Ultra-durable Ni-Ir/MgAl2O4 catalysts for dry reforming of methane enabled by dynamic balance between carbon deposition and elimination

Haocheng Li  
East China Normal University

Cong Hao  
Xiamen University

Jingqing Tian  
East China Normal University

Shuai Wang  
Xiamen University  
https://orcid.org/0000-0002-4618-4162

Chen Zhao (✉ czhao@chem.ecnu.edu.cn)  
East China Normal University

Article

Keywords:

Posted Date: February 11th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1335282/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Ultra-durable Ni-Ir/MgAl$_2$O$_4$ catalysts for dry reforming of methane enabled by dynamic balance between carbon deposition and elimination
Abstract

Carbon deposition is the main cause for the catalyst deactivation of methane dry reforming, and researchers are committed to exploring effective catalyst systems with zero carbon deposition in order to achieve a practically long life-time. In this work, we propose an equilibrium theory with matched rates of CH$_4$ dissociation and CO$_2$ activation to establish a balance between carbon deposition and carbon elimination, and construct highly dispersed Ni-Ir/MgAl$_2$O$_4$ alloy catalysts accordingly, where Ni activated CH$_4$, MgAl$_2$O$_4$ adsorbed CO$_2$ to form surface carbonates, and Ir effectively utilized the carbonates to eliminate carbon species generated by CH$_4$ dissociation. Theoretical assessment further unveiled that the preferred CO$_2$ activation on Ir over Ni is derived from its stronger oxophilicity. With an optimal Ni/Ir atomic ratio of 1/2, high activity and long-period stability (600 h) with zero carbon deposition were obtained concurrently for dry reforming of methane at industrially-relevant temperature (650 ºC).
Introduction

Dry reforming of methane (DRM) is a primary method for producing syngas (a mixture of CO and H₂) that acts as a key platform for the industrial production of fuels and chemicals [1-5]. Among group VIII metals [6-10], low-cost Ni has drawn the most attention for DRM because of its strong CH₄ dissociation ability, which endows Ni with an excellent catalytic performance of DRM [11-15]. However, Ni-based catalysts suffer from serious carbon deposition and metal sintering issues under the high-temperature condition of DRM (700-1000 °C), which limits their large-scale application [16-20]. The main causes of carbon deposition include the disproportionation of carbon monoxide (2 CO(g) ⇌ C(s) + CO₂(g); ΔH = −171 kJ/mol) and the deep dissociation of methane (CH₄(g) ⇌ C(s) + 2 H₂(g); ΔH = 75 kJ/mol), while the latter prevails at temperatures above 600 °C [21].

Various methods have been attempted to suppress the carbon deposits in DRM. By using supports rich in oxygen vacancies such as CeO₂ [22-24] or alkaline oxide supports like MgO [25-26], CO₂ activation can be strengthened to accelerate the elimination of carbon deposits. This enhances the redox property of the catalyst and inhibits the development of carbon deposition [27, 28]. The accumulation and sintering of metallic Ni at high temperatures (700-1000 °C) can result in the formation of larger Ni particles, which promotes the carbon deposition [29]. The strong metal-support interaction (SMSI) between metallic Ni and the hydroxyapatite [Ca₁₀(PO₄)₆(OH)₂] (HAP) support [30] was found to enhance the dispersion of Ni particles and alleviate sintering and carbon deposits concurrently. In addition, it was reported that decorating the Ni surface with Co prevented the continuous formation of carbon nanotubes on the Ni surface [31]. The redox recycling on Ni-Fe/MgₓAlᵧO₂ catalysts, where metallic Fe was oxidized by CO₂ to form FeOₓ and the adsorbed C atom obtained from the dissociation of CH₄ reduced FeOₓ back to Fe, can effectively eliminate carbon deposits [32]. Ni-Mo nanoparticles were stabilized on the edge of a single MgO crystal to inhibit the particle sintering at high temperatures and effectively prevent the generation of carbon deposits over a long reaction period (850 h) [33].
The core issue for achieving practically-durable DRM catalysts with minimal carbon deposition is to establish an efficient equilibrium between CH$_4$ dissociation and CO$_2$ activation on the catalyst surface. In this work, we show that a highly efficient and stable DRM system can be built on bimetallic Ni-Ir/MgAl$_2$O$_4$ catalysts, brought forth by a synergy between the CH$_4$ dissociation on Ni sites and MgAl$_2$O$_4$-enhanced CO$_2$ adsorption and activation on Ir sites that can scavenge surface carbon species generated from the CH$_4$ dissociation step. Through in-situ spectroscopic characterization of the generation and elimination of carbon species and theoretical calculations on the CO$_2$ activation, we propose an equilibrium mechanism of carbon generation and elimination for designing the effective and durable catalysts for the DRM process.

Results and discussion

Structural characterization of supported Ni-Ir catalysts

MgAl$_2$O$_4$-supported Ni, Ni$_3$Ir$_1$, and Ir catalysts were synthesized using a conventional co-impregnation method, and the surface areas of these catalysts were 126.0, 133.9, and 136.1 m$^2$/g, respectively, as determined by nitrogen physical adsorption (Fig. S1). X-ray diffraction (XRD) results (Fig. 1a) showed that the diffraction peaks of metallic Ni for Ni$_3$Ir$_1$/MgAl$_2$O$_4$ had a much lower intensity compared to the pure Ni catalyst. Similarly, compared with the pure Ir catalyst, the diffraction peaks of Ir had a lower intensity for Ni$_3$Ir$_1$/MgAl$_2$O$_4$. Such weakened diffraction peaks for the Ni-Ir catalyst implies that the interaction of Ni and Ir increased metal dispersion compared to the single-metal catalyst system. The Ni-Ir interaction is further evidenced by a shift of the signal peaks of metallic Ir in the presence of Ni (e.g., from 40.46° to 40.92° for the Ir(111) plane and from 47.12° to 47.66° for the Ir (200) plane, Fig. S2), consistent with the smaller atomic radius of Ni than Ir.

As shown in XPS profiles of Fig. 1b, the Ni$^0$ 2p$_{3/2}$ (855.2 eV) and Ni$^{2+}$ 2p$_{3/2}$ (858.2 eV) signals were observed for the Ni/MgAl$_2$O$_4$ catalyst. The presence of Ni$^{2+}$ cations indicates the formation of NiAl$_2$O$_4$ species on the support surface during the synthesis process. Compared with Ni/MgAl$_2$O$_4$, the Ni$^{2+}$ content and binding energy position in
the Ni$_3$Ir$_1$/MgAl$_2$O$_4$ catalyst changed minimally, while the Ni$^0$ 2p$_{3/2}$ signal increased to 858.6 eV (by 0.4 eV). In contrast, the binding energy of Ir$^0$ 4f$_{2/7}$ was 62.2 eV for the pure Ir catalyst (Fig. 1c), 0.4 eV higher than that in the Ni$_3$Ir$_1$ catalyst (61.8 eV). With respect to the monometallic Ni and Ir catalysts, these binding energy changes indicate the electrons were transferred from Ni to Ir, suggesting the formation of Ni-Ir alloy in the Ni-Ir/MgAl$_2$O$_4$ system. Ni and Ir K-edge X-ray adsorption fine structure (XAFS) spectroscopy was also used to identify the localized structure of the Ni-Ir alloy (Fig. S3, Table S1), which shows the existence of Ni-Ir coordination bonds (2.63–2.65 Å) in the Ni$_3$Ir$_1$/MgAl$_2$O$_4$ catalyst. The structural information for the Ni$_3$Ir$_1$/MgAl$_2$O$_4$ catalyst was further confirmed by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) elemental mapping (Figs. 1d–g). The metal nanoparticles were uniformly dispersed on the MgAl$_2$O$_4$ spinel support surface with a typical bimodal particle size distribution, for which the corresponding average particle diameters were 1.2 and 4.3 nm and the smaller particles were predominant. In contrast, the average diameters of metal particles for Ir/MgAl$_2$O$_4$ and Ni/MgAl$_2$O$_4$ were 1.1 and 5.7 nm, respectively (Fig. S4). It is clearly indicated that the formation of the Ni-Ir alloy improved the dispersion of Ni, consistent with the XRD results shown above (Fig. 1a). In addition, the EDS analysis (Fig. 1e) showed that the small particles in the Ni$_3$Ir$_1$/MgAl$_2$O$_4$ catalyst possessed a higher content of Ir (Ni/Ir ≈ 2/3), while Ni dominated in the large particles (Ni/Ir ≈ 4/1). The uniform distributions of the Ni and Ir elements within each kind of the Ni-Ir particles (Figs. 1f–g, S5) agree well with the formation of alloys in the Ni-Ir/MgAl$_2$O$_4$ catalyst. Taken together, XRD, XPS, XAFS, TEM, and EDS were combined to verify that Ni-Ir alloys were formed in the bimetallic Ni-Ir/MgAl$_2$O$_4$ system, which significantly improved the dispersion of the Ni nanoparticles on the MgAl$_2$O$_4$ support and provided a basis for the efficient coupling between CH$_4$ dissociation and CO$_2$ activation on the Ni and Ir active sites, respectively, as demonstrated next for DRM.
Fig. 1 (a) XRD patterns of Ni/MgAl$_2$O$_4$, Ni-Ir/MgAl$_2$O$_4$, and Ir/MgAl$_2$O$_4$, (b) Ni 3p XPS patterns of Ni/MgAl$_2$O$_4$ and Ni$_3$Ir$_1$/MgAl$_2$O$_4$, (c) Ir 4f XPS patterns of Ni$_3$Ir$_1$/MgAl$_2$O$_4$ and Ir/MgAl$_2$O$_4$, (d) HRTEM and particle size distribution of the metal nanoparticles, (e) EDS, and (f–g) EDS-mapping of Ni$_3$Ir$_1$/MgAl$_2$O$_4$.

**Catalytic performances of Ni-Ir catalysts in DRM**

From the view of thermodynamics, the DRM process is favorable at high temperatures due to its endothermic nature. At medium to low temperatures (below 700 °C), the impact of carbon deposits will be significant. The results for the Ni/MgAl$_2$O$_4$, Ni$_3$Ir$_1$/MgAl$_2$O$_4$, and Ir/MgAl$_2$O$_4$ catalysts are shown in Figs. 2a and S6 (650 °C, GHSV = 40,000 mL·g$^{-1}$·h$^{-1}$, 1 bar). For the pure Ni catalyst, the initial conversion of CH$_4$ was 59.4% and decreased to 47.3% after 100 hours of testing, in which the corresponding conversion of CO$_2$ decreased from 71.5% to 61.6%. It is reflected that the Ni catalyst was not able to maintain a good stability during DRM, although its initial activity was high. For the Ir catalyst, the initial conversions of CH$_4$ and CO$_2$ were only 50.2% and 63.6%, respectively, but the catalyst activity did not decrease significantly during the 100-hour test. For the Ni$_3$Ir$_1$/MgAl$_2$O$_4$ catalysts, the conversions of CH$_4$ and CO$_2$ slightly decreased from 61.5% to 60.2% and 73.3% to 72.8% during the 100-hour test, respectively, indicating the Ni-Ir alloy catalyst possessed both of high activity and improved stability. As shown in Table S2, we summarize the typical catalyst systems for DRM, and the Ni-Ir/MgAl$_2$O$_4$ system
developed in our study had superior conversion rates of CH$_4$ and CO$_2$ than the state-of-the-art catalysts [9, 34-41].

For the DRM test with different temperatures (600–800 °C, Fig. S7), the initial conversion of CH$_4$ on the Ni, Ni$_3$Ir$_1$ and Ir catalysts increased with increasing temperature from 42.1%, 46.8%, and 20.9% at 600 °C to 89.8%, 90.4%, and 90.2% at 800 °C, respectively. Although the three catalysts showed significant differences in activity at the lower temperature, the gap decreased as the temperature increased until the activity was almost identical at 800 °C. The ratio of H$_2$/CO in the syngas showed a similar phenomenon, increasing from 0.67, 0.80, and 0.60 at 600°C to 0.96, 0.97, and 0.94 at 800 °C. It is suggested that DRM is preferred over the reverse water-gas shift reaction (RWGS; CO$_2$ + H$_2$ → CO + H$_2$O) at temperatures above 600 °C, which leads to an increase in the H$_2$/CO ratio and gradually approaches unity as the temperature rises.

The different performances of the three catalysts in DRM may be directly related to their intrinsic abilities for the adsorption and activation of the CH$_4$ and CO$_2$ reactants. Kinetic studies (Figs. 2e–f) showed that the measured reaction order of CO$_2$ for Ni/MgAl$_2$O$_4$ was 0.12, while for Ni$_3$Ir$_1$/MgAl$_2$O$_4$ and Ir/MgAl$_2$O$_4$, the reaction order values were −0.13 and −0.57, respectively. These data indicate the adsorption strength of CO$_2$ on the three catalysts decreased with an order of Ir/MgAl$_2$O$_4$, Ni$_3$Ir$_1$/MgAl$_2$O$_4$, and Ni/MgAl$_2$O$_4$. As shown below, DFT calculations unveil that the higher oxophilicity of Ir than Ni accounts for the stronger CO$_2$ adsorption on Ir/MgAl$_2$O$_4$.

The measured reaction orders for CH$_4$ over the Ni, Ni$_3$Ir$_1$, and Ir catalysts were −0.38, −0.50, and −1.14, respectively, indicating the dissociative adsorption of CH$_4$ on Ir/MgAl$_2$O$_4$ was also the strongest among the three catalysts. This outstanding adsorption ability of Ir made it difficult for the reactive species to desorb from the catalyst surface, which limited the catalytic activity at medium to low temperatures. As the temperature increased, the desorption of the reactive species became easier and the catalytic activity of Ir/MgAl$_2$O$_4$ increased faster compared with the other two catalysts as evidenced by the changes of CH$_4$ conversion with increasing temperature (Fig. S7).
Characterization of spent Ni-Ir catalysts

It is generally accepted that carbon deposition is one of the main causes of catalyst deactivation in DRM \cite{16,18}. SEM images (Figs. 2b–d) of the spent catalysts clearly showed the appearance of carbon deposits after the DRM reaction, which were interlaced and attached to the catalyst surface, blocking contact between the active metal site and the reactants and thus inhibiting the catalytic activity. Specifically, Ni/MgAl$_2$O$_4$ had more carbon deposits than Ni$_3$Ir$_1$/MgAl$_2$O$_4$, and the carbon chains on Ni/MgAl$_2$O$_4$ were longer and thicker than the latter, with average diameters of about 27.9 nm versus 21.5 nm. The carbon deposits also showed different morphologies for each catalyst, presumably due to the different amount of carbon species provided for the carbon chain growth for each catalyst. It is worth noting that the carbon deposition was nearly negligible on the Ir catalyst (Fig. 2d), consistent with the high stability of this catalyst for DRM.

XRD patterns of the spent Ni/MgAl$_2$O$_4$ catalyst showed an obvious graphite-2H signal ($2\theta = 25.9^\circ$), which is typical of amorphous carbon species produced in DRM (Fig. 2g). The intensity of the graphite-2H signal for Ni$_3$Ir$_1$ was lower than that for Ni, while this signal was not detectable on the Ir catalyst. Raman spectra of these spent catalysts (Fig. 2h) showed peaks at 1334 and 1598 cm$^{-1}$ for both Ni and Ni$_3$Ir$_1$, which were assigned to the D-band and G-band signals of carbon species. Although the peak intensity of Ni was higher, the peak intensity ratios of the D-band and G-band signals were similar between the two catalysts, indicating no significant differences in the types of carbon deposits formed. For the spent Ir catalyst, no corresponding peaks were observed, consistent with the XRD characterization. To quantify the amount of carbon deposits formed on the spent catalysts, TGA analysis was conducted (Fig. 2i). No significant weight loss was observed for the Ir catalyst during the TGA process, while the Ni and Ni$_3$Ir$_1$ catalysts showed weight losses of 16.7\% and 10.2\%, respectively. These data unambiguously reflect that the addition of Ir suppressed the formation of carbon deposits in DRM.

TEM characterization was further applied to analyze the structure and morphology of the spent catalysts after long-time reaction (Fig. S8). The average diameter of the Ni
nanoparticles on Ni/MgAl$_2$O$_4$ increased from 5.7 to 8.2 nm (5.7 nm for the fresh sample) after 100 hours of testing, indicative a severe sintering of the Ni particles at the condition of DRM. In contrast, the metal particle sizes of the spent Ni$_3$Ir$_1$ and Ir catalysts (1.2 and 4.1 nm for Ni$_3$Ir$_1$/MgAl$_2$O$_4$; 1.1 nm for Ir/MgAl$_2$O$_4$) did not change significantly compared with the fresh ones. It is surmised that metallic Ir has a strong interaction with the MgAl$_2$O$_4$ support, which results in the smaller metal particles and stronger anti-sintering ability for the Ir-containing catalysts.

Fig. 2 (a) CH$_4$ conversion on Ni/MgAl$_2$O$_4$, Ni$_3$Ir$_1$/MgAl$_2$O$_4$, and Ir/MgAl$_2$O$_4$ (reaction conditions for the catalytic test: 650 °C, CH$_4$/CO$_2$=1/1, GHSV = 40,000 mL·g$^{-1}$·h$^{-1}$, and 1 bar); (e-f) kinetic analysis; (b-d) SEM images, (g) XRD patterns, (h) Raman spectra, (i) TGA, and of the spent catalysts.

In-situ DRIFTS study of DRM

Adsorption of CO$_2$ on the MgAl$_2$O$_4$ support can form carbonate species, which may promote the fixation and activation of CO$_2$ during the DRM. In-situ diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) analysis showed that MgAl$_2$O$_4$ adsorbed CO$_2$ and converted it into carbonate species readily at 650 °C in a CO$_2$ atmosphere (Fig. S9a). TGA was further performed to assess the CO$_2$ adsorption capacity of MgAl$_2$O$_4$ (Fig. S9b), which was approximately 1.0 wt% at 650 °C. As the temperature decreased, the adsorption capacity of MgAl$_2$O$_4$ continued to increase, and
reached about 2.6 wt% at 50 °C. Although the adsorption capacity was not significant at high temperatures, the adsorption and desorption of CO$_2$ occurred simultaneously during the DRM process and could dynamically provide CO$_2$ for the active metal sites, beneficial for the capture and utilization of gaseous CO$_2$.

To further ascertain the specific impact of carbonates on MgAl$_2$O$_4$ for DRM, in-situ DRIFTS was employed to analyze the activation process through the step-by-step introduction of CO$_2$-CH$_4$-CO$_2$ atmosphere. Within the first minute of introducing CO$_2$, all the three catalysts showed vibrational peaks at 1643 and 1542 cm$^{-1}$ (attributed to monodentate carbonate species [42-43]), indicating all the catalysts can adsorb CO$_2$ to form carbonate (Fig. S10). Subsequently, the IR reactor cell was purged with Ar, and CH$_4$ was introduced in the second stage. The in-situ DRIFTS spectra for the three catalysts during the CH$_4$ stage are shown in Figs. 3a–c; the carbonate signals slowly decreased over time and those for Ni/MgAl$_2$O$_4$ decreased faster than the other two catalysts. It is worth noting that, at the beginning of the CH$_4$ stage for Ni/MgAl$_2$O$_4$, the gaseous CO$_2$ signal initially increased and then slowly decreased; however, no gaseous CO$_2$ was detectable on the other two catalysts. In addition, all the catalysts were observed generating CO (twin peak at 2150 cm$^{-1}$), and the generation rate of CO was relatively slow on the Ni/MgAl$_2$O$_4$ catalyst, with a noticeable CO signal observed only after 1 minute of introducing CH$_4$, while the other catalysts showed obvious CO formation upon the initiation of the stage.

In the third stage, we again used Ar to purge the residual CH$_4$ and then reintroduced CO$_2$. The in-situ DRIFTS spectra of the catalysts during this stage again showed that carbonate species were formed on the catalysts (Figs. 3d–f). This occurred more slowly on the Ni/MgAl$_2$O$_4$ catalyst, requiring 2.5 minutes to reach carbonate species saturation while on the other two catalysts, the saturation was reached after just 1 minute. Further, the signal peak for gaseous CO only appeared for the Ni$_3$Ir$_1$/MgAl$_2$O$_4$ catalyst.

Two distinct reaction pathways are proposed to explain the observed difference during the in-situ DRIFTS experiments described above. The Ni/MgAl$_2$O$_4$ catalyst followed reaction path A (Fig. 3g). Namely, when CO$_2$ was first introduced, the MgAl$_2$O$_4$ support adsorbed gaseous CO$_2$ and formed monodentate carbonate species.
(CO₂ (g) → CO₃²⁻, ads), thus allowing the carbonate species to reach saturation. When
CH₄ was introduced in the second stage, it was dissociated on the active metal sites,
forming surface CHₓ* (x = 0–3) species (CH₄ (g) → H* + CHₓ*), which continued to
accumulate and form carbon deposits. The carbonate species on MgAl₂O₄ cannot be
used by the active Ni sites directly, while it can decompose into gaseous CO₂ (CO₃²⁻, ads
→ CO₂ (g)) again, which then adsorbed on the active Ni sites and further reacted with
CHₓ* to form CO* (CO₂⁺ + CHₓ* → 2CO (g) + x/2 H₂). CO* was finally released from
the catalyst surface to form gaseous CO. Therefore, when CH₄ was introduced during
the second stage, CO was not produced until sufficient carbonate was consumed to
genenerate CO₂. Only easily eliminated carbon species were activated and removed by
the reaction with CO₂ released by the support in the second stage, leaving the catalyst
surface covered by the recalcitrant carbon chains produced by overgrowth. Since Ni
could not effectively activate and utilize CO₂ to eliminate the carbon chains, when CO₂
was reintroduced in the third stage, only the accumulation of carbonate species on the
support occurred without the formation of CO.

In contrast to Ni/MgAl₂O₄, the Ir/MgAl₂O₄ catalyst followed reaction path B (Fig.
3h). The difference was that the Ir active sites could directly use and activate the
carbonate species on the support, eliminating the CHₓ* and forming gaseous CO (CO₃²⁻,
ads + CHₓ* → CO (g)). The carbonate species did not have to decompose into CO₂ (g)
to be reused, therefore there was a large amount of CO formed without obvious CO₂
formation. The direct utilization of carbonate on the Ir based catalysts increased the
utilization rate of carbonate species, resulting in a slower rate of consumption compared
to route A. Compared with Ni, Ir had an insufficient ability to activate CH₄, therefore
the carbonate species that adsorbed on the surface of MgAl₂O₄ in the first stage was
sufficient to eliminate the CHₓ* generated during the second stage, which resulted in
no CO formation in the third stage. We also increased the time for CH₄ introduction in
the second stage of the Ir/MgAl₂O₄ catalyst to ensure that enough CHₓ* were generated.
After CO₂ was introduced again, gaseous CO signals appeared indicating that the
Ir/MgAl₂O₄ catalyst could reduce the carbon species and CO₂ to CO (Fig. S11).

The Ni₃Ir/MgAl₂O₄ catalyst also followed reaction path B. Due to the presence
of Ni, the dissociation ability of CH$_4$ was better than the Ir/MgAl$_2$O$_4$ catalyst, therefore
CH$_x$* species were not completely eliminated and grew into carbon chains in the second
stage. In the third stage, gaseous CO formed in addition to the carbonate but was slower
because the carbonate was not saturated during the initial stage of CO$_2$ introduction.
With saturation of the carbonate species, the formation rate of gaseous CO increased
accordingly, which further confirmed that carbonate was used as a bridge to adsorb and
convert CO$_2$ rather than directly utilize gaseous CO$_2$. Both the Ni$_3$Ir$_1$/MgAl$_2$O$_4$ and
Ni/MgAl$_2$O$_4$ catalysts generated carbon species, which grew into carbon chains in the
second stage. However, in the third stage, only the Ni$_3$Ir$_1$/MgAl$_2$O$_4$ catalyst following
path B eliminated the carbon species completely and formed gaseous CO. This suggests
that path B was more beneficial to the activation of CO$_2$ and the elimination of carbon
species.

To verify the unique roles of MgAl$_2$O$_4$ in the DRM, an Ir/Al$_2$O$_3$ catalyst was
further characterized by the in-situ DRIFTS experiment (Fig. S12). When CO$_2$ was
introduced in the first stage, no carbonate species formed and only obvious gaseous
CO$_2$ signal peaks appeared. In the second stage, no gaseous CO signal peak appeared
during the introduction of CH$_4$, because the carbon species were eliminated in a CH$_4$
atmosphere without carbonates formed on the support surface. The third stage was the
same as the second stage, with no obvious gaseous CO signal peaks. Although carbon
species were produced by the activation of CH$_4$ (TPSR-MS, in-situ DRIFTS) in the
second stage, Ir weakly utilized gaseous CO$_2$ to eliminate carbon species, and only a
small amount of carbon species which had not continued to grow was further activated,
forming a small amount of CO. Therefore, only the Ir-CO signal (2000 cm$^{-1}$) was
observed on the Ir catalyst, and the amount of gaseous CO did not reach the detection
limit. This proves that the carbonate formed on the MgAl$_2$O$_4$ support played a key role
in the effective removal of carbon by Ir during the DRM.

In order to further explore the adsorption and activation ability of CO$_2$ on different
catalysts, the catalysts were characterized with temperature programmed desorption of
CO$_2$ (CO$_2$-TPD) showed a signal peak appeared only at 614 °C on MgAl$_2$O$_4$, and the
peak position of Ni/MgAl$_2$O$_4$ was similar to that of MgAl$_2$O$_4$, but with a lower intensity
(Fig. S13). For Ni₃Ir₁/MgAl₂O₄, in addition to a peak appeared at 621 °C (similar to the support), there were peaks at 778 and 873 °C, and the peaks at 621 °C and 809 °C were present for Ir/MgAl₂O₄. This was because Ir had better dispersion and CO₂ could be effectively adsorbed and utilized at the Ir-MgAl₂O₄ interface, while the Ni-MgAl₂O₄ interface has no effect on CO₂ adsorption. This further supports the findings from the kinetics studies and in-situ DRIFTS, which Ir sites impacted adsorption and activation of CO₂ and restricted carbon deposits during the DRM.
Fig. 3 In-situ DRIFTS with (a-c) introduction of CH\textsubscript{4} in the second stage, (d-f) introduction of CO\textsubscript{2} in the third stage of Ni/MgAl\textsubscript{2}O\textsubscript{4}, Ni\textsubscript{3}Ir\textsubscript{1}/MgAl\textsubscript{2}O\textsubscript{4}, Ir/MgAl\textsubscript{2}O\textsubscript{4}, the schematic diagram of the mechanism to activate CO\textsubscript{2} (g) with the help of carbonate and (h) without the help of carbonate.

TPSR-MS analysis of the activation of methane and the elimination of carbon deposits

The activation and dissociation of CH\textsubscript{4} is the main cause of carbon deposition
Temperature programmed surface reaction-mass (TPSR-MS) was used to explore the activation ability of CH$_4$ during the DRM process. First, CH$_4$ was introduced during the temperature-programming process (Figs. S14a and S15). The Ni/MgAl$_2$O$_4$, Ni$_3$Ir$_1$/MgAl$_2$O$_4$, and Ir/MgAl$_2$O$_4$ catalysts exhibited CH$_4$ activation abilities at 289, 328, and 347 °C, respectively. The carbon species generated by the dissociation of CH$_4$ blocked the active sites, restricting the activation of CH$_4$. This caused the CH$_4$ activation ability to decrease at 490, 610, and 590 °C, respectively. This indicates that Ni was better than Ir for dissociation of CH$_4$, and the dissociation rate increased with raising temperature.

Subsequently, TPSR-MS was performed on the catalysts after CH$_4$ treatment to explore how the different catalytic systems eliminate carbon deposits in a CO$_2$ atmosphere (Fig. S14b). Overall, the carbon removal temperature on Ni/MgAl$_2$O$_4$ was higher than that on Ni$_3$Ir$_1$/MgAl$_2$O$_4$ and Ir/MgAl$_2$O$_4$, which confirmed the Ni$_3$Ir$_1$/MgAl$_2$O$_4$ and Ir/MgAl$_2$O$_4$ catalysts had stronger carbon removal abilities. The Ni/MgAl$_2$O$_4$ catalyst had a relatively small amount of activated CH$_4$ due to the blockage of active sites at lower temperatures, and the amount of carbon deposits and the resulting peak area were both relatively small. The above results show that Ni$_3$Ir$_1$/MgAl$_2$O$_4$ and Ir/MgAl$_2$O$_4$ which followed path B had advantages in the process of activating CO$_2$ and removing carbon species.

Raman spectra of the catalysts treated with CH$_4$ showed that all of them had D-band and G-band carbon peaks (Fig. S16) and the carbon content followed Ni-Ir > Ir > Ni, which was consistent with the TPSR-MS-CO$_2$ results. In addition, the ratio of the D-band to the G-band indicated that the catalysts formed the same type of carbon species upon the dissociation of CH$_4$. The different temperatures for CO$_2$ removal reflect the difference in the activation mechanism of CO$_2$ as described in the previous section.

**Theoretical assessment of CO$_2$ activation on supported metal catalyst**

As shown above, the activation of CO$_2$ over metal surface is critical for the efficient removal of carbon deposits during DRM. DFT calculations were further
performed to understand the difference between Ir and Ni on CO₂ activation at a molecular level. Herein, a Ni₈ cluster, a Ir₈ cluster, and two Ni₆Ir₂ clusters with distinct configurations (denoted as Ni₆Ir₂/MgAl₂O₄-a and Ni₆Ir₂/MgAl₂O₄-b) were constructed on a MgAl₂O₄ (100) surface for modeling the Ir/MgAl₂O₄, Ni/MgAl₂O₄ and Ni₃Ir/MgAl₂O₄ catalysts, respectively (Fig. 4a). Previous studies indicate that such M₈ (M = metal) clusters were sufficient to reflect the characteristic of supported metal nanoparticles.⁴⁴-⁴⁵

Considering that the elimination of carbon deposits during DRM mainly depends on the active O* species generated from CO₂ dissociation ⁺⁴⁶-⁵⁰, we therefore focused on the adsorption and dissociation processes of CO₂ at the metal-support interface. As shown in Fig. 4b, CO₂ adsorption was much stronger on Ir₈/MgAl₂O₄ than Ni₈/MgAl₂O₄ (-2.14 eV vs -1.14 eV), consistent with the in-situ DRIFTS experiments. For Ni₆Ir₂/MgAl₂O₄, the adsorption energy of CO₂ was between those for the Ir₈ and Ni₈ clusters, no matter the C atom of the adsorbed CO₂ on the Ni₆Ir₂ clusters was bound to the Ni site (i.e., Ni₆Ir₂/MgAl₂O₄-a; -1.33 eV) or the Ir site (i.e., Ni₆Ir₂/MgAl₂O₄-b; -1.77 eV).

DFT calculations showed that the CO₂ dissociation (CO₂* → CO* + O*, Fig. 4b) at the Ir₈/MgAl₂O₄ interface was exothermic by -0.41 eV with an activation barrier of 1.48 eV, which was considerably lower than that on Ni₈/MgAl₂O₄ interface (2.18 eV). The difference of the activation barrier for CO₂ dissociation indicates, compared with the Ni₈ cluster, the generation of O* species on the Ir₈ cluster was much more efficient, rendering a fast elimination of carbon deposits and thus a high catalyst stability during DRM. For the two Ni₆Ir₂/MgAl₂O₄ models, CO₂ was dissociated on Ni₆Ir₂/MgAl₂O₄-a with the formed CO* species bound to a Ni site via a C-Ni coronation and the formed O* atom bound to a vicinal Ir site, while these two moieties formed on Ni₆Ir₂/MgAl₂O₄-b were bound to the Ni and Ir sites inversely. CO₂ dissociation on Ni₆Ir₂/MgAl₂O₄-a showed a much lower activation barrier than that for Ni₆Ir₂/MgAl₂O₄-b (1.69 vs. 2.21 eV, Fig. 4b), further reflecting different stabilities of the incipiently formed CO* and O* species at the transition state (TS) of CO₂ dissociation on the Ir and Ni sites (TS structures shown in Fig. S17).
In order to unveil the determining factors on the activity of CO$_2$ dissociation, adsorption energies for O atom and CO on the supported M$_8$ clusters were calculated independently to compare the stabilities of these two species on different metal sites. As shown in Fig. 4c, the CO$_2$ dissociation barrier presented a nearly linear correlation with the O adsorption energy, while no apparent correlation was observed between the CO$_2$ dissociation barrier and the CO adsorption energy. These data clearly imply that the activity of CO$_2$ dissociation is mainly determined by the stabilization of the O$^*$ species at the TS, which prefers the Ir site over the Ni site.

The projected density of states (DOS) distributions of adsorbed O and M$_8$ clusters were further analyzed (Fig. 4d) to obtain a deeper understanding of the higher oxygen affinity of Ir. It is found that the antibonding states of O$_{2p}$ became more populated in the trend of Ir$_8$/MgAl$_2$O$_4$, Ni$_6$Ir$_2$/MgAl$_2$O$_4$-a, Ni$_8$/MgAl$_2$O$_4$ and Ni$_6$Ir$_2$/MgAl$_2$O$_4$-b, accounting for the decrease of the stability of the O$^*$ species and the increase of the CO$_2$ dissociation barrier with this trend. Accordingly, the excellent stability of Ir/MgAl$_2$O$_4$ and Ni$_3$Ir/MgAl$_2$O$_4$ catalysts during DRM is attributable to their stronger oxophilicity derived from metal Ir.
Fig. 4 (a) Four Ms/MgAl₂O₄ catalyst models applied in the theoretical calculations of DRM (with CO₂ adsorbed on the metal clusters). (b) DFT-derived energy changes of CO₂ dissociative adsorption on Ms/MgAl₂O₄. (c) Correlations of the CO₂ activation barrier with the adsorption energies of O-atom and CO on Ms/MgAl₂O₄. (d) Local density of states projected onto the adsorbed oxygen 2p state and Ms cluster d state for the oxygen chemisorption on Ms/MgAl₂O₄.

**Mechanism of carbon deposits-elimination balance in DRM and its application**

With respect to the Ni₃Ir/MgAl₂O₄ catalyst, Ni mainly played the role of dissociating CH₄, while MgAl₂O₄ not only acted as the support of the active metal sites, but also adsorbed CO₂, forming carbonate species to enrich CO₂. These carbonate species could be effectively activated by Ir to eliminate carbon species and inhibit
carbon deposition. Since the main activation sites of CH$_4$ and CO$_2$ were different (Ni for CH$_4$; Ir for CO$_2$), the ratios of Ni and Ir atoms can greatly modulate the activation rates of CH$_4$ and CO$_2$.

During the DRM process, although the Ni-Ir/MgAl$_2$O$_4$ system had more carbon deposits, it maintained high stability. Interestingly, the formed carbon deposits seemed to have no effect on the catalytic activity. Therefore, carbon deposits formed on the catalysts along with the reaction were examined (Fig. 5a). We found that Ni/MgAl$_2$O$_4$ had a faster rate of carbon deposition at the beginning and steadily increased. Further, as the carbon deposits increased, carbon chains blocked the contact between the active metal site and CH$_4$. The reduction in the amount of active sites for CH$_4$ dissociation led to a decrease in the rate of carbon deposition and DRM activity. In contrast, the Ir/MgAl$_2$O$_4$ catalyst did not form carbon deposits during the 100-hour test, while carbon deposits increased within the first 20 hours for Ni$_{3/2}$Ir$_{1/2}$/MgAl$_2$O$_4$, which was then stabilized with no significant additional increase until 100 hours.

Accordingly, we proposed a carbon deposits-elimination balance mechanism (Fig. 5b). With excessive Ni, the activation rate of CH$_4$ would be faster than that for CO$_2$, and the dissociated carbon species would not be eliminated in time, leading to the generation of carbon deposits. This type of carbon deposition occurred on Ni, the site activated by CH$_4$, which would block some of the Ni active sites. With a decrease in the Ni active sites, the activation rate of CH$_4$ decreased, resulting in a balance in the activation rate of CH$_4$ and CO$_2$. Similarly, excessive carbon deposits led to higher activation rates for CO$_2$ than CH$_4$, leading to the elimination of carbon deposits and exposing the Ni active sites previously covered. This caused the activation rate of CH$_4$ to increase until it matched that for CO$_2$ activation.

In the long-term test, this system gradually approached equilibrium until \( \nu(\text{CH}_4) \approx \nu(\text{CO}_2) \) (\( \nu(\text{CH}_4) \): the activation rate of CH$_4$; \( \nu(\text{CO}_2) \): the activation rate of CO$_2$). This was also why numerous carbon deposits were observed in the Ni-Ir/MgAl$_2$O$_4$ catalytic system, but the effect on the catalytic activity was minimal. As \( \nu(\text{CH}_4) \) approached \( \nu(\text{CO}_2) \), the carbon deposits would no longer increase, but the existing carbon deposits would not be eliminated. In other words, the system achieved a balance between carbon
deposition and elimination, and the overall reactivity was determined by the activation of CO$_2$. Over the Ni/MgAl$_2$O$_4$ catalyst, the dissociation of CH$_4$ and the activation of CO$_2$ occurred at the same active site, which did not follow this mechanism; thus, carbon deposits increased throughout the test. For the Ni$_3$Ir/MgAl$_2$O$_4$ catalyst, the Ni sites were reduced sufficiently such that the reaction system reached $\nu$(CH$_4$) $\approx$ $\nu$(CO$_2$) equilibrium after 20 hours.

Based on these results, Ni-Ir/MgAl$_2$O$_4$ catalysts were prepared with different Ni/Ir ratios for a 100-hour test to assess carbon deposition (Figs. 5c–d, S18-S19). With an increase in the Ir content from Ni/Ir = 12/1 to 1/3, the initial CH$_4$ conversion of the catalyst increased from 60.7% to 62.5%, and the average conversion of CH$_4$ increased from 59.1% to 62.4%. With increasing the Ir content, the activity and stability both increased. When the Ir/Ni ratio was 2, both of the initial and average conversions reached the highest level, and there was no further impact with an additional increase of the Ir content. In addition, the carbon deposits decreased from 14.2 wt% (Ni/Ir = 12/1) to 0 wt% (Ir/Ni = 2), and no carbon deposition occurred with further increasing the Ir content. This was because the increased Ir content brought more catalytic sites for CO$_2$ activation, allowing the system to reach the equilibrium between carbon deposition and elimination faster. Therefore, while maintaining high activity, the amount of carbon deposits was regularly reduced during the test. As the number of CO$_2$ activation sites increased, the activity of the rate-determining step in the reaction increased, and the system exhibited higher activity. This result was consistent with the balance theory, as when Ir/Ni = 2, $\nu$(CO$_2$) matched $\nu$(CH$_4$) during the initial stage of the test. Therefore, the carbon deposition was almost negligible, with almost no differences between the initial activity and the average activity of the reaction, indicating an extremely high stability of the catalytic system.

We anticipated that a match between $\nu$(CO$_2$) and $\nu$(CH$_4$) in the initial state of the reaction by tuning the Ni-Ir relative contents would achieve a balance between the generation and elimination of carbon deposits, leading to a DRM catalytic system with zero carbon deposits. Because Ir is a precious metal, it was necessary to reduce the Ir content as much as possible. As shown in Figs. 5c–d, the Ir/Ni ratio of 2 was found as...
the best catalyst ratio. We then conducted a 600 hours long-time test under the conditions of 650 °C, GHSV = 40,000 mL·g⁻¹·h⁻¹, and 1 bar (Fig. 5e). The initial conversion rates of CH₄ and CO₂ were 62.67 % and 72.94 %, respectively, with no significant change in activity after 600 hours. Raman spectra of the spent catalyst showed no obvious signal peaks for amorphous carbon at 1334 cm⁻¹ or 1598 cm⁻¹ (Fig. 5f). In addition, no significant weight loss was observed from TGA (Fig. 5g). These results confirmed that no obvious carbon deposition occurred on the catalyst, consistent with the results of the catalytic system optimized based on our proposed theory.

Conclusions

Dry reforming of methane (DRM) to generate syngas can serve as a bridge for the high-volume utilization of greenhouse gases and synthesis of industrial platform molecules. The core of the stable DRM reaction is the equilibrium between efficient CH₄ dissociation and CO₂ activation. We designed and constructed an ultra-stable Ni-
Ir/MgAl\textsubscript{2}O\textsubscript{4} alloy system for DRM showing high activity, where Ni played the role of activating CH\textsubscript{4} and MgAl\textsubscript{2}O\textsubscript{4} adsorbed CO\textsubscript{2} to form carbonate species that can be effectively utilized by Ir to eliminate carbon species generated from CH\textsubscript{4} activation on Ni. Based on the feature of Ni, Ir and MgAl\textsubscript{2}O\textsubscript{4}, we proposed a balance mechanism between the active sites and the carbon deposits-eliminations over Ni\textsubscript{1}Ir\textsubscript{2}/MgAl\textsubscript{2}O\textsubscript{4} catalytic system, which achieved equilibrium of \( v(\text{CH}_4) \approx v(\text{CO}_2) \) at the beginning of the reaction, and effectively inhibited the generation of carbon deposits while maintaining high activity and stability. This deeper understanding of the relationship among the activity of CH\textsubscript{4} dissociation, CO\textsubscript{2} activation, and carbon deposition-elimination would inspire new ideas on the rational design and development of novel catalysts for activation of inert C\textsubscript{1} molecules.
References

1 Emiel de Smit, E. & Weckhuysen, B. M. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour. *Chem. Soc. Rev.* **37**, 2758-2781, doi:10.1039/b805427d (2008).

2 Xiong, H., Jewell, L. L. & Coville, N. J. Shaped Carbons As Supports for the Catalytic Conversion of Syngas to Clean Fuels. *ACS Catal.* **5**, 2640-2658, doi:10.1021/acscatal.5b00090 (2015).

3 Chen, Y. *et al.* Sintered precipitated iron catalysts with enhanced fragmentation-resistance ability for Fischer–Tropsch synthesis to lower olefins. *Catal. Sci. Technol.* **8**, 5943-5954, doi:10.1039/c8cy01392f (2018).

4 Chen, Y. *et al.* Ruthenium silica nanoreactors with varied metal–wall distance for efficient control of hydrocarbon distribution in Fischer–Tropsch synthesis. *J. Catal.* **365**, 429-439, doi:10.1016/j.jcat.2018.06.023 (2018).

5 Andrei Y., Wei C. & Pascal F. Advances in the Development of Novel Cobalt Fischer–Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels. *Chem. Rev.* **107**, 5, 1692-1744, doi:org/10.1021/cr050972v (2017).

6 Yentekakis, I. V. *et al.* Effect of support oxygen storage capacity on the catalytic performance of Rh nanoparticles for CO$_2$ reforming of methane. *Appl. Catal. B-Environ.* **243**, 490-501, doi:10.1016/j.apcatb.2018.10.048 (2019).

7 Zhang, Y. *et al.* Ru/TiO$_2$ Catalysts with Size-Dependent Metal/Support Interaction for Tunable Reactivity in Fischer–Tropsch Synthesis. *ACS Catal.* **10**, 12967-12975, doi:10.1021/acscatal.0c02780 (2020).

8 Zhang, J.-C. *et al.* Robust Ruthenium-Saving Catalyst for High-Temperature Carbon Dioxide Reforming of Methane. *ACS Catal.* **10**, 783-791, doi:10.1021/acscatal.9b03709 (2019).

9 Singha, R. K., Shukla, A., Sandupatla, A., Deo, G. & Bal, R. Synthesis and catalytic activity of a Pd doped Ni–MgO catalyst for dry reforming of methane. *J. Mater. Chem. A* **5**, 15688-15699, doi:10.1039/c7ta04452f (2017).

10 Kobayashi, T., Furuya, T., Fujitsuka, H. & Tago, T. Synthesis of Birdcage-type zeolite encapsulating ultrafine Pt nanoparticles and its application in dry reforming of methane. *Chem. Eng. J.* **377**, doi:10.1016/j.cej.2018.10.140 (2019).

11 Rodriguez, J. A., Ginster, D. C., Liu, Z., Palomino, R. M. & Senayake, S. D. Ceria-based model catalysts: fundamental studies on the importance of the metal-ceria interface in CO oxidation, the water-gas shift, CO$_2$ hydrogenation, and methane and alcohol reforming. *Chem. Soc. Rev.* **46**, 1824-1841, doi:10.1039/c6cs00863a (2017).

12 Muraleedharan Nair, M. & Kaliaguine, S. Structured catalysts for dry reforming of methane. *New J. Chem.* **40**, 4094-4060, doi:10.1039/c5nj03268g (2016).

13 Li, S. & Gong, J. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions. *Chem. Soc. Rev.* **43**, 7245-7256, doi:10.1039/c4cs00223g (2014).

14 Tian, J., Ma, B., Bu, S., Yuan, Q. & Zhao, C. One-pot synthesis of highly sintering- and coking-resistant Ni nanoparticles encapsulated in dendritic mesoporous SiO$_2$ for methane dry reforming. *Chem. Commun. (Camb)* **54**, 13993-13996, doi:10.1039/c8cc08284g (2018).

15 Tian, J. *et al.* Facile immobilization of Ni nanoparticles into mesoporous MCM-41 channels for efficient methane dry reforming. *Chinese J. Catal.* **40**, 1395-1404, doi:10.1016/s1872-
2067(19)63403-0 (2019).

16 Pakhare, D. & Spivey, J. A review of dry (CO₂) reforming of methane over noble metal catalysts. *Chem. Soc. Rev.* **43**, 7813-7837, doi:10.1039/c3cs60395d (2014).

17 Ochoa, A. *et al.* Deactivation dynamics of a Ni supported catalyst during the steam reforming of volatiles from waste polyethylene pyrolysis. *Appl. Catal. B-Environ.* **209**, 554-565, doi:10.1016/j.apcatb.2017.02.015 (2017).

18 Lisiane V. M., Gary J., Burtron H. D. & Fábio B. N. Production of Hydrogen from Ethanol: Review of Reaction Mechanism and Catalyst Deactivation. *Chem. Rev.* **112**, 7, 4096-4123, doi:org/10.1021/cr2000114 (2012).

19 Saib, A. M. *et al.* Fundamental understanding of deactivation and regeneration of cobalt–Tropsch synthesis catalysts. *Catal. Today* **154**, 271-282, doi:10.1016/j.cattod.2010.02.008 (2010).

20 Tsakoumis, N. E., Rønning, M., Borg, Ø., Rytter, E. & Holmen, A. Deactivation of cobalt based Fischer–Tropsch catalysts: A review. *Catal. Today* **154**, 162-182, doi:10.1016/j.cattod.2010.02.077 (2010).

21 Wang, C. *et al.* Coking and deactivation of a mesoporous Ni–CaO–ZrO₂ catalyst in dry reforming of methane: A study under different feeding compositions. *Fuel* **143**, 527-535, doi:10.1016/j.fuel.2014.11.097 (2015).

22 Wang, F. *et al.* Enhanced catalytic performance of Ir catalysts supported on ceria-based solid solutions for methane dry reforming reaction. *Catal. Today* **281**, 295-303, doi:10.1016/j.cattod.2016.03.055 (2017).

23 Mortola VB, Damyanova S, Zanchet D, Bueno JMC. Surface and structural features of Pt/CeO₂-L₆O₃-Al₂O₃ catalysts for partial oxidation and steam reforming of methane. *Appl. Catal. B-Environ.* **107**, 221-236, doi: 10.1016/j.apcatb.2011.07.012 (2011).

24 Jeong D-W, Potdar HS, Shim J-O, Jang W-J, Roh H-S. H₂ production from a single stage water–gas shift reaction over Pt/CeO₂, Pt/ZrO₂, and Pt/C₆₋ₓZₓO₂ catalysts. *Int. J. Hydrog. Energy* **38**, 4502-4507, doi: 10.1016/j.ijhydene.2013.01.200 (2013).

25 Alipour, Z., Rezaei, M. & Meshkani, F. Effect of Ni loadings on the activity and coke formation of MgO-modified Ni/Al₂O₃ nanocatalyst in dry reforming of methane. *J. Energy Chem.* **23**, 633-638, doi:10.1016/s2095-4956(14)60194-7 (2014).

26 Jabbour, K., Massiani, P., Davidson, A., Casale, S. & El Hassan, N. Ordered mesoporous “one-pot” synthesized Ni-Mg(Ca)-Al₂O₃ as effective and remarkably stable catalysts for combined steam and dry reforming of methane (CSDRM). *Appl. Catal. B-Environ.* **201**, 527-542, doi:10.1016/j.apcatb.2016.08.009 (2017).

27 Ay, H. & Üner, D. Dry reforming of methane over CeO₂ supported Ni, Co and Ni–Co catalysts. *Appl. Catal. B-Environ.* **179**, 128-138, doi:10.1016/j.apcatb.2015.05.013 (2015).

28 Faria, E. C., Neto, R. C. R., Colman, R. C. & Noronha, F. B. Hydrogen production through CO₂ reforming of methane over Ni/CeZrO₂/Al₂O₃ catalysts. *Catal. Today* **228**, 138-144, doi:10.1016/j.cattod.2013.10.058 (2014).

29 Jin-Hong Kim, Dong Jin Suh, Tae-Jin Park, Kyung-Lim Kim. Effect of metal particle size on coking during CO₂ reforming of CH₄ over Ni–alumina aerogel catalysts. *Appl. Catal. A-Gen.* **197**, 191-200, doi: 10.1016/S0926-860X(99)00487-1 (2000).

30 Kunitski, M. *et al.* Double-slit photoelectron interference in strong-field ionization of the neon dimer. *Nat. Commun.* **10**, 1, doi:10.1038/s41467-018-07882-8 (2019).
Cao, K. et al. Nickel catalyst with atomically-thin meshed cobalt coating for improved durability in dry reforming of methane. *J. Catal.* **373**, 351-360, doi:10.1016/j.jcat.2019.04.017 (2019).

Theofanidis, S. A., Galvita, V. V., Poelman, H. & Marin, G. B. Enhanced Carbon-Resistant Dry Reforming Fe-Ni Catalyst: Role of Fe. *ACS Catal.* **5**, 3028-3039, doi:10.1021/acscatal.5b00357 (2015).

Song Y. et al. Dry reforming of methane by stable Ni–Mo nanocatalysts on single-crystalline MgO. *Science* **367**, 777-781, doi: 10.1126/science.aav2412 (2020).

Pan, C., Guo, Z., Dai, H., Ren, R. & Chu, W. Anti-sintering mesoporous Ni-Pd bimetallic catalysts for hydrogen production via dry reforming of methane. *Int. J. Hydrog. Energy* **45**, 16133-16143, doi:10.1016/j.ijhydene.2020.04.066 (2020).

García-Diéguez, M., Pieta, I. S., Herrera, M. C., Larrubia, M. A. & Alemany, L. J. Nanostructured Pt- and Ni-based catalysts for CO\textsubscript{2}-reforming of methane. *J. Catal.* **270**, 136-145, doi:10.1016/j.jcat.2009.12.010 (2010).

de Miguel, S. R. et al. Influence of Pt addition to Ni catalysts on the catalytic performance for long term dry reforming of methane. *Appl. Catal. A-Gen.* **435-436**, 10-18, doi:10.1016/j.apcata.2012.05.030 (2012).

Al-Fatesh, A. et al. Rh promoted and ZrO\textsubscript{2}/Al\textsubscript{2}O\textsubscript{3} supported Ni/Co based catalysts: High activity for CO\textsubscript{2} reforming, steam-CO\textsubscript{2} reforming and oxy-CO\textsubscript{2} reforming of CH\textsubscript{4}. *Int. J. Hydrog. Energy* **43**, 12069-12080, doi:10.1016/j.ijhydene.2018.04.152 (2018).

Turap, Y. et al. Co + Ni alloy supported on CeO\textsubscript{2} as a bimetallic catalyst for dry reforming of methane. *Int. J. Hydrog. Energy* **45**, 6538-6548, doi:10.1016/j.ijhydene.2019.12.223 (2020).

Siang, T. J. et al. Hydrogen production from CH\textsubscript{4} dry reforming over bimetallic Ni-Co/Al\textsubscript{2}O\textsubscript{3} catalyst. *J. Energy Inst.* **91**, 683-694, doi:10.1016/j.joei.2017.06.001 (2018).

Song, K. et al. Effect of alloy composition on catalytic performance and coke-resistance property of Ni-Cu/Mg(Al)O catalysts for dry reforming of methane. *Appl. Catal. B-Environ.* **239**, 324-333, doi:10.1016/j.apcatb.2018.08.023 (2018).

Al-Fatesh, A. S. Promotional effect of Gd over Ni/Y\textsubscript{2}O\textsubscript{3} catalyst used in dry reforming of CH\textsubscript{4} for H\textsubscript{2} production. *Int. J. Hydrog. Energy* **42**, 18805-18816, doi:10.1016/j.ijhydene.2017.06.165 (2017).

Das S, et al. Effect of Partial Fe Substitution in La\textsubscript{0.9}Sr\textsubscript{0.1}NiO\textsubscript{3} Perovskite-Derived Catalysts on the Reaction Mechanism of Methane Dry Reforming. *ACS Catal.* **10**, 12466-12486 (2020).

Azancot L, Bobadilla LF, Centeno MA, Ondroizola JA. IR spectroscopic insights into the coking-resistance effect of potassium on nickel-based catalyst during dry reforming of methane. *App. Catal. B-Environ.* **285**, (2021).

Cheng, F., Duan, X. & Xie, K. Dry reforming of methane by stable Ni nanocrystals on porous single-crystalline MgO monoliths at reduced temperature. *Angew. Chem. Int. Ed.* **60**, 18792-18799, doi:10.1002/anie.202106243 (2021).

Guo, Y.-P., Li, W.-Y. & Feng, J. Reaction pathway of CH\textsubscript{4}/CO\textsubscript{2} reforming over Ni8/MgO(100). *Surf. Sci.* **660**, 22-30, doi:10.1016/j.susc.2017.02.010 (2017).

Akri, M. et al. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming. *Nat. Commun.* **10**, 5181, doi:10.1038/s41467-019-12843-w (2019).

Wu, P. et al. Cooperation of Ni and CaO at interface for CO\textsubscript{2} reforming of CH\textsubscript{4}: A combined theoretical and experimental study. *ACS Catal.* **9**, 10060-10069, doi:10.1021/acscatal.9b02286
Tang, Y. et al. Synergy of single-atom Ni\textsubscript{1} and Ru\textsubscript{1} sites on CeO\textsubscript{2} for dry reforming of CH\textsubscript{4}. J. Am. Chem. Soc. 141, 7283-7293, doi: 10.1021/jacs.8b10910 (2019).

Joo, S. et al. Enhancing thermocatalytic activities by upshifting the d-band center of exsolved Co-Ni-Fe ternary alloy nanoparticles for the dry reforming of methane. Angew. Chem. Int. Ed. 60, 15912-15919, doi: 10.1002/anie.202101335 (2021).

Foppa, L. et al. Contrasting the role of Ni/Al\textsubscript{2}O\textsubscript{3} interfaces in water-gas shift and dry reforming of methane. J. Am. Chem. Soc. 139, 17128-17139, doi: 10.1021/jacs.7b08984 (2017).
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- NilrSfinal.pdf