DFX: A Low-latency Multi-FPGA Appliance for Accelerating Transformer-based Text Generation

Seongmin Hong1, Seungjae Moon1, Junsoo Kim1, Sungjae Lee2, Minsub Kim2, Dongsoo Lee2, and Joo-Young Kim1

1CastLab, School of EE, KAIST,
2NAVER CLOVA
Abstract

• DFX: a low-latency multi-FPGA appliance for accelerating transformer-based text generation
 ◦ DFX is a multi-FPGA appliance that accelerates transformer-based text generation
 ◦ DFX adopts model parallelism to efficiently process the large-scale language model
 ◦ Xilinx Alveo U280 data center accelerator card provides high performance with low-cost
 ◦ FPGA-to-FPGA communication is enabled by QSFP cable at 100 Gb/s
Motivation
Transformer-based Text Generation

• **Text generation**
 - Automatic generation of human-readable text by a computer
 - Example: dialogue system, topic-to-essay generation, and code generation

• **Generative Pre-trained Transformer (GPT)**
 - State-of-the-art model in natural language processing that scales up to 175B parameters
 - High-quality text generation and remarkable inference accuracy for benchmarks (e.g., 86.4% for LAMBADA)

Input Tokens "Hello, my name"

Output Tokens "is" "James" "Smith" "and" ... "."
Challenges of Transformer-based Text Generation

1) **System bottleneck** in the generation stage due to its sequential characteristic

2) **Massive model parameters** and computational requirements

3) **Lack of deployable hardware with end-to-end capability** for GPT inference in datacenters

Every operation matters for acceleration!
DFX Architecture
• **Multi-FPGA appliance** for the acceleration of text generation

• **Intra-layer model parallelism** for large models

• **Compute core (accelerator)** that supports GPT’s **end-to-end operations**
• Intra-layer model parallelism can reduce the latency of matrix operations
 ◦ Multi-head attention: model parameters are divided head-wise
 ◦ Fully-connected layer: model parameters are divided column-wise
• Compute core supports GPT’s end-to-end operations
 - **Matrix processing unit**: matrix multiplication, masked matrix multiplication
 - **Vector processing unit**: softmax, layer normalization, residual
 - **DMA**: designed to maximize the HBM’s BW based on types of parameters (weight, bias, key, value, etc.)
FPGA-to-FPGA interconnection in a ring network
- Synchronization is necessary after executing distributed matrix multiplication
- Network overhead is minimized with a simplified protocol
Evaluation
DFX Implementation

- DFX server prototype includes four Xilinx Alveo U280 FPGAs
- FPGA layout and resource utilization are optimized for HBM bandwidth usage
DFX Evaluation Results

- **Methodology**
 - **DFX**: one U280 FPGA, two U280 FPGAs, and four U280 FPGAs
 - **Baseline systems**: one V100 GPU, two V100 GPUs, and four V100 GPUs
 - **Models**: GPT-2 (345M), GPT-2 (774M), and GPT-2 (1.5B)
 - **Input token size**: varies from 32 to 128
 - **Output token size**: varies from 1 to 256

Inference latency of DFX compared to the GPU appliance

- DFX achieves an average of **3.20×**, **4.46×**, and **5.58×** speedup over GPU counterparts
DFX Evaluation Results

- DFX achieves an average of $3.78 \times$ throughput and $3.99 \times$ energy efficiency on four-device appliances.

- Performance of DFX increases linearly with the number of FPGAs at the rate of 1.5.
Appliance Cost Analysis

- **DFX** is $8.21\times$ more cost-effective than the GPU appliance.

	GPU Appliance	DFX Appliance
Accelerators	4 × Nvidia Tesla V100 32GB HBM	4 × Xilinx Alveo U280 8GB HBM
Performance	13.01 tokens/sec	72.68 tokens/sec
(Input:Output = 64:64)		
Cost	$45,832* (1 GPU = $11,458)	$31,180* (1 FPGA = $7,795)
Performance / Cost	283.86 tokens/sec/million$	2330.98 tokens/sec/million$

* The price is as of April, 2022
It may vary depending on market conditions

Newest U55C is only 4,395$ with 16GB HBM
Summary

- DFX is a multi-FPGA appliance for accelerating transformer-based text generation, featuring
 - Intra-layer model parallelism
 - Compute core supporting GPT end-to-end operations
 - Lightweight router

- DFX achieves $5.58 \times$ and $3.99 \times$ improvements in performance and energy-efficiency compared to the GPU appliance’s

- DFX is $8.21 \times$ more cost-effective than the GPU appliance
Thank You

• What’s next?
 ◦ We are extending the model to one of GPT-3’s for a POC deployment in a datacenter

• Any questions? Feel free to contact us!
 ◦ Email: seongminhong@kaist.ac.kr or jooyoung1203@kaist.ac.kr
 ◦ Website: https://castlab.kaist.ac.kr/
 ◦ LinkedIn: https://www.linkedin.com/company/kaistcastlab/