM \(E^n \) is commutative with states \(\sigma^\otimes n \) and \(\rho^\otimes n \) and \(w(E^n) \leq (n+1)^{k-1} \).

In subsection 9.1, for this purpose, we consider the relation between irreducible representations and PVMs. In subsection 9.2, we discuss \(n \)-tensor product states from a group theoretical viewpoint and prove the desired existence.
9.1. group representation and its irreducible decomposition

Let V be a finite dimensional vector space over the complex numbers \mathbb{C}. A map π from a group G to the generalized linear group of a vector space V is called a representation on V if the map π is homomorphism i.e. $\pi(g_1)\pi(g_2) = \pi(g_1g_2)$, $\forall g_1, g_2 \in G$. A subspace W of V is called invariant with respect to a representation π if the vector $\pi(g)w$ belongs to the subspace W for any vector $w \in W$ and any element $g \in G$. A representation π is called irreducible if there is no proper nonzero invariant subspace of V with respect to π. Let π_1 and π_2 be representations of a group G on V_1 and V_2, respectively. The tensored representation $\pi_1 \otimes \pi_2$ of G on $V_1 \otimes V_2$ is defined as $(\pi_1 \otimes \pi_2)(g) = \pi_1(g) \otimes \pi_2(g)$, and the direct sum representation $\pi_1 \oplus \pi_2$ of G on $V_1 \oplus V_2$ is also defined as $(\pi_1 \oplus \pi_2)(g) = \pi_1(g) \oplus \pi_2(g)$.

In the following, we treat a representation π of a group G on a finite-dimensional Hilbert space \mathcal{H}; The following facts is crucial in the later arguments. There exists an irreducible decomposition $\mathcal{H} = \mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_l$ such that the irreducible components are orthogonal to one another if for any element $g \in G$ there exists an element $g^* \in G$ such that $\pi(g)^* = \pi(g^*)$ where $\pi(g)^*$ denotes the adjoint of the linear map $\pi(g)$. We can regard the irreducible decomposition $\mathcal{H} = \mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_l$ as the PVM $\{P_{\mathcal{H}_i}\}_{i=1}^l$, where $P_{\mathcal{H}_i}$ denotes the projection to \mathcal{H}_i. If two representations π_1 and π_2 satisfy the preceding condition, then the tensored representation $\pi_1 \otimes \pi_2$, also, satisfies it. Note that, in general, an irreducible decomposition of a representation satisfying the preceding condition is not unique. In other words, we cannot uniquely define the PVM from such a representation.

9.2. Relation between the tensored representation and PVMs

Let the dimension of the Hilbert space \mathcal{H} be k. Concerning the natural representation $\pi_{\text{SL}(\mathcal{H})}$ of the special linear group $\text{SL}(\mathcal{H})$ on \mathcal{H}, we consider its n-th tensored representation $\pi_{\text{SL}(\mathcal{H})}^\otimes n := \underbrace{\pi_{\text{SL}(\mathcal{H})} \otimes \cdots \otimes \pi_{\text{SL}(\mathcal{H})}}_{n}$ on the tensored space $\mathcal{H}^\otimes n$. For any element $g \in \text{SL}(\mathcal{H})$, the relation $\pi_{\text{SL}(\mathcal{H})}^\otimes n(g)^* = \pi_{\text{SL}(\mathcal{H})}^\otimes n(g^*)$ holds where the element $g^* \in \text{SL}(\mathcal{H})$ denotes the adjoint matrix of the matrix g. Consequently, there exists an irreducible decomposition of $\pi_{\text{SL}(\mathcal{H})}^\otimes n$ regarded as a PVM and we denote the set of such PVMs by $I_{\pi_{\text{SL}(\mathcal{H})}^\otimes n}$.

From the Weyl’s dimension formula ((7.1.8) or (7.1.17) in Goodman-Wallach[24]), the n-th symmetric tensored space is the maximum-dimensional space in the irreducible subspaces with respect to the n-th tensored representation $\pi_{\text{SL}(\mathcal{H})}^\otimes n$. Its dimension equals the repeated combination kH_n evaluated by $kH_n = \binom{n+k-1}{k-1} = \binom{n+k-1}{n} = \binom{n+k-1}{n+1} \leq (n+1)^{k-1}$. Thus, any element $E^n \in I_{\pi_{\text{SL}(\mathcal{H})}^\otimes n}$ satisfies $w(E^n) \leq (n+1)^{k-1}$.

Lemma 11 A PVM $E^n \in I_{\pi_{\text{SL}(\mathcal{H})}^\otimes n}$ is commutative with the n-th tensored state $\rho^\otimes n$ of any state ρ on \mathcal{H}.

Proof: If $\det \rho \neq 0$, then this lemma is trivial from the fact that $\det(\rho)^{-1} \rho \in \text{SL}(\mathcal{H})$.

If $\det \rho = 0$, there exists a sequence \(\{\rho_i\}_{i=1}^{\infty} \) such that $\det \rho_i \neq 0$ and $\rho_i \to \rho$ as $i \to \infty$. We have $\rho_i \otimes n \to \rho \otimes n$ as $i \to \infty$. Because a PVM $E^n \in I_r \otimes n$ is commutative with $\rho_i \otimes n$, it is, also, commutative with $\rho \otimes n$. Therefore, the existence of a desired PVM is proven. In particular, in the spin $1/2$ system, E^n corresponds to the measurement of the total momentum. Therefore, $E^n \times E(\sigma \otimes n)$ can be regarded as a simultaneous measurement of the total momentum and a momentum of the specified direction.

10. Conclusion

We discuss quantum measurements from a viewpoint of quantum hypothesis testing. We characterize a sequence of quantum measurements whose second error exponent attains the quantum relative entropy at Theorem 3 in the finite-dimensional case. As a byproduct, we give another proof of quantum Stein’s lemma. This characterization is closely related to the irreducible decomposition of the tensored representation of the group $\text{SL}(\mathcal{H})$. In our proof of the main theorem, the information-spectrum method plays an important role. In the further research of quantum information, this method seems a powerful and useful technique. In addition, as a special case of the infinite-dimensional case, we treat the quantum Gaussian states. The photon counting measurement is used in the construction of our asymptotically optimal measurement, and this fact indicates its importance.

Acknowledgment

The author wishes to thank Professor H. Nagaoka, Mr. S. Osawa, Dr. T. Ogawa and Dr. Y. Watanabe for useful comments.

Appendix A. Proof of Lemma 3

We simplify $D(\tilde{\rho}||\tilde{q})$ and $D(\tilde{\rho}||\tilde{q})$ by \mathcal{D} and \mathcal{D}, respectively.

Direct part \geq of (1): For any $\epsilon > 0$, we have

$$\alpha_n(T^n(D - \epsilon)) = p_n(S_n(D - \epsilon)) = p_n \left\{ \omega_n \left| \frac{1}{n} \log \frac{p_n(\omega_n)}{q_n(\omega_n)} < D - \epsilon \right. \right\} \to 0$$

and

$$\beta_n(T^n(D - \epsilon)) = q_n \left\{ \omega_n \left| \frac{1}{n} \log \frac{p_n(\omega_n)}{q_n(\omega_n)} \geq D - \epsilon \right. \right\} \leq e^{-n(D - \epsilon)} p_n \left\{ \omega_n \left| \frac{1}{n} \log \frac{p_n(\omega_n)}{q_n(\omega_n)} \geq D - \epsilon \right. \right\} \leq e^{-n(D - \epsilon)},$$

which imply (2) and (10). Thus,

$$\limsup_{n \to \infty} \frac{1}{n} \log \beta_n(T^n(D - \epsilon)) \leq -(D - \epsilon).$$
Optimal sequence of quantum measurements

Direct part ≥ of (8): Note that
\[
\overline{D} = \sup \left\{ \lambda \left| \liminf_{n \to \infty} p_n \left\{ \omega_n \left| \frac{1}{n} \log \frac{p_n(\omega_n)}{q_n(\omega_n)} \leq \lambda \right\} < 1 \right\} \right.
\]

For any \(\varepsilon > 0\), similarly, we have
\[
\liminf_{n \to \infty} \alpha_n(T^n(\overline{D} - \varepsilon)) = \liminf_{n \to \infty} p_n \left\{ \omega_n \left| \frac{1}{n} \log \frac{p_n(\omega_n)}{q_n(\omega_n)} < \overline{D} - \varepsilon \right\} < 1
\]
\[
\beta_n(T^n(\overline{D} - \varepsilon)) \leq e^{-n(\overline{D} - \varepsilon)},
\]

which imply (11) and (12). Thus,
\[
\limsup_{n \to \infty} \frac{1}{n} \log \beta_n(T^n) = -\overline{D}.
\]

Converse part ≤ of (7): Assume that \(\alpha_n(T^n) \to 0\) as \(n \to \infty\) and
\[
\limsup_{n \to \infty} \frac{1}{n} \log \beta_n(T^n) = -R.
\]

For any \(\varepsilon > 0\), the inequality
\[
\alpha_n(T^n(R - \varepsilon)) + e^{n(R - \varepsilon)} \beta_n(T^n(R - \varepsilon)) = 1 + \sum_{\omega_n} (e^{n(R - \varepsilon)} q_n(\omega_n) - p_n(\omega_n)) T^n(R - \varepsilon)(\omega_n)
\]
\[
\leq 1 + \sum_{\omega_n} (e^{n(R - \varepsilon)} q_n(\omega_n) - p_n(\omega_n)) T^n(\omega_n) = \alpha_n(T^n) + e^{n(R - \varepsilon)} \beta_n(T^n)
\]
(A.1)

holds. Since the RHS goes to 0 and \(e^{n(R - \varepsilon)} \beta_n(T^n(R - \varepsilon)) \geq 0\), the relation
\[
p_n \left\{ \omega_n \left| \frac{1}{n} \log \frac{p_n(\omega_n)}{q_n(\omega_n)} < R - \varepsilon \right\} = \alpha_n(T^n(R - \varepsilon)) \to 0
\]
holds. It implies that \(R - \varepsilon < \overline{D}\).

Converse part ≤ of (8): Assume that \(\liminf_{n \to \infty} \alpha_n(T^n) < 1\) and
\[
\limsup_{n \to \infty} \frac{1}{n} \log \beta_n(T^n) = -R.
\]
(A.2)

For any \(\varepsilon > 0\), from (A.1) and (A.2), we have
\[
\liminf_{n \to \infty} p_n \left\{ \omega_n \left| \frac{1}{n} \log \frac{p_n(\omega_n)}{q_n(\omega_n)} < R - \varepsilon \right\} = \liminf_{n \to \infty} \alpha_n(T^n(R - \varepsilon)) \leq \liminf_{n \to \infty} \alpha_n(T^n) < 1.
\]
It implies that \(R - \varepsilon < \overline{D}\).

Appendix B. Proof of Lemma 8

In the cases \(k = 2, 3\), the equation (14) is checked by a calculation. Now, we prove (14) by induction in the case \(k \geq 4\). Let \(a_k\) be the RHS of (16). The inequality \(a_k \geq (\log k)^2\) is trivial. From the assumption of the induction, if \(a_k = \sum_{i=1}^{k} p_i (\log p_i)^2\), then \(p_i > 0\) \((i = 1, \ldots, k)\). Using Lagrange multiplier method, we have \((\log p_i)^2 + 2 \log p_i - \lambda' = 0\), where \(\lambda'\) is the Lagrange multiplier. The solution is written by \(\log p_i = -1 \pm \lambda\), where
\[\lambda := \sqrt{1 + \lambda}. \] Without loss of generality, we can assume that there exists \(0 \leq r \leq k \) such that
\[\log p_i = \begin{cases} -1 + \lambda & \text{if } r \geq i \\ -1 - \lambda & \text{if } r < i. \end{cases} \]

Since \(\sum p_i = 1 \), we have
\[1 = re^{-1+\lambda} + (k-r)e^{-1-\lambda}, \]
which is equivalent to the quadratic equation
\[rx^2 - ex + k - r = 0, \]
where \(x := e^\lambda \). Since the discriminant is greater than 0, we have
\[e^2 - 4r(k-r) \geq 0, \]
which is solved as:
\[r \leq \frac{k - \sqrt{k^2 - e^2}}{2}, \quad k + \sqrt{k^2 - e^2} \leq r. \] (B.1)

The function \(c(x) := \frac{x - \sqrt{x^2 - e^2}}{2} \) is monotone decreasing in \((e, \infty)\), and \(c(4) < 1 \). Thus, the condition (B.1) implies that \(r = 0 \) or \(k \). Thus, we have \(p_i = 1/k \) i.e., (16).

References

[1] Ogawa T 2000 “A study on the asymptotic property of the hypothesis testing and the channel coding in quantum mechanical systems,” Ph.D. dissertation, University of Electro-Communications (In Japanese).
[2] Nagaoka H 2001 “Strong converse theorems in quantum information theory,” Proceedings of “ERATO Workshop on Quantum Information Science 2001,” p. 33.
[3] Hayashi M and Nagaoka H 2002 “General formulas for capacity of classical-quantum channels,” LANL e-print quant-ph/0206186 “A General Formula for the Classical Capacity of a General Quantum Channel,” Proceedings of 2002 IEEE International Symposium on Information Theory, p.71.
[4] Ogawa T and Nagaoka H 2002 “A New Proof of the Channel Coding Theorem via Hypothesis Testing in Quantum Information Theory,” LANL e-print quant-ph/0208133 “A General Formula for the Classical Capacity of a General Quantum Channel,” Proceedings of 2002 IEEE International Symposium on Information Theory, p.71.
[5] Rains E M 2001 “A semidefinite program for distillable entanglement,” IEEE Trans. IT-47, 2921-2933; LANL e-print quant-ph/0008047.
[6] Hayashi M 2002 “Two quantum analogues of Fisher information from a large deviation viewpoint of quantum estimation,” J. Phys. A: Math. and Gen. 35, 7689-7727; LANL e-print quant-ph/0202003.
[7] Hayashi M and Matsumoto K 2002 “Quantum universal variable-length source coding,” Phys. Rev. A. 66, 022311; LANL e-print quant-ph/0202003.
[8] Mayers D Salvail L and Chiba-Kohno Y 1999 “Unconditionally Secure Quantum Coin Tossing,” LANL e-print quant-ph/9904078.
[9] Hiai F and Petz D 1991 Commun. Math. Phys. 143, 99-114.
[10] Ogawa T and Nagaoka H 2000 “Strong Converse and Stein’s Lemma in the Quantum Hypothesis Testing,” IEEE Trans. IT-46, 2428-2433; LANL e-print quant-ph/9906094.
[11] Ogawa T and Hayashi M 2002 “On Error Exponents in Quantum Hypothesis Testing,” LANL e-print quant-ph/0206151.
Optimal sequence of quantum measurements

[12] Han T S 1998 *Information-Spectrum Methods in Information Theory*, Baifukan-Press, Tokyo, (in Japanese), (English Translation is to appear in October 2002 in Springer).

[13] Han T S 2000 “Hypothesis testing with the general source,” IEEE Trans. IT-46, 2415-2427; LANL e-print [math.PR/0004121].

[14] Nagaoka H 1998 “On asymptotic theory of quantum hypothesis testing,” Proceeding of Symposium “Statistical inference theory and its information theoretical aspect” 49-52, (in Japanese).

[15] Nagaoka H 1999 “Information Spectrum Theory of Quantum Hypothesis Testing,” Proc. of the 22nd Symposium on Information Theory and Its Applications (SITA99), pp.245-247, (in Japanese).

[16] Nagaoka H and Hayashi M 2002 “An Information-Spectrum Approach to Classical and Quantum Hypothesis Testing for Simple Hypotheses” LANL e-print quant-ph/0206185.

[17] Petz D 1994 J. Funct. Anal. 120, 82-97.

[18] Hayashi M 2001 “Asymptotics of quantum relative entropy from a representation theoretical viewpoint,” J. Phys. A: Math. and Gen. 34 3413; LANL e-print quant-ph/9704041.

[19] Verdú S 1994 Private communication to T. S. Han.

[20] Nagaoka H 2001 Private communication.

[21] Osawa S 2001 Private communication.

[22] Bhatia R 1997 *Matrix Analysis*, (Springer, New York).

[23] Weyl H 1939 *The Classical Groups, Their Invariants and Representations*, (Princeton University Press, Princeton, NJ)

[24] Goodman R and Wallach N 1998 *Representations and Invariants of the Classical Groups*, (Cambridge University Press, Cambridge).