The role of non-coding RNAs in chemotherapy for gastrointestinal cancers

Fatemeh Dashti,1,2,10 Seyed Mohammad Ali Mirazimi,1,2,10 Nikta Rabiei,3 Reza Fathazam,3 Negin Rabiei,3 Haleh Piroozmand,4 Massoud Vosough,5 Neda Rahimian,6 Michael R. Hamblin,7,8 and Hamed Mirzaei9

1School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; 2Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; 3School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; 4Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran; 5Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; 6Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran; 7Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; 8Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran; 9Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran

Gastrointestinal (GI) cancers, including colorectal, gastric, hepatic, esophageal, and pancreatic tumors, are responsible for large numbers of deaths around the world. Chemotherapy is the most common approach used to treat advanced GI cancer. However, chemoresistance has emerged as a critical challenge that prevents successful tumor elimination, leading to metastasis and recurrence. Chemoresistance mechanisms are complex, and many factors and pathways are involved. Among these factors, non-coding RNAs (ncRNAs) are critical regulators of GI tumor development and subsequent chemoresistance. This occurs because ncRNAs can target multiple signaling pathways, affect downstream genes, and modulate proliferation, apoptosis, tumor cell migration, and autophagy. ncRNAs can also induce cancer stem cell features and affect the epithelial-mesenchymal transition. Thus, ncRNAs could possibly act as new targets in chemotherapy combinations to treat GI cancer and to predict treatment response.

INTRODUCTION

Gastrointestinal (GI) cancers are a major cause of death worldwide, and they impose a tremendous financial burden on many countries. Some therapeutic approaches for inoperable GI cancer, such as radiotherapy and chemotherapy, have been slowly developed along with advances in technology, and they have been shown to be partly effective in patients. Today, chemotherapy is the first-line standard procedure for most patients with cancer, particularly where surgery is impractical. There are already hundreds of chemotherapy drugs that have been approved to treat cancer, along with more new drugs being developed. The mechanisms of these anti-cancer drugs are different; while many aim to inhibit elements of the basic cellular function, others aim to kill the proliferating cells. They include compounds such as DNA-modifying agents (cisplatin [DDP]), molecular drugs targeting hormones such as estrogen receptor (ER) blockers (tamoxifen [TAM]), drugs that interfere with microtubules (taxol), and drugs that interfere with metabolic activity (methotrexate [MTX]). Radiotherapy is often used as an adjuvant therapy and is used in the treatment of nearly 50% of patients with cancer around the world. The treatment principles can be divided into two broad groups: (1) tumor cells have a restricted capability to repair damaged DNA; and (2) cancer cells are usually rapidly dividing and show higher sensitivity to chemotherapy and radiation compared to slower dividing normal cells. Radiotherapy and chemotherapy have both been shown to improve the overall survival (OS) and/or progression-free survival of patients. However, a problem is very likely to gradually appear; that is, cancer cells usually develop resistance to cytotoxic drugs or radiation. Both acquired and intrinsic resistance can dramatically reduce the therapeutic efficacy, leading to poor prognosis, recurrence, and eventual tumor metastasis. Nowadays, the discovery of approaches to overcome these challenges is an urgent need.

It has been reported that non-coding DNAs account for 95% of the DNA sequences within the human genome. A majority of the non-coding DNAs have been shown to be transcribed into more than 10,000 different functional non-coding RNAs (ncRNAs), including microRNAs (miRNAs), small interfering RNAs (siRNAs), antisense RNAs (asRNAs), and long non-coding RNAs (lncRNAs). Recent
studies have identified a new type of ncRNA, termed circular RNA (circRNA). Many circRNAs have been shown to be produced from the exons of coding genes, and several of them do not translate to proteins. Figure 1 summarizes the biogenesis of various ncRNAs, including miRNAs, siRNAs, LncRNAs, and circRNAs. Another class of ncRNAs that are produced to act as active enhancers are called eRNAs. eRNAs are transcribed from genomic enhancer regions, which are generally considered as transcription factor binding sites distal to gene transcription start sites. The role of most eRNAs has remained enigmatic. Some studies have suggested that eRNAs carry out crucial tasks in regulating the chromatin conformation or transcription activation. Many studies have shown that several ncRNAs are deregulated (higher or lower) in cancer, where they are involved in cancer-associated processes, such as promotion of cancer stem cells (CSCs), drug resistance, and metastasis, underlining the role of ncRNAs as possible new targets in cancer.
miR-182 could inhibit cell proliferation in triple-negative breast cancer-resistant CRC cell-line and tumor tissues.24 Treatment.37 Affecting the NFIB/Snail axis, and could be a target in CRC.37 miR-138-5p could inhibit migration and reduce chemoresistance by controlling the expression of Snail1 by targeting NFIB, which is involved in the chemoresistance and metastasis in several malignancies.26,27 Knockdown of miR-182 could inhibit cell proliferation in triple-negative breast cancer.27 Some miRNAs were overexpressed in 5-fluorouracil (5-FU)-resistant CRC cell-line and tumor tissues.24 The levels of α-N-acetylgalactosaminide-α-2,6-sialyltransferase (ST6GALNAC2) were reduced by forced expression of miR-135b and miR-182. Moreover, ST6GALNAC2 was found to be a direct target of miR-135b and miR-182, and its expression showed an opposite pattern compared to miR-135b and miR-182 in CRC cell lines and tissues. Proliferation was increased by upregulation of miR-182 and miR-135b, and their upregulation resulted in reduced apoptosis in 5-FU-resistant CRC cell lines. Repression of these miRs by miR-135b/miR-182 inhibitors showed an opposite effect by increasing ST6GALNAC2 expression and promoting CRC progression. miR-135b and miR-182 were shown to modulate the activity of the AKT/phosphatidylinositol 3-kinase (PI3K) pathway. Inhibition of the AKT/PI3K pathway increased the effects of 5-FU in LoVo and HCT-8 cells. Hence, miR-135b and miR-182 could be targets for CRC treatment.24 miR-138-5p has been found to act as an inhibitor in several different cancers.29–31 In pancreatic cancer (PC), for example, miR-138-5p played a tumor suppressor role.32 A study by Gao et al.33 showed that miR-138-5p improved the effect of radiotherapy on nasopharyngeal cancer through targeting EIF4EBP1. Roberto et al.34 showed that the expression of miR-138-5p changed the prognosis in osteosarcoma. Zhao et al.35 showed that RBBD1 (rhomboid domain containing 1) was a direct target of miR-138-5p, and the reduction of RBBD1 could inhibit breast cancer progression. Xu et al.36 showed that the reduction of RBBD1 by miR-138-5p suppressed lung cancer development. Xu et al.37 showed that the expression of miR-138-5p was downregulated in CRC cells. miR-138-5p inhibited the migration of CRC cells and may also overcome chemoresistance. miR-138-5p controlled the expression of Snail1 by targeting NFIB, which is involved in the chemoresistance and migration of CRC cells. Their research showed that miR-138-5p could inhibit migration and reduce chemoresistance by affecting the NFIB/Snail axis, and could be a target in CRC treatment.37 miR-133b functions as a tumor repressor in CRC. For example, miR-133b reduced metastasis and proliferation of CRC cells \textit{in vitro} and \textit{in vivo}.38,39 Additionally, the miR-133b expression level was correlated with the risk of metastasis and survival in CRC patients40 and could be used as a prognostic indicator.41 Lv et al.42 reported that miR-133b was underexpressed in CRC spheroids enriched with CSCs, which also showed increased chemoresistance. Also, overexpression of miR-133b resulted in overcoming chemoresistance to oxaliplatin (OXP) and 5-FU and reducing CRC stemness. It was shown that miR-133b inhibited CRC chemoresistance and stemness by downregulating telomeric silencing disruptor 1-like (DOT1L) and a specific H3K79 methyl transferase.43 DOT1L replacement abrogated the inhibitory effects of miR-133b on CRC chemoresistance and stemness. These findings suggest that miR-133b may be a new target for overcoming CRC stemness and chemoresistance.42 miR-375 is a tumor suppressor that targets crucial onco genes in several cancer types, such as hepatocellular carcinoma (HCC), CRC, gastric cancer (GC), and cervical cancer. In addition, miR-375 can be used as a therapeutic target because it can suppress tumor cell growth \textit{in vivo} and \textit{in vitro}.44 miR-375 is correlated with the susceptibility to chemotherapy in prostate cancer, breast cancer, and HCC.45–47 miR-375 also plays a key role in determining which patients should receive preoperative chemoradiation therapy for CRC.48,49 To date, more studies are required to prove a connection between drug resistance and miR-375 in CRC.50 Xu et al.51 reported that miR-375 was remarkably underexpressed in CRC cell lines and tissues, and that low expression of miR-375 was correlated with poor prognosis in CRC patients. \textit{In vivo} and \textit{in vitro} overexpression of miR-375 rendered the CRC cells more sensitive to a wide range of chemotherapy drugs. Further mechanistic analysis showed that, by directly targeting SP1 and YAP1, miR-375 improved the chemosensitivity of CRC to 5-FU. miR-375 negatively regulated YAP1, leading to a decrease in the expression of the downstream genes of Hippo-YAP1 (also known as survivin), such as CTGF, cyclin D1, and the BIRC55 pathway. Overall, miR-375 could be a potential molecular biomarker for chemoresistance in CRC patients, and also could have a role in the treatment of CRC patients, particularly those with chemoresistant tumors.51 Most studies about the role of miR-552 in tumor biology have concentrated on CRC.29–32 In addition, measuring the miR-552 expression profile improved the prediction of lung metastasis in CRC patients.52 The involvement of aberrant miR-552 expression in the undifferentiated and highly proliferating tumors characteristic of DNA mismatch repair-deficient (dMMR) CRC was recently reported.53 Also, miR-552 can enhance the progression of HCC by stimulating the epithelial-mesenchymal transition (EMT).54 Zhao et al.55 found significantly downregulated miR-552 expression in 5-FU-resistant CRC cells and tissues, as well in dMMR tumors.
with poor prognosis after chemotherapy. Overexpression of miR-552 increased apoptosis and reduced 5-FU resistance, while inhibiting miR-552 expression increased 5-FU resistance in CRC cells. From a mechanistic point of view, miR-552 directly targeted the 3′ UTR of SMAD2. Overall, they demonstrated that the miR-552/SMAD2 pathway governed the response to 5-FU chemotherapy in dMMR CRC tumors.

Previous studies have shown that miR-106a was overexpressed in CRC tumor tissues, fecal samples, and in plasma. A lower level of miR-106a was correlated with decreased overall survival as well as disease-free survival (DFS) in CRC patients. It was shown that miR-106a is involved in the regulation of CRC oxaliplatin sensitivity. miR-106a transfection mildly suppressed the growth of CRC cells and rendered them more sensitive to oxaliplatin. Furthermore, miR-106a overexpression decreased the FOXQ1 level in CRC cells at both mRNA and protein levels. Increased miR-106a expression also increased the expression of Wnt target genes, including matrix metalloproteinase 2 and vascular endothelial growth factor-A, which are known to be modulated by FOXQ1. It was predicted that miR-106a could directly bind to the 3′ UTR of FOXQ1, and this was confirmed by the finding of higher miR-106a and lower FOXQ1 levels in tumor tissues from oxaliplatin-sensitive CRC patients, compared to oxaliplatin-resistant CRC patients. They concluded that miR-106a increased CRC sensitivity to oxaliplatin through direct suppression of FOXQ1 expression.

miR-744 was upregulated in head and neck tumors compared to normal tissues. High plasma levels of miR-744 correlated with chemoresistance and poor prognosis in patients with PC undergoing gemcitabine-based chemotherapym. Moreover, there were higher levels of serum miR-744 in GC patients compared to controls. Zhou et al. reported that miR-744 levels were substantially higher in CRC tissues from patients receiving oxaliplatin prior to surgery, and in oxaliplatin-resistant HCT116 cells. Oxaliplatin chemoresistance was increased by miR-744 overexpression, while miR-744 inhibition in HCT116 and T84 cells increased oxaliplatin sensitivity. In addition, the level of BIN1 protein was reduced by miR-744, and the oxaliplatin chemoresistance caused by miR-744 was reversed by BIN1 overexpression. In addition, a luciferase reporter assay demonstrated that BIN1 was a direct target of miR-744. Taken together, these results showed that by suppressing BIN1 expression in CRC cells, miR-744 could increase oxaliplatin drug resistance and could be a strategy to reverse oxaliplatin resistance in CRC therapy.

miR-214 plays a role in several cancer types and has been implicated in many cellular pathways. miR-214 has been found to act as a tumor suppressor in CRC and can bind to the 3′ UTR of ARL2 (ADP ribosylation factor like GTPase 2). Also, miR-214 can control the signaling of the ErbB2/ErbB3 pathway and target the cellular adhesion molecule Necl-2. A study by Yang et al. showed that miR-214 was downregulated in 5-FU-resistant CRC cells in comparison with normal cells. 5-FU-sensitive and 5-FU-resistant CRC cells could both be sensitized to 5-FU by increasing the expression of miR-214. In terms of function, miR-214 suppressed cell growth and colony formation and increased 5-FU-mediated caspase-3 activity and apoptosis levels. Western blotting and dual-luciferase reporter assays showed that miR-214 could target heat shock protein 27 (Hsp27). Hsp27 makes LoVo and HT-29 cells sensitive to 5-FU by increasing apoptosis. Hsp27 overexpression blocked the action of miR-214, and the 5-FU sensitivity was affected. In summary, miR-214 targeted Hsp27 and sensitized CRC cells to 5-FU, suggesting a possible role in chemotherapy.

miR-34a has received some interest in CRC because p53, which is a major transcriptional regulator of apoptosis, is regulated upstream. In CRC biopsies, miR-34a expression was significantly lower as compared to healthy colon tissue. It was proposed that miR-34a could control the asymmetric division of stem cells, inhibit the EMT, and reduce proliferation, tumorigenicity, and metastasis in CRC. The mechanism of miR-34a as a tumor suppressor mRNA works by controlling Notch, affecting multiple oncoproteins, as well as PDGFRA signaling.

Li et al. also found that miR-34a expression was significantly downregulated in clinical CRC specimens from oxaliplatin-resistant patients and could be experimentally used to develop multidrug-resistant agent in CRC. Multidrug-resistant HCT-8/OR cells could be resensitized to oxaliplatin by exogenous expression of miR-34a, while miR-34a inhibition increased oxaliplatin resistance in chemosensitive HCT-8 cells. Mechanistically, miR-34a positively increased the stability of ornithine decarboxylase antizyme 2 (OAZ2) mRNA by directly targeting its 3′ UTR. Inhibition of miR-34a/OAZ2 signaling increased chemoresistance by activating anti-apoptotic pathways and multidrug resistance (MDR) ATP-binding cassette (ABC) drug efflux pumps, contributing to MDR development in CRC cells.

Table 1 lists some miRNAs that affect the response to chemotherapy agents in CRC.

miRNAs and response to chemotherapy in PC

miR-1291-5p (or miR-1291) is underexpressed in samples from patients with PC, compared to adjacent normal tissues. Moreover, miR-1291 has been shown to act as a tumor inhibitor by affecting the cell metabolome, inducing apoptosis and cell cycle arrest. Arginine succinate synthase 1 (ASS1) is extensively downregulated in PC samples, and it might be a target of miR-1291. miR-1291 has been reported to suppress renal carcinoma cell viability by direct targeting of GLUT1.

A new approach to develop recombinant miR-1291 agents (different from standard synthetic miRNA mimics) was reported by Tu et al. First, they showed that when the bioengineered miR-1291 agent was expressed in human PC cells it was processed into functional miR-1291-5p at high levels. miR-1291 disturbed arginine homeostasis by repressing ASS1 protein levels and rendered ASS1-abundant L3.3 cells sensitive to arginine deprivation treatment. In contrast, treatment with miR-1291 decreased the level of GLUT1 protein in both...
Table 1. Various microRNAs that affect the chemotherapy response in colorectal cancer

MicroRNA	Expression in CRC	Target	Drug	Model	Type of cell line	Ref.
miR-224	up	KRAS	5-FU	in vitro	HCT116	76
miR-31	up		oxaliplatin	human		80
miR-135b, miR-182	up	ST6GALNAC2	5-FU	in vitro	HCT-8, 5-FU-resistant HCT-8 cells (HCT-8/5-FU), LoVo	24
miR-1914, miR-1915	down	NFIX	5-FU, oxaliplatin	in vitro	HCT116	81
miR-107, miR-99a-3p	up	CCND1, Dicer1, DROSHA, NFkB1	fluoropyrimidine	human		82
miR-5323p	down	ETS1, TGM2	cisplatin, 5-FU	in vitro	RKO, SW480, SW620, HCT116, CaCo2, HT29, LoVo, colorectal mucosal cell line FHC, kidney cell 293FT	83
miR-587	up	PPP2R1B	5-FU	in vitro	RKO, HCT116, FET, GEO	84
miRNA-17-5p	up	PTEN	oxaliplatin, irinotecan, 5-FU	human	human CRC cell lines COLO205 (CCL-222), SW480 (CCL-228)	85
miR-143	down	IGF-IR	oxaliplatin	in vitro	SW1116	86
miR-138-5p	down	NFIR, Snai1	5-FU, doxorubicin, cisplatin	in vitro	LOVO, HCT116, HT29, SW620, SW480	87
miR-195-5p	down	GDPD5	5-FU	in vitro	Caco-2, HCT8, HCT116, SW480	88
miR-93-5p	up	cyclin-dependent kinase inhibitor 1A (CDKN1A)	multiple drugs	in vitro	HCT-8	89
miR-143	down	FXYD3	fluoropyrimidine	human	W480 (ATCC CCL-228), WiDr (ATCC CCL-221), DLD-1 (ATCC CCL-221), HT-29 (ATCC HTB-38), SW620 (ATCC CCL-227)	90
miR-199b	down	SET	oxaliplatin	in vitro	HCT116	91
miR-133b	down	DOR1L	oxaliplatin, 5-FU	in vitro	HT29, HCT116, SW620, HEK293	92
miR-375-3p	down	YAP1, SP1	5-FU	in vitro	HCT116	93
miR-204-5p	down	RAB22A	oxaliplatin	in vitro	Caco2, DLD1, HCT116, HT29, LoVo, SW480, SW620	94
miR-503-5p	up	PUMA	oxaliplatin	in vitro, in vivo	HCT116, HT29	95
miR-214	up	AEBP1	oxaliplatin	in vitro, human	HT29	96
miR-761	Down	FOXM1	5-FU	in vitro	HT29, SW480, SW620, DLD-1, FHC	97
miR-940	down	MACC1	anlotinib	in vitro, in vivo	SW620, LoVo	98
miR-330	down	thymidylate synthase (TYMS)	5-FU	in vitro	HCT116, HT29, SW480, SW620, PHC, HEK293T	99
miR-218	down	BIRC5, TS	5-FU	in vitro	HT29, HCT116	100
miR-197	up	TMY5	5-FU	in vitro	HCT116, SW480	101
miR-520g	up	p21	5-FU	in vitro	RKO, HCT116, FET, GEO	102
miR-153	up	FOXO3a	cisplatin	in vitro	SW480	103
miR-552	down	SMAD2	5-FU	in vitro	SW-480, SW-620, HT-116, CCD-18Co	104
miR-200c	down	JNK2	multiple drugs	human	HCT116, SGC7901, Bel7402	105
miR-20a	up	ASK1	cisplatin	in vitro	FHC,HT29, SW480, LeVo	106
miR-106a	up	FOXO2	oxaliplatin	in vitro	293T, HCT116, HT-29	107
miR-149	down	FOXM1	5-FU	in vitro	HCT-8, LeVo	108
miR-1271	down	mTOR	cisplatin	in vitro	SW480	109
miR-143	up	ERK5, NF-kB, Bcl-2	5-FU	in vitro	HCT116	110
miR-744	up	BIN1	oxaliplatin	in vitro	HCT116	111

(Continued on next page)
PANC-1 and AsPC-1 cells, thereby lowering glucose uptake and reducing glycolysis. As a result, miR-1291 greatly increased the ability of cisplatin to inhibit PC cell viability. The findings showed that miR-1291 could sensitize PC cells to arginine deprivation therapy and chemotherapy by targeting GLUT1-mediated glycolysis and ASS1 arginolysis, and it may help in a treatment for lethal PC.139

MicroRNA	Expression in CRC	Target	Drug	Model	Type of cell line	Ref.
miR-199a/b	up	β-catenin, Gsk3β, ABCG2	cisplatin	in vitro	ALDH1A1⁺ cells, ALDH1A1⁻ cells	106
miR-214	down	Hsp27	5-FU	in vitro	HT-29, LoVo	71
miR-129	down	BCL2	5-FU	human	HCT116, RKO, SW480	107
miR-21	up	RECK	5-FU, oxaliplatin	human	?	108
miR-106a	up	DUSP2	5-FU	human	HCT116/SW620	109
miR-361	up	FOXM1	5-FU	in vitro	HCT116, HT29	110
miR-139-5p	down	NOTCH-1	5-FU	in vitro	HCT-116, LoVo, HCT-8	111
miR-195	down	G2 checkpoint kinase WEE1, CHK1	5-FU	in vitro	HCT-16	112
miRNA-497	down	Smurf1	5-FU	in vitro	SW480	113
miR-519c	down	ABCG2, HuR	5-FU	in vitro	S1, SIM1 80	114
miR-543	up	PTEN	5-FU	in vitro	HCT8, HCT8/FU	115
miR-34a	down	TGF-β, Smad4	oxaliplatin	in vitro	HT29	116
miRNA-126	up	-	becaptezine, oxaliplatin	human	N/A	117
miR-1290	up	hMSH2	5-FU	in vitro	RKO, SW480, HCT116, LoVo	118
miR-770-5p	down	HIPK1	methotrexate	in vitro	HT-29	119
miR-200c	down	PTEN,E-cadherin	5-FU	in vitro	HCT116	120
miR-20a	down, up	RNIP2	5-FU, L-OHP, YM-26	in vitro	SW620, SW480	121
miR-101	down		5-FU, cisplatin	human	HT-29, RKO	122
miR-203	down	SIK2	paclitaxel (Taxol)	in vitro	Caco-2, COLO 205, COLO 320DM, CW-2, DLD-1, HCT15, HCT116, HT-29, NC1-H716, LS 174T, LoVo, RKO, SW480, SW620, SW948, SW116	123
miR-196b-5p	up	SOCS1, SOCS3	5-FU	in vitro	LoVo, HCT 116, DLD-1, SW480, HT-29, RKO, FHC, CDD-18Co, SW620, SW948, SW116	124
miR-409-3p	down	Beclin-1	oxaliplatin	in vitro	LoVo, HCT 116, DLD-1, SW480, HT-29, RKO, FHC, CDD-18Co	125
miR-338-3p	down	mTOR	5-FU	in vitro	HCT116, HT29	126
miR-107	down	CAB39	DCA, oxaliplatin (L-OHP)	in vitro	HCT-8, LoVo, HEK293T	127
miR-210-3p	up	Succinate dehydrogenase subunits D	5-FU	in vitro	HT29	128
miR-145	down	RAD18	5-FU	in vitro	SW620	129
miR-874-3p	down	YAP, TAZ	5-FU	in vitro	HCT116, SW480	130
miR-34a	down	LDHA	5-FU	in vitro	DLD-1	131
miR-203	up	ATM kinase	oxaliplatin	in vitro	HT29, RKO, HCT116	132
miR-34a	down	OAZ2	multiple drugs	in vitro	HCT-8, HCT-116, SW-480	133
miR-492	down	CDI47	oxaliplatin	in vitro	LS174T	134
miR-21	up	hMSH2	5-FU	in vitro	HT-29, HT-29/5-FU	135
miR-222	down	ADAM-17	multiple drugs	in vitro	HCT-8, HCT-116	
miR-301-3p was downregulated in PANC-1 cells in vitro by treatment with luteolin, and the knockdown of miR-301-3p showed antiproliferative effects, suggesting that miR-301-3p was an oncogenic IncRNA. miR-301-3p specifically targeted caspase-8, which is required for apoptosis, and miR-301-3p knockdown sensitized PANC-1 cells to the effects of TRAIL. TRAIL is considered to be a potent anticancer agent due to its ability to selectively kill malignant cells. However, resistance to TRAIL is the main factor that limits its application. Inhibition of various cell survival pathways, such as PI3K/AKT, inhibitory nuclear factor κB (NF-κB) (IκB) kinase (IKK), and protein kinase C (PKC) have been suggested to combat TRAIL resistance. Upregulation of caspase-8 makes cancer cells more susceptible to TRAIL, while downregulation of caspase-8 makes them more resistant. Epigenetic modifications can potentiate TRAIL cytotoxicity by controlling death receptor expression, inducing cell cycle arrest and increasing caspase-8 levels. Multiple genes have been identified as targets for miR-301-3p. In PC cells, miR-301-3p directly targeted PTEN and activated PI3K/AKT signaling. Inhibition of miR-301-3p could potentiate the cytotoxicity of gemcitabine. The NF-κB-repressing factor (NKRf) is another confirmed target of miR-301-3p. Thus, miR-301-3p overexpression can stimulate NF-κB signaling by repressing NKRf in PC cells.

Moeng et al. studied the role of miR-301-3p in controlling cell proliferation, target gene expression, and TRAIL sensitivity. PANC-1 cells exposed to luteolin, a small molecule that suppresses PANC1 cell growth and sensitizes the cells to TRAIL, showed lower expression of miR-301-3p. The knockdown of miR-301-3p suppressed the proliferation and increased the TRAIL cytotoxicity. Additionally, caspase-8 was specifically targeted by miR-301-3p. The interaction between caspase-8 and miR-301-3p could also explain the function of miR-301-3p in different types of cancer.

miR-137 has been shown to possess tumor-suppressor properties in several different types of human cancer. Moreover, it has been shown that miR-137 reduces tumor development and increases the chemosensitivity in lung cancer and in neuroblastoma cells. More specifically, miR-137 has been shown to inhibit mitophagy by controlling two mitophagy receptors, NIX and FUNDC1. In glioma cells, miR-137 upregulation inhibited autophagy, while treatment with a miR-137 antagonim promoted autophagy. Previous studies have shown that miR-137 expression inhibits tumor formation and invasion and increases the effects of chemotherapy in human PC cells.

Wang et al. hypothesized that miR-137 could control autophagy and thereby sensitize PC cells to chemotherapy. The findings revealed that doxorubicin (DOX) caused autophagy in PC cells, but it decreased the expression level of miR-137. In contrast, overexpression of miR-137 increased the effects of DOX to reduce viability, trigger apoptosis, and inhibit autophagy by affecting the PC cell autophagic flux. ATG5 was a direct target of miR-137. In contrast, ATG5 overexpression significantly inhibited apoptosis and prevented autophagy induced by overexpression of miR-137. miR-137 made PANC-1 tumor xenografts more sensitive to DOX by inhibiting autophagy and ATG5 in vivo.

The effects of glucocorticoids (GCs) on the differential control of miRNAs has been examined in only a small number of studies. Smith et al. reported that the inhibition of Dicer in response to treatment with glucocorticoids led to the decreased expression of several specific miRNAs. There was a high-density CpG island in the promoter region of miR-132, which showed a 2-fold increase in DNA methylation after treatment with dexamethasone (DEX), leading to the extensive silencing of many genes. Hypermethylation after DEX treatment was identified by a detailed examination of the promoter region of miR-132. Treatment with a demethylating agent could restore the expression of miR-132. Another investigation in prostate cancer found that hypermethylation regulated the miR-132 promoter region, resulting in its decreased expression.

Abukiwan et al. analyzed 35 PC tissue samples from patients who received or did not receive glucocorticoids before surgery, as well as one primary and two established PC cell lines. They detected 268 miRNAs differentially expressed between DEX-treated and untreated cells by miRNA microarray analysis, qRT-PCR, and in silico analysis. They selected miR-132 and its target gene, transforming growth factor β2 (TGF-β2), as the lead candidates that could be involved in cancer progression. As shown by the enhanced luciferase activity, miR-132 mimics bound directly to the 3’ UTR of TGF-β2 luciferase and enhanced its expression. In comparison, DEX inhibited miR-132 expression via promoter methylation. The DEX-induced migration, expression, and clonogenicity PC cells, and the expression of E-cadherin and vimentin were decreased by miR-132 mimics. The growth of PC xenografts was also reduced. Glucocorticoid administration to patients post-surgery increased the overall hypermethylation of the miR-132 promoter and TGF-β2 expression in tissues; miR-132 expression was observed but could not be quantitatively measured. DEX-mediated suppression of miR-132 as a component of PC treatment could provide a basis for miRNA-based treatment.

Several assorted diseases, including calcified aortic stenosis, obesity, infertility, ischemic stroke, and immunoglobulin (Ig)A nephropathy, are all characterized by the dysregulation of miR-374b-5p. Some studies have shown the overexpression of miR-374b-5p in prostate, breast, head and neck, and GC, and also in melanoma. Alternatively, the downregulation of miR-374b-5p was observed in CRC and T cell lymphoblastic lymphoma. The findings suggest that miR-374b-5p could have different functions in different tumor types. A report by Schreiber et al. revealed a correlation between miR-374b-5p downregulation and the development of the cisplatin-resistant phenotype after stepwise treatment with an increasing dose of cisplatin across >20 passages. This suggested that in PC, the reduced expression of miR-374b-5p was correlated to chemoresistance. Nonetheless, the clinical relevance and the main mechanism behind the effect of miR-374b-5p in PC has yet to be elucidated. In PC tissues, miR-374b-5p was downregulated and was correlated with chemoresistance and low progression-free and overall survival rates. miR-374b-5p upregulation leads to the downregulation of anti-apoptotic proteins, such as baculoviral IAP repeat-containing 3 (BIRC3), X-linked apoptosis inhibitor (XIAP), and B cell lymphoma 2 (BCL2), which
reduces the response of PC cells to gemcitabine. This confirms that miR-374b-5p has a tumor-suppressor function and governs PC resistance to chemotherapy.\(^\text{172}\)

miR-374b-5p has been proposed to be a diagnostic biomarker in multiple cancer types. Hanniford et al.\(^\text{166}\) reported that miR-374b-5p could provide a diagnostic signature in brain metastasis of melanoma. The Cancer Genome Atlas (TCGA) data analysis has also shown that miR-374b-5p could predict the progression of breast cancer. In PC tissues, miR-374b-5p expression was significantly lower, and the down-regulation of miR-374b-5p predicted poor progression-free and overall survival in PC patients.\(^\text{165}\) Moreover, Summerer et al.\(^\text{167}\) reported that higher plasma miR-374b-5p levels predicted poor outcomes in head and neck cancer patients. They suggested that miR-374b-5p could be used as a minimally invasive diagnostic marker in cancer patients. Sun et al.\(^\text{173}\) quantified the expression of miR-374b-5p in PC patient samples using qRT-PCR. They then assessed whether the levels of miR-374b-5p were correlated with clinicopathological features and progression-free or overall survival in PC patients. They used loss-or gain-of-function experiments \textit{in vivo} and \textit{in vitro} to test the effects of miR-374b-5p expression on chemoresistance and characterized the possible targets of miR-374b-5p using western blotting, bioinformatics analysis, qRT-PCR, RNA immunoprecipitation (RIP) assays, and luciferase reporter RIP assays. They showed that reduced expression of miR-374b-5p increased the tolerance of PC cells to gemcitabine chemotherapy, by increasing several anti-apoptotic proteins, such as XIAP, BCL2, and BIRC3. The findings indicated that miR-374b-5p may be considered a new therapeutic strategy for treating patients with chemoresistant PC.\(^\text{173}\) Table 2 lists some miRNAs that may affect the response of PC to chemotherapy.

Table 2. Various microRNAs that affect chemotherapy response in pancreatic cancer

MicroRNA	Expression in pancreatic cancer	Target	Drug	Model	Type of cell line	Ref.
miR-1291-5p	up	GLUT1, ASS1	cisplatin	\textit{in vitro}	AsPC-1, PANC-1, L3-3	174
miR-138-5p	up	vimentin	5-FU	\textit{in vivo}, human	AsPC-1, BxPC-3, Capan-1, Capan-2, CFPAC-1, PANC-1, MIA PaCa-2, SW1990	172
miR-100	up	FGFR3	cisplatin	\textit{in vitro}, \textit{in vivo}	AsPC1, BxPC-3, Capan-1, Capan-2, CFPAC-1, PANC-1, MIA PaCa-2, SW1990	175
miR-137	up	pleiotropic growth factor (PTN)	5-FU	\textit{in vivo}, \textit{in vitro}	AsPC-1, BxPC-3, Capan-1, Capan-2, CFPAC-1, PANC-1, MIA PaCa-2, SW1990	173
miR-137	down	ATG5	doxorubicin	\textit{in vivo}	PANC-1-Dex, PANC-1	176
miR-20a-5p	down	ribonucleotide reductase subunit M2 (RRM2)	gemcitabine	\textit{in vivo}	MIA-PaCa2, HEK293	177
miR-21	up	p85X	gemcitabine	\textit{in vivo}	MIA-PaCa2, PANC-1, Hs766T	178
miR-21	up	PDCD4	5-FU	\textit{in vivo}	PATU8988, PANC-1	179
miR-429	down	PDCD4	gemcitabine	\textit{in vivo}	SW1990	180
miR-374b-5p	down	TGF-β2	dexamethasone	\textit{in vitro}	AsPC-1, PANC-1	181
miR-30a	down	SNAI1-IRS1-AKT (snal1)	gemcitabine	\textit{in vitro}, \textit{in vivo}	SW1990, SW1990-R	182
miR-221-3p	up	RB1	5-FU	\textit{in vivo}	PANC-1, PATU8988	183
miR-320a	up	PDCD4	5-FU	\textit{in vivo}	PANC-1, PATU8988	184
miR-21	down	Fasl	gemcitabine	human, \textit{in vivo}	PANC-1 BxPC3	185
miR-1285	down	YAP1	gemcitabine	\textit{in vivo}	AsPC-1, BxPC-3, MIA PaCa-2, PANC-1, SU86.86 T3M4	186
miR-3656	Down	RHOF	gemcitabine	\textit{in vitro}, \textit{in vivo}	GR PANC-1 (PANC-1-GR)	187
miR-663a	up (gem), down (OSI-027)	SMARTCC1	gemcitabine	\textit{in vivo}	MIA PaCa2, PSN1	188
miR-320c	up	SRRM1	gemcitabine	\textit{in vitro}, human	SUIT2-028, SUIT2, SUIT2-007	189
miR-21	down	SRRM2	gemcitabine	\textit{in vivo}	PANC-1, AsPC-1, MIA-PaCa2, AsanPaCa, BxPC-3	190
miR-101-3p	down	SRRM1	gemcitabine	\textit{in vitro}, \textit{in vivo}, human	MIA PaCa2, 2, PANC-1	191
miR-410-3p	down	3’ UTR of HMGB1	gemcitabine	\textit{in vivo}, \textit{in vitro}	MIA PaCa2-2, PANC-1	192
miR-21	down	PDCD4	gemcitabine	\textit{in vivo}	PANC-1	193
miR-301-3p	down	caspase-8	luteolin	\textit{in vitro}	PANC-1	194
miRNAs and response to chemotherapy in GC

Zheng et al. investigated the effects of miR-34c (and its upstream transcription factor E2F1) on the susceptibility of GC cells to paclitaxel in combination with cisplatin. They compared paired samples of GC tissue and adjacent normal tissue from 74 GC patients. Western blotting was used for E2F1 and real-time qPCR for miR-34c. Steadily increasing drug concentrations induced cisplatin and paclitaxel resistance in GC cells. They found that E2F1 inhibited miR-34c to promote proliferation of the GC cells and increase the resistance to cisplatin plus paclitaxel. Alternatively, silencing of E2F1 led to an increase in the effectiveness of paclitaxel plus cisplatin in GC cells.

The roles of miR-567 in targeting FGF5 and inhibiting cell proliferation, invasion, and migration were previously reported in osteosarcoma. Other studies showed that miR-567 served as a tumor suppressor and an inhibitor of tumorigenesis in breast cancer. In vitro and loss- and gain-of-function assays demonstrated that miR-567 decreased proliferation and sensitized the GC cells to oxaliplatin and 5-FU. The tumorigenesis of GC cells in vivo was significantly inhibited by overexpression of miR-567. The mechanistic investigation revealed that PIK3AP1 triggered AKT phosphorylation in GC cells. miR-567 directly targeted PIK3AP1 to inhibit the PI3K/AKT/c-Myc pathway, and c-Myc negatively modulated miR-567 expression in a miR-567-PIK3AP1-PI3K/AKT-c-Myc feedback loop. They concluded that miR-567 was a tumor suppressor and inhibited GC carcinogenesis and chemoresistance via a miR-567-PI3K/AKT-PIK3AP1-c-Myc feedback loop. miR-567 may serve as a possible biomarker for GC prognosis and response to therapy.

miR-4766-5p was recently identified as a possible tumor suppressor in breast cancer. Liang et al. discovered that knockdown of miR-4766-5p could increase proliferation, metastasis, and chemoresistance.

NKAP is a notch signaling transcriptional repressor that is critically required for T cell development. In 2011, Hsu et al. observed that NKAP was engaged in T cell maturation and was required for T cell functional competence. Only a few researchers have studied the role of NKAP in GC. Juan et al. suggested in 2010 that NKAP was critically required for T cell functional competence. Only a few researchers have studied the role of NKAP in GC. RNAs and response to chemotherapy in GC

miR-200c is a member of the miR-200 family, which is underexpressed in GC. Studies have also suggested that miR-200c could reduce chemoresistance. Many studies have shown the key contribution of miR-200c to cancer cell apoptosis and metastasis affecting various genes such as E-cadherin, FN1, FAP1, ZEB1, and ZEB2, among others. Furthermore, miR-200c downregulation was strongly associated with cancer cell metastasis and proliferation. Other studies

miR-31 has been shown to be involved in many pathways associated with cancer cells. For example, low miR-31 expression was correlated with poor prognosis and accelerated tumor progression in patients with bladder cancer. miR-31 was found to be responsible for higher chemosensitivity and lower infiltration of colon cancer cells. In GC samples, miR-31 expression was found to be lower, which was related to poor prognosis, and therefore was clinically important. miR-31 can target the enhancer of zeste homolog 2 (EZH2), a polycomb protein that has been implicated in the tumorigenesis, progression, and metastasis of various types of cancer. Higher expression of EZH2 in liver cancer increased metastasis via downregulation of tumor suppressor miRNAs. Likewise, EZH2 was overexpressed in prostate cancer and was correlated with metastasis. EZH2 was also upregulated in CRC and could serve as a biomarker.

The expression of EZH2 was overregulated in GC cell lines, while miR-31 overexpression in AGS cells led to EZH2 suppression. In addition, silencing of EZH2 in AGS cells reduced colony formation and proliferation and caused G2/M cell cycle arrest in AGS GC cells. In addition, overexpression of miR-31 increased the response to 5-FU. EZH2 was suggested to be the target of miR-31 in AGS cells by using in silico analysis and a dual-luciferase reporter assay.

A study conducted by Wei et al. examined the expression of miR-4766-5p in GC tissues and its downstream target genes using silencing experiments. Western blotting was used to measure the protein expression in various signaling pathways. Their results showed that miR-4766-5p was downregulated in GC cell and tissue samples. miR-4766-5p decreased the proliferation of GC cell lines and also inhibited invasion and migration. miR-4766-5p triggered apoptosis in cells. The NKAP gene was directly targeted by miR-4766-5p, and the Akt/mTOR pathway was inhibited. They concluded that miR-4766-5p inhibited cell metastasis and proliferation by attacking NKAP and could have applications as a diagnostic and prognostic biomarker in GC.
The possible mechanism and role of miR-200c in improving the activity of cisplatin to inhibit migration and induce apoptosis in GC cells were investigated by Ghasabi et al. First, miR-200c and locked nucleic acid (LNA)-anti-miR-200c mimics were transfected into KATOIII cells. In addition, the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay showed that cisplatin and increased miR-200c expression could further inhibit KATOIII cell proliferation. The migration of KATOIII cells in a wound-healing assay was inhibited by miR-200c overexpression. The combination of miR-200 and cisplatin could suppress colony formation in KATOIII cells. In order to determine the possible targets of miR-200c, they measured its effects on RhoE, VEGFR, MMP9, and PTEN expression levels. A decrease in the mRNA and protein levels of MMP9 and VEGFR was produced by increased miR-200c expression, suggesting that MMP9 and VEGFR were miR-200c targets. Furthermore, RT-PCR revealed that the target gene of miR-200c was RhoE, and PTEN expression was reduced by LNA-anti-miR-200c. DAPI staining and flow cytometry showed increased cisplatin-mediated apoptosis by miR-200c expression that could be related to the inhibition of RhoE in KATOIII cells. Moreover, cell cycle analysis showed arrest at the G2 stage. They concluded that miR-200c acts in KATOIII cells as a tumor suppressor gene and could be a therapeutic strategy to overcome cisplatin resistance in GC treatment.

miR-362-5p also plays a role in different cancer types. Ying et al. used miRNA expression profiling datasets from seven widely accessible renal cell carcinomas (RCCs) to show that hsa-miR-362-5p was downregulated in RCC. Ni et al. showed that miR-362-5p could target the tumor suppressor gene for cylindromatosis (CYLD), thus promoting proliferation and metastasis of HCC. It has also been shown that upregulation of miR-362-5p increases proliferation, migration, and invasion of MCF7 human breast cancer cells.

Wei et al. examined the functional miRNAs that can modulate the cisplatin sensitivity of human GC cells. miRNA microarray analysis revealed differentially expressed miRNAs between SGC7901 (a human cisplatin-sensitive GC cell line) and SGC7901/DDP (the cisplatin-resistant counterpart). miR-362-5p was found to be downregulated in SGC7901/DDP cells compared to SGC7901 cells using qRT-PCR. Overexpression of miR-362-5p enhanced cisplatin susceptibility and apoptosis, whereas downregulation of miR-362-5p showed the opposite results. Database prediction suggested that the suppressor of zeste 12 protein (SUZ12) could be a miR-362-5p target. Moreover, relative to SGC7901 cells, the mRNA and protein levels of SUZ12 were substantially higher in SGC7901/DDP cells and were negatively correlated with the expression of miR-362-5p. Furthermore, in SGC7901/DDP cells, western blotting and MTT assays showed that knockdown of SUZ12 increased cisplatin sensitivity and also reduced the protein levels of NF-κB/p65. Furthermore, overexpression of miR-362-5p in SGC7901/DDP cells lowered the response level of SUZ12 protein, while downregulation of miR-362-5p increased its levels. Deregulation of miR-362-5p could target SUZ12 to increase cisplatin resistance and reduce cisplatin-induced apoptosis. miR-362-5p could be a potential clinical approach for cisplatin-resistant GC patients.

Table 3 lists some miRNAs that could affect the response to chemotherapy drugs in GC.

miRNAs and response to chemotherapy in hepatocellular cancer

It has been observed that the expression of miR-144-3p is altered in thyroid cancer, where it can target ZEB1 and ZEB2 to reduce the invasion and migration capability of thyroid cancer cells. Additionally, since miR-144-3p plays a direct regulatory role in the expression of ZFX (zinc finger protein X-linked), it could not only prevent the growth of NSCLC tumor cells, but also induce apoptosis. miR-144-3p was underexpressed in HCC samples. Although numerous investigations have suggested that miR-144-3p could inhibit HCC proliferation via targeting E2F3 and AKT3, the role of miR-144-3p in tumor angiogenesis is still unclear.

Wu et al. showed that miR-144-3p was downregulated in HCC. Restoring the expression of miR-144-3p in HCC cells could reduce proliferation, migration, and angiogenic potential both in vitro and in vivo. In addition, a clinical review demonstrated an association between low expression of miR-144-3p and shorter disease-free survival in HCC patients. From a mechanistic point of view, the TargetScan database predicted the target of miR-144-3p to be glucocorticoid kinase 3 (SGK3). When SGK3 was inhibited by miR-144-3p, a PI3K-independent pathway was activated to suppress the activation of mTOR-VEGF downstream signaling. Therefore, miR-144-3p, which is often downregulated in HCC, can suppress migration, proliferation, and angiogenesis by modulating SGK3 activation by a PI3K-independent signaling pathway, and could act as a prognostic marker for HCC patients.

Researchers have also shown the underexpression of the liver-specific miR-122 in primary HCC samples. Downregulation of miR-122 may be a poor prognostic factor for liver cancer and its risk of metastasis. Restoration of miR-122 expression in HCC using an adenoviral vector (Ad-miR122) led to cell cycle arrest and increased apoptosis. Restoration of miR-122 in HCC cells could increase the response to DOX and vincristine (VCR). Moreover, overexpression of miR-122 in HCC cells using the adenovirus could increase the sensitivity to VCR or DOX. Cell cycle analysis showed that the anti-proliferative role of miR-122 was related to a higher number of cells in the G2/M phase. Ad-miR122 led to increased HCC cell sensitivity to DOX or VCR by downregulation of MDR efflux pumps, as well as other genes, such as GST-π, cell cycle-associated gene cyclin B1, and the anti-apoptotic gene BCL-w. Ad-miR122 combined with chemotherapy drugs inhibited HCC cells via G1/M arrest and downregulation of cyclin B1 and MDR-associated genes (at least in part).
Table 3. Various microRNAs that can affect chemotherapy response in gastric cancer

MicroRNA	Expression in gastric cancers	Target	Drug	Model	Type of cell line	Ref.
miR-214	down		cisplatin	in vitro, in vivo	SGC7901, SGC7901/DDP	244
miR-31	up	RhoA	5-FU	in vivo	MKN-45, HEK293T	225
miR-125b	down	HER2	cisplatin	in vivo	HGC-27, MGC-803	226
miR-204	down	Bcl-2	5-FU	in vitro, in vivo	GTL-16, N87 GC	227
mir-204	down	TGFBR2	5-FU	in vitro, in vivo	GES-1, AGS, SGC-7901, MKN-45, MGC-803, BGC-823	228
miR-31	up	PIK3AP1	5-FU, oxaliplatin	in vivo	GES-1, MKN45, BGC823, AGS, MGC803, BGC803, MKN28	199
miR-128	down	MAPK signaling	cisplatin	in vivo	SGC7901/VEGFR1, MGC803, BGC823, NCI-N87	230
miR-567	down	NK2, FAK, MMP2, MMP12, CD44, SNAIL1	vincristine	in vitro, in vivo	SGC7901/VCR	230
miR-647	down	catenin-δ (CTNNB1)	cisplatin, docetaxel	in vitro, in vivo	SGC7901/VEGFR1, MGC803, BGC823, NCI-N87	231
miRNA-29	down	ZEB1/ZEB2	trastuzumab	in vivo	SGC7901, BGC803, MKN28, NCI-N87	232
miR-200c	down	AURKB	cisplatin	in vitro, in vivo	SGC7901/DDP	233
miR-26a	down	DAPK2, E2F	oxaliplatin	in vitro, in vivo	SNU-5 NCI-N87 SGC7901/OXA, MGC803/OXA, SGC7901, MGC-803	234
miRNA-200c	up	ATG5	cisplatin	in vitro, in vivo	SGC7901/DDP	235
miR-31	down	VEGFR, MMP9, RhoE	cisplatin	in vitro, in vivo	GA1002	236
miR-21-5p	down	PTEN, TIMP3	doxorubicin	in vivo	SGC7901/DDO	237
miR-26a	down	NRAS, E2F2	cisplatin	in vivo	SGC-7901, SGC7901/DDP	238
miRNA-200c	down	5-FU	oxaliplatin	in vivo	SGC7901/DDP	239
miR-15a-5p	down	SOX9	cisplatin	in vivo	SC-M1, AZ521	240
miR-34a	up	met	cisplatin	in vivo	SGC7901/DDP	241
miR-218	up	survivin	cisplatin	in vivo	SGC7901, SGC7901/DDP	242
miR-375	down	ERBB2	cisplatin	in vivo	SGC7901/DDP	243
miR-362-5p	down	SUZ12	cisplatin	in vivo	SGC7901, SGC7901/DDP	244
miR-126	down	EZH2	cisplatin	in vivo	SGC7901/DDP	245
miR-495	up	mTOR, ERBB2	cisplatin, 5-FU	in vivo, human	SGC7901/DDP, SGC7901	246
miR-20a	up	NFKB1B	cisplatin	in vivo	SGC7901/DDP, SGC7901	247
miR-185	down	ARC	cisplatin, doxorubicin	in vivo, human	SGC7901, NCI-N87, MGC-803, BGC-823, AGS	248
miR-429	down	Bcl-2	5-FU	in vivo	SGC7901/DDP, SGC7901	249
miR-429	down	CYLD	cisplatin	in vivo, human	SGC7901/DDP, SGC7901	250
miR-16-1	up	FUBP1	doxorubicin	in vitro, in vivo, human	SGC7901/DDP, SGC7901	251
miR-21	up	PTEN/PI3K/Akt pathway	cisplatin	in vivo	SGC7901/DDP, SGC7901	252
miR-233	up	FBXW7	cisplatin	in vivo	SGC7901/DDP, SGC7901	253
miR-129	down	P-gp	cisplatin	in vivo	BGC823, MKN45	254
miR-21	up	PTEN pathway	trastuzumab	in vitro, in vivo	MKN45, NUGC4, NCI-N87	255
miR-4290	down	PDK1 (pyruvate dehydrogenase kinase 1)	cisplatin	in vitro, in vivo	SGC7901/DDP, SGC7901	256
miR-122 has a crucial function in modulating normal hepatocyte growth, differentiation, and cholesterol metabolism. As mentioned above, miR-122 downregulation was associated with HCC growth and progression, as well as HCC cell chemoresistance. miR-122 downregulation is also associated with the EMT and HCC metastasis. Ectopic expression of miR-122 could increase the cell sensitivity to sorafenib (SOR) and DOX in HepG2 and Hep3B cells. Earlier work suggested that miR-122 may directly target the Wnt/β-catenin pathway, which has a critical role in tumor growth and the modulation of MDR1 expression.

Cao and Yin confirmed the underexpression of miR-122 in HCC cells. Overexpression of miR-122 or inhibition of Wnt/β-catenin signaling increased HCC cell apoptosis and enhanced the sensitivity of HCC cells to oxaliplatin. miR-122 inhibited the Wnt/β-catenin pathway, as well as reduced the expression of MDR1 and increased the sensitivity of HCC cells to oxaliplatin. miR-122 may be a new therapeutic target for HCC treatment.

miR-182 acts as an oncogenic miRNA in many cancers, including HCC, ovarian carcinoma, and breast cancer. miR-182 is overexpressed in HCC and could stimulate HCC metastasis by suppressing MTSS11 (metastasis suppressor 11) protein. Moreover, miR-182 may be involved in chemoresistance. Husted et al. used a microarray-based approach to survey drug resistance-related miRNAs and discovered that miR-182 was overexpressed in MDR Ehrlich ascites tumor cells. Suppression of miR-182 is a possible therapeutic approach because it is involved in glucocorticoid resistance via targeting FOXO3A in lymphoblastic malignancies.

Qin et al. found that the level of miR-182 was higher in cisplatin-resistant HepG2 cells compared to parental HepG2 cells. miR-182 overexpression increased cell viability while miR-182 suppression decreased cell viability during cisplatin therapy. This was more pronounced in HepG2-R cells. Upregulation of miR-182 decreased the expression of tumor protein 53-induced nuclear protein 1 (TP53INP1; tumor suppressor gene) in vitro. miR-182 overexpression decreased the tumor response to cisplatin in vivo, partly by targeting TP53INP1.

Human miR-204 has been shown to be underexpressed in multiple types of cancer, such as CRC and acute myeloid leukemia (AML). miR-204 expression was remarkably reduced in HCC samples compared to adjacent normal liver tissue. miR-204 targeted SIRT1 to inhibit the development of HCC. miR-204 has also been shown to be associated with venous metastasis of HCC.

Yu et al. reported that miR-204 could enhance drug sensitivity in HCC by reducing the expression of NUAK1 (novel nua kinase family 1). miR-204 was identified as a tumor suppressor by reducing NUAK1 in HCC. This suggested that both NUAK1 and miR-204 could be promising targets for liver cancer treatment.

miR-223 often shows lower expression in HCC cells, and it has been shown to be involved in many critical pathological and physiological processes, such as HCC proliferation, maintenance of stemness, and metastasis. miR-223 is also involved in MDR in HCC cells. Targeted therapy with miR-223 may be clinically relevant. Moreover, miR-223 inhibited uncontrolled autophagy in cardiomyocytes.

One study by Zhou et al. found lower levels of miR-223 expression in DOX-treated HCC cells. They suggested that overexpression of miR-223 suppressed DOX-mediated autophagy that participates in chemoresistance. Inhibition of autophagic flux by chloroquine abrogated the ability of miR-223 overexpression to reverse the resistance of HCC cells to DOX. FOXO3a has been characterized as a direct downstream target of miR-223, and it could be a central intermediate of the activity of miR-223 on DOX-mediated autophagy and chemoresistance in HCC cells.

miR-125b is downregulated in many types of cancer, such as HCC. Ectopic expression of miR-125b suppressed the proliferation, invasion, and tumorigenic properties of HCC cells, suggesting that it can act as a liver cancer suppressor. Although the function of miR-125b in drug resistance remains unknown, it has been suggested as a prognostic biomarker in HCC patients.

Comparison of oxaliplatin-resistant and oxaliplatin-sensitive HCC cell lines showed that miR-125b was underexpressed in the resistant cells. Therefore, miR-125b was proposed to increase the ability of oxaliplatin to suppress proliferation, cell migration, and EMT. In addition, higher expression of EVA1A was demonstrated in tissue specimens from oxaliplatin-resistant HCC patients. Ectopic expression of EVA1A increased autophagy and abrogated the effects of miR-125b on inhibiting oxaliplatin-resistant cell lines and xenograft tumors. A pathway involving the downregulation of EVA1A-mediated autophagy and miR-125b may play a role in HCC cell chemoresistance.

Researchers have also revealed a critical contribution of miR-222 to tumor cell proliferation, oncogenesis, migration, invasion, and drug resistance. They also detected the overexpression of miR-222 in many different kinds of cancer, such as CRC, HCC, glioblastoma, and breast cancer. Several studies have shown that miR-222 is involved in chemoresistance. Miller et al. reported that miR-221/222 increased tamoxifen resistance in breast cancer. Zhong et al. showed that miR-222 was implicated in PTEN-mediated resistance to DOX and docetaxel. Garofalo et al. found that miR-221/222 induced TRAIL resistance via targeting the tumor inhibitors TIP3 and PTEN and increased cell migration.

It has been shown that miRNA inhibitors designed to specifically target miR-222 could suppress cell migration, proliferation, and invasion, cause G1/S cell cycle arrest, and induce apoptosis in HepG2 cells. Furthermore, miR-222 could increase resistance to SOR in HepG2 cells. They found that miR-222 inhibitors could increase susceptibility to the antitumor activity of SOR in HepG2 cells. The phosphorylation of P38 and AKT was regulated by miR-222, explaining the induction of SOR resistance. Therefore, miR-222 can enhance
Table 4. Various microRNAs that can affect chemotherapy response in hepatocellular cancer

MicroRNA	Expression in GI cancers	Target	Drug	Model	Type of cell line	Ref.
miR-21	up	AP-1	5-fluorouracil, pirarubicin	in vitro	Hep3b, SMMC7721	311
miR133a, miR326	down	Bcl-xl	5-FU, cisplatin	in vitro	HepG2 HCC	311
miR-133b	up	PP2A-B55	cisplatin	in vitro	L02, HCC cell lines HepG2, MHCC97H, MHCC97L, Hep3B, amd Huh7, human embryonic kidney 293T cells (HEK293T)	313
miR-215	up	P53, P21	adriamycin	human	HepG2, Huh7, SNU387, and SNU449, and human embryonic kidney cell line (HEK293T)	315
miR-223	down	FOXO3a	doxorubicin	in vitro	HepG2, Huh7, and PLC/PRE/F5	265
miR-122	down	cyclin B1	adriamycin (ADM), vincristine (VCR)	in vitro	Hep3b and 97L	314
miR-33a-5p	down	HSPA8?	cisplatin	in vitro	HepG2 and Huh7	317
miR-590-5p	up	YAP1	adriamycin	human	HepG2, Huh6, Mahalavu, and SK-Hep1	317
miR-125b	down	EVA1A	oxaliplatin	human	HepG2, Bel-7402, SMMC-7721, Huh7, and normal liver cell line (WRL-68)	276
miR-122	down	MDR1	oxaliplatin	in vitro	HepG2, Huh7, 293T	319
miR-26	down	ULK1?	doxorubicin	in vitro	HepG2	319
miR-34a	down	MDR1/P-gp, AXL	doxorubicin	in vitro	SMMC-7721, PLC, BEL-7402, BEL-7404, HepG2, HCCLM3, and the normal liver cell line LO2	320
miR-16	down	IKBKB	paclitaxel	in vitro	HuH7, HCCLM3	320
miR-1258	down	CKS1B	doxorubicin	In vitro	SNU-449, MHCC97, HepG2, and SMMC-7721	321
miR22	down	PCDH20	5-FU	In vitro	SKHepl1, HepG2, Huh7, SNU398, HA22T, SNU423	322
miR-367-3p	down	MDM2	soralenib	human	SMMC-7721, Huh7, MHCC-97L, HepG2, HepG3, and BEL-7402 human HCC cell lines, THLE-2 and THLE-3 normal human liver cell lines	323
miR-589-5p	up	SOCS members SOCS2 and SOCS5, and tyrosine phosphatases members PTPN1, PTPN5, PTPN7, PTPN11, PTPN13, PTPN18, and PTPN20	doxorubicin	SMMC-7721, Huh7, MHCC-97L, HepG2, HepG3, and BEL-7402 human HCC cell lines, THLE-2 and THLE-3 normal human liver cell lines	324	
miR-125b	down	HK II	5-FU	in vitro	HepG2, Hep3B, and BEL-7402 human HCC cell lines, THLE-2 and THLE-3 normal human liver cell lines	324
miR-124	down	SIRT1/ROS/JNK pathway	cisplatin	in vitro	HePG2, Hep7	325
miR-222	up	PI3K/AKT signaling pathway	soralenib	in vitro	HepG2, normal human hepatocyte cell line HL-7702	316
miR-520c-3p	down	Mcl-1	doxorubicin	in vitro	HepG2, Hep3B, Huh7, PLC human HCC cell lines, and the L-02 normal liver cell line	326
miR-101	down	Mcl-1	doxorubicin	in vitro	HepG2, Hep3B, Huh7, PLC human HCC cell lines, and the L-02 normal liver cell line	327
miR-182	up	TP53NP1	cisplatin	in vitro	HESK93, HepG2	328
miR-340	down	Nrf2	cisplatin	in vitro	HepG2	328
miR-193b	down	Mcl-1	cisplatin	in vitro	normal hepatic cell line LO2, and HCC cell lines Huh7, HepG2, and PLC	329

(Continued on next page)
proliferation, migration, and invasion. They concluded that miR-222 could trigger the PI3K/AKT signaling pathway and increase HCC cell resistance to SOR.310

Table 4 lists some miRNAs that can affect the response to chemotherapy agents in HCC.

MicroRNA	Expression in GI cancers	Target	Drug	Model	Type of cell line	Ref.
miR-363	down	Mcl-1	caspatin	human	HepG2	330
miR-130a	up	RUNX3	caspatin	human	HepG2, Huh7, HEK293	331
miR-3163	ADAM-17	in vitro				
microRNA-122	down	ADAM10, SRF, and Igf1R	sorafenib	in vitro	HepG2, Hep3B, and SK-Hep-1	272
miR-122	down	IGF-1R	sorafenib	in vitro	HepG2, Huh7-DR3	333
miR-221	up	caspase-3	sorafenib	human	Huh-7	334
miR-137	down	ANT2	sorafenib	human	HepG7	335
miR-23a	up	TOP1	etoposide	in vitro	HepG2 and embryonic kidney cell line HEK293T	336
miR-27b	down	p53, CYP1B1	doxorubicin	in vitro	HepG2	337
miR-372-3p	down	Mcl-1	doxorubicin and paclitaxel	in vitro	HepG2, HCC3, LM-6, SMMC7721, Huh-7, SK-Hep-1, HepG2, BHEL-7402, Hep3B	289
miR-223	down	ABCB1				

miR-133b has been identified as an important miRNA in muscle that modulates myoblast differentiation and is involved in some myogenic disorders.339 miR-133b functions as a tumor suppressor and is downregulated in many cancers, including bladder cancer,340 prostate cancer,339 lung cancer,341 and GC.342 miR-133b was also downregulated in cells and tissues from esophageal squamous cell carcinoma (ESCC).343 However, the functional molecular mechanism of miR-133b in ESCC is still uncertain. The epidermal growth factor receptor (EGFR) is a 170 kDa transmembrane protein that binds to its cognate ligands, to trigger its tyrosine kinase activity.344 EGFR has a critical contribution to tumor growth by binding to EGF. EGFR is known to positively affect proliferation, migration, invasion, and apoptosis. EGFR expression is significantly higher in ESCC tissues where it is associated with poor prognosis, clinical stage, and invasion.345,346 ESCC patients who had a low copy number of EGFR genes were shown to have a higher survival rate than cases with a higher copy number.347,348 However, the association between miR-133b and EGFR in ESCC and the respective mechanism should be clarified. It was reported that in prostate cancer, miR-133b inhibited migration, growth, and invasion of PC3 and DU145 cell lines via EGFR targeting.339,340

Lower levels of miR-133b expression and higher expression of EGFR were found to occur together in ESCC specimens.339 Cell proliferation, invasion, and migration in ESCC cells were inhibited either by miR-133b overexpression or by EGFR knockdown, and the percentage of cells in the G1 stage was increased. The overexpression of miR-133b and knockdown of EGFR both increased apoptosis in ESCC cells. Overexpression of miR-133b decreased the phosphorylation of AKT, extracellular signal-regulated kinase (ERK), and PI3K via direct reduction of EGFR. Higher levels of CK-18 and E-cadherin, and lower levels of N-cadherin and vimentin were observed following the transfection with miR-133b mimics or short hairpin RNA (shRNA) EGFR (shEGFR). They concluded that overexpression of miR-133b could block the PI3K/AKT and mitogen-activated protein kinase (MAPK)/ERK signaling pathways via EGFR targeting and inhibit ESCC cell proliferation, invasion, and migration, suggesting a role of miR-133b in ESCC treatment.343

miR-145 is a well-characterized tumor suppressor in different cancer types.350-352 miR-145 was first reported to be downregulated in ESCC.353 miR-145 inhibited proliferation, invasion, and the EMT and increased differentiation in ESCC.354,355 Moreover, miR-145 increased the sensitivity of human colon cancer cells toward 5-FU.356

The downregulation of miR-145 in ESCC cells and tissues was correlated with the upregulation of REV3L (protein reversionless 3-like) in ESCC tumor specimens. In the KYSE150 ESCC cell line, miR-145 overexpression reduced the level of REV3L mRNA and protein. On the contrary, miR-145 decreased REV3L mRNA and protein in the normal esophageal epithelium cell line (HEEC).357 Additionally, ESCC cell viability was decreased following transfection with a miR-145 mimic. Overexpression of miR-145 strongly suppressed viability and increased the apoptosis rate after application of 5-FU. Furthermore, transfection with miR-145 mimics altered the expression of...
apoptosis-related genes (Bax, caspase-3, Bcl-2) in 5-FU-treated ESCC cells. Finally, Chen et al. suggested that miR-145 could be a therapeutic agent to treat ESCC.

miR-193a-3p has previously been observed to reduce the invasion of cancer cells and prevent metastasis, while promoting apoptosis via ERBB4 downregulation in lung cancer cells. Additionally, miR-193a-3p could increase apoptosis by affecting Mcl-1 in both U-251 and HeLa cells. miR-193a suppressed the expression of c-kit and served as a methylation-silencing tumor suppressor in AML.

Meng et al. suggested a role of miR-193a-3p in the regulation of radioresistance and chemoresistance in ESCC cells (KYSE410 cells are moderately radiation resistant while KYSE150 cells are radiation sensitive). Upregulation of miR-193a-3p increased chemoresistance and radioresistance of the ESCC cells. Furthermore, miR-193a-3p downregulation decreased chemoresistance and radioresistance of the ESCC cells. Additionally, miR-193a-3p was involved in DNA damage as shown by quantification of the γ-H2AX level in relationship to miR-193a-3p. Also, the siRNA-mediated suppression of the PSEN1 gene had similar effects as miR-193a-3p overexpression. They concluded that miR-193a-3p participated in radioresistance and chemoresistance in esophageal cancer via PSEN1 downregulation. Therefore, PSEN1 and miR-193a-3p might be biomarkers for resistance to chemotherapy and radiotherapy.

miR-181a-5p is involved in cell apoptosis, proliferation, and migration, and it could be a new potential biomarker. Although the precise molecular mechanism and function of miR-181a-5p in cisplatin resistance in ESCC are unclear, Hummel et al. showed that miR-181a-5p was deregulated in samples from ESCC patients who were resistant to cisplatin.

Yang et al. found strong expression of miR-181a-5p in OE19/ CDDP-resistant cells, whereas CBLB (E3 ubiquitin-protein ligase) was underexpressed in the OE19 cell lines. The overexpression of miR-181a-5p or the knockdown CBLB inhibited cell viability and induced apoptosis in cisplatin-resistant CDDP/OE19 cells. In addition, miR-181a-5p suppression or CBLB upregulation increased cell viability and prevented apoptosis in the cisplatin-sensitive OE19 cells. CBLB was confirmed to be a miR-181a-5p target. Furthermore, a rescue assay demonstrated that CBLB upregulation abrogated the effects of miR-181a-5p on OE19/CDDP cell viability. Moreover, miR-181a-5p overexpression increased the effects of cisplatin on ESCC xenografts in vivo.

miR-10b has been found to act as an oncogene in several cancer types, including breast cancer, GC, lung cancer, and HCC. Moreover, higher expression of miR-10b was associated with chemoresistance. For example, one study showed that miR-10b increased CRC cell resistance to 5-FU, likely by suppressing the pro-apoptotic BIM. Zhang et al. showed that miR-10b was overexpressed in cisplatin-resistant nasopharyngeal cancer cells. miR-10b deficiency reversed the EMT phenotype and reduced cisplatin resistance by regulating the Notch1/KLF4/E-cadherin pathway. Another study showed that miR-10b overexpression in ER-positive breast cancer resulted in enhanced tolerance to tamoxifen, partially by downregulating HDAC4. An earlier investigation showed that miR-10b could increase invasion and migration in ESCC cells by targeting the KLF4 transcription factor.

Wu et al. found that overexpression of miR-10b and underexpression of the peroxisome proliferator-activated receptor-γ (PPARγ) were associated together in ESCC cells and tissues. PPARγ has been shown to be a target of miR-10b. Additionally, miR-10b inhibition increased the cisplatin chemosensitivity of ESCC cells in vitro and tumors in vivo. Furthermore, miR-10b overexpression abrogated the PPARγ-induced cisplatin sensitivity. Therefore, miR-10b targeted PPARγ and thereby activated the AKT/mTOR/p70S6K signaling pathway. AKT inhibitor (GSK690693) inactivated the AKT/mTOR/p70S6K signaling pathway and abrogated the miR-10b-mediated cisplatin resistance in the ESCC cells. Overall, miRNA-10b might be used to increase the response of esophageal cancer patients to DDP treatment.

miR-96 expression has been found to be upregulated in non-small cell lung cancer, breast cancer, prostate cancer, and bladder cancer. Also, recent studies suggested that miR-96 could promote tumor growth by downregulating RECK expression in ESCC.

Table 5 lists some miRNAs that could affect the response to chemotherapy agents in esophageal cancer.

miRNAs AND RESPONSE TO CHEMOTHERAPY IN GI CANCER
IncRNAs and response to chemotherapy in GC
Some IncRNAs are critically involved in tumor development and are involved in various chemoresistance mechanisms, such as mutation of drug targets, increased drug efflux, inhibition of apoptosis, and DNA damage repair. Furthermore, IncRNAs most often increase chemoresistance, whereas they hardly ever have the opposite effect. Figure 2 summarizes the respective pathways by which IncRNAs are involved in HCC, breast cancer, and lung cancer.

The IncRNA UCA1 increased metastasis and tumor growth in GC. He et al. reported that UCA1 expression could predict a poor prognosis in patients, and it could also modulate GC cell migration and proliferation in vitro. It was also reported that UCA1 could increase cisplatin resistance in ovarian cancer, non-small cell lung cancer, oral squamous cell carcinoma, bladder cancer, and GC. UCA1 knockdown was reported to increase apoptosis by modulating the expression of Bax and cleaved caspase-3/9. The activated protein Bax causes release of pro-apoptotic factors from the mitochondria into the cytoplasm to increase apoptosis. EZH2 has a key role in modulating gene expression to increase cisplatin resistance in GC. Overexpression of EZH2 promoted tumor development by activating the PI3K/AKT pathway. The PI3K/AKT pathway also has a significant role in increasing chemoresistance. Therefore, inhibition of the PI3K/AKT pathway will decrease drug resistance,
thus restoring tumor sensitivity to chemotherapy drugs. It has also been found that the PI3K/AKT pathway affects chemotherapy response by modulating anti-apoptotic proteins and drug efflux pumps. It has been shown that the PI3K/AKT signaling pathway inhibits apoptosis by reducing the activity of caspase-9 and caspase-3. Dai et al. investigated the role of UCA1 in the response of GC to cisplatin, as well as the underlying mechanism. Apoptosis assays and CCK-8 were employed to explore the effects of various doses of cisplatin on GC apoptosis and proliferation. They also investigated the association between EZH2 and UCA1 using western blotting and qRT-PCR. RNA pull-down and RIP assays were used to detect the relationship between EZH2 and UCA1. TCGA and the GEO database suggested that a higher expression of UCA1 in GC tissues was connected with worse patient prognosis. Moreover, UCA1 overexpression increased GC cell proliferation and prevented apoptosis caused by cisplatin. Knockdown of UCA1 produced the opposite results. UCA1 exerted its role by increasing EZH2 expression, while EZH2 knockdown lowered GC cell cisplatin resistance. Therefore, by increasing EZH2 and activating the PI3K/AKT pathway, UCA1 promoted GC cisplatin tolerance. Interventions directed at EZH2 or UCA1 could provide a therapeutic approach for cisplatin-resistant GC patients.

The lncRNA FAM83H-AS1 is linked with poor prognosis in colon cancer, luminal subtype breast cancer, and cervical cancer. Da et al. found that FAM83H-AS1 was overexpressed in GC and may be a prognostic indicator in patients. However, they found that the expression level of FAM83H-AS1 was not linked to the clinical pathology, such as tumor-lymph node-metastasis (TNM) stage and tumor size.

Wang et al. reported that FAM83H-AS1 was overexpressed in GC cell lines and tissues. It was correlated with invasion depth, poor

MicroRNA	Expression in EC	Target	Drug	Model	Cell line	Ref.	
miR-27b-3p, miR148a-3p	up, down	Sp1 and PPARy, DNMT-1, MSK-1, Bcl-2 and Bim	cisplatin	human	OE-19, OE-33, Flo-1, SKGT4, OACM5-1, OACP4C	380	
miR-21	up	PDCD4	cisplatin	human	Eca109/DDP	381	
miR-143	up	IncRNA CCAT1	cisplatin	human	in vitro	ECA-109, TE-1, KYSE140, KYSE70, KYSE150, KYSE450	382
miR-142-5p	down	SREBP1	fatostatin	human	OE21, OE33	383	
miR-141-3p	up	PTEN	5-FU, oxaliplatin	human	EC109, EC9706, TE-1, KYSE150	384	
miR-224	up	DESC1	cisplatin, 5-FU + doxorubicin, doxorubicin + cisplatin, 5-FU + paclitaxel	in vitro	TE-13, KYSE140, EC9706, KYSE30	385	
miR-130a, miR-148a-3p	up, down	Bcl-2	cisplatin, 5-FU	in vitro	KYSE70, KYSE140, KYSE270, KYSE410	386	
miR-27	up	TGF-β	cisplatin	human	CAFs, NOFs	387	
miR-196a	up	cyclin B1, ABCG2	cisplatin	human	TE1, EC109	388	
miR-145	down	REV3L	5-FU	in vitro	HEEC, TE-8, KYSE150, TE-1	389	
miR-148a	down	MSK1, DNMT3B	cisplatin, 5-FU	in vitro	KYSE410	390	
Let-7b	down	IL-6/STAT3 pathway	cisplatin	in vitro	TE1, TE5, TE8, TE9, TE10, TE11, TE13	391	
miR-432-3p	up	KEAP1	cisplatin, 5-FU, actinomycin D	in vitro	KYSE170, KYSE770, KYSE2270	392	
miR-499	up	polyb	cisplatin	in vitro	EC9706, KYSE30	393	
miR-200c	down	PPP2R1B	cisplatin	in vitro	TE-1, TE-8, TE-10, TE-13, TE-15	394	
miR-193a-3p	down	PSEN1	docetaxel, paclitaxel, vinorelbine, 5-FU	in vitro	KYSE150, KYSE410, KYSE450, KYSE510	395	
miR-21	up		cisplatin, 5-FU	in vitro	KYSE170	396	
miR-483-3p	up	E124	doxorubicin, cisplatin	in vitro	EC109, EC9706, TE-1	397	
miR-181a-5p	up	CBLB	cisplatin	in vitro	OE19	398	
miR-141	up	Yap1	cisplatin	in vitro	KYSE	399	
miR-338-5p	down	Id-1	5-FU	in vitro	KYSE410, KYSE150, KYSE270	400	
miR-10b	up	PPARγ	cisplatin	in vitro	EC109, TE10	401	
miR-29c	down	FBXO31	5-FU	in vitro	KYSE150FR, KYSE410FR	402	
differentiation, and chemoresistance in GC patients. FAM83H-AS1 was overexpressed in chemoresistant GC cell lines (SGC7901/R) and tissues. Furthermore, silencing of FAM83H-AS1 could sensitize SGC7901/R cells to 5-FU and cisplatin. Silencing of FAM83H-AS1 in SGC7901/R cells resulted in the inactivation of the Wnt/β-catenin signaling pathway. Activation of the Wnt/β-catenin signaling pathway reversed the effects of FAM83H-AS1 silencing on increasing chemosensitivity. They concluded that FAM83H-AS1 was involved in chemoresistance in GC patients by activating the Wnt/β-catenin signaling pathway.

The relationship between miRNAs and lncRNAs has been widely investigated. lncRNAs either stimulate or compete with certain specific miRNAs, which subsequently affect their target mRNAs, and some miRNAs may lower the longevity of certain lncRNAs. Cheng et al. performed a study to explore the role and potential underlying mechanism of action of HOTAIR in modulating resistance to cisplatin in GC. Their study demonstrated that expression of HOTAIR was increased in GC tissues and cell lines, while miR-34a was downregulated. Using RIP assays and luciferase reporter assays, HOTAIR was found to have the potential to directly bind to miR-34a. miR-34a was remarkably upregulated in cells transfected with siRNA (si-)HOTAIR. In GC cells resistant to cisplatin, anti-miR-34a reduced the effect of si-HOTAIR on resistance to cisplatin and inhibited the Wnt/β-catenin and PI3K/Akt signaling pathways, as well as apoptosis-related genes, which suggests that the HOTAIR effects mainly depend on miR-34a. Additionally, HOTAIR suppression promoted the inhibitory effect of cisplatin on proliferation of tumors in vivo. Consequently, knockdown of HOTAIR suppressed resistance to cisplatin in GC cells through increasing expression of miR-34a. The HOTAIR/miR-34a axis may exert its effects on GC cells via the Wnt/β-catenin and PI3K/Akt signaling pathways. Their study suggested that HOTAIR may be a promising therapeutic target in patients with GC.

Table 6 lists some lncRNAs that can affect the response to chemotherapy agents in GC.

Table 6. lncRNAs and response to chemotherapy in PC

LncRNA LINC00346 was upregulated in non-small cell lung and bladder cancer, and it was proposed to be a tumor promoter in these cancer types. New research has shown overexpression of LINC00346 in PC, which could be a prognostic marker. Overexpression of LINC00346 was correlated with shorter overall survival in PC patients.

The function of LINC00346 in PC was investigated by Shi et al. The effects of overexpression and knockdown of LINC00346 on...
proliferation, apoptosis, cell cycle, and resistance to gemcitabine were studied in PC cell lines. To explore the possible miRNAs that could be affected by LINC00346, a luciferase reporter assay, bioinformatics analysis, and RIP were employed. LINC00346 overexpression significantly increased PC cell proliferation, colony formation, and tumorigenesis. Conversely, LINC00346 knockdown suppressed the proliferation of PC cells and resulted in G2/M cell cycle arrest. LINC00346 depletion increased the sensitivity of PC cells and xenograft tumors to gemcitabine. Mechanistic analysis showed that LINC00346 acted as a miR-188-3p sponge and blocked the downregulation of BRD4 (bromodomain-containing protein 4) caused by miR-188-3p in PC cells. A clinical study in PC tissue samples revealed a negative association between miR-188-3p and LINC00346. They concluded that LINC00346 promoted proliferation, apoptosis, and resistance to gemcitabine. Wang et al. investigated the role of lncRNA GAS5 and its molecular mechanism in HCC. They measured miR-21, GAS5, and PTEN levels using qRT-PCR. They used MTT and cell counting assays to measure proliferation in vitro, together with an in vivo xenograft mouse model. RIP and luciferase reporter assays were used to evaluate the correlation between GAS5 and miR-21. They demonstrated that GAS5 was underexpressed in tumor tissues as well as HCC cell lines. GAS5 knockdown was correlated with increased proliferation of HCC cells. GAS5 knockdown was correlated with increased proliferation of HCC cells in vitro and in tumors in vivo. GAS5 knockdown also increased DOX resistance in HCC cells via acting as a sponge to silence miR-21, thereby resulting in PTEN overexpression. Their data revealed that GAS5 was a tumor suppressor in HCC via regulating the miR-21/PTEN signaling axis and indicated a possible role of GAS5 in HCC treatment.

Table 7 lists some lncRNAs that could affect the response to chemotherapy agents in pancreatic cancer.

Table 6. Various lncRNAs that affect chemotherapy response in gastric cancer

lncRNA	Expression in GC	Target	Drug	Model	Type of cell line	Ref.
HOX transcript antisense RNA (HOTAIR)	down	miR-34a	cisplatin	in vivo	SGC7901, MGC803, SNU1666	421
lncR-D63785	down	miR-422a	doxorubicin	in vitro, in vivo	BGC823	422
LOC_006753	up	PI3K/AKT/mTOR	cisplatin, 5-FU	in vivo	SGC7901/5-FU, SGC7901/DDP	423
PVT-1	up	miR-3619-5p	cisplatin	in vivo	BGC823, SGC7901	424
SNGH3	up	EZH2 and activation of PI3K/AKT pathway	cisplatin	human	SGC7901 and BGC823	425
IncRNA UCA1	up	Wnt/beta-catenin signaling	cisplatin, 5-FU	human	HGC27, MKN45, MGC803, MKN28, AGS, SGC7901	414
FAM83H-AS1	up				SNU1666	419

IncRNAs and response to chemotherapy in hepatic cancer

The lncRNA called cancer susceptibility candidate 2 (CASC2) is situated on chromosome 10q26 and has been found to act as a tumor suppressor in several human cancer types. CASC2 has been found to be downregulated in HCC, endometrial cancer, and prostate cancer. However, the role of CASC2 in HCC needs to be better understood. As mentioned above, many lncRNAs act by sponging certain specific miRNAs, and they thereby can affect the expression of the target genes of these miRNAs. For instance, CASC2 was found to act as a competing endogenous RNA (ceRNA) to sponge miR-19a and therefore upregulate the target of miR-19a, which is PTEN. This could increase the chemosensitivity of cervical cancer cells to cisplatin. By inhibiting autophagy and enhancing cell death, CASC2 was shown to function as a sponge of miR193a-5p and to increase glioma cell sensitivity to temozolomide. CASC2 could be a new therapeutic target for chemoresistant GC, since its overexpression increased the cisplatin sensitivity of GC cells via acting as a sponge to silence miR-21, thereby resulting in PTEN overexpression. Their data revealed that CASC2 was a tumor suppressor in HCC via regulating the miR-21/PTEN signaling axis and indicated a possible role of CASC2 in HCC treatment.

The function and mechanism of CASC2 were investigated in a study by Liu et al. who looked at cisplatin-resistant HCC cells. The results showed that CASC2 was downregulated in HCC cells and tissues, particularly in those that were cisplatin resistant. Lower expression
Table 7. Various lncRNAs that affect the chemotherapy response in pancreatic cancer

lncRNA	Expression in pancreatic cancer	Target	Drug	Model	Type of cell line	Ref.
LINC08346	up	BRD4	gemcitabine	in vitro, in vivo	PANC-1, Mia PaCa-2, Capan-1, BxPC-3	425
SBF2-AS1	up	miR-142-3p	gemcitabine	in vitro, in vivo	AsPC-1/GEM, PANC-1/GEM	427

of CASC2 was correlated with shorter survival in HCC patients. CASC2 overexpression sensitized cisplatin-resistant HCC cell lines (SMMC-7721/cisplatin and Huh7/cisplatin) to cisplatin. Mechanistically, CASC2 increased the cisplatin sensitivity of HCC cells by sponging miR-222. These results showed that upregulation of CASC2 reduced cisplatin resistance in HCC by sponging miR-222, and could provide a route to overcome chemoresistance in HCC patients.444

The lncRNA celled TPTEP1 (transmembrane phosphatase with tensin homology pseudogene 1) has been found to have lower expression in kidney, liver, lung, and stomach cancer, because it is silenced by DNA methylation and has three transcript variants.445 The expression of TPTEP1 could be restored by histone deacetylase inhibitors and by DNA demethylation.446 Many studies have shown the effects of epigenetic alterations, such as DNA methylation, on the susceptibility of various cancers to chemotherapy,447 including cisplatin sensitivity in cancer cells.448

A study by Ding et al.449 explored the mechanism and differential expression of various lncRNAs using RNA sequencing (RNA-seq) in HCC cells during cisplatin therapy. They identified TPTEP1 as an important lncRNA in HCC cell lines (QYG-7703 and MHCC97H). Colony formation, qRT-PCR, cell invasion, cell proliferation, and flow cytometry assays were employed. Gain- and loss-of-function analysis, RNA pull-down, subcellular fractionation, western blotting, RIP, and dual-luciferase reporter assays were used to investigate the mechanism by which TPTEP1 could sensitize HCC cells to cisplatin. A subcutaneous xenograft animal model of HCC was used in vivo. qRT-PCR was used to detect TPTEP1 expression levels in clinical tumor specimens. The lncRNA TPTEP1 was found to be overexpressed in HCC cells treated with cisplatin and correlated with cisplatin-mediated apoptosis. TPTEP1 upregulation suppressed, whereas TPTEP1 knockdown increased, the proliferation, invasion, and tumorigenicity of HCC cells. TPTEP1 was found to exert its anti-tumor activity by interaction with signal transducer and transcription activator 3 (STAT3), where it inhibited STAT3 phosphorylation, homodimerization, nuclear translocation, and transcription of downstream genes. Furthermore, in an in vivo subcutaneous xenograft model of HCC, TPTEP1 upregulation clearly suppressed tumor growth in vivo. This agreed with the observation that TPTEP1 is often underexpressed in HCC tissues in comparison to normal liver samples. lncRNA TPTEP1 inhibited HCC development via altering interleukin (IL)-6/STAT3 signaling, and it could improve the response to chemotherapy.449

Table 8 lists some lncRNAs that could affect the response to chemotherapy agents in HCC.

lncRNAs and response to chemotherapy in CRC

BCYRN1 (brain cytoplasmic RNA 1) is a recently discovered lncRNA, which is activated by c-MYC.457 BCYRN1 has been reported to be overexpressed in several cancer types,458 such as HCC,459 GC,460 and lung cancer,457 compared to healthy control tissues. Moreover, BCYRN1 also has a role in smooth muscle cell differentiation and vascularization within the cardiovascular system.461,462

Yang et al.463 measured the expression levels of BCYRN1 in CRC tumor tissues and cell lines using RT-PCR. They used BCYRN1 knockdown in CRC cells to measure proliferation by 5-ethyl-2'-deoxyuridine (EdU), CCK-8, and expression of proliferating cell nuclear antigen (PCNA) and Ki-67. Cell invasion and migration were assessed by a transwell assay and scratch wound healing. Flow cytometry analysis was used to determine whether BCYRN1 affected apoptosis. A dual-luciferase reporter assay was used to detect competitive binding of BCYRN1 to miR-204-3p, and in vivo experiments were conducted to assess the effects of BCYRN1 on tumor development. Rescue experiments confirmed that BCYRN1 could sponge miR-204-3p and thereby affect KRAS expression in CRC. Expression levels of BCYRN1 were higher in CRC cell lines and tumor tissues compared to normal intestinal epithelial cells and tissues. Knockdown of BCYRN1 inhibited proliferation, migration, and invasion and increased apoptosis. Furthermore, bioinformatics and a dual-luciferase reporter assay showed that BCYRN1 could competitively bind to miR-204-3p to promote CRC growth. Further experiments showed that miR-204-3p overexpression abrogated the effects of BCYRN1 on CRC. A dual-luciferase reporter assay and TargetScan suggested that KRAS was the miR-204-3p target gene. Tumorigenesis studies in a mouse model showed that tumor development was inhibited by BCYRN1 downregulation. Therefore, BCYRN1 modulates the KRAS/miR-204-3p axis and plays a tumor promoter function in CRC.463

Taurine upregulated gene 1 (TUG1) was initially characterized as a transcript that was overexpressed in the presence of taurine, and then found to be a lncRNA with a role in embryonic retinal growth.464 Moreover, TUG1 overexpression was detected in gastric, bladder, and cervical cancer.465–467 Alternatively, TUG1 was downregulated in non-small cell lung cancer,468 suggesting contrasting functions in different types of cancer. Researchers recently observed that TUG1 could induce methotrexate resistance in CRC via affecting the CPEB2/miR-186 axis.469

Wang et al.470 reported that the lncRNA TUG1 was associated with 5-FU resistance in CRC samples. TUG1 was substantially increased in samples from recurrent CRC patients. Kaplan-Meier survival analysis found that overexpression of TUG1 in CRC specimens was correlated with an increased risk of disease recurrence. In CRC cell lines, TUG1...
knockdown could re-sensitize the cells to the effects of 5-FU. Additionally, bioinformatics research demonstrated that miR-197-3p could directly bind to TUG1, indicating that TUG1 might act as a miR-197-3p sponging ceRNA. TYMS (thymidylate synthase) was shown to be a direct target of miR-197-3p in CRC cells. The authors concluded that TUG1 could increase 5-FU resistance in CRC via the miR-197-3p/TYMS axis.

Table 9 lists some lncRNAs that could affect the response to chemotherapy agents in CRC.

circRNAs AND RESPONSE TO CHEMOTHERAPY IN GI CANCER

The circ-ARHGAP26, known as circ_0074362, is located on chromosome 5 between location 142894237 and 142932125, with a length of 37,888 bp, and it has been detected in normal gastric cells and tissues. Microarray analysis demonstrated that circ-ARHGAP26 was overexpressed in GC tissues in comparison with paired normal tissues, while the expression of circ-ARHGAP26 in GC tissues was found to be downregulated in other studies. A study by Wangxia et al. reported that circ-ARHGAP26 was overexpressed in several GC cell lines (HGC-27, NCI-N87, AGS, SGC-7901, and BGC-823) compared to normal GSE-1 cells. Knockdown of circ-ARHGAP26 in HGC-27 cells decreased proliferation as measured by the CCK-8 assay at 48 and 72h, while flow cytometry showed that apoptosis was increased at 72 h. Western blotting showed that pro-apoptotic caspase-3 was increased while anti-apoptotic Bcl-2 was reduced at 72 h in the circ-ARHGAP26(−) group. Similar results were also found in AGS cells.

It was shown that circRNAs may function as competitive inhibitors through binding to miRNAs, also known as “miRNA sponges,” or alternatively these ncRNAs may function as target mimics and suppress the activity of certain miRNAs. The circRNAs have binding sites for the complementary miRNA, which is located in the 3' UTR or non-coding transcript of a particular gene. Circ-PVT1 has been found to act as a ceRNA in an oral squamous carcinoma cell (OSCC) line to affect the miR-125b/STAT3 axis and thereby increase proliferation. Upregulation of circ-PVT1 promoted invasion and proliferation in non-small cell lung cancer by activating E2F2 signaling. Recent results showed that upregulation of circ-PVT1 also increased proliferation in GC and could be a prognostic marker. A recent publication suggested that circ-PVT1 could increase resistance to DOX and cisplatin by regulating ABCB1 in osteosarcoma cells. Liu et al. found that circ-PVT1 was overexpressed in PTX-resistant GC cells and tissues, and it could reduce the expression of miR-124-3p. Reduction of circ-PVT1 expression promoted PTX sensitivity in PTX-resistant GC cells. ZEB was suggested to be a direct target of miR-124-3p, and therefore circ-PVT1 could increase ZEB1 expression by sponging miR-124-3p. circ-PVT1 knockdown led to an increase in PTX sensitivity of GC tumors in vivo. Taken together, circ-PVT1 increased resistance to PTX by upregulating ZEB by sponging miR-124-3p and could be a target for GC treatment.

Table 10 lists some circRNAs that can affect the response to chemotherapy agents in GI cancer.

CONCLUSIONS

Surgery is considered to be the main therapeutic approach for most GI cancers, but many cancers are diagnosed at an advanced stage, where they are then considered to be inoperable. Although chemotherapy and radiotherapy are then available, these approaches seldom result in a cure.
in a complete cure. Thus, there is an urgent for major improvements in chemotherapy regimens in GI treatment. The poor response of most GI cancers to chemotherapy can be attributed to multiple mechanisms. Chemoresistance can have many causes such as reduced drug uptake, increased drug efflux, less activation of pro-drugs, changes in the molecular targets, better DNA repair mechanisms, disruption of the pro-apoptotic machinery, or overexpression of anti-apoptotic genes. Many new techniques derived from biotechnology and molecular biology, such as bioinformatics analysis, genome modification, high-throughput sequencing, pharmaceutical chemistry, and mouse modeling, have been used to reveal the wide involvement of a range of ncRNAs in the initiation, biology, progression, and response to treatment of various cancers. Put differently, the expression patterns of ncRNAs are different in tumor tissue compared to the corresponding normal tissue. This enables ncRNAs to be used as biomarkers for disease progression and tumor stage. In addition, many IncRNAs, miRNAs, and circRNAs are specifically related to prognosis and therapeutic response, because they control resistance to radiotherapy and chemotherapy. Researchers have identified several genes in animal models with the use of single-stranded antisense oligonucleotides (ASOs) and double-stranded RNAi. As an example, inhibiting MALAT1 with ASO may promote differentiation and inhibit metastasis in mouse models of cancer, including lung cancer.

Researchers have attempted to employ ncRNA systems or carriers as therapeutic strategies, including oncolytic adenoviruses, nanoparticles (NPs), and direct delivery of modified ncRNAs. Some clinical trials have been based on ncRNA-mediated precision medicine (https://clinicaltrials.gov). Some clinical trials have reached phase 3, such as miR-31-5p and miR-31-3p for CRC, as well as miR-200 and miR-21 for oral cancer. Moreover, some circRNAs and IncRNAs have begun to be evaluated in trials, such as MALAT1 for breast cancer or lung cancer, and HOTAIR for thyroid cancer. Furthermore, siRNAs are usually incorporated into lipid nanoparticles for delivery, and these have been tested in clinical trials. Phase 2 clinical trials of siRNAs include the use of Atu027 to knock down the PKN3 gene to inhibit migration in metastatic pancreatic adenocarcinoma, and DCR-MYC to knock down the MYC gene to inhibit the cell cycle in HCC. In the future, ncRNAs and modifiers may be used to improve the response of various cancers to therapies. However, there are many challenges to overcome before these techniques can be widely applied in clinics. First, ncRNAs vary widely in their length and number of nucleotides, as well as their modes of action. Second, ncRNAs are very different in different tumors, and therefore the selection of the appropriate target from multiple candidates would be difficult. Additional information on the functional parameters and genomic strategies is needed from fundamental and clinical work.

Table 9. Various lncRNAs that affect chemotherapy response in colorectal cancer

IncRNA	Expression in colorectal cancer	Target	Drug	Model	Type of cell line	Ref.
PCAT6	up	HMGA2/P3K signaling	5-FU	in vitro, in vivo	HCT116, HT-29, SW620, SW480, DLD-1, RKO, LoVo, HEK293, CCD-112CoN	471
TUG1	up	sponging miR-197-3p	5-FU	in vivo	HCT8Fu, HCT8	472
TUG1	up	miR186/CPEB2	methotrexate	in vivo	HT-29-P, HT-29-R, HCT-8	473
LINC00473	up	miR-15a	Taxol	in vitro, in vivo	FHC, HCT116, HCT116/Taxol, SW620, LoVo	474

Table 10. Various circular RNAs that affect chemotherapy response in GI cancer

Cancer	Circular RNA	Expression in GI cancers	Target	Drug	Model	Type of cell line	Ref.
Esophageal	circ-LARP4	down	miR-1323	not mentioned	in vitro	HEPPIIC, ESSC (ECA109, TE-1, KYSE30, KYSE410)	485
Gastric	rc-ARHGAP26	up	miR-182-5p	cisplatin	in vitro	HGC-27, AGS, SGC-7901, BGC-823, NCI-N87, GSE-1	475
Gastric	circ-PVT1	up	ZEB1, miR-124-3p	paclitaxel	in vitro	MKN-45, HGC-27, MGC-803, AGS	486
Gastric	circ-MCTP2	down	MTMR3, miR-99a-5p	cisplatin	in vitro	BGC823, SGC7901, SGC7901CDDP	487
Gastric	ciRS-7	down	miR-7, PTEN, P3K	in vitro	MGC-803, HGC-27, GES-1	488	
Gastric	circ-FN1	up	miR-182-5p	cisplatin	in vitro	SGC7901CDDP, BGC823C, DDP, SGC7901, BGC823	489
Hepatocellular	circ-FBXO31	up	miR-605, FOXO3	oxaliplatin	human	HepG2, Hep3B, SMMC-7721, Huh7, Lo-2	487
Pancreatic	circ-HIPK3	up	miR-330-3p	gemcitabine	in vitro	PANC-1, SW 1990	490
Colorectal	circ_0032833	down	miR-125-5p, MSI1	5-FU, oxaliplatin	in vitro	HCT116	491
Colorectal	hsa_circ_001680	up	miR-340, BMI1	irinotecan	in vitro	FHC, HCT116, SW480, HCT15, SW620, CACO2, DLD1, LOVO, HT29, HCT8, RKO	492
Colorectal	ciRS-122	up	miR-122, PKM2	oxaliplatin	in vitro	SW480, HCT116, HEK293T	493
translational research. Third, besides the need for a suitable target, an effective delivery strategy that allows specific binding affinity is not easy. The tumor microenvironment has a highly heterogeneous composition, which makes application and delivery of ncRNAs very difficult. These challenges include off-target effects, low transfection efficacy, and a short half-life due to RNA degradation and instability. The present delivery systems will need to be significantly improved in future studies to overcome these challenges.

The use of targeted carriers or smart carriers may be an alternative option. For instance, the conjugation of nanoparticles to tissue-specific receptors could improve the target specificity. Another challenge is the bioavailability of nucleic acid-based therapeutics inside the tumor tissue, and reduction of cytotoxicity to normal tissues. Moreover, assay techniques must be agreed upon to ensure high quality and calculate the relative efficacy. Finally, most of the studies on the use of ncRNAs and modifiers are still in the preclinical phase, and most of them have been limited to a single type or a few types of cancer. After deciding on a suitable gene candidate and an efficient delivery carrier, further efforts will be needed to evaluate the patient responses to the clinical therapies. This is essential to understand the long-term outcomes of new cancer treatments that have never been assessed before. If these challenges can be overcome the use of ncRNAs/modifiers, either as tumor suppressors or inhibitors of oncogenes, could be an addition to standard chemotherapy or radiotherapy regimens to deal with resistance and improve patient survival in the coming years.

AUTHOR CONTRIBUTIONS
H.M. and M.R.H. contributed to conception, design, statistical analysis, and drafting of the manuscript. F.D., S.M.A.M., Nikta Rabiei, R.F., Negin Rabiei, H.P., and M.V. contributed to data collection and manuscript drafting. All authors approved the final version of the manuscript for submission.

DECLARATION OF INTERESTS
M.R.H. declares the following potential conflicts of interest. Scientific Advisory Boards: Transdermal Cap, Inc, Cleveland, OH, USA; BeWell Global, Inc, Wan Chai, Hong Kong; Hologenix, Inc, Santa Monica, CA, USA; LumiThera, Inc, Poulsbo, WA, USA; Vielight, Toronto, ON, Canada; Bright Photomedicine, Sao Paulo, Brazil; Quantum Dynamics, LLC, Cambridge, MA, USA; Global Photon, Inc, Bee Cave, TX, USA; Medical Coherence, Boston, MA, USA; NeuroThera, Newark, DE, USA; JOOVV, Inc, Minneapolis-St. Paul, MN, USA; AIRx Medical, Pleasanton, CA, USA; FIS Industries, Inc, Ramsey, NJ, USA; UVLx Therapeutics, Oldsmar, FL, USA; Ultralux UV, Inc, Lansing, MI, USA; Illumiheal and PetThera, Shoreline, WA, USA; MB Lasertherapy, Houston, TX, USA; ARRC LED, San Clemente, CA, USA; Varuna Biomedical Corp, Incline Village, NV, USA; Niraxx Light Therapeutics, Inc, Boston, MA, USA. Consulting: Lexington International, LLC, Boca Raton, FL, USA; USHIO Corp, Japan; Merck KGaA, Darmstadt, Germany; Philips Electronics Nederland BV, Eindhoven, the Netherlands; Johnson & Johnson, Inc, Philadelphia, PA, USA; Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany. Stock holdings: Global Photon, Inc, Bee Cave, TX; Mitonix, Newark, DE. The remaining authors declare no competing interests.

REFERENCES
1. Kamb, A., Wee, S., and Lengauer, C. (2007). Why is cancer drug discovery so difficult? Nat. Rev. Drug Discov. 6, 115–120.
2. Lievens, Y., Gospodarowicz, M., Grover, S., Jaffray, D., Rodin, D., Torode, J., Yap, M.L., and Zubizarreta, E.; GIRO Steering and Advisory Committees (2017). Global impact of radiotherapy in oncology: Saving one million lives by 2035. Radiother. Oncol. 125, 175–177.
3. Wang, W.T., Han, C., Sun, Y.M., Chen, T.Q., and Chen, Y.Q. (2019). Noncoding RNAs in cancer therapy resistance and targeted drug development. J. Hematol. Oncol. 12, 55.
4. Guttman, M., and Rinn, J.L. (2012). Modular regulatory principles of large non-coding RNAs. Nature 482, 339–346.
5. Esteller, M. (2011). Non-coding RNAs in human disease. Nat. Rev. Genet. 12, 861–874.
6. Matsu, M., and Corey, D.R. (2017). Non-coding RNAs as drug targets. Nat. Rev. Drug Discov. 16, 167–179.
7. Yoon, S., and Rossi, J.I. (2018). Therapeutic potential of small activating RNAs (saRNAs) in human cancers. Curr. Pharm. Biotechnol. 19, 604–610.
8. Dong, Y., He, D., Peng, Z., Peng, W., Shi, W., Wang, J., Li, B., Zhang, C., and Duan, C. (2017). Circular RNAs in cancer: An emerging key player. J. Hematol. Oncol. 10, 2.
9. Jafarpour, S.M., Safaei, M., Mohseni, M., Salimian, M., Aliashghazadeh, A., and Farhood, B. (2018). The radioprotective effects of curcumin and trehalose against genetic damage caused by 131-I. Indian J. Nucl. Med. 33, 99–104.
10. Vo, J.N., Ceslik, M., Zhang, Y., Shukla, S., Xiao, L., Zhang, Y., Wu, Y.M., Dhanasekaran, S.M., Engelke, C.G., Cao, X., et al. (2019). The landscape of circular RNA in cancer. Cell 176, 869–881.e13.
11. Li, X., Yang, L., and Chen, L.L. (2018). The biogenesis, functions, and challenges of circular RNAs. Mol. Cell 71, 428–442.
12. Yu, A.M., Jian, C., Yu, A.H., and Tu, M.J. (2019). RNA therapy: Are we using the right molecules? Pharmacol. Ther. 196, 91–104.
13. Hayes, J., Peruzzi, P.P., and Lawler, S. (2014). MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol. Med. 20, 460–469.
14. Sartorelli, V., and Lauberth, S.M. (2020). Enhancer RNAs are an important regulatory layer of the epigenome. Nat. Struct. Mol. Biol. 27, 521–528.
15. Ørom, U.A. (2017). Enhancer RNAs: Methods and Protocols (Springer).
16. Ye, R., Cao, C., and Xue, Y. (2020). Enhancer RNA: Biogenesis, function, and regulation. Essays Biochem. 64, 883–894.
17. Timmons, L. (2002). The long and short of siRNAs. Mol. Cell 10, 435–437.
18. Zhang, M., and Xin, Y. (2018). Circular RNAs: A new frontier for cancer diagnosis and therapy. J. Hematol. Oncol. 11, 21.
19. Guo, S., Fesler, A., Wang, H., and Ju, J. (2018). MicroRNA based prognostic biomarkers in pancreatic cancer. Biomark. Res. 6, 18.
20. Fort, R.S., Mathi, C., Oliveira-Rizzo, C., Garat, B., Soteio-Silveira, J.R., and Duhamon, M.A. (2018). An integrated view of the role of miR-130b/301b miRNA cluster in prostate cancer. Exp. Hematol. Oncol. 7, 10.
21. Smolle, M.A., Calin, H.N., Pichler, M., and Calin, G.A. (2017). Noncoding RNAs and immune checkpoints clinical implications as cancer therapeutics. FEBS J. 284, 1952–1966.
22. Bader, A.G. (2012). mir-34—A microRNA replacement therapy is headed to the clinic. Front. Genet. 3, 120.
23. Rupaimoole, R., and Slack, F.J. (2017). MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 16, 203–222.
24. Liu, B., Liu, Y., Zhao, L., Pan, Y., Shan, Y., Li, Y., and Jia, L. (2017). Upregulation of microRNA-135b and microRNA-182 promotes chemoresistance of colorectal cancer therapy resistance and targeted drug development. J. Hematol. Oncol. 10, 2.
cancer by targeting ST6GALNAC2 via PI3K/AKT pathway. Mol. Carcinog. 56, 2669–2680.

25. Xiang, S., Fang, J., Wang, S., Deng, B., and Zhu, L. (2015). MicroRNA-135b regulates the stability of PTEN and promotes glycosylation by targeting USP13 in human colorectal cancers. Oncol. Rep. 33, 1342–1348.

26. Yang, W.B., Chen, P.H., Hsu, T., Fu, T.F., Su, W.C., Liaw, H., Chang, W.C., and Hung, J.I. (2014). Sp1-mediated microRNA-182 expression regulates lung cancer progression. Oncotarget 5, 740–753.

27. Wang, J., Li, J., Shen, J., Wang, C., Yang, W., and Zhang, X. (2012). MicroRNA-182 downregulates metastasis suppressor 1 and contributes to metastasis of hepatocellular carcinoma. BMC Cancer 12, 227.

28. Gao, J., Liu, X., Yang, F., Liu, T., Yan, Q., and Yang, X. (2015). By inhibiting Ras/Raf/ERK and MMP-9, knockdown of EpCAM inhibits breast cancer cell growth and metastasis. Oncotarget 6, 27187–27198.

29. Yang, J., Yang, X.S., Zhang, Q., Zhuang, X., Dong, X.K., Jiang, Y.H., Tao, Y.N., and Yu, C. (2017). MicroRNA-138-5p inhibits pancreatic cancer cell migration and increases chemoresistance sensitivity. Mol. Med. Rep. 12, 5135–5140.

30. Deng, Y., Chen, D., Gao, F., Lv, H., Zhang, G., Sun, X., Liu, L., Ma, N., Song, L., et al. (2019). Exosomes derived from microRNA-138-5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2. J. Biol. Eng. 13, 71.

31. Yu, C., Wang, M., Li, Z., Xiao, J., Peng, F., Guo, X., Yang, D., Jiang, J., and Sun, C. (2015). MicroRNA-138-5p regulates pancreatic cancer cell growth through targeting FOXC1. Cell Oncol. (Dordr.) 38, 173–181.

32. Yu, C., Wang, M., Chen, M., Huang, Y., and Jiang, J. (2015). Upregulation of microRNA-138-5p inhibits pancreatic cancer cell migration and increases chemotherapeutic sensitivity. Mol. Med. Rep. 12, 5135–5140.

33. Gao, W., Lam, J.W., Li, J.Z., Chen, S.Q., Tsang, R.K., Chan, Y.J., and Wong, T.S. (2017). MicroRNA-138-5p controls sensitivity of nasopharyngeal carcinoma to radiotherapy by targeting EIF4EBP1. Oncol. Rep. 37, 913–920.

34. Roberto, G.M., Lira, R.C., Delsin, L.E., Vieira, G.M., Silva, M.O., Hakime, R.G., Yamashita, M.E., Engel, E.E., Scrideli, C.A., Tese, L.N., and Brasseux, M.S. (2020). MicroRNA-138-5p as a worse prognosis biomarker in pediatric, adolescent, and young adult osteosarcoma. Pathol. Oncol. Res. 26, 877–883.

35. Zhao, C., Ling, X., Li, X., Hou, X., and Zhao, D. (2019). MicroRNA-138-5p inhibits cell migration, invasion and EMT in breast cancer by directly targeting RHBDL1. Breast Cancer 26, 817–825.

36. Zhe, D., Gu, L., Li, Z., Jin, W., Lu, Q., and Ren, T. (2019). MicroRNA-138-5p suppresses lung adenocarcinoma cell epithelial-mesenchymal transition, proliferation and metastasis by targeting ZEB2. Pathol. Res. Pract. 215, 861–872.

37. Xu, W., Chen, B., Ke, D., and Chen, X. (2020). MicroRNA-138-5p targets the NFIB-Snail axis to inhibit colorectal cancer cell migration and chemoresistance. Cancer Cell Int. 20, 475.

38. Hu, G., Chen, D., Li, X., Yang, K., Wang, H., and Wu, W. (2010). microRNA-133b regulates the MET proto-oncogene and inhibits the growth of colorectal cancer cells in vitro and in vivo. Cancer Biol. Ther. 10, 190–197.

39. Wang, X., Bu, J., Liu, X., Wang, W., Ma, W., Lv, B., Zou, J., Mo, X., Li, X., Wang, J., et al. (2017). microRNA-133b suppresses metastasis by targeting HOXA9 in human colorectal cancer. Oncotarget 8, 63935–63948.

40. Akcakaya, P., Eklund, S., Kolosenko, L., Caramuta, S., Ozata, D.M., Xie, H., Lindforss, U., Olivercrona, H., and Lui, W.O. (2015). miR-185 and miR-133b deregulation is associated with overall survival and metastasis in colorectal cancer. Int. J. Oncol. 39, 311–318.

41. Duan, F.T., Qian, F., Fang, K., Lin, K.Y., Wang, W.T., and Chen, Y.Q. (2013). microRNA-133b, a muscle-specific microRNA, is a novel prognostic marker that participates in the progression of human colorectal cancer via regulation of CXCR4 expression. Mol. Cancer 12, 164.

42. Lv, L., Li, Q., Chen, S., Zhang, X., Tao, X., Tang, X., Wang, S., Che, G., Yu, Y., and He, L. (2019). microRNA-133b suppresses colorectal cancer cell stemness and chemoresistance by targeting methyltransferase DOT1L. Exp. Cell Res. 385, 111597.
putative miRNA targets and pathways in head and neck cancers. Int. J. Mol. Med. 28, 327–336.

62. Miyamae, M., Komatsu, S., Ichikawa, D., Kawaguchi, T., Hirajima, S., Okajima, W., Ohashi, T., Inamura, T., Konishi, H., Shiozaki, A., et al. (2015). Plasma microRNA profiles: Identification of miR-744 as a novel diagnostic and prognostic biomarker in pancreatic cancer. Br. J. Cancer 113, 1467–1476.

63. Zhou, W., Li, Y., Gou, S., Xiong, J., Wu, H., Wang, C., Yan, H., and Liu, T. (2015). miR-744 increases tumorigenicity of pancreatic cancer by activating Wnt/β-catenin pathway. Oncotarget 6, 37557–37569.

64. Song, M.Y., Pan, K.F., Su, H.J., Zhang, L., Ma, J.L., Li, J.Y., Yuasa, Y., Kang, D., Kim, Y.S., and You, W.C. (2012). Identification of serum microRNAs as novel non-invasive biomarkers for early detection of gastric cancer. PLoS ONE 7, e33608.

65. Zhou, Y., He, A., Zhang, L., and Yi, G. (2020). miR-744 mediates the oxaliplatin chemoresistance in colorectal cancer through inhibiting BIN1. Neoplasma 67, 296–303.

66. Sharma, T., Hamilton, R., and Mandal, C.C. (2015). miR-214: A potential biomarker and therapeutic for different cancers. Future Oncol. 11, 349–363.

67. Penna, E., Orso, F., and Taverna, D. (2015). miR-214 as a key hub that controls cancer networks: Small player, multiple functions. J. Invest. Dermatol. 135, 960–969.

68. Yang, H., Kong, W., He, L., Zhao, J.J., O’Donnell, J.D., Wang, J., Wenham, R.M., Coppola, D., Kruk, P.A., Nicosia, S.V., and Cheng, J.Q. (2008). MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 68, 425–433.

69. Long, L.M., He, B.F., Huang, G.Q., Guo, Y.H., Liu, Y.S., and Huo, J.R. (2015). MicroRNA-214 functions as a tumor suppressor in human colon cancer via the suppression of ADP-ribosylation factor-like protein 2. Oncol. Lett. 9, 645–650.

70. Momose, K., Minami, A., Shimo, Y., Mirutani, K., Nobutani, K., Aruma, T., and Takai, Y. (2013). miR-214 and hypoxia down-regulate Nect-2/CADM1 and enhance ErbB2/ErbB3 signaling. Genes Cells 27, 195–202.

71. Yang, Y., Bao, Y., Yang, G.K., Wan, J., Du, L.J., and Ma, Z.H. (2019). miR-214 sensitizes chemoresistance in colorectal cancer through inhibiting BIN1. Neoplasma 67, 296–303.

72. Miyamae, M., Komatsu, S., Ichikawa, D., Kawaguchi, T., Hirajima, S., Okajima, W., Ohashi, T., Inamura, T., Konishi, H., Shiozaki, A., et al. (2015). Plasma microRNA profiles: Identification of miR-744 as a novel diagnostic and prognostic biomarker in pancreatic cancer. Br. J. Cancer 113, 1467–1476.

73. Zhou, W., Li, Y., Gou, S., Xiong, J., Wu, H., Wang, C., Yan, H., and Liu, T. (2015). miR-744 increases tumorigenicity of pancreatic cancer by activating Wnt/β-catenin pathway. Oncotarget 6, 37557–37569.

74. Song, M.Y., Pan, K.F., Su, H.J., Zhang, L., Ma, J.L., Li, J.Y., Yuasa, Y., Kang, D., Kim, Y.S., and You, W.C. (2012). Identification of serum microRNAs as novel non-invasive biomarkers for early detection of gastric cancer. PLoS ONE 7, e33608.

75. Zhou, Y., He, A., Zhang, L., and Yi, G. (2020). miR-744 mediates the oxaliplatin chemoresistance in colorectal cancer through inhibiting BIN1. Neoplasma 67, 296–303.

76. Sharma, T., Hamilton, R., and Mandal, C.C. (2015). miR-214: A potential biomarker and therapeutic for different cancers. Future Oncol. 11, 349–363.

77. Penna, E., Orso, F., and Taverna, D. (2015). miR-214 as a key hub that controls cancer networks: Small player, multiple functions. J. Invest. Dermatol. 135, 960–969.

78. Yang, H., Kong, W., He, L., Zhao, J.J., O’Donnell, J.D., Wang, J., Wenham, R.M., Coppola, D., Kruk, P.A., Nicosia, S.V., and Cheng, J.Q. (2008). MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 68, 425–433.

79. Amankwatia, E.B., Chakravarty, P., Carey, F.A., Weidlich, S., Steele, R.I., Munro, A.J., Wolf, C.R., and Smith, G. (2015). MicroRNA-224 is associated with colorectal cancer progression and response to 5-fluorouracil-based chemotherapy by KRAS-dependent and -independent mechanisms. Br. J. Cancer 112, 1480–1490.

80. Li, Y., Xin, S., Wu, H., Xing, C., Duan, L., Sun, W., Hu, X., Lin, R., and Zhang, F. (2018). High expression of microRNA-31 and its host gene LOC554202 predict favorable outcomes in patients with colorectal cancer treated with oxaliplatin. Oncol. Rep. 40, 1706–1724.
99. Zhang, Y., Geng, L., Talmon, G., and Wang, J. (2015). microRNA-520g confers drug resistance by regulating p21 expression in colorectal cancer. J. Biol. Chem. 290, 6215–6225.

100. Wang, G., Wang, J., Luo, J., Wang, L., Chen, X., Zhang, L., and Jiang, S. (2013). PEG2000-DPSE-coated queretin nanoparticles remarkably enhanced anticancer effects through induced programmed cell death on C6 glioma cells. J. Biomed. Mater. Res. A 101, 3076–3085.

101. Sun, H., Cai, G.X., Pan, S.F., Deng, W.L., Wang, Y.W., Chen, Z.S., Cai, S.J., Zhu, H.R., and Li, Q. (2014). miR20c enhances Pt-gp-mediated MDR and metastasis by targeting INKJ/c-Jun signaling pathway in colorectal cancer. Mol. Cancer Ther. 13, 3137–3151.

102. Zhang, L., He, L., Zhang, H., and Chen, Y. (2018). Knockdown of miR-20a enhances sensitivity of colorectal cancer cells to capatin by increasing ASK1 expression. Cell. Physiol. Biochem. 47, 1432–1441.

103. Liu, X., Xie, T., Mao, X., Xue, L., Chu, X., and Chen, L. (2016). MicroRNA-149 in-...
carcinoma cell metabolism and suppressed tumorigenesis. Carcinogenesis 35, 2264–2272.

138. Yamakawa, T., Seki, N., Yoshino, H., Itsako, T., Yamada, Y., Tatarano, S., Hidaka, H., Yonezawa, T., Nakagawa, M., and Enokida, H. (2013). Tumor-suppressive microRNA-1291 directly regulates glucose transporter 1 in renal cell carcinoma. Cancer Sci. 104, 1411–1419.

139. Yu, M.L., Duan, Z., Liu, Z., Zhang, C., Bold, R.J., Gonzalez, F.J., Kim, E.J., and Yu, A.M. (2020). MicroRNA-1291-5p sensitizes pancreatic cancer cells to arginine deprivation and chemotherapy through the regulation of arginolysis and glycolysis. Mol. Pharmacol. 98, 686–694.

140. Zhang, B., Liu, B., Chen, D., Sertokromko, R., Haisma, H.J., and Quax, W.J. (2019). Histone deacetylase inhibitors sensitize TRAIL-induced apoptosis in colon cancer cells. Cancers (Basel) 11, 645.

141. Eberle, J. (2019). Countering trail resistance in melanoma. Cancers (Basel) 11, 656.

142. Hopkins-Donaldson, S., Bodmer, J.-L., Bourouland, K.B., Brogara, C.B., Tischopp, J., and Gross, N. (2000). Loss of caspase-8 expression in highly malignant human neuroblastoma cells correlates with resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Cancer Res. 60, 4315–4319.

143. Yang, X., Merchant, M.S., Romero, M.E., Tsokos, M., Wexler, L.H., Kontny, U., Mackall, C.L., and Thiele, C.J. (2014). miR-137 regulates the constitutive androstane receptor and modulates doxorubicin sensitivity to paclitaxel and cisplatin in lung cancer. Oncotarget 5, 20728–20742.

144. Herr, I., Ucur, E., Herzer, K., Okouyou, S., Ridder, R., Krammer, P.H., von Knebel Doeberitz, M., and Debatin, K.-M. (2003). Glucocorticoid cotreatment induces apoptosis resistance toward cancer therapy in carcinomas. Cancer Res. 63, 3112–3120.

145. Qin, J., Ke, J., Xu, J., Wang, F., Zhou, Y., Jiang, Y., and Wang, Z. (2015). Downregulation of microRNA-132 by DNA hypermethylation is associated with cell invasion in colorectal cancer. Oncotarget 6, 3639–3648.

146. Abukwam, A., Nwaeburum, C.C., Bauer, N., Zhao, Z., Liu, L., Gladkich, J., Gross, W., Benner, A., Strobel, O., Fellenberg, J., and Herr, I. (2019). Dexamethasone-induced inhibition of miR-132 via methylation promotes TGF-β-driven progression of pancreatic cancer. Int. J. Oncol. 54, 53–64.

147. Jones, A., Danielson, K.M., Benton, M.C., Ziegler, O., Shah, R., Stubbs, R.S., Das, S., and Macartney-Coxson, D. (2017). miRNA signatures of insulin resistance in obesity. Obesity (Silver Spring) 25, 1734–1744.

148. Xu, H.-X., Wang, Y., Zheng, D.-D., Wang, T., Pan, M., Shi, J.-H., Zhu, J.-H., and Li, X.-F. (2017). Differential expression of miRNAs in calcific aortic stenosis. Clin. Lab. 63, 1163–1170.

149. Tan, J.R., Tan, K.S., Yong, F.L., Armugam, A., Wang, C.W., Jeyaseelan, K., and Wong, P.-T.H. (2017). MicroRNAs regulating cluster of differentiation 46 (CD46) in cardioembolic and non-cardioembolic stroke. PLoS ONE 12, e0172311.

150. Hu, S., Bao, H., Xu, X., Zhou, X., Qin, W., Zeng, C., and Liu, Z. (2015). Increased miR-374b promotes cell proliferation and the production of aberrant glycosylated IgA1 in B cells of IgA nephropathy. FEBS Lett. 589 (24 Pt B), 4019–4025.

151. Wang, C., Yang, C., Chen, X., Yao, B., Yang, C., Zhu, C., Li, L., Wang, J., Li, X., Shao, Y., et al. (2011). Altered profile of seminal plasma microRNAs in the molecular diagnosis of male infertility. Clin. Chem. 57, 1722–1731.

152. Zhang, K., Wang, Y.-W., Wang, Y.-Y., Song, Y., Zhu, J., Si, P.-C., and Ma, R. (2017). Identification of microRNA biomarkers in the blood of breast cancer patients based on microRNA profiling. Gene 619, 10–20.

153. Chang, J.T., Wang, F., Chapin, W., and Huang, R.S. (2016). Identification of MicroRNAs as breast cancer prognosis markers through the cancer genome atlas. PLoS ONE 11, e0168284.

154. Hanniford, D., Zhong, J., Koertz, L., Gaziel-Sovran, A., Lackay, D.J., Shang, S., Pavlick, A., Shapiro, B., Berman, R., Darvishian, F., et al. (2015). A miRNA-based signature detected in primary melanoma tissue predicts development of brain metastasis. Cancer. Clin. Cancer Res. 21, 4903–4912.

155. Summerer, L., Unger, K., Braselmann, H., Schuett(term), L., Maiboecker, P., Kirchner, T., Niyazi, M., Sage, E., Specht, H.M., et al. (2015). Circulating microRNAs as prognostic therapy biomarkers in head and neck cancer patients. Br. J. Cancer 113, 76–82.

156. Xie, J., Tan, Z.-H., Tang, X., Mo, M.-S., Liu, Y.-P., Gan, R.-L., Li, Y., Zhang, L., and Li, D.-Q. (2014). miR-374b-5p suppresses RECK expression and promotes gastric cancer cell invasion and metastasis. World J. Gastroenterol. 20, 17439–17447.

157. He, H.C., Han, Z.D., Dai, Q.S., Ling, X.H., Fu, X., Lin, Z.Y., Deng, Y.H., Qin, G.Q., Cai, C., Chen, J.H., et al. (2013). Global analysis of the differentially expressed microRNAs of prostate cancer in Chinese patients. BMC Genomics 14, 757.

158. Qian, D., Chen, K., Deng, H., Rao, H., Huang, H., Liao, Y., Sun, X., Lu, S., Yuan, Z., Xie, D., and Cai, Q. (2015). MicroRNA-374b suppresses proliferation and promotes apoptosis in T-cell lymphoblastic lymphoma by repressing AKT1 and Wnt-16. Clin. Cancer. Res. 21, 4881–4891.

159. Wu, X., Li, S., Xu, X., Wu, S., Chen, R., Jiang, Q., Li, Y., and Xu, Y. (2015). The potential value of miR-1 and miR-374b as biomarkers for colorectal cancer. Int. J. Exp. Pathol. 8, 2840–2851.

160. Schreiber, R., Mezenczy, R., Matyunina, L.V., and McDonald, J.F. (2016). Evidence for the role of microRNA 374b in acquired cisplatin resistance in pancreatic cancer cells. Cancer Gene Ther. 23, 241–245.

161. Sun, D., Wang, X., Sui, G., Chen, S., Yu, M., and Zhang, P. (2018). Downregulation of miR-374-5p promotes chemotherapeutic resistance in pancreatic cancer by upregulating multiple anti-apoptotic proteins. Int. J. Oncol. 52, 1491–1503.

162. Tu, M.J., Duan, Z., Liu, Z., Zhang, C., Bold, R.J., Gonzalez, F.J., Kim, E.J., and Yu, A.M. (2020). MicroRNA-1291-5p sensitizes pancreatic carcinoma cells to arginine deprivation and chemotherapy through the regulation of arginolysis and glycolysis. Mol. Pharmacol. 98, 686–694.
186. Yang, R.M., Zhan, M., Xu, S.W., Long, M.M., Yang, L.H., Chen, W., Huang, S., Liu, X., Wang, Y., Mojumdar, K., Zhou, Z., Jeong, K.J., Mangala, L.S., Yu, S., Tsang, M., Nolca, P.S., Xiao, X., Bauer, N., Iwagami, Y., Eguchi, H., Nagano, H., Akita, H., Hama, N., Wada, H., Kawamoto, K., Paik, W.H., Chan, L.W., Cho, W.C., Yip, S.Y., and Yung, B.Y. (2014). Multiple regression analysis of mRNA-miRNA associations in colorectal cancer patients. BioMed Res. Int. 2014, 676724.

187. Cava, C., Bertoli, G., Ripamonti, M., Mauri, G., Zoppis, I., Della Rosa, P.A., Giraldi, M.C., and Castiglioni, I. (2014). Integration of mRNA expression profile, copy number alterations, and miRNA expression levels in breast cancer to improve grade definition. PLoS ONE 9, e97681.

188. Bertoli, G., Cava, C., Diciglie, C., Martelli, C., Rizzo, G., Piccotti, F., Ottobrini, L., and Castiglioni, I. (2017). MicroRNA-567 dysregulation contributes to carcinogenesis of breast cancer, targeting tumor cell proliferation, and migration. Breast Cancer Res. Treat. 161, 605–616.

189. Zhang, F., Li, K., Yao, X., Wang, H., Li, W., Wu, J., Ma, Z., and Zhao, L. (2013). A miR-567-PK3API-P3K/AKT-c-Myc feedback loop regulates tumor growth and chemoresistance in gastric cancer. eBioMedicine 44, 311–321.

190. Liang, Y., Song, X., Li, Y., Yang, Z., Zhang, H., Liu, Y., Duan, Y., Chen, B., Guo, R., et al. (2018). A novel long non-coding RNA PRL-RT acts as a tumor promoter through regulating miR-4766-5p/SIRT1 axis in breast cancer. Cell Death Dis. 9, 563.

191. Pajerowski, A.G., Nguyen, C., Aghajanian, H., Shapiro, M.J., and Shapiro, V.S. (2009). NKAP is a transcriptional repressor of notch signaling and is required for T cell development. Immunity 30, 696–707.

192. Hsu, F.C., Pajerowski, A.G., Nelson-Holte, M., Sundsbak, R., and Shapiro, V.S. (2011). NKAP is required for T cell maturation and acquisition of functional competence. J. Exp. Med. 208, 1291–1304.

193. Juan, C., Li, F., Puett, D., Hong, C., and Xu, Y. (2010). Protein markers identification for gastric cancer diagnosis. Patent application publication WO2010104626A1, filed February 19, 2010, and published September 16, 2010.

194. Burgute, B.D., Pech, V.S., Steckelberg, A.-L., Glöckner, G., Galben, B., Gehring, N.H., and Noegel, A.A. (2014). NKAP is a novel RS-related protein that interacts with RNA and RNA binding proteins. Nucleic Acids Res. 42, 3177–3193.

195. Li, T., Chen, L., Cheng, J., Dai, J., Huang, Y., Zhang, J., Liu, Z., Li, A., Li, N., Wang, H., et al. (2016). SUMOylated NKAP is essential for chromosome alignment by anchoring CENP-E to kinetochores. Nat. Commun. 7, 12969.

196. Wei, Y., Wang, Y., Zang, A., Wang, Z., Fang, G., and Hong, D. (2019). miR-4766-5p inhibits the development and progression of gastric cancer by targeting NKAP. OncoTargets Ther. 12, 8525–8536.

197. Wang, S., Li, Q., Wang, K., Dai, Y., Yang, J., Xue, S., Han, F., Zhang, Q., Liu, J., and Wu, W. (2013). Decreased expression of microRNA-31 associates with aggressive tumor progression and poor prognosis in patients with bladder cancer. Clin. Transl. Oncol. 15, 849–854.

198. Wang, C.-J., Stratmann, J., Zhou, Z.-G., and Sun, X.-F. (2010). Suppression of microRNA-31 increases sensitivity to 5-FU at an early stage, and affects cell migration and invasion in HCT-116 colon cancer cells. BMC Cancer 10, 616.

199. Wang, H., Zhang, X., Liu, N., Z., Lin, Y., Duan, Z., Shi, Y., Wang, G., and Li, F. (2016). Downregulated miR-31 level associates with poor prognosis of gastric cancer and its restoration suppresses tumor cell malignant phenotypes by inhibiting E2F2. Oncotarget 7, 36577–36589.

200. Zhang, Y., Guo, J., Li, D., Xiao, B., Miao, Y., Jiang, Z., and Zhao, H. (2010). Down-regulation of miR-31 expression in gastric cancer tissues and its clinical significance. Med. Oncol. 27, 685–689.

201. Rong, S.L.K., Wong, C.C.L., Lee, J.M.F., Fan, D.N.Y., Tsang, F.H., Ng, I.L.L., and Wong, C.M. (2012). Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis. Hepatology 56, 622–631.
212. Saramäki, O.R., Tammela, T.L., Maritkainen, P.M., Vesella, R.L., and Visakorpi, T. (2006). The gene for polycystic kidney disease in zebrafish 2 (ZDH) is amplified in late-stage prostate cancer. Genes Chromosomes Cancer 45, 639–645.

213. Mimori, K., Ogawa, K., Okamoto, M., Sudoh, T., Inoue, H., and Mori, M. (2005). Clinical significance of enhancer of zeste homolog 2 expression in colorectal cancer cases. Eur. J. Surg. Oncol. 31, 376–380.

214. Sun, K.K., Shen, X.J., Yang, D., Gan, M.Q., Liu, G., Zhang, Y.F., Hu, P., Wang, H.D., and Wu, X.Y. (2019). MicroRNA-31 triggers G2/M cell cycle arrest, enhances the chemosensitivity and inhibits migration and invasion of human gastric cancer cells by downregulating the expression of zeste homolog 2 (ZH2). Arch. Biochem. Biophys. 663, 269–275.

215. Feng, X., Wang, Z., Fillmore, R., and Xi, Y. (2014). miR-200, a new star miRNA in human cancer. Cancer Lett. 344, 166–173.

216. Liu, X., Du, P., Han, L., Zhang, A., Jiang, K., and Zhang, Q. (2018). Effects of miR-200a and HIF35 combined with taxol on proliferation and invasion of gastric cancer. Pathol. Res. Pract. 214, 442–449.

217. Chang, L., Guo, F., Wang, Y., Lv, Y., Hao, B., Wang, L., and Liu, W. (2014). MicroRNA-20c regulates the sensitivity of chemotherapy of gastric cancer SGC7901/DDP cells by directly targeting RhoL. Pathol. Oncol. Res. 20, 93–98.

218. Jiang, T., Dong, P., Li, L., Ma, X., Xu, P., Zhu, H., Wang, Y., Yang, B., Liu, K., Liu, J., et al. (2017). MicroRNA-20c regulates cisplatin resistance by targeting ZEB2 in human gastric cancer cells. Oncol. Rep. 38, 151–158.

219. Zhang, H., Sun, Z., Li, Y., Fan, D., and Jiang, H. (2017). MicroRNA-20c binding to FNI suppresses the proliferation, migration and invasion of gastric cancer cells. Biomed. Pharmacother. 88, 285–292.

220. Liu, Y., Zhu, S.-T., Wang, X., Deng, J., Li, W.-H., Zhang, P., and Liu, B.-S. (2017). miR-200c regulates tumor growth and chemosensitivity to cisplatin in oesophageal cancer by targeting AKT2. Sci. Rep. 7, 13598.

221. Ghasabi, M., Majidi, J., Mansoori, B., Mohammadi, N., Shomali, N., Shirafkan, N., Baghban, E., Kazemi, T., and Baradaran, B. (2019). The effect of combined miR-200c replacement and cisplatin on apoptosis induction and inhibition of gastric cancer cell line migration. J. Cell. Physiol. 234, 22581–22592.

222. Ni, F., Zhao, H., Cui, H., Wu, Z., Chen, L., Hu, Z., Guo, C., Liu, Y., Chen, Z., Wang, X., et al. (2015). MicroRNA-362-5p promotes tumor growth and metastasis by targeting CYLD in hepatocellular carcinoma. Cancer Lett. 356 (2 Pt B), 809–818.

223. Wei, X., Gao, M., Ahmed, Y., Gao, M., Liu, W., Zhang, Y., Xie, X., Zhao, Q., Wang, H., and Gu, K. (2019). MicroRNA-362-5p enhances the cisplatin sensitivity of gastric cancer cells by targeting suppressor of zeste 12 protein. Oncol. Lett. 18, 1607–1616.

224. Wang, X., Zhang, H., Bai, M., Ning, T., Ge, S., Deng, T., Liu, R., Zhang, L., Ying, G., and Ba, Y. (2018). Exosomes serve as nanoparticles to deliver anti-miR-214 to reverse chemoresistance to cisplatin in gastric cancer. Mol. Ther. 26, 774–783.

225. Koroutian, A., Rouhi, R., Sharifabrizi, A., and Majd, Z. (2017). MicroRNA-31 inhibits RhoA-mediated tumor invasion and chemotherapy resistance in MNK-45 gastric adenocarcinoma cells. Exp. Biol. Med. (Maywood) 242, 1842–1847.

226. Zhang, X., Yao, J., Guo, K., Huang, H., Huai, S., Ye, R., Niu, B., Ji, T., Han, W., and Li, J. (2017). The functional mechanism of miR-125b in gastric cancer and its effect on the chemosensitivity of cisplatin. Oncotarget 9, 2105–2119.

227. Sacconi, A., Biagioni, F., Canu, V., Mori, F., Di Benedetto, A., Lorenzo, L., Ercolani, C., Di Agostino, S., Cambria, A.M., Germoni, S., et al. (2012). miR-204 targets Bcl-2 expression and enhances responsiveness of gastric cancer cells. Cell Death Dis. 3, e423.

228. Li, L.Q., Pan, D., Chen, Q., Zhang, S.W., Xie, D.Y., Zheng, X.L., and Chen, H. (2018). Sensitization of gastric cancer cells to 5-FU by microRNA-204 through targeting the TGFBR2-mediated epithelial to mesenchymal transition. Cell. Physiol. Biochem. 47, 1533–1545.

229. Guo, Y., Yue, P., Wang, Y., Chen, G., and Li, Y. (2019). PCAT-1 contributes to cisplatin resistance in gastric cancer through miR-128/ZEB1 axis. Biomed. Pharmacother. 118, 109255.

230. Cao, W., Wei, W., Zhan, Z., Xie, D., Xie, Y., and Xiao, Q. (2018). Regulation of drug resistance and metastasis of gastric cancer cells via the microRNA647-ANK2 axis. Int. J. Mol. Med. 41, 1958–1966.
ABC81 in hepatocellular carcinoma cells. Exp. Biol. Med. (Maywood) 238, 1024–1032.

290. Ji, J., Zheng, X., Forgues, M., Yamashita, T., Waithuri, E.L., Reid, I.M., Wen, X., Song, Y., Wei, J.S., Khan, J., et al. (2015). Identification of microRNAs specific for epithelial cell adhesion molecule-positive tumor cells in hepatocellular carcinoma. Hepatology 62, 829–840.

291. Wong, Q.W., Lung, R.W., Law, P.T., Lai, P.B., Chan, K.Y., To, K.F., and Wong, N. (2008). MicroRNA-223 is commonly repressed in hepatocellular carcinoma and potentiates expression of Stat3h11. Gastroenterology 135, 257–269.

292. Dong, Y.W., Wang, R., Cai, Q.Q., Qi, B., Wu, W., Zhang, Y.H., and Wu, X.Z. (2014). Sulfatide epigenetically regulates miR-223 and promotes the migration of human hepatocellular carcinoma cells. J. Hepatol. 60, 792–801.

293. Zhou, J., Yu, L., Gao, X., Hu, J., Wang, J., Dai, Z., Wang, J.F., Zhang, Z., Lu, S., Huang, X., et al. (2011). Plasma microRNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma. J. Clin. Oncol. 29, 4781–4788.

294. Liu, X., Deng, Y., Xu, Y., Jin, W., and Li, H. (2018). MicroRNA-223 protects neonatal rat cardiomyocytes and H9c2 cells from hypoxia-induced apoptosis and excessive autophagy via the Akt/mTOR pathway by targeting PARP-1. J. Mol. Cell Cardiol. 118, 133–146.

295. Zhou, Y., Chen, E., Tang, Y., Mao, J., Shen, J., Zheng, X., Xie, S., Zhang, S., Wu, Y., Liu, H., et al. (2019). miR-223 overexpression inhibits doxorubicin-induced autophagy by targeting FOXO3a and reverses chemoresistance in hepatocellular carcinoma. Cell Death Dis. 10, 843.

296. Budhu, A., Jia, H.L., Forgues, M., Liu, C.G., Goldstein, D., Lam, A., Tanetti, K.A., Ye, Q.H., Qin, L.X., Croce, C.M., et al. (2008). Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology 47, 897–907.

297. Ura, S., Honda, M., Yamashita, T., Ueda, T., Takatori, H., Nishino, R., Sunakozaka, H., Sakai, Y., Horigomo, K., and Kaneko, S. (2009). Differential microRNA expression related to hepatitis B and hepatitis C leading disease progression to hepatocellular carcinoma. Hepatology 49, 1098–1112.

298. Kim, J.K., Noh, J.H., Jung, K.H., Eun, J.W., Bae, H.J., Kim, M.G., Chang, Y.G., Shen, Q., Park, W.S., Lee, J.Y., et al. (2013). Sertuin7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressor miR-125a-5p and miR-125b. Hepatology 57, 1055–1067.

299. Liang, L., Wong, C.M., Ying, Q., Fan, D.N., Huang, S., Ding, J., Yao, J., Yan, M., Li, J., Yao, M., et al. (2010). MicroRNA-125b suppresses human liver cancer cell proliferation and metastasis by directly targeting oncogene LIN28B2. Hepatology 52, 1731–1740.

300. Li, W., Xie, L., He, X., Li, J., Tu, K., Wei, L., Wu, J., Guo, Y., Ma, X., Zhang, P., et al. (2008). Diagnostic and prognostic implications of microRNAs in human hepatocellular carcinoma. Int. J. Cancer 123, 1616–1622.

301. Ren, W.W., Li, D.D., Chen, X., Li, X.L., He, Y.P., Guo, L.H., Liu, L.N., Sun, L.P., and Zhang, X.P. (2018). MicroRNA-125b reverses exosome-mediated resistance in hepatocellular carcinoma by negatively regulating EVA1A mediated autophagy. Cell Death Dis. 9, 547.

302. Stinson, S., Lackner, M.R., Adai, A.T., Yu, N., Kim, H.J., O’Brien, C., Spoerke, J., Bunjhunwala, S., Boyd, Z., Januario, T., et al. (2011). miR-21/222 targeting of trichorhinophalangeal 1 (TRPS1) promotes epithelial-to-mesenchymal transition in breast cancer. Sci. Signal. 4, p5.

303. Yu, L., Roy, S., Nuovo, G., Ramaswamy, B., Miller, T., Shaprio, C., Jacob, S.T., and Majumder, S. (2018). Retraction. J. Biol. Chem. 293, 3588.

304. Miller, T.E., Ghoshal, K., Ramaswamy, B., Roy, S., Datta, J., Shaprio, C.L., Jacob, S., and Majumder, S. (2008). MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27kip1. J. Biol. Chem. 283, 29897–29903.

305. Zhang, C.Z., Zhang, J.X., Zhang, A.L., Shi, Z.D., Han, L., Jia, Z.F., Yang, W.D., Wang, G.X., Jiang, T., You, Y.P., et al. (2010). miR-221 and miR-222 target PUMA to induce cell survival in glioblastoma. Mol. Cancer 9, 229.

306. Wang, Q.W., Ching, A.K., Chan, A.W., Cho, K.W., To, K.F., Lai, P.B., and Wong, N. (2010). miR-222 overexpression confers cellular migratory advantages in hepatocellular carcinoma through enhancing AKT signaling. Clin. Cancer Res. 16, 867–875.

307. Zhong, S., Li, W., Chen, E., Tang, Y., Mao, J.Y., and Tian, B.L. (2019). miR-34a overexpression sensitizes human hepatocellular carcinoma cells to 5-fluorouracil and promote chemoresistance by targeting the stemness-related gene LIN28B2. J. Exp. Clin. Cancer Res. 38, 67.

308. Zhang, W., Wang, Y.M., Xu, S., Wang, W.G., Chen, Y., Yao, M., and Tian, B.L. (2015). MicroRNA-215 is upregulated with treatment by adriamycin and leads to the chemoresistance of hepatocellular carcinoma cells and tissues. Mol. Med. Rep. 12, 5274–5280.

309. Chen, M., Wu, L., Liu, L., Peng, J., Xiao, H., Yu, T., Zhou, Z., Li, Y., Zhang, Y., Bai, X., et al. (2019). Enhanced antiproliferative effect of resveratrol in head and neck squamous cell carcinoma using GE11 peptide conjugated liposome. Int. J. Mol. Med. 43, 1635–1642.

310. Cheng, W., Yang, W., Li, M., Zhu, Y., Liang, H., Wang, C., Yang, Z., Cheng, Q., Feng, X., and Chen, G. (2017). Downregulation of miR-33a-5p in hepatocellular carcinoma: A possible mechanism for chemotherapy resistance. Med. Sci. Monit. 23, 1293–1304.

311. Zheng, T., Peng, H., Liu, L., Peng, J., Xiao, H., Wu, J., Tsieng, C., Pichiorri, F., Alder, H., Secchiero, P., et al. (2009). Differential microRNA expression in breast cancer: Gene expression profiling in breast cancer. Mol. Med. Rep. 2, 135–146.

312. Yuan, Z., Yu, X., Ni, B., Chen, D., Yang, Z., Huang, J., Wang, J., Chen, D., and Wang, L. (2016). Overexpression of long non-coding RNA-CDT903 inhibits colorectal cancer invasion and migration by repressing Wnt/β-catenin signaling and predicts favorable prognosis. Int. J. Oncol. 48, 2675–2685.

313. Long, J., Jiang, C., Liu, B., Dai, Q., Hua, R., Chen, C., Zhang, B., and Li, H. (2018). Maintenance of stemness by miR-589-5p in hepatocellular carcinoma cells promotes chemoresistance via STAT3 signaling. Cancer Lett. 423, 113–126.

314. Jiang, J.X., Gao, S., Pan, Y.Z., Yu, C., and Sun, C.Y. (2014). Overexpression of microRNA-125b sensitizes human hepatocellular carcinoma cells to 5-fluorouracil through inhibition of glycolysis by targeting hexokinase II. Biochem. Biophys. Res. Commun. 453, 1035–1041.
MicroRNA-10b promotes migration and invasion through KLF4 in human esophageal cancer cells. Mol. Cancer 13, 256.

Liu, I.Z., Zhou, X.D., Qian, G., Shi, X., Fang, J., and Jiang, B.H. (2007). AKT1 amplification regulates cisplatin resistance in human lung cancer cells through the mammalian target of rapamycin/p70S6K pathway. Cancer Res. 67, 6325–6332.

Huang, J., Sun, C., Wang, S., He, Q., and Li, D. (2015). MicroRNA-10b inhibits breast cancer cell invasiveness and metastasis by targeting E-cadherin. Mol. Cancer 14, 116.

Guo, Y., Liu, H., Zhang, H., Shang, C., and Song, Y. (2012). miR-96 regulates PPAR cation regulates cisplatin resistance in human lung cancer cells through the regulation of FTE. Mol. Cell. Biochem. 422, 161–170.

Chang, Z.W., Jia, Y.X., Zhang, W.L., Song, J.J., Gao, M., Li, M.J., Zhao, R.H., Li, J., Zhang, Y.L., Sun, Q.Z., and Yin, Y.R. (2018). miR-143/PLK1/DD1224 associated with chemoresistance in breast cancer through upregulation of normal fibroblasts to cancer-associated fibroblasts. Carcinogenesis 39, 894–903.

Ma, Y., Wang, B., Guo, Y., Zhang, Y., Huang, S., Bao, X., and Bai, M. (2016). Inhibition of miR-196a affects breast cancer cell growth in vitro. Biomed. Pharmacother. 84, 22–27.

Hummel, R., Watson, D.I., Smith, C., Kist, J., Michael, M.Z., Haier, J., and Hussey, D.J. (2011). MiR-148a improves response to chemotherapy in sensitive and resistant esophageal adenocarcinoma and squamous cell carcinoma cells. J. Gastrointest. Surg. 15, 429–438.

Sugimura, K., Miyata, H., Sugimura, F., Fukuda, S., Kanemura, T., Yamashita, K., Miyazaki, Y., Takahashi, T., Kurokawa, Y., Yamashita, M., et al. (2015). miR-27 is associated with chemoresistance in esophageal cancer through transformation of normal fibroblasts to cancer-associated fibroblasts. Carcinogenesis 36, 894–903.

Nishida, N., Yamashita, S., Mimori, K., Sudo, T., Tanaka, F., Shibata, K., Yamamoto, H., Ishii, H., Doki, Y., and Mori, M. (2012). MicroRNA-10b is a prognostic indicator in esophageal cancer patients. Cancer Manag. Res. 4, 379–385.

Lin, H., Dai, T., Xiong, H., Zhao, X., Chen, X., Yu, C., Li, J., Wang, X., and Song, L. (2012). Overexpression of miR-10b promotes cell invasion in breast cancer cells through down-regulation of HDAC4. BMC Cancer 12, 67.

Zhang, P., Hong, H., Sun, X., Jiang, H., Ma, S., Zhao, S., Zhang, M., Wang, Z., Jiang, C., and Liu, H. (2016). MicroRNA-10b regulates epithelial-mesenchymal transition by modulating KLF4/Notch1/E-cadherin in cisplatin-resistant nasopharyngeal carcinoma cells. Am. J. Cancer Res. 6, 141–156.

Ahmad, A., Ginnebaugh, K.R., Yin, S., Bollig-Fischer, A., Reddy, K.B., and Sarkar, F.H. (2015). Functional role of miR-10b in tamoxifen resistance in ER-positive breast cancer cells through down-regulation of HDAC4. BMC Cancer 15, 540.

Tian, Y., Luo, A., Cai, Y., Su, Q., Dinh, F., Chen, H., and Liu, Z. (2010). MicroRNA-10b promotes migration and invasion through KLF4 in human esophageal cancer cell lines. J. Biol. Chem. 285, 7986–7994.

Wu, K., Hu, Y., Yan, K., Qi, Y., Zhang, C., Zhu, D., Liu, D., and Zhao, S. (2020). MicroRNA-10b confers cisplatin resistance by activating AKT/mTOR/P70S6K signaling via targeting PPARY in esophageal cancer. J. Cell. Physiol. 235, 1247–1258.

Guo, H., Li, Q., Li, W., Zheng, T., Zhao, S., and Liu, Z. (2014). miR-96 downregulates RECK to promote growth and motility of non-small cell lung cancer cells. Mol. Cell. Biochem. 380, 155–160.

Lin, H., Dai, T., Xiong, H., Zhao, X., Chen, X., Yu, C., Li, J., Wang, X., and Song, L. (2010). Unregulated miR-96 induces cell proliferation in human breast cancer by downregulating transcriptional factor FOXO3a. PLoS ONE 5, e15797.

Fendler, A., Jung, M., Stephan, C., Erbersdobler, A., Jung, K., and Yousef, G.M. (2013). The antiapoptotic function of miR-96 in prostate cancer by inhibition of FOXO1. PLoS ONE 8, e80807.

Guo, Y., Liu, H., Zhang, H., Shang, C., and Song, Y. (2012). miR-96 regulates FOXO1-mediated cell apoptosis in bladder cancer. Oncol. Lett. 4, 561–565.

Zhang, J., Kong, X., Li, J., Luo, Q., Li, X., Shen, L., Chen, L., and Fang, L. (2014). miR-96 promotes tumor proliferation and invasion by targeting RECK in breast cancer. Oncol. Rep. 31, 1357–1363.

Eichelmann, A.K., Matuszczak, C., Lindner, K., Haier, J., Hussey, D.J., and Hummel, R. (2018). Complex role of miR-130a-3p and miR-148a-3p balance on drug resistance and tumor biology in esophageal squamous cell carcinoma. Sci. Rep. 8, 17553.

Yang, Y.C., Liu, G.J., Yuan, D.F., Li, C.Q., Xue, M., and Chen, L.J. (2019). Influence of exosome-derived miR-21on chemoresistance of esophageal cancer. Eur. Rev. Med. Pharmacol. Sci. 23, 1513–1519.

Hu, M., Zhang, Q., Tian, X.H., Wang, J.L., Niu, Y.X., and Li, G. (2019). IncRNA CCAT1 is a biomarker for the proliferation and drug resistance of esophageal cancer via the miR-143/PLK1/BUBR1 axis. Mol. Carcinog. 58, 2207–2217.

Huang, C.M., Huang, C.S., Hu, T.N., Huang, M.S., Fong, I.H., Lee, W.H., and Liu, S.C. (2019). Disruption of cancer metabolic SREBP1/miR-142-5p suppresses epithelial-mesenchymal transition and stemness in esophageal carcinoma. Cells 9, 7.

Jin, Y.Y., Chen, Q., Xu, K., Ren, H.T., Bao, X., Ma, Y.N., Wei, Y., and Ma, H.B. (2016). Involvement of microRNA-141-3p in 5-fluorouracil and oxaliplatin chemo-resistance in esophageal cancer cells via regulation of PTEN. Mol. Cell. Biochem. 422, 161–170.

Chang, Z.W., Jia, Y.X., Zhang, W.L., Song, J.J., Gao, M., Li, M.J., Zhao, R.H., Li, J., Zhang, Y.L., Sun, Q.Z., and Yin, Y.R. (2018). IncRNA-TUSC7/miR-224 associated with chemoreistance in esophageal squamous cell carcinoma by competitively regulating DECSI. J. Exp. Clin. Cancer Res. 37, 56.
437. Baldinu, P., Cossu, A., Manca, A., Satta, M.P., Sini, M.C., Palomba, G., Dessole, S., Cherchi, P., Mara, L., Tanda, F., and Palmieri, G. (2007). CASC2a gene is down-regulated in endometrial cancer. Anticancer Res. 27 (1A), 235–243.

438. Gao, W., Lin, S., Cheng, C., Zhu, A., Hu, Y., Shi, Z., Zhang, X., and Hong, Z. (2019). Long non-coding RNA CASC2 regulates Sprouty2 via functioning as a competing endogenous RNA for miR-183 to modulate the sensitivity of prostate cancer cells to doxetaxel. Arch. Biochem. Biophys. 665, 69–78.

439. Ambros, V. (2001). MicroRNAs: Tiny regulators with great potential. Cell 107, 823–826.

440. Wang, K., Long, B., Zhou, L.-Y., Liu, F., Zhou, Q.-Y., Liu, C.-Y., Fan, Y.-Y., and Li, W.-C. (2017). Modulation of CASC2/miR-21/PTEN pathway sensitizes cervical cancer to cisplatin. Arch. Biochem. Biophys. 623–624, 20–30.

441. Jiang, C., Shen, F., Du, J., Fang, X., Li, X., Su, J., Wang, X., Huang, X., and Liu, Z. (2018). Upregulation of CASC2 sensitized glioma to temozolomide cytotoxicity through autophagy inhibition by sponging miR-193a-5p and regulating mTOR expression. Biomed. Pharmacother. 97, 844–850.

442. Wang, L., Zhang, X., Sheng, L., Qiu, C., and Luo, R. (2018). lincRNA00473 promotes the Taxol resistance via miR-15a in colorectal cancer. Biosci. Rep. 38, 8SR20180790.

443. Yu, L., Gui, S., Liu, Y., Qiu, X., Zhang, G., Zhang, X., Pan, J., Fan, J., Qi, S., and B., B. (2019). Exosomes derived from microRNA-194-overexpressing mesenchymal stem cells inhibit glioma progression by down-regulating AGAP2. Aging (Albany NY) 11, 5300–5318.

444. Liang, Q., Ding, J., Xu, R., Xu, Z., and Zheng, S. (2010). The novel human endogenous retrovirus-related gene, psitTPET2-HERV, is silenced by DNA methylation in cancers. Int. J. Cancer 127, 1833–1843.

445. Choi, S.J., Jung, S.W., Huh, S., Chung, Y.-S., Cho, H., and Kang, H. (2017). Alteration of DNA methylation in gastric cancer with chemotherapy. J. Microbiol. Biotechnol. 27, 1367–1378.

446. Vera, O., Jimenez, J., Pernia, O., Rodriguez-Antolin, C., Rodriguez, C., Sanchez Cabo, F., Soto, J., Rosas, R., Lepez-Magallon, S., Esteban Rodriguez, L., et al. (2017). DNA methylation of miR-7 is a mechanism involved in platinum resistance through MAPK overexpression in cancer cells. Theranostics 7, 4118–4134.

447. van Jaarsveld, M.T., Helleman, J., Boersma, A.W., van Kuijk, P.F., van Ijcken, W.F., van Beusekom, M.H., van den Borne, B.A., and van de Wetering, M. (2017). lincRNA BCYRN1 expression of airway smooth muscle cells by improving miR-150 expression to inhibit the proliferation and migration of ASMC in asthmatic mice. J. Exp. Clin. Cancer Res. 36, 115.

448. Zhai, H., and Li, Y. (2019). BCYRN1 is correlated with progression and prognosis in gastric cancer. Biosci. Rep. 39, 8SR20190505.

449. Wang, Y.-C., Huang, Y.-H., Shao, Q., Chen, J.-F., and Chen, S.-Y. (2018). Brain cytoplasmic RNA1 suppresses smooth muscle differentiation and vascular development in mice. J. Biol. Chem. 293, 5668–5678.

450. Zhang, X.-Y., Tang, X.-Y., Ma, L.-I., Guo, Y.-L., Li, X.-S., Zhao, L.-M., Tian, C.-J., Cheng, D.-J., Chen, Z.-C., and Zhang, L.-X. (2017). Schisandrin B down-regulated lncRNA BCYRN1 expression of airway smooth muscle cells by improving miR-150 expression to inhibit the proliferation and migration of ASM2 in asthmatic rats. Cell Prolif. 50, e13282.

451. Yang, L., Zhang, Y., Bao, J., and Feng, J.F. (2020). Long non-coding RNA TUG1 exerts an oncogenic role in colorectal cancer by regulating the miR-204-3p/BRCA1 axis. Cancer Cell Int. 20, 453.

452. Young, Y.L., Matsuda, T., and Cepko, C.L. (2005). The noncoding RNA taurine up-regulated gene 1 is required for differentiation of the murine retina. Curr. Biol. 15, 501–512.

453. Tan, J., Qiu, K., Li, M., and Liang, Y. (2015). Double-negative feedback loop between long non-coding RNA TUG1 and miR-145 promotes epithelial to mesenchymal transition and radioresistance in human bladder cancer cells. FEBS Lett. 589 (20 Pt B), 3175–3181.

454. Zhang, E., He, X., Yin, D., Han, L., Qiu, M., Xu, T., Xia, R., Xu, L., Yin, R., and De, W. (2016). Increased expression of long noncoding RNA TUG1 predicts a poor prognosis of gastric cancer and regulates cell proliferation by epigenetically silencing p57. Cell Death Dis. 7, e2109.

455. Zhu, J., Shi, H., Liu, H., Wang, X., and Li, F. (2017). Long non-coding RNA TUG1 promotes cervical cancer progression by regulating the miR-138-5p-SIRT1 axis. Oncotarget 8, 65253–65264.

456. Zhang, E.B., Yin, D.D., Sun, M., Kong, R., Liu, X.H., You, L.H., Han, L., Xia, R., Wang, K.M., Yang, J.S., et al. (2014). p53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression. Cell Death Dis. 5, e1243.

457. Li, C., Gao, Y., Li, Y., and Ding, D. (2017). TUG1 mediates methotrexate resistance in colorectal cancer via miR-186-CPEB2 axis. Biochem. Biophys. Res. Commun. 491, 552–557.

458. Wang, M., Hu, H., Wang, Y., Huang, Q., Huang, R., Chen, Y., Ma, T., Qiao, T., Zhang, Q., Wu, H., et al. (2019). Long non-coding RNA TUG1 mediates 5-fluorouracil resistance by acting as a ceRNA of miR-197-3p in colorectal cancer. J. Cancer 10, 4603–4613.

459. Wu, H., Zou, Q., He, H., Liang, Y., Lei, M., Zhou, Q., Fan, D., and Shen, L. (2019). Long non-coding RNA PCAF[T6 regulates miR-204 to modulate the chemoresistance of colorectal cancer cells to 5-fluorouracil-based treatment through HMGA2 signaling. Cancer Med. 8, 2484–2495.

460. Doherty, G.J., Ahlund, M.K., Howes, M.T., Moren, B., Parton, R.G., McMahon, H.T., and Lundmark, R. (2011). The endocyptic protein GRAF is directed to cell-matrix adhesion sites and regulates cell spreading. Mol. Biol. Cell 22, 4380–4389.

461. Xie, Y., Shao, Y., Sun, W., Ye, G., Zhang, X., Xiao, B., and Guo, J. (2018). Downregulated expression of lncRNA_flom_0074362 in gastric cancer and its potential diagnostic values. Biomarkers Med. 12, 11–20.
474. Shao, Y., Li, J., Lu, R., Li, T., Yang, Y., Xiao, B., and Guo, J. (2017). Global circular RNA expression profile of human gastric cancer and its clinical significance. Cancer Med. 6, 1173–1180.

475. Wangxia, L.V., Fang, Y., Liu, Y., Zhao, Y., Shi, Z., and Zhong, H. (2019). Circular RNA ARHGAP26 is over-expressed and its downregulation inhibits cell proliferation and promotes cell apoptosis in gastric cancer cells. Saudi J. Gastroenterol. 25, 119–125.

476. Hansen, T.B., Jensen, T.I., Clausen, B.H., Bramsen, J.B., Finsen, B., Damgaard, C.K., and Kjems, J. (2013). Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388.

477. Tay, Y., Rinn, J., and Pandolfi, P.P. (2014). The multilayered complexity of ceRNA crosstalk and competition. Nature 505, 344–352.

478. Barrett, S.P., and Salzman, J. (2016). Circular RNAs: Analysis, expression and potential functions. Development 143, 1838–1847.

479. Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Maier, L., Mackowiak, S.D., Gregersen, L.H., Munschauer, M., et al. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338.

480. Kulcheski, F.R., Christoff, A.P., and Margis, R. (2016). Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J. Biotechnol. 238, 42–51.

481. He, T., Li, X., Xie, D., and Tian, L. (2019). Overexpressed circPVT1 in oral squamous cell carcinoma promotes proliferation by serving as a miRNA sponge. Mol. Med. Rep. 20, 3509–3518.

482. Li, X., Zhang, Z., Jiang, H., Li, Q., Wang, R., Pan, H., Niu, Y., Liu, F., Gu, H., Fan, X., et al. (2018). Circular RNA circPVT1 promotes proliferation and invasion through sponging miR-125b and activating E2F2 signaling in non-small cell lung cancer. Cell. Physiol. Biochem. 51, 2324–2340.

483. Chen, J., Li, Y., Zheng, Q., Rao, C., He, I., Chen, B., Lyu, D., Zheng, B., Xu, Y., Long, Z., et al. (2017). Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer. Cancer Lett. 388, 208–219.

484. Kun-Peng, Z., Xiao-Long, M., and Chun-Lin, Z. (2018). Overexpressed circPVT1, a potential new circular RNA biomarker, contributes to doxorubicin and cisplatin resistance of osteosarcoma cells by regulating ABCB1. Int. J. Biol. Sci. 14, 321–330.

485. Chen, Z., Yao, N., Gu, H., Song, Y., Ye, Z., Li, L., Lu, P., and Shao, Q. (2020). Circular RNA LARP4 sponges miR-1323 and hampers progression of esophageal squamous cell carcinoma through modulating PTEN/PIM1/PI3K/AKT pathway. Dig. Dis. Sci. 65, 2272–2283.

486. Sun, G., Li, Z., He, Z., Wang, W., Wang, S., Zhang, X., Cao, J., Xu, P., Wang, H., Huang, X., et al. (2020). Circular RNA MCTP2 inhibits cisplatin resistance in gastric cancer by miR-99a-5p-mediated induction of MT3MR expression. J. Exp. Clin. Cancer Res. 39, 246.

487. Pan, H., Li, T., Ji, Y., Pan, C., Ding, Y., Huang, Z., Yu, H., and Kong, D. (2018). Overexpression of circular RNA CRIS-7 abrogates the tumor suppressive effect of miR-7 on gastric cancer via PTEN/PIM1/PI3K/AKT signaling pathway. J. Cell. Biochem. 119, 440–446.

488. Huang, X.Y., Zhang Q., Hu, H., Jin, Y., Zeng, A.L., Xia, Y.B., and Xu, L. (2020). A novel circular RNA circFN1 enhances cisplatin resistance in gastric cancer via sponging miR-182-5p. J. Cell. Biochem. 122, 1009–1020.

489. Li, J., Qin, X., Wu, R., Wan, L., Zhang, L., and Liu, R. (2020). Circular RNA circFBXO11 modulates hepatocellular carcinoma progress and oxaliplatin resistance through miR-605/FOXD3/ABC81 axis. J. Cell. Mol. Med. 24, 5152–5161.

490. Liu, Y., Xia, L., Dong, L., Wang, J., Xiao, Q., Yu, X., and Zhu, H. (2020). circHIPK3 promotes gemcitabine (GEM) resistance in pancreatic cancer cells by sponging miR-330-5p and targets RASSF1. Cancer Manag. Res. 12, 921–929.

491. Li, S., and Zheng, H. (2020). Down-regulation of circ_0032833 sensitizes colorectal cancer to 5-fluorouracil and oxaliplatin partly depending on the regulation of miR-125-5p and MSI1. Cancer Manag. Res. 12, 11257–11269.

492. Jian, X., He, H., Zhu, J., Zhang, Q., Zheng, Z., Liang, X., Chen, L., Yang, M., Peng, K., Zhang, Z., et al. (2020). hsa_circ_001680 affects the proliferation and migration of CRC and mediates its chemoresistance by regulating BMI1 through miR-340. Mol. Cancer 19, 20.

493. Wang, X., Zhang, H., Yang, H., Bai, M., Ning, T., Deng, T., Liu, R., Fan, Q., Zhu, K., Li, J., et al. (2020). Exosome-delivered circularRNA promotes glycolysis to induce chemoresistance through the miR-122-PKM2 axis in colorectal cancer. Mol. Oncol. 14, 539–555.

494. Amodio, N., Raimondi, L., Juli, G., Stamato, M.A., Caracciolo, D., Tagliaferri, P., and Tassone, P. (2018). MALAT1: A druggable long non-coding RNA for targeted anti-cancer approaches. J. Hematol. Oncol. 11, 63.

495. Arun, G., Diermeier, S., Akerman, M., Chang, K.C., Wilkinson, J.E., Hearsn, S., Kim, Y., MacLeod, A.R., Krainer, A.R., Norton, L., et al. (2016). Differentiation of mammary tumors and reduction in metastasis upon Malat1 IncRNA loss. Genes Dev. 30, 34–51.

496. Liu, Y., Zhou, H., Yin, T., Gong, Y., Yuan, G., Chen, L., and Liu, J. (2019). Quercetin-modified gold-palladium nanoparticles as a potential autophagy inducer for the treatment of Alzheimer’s disease. J. Colloid Interface Sci. 552, 388–400.

497. Taieb, J., Tabernero, J., Mimi, E., Subtil, F., Felprecht, G., Van Laethem, J.L., Thaler, J., Bridgewater, J., Petersen, L.N., Blons, H., et al.; PETACC-8 Study Investigators (2014). Oxaliplatin, fluorouracil, and leucovorin with or without cetuximab in patients with resected stage III colon cancer (PETACC-8): An open-label, randomised phase 2A trial. Lancet Oncol. 15, 862–873.

498. Arunkumar, G., Deva Magendhira Rao, A.K., Manikandan, M., Prasanna Srinivasa Rao, H., Subbiah, S., Bangov, R., Murugan, A.K., and Munirajan, A.K. (2018). Dysregulation of miR-200 family microRNAs and epithelial-mesenchymal transition markers in oral squamous cell carcinoma. Oncol. Lett. 15, 649–657.

499. Lin, C.Y., Hsieh, P.L., Liao, Y.W., Peng, C.Y., Lu, M.Y., Yang, C.H., Yu, C.C., and Liu, J. (2019). Quercetin-modified gold-palladium nanoparticles as a potential autophagy inducer for the treatment of Alzheimer’s disease. J. Colloid Interface Sci. 552, 388–400.

500. Gong, N., Teng, X., Li, J., and Liang, X.I. (2019). Antisense oligonucleotide-conjugated nanostructure-targeting lncRNA MALAT1 inhibits cancer metastasis. ACS Appl. Mater. Interfaces 11, 37–42.

501. Di, W., Li, Q., Shen, W., Guo, H., and Zhao, S. (2017). The long non-coding RNA HOTAIR promotes thyroid cancer cell growth, invasion and migration through the miR-1–CCND2 axis. Am. J. Cancer Res. 7, 1298–1309.